repo_name
stringlengths
6
92
path
stringlengths
7
220
copies
stringclasses
78 values
size
stringlengths
2
9
content
stringlengths
15
1.05M
license
stringclasses
15 values
peap/notebooks
pytexas-2013/d02t03.classes.ipynb
1
12967
{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Classes and Metaclasses\n", "_James Powell_ " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Themes\n", "\n", "* static ignorance of the interpreter\n", " * the interpreter doesn't know what it's looking at\n", " * eg., a name followed by () could be a function, class, generator, etc.\n", "* metaclasses are a tool for enforcing constraints from a base class to a derived class\n", "* CPython as a reference implementation of Python\n", " * Guidance for how the language is supposed to work\n", " * Python is a language without a spec (unlike, say, C++)\n", " * If something that works in CPython doesn't work in PyPy, Jython, etc., the other interpreters are not necessarily broken\n", "* CPython code as a source for understanding\n", " * simple, straight-forward\n", " * there exists a natural starting point\n", "* Python as a system language with no boundary between system and app" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Order of the talk\n", "\n", "* contours of classes\n", "* class construction\n", "* what is a metaclass?\n", "* interesting things in Python 3" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sys import version_info\n", "print(version_info)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "sys.version_info(major=3, minor=3, micro=2, releaselevel='final', serial=0)\n" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Contours of Classes" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "EUCLIDEAN, STREETS = object(), object()\n", "\n", "ARENA_TYPE = STREETS\n", "\n", "# in python3, you don't need to derive from object, since there are no old-style classes\n", "class Mob:\n", " \"\"\"\n", " Any mobile object in the game.\n", " \"\"\"\n", "# not sure why this was breaking...\n", "# def __new__(cls, *args, **kwargs):\n", "# # runs before instantiation\n", "# return object.__new__(cls, *args, **kwargs)\n", " \n", " def __init__(self, x, y):\n", " self._x, self._y = x, y\n", " \n", " def __repr__(self):\n", " return '{0.__name__}({1.x}, {1.y})'.format(type(self), self)\n", " \n", " def __str__(self):\n", " return repr(self)\n", " \n", " def move(self):\n", " pass\n", " \n", " @property\n", " def x(self):\n", " return self._x\n", " \n", " @property\n", " def y(self):\n", " return self._y\n", " \n", " @x.setter\n", " def x(self, value):\n", " if value < 0:\n", " raise ValueError(\"can't move outside of the arena\")\n", " self._x = value\n", " \n", " @y.setter\n", " def y(self, value):\n", " if value < 0:\n", " raise ValueError(\"can't move outside of the arena\")\n", " self._y = value\n", "\n", " if ARENA_TYPE == EUCLIDEAN:\n", " @staticmethod\n", " def distance(mob1, mob2):\n", " return sqrt((mob1.x + mob2.x)**2 + (mob1.y + mob2.y)**2)\n", " else:\n", " @staticmethod\n", " def distance(mob1, mob2):\n", " return abs(mob1.x - mob2.x) + abs(mob1.y - mob2.y)\n", "\n", "mob1 = Mob(0, 0)\n", "mob2 = Mob(12, 3)\n", "\n", "Mob.distance(mob1, mob2)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 41, "text": [ "15" ] } ], "prompt_number": 41 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Instance methods are created on the fly; this does not apply to class methods or properties." ] }, { "cell_type": "code", "collapsed": false, "input": [ "mob3 = Mob(1, 1)\n", "assert Mob is Mob\n", "assert mob3 is mob3\n", "print(list(map(id, [mob3.x, mob3.x])))\n", "print(list(map(id, [mob3.move, mob3.move])))\n", "\n", "Mob.__dict__" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "[140227895093824, 140227895093824]\n", "[140227747113584, 140227326980896]\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 47, "text": [ "mappingproxy({'move': <function Mob.move at 0x7f89239b4320>, '__dict__': <attribute '__dict__' of 'Mob' objects>, 'x': <property object at 0x7f89239a6998>, '__init__': <function Mob.__init__ at 0x7f89239b4170>, 'y': <property object at 0x7f89239a66d8>, '__doc__': '\\n Any mobile object in the game.\\n ', '__repr__': <function Mob.__repr__ at 0x7f89239b4200>, 'distance': <staticmethod object at 0x7f892399e1d0>, '__weakref__': <attribute '__weakref__' of 'Mob' objects>, '__str__': <function Mob.__str__ at 0x7f89239b4290>, '__module__': '__main__'})" ] } ], "prompt_number": 47 }, { "cell_type": "markdown", "metadata": {}, "source": [ "James likes dis" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from dis import dis\n", "\n", "def create_mob():\n", " return Mob(1,1)\n", "\n", "dis(create_mob)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " 4 0 LOAD_GLOBAL 0 (Mob) \n", " 3 LOAD_CONST 1 (1) \n", " 6 LOAD_CONST 1 (1) \n", " 9 CALL_FUNCTION 2 (2 positional, 0 keyword pair) \n", " 12 RETURN_VALUE \n" ] } ], "prompt_number": 48 }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you want to find the hooks for function calls in the CPython code, just grep for CALL_FUNCTION now.\n", "\n", "Here's where metaclasses come in... (somehow)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from dis import dis\n", "\n", "def create_monster():\n", " class Monster(Mob):\n", " def __init__(self, hp, *args, **kwargs):\n", " self.hp = hp\n", " Mob.__init__(*args, **kwargs)\n", "\n", "dis(create_monster)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " 4 0 LOAD_BUILD_CLASS \n", " 1 LOAD_CONST 1 (<code object Monster at 0x7f895109f540, file \"<ipython-input-55-b7f99bfca70d>\", line 4>) \n", " 4 LOAD_CONST 2 ('Monster') \n", " 7 MAKE_FUNCTION 0 \n", " 10 LOAD_CONST 2 ('Monster') \n", " 13 LOAD_GLOBAL 0 (Mob) \n", " 16 CALL_FUNCTION 3 (3 positional, 0 keyword pair) \n", " 19 STORE_FAST 0 (Monster) \n", " 22 LOAD_CONST 0 (None) \n", " 25 RETURN_VALUE \n" ] } ], "prompt_number": 55 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Looking at the CPython code, you'll see that you only use the first metaclass you find in the inheritance chain. Or is it only the metaclass of the first class (as in, the class itself)?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can create your own object sytem in python...but probably don't." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What would you use metaclasses for?" ] }, { "cell_type": "code", "collapsed": false, "input": [ "class Monster(Mob):\n", " def __init__(self, hp, *args, **kwargs):\n", " self._hp = hp\n", " Mob.ty__init__(*args, **kwargs)\n", " \n", " @property\n", " def hp(self):\n", " return self._hp\n", "\n", "class Boss(Monster):\n", " def __init__(self, prize, *args, **kwargs):\n", " self.prize = prize\n", " Monster.__init__(*arg, **kwargs)\n", " \n", "# you can ensure that classes you inherit from have certain attributes\n", "assert hasattr(Monster, 'hp')\n", "assert issubclass(Monster, Mob)\n", "\n", "# metaclasses allow you contrain derived classes at the parent class level\n", "# --> we don't want subclasses of Monster to be able to move outside the arena\n", "class metaclass(type):\n", " def __init__(self, name, bases, body):\n", " print(self, name, bases, body)\n", " # place contraints here...\n", " if name == 'Derived':\n", " raise ValueError('no!')\n", " return type.__init__(self, name, bases, body)\n", "\n", "class Base(metaclass=metaclass):\n", " pass\n", "\n", "class Derived(Base):\n", " pass" ], "language": "python", "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "no!", "output_type": "pyerr", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-71-fdda81cbdfa8>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 30\u001b[0m \u001b[1;32mpass\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 31\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 32\u001b[1;33m \u001b[1;32mclass\u001b[0m \u001b[0mDerived\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mBase\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 33\u001b[0m \u001b[1;32mpass\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m<ipython-input-71-fdda81cbdfa8>\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, name, bases, body)\u001b[0m\n\u001b[0;32m 24\u001b[0m \u001b[1;31m# place contraints here...\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 25\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mname\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;34m'Derived'\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 26\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'no!'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 27\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mtype\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbases\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbody\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 28\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mValueError\u001b[0m: no!" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "<class '__main__.Base'> Base () {'__qualname__': 'Base', '__module__': '__main__'}\n", "<class '__main__.Derived'> Derived (<class '__main__.Base'>,) {'__qualname__': 'Derived', '__module__': '__main__'}\n" ] } ], "prompt_number": 71 } ], "metadata": {} } ] }
mit
HPCC-Cloud-Computing/press
Scaling4ML/svm/svm.ipynb
1
8442
{ "cells": [ { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [], "source": [ "file_name = 'day6_10.csv' # input file name\n", "window_size = 10\n", "k = 10 # scale -k -> k\n", "train_size = 0.9 # tỉ lệ data được dùng để train" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " <th>1</th>\n", " <th>2</th>\n", " <th>3</th>\n", " <th>4</th>\n", " <th>5</th>\n", " <th>6</th>\n", " <th>7</th>\n", " <th>8</th>\n", " <th>9</th>\n", " <th>10</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>8400</td>\n", " <td>10165</td>\n", " <td>9482</td>\n", " <td>8041</td>\n", " <td>7939</td>\n", " <td>7608</td>\n", " <td>8304</td>\n", " <td>8485</td>\n", " <td>7278</td>\n", " <td>7427</td>\n", " <td>-40</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>10165</td>\n", " <td>9482</td>\n", " <td>8041</td>\n", " <td>7939</td>\n", " <td>7608</td>\n", " <td>8304</td>\n", " <td>8485</td>\n", " <td>7278</td>\n", " <td>7427</td>\n", " <td>7556</td>\n", " <td>5</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>9482</td>\n", " <td>8041</td>\n", " <td>7939</td>\n", " <td>7608</td>\n", " <td>8304</td>\n", " <td>8485</td>\n", " <td>7278</td>\n", " <td>7427</td>\n", " <td>7556</td>\n", " <td>7763</td>\n", " <td>5</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>8041</td>\n", " <td>7939</td>\n", " <td>7608</td>\n", " <td>8304</td>\n", " <td>8485</td>\n", " <td>7278</td>\n", " <td>7427</td>\n", " <td>7556</td>\n", " <td>7763</td>\n", " <td>6995</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>7939</td>\n", " <td>7608</td>\n", " <td>8304</td>\n", " <td>8485</td>\n", " <td>7278</td>\n", " <td>7427</td>\n", " <td>7556</td>\n", " <td>7763</td>\n", " <td>6995</td>\n", " <td>6593</td>\n", " <td>-25</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 0 1 2 3 4 5 6 7 8 9 10\n", "0 8400 10165 9482 8041 7939 7608 8304 8485 7278 7427 -40\n", "1 10165 9482 8041 7939 7608 8304 8485 7278 7427 7556 5\n", "2 9482 8041 7939 7608 8304 8485 7278 7427 7556 7763 5\n", "3 8041 7939 7608 8304 8485 7278 7427 7556 7763 6995 7\n", "4 7939 7608 8304 8485 7278 7427 7556 7763 6995 6593 -25" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(file_name, header=None)\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [], "source": [ "# Chuẩn bị dữ liệu\n", "X = np.array(df[list(range(window_size))], dtype='float32')\n", "y = np.array(df[window_size])\n", "X_train = X[:int(train_size*len(X))]\n", "X_test = X[int(train_size*len(X)):]\n", "y_train = y[:int(train_size*len(y))]\n", "y_test = y[int(train_size*len(y)):]" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "c:\\users\\mp\\appdata\\local\\programs\\python\\python35\\lib\\site-packages\\sklearn\\model_selection\\_split.py:605: Warning: The least populated class in y has only 1 members, which is too few. The minimum number of members in any class cannot be less than n_splits=3.\n", " % (min_groups, self.n_splits)), Warning)\n" ] }, { "data": { "text/plain": [ "GridSearchCV(cv=None, error_score='raise',\n", " estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", " decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',\n", " max_iter=-1, probability=False, random_state=None, shrinking=True,\n", " tol=0.001, verbose=False),\n", " fit_params=None, iid=True, n_jobs=1,\n", " param_grid={'decision_function_shape': ('ovo', 'ovr'), 'kernel': ('linear', 'rbf', 'sigmoid', 'poly')},\n", " pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',\n", " scoring=None, verbose=0)" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.svm import SVC\n", "from sklearn.model_selection import GridSearchCV\n", "\n", "params = {\n", " 'kernel': ('linear', 'rbf', 'sigmoid', 'poly'),\n", " 'decision_function_shape': ('ovo', 'ovr')\n", "}\n", "\n", "svm = SVC()\n", "clf = GridSearchCV(svm, params)\n", "# Training\n", "clf.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [], "source": [ "#sorted(clf.cv_results_.keys())" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([-19, -31, 37, -19, 9, -19, 5, 37, -50, 35, 50, -50, -31,\n", " 35, 50, -50, 50, -34, -34, 35, -34, 35, -34, 35, -34, -31,\n", " -31, -34, 50, -34, -48, -34, 35, -48, -50, 35, -27, -50, 47,\n", " -42, 35, 9, -49, -48, -31, -48, 3, -48, -31, 47, 47, 47,\n", " 35, -34, -27, -50, -50, 50, -48, -48, 47, -47, -47, 47, -48,\n", " -48, -48, -50, -29, 36, 36], dtype=int64)" ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "clf.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.14084507042253522" ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "clf.score(X_test, y_test)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.4" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
grezesf/Research
Reservoirs/Notebooks/UBM training for Speech Data.ipynb
1
12011
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import math\n", "import os\n", "import time" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn import mixture" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['find_phone_index', 'load_phone_file']\n" ] } ], "source": [ "# import custom functions\n", "import sys\n", "# path to libraries\n", "# currently in ../scripts-lib/\n", "tool_path = os.path.abspath('../scripts-lib')\n", "\n", "if tool_path not in sys.path:\n", " sys.path.append(tool_path)\n", "import lib_phones as lph\n", "\n", "# print the loaded functions\n", "print dir(lph)[5:]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "61 ['aa', 'ae', 'ah', 'ao', 'aw', 'ax', 'ax-h', 'axr', 'ay', 'b', 'bcl', 'ch', 'd', 'dcl', 'dh', 'dx', 'eh', 'el', 'em', 'en', 'eng', 'epi', 'er', 'ey', 'f', 'g', 'gcl', 'h#', 'hh', 'hv', 'ih', 'ix', 'iy', 'jh', 'k', 'kcl', 'l', 'm', 'n', 'ng', 'nx', 'ow', 'oy', 'p', 'pau', 'pcl', 'q', 'r', 's', 'sh', 't', 'tcl', 'th', 'uh', 'uw', 'ux', 'v', 'w', 'y', 'z', 'zh']\n" ] } ], "source": [ "# load phone list\n", "phone_path = os.path.abspath('../datasets/TIMIT-MFCCs/TIMIT_phone_list.txt')\n", "phone_list = lph.load_phone_file(phone_path)\n", "print len(phone_list), phone_list" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "working in path : C:\\Users\\FG\\Desktop\\PhD\\Research\\Reservoirs\\datasets\\TIMIT-MFCCs\\dev\n", "working on: si1027.mfcc.csv\n", "working on: si1105.mfcc.csv\n", "working on: si1657.mfcc.csv\n", "working on: si1735.mfcc.csv\n", "working on: si475.mfcc.csv\n", "working on: si648.mfcc.csv\n", "working on: sx115.mfcc.csv\n", "working on: sx127.mfcc.csv\n", "working on: sx205.mfcc.csv\n", "working on: sx217.mfcc.csv\n", "working on: sx25.mfcc.csv\n", "working on: sx295.mfcc.csv\n", "working on: sx307.mfcc.csv\n", "working on: sx37.mfcc.csv\n", "working on: sx385.mfcc.csv\n", "working on: sx397.mfcc.csv\n" ] } ], "source": [ "#load mfccs into sklearn observations, each frame is an obs\n", "\n", "train_TIMIT_dir = os.path.abspath('../datasets/TIMIT-MFCCs/dev')\n", "\n", "train_obs = []\n", "train_obs_labels = []\n", "\n", "# walk the directories\n", "for (path, dirs, files) in os.walk(train_TIMIT_dir):\n", " print \"working in path : \" + path\n", "\n", " for file in files:\n", " # skip the SA files\n", " #dev, only work on file si1573.mfcc.csv \"si1573\" in file and\n", " if \".mfcc\" in file and \"sa\" not in file:\n", " #check if corresponding .phn file exists\n", " if not os.path.exists(path + \"/\" + file[:-8] + \"phn\"):\n", " print path + \"/\" + file[:-8] + \"phn\"\n", " print \"corresponding .phn file does not exist!\"\n", " else:\n", " \n", " print \"working on: \" + file\n", "# print \"from path : \" + path\n", "\n", " # open the files\n", " mfcc_file = open(path + \"/\" + file)\n", " phn_file = open(path + \"/\" + file[:-8] + \"phn\")\n", "\n", " # extract phone times\n", " phone_times = []\n", " for phn_line in phn_file:\n", " phone_times.append(phn_line.split())\n", " # transpose for easier use\n", " phone_times = map(list, zip(*phone_times))\n", "\n", " # skip mfcc_file header\n", " next(mfcc_file)\n", "\n", " # reset frame count\n", " frame_cnt = 0\n", "\n", " # for each line of mfcc_file\n", " for mfcc_line in mfcc_file:\n", "\n", " # increment frame count\n", " frame_cnt += 1 \n", "\n", " # print \"frame line #:\", frame_cnt \n", "\n", " # frame start time in seconds\n", " start_t = mfcc_line.split(\";\")[1]\n", "\n", " # create frame (skiping first 2 values, frame_index and frame_time)\n", " frame = map( float, mfcc_line.split(\";\")[2:])\n", " # print numpy.shape(frame)\n", " # print frame\n", "\n", " # find correspond phoneme and index in the list\n", " phn_index = lph.find_phone_index(start_t, phone_times, phone_list)\n", "\n", " # add to instances\n", " train_obs.append(frame)\n", " train_obs_labels.append(phone_list[phn_index])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(4266, 39)\n", "(4266,)\n" ] } ], "source": [ "print np.shape(train_obs)\n", "print np.shape(train_obs_labels)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[-24.63259, -12.55975, -0.4234125, -22.09616, -11.36787, 15.35193, 0.2450585, -18.58464, -28.29842, -5.80051, 2.788154, 4.604296, -17.4054, -0.275135, 1.378781, -1.950969, 3.052481, 3.25547, 1.203516, -0.7550904, -0.3006264, 2.328182, 3.589715, 2.428725, 4.183867, -0.1700937, -0.4764511, 0.5360677, 0.24275, 0.9877825, 0.0331907, -0.5391095, 0.6034231, 1.644038, 1.840576, 0.2822124, -0.1602798, -0.7427405, -0.02820093]\n", "['h#', 'h#', 'h#', 'h#', 'h#', 'h#', 'h#', 'h#', 'h#', 'h#', 'q', 'q', 'q', 'q', 'q', 'q', 'q', 'q', 'q', 'iy', 'iy', 'iy', 'iy', 'iy', 'iy', 'iy', 'iy', 'iy', 'v', 'v', 'v', 'v', 'ih', 'ih', 'ih', 'ih', 'ih', 'ih', 'ih', 'ih', 'n', 'n', 'n', 'n', 'n', 'n', 'n', 'eh', 'eh', 'eh', 'eh', 'eh', 'eh', 'eh', 'eh', 'eh', 'eh', 'eh', 'eh', 'eh', 'eh', 'eh', 'eh', 'eh', 'eh', 'n', 'n', 'n', 'n', 'n', 'n', 'n', 'n', 'n', 'n', 'n', 'n', 'n', 'q', 'q', 'q', 'q', 'q', 'q', 'q', 'q', 'q', 'q', 'q', 'q', 'q', 'q', 'q', 'q', 'ix', 'ix', 'ix', 'ix', 'ix', 'f']\n" ] } ], "source": [ "print train_obs[0]\n", "print train_obs_labels[0:100]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#create gmm\n", "num_components = 10\n", "num_iter=2\n", "g = mixture.GMM(n_components= num_components, n_iter=num_iter)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "GMM(covariance_type='diag', init_params='wmc', min_covar=0.001,\n", " n_components=10, n_init=1, n_iter=2, params='wmc', random_state=None,\n", " thresh=None, tol=0.001)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# fit the GMM to the observations\n", "g.fit(train_obs) " ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# pred = g.predict(train_obs)\n", "# print train_obs_labels\n", "# print pred" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-104.66\n", "87.85\n", "[-102. -114. -104. -102. -100.]\n" ] } ], "source": [ "print np.round(g.score(train_obs).mean(), 2)\n", "print np.round(g.score(train_obs).var(), 2)\n", "print np.round(g.score(train_obs)[0:5] )" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10 components 2 iterations in 1.50999999046 for 4266 observations.\n" ] } ], "source": [ "# refit, time \n", "t0 = time.time()\n", "g.fit(train_obs)\n", "t1 = time.time()\n", "print num_components, \"components\", num_iter, \"iterations in \", t1-t0, \"for\", len(train_obs_labels), \"observations.\"" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-104.65\n", "87.9\n", "[-102. -114. -104. -103. -100.]\n" ] } ], "source": [ "print np.round(g.score(train_obs).mean(), 2)\n", "print np.round(g.score(train_obs).var(), 2)\n", "print np.round(g.score(train_obs)[0:5] )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Refitting does work as expected. (does not reset gmm)." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "saved gmm in C:\\Users\\FG\\Desktop\\PhD\\Research\\Reservoirs\\datasets\\TIMIT Pickled Data\\TIMIT_ubm_gmm_10.pckl\n" ] } ], "source": [ "#save gmm in pickled form\n", "import cPickle as pickle\n", "\n", "# name and location to save in\n", "pickle_name = \"TIMIT_ubm_gmm_\" + str(num_components) + \".pckl\"\n", "pickle_dir = os.path.abspath('../datasets/TIMIT Pickled Data')\n", "\n", "if not os.path.isdir(pickle_dir):\n", " os.makedirs(pickle_dir)\n", " \n", "pickle.dump( g, open( pickle_dir + os.sep + pickle_name, \"wb\") )\n", "print \"saved gmm in \", pickle_dir + '\\\\' + pickle_name" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "loaded gmm from C:\\Users\\FG\\Desktop\\PhD\\Research\\Reservoirs\\datasets\\TIMIT Pickled Data\\TIMIT_ubm_gmm_10.pckl\n" ] } ], "source": [ "# reload pickled file for testing\n", "g2 = pickle.load( open(pickle_dir + os.sep + pickle_name, \"rb\") )\n", "print \"loaded gmm from \", pickle_dir + os.sep + pickle_name" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
mwickert/SP-Comm-Tutorial-using-scikit-dsp-comm
tutorial_part1/FIR Filter Design and C Headers.ipynb
1
532021
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab inline\n", "#%matplotlib qt\n", "from __future__ import division # use so 1/2 = 0.5, etc.\n", "import sk_dsp_comm.sigsys as ss\n", "import sk_dsp_comm.fir_design_helper as fir_d\n", "import sk_dsp_comm.coeff2header as c2h\n", "import scipy.signal as signal\n", "import imp # for module development and reload()\n", "from IPython.display import Audio, display\n", "from IPython.display import Image, SVG" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pylab.rcParams['savefig.dpi'] = 100 # default 72\n", "#pylab.rcParams['figure.figsize'] = (6.0, 4.0) # default (6,4)\n", "#%config InlineBackend.figure_formats=['png'] # default for inline viewing\n", "%config InlineBackend.figure_formats=['svg'] # SVG inline viewing\n", "#%config InlineBackend.figure_formats=['pdf'] # render pdf figs for LaTeX\n", "#%Image('fname.png',width='90%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# FIR Filter Design" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Both floating point and fixed-point FIR filters are the objective here. we will also need a means to export the filter coefficients to header files. Header export functions for `float32_t` and `int16_t` format are provided below. The next step is to actually design some filters using functions found in `scipy.signal`. To support both of these activities the Python modules `fir_design_helper.py` and `coeff2header.py` are available.\n", "\n", "**Note**: The MATLAB signal processing toolbox is extremely comprehensive in its support of digital filter design. The use of Python is adequate for this, but do not ignore the power available in MATLAB." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Windowed (Kaiser window) and Equal-Ripple FIR Filter Design" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The module `fir_design_helper.py` contains custom filter design code build on top of functions found in `scipy.signal`. Functions are available for winowed FIR design using a Kaiser window function and equal-ripple FIR design, both type have linear phase. \n", "\n", "### Example: Lowpass with $f_s = 1$ Hz\n", "For this 31 tap filter we choose the cutoff frequency to be $F_c = F_s/8$, or in normalized form $f_c = 1/8$." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Kaiser Win filter taps = 72.\n", "Remez filter taps = 53.\n" ] } ], "source": [ "b_k = fir_d.firwin_kaiser_lpf(1/8,1/6,50,1.0)\n", "b_r = fir_d.fir_remez_lpf(1/8,1/6,0.2,50,1.0)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<!-- Created with matplotlib (http://matplotlib.org/) -->\n", "<svg height=\"277pt\" version=\"1.1\" viewBox=\"0 0 394 277\" width=\"394pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", " <defs>\n", " <style type=\"text/css\">\n", "*{stroke-linecap:butt;stroke-linejoin:round;}\n", " </style>\n", " </defs>\n", " <g id=\"figure_1\">\n", " <g id=\"patch_1\">\n", " <path d=\"M 0 277.314375 \n", "L 394.482812 277.314375 \n", "L 394.482812 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"axes_1\">\n", " <g id=\"patch_2\">\n", " <path d=\"M 48.982813 239.758125 \n", "L 383.782813 239.758125 \n", "L 383.782813 22.318125 \n", "L 48.982813 22.318125 \n", "z\n", "\" style=\"fill:#ffffff;\"/>\n", " </g>\n", " <g id=\"matplotlib.axis_1\">\n", " <g id=\"xtick_1\">\n", " <g id=\"line2d_1\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 64.200994 239.758125 \n", "L 64.200994 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_2\">\n", " <defs>\n", " <path d=\"M 0 0 \n", "L 0 3.5 \n", "\" id=\"m09228aa27b\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n", " </defs>\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"64.200994\" xlink:href=\"#m09228aa27b\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_1\">\n", " <!-- 0.0 -->\n", " <defs>\n", " <path d=\"M 31.78125 66.40625 \n", "Q 24.171875 66.40625 20.328125 58.90625 \n", "Q 16.5 51.421875 16.5 36.375 \n", "Q 16.5 21.390625 20.328125 13.890625 \n", "Q 24.171875 6.390625 31.78125 6.390625 \n", "Q 39.453125 6.390625 43.28125 13.890625 \n", "Q 47.125 21.390625 47.125 36.375 \n", "Q 47.125 51.421875 43.28125 58.90625 \n", "Q 39.453125 66.40625 31.78125 66.40625 \n", "z\n", "M 31.78125 74.21875 \n", "Q 44.046875 74.21875 50.515625 64.515625 \n", "Q 56.984375 54.828125 56.984375 36.375 \n", "Q 56.984375 17.96875 50.515625 8.265625 \n", "Q 44.046875 -1.421875 31.78125 -1.421875 \n", "Q 19.53125 -1.421875 13.0625 8.265625 \n", "Q 6.59375 17.96875 6.59375 36.375 \n", "Q 6.59375 54.828125 13.0625 64.515625 \n", "Q 19.53125 74.21875 31.78125 74.21875 \n", "z\n", "\" id=\"DejaVuSans-30\"/>\n", " <path d=\"M 10.6875 12.40625 \n", "L 21 12.40625 \n", "L 21 0 \n", "L 10.6875 0 \n", "z\n", "\" id=\"DejaVuSans-2e\"/>\n", " </defs>\n", " <g transform=\"translate(56.249432 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_2\">\n", " <g id=\"line2d_3\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 125.133226 239.758125 \n", "L 125.133226 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_4\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"125.133226\" xlink:href=\"#m09228aa27b\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_2\">\n", " <!-- 0.1 -->\n", " <defs>\n", " <path d=\"M 12.40625 8.296875 \n", "L 28.515625 8.296875 \n", "L 28.515625 63.921875 \n", "L 10.984375 60.40625 \n", "L 10.984375 69.390625 \n", "L 28.421875 72.90625 \n", "L 38.28125 72.90625 \n", "L 38.28125 8.296875 \n", "L 54.390625 8.296875 \n", "L 54.390625 0 \n", "L 12.40625 0 \n", "z\n", "\" id=\"DejaVuSans-31\"/>\n", " </defs>\n", " <g transform=\"translate(117.181663 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-31\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_3\">\n", " <g id=\"line2d_5\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 186.065457 239.758125 \n", "L 186.065457 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_6\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"186.065457\" xlink:href=\"#m09228aa27b\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_3\">\n", " <!-- 0.2 -->\n", " <defs>\n", " <path d=\"M 19.1875 8.296875 \n", "L 53.609375 8.296875 \n", "L 53.609375 0 \n", "L 7.328125 0 \n", "L 7.328125 8.296875 \n", "Q 12.9375 14.109375 22.625 23.890625 \n", "Q 32.328125 33.6875 34.8125 36.53125 \n", "Q 39.546875 41.84375 41.421875 45.53125 \n", "Q 43.3125 49.21875 43.3125 52.78125 \n", "Q 43.3125 58.59375 39.234375 62.25 \n", "Q 35.15625 65.921875 28.609375 65.921875 \n", "Q 23.96875 65.921875 18.8125 64.3125 \n", "Q 13.671875 62.703125 7.8125 59.421875 \n", "L 7.8125 69.390625 \n", "Q 13.765625 71.78125 18.9375 73 \n", "Q 24.125 74.21875 28.421875 74.21875 \n", "Q 39.75 74.21875 46.484375 68.546875 \n", "Q 53.21875 62.890625 53.21875 53.421875 \n", "Q 53.21875 48.921875 51.53125 44.890625 \n", "Q 49.859375 40.875 45.40625 35.40625 \n", "Q 44.1875 33.984375 37.640625 27.21875 \n", "Q 31.109375 20.453125 19.1875 8.296875 \n", "z\n", "\" id=\"DejaVuSans-32\"/>\n", " </defs>\n", " <g transform=\"translate(178.113895 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-32\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_4\">\n", " <g id=\"line2d_7\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 246.997689 239.758125 \n", "L 246.997689 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_8\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"246.997689\" xlink:href=\"#m09228aa27b\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_4\">\n", " <!-- 0.3 -->\n", " <defs>\n", " <path d=\"M 40.578125 39.3125 \n", "Q 47.65625 37.796875 51.625 33 \n", "Q 55.609375 28.21875 55.609375 21.1875 \n", "Q 55.609375 10.40625 48.1875 4.484375 \n", "Q 40.765625 -1.421875 27.09375 -1.421875 \n", "Q 22.515625 -1.421875 17.65625 -0.515625 \n", "Q 12.796875 0.390625 7.625 2.203125 \n", "L 7.625 11.71875 \n", "Q 11.71875 9.328125 16.59375 8.109375 \n", "Q 21.484375 6.890625 26.8125 6.890625 \n", "Q 36.078125 6.890625 40.9375 10.546875 \n", "Q 45.796875 14.203125 45.796875 21.1875 \n", "Q 45.796875 27.640625 41.28125 31.265625 \n", "Q 36.765625 34.90625 28.71875 34.90625 \n", "L 20.21875 34.90625 \n", "L 20.21875 43.015625 \n", "L 29.109375 43.015625 \n", "Q 36.375 43.015625 40.234375 45.921875 \n", "Q 44.09375 48.828125 44.09375 54.296875 \n", "Q 44.09375 59.90625 40.109375 62.90625 \n", "Q 36.140625 65.921875 28.71875 65.921875 \n", "Q 24.65625 65.921875 20.015625 65.03125 \n", "Q 15.375 64.15625 9.8125 62.3125 \n", "L 9.8125 71.09375 \n", "Q 15.4375 72.65625 20.34375 73.4375 \n", "Q 25.25 74.21875 29.59375 74.21875 \n", "Q 40.828125 74.21875 47.359375 69.109375 \n", "Q 53.90625 64.015625 53.90625 55.328125 \n", "Q 53.90625 49.265625 50.4375 45.09375 \n", "Q 46.96875 40.921875 40.578125 39.3125 \n", "z\n", "\" id=\"DejaVuSans-33\"/>\n", " </defs>\n", " <g transform=\"translate(239.046126 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-33\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_5\">\n", " <g id=\"line2d_9\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 307.92992 239.758125 \n", "L 307.92992 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_10\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"307.92992\" xlink:href=\"#m09228aa27b\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_5\">\n", " <!-- 0.4 -->\n", " <defs>\n", " <path d=\"M 37.796875 64.3125 \n", "L 12.890625 25.390625 \n", "L 37.796875 25.390625 \n", "z\n", "M 35.203125 72.90625 \n", "L 47.609375 72.90625 \n", "L 47.609375 25.390625 \n", "L 58.015625 25.390625 \n", "L 58.015625 17.1875 \n", "L 47.609375 17.1875 \n", "L 47.609375 0 \n", "L 37.796875 0 \n", "L 37.796875 17.1875 \n", "L 4.890625 17.1875 \n", "L 4.890625 26.703125 \n", "z\n", "\" id=\"DejaVuSans-34\"/>\n", " </defs>\n", " <g transform=\"translate(299.978357 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-34\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_6\">\n", " <g id=\"line2d_11\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 368.862151 239.758125 \n", "L 368.862151 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_12\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"368.862151\" xlink:href=\"#m09228aa27b\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_6\">\n", " <!-- 0.5 -->\n", " <defs>\n", " <path d=\"M 10.796875 72.90625 \n", "L 49.515625 72.90625 \n", "L 49.515625 64.59375 \n", "L 19.828125 64.59375 \n", "L 19.828125 46.734375 \n", "Q 21.96875 47.46875 24.109375 47.828125 \n", "Q 26.265625 48.1875 28.421875 48.1875 \n", "Q 40.625 48.1875 47.75 41.5 \n", "Q 54.890625 34.8125 54.890625 23.390625 \n", "Q 54.890625 11.625 47.5625 5.09375 \n", "Q 40.234375 -1.421875 26.90625 -1.421875 \n", "Q 22.3125 -1.421875 17.546875 -0.640625 \n", "Q 12.796875 0.140625 7.71875 1.703125 \n", "L 7.71875 11.625 \n", "Q 12.109375 9.234375 16.796875 8.0625 \n", "Q 21.484375 6.890625 26.703125 6.890625 \n", "Q 35.15625 6.890625 40.078125 11.328125 \n", "Q 45.015625 15.765625 45.015625 23.390625 \n", "Q 45.015625 31 40.078125 35.4375 \n", "Q 35.15625 39.890625 26.703125 39.890625 \n", "Q 22.75 39.890625 18.8125 39.015625 \n", "Q 14.890625 38.140625 10.796875 36.28125 \n", "z\n", "\" id=\"DejaVuSans-35\"/>\n", " </defs>\n", " <g transform=\"translate(360.910589 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"text_7\">\n", " <!-- Frequency in kHz -->\n", " <defs>\n", " <path d=\"M 9.8125 72.90625 \n", "L 51.703125 72.90625 \n", "L 51.703125 64.59375 \n", "L 19.671875 64.59375 \n", "L 19.671875 43.109375 \n", "L 48.578125 43.109375 \n", "L 48.578125 34.8125 \n", "L 19.671875 34.8125 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-46\"/>\n", " <path d=\"M 41.109375 46.296875 \n", "Q 39.59375 47.171875 37.8125 47.578125 \n", "Q 36.03125 48 33.890625 48 \n", "Q 26.265625 48 22.1875 43.046875 \n", "Q 18.109375 38.09375 18.109375 28.8125 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 20.953125 51.171875 25.484375 53.578125 \n", "Q 30.03125 56 36.53125 56 \n", "Q 37.453125 56 38.578125 55.875 \n", "Q 39.703125 55.765625 41.0625 55.515625 \n", "z\n", "\" id=\"DejaVuSans-72\"/>\n", " <path d=\"M 56.203125 29.59375 \n", "L 56.203125 25.203125 \n", "L 14.890625 25.203125 \n", "Q 15.484375 15.921875 20.484375 11.0625 \n", "Q 25.484375 6.203125 34.421875 6.203125 \n", "Q 39.59375 6.203125 44.453125 7.46875 \n", "Q 49.3125 8.734375 54.109375 11.28125 \n", "L 54.109375 2.78125 \n", "Q 49.265625 0.734375 44.1875 -0.34375 \n", "Q 39.109375 -1.421875 33.890625 -1.421875 \n", "Q 20.796875 -1.421875 13.15625 6.1875 \n", "Q 5.515625 13.8125 5.515625 26.8125 \n", "Q 5.515625 40.234375 12.765625 48.109375 \n", "Q 20.015625 56 32.328125 56 \n", "Q 43.359375 56 49.78125 48.890625 \n", "Q 56.203125 41.796875 56.203125 29.59375 \n", "z\n", "M 47.21875 32.234375 \n", "Q 47.125 39.59375 43.09375 43.984375 \n", "Q 39.0625 48.390625 32.421875 48.390625 \n", "Q 24.90625 48.390625 20.390625 44.140625 \n", "Q 15.875 39.890625 15.1875 32.171875 \n", "z\n", "\" id=\"DejaVuSans-65\"/>\n", " <path d=\"M 14.796875 27.296875 \n", "Q 14.796875 17.390625 18.875 11.75 \n", "Q 22.953125 6.109375 30.078125 6.109375 \n", "Q 37.203125 6.109375 41.296875 11.75 \n", "Q 45.40625 17.390625 45.40625 27.296875 \n", "Q 45.40625 37.203125 41.296875 42.84375 \n", "Q 37.203125 48.484375 30.078125 48.484375 \n", "Q 22.953125 48.484375 18.875 42.84375 \n", "Q 14.796875 37.203125 14.796875 27.296875 \n", "z\n", "M 45.40625 8.203125 \n", "Q 42.578125 3.328125 38.25 0.953125 \n", "Q 33.9375 -1.421875 27.875 -1.421875 \n", "Q 17.96875 -1.421875 11.734375 6.484375 \n", "Q 5.515625 14.40625 5.515625 27.296875 \n", "Q 5.515625 40.1875 11.734375 48.09375 \n", "Q 17.96875 56 27.875 56 \n", "Q 33.9375 56 38.25 53.625 \n", "Q 42.578125 51.265625 45.40625 46.390625 \n", "L 45.40625 54.6875 \n", "L 54.390625 54.6875 \n", "L 54.390625 -20.796875 \n", "L 45.40625 -20.796875 \n", "z\n", "\" id=\"DejaVuSans-71\"/>\n", " <path d=\"M 8.5 21.578125 \n", "L 8.5 54.6875 \n", "L 17.484375 54.6875 \n", "L 17.484375 21.921875 \n", "Q 17.484375 14.15625 20.5 10.265625 \n", "Q 23.53125 6.390625 29.59375 6.390625 \n", "Q 36.859375 6.390625 41.078125 11.03125 \n", "Q 45.3125 15.671875 45.3125 23.6875 \n", "L 45.3125 54.6875 \n", "L 54.296875 54.6875 \n", "L 54.296875 0 \n", "L 45.3125 0 \n", "L 45.3125 8.40625 \n", "Q 42.046875 3.421875 37.71875 1 \n", "Q 33.40625 -1.421875 27.6875 -1.421875 \n", "Q 18.265625 -1.421875 13.375 4.4375 \n", "Q 8.5 10.296875 8.5 21.578125 \n", "z\n", "M 31.109375 56 \n", "z\n", "\" id=\"DejaVuSans-75\"/>\n", " <path d=\"M 54.890625 33.015625 \n", "L 54.890625 0 \n", "L 45.90625 0 \n", "L 45.90625 32.71875 \n", "Q 45.90625 40.484375 42.875 44.328125 \n", "Q 39.84375 48.1875 33.796875 48.1875 \n", "Q 26.515625 48.1875 22.3125 43.546875 \n", "Q 18.109375 38.921875 18.109375 30.90625 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 21.34375 51.125 25.703125 53.5625 \n", "Q 30.078125 56 35.796875 56 \n", "Q 45.21875 56 50.046875 50.171875 \n", "Q 54.890625 44.34375 54.890625 33.015625 \n", "z\n", "\" id=\"DejaVuSans-6e\"/>\n", " <path d=\"M 48.78125 52.59375 \n", "L 48.78125 44.1875 \n", "Q 44.96875 46.296875 41.140625 47.34375 \n", "Q 37.3125 48.390625 33.40625 48.390625 \n", "Q 24.65625 48.390625 19.8125 42.84375 \n", "Q 14.984375 37.3125 14.984375 27.296875 \n", "Q 14.984375 17.28125 19.8125 11.734375 \n", "Q 24.65625 6.203125 33.40625 6.203125 \n", "Q 37.3125 6.203125 41.140625 7.25 \n", "Q 44.96875 8.296875 48.78125 10.40625 \n", "L 48.78125 2.09375 \n", "Q 45.015625 0.34375 40.984375 -0.53125 \n", "Q 36.96875 -1.421875 32.421875 -1.421875 \n", "Q 20.0625 -1.421875 12.78125 6.34375 \n", "Q 5.515625 14.109375 5.515625 27.296875 \n", "Q 5.515625 40.671875 12.859375 48.328125 \n", "Q 20.21875 56 33.015625 56 \n", "Q 37.15625 56 41.109375 55.140625 \n", "Q 45.0625 54.296875 48.78125 52.59375 \n", "z\n", "\" id=\"DejaVuSans-63\"/>\n", " <path d=\"M 32.171875 -5.078125 \n", "Q 28.375 -14.84375 24.75 -17.8125 \n", "Q 21.140625 -20.796875 15.09375 -20.796875 \n", "L 7.90625 -20.796875 \n", "L 7.90625 -13.28125 \n", "L 13.1875 -13.28125 \n", "Q 16.890625 -13.28125 18.9375 -11.515625 \n", "Q 21 -9.765625 23.484375 -3.21875 \n", "L 25.09375 0.875 \n", "L 2.984375 54.6875 \n", "L 12.5 54.6875 \n", "L 29.59375 11.921875 \n", "L 46.6875 54.6875 \n", "L 56.203125 54.6875 \n", "z\n", "\" id=\"DejaVuSans-79\"/>\n", " <path id=\"DejaVuSans-20\"/>\n", " <path d=\"M 9.421875 54.6875 \n", "L 18.40625 54.6875 \n", "L 18.40625 0 \n", "L 9.421875 0 \n", "z\n", "M 9.421875 75.984375 \n", "L 18.40625 75.984375 \n", "L 18.40625 64.59375 \n", "L 9.421875 64.59375 \n", "z\n", "\" id=\"DejaVuSans-69\"/>\n", " <path d=\"M 9.078125 75.984375 \n", "L 18.109375 75.984375 \n", "L 18.109375 31.109375 \n", "L 44.921875 54.6875 \n", "L 56.390625 54.6875 \n", "L 27.390625 29.109375 \n", "L 57.625 0 \n", "L 45.90625 0 \n", "L 18.109375 26.703125 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "z\n", "\" id=\"DejaVuSans-6b\"/>\n", " <path d=\"M 9.8125 72.90625 \n", "L 19.671875 72.90625 \n", "L 19.671875 43.015625 \n", "L 55.515625 43.015625 \n", "L 55.515625 72.90625 \n", "L 65.375 72.90625 \n", "L 65.375 0 \n", "L 55.515625 0 \n", "L 55.515625 34.71875 \n", "L 19.671875 34.71875 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-48\"/>\n", " <path d=\"M 5.515625 54.6875 \n", "L 48.1875 54.6875 \n", "L 48.1875 46.484375 \n", "L 14.40625 7.171875 \n", "L 48.1875 7.171875 \n", "L 48.1875 0 \n", "L 4.296875 0 \n", "L 4.296875 8.203125 \n", "L 38.09375 47.515625 \n", "L 5.515625 47.515625 \n", "z\n", "\" id=\"DejaVuSans-7a\"/>\n", " </defs>\n", " <g transform=\"translate(173.069531 268.034687)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-46\"/>\n", " <use x=\"57.410156\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"98.492188\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"160.015625\" xlink:href=\"#DejaVuSans-71\"/>\n", " <use x=\"223.492188\" xlink:href=\"#DejaVuSans-75\"/>\n", " <use x=\"286.871094\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"348.394531\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"411.773438\" xlink:href=\"#DejaVuSans-63\"/>\n", " <use x=\"466.753906\" xlink:href=\"#DejaVuSans-79\"/>\n", " <use x=\"525.933594\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"557.720703\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"585.503906\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"648.882812\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"680.669922\" xlink:href=\"#DejaVuSans-6b\"/>\n", " <use x=\"738.580078\" xlink:href=\"#DejaVuSans-48\"/>\n", " <use x=\"813.775391\" xlink:href=\"#DejaVuSans-7a\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"matplotlib.axis_2\">\n", " <g id=\"ytick_1\">\n", " <g id=\"line2d_13\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 48.982813 239.758125 \n", "L 383.782813 239.758125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_14\">\n", " <defs>\n", " <path d=\"M 0 0 \n", "L -3.5 0 \n", "\" id=\"m59dd856a2d\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n", " </defs>\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m59dd856a2d\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_8\">\n", " <!-- −80 -->\n", " <defs>\n", " <path d=\"M 10.59375 35.5 \n", "L 73.1875 35.5 \n", "L 73.1875 27.203125 \n", "L 10.59375 27.203125 \n", "z\n", "\" id=\"DejaVuSans-2212\"/>\n", " <path d=\"M 31.78125 34.625 \n", "Q 24.75 34.625 20.71875 30.859375 \n", "Q 16.703125 27.09375 16.703125 20.515625 \n", "Q 16.703125 13.921875 20.71875 10.15625 \n", "Q 24.75 6.390625 31.78125 6.390625 \n", "Q 38.8125 6.390625 42.859375 10.171875 \n", "Q 46.921875 13.96875 46.921875 20.515625 \n", "Q 46.921875 27.09375 42.890625 30.859375 \n", "Q 38.875 34.625 31.78125 34.625 \n", "z\n", "M 21.921875 38.8125 \n", "Q 15.578125 40.375 12.03125 44.71875 \n", "Q 8.5 49.078125 8.5 55.328125 \n", "Q 8.5 64.0625 14.71875 69.140625 \n", "Q 20.953125 74.21875 31.78125 74.21875 \n", "Q 42.671875 74.21875 48.875 69.140625 \n", "Q 55.078125 64.0625 55.078125 55.328125 \n", "Q 55.078125 49.078125 51.53125 44.71875 \n", "Q 48 40.375 41.703125 38.8125 \n", "Q 48.828125 37.15625 52.796875 32.3125 \n", "Q 56.78125 27.484375 56.78125 20.515625 \n", "Q 56.78125 9.90625 50.3125 4.234375 \n", "Q 43.84375 -1.421875 31.78125 -1.421875 \n", "Q 19.734375 -1.421875 13.25 4.234375 \n", "Q 6.78125 9.90625 6.78125 20.515625 \n", "Q 6.78125 27.484375 10.78125 32.3125 \n", "Q 14.796875 37.15625 21.921875 38.8125 \n", "z\n", "M 18.3125 54.390625 \n", "Q 18.3125 48.734375 21.84375 45.5625 \n", "Q 25.390625 42.390625 31.78125 42.390625 \n", "Q 38.140625 42.390625 41.71875 45.5625 \n", "Q 45.3125 48.734375 45.3125 54.390625 \n", "Q 45.3125 60.0625 41.71875 63.234375 \n", "Q 38.140625 66.40625 31.78125 66.40625 \n", "Q 25.390625 66.40625 21.84375 63.234375 \n", "Q 18.3125 60.0625 18.3125 54.390625 \n", "z\n", "\" id=\"DejaVuSans-38\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 243.557344)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-38\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_2\">\n", " <g id=\"line2d_15\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 48.982813 214.176949 \n", "L 383.782813 214.176949 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_16\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m59dd856a2d\" y=\"214.176949\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_9\">\n", " <!-- −70 -->\n", " <defs>\n", " <path d=\"M 8.203125 72.90625 \n", "L 55.078125 72.90625 \n", "L 55.078125 68.703125 \n", "L 28.609375 0 \n", "L 18.3125 0 \n", "L 43.21875 64.59375 \n", "L 8.203125 64.59375 \n", "z\n", "\" id=\"DejaVuSans-37\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 217.976167)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-37\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_3\">\n", " <g id=\"line2d_17\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 48.982813 188.595772 \n", "L 383.782813 188.595772 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_18\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m59dd856a2d\" y=\"188.595772\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_10\">\n", " <!-- −60 -->\n", " <defs>\n", " <path d=\"M 33.015625 40.375 \n", "Q 26.375 40.375 22.484375 35.828125 \n", "Q 18.609375 31.296875 18.609375 23.390625 \n", "Q 18.609375 15.53125 22.484375 10.953125 \n", "Q 26.375 6.390625 33.015625 6.390625 \n", "Q 39.65625 6.390625 43.53125 10.953125 \n", "Q 47.40625 15.53125 47.40625 23.390625 \n", "Q 47.40625 31.296875 43.53125 35.828125 \n", "Q 39.65625 40.375 33.015625 40.375 \n", "z\n", "M 52.59375 71.296875 \n", "L 52.59375 62.3125 \n", "Q 48.875 64.0625 45.09375 64.984375 \n", "Q 41.3125 65.921875 37.59375 65.921875 \n", "Q 27.828125 65.921875 22.671875 59.328125 \n", "Q 17.53125 52.734375 16.796875 39.40625 \n", "Q 19.671875 43.65625 24.015625 45.921875 \n", "Q 28.375 48.1875 33.59375 48.1875 \n", "Q 44.578125 48.1875 50.953125 41.515625 \n", "Q 57.328125 34.859375 57.328125 23.390625 \n", "Q 57.328125 12.15625 50.6875 5.359375 \n", "Q 44.046875 -1.421875 33.015625 -1.421875 \n", "Q 20.359375 -1.421875 13.671875 8.265625 \n", "Q 6.984375 17.96875 6.984375 36.375 \n", "Q 6.984375 53.65625 15.1875 63.9375 \n", "Q 23.390625 74.21875 37.203125 74.21875 \n", "Q 40.921875 74.21875 44.703125 73.484375 \n", "Q 48.484375 72.75 52.59375 71.296875 \n", "z\n", "\" id=\"DejaVuSans-36\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 192.394991)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-36\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_4\">\n", " <g id=\"line2d_19\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 48.982813 163.014596 \n", "L 383.782813 163.014596 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_20\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m59dd856a2d\" y=\"163.014596\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_11\">\n", " <!-- −50 -->\n", " <g transform=\"translate(20.878125 166.813814)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-35\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_5\">\n", " <g id=\"line2d_21\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 48.982813 137.433419 \n", "L 383.782813 137.433419 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_22\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m59dd856a2d\" y=\"137.433419\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_12\">\n", " <!-- −40 -->\n", " <g transform=\"translate(20.878125 141.232638)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-34\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_6\">\n", " <g id=\"line2d_23\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 48.982813 111.852243 \n", "L 383.782813 111.852243 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_24\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m59dd856a2d\" y=\"111.852243\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_13\">\n", " <!-- −30 -->\n", " <g transform=\"translate(20.878125 115.651461)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-33\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_7\">\n", " <g id=\"line2d_25\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 48.982813 86.271066 \n", "L 383.782813 86.271066 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_26\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m59dd856a2d\" y=\"86.271066\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_14\">\n", " <!-- −20 -->\n", " <g transform=\"translate(20.878125 90.070285)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_8\">\n", " <g id=\"line2d_27\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 48.982813 60.68989 \n", "L 383.782813 60.68989 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_28\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m59dd856a2d\" y=\"60.68989\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_15\">\n", " <!-- −10 -->\n", " <g transform=\"translate(20.878125 64.489108)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_9\">\n", " <g id=\"line2d_29\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 48.982813 35.108713 \n", "L 383.782813 35.108713 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_30\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m59dd856a2d\" y=\"35.108713\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_16\">\n", " <!-- 0 -->\n", " <g transform=\"translate(35.620312 38.907932)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"text_17\">\n", " <!-- Filter Gain (dB) -->\n", " <defs>\n", " <path d=\"M 9.421875 75.984375 \n", "L 18.40625 75.984375 \n", "L 18.40625 0 \n", "L 9.421875 0 \n", "z\n", "\" id=\"DejaVuSans-6c\"/>\n", " <path d=\"M 18.3125 70.21875 \n", "L 18.3125 54.6875 \n", "L 36.8125 54.6875 \n", "L 36.8125 47.703125 \n", "L 18.3125 47.703125 \n", "L 18.3125 18.015625 \n", "Q 18.3125 11.328125 20.140625 9.421875 \n", "Q 21.96875 7.515625 27.59375 7.515625 \n", "L 36.8125 7.515625 \n", "L 36.8125 0 \n", "L 27.59375 0 \n", "Q 17.1875 0 13.234375 3.875 \n", "Q 9.28125 7.765625 9.28125 18.015625 \n", "L 9.28125 47.703125 \n", "L 2.6875 47.703125 \n", "L 2.6875 54.6875 \n", "L 9.28125 54.6875 \n", "L 9.28125 70.21875 \n", "z\n", "\" id=\"DejaVuSans-74\"/>\n", " <path d=\"M 59.515625 10.40625 \n", "L 59.515625 29.984375 \n", "L 43.40625 29.984375 \n", "L 43.40625 38.09375 \n", "L 69.28125 38.09375 \n", "L 69.28125 6.78125 \n", "Q 63.578125 2.734375 56.6875 0.65625 \n", "Q 49.8125 -1.421875 42 -1.421875 \n", "Q 24.90625 -1.421875 15.25 8.5625 \n", "Q 5.609375 18.5625 5.609375 36.375 \n", "Q 5.609375 54.25 15.25 64.234375 \n", "Q 24.90625 74.21875 42 74.21875 \n", "Q 49.125 74.21875 55.546875 72.453125 \n", "Q 61.96875 70.703125 67.390625 67.28125 \n", "L 67.390625 56.78125 \n", "Q 61.921875 61.421875 55.765625 63.765625 \n", "Q 49.609375 66.109375 42.828125 66.109375 \n", "Q 29.4375 66.109375 22.71875 58.640625 \n", "Q 16.015625 51.171875 16.015625 36.375 \n", "Q 16.015625 21.625 22.71875 14.15625 \n", "Q 29.4375 6.6875 42.828125 6.6875 \n", "Q 48.046875 6.6875 52.140625 7.59375 \n", "Q 56.25 8.5 59.515625 10.40625 \n", "z\n", "\" id=\"DejaVuSans-47\"/>\n", " <path d=\"M 34.28125 27.484375 \n", "Q 23.390625 27.484375 19.1875 25 \n", "Q 14.984375 22.515625 14.984375 16.5 \n", "Q 14.984375 11.71875 18.140625 8.90625 \n", "Q 21.296875 6.109375 26.703125 6.109375 \n", "Q 34.1875 6.109375 38.703125 11.40625 \n", "Q 43.21875 16.703125 43.21875 25.484375 \n", "L 43.21875 27.484375 \n", "z\n", "M 52.203125 31.203125 \n", "L 52.203125 0 \n", "L 43.21875 0 \n", "L 43.21875 8.296875 \n", "Q 40.140625 3.328125 35.546875 0.953125 \n", "Q 30.953125 -1.421875 24.3125 -1.421875 \n", "Q 15.921875 -1.421875 10.953125 3.296875 \n", "Q 6 8.015625 6 15.921875 \n", "Q 6 25.140625 12.171875 29.828125 \n", "Q 18.359375 34.515625 30.609375 34.515625 \n", "L 43.21875 34.515625 \n", "L 43.21875 35.40625 \n", "Q 43.21875 41.609375 39.140625 45 \n", "Q 35.0625 48.390625 27.6875 48.390625 \n", "Q 23 48.390625 18.546875 47.265625 \n", "Q 14.109375 46.140625 10.015625 43.890625 \n", "L 10.015625 52.203125 \n", "Q 14.9375 54.109375 19.578125 55.046875 \n", "Q 24.21875 56 28.609375 56 \n", "Q 40.484375 56 46.34375 49.84375 \n", "Q 52.203125 43.703125 52.203125 31.203125 \n", "z\n", "\" id=\"DejaVuSans-61\"/>\n", " <path d=\"M 31 75.875 \n", "Q 24.46875 64.65625 21.28125 53.65625 \n", "Q 18.109375 42.671875 18.109375 31.390625 \n", "Q 18.109375 20.125 21.3125 9.0625 \n", "Q 24.515625 -2 31 -13.1875 \n", "L 23.1875 -13.1875 \n", "Q 15.875 -1.703125 12.234375 9.375 \n", "Q 8.59375 20.453125 8.59375 31.390625 \n", "Q 8.59375 42.28125 12.203125 53.3125 \n", "Q 15.828125 64.359375 23.1875 75.875 \n", "z\n", "\" id=\"DejaVuSans-28\"/>\n", " <path d=\"M 45.40625 46.390625 \n", "L 45.40625 75.984375 \n", "L 54.390625 75.984375 \n", "L 54.390625 0 \n", "L 45.40625 0 \n", "L 45.40625 8.203125 \n", "Q 42.578125 3.328125 38.25 0.953125 \n", "Q 33.9375 -1.421875 27.875 -1.421875 \n", "Q 17.96875 -1.421875 11.734375 6.484375 \n", "Q 5.515625 14.40625 5.515625 27.296875 \n", "Q 5.515625 40.1875 11.734375 48.09375 \n", "Q 17.96875 56 27.875 56 \n", "Q 33.9375 56 38.25 53.625 \n", "Q 42.578125 51.265625 45.40625 46.390625 \n", "z\n", "M 14.796875 27.296875 \n", "Q 14.796875 17.390625 18.875 11.75 \n", "Q 22.953125 6.109375 30.078125 6.109375 \n", "Q 37.203125 6.109375 41.296875 11.75 \n", "Q 45.40625 17.390625 45.40625 27.296875 \n", "Q 45.40625 37.203125 41.296875 42.84375 \n", "Q 37.203125 48.484375 30.078125 48.484375 \n", "Q 22.953125 48.484375 18.875 42.84375 \n", "Q 14.796875 37.203125 14.796875 27.296875 \n", "z\n", "\" id=\"DejaVuSans-64\"/>\n", " <path d=\"M 19.671875 34.8125 \n", "L 19.671875 8.109375 \n", "L 35.5 8.109375 \n", "Q 43.453125 8.109375 47.28125 11.40625 \n", "Q 51.125 14.703125 51.125 21.484375 \n", "Q 51.125 28.328125 47.28125 31.5625 \n", "Q 43.453125 34.8125 35.5 34.8125 \n", "z\n", "M 19.671875 64.796875 \n", "L 19.671875 42.828125 \n", "L 34.28125 42.828125 \n", "Q 41.5 42.828125 45.03125 45.53125 \n", "Q 48.578125 48.25 48.578125 53.8125 \n", "Q 48.578125 59.328125 45.03125 62.0625 \n", "Q 41.5 64.796875 34.28125 64.796875 \n", "z\n", "M 9.8125 72.90625 \n", "L 35.015625 72.90625 \n", "Q 46.296875 72.90625 52.390625 68.21875 \n", "Q 58.5 63.53125 58.5 54.890625 \n", "Q 58.5 48.1875 55.375 44.234375 \n", "Q 52.25 40.28125 46.1875 39.3125 \n", "Q 53.46875 37.75 57.5 32.78125 \n", "Q 61.53125 27.828125 61.53125 20.40625 \n", "Q 61.53125 10.640625 54.890625 5.3125 \n", "Q 48.25 0 35.984375 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-42\"/>\n", " <path d=\"M 8.015625 75.875 \n", "L 15.828125 75.875 \n", "Q 23.140625 64.359375 26.78125 53.3125 \n", "Q 30.421875 42.28125 30.421875 31.390625 \n", "Q 30.421875 20.453125 26.78125 9.375 \n", "Q 23.140625 -1.703125 15.828125 -13.1875 \n", "L 8.015625 -13.1875 \n", "Q 14.5 -2 17.703125 9.0625 \n", "Q 20.90625 20.125 20.90625 31.390625 \n", "Q 20.90625 42.671875 17.703125 53.65625 \n", "Q 14.5 64.65625 8.015625 75.875 \n", "z\n", "\" id=\"DejaVuSans-29\"/>\n", " </defs>\n", " <g transform=\"translate(14.798437 168.959219)rotate(-90)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-46\"/>\n", " <use x=\"57.410156\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"85.193359\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"112.976562\" xlink:href=\"#DejaVuSans-74\"/>\n", " <use x=\"152.185547\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"213.708984\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"254.822266\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"286.609375\" xlink:href=\"#DejaVuSans-47\"/>\n", " <use x=\"364.099609\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"425.378906\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"453.162109\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"516.541016\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"548.328125\" xlink:href=\"#DejaVuSans-28\"/>\n", " <use x=\"587.341797\" xlink:href=\"#DejaVuSans-64\"/>\n", " <use x=\"650.818359\" xlink:href=\"#DejaVuSans-42\"/>\n", " <use x=\"719.421875\" xlink:href=\"#DejaVuSans-29\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"line2d_31\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 64.200994 35.108713 \n", "L 140.663804 35.196787 \n", "L 142.151408 35.513543 \n", "L 143.639011 36.080405 \n", "L 144.829093 36.765049 \n", "L 146.019176 37.697945 \n", "L 147.209259 38.91872 \n", "L 148.399341 40.467246 \n", "L 149.589424 42.384168 \n", "L 150.779507 44.711839 \n", "L 151.969589 47.495687 \n", "L 153.159672 50.786118 \n", "L 154.349755 54.641167 \n", "L 155.539837 59.130272 \n", "L 156.72992 64.339925 \n", "L 157.920003 70.382596 \n", "L 159.110085 77.411801 \n", "L 160.300168 85.649757 \n", "L 161.490251 95.4438 \n", "L 162.680333 107.399764 \n", "L 163.572895 118.490272 \n", "L 164.465457 132.649686 \n", "L 165.060498 145.246231 \n", "L 165.65554 163.803251 \n", "L 165.95306 179.306159 \n", "L 166.250581 218.531638 \n", "L 166.845622 179.126999 \n", "L 167.143143 172.006267 \n", "L 167.440664 168.175081 \n", "L 167.738184 166.166563 \n", "L 168.035705 165.386198 \n", "L 168.333226 165.551856 \n", "L 168.630746 166.5293 \n", "L 168.928267 168.273944 \n", "L 169.523308 174.25911 \n", "L 170.11835 185.05682 \n", "L 170.41587 194.012295 \n", "L 170.713391 209.260902 \n", "L 170.994234 278.314375 \n", "M 171.028253 278.314375 \n", "L 171.308432 212.063035 \n", "L 171.605953 196.973965 \n", "L 172.200994 183.33864 \n", "L 172.796036 176.862897 \n", "L 173.391077 173.69479 \n", "L 173.688598 172.962862 \n", "L 173.986118 172.70557 \n", "L 174.283639 172.8887 \n", "L 174.58116 173.498184 \n", "L 174.87868 174.537884 \n", "L 175.473722 178.02106 \n", "L 176.068763 183.856165 \n", "L 176.663804 193.543875 \n", "L 176.961325 201.177581 \n", "L 177.258846 213.148908 \n", "L 177.556366 240.879772 \n", "L 177.853887 232.787777 \n", "L 178.151408 211.239286 \n", "L 178.746449 194.335754 \n", "L 179.34149 186.156597 \n", "L 179.936532 181.52594 \n", "L 180.531573 179.044616 \n", "L 180.829093 178.425654 \n", "L 181.126614 178.172616 \n", "L 181.424135 178.267891 \n", "L 181.721655 178.705603 \n", "L 182.019176 179.490882 \n", "L 182.614217 182.185655 \n", "L 183.209259 186.688439 \n", "L 183.8043 193.844965 \n", "L 184.399341 206.144601 \n", "L 184.696862 216.943195 \n", "L 184.994383 239.027612 \n", "L 185.291903 247.330816 \n", "L 185.589424 220.148131 \n", "L 185.886945 208.620882 \n", "L 186.481986 196.287056 \n", "L 187.077027 189.512752 \n", "L 187.672069 185.483654 \n", "L 188.26711 183.261074 \n", "L 188.564631 182.694089 \n", "L 188.862151 182.454256 \n", "L 189.159672 182.52909 \n", "L 189.457193 182.915447 \n", "L 189.754713 183.619167 \n", "L 190.349755 186.052482 \n", "L 190.944796 190.118427 \n", "L 191.539837 196.507679 \n", "L 192.134879 207.084695 \n", "L 192.432399 215.704135 \n", "L 192.72992 230.300512 \n", "L 192.970586 278.314375 \n", "M 193.087945 278.314375 \n", "L 193.324961 233.881768 \n", "L 193.622482 217.882775 \n", "L 194.217523 202.918265 \n", "L 194.812565 195.046075 \n", "L 195.407606 190.297998 \n", "L 196.002647 187.484406 \n", "L 196.597689 186.118668 \n", "L 196.895209 185.907746 \n", "L 197.19273 185.995506 \n", "L 197.490251 186.380629 \n", "L 197.787771 187.069961 \n", "L 198.382812 189.435208 \n", "L 198.977854 193.371212 \n", "L 199.572895 199.529432 \n", "L 200.167936 209.621264 \n", "L 200.465457 217.695721 \n", "L 200.762978 230.85613 \n", "L 201.060498 268.136937 \n", "L 201.65554 223.18076 \n", "L 202.250581 207.137278 \n", "L 202.845622 198.838753 \n", "L 203.440664 193.805837 \n", "L 204.035705 190.750521 \n", "L 204.630746 189.15041 \n", "L 204.928267 188.818361 \n", "L 205.225788 188.779244 \n", "L 205.523308 189.029184 \n", "L 205.820829 189.571969 \n", "L 206.41587 191.592944 \n", "L 207.010912 195.067766 \n", "L 207.605953 200.518301 \n", "L 208.200994 209.232658 \n", "L 208.498515 215.861725 \n", "L 208.796036 225.695013 \n", "L 209.093556 244.188637 \n", "L 209.391077 270.872071 \n", "L 209.688598 233.91947 \n", "L 209.986118 220.968603 \n", "L 210.58116 207.550836 \n", "L 211.176201 200.146904 \n", "L 211.771242 195.578088 \n", "L 212.366284 192.816284 \n", "L 212.961325 191.427569 \n", "L 213.258846 191.183911 \n", "L 213.556366 191.226226 \n", "L 213.853887 191.55334 \n", "L 214.151408 192.17153 \n", "L 214.746449 194.348501 \n", "L 215.34149 198.009781 \n", "L 215.936532 203.731133 \n", "L 216.531573 212.962103 \n", "L 216.829093 220.122735 \n", "L 217.126614 231.116563 \n", "L 217.424135 254.342591 \n", "L 217.721655 258.102274 \n", "L 218.019176 232.558786 \n", "L 218.614217 213.989619 \n", "L 219.209259 204.851827 \n", "L 219.8043 199.322114 \n", "L 220.399341 195.88479 \n", "L 220.994383 193.942147 \n", "L 221.291903 193.44132 \n", "L 221.589424 193.230182 \n", "L 221.886945 193.301342 \n", "L 222.184465 193.654747 \n", "L 222.481986 194.297671 \n", "L 223.077027 196.523472 \n", "L 223.672069 200.241341 \n", "L 224.26711 206.046212 \n", "L 224.862151 215.445629 \n", "L 225.159672 222.789885 \n", "L 225.457193 234.212705 \n", "L 225.754713 259.581078 \n", "L 226.052234 256.820991 \n", "L 226.349755 233.474316 \n", "L 226.944796 215.515811 \n", "L 227.539837 206.533081 \n", "L 228.134879 201.065725 \n", "L 228.72992 197.655191 \n", "L 229.324961 195.721051 \n", "L 229.622482 195.219932 \n", "L 229.920003 195.006113 \n", "L 230.217523 195.072476 \n", "L 230.515044 195.419119 \n", "L 230.812565 196.053368 \n", "L 231.407606 198.255737 \n", "L 232.002647 201.939964 \n", "L 232.597689 207.693915 \n", "L 233.19273 217.00036 \n", "L 233.490251 224.252465 \n", "L 233.787771 235.47212 \n", "L 234.085292 259.841339 \n", "L 234.382812 259.911779 \n", "L 234.680333 235.644851 \n", "L 235.275374 217.393931 \n", "L 235.870416 208.309619 \n", "L 236.465457 202.777021 \n", "L 237.060498 199.312536 \n", "L 237.65554 197.327462 \n", "L 237.95306 196.800617 \n", "L 238.250581 196.560319 \n", "L 238.548102 196.599019 \n", "L 238.845622 196.916331 \n", "L 239.143143 197.518994 \n", "L 239.738184 199.648133 \n", "L 240.333226 203.23632 \n", "L 240.928267 208.846536 \n", "L 241.523308 217.881412 \n", "L 241.820829 224.85631 \n", "L 242.11835 235.462026 \n", "L 242.41587 257.046969 \n", "L 242.713391 266.723257 \n", "L 243.010912 238.74726 \n", "L 243.605953 219.509316 \n", "L 244.200994 210.134258 \n", "L 244.796036 204.443682 \n", "L 245.391077 200.867008 \n", "L 245.986118 198.788369 \n", "L 246.283639 198.217627 \n", "L 246.58116 197.933899 \n", "L 246.87868 197.928701 \n", "L 247.176201 198.200721 \n", "L 247.473722 198.755676 \n", "L 248.068763 200.776886 \n", "L 248.663804 204.226391 \n", "L 249.258846 209.631459 \n", "L 249.853887 218.283803 \n", "L 250.151408 224.876512 \n", "L 250.448928 234.670389 \n", "L 250.746449 253.122996 \n", "L 251.028003 278.314375 \n", "M 251.05546 278.314375 \n", "L 251.34149 242.751615 \n", "L 251.639011 229.749456 \n", "L 252.234052 216.218533 \n", "L 252.829093 208.688612 \n", "L 253.424135 203.980145 \n", "L 254.019176 201.063012 \n", "L 254.614217 199.499809 \n", "L 254.911738 199.160034 \n", "L 255.209259 199.098992 \n", "L 255.506779 199.314112 \n", "L 255.8043 199.80979 \n", "L 256.399341 201.698764 \n", "L 256.994383 204.980957 \n", "L 257.589424 210.142294 \n", "L 258.184465 218.350979 \n", "L 258.481986 224.514886 \n", "L 258.779507 233.445481 \n", "L 259.077027 249.086812 \n", "L 259.18927 278.314375 \n", "M 259.55691 278.314375 \n", "L 259.672069 247.847936 \n", "L 259.969589 232.947218 \n", "L 260.564631 218.343981 \n", "L 261.159672 210.406788 \n", "L 261.754713 205.462193 \n", "L 262.349755 202.375099 \n", "L 262.944796 200.670775 \n", "L 263.242317 200.265181 \n", "L 263.539837 200.139204 \n", "L 263.837358 200.288767 \n", "L 264.134879 200.716723 \n", "L 264.432399 201.433143 \n", "L 265.027441 203.815247 \n", "L 265.622482 207.73161 \n", "L 266.217523 213.849676 \n", "L 266.812565 223.911638 \n", "L 267.110085 232.008746 \n", "L 267.407606 245.320062 \n", "L 267.656662 278.314375 \n", "M 267.768397 278.314375 \n", "L 268.002647 254.543444 \n", "L 268.300168 236.61487 \n", "L 268.895209 220.567518 \n", "L 269.490251 212.125099 \n", "L 270.085292 206.898763 \n", "L 270.680333 203.614332 \n", "L 271.275374 201.749713 \n", "L 271.572895 201.270422 \n", "L 271.870416 201.072365 \n", "L 272.167936 201.149743 \n", "L 272.465457 201.503703 \n", "L 272.762978 202.142446 \n", "L 273.358019 204.348493 \n", "L 273.95306 208.035069 \n", "L 274.548102 213.80114 \n", "L 275.143143 223.160797 \n", "L 275.440664 230.49102 \n", "L 275.738184 241.919727 \n", "L 276.035705 267.454007 \n", "L 276.333226 264.112682 \n", "L 276.630746 240.894772 \n", "L 277.225788 222.907961 \n", "L 277.820829 213.854063 \n", "L 278.41587 208.301005 \n", "L 279.010912 204.793933 \n", "L 279.605953 202.752241 \n", "L 279.903474 202.192648 \n", "L 280.200994 201.91669 \n", "L 280.498515 201.916663 \n", "L 280.796036 202.191875 \n", "L 281.093556 202.74857 \n", "L 281.688598 204.770832 \n", "L 282.283639 208.22178 \n", "L 282.87868 213.635784 \n", "L 283.473722 222.323965 \n", "L 283.771242 228.965489 \n", "L 284.068763 238.877513 \n", "L 284.629592 278.314375 \n", "M 284.686508 278.314375 \n", "L 284.961325 246.044338 \n", "L 285.258846 233.253224 \n", "L 285.853887 219.82242 \n", "L 286.448928 212.305186 \n", "L 287.04397 207.583863 \n", "L 287.639011 204.641674 \n", "L 288.234052 203.045477 \n", "L 288.531573 202.6867 \n", "L 288.829093 202.605022 \n", "L 289.126614 202.797797 \n", "L 289.424135 203.269249 \n", "L 289.721655 204.030912 \n", "L 290.316697 206.516037 \n", "L 290.911738 210.571575 \n", "L 291.506779 216.916316 \n", "L 292.101821 227.470791 \n", "L 292.399341 236.152681 \n", "L 292.696862 251.087583 \n", "L 292.801993 278.314375 \n", "M 293.190509 278.314375 \n", "L 293.291903 252.555534 \n", "L 293.589424 236.94446 \n", "L 294.184465 221.952362 \n", "L 294.779507 213.853212 \n", "L 295.374548 208.801071 \n", "L 295.969589 205.625747 \n", "L 296.564631 203.839976 \n", "L 296.862151 203.394058 \n", "L 297.159672 203.227148 \n", "L 297.457193 203.334534 \n", "L 297.754713 203.71837 \n", "L 298.052234 204.387901 \n", "L 298.647275 206.663277 \n", "L 299.242317 210.442366 \n", "L 299.837358 216.35661 \n", "L 300.432399 226.025525 \n", "L 300.72992 233.698972 \n", "L 301.027441 245.95802 \n", "L 301.324961 276.517424 \n", "L 302.217523 230.969932 \n", "L 302.812565 219.236095 \n", "L 303.407606 212.40509 \n", "L 304.002647 208.08105 \n", "L 304.597689 205.41847 \n", "L 305.19273 204.048191 \n", "L 305.490251 203.792908 \n", "L 305.787771 203.812452 \n", "L 306.085292 204.106862 \n", "L 306.382812 204.683108 \n", "L 306.977854 206.748891 \n", "L 307.572895 210.257471 \n", "L 308.167936 215.763031 \n", "L 308.762978 224.636909 \n", "L 309.060498 231.47365 \n", "L 309.358019 241.811209 \n", "L 309.95306 276.322422 \n", "L 310.250581 246.333614 \n", "L 310.548102 234.189305 \n", "L 311.143143 221.148172 \n", "L 311.738184 213.771403 \n", "L 312.333226 209.121708 \n", "L 312.928267 206.222989 \n", "L 313.523308 204.656758 \n", "L 313.820829 204.310231 \n", "L 314.11835 204.239808 \n", "L 314.41587 204.443353 \n", "L 314.713391 204.925579 \n", "L 315.010912 205.698534 \n", "L 315.605953 208.210379 \n", "L 316.200994 212.305017 \n", "L 316.796036 218.719565 \n", "L 317.391077 229.439877 \n", "L 317.688598 238.331935 \n", "L 317.986118 253.901319 \n", "L 318.075857 278.314375 \n", "M 318.488634 278.314375 \n", "L 318.58116 252.801097 \n", "L 318.87868 237.830458 \n", "L 319.473722 223.152326 \n", "L 320.068763 215.152833 \n", "L 320.663804 210.146914 \n", "L 321.258846 206.996717 \n", "L 321.853887 205.225993 \n", "L 322.151408 204.785497 \n", "L 322.448928 204.623177 \n", "L 322.746449 204.734656 \n", "L 323.04397 205.122394 \n", "L 323.34149 205.795942 \n", "L 323.936532 208.081152 \n", "L 324.531573 211.876119 \n", "L 325.126614 217.821441 \n", "L 325.721655 227.566707 \n", "L 326.019176 235.332749 \n", "L 326.316697 247.831226 \n", "L 326.597269 278.314375 \n", "M 326.643937 278.314375 \n", "L 327.209259 242.06229 \n", "L 327.8043 225.274434 \n", "L 328.399341 216.559313 \n", "L 328.994383 211.162932 \n", "L 329.589424 207.744908 \n", "L 330.184465 205.760969 \n", "L 330.481986 205.223825 \n", "L 330.779507 204.967776 \n", "L 331.077027 204.986119 \n", "L 331.374548 205.279055 \n", "L 331.672069 205.85371 \n", "L 332.26711 207.916619 \n", "L 332.862151 211.42424 \n", "L 333.457193 216.934225 \n", "L 334.052234 225.828344 \n", "L 334.349755 232.692861 \n", "L 334.647275 243.098948 \n", "L 334.944796 263.970239 \n", "L 335.242317 276.489426 \n", "L 335.539837 247.16689 \n", "L 336.134879 227.546786 \n", "L 336.72992 218.00141 \n", "L 337.324961 212.175605 \n", "L 337.920003 208.472039 \n", "L 338.515044 206.265787 \n", "L 338.812565 205.629284 \n", "L 339.110085 205.277698 \n", "L 339.407606 205.201894 \n", "L 339.705127 205.399789 \n", "L 340.002647 205.876136 \n", "L 340.300168 206.643015 \n", "L 340.895209 209.142196 \n", "L 341.490251 213.223567 \n", "L 342.085292 219.624233 \n", "L 342.680333 230.329725 \n", "L 342.977854 239.213489 \n", "L 343.275374 254.771915 \n", "L 343.361601 278.314375 \n", "M 343.781367 278.314375 \n", "L 343.870416 253.672069 \n", "L 344.167936 238.69053 \n", "L 344.762978 223.995691 \n", "L 345.358019 215.980387 \n", "L 345.95306 210.958621 \n", "L 346.548102 207.792309 \n", "L 347.143143 206.005053 \n", "L 347.440664 205.556086 \n", "L 347.738184 205.385123 \n", "L 348.035705 205.487754 \n", "L 348.333226 205.866394 \n", "L 348.630746 206.530535 \n", "L 349.225788 208.795637 \n", "L 349.820829 212.567669 \n", "L 350.41587 218.484171 \n", "L 351.010912 228.184306 \n", "L 351.308432 235.908544 \n", "L 351.605953 248.313337 \n", "L 351.887741 278.314375 \n", "M 351.932401 278.314375 \n", "L 352.796036 232.722669 \n", "L 353.391077 221.040069 \n", "L 353.986118 214.212929 \n", "L 354.58116 209.877801 \n", "L 355.176201 207.197303 \n", "L 355.771242 205.805254 \n", "L 356.068763 205.538082 \n", "L 356.366284 205.545199 \n", "L 356.663804 205.826701 \n", "L 356.961325 206.389592 \n", "L 357.556366 208.427349 \n", "L 358.151408 211.905914 \n", "L 358.746449 217.378477 \n", "L 359.34149 226.2128 \n", "L 359.639011 233.023144 \n", "L 359.936532 243.319583 \n", "L 360.531573 278.210917 \n", "L 360.829093 247.955477 \n", "L 361.126614 235.759072 \n", "L 361.721655 222.664529 \n", "L 362.316697 215.248224 \n", "L 362.911738 210.562377 \n", "L 363.506779 207.628401 \n", "L 364.101821 206.026768 \n", "L 364.399341 205.662265 \n", "L 364.696862 205.573569 \n", "L 364.994383 205.758446 \n", "L 365.291903 206.22149 \n", "L 365.589424 206.974595 \n", "L 366.184465 209.443811 \n", "L 366.779507 213.489128 \n", "L 367.374548 219.839708 \n", "L 367.969589 230.452305 \n", "L 368.26711 239.233031 \n", "L 368.564631 254.497776 \n", "L 368.564631 254.497776 \n", "\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_32\">\n", " <path clip-path=\"url(#p7713461f9e)\" d=\"M 64.200994 34.658447 \n", "L 67.176201 34.774033 \n", "L 71.639011 35.229837 \n", "L 75.506779 35.541002 \n", "L 78.184465 35.544924 \n", "L 81.457193 35.303524 \n", "L 88.300168 34.679726 \n", "L 91.275374 34.699319 \n", "L 94.548102 34.965617 \n", "L 100.796036 35.544899 \n", "L 103.473722 35.540217 \n", "L 106.448928 35.312773 \n", "L 113.291903 34.675129 \n", "L 115.969589 34.697775 \n", "L 118.944796 34.948615 \n", "L 125.19273 35.557225 \n", "L 127.572895 35.523678 \n", "L 130.250581 35.256361 \n", "L 135.308432 34.667139 \n", "L 137.093556 34.710345 \n", "L 138.58116 34.953696 \n", "L 140.068763 35.438309 \n", "L 141.258846 36.030772 \n", "L 142.448928 36.829377 \n", "L 143.639011 37.855377 \n", "L 144.829093 39.129485 \n", "L 146.019176 40.672376 \n", "L 147.506779 43.011383 \n", "L 148.994383 45.847909 \n", "L 150.481986 49.231773 \n", "L 151.969589 53.221569 \n", "L 153.457193 57.889196 \n", "L 154.944796 63.326571 \n", "L 156.432399 69.656313 \n", "L 157.920003 77.050108 \n", "L 159.407606 85.76323 \n", "L 160.597689 93.951581 \n", "L 161.787771 103.591543 \n", "L 162.977854 115.309655 \n", "L 163.870416 126.215167 \n", "L 164.762978 140.332687 \n", "L 165.358019 153.264407 \n", "L 165.95306 173.671562 \n", "L 166.250581 193.672183 \n", "L 166.548102 227.060047 \n", "L 166.845622 189.158395 \n", "L 167.143143 177.989785 \n", "L 167.440664 172.100328 \n", "L 167.738184 168.632426 \n", "L 168.035705 166.613979 \n", "L 168.333226 165.606105 \n", "L 168.630746 165.384052 \n", "L 168.928267 165.830121 \n", "L 169.225788 166.891425 \n", "L 169.523308 168.563769 \n", "L 170.11835 173.973184 \n", "L 170.713391 183.373911 \n", "L 171.010912 190.866036 \n", "L 171.308432 202.63225 \n", "L 171.605953 229.563611 \n", "L 171.903474 223.143509 \n", "L 172.200994 201.048084 \n", "L 172.796036 183.787524 \n", "L 173.391077 175.290479 \n", "L 173.986118 170.269544 \n", "L 174.58116 167.281406 \n", "L 175.176201 165.742274 \n", "L 175.473722 165.426192 \n", "L 175.771242 165.387733 \n", "L 176.068763 165.618658 \n", "L 176.366284 166.117834 \n", "L 176.961325 167.952442 \n", "L 177.556366 171.042921 \n", "L 178.151408 175.753751 \n", "L 178.746449 182.928951 \n", "L 179.34149 194.976566 \n", "L 179.639011 205.394831 \n", "L 180.234052 239.913759 \n", "L 180.531573 210.002316 \n", "L 181.126614 190.247019 \n", "L 181.721655 180.574425 \n", "L 182.316697 174.535903 \n", "L 182.911738 170.504386 \n", "L 183.506779 167.826571 \n", "L 184.101821 166.186203 \n", "L 184.696862 165.420978 \n", "L 184.994383 165.340576 \n", "L 185.291903 165.456046 \n", "L 185.589424 165.767687 \n", "L 186.184465 166.998975 \n", "L 186.779507 169.116581 \n", "L 187.374548 172.296822 \n", "L 187.969589 176.887741 \n", "L 188.564631 183.628299 \n", "L 189.159672 194.457227 \n", "L 189.457193 203.242848 \n", "L 189.754713 218.296349 \n", "L 189.97246 278.314375 \n", "M 190.133172 278.314375 \n", "L 190.349755 219.475419 \n", "L 190.647275 203.894577 \n", "L 191.242317 188.748823 \n", "L 191.837358 180.331182 \n", "L 192.432399 174.800204 \n", "L 193.027441 170.968019 \n", "L 193.622482 168.317026 \n", "L 194.217523 166.583959 \n", "L 194.812565 165.627405 \n", "L 195.110085 165.416052 \n", "L 195.407606 165.376278 \n", "L 195.705127 165.506772 \n", "L 196.002647 165.80888 \n", "L 196.597689 166.947282 \n", "L 197.19273 168.863511 \n", "L 197.787771 171.701453 \n", "L 198.382812 175.730635 \n", "L 198.977854 181.485499 \n", "L 199.572895 190.208858 \n", "L 199.870416 196.662803 \n", "L 200.167936 206.034637 \n", "L 200.465457 222.886035 \n", "L 200.762978 266.373231 \n", "L 201.060498 217.391467 \n", "L 201.358019 203.345317 \n", "L 201.95306 188.958059 \n", "L 202.548102 180.749542 \n", "L 203.143143 175.273085 \n", "L 203.738184 171.420628 \n", "L 204.333226 168.700185 \n", "L 204.928267 166.857697 \n", "L 205.523308 165.753751 \n", "L 205.820829 165.453803 \n", "L 206.11835 165.314614 \n", "L 206.41587 165.333839 \n", "L 206.713391 165.511423 \n", "L 207.308432 166.353027 \n", "L 207.903474 167.888258 \n", "L 208.498515 170.218959 \n", "L 209.093556 173.531936 \n", "L 209.688598 178.175388 \n", "L 210.283639 184.867863 \n", "L 210.87868 195.450959 \n", "L 211.176201 203.899825 \n", "L 211.473722 217.978258 \n", "L 211.771242 267.18913 \n", "L 212.068763 223.445696 \n", "L 212.366284 206.62384 \n", "L 212.961325 190.819604 \n", "L 213.556366 182.096856 \n", "L 214.151408 176.322888 \n", "L 214.746449 172.252023 \n", "L 215.34149 169.345447 \n", "L 215.936532 167.32773 \n", "L 216.531573 166.047016 \n", "L 217.126614 165.420235 \n", "L 217.424135 165.338776 \n", "L 217.721655 165.409464 \n", "L 218.019176 165.63309 \n", "L 218.614217 166.55323 \n", "L 219.209259 168.152577 \n", "L 219.8043 170.536646 \n", "L 220.399341 173.895819 \n", "L 220.994383 178.583011 \n", "L 221.589424 185.326083 \n", "L 222.184465 195.996705 \n", "L 222.481986 204.542845 \n", "L 222.779507 218.889306 \n", "L 223.077027 273.346101 \n", "L 223.374548 223.085237 \n", "L 223.672069 206.629967 \n", "L 224.26711 190.982101 \n", "L 224.862151 182.294239 \n", "L 225.457193 176.521347 \n", "L 226.052234 172.434245 \n", "L 226.647275 169.499113 \n", "L 227.242317 167.442074 \n", "L 227.837358 166.111278 \n", "L 228.432399 165.422608 \n", "L 228.72992 165.305165 \n", "L 229.027441 165.336027 \n", "L 229.324961 165.515495 \n", "L 229.920003 166.331653 \n", "L 230.515044 167.799555 \n", "L 231.110085 170.011817 \n", "L 231.705127 173.134744 \n", "L 232.300168 177.470823 \n", "L 232.895209 183.621757 \n", "L 233.490251 193.029408 \n", "L 233.787771 200.152262 \n", "L 234.085292 210.93271 \n", "L 234.382812 233.078508 \n", "L 234.680333 240.520052 \n", "L 234.977854 213.390246 \n", "L 235.572895 194.075852 \n", "L 236.167936 184.279652 \n", "L 236.762978 177.942818 \n", "L 237.358019 173.493613 \n", "L 237.95306 170.290181 \n", "L 238.548102 168.012987 \n", "L 239.143143 166.486677 \n", "L 239.738184 165.612738 \n", "L 240.035705 165.403114 \n", "L 240.333226 165.340486 \n", "L 240.630746 165.423947 \n", "L 240.928267 165.654522 \n", "L 241.523308 166.571246 \n", "L 242.11835 168.142617 \n", "L 242.713391 170.46912 \n", "L 243.308432 173.729654 \n", "L 243.903474 178.251111 \n", "L 244.498515 184.69371 \n", "L 245.093556 194.691252 \n", "L 245.391077 202.45112 \n", "L 245.688598 214.725356 \n", "L 245.986118 244.985906 \n", "L 246.283639 230.612737 \n", "L 246.58116 210.103699 \n", "L 247.176201 192.771407 \n", "L 247.771242 183.535498 \n", "L 248.366284 177.468738 \n", "L 248.961325 173.181272 \n", "L 249.556366 170.087109 \n", "L 250.151408 167.889685 \n", "L 250.746449 166.424913 \n", "L 251.34149 165.60055 \n", "L 251.639011 165.412494 \n", "L 251.936532 165.369784 \n", "L 252.234052 165.471813 \n", "L 252.531573 165.719877 \n", "L 253.126614 166.669321 \n", "L 253.721655 168.272038 \n", "L 254.316697 170.630817 \n", "L 254.911738 173.927994 \n", "L 255.506779 178.496926 \n", "L 256.101821 185.013311 \n", "L 256.696862 195.162992 \n", "L 256.994383 203.093543 \n", "L 257.291903 215.795055 \n", "L 257.589424 249.202344 \n", "L 258.184465 209.420403 \n", "L 258.779507 192.503959 \n", "L 259.374548 183.388714 \n", "L 259.969589 177.376531 \n", "L 260.564631 173.117349 \n", "L 261.159672 170.037621 \n", "L 261.754713 167.845807 \n", "L 262.349755 166.380091 \n", "L 262.944796 165.549207 \n", "L 263.242317 165.35589 \n", "L 263.539837 165.306556 \n", "L 263.837358 165.400531 \n", "L 264.134879 165.639005 \n", "L 264.72992 166.563977 \n", "L 265.324961 168.133356 \n", "L 265.920003 170.446208 \n", "L 266.515044 173.677774 \n", "L 267.110085 178.146428 \n", "L 267.705127 184.490379 \n", "L 268.300168 194.268518 \n", "L 268.597689 201.781109 \n", "L 268.895209 213.454071 \n", "L 269.19273 240.01053 \n", "L 269.490251 234.007419 \n", "L 269.787771 211.477619 \n", "L 270.382812 193.451548 \n", "L 270.977854 184.004547 \n", "L 271.572895 177.826364 \n", "L 272.167936 173.462732 \n", "L 272.762978 170.307353 \n", "L 273.358019 168.054942 \n", "L 273.95306 166.53671 \n", "L 274.548102 165.657251 \n", "L 274.845622 165.440193 \n", "L 275.143143 165.367061 \n", "L 275.440664 165.436881 \n", "L 275.738184 165.650533 \n", "L 276.333226 166.522492 \n", "L 276.928267 168.031495 \n", "L 277.523308 170.271589 \n", "L 278.11835 173.409273 \n", "L 278.713391 177.745347 \n", "L 279.308432 183.875435 \n", "L 279.903474 193.219681 \n", "L 280.200994 200.269216 \n", "L 280.498515 210.883237 \n", "L 280.796036 232.310294 \n", "L 281.093556 242.594741 \n", "L 281.391077 214.24276 \n", "L 281.986118 194.624605 \n", "L 282.58116 184.731225 \n", "L 283.176201 178.331336 \n", "L 283.771242 173.827178 \n", "L 284.366284 170.568699 \n", "L 284.961325 168.232488 \n", "L 285.556366 166.640585 \n", "L 286.151408 165.692072 \n", "L 286.746449 165.333486 \n", "L 287.04397 165.368268 \n", "L 287.34149 165.54573 \n", "L 287.936532 166.339835 \n", "L 288.531573 167.759387 \n", "L 289.126614 169.89086 \n", "L 289.721655 172.887608 \n", "L 290.316697 177.0243 \n", "L 290.911738 182.834692 \n", "L 291.506779 191.545978 \n", "L 291.8043 197.94824 \n", "L 292.101821 207.190944 \n", "L 292.399341 223.601151 \n", "L 292.696862 274.94017 \n", "L 292.994383 219.592466 \n", "L 293.291903 205.205682 \n", "L 293.886945 190.583929 \n", "L 294.481986 182.227073 \n", "L 295.077027 176.604415 \n", "L 295.672069 172.589191 \n", "L 296.26711 169.681257 \n", "L 296.862151 167.620517 \n", "L 297.457193 166.261112 \n", "L 298.052234 165.521004 \n", "L 298.349755 165.369208 \n", "L 298.647275 165.359633 \n", "L 298.944796 165.492142 \n", "L 299.539837 166.192114 \n", "L 300.134879 167.507052 \n", "L 300.72992 169.515313 \n", "L 301.324961 172.356729 \n", "L 301.920003 176.279941 \n", "L 302.515044 181.75925 \n", "L 303.110085 189.846472 \n", "L 303.407606 195.647191 \n", "L 303.705127 203.720992 \n", "L 304.002647 216.783952 \n", "L 304.300168 253.283837 \n", "L 304.895209 209.023074 \n", "L 305.490251 192.42296 \n", "L 306.085292 183.402458 \n", "L 306.680333 177.433248 \n", "L 307.275374 173.195544 \n", "L 307.870416 170.125358 \n", "L 308.465457 167.935018 \n", "L 309.060498 166.464426 \n", "L 309.65554 165.623009 \n", "L 309.95306 165.422342 \n", "L 310.250581 165.364221 \n", "L 310.548102 165.447896 \n", "L 310.845622 165.674442 \n", "L 311.440664 166.569986 \n", "L 312.035705 168.100707 \n", "L 312.630746 170.362034 \n", "L 313.225788 173.522359 \n", "L 313.820829 177.885798 \n", "L 314.41587 184.05551 \n", "L 315.010912 193.475328 \n", "L 315.308432 200.603327 \n", "L 315.605953 211.391828 \n", "L 315.903474 233.573507 \n", "L 316.200994 240.865494 \n", "L 316.498515 213.789177 \n", "L 317.093556 194.471628 \n", "L 317.688598 184.654205 \n", "L 318.283639 178.286585 \n", "L 318.87868 173.797943 \n", "L 319.473722 170.546185 \n", "L 320.068763 168.210998 \n", "L 320.663804 166.615763 \n", "L 321.258846 165.660093 \n", "L 321.853887 165.290563 \n", "L 322.151408 165.318356 \n", "L 322.448928 165.487716 \n", "L 323.04397 166.261768 \n", "L 323.639011 167.654837 \n", "L 324.234052 169.750803 \n", "L 324.829093 172.698239 \n", "L 325.424135 176.762146 \n", "L 326.019176 182.453589 \n", "L 326.614217 190.931287 \n", "L 326.911738 197.10191 \n", "L 327.209259 205.881298 \n", "L 327.506779 220.878943 \n", "L 327.725737 278.314375 \n", "M 327.884263 278.314375 \n", "L 328.101821 222.244877 \n", "L 328.399341 206.565312 \n", "L 328.994383 191.275682 \n", "L 329.589424 182.685846 \n", "L 330.184465 176.939112 \n", "L 330.779507 172.842636 \n", "L 331.374548 169.873976 \n", "L 331.969589 167.763254 \n", "L 332.564631 166.359458 \n", "L 333.159672 165.577358 \n", "L 333.457193 165.404714 \n", "L 333.754713 165.374032 \n", "L 334.052234 165.484911 \n", "L 334.349755 165.738766 \n", "L 334.944796 166.690703 \n", "L 335.539837 168.28309 \n", "L 336.134879 170.616258 \n", "L 336.72992 173.866924 \n", "L 337.324961 178.355793 \n", "L 337.920003 184.72612 \n", "L 338.515044 194.552854 \n", "L 338.812565 202.117371 \n", "L 339.110085 213.914234 \n", "L 339.407606 241.181308 \n", "L 339.705127 233.42132 \n", "L 340.002647 211.360487 \n", "L 340.597689 193.480363 \n", "L 341.19273 184.067973 \n", "L 341.787771 177.899275 \n", "L 342.382812 173.534071 \n", "L 342.977854 170.370236 \n", "L 343.572895 168.103974 \n", "L 344.167936 166.566928 \n", "L 344.762978 165.663538 \n", "L 345.060498 165.432418 \n", "L 345.358019 165.343672 \n", "L 345.65554 165.396164 \n", "L 345.95306 165.590567 \n", "L 346.548102 166.417138 \n", "L 347.143143 167.868807 \n", "L 347.738184 170.034265 \n", "L 348.333226 173.0702 \n", "L 348.928267 177.257409 \n", "L 349.523308 183.143562 \n", "L 350.11835 191.997886 \n", "L 350.41587 198.541845 \n", "L 350.713391 208.073652 \n", "L 351.010912 225.427386 \n", "L 351.308432 262.319985 \n", "L 351.605953 218.287331 \n", "L 351.903474 204.547971 \n", "L 352.498515 190.280778 \n", "L 353.093556 182.047461 \n", "L 353.688598 176.487153 \n", "L 354.283639 172.508718 \n", "L 354.87868 169.624106 \n", "L 355.473722 167.578417 \n", "L 356.068763 166.228341 \n", "L 356.663804 165.493162 \n", "L 356.961325 165.342405 \n", "L 357.258846 165.332977 \n", "L 357.556366 165.464755 \n", "L 358.151408 166.160567 \n", "L 358.746449 167.467371 \n", "L 359.34149 169.462556 \n", "L 359.936532 172.283992 \n", "L 360.531573 176.176252 \n", "L 361.126614 181.6042 \n", "L 361.721655 189.592344 \n", "L 362.019176 195.298777 \n", "L 362.316697 203.196235 \n", "L 362.614217 215.807162 \n", "L 362.911738 248.484643 \n", "L 363.506779 209.808379 \n", "L 364.101821 192.801634 \n", "L 364.696862 183.653415 \n", "L 365.291903 177.618169 \n", "L 365.886945 173.337376 \n", "L 366.481986 170.234631 \n", "L 367.077027 168.01695 \n", "L 367.672069 166.521464 \n", "L 368.26711 165.655865 \n", "L 368.564631 165.442956 \n", "L 368.564631 165.442956 \n", "\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"patch_3\">\n", " <path d=\"M 48.982813 239.758125 \n", "L 48.982813 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_4\">\n", " <path d=\"M 383.782813 239.758125 \n", "L 383.782813 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_5\">\n", " <path d=\"M 48.982812 239.758125 \n", "L 383.782812 239.758125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_6\">\n", " <path d=\"M 48.982812 22.318125 \n", "L 383.782812 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"text_18\">\n", " <!-- Kaiser vs Equal Ripple Lowpass -->\n", " <defs>\n", " <path d=\"M 9.8125 72.90625 \n", "L 19.671875 72.90625 \n", "L 19.671875 42.09375 \n", "L 52.390625 72.90625 \n", "L 65.09375 72.90625 \n", "L 28.90625 38.921875 \n", "L 67.671875 0 \n", "L 54.6875 0 \n", "L 19.671875 35.109375 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-4b\"/>\n", " <path d=\"M 44.28125 53.078125 \n", "L 44.28125 44.578125 \n", "Q 40.484375 46.53125 36.375 47.5 \n", "Q 32.28125 48.484375 27.875 48.484375 \n", "Q 21.1875 48.484375 17.84375 46.4375 \n", "Q 14.5 44.390625 14.5 40.28125 \n", "Q 14.5 37.15625 16.890625 35.375 \n", "Q 19.28125 33.59375 26.515625 31.984375 \n", "L 29.59375 31.296875 \n", "Q 39.15625 29.25 43.1875 25.515625 \n", "Q 47.21875 21.78125 47.21875 15.09375 \n", "Q 47.21875 7.46875 41.1875 3.015625 \n", "Q 35.15625 -1.421875 24.609375 -1.421875 \n", "Q 20.21875 -1.421875 15.453125 -0.5625 \n", "Q 10.6875 0.296875 5.421875 2 \n", "L 5.421875 11.28125 \n", "Q 10.40625 8.6875 15.234375 7.390625 \n", "Q 20.0625 6.109375 24.8125 6.109375 \n", "Q 31.15625 6.109375 34.5625 8.28125 \n", "Q 37.984375 10.453125 37.984375 14.40625 \n", "Q 37.984375 18.0625 35.515625 20.015625 \n", "Q 33.0625 21.96875 24.703125 23.78125 \n", "L 21.578125 24.515625 \n", "Q 13.234375 26.265625 9.515625 29.90625 \n", "Q 5.8125 33.546875 5.8125 39.890625 \n", "Q 5.8125 47.609375 11.28125 51.796875 \n", "Q 16.75 56 26.8125 56 \n", "Q 31.78125 56 36.171875 55.265625 \n", "Q 40.578125 54.546875 44.28125 53.078125 \n", "z\n", "\" id=\"DejaVuSans-73\"/>\n", " <path d=\"M 2.984375 54.6875 \n", "L 12.5 54.6875 \n", "L 29.59375 8.796875 \n", "L 46.6875 54.6875 \n", "L 56.203125 54.6875 \n", "L 35.6875 0 \n", "L 23.484375 0 \n", "z\n", "\" id=\"DejaVuSans-76\"/>\n", " <path d=\"M 9.8125 72.90625 \n", "L 55.90625 72.90625 \n", "L 55.90625 64.59375 \n", "L 19.671875 64.59375 \n", "L 19.671875 43.015625 \n", "L 54.390625 43.015625 \n", "L 54.390625 34.71875 \n", "L 19.671875 34.71875 \n", "L 19.671875 8.296875 \n", "L 56.78125 8.296875 \n", "L 56.78125 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-45\"/>\n", " <path d=\"M 44.390625 34.1875 \n", "Q 47.5625 33.109375 50.5625 29.59375 \n", "Q 53.5625 26.078125 56.59375 19.921875 \n", "L 66.609375 0 \n", "L 56 0 \n", "L 46.6875 18.703125 \n", "Q 43.0625 26.03125 39.671875 28.421875 \n", "Q 36.28125 30.8125 30.421875 30.8125 \n", "L 19.671875 30.8125 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "L 9.8125 72.90625 \n", "L 32.078125 72.90625 \n", "Q 44.578125 72.90625 50.734375 67.671875 \n", "Q 56.890625 62.453125 56.890625 51.90625 \n", "Q 56.890625 45.015625 53.6875 40.46875 \n", "Q 50.484375 35.9375 44.390625 34.1875 \n", "z\n", "M 19.671875 64.796875 \n", "L 19.671875 38.921875 \n", "L 32.078125 38.921875 \n", "Q 39.203125 38.921875 42.84375 42.21875 \n", "Q 46.484375 45.515625 46.484375 51.90625 \n", "Q 46.484375 58.296875 42.84375 61.546875 \n", "Q 39.203125 64.796875 32.078125 64.796875 \n", "z\n", "\" id=\"DejaVuSans-52\"/>\n", " <path d=\"M 18.109375 8.203125 \n", "L 18.109375 -20.796875 \n", "L 9.078125 -20.796875 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.390625 \n", "Q 20.953125 51.265625 25.265625 53.625 \n", "Q 29.59375 56 35.59375 56 \n", "Q 45.5625 56 51.78125 48.09375 \n", "Q 58.015625 40.1875 58.015625 27.296875 \n", "Q 58.015625 14.40625 51.78125 6.484375 \n", "Q 45.5625 -1.421875 35.59375 -1.421875 \n", "Q 29.59375 -1.421875 25.265625 0.953125 \n", "Q 20.953125 3.328125 18.109375 8.203125 \n", "z\n", "M 48.6875 27.296875 \n", "Q 48.6875 37.203125 44.609375 42.84375 \n", "Q 40.53125 48.484375 33.40625 48.484375 \n", "Q 26.265625 48.484375 22.1875 42.84375 \n", "Q 18.109375 37.203125 18.109375 27.296875 \n", "Q 18.109375 17.390625 22.1875 11.75 \n", "Q 26.265625 6.109375 33.40625 6.109375 \n", "Q 40.53125 6.109375 44.609375 11.75 \n", "Q 48.6875 17.390625 48.6875 27.296875 \n", "z\n", "\" id=\"DejaVuSans-70\"/>\n", " <path d=\"M 9.8125 72.90625 \n", "L 19.671875 72.90625 \n", "L 19.671875 8.296875 \n", "L 55.171875 8.296875 \n", "L 55.171875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-4c\"/>\n", " <path d=\"M 30.609375 48.390625 \n", "Q 23.390625 48.390625 19.1875 42.75 \n", "Q 14.984375 37.109375 14.984375 27.296875 \n", "Q 14.984375 17.484375 19.15625 11.84375 \n", "Q 23.34375 6.203125 30.609375 6.203125 \n", "Q 37.796875 6.203125 41.984375 11.859375 \n", "Q 46.1875 17.53125 46.1875 27.296875 \n", "Q 46.1875 37.015625 41.984375 42.703125 \n", "Q 37.796875 48.390625 30.609375 48.390625 \n", "z\n", "M 30.609375 56 \n", "Q 42.328125 56 49.015625 48.375 \n", "Q 55.71875 40.765625 55.71875 27.296875 \n", "Q 55.71875 13.875 49.015625 6.21875 \n", "Q 42.328125 -1.421875 30.609375 -1.421875 \n", "Q 18.84375 -1.421875 12.171875 6.21875 \n", "Q 5.515625 13.875 5.515625 27.296875 \n", "Q 5.515625 40.765625 12.171875 48.375 \n", "Q 18.84375 56 30.609375 56 \n", "z\n", "\" id=\"DejaVuSans-6f\"/>\n", " <path d=\"M 4.203125 54.6875 \n", "L 13.1875 54.6875 \n", "L 24.421875 12.015625 \n", "L 35.59375 54.6875 \n", "L 46.1875 54.6875 \n", "L 57.421875 12.015625 \n", "L 68.609375 54.6875 \n", "L 77.59375 54.6875 \n", "L 63.28125 0 \n", "L 52.6875 0 \n", "L 40.921875 44.828125 \n", "L 29.109375 0 \n", "L 18.5 0 \n", "z\n", "\" id=\"DejaVuSans-77\"/>\n", " </defs>\n", " <g transform=\"translate(122.3 16.318125)scale(0.12 -0.12)\">\n", " <use xlink:href=\"#DejaVuSans-4b\"/>\n", " <use x=\"65.560547\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"126.839844\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"154.623047\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"206.722656\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"268.246094\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"309.359375\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"341.146484\" xlink:href=\"#DejaVuSans-76\"/>\n", " <use x=\"400.326172\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"452.425781\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"484.212891\" xlink:href=\"#DejaVuSans-45\"/>\n", " <use x=\"547.396484\" xlink:href=\"#DejaVuSans-71\"/>\n", " <use x=\"610.873047\" xlink:href=\"#DejaVuSans-75\"/>\n", " <use x=\"674.251953\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"735.53125\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"763.314453\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"795.101562\" xlink:href=\"#DejaVuSans-52\"/>\n", " <use x=\"864.583984\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"892.367188\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"955.84375\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"1019.320312\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"1047.103516\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"1108.626953\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"1140.414062\" xlink:href=\"#DejaVuSans-4c\"/>\n", " <use x=\"1196.111328\" xlink:href=\"#DejaVuSans-6f\"/>\n", " <use x=\"1257.292969\" xlink:href=\"#DejaVuSans-77\"/>\n", " <use x=\"1339.080078\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"1402.556641\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"1463.835938\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"1515.935547\" xlink:href=\"#DejaVuSans-73\"/>\n", " </g>\n", " </g>\n", " <g id=\"legend_1\">\n", " <g id=\"patch_7\">\n", " <path d=\"M 266.489063 59.674375 \n", "L 376.782813 59.674375 \n", "Q 378.782813 59.674375 378.782813 57.674375 \n", "L 378.782813 29.318125 \n", "Q 378.782813 27.318125 376.782813 27.318125 \n", "L 266.489063 27.318125 \n", "Q 264.489063 27.318125 264.489063 29.318125 \n", "L 264.489063 57.674375 \n", "Q 264.489063 59.674375 266.489063 59.674375 \n", "z\n", "\" style=\"fill:#ffffff;opacity:0.8;stroke:#cccccc;stroke-linejoin:miter;\"/>\n", " </g>\n", " <g id=\"line2d_33\">\n", " <path d=\"M 268.489063 35.416562 \n", "L 288.489063 35.416562 \n", "\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_34\"/>\n", " <g id=\"text_19\">\n", " <!-- Kaiser: 72 taps -->\n", " <defs>\n", " <path d=\"M 11.71875 12.40625 \n", "L 22.015625 12.40625 \n", "L 22.015625 0 \n", "L 11.71875 0 \n", "z\n", "M 11.71875 51.703125 \n", "L 22.015625 51.703125 \n", "L 22.015625 39.3125 \n", "L 11.71875 39.3125 \n", "z\n", "\" id=\"DejaVuSans-3a\"/>\n", " </defs>\n", " <g transform=\"translate(296.489063 38.916562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-4b\"/>\n", " <use x=\"65.560547\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"126.839844\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"154.623047\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"206.722656\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"268.246094\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"309.34375\" xlink:href=\"#DejaVuSans-3a\"/>\n", " <use x=\"343.035156\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"374.822266\" xlink:href=\"#DejaVuSans-37\"/>\n", " <use x=\"438.445312\" xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"502.068359\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"533.855469\" xlink:href=\"#DejaVuSans-74\"/>\n", " <use x=\"573.064453\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"634.34375\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"697.820312\" xlink:href=\"#DejaVuSans-73\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_35\">\n", " <path d=\"M 268.489063 50.094687 \n", "L 288.489063 50.094687 \n", "\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_36\"/>\n", " <g id=\"text_20\">\n", " <!-- Remez: 53 taps -->\n", " <defs>\n", " <path d=\"M 52 44.1875 \n", "Q 55.375 50.25 60.0625 53.125 \n", "Q 64.75 56 71.09375 56 \n", "Q 79.640625 56 84.28125 50.015625 \n", "Q 88.921875 44.046875 88.921875 33.015625 \n", "L 88.921875 0 \n", "L 79.890625 0 \n", "L 79.890625 32.71875 \n", "Q 79.890625 40.578125 77.09375 44.375 \n", "Q 74.3125 48.1875 68.609375 48.1875 \n", "Q 61.625 48.1875 57.5625 43.546875 \n", "Q 53.515625 38.921875 53.515625 30.90625 \n", "L 53.515625 0 \n", "L 44.484375 0 \n", "L 44.484375 32.71875 \n", "Q 44.484375 40.625 41.703125 44.40625 \n", "Q 38.921875 48.1875 33.109375 48.1875 \n", "Q 26.21875 48.1875 22.15625 43.53125 \n", "Q 18.109375 38.875 18.109375 30.90625 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 21.1875 51.21875 25.484375 53.609375 \n", "Q 29.78125 56 35.6875 56 \n", "Q 41.65625 56 45.828125 52.96875 \n", "Q 50 49.953125 52 44.1875 \n", "z\n", "\" id=\"DejaVuSans-6d\"/>\n", " </defs>\n", " <g transform=\"translate(296.489063 53.594687)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-52\"/>\n", " <use x=\"69.419922\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"130.943359\" xlink:href=\"#DejaVuSans-6d\"/>\n", " <use x=\"228.355469\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"289.878906\" xlink:href=\"#DejaVuSans-7a\"/>\n", " <use x=\"342.369141\" xlink:href=\"#DejaVuSans-3a\"/>\n", " <use x=\"376.060547\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"407.847656\" xlink:href=\"#DejaVuSans-35\"/>\n", " <use x=\"471.470703\" xlink:href=\"#DejaVuSans-33\"/>\n", " <use x=\"535.09375\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"566.880859\" xlink:href=\"#DejaVuSans-74\"/>\n", " <use x=\"606.089844\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"667.369141\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"730.845703\" xlink:href=\"#DejaVuSans-73\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <defs>\n", " <clipPath id=\"p7713461f9e\">\n", " <rect height=\"217.44\" width=\"334.8\" x=\"48.982813\" y=\"22.318125\"/>\n", " </clipPath>\n", " </defs>\n", "</svg>\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x1131de438>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fir_d.freqz_resp_list([b_k,b_r],[[1],[1]],'dB',fs=1)\n", "ylim([-80,5])\n", "title(r'Kaiser vs Equal Ripple Lowpass')\n", "ylabel(r'Filter Gain (dB)')\n", "xlabel(r'Frequency in kHz')\n", "legend((r'Kaiser: %d taps' % len(b_k),r'Remez: %d taps' % len(b_r)),loc='best')\n", "grid();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A Highpass Design" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Kaiser Win filter taps = 72.\n", "Remez filter taps = 53.\n" ] } ], "source": [ "b_k_hp = fir_d.firwin_kaiser_hpf(1/8,1/6,50,1.0)\n", "b_r_hp = fir_d.fir_remez_hpf(1/8,1/6,0.2,50,1.0)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<!-- Created with matplotlib (http://matplotlib.org/) -->\n", "<svg height=\"277pt\" version=\"1.1\" viewBox=\"0 0 394 277\" width=\"394pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", " <defs>\n", " <style type=\"text/css\">\n", "*{stroke-linecap:butt;stroke-linejoin:round;}\n", " </style>\n", " </defs>\n", " <g id=\"figure_1\">\n", " <g id=\"patch_1\">\n", " <path d=\"M 0 277.314375 \n", "L 394.482812 277.314375 \n", "L 394.482812 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"axes_1\">\n", " <g id=\"patch_2\">\n", " <path d=\"M 48.982813 239.758125 \n", "L 383.782813 239.758125 \n", "L 383.782813 22.318125 \n", "L 48.982813 22.318125 \n", "z\n", "\" style=\"fill:#ffffff;\"/>\n", " </g>\n", " <g id=\"matplotlib.axis_1\">\n", " <g id=\"xtick_1\">\n", " <g id=\"line2d_1\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 64.200994 239.758125 \n", "L 64.200994 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_2\">\n", " <defs>\n", " <path d=\"M 0 0 \n", "L 0 3.5 \n", "\" id=\"m15e8196517\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n", " </defs>\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"64.200994\" xlink:href=\"#m15e8196517\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_1\">\n", " <!-- 0.0 -->\n", " <defs>\n", " <path d=\"M 31.78125 66.40625 \n", "Q 24.171875 66.40625 20.328125 58.90625 \n", "Q 16.5 51.421875 16.5 36.375 \n", "Q 16.5 21.390625 20.328125 13.890625 \n", "Q 24.171875 6.390625 31.78125 6.390625 \n", "Q 39.453125 6.390625 43.28125 13.890625 \n", "Q 47.125 21.390625 47.125 36.375 \n", "Q 47.125 51.421875 43.28125 58.90625 \n", "Q 39.453125 66.40625 31.78125 66.40625 \n", "z\n", "M 31.78125 74.21875 \n", "Q 44.046875 74.21875 50.515625 64.515625 \n", "Q 56.984375 54.828125 56.984375 36.375 \n", "Q 56.984375 17.96875 50.515625 8.265625 \n", "Q 44.046875 -1.421875 31.78125 -1.421875 \n", "Q 19.53125 -1.421875 13.0625 8.265625 \n", "Q 6.59375 17.96875 6.59375 36.375 \n", "Q 6.59375 54.828125 13.0625 64.515625 \n", "Q 19.53125 74.21875 31.78125 74.21875 \n", "z\n", "\" id=\"DejaVuSans-30\"/>\n", " <path d=\"M 10.6875 12.40625 \n", "L 21 12.40625 \n", "L 21 0 \n", "L 10.6875 0 \n", "z\n", "\" id=\"DejaVuSans-2e\"/>\n", " </defs>\n", " <g transform=\"translate(56.249432 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_2\">\n", " <g id=\"line2d_3\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 125.133226 239.758125 \n", "L 125.133226 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_4\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"125.133226\" xlink:href=\"#m15e8196517\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_2\">\n", " <!-- 0.1 -->\n", " <defs>\n", " <path d=\"M 12.40625 8.296875 \n", "L 28.515625 8.296875 \n", "L 28.515625 63.921875 \n", "L 10.984375 60.40625 \n", "L 10.984375 69.390625 \n", "L 28.421875 72.90625 \n", "L 38.28125 72.90625 \n", "L 38.28125 8.296875 \n", "L 54.390625 8.296875 \n", "L 54.390625 0 \n", "L 12.40625 0 \n", "z\n", "\" id=\"DejaVuSans-31\"/>\n", " </defs>\n", " <g transform=\"translate(117.181663 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-31\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_3\">\n", " <g id=\"line2d_5\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 186.065457 239.758125 \n", "L 186.065457 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_6\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"186.065457\" xlink:href=\"#m15e8196517\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_3\">\n", " <!-- 0.2 -->\n", " <defs>\n", " <path d=\"M 19.1875 8.296875 \n", "L 53.609375 8.296875 \n", "L 53.609375 0 \n", "L 7.328125 0 \n", "L 7.328125 8.296875 \n", "Q 12.9375 14.109375 22.625 23.890625 \n", "Q 32.328125 33.6875 34.8125 36.53125 \n", "Q 39.546875 41.84375 41.421875 45.53125 \n", "Q 43.3125 49.21875 43.3125 52.78125 \n", "Q 43.3125 58.59375 39.234375 62.25 \n", "Q 35.15625 65.921875 28.609375 65.921875 \n", "Q 23.96875 65.921875 18.8125 64.3125 \n", "Q 13.671875 62.703125 7.8125 59.421875 \n", "L 7.8125 69.390625 \n", "Q 13.765625 71.78125 18.9375 73 \n", "Q 24.125 74.21875 28.421875 74.21875 \n", "Q 39.75 74.21875 46.484375 68.546875 \n", "Q 53.21875 62.890625 53.21875 53.421875 \n", "Q 53.21875 48.921875 51.53125 44.890625 \n", "Q 49.859375 40.875 45.40625 35.40625 \n", "Q 44.1875 33.984375 37.640625 27.21875 \n", "Q 31.109375 20.453125 19.1875 8.296875 \n", "z\n", "\" id=\"DejaVuSans-32\"/>\n", " </defs>\n", " <g transform=\"translate(178.113895 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-32\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_4\">\n", " <g id=\"line2d_7\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 246.997689 239.758125 \n", "L 246.997689 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_8\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"246.997689\" xlink:href=\"#m15e8196517\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_4\">\n", " <!-- 0.3 -->\n", " <defs>\n", " <path d=\"M 40.578125 39.3125 \n", "Q 47.65625 37.796875 51.625 33 \n", "Q 55.609375 28.21875 55.609375 21.1875 \n", "Q 55.609375 10.40625 48.1875 4.484375 \n", "Q 40.765625 -1.421875 27.09375 -1.421875 \n", "Q 22.515625 -1.421875 17.65625 -0.515625 \n", "Q 12.796875 0.390625 7.625 2.203125 \n", "L 7.625 11.71875 \n", "Q 11.71875 9.328125 16.59375 8.109375 \n", "Q 21.484375 6.890625 26.8125 6.890625 \n", "Q 36.078125 6.890625 40.9375 10.546875 \n", "Q 45.796875 14.203125 45.796875 21.1875 \n", "Q 45.796875 27.640625 41.28125 31.265625 \n", "Q 36.765625 34.90625 28.71875 34.90625 \n", "L 20.21875 34.90625 \n", "L 20.21875 43.015625 \n", "L 29.109375 43.015625 \n", "Q 36.375 43.015625 40.234375 45.921875 \n", "Q 44.09375 48.828125 44.09375 54.296875 \n", "Q 44.09375 59.90625 40.109375 62.90625 \n", "Q 36.140625 65.921875 28.71875 65.921875 \n", "Q 24.65625 65.921875 20.015625 65.03125 \n", "Q 15.375 64.15625 9.8125 62.3125 \n", "L 9.8125 71.09375 \n", "Q 15.4375 72.65625 20.34375 73.4375 \n", "Q 25.25 74.21875 29.59375 74.21875 \n", "Q 40.828125 74.21875 47.359375 69.109375 \n", "Q 53.90625 64.015625 53.90625 55.328125 \n", "Q 53.90625 49.265625 50.4375 45.09375 \n", "Q 46.96875 40.921875 40.578125 39.3125 \n", "z\n", "\" id=\"DejaVuSans-33\"/>\n", " </defs>\n", " <g transform=\"translate(239.046126 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-33\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_5\">\n", " <g id=\"line2d_9\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 307.92992 239.758125 \n", "L 307.92992 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_10\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"307.92992\" xlink:href=\"#m15e8196517\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_5\">\n", " <!-- 0.4 -->\n", " <defs>\n", " <path d=\"M 37.796875 64.3125 \n", "L 12.890625 25.390625 \n", "L 37.796875 25.390625 \n", "z\n", "M 35.203125 72.90625 \n", "L 47.609375 72.90625 \n", "L 47.609375 25.390625 \n", "L 58.015625 25.390625 \n", "L 58.015625 17.1875 \n", "L 47.609375 17.1875 \n", "L 47.609375 0 \n", "L 37.796875 0 \n", "L 37.796875 17.1875 \n", "L 4.890625 17.1875 \n", "L 4.890625 26.703125 \n", "z\n", "\" id=\"DejaVuSans-34\"/>\n", " </defs>\n", " <g transform=\"translate(299.978357 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-34\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_6\">\n", " <g id=\"line2d_11\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 368.862151 239.758125 \n", "L 368.862151 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_12\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"368.862151\" xlink:href=\"#m15e8196517\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_6\">\n", " <!-- 0.5 -->\n", " <defs>\n", " <path d=\"M 10.796875 72.90625 \n", "L 49.515625 72.90625 \n", "L 49.515625 64.59375 \n", "L 19.828125 64.59375 \n", "L 19.828125 46.734375 \n", "Q 21.96875 47.46875 24.109375 47.828125 \n", "Q 26.265625 48.1875 28.421875 48.1875 \n", "Q 40.625 48.1875 47.75 41.5 \n", "Q 54.890625 34.8125 54.890625 23.390625 \n", "Q 54.890625 11.625 47.5625 5.09375 \n", "Q 40.234375 -1.421875 26.90625 -1.421875 \n", "Q 22.3125 -1.421875 17.546875 -0.640625 \n", "Q 12.796875 0.140625 7.71875 1.703125 \n", "L 7.71875 11.625 \n", "Q 12.109375 9.234375 16.796875 8.0625 \n", "Q 21.484375 6.890625 26.703125 6.890625 \n", "Q 35.15625 6.890625 40.078125 11.328125 \n", "Q 45.015625 15.765625 45.015625 23.390625 \n", "Q 45.015625 31 40.078125 35.4375 \n", "Q 35.15625 39.890625 26.703125 39.890625 \n", "Q 22.75 39.890625 18.8125 39.015625 \n", "Q 14.890625 38.140625 10.796875 36.28125 \n", "z\n", "\" id=\"DejaVuSans-35\"/>\n", " </defs>\n", " <g transform=\"translate(360.910589 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"text_7\">\n", " <!-- Frequency in kHz -->\n", " <defs>\n", " <path d=\"M 9.8125 72.90625 \n", "L 51.703125 72.90625 \n", "L 51.703125 64.59375 \n", "L 19.671875 64.59375 \n", "L 19.671875 43.109375 \n", "L 48.578125 43.109375 \n", "L 48.578125 34.8125 \n", "L 19.671875 34.8125 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-46\"/>\n", " <path d=\"M 41.109375 46.296875 \n", "Q 39.59375 47.171875 37.8125 47.578125 \n", "Q 36.03125 48 33.890625 48 \n", "Q 26.265625 48 22.1875 43.046875 \n", "Q 18.109375 38.09375 18.109375 28.8125 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 20.953125 51.171875 25.484375 53.578125 \n", "Q 30.03125 56 36.53125 56 \n", "Q 37.453125 56 38.578125 55.875 \n", "Q 39.703125 55.765625 41.0625 55.515625 \n", "z\n", "\" id=\"DejaVuSans-72\"/>\n", " <path d=\"M 56.203125 29.59375 \n", "L 56.203125 25.203125 \n", "L 14.890625 25.203125 \n", "Q 15.484375 15.921875 20.484375 11.0625 \n", "Q 25.484375 6.203125 34.421875 6.203125 \n", "Q 39.59375 6.203125 44.453125 7.46875 \n", "Q 49.3125 8.734375 54.109375 11.28125 \n", "L 54.109375 2.78125 \n", "Q 49.265625 0.734375 44.1875 -0.34375 \n", "Q 39.109375 -1.421875 33.890625 -1.421875 \n", "Q 20.796875 -1.421875 13.15625 6.1875 \n", "Q 5.515625 13.8125 5.515625 26.8125 \n", "Q 5.515625 40.234375 12.765625 48.109375 \n", "Q 20.015625 56 32.328125 56 \n", "Q 43.359375 56 49.78125 48.890625 \n", "Q 56.203125 41.796875 56.203125 29.59375 \n", "z\n", "M 47.21875 32.234375 \n", "Q 47.125 39.59375 43.09375 43.984375 \n", "Q 39.0625 48.390625 32.421875 48.390625 \n", "Q 24.90625 48.390625 20.390625 44.140625 \n", "Q 15.875 39.890625 15.1875 32.171875 \n", "z\n", "\" id=\"DejaVuSans-65\"/>\n", " <path d=\"M 14.796875 27.296875 \n", "Q 14.796875 17.390625 18.875 11.75 \n", "Q 22.953125 6.109375 30.078125 6.109375 \n", "Q 37.203125 6.109375 41.296875 11.75 \n", "Q 45.40625 17.390625 45.40625 27.296875 \n", "Q 45.40625 37.203125 41.296875 42.84375 \n", "Q 37.203125 48.484375 30.078125 48.484375 \n", "Q 22.953125 48.484375 18.875 42.84375 \n", "Q 14.796875 37.203125 14.796875 27.296875 \n", "z\n", "M 45.40625 8.203125 \n", "Q 42.578125 3.328125 38.25 0.953125 \n", "Q 33.9375 -1.421875 27.875 -1.421875 \n", "Q 17.96875 -1.421875 11.734375 6.484375 \n", "Q 5.515625 14.40625 5.515625 27.296875 \n", "Q 5.515625 40.1875 11.734375 48.09375 \n", "Q 17.96875 56 27.875 56 \n", "Q 33.9375 56 38.25 53.625 \n", "Q 42.578125 51.265625 45.40625 46.390625 \n", "L 45.40625 54.6875 \n", "L 54.390625 54.6875 \n", "L 54.390625 -20.796875 \n", "L 45.40625 -20.796875 \n", "z\n", "\" id=\"DejaVuSans-71\"/>\n", " <path d=\"M 8.5 21.578125 \n", "L 8.5 54.6875 \n", "L 17.484375 54.6875 \n", "L 17.484375 21.921875 \n", "Q 17.484375 14.15625 20.5 10.265625 \n", "Q 23.53125 6.390625 29.59375 6.390625 \n", "Q 36.859375 6.390625 41.078125 11.03125 \n", "Q 45.3125 15.671875 45.3125 23.6875 \n", "L 45.3125 54.6875 \n", "L 54.296875 54.6875 \n", "L 54.296875 0 \n", "L 45.3125 0 \n", "L 45.3125 8.40625 \n", "Q 42.046875 3.421875 37.71875 1 \n", "Q 33.40625 -1.421875 27.6875 -1.421875 \n", "Q 18.265625 -1.421875 13.375 4.4375 \n", "Q 8.5 10.296875 8.5 21.578125 \n", "z\n", "M 31.109375 56 \n", "z\n", "\" id=\"DejaVuSans-75\"/>\n", " <path d=\"M 54.890625 33.015625 \n", "L 54.890625 0 \n", "L 45.90625 0 \n", "L 45.90625 32.71875 \n", "Q 45.90625 40.484375 42.875 44.328125 \n", "Q 39.84375 48.1875 33.796875 48.1875 \n", "Q 26.515625 48.1875 22.3125 43.546875 \n", "Q 18.109375 38.921875 18.109375 30.90625 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 21.34375 51.125 25.703125 53.5625 \n", "Q 30.078125 56 35.796875 56 \n", "Q 45.21875 56 50.046875 50.171875 \n", "Q 54.890625 44.34375 54.890625 33.015625 \n", "z\n", "\" id=\"DejaVuSans-6e\"/>\n", " <path d=\"M 48.78125 52.59375 \n", "L 48.78125 44.1875 \n", "Q 44.96875 46.296875 41.140625 47.34375 \n", "Q 37.3125 48.390625 33.40625 48.390625 \n", "Q 24.65625 48.390625 19.8125 42.84375 \n", "Q 14.984375 37.3125 14.984375 27.296875 \n", "Q 14.984375 17.28125 19.8125 11.734375 \n", "Q 24.65625 6.203125 33.40625 6.203125 \n", "Q 37.3125 6.203125 41.140625 7.25 \n", "Q 44.96875 8.296875 48.78125 10.40625 \n", "L 48.78125 2.09375 \n", "Q 45.015625 0.34375 40.984375 -0.53125 \n", "Q 36.96875 -1.421875 32.421875 -1.421875 \n", "Q 20.0625 -1.421875 12.78125 6.34375 \n", "Q 5.515625 14.109375 5.515625 27.296875 \n", "Q 5.515625 40.671875 12.859375 48.328125 \n", "Q 20.21875 56 33.015625 56 \n", "Q 37.15625 56 41.109375 55.140625 \n", "Q 45.0625 54.296875 48.78125 52.59375 \n", "z\n", "\" id=\"DejaVuSans-63\"/>\n", " <path d=\"M 32.171875 -5.078125 \n", "Q 28.375 -14.84375 24.75 -17.8125 \n", "Q 21.140625 -20.796875 15.09375 -20.796875 \n", "L 7.90625 -20.796875 \n", "L 7.90625 -13.28125 \n", "L 13.1875 -13.28125 \n", "Q 16.890625 -13.28125 18.9375 -11.515625 \n", "Q 21 -9.765625 23.484375 -3.21875 \n", "L 25.09375 0.875 \n", "L 2.984375 54.6875 \n", "L 12.5 54.6875 \n", "L 29.59375 11.921875 \n", "L 46.6875 54.6875 \n", "L 56.203125 54.6875 \n", "z\n", "\" id=\"DejaVuSans-79\"/>\n", " <path id=\"DejaVuSans-20\"/>\n", " <path d=\"M 9.421875 54.6875 \n", "L 18.40625 54.6875 \n", "L 18.40625 0 \n", "L 9.421875 0 \n", "z\n", "M 9.421875 75.984375 \n", "L 18.40625 75.984375 \n", "L 18.40625 64.59375 \n", "L 9.421875 64.59375 \n", "z\n", "\" id=\"DejaVuSans-69\"/>\n", " <path d=\"M 9.078125 75.984375 \n", "L 18.109375 75.984375 \n", "L 18.109375 31.109375 \n", "L 44.921875 54.6875 \n", "L 56.390625 54.6875 \n", "L 27.390625 29.109375 \n", "L 57.625 0 \n", "L 45.90625 0 \n", "L 18.109375 26.703125 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "z\n", "\" id=\"DejaVuSans-6b\"/>\n", " <path d=\"M 9.8125 72.90625 \n", "L 19.671875 72.90625 \n", "L 19.671875 43.015625 \n", "L 55.515625 43.015625 \n", "L 55.515625 72.90625 \n", "L 65.375 72.90625 \n", "L 65.375 0 \n", "L 55.515625 0 \n", "L 55.515625 34.71875 \n", "L 19.671875 34.71875 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-48\"/>\n", " <path d=\"M 5.515625 54.6875 \n", "L 48.1875 54.6875 \n", "L 48.1875 46.484375 \n", "L 14.40625 7.171875 \n", "L 48.1875 7.171875 \n", "L 48.1875 0 \n", "L 4.296875 0 \n", "L 4.296875 8.203125 \n", "L 38.09375 47.515625 \n", "L 5.515625 47.515625 \n", "z\n", "\" id=\"DejaVuSans-7a\"/>\n", " </defs>\n", " <g transform=\"translate(173.069531 268.034687)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-46\"/>\n", " <use x=\"57.410156\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"98.492188\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"160.015625\" xlink:href=\"#DejaVuSans-71\"/>\n", " <use x=\"223.492188\" xlink:href=\"#DejaVuSans-75\"/>\n", " <use x=\"286.871094\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"348.394531\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"411.773438\" xlink:href=\"#DejaVuSans-63\"/>\n", " <use x=\"466.753906\" xlink:href=\"#DejaVuSans-79\"/>\n", " <use x=\"525.933594\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"557.720703\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"585.503906\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"648.882812\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"680.669922\" xlink:href=\"#DejaVuSans-6b\"/>\n", " <use x=\"738.580078\" xlink:href=\"#DejaVuSans-48\"/>\n", " <use x=\"813.775391\" xlink:href=\"#DejaVuSans-7a\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"matplotlib.axis_2\">\n", " <g id=\"ytick_1\">\n", " <g id=\"line2d_13\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 48.982813 239.758125 \n", "L 383.782813 239.758125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_14\">\n", " <defs>\n", " <path d=\"M 0 0 \n", "L -3.5 0 \n", "\" id=\"me250ac4a53\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n", " </defs>\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#me250ac4a53\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_8\">\n", " <!-- −80 -->\n", " <defs>\n", " <path d=\"M 10.59375 35.5 \n", "L 73.1875 35.5 \n", "L 73.1875 27.203125 \n", "L 10.59375 27.203125 \n", "z\n", "\" id=\"DejaVuSans-2212\"/>\n", " <path d=\"M 31.78125 34.625 \n", "Q 24.75 34.625 20.71875 30.859375 \n", "Q 16.703125 27.09375 16.703125 20.515625 \n", "Q 16.703125 13.921875 20.71875 10.15625 \n", "Q 24.75 6.390625 31.78125 6.390625 \n", "Q 38.8125 6.390625 42.859375 10.171875 \n", "Q 46.921875 13.96875 46.921875 20.515625 \n", "Q 46.921875 27.09375 42.890625 30.859375 \n", "Q 38.875 34.625 31.78125 34.625 \n", "z\n", "M 21.921875 38.8125 \n", "Q 15.578125 40.375 12.03125 44.71875 \n", "Q 8.5 49.078125 8.5 55.328125 \n", "Q 8.5 64.0625 14.71875 69.140625 \n", "Q 20.953125 74.21875 31.78125 74.21875 \n", "Q 42.671875 74.21875 48.875 69.140625 \n", "Q 55.078125 64.0625 55.078125 55.328125 \n", "Q 55.078125 49.078125 51.53125 44.71875 \n", "Q 48 40.375 41.703125 38.8125 \n", "Q 48.828125 37.15625 52.796875 32.3125 \n", "Q 56.78125 27.484375 56.78125 20.515625 \n", "Q 56.78125 9.90625 50.3125 4.234375 \n", "Q 43.84375 -1.421875 31.78125 -1.421875 \n", "Q 19.734375 -1.421875 13.25 4.234375 \n", "Q 6.78125 9.90625 6.78125 20.515625 \n", "Q 6.78125 27.484375 10.78125 32.3125 \n", "Q 14.796875 37.15625 21.921875 38.8125 \n", "z\n", "M 18.3125 54.390625 \n", "Q 18.3125 48.734375 21.84375 45.5625 \n", "Q 25.390625 42.390625 31.78125 42.390625 \n", "Q 38.140625 42.390625 41.71875 45.5625 \n", "Q 45.3125 48.734375 45.3125 54.390625 \n", "Q 45.3125 60.0625 41.71875 63.234375 \n", "Q 38.140625 66.40625 31.78125 66.40625 \n", "Q 25.390625 66.40625 21.84375 63.234375 \n", "Q 18.3125 60.0625 18.3125 54.390625 \n", "z\n", "\" id=\"DejaVuSans-38\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 243.557344)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-38\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_2\">\n", " <g id=\"line2d_15\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 48.982813 214.176949 \n", "L 383.782813 214.176949 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_16\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#me250ac4a53\" y=\"214.176949\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_9\">\n", " <!-- −70 -->\n", " <defs>\n", " <path d=\"M 8.203125 72.90625 \n", "L 55.078125 72.90625 \n", "L 55.078125 68.703125 \n", "L 28.609375 0 \n", "L 18.3125 0 \n", "L 43.21875 64.59375 \n", "L 8.203125 64.59375 \n", "z\n", "\" id=\"DejaVuSans-37\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 217.976167)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-37\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_3\">\n", " <g id=\"line2d_17\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 48.982813 188.595772 \n", "L 383.782813 188.595772 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_18\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#me250ac4a53\" y=\"188.595772\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_10\">\n", " <!-- −60 -->\n", " <defs>\n", " <path d=\"M 33.015625 40.375 \n", "Q 26.375 40.375 22.484375 35.828125 \n", "Q 18.609375 31.296875 18.609375 23.390625 \n", "Q 18.609375 15.53125 22.484375 10.953125 \n", "Q 26.375 6.390625 33.015625 6.390625 \n", "Q 39.65625 6.390625 43.53125 10.953125 \n", "Q 47.40625 15.53125 47.40625 23.390625 \n", "Q 47.40625 31.296875 43.53125 35.828125 \n", "Q 39.65625 40.375 33.015625 40.375 \n", "z\n", "M 52.59375 71.296875 \n", "L 52.59375 62.3125 \n", "Q 48.875 64.0625 45.09375 64.984375 \n", "Q 41.3125 65.921875 37.59375 65.921875 \n", "Q 27.828125 65.921875 22.671875 59.328125 \n", "Q 17.53125 52.734375 16.796875 39.40625 \n", "Q 19.671875 43.65625 24.015625 45.921875 \n", "Q 28.375 48.1875 33.59375 48.1875 \n", "Q 44.578125 48.1875 50.953125 41.515625 \n", "Q 57.328125 34.859375 57.328125 23.390625 \n", "Q 57.328125 12.15625 50.6875 5.359375 \n", "Q 44.046875 -1.421875 33.015625 -1.421875 \n", "Q 20.359375 -1.421875 13.671875 8.265625 \n", "Q 6.984375 17.96875 6.984375 36.375 \n", "Q 6.984375 53.65625 15.1875 63.9375 \n", "Q 23.390625 74.21875 37.203125 74.21875 \n", "Q 40.921875 74.21875 44.703125 73.484375 \n", "Q 48.484375 72.75 52.59375 71.296875 \n", "z\n", "\" id=\"DejaVuSans-36\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 192.394991)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-36\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_4\">\n", " <g id=\"line2d_19\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 48.982813 163.014596 \n", "L 383.782813 163.014596 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_20\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#me250ac4a53\" y=\"163.014596\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_11\">\n", " <!-- −50 -->\n", " <g transform=\"translate(20.878125 166.813814)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-35\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_5\">\n", " <g id=\"line2d_21\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 48.982813 137.433419 \n", "L 383.782813 137.433419 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_22\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#me250ac4a53\" y=\"137.433419\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_12\">\n", " <!-- −40 -->\n", " <g transform=\"translate(20.878125 141.232638)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-34\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_6\">\n", " <g id=\"line2d_23\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 48.982813 111.852243 \n", "L 383.782813 111.852243 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_24\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#me250ac4a53\" y=\"111.852243\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_13\">\n", " <!-- −30 -->\n", " <g transform=\"translate(20.878125 115.651461)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-33\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_7\">\n", " <g id=\"line2d_25\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 48.982813 86.271066 \n", "L 383.782813 86.271066 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_26\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#me250ac4a53\" y=\"86.271066\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_14\">\n", " <!-- −20 -->\n", " <g transform=\"translate(20.878125 90.070285)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_8\">\n", " <g id=\"line2d_27\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 48.982813 60.68989 \n", "L 383.782813 60.68989 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_28\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#me250ac4a53\" y=\"60.68989\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_15\">\n", " <!-- −10 -->\n", " <g transform=\"translate(20.878125 64.489108)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_9\">\n", " <g id=\"line2d_29\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 48.982813 35.108713 \n", "L 383.782813 35.108713 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_30\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#me250ac4a53\" y=\"35.108713\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_16\">\n", " <!-- 0 -->\n", " <g transform=\"translate(35.620312 38.907932)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"text_17\">\n", " <!-- Filter Gain (dB) -->\n", " <defs>\n", " <path d=\"M 9.421875 75.984375 \n", "L 18.40625 75.984375 \n", "L 18.40625 0 \n", "L 9.421875 0 \n", "z\n", "\" id=\"DejaVuSans-6c\"/>\n", " <path d=\"M 18.3125 70.21875 \n", "L 18.3125 54.6875 \n", "L 36.8125 54.6875 \n", "L 36.8125 47.703125 \n", "L 18.3125 47.703125 \n", "L 18.3125 18.015625 \n", "Q 18.3125 11.328125 20.140625 9.421875 \n", "Q 21.96875 7.515625 27.59375 7.515625 \n", "L 36.8125 7.515625 \n", "L 36.8125 0 \n", "L 27.59375 0 \n", "Q 17.1875 0 13.234375 3.875 \n", "Q 9.28125 7.765625 9.28125 18.015625 \n", "L 9.28125 47.703125 \n", "L 2.6875 47.703125 \n", "L 2.6875 54.6875 \n", "L 9.28125 54.6875 \n", "L 9.28125 70.21875 \n", "z\n", "\" id=\"DejaVuSans-74\"/>\n", " <path d=\"M 59.515625 10.40625 \n", "L 59.515625 29.984375 \n", "L 43.40625 29.984375 \n", "L 43.40625 38.09375 \n", "L 69.28125 38.09375 \n", "L 69.28125 6.78125 \n", "Q 63.578125 2.734375 56.6875 0.65625 \n", "Q 49.8125 -1.421875 42 -1.421875 \n", "Q 24.90625 -1.421875 15.25 8.5625 \n", "Q 5.609375 18.5625 5.609375 36.375 \n", "Q 5.609375 54.25 15.25 64.234375 \n", "Q 24.90625 74.21875 42 74.21875 \n", "Q 49.125 74.21875 55.546875 72.453125 \n", "Q 61.96875 70.703125 67.390625 67.28125 \n", "L 67.390625 56.78125 \n", "Q 61.921875 61.421875 55.765625 63.765625 \n", "Q 49.609375 66.109375 42.828125 66.109375 \n", "Q 29.4375 66.109375 22.71875 58.640625 \n", "Q 16.015625 51.171875 16.015625 36.375 \n", "Q 16.015625 21.625 22.71875 14.15625 \n", "Q 29.4375 6.6875 42.828125 6.6875 \n", "Q 48.046875 6.6875 52.140625 7.59375 \n", "Q 56.25 8.5 59.515625 10.40625 \n", "z\n", "\" id=\"DejaVuSans-47\"/>\n", " <path d=\"M 34.28125 27.484375 \n", "Q 23.390625 27.484375 19.1875 25 \n", "Q 14.984375 22.515625 14.984375 16.5 \n", "Q 14.984375 11.71875 18.140625 8.90625 \n", "Q 21.296875 6.109375 26.703125 6.109375 \n", "Q 34.1875 6.109375 38.703125 11.40625 \n", "Q 43.21875 16.703125 43.21875 25.484375 \n", "L 43.21875 27.484375 \n", "z\n", "M 52.203125 31.203125 \n", "L 52.203125 0 \n", "L 43.21875 0 \n", "L 43.21875 8.296875 \n", "Q 40.140625 3.328125 35.546875 0.953125 \n", "Q 30.953125 -1.421875 24.3125 -1.421875 \n", "Q 15.921875 -1.421875 10.953125 3.296875 \n", "Q 6 8.015625 6 15.921875 \n", "Q 6 25.140625 12.171875 29.828125 \n", "Q 18.359375 34.515625 30.609375 34.515625 \n", "L 43.21875 34.515625 \n", "L 43.21875 35.40625 \n", "Q 43.21875 41.609375 39.140625 45 \n", "Q 35.0625 48.390625 27.6875 48.390625 \n", "Q 23 48.390625 18.546875 47.265625 \n", "Q 14.109375 46.140625 10.015625 43.890625 \n", "L 10.015625 52.203125 \n", "Q 14.9375 54.109375 19.578125 55.046875 \n", "Q 24.21875 56 28.609375 56 \n", "Q 40.484375 56 46.34375 49.84375 \n", "Q 52.203125 43.703125 52.203125 31.203125 \n", "z\n", "\" id=\"DejaVuSans-61\"/>\n", " <path d=\"M 31 75.875 \n", "Q 24.46875 64.65625 21.28125 53.65625 \n", "Q 18.109375 42.671875 18.109375 31.390625 \n", "Q 18.109375 20.125 21.3125 9.0625 \n", "Q 24.515625 -2 31 -13.1875 \n", "L 23.1875 -13.1875 \n", "Q 15.875 -1.703125 12.234375 9.375 \n", "Q 8.59375 20.453125 8.59375 31.390625 \n", "Q 8.59375 42.28125 12.203125 53.3125 \n", "Q 15.828125 64.359375 23.1875 75.875 \n", "z\n", "\" id=\"DejaVuSans-28\"/>\n", " <path d=\"M 45.40625 46.390625 \n", "L 45.40625 75.984375 \n", "L 54.390625 75.984375 \n", "L 54.390625 0 \n", "L 45.40625 0 \n", "L 45.40625 8.203125 \n", "Q 42.578125 3.328125 38.25 0.953125 \n", "Q 33.9375 -1.421875 27.875 -1.421875 \n", "Q 17.96875 -1.421875 11.734375 6.484375 \n", "Q 5.515625 14.40625 5.515625 27.296875 \n", "Q 5.515625 40.1875 11.734375 48.09375 \n", "Q 17.96875 56 27.875 56 \n", "Q 33.9375 56 38.25 53.625 \n", "Q 42.578125 51.265625 45.40625 46.390625 \n", "z\n", "M 14.796875 27.296875 \n", "Q 14.796875 17.390625 18.875 11.75 \n", "Q 22.953125 6.109375 30.078125 6.109375 \n", "Q 37.203125 6.109375 41.296875 11.75 \n", "Q 45.40625 17.390625 45.40625 27.296875 \n", "Q 45.40625 37.203125 41.296875 42.84375 \n", "Q 37.203125 48.484375 30.078125 48.484375 \n", "Q 22.953125 48.484375 18.875 42.84375 \n", "Q 14.796875 37.203125 14.796875 27.296875 \n", "z\n", "\" id=\"DejaVuSans-64\"/>\n", " <path d=\"M 19.671875 34.8125 \n", "L 19.671875 8.109375 \n", "L 35.5 8.109375 \n", "Q 43.453125 8.109375 47.28125 11.40625 \n", "Q 51.125 14.703125 51.125 21.484375 \n", "Q 51.125 28.328125 47.28125 31.5625 \n", "Q 43.453125 34.8125 35.5 34.8125 \n", "z\n", "M 19.671875 64.796875 \n", "L 19.671875 42.828125 \n", "L 34.28125 42.828125 \n", "Q 41.5 42.828125 45.03125 45.53125 \n", "Q 48.578125 48.25 48.578125 53.8125 \n", "Q 48.578125 59.328125 45.03125 62.0625 \n", "Q 41.5 64.796875 34.28125 64.796875 \n", "z\n", "M 9.8125 72.90625 \n", "L 35.015625 72.90625 \n", "Q 46.296875 72.90625 52.390625 68.21875 \n", "Q 58.5 63.53125 58.5 54.890625 \n", "Q 58.5 48.1875 55.375 44.234375 \n", "Q 52.25 40.28125 46.1875 39.3125 \n", "Q 53.46875 37.75 57.5 32.78125 \n", "Q 61.53125 27.828125 61.53125 20.40625 \n", "Q 61.53125 10.640625 54.890625 5.3125 \n", "Q 48.25 0 35.984375 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-42\"/>\n", " <path d=\"M 8.015625 75.875 \n", "L 15.828125 75.875 \n", "Q 23.140625 64.359375 26.78125 53.3125 \n", "Q 30.421875 42.28125 30.421875 31.390625 \n", "Q 30.421875 20.453125 26.78125 9.375 \n", "Q 23.140625 -1.703125 15.828125 -13.1875 \n", "L 8.015625 -13.1875 \n", "Q 14.5 -2 17.703125 9.0625 \n", "Q 20.90625 20.125 20.90625 31.390625 \n", "Q 20.90625 42.671875 17.703125 53.65625 \n", "Q 14.5 64.65625 8.015625 75.875 \n", "z\n", "\" id=\"DejaVuSans-29\"/>\n", " </defs>\n", " <g transform=\"translate(14.798437 168.959219)rotate(-90)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-46\"/>\n", " <use x=\"57.410156\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"85.193359\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"112.976562\" xlink:href=\"#DejaVuSans-74\"/>\n", " <use x=\"152.185547\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"213.708984\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"254.822266\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"286.609375\" xlink:href=\"#DejaVuSans-47\"/>\n", " <use x=\"364.099609\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"425.378906\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"453.162109\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"516.541016\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"548.328125\" xlink:href=\"#DejaVuSans-28\"/>\n", " <use x=\"587.341797\" xlink:href=\"#DejaVuSans-64\"/>\n", " <use x=\"650.818359\" xlink:href=\"#DejaVuSans-42\"/>\n", " <use x=\"719.421875\" xlink:href=\"#DejaVuSans-29\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"line2d_31\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 64.480642 278.314375 \n", "L 64.498515 239.668755 \n", "L 64.796036 224.408732 \n", "L 65.391077 209.576533 \n", "L 65.986118 201.52945 \n", "L 66.58116 196.51412 \n", "L 67.176201 193.3812 \n", "L 67.771242 191.653809 \n", "L 68.068763 191.24598 \n", "L 68.366284 191.124918 \n", "L 68.663804 191.287665 \n", "L 68.961325 191.738631 \n", "L 69.258846 192.490069 \n", "L 69.853887 194.991963 \n", "L 70.448928 199.137182 \n", "L 71.04397 205.716262 \n", "L 71.639011 216.922702 \n", "L 71.936532 226.485437 \n", "L 72.234052 244.28582 \n", "L 72.531573 275.795706 \n", "L 72.829093 235.534044 \n", "L 73.126614 222.167895 \n", "L 73.721655 208.355973 \n", "L 74.316697 200.669996 \n", "L 74.911738 195.848206 \n", "L 75.506779 192.844609 \n", "L 76.101821 191.219076 \n", "L 76.399341 190.857915 \n", "L 76.696862 190.782988 \n", "L 76.994383 190.992904 \n", "L 77.291903 191.493713 \n", "L 77.589424 192.29956 \n", "L 78.184465 194.934335 \n", "L 78.779507 199.274568 \n", "L 79.374548 206.196946 \n", "L 79.672069 211.260526 \n", "L 79.969589 218.232562 \n", "L 80.26711 228.934549 \n", "L 80.564631 251.206787 \n", "L 80.862151 257.84735 \n", "L 81.159672 231.043082 \n", "L 81.754713 211.970085 \n", "L 82.349755 202.550687 \n", "L 82.944796 196.786691 \n", "L 83.539837 193.13684 \n", "L 84.134879 190.997189 \n", "L 84.432399 190.403384 \n", "L 84.72992 190.103223 \n", "L 85.027441 190.089764 \n", "L 85.324961 190.363623 \n", "L 85.622482 190.933042 \n", "L 86.217523 193.036093 \n", "L 86.812565 196.682336 \n", "L 87.407606 202.518654 \n", "L 88.002647 212.227475 \n", "L 88.300168 220.046782 \n", "L 88.597689 232.781322 \n", "L 88.895209 267.415542 \n", "L 89.490251 225.694053 \n", "L 90.085292 209.099723 \n", "L 90.680333 200.408458 \n", "L 91.275374 195.015927 \n", "L 91.870416 191.612039 \n", "L 92.465457 189.667462 \n", "L 92.762978 189.163711 \n", "L 93.060498 188.952892 \n", "L 93.358019 189.030898 \n", "L 93.65554 189.401267 \n", "L 93.95306 190.075563 \n", "L 94.548102 192.431328 \n", "L 95.143143 196.437934 \n", "L 95.738184 202.880438 \n", "L 96.333226 213.93629 \n", "L 96.630746 223.39519 \n", "L 96.928267 240.968905 \n", "L 97.225788 274.112944 \n", "L 97.523308 232.655649 \n", "L 97.820829 219.145589 \n", "L 98.41587 205.194772 \n", "L 99.010912 197.416722 \n", "L 99.605953 192.524994 \n", "L 100.200994 189.470797 \n", "L 100.796036 187.816511 \n", "L 101.093556 187.450946 \n", "L 101.391077 187.379764 \n", "L 101.688598 187.603186 \n", "L 101.986118 188.129462 \n", "L 102.283639 188.975782 \n", "L 102.87868 191.755959 \n", "L 103.473722 196.390202 \n", "L 104.068763 203.950479 \n", "L 104.366284 209.650187 \n", "L 104.663804 217.827329 \n", "L 104.961325 231.580431 \n", "L 105.258846 278.099901 \n", "L 105.556366 237.626246 \n", "L 105.853887 220.5432 \n", "L 106.448928 204.724076 \n", "L 107.04397 196.261007 \n", "L 107.639011 190.986145 \n", "L 108.234052 187.673807 \n", "L 108.829093 185.827768 \n", "L 109.126614 185.382995 \n", "L 109.424135 185.241371 \n", "L 109.721655 185.402097 \n", "L 110.019176 185.872827 \n", "L 110.316697 186.670532 \n", "L 110.911738 189.375445 \n", "L 111.506779 193.971991 \n", "L 112.101821 201.564578 \n", "L 112.399341 207.340978 \n", "L 112.696862 215.705934 \n", "L 112.994383 230.051048 \n", "L 113.236867 278.314375 \n", "M 113.349934 278.314375 \n", "L 113.589424 233.106558 \n", "L 113.886945 216.861984 \n", "L 114.481986 201.406899 \n", "L 115.077027 193.058156 \n", "L 115.672069 187.85517 \n", "L 116.26711 184.617077 \n", "L 116.862151 182.869503 \n", "L 117.159672 182.489132 \n", "L 117.457193 182.425894 \n", "L 117.754713 182.682791 \n", "L 118.052234 183.272493 \n", "L 118.349755 184.218882 \n", "L 118.944796 187.355017 \n", "L 119.539837 192.712427 \n", "L 120.134879 201.91902 \n", "L 120.432399 209.416342 \n", "L 120.72992 221.597084 \n", "L 121.027441 252.923767 \n", "L 121.920003 205.44858 \n", "L 122.515044 193.55146 \n", "L 123.110085 186.608485 \n", "L 123.705127 182.272335 \n", "L 124.300168 179.736336 \n", "L 124.597689 179.03396 \n", "L 124.895209 178.684413 \n", "L 125.19273 178.684968 \n", "L 125.490251 179.044447 \n", "L 125.787771 179.784353 \n", "L 126.085292 180.94189 \n", "L 126.680333 184.777559 \n", "L 127.275374 191.563078 \n", "L 127.572895 196.837899 \n", "L 127.870416 204.476896 \n", "L 128.167936 217.234305 \n", "L 128.465457 254.262085 \n", "L 129.060498 208.40552 \n", "L 129.65554 191.788836 \n", "L 130.250581 183.057487 \n", "L 130.845622 177.780816 \n", "L 131.440664 174.738533 \n", "L 131.738184 173.909883 \n", "L 132.035705 173.517731 \n", "L 132.333226 173.567465 \n", "L 132.630746 174.084141 \n", "L 132.928267 175.116803 \n", "L 133.225788 176.748102 \n", "L 133.523308 179.11385 \n", "L 133.820829 182.444389 \n", "L 134.11835 187.162467 \n", "L 134.41587 194.162815 \n", "L 134.713391 205.928657 \n", "L 135.010912 237.254574 \n", "L 135.903474 188.25664 \n", "L 136.498515 176.185111 \n", "L 137.093556 169.548615 \n", "L 137.391077 167.546782 \n", "L 137.688598 166.322003 \n", "L 137.986118 165.89659 \n", "L 138.283639 166.376128 \n", "L 138.58116 167.993286 \n", "L 138.87868 171.23178 \n", "L 139.176201 177.219812 \n", "L 139.473722 189.56988 \n", "L 139.771242 268.437899 \n", "L 140.068763 185.616873 \n", "L 140.663804 156.162851 \n", "L 141.258846 140.482491 \n", "L 142.151408 124.245775 \n", "L 143.04397 112.040086 \n", "L 144.234052 99.157957 \n", "L 145.424135 88.735957 \n", "L 146.614217 80.027447 \n", "L 148.101821 70.944164 \n", "L 149.589424 63.430601 \n", "L 151.077027 57.188486 \n", "L 152.564631 52.01397 \n", "L 154.052234 47.757038 \n", "L 155.242317 44.932252 \n", "L 156.432399 42.568003 \n", "L 157.622482 40.618491 \n", "L 158.812565 39.041113 \n", "L 160.002647 37.795055 \n", "L 161.19273 36.840328 \n", "L 162.382812 36.137207 \n", "L 163.870416 35.551796 \n", "L 165.358019 35.221258 \n", "L 167.143143 35.058438 \n", "L 169.820829 35.064313 \n", "L 176.366284 35.13932 \n", "L 186.184465 35.112242 \n", "L 195.705127 35.097739 \n", "L 217.721655 35.106894 \n", "L 246.58116 35.10438 \n", "L 368.564631 35.108718 \n", "L 368.564631 35.108718 \n", "\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_32\">\n", " <path clip-path=\"url(#pf041a1be44)\" d=\"M 64.200994 167.274836 \n", "L 64.498515 167.341356 \n", "L 64.796036 167.541718 \n", "L 65.391077 168.355541 \n", "L 65.986118 169.758546 \n", "L 66.58116 171.83146 \n", "L 67.176201 174.714554 \n", "L 67.771242 178.654147 \n", "L 68.366284 184.116333 \n", "L 68.961325 192.126345 \n", "L 69.258846 197.839059 \n", "L 69.556366 205.739328 \n", "L 69.853887 218.347971 \n", "L 70.151408 250.99393 \n", "L 70.746449 212.354448 \n", "L 71.34149 195.323734 \n", "L 71.936532 186.143677 \n", "L 72.531573 180.066389 \n", "L 73.126614 175.732484 \n", "L 73.721655 172.564656 \n", "L 74.316697 170.268725 \n", "L 74.911738 168.680166 \n", "L 75.506779 167.704335 \n", "L 76.101821 167.290022 \n", "L 76.399341 167.286185 \n", "L 76.696862 167.417462 \n", "L 77.291903 168.094119 \n", "L 77.886945 169.356197 \n", "L 78.481986 171.276591 \n", "L 79.077027 173.983373 \n", "L 79.672069 177.700449 \n", "L 80.26711 182.844892 \n", "L 80.862151 190.305974 \n", "L 81.457193 202.560426 \n", "L 81.754713 213.130858 \n", "L 82.052234 234.376142 \n", "L 82.349755 245.409727 \n", "L 82.647275 216.713315 \n", "L 83.242317 196.99936 \n", "L 83.837358 187.060322 \n", "L 84.432399 180.619262 \n", "L 85.027441 176.071927 \n", "L 85.622482 172.766441 \n", "L 86.217523 170.378661 \n", "L 86.812565 168.730177 \n", "L 87.407606 167.719617 \n", "L 88.002647 167.29288 \n", "L 88.300168 167.291008 \n", "L 88.597689 167.429881 \n", "L 89.19273 168.140038 \n", "L 89.787771 169.464244 \n", "L 90.382812 171.484268 \n", "L 90.977854 174.344734 \n", "L 91.572895 178.3025 \n", "L 92.167936 183.849336 \n", "L 92.762978 192.086083 \n", "L 93.060498 198.040647 \n", "L 93.358019 206.417029 \n", "L 93.65554 220.305693 \n", "L 93.95306 266.62833 \n", "L 94.250581 226.610054 \n", "L 94.548102 209.501185 \n", "L 95.143143 193.523668 \n", "L 95.738184 184.697075 \n", "L 96.333226 178.827957 \n", "L 96.928267 174.659673 \n", "L 97.523308 171.650092 \n", "L 98.11835 169.522408 \n", "L 98.713391 168.123886 \n", "L 99.308432 167.370509 \n", "L 99.605953 167.222049 \n", "L 99.903474 167.22296 \n", "L 100.200994 167.373716 \n", "L 100.796036 168.137071 \n", "L 101.391077 169.560377 \n", "L 101.986118 171.73992 \n", "L 102.58116 174.848252 \n", "L 103.176201 179.199971 \n", "L 103.771242 185.425174 \n", "L 104.366284 195.056289 \n", "L 104.663804 202.45262 \n", "L 104.961325 213.892259 \n", "L 105.258846 239.291064 \n", "L 105.556366 236.263379 \n", "L 105.853887 212.853799 \n", "L 106.448928 194.548118 \n", "L 107.04397 185.035943 \n", "L 107.639011 178.855928 \n", "L 108.234052 174.532507 \n", "L 108.829093 171.456464 \n", "L 109.424135 169.325599 \n", "L 110.019176 167.977913 \n", "L 110.614217 167.328551 \n", "L 110.911738 167.253489 \n", "L 111.209259 167.343603 \n", "L 111.506779 167.601093 \n", "L 112.101821 168.640415 \n", "L 112.696862 170.448381 \n", "L 113.291903 173.172752 \n", "L 113.886945 177.086064 \n", "L 114.481986 182.724495 \n", "L 115.077027 191.328844 \n", "L 115.374548 197.717542 \n", "L 115.672069 207.007762 \n", "L 115.969589 223.695779 \n", "L 116.26711 269.085372 \n", "L 116.564631 218.545178 \n", "L 116.862151 204.386292 \n", "L 117.457193 189.916431 \n", "L 118.052234 181.6846 \n", "L 118.647275 176.22859 \n", "L 119.242317 172.444334 \n", "L 119.837358 169.849409 \n", "L 120.432399 168.203825 \n", "L 121.027441 167.388027 \n", "L 121.324961 167.274836 \n", "L 121.622482 167.356867 \n", "L 121.920003 167.637614 \n", "L 122.217523 168.124344 \n", "L 122.812565 169.767259 \n", "L 123.407606 172.450414 \n", "L 124.002647 176.494267 \n", "L 124.597689 182.56154 \n", "L 125.19273 192.309833 \n", "L 125.490251 200.024132 \n", "L 125.787771 212.398064 \n", "L 126.085292 244.020321 \n", "L 126.977854 196.507787 \n", "L 127.572895 184.580944 \n", "L 128.167936 177.458106 \n", "L 128.762978 172.783368 \n", "L 129.358019 169.727527 \n", "L 129.95306 167.933904 \n", "L 130.250581 167.459718 \n", "L 130.548102 167.258063 \n", "L 130.845622 167.331275 \n", "L 131.143143 167.68913 \n", "L 131.440664 168.349801 \n", "L 132.035705 170.707654 \n", "L 132.630746 174.84098 \n", "L 133.225788 181.763223 \n", "L 133.523308 187.023508 \n", "L 133.820829 194.535932 \n", "L 134.11835 206.830077 \n", "L 134.41587 239.32628 \n", "L 135.010912 200.225297 \n", "L 135.605953 183.272741 \n", "L 136.200994 174.620092 \n", "L 136.796036 169.69568 \n", "L 137.093556 168.253326 \n", "L 137.391077 167.441127 \n", "L 137.688598 167.285933 \n", "L 137.986118 167.872897 \n", "L 138.283639 169.374259 \n", "L 138.58116 172.122389 \n", "L 138.87868 176.811377 \n", "L 139.176201 185.218052 \n", "L 139.473722 204.935331 \n", "L 139.771242 210.764362 \n", "L 140.068763 181.215691 \n", "L 140.663804 157.611323 \n", "L 141.258846 143.671058 \n", "L 142.151408 128.818977 \n", "L 143.04397 117.481763 \n", "L 144.234052 105.370848 \n", "L 145.424135 95.439897 \n", "L 146.911738 85.101078 \n", "L 148.399341 76.446817 \n", "L 149.886945 69.089368 \n", "L 151.374548 62.785685 \n", "L 152.862151 57.371066 \n", "L 154.349755 52.727196 \n", "L 155.837358 48.764925 \n", "L 157.324961 45.414109 \n", "L 158.812565 42.617154 \n", "L 160.300168 40.324582 \n", "L 161.787771 38.491776 \n", "L 163.275374 37.076428 \n", "L 164.465457 36.216469 \n", "L 165.95306 35.445492 \n", "L 167.440664 34.969367 \n", "L 168.928267 34.738743 \n", "L 170.713391 34.711099 \n", "L 173.093556 34.937394 \n", "L 178.151408 35.501346 \n", "L 180.531573 35.508467 \n", "L 183.506779 35.265423 \n", "L 189.159672 34.722738 \n", "L 191.837358 34.722039 \n", "L 194.812565 34.948198 \n", "L 201.060498 35.514132 \n", "L 203.738184 35.493011 \n", "L 207.010912 35.221387 \n", "L 212.663804 34.718115 \n", "L 215.34149 34.721269 \n", "L 218.614217 34.969222 \n", "L 224.862151 35.515968 \n", "L 227.539837 35.489512 \n", "L 230.812565 35.218618 \n", "L 236.465457 34.719405 \n", "L 239.143143 34.720911 \n", "L 242.41587 34.965437 \n", "L 248.663804 35.513995 \n", "L 251.34149 35.49195 \n", "L 254.614217 35.225035 \n", "L 260.26711 34.72192 \n", "L 262.944796 34.718672 \n", "L 266.217523 34.959072 \n", "L 272.465457 35.512169 \n", "L 275.143143 35.494665 \n", "L 278.41587 35.230931 \n", "L 284.068763 34.723662 \n", "L 286.746449 34.716658 \n", "L 290.019176 34.954293 \n", "L 296.564631 35.520106 \n", "L 299.242317 35.482691 \n", "L 302.515044 35.20313 \n", "L 307.870416 34.724185 \n", "L 310.548102 34.714717 \n", "L 313.523308 34.921211 \n", "L 320.663804 35.526878 \n", "L 323.34149 35.468759 \n", "L 326.911738 35.141545 \n", "L 331.672069 34.72537 \n", "L 334.349755 34.714095 \n", "L 337.324961 34.91914 \n", "L 344.465457 35.525385 \n", "L 347.143143 35.468263 \n", "L 350.713391 35.142073 \n", "L 355.473722 34.726304 \n", "L 358.151408 34.714917 \n", "L 361.126614 34.919691 \n", "L 368.26711 35.524978 \n", "L 368.564631 35.528907 \n", "L 368.564631 35.528907 \n", "\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"patch_3\">\n", " <path d=\"M 48.982813 239.758125 \n", "L 48.982813 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_4\">\n", " <path d=\"M 383.782813 239.758125 \n", "L 383.782813 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_5\">\n", " <path d=\"M 48.982812 239.758125 \n", "L 383.782812 239.758125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_6\">\n", " <path d=\"M 48.982812 22.318125 \n", "L 383.782812 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"text_18\">\n", " <!-- Kaiser vs Equal Ripple Lowpass -->\n", " <defs>\n", " <path d=\"M 9.8125 72.90625 \n", "L 19.671875 72.90625 \n", "L 19.671875 42.09375 \n", "L 52.390625 72.90625 \n", "L 65.09375 72.90625 \n", "L 28.90625 38.921875 \n", "L 67.671875 0 \n", "L 54.6875 0 \n", "L 19.671875 35.109375 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-4b\"/>\n", " <path d=\"M 44.28125 53.078125 \n", "L 44.28125 44.578125 \n", "Q 40.484375 46.53125 36.375 47.5 \n", "Q 32.28125 48.484375 27.875 48.484375 \n", "Q 21.1875 48.484375 17.84375 46.4375 \n", "Q 14.5 44.390625 14.5 40.28125 \n", "Q 14.5 37.15625 16.890625 35.375 \n", "Q 19.28125 33.59375 26.515625 31.984375 \n", "L 29.59375 31.296875 \n", "Q 39.15625 29.25 43.1875 25.515625 \n", "Q 47.21875 21.78125 47.21875 15.09375 \n", "Q 47.21875 7.46875 41.1875 3.015625 \n", "Q 35.15625 -1.421875 24.609375 -1.421875 \n", "Q 20.21875 -1.421875 15.453125 -0.5625 \n", "Q 10.6875 0.296875 5.421875 2 \n", "L 5.421875 11.28125 \n", "Q 10.40625 8.6875 15.234375 7.390625 \n", "Q 20.0625 6.109375 24.8125 6.109375 \n", "Q 31.15625 6.109375 34.5625 8.28125 \n", "Q 37.984375 10.453125 37.984375 14.40625 \n", "Q 37.984375 18.0625 35.515625 20.015625 \n", "Q 33.0625 21.96875 24.703125 23.78125 \n", "L 21.578125 24.515625 \n", "Q 13.234375 26.265625 9.515625 29.90625 \n", "Q 5.8125 33.546875 5.8125 39.890625 \n", "Q 5.8125 47.609375 11.28125 51.796875 \n", "Q 16.75 56 26.8125 56 \n", "Q 31.78125 56 36.171875 55.265625 \n", "Q 40.578125 54.546875 44.28125 53.078125 \n", "z\n", "\" id=\"DejaVuSans-73\"/>\n", " <path d=\"M 2.984375 54.6875 \n", "L 12.5 54.6875 \n", "L 29.59375 8.796875 \n", "L 46.6875 54.6875 \n", "L 56.203125 54.6875 \n", "L 35.6875 0 \n", "L 23.484375 0 \n", "z\n", "\" id=\"DejaVuSans-76\"/>\n", " <path d=\"M 9.8125 72.90625 \n", "L 55.90625 72.90625 \n", "L 55.90625 64.59375 \n", "L 19.671875 64.59375 \n", "L 19.671875 43.015625 \n", "L 54.390625 43.015625 \n", "L 54.390625 34.71875 \n", "L 19.671875 34.71875 \n", "L 19.671875 8.296875 \n", "L 56.78125 8.296875 \n", "L 56.78125 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-45\"/>\n", " <path d=\"M 44.390625 34.1875 \n", "Q 47.5625 33.109375 50.5625 29.59375 \n", "Q 53.5625 26.078125 56.59375 19.921875 \n", "L 66.609375 0 \n", "L 56 0 \n", "L 46.6875 18.703125 \n", "Q 43.0625 26.03125 39.671875 28.421875 \n", "Q 36.28125 30.8125 30.421875 30.8125 \n", "L 19.671875 30.8125 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "L 9.8125 72.90625 \n", "L 32.078125 72.90625 \n", "Q 44.578125 72.90625 50.734375 67.671875 \n", "Q 56.890625 62.453125 56.890625 51.90625 \n", "Q 56.890625 45.015625 53.6875 40.46875 \n", "Q 50.484375 35.9375 44.390625 34.1875 \n", "z\n", "M 19.671875 64.796875 \n", "L 19.671875 38.921875 \n", "L 32.078125 38.921875 \n", "Q 39.203125 38.921875 42.84375 42.21875 \n", "Q 46.484375 45.515625 46.484375 51.90625 \n", "Q 46.484375 58.296875 42.84375 61.546875 \n", "Q 39.203125 64.796875 32.078125 64.796875 \n", "z\n", "\" id=\"DejaVuSans-52\"/>\n", " <path d=\"M 18.109375 8.203125 \n", "L 18.109375 -20.796875 \n", "L 9.078125 -20.796875 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.390625 \n", "Q 20.953125 51.265625 25.265625 53.625 \n", "Q 29.59375 56 35.59375 56 \n", "Q 45.5625 56 51.78125 48.09375 \n", "Q 58.015625 40.1875 58.015625 27.296875 \n", "Q 58.015625 14.40625 51.78125 6.484375 \n", "Q 45.5625 -1.421875 35.59375 -1.421875 \n", "Q 29.59375 -1.421875 25.265625 0.953125 \n", "Q 20.953125 3.328125 18.109375 8.203125 \n", "z\n", "M 48.6875 27.296875 \n", "Q 48.6875 37.203125 44.609375 42.84375 \n", "Q 40.53125 48.484375 33.40625 48.484375 \n", "Q 26.265625 48.484375 22.1875 42.84375 \n", "Q 18.109375 37.203125 18.109375 27.296875 \n", "Q 18.109375 17.390625 22.1875 11.75 \n", "Q 26.265625 6.109375 33.40625 6.109375 \n", "Q 40.53125 6.109375 44.609375 11.75 \n", "Q 48.6875 17.390625 48.6875 27.296875 \n", "z\n", "\" id=\"DejaVuSans-70\"/>\n", " <path d=\"M 9.8125 72.90625 \n", "L 19.671875 72.90625 \n", "L 19.671875 8.296875 \n", "L 55.171875 8.296875 \n", "L 55.171875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-4c\"/>\n", " <path d=\"M 30.609375 48.390625 \n", "Q 23.390625 48.390625 19.1875 42.75 \n", "Q 14.984375 37.109375 14.984375 27.296875 \n", "Q 14.984375 17.484375 19.15625 11.84375 \n", "Q 23.34375 6.203125 30.609375 6.203125 \n", "Q 37.796875 6.203125 41.984375 11.859375 \n", "Q 46.1875 17.53125 46.1875 27.296875 \n", "Q 46.1875 37.015625 41.984375 42.703125 \n", "Q 37.796875 48.390625 30.609375 48.390625 \n", "z\n", "M 30.609375 56 \n", "Q 42.328125 56 49.015625 48.375 \n", "Q 55.71875 40.765625 55.71875 27.296875 \n", "Q 55.71875 13.875 49.015625 6.21875 \n", "Q 42.328125 -1.421875 30.609375 -1.421875 \n", "Q 18.84375 -1.421875 12.171875 6.21875 \n", "Q 5.515625 13.875 5.515625 27.296875 \n", "Q 5.515625 40.765625 12.171875 48.375 \n", "Q 18.84375 56 30.609375 56 \n", "z\n", "\" id=\"DejaVuSans-6f\"/>\n", " <path d=\"M 4.203125 54.6875 \n", "L 13.1875 54.6875 \n", "L 24.421875 12.015625 \n", "L 35.59375 54.6875 \n", "L 46.1875 54.6875 \n", "L 57.421875 12.015625 \n", "L 68.609375 54.6875 \n", "L 77.59375 54.6875 \n", "L 63.28125 0 \n", "L 52.6875 0 \n", "L 40.921875 44.828125 \n", "L 29.109375 0 \n", "L 18.5 0 \n", "z\n", "\" id=\"DejaVuSans-77\"/>\n", " </defs>\n", " <g transform=\"translate(122.3 16.318125)scale(0.12 -0.12)\">\n", " <use xlink:href=\"#DejaVuSans-4b\"/>\n", " <use x=\"65.560547\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"126.839844\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"154.623047\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"206.722656\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"268.246094\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"309.359375\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"341.146484\" xlink:href=\"#DejaVuSans-76\"/>\n", " <use x=\"400.326172\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"452.425781\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"484.212891\" xlink:href=\"#DejaVuSans-45\"/>\n", " <use x=\"547.396484\" xlink:href=\"#DejaVuSans-71\"/>\n", " <use x=\"610.873047\" xlink:href=\"#DejaVuSans-75\"/>\n", " <use x=\"674.251953\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"735.53125\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"763.314453\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"795.101562\" xlink:href=\"#DejaVuSans-52\"/>\n", " <use x=\"864.583984\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"892.367188\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"955.84375\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"1019.320312\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"1047.103516\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"1108.626953\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"1140.414062\" xlink:href=\"#DejaVuSans-4c\"/>\n", " <use x=\"1196.111328\" xlink:href=\"#DejaVuSans-6f\"/>\n", " <use x=\"1257.292969\" xlink:href=\"#DejaVuSans-77\"/>\n", " <use x=\"1339.080078\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"1402.556641\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"1463.835938\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"1515.935547\" xlink:href=\"#DejaVuSans-73\"/>\n", " </g>\n", " </g>\n", " <g id=\"legend_1\">\n", " <g id=\"patch_7\">\n", " <path d=\"M 266.489063 234.758125 \n", "L 376.782813 234.758125 \n", "Q 378.782813 234.758125 378.782813 232.758125 \n", "L 378.782813 204.401875 \n", "Q 378.782813 202.401875 376.782813 202.401875 \n", "L 266.489063 202.401875 \n", "Q 264.489063 202.401875 264.489063 204.401875 \n", "L 264.489063 232.758125 \n", "Q 264.489063 234.758125 266.489063 234.758125 \n", "z\n", "\" style=\"fill:#ffffff;opacity:0.8;stroke:#cccccc;stroke-linejoin:miter;\"/>\n", " </g>\n", " <g id=\"line2d_33\">\n", " <path d=\"M 268.489063 210.500312 \n", "L 288.489063 210.500312 \n", "\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_34\"/>\n", " <g id=\"text_19\">\n", " <!-- Kaiser: 72 taps -->\n", " <defs>\n", " <path d=\"M 11.71875 12.40625 \n", "L 22.015625 12.40625 \n", "L 22.015625 0 \n", "L 11.71875 0 \n", "z\n", "M 11.71875 51.703125 \n", "L 22.015625 51.703125 \n", "L 22.015625 39.3125 \n", "L 11.71875 39.3125 \n", "z\n", "\" id=\"DejaVuSans-3a\"/>\n", " </defs>\n", " <g transform=\"translate(296.489063 214.000312)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-4b\"/>\n", " <use x=\"65.560547\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"126.839844\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"154.623047\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"206.722656\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"268.246094\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"309.34375\" xlink:href=\"#DejaVuSans-3a\"/>\n", " <use x=\"343.035156\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"374.822266\" xlink:href=\"#DejaVuSans-37\"/>\n", " <use x=\"438.445312\" xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"502.068359\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"533.855469\" xlink:href=\"#DejaVuSans-74\"/>\n", " <use x=\"573.064453\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"634.34375\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"697.820312\" xlink:href=\"#DejaVuSans-73\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_35\">\n", " <path d=\"M 268.489063 225.178437 \n", "L 288.489063 225.178437 \n", "\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_36\"/>\n", " <g id=\"text_20\">\n", " <!-- Remez: 53 taps -->\n", " <defs>\n", " <path d=\"M 52 44.1875 \n", "Q 55.375 50.25 60.0625 53.125 \n", "Q 64.75 56 71.09375 56 \n", "Q 79.640625 56 84.28125 50.015625 \n", "Q 88.921875 44.046875 88.921875 33.015625 \n", "L 88.921875 0 \n", "L 79.890625 0 \n", "L 79.890625 32.71875 \n", "Q 79.890625 40.578125 77.09375 44.375 \n", "Q 74.3125 48.1875 68.609375 48.1875 \n", "Q 61.625 48.1875 57.5625 43.546875 \n", "Q 53.515625 38.921875 53.515625 30.90625 \n", "L 53.515625 0 \n", "L 44.484375 0 \n", "L 44.484375 32.71875 \n", "Q 44.484375 40.625 41.703125 44.40625 \n", "Q 38.921875 48.1875 33.109375 48.1875 \n", "Q 26.21875 48.1875 22.15625 43.53125 \n", "Q 18.109375 38.875 18.109375 30.90625 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 21.1875 51.21875 25.484375 53.609375 \n", "Q 29.78125 56 35.6875 56 \n", "Q 41.65625 56 45.828125 52.96875 \n", "Q 50 49.953125 52 44.1875 \n", "z\n", "\" id=\"DejaVuSans-6d\"/>\n", " </defs>\n", " <g transform=\"translate(296.489063 228.678437)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-52\"/>\n", " <use x=\"69.419922\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"130.943359\" xlink:href=\"#DejaVuSans-6d\"/>\n", " <use x=\"228.355469\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"289.878906\" xlink:href=\"#DejaVuSans-7a\"/>\n", " <use x=\"342.369141\" xlink:href=\"#DejaVuSans-3a\"/>\n", " <use x=\"376.060547\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"407.847656\" xlink:href=\"#DejaVuSans-35\"/>\n", " <use x=\"471.470703\" xlink:href=\"#DejaVuSans-33\"/>\n", " <use x=\"535.09375\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"566.880859\" xlink:href=\"#DejaVuSans-74\"/>\n", " <use x=\"606.089844\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"667.369141\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"730.845703\" xlink:href=\"#DejaVuSans-73\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <defs>\n", " <clipPath id=\"pf041a1be44\">\n", " <rect height=\"217.44\" width=\"334.8\" x=\"48.982813\" y=\"22.318125\"/>\n", " </clipPath>\n", " </defs>\n", "</svg>\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x1131de4a8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fir_d.freqz_resp_list([b_k_hp,b_r_hp],[[1],[1]],'dB',fs=1)\n", "ylim([-80,5])\n", "title(r'Kaiser vs Equal Ripple Lowpass')\n", "ylabel(r'Filter Gain (dB)')\n", "xlabel(r'Frequency in kHz')\n", "legend((r'Kaiser: %d taps' % len(b_k),r'Remez: %d taps' % len(b_r)),loc='best')\n", "grid();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot a Pole-Zero Map for the Equal-Ripple Design" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(52, 0)" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/svg+xml": [ "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<!-- Created with matplotlib (http://matplotlib.org/) -->\n", "<svg height=\"331pt\" version=\"1.1\" viewBox=\"0 0 341 331\" width=\"341pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", " <defs>\n", " <style type=\"text/css\">\n", "*{stroke-linecap:butt;stroke-linejoin:round;}\n", " </style>\n", " </defs>\n", " <g id=\"figure_1\">\n", " <g id=\"patch_1\">\n", " <path d=\"M 0 331.674375 \n", "L 341.860937 331.674375 \n", "L 341.860937 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"axes_1\">\n", " <g id=\"patch_2\">\n", " <path d=\"M 52.160938 294.118125 \n", "L 331.160937 294.118125 \n", "L 331.160937 22.318125 \n", "L 52.160938 22.318125 \n", "z\n", "\" style=\"fill:#ffffff;\"/>\n", " </g>\n", " <g id=\"matplotlib.axis_1\">\n", " <g id=\"xtick_1\">\n", " <g id=\"line2d_1\">\n", " <defs>\n", " <path d=\"M 0 0 \n", "L 0 3.5 \n", "\" id=\"ma5fa5b02fa\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n", " </defs>\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"60.679702\" xlink:href=\"#ma5fa5b02fa\" y=\"294.118125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_1\">\n", " <!-- −2.0 -->\n", " <defs>\n", " <path d=\"M 10.59375 35.5 \n", "L 73.1875 35.5 \n", "L 73.1875 27.203125 \n", "L 10.59375 27.203125 \n", "z\n", "\" id=\"DejaVuSans-2212\"/>\n", " <path d=\"M 19.1875 8.296875 \n", "L 53.609375 8.296875 \n", "L 53.609375 0 \n", "L 7.328125 0 \n", "L 7.328125 8.296875 \n", "Q 12.9375 14.109375 22.625 23.890625 \n", "Q 32.328125 33.6875 34.8125 36.53125 \n", "Q 39.546875 41.84375 41.421875 45.53125 \n", "Q 43.3125 49.21875 43.3125 52.78125 \n", "Q 43.3125 58.59375 39.234375 62.25 \n", "Q 35.15625 65.921875 28.609375 65.921875 \n", "Q 23.96875 65.921875 18.8125 64.3125 \n", "Q 13.671875 62.703125 7.8125 59.421875 \n", "L 7.8125 69.390625 \n", "Q 13.765625 71.78125 18.9375 73 \n", "Q 24.125 74.21875 28.421875 74.21875 \n", "Q 39.75 74.21875 46.484375 68.546875 \n", "Q 53.21875 62.890625 53.21875 53.421875 \n", "Q 53.21875 48.921875 51.53125 44.890625 \n", "Q 49.859375 40.875 45.40625 35.40625 \n", "Q 44.1875 33.984375 37.640625 27.21875 \n", "Q 31.109375 20.453125 19.1875 8.296875 \n", "z\n", "\" id=\"DejaVuSans-32\"/>\n", " <path d=\"M 10.6875 12.40625 \n", "L 21 12.40625 \n", "L 21 0 \n", "L 10.6875 0 \n", "z\n", "\" id=\"DejaVuSans-2e\"/>\n", " <path d=\"M 31.78125 66.40625 \n", "Q 24.171875 66.40625 20.328125 58.90625 \n", "Q 16.5 51.421875 16.5 36.375 \n", "Q 16.5 21.390625 20.328125 13.890625 \n", "Q 24.171875 6.390625 31.78125 6.390625 \n", "Q 39.453125 6.390625 43.28125 13.890625 \n", "Q 47.125 21.390625 47.125 36.375 \n", "Q 47.125 51.421875 43.28125 58.90625 \n", "Q 39.453125 66.40625 31.78125 66.40625 \n", "z\n", "M 31.78125 74.21875 \n", "Q 44.046875 74.21875 50.515625 64.515625 \n", "Q 56.984375 54.828125 56.984375 36.375 \n", "Q 56.984375 17.96875 50.515625 8.265625 \n", "Q 44.046875 -1.421875 31.78125 -1.421875 \n", "Q 19.53125 -1.421875 13.0625 8.265625 \n", "Q 6.59375 17.96875 6.59375 36.375 \n", "Q 6.59375 54.828125 13.0625 64.515625 \n", "Q 19.53125 74.21875 31.78125 74.21875 \n", "z\n", "\" id=\"DejaVuSans-30\"/>\n", " </defs>\n", " <g transform=\"translate(48.538296 308.716563)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"179.199219\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_2\">\n", " <g id=\"line2d_2\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"93.425011\" xlink:href=\"#ma5fa5b02fa\" y=\"294.118125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_2\">\n", " <!-- −1.5 -->\n", " <defs>\n", " <path d=\"M 12.40625 8.296875 \n", "L 28.515625 8.296875 \n", "L 28.515625 63.921875 \n", "L 10.984375 60.40625 \n", "L 10.984375 69.390625 \n", "L 28.421875 72.90625 \n", "L 38.28125 72.90625 \n", "L 38.28125 8.296875 \n", "L 54.390625 8.296875 \n", "L 54.390625 0 \n", "L 12.40625 0 \n", "z\n", "\" id=\"DejaVuSans-31\"/>\n", " <path d=\"M 10.796875 72.90625 \n", "L 49.515625 72.90625 \n", "L 49.515625 64.59375 \n", "L 19.828125 64.59375 \n", "L 19.828125 46.734375 \n", "Q 21.96875 47.46875 24.109375 47.828125 \n", "Q 26.265625 48.1875 28.421875 48.1875 \n", "Q 40.625 48.1875 47.75 41.5 \n", "Q 54.890625 34.8125 54.890625 23.390625 \n", "Q 54.890625 11.625 47.5625 5.09375 \n", "Q 40.234375 -1.421875 26.90625 -1.421875 \n", "Q 22.3125 -1.421875 17.546875 -0.640625 \n", "Q 12.796875 0.140625 7.71875 1.703125 \n", "L 7.71875 11.625 \n", "Q 12.109375 9.234375 16.796875 8.0625 \n", "Q 21.484375 6.890625 26.703125 6.890625 \n", "Q 35.15625 6.890625 40.078125 11.328125 \n", "Q 45.015625 15.765625 45.015625 23.390625 \n", "Q 45.015625 31 40.078125 35.4375 \n", "Q 35.15625 39.890625 26.703125 39.890625 \n", "Q 22.75 39.890625 18.8125 39.015625 \n", "Q 14.890625 38.140625 10.796875 36.28125 \n", "z\n", "\" id=\"DejaVuSans-35\"/>\n", " </defs>\n", " <g transform=\"translate(81.283604 308.716563)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"179.199219\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_3\">\n", " <g id=\"line2d_3\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"126.17032\" xlink:href=\"#ma5fa5b02fa\" y=\"294.118125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_3\">\n", " <!-- −1.0 -->\n", " <g transform=\"translate(114.028913 308.716563)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"179.199219\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_4\">\n", " <g id=\"line2d_4\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"158.915629\" xlink:href=\"#ma5fa5b02fa\" y=\"294.118125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_4\">\n", " <!-- −0.5 -->\n", " <g transform=\"translate(146.774222 308.716563)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"179.199219\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_5\">\n", " <g id=\"line2d_5\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"191.660937\" xlink:href=\"#ma5fa5b02fa\" y=\"294.118125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_5\">\n", " <!-- 0.0 -->\n", " <g transform=\"translate(183.709375 308.716563)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_6\">\n", " <g id=\"line2d_6\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"224.406246\" xlink:href=\"#ma5fa5b02fa\" y=\"294.118125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_6\">\n", " <!-- 0.5 -->\n", " <g transform=\"translate(216.454684 308.716563)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_7\">\n", " <g id=\"line2d_7\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"257.151555\" xlink:href=\"#ma5fa5b02fa\" y=\"294.118125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_7\">\n", " <!-- 1.0 -->\n", " <g transform=\"translate(249.199993 308.716563)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_8\">\n", " <g id=\"line2d_8\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"289.896864\" xlink:href=\"#ma5fa5b02fa\" y=\"294.118125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_8\">\n", " <!-- 1.5 -->\n", " <g transform=\"translate(281.945302 308.716563)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_9\">\n", " <g id=\"line2d_9\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"322.642173\" xlink:href=\"#ma5fa5b02fa\" y=\"294.118125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_9\">\n", " <!-- 2.0 -->\n", " <g transform=\"translate(314.690611 308.716563)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"text_10\">\n", " <!-- Real Part -->\n", " <defs>\n", " <path d=\"M 44.390625 34.1875 \n", "Q 47.5625 33.109375 50.5625 29.59375 \n", "Q 53.5625 26.078125 56.59375 19.921875 \n", "L 66.609375 0 \n", "L 56 0 \n", "L 46.6875 18.703125 \n", "Q 43.0625 26.03125 39.671875 28.421875 \n", "Q 36.28125 30.8125 30.421875 30.8125 \n", "L 19.671875 30.8125 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "L 9.8125 72.90625 \n", "L 32.078125 72.90625 \n", "Q 44.578125 72.90625 50.734375 67.671875 \n", "Q 56.890625 62.453125 56.890625 51.90625 \n", "Q 56.890625 45.015625 53.6875 40.46875 \n", "Q 50.484375 35.9375 44.390625 34.1875 \n", "z\n", "M 19.671875 64.796875 \n", "L 19.671875 38.921875 \n", "L 32.078125 38.921875 \n", "Q 39.203125 38.921875 42.84375 42.21875 \n", "Q 46.484375 45.515625 46.484375 51.90625 \n", "Q 46.484375 58.296875 42.84375 61.546875 \n", "Q 39.203125 64.796875 32.078125 64.796875 \n", "z\n", "\" id=\"DejaVuSans-52\"/>\n", " <path d=\"M 56.203125 29.59375 \n", "L 56.203125 25.203125 \n", "L 14.890625 25.203125 \n", "Q 15.484375 15.921875 20.484375 11.0625 \n", "Q 25.484375 6.203125 34.421875 6.203125 \n", "Q 39.59375 6.203125 44.453125 7.46875 \n", "Q 49.3125 8.734375 54.109375 11.28125 \n", "L 54.109375 2.78125 \n", "Q 49.265625 0.734375 44.1875 -0.34375 \n", "Q 39.109375 -1.421875 33.890625 -1.421875 \n", "Q 20.796875 -1.421875 13.15625 6.1875 \n", "Q 5.515625 13.8125 5.515625 26.8125 \n", "Q 5.515625 40.234375 12.765625 48.109375 \n", "Q 20.015625 56 32.328125 56 \n", "Q 43.359375 56 49.78125 48.890625 \n", "Q 56.203125 41.796875 56.203125 29.59375 \n", "z\n", "M 47.21875 32.234375 \n", "Q 47.125 39.59375 43.09375 43.984375 \n", "Q 39.0625 48.390625 32.421875 48.390625 \n", "Q 24.90625 48.390625 20.390625 44.140625 \n", "Q 15.875 39.890625 15.1875 32.171875 \n", "z\n", "\" id=\"DejaVuSans-65\"/>\n", " <path d=\"M 34.28125 27.484375 \n", "Q 23.390625 27.484375 19.1875 25 \n", "Q 14.984375 22.515625 14.984375 16.5 \n", "Q 14.984375 11.71875 18.140625 8.90625 \n", "Q 21.296875 6.109375 26.703125 6.109375 \n", "Q 34.1875 6.109375 38.703125 11.40625 \n", "Q 43.21875 16.703125 43.21875 25.484375 \n", "L 43.21875 27.484375 \n", "z\n", "M 52.203125 31.203125 \n", "L 52.203125 0 \n", "L 43.21875 0 \n", "L 43.21875 8.296875 \n", "Q 40.140625 3.328125 35.546875 0.953125 \n", "Q 30.953125 -1.421875 24.3125 -1.421875 \n", "Q 15.921875 -1.421875 10.953125 3.296875 \n", "Q 6 8.015625 6 15.921875 \n", "Q 6 25.140625 12.171875 29.828125 \n", "Q 18.359375 34.515625 30.609375 34.515625 \n", "L 43.21875 34.515625 \n", "L 43.21875 35.40625 \n", "Q 43.21875 41.609375 39.140625 45 \n", "Q 35.0625 48.390625 27.6875 48.390625 \n", "Q 23 48.390625 18.546875 47.265625 \n", "Q 14.109375 46.140625 10.015625 43.890625 \n", "L 10.015625 52.203125 \n", "Q 14.9375 54.109375 19.578125 55.046875 \n", "Q 24.21875 56 28.609375 56 \n", "Q 40.484375 56 46.34375 49.84375 \n", "Q 52.203125 43.703125 52.203125 31.203125 \n", "z\n", "\" id=\"DejaVuSans-61\"/>\n", " <path d=\"M 9.421875 75.984375 \n", "L 18.40625 75.984375 \n", "L 18.40625 0 \n", "L 9.421875 0 \n", "z\n", "\" id=\"DejaVuSans-6c\"/>\n", " <path id=\"DejaVuSans-20\"/>\n", " <path d=\"M 19.671875 64.796875 \n", "L 19.671875 37.40625 \n", "L 32.078125 37.40625 \n", "Q 38.96875 37.40625 42.71875 40.96875 \n", "Q 46.484375 44.53125 46.484375 51.125 \n", "Q 46.484375 57.671875 42.71875 61.234375 \n", "Q 38.96875 64.796875 32.078125 64.796875 \n", "z\n", "M 9.8125 72.90625 \n", "L 32.078125 72.90625 \n", "Q 44.34375 72.90625 50.609375 67.359375 \n", "Q 56.890625 61.8125 56.890625 51.125 \n", "Q 56.890625 40.328125 50.609375 34.8125 \n", "Q 44.34375 29.296875 32.078125 29.296875 \n", "L 19.671875 29.296875 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-50\"/>\n", " <path d=\"M 41.109375 46.296875 \n", "Q 39.59375 47.171875 37.8125 47.578125 \n", "Q 36.03125 48 33.890625 48 \n", "Q 26.265625 48 22.1875 43.046875 \n", "Q 18.109375 38.09375 18.109375 28.8125 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 20.953125 51.171875 25.484375 53.578125 \n", "Q 30.03125 56 36.53125 56 \n", "Q 37.453125 56 38.578125 55.875 \n", "Q 39.703125 55.765625 41.0625 55.515625 \n", "z\n", "\" id=\"DejaVuSans-72\"/>\n", " <path d=\"M 18.3125 70.21875 \n", "L 18.3125 54.6875 \n", "L 36.8125 54.6875 \n", "L 36.8125 47.703125 \n", "L 18.3125 47.703125 \n", "L 18.3125 18.015625 \n", "Q 18.3125 11.328125 20.140625 9.421875 \n", "Q 21.96875 7.515625 27.59375 7.515625 \n", "L 36.8125 7.515625 \n", "L 36.8125 0 \n", "L 27.59375 0 \n", "Q 17.1875 0 13.234375 3.875 \n", "Q 9.28125 7.765625 9.28125 18.015625 \n", "L 9.28125 47.703125 \n", "L 2.6875 47.703125 \n", "L 2.6875 54.6875 \n", "L 9.28125 54.6875 \n", "L 9.28125 70.21875 \n", "z\n", "\" id=\"DejaVuSans-74\"/>\n", " </defs>\n", " <g transform=\"translate(168.979687 322.394687)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-52\"/>\n", " <use x=\"69.419922\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"130.943359\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"192.222656\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"220.005859\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"251.792969\" xlink:href=\"#DejaVuSans-50\"/>\n", " <use x=\"312.033203\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"373.3125\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"414.425781\" xlink:href=\"#DejaVuSans-74\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"matplotlib.axis_2\">\n", " <g id=\"ytick_1\">\n", " <g id=\"line2d_10\">\n", " <defs>\n", " <path d=\"M 0 0 \n", "L -3.5 0 \n", "\" id=\"m6aad17931e\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n", " </defs>\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"52.160938\" xlink:href=\"#m6aad17931e\" y=\"289.199361\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_11\">\n", " <!-- −2.0 -->\n", " <g transform=\"translate(20.878125 292.998579)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"179.199219\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_2\">\n", " <g id=\"line2d_11\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"52.160938\" xlink:href=\"#m6aad17931e\" y=\"256.454052\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_12\">\n", " <!-- −1.5 -->\n", " <g transform=\"translate(20.878125 260.253271)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"179.199219\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_3\">\n", " <g id=\"line2d_12\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"52.160938\" xlink:href=\"#m6aad17931e\" y=\"223.708743\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_13\">\n", " <!-- −1.0 -->\n", " <g transform=\"translate(20.878125 227.507962)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"179.199219\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_4\">\n", " <g id=\"line2d_13\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"52.160938\" xlink:href=\"#m6aad17931e\" y=\"190.963434\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_14\">\n", " <!-- −0.5 -->\n", " <g transform=\"translate(20.878125 194.762653)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"179.199219\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_5\">\n", " <g id=\"line2d_14\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"52.160938\" xlink:href=\"#m6aad17931e\" y=\"158.218125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_15\">\n", " <!-- 0.0 -->\n", " <g transform=\"translate(29.257812 162.017344)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_6\">\n", " <g id=\"line2d_15\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"52.160938\" xlink:href=\"#m6aad17931e\" y=\"125.472816\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_16\">\n", " <!-- 0.5 -->\n", " <g transform=\"translate(29.257812 129.272035)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_7\">\n", " <g id=\"line2d_16\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"52.160938\" xlink:href=\"#m6aad17931e\" y=\"92.727507\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_17\">\n", " <!-- 1.0 -->\n", " <g transform=\"translate(29.257812 96.526726)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_8\">\n", " <g id=\"line2d_17\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"52.160938\" xlink:href=\"#m6aad17931e\" y=\"59.982198\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_18\">\n", " <!-- 1.5 -->\n", " <g transform=\"translate(29.257812 63.781417)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_9\">\n", " <g id=\"line2d_18\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"52.160938\" xlink:href=\"#m6aad17931e\" y=\"27.236889\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_19\">\n", " <!-- 2.0 -->\n", " <g transform=\"translate(29.257812 31.036108)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"95.410156\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"text_20\">\n", " <!-- Imaginary Part -->\n", " <defs>\n", " <path d=\"M 9.8125 72.90625 \n", "L 19.671875 72.90625 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-49\"/>\n", " <path d=\"M 52 44.1875 \n", "Q 55.375 50.25 60.0625 53.125 \n", "Q 64.75 56 71.09375 56 \n", "Q 79.640625 56 84.28125 50.015625 \n", "Q 88.921875 44.046875 88.921875 33.015625 \n", "L 88.921875 0 \n", "L 79.890625 0 \n", "L 79.890625 32.71875 \n", "Q 79.890625 40.578125 77.09375 44.375 \n", "Q 74.3125 48.1875 68.609375 48.1875 \n", "Q 61.625 48.1875 57.5625 43.546875 \n", "Q 53.515625 38.921875 53.515625 30.90625 \n", "L 53.515625 0 \n", "L 44.484375 0 \n", "L 44.484375 32.71875 \n", "Q 44.484375 40.625 41.703125 44.40625 \n", "Q 38.921875 48.1875 33.109375 48.1875 \n", "Q 26.21875 48.1875 22.15625 43.53125 \n", "Q 18.109375 38.875 18.109375 30.90625 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 21.1875 51.21875 25.484375 53.609375 \n", "Q 29.78125 56 35.6875 56 \n", "Q 41.65625 56 45.828125 52.96875 \n", "Q 50 49.953125 52 44.1875 \n", "z\n", "\" id=\"DejaVuSans-6d\"/>\n", " <path d=\"M 45.40625 27.984375 \n", "Q 45.40625 37.75 41.375 43.109375 \n", "Q 37.359375 48.484375 30.078125 48.484375 \n", "Q 22.859375 48.484375 18.828125 43.109375 \n", "Q 14.796875 37.75 14.796875 27.984375 \n", "Q 14.796875 18.265625 18.828125 12.890625 \n", "Q 22.859375 7.515625 30.078125 7.515625 \n", "Q 37.359375 7.515625 41.375 12.890625 \n", "Q 45.40625 18.265625 45.40625 27.984375 \n", "z\n", "M 54.390625 6.78125 \n", "Q 54.390625 -7.171875 48.1875 -13.984375 \n", "Q 42 -20.796875 29.203125 -20.796875 \n", "Q 24.46875 -20.796875 20.265625 -20.09375 \n", "Q 16.0625 -19.390625 12.109375 -17.921875 \n", "L 12.109375 -9.1875 \n", "Q 16.0625 -11.328125 19.921875 -12.34375 \n", "Q 23.78125 -13.375 27.78125 -13.375 \n", "Q 36.625 -13.375 41.015625 -8.765625 \n", "Q 45.40625 -4.15625 45.40625 5.171875 \n", "L 45.40625 9.625 \n", "Q 42.625 4.78125 38.28125 2.390625 \n", "Q 33.9375 0 27.875 0 \n", "Q 17.828125 0 11.671875 7.65625 \n", "Q 5.515625 15.328125 5.515625 27.984375 \n", "Q 5.515625 40.671875 11.671875 48.328125 \n", "Q 17.828125 56 27.875 56 \n", "Q 33.9375 56 38.28125 53.609375 \n", "Q 42.625 51.21875 45.40625 46.390625 \n", "L 45.40625 54.6875 \n", "L 54.390625 54.6875 \n", "z\n", "\" id=\"DejaVuSans-67\"/>\n", " <path d=\"M 9.421875 54.6875 \n", "L 18.40625 54.6875 \n", "L 18.40625 0 \n", "L 9.421875 0 \n", "z\n", "M 9.421875 75.984375 \n", "L 18.40625 75.984375 \n", "L 18.40625 64.59375 \n", "L 9.421875 64.59375 \n", "z\n", "\" id=\"DejaVuSans-69\"/>\n", " <path d=\"M 54.890625 33.015625 \n", "L 54.890625 0 \n", "L 45.90625 0 \n", "L 45.90625 32.71875 \n", "Q 45.90625 40.484375 42.875 44.328125 \n", "Q 39.84375 48.1875 33.796875 48.1875 \n", "Q 26.515625 48.1875 22.3125 43.546875 \n", "Q 18.109375 38.921875 18.109375 30.90625 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 21.34375 51.125 25.703125 53.5625 \n", "Q 30.078125 56 35.796875 56 \n", "Q 45.21875 56 50.046875 50.171875 \n", "Q 54.890625 44.34375 54.890625 33.015625 \n", "z\n", "\" id=\"DejaVuSans-6e\"/>\n", " <path d=\"M 32.171875 -5.078125 \n", "Q 28.375 -14.84375 24.75 -17.8125 \n", "Q 21.140625 -20.796875 15.09375 -20.796875 \n", "L 7.90625 -20.796875 \n", "L 7.90625 -13.28125 \n", "L 13.1875 -13.28125 \n", "Q 16.890625 -13.28125 18.9375 -11.515625 \n", "Q 21 -9.765625 23.484375 -3.21875 \n", "L 25.09375 0.875 \n", "L 2.984375 54.6875 \n", "L 12.5 54.6875 \n", "L 29.59375 11.921875 \n", "L 46.6875 54.6875 \n", "L 56.203125 54.6875 \n", "z\n", "\" id=\"DejaVuSans-79\"/>\n", " </defs>\n", " <g transform=\"translate(14.798437 195.118906)rotate(-90)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-49\"/>\n", " <use x=\"29.492188\" xlink:href=\"#DejaVuSans-6d\"/>\n", " <use x=\"126.904297\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"188.183594\" xlink:href=\"#DejaVuSans-67\"/>\n", " <use x=\"251.660156\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"279.443359\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"342.822266\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"404.101562\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"445.214844\" xlink:href=\"#DejaVuSans-79\"/>\n", " <use x=\"504.394531\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"536.181641\" xlink:href=\"#DejaVuSans-50\"/>\n", " <use x=\"596.421875\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"657.701172\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"698.814453\" xlink:href=\"#DejaVuSans-74\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"line2d_19\">\n", " <path clip-path=\"url(#pe79da20084)\" d=\"M 257.151555 158.218125 \n", "L 257.118914 156.150681 \n", "L 257.021023 154.085298 \n", "L 256.629946 149.968946 \n", "L 255.979884 145.885478 \n", "L 255.073427 141.851171 \n", "L 253.91419 137.882107 \n", "L 252.506793 133.994109 \n", "L 250.856846 130.202675 \n", "L 248.970927 126.522919 \n", "L 246.856554 122.969509 \n", "L 244.522155 119.55661 \n", "L 241.977035 116.297828 \n", "L 239.231341 113.206152 \n", "L 236.296018 110.293907 \n", "L 233.182765 107.572702 \n", "L 229.903995 105.053385 \n", "L 226.472776 102.745998 \n", "L 222.902788 100.659739 \n", "L 219.20826 98.802924 \n", "L 215.40392 97.182956 \n", "L 211.504934 95.806293 \n", "L 207.526844 94.678421 \n", "L 203.485508 93.803836 \n", "L 199.397035 93.186027 \n", "L 195.277724 92.827454 \n", "L 191.143996 92.729547 \n", "L 187.012328 92.892698 \n", "L 182.899191 93.316254 \n", "L 178.820981 93.998529 \n", "L 174.793955 94.936801 \n", "L 170.834166 96.127332 \n", "L 166.957398 97.565374 \n", "L 163.179105 99.245197 \n", "L 159.51435 101.160102 \n", "L 155.97774 103.302458 \n", "L 152.583374 105.663724 \n", "L 149.344783 108.234487 \n", "L 146.274876 111.004499 \n", "L 143.385892 113.962719 \n", "L 140.689345 117.097354 \n", "L 138.195987 120.395908 \n", "L 135.915756 123.845233 \n", "L 133.857741 127.431578 \n", "L 132.030147 131.140647 \n", "L 130.440258 134.957655 \n", "L 129.094413 138.867386 \n", "L 127.997977 142.854255 \n", "L 127.15532 146.902369 \n", "L 126.569801 150.995591 \n", "L 126.243755 155.117603 \n", "L 126.17848 159.251976 \n", "L 126.374238 163.382227 \n", "L 126.830248 167.491892 \n", "L 127.544692 171.56459 \n", "L 128.514722 175.584085 \n", "L 129.736472 179.534354 \n", "L 131.205071 183.39965 \n", "L 132.914664 187.164565 \n", "L 134.858437 190.814091 \n", "L 137.028642 194.33368 \n", "L 139.416627 197.709302 \n", "L 142.012873 200.927501 \n", "L 144.807031 203.975447 \n", "L 147.787963 206.840991 \n", "L 150.943785 209.51271 \n", "L 154.261917 211.979954 \n", "L 157.729133 214.232888 \n", "L 161.331611 216.26253 \n", "L 165.054991 218.060791 \n", "L 168.88443 219.6205 \n", "L 172.804662 220.935442 \n", "L 176.800061 222.000375 \n", "L 180.8547 222.811052 \n", "L 184.952416 223.364244 \n", "L 189.076874 223.657743 \n", "L 193.211633 223.690381 \n", "L 197.34021 223.462028 \n", "L 201.446148 222.973593 \n", "L 205.51308 222.227024 \n", "L 209.524792 221.225297 \n", "L 213.465295 219.972405 \n", "L 217.318878 218.473341 \n", "L 221.070182 216.734083 \n", "L 224.704251 214.761564 \n", "L 228.2066 212.563645 \n", "L 231.563268 210.149089 \n", "L 234.760873 207.527522 \n", "L 237.786669 204.709392 \n", "L 240.628594 201.705935 \n", "L 243.27532 198.529122 \n", "L 245.716296 195.191618 \n", "L 247.941792 191.706727 \n", "L 249.942935 188.088341 \n", "L 251.711749 184.350883 \n", "L 253.241183 180.509252 \n", "L 254.525141 176.578762 \n", "L 255.558503 172.575082 \n", "L 256.33715 168.51417 \n", "L 256.857979 164.412215 \n", "L 257.118914 160.285569 \n", "L 257.151555 158.218125 \n", "L 257.151555 158.218125 \n", "\" style=\"fill:none;stroke:#ff0000;stroke-dasharray:5.55,2.4;stroke-dashoffset:0;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_20\">\n", " <path clip-path=\"url(#pe79da20084)\" d=\"M 55.760938 158.218125 \n", "L 327.560937 158.218125 \n", "\" style=\"fill:none;stroke:#000000;stroke-dasharray:9.6,2.4,1.5,2.4;stroke-dashoffset:0;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_21\">\n", " <path clip-path=\"url(#pe79da20084)\" d=\"M 191.660937 294.118125 \n", "L 191.660937 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-dasharray:9.6,2.4,1.5,2.4;stroke-dashoffset:0;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_22\">\n", " <defs>\n", " <path d=\"M 0 4 \n", "C 1.060812 4 2.078319 3.578535 2.828427 2.828427 \n", "C 3.578535 2.078319 4 1.060812 4 0 \n", "C 4 -1.060812 3.578535 -2.078319 2.828427 -2.828427 \n", "C 2.078319 -3.578535 1.060812 -4 0 -4 \n", "C -1.060812 -4 -2.078319 -3.578535 -2.828427 -2.828427 \n", "C -3.578535 -2.078319 -4 -1.060812 -4 0 \n", "C -4 1.060812 -3.578535 2.078319 -2.828427 2.828427 \n", "C -2.078319 3.578535 -1.060812 4 0 4 \n", "z\n", "\" id=\"m5d56a4daf1\" style=\"stroke:#000000;\"/>\n", " </defs>\n", " <g clip-path=\"url(#pe79da20084)\">\n", " <use style=\"fill:none;stroke:#000000;\" x=\"321.011876\" xlink:href=\"#m5d56a4daf1\" y=\"158.218125\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"113.075921\" xlink:href=\"#m5d56a4daf1\" y=\"158.218125\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"115.429631\" xlink:href=\"#m5d56a4daf1\" y=\"139.126033\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"115.429631\" xlink:href=\"#m5d56a4daf1\" y=\"177.310217\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"122.352394\" xlink:href=\"#m5d56a4daf1\" y=\"121.167513\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"122.352394\" xlink:href=\"#m5d56a4daf1\" y=\"195.268737\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"133.435567\" xlink:href=\"#m5d56a4daf1\" y=\"105.414474\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"133.435567\" xlink:href=\"#m5d56a4daf1\" y=\"211.021776\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"148.029865\" xlink:href=\"#m5d56a4daf1\" y=\"92.817307\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"148.029865\" xlink:href=\"#m5d56a4daf1\" y=\"223.618943\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"165.274724\" xlink:href=\"#m5d56a4daf1\" y=\"84.146942\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"165.274724\" xlink:href=\"#m5d56a4daf1\" y=\"232.289308\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"184.132752\" xlink:href=\"#m5d56a4daf1\" y=\"79.963507\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"184.132752\" xlink:href=\"#m5d56a4daf1\" y=\"236.472743\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"203.401418\" xlink:href=\"#m5d56a4daf1\" y=\"80.624479\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"203.401418\" xlink:href=\"#m5d56a4daf1\" y=\"235.811771\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"137.082836\" xlink:href=\"#m5d56a4daf1\" y=\"158.218125\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"138.7185\" xlink:href=\"#m5d56a4daf1\" y=\"144.958718\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"138.7185\" xlink:href=\"#m5d56a4daf1\" y=\"171.477532\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"143.531811\" xlink:href=\"#m5d56a4daf1\" y=\"132.489499\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"143.531811\" xlink:href=\"#m5d56a4daf1\" y=\"183.946751\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"151.24124\" xlink:href=\"#m5d56a4daf1\" y=\"121.562152\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"151.24124\" xlink:href=\"#m5d56a4daf1\" y=\"194.874098\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"161.384853\" xlink:href=\"#m5d56a4daf1\" y=\"112.835772\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"161.384853\" xlink:href=\"#m5d56a4daf1\" y=\"203.600478\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"173.356685\" xlink:href=\"#m5d56a4daf1\" y=\"106.834564\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"173.356685\" xlink:href=\"#m5d56a4daf1\" y=\"209.601686\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"221.567089\" xlink:href=\"#m5d56a4daf1\" y=\"86.580797\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"221.567089\" xlink:href=\"#m5d56a4daf1\" y=\"229.855453\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"186.436641\" xlink:href=\"#m5d56a4daf1\" y=\"103.912172\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"186.436641\" xlink:href=\"#m5d56a4daf1\" y=\"212.524078\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"199.837319\" xlink:href=\"#m5d56a4daf1\" y=\"104.179855\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"199.837319\" xlink:href=\"#m5d56a4daf1\" y=\"212.256395\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"212.945712\" xlink:href=\"#m5d56a4daf1\" y=\"107.232481\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"212.945712\" xlink:href=\"#m5d56a4daf1\" y=\"209.203769\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"257.024608\" xlink:href=\"#m5d56a4daf1\" y=\"154.142388\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"257.024608\" xlink:href=\"#m5d56a4daf1\" y=\"162.293862\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"256.022139\" xlink:href=\"#m5d56a4daf1\" y=\"146.107934\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"256.022139\" xlink:href=\"#m5d56a4daf1\" y=\"170.328316\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"254.084936\" xlink:href=\"#m5d56a4daf1\" y=\"138.412432\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"254.084936\" xlink:href=\"#m5d56a4daf1\" y=\"178.023818\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"251.330591\" xlink:href=\"#m5d56a4daf1\" y=\"131.226395\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"251.330591\" xlink:href=\"#m5d56a4daf1\" y=\"185.209855\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"247.948914\" xlink:href=\"#m5d56a4daf1\" y=\"124.741496\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"247.948914\" xlink:href=\"#m5d56a4daf1\" y=\"191.694754\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"244.225745\" xlink:href=\"#m5d56a4daf1\" y=\"119.15456\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"244.225745\" xlink:href=\"#m5d56a4daf1\" y=\"197.28169\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"240.682887\" xlink:href=\"#m5d56a4daf1\" y=\"114.791526\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"240.682887\" xlink:href=\"#m5d56a4daf1\" y=\"201.644724\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"238.310991\" xlink:href=\"#m5d56a4daf1\" y=\"112.252991\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"238.310991\" xlink:href=\"#m5d56a4daf1\" y=\"204.183259\"/>\n", " <use style=\"fill:none;stroke:#000000;\" x=\"224.818958\" xlink:href=\"#m5d56a4daf1\" y=\"158.218125\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_23\">\n", " <defs>\n", " <path d=\"M -4 4 \n", "L 4 -4 \n", "M -4 -4 \n", "L 4 4 \n", "\" id=\"m3351f965ec\" style=\"stroke:#000000;\"/>\n", " </defs>\n", " <g clip-path=\"url(#pe79da20084)\">\n", " <use style=\"stroke:#000000;\" x=\"191.660937\" xlink:href=\"#m3351f965ec\" y=\"158.218125\"/>\n", " </g>\n", " </g>\n", " <g id=\"patch_3\">\n", " <path d=\"M 52.160938 294.118125 \n", "L 52.160938 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_4\">\n", " <path d=\"M 331.160937 294.118125 \n", "L 331.160937 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_5\">\n", " <path d=\"M 52.160937 294.118125 \n", "L 331.160937 294.118125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_6\">\n", " <path d=\"M 52.160937 22.318125 \n", "L 331.160937 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"text_21\">\n", " <!-- 52 -->\n", " <g transform=\"translate(189.227875 154.173719)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-35\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-32\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_22\">\n", " <!-- Pole-Zero Plot -->\n", " <defs>\n", " <path d=\"M 30.609375 48.390625 \n", "Q 23.390625 48.390625 19.1875 42.75 \n", "Q 14.984375 37.109375 14.984375 27.296875 \n", "Q 14.984375 17.484375 19.15625 11.84375 \n", "Q 23.34375 6.203125 30.609375 6.203125 \n", "Q 37.796875 6.203125 41.984375 11.859375 \n", "Q 46.1875 17.53125 46.1875 27.296875 \n", "Q 46.1875 37.015625 41.984375 42.703125 \n", "Q 37.796875 48.390625 30.609375 48.390625 \n", "z\n", "M 30.609375 56 \n", "Q 42.328125 56 49.015625 48.375 \n", "Q 55.71875 40.765625 55.71875 27.296875 \n", "Q 55.71875 13.875 49.015625 6.21875 \n", "Q 42.328125 -1.421875 30.609375 -1.421875 \n", "Q 18.84375 -1.421875 12.171875 6.21875 \n", "Q 5.515625 13.875 5.515625 27.296875 \n", "Q 5.515625 40.765625 12.171875 48.375 \n", "Q 18.84375 56 30.609375 56 \n", "z\n", "\" id=\"DejaVuSans-6f\"/>\n", " <path d=\"M 4.890625 31.390625 \n", "L 31.203125 31.390625 \n", "L 31.203125 23.390625 \n", "L 4.890625 23.390625 \n", "z\n", "\" id=\"DejaVuSans-2d\"/>\n", " <path d=\"M 5.609375 72.90625 \n", "L 62.890625 72.90625 \n", "L 62.890625 65.375 \n", "L 16.796875 8.296875 \n", "L 64.015625 8.296875 \n", "L 64.015625 0 \n", "L 4.5 0 \n", "L 4.5 7.515625 \n", "L 50.59375 64.59375 \n", "L 5.609375 64.59375 \n", "z\n", "\" id=\"DejaVuSans-5a\"/>\n", " </defs>\n", " <g transform=\"translate(149.698437 16.318125)scale(0.12 -0.12)\">\n", " <use xlink:href=\"#DejaVuSans-50\"/>\n", " <use x=\"60.255859\" xlink:href=\"#DejaVuSans-6f\"/>\n", " <use x=\"121.4375\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"149.220703\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"210.744141\" xlink:href=\"#DejaVuSans-2d\"/>\n", " <use x=\"246.828125\" xlink:href=\"#DejaVuSans-5a\"/>\n", " <use x=\"315.333984\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"376.857422\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"417.939453\" xlink:href=\"#DejaVuSans-6f\"/>\n", " <use x=\"479.121094\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"510.908203\" xlink:href=\"#DejaVuSans-50\"/>\n", " <use x=\"571.210938\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"598.994141\" xlink:href=\"#DejaVuSans-6f\"/>\n", " <use x=\"660.175781\" xlink:href=\"#DejaVuSans-74\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <defs>\n", " <clipPath id=\"pe79da20084\">\n", " <rect height=\"271.8\" width=\"279\" x=\"52.160938\" y=\"22.318125\"/>\n", " </clipPath>\n", " </defs>\n", "</svg>\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x11945f908>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ss.zplane(b_r_hp,[1]) # the b and a coefficient arrays " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A Bandpass Design" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Kaiser Win filter taps = 142.\n", "Remez filter taps = 101.\n" ] } ], "source": [ "b_k_bp = fir_d.firwin_kaiser_bpf(7000,8000,14000,15000,50,48000)\n", "b_r_bp = fir_d.fir_remez_bpf(7000,8000,14000,15000,0.2,50,48000)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<!-- Created with matplotlib (http://matplotlib.org/) -->\n", "<svg height=\"277pt\" version=\"1.1\" viewBox=\"0 0 395 277\" width=\"395pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", " <defs>\n", " <style type=\"text/css\">\n", "*{stroke-linecap:butt;stroke-linejoin:round;}\n", " </style>\n", " </defs>\n", " <g id=\"figure_1\">\n", " <g id=\"patch_1\">\n", " <path d=\"M 0 277.314375 \n", "L 395.118866 277.314375 \n", "L 395.118866 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"axes_1\">\n", " <g id=\"patch_2\">\n", " <path d=\"M 48.982813 239.758125 \n", "L 383.782813 239.758125 \n", "L 383.782813 22.318125 \n", "L 48.982813 22.318125 \n", "z\n", "\" style=\"fill:#ffffff;\"/>\n", " </g>\n", " <g id=\"matplotlib.axis_1\">\n", " <g id=\"xtick_1\">\n", " <g id=\"line2d_1\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 64.200994 239.758125 \n", "L 64.200994 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_2\">\n", " <defs>\n", " <path d=\"M 0 0 \n", "L 0 3.5 \n", "\" id=\"m6169f616f5\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n", " </defs>\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"64.200994\" xlink:href=\"#m6169f616f5\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_1\">\n", " <!-- 0 -->\n", " <defs>\n", " <path d=\"M 31.78125 66.40625 \n", "Q 24.171875 66.40625 20.328125 58.90625 \n", "Q 16.5 51.421875 16.5 36.375 \n", "Q 16.5 21.390625 20.328125 13.890625 \n", "Q 24.171875 6.390625 31.78125 6.390625 \n", "Q 39.453125 6.390625 43.28125 13.890625 \n", "Q 47.125 21.390625 47.125 36.375 \n", "Q 47.125 51.421875 43.28125 58.90625 \n", "Q 39.453125 66.40625 31.78125 66.40625 \n", "z\n", "M 31.78125 74.21875 \n", "Q 44.046875 74.21875 50.515625 64.515625 \n", "Q 56.984375 54.828125 56.984375 36.375 \n", "Q 56.984375 17.96875 50.515625 8.265625 \n", "Q 44.046875 -1.421875 31.78125 -1.421875 \n", "Q 19.53125 -1.421875 13.0625 8.265625 \n", "Q 6.59375 17.96875 6.59375 36.375 \n", "Q 6.59375 54.828125 13.0625 64.515625 \n", "Q 19.53125 74.21875 31.78125 74.21875 \n", "z\n", "\" id=\"DejaVuSans-30\"/>\n", " </defs>\n", " <g transform=\"translate(61.019744 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_2\">\n", " <g id=\"line2d_3\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 127.672069 239.758125 \n", "L 127.672069 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_4\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"127.672069\" xlink:href=\"#m6169f616f5\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_2\">\n", " <!-- 5 -->\n", " <defs>\n", " <path d=\"M 10.796875 72.90625 \n", "L 49.515625 72.90625 \n", "L 49.515625 64.59375 \n", "L 19.828125 64.59375 \n", "L 19.828125 46.734375 \n", "Q 21.96875 47.46875 24.109375 47.828125 \n", "Q 26.265625 48.1875 28.421875 48.1875 \n", "Q 40.625 48.1875 47.75 41.5 \n", "Q 54.890625 34.8125 54.890625 23.390625 \n", "Q 54.890625 11.625 47.5625 5.09375 \n", "Q 40.234375 -1.421875 26.90625 -1.421875 \n", "Q 22.3125 -1.421875 17.546875 -0.640625 \n", "Q 12.796875 0.140625 7.71875 1.703125 \n", "L 7.71875 11.625 \n", "Q 12.109375 9.234375 16.796875 8.0625 \n", "Q 21.484375 6.890625 26.703125 6.890625 \n", "Q 35.15625 6.890625 40.078125 11.328125 \n", "Q 45.015625 15.765625 45.015625 23.390625 \n", "Q 45.015625 31 40.078125 35.4375 \n", "Q 35.15625 39.890625 26.703125 39.890625 \n", "Q 22.75 39.890625 18.8125 39.015625 \n", "Q 14.890625 38.140625 10.796875 36.28125 \n", "z\n", "\" id=\"DejaVuSans-35\"/>\n", " </defs>\n", " <g transform=\"translate(124.490819 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_3\">\n", " <g id=\"line2d_5\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 191.143143 239.758125 \n", "L 191.143143 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_6\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"191.143143\" xlink:href=\"#m6169f616f5\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_3\">\n", " <!-- 10 -->\n", " <defs>\n", " <path d=\"M 12.40625 8.296875 \n", "L 28.515625 8.296875 \n", "L 28.515625 63.921875 \n", "L 10.984375 60.40625 \n", "L 10.984375 69.390625 \n", "L 28.421875 72.90625 \n", "L 38.28125 72.90625 \n", "L 38.28125 8.296875 \n", "L 54.390625 8.296875 \n", "L 54.390625 0 \n", "L 12.40625 0 \n", "z\n", "\" id=\"DejaVuSans-31\"/>\n", " </defs>\n", " <g transform=\"translate(184.780643 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_4\">\n", " <g id=\"line2d_7\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 254.614217 239.758125 \n", "L 254.614217 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_8\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"254.614217\" xlink:href=\"#m6169f616f5\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_4\">\n", " <!-- 15 -->\n", " <g transform=\"translate(248.251717 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_5\">\n", " <g id=\"line2d_9\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 318.085292 239.758125 \n", "L 318.085292 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_10\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"318.085292\" xlink:href=\"#m6169f616f5\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_5\">\n", " <!-- 20 -->\n", " <defs>\n", " <path d=\"M 19.1875 8.296875 \n", "L 53.609375 8.296875 \n", "L 53.609375 0 \n", "L 7.328125 0 \n", "L 7.328125 8.296875 \n", "Q 12.9375 14.109375 22.625 23.890625 \n", "Q 32.328125 33.6875 34.8125 36.53125 \n", "Q 39.546875 41.84375 41.421875 45.53125 \n", "Q 43.3125 49.21875 43.3125 52.78125 \n", "Q 43.3125 58.59375 39.234375 62.25 \n", "Q 35.15625 65.921875 28.609375 65.921875 \n", "Q 23.96875 65.921875 18.8125 64.3125 \n", "Q 13.671875 62.703125 7.8125 59.421875 \n", "L 7.8125 69.390625 \n", "Q 13.765625 71.78125 18.9375 73 \n", "Q 24.125 74.21875 28.421875 74.21875 \n", "Q 39.75 74.21875 46.484375 68.546875 \n", "Q 53.21875 62.890625 53.21875 53.421875 \n", "Q 53.21875 48.921875 51.53125 44.890625 \n", "Q 49.859375 40.875 45.40625 35.40625 \n", "Q 44.1875 33.984375 37.640625 27.21875 \n", "Q 31.109375 20.453125 19.1875 8.296875 \n", "z\n", "\" id=\"DejaVuSans-32\"/>\n", " </defs>\n", " <g transform=\"translate(311.722792 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_6\">\n", " <g id=\"line2d_11\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 381.556366 239.758125 \n", "L 381.556366 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_12\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"381.556366\" xlink:href=\"#m6169f616f5\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_6\">\n", " <!-- 25 -->\n", " <g transform=\"translate(375.193866 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"text_7\">\n", " <!-- Frequency in kHz -->\n", " <defs>\n", " <path d=\"M 9.8125 72.90625 \n", "L 51.703125 72.90625 \n", "L 51.703125 64.59375 \n", "L 19.671875 64.59375 \n", "L 19.671875 43.109375 \n", "L 48.578125 43.109375 \n", "L 48.578125 34.8125 \n", "L 19.671875 34.8125 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-46\"/>\n", " <path d=\"M 41.109375 46.296875 \n", "Q 39.59375 47.171875 37.8125 47.578125 \n", "Q 36.03125 48 33.890625 48 \n", "Q 26.265625 48 22.1875 43.046875 \n", "Q 18.109375 38.09375 18.109375 28.8125 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 20.953125 51.171875 25.484375 53.578125 \n", "Q 30.03125 56 36.53125 56 \n", "Q 37.453125 56 38.578125 55.875 \n", "Q 39.703125 55.765625 41.0625 55.515625 \n", "z\n", "\" id=\"DejaVuSans-72\"/>\n", " <path d=\"M 56.203125 29.59375 \n", "L 56.203125 25.203125 \n", "L 14.890625 25.203125 \n", "Q 15.484375 15.921875 20.484375 11.0625 \n", "Q 25.484375 6.203125 34.421875 6.203125 \n", "Q 39.59375 6.203125 44.453125 7.46875 \n", "Q 49.3125 8.734375 54.109375 11.28125 \n", "L 54.109375 2.78125 \n", "Q 49.265625 0.734375 44.1875 -0.34375 \n", "Q 39.109375 -1.421875 33.890625 -1.421875 \n", "Q 20.796875 -1.421875 13.15625 6.1875 \n", "Q 5.515625 13.8125 5.515625 26.8125 \n", "Q 5.515625 40.234375 12.765625 48.109375 \n", "Q 20.015625 56 32.328125 56 \n", "Q 43.359375 56 49.78125 48.890625 \n", "Q 56.203125 41.796875 56.203125 29.59375 \n", "z\n", "M 47.21875 32.234375 \n", "Q 47.125 39.59375 43.09375 43.984375 \n", "Q 39.0625 48.390625 32.421875 48.390625 \n", "Q 24.90625 48.390625 20.390625 44.140625 \n", "Q 15.875 39.890625 15.1875 32.171875 \n", "z\n", "\" id=\"DejaVuSans-65\"/>\n", " <path d=\"M 14.796875 27.296875 \n", "Q 14.796875 17.390625 18.875 11.75 \n", "Q 22.953125 6.109375 30.078125 6.109375 \n", "Q 37.203125 6.109375 41.296875 11.75 \n", "Q 45.40625 17.390625 45.40625 27.296875 \n", "Q 45.40625 37.203125 41.296875 42.84375 \n", "Q 37.203125 48.484375 30.078125 48.484375 \n", "Q 22.953125 48.484375 18.875 42.84375 \n", "Q 14.796875 37.203125 14.796875 27.296875 \n", "z\n", "M 45.40625 8.203125 \n", "Q 42.578125 3.328125 38.25 0.953125 \n", "Q 33.9375 -1.421875 27.875 -1.421875 \n", "Q 17.96875 -1.421875 11.734375 6.484375 \n", "Q 5.515625 14.40625 5.515625 27.296875 \n", "Q 5.515625 40.1875 11.734375 48.09375 \n", "Q 17.96875 56 27.875 56 \n", "Q 33.9375 56 38.25 53.625 \n", "Q 42.578125 51.265625 45.40625 46.390625 \n", "L 45.40625 54.6875 \n", "L 54.390625 54.6875 \n", "L 54.390625 -20.796875 \n", "L 45.40625 -20.796875 \n", "z\n", "\" id=\"DejaVuSans-71\"/>\n", " <path d=\"M 8.5 21.578125 \n", "L 8.5 54.6875 \n", "L 17.484375 54.6875 \n", "L 17.484375 21.921875 \n", "Q 17.484375 14.15625 20.5 10.265625 \n", "Q 23.53125 6.390625 29.59375 6.390625 \n", "Q 36.859375 6.390625 41.078125 11.03125 \n", "Q 45.3125 15.671875 45.3125 23.6875 \n", "L 45.3125 54.6875 \n", "L 54.296875 54.6875 \n", "L 54.296875 0 \n", "L 45.3125 0 \n", "L 45.3125 8.40625 \n", "Q 42.046875 3.421875 37.71875 1 \n", "Q 33.40625 -1.421875 27.6875 -1.421875 \n", "Q 18.265625 -1.421875 13.375 4.4375 \n", "Q 8.5 10.296875 8.5 21.578125 \n", "z\n", "M 31.109375 56 \n", "z\n", "\" id=\"DejaVuSans-75\"/>\n", " <path d=\"M 54.890625 33.015625 \n", "L 54.890625 0 \n", "L 45.90625 0 \n", "L 45.90625 32.71875 \n", "Q 45.90625 40.484375 42.875 44.328125 \n", "Q 39.84375 48.1875 33.796875 48.1875 \n", "Q 26.515625 48.1875 22.3125 43.546875 \n", "Q 18.109375 38.921875 18.109375 30.90625 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 21.34375 51.125 25.703125 53.5625 \n", "Q 30.078125 56 35.796875 56 \n", "Q 45.21875 56 50.046875 50.171875 \n", "Q 54.890625 44.34375 54.890625 33.015625 \n", "z\n", "\" id=\"DejaVuSans-6e\"/>\n", " <path d=\"M 48.78125 52.59375 \n", "L 48.78125 44.1875 \n", "Q 44.96875 46.296875 41.140625 47.34375 \n", "Q 37.3125 48.390625 33.40625 48.390625 \n", "Q 24.65625 48.390625 19.8125 42.84375 \n", "Q 14.984375 37.3125 14.984375 27.296875 \n", "Q 14.984375 17.28125 19.8125 11.734375 \n", "Q 24.65625 6.203125 33.40625 6.203125 \n", "Q 37.3125 6.203125 41.140625 7.25 \n", "Q 44.96875 8.296875 48.78125 10.40625 \n", "L 48.78125 2.09375 \n", "Q 45.015625 0.34375 40.984375 -0.53125 \n", "Q 36.96875 -1.421875 32.421875 -1.421875 \n", "Q 20.0625 -1.421875 12.78125 6.34375 \n", "Q 5.515625 14.109375 5.515625 27.296875 \n", "Q 5.515625 40.671875 12.859375 48.328125 \n", "Q 20.21875 56 33.015625 56 \n", "Q 37.15625 56 41.109375 55.140625 \n", "Q 45.0625 54.296875 48.78125 52.59375 \n", "z\n", "\" id=\"DejaVuSans-63\"/>\n", " <path d=\"M 32.171875 -5.078125 \n", "Q 28.375 -14.84375 24.75 -17.8125 \n", "Q 21.140625 -20.796875 15.09375 -20.796875 \n", "L 7.90625 -20.796875 \n", "L 7.90625 -13.28125 \n", "L 13.1875 -13.28125 \n", "Q 16.890625 -13.28125 18.9375 -11.515625 \n", "Q 21 -9.765625 23.484375 -3.21875 \n", "L 25.09375 0.875 \n", "L 2.984375 54.6875 \n", "L 12.5 54.6875 \n", "L 29.59375 11.921875 \n", "L 46.6875 54.6875 \n", "L 56.203125 54.6875 \n", "z\n", "\" id=\"DejaVuSans-79\"/>\n", " <path id=\"DejaVuSans-20\"/>\n", " <path d=\"M 9.421875 54.6875 \n", "L 18.40625 54.6875 \n", "L 18.40625 0 \n", "L 9.421875 0 \n", "z\n", "M 9.421875 75.984375 \n", "L 18.40625 75.984375 \n", "L 18.40625 64.59375 \n", "L 9.421875 64.59375 \n", "z\n", "\" id=\"DejaVuSans-69\"/>\n", " <path d=\"M 9.078125 75.984375 \n", "L 18.109375 75.984375 \n", "L 18.109375 31.109375 \n", "L 44.921875 54.6875 \n", "L 56.390625 54.6875 \n", "L 27.390625 29.109375 \n", "L 57.625 0 \n", "L 45.90625 0 \n", "L 18.109375 26.703125 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "z\n", "\" id=\"DejaVuSans-6b\"/>\n", " <path d=\"M 9.8125 72.90625 \n", "L 19.671875 72.90625 \n", "L 19.671875 43.015625 \n", "L 55.515625 43.015625 \n", "L 55.515625 72.90625 \n", "L 65.375 72.90625 \n", "L 65.375 0 \n", "L 55.515625 0 \n", "L 55.515625 34.71875 \n", "L 19.671875 34.71875 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-48\"/>\n", " <path d=\"M 5.515625 54.6875 \n", "L 48.1875 54.6875 \n", "L 48.1875 46.484375 \n", "L 14.40625 7.171875 \n", "L 48.1875 7.171875 \n", "L 48.1875 0 \n", "L 4.296875 0 \n", "L 4.296875 8.203125 \n", "L 38.09375 47.515625 \n", "L 5.515625 47.515625 \n", "z\n", "\" id=\"DejaVuSans-7a\"/>\n", " </defs>\n", " <g transform=\"translate(173.069531 268.034687)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-46\"/>\n", " <use x=\"57.410156\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"98.492188\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"160.015625\" xlink:href=\"#DejaVuSans-71\"/>\n", " <use x=\"223.492188\" xlink:href=\"#DejaVuSans-75\"/>\n", " <use x=\"286.871094\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"348.394531\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"411.773438\" xlink:href=\"#DejaVuSans-63\"/>\n", " <use x=\"466.753906\" xlink:href=\"#DejaVuSans-79\"/>\n", " <use x=\"525.933594\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"557.720703\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"585.503906\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"648.882812\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"680.669922\" xlink:href=\"#DejaVuSans-6b\"/>\n", " <use x=\"738.580078\" xlink:href=\"#DejaVuSans-48\"/>\n", " <use x=\"813.775391\" xlink:href=\"#DejaVuSans-7a\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"matplotlib.axis_2\">\n", " <g id=\"ytick_1\">\n", " <g id=\"line2d_13\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 48.982813 239.758125 \n", "L 383.782813 239.758125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_14\">\n", " <defs>\n", " <path d=\"M 0 0 \n", "L -3.5 0 \n", "\" id=\"m56d49052fe\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n", " </defs>\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m56d49052fe\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_8\">\n", " <!-- −80 -->\n", " <defs>\n", " <path d=\"M 10.59375 35.5 \n", "L 73.1875 35.5 \n", "L 73.1875 27.203125 \n", "L 10.59375 27.203125 \n", "z\n", "\" id=\"DejaVuSans-2212\"/>\n", " <path d=\"M 31.78125 34.625 \n", "Q 24.75 34.625 20.71875 30.859375 \n", "Q 16.703125 27.09375 16.703125 20.515625 \n", "Q 16.703125 13.921875 20.71875 10.15625 \n", "Q 24.75 6.390625 31.78125 6.390625 \n", "Q 38.8125 6.390625 42.859375 10.171875 \n", "Q 46.921875 13.96875 46.921875 20.515625 \n", "Q 46.921875 27.09375 42.890625 30.859375 \n", "Q 38.875 34.625 31.78125 34.625 \n", "z\n", "M 21.921875 38.8125 \n", "Q 15.578125 40.375 12.03125 44.71875 \n", "Q 8.5 49.078125 8.5 55.328125 \n", "Q 8.5 64.0625 14.71875 69.140625 \n", "Q 20.953125 74.21875 31.78125 74.21875 \n", "Q 42.671875 74.21875 48.875 69.140625 \n", "Q 55.078125 64.0625 55.078125 55.328125 \n", "Q 55.078125 49.078125 51.53125 44.71875 \n", "Q 48 40.375 41.703125 38.8125 \n", "Q 48.828125 37.15625 52.796875 32.3125 \n", "Q 56.78125 27.484375 56.78125 20.515625 \n", "Q 56.78125 9.90625 50.3125 4.234375 \n", "Q 43.84375 -1.421875 31.78125 -1.421875 \n", "Q 19.734375 -1.421875 13.25 4.234375 \n", "Q 6.78125 9.90625 6.78125 20.515625 \n", "Q 6.78125 27.484375 10.78125 32.3125 \n", "Q 14.796875 37.15625 21.921875 38.8125 \n", "z\n", "M 18.3125 54.390625 \n", "Q 18.3125 48.734375 21.84375 45.5625 \n", "Q 25.390625 42.390625 31.78125 42.390625 \n", "Q 38.140625 42.390625 41.71875 45.5625 \n", "Q 45.3125 48.734375 45.3125 54.390625 \n", "Q 45.3125 60.0625 41.71875 63.234375 \n", "Q 38.140625 66.40625 31.78125 66.40625 \n", "Q 25.390625 66.40625 21.84375 63.234375 \n", "Q 18.3125 60.0625 18.3125 54.390625 \n", "z\n", "\" id=\"DejaVuSans-38\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 243.557344)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-38\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_2\">\n", " <g id=\"line2d_15\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 48.982813 214.176949 \n", "L 383.782813 214.176949 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_16\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m56d49052fe\" y=\"214.176949\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_9\">\n", " <!-- −70 -->\n", " <defs>\n", " <path d=\"M 8.203125 72.90625 \n", "L 55.078125 72.90625 \n", "L 55.078125 68.703125 \n", "L 28.609375 0 \n", "L 18.3125 0 \n", "L 43.21875 64.59375 \n", "L 8.203125 64.59375 \n", "z\n", "\" id=\"DejaVuSans-37\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 217.976167)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-37\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_3\">\n", " <g id=\"line2d_17\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 48.982813 188.595772 \n", "L 383.782813 188.595772 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_18\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m56d49052fe\" y=\"188.595772\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_10\">\n", " <!-- −60 -->\n", " <defs>\n", " <path d=\"M 33.015625 40.375 \n", "Q 26.375 40.375 22.484375 35.828125 \n", "Q 18.609375 31.296875 18.609375 23.390625 \n", "Q 18.609375 15.53125 22.484375 10.953125 \n", "Q 26.375 6.390625 33.015625 6.390625 \n", "Q 39.65625 6.390625 43.53125 10.953125 \n", "Q 47.40625 15.53125 47.40625 23.390625 \n", "Q 47.40625 31.296875 43.53125 35.828125 \n", "Q 39.65625 40.375 33.015625 40.375 \n", "z\n", "M 52.59375 71.296875 \n", "L 52.59375 62.3125 \n", "Q 48.875 64.0625 45.09375 64.984375 \n", "Q 41.3125 65.921875 37.59375 65.921875 \n", "Q 27.828125 65.921875 22.671875 59.328125 \n", "Q 17.53125 52.734375 16.796875 39.40625 \n", "Q 19.671875 43.65625 24.015625 45.921875 \n", "Q 28.375 48.1875 33.59375 48.1875 \n", "Q 44.578125 48.1875 50.953125 41.515625 \n", "Q 57.328125 34.859375 57.328125 23.390625 \n", "Q 57.328125 12.15625 50.6875 5.359375 \n", "Q 44.046875 -1.421875 33.015625 -1.421875 \n", "Q 20.359375 -1.421875 13.671875 8.265625 \n", "Q 6.984375 17.96875 6.984375 36.375 \n", "Q 6.984375 53.65625 15.1875 63.9375 \n", "Q 23.390625 74.21875 37.203125 74.21875 \n", "Q 40.921875 74.21875 44.703125 73.484375 \n", "Q 48.484375 72.75 52.59375 71.296875 \n", "z\n", "\" id=\"DejaVuSans-36\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 192.394991)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-36\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_4\">\n", " <g id=\"line2d_19\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 48.982813 163.014596 \n", "L 383.782813 163.014596 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_20\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m56d49052fe\" y=\"163.014596\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_11\">\n", " <!-- −50 -->\n", " <g transform=\"translate(20.878125 166.813814)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-35\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_5\">\n", " <g id=\"line2d_21\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 48.982813 137.433419 \n", "L 383.782813 137.433419 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_22\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m56d49052fe\" y=\"137.433419\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_12\">\n", " <!-- −40 -->\n", " <defs>\n", " <path d=\"M 37.796875 64.3125 \n", "L 12.890625 25.390625 \n", "L 37.796875 25.390625 \n", "z\n", "M 35.203125 72.90625 \n", "L 47.609375 72.90625 \n", "L 47.609375 25.390625 \n", "L 58.015625 25.390625 \n", "L 58.015625 17.1875 \n", "L 47.609375 17.1875 \n", "L 47.609375 0 \n", "L 37.796875 0 \n", "L 37.796875 17.1875 \n", "L 4.890625 17.1875 \n", "L 4.890625 26.703125 \n", "z\n", "\" id=\"DejaVuSans-34\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 141.232638)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-34\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_6\">\n", " <g id=\"line2d_23\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 48.982813 111.852243 \n", "L 383.782813 111.852243 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_24\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m56d49052fe\" y=\"111.852243\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_13\">\n", " <!-- −30 -->\n", " <defs>\n", " <path d=\"M 40.578125 39.3125 \n", "Q 47.65625 37.796875 51.625 33 \n", "Q 55.609375 28.21875 55.609375 21.1875 \n", "Q 55.609375 10.40625 48.1875 4.484375 \n", "Q 40.765625 -1.421875 27.09375 -1.421875 \n", "Q 22.515625 -1.421875 17.65625 -0.515625 \n", "Q 12.796875 0.390625 7.625 2.203125 \n", "L 7.625 11.71875 \n", "Q 11.71875 9.328125 16.59375 8.109375 \n", "Q 21.484375 6.890625 26.8125 6.890625 \n", "Q 36.078125 6.890625 40.9375 10.546875 \n", "Q 45.796875 14.203125 45.796875 21.1875 \n", "Q 45.796875 27.640625 41.28125 31.265625 \n", "Q 36.765625 34.90625 28.71875 34.90625 \n", "L 20.21875 34.90625 \n", "L 20.21875 43.015625 \n", "L 29.109375 43.015625 \n", "Q 36.375 43.015625 40.234375 45.921875 \n", "Q 44.09375 48.828125 44.09375 54.296875 \n", "Q 44.09375 59.90625 40.109375 62.90625 \n", "Q 36.140625 65.921875 28.71875 65.921875 \n", "Q 24.65625 65.921875 20.015625 65.03125 \n", "Q 15.375 64.15625 9.8125 62.3125 \n", "L 9.8125 71.09375 \n", "Q 15.4375 72.65625 20.34375 73.4375 \n", "Q 25.25 74.21875 29.59375 74.21875 \n", "Q 40.828125 74.21875 47.359375 69.109375 \n", "Q 53.90625 64.015625 53.90625 55.328125 \n", "Q 53.90625 49.265625 50.4375 45.09375 \n", "Q 46.96875 40.921875 40.578125 39.3125 \n", "z\n", "\" id=\"DejaVuSans-33\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 115.651461)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-33\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_7\">\n", " <g id=\"line2d_25\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 48.982813 86.271066 \n", "L 383.782813 86.271066 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_26\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m56d49052fe\" y=\"86.271066\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_14\">\n", " <!-- −20 -->\n", " <g transform=\"translate(20.878125 90.070285)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_8\">\n", " <g id=\"line2d_27\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 48.982813 60.68989 \n", "L 383.782813 60.68989 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_28\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m56d49052fe\" y=\"60.68989\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_15\">\n", " <!-- −10 -->\n", " <g transform=\"translate(20.878125 64.489108)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_9\">\n", " <g id=\"line2d_29\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 48.982813 35.108713 \n", "L 383.782813 35.108713 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_30\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m56d49052fe\" y=\"35.108713\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_16\">\n", " <!-- 0 -->\n", " <g transform=\"translate(35.620312 38.907932)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"text_17\">\n", " <!-- Filter Gain (dB) -->\n", " <defs>\n", " <path d=\"M 9.421875 75.984375 \n", "L 18.40625 75.984375 \n", "L 18.40625 0 \n", "L 9.421875 0 \n", "z\n", "\" id=\"DejaVuSans-6c\"/>\n", " <path d=\"M 18.3125 70.21875 \n", "L 18.3125 54.6875 \n", "L 36.8125 54.6875 \n", "L 36.8125 47.703125 \n", "L 18.3125 47.703125 \n", "L 18.3125 18.015625 \n", "Q 18.3125 11.328125 20.140625 9.421875 \n", "Q 21.96875 7.515625 27.59375 7.515625 \n", "L 36.8125 7.515625 \n", "L 36.8125 0 \n", "L 27.59375 0 \n", "Q 17.1875 0 13.234375 3.875 \n", "Q 9.28125 7.765625 9.28125 18.015625 \n", "L 9.28125 47.703125 \n", "L 2.6875 47.703125 \n", "L 2.6875 54.6875 \n", "L 9.28125 54.6875 \n", "L 9.28125 70.21875 \n", "z\n", "\" id=\"DejaVuSans-74\"/>\n", " <path d=\"M 59.515625 10.40625 \n", "L 59.515625 29.984375 \n", "L 43.40625 29.984375 \n", "L 43.40625 38.09375 \n", "L 69.28125 38.09375 \n", "L 69.28125 6.78125 \n", "Q 63.578125 2.734375 56.6875 0.65625 \n", "Q 49.8125 -1.421875 42 -1.421875 \n", "Q 24.90625 -1.421875 15.25 8.5625 \n", "Q 5.609375 18.5625 5.609375 36.375 \n", "Q 5.609375 54.25 15.25 64.234375 \n", "Q 24.90625 74.21875 42 74.21875 \n", "Q 49.125 74.21875 55.546875 72.453125 \n", "Q 61.96875 70.703125 67.390625 67.28125 \n", "L 67.390625 56.78125 \n", "Q 61.921875 61.421875 55.765625 63.765625 \n", "Q 49.609375 66.109375 42.828125 66.109375 \n", "Q 29.4375 66.109375 22.71875 58.640625 \n", "Q 16.015625 51.171875 16.015625 36.375 \n", "Q 16.015625 21.625 22.71875 14.15625 \n", "Q 29.4375 6.6875 42.828125 6.6875 \n", "Q 48.046875 6.6875 52.140625 7.59375 \n", "Q 56.25 8.5 59.515625 10.40625 \n", "z\n", "\" id=\"DejaVuSans-47\"/>\n", " <path d=\"M 34.28125 27.484375 \n", "Q 23.390625 27.484375 19.1875 25 \n", "Q 14.984375 22.515625 14.984375 16.5 \n", "Q 14.984375 11.71875 18.140625 8.90625 \n", "Q 21.296875 6.109375 26.703125 6.109375 \n", "Q 34.1875 6.109375 38.703125 11.40625 \n", "Q 43.21875 16.703125 43.21875 25.484375 \n", "L 43.21875 27.484375 \n", "z\n", "M 52.203125 31.203125 \n", "L 52.203125 0 \n", "L 43.21875 0 \n", "L 43.21875 8.296875 \n", "Q 40.140625 3.328125 35.546875 0.953125 \n", "Q 30.953125 -1.421875 24.3125 -1.421875 \n", "Q 15.921875 -1.421875 10.953125 3.296875 \n", "Q 6 8.015625 6 15.921875 \n", "Q 6 25.140625 12.171875 29.828125 \n", "Q 18.359375 34.515625 30.609375 34.515625 \n", "L 43.21875 34.515625 \n", "L 43.21875 35.40625 \n", "Q 43.21875 41.609375 39.140625 45 \n", "Q 35.0625 48.390625 27.6875 48.390625 \n", "Q 23 48.390625 18.546875 47.265625 \n", "Q 14.109375 46.140625 10.015625 43.890625 \n", "L 10.015625 52.203125 \n", "Q 14.9375 54.109375 19.578125 55.046875 \n", "Q 24.21875 56 28.609375 56 \n", "Q 40.484375 56 46.34375 49.84375 \n", "Q 52.203125 43.703125 52.203125 31.203125 \n", "z\n", "\" id=\"DejaVuSans-61\"/>\n", " <path d=\"M 31 75.875 \n", "Q 24.46875 64.65625 21.28125 53.65625 \n", "Q 18.109375 42.671875 18.109375 31.390625 \n", "Q 18.109375 20.125 21.3125 9.0625 \n", "Q 24.515625 -2 31 -13.1875 \n", "L 23.1875 -13.1875 \n", "Q 15.875 -1.703125 12.234375 9.375 \n", "Q 8.59375 20.453125 8.59375 31.390625 \n", "Q 8.59375 42.28125 12.203125 53.3125 \n", "Q 15.828125 64.359375 23.1875 75.875 \n", "z\n", "\" id=\"DejaVuSans-28\"/>\n", " <path d=\"M 45.40625 46.390625 \n", "L 45.40625 75.984375 \n", "L 54.390625 75.984375 \n", "L 54.390625 0 \n", "L 45.40625 0 \n", "L 45.40625 8.203125 \n", "Q 42.578125 3.328125 38.25 0.953125 \n", "Q 33.9375 -1.421875 27.875 -1.421875 \n", "Q 17.96875 -1.421875 11.734375 6.484375 \n", "Q 5.515625 14.40625 5.515625 27.296875 \n", "Q 5.515625 40.1875 11.734375 48.09375 \n", "Q 17.96875 56 27.875 56 \n", "Q 33.9375 56 38.25 53.625 \n", "Q 42.578125 51.265625 45.40625 46.390625 \n", "z\n", "M 14.796875 27.296875 \n", "Q 14.796875 17.390625 18.875 11.75 \n", "Q 22.953125 6.109375 30.078125 6.109375 \n", "Q 37.203125 6.109375 41.296875 11.75 \n", "Q 45.40625 17.390625 45.40625 27.296875 \n", "Q 45.40625 37.203125 41.296875 42.84375 \n", "Q 37.203125 48.484375 30.078125 48.484375 \n", "Q 22.953125 48.484375 18.875 42.84375 \n", "Q 14.796875 37.203125 14.796875 27.296875 \n", "z\n", "\" id=\"DejaVuSans-64\"/>\n", " <path d=\"M 19.671875 34.8125 \n", "L 19.671875 8.109375 \n", "L 35.5 8.109375 \n", "Q 43.453125 8.109375 47.28125 11.40625 \n", "Q 51.125 14.703125 51.125 21.484375 \n", "Q 51.125 28.328125 47.28125 31.5625 \n", "Q 43.453125 34.8125 35.5 34.8125 \n", "z\n", "M 19.671875 64.796875 \n", "L 19.671875 42.828125 \n", "L 34.28125 42.828125 \n", "Q 41.5 42.828125 45.03125 45.53125 \n", "Q 48.578125 48.25 48.578125 53.8125 \n", "Q 48.578125 59.328125 45.03125 62.0625 \n", "Q 41.5 64.796875 34.28125 64.796875 \n", "z\n", "M 9.8125 72.90625 \n", "L 35.015625 72.90625 \n", "Q 46.296875 72.90625 52.390625 68.21875 \n", "Q 58.5 63.53125 58.5 54.890625 \n", "Q 58.5 48.1875 55.375 44.234375 \n", "Q 52.25 40.28125 46.1875 39.3125 \n", "Q 53.46875 37.75 57.5 32.78125 \n", "Q 61.53125 27.828125 61.53125 20.40625 \n", "Q 61.53125 10.640625 54.890625 5.3125 \n", "Q 48.25 0 35.984375 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-42\"/>\n", " <path d=\"M 8.015625 75.875 \n", "L 15.828125 75.875 \n", "Q 23.140625 64.359375 26.78125 53.3125 \n", "Q 30.421875 42.28125 30.421875 31.390625 \n", "Q 30.421875 20.453125 26.78125 9.375 \n", "Q 23.140625 -1.703125 15.828125 -13.1875 \n", "L 8.015625 -13.1875 \n", "Q 14.5 -2 17.703125 9.0625 \n", "Q 20.90625 20.125 20.90625 31.390625 \n", "Q 20.90625 42.671875 17.703125 53.65625 \n", "Q 14.5 64.65625 8.015625 75.875 \n", "z\n", "\" id=\"DejaVuSans-29\"/>\n", " </defs>\n", " <g transform=\"translate(14.798437 168.959219)rotate(-90)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-46\"/>\n", " <use x=\"57.410156\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"85.193359\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"112.976562\" xlink:href=\"#DejaVuSans-74\"/>\n", " <use x=\"152.185547\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"213.708984\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"254.822266\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"286.609375\" xlink:href=\"#DejaVuSans-47\"/>\n", " <use x=\"364.099609\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"425.378906\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"453.162109\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"516.541016\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"548.328125\" xlink:href=\"#DejaVuSans-28\"/>\n", " <use x=\"587.341797\" xlink:href=\"#DejaVuSans-64\"/>\n", " <use x=\"650.818359\" xlink:href=\"#DejaVuSans-42\"/>\n", " <use x=\"719.421875\" xlink:href=\"#DejaVuSans-29\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"line2d_31\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 64.200994 196.279932 \n", "L 64.498515 196.809974 \n", "L 64.796036 198.453255 \n", "L 65.093556 201.392629 \n", "L 65.391077 206.036298 \n", "L 65.688598 213.323458 \n", "L 65.986118 226.022786 \n", "L 66.283639 263.913683 \n", "L 66.87868 217.888101 \n", "L 67.176201 208.797159 \n", "L 67.771242 199.540597 \n", "L 68.068763 197.357149 \n", "L 68.366284 196.34777 \n", "L 68.663804 196.408421 \n", "L 68.961325 197.545599 \n", "L 69.258846 199.879135 \n", "L 69.556366 203.699064 \n", "L 69.853887 209.646669 \n", "L 70.151408 219.364622 \n", "L 70.746449 253.866519 \n", "L 71.04397 223.838137 \n", "L 71.34149 212.119923 \n", "L 71.936532 200.832286 \n", "L 72.234052 198.060252 \n", "L 72.531573 196.552394 \n", "L 72.829093 196.145142 \n", "L 73.126614 196.79887 \n", "L 73.424135 198.580623 \n", "L 73.721655 201.693977 \n", "L 74.019176 206.589224 \n", "L 74.316697 214.321379 \n", "L 74.614217 228.170968 \n", "L 74.888921 278.314375 \n", "M 74.936418 278.314375 \n", "L 75.209259 232.270468 \n", "L 75.506779 216.228743 \n", "L 76.101821 202.361331 \n", "L 76.399341 198.933308 \n", "L 76.696862 196.897193 \n", "L 76.994383 196.015214 \n", "L 77.291903 196.198573 \n", "L 77.589424 197.466968 \n", "L 77.886945 199.957095 \n", "L 78.184465 203.989152 \n", "L 78.481986 210.276612 \n", "L 78.779507 220.711057 \n", "L 79.077027 243.878449 \n", "L 79.374548 246.546857 \n", "L 79.672069 221.523879 \n", "L 79.969589 210.672806 \n", "L 80.564631 199.995189 \n", "L 80.862151 197.388026 \n", "L 81.159672 196.015771 \n", "L 81.457193 195.73333 \n", "L 81.754713 196.514675 \n", "L 82.052234 198.441577 \n", "L 82.349755 201.740585 \n", "L 82.647275 206.910445 \n", "L 82.944796 215.145689 \n", "L 83.242317 230.404014 \n", "L 83.435956 278.314375 \n", "M 83.641548 278.314375 \n", "L 83.837358 228.833046 \n", "L 84.134879 214.328174 \n", "L 84.72992 201.271294 \n", "L 85.027441 198.033556 \n", "L 85.324961 196.145732 \n", "L 85.622482 195.394001 \n", "L 85.920003 195.704746 \n", "L 86.217523 197.11154 \n", "L 86.515044 199.769734 \n", "L 86.812565 204.034252 \n", "L 87.110085 210.705088 \n", "L 87.407606 221.992062 \n", "L 87.705127 249.563323 \n", "L 88.002647 240.373816 \n", "L 88.300168 218.985964 \n", "L 88.597689 208.927993 \n", "L 89.19273 198.845756 \n", "L 89.490251 196.405572 \n", "L 89.787771 195.172957 \n", "L 90.085292 195.021102 \n", "L 90.382813 195.93816 \n", "L 90.680333 198.022136 \n", "L 90.977854 201.526095 \n", "L 91.275374 207.00695 \n", "L 91.572895 215.835421 \n", "L 91.870416 232.927841 \n", "L 92.167936 267.701853 \n", "L 92.465457 225.259638 \n", "L 92.762978 212.10796 \n", "L 93.358019 199.840636 \n", "L 93.65554 196.797076 \n", "L 93.95306 195.063358 \n", "L 94.250581 194.449281 \n", "L 94.548102 194.896959 \n", "L 94.845622 196.455208 \n", "L 95.143143 199.300994 \n", "L 95.440664 203.831217 \n", "L 95.738184 210.95518 \n", "L 96.035705 223.316834 \n", "L 96.333226 258.463938 \n", "L 96.928267 216.106552 \n", "L 97.225788 206.802664 \n", "L 97.820829 197.322977 \n", "L 98.11835 195.058316 \n", "L 98.41587 193.975194 \n", "L 98.713391 193.965678 \n", "L 99.010912 195.033458 \n", "L 99.308432 197.295437 \n", "L 99.605953 201.037089 \n", "L 99.903474 206.889537 \n", "L 100.200994 216.462114 \n", "L 100.796036 252.369131 \n", "L 101.093556 221.351972 \n", "L 101.391077 209.451213 \n", "L 101.986118 197.986293 \n", "L 102.283639 195.149738 \n", "L 102.58116 193.583692 \n", "L 102.87868 193.122338 \n", "L 103.176201 193.725004 \n", "L 103.473722 195.458351 \n", "L 103.771242 198.52614 \n", "L 104.068763 203.379783 \n", "L 104.366284 211.078119 \n", "L 104.663804 224.920097 \n", "L 104.951855 278.314375 \n", "M 104.971501 278.314375 \n", "L 105.258846 228.74958 \n", "L 105.556366 212.715727 \n", "L 106.151408 198.789012 \n", "L 106.448928 195.326545 \n", "L 106.746449 193.256693 \n", "L 107.04397 192.343129 \n", "L 107.34149 192.498619 \n", "L 107.639011 193.745143 \n", "L 107.936532 196.223437 \n", "L 108.234052 200.262112 \n", "L 108.531573 206.596204 \n", "L 108.829093 217.195484 \n", "L 109.126614 241.333357 \n", "L 109.424135 240.825849 \n", "L 109.721655 216.84692 \n", "L 110.019176 206.172088 \n", "L 110.614217 195.57171 \n", "L 110.911738 192.970412 \n", "L 111.209259 191.599719 \n", "L 111.506779 191.320697 \n", "L 111.8043 192.113086 \n", "L 112.101821 194.066477 \n", "L 112.399341 197.42142 \n", "L 112.696862 202.708358 \n", "L 112.994383 211.217861 \n", "L 113.291903 227.416567 \n", "L 113.589424 273.008916 \n", "L 113.886945 222.296947 \n", "L 114.184465 208.544765 \n", "L 114.779507 195.8571 \n", "L 115.077027 192.690986 \n", "L 115.374548 190.855421 \n", "L 115.672069 190.151571 \n", "L 115.969589 190.516983 \n", "L 116.26711 191.997616 \n", "L 116.564631 194.768131 \n", "L 116.862151 199.222608 \n", "L 117.159672 206.264444 \n", "L 117.457193 218.514893 \n", "L 117.754713 253.15192 \n", "L 118.349755 211.342011 \n", "L 118.647275 201.958129 \n", "L 119.242317 192.36724 \n", "L 119.539837 190.059286 \n", "L 119.837358 188.940397 \n", "L 120.134879 188.904207 \n", "L 120.432399 189.957783 \n", "L 120.72992 192.224693 \n", "L 121.027441 196.004571 \n", "L 121.324961 201.964159 \n", "L 121.622482 211.83493 \n", "L 121.920003 232.924716 \n", "L 122.217523 242.578866 \n", "L 122.515044 214.603116 \n", "L 122.812565 203.136848 \n", "L 123.407606 191.918388 \n", "L 123.705127 189.136588 \n", "L 124.002647 187.61747 \n", "L 124.300168 187.208169 \n", "L 124.597689 187.880127 \n", "L 124.895209 189.716416 \n", "L 125.19273 192.949994 \n", "L 125.490251 198.09745 \n", "L 125.787771 206.410102 \n", "L 126.085292 222.145919 \n", "L 126.382813 275.373459 \n", "L 126.680333 218.259834 \n", "L 126.977854 204.157564 \n", "L 127.572895 191.212843 \n", "L 127.870416 187.97312 \n", "L 128.167936 186.082163 \n", "L 128.465457 185.33899 \n", "L 128.762978 185.682705 \n", "L 129.060498 187.164705 \n", "L 129.358019 189.971837 \n", "L 129.65554 194.526516 \n", "L 129.95306 201.812218 \n", "L 130.250581 214.794299 \n", "L 130.548102 257.565156 \n", "L 130.845622 221.850276 \n", "L 131.143143 204.643682 \n", "L 131.738184 190.031951 \n", "L 132.035705 186.389198 \n", "L 132.333226 184.183929 \n", "L 132.630746 183.170182 \n", "L 132.928267 183.260433 \n", "L 133.225788 184.484017 \n", "L 133.523308 187.000302 \n", "L 133.820829 191.181333 \n", "L 134.11835 197.879655 \n", "L 134.41587 209.517995 \n", "L 134.713391 240.363224 \n", "L 135.605953 194.055749 \n", "L 136.200994 184.098282 \n", "L 136.498515 181.694174 \n", "L 136.796036 180.522629 \n", "L 137.093556 180.481846 \n", "L 137.391077 181.593692 \n", "L 137.688598 184.013619 \n", "L 137.986118 188.112177 \n", "L 138.283639 194.743389 \n", "L 138.58116 206.341135 \n", "L 138.87868 237.331963 \n", "L 139.771242 190.603947 \n", "L 140.366284 180.651339 \n", "L 140.663804 178.277282 \n", "L 140.961325 177.16504 \n", "L 141.258846 177.225749 \n", "L 141.556366 178.503436 \n", "L 141.853887 181.19611 \n", "L 142.151408 185.769378 \n", "L 142.448928 193.345886 \n", "L 142.746449 207.551651 \n", "L 142.999307 278.314375 \n", "M 143.088826 278.314375 \n", "L 143.34149 207.912161 \n", "L 143.639011 192.502878 \n", "L 144.234052 178.782016 \n", "L 144.531573 175.427317 \n", "L 144.829093 173.554198 \n", "L 145.126614 172.9804 \n", "L 145.424135 173.696301 \n", "L 145.721655 175.858463 \n", "L 146.019176 179.880443 \n", "L 146.316697 186.766185 \n", "L 146.614217 199.614465 \n", "L 146.911738 246.313648 \n", "L 147.209259 204.536422 \n", "L 147.506779 187.629505 \n", "L 147.8043 178.736426 \n", "L 148.101821 173.268917 \n", "L 148.399341 169.957616 \n", "L 148.696862 168.340406 \n", "L 148.994383 168.301718 \n", "L 149.291903 169.983078 \n", "L 149.589424 173.881088 \n", "L 149.886945 181.332502 \n", "L 150.184465 197.203207 \n", "L 150.481986 232.03604 \n", "L 150.779507 188.306147 \n", "L 151.077027 174.865687 \n", "L 151.374548 167.647163 \n", "L 151.672069 163.963543 \n", "L 151.969589 163.409279 \n", "L 152.26711 166.996301 \n", "L 152.564631 179.979592 \n", "L 152.862151 200.684642 \n", "L 153.159672 159.503912 \n", "L 153.754713 130.104566 \n", "L 154.349755 112.584224 \n", "L 155.242317 94.02706 \n", "L 156.134879 80.309913 \n", "L 157.027441 69.606674 \n", "L 157.920003 61.077505 \n", "L 158.812565 54.246756 \n", "L 159.705127 48.807073 \n", "L 160.597689 44.538673 \n", "L 161.490251 41.269688 \n", "L 162.382813 38.854036 \n", "L 163.275374 37.158086 \n", "L 164.167936 36.052739 \n", "L 165.060498 35.409918 \n", "L 165.95306 35.10342 \n", "L 167.143143 35.013974 \n", "L 172.498515 35.080905 \n", "L 175.771242 35.080525 \n", "L 180.234052 35.095137 \n", "L 184.994383 35.098475 \n", "L 190.349755 35.074769 \n", "L 203.143143 35.105544 \n", "L 215.04397 35.0919 \n", "L 220.696862 35.112356 \n", "L 231.705127 35.095418 \n", "L 235.572895 35.086872 \n", "L 238.845622 35.112435 \n", "L 241.225788 35.041582 \n", "L 242.11835 35.208456 \n", "L 243.010912 35.642937 \n", "L 243.605953 36.143013 \n", "L 244.200994 36.856086 \n", "L 244.796036 37.820593 \n", "L 245.688598 39.822647 \n", "L 246.58116 42.607132 \n", "L 247.473722 46.310782 \n", "L 248.366284 51.08662 \n", "L 249.258846 57.120329 \n", "L 250.151408 64.657961 \n", "L 251.04397 74.057972 \n", "L 251.936532 85.904514 \n", "L 252.829093 101.31122 \n", "L 253.424135 114.764931 \n", "L 254.019176 133.096667 \n", "L 254.316697 146.094187 \n", "L 254.614217 166.066665 \n", "L 254.911738 245.969406 \n", "L 255.209259 174.248614 \n", "L 255.506779 164.80724 \n", "L 255.8043 162.235374 \n", "L 256.101821 163.174551 \n", "L 256.399341 166.902857 \n", "L 256.696862 173.779434 \n", "L 256.994383 185.880617 \n", "L 257.291903 215.934786 \n", "L 257.589424 204.342183 \n", "L 257.886945 185.134211 \n", "L 258.184465 176.816611 \n", "L 258.481986 172.511179 \n", "L 258.779507 170.565419 \n", "L 259.077027 170.376877 \n", "L 259.374548 171.742397 \n", "L 259.672069 174.7108 \n", "L 259.969589 179.620674 \n", "L 260.26711 187.395306 \n", "L 260.564631 200.923533 \n", "L 260.862151 243.215497 \n", "L 261.159672 210.051144 \n", "L 261.457193 193.579119 \n", "L 261.754713 185.520424 \n", "L 262.052234 180.910121 \n", "L 262.349755 178.378862 \n", "L 262.647275 177.386583 \n", "L 262.944796 177.713541 \n", "L 263.242317 179.322023 \n", "L 263.539837 182.337049 \n", "L 263.837358 187.11953 \n", "L 264.134879 194.544411 \n", "L 264.432399 207.182426 \n", "L 264.72992 241.600936 \n", "L 265.324961 202.054326 \n", "L 265.622482 193.267184 \n", "L 265.920003 188.110338 \n", "L 266.217523 185.067195 \n", "L 266.515044 183.542893 \n", "L 266.812565 183.279801 \n", "L 267.110085 184.195612 \n", "L 267.407606 186.342138 \n", "L 267.705127 189.931483 \n", "L 268.002647 195.462405 \n", "L 268.300168 204.159775 \n", "L 268.597689 220.177409 \n", "L 268.892918 278.314375 \n", "M 268.897417 278.314375 \n", "L 269.19273 217.975149 \n", "L 269.490251 204.254554 \n", "L 269.787771 196.848072 \n", "L 270.085292 192.351465 \n", "L 270.382813 189.686762 \n", "L 270.680333 188.401044 \n", "L 270.977854 188.297705 \n", "L 271.275374 189.326434 \n", "L 271.572895 191.559658 \n", "L 271.870416 195.227607 \n", "L 272.167936 200.854695 \n", "L 272.465457 209.729648 \n", "L 272.762978 226.331221 \n", "L 273.060498 271.843171 \n", "L 273.358019 221.91013 \n", "L 273.65554 208.596802 \n", "L 273.95306 201.28863 \n", "L 274.250581 196.801216 \n", "L 274.548102 194.102922 \n", "L 274.845622 192.755357 \n", "L 275.143143 192.565996 \n", "L 275.440664 193.482816 \n", "L 275.738184 195.570435 \n", "L 276.035705 199.040342 \n", "L 276.333226 204.370555 \n", "L 276.630746 212.706134 \n", "L 276.928267 227.770691 \n", "L 277.058402 278.314375 \n", "M 277.394327 278.314375 \n", "L 277.523308 228.561263 \n", "L 277.820829 213.91511 \n", "L 278.11835 206.078074 \n", "L 278.41587 201.2633 \n", "L 278.713391 198.311609 \n", "L 279.010912 196.73851 \n", "L 279.308432 196.327369 \n", "L 279.605953 197.007428 \n", "L 279.903474 198.821293 \n", "L 280.200994 201.944233 \n", "L 280.498515 206.776886 \n", "L 280.796036 214.245346 \n", "L 281.093556 227.071411 \n", "L 281.391077 264.185389 \n", "L 281.986118 220.056532 \n", "L 282.283639 211.167346 \n", "L 282.58116 205.770405 \n", "L 282.87868 202.408536 \n", "L 283.176201 200.498605 \n", "L 283.473722 199.777737 \n", "L 283.771242 200.144782 \n", "L 284.068763 201.612679 \n", "L 284.366284 204.314226 \n", "L 284.663804 208.567455 \n", "L 284.961325 215.085257 \n", "L 285.258846 225.762141 \n", "L 285.556366 249.218142 \n", "L 285.853887 251.959694 \n", "L 286.151408 227.243332 \n", "L 286.448928 216.654281 \n", "L 287.04397 206.499725 \n", "L 287.34149 204.16061 \n", "L 287.639011 203.063326 \n", "L 287.936532 203.065367 \n", "L 288.234052 204.144891 \n", "L 288.531573 206.391192 \n", "L 288.829093 210.045969 \n", "L 289.126614 215.643805 \n", "L 289.424135 224.489563 \n", "L 289.721655 241.130981 \n", "L 289.976124 278.314375 \n", "M 290.057751 278.314375 \n", "L 290.316697 236.085303 \n", "L 290.614217 222.732409 \n", "L 290.911738 215.315651 \n", "L 291.209259 210.68964 \n", "L 291.506779 207.829334 \n", "L 291.8043 206.295692 \n", "L 292.101821 205.891405 \n", "L 292.399341 206.554726 \n", "L 292.696862 208.331939 \n", "L 292.994383 211.397806 \n", "L 293.291903 216.146326 \n", "L 293.589424 223.480517 \n", "L 293.886945 236.02009 \n", "L 294.184465 270.919216 \n", "L 294.779507 229.728896 \n", "L 295.077027 220.628618 \n", "L 295.672069 211.598657 \n", "L 295.969589 209.565431 \n", "L 296.26711 208.715468 \n", "L 296.564631 208.940032 \n", "L 296.862151 210.242271 \n", "L 297.159672 212.738605 \n", "L 297.457193 216.713892 \n", "L 297.754713 222.798086 \n", "L 298.052234 232.596976 \n", "L 298.647275 269.135883 \n", "L 298.944796 238.251556 \n", "L 299.242317 226.570548 \n", "L 299.837358 215.561502 \n", "L 300.134879 212.952996 \n", "L 300.432399 211.613358 \n", "L 300.72992 211.375698 \n", "L 301.027441 212.197887 \n", "L 301.324961 214.144204 \n", "L 301.622482 217.41389 \n", "L 301.920003 222.448215 \n", "L 302.217523 230.2769 \n", "L 302.515044 244.06497 \n", "L 302.720338 278.314375 \n", "M 302.916568 278.314375 \n", "L 303.110085 249.685388 \n", "L 303.407606 233.486621 \n", "L 303.705127 225.037203 \n", "L 304.300168 216.537897 \n", "L 304.597689 214.653495 \n", "L 304.895209 213.924383 \n", "L 305.19273 214.257665 \n", "L 305.490251 215.668607 \n", "L 305.787771 218.287215 \n", "L 306.085292 222.420668 \n", "L 306.382813 228.750122 \n", "L 306.680333 239.053121 \n", "L 306.977854 260.985609 \n", "L 307.275374 268.791163 \n", "L 307.572895 242.01715 \n", "L 307.870416 230.986614 \n", "L 308.465457 220.408101 \n", "L 308.762978 217.904754 \n", "L 309.060498 216.644366 \n", "L 309.358019 216.472522 \n", "L 309.65554 217.354971 \n", "L 309.95306 219.362878 \n", "L 310.250581 222.704438 \n", "L 310.548102 227.83796 \n", "L 310.845622 235.83961 \n", "L 311.143143 250.086586 \n", "L 311.28416 278.314375 \n", "M 311.607124 278.314375 \n", "L 311.738184 253.648969 \n", "L 312.035705 238.053837 \n", "L 312.333226 229.794681 \n", "L 312.928267 221.444472 \n", "L 313.225788 219.596241 \n", "L 313.523308 218.892005 \n", "L 313.820829 219.242847 \n", "L 314.11835 220.666258 \n", "L 314.41587 223.293626 \n", "L 314.713391 227.433119 \n", "L 315.010912 233.766888 \n", "L 315.308432 244.074493 \n", "L 315.605953 266.025347 \n", "L 315.903474 273.748442 \n", "L 316.200994 247.000628 \n", "L 316.498515 235.967389 \n", "L 317.093556 225.368766 \n", "L 317.391077 222.850013 \n", "L 317.688598 221.570151 \n", "L 317.986118 221.373672 \n", "L 318.283639 222.224393 \n", "L 318.58116 224.189978 \n", "L 318.87868 227.471692 \n", "L 319.176201 232.512003 \n", "L 319.473722 240.341154 \n", "L 319.771242 254.123278 \n", "L 319.916422 278.314375 \n", "M 320.240568 278.314375 \n", "L 320.366284 259.73977 \n", "L 320.663804 243.52121 \n", "L 320.961325 235.050507 \n", "L 321.556366 226.494481 \n", "L 321.853887 224.57204 \n", "L 322.151408 223.795973 \n", "L 322.448928 224.070204 \n", "L 322.746449 225.404597 \n", "L 323.04397 227.919153 \n", "L 323.34149 231.90014 \n", "L 323.639011 237.976279 \n", "L 323.936532 247.744756 \n", "L 324.420623 278.314375 \n", "M 324.592662 278.314375 \n", "L 324.829093 253.519276 \n", "L 325.126614 241.768226 \n", "L 325.721655 230.652172 \n", "L 326.019176 227.982875 \n", "L 326.316697 226.571644 \n", "L 326.614217 226.247005 \n", "L 326.911738 226.960055 \n", "L 327.209259 228.763554 \n", "L 327.506779 231.834631 \n", "L 327.8043 236.565216 \n", "L 328.101821 243.846506 \n", "L 328.399341 256.242789 \n", "L 328.593788 278.314375 \n", "M 328.863352 278.314375 \n", "L 329.291903 250.377812 \n", "L 329.589424 241.147269 \n", "L 330.184465 231.922837 \n", "L 330.481986 229.785204 \n", "L 330.779507 228.814645 \n", "L 331.077027 228.893807 \n", "L 331.374548 230.013132 \n", "L 331.672069 232.266902 \n", "L 331.969589 235.895444 \n", "L 332.26711 241.421368 \n", "L 332.564631 250.104565 \n", "L 332.862151 266.237181 \n", "L 332.931066 278.314375 \n", "M 333.373953 278.314375 \n", "L 333.457193 262.751523 \n", "L 333.754713 248.982708 \n", "L 334.349755 236.574843 \n", "L 334.647275 233.559557 \n", "L 334.944796 231.859338 \n", "L 335.242317 231.264132 \n", "L 335.539837 231.697493 \n", "L 335.837358 233.183433 \n", "L 336.134879 235.856471 \n", "L 336.432399 240.025123 \n", "L 336.72992 246.367464 \n", "L 337.027441 256.644065 \n", "L 337.324206 278.314375 \n", "M 337.718042 278.314375 \n", "L 337.920003 259.89199 \n", "L 338.217523 248.781367 \n", "L 338.812565 238.086237 \n", "L 339.110085 235.51127 \n", "L 339.407606 234.160836 \n", "L 339.705127 233.872911 \n", "L 340.002647 234.601973 \n", "L 340.300168 236.400041 \n", "L 340.597689 239.438614 \n", "L 340.895209 244.094222 \n", "L 341.19273 251.213653 \n", "L 341.490251 263.178808 \n", "L 341.63787 278.314375 \n", "M 342.09432 278.314375 \n", "L 342.382813 259.050245 \n", "L 342.680333 249.503083 \n", "L 343.275374 239.979623 \n", "L 343.572895 237.725703 \n", "L 343.870416 236.634057 \n", "L 344.167936 236.575007 \n", "L 344.465457 237.525005 \n", "L 344.762978 239.557122 \n", "L 345.060498 242.87219 \n", "L 345.358019 247.903575 \n", "L 345.65554 255.648598 \n", "L 345.95306 269.115644 \n", "L 346.014816 278.314375 \n", "M 346.532885 278.314375 \n", "L 346.548102 276.421427 \n", "L 346.845622 259.667195 \n", "L 347.143143 251.004211 \n", "L 347.738184 242.194946 \n", "L 348.035705 240.13827 \n", "L 348.333226 239.202268 \n", "L 348.630746 239.276247 \n", "L 348.928267 240.349278 \n", "L 349.225788 242.505935 \n", "L 349.523308 245.962399 \n", "L 349.820829 251.181533 \n", "L 350.11835 259.240958 \n", "L 350.44005 278.314375 \n", "M 351.004746 278.314375 \n", "L 351.010912 277.165345 \n", "L 351.308432 261.521987 \n", "L 351.605953 253.204444 \n", "L 352.200994 244.658631 \n", "L 352.498515 242.659679 \n", "L 352.796036 241.756936 \n", "L 353.093556 241.845738 \n", "L 353.391077 242.917337 \n", "L 353.688598 245.055603 \n", "L 353.986118 248.47228 \n", "L 354.283639 253.617803 \n", "L 354.58116 261.531758 \n", "L 354.895789 278.314375 \n", "M 355.518589 278.314375 \n", "L 355.771242 264.570926 \n", "L 356.068763 256.051368 \n", "L 356.663804 247.266504 \n", "L 356.961325 245.162394 \n", "L 357.258846 244.14866 \n", "L 357.556366 244.112952 \n", "L 357.853887 245.037526 \n", "L 358.151408 246.992549 \n", "L 358.448928 250.164593 \n", "L 358.746449 254.948802 \n", "L 359.04397 262.230377 \n", "L 359.375635 278.314375 \n", "M 360.087106 278.314375 \n", "L 360.234052 268.90305 \n", "L 360.531573 259.489186 \n", "L 361.126614 249.864155 \n", "L 361.424135 247.469343 \n", "L 361.721655 246.18585 \n", "L 362.019176 245.878377 \n", "L 362.316697 246.509366 \n", "L 362.614217 248.124756 \n", "L 362.911738 250.871836 \n", "L 363.209259 255.06597 \n", "L 363.506779 261.386339 \n", "L 363.897608 278.314375 \n", "M 364.658429 278.314375 \n", "L 364.696862 274.750088 \n", "L 364.994383 263.414662 \n", "L 365.589424 252.229421 \n", "L 365.886945 249.353527 \n", "L 366.184465 247.650806 \n", "L 366.481986 246.945262 \n", "L 366.779507 247.169881 \n", "L 367.077027 248.340523 \n", "L 367.374548 250.561901 \n", "L 367.672069 254.070995 \n", "L 367.969589 259.363706 \n", "L 368.26711 267.60156 \n", "L 368.480393 278.314375 \n", "L 368.480393 278.314375 \n", "\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_32\">\n", " <path clip-path=\"url(#pcc10367391)\" d=\"M 64.200994 164.155352 \n", "L 64.498515 164.39521 \n", "L 64.796036 165.125375 \n", "L 65.093556 166.379563 \n", "L 65.688598 170.758099 \n", "L 66.283639 178.787273 \n", "L 66.58116 185.248988 \n", "L 66.87868 195.130793 \n", "L 67.473722 234.219803 \n", "L 67.771242 201.254749 \n", "L 68.068763 188.798294 \n", "L 68.663804 175.922355 \n", "L 69.258846 169.182584 \n", "L 69.853887 165.577706 \n", "L 70.151408 164.635214 \n", "L 70.448928 164.194676 \n", "L 70.746449 164.236485 \n", "L 71.04397 164.762612 \n", "L 71.34149 165.79696 \n", "L 71.639011 167.389906 \n", "L 72.234052 172.661387 \n", "L 72.531573 176.742183 \n", "L 72.829093 182.353433 \n", "L 73.126614 190.561963 \n", "L 73.424135 204.606629 \n", "L 73.721655 256.493347 \n", "L 74.019176 209.32651 \n", "L 74.316697 192.859152 \n", "L 74.911738 177.776663 \n", "L 75.506779 170.18919 \n", "L 76.101821 166.074716 \n", "L 76.399341 164.928754 \n", "L 76.696862 164.30101 \n", "L 76.994383 164.162934 \n", "L 77.291903 164.50866 \n", "L 77.589424 165.353909 \n", "L 77.886945 166.738931 \n", "L 78.481986 171.470255 \n", "L 79.077027 180.158218 \n", "L 79.374548 187.290635 \n", "L 79.672069 198.651094 \n", "L 79.969589 224.621701 \n", "L 80.26711 219.835864 \n", "L 80.564631 197.078651 \n", "L 81.159672 179.523798 \n", "L 81.754713 171.117323 \n", "L 82.349755 166.544613 \n", "L 82.647275 165.223731 \n", "L 82.944796 164.439529 \n", "L 83.242317 164.155352 \n", "L 83.539837 164.358782 \n", "L 83.837358 165.059289 \n", "L 84.134879 166.289996 \n", "L 84.432399 168.114261 \n", "L 85.027441 174.050888 \n", "L 85.324961 178.673898 \n", "L 85.622482 185.162514 \n", "L 85.920003 195.118242 \n", "L 86.515044 232.743194 \n", "L 86.812565 200.736353 \n", "L 87.110085 188.410988 \n", "L 87.705127 175.635679 \n", "L 88.300168 168.967604 \n", "L 88.895209 165.445254 \n", "L 89.19273 164.553367 \n", "L 89.490251 164.172395 \n", "L 89.787771 164.285374 \n", "L 90.085292 164.897877 \n", "L 90.382813 166.039054 \n", "L 90.680333 167.767393 \n", "L 91.275374 173.459629 \n", "L 91.572895 177.898026 \n", "L 91.870416 184.094227 \n", "L 92.167936 193.45975 \n", "L 92.465457 211.037701 \n", "L 92.762978 243.834682 \n", "L 93.060498 202.743148 \n", "L 93.358019 189.427714 \n", "L 93.95306 176.050628 \n", "L 94.548102 169.152057 \n", "L 95.143143 165.504648 \n", "L 95.440664 164.569623 \n", "L 95.738184 164.154042 \n", "L 96.035705 164.23917 \n", "L 96.333226 164.829472 \n", "L 96.630746 165.953447 \n", "L 96.928267 167.669312 \n", "L 97.523308 173.351962 \n", "L 97.820829 177.795963 \n", "L 98.11835 184.010513 \n", "L 98.41587 193.42411 \n", "L 98.713391 211.181416 \n", "L 99.010912 242.268936 \n", "L 99.308432 202.340412 \n", "L 99.605953 189.131545 \n", "L 100.200994 175.830062 \n", "L 100.796036 168.981389 \n", "L 101.391077 165.388292 \n", "L 101.688598 164.485572 \n", "L 101.986118 164.107399 \n", "L 102.283639 164.23661 \n", "L 102.58116 164.879811 \n", "L 102.87868 166.06863 \n", "L 103.176201 167.866177 \n", "L 103.771242 173.802406 \n", "L 104.068763 178.464475 \n", "L 104.366284 185.04494 \n", "L 104.663804 195.226698 \n", "L 105.258846 229.100421 \n", "L 105.556366 199.465341 \n", "L 105.853887 187.496252 \n", "L 106.448928 174.994845 \n", "L 107.04397 168.50873 \n", "L 107.639011 165.180282 \n", "L 107.936532 164.402454 \n", "L 108.234052 164.153058 \n", "L 108.531573 164.42092 \n", "L 108.829093 165.21955 \n", "L 109.126614 166.589808 \n", "L 109.424135 168.608702 \n", "L 110.019176 175.220257 \n", "L 110.316697 180.472265 \n", "L 110.614217 188.085164 \n", "L 110.911738 200.661001 \n", "L 111.209259 234.812546 \n", "L 111.8043 193.94385 \n", "L 112.399341 177.807512 \n", "L 112.994383 169.959319 \n", "L 113.589424 165.825489 \n", "L 113.886945 164.730356 \n", "L 114.184465 164.191465 \n", "L 114.481986 164.183094 \n", "L 114.779507 164.705802 \n", "L 115.077027 165.786515 \n", "L 115.374548 167.484135 \n", "L 115.969589 173.224927 \n", "L 116.26711 177.773676 \n", "L 116.564631 184.199849 \n", "L 116.862151 194.097462 \n", "L 117.457193 232.030996 \n", "L 117.754713 199.806313 \n", "L 118.052234 187.470711 \n", "L 118.647275 174.763495 \n", "L 119.242317 168.247086 \n", "L 119.837358 164.970297 \n", "L 120.134879 164.245466 \n", "L 120.432399 164.069168 \n", "L 120.72992 164.43387 \n", "L 121.027441 165.359109 \n", "L 121.324961 166.89557 \n", "L 121.622482 169.136803 \n", "L 122.217523 176.50962 \n", "L 122.515044 182.495375 \n", "L 122.812565 191.522039 \n", "L 123.110085 208.112513 \n", "L 123.407606 252.55122 \n", "L 123.705127 202.832574 \n", "L 124.002647 188.931975 \n", "L 124.597689 175.307331 \n", "L 125.19273 168.464175 \n", "L 125.787771 165.038305 \n", "L 126.085292 164.276321 \n", "L 126.382813 164.082682 \n", "L 126.680333 164.449073 \n", "L 126.977854 165.396228 \n", "L 127.275374 166.978412 \n", "L 127.572895 169.296451 \n", "L 127.870416 172.526894 \n", "L 128.167936 176.989014 \n", "L 128.465457 183.321315 \n", "L 128.762978 193.081198 \n", "L 129.358019 232.926198 \n", "L 129.65554 199.426422 \n", "L 129.95306 186.94608 \n", "L 130.548102 174.222645 \n", "L 131.143143 167.823351 \n", "L 131.738184 164.77437 \n", "L 132.035705 164.213421 \n", "L 132.333226 164.243935 \n", "L 132.630746 164.870362 \n", "L 132.928267 166.13081 \n", "L 133.225788 168.106074 \n", "L 133.523308 170.941849 \n", "L 133.820829 174.899439 \n", "L 134.11835 180.482887 \n", "L 134.41587 188.83112 \n", "L 134.713391 203.533432 \n", "L 135.006503 278.314375 \n", "M 135.015406 278.314375 \n", "L 135.308432 204.973 \n", "L 135.605953 189.462083 \n", "L 136.200994 175.055838 \n", "L 136.796036 168.079938 \n", "L 137.391077 164.797458 \n", "L 137.688598 164.200023 \n", "L 137.986118 164.242498 \n", "L 138.283639 164.933033 \n", "L 138.58116 166.320105 \n", "L 138.87868 168.505142 \n", "L 139.176201 171.673891 \n", "L 139.473722 176.171461 \n", "L 139.771242 182.706789 \n", "L 140.068763 193.083732 \n", "L 140.366284 215.041036 \n", "L 140.663804 222.216032 \n", "L 140.961325 195.276928 \n", "L 141.258846 183.813922 \n", "L 141.853887 171.931418 \n", "L 142.448928 166.222429 \n", "L 142.746449 164.767299 \n", "L 143.04397 164.083944 \n", "L 143.34149 164.138127 \n", "L 143.639011 164.947413 \n", "L 143.936532 166.585746 \n", "L 144.234052 169.206436 \n", "L 144.531573 173.101514 \n", "L 144.829093 178.860054 \n", "L 145.126614 187.893096 \n", "L 145.424135 205.259545 \n", "L 145.721655 237.650311 \n", "L 146.019176 196.720954 \n", "L 146.316697 183.519085 \n", "L 146.911738 170.776482 \n", "L 147.506779 165.262546 \n", "L 147.8043 164.204383 \n", "L 148.101821 164.162973 \n", "L 148.399341 165.188596 \n", "L 148.696862 167.455186 \n", "L 148.994383 171.344446 \n", "L 149.291903 177.708907 \n", "L 149.589424 188.924963 \n", "L 149.886945 218.434699 \n", "L 150.184465 203.852823 \n", "L 150.481986 183.431657 \n", "L 150.779507 173.655537 \n", "L 151.077027 167.962417 \n", "L 151.374548 164.89908 \n", "L 151.672069 164.182054 \n", "L 151.969589 166.293652 \n", "L 152.26711 173.260832 \n", "L 152.564631 196.629736 \n", "L 152.862151 183.301548 \n", "L 153.159672 157.731723 \n", "L 153.754713 132.900615 \n", "L 154.349755 117.139511 \n", "L 155.242317 99.989183 \n", "L 156.134879 86.980215 \n", "L 157.027441 76.546723 \n", "L 158.217523 65.432666 \n", "L 159.407606 56.71321 \n", "L 160.597689 49.87604 \n", "L 161.787771 44.596164 \n", "L 162.680333 41.517738 \n", "L 163.572895 39.107089 \n", "L 164.465457 37.294264 \n", "L 165.358019 36.011952 \n", "L 166.250581 35.191263 \n", "L 167.143143 34.758485 \n", "L 168.035705 34.633123 \n", "L 168.928267 34.72791 \n", "L 170.713391 35.215433 \n", "L 172.200994 35.543093 \n", "L 173.391077 35.587386 \n", "L 174.87868 35.365322 \n", "L 178.151408 34.668212 \n", "L 179.639011 34.667415 \n", "L 181.126614 34.913764 \n", "L 184.399341 35.570417 \n", "L 185.886945 35.550518 \n", "L 187.374548 35.291952 \n", "L 190.349755 34.682148 \n", "L 191.837358 34.651013 \n", "L 193.324961 34.860986 \n", "L 197.19273 35.58672 \n", "L 198.680333 35.519111 \n", "L 200.465457 35.164941 \n", "L 202.845622 34.690958 \n", "L 204.333226 34.647151 \n", "L 205.820829 34.844743 \n", "L 209.986118 35.593144 \n", "L 211.473722 35.4895 \n", "L 213.556366 35.042429 \n", "L 215.639011 34.667929 \n", "L 217.126614 34.662206 \n", "L 218.614217 34.893138 \n", "L 222.184465 35.582019 \n", "L 223.672069 35.531688 \n", "L 225.457193 35.178578 \n", "L 227.837358 34.689028 \n", "L 229.324961 34.651542 \n", "L 230.812565 34.876205 \n", "L 234.382813 35.59172 \n", "L 235.572895 35.530063 \n", "L 237.060498 35.187489 \n", "L 239.143143 34.664603 \n", "L 240.035705 34.656229 \n", "L 240.928267 34.907701 \n", "L 241.523308 35.261749 \n", "L 242.11835 35.792284 \n", "L 243.010912 36.966635 \n", "L 243.903474 38.656885 \n", "L 244.796036 40.930363 \n", "L 245.688598 43.85599 \n", "L 246.58116 47.509287 \n", "L 247.473722 51.978853 \n", "L 248.366284 57.37544 \n", "L 249.258846 63.845971 \n", "L 250.151408 71.597522 \n", "L 251.04397 80.943149 \n", "L 251.936532 92.402283 \n", "L 252.829093 106.96705 \n", "L 253.424135 119.460028 \n", "L 254.019176 136.144448 \n", "L 254.316697 147.623528 \n", "L 254.614217 164.155352 \n", "L 254.911738 202.506031 \n", "L 255.506779 170.146716 \n", "L 255.8043 165.214301 \n", "L 256.101821 164.148704 \n", "L 256.399341 165.647363 \n", "L 256.696862 169.497298 \n", "L 256.994383 176.258026 \n", "L 257.291903 188.162427 \n", "L 257.589424 218.965223 \n", "L 258.481986 175.331554 \n", "L 258.779507 169.907243 \n", "L 259.077027 166.597671 \n", "L 259.374548 164.75351 \n", "L 259.672069 164.07536 \n", "L 259.969589 164.433462 \n", "L 260.26711 165.809899 \n", "L 260.564631 168.293376 \n", "L 260.862151 172.121563 \n", "L 261.159672 177.819947 \n", "L 261.457193 186.669511 \n", "L 261.754713 203.101447 \n", "L 262.052234 249.886384 \n", "L 262.349755 198.529908 \n", "L 262.647275 184.783434 \n", "L 263.242317 171.846663 \n", "L 263.837358 166.050639 \n", "L 264.134879 164.658913 \n", "L 264.432399 164.064417 \n", "L 264.72992 164.210379 \n", "L 265.027441 165.092963 \n", "L 265.324961 166.760704 \n", "L 265.622482 169.329793 \n", "L 265.920003 173.026379 \n", "L 266.217523 178.295186 \n", "L 266.515044 186.125426 \n", "L 266.812565 199.445275 \n", "L 267.110085 241.226201 \n", "L 267.407606 207.510677 \n", "L 267.705127 190.152913 \n", "L 268.300168 175.04118 \n", "L 268.895209 167.979601 \n", "L 269.19273 165.984533 \n", "L 269.490251 164.752906 \n", "L 269.787771 164.196987 \n", "L 270.085292 164.277287 \n", "L 270.382813 164.992659 \n", "L 270.680333 166.380223 \n", "L 270.977854 168.525091 \n", "L 271.275374 171.585748 \n", "L 271.572895 175.853856 \n", "L 271.870416 181.909986 \n", "L 272.167936 191.134162 \n", "L 272.465457 208.409119 \n", "L 272.762978 244.146262 \n", "L 273.060498 201.053498 \n", "L 273.358019 187.653871 \n", "L 273.95306 174.444125 \n", "L 274.548102 167.910156 \n", "L 275.143143 164.802782 \n", "L 275.440664 164.214282 \n", "L 275.738184 164.208375 \n", "L 276.035705 164.78151 \n", "L 276.333226 165.961504 \n", "L 276.630746 167.814039 \n", "L 276.928267 170.459782 \n", "L 277.225788 174.112962 \n", "L 277.523308 179.173754 \n", "L 277.820829 186.490432 \n", "L 278.11835 198.382823 \n", "L 278.41587 227.617151 \n", "L 278.713391 215.209124 \n", "L 279.010912 194.455835 \n", "L 279.605953 177.733948 \n", "L 280.200994 169.798182 \n", "L 280.796036 165.709785 \n", "L 281.093556 164.665331 \n", "L 281.391077 164.191915 \n", "L 281.688598 164.26308 \n", "L 281.986118 164.880023 \n", "L 282.283639 166.071921 \n", "L 282.58116 167.902339 \n", "L 283.176201 174.017804 \n", "L 283.473722 178.863923 \n", "L 283.771242 185.770918 \n", "L 284.068763 196.675277 \n", "L 284.366284 220.411942 \n", "L 284.663804 221.986725 \n", "L 284.961325 197.227807 \n", "L 285.556366 179.151303 \n", "L 286.151408 170.700481 \n", "L 286.746449 166.218099 \n", "L 287.04397 164.975376 \n", "L 287.34149 164.289354 \n", "L 287.639011 164.124165 \n", "L 287.936532 164.469855 \n", "L 288.234052 165.340512 \n", "L 288.531573 166.777106 \n", "L 289.126614 171.709965 \n", "L 289.721655 180.852087 \n", "L 290.019176 188.478031 \n", "L 290.316697 201.012093 \n", "L 290.614217 234.544203 \n", "L 291.209259 194.67134 \n", "L 291.8043 178.454638 \n", "L 292.399341 170.520225 \n", "L 292.994383 166.235301 \n", "L 293.291903 165.028446 \n", "L 293.589424 164.345764 \n", "L 293.886945 164.153212 \n", "L 294.184465 164.43978 \n", "L 294.481986 165.215543 \n", "L 294.779507 166.513587 \n", "L 295.374548 170.971107 \n", "L 295.969589 179.056797 \n", "L 296.26711 185.527933 \n", "L 296.564631 195.384205 \n", "L 297.159672 235.60695 \n", "L 297.457193 201.930954 \n", "L 297.754713 189.389999 \n", "L 298.349755 176.442527 \n", "L 298.944796 169.615173 \n", "L 299.539837 165.861864 \n", "L 299.837358 164.811328 \n", "L 300.134879 164.232707 \n", "L 300.432399 164.098659 \n", "L 300.72992 164.400554 \n", "L 301.027441 165.147134 \n", "L 301.324961 166.366054 \n", "L 301.920003 170.46156 \n", "L 302.515044 177.662727 \n", "L 302.812565 183.20319 \n", "L 303.110085 191.161374 \n", "L 303.407606 204.363465 \n", "L 303.705127 243.410796 \n", "L 304.002647 213.745666 \n", "L 304.300168 195.817778 \n", "L 304.895209 179.996549 \n", "L 305.490251 171.976045 \n", "L 306.085292 167.366751 \n", "L 306.680333 164.91818 \n", "L 306.977854 164.340809 \n", "L 307.275374 164.155012 \n", "L 307.572895 164.350359 \n", "L 307.870416 164.929735 \n", "L 308.167936 165.909842 \n", "L 308.762978 169.226723 \n", "L 309.358019 174.904001 \n", "L 309.95306 184.608398 \n", "L 310.250581 192.497422 \n", "L 310.548102 205.411866 \n", "L 310.845622 241.338591 \n", "L 311.440664 198.037568 \n", "L 312.035705 181.832235 \n", "L 312.630746 173.519768 \n", "L 313.225788 168.561439 \n", "L 313.820829 165.664717 \n", "L 314.11835 164.815145 \n", "L 314.41587 164.317833 \n", "L 314.713391 164.155049 \n", "L 315.010912 164.31988 \n", "L 315.308432 164.815432 \n", "L 315.605953 165.655255 \n", "L 316.200994 168.486749 \n", "L 316.796036 173.257417 \n", "L 317.391077 181.073868 \n", "L 317.688598 186.991781 \n", "L 317.986118 195.544635 \n", "L 318.283639 210.241337 \n", "L 318.58116 277.780098 \n", "L 318.87868 212.450084 \n", "L 319.176201 196.618556 \n", "L 319.771242 181.552629 \n", "L 320.366284 173.515326 \n", "L 320.961325 168.621131 \n", "L 321.556366 165.709393 \n", "L 321.853887 164.839923 \n", "L 322.151408 164.320372 \n", "L 322.448928 164.136727 \n", "L 322.746449 164.285711 \n", "L 323.04397 164.774312 \n", "L 323.34149 165.620599 \n", "L 323.936532 168.530151 \n", "L 324.531573 173.539318 \n", "L 325.126614 181.984483 \n", "L 325.424135 188.603682 \n", "L 325.721655 198.654954 \n", "L 326.316697 235.81667 \n", "L 326.614217 204.040158 \n", "L 326.911738 191.643856 \n", "L 327.506779 178.538392 \n", "L 328.101821 171.337145 \n", "L 328.696862 167.061816 \n", "L 329.291903 164.76379 \n", "L 329.589424 164.232531 \n", "L 329.886945 164.086921 \n", "L 330.184465 164.325195 \n", "L 330.481986 164.959068 \n", "L 330.779507 166.015368 \n", "L 331.374548 169.606857 \n", "L 331.969589 175.906043 \n", "L 332.26711 180.665647 \n", "L 332.564631 187.278519 \n", "L 332.862151 197.386508 \n", "L 333.457193 233.191585 \n", "L 333.754713 202.307377 \n", "L 334.052234 190.076741 \n", "L 334.647275 177.190727 \n", "L 335.242317 170.240013 \n", "L 335.837358 166.290998 \n", "L 336.134879 165.125588 \n", "L 336.432399 164.423342 \n", "L 336.72992 164.158031 \n", "L 337.027441 164.321624 \n", "L 337.324961 164.922912 \n", "L 337.622482 165.988883 \n", "L 338.217523 169.746515 \n", "L 338.812565 176.520043 \n", "L 339.110085 181.757712 \n", "L 339.407606 189.242248 \n", "L 339.705127 201.381643 \n", "L 340.002647 231.995545 \n", "L 340.895209 186.338287 \n", "L 341.490251 174.982565 \n", "L 342.085292 168.799543 \n", "L 342.680333 165.448383 \n", "L 342.977854 164.572366 \n", "L 343.275374 164.169511 \n", "L 343.572895 164.224314 \n", "L 343.870416 164.740555 \n", "L 344.167936 165.741912 \n", "L 344.465457 167.276204 \n", "L 345.060498 172.323383 \n", "L 345.65554 181.484308 \n", "L 345.95306 189.075403 \n", "L 346.250581 201.503152 \n", "L 346.548102 234.247712 \n", "L 347.143143 195.458397 \n", "L 347.738184 179.049379 \n", "L 348.333226 170.95938 \n", "L 348.928267 166.51085 \n", "L 349.225788 165.216967 \n", "L 349.523308 164.443286 \n", "L 349.820829 164.155352 \n", "L 350.11835 164.341505 \n", "L 350.41587 165.010735 \n", "L 350.713391 166.194282 \n", "L 351.010912 167.951631 \n", "L 351.605953 173.659466 \n", "L 351.903474 178.077429 \n", "L 352.200994 184.218843 \n", "L 352.498515 193.449796 \n", "L 352.796036 210.54702 \n", "L 353.093556 248.568685 \n", "L 353.391077 203.747567 \n", "L 353.688598 190.127866 \n", "L 354.283639 176.540972 \n", "L 354.87868 169.512019 \n", "L 355.473722 165.730545 \n", "L 355.771242 164.718252 \n", "L 356.068763 164.214668 \n", "L 356.366284 164.197522 \n", "L 356.663804 164.666564 \n", "L 356.961325 165.643502 \n", "L 357.258846 167.176109 \n", "L 357.853887 172.301141 \n", "L 358.448928 181.737088 \n", "L 358.746449 189.671629 \n", "L 359.04397 202.997505 \n", "L 359.34149 244.22328 \n", "L 359.639011 211.216279 \n", "L 359.936532 193.648138 \n", "L 360.531573 178.065734 \n", "L 361.126614 170.314951 \n", "L 361.721655 166.122145 \n", "L 362.019176 164.95263 \n", "L 362.316697 164.308519 \n", "L 362.614217 164.160121 \n", "L 362.911738 164.501012 \n", "L 363.209259 165.34683 \n", "L 363.506779 166.738221 \n", "L 364.101821 171.505011 \n", "L 364.696862 180.287527 \n", "L 364.994383 187.528285 \n", "L 365.291903 199.14663 \n", "L 365.589424 226.565192 \n", "L 365.886945 218.202656 \n", "L 366.184465 196.427069 \n", "L 366.779507 179.208602 \n", "L 367.374548 170.922009 \n", "L 367.969589 166.43099 \n", "L 368.26711 165.14738 \n", "L 368.564631 164.400593 \n", "L 368.564631 164.400593 \n", "\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"patch_3\">\n", " <path d=\"M 48.982813 239.758125 \n", "L 48.982813 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_4\">\n", " <path d=\"M 383.782813 239.758125 \n", "L 383.782813 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_5\">\n", " <path d=\"M 48.982813 239.758125 \n", "L 383.782813 239.758125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_6\">\n", " <path d=\"M 48.982813 22.318125 \n", "L 383.782813 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"text_18\">\n", " <!-- Kaiser vs Equal Ripple Bandpass -->\n", " <defs>\n", " <path d=\"M 9.8125 72.90625 \n", "L 19.671875 72.90625 \n", "L 19.671875 42.09375 \n", "L 52.390625 72.90625 \n", "L 65.09375 72.90625 \n", "L 28.90625 38.921875 \n", "L 67.671875 0 \n", "L 54.6875 0 \n", "L 19.671875 35.109375 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-4b\"/>\n", " <path d=\"M 44.28125 53.078125 \n", "L 44.28125 44.578125 \n", "Q 40.484375 46.53125 36.375 47.5 \n", "Q 32.28125 48.484375 27.875 48.484375 \n", "Q 21.1875 48.484375 17.84375 46.4375 \n", "Q 14.5 44.390625 14.5 40.28125 \n", "Q 14.5 37.15625 16.890625 35.375 \n", "Q 19.28125 33.59375 26.515625 31.984375 \n", "L 29.59375 31.296875 \n", "Q 39.15625 29.25 43.1875 25.515625 \n", "Q 47.21875 21.78125 47.21875 15.09375 \n", "Q 47.21875 7.46875 41.1875 3.015625 \n", "Q 35.15625 -1.421875 24.609375 -1.421875 \n", "Q 20.21875 -1.421875 15.453125 -0.5625 \n", "Q 10.6875 0.296875 5.421875 2 \n", "L 5.421875 11.28125 \n", "Q 10.40625 8.6875 15.234375 7.390625 \n", "Q 20.0625 6.109375 24.8125 6.109375 \n", "Q 31.15625 6.109375 34.5625 8.28125 \n", "Q 37.984375 10.453125 37.984375 14.40625 \n", "Q 37.984375 18.0625 35.515625 20.015625 \n", "Q 33.0625 21.96875 24.703125 23.78125 \n", "L 21.578125 24.515625 \n", "Q 13.234375 26.265625 9.515625 29.90625 \n", "Q 5.8125 33.546875 5.8125 39.890625 \n", "Q 5.8125 47.609375 11.28125 51.796875 \n", "Q 16.75 56 26.8125 56 \n", "Q 31.78125 56 36.171875 55.265625 \n", "Q 40.578125 54.546875 44.28125 53.078125 \n", "z\n", "\" id=\"DejaVuSans-73\"/>\n", " <path d=\"M 2.984375 54.6875 \n", "L 12.5 54.6875 \n", "L 29.59375 8.796875 \n", "L 46.6875 54.6875 \n", "L 56.203125 54.6875 \n", "L 35.6875 0 \n", "L 23.484375 0 \n", "z\n", "\" id=\"DejaVuSans-76\"/>\n", " <path d=\"M 9.8125 72.90625 \n", "L 55.90625 72.90625 \n", "L 55.90625 64.59375 \n", "L 19.671875 64.59375 \n", "L 19.671875 43.015625 \n", "L 54.390625 43.015625 \n", "L 54.390625 34.71875 \n", "L 19.671875 34.71875 \n", "L 19.671875 8.296875 \n", "L 56.78125 8.296875 \n", "L 56.78125 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-45\"/>\n", " <path d=\"M 44.390625 34.1875 \n", "Q 47.5625 33.109375 50.5625 29.59375 \n", "Q 53.5625 26.078125 56.59375 19.921875 \n", "L 66.609375 0 \n", "L 56 0 \n", "L 46.6875 18.703125 \n", "Q 43.0625 26.03125 39.671875 28.421875 \n", "Q 36.28125 30.8125 30.421875 30.8125 \n", "L 19.671875 30.8125 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "L 9.8125 72.90625 \n", "L 32.078125 72.90625 \n", "Q 44.578125 72.90625 50.734375 67.671875 \n", "Q 56.890625 62.453125 56.890625 51.90625 \n", "Q 56.890625 45.015625 53.6875 40.46875 \n", "Q 50.484375 35.9375 44.390625 34.1875 \n", "z\n", "M 19.671875 64.796875 \n", "L 19.671875 38.921875 \n", "L 32.078125 38.921875 \n", "Q 39.203125 38.921875 42.84375 42.21875 \n", "Q 46.484375 45.515625 46.484375 51.90625 \n", "Q 46.484375 58.296875 42.84375 61.546875 \n", "Q 39.203125 64.796875 32.078125 64.796875 \n", "z\n", "\" id=\"DejaVuSans-52\"/>\n", " <path d=\"M 18.109375 8.203125 \n", "L 18.109375 -20.796875 \n", "L 9.078125 -20.796875 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.390625 \n", "Q 20.953125 51.265625 25.265625 53.625 \n", "Q 29.59375 56 35.59375 56 \n", "Q 45.5625 56 51.78125 48.09375 \n", "Q 58.015625 40.1875 58.015625 27.296875 \n", "Q 58.015625 14.40625 51.78125 6.484375 \n", "Q 45.5625 -1.421875 35.59375 -1.421875 \n", "Q 29.59375 -1.421875 25.265625 0.953125 \n", "Q 20.953125 3.328125 18.109375 8.203125 \n", "z\n", "M 48.6875 27.296875 \n", "Q 48.6875 37.203125 44.609375 42.84375 \n", "Q 40.53125 48.484375 33.40625 48.484375 \n", "Q 26.265625 48.484375 22.1875 42.84375 \n", "Q 18.109375 37.203125 18.109375 27.296875 \n", "Q 18.109375 17.390625 22.1875 11.75 \n", "Q 26.265625 6.109375 33.40625 6.109375 \n", "Q 40.53125 6.109375 44.609375 11.75 \n", "Q 48.6875 17.390625 48.6875 27.296875 \n", "z\n", "\" id=\"DejaVuSans-70\"/>\n", " </defs>\n", " <g transform=\"translate(118.815313 16.318125)scale(0.12 -0.12)\">\n", " <use xlink:href=\"#DejaVuSans-4b\"/>\n", " <use x=\"65.560547\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"126.839844\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"154.623047\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"206.722656\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"268.246094\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"309.359375\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"341.146484\" xlink:href=\"#DejaVuSans-76\"/>\n", " <use x=\"400.326172\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"452.425781\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"484.212891\" xlink:href=\"#DejaVuSans-45\"/>\n", " <use x=\"547.396484\" xlink:href=\"#DejaVuSans-71\"/>\n", " <use x=\"610.873047\" xlink:href=\"#DejaVuSans-75\"/>\n", " <use x=\"674.251953\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"735.53125\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"763.314453\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"795.101562\" xlink:href=\"#DejaVuSans-52\"/>\n", " <use x=\"864.583984\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"892.367188\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"955.84375\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"1019.320312\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"1047.103516\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"1108.626953\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"1140.414062\" xlink:href=\"#DejaVuSans-42\"/>\n", " <use x=\"1209.017578\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"1270.296875\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"1333.675781\" xlink:href=\"#DejaVuSans-64\"/>\n", " <use x=\"1397.152344\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"1460.628906\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"1521.908203\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"1574.007812\" xlink:href=\"#DejaVuSans-73\"/>\n", " </g>\n", " </g>\n", " <g id=\"legend_1\">\n", " <g id=\"patch_7\">\n", " <path d=\"M 260.126563 234.758125 \n", "L 376.782813 234.758125 \n", "Q 378.782813 234.758125 378.782813 232.758125 \n", "L 378.782813 204.401875 \n", "Q 378.782813 202.401875 376.782813 202.401875 \n", "L 260.126563 202.401875 \n", "Q 258.126563 202.401875 258.126563 204.401875 \n", "L 258.126563 232.758125 \n", "Q 258.126563 234.758125 260.126563 234.758125 \n", "z\n", "\" style=\"fill:#ffffff;opacity:0.8;stroke:#cccccc;stroke-linejoin:miter;\"/>\n", " </g>\n", " <g id=\"line2d_33\">\n", " <path d=\"M 262.126563 210.500312 \n", "L 282.126563 210.500312 \n", "\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_34\"/>\n", " <g id=\"text_19\">\n", " <!-- Kaiser: 142 taps -->\n", " <defs>\n", " <path d=\"M 11.71875 12.40625 \n", "L 22.015625 12.40625 \n", "L 22.015625 0 \n", "L 11.71875 0 \n", "z\n", "M 11.71875 51.703125 \n", "L 22.015625 51.703125 \n", "L 22.015625 39.3125 \n", "L 11.71875 39.3125 \n", "z\n", "\" id=\"DejaVuSans-3a\"/>\n", " </defs>\n", " <g transform=\"translate(290.126563 214.000312)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-4b\"/>\n", " <use x=\"65.560547\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"126.839844\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"154.623047\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"206.722656\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"268.246094\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"309.34375\" xlink:href=\"#DejaVuSans-3a\"/>\n", " <use x=\"343.035156\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"374.822266\" xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"438.445312\" xlink:href=\"#DejaVuSans-34\"/>\n", " <use x=\"502.068359\" xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"565.691406\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"597.478516\" xlink:href=\"#DejaVuSans-74\"/>\n", " <use x=\"636.6875\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"697.966797\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"761.443359\" xlink:href=\"#DejaVuSans-73\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_35\">\n", " <path d=\"M 262.126563 225.178437 \n", "L 282.126563 225.178437 \n", "\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_36\"/>\n", " <g id=\"text_20\">\n", " <!-- Remez: 101 taps -->\n", " <defs>\n", " <path d=\"M 52 44.1875 \n", "Q 55.375 50.25 60.0625 53.125 \n", "Q 64.75 56 71.09375 56 \n", "Q 79.640625 56 84.28125 50.015625 \n", "Q 88.921875 44.046875 88.921875 33.015625 \n", "L 88.921875 0 \n", "L 79.890625 0 \n", "L 79.890625 32.71875 \n", "Q 79.890625 40.578125 77.09375 44.375 \n", "Q 74.3125 48.1875 68.609375 48.1875 \n", "Q 61.625 48.1875 57.5625 43.546875 \n", "Q 53.515625 38.921875 53.515625 30.90625 \n", "L 53.515625 0 \n", "L 44.484375 0 \n", "L 44.484375 32.71875 \n", "Q 44.484375 40.625 41.703125 44.40625 \n", "Q 38.921875 48.1875 33.109375 48.1875 \n", "Q 26.21875 48.1875 22.15625 43.53125 \n", "Q 18.109375 38.875 18.109375 30.90625 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 21.1875 51.21875 25.484375 53.609375 \n", "Q 29.78125 56 35.6875 56 \n", "Q 41.65625 56 45.828125 52.96875 \n", "Q 50 49.953125 52 44.1875 \n", "z\n", "\" id=\"DejaVuSans-6d\"/>\n", " </defs>\n", " <g transform=\"translate(290.126563 228.678437)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-52\"/>\n", " <use x=\"69.419922\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"130.943359\" xlink:href=\"#DejaVuSans-6d\"/>\n", " <use x=\"228.355469\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"289.878906\" xlink:href=\"#DejaVuSans-7a\"/>\n", " <use x=\"342.369141\" xlink:href=\"#DejaVuSans-3a\"/>\n", " <use x=\"376.060547\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"407.847656\" xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"471.470703\" xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"535.09375\" xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"598.716797\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"630.503906\" xlink:href=\"#DejaVuSans-74\"/>\n", " <use x=\"669.712891\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"730.992188\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"794.46875\" xlink:href=\"#DejaVuSans-73\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <defs>\n", " <clipPath id=\"pcc10367391\">\n", " <rect height=\"217.44\" width=\"334.8\" x=\"48.982813\" y=\"22.318125\"/>\n", " </clipPath>\n", " </defs>\n", "</svg>\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x10d8dde48>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fir_d.freqz_resp_list([b_k_bp,b_r_bp],[[1],[1]],'dB',fs=48)\n", "ylim([-80,5])\n", "title(r'Kaiser vs Equal Ripple Bandpass')\n", "ylabel(r'Filter Gain (dB)')\n", "xlabel(r'Frequency in kHz')\n", "legend((r'Kaiser: %d taps' % len(b_k_bp),\n", " r'Remez: %d taps' % len(b_r_bp)),\n", " loc='lower right')\n", "grid();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Exporting Coefficients to Header Files\n", "Once a filter design is complete it can be exported as a C header file using `FIR_header()` for floating-point design and `FIR_fix_header()` for 16-bit fixed-point designs.\n", "## Float Header Export\n", "```python\n", "def FIR_header(fname_out,h):\n", " \"\"\"\n", " Write FIR Filter Header Files \n", " \"\"\"\n", "```\n", "## 16 Bit Signed Integer Header Export\n", "```python\n", "def FIR_fix_header(fname_out,h):\n", " \"\"\"\n", " Write FIR Fixed-Point Filter Header Files \n", " \"\"\"\n", "```\n", "These functions are available in `coeff2header.py`, which was imported as `c2h` above" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Write a Header File for the Bandpass Equal-Ripple" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Write a C header file\n", "c2h.FIR_header('remez_8_14_bpf_f32.h',b_r_bp)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* The header file, `remez_8_14_bpf_f32.h` written above takes the form:\n", "\n", "```c\n", "//define a FIR coefficient Array\n", "\n", "#include <stdint.h>\n", "\n", "#ifndef M_FIR\n", "#define M_FIR 101\n", "#endif\n", "/************************************************************************/\n", "/* FIR Filter Coefficients */\n", "float32_t h_FIR[M_FIR] = {-0.001475936747, 0.000735580994, 0.004771062558,\n", " 0.001254178712,-0.006176846780,-0.001755945520,\n", " 0.003667323660, 0.001589634576, 0.000242520766,\n", " 0.002386316353,-0.002699251419,-0.006927087152,\n", " 0.002072374590, 0.006247819434,-0.000017122009,\n", " 0.000544273776, 0.001224920394,-0.008238424843,\n", " -0.005846603175, 0.009688130613, 0.007237935594,\n", " -0.003554185785, 0.000423864572,-0.002894644665,\n", " -0.013460012489, 0.002388684318, 0.019352295029,\n", " 0.002144732872,-0.009232278407, 0.000146728997,\n", " -0.010111394762,-0.013491956909, 0.020872121644,\n", " 0.025104278030,-0.013643042233,-0.015018451283,\n", " -0.000068299117,-0.019644863999, 0.000002861510,\n", " 0.052822261169, 0.015289946639,-0.049012297911,\n", " -0.016642744836,-0.000164469072,-0.032121234463,\n", " 0.059953731027, 0.133383985599,-0.078819553619,\n", " -0.239811117665, 0.036017541207, 0.285529343096,\n", " 0.036017541207,-0.239811117665,-0.078819553619,\n", " 0.133383985599, 0.059953731027,-0.032121234463,\n", " -0.000164469072,-0.016642744836,-0.049012297911,\n", " 0.015289946639, 0.052822261169, 0.000002861510,\n", " -0.019644863999,-0.000068299117,-0.015018451283,\n", " -0.013643042233, 0.025104278030, 0.020872121644,\n", " -0.013491956909,-0.010111394762, 0.000146728997,\n", " -0.009232278407, 0.002144732872, 0.019352295029,\n", " 0.002388684318,-0.013460012489,-0.002894644665,\n", " 0.000423864572,-0.003554185785, 0.007237935594,\n", " 0.009688130613,-0.005846603175,-0.008238424843,\n", " 0.001224920394, 0.000544273776,-0.000017122009,\n", " 0.006247819434, 0.002072374590,-0.006927087152,\n", " -0.002699251419, 0.002386316353, 0.000242520766,\n", " 0.001589634576, 0.003667323660,-0.001755945520,\n", " -0.006176846780, 0.001254178712, 0.004771062558,\n", " 0.000735580994,-0.001475936747};\n", "/************************************************************************/\n", "```\n", "\n", "* This file can be included in the main module of an ARM Cortex M4 micro controller using the [Cypress FM4](http://www.cypress.com/documentation/development-kitsboards/fm4-s6e2g-series-pioneer-kit-guide) $50 dev kit" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "f_AD,Mag_AD, Phase_AD = loadtxt('BPF_8_14_101tap_48k.csv',\n", " delimiter=',',skiprows=6,unpack=True)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n", "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", "<!-- Created with matplotlib (http://matplotlib.org/) -->\n", "<svg height=\"277pt\" version=\"1.1\" viewBox=\"0 0 394 277\" width=\"394pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", " <defs>\n", " <style type=\"text/css\">\n", "*{stroke-linecap:butt;stroke-linejoin:round;}\n", " </style>\n", " </defs>\n", " <g id=\"figure_1\">\n", " <g id=\"patch_1\">\n", " <path d=\"M 0 277.314375 \n", "L 394.808949 277.314375 \n", "L 394.808949 0 \n", "L 0 0 \n", "z\n", "\" style=\"fill:none;\"/>\n", " </g>\n", " <g id=\"axes_1\">\n", " <g id=\"patch_2\">\n", " <path d=\"M 48.982813 239.758125 \n", "L 383.782813 239.758125 \n", "L 383.782813 22.318125 \n", "L 48.982813 22.318125 \n", "z\n", "\" style=\"fill:#ffffff;\"/>\n", " </g>\n", " <g id=\"matplotlib.axis_1\">\n", " <g id=\"xtick_1\">\n", " <g id=\"line2d_1\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 64.200994 239.758125 \n", "L 64.200994 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_2\">\n", " <defs>\n", " <path d=\"M 0 0 \n", "L 0 3.5 \n", "\" id=\"m9a1576ee86\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n", " </defs>\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"64.200994\" xlink:href=\"#m9a1576ee86\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_1\">\n", " <!-- 0 -->\n", " <defs>\n", " <path d=\"M 31.78125 66.40625 \n", "Q 24.171875 66.40625 20.328125 58.90625 \n", "Q 16.5 51.421875 16.5 36.375 \n", "Q 16.5 21.390625 20.328125 13.890625 \n", "Q 24.171875 6.390625 31.78125 6.390625 \n", "Q 39.453125 6.390625 43.28125 13.890625 \n", "Q 47.125 21.390625 47.125 36.375 \n", "Q 47.125 51.421875 43.28125 58.90625 \n", "Q 39.453125 66.40625 31.78125 66.40625 \n", "z\n", "M 31.78125 74.21875 \n", "Q 44.046875 74.21875 50.515625 64.515625 \n", "Q 56.984375 54.828125 56.984375 36.375 \n", "Q 56.984375 17.96875 50.515625 8.265625 \n", "Q 44.046875 -1.421875 31.78125 -1.421875 \n", "Q 19.53125 -1.421875 13.0625 8.265625 \n", "Q 6.59375 17.96875 6.59375 36.375 \n", "Q 6.59375 54.828125 13.0625 64.515625 \n", "Q 19.53125 74.21875 31.78125 74.21875 \n", "z\n", "\" id=\"DejaVuSans-30\"/>\n", " </defs>\n", " <g transform=\"translate(61.019744 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_2\">\n", " <g id=\"line2d_3\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 127.610085 239.758125 \n", "L 127.610085 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_4\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"127.610085\" xlink:href=\"#m9a1576ee86\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_2\">\n", " <!-- 5 -->\n", " <defs>\n", " <path d=\"M 10.796875 72.90625 \n", "L 49.515625 72.90625 \n", "L 49.515625 64.59375 \n", "L 19.828125 64.59375 \n", "L 19.828125 46.734375 \n", "Q 21.96875 47.46875 24.109375 47.828125 \n", "Q 26.265625 48.1875 28.421875 48.1875 \n", "Q 40.625 48.1875 47.75 41.5 \n", "Q 54.890625 34.8125 54.890625 23.390625 \n", "Q 54.890625 11.625 47.5625 5.09375 \n", "Q 40.234375 -1.421875 26.90625 -1.421875 \n", "Q 22.3125 -1.421875 17.546875 -0.640625 \n", "Q 12.796875 0.140625 7.71875 1.703125 \n", "L 7.71875 11.625 \n", "Q 12.109375 9.234375 16.796875 8.0625 \n", "Q 21.484375 6.890625 26.703125 6.890625 \n", "Q 35.15625 6.890625 40.078125 11.328125 \n", "Q 45.015625 15.765625 45.015625 23.390625 \n", "Q 45.015625 31 40.078125 35.4375 \n", "Q 35.15625 39.890625 26.703125 39.890625 \n", "Q 22.75 39.890625 18.8125 39.015625 \n", "Q 14.890625 38.140625 10.796875 36.28125 \n", "z\n", "\" id=\"DejaVuSans-35\"/>\n", " </defs>\n", " <g transform=\"translate(124.428835 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_3\">\n", " <g id=\"line2d_5\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 191.019176 239.758125 \n", "L 191.019176 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_6\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"191.019176\" xlink:href=\"#m9a1576ee86\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_3\">\n", " <!-- 10 -->\n", " <defs>\n", " <path d=\"M 12.40625 8.296875 \n", "L 28.515625 8.296875 \n", "L 28.515625 63.921875 \n", "L 10.984375 60.40625 \n", "L 10.984375 69.390625 \n", "L 28.421875 72.90625 \n", "L 38.28125 72.90625 \n", "L 38.28125 8.296875 \n", "L 54.390625 8.296875 \n", "L 54.390625 0 \n", "L 12.40625 0 \n", "z\n", "\" id=\"DejaVuSans-31\"/>\n", " </defs>\n", " <g transform=\"translate(184.656676 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_4\">\n", " <g id=\"line2d_7\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 254.428267 239.758125 \n", "L 254.428267 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_8\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"254.428267\" xlink:href=\"#m9a1576ee86\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_4\">\n", " <!-- 15 -->\n", " <g transform=\"translate(248.065767 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_5\">\n", " <g id=\"line2d_9\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 317.837358 239.758125 \n", "L 317.837358 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_10\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"317.837358\" xlink:href=\"#m9a1576ee86\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_5\">\n", " <!-- 20 -->\n", " <defs>\n", " <path d=\"M 19.1875 8.296875 \n", "L 53.609375 8.296875 \n", "L 53.609375 0 \n", "L 7.328125 0 \n", "L 7.328125 8.296875 \n", "Q 12.9375 14.109375 22.625 23.890625 \n", "Q 32.328125 33.6875 34.8125 36.53125 \n", "Q 39.546875 41.84375 41.421875 45.53125 \n", "Q 43.3125 49.21875 43.3125 52.78125 \n", "Q 43.3125 58.59375 39.234375 62.25 \n", "Q 35.15625 65.921875 28.609375 65.921875 \n", "Q 23.96875 65.921875 18.8125 64.3125 \n", "Q 13.671875 62.703125 7.8125 59.421875 \n", "L 7.8125 69.390625 \n", "Q 13.765625 71.78125 18.9375 73 \n", "Q 24.125 74.21875 28.421875 74.21875 \n", "Q 39.75 74.21875 46.484375 68.546875 \n", "Q 53.21875 62.890625 53.21875 53.421875 \n", "Q 53.21875 48.921875 51.53125 44.890625 \n", "Q 49.859375 40.875 45.40625 35.40625 \n", "Q 44.1875 33.984375 37.640625 27.21875 \n", "Q 31.109375 20.453125 19.1875 8.296875 \n", "z\n", "\" id=\"DejaVuSans-32\"/>\n", " </defs>\n", " <g transform=\"translate(311.474858 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"xtick_6\">\n", " <g id=\"line2d_11\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 381.246449 239.758125 \n", "L 381.246449 22.318125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_12\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"381.246449\" xlink:href=\"#m9a1576ee86\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_6\">\n", " <!-- 25 -->\n", " <g transform=\"translate(374.883949 254.356562)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"63.623047\" xlink:href=\"#DejaVuSans-35\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"text_7\">\n", " <!-- Frequency in kHz -->\n", " <defs>\n", " <path d=\"M 9.8125 72.90625 \n", "L 51.703125 72.90625 \n", "L 51.703125 64.59375 \n", "L 19.671875 64.59375 \n", "L 19.671875 43.109375 \n", "L 48.578125 43.109375 \n", "L 48.578125 34.8125 \n", "L 19.671875 34.8125 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-46\"/>\n", " <path d=\"M 41.109375 46.296875 \n", "Q 39.59375 47.171875 37.8125 47.578125 \n", "Q 36.03125 48 33.890625 48 \n", "Q 26.265625 48 22.1875 43.046875 \n", "Q 18.109375 38.09375 18.109375 28.8125 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 20.953125 51.171875 25.484375 53.578125 \n", "Q 30.03125 56 36.53125 56 \n", "Q 37.453125 56 38.578125 55.875 \n", "Q 39.703125 55.765625 41.0625 55.515625 \n", "z\n", "\" id=\"DejaVuSans-72\"/>\n", " <path d=\"M 56.203125 29.59375 \n", "L 56.203125 25.203125 \n", "L 14.890625 25.203125 \n", "Q 15.484375 15.921875 20.484375 11.0625 \n", "Q 25.484375 6.203125 34.421875 6.203125 \n", "Q 39.59375 6.203125 44.453125 7.46875 \n", "Q 49.3125 8.734375 54.109375 11.28125 \n", "L 54.109375 2.78125 \n", "Q 49.265625 0.734375 44.1875 -0.34375 \n", "Q 39.109375 -1.421875 33.890625 -1.421875 \n", "Q 20.796875 -1.421875 13.15625 6.1875 \n", "Q 5.515625 13.8125 5.515625 26.8125 \n", "Q 5.515625 40.234375 12.765625 48.109375 \n", "Q 20.015625 56 32.328125 56 \n", "Q 43.359375 56 49.78125 48.890625 \n", "Q 56.203125 41.796875 56.203125 29.59375 \n", "z\n", "M 47.21875 32.234375 \n", "Q 47.125 39.59375 43.09375 43.984375 \n", "Q 39.0625 48.390625 32.421875 48.390625 \n", "Q 24.90625 48.390625 20.390625 44.140625 \n", "Q 15.875 39.890625 15.1875 32.171875 \n", "z\n", "\" id=\"DejaVuSans-65\"/>\n", " <path d=\"M 14.796875 27.296875 \n", "Q 14.796875 17.390625 18.875 11.75 \n", "Q 22.953125 6.109375 30.078125 6.109375 \n", "Q 37.203125 6.109375 41.296875 11.75 \n", "Q 45.40625 17.390625 45.40625 27.296875 \n", "Q 45.40625 37.203125 41.296875 42.84375 \n", "Q 37.203125 48.484375 30.078125 48.484375 \n", "Q 22.953125 48.484375 18.875 42.84375 \n", "Q 14.796875 37.203125 14.796875 27.296875 \n", "z\n", "M 45.40625 8.203125 \n", "Q 42.578125 3.328125 38.25 0.953125 \n", "Q 33.9375 -1.421875 27.875 -1.421875 \n", "Q 17.96875 -1.421875 11.734375 6.484375 \n", "Q 5.515625 14.40625 5.515625 27.296875 \n", "Q 5.515625 40.1875 11.734375 48.09375 \n", "Q 17.96875 56 27.875 56 \n", "Q 33.9375 56 38.25 53.625 \n", "Q 42.578125 51.265625 45.40625 46.390625 \n", "L 45.40625 54.6875 \n", "L 54.390625 54.6875 \n", "L 54.390625 -20.796875 \n", "L 45.40625 -20.796875 \n", "z\n", "\" id=\"DejaVuSans-71\"/>\n", " <path d=\"M 8.5 21.578125 \n", "L 8.5 54.6875 \n", "L 17.484375 54.6875 \n", "L 17.484375 21.921875 \n", "Q 17.484375 14.15625 20.5 10.265625 \n", "Q 23.53125 6.390625 29.59375 6.390625 \n", "Q 36.859375 6.390625 41.078125 11.03125 \n", "Q 45.3125 15.671875 45.3125 23.6875 \n", "L 45.3125 54.6875 \n", "L 54.296875 54.6875 \n", "L 54.296875 0 \n", "L 45.3125 0 \n", "L 45.3125 8.40625 \n", "Q 42.046875 3.421875 37.71875 1 \n", "Q 33.40625 -1.421875 27.6875 -1.421875 \n", "Q 18.265625 -1.421875 13.375 4.4375 \n", "Q 8.5 10.296875 8.5 21.578125 \n", "z\n", "M 31.109375 56 \n", "z\n", "\" id=\"DejaVuSans-75\"/>\n", " <path d=\"M 54.890625 33.015625 \n", "L 54.890625 0 \n", "L 45.90625 0 \n", "L 45.90625 32.71875 \n", "Q 45.90625 40.484375 42.875 44.328125 \n", "Q 39.84375 48.1875 33.796875 48.1875 \n", "Q 26.515625 48.1875 22.3125 43.546875 \n", "Q 18.109375 38.921875 18.109375 30.90625 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.1875 \n", "Q 21.34375 51.125 25.703125 53.5625 \n", "Q 30.078125 56 35.796875 56 \n", "Q 45.21875 56 50.046875 50.171875 \n", "Q 54.890625 44.34375 54.890625 33.015625 \n", "z\n", "\" id=\"DejaVuSans-6e\"/>\n", " <path d=\"M 48.78125 52.59375 \n", "L 48.78125 44.1875 \n", "Q 44.96875 46.296875 41.140625 47.34375 \n", "Q 37.3125 48.390625 33.40625 48.390625 \n", "Q 24.65625 48.390625 19.8125 42.84375 \n", "Q 14.984375 37.3125 14.984375 27.296875 \n", "Q 14.984375 17.28125 19.8125 11.734375 \n", "Q 24.65625 6.203125 33.40625 6.203125 \n", "Q 37.3125 6.203125 41.140625 7.25 \n", "Q 44.96875 8.296875 48.78125 10.40625 \n", "L 48.78125 2.09375 \n", "Q 45.015625 0.34375 40.984375 -0.53125 \n", "Q 36.96875 -1.421875 32.421875 -1.421875 \n", "Q 20.0625 -1.421875 12.78125 6.34375 \n", "Q 5.515625 14.109375 5.515625 27.296875 \n", "Q 5.515625 40.671875 12.859375 48.328125 \n", "Q 20.21875 56 33.015625 56 \n", "Q 37.15625 56 41.109375 55.140625 \n", "Q 45.0625 54.296875 48.78125 52.59375 \n", "z\n", "\" id=\"DejaVuSans-63\"/>\n", " <path d=\"M 32.171875 -5.078125 \n", "Q 28.375 -14.84375 24.75 -17.8125 \n", "Q 21.140625 -20.796875 15.09375 -20.796875 \n", "L 7.90625 -20.796875 \n", "L 7.90625 -13.28125 \n", "L 13.1875 -13.28125 \n", "Q 16.890625 -13.28125 18.9375 -11.515625 \n", "Q 21 -9.765625 23.484375 -3.21875 \n", "L 25.09375 0.875 \n", "L 2.984375 54.6875 \n", "L 12.5 54.6875 \n", "L 29.59375 11.921875 \n", "L 46.6875 54.6875 \n", "L 56.203125 54.6875 \n", "z\n", "\" id=\"DejaVuSans-79\"/>\n", " <path id=\"DejaVuSans-20\"/>\n", " <path d=\"M 9.421875 54.6875 \n", "L 18.40625 54.6875 \n", "L 18.40625 0 \n", "L 9.421875 0 \n", "z\n", "M 9.421875 75.984375 \n", "L 18.40625 75.984375 \n", "L 18.40625 64.59375 \n", "L 9.421875 64.59375 \n", "z\n", "\" id=\"DejaVuSans-69\"/>\n", " <path d=\"M 9.078125 75.984375 \n", "L 18.109375 75.984375 \n", "L 18.109375 31.109375 \n", "L 44.921875 54.6875 \n", "L 56.390625 54.6875 \n", "L 27.390625 29.109375 \n", "L 57.625 0 \n", "L 45.90625 0 \n", "L 18.109375 26.703125 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "z\n", "\" id=\"DejaVuSans-6b\"/>\n", " <path d=\"M 9.8125 72.90625 \n", "L 19.671875 72.90625 \n", "L 19.671875 43.015625 \n", "L 55.515625 43.015625 \n", "L 55.515625 72.90625 \n", "L 65.375 72.90625 \n", "L 65.375 0 \n", "L 55.515625 0 \n", "L 55.515625 34.71875 \n", "L 19.671875 34.71875 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-48\"/>\n", " <path d=\"M 5.515625 54.6875 \n", "L 48.1875 54.6875 \n", "L 48.1875 46.484375 \n", "L 14.40625 7.171875 \n", "L 48.1875 7.171875 \n", "L 48.1875 0 \n", "L 4.296875 0 \n", "L 4.296875 8.203125 \n", "L 38.09375 47.515625 \n", "L 5.515625 47.515625 \n", "z\n", "\" id=\"DejaVuSans-7a\"/>\n", " </defs>\n", " <g transform=\"translate(173.069531 268.034687)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-46\"/>\n", " <use x=\"57.410156\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"98.492188\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"160.015625\" xlink:href=\"#DejaVuSans-71\"/>\n", " <use x=\"223.492188\" xlink:href=\"#DejaVuSans-75\"/>\n", " <use x=\"286.871094\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"348.394531\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"411.773438\" xlink:href=\"#DejaVuSans-63\"/>\n", " <use x=\"466.753906\" xlink:href=\"#DejaVuSans-79\"/>\n", " <use x=\"525.933594\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"557.720703\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"585.503906\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"648.882812\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"680.669922\" xlink:href=\"#DejaVuSans-6b\"/>\n", " <use x=\"738.580078\" xlink:href=\"#DejaVuSans-48\"/>\n", " <use x=\"813.775391\" xlink:href=\"#DejaVuSans-7a\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"matplotlib.axis_2\">\n", " <g id=\"ytick_1\">\n", " <g id=\"line2d_13\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 48.982813 239.758125 \n", "L 383.782813 239.758125 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_14\">\n", " <defs>\n", " <path d=\"M 0 0 \n", "L -3.5 0 \n", "\" id=\"m20f971a633\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n", " </defs>\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m20f971a633\" y=\"239.758125\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_8\">\n", " <!-- −80 -->\n", " <defs>\n", " <path d=\"M 10.59375 35.5 \n", "L 73.1875 35.5 \n", "L 73.1875 27.203125 \n", "L 10.59375 27.203125 \n", "z\n", "\" id=\"DejaVuSans-2212\"/>\n", " <path d=\"M 31.78125 34.625 \n", "Q 24.75 34.625 20.71875 30.859375 \n", "Q 16.703125 27.09375 16.703125 20.515625 \n", "Q 16.703125 13.921875 20.71875 10.15625 \n", "Q 24.75 6.390625 31.78125 6.390625 \n", "Q 38.8125 6.390625 42.859375 10.171875 \n", "Q 46.921875 13.96875 46.921875 20.515625 \n", "Q 46.921875 27.09375 42.890625 30.859375 \n", "Q 38.875 34.625 31.78125 34.625 \n", "z\n", "M 21.921875 38.8125 \n", "Q 15.578125 40.375 12.03125 44.71875 \n", "Q 8.5 49.078125 8.5 55.328125 \n", "Q 8.5 64.0625 14.71875 69.140625 \n", "Q 20.953125 74.21875 31.78125 74.21875 \n", "Q 42.671875 74.21875 48.875 69.140625 \n", "Q 55.078125 64.0625 55.078125 55.328125 \n", "Q 55.078125 49.078125 51.53125 44.71875 \n", "Q 48 40.375 41.703125 38.8125 \n", "Q 48.828125 37.15625 52.796875 32.3125 \n", "Q 56.78125 27.484375 56.78125 20.515625 \n", "Q 56.78125 9.90625 50.3125 4.234375 \n", "Q 43.84375 -1.421875 31.78125 -1.421875 \n", "Q 19.734375 -1.421875 13.25 4.234375 \n", "Q 6.78125 9.90625 6.78125 20.515625 \n", "Q 6.78125 27.484375 10.78125 32.3125 \n", "Q 14.796875 37.15625 21.921875 38.8125 \n", "z\n", "M 18.3125 54.390625 \n", "Q 18.3125 48.734375 21.84375 45.5625 \n", "Q 25.390625 42.390625 31.78125 42.390625 \n", "Q 38.140625 42.390625 41.71875 45.5625 \n", "Q 45.3125 48.734375 45.3125 54.390625 \n", "Q 45.3125 60.0625 41.71875 63.234375 \n", "Q 38.140625 66.40625 31.78125 66.40625 \n", "Q 25.390625 66.40625 21.84375 63.234375 \n", "Q 18.3125 60.0625 18.3125 54.390625 \n", "z\n", "\" id=\"DejaVuSans-38\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 243.557344)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-38\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_2\">\n", " <g id=\"line2d_15\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 48.982813 214.176949 \n", "L 383.782813 214.176949 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_16\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m20f971a633\" y=\"214.176949\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_9\">\n", " <!-- −70 -->\n", " <defs>\n", " <path d=\"M 8.203125 72.90625 \n", "L 55.078125 72.90625 \n", "L 55.078125 68.703125 \n", "L 28.609375 0 \n", "L 18.3125 0 \n", "L 43.21875 64.59375 \n", "L 8.203125 64.59375 \n", "z\n", "\" id=\"DejaVuSans-37\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 217.976167)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-37\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_3\">\n", " <g id=\"line2d_17\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 48.982813 188.595772 \n", "L 383.782813 188.595772 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_18\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m20f971a633\" y=\"188.595772\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_10\">\n", " <!-- −60 -->\n", " <defs>\n", " <path d=\"M 33.015625 40.375 \n", "Q 26.375 40.375 22.484375 35.828125 \n", "Q 18.609375 31.296875 18.609375 23.390625 \n", "Q 18.609375 15.53125 22.484375 10.953125 \n", "Q 26.375 6.390625 33.015625 6.390625 \n", "Q 39.65625 6.390625 43.53125 10.953125 \n", "Q 47.40625 15.53125 47.40625 23.390625 \n", "Q 47.40625 31.296875 43.53125 35.828125 \n", "Q 39.65625 40.375 33.015625 40.375 \n", "z\n", "M 52.59375 71.296875 \n", "L 52.59375 62.3125 \n", "Q 48.875 64.0625 45.09375 64.984375 \n", "Q 41.3125 65.921875 37.59375 65.921875 \n", "Q 27.828125 65.921875 22.671875 59.328125 \n", "Q 17.53125 52.734375 16.796875 39.40625 \n", "Q 19.671875 43.65625 24.015625 45.921875 \n", "Q 28.375 48.1875 33.59375 48.1875 \n", "Q 44.578125 48.1875 50.953125 41.515625 \n", "Q 57.328125 34.859375 57.328125 23.390625 \n", "Q 57.328125 12.15625 50.6875 5.359375 \n", "Q 44.046875 -1.421875 33.015625 -1.421875 \n", "Q 20.359375 -1.421875 13.671875 8.265625 \n", "Q 6.984375 17.96875 6.984375 36.375 \n", "Q 6.984375 53.65625 15.1875 63.9375 \n", "Q 23.390625 74.21875 37.203125 74.21875 \n", "Q 40.921875 74.21875 44.703125 73.484375 \n", "Q 48.484375 72.75 52.59375 71.296875 \n", "z\n", "\" id=\"DejaVuSans-36\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 192.394991)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-36\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_4\">\n", " <g id=\"line2d_19\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 48.982813 163.014596 \n", "L 383.782813 163.014596 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_20\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m20f971a633\" y=\"163.014596\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_11\">\n", " <!-- −50 -->\n", " <g transform=\"translate(20.878125 166.813814)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-35\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_5\">\n", " <g id=\"line2d_21\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 48.982813 137.433419 \n", "L 383.782813 137.433419 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_22\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m20f971a633\" y=\"137.433419\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_12\">\n", " <!-- −40 -->\n", " <defs>\n", " <path d=\"M 37.796875 64.3125 \n", "L 12.890625 25.390625 \n", "L 37.796875 25.390625 \n", "z\n", "M 35.203125 72.90625 \n", "L 47.609375 72.90625 \n", "L 47.609375 25.390625 \n", "L 58.015625 25.390625 \n", "L 58.015625 17.1875 \n", "L 47.609375 17.1875 \n", "L 47.609375 0 \n", "L 37.796875 0 \n", "L 37.796875 17.1875 \n", "L 4.890625 17.1875 \n", "L 4.890625 26.703125 \n", "z\n", "\" id=\"DejaVuSans-34\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 141.232638)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-34\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_6\">\n", " <g id=\"line2d_23\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 48.982813 111.852243 \n", "L 383.782813 111.852243 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_24\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m20f971a633\" y=\"111.852243\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_13\">\n", " <!-- −30 -->\n", " <defs>\n", " <path d=\"M 40.578125 39.3125 \n", "Q 47.65625 37.796875 51.625 33 \n", "Q 55.609375 28.21875 55.609375 21.1875 \n", "Q 55.609375 10.40625 48.1875 4.484375 \n", "Q 40.765625 -1.421875 27.09375 -1.421875 \n", "Q 22.515625 -1.421875 17.65625 -0.515625 \n", "Q 12.796875 0.390625 7.625 2.203125 \n", "L 7.625 11.71875 \n", "Q 11.71875 9.328125 16.59375 8.109375 \n", "Q 21.484375 6.890625 26.8125 6.890625 \n", "Q 36.078125 6.890625 40.9375 10.546875 \n", "Q 45.796875 14.203125 45.796875 21.1875 \n", "Q 45.796875 27.640625 41.28125 31.265625 \n", "Q 36.765625 34.90625 28.71875 34.90625 \n", "L 20.21875 34.90625 \n", "L 20.21875 43.015625 \n", "L 29.109375 43.015625 \n", "Q 36.375 43.015625 40.234375 45.921875 \n", "Q 44.09375 48.828125 44.09375 54.296875 \n", "Q 44.09375 59.90625 40.109375 62.90625 \n", "Q 36.140625 65.921875 28.71875 65.921875 \n", "Q 24.65625 65.921875 20.015625 65.03125 \n", "Q 15.375 64.15625 9.8125 62.3125 \n", "L 9.8125 71.09375 \n", "Q 15.4375 72.65625 20.34375 73.4375 \n", "Q 25.25 74.21875 29.59375 74.21875 \n", "Q 40.828125 74.21875 47.359375 69.109375 \n", "Q 53.90625 64.015625 53.90625 55.328125 \n", "Q 53.90625 49.265625 50.4375 45.09375 \n", "Q 46.96875 40.921875 40.578125 39.3125 \n", "z\n", "\" id=\"DejaVuSans-33\"/>\n", " </defs>\n", " <g transform=\"translate(20.878125 115.651461)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-33\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_7\">\n", " <g id=\"line2d_25\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 48.982813 86.271066 \n", "L 383.782813 86.271066 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_26\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m20f971a633\" y=\"86.271066\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_14\">\n", " <!-- −20 -->\n", " <g transform=\"translate(20.878125 90.070285)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-32\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_8\">\n", " <g id=\"line2d_27\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 48.982813 60.68989 \n", "L 383.782813 60.68989 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_28\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m20f971a633\" y=\"60.68989\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_15\">\n", " <!-- −10 -->\n", " <g transform=\"translate(20.878125 64.489108)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-2212\"/>\n", " <use x=\"83.789062\" xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"147.412109\" xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"ytick_9\">\n", " <g id=\"line2d_29\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 48.982813 35.108713 \n", "L 383.782813 35.108713 \n", "\" style=\"fill:none;stroke:#b0b0b0;stroke-linecap:square;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"line2d_30\">\n", " <g>\n", " <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"48.982813\" xlink:href=\"#m20f971a633\" y=\"35.108713\"/>\n", " </g>\n", " </g>\n", " <g id=\"text_16\">\n", " <!-- 0 -->\n", " <g transform=\"translate(35.620312 38.907932)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-30\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"text_17\">\n", " <!-- Filter Gain (dB) -->\n", " <defs>\n", " <path d=\"M 9.421875 75.984375 \n", "L 18.40625 75.984375 \n", "L 18.40625 0 \n", "L 9.421875 0 \n", "z\n", "\" id=\"DejaVuSans-6c\"/>\n", " <path d=\"M 18.3125 70.21875 \n", "L 18.3125 54.6875 \n", "L 36.8125 54.6875 \n", "L 36.8125 47.703125 \n", "L 18.3125 47.703125 \n", "L 18.3125 18.015625 \n", "Q 18.3125 11.328125 20.140625 9.421875 \n", "Q 21.96875 7.515625 27.59375 7.515625 \n", "L 36.8125 7.515625 \n", "L 36.8125 0 \n", "L 27.59375 0 \n", "Q 17.1875 0 13.234375 3.875 \n", "Q 9.28125 7.765625 9.28125 18.015625 \n", "L 9.28125 47.703125 \n", "L 2.6875 47.703125 \n", "L 2.6875 54.6875 \n", "L 9.28125 54.6875 \n", "L 9.28125 70.21875 \n", "z\n", "\" id=\"DejaVuSans-74\"/>\n", " <path d=\"M 59.515625 10.40625 \n", "L 59.515625 29.984375 \n", "L 43.40625 29.984375 \n", "L 43.40625 38.09375 \n", "L 69.28125 38.09375 \n", "L 69.28125 6.78125 \n", "Q 63.578125 2.734375 56.6875 0.65625 \n", "Q 49.8125 -1.421875 42 -1.421875 \n", "Q 24.90625 -1.421875 15.25 8.5625 \n", "Q 5.609375 18.5625 5.609375 36.375 \n", "Q 5.609375 54.25 15.25 64.234375 \n", "Q 24.90625 74.21875 42 74.21875 \n", "Q 49.125 74.21875 55.546875 72.453125 \n", "Q 61.96875 70.703125 67.390625 67.28125 \n", "L 67.390625 56.78125 \n", "Q 61.921875 61.421875 55.765625 63.765625 \n", "Q 49.609375 66.109375 42.828125 66.109375 \n", "Q 29.4375 66.109375 22.71875 58.640625 \n", "Q 16.015625 51.171875 16.015625 36.375 \n", "Q 16.015625 21.625 22.71875 14.15625 \n", "Q 29.4375 6.6875 42.828125 6.6875 \n", "Q 48.046875 6.6875 52.140625 7.59375 \n", "Q 56.25 8.5 59.515625 10.40625 \n", "z\n", "\" id=\"DejaVuSans-47\"/>\n", " <path d=\"M 34.28125 27.484375 \n", "Q 23.390625 27.484375 19.1875 25 \n", "Q 14.984375 22.515625 14.984375 16.5 \n", "Q 14.984375 11.71875 18.140625 8.90625 \n", "Q 21.296875 6.109375 26.703125 6.109375 \n", "Q 34.1875 6.109375 38.703125 11.40625 \n", "Q 43.21875 16.703125 43.21875 25.484375 \n", "L 43.21875 27.484375 \n", "z\n", "M 52.203125 31.203125 \n", "L 52.203125 0 \n", "L 43.21875 0 \n", "L 43.21875 8.296875 \n", "Q 40.140625 3.328125 35.546875 0.953125 \n", "Q 30.953125 -1.421875 24.3125 -1.421875 \n", "Q 15.921875 -1.421875 10.953125 3.296875 \n", "Q 6 8.015625 6 15.921875 \n", "Q 6 25.140625 12.171875 29.828125 \n", "Q 18.359375 34.515625 30.609375 34.515625 \n", "L 43.21875 34.515625 \n", "L 43.21875 35.40625 \n", "Q 43.21875 41.609375 39.140625 45 \n", "Q 35.0625 48.390625 27.6875 48.390625 \n", "Q 23 48.390625 18.546875 47.265625 \n", "Q 14.109375 46.140625 10.015625 43.890625 \n", "L 10.015625 52.203125 \n", "Q 14.9375 54.109375 19.578125 55.046875 \n", "Q 24.21875 56 28.609375 56 \n", "Q 40.484375 56 46.34375 49.84375 \n", "Q 52.203125 43.703125 52.203125 31.203125 \n", "z\n", "\" id=\"DejaVuSans-61\"/>\n", " <path d=\"M 31 75.875 \n", "Q 24.46875 64.65625 21.28125 53.65625 \n", "Q 18.109375 42.671875 18.109375 31.390625 \n", "Q 18.109375 20.125 21.3125 9.0625 \n", "Q 24.515625 -2 31 -13.1875 \n", "L 23.1875 -13.1875 \n", "Q 15.875 -1.703125 12.234375 9.375 \n", "Q 8.59375 20.453125 8.59375 31.390625 \n", "Q 8.59375 42.28125 12.203125 53.3125 \n", "Q 15.828125 64.359375 23.1875 75.875 \n", "z\n", "\" id=\"DejaVuSans-28\"/>\n", " <path d=\"M 45.40625 46.390625 \n", "L 45.40625 75.984375 \n", "L 54.390625 75.984375 \n", "L 54.390625 0 \n", "L 45.40625 0 \n", "L 45.40625 8.203125 \n", "Q 42.578125 3.328125 38.25 0.953125 \n", "Q 33.9375 -1.421875 27.875 -1.421875 \n", "Q 17.96875 -1.421875 11.734375 6.484375 \n", "Q 5.515625 14.40625 5.515625 27.296875 \n", "Q 5.515625 40.1875 11.734375 48.09375 \n", "Q 17.96875 56 27.875 56 \n", "Q 33.9375 56 38.25 53.625 \n", "Q 42.578125 51.265625 45.40625 46.390625 \n", "z\n", "M 14.796875 27.296875 \n", "Q 14.796875 17.390625 18.875 11.75 \n", "Q 22.953125 6.109375 30.078125 6.109375 \n", "Q 37.203125 6.109375 41.296875 11.75 \n", "Q 45.40625 17.390625 45.40625 27.296875 \n", "Q 45.40625 37.203125 41.296875 42.84375 \n", "Q 37.203125 48.484375 30.078125 48.484375 \n", "Q 22.953125 48.484375 18.875 42.84375 \n", "Q 14.796875 37.203125 14.796875 27.296875 \n", "z\n", "\" id=\"DejaVuSans-64\"/>\n", " <path d=\"M 19.671875 34.8125 \n", "L 19.671875 8.109375 \n", "L 35.5 8.109375 \n", "Q 43.453125 8.109375 47.28125 11.40625 \n", "Q 51.125 14.703125 51.125 21.484375 \n", "Q 51.125 28.328125 47.28125 31.5625 \n", "Q 43.453125 34.8125 35.5 34.8125 \n", "z\n", "M 19.671875 64.796875 \n", "L 19.671875 42.828125 \n", "L 34.28125 42.828125 \n", "Q 41.5 42.828125 45.03125 45.53125 \n", "Q 48.578125 48.25 48.578125 53.8125 \n", "Q 48.578125 59.328125 45.03125 62.0625 \n", "Q 41.5 64.796875 34.28125 64.796875 \n", "z\n", "M 9.8125 72.90625 \n", "L 35.015625 72.90625 \n", "Q 46.296875 72.90625 52.390625 68.21875 \n", "Q 58.5 63.53125 58.5 54.890625 \n", "Q 58.5 48.1875 55.375 44.234375 \n", "Q 52.25 40.28125 46.1875 39.3125 \n", "Q 53.46875 37.75 57.5 32.78125 \n", "Q 61.53125 27.828125 61.53125 20.40625 \n", "Q 61.53125 10.640625 54.890625 5.3125 \n", "Q 48.25 0 35.984375 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-42\"/>\n", " <path d=\"M 8.015625 75.875 \n", "L 15.828125 75.875 \n", "Q 23.140625 64.359375 26.78125 53.3125 \n", "Q 30.421875 42.28125 30.421875 31.390625 \n", "Q 30.421875 20.453125 26.78125 9.375 \n", "Q 23.140625 -1.703125 15.828125 -13.1875 \n", "L 8.015625 -13.1875 \n", "Q 14.5 -2 17.703125 9.0625 \n", "Q 20.90625 20.125 20.90625 31.390625 \n", "Q 20.90625 42.671875 17.703125 53.65625 \n", "Q 14.5 64.65625 8.015625 75.875 \n", "z\n", "\" id=\"DejaVuSans-29\"/>\n", " </defs>\n", " <g transform=\"translate(14.798437 168.959219)rotate(-90)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-46\"/>\n", " <use x=\"57.410156\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"85.193359\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"112.976562\" xlink:href=\"#DejaVuSans-74\"/>\n", " <use x=\"152.185547\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"213.708984\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"254.822266\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"286.609375\" xlink:href=\"#DejaVuSans-47\"/>\n", " <use x=\"364.099609\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"425.378906\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"453.162109\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"516.541016\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"548.328125\" xlink:href=\"#DejaVuSans-28\"/>\n", " <use x=\"587.341797\" xlink:href=\"#DejaVuSans-64\"/>\n", " <use x=\"650.818359\" xlink:href=\"#DejaVuSans-42\"/>\n", " <use x=\"719.421875\" xlink:href=\"#DejaVuSans-29\"/>\n", " </g>\n", " </g>\n", " </g>\n", " <g id=\"line2d_31\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 64.200994 164.155352 \n", "L 64.498224 164.39521 \n", "L 64.795455 165.125375 \n", "L 65.092685 166.379563 \n", "L 65.687145 170.758099 \n", "L 66.281605 178.787273 \n", "L 66.578835 185.248988 \n", "L 66.876065 195.130793 \n", "L 67.470526 234.219803 \n", "L 67.767756 201.254749 \n", "L 68.064986 188.798294 \n", "L 68.659446 175.922355 \n", "L 69.253906 169.182584 \n", "L 69.848366 165.577706 \n", "L 70.145597 164.635214 \n", "L 70.442827 164.194676 \n", "L 70.740057 164.236485 \n", "L 71.037287 164.762612 \n", "L 71.334517 165.79696 \n", "L 71.631747 167.389906 \n", "L 72.226207 172.661387 \n", "L 72.523438 176.742183 \n", "L 72.820668 182.353433 \n", "L 73.117898 190.561963 \n", "L 73.415128 204.606629 \n", "L 73.712358 256.493347 \n", "L 74.009588 209.32651 \n", "L 74.306818 192.859152 \n", "L 74.901278 177.776663 \n", "L 75.495739 170.18919 \n", "L 76.090199 166.074716 \n", "L 76.387429 164.928754 \n", "L 76.684659 164.30101 \n", "L 76.981889 164.162934 \n", "L 77.279119 164.50866 \n", "L 77.576349 165.353909 \n", "L 77.87358 166.738931 \n", "L 78.46804 171.470255 \n", "L 79.0625 180.158218 \n", "L 79.35973 187.290635 \n", "L 79.65696 198.651094 \n", "L 79.95419 224.621701 \n", "L 80.25142 219.835864 \n", "L 80.548651 197.078651 \n", "L 81.143111 179.523798 \n", "L 81.737571 171.117323 \n", "L 82.332031 166.544613 \n", "L 82.629261 165.223731 \n", "L 82.926491 164.439529 \n", "L 83.223722 164.155352 \n", "L 83.520952 164.358782 \n", "L 83.818182 165.059289 \n", "L 84.115412 166.289996 \n", "L 84.412642 168.114261 \n", "L 85.007102 174.050888 \n", "L 85.304332 178.673898 \n", "L 85.601563 185.162514 \n", "L 85.898793 195.118242 \n", "L 86.493253 232.743194 \n", "L 86.790483 200.736353 \n", "L 87.087713 188.410988 \n", "L 87.682173 175.635679 \n", "L 88.276634 168.967604 \n", "L 88.871094 165.445254 \n", "L 89.168324 164.553367 \n", "L 89.465554 164.172395 \n", "L 89.762784 164.285374 \n", "L 90.060014 164.897877 \n", "L 90.357244 166.039054 \n", "L 90.654474 167.767393 \n", "L 91.248935 173.459629 \n", "L 91.546165 177.898026 \n", "L 91.843395 184.094227 \n", "L 92.140625 193.45975 \n", "L 92.437855 211.037701 \n", "L 92.735085 243.834682 \n", "L 93.032315 202.743148 \n", "L 93.329545 189.427714 \n", "L 93.924006 176.050628 \n", "L 94.518466 169.152057 \n", "L 95.112926 165.504648 \n", "L 95.410156 164.569623 \n", "L 95.707386 164.154042 \n", "L 96.004616 164.23917 \n", "L 96.301847 164.829472 \n", "L 96.599077 165.953447 \n", "L 96.896307 167.669312 \n", "L 97.490767 173.351962 \n", "L 97.787997 177.795963 \n", "L 98.085227 184.010513 \n", "L 98.382457 193.42411 \n", "L 98.679688 211.181416 \n", "L 98.976918 242.268936 \n", "L 99.274148 202.340412 \n", "L 99.571378 189.131545 \n", "L 100.165838 175.830062 \n", "L 100.760298 168.981389 \n", "L 101.354759 165.388292 \n", "L 101.651989 164.485572 \n", "L 101.949219 164.107399 \n", "L 102.246449 164.23661 \n", "L 102.543679 164.879811 \n", "L 102.840909 166.06863 \n", "L 103.138139 167.866177 \n", "L 103.732599 173.802406 \n", "L 104.02983 178.464475 \n", "L 104.32706 185.04494 \n", "L 104.62429 195.226698 \n", "L 105.21875 229.100421 \n", "L 105.51598 199.465341 \n", "L 105.81321 187.496252 \n", "L 106.40767 174.994845 \n", "L 107.002131 168.50873 \n", "L 107.596591 165.180282 \n", "L 107.893821 164.402454 \n", "L 108.191051 164.153058 \n", "L 108.488281 164.42092 \n", "L 108.785511 165.21955 \n", "L 109.082741 166.589808 \n", "L 109.379972 168.608702 \n", "L 109.974432 175.220257 \n", "L 110.271662 180.472265 \n", "L 110.568892 188.085164 \n", "L 110.866122 200.661001 \n", "L 111.163352 234.812546 \n", "L 111.757813 193.94385 \n", "L 112.352273 177.807512 \n", "L 112.946733 169.959319 \n", "L 113.541193 165.825489 \n", "L 113.838423 164.730356 \n", "L 114.135653 164.191465 \n", "L 114.432884 164.183094 \n", "L 114.730114 164.705802 \n", "L 115.027344 165.786515 \n", "L 115.324574 167.484135 \n", "L 115.919034 173.224927 \n", "L 116.216264 177.773676 \n", "L 116.513494 184.199849 \n", "L 116.810724 194.097462 \n", "L 117.405185 232.030996 \n", "L 117.702415 199.806313 \n", "L 117.999645 187.470711 \n", "L 118.594105 174.763495 \n", "L 119.188565 168.247086 \n", "L 119.783026 164.970297 \n", "L 120.080256 164.245466 \n", "L 120.377486 164.069168 \n", "L 120.674716 164.43387 \n", "L 120.971946 165.359109 \n", "L 121.269176 166.89557 \n", "L 121.566406 169.136803 \n", "L 122.160866 176.50962 \n", "L 122.458097 182.495375 \n", "L 122.755327 191.522039 \n", "L 123.052557 208.112513 \n", "L 123.349787 252.55122 \n", "L 123.647017 202.832574 \n", "L 123.944247 188.931975 \n", "L 124.538707 175.307331 \n", "L 125.133168 168.464175 \n", "L 125.727628 165.038305 \n", "L 126.024858 164.276321 \n", "L 126.322088 164.082682 \n", "L 126.619318 164.449073 \n", "L 126.916548 165.396228 \n", "L 127.213778 166.978412 \n", "L 127.511009 169.296451 \n", "L 127.808239 172.526894 \n", "L 128.105469 176.989014 \n", "L 128.402699 183.321315 \n", "L 128.699929 193.081198 \n", "L 129.294389 232.926198 \n", "L 129.591619 199.426422 \n", "L 129.888849 186.94608 \n", "L 130.48331 174.222645 \n", "L 131.07777 167.823351 \n", "L 131.67223 164.77437 \n", "L 131.96946 164.213421 \n", "L 132.26669 164.243935 \n", "L 132.56392 164.870362 \n", "L 132.861151 166.13081 \n", "L 133.158381 168.106074 \n", "L 133.455611 170.941849 \n", "L 133.752841 174.899439 \n", "L 134.050071 180.482887 \n", "L 134.347301 188.83112 \n", "L 134.644531 203.533432 \n", "L 134.937357 278.314375 \n", "M 134.946251 278.314375 \n", "L 135.238991 204.973 \n", "L 135.536222 189.462083 \n", "L 136.130682 175.055838 \n", "L 136.725142 168.079938 \n", "L 137.319602 164.797458 \n", "L 137.616832 164.200023 \n", "L 137.914062 164.242498 \n", "L 138.211293 164.933033 \n", "L 138.508523 166.320105 \n", "L 138.805753 168.505142 \n", "L 139.102983 171.673891 \n", "L 139.400213 176.171461 \n", "L 139.697443 182.706789 \n", "L 139.994673 193.083732 \n", "L 140.291903 215.041036 \n", "L 140.589134 222.216032 \n", "L 140.886364 195.276928 \n", "L 141.183594 183.813922 \n", "L 141.778054 171.931418 \n", "L 142.372514 166.222429 \n", "L 142.669744 164.767299 \n", "L 142.966974 164.083944 \n", "L 143.264205 164.138127 \n", "L 143.561435 164.947413 \n", "L 143.858665 166.585746 \n", "L 144.155895 169.206436 \n", "L 144.453125 173.101514 \n", "L 144.750355 178.860054 \n", "L 145.047585 187.893096 \n", "L 145.344815 205.259545 \n", "L 145.642045 237.650311 \n", "L 145.939276 196.720954 \n", "L 146.236506 183.519085 \n", "L 146.830966 170.776482 \n", "L 147.425426 165.262546 \n", "L 147.722656 164.204383 \n", "L 148.019886 164.162973 \n", "L 148.317116 165.188596 \n", "L 148.614347 167.455186 \n", "L 148.911577 171.344446 \n", "L 149.208807 177.708907 \n", "L 149.506037 188.924963 \n", "L 149.803267 218.434699 \n", "L 150.100497 203.852823 \n", "L 150.397727 183.431657 \n", "L 150.694957 173.655537 \n", "L 150.992188 167.962417 \n", "L 151.289418 164.89908 \n", "L 151.586648 164.182054 \n", "L 151.883878 166.293652 \n", "L 152.181108 173.260832 \n", "L 152.478338 196.629736 \n", "L 152.775568 183.301548 \n", "L 153.072798 157.731723 \n", "L 153.667259 132.900615 \n", "L 154.261719 117.139511 \n", "L 155.153409 99.989183 \n", "L 156.045099 86.980215 \n", "L 156.93679 76.546723 \n", "L 158.12571 65.432666 \n", "L 159.314631 56.71321 \n", "L 160.503551 49.87604 \n", "L 161.692472 44.596164 \n", "L 162.584162 41.517738 \n", "L 163.475852 39.107089 \n", "L 164.367543 37.294264 \n", "L 165.259233 36.011952 \n", "L 166.150923 35.191263 \n", "L 167.042614 34.758485 \n", "L 167.934304 34.633123 \n", "L 168.825994 34.72791 \n", "L 170.609375 35.215433 \n", "L 172.095526 35.543093 \n", "L 173.284446 35.587386 \n", "L 174.770597 35.365322 \n", "L 178.040128 34.668212 \n", "L 179.526278 34.667415 \n", "L 181.012429 34.913764 \n", "L 184.28196 35.570417 \n", "L 185.768111 35.550518 \n", "L 187.254261 35.291952 \n", "L 190.226563 34.682148 \n", "L 191.712713 34.651013 \n", "L 193.198864 34.860986 \n", "L 197.062855 35.58672 \n", "L 198.549006 35.519111 \n", "L 200.332386 35.164941 \n", "L 202.710227 34.690958 \n", "L 204.196378 34.647151 \n", "L 205.682528 34.844743 \n", "L 209.84375 35.593144 \n", "L 211.329901 35.4895 \n", "L 213.410511 35.042429 \n", "L 215.491122 34.667929 \n", "L 216.977273 34.662206 \n", "L 218.463423 34.893138 \n", "L 222.030185 35.582019 \n", "L 223.516335 35.531688 \n", "L 225.299716 35.178578 \n", "L 227.677557 34.689028 \n", "L 229.163707 34.651542 \n", "L 230.649858 34.876205 \n", "L 234.216619 35.59172 \n", "L 235.40554 35.530063 \n", "L 236.89169 35.187489 \n", "L 238.972301 34.664603 \n", "L 239.863991 34.656229 \n", "L 240.755682 34.907701 \n", "L 241.350142 35.261749 \n", "L 241.944602 35.792284 \n", "L 242.836293 36.966635 \n", "L 243.727983 38.656885 \n", "L 244.619673 40.930363 \n", "L 245.511364 43.85599 \n", "L 246.403054 47.509287 \n", "L 247.294744 51.978853 \n", "L 248.186435 57.37544 \n", "L 249.078125 63.845971 \n", "L 249.969815 71.597522 \n", "L 250.861506 80.943149 \n", "L 251.753196 92.402283 \n", "L 252.644886 106.96705 \n", "L 253.239347 119.460028 \n", "L 253.833807 136.144448 \n", "L 254.131037 147.623528 \n", "L 254.428267 164.155352 \n", "L 254.725497 202.506031 \n", "L 255.319957 170.146716 \n", "L 255.617188 165.214301 \n", "L 255.914418 164.148704 \n", "L 256.211648 165.647363 \n", "L 256.508878 169.497298 \n", "L 256.806108 176.258026 \n", "L 257.103338 188.162427 \n", "L 257.400568 218.965223 \n", "L 258.292259 175.331554 \n", "L 258.589489 169.907243 \n", "L 258.886719 166.597671 \n", "L 259.183949 164.75351 \n", "L 259.481179 164.07536 \n", "L 259.778409 164.433462 \n", "L 260.075639 165.809899 \n", "L 260.372869 168.293376 \n", "L 260.670099 172.121563 \n", "L 260.96733 177.819947 \n", "L 261.26456 186.669511 \n", "L 261.56179 203.101447 \n", "L 261.85902 249.886384 \n", "L 262.15625 198.529908 \n", "L 262.45348 184.783434 \n", "L 263.04794 171.846663 \n", "L 263.642401 166.050639 \n", "L 263.939631 164.658913 \n", "L 264.236861 164.064417 \n", "L 264.534091 164.210379 \n", "L 264.831321 165.092963 \n", "L 265.128551 166.760704 \n", "L 265.425781 169.329793 \n", "L 265.723011 173.026379 \n", "L 266.020241 178.295186 \n", "L 266.317472 186.125426 \n", "L 266.614702 199.445275 \n", "L 266.911932 241.226201 \n", "L 267.209162 207.510677 \n", "L 267.506392 190.152913 \n", "L 268.100852 175.04118 \n", "L 268.695313 167.979601 \n", "L 268.992543 165.984533 \n", "L 269.289773 164.752906 \n", "L 269.587003 164.196987 \n", "L 269.884233 164.277287 \n", "L 270.181463 164.992659 \n", "L 270.478693 166.380223 \n", "L 270.775923 168.525091 \n", "L 271.073153 171.585748 \n", "L 271.370384 175.853856 \n", "L 271.667614 181.909986 \n", "L 271.964844 191.134162 \n", "L 272.262074 208.409119 \n", "L 272.559304 244.146262 \n", "L 272.856534 201.053498 \n", "L 273.153764 187.653871 \n", "L 273.748224 174.444125 \n", "L 274.342685 167.910156 \n", "L 274.937145 164.802782 \n", "L 275.234375 164.214282 \n", "L 275.531605 164.208375 \n", "L 275.828835 164.78151 \n", "L 276.126065 165.961504 \n", "L 276.423295 167.814039 \n", "L 276.720526 170.459782 \n", "L 277.017756 174.112962 \n", "L 277.314986 179.173754 \n", "L 277.612216 186.490432 \n", "L 277.909446 198.382823 \n", "L 278.206676 227.617151 \n", "L 278.503906 215.209124 \n", "L 278.801136 194.455835 \n", "L 279.395597 177.733948 \n", "L 279.990057 169.798182 \n", "L 280.584517 165.709785 \n", "L 280.881747 164.665331 \n", "L 281.178977 164.191915 \n", "L 281.476207 164.26308 \n", "L 281.773438 164.880023 \n", "L 282.070668 166.071921 \n", "L 282.367898 167.902339 \n", "L 282.962358 174.017804 \n", "L 283.259588 178.863923 \n", "L 283.556818 185.770918 \n", "L 283.854048 196.675277 \n", "L 284.151278 220.411942 \n", "L 284.448509 221.986725 \n", "L 284.745739 197.227807 \n", "L 285.340199 179.151303 \n", "L 285.934659 170.700481 \n", "L 286.529119 166.218099 \n", "L 286.826349 164.975376 \n", "L 287.12358 164.289354 \n", "L 287.42081 164.124165 \n", "L 287.71804 164.469855 \n", "L 288.01527 165.340512 \n", "L 288.3125 166.777106 \n", "L 288.90696 171.709965 \n", "L 289.50142 180.852087 \n", "L 289.798651 188.478031 \n", "L 290.095881 201.012093 \n", "L 290.393111 234.544203 \n", "L 290.987571 194.67134 \n", "L 291.582031 178.454638 \n", "L 292.176491 170.520225 \n", "L 292.770952 166.235301 \n", "L 293.068182 165.028446 \n", "L 293.365412 164.345764 \n", "L 293.662642 164.153212 \n", "L 293.959872 164.43978 \n", "L 294.257102 165.215543 \n", "L 294.554332 166.513587 \n", "L 295.148793 170.971107 \n", "L 295.743253 179.056797 \n", "L 296.040483 185.527933 \n", "L 296.337713 195.384205 \n", "L 296.932173 235.60695 \n", "L 297.229403 201.930954 \n", "L 297.526634 189.389999 \n", "L 298.121094 176.442527 \n", "L 298.715554 169.615173 \n", "L 299.310014 165.861864 \n", "L 299.607244 164.811328 \n", "L 299.904474 164.232707 \n", "L 300.201705 164.098659 \n", "L 300.498935 164.400554 \n", "L 300.796165 165.147134 \n", "L 301.093395 166.366054 \n", "L 301.687855 170.46156 \n", "L 302.282315 177.662727 \n", "L 302.579545 183.20319 \n", "L 302.876776 191.161374 \n", "L 303.174006 204.363465 \n", "L 303.471236 243.410796 \n", "L 303.768466 213.745666 \n", "L 304.065696 195.817778 \n", "L 304.660156 179.996549 \n", "L 305.254616 171.976045 \n", "L 305.849077 167.366751 \n", "L 306.443537 164.91818 \n", "L 306.740767 164.340809 \n", "L 307.037997 164.155012 \n", "L 307.335227 164.350359 \n", "L 307.632457 164.929735 \n", "L 307.929688 165.909842 \n", "L 308.524148 169.226723 \n", "L 309.118608 174.904001 \n", "L 309.713068 184.608398 \n", "L 310.010298 192.497422 \n", "L 310.307528 205.411866 \n", "L 310.604759 241.338591 \n", "L 311.199219 198.037568 \n", "L 311.793679 181.832235 \n", "L 312.388139 173.519768 \n", "L 312.982599 168.561439 \n", "L 313.57706 165.664717 \n", "L 313.87429 164.815145 \n", "L 314.17152 164.317833 \n", "L 314.46875 164.155049 \n", "L 314.76598 164.31988 \n", "L 315.06321 164.815432 \n", "L 315.36044 165.655255 \n", "L 315.954901 168.486749 \n", "L 316.549361 173.257417 \n", "L 317.143821 181.073868 \n", "L 317.441051 186.991781 \n", "L 317.738281 195.544635 \n", "L 318.035511 210.241337 \n", "L 318.332741 277.780098 \n", "L 318.629972 212.450084 \n", "L 318.927202 196.618556 \n", "L 319.521662 181.552629 \n", "L 320.116122 173.515326 \n", "L 320.710582 168.621131 \n", "L 321.305043 165.709393 \n", "L 321.602273 164.839923 \n", "L 321.899503 164.320372 \n", "L 322.196733 164.136727 \n", "L 322.493963 164.285711 \n", "L 322.791193 164.774312 \n", "L 323.088423 165.620599 \n", "L 323.682884 168.530151 \n", "L 324.277344 173.539318 \n", "L 324.871804 181.984483 \n", "L 325.169034 188.603682 \n", "L 325.466264 198.654954 \n", "L 326.060724 235.81667 \n", "L 326.357955 204.040158 \n", "L 326.655185 191.643856 \n", "L 327.249645 178.538392 \n", "L 327.844105 171.337145 \n", "L 328.438565 167.061816 \n", "L 329.033026 164.76379 \n", "L 329.330256 164.232531 \n", "L 329.627486 164.086921 \n", "L 329.924716 164.325195 \n", "L 330.221946 164.959068 \n", "L 330.519176 166.015368 \n", "L 331.113636 169.606857 \n", "L 331.708097 175.906043 \n", "L 332.005327 180.665647 \n", "L 332.302557 187.278519 \n", "L 332.599787 197.386508 \n", "L 333.194247 233.191585 \n", "L 333.491477 202.307377 \n", "L 333.788707 190.076741 \n", "L 334.383168 177.190727 \n", "L 334.977628 170.240013 \n", "L 335.572088 166.290998 \n", "L 335.869318 165.125588 \n", "L 336.166548 164.423342 \n", "L 336.463778 164.158031 \n", "L 336.761009 164.321624 \n", "L 337.058239 164.922912 \n", "L 337.355469 165.988883 \n", "L 337.949929 169.746515 \n", "L 338.544389 176.520043 \n", "L 338.841619 181.757712 \n", "L 339.138849 189.242248 \n", "L 339.43608 201.381643 \n", "L 339.73331 231.995545 \n", "L 340.625 186.338287 \n", "L 341.21946 174.982565 \n", "L 341.81392 168.799543 \n", "L 342.408381 165.448383 \n", "L 342.705611 164.572366 \n", "L 343.002841 164.169511 \n", "L 343.300071 164.224314 \n", "L 343.597301 164.740555 \n", "L 343.894531 165.741912 \n", "L 344.191761 167.276204 \n", "L 344.786222 172.323383 \n", "L 345.380682 181.484308 \n", "L 345.677912 189.075403 \n", "L 345.975142 201.503152 \n", "L 346.272372 234.247712 \n", "L 346.866832 195.458397 \n", "L 347.461293 179.049379 \n", "L 348.055753 170.95938 \n", "L 348.650213 166.51085 \n", "L 348.947443 165.216967 \n", "L 349.244673 164.443286 \n", "L 349.541903 164.155352 \n", "L 349.839134 164.341505 \n", "L 350.136364 165.010735 \n", "L 350.433594 166.194282 \n", "L 350.730824 167.951631 \n", "L 351.325284 173.659466 \n", "L 351.622514 178.077429 \n", "L 351.919744 184.218843 \n", "L 352.216974 193.449796 \n", "L 352.514205 210.54702 \n", "L 352.811435 248.568685 \n", "L 353.108665 203.747567 \n", "L 353.405895 190.127866 \n", "L 354.000355 176.540972 \n", "L 354.594815 169.512019 \n", "L 355.189276 165.730545 \n", "L 355.486506 164.718252 \n", "L 355.783736 164.214668 \n", "L 356.080966 164.197522 \n", "L 356.378196 164.666564 \n", "L 356.675426 165.643502 \n", "L 356.972656 167.176109 \n", "L 357.567116 172.301141 \n", "L 358.161577 181.737088 \n", "L 358.458807 189.671629 \n", "L 358.756037 202.997505 \n", "L 359.053267 244.22328 \n", "L 359.350497 211.216279 \n", "L 359.647727 193.648138 \n", "L 360.242188 178.065734 \n", "L 360.836648 170.314951 \n", "L 361.431108 166.122145 \n", "L 361.728338 164.95263 \n", "L 362.025568 164.308519 \n", "L 362.322798 164.160121 \n", "L 362.620028 164.501012 \n", "L 362.917259 165.34683 \n", "L 363.214489 166.738221 \n", "L 363.808949 171.505011 \n", "L 364.403409 180.287527 \n", "L 364.700639 187.528285 \n", "L 364.997869 199.14663 \n", "L 365.295099 226.565192 \n", "L 365.59233 218.202656 \n", "L 365.88956 196.427069 \n", "L 366.48402 179.208602 \n", "L 367.07848 170.922009 \n", "L 367.67294 166.43099 \n", "L 367.97017 165.14738 \n", "L 368.267401 164.400593 \n", "L 368.267401 164.400593 \n", "\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_32\">\n", " <path clip-path=\"url(#pf8774e04d1)\" d=\"M 76.882813 164.394656 \n", "L 77.467345 165.094955 \n", "L 78.051878 167.966258 \n", "L 78.636411 174.04764 \n", "L 79.220943 185.67584 \n", "L 79.805476 213.489411 \n", "L 80.390009 207.689253 \n", "L 80.974541 185.345308 \n", "L 81.559074 174.769724 \n", "L 82.143607 168.236254 \n", "L 82.72814 164.990149 \n", "L 83.312672 164.001798 \n", "L 83.897205 165.373058 \n", "L 84.481738 168.832145 \n", "L 85.06627 175.475502 \n", "L 85.650803 188.775007 \n", "L 86.235336 223.129323 \n", "L 87.404401 182.041302 \n", "L 87.988934 172.982118 \n", "L 88.573467 167.062708 \n", "L 89.157999 164.819566 \n", "L 89.742532 164.395306 \n", "L 90.327065 166.380269 \n", "L 90.911597 170.849363 \n", "L 91.49613 178.424456 \n", "L 92.080663 192.479566 \n", "L 92.665195 243.249345 \n", "L 93.249728 195.82156 \n", "L 93.834261 178.317151 \n", "L 94.418794 170.137938 \n", "L 95.003326 166.007566 \n", "L 95.587859 164.311929 \n", "L 96.172392 165.023358 \n", "L 96.756924 167.841317 \n", "L 97.341457 172.387638 \n", "L 97.92599 180.992543 \n", "L 98.510522 199.423636 \n", "L 99.095055 225.546836 \n", "L 99.679588 186.508096 \n", "L 100.264121 173.868516 \n", "L 100.848653 168.308136 \n", "L 101.433186 165.353856 \n", "L 102.017719 164.720387 \n", "L 102.602251 166.142342 \n", "L 103.186784 169.320171 \n", "L 103.771317 174.880418 \n", "L 104.355849 185.587153 \n", "L 104.940382 215.583674 \n", "L 106.109448 179.887887 \n", "L 106.69398 171.128902 \n", "L 107.278513 167.108539 \n", "L 107.863046 165.425548 \n", "L 108.447578 165.177419 \n", "L 109.032111 167.212582 \n", "L 109.616644 170.88365 \n", "L 110.201177 179.024764 \n", "L 110.785709 196.218878 \n", "L 111.370242 224.828279 \n", "L 111.954775 186.457278 \n", "L 112.539307 175.014447 \n", "L 113.12384 168.675508 \n", "L 113.708373 165.621313 \n", "L 114.292905 165.600228 \n", "L 114.877438 165.882467 \n", "L 115.461971 168.343942 \n", "L 116.046504 174.745522 \n", "L 116.631036 187.060074 \n", "L 117.215569 232.760596 \n", "L 117.800102 193.417611 \n", "L 118.384634 178.253242 \n", "L 118.969167 170.541414 \n", "L 119.5537 166.644359 \n", "L 120.138232 165.161368 \n", "L 120.722765 164.961204 \n", "L 121.307298 167.106338 \n", "L 121.891831 172.356145 \n", "L 122.476363 183.074633 \n", "L 123.060896 214.002117 \n", "L 123.645429 200.700523 \n", "L 124.229961 180.299049 \n", "L 124.814494 172.301456 \n", "L 125.399027 167.463794 \n", "L 125.983559 164.897951 \n", "L 126.568092 164.743731 \n", "L 127.152625 166.605995 \n", "L 127.737158 171.476932 \n", "L 128.32169 182.018701 \n", "L 128.906223 207.804989 \n", "L 129.490756 205.152274 \n", "L 130.075288 181.759533 \n", "L 130.659821 172.980043 \n", "L 131.244354 167.686776 \n", "L 131.828886 165.373951 \n", "L 132.413419 164.779245 \n", "L 132.997952 167.405553 \n", "L 133.582485 172.487561 \n", "L 134.167017 183.010236 \n", "L 134.75155 215.122666 \n", "L 135.336083 198.696758 \n", "L 135.920615 178.607014 \n", "L 136.505148 170.753733 \n", "L 137.089681 166.43734 \n", "L 137.674213 164.781241 \n", "L 138.258746 165.395982 \n", "L 138.843279 168.96879 \n", "L 139.427812 176.48444 \n", "L 140.012344 194.249329 \n", "L 140.596877 228.650936 \n", "L 141.18141 182.998356 \n", "L 141.765942 172.287665 \n", "L 142.350475 167.252752 \n", "L 142.935008 164.847497 \n", "L 143.519541 165.495734 \n", "L 144.104073 168.930061 \n", "L 144.688606 177.782905 \n", "L 145.273139 198.843831 \n", "L 145.857671 203.883278 \n", "L 146.442204 177.747198 \n", "L 147.026737 168.029558 \n", "L 147.611269 164.965231 \n", "L 148.195802 165.343162 \n", "L 148.780335 170.504264 \n", "L 149.364868 183.278984 \n", "L 149.9494 261.702502 \n", "L 150.533933 179.230032 \n", "L 151.118466 167.344858 \n", "L 151.702998 165.190178 \n", "L 152.287531 177.899679 \n", "L 152.872064 174.767078 \n", "L 153.456596 140.543749 \n", "L 154.041129 122.992628 \n", "L 154.625662 110.015885 \n", "L 155.794727 90.801208 \n", "L 156.963793 76.688969 \n", "L 158.132858 65.792227 \n", "L 159.301923 57.214972 \n", "L 160.470989 50.454614 \n", "L 161.640054 45.206952 \n", "L 162.80912 41.259517 \n", "L 163.978185 38.43058 \n", "L 165.14725 36.561997 \n", "L 165.731783 35.935356 \n", "L 166.316316 35.498544 \n", "L 166.900849 35.221039 \n", "L 168.069914 35.052884 \n", "L 169.238979 35.236065 \n", "L 172.161643 35.972095 \n", "L 173.330708 36.007754 \n", "L 174.499774 35.849611 \n", "L 178.00697 35.097247 \n", "L 179.176035 35.07059 \n", "L 180.929633 35.31554 \n", "L 183.852297 35.94331 \n", "L 185.021362 36.010314 \n", "L 186.190428 35.914848 \n", "L 188.528559 35.398657 \n", "L 190.282157 35.0902 \n", "L 191.451222 35.050253 \n", "L 192.620287 35.165287 \n", "L 197.296549 36.015861 \n", "L 198.465614 35.952781 \n", "L 200.803745 35.476472 \n", "L 202.557343 35.139278 \n", "L 203.726409 35.064185 \n", "L 205.480007 35.248487 \n", "L 209.571736 36.030053 \n", "L 210.740801 36.006219 \n", "L 212.494399 35.710375 \n", "L 215.417063 35.121038 \n", "L 216.586128 35.084791 \n", "L 218.339726 35.312777 \n", "L 221.846923 36.010224 \n", "L 223.015988 36.02238 \n", "L 224.769586 35.753998 \n", "L 227.69225 35.137887 \n", "L 228.861315 35.08667 \n", "L 230.03038 35.205642 \n", "L 234.706642 36.045683 \n", "L 235.875707 35.907597 \n", "L 239.382904 35.083755 \n", "L 239.967436 35.120873 \n", "L 240.551969 35.269757 \n", "L 241.136502 35.55898 \n", "L 241.721034 36.011979 \n", "L 242.305567 36.64696 \n", "L 242.8901 37.485073 \n", "L 243.474633 38.550366 \n", "L 244.643698 41.420741 \n", "L 245.812763 45.408737 \n", "L 246.981829 50.708442 \n", "L 248.150894 57.519676 \n", "L 249.31996 66.173934 \n", "L 250.489025 77.178837 \n", "L 251.65809 91.454102 \n", "L 252.242623 100.299562 \n", "L 252.827156 110.987067 \n", "L 253.411688 124.161751 \n", "L 253.996221 142.728171 \n", "L 254.580754 178.495883 \n", "L 255.165287 177.337881 \n", "L 255.749819 165.173394 \n", "L 256.334352 168.766178 \n", "L 256.918885 182.306825 \n", "L 257.503417 233.67423 \n", "L 258.08795 182.277213 \n", "L 258.672483 169.951768 \n", "L 259.257015 166.591984 \n", "L 259.841548 166.549828 \n", "L 260.426081 170.22089 \n", "L 261.010614 179.560558 \n", "L 261.595146 203.092612 \n", "L 262.179679 203.217821 \n", "L 262.764212 177.738825 \n", "L 263.348744 169.501358 \n", "L 263.933277 166.154686 \n", "L 264.51781 166.434566 \n", "L 265.102342 169.028911 \n", "L 265.686875 174.570733 \n", "L 266.271408 186.22418 \n", "L 266.855941 218.406362 \n", "L 268.025006 177.640334 \n", "L 268.609539 168.77764 \n", "L 269.194071 166.489297 \n", "L 269.778604 165.502522 \n", "L 270.363137 168.331856 \n", "L 270.947669 172.043053 \n", "L 271.532202 181.344105 \n", "L 272.116735 201.090928 \n", "L 272.701268 225.196703 \n", "L 273.2858 185.049191 \n", "L 273.870333 173.885737 \n", "L 274.454866 168.517737 \n", "L 275.039398 166.019028 \n", "L 275.623931 166.320226 \n", "L 276.208464 168.373346 \n", "L 276.792997 173.38183 \n", "L 277.377529 182.234906 \n", "L 278.546595 222.575246 \n", "L 279.131127 185.250291 \n", "L 279.71566 174.316877 \n", "L 280.300193 168.0135 \n", "L 280.884725 165.712449 \n", "L 281.469258 165.983953 \n", "L 282.053791 168.15584 \n", "L 282.638324 172.747513 \n", "L 283.222856 180.063966 \n", "L 283.807389 194.875987 \n", "L 284.391922 245.225736 \n", "L 284.976454 190.918797 \n", "L 285.560987 176.745174 \n", "L 286.14552 170.005633 \n", "L 286.730052 166.708207 \n", "L 287.314585 165.844287 \n", "L 287.899118 167.075204 \n", "L 288.483651 169.779315 \n", "L 289.068183 175.469855 \n", "L 289.652716 185.047456 \n", "L 290.237249 206.888958 \n", "L 290.821781 203.184864 \n", "L 291.406314 183.01318 \n", "L 291.990847 174.197785 \n", "L 292.575379 169.326061 \n", "L 293.159912 166.988457 \n", "L 293.744445 166.406557 \n", "L 294.328978 167.068421 \n", "L 294.91351 170.164435 \n", "L 295.498043 176.191856 \n", "L 296.082576 187.940931 \n", "L 296.667108 220.610782 \n", "L 297.836174 182.043899 \n", "L 298.420706 175.089519 \n", "L 299.005239 169.536021 \n", "L 299.589772 166.97372 \n", "L 300.174305 165.86698 \n", "L 300.758837 166.328577 \n", "L 301.34337 168.944176 \n", "L 301.927903 174.779349 \n", "L 302.512435 184.445912 \n", "L 303.096968 205.31729 \n", "L 303.681501 219.167469 \n", "L 304.266033 191.534745 \n", "L 304.850566 180.406966 \n", "L 305.435099 172.683393 \n", "L 306.604164 165.304993 \n", "L 307.188697 165.19534 \n", "L 307.77323 166.808912 \n", "L 308.357762 170.234382 \n", "L 308.942295 175.892488 \n", "L 309.526828 183.59167 \n", "L 310.111361 198.989943 \n", "L 310.695893 265.213406 \n", "L 311.280426 198.118655 \n", "L 311.864959 181.853851 \n", "L 312.449491 173.726075 \n", "L 313.034024 169.916131 \n", "L 313.618557 166.946688 \n", "L 314.203089 165.97833 \n", "L 314.787622 166.930537 \n", "L 315.372155 167.066406 \n", "L 315.956688 169.532062 \n", "L 316.54122 174.681595 \n", "L 317.125753 181.714187 \n", "L 317.710286 199.191647 \n", "L 318.294818 260.61701 \n", "L 318.879351 203.466141 \n", "L 319.463884 184.799974 \n", "L 320.048416 177.817032 \n", "L 321.217482 167.372612 \n", "L 321.802015 165.202245 \n", "L 322.386547 165.407592 \n", "L 322.97108 166.804262 \n", "L 324.140145 174.369535 \n", "L 324.724678 180.513938 \n", "L 325.309211 194.680366 \n", "L 325.893743 232.340276 \n", "L 326.478276 201.334062 \n", "L 327.062809 182.431914 \n", "L 327.647342 174.482124 \n", "L 328.231874 170.274429 \n", "L 328.816407 167.387048 \n", "L 329.40094 166.849526 \n", "L 329.985472 167.251975 \n", "L 330.570005 168.138488 \n", "L 331.154538 171.64841 \n", "L 331.73907 178.122153 \n", "L 332.323603 190.574875 \n", "L 332.908136 223.621327 \n", "L 333.492669 206.023807 \n", "L 334.077201 184.313409 \n", "L 334.661734 176.150214 \n", "L 335.246267 171.021614 \n", "L 335.830799 167.795044 \n", "L 336.415332 165.915047 \n", "L 336.999865 166.886485 \n", "L 337.584397 169.019648 \n", "L 338.16893 174.483323 \n", "L 338.753463 183.674542 \n", "L 339.337996 202.148813 \n", "L 339.922528 234.261595 \n", "L 340.507061 196.0537 \n", "L 341.091594 181.347839 \n", "L 341.676126 172.970968 \n", "L 342.260659 169.010989 \n", "L 342.845192 167.08565 \n", "L 343.429725 168.183958 \n", "L 344.014257 170.737181 \n", "L 344.59879 175.543005 \n", "L 345.183323 181.716198 \n", "L 345.767855 198.140266 \n", "L 346.352388 235.055277 \n", "L 346.936921 201.230524 \n", "L 347.521453 183.025203 \n", "L 348.105986 176.965582 \n", "L 348.690519 173.185824 \n", "L 349.275052 173.034634 \n", "L 349.859584 173.832645 \n", "L 350.444117 171.747238 \n", "L 351.02865 176.517102 \n", "L 351.613182 183.180786 \n", "L 352.197715 204.199279 \n", "L 352.782248 246.141964 \n", "L 353.36678 199.42882 \n", "L 353.951313 182.537414 \n", "L 354.535846 179.247474 \n", "L 355.120379 182.005523 \n", "L 355.704911 171.414624 \n", "L 356.289444 182.784586 \n", "L 356.873977 187.483573 \n", "L 357.458509 185.703748 \n", "L 358.043042 187.855459 \n", "L 358.627575 207.183496 \n", "L 359.212107 221.858891 \n", "L 359.79664 215.018433 \n", "L 360.381173 195.71227 \n", "L 360.965706 198.309425 \n", "L 361.550238 196.363225 \n", "L 362.134771 175.270494 \n", "L 362.719304 178.227131 \n", "L 363.303836 179.13953 \n", "L 363.888369 211.794789 \n", "L 364.472902 194.381507 \n", "L 365.057434 247.653463 \n", "L 365.641967 227.1398 \n", "L 366.2265 217.843939 \n", "L 366.811033 203.062464 \n", "L 367.395565 227.140611 \n", "L 367.980098 201.763264 \n", "L 368.564631 273.062359 \n", "L 368.564631 273.062359 \n", "\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"patch_3\">\n", " <path d=\"M 48.982813 239.758125 \n", "L 48.982813 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_4\">\n", " <path d=\"M 383.782813 239.758125 \n", "L 383.782813 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_5\">\n", " <path d=\"M 48.982813 239.758125 \n", "L 383.782813 239.758125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"patch_6\">\n", " <path d=\"M 48.982813 22.318125 \n", "L 383.782813 22.318125 \n", "\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n", " </g>\n", " <g id=\"text_18\">\n", " <!-- Equal Ripple Bandpass Theory vs Measured -->\n", " <defs>\n", " <path d=\"M 9.8125 72.90625 \n", "L 55.90625 72.90625 \n", "L 55.90625 64.59375 \n", "L 19.671875 64.59375 \n", "L 19.671875 43.015625 \n", "L 54.390625 43.015625 \n", "L 54.390625 34.71875 \n", "L 19.671875 34.71875 \n", "L 19.671875 8.296875 \n", "L 56.78125 8.296875 \n", "L 56.78125 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-45\"/>\n", " <path d=\"M 44.390625 34.1875 \n", "Q 47.5625 33.109375 50.5625 29.59375 \n", "Q 53.5625 26.078125 56.59375 19.921875 \n", "L 66.609375 0 \n", "L 56 0 \n", "L 46.6875 18.703125 \n", "Q 43.0625 26.03125 39.671875 28.421875 \n", "Q 36.28125 30.8125 30.421875 30.8125 \n", "L 19.671875 30.8125 \n", "L 19.671875 0 \n", "L 9.8125 0 \n", "L 9.8125 72.90625 \n", "L 32.078125 72.90625 \n", "Q 44.578125 72.90625 50.734375 67.671875 \n", "Q 56.890625 62.453125 56.890625 51.90625 \n", "Q 56.890625 45.015625 53.6875 40.46875 \n", "Q 50.484375 35.9375 44.390625 34.1875 \n", "z\n", "M 19.671875 64.796875 \n", "L 19.671875 38.921875 \n", "L 32.078125 38.921875 \n", "Q 39.203125 38.921875 42.84375 42.21875 \n", "Q 46.484375 45.515625 46.484375 51.90625 \n", "Q 46.484375 58.296875 42.84375 61.546875 \n", "Q 39.203125 64.796875 32.078125 64.796875 \n", "z\n", "\" id=\"DejaVuSans-52\"/>\n", " <path d=\"M 18.109375 8.203125 \n", "L 18.109375 -20.796875 \n", "L 9.078125 -20.796875 \n", "L 9.078125 54.6875 \n", "L 18.109375 54.6875 \n", "L 18.109375 46.390625 \n", "Q 20.953125 51.265625 25.265625 53.625 \n", "Q 29.59375 56 35.59375 56 \n", "Q 45.5625 56 51.78125 48.09375 \n", "Q 58.015625 40.1875 58.015625 27.296875 \n", "Q 58.015625 14.40625 51.78125 6.484375 \n", "Q 45.5625 -1.421875 35.59375 -1.421875 \n", "Q 29.59375 -1.421875 25.265625 0.953125 \n", "Q 20.953125 3.328125 18.109375 8.203125 \n", "z\n", "M 48.6875 27.296875 \n", "Q 48.6875 37.203125 44.609375 42.84375 \n", "Q 40.53125 48.484375 33.40625 48.484375 \n", "Q 26.265625 48.484375 22.1875 42.84375 \n", "Q 18.109375 37.203125 18.109375 27.296875 \n", "Q 18.109375 17.390625 22.1875 11.75 \n", "Q 26.265625 6.109375 33.40625 6.109375 \n", "Q 40.53125 6.109375 44.609375 11.75 \n", "Q 48.6875 17.390625 48.6875 27.296875 \n", "z\n", "\" id=\"DejaVuSans-70\"/>\n", " <path d=\"M 44.28125 53.078125 \n", "L 44.28125 44.578125 \n", "Q 40.484375 46.53125 36.375 47.5 \n", "Q 32.28125 48.484375 27.875 48.484375 \n", "Q 21.1875 48.484375 17.84375 46.4375 \n", "Q 14.5 44.390625 14.5 40.28125 \n", "Q 14.5 37.15625 16.890625 35.375 \n", "Q 19.28125 33.59375 26.515625 31.984375 \n", "L 29.59375 31.296875 \n", "Q 39.15625 29.25 43.1875 25.515625 \n", "Q 47.21875 21.78125 47.21875 15.09375 \n", "Q 47.21875 7.46875 41.1875 3.015625 \n", "Q 35.15625 -1.421875 24.609375 -1.421875 \n", "Q 20.21875 -1.421875 15.453125 -0.5625 \n", "Q 10.6875 0.296875 5.421875 2 \n", "L 5.421875 11.28125 \n", "Q 10.40625 8.6875 15.234375 7.390625 \n", "Q 20.0625 6.109375 24.8125 6.109375 \n", "Q 31.15625 6.109375 34.5625 8.28125 \n", "Q 37.984375 10.453125 37.984375 14.40625 \n", "Q 37.984375 18.0625 35.515625 20.015625 \n", "Q 33.0625 21.96875 24.703125 23.78125 \n", "L 21.578125 24.515625 \n", "Q 13.234375 26.265625 9.515625 29.90625 \n", "Q 5.8125 33.546875 5.8125 39.890625 \n", "Q 5.8125 47.609375 11.28125 51.796875 \n", "Q 16.75 56 26.8125 56 \n", "Q 31.78125 56 36.171875 55.265625 \n", "Q 40.578125 54.546875 44.28125 53.078125 \n", "z\n", "\" id=\"DejaVuSans-73\"/>\n", " <path d=\"M -0.296875 72.90625 \n", "L 61.375 72.90625 \n", "L 61.375 64.59375 \n", "L 35.5 64.59375 \n", "L 35.5 0 \n", "L 25.59375 0 \n", "L 25.59375 64.59375 \n", "L -0.296875 64.59375 \n", "z\n", "\" id=\"DejaVuSans-54\"/>\n", " <path d=\"M 54.890625 33.015625 \n", "L 54.890625 0 \n", "L 45.90625 0 \n", "L 45.90625 32.71875 \n", "Q 45.90625 40.484375 42.875 44.328125 \n", "Q 39.84375 48.1875 33.796875 48.1875 \n", "Q 26.515625 48.1875 22.3125 43.546875 \n", "Q 18.109375 38.921875 18.109375 30.90625 \n", "L 18.109375 0 \n", "L 9.078125 0 \n", "L 9.078125 75.984375 \n", "L 18.109375 75.984375 \n", "L 18.109375 46.1875 \n", "Q 21.34375 51.125 25.703125 53.5625 \n", "Q 30.078125 56 35.796875 56 \n", "Q 45.21875 56 50.046875 50.171875 \n", "Q 54.890625 44.34375 54.890625 33.015625 \n", "z\n", "\" id=\"DejaVuSans-68\"/>\n", " <path d=\"M 30.609375 48.390625 \n", "Q 23.390625 48.390625 19.1875 42.75 \n", "Q 14.984375 37.109375 14.984375 27.296875 \n", "Q 14.984375 17.484375 19.15625 11.84375 \n", "Q 23.34375 6.203125 30.609375 6.203125 \n", "Q 37.796875 6.203125 41.984375 11.859375 \n", "Q 46.1875 17.53125 46.1875 27.296875 \n", "Q 46.1875 37.015625 41.984375 42.703125 \n", "Q 37.796875 48.390625 30.609375 48.390625 \n", "z\n", "M 30.609375 56 \n", "Q 42.328125 56 49.015625 48.375 \n", "Q 55.71875 40.765625 55.71875 27.296875 \n", "Q 55.71875 13.875 49.015625 6.21875 \n", "Q 42.328125 -1.421875 30.609375 -1.421875 \n", "Q 18.84375 -1.421875 12.171875 6.21875 \n", "Q 5.515625 13.875 5.515625 27.296875 \n", "Q 5.515625 40.765625 12.171875 48.375 \n", "Q 18.84375 56 30.609375 56 \n", "z\n", "\" id=\"DejaVuSans-6f\"/>\n", " <path d=\"M 2.984375 54.6875 \n", "L 12.5 54.6875 \n", "L 29.59375 8.796875 \n", "L 46.6875 54.6875 \n", "L 56.203125 54.6875 \n", "L 35.6875 0 \n", "L 23.484375 0 \n", "z\n", "\" id=\"DejaVuSans-76\"/>\n", " <path d=\"M 9.8125 72.90625 \n", "L 24.515625 72.90625 \n", "L 43.109375 23.296875 \n", "L 61.8125 72.90625 \n", "L 76.515625 72.90625 \n", "L 76.515625 0 \n", "L 66.890625 0 \n", "L 66.890625 64.015625 \n", "L 48.09375 14.015625 \n", "L 38.1875 14.015625 \n", "L 19.390625 64.015625 \n", "L 19.390625 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-4d\"/>\n", " </defs>\n", " <g transform=\"translate(85.1825 16.318125)scale(0.12 -0.12)\">\n", " <use xlink:href=\"#DejaVuSans-45\"/>\n", " <use x=\"63.183594\" xlink:href=\"#DejaVuSans-71\"/>\n", " <use x=\"126.660156\" xlink:href=\"#DejaVuSans-75\"/>\n", " <use x=\"190.039062\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"251.318359\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"279.101562\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"310.888672\" xlink:href=\"#DejaVuSans-52\"/>\n", " <use x=\"380.371094\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"408.154297\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"471.630859\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"535.107422\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"562.890625\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"624.414062\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"656.201172\" xlink:href=\"#DejaVuSans-42\"/>\n", " <use x=\"724.804688\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"786.083984\" xlink:href=\"#DejaVuSans-6e\"/>\n", " <use x=\"849.462891\" xlink:href=\"#DejaVuSans-64\"/>\n", " <use x=\"912.939453\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"976.416016\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"1037.695312\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"1089.794922\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"1141.894531\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"1173.681641\" xlink:href=\"#DejaVuSans-54\"/>\n", " <use x=\"1234.765625\" xlink:href=\"#DejaVuSans-68\"/>\n", " <use x=\"1298.144531\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"1359.667969\" xlink:href=\"#DejaVuSans-6f\"/>\n", " <use x=\"1420.849609\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"1461.962891\" xlink:href=\"#DejaVuSans-79\"/>\n", " <use x=\"1521.142578\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"1552.929688\" xlink:href=\"#DejaVuSans-76\"/>\n", " <use x=\"1612.109375\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"1664.208984\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"1695.996094\" xlink:href=\"#DejaVuSans-4d\"/>\n", " <use x=\"1782.275391\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"1843.798828\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"1905.078125\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"1957.177734\" xlink:href=\"#DejaVuSans-75\"/>\n", " <use x=\"2020.556641\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"2061.638672\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"2123.162109\" xlink:href=\"#DejaVuSans-64\"/>\n", " </g>\n", " </g>\n", " <g id=\"legend_1\">\n", " <g id=\"patch_7\">\n", " <path d=\"M 199.320312 234.758125 \n", "L 376.782812 234.758125 \n", "Q 378.782812 234.758125 378.782812 232.758125 \n", "L 378.782812 204.401875 \n", "Q 378.782812 202.401875 376.782812 202.401875 \n", "L 199.320312 202.401875 \n", "Q 197.320312 202.401875 197.320312 204.401875 \n", "L 197.320312 232.758125 \n", "Q 197.320312 234.758125 199.320312 234.758125 \n", "z\n", "\" style=\"fill:#ffffff;opacity:0.8;stroke:#cccccc;stroke-linejoin:miter;\"/>\n", " </g>\n", " <g id=\"line2d_33\">\n", " <path d=\"M 201.320312 210.500312 \n", "L 221.320312 210.500312 \n", "\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_34\"/>\n", " <g id=\"text_19\">\n", " <!-- Equiripple Theory: 101 taps -->\n", " <defs>\n", " <path d=\"M 11.71875 12.40625 \n", "L 22.015625 12.40625 \n", "L 22.015625 0 \n", "L 11.71875 0 \n", "z\n", "M 11.71875 51.703125 \n", "L 22.015625 51.703125 \n", "L 22.015625 39.3125 \n", "L 11.71875 39.3125 \n", "z\n", "\" id=\"DejaVuSans-3a\"/>\n", " </defs>\n", " <g transform=\"translate(229.320312 214.000312)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-45\"/>\n", " <use x=\"63.183594\" xlink:href=\"#DejaVuSans-71\"/>\n", " <use x=\"126.660156\" xlink:href=\"#DejaVuSans-75\"/>\n", " <use x=\"190.039062\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"217.822266\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"258.935547\" xlink:href=\"#DejaVuSans-69\"/>\n", " <use x=\"286.71875\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"350.195312\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"413.671875\" xlink:href=\"#DejaVuSans-6c\"/>\n", " <use x=\"441.455078\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"502.978516\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"534.765625\" xlink:href=\"#DejaVuSans-54\"/>\n", " <use x=\"595.849609\" xlink:href=\"#DejaVuSans-68\"/>\n", " <use x=\"659.228516\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"720.751953\" xlink:href=\"#DejaVuSans-6f\"/>\n", " <use x=\"781.933594\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"823.046875\" xlink:href=\"#DejaVuSans-79\"/>\n", " <use x=\"882.117188\" xlink:href=\"#DejaVuSans-3a\"/>\n", " <use x=\"915.808594\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"947.595703\" xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"1011.21875\" xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"1074.841797\" xlink:href=\"#DejaVuSans-31\"/>\n", " <use x=\"1138.464844\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"1170.251953\" xlink:href=\"#DejaVuSans-74\"/>\n", " <use x=\"1209.460938\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"1270.740234\" xlink:href=\"#DejaVuSans-70\"/>\n", " <use x=\"1334.216797\" xlink:href=\"#DejaVuSans-73\"/>\n", " </g>\n", " </g>\n", " <g id=\"line2d_35\">\n", " <path d=\"M 201.320312 225.178437 \n", "L 221.320312 225.178437 \n", "\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n", " </g>\n", " <g id=\"line2d_36\"/>\n", " <g id=\"text_20\">\n", " <!-- AD Measured (0.5dB correct) -->\n", " <defs>\n", " <path d=\"M 34.1875 63.1875 \n", "L 20.796875 26.90625 \n", "L 47.609375 26.90625 \n", "z\n", "M 28.609375 72.90625 \n", "L 39.796875 72.90625 \n", "L 67.578125 0 \n", "L 57.328125 0 \n", "L 50.6875 18.703125 \n", "L 17.828125 18.703125 \n", "L 11.1875 0 \n", "L 0.78125 0 \n", "z\n", "\" id=\"DejaVuSans-41\"/>\n", " <path d=\"M 19.671875 64.796875 \n", "L 19.671875 8.109375 \n", "L 31.59375 8.109375 \n", "Q 46.6875 8.109375 53.6875 14.9375 \n", "Q 60.6875 21.78125 60.6875 36.53125 \n", "Q 60.6875 51.171875 53.6875 57.984375 \n", "Q 46.6875 64.796875 31.59375 64.796875 \n", "z\n", "M 9.8125 72.90625 \n", "L 30.078125 72.90625 \n", "Q 51.265625 72.90625 61.171875 64.09375 \n", "Q 71.09375 55.28125 71.09375 36.53125 \n", "Q 71.09375 17.671875 61.125 8.828125 \n", "Q 51.171875 0 30.078125 0 \n", "L 9.8125 0 \n", "z\n", "\" id=\"DejaVuSans-44\"/>\n", " <path d=\"M 10.6875 12.40625 \n", "L 21 12.40625 \n", "L 21 0 \n", "L 10.6875 0 \n", "z\n", "\" id=\"DejaVuSans-2e\"/>\n", " </defs>\n", " <g transform=\"translate(229.320312 228.678437)scale(0.1 -0.1)\">\n", " <use xlink:href=\"#DejaVuSans-41\"/>\n", " <use x=\"68.408203\" xlink:href=\"#DejaVuSans-44\"/>\n", " <use x=\"145.410156\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"177.197266\" xlink:href=\"#DejaVuSans-4d\"/>\n", " <use x=\"263.476562\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"325\" xlink:href=\"#DejaVuSans-61\"/>\n", " <use x=\"386.279297\" xlink:href=\"#DejaVuSans-73\"/>\n", " <use x=\"438.378906\" xlink:href=\"#DejaVuSans-75\"/>\n", " <use x=\"501.757812\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"542.839844\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"604.363281\" xlink:href=\"#DejaVuSans-64\"/>\n", " <use x=\"667.839844\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"699.626953\" xlink:href=\"#DejaVuSans-28\"/>\n", " <use x=\"738.640625\" xlink:href=\"#DejaVuSans-30\"/>\n", " <use x=\"802.263672\" xlink:href=\"#DejaVuSans-2e\"/>\n", " <use x=\"834.050781\" xlink:href=\"#DejaVuSans-35\"/>\n", " <use x=\"897.673828\" xlink:href=\"#DejaVuSans-64\"/>\n", " <use x=\"961.150391\" xlink:href=\"#DejaVuSans-42\"/>\n", " <use x=\"1029.753906\" xlink:href=\"#DejaVuSans-20\"/>\n", " <use x=\"1061.541016\" xlink:href=\"#DejaVuSans-63\"/>\n", " <use x=\"1116.521484\" xlink:href=\"#DejaVuSans-6f\"/>\n", " <use x=\"1177.703125\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"1218.800781\" xlink:href=\"#DejaVuSans-72\"/>\n", " <use x=\"1259.882812\" xlink:href=\"#DejaVuSans-65\"/>\n", " <use x=\"1321.40625\" xlink:href=\"#DejaVuSans-63\"/>\n", " <use x=\"1376.386719\" xlink:href=\"#DejaVuSans-74\"/>\n", " <use x=\"1415.595703\" xlink:href=\"#DejaVuSans-29\"/>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " </g>\n", " <defs>\n", " <clipPath id=\"pf8774e04d1\">\n", " <rect height=\"217.44\" width=\"334.8\" x=\"48.982813\" y=\"22.318125\"/>\n", " </clipPath>\n", " </defs>\n", "</svg>\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x115c34198>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fir_d.freqz_resp_list([b_r_bp],[[1]],'dB',fs=48)\n", "ylim([-80,5])\n", "plot(f_AD/1e3,Mag_AD+.5)\n", "title(r'Equal Ripple Bandpass Theory vs Measured')\n", "ylabel(r'Filter Gain (dB)')\n", "xlabel(r'Frequency in kHz')\n", "legend((r'Equiripple Theory: %d taps' % len(b_r_bp),\n", " r'AD Measured (0.5dB correct)'),loc='lower right',fontsize='medium')\n", "grid();" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# FIR Design Problem\n", "Now its time to design and implement your own FIR filter using the filter design tools of `fir_design_helper.py`. The assignment here is to complete a design using a sampling rate of 48 kHz having an equiripple FIR lowpass lowpass response with 1dB cutoff frequency at 5 kHz, a passband ripple of 1dB, and stopband attenuation of 60 dB starting at 6.5 kHz. See Figure 9 for a graphical depiction of these amplitude response requirements." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACVsAAAJ9CAIAAACuc6dJAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAu\nIwAALiMBeKU/dgAAAdVpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6\neD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuNC4wIj4KICAgPHJkZjpSREYg\neG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4K\nICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6dGlm\nZj0iaHR0cDovL25zLmFkb2JlLmNvbS90aWZmLzEuMC8iPgogICAgICAgICA8dGlmZjpDb21wcmVz\nc2lvbj41PC90aWZmOkNvbXByZXNzaW9uPgogICAgICAgICA8dGlmZjpQaG90b21ldHJpY0ludGVy\ncHJldGF0aW9uPjI8L3RpZmY6UGhvdG9tZXRyaWNJbnRlcnByZXRhdGlvbj4KICAgICAgICAgPHRp\nZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRp\nb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CrDjMt0AAEAASURBVHgB7N15vNdT/jjwubfb\nKmmRtGpTlBAiRFOEQWGGEVmyZd9nsnxHmbIlMjKWSqIvY5ckjVDJMrJka9CiUiSVS5tou78zfX7z\n+X7curfbvZ+7vN/3+f7jOp/3+7zP8jznXj3u655zMnJycn7jIkCAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIEAgpgKZMe2XbhEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg8B8BEUHzgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgECcBUQE4zy6+kaAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIEBARNAcIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIBBnARHBOI+uvhEgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAQETQHCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECMRZQEQwzqOrbwQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgREBM0BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAnEWEBGM8+jqGwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAERQXOAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAQJwFRATjPLr6RoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQEBE0BwgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgEGcBEcE4j66+ESBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIEBARNAcIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIxFlARDDOo6tvBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBEQEzQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECcRYQEYzz6Oob\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAARFBc4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIBAnAVEBOM8uvpGgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAQETQHCBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECAQZwERwTiPrr4RIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQEBE0BwgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAjEWUBEMM6jq28ECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIERATNAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJxFhARjPPo6hsBAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABEUFzgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECcBUQE4zy6\n+kaAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBARNAcIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIBBnARHBOI+uvhEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAQETQHCBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECMRZQEQwzqOrbwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgREBM0B\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAnEWEBGM8+jqGwECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAERQXOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQJwFRATjPLr6RoAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQEBE0BwgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgEGcBEcE4\nj66+ESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBARNAcIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIxFlARDDOo6tvBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBEQEzQECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECcRYQEYzz6OobAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAARFB\nc4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAnAVEBOM8uvpGgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAQETQHCBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAQZwERwTiPrr4RIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQEBE0BwgQIECgWATuvffec8899+OPPy6W0hVKgAABAgQIECBA\ngAABAgQIECBAgAABAgUWEBEsMJWMBAgQILAtAq+88srIkSO/+uqrbXlJXgIECBAgQIAAAQIECBAg\nQIAAAQIECBBIv4CIYPpNlUiAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg7AiICJadsdASAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAukXEBFMv6kSCRAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECJQdARHBsjMWWkKAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAg/QIiguk3VSIBAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgACBsiMgIlh2xkJLCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCKRfQEQw/aZKJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB2BEQEy85YaAkBAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgACB9AuICKbfVIkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEyo6A\niGDZGQstIUCAAAECBAjETWDVqlXz5s1btmxZ3DqmPwQIECBAgAABAgQIECBAgACBSAmICEZquDSW\nAAECBAgQIBApgTFjxjRv3vyqq66KVKs1lgABAgQIECBAgAABAgQIECAQNwERwbiNqP4QIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQSBUQEUzVkCZAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAQ\nN4GsuHVIfwgQIEAgReDnn39+5plnPv7441mzZtWtW7ddu3a9evXacccdU7JIEiBAgAABAgQIECBA\ngAABAgQIECBAgEDMBUQEYz7AukeAQLkVyMnJeeihh2688cavv/46INSuXfvHH3/cuHHjNddcc8UV\nVwwcOLBixYrlFkfHCRAgQIAAAQIECBAgQIAAAQIECBAgUK4E7BparoZbZwkQKC8CIRx4/vnnn3vu\nuSEcGBYFzps37/vvv1+9evU999yTkZExaNCgQw455IcffigvHPpJgAABAgQIECBAgAABAgQIECBA\ngACB8i2QEX5rXL4F9J4AAQJxEwgLAfv06TNy5MjQsUsvvXTo0KGpPXzkkUd69+4d7hx44IGvvvpq\ntWrVUp+mMb3LLrssWLBg++2332GHHdJYrKIIEIiWQPhbhPD3B7vtttvnn38erZZrLQECBAgQIECA\nAAECBAgQIEAgTgIignEaTX0hQIDAfwT69u07ePDgkKhXr97s2bNDTC6Xyx/+8Ifnnnsu3Dz99NNH\njx6d62m6PtavX3/x4sXpKk05BAhEWqBGjRrLly+PdBc0ngABAgQIECBAgAABAgQIECAQaQERwUgP\nn8YTIEAgt8CsWbPatm27fv368GD48OHnnXde7hy/+c3UqVM7d+6cuD9x4sRu3bptnqfodxIRwXCW\n4RFHHJFaWtjINIQkv/nmm9SbiXTiyMNc9+VPgvAJFOZD5ObD7373u7BGMCwanj9/frLxEgQIECBA\ngAABAgQIECBAgAABAiUskFXC9amOAAECBIpVICwQTIQDK1euHJYAbrGuQw89dPfdd0/s4HfBBRd8\n9tlnIfMWcxb9Zp06dRo2bJgoZ8OGDd9++21oXjjLMLXkChUqhPBh+JrMKT8f8yE23y+JyZyZ6ezq\n1G9raQIECBAgQIAAAQIECBAgQIBASQuICJa0uPoIECBQfAKvv/762LFjE+Xvv//+VapUyauuLl26\nJCKCc+fOffbZZ0899dS8cqbxfggH9uzZ86uvvgqJ1GJDOPCJJ55o1KhR6s2Qlj8BwifhYD5EdD78\n+OOPiZb7GhuB6dOn33nnnfvuu+9VV10Vm07pCAECBAgQIECAAAECBAgQiL2AiGDsh1gHCRAoRwLD\nhg1L9ja5L2jyTmqiQ4cOyY8jR44s7ohgYrVTiAWGK3Xry8TqwLCdYLhSI4LyJ0aHT8LBfIjHfEj+\nzJGIukD4Mf6Pf/xj1apVIoJRH0rtJ0CAAAECBAgQIECAAIFyJSAiWK6GW2cJEIizwMaNG19++eVk\nDzt16pRMb57Yb7/9kjcnT548b968Zs2aJe+kPZH/6q4QDgzL4FIrlT+hkVgdyMd8iMd8SP0elyZA\ngAABAgQIECBAgAABAgQIEChhARHBEgZXHQECBIpLYNq0adnZ2cnSQxgpmd480aZNm+2222716tXh\nUU5OzqRJk84555zNsxX9TljdFVaTWB1otV9iLlntl3Aob/Oh6D9JlECAAAECBAgQIECAAAECBAgQ\nIFBEARHBIgJ6nQABAmVFYMKECalNqVOnTurHXOnMzMyGDRvOmjUrcf/9998vpojgDz/8kM/ZgVa/\nWf2WmIFWQyYc4jofcv388ZEAAQIECBAgQIAAAQIECBAgQKDkBUQES95cjQQIECgWgSlTpiTLzcjI\nqFWrVvLjFhM77LBD8n6ICCbT6U0sXbq0gGcHhnoTOeUP4bEQKw1X6tmKfBIzM6/VdXzKrE+NGjXC\nXwYkmucrAQIECBAgQIAAAQIECBAgQIBAaQmICJaWvHoJECCQZoGwuihZYvgVfFbWVn7ChzzJ/P/+\n97+T6fQmBg8e/OOPP6aWmddqsJCnc+fOiV0l5Q/hwACV6sAnoWH+JGdFVL5fevfufdNNN1WtWjXZ\ncgkCBAgQIECAAAECBAgQIECAAIGSF9jK74tLvkFqJECAAIHCCYTVeMkX898yNJEtdY3gmjVrfvnl\nl8qVKydLSFfi+++/TxaV1+quRBQwfA2rA5OZQ0L+hAafhIP5ENH5sOOOO4aWN2nSJNF+XwkQIECA\nAAECBAgQIECAAAECBEpFQESwVNhVSoAAgTQLrFu3bvny5clCCxIRTF0jGF4Mr++0007JEoojkdfq\nrsTZaV9//XWuSuVPgPBJOJgPEZ0Pr732Wmh53bp1E+33lQABAgQIECBAgAABAgQIECBAoFQERARL\nhV2lBAgQSLPAsmXLUkssSESwUqVKqa+EvT2LLyKY/+qusDQwXKkRQfkTQ5NYHcjHfIj0fMjMzEz9\nUSNNgAABAgQIECBAgAABAgQIECBQKgIigqXCrlICBAikWSA7Ozu1xIJEBMOywtRXQvAp9WN60/mv\n7goRr9RDEEPV8if8E6sD+ZgP8ZgP6f2pojQCBAgQIECAAAECBAgQIECAAIFtEhAR3CYumQkQIFBG\nBWrWrJnasmrVqqV+3GI6V0QwcdbXFnMW5WZYHtSgQYNdNl2NGjVKFmX1W4LC6reEg/kQ7/mQ/MaX\nIECAAAECBAgQIECAAAECBAgQKC0BEcHSklcvAQIE0imw8847h9hScp1f2AJ0q6WnRgQzMjJq1669\n1VcKkaFWrVpPPPFECAiGZV6pr1v9ltCw+i3hYD7Eez6kfu9LEyBAgAABAgQIECBAgAABAgQIlIqA\niGCpsKuUAAECaRZILDVLHsWXaxPRLVa2YsWK5P0QtwslJD+mMRHWCIalgamrAxOFh+BlaG2ywcka\nQzPkDxp8ElPCfIjH90vyG1yCAAECBAgQIECAAAECBAgQIECgtAREBEtLXr0ECBBIs0DDhg2TAbYf\nfvhhq6Wn5immLUNDGx588MGwQDC1MeFUvM6dO4evqTcT6ZycnM1vyp804RMozIfIzYcrr7wy2WYJ\nAgQIECBAgAABAgQIECBAgACB0hIQESwtefUSIEAgzQJhad20adMShaZG+/KqJjVPiCbmlS1xPyw6\nXLx48caNG/PPlvp0/fr1qR9DOnFWXAhbJnc3TWRILHDcfJGi/HxSp5D5ENH5sE0/N1JHXJoAAQIE\nCBAgQIAAAQIECBAgQCCNAiKCacRUFAECBEpToHHjxsnqC7Jr6DfffJPM36VLl2R6i4nHH3/8qaee\nmjp16haf5nMzrOiaMWNGIkOIKf75z38OJ8YtXbo09ZWwQvGWW26pV69eMqf8fMyH2Hy/pP7xQerE\nlo6uQFZWVsuWLYvp9Nnosmg5AQIECBAgQIAAAQIECBAo4wIZW9yCrIw3WvMIECBAYHOBV199tVu3\nbon7GRkZq1evrlq16ubZEneWLVtWt27d5NN33323Q4cOyY+bJ5544onnn3/+s88+2/xRXndCeM//\nYvLCcZ9AeRM4/fTTR48eXd56Hdf+Tpky5bLLLgt/SnL33XfHtY/6RYAAAQIECBAgQIAAAQIE4icg\nIhi/MdUjAgTKqUAIvzVr1iysyUv0/5VXXjn88MPzsgj7i3bs2DHxNCzR++677zIzM/PKXLj7LVq0\nmDt3bjhEsEaNGoUrwVsECMRAYMWKFT/99NN555138803x6A7ukCAAAECBAgQIECAAAECBAgQiKiA\nXUMjOnCaTYAAgdwCYV1g7969//rXvyYeTJ48OZ+I4PTp05Pvh5WFaQ8HhsLbtWsXIoJDhw7t0aNH\nsi4JAgQIECBAgAABAgQIECBAgAABAgQIECh5gTSvCCn5DqiRAAECBJICZ511VogLJj6GiGDy/uaJ\nsEYwefPSSy9NpiUIECBAgAABAgQIECBAgAABAgQIECBAIH4CIoLxG1M9IkCg/AqELToPO+ywRP/f\ne++9VatWbdFi3bp1L730UuLR73//+wMPPHCL2dwkQIAAAQIECBAgQIAAAQIECBAgQIAAgXgIiAjG\nYxz1ggABAv9fIJzUVaFChfBh/fr1L7/88hZdxo8fv3Tp0vAoKyvrlltu2WIeNwkQIECAAAECBAgQ\nIECAAAECBAgQIEAgNgIigrEZSh0hQIDAfwT233//6667LmFx2223bY4SFggOGjQocT/kbN269eZ5\n3CFAgAABAgQIECBAgAABAgQIECBAgACBOAmICMZpNPWFAAEC/xHo16/fb3/725B4//33Bw8e/J9b\nKdfVV1/9zjvvhBtXXnnlgAEDUp5IEiBAgAABAgQIECBAgAABAgQIECBAgEA8BUQE4zmuekWAQHkW\nqFix4oQJE4499tiAcO2114YQ4MKFC8MmoiFAeNRRR91zzz0ZGRl/+tOfhgwZUp6V9J0AAQIECBAg\nQIAAAQIECBAgQIAAAQLlR0BEsPyMtZ4SIFCOBKpUqTJmzJi77rqrbt26IfLXpEmTcKdDhw7hZMGu\nXbu+++67m68dLEc6ukqAAAECBAgQIECAAAECBAgQIECAAIFyJpBVzvqruwQIECgvAllZWVdccUWf\nPn0mTZr0xRdfLFu2rE2bNvvss88ee+xRXgj0kwABAgQIECBAgAABAgQIECBAgAABAgQ2CYgImggE\nCBCIs0C1atXC9qGJHUTj3E99I0CAAAECBAgQIECAAAECBAgQIECAAIG8BewamreNJwQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgSiLyAiGP0x1AMCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\neQuICOZt4wkBAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB6AuICEZ/DPWAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAQN4CIoJ523hCgAABAgQIECBQNIHs7OwPPvhg/vz5RSvG2wQIECBAgAAB\nAgQIECBAgAABAkUSEBEsEp+XCRAgQIAAAQIE8hEYP378fvvt169fv3zyeESAAAECBAgQIECAAAEC\nBAgQIFDcAiKCxS2sfAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKlKSAiWJr66iZAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBQ3AIigsUtrHwCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\npSkgIlia+uomQIBAiQksWbLkmmuu+ctf/lJiNaqIAAECBAgQIECAAAECBAgQIECAAAECBMqIQFYZ\naYdmECBAgEAxCSxatOj2228fPnz4mjVrjjnmmGKqRbEECBAgQIAAAQIECBAgQIAAAQIECBAgUGYF\nRATL7NBoGIEYCnz66acPPPDABx98ENartW7d+sQTTzzzzDOzsvwgKq6x/uqrrwYNGvTQQw/98ssv\nxVWHcgkQIECAAAECBAgQIECAAAECBAgQIECgzAv4RXyZHyINJBAdgTfeeOPFF1+cMWNG9erV27dv\nf8EFF9SsWTPZ/KFDh/bt2zcZmpo3b94///nPsHZt/PjxLVu2TGaTSIvAl19+eeutt44ePXrdunVp\nKVAhBAgQIECAAAECBAgQIECAAAECBAgQIBBdAecIRnfstJxAGRJYuXJlr169Dj300BDhe+mll556\n6qnrrruuefPmIdqXaOVzzz13+eWXJ8OByabPmjXrkEMOCeGr5B2JogsE51NOOWX77bd/4YUXbr75\n5qIXqAQCBAgQIECAAAECBAgQIECAAAECBAgQiLSANYKRHj6NJ1AmBHJycs4444znn38+V2t++OGH\nk0466bXXXttvv/0uueSSXE+THxcvXnzllVeG2FXyjkQRBSpXrvzuu+8mCjnqqKOmTZuGt4ikXidA\ngAABAgQIECBAgAABAgQIECBAgECkBawRjPTwaTyBMiHw97//ffNwYKJla9asCdG+yZMnf/vtt4k7\njRo1Ovfcc8PJdmERYYgUJm6OGzcuHC5YJjoTx0Z07Ngxjt3SJwIECBAoHYGwAUCVKlXCYcClU71a\nCRAgQIAAAQIECBAgQIAAgUIJiAgWis1LBAikCNx7772JT2GnyrFjxy5YsODll1+++uqr69evH+6H\nBWoh+BcSVatWDbuJLly4cMSIEWedddYtt9wS1rHdeOONmZn/+UE0adKkRCG+pl2gXr16aS9TgQQI\nECBQbgU2bNgQtqd2Tm25nQA6ToAAAQIECBAgQIAAAQIRFbBraEQHTrMJlBWBd955Z+bMmVlZWSEu\n2KdPn0SzGjdufMQRR4S1gAceeOCPP/44ffr0cH/UqFFhE9HUdmdkZPTv33/58uV33XXX22+/nfpI\nOo0CYRPRNJamKAIECBAgQIAAAQIECBAgQIAAAQIECBCInIA1gpEbMg0mULYE3njjjdCgsOYvGQ5M\ntm+33XZ79tlnK1SoEO4ceuihJ598cvJRauL666/ffvvtZ8+enXpTOo0CFStWTGNpiiJAgAABAgQI\nECBAgAABAgQIECBAgACByAmICEZuyDSYQNkS+OKLL8JhQv369dtis7p27brvvvuGR7169dpihnBz\nxx13PO6441asWJFXBveLKBBWcBaxBK8TIECAAAECBAgQIECAAAECBAgQIECAQKQFRAQjPXwaT6D0\nBRYvXtyxY8dGjRrl1ZROnTqFR0ceeWReGcL9Fi1arFy5Mp8MHhVFIOzOWpTXvUuAAAECBAgQIECA\nAAECBAgQIECAAAECURcQEYz6CGo/gVIWWL16dbNmzfJpRN26dTMzM8PJgvnkadq0qYhgPj4eESBA\ngAABAgQIECBAgAABAgQIECBAgACBogiICBZFz7sECPzmp59+yj8iWLNmzdq1a4egYD5YYd/RDRs2\n5JPBIwIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDQAvn9jr7QhXqRAIHyI7Bx48atdrZq1ar551mw\nYEH+GTwlQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECi2QVeg3vUiAAIGEwFdffZUPxZo1a9avX59P\nhvBIRDB/n7Lw9IUXXnjxxRfnzp1b8MZ8/PHHIfMNN9wwdOjQgr+VK+eECRMqVqyY66aPBAgQIECA\nAAECBAgQIECAAAECBAgQILBNAiKC28QlMwECWxDIPyK4aNGiH3/8cQuvpdwSEUzBKKPJhQsXzpw5\nc+rUqdvavk8++WRbX0nNf+SRR+a/5WxqZmkCBMqgwLffflsGW6VJBAgQIECAAAECBAgQIECAAIHy\nJiAiWN5GXH8JpF9g2rRpRx99dF7lhoBQWCZ41FFH5RPX+de//pXX6+6XEYHjjz9+zz33XLduXcHb\nE1YHvv322wXPv8WckydP3uJ9NwkQIECAAAECBAgQIECAAAECBAgQIECg4AIiggW3kpMAgS0LrFy5\nMmztuOVn/7378ssv/zfpv5EUaLjp2qamb75Z6I477hjChPXq1atdu3aFChWSpS1dunTgwIHh65Il\nS5I3Q0L+hAafhIP5EMX58Pzzz4vrJwbOVwIECBAgQIAAAQIECBAgQIBA6QqICJauv9oJECBQLgRC\n/K9+/fq77LLL73//+0aNGiX7vGHDhrCjYOXKlZcvX54aDpQ/QcQn4WA+RHc+hGXiIoLJn3gSBAgQ\nIECAAAECBAgQIECAAIFSFBARLEV8VROIj0CI6IR4T61atVIXfm21ezk5OWF9YQgIha9bzVzeMoSt\nVoNP/r3OysqqVKlS/nnKyNMwPZ544okQEQyJ1CaF0e/Zs2c4ijLXSWPyJ5T4JBzMh3jMh9TvfWkC\nBAgQIECAAAECBAgQIECAAIESFhARLGFw1RGIocA555xz1113bb/99oXr2/r164cMGXLNNdcU7vW4\nvlWzZs21a9fm37szzjjjkUceyT9PWXjaoEGDEAsM1+arA0MsMFxff/11sp3J1WDyh3AgH/Mh8a2R\nWC0a3fmQ/AaXIECAAAECBAgQIECAAAECBAgQKC0BEcHSklcvgZgIZGZmFiUcGBTCQre+ffs++OCD\nMRHRjc0ERo0a1aZNG6sDrYYMU8Nqv8T3R3lb/bnZTwU3CBAgQIAAAQIECBAgQIAAAQIESlpARLCk\nxdVHIGYC4ff7hV4dmEqx++67p36UjpNAWCOYujow0bWw5iksDUxdHZi4H9aEhczy8zEfUn8IRH0+\npPZFmgABAgQIECBAgAABAgQIECBAoFQERARLhV2lBOIjcMUVVxSxM8uWLRs5cmTRyyliM8ra66ec\nckqIAeTfqoMOOij/DGXkaZMmTVJbEnY+7Ny5c/iaejOR3uLRifInofgECvMhWvPBMbHJ8ZIgQIAA\nAQIECBAgQIAAAQIECJSugIhg6fqrnUDkBbp06VLEPtSpU2fo0KEzZ84sYjkxe/3hhx+OWY9Cd0KM\nM2yWGNYF5gp2Js6KC19zdVn+BAifhIP5EMX58NNPP+X6vvaRAAECBAgQIECAAAECBAgQIECgVARE\nBEuFXaUEYiKQK65T8F6FpU7h3fXr1//www/PPvvsokWLHnvssfPPP7/gJcgZRYH8z07bfKdQ+ROj\nnDh7j4/5EMX58OGHH0bxh5U2EyBAgAABAgQIECBAgAABAgTiJyAiGL8x1SMCJSQQonoVK1bc4jaG\nhWjBfffdJyJYCLeovJJY3RX2ewxX6tmBidVvu2y6UiNe8idGlk/CwXyI7nywRjAqP6W1kwABAgQI\nECBAgAABAgQIEIi9gIhg7IdYBwkUl0BGRsYRRxzx8ssvp6WCTz755M033+zUqVNaSlNIqkCIpiQ/\nbty4MZkuyUT+q7tCQDAsg0ttj/wJjcTqQD7mQzzmQ+r3uDQBAgQIECBAgAABAgQIECBAgEAJC4gI\nljC46gjESuDCCy9MV0QwuLzyyisigsUxP3755ZdksWvXrk2mSyzxzTffZGdnWx0YwntWQ1rtl/i+\nK2+rP1u1atWgQYMS+5mjIgIECBAgQIAAAQIECBAgQIAAgc0FRAQ3N3GHAIGCChx77LFhp8fGjRv/\n/e9/b9GiRdWqVbOysjIzM8P706dPP+CAA2rVqnXxxRcfffTR++67b+J+rqLXrVt3+OGHd+nS5cYb\nb8z1yMd0CaxevTpZ1KpVq5LpEkucddZZISgYlnml1mj1W0LD6reEg/kQ7/nQpk2bAw88MPUngDQB\nAgQIECBAgAABAgQIECBAgEAJC4gIljC46gjESiAsc+nTp0/lypX32WefXB274IILdt5551dffbV1\n69a5HqV+DCcRPvXUU+GXxQcddFDYgzT1kXS6BGbMmJEsavbs2eFYr2rVqiXvlEBi4cKFixYtSlaU\n1+qokCGxjrCAqwnlT5DyTE4t8ydQlLX5EPaXDsfNdu/e/bjjjkuOlAQBAgQIECBAgAABAgQIECBA\ngEDJC4gIlry5GgnESuDcc899+umnc3Xpxx9/fO+99yZMmJB/ODDxVr169Tp37nzaaaeFoFFYYpir\nKB+LIhD26vzHP/5x3333JQsJd0488cQ777xzt912C7+pT94v1sTixYtTy89rNVjIE2ZCYldJ+Tc/\nO5BPYlaYP8nvjkh8v4S14+GvEJJtliBAgAABAgQIECBAgAABAgQIECgtAb98Ly159RKIiUD47fxl\nl12WqzOzZs0Kq9DCXqC57uf1MRSydOnSTz75ZPO1hnm94n7+An/5y1/uuOOO1BMEk/lDpDZcYRPX\ndu3affTRR8n7xZfYuHFjovC8Vi8looDha1jjldoM+RMafMyfsD9z8lsjWvMhnF0qIpgcOwkCBAgQ\nIECAAAECBAgQIECAQCkKiAiWIr6qCcRWoGXLluvXrw+/ti5gD6dMmRJyvvPOOyKCBRTbarabNl1b\nzVbCGfJa3ZU4S+/rr7/O1R75EyB8Eg7mQxTnQzhl9oknnsj1re0jAQIECBAgQIAAAQIECBAgQIBA\nyQuICJa8uRoJxF+gdu3aLVq0GDNmTK9evbba2yeffPKzzz4L2cLmclvNLENEBfJf7ReWBoYrNSIo\nf2KgE6vB+JgP0Z0P2223XUR/amk2AQIECBAgQIAAAQIECBAgQCBmAiKCMRtQ3SFQVgQ6dep04YUX\nhsPq9t1333zaNHny5DPPPDOR4cADD8wnp0eRFsh/dVeIeIVlcKkdlD+hkVgdyMd8iMd8SP0elyZA\ngAABAgQIECBAgAABAgQIEChhgYycnJwSrlJ1BAiUB4FvvvmmY8eOIZ5xxhln3HjjjU2aNMnV608/\n/TTcD+sIEz+Fwkaj4fTBjIyMXNl8jK7A8ccfP3bs2ND+ihUrVqlSpVWrVpUrV052J4x7OGAsnHQY\nxj0kkvdDolKlSiGn/HwSs8J8CA7R/X6ZM2fOkiVLRo4cefbZZ6d+m0tHWuCFF1447rjjevTokfgh\nH+m+aDwBAgQIECBAgAABAgQIECg/AiKC5Wes9ZRASQt88sknYaXgypUrQ5wvLPFptukKEaCw4Gn+\n/Pnhd8TJBoX9Qt9+++299947eUciBgLJiGAM+qILBAgURUBEsCh6ZfBdEcEyOCiaRIAAAQIECBAg\nQIAAAQIEtipg19CtEslAgEAhBfbcc8/nn3/+rLPOWrBgwaJN11tvvbV5WWEB2fDhw4UDN5eJx51B\ngwYdcsgh8eiLXhAgsK0CYb14tWrVOnTosK0vyl+WBcL/uPfZZ5/wtz5luZHaRoAAAQIECBAgQIAA\nAQIECOQSEBHMBeIjAQLpFOjatWvYE/Lvf//7Lbfckp2dvXnRRx111N/+9rfWrVtv/sideAiEsySd\nEBmPodQLAgQIJARq1apVt25dEUHzgQABAgQIECBAgAABAgQIREvArqHRGi+tJRBVgeXLl7/55puf\nbbq+++67cGpgCBS1b99erCiqI1qAdid2DQ2nTIWzpgqQXRYCBAgQIECAAAECBAgQIECAAAECBAgQ\nKC4BawSLS1a5BAikCuywww7HbLpSb0oTIECAAAECBAgQIECAAAECBAgQIECAAAECJSCQWQJ1qIIA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgdISEBEsLXn1EiBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECgJARHBklBWBwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHSEhARLC159RIgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAoCQERwZJQVgcBAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngACB0hIQESwtefUSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQKAkBEcGSUFYHAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAgdISyCqtitVLgEARBb766qsZM2YUsZAy+3qlSpWaNm266667ltkW\nahgBAgQIECBAgAABAgQIECBAgAABAgQIEIiKgIhgVEZKOwnkFhg/fvzFF1+c+25cPnfu3Llr1679\n+vWLS4f0gwABAgQIECBAgAABAgQIECBAgAABAgQIlJqAiGCp0auYQBEFKlasWL169SIWUmZfr1y5\nclgmWGabp2EECBAgQIAAAQIECBAgQIAAAQIECBAgQCBCAiKCERosTSXwK4HzNl2/uuUDAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQGAzgczN7rhBgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB8\nBEQE4zOWekKAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgcwERwc1N3CFAgAABAgQIEEiPwNdf\nfz1u3LiPPvooPcUphQABAgQIECBAgAABAgQIECBAoFACIoKFYvMSAQIECBAgQIBAAQQmT57co0eP\nIUOGFCCvLAQIECBAgAABAgQIECBAgAABAsUlICJYXLLKJUCAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIFAWBLLKQiO0gQCB6Ark5OR8+eWXn3766ffff//jpivcqbnpqlWrVps2bVq3bl2hQoXodlDL\nCRAgQIAAAQIECBAgQIAAAQIECBAgQIBA1AVEBKM+gtpPoHQEZs2a9dRTT73yyivhaKgVK1bk04hq\n1artvffenTp1Ovnkk/fZZ598cnpEgAABAgQIECBAgAABAgQIECBAgAABAgQIFIeAiGBxqCqTQGwF\n1qxZM2LEiFGjRoVAYAE7+dNPP7296br99ttbtWrVq1evSy65pHbt2gV8XTYCBAgQIECAAAECBAgQ\nIECAAAECBAgQIECgiALOESwioNcJlBeBENgbMmRI8+bNL7/88oKHA3PphJWF/fv3b9q0ab9+/cIO\no7me+kiAAAECBAgQIECAAAECBAgQIECAAAECBAgUh4CIYHGoKpNA3ATCMYF77bXX1VdfvXjx4qL3\nbeXKlQMHDmzWrNkjjzxS9NKUQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECOQvYNfQ/H08JUDgN088\n8cQ555wT1gimWoRtP1tuulq0aBFiezVq1AjnBW636apateovv/wSwn7hWrVqVXZ2dlga+MWma8GC\nBRs3bkyUE9YI9u7de+zYscOHD99xxx1TC5cmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE0iggIphG\nTEURiJvA+vXr+/bte9dddyU6FqKAhx9++BGbrsaNGxeit+EYwrfeemv8pmv27NmhhDFjxrzzzjv/\n/Oc/99xzz0IU6BUCBAgQIECAAAECBAgQIECAAAECBAgQIEBgqwJ2Dd0qkQwEyqnAkiVLunXrlggH\nHnLIISFot3Tp0ieffDKsFyxcODA4huWDIaYYygyrBmfOnHnZZZdVrlz522+/7dy589tvv11OoXWb\nAAECBAhESmDdunVhA4CwDUCkWq2xBAgQIECAAAECBAgQIECgvAuICJb3GaD/BLYoELb0POCAA6ZM\nmdKpU6fXX3996tSpRx55ZGZmOn9itGrV6u67754zZ06fPn3CbxVD9PHNN9/cYmPcJECAAAECBMqO\nwIQJE+rUqdOrV6+y0yQtIUCAAAECBAgQIECAAAECBLYqkM7f72+1MhkIEIiKwMUXXzx//vyrr746\nBAUPPfTQ4mt2o0aNhg0b9tprr1WpUuWkk04K6wWLry4lEyBAgAABAgQIECBAgAABAgQIECBAgACB\n8ikgIlg+x12vCeQn8PTTT4fj/R577LE77rijQoUK+WVN07MQdAynCW6//fYhKBj2IktTqYohQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIE/iMgImgeECDwK4HFixdfdNFFo0ePPvXUU3/1oJg/7LrrrmHX\n0C+//DJxcmEx16Z4AgQIECBAgAABAgQIECBAgAABAgQIECBQjgREBMvRYOsqgYIInHPOOWHL0BNP\nPLEgmdObZ6eddnr44Ydvu+227Ozs9JasNAIECBAgQIAAAQIECBAgQIAAAQIECBAgUJ4FRATL8+jr\nO4HcAs8880zNmjX79++f+0FJfT7yyCPPO++8Bx54oKQqVA8BAgQIECBAgAABAgQIECBAgAABAgQI\nEIi/QFb8u6iHBAgUWCAsDSyV1YGpDRw0aFDqR2kCBAgQIECAAAECBAgQIECAAAECBAgQIECgiALW\nCBYR0OsECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEyrSAiGCZHh6NI0CAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIFBEARHBIgJ6nQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECZFhARLNPD\no3EECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEiiggIlhEQK8TIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQKNMCWWW6dRpHgEA6BObOnfvee+/N33TNmzcv/DcnJ6dp06bN/nvtsccebdq0SUdV\nyiBAgAABAgQIECBAgAABAgQIECBAgAABAgTKnICIYJkbEg0ikC6BDRs2jB8//r777ps4cWIIAeYq\ndtasWal3DjrooEsvvfQPf/hDxYoVU+9LEyBAgAABAgQIECBAgAABAgQIECBAgAABAlEXEBGM+ghq\nP4EtCKxcufKee+4ZNmzYggULtvB4S7fe3nTVr1//gk3XTjvttKVc7hEgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQLRExARjN6YaTGB/AW++OKLE044IXzNla1KlSr16tULob7wtWbNmsuWLVu06fr++++T\nKwi//fbb/v3733vvvU8//fShhx6aqwQfCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAgSgKiAhGcdS0\nmUCeAs8991zv3r3DGsFq1ap17tz5iCOO6NChQyIQWKNGjS2+tnbt2hAIDMHBcNzgyy+/PGHChCVL\nlhx22GF33XXXJZdcssVX3CRAgAABAgQIECBAgAABAgQIECBAgAABAgQiJCAiGKHB0lQC+Qls3Ljx\nf/7nf2677baWLVuGYN5pp51WuXLl/F7477NKlSrtsuk68MADe/XqFcp5/fXXBwwYEI4VnD59+v33\n31/Acv5bnv8SIECAAAECBAgQIECAAAECBAgQIECAAAECZUsgs2w1R2sIECiswKBBg+68886hQ4eG\n/ULPOeecQofxMjMzu3TpMnny5Fc3XWeccUZhW+Q9AgQIECBAgAABAgQIECBAgAABAgQIECBAoEwI\niAiWiWHQCAJFFPjoo4/CYr5JkyaFhX0VKlQoYmmJ18PGodOmTfvyyy/DTqRpKVAhBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAQKkIiAiWCrtKCaRT4JdffrnwwgvHjRvXqVOndJb7m9/Ur19/ypQpf/vb\n37Kzs9NbstIIECBAgAABAgQIECBAgAABAgQIECBAgACBEhMQESwxahURKC6B/v37/+lPf9prr72K\no4Lq1auHzUj//Oc/F0fhyiRAgAABAgQIECBAgAABAgQIECBAgAABAgRKQCCrBOpQBQECxSpw3nnn\ntWjRoviq6NChQ506dXJycjIyMoqvFiUTIECAAAECBAgQIECAAAECBAgQIECAAAECxSQgIlhMsIol\nUHICxRoOTHSjefPmJdcfNREgQIBAjASqVKkSNrUO21DHqE+6QoAAAQIECBAgQIAAAQIECBCInoCI\nYPTGTIsJECBAgAABAlERaN++fe/evXfdddeoNFg7CRAgQIAAAQIECBAgQIAAAQKxFBARjOWw6hSB\nwgjYF7Qwat4hQIAAgXwFWm668s3iIQECBAgQIECAAAECBAgQIECAQLELiAgWO7EKCERCYMOGDW3b\ntg27uu2zzz5HHXVUt27dItFsjSRAgAABAgQIECBAgAABAgQIECBAgAABAgS2KpC51RwyECBQHgQq\nVKjwu9/9bt26dQceeGDyYMLwccqUKWPHjl2+fHl5QNBHAgQIECBAgAABAgQIECBAgAABAgQIECAQ\nSwFrBGM5rDpFoDAC06ZNGz9+fK1atRIvP/vssxdeeOHSpUvDx0aNGr344ot77bVXYcr1DgECBAgQ\nIECAAAECBAgQIECAAAECBAgQIFCqAtYIliq/ygmkSeDBBx/8y1/+snjx4kKXt3Hjxp133jkZDuzf\nv/+JJ54YwoFNmzYdPHjwMccc06dPn7CzaKHL9yIBAgQIECBAgAABAgQIECBAgAABAgQIECBQWgLW\nCJaWvHoJpE1g1KhR5513XiguOzv7vvvuK1y5mZmZc+bMmTFjRr169cLSwLBAMJRz2mmn3XvvvTVq\n1AjpSy+9dPbs2bvttlvhyvcWAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUFoCIoKlJa9eAmkTGDNm\nTMeOHd99990mTZoUpdALLrigXbt2GRkZOTk5IQoYgou9evVKFrjffvstW7Ys+VGCAAECBAgQIECA\nAAECBAgQIECAAAECBAgQiIqAiGBURko7CeQpEDYLDeHAVatWVa9ePc9MBXhw0UUXhY1Dx44d27Bh\nw3PPPbd58+apLz3xxBNPPvlk6h1pAgQIECBAgAABAgQIECBAgAABAgQIECBAIBICIoKRGCaNJJCf\nwOrVqxcuXNi4ceP8MhXs2e83Xal5w/mCX3311aOPPhqqSGwfmvpUmgABAgQIEChvApUqVTr44IPT\n8g+P8kanvwQIECBAgAABAgQIECBAoBQFMkuxblUTIJAWgZNOOun+++9PS1GbF/L444+HEwSHDRs2\nb968+fPnb57BHQIECBAgQKBcCYQdBXbddddWrVqVq17rLAECBAgQIECAAAECBAgQiLqANYJRH0Ht\nJ/Cbiy++uG3bttWqVbv++uszM38V5g8r/AJQrpvbRBaOEkycJrh06dKwJmCb3pWZAAECBAgQiJ/A\n3nvvPWrUqPj1S48IECBAgAABAgQIECBAgEC8BX4VPIh3V/WOQFwF6tatO3LkyP79+3fo0GHy5Mmp\n3Vy0aFG9evW+//771JuFS4dadthhh8K96y0CBAgQIECAAAECBAgQIECAAAECBAgQIECgFAVEBEsR\nX9UE0ibQvXv30aNHf/zxx127dt19990HDhz4+eefJ0pftmzZunXr0laTgggQIECAAAECBAgQIECA\nAAECBAgQIECAAIGoCYgIRm3EtJdAHgJhb8+JEyc2btz4iy++6NevX5s2bRKhwZBdRDAPM7cJECBA\ngAABAgQIECBAgAABAgQIECBAgEC5EBARLBfDrJPlRCAsEJwxY0Y4TTCcKRi6HEKDw4cPD4lWrVqF\nRwMGDHjjjTfWrl1bTjR0kwABAgQIECBAgAABAgQIECBAgAABAgQIEEgIiAiaCQRiJVCjRo2bb755\n9uzZ559/foUKFRJ9+/nnn8P5guGgwUMPPbRmzZqHHXbYTTfd9Oabb1o7GKux1xkCBAgQIECAAAEC\nBAgQIECAAAECBAgQIJCHgIhgHjBuE4iyQIMGDR544IEQ86tevXroR5MmTZK9WbNmzaRJk2644YZD\nDjmkTp06J5xwwogRIxYuXJjMIEGAAAECBAgQIECAAAECBAgQIECAAAECBAjETEBEMGYDqjsE/k+g\nY8eOgwYNCp+nTZu2YMGChx9++MwzzwwHDSZzrFy58vnnn+/Tp08IGbZr1y5kXrx4cfKpBAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIBAPARHBeIyjXhDYskDnzp0TD0IgMIQDQ1AwhAbDnqLDhg3r2bNn\nvXr1kq+FAwivvfbakO24444LW4wm70sQIECAAAECBAgQIECAAAECBAgQIECAAAECURcQEYz6CGo/\ngfwE6tat2759+8zMX32nt2zZMqwLfPzxx8OKwBAIHDp0aNg7tFatWqGg9evXv/DCC127dg135s6d\nm1/RnhEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIREcjIycmJSFM1kwCBYhTYuHHjhx9++Nprr736\n6qtvvPHGzz//XLly5b59+9544425AorF2AhFx0vg+OOPH7vp6tGjR7x6pjcECBAgQIAAAQIECBAg\nQIAAAQIECBCImMCvVg5FrO2aS4BA+gRC2G/fffcNIcCJEydmZ2eHlYLdu3e/7bbbzj777BAsTF89\nSiJAgAABAgQIECBAgAABAgQIECBAgAABAgRKWkBEsKTF1Ueg7AtUrVo1hAOffvrpmTNnLlq0KBxA\nWPbbrIUECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAXgIignnJuE+AwG+aNWs2bty4cNxg+IqDAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQiKiAiGBEB06zCZSQQDhN8Mknn7zjjjtKqD7VECBAgAABAgQI\nECBAgAABAgQIECBAgAABAukWEBFMt6jyCJS4wIIFC5YvX15M1YZdQ6tXrx7ighs2bCimKhRLgAAB\nAjEWmD179rBhwyZPnhzjPuoaAQIECBAgQIAAAQIECBAgQKDsC4gIlv0x0kICWxH48MMP27RpM3bs\n2K3k2/bH2dnZzZs3b9u27ddff52Tk7PtBXiDAAECBMq7wDvvvHPBBReMGjWqvEPoPwECBAgQIECA\nAAECBAgQIECgVAVEBEuVX+UE0iHQqVOngw466Pjjj+/Zs+fSpUvTUeT/L6NKlSqVKlWaM2dOly5d\nsrKy0liyoggQIECAAAECBAgQIECAAAECBAgQIECAAIESExARLDFqFREoLoE6deo8/fTTzz333NSp\nU3fffffHHnssXTVVq1btjTfeePjhh4cMGZKuMpVDgAABAgQIECBAgAABAgQIECBAgAABAgQIlLCA\niGAJg6uOQHEJnHDCCZ999lmPHj1OO+20Y445ZuHChWmpaa+99jrzzDPDOYJpKU0hBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAQMkLiAiWvLkaCRSXQM2aNR966KGJEyeG0GA4/O+BBx5w+F9xWSuXAAEC\nBAgQIECAAAECBAgQIECAAAECBAhER0BEMDpjpaUECibQrVu3GTNmnHXWWRdffHE4/2/27NkFe08u\nAgQIECBAgAABAgQIECBAgAABAgQIECBAIJ4CIoLxHFe9KucC22233d133x2OAFyyZEnY9nPw4MEb\nNmwo5ya6T4AAAQIECBAgQIAAAQIECBAgQIAAAQIEyq2AiGC5HXodj7/AQQcd9OGHH1511VXXX399\nx44dP/nkk/j3WQ8JECBAgAABAgQIECBAgAABAgQIECBAgACBzQREBDcjcYNAjAQqV6580003vf/+\n+xs3btxvv/369eu3du3aGPVPVwgQIECAAAECBAgQIECAAAECBAgQIECAAIGtC4gIbt1IDgJRFwgb\nh06bNm3gwIFh+9D27du/8847Ue+R9hMgQIAAAQKlJbBy5cpwYvGCBQtKqwHqJUCAAAECBAgQIECA\nAAECBAohICJYCDSvEIieQFZW1jXXXPPxxx/XqVPn4IMPvvLKK3/66afodUOLCRAgQIAAgdIWmDx5\ncrt27S699NLSboj6CRAgQIAAAQIECBAgQIAAgW0QEBHcBixZCURdoFWrVq+//vo999zz4IMPht/l\nvfbaa1HvkfYTIEDwV80RAABAAElEQVSAAAECBAgQIECAAAECBAgQIECAAAECWxUQEdwqkQwEYiWQ\nkZFx0UUX/fvf/w7RwcMPP/y8885bvnx5rHqoMwQIECBAgAABAgQIECBAgAABAgQIECBAgMCvBUQE\nf+3hE4HyIdCkSZMJEyY88sgjzz33XJs2bcaOHVs++q2XBAgQIECAAAECBAgQIECAAAECBAgQIECg\nPAqICJbHUdfn+AmEXUD/8pe/LF68eJu6dsYZZ3z22WfhWMHjjz++Z8+eS5Ys2abXZSZAgAABAgQI\nECBAgAABAgQIECBAgAABAgQiISAiGIlh0kgC+QmMGjUqbP558803DxgwIL98W3pWr169p556KqwU\nnDp1algs+Oijj24pl3sECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAhAVEBCM8eJpOICEwZsyYjh07\nZmZmhr1AC2dywgknhMWCPXr0OP3004899tjCFeItAgQIECBAgAABAgQIECBAgAABAgQIECBAoGwK\nZJXNZmkVAQIFFwibhb777rurVq2qXr16wd/KlbNmzZoPPfTQKaeccuGFF+Z65CMBAgQIECBAgAAB\nAgQIECBAgAABAgQIECAQaQFrBCM9fBpP4D8Cq1evXrhwYVHCgUnHbt26ffLJJ8mPEgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgEAMBEQEYzCIulDeBU466aT7778/XQrVqlVLV1HKIUCAAAECBAgQIECA\nAAECBAgQIECAAAECBMqCgF1Dy8IoaAOBIglcfPHFbdu2DZG866+/PpwmmFrWxo0bw8dcN1MzSBMg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQKxF/hV8CD2vdVBArEUqFu37siRI/v379+hQ4fJkyen9nHR\nokX16tX7/vvvU29KEyBAgAABAgQIECBAgAABAgQIECBAgAABAuVKQESwXA23zsZWoHv37qNHj/74\n44+7du26++67Dxw48PPPP0/0dtmyZevWrYttz3WMAAECBAgQIECAAAECBAgQIECAAAECBAgQ2JqA\niODWhDwnEBGBXr16TZw4sXHjxl988UW/fv3atGmTCA2G5osIRmQMNZMAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBSLgIhgsbAqlECpCIQFgjNmzAinCYYzBUMDQmhw+PDhIdGqVavwaMCAAW+88cbatWtL\npW0qJUCAAAECBAgQIECAAAECBAgQIECAAAECBEpLQESwtOTVS6BYBGrUqHHzzTfPnj37/PPPr1Ch\nQqKOn3/+OZwvGA4aPPTQQ2vWrHnYYYfddNNNb775prWDxTIGCiVAgAABAgQIECBAgAABAgQIECBA\ngAABAmVMQESwjA2I5hBIh0CDBg0eeOCBEPOrXr16KK9JkybJUtesWTNp0qQbbrjhkEMOqVOnzgkn\nnDBixIiFCxcmM0gQIECAAAECBAgQIECAAAECBAgQIECAAAECMRMQEYzZgOoOgf8T6Nix46BBg8Ln\nadOmLViw4OGHHz7zzDPDQYPJHCtXrnz++ef79OkTQobt2rULmRcvXpx8KkGAAAECBAgQIECAAAEC\nBAgQIECAAAECBAjEQ0BEMB7jqBcEtizQuXPnxIMQCAzhwBAUDKHBsKfosGHDevbsWa9eveRr4QDC\na6+9NmQ77rjjwhajyfsSBAgQIECAAAECBAgQIECAAAECBAgQIECAQNQFRASjPoLaTyA/gbp167Zv\n3z4z81ff6S1btgzrAh9//PGwIjAEAocOHRr2Dq1Vq1YoaP369S+88ELXrl3Dnblz5+ZXtGcECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIBARAR+FSeISJs1kwCBggrstNNO06dPD1/zeqFt27aXXnrpc889\nt2zZsvfffz9sHNqtW7cqVaqE3UTbtGnTr1+/jRs35vWu+wQIECBAgAABAgQIECBAgAABAgQIECBA\ngEAkBEQEIzFMGkmg2AXCOsJ99923b9++EydOzM7ODisFu3fvftttt5199tmCgsWurwICBAgQIECA\nAAECBAgQIECAAAECBAgQIFCcAiKCxamrbALRFKhatWoIBz799NMzZ85ctGhROIAwmv3QagIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQOA/AiKC5gEBAnkKNGvWbNy4ceG4wfA1z0weECBAgACBvAUqV668\n3377hXNt887iCQECBAgQIECAAAECBAgQIECAQLELZBV7DSogQCDKAuE3uU8++eQJJ5wQVg1GuR/a\nToAAAQKlI9CpU6ftt9++YcOGpVO9WgkQIECAAAECBAgQIECAAAECBDYJWCNoIhCIvMDtt9/+888/\nF1M3wq6hFStW/Oabb9avX19MVSiWAAECBGIs0KBBg9/97nd77rlnjPuoawQIECBAgAABAgQIECBA\ngACBsi8gIlj2x0gLCWxFYJ999rnmmmu2kqlQj7Ozs5s3bx4Wdvzyyy+FKsBLBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAQOkLiAiW/hhoAYEiChx++OFr1qwZPXp0EcvZ/PUqVark5OSsXLmyR48eWVk2\nGd5cyB0CBAgQIECAAAECBAgQIECAAAECBAgQIBABAb/ij8AgaSKBrQoMHjx4jz32mDt37o033rjV\nzAXMENYFXnLJJTvuuOMNN9xw1llnFfAt2QgQIECAAAECBAgQIECAAAECBAgQIECAAIGyJmCNYFkb\nEe0hUBiBHXbYIawRHDJkyCGHHDJ16tTCFJHyTlgXOG7cuAMOOOCpTdcFF1xQuXLllOeSBAgQIECA\nAAECBAgQIECAAAECBAgQIECAQJQERASjNFraSiAfgS5durzzzjvfffdd586dQ/qBBx5YuHBhPvm3\n+GjmzJlDhw7de++9wzahq1evDgUefPDBW8zpJgECBAgQIECAAAECBAgQIECAAAECBAgQIBAVAbuG\nRmWktJPA1gXatGnz7rvvnnrqqRMmTJgyZUp4oW3bti1btmzYsGGDTVciUbdu3RUrVoTYYeJasmRJ\nIjF9+vSvvvoqUc2xxx776KOPhqWHW69VDgIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBsC4gIlu3x\n0ToC2yhQs2bNF1988a9//eudd94ZFvn9e9O1TWWEDUKvv/76cHZgRkbGNr0oMwECBAgQIECAAAEC\nBAgQIECAAAECBAgQIFA2BewaWjbHRasIFF4gMzMzRAS/+eabcKxgixYtCl5Q06ZNb7311rDXaL9+\n/YQDC+4mJwECBAgQKFcClSpVCluU77LLLuWq1zpLgAABAgQIECBAgAABAgSiLiAiGPUR1H4CWxYI\nG35eeeWVs2bNCksGu3fv3qRJkwoVKmyeNUT+6tevH/YIHTdu3JdffnnttdeGPUU3z+YOAQIECBAg\nQCAhEP6EKBwzvP/++wMhQIAAAQIECBAgQIAAAQIEIiRg19AIDZamEthmgbBe8JhNV3hz3bp1CxYs\nmLfp2rhxY/h1XrjCH/hXqVJlm8v1AgECBAgQIFBeBXbbbbebb765vPZevwkQIECAAAECBAgQIECA\nQFQFRASjOnLaTWBbBSpWrBg2Ed2mfUS3tQr5CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAgTIoYNfQ\nMjgomkSAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAgbQIigmmjVBABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgACBMihg19AyOCiaRCBtAuHQwFWrVoX9QsORP3kVmp2dXbt27byeuk+AAAECBAgQ\nIECAAAECBAgQIECAAAECBAhEXcAawaiPoPYTyE/grLPO2nPPPbt27ZpPptGjRzdp0uSoo46aOHFi\nPtk8IkCAAAECBAgQIECAAAECBAgQIECAAAECBCIqICIY0YHTbAJpE7jiiivef//9t99++8gjj7zo\noovSVq6CCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgbIhICJYNsZBKwiUqsBOO+3UvXv30IT777/f\nSsFSHQqVEyBAgAABAgQIECBAgAABAgQIECBAgACB9AuICKbfVIkEIiewbt26Tz/9NNHst956K3Lt\n12ACBAgQIECAAAECBAgQIECAAAECBAgQIEAgH4GsfJ55RIBAPAS+//77Y489tm7dujtuulITa9eu\nnTNnzt13352MCLZp0yYevdYLAgQIECBAgAABAgQIECBAgAABAgQIECBAICEgImgmEIi/QAj7jR8/\nviD97NGjx4knnliQnPIQIECAAAECBAgQIECAAAECBAgQIECAAAECUREQEYzKSGkngcIL1KlTZ9So\nUd9suhZvupYuXZqdnb1y5cr169fXrl07LB1s3rz5aaed1q1bt8xMmwkXntqbBAgQIECAAAECBAgQ\nIECAAAECBAgQIECgDAqICJbBQdEkAmkWqFSpUvfu3dNcqOIIECBAgAABAgQIECBAgAABAgQIECBA\ngACBiAhYDBSRgdJMAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAoUSEBEsFJuXCBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECEREQEQwIgOlmQQIECBAgACBCAp8/PHH/fv3HzNmTATbrskECBAg\nQIAAAQIECBAgQIAAgfgIOEcwPmOpJwTyEvj222+rVq1au3btWrVqha916tTZedNVv379Zs2atWjR\nYpdddqlQoUJer7tPgAABAgQKLfDJJ58MGDDg9NNPP+GEEwpdiBcJECBAgAABAgQIECBAgAABAgSK\nKCAiWERArxMo0wKZmf9ZB1y9evVzzz136aZryZIlM2fODF9T2x3ihR06dDjttNN69+5dsWLF1EfS\nBAgQIECAAAECBAgQIECAAAECBAgQIECAQNQFRASjPoLaTyA/gYYNG4bHIS44ZMiQjIyMZNbFixdP\nnz79gw8+ePDBBxcsWLBmzZqpm65bbrnl/fffD4sIkzklCBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\ngagLOEcw6iOo/QTyEzjwwAPD4xUrVsyaNSs1X9g09Oijj77hhhvmzJkzbNiwsGto4un8+fMfeeSR\n1JzSBAgQIECAAAECBAgQIECAAAECBAgQIECAQNQFRASjPoLaTyA/gbBZaPv27UOORx99dIv5wh6h\nffr0CfHCcMhTlSpVGjRo0K1bty3mdJMAAQIECBAgQIAAAQIECBAgQIAAAQIECBCIqICIYEQHTrMJ\nFEigUqVKb731VogLhu1A77jjjpycnC2+FrKF9YJhKWHYQbRdu3ZbzOMmAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgEFEBEcGIDpxmEyioQNWqVUeMGPHZZ599/fXX999/fz6vhfWCFSpUyCeDRwQIECBA\ngAABAgQIECBAgAABAgQIECBAgEAUBbKi2GhtJkBgWwVat279t7/9bVvfkp8AAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBCIgYA1gjEYRF0gQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkKeANYJ50nhA\ngAABAgQIECBAgEAugaVLl3700Uc77bTTXnvtleuRjwQIECBAgAABAlEXWL9+/bhx4z744INvvvmm\ncePGxx577P777x/1Tmk/AQIECCQErBE0EwgQIECAAAECBAgQKKjAv/71ryOOOKJfv34FfUE+AgQI\nECBAgACBKAjk5OTcc889u+yyy8CBA7Oysvbee+/HHnvsgAMOuOKKK0qm+VdffXW3bt1CPHKr1W3Y\nsGHatGkPPvhgaNvxxx8fXnz44YdDFHPdunVbfVcGAgQIlGcBawTL8+jrO4H/CKxZs6Zq1aosCBAg\nQIAAAQIECBAgQIAAAQIEyqfAt99+e/rpp7/22mt33HHHVVddlZGRERxeeeWVuXPn3n333SFQd8wx\nxxSrzHPPPTdkyJA99tjjyCOPzL+iDz/88Lzzzgvxv82z7b777iNGjDj44IM3f+QOAQIECAQBawRN\nAwLlXeDiiy/u3r37U0899fPPP5d3C/0nQIAAAQIECBAgQIAAAQIECJQzgRAO7Ny5cwgH3nrrrWG9\nXSIc+MMPP7z88ssJiXnz5hUrSagr/HqqQoUKI0eOrFSpUj51XXfddWEX0y2GA8Nbn3/++SGHHBKK\nWr16dT6FeESAAIFyK2CNYLkdeh2Pp8CKFSumTp36/vvvh93eGzVqFPZ2OPzww8NWD/n0dtiwYT17\n9jz55JN32GGHE088MWy5kE9mjwgQIECAAAECBAgQIECAAAECBGIjkJ2dfdhhh82ePfuoo4669tpr\nk/2qUaNG06ZN58yZU7du3T/+8Y/J+8WRCGHIxYsXh6/5n1l4//3333bbbfk3IOx9et999y1fvvzR\nRx/NP6enBAgQKIcC+cUJyiGHLhOItMCkSZPCDg+LFi1K7UX4d9uf//znyy+/PK+/sapYsWL459SY\nMWPCv5bCn2KJCKbqSRMgQIAAAQIECBAgQIAAAQIEYixw/vnnh6V14a/Jw6adqd0MK/ZmzJgRjuvr\n2LFjXr9TSs1f6PTEiRNHjRrVokWLcH5hPoXMmjXrT3/6U8hQrVq1sArw6KOPbt26dZUqVcJ6wbfe\nemvw4MGp6wLDCYghwHnaaaflU6BHBAgQKIcCdg0th4Ouy/EUeOCBB8JywFzhwNDVpUuX9u3bN+zD\n/uKLL+bV81133bVZs2Z5PXWfAAECBAgQIECAAAECBAgQIEAgfgL/+Mc/nnnmmdCvc845JxzCl6uD\nlStXPvTQQ4s1HLhq1aoQkgz7lIa/UK9atWquBqR+7N27908//RQCgV9++eXtt9/+29/+tn79+rVq\n1Qq/Devfv//06dP33Xff1PwXXXRR2EAr9Y40AQIECIgImgME4iAQznkOWyuEjRESnQn/Hgr/Qgp/\nORVOWm7fvn1YBRg2fwiHBfbp02ft2rVb7HCdOnW2eN9NAgQIECBAgAABAgQIECBAgACB+AmsWbMm\n/BF5ol8XXHBBqXTw+uuvnz9/fvj9VYjw5dOAcJDhv/71r27duj333HM777zz5jlbtWr1+uuv77LL\nLslHK1euDCcjJj9KECBAgEAQEBE0DQjEQeCyyy4LfyeV6En4q66wyfv48ePDhgnDhw8PfyQV/g30\nxBNPNG/efMSIEV26dPnuu+8273Ox/sHX5tW5Q4AAAQIECBAgQIAAAQIECBAgUIoCd999d2IVXZs2\nbfbee++Sb0nY7fPee+9t1KhR+BVW/rW/8sorO+20UzjyJixbzCvndtttF0pLffree++lfpQmQIAA\nARFBc4BA5AU2bNiQ/KOn8CddYZuF2rVrp/Yq/Gvp5JNPDpvChx3hv/jii/322+/DDz9MzRDSmZl+\nGuQi8ZEAAQIECBAgQIAAAQIECBAgEE+B7Ozs2267LdG3P/7xjyXfyV9++eXcc8/duHHj/fffX6NG\njfwbEM4aDJtjhZhf/tmOOeaYgw46KJnn/fffT6YlCBAgQCAIiAGYBgQiLxD2T//5559DNxo0aJDr\nFOjUvoVVgFdeeWU4h7lt27adO3eePHly6lNpAgQIECBAgAABAgQIECBAgACBciIQwoHLly9PdPbE\nE08s+V4PGDAg/Nn6qaeeeuyxx2619pYtW4ZzAbeaLWQIp+cks4WgYzItQYAAAQJBQETQNCAQeYGF\nCxcm+nDwwQfnfwhzyBbOC3zppZcuv/zycNDg888/H/nO6wABAgQIECBAgAABAgQIECBAgMC2CPz7\n3/8eOnRo4o1wAl/42/FteTsNecPmVbfffnvdunXDzqUFKS7EL6tXr16QnKl9ady4cUFekYcAAQLl\nR0BEsPyMtZ7GVmDXXXdN9C2cFFiQToYNQgcOHHjfffedcsopjzzySEFekYcAAQIECBAgQIAAAQIE\nCBAgQCAGAtOnTz/uuOOS6+eOP/74Eu7U+vXrzznnnPA1RCV33HHH9NaeWmDr1q3TW7jSCBAgEHWB\nrKh3QPsJEGjSpEnYb33FihXz5s0ruMZZZ51Vr169sFP8ypUrL7nkkoK/KCcBAgQIECBAgAABAgQI\nECBAgEC0BAYNGvTDDz/MmTNn3Lhxa9euTTZ+8eLFt956a/jYtGnT8LfjyfvFlxg8eHBYI9ijR4+e\nPXumvZZvv/02WWap7IaarF2CAAECZVBARLAMDoomEdhmgfPPPz/8c2rKlCmrV6/e6jHLydLDxqHh\nX4Hdu3dP/l1Y8pEEAQIECBAgQIAAAQIECBAgQIBAPAS+/vrra6+9dot9GT16dOJ+3759SyAiGM4O\n/Otf/7rDDjuEzau22J4i3pw5c2aihBYtWuy///5FLM3rBAgQiJmAiGDMBlR3yqnAjTfe+Oyzz86d\nOzdswh7+XVVwhS5duowfPz6c4ZyTk1Pwt+QkQIAAAQIECBAgQIAAAQIECBCIikA4se/LL79MtDas\nouvUqVMifdhhhw0fPjyRDnmKuzsbN24899xzwx+m33PPPQ0bNiyO6l566aVEsXlFQIujUmUSIEAg\nKgLOEYzKSGkngfwEqlWrFgJ77du3HzBgwF133ZVf1s2ede7c+cUXXwz/JtvsiRsECBAgQIAAAQIE\nCBAgQIAAAQKRF6hcuXLz/15fffVVsj9HHnnkf28333777ZP3iykR1gW+9dZbXbt2DXHB4qjio48+\nmj9/fih53333Pfvss4ujCmUSIEAg0gIigpEePo0n8H8Cu+2227Rp0/r16xciggcddFDYQfT/nm0t\nFYKCzzzzTMWKFbeW0XMCBAgQIECAAAECBAgQIECAAIEIC0yaNCnZ+rB3VDJd3IkQibzuuuvCH7WP\nGDEiIyOjOKq78847E8XefffdmZl+710cxsokQCDaAn4yRnv8tJ5AqkAI6YUtQxcsWPDQQw+tX78+\n9dFW0+FMwf/93//1r6WtQslAgAABAgQI/D/27jtOiqLd+/Ah57xIEkFykpwkIxIERILkIElAEUFR\nwAAGkKASBBUVQQFBEBCQLEgGAQEBQQQk5yBBcn5/hz5vPf3Mzs7OzM7sTvjOH/up7q6qrrq6d3Zn\n7q4qBBBAAAEEEEAAAQSCV8BEBLWYn6abirWOdOnS5cqVK4MGDdKoRH+cVKMDp02bpppbtWpVsWJF\nf5yCOhFAAIFgF2AdwWC/grQfAScCGi+ol5MDLnc1b948Nv8RdNkWDiKAAAIIIIAAAggggAACCCCA\nAAII+FhAA/UOHjxoVVq5cuUECRL4+ARRVPftt9/+/PPP5cqV69mzZxRZYrr7lVde0fPxOXPm1ADB\nmNZFeQQQQCBEBRgjGKIXlm4h4JVAvnz5vCpHIQQQQAABBBBAAAEEEEAAAQQQQACBQBcwAwTV0GrV\nqsVOc0+dOvXqq68mTpx4/Pjxfpqeavbs2XPmzNGUpPoZERERO/3iLAgggEDQCRARDLpLRoMRQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAGPBeIkIti9e/cLFy689dZbhQsX9rjFbhQ4c+aMTqGMGolYrFgx\nN0qQBQEEEAhTASKCYXrh6XZICmzbtm3t2rUh2TU6hQACCCCAAAIIIIAAAggggAACCCAQQwETEUyb\nNm3srB0za9asH3/8sWjRom+88UYMG++0+N27d1u0aHHy5Mk333yzadOmTvOwEwEEEEDAEiAiyJ2A\nQIgIjBs3Tv/JaQr4d955J0S6RDcQQAABBBBAAAEEEEAAAQQQQAABBHwksGfPnhMnTliV6RskP03g\naW/s+fPnNXpPqxVqvtBEiRLZD/kqrUDgihUrmjRpMnDgQF/VST0IIIBAqAoQEQzVK0u/wk5g4cKF\nVp9NQpuTJ0/WuspLly69efNm2InQYQQQQACBABDQYiH58+fXA8gB0BaagAACCCCAAAIIIIBAWAso\ncmb6X716dZP2X0LLB54+fVo/S5cu7Y+zTJgw4cMPP3ziiSemTJkSCwFOf3SBOhFAAIHYFEgYmyfj\nXAgg4D+B9u3bL168+M6dO507dzZn0Tewox68UqRIUaNGjbp16z711FOPPPKIyUACAQQQQAABvwrU\nqlWrQIEC6dOn9+tZqBwBBBBAAAEEEEAAAQSiFTBThipntWrVos0fwwz6nmrixIl58+Z97733YliV\n0+ILFizo2rWrYo1z5sxJkiSJ0zzsRAABBBCwCxARtGuQRiCIBZ555pljx45pLGDWrFlNNzRLu5W+\nevXqTw9e2ixSpIhCg3pVrFgxYULeBIwWCQQQQAAB3wuke/Dyfb3UiAACCCCAAAIIIIAAAp4I3L9/\n34wRzJQpU/HixT0p7XHeK1euKFwXL148LXOTLFkyj8tHV2Djxo3NmjXLkyfPokWLUqVKFV12jiOA\nAAII/K8As4ZyHyAQOgIZMmSwhwPVsRw5cqRJk0ZhPz2QZfq5c+dOzaigZ8EiIiK05PI333xz6tQp\nc5QEAggggAACCCCAAAIIIIAAAggggECICfzxxx/nzp2zOlW7dm3F6vzawX79+h05ckRBwapVq/r8\nRNu2bdOT7hkzZtRCOfp2y+f1UyECCCAQqgJEBEP1ytIvBP5PQMMEZ86cuXfv3uPHj2t2da20nDp1\nauvYpUuXdKhjx46KI5YqVap///4bNmzQI2PYIYAAAggggAACCCCAAAIIIIAAAgiEkoB9ylCtKePX\nrq1du/bzzz/Pnj27Hkn3+Ym2b9/+5JNPasHyZcuWPfzww67r13df8+fPd52HowgggED4CBARDJ9r\nTU/DVEARwbJly6rzCvt16NBBIUA9Eab/Anv37l2wYEELRVHArVu3Dho06PHHH8+XL5/+XTtz5kyY\netFtBBBAAAEEEEAAAQQQQAABBBBAIOQEzJShCRIk0Grf/uvfjRs3OnXqpO+avvjiC5/P56mRjgoH\naoCjwoGaMtR1L27fvt24cWNNK+o6G0cRQACB8BEgIhg+15qehqlAly5d9NiUvfOJEiWqXr36xx9/\n/Oeffx44cGDMmDF6NCxp0qRWnr///rtv3756xqpNmzYXLlywFySNAAIIIIAAAggggAACCCCAAAII\nIBB0Anfv3l21apXV7HLlyqVPn95/XXjvvfc0VZW+VtLEnr49i0YH1qhRQ3UqHFi4cGHXla9cubJe\nvXp6Jr5du3auc3IUAQQQCB+BhOHTVXqKQHgKaIygi44/+uijLz14Xbt2TQ+LLViwYOHChYcPH9ZT\nVFOmTFm/fr3GFJYsWdJFDRxCAAEEEEAAAQQQQAABBBBAAAEEEAhkAU0NpfkzrRb6dcpQnUjPoD/0\n0EOjRo3yLcivv/6qEOPFixf1TZeCjk4rV+Dz1q1bly9f1ldbx44dU568efMqAuo0MzsRQACBMBQg\nIhiGF50uI+BEIHny5HpySi8d27Vr17x58yZPnqxBhBUrVlyyZEmVKlWclGEXAggggAACCCCAAAII\nIIAAAggggEDAC/zyyy+mjU2bNjVp3ybu3LnTsWNH/dR8VBkyZPBh5UuXLm3UqNHVq1dV544HLzcr\nb9u2rZs5yYYAAgiEgwARwXC4yvQRAc8ENPGCXv369du0aVPPnj07d+6s/7XMtKKe1UVuBBBAAAEE\nEEAAAQQQQAABBBBAAIE4FTARQT35nT9/fvfbcu/ePZXV90L//vtvsWLFNEpPXxD9/vvvJ0+ejDwp\n6LBhwzSxZ8OGDZs1a+b+KaLNOXv27BYtWmjwX7Q5HTJouUFNXuqwk00EEEAgnAVYRzCcrz59RyAa\ngbJly65du7ZUqVIfffRRNFk5jAACCCCAAALhIaD1iTV5wCOPPBIe3aWXCCCAAAIIIIBA0AvcvHlz\n3bp1Vjc6derkfn/279+vCGL9+vW1BmGqVKlmzJgRERGhfwX1On36tEM9u3fvHjhwYNq0aT/77DOH\nQzHc7NKlixfhQJ1UjddyOTE8O8URQACBUBJgjGAoXU36goDvBRIkSDB69Ohnn322f//+DrWvXr36\njz/+KFCgQJkyZVKnTu1wlE0EEEAAAQQQCEkB/enXQ998txKSF5dOIYAAAggggEBICuhp7+vXr6tr\niuq5P3pPQTh9HbRt27Zvv/32ueees2SmTZvWsmVLpfX4uN1KQwkVa1ToUeHArFmz2g/FPH327NmY\nV0INCCCAAAISICLIbYAAAq4EDh48mClTJk3Urv/t4sf/v1HFmhG+Xbt233//vVUyTZo0H3744fPP\nP6/ZGFzVxTEEEEAAAQQQCH6BnDlzdu/ePfj7QQ8QQAABBBBAAIFwEdAifFZXFcxLkSKFm91etGiR\nwoEJEybUjJ2miNLjxo1bv359oUKFzE4lLl261KdPH2XWgEL7ftIIIIAAAgElwKyhAXU5aAwCgSWg\nZ7tKlixZsGDBc+fOKSJoGjdp0iQTDtRO/dvXtWtXxQhNBoeEHhDbt2+fw042EUAAAQQQQAABBBBA\nAAEEEEAAAQT8LbBkyRKdIlGiRP369XP/XJoXSpn1UPiePXvspZ555hktKKjgn31nunTptHwg4UC7\nCWkEEEAgAAWICAbgRaFJCASKgKYM1bNjR44c0QTx9n/1Pv/888hN/O677z744IPI+7UnS5YsTz31\nFJM8OMVhJwIIIIAAAggggAACCCCAAAIIIOAngUOHDmmonyrv3LmzRxO/58mTx2pSx44d9ci4aV7e\nvHkdpgw1h0gggAACCAS4ABHBAL9ANA+BuBRQFHDTpk3z5s3TlPH2dvz999+aFH7ChAlnzpzRaoIa\nIGhNKKq1BufOnWvPaaUbN25co0aNp59++tq1a5GPsgcBBBBAAAEEEEAAAQQQQAABBBBAwB8CEydO\nVLUawzdgwACP6q9ataqGFarIli1bXnzxRVO2Vq1aw4cPN5skEEAAAQSCSICIYBBdLJqKQBwIKPKn\nOR/MCoJqwY0bN6xpQjt06JAxY8bKlSt/8cUXmkE+W7Zs9+/ff/XVV+/evRu5oaNGjbpw4cLLL78c\n+RB7EEAAAQQQQAABBBBAAAEEEEAAAQR8LqA5P7/55htVqxhe5syZPapfEz69/vrrVhE9FD506FAr\nrQmlkiZN6lFVZEYAAQQQCBABIoIBciFoBgJBI6B/+/Rk2ZNPPmlvcbly5X7++ef06dMfOHBg2rRp\n9kNWOlmyZCNHjhw/fvyKFSsiH2UPAggggAACCCCAAAIIIIAAAggggIB3AnpEe/ny5W+//ba1+J+p\n5Msvvzx8+LCmbtJT3Wan+4l33323UqVKVv4333xzzpw57pclJwIIIIBAAAoQEQzAi0KTEAh0gXz5\n8m3fvt2hlYUKFdK/hvHixdNTY/pP1OGoNuvWrVutWrUuXbpcv3498lH2IIAAAggggAACCCCAAAII\nIIAAAgh4ITBz5kwt1/LBBx88++yzprgWglGMsGTJkpMmTTI7PUpo1tAZM2Zo+iiV0lc9zz///OnT\npz2qgcwIIIAAAgElQEQwoC4HjUEgOAQUEdSjZ5HbqhlEW7ZsuXPnzl9++SXyUe3RXPNag3Dq1KlO\nj7ITAQQQQAABBBBAAAEEEEAAAQQQQMBTgbVr11pFqlSpYiVWrVql6Z2KFi26dOnSFClSeFqhya+5\nRhUUtBYUPHfunBaFMYdIIIAAAggEnQARwaC7ZDQYgbgX0P+UCxYs2LVrV+SmDBkyRNOKLlq0KPIh\n7dHkovo5btw4p0fZiQACCCCAAAIIIIAAAggggAACCCDgqUD37t0TJkyoUgULFtSKLQ0bNtQT22+9\n9ZbCgVrhxaPatBzMunXr7EUqVKjw3nvvWXui+sLHnp80AggggEDAChARDNhLQ8MQCFwB/VuZIUOG\n5s2bR57/85FHHtEMFfqP02nrS5curWlFN27cuHv3bqcZ2IkAAggggAACCCCAAAIIIIAAAggg4JGA\nJnPatm1b165dFbHTty41a9b8888/+/btmzhxYo/qUebFixdPmTLFodRrr72WI0cO7dyxY8e///7r\ncJRNBBBAAIFgESAiGCxXinYiEEACmiyiV69eGiP48ssvR14ysEmTJlrI2vXM8pGXIQyg7tEUBBBA\nAAEEEEAAAQQQQAABBBBAIKgEChcu/MUXX+gR7a+++kpDBtOmTetd83///fd9+/Y5lNUXQdWrV9fO\niIiI1KlTOxxlEwEEEEAgWASICAbLlaKdCASWQJcuXTSV/Ndff92gQYN//vnH3rg6deokS5ZMqwna\nd1ppBQKtCOL+/fsjH2UPAggggAACCCCAAAIIIIAAAggggEAcCmisodYgPHTokEMbbt26pT2NGjVy\n2M8mAggggEAQCRARDKKLRVMRCCCBVKlS/fjjj5p9Yv78+cWLF1+zZo1pnNYR1INpe/bsMXtMwixA\nffnyZbOTBAIIIIAAAggggAACCCCAAAIIIIBAnAvcvXtXT3jfvn37xRdftH91o4GDs2fPLlCgwIgR\nI+K8kTQAAQQQQMBrASKCXtNREIFwF3j88cc1H4UUjh07prkjWrdurbkp7t27pz1FihSJHBGcMGGC\ngoiWmkKG4c5H/xFAAAEEEEAAAQQQQAABBBBAAIFAEvjrr78SJkzYtGnTkydPlihRQovFDBkypGLF\niqVLl9bXPuvWrUuRIkUgtZe2IIAAAgh4JpDQs+zkRgABBGwCHTp0UORv2LBheohs6oNXtmzZ2rZt\nmyRJEv0TaTKeOHFiwIAB48ePN3uKFi1q0iQQQAABBBBAAAEEEEAAAQQQQAABBOJcQKvA/Pzzz3oE\nXC25fv26ZhD9888/9ZXOY489ljVr1jhvHg1AAAEEEIihQDxrTa8Y1kJxBBAIZ4HvvvuuW7duV69e\ntSMkSJAgS5YsWnH61IOX/VCOHDn27t2rGUftO0mHnkDDhg3nPnhpscnQ6x09QgABNwU2bNigJ0L0\nnULHjh3dLEI2BBBAAAEEEEAAAQQQQAABBBBAAAGfCzBrqM9JqRCBsBNo06bN5s2b9byYvecaNajZ\nRPU0mQKC9v2JEiWaPn064UC7CWkEEEAghAX27dv39ddfr1y5MoT7SNcQQAABBBBAAAEEEEAAAQQQ\nQACBwBcgIhj414gWIhAEAlpceuPGjSNHjsyZM6eL5ioQOGbMmHLlyrnIwyEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBDwrQARQd96UhsC4SugueZ79er1999///DDDxUqVNBK1A4Wmjpy165dXbt2\nddjPJgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPhVwPEre7+ejMoRQCDkBbR8YNMHrzt37hw4\ncGDPnj2aNTRfvnxFihTJkCFDyHefDiKAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEIACRAQD8KLQ\nJARCQUBjBBUI1CsUOkMfEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIZgFmDQ3mq0fbEUAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIhOgIhgdEIcRwABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQCCYBYgIBvPVo+0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIRCdARDA6IY4j\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEMwCRASD+erRdgR8LbDswcvXtXpW35o1a+bN\nm+dZGXIjgAACCCCAQGwJXL9+/dChQ2fOnImtE3IeBBBAAAEEEEAAAQQQQAABBBDwgQARQR8gUgUC\nISOQI0eOFi1a6Gu+uOrRnj17WrVqVbhw4bhqAOdFAAEEEEAAAdcCS5cuffTRR59//nnX2TiKAAII\nIIAAAggggAACCCCAAAIBJUBEMKAuB41BII4F8ubNq4igYnJ3796N/aZcvHixQYMG77zzTq5cuWL/\n7JwRAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFQFSAiGKpXln4h4KXAu+++qzGCnTt3vn37tpdV\neFXs8uXLTZo0yZcvn07tVQUUQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAecCCZ3vZi8CCISr\nQERExA8//FC9evUjR47MmjUrbdq0sSCxd+/ehg0bnj17dufOnbFwOk6BAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggEBYCTBGMKwuN51FwC2BSpUqffTRR8uXLy9fvrx+ulUmBplmzJhRtmzZ3bt3f/nl\nl5kyZYpBTRRFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABJwJEBJ2gsAsBBHr16vXee+/t2bOn\nRo0aGi+4bt06n5vcu3dPscDixYs3a9bs6tWrI0eObNy4sc/PQoUIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCDArKHcAwgg4FxgwIAB6dKl69mz58qVKzVqsHTp0vUfvEqWLBkvXjznZdzYe+vWrfXr\n1y9ZsuTHH3/UZKEq8dBDD02fPr1atWpulCYLAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIeCxA\nRNBjMgogED4CPXr0yJ49e+fOnf/555/ND17vvvtulixZqlatWrBgwQIPXvny5UuaNKkLk5MnT/79\n/187duxQfPHKlSsmf7ly5WbOnPnwww+bPSQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAtwJE\nBH3rSW0IhJpAw4YNtZpgp06dFi5caPVNEb5p06aZfmq8YIoUKVL9/1eyZMmuX79+7do1TQSql4J/\nN2/eNJkdEl26dBkzZkzixIkd9rOJAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACPhQgIuhDTKpC\nIDQFMmfOvGDBgqlTp2qA4L59+xw6ef/+fYX99FKk0OGQi81HH3100KBBrVq1cpGHQwgggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIOATgfg+qYVKEEAg5AUUvdu9e/c333yTJ0+emHQ2d+7c48eP1wqC\nhANjwkhZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTcFyAi6L4VOREId4EECRK0b99ewwR//fXX\nl19+WWMH3RdR5pdeemn16tWKBXbs2DFhQgYou49HTgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nYiTAl/Ix4qMwAuEpoJUF9Ro5cqTCe1u3bt2yZcuuXbvOnz9/8cHr3r17adOmTZMmTYYMGQoXLlyi\nRImSJUsWKlQofnweQQjP+4VeI4AAAgiEjsCNGzc++ugj9Ud//Vu3bh06HaMnCCCAAAIIIIAAAnEn\n0L179woVKsTd+TkzAgggEC4CRATD5UrTTwTcFLh58+aqVatq1aoVbX5F+Ao8eDH/Z7RWZEAAAQQQ\nQCA0BG7fvr127Vr15fjx41pjODQ6RS8QQAABBBBAAAEE4lZAK9QQEYzbS8DZEUAgTASICIbJhaab\nCLgrcP369a5dux48eNDdAuRDAAEEEEAAgTATSJYsmVYFPnv27MCBA8+dOxe5906DheQ3UPiIgvuB\n+8EIcD/YKXh/4H7gfrALcD/YNUL1/aFPnz56Nj1dunT2zpJGAAEEEPCTABFBP8FSLQJBLHDmzJk7\nd+6w1F8QX0KajgACCCCAgD8F9E9C5cqVDx8+nDRpUvt5tORwlixZ9LNly5b2/Xfv3j158iT58bHu\nCu4Hy4H7gfvB/j7J/cD9wP3A/w9h+/dRl173f0REhP23gDQCCCCAgL8E7vNCAAEEbAIXLlzQ2820\nadNs+0gi4I3AM888o3tp7ty53hSmDAIIhIrApEmT9FbQtm3bUOlQuPfj33//1QVNmTJlxYoVH374\nYesbHO2xXtqjOUUPHTrkwHT06FHyiwgf68bgfuD3xf4Wwf3A/cD9wN9T/j6G+d/HePHi6Z1w8uTJ\n9ncD0ggggAACfhJgjKD17zc/EUDgvwQ0cWjp0qVz5879X3vZiFOBW7durVu3bv369Vq6SSMtrly5\n0rt37zp16rhu1I0bN2bOnLl9+/a9e/dmzJjxsccea926NQ/fuUbjKAIIIICAa4F79+5pwN+xY8dM\nNmt0S44HL32vZ/abp93Jr9GT+HA/WL8a/L5YDtwP3A/8vdAfR/4+8vdRbwW8H1rvh/xEAAEEEIgN\nAT9FGqkWAQSCVMAaI6h3n0yZMo0aNerq1atB2pFQarbGWzRo0CBFihS6LqlTp27evPkHH3wwe/Zs\nLd3kopv6uvbrr782H7PTp08fP3581ZAkSZK+ffsqvuiirE8OMUbQJ4xUgkCwCzBGMNivoEP7rTGC\nepTb6ehAjfXRxOP2Iq5H/5AfH+sTr/5d0X873A/cD9wPvH/q3YC/L7wf6heB98MwfD9kjKD9TwBp\nBBBAwH8CjBG0/sjyEwEEHAVOnz7dq1evt956q169ek2bNq1du3aqVKkcM7HtZ4FNmzb179//559/\n1nmKFSs2YMCAunXrOiza5LQJ+rOhgZ7jxo3TUQ0KHDRoUM6cOTVeUDHC119/fdiwYStXrly0aBFr\ndzvVYycCCCCAgGsB/ZXRw+xWHkY7WQ483c/9YB7DEgX3A/cD9wOj3/j7yN9HZlNwf3YE627hJwII\nIIBAbAj4L9hIzQggEIwCZoygwxtQokSJnnjiieHDh+/evTsY+xV0bdYIv4EDB1qj+hQCHD16tMOo\nCxc90pdQnTp1sq5gjx49HHJ+++231qHHH3/cr2NAGSPoIM8mAuEpwBjBELvu1hhB+z8JjO6yLjGj\nGay7gvuB+4H3B0a78n7I+6H9nx/uB+4Hd+4HKTFG0A5FGgEEEPCfAGME7R9YSCOAQJQCt2/fXv7g\npbXrcuXKpYGDGqxWrVo1d8arRVkpB6IQuHz58nPPPad5QXVci//99NNP5cuXjyKvk939+vUbP368\nDmjqV80v6pBDNavCH3/88ddff+3WrZv1Zb1DHjYRQAABBBCIViCq0Q8qaK2K5ObaSOS3qPE0txz3\njyi4H7gf3BldJCV+X/h9Mb8s3A8WBe+f5pYIlvcHrWxy7do102wSCCCAAAL+FfBfsJGaEUAgGAWi\nGiPo9J0oefLkTz/99NixY48cOeJ+Z6dPn+5+5jDMefz48UKFClngCgfu37/fI4Q9e/YkTPh/T3t8\n9dVXTsuuWrXKXFBNSeo0T8x3MkYw5obUgEAICDBGMAQuor0L9jGCUY0GU35NEqWj+krO/LlRgvxG\nEh/uB3Mz8PtivUvw/mBuCd4feH8wNwPvD7w/2G+GEL4fatWqpWvNGEGHy80mAggg4CcBxgha/2Dw\nEwEE/ksgf/78L774omYKPXDgwLp16zZv3qwxgv+V48GGHuOa9+Clrccee0yjBjV2sEKFCg7fANoL\n3rx5s0WLFs2aNbPvJG0ENDpQhn/++af2xIsXT/8Ta0SmOepOok+fPppfVDn1nF3btm2dFqlSpUrB\nggU1AayOapigTqfMTnOyEwEEEIihgP4iREREMKA8howBWFxf3+tra+uba9M8a+00/dQz6WanElE9\nrU9+Swkfy4H7gftBbywWgn5yP3A/cD/w95S/j9b7QMi/H6ZIkcK8+ZNAAAEEEPC7gJ8ijVSLAAJB\nKmCNEVSIyN7+K1euzJkz5/nnn8+aNWu070rp0qVTzE+DQs6cOWOvxErv2LFDNUTezx4JKOxqPRxn\nIb/xxhuesqxcudJcoMqVK7soroivyTllyhQXOb0+xBhBr+koiEAoCdy4cUN/DjSwLJQ6Fc59scYI\n6pmVtWvXRrVWlsKE5k+MlYhq9I+1thD58bF+p7gf+H2xv7tyP3A/cD/w95G/j2Hy97FVq1Z6x2OM\noP1NjzQCCCDgPwHGCFr/ZvMTAQT+I/DQQw9pANl/tv/nf/TElqI7VoBn69atCxYsmD9/vgYO3rt3\nz57NSiumOO3BK378+GXLln3qqadq1KihhEYcakzhyJEjIxdhjyXQpUsXzeFppRXPGzhwoKcyX375\npSlStWpVk46cKFOmjNmpRQetf8HNHhIIIICArwQ0BFkTIPuqNuoJEAH9iXc6OlBDA/VyZ+0r62l3\n8rse/YAPPtavPL8vlgP3A/cDf1/0x5e/vydPnuTvY4i9H+ofywD5F5dmIIAAAmEh4L9gIzUjgEAw\nCujZ/+LFi7vT8tOnT7/++ut6o0yVKlW0b5fJkiUrXLhw+vTprZzu1B9ueTT9qmEUlD7ueiqgb4uM\nsKpavHixixr++OMPczoN9dD0sC4ye3fICiHPnTvXu+KUQgABBBAIQAFrjGDKlCk1Q7W9edZoHj3L\nr6+ozN8XJVw/3U9+fKy7iPvH+q3hfuB+4P1T7wb8falYsSJ/H3k/DKv3wzZt2ujdjzGC9n+tSSOA\nAAL+E2CMoP1fbtIIIPC/4b0tW7a4A6GhhPqs8tFHH3366aflypWzBg5qDjGnKw5ev359165d7lQb\nnnmE1rt3b9P3Xr16ZcuWzWy6mdi4ceP58+dNZj09atKRE4UKFdLQz6tXr+qQ/sYsX768U6dOkbOx\nBwEEEEAAgcgCepTbRP4YvWT5hNjT+uaic325vvpenvuB0c9ZsmR5MDgtB/cDo9P4e2e9JfL30bd/\nH80fGhIIIIAAAn4X8F+wkZoRQCDkBbS4oN6kJk6caHp66dKlGTNmtG/fXvFCF+9fJj8JS2DEiBGG\nS+Mpz54964VM//79TSVKOF3H0V5tvnz5TP5u3brZD/kkzRhBnzBSCQIIIBBQAtYYwdSpU5tWMbrL\n+mPKaAbrluB+4H4wbw5KcD9wP3A/6K+DeYaG+4H7gfvB6f9LjBG0/2qQRgABBPwtwBhB618yfiKA\ngG8E9BXhsw9eevP67bffrIGDWnrQN7WHaC0Ko77//vumc1rSLyIiwmy6n1i5cqXJrIlA06VLZzad\nJtKkSWP2a1VIkyaBAAIIIICA+wJ6Rl4zXevlUERfgOpLH70c9pPfAsHHcuB+4H6wv0VwP3A/cD/w\n95S/j9ZvQbi9H9p/90kjgAACCPhXwN8hR+pHAIEQFog8RtBpZw8ePDh8+PDHHnvMvJ05zRa2OydN\nmmRklLDW/9M8qz/++KMihc2aNStWrFjDhg2HDBmimJ8LpTx58ph6FO1zkdM6VKNGDZNfAxOjze9p\nBsYIeipGfgQQQCDwBexjBA8dOhTVDNVOO0J+82cXHwlwP3A/2H8RuB+4H7gfzD1gT9hZTJrfF0Nk\nTOwJfILORwuaqM2sI2i/jUkjgAAC/hNgjKD5Q0kCAQT8JZAzZ85XH7ymTZum6SD0sJu/zhSc9c6c\nOdM0XJE8rc44duzYDz744Pjx42b/9u3brfhro0aNJkyYkDZtWnPIJDTXqElnyJDBpKNK2McIKgB5\n8+bNJEmSRJX5jz/+0DjCK1euRJUh8v4DBw5o5/z587XYRuSjbu7p3r27VqtyMzPZEEAAAQRiR0Af\nTh4MCzzm8Dddz/VrrSn9dGiGsp08eVJFyI+P7g3uB+sXhN8Xy4H7gfvBEuB+sDvw/sD9EFb3g/6x\ntPeXNAIIIICAXwWICPqVl8oRQOC/BFq0aKHn9d54443/2hveG4qx/fzzz8ZAUToNpjx9+rTmXi1X\nrlymTJlWrFihUYNWdE3ZZs+evW3bNgURS5YsaUopcfv2bc0+ava4ExHUFK8mvxIq7mL1x9WrV//w\nww/6aS/iTnrcuHHuZIsqT5cuXVzEKRWkVKjSozilTtSkSZOsWbNGdUaP9q9fv37Pnj2eNsCjU2jo\n51NPPeVRkagyX716Vc9d6laJKoNP9teuXdu+RGVM6ly0aJFCCGp2TCpxXTZz5sxNmzZ1ncf9o2PG\njHE/s3c59cSAw+++d/WolH6d9+/f79e7N2XKlB06dPC6hQ4Fv/nmGz244NcbuF69erly5XI4r3eb\nmi5bT3L4lVezQ7/00kveNS9yKa0BfPHixRs3bkQ+5LDHyqNrUatWrcuXL+uX1J5B4S49/RN5plBl\n0/8AekCE/PjohuF+sH5r+H2xHLgfuB8sAe4HuwPvD9wPYXU/6AFle39JI4AAAgj4jaa4rQAAQABJ\nREFUVSAeD2L41ZfKEQg6gWvXrn355ZevvPKKOy2fO3euZrOcOHFiu3bt3MmvPOfPn1ewincew6Uv\nYTUvqNnU06AvvPDCgAEDMmbMaHYq0bdv3w8//NDs0Zetf/31lzW3hrVTX6bYo1x16tRRNMXkd5ro\n2rXrV199ZQ4psuUikLN27VrFJs+dO2fyR5vQ6EAFMuvXrx+Tb9hHjBgReayJObVGUi5dunTVqlVm\njzsJTb5atWpVd3JGm6dfv34bNmzwtAHRVmvPoPilfRSp/ZCnaY06LV269KlTpzwt6FH+KVOmaC1M\nj4pElVl9V5s3btwYVYaY71fcXVcw5vVYNShC46uqoqpH7wOvv/56VEc92v/yyy8rZOVFmN/9s+id\n6ujRo+7nd51TtWkciV9vYD1yoT9qrpvh5lFdqYULF/r1zUH3271799xsT7TZ9Lug+OWff/4ZbU6T\nQQO4HRqQNGnS5MmTly1bVjNRm2z6i68gov672LRpk0PEkfxSwsfcKtwP3A/mZlCC+4H7gfuBv6f8\n/2D9FoTP+6GeXtWcUvbffdIIIIAAAv4QICLoD1XqRCCIBTREoGjRokeOHHGnD15EBFWt4lh+HfTj\nTssDJ8/AgQMV/zPtURhPwTyzaRL6xlBRFg0sMHsUIxw6dKjZ3LVrV5EiRcxm69atv/vuO7PpNNGx\nY0eNuTGH9EVwwYIFzWbME/piXXeIXg0aNIh5bU5rUDhQ4SL7dKlOsznsVCAkd+7cDju925w3b55i\nKp42wKNzFS9e3FejrDQMdPDgwQ7fyHvUGHcy6/mAUqVKuZMz2jyaIFfxJD1GEG1OrzNoTmM3H4Bw\n5xQ9e/Z0J1tM8mh5zieeeCImNZiys2bN0m+9R2F+U9bNhOY3fu+999zMHG22d955R3evX2/gzp07\n25e8jbZJLjL88ssvv/76q1/fHBQRHDVqlIs2eHRIj19cuHDBWiPQdUFdAvvTJK4zcxQBBBBAAAEE\nEEAAAXcEiAi6o0QeBBBAIOYCRARjbkgNCISUgCKCGp32zz//OEwp6bSTCvZ4OkZQ9YwePVohGacV\nhuHObt26aVCm6bjmC41q6k5N0ZY/f36zJl/ixIl37NihPVZZDaWyz9L2/PPPR/uNbdu2be1RwzNn\nzjgMTDSt8i4RCxFB7xpGKQQQQAABrwXu3LmjIeBeF6cgAggggAACCCCAAAJ2Aa1loPVT9Gy0/TsN\newbSCCCAAAI+FGAdQR9iUhUCISKgL/s0qmP48OF+6g/hQDvsiRMnzKYWzHMRk9NRjb7SmEIr/61b\nt77//vt3333X2tRyaJpdU1PqWZuK7FoJFz/ty3FprEn69OldZOYQAggggAACEkiYMKGv5lbFEwEE\nEEAAAQQQQAABBBBAAAEEYlMgfmyejHMhgECwCGj2MPt8ksHS7DhvpxbE1lJJrl+K5NnbaY8IZsqU\nyfU6ZM8995y97O7du82mwoFaf95sujPRon12uHTp0rlYrs9USwIBBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAgGAWICAbjVaPNCMSGgBaZK1OmzLfffuvOaLPYaFAwnEOLZmmVRNcvzedp74pGZJrNlClT\nmrTThFa/K1++vDlkjwhqZ7Zs2cwhLQdl0lEl7HkiIiKiysZ+BBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAgWAXICIY7FeQ9iPgR4HNmzd36NBBA9fq1as3duzYI0eO+PFk4Vq1eE3XkydPbtJRJQoWLGgO\n7d279969e2bTPue+PdpnMjgk7Hns0USHbGwigAACCCCAAAIIIIAAAggggAACCCCAAAIIBLsA6wgG\n+xWk/Qj4XUCzXC588NKZihQpouigXo8//rhWEvL7ucPgBA899JDp5aVLl0w6qoQ9dKeVBePH/8+D\nHdmzZzel3Jk19Pjx4yZ/9erVTZoEAggggAACCCCAAAIIIIAAAggggAACCCCAQIgJ8IV+iF1QuoOA\nfwV2PngNGzZMy87Vrl1bk2T693zBVnvLli3v3r3rutUVKlSwZ8iVK5fZPH36tElHlbAPBCxQoIA9\nmyK1o0aNsvZojUAtapgsWTJ7Bnv63LlzV65cMXvq1Klj0iQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEQkyAiGCIXVC6g4DPBDSD5f379xVVclqjJpycNm2adWjIkCF///13/fr1te5gvHjxnOa371Tw\nafHixfY9IZPWsoue9kWB1ffff98qpTDeyZMns2TJ4qIS+4J/9hlEVaRGjRo5cuQ4fPiw0rp269at\ne/LJJ6Oqav/+/eaQ6ixVqpTZJIEAAggggAACCCCAAAIIIIAAAggggAACCCAQYgL/mW4uxDpGdxBA\nICYCffr0uXjx4rVr1zSxpCJ/3bp1U6gpqgr/+uuvgQMHlitXLnPmzFp3cNasWZcvX44qs0KJS5Ys\niepoGO6XW/r06U3HV69ebdJOEwoZmv0OEUGFY9u3b2+OrlixwqQjJ7Zu3Wp21qxZ0z77qNlPAgEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQCA0BIgIhsZ1pBcI+FIgceLEivAlSpRIlWbNmrV58+Zjx449\ndOjQH3/8MXTo0MqVK0e1guCZM2c0SO7ZZ5/VmDMFmT755BONHXRo2caNGx32hPlmggQJmjVrZhBc\nh/GUTRfCypw0adI2bdqYglZCEVkzTNN1VfYL0aNHD4d62EQAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBAIJQEigqF0NekLAr4R0KyVCgpGrqtIkSJ9+/bVIDZF/r7//vu2bdvaZ7C0579169ayZct69eqV\nN2/e/Pnzv/DCC1OnTv3tt9803PCVV16x5yQtgf79+2uOVoti+vTp9uX9IvuY2T67d++eLVs2hwwa\nyqm5Q62dAo+qqtu3by9cuNDK1rhx48cff9yhHjYRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEQkmA\niGAoXU36goAPBBSainbEWLp06Vq0aDFp0qTTp0+vX7/+7bffLlGihBma5tCIvXv3fvHFF61bty5b\ntmzLli01xahDBjY1EFPRU8tBk7VOnDgxKpNjx44tWrRIR1OlStWvXz+n2T744AONO9ShO3fuRDVB\n64IFC86ePas8Gu45ePBgp/WwEwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBkBIgIhsylpCMI+EZA\nowN79+7tZl1afE7DyzTFqBalU7Dqq6++atiwYcqUKd0sTjYjoKhq+fLlrc0hQ4ZY4Tpz1CQGDRp0\n8+ZNbb733ntRDdBU5PWNN96wimiWV1PWJDRAcNiwYdamcmoQpzlEAgEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQCAkBYgIhuRlpVMIxIGABro9//zzs2fPPnfunIam9ezZM0+ePHHQjuA8ZbJkyX766adc\nuXKp+cePH9fKghrh59CVGTNmTJgwQTtfeukl15OvDhgwoFq1asq5efPmjz76yKEeRXw3bNignark\n/fffdzjKJgIIIIAAAggggAACCCCAAAIIIIAAAggggEDoCRARDL1rSo8QiGOBJEmS1KpVa9SoUfv2\n7dMcoR9//HGFChWimlM0jtsaSKfPmDGjIqmlS5dWo1auXFmzZs3du3dbDTx16pSCfM2bN797965G\n9X3yySeuG54oUSJNLlq/fn1l0+SiCgEePXpUIUYFCOvUqTNmzBhdjtdee23EiBGu6+EoAggggAAC\nCCCAAAIIIIAAAggggAACCCCAQGgIxLt//35o9IReIIBAIAto3JuWxxs9erSWHlQ7eeeJ6mIp5qeA\nX//+/a9du6Y8mTJl0pKBf//9tyZo1bA/TdCq8GpUZR32KwT46aefauJQy1yLC6py5XniiSc0a6gV\nenQo4ttNTSE798GrQYMGvq2Z2hBAIIgEli9fPnz48Bo1arz66qtB1GyaigACCCCAAAIIIIAAAggg\ngAACCISYABHBELugdAeBgBbQ8nglSpRQdJCIoOvrdOXKlZ07d+7YsWPv3r3p06d/+OGHq1evnj17\ndtelnB5VZFFfx2uwpmZzLVSoUMmSJYsUKeI0p893EhH0OSkVIhCMApMnT27Xrl3btm0nTZoUjO2n\nzQgggAACCCCAAAIIIIAAAggggEBoCCQMjW7QCwQQCAoBTYw5fvx4TVwZFK2Nw0amTJmy/INXzNuQ\nPHlyTR9qzSAa89qoAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAYBVhHMBivGm1GIIgFNNaNNQWD\n+PrRdAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEgFCAiGIQXjSYjEMwCiRMnTpMmTTD3gLYjgAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIBBkAkQEg+yC0VwEQkDgt99+C4Fe0AUEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBIJFgIhgsFwp2olA6AjkyZMndDpDTxBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQCHgBIoIBf4loIAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIxECAiGAM8iiKAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQ8AIJA76FNBABBJwLbN26dcmSJc6PBf/eNGnSFCtW\nrGLFisHfFXqAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAcCxARjOMLwOkR8Fpgw4YNb775ptfF\nA7xg1apVz507R0QwwC8TzUMAAQQQCEOBCxcu/PXXX+nTp8+fP38Ydp8uI4AAAggggAACCCCAAAII\nIBCkAkQEg/TC0WwE/idLliwVKlQIVYhHH300e/bsodo7+oUAAggggEDwCqxZs+aZZ55p0KDB3Llz\ng7cXtBwBBBBAAAEEEEAAAQQQQACBcBMgIhhuV5z+ho5Aowev0OkPPUEAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAH/CMT3T7XUigACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACASFARDAg\nLgONQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMBPAkQE/QRLtQgggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggEhAARwYC4DDQCAQQQQAABBBAISYHEiRM/9thjGTJkCMne0SkEEEAA\nAQQQQAABBBBAAAEEEEAgWASICAbLlaKdCCCAAAIIIIBA8AmkTZs2TZo0ERERwdd0WowAAggggAAC\nCCCAAAIIIIAAAgiEkEDCEOoLXUEAAQQQQAABBBAILIHaD16B1SZagwACCCCAAAIIIIAAAggggAAC\nCISfAGMEw++a02MEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFwEiAiGE5Xm74igAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAgiEnwARwfC75vQYAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAgnASICIbT1aavCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC4SdARDD8rjk9RgAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCCcBIoLhdLXpKwIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAQPgJEBEMv2tOjxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMJJgIhgOF1t\n+ooAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBB+AkQEw++a02MEEEAAAQQQQAABBLwVSJw4\ncbFixTJlyuRtBZRDAAEEEEAAAQQQQAABBBBAAIE4EEgYB+fklAgggAACCCCAAAIIIBCcAmXLlh09\nenSGDBmCs/m0GgEEEEAAAQQQQAABBBBAAIEwFSAiGKYXnm4jgAACCCCAAAIIIOCFQPr06atUqeJF\nQYoggAACCCCAAAIIIIAAAggggEAcCjBraBzic2oEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEE/C5ARNDvxJwAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAILLA8OHDBwwYcPny5ciH2IMAAggg\n4FsBIoK+9aQ2BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAbcE1qxZs3r1aiKCbmGRCQEEEIiZAOsI\nxsyP0ggggAACCCCAAAJRCMyZM2fLli2NGjUqWbJkFFnYjQACCCCAAAIIIIAAAmEtoI8Mx44du3//\nflgr0HkEEEAgVgQYIxgrzJwEAQQQQAABBBAIP4HNmzfrgd+9e/eGX9fpMQIIIIAAAggggAACCCCA\nAAIIIBBYAkQEA+t60BoEEEAAAQQQQCBkBE6dOrVq1apr166FTI/oiCWwb9++ZcuWHT16FBAEEEAA\nAQQQQAABBBBAAAEEEAgWASKCwXKlaCcCCCCAAAIIIIAAAgEh8P333/ft23fx4sUB0RoagQACCCCA\nAAIIIICAPwXu3Lkze/bst99+u0OHDgMGDNi0aZPXZztw4MAvv/zidfG4Kjh16lQhxNXZOS8CCPhQ\ngIigDzGpCgEEEEAAAQQQQACB0Be4ePHi1q1br169GvpdpYcIIIAAAggggAACYSyg1Q3HjBmTI0eO\ngQMHJkyYsHjx4lOmTClXrlyvXr08VTl//vwrr7xStmxZhdZU7RW3Xw4niklZh6rc39QEIcWKFQvG\nWKb7fSQnAmEikDBM+kk3EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBwR+DkyZNt27ZVGOzjjz9+\n9dVX48WLp1JLly7VOL9PPvmkZs2a9erVc6ce5fn111+bNm2aLVu2jRs35s6d+/Dhw7Vq1Tp+/Ljr\nZ+zSpUuXMWPGXbt2KRhpTnT27NnKlSurbZcvXzY7IyfSpk370EMPbd++PWnSpJGPerpnwoQJo0aN\neuqpp9SLcePGJU+e3NMayI8AAgEiwBjBALkQNAMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAg7gUU\ncqtatarCgUOGDOndu7cVDrxw4cKSJUusxh08eNDNVn722Weqqnr16mvXrlU4UKU06HDPnj2qbc2a\nNc8880zkerp27bpt27Z//vlH2ezhQOVUnE87NeJw3bp1TZo0iVy2ffv2W7Zsscr6JBxonULDIufM\nmTNz5kzFIxXLjHxe9iCAQFAIEBEMistEIxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQT8LqB4W40a\nNfbt21enTp1+/fqZ86VOnTpnzpza1NC9Zs2amf0uEoMHD37ppZcqVKgwfvz4RIkS2XNqs1KlSjNm\nzChVqpR9/9NPPz127FjN0mmFIe2HTFphQtU5ffp01WB2KqGhhzpRyZIl48f3/df+devW1YLiGndY\npkyZHTt22M9LGgEEgkXA928NwdJz2okAAggggAACCCCAAAIIIIAAAggggAACCCCAgF1AQ/R2796t\nqNuIESPs+xMkSLBz585Vq1YdO3ZMY/Xsh5ymFdh766238ubN++OPPyZOnNhpHsUFNXzQfkgRQRex\nQHtOtefJJ5+071HQzh+xQHOKxo0ba8SkBlCqkZq/1OwngQACwSJARDBYrhTtRAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEPCjwNSpUzU3pk7QqVOnggULOpwpSZIkVapUiSq8Z8/8008/de/eXXs0a2j6\n9OnthxzSERER9j0agGjfdJ3OkCGDPYNHZe0F3U+/8847Gih55MgRjZK8c+eO+wXJiQACgSBARDAQ\nrgJtQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIhLgevXr/fp08dqQbdu3bxuyunTpzt37nz//n2F\nD2vWrOm6nuTJk9szJEuWzL7pOu1Q1ocLB0Z1Xp1RMU4dXbly5WuvvRZVNvYjgEBgChARDMzrQqsQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEYk/gk08+OX78uM5XqFCh4sWLe31ihQOtSTUHDRoUbSWa\n/NOeR7OV2jddpx3KOmy6Luv1Uc1N2qRJExUXl9ZB9LoeCiKAQOwLEBGMfXPOiAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIBBAAufPnx86dKjVIE2J6XXLpk+fPn/+fBUvWbJk5cqVva4nkAua0YH9+vVj\n7tBAvlK0DQEHASKCDiBsIoAAAggggAACCCCAAAIIIIAAAggggAACCISXgMKBly5dsvr87LPPetf5\nu3fvaqU9q+zTTz/tXSWBX6p8+fK5cuVSOw8cOPDNN98EfoNpIQIIWAJEBLkTEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBMJXYNeuXaNHj7b6ny9fvsKFC3tnMWXKlD179lhl69ev710lQVGqYcOGVjs1\nM+qtW7eCos00EgEEPJiVGCwEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEJJYOvWrZom9ObNm1an\nTKzLiz6ahQMzZ85cqlQpL2rwR5EjR4789ttvXtRcpkyZRx55xGnBihUrjhgxQodU+bhx47p37+40\nGzsRQCCgBIgIBtTloDEIIIAAAggggAACCCCAAAIIIIAAAggggAACfhcYNmzYhQsX/v7773nz5tlH\nuZ06dWrIkCE6fc6cOVu2bOl+OzZs2LBv3z4rf9WqVePFi+d+Wb/mXLZsWadOnbw4xYIFC6KKCFao\nUMFU+MUXXxARNBokEAhkASKCgXx1aBsCCCCAAAIIIIAAAggggAACCCCAAAIIIICAjwWOHTvWr18/\np5VOmjTJ2t+nTx+PIoLTpk0zFRYsWNCk4zxh4p01a9ZUqDJt2rTJkiWLHLBcsWLF5MmTTWubN29e\nt25ds+mQ0CDIrFmznjhxQvt37typkYJRxQ4dCrKJAAJxKEBEMA7xOTUCCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIBAbAtkzJhx//791llPnjxZqVIlK12jRo2vvvrKSiuP+826d+/eDz/8YPIHYETwpZde\n0lqJkQOBVpsV2+vbt69pvxZT1FygZtNpInfu3FZEUEcXLlzYrVs3p9nYiQACgSNARDBwrgUtQQAB\nBEJQoHfv3gMHDgzBjtElBBBwQ+DQoUPKpTeBsWPHupGdLEEjcPToUbVVq4ZMmTIlaBpNQxFAAAEE\nEEAAAQQCUuD06dNq1z///JMtW7bYbGCSJEly5cplnVGzfZpT165d2+w3O91J7N27V5FFk7NAgQIm\nHecJjRGMHz++PppFFQ68e/euRkOePXvWaqpGEM6YMSNVqlSuWy6oNWvWWHk0vygRQddcHEUgEASI\nCAbCVaANCCCAQMgKaDr+kO0bHUMAAfcEFBe0QoPuZSdX0AgoLmiFBoOmxTQUAQQQQAABBBBAIFAF\nzLSWcdLA5cuXm/NWr17dpD1KbN261eRX4E1j7MymRwnNZZohQwY3i5gheq7zi7d48eKaLDSqbO+8\n887q1avNUQ0lLFq0qNmMKmEPncrw5s2birNGlZn9CCAQCAJEBAPhKtAGBBBAIAQFhg8f3qFDB/27\nmTJlyhDsHl1CAAE3BPQI6ty5c/v37//MM8+4kZ0sQSOg0YFTp0599dVXW7VqFTSNpqEIIIAAAggg\ngAACASmglerOnDkTERERh60zEcE0adKUKFHCu5Zs2bLFFEyRIkXSpEnNpkeJzZs3e5Tfncxqj4sP\nZUuWLBk8eLCpp23btp07dzabLhL2iOC1a9cOHDgQUHOlumg5hxAIWwEigmF76ek4Aggg4F8BzSav\nl3/PQe0IIBDYAtan+pw5c5YqVSqwW0rrPBPIlCmTCmTPnp0r6xkcuRFAAAEEEEAAAQQiCSROnFj7\nEiVKFOlILO04fPjwwYMHrZNVrlw5QYIE3p14165dpmC0822anJETM2fOrFKlSuT9TvdMnz69R48e\nTg/Zd/bs2dO+aU8fP35cIcD79+9bOwsVKuT+og/p0qWzV3Xq1CkignYQ0ggEoAARwQC8KDQJAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAwO8CZoCgzlStWjWvz3f+/HlTNiYRQU22lDFjRlOV60RMTqSa\ntXygpv0wywdqKKGWD9RP1yc1R5MnT27SSigiaN8kjQACASgQPwDbRJMQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEPC3gK8ighcvXjRNjWGgztTj78SAAQPsywdqdKDGCLp/UofYIRFB9+nIiUBcCRAR\njCt5zosAAggggAACCCCAAAIIIIAAAggggAACCCAQlwImIqjBeV4vIqgOXLhwwXTD60UETQ2xkFi8\nePGQIUPMibR2oKYPNZvuJBgj6I4SeRAIKAEiggF1OWgMAggggAACCCCAAAIIIIAAAggggAACCCCA\nQGwI7Nmz58SJE9aZtIhg/Pjef1tuX4Dwxo0bsdH6GJxDywe2a9fOLB9YtGjR0aNHe1pfsmTJ7EU0\nB6l9kzQCCASggPfvcQHYGZqEAAIIIIAAAggggAACCCCAAAIIIIAAAggggIA7AitWrDDZqlevbtJe\nJDJnzmxKXbt2zaQDMKHQXcuWLc3ygZrjVMsHOoT33Gn2rVu37Nk0yNK+SRoBBAJQgIhgAF4UmoQA\nAggggAACCCCAAAIIIIAAAggggAACCCDgXwEzZahOU61atZiczB4RvHr1akyq8nfZ/v37r1mzxpxl\n3Lhx+fLlM5vuJy5fvmzPTETQrkEagcAUICIYmNeFViGAAAIIIIAAAggggAACCCCAAAIIIIAAAgj4\nS0BzZpoxgpkyZSpevHhMzmSPCAbyGEEtHzh06FDT0xdffLF58+Zm06OEQ0Qwffr0HhUnMwIIxL4A\nEcHYN+eMCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAnEp8Mcff5w7d85qQe3atePFixeT1tgjgv/+\n+69Zoi8mdfq8rJYPbNu2rWlbqVKlRowY4fVZHCKChQsX9roqCiKAQOwIEBGMHWfOggACCCCAAAII\nIIAAAggggAACCCCAAAIIIBAoAvYpQ5966qkYNqtIkSKmBi2wd+LECbMZIIk7d+60aNHCBEE1yecP\nP/yQJEmSqJpXo0aNqA5Z+y9cuGAyqJ5ChQqZTRIIIBCYAkQEA/O60CoEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABfwmYKUMTJEhQq1atGJ6mTp068eP/58v2AwcOuFnh7du37TkVt7Nvuk4r9GjPcPfu\nXfumQ1rLB65du9bsnDBhQq5cucymQ0Lj/zSG0mGnw+bevXvNnqJFiyZKlMhskkAAgcAU+M+bVGC2\nj1YhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIOBDAQXPVq1aZVVYrly5mK+BFxERUbZsWdNC9yOC\nFy9eNKWU8GgNQvfLLlq0aNiwYeZEr7zySqNGjcxm5MS2bduSJ08eeb99z549e8xmlSpVTJoEAggE\nrAARwYC9NDQMAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwPcCW7duvXTpklVvzKcMteqpV6+eaej+\n/ftN2nXizJkz9gxnz561b7pOu1n22LFj7dq1M8sHli9f3h4ddHqKr776KtqI4F9//WXKaj5SkyaB\nAAIBK0BEMGAvDQ1DAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8L3AL7/8Yipt2rSpScckUbduXVP8\n999/N2kXCUXpFi9ebM8wf/58E7qz74+cVjZltu9fuHDhvXv37HuU1jSkLVu2NMsHajTk9OnTXczw\nqWpfffXV7777znVEUNX+/fff1rny5MlTunRph/OyiQACASiQMADbRJMQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEPCTgIkIVqxYMX/+/D45S8mSJcuUKfPbb7+ptvXr1yu0Fi9evKhq1rSlWodPs3c6\nzC86b9681q1bd+nS5fHHH0+SJInT4gr77du3r3fv3vZResq5bNkyjdXr1q1bhQoVkiZNapV1WD4w\na9asb7/9duRq1dqrV69q3KRimRcuXFAG1xHBTZs2mRUQ27RpE7lC9iCAQAAKEBEMwItCkxBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAgdAXSJcu3fXr1xMkSBCbXb158+a6deusM3bq1MmHpx44cGCdOnVU\n4fnz53fv3l2oUKHIlR88eFBhSGVQMyIf1Z7vH7ySJUuWNm3aI0eOJEz4n+/wT58+XaJECUXsbty4\n4bTsjAcvhQMFq5lLVYnDBKE7H7yclnXY6ToiuGDBAit/6tSpe/To4VCWTQQQCEyB/7ybBGb7aBUC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIBASArs2LEj9vu1du1ahSF13lSpUjVr1syHDahdu7aifVa4\nUaP9nEYEH3300RMnTnh30kyZMnlaNvI8ot6d2qGUmbC0Z8+emonU4SibCCAQmAKsIxiY14VWIYAA\nAggggAACQS+gT9cRERFmspqg7w8dQAABBBBAAAEEEEAAgZAQWLp0qdUPLbCXIkUK3/Zp0KBBVoVT\npkzxbc2BU9vRo0etUK5GImrRwcBpGC1BAAHXAkQEXftwFAEEEEAAAQQQQMBLgZEjR549e7ZVq1Ze\nlqcYAggggAACCCCAAAIIIOAHgSVLlqjWRIkS9evXz+fVV6tWrX79+qr2jz/+WL16tc/rD4QKx44d\nazXj008/1dSmgdAk2oAAAu4IEBF0R4k8CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkEvcOjQoW3b\ntqkbnTt31gSe/ujPpEmT8uTJo5pffPHF27dv++MUcVjnmTNnRo8erQZowlUeAI3DC8GpEfBCgIig\nF2gUQQABBBBAAAEEEEAgfAX69u27a9eudu3ahS8BPUcAAQQQQAABBBAIWoGJEyeq7ZrucsCAAX7q\nhCqfM2dOypQp9W/zxx9/7KezxFW1gwcPvnr1avbs2c1IwbhqCedFAAFPBeLdv3/f0zLkRwABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAguATu3Lmj0XuHDx+eMGFChw4d/Nr42bNnN2nSRAurKy7op8GI\nfm2/08o3bdpUpUqV1KlTa0LUAgUKOM3DTgQQCFgBxggG7KWhYQgggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIeC2gYzPLly99++20t5mcv/OWXXyoc2LhxY3+HA3XSRo0ajRo16ubNm5paU4Pq7M0I0rTo\nGjRokCRJksWLFxMODNKLSLPDXIAxgmF+A9B9BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgpARmzJih\nVe7UpXz58u3Zs8fqm8a31a5dO1euXBrfliJFitjp8Lx58xQRLFOmzMKFCzVeMHZO6o+zXLhwoXLl\nyteuXZs1a1aJEiX8cQrqRAABfwswRtDfwtSPAAIIIIAAAggggAACCCCAAAIIIIAAAgggEHsCa9eu\ntU6mKS6txKpVq5588smiRYsuXbo01sKBOvXTTz+9bt26Y8eOVa9e/fjx47FH4NMzybN48eI5cuTY\nsmUL4UCf0lIZArEqQEQwVrk5GQIIIIAAAggggAACCCCAAAIIIIAAAggggIBfBbp3754wYUKdomDB\nguPHj2/YsGHLli3feusthQPTp0/v11NHrlxhSE1eqtCgxtht3LgxcoYA3zN48OA2bdq8++678+fP\nT5cuXYC3luYhgIALAWYNdYHDIQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHgE9i1a9eYMWP279//\n6KOPFitWrHXr1mnTpo3bbhw9elRTmGqoYtw2w9Ozf/PNNy1atEiWLJmnBcmPAAKBJkBEMNCuCO1B\nAAEEEEAAAQRCU+DixYsTJ0789ddfP/7444cffjg0O0mvvBXg9vBWjnIIIIAAAggggEB4CfB/Y3hd\nb3qLAAI+FSAi6FNOKkMAAQQQcCZw48aNmTNnbt++fe/evRkzZnzsscf0aF5ERISzvOxDAIHAFbh3\n756WkXfdPs3MkzRpUoc8Wmpi7Nix33//vVV8586dhQsXdsjDZuwI3Lp1S6uYrF+/XkuYnDx58sqV\nK717965Tp07Mz87tEXNDakAAAQQQQAABBAJQ4O7du5s3b9akl/o3/tChQ7lz59aHer00E2aiRIl8\n0mCtsdepUyf9P5k3b97PP/88qjr5WBGVDPsRQAABNwX+dzJlXggggAACCPhJ4P79+xMmTNBc8/r/\nXqfQZP16mk//5fft27dXr14DBw701ecHP7WfahFAwC4watQoRY/seyKnNS3PSy+9ZO2/fv369OnT\nFQvctGlT5JzsiWUBBQI//PDDX3755erVq6lTp37qqafKlClTqFAh/fRJS7g9fMJIJQgggAACCCCA\nQEAJ/P77788//7xCcZFbpfX5xo0bV7FixciHPNqj7w2ee+655cuXq9SFCxcil+VjRWQT9iCAAALe\nCcT3rhilEEAAAQQQiFZA/9Z37dq1c+fOCgdqUODBgwf/+ecffROtgEG8ePGGDRumJbWd/rsfbc1k\nQACB2BfQ5/CPPvrI9XkzZMjQsWNHk2f27NmTJk0qWbJkpkyZzE4SsS+giGzt2rUrVar0008/5cmT\nZ9asWadPn542bdqbb77ZsGFDXbWYN4nbI+aG1IAAAggggAACCASawBtvvFG2bFmn4UA1dffu3fpQ\n3717d33Mj0nLR44caYUDo6qEjxVRybAfAQQQ8FSAMYKeipEfAQQQQMAtAQ0E7NKly/jx45W7R48e\no0ePtoppOkGNH0qVKlX79u03btxYr169ZcuWJU+e3K1KyYQAAnEnoOd/T5065fr8+jrA/uvc6sFL\nRfSb/vTTT7suy1F/COjJjA8++OCdd97Re7LefjVG8MUXX0yQIIHPz8Xt4XNSKkQAAQQQQAABBOJW\nQFN9DB061HUb9N+mJvm8dOnSd9995zpnVEc1GakeU4vqqLWfjxWufTiKAAIIuC/AOoLuW5ETAQQQ\nQMADgT59+ljDiTQ2aN++fQoBOhRu0qTJjz/+qJ1t27bVKCKHo2wigEBACdy8eTNXrlwnTpxw0apk\nyZIdPnxYa4VGznPnzp3EiRPr+wLrEOsIRibyx57Lly9r/iU9Uq3KdV00QLB8+fL+OBG3hz9UqRMB\nBBBAAAEEEIhDgb1795YoUUKrgOuBPz32V7du3fz58+sJM40X1Fz0+rDvMC5w8uTJbdq08bTB+jdS\nM9grKGgKlipVSmsWmk2HBB8rHEDYRAABBDwVYIygp2LkRwABBBCIXkAfHjTvh5VPiwVGDgfqUM+e\nPa2IoD45KChYs2bN6OslBwIIxJHA119/rXCgpv8dPnx4VE3QsqBaK9Tp0YQJE2rhOj077PQoO/0h\noOul99U///xTlSscuGHDBsV0/XEi1cnt4SdYqkUAAQQQQAABBOJKQJP6KByoQKAm/smcObNpxpMP\nXi1bttS4PftsopqIonr16tmyZTM53Um89dZbCgfmyJFDTxa6k5+PFe4okQcBBBBwIcAYQRc4HEIA\nAQQQ8FJAC1PNnTtXhZMkSXLx4kU9SOi0okKFCmnhAR3S99T62lqZnWZjJwIIxK3ArVu3cufOrQiT\nfmHz5cvnXWP0PYLWrrPKMkbQO0P3S2l0YJUqVbZt26YiWrd10aJFWkfQ/eIe5eT28IiLzAgggAAC\nCCCAQOALHDx4UB/S9XjZvHnzovqcrjGChQsXtkfyJk6c2K5dO/d7p7UDFV7Us2tffvllo0aNrIKu\nxwgqDx8r3BcmJwIIIBBZIH7kXexBAAEEEEAgJgKrVq2ywoGqRIuQRxUO1FE9Qmid6MCBA7NmzYrJ\nSSmLAAL+E5gwYcKxY8eaN2/udThQbfPH2nX+63JQ16zJlJ599lkrHKiO9OvXz3/hQNXP7RHUdwuN\nRwABBBBAAAEEIgssXbr0oYce0uTzUYUDVSRFihSfffaZvexvv/1m33Sd1qPDGoaoZQU0BlFLjbjO\nbD/Kxwq7BmkEEEDAUwEigp6KkR8BBBBAIBoBPd9nclStWtWkIye0YIDZqY8BJk0CAQQCR+D27dtD\nhw7VOLO33347Jq3io3tM9Dwq26VLl59//tkqUrlyZU3d7FFxjzJze3jERWYEEEAAAQQQQCAoBPTP\nZO/evRXzc93aevXqVahQweRxsf6fyWMSmmX06NGjL7zwQv369c1OdxJ8rHBHiTwIIIBAVAJEBKOS\nYT8CCCCAgDcC9+7dW7JkiSlZqVIlk46cKF26tNm5YsUKzUxiNkkggECACGjyH80FlDNnTj3Ge/fu\nXa9bpZii12Up6L7A/Pnzv/nmGyu/lnX8/vvv/fqlCbeH+5eGnAgggAACCCCAQLAI5MmTRxE7d1pb\nokQJk+3mzZsm7ToxdepU/ZtaoECBjz/+2HXOyEf5WBHZhD0IIICA+wJEBN23IicCCCCAQPQCGzdu\nPH/+vMmnFcJNOnJC6wiapw41W4hWEYichz0IIBCHApp/cvDgwWqAAvYVK1bU3EGtW7eeMmXKuXPn\n4rBVnDoqAY3Y09Pc5mivXr2yZctmNn2e4PbwOSkVIoAAAggggAACgSCgOUJSpkzpTku0lKDJlj17\ndpN2kdDQwO7duydKlEgfK5InT+4iJ4cQQAABBHwukNDnNVIhAggggEA4CyxatMje/QwZMtg3HdLx\n48fXt9V79+619muOkU6dOjnkYRMBBOJQYPLkyfbBu4r363levfTLW6tWLU0R/Mgjj/ikeb///rvW\nE42qqrp16yZLliyqo+w3Ap9++ql5R5WYZmEyh/yR4Pbwhyp1IoAAAggggAACQSQQERFhWps/f36T\njiqhWYXatWun2UcUdCxZsmRU2bzez8cKr+koiAACYSJARDBMLjTdRAABBGJJYOXKleZMms0jXbp0\nZtNpIk2aNGa/R6sOmFIkEEDATwKaI9QaIBi5fn2SX7x4cdGiRT///PNWrVpFzuDpnkOHDn3wwQf6\nAG8vqDeQYsWK6SyKPtr3k3YqcOnSpffff98c0nWxf0Fj9vsqwe3hK0nqQQABBBBAAAEEglfg5MmT\npvHPPvusSUeVGDFihL40qFq16uuvvx5Vnpjs52NFTPQoiwAC4SBARDAcrjJ9RAABBGJPwP55IHXq\n1AkTRvOHRnlM43bt2mXSJBBAIM4F9Fn9+vXr+i3W5JBOG6MQlCYR1cJ1igumTZvWaR43dzZq1KhO\nnTqalfTKlSsqUrZsWX1ZoHlK3SxONgn89NNPetraUDRt2lTpGzduaOj2zgevPXv2PProo+XKlXv8\n8cf1LYzJ6V2C28M7N0ohgAACCCCAAAKhJKD/MK3u5M6dW//Du+7ajh073nrrLX1w0FQTmnTEdWbv\njvKxwjs3SiGAQPgIRPNFbfhA0FMEEEAAAZ8InD171tTjespQK5t9jKBiD1qKPEmSJKYGEgggEIcC\nNWrUOHbsmIYDatVArfaxatWqn3/+efXq1fpVtbfq+++/X7dunfa7XjfUXsRpes2aNVY4UKvfffTR\nR9E+T+C0knDeOXPmTNN9vbUqnjp27FiNvDx+/LjZv3379jlz5mhT35VMmDAhJnFcbg+jSgIBBBBA\nAAEEEAhbgYULF1p979evn2sEfdjX04S3bt2aOHGimysOuq4wqqN8rIhKhv0IIICABPzyOAayCCCA\nAALhKXD79m2NGTJ9dyciaB8jqIL24qYeEgggEIcCenpXQ/dKlSr16quvaqZQRf3ffffd5MmT25t0\n5MiRZ5555urVq/adHqWXLVvWuHFjnUtBrJEjRxIO9EhPmRVMVbzWlFJE8LHHHuvdu/cTTzyhxQVn\nzJjx4osv5sqVy2SYPXu2Fm7ZunWr2eNdgtvDOzdKIYAAAggggAACISCwbds2zdKpjujDQseOHV33\n6I033tC8FW3atGnRooXrnDE5yseKmOhRFgEEwkGAiGA4XGX6iAACCMSSgAYS2c/kTkQwceLE9iL2\nKe/s+0kjgECACKRIkeKdd97Zu3evnvC1N0mDzwYMGGDf435a0an69evrkQINN+zWrZv7BclpBDQ1\nqCYINZsaFyjSw4cPT5o0qXv37lrT5bPPPtu/f3+fPn1MnoMHD8YwjmuqMgluD0NBAgEEEEAAAQQQ\nCHmB4cOHW3385JNPXM8C+ssvv4waNSpnzpz6p9R/LHys8J8tNSOAQMgIEBEMmUtJRxBAAIG4Fzh/\n/ry9Ee5EBBUDsBe5e/eufZM0AggEpkC2bNm+++67N9980948fbxXCMq+x530uHHjtOKdBgXOmzev\nWbNm7hQhT2SBv/76y75TizuOGTMmY8aM9p1KDx061P5QtmaFHThwoEOemG9ye8TckBoQQAABBBBA\nAIEAF9DowGnTpqmRrVq1cr3+94ULF9q3b6+QoZYPdJglyId95GOFDzGpCgEEQliAiGAIX1y6hgAC\nCMS2gMOSVA7zCjptjUNEMCIiwmk2diKAQAAKaI06Tf5jGqalQb799luz6U5i0KBBXbp00RSXmt6n\nVq1a7hQhj1MB+2KByqAZQZ1mixcvnq6RfcVHzdG6Z88ep5ljuJPbI4aAFEcAAQQQQAABBAJZ4JVX\nXrlz546G/WmAoOt2vvDCC3oQTR8cKlWq5Dqn10f5WOE1HQURQCDcBIgIhtsVp78IIICAHwUyZ86c\nIEECcwJ3pgC1RwT1VXX69OlNcRIIIBD4AoMHD7ZH8jTOz80237t3r0ePHv3798+aNevq1avLly/v\nZkGyORU4ceKE2Z8kSZLIowPtR9u1a2c2b926pclazaZvE9wevvWkNgQQQAABBBBAIEAEND/nnDlz\n9BCwfrp+rnfKlCnTp08vW7aslh7wR+P5WOEPVepEAIEQFiAiGMIXl64hgAACsS2gcGCWLFnMWR0m\nETX77Yl///3XbKZLl84eUDT7SSCAQCALDBkyROF8q4VaTfD+/fvRtlZRKE0u9OmnnyqnRpIVLlw4\n2iJkcC1gjwhmypTJXBGnpZ577jn7/t27d9s3fZvm9vCtJ7UhgAACCCCAAAJxLnDmzBmtVK1maPKJ\nYsWKuWjPkSNHlFNLTWvFAS0T4CKnd4f4WOGdG6UQQCCcBXz/XhzOmvQdAQQQQEDLR2k+EMtBqwVE\nC2LP4/rRwmirIgMCCMSJgCao1EKAP/zwg86uiYPOnTvnYoCa1cKXX3557dq1Vvq1116rVq2aphuy\nNvnpnYDkTcGUKVOatNNE7ty5NShzw4YN1lG/RgS5PZxeAnYigAACCCCAAAJBKnD37l2tS33y5Emt\nKa5PAS56odF7mpri0qVLvXr1unbtmp4djCrzvn37zCGHnHny5FFA0Rx1SPCxwgGETQQQQCBaAcYI\nRktEBgQQQAABDwQefvhhk9se7TM7HRL2PIomOhxlEwEEgkLAPnGoPTQVVeP1pUCqVKmso//880/j\nxo2vX78eVWb2uyOgcYEmmztruBYsWNDk37t3r76vMZs+T3B7+JyUChFAAAEEEEAAgbgSUCBwxYoV\nTZo0GThwoOs2bN68edWqVcozatSo4i5f9hks9LCaPe/vv//u4ix8rHCBwyEEEEDAqQARQacs7EQA\nAQQQ8FIge/bspqQ7s4YeP37c5K9evbpJk0AAgSASKFSokNVaTfxrD01F1YUCBQpoiiFzVJ/zu3bt\najZJeCHw0EMPmVJ6ENuko0rYn8DQuoPx4/vxQwG3R1RXgf0IIIAAAggggEBwCUyYMOHDDz984okn\ntDpgtP9A+vWZM8uNjxXBdf/QWgQQCAQBP374D4Tu0QYEEEAAgVgWqFevnjmj1gh0Pe5HswteuXLF\n5K9Tp45Jk0AAgSASyJcvn9VajRKO9qsBK6fGBfbp08f0cfLkyWPGjDGbJDwVyJUrlyly+vRpk44q\nYR/PrW9Sosrmk/3cHj5hpBIEEEAAAQQQQCBuBRYsWKDH+EqXLj1nzhw9Uha3jTFn52OFoSCBAAII\nuCPAOoLuKJEHAQQQQMBdgRo1auTIkePw4cMqcP/+/XXr1j355JNRFd6/f785pEUES5UqZTZJIIBA\nEAmY1UPr16/vfrMHDx6sqYSWL19uFendu7cmCKpcubL7NZDTCNSuXfv999+3NvU0hlZ2yZIlizka\nOWFft9U+g2jknDHfw+0Rc0NqQAABBBBAAAEE4lZg48aNzZo106p+ixYtMvP/u26S/slcsmSJ6zzW\nUc0Uqvk/rXTevHk//fRTU6pIkSImHVWCjxVRybAfAQQQiCxARDCyCXsQQAABBLwXiBcvXvv27d97\n7z2rCi0w4CIiuHXrVnOmmjVrujm0yBQhgQACASJglvdo0aKF+03SFKPTpk0rWbKkFTG6ffu2vmXY\nsmVL1qxZ3a+EnJZAuXLl0qdPb+ZqXr16dfPmzV3gKGRojvo7IsjtYahJIIAAAggggAACwSiwbdu2\nunXrZsyYcenSpfYHy1z3JU2aNPb1pF1ktocYU6dO7WYpUyEfKwwFCQQQQCBaAWYNjZaIDAgggAAC\nngl06NBBcUGrjCKCLgrrMUNztEePHiZNAgEEgktA8Sc1uEGDBpUqVfKo5fpaYdasWYkTJ7ZKnTp1\nqkmTJrdu3fKoEjJLQN+DKJ5qKFy/9yrboUOHrMxJkyZt06aNKeiPBLeHP1SpEwEEEEAAAQQQiB2B\n7du36zFf/ce+bNky+8zzTs+uBa3nz5/v9JBfd/Kxwq+8VI4AAqEkQEQwlK4mfUEAAQQCQkCzhmru\nUKspv/32m32lQHv7NB5o4cL/196Zx+031I3/qSzZhSzZKkuy9IjyWEIUEgqtKlT2bImyFGVLZIts\nFZHs2So8tMmeLbJLSorqG1JkS/3ev+Z55jXPnOs617nPOdd9n/u+3vcf3++cOTOf+cx7Zs65znzm\nM3NpiGHr/1VWWSW9a1gCEpgsBK655prTTjtt/vnn/8Y3vlFD55VWWumYY46JGW+44YYddtghXhqo\nTmDfffedeeaZQ/pzzjmn37M3JIibNu+4444LLrhg9VLGmtLuMVZippeABCQgAQlIQALdIXDHHXdg\nDmTJL+ZAtgwtV4xvfD7t2Va0PNmQ7vpZMSSwipWABKYYAS2CU6xBrY4EJCCBThA4+OCDcVhBlX/8\n4x/9Tg7gWPJp06aRZrrppmPf/07orRISkEBCgBGKA98DDzyQxOXBp59+mo2C//nPf55yyimszM1v\nJ9dMEMSrNEzkdttth5B4F1GpjTDGGygnwG6r8fyVv/zlL5hp+6Vnm9YwU8MGTXvttVfPZKzvPvbY\nY2maG2+8sWcCu0dPLEZKQAISkIAEJCCBKUMA78Cw2Bdz4DLLLFNeryuvvHKDDTbgjPAtttiiPGXD\nu+mnRBpGrJ8VDdmaXQISGAUCL/nXv/41CvW0jhKQgAQkMM4E8FY56KCDKPRNb3oTnoJZ6fxwX2ON\nNXAGIp6UBxxwQJbASwlIYGIJsKkvW4Bi1Me6z6a+HA7KkR6ZSpwPx4aTd9999+6773744Ydnd7PL\nWWaZ5e9//3uIvPrqq7P9RZ999tk3v/nNd955Z0hAoRdeeOFGG22UCfGynMAzzzyz9tprh0crnn80\nUE8z7fbbb3/SSSch6sgjj9xtt92KMvlAWGqppe6///5wi+Mes1MJ7R5FaMZIQAISkIAEJCCBqUTg\n+uuv5+xA1pm94Q1vWGyxxXpW7cUXX2TD/7/97W8PPfRQOBp8iSWWiL8he2bpGUlZq666ari14oor\n3nzzzT2ThUg/K0rgeEsCEpDAYAJ88PsnAQlIQAISaJ0AHwZvfetbw3vosMMOy+THUwOZjM5ueSkB\nCXSBwD777JP+jpxrrrm+9KUv8XnPZ//jjz/+gx/8YM8995x++ukxE5566qkDFb733ntTaccff3wx\nSzhtLiabaaaZ8DAuJjOmnMCf/vSn1772tQEjD2GWX2Tpzz33XBqOBDvttFN2K17SvrEhCLCAI94K\nAbtHBsRLCUhAAhKQgAQkMJUIXHHFFRje0h+EFRfhm0YAAEAASURBVMMs9q3B4brrrovysQiWSPCz\nogSOtyQgAQlUIeCuofGNY0ACEpCABNokwIwzu9JtuOGGCGVXOlyIHn74YfyNWO73jne8g83oOIpg\njz32wEOlzVKVJQEJtETgXe96V7AbBXlYARnISy65JIY6rIPrrLPOoYceuvLKK7OV0JZbblle5n33\n3Zel2W+//Yorf1/60v/zuxR3N/YdOvDAA//617+Wy/duSgCnQCypOGcTyd5NtNQ999wTEvzhD3+A\nPN5+mHX33nvvr3zlK2nGNJw2PfEzzDBDepew3SMD4qUEJCABCUhAAhKYMgTYq4MPeU4HGGuN+MZn\nB5Gx5qqe3s+K6qxMKQEJSKAvgSpmQ9NIQAISkIAE6hHAPeWoo46ab775wnsoHC5ImH3t2Eq0nkxz\nSUAC40PgggsuWHjhhYs/Ijn7c/311z/jjDMwLJVrgtmpZHExt5hrCBJ67l0ZisZSOO+8815zzTXl\nZXk3JcDyiyOOOGLmmWcODHkIL7744oSByeP32muvTRP3DLM9VGz6iy66qJjG7lFkYowEJCABCUhA\nAhKYAgTmmWee+DtwTAHOBahX/YE+gn5W1ANrLglIQAJFAp4jOKZXm4klIAEJSKAOAQ4P44Bx9vf4\n85//vPTSS6+wwgrLLrtsHUHmkYAExpcANj8czh544IFHH32U35EYCPlbZZVVep5ON76qWdpgAk89\n9RRHM/7iF79gu1c8OxdaaKG11lqLFhyc8z/+g5MdOT7wjjvu2GqrrXhu98xi9+iJxUgJSEACEpCA\nBCQgAQlIQAISkEA3CWgR7Ga7qJUEJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAE2iHw\nf85raUekUiQgAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggc4Q0CLYmaZQEQlIQAIS\nkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQkMgYAWwSFAVaQEJCABCUhAAhKQgAQkIAEJSEAC\nEpCABCQgAQlIQAISkIAEOkNAi2BnmkJFJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAE\nJDAEAloEhwBVkRKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhLoDAEtgp1pChWRgAQk\nIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQwBAIaBEcAlRFSkACEpCABCQgAQlIQAISkIAE\nJCABCUhAAhKQgAQkIAEJSKAzBLQIdqYpVEQCEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJ\nSEACQyCgRXAIUBUpAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggc4Q0CLYmaZQEQlI\nQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQkMgYAWwSFAVaQEJCABCUhAAhKQgAQkIAEJ\nSEACEpCABCQgAQlIQAISkIAEOkNAi2BnmkJFJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAIS\nkIAEJDAEAloEhwBVkRKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhLoDAEtgp1pChWR\ngAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQwBAIaBEcAlRFSkACEpCABCQgAQlIQAIS\nkIAEJCABCUhAAhKQgAQkIAEJSKAzBLQIdqYpVEQCEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQk\nIAEJSEACQyCgRXAIUBUpAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggc4Q0CLYmaZQ\nEQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQkMgYAWwSFAVaQEJCABCUhAAhKQgAQk\nIAEJSEACEpCABCQgAQlIQAISkIAEOkNAi2BnmkJFJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQlI\nQAISkIAEJDAEAloEhwBVkRKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhLoDAEtgp1p\nChWRgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQwBAIaBEcAlRFSkACEpCABCQgAQlI\nQAISkIAEJCABCUhAAhKQgAQkIAEJSKAzBLQIdqYpVEQCEpCABCQgAQlIQAISkIAEJCABCUhAAhKQ\ngAQkIAEJSEACQyCgRXAIUBUpAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggc4Q0CLY\nmaZQEQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQkMgYAWwSFAVaQEJCABCUhAAhKQ\ngAQkIAEJSEACEpCABCQgAQlIQAISkIAEOkNAi2BnmkJFJCABCUhAAhKQgAQkIAEJSEACEpCABCQg\nAQlIQAISkIAEJDAEAloEhwBVkRKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhLoDAEt\ngp1pChWRgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQwBAIaBEcAlRFSkACEpCABCQg\nAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSKAzBF72hS98oTPKqIgEJCCBSU/gtttuu/DCC++55565\n5pprjjnmmPT1mWwVeP7553/zm9/QCrfffvuf//zn2WabbaaZZppslRgVfZ977rlzzjnnrLPOWnTR\nReeee+4Wqz08yS0qWS7q6aefPu200w4//PBll112nnnmKU88Pnc7qNL4VNxSygnwpL3sssu+//3v\nM5zvuuuuJ5988lWvetUMM8wQco1pMNrHylFPsbtVmntM/aezfPhlct555x1yyCHzzTffIoss0lk9\nVUwCtQl0vJNPjSdJ7dYZtYw296i1uPWVgAQkIIEaBF7yr3/9q0Y2s0hAAhKYXATuv//+7bffvnWd\nmQB95StfGcT+85//3GGHHb72ta+FSwxRxx577FZbbdV6oQosEnjxxRcvueSSE0888fLLL6chYoKX\nvvSlyy+//NZbb/2xj33s5S9/eYzvSOCpp55qSxPm3+MUfFsyhy1nww03pNUo5SUveckdd9yxzDLL\ntFXi8CS3pWGJnLvvvvuEE044/fTTsayQ7Kqrrlp99dVL0o/DrQ6qNA61toiBBB566KFDDz301FNP\nfeaZZ9LEWAQPOOAAnro8gSsORvtYCnDKh6s3d8X+01liLFHiZ+HJJ5/8pz/9CSV5sH/kIx/prLYq\nJoEaBCZFJ5/sT5Ia7TLKWWzuUW596y4BCUhAAlUJYBH0TwISkMCUJ/D73/9+l112efe73z3rrLNW\neT5iPZpuuukGpvztb38b0R155JFZeiTccsstMYGBIRH49a9/veKKKwb42Ja++MUv/vKXv7z11ls/\n/elPMx8d4hdYYIEf/OAHQ1KgtlhsYEydo3PWc2pc7rnnnrXVmJCMDz/8cGwd6rvrrru2pcbwJLel\nYU85rGjGXXKNNdbIWh+LYM/04xDZQZXGodYWUZHAlVde+YpXvAKfp/322+/aa6/95je/mZmuN954\nY2aKy4e5fawi7amRbKzNPUkf5jQWq5Twmt1ggw3S/s+zHYvg1GhKayGBSdTJJ++TxG5Wg4DNXQOa\nWSQgAQlIYAQJDJ7vzmamvJSABCQwGQlgd/nKV76C5rgybLLJJniS9azFkksuecYZZ7zxjW982cte\nRoJnn332r3/9K+YldqG84oorLr300n/84x89MxJ5yimnZLdIzOzPCiuskMV72SIBZqI32mijJ554\nIsj8+Mc/vvfee4cw7Yix7bDDDuPy0UcfXW+99XBn2WOPPVosvaGoO++8Ewn0yZNOOmmvvfZitjQK\nXGyxxRZaaKF4mQZwgiQLDmQPPvggMzLh1t/+9rc0TffD7ISJOeGxxx4Lqi6xxBJt6Tw8yW1p2FPO\nD3/4Q55Ryy23HM36u9/9rmeacY7soErjTMDi+hHAu3fTTTdlm7hg9iDZqquuivMTr1diQq6LLrpo\nrbXWKh/m9rF+hKdk/Fibe5I+zGm7G2+8cf/992eLAl7l/Iackq1ppUacwCTq5JP3STLifaxe9W3u\netzMJQEJSEACI0dgBK2gVlkCEhhxAo888ki/Zz2GmRI4OBq+5z3vSfOmPoKzzDJLeiuEcZIoEeit\nhgTYsy7u2hqAM0ORysSykq3QP/PMM9ME3QlnO4kdffTRA3XjECY8X0PFN99884Hpu5aAXV7nnHNO\n9Me1CANni+oNT3KLSvYTdd1114U2Df9OoI9g1LCDKkXdDIw/gccffxzXQPrnuuuum5XO4ozXvva1\nsQOzb3bFwWgfy0hO7cvqzV2x/3QWF3sYpBtO6CPY2ZZSsdoEJkUnn+xPktqtM5oZbe7RbHdrLQEJ\nSEACYyLwP9upxU93AxKQgASmPAE2kAyzmcWa9vPKCilxNPzOd77T7zzC17/+9UWBSy+9dDHSmLYI\nYEWbNm1aKg0vz/RywQUXXGqppdIYZqg5wSiN6UgYZ5qxajLzzDPjVcaZc2ScdD6C6LzddtthZb/n\nnnswes0+++xjrX5J+uFJLim0rVurrLLKHHPM0Za0VuR0UKVW6qWQegT22WefP/7xj+R9y1vekknA\nxs9bMlj6cdHecsstKw7GsfaxT37yk6lTdaaGlx0nUL25K/afWN+udYxXv/rVeH5H9QxIYOoRmBSd\nfKxPkqnXTCNVI5t7UjR3197XkwKaSkpAAhJokYAWwRZhKkoCEpg0BLDt9dQ18yfrmebLX/4yX7/F\nWxzklkUyrb/DDjtkkV62RYC96a6++upUGsD5S2MIxyMGQzz7bX7+85/P0nThMsyh19AEE/Wyyy47\nGS2CVBajZmayrUGgZ5bhSe5ZXLuRc889d7sCm0vroErNK6WEGgReeOGFs88+O2Scd955ixLYrvmO\nO+445phj7rrrrnCyYMXBWL2P3XTTTSyGQJNi6cZMFgLVm7ti/6Hi3ewY2U4Gk6WB1FMC1QlMik5e\n/UlSveKm7CwBm7uzTRMU6+b7uuPQVE8CEpBAuwS0CLbLU2kSkMDUJzDrrLN+/etfL9bzve99L5uO\nRlen173udZdddlm502FRiDHVCYQDAtP0M8wwQ3oZwossskgWef755zNVnUVO+GVtiyCav+9975uk\nFsEJx95NBWacccauKdZBlbqGaET0+elPf/qXv/wlVHa22WbrWWtefDvvvHNPv/me6UNk9T521FFH\nlcjx1qQgUL25q1enmx1jGDWtzsSUEhgHAnbycYBsERKYSgS6+b6eSoStiwQkIIGBBLQIDkRkAglI\nQAI5gbe//e3pUUnx9rbbbssBS3feeSeHatx7773sixVvGWiXwMMPP3zNNddkMtPTeuKtoj8om2v3\ntOnGLBMS6Kl8RU3WXHPNp556qmJik3WfQJPOMKTadVClIdVUseUE0hPgZppppvLEY7pbsY/hgHjO\nOeeMSbKJO0igYnNX17yzHaP1mlZnYkoJjA8BO/n4cLYUCUwNAp19X08NvNZCAhKQQEUCWgQrgjKZ\nBCQwugQee+yxT33qU3/4wx9SBOutt156GcMve9nLlllmmZ7bisY0BpoT+NGPfoRhL5NTjCHBK17x\niiwZlz/+8Y+LkZM3ZrXVVuPsrsmrv5pnBHiMZDETftlBlSacyWgqEE4QDHVvdxa4Sh978skncYn+\n5z//OZrwp1KtqzR39fp2uWO0O0yqMzGlBMaNgJ183FBbkAQmO4Euv68nO1v1l4AEJDAmAloEx4TL\nxBKQwCgSwCWCrS3+/Oc/p5V/xzvekV4aHmcCt9xyS7HEv//978XIWWaZpRiJH+e0adOK8ZM0hrmY\nsW7QN0lrOiJqv+QlL+laTTuoUtcQjYg+f/rTn2JNq5y8GxMPDAzsYy+++OIHPvCB++67b6AoE3Sf\nwMDmrl6FjneMFmtanYkpJTCeBOzk40nbsiQweQl0/H09ecGquQQkIIEaBKarkccsEpCABEaKwA03\n3FCs7zrrrHPJJZe88pWv5Ba/bosJQgwTpgO/k5944gmmOO+//37+5TS4+eeff4EFFlhjjTUWW2yx\nfmLLC02X3pfohpA0JZf42PXzvaAW6eQvql577bXY1TguEVXLzVG4V/73f/83O6liVaVqbLj6hje8\nYdllly2p3cBbjz76aDHNM888U4zsaRGkptdff/273vWuYvoHH3zwhz/84SOPPPKf//mfG2ywQc+z\nCYu5jJGABCQwCgTiIYJUduDbrUUgPLRx1r/88stblKmoKUDAjjEFGtEqSEACEpDAlCfg+3rKN7EV\nlIAEJhcBLYKTq73UVgISmAACPacgOT/pne98J9rgrPamN72pn1rf+MY3ttpqq353L7zwwr333hvr\nWkjA7Cp/0SaHmW3dddedbbbZsuz77LPP3XffXVLoz3/+8+WXX55c//jHP6affvose3r5/PPPpwn2\n2GOPI488Mk0QwwsttBBH93HJdDDJTj755HgLs+JXvvKVHXfcMcbEAHa1bbbZBnNgqBSubKgU7q61\n1lpUhBMZY+IxBWacccZi+hdeeAH52eZF2WXMle59FyOPO+643Xff/bnnngsxbADLbpxLLbVUTNCp\nwG233bbddtv97Gc/q64VbpRYsi+66CKOcMCqSrssueSSWGd32223pZdemktOWPz85z//1a9+9b3v\nfW8Qe/HFF8dWiwXNPPPM66+/frwkgEkbmWlMCONN29Moy12Ku/TSS0866aQrrrjisssuW3vttYvZ\niaGXnn/++STDCE0nxGROJIZbxs5VV11FT/jIRz6y3377pbbbMUn+2te+Ns8885x33nmh9GeffZYY\nLjkKdM455/yvf/9tvvnmhHuqFyKDkq2IKiml3y0aiDalpW688cawv/Fyyy2H3Z2jTD/84Q+ntvx+\nEoYRTwcDCCsqfvWrX/EomGuuuTjUkwUE7Pr45je/uWeJ2OlJ2fPWggsuuPLKK3OLs1p/8pOf9EwT\nIt/4xjem57z+8pe//MUvfpGlf81rXrPCCivEyNab7ze/+c0JJ5zAs52VEA899BCPWfrtoosuuvHG\nG7/nPe/puZVxVIYAnfCYY46hw991110sGeFBRINSr9VXXx0XPYZev3NDa2dMS8/CwPne974XI1Mf\nQTTM1mFQwWyhScXBGOX3DDDeP/7xj//0pz9N79LhX/7yl8cY4Mw777zxMgZqj44aT55YaJVAk05C\npWgUnorsgM2oD298CqU56Hg8GG+++Wam3nh5bb311h/84Af5aZGqxLuSJ8a3vvUtlvWwL/rCCy/M\ngxqDK6MsTZaFWx8mmfyel+X9p2LH4MEypLdY1JnnzOmnn87Pxd/+9reM2SWWWIIXK+Tf/e53xzRV\nArW7axXhTbp0E8VqP5eG1OVqvJtSvFSHXwgnnngiQ4/nYXye/+53v+MnNK8nuiXPolVXXfUzn/kM\nT+80bxauTSbKadIuUUjFQBc6eW1i5U+SngRYHcgfb2H++OHBeRD8tOA3DJ91xU+zooQW+0lReDFm\nokZ31GREvi9ifWsPPTKO/+u7udrN+3PF93X2Q672kI9VNiABCUhAAn0J8LnonwQkIIFRI8DUas/H\nImaJDAVfgyEl1o7sVrh8+umnzzjjDD4RewrEItgz16233ppmYQr16KOPZiqcDypmGbLJu0wy83dM\nB5922mlxEjBLgEUwFsoUKjMUwYiSJeOSD8iYkgA/1jGJLbLIIsWUWARJwHxHT89FFL799ttTUYSB\nGXwokYYxgJP/KA473Ic+9KEgn1yHHXZYlqvi5Sc/+cmiksRwOEEm4eqrr+6Z8pBDDslSwqpInkk9\nvkaylMO4zCa76Q8DS6EPrLjiigOThQR4i55yyimxJ2ADW2mllaIVjR7IhDtukYHVOeecE8Xusssu\n73//++ebb74UI7aNmCAEsPtiDEgtMSE9U0hZSi7p6gceeGDa037wgx8Uk5H305/+NKrGopnIIxlG\nTUySMZIAVuqQvZ5kBmPIjpG155w43b7Yw0OWTMkmooJA/k0fUEzux/ieAeagg9Ea6wgLBeaee+6U\nzFve8paeTdBTVEnkmFTCG5hhHlYbzD777HQM7KqpbR7rLybkYnH7779/mixWhJ6JhSyk5zHF1pHY\nMOLdGKCr4Ph75ZVXppLpWkSmHQbFWMQQ0rTefEwQY6cPdWcueIcddthpp53oFfHZgoH8zDPPTDXM\nwrQ4dnoqhYmLjv3Zz34W83w6CriVZQmXtTP2lBYjeeNEwgMDvJtixoqDMabv18e++93vps3XTwde\n1lFUDNQbHVmvoMSBT55YYpVAk07CqggWQGBcjxz4OREK/f73v4+pO8bHAFsasMwlKsbQS1HHZLym\nWeEUk6WBDMj4POUG9p/qHWMYb7HIhx+BrIgKA5x24XWJFTa+Rxi8rH+KkLEaxozFQL3uWpRTjMla\nEH3G1KWbKFbvuZQp3EqXA0vtd1NAyjohlk8xUmKD8njkFtYmftLEH1TxLjEseyo2R4ipRyaV1qRd\nUjkDwx3p5PWIDXySFKtPlrAqjq+YL33pSyy84K3N4rPQsqwP49V8bPLHKrpzzz03ymm3n0Sx/QLZ\nYBnP0R1UGpHvi5R/vaE3Ia/v5mq30p+rv69ThesN+VSCYQlIQAISKCHQe06hJIO3JCABCUwBAj2n\nw/iIyiyCWLCYkw1fgP0sgoEGK+7DHG5IHP/taRF84IEHmCWPaQhg9kipfvSjH03vZuEwAUF63PV6\nel+lFsEgNto1M1GZRTAk7nlEHxZBymWP0ExCvMS1Lq3CvvvuG2fASYNZLt5lZ9R0dhuDZbxVPYA9\nLxadBuLcaBTFMZBpghjOFCb9JptsEu+mAT5jorThBWpYBOknFS2CTNOzA2qo1Pbbb8/XXagIszz0\neTzJ0voSTi2CISWtT1kxWdEiGJIxL4DrXkxGgKmKFBp2NXykilafzCKI/Rj/0bQLBZlMYuLtUTQP\noE9FySztL0oOs410lRJHQArFqTetS4uiUrGE0wcU38PZ3fSSI06hxHJ13HbDcGb1MSax9KBTNMeb\nKs1VI1xdJR6VwSyBlwxPnviQoRMyZxr7BvbLniOLGZM47xYSs/ShqDBisQtGaQSwGuIgVUwZYigr\nJOaRjtMekcNoPh5ucaEGT3WGQ9QHk3nau5hhjLfSAOOF9mKA4BebxvO0x7IY65veCuHaGYuishio\nYo6Nf+lbANtnjA8BXoVkrzgYs4L69TGe6qxmCH+pAyLOcP8b/f//Zw43E1hjdNR48mSFDrys3Ulu\nuukmbNspgdAfwlvvC1/4Qrik/xR96LFRBcWYx5x11llDyqIo1ub/9a9/TaswjGES5Pdrbu5W7D9j\n7RhtvcVSPvhkhwUZPIdZ0IBlKN5lyNMWAXX8t8QiWKO7xrJKAs27dBPFajyXhtflmryb+ImSWnZj\ng9KpeLVtuOGGMSYLsKHI73//+2ID1SCTCWnSLpmo8suOdPIaxCo+SbLq87tljjnmoB152eHym95l\n24Pi79LQ4sSzfLD1fpKWXgxP7OgO+ozC90VGvsbQm5DXd3O1W+zPY31fo3yNIZ9V2UsJSEACEign\noEWwnI93JSCBqUkgnYpKv95TiyC7veHXEu+WWwTB1NOMV7QI8sVYLD2bymSTvVhuCDDTRGT4S2eZ\n043vYpaiRZBCe+4cGCfrs2bODJZIZuU7c5EEMHz29M7ZYostohAMElEZAtQ33goB5spjAgwDPb2F\nsizZJWaSKCENMC+cpcwsbTHxtttum6XEgBHvpoGDDz44SzmMy0zPgT6C7NfHBEQViyB+k2GTRpar\nM51RVB5jQ9aRihZBcmGiiFj6WQRJxnx3TEaAL7q0RL4JseayF2tqsiJZZhHEgsWaaxZlZ4MFazob\nN731rW/FGJBaJrAhVZSMwZKt9vbcc8/UKolFENeB4EDJknDWhmO2zDauQUks2bCK1WlRVJQZAmmt\nSyyCp556KlphZwJLJgFv43RnTurCxGWWZkyXFVVif85gb6CHTJs2rVgEjq2RPB0Sd89iGqxKbHlK\n1cLfpptuWkxDDKaL6IVMSna77ZksRIZVEUzQ42IYYobRfHhDBp3xf00f1KFEXLv+p0r/8R94cxa1\nJUswz+OGUrxLzGabbRYkZHdrZ8zkVLlMt3ru2XwIqTgYs+Kq9LHUC4eJyExCellvdNR48qSFVgnX\n7iRsEH3ooYdiL+EBGDsSAWjTmenbvFjZsRB3QN74bMWcOnbzA4Cpbd4y2CdwfGdCk98JrB5gdUj6\nOkZaNo6GMUwCpZLmrtF/KnaMVt5isZV5HUTHerZgjfExgFEwVQy8/SyC9bprLKgk0LBLN1Gs3nNp\nSF2u4buJpuRX2VlnnRVbPIxBfr3zSOR3LCtUWJfDKGNM8aMxtRuxmCNroHpkUiFN2iWVMzDckU5e\nj1iNJwkO3PHJmS0CC6zSfYD5ZbXa//6FHyrt9pOBrTOBozvoNiLfF2lD1Bt6E/L6bq72kPpz+lrs\n90Ou3pBPq2xYAhKQgAQGEtAiOBCRCSQggSlIIJ2KCl/14V++5/mAZOstHMji0SDh1kCLIHO4qagQ\nLloEse1lyRZYYIEi4rBANabEF5Azh4rJsGTENDFQtAiSMdtLMCTuZxFcfPHFo7Q0ELxeyMUBh2k8\n4WjB4kd89JIJaTidKNP829/+dpqds3ayBAMvmcrMGigI3HnnnbO8fNKnZcUwpxhmKd/2trfFu2mg\n3xRelr3hZWYRBDWrm7M/9rTEtYg5Kfz8mNhFySoWQeYpQnW++MUv9lMSk1Ja5Z4WQZa4xjQlFkGK\nSDtbZhGMCrBqPp0yyyyCMRnn9MRCCdBVmA0P/Raj11577YUZjxn21KhcUXK68SzjCBMg00CsCUid\nPNgtKlUSBWiXqFsMtCgqyEwfUP0sgtjDggkTG1vUJA3gT5k643LyTXp3rOEqKmHJi8nOPvvsfkXQ\ne2ObZkbWmIXsMQ3VjPFZIPpFkRg7bnY3vQwpcVJMI0O4rebDqBwXXqy33nrFgmiRWCncs4rzILx9\nQgKM1sXsxHA+WZiszO7WzpjJqXJZxSIY5VQcjCF97DxA6Nftq0wkIa356Kjx5Im1Lgk07yQIx+QQ\nOxIB/JN4KkZTdyydZ2+KC4sFa30+97nPFd/7nHYWBbIyJkpIA20NkyizSnNX7z9pTYsjKxba7luM\nY5IDN4wCsYgscMABB0S2BHr+nGjeXbNCe17W6NINFWv4XGqxy7X4bsLWnjYoO2DzG57p/ox5+m7i\nNZfdbUimYbtkypRfdqSTNyRW/UkSt9NgD/z012CklD5DWCvZb2eCVvpJLHRgYPxHd1Bp1L4vmg+9\nCXl9N1e73f5c5X3dcMgPHDImkIAEJCABCGgRtBtIQAKjSCCdikq/7UvCAy2C2L2K2YsWwaINj4O+\nim2Q+vcEsT1NEUVpJO5pEUxtA1HP4sxg0KSntxxuZFj7QgL8jVKzHz4HfG+EW3ihRfkhUPRLY6Ob\nNA3fBj3diYpY0histqmQEMaFMavU8ccfX0xGDCeApNIIs+tdMSX7MWYenFmuti4zi2BRk54xAy2C\nsfp0ALz3+mnLxEfcSo6CeloE77zzzqhDuUUwPSCwn0UQTdI+2c8iiL9LLJQA/nAcRdmvFjG+iuTU\nLI15FZ1xC44SYgB7W6oA2/EVk7UoKpSbPqD6mUZwc0QxNqyLqhYDW265ZVQe02ZqNy0mLo+polKc\n++65yiHKx3SRbldIReKtGGACN9g7g/433HBDvJUGWCcRTbY0DeaW9G4axukQ30R2P0sjQ7it5sNh\nLtJmzUSxIGLSfZ7vu+++LA0uzkHCRhttlN2Kl+FFEy9DoHbGTE6VyzFZBBFYZTCGcqv0sSoTSUhr\nPjrqPXkGAmzeSUIR6b6gzMmmxwSmOrzvfe+LfZIsrCZJ78Ywz7SYjEBPf+K2hkkstEpzk7hi/6nY\nMVp8i91zzz3xOZbuix4rGAIs60nZ9rQINu+uWaE9L2t06YaKNXwutdjlWnw38ZZJGxRvbw7YLgLH\nWTC+m0jPDh9pmoZkGrZLqkl5uDudvCExqlnlSYIjaWxc9rHoByfdPyaeSZwlbqWfZDJLLsd/dKPM\nCH5ftDL0xv/13Vztdvtzlfd18yFfMl68JQEJSEACgcBL4+8eAxKQgAQkwBcgrkIrrbRSnOhplwkW\ntZtvvjmTWTxphgSpeSakx3spyzjOl5/4xCeiB8xcc82FBYu5rV133fXEE09kB0ssZ+hDBXFByBTj\nDMIsJj1Pi1vY8NJ50ixxv0sKSn3RQjJsHl/+8pfTLJwZll7GMEaLGA6BHXfccZ111kkjMSHwxVtM\nmaYZUnjVVVfljK7sj51O2TaQw2zYoqpKucwRxJPbMKAWO1UUwtTV0ksvHS/HJ5Bu+divRL4b08qy\n7r64mWcxbxXJqW2G3stue+xHWhTFdripeR6kbLiXJWtRVCa53yVGNbxyubvmmmv2S0P861//+niX\nn334mMbL1gP45bClYRBb9CFOi+OUQXw9YwwTakyexssQYOhtvvnmMTKzy8Z4LNPRQEXT8ESKt9IA\na42Z6cOVKu4Glt5tq/mYGo4vjp4nTlFoaubkFM9UDcLRVZfl2Bgvs7vh8kMf+lAxvnbGoqjWY6oM\nxnYLbWV01HvyDKxI804Sikip8ipM59dSHVhvFC/xI0zHXYwnwKMvnS7v2ffaGiZpuVXCaU2rpB+3\nNGxuyQ8eisNLLOWcKcBahOJPoDRNK901FdgvPNYu3Vyxhs+ltrpcu+8mfv2mhNlTZMEFF0xjQpjd\n9cN5uuGShWVpmiZkmrdLqkl5uDudvAmxUMcqT5L0Ay1d2ZZRSo+Nz05JiClb6SdR2sDA+I/uEfy+\naGvopV1xHF7frag9zv2ZDt98yA8cNSaQgAQkIIHpRCABCUhAApEA9q1wvBmbs2FKKU79x5T1Arg3\nsdVhlrfnXF48aismxhsmhickkFoXUID9xzi8jb9UmVtuuYVDONIYwsFYmEamNp4QjyNU6s+UJu4X\nxqzIcXTrr78+ZyalaQ466CAsl/hGsOcP5kAsPendGF555ZVjOATIxZEJmAAxTzJ9w2kxbFqVHbCX\nZRne5fvf/356Yz/5ePvhFxKORuuXhnjsKHGjwrgVUr/042/47Nnzi+qlY4GN74oJijFVJE8//fQx\nI5529JZ4mQUwQ6b0cBfOErQoKpPc75JNNZmOCXcZBf2SZZY21vv3S9k8HjWiias4uDL5bPfKIZEY\nKYln/B5++OFFD92Pfexj0bpPfXkapwuro0Am3HEwDZdf//rX043mYpqw1njrrbeOMWmgrebDVn3E\nEUdQEdaU9HuasYgBZ5FQOruNpWoQjjPLNO7qq6/+3e9+N3vqkga34OKToXbGTIFhXFYZjO2W29bo\nqPHkGViR5p0kFFGRarp+Ij4xeirJfF90AsjOgg3p2xomPUsviaxY0xIJw7h13XXXXXTRRUFyul9C\nz7LwKMKNrOctItvqrv3kp/Fj6tLNFWv4XGqry7X7bmL5FBjZuD6ATZVMURPGys5cfIhkF430bhMy\nzdsl1aQk3KlO3oRYqGOVJ0lqEYwrIIuIWIoUI+MLPcaEQCv9JJNZfjnOo3sEvy/aGnpVuiJt3dbr\nuxW1x78/Nx/y5ePFuxKQgAQkAAEtgnYDCUhAAj0IcEbdkUceiZ8Ws9KsL+6RolYURhfMY9l0W2bQ\nCoJxm8tKYF/HLGacL9P1zv2K7rn1JRVkF7I0S3EqvGhlSdP3C+P0gPUOLy7OCIlpEM66Zv6wH/Sb\nA2W/svixETMSYApgp3//pZEdDNOLqPhAu0ucsqQK6RRGzxrxvdczfniR6fxFSSnR76okTXarouQs\nV7/Ld77znXj2xKki9kHtl3JgfFuiog4cOMffwHJDgrvvvrtiyhrJTj311Jgr9TeKkWmAfYZZgB/9\nd9noOL0bwhjDVlllleuvv55Llmh873vf46TALBk2yG9+85sxkgrir8yZXjGGAA8BrI+M97DaI701\n1vDA5sNWVzTXhVJwXwZRapQNDkapDqk3KuujWZSAZ/a+++6bOUMH99BWMqZChhRudzBWUbKt0VHj\nyVNFvYadJBRRYodIdUhP2w0G+PRuGmaJT7wsrluKt6oEBg6TKkJimvHvP7HokgBbI8S7A38alXek\ntrpr1KckUK5JlrG5YrUfaJkmAy/Lu1zr7yYwRotgiW7pczsbU03ING+XEp3TW53q5E2IhUpVeZI8\n/vjjkUD8fRJjYiD9OR0XQsW7MdC8n0RRVQLjPLpH8PuiraE3zq/vttQe5/7cfMhXGTWmkYAEJDDi\nBLQIjngHsPoSkEAZASag+SW9zz77lCUayz2MLkyFhznumC+bKQjxxY/MxRdfPGaZkECVr824y0eq\nYbYVZ3orhrNzjGL8wAAbdnEyEIcCMukTl2OHXGzVhW3gW9/6VlEIx3QVIydXDItM8SMs8Q9jxorD\njUKl5phjjnTCtyM1rTJBg6pVOl5Wo4qSs1wllxzYGS2CmJ8Zsz03+y2REG+1Iip+4eOR1m8nwFhi\nDFRcmBzTVw9g3Lrmmmti+nQmNEZmAebU4oxbP1MlCzLi05IBXrQI4vzHFB7PxvjkwU0wswhefPHF\nGBR32GGHGh0p05nLsTYf9kgGKVOr8GEMltvdmQHBbImnciiXwxTZUvXkk0/GLsjxgT23PA0pa2cs\nVrD1mNYH40AN2xodrXSYgdqSYEydJAisSLXEzSVTLE1ZbjvMMva8HOsw6SkkRFasaYmEYdxKzyMc\naBEsV6Ct7lpeSrg7pi7dXLHxfC7163LDeDfRJ/utNktbIXVqz5b0NSHTvF1SJUvCnerkTYiFOlZ5\nkqRjOf4+KSJKW79kH5Hm/aRYdEnMeI7u0fy+aGvoVemKNHT6Ui5p9yxl8fXdotppz++nUslzr1+W\nnvHNh3xPsUZKQAISkEBKQItgSsOwBCQggZzA9ttv/8UvfrFFN8FddtklznGHwuJcdiybH/Q4lMTL\nEGC+I4vp4GXcdizVjTOKXvWqV6UxxXD1L59iXrYPxY2GP5oJbuyTyQZonNfFtz27ERbT89nc8yyu\nYsqOx+DpWGIRpF/FfltyIErH69gR9ejDUROGJx/Y+G/FmDEFWhEVv/AZcemRJGPSpMXE7ImXerxV\n8Z9IV9lj1WO34XSLpKAbm8SyC2hYM3H55Zez63JqFaNEPLnJdcEFF7B3aMhy3nnnYUXDBB5rh9UQ\nO9zHP/7xGNMkUL35aJrj/v03bdo09hXElfPDH/7w2972tp/97GclCrATF+cd3nTTTTENo/iwww5j\n0QOnivKUy05ziclqZ4wSpkyga6OjBGy9TlIisCO3qg+Tjig8JjWw7tx7770xS2pFiJHVA53trq0o\nNm7PpX5dbhjvpvKFHRWbvjaZVtploJId7OS1iQ2sbEyQHgjKOkVevj2P3073Y8duEbNngVb6SSaz\nrcuGvWg0vy8aQmur7cYqpy21x78/j8OQHytM00tAAhKYYgReOsXqY3UkIAEJtEuATbfwxGpRJg49\nmQsLU+HZGYH8fM8OHcG55zOf+UyLagxJVKZ2KIWzBtnKr/wverM1UYxPd5brcuQbmw2GSbpzzjmn\nKHDzzTd/3eteV4yfdDFsZVli50its2NaOzzpOIyDwulsI8UVXXir69BcFKMsntaZ+cVWV6PdlNkT\nLN3Ft19BqUWQNOkUW8yCU130C8TKeMYZZ8RbBDD+Ue7OO++83HLLrbnmmuEW5sM0GdPBnDLI9sKL\nLbZYmrd2uErzocN+++1HSk6g5IhKFGBb1G233XaWWWYZWC4GziuvvPKjH/1oNvnCZshsFsqDC5fB\nnkJqZ+wpbfJGdnB09ITZpJP0FNipyCrDpFMKj0kZHjvpzudpeExySNzZ7tqWYuP2XOrX5Yb0bhpr\nQxfT1yPTVrsU9cliOtjJ6xHL6lV+ycHkSyyxREjDuD7hhBN6po/HHLD2qN0vxJ7FtR7ZvBeN4PdF\nc2itt2MVgZNU7VC1cRjyVRiaRgISkMAUJqBFcAo3rlWTgATaIYDdpR1B/yvl3HPPjR4tIe5LX/rS\n/978//8zm5xeMjXMXPDCCy+cRnYznLrmRA0feeSRGB7PwH333Rd3eozlYltlmj5eTuoAezOynWC/\nKqRf7NmkWL8sxvcjkJmvquyKOTxR6cmjHbEIZpWtYRHEqTcTEi5TmzfrhdM0eM5hYwtDYOutt463\n2Dg0hsmCr8NWW20VYxoGBvYEjH+sSzjwwAN5buMXyNGqb3/728dUKBvScjgiroTZ2hGEMKipKX6T\nPQXWzthT2iSN7P7oAGzzTtLx1hk4TDquf7l6qYMgKZu8XjvbXVtUbHyeSxW7XIvvpvJOUuVuDTIt\ntku5ht3s5DWIlVczu8tbGytg3NTxiCOOKNr7f/GLX8SdvfmxkXW8TGA3L5v3ohH8vmgObUI6wyRV\nO7Ia9pCPBRmQgAQkMJoEtAiOZrtbawlIYAwE2PBtDKkrJGULTVzicGWLaZk45pio66677ic/+Qmu\nJKlnG7+GcQrhEKyYuMuBeeaZp6helSmYYq7mMQcffHBRyO677z4ZP+CLFRkYg3trTPOXv/zlySef\njJcGxkog26qxyUadzUWxbDaa3jF7P//882OtTuvp8YRLZeKZl172DKf9c/rpp++3sTC7Jb/2ta8N\nEpiJw5QSwj/84Q8JYy8MPHElZPfgcOu2226Lu25y+iDx73nPe3rqUCOyvPkuuuiilVdemUbBVHnZ\nZZfxMM9c/aqXyF5kHD3I8pHiCbJsi7r//vv3E1U7Yz+Bkyu+g6MjA9hiJ8kkd+eyfJh0R896msRH\nTchect7YQPmd7a6tKzbs51K/Lje8d9PAxq2YYExkWm+Xfkp2uZOPiVi/CvaLZ2fvaBRko/JNNtkk\n/fH88MMPc7wxW8fzZt9rr73e97739ZPT5fjmvSj9/TYi3xfNoU1Il5ikameshjrks7K8lIAEJDBS\nBLQIjlRzW1kJSKAOAU5ru/DCC9s9iY3d8L7//e/jPrLWWmsFnY466ig8QtZee+3o4MIEx2c/+1mW\nn/P9WUfviciz4IILFotl4h43nWL8UGPuueeedPPAUBbOOvjuDLXciRV+yy23xP0k495HQaUmfgxN\nKlU85b6JtInKyzRQLJpHQTb5GG9VCbQiaskllwxlPfbYY8cff3yVcjlfMy5sr5J+TGk43i+dQKzi\nuRg7KgXRV/udJMq8W/oAjG6CX/7yl9kLd7fddgt6vvzlL2d34qhzeIpeddVVnHbD6X3cjbcaBkqa\n79Zbb6WsYKDFETk9kah2oUw43n333V/96lezLnfooYemmhTl185YFDXpYro2OlKAw+gkqfyOhNPO\n2fCB2YUaZW+xzMg0pndrJoradba7DkOx4T2X+nW54b2b2u2Z1ckMo12Kdel+J69OrFi78hgc8W+8\n8cZAgAOMOTSaRZns1LLNNtvwPcgzHPvEDTfccMghh5TL6fLdhr1oNL8vGkKbqP4wSdUu4hrekC+W\nZYwEJCCBESGgRXBEGtpqSkAC9Qkwm7zxxhtjw6svolfOF1544Ve/+tVzzz3HvPZGG2307W9/G7sj\n3gPf+973OHeKYyqYMT/ooIOaeCP1Kna4cT0nwakI7o/DLfj/SmfSjY31MjMknkY4Xw48UY9WwAKx\n7rrr7rnnnk3W/v9fjcbjipPYOC/txRdfDIXhdIWDaSyYrhXD9QJsuBozZmxjfDEQ9Sne6k7MwOqk\nPSEeWddT/xZF9ZQfItODMHlKcFJISeJwiz028asbmKx2gnQCEV/ndFOpnjL/8Ic/xHi+82O4GNhy\nyy2jvfDMM8/kyXn77bdfccUV+AWG40JDlnTj0LPOOuupp55i701ujWnL0CbNxw5jHA5HiVgx8Q4s\nViSLKdoGLr30UuYfs2Q4UO64445UGXfJeIutzDhGMV7WzhglTKVAB0dHxNu8k0RRExhoMkwmUG2K\nbuUthnk+/WHG0q7iWO5XTc5DzW51trs2V6zF51KTLje8d1PWlNUvm5Bp3i5V9OxaJ29CrEp9szT8\nfuAnCpsQ4JHPB9qvf/3riy++mN8hLNPkHY05cKWVVsqyTK7Lhr1oNL8vGkKbqB4ySdUe5yE/Ua1j\nuRKQgAQmloAWwYnlb+kSkMCIErj22mtZasrX5vXXX48J8Lvf/S7OJdgd3/3ud2+44Ya4si277LID\nbVewixPlHeG4yiqr9HTHKTdHYTRi25kWq4DxA4NBKpDPVyBnfjZpghDGeLDpppuy0yBGWYRw3GMm\np5ilOzFsiMrK5QUWWCCqlO43eOSRRz7++OPxVo3ArLPOGnNNmzYthssDxQnQ8vQTcnfgxpupFwjT\nQyVKtiiqpJT0Cx83wewg0mJG5rbYmpgnTPFWWzFsrhVFYbQreujGuyGQWgQ/9KEPZXfTS45QXWed\ndUIMHY/dOHEQ5HKPPfZIk7GQP575ynQeboLYzHjM8pcmKw83ab4f//jHQTibJ1dZQVKc477zzjtx\nROip4UILLfSjH/0onYXEdzCmrJ0xSpiMgX5mmA6Ojoi3eSeJoiYw0GSYjIPa/ToGRbf1FkuNTOxm\nXP4LJ61ycYlMZ7trc8VafC416XLDezelLTumcBMyzduloqqd6uRNiFWsb0zGRxmLAvnVwa+IXXbZ\n5dhjj2V/BdY58SOKbQm41bUvr6h59UDzXjSC3xfNoVVvoBZTdlztfu/r8RzyLdJWlAQkIIHJRUCL\n4ORqL7WVgASmAoFLLrkEX6677rqLyjCFvf7669euVWr+iUIGTp3ElK0HMAe+//3vL4rlu5qztYrx\nxDAtjg8QUw9PPPFEzwRjjcRg8LnPfS7NtcIKK7AF0DLLLJNGFsPYME455ZQ0HterLbbYoi3FUsnF\ncDZR2O8bqZgxxLAJ7Xe+850PfvCDaQK6WbykLtg442UWoBXSXRyzu+EyNXJwWH0/+yIGqr/97W9R\nQnqsfYzsWgADUrlK8Vy6V7/61diMSxK3KKqklI9+9KOcVBcTYBFkm8p+fQZ/Mg7Sm2222VZdddWY\npfXAzjvvnD6OMKuXFxEegKRZffXV46ZG/bKkG4dSWZx96dvR/hdzpW6Ce++999NPP53GxGQlgdrN\n98tf/jLaOBkCMC8pJdzqaSzH7NfvgTPddNPhrxDFxrMkQ0ztjFFgxUCqNj7uFXO1lSydik2fM6n8\nDo6OoF5bnSSt7ISEaw+T4WlbpWNQeltvsewtUPL4zapcfCF2tru2olhbz6UmXW6o76asfatf1ibT\nSrtU0bNrnbw2sSqVjWn4sfeBD3yAVxtHOaRPlZhgagSa96IR/L5oDm1COk8H1U5HVr8fcrAanyE/\nIY1ioRKQgAQ6QkCLYEcaQjUkIIFxJdDvB2gTT7V+0/FZxdgOFJtZnFTFDNPEgMdOmJl8Lu+///4s\nkl/VTz75ZBbJZT8OPesycEYmyN9rr73YNC8rC3PUu971rqIOcGCuH1Mcm3ymJ9Vn2atfsucnjlAR\nLxmZ1Lj66qt7HnCYiWXj1iyGyz/+8Y/4CxbjW4/JTAhj6hW0OIeosbsghp9UMSyj2IFiDJ5V7DBZ\nbFw8unDSGrizKyaoFCNbpUXJMcDOpewcm5o0SrwJ0zqm4SgtBFJbab8em2VJpaXhLFm8ZFPQtM/E\n+BDgTMroAsJesuXOu62ISnVOw1ExPMaweMVL2nT//ffHw7i4fSj6MCJoXAZm+hEe81YMpGqk4Zh9\npplmSi3xt912G+Mu3s0CeNXgJ00knfa4447L7hYvqUJ08MWvmsb69Kc/XUy22WabRUMpM3qoVO59\nWJRQu/lSSwP2dTySi8IvuOCCe++9N8bHJyrbR8fhz2Bk/URMkwVY3IBdMETiEJzerZ0xFVIlHHZG\nDSnTkd4vb9pb0nAxfXo3DacpUzvo73//+3gLK+zpp58eLtsaHTWePFGfnoG2OgnCU1tsP1YkS6tA\nD+mpVYhMU5YIDIlrD5NUgbSUNJymIZzeSsNZsiodgyxtvcV22mmn17/+9VEHHmh44cfLLJBaAYsv\nxLa6a1Zoz8u0lQe+TFtRrK3nUpMu1+67ibdtfFwDuWRYpbSLXbc2mVbapWf3yCK71slrEwv1Spsg\nDWe13m677Whf3rNp82Vpqly21U+qlBXSpAqPw+gewe+LtobeOL++W1G73f5c8X3dZMgz4YB3L8OZ\nBcHVB5EpJSABCYwcAZ7v/klAAhIYKQL8Fu83p8+keW0Um2++efEVwidTJjDb6Y4s+Mfw4Y3/1jHH\nHMOmNLipfetb38JIxsY1P/vZz5g/yiSkl7gbFgtdccUV+RoMyfhEPP7445l2LyYjhm36U2kxnJqR\nYkaMCjFBeYB9dWKuNMB0Ng58fGyTHUvbueeeG3YlwljIHHq5zIF3Obds++23T20eiyyyCBirS073\nwEnVDla0gQo0TJD5VFXvildddVU4Te2d73xnUYeDDz44rQthdtCiXzEhQmLGwjXXXMPmSIstttjK\nK68cU+KDVRRFDDanmIb5UL640mRs0jjvvPOyyRLbPMZkfI+ladJwas8+++yz01tpON2Hlj330lv9\nwlUk41UZlSTAyXP9pEWrErtF9exOLYoKOqQAMSP1VIxZ5rSaoS7Md6+99tr77rsvLcgMNQ+lcG4W\nZx/21Lyn5J6RVVSiU6XbE/Fkw3rUUxobJgeFsWv2TFCM5CEZ2wt/337VSb0J2Yq5KKcY01bzpWsa\nsJ0/8MADsSyeTsF/N+3M++23HwmwJTBfE4bSoYceSh1pMkZozJsGsMCF9RbMVzJFHm/VzhglVA+k\nPeGQQw4ZmDHtpSXDHDmp5H7dfrnllovd4BOf+EToBliI2Wr7wAMPjMq0MjrSxqr45IkK9As07yRB\n8nzzzRc5cD5ov+LiUgYSs31uv2TEp2B5NRdTtjVMouQqzU3iiv0n1b+kYyCwrbdYcUdxNu7OnktM\naGY/h5ZffvlIIAZa6a5RWklgrF26oWINn0stdrkW303ZMogHH3ywH/D11lsvDlIWvqTJGpJp2C6p\nJuXh7nTyhsSoZpUnCcu/YpPxa4rffpR74oknnnbaaTwVWejDIYL8ZmbBEzvJh2+ZfgBb6Sf9hPeM\nH+fRjQ4j+H3RytAb/9d3c7Xb7c9V3tdNhjwv4nTrkfJfnj1Hk5ESkIAERoTAf4xIPa2mBCQggUgA\nZ5r4yZcFmMbF3SqmrB7o+Wsb4WyrkgnhsKus0PJLTFz/9V//dcABB+C/mIkKl8Wt8xDIsXlMQLMb\nJ5YeLpdeeunoYZMWR30xQLJZfyqZyeg0TQzvuOOOabKSMJMvOIrFjFmAGe10eSC161e1kiLSW0wH\nf/WrX01nWrFo8qVa/rmeSgjhDTbYIFM1XLIbZzFxuzF8vaTTlJTL5AWbEJaUQhZMDttss030yMSQ\nXEyPSSb0gaxqrJqnK/Iv8XSDX//61+khc/0sgpnn0/zzz49Vg7kSrIDBFMT2XOiALTYWhzUaw8x7\n3/tevBhT9TB1p+bbz3zmM+ndGP75z38eRREosS/GLBUlZ7ON7HiZmnCitPPPPz/oCcZHH300xqeB\nFkUhFmN5bFOq/NnPfjYtKw0zWxdaMEVUDDMcaN8041jD1VXC3S3dO/Rtb3tbXJ0QC2UzrrAmA+M0\nT84YXx649dZbY9W++c1v9kscXA9DSg7+6ZcsjW+r+XbdddeoIQGecp/61KeoLCseOL1szjnnpC9x\nTGxMw4QjVnz+ZeIj6BNmQEjA5rQcE5gqGcLRD4nlI+nd2hlTIVXCmScx+9CW56o4GBFSsY9h7IkA\nCXDUK9hZzMFahOw90nB01HjylKMId5t3EuTgip1CoFf0Kxqf5pgSD8WwEKSYmL0K0mVAPZ85bQ2T\nUHrF5q7ef6p5JmmWAAAUDElEQVR3jBbfYsV1YCzIYF0X28PSRrwZ+SHEGzB9IdIcLMFhSQS/3Pjp\nEtuiYXeNckoC9bp0E8UaPpfa7XJtvZs4Ui6OKQIXX3xxT+b466fz/pxRnSZrSAZRTdol1WRguCOd\nvCGxik+SMbkT8TuN9ZcswGIL/SLGVvpJUWy/mPEf3Wgygt8X1Lrh0JuQ13dztdvtz1Xe102GfLa1\nzxprrNFv4BgvAQlIYMQJaBEc8Q5g9SUwKgT4OMfIgZVolVVWST/mi2EMSxgwWM/LgtB+jhopNea7\nOdcqXYyWyeQgqxtuuCFmWW211bIEFS+xuLDjXJQTA2zeyHRziRCcZjhPiynmfmmYVA3SmMbiJzhm\nnn4psetgdrr99ttj6f0CbIjHdH8/OTEe1GO128UScX9k/0C8MFO3JBzdOGqLj/+YrHqA+fqoWAzg\nx5B5wlUXWCUlU7SsOOaYh1hiDOAqRNVw7MC3Mv5xiX2X1swandXB/fRk7rXEQEvXDf2qikWQGqXL\n3qOqIcDsc6hyNgGKffrzn//87373uwiE1ab426XZqSwza5mDBQux05WksRSMJelcahRLoKJkUqaz\njcyGY6Oi57NhY5w0Z09C5nqCcY7tWDN7Q1poi6LQn/nijAw9k96elhjDmPPpD2n6LIwbLl5oMX2N\nwFhVYmPkdEjiwMoSe5qMeZD0qEusZf0q1U/JsJyC7oRva780xAcgWHCz7tQvS1vNxwDEuJ7xD5fs\n8BlcSYqbneJCFBWLMyDkYkQwauKyADo8TzYiuZVNLpO9dsZY9MAAD2qmhDC8ZRXEL6rfk6f6YKze\nxxiV2eMFfbB13XLLLcUq1B4dNZ48xdJ7xjTvJHSJ1J87VJ+fAVlxdBh+w2TbIWCcBmCakqHE7r7Z\nYca8TRiq2fBsa5hQesXmrt5/kDmmjtHKW4xCecKwhUC6tCUbHbymmT7ODlcmcocdduA5mTYE4drd\nNZPT87JJl66tWMPnUotdLjBp/m7CrIgRKG1lnvnFNyxfHKm3OukZiWeeeWYcUw3JhOrUbpeePaRf\nZEc6eRNiY3qSVPlySTsAYfoAS5FSgG31k1RmSXhCRnfQZ6S+L2IT1B56E/X6DprXVrv1/lzlfd1k\nyF955ZXpIGUPidh2BiQgAQlIICWgRTClYVgCEpiyBG6++eb012HFMObDgUSqSMZRJsphZ7OKpReT\n4XTS0xrHRjdFwwnZ8Zxg28xQdLAIzjzzzBiHmFBmGotj8/jRjBUw7uzHHH2x0GJMxd/WzCNgPuxn\niUThEkefiKtfABvJK1/5yqAb5hxaCnNvyfZN/eRk8di0UvcsvJ2y7/wsfcNLprar+HgVm6AYw3GJ\nJcpg5cK7LsvFPCZ+e0xdhYwVLYJYlzfaaKNM1DzzzJOulI9T9jhMMLPMzmlRN6bkaLh+U6j0T6ZK\nSYxlrpwMKaPMEKgoOeZKZxtZQIrZPuxhi0vHEksswUaOoY4UlPljRQkx0IooJlYwt2Qz+JEzc/Qs\nJoglpgFahMnHnhnxEsY2nyYeU7i2SliPcPrEKy7qHwOMLxzjSvY5LNEQkxhymCYoScOt4EjHA6E8\nWbzbSvMFaUxzZKZulpiwZCQOAbYaY7AEGvA54YQTohoEqBrtiL0n9aLmKcQ6gLACANfhnttp1s6Y\nll4Sjv7EsR3TAG3KlOiiiy7KSX5BSPXBWKOP3XXXXanJGUf84ox8rMtYR0eNJ08sq2KgdifBTXbu\nuedO31BpK+BsutZaawUdeL0G43GaIIbpeGETLUwUJY9ZbuHRGCvVyjCp2NzV+09Uj0D1jtHwLZYW\nShh3hNQbLHLGzhp+k0SLIIsV2M8gvnMzOVyOtbsWJRRjWunS9RRr+FxqpctlQGq/m9jGP92IIrZy\nCPArdIsttqAsDu2mM/R8HZOSMRV+qjUkEytVr11i9uqBCe/k9YjVeJLw5VKykUzW7vGShUrBU7Dd\nfjKwgSZwdEfdRuH7IlY2BsY69Cb29V1b7eH154Hv63pDPtaUtc5xeLJ9eow3IAEJSEACKYGXcBEf\nlwYkIAEJSGDYBFi5v9lmm2EmqVcQswk9XdlY6Y+TBAtFMRmyER8mDbxSmJuOs4dHHHEEZjO26Ow3\nVVFPn4G5eMuwGSMb2vDH7BhzJZiLUGP11VcfmLckAevub7rpJuY9+cPoGKtZkqXiLXYNwhWG/SGR\nzCEiPa0aFUV1LRmuk7iD8IdjKz2EacpwAGHQk5XR8dApHGrjJGbPWuCSQhNg3sC8R2uSNz3CZNtt\nt8WAgQ0ynbjvKWcCIzmDM27hiEWQGjGIMADjzcYf/ZZd3fjjyDrObCvXs0VR5QWV3GV6ghkHei9T\nYIwINMeVId3AsyTvkG7Bk3NDeShhAuGhhFYYtLBrlnhUl2vy2GOP0alOPvnk1GBWzMKhffRAZt6Z\npCveLca023z0HJxuqTXTZAwNhkD2dMIowtjBfoO9PHu8kJH1GTgEoySPIC7DH45l2BKWXXZZFpfM\nOOOMxSqQrF7GoqjJEsPbhAXvnGbKo2ygzl0bHU06ycDKDilBu8NkSEoitnrHaPEthhWBtwabFvAE\nZmEHRn3+4qIlfn0x+8n6DM5zrVLxrnXXqPNYFWv4XBpel2v93RQRVQw0JJOVMtZ2ybJXvJzYTt4u\nsZIq843GnhAMWFaJYT/mRcwfW0SwuArO4Y9L/A75IxlbLgdpLELaZ599SiR3/BZVa/IbcjS/LxpC\nm6gu0R21S97XDYc8Hx2sfOKDiDXQ5TupTFQrWK4EJCCBLhDQItiFVlAHCUhg5AhwOj0T1ukK6IoI\nMLRgzqmY2GQSqE5gTBbB6mI7m7I421hb1RZF1dbBjLUJ2Hy10ZlxdAg4TEanrTtSU7tcRxpidNTA\n6slCQNbGcWJuWJozsO733Xcf53mz0g47Yu21ngNLmewJRu37YrK3l/pLQAISkMCIEBiw7H1EKFhN\nCUhAAuNJgG2FTjrpJBZjUig7cHLeVc/SWcXM4lNWnbMQNSZgmSoeMHHfuRhvQAISkIAEJCABCUhA\nAhKQgATGSoBjfdkhY++9965oDkQ+2wCwbwE7H/TbDH+sOpheAhKQgAQkIAEJjA8BLYLjw9lSJCAB\nCfwPgU9+8pPhNCyuOcXttNNOK/+MZOs5Drc7+uijQ34Szz777NKUgAQkIAEJSEACEpCABCQggYYE\nzjvvPA6NRggObWMS9eKLL5KezefHlMvEEpCABCQgAQlIYGIJvHRii7d0CUhAAiNFgM1CozmQw8mO\nP/74cnMgcGaYYYbDDz+cQ6cCqEUXXZSYkYJmZSUgAQlIQAISkIAEJCABCbROgKMBd9xxxyC238Yt\n/Qo999xzOS2Yg4H7JTBeAhKQgAQkIAEJdJCAFsEONooqSUACU5bAT3/601i317zmNbPNNlu8LAm8\n7GUvixbBLbbYoiSltyRQm8C//vWv2nknY8a0vmm4Rl3S7Gm4hiizjD+BtMnS8PhrYokS6CyBdGik\n4c4qrGKTnUDazdLwZK+X+neQwMUXXzxt2rSg2FFHHVVdw/PPP//AAw9ko9Gll166eq5RS+n4HbUW\nt74SkIAEJDApCGgRnBTNpJISkMAUIZAeTfHggw/+5je/qVKxyy67jAMFSbngggvuuuuuVbKYRgJj\nJfDss8/GLGk4Rk6xQFrHNFyjmmn2NFxDlFnGn0DaZGl4/DWxRAl0lkA6NNJwZxVWsclOIO1maXiy\n10v9O07goIMO+uAHP3j11VeX6/nII4/ss88+m2222Vvf+laMguWJR/xuOn7T8IhjsfoSkIAEJCCB\niSXgOYITy9/SJSCB0SKw4YYbvvrVrw6GQE6eeMc73nHEEUdssMEG/Sg8+uijxx13XDjZAnPgT37y\nk1e84hX9EhsvgSYEHnvssZidDZRieKoGnnjiiVi1xx9/PIZrBFoUVaN0szQkYPM1BGj2USDgMBmF\nVu5UHe1ynWqOqa3Mpptueuihh95zzz2hmuf8+2/xxRcnfuGFF55vvvnmn3/+OeecEz9CDIH83Xrr\nrRdccMELL7ywzjrrnH322QMPgJja9AbWbtS+LwYCMYEEJCABCUigCwReohd/F5pBHSQggdEhgK1l\nq6224ksyVnn55ZdfbbXVlltuuXnmmYevSpZP4hH4wAMP3H///VdeeeXzzz8/88wzb7PNNvvvv/8c\nc8wRcxmQQIsEHnroode97nXPPfdckLnuuuvimTq15zg22WSTiy66KNSXM2CY32Ek1kPaoqh6Cpir\nCQGbrwk9844IAYfJiDR0d6ppl+tOW4yCJqwM23zzzS+99NKKleVMd3wE991336n9U7kijZJkI/h9\nUULDWxKQgAQkIIHuENAi2J22UBMJSGCECNxyyy18dl5yySU333wzzoLFmmOiwEa43r//3vKWt8w4\n44zFNMZIoCEB1uBff/31t9122+mnn37vvfem0piMYzekeeedd80110zjJ3X4mWeeob4Muh//+MeX\nX355Whfs8Xvuuecyyyyz1FJLccZneqtnuEVRPeUbOVQCNt9Q8Sp8ahBwmEyNdpxEtbDLTaLGmpKq\n3nHHHUcfffQZZ5wRV8gVqzn77LNvvfXWu++++6te9ariXWMCgVH7vrDdJSABCUhAApOOgBbBSddk\nKiwBCUwpAjhq89XEhir8Pf3002xKw76g/Mufy06nVEt3sjJYpg855JAS1aaffvqzzjqrJMHkuvXw\nww/vtttu5TpvvPHGH/nIR8rTcLdFUQPLMkHrBGy+1pEqcOoRcJhMvTbteI3sch1voBFRj91Br732\nWpzbwh/ug3PNNdfcc8+92GKLcWrgiiuuON10nrwzoC+M2vfFABzeloAEJCABCXSPgBbB7rWJGklA\nAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCABCUigPQIvbU+UkiQgAQlIQAISkIAEJCABCUhA\nAhKQgAQkIAEJSEACEpCABCQggc4R0CLYuSZRIQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCA\nBCQgAQm0SECLYIswFSUBCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCCBzhHQIti5JlEh\nCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCABCbRIQItgizAVJQEJSEACEpCABCQgAQlI\nQAISkIAEJCABCUhAAhKQgAQkIIHOEdAi2LkmUSEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQ\ngAQkIAEJtEhAi2CLMBUlAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggc4R0CLYuSZR\nIQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQm0SECLYIswFSUBCUhAAhKQgAQkIAEJ\nSEACEpCABCQgAQlIQAISkIAEJCCBzhHQIti5JlEhCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAIS\nkIAEJCABCbRIQItgizAVJQEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHOEdAi2Lkm\nUSEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJtEhAi2CLMBUlAQlIQAISkIAEJCAB\nCUhAAhKQgAQkIAEJSEACEpCABCQggc4R0CLYuSZRIQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEAC\nEpCABCQgAQm0SECLYIswFSUBCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCCBzhHQIti5\nJlEhCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCABCbRIQItgizAVJQEJSEACEpCABCQg\nAQlIQAISkIAEJCABCUhAAhKQgAQkIIHOEdAi2LkmUSEJSEACEpCABCQgAQlIQAISkIAEJCABCUhA\nAhKQgAQkIAEJtEhAi2CLMBUlAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggc4R0CLY\nuSZRIQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQm0SECLYIswFSUBCUhAAhKQgAQk\nIAEJSEACEpCABCQgAQlIQAISkIAEJCCBzhHQIti5JlEhCUhAAhKQgAQkIAEJSEACEpCABCQgAQlI\nQAISkIAEJCABCbRIQItgizAVJQEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHOEdAi\n2LkmUSEJSEACEpCABCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJtEhAi2CLMBUlAQlIQAISkIAE\nJCABCUhAAhKQgAQkIAEJSEACEpCABCQggc4R0CLYuSZRIQlIQAISkIAEJCABCUhAAhKQgAQkIAEJ\nSEACEpCABCQgAQm0SECLYIswFSUBCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCCBzhHQ\nIti5JlEhCUhAAhKQgAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCABCbRIQItgizAVJQEJSEACEpCA\nBCQgAQlIQAISkIAEJCABCUhAAhKQgAQkIIHOEdAi2LkmUSEJSEACEpCABCQgAQlIQAISkIAEJCAB\nCUhAAhKQgAQkIAEJtEhAi2CLMBUlAQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQggc4R\n0CLYuSZRIQlIQAISkIAEJCABCUhAAhKQgAQkIAEJSEACEpCABCQgAQm0SECLYIswFSUBCUhAAhKQ\ngAQkIAEJSEACEpCABCQgAQlIQAISkIAEJCCBzhHQIti5JlEhCUhAAhKQgAQkIAEJSEACEpCABCQg\nAQlIQAISkIAEJCABCbRI4P8Bm8bpjbqlxpUAAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 17, "metadata": { "image/png": { "width": "100%" } }, "output_type": "execute_result" } ], "source": [ "Image('images/FIR_LPF_Design.png',width='100%')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can test this filter in Lab3 using PyAudio for real-time DSP." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Design the filter here\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Plot the magnitude response and phase response, and the pole-zero plot\n", "* Using the `freqz_resp_list`\n", "```Python\n", "def freqz_resp_list(b,a=np.array([1]),mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)):\n", "\"\"\"\n", " A method for displaying a list filter frequency responses in magnitude,\n", " phase, and group delay. A plot is produced using matplotlib\n", "\n", " freqz_resp([b],[a],mode = 'dB',Npts = 1024,fsize=(6,4))\n", "\n", " b = ndarray of numerator coefficients\n", " a = ndarray of denominator coefficents\n", " mode = display mode: 'dB' magnitude, 'phase' in radians, or \n", " 'groupdelay_s' in samples and 'groupdelay_t' in sec, \n", " all versus frequency in Hz\n", " Npts = number of points to plot; default is 1024\n", " fsize = figure size; defult is (6,4) inches\n", " \"\"\"\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# fill in the plotting details\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 1 }
bsd-2-clause
authman/DAT210x
Module5/Module5 - Lab4.ipynb
1
16783
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# DAT210x - Programming with Python for DS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Module5- Lab4" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import math\n", "import numpy as np\n", "import pandas as pd\n", "\n", "import matplotlib.pyplot as plt\n", "import matplotlib\n", "\n", "from sklearn import preprocessing\n", "from sklearn.decomposition import PCA\n", "\n", "# You might need to import more modules here..\n", "# .. your code here ..\n", "\n", "matplotlib.style.use('ggplot') # Look Pretty\n", "c = ['red', 'green', 'blue', 'orange', 'yellow', 'brown']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can experiment with these parameters:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "PLOT_TYPE_TEXT = False # If you'd like to see indices\n", "PLOT_VECTORS = True # If you'd like to see your original features in P.C.-Space" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Some Convenience Functions" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def drawVectors(transformed_features, components_, columns, plt):\n", " num_columns = len(columns)\n", "\n", " # This function will project your *original* feature (columns)\n", " # onto your principal component feature-space, so that you can\n", " # visualize how \"important\" each one was in the\n", " # multi-dimensional scaling\n", "\n", " # Scale the principal components by the max value in\n", " # the transformed set belonging to that component\n", " xvector = components_[0] * max(transformed_features[:,0])\n", " yvector = components_[1] * max(transformed_features[:,1])\n", "\n", " ## Visualize projections\n", "\n", " # Sort each column by its length. These are your *original*\n", " # columns, not the principal components.\n", " important_features = { columns[i] : math.sqrt(xvector[i]**2 + yvector[i]**2) for i in range(num_columns) }\n", " important_features = sorted(zip(important_features.values(), important_features.keys()), reverse=True)\n", " print(\"Projected Features by importance:\\n\", important_features)\n", "\n", " ax = plt.axes()\n", "\n", " for i in range(num_columns):\n", " # Use an arrow to project each original feature as a\n", " # labeled vector on your principal component axes\n", " plt.arrow(0, 0, xvector[i], yvector[i], color='b', width=0.0005, head_width=0.02, alpha=0.75, zorder=600000)\n", " plt.text(xvector[i]*1.2, yvector[i]*1.2, list(columns)[i], color='b', alpha=0.75, zorder=600000)\n", " \n", " return ax" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def doPCA(data, dimensions=2):\n", " model = PCA(n_components=dimensions, svd_solver='randomized', random_state=7)\n", " model.fit(data)\n", " return model" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def doKMeans(data, num_clusters=0):\n", " # TODO: Do the KMeans clustering here, passing in the # of clusters parameter\n", " # and fit it against your data. Then, return a tuple containing the cluster\n", " # centers and the labels.\n", " #\n", " # Hint: Just like with doPCA above, you will have to create a variable called\n", " # `model`, which will be a SKLearn K-Means model for this to work.\n", " \n", " \n", " # .. your code here ..\n", " return model.cluster_centers_, model.labels_" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Load up the dataset. It may or may not have nans in it. Make sure you catch them and destroy them, by setting them to `0`. This is valid for this dataset, since if the value is missing, you can assume no money was spent on it." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# .. your code here .." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As instructed, get rid of the `Channel` and `Region` columns, since you'll be investigating as if this were a single location wholesaler, rather than a national / international one. Leaving these fields in here would cause KMeans to examine and give weight to them:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# .. your code here .." ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "Before unitizing / standardizing / normalizing your data in preparation for K-Means, it's a good idea to get a quick peek at it. You can do this using the `.describe()` method, or even by using the built-in pandas `df.plot.hist()`:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# .. your code here .." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Having checked out your data, you may have noticed there's a pretty big gap between the top customers in each feature category and the rest. Some feature scaling algorithms won't get rid of outliers for you, so it's a good idea to handle that manually---particularly if your goal is NOT to determine the top customers. \n", "\n", "After all, you can do that with a simple Pandas `.sort_values()` and not a machine learning clustering algorithm. From a business perspective, you're probably more interested in clustering your +/- 2 standard deviation customers, rather than the top and bottom customers.\n", "\n", "Remove top 5 and bottom 5 samples for each column:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "drop = {}\n", "for col in df.columns:\n", " # Bottom 5\n", " sort = df.sort_values(by=col, ascending=True)\n", " if len(sort) > 5: sort=sort[:5]\n", " for index in sort.index: drop[index] = True # Just store the index once\n", "\n", " # Top 5\n", " sort = df.sort_values(by=col, ascending=False)\n", " if len(sort) > 5: sort=sort[:5]\n", " for index in sort.index: drop[index] = True # Just store the index once" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Drop rows by index. We do this all at once in case there is a collision. This way, we don't end up dropping more rows than we have to, if there is a single row that satisfies the drop for multiple columns. Since there are 6 rows, if we end up dropping < 5*6*2 = 60 rows, that means there indeed were collisions:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print(\"Dropping {0} Outliers...\".format(len(drop)))\n", "df.drop(inplace=True, labels=drop.keys(), axis=0)\n", "df.describe()" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "### What are you interested in?" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Depending on what you're interested in, you might take a different approach to normalizing/standardizing your data.\n", " \n", "You should note that all columns left in the dataset are of the same unit. You might ask yourself, do I even need to normalize / standardize the data? The answer depends on what you're trying to accomplish. For instance, although all the units are the same (generic money unit), the price per item in your store isn't. There may be some cheap items and some expensive one. If your goal is to find out what items people tend to buy together but you didn't \"unitize\" properly before running kMeans, the contribution of the lesser priced item would be dwarfed by the more expensive item. This is an issue of scale.\n", "\n", "For a great overview on a few of the normalization methods supported in SKLearn, please check out: https://stackoverflow.com/questions/30918781/right-function-for-normalizing-input-of-sklearn-svm\n", "\n", "Suffice to say, at the end of the day, you're going to have to know what question you want answered and what data you have available in order to select the best method for your purpose. Luckily, SKLearn's interfaces are easy to switch out so in the mean time, you can experiment with all of them and see how they alter your results.\n", "\n", "5-sec summary before you dive deeper online:" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### Normalization" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's say your user spend a LOT. Normalization divides each item by the average overall amount of spending. Stated differently, your new feature is = the contribution of overall spending going into that particular item: \\$spent on feature / \\$overall spent by sample." ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "### MinMax" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What % in the overall range of $spent by all users on THIS particular feature is the current sample's feature at? When you're dealing with all the same units, this will produce a near face-value amount. Be careful though: if you have even a single outlier, it can cause all your data to get squashed up in lower percentages.\n", "\n", "Imagine your buyers usually spend \\$100 on wholesale milk, but today only spent \\$20. This is the relationship you're trying to capture with MinMax. NOTE: MinMax doesn't standardize (std. dev.); it only normalizes / unitizes your feature, in the mathematical sense. MinMax can be used as an alternative to zero mean, unit variance scaling. [(sampleFeatureValue-min) / (max-min)] * (max-min) + min Where min and max are for the overall feature values for all samples." ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "### Back to The Assignment" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "Un-comment just ***ONE*** of lines at a time and see how alters your results. Pay attention to the direction of the arrows, as well as their LENGTHS:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#T = preprocessing.StandardScaler().fit_transform(df)\n", "#T = preprocessing.MinMaxScaler().fit_transform(df)\n", "#T = preprocessing.MaxAbsScaler().fit_transform(df)\n", "#T = preprocessing.Normalizer().fit_transform(df)\n", "T = df # No Change" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Sometimes people perform PCA before doing KMeans, so that KMeans only operates on the most meaningful features. In our case, there are so few features that doing PCA ahead of time isn't really necessary, and you can do KMeans in feature space. But keep in mind you have the option to transform your data to bring down its dimensionality. If you take that route, then your Clusters will already be in PCA-transformed feature space, and you won't have to project them again for visualization." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Do KMeans\n", "\n", "n_clusters = 3\n", "centroids, labels = doKMeans(T, n_clusters)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Print out your centroids. They're currently in feature-space, which is good. Print them out before you transform them into PCA space for viewing" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# .. your code here .." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that we've clustered our KMeans, let's do PCA, using it as a tool to visualize the results. Project the centroids as well as the samples into the new 2D feature space for visualization purposes:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "display_pca = doPCA(T)\n", "T = display_pca.transform(T)\n", "CC = display_pca.transform(centroids)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Visualize all the samples. Give them the color of their cluster label" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "if PLOT_TYPE_TEXT:\n", " # Plot the index of the sample, so you can further investigate it in your dset\n", " for i in range(len(T)): ax.text(T[i,0], T[i,1], df.index[i], color=c[labels[i]], alpha=0.75, zorder=600000)\n", " ax.set_xlim(min(T[:,0])*1.2, max(T[:,0])*1.2)\n", " ax.set_ylim(min(T[:,1])*1.2, max(T[:,1])*1.2)\n", "else:\n", " # Plot a regular scatter plot\n", " sample_colors = [ c[labels[i]] for i in range(len(T)) ]\n", " ax.scatter(T[:, 0], T[:, 1], c=sample_colors, marker='o', alpha=0.2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot the Centroids as X's, and label them" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ax.scatter(CC[:, 0], CC[:, 1], marker='x', s=169, linewidths=3, zorder=1000, c=c)\n", "for i in range(len(centroids)):\n", " ax.text(CC[i, 0], CC[i, 1], str(i), zorder=500010, fontsize=18, color=c[i])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Display feature vectors for investigation:\n", "if PLOT_VECTORS:\n", " drawVectors(T, display_pca.components_, df.columns, plt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Add the cluster label back into the dataframe and display it:\n", "df['label'] = pd.Series(labels, index=df.index)\n", "df" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" }, "toc": { "colors": { "hover_highlight": "#DAA520", "running_highlight": "#FF0000", "selected_highlight": "#FFD700" }, "moveMenuLeft": true, "nav_menu": { "height": "58px", "width": "252px" }, "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 4, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false, "widenNotebook": false } }, "nbformat": 4, "nbformat_minor": 2 }
mit
ajackwin/data
pew-religions/Religion-Leah.py.ipynb
37
38187
{"nbformat_minor": 0, "cells": [{"execution_count": 39, "cell_type": "code", "source": "### Leah Libresco\n### [email protected]", "outputs": [], "metadata": {"collapsed": false, "trusted": true}}, {"execution_count": 40, "cell_type": "code", "source": "import numpy as np\nimport pandas as pd", "outputs": [], "metadata": {"collapsed": true, "trusted": true}}, {"execution_count": 41, "cell_type": "code", "source": "# List of 12 U.S. religious groups stuided by Pew\nreligions = ['Buddhist', 'Catholic', 'Evangel Prot', 'Hindu', 'Hist Black Prot', 'Jehovahs Witness', 'Jewish', 'Mainline Prot', 'Mormon', 'Muslim', 'Orthodox Christian', 'Unaffiliated']", "outputs": [], "metadata": {"collapsed": false, "trusted": true}}, {"execution_count": 42, "cell_type": "code", "source": "# Create a .csv file with a function to write to it \ncsv = open(\"current.csv\", 'w')\ncsv.truncate()\n\ndef write_row(matrix):\n arr = np.asarray(matrix[0])[0]\n row = ','.join([str(a) for a in arr]) + '\\n'\n csv.write(row)", "outputs": [], "metadata": {"collapsed": false, "trusted": true}}, {"execution_count": 43, "cell_type": "code", "source": "# Intitial distribution of religions in US\nfirst = np.matrix([.007, .208, .254, .007, .065, .008, .019, .147, .016, .009, .005, .228])\n\n# Normed to sum to 100%\ncurrent = first / np.sum(first)\nt0 = current\nwrite_row(current)", "outputs": [], "metadata": {"collapsed": false, "trusted": true}}, {"execution_count": 44, "cell_type": "code", "source": "# Transition matrix \ntrans = np.matrix(((0.390296314, 0.027141947, 0.06791021, 0.001857564, 0, 0, 0.011166082, 0.059762879, 0, 0, 0, 0.396569533),\n (0.005370791, 0.593173325, 0.103151608, 0.000649759, 0.010486747, 0.005563864, 0.002041424, 0.053825329, 0.004760476, 0.001130529, 0.000884429, 0.199488989),\n (0.00371836, 0.023900817, 0.650773331, 0.000250102, 0.016774503, 0.003098214, 0.001865491, 0.122807467, 0.004203107, 0.000186572, 0.002123778, 0.151866648),\n (0, 0, 0.0033732, 0.804072618, 0, 0.001511151, 0, 0.01234639, 0, 0.00209748, 0, 0.17659916),\n (0.002051357, 0.016851659, 0.09549708, 0, 0.699214315, 0.010620473, 0.000338804, 0.024372871, 0.000637016, 0.009406884, 0.000116843, 0.129892558),\n (0, 0.023278276, 0.109573979, 0, 0.077957568, 0.336280578, 0, 0.074844833, 0.007624035, 0, 0, 0.35110361),\n (0.006783201, 0.004082693, 0.014329604, 0, 0, 0.000610585, 0.745731278, 0.009587587, 0, 0, 0.002512334, 0.184058682),\n (0.005770357, 0.038017215, 0.187857555, 0.000467601, 0.008144075, 0.004763516, 0.003601208, 0.451798506, 0.005753587, 0.000965543, 0.00109818, 0.25750798),\n (0.007263135, 0.01684885, 0.06319935, 0.000248467, 0.0059394, 0, 0.001649896, 0.03464334, 0.642777489, 0.002606278, 0, 0.208904711),\n (0, 0.005890381, 0.023573308, 0, 0.011510643, 0, 0.005518343, 0.014032084, 0, 0.772783807, 0, 0.15424369),\n (0.004580353, 0.042045841, 0.089264134\t, 0, 0.00527346, 0, 0, 0.061471387, 0.005979218, 0.009113978, 0.526728084, 0.243246723),\n (0.006438308, 0.044866331, 0.1928814, 0.002035375, 0.04295005, 0.010833621, 0.011541439, 0.09457963, 0.01365141, 0.005884336, 0.002892072, 0.525359211)))\n\n# Fertility array\nfert = np.matrix(((2.1, 2.3, 2.3, 2.1, 2.5, 2.1, 2, 1.9, 3.4, 2.8, 2.1, 1.7)))\n\n# Create data frame for printing later\nreligionDataFrame = pd.DataFrame()", "outputs": [], "metadata": {"collapsed": false, "trusted": true}}, {"execution_count": 45, "cell_type": "code", "source": "# Run model\nfor x in range(0,100):\n\n ### beginning of conversion step\n \n # apply transition matrix to current distribution\n current = current * trans\n \n ### beginning of fertility step\n \n # divide by two for couple number\n current = current/2\n \n # adjust by fertility\n \n current = np.multiply(fert, current)\n \n # normalize to 100%\n \n current = current / np.sum(current)\n \n write_row(current)\n \n # add to data frame\n religionDataFrame = religionDataFrame.append(pd.DataFrame(current), ignore_index=True)\n\ncsv.close()", "outputs": [], "metadata": {"collapsed": true, "trusted": true}}, {"execution_count": 47, "cell_type": "code", "source": "# Print data frame with results\nreligionDataFrame.columns = religions\nreligionDataFrame", "outputs": [{"execution_count": 47, "output_type": "execute_result", "data": {"text/plain": " Buddhist Catholic Evangel Prot Hindu Hist Black Prot \\\n0 0.007924 0.170263 0.309520 0.006728 0.080042 \n1 0.007981 0.140118 0.331889 0.006234 0.090308 \n2 0.007856 0.119514 0.340401 0.005752 0.097890 \n3 0.007710 0.105453 0.341544 0.005303 0.103242 \n4 0.007583 0.095775 0.338780 0.004895 0.106781 \n5 0.007482 0.088996 0.334004 0.004532 0.108869 \n6 0.007402 0.084125 0.328280 0.004213 0.109811 \n7 0.007339 0.080515 0.322217 0.003934 0.109868 \n8 0.007288 0.077748 0.316165 0.003692 0.109259 \n9 0.007247 0.075553 0.310324 0.003483 0.108167 \n10 0.007214 0.073759 0.304804 0.003302 0.106743 \n11 0.007186 0.072254 0.299659 0.003148 0.105108 \n12 0.007163 0.070967 0.294911 0.003015 0.103356 \n13 0.007144 0.069849 0.290562 0.002901 0.101562 \n14 0.007128 0.068869 0.286601 0.002804 0.099779 \n15 0.007114 0.068004 0.283011 0.002720 0.098049 \n16 0.007102 0.067237 0.279769 0.002649 0.096397 \n17 0.007093 0.066557 0.276852 0.002587 0.094844 \n18 0.007084 0.065953 0.274235 0.002535 0.093398 \n19 0.007077 0.065416 0.271894 0.002489 0.092065 \n20 0.007071 0.064939 0.269805 0.002450 0.090845 \n21 0.007066 0.064516 0.267944 0.002417 0.089735 \n22 0.007062 0.064142 0.266290 0.002387 0.088731 \n23 0.007059 0.063810 0.264823 0.002362 0.087827 \n24 0.007056 0.063517 0.263523 0.002341 0.087016 \n25 0.007053 0.063259 0.262374 0.002322 0.086291 \n26 0.007051 0.063030 0.261359 0.002305 0.085644 \n27 0.007049 0.062829 0.260463 0.002291 0.085068 \n28 0.007048 0.062652 0.259674 0.002279 0.084557 \n29 0.007047 0.062497 0.258980 0.002268 0.084104 \n.. ... ... ... ... ... \n70 0.007056 0.061429 0.254164 0.002197 0.080749 \n71 0.007056 0.061429 0.254164 0.002197 0.080746 \n72 0.007056 0.061429 0.254164 0.002197 0.080744 \n73 0.007056 0.061429 0.254164 0.002197 0.080742 \n74 0.007056 0.061429 0.254165 0.002197 0.080740 \n75 0.007057 0.061429 0.254165 0.002197 0.080738 \n76 0.007057 0.061430 0.254166 0.002197 0.080737 \n77 0.007057 0.061430 0.254167 0.002197 0.080735 \n78 0.007057 0.061430 0.254168 0.002197 0.080734 \n79 0.007057 0.061431 0.254169 0.002197 0.080733 \n80 0.007057 0.061431 0.254170 0.002197 0.080732 \n81 0.007058 0.061431 0.254171 0.002197 0.080731 \n82 0.007058 0.061432 0.254172 0.002197 0.080730 \n83 0.007058 0.061432 0.254173 0.002197 0.080729 \n84 0.007058 0.061432 0.254174 0.002197 0.080728 \n85 0.007058 0.061433 0.254175 0.002197 0.080728 \n86 0.007058 0.061433 0.254176 0.002197 0.080727 \n87 0.007058 0.061433 0.254177 0.002197 0.080727 \n88 0.007059 0.061433 0.254178 0.002197 0.080726 \n89 0.007059 0.061434 0.254179 0.002197 0.080726 \n90 0.007059 0.061434 0.254180 0.002197 0.080725 \n91 0.007059 0.061434 0.254181 0.002197 0.080725 \n92 0.007059 0.061435 0.254182 0.002197 0.080724 \n93 0.007059 0.061435 0.254183 0.002197 0.080724 \n94 0.007059 0.061435 0.254184 0.002197 0.080723 \n95 0.007059 0.061435 0.254185 0.002197 0.080723 \n96 0.007059 0.061436 0.254186 0.002197 0.080723 \n97 0.007059 0.061436 0.254186 0.002197 0.080722 \n98 0.007059 0.061436 0.254187 0.002197 0.080722 \n99 0.007059 0.061436 0.254188 0.002197 0.080722 \n\n Jehovahs Witness Jewish Mainline Prot Mormon Muslim \\\n0 0.008986 0.018492 0.128123 0.028069 0.013271 \n1 0.008980 0.017417 0.120477 0.039642 0.017382 \n2 0.008785 0.016412 0.117260 0.051127 0.021558 \n3 0.008572 0.015526 0.115117 0.062488 0.025770 \n4 0.008375 0.014768 0.113124 0.073661 0.029978 \n5 0.008197 0.014130 0.111103 0.084574 0.034138 \n6 0.008031 0.013595 0.109070 0.095151 0.038205 \n7 0.007874 0.013148 0.107080 0.105324 0.042139 \n8 0.007723 0.012773 0.105176 0.115035 0.045908 \n9 0.007578 0.012457 0.103386 0.124239 0.049485 \n10 0.007441 0.012190 0.101724 0.132901 0.052850 \n11 0.007310 0.011963 0.100194 0.141003 0.055991 \n12 0.007187 0.011770 0.098797 0.148534 0.058901 \n13 0.007072 0.011605 0.097526 0.155496 0.061578 \n14 0.006965 0.011462 0.096376 0.161900 0.064025 \n15 0.006867 0.011339 0.095339 0.167762 0.066250 \n16 0.006777 0.011232 0.094407 0.173106 0.068260 \n17 0.006695 0.011139 0.093571 0.177959 0.070069 \n18 0.006620 0.011058 0.092823 0.182351 0.071688 \n19 0.006553 0.010988 0.092155 0.186313 0.073130 \n20 0.006492 0.010925 0.091561 0.189877 0.074411 \n21 0.006437 0.010871 0.091033 0.193076 0.075542 \n22 0.006389 0.010823 0.090564 0.195942 0.076539 \n23 0.006345 0.010781 0.090148 0.198503 0.077414 \n24 0.006306 0.010744 0.089781 0.200789 0.078178 \n25 0.006272 0.010711 0.089456 0.202827 0.078845 \n26 0.006242 0.010682 0.089170 0.204642 0.079423 \n27 0.006215 0.010657 0.088917 0.206256 0.079923 \n28 0.006191 0.010635 0.088695 0.207690 0.080353 \n29 0.006170 0.010615 0.088500 0.208965 0.080723 \n.. ... ... ... ... ... \n70 0.006019 0.010457 0.087162 0.219413 0.081818 \n71 0.006019 0.010457 0.087162 0.219435 0.081798 \n72 0.006019 0.010456 0.087163 0.219457 0.081777 \n73 0.006019 0.010456 0.087163 0.219477 0.081758 \n74 0.006018 0.010456 0.087163 0.219496 0.081739 \n75 0.006018 0.010456 0.087163 0.219514 0.081721 \n76 0.006018 0.010455 0.087164 0.219531 0.081703 \n77 0.006018 0.010455 0.087164 0.219548 0.081686 \n78 0.006018 0.010455 0.087165 0.219563 0.081670 \n79 0.006018 0.010455 0.087165 0.219578 0.081654 \n80 0.006018 0.010455 0.087166 0.219592 0.081639 \n81 0.006018 0.010454 0.087166 0.219605 0.081625 \n82 0.006018 0.010454 0.087166 0.219617 0.081610 \n83 0.006018 0.010454 0.087167 0.219629 0.081597 \n84 0.006018 0.010454 0.087167 0.219641 0.081584 \n85 0.006018 0.010454 0.087168 0.219652 0.081571 \n86 0.006018 0.010454 0.087168 0.219662 0.081559 \n87 0.006018 0.010454 0.087169 0.219672 0.081548 \n88 0.006018 0.010453 0.087169 0.219682 0.081536 \n89 0.006018 0.010453 0.087169 0.219691 0.081526 \n90 0.006018 0.010453 0.087170 0.219699 0.081515 \n91 0.006018 0.010453 0.087170 0.219708 0.081505 \n92 0.006018 0.010453 0.087170 0.219716 0.081496 \n93 0.006018 0.010453 0.087171 0.219723 0.081487 \n94 0.006018 0.010453 0.087171 0.219731 0.081478 \n95 0.006018 0.010453 0.087171 0.219738 0.081469 \n96 0.006018 0.010453 0.087172 0.219744 0.081461 \n97 0.006018 0.010452 0.087172 0.219751 0.081453 \n98 0.006018 0.010452 0.087172 0.219757 0.081446 \n99 0.006018 0.010452 0.087173 0.219763 0.081438 \n\n Orthodox Christian Unaffiliated \n0 0.004466 0.224115 \n1 0.004070 0.215501 \n2 0.003812 0.209631 \n3 0.003629 0.205648 \n4 0.003485 0.202793 \n5 0.003364 0.200612 \n6 0.003258 0.198860 \n7 0.003162 0.197401 \n8 0.003076 0.196158 \n9 0.002997 0.195083 \n10 0.002925 0.194146 \n11 0.002860 0.193323 \n12 0.002800 0.192599 \n13 0.002747 0.191958 \n14 0.002699 0.191392 \n15 0.002656 0.190890 \n16 0.002617 0.190446 \n17 0.002582 0.190053 \n18 0.002551 0.189705 \n19 0.002524 0.189397 \n20 0.002499 0.189125 \n21 0.002477 0.188885 \n22 0.002458 0.188674 \n23 0.002441 0.188487 \n24 0.002425 0.188323 \n25 0.002412 0.188179 \n26 0.002400 0.188052 \n27 0.002390 0.187941 \n28 0.002380 0.187844 \n29 0.002372 0.187759 \n.. ... ... \n70 0.002315 0.187222 \n71 0.002315 0.187223 \n72 0.002315 0.187224 \n73 0.002315 0.187224 \n74 0.002315 0.187225 \n75 0.002315 0.187226 \n76 0.002315 0.187226 \n77 0.002315 0.187227 \n78 0.002315 0.187228 \n79 0.002315 0.187228 \n80 0.002315 0.187229 \n81 0.002315 0.187230 \n82 0.002315 0.187230 \n83 0.002315 0.187231 \n84 0.002315 0.187231 \n85 0.002315 0.187232 \n86 0.002315 0.187232 \n87 0.002315 0.187233 \n88 0.002315 0.187233 \n89 0.002315 0.187234 \n90 0.002315 0.187234 \n91 0.002315 0.187235 \n92 0.002315 0.187235 \n93 0.002315 0.187236 \n94 0.002315 0.187236 \n95 0.002315 0.187236 \n96 0.002315 0.187237 \n97 0.002315 0.187237 \n98 0.002315 0.187237 \n99 0.002315 0.187238 \n\n[100 rows x 12 columns]", "text/html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Buddhist</th>\n <th>Catholic</th>\n <th>Evangel Prot</th>\n <th>Hindu</th>\n <th>Hist Black Prot</th>\n <th>Jehovahs Witness</th>\n <th>Jewish</th>\n <th>Mainline Prot</th>\n <th>Mormon</th>\n <th>Muslim</th>\n <th>Orthodox Christian</th>\n <th>Unaffiliated</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0 </th>\n <td> 0.007924</td>\n <td> 0.170263</td>\n <td> 0.309520</td>\n <td> 0.006728</td>\n <td> 0.080042</td>\n <td> 0.008986</td>\n <td> 0.018492</td>\n <td> 0.128123</td>\n <td> 0.028069</td>\n <td> 0.013271</td>\n <td> 0.004466</td>\n <td> 0.224115</td>\n </tr>\n <tr>\n <th>1 </th>\n <td> 0.007981</td>\n <td> 0.140118</td>\n <td> 0.331889</td>\n <td> 0.006234</td>\n <td> 0.090308</td>\n <td> 0.008980</td>\n <td> 0.017417</td>\n <td> 0.120477</td>\n <td> 0.039642</td>\n <td> 0.017382</td>\n <td> 0.004070</td>\n <td> 0.215501</td>\n </tr>\n <tr>\n <th>2 </th>\n <td> 0.007856</td>\n <td> 0.119514</td>\n <td> 0.340401</td>\n <td> 0.005752</td>\n <td> 0.097890</td>\n <td> 0.008785</td>\n <td> 0.016412</td>\n <td> 0.117260</td>\n <td> 0.051127</td>\n <td> 0.021558</td>\n <td> 0.003812</td>\n <td> 0.209631</td>\n </tr>\n <tr>\n <th>3 </th>\n <td> 0.007710</td>\n <td> 0.105453</td>\n <td> 0.341544</td>\n <td> 0.005303</td>\n <td> 0.103242</td>\n <td> 0.008572</td>\n <td> 0.015526</td>\n <td> 0.115117</td>\n <td> 0.062488</td>\n <td> 0.025770</td>\n <td> 0.003629</td>\n <td> 0.205648</td>\n </tr>\n <tr>\n <th>4 </th>\n <td> 0.007583</td>\n <td> 0.095775</td>\n <td> 0.338780</td>\n <td> 0.004895</td>\n <td> 0.106781</td>\n <td> 0.008375</td>\n <td> 0.014768</td>\n <td> 0.113124</td>\n <td> 0.073661</td>\n <td> 0.029978</td>\n <td> 0.003485</td>\n <td> 0.202793</td>\n </tr>\n <tr>\n <th>5 </th>\n <td> 0.007482</td>\n <td> 0.088996</td>\n <td> 0.334004</td>\n <td> 0.004532</td>\n <td> 0.108869</td>\n <td> 0.008197</td>\n <td> 0.014130</td>\n <td> 0.111103</td>\n <td> 0.084574</td>\n <td> 0.034138</td>\n <td> 0.003364</td>\n <td> 0.200612</td>\n </tr>\n <tr>\n <th>6 </th>\n <td> 0.007402</td>\n <td> 0.084125</td>\n <td> 0.328280</td>\n <td> 0.004213</td>\n <td> 0.109811</td>\n <td> 0.008031</td>\n <td> 0.013595</td>\n <td> 0.109070</td>\n <td> 0.095151</td>\n <td> 0.038205</td>\n <td> 0.003258</td>\n <td> 0.198860</td>\n </tr>\n <tr>\n <th>7 </th>\n <td> 0.007339</td>\n <td> 0.080515</td>\n <td> 0.322217</td>\n <td> 0.003934</td>\n <td> 0.109868</td>\n <td> 0.007874</td>\n <td> 0.013148</td>\n <td> 0.107080</td>\n <td> 0.105324</td>\n <td> 0.042139</td>\n <td> 0.003162</td>\n <td> 0.197401</td>\n </tr>\n <tr>\n <th>8 </th>\n <td> 0.007288</td>\n <td> 0.077748</td>\n <td> 0.316165</td>\n <td> 0.003692</td>\n <td> 0.109259</td>\n <td> 0.007723</td>\n <td> 0.012773</td>\n <td> 0.105176</td>\n <td> 0.115035</td>\n <td> 0.045908</td>\n <td> 0.003076</td>\n <td> 0.196158</td>\n </tr>\n <tr>\n <th>9 </th>\n <td> 0.007247</td>\n <td> 0.075553</td>\n <td> 0.310324</td>\n <td> 0.003483</td>\n <td> 0.108167</td>\n <td> 0.007578</td>\n <td> 0.012457</td>\n <td> 0.103386</td>\n <td> 0.124239</td>\n <td> 0.049485</td>\n <td> 0.002997</td>\n <td> 0.195083</td>\n </tr>\n <tr>\n <th>10</th>\n <td> 0.007214</td>\n <td> 0.073759</td>\n <td> 0.304804</td>\n <td> 0.003302</td>\n <td> 0.106743</td>\n <td> 0.007441</td>\n <td> 0.012190</td>\n <td> 0.101724</td>\n <td> 0.132901</td>\n <td> 0.052850</td>\n <td> 0.002925</td>\n <td> 0.194146</td>\n </tr>\n <tr>\n <th>11</th>\n <td> 0.007186</td>\n <td> 0.072254</td>\n <td> 0.299659</td>\n <td> 0.003148</td>\n <td> 0.105108</td>\n <td> 0.007310</td>\n <td> 0.011963</td>\n <td> 0.100194</td>\n <td> 0.141003</td>\n <td> 0.055991</td>\n <td> 0.002860</td>\n <td> 0.193323</td>\n </tr>\n <tr>\n <th>12</th>\n <td> 0.007163</td>\n <td> 0.070967</td>\n <td> 0.294911</td>\n <td> 0.003015</td>\n <td> 0.103356</td>\n <td> 0.007187</td>\n <td> 0.011770</td>\n <td> 0.098797</td>\n <td> 0.148534</td>\n <td> 0.058901</td>\n <td> 0.002800</td>\n <td> 0.192599</td>\n </tr>\n <tr>\n <th>13</th>\n <td> 0.007144</td>\n <td> 0.069849</td>\n <td> 0.290562</td>\n <td> 0.002901</td>\n <td> 0.101562</td>\n <td> 0.007072</td>\n <td> 0.011605</td>\n <td> 0.097526</td>\n <td> 0.155496</td>\n <td> 0.061578</td>\n <td> 0.002747</td>\n <td> 0.191958</td>\n </tr>\n <tr>\n <th>14</th>\n <td> 0.007128</td>\n <td> 0.068869</td>\n <td> 0.286601</td>\n <td> 0.002804</td>\n <td> 0.099779</td>\n <td> 0.006965</td>\n <td> 0.011462</td>\n <td> 0.096376</td>\n <td> 0.161900</td>\n <td> 0.064025</td>\n <td> 0.002699</td>\n <td> 0.191392</td>\n </tr>\n <tr>\n <th>15</th>\n <td> 0.007114</td>\n <td> 0.068004</td>\n <td> 0.283011</td>\n <td> 0.002720</td>\n <td> 0.098049</td>\n <td> 0.006867</td>\n <td> 0.011339</td>\n <td> 0.095339</td>\n <td> 0.167762</td>\n <td> 0.066250</td>\n <td> 0.002656</td>\n <td> 0.190890</td>\n </tr>\n <tr>\n <th>16</th>\n <td> 0.007102</td>\n <td> 0.067237</td>\n <td> 0.279769</td>\n <td> 0.002649</td>\n <td> 0.096397</td>\n <td> 0.006777</td>\n <td> 0.011232</td>\n <td> 0.094407</td>\n <td> 0.173106</td>\n <td> 0.068260</td>\n <td> 0.002617</td>\n <td> 0.190446</td>\n </tr>\n <tr>\n <th>17</th>\n <td> 0.007093</td>\n <td> 0.066557</td>\n <td> 0.276852</td>\n <td> 0.002587</td>\n <td> 0.094844</td>\n <td> 0.006695</td>\n <td> 0.011139</td>\n <td> 0.093571</td>\n <td> 0.177959</td>\n <td> 0.070069</td>\n <td> 0.002582</td>\n <td> 0.190053</td>\n </tr>\n <tr>\n <th>18</th>\n <td> 0.007084</td>\n <td> 0.065953</td>\n <td> 0.274235</td>\n <td> 0.002535</td>\n <td> 0.093398</td>\n <td> 0.006620</td>\n <td> 0.011058</td>\n <td> 0.092823</td>\n <td> 0.182351</td>\n <td> 0.071688</td>\n <td> 0.002551</td>\n <td> 0.189705</td>\n </tr>\n <tr>\n <th>19</th>\n <td> 0.007077</td>\n <td> 0.065416</td>\n <td> 0.271894</td>\n <td> 0.002489</td>\n <td> 0.092065</td>\n <td> 0.006553</td>\n <td> 0.010988</td>\n <td> 0.092155</td>\n <td> 0.186313</td>\n <td> 0.073130</td>\n <td> 0.002524</td>\n <td> 0.189397</td>\n </tr>\n <tr>\n <th>20</th>\n <td> 0.007071</td>\n <td> 0.064939</td>\n <td> 0.269805</td>\n <td> 0.002450</td>\n <td> 0.090845</td>\n <td> 0.006492</td>\n <td> 0.010925</td>\n <td> 0.091561</td>\n <td> 0.189877</td>\n <td> 0.074411</td>\n <td> 0.002499</td>\n <td> 0.189125</td>\n </tr>\n <tr>\n <th>21</th>\n <td> 0.007066</td>\n <td> 0.064516</td>\n <td> 0.267944</td>\n <td> 0.002417</td>\n <td> 0.089735</td>\n <td> 0.006437</td>\n <td> 0.010871</td>\n <td> 0.091033</td>\n <td> 0.193076</td>\n <td> 0.075542</td>\n <td> 0.002477</td>\n <td> 0.188885</td>\n </tr>\n <tr>\n <th>22</th>\n <td> 0.007062</td>\n <td> 0.064142</td>\n <td> 0.266290</td>\n <td> 0.002387</td>\n <td> 0.088731</td>\n <td> 0.006389</td>\n <td> 0.010823</td>\n <td> 0.090564</td>\n <td> 0.195942</td>\n <td> 0.076539</td>\n <td> 0.002458</td>\n <td> 0.188674</td>\n </tr>\n <tr>\n <th>23</th>\n <td> 0.007059</td>\n <td> 0.063810</td>\n <td> 0.264823</td>\n <td> 0.002362</td>\n <td> 0.087827</td>\n <td> 0.006345</td>\n <td> 0.010781</td>\n <td> 0.090148</td>\n <td> 0.198503</td>\n <td> 0.077414</td>\n <td> 0.002441</td>\n <td> 0.188487</td>\n </tr>\n <tr>\n <th>24</th>\n <td> 0.007056</td>\n <td> 0.063517</td>\n <td> 0.263523</td>\n <td> 0.002341</td>\n <td> 0.087016</td>\n <td> 0.006306</td>\n <td> 0.010744</td>\n <td> 0.089781</td>\n <td> 0.200789</td>\n <td> 0.078178</td>\n <td> 0.002425</td>\n <td> 0.188323</td>\n </tr>\n <tr>\n <th>25</th>\n <td> 0.007053</td>\n <td> 0.063259</td>\n <td> 0.262374</td>\n <td> 0.002322</td>\n <td> 0.086291</td>\n <td> 0.006272</td>\n <td> 0.010711</td>\n <td> 0.089456</td>\n <td> 0.202827</td>\n <td> 0.078845</td>\n <td> 0.002412</td>\n <td> 0.188179</td>\n </tr>\n <tr>\n <th>26</th>\n <td> 0.007051</td>\n <td> 0.063030</td>\n <td> 0.261359</td>\n <td> 0.002305</td>\n <td> 0.085644</td>\n <td> 0.006242</td>\n <td> 0.010682</td>\n <td> 0.089170</td>\n <td> 0.204642</td>\n <td> 0.079423</td>\n <td> 0.002400</td>\n <td> 0.188052</td>\n </tr>\n <tr>\n <th>27</th>\n <td> 0.007049</td>\n <td> 0.062829</td>\n <td> 0.260463</td>\n <td> 0.002291</td>\n <td> 0.085068</td>\n <td> 0.006215</td>\n <td> 0.010657</td>\n <td> 0.088917</td>\n <td> 0.206256</td>\n <td> 0.079923</td>\n <td> 0.002390</td>\n <td> 0.187941</td>\n </tr>\n <tr>\n <th>28</th>\n <td> 0.007048</td>\n <td> 0.062652</td>\n <td> 0.259674</td>\n <td> 0.002279</td>\n <td> 0.084557</td>\n <td> 0.006191</td>\n <td> 0.010635</td>\n <td> 0.088695</td>\n <td> 0.207690</td>\n <td> 0.080353</td>\n <td> 0.002380</td>\n <td> 0.187844</td>\n </tr>\n <tr>\n <th>29</th>\n <td> 0.007047</td>\n <td> 0.062497</td>\n <td> 0.258980</td>\n <td> 0.002268</td>\n <td> 0.084104</td>\n <td> 0.006170</td>\n <td> 0.010615</td>\n <td> 0.088500</td>\n <td> 0.208965</td>\n <td> 0.080723</td>\n <td> 0.002372</td>\n <td> 0.187759</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>70</th>\n <td> 0.007056</td>\n <td> 0.061429</td>\n <td> 0.254164</td>\n <td> 0.002197</td>\n <td> 0.080749</td>\n <td> 0.006019</td>\n <td> 0.010457</td>\n <td> 0.087162</td>\n <td> 0.219413</td>\n <td> 0.081818</td>\n <td> 0.002315</td>\n <td> 0.187222</td>\n </tr>\n <tr>\n <th>71</th>\n <td> 0.007056</td>\n <td> 0.061429</td>\n <td> 0.254164</td>\n <td> 0.002197</td>\n <td> 0.080746</td>\n <td> 0.006019</td>\n <td> 0.010457</td>\n <td> 0.087162</td>\n <td> 0.219435</td>\n <td> 0.081798</td>\n <td> 0.002315</td>\n <td> 0.187223</td>\n </tr>\n <tr>\n <th>72</th>\n <td> 0.007056</td>\n <td> 0.061429</td>\n <td> 0.254164</td>\n <td> 0.002197</td>\n <td> 0.080744</td>\n <td> 0.006019</td>\n <td> 0.010456</td>\n <td> 0.087163</td>\n <td> 0.219457</td>\n <td> 0.081777</td>\n <td> 0.002315</td>\n <td> 0.187224</td>\n </tr>\n <tr>\n <th>73</th>\n <td> 0.007056</td>\n <td> 0.061429</td>\n <td> 0.254164</td>\n <td> 0.002197</td>\n <td> 0.080742</td>\n <td> 0.006019</td>\n <td> 0.010456</td>\n <td> 0.087163</td>\n <td> 0.219477</td>\n <td> 0.081758</td>\n <td> 0.002315</td>\n <td> 0.187224</td>\n </tr>\n <tr>\n <th>74</th>\n <td> 0.007056</td>\n <td> 0.061429</td>\n <td> 0.254165</td>\n <td> 0.002197</td>\n <td> 0.080740</td>\n <td> 0.006018</td>\n <td> 0.010456</td>\n <td> 0.087163</td>\n <td> 0.219496</td>\n <td> 0.081739</td>\n <td> 0.002315</td>\n <td> 0.187225</td>\n </tr>\n <tr>\n <th>75</th>\n <td> 0.007057</td>\n <td> 0.061429</td>\n <td> 0.254165</td>\n <td> 0.002197</td>\n <td> 0.080738</td>\n <td> 0.006018</td>\n <td> 0.010456</td>\n <td> 0.087163</td>\n <td> 0.219514</td>\n <td> 0.081721</td>\n <td> 0.002315</td>\n <td> 0.187226</td>\n </tr>\n <tr>\n <th>76</th>\n <td> 0.007057</td>\n <td> 0.061430</td>\n <td> 0.254166</td>\n <td> 0.002197</td>\n <td> 0.080737</td>\n <td> 0.006018</td>\n <td> 0.010455</td>\n <td> 0.087164</td>\n <td> 0.219531</td>\n <td> 0.081703</td>\n <td> 0.002315</td>\n <td> 0.187226</td>\n </tr>\n <tr>\n <th>77</th>\n <td> 0.007057</td>\n <td> 0.061430</td>\n <td> 0.254167</td>\n <td> 0.002197</td>\n <td> 0.080735</td>\n <td> 0.006018</td>\n <td> 0.010455</td>\n <td> 0.087164</td>\n <td> 0.219548</td>\n <td> 0.081686</td>\n <td> 0.002315</td>\n <td> 0.187227</td>\n </tr>\n <tr>\n <th>78</th>\n <td> 0.007057</td>\n <td> 0.061430</td>\n <td> 0.254168</td>\n <td> 0.002197</td>\n <td> 0.080734</td>\n <td> 0.006018</td>\n <td> 0.010455</td>\n <td> 0.087165</td>\n <td> 0.219563</td>\n <td> 0.081670</td>\n <td> 0.002315</td>\n <td> 0.187228</td>\n </tr>\n <tr>\n <th>79</th>\n <td> 0.007057</td>\n <td> 0.061431</td>\n <td> 0.254169</td>\n <td> 0.002197</td>\n <td> 0.080733</td>\n <td> 0.006018</td>\n <td> 0.010455</td>\n <td> 0.087165</td>\n <td> 0.219578</td>\n <td> 0.081654</td>\n <td> 0.002315</td>\n <td> 0.187228</td>\n </tr>\n <tr>\n <th>80</th>\n <td> 0.007057</td>\n <td> 0.061431</td>\n <td> 0.254170</td>\n <td> 0.002197</td>\n <td> 0.080732</td>\n <td> 0.006018</td>\n <td> 0.010455</td>\n <td> 0.087166</td>\n <td> 0.219592</td>\n <td> 0.081639</td>\n <td> 0.002315</td>\n <td> 0.187229</td>\n </tr>\n <tr>\n <th>81</th>\n <td> 0.007058</td>\n <td> 0.061431</td>\n <td> 0.254171</td>\n <td> 0.002197</td>\n <td> 0.080731</td>\n <td> 0.006018</td>\n <td> 0.010454</td>\n <td> 0.087166</td>\n <td> 0.219605</td>\n <td> 0.081625</td>\n <td> 0.002315</td>\n <td> 0.187230</td>\n </tr>\n <tr>\n <th>82</th>\n <td> 0.007058</td>\n <td> 0.061432</td>\n <td> 0.254172</td>\n <td> 0.002197</td>\n <td> 0.080730</td>\n <td> 0.006018</td>\n <td> 0.010454</td>\n <td> 0.087166</td>\n <td> 0.219617</td>\n <td> 0.081610</td>\n <td> 0.002315</td>\n <td> 0.187230</td>\n </tr>\n <tr>\n <th>83</th>\n <td> 0.007058</td>\n <td> 0.061432</td>\n <td> 0.254173</td>\n <td> 0.002197</td>\n <td> 0.080729</td>\n <td> 0.006018</td>\n <td> 0.010454</td>\n <td> 0.087167</td>\n <td> 0.219629</td>\n <td> 0.081597</td>\n <td> 0.002315</td>\n <td> 0.187231</td>\n </tr>\n <tr>\n <th>84</th>\n <td> 0.007058</td>\n <td> 0.061432</td>\n <td> 0.254174</td>\n <td> 0.002197</td>\n <td> 0.080728</td>\n <td> 0.006018</td>\n <td> 0.010454</td>\n <td> 0.087167</td>\n <td> 0.219641</td>\n <td> 0.081584</td>\n <td> 0.002315</td>\n <td> 0.187231</td>\n </tr>\n <tr>\n <th>85</th>\n <td> 0.007058</td>\n <td> 0.061433</td>\n <td> 0.254175</td>\n <td> 0.002197</td>\n <td> 0.080728</td>\n <td> 0.006018</td>\n <td> 0.010454</td>\n <td> 0.087168</td>\n <td> 0.219652</td>\n <td> 0.081571</td>\n <td> 0.002315</td>\n <td> 0.187232</td>\n </tr>\n <tr>\n <th>86</th>\n <td> 0.007058</td>\n <td> 0.061433</td>\n <td> 0.254176</td>\n <td> 0.002197</td>\n <td> 0.080727</td>\n <td> 0.006018</td>\n <td> 0.010454</td>\n <td> 0.087168</td>\n <td> 0.219662</td>\n <td> 0.081559</td>\n <td> 0.002315</td>\n <td> 0.187232</td>\n </tr>\n <tr>\n <th>87</th>\n <td> 0.007058</td>\n <td> 0.061433</td>\n <td> 0.254177</td>\n <td> 0.002197</td>\n <td> 0.080727</td>\n <td> 0.006018</td>\n <td> 0.010454</td>\n <td> 0.087169</td>\n <td> 0.219672</td>\n <td> 0.081548</td>\n <td> 0.002315</td>\n <td> 0.187233</td>\n </tr>\n <tr>\n <th>88</th>\n <td> 0.007059</td>\n <td> 0.061433</td>\n <td> 0.254178</td>\n <td> 0.002197</td>\n <td> 0.080726</td>\n <td> 0.006018</td>\n <td> 0.010453</td>\n <td> 0.087169</td>\n <td> 0.219682</td>\n <td> 0.081536</td>\n <td> 0.002315</td>\n <td> 0.187233</td>\n </tr>\n <tr>\n <th>89</th>\n <td> 0.007059</td>\n <td> 0.061434</td>\n <td> 0.254179</td>\n <td> 0.002197</td>\n <td> 0.080726</td>\n <td> 0.006018</td>\n <td> 0.010453</td>\n <td> 0.087169</td>\n <td> 0.219691</td>\n <td> 0.081526</td>\n <td> 0.002315</td>\n <td> 0.187234</td>\n </tr>\n <tr>\n <th>90</th>\n <td> 0.007059</td>\n <td> 0.061434</td>\n <td> 0.254180</td>\n <td> 0.002197</td>\n <td> 0.080725</td>\n <td> 0.006018</td>\n <td> 0.010453</td>\n <td> 0.087170</td>\n <td> 0.219699</td>\n <td> 0.081515</td>\n <td> 0.002315</td>\n <td> 0.187234</td>\n </tr>\n <tr>\n <th>91</th>\n <td> 0.007059</td>\n <td> 0.061434</td>\n <td> 0.254181</td>\n <td> 0.002197</td>\n <td> 0.080725</td>\n <td> 0.006018</td>\n <td> 0.010453</td>\n <td> 0.087170</td>\n <td> 0.219708</td>\n <td> 0.081505</td>\n <td> 0.002315</td>\n <td> 0.187235</td>\n </tr>\n <tr>\n <th>92</th>\n <td> 0.007059</td>\n <td> 0.061435</td>\n <td> 0.254182</td>\n <td> 0.002197</td>\n <td> 0.080724</td>\n <td> 0.006018</td>\n <td> 0.010453</td>\n <td> 0.087170</td>\n <td> 0.219716</td>\n <td> 0.081496</td>\n <td> 0.002315</td>\n <td> 0.187235</td>\n </tr>\n <tr>\n <th>93</th>\n <td> 0.007059</td>\n <td> 0.061435</td>\n <td> 0.254183</td>\n <td> 0.002197</td>\n <td> 0.080724</td>\n <td> 0.006018</td>\n <td> 0.010453</td>\n <td> 0.087171</td>\n <td> 0.219723</td>\n <td> 0.081487</td>\n <td> 0.002315</td>\n <td> 0.187236</td>\n </tr>\n <tr>\n <th>94</th>\n <td> 0.007059</td>\n <td> 0.061435</td>\n <td> 0.254184</td>\n <td> 0.002197</td>\n <td> 0.080723</td>\n <td> 0.006018</td>\n <td> 0.010453</td>\n <td> 0.087171</td>\n <td> 0.219731</td>\n <td> 0.081478</td>\n <td> 0.002315</td>\n <td> 0.187236</td>\n </tr>\n <tr>\n <th>95</th>\n <td> 0.007059</td>\n <td> 0.061435</td>\n <td> 0.254185</td>\n <td> 0.002197</td>\n <td> 0.080723</td>\n <td> 0.006018</td>\n <td> 0.010453</td>\n <td> 0.087171</td>\n <td> 0.219738</td>\n <td> 0.081469</td>\n <td> 0.002315</td>\n <td> 0.187236</td>\n </tr>\n <tr>\n <th>96</th>\n <td> 0.007059</td>\n <td> 0.061436</td>\n <td> 0.254186</td>\n <td> 0.002197</td>\n <td> 0.080723</td>\n <td> 0.006018</td>\n <td> 0.010453</td>\n <td> 0.087172</td>\n <td> 0.219744</td>\n <td> 0.081461</td>\n <td> 0.002315</td>\n <td> 0.187237</td>\n </tr>\n <tr>\n <th>97</th>\n <td> 0.007059</td>\n <td> 0.061436</td>\n <td> 0.254186</td>\n <td> 0.002197</td>\n <td> 0.080722</td>\n <td> 0.006018</td>\n <td> 0.010452</td>\n <td> 0.087172</td>\n <td> 0.219751</td>\n <td> 0.081453</td>\n <td> 0.002315</td>\n <td> 0.187237</td>\n </tr>\n <tr>\n <th>98</th>\n <td> 0.007059</td>\n <td> 0.061436</td>\n <td> 0.254187</td>\n <td> 0.002197</td>\n <td> 0.080722</td>\n <td> 0.006018</td>\n <td> 0.010452</td>\n <td> 0.087172</td>\n <td> 0.219757</td>\n <td> 0.081446</td>\n <td> 0.002315</td>\n <td> 0.187237</td>\n </tr>\n <tr>\n <th>99</th>\n <td> 0.007059</td>\n <td> 0.061436</td>\n <td> 0.254188</td>\n <td> 0.002197</td>\n <td> 0.080722</td>\n <td> 0.006018</td>\n <td> 0.010452</td>\n <td> 0.087173</td>\n <td> 0.219763</td>\n <td> 0.081438</td>\n <td> 0.002315</td>\n <td> 0.187238</td>\n </tr>\n </tbody>\n</table>\n<p>100 rows \u00d7 12 columns</p>\n</div>"}, "metadata": {}}], "metadata": {"collapsed": false, "trusted": true}}, {"execution_count": null, "cell_type": "code", "source": "", "outputs": [], "metadata": {"collapsed": true, "trusted": true}}], "nbformat": 4, "metadata": {"kernelspec": {"display_name": "Python 2", "name": "python2", "language": "python"}, "language_info": {"mimetype": "text/x-python", "nbconvert_exporter": "python", "version": "2.7.9", "name": "python", "file_extension": ".py", "pygments_lexer": "ipython2", "codemirror_mode": {"version": 2, "name": "ipython"}}}}
mit
dani-lbnl/2017_ucberkeley_course
code/ZeissMicroscopyCenter2017_DaniUshizima_lecture.ipynb
1
750797
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Image exploration using Python - essentials\n", "1. Read image from web\n", "2. Querying image: matrix, sub-matrices, ROI\n", "3. Image transformations: filtering\n", "4. Immunohistochemistry example from scikit-image\n", "5. Segmentation and feature extraction \n", "6. Save information as a xls file \n", "7. Simulating 2D images - \"cells\"\n", "8. Simulate particles\n", "9. Check particle neighborhood: groups (clustering algorithms)\n", "10. Pandas and Seaborn" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Read image from web and scikit-image" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "\n", "from matplotlib import pyplot as plt\n", "from skimage import data, io" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x10a3752b0>" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR0AAAFkCAYAAAAdR+9yAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvc2PbOmW3vVb6/3Ye0dk5jmnTtW97dttY0u2aAYG8SnA\nA0u2oAVDGDBATJh6gPgLkBgiwcADjxh4YgYeIYsBLRkQEgODhAQSMLLAUpvu+1G3qk5mRsTe79di\nsN7MarfcuED0LVWTSzrSOXkiInfEft/1rvWs53lCzIy3eIu3eItfVej3fQFv8RZv8f+veEs6b/EW\nb/Erjbek8xZv8Ra/0nhLOm/xFm/xK423pPMWb/EWv9J4Szpv8RZv8SuNt6TzFm/xFr/SeEs6b/EW\nb/Erjbek8xZv8Ra/0nhLOm/xFm/xK43vNemIyF8Rkf9DRG4i8ndE5J//Pq/nLd7iLf7o43tLOiLy\nbwH/MfAfAP808D8Dvy0in39f1/QWb/EWf/Qh35fgU0T+DvDfm9m/N/8twO8Af9XM/qPv5aLe4i3e\n4o88vpdKR0QS8M8C/9XLz8yz398G/qXv45re4i3e4lcT8Xv6vZ8DAfjZH/j5z4B//A8+WEQ+Ar8F\n/D1g/6O+uLd4i7f4fxUr8KeB3zazX/5hD/q+ks7/0/gt4G983xfxFm/xFt8p/m3gP/vD/vP7Sjpf\nAh348R/4+Y+Bn/5DHv/3AFKKfHj3DgEwAzN+/ePn/MkvfsSw4Y8UwVQZw+i9A6CqBBHMOjYGQYUY\nlRgj3SCmyMOHz1ju7pAYSOuCibHXG2adEBVG57lW2nxNRLAx6K1BGwQRUkhEAmKCIBjQhzEMkEBM\nkbgYZoPf/i//W/61f/0vAVBrpdZC740QAjln1nVlyQkAwxjDqKVQS6O3QbeBBEVEqL1xKzvX/cZR\ndswGqsJpXThtCzkmUlRO68rptLGu/vntpbEfDRBCzIgIrTWwRs6Rh3d3LOtCaY39KJgobQz22w5W\nOZ/u2LYVjZG/8Z/+F/y7f+Xf8M/FBsdx0HtDBET8XvnfBTNj1IZ1vzcaEhoivcN+FG7Xg1Y7IKgI\nKWRyTGAD6wP6wDD2ZjxfLnx6fmQvDQuCCoTg9/duW7m7W8lBGLViY5BzBuDx8ZGvv3rk+lwJOXF6\nOJPWBQKc7s/89n/+3/Fv/jv/KqVUylEp1xv1qFjvlNKotWImtAN6NaATknB3Xri7W4mLINrJWXl3\nf8f5tLKuC3enM+uy4YtC6WNAUxDjqJVSKxoTOa20BrdrYXQl6sKybKQYab1RR8FkYNLodfD3//ff\n42//N3+Hn/78mfu7D5zPJ0LoCJ3/5X/7X/kTP/oNTDPptHG+P3G7PaF9UC87oQNpIS4ZM6O0QmuN\nPjqiwrIsqCq3fWe/3ehjUPYbx35BNfhzSiFEpRz76379w+J7STpmVkXkfwT+MvC34BVI/svAX/2H\nPGUH+PjZZ/zWX/wLSDfGUbBSYQyCKsMMAzQGRCMG1NYZfbwmHR0dVSGnQAwKItTRCDnzxY++YH13\nTz6fWe5O7HXn6fkRo5FSwBg8lEKplWEGIow+qKUyWmcJiTUtJIkEE4SAiDIGdDNMhBADYR2YGeu2\n8JOf/JjWXhawkVIgxugJZ1lmEqi01umjc5SD41qot4EJaBRMBkfbWWrgVAOlJcw6Hz9+4Dd+8uv8\n2o++QBAev/6G/XIjhMiyVfKSGUO4Ho1WO6KRFONMxsppW1+TTu2NoxT22vnq0yNfffUV5xW++NGP\n+Pjxc1JO/K2/+V/z5/6JP0WphXIcDAObib+15vfB7zNjDFq9IQzW7cRpuwPJXJ53vvnmmcu6IwTe\nv3/Ph3fvWPPCaAcqsKRACEoQ+HSFx6cL/+fv/S4//fJLjlYIIRCjknPgtCYe7jbOa8J6o9UKBqVU\nCA3RwecfAu8/fsbHX/uCtC7cWkFiYNtWfvLrP+Z2vbJfb9yeA6N1xKCVRi3F19hV6RWgo9FYtsi6\nCjENQlLu7hZ+9OMPfHj3wP3DHffnEzkmT6oGBlw/HQyg9UHtg7ScOG3vqBW++sUjvQqn9Y7TdkYC\n1LbTKWg2QhKsCqkHPn//wPUZ7u7e8fBwh0pl1BtBlRQSXROn7Y67h3tEjdgHtSthKC1ElvMJMGpr\nDOvUWmijE2IkxjgPhsHx/AwaeXj/Yz5+9pGggZ///BcsJ+V3/t7ffd2vf1h8n+3VfwL89Zl8/gfg\n3wdOwF//v3uSSmSMg9YK1hrCQCQgqiAKChIAFDUwExBBAEUIosQQiSo0G/TWMW303hljEFMixgBV\n6Ay6dUY3EE9uMQTfRGNgNgBDVJEQ0BAQ9UpHCcgQEDAbXpj1TqkN8EJtmPlJJ8K6rpzPZ1KMaFRU\nhVYbpTVPbPM1RBQN83Vl0FrlOHZ6L7O6WUkp8Nn793z+8T1ffPwMFSUhfBKdyU0R8PfcGyJCDIoI\nDBueKHuntw5mLDkTU8b2HXkEMN/cQUlRyVEBo+xX9nLQ2iAEr9Ja6xx7ZQwjaCKEiFdWhkrDEI7q\nn+d+HNTRCSmQ4sJ2Wjjdn8gxMJonnHWNyPzsiwUM4f5yz1ePn9jLTh3jtXLKObOtK9u2wmjcblee\nn555fr5y1ErKkS1kTmtkSUqMgdphLzutVr768pf06oeKtQ69EzSQciKq0HsnLkITo4/GGIV2HOwo\nqyjrurCtK0tKiAjHcSDDSPPfcVYJRqG2QW3GMEF79wqrQC2NViHHzhgdG53juFDGFY6GxEFkJSAs\naWFbVoIoYhDUK1OGYb2DGAJYH4jBkhfiNkimfDoKY3SvRMdABEIImPBayZRS/D3HiGog52UeVJFt\nWxBp32njf29Jx8z+5uTk/Id4W/U/Ab9lZr/4w54jIojgxwOgCmK+AUP0pGOqqCrDBDPv4RQBVRS8\nJerNExUg4hustoPVjBC8Iolptl+zzDQGiUBEGAZjjNkyCBqUEIL/fgNEEfM2ovfx2g4BDGmoBv/7\n8KpHRAgh+J8YMTNqaRzHwX47aK0h4kkhpkhKAkAfg24NQQmaiEskpUAIQmvG9XJl33fO28bd3UpK\n3vSJdmqrXG43fy8Gol6BjNZRApB8kapfG+YLNsbAti4EOgFm22qMMbheL9TeCSHSe6MP43rbuV0L\nQiCnQAjmSTBlRJTaYC+Ht8PDWJaIrsGTfxZC6MQUkDjf12gwxqwIFwzYto0lJUbvtN7IKZBDJKdI\nSol1XVExxug8Pj6xl0LvY1a7lefLN5RxoMtCw1viViuPnz6RQyJqIGlkDIji1yEYlUFaQHPAWDCJ\nhCjkHFhPifuHk1eLy0KrndvlxpEz9/cPbKcTqonemrfJfdB7pXWhjYNjh1KMozaSZpYlsm4JQxgS\naUU4+kE/DpJ1WqsEnetwbhBVmW2cr7XevOq8zuptOfuB6Oee33/wdt/E0HnvbT7/pf3uvWPDKN24\nhMi2bcQYfW9+h/hegWQz+2vAX/vOTxiGDd8gMUZiCK/VBiKg4htaldEGtTdq6aj6ZtaXE6kKqGdy\nVUWiVykahBgCUQMqs6rp6niRGYwOoyPmdbG9JA312zxsvGI5E3LCxmB0x5IMYQxDxDAzWuvYbNVq\nb1z3G4sNWmuUUqil0mpljPGalGIUQvSEShdij+S8YiKknAhBqPVgvxSOvftzUmCYIkEd89BEHytp\nySzrwW0v3G47tRYEc+wgRcJMRLUUSm/UsqNibFsmm5HSQooZ5mITET/50uIJrPSZVJUUMyFmxoBa\nO8OEdVmIMRBsUHtFg7e/GhRVQ1PFQvFNadB6pbdB1EhMgRSVGoRtSZzPG+tTphT839uJLS/kGMkx\nIeKVlkpAxddJCGDjoI3BOAy1huZMjCuiypIWck5kCXTtdASdmzFGRTVyukucV39cWhLLupCXSIjq\n7XQM9N65XJ65PO+0VVmyEIMwIvQ6a3D1Q6v2hvUC1hk9kJboWNz9ynpKfkhoZoREPwK9QB+dWhwT\nNOuvCUJFYeJoecmU4R3BMKMzQGDg+yalRPc9CTNBiwQCCipemcXI6XTypGOGNf89vXsrdnfK32kb\n/1CmVwD85Nd+DboRRZGcicAYnnlr74CRQkSCYm1Qa+M4KiIBFsOiVweoksxQESQE0uJleFQ/4xkN\nGx0Z5n/MPJn0DmN4hTQxCxs2b2JHTT3pzRsNMqsQQwzv2+dp8pu/+Wf95okRNDDGoJTyD5SyYwxs\nDDBBxFA1BgNs+Gk8cKwoZVQjMSW/thQp5Upv/vuut2dut0dEG+uSseGbb1kzMUfykglROHYlBGVd\n/GSNQRwLMa/UNMC2JpYlsWni4e4dOa+03viLf/mfY1tPDgynRG0d45itRGJbz8SQuV4Ltd4Ylsnr\nA/f3Z1SN6+2R2/EMdEIwQoB1FdJiaGjUMjDzzRE00oaRfL9wWhc+e/+O2/XK0/OTY3y9obISNcIY\nlFq4Xa+U40CGEEMiJSEFY1lPpHVF04KkjIaVf+Ev/FN8/PjRW41hVAr0jllHhFlRZj67X3l3t7Ft\nK+u2sZ1PpCUzzKi10frgdtvpLXJURRQu10Y99lldGtu5e8IZwtE7UB1zScppW7g7razniMbhh5B4\nJTJM6OZDk9IrtfmgI0bzD0YFVeXjh88mZtSorRGjrzfHQTsmftiOPhD1gQ3tW9BfZmch4qByOQrH\nviPAui4sy8LtdiF8x1LnB5V0/sSPvvBTdfjUQyabug0vqzFF4iBMrKT1RuuNoFCbVyMqQgfKGF65\nKKToJWKKCRWw1rHSsNLQNlARQlAIQhfDRqf3geI/CxqJGoghkUMmaURncaQijKY0aQwzmjqu8mf/\n3J+mlEJMEU3flsVmfZa8/kfwheMLAGprtHYAimoipIhJwGlPwZNYiISYuR0Hv/M7fx+znZAGD/cb\nnUpiJWggpOhVYxLOdwuncyaIX0tOaWI5kY5RWsWqoXFBNHIXzuS0vRR//KV/5V+kjT43A4xR6b0j\n4qCuRqX1CtI5nVe29cy6nlANaDDyuoBWzPwxIqARbDSqDWobiEViiGgI/tnaIAVlWxfe399zfX9h\nv124PD6ho/Nw2oga6LXz+M0nvvryl1yeLrRu5GVhWxZOdwvvPnwgrycsJGJaKc34l//iP0OrjVYa\n7fDDQGNAUUKAmAI5J+7vV97fn1i3E3ldyMtKCJHSOsUGvQ6wSIwLS/bqoRZPYq35+nxniZATHQGJ\nfijmyLIsLGskLYKFQgWOvnPZr1yuz96WmiBDaKPTMW5lZ0snTyjiQ4yHhwf2w+jme2WJGQ1K7Y4R\npRARVaz5JFPVMb/WfJoaJNBafT0IwUgTBghBKeV4rX6+S/ygko5PQRqCEfAPerRB7561GYPWOsMa\nvTfAiDEQZ/XT1ac+R2/00TAGy5IdH8iZnDPWh4+wjwNrFTUfhwcECxGZm0qDEekMhBAiOWYfmUv0\nkhRzzEkCzWbZal4lvUx1xugMBhoEVUFU6PYCUHuoKikmwmz5KmC9+XQIEGxiKnOMap0UAyKDoxz8\n7BdPtL5zf07ed2tgUIgxkKMQJKARlhh9galvrBgjS15JKfpnW6BZR8yTbNCFPqDvnTYaA/H32iul\nVb755hOlVnofpLQQRsUQYlZSSsQotH5gpSBq9H5QW0PE71kIjo+17mD26E51QIwhDTOhVMO6keOs\nCLYTS0xc+zOjNXLw+4oNokTUhF47tXW2dePh3QMfPs9s5ztMhNqVmBKdzrBB653bbee43Ri1EqNf\ne0qBZfVWajutLHklhowQ6dXY98LltnPbj7keBdXE6XTnLWjODOs0c5D6aJEtR1JODI0MjJACISsh\nQ5edvRYw8yliuXHdd/ajYqKEAbVXTEGCOi6oXuU2Gwz85+oluOObMSCKD0HEE02YQ5L+2p5561RK\noU66iNkgRl9L4BBFb80P1/HHMOn03uljECY/xTO3TewER9pbh27U5kh8St4ymAhdxSugWimjITLI\nOc1FHkgpcpSD275Tjx0bHVVQM3QYpIgxR/AWMBPEHKiOGogaUQTrPi2wATKM1rv36uKZ4qUHbq0R\nRpuJY0ywNHw7GZvgrYgQ1EfwQRYU6KVSasdG8/76NVn5onBsp3C9PdJHZYwNDVdu+0Dawd39iY/L\n55yWBdSrKhXnF2GeBBHxEn70OWUzgnrVl8JCH32+N5ucpMH1OLhcL3x6fMIw1DMvIXryFHH+Sreb\nJy3zkrzUg1oLMSpBVjRkFMWGvJ6gov7cl4Rgu4ApIWXWdeH9+wdK+RGn08q2Zj68f8f96Qx4m2x9\noBK57QcP797x4f1n3N0HUOEofU4Tfe1cbzeuz1eO2049CjIGSKYFn0pGM0wUIWEj0btP0troXC43\nHp+fKbUicziQlsSSfICgEXRAjGN+rhHRhEafMjbrEyfstH4wuk1s0GhtUFuh1sZtr95mEjlaobTq\nLVWKhBgZVuY9auzHwOJCiAHE98EYgxSEnBNDhEQEjNGMFJOP869X6sQV/U7JC4SHBm8XwUFwG98t\nnfygko7jYvaCzYO9TJKEWsfk6YCp0tq3kyGb2b73wWgNqxVl9j+OCPtj+mC/XrndbhgQg3rS8X0D\nog5yDgjmfZ4ZqEYvuw3UoPdGPSq9dsZMON36ayv1Ai57UjE/9VpFRqOrgs1KqOOtpKjjRTKow6gd\nWmW+xz7JcOJUgKicziun04njuGFfNfb9xrEPfvazr1ENpHDwa3zBuw/vPaH0hmHkmGab5+Cmt3jN\nAfnavLKagHa38QpIesKBvVQ+PT7z6dMnWi9oDAQBHZ0+GgFF5OV0GA65W2AMXkv0qCsiETNvQ1S8\nnFfAgtG64221FrSvmClE39jvPrxjPa0c+0Gc9IFlWYhBHa/TwOl0x35UQoqklJ1w2Rq1D8d0glFL\nZd93juOYa8gTnplxFK/kvJVULpLQpsRkaIi0MbhcC7ebT+/i4geSqhKigBqiTnUYWpHQvGowodZO\nqRV7GatSGa2AvQwjDPBJouGH13F0xqRO1F6/PXzmATLmwOI4ClHSPFSM3joj6qykI7fqLW3OCQ0+\nPXzBGVNKc/DRft+eMoIqgv/82HfutvU77eMfVNIJQZDgY77eZbYYSutGKb4pAoIojP4y0jYwrzoM\no9cKvZNT9Kw/Br00Rq1UEY7rTh+dtCQH1NQTk5j3xIgg6hygECIhOLCpA+h+mo7aaaVQDi9L6/CE\nk9fMsmRGb/QekSwsWyYmP33GmFyM2Y552+SJa9AZ5oTH2oYP7IZXQDkGUgqkJKxr5rOPH/j884/0\nXrm7v3NuyuXK8/MzrTa2ZWVZNkLMlNo46k6IgWVZSEuGoVgXDKH34VyRPuhiBDVaH5Tj2auY4FOa\n0cWrhNo4SqWP7p+ROY+pjZkp8UWLDFTBCLQ6PIlIcKA4JMYwjtvubWAKaIyozFPaBm00osxJCwOz\nhoTI3cMD53NntOZ8HpzbFEIk5YXtBJoatXVu14P6/MR13xkYy/mekApPz1fKUV5b26oKfVaCEyw1\nc+LnbT+wo02emPO0nAjqDGqfSs2fpUheE6qNy61CHYgNYlSGdUo52MuBhohIREwYNuj1oLWKIqS0\noOLYVhBF6T7VnYORmCJjdFqtBOnOS9NITgKinrx6RwWSBsKA0fzxNlusFONMVm3SJNJcizYnZDbB\n9EQMnkLGrLa/S/ygkk4MigRh1I6LEQQRBWTKDcwXhzOaJsHJqfFiMBrIcHA3x0iSAL3TW/NkMXw6\nEWNkWXz818yxHwHqGN7S9Y4BKSbWZYKVpdN79XJ5cnjMho/R1Vi2zN39HWkLMCYHIkfWbSFEH2N6\nxeOAXG9jJk4laZx8GIghsKqjRsMiMSin08K6LOQlcDptfP75R+7u7ziOG/Vh8HB+x1ELl8uFWivr\nMnj/4YGYFtqojCEsMZGXlRQXejW6FyOTPwN9CEPEqQitMGohxkQKGZt8kGFjJmb1xNgHsTtO1GKf\nHI+GBiHnSEqRNjGDUgtLXv1+qVcbrRdiXIghk1ImpTjr3IFYooyKiFMhjIH16uN1L4K9Gqn2Ova/\nXK/O06nO0wrBT+xWOgMIsVGOxu16RYF1AtHtiPTa5qjc2/GYIjEnZAzaKNS907sR88J2vmPZVmev\ne6k6uVDONhdt3I7rpFsISsdmi23DR9l0nVyywFEOytGcVW+REJxzFoOSowO9KSWfHE7eWWsNjeOV\n+nFaE8fw+yRjkERIGtDuxMcQAm3yrUTMD6NJBnzZZ47jfMsByjm9DjkEH91/p338/1lG+BWExsma\n/X28EOdbJGLMc2wur8CYKq+UeRnMfjcRiSwxERDoDkCriDOOY0BSIsRImeBZSIqoE/DaHIOq6Cvn\ngwEM1wWJQx9+6oTgp7AGBx3PGxrANiMt3ufHFDEZfsPEWbxj+NTDe3knQMrErUIUCD6Ox+C8nfni\niy94//Ce7bRy2k7kJXG5PfPLx6+5PN3YTgvv7u+4v9sY5jhVSoFaB0ctDGuknundaGpTwuDYjk8z\nHExXr7cY1ulW6LVR2gGilDJ4vly5XG/c9sPBSBXUCbHe2g5POolACCsprozeEamTlAkaOkYBqeQM\nIXgL6cnYE29rSquR0naETsgZndVR6V4RGP6Z1lo4gF4bT5cLv/z6G47aON/d83B/R9QTELC5Nkqr\nLHEhLJP0poGxdnptc1rjnC7HuwwJjZRAorf4oh2kz+oGDJlMdU88bVbCt71SioPjNgoaIinASAkh\noeYcnDE65TaoR6eJYR1CdJZ8CkrcFpa0cjwXzByvjPS5PgG8VbcG+LzVeUqTIY9BnuTLW5uSmFl1\ngwPNo49Xns5r0pn7xWU8hT4cQvgu8YNKOi58dD4OTIIcfvrkvHj5Lp5oNIgnG7FXrkvUSF42okIW\nUJzBpxOpfxkXM3VZJkZIkdN5Y1kzQzPPl5snAhEHRg3vz+sLRjMRkRemsgldvr1+EPKS2OJKXiLd\njP24TWzo9/EcxF9DVHH+o5+KXqoNhEDUxGfv3/Mnf/Kn+PyzLyapL9F64XY5uD0fXB4vjFEx8Upo\nSUpMK2N0aj8wxCdBR+X5cmNJRlTnXtuQVxwhqOu8sOas7lE5SuU4Kq3ZFGs2brcbRykOHjPZrOab\nL8bEsmS208q23iES6fVAFj81c1ZixoWKYuQcsW6UumNHRYgEzT5WHhmNjVYb1RpZZ9IpB705x4re\n6aVizavZ237jqIXaB2MOIBQnAaLKCE7sfLh37knOmcALh8Uox+FSjdpmm1uJa+H8kDnljd6hlEHr\nhdIabUBILv0IyVuvUjrHsXO9FsrRSTmCVQfvecF/EjaE/bpzu1449iujHQiDmgppcVnKtmSWdWPN\nJy7f3F4no6pKCgExrzbFoLfGIEI3FD/ExPzwzDFSu+sUnRT4LcPeR+HMZN9fiaovuE5r9VU7+CoV\n+EfEDyrp9GG00ghDEOlgOle04wPBCZgkxMfWExfp5qd3EJzJrIKNRn/h0oRESAkLypA5ren6Srxb\ntjvuH+7pKjTBJ1/M0WcblFv1ka4pYooN9WubQLeDe937u+jlccqJvCw+/WmVgbOXW+3U2lyrJIH4\n+/lWBjCQPhBTJCTUNtQ2Rktce0e0O9lu7+w73G6D0i8MKg9hmYxZxxiSDVYzxlDHbo6ddnRizMTo\n7eUY3YmBqij+/lQikiK9FG7HzlFcpmGixCTEFuZUxiUnvUdgIeeFu7sTp9MJEWi1IFFIMaO6EKNz\n2qJGVLODqy8ta5fJfPbpWUgRNU8o1jomFTGh7gf7bcd6JyD01ihHcfB5dEKOWO9UK9yOi0tHckYn\nHykvibQ6W1skeOWQMyqKXZVLrVxa5ThcnqLaOFl0NT+B/nTl+fLMcXRCdG2SzvUoJtTSOUpjdDAT\nRoe9F7QbrQUYCVOvOK5Pn3h8/JpSDmCg4nqnk2aWNXE+bZzvNnLaSIvzzNY8SApKn9UHoIpFcQ2h\ngotTIeaIdqWrUmqjdaObvB6YqubVy7yPpdXXCWdKCxoTOukAqgmVP4bTqzGUXo0wDOhocGCrtkbv\nFWyQJLDgZX0zc+xHfSxqY+C6veGLcgKakhK6LEgKUAql7GCgMYIprSk2EoWDYhWLDqJJUEopXOuB\ndGHRBV5ZooExGqMbGoUlR7Z1gayvAHFtXo7GkAkhux1E7Y49mbjw0+uxf2CEHlBsRGwk6i3y/Dho\n7UppO0Mb5/PGN49XPj3tPD4V0tJZT87diXGwbIqGwOjdAfnuGqjjGJRW2EtD04EGw3B7iiWsRN2I\nZIYILEI34XZUSvdWKml0zs1o9O4cpRc5h5wDSz6z5DuCZsxuBKnz1ky6gQitNGxEQlwYw9AevCrN\nLhR1VkAHEXQIi2YikYy3Pc12Spui1dE5jkptjiOldeVuSS5cHJ2hdVL7Pem0FwJgznSMOhpVOqUV\nNASKGjUpLQqtCW0IlzZ4PDpLHWw5McArouvOugxk3dDeQV3qUurO7fAx/GjOo/l07QgJ6RmrHdqN\nVg72/ZFWnij1wAjEsBEIhHhiWc/knLz9lMHARZhJgX4g5vdtqFKAquq4URQGHcLAAowQOVQhLTgm\n3UDVp3WjO2dJ/PE5BGJ0+4uQIhoTS8yIfmKYYsg/dN/+wfhBJR2zMUEre53u9O7jwtbbty1NDBMw\n8+e9uNu4pcIxLQo6S3INj6oQpv4kx8DRfELSmyuway3cbjcu7cLt4gCgBui9clyv1OMgSwYZs8wc\nE0T6VoWecmY7bYRlmaPOg1YbvftFaggI+jqSTNEBWBeOTqAIB8dns47grZbJYFij1oNGJedAH4VS\nrxzFT3ORicWMRu8KBHoL1KqYrz5UzOEivK1qEwgPCl3HHI4biE80kmbWtNJjd2JYF8QCOS7UUQFB\nLaAjcMon3t2/J0ZvmcQSSc7eMvdBf2GMW0JGREZAh6H20h4z27qpe1PISyYtkaCRZVldkrKBNa9w\njqPQpRNyIC+ZdY503bKhEVQ4p0iK2WG5SRplGBKUgYvqjmOfuklfJ0vOLo0QQcbhxLnaCOuJu/OZ\n/q65ywDq427rqEVsDJcQXG/s+04fjmWN48a2PBCBY985LjtjODPbJ0md1r39TjE6tyzM19sdBL9e\nr9SjcJTYVGG2AAAgAElEQVTDKQIhEtReOW3gVf7oDbOIDaPWQsrr/H97lTw4tqnUOnGdiee8wBil\nFPZ9J2hkzavzeP64MpLHFHf6W3vJq996tgRRLLzolbyaMAWZANqwzmhuxCSYn7Bh9r8yFeZBXoWO\nfXRsKK1VrtcLe7nS9oMQIhYmnrDviPWpnp5EHTWG2BTfVcQCJgNRJceVEYzRBauF7gif+5TMkj3G\nRErZWZ7dBabmJOdXXddgMKQhobGsyt39ie2cMHVB5l6fyIvQx40xIq0HjqOTj0HKQhOhVaMWN/yK\nKbEkV6kPg26NagelNPbj4LhVltjIuiIaaFefOlEhWqRW9/yRISziLO99P9jCxracWWQlsxBJ3jKV\nDrK47KQ3pwUY5JSIlkgkZ40PodfyypQ1g6ABghFzYtHFsb0myIBzPhPOgVIqWQ+WuIDAsmTyuqBB\nJ8m0gQ1Cb6/JgSknYOBs4BgpZWff91eA1SbzPSWfvkWDuy1w2jYe7u9ZY+Zhu+eb8yeu1x0zcb2e\nQAqBJWVYN1Tg2G8Ma6hGzutGDiesXCk2UMxH6QSGhVeHgWXJjjG1ztErUOhWKceB4Zwct3uRV22X\nc2oCKWfnTam7Mby4G6gqvVU3cMNc9Bzj75tGubuDTf6Yk1tdFpEmvrOsbhb3XeIHlXSYaLzZwHBx\npaqg6sJPA2oVgoGYj3ARv2FuIOWbV6apVwyKS6oMpleJjT71Ti+0bpkn1E4/KtqEqIqVTj12ArBu\nG0takO7WC06Yc8Wvs0icaOfePJOQFeZ0Sv2GttmKiSkpuq5HEOocvevkSZgwEw6IuBlVyLDdLYRw\nJiTFqJzOC8um5GWQN1hWZVnc5iFootbOsTd66+QcCBKJaSXEBROhtIN2a5TDEy7d6IvB4qPc2qbx\n2IhzM+70o00JxRSSspJCIuWF0APH48Ft3FyUKBGJGTAYPmFUAW3undOKoRJZNLFuJ3ofzmPZd8qt\ncoxCMIXqFaoNcwyoVEY1kiSWbaEvMxkK6HBGsLsVeCWSouNPQSPrkpDmvKqyV0rbOWphL4c7Nf4+\nUlzO2W0zQuK8BLZ1Y0mZbVnJGrDhBm/Pzzf6MESdcLfmhdO2YaOxXy/cblfC0nh4eE8gQxGSCRoM\naFz35+ml1Cf1Y9BK4VIPxiiYFQaJ2+3mFeBcLy8J48U9M6ivwZR8y4tADNFpDt0/oxf+zZiOmC/P\nlck7CsHfl2pgXRbfF6WQc3Yvp235Ttv4B5V0hAnKDsOmPYRM9qZ4Kmb0QaN6N6IvmiYfoqoKEgNR\nZYKyLt58EVjW6kpdBIJ+K3kwoNVOK4MYIjnkaZHRiUG5O2/kkCm3gzoqY1RGrxj9VcPyIn94ISky\nPXBG8NI2IixxQU3IMRND8mQT1AHHoTO5OkfJhKk6bzQ7qO3wCXcPIO4Vc/+w8sWP33H/kHn//sy6\nZpa0um2ENEQ7MUJMgovjvSUUUfpwsppPgxpBAkGdJmBdiCN40k+uaYs9EntEJZKSux7eZRfBghA1\ncTwdfP31J8YYfPzwBdvd6pM+FVJQMB9NH/tOFcjZT/acE0HdorQOZ5S3Wvnl7Wu++Pxz7rYHWqkc\nR6Hs+6svTErJqfqz6vf23Hld9NluB68yY07klBgE6u3K7bLzzfPT5B65bacEPzCWlDltm5uEhc6W\nvVputXAY05mg08rB7XohL4PTdkcKgRCTkx1VuE7ZjKRCImIDcgys7x7YTgt9FD49Brp1WtsZ3Te5\nzLK39+Kata48P12n1axbidjkTb0YyL0QBpfFvY5eply1Vtq0aPGk4jYZpZpXpA7OvZrc2fBpb0qJ\nevgA5XQ6UY79VY/1j4ofVNJh9tUyW40XJTbYpJLjLM3Zw75s+BfykswRdAzqrVd3wHH+50w6jaHe\nE3drXrN0c4vLDnndyClz3S+0PshTeWyje7Vlw9uF0b+9vu5chnIU1uDMTzByzkhVaj0Y3W9ojGn6\nzvJKCRAJqDimIpP/gcHA6OYkujYa0uPs4SFl5cOHO/L2Y06n6T1TK8/PO2n9GhEj5Y6KkdJAtb4a\nPZU2uB03RAbn84kUlFG7v88O1oxIdFBTIpoDa1i5W30EG4K/BzfqityuNx4fH7lcrmxx4+PHz8jh\nhIw0BbcyK4OdditYNSQGFl2JBKyKW7YeAx2BRd2z9+n6zKevnxz/UWW0ztPjM7VWUk6cTievGMUP\nHzUH0E1ATfyAaB0zRSxiTSh7Zb8VRoNg6mxsc5qGqJByRFeI00UyBSGpj6DbUaE6CxiElBx/WdeV\n+7sT63Y3hxiN/VZ5+vobvv7qa9aHSMs4xWAI67p5NSQL3TrXUtiL0ZqvBxP3yglkehvOHWvuYiAT\nm3zBcXgBISbxzyuhiQKo0pu9JhOGJ/aXvfVi+jUm3oMZOWVMg7f7MEXCwmhtSjf+0fEDSzrTQImA\njm/tH4KoT6AQsgQC4otJHES24fiKDOchTLTUbxK8iqsGgzpNwlAfmdc2gMpRCud8Ji0bplBap5tr\nkVB3VGvthUPk12rDHGCrPuqvR6WkfTJbIymfEIVSd7dNHe7xbEMmS7bPa3fh5RguTTDRiUlMm9Xp\n96MaEAmM4UbvqnA+Z7bVbQiOwzdUab/kdJfZtoSqAdWBdomOj/WGSGdbXJKwR+X2vBMmp0NDZNXs\nXByN0zVOp/mYs3ol6mQgF2wYa9zY3p85nc6kFKmHzcPA3+uxX2n1oJbiREgzl5OMlyq0eOLpPgK/\n3W6UUkmh8fx08cdPL2YxcX5O7mjO3mpPn+low0H74UnFW99Gb57Aj2vBGgRxoLyKtx2qEKaxWa+V\n/XZzvE0NiWAp0kPAUkBjZs2Zzz58xrqeiXHh7u4OUHcPvF25XS/8/Gc/58uf/5Tzxwfu7+95ON+x\nLic0qMtOrDPMeVXrZhjKspwImsDEJRQhgxRSOtDZ/r3gL0z8htkyvYiJxeTbVjG6G6GVQmuu+3Ip\nSkC6+GR4OGN5WRbWdZugvrFsCyEEnp+e/IDUP4ZJx7/lIEzNibMmX9i/rsBWUogE3Ka0Tb+QgYPL\nVisAXY1JnGcWDT6tEvVENd0Hu4kzSMd0IDwvkBeOcmNvHUIgrxtxWWhThPdCOoNZQJk4twWviMYo\n9G4MTSysr4LSEJRlTrZ6nbT4l2kRLmodQ15oSbTuE61uxhjQumHFuRYhGsdxcJQbJsVbExNqGfRD\nGDoN2hdfJK0PwLlHYrAskWTxFQhndHIMnNcz99s7ki6s8TSBR9c29fktCU+PFz59emJZFn78o19j\nXfNrxTa6e/2klFC6Cytvz1wvzxz7TpxtMNapdZCSYoxX8lmMLtJ0zVtE90ROzqHJa6aVMh30Ojln\neu++IZji3yCs2zq9k3yC8/T4zHHsrvBPESWwRKX0SisOjK/RLSzy4p/JrRxcny4ccfepXlL6mt2f\nWhckwZJXluXEw4MxhqAh8Xy5sV+vHMfBaIMAWB988+mZFBfePWSWdSXEyNE7Rylcj84gsmx3pGUh\n5ZXRjF4amJAl0i0S4zfeLjbH6XrvaJDXar/1To5x4jThFU5Y0wJBJ2N6QhcxumxojFe7CnnVnU3L\nYHHQf4zB7XbjdNrc0+o7xA8q6bjlJIzaiFPx3QbYVJiLTjtJZAqZ/aSU/GL8lNxzp7st5lTxoCG5\nvkiMvKws5zNtuGeONKh198onKF2MvVZKb6zLwnI+E3NyE3PVV6p7LZ3WBr37VEtEEYQy/KtZ3G3Z\n26XWXHvUm7vMAazrSl7c9tPNsPw15rakzolPLf6c53QFCmDE5D64x3FgUlAZlKNzeypgibv7lVY7\nz883QrD5O8ytPhbn0fQ+KLWxX6+0Wrnb7rnfTry/v2OJJ8puXC4XQoisa+Lx8Znf+72f8uUvvqR3\n4x/7U3+GGONUJsv0ZOks2Zm+7qczEGvYKPS2+8RvDHJy/+MQld6Np6cnAFeMx8j9wwM5r2z3d9yu\nF2qrLKsno2t9prXGbb8A41WzlZKLc7+VyCin7cS23tHNN+BRXaldWsF6ZU0ZxuB8uud0t7AfV1LK\nlKO4FGZiIK00qhgHTBN0lyssywmVwK0eXB+fadUrhtOSCeuKjManb77myfo8LBL5tHpyNcUkUgmE\n9UzM+XWdPT89s9fCqD5x65Nh3aeswUfcwfG/5mLUJbuz5LYthNC5HU/cyQnMjfePMqe/MlXkcwIc\ngguqa3WDLxu42XxOHKW4IFRfPKv+GCYdR9ttXrQ5z6W9eL2A6Zin6isgwgvnZAz/xgHsW/tFd9/T\n6T+SqKPz2YeP3H/2nst+0H7xS/aj+Osb7LXQngeX6zPdBnlbOZ3PpKDslxu1jSkNdWmBoMjwVq/u\nldt1B5tTguqGV+7K5je1d7/JXoVsLOsKAqWU+T1SU14QAilkqlVut8LPfu9LvvryihtADEQPNFwh\n7OQ8OPbG7VooxV3iek3UML1zkuNLzoERWi0YPp7uvTCGf2tAjpGgSq+VaoValS+++JHbWDQ3T3t+\nutDa4Dd+40/yk5/8BBHl+fnCp0/fuHVn7YzzHefzmffv7zj3xKdP37A0bzVTShNHKJxPG/f3Z56f\nr96CHv4ZrKcT6+nE9bpzOy4sS+bd+/d8/vEDX3/9NbVu1LLzfDnm1/dUbjdvGfKyoLcb1+t1GrZv\nqCRyzizz+7DcknPlw7vPQN2G9rpfvT0Hnp4/MZrbvoYQSAzEKse++zdH5IZ0n7yZFCCw3w6en6/Y\ngPO2cr4/s6TIkpVabvzdX3xFWlZiTj4lismZxNHQ7l8UoMnNveoor9YablyHyzLqi6vflOHgAt2X\naVufiTalxLJEWnXl+OX5wvO4EmJ+tSwRvjXkDyO4GHm8cNBsgv/u9SxMsanIH09MR0PgxTCa+W0L\nw6aqG9yxc8ZLthcz2hj0l1bKXnBjB5f9q1QCEpVM4Isffc77zz/ny6+/4ZtvHiex0EvP2+0Z2x2D\nSSmAMicEOtXHmXb49alG/13qyvgXoWCTMu0OjFJ2xjDGCD7Vmt45ITg5Ky/u5mfWuVwKt9sVc6/W\nSSQUjqPw5fEVrX5JKZUxChory9a5e1DePfhXubjQz9E/Gwu9Cu7lp8QgxOlK2KpRu7eersZfWFKE\nDu0o3NoN3RLb9t5V1THz05/+lMdPz1wuF/78n/8n+fzzzxnd+N3f/SmPj4+O85TCz3/+c3ob/Pqv\n/wa/+Zt/hs8+3vPw7sQYB9fnwsPDiffv3vPVV19xHAco5CVx93DHN988cnl6Im8rd3d3rOvKV98M\nQlTevb9n33dOp42f/vR3uT4/T5Foex1t11rZj528Ohnudrvx1S+/4v70jnVdGeIM5nXbeH//gAk8\nXS5O4muV5+szEgQZymk5E6KwbCuL7IxynSb6jUu7UtugNDg1QUPmctu5XG/+JYqnlXfvHkgq2Dj4\n8OEd71rn7v6OvGUkKl38+6/22ijdcUlGo/WD6/WJy/WJdlTU/FB7aalekoErv5XR/DvIejN6D1Dq\nNErzNR01OB7VnMkW1KUaMfja1qav/DHmXhlmbk5mk+em09ZU3Pb2u8QPKun4aeNWlmq4qddkUzpo\nNr+502SyW8Xl+r06nsAkg8zHu/XFNFjCHdfu7+85nTbCp0+v+ALDR7m3ckGCJ7MlZZbkpEJRWHL2\nrxr5v7h7d1jLsmxN65vP9dh7n3MiIrOyKqvurfsUaoSEgcHDxcLDwmxh4CAhYSIkpKZpLHDaaQMT\nByE8BE4bSIiH4GLQ0LoSDbr0fVVlZVZE5ImzX2ut+RoYY+4dWReoLAlKV1nbyso4deLk2XuNOeYY\n///9a0Gc4JwS7myPQdk/HHj95gnZHVR4VYXz8czpeKFsay9UriM6al+36wATU8llIZdFkZndUV2b\nJa+JnDZS1o2ZsQnqBg6mMiASO/XNdm+TRZqjFeU9NwtYj7Ver65WkKwdjosBa4S8VZa1kK2wnzzV\nNzYK66pXwWne87Mv3/Hj3/09Pv/hj3h+fuYnP/kpLy/HLiIrvH37lrdv33I+XfjLn/6UL3/+F/ze\n7/6Izz//nGmaKGnjiy9+whdf/ARrLYfDgxo0t41lubAsF72Gpo2fffUzzuczTQr7/Z4//dM/5c2r\n15xOL0hVQ6XtyZSuC93mWaHxrQvcrLXEEHl5eeHl5YUQAoeHA/t5xzxOpJJxxrKbZtbNcr1caLmz\naLwl+sjD/oAXQ/MNmUZKKqzXlcv5yrJk1lwJcea6rCpWjAM+BKyHNS2ksuGi4bPvfcY4B+IYqFIo\nuXG5Zo6njVShqZOKVldSupC3BdME7wacdWobcQ7nPN63+3ym1Mq6btQGfjioXEBEZ4q9c7FGDc6C\nsqc6MLJ7BuXePfnOEffOd+GtwsisRQ+toDD8X+X1nSo6temWRifw3N20peoA2HfRn+kVxRmNqDGt\n5z1xG4jdFlaG6DUOxKIQqGn0jNEzxoC30MpKSQslJUrbGMaBebfncTdwmAbmIeJxXNGti3eOaq2S\nCruqOfrAOI8cnh6wj54pDmp/EMPlutJS7mItBS6pwK9SykaTpMkObQOj+ABNbRyJbsY2hb4bU/E+\nY7yqlKcxsN+PjFM3bormUcVoMa4oGtNbYvDEqG7wmlTFXWsjlYKI/ruyblAEFwfCrKvulIoS/7ZE\nTo3Hhyc+/eRTfvazL/npT7/g5eWFddWh7vV65d3b9zx//cLlcuF0OmM6Fe/92695/eqJp6dHYpxY\nl4V1WdjWjXmcdavz8HDXiSzLRdGYWOIQeP/+PdEHLqczH75+T2uVcYws1431uvD4+Mjj4YEQAmu/\nopXyDXl/5wJ7FxmHkbxufHH+Qq9Z08g47NjWjYfDA2KEDx++JufKNFtqrniruVtjHGhVOIUr7cOR\n65opL1eMy2x9pW2d5fn4gZQuSF0xLTPtIq/cXpcJHi2stbLmjct1JZVedKQgsgIb1jaG6Ji6Ijtn\nmKcJ79x9gyW/wCs2lJSwHcZ1Gwqrsl0+3hiAWzRSM1pwbsUbYF1XtYAIqmhGZ3YlZ4L33Uz67a/v\nVNG5NW+3ovNNdi7wcZTT/7101rBGxfTK7lx3pFucU1Gat4oNHZxhN428ftxT0sb7r/a8/Rm0skFr\nHIbAJ58+8erpCR8jTip1XRDjqTlj0BRQUCFgKhtbSdiimpAshSAOMQrGHqaZed5hTOjr6KBvXvdY\nlbpSUua6nCh1AdPtFlYIHqKP1BhosiJsNLTTMVZzrvXrVbk9hHgPn8Mr3jQOlhjVD1uLqHI39Q6L\nLohsjZaEaCPe7/Buh7QI1pK2jWVJnE4nYow8P594fn7mw4cXti3x4cORtCXO5xPn84VLv64YY/j5\nlxUnwvH5xJ/9479gv595enxkv5sJzpFL4uLOnM9nRIScMzH2rZVVZOrL8cTLhw+EEJR+VxLeqXZo\nHDocHwvNMA4T8+7AturPuywrUhtuUse0c47jyzPrpg5yGzzTPOO8I7fMMA5ghCEObGkjr4VVVsY9\nTFEZzeAwJoKJ2OOF03VToWOfv8jlTJPMGC1xgMd54HG/I1dDle4VqwXB3TdExui2tpZMaxovM8bA\nHANT0PSRki3jON6LR6vqmQtBEyVSbpzOC9YXnDedkVO6h05h/ddlVTlJt08YbugKxdKq/ksNn95Z\nBq8JKN8sbh/pyb/89d0qOuaj0MkYe0cqttZ6iFj7yP/oJ2ORxg0DalvFOBVheYNCxq3tvGRdC8/R\nc9jvAHj/vU/4y7/4c47Pes35/LPX/OEf/C6HxyfO5zPH0xlq0Y6r83huxsTWGcJNGqkmrtuFy/Xc\nH4akD4+PHB6emMa+ekbtGyLlI5c5F0K07BgxRhgiGNPIWf3nwSuvZcqWNQu5Lky7gRgNw+gZx4hz\n6qsah6CcobFgbQWzqU2jCRWHcYqmGDu+ImcN5jN2xLeIZ6IlRzGQXcZZD81w2D3w/PysV8aXC2Vr\nXI4XypbZ1o3Ty5nzSVGp3npd51vHck3k7ajamzVRc+X53df9qqBG12lW3jN0rUkIHA6al/Xh6w8E\nFyhbptbCw+GA945tXe5WFh2yFtYlEQfDGCfsg8PZC+fzkZIT1ro+yO9XiRCQ1ji+vGhSyDyR1kQu\niTBoyGMtBTMOuK4ozzkjTSFy4zRR8eR2YstXBCFEh3X0qJgeoeS7pYXKul5Y1otCzoYZY4IG+MUR\nwVCv+e6risExDLraDwYM7u4pkybqwO8Hm/eOLRXGcey8ukrOtQtYW8904+7pu1c7VPpRyi0rS4t9\nLoVWjM4IveJPb8/g8CuWk+9U0dGXYPuKrnXzWW31F+Jtu2BG/1z61F2a+qrE33LIegRHV2KWQk/7\nxSHs5omH/Y5pHPDeUnPhB59+wu//zm8zzTvevntHsA5l2Tpe5MLVLBjpNPWeBKkzb2HLG9ftymCe\nFKEg6Am7d9RculM503ICFJA9jIHWAuPsQA4aVWMyUhOtzbx6+hGffe932O0fSfnCz9/9GV+++zO2\n/EKMjlevnhjHmW3rfN2o0SlurtSSWFb1/pQiGDNgmHFupnkwWbceQxgJJlIXQcSxrY3gDT5GRW+K\n4/3X7zE43r/76g548j5ibSanrDAsq2Fu+t+mrJyX5xPDEHl4eOD7n/2AT16/4suvfsZXX36JRj/r\noPjNJ59wOByotd6xnK0L1qyxnE4nLpczJWd++PnnzE8T3lmdFWWNKZLSIMDxeOTYdUSvHl9xWZ5Z\nlhVjLIeHR4ZhYN0y1+sVI6IsHgPjNDAMsVMMeheQS9886kA/p9aTVMe7wdKHTLOWeTcTo3aW+9mx\nmxzeNk0trZZt2zidjpSa2DfBuYOK9PxEE8O6nVm66t1aT/C2jwX6/kQ0TE+4Qexs9w821nVjGA+q\neu8rdee85ryJh6rWjlKrbsZyonYjNZj7XAw0cjhXNaTq5990bO8A5jeQHIgUwjhD0xbRNWWweDEE\nsaiThbtfRrqXyDXN57ZeHcm5QKHgrWMwwnE5YkZDODtauSJF6YDeNoymWzPOkYd9ZA6VOWbMq4Gn\n3Wd4+8hyNZTrF7wrz6zpRJYL1mWaZCyBKANRRn7rkx/z25//M6R65Gdv/zFrfmEYZxqeVBzVzzSz\nYUwmu4ozhWGo7HYQQ8bbDTEGaQPT+Mjn3/8Bn33vc4bxQJXC5x9G/vKnkZ/+7C/Y7fZYp+5vWy1u\nMIRhxHp1l29JWBZDqzNShVpVAzSErs42jnG3Z4x7lnMi14wbB9yggrBZPIM4vr6urOeF8+XClrMy\ng43BTiN127DTCAh2HNkZpeNty8q2XUl5ZSiBYQq0Wvj+Z5/ywx98xh//L/8rxw/PXC5nrh+uHMt7\nRvFM0w7XPO2SOZ8TzTmscRz2B3znA18vJx4e9gxxwhpFnzYrZFlJ18S2JpqpbHXDNIWpPzw+MU0z\nIsJ6XQjes9/PfP3+PduaSNuK5QHDSJhHfPAs66pc4Sy8lMSW9GHEGlzUgyebRhgNo/M8PETmKd5n\naMZw90dtfmOzjWwdMJGbw9hGDA3nF1IuOLfinKAY1JHmZrJzFITiKlmKcuMspJpJLeOMYjycBWoh\nYNkPEe+EklSg6IPH2qBgspZwBmK/RYh3pNGztEL2eq13teJrJSbLHAaMc6zeMY+R1PKv9Bh/p4qO\n66pRsnpEbjYIaV07cFNNWns3xTlROZ0iRtWXpP5LDelblpUPzy8IwuHxoQ+czT3FU7i5bD3TODIO\nI/N4YIiPXWw48CwXnNMC15riIqTdVoyqhh7CxPdef873X3+P8+Z4OUaqWLw1ZCPqFYoDxgy0dsXI\nQrDCFAO7MTDEgDUBCMCB3fyGp4fXzNMe5waaCRx2r3jz9Bmt6V192VZaXalO7RLLuiJrptQLuSSM\n8QxhwAXPthWWa+Z0vWCIRD8TbaRl5TUPcST4yLIsnE9nTsby8PjI5Xxm3bZ7JDJdRe29Yxwjhp3O\nuWolDxpmaKSH6yWFf7//+p1GrbTKH/7+7/Pq1StaLcRh4OHhkVIUrxGHAWsipQmxr8HfvHnN9IPv\ncb1cuFxOGKNX7suqsgZrHSUXTud3GGMJcexMbU/aVnJadda0bPcNZGuN1pnI0zjcnMbklPG+aJfg\nehKCqeSSWLdKbk3lEVJ6RpdVq4AVxuiZhoFhDHej5bKt5Jy5slBqY4iTInW9bqUMKtbzXpnWMfqe\nh2VJPd5Iu5nuHHdWO3dj1WleO6Ggs4w1y93outtqZJHBkFLpDGr6gqO/ix3JcTNND+PAIBa7bljR\n2c8wRuKqHWAtv4HbK2UZK+y89iTOu/u1D4+tvYFnrALcRen27ebDQronS20SdVkVL+E907TH2RHN\nXMqU3HA2EuOsCthpxzg8MA1vQCJVYF0XUjmxbh/I+apQO+K9QxI0YSKnyvm0sq4vGJvY7yJiIkUU\nt5muV9JqcK5ibWIIlSF65nFiN0XGAM4WjN1h3Svm6YExvsJIpGZDwyFtIPpH5iGxZo1RQUrfTmkn\nU2uDEvDNqrFw3hHjyPW80NYjp7SwLhcGL7hDpJbEuiS8HTgXYbmu5JSx08xSMmtO99V2aw1X1fwX\nY2Q3DAzGMlhLRIl6Zct4ESyVi2mkbaNVXb9/9fMvefX0yDhG4jxig16RUs5sOUH0EC1rSlyuC6Mf\nePfu53jnGIZI8J6UNSzReQcE7dpEWK4LDcPeOI2Lwaugr2YMsK5XXl6eOez35JL1YVw3zbmfJuI4\naPRQx6AM0TOMI7VdyKmQs2ZNWWcVRVob3it0C9EDTJMzu4ZGIFWN68GAE0110LCARmumx++oeVZV\n2qMaV7HkLVGB4B1ULRB8w7IgfdFirPLCSxHSshAHx24fwVjWnBSSVhUI5rDdyvAR7WJEt8K1Vkou\nKtdAUTJDLTiEJW/Uq/m46fmW13eq6MgND1Eb3LCj/XS9kQRviC/6ahx6CbIfPSitq5JvjlsNtVMc\n5LZVPny48HK6cDxeqcVg8EizbGtludYu4jXkmrgsL1yu7yntCG7r2gUVUWkaRAWpnM9H/vzP/xSR\njQ50FWMAACAASURBVFefTiCL4iUamJpYz0eeX74Gk3h4cHz26SP76Q2HeWQKk0bmOIfzO/AHYhho\nAsu6UAq0athSYlsFZydqvpC2hA/CMMRuEfFKWhRPo6iLW0Z8G/AieJImjpZKLoVTOyvELAnFVGo5\ns25ZkzdonJYLx+uFLW1Ya+6MlVwr2/nUTa8Kyhr7cDNbIHjsbmIIhsvl0o2alffv3vN/+j/hh59/\nzv6wo7aRw8MDxhrevn3Hz9+9A2sY50lnF1Uzta/rwldfHim1Mo4ju/2O1oRxyl2X05CearCsS6fr\neQ04lKbiwNa4Xi93D9zY1eCn85lSMm65Mk4Tu/0eQsCIkLeNlDe2tSANQoyEMPT8r0QTFfm1kjC1\n4K0ldsztmjJbKqwl33ERCkxXZGutCR/VuV37MsQZzTmTLthzxmBiVINrrb3wfHOzq137rbvPtXQz\nr34eFFuheWx1aUgryDfEhc71bLHW8MYSrNMO7XqBUhBvsfNAkkZ0llZ+A3OvWlUiPd1JDHqF+cgQ\n/GiSFPmGbLv/1o27Oc41TcFa9WSFOOLDxLpV3r8/cVkbp/OZ0/FKqyqE2rbE258/8+rwNSVFjA3k\nupLKEWzh4VVkKzPNNNL7q7aa1uLwOl+yK2t+z89+/oL4N4ShIK0QTGQ3WLbRcT0W1nTC1sDod0zR\nEJ2BBjVZDXADqlzI5UoqF6wN1Gqp2bEumcv1Cq6yXheFjDmLMxoIaMyIEVWeChVTDBhPzoIkh2dg\n9ELYz5Tc2DbtJEtSM2dOqt0ZRuG8dJyE0Wtp9IGcNq7nM/nSOJ/POmexFt+U7xOiJ9MYnGHIlv00\n8LTbkda1M14ax5dnqHpt2h8OlJLYHw48POx5fvmay7JgfY9DsU45RSWzLAun8xlBtDjs9urs7ssY\nzU/3KlbcNE10HEd206A8nzDw+PgI3Aatjt1up9aAWim1dZibdnQyjoSoaInWDMaowNKbgLW6kWo5\nU6TQpFAs1CrkXMnbxvFy4Xy9sKaN2Yx9m+UwQN4K1/WK67B4MeYehyRonE5JBes1teOW+mngpurT\ngt9FsDfjpvce6yxb3pCW2O93xDDc1/IN/Yzd8B/eROrWSQkCZd3YeiJGjAHxloywbKtKCn61mvPd\nKjoICjrvvqabl6SZ2rcmXeYvHwFGVoc9+qZaVQ9b0YgN4zQ50rmBhuXD85FhfM/+MasWI6tZzlpL\nqZVlTSzbldROemq3lWY2hp3jk+GBuBPMUFnLmfOysKz6AZ52jsc3joc3iWloYD9o1lRPSIx2xL9+\nZA5wXUbGqTIFrxS7ddE8r5bZXIZwotgVEJ1x+YiRgZID14uaOGtN5HImtysxRqQpYtSZCKgYrtVC\nTonNfPTs0Dxj3GGwXGUlrbpaTVvietGYnBCiCg2t5jk9PjwyDhHbhPPxhfVYsbUwWssYg6aGeg0L\nbE1jc1XWoIrZvKnKuJSi12BRRfHlwwtlXTk9f43x2jlSMrZU0uWKnyeGecIgBGt52Ons6HS9ZW8l\nLsvKNM/UqnCrh4cDwxBZLlfW9UqZdzjzgHWOfVT8xLZtxBjZ7/dM08S6rjw/v3A8Hdl6ntco2mG5\nPsj2LvagR0MtDXUk9cQ/HFOcVSlvPTkXjtczL5cTy6Y+Ktts93zp962pcb2uShEATLBsKavKOCs3\nyFSFo3sXacUgRbo1qF+rOmrCO0cyDe8dt6qQs/KXha4nSxckq6ykIeBN3/pqwSpbvhesWgrNgBsH\n7DRgou86Hj3Af5XXd6ro3OaU2jJarLEY7/usx96t/LdfvFb6W7tokB4G1m++HXfqVVm7Zr7++gNx\nnLCdD5uzRn/4YBlGz/4xMu0hTBtYoaQVKRvGVUJs7LzlqXreHy3vngtthXGYePO9HZ99PvL4OnGY\nIz6oujj6W4CdEMzEboi0ukO44lyhpkquCZre2TOJkq5kc7pzjYOfsGak5MC6deB76deqGHTtaj3O\nBIw4VRinRs06Z2p94+BDJPiIi66vmRcd9G6ZUlrnNgdu2fA3WYKRRtvUilHXhQC6IRk1dXQ3jzqL\ncDddldLmaJA35edoSFyh1Iy0xpZW5TKnje26cjyfybXc87WddwQ/YKamOqUhQofIb7notWXZKE0w\nzncGjxIQp3GgNaUTIo1hHBiniVy00xqGgadXr3n96jUhBpb1K3LROUfu3Yb3yrMJLvQZoyGXilTu\nWFNl81tCsMyjZqSr9ilrUVw2igilwfO7I947Xj09Mb8aGZsgL3BaLiwl4cd4GxroYSuGaIMOmotQ\ncu3eq5u+Rg9dQw/6M1WxKW3jBllv0gMNGuQEpuisc+thjA2h9vA9HaqDlosu53eds2yVMllKIfrf\n4KKD+ah9vBWUm6X/F+Y70oVSd5WwXpVu93zjtIDdMJBpU4Oc8pIzpen6ercLPDw+8PTGEnYrzetA\nupiVtS20toHLVFMwvmC9EGfPqzDy6tUTP/jhxJvPDGFYsFxx0YIpOtauat4MfgAXMVhyEUpZdCB5\n37ZlRWbUK8VtqiyWoDxxGrVmWisYkzFWxWAhDsQh4jv0qZTE9bqSTjpHUbuIFhxvvQLPm2FdNq7X\nRbUnfYtjrdWZWhdi5mUhNSEZUWBWTowhsB8iboiMQd3bWnQGNesi1L5xNEXup6uydrt6N+e+rVpZ\n14XT6YRvcLlc2JYNK0IcBurxzGLB7HaIsZSUqKUQg+ew25GHShWhZu0o4y6Q08rptLGbJ4aonJ91\nSxo1ZCyX5UocJwS1B9Qq+DAQhxFjHKfTqUf8Jtawqck3+p4HprYWmn42Wu0roGaQ2jVb3aRbq5Cr\nClfXLSHXTAiedjDEMCLGYKxjTYm1ZQYaYRjUmGwcwQbGqBHQ7bYcEOmyAatRS0V51SqYLdSm/ioF\nvSnyIuWseVzG09D3teSmWjNjKKJbYmc0NNIbxxBC1yapBsvulWNl78/ft7++U0WHpkkAwWieOaiF\n/1ZglOSmZk9j+wdAbrmaH20T0oRKwzVBitLlrFHjWuhg81wWal0YB8P+sGP/MOHnK9U1Mo+0Zsmy\n0exCsyvGaeewpgo28vjqNfN04PWbPU+vYdwp3HtbLjRjsa5Q64K0jCmo9B09sUut1Np/3lYxRql5\npWaazVgbMG3Eyh7HRKuWljU6xbteiGk4AhSjc4GWOJ2ufHg50q6F0PEZ3gecs5ofljO1Ni7XpedY\nt7ubX4CcMikngo/IddU2vhakVsagWM6H/cwcAkNUtvEwDIQYsF4Ji+pJq9giuKqHRGuNVtSJvi4a\nz7KuCykl9uPMYZo5vnzg+PJCSpoXtS5HqiSWy4ncVL/SOrMoer3GbOvKuiw8PBw04K9pKJxzDimF\nOE7sD8rmUf2Wzq7WdeO6brS2UkVwIbLliguRQKc4ouOTEAcGN7Gtiet1IW3KmHH2IxXxVBJx6Kxj\nqwTHlBUGtuVErJ7mDFvWlNVUE6U1nPcQLGEYmXaz/i5dIBhPMK4TNA3WtS7z6ENktACUqtFAqcPr\nQhi0A+rFwd6wvNmC18uX8RbcR4KDMUbRH84TpwFPxKSFJI1WKi1VgvVQGm78Tex0+uLXGkvqGMxm\ntNjcXqZ3Qnpa6erSmNa5yTcE1g3qrhutcYgYbzCuYYzecXNesLYw7zQGNwwWwplCorSBWnXdbYIW\nqwrkCik7Ynzg1avAbj9xOBhcSJSi4KeSG7luWJNABCsVj6c2o1G5xqA3eY3qraUgnXxYW8V4oHhE\nIrgJY/eassiKMwXj+4fK0NGd+jsQqZzPH7icPzCYqWNWK8Z6hEqulZQy21ZI6SZFuI3l9TqLEdKm\nXCCTEiEEgoEhBJ6mmafdjofdrHG3MRJi0PSBHtVselxzbRVbwclHsp0xvePcNtZluRMA87ZxOh55\nfv+O592O08uR4/FIy4WaNkpOpFIJwwTWk5smhZxfjnx4OSpnqRakVcZxYDdPOGvIqElyvzswjTOt\nNcZh0jmG6H9zqYXn5w+Uvs0b55nJmG7e9BjnNCo5BowYrpeFtOoVRnk7lpQ3zucXwmCZ8oQdPOfT\nhct6ZatZi5p4bBXOl4XcKkUquTSmeU+cI+N+xzhPCjGzXn/A0lTUiWaB6aHR0aJNbUI1J70Oo9sx\npRuUXng7S8qotEQPax02i9OCdWtcVKfmCE4/K8EpgM6K4k5MQx34d4bVL399t4pOX3e3bnFotdC6\nn8Q5p4hF4JbuoEgHoFZlh9wgV/1yZo3yWuLg0XC8Qm0b0hzOV4ILzPvIOAV8cHjfqGg0SWu6FrFW\nW9OcGiVD8AO7XcBKIA4Ww0rZMmKVoOfsHmFBpNIkq57HJKrZ1HNlFHRtMUizNFGhu+34iYpmdSON\nmgHnVaQWBWM0uRKjXOVatNjmXAlB0xzGIRKtxzuDhgMWSjVKCdw2tjXf8US5c5+VSqeRx0uHVdll\nIex3jPOOh93E02HmYTezn0b1DAXfoVQaYSxG7/+3eYBebfVqbK292ydCnRnzXg8SEUpKHE4PzLuZ\n3W7H8/6ZYRw5nY4s9Yo4wyiG2mBNSY2fTajrynY+4ULQ998YlRwYw9PjIyJ61UtpU9Vux6iaXlQQ\n6boYizEqwgPUWlOKbiebUFNiq4V1WcnrSqu1D207S8lYUk4sKVNNY3Z7PUBywVnVxTQUwbKsG2ve\nFKMbDNM8Mx92jLuZMGiHpl6nrLaO0pD+ntx0UhoEq3Oe1IuO61nsSqDUq1dOmbwljPfQ1GTsnSZe\nKK8JcI5qiq7sUUOwXi9XXAgE369VPVmiyW+iDQI6y6PdMZ53N32vyhqS99Fpa3t0hJGmX3uz9luD\nRswoAlWM5j872xhGj/VqOoxjYBwCPjrETur2ZdWthZ+wNiItINXjjbCfA1McNMNIhFItrWpxcc4z\nhNcIFzADjQ3bHFJVQ2KMxTvBWcGgUS+uOQyDYilbpbaVxhXTjG6lmDTD3So9sbQew1OgVkAKrVr8\nGNnNB2KMlDXdpQOlZJqoMXJdVy6XBe9Ub+J94nK+6BwHpQAuy4I3hp00Ru84zCOPhz2H/cxuHogx\ndDe41SvGTSRiOjjeafChOO08MRp9a+xtMQAuelxrUBtuCOAdOIePgTCNxHFgOu44nb/WcDxjuVyu\npGXVeJqUoSTmqGbNKXiCMXhj+mrZMO9mclHl8Ho967xPhGEY7qv/MESchSSVlFZqado5YxhCwEgj\nrwvXnDlfrpzPVxrg3MRNtuG8Y5xmTpcPSiycI2Mclb1tLe166erl3p1XxUp40WxwR1D1s1W+8bqs\nbD2r3Vahlsq2bGri1E+6HjitarfSt6/STIezcw/Mq7UgVp8L07dVt02aMYr8rejss9LYepJuK1Up\nDcbc50i3Z/NXeX2nis49HrjWTgvUaY29vWndZb6lnlYoagcQUeOl6Qple1Nc1qx+Lm9wIRKDdgK7\neSIOTvUgwarUe4hs5ok1vSjgya8YExEJ1DJiJTL4RjOCCQ5vIkYCOQdEPC7s8C6DeaQ0jRExbqRl\nSNWAqKkuDhoHawSkWage0wKtWGi6rjQu4+yGcwuGCyK5b+aUh1xRBaw1mpLp/UhrBucG/UCaQi7p\nDl3yXtMZF2NUuVuv7PcPDD6wm+euzUhs29Ih5oH9PLCfRw67mcNuZjeNnUPMNx6iHgls7b1V54Yf\nsUZnB/2drfCR7njbRgan0DSBUVrfQDuM98TdzP48sKwLrTasGNKakFqoVEZnOLx+hQ2qHzp9eKa1\ngguBnDJvPv2E3W5Wl3UppGUhlQp1IrgHluuZlxedpW3bpiLMXLHGMMSBWjbW5cI1JxVlpkxKFeOd\nXnWqA+NwXgtcaiuX64njy1Ext+NE7VdKkfBRZ9P3mZpo0ShroUTNqSotsy4r63LVgkxfabdyfxbo\ntfwuE3G9oPd1tpIodYngjFHzM7odrSnfu1HvHFWERNNZZFGGM7ZHPFVBzzm9nlURwm9i0dHgu1tA\n3scIE+UKK0BaPySJlHPfWukVyHijxjdR35XWHyHGwOtXjxwe9thoeP3qicN+zzB61UEETduMQ2Sp\nGnFS81XTJZuQtkpO5u7qFck405RfYyfMELF2JvgNbGIthvP1Si6aWwTa+rbiaEbD6pyruI4s0DQ4\nCyZg/Ei1leoazg7EoL6eWlPPPWoqEcADuhFZ14zxQ49sqWxbRkolb5qTpCxnYYhWc5dK5Xy6sl43\ndrs9IUSWWnn71Ze8vLwwDCPDNPL0dODhsGd/mLRIjwEXtHMR0xBj+yxKDwsFIPbtYRPECqZjGG5o\nhdb/4TZ9swaVCwh6jRwGZtEtyzRPtINes7Zt67OrqhlUrTJ4hwtR5zO1UHPmejpjvGeNCbGWnDKj\ng2EcWc5HTuczeb/nME8EO5BroeZE3q5s1yvrsuhnarfDWVUaS8eEOucZRo9xqmfRtBHttOMwcODA\ndbnw8vLCa++Z5h0VDRHIXekrHaxOQyUNy8baD1MXnMZVl4LpdMmG3G0+xtr7wF8EtU7EqEF6Rlfg\npjU0okh/5ntAZau0vOFpTHEGDLUry2mi1+xWGQ090aRhhc4wKhp+ENzHg+VbXt+ponPjGrfbeq7f\nPdXPYu6+FvpgzPZERR+C5jPbBjhqUyCS9ZZXTw/8+Me/xaeffYKPjmmeCYPHeW3nXU9jdM7hlCLM\n4Ces84DnkjNbTUgzuGgJVjBSsLKpec+N3RwYaFLI5QNSdN1oZMS5PWMcqMZhnWBtAxaEgjMN65Xe\nFoeRMe4x/kDhlcLIjCOXxrJs5GZAdIYyjh44Y60lbQVr9UFHLEYiJV25XrYu0jPUAdoI66IzneOH\nI60Jy26hlsrprDEt0TmmIfDm9SOffvopu92O3W4ijKE/FH2e0BpiVNuCaBeiKX19cHzTW93WikZ5\nAHRbSt8064e4NaRWpHZvnXMqBwgBNziCc1wvF82xAgavAXipZIx1iHUMa+J4XWgiKjUwhg8fXihb\n4nuHEamZdL1gWoaaMa0QLfjdxHI5kteFmlZKWlViYIFaqXFjHFSaYJyjGQNOcbpCY8uZhuPwsMOF\nPcfTpEjV1thNM6VVvZrU1omNHfZV5R7rW0tlW1fCGLWwe81Er9RuyBSd1znX5QiKuDDWEEOkLOsv\nbKtiDOS09EZTMb21NSiF3Tzy/TefYDG8//DM5XTWgi2V1CpSNlwz5G0DF7pLXvU9tl+rf5XX/+9F\nxxjzt4C/9Vf+9T8SkX/yG1/z7wH/GvAE/PfAvy4if/Jt39s506X3hlvcr8a43O6pOtAahpEQheCj\nRpB4rw+wEbyxtAS1FaIbePPJa37849/i+59/nxB1I9G6TsEFrx6V3jY6s2DMgTHsAacPV7tgbet0\nfJ3jpGWl5YXcNmyYCGaPMweMBGr9Eu9gCAPRz4zjG+z8RKseTMH6K1t+R95WGoVoLMGORG/YTYE4\nvKKZ7+upJ4VlXcjbBSMrVhwOT3Ce4AQxiRAdxsp93RqD41I3cnpWznAT6k6zmS7nK9eL6nOWZeHl\nRR+QdVXm8OvXr/ntH/2QP/y93+PNGDp1TtuRGyBfRDeMIq6v7pWjI/XmgZP7sPymEBfo165OeoRe\njLoQsYn67ZpuCm6YUSeBed71rsgweMXMjjF0af5EEeH5dMZ4x1Jqn3no5+n5+Wvc6hjGkVwycRgw\nUknrhbxFxmnik9dP3HahrWaVFZSEOEsMaqPwYaC0xtoLRZFKM4ZaMrV5DmbHOI48PT3x/uu3XWDo\nsU0jdi5t6QrtrFaTm4epQZF8d4qbQec7GEtBTczOeowL+Bg6JErudombCBB6gogNKo6sjtZV+dY6\nWoXoPLth4mmnjOiybbx7/55WdXtqfJ/L3VTHojHEMUas163hN7fIv+z16+p0/hj4F/noO7173o0x\n/xbwbwB/E/gz4N8H/r4x5m+ISPpl39R2j4h+IG/Dq4ZpogOubpwbYsBYR+xUPfWkKMkPukdLKt5b\nnh4PfPLJG149vcJ4nbW0m6jQacuoq2Mht6UnQ0JrFisVomMeZuIQCD6Q1sSpvrBcj6R+okzDrFc1\nIk/Daw77h56ksMO7J2Cnw2RJWDdxuiZerhdySthQ8CFR2sJWAi7sGOIeY4XSEtmCNV3WLtDEsqyZ\nXHQ7I+LQsYpFjPqunLUEr0F1reoVa102tlTwITLt5q4VKhg8xsA0Rj7/7Hv84NNP2U8T4xAQhNoK\nuVQw6Q7V6tv13rno75pWqRS9PvaDQz8PFoxeR+qNtoj03DJtiSyim8qqYsIbH1uwhDAik34evNMt\nYwie67pSamN0lt3hgf3pzM+/fua8rOS+8m4pkZ3Fe4e0xuVyZk0r3ltEKtM0qw8pZ2wtONGf0bSG\nc5ZxGgnjgPMRC9QtUbZESZlmlOvkqvr9hjDw+PDIYf+gcdY3NzdCSTr8zpvyfhDuGe6mb/qCdfjO\nBMeoDktEN3KmBqLz9yuqNWBFcH2zZBByrXgbesermqTStJDWYtkNAxU4Xq6EYcKEiPEB2VaaCNZ7\nYhyUoVMEUxvWO+IYwarGKP1qMp1fW9EpIvL2/+XP/k3g74jIfwlgjPmbwFfAvwz8Z7/0uwoqKMuC\nyV3c14RqGlZahxj1imwERyWIwVRR7YNRFKj6siohOvaHHfNuwg8BenifM4577KpBubKt4eVTnM0U\nL7RqyK0STMEFyzB4rKusnGjFqmCvZMZ5z+7xNfO8xxjPWP4JStYI4SFMWNH7fDNZDZkmEKMg3nLJ\nR4K1WB9IZqPVZ2z1xKboSGsqzlV8FGzKpLRRxeKsR5yllAAt4N2grGArNArLcrkbGnOpgOW6JpI0\nwm5mjp5k4PjyguTMPEZePz7w6cOeT6aRsTVdgwsqVIReNO1dudyMdizSyi9gR8RaagNj3P3guGWN\n37aS9/ymPvjXDK6uU/pGwck9UFvCiMfTrCc6x84PhLSRtkVX/ggP80BLI74mLteV6+kFXwp5OOD7\n1W1ZNwZpXM8XqJWvayOGgPcBUwquNk1w791FrsIpZ6ygwYvzDNbp+jxlLWqpUA+FzSRKrjzun0h5\noeaNy7Kwrhe2o+aGW4HBesTwMXAwOFrH11IrNaVODDBgFXvhqmMQ9battfA47Rkx+K0wNThJo4gq\njK/nK856qhgSjuu6QfUUP/By3fjJ5Us+SYofXeNIXTfaUnENvIdxN7CNOkNcTWVthVyzsprdX68i\n+Q+NMT8FVuB/AP5tEflLY8zvAt8H/qvbF4rI0RjzR8A/z7cUnZQSS0ggVdmwVjsTjBrRal+FN5RF\nW6RRjHJCVLsifVvQ5eDcMsi75oJKE9PnJd3D1TSa475bsJqBbQyKlLi1/81qqLyo49i7AesHpvFA\nDDPODAiWbcvamlrtjGwfPLasp6t1HmMPiBEO5YDzupHIvc219iMjprbeOnfzYc6ZVArzNLOVSs16\nwnrvNR5l3WhNkSD7/R7vAylljqcLwqbivNtAGig5Y0WY55mnpyemecZ0QNTNwSZ9CFMptL6Vs/Zj\n2sBtSPNNifzN/X+LOTGYe+N6644Q7odDaw0pHUnSlwemv+/m3jH1K0QI3RKg0P1c8t1kOo4j46a6\nnHURSs73vKzz+YwYTTxIaePp4ZHXb15zPV+IcegbvIwbIk6EvK1sW2AMAazXzZk0Uge7l1zUaGqF\n4+nIdb0wjIEYAsPoVJ5wPIIRojGKiegsqNKa8rtF7SKIbmLFNpp4LUB9ljPFQZGjt18fOmqIw0Cg\nEUumnk5YGzQfyzholXmc9GBt0vPjK7vdRCmFL7/8Ure+33iPTZc81J6koSmt/u4GcNZ1bue3v34d\nRed/BP5V4H8HfgD8u8B/Y4z5p9CCI2hn883XV/3PfumrSCO1hBPBdbGW0CeOViMwqjVsObGtGzRh\n8JEpDmpGExU4IeqFoc+CctLC06zr/OICVuM6WlMtkDHm/jAaq1pCQZm1Ugy1Woy3OBcZ4oxB84Gs\nGcjp5jhW0yAYbAiqgegbh9pnDaU0GhCGmTAMNLoc3TaagHNjtxP0LPbOAm7SSCWTjyfevn3LPO0Z\nhkkHrs7RrIrCzqcL8JHxu66Jd+/fc1lWahMu63L/4IooE2gcR40ewVA70Fud2+j241YoAOk+t5vY\nzxhlxGhtaN+wrJR7/hLoLM7aW7Thx4dHmjKwzQ3ZYPqa3RikM3q1QtWuvNVZBeJ78VO4uDWavT0O\nA+uydCW0RhVP08Tz89cK6jLKmTkeT9RWGfoVPefMllbm4GmtkFbdolUsw6jxxXRDa0pKUvRe9UrX\n66XzuHe6FAgRU6CVzDzPPDwO/ee5ZcInimjalVSQmpDUKMnQ3MfDz04R67xiKfrvtVad86kqeiRL\nYzifyUkDCVpVbdrNFiSi+jAdMiv3elkWgLsW7paRrjlnKtmOHZp20/wAv2LJ+TUUHRH5+9/4n39s\njPmfgD8H/hXgH/1/+d42qC+kVqEImB4xY53FxaB82Jy4riuXyxWaMA/qYfHGd3Nb92aZj2mIIroW\nFCtsRa0Bwd2GedKLjqgwr1WM1UHcLbbWdqaPQTEHbvIMsarqMzWuuRJ8wwd3f+hSybTLFbDUUu8z\nC7VANN0EId3Z3IWDPuDEsElSqn/NOmNwurXTwXm4F0jnHPM0Y8RwOZ5Zr8r5KaUwTSOn45mvfv4W\nEdjtdhzPZxDdflyvV7akZshSyj3Gp3b6v9nMvcv4eB1SFOZNZUzHO+g1S/PH6P8sTWHpcpM/W6vW\njC4kFJHe3dT/m0Sif9DUpNh/BqkdXds5Su0bdhdEcMYQvLvnmg8xUFvrp7UW+7oszPPMfj8BsCwr\nLejVLnVbRikJF1UeYGjkbcMYVXurJSLeH1TvPd6rVoq+ldrSyjg88Lg7UB5XhjjwNB7uwrpSSo+Q\n1v+2Ko1cIjknctZ5UUobuSQ272jXDR93rMv6sUB00L8Zho9diBWmYaJez4BwuZx5HIJ6GceBIbg7\n1mO329Fa43w54/qhc/vd3g4jqYpLLf1gce6vt9P5hZeIvBhj/g/gD4D/Gi2In/GL3c5nwD/4IGkQ\nuwAAIABJREFUtu/1P//D/w1v7T3cHYHf+fQ1f/D593EdZNS6Z0hVx10UZW56HasT/d5beKfZRhom\nZqkVStZ1b7P99L15uFohl02LjtMY4G3bSGnDhUApUa9CqO/FoCe8nuhAUzc51vQYkJVaFj3tbw+X\nNOWueF271iaarJluCQAOiZkWNeViS5uiL7p0/yaUi3Fkv3sAEb784suuddGvOX54AfTvWhZ1dTsf\n8V6zvUttTH7msN/zMo5IUcd6jJp1nUvmulR2fqcUOzH3wnHfbNw6nP6+3YrSvctpOvw390FzNzz1\n9+32/7nPd0z7eF0z6ModkF5spSkZ0Ei3W5gboP+jx855RxQNUtxNA1J3+ODZRI2s+8OB8/lMrpWH\nYeLxYU8tCu+/beVK/3l88IQhanFvlbatbCIwDCrR8DpMzyVhs1F1+43LtBaMwBADj4cHHIZ5Dvcu\nujXPMAb6nbRbfhTNq0GEV86tUFNjuyZqyli/cL1coIF3Hu9CLzyF8/nMuq0aI+Q9FVWfb5sadsdh\nxBCJwbEsmks2TRMiotlgIvcuKMbYPzcLb99+xboueKfF6vLyAfsrtjq/9qJjjNmjBec/FpE/NcZ8\niW62/mH/8wfgnwX+3rd9r3/hn/4bvBpH8nVFcukO7H73rRr87rHMw8gYBkUsdgi3zpcVRl27Zd8H\nrwPAYdCNitBD5KGvyBT3gJCLojFqLbSiGUnX68J1XbBOtT9TnpVoJwZpPcCuqrK4SmOtG26UTpDL\nbKsqp+8PHo2Gw/oR7wLWQPAWpHYZu2PLjSIbgnZ1uaQe7Kcu7VaFaRg5vRw5n69QVbiW1qwPVU4c\nDjuV7HdMxYcPHzDWc3h8YBpHjudT93f1oa00vUaKMltu2hLps5rW+qrUqc9KNVR9k8VHtMitAW+t\nfeP9U/zCrZU38I2t1y2Nsl8nREWDGganf9/9uqUGhI+qc3EaOWRUPIpxiHhijEzTiEgl1crP3x65\nLgv7hwPTPN9ZyBhHCI5tuSIi6prvXV/wClmvou+vQTA9W60V6UiQrD+/swwOwFNyZr/bc7lceDrs\nqVsiThMrqR+EKuLLLfXOTSip3MWTxmnqqPWOcZooOfUu3d6lBEov7BtepBfJQBFD6kPonJRNZK2G\n9C3nQrOGcRxJSX/2WyTS7f+j0T/KWhYRpmnH55//iIeHB96+fctunvEN/ugf/NG31oRfh07nPwT+\nC/RK9UPgbwMZ+E/7l/xd4N8xxvwJujL/O8BPgP/82763K5XhdiXqHB3TzYJNpIuVDN4qSkE3PEYP\njaa7bsVCKiv4lmJ4x18YhWFb+ajlaE39NmnLrGnTDqW3mdfLwmVZwCifeN1ULGatFh51GRisCfeH\nwbHpOrj/BcbeBq06uylNKK1gq15NvHc4G8lZN2YpJcp64WZYrE1Xn6XciP5CSuo2lqq4jeDUPTyO\nI63L2Q+PD5xPlzsvJwZFoVrr9BrQtTnR9XC5qvlJJmqKac75noV0Kw5/NbKW7qnydJd6/1qV7ktH\nMfw/bK3+StFxzgG68pe+QPim/PXuFbKuqynq3TskRq+p9IIVvaOGQPGaqtpaY1024jARQ+Dx8ZE4\nDojRIbQNkei8rq/7DFCMGlFzLTg34F0geqdpoLUqExnRYL7QFcDGgW3M88i7r170OpQydppIptI6\n1U9h7ate57IaMxFNc40h9quhZ9zvOjkBrtfM8MWxf2BVaHnrTL33DCKsq/KRPTAOgdT0+m2do0lm\n3VbmedRE0HuyB7qG7+/Zum44Z+9X+G++52D+Wg2fPwL+E+AN8Bb474B/TkTeA4jIf2CMmYH/CBUH\n/rfAv/RtGh0A12C2nhyiuq9762ec1STPWrC1UVUdjlhUD9L0odYDuD8UPWT+VtWtDzTr6NFl3U0s\nWCO0rDOO8/VESqsqZlu7X69U/Wxg0Tv5OIw4G6hV5YvGCc7r35+S6lkw4LzFikf6Zi3XLm+XxJYz\nNQveDTgT1XuTK1VyB0zpgLVxO+Fs99UY1lVFfmnRv6u1yrKs1FyZponj8UjKiXXR2YFzgWEcAe16\n3r17R84J7wz7ceRxHPG9W8kpkdAMpFvrrZnXFuML0LPT+9YP+IUtE9x6SKDP024F5K+iEXLOepU1\nuhVzpotQxHQ9UO+gnOmCxE7JvhlN+990z+q2KpgLMWBXFZuOceB8vfDFz75gq4U3pzPTbiYETy2Z\nw27P08MeVx3GyN2Kc4ON/V/cvduO3FjW5/fbZ5IRkamUqvrkga88VwY+P4/fZh7Q9jP4pru/LlVJ\nyowIkvvsi7UZqRmMp2uAuRh1AIKAUqpSGUFurvU/dsMIxNpxeZK8oFoeNpt6uM6VYpkXUowYa3j9\n9o3zaQYUxfG47oRRKqAEi9Te0UuXwDDrH+ZKMXLK37FFYAPV5SfWY2pRSo81PA3MUVbh8+XM17f4\nYMu0BmPkczvaOh9RwL2JyTRlWbODA+skanawf70LsFz3+M9uYfn3/q6v+u949d7/z9/xNf8JYbX+\nu16aTk67hFVZmUYkeU7oVWs12gZJZavfMSVtHDhdckKMkjXq6fLE5XKRaYYHTCRiwPF3c8nUJCFI\nc1hEADgYCmMM3nm6EparlIR0XxWs8VhjAEXMG6kME6MSU6jcbGC9Zk+Rdb/TqHhnKYzkH7F3YY3G\ny4xOSTLZ5BG65UZCHwyAfYC+NAE/T/OJfY/88o/PWCPxGGveiVGMijlXpjDx9csXbveVNCafUjJG\nyWqKglIzwUoN8wHWPEBchFnUY+KSCtp3QNkMdsSMSeRYo+qIkNBaj/zd+mhtbb1jvX98n64YJkaD\ndlZuGMXDc1S7lvhUrVBaNFOo9FA2gwTAWS8EwHFIe+9hW0dIWuG3L194QTGdFtImjvsQMrfryjR5\nrNODmRqkQOsY4wbD0yQJSWvcPOOCgNXH97mvK0p1wjTLAWq0aKVCGbEUUm/tpiBrZ23ocRFIFrOR\nLbJ0QEsujtbsvZL2OA5XwRS3dQcrh1HcE9VYrBEbyHpfpRG3dVqueOdBHUD8+4TZWiPuUR7K431u\nTUL3lVI8Pz8TnCd8/MT/8W//xv/zf/9fv+s+/qG8VyhoWtalIxKyqY5SbVDI4nYtTYBWlOAKGB5P\n3WMtcVrKw47MFMYhIGPRMT10NAYbBEhTepa83RyJaSOlIOlsoqGViedxMbuxlmT2PY4E/oZqBuMd\nqI52BlstqUX2cifXRDcTEDAcWpxIp+C0tBZo3dDIUyilxP2+jhVJ1L3eemLf0Uo+WjF6iiC81kYp\nUpNbmwDOf/zjCy8vH/n29Rt//evf0DEhYV07JUvFbB8HuOqHHubIl9bDlvJAwIby+Z0ZPJi0XjqM\ng+goRxStTn2wUForenufiMwDmAaUGi70o+kDeXaPG6U9Wj4G+6UU1vnHtHFMhv1Qpo9pKfiA1dJN\n3joY66h08ggG+3K9knPBGumJckb0VM4JPtRqJqWMdg7rvDQ6GHmPzMCcjlxiZy1DHDFErIZUCzm+\n97eJcUSjjJNOtPpuiWjtANxlBW10tEE8fkEYppobKrx/PvKZGNZ1RQeDUZ1WImqA81K9sxEm/9BX\nPd53pEXj/fV+IAGPKffz58/8v09PdPWfT6r/f68f6tCpWlEV9EFf1N7p7WgiUSJ8a42qGtLq3IY2\np2EQi4SiQ6+EyXJaTpzPZ/GPaD3APPVYf5qWTJfjYSkajiKNEkYOosPwNuRuHMI3OceyVMXkKymL\n9qE3h05ijjTKUYwltURqwkTVdRe7gzHUJDer157gFpz2NBzGuKHJqJRSmWcrIr/Xb8R9Z/KSMnc5\nXdiGJuW0nB60+1qFCtfaMk0z1limaeHTp58AKRB01pD2jeC9TJDjAhVtjX1MMdZaFEdsgsj2tdbU\nXlFVyU0zaGvNmHaGaPB4T493T2t5QBxP3AOA7sfXDdD4HXiX1/eZ2O341SRbqNLRxmJ9oOZE6WIE\nRSnxzo3vU4ebeupI1k3KhBBYTmdKFcVwyhlrFNZq6fxuFWftOPyEcbTeo514/rS16PEw6wqMdyMB\noEq3u4LrtosxtI/kg8G89SLX3sHqtVboTVYkCXgTCKAbhWqyXrYik2av8ntqjClFMc8zyzQza0VN\nnVx3lJLPxlv3kErQ399PCf1Sj8MFZD1dFqlgPp/P0v2+7/z666/S8fY7Xj/UodOHWlPCuRRNCW4j\npkMlqmNkAm2MipNxsTgNVk1YI1ONQo01QItHqVYq6nHTaK2odQDNj+yeoz30eHq5oacZ6uUh5Gut\n0Fqi1kjKK7muNKT72gZHbkkcxi2hiiHXTOo7sUdqKvgm/qSeO710ggmyWpgR0zH0Rq2NdUruWdFk\nKDuwHQaDorhcLlhreft2lYvQOJ4/LDhjocPtduN2uw99iCTTWW1oxjxEfsIoVQ7sofeOsqMzjKHM\nPgBkBNegScDskfSolYR7G60fOqQ2yhMfKY8gfz60IF0d9UEDPB4j/vfWiuPf0x+g9Jh6m0R5Ygzu\nmLoAVStdGUrpUBuTD5ymhbzdKVVU3l0ZUq5SUJgzvRVU7wRn5edsHbQEs1kj6+EBshrvMVZC1K1V\nUj4YRc/lnJXcpHmC3ln3lV76WL0VrVRylqAsBYOyZxheZZ1UGOiNTpYzqY6MqQfb2EcaolQnGWNo\nRabiqsCQKF0EtN57zqcThUoq6SH4LKMi+Dh0ZFpsj6lNKSUWEWNw1sr3N/+Ck05rjVKLULijEEzY\nIfWgWkVT8Y4N5Cyp98q8+3zUMBimnLjf70zzjHEO5Ry0iukNow4hXxk3hHT7KMWjO0s+ZQnqPtSd\njE6ug3ERWKegVJX2z6nS0k5OhdagRUVqhb1E9hTpvRGr/Ey6KjlEtKPqRrOiYD4uzFLKAPM2cizU\nXLB2yN2L/PzzPHM+nzHG8vZ2I6bELSemZeE0yRMrbpF9j+wj9jKNSEo9VsZDmX0oV7VRKGNxLhCm\niQ6CfX2vTn2I/CTAuxZRFRfU49A5xvU2Dn2OlUnoPXnS6iMYXtgBiaPt47M/1LTmcdgd63MDlLbi\nm1NyTahhsuxqRHI+rhtZI9Suua0r3TiWiwg+7/dNmCkNTitqh5iK/H/LEJXSUVVucNsaTq7Kx6ot\nh04CLbnLbvLM1mKsxqqGbfKz11pEcJokW8caizbqsba8iyMPL5rcFyULqCuHsWBmJWe6dmIPatJi\nmjaxaPghVA1BGDGrRSCpmx5at/5QIR+fqVIHba4pOWPH2hVjHA+5/j+PTud/5OsRMo4wI7LfC5ah\nlRLArYoRtIE8kawd+bjvWTuHfuRA32OKOJALnYzSCW/FTEevj7Cp1soQ8dXBho3M3+PQqaLlYbBj\nHGGqvYvSWGv29iZA7vCKNRS5Q+pFlMa9QemopjBdS6d4K9gcaR2CNphuhh1BLo5tk0NnvW8si5K8\nX+8x2j1aK/ddphgBr924GQol5eHJGpRtkliLWjLBfZf4N9Yfa4WGlcgQh3UitizjoC9NutlhaGq6\nrAFSECcTqlESSyIRseqhUKYfT/xhG+kHDid//o7ZybSrzGGfGNMdPA7/2pocYoPlURh66COcqqCU\ntFka2x5MVK2V2/3OPWVeesdPMzUXlFJy0KjOVEX8F5Sj9wI0nJN1Tackq5wLGMdQQTtyqWRE25Vr\nxrSCnwN+ntDeoYrcyClLt3mtEgcqDRpDp6W/Wymb4JatNWpplDIifAe2VWsZrKSltTZYQGHtLA1a\nfPjYWqtsUbKmjwdAHvqcw5dYx7RkR0ZzGqH8xwomk8/j4/qnrx/q0NEN7ABYVX33UR04jB7+pkOW\n3rQYNZtSQxwob5I2cjO1oXMRFTGkEsl1rARe9nIDSDob8uEOmT2H6KwffqHjSdvGuqM4As2PKg9t\nYK9X1rwSs2zApWua1lStKVq+vo5d3imD7o7cGmtKxNQoxnJyAa1Fnl6LeMeOp/XlcpGbrMO67jjn\niFHaSg/dxjQ0TL2DD0Fcx0WeZjI9JXLayVlK+Xo4mjO0HGgjtrJ1KPXQ5hiMkfcnqypdWPWwO1Qo\ncqiY49AZWIdWmu/xx/5QrIx1qMoaJuC3YDR13GDKMhIbG7WOZIDx/zliTA5mTCvzWMVSSnRtsM4x\neQSXUTKBKS2m3LfrnTPyMLutGzlGWk1cTgsvH57pSM6STFR65DB1Usq4lAbVLwkBbax5ujdyb+SU\nuG4rrlemEFA5iwk1J9JoOjVWgxMF+9HE0b9LXexOobqVQ6k1CakzBqOO6U80Xsd6tMdIcJM0tObj\n4dkHacJ4kL9fw98DysfvpVZUFlr9OJQOW4TcJo8Em//m64c8dEA+4FYah2FNdYUafy6q2YMnGE50\nLdUuORVU1/TuHhLz48SuvVKK5JRYI+0PHR45LhyXtBKmRiT6sl6N8oLHzax0RyERFEabUVeigEpV\niVQzsXZiZeT+jiCoGCm5oRsE4zHKY3UVTKFVlPZ4MkoJfnA6nUgx02plW3fWdWVZTqiuH5qLUkTz\n8fMf/oBSinvJvN1utNJ4eXqGrvj6RUK93BDIOSsVJvI+jEMKxtQmTErKkqkroLTBue8EgKXQ6tA7\n5SIHT2sUJLFuvI1y6Kj3KpreGZMPD+D4AOtbPyJNZRASH5y47K2VDCV9CBL1OxakB9InDOO7alry\nkvIAy6UWdwozJSbu60pD8XS5jMoZQ8mDlLBWrinAeUeYAt6LabPUQkyJhkIXKfxb486eE93MIx9H\nUVun7Lv8PDHRu3xt1+Pn1tJtrq1F9Q5VS81LGz4yLcmR4vqPDwHfMa3EKOWRpRSxMRhxhAtYLO+F\ntIJWVHs3EB/KcOCB3cCQLfR3+v+YiIAxQf/O3Yof7NApFprVIwTpSJgbBW4HvoL86m1QvHIVj5R7\njVLDS9MUxgZKg1g6VUNFk4skDGokylF1aTw0dJrymGOUbEKt98fBNbxWrdNVRxuHsjO0M70lSt9J\nrfKqKm+tciuZlBq5DQe2kjCsuMuaojsUr1E6Ip3UCVEtg8kOox0Kg7KaSYvS2NqVECYBoRv0Xrnf\n72OUNizLiafnD7ytV6ktqYmmIO47qRaMs/hqoGVMr/SapUrHOnyY6NYQlUE3MDnT1Jgi6+FmO0Rz\nEsdaYqakSG8dp6TWuZUiLQJKPwyCBydzNHe8m1/bsM1ppMWUoXIWDCF6+Tl1KQTXUUcsiZYESBFl\nStwsXdErlAy9WCwB2+7olkSxrREWZ3wmW84o3yi3FWsVpxDo1orR2NoB6AJYrJmopbPHbVRcG1Ad\nQ6G1zBZ3Sm+EYPB+wbmA115Ennsl5V3W0FLoRcLC9MAFbR/s3sAVGxL/6oZNwxpLi5WiZPI3WuFc\nIyyaa9p5i5XkDWHW7NcbtQgMoL2lWUNrhYDH6EKl0UoH48Erci8oCgEt6RrKYv1EYce0CnGnY9j2\nwqI9pvwLTjpVi06nC5Avo+dYtwRgbCN9bmhtQHCfgQNpbXBK04aXZJpnybe1komildyoORc2dglM\nGseYM4ZmHVaJIKuR5aZQDbrs1n00P3YFqmmK6qTW2QukUsl75M1F1lLZShEzZ1XSc6UNtTRSEve1\nVmB0I5fKbiKmDmYMhdUBbwPWBKx28ssbXl5ecNayrdtDBpBSpCuFs1pC61PifrvBKLZb1zv7lli3\njZwTb9c3bq/faCkK46f1YxIQrYxgUK0UEeYBkEUwGSPbvpNToiRpuhSAuI0uL8QPBVIJ0+UhcGBs\nh1Gz90qtmVKz6JnG96lNtFcd6fKKQYRzRhl27YaOSLAajIgIrfei/FZiMG3j6a+QicsaKUu0xowe\nKmE8c4WC4jpygpfgeD4vKGMopXJ6OmGNxjlhqWKMbOsutLmzaCuGz9o7sWSMNcTNEOb5YfMAMZvW\nLgHovYii3miN8A+NUkXlq8b1rLtgmaqLDMQqhR3Tk0yijckbLpeZt7fMfU9046lbxLsuXfajyQGt\nCC5gdmnuQPURDqZpRlFrxigJdG+5UrVFNyi5oGqW6yos1AYxd+bfOe38UIcO8E6VjhH0HWx8R9x7\n7yP/VaN6p44uqEPApwZI50btrXdO+rBHEfz9dufaXjFKMn2dNdLYGGTS8M4O+riNRs4B3g2KGC1P\n/VhW1vXGut3Z043YNrY5UXKjDmPgFivWNoIb8rqBRdEET9n6To7SZGG1xqjErnfUZNAjfrKOTq/T\naMA84idk547UDsssAPN6vz8ybK6vr/QmU9ntduP+9sp2u7He7vSS8JcT8zwxz9MYqfvDeqD00Zwq\nuI1KO/l6Y319Y1tXKXIbDFUbjKO2R5RIwyvDbIPEdWgjYj096HRG/3ZN5JLH91MckTq5SAd4qlEO\nMOsQha7FWIcLAWUNxnv8SN+zVnq4aknktlNVBtcx1uKDyPjZ4sC05LPMuRL3REo7+9ZZJo+zF1KU\n3nSjrOiBvrMOaC3K6hjFxFl7wzgn/esDKym1QpY6oZwz2qnHQ9GMWFIzpjn5/6pR3DeaMpQaYW/6\nISOwxnI5n2n3HTciTbQC98tX1pSpPRGCe6xnqkvPu9KNljNdFZnglJIMoyJJBMe9JQFgnUlrpinA\nlqk5YewhWkVYx9/x+uEOneN1qIi/F4k9Wj2PnX0cOl0LvSiApDwy2kHDjpuotToctok97qS4y9PE\nKEJwlFbxzdA6ZGvoB4uFYA1CYYrhFA1NVbZ0l4rcwY6knKim0zL0qqmlk/ZM1o0+GRGUaYvSY7cu\nFWqjKvDGYINFGY0QPUJt5l6EqtWW03QSmtYaYtzZtvVxUCQb0doQY6J02etFX9HoTaaU2/VGKxkQ\nbdIx5UxTYJ7mcagO7KANyr8IW1XjRllXyu1Gut2Ie6S2Mlb9TqoSF2KHhcFrQ7FHjY4FZNrwzmPM\nCGSnPzKLxOYh73HK8lmx3wFYmyhElbFMpzPz6YSfJ6zpks49pqOqZPpIfafqQreyfjmUhLKbO6WK\nHSKVjtqTXDddvvfteufD+Uw0itfXV7w1TN5Sl1n0LuczfIeLtGHTOJ1OLJczaWiVYk7EUjnu0RBE\n62LRqNbQAzdDHykJ5qFTOgSVkpHzXhwgQWVqVExL44Y7Mm5qoZGpdIKdHiHq3hh0a6NpQ7QgYiKt\nj/X2IGq00eM6L+gB9bdaiHGj1yykyu/TBv5Yh84BNqL1aCVk4CnDM8K7H+jQ7TyEZFqh7BhDFQ+T\nZesSQJ4HbWuMHdYIoXKt1fhgsUGqcpXqlJopJZHiTsqJ3kcq/wAptdF01WQFUZJYhwqUmmhZUWKn\nFdDKonokxYzSEWMczkkQt0HhtWMabmgJ2taoosGq0Y9lUU1wDVAP31Mpot1Zt5XeJWOlti6MQ25i\nyQCmMElAVSkYpam1sN5utBxxasSSaWFFphDkxq2VdVslkjMl9g49i/cnjVpdjRLv154ET7NmYDKC\n/IhPsUGWicwoAaq9C7LmGDcmnsMo2gdjkt8P91KZkFiMlDLdykraqdSWAS852Ur64kus1FZIJVF7\npemOclrqiVQbRYHmwdS31okpcb488fat0Ftj3SOvr2+odsIqhaqGmiK9VZ6enjidFrSWJACUmItd\n8JwvF6Z5wYzWzVwKrRe6VoQpgFLj36HppdBzkdXFe+Zpwji5TQ9e75CI6AdrqmilkLZIK0VEn63R\niwS6O2XpSrQ/c/CQI7EKfpRqgx3s/J5eaLVoi2of3sYubFgrjX27o2nMNKyCnCPQxfD8r3joHMbB\nTpenwdhvH+0NQ415CNNaH53nQ4PCePIoLW9Sp1FzHkBqI4SZeZKcXVFkdmkX8AZnDVbbhw7C9JGz\nkxK1dbwT86YIwoTq7MqjTKNiUFFS42qEtFVKbegu5Xq1jkxdX2n2iNy0eOMJNownYEc1cDowTTPn\n84VlOkODtBfStvP1yxckfGl9mCmlMqXQ9h2lDfseySmznM+0Bm/XG6UIz7dMM7dv34jbjvGCcVmj\nB/ZhxJTZLPu+07JoYUrO5FhIMZJ2aQJNOXOPifsqU57gHGJMVcoMGrzSdaHUhtFWygldGMFrWmhj\nLf3iYqat7/EXwvRSGuTaSB1yrhIyNVbLnrPU9naw+qhkLqInMoAROttNmhozzg/dkRYVtmnCfPow\nM02RfbuRS+N2WwlW83KWdtBaC9u2YYyI7ZZlFo2UlQpl4yxKaWJKVAUxC3jPCP831r7ripRgYBqw\n3uOnGTcFWd9bo47RSMNgi+TwUcagROL9HROoCc5zXk7sa6YCwfkxScmqPnvHWYf3bKUmuKTRGtul\n1rq3RmkVg3m3B+WM0gPnrIopuEeR5e95/VCHjn68oTzk2g+nrzMPGf0jz+WQbPZBB5aOVbz3L7dO\nihGlNbk2qbgxHu/cyAzhgQdoLT6iWgdmZA0hTPSRveOcH1TqcT2IGU9XyE0R4w5NPw6d3OpQxcoI\n3MYNHLvCKgvKUmohZ431M+dw4jQtnE8Xzudn5rCgMcQtkprUl7xd3zBak2JEa8Q/lRKNRtwl3iAm\nwSOWuojTfN/Z1k00NFrxdD7zluIAf4VqNeOparT0u1ul0VUTU+F233m73ni737he71zvN7ZtF7C6\ndeyYlJw2BOc5TTPLsoDpFBJaVTnow8zp6YnTcpZpb7j1UbK6bnsUc23tlCIO+u22kXvjbd+4xh29\nBObTifPpzHPMzM4zW8fsPME7jDcPULqrkSY4NRLgg4R7Be/wNpG6phtxZHs/sW+bGH1jouYmfenD\ng9d7Z993tm0jBI/1UvBojKFrJbEidDCaNihx9Z0loowQL91l/bfeMZ1OuGmi0tn3SKpHq8bANMc6\n6pyX/vohDGxC6WKMGc0mB65ZcWYir5GSK2Fx/PTxhZf5ib++/ZVbr0MjBgJXSkdc11rIAK04zSfO\nzxdaWjnTCHS+3YUYabUcUth/+vqhDp3+kMn39//QD5ZKTqL/TPPxfa5K74+v16P/CaCkLKFUtfGa\nvzIvJ/w0y9NWa1QV82jvjZpEFAVDUGYcy0mCu8XDJT4vUcOK91wGYCNBXjhahpaV9E0dYy7KAAAg\nAElEQVQZyQ02ytJrF/B12Ju0VnQtAOTL+SM/PX/i6XQRStwKgBy3xO1653a9kvZdHNW9DGxR8Bet\nwI7+7t7HSmWG3D5nTvNMjpEvv32F3gnWcFoWaooiwx/6DAZYLTL5Qsud7bbx+dcv/Ptvv/Hl9Rtv\n68YtbsSYud1vnKaFl8szFycxqNvrnfvbxstzZVoUXSW8CywXz+XjR/7wxz/z9PSENZpeC+t2A21Y\nt0jKlT3KehVj5HZd+bYm/Gnm87pzTRvr9Y3Lh8Ry37i83fgwn7i4iZMPvDw/cbEXkRPQUcZiHai+\nYawlfHfoWG2wSjAZqgSOibq3knOljdTIyRmmZZLJaBAXrXWRC9SKDx5tDbV21IgImeYTa9yFZRra\nIIXBOo83Blpn8p5pWdBaSxRojOQiOUpteONaEUHgPM3sW5YKYEFzQYGxlvtdmi8YQr993zHFiCat\niDYtxijueyV6tlrFqd5puOAwDjAZ1RTLMvOXP/8J2zIX1WnrnTX+HUoi5cj8eOz/t18/1qEzAM5D\nMt/7e9rcY7Y7xGu9M479odMQC8SxLihEYGW0GAwdsMWIHbUwplu0GetbQwKzUpXOqg6t8lD4GiV1\nHce+XmoR28O4AJQ2ODNJIBceqzO1ioXDKItRYh+ouVAxmNbopmO8YQ4L5+WJ2Z9Q3ZFTI6aNmiv7\nFkdCv+z/JRf2bZXoCYG+mOeJaZqHmbMzTRIctW2bTDPGYo3FOycZvDmhWpMnvjs0SVXCwIffa73d\niVvk9dsbv/36K99eX0mtYOfAeQqEXnHnhdlNPJ0vPE0nVC7cGuxvN77+9pWletyk6Npjw8TTh498\n/MMf+fD8AWsNJSf061dirhR+I7bR3VQ6eyxc7ysJSwgz4dKoZWK7vhFbJ97u3K8r7VJoIVFcwKlB\n/S8TaOkGM1pR+8qRGOm9AMO0LH6x2rk8n/n6+jpWTdF4lVLYth1nZrRWIwJ1xlon7FrK5JpxyUuW\nsjUC2iqNcx41lMd1XC94aQcJIyzND1d8q43UmhT3KREU5tbYowD/qsMWE+le2OIufeK1s+4be0wi\nBBxsWaVSFMzTQowrex7yhutOLpncDHSh/2WxlI3BGit4WdeEyUNvpH3DzBPA0LFJ7pQaQWD/7PVD\nHTrHGtJKeff01Pp4wox36hGI1Mf+f0jvtQan7QChO9MUWJaFeVloKFzMWCc0Lka/T0lNxFrKisv7\nwHVSypRSReKu1XuaX6u03mTq0FqsBqajlMO7CZ+F+UELs3SY6noT8Vc3bTARmlZgXxP3LjS5C46u\nRG6fYkIrzWlZ0EDcNlqTgjijZRrjAGKrdIkvy4xRhrhHRKitOC2LfO9S2O8Rg1SquOEiluiDTkwb\n1+uN+/1GXneub1/Z453TEvjjxz8yX57A2gebYpXFaYMqlXzfOHtHupwlFC00cGC8J8wL8/mMn0/Y\nMAt7pTRhOaP9G1UZrJ+52ImYEsoFmnG8uAk3T1w+fuC6b1xePpBrQfeOV5qzcbgm8vx9X7mvgcWB\nNo6ch6C0tgcdbToEoyj7RoqdTuJ1JDbKBZdx3rLtO5bKafZidBwTdYyiqel0uelLI9WKDQHtHN4H\ncskC7A+cRpppwbdK1xrjPQpN6aKhrgqUk0LDljNoyWPS4z7ItZJqIdXCPlix671yXe/kxMj3EaZU\nAH2EVNGGSuft9Q1dpGzRoPBKpluqQA/dNFQt9AqnWtj3jb6uqODRXVz3s1Iob1Htv37f/pevH+rQ\n6eMEPg4THmFQ40/HQVQH4CgZvAIeO+ME4DOaRsUOLcP5fJZDRymMz2grrtumjpgE8SShFaq/R0rE\nGMmHe1pXAaa76IDogvS33iXmU+mhFRqrnbJYJfUxumssBq+sKErbIXKsdCtWj33dsc0x2RnrFSlJ\nM0DJIipTtVNz5na9DUWsYt83qaGxlvu6Ss7zmFRMMDIJDbDde0/wSaZArTADE6CLJ805xzRNOOeo\nTRzN2/WVMGl+/vTEtJx5/vjC6fJEWBbCYMVyLuQYSVsk75H8ciHtUUymJRJ74bScuXx4YTpd8POC\nCdNIDVBo59HeE5YTl7FAl1L4OICzFoscws7SnUY5i7JSJqdqQ+VCut65v75Sc6K2nZiUNKBWAf0X\nI3m/3hsmZ/BaMWkIyE2/p5XJSb3wHmU62WMlWEg5s24r1klCpDGyuhymC21l8jgicVVObK9RJp95\nGp93IZaOzQmf4hAuKrwRTAhj5XDpkA5fnpLcHqxEoOTYqL1LYmZvxFzZ9p2SjUxSWlN7Rxkjja7G\nUFoRv9iQj9Q2RIBIFnIsCes7dtKPKb4cD8YqTaOTkYhUZy3Z2FGV/M9fP9ah09/T6xRHctmQEhzb\n1fsXy+/qMP0ZSWQb0I7SGucF9OtGdMfWO2qH3ApKizbCDbzGDCWqrEVtbG76XbilebdC1MqeN0qt\nTPIPJZdCrm1k3VpylrQ6RRN2SjuakqwcqaPoGAzBBeZ5YQ4zekQQKCWCOK0MvTTcSL7rreGGg1wp\nOfhSXLlv8YFztQM8H0CquJMVIQSePzxjaMT7HXrHO7mot23lfr+JjsMaPn36wPPFkeLPtNYwo/lx\n2yP5y47yfuiIGrSGqRV0wwQJ/apVEZjBOM7nMx9/+lkOrHmWgsHWUL3hwsR8OnN6foahFtZJpjut\nLd4IvtaQxotwWnDBoYZtoJdCPU+kDwsp7ZRWKKrTDDTVBuM0yfsWLd4qTt7wYfH0ltkrWGVYzjNb\nLtA9asTiGucoY7XXekR4NDUc3Ro/Tfgw4ULAejcAZ8TS4j3OO7a4UWl0a9mS+KcMCqMMcxBBZm+d\nPRf2lImjNVR16WITYN+iVJSixbFOMbQ7xlpS2ci1CXDtAwpD0J6aJFOooYbSXPKLjGrDciEK8Jwq\nvZeROlnZ9wh7wjxrnLH0Wtlypln33mH2T14/1KEjoVDHrqlRQw0qI/XI7h2HzSNScRj7BDgWT5Yo\nPUf1cBMHeVcS4FVjppSGUoXgPcbKdKQUWCylyC4cYxrxAXLjdhpNVRqVXCN73sQc2CyqSYyEZI5I\nwLi0PypqL2iUCPYU1CQG1skG3GhmOHxmtQuu1HsdtTpCZ6qR7KYUtF7IWYreYhTMxxlL1QJeb/eN\nMDmM1QQ8OVe+fnmlVqFAny5PvGapyJX4VfnlXGBeFk6XC95bar5Rch5mzk7cdm6vV25vd+LtJomF\nWmO9E7mBVXRnwbjhyg4YN7PMJ56fngUgN/ZxYJYi7Q/TcuL5wwvWmIfKurdGyZWT1tSc2XOk3BO9\nJKq30h02SvXOl4Xp5xeM1ZRe2XNiL3KT1tLp2Y5a3Y4FTsHz88uFZS6sCZqfMWHhH7994TRdMLpT\nk0TAuucn5mV5tGKAPBiN0ljrcdZzOp358PEFv8xUmvjecuR6TZRW8CGQUmWN+4gqlargBhQ6tUg/\n2VGwV3KhtYpFCSOnZWU6XPXiHNej7ubp8UCepkkiQVKTFtppQltLR9b75hgTTRkNHobcCnm43gXd\nhHme0b2yTAu2Voxx5HXDGovS/4qHzndiP/HqHP95/Hc1oi7hIQ9//FWU0NuisySXwm1bedvunPyI\nmbR+tHkOL8xDRCh0otFufL/2iMUoNZNKB9PoqtJVIaaNRsF6i5ukmkRlhTLiWQLwzuD9TGuFe7+z\nVxHPqVH615VYqvU4oGxw8sQcoj2tDTVXnG6PwDLnHUb1R/Lftm6s68qHDx+pueK9rEiX80WqepUh\npszr65Xb9Ya7nLk8XdjvV/b19tB9mEHvGqPHqhAxquBswNuJvCd66pxPMIUFSiNmCczCjG55JFrT\nODvEbg6tHd5PzFN4lNEd3886i04a5y3n88LkJb8lJhHA5VxwW5SwqtVy325st5WViraaaQ5cLhec\ns5Te5Ha2jslodJJEgq1lcjuuqRGKrjofzzMfnydSN2xd8/nbjRJ31nvBe8s8OX769IHT+fSIX3UD\ns5GmESMVxtPE8/Mzf/rTnwinhS/Xb9z2+yO3WVnNvu98SVEOPeWkW6tWtHFiXO6jlqYUWY9TgtbA\nWHwf137vj9TCtCdKzry+vTJPH8bq6CktEUtDNzF50htfv7yy7ZHJTCOYTdpEUJrW8siuHo0oY6X9\n8Cyd9s4YdOsSzB4EW+v5X3C9AlFIHocP44LRjA4ehkhQHflqPLQ8pVRK62A63XX2kvnly1f83//O\ncr9iguP89Iw1XgRqHXrpsjaNFsmcxWMTgmhy9n1n2zf2uJNbpPZE64lKwToZka0zoMYk1EWg1vpI\nZCuibXDaULD0mslZzHXadpZl5vn5mcv5idPphPeT+GKSKH97a9SS2e4br9++sm8b3hk0XZS3Q6Fs\njEGnSphnzucnTucgbQ/W099uzPPE/XajlMyvv9349csXvIFcCw0eh4F0PmXBHMI0Mmosp8uJn36a\nmcNEa0cQ2C693jkTs+QJVyXWhj4wm0PKb7R6mBgBjNFM2tOqJ5ddKG0v2ItZJWXAGPOI+fxQCvu6\nkuP+yLD2wTIvIn3INbHlTN0LvRZabaiqMN0IAYE0jVALLe8EDefnE93O/Hpd+SUniRUBOUC8YQpW\n1vF2XBOyBuvhgjfeE0aRY62Vr1+/8stvn0k1sSwLW07saRP6v98JzmOCoylIqXDf1pEu4IenrKJr\nGSFhijkEphEqT7+jujCzWml6q2zrxrZtA2cUQsIqcNaTUiNtiV9//Y22V6Z5oauOcRarHDVX8iBR\nGojiu3b2GHl7u2K0YleKi3egjuof/uepFf4f+TpWKzMu2lLl5hUf1gCax5NSKSVZuMOLJb1RGdXB\nWEPKhV9/+5XqwJ0nmoKXTz8xhYXgHBrD7BxP5zOzC7SWiXtCK4uzo4eqZFKO5BzZy8qe7uzpTiMz\nnxaURdpEu+a+Jta4PlaEvEdK3AnO44yju0ZNlRI3vJ/4+PKRTx8+Yoxl2zZah2mqUl1Sy0OzlFN+\nZBu3UulWP4LGPn36hDKanDrey2Es31+Azzq6i0IIXJ4uxHXj86+/sm4r8/MTKUb2faUss6yRVVo2\nFAbbhX4OfkYbS1GwVgmzUrNnWZ6Gkvg9OrXWPGJNC72VxxNUUhcFrziEaPpQBhsE3DaSWqj6hDGi\nbl6VJfhJGLIqkRCGAWto5LDZd9Z9Zb29sd1u5CjhYk5pvDLcVRqmzfEQGIzMefI0Y3m9i1BxngJ1\nj3z+/AsvHy4498R9W1El0pvIEtSgxMMkbJ+Yh2/sKbKXxC1uMk1okSxscWWaJiYtNUCn+YxRipqa\nFCjWhjZdJlwrQsBWK9ZoZjckDZ1H+d0Rgm+NwRlLjkWKI4uEhZlSoEhW0aEt6koIhjp1uV8e5IEH\nOvlIKGyN+7ryt7/9jRI84XTmefoolUyxoErFtt8nSf6hDh3F6C4yEoNZ8hDBHZqd3sTQOWhMydqR\n09dIyC1Ny9ekkrltK/Z+w6pMbgKITdMs4eFK8XS6iKnNT5ScaKXirMNoy7pHrtcbqWbQndISe9y4\nbVdS2UklUnvB2jsdQ4qV+30l9nWwYhJyNfuJOcyoButtk0RAPxO8VIrs+yaGRSU1wgawSuF9wBs3\nXNjtQZs7Z7FGwOzz+UIqhb9+/RvWOjGc1savv/59TH9ihC313WIQvKN4+doYd3LKj8MDJSBo8AGr\nPL0pSmGsRpbCSOg7Gle1UKnWdVQp6OIxJo91cKe1RC9tJOK1h+Jba4UZVhXvvLAjOaLooqdxgofN\nl2e8nyS4rVZcl+rhVot0kPWOsQ1jCsZNGFfQscrhXpuAp72ScyKlKKFl1uCt1E2nLh6muO18Gcxg\no1H7mdv9hncW2yViVCa7KteP99AUKUas95yPiUfBdVvJW3lMB2GauEwytch10Mkqi8zDyGpujMFp\nh1IS5m4QVb3VYuz0QWQetYpwETTOB3rvEr2RIcXErMXXZm2nDAa3Gwmes0YeynvuqDJyiZTGKoMe\nOq+UkrRgOMdRg/z09IT9/MtwC/y++/iHOnQoEYNDjXIz5eVir7VitcI0Je5pNF4BRgBirTrVNKIV\nU2MrmWWZ+PN/+AOXv7xwZ2ePdza7olwjp4bPmloM2+ZY15WYC47EEgJae+63xOvbjZgzGE23jdg6\na23sNZNSp+4Gb2WPTrFwv21s7RXnAiUVvJnQbaJFhy6K0Dvanjm7MxMzPVWJYeiVGL9hnWUJJ6w/\n03vhvkfe7m/01nl++cD5wzNzmNm2jbdv37jdI3/72185qpVvtzdJfHtbBZyslVg6TRus95Jh0wq9\nF0qKbKvj+vqF58sihLWyaGspFbwVU2NrQBKfk1DGIp03xlBSfvQ9pZYoNWOA0qUXvQ3MSHxwlVST\nTFBKap+bpIdglGHbMs8fZ2pJBAqWRkgrfV9xWr6HavJz9q4gd1HWxoJKFVPBAdV0cJICkONOvr3R\nUoJU2LfC84c/8Hq9s1WNOz2R9StbjtTecU7LVJAbTRtK7/jlCTudSN3Rq8LWzr6uWKuZ5xlPp+cs\nLvuBv+yxcHp+ooeAPV/48OHPeAOq7Kgied2GgvcZYxWlK7JydG2pReCECYPrGq81XTu2LZNLx7gT\nr2vEJ4XymTk47utOzppNaZZZk/bfUD1T1IktQ1wKf0hPpL5TTh2cJt0SbBWVOnW/Qdvoy8yqTqxP\nM+s8s9XCVAtTTpy8I/rpd93GP9Sh832/kRpiP2tHPjLvAd+C74xQKCU5J10bTO+oLlT45IejWVm8\nCZxHcLsBnNe8XJ7486c/8XR+JufG9bai2y6rl3LQPa0ZYsl0C9hOweOj4hbNUCQL1uS8g6axJmGV\n57Kc0IuRIj8km0crzTTPeNdHnauM52WEwWujwUJvnW3buF6vtCod5dZYLhfJeTlyXUqtfPvtC/u+\n8/T09BBRXq9X6rax7YlcK7kprJ8wg93a15W47Sg3JPj3O/f7XSptjaKMHqWsOuTBEI7u8No0pjox\nGzs3WKZhOC0yLcUYWdeV1ivWW+wQISojtH/JhRDmRyTm3gVP671ze7tS0k6dw+hlX1FK062lFwtN\n1ug6VMNHC6r8G/IDDxwXk6Q+tsa6ruSUmJeFDy8vuDDTtWGPG9ZKzKcGtliZJsOyBErKpFp5en7i\n/HTmcprRqlFTJMYNpQK1Fl5fv6K2lfOHDxIWVjRWadIuvjFvP5L0mMd7xWowXkJ5VWustxvdGLr1\n1KYpRZIDm7FYFEkptnUFZGVKRa67lBL0+Tsau7OcZuly9x7dRf5QcyE40bDRG9o1mlEoD6Y5OopW\nLBoJu0spcX270sL8yF7eY0St67+my5z/ClD1PTXeERHU42Aarqw+vEi1FBGOdUUrne22wjdHclAd\nhMXhMXx6+sB/+OlP/PT0E8FNpFzwbqLldeBJR0XrTG1NIjMCFCLf7gG+dtbtiq4wzYGn8wt9Bqcd\nW9Ocl4vgCEno5l7AeMPiLDX3IUDbMVWEjJ2OaQZnxdy67Rv7HnHWMw0AM0bJM/77P/4OINL88wmA\nEDyff/mFo5869btokLSTFon1TspSf6MG5at6J8fI9e2Nt9c35uVMMP4R6H2sY0cwt0ahWx9gMfRR\n3Vvae7vAvu8SFnaX3JowzXx4eeHDy0dx01svTZa50I3FaStkQRGR5Nu2UnNku68o3fH+MoSNQk9b\nLVhK7cJkSpRspnVx0b83UYxQ9VIpKckNWhtz8COGVlYFM/RXW+wEBy+fPuGCHIbWiVRiTyvbHrhc\nJk7nBU3AGSVRIL2zbpGyygHol0kwnZLBKLxVfPnHv7OtO6d5YjJ9hKMVrBrYlmoSWrZHidXNHYuR\nmmCl8MoQbyslSsREq3WEzMnDy4wet2274eaFVjIxJbwRDGePOy5nemhj3RJCxiIxr7nHAUbzCCj7\n9vrG7XyhLydQGmfdo/7697x+qENHJhfJWfn+oq9VAqfUAEdLa7QqNCKtoasCKzVxHbFFqAbpvoO3\n5GDQsyc2iWEITxOX+ZklLCgMWMNp0iSRQwOWoBTOzqI89Ro/OzI7lcTt+o2sNrx1nKeFp+VEzZ0S\nM7OROM3b9Ubcd5zxzKeZyS+0McWs18QeE6YcRkLh4lRj7OxgrcP5Aaium8R2GsPnz5/RWjOFwLZt\no5dICgWFgerEVDFGsywn3Ny5XkfRXk5QGl4bLI2eC+v1xvX1jY8vn8S31StqgON1ZOd0JQV1fBes\ndjRn5pxZx2T27ds3YozM88zHn0UQKKFdoqOyVqp6gws4IxOTwUAdh4UyhOnEen3j3//x73gneTPC\nHJ24nM5YF8TvZu3w6lVUH9bpdvzbpWerjUmolYozlhAcOUZ6KSgb0Nawbxt/+dML/+t//N9IpfKP\nz5/JKaG1YnETykHpmdzi6KsXsaV18hlc7Mzb7c63L79g15nTy4skUipAdT5//sy316+8fDjzNHma\nN+A0drLMbsJ7x7frSrqvwmw2g9KOartgaU49crqtEkW5dharpYnUjNxpOwrxSk5DL6bH+24oTSJ6\nnZEQMFodejY9RIEFdMXWBlbsHr99+cb9dME4h50mmlIjbO2fv36oQwfgqLB9jycd+Skj4lGwgCo/\n2WCtGG5r1FByImWErYDBo5QF5YeGoZO3Rt4K1XUBrdEYNUKwW4Mu2TICISi01ThrUDiClRuh9ycm\n53DGUWIhx0LLAsaKWXMn7RG7OELwhMkLJb81YpXMG28tk54xxktIWD8CuzTeW7wP1NolrKtUnPNi\n5ETC1nPO3N+ug+ETgNd7z89/+FkaRpVBpUK0hrg20h5pObJ4ofuphVIq27ayx51TbWgj2iTdG71q\nmhbQs6IeK24bbFXrjX3fud5ufPn2ld++fiWEwB//9DP/y1/+gguzeMLQ0AQENohcgdrIu2T0pCjN\np5MPPD9dKDHx6+dfydtKcGK2fLo88+nTT5xOJ7R3AuYaJTdUSZQs+pVS5HNouUhz51BNayMO/GYr\noUOsjT0ngnf827/97+y9o0vl06cX/va3v5FjFjW5Vqxb5ZdfNrbzwk+fPnI5nxEXSZE41CFYLDVB\nr5xOC7Ek9ntC90bLN8oOEUdQHjONCuDZkXLDUNGtoKrCKYVXguXM1rH4iRISwXu8Fa8ZQ0JSShku\n9yrr6Ih4QSHRKqWMJEqZRmWtUyM2Rj0Y4T78h602nPH0XrltG7d1xXTRq2k09V+xgoauHgFdMvGo\nR5SFGie3UorS+8jGMVREzKcAM7Jujp4mqx1PyxNtCTSrOZ3OeGN5Wp5QzRK3TDVdnhzWS0JGayj0\nqJ2R6uKjwqYpybkNbhpPisa+RbKqmD6A1t7HDXZ0RFfu641138gpc7+vbPsOXSplD6evtx5vPL1r\nSknSbaUKcdsByLVibX/s6SjF09MTvYn35zCvLsuJvO/E640t7eKPSglNZwkONwdm7xGztUQq9Nop\nKVFrRldNzYqsxJ+mlDAouoNqIqUvqTxWquvtytvtytfrG9f7jQ8fXx7VJtKcOjKr1VHOJ9NJiZXt\ntpLWu/i2UuYyz0xhIviAxnD/9sqmYAuBFncMnVKiuLWDB6vFVzRaKEqWwPiaizQvVKGP5dqRuBPv\nnESfpsya7yzLwuvtyuu2s1zOXC4nLpcTn3/5B4pKQ7Ocn/jjn37mDz//xNN5oebE/XbFG8f58kyY\nxPYwhcAyTyhriSXRutyky2z5cPFclolTsCyzJQSFd1JC4LTCKkUfGUmT9yxh5hRmZu9p94QfLSXQ\nyLliEIKljyoemlTFqGGazrWQah36MHlASAg1qNrlfUF0VFpboKERRst7sQaV4cnqxmCDp+f9d93G\nP9ahgxzAR7Hd+4EjFgbrRo3q0HpIEZmYrZTWGNdHxKMhWM/l9MSf//gX9PlEAubTwnlaOLuZecRf\ntCrlZs4KU4aRaNIjwqAOZXLOjUIarRCyBtVh3nPeMc8zU4dSI7kUgguSokfjen17ZDbXKo2R3gWC\nDUIZG4cb007t7y2ObXSAay0gdNx25nkm6/SI/DhfztxuN3HoD9OeshY3TWjrMClTS6OmREkyOSov\nbvhjekSJgrvWgq6a3qvQ40intx5TiqqNloq0VcbIuu98ffvG9X6XRoSRvvbb11+ZTheeLh/EP2Qt\nFUU1GbodepFGS5GSI7pVmbpq4e31GylGMaAqqKMKp8TIen1D0aklYbOHo3paS9i4tFREWs6UlGS1\n6h3nA+H/4+5dYqzb1vOsZ9znnGutqvpvZ5+rfXxRrAiLIMVKACkgkjQSiKKIiFsnEhEdbkI0EB0a\nEaGFRISQaNBIgwadCHNNw2kAslCIDDKx4wQ79vHx8dk+5+z/XlXrMuccVxrfmOvfNvh4Y2FZ20uq\nTtX6/1W11pxjfOP73vd5vWeDu289wCWuvHz1Par14qfyjkrBGMWz508FYTo/cDkfmc971sPEarge\n43LJIjuoct0eDjcMQ2CpFesso9mRWuX2o8CXPvoCt/tBEjhbwhuRDRhdMaphur1hsI7DOHK7v+Gw\n2xOsZXmcBeQfIy1Lv7L2bHWlxFdXJYwU1QpLErJAKhWlPWG3Y3QD1qoOE+tTSaXEtGoMVN0z3aRn\nhjXEJgp70wcB+g8kmL1Ppba+wafDxWjSSBaObz9S6Z4GWcSmYGqldcQjSjGGkefPvoC/vWGuBWuF\nbBfQmCwOcaVVD5fP5JYF7mW6WrPrNnKVMLlYVlEnJzHINSD4wLTfMbiBnArOGcrpjFaa0Qdyy8S4\noDSMnXVjtGMMExZDK2B6hOC2K2stTUxjLQrJK99Eh9ZYcO3az5mmCRDX81YJNgW2yMSplkLwFj2N\nVCe7njGbsdSibKO0RkxZNEECIkb1hYbW0EWodypXOUr2uOZlWbgcT6xxxQ5eDJnO8ebNG06nhf3+\njpubA7c3t9wcbrAKsmqk+SxO9HlmPh2JcWFdZh5b5nK5MM9n1jhj1MZNKtSUWecLINxrlz3NCNZB\nW3HMp7iS4kqJibRK9dQQPrELgyBVh8CaEvOy8O79e5ZlIeuM3U0syywsY2soWeVJ9jAAACAASURB\nVPjHxuzEV1YkYih7yxg83u2JMfN4OrGmjHZBSIBKjMW1ahSNrzy54/ZrjhfPnzJ63RfaRRTxpVFK\ngpJQLaObw2nNGAK3hwN3NzdYY7gf3gs0rhRa3VIjVM8ob2IyRvo4Kc4opbi9vSWWSsQQ9jdMZkSr\nQjKJrFSPQNJUa3t6qaTZlty4xJWhVi7zhRojFc26rHj12ZaTz92is+3gW+zH1rCkg9ZLlazrBpJR\nVGRsm1F4La5hZYTmlpII9LwbkNOrJsciS5fWKKO7zgeUVKg0JfYAYcdmarc3xHVmLUsfUYqb2znH\nfn+4jn+N1d05HpnGkUZlzYpxHEErhmGQC0Rb8XkVaEVJUGDT3V/WvUnGsttN0OB8PrMsS//7JdEx\nhHC1LmzRwg3x4RhrruNrbTTDOGCUolpLSUlu0CIGUpRmXRcej0defPSCdZXYF0rFoKgp47VFlUZe\nVqiNEhNxXnh4uGdeFzCK3bRjd3OLcpYlrrx+/Zrvfvd7TOPEs6dPefHsGU/unjCGoY+PIefE8fGe\n4/HI4+MDy7pwOZ/ZH/YCJ3v+nNcvP2FehFGsjPTX7GrINYGVPpYysnmkvtiUlKUibkL02x32jGFg\nDF64OKVwWRbevn8nqndlZAjRRacheMm8spZWLM4pntzcMYVBen/WXRvo53klNcXoJMG1VU1pBe0d\nu/3EV776FfYvVg7TIAbeCDULoP1yWpBkBvFKibNc4YzBKC1DhU9VNLIBZ5wbrs3q1t/HUhSxZryz\nRKXISSoUpz3ee9KSGEdhgRdjaap0JnIALb1E1ZQklPQWxvvjkbEzm4YwwvoHsadDd9HCh5SH/pCI\n3w/ZQxXpc6QkyZnSmRfgt2qNVIrI05eVoS9KTcl5uKJp1sjkQz5plNMoK5lNMUfpB7RCU4XSImua\nyTWhjcYYdZ3uK909Ya1e8RrWaIYwoCwMrRGiJ2bxNNFzrGpJwtpRwmumqqv3S/cL3hp7jYAVbEVh\nnmd2045xGqi1kaPYHLSWmOFSC0ZZhnEkxchynjH9RsrdR1Ny7jEllXVdeHh4TyyFr/5gxjvTwedR\nEiTWflO2Ro2JVhvxsvD23XvWGHHe43cT+5tbpsMejKEqhZ0X0rpyPj1S4sLp4Z43ux3TMOKdcKpL\nztzf33N/fOByOXfgVWV3mAjDAGXH/uaO+fVrHh4fZNuwGgy45tFNxIr0UW5KRY5jpQjmolaaCygX\n8NMkDusGMRW+9/IV5/NM856YIqO5wXam8dNnz0jLLF6nNvLsyR0/8INfJQTHslxY48Iao6BA+mee\nayPWKk13DTZ43DiAMXin8MHgrCPbSo6KuFSaqleXv9UfdGQtZ9ZlRqsGbRATbozkHClFo03DBJnV\n6k5X2O6Ry2UlpcT9/T25NYoJ7FJjh8G6HcaKD23jkatuSaFTMpsxEpKoFUtHs1yWiM0Znf8guszV\nh8QHYZhsWq8P+Vems41Lln5L6juaRXeGrHBNUk4sl5nL+Uw4X6hbXnetGDRFNTJVsqVR15zsmBIp\nrqhaez5TptRIKZFKEQl/331qLQLTshmrFFp7wRDQ0Bq8DxgrjurT+dRzzFdoEjHjjMMGK9D5JokG\nVSE2g9o4Ho+kJDoKHxxGQS6JUhJeO6CijGK/O6CV4vHxkcfHR2IuTKOgDUr3aVEKS28sA8SUu7Zm\n5jSvuEGSHqwd5YZaF7mZYmKt8v4KTEz8RmuUdEtvLWGaGKYdPowSu1Ir4zRCzcRVwuziMnN+fCA4\nz+AdwXtSSv19idTW8EPABc+03+GHgdYaT77wglgLb1+/5nS50LRiKplpP2HxsksX6VXkXHrGE1QU\nqTXuT2fePTzwlS9+hDeWZT7z5s1bPnn9lqY01gfWGDkeTxJbXSu7aey+t0jwkkV2uczCLm5ZEjFy\nkdA/H0gVLimzpoixBpBquyl4PJ+Y5oUxGJwNEs/Tj42be30aB1oytOJwV2RqIkVpfqcUqUUq1A3C\nLmF9tQ9OpN1grWWOF4wxpJxYY0EFYSEtJTOvMhFrfWQuGFNB6dLBeUr2T5S2oCupFOZlZogJX/4g\neq+Uui42Son/SlQI6iqCah1y1f3MPdtayY2rlPiYqhAGU0rEdaakiDYDtIpRgp0YrMUaTaZQtaAm\nai2UHMlplTwlpag1UfJCLUmibbRAvksOYjY8n1i1+HlKLThtSTle43G2iZgkmTValuNZ0xU0HWMh\nPSRl1NVIKP0J0VxslL/WxAG/rivWGXKSn/nQDapFwPFL15kYI9zblgpLlO+LqdZySZnTZRaO0DiB\nMZxnaeDWUqE3YXNKkCVmRzfRcJyXGeOdjFyNZIHV1iibStw40RlZ25Mm1XWiFEumrJrkBPGQewPa\nOce432GsxTgngslxpGrNcHtgmGfW+dIzpURboozu/Qg6c0aSoxTQtGYthe+8fMP7d+948+49T+/u\nWM4nXr18yZwSYbfrFEBYLjPKGsneSonBSyVmjCLmzNv796J6Jvcj63jF4J6XiG5SeUscsxzRdUrU\ny4XzacZpyNFTa6akSOoBAMF7bg8WRyZHhVUiCJ1CwPvQj1obfsSh64exeG3QqlxjMUa0H7HGUFKj\npnIF4pWcya31SlJfldo5Ry5ZTLM6rngTKM2QW6UpQfq2XLvsQTjin+XxuVp0Wv+jPpxfZRS+Ocu1\nVpLEsEUHa6lelFY94K1cVfAi2xHdjrOaMDhiTj0qxUiWj9GYJpnkVSuUblANuhnBMLRMjDN5vVBz\nxHiLNxprHDUHcoo9siRRoianFWv9dVS8sX8kmUFC52ywGG3RxnZ0hBybUJqmZfybYiZ1kZdzVvAN\nXe6vQUaaRknSRNPknLhcZpZlkUlGn64ZLQ7lXBvaGdwYqE0Rc+WSEsdlxVqDVZq1VE7zzJOnT4Sq\nqGSCRk/iLE2SEuZ1IZYsXOnOmq5Ks+aCqQIX09aJ/cGKMVJVxP2M7Ki1VXITnpG1FuucYEuDSPG1\ntfI3qMbSGjiP30/EDjxPKWNdxnkvC0xtck0oyTrbIlsykLQhHA4spfLJmzfsx5GsFMO0xwTPaV5Y\nY2Lc74Rts0YxWioxXZbWWEsmp8K6zKAqN7cHxv2ED4ElSdyQ9QZU77loS86RNldGNVFj4nK6sFzO\nlJpEPY1CN4NVhv00EVSjrAqtHMGPIuzslMjg/ZVBpJIkfeaSr00daywgKNTBB06XI0YpnDOgjcgz\nnMFYfQW3GaNJVRaiXBJmQ3SWRlMS0Y3WPcOrn0A+o+Pzc7XolE/hECV2ViTrW5yMcJFllVc9k8gY\nIwKnViXPR/ZyqXqa1IpWgbeKUpHAeKp8KdWbd6CMfIZbgFotUaJG4kxeZ2rN2D4uFQuGqKSbNeIJ\nyoV1jsxq6Y1gR0rxin7Q2uCMFyC6D9cJVa1S2ajeLFdK+jdGG2GgGN1LdimhVRWObowrOZc+wZBy\n3BgxIe72B5ZlJi4Ly7qS4iIj4WlkWRPn88zjunBOEaL8nzF5zvMi8DDkpst90W/988i1sKZI6qLA\nlCvmfOGuQtaaYiy+ozONEUQIpUEuVKUFVN9NuyA8aecDfhxQVgR/gtjU5JKYS2ZZxPuTGuAsJUbW\nmJh206fCF6W3xoarpYj0wGjsOFFovHn7lmAtYZz4R/7IP8b3PnlJzJmlNHQSQl4uGYVM8jRSxakw\nEJUwkNCN27sbnn3hBcMQmOeF1DJoqVhikerBZE2ODa0Dg7dYJdqqWBOtFbwV4JjVDovD68CgLCo4\nNDJk8D7gvMM6WXTEma+7aFWTSrrq0zb7y/GyEnZCL7BKSIAbmlQ2A8mRV7Q+RNjEgVx7pUXJsa82\nMVMrBdYaOWkM4TPdx5+rRWeT19O5OboLutDiHhdNnNyA0mjO/CZ2oO7qSiVVDrVSczcDltxRAZVW\nEiUpWlUUJUT+VpXA0rP0TGpZyWmm5hVaRrdCq4m8KmkEZ2HfaGcxSpPjSr7IWV9Mnk1EdynTiuiA\nGo2qBHvatDS7Kw1rG9Y4YTXbRk2tM3drdx+I5D2nTg20rkfwZonU0UIf9MGLU3134Pgofa/apDy2\nzqCslslTq1IFIHG1LSdazTwcT+RSr0wjjUzzCgKk185I30wrcqu8fv+e87zy9Hzm2bJwmBfCOHWG\njEJ3EZroY0yHsQnbccPMOuMwWih6KVdiScw5czydeEwL79++Yz0dGY1l7x3e2Gu6g2zCGjqIDcQe\noaoi55UlRi7ryvF0xobA7e0t437Pzd0TmrE8HI9EpVE+sKwrrYL37hrnm1NmGjy3X3hGTiu1JO6e\nP+H22R2lZNbTI6VVdvsRtKXMS8+1l6ib/Thwd9gzjXTEBoAhBCteNOVxBGwLaO0wDKgqcgYB/CtJ\nJNWmH4vFHpObTLZyToKqLZJ+qvt0yRoLVSBvUNC5bKU/pfSkTxFq9/RcMZPKVFFwuqVmNtWbJLc2\nUomf6T7+fC063WultbzBxpir5ibVClpMa5vatbYmDdz+hrXSaKr1qkUWLN0XINUaTstBuLVMLaKL\nkej5RtFATbScqSXRevN4k8Lr7nGhiurTikOO1vrkwVqcMSTdJ1pNqhg5V+v+TyupJtEVKZHwY2Rx\n/XBkbIAAp1AN712P3tXE3uPZymOQgLhY5Ag0DBJJvAGyhnGglh1KCVMn5gRac7i7JVbFkqqIAI2l\nxJm3b99zucwcgu1eKSPH1ZZR1hGUJeVG0wuj0gyXlcd54f3DAxlFRrEvjTUmolK4uimDCzUldBO7\nimiFDCgtUTu1kWlgLWspVODd+3teXR54+cknBKX56vPnfedVTKOkiHrvZFHUitRKP85K1PDcR+Lf\n+eSBtCx89PwZw/6ANpZvf/wxz198AR8Gnjx9hvGB0/nUIfQKp5U0bhFRqhu89OByww1Bjn1xJdeC\n7XlWpUAqDoyIRW8OO77w/BlPbm+4mYxA4qKjtoRzEt1j8TjlsdWjikU3K4LSIpobvVVu3fqzmTxr\nRoyvpeCNJedCKoUQPDS5ZvIi00flbD8ddOUyBdXFkXUD42mNaXRmlVSkEtfd+qZoqa0Rf68WHaXU\nnwD+PeCPAl8C/kJr7X/4Lc/5D4F/DbgD/jbwr7fWvvGpnwfgrwH/EpL28beAf6O19ur7vrY224kI\njflQhmuDVka2XeTooRCns1ISXibCwh4RoxXNNCoZpSpWibdFG0NREmWTWunjcRkzY5A+TufpSuil\nRiuP9/ran9HaiL8KuflrkRgcgyfYRiuipxHdQ9+Bm0Y11RfFiqIAitokQ1o3hbuKIvu/y4JAxdUe\nMeupoV3xAqrDtOjM2zAGqZaMYbmcyClKyKAPmCUS+9RqCI5dT5s0rXB8eJQQvqi5f7zw5nFm+uIX\ncMbL1dMq3jqMtZIXti2OxvHlLwaGcc/9wyPzaWYez+ynPRrIQNGGqmXi1QqQC6oUrFI4KxM6VcUe\nUdAYF8hloSjFJ6/fM8cTT/e3fOkLH/Hs9pa0LJiWme6esLvbi+4li98pdzB+05olVV7fn/m1j1/y\n6u0jg4Pz6Dle9ly0kvdm8Fhn2I+Wm/1TLueReZm75aVyOssCVmIiHc+ktJByZNlNGBRxXQg9Q00V\nsEpzO42gwQfH4Wbk2Y3nZpK43pwytjnBrVaNbharAk4P6OaEEdQMWruujte9YldQDbU5KobSoCp6\nrpWlmYB2jZwWXAjk+Yy1wjyChrFQjfSRFFaUyNqAyaiS8KaRtajgm64EKzgZa8W4LHnyq/gZ9e+d\ny3wH/Bzw14H/5v+xMCj17wP/FvCXgG8B/xHwt5RSf7i1ti2F/ynwZ4G/CDwC/znwk8Cf+H4vfFXU\nVinsSo+/krAzCdyrPfjOasmstjRsP39mpUXirqFQWfNKjDMlr+RZY1qgajkT5yoNtJyEzGeb2AFE\nv+AoyIhMCGuyC8iIsqM2qFAlX6j2JpzVCh8l76pWJLu60VXWosNQn7IeULpHqzRU3kIFwaLwxpCz\nONeTtozjSHCB6qVJSsvELEzdEAQ3uq6J4+nCOp9kNI+SaJwsCmqtxOdjKOyDpt6OqHSBrEnWcl4z\n33n1yIsXXxbsRDc1CpTc4qzrJtQKbSb4kf3uhrubJ7x6847j/SOqwRe++EXck1uaM+hS0dNES5m6\niFq4NlA+EMYBZRzGO1JpmOD5+PU75hQ5LYmvPnvOD3ztazx7LlE4p9MRQ2N3t8NNBuoqkv0sFanq\nyQnHS+Q3Xt7z8Xff01phv9+z243EHNHOMOxHlroy4hiMIVgwg2K0Ayk3jvOCH0bWlMnLSjqesFYE\nnOt57lHVRlz5vUcVvGOaAmFw+KAZd56dr0wu47T0QmprtGypWdGap+lAcyO1WWgKZx1DGLBWNtyc\nc+9VGmp1NGUligbJVqvK0YzHBlBxBZWALCcFFKUkVIsYq8Rxv26oWE01kudmVMaqRlVCQQuh31fG\noK0jFVjzRZTpnzHN/P/zotNa+yngpwDUdof95se/A/zV1trf7M/5S8BL4C8Af0MpdQP8ZeBfbq39\ndH/Ovwr8olLqj7XW/vff7rU38ppqDcl4l+qittodtKCQG1kbIzJ160RN3HGmCmgivqHkwuVy4XIW\nJKhBobzrwXmVnIQNa/QHU6nq/hMRBpprD0n1CGGgT5wajUJrYuxrUvuIvqFso8UP2eubvUFbe22A\n0tk1JUv+kDGN1iSvKqiATopSskjl1SAclerJXadRzgKCRzVijDw83HO5XNA1CmOm9zmMtdjeA5Ce\ng7oqvodxRBnHGt9xPN7z7t0b1nWlalDWiAXCiAp3CCPNK5Yl0apmWQujH3n24iOePHvOr3/8Mcfz\nidevXvKEihsC4zhy++SO2iprXGV8mzNmGHDTDpoMEI7vHminmdPpSMqJH/vhH+EP/fCXuDkcUMqI\nBsZonFHsJ4/V4iJn25ya8AWWtXD/eOLVm/esKXF3CBxubnDes8TI5EYOhwPeGWoVucT940NvpFou\n60wqBe+dpGeqVdIbnGXcT4QxUJGbN9VI8GJQHYeB/X7Hfj8RBosfrCS/aivSgioVVFoTca2omnCm\nkh0Y5fA2oH2PsTay+Qg+VfXxdtruT3JJ0p/rRs7Wv38+Xxi0vko1xOhq8WFgC5G015BFuZhzLh8a\nyUZERLVUqhaZx5YJpxp4+/tgg1BK/RDwReB/2r7XWntUSv0M8E8AfwP4if66n37OP1RKfbs/57df\ndJAzpCQHcAV2qVqlgUn7kO6JTK+U/gDx2pIjYOurNC6XC8uy4IeBjMIqIyt7lTOt6s5a1ZMPrLGd\nKSwxvaqPtFurXRQoIkKMQquCVg6tEkYViik4o7tPaksh7fM0JXxhPt0E7ZM3pT6sU6r7WEUO4MmZ\nHvTX84qsJq1Rfg+jyetKjgsxZtY+ZdsakBI1AkMIWGNZ49ol85Kxbazh5vaW0+lynQLOy8zb9+94\n+lwQB+Lilomg+Hws+/2ekkHpjDaecRwYdzv2N3vevH3L23dvWd4/SJP29sDNMAg8SkHzhmIrdTSc\nEaWtRfN4emQ9Xfji82fcHW548fQF+zu5aVIWWLkZA85o2bmT5FrVKkTDUhW5KuYlcTpHSlEc9gem\nnWEYJ4yxXOYzvgZZ+J0EHaqaMYPIHB5OR87zgg+yuASlMW5kmAI2GNwQmG52GCcyBRQc9nucsUzD\nwGF/4OawIwweazXaCv+mpEyKmWWJzJdIXAuqWqozUIV5rZWkdS7rgunXLvQeGFJli/C6kZIECAj7\nWTYYay3HU2QYBrS2kqmujVgmnCfYgSEMgDjQpU1he7qEbCzeBYIPpJSljdBkMRoG+bf590mn80Xk\nHnr5W77/sv8M4CMgttYev89z/l8fpUnloTp1vvQKp9WKtlKBbDdNq61jEprgLNkqIykPlRbB2jz3\n4LyK9BZMuZbhIAuImEi3yZg03lo1Egdiba82MkoJ+Fr3KBBjBApujUQd0yqtjl2U2HPQS8/xUj1J\noVsRttH+NZK0N/SkJSX519oZjAlsUKpMotRCyalnmWtKkR5FrYUxOJwz1BivHjHdd7vWBHqvnMJ5\nQCliSpRSucwzS1qx3vF4OvKr3/wmP/T0x0RrhJLM7pikuWmsQLWmjDaFRkcuaMVhvyd4z5O7O9pl\nJT6eKKmxvnpHVpWsu+GzFfQkJMS4rFg/cuc80RU+unnC8ydPOUw7lnamdV2LM9KnkPuudc9RJSXx\nO4n+CC5zZl4K4+6Ww91TrFmEijgGmtXsbw+40YNqmMFhlEVZOB2PPM4nUIqwCzhnQRusk13AjSN+\ndFTdQBdUgP3+wM3hQE1ZmEmjxwfBs2rdWQkV0lJJcyHOmRwLqmmMcf3LdmOv7kGDRUBdWolFB0GX\n1K4YbkgUdreU06pUO2VrziNev7U0Yi49yEBSRa02pFwpuQgiV+uu8RErRAiBaZy6oXnbmCu6m6jV\nZxMkf76mV7Xza1TtauDNYS7dLykze7KB3rQE3U0tpSF06IjgJ2plvoj4q9QG/UPZjmdaSV1UWweF\n9QUu50apuqudBaNdWz8e9Wxs0QJJRWJsQW87U7UYnVBEtO6JlU0QAtaK2Kv1i6TWrpfog3/pXVXo\n5s/t76/d9Fo6vkFeX/oIWivWmEQbZC1xXZnjerU7bPaOnDMxJYYhEIZAGAYu84XXb95yOp8kLaEW\nTvfvsQreH7/C3WGPNpaUMookN5MSr9MwBlCFUlVfxOUCtdZw2E3sxj1uf8dlvnCZZ+Y5ssSFmhKj\n1uz2imEcsCZQLsIQ1IcbJm0wWfoMtrsaddfg5CzmyNwaNSdiTKxrpilpRKdcuCwrD6cTBc1u2rEf\nB6ZpwgSH2wX2dwfcECh1JbYslowwcVpPzGWFBj6eGbTisLvrE7LCuJsY9oHYFrCNaT+xv5kEpkhD\nO9C264Uaki7aRaI5VnJqqKLwdpAQQzfh3IDtSJPtCFZr65W3um6y6yoVqiiKyzW40PvOn66F9XER\n7xSSJDKXE/MSIUSqcyx1FYCakQqGqyROSa+mNlmMihAsTR8hl9r7QykT198fns4nSGfjI35ztfMR\n8Hc/9RyvlLr5LdXOR/1nv+3j//iVb2F7h3xj6vzQiyf8yFc+6uM+sP1GNFsWVm/Aaq17jng/cvVF\nZ1mFbyOSdispmxW8EXhRa0XCx5LEoxSjOs+Gq6+lNShZ9XJzayp3AWeV8XbtBEOnG7UolLJoLV6x\npkQZLExbcyW55ZyBxocMKINWBdURAttCAWCd66pkOWrImd12JKXogtYkPicJDoyImNdfOSkpJayz\n3ITA7TgyzCPH0wkfPIfDgePpJcs6s8aJT16/YRgGpuBJdaWtmbHnkENXiVuZKiptSaVQYpZRaymc\nl8RQwDvLYA7oaUecZ+JlwRrhHQU7YL3ncZ5ZW8b4gPEG7TVrE/Gb7gdmpWXPaFXel3VeJFs9F5Sx\n4qWrlfOy8P7xgVgNdtA8e3qL9ZamBdbWNMSW8EG8RXo0WGd4ap5xyQuvX74hqcyTw4ANcoz2fhA0\nRrBoA+PeM+684JxqwlgwVovq1xg0Vm7gjDSEU6MVmYSG4BnCjhB2WONQSia2OQpPSDRRFoPq11np\n3Op6FQPK4g+uBy2KlktG3Tl1RGuD1hS5VGpKuGJYm2Z/I9VoqWJBEfJmx9wuEd1kYHOcL9wf7699\n1u9899fFDf8ZHv+/LjqttV9TSn0C/Cng7/WL7wb448iECuBnkYnpnwL+2/6cHwN+APg73+///4kf\n/ToH76Rp5Zw0eLVE1Sqjr1qDlDNGCx+2mT7m7mJCbeR4tSU7rimTYiHlKs8lg5aQN6WhFihFFhmU\nUPKU0miDNChT6X87Ak/q6Z2fZv3kDhZTgLet5xk5gvPSrOwgro2oB1uqpry26nXr1fXbd7qNGd2a\nEANluqW6H0sTk9g+xtH3I5yCqZHmFWsjKUmlNQyO/X5Pyol5vnA6SYSxUmJKffLkjhBGXr95Kw1U\nA28fHnj6/Lk44JVMwc7nM85YhmEihIHSVmIW3ZIxGjavVatkU7mPK+W0QszYAiZVPBpKY54jeVlF\nwjA43DTQBkO0DT0okquE2rpmSxZZAbxVasldkZ2v3y+tEUvivJyY44XmB5ophNFjgwWruXl2i5sC\nRWXGnSymkcj+8IThEPiKUxye3KCqxtuBkhPLsqKiRnvQw4FxdDjf00BQktFlNcE7XIfNmyrN2tqr\nh5YVFN0LWotSoseRPmJH8HaNmupevVqlmt0Ux61Xw8ZoESKmclXcb9HCa1pQCi7ni0QRW0Pjgwk6\nJxEMbvaKUgql/46q+xq3tsBh3PP0yTNyEXX33e0tJS38nZ/9md9xnfjd6HR2wI9yndXww0qpPwK8\na619jIzD/wOl1DeQkflfBX4D+O/l5myPSqm/Dvw1pdR74Aj8Z8Df/n6Tq+1Ra4UsuUNWy8JjdW/A\n6q3kFKqecwZtZbRcSqX1sboIfSraKEhShufSGF2gGStn6e4PaqZA4zddBHJU694j2nXaJA3Y0oVT\nlWsIYPcTiVkTSah0oYuq8vXotk2yNmFf+9QOVmvp52jR8Si2hrPuNg+pnkKQo5e1jtYWSvmQAAkQ\nQugxMpplWSXpwgtn2FjLy1cvef36Ne8f3hOGAecsT58+obb37A8Txhj2hz3nNfL24UF8QdrSSJ9a\ndEZijBhrGbyhVGEXGaPQWJaSJYl0EC2Jsoq0JskcN+KVy7mRTMEMHrcfyU5TvCI7BbaCLQz9iNu6\nmTLGSFoX4roQ00Lt4/yiJPmhtMxaVrKKuBDQAXTQ2FEmT1/+gS+xu9tznB9JdZWUhbySVGQaAs+G\nZ4Rd4Pj+JLB4a9E1czqdqDox3joObsBZiwuaIXgsGlMgGIvVBl27SDVDS0BRqGavR5qaIJmKItGc\n6qxlxO5jjFzv/QhUa7/WOnpVDMsiSs0tXxcq+gZWa2WwjjivlNRzx2hY51FJSJjzZZbqW8MWfpBy\npmlDjFkM0Ft/yMj9ZJ0A9S9x/UxryO+m0vkJ4H8Btm7nf9K//18Cf7m1kfYfmQAAIABJREFU9h8r\npSbgv0DEgf8r8Gc/pdEB+HcRGdt/jYgDfwr4N3+nF3bW4rRmLelDnk9HJOqtjyKGERm7KiVjvCaM\nmKK63V9mQnjnqaUyzzPeO27unqCNIzcpYUMYUNtf2RATomZD+aOV7SpNKTFb7x0Zaz984Krh+0Sq\n1Uqaz9ejzKezsbqwmm38bozCe2nCllpQvTEoEy/xncWYiDnjnGeaxj5RkElHyRVrHPtp04BUnJNc\n7d1uIsaIc57LPEsFqDXPnz/j5vbAq9cveffuLVornj17hvcSm/vu3Tt+/fgx79+/Z/WGh/v3fPnF\nC5yRSUesSycGzoTdjlKl0tr6RiUL/EwrgbhrrbHOym7qZYOISlGUJB5oo2je0YJGeUuzBuONNC+r\nvP9amesRVj6L0nscokfRVirfSsFPFjcYYomcHl+ztjP7A3z1a1/DDprH8z1mB34yXM4R7RvPXjzh\nxYtnjMOAVYa75Y7Ht0cux5nlsuB9Y7efqCoT00opmSHsGEeHd46gHTUWPAGLlf7NnEhLIUaxKbhh\nQutCikU2j6b6dDNizAfiowjXJQa41SyIi5KZ57PoyVo/rgODl+liXFchJ9LpBE0u3xgjWIuxHf9B\n6UMKuR4l4XXtqmN6zLGYkhWINUJr4U7LLSeaqM/w+N3odH4avr8KqLX2V4C/8n1+vgL/dv/6zA+t\nxLjWNrdyFwrW0uFdVuBWtQeHlZKJtfa4XS9NzlYpNUER/rE1hlxrj1u1oIxAvHtwXa2SSlBrpaqK\nbRapcgSNsWWpb3oFaQT3VUptJa+kMFhjODfh1JS44nE4Z7vCuco0om0ZQ6CN6pyaeq2clBatkATx\nVXISz5fRQrDbCtCtKtK663DokPK+Sz15cot3gdN55jLPlFqwyvLk7o7DzZ4vf1kGkdY5ahOV93y5\ncDme+M53P+F0TDy/23NZVmxwTJ39sgX0aR+ujGKFRAS3LhcoOaFywVfIVRTMdavGlGBgle7wrf5/\n6FaFxVwUwVi8sozDdE142P7u3G0qSoPzovDNNWEHj62N/W3gxZdueD+vPHt+w/7pjv3THcNtAFN4\n+/4lwz6Q8sx0E/jCV54TgsTaWGvY3+y5ubnh3cv3vHr5GmtEKGesZrqRo+h+t8NZjbcGrxzNgKkG\nXTR5zVzOC+tZjrchDOzDjtGPWNOIMYkOpqTeaxP/21ZZt5ppJXdxp2jIJASgN3Sr0AS7lUrwLH0Q\nYpTG+0BrSeQmpdC6ncg7Q8nr9ZgvSa9yTB9CuIY1OmtZ54VaG7vdTgL+SsYHj5ndZ7qPP1fTK20N\nPoTrLtkQwn2R7Flsk6asMv1C7md6CaD3FDQlR1oSYVPt+ITz6czlchGAuQusqZBzZZ476jFFGSdb\nda1gWmus68qyLNcz8zRNsnAhK3/O0rSb55ngRQyWc/mU8CqR8torna0/odBN9CWbh8paf/2ZNBYV\na4y9Wa16qd1FkVqxLMtVq0Qt2H7er1XO98MYMEa0KS54xmWUCZQSguDejdze7FBadX+V4nJYOvsm\ncXd3yxwzL57c4odAXGdG7wWbEE88PDxgQiDs9nIU1RrvDMrCqug3ToPc0E0qm9rH6k1xhdTThW9K\nCbLVqIYvMGIYtMMaw7ouIqOgkuLKslyEW9Q/h9yngClGmrPcPr3lB9RX+JH9nv3Njru7SSZtRkL5\nHs+PVDNSbWV/u8d6qFoAWfenEzWDyppcC4e7HaYJXtYHw7gL7A8T3nmpGppBN4dqClXF7pLXzHJa\nOB7PIj6dGm5I0GTkL9eXTPoyPY/qU4znkoQQWHPCOc1uGoXgmEWWkUpCORmz1CoQ/tJjmmrtHq1S\nJGzReznio/jBr3+Ndy9f8vb9e4oqhGEgDEHsI/BB3mHF4DuvC8fTkdgHEilFSbL9DI/P1aJjjMM4\nqTRAYNityvGjdVKdtuJ9ss6CFe2Bs1bmlUgYnK2V1qNwa63cPzzw5t1b3LRjmPYo03U9HRNRmoTW\nX8tcpX5TjErO+SoK3KqjbcG5XC5SFQ2esZ+pQ5APZ54v1CrCLWs1pSTWKDe36ekD3pvr/y39HgdK\nhH+bFCClLI3AWoSNawWTsVVdcsFJTyWEQOuxgymVbmEIgGJdF6HfVXDOYKy59oO8NYzD1/nyl77I\nGjPVBgajef3xt/nuN35FFuwx4K0jlcz5ckF5wY5aY4SSiEyzDIaqFqqVaONSSj/Bigwi9+Y6VRZR\ng4TtuQ6qss4JFK10yweNmBPny4W4RowG21MuG2C9x48Dq1F8/aPn/Pgf/6Nkq5nzzJLu+w5uJBLG\nJ7CV8+WB128SbmgoqzHWsqyJlhoW198jx34aGf2Ac/3zCjINlHQMQ62atjZ0lo1hOSfOp5XLWcbL\nbghS3VQ5nre2VaqVNYq+Sng5irQulJTEoMwW2SNftbZO+6toXfqi0yO1a4VSUUpIC8qI/kZbGcCU\nmpl2E/nmlofTiXmepdlfMzFFIVbSmOPKJt/YNl3rDMMwYIxmXf8AQryMlfGrsvKmNyO84Uq5jpeD\nlYZv03Q9gbmaPYE+4TJXgaBSkvt8f3/Ps4++yIBoa1qX4+cso9lmPpWK2L+U0ozjh91YzuHb2FCy\ntwSQDtM4st/v2A2SAR3j2hvN4sdRqrEsUGpGtYa15qqzgA9M6NpAG+nvOG/7OFSxroLcgMowDHKc\ns4I1WJaFdS1d/5NQWvQyOYuidZPAb793Sis5Q/AOaukLnmEaJarleFo4Jqn4jqcj3jmcFuuEs5qa\nCvN8xgwB5TzGelFLG4dpCq81ZQhdVNkZSKLVvy6S2wQQkH/rdHdsO4z3VGfJy3p9vsDpJenAOket\nimVeWGLC7xxKWR4eHzi+f8fXDzu+8iNfJ+lIsTs5Hjc4n47s7waMa6R8h/KamGe8D0y7nUQyXxI1\nyzUy+gltFYlIaxKGqEtBN4k5omhKhDJXypqIc+bx/SMPj4+kkgmjqIG3zxilxDSrFDGfOzWgEpyD\nviA3BINiO1p3uVxYl/lqo1G96rUaqWSdw5bUo3MMwzhSW+LMTM1Jfl8cr16/wjc4HHa8u7/ndD5J\nhlpHnxhjuLk5YJQiRoG7OS8b75Iip9Ox6+V+58fnatHJrZH6CFB3q4C2hkbFeI8fPLb3FdYkzebB\nB4L1GGWF+Idoa2rlaltQKC6Xi+h7elWRS2ReLtcGXa0ZHxzBDV1MJ7zdwXlag2VZOV9OtFYl42oI\nTMPQF4v+/2JAGVKWUeSWwni5JATVAd4FStnUyjNKzZ+aahmMk9AzkCap3yZ41oppU8tidSUOIixn\nbQSsFWNkGDzGjDgnQKhS+ji2W0xabwg2muxkYejIDyQmZvDUwfLtb3yDVy9fsVNyIcUYMdpjrWGO\nkfPlTLMOZRwhjAze4CeHHkZizcRarqhW3dRVc7PF5G7vXWmF0iRNwwWLsrJp5CYu8vN8kddqnRuj\nJRIl58o07bHDSGqKFCt//5d+ib/7y7/Mn/5zf4Y/9I/+MEyS9KAaPB0OaH1gWc/k6tC2ocOBWAu5\nrjRg2o8YHHkttFRl/N4qoXqUbrIYKIfC0Yomx0paKstp5fRw5u3bdxKtvBvxwyB+rRCkb6Wlr5h6\nDnwIjhACd7d3GAUP9+84H5Pc3ErTiph61yhaLdX1OKVKP9F19IvZgHClsC4LNUZKTYLw1eIZPB2P\nTM5LgGRKwvHekBU5Qal45zjsp+tmEELoGreE95b5dP5M9/HnatGZ48ro5I0simsXvalGGALaOeHf\n1Hwt0XVOUk5qjarqOrpu3S8E0vM5n88cj0dubp/gnb++ptK6m/FkJGuUUO9AdhLvh74rz70vIroR\nESIaSs0syyIlaymM49Qbz4qcI+syk5LsHGEQGFKMM+uy9FF6ufaMhmHAD14C0JQ0rxUKlNyMYcOz\n9sWslCQLsxH41DaCd85ej16SXCGLsTWaGBUxNnEdL4vgQDdwl5FFal0Xfv4ffpNf/LmfY2yN/Ytn\nWKVRxl4D7JTqvSV9gk4JHKxnGEa8kyqAIouONEE1BgGDiRhls39AzhKMpw04H2RCtSwsc+/FnU+k\nFLFOFuMYBRMriZRWfGDGoXVgmeEXf+lj3pz+Jn/68o/z4//kl7jdH6g5y3GjVbRpDF4mXUtOTLsB\npQ00Q02GNGc5vhuNRgD4zsgC4azHKo+pjpZE1Hc+LsRLZFkSpYIfBg53tzx59oTD3Q0G1+UP8vvX\nJhOrw+HA4XDg6ZM7FI1aEut8oWXpMYnhE1qpfZMC3YWYVQlsS1JSpNl9nmfO5zMldlNt4Bq1FHPG\ndsGsC4FUBOmyDUq8d0z7UZrHapsjSaLqpkFrvx/iwN/rR8yJJUWJ2xWgTdfnNDFYdk1LUxDGsWsY\nCpd5RtUF6haPWvuESPQLVmuWZeE73/kOw7jnbvO5tK0Bmym58m6JKO67qfHAzc0ttVbRh3RH83bs\nkulRIhf52bpGUtomFqEfb+LVJIlqEuZmdQ8L7EzfpvuIvaC1YDFUd5tvmV/WeoIf8F53hbRM7jZP\njrGqo0oHvHe9hyRHr1IEUg9cK7RlsdCqKJu7d18pAUa9ef2Kv/cPfomf+fn/i49/9Vf5Yz/+45Lz\ntMx4JGfLWIt3jrkUCdqbFy52ZrAer03vrzUcSj6NRu+/NKr6EIbYWumaFJlYag0eTcqJukTO5zOX\ny3asqihliDkRl4VWQBvp4zkfKMayLonLJbGsjW/92vf4yZ/8KV7FH+Sf+af+aZ7d3uCcJi4r+73Y\nF87rqTfwG+s6Y4zH2hE/BEwQAqHqBiqNwSrx5aWSaEVTlsblvHI+L7QEWhmmYSJMgWfPX3D7dM+4\nmyB2fVmqrB1hu2004zhK/7A1Qk8iLYDV4r6X6e0HXdhmj2hdxLrxuL33xN57rIi6WcWIr5XBOejH\n89ok190qg/VeRKarVNvOOdYYybXgjEy4jHOSeqGUqLg/w+NztehoJdaEXCSXWjdh1IgnyaCTcHpp\nHUatNEsWjm5KCY1iGgYpz6sIxpx11G5ge/f6Fc5KRTDt9qhWcVoRwsi6rqTeVFvXmdP5yNt3r659\nF2stzgvZr9ZILrImbpMkpUSaTk3EpbBWWfSmccL6AE16Q8452gAxrsS8XiXupRUhGOYGsVynYD44\nlHbELH0r7zo5sE+CEgWVZWHTRqGNpTnTm4OJQqEaYc3kDmYK4y21KRqGhiXnxv3DiV/+lW/yC7/w\n9/nk5VvenxyVHc8Ot+woaCtZa0UHstKY1tAt02IkHivnUrClYGvFTRMakeBvC7tWorTWWoBmSimq\nEmRDzoWqxem8UjguM/eXM/PxPZf5DA3cMECR9zvFiHMGF8APlaZWWsk4pRi1w0ZYE7z+xsr//F/9\nOqdv/p/8s3/+T/L1H32O8Q8QVoqZSeWMGwxrPNG6+bZWRVNOOoRao6vDqQFVNTVrdHGo5iEZyiUR\n59Jpewo9WG4ON+wPE/v9AY0lXgSZCxsJYQXVGKcgR5blLHnhtfF4XpmzIVcrE87WiLpw1IaHVljo\nEdPWyKZWVm5vn5JOR6zSPNnfoq3hodzjO5bC18o+F5QKLA2WElHN4mrFrDJJs8rgURy0ZdrvSLpv\n7NaRLguxFfAK5s92H3+uFp3e9bymGdRWpCRtPRxedf9Tv3hFyKn6ccfirME4KwCi7opNOaFqoWlD\nipHH4yPv3r2l1iZNPu9x1gmHdgiy6CxLNynOIoQLgf1+zzTtrsF2tVaWee29Iol2hf56/fTgvZej\nTUdMtKbQ2kr0jI5oJc1TbQS4VGvnLtM+sGutvRr8NLqznBs0Edg5mWOA6mZWBaVoGkaMmDmSS0I3\n0xu+g7zHuXFZEt/75CXf+tZv8K1v/Qbf/LVvc/9wZBz3pFioVaZhRotkQRVpnhclYkS1meSLmAFP\n+oQDTBbOjOqeMJCDbgNK/x0b7Tr2b8jksGoJDzydzzw8PJDmi6jC1TbBax1y3/tf1og+SIsY0VnJ\nhBcNi+i0Hu9n/ref/gVO8wP/wr/yz/GVH7xlmTNmBG0tKUaZwI2BkhUlxa6nquRYYQ1SrSqHx2Ob\nxvZEVqOsGDZVITUxYg7jyDTt0dqQYrqKPa3V1wmec6LqRimOxzMlX0QmMa9c5qVD9kEhCJJcC0VB\n7ErzrXpuTXAcp9OJuCaUKhAVpdSrz89omQrSsSrFNOpS0bXJ1NcgiSNFKqqSM83JUbqUxnyeSbrR\nmvCGPsvjc7XoKPUhWsZai8IKiV58Cn0iJefNBjLZsRYXpD+gO84C6B9KT1posijUKurkd+/eoYzl\n7u5J5+5qhkEahbULE5XWXbH5YfQuX1LqppiuFZb0g1JPblCigejnf9dfN3eGSalJWEFdV+G1xTlL\nUgIV00piZW2/aFCQi4z2lyzxI+Nu6IuthZzkZkQmXzRFM17MrLUQs+J0TszLmXW9Z02Jh8cTx+OF\nh+OZ3/jOJ7x8+Zb7hzOXy8q022PsRDq9Q7fGMAwoVpnc2IZItrfbh+vkMKZILWdImbzM7Mad8GpU\nb871Ptt2NKCrxm0/DqaSiefI+XLh/uGey/FIW1dZ7GjX9AuUYgj+WoEabShaozFdHuDlSNSPpyU2\nZjXzD37+mxj7P/IX/8U/w5e+/oQ0n9F2olZJbsgx9d6TQSsxmhpTAYdKFShyzG/i/bJV462TYUKu\nlPN8/ftyzpJ9VsVL5YwjroWmZGoZwo5x2lNyw+jImhdpcdFAy4SztorSlVRWck3XY9V2fYYQGMaR\nmMT9H6Msysu6XDfore82zzPBgR9GarWscQFaXwitaNRqQdAtnoqA5RQa5wdCcEy7G+6Px890H3+u\nFp3aGTDWOZQTS4TtEm7VMRAVAZ7XVqXisZbQsRY5yXm/5K0xuqEsujai2xOOxyN+nJimPcZEQLLB\nt9zy2pXBPgTZkZuAj87LhbWLpdZ1JafcNRRyTNBaM+0GjLa9ByMWhTjPzMtCo7KmBasFAtWotGqg\naihVANxKpjatQdGiIcpdGNaU6EnUIjofpURhvUXwbHE3w27Hu/cnvv3xx3z729/iey9f8fh45DJf\nWKI0PHOFlCoPjyfmWbxpzg3szUTKMjadtGIcB2zO0CRaWBWEY0R34aO65qmQ6spcC6RIWlas6VVa\nh9rXrXmsNs6PxiXPqhRrXDmez8zzRdJDc7nK4muvcEqT3Xlz7IuWqmc3aKkafc8rV43OF9bkpfLw\nJvGzP/NrPDz8d/z5f/5P8qN/+Gu4YaBlmfD0ZF2g9N5HwdqeGV8HSGCrRleoUZzfTluCC7RRKseY\nRY2ecyaX+KFvE0S2oY3h5nYg+BGjA8pWpukAykmFrDWhdAplk81EX0WkMrUspVw1ZDmlDtySDdJY\nI5n2n/L5bZ7BajJKFbQwOaWv40yvvkWWsiFUaOLbqq1RUqOowul43vr+/zd37xJrW5alZ31jPtZa\ne+9zzn3FI1+VlJyFS0JQSICQLGFhhBCmQ4cOLWRogmjQR9BENEAIyU0L0UUGJDdsYwmMhZAlS1jI\nFoWLciorszIy40bEfZ1z9t5rrfmiMcZce9+ozIygoGQiV+rqRp5z7j57rzXnmGP84x///5XXNyro\n5FzJpTJELZViCHgaJQtNlGUpOPVRQs9a32UWLRspKHvSOWE3TmrRK2IuhR2kdEzHI8fT0TIjgbs7\npnEk56ge2Ou6OSkKoi6WtdpAXGVZFtZl3XRjlS08kEvj8TSTSuP2tjFOk5ZPNbMsesIob0OzBb+4\n7YR0ZjciNn2u2saNJSVSrurJFWBe1YokxKjM7FpZ5szj4wPH04nX737Kz372KT/+8Y/59OVL7h8e\n1IxvmfU1a0PEgwTWXMhJQdon4y0+jJzPC+ty5ulOiYWhnajeKTFRTHGxODXRw3ynrPTNJTPXTF4X\nnD0f6U4arSG2yFUeUz/7mpWk1jtjrTV1jnBCqY1cE62JkRA7xmYKjnLJkH1QHWfpU/pKO6RUZak/\nvsr87t/9KfP8N/hX/tV/kW999wMOtwP7w8Qwiio/RlUKaC0pFjgLfgFXTU+p6fybimIFfHQmZdFo\n84lsAH+pyeRYKi0re33cTbQm5FSYRTWsnY/EqKS/2jRzH2W0RoIQYiMOeqjGGCmlbKXTknoGhMqW\nDHELNDlnkz7VAebaylbCO2nE6BUvbJVxN+CGgcNe2+XH85kCDHjykpWnFQbmX8egc+GQmR6OdTxy\nLcopET01xetpe5nf0Ra1HyJ+1a5NKoXYGmOMOBGSOVVSdSblPM8cTyecOKZRCX3jbmKgUaWx5JX1\nlGhFtXv81aLuc1hHOTKflm0qV1vcjpzUZ90HleNI60oqiWS2Jt2NstZKPc2kpFYmMUQlR4rTlnYp\nOo2dHbk5gkSaRE5zprKQy4nz+czDw5FXb17zxasvuH93z+Nx5fPPX/H5F59xPp/JOTMvC+u66Gnm\nI85Xqm3mPhwbh6gZx/07yrqwe/YE71U3R6onNNFSt1bVCW6YvUnbOlIYJ0ixN6EWzTJb60Gni5Vd\nNI+6PGzFZs/0LukgYtEg6byWTsOg3l6dOoDIRgLtOr9dG1qao1aHMNJaxjthfVz4h3/vUx7e/s98\n+zsf8a3vfMD+MDFOjmlyPH164OmzA7d3O+7u9rgyMLSJIQwECYSmvvNRVBdHBfcX1jExp5lcIATH\nFA9qUCeQVi33vXPM55mcMuNuxzTuFHczfSWd1HcMUYOOqjYq36yP5oAGn2mawHkrrRLTNLHb7RRr\nNDpGKcWm9NUyO6VEbgXQln20ruo4jpTzyjwv+KgZs4uRIQ5I1q5czpemwFdd36igs0VllPJfs9oC\nl6rlg8oiOLWLQXkK2zwPqpmsvkAmeG4L2VnNTx80xASy1oU0TdsDmZcFH4MuXO+26ebivNquwtbm\nPOyVwfq6vGE5K+W9diN6wGGgaH3gfD4xLwr9K1FMbGpXyGshV8/Omalg0k3up4lYIZ3PHI8PvHl3\nz/3DUeVXTaRpSWnjH727v+f+4YHz6URt8PjwyPF4NKZ2Q8OE2sW2koy57AmDembv9wfGyZPzmVJm\naskcDnsE1YZu3uGaQ4rq50i1IGNzZuI0eHUspUeO1gP9xhhX00+pbIvYm3uBDsZerKW7d3YfUvRX\nJ7fbJrMduD6+4rYsp78n1xy1VTX0qwXvd+Ql8ck//IJXL8/88PdeMo4RHyCExjAKw+j46MNn/OAH\nv8mf/v4P+P7HO+LtiEigNT1YkKjd1hDwteJXzTwrChpP40iIWvqdm2Y10hrrciYlPbQYJtWMQs0N\nxyEyjp4QoNZAKo55znT1gT5fpeVbtQDuWdeVEMM2FtEZ9YhjGCa8V35SLap1hAV7HR5ViF9b6U61\ndsyuaRwHBkWaDTP9NQSS+83SyF8QKQQjynUpx+qMV9ZPOdvAgGnaKuuypETKylWI1nHCghRbCqrj\nFcuy8vDwQEZlKXuK3x0oaKYrW41qPuqw3DhOhBhIq3bLWqtqxmcdKKHpxLAtEucdzQeKZRfNgG/n\nBgg7qgusVa1tfBKOpxOfffY5L19+wavXb3j9+jXv7u/JVU+qbip3PD5yPJ1Y5pmUEyE4ljSTDIB0\nXnDBIUUsIKsAlYbfhPeRcRBq0dfKJeGB/TQBzebALAsVNrtZrp7B9rdxfjTQ2BSdMgLZDDW2mHQB\n6JtoV7KaSWE17V/ntc3fXTScc+bw6cCcQ8VrJoi9Pw2A5sdNwnsNYK2amZx1Ieb7hfk+qSe7YR3i\nVa3vx7tX/OSH7/iD3/icf+K3/zQ/+M0/xYsnz7gd9+yGiRaF2BzRcMVhGjlwYEjqMkEr1FSsw1fI\nti5CDMTBOq1mmBqCNjKcm5h2Ee8quXjmubEux42Tta6qHjPPC+K7EmXd7n+X/FA+mWofd9zLi4JW\nkqEUnYlbl0yNwrwktQaaqkperDOjm+jmbT4IQ/R8PTWdb1jQGUzRDC5pO3A51cROUyP96Smnp5qC\nlOBiJNpwXCmFNWfEazByFmzsIKQUDTrn+Ux708hS7fU0S/Lm4YzVzN13/HjSuZm0ant8mMZtMwWn\nesiHmz1xHJiXRdN/56kI81oYxok4TCYWX0niuZ+NH3Q6M2fNvO7v73n79i3v3j1wf6+tUR0SrFqi\nOMfj46PNJc0sy4z3OsKR0qV7Uop5KJWsUonGqqapCV4ribSe9D6WpHM9OIYYLXA0xAtUdbxsVSeT\nvZU0OGcBlO25qNazllQ2QsgWudRwXLEsY5xXA8+rmPVyq3bf3GaBE2LcBmNVLjWo6ZxlTdWoFbWp\n1EmqyqnSZ9M/dy9tUaaB6EBlyfr5/DDiBJZj44ufnTje/5iXnz/wD37vp3zw9Dnf/vAjvvetb/PR\nBx/wwfPG7c1BX8MHI9uJkkbTopIpLWt3q9WroV7BuUptGVd1Q8ewQ5wjBgeSKUWs3W7qg02tp0ut\n2+fsgHIcB47nk65Rc491PmxYIcBhf8s5JZMcVQpHyYaBZnViXdeFllfWdWEYI00qOS/kOTHcDmrV\n/TWub1TQ2e+VMZtTohn41Wt18X7baOKsDWtpZ8pZbTRsUYtzeBuyU7ZvpiJE0dld7/rXE+uyMISR\nEpSfo3KnbcNCvE3x6pxTn6U6EXzYmKDTpLe5GjnuxYcvePrsGcfzmfvHI6UKPk6qcSKB3DxpqRzP\nC4/HmXXVlvvpdObxPLNWtRk5Ph6ZF8WMlrWSqqNJoIpZ5JTCmhIpp21aOA7quyXoACaoTosgpmds\nEmdWhjizPM6dcW3dpmBDo74HCqdyluI8SLHxjD7W4ChcMp4+Hd16qtPBesPsOhbUWttkSigX3o54\nw2jE8C/ncOH9QVxxKnPSrYSdve/WcSYLjjSzmpar4IcgrqlmdtasRHTh4DG8CGg18HhuzJ++44tX\nZ/bjp7x48gkfPvsDPnr+nO9+52O+8+2PefbsCTeHkcFGeFyIhFaY61lxQyy4eQcrGnydvq86aMas\n771qo6NmI6smcxMRDTihsc6LepFbp6nBBhoHH3l4fNzY9or3rHbbvVjCAAAgAElEQVRvArVk5dtI\n3BoCKXchNqciZa3hAsTB412luKIKnN1a9mtc36ygsxu5OVyEm3oN29vfch10UMkL1f09s0l4lqq+\nT0YQTKsNV9qJ64eI81c1clHMYmelxLJoiXI2yQoVS4duI5PSquVebIxxtPbtYCVgRXLiybOnHG5u\neZwXUoGkKg6kJpwez8zpkWUtzMvKeU4sa1apyFxYSyGjGdk5NZak6vz4gI/DlunVpHyObfHZzJXz\ngpOB7igBGLFLrBWqoHyfD1OLZiUddp908cLgA1McVCKhOkrlUk55h1SPa5dZnM7ZYetUaeC5RBq2\n8qrVShPLZEWb7tK7YP0FnTMJEGXfdkKo8846fLJRLOheZFauaZxrxiSKFlAUb2smoO+8I3iv2jNN\nxd4EFbnfXr80ivdQI+ckrGlmngtv3z7yyc9e8qM//EOeP73jyd0NL1484eMPn/PhB8948fwpvjnO\na+bt/ZFaErtpYrff4YJqObdVM7zc1NI6+KBuKHmllGTC+nUrW32IkNSCSMplRMZ7Ry4XPMuHsJVa\noNSOcVRXVhGnzhO1INKopbGUVaV/rZOY84ofJ2LoEqjJbKVle45fdX2jgk7wnt004HYT2dw5V2sL\nbpbD6MNqTSeVSyqkVXWQGwsCjDGyn0brKBVD8q0koIHoIp1Gfd3gdR6o83jmeeZ86oHMMwyRaVD9\nmmwaya1dpDBqVZas856G8HCaOS6Ftw9nUnOclsr98ZElVR6OM8fzzLxkcnd9TKqP7Jwjt6ZqiKKo\nkOA1xc3JZqg0O6k2B9XT51IyISh71sugXtat69ZY1winvJ5WdRQBFZ5q1VOLMwKfYl8qpzpsvlmp\nqLmcsqn74Kkq27cLSHMJTK0vUtkwHNgqZqRpl1DDkmwaMmCJFSC1qiqiN3Df7rHb3DAAs5KuaOmb\nU8/qzO+r9CC4AsVkb5sxqXWgl6YeZ040AHehtmVZlJUcrDzWQTacFEpdOM0zLz//nCF67u72PL27\n5cMXT/mN732HD549Q0rhvGiZ31yh+kQRxz4GpiHioie3zHlROV2lHKzUmmlOhdWd600HHQHqHldd\nz2ncaddqiBMvX758DxcFNp6OIJqdl7yZC4Ae2imrkNgwDODVKbmUArEpLWSIHES2Gb6v3Md/vO3/\nj+aqJRO9sNsd6B5UtVYtl/xlQrfUQi1tI0EFH1lFiVnReVroBmLWzao6/1JrhU71Hga8dUVojXVZ\nKK5RWmE5zyznWbspQyR4G7OIESHbxG9hXmb0dG3EqDhC9ZH7c+J4fuTd/SOP54U37x75/PVbjueF\nUtWfKdlcUi3N7GiKtkZbI5W6UdiDdH8vNSFUjElo1lrurXpvAljQCG7AoZyiggl3t0JzXQDeAkVz\n6MCpByyTFH19zLq4taYdDnEa7PXObicrFINuTNnQeE3YAGlvlSuZUMNKt8SRrqeDYfyYSoB9UVnB\nVlKZznPHZMCev4Vm6SC08Z0Kop+P4WrSXWVrt8yVwBAncq54s/PRwUfVrl7XRKsqJOddJDj1mEpJ\nuVqmtkpBqA8zD6eZTz97xU8++YyPX7zg4w8+4OmTJwzDgSKB8wqpJWQY2PlAC4F1XZnPC0OJ+OCp\nRQXZRMA5zYRSuQwnAxszuTc8RBwfffSCn37yU4IorNDvk3J02gbQY7Y2qiNlNAPRhkaIEfHCuSXW\nlKjDTgebix6CvZv4Vdc3Kui0knE0lUYQIXQt2Kuf6V0PTRW7tozbyGFjHBiHQUsDJxDNEiatZsuh\nqH+0Sexgeju1VOb5TK7mOmACS62poPVsLNjdfiKtmfN5thMnaZbjHHEcCbsn5FJ4WE787It3vH73\nwMPxzMPDmfO8Ii6YiZ+3kzrjnKhfV/98TiVNnbWaJQRi5/WUjAuCk2abSDfg7e0do+n7sEJzQoim\nJ+QcrvR2qwG+XBamymiEq00NrSVbjJcUX0tbtFTZula9G4TdL6UwuOun1jdMs9+JyrciF/G1q+77\ndqkhQe9YeQOoL5a7CnFbPmglUasNcebHXQUVxzccB+14Id4y3EHN/tKirfDNq8xYygGCDLpWRBic\nZkSCaVObrXWVRqqKa+UC+e2Z4/Elb+8XPni+8OTJgafPnnB7t0NEmDM8nBbOOZPSTCkrU9EB0GIZ\nrdMqmuNyYl6VbjHEgRTSVlqp6qNjPi+8dW//yA1U871mjikruSh67np3r6lwfohBVTpBDwvxlCba\nQUbvS1rrVyinX/3er/dj//+4vNfpaS0LdPGHoKMMwHai0hpeTP/F+y39juPIEIIq8HsFQZu1KsUI\nViGOxGnU2agYDTgVq1/NicF+h27SpgCzqKfzzc0N3mu2syzr1hYurZBLJeXG69fv+OTnX/DzL95y\nf//IeclqwOcnNgU4UR2ZnBLUrMmEYRpBDAytaobmEMI4UnLmlFVHJiiPHQSO5xP7/cFEmSopL7ig\nqooNj0tCSliGU6lcZwwYVnYh2Ylo6dh1iDuWEpxXeZHaUMGjiy97lw6tzUojrCV+BSKLgc1i33XS\ntn/nzIGjFS2VRAQXeqBzV8zmS2dTswH9fhVRiZF1sdLC4XyjyaxZmVEuOvEUVDcphoESmq21gLOR\nCJGK9iKUQ+NqU6qBiLa8o97rXIvOublAbp2TpI6w+fWJdw+fcnt7w4v7hY8+fsbd0x3FOVpYCBlq\nXakt0zxUpw6uJa2INLwTTuuJ03LeAGEt8bt7q2aly7Lw5s0bRMTKJrYKoRgmWqu6aThVsqVq/dqJ\nHb2hSK3NgHTHMq+U0sip8Xg8G6v/q69vVNCZbFASIzLFGDnsNYEupRpwfEk1e8lVxIz4QsCh2FAM\nUc34qs6mhCFqChkG/KCMzp3JfjrnFBOxyWXQDeqr29QHnQit1M0qtl9942q5deaT15/x45/8hJef\nf0FKjZQbKav4UgyDtXTtzBXz9JK2zcQoY9r828Vt3Z5OTgzOU0vbSiupimntbw504TLNmjQoa/qt\nU+iuKEhM0uzI9Y6UiMpLS9s6R0GClZ79g9qME043PBcWsGbdvVtlQQa34UhtA4kv/9PX1JB9AY/N\n8llvrPFYLllWn7Buhv+4Hoycavasa9rYuM0FXIDqZ8Bpe7yKSWwIIoXaEuImYzjDMHjralVwjYmA\nK9rJ8hZsU620kmh1BCdklUSgNM281S8qWODxNBm4PybO6yvePjzw5NnE02d77p6M3NyO7PaBcfAU\nmv2ppJYRa42nmpV7ZAGlD3MG4y1h96H/dzcWqLWy5sQUJqXbBAhRFTNLScojEzVRXHMi9LMWMWtv\noTahFGFdMrHw6xl0xmEixGj1dzHh8sEEqZV7IlSy3TAlDnaquBEGmyrkjXEk2vi/Rn0F5JyPuKDa\nxjeHA7tpB61R1rLN83RvoGKdrRCCcojEk2Yt05ppoLQm1KYcnOW48vKze169esfxcbaSJW5t55JN\nitIJpSmQRys4mmEz3rgRSYsG39vZileJlSNihmy1oTY3Xt1EswHLEqrte9E5suKQqJwjyTot1qyD\n0wdatTutw4VBYOcqg9cgkItQq0nB1orrWrkiNHHgmn4uy2ZMUpwesfoA5uW6ZD9WY9LRInF2gDhH\ncBgHSHlA/Z/2l2pWg/ShzzVlzmui4mhNWdNKEqyIBHVIGAekqeKgGE6lWaGg/Dkr6512vcQ5UsbK\nbBu7Ed2YqlzYy9VOdNSsIU6Dahi1imueeck0acxp4YvXbxgGYX+IPHl6y/Pnd7x4AXe3OzN6jDTJ\niFSqpb/eCfNZNZ+cj8pPKk3pE0UbGbkVXPRMY2Q9zZR5JR5u1bKml+RFx1+cWFslZ1gzndBpimsE\n5xnCwHw6k2pht9uRjcv1Vdc3KuioypzV5mJ1szMTN1fB2wMVzWbGcdzSzZTStgBBs4BxHNX5wVZp\nMTq84i8Du2na/r3zHkfBO2Hc79ntb1gWLaO8U7cCKtRV01QpDS+eUgO5BOYKr1498sXP37I8JlwW\nWsuMU8BRqHVVvoyo7ouKXweKGB29qYqguECLatxXnZaENbhNRyabjW90jrJmghN1LIgDWbIp+0Vw\nnuy07HM+IBUkZ5okaykXmkM9wJthJzhcgcnBs2HlEEFcYK0q+OVqYWiq72Ku2xRRMa6GmhxKU62Z\njrnA1V99mNPInb2MaqaAp1o7NkkfvILo3pGD0wOlNrylQtVr1ladWkG3Audz4mHOND9Rq2Yprt3Q\nGozjTifp/YGUK2EYcWFAggpmCY0qptVkmW1uyl9y3m9ZeM+2rq2KujRssknynDKrVGbjyhyGG5sF\nHEhJ7E/g9euFn/30nml35tnzEx9+cMcHL/Y8eTqyP0TiAOLOytcxUTvvAlWE5nXsITiPy6Y9tfOc\n1oUPpjtkUQb6GAJLLayu4FthDHoAlZqgFWKujFmHrIcQWFPmyTRyd3dHBT57o6aWPjjFSL/G9Y0K\nOj2rAEjJpC7sAfeUcgPRQjRZ0GDYi06ed/5Gdw3wNnUMaPpeZRvuDCEYezdt2IALnnG3I447Sq6c\nTqpnrMZ+mpV0JugwjNQYWSp88eoNn3/xhvt7ZQdrCztsKXF3nVAzQa2d1Q2gvc8x6Z0WO+07aNr/\nWwW9R+Mxabo7WDsf+/wYm9d5h29GRDPh9eoKEiKtOVK7SLB673FNtXx2g2MIq7VsvbJssbmoa8RX\nevljncV68XevtC0B6q3t67J0e690PKht1AgXtbTzDQ0sXgOiYs91I4dujFsDvFU7edHxF9Qgz5n7\ngioW6mClD4N2cmrdXkO8qKqBu7wn1ciWjQlNUwLqYvjKfrcjmZ4NsHVDe8t6Ph5ptbILe0pKnI6P\n6hDrAy4pIByGyLokXn76GZ+//IQnTye+853nfP/7H/Gtbz3DuR0QtwAngDeqhrNh0ZIzpRWa1wz8\n/u079jXgRflNwWvmV6qj1ULJesArm1wPFh+iMeXVwuZwOLCklVrUsGBd5229fdX1jQo6oLgOQCmJ\neVaXS2yQDeNQNJvJqbRtoUvPRmDDfGprKgbeS6RxRNBMysewlVCbLYplHWGY2MeLvQwU8lI2qri2\nK1VTtkng4fHI6zfveHd/cZwQseHOZhrJHdeQPoohZo3rNgJcnzRupW0bEtheT10q8rZRQoiUkjZa\nQNe5VSkOwAsVdcFSxi9KqUd5Jw7PWhJryVqWOge5ktfMeBiuOkUXAanuVtoBfWDDE/q930Dl2ja+\niBOHs+DUn9dWJmmDe9uQnX1Osd5W088hNNVVAlQh1NrpuAszvSm/BTNmnOdFOThe+1wVYZwOGkxN\nIqK1xhAjw6BMXWnN5B8i0bhGiu0FI5RqqeWdR2LHQtrWgAje07w3zFCz8TjEbRK/1sz5rCRTHWfQ\nwO7jwP27hfPpE969u+f4+F2mXSSlLuOh93+7h6KwmBNHEFWJ7HIih3HHel6pa2Z3d1CLbAqtOUrT\ncsp5T6uZMEz4GK2rKlv3Nic1/xv8DS1nUvo1DDodlQc9IfsGUxC3j0Qop0R/vlCkbptZ6BPO+nB7\nMPFenUMPhwMxqLBWruW9DbUsi/IyJGkd7bwFQGNrui4FqvPacdzRJHBeMi+/eMPDaWXOKhug9jC8\nF1i2TovhRTFGunVNz5xa085Mz2o6IOicDpP2f9uFvTVTy4QQyVcyqSEEqr3fKFb4WLYjpZgnOwQJ\nUBwtW4emQU4rxTX20w1eoLWMELQco1i2YWMOVxTVayATOgnwcig0o/338QnqJfhigdcZGa6iSom1\nCsUpoEkDVy/d935pw0jZ3fO62GdzFJ2AYIgK+IYQaTjEaBLOG1Ausr3/y8BqF8Gq7IZJxcpT1hK1\nNSYLJGVVPosTVQYY44B3fuMXDQflTU1jZF41y5ImDOPOhlsxTy+VZd0fJg77kbRmfvTwkrevjzx7\ndsub12d9v16ozdGcvxAv7b3nRQdb3ThSjwtLPuGrDh6rr0FAfKS5Rs0oK9mpg0oYKmEYzARB19o6\nn6k0Bh/YDZHB6eDt17m+UUFnWVbu7+8BE+BOuok7d2RLX99b4GIlgHJ7SlXJzxAUkO5pqWYAftvI\nxUqFTcNXdFAzFV3APNyrdYz3lJxJSReed17dF+LIkisvv3jDqzcPnNbKecmEoq93HTR6lnBdToTg\nqRZsoEttqOrcRRisWZrvthOuyzz0f1NKMQdGTbXXddUyUS6bpw+64gMSBsQrXyPVzBAHwhBoJVOX\nleDgdj/x5MmtkuTQoB/EkRVkozVPLUKt73fxxCkkrA9HtiDZPz/uiqdzxcC68IV66dazpcv90mBl\nbBvnaF62slnQzs66rJdDx4iOweyGhmHUDl6IG0fJ20bSTmBv9DfEebwdHKU0SqqUrI4Qzu5zM3t1\nj+f25nYLwMuysMwn9vs9t7e32xoYQiT6oMqTNYPpaivGN7AsK+uccC0jaNdzmR/4wz/8nDevPkdQ\nQ0I9LYJZ5ggt6/S8NFjPi1rTrIm1BQ5hh+RCAKIEBA+ukX3WIdnaKLVRRShUTvNZyYO1MhbV9pFW\nSPOM3NwSwsW66Vdd36ig05oKEF1KjrBpEAezE7aUQZdjZyyLbJPo0JXp/CabkEo2dqkY+zergHsI\npJS3bKi5kcq6ZUhpFZp3tKKqayknWhyJPpIKvLl/5JOff8ZpLixFOM2ZvbTt/V9vutbeb2cOY9xO\n+j4HtuEhVk5eA6/dkubL7dJrDEv9iwbNZnrnaGPMKHPVxYAUdZ9wlsn0csmJSi/c7idevHjGbjda\nBmCYizFYvXMU54G6ZTZfvnr2eV16Xb539XUxh1bpVL+rkq1c+D9bd6v/z4K1IFsgWFb1aGoSlHmM\nM28w7ah5r9rTbeMpOUbrjl6snipdDEzB4cQ6LwyDkk71EGOTORmHQUXczJbHoWW+NChJGxz7m1vW\n1TSXclFAenCUXHk8ndSocNpRymh2R9lUCRyn88w8V/PsEkpLVGxMwdu9QrG48rjQpLGTwEdPXjCF\ngRw8ow8IVkm0RlsL2Wa7sjGgg9fAndLKEAMhRIZB59CcwGG/55R/DbtXw9AHKE2OcVm2Tdu/djnp\n9URbVyXYZTs5dOM2alsBxQKWZeX+3QOTMXYrjcFdAgLoIm+1Uqw8isHrNLqRqtRLKhKHHS5OvDst\nvPziLa/fPbISKRIpFdaybr5T3ZdqXectWOiDNRAxet3QlhV1/Ec2v+ty0ZtpVbvSW33Rg81FtAoM\nR1ozpVWTW1X+B5bxIIEmyvz2Jgfask4uR+fYBcftfseL58/Z71TgTEO84Tn2XrWUk072tXd08eVq\nJhb1iwLPdVbTOn9HLjyf68+zEUK5PCv9fb2dn2nFczqp0VzKSYXpg2Yu0UeCHxjGgThMNGAYJlLR\nrLXYSIsYE9lxwfkEIQ6D6tg4nc0T75jGwfC3pCWotdBT1gNyGAY9YFpl2u85PjxSa+X2yY1lstb9\nqplpGMi5cD4vxDgyDBMxDjw83PPqi9ekvFCrMMVASTr+UzEvrKZIlwPymtjvD1QptMeZD54/4+n+\njlfnI9DYh0A2sbq1FsgabGiFWhJJGkMM1FqoRTZ6SkqJmlV76tdSObBLLl6TnoZhYJxG5WfYpuzd\nmmVdgJMRwsrW9RFbzD1IldyY55l5nrXNHgPLsmxEKx26TCRR8DmYG4X3QkmFVlWX9nC4Y3/zlNPa\n+Pz+FW/vj6y5ckozcYy4MNDyvHVhevmzrqt2OKy9ej2oCZcMqLUG9YJt9eyndypiHLfAmVLidNLZ\nr2jdlR7MvFcgFZN0kI5fiaAk1kDNTa1nnSfsDrQ049LKfhx48eyOu7sblRlZVh0JQFTcoHeMbBas\nNekxAESQ5jacRa5JNVfX1nVqTTkkV0Hm+tK4ZGsBMKUv+mxXiEGxoaKdwJSzttuHgRhH8pJJ60rY\n2drxWj4fDgfmddFnkS2z7J0zsS6VUx4YpTFNe3s/bjtMliWpmH/t7haYYaLjcLg1jaOVcdyx3x94\nfHy0zatli3MXgmYUqNVt2dA4Tdzc3VFa5c2b18oKFpVvaSjTvGe7ddUsPsbInDPVcMW721skN9bz\nzOH2wAdPbslz4ng60fJMSTpY3Gqm5BXvhXGMHA6jZo9B/dX7szkeT8zz+rX28Tcq6Oz2O27ubg3U\nXRHvNOOwVnlKycBCuBlvOAw3mxdzzllP9qZGfE5UrqHWSysWrhY8uqljjIyjtlCzOT30n0trUvN6\nwPsBcYFhd6AEePPuR7x6/ZZlrSD6gEavhLMgjsEHZCisa4VxNAucXn83tbmNEY8np4RU3citsbVg\ngYu8hmV4PftZlgXndDQjhMEClc5QZRM4r75ZW7s7MlTIOsBIVBeKjAo45XXlxguHceB73/qYD549\nV32e/YgXdcb04ihS9SQXh0gyKoCClWJkPQ1wlvU4I5xxydLeCzLNGMu9oS4XpnMrqiSgmGn3MlO2\ndstaijlRHRlnJbc4ryqNQQcYh0mznF7exqgW08MwsCyLPv9p0E3cgdl+WJVEzRWBzRIoJQWP46Ce\nacfjkTUldU/d7TTTbo15Wdjv90r2axD8wDzPNkRbmaYDsiy8fniLcyqQr91ZQZ0gMtM0stuNlKQl\nZKl6iKVWOdzebrDC4bDn+7/1m/ydv/d3aVIZRiVy3t/fM5/OuPOZls5IWghtpS1HJM34VlnSQp5n\nduPA3mgkPZNdU8K7SBwmhnHCp/S19vE3Kug0LuBox3SU46Jyod4Hpp0KiAuOtKqTQavKv2mi4/vB\nxw1Y7Z2icRzJtXA+n2lp3bKoZ8+ecXt7qzqzy6KUcOcYozcZA1EXytZYG8wp88XrB169uSdXcCES\nh71KPqbM3RQN+L0ql2wT5dy2jMR7v/F0am10q+F1Xal12drgwAYWb52hL+E4HevpwSnu9tRWWEsm\nW9cJ0x9upW0t6Kr8epx3DDHgKdzsJ7790QcMY0BE5Rae3N2RzTju/v4eaiW7inMe52wmqT/ALWrb\nLE8zkmC9zuwuHUYHJtQl9FkuZ12U3kBwTqUqulxGT5IEzB9dDIMYVe3QaXfJo+/vGqju60qDtZkB\nOpP1tPd9Afy1uQCqZtia/u2i8ltSTfjBs5t2OO82DZvPX32uvvS7gXE/ko4VkZlPX37Ob3z/O0Dj\n8fGReZ61/DXNmnHa65T3fCb1QWKv30/rakqHakRZSqbY5354eOD3f//3CcHTalDdnVK4vb3jjTmA\nnB7u+ejJE6RlpuhoEjnOZ2qaEQpj9KZaeBFTUx0qCHHgcLjl7enX0PeqlwcXcemo7M62Esaw2Y84\n58glc15m5nWh0ogG9F0TBpdloU/ZhiHiqud8Pm8lWl+I0zRpe/w8U1oliAqrl7SCAYe4QMqVV2/u\n+eTTV7x++8B5WVkS7GUgzwtxGLi/v99KxF4mdXC8O4MCG5+ng8b6tcY4XsDKLqcBbAGq4wVfDkA9\nCNWqGkOlquuk6rJ0rdxAc+qpnUvWsQsaVBW0mpzw8fNnfOvDD4hRfeKzaTz3wOYUksaJJ3ix930J\nshhoi2hGAj3wsGFV0nv7V1mNc34TWGdrXQtBmjl4OiULtraRnVutNN/M3VMDiWrCDCCBgMfL5f7q\nezD965pprUt+ehuOZXvP/dL7fGEd9/d/jc11wmaXF0kpKSQAPD4eKXNl3E18/PHHzPPMNI04D7d3\nBx4etAyLUWw2qrKuGnSGISo352qGRHWgtMSLogLxpRbOx4USdZ2wrKy52kyaitstaaax5wc/+Mf4\nnX/md1hL4fNXr/kHv//7/PAPfqQWNTkxzyuzuUuAHnjLujIvsykIfvX1jQo6HWPxTtuYKs61XjCO\nUgg5bS3j1sB7BXjHcdRZrTjgvFN2alpV5Cul99jB4zhu7czj8Wh1+EFnmLyyNtNyZllW5nllSRkX\nPDU1juuJt/dHCqpDyzYl3jhMA6nudV7MykFgCyzTNHE8HjcA+7rDdcle3KaaqIqEFz5OD0A9yPS6\nPidjMTtHKTo0WrEOkGtd9vmPdMfESphizO+b3Y7vfvtjbg57YjgzJ+UDPd4/AELLld20t8+lNrbb\nIGLV9+80kcLii2VBl0n+LahsnCVvGZPfvtZgC3BVVK9Z5JJIda5QrU0/n9MMN3rl4BSvNrrRDQyB\n7T5tg5EubEFUjFrQzKKo86Ew8DwlxTF6FtmDfR+96YdXv6/n83nzp+rM8XnWIcsevNZV/czPJy23\ndvsd3gdqvgx0QleGzHinrihdLO75ixc8PJ7wTkXlmgjiPWtZlM29c9zc3VLOSXFGUQPHz96+ZgXi\n69esOXGaF07nk87eofc1p0TLGS+XIdK+b5z80U7kL7q+UUFHW7di9XQxL/FZuTfeTpMWtu7CBWS9\nCDzVVqm5bq32UivNTiQdXRi2P8Bm4SIiTPs7Wm0s55nH+3vm85FlXUkVXBR8W7k/Jd68UxXAhtMg\n19Bp7/lxe93e3egnYK2V0+m0lVx9kfYFCp1xXLbFBW1zAOiOlqsJs+vn8cawbsAlk+rT9s1Vmqgm\nUKsqPNUqWsbY0Gl3dZQCN4c93/7oo01aQ3ESYU3aCewZaMmF4DxNHOW98QYjd5p8RBHjUfXNjZVJ\nFvD6Z3ZOAdwmF+ASrsscnbmTqvZ5fShUv3k1bd7fS206AuGEWsumIbytGVF3COUWeYuQbft+l/lw\neJwJJqrRIMbyFororNYQPaOx25ekjPW721vj4uhhFEf1TG9S2YWIiFr75pw5HFSQvTWdq2u1KRfM\nOQvY6oyx5gWqDiyPw8AyrGoLXHRgd55nEgkJnnWeefn5Z0SJNCcczzO4QtmNvP7kE87nMz4ESm28\nvX/HaqVzrVd0D9S0cl1nWivE6KmnX0NGcq2qUuaj37IFDSSN3X7H3d0TQggcj0ftBrSG67NaOZOz\nmdnRjNHajMF8Yco+efLENGPL1gVqrZl3kALSx4d3nE5Hitl5aJoqpCXz8Hjm4XhSGYVz0hZvqXgq\nac4MNzvgUhptXQbrUPWr//5+Svaf1zEL3by6AC6aNtcgciyY9BEAACAASURBVC1ty16ALXuSnhJs\nmUFvYetpKc5TbNP1sYHgPRHP7WHP07sbHFUN7kRI5sGe5oVx3Bmfx4O/+n3Ybc8gFLVabigLuXXW\nrPJinFxkKvrnuqgQ9pECvTZdnqvWu29dsF1fK3ol3W1uls4bn0h1lromUM+OlYwXlNgXwoUDJL0B\n9/77G4aoWjO1XGXi6mMuGvJpRc0SnQi7YWSMg+JZuZjg+UyjWGPikZubG5Z5IcTI+awdyCGONkel\ngUfHFPRzCCoVqqTEwqtXXxAGzWDiOOr4CIEYHKnoDOInP/+UpzdPKYMGnhICM3DOmTkXasqayzUB\nFygVtXMul0BXq8r8qmbzYp2xr76+UUFH6BYdOvc0jiO7/Y6G8k/2+z2tad0ah4FopQdAWlfWZaFe\nLY5r3GbbrLb5u7H8sixXrXUxf6EzgjCO6qKYEVJzLEvltCxU1A4WVopNt9/sd+SUL7T/1jidThuG\ntN/vCSFwOp22LKx3Qzq4CbroO4FxmnaM43SV2ejnPZ/PdOOzL5PzNDvx1hEyqt0mU2nZJBfiYd90\n4zhwd3dnm6xtkg2tXfhMmmLrfe2Av3Jy2bg6pYjKX2wkvksWd52RdnLeNV/nypJP/404nNQNSA7i\n1fzNQXVqQTMNo2auUeU9hhDJRLOucXjfrAyXq3ulGd8lUGOjJorl9cwMVL/Ii46e1NYdR5pmVgY+\nl5yNGIhyx5Zlw0RqKSz5TC2F+XTmyZM7epnlRD9LWjPZ5v5yrmAC6iLVYHLt4q6rukXcP9zz/IMP\nFRMz1cqWG6mqv1aMkZQLj6cjtain2jDteXM6UwpUF1jmmeg8hIHCQirVRncc3WDRSWQ3qVxvrVnL\n2a9xfaOCTicGXrNtvQ/bUuwSoaVWBWu9pzVIKROiah73Dd2DTt/M/WvzvGzaNNduE/M8U7LOVgXv\n2O12xBgorUHRzbSkM8fjTK1sYPSS9SEPw0DJK81GGPr3++fqZMfO25mm6b0NeM3V6dhNtLS9g5iX\nWatA8MOGCV2m0XVz12wbuLOCfVDtS3QDqkWsajp3Y8I4jcrtaKrbnMkGgAcolWEYOZ9nxngJ5Fvn\nzOmIwBbIWtMhyy9lNL8o4PRlXHpb6urScQ4NCMF5olNwuFn60+11vdNMZzAZ2sENlNo9uRRn2myf\nrZtZSiF4x5J6dmwV29UEu2JUbdPo9rYmO8bYX+fa8kU5PNrF8t7z8PjA/eM95/nE3c2NuXFoNldK\nRfAMg9Ee5hnB4aOnUcllJWf1AIvB43LBuUYMkd1uRxBhPp/VlDAGqJlGI+WEjDuKwQ9hGMnAinnD\nZx1qDt5TkpotdmpJCGpVo+YDxUDygWkcgePX2sffqKCDFyQGcJ7ZxMq7jIWyJNUAvhMGW6uc5zPU\noovtcKAW8w4q9SLp2sAFj4zC6XzWzksI1CYM015bnsFRS2FdFrwTWitq7eFVQ3apjfO8cjwtrKlq\nStqEaK3406JyjuIDwzByfHxUAptX//OS21Yzj8OoCoCdc6LIKWIBNNfGMO7ItSHGCSk540JgWVfW\nNeGn+KVNfDmdm1NQ1DUd8qQ1jCBM8xaIcoGS8HXFk7kbJp7fToioSFnJCdegrAtpTTaLlMi5qaau\nFhCIVBwK6Go0ULaLZlGqjeOuWNPdA4qGcXCuOjNXcUecgC/qQ4W6UhCAoGWTKhsO+DCol/3k9Rmm\nigtC843SEpG4ZTE6CmHCan6w8qhqM2LrTpnrqjho6kYBkIpJy0oPGVri4RwuRn1mQ+Q0q6B/GCLz\nrD5SpYB3A/ubO3COCsRh4OH+EdDP40MgRM0ocloQUeJemk+kZcaPldwqpTUGESiV3JQNvRg3aGye\nnY8ca+bmyR01q0/55CKII1eMYKki/AnINLJX+Yu56kDvYAJx86wyIIoBBl08X+P6RgWd8zzz8Pig\nQkVVJ41FNOgMYdhOqXEcGYeRYqr57HaIV+9mGox9yDJlM81LW70/jRPDqMzerkYXQsAFz+n4QE6r\n6QwnpBYl03lYU2WelfVa1GsY5zylZB6OR9p+Yhyi6iQntRGepslcMHumYtIBy7qdkJ2hfMloLjwW\nnZgy3MZO2DWlixTC1end/26tsZZZT2l6wOncC+XmaBlTEBTo3A+RpzcH9tOgnbuS3uvSILCsi83k\nhC1T7AWRiGkFmv1wFdkCaVdiRG/Zey6Rjqt2vxF7Oq7inadJUrkSiSp3ESpuUBNBJwPOqVhZ8+CC\nSss6zELXKZfGO/9extWaWPC38RqvQ5fN3FtFzKnCC5j3d6lVJTKcHiKdpFdqNRrHwDBqi3za7YGq\nh0PS+xR8UMkOcYSgAUDHGBrOKbaU8rqNY/QJfS31FE9aU7asX+Vy07qqT/kQ1F01GXVAHNEHdjcH\njg9HfTa1QlEVAbESu/vAzevKmhLTNCqobgLtioVqZQBuY/x/netr6rdfLhH5syLyV0TkExGpIvKv\nf+n7/5V9/frPX/3Sz4wi8hdF5AsReRCRvywiH33V715T4uHhgfv7dyaEpaXImlYQjKF5IXU50Y7W\n4XDQIFQuJUqntfc/naQ3jkogG8eRm5sbTVND0BNhmvAhkG1B5VJZ1mSt84WzlUelFGXomv6LRoq2\nTb93EW0dfbiMM2xdN9pmtdLLkWvcpuMn1y31nspvdrJOlFtR1BGyNk2Hq/FllBlb38OYWifqcdH2\nwUDsu9tblXdFN1o1Ty7nvLGpYb/f88GHH24Dllri91LLG31BAfE4xK1c7rNo/ks2MuKti+WEa8zn\n4uTJl/7/+52tLhmiJaQy1/V32XN3FxXJHqCv59x6oIdLW/j6fpX6vjpg/yy9HFYr52V7j52vI6Ji\n6a2pU6w4XXdg68/K7sNhz363YxyH7b3EGGydG3xgh0VXCujaUP199/cOiu8lkz3RkaK9Ttdb+RhN\n1sOe2vY56M2E2G295WrW8UIVKPlPjpF8AP534C8B/90v+Zm/BvyF7dPwR7zV/wvgXwP+DeAe+IvA\nfwv82V/1ixUpLzSBEDDNGdjtdtw9uSMGpfjPs86ohOAJUWec5mXh8TRvD0dE1AOrtW1iWPeIps85\nZ1y82K7EEEjW1Ug5kRGb9FUzvfOyssyzZWCN81nBwiDCMI5XmIzbFoH6h1+4LKp5o4urFpVjBa4e\nNrAsVlZ6A0CVJKkn87phVZv5oAUXnUDGyGpa5vTp8e1voLsoqF2yQKvEOHB3d0scuqhVUCnTdSWO\noxLRhoHahMPhBu8jvUu4BRC7t80EzPuhuAWKDlq3ehUA2cY0rgNKM2xFmrsy9uvZSLUpMC3tpDrN\nDJuKenXOj/fm03WNdRnRr1/OyHM90PTg0d9394q6xt36Z97UAu1AizGaHItCAMuycDweFXwPA7vd\nXjV0TFGg1qrdwKrZ1zYkWtR903tHWhceHx8MN1PnBxHP7e2Ncc90GDWEwLoo1udEyClRcmYcB6Uv\nmPCZd2Y04EwAj8vhPE0Th8MBKYofFaN7OON+LUt67979quv/cdBprf114K/bjf9lFMSltfb5L/qG\niNwB/w7wb7bW/pZ97d8G/k8R+edba3/nl/3uTXDL7Hp1YznNSPY7ckpbR8g5x2434ZNjWRcejyfO\ny0KwFnOXHQjuoqHTH2oIgZQzu1aZLNM5n+ets9T9nTsbtDnHvCyk3Kn/qjlyPp1MlS+RSlaZA+oW\nZM7nM0OIBDthnQrOWJagUgxaOnqGaIvO+BKgvI0Q4jY82sW7rsup/rn6htBSpU+vYz0stuNh2+zK\n/lcpi5s9T41KEIKJOYm6lUbLcnb7yPl8ojbY3xwULG1XTg7b+nlf7uI66CiGUy7Bsl4kPLbykIt2\nspeoQvrGnN5KQ/sMrTVyKVTUgLFtH9SAatdU5lQuTOgtw7N/f8l6Lqf/dVCsVm50AL/7g/Vg0zfm\n+XzeiKzLcubdu3ecTifGaeKwi5bFaJA4n8/qsCqe1lRP50J4bXgPpa4sy6yd2qAmj63p/e1lYG+6\nHI8PRgNJF3F+EV588CHzeSatSflq67JlNWtW9QQv2oXrVk7jGNhPiknO53nLjKZxNM2hr77+pDCd\nPyciL4E3wP8E/Iettdf2vX/Wfu//2H+4tfZ7IvIT4M8AvzTo1NqYpon97gD0lLdu7M+0rpsO7oUU\nqLMq57POmGTJV5PoQQcsLTtorfHu3Tsl2Nmui1dffzzes67LtvBzLlp/S2FZNbXUhyOM40BOmbKu\n5GUmrwtPbu82J8rWdLJ9DDa2YR2PjuVsC58Lc1mVDzvLOmwtyp7Kz/NCjJeTWBdBn3K+lE6tqW93\nP5Xp3a12kRkVmwIfh8CTu1sO+z2jtZ+lBbjarHuvjpeIyjs8f/EBb16/MZYtlwNwCyR9ROM6yFmJ\nYEZ4Pehs0/XWNhfnti5R9II4HVPQaSC1FPZBMRInnopiI7U262pZYLE3cA1i9/vW//+1sBqtB0xd\nc5tzqpXynUulDYjS1zXwvipAp2OcTid0ZEGxnpSSDoD2EhJv5NCLuYB2Wz2tlQtbuObt4FDujHA6\nnTgcbjaWei8zc1biKCKsRk5VeRinjiTd6cF7dQ0tzXzfenkVjBOk8q1qilAUuI/hH2nQ+WtoqfQj\n4AfAfwL8VRH5M02fwreAtbV2/6V/99K+90uvOETGaWK/31NK4fHxcVMT3E5D7zZMoWdGggJ82Mnv\nvZIL4xCpuehpfntLTlqGnU6ni8Kebcj7+3vWNG+jCJrOq1/UsuoiyEUZ0wLGC4mUGDjVQkl6ykQr\ntTahLbmIdJWqYx3+qn7Wk3HZBL6dd1uG55wu6nVdmWc99cbx9goH6rR96Du/B5Vts4MC7JfIAFQN\nQCUz7Efubm8YR522H8YR7yq1qleYlopiouyOlDL7/YE4jLh84ft0lFFqtfd0eR/9+xVAlFDXN/yW\nbdC2+75tzNBM21cDrXONECAEs/gVb2C7uXkYdlPNB23rol3djy93+q6D/0aotH93nVW6q7Vy/W/1\nmWiwPp1OGybZh3T757uWKRmGgVYUMxuibAz1ZmX/8fTA23dvWNaZ2oqdH2KvIVf0j3l7H+o0a6x0\nw5RevnxJTsb3MnncHpQu60R/r3ee6APrPNNSZhoHgzdsXdlUwNe5/j8POq21/+bq//4fIvL3gR8C\nfw74m/9vXnuIg9bjIWwWsrUWTqcjrbUNXHOmi9LQAchxHAkxcDbwruMdXbDLh8A4TeRyJAyRdmYD\nCXvdDbCbJk1PlR6FHxy4kXM5sSb1sM61r8yqJ8AwUMYRh4qeh6Z6y7vdzjgkF55KqWwAs7KP162+\nv+ba9CCl2Rlk82FvrW3mgPosLkOffQN34pmIsbKtnaqXcVcsMDgq+3Hk2ZM79ibNEMeAl7ZhUxFM\nZsQjLnA+HZmXRZ+RBeb+3vRXGPBpge16ONU5py18W7u16lCi0N4Dkft/h9iQFmhNbVdcEEIEHyKO\nqAFJdLYrDonBgN4ijrqVWfJewNBAfQlA1+/NhYCTAOStdLsO3qXoeEofQer4XFcOqLXy9u1bHh7e\ncXt7u2Uh3jLv1hrz2RojNu0/xLIB3a01UloM28w292VWzU2Je9XWt5Zj7r0GROzKhqIH+DJrIJqX\nxWx2gNpUV5w+bqRqgv1ZtgbOK0O8VuWGpa6GwC9Wifzy9SfeMm+t/UhEvgB+Cw06nwKDiNx9Kdv5\n2L73S6+/8jf+Jvv/5W9be1HJU//Ub//j/JO//VucTqqAFkIk5cSaE8M4MO12TNPIcB5xp+O2ia+l\nMYCNgQxsi+Ha0sY5xzAGxVSa0CQw7e8oEnl7/Bm5NHKtlKLM6bwmMkltS7wniRrb5Ud9n3k1aYLg\nTQ5T9XjHaVIWa63My6JzZc5tQbaDL/196elXtiDUO0CaUmtweD/oVM0ARLEhPbX1ZS9lhrZiY/Dc\nHHY8ffKEw+FghDN7DS1ycE5V8YL3+J6xlUKtGswVEK/vBczWNGzTrmjzPeNAma9w2bS9JN26VD3o\nhEqr6pTpnMNHh9JyAtKitcwLVH2mwzgq5oaCpc2ZttJV0OnZRCdb9ve8BT3nKBsn7CIfculsadu5\nB/6e0fZMtJS8fT2EwM3NDWcT/Oq2QSWraJh6aSlJtM/UackUEGksi2Y6pYrdA20QdA/zDrBvlzVJ\n9GAb9Pc4rw4jrW1OEbVVOwwbWTDukloQ6x4L/ORnn/CjP/wxp9OJLx7v+clnn7KmL/eLfvH1Jx50\nROR7wAvg5/al/w2d/PuXgf/efua3ge8Df/tXvdaf/5f+Bb77rY+3lqC26TIlq1nd6dS5MbqwU1bj\nNxcCu92OJnA6nTZxpsPhwJpWatHp39P5pM6MNtDWNzb0elzN0lxQzsLu5pYl6yDfvCr3plabw6k6\n9Fhs9AG05U9KOsHedZdbI5VsUhJsGUJZV9201tXJpbw3yHgNtvYS7Pnz54i4P3JSX6f8+q33uzQb\nyGHptKPiHYwhcNhNatY36ZS+lGxBylu3JROHYePPDOOwbbD9fo8PTlnM9TLuoG1YbIbIuCYdb0Lf\nn9jQqY4OsHF6uteW8w7aaiC4U03r2PC+4VxQ00QJINpdCZY9dkDYe8V7Llmhlm8qkqXvopcPG95W\ndThWgem6+V15CzrzPCs72F1a1v3e98bBdSduY6q3S8Cfpkm1knLeNH3693S4t5DLyul02gKYN67T\nnBLXnC9VJuzBLCmXbFHWeBMIw6BDFE6lO5IxpbVvdaFUXDckUkosCN/+8GPGEPnhD3/Id7/3PZ6/\neM5nbz7n7//u7/6qLQz8MYKOiBzQrKWH0D8lIv808Nr+/McopvOp/dx/CvxfwP9gD+FeRP4S8J+L\nyBvgAfgvgf/1V3Wu+tUXSedN9AG0zneBQnd/WNeVN2/eknPRkYVSNoyjt5JLLZznmXVVLAe0rUtt\nhqME60ipNGnJhZZ1DKDFe5YsnOdVOSniyVmZqUOMZrt62mxg1tOR/eHwXu2/GpinpZHKpHZdoEvW\ncNHY6fU/YGMPiWWZt3ujGso9g3DA5d93/MCJdnqqda/61ew+WkRgiAN3NwcOu+kiwo5HXR568DPP\nJStYOh4l9hmDMY5zWrbNvJVRJpeqidYVP8iHzYVvw1c29Ldzd7y6I4gjBOOmxIpz6nLpnQLJTQSH\nPkNbwfZ6+jFLKVfBJW1rpweHHuy991pyG6jtusU0bJ3DnDM+XKRC+5/OJ3t8fCSb8Prd3d1WRuPC\nJq/S10YYxg3k7htftZQS5+XRBn+LPbVKLnpg1NaHhy/d2Et5e+FnacbfcCEqK945clqNLGp611yk\nTlJO6txaCsnlDTf122f1SsD9GtcfJ9P559AyqWNq/5l9/b8G/l3gd4B/C3gK/AwNNv9Ra+2aOfQf\nAAX4y8CItuD/va/6xX3R9kxnIweuq/lsd3xEttPl/v6eeV4Yx0iMfuvqtFY4z9pe7ypt192KWtWS\nNUbP4bBjv9+T11Un2OfEkhL53QOPc+bxeML5wDjGzYZmsPZnB+bOy0y2btP5fKYU9X92cpn7aq1t\nOE5fbNfDno2Ly2l/n9fMZc16Eo4LibD12ml7BStxrjCNbZCy9YYyCJVpHHj65E5JatMOZ6RuitAN\n7Pp76FcvNyab1BcEHy8lCGBdKqc2P/TkzcYgOlb3XhtbTDcCCzgaBDq47KPyYMQXxNUtSHRMJ7iw\nZYlypaF8mey64GTOXWbbOqvYObf9pPKhLplHq5VW6vbMejmtWZX+XM+uT6cTIrDbqZjYBiDbgG2X\nKSmlcLO/2QiQ1xSANa08Pj5wPp/QjFUDDE3xnMAla9K/9aH2DFEZ5MJsSgT+oGTDQMN7gdIpG10c\nXgPWYs2KYsFRREh2+DX7XV+PpfPH4+n8LX41k/nPf43XWIB/3/587asvwBh1oE01aI7knCi5qEdT\n6N7kst10HfLMxOjY71VEq7bG+XjkdFLh9pT11LwGBrfMwOmAp4wjJRdOayUEBX4fH088njSgCEKM\nA9MwUEvVeZ0QWOYzPkbevHvHZMp/fXPGYbDp4bxlPD0L0pNGlf2bqD1wiJGYu+zFBfdQbytHtSni\n/vrVRjIun0tDipY0veTSWv+Sv6ib581B/a32u1EtcWoXaiomjdl/2sDinnk2GEblcqSqrgH9fjbj\ntbxX3nWM+Qp7eg+HkquF3bPUWrcuVe/mIU1V9K66SjjBy0XSw4l2M8FcOeWC53gDSPtzxwLgdbbQ\nvZ36cwo+IP4KB4waKDp2eM1M7pnfzc3NNokP6oXVs5zz+czNzQ2AHaz6Gp0K8nh8x5s3b5jn8yVY\nN81Q9TP7TbAO1OQvxEgpGXGXwdqUVmh6gB0OB+qsGjqkdXse9Wqdggb8aI2ZYRzUNTcG5P/m7s2e\nJbuuM7/fns6UeadCEeAoklK31ZJa4Yh+tCPsP9/hF0d3S7LVpk2ySYoggELdITPPsEc/rL1PJtRh\nCQ/2A5DBjKgAb93K4Zy11/rWN5j2OX+7cvKd0l7dxs5e6ej1YtWSydR3fd3oCJjpXLP0zKQU9psv\ntMqdJFTP1Ba71NNZblihqT8/P5NS4tD3xBrrC7B5SVyIMcvmSQmpr2RJeQwhgFJMWnE+z/u8PU2S\nHpBzJoZrdLD36z7HhxjE0iBdMaGcs4wqFejctrKr4vu6is/5unG5Xf/KZ6WAmtJATfbMpeJGEpfb\nLC+6zvJwd+TuMNYOkZvfqUEJ6xeury23bU59GmOw+qqQ11xHxH2NX755Pv7zdXWuRaf+NLGy0mOM\ndE46mAKVdV3LaK2eYgRPLZQyTipVNWv1fchG6AoKy3q5AquNd7Nfa9frDmQDpAqEze+vV1efm+t3\nJB3O29vbTnuYpmnHfEII+LrNvF2bhxAqZlYDB9aVdV04naTLyVVXqJTw10qlLrSFQHu9Dd8U/FA6\nS2PMNzhKpRRSuRIw2+ed29bLuZ3bI4xk+VxizrtJvXSK30M/nXYaND+ZVP15820LvLe4DYsxAiKX\nxOn0yrZtxBR3ctTO7WntJOx/bjdQ4zusKAGLiwFl2apfbEZW9yElOR1KYZ4vaK0wxoneRWuOd3fM\n88zj4+NuZeGDv9H3XFMcnHNV3xX3i3xnZHfS/ksHVw2UcqQUB5id61NyqetN1erAtQghQG4pbbiq\nV3CtAdM48fT4yGEcscbsQszSZv6bG/H2hmxanRgjnZUObJ5nUWDfgLbSzXzz+70tOHBDzqunbSx5\nD9hTSjYt1EiY9l3VoZGi5AnsRSlXvx9d6iig5c9tjDVVeNnGYlvN79uIK+8RQpLcMIPZu9lm9tbG\n2cbRaWNX09v1fb+Pb6XIoWYrAXBdV1qETUkFZ7udOiGfbarfc94xrlJELlN9F6XoNfxKXUHxRkBN\nOTPsWkM5BNd1hSjvqW0zG4jcNIBNIpHq6NVGZVM1bbkUwvcxgqYfht3Vr7GQW9EBWNeFkguHw7Fq\nRWy9kAzLctm/ZKX1fjO7rtup83tVr9sVY2r+dOX1rJcLJSvM0KFdj1qidCMxEWKqFg8yey7bWvOx\nBLgzVkDNj1+e2Gr8iEQgqysIWQtEjJEU8s5Ebhd8SjWixl5NxyTxMey/A6DfL+qaggHfOK3tP8P7\nhAtTN0VIfvU0jTw8PjAMvaxRc943erlGy35DLJqvnBtVN2RSB2Q83AexG9ysVbjbzuafj1i3J/dO\nd7BW2nslp7so1bXgTSrvHYcU17wzofdu5qr52F+jdAPX6yBzxVIaRpNSIpP2wifA8Q1Z0Zg9peJW\nKNpGI200w9DvnVWoAubPfni3kwX396iuBNGG7zX3y1LtahWip6uLxzqOJ1JNrI3xKtGQDviaQCJd\nTduGtg2brMqVVqSQQStSkgindp3sXtBFtsNbLawhBKz+Ho5XXT/ULyZhTbWtKIVIa6ERjU0Wxu84\niL/sPM+7/7DcIDekLsWeQiAnWr0js1C9x2FEa0UIEZPFprMYQwA2H5mXFb/52oobSYhQ4iqYYmRZ\nV9FvOVjXM/0wEGLgXA3YjbtaQdzd3cusrRRkCICvbGRjpGMzWhODjF3bukrhdG4nvkHLI7LgKoPX\niJ1Dw4l0lna62tugkSZEFSUZ49Xi4zgddrlIRmFU1Rq1TqcVnpyrx7I8KcIzaTG+27rWzktGq7bi\nbYbvIMS226IjdpxmZ/+GWG+iIkmjzjmZ8OrPmVbtVS2i17oiZM58kzpRGzqtNKbapFKqBajSdZ1e\nL49apFIUA38ZQ5ootyrPU0u1yHWjKjfh5v2OGeYCUz9yvLsXLpXRmFIYxlFigpW8p3EY+fj8kcf7\nR0LwXC6hulVuXC5n6RpjkuSF9kaUANyU9tnBvgkE6VS1BCk656QzqeNwsI7OWHpbf6ZxoaJYbqQk\ncEEIkfkyY7VmHMZrZ1uEptJCAr7N4ztVdBQF7yM5J4zSHIeJ3AmVPHgJdlNASYHoF1YSPgYulzMh\nRmxncb2ofbMXgaVKV0JUbzqcqvyfEigxEeo6upRCyivK9SRjmT0sWaG7HusjJWyoHCWexnasIVGU\nQzuHXz06JwYFryazkumNMDx1ipXsZti2gFKaThtJk0grOoNDUWJkfn3BWofSlnkR8WnrznJKhLpu\nF+w44bTDJ09ve4kaMaLX6rWmqI4tarIuaH+GsFAQRrXtB6a7Jx7u7jkME5gerx26BDoWRuNZkkFR\nyCkSt002P7Vr8D7QWY1VQIqUFEk5oZ2jMzX0joKuXjQFhTL15q/r8KKuQs8QAotPqHKzCAgZY3qE\nhRtRuWBzzTRTRoznc6IoTaYnJMcWC0kn0LLtSUmJ5xIN36EanCl0MZQoXUEKUYiE2tKZytkqWYzL\nCqRS8H5DBTgeDzuh0TjHljKXNeL6A/30QEga4wYJgExwfPcOl4TzNA0T27Zxf7xDqcLmF2KQbm5d\nZs5vr2xxBWTMU41sUCDWTtSpAiWSvTgq+CQ0krZxW5ZFPkNn0CWic2AwYDqLCY7lIiNSXwMai7aA\nEhqCcTXaqSrXUyYVWLznoBXerN/qPv5OFR1fL26lzRNZNwAAIABJREFUJKuqc92OH4QQZEyq4O+y\nLKCvNhUg41nXdQz9gMbvW4lb9rG1dgf/Wtsca0Lo3aHj/uGJoEbO4cpAdc6RgbDFCuyJB3AqAnwS\nI6aqy8Vo+5mnh0eUUozjRKnbKOq/H2s3oSt+cz4Jj6jvewriwn8Lera2XNVVaEubvG37gZ1MucaI\np5Cy3BwyCgnwnrKiHyYOdw8oI6mjOclJrBBgMuRE811s2w1jDC1+qfmsOCcga1vnNyKddEui1RLZ\nQI270Zpcqq+zkhO0dRFieKZx7pumW20H117HlY2t61pc7XycXTxK2+IIiRAaVnUlU8Z4y2+RWpiS\nmNW3cbbrOowWUNZa2Qht28rhOAotI2d61/Fh+VCJgK5GSBuWVQy05lNkMMO+/dJaMzgh9IlCPTFf\nZrqhpx96wnkDBdZKpxOCcHV2MDdFMXUfbRXHmt26pX1fSkkXoxqfLXgG1+xI2D9XrZXYoGqNs+KN\nTB1RrbF0xkr6RpYE1xS+3dL8O1V0YqoFR+t9nJLcoLVeCGlnvgr2UKr6uM6jIYg5d9djtKkZ59cU\nhpQSpet3wO+bxKyeh6dH3r37hFPQfLycyUnAvWaaZbVsTGJR9NoRU8Gvm2wBUkA7zdPD056HBDB2\nPWuWHPVWQFMFo521jIeBvut4exMrBBUTfTX1Pp1OvL6+opTicDjsns+3BMpbNvJegHKk5Fy9gzW6\nGJTpiKqQtKE/PDDePWFcfwVqcyQjxaLkROHqTa20avbrwDVZwVrxBNZ1G9O2bA1QlkLGDhaDnN77\niKWrUBHoq8CwPZTR0LxsKm5nna3RMo2TU2OUo4xWqY7VKWcSiZQh5JbgYFDqaorWdWa/vrh5TSVf\nC5u1lmXdiCkxTQNdL5HASsH5cuKrr76WolBHvm1bOBwOLOuM1vKdlZKYhju6ruPldKLrDJfLylQP\nkm1bWZa5jskC2nbOYCyEuBDjlZkOshxI1bJXay2cKr/JyF3xIVPH095axmGg01aKfYyUmjZxBcXZ\nt1/jMLCVFavAGSX4pSq42tVeCZj/8uM7VXSaOLKkTKSeONXS4spLyTgnPia5FLZwDeMTvkNAImY7\nlDK7vD+lRG/dzlDtuo6Um/T/6jIoaYaKdVtZN+FfkAtWsRtWZzTd5Pab3HYdJYJG7CvP5zPn85mp\nH/cNR0v5HI0RFX0IQm3fNkL0xKo6NvW1jOP4jRO38T4K4G66IKXUjgntxEcxKkWTUDFRkqeUTCyK\nUAzYEdONApZrW83YvaxcC2gMYqvxTbuIVuAa70XfkOS2bWNdV5QSTRE3chXxgm5uhdX73Mh63ygo\nSm5wbRpJr3ZWpv6darwu69v6WnbqnwClKbcQQWGct8hko648lH/u89NwppTSPsq2LiqlJN2wtRzG\n2tmU1s0uzPOZUgT4tUZhjWZZZu4fjrvie5oGNr+wrMtu4gbVz6l2ZufLhcvlImNNvUZc5yi5HbK1\naGtQ1XbWb7LtEj2f3VfecA03aIsJpUQIuviVlAO5SIBfKXnHpiiFsI3kNFIIwvDOAZUDTmU6XUjR\no8r3MGwvlyzph61VRGGU3p3yWrTuMIzc39/vQfW7heiN184wjHtLm1IihbirylvHkEvc/xxC4PR2\n4TQHoj6wrX4HAAuJGOREbkQ1ozUlNWGfJpIpMTANA29ai86lFh2tJKupq+kFWmv8uknyYhTpRS4Z\ntMbaHmd7WafaHq0sMWT8Fqu8QJHyRtf1iJGTeO+Kj+3VzAslpuOqhr6VoohJk3SHHe9x0yNZ96R2\nEYqSFYDUVtEVidZaizlZRiJ+9fXis9UvaJom3t5ed66KUlaYuJSdPwI3K/2Ub2w+tLCh9y2XZifk\ntO3WLbMR9lG7IFn3ogcLKGT0s0qsL5obg3C0rhur9luuzOKr8Ldwtf8sKRBCwXu5SVGFZbkQohyE\n2zqTaoDA8XiEnOmc43I58fb6TIyRd+9+TNd1LKsiBC+uCUkK2OY9GSrtIDIMDq0MscQ9Jkfqat6x\nQeskyyokWZFva8A4SwjbdbWfIWTRLdIV6XRKEZqBat1TIuWAKrBtC5fzWWKjXSaXCCVhtSwYwrZW\nBf6//vhOFZ3WsQA7v0TV07WtGm8ZvV2t8qaahTeSHwgnJiUJL2vBYi0ipI0CXd/x+PjINE3ig3J6\nJuQkWUShed9YjHVkpUhhE1N1NGsQxXnJCUOBKLnndhox2hJ9lOyo6rEzVDpAE4Fqa9iWBaM1wzBh\njENxYVkWQoi7NYIwka8cj23bGA4TxlzlEfsauJ7ksVSpSMmoIu89oUnF4sYHjo+f4Q6PRJXwMeLI\naJWq77Ii1iTN+r86lpSbSBvBUmKMpLpFGacR7ze2TZ7aAm3FqiS9qXns5BiJSTpYPY7SLVYdVRvF\nbsUd6BuNVsVYWsZURpNyZLnMzPMiG7MaUodSu2iyXVPNnKzpiaDhP9e1fvPe1loTs4iKu96hsybG\nK1Fz216JsaWfUr8zS8oigXl9feHh4YFUMovf+Pr5GVWkq3p6fKSruW5fffkV6TVWBwFDiHWZYgwp\na0kLRQ5l6a6vt/U+KmWxFI3haqrfnCobWbNtrm5lLVpLjr3kzHWyANAIDhkTRinGvoMmwv0Wj+9U\n0TFVjpBivH4wpXwDu2gjVqiKW+c6rLH47MkZOtdzN92hlOJ8uRCq3mWaJt6/f08IgZeXF+Z5rjaQ\nkgVutGMaD2ypcA6Fy7oyLwshQN+J5WjIGR8CRRtyKtXVTi4KZ6T9f349scyz6GuOx/8G7G0mTuM4\n8jEm1mVBqStfp2VbtZC+UsoOejdeRxsH2vYHrkJZKT6FkgK6PskKnxQBzSeP75kePiFg2VIhGKDa\nWZAFmC+Fb6Q2iERBCyemYin7AVCjbawRr+h12yTw7aYrUU19SQO7RbZijATZaVUEWlJlJ/zJv9M6\no0o0VDfyBwClZV2eEmvlNDXGeNFNVS5SkaaRo1w5ONx0NM0VrxXvK6+rp8SNGCI+bISwUbJ0zJfz\nRfhezu7jr+RGFe7u78g58nT/SFB677DfTi+C9ShhM78+v/D8/EwI9ZCqQlnZXjUGcRUkVzymjevS\npTvGUV53TIkQtr27L2SSj6x5JajKTVLiO42KtcgbtHW4auAmSwX5eBsD3TnpvnL6HgLJ42HgeDww\nzwtl23acJfi6ar5hhuZcSDFDCVz8hbe3N2K1W3h4eKBR1GM1mG4dTYyR8/m8F4PT6UzOmWmaGIaJ\nEiJpC5Qs8SVblvC+Fr/SO0dRBp+lW8kpsy4rSRe6arFxOBx27Oiq+zHXLVw9mfquw9b/vq7L7hDY\nMKi7OwEgT6cTUFMmjKEfB8Zx3D+31gW0m0V3Dp0l10ojwXelOLSZ+OQHP2E8PHJaEkuvSdpRVKIk\nGfeK0mRldiUyNHKd/FtNIwXirwxIgNsNZd45h3VOcpaqu2GzgGpYQs6Jwzig2+YNGZlSSihTty9c\ncSVZdF8lMihVXQTEFuQbzPW6MWscoNvPqFEk23vab9Byk5ABpFgoJeKGDmOqP3TMOONYQ2I+z2w1\nElg6QcPb24kYE4/3d5SYebx/JKVC3u1bpWBu24LKYoXx9dfPbMsiBvQVD+s6iw8rMayUNePjWr1u\nxMDs7u6udmKGZVk5Xy77YsQYV2kNHqeviblLCPiQBDss4hkgdAAwpeBDYl5WyBkzjrjegdEkn8Ve\n1miU/R7ydJyxlFxYl2U/NeSGtbvvcfN2scYRY9oV5C2ypWE/zaE/pVQNx0U5e/uzt2mMYhI1YV2P\ncw1QrCbspZBSZOh7rDHM2ybxtZmdPbudT9xNEzFEHh4e+N3vfierR2t4fHxk7MSHJlcCWk55xxOu\n9qUWHyKxZLphQFlDWCKXZZGLrJLE1nlhOV94fHzEaiOKbx+qZ49klecc6TVkn4k5EbJjenxCuZ6X\n84I1HRuOJUNEMxgnWEappL0cxMysap7qh4TKQMlVt1P9gbJc5KlkxsMBaw33j4/EmHh5fkZp8eBV\nQAwCfkvRVNW7pkg2k24MnzoyGGgRKLK6Fu9qSpG8dCAm8D7u0StGWzJmX9eXVBucQgWYM5RvGttD\nK0rsf9Zayzo/K7QyONuRQmBdNy6XmXUTrx+lxbzeVFPzu+MdzvXV3uLI6+srseaIDcOIsYrL5SRA\nfy3Qfl3JOTFMU5UgZIZ+YFOwbutuE9JeYOv0D4eBlC7XDqtktlU2pX3Xk3Mz6q8d1A7Qa2Ip5BCI\nOWLRuG6gG0ZUKeKGWRSbj2hjWXzAWbWr5P+1x3eq6FwuIpxr7OImHrTG7R40jXYfU2CeF06n876B\nmsZx7yxE4l+wToLpfNiIr551ayh+Ioe8n47btqGMopgO7xMpXcWmlEJJmVz9YYZhQNmeLSQulxlj\nDO/fv8dohb9cqneKrFdzVqzzTA5xX6Mbren26OCBUq5ZWdM00Y/9fuG7rsM6K3wgXy1Rq85mnmcp\nVg0ALSLzTClRwoZT4n2biiXrDu0GMJb+MDEcR5LOBJXYcqA3wlgWLMRiTDN3qjT6KiYtAEVsQwVo\nzZXHUrseLaB+DBv393cMvWFbV1QleJYaq6uMrWusphsruxAXrVD6iuqIYFFyvSlXhX5jIvsgqafN\nirRQKEl+n2mbNl3293KLSO96MprtxjWlQlboIgx1tqP0iRD93q1SQNVVvNaGaTrSD4JRhZR4O12g\ncpFijFwuZ8ahwxnL0Pesy4JfF0opHA93mOp0aQ1sm7DavY9Ca6hBkoBgWje+QE3n17RVwSc6HSnG\nQqnBhbtNqzCwjbEyOhbZDhrXMYyTUC2MoaRESLkeKAmlRFD9bR7fraJzvnCexn3V1zg0ibR3L4CY\noEeZsVOW4tIuI6OFX1BKqavgyBwDVC7EdUXqpb1WilKkO8qqgC0sq+itZGkgOE5InqEzuE6Ems4N\nouBOGWe0zNM+Ck+j2qIuy8LhMHE+nzgej/RDt+MU27aJ6NCKcDXGiFZSjBaf9jV4266dzydgAFPQ\n2F2b1bLbW7ROu7CoCvOCIWFw4x13j++5u39gGAZ8zpx9wo8d0QSKKegU9g4CLRwbTR1RqpykYS5G\ni5dwbDesNTitwMtC4PX1I1oF7u7u6axs8eZlFuayMdhqzZAoVbzZNjVX7Oc2loVcKOrGD0nmPHIp\n+M2zeV/Zz02jVNMw9D9fkyu4Wf02IP76vK7WjTEiPWiNBqrCXwWjNIHmjKDw/mrWdjyKV875cuFw\nOEgEcPD0Xcf5dAIyJ9+oHtfuLqVE30nG2bIsdfyr7pIlXouOvJsrv2aUTe3z64tsn6p0wVQ4Yq2k\n21SNvZq4VN8U9QIo6yS5WWt8XMkZifDREvX9bR/fqaLTtDOtI6hUMjKyGm/gXqzcAhBSWb+71udv\nrM1jFPZmE2TKele+lMbLMF2HrmmZIWgoSewkQiRTBXHeE5Yz3iqOxwO2F2W2MYlxHNA5c3l7wWlF\nfydpDXd3B/74x8+ZpoF+HIgxEIInpeZ3sonzXc4oI2mUiqs7YFM/C8O65+31pXrZlHrHXT1dmkB2\nt2nIRSw1i6yTfTEcH9/zyWc/4nC8I6ZAXAK9tayqI5iebDKmZFRWaMRjWdbUt96DWjYbgjRjMLXz\nbLiNbEhc3xE3z4cv/omvv/wj/Tih0Gw+YmwnQGajHpS2IpO1f21+Kj/nxv+Z9oTbbqXU/LDN+2sj\nULk21+JT/7v65o0j19N/m/LQvIxkrHNC6kxCmyg5V+axJaWasFAifX/k7u5Izlfh6rIsVQcljN6c\n8g5k+21jXRZSlJFlXZZK8+hIwe+aKDFky3vBKZUE2fBBYIcUWtHbDdWseH73XU8XIoFIVoVIM48F\n6sEZkySamE44Pym3SG+L6ztA3Rj8/8uP71TRMUb8crQ2pCyU9LIDaDLTS/7VtjsJiv1Bi4gVQ3dZ\ni0uo2bYtVQzXYW13A2RmhqHfN0whBNCOpBx+O7FufvcP0dWy83I+sa4rP/jsR1CEuq+VYpuXGisS\neXl93gtBA0wLwt1IKcrJlcS0PQZf22nLNAyUlCm+oGxXFcNirO06u/ulbN5TbBN/SrGMKaAj5OIo\nRThJzgrPJmUhAx4ePmE83FXBLBzvJrrjwEZizZGgNJ22WEQbRandplLUGEp2e4kaeocBU2SMbLwT\nbTRWWUosfHj+gpfXV+7un3h8/ITp+IDrB4RGqSiqRu1Ugy4ZFRpRU+HFXLhmpGu+keSgVa2/BV87\nX1V7s2YB0fwTdxC8CBx9a9uh9VUZv5Me9W0yR9otVsK2Ebwn7Yp/+X3GKJwz1Roi8nZ+q3ieZI/3\ntoOuJ8SNEgMhBpaLhNmVXDWCKPq6AUs5o7Qh3oD5O28JwcXIame3+8pBu5WKpCSsZVvHsE4btjoO\nWgUhFXxOkBOoQmm2uDlDPcSbK0ID8J29Msb/pcd3qugM/cBQFa4ESDXORCnF4Xig6xzz+YIPVXpQ\nma4li9ix73pc57C2jkvVY1ZGkRWlxHx72xa0VhyPRz75RMzOl2XB9ge2pFF/eiZ4v3MerLNYNeLX\nC68vL4SYefSRh6d3++lotCYm4VLMy0xIAVQhRM+kxe+nFMW6RrZlRRzgBvquv7EiqIZYRQpOCH63\nK9BG39wc8rTOIomPYXcVFLtOKKkI6xVHP90zTPdkpYgpSKLnuyeGqSOEN9as8dpw1GC1oqgqymz4\nSakZYDlXwl9GV9YzuppD1a6nbYJePn7Fhy//wNt5ZlkEe5ru7kk5SYBdVmht0cZWp9KyHx66OuDt\nhEVVVen62rlIUUHYtCHgfdi3VblcsZ02rkkNKdymn8J1lLpVULf3kXOqkbwFishDtnXhcnlj22SE\nNsZJd7zNdGuHcz0gm1PrDvjoSSGAQmKutUY7x/O2VSIsaCPE0ZwqJaNq4KijTcmNV1NqJ5WxO5lS\nfYPf1vR3wzDy+PiEq2zvwziwzRdiChK0mCIlBshR/H4UhHUlbhtqmmrcsCbViGJrraj+v8Xju1V0\nup6u6/G+GV3ZPedHgGS7m1ZRCw71ZGo3W9919IPcyCmLH8rVOuAkUTIxMk3T/mzzsRsnVKyclIoZ\naKXprMY4RUn3BO95fX0lFFkv39/d4zrH6pd6ojiWRXLZD8eDdAElk1CEZRYbiZQJPvD0ZBj7QaxF\ncxayozX4zYvINF89bLQWY23XXSOX25r09nTWWmOVQZVEToWsDeN4B7Zn3jwH22ONIpPJWlbmW1KE\nrEDLeJNKoVTsSaOlYyp1e1Juhi2lyNUGojQHwTbu+Q1nCmNvyMkTwoaiYKyhG3pikk5H65bM0ZwK\nmzgz7ULR9rjl6IjQs9BU796Hb2AeUnjEyF2WEhXTqYZYImuQm3gHjcvV3O3qhlhw1lCqaDZGj98W\ncvZoben7jukwYVsShQalCzFLprnWHTkmtNWcziecq4bn9X1razke7pjGIyFEnJJo6hYasG0zvjoX\nVhRf3v9NN3b72TQ5jNaabV3BOpwxvH98IC4XXt7ehDCZIqoknFaMXcfQSexNyTLCt8xzAfAlCdR+\nH7VXWhhi1VdFcpV0KXt+Vc7pppUGqEWhcwz9wDhOjKN48nTOEeJWFdvyIXofxfaytr5Xs/MoBvD5\nwpY1W7Uhdc5RDAzOYlUSScH7Qj+tnOaF19cXmZetrSppRfIzw9CzrjJynd5ecM5Wz+drC5xL5vR2\nko2R0jjj0JW8JrlE1y9YtFeOdZ2vRVapXR7S1u5tPVp0liKsjRDLXE/IhfV0RqnIYbOot1eyVhw7\nhU8ZXxJJFZS1XIUAasfAwMiopeU7yrG+F2OEkLdzOQUvGMeed+8eeMKgbM94uBPhqNGkXKDGBdOK\nSCkYrXC18EGm6/qbOnJ1HWxFRDBdKTqS7UR932ofq5oPsXQ3Ze8WG7bSMB24dj0NVwPQ1dBsXefd\nMP3WcN5axfEwoYwDVUhJkkLSOAj/CfkutNKkOpKJpk46mrFet40ykXJGGSHJzvOZZbmuypVW4htd\nsbt13XYKQtd1vJ1PO/O+6zveXl+Z+oGh63l8uOft4wfeagSR1ZqkNS0j1Wq9C437viPHuBcbGbPg\n6eHpW93H36mi42Ng9dVEXYuyVdaWwtwtJRO2TbAPBANyfcfheOQwHYRrUM3NQ8wEX0hRmMPaKqgG\n6MZZdNdRtEIiyCwpwtsWeFsDS5DUAKvF1AukMVfGMo53KN0RUsbPM88fvuT+eMc0dLjOcj89yNYg\nJp4/fuR8vuBcV/GqThwIw8q2eha1icmW00yj+CrbwXCwUzWViuSYsdpB1hjlKChCzhwPE6aTKGXX\nd2LzkaFzlpgDPhl86WF4Ig0PbChiDrgE580SL4VsDLnvScnQ25GpE4zI2UTQYFF0SqNTQtckIK00\nWYE3RT6/AtnUcSVnDNCjWFRPKBOuG+j7iVwcqRjAyDrbXJMk5aYUn2YhGMqN5rSnFEPKlkxHKlpY\nyzpRtNjZejwXP7MGT1GWQkfOwtUpBdJ6zYmXdVCpZmCNeyRbMXLGOjHuCr7KZrRo40IK+BgJKYJW\nWNsRgsfoDmsHSjFY1RFCJETPOI70RrpXiyYpxevpDe0MmchlfWMLF0ChDaQUiE1kq2T76v3KupzI\naUUqetkR9qyqb7KCrOQzybmgioiSOysrb7HYjYSSmVfPmgqb1iQlsUGqFDIbPkV8TvRKoVPB5cKW\nxL3Q9oLjqALFfg9lEFsMhChUdl3p7beyflX5MrrN+EY2Us6JNuSybiw+YBCMZl0CrhuwznBZZ9K2\ngjYoayq+IWpkYzqs6fEBXi4XtpiFx5MCJWWSymQl6RAFjTGO4zhxSidOzx/ZLmemaeDTzz7DDgeO\n9/fElFjmBW0c58tMP4z0w0gqkdNl5nK5CL/GavrDgB1q7IyGrnMkYzDasqa18iwaLd5gnKMbe7B6\nt3xo638KGFXYsuLw/icMT3/Gw2c/Q/eOZXuj6xy96xicI2+B57eNVRXcwXLfGYZDBmayVaQs1iG2\nbnI0rSMoGOtIQC6JUnRNVhANldYW191R9IXZZ0KBrjdo06N1R0E0RmJBKi57e9Cg1jLaaY3Oi8wr\nWhjVoMkqU3SRn6sFWIIQNaiegq1jpRSStCWJZzGCVeXS2MiJVAq960k5EuNGr/tKJBRJAmTBZEpG\nW8l9EvW6BmVBGSiG4CUXPqVMDAnVa5wSKEAXjUc8isbBsW4riz+TS8RogQC2bSNpSBGBFGJgXk7E\nsEAJiG2rjD4xRULj0mgjrOKcKClgKiyQU2JrFAqt8Cnx+Rcf+PB2YU4FjKa3FlMK2nqK1kQlsIPe\nIrYbKFrsXEyL+U6FD+fnb3Uff6eKjlZCf9fVhyXlq2xALvqrP20jR6UkYXpbiLJWzwVTuRPOOQ7H\nCW0VIce6haIyYz3LutDZM1a5uqEoXC5zLVirqMxLXeVWEWhOuWqkHOMwsM4LHz9+ZJ47jnd3WCU6\nr7vDkfXpibe3N15enndHt1ux3bptzPPCtnkOh7KDwaCxxop9aMyEEJmmA+u2Yp0QyyRJQKQU4qEj\nF4jgPxaK4dBPDP3E03THcBh5O2UsibEY9Jr48qt/4vnrV3766Xt+9uc/ZtsioVc4p+iTbEhQioKR\n9WuR0zshWilNrCdq87FWoB3FGQ4PT7xTuWaGGcbpiOv6+vtUzUYX0/yG3TSPneaXk/QERWQZlCJW\nHSTpTICMI3lH8h3kAYoVMFlFik6gstz4tbAVRY3mudre7nyeRgxoGzpBs3etX8OZ2yarPQT7EWC3\nsdyvOJza7VyncaSUwDKLnALq60gZSiLFDY0lhEJKXvhnNC/pG7iq1N68RgE30a/KUkyNNlhjKzlV\nIApjDG+nE5f5QiCjioyxpj5zKaQQ8XnFhoLKIukRqgJi05sC63KbEv7//vhOFR1nLV2VBuSS2bbb\n1aZkGFE3KiJrkAtCPIiDhIMVRT92TNNRkg07R0piKi1uajJCKAqpskQ1GlUU85w5ny7V1kLabAqk\nVKSbUleT9UKh63oOhwOXy4WUEl999RWTf9izlqZp4unpidPpxLZ53t7eROxZ88xPpxPzPHM6nRiG\ngWmahOFazYBDEANurQ2Hw8Tp9CqUe60Zur5uIqgXjnyGSmu2rMANvJxnlP+SLUkWk/cnUjzz1T9l\nNh/4+vmNeV4xKfLXf/FTkrG8Bc84drgkxasoTVGGWDQ5AUqM4ykRlUHljMp1pa4UxVjBhszI3dMn\n9NO9RNwaR0YTM3vXgLp2N6otA5Tau55URCoBMhVJsqkAzgWhA8RN4VdNyZ2kmioZvYrx6Fww9iBR\nNQ1EbkSgLCTIbdtwnUHbqvNLoXJU1JUzFYVmURdpOxZkjd0xoaaFavYpShXGacC6HgUYpTidL6yX\nuU5KusoTMtZIhyI6NNm+KSOrf8GOb/kxlZZQr39rDH3n2GYJJtAK7u4kV6sVwJhkzKKSMFOWzlCj\nKtE249eVzoFThhgC1sjvXr0sYVSu+fTf4vGdKjq58mdsJctpJTR2pSR2pn1Jxhj6YdiZvCllmssd\nqtD1HcfjAVUzpAQbSXvYXskF4wzOWmmzswT5rdvGunpKEeFcUkLESiljbRG3NoRNbLTGWCdfzLoS\nguePf/wjh3km58zxeLxyJawlhMj5fOH+Xkv4Wb2w13Xdi04phb4fqs2FvPZl3arrnarjpHwu4qNT\n6ganfn5FJCLcP/Dw/qf4NPB2zrz84Q9SyP2ZnC4Yk7Fdx3T/yKdPPyZZw2+//BL383es3jOWnifV\nobUlFC1YijagpQDrLFYVkshg0CpTtETeFq0gF2JQaNszdIOAvkXWwLraaKYKHDcri7YWV21FrhWp\ndqy6SGyQqdtKec/yuoIXg/RUiqR0qWY8JgVGWyOYR91UccNkvm6pRGOmCZW1m2XkiNUgf9uYl0vV\n7VUpQd12CRPc1O7mSsw7HKYd6O86J341lzOpLhMEpLd1kyZG8SlnjFH044AxhXXLhLDIAkIu7vY/\neVQOj9WatWQZIaPIUlrUkQ/CGxKhYAPQr6xAmJ/TAAAgAElEQVTtFCPKVMZ1ESIh5coPkljrjcF1\nqPh9xHTWlXWe65elhXBWT3JyEVOinOm0aFFaHk+qXJ3ddxcxdbqSwoRObrTGB4mKtVrXvCdq2Lwl\nxhYoprHWUTpQ4baVLrv9BMg4pEfpfp6fn1Fvr7unzyeffMLhICbeRmu2mHDG4jehwzf5guBWdTWe\n5KmrZkwbC/VkBSQRwliM0YRt3b2SY0hi6G4M67Lywz/7Oe9+9EvmGcrXC+bsyTGgRnBm4PHpjvvH\nR+7evef9pz9k8xsfXr5gfLXofAI18aO7js70QhwrCWvq1V5Fk1IsXM2VMmidqlSgQErECKmI5EDS\nRZUUJK1v7CuoxebGL6cWHKUUGI0qGlWQrqVJMUqNZtEQ04ZPC1kHMqYaVRkUvVAVihifX9O/1PXf\npECkbujq3F3xK5RgisuycDqfWNbLzviV4ihkReHTtK7UV2GyBO6lHCorfuH1VUbsGoFI3/eM0wGF\nxZiOXAt61zmGoaMQSXkTS1gfbwpNlYRUyYcUBa60Ca2rTW+k63u0NWJulrMo52o4oXyV4lQ5HQ48\n3d/jiuJuPPAwHQm6EIPfPXyUMuT8PVyZ74Ax3Kw0G4YjDFOxvsw7Ca3l/0DGWFV1KB3zKrhM3/dM\no/Bx1m2Ryq6AVIh+kw9TKfImGA6Islw6CoPRcf9Cg/doBLPZA9w0PDw84L3nxz/6CR/eXnh5eRHG\nc98z9D3Hw1HMtK0lhlSFj2Uf1HPM5BjFmVBLKJzWzc/XiJE7MltbrRn7gRwjdhzRSqgASltSScQM\n3fTA8fE9pisMo8Zqab97V3i47+l7i7KG6e6B6e6ReZnpB4uyUgB/99UrP1qP/PCzew6TxaQLWkUU\nAVQEq+qKXJN1J5KGLLwPVQJKRbK1xEr9V00hnWp2uJEoIFW3k03hvfNc6n8zqrKLS8GgxKW51Fyu\nkskK1rSypAvJBJFJJI0qFrKmJOlU2uiGUpVDfCUQCrVf1SlPVzYuO+nwcjmTUqTremIMeC9FzFlH\n1wm7Wtwhze4WsG25juCicdqq7a1WilSkUz1MR45395SiyUm8nqHFF8O8hrrNEta2qpeL0dcpQNjc\nwr4HkVZ01Wh9GAaKEqtSbaqBbQrCH0pJFiRJ3CgP08inn3zCYBwP3ci7+wdelstu/qVq15f1laP1\nLz2+U0Wn73ruDke6zgkTuQJxzjn6vifEWP1mS2Uct8jYIqFoxmCNeMyGkFi9J1a2spwQSHyJrsZP\nq0c7WTvP68qybFAUWlm0kTMpV3p/S0Mo+WqglbP4jNjqozOMI6p3bKv44cyXmWma+MEPfiDCu6rF\nUUpVLx1NVFLMlnnheDjKBWEqM7fiBfM8i7FZbeGtNWhlcdqwbAGUJkSJ43l8fMfoDhy7IwfjOHz6\nwGE8si0Xclroe4W2oKzG2IEYEoNx/ORnv2CaNG8vX/BPvz7xDy8XOHzKT6cRZwKmeAweqxNaO3xR\nsgIvehcD6iL4TtEJ0WEYiYTZR5vGDpYkAlGVC1XHVFxHt5wqpbDF7KOVblxoVUiqEEphy4Wz37gE\nTxCFEgCqGCk6WQqTRuw6S857xHJ7HU3XlVPaNVKts0w510ggRYgBGYlMlbYUcdpTQva0dZQS29LD\nPnqJrANUZVurQtUBdsQgxVMpt7PStVZswbOFQCzVg6j+PVflMkPfV1BcU6z4KRvXs1jpgsdxkM4Z\ncK5jGC05R9IKygsemSmY2pnGENjWDW0zW1asnSjgc0pCI6iWJ8V+DzGdvuurQrclTipiTWPYvXW0\nIYStGp4nYkzVlU/jSczLgrUd1hpc15GqaVdJ0mFQys50ljPOkBVscWVZ1xr5wZ60mFLayXjin1vq\n6FYqtiIi0r4fCDWN4pN373b71HVd+clPfsLT0yO/e3sTh4JUldbG7kZY7fenlNAxoQdN14kvy/ly\nIRUBA7tiWZeVwzQiMcWe6e6OoizeLzy+/wFpy1w+npiGe7SLpGVh7Bxb8Pi40VsrZvexcDjcC1jq\nI+fN41TPjz77cz7/vz5n/LAxHAc+mYTV6pQW6jyy7hXA29b0CIPKldinCkmBSjdpnm0c1aBVhqo2\nN3WjpG+4M40E2CctaZeqUIigJYEzKbEPX0LhtBYuG/hoKntZQUkiXi2JVPktTbokY9WVaNi8lWzF\nBzcvxm/OOVw3MJbE5sWk33svgLKq/j4IWa/v5LtoRM2upsqmRRI+lUaSNkqpTgI91AMtFwVEQDCY\nosCHrV7rVmCbQj34ZOw3FSPECHkvI12jqxurQub19Y1+GjGuoyThuqWqPRMOnMIWRfQb67pxentD\njQfGIi6Hl/lSuXDVFoNC4XvopyMerGWP0k1JTu/tRmGeK/IvOU7X3CJgt/l0rmc63HF/fycq8xAo\nqtB3jpI1rndyqnUdxRi2GJm3SGj5VMCyrBit9kTQGKPcqEUA5Wveeqr+OfJRN4B42zZO51N9TTN9\n3zEO3Z651fedWExUYeoxHqvquGB0x1ZTI1GK+4c7zufCy8vXlL7as3pPV+1aUxbZgk+Zj6cTb3/8\nnJe3DaMcQ3+gcx33j3foXrGEC2tcAMW7d+/5wSeZEhMqJcbecn83MR6fePzJgX/8r/8746g5/PIe\nUxzOdGQ8OmeMkk2JBmnVK6aWK5+oAkBUYoygKrl2E9ZATnXtrne2sBSGaz63zbJSNjYTCRSD8IdK\nx7YZXjfPhze4rB0xS2dodYG0YXQWi5N8dQpUFZZK5Socdc6RYtzFjNoYaHG6lTksGeO3mVpqlyHk\nmnjRvIu938g5MR0GvF9ZloWcQt00qmprmnh5fuFwuCNlqlBZRs5YbUpQNcsr5p3YuHlPOZ+xTgIX\nJTVC3ovYnHjGQegUMQa0t/RDJqQNSWWVjWqKAZsy5OoBXt0bh3Hg/uGRwXZcghSYnDLOdmQfMd9H\nINlvGy8vL2IzehMr0+ZxGbMGunGk73rWzbOtGwXqKCKnb86lapPE1tNqxeAcLx8/sl5mYslMh5Gs\nNUEposlcli+r70jl9xwOrIuss9uMbIxmW9aboDSN3wSrmee5KsEzb6cXLvMFUWpnvvriTxwOB8Zx\nYFmWatgFfd8zdI7gV5b5zNx3PD0OlJyZLxdKHRWVKXReYl2NNdUYvCmLDT5k1rhw9+494909FxLr\n2zM5FsbhIJXhWZFMobjC/dM9D4+PrCrxtl049hPTcWLsHKozfDxd+K9fPPP8euHXf/rI4QB//tkB\nZxxKFYyKYtyeRTRoCuJFXByBRM6akq4Fhz0bPQm9MEMhVXAyoyJo29bmlpIzMWVGnVA6U1SmGEWy\nhqR6Zm/5uGZ++/kLn38diBwxLkDZUHisldeYckbroRaL2tkqSTdoNhet+0gpSTYZSNpCxXTEQM3X\ncT7TdHnee6zpsLbH+1DtRQQTs9bs1iki4pXEWm66K4Uh5UIIWZjkHXt2vXWWVCROqUk2asOzb52K\nEs/kbdtIMeCXmRg9OTtOb291oyb/fzcMlCTM51z7+1KqA2GMhJx4u8z01mFj4ThO+2ssRVWXSE1f\n+m91H3+nis66ruJ1XAtOWzka12xLxT7AGCNugrYjdMOurVGmJhZo4Te4XnATXcAZLViIViSfMMay\nrJ4N2Ipm9klc2mgesxvrKubo0zTWYLRr3M2t3qktMTe/MW9n7u/v2eaF2S98/dVXHI9iFO+cRemC\n9ytKlT2f3BjNMs/Mfc/x8IBik7n+BgQ1WlaprkaNxBgloVODHnqGoed//J/+Z37405/x6g2vrxee\nv34mp4KPgazBTB3Tuzumh6PouZTDdY77hzt67Xj++mu++uoL/s9f/Yr/8n/8jvdPB7T+JbbL9Mef\nsTFwZzSDXgl+pVNgTBaRaM7EWIjFgnbC42FDIVs/mkpdFUqWCJpk8p6gKX2OjMmicE+EvMqJrzTR\njmyqZ80TX8+Zzz/O/P6LlS8/rixbwKiIKhuJFaWFHCgSqWsme65gsZzsEj0cqmMjsGN1/SDezUVB\nrKkgwC6qbYUgRtF7dX1Xx3CD97F2uSuQidGz+aXiQApThD3uOrFaAbkWc87M80VIgWuR8b7IqvzW\nx6bBAjLyX/ExkM1cSlJoYk70wyTvLZerri8JaVEwNrGDETkQLKvnNZ5lY9hbue9M7SCtQvM9tLZo\n48pusN3aWaUYDwdJjyxixC0xIR3jqNg2j/cruaRqTyk/gxLx5LIsZO9Zlhlf28aCMF1TUZwuM7OX\n00NGKg04UurrVrdiN0qRXaoXm8zTh+nAsqwcpiNvb6/kGGqxrOLGFDmf3/B+5d27d0zjWFME5Owy\nRuOsI0XhCy3zTHKFfpropxG0IuZMzhGjFSGlXWfV9x2XENEx8/DukV/+d3/Fj3/6U3R/R9gC57cT\nyctNk4ym9BY1OHz1OB60Q/mI8oHn0zO/++1v+c1vfsPv//BP/OIXP+cHP3jHy3zhV79XfP7V1/wP\n/+GveX+wfDJMHGwnvJYwQ4ySVe46VII1JEiNjyKf9tVKVKh9qRRUAu0M1vagDRGFykrsM21HLCeU\nMQTTE90db6vl+eL448eFP33MLHHEuLF2TStWB8iyISvFoJTdOU4gMhpV5VeSm3Xrj6xwncOHIGxl\nCtY5tlX4OW3szjlhdLMiEWyn+W+Xcl39l1IYhp6UPPMSa5ejGMYRrQ3TeM8wjNyafj09PQkNoKZl\npBQ5X86sq9/X/M3EyxhTu3uFxjKNI35bCH7j/u6OU8UxnZUYI1VUXfF7Sh1bVSmYzmG6DtP1rDGg\nk6zze6eFDqBMte4trOp7aFcqPILq2K+gKBEGWmt5enjkrrryzfNCSqJCFgRBFLw5ZIpWWCO2okpL\ny7osF1RKwky2lrvpwHj3wPjQ8eoDf/jwa2Zf6PpBcIuSIRVxBVRCHCulgBGpQdc74cZUD59S2HlB\nx+OBGBPv33/Cb397rmQu8b6J0deTK7FukeaN44OvBWdh6jem6U5Wtn4jUggxsq0rMUUmM1QGNCjX\niQZKG37+F/+Gu6cnuoMwse/Hgc/uj+gkfz8CK5m1ZLLREk+7BrbtzOd/+D1/95/+M//lV7+iH0b+\nzS9/wV/+7V/x6aefopTmfD4Tt43ffwz44vj6Zeb90fHJocdpMDZguMa8GKXJSrY9qq69hUmsoAgn\nphQNRgSgKENR1b5UWwl105pkJqLSnJPlMmv+8GHj86/OfP7FmefnE8WvYvquI1qtGBNrQoQhl14Y\nu1kOCFL+BlYiq3eF6/v9oKOST1saK7DLIASrqSBy1fxJckPHtkkwoximb4zjgFJiZP72dpLupSiM\nGRinkb6b6LoRW5MbmtPl3d2RdZ2FHGs1l/MZZyzrfodcCYnJpH0Lp0pmWS5AZhom/v1f/w0xJ/7v\n3/xWirs2dEXjjUWXWKknlbDZIm8q0p6VJithjoeYKltast9ntm91H3+nio6x5hqfW4QjYIxh6Ic9\nLlVWxoGc66pcG6nkld27xSBzaMq8vb3x+vpMWGYGZ3HKMUwDD4+PYHuU7omz53RZKcWy+YvYdtax\nKYWwuwxKGoPa87ZKKaKGrwmkb29vjOOE6R0fPnxgnEZ++ee/4IsvvpCClCX4r+970QHV7gU0Riuw\n0vKnGGQctBZyIpPph56YQ13xFA6HIylB0YZ+nPDa8bNf/pItJk7LymFIom0qCpULpm4tRmvp3UAs\ncD6f+fjVB377j7/iH//u73l7e+MXP/sZ//bf/Tt+/hd/zvTJKAmj2vKzP/sFORZ0TpxfnvnT8yt/\neln48fsjT6PjrnN0xZO3BZNSlUVIkRHb0PasywDkufv0FFGZayssc1DEVLikB+aY+DgHvnh75Tef\nn/jjlxe+/jCzvJ1Q24Xl4wdyXHAmUEqkZIVSPVmN5AK9KVilKNZib+QNwvu6jiNizH/triUDXciG\n+89nOQAPxyPTeMDavqZAOGIUfda6CnG0xMw8z/iwAgVJYzXXlJKYiEFig5tfVAgBX72zjRG/7MN0\nYJ5fBfwmV11hHauM2ImSxJtbV4fHrz98yQ9/9BNh2YcozPtNPJKb17Mxhqw1PhZKTLgs3jqYSoyk\nEEvGaiGphpCqHuxff3ynio61klHunPmG/6+vxllzlRiEIJnbznYStmctnau2EcsFvy0s20IqgXm+\nELeFU84cxolSCq5bCHljzpbf/+lrXl9nfC64rufyduJyOQsztOv3Uy4mT2c78bkliS4mF8Im69W2\npj8tYlX54cMHVNVq9V1P8BIna4yid65aqW77SZqztMLeixBVO0csCe0M2pnqTBhIuZ7MRU5lP88c\n3n9G1/csm8d6TzKBPmsmNB0aZ4Ral1LkvK58/uFr/uHv/4F//Lu/5/XDB57uH/jb//Df81f//m/5\n8S9+TnccWMIrYRHN2uvLC52b+OKPfxJ+h3vg/umOswk8f/yahy7zw7uOh25kLBEdNnxQhHyVDcn+\nqmqMKqM41Dwliqx9SYUcEyFJZO4f15ElGy5Fc0Ixfjry5z8c+LfFUeaNv/9f/xd+86df4ZSmUx2g\nCSiUHSlqJMfwDUP/XEe+Nm5pFLGUq6F99Q4qSuQE3vvaVSdaIqi1DlevU2McKQrgC4q+l2txWWe8\nD8zzLG9eadzQMx4OMhrXzkHVmF6tDb46CYq4Mu3LinUTlbssA6+6w4ZNZWtJKe4s5KwUv/71r1m3\nUN0vE5fTma6p74tsGo0Sv6Vc2c2h8pS6ook5oYvdgXOkGWJIjtdvcx//f1kU/v9+pJhqRzPs63Ax\nwu4rO/Qip4B2jMM1bqatLAXcyyzbgg6Kfux5fLwn+I63j5Kk6NfAZfYk3RP1wNfPz6zBs6weFRLO\nmZ3cdblcRMvVSX7WvMyQG6dGkgL8KobYx+O9bLCqcPBwOPA3f/M3/OVf/iV/95/+M//xP/5vnM9n\njDFM0ySmYXUjUhGG/e8G71nXmWIMd/dHQgpSpM5nON6xbBsazXQ38fXbwqfTkctlxi4LZt64EOid\nwWtDn2AwHUo5ns8zv//yK/4f7t4rRrcsPc97VtjxDxVP6Nwz02EyZzhDikEkZVEwQRqwLNhwgAHa\nMnzhCMNXggFfCJYBA74QCAcBhmHA0KUgWqYtZormMIrikKPJ0zMdT5/uOnVCVf1pp5V88a2/Tg9h\nkjMWRgJnAw30qfor7/2ttb7vfZ/3C1/+Kl/76tfQIfLRT3ycH/j+7+OZ558nGEPvPef3z1hd3sMN\nnt2qo9+NlKamKmeU7Zxnn3uOsi149PAd3nrjHYppzVPzgidbxVPLipO6EE4N5AbxN49aE9JX3tuB\n0JoYEt3Y00+OyQkIfayfZkww0tMlD7WlnbXUusZdQV1bkUF4i9oTGkMkJI/XAWKkzoe7yOO4mRgj\n0VpAM4yD2AW0xmUHeUgwDCPr9ZowdUQ/yNFYSaHvhx7QHBwcU9dVToJw79Ek7WFlOe0h7UWCgtEN\n3hB9oq5s3uVY+r7LDV4pcGXOSdttd5KuCdLXMRpljSj2o6iK9wMOFwOLVu7dd+7epWpn2LJiNp+h\nHcIc8o7JTRTiIZGBhIWkdNZRib2oqCrB6VaVeA5Dogkl38r156roeD+J1qBZAPu4V0k+HKNnGDtJ\nLrQFMU74UOUzdaTzjs57HBN1ZTmYz8VPYiR5kSZx5WA1enYMzI8PWK1HVqsOmwqs80Q14YNj6kdU\n1BSpwHmJGQ4Z+GVSogyQxgEVEvOmpmotnZvYdhtuxx7vO/69f/ff4N/8V36SejvSfe9H+cdf+ST/\n68//33zp7B4uWSjmGDeiUhANipoYU08ZDW7U6MIyP7qJ9xaSxiaLjsCwE6xqWdGTYLFkqlsup0Tp\nEnWM1FON7yOubglK000wdAN37pzxlS99hbfffpuTgxu89OJL3H7iFl7V3D17RD/0DNPANDo2G8+u\n26CI1JUhKMfJE3OOjo6YzyMxDnzjlVfodoHCHjGODfdUzZd8Qds2HNYFizIjFooIhRwPlMpNfp0l\n+lgevHuBT+C8pSwPCQmWyyWpmUghMW0draopihmFrnP+0oTzW0a3I0XHlJwMv4xCMzAnYIzGm4Ko\nNTEEAgpbSoHp83g8xsjQ93nRSpS6wGjDsmo5bOec33uTISpMUeXeW0QZy+gd9y8ecbA8QmtDURdc\nXj1CqUBhE9vtfWArN7ZeMg6Jk+P59ezb+RGnYNMPHCyXVEUB2bgsoQQOtKKsS4ahl8KZo2/aqqXf\n9aQo1oeqLuj6SFCKXRLMa1FUHJ+cMJ+1jMPANjocE2YaaZTCtiXTOFANCjsF9GZHqAoGK1qytm5E\nDBoio58gRobmu9AGodQ+ddNdZwelJL/o4GNWaMr7p8ljuz5X4oIpRrpxIDpPUAqXY2zKQlASbdsS\nNJQ+4ZUAwfthJUa9wYu5z4/oJMkNhS6ZRifJKCmyHXegFDoJc8dGuHl8whRCfoigrGt2qyueeeZp\nPvXRjzEzBc3cUFvDxz72QX562fC//5//kD/60tflJreG4AQLmfMVmLynCBNFjOIbctLH2RtCh34Q\nI2lZkYxhOTvgfe97gZPTG9RNQwqRoRukUeqiyApc4LVvvMbrr79Bv+v58Ic+zK1bt/De8/bbd/ny\n174CROaLOXVT4X2kLOfM2wZrNbdun7BczmiahrIqmM9bvvH113j48ILTk5vcvv3kdVrqGEB7uNwM\njIWs+Ov1ipQiTVMzjiKYu/XELY6rGYPzvHv+iHa+YJg8IXS8fXaPH/7hHya4Xgr7Yo7GMsWEc54Q\n9xlO0hjW2bS1z6QzSVzwRHmIUxI+znv5wft7az8xLYoiTx0LpowhEQ9dYJ/CobTsTLx3WdQHXS9W\nl6puRIw67hgH0XaVtsT5iaquOTk5xY0Tu+2OebsQpfzouHXzlhxvnGM2n7PZbmRhLW1W3ftrno/J\nCI1Z2zIOE2Uhx31lJYe8n4QnVRUFk5t4+PA+u20tx8NSWM2kjLYYIjEI4GxeNZRNxYQEW+6Pb/t4\nnf2uqjLfhYbPoigE+Zjzx/eZ4PuExLpu2OMq9hOHYRzFk6SVpAcgWoRd13F1dQWLiC4sB4eHqK7A\nRc3OCQ6jywhUH2SSdHRwRPQTYXCCCc2ychUTFJYQHIpEUeZID9ejypKiKkVLURimrWbezLlRH7A6\nf4ivS5SB+eGCTy0+wrvnj9hebnn77D6bwaEErClHDh8YfYctLGUMEinrgoCnErSzGUVheHRxxQxD\nrCwf+fgLfORjH6M5OKYbBpxz1FayxBWKru/ZbnasNxvm8wXPPfc8Rmnu378vwkejWR4uqJuKlATF\n8cQTpyyXhxwdHeDcRFFo6qakrmoSiUePHvGFz39RrCZFyYMHD6iqmlmWNVRFSRg6BjeivGe16xmG\nntPTEwpbUs8tpqwJSrPeDZiy4cHFFd3oGIaBu++cce/8AU+/7wZDTnv1OTrHlgWltgxXjzLnJebQ\nOJEbG6PRSUGQXYzPzc898M17fw2/2lsgQBqzfY6z9i5cZ0rt1fGSAVXkWBlFXVUslkcURUmMkdXq\n6vqIJ0fnURTbSuwsNu+Ggg8cHB7Qdz3OBZFhKMV8MZdFLR9vEhJxFGJgmjbSV9H6WrqhiJmwIFRC\nnY9pZVleCzLLsqSqKna7HUM/oBIsFzMCid3Yi0ew7ynRlE2VYWeimrb5hKGVgL5cTMThu3F6dZ3v\nlB6b8VKS2Ni83dwnIezznPe2g/2UixghyI04TRP9NDIrLG3TErXBY4ldz4PLLX0vY+69wziFSAxg\ni5J+3InOwRhslNgOQWckYgm7bsOgDJVZ4AKYZsa461jeOCZ4z+b+Be1Ry2gitq6w2tKOnn/p09/L\n2PX83K/+OrvtCtn057zw7OfS2hC8o+92FM2cIp+rY92gdaSpaoqyxmnL889/AGMLptEz9iN102b9\niIjQHtw/4+LikqZpuH3rCcZx4v69eyjgmWefoagKjNEcnxxxeLikqAqapsEYDSpmbtE+/8kx9CPv\nvH2G1poXX3iZtl3QtjMePnyEUQqDwk2TIETybuTR5Yrtbk07X3B4dMisrfFousljq5bePWR5dEJ3\n/gAfFNoUfPErXyXYHoPi1snt6zG6Skgix+UVu80W7wNFtjjsjaUiS5B7qixLGR7k+2Yf37z3uY1Z\nUQ6PdWLaKKqqIMQS7y2JQkBY3qFNQVnanP6grgcdl5eXFFpTVTrvxiSGejlfUlhp4kLg6OBQpBFt\nC2i88yyWC6qqks9RlmijCCnSzmbYsmQat7ixo7RWCAPBUxQFCrJSXhGCY7FYyM+VpRlVaa9/NowG\nHxmnSRBoSnZN3oVr9XU0YNmbbsnyAJmujini91iEP+P6toqOUuq/Av4a8EGgB34X+Bsppa//sdf9\nN8B/CBwCvwP8xymlV9/z/gr428C/BVTALwP/SUrp/p/+9Q11O6MsS7YZ4xmjyNOHXGVF4ZrD7FLK\niZIVRVVSJaEB6gTV9SRMbg60YjZb4pVm5wKbzVYC9YJME5zPBLVxoCwKjDWMU0/ygUrD+5+5zQ98\n+lM89+wzTMHxxVde4Xf/4LO8dXYPVTWM3VoYQEXBZtfxyte+zo1PfwyVTEbqJkoPTx0t+dFPfYK3\n795ht11x/uAB4+Rzv0OjjeR22cKiikIc90m0I+M0URgotEWZgttPPsPz73sBh6irSQZrDLNWaIZ9\n13P//n3effceCkVTtzjnWCzmPP3UU5ycnog2ZBwA2eXM5rM8hYk5SUMMgNaKU/+NN97ks3/wOapq\nhn8i0jQtpS1pyjpLHDSbzYbJOZYHC3a7LfevVigN5XzOhKLfdHJErAyPri64d/8hs/mCfvKYsqbr\nJ9LVjqaZYVD0Xc84BmxZogqDm0bWVyvxqgVHsceXJmH5gELHzMtJjyOD99d7G8qz2ez6oQOui1E/\n9Gy3W5RS1HWde0Aiz7BFid5HXGeF+mI+k+d6GjMhwGKtpm3nhGgE06Ef62xijBSFxVox9W42G/ph\nkAU1QVmJ5UB2ZnJctMpSmPccyRW5qAjOGrwAACAASURBVMjQRaWE9yNt2wp2I8ruzRjLFHwWExoU\niUDI0DAJBSiriiFM18dRwepKcQJEIf4tBl99uzudHwH+R+Cz+WP/O+BXlFIfSin1UhjU3wD+M+Cn\ngTeB/xb45fyavQ31Z4CfBP51YA38z8DP5s//J15GaxaLRc7u3rLODJL9TbPX6ux9MiE+jt4ty0qQ\nvilh85bwWv6eJHu7qGp8iOy6ifVml+n9EKLkFBXaYm2ZxWEJVCROA08+9QQ/+aN/kb/4A99HVVds\nx55nn3uC97/4PP/Xr/wan//SV0m6wNiSsXfsXORzX/oCz94+4klzi7oCZRS1LYk4njxe8kMf/yhv\nv32H9fqSKUw57cEIkD5GQopYhRz/nJhG/TRRto2wcwI89cyzHB6dMGJpgqLM5P6rqyvunZ1xeXHF\nu++es15vSDEx1hPPPvsst27doqrKLHKzLMpZRiwoNpstq5WjrkW1Opu1ZNweb7zxJl/9yiuUZc0L\nH3iJlDRu9Ohkrh8i7z3OjwzTxFwfYKuaej6nqkqmmFit1gTvaRYLdsPIejcQlUYZy3J5xDg5nnj6\naXa7js12xxOnN5lVIrgcJsfF6pLtds16vcJNk2xpsgVGBH9ZdZzB6XumZEIQEVo4E/k+EZ3QOI7f\nRA4YxpF+lKSOaRoJgzSQm0b6hN556hyqN01i9Sirir7fsd1s8GGUfkjUjJOjLuf0fc9isRBz73x5\nPcq39rF8orAWjLjQ67qi63tGN2Unen74YxQD6TSh2lZYS0l2/a7vSCQO53NODpYoW7Da9WKbMAat\npBkdiWgrSBabpKiWTY0KBh3lGQo+ZFyrWIe0ktz5b+X6topOSumn3vtvpdS/D9wHPgX8dn7zfwH8\nrZTSP8yv+WngHPjXgL+nlFoC/wHwb6eUPpNf89eBryqlvj+l9E/+pK9fFCVVVWcthc7YCmHVWGOv\nm33OOyICuCqsoD3d5DGFpqkbjM5epp00f5fGUGbe7+QcDx5esNn1+L1f6D1AsKos0dbQdRsKAq3R\nfOCZp3j5uWeovKOYEgurscsZ9kMvUjQVZVHwTz//ZabdlqZdoKzhrYcP+cKrr1LMLCfaY2qDalsI\nCRU8Lz7zFB987lneeXifzjvC6CAKxxcFQ9+Bhzb3EsqyIEzikRF4lOGJJ59lvjikwLDZ9kyjo9tt\nObt3Tt/1DJnrM58vOD0+oW1bTk9POT09zf0q8fuUlfxefQiSt56Jd26aWK82xBhZLA65f37BZtNx\n48YT4l63FUZZHj28wBb58/UCvZov52hr2a3XtPM5y+USXZRUCNmu66dspgw5n0sxTCPHx6fM5nNW\nqxVv33mHedVSaKEYFlbuEWsMfbeTeGm5ccXSYPY7m/0NvPdH/bHdTm4g71XDcu8VeYV3jNNA122y\ncjk3rJNCJVGkF6Uk0QpUXXZ7PkzyPbkxH00sVVmjtaWw9pouIEeyb/6eNttV9lSJGdUYg/PusfYm\nBDQGnRQ6JlLykCL72F8xb8p9XGloCkNdGHRRsOsGtt2OWEgvSiedMSkBP00YLfKOetbgN1dSLEPA\nK3+9KO21TbX51srJP2tP5xBZJC4AlFLvA24D/2j/gpTSWin1+8APAn8P+HT+uu99zStKqTv5NX9i\n0SnLSmI8spFOZaaxtYJ/3E8fnM/6B63FmxMCbpooSznzpiSjxK7vsUUhqZ4xUWnL5AceXayYpoAP\ngid1k8/EvoJxckRkZUjBYa2mMga323LhR+bzlnLZUtUlp/OWj7/0ApWxHLdzfus3f480BZyBVfJ8\n+a03OT05IAXHwcmcaRwxpiC5yKIq+dhLL/K1t9/i3csL0uQzrlQEXNZabCUUuUQgJgF4SUCdwfmE\n0gXbbc+7jy65f/6AXddRFoZxlKNCYQueuP0Edd1wfHQkrva6zvAphXNTVlcjvrEYaNoWYwrc5HBu\nz7op2W0HHj68xOiSo4NTLi6uGHo5/lZVxe3bp4QgRzJjJAY6ItO4ZiYFqOvl6FqUwqNuM+t6u91g\njOHk+AZGKW7fvEFpLa+9eY8YE+M4MfqJfprQWrGYzxGshDTZ5aGM5JOA9FFVQsO1nSHfh9dBdfue\n4TAMlKX8PkL0KK2y9qaiy7ow8r1IbgqXVX29E6irinHsZXc39vl4IhO1qmpQSB+pqipZPK3FmAJr\n4zUWtSxLhmmEJFotpXX2DmqqqiZMFc7txGEeAqMbwWhCDGhr8JPokzRwvJxz42CJVdJkrsuSsnAM\nSKEtTCHcoYw7nUbRvyUtOBdiZCgGqrQPddTXv6+FrTj7ForG/++io0S2+TPAb6eUvpLffBspQud/\n7OXn+X0At4AppfTH8yre+5r/z2uPId2DkPq+vx7FVlUlprNhYLcTXi1w7UhXQKVkFcwkF3n9OLLe\nbEm2xlHw6GLFerPLedAlXo9UZfG4Ia1sdrNDHCRPaLvZsL5a0SxnbN1AHUfmN04obUOKho++7/0c\n/kSN2g585h9/nk0cmR22vLO65EvfeJXGaIwGOy+p6prSltSV4YXnn+MjL73I62fn7Hb3r48BWivK\nwsrBIAnPpK5rwjigtCYkRVHXTFPg1dfe4OtvvCUNyATBavpxoqxqDg+PMFrTtK1EECPu5jELE60V\nw2sYfS5AitL7zJGG2ewQn6eHMcLZu/e5dfNJlDI8fHif+/cf4L3n6OiAooS6LkgEDo+WzOYtDy/X\nxOCp64o9L0eSVocs5PNUVclyuSQ4T99tuXl6QoyeWzdOePus4v79h5S3Kwgy6u37Aa0C0Xui95go\nD1vap4xmkFeKkLR49wAR2OXhgzBkHv/NZZcr0cchBvZR0PKfoHCtrQhRkh5ClBH9vp+ijRIOVxI7\nq7AKFf0wcnhwCFHiruuqQhvDZrOTSa33pFHaBDF/D0rvfXrhOlSAHAip2aNKZWHybrruTakMKis0\nHM1mhJTYuUCpBVCmUsi5X3knmIcv2ieGrhMAvRswPA4eiDlwL0bhBhG+8+TAvwN8GPjhf4bP8W1d\nm82WzWpNUZWUpTxowHWx2auEt9vttXAQZDWrygprJH7Y50I1eSfMHQ9OFdgh8ujRFT4g3JZs7VdK\nYkBAUgpGN1AWlsLMUd2Wt95+m68dLFh+7MOU80ac212HNZq6qLBG8+zpKT/1l36MTRf5vc9/lkBi\nNQ58/e27nMxmFNZwbI6oK2HHxKRYHsz5yEsv8bXX3+LRoxWbXpAE/dARlMHWLVEpgveik8i7OO+F\nzzK5wJ07d+l2PUdVTVuV9Nu1pGMUkom1F73tewh7TYo2Gh/EJLteryhLOcJdrdYUpqBuZgSvUKpg\nGnveffeMe2cPuXnjaUKQ1IqDgwOBjafI+fl9Do5aTk4OWR7MsNbQ7XbXqzyQsRxiD5i1LaSI1Vb0\nQDkzanX1iMPDI8pCc3rjJg/OzmnLGccHR4z9hI8eP3X0u06KDrKrCDERUiAEMZUGAjZPJJVSOTYn\n5XTYdN07M0rSMPeTQx+C0AhGGXkrYzKVQxAe3ksRrpuKyTmcH/F+ZBoFZSGNV01ZlJRlg9IFy/k8\n90dKlFaM4yB6IithAHt0heziHWoYRLmV3260JSiDzw3esrQMXsyto5vyPawptKYtShZNxWq1Qnko\nVJ2jg6WfpZP4qnTGiWitr1NS9jFPCiXCQyfWjFJLRM8UvoPeK6XU/wT8FPAjKaX37qjuIZuKW3zz\nbucW8Ln3vKZUSi3/2G7nVn7fn3j97C/8ElVRyESqkHyn7//k9/BDn/6UmNDSYy/WHpIEUpRijEJP\ny7S2bugYp4lh9DBFnK4wfeRqtRWzZFICSQLGvkdrRdOWBC9n2ikKz6TShovVhs99+SvM6oqPvPR+\n5kYRNzsapSmqKLQ/F3juiZv8xE/8OFu/4xt3XicCq2nka3fe5unbtzmaInEKxDoRDejS8L6nnubT\nH/oI79w955W372akpoS6KedJacQnqIuCpGAYHViPCYnNZsekK5qqQcVEv92yW69wqmCagvBx62r/\nR2U2m2W9k7idY5QeTl2LgGy72SFKMMUxFX2apPnZTbxz94yTk1MODg5p2xl11bBYLHjw8AG73Qof\nRf8yX8woK9mlRi+oEe8cCkVhjRSarAGRvoRkgR8cLBmHgaurK+qqQOvIzZtPcH73Hn03sNFbfAgY\nqxlzvymEQJFi7qHk3kaKsstJCUzK2hlhEcQ8aRK0g0yQJHqowzsHJApr2HpH8MLWMVbEmftrHxvj\nRscw9vTDluAnQpiue5FFUTJrFyyXR9c0hLKqJF98veb0xinDMKCMobLm+oh7LQMJEZUB7GVR4GNk\n0paQHDFFKmtQ0UnPKkaatqHfbMSbFTw2RnzXobCYqkLFJPdTShJciBw/Y5DAQdHnGIyKlFZy0O+v\nLnnn0UPM+orCCAe6G79DOp1ccP4q8GMppTvvfV9K6Q2l1D3gx4Ev5Ncvgb+ATKgA/hDZbP448A/y\na14GngV+70/72n/1r/xlljMJk7958yaHh4eP1ZFIvEybG8Wb7fZarSkNuUjfD4xjJzCkFLJbNkvd\np4noFOvNTkbUSaYQWimCd3gktzxE8MFRWsPkfI6DKXj7wQW/+7nPowrDix94jto7XN41pKSEsQK8\n/PLz/DX+ZX7uF3+Jt87u4oPnncsLHq233Do8xJUTui5RMzkGHs5bPvHSy3z91Te4++A+fd7+J6Qv\nVaCoy4rCGsa+E5d7iCzKmmEamR0eomyJJrLZbiRqphCM5TRNeeQueAsRX4q2qWnqrHeytO2crtvx\ncP0o98TAuSB5TcPEu++e0fUdL7/8Ejdv3SAlmXL54OiHHT54bh6ecOPWTeYZP7LbdfhJJoIqynGA\n7HAOeQycUqSpK9LBnJPjI1arFXVVcH5+H6NPMLMFpyc36PtBgv2Mom4rpnHMmfayQ1Fa0KkmyX0i\n7C61R+1JCqn2UoxiIiSfMRcqmyL9ddFJiB5HZD/pPSbLgsKW2ehpmSZHCkGYNEZ2NzJhNRwcHDJr\nFzT1DOcC7awlIZCwyU0cHCwJSQR9PoQMpTfXZk7nBKFhMzOHmEAXaJOo6ooY5eGPxOuE1Px8okNg\nURYMdcXFTnK8CiVu9BQjBpMJI4qAAN/ldyTu3L3X6tbRCVPwLE6PWDQt/XrHm/cfcX5+98+sId+u\nTufvAP8O8K8CO6XUrfyuVUppj/X4GeC/Vkq9iozM/xZwF/i5/IOvlVL/G/C3lVKXwAb4H4Df+dMm\nVyDJhPO2uabihwwz2tv460qEUFrLKhmzktgW4jJPMTJOiDJViX9JJY2LlhAT6+2G7a7H+0AImUvi\nJrkpk2ccJ7TOjUZKMSG6iVSI8vaNh4/g819gIvLUrVMWfU9dFtR1RVGUtPM5emb4+IdfRGv45d/8\nDb7w1a/Sp8ird+7w9PEJbVvjhwlTGpS1lFbx9O1TPvzC+/nCN77GnfNzvHNEFTFWY7UE3U/T+E2R\ntQcHh1R1Q1lWmLKScWn0GOR3ZYoMUy+K60nUHqmqlKIfBolLGUZWq5X0yJLsFvbHWm0UF5cXnD+4\nhzaKZtYwjB3b7Y7dTpzUxmpuHt/k+PiYxWKOtSKk63YdY55QueiJKVEWJZOXP9BjLo1lsZijNCIa\n9JbFsqXvtlhbUzUNm6s186wxWq8G1qsVw9ALZzntM6BijhvW1/qcGCPRu+ujuDWyew4hXS9WIa/2\nMfhr1bLVBkzOO88OcxCWcWGL/O903ZienMuSA0HQtm1LVdUZWyFpIyEnmRhruVqvCCnSNA37aCWV\nJO53nxa63/loBNNiihKrJR116j1xzwjPPRiSWM8WdcONw0PmVcn05hmXLooURCTNmKT2WKMcYyP8\nKWUkj6xuakxhJcAwA9EiUqy/RZnOt73T+Y+Q9eE3/tjb/zrwdwFSSv+9UqoF/hdkuvVbwE++R6MD\n8F8i1Ka/j4gDfwn4T/+sL16VJUW29g99h5uksed9wBY2qzhhvVqx3WxIKVFWFU1RM2sbAWyVlqap\nRf6uNS5p+jGxHSLbXc8wTCJaDpHoI92uozAQwoiPCa1kRdx0Q4Z1K5JKtHVDPwa+9Nbb9NPI93zo\nRT7w9FMsZzVKLTBWo22iZAKb+OTHP0QqDUPwvPH113nr7IzzZ5/ncDnDThbGCa3A2pJmXvPSB57n\nQ889y6NHj+hyzExRFtkCEfN4Nj8sMTGfywOulMLneJvgHSZ4gnegDUOe3qU8udhParTRbLY7QvB0\nux3eycq/VyIXRUnVFITo6Ict80XDYjFntqghweh6tEk0bcWNWyfZe1SQUDIRDJ7dbiD4SNMUDGOQ\n3UT2/sSQ6PuBtm1QWlHYCu897WzG5eUjbt68wf3zc7bbHSFIKoIxwqlZdzs2m7VodGRaQPQBHx1e\nJ5IRrq8iiz7fExdkrbrGfO5H6fukD9GAWdxuRPKqPFJYciFTj1nBMvaWXkzM43eI1wVHBIMSmqi1\npev766nr3l+3/x6MtWKFiJEQ9g51K5E4IebGsaTJejfI5yIKltcIltcHmWxWiCi2KSyH7Qln51ds\nfQ7aiwmtZaeZktxDKSYKK8+VqQrGmFlRkG0VlUDPYhDAXvwOGD5TSt8S7j2l9DeBv/mnvH8E/vP8\n37d8Be+ZxscZzGVZXpPcfAiC+VSwyw1KmTIZgveQEk3T0MxqvF8w+lFgUcqw2k50DzYCwvYerWUU\nrYwYQq1JkDwpyQOrkkYFRVSCc4zW0gGqqlFEXnv3Hn4aRG/z/DMUlaWaV/jkKHxHoQs6H/jQyy+S\nMPxK+lVe/fwXeOv8jBvHS9pZgSmUENsaTbSGZ565zQ989KPcufMOrz66ELFjSrhpYjFfSCJsiPTD\njphSdtrLanlxdcU49BAjVWmZ8lh4HEdM30vKRu5/Oeeyk1neH2OkLuXIoFC0zUx0G03BOAXmi4aT\n0xc5PFpSlgX9IG76aXIsFwfUdZvVCwJ7CjGx3fV0/UiIEKOiKCrhDRUVSokvTh6UeB1QF4OnKAtm\n8xnTODJfLNhc9HRdxzhO11xjBXTb3XXA3J5FFJM8iHuPks7N02QMzkv6ZgxyRDc5By1FMdCOY4+1\nkqDQ9x3jOMg4+j09Q1EZq2vs6N56EybR5WhjqfNIfBpHUjQ0tc0fk651N0kpEiK63Odk7Y2nMRed\nfWFOMQmMTWkiMEwj2+3IcllikkZbjbEGjZhQ5f9AZ1U2wVMaS1OA9UFY2xGm4PFBQipToR//bAgB\n05Riop4v5iRrs37LX+eb/VnXnyvv1Xq9JjU11lrqqqKdzTJIqWO9WsmqlDOx9jfrddyL2qK1YbaY\nUTU1alIko9G2Zgo7YCPHB6CpG8nAHnpBSyZPVQgidTGbs2iXpKB45959NuNAsgXBypHNaMGN3jm7\nR6USh8sZzaKmmwbsaCE5qBqmqEnK8NEPfpASyz9SmkcPzrnarrm5a6hVJBIYVGI0mrIu+fhLL/DV\nV9/gzh99Loe7yYNstKa0BprEatOjlaFpWw4PDmjblqvVFW4aqQtLVRmSLvCJHOwnKRsum2F9CKhJ\nUeRpVlUKFKyqCpp2xmJxQFWXpORomgJrl9y8dZOysFxcXrLeXDJNPVpbmraWyYtSEgiXV8n1ZkvX\n9Vgq+n7EWAmAEwi7FhuBMShlCBGsLejCDu89TdMw9EIPqKrEpbtis9ngnBeBpA/sdlvGYcRkNa5S\nItqT7D8BhYm6mNwjEaDVFF2O/RWdjc+L1TSOgKVb7wQjoTRKJ/ahevsjrdayCx/ddE239F4GGrNZ\nQ9s0smsqy2u4l67KTPSRYjiOI0qnHNkjE6U99F8rjc2jfLLWJ4b8PSCIURc8PhqJHMo+shByhj3C\n7S6MYeg7xr5HqRlVUVHiSUqOkd55kQZkHk/f92g/4XW6fqa0kYlVyOGH2hpi8V1ZdK5oi2OaumDe\nNiwWLZdXjqHv6PpOJgNlSVGWNE3LfD4TxvAkHGQfHN2wpSiFc1xUNbrQTKMXIVsSvUZRWILzpOjA\nT6QwMqtLPviB9/HJ7/kebt66RTdOfOXrr/L5r36Ns0ePGGOUih8Spa1xhef1h1ccv36Hw5MjCq2x\nIRDnhUxMbA3RU9jERz/4Msu65Nd/8RfoxoHVZkNZaEyhGAlMSpN0ZHm45CMfeZF/evYmr73xDrac\nSxJkEKGbNaXExChHUymOjlqCctR1SVFY6lJW3mhHyqrCFlIkOz/RZ++apEUqCiuiuqi9RB/PG05P\nj8RwagKBQEo6q8ENl1cr7ty5y+XlFcZIgdoHBqYkO539ruPqasXkJ4q6IioZ70cksdV7R/Ah+8sE\nuxFCpChLLi+vODo+QBsruU3GcHh0yOrRBZvthuPDBQWRMPT4YQdxImppZuyjZSStE4ILBCDpSEgJ\n7zwKEZOGKEODvePcZB+V846QAlYrER2KyhABvIsnLoZsSQleRugh0DQVBwfHcvxPiqKo2Wz67OFT\nxOixRtM2NdM4sJjNIcHUD0IwSBCdTOZsYa5NmCnmCZNKKJuwRvLsUwSfItp5VLQk79GlYprk9WXU\nxABlUlgTceOOECeUMddMo9IK+MwYg9egUhY7lgVNVcq0MYFVcsxKTUJ134Uu89Iq5m1FVaicrRRQ\n0WG0dNUjgBbhlTSWK6Guqch2t2Oz67m8eiSNQAxVM0cXLWPQjFNgcjEfOwaCHyhtwo8juIGjozk/\n9Rc+yQ/+wPdh5zU9kY99z3O8/49O+Mxv/T5ff/UO634kqoLe1IRSM6aJz71xl8Plkk8+/wzLqOmq\nQOULFAalJnRyaOD5J5/gx37oB3n1y1/kauhoWTBXmsJLPnVKCacSz7z/CT7x4ec4e/cdejeiVIPT\nShrPRKxJDOOKcXiIGx5BfUDTaG7duoFxianrKIqIqa2I/MjHOBJRSb/A6twQVTBrGo6OFrRtTV2L\nts5Hx/pqe01E3Gw6zs7ucXFxhdYFy2UDlEwuYZMIxiQaSLNaX7LZrFHWEm3A+QllGyot8TvWGpbz\nOU1TQ4j4yROjWDvund+T1TUziuqmZrvrqJqSpq0IU4/brKHboqceGPEmMZAgRrEJpBITDCpoAhGX\nghyrgxyXTJJ0DRcizgd8kFV/GKWXo0iEKFNLkgcqtCoxpkTA7Y4QJVAPLROmtlnQ1kvqsrm+l41V\nzBaVZG/loYXViqODA4q8+zJFiYpCFSi1pTAFVhuSEs3R5CZpVs8sxnmi8jSmxVrL6EYaU4JzKBXp\nrAxRjLaUk6LRLSfzBY5AmNZSJG2NtgoTRbvlU2IiMhqxc1RBoVOg1BLbVAcwSC78Jibst9bS+fNV\ndA6Pjjk+OSFFnxufE2VZcXp6g/lBYHSOfpBAsnEc6LodJFHaGi3RqSl4+nFi140ktaJqDzDljGkU\nKmEIgb7vIQVSHp0r4Olnn+P2yQ3UOBELjak0xwcLfuj7v4+jxRG/8eu/w+9/9gs82GxRdUNQAW1g\n1Xf84Re/xIFRzGxJWzdEPMVC/kI+OKqcsf6B554jdVsePThjdI5GK4l+tSXBRczkuXF4xMsf+ABf\n/NJrvPLaOYGJIfWCNddJONGFYbvdClO38PgpUNU17axALWY4C+tuR3Q5mhaNLSpMBok3TcO8bSlL\ny2Ixo20qytoSdGIKnqvLNZvLK7bbHe/6MyY/sdl0NO2MuhaOs4uBcRopCiuOcS0Tl9XV6torNI2T\njN8nR09PCpGjwyPqsrrGbFprGLoeUwjm4d13zlgczAUIFl22E1QYawnjxHa3zSwaj0GmdZhcdNAY\nJZQBtEFFxXuTOYV3/Tg91k8ur/zqekKVcvNYGsiC+bPWUBYFpIRzEykGfJjQUdO2MxaLeVa1e7Q2\neB9oqlo4P1rj3cQwZZVvAqsKlDUUxkrYXfC0i/l1LHJprQTpeZe5zjr3ehRq37lJMqZ3zkNp8S5I\nP0cb+XtXBcuTI85WlyhjQEljWmMep2HEiIri23JuJKTEYSuUgegyyjREAo4YPXH8LowVns8XkjzZ\nC/RJbuqK5cERbYx0w4DS23zzOK5WV4xDSVVIw66pKpwWnUPXj/TDQFQlKhi6rmMYx/wLFniW6zq0\nHykNkhAxTqzvP0QNDfWNQ6pZQ32w4PDjH+fJ+Qm3D27wq7/9u7x18RBnEhGoq5KLXc/vf+6LtKbm\nfdxAUaMLj9IehSNGGLc9ZUw89cQtYpxY9xu2bqIwcwprKZWi1QXGw7M3b/Hy88/z+uv3smXAMBBJ\nhaGsKnZ+5OryCjdOmDaSkscWSrKnjMKakhhk8mMxWCsTq6ZpqeuGuq45PDhgPptl10BkMwyEFDg/\nv8duu2G6uKAferyPmKIghEjbCCHPlCXTNLHZbNjnQc2ahug9q4srus2O2cKKS3scIUQqWxCcl+Jg\npDdntMYNAw/HgdmsJSXNu+/e42g6AmCIlspWGCvsGOccm/WavhM1slIBr0IuNnIPKaVyD9XLhEft\nJ1b6+m8PWRwYAs6NWKvzeFyKUC49iKQwRxoVJk+URJW7TwFZLhZU5d597qhrg1JJoO153N6Pozi1\nrbCQm/kMHRXDNJGAkGLW/MScSip9nqQVRVmjjGZWzcF2lGWF0kqGHWjcFKiqGlPX2DSQjMYrSNYS\njQFrScaitDB+phAIwVPaIocKagmBVCU2psfexyDthFKrPDkF1z8Ow/nTrj9XRWd00lHXRlSaPgSS\n8iSlJa876yJmsxlulJTJYeixuqFuxJ+zN4ou5gu0dWBKBh/o+1GUsbpgHzOrjUGkwXD+4CG71YY5\nCYOHAsw00NQNC9vwoeeeYf7jghz4uc/8P3z97B2mkCiwFErz6tkDys99kXnxSUy1YApXUHdUsxk0\nLa7rcD4Iqe/4kNW9nm3XU7Y9BChtRaU1Ds2tgyNeeOppjhdzztcD1oApDMoaTJIt9dXVpaRseoko\nTsnjosTmKC+PSwqiWpnVDWhDM2tYHhxydHiENZZxHK7Z0w8uHnK5XbNarRh2W5pRbrCqaTk5OgJt\nODo6IilDPWtZrST1wntPikl0kqGARgAAIABJREFUOUPHJmM0VFK4KTANE6pImKVi1jS4aaRqW4ZJ\nDJxlWdKPI+M0So53gt12pGpqphCpS4MpSnlgxpFuuyO4KWeoB2KSvPuUItYUOBUhaogaHz3JRpzz\n+MxLEvOm+IlSziiHrGpP+/BeudRey5KLgndOdsveo7RIPGazGcvlEuCx9scH/BSuR+I+eObNnISY\ncI0xjNMgBSc81sJoZaSgaNFZVVlTlVJAR3GIk2S3pLWhKmqqsmY+m3O5vcRagzKWoGAzTlxudzig\nc5M8S2jC5GWyl/Ee0ihPlGWJCESynMBHmQoj6nhI6PK7sJF8dbXmwaNHNGVFIldcFwBNSOla37Bc\nzDHLBWPf4d3ArKmom4beTYSwJfhIWVUkXeGxbMcB50X8VdUNxhQoIsVshhs6LIHX3nyb126ecuPj\nH6G1JX7Xk5ys0qpWaK+4edDyV370BymXLf/g136Vb9x5k37XY7Rh3i74yjtn3P5iS7I1yxtH1LMa\nE7woR1Ng9BMhJmxVMl8sWO+27K622CZR15LhpVOgNYbbx8c8c/sm51evMow72RlYwX3EmFhdrui3\nO+r5gDU1wY+YqkDZhPaBprTsUiAMHWXdSD8jTJgw4fs1g/eCMt3teHR1yWq7YfCT0BmNYV7L+Led\nLzjJxaZpW2mkl2XWCUl0i9USyHf2zl126y1GK0ndGLaMfcfN01O0Uuw2G+azlmK54PKiY7vZ0DQN\n3ThQz2c0sxmLxSEXVxfMEpTzw2sw/5Dxs6vLC/rdDhVGmtJgtByHYkxMYaIqRd0rDmyNT4+jjFKK\naGWz+HTfJE5okyDs7bb7KzOcSivYDoJonVWUhJCiyjtFlXU6SgLpup6Us6y0FpCqUZqri0sWiwNC\niKyu1tdGysnJfVkYyz4FNeic4JmlD0YZeicxyClJhrnGUGgravWiwk8TzjvcFHh4ccn5g3Pu+Ynt\nrGYYXTYSa4q6xiqN1YZhEMmENYa6Kqmt4aidsZwv6Ld9dsQbbEqoKPE238r156ro9EMv/N+2Ebi0\nd4IhbVo0Gh0EI1QWBU1dU5eWabQybdAKjawyXdcRsXK0sqJRqaqK5KBpGupa4d2YUykdta3ptht+\n+Td/Czf2fOxjH+bwcEZVGhG5NTuSsjg0h7MZP/J938vpjWN++Tc+wx/80R+yXW9Y64TS8AdfewXV\nzviIeoFbHIOCMXqSVeycWBQK23J0dEx0gXHTMQXNqBSUpbia3cThvOWJGyfYV77BmMQBrQwoK1lF\nu/WGq4cPODw6xTZW+lkxS/aRRqiJI93VCl9V0iFWiuHyQV7V5RFbb7eM3lEUluOjA6YY0Ama0WOK\nDLDf9biUGCZPPznUpRTv09NTZm1LCoGriwsePnjE2A/UZcE0DFhdEIwcPYzWDF3HxW5LdBOFNUTv\n2KwnrrZbZpPAqsqylOlMjMzKxx/bDx2rywvWV5f0uy06DuASZSGozhADtiiI4wBpQqmsLFchR8SM\neeztHkcXhZj1OQHvp+wS/+biIxQIT9/77Pp216PuBPT9yOQ8dVUTfKTrBorMoDHG4JzHKospNcN2\nJ/EuxgjGIjeSE4mxEw3Pnoyprc3HHpGIWG0FTVqWTK6T13k5Wk7TiFKWlMRc248Dd++dMS5aOgMg\no3c3TVS2kOmVkcy4gMcW9hr3O5vN0FrneCSB0ofos8boO0MO/Bd6RWRr5zOrRFCLRhqYOTpkj4fs\n+h3RTfhxzNncga7v6fqBzWZHTAW6nFE0JUoZAS0llz8+MQ4jVivc5KmMpWpa7tw95+d/87d4tFnz\niQ++zO2TA9qmYLNeE62mXCxpKsvNoyWz+mVuHx/z/O0n+Plf+1XePHuXtm141I984fXXmLc1pfdw\nOGPqLWlWEOqKomhISjGrZ6iZ42I74YeRobSoUstY1Ijz+taNIw7amo0HSkVUguOom4ZpHHj3zh2e\nvP0URilsU5NcBC2gpxgCrY1004auv7oOeFuhqKuaGBNdP1C3LcfLA0xVSbijj+y2W5SX8XoEpocJ\nlyLJWEYfMIXl+PSU2WzGrG0FdO48Yz+QQqQqKpSyDD5kZ3dit91y8eAB68sLTk+PMdpwdn6PGzdv\nYgpL8J6h7zk8PeX4+JSrzRo/Cs/XKFAp4t1I8BMyExdTrhsDxpK/B4c2iRjBh4GisNkXJQ7xpPYo\nTgcx5cxylQcMj/s5sFcep2umk/cyBUPLw7mYLynKiradYTOwPYSAC7kf4iPOCRnhoGmYnMcmjYqA\njxRFydCPEGWcPzpJjSiKgqQNIUQmN2b/V8Qii5LK+Vwm22OqwjJ6SVS1WnN6dMTtW7fo3cRb/YYO\nsEqj8qhca41Gi5esLEkqUpYF2qhrlXQ3Ttdhf/viqZTCfIdsEP9CL3H1SoOrsJr12jOME007UNUN\nTdMIbL3vGYceP/UkLyNplECJygwt2mWwUXCyOvvMAlmv10yTx7uRedMSUfSjk4SHmzd56927bH7v\nD1hdrvjoB57j+GBOs2xY3DyiUAHSSBp2HJQt8yefYPmX/xK3n7rN3/3Zv8/d8zPGWcvr5+c8eXzE\nSVOxrDW2rPFTRDcVib2fBw7nC8Jmx3q7kr5EMIhCIlHXFc8+/RSnN464/+ZbRO9oZ4ckkzg6OODe\nvfvcv/s2mxdeEC5yU+GlMYBWDp08B/OKobOsNh3JB8gFfbNbY41lVrXURlOkQJwGun7LMIkj3EeZ\noHiVJPolRaI22Kpmvlhw69YtmroWtfgw4SaHtYUcgyeHSVbsFNZKikSIGRehGfoh+4rg6vIStGZ2\ncEBMisXigMPlASlGVpdXqORZlAUpePw0EnKBiGGiUAEjxnV88iJSDHLU0caKiz4H0Ukq6j7uGDku\npQQYYvIkhB0TrqX+snuOSTK93TTJTkRp6qZlNl8AiradCeMoxwrPZguZDsV0HazotzuCc2hbMFvM\nxazsHKWx9G7CjRNt24gBdZTdvaile2KMciQ1Gq0LkkmM3lEag3eTON6nCTJywyTFrGl5/vnnefMr\nX0ArWcTS5EUuURQUmGtlOiYREWaQUztCP1BrMSNro+V1SlEV5T83cuA/18s7l9EOirppODw8ZL3Z\nZvNZZLlYMl9o1qsr+q6j7wYUgcqK4K+sK0xREZKlu9iQlGGaAtttzzA6hiniQ0QpmWb5aaJtmjzK\nVEy2whyeslqv+cxnP8fF5QUffvF5Do8XnMQRr4S/q+pAVCNJW24cLvjhT3+Cw9MD/o9f/AV+/5/8\nEaYt+dJrr3Br0bBoDTeaEwpdSAMyJKpCUyRIIVGVlaw4WoHVEqYUFWUNt2+f8PKLz/P63bvsvGMY\ndsy0xdTCUt6t11w9eMDRYsm0k623osCHmI2yinbWsu13TNOIsQaipGtEFOMw4EPE2pKqbRnHCeVT\ndlknXAzshp52sWTqB8p2xvHJIU8/+zxt25JSxI+Be/fOePjwIcZoKjuTzHcvTmmd89mreUvTNIQM\nEAOxDnRdR0yJ2WKJ956HDx5wevMGT966zdn9B4zdlmG7YVZauvUlQ7eGOOV0jsDkPBFp0IcoTdGi\nLDEgPb7JXeM295eMxMXQ2bYzbCHWGqVSBsDtiZXV/8vdm/3YmmbpXb93+qY9xHjmk+fkVFWdVV1D\nd7u6bVpYBqHmBrgCiWvEDYMQ/wlICCSQEUhI9iVGQsjIMhItY7camXa7XVWZNWVlnjxzjHv4hnfk\nYn0RmbSFXTeWlb2l1FHuE7EjTsT+1veutZ7n97BYrhnHMJs6JYPr8PiEumnn4gxxzqfS8+lj6AdW\nyyVVVbHdXpOGidVqxTRNnF+cUTdCUpimiawk5jQmoQAqM3udcqFpxZvmx4HB95ha0zUNrhLQe20l\nZbZHiUB0H6mMJvpJWiZr0ClRK0Nb10SEhlDZiuiDaIW0EAgpGds0NE3DumkIUxDSo7WElLBW/39+\nhv+sx9eq6KivZBApZWjaBSiDmcVU+/1ejG9JfFl6dYBRGU3Gak3TNhTjWK41Y7Lsp8J+L0kSr8+u\nAAEX+WmibVsBeGtRqDbWEX3ELA/JytDnzP/145/w2ZsX/KXvf5syQ6BiP7JcrGi7JabuUCnQtC2/\n+5u/yeMH9/g7v/l9/te/+Td58ZMf8bOXz1gdtASTOdInHLia0k94lRkqwQyYtqY1K0ql0M6JW7h2\nrFrNw6rmB9/5Dv/kJ5/w6YvXGKvJMXB9eTG3GyOf/eJn3Dk9oW5qrJKcoqTlv1IKtm1YHx2BcUze\nY21N1a7wgyelwnp5iHUtF1c7lLHkorm62gkeQgFac3l1RbcSEFXtKvabLc5aXFUxDD3OOcZpkkxv\nU0SZa+VzRQWsaRcdB0dHhPnOXtWWNDODm7qmMpZ+c43ThhIjfthz9+iAzy7PpeBcvWW3vaBkj1aZ\nkEahTM7o9TID2HLJmLmNKaVgjJptEfnW+HmTniCeqEl8TwJ6+OruipgKm82GGAulyOlJaSt5VUaG\nveWm1VGKMMlrVU7W5ilO+GlgChNpPxc6UwhMTHMLY4zBOIUyBVeb2znQvh+IXkykbdeQdGSIAz5q\nsoYUgswltcWUQpp50TlErLFcD3vqpoHdAFHCCX0uEAu6kq2mMaL/iTFhNLjKUc8tXMmZRbdA1zWb\n62tCCgT1LwDM/i/70XWdeKm8Z/IDTdPQNIcwD7amaSKPE+PQyy+3rgT4VDLlK6Fqh4fHmPqA52+v\n2by+kj57tkWQZTBZGYmoSSndMkysack6Yg4spnHkg46z7QV/+snPICVS/wCmQDz0hJJwJVCbTBM1\nbjI8bJf8wb/6+zw5WvE3/vpf54//5B9yeLyiWtbks0ucbWibQjSRPiS0rcgKcqWp24auawkpMYWI\nc5ajpuZbH7zLD7//Xc7OrthNE8kqQgBXWSY/8KsvfsGd01NWqxWr5SEpZkrlRO6fEsoquvUJSTfk\nzY6UCqBpa4tShiEm/BBIyvH27SVoCGiaxmGcZbFaUjUdT997F1s1HB4dMUyeq6srwszXff7Fc3LM\n1LWcGrV1WCDMnqKmqSjAan1AXdecv33D1dUVy9WKqqrmNM1LTk5P0CUybK84efwEYxyLylCpzOev\nXvD2xRfsNufUtlBZgXLFFGVWMzN7ZHYFpcyDdW4SUmdT6FfX4qUwDHt5f+RMUYqvDpFzzjPMS0ye\nTdNKOzUjTrVSRB/YDQN2VmRXTtFUjmF3LeI7ClVjCXECLegIpRRh9DKju8GXaI12ihA9gx9QBtqZ\nkS2B1mI2rboGn0fCOLJoOxbtksvXX4inDmjbhpQyF5trQhElOvMcL8VACgLBq6wTbGtlcboIZWF2\nwZdZz2RdTVEwTQMewP0FzDKv3I2/JTGOkyBLWzdL+TUhJob9foY6ZdoZNG61YhoHxmEPCeplx3J9\nwHKEwgtc3XJwZPGTp25rVJZ5T9PUhBComlb6W59p2wW7sMMbQ3twQFVZttsrPv/8BQtt0SnhU2Iy\n0BlQTYWdNFM/4rRjtej43jc+pP0P/wP+m/96y9//0z9FW8M333lC/focDjNV1xFLJpdA1mLpqHVD\n4yq6RcOQMqpEjCo8unPKX/vdH/Ly+Wv+wZ/+CFVq7C1zWIaeP/3pxxwcHqNNTbcQqJd1FShHnFlE\n3dpRTMt+PyA4zZoYMipmMop9v6c9OJRBo9PYqtDMccynd+6xPFhjnXCCAe7du8erV6+5PL9Aoanb\nljiTGJUxWAX9sKMf9pycHtGtlox9TxoLpm6ou45+HKmdeOkombevX/L0nSdUqjBuL/FDZGEt03DN\n1G9QKmK0RLAUorRD+ubIX27VxGmmPlKgKEmpyOUGU3HD+ZXBqQ9f8RMVeR6Y8aIOVRwhyinlJjFT\n1vjCQ64qi1G1zJrChCoRHydK8Kg5ebNYzeRF1JrTOJMCZeajUNSVk7jlnbCTF62TdIcYMUrT2Jpg\nDJWSCKZ20aGGkRQCox5n5KgiUqiqmlfnb3m7uebKD0wZBh9RixpjHDFIcdEoDGIXMWJaYxpHQphY\ndKvZTS/FJ8ZIQhFn4P8/7/G1KjqK+bRDwTk5iTStRH2oVCh42RS4Ck3BOIfWFq3FZQyakDJxGLCq\nmQd+a/Qk6uCmblkuOvabLYAgNXNhnFWqjapJSmOdJTcdMXuSGgkhsx8C69UR7733Ibs0sO33BKex\nlcOkgs6WRW3h4gJIPH34gP/4P/pP+K/+y/+Cf/yTn2GzRT8Qs+WiZLRq0LZGaTtL8BU5gmsqlosG\n/EAeew7rhg8fPeKv/vCH/OqzF7zajnTtAbuhxxihFU7TwK9+9St8Mjx990NaClVTqNuWylgimtpY\nmnZN1Y7EBNvNjikmmqbj7PxMeDoLMXG2XUPdwmq1Eu3Q7DDvuuWcMdZwdnaGs2Kp2O8Hlssl9VHN\nft/PIYkBbTVt14qjXGuaxYLBe6yfWKg1+1c9u90FzmjOry547513ePvqOen4iP3lOYtmRSkRv9sy\nbC+xKtNUmhQyYRZFqrmNTCXfivtyQvQ0gGCd/tz7TH3lz/lgo2Z3OvNw2RghBaYoQLC2aVg0jUTE\nUNAlE8ZZSrDfS5uXIuR46/h3VkOGO/ce8N6T+zx+9JjHjx9LyuliRWUswct7bxhHdrs95+fnPH/+\nnJcvX3J1eU1KEROkRFTrNVlLJPJNcuc4DKRcUNaRkyeUwpura86Hnq0ujEXTxyRfR8+GabTogkqe\nCwpQMkUr/OQxK01VOSnUuWCNwceE/fXIN1+vopOSOJJRcpw0N8hGY1FJyGcpCc0+xUCKmWGUYRfM\nGcza4YthGEb6saCsofhMyfID3u/3Eg+LyONzluRD52rKEMgKxskTTBLnrY8sqo7v/tbv8Af/1r/D\nyfGaV+cveXb2gsEHri6viW5kSpZgdzNYKaFcxbsPH/Of/af/Of/9f/vf8Wef/IwUEtnC3dZSu4Jz\nCmc1lbNYY8kZRh9RJlIVhc5gYqRTho/efY+//Nu/w9/5o39IypGqqUFl9vs9D+89xlSOzWbDmzdv\nOfQj3aJjcXREszqQjCtjoG6omyWbXS+t1TCy2W6oGgGGN21Nu+g4OjpkdbTgzvExdd2A0vhxmudq\nAy9fvpDwu3G6Tf801s5MmQ6Upu8lbWKxEGby6CeWyyUnd05xdc3m6oqj0xPGfc2bF8+hZC7Oz6it\n5tkvz7h//z42Fq4u3qJV5OrsNfvtJSkMGJ0x88CVIg2EOMLhVmdze2pRt1VG3bA556IzO7JAmTmO\nd+bQzC1JnlnKlbWcHB6xWq9JOc0DVZmjiDJZ0+/2qJw4OlxyuDrl/adPeO/dpzx4cI/j0xMWiyVH\nR0c0TSM/67qmqhrBTMxDd6XmoL++Z7Pd8ouf/Zw//uM/5ueffMYuZ3Z9D0bwuNknQXkUxW4YCKmw\nQKFsTTKWXQpM1hGKwbQL+jjKevym2BQxuiYyKoFWsn3b7rYcdIs5pFIgZ03T0O/24mn7NR5fq6Kj\n9OyIzolwY87zQSz5ReThTdtS1TVxmphGme1olamMwVY1RTnQFX2fuLq+ZhhGhiEQfBANREq0dUXf\n99RVg9GyMdLa0i4rdvsdq0ULtWa3vaIfJu4dHHD30WOCMoSiuHPvAXpZc359wdX5Jde7gaArgqlo\nSmHMiVhVHNy/z/tP3uff/ff+ff6n//F/4OX1BXemOxyojFMFckTFiMkFjbm1e+QpyF1diQK1Bk5W\nS/7KD/8Sn745509/8Uvq5ZJYDGUvytvFaolSjm2/x4Q9uW9JXnr/anWA7VZyt3QNbWXZbTeEMN4O\nU4+Ojzg6PmCx7Hjw6BHNqqNyFSkkpskLxXC2p0zjyKeffkbbSLTN0dECVzWA4s3bt2x2W5raslzI\naXO1WmOdZQyBkufZTlXT1BX58IhV2/Dyi8+5vjjj5GhNWzn2m0umsufq4gytPLvNFTl40ekYaaFS\nlmwoSb+cCwvMvil5Nt8WkZtnRffC7UeADJa/ehdXt5D0khKLrmbZtTSVZZoSMQVylJNNCRGj4Z2H\n9/nmB+/y2z/4Lt/84H3BcMxg9RSD8KFmTVOKGasUThVUZSlWwOwpJRaVA3dI7Jbcbxf8xqPH/PyX\nz/l7f/xj/p9Pf8TlsMVYRQyZy+GarBRTDFJLXUUohagUY1F4bYjKYRtNHRXoQqUN2cvN3VgLBozT\nBD/gx56glRiis1ARdd3gqgprJ4z79a7jr1XRWa/WHBysRXcwn1xQN2D1ICK/bkHbtqJmvbpk6PdY\nragroaftpwRG+lTvI5MXlsxNPlbrRJHp5j+PT04IKZEzNBmc1eymkTwmOtfQrI9YLJeYpiVpzW4c\nOeyW3Dm5y3KxJE+BN1+8IuQRbyyd91A3kMD4THGKb3/0Hf6NP/g3+eUvP2EsiaxkEFw7i0FBEnXs\nDfOWjAxIS5JfYAyYnLl7fMI3PviQ//snH1P8hLIaW1ViG1gcU9eGpjOkcUtUmd18sju4l1gZSUKl\ngDWak6MDtFaM455lV9M2lratuX/vLqtVxwSMwRMGyVYK00QKgqFwzuHm6Oe6aW6NlG/Oztjv96wO\nDjk9XnGwarHWMYWIj4G2q4hRCH9N12Gt5vrigtVyhT894emDu1xdvGV/fUX0nsPlMY2r+Pzzz9hc\nX856mlkOwD9929Va2teb2U25KSrzaUg+56vZTRkBBpfblkvmLXJCEsPs3IqkiJ8mUor4cWKaRqzW\nHB8f8IPvfpff+cH3+fD9d1h2DccHy5n0GGfflkKFQB4GbF3jUJQ4g92VxL5oLZFAKcoAPHtPq+B0\ntaD71m/w4PFH3Puzd/jbf/R/8NmzT2kKGGvYbDdMJHCGKUxcXF2z31yLYFZrQkEU2WESAJ3W5Cng\nzLxSv+UgZawRTZUED6Y5fWOOF3aOib+ILvO2ZbVYs0MSBhJq5haDypmh3xOHAXN0SFPLnTImMftl\nVdAmoEj0+x3DqOi3PVMfKElhXUPTdawWHSl5lrojeKHRtbrF+0iaJnRTE9OEdo7aagnHy5n9+SUl\nRqqjJWOdMasGaxvu1eCT4vUnvyLFibwskDLLumUIV2TkhPCd734ADOQQSKmgVUXtJB9K/EMDqIIj\nQ7KQE74UEdtpjatr3NRzoGERI8N2j6pXOHeMaRZUx/fY9p409dhlg0+BJhlMv2f36iVps2VxeEx7\ncISqanRdc/feMUf37lB1K+pmidYO5RrOz0eG/ooY5Y5ulPirmlqG8KWfOGmXDIz0/UDfe/p+wMeM\nA7qk6JoV9eqQGDx+uKJWGkLEAqaoucgq+pChWrJ++CHHx0ecffxj9qFhUANpN3Hx9hVn51f4LFJ+\nObfIFupWxqckYlqeuImgERWz5ist1UyO5OZjy5fDnVQ0zGJAyg3ZD4ozpBp2cY+arjGlUGvNwzsH\nfPSNb/D973ybb33wAadHhyy7FihUcYZjJYWfAvHmtVNh8gFm/KhSWaJfSOgEJmUICXwgjxN6mqi9\np64sp09WnBz9JnfXkb/xt644O7tmDJmxiCkapRh04efjFXWtGQbAT6xTxI6ei0pDU+GKwseZt92P\nLJqaZb1gawLKGjptqaZMLDAZS2gcgw8YV1Ps5a91HX+tis7lxTkHy24WAxas81TVhNGG/W7PdrMV\n4ZmfWK2XxJTEd6I1RmdS9AzTxHZf2E2WEDxWG3TrcHXDar1AlYTKinEchPUSPEkl+v0g1LWmpgAx\nJ3TM6BjxOfPqzWuePX/G4d2PMNaQc8Iqx3q95oP330ddT7z+9BmmGNqmoQ8TvteoqiKjODg44Oj4\nmMo4DpZLmnaBmcPXikLodjlhcsJpTc4JH+M86BO7oVKF1bKlNuBToqREQqMz3Llzj3WIXF1t8ErR\ntB2999S6wLAnTCN+Gthtr2gOD2mOTlgcOrr1IVk5YvTsrzecXW4FWWEi09BjjaGuK2LwOGNYLZcz\nStRQiiPlyBQiY5xYLNes14egFZOfaLxYFpxSWArFj+JctsL42e32+HHAVjX37t7ncrPh4PBYoF7D\nwGLYcbV5yxj87daMGbQlznr15fb7do4z2xhun//y6RtcBTNfR/CA88vO2y75EHX7/13TsGpqrIK6\nqnl07x6/8f77fOPpU957/Jj7d05Ztg2V1rfiQl0EKGaUxNOYMvu/elEBC09a5kjMs6QcI8RICQEV\nIoRIDoEcArq21Npz7Gp+79vf4dNffc7/8r//XYqyeORkjxVrTYyR9WrJShdGBTpmqtYyjQMhepo5\nEqh1NRbDultwsFqRdlFCADNoVYghEBtLLFliu4eJuP8LeNK5PL/EKYHOWycpn0prSirstjv6vYDZ\nQwzkIgVCoNizR2hO9hynTMoNVeVYLA1Yh7YVKUXGfkNTV4zjIJoLJIgsRM/kR3bjjm2/J1OoraWz\nBm0Un799xT/6+Ecc3l/zyN7HeiPS8liojebR44eUEHj+9gtUt5j7/kLSA0fHJ7x5e85+9Nx98oDj\n9SGNczgzG/wQ53Iq0qsrZLiY/DQzchFMgy4cnRxw/9F9rj9/jg97qu6Qadjx6U8/4dHjp6ybGlXX\nUFfs9nuizmSV8SUzTAOu39D6Pe20I40bGDaUbBj7iYu3V4z7kappGStNGUeyMYSgCcGTrSOFHcPo\nqduWbrXGLhwlWQ7qE9rFEtd0+BDQVknBU4VMpniPqiosBd+PDKPnarOdY09aSpy4OnvFarng/Xcf\ny7/76pyhP+fZpwlyAP6czuYrehs5+Uj7JBLQ2/IjcHOU2BP4cuNF/kp7VcrN2BmrLW3d0LUtTx8+\n5Ok773Dn5JjToyMe3rvLo/v3OD08YFFXGKVwWsv3VUAZRULW3XHWEanNGSUlyugZhxFKobYV1lhi\nFqtO8JKmGbwXlO5tiCDUTccqFmy3xBSoTSV6qLoiXifAgI84FHddy7sn9/j04jWvQk+sNDFnVDKo\nkMkp41BYo6mUpm0agbqVQNe2HLqKlXLk7YbJiFTFasMYA3X5C6jTyTmx226JJWOdrMZLKfjJM42T\nhLQZTV07QlyzrJYooyWioRH0AAAgAElEQVRYLydx8FYVTVaYUrMMmmISoQiIaBwH9vsdlIZ+kC3W\n1MtKfBgGBj8y+ul205VjpHaWVeM4XFRkEzg4WWF04XDR0dWVbNuKYnm45Mm33iPUmucvX+C6jimO\nbPqez56/YhhG2ka2R3WzoKmdbN1KFtZLltVpSZBmr0+ci2vKSXKwnOLgaMk3v/k+z96+haQocSIH\nOHv5BfeOjmnaju7gGB882jWSQ660bPuGgSp5Ug7stpdsL99yeHSE0xWbyw2biyuW7YKqLNkOWmYO\n1mFKJYeCmPFJvEyb7cTOD1TtgsPTe6wXS7I2ZDTlZjieRZ1brKHf9UzBQ8ns9wP7YaDvRw4Oj2kM\nnL95iS0RpwqnRwcYrQg1fPFFI5HAKoOao6RLvoWXi0d7Lh5wqylWCFcpm0oueHX77Pz3X36+nqc/\nGnBGc3p8wG9++9t8/3vf470HjzlarujahtViwXLZ0VQWo9Scpx7IVopOIc+ucbkx+hCIMbDYbdjv\ntuy3O2IQX9Y+K8hS7HIuhBSYvCdEMbmiJe1Ba0UzeVRqoI/8/OwtP/34E9BS3OajCbpk3OB5p13y\n7uKQt69fEfc9edWSKgWTQocyM4jEr2UQpg5ZgO51Y1lULSvl2PUDqgQpTsZgtSb/elHmX6+i42ZC\nWxwTfb+nIBb+lDIxRJqmZrlcsFh02PkEoqw4nOWO0NJlRzaFIRrYejn++ySFy8sAMPiBsd8TwhVn\nb86IQUiEPsnHWyVmwRjFc3Jt4E0Fl9tzSg4sneWjJ08I2tAtWprlkmq1IFea9z78BrZp+cc//hFF\nK16+PePzZ5/z4MFDTt7/YA5rE7sCIOmNJd/uXwwalYUdHGLAx0mKqrPUjWWZW957/x3MP/j7qFig\nGBpXMfU7fvWLn/HknXc5euc9oi+suiN0ilQl41MhE8UAmyLKKmKcGPYbKmdJPuGnAa8DPuy42klc\nra5rQhSxoQ+RCNSrJZWr6UNiF/c0K8/hXbGFxALDOGHHHj+OhDGTpokcAnGGml9vtpQiJxxjxEt3\nvduxXq9om5qcAloZjM7stlekNHGzdTJGUbK67ZC+bKngy5Lz5d+VPDdVSvKuSslysc+nIQM0RnFy\ncMCTdx7z/tOnvPvkHd598pTHDx9ysjig0nLR1XWNc0YSYaPMD0uJJC8zo5sbREr5NnJm8h5/cck4\nDIJaHcQuEuc0ihgT/TjSjyPDJFFL1lnqrqGqhfjo9DWOa673PT/+4hk//9WnFGcpEuQORdbebc68\nsz7iYbXgyeqIl37Lm2HEF0HG6qKEpaOE80O5ORHK91/VgtttcRijGfsJGsvQywls4l9glvm/rIdS\n0NUNCgWj3L+MNQLlcpbTk1Pu3btL3dQi10/yi88IdFsZh3YKvGxLhqGn7wcGLz113+/Ybq/ZXF9T\nkmQhbTfbOZ9ao2vLermmMRXZJ6ZxYgoTYxwY+pFh3FP8xKGpWPye4vHJCSYD1lC6ionEomt57/13\nGfzET376CYZMV9cs6oquchiVBYgUCjHIEV+rgtGzPyhCmGRTEpPHR09R4jrXTlNFy927xzx98pA/\n+/iX6MqhKMToOT87o2uWtK/O0bMnp7I1lS6YurBoWnIJjHFiSuLWTzkRc8RpizOWEkfJ+h4KtnHk\nIdP3e+q2I6TMECPRRw7u3OP+4SlDypTBU4bAwaoD4xjMKG2DH/F+Yhp6+s0149Dj/UTKhXaxxGpD\nv9sy+oBxVk5/zhL9REkGf33B2+fPiPst5Aglk0K6bT1ud1FzFtWXZ5yvXEyzfqfkm9YLjCroebb8\n7sMHfPjeE7737Y/48L13uXdywnqxoG1qKutorcJpg9YKp4v8/gxQIORMjLOHSgv3xk+TnFgm0TAN\nw0C+FtPy2/NzPn/xkvOLC8YYmVJk7wVr4UNkipKEaowwmZ01GKVk65g1/Thy3vfsUGi7wI+T/NtV\nvtVCrquaOhUWGLqkUaMnx0TyGaUdagaLlZxJRWaXOWcxtO4iA4baFGIM+GmEyTEOo7w39V/AogNF\nANhaYZyVzVFV4ycZJN45PeH09AQUXO82AnOyRkBdpTBlmGKRweY4sev3bHc9o5fI4Ldv37DdXLPf\nbaEI02S9PuDg4JCqqgmm0LUNLmtSPxF8wJdENJmQPcn3jOPIn/zoYw5di/v+98kU1k3F9cU5btli\ngbau+d53PqKuDD/5+GO6yvLg/gOOlh0mBYjyJhLzYcJYg1XSNkw+0I9CgSvc5GgbjBHIuNNwsGj5\nnR98j49/+ilTnFDaYl3F6cl9Ioo3z1/Sth2mFFgsULXDGku3qEEXyrCl30V8FmDeFDNeRXTMDDHR\nuBqtMvvdRrZAVjAK/eTJWtO4ivH6inW75MHhMVFp1G6PWfYs14fUyrDNib2fGLfXXF9esL2+JEfx\nlFVVBdGz2W3JStEtVqyXC7rKkn0vfp8UufjiMzZv31CCR89CtZIlc/ym6Ny8b5jZyPJQtyt1NZs9\nVSkC7y8ZAzy6d5cP33uPv/SD7/LB06e8+/gR60WLRTZ1lbVzuqYkO2gtMUGSrKkwyhCS8I1DDJIu\nMXn67Y79bsfQ94z9wDRNXO0CL1+/5tPPn/Hy7A2bcWAqGU/BK0WYE0ET8z9KHKpfUR/dWFqViANd\nxcI4ct9j0JImqiFlwGlwmpQzDs3aNqixZ8wFZb6imdTz19IaW1e4UuH9wOgnJiMrc200WYmosqok\nYfXXeXytio7WiqpylCh+pIODNcvVStIE+gFjFP1+h4+e682GKXpBdBrNNAWiL6AcU4TtznN5dc2b\nt1dstz39vme3k9C29WpJXdUcHx1xdHxMXbeklNiGgRyFAmdsQ0kFXTlKYwgkvO+JV9f0V1f845/9\nEorie9/9iLtWoVcNbUlUVZ6jeR3vv/sUP42cvX0rqmMyOUzgNEpZUvTE4CnWYJp5OIj4iYyz5BSw\nc06XykWIe0rRuYr3nzzlvafv8KNffg4UbFNz950nKO3Ybz27/VbWxSWRcktlNWOcsLUhFTC2olIa\nHz21EiRoSWXOnCqkNOKHLVVV09qO3X7PZrujalr8vM26KJnaFBbrQ0J/zfC6EK8v6PuBq+u3bK/P\n2FxfMe53lJyonEMVzTTuiLmAtiwO1ixsxqaBsJvk4kmRGDyf/fxj+u0F5IAqCasU6eZUc7uNYh7V\nfOWCuFEgFzAlykmgSIbT+mDFe0/e4Yc/+D7f/853ePzgHsu2oasclVJYJUNWN2+XIsyOeTUbSpO8\nvAbb1LQIGGx3veHq/JzLt2dcX14x7nt0kcBDb5e0x3d52q24n78lwPTKiqUB2PY9F1dXvHl7xtnZ\nObut8HZKkX9hUZmsEg5NbZx05KlQYaiKZkiChQ4KXuyvKcZwlTzRaHQ0mAiGG0C9wlhL5WpMSjIP\ncpbadGRdSCh8SvgU0c5I0dEKa+Uw8Os8vlZFR3CSUnhGL4KznOTNGqyn3/dcXV6w3e/Yjz1FK2xd\ngYZhjITJUNUtSVlevL7gzZu3vHx1xm67nzU5FUeHR3zzGx8SfOBgvabpRKNTcqCpW6gKrakxGXRR\nZAVDCviQyNmwPDilXh6SgufjV29Q6yWPS+T0/h1WOdOsNAmDNp6xH1guVlS2Yhx76tmlG1NBK5HT\n5wL9DLVqmxqMoWodOWuChxTlmko+QM5UrqI1luPlih/+1m/xs89f4VGoqqJZr1kenmCvdux3e3KM\njKpADjTFYVJGjXE2QCpICp2FtWu0xjmDtY79bsukM6a12NoRpeSibGbfXzP5nvX6iHHYMI0busVK\ntC8o4RKFyDjuGPotwY/iVdIKT5nZRQWlDe1iRekLl7sLuaOrglaFaZI44U9/8QnjsCUXjyLeWh3k\n55alDdf/1FjnK8utginSui7bhocPHvCdj77Fb33ve3zzg/c5Wq+prKFSmsrIf0bd5nGiiijk4zxz\nu/0yNzHD1lC17e33RAaNZtktBPlaNVR1zXBwQtuJHaQoDUrA60Upphjpx5GrzZYvXr7is88/57Nn\nz3j2/Dmv37xhu9sxxnGmOBqykhga33taY2l1xZQ8sYB3ih+/fs4v3rzibOjZGvA5E2IhG4TEMIsA\nlREK5/V+RzxTDHhSiri6pataGc2bL3PNU0jEmznkP+fxtSo6ce5p66YmlSJc1lJwxgraYhzZ9zs2\nuy1jEEWuCVKBQ9SUssRHxcXmmk8/+5wXL8/Y7npyKqwPj7hzepeD1Yq7d+7z9s0bQkiUfqIUMMZS\nIaIxYywlCCBqmiZ200CkiEPd1pjO0DUVOk18dnXNJidOrjc8fHifdC9zfCSescuLS3abLYcHa6rW\nst/vaZuay91Av99xeLCirRv6IXC931LXE4ulxCJbnCRiekWcRtk2WIE3ORSVNvzGN77JB08/4ZMv\n3pBKoU+BO4eHpHaNGUeJaUkZckIZQ+UsOQTCNJK9J2eZbegEJiucs9ioqJUlLxazMlXmFMpoqq4h\nlD1THLnanWONY9tfSQ66mgf6RiT9cRLKn9GK2lnSPCNwzqK1pBbsN5ekkhmnSe6mRuP9yG67Ybff\nsh82xOwpM9kulSzGyrn1KOpmZPPVdmp2iaNonOV02XJ6fMz7T9/hu9/5Dt/85je4f+cui7YVtbGV\nQmOU+vKkObc5EuirRCGsyu1JAYV8jJLIn6rraLsFR0enpHc8Khca6yQjXms2TY1SMgJgdqzrMhtV\n56iXfP8e33/vXa6//13eXFzyq2ef86NPPuaf/PhH/OLzz7jq90ggjoQUWDsH85WC1RZPZFCKV2PP\nsNuzp6DXKynQxoKOc+EqhBjp/USZPNOk2ISBvkxUlWVtHco5bF2ji6co4eykAPYrYYL/rMfXquiE\nGJiCx1YSk5uzrLJ3QeThWkkBWnQdNlgwCu1E3WldTSxLzi+u+OnPfsEXL16x2fZo4zg4POTpu+9z\ndHiMH0YuL+RCKZnZQJqZpomQMtY6qoVjipHN9RU5Cm+n6xaY2rEfBnyy2EWHcwY/DVy/PuPZ8xdc\nXF7z/O0Vx4eHtHXDbrtj3O9ZrzZMw8D5xRn37t1lv99zeXHOvXt3uXNyzH67Y7/Z0DYND+8fc+/u\nAYu2wziLKkVQl9pQWYe1jtZWtC5zenDA7/+V3+PTv/W/0afA2fkZ9596quOHkIoIznImTxPRT/Q5\n4XRNVS/w+z0hbTEztjOVjPeZKQUwBlc1+BAYxh6Fw1pJUDg8XpBzYrvb4nNimgbxrwEpS2uZC8RR\nEJpNU6ONgqJvI2u8H0gzmrYfx9uIk6py5Og5O3vLFHqKTUCSPkkh6915AKxRM95DYmLk52Pp2pb1\ncsXR+oDT4wOePDjg0aNHvP/ue9y/f59lt5QcKy2RyDdbLMVX6IJz65aLPK+LfBu6gLIabYQMUBCj\naVZiFDVWYesa5lQHr0XjooiypcyFEiMliu1GFYUuBeUDWmlq4LixnL77iG88fchvfut9vvfN9/mT\nH/2IP/vkZzx78RKfwAO2rckxM0Up9JTIGDJBa7w1RK3AiM+qrm6oDBZbWSiiadNIUIGuNPspELK8\nno+JmBOxZGIq4olVis7WXP0a1/HXquj4FEXQliXIPaVEDJE8Kza11dTOYZ2hybWEHBqp3mOseHMZ\n+ekvPuXTX33GMHmUqVislrzz9InAqvuR/b6n5Mzpyam8MWJgt9vSDz11veDu3QOKUmx2WwY/sV4s\nWHUrvA9cn1+RrcZ1HfuQyDlQl0IYPP76Cucanm8DJT9j0TY4bQjjiELQoNM08Mlnr0ApQph4tZlY\nvbzAjyN+nOiahs2wo5QTHtx7QFt3AChtqOuGylkKUDvHSimm3cB3P/oGd//wkGcXOzYXb3nz4nNO\nD97FNp3khntPyo5cqjkoLs8DWYNghUWnQgwyRPQBskLvCqVoVJFMMT0PYQUSFdC2JSY/40YzMXjy\nXBwK4JqGSrtZvSwbqVikhZaDS8HWDZUyQrXzI2gjnzfbW2IZQMtaRgvGCl24HfS2dc1qseBwveJw\nfcjxwSGnR0fcOT7l7ukpJycHHB5VdF3HoutwrsJqSWrQqFlXM5+RlCYjZIOipOCkIrYOPZvPtQJT\ntJxSspoz0cWNneah/81aXjKjJDhPTenLti9lckqQsqz9Z25OLhLzizY4BF3x8OSI0x/+Dh9940P+\n9OOf8nf/8O/xJz/5mKwUfZwwsZAw+BTAalTKhClBEpazNo6iEXTprOgWwaGRU6OGqm7QjUGngRAm\n9sPIVu8YxwlqA0reu+G6x/x6OJ2vV9GJqbDd9+zHiaZpZHpf5rB3rWUTkcu8vjQULba+GwHhi1eX\nPHv+Qsyh2uAqx737dzk8OmAcB3a7PaVkmrpmmkZyKez7nv1+h4+Brl1jjMEHCX5rlx3toiOmyPX1\nFT5Gju7dw9qaFAtFacYg26bK1ai6Y1QVIXmm3ouPJmUq6/AB9kMipImu6wjZ0F/3XI4JoxQlFi76\nHUZNPD6tiadyt9FomDcpuWRCmCgUnFVUBu6slvzwe7/B2f/5R4T+iv3bF1THbzk4fcCiaSjakV0N\nC9G5kAJWgV6viQeHRD/ip57oJ3RuULWj3+7Q+zBvLWp0qVBZ0J/RZ4ZxkmLiKqyyoGbucom385bK\n1NSukTSGkijBY6zFKlG53kL4u8UcYtdQO4M1oHLigsLEHqOt5Du5mq6qWbctR6s1B6slp0fH3L1z\nyr07p9w9OeV4fUjXtDitZQBfaUwrAY1a69tTkpxnMjmW29NNmedOEhWqKSrdtlaqyDBVZ4VKEkkT\ncsJHCcoran4fMpt2c55tG/L6Lia00mJ5odwqlSXDbIbG5yxEgboGAzoFcpJV+Olqwe/+4Luk6Hnx\n9jUfP/uCrC06KQJfCh81mv5qS+sqKiWD86ALzmhqm5miJ/iIs2K9SCHSux6SIcSEsRK350Nk8oFS\nCewtmcgYAqr8eurAr1XRCVFc4YCAqpE7W64bIdqXQpj8vJbQaCu+pZIT/X7i9du3bHdbCgXrDMv1\nkpOTI4Zhz/Z6h9M1q8WKrluwud6y3W0YJ2Htro/WHKzF4d6PPa52NG3NZr/l6uwCpy1HB8e0zonK\nNxW0Uex2IulfHR+RjWNMwmcpCaZhoDGOqqrIJPZTxDhH1A6fMrHcDB8R7wcGW7ccHRxysFqLN6vI\n+pNSyDHgZhQB48DhusWrwl/7y7/NF8+ec76bOO0sddxhr99QxY7Fckm9bCgoQgykJINSqzVlWbPf\nb9ltE5PJaFNjWkdIgYUq+DDhdCEMe7QqtAtJ6CzTwDDtxbWcE85pqpLQWk6oxji0EYGZ0dJGdLbG\nrBqaugEF1jnBm1qL9xO1syy6Gkpiv7nmzdvXJH1BW1esuiUHizXHqwNOD4+5c3zMwXrNatFSV3Ze\nXhUMWtqmWbpvnCHaeJsdleeBsFYSM6y/cnUUNTODzU2muQzFy4x4UFnim0OUeN4QJW4m3hQMBalI\nARH1tAyccinUocyvKZuomBM+BHz0twXIWXHu5xTIfsJqO7dmUsQbo/nW44f81d/6Aft+zxdvzklJ\nfUn1KAWjFOP1juPTOzhToTCgxadmlBZcRcoUXeZhuMyI5pQbihZfGAXC5IlO4W4y6FzFbtz8Wtfx\n16rojMETcsLMsPSYMzoL0KtZVlhjBEidAqoUtK2oK0tWCrtJM7FOfuHWaE5Ojtjtt2w2O5yuODha\n0zQ1u92WlAMvXryQIaVSnN47RmkIc8hYt+xAF86vzri+vuTh3QfUbQUpUuuG7D2xROLgKVmhnGPI\niRBE4FhbBzFg0UzTyG6/x/vA4XpFLJnNbk/dVFR1I0mZKlFSxmjLomlZr9YUZVDakkqRhMoUsLoQ\nfM/SNXQoBp9wD075t//1f4VXZxuOju+xiTURj6sN7cJhavAps08ju2mgH3owltVyxWpd0duON+d7\nxmlg1dQs7x9hrrZMPpPnlpeSqVShrQtm0aByEjleSUIBQHAii66lrmtsVePqmspZaueonaVtahbd\nQpJW6xpXNbRdiwKRFOhC9COVFU9aMYPkvNsapww6azTM+hmFNiKzkEGzbMasMqgb1aDO8wBXCs3N\nIP4my+oma1wpxY3Pkxt7hJLwxGIgKRHT5RjnDHTB3Upgn8QNy3UvhekGJZuLFBjts5wssqzc05yh\nHua4X6012Tmi1oKesFb4xfPsyGiNs5bDnPn93/iIWhn+57/9d3h1tUFZw1giaNDGYaloq5pUC+IU\nHUlIAqpWwnHWKHKSa6ukTCgSvay1hO456+YNl6WyDhUlfTb+esurr1fRgRsZlByCjbaimXBOkjld\nRZhGdvuID1GYNFWNrSu6TUQJv1IwmcuOrmt48eIFOcP7737Asl2wvb5mu91zdXUNZELwPHz0gOVq\nQeMqqBUNNVFF3py9wseJ47vHHJ4cylA0G5wy5GLExBgS1jjQhgCUkmS+MY70ux0nBwdYa9nvC9FP\ncqHmTM6RUpy4yUOmxAw5s7m+ZnN5LYmmriLPIC9lBQVROahaRY5iDFx2LUfF8uBf+6vs9oFUNKFk\n+mEk5EJEsR1GLjd7Oh04WipC44gxY81E11pyu+CoEjm+NgajIawLlCUxeIJfYjTU1tLWFV1b0zXS\nDrWz0rqpKypnWS8F7KVnkqDRzNsh+VPPiAfnKphXsLlESopoNY9wcsIazVQcWkk4HGlucZRBGy2K\n9BwoJCFVaCkqWolnLEVhE6UsSFc1M2tELCibKOecgLrmFXiZfUjzYgpnNFhNyRK2l1WZ5zDcDs8t\nCh3FP1dSROVEjgEfw63WJo7CMw4+UFIghSgbyWkkz7FL2hqMc1SNvJ+LUigrM67GOGJW5Clxomp+\n/8OP+PTxz/jDq3/EVYzi5dBQLVqOumMyNwNuiKoQkyTE6gLOiJE650wJaS6c0kLmlMhRJuZzPB85\nJvw0SSZ9+QuYe1U3NWYO9FJKuMeVc3RtR9t2tHXNZA39NBInzxQibSo4pF9WasYeoGjqBUZXNN0K\nqzTr9QH7jYDCz8/P6HcDKUdWB9JWDX1PcRprHPWiZr8fOHv9BmM0y+VKtCdqorMtOUesUXg/0e97\nDk4Pabolox9x2tA4R1FiiVBKset37HZb2kWLtYZxGCXatbISr5sSBdn87IaBs6stWRmcq+bTREFr\nexuVYrQgXIV8aAmhME6FR3dP6PsRbQL5aCYRopnSisx90I4QCykrUoLJx7ntyqRyB+YBY1EZEKxF\nDIGmqqlrR46Rytq5fVFYJfMCKSiakiLWalH+yi9RzJRKNkw305OsM9YmUvJywWtFShOVMTRtxTT0\nFDxG1cLJybIeV0rNv2eIJeGsQVtH0eXWPyTrbCNFQRks0g4rRAphtZJ5SpJW6QbsXkqei81cnJSc\nptK8qNAxQUxoayHmG/8pOYifLYXA2Pf4aaLf77m+vib4SdqjacL7QUzL3hO8xw8D09DPcTxOTr2V\no+ka2q7DViJ61dZQa0MVFQrH4uguVbPk3tERDRbFiGxUZORQrxfsLjfEMWO6mpSL5H+FgNOO2hmM\ndVgV8VmSIYLKUmiKui3KMYsfsQwS4RTSn6cr/v8/vlZFx7qapluICM46ynyEreoaVTmyszi7ZK01\nqmkJKbIPhTiKoqKpsoCbVINhTb9zHK+egIpcXu7Ybi7ZXsrSbwqBruk4XB2x7FZkEjH2pGwYL/e8\nfXMOk6FZLNGxQTcVOEduLGgEXqVGJh0oRtPvB8IUSX7AHBiury85PDykL4pdzjy7uODRo0cE4OJK\neuOcYBwnUpS1gLWWy1L4bCi8nBIPV5ZGZ3QcqY1GEr40KSuK7YhKEZVBVZnGZkoZaZokTm/M7c+1\nNTerYM/N06UUSlukbSgyjKfMvBSlgEq2PNpJOwIoVc1/rWYLhxxWbrY2yrr5c/R8iJlfd/4chZ5F\ndfJltGKGf2e0q4lFsfNQdCdCUSc6FAmkQ3jZzok+Jpv56+u51nzFNDBv0aRPkqJXSiETmJJ8T4FC\nUUXmKP8vd28Wa1t2ned9s1tr7e40t6nbVLFIUTRJUaI6hokUR4idAIHiAOmR5iWR8xQkyEOeggBB\n8hjkxTDS+C0IkMcgRpAgsKXEcSyDtiSTskxJLJrFpvq6dbvT7G41s8vDmGvtfW+xikXJdFC1gHOb\nc/bZe+291hxzjH/84/9TEjY2GqvEmkdlSCnTq0y0Gl0ZspUsVcUihREz2jvxG/OB9mrD04cXvPbd\nH/CD732fdrcDFN45dn3Hru/ZRs9m6Nh6Txc9Pga0ziwrx63VktvzGXeWS+6erDhrKlZ1xaqZ02sH\ndc2uueRqf8lb+4dc0OIVIk0QYP30KW81c1xdoTIseintKip2JLw1bHXG+4F+v8PmDM6BDjidcDHh\nciKR6HME1eAH2PeJzjpi9wmcvco5SysxyW7rjNibBh+IMaCUw1UOYxdUTUXK0iXoepFMmM1qQG7O\nedMQQ2R2NmO3v8L7TuyIh56+C2g0VVVT1TUoRV3VpOzEdnezY7PdYIo31ug2kZLweWL0bLdbuq6j\nqirOzs6Yz+e0+47ZmVjtjrhFKNPqxhhWq9XkNqm1nh6TCycJRD7i6cUlFxeXfObFuyTfTRPpKSW0\ntWSlSUoX5n9ZzLpgilpU8N43JTNlGkAJMs9/iWyeHAlhh6uCgchTHGjwaQQi1bPumSCgLEoVxcej\noDMKxBydk46JpEaJUSbqvy7M5bH0UEXTV5eyRoKZOnp9VUDRZ9/5YVRCTUziVB4jHuXScVNGi051\nFq1i+YyElW5AQGatJJia4rNlEsnIMLJdzlDLGZ2F4dHbPFYdT4ZrQkps9hFfsJ8uBHFnKC3yhGRM\nQ++57i55h0tmgAPunp3wUy/e487JCfdOT2mco7/e8K233+Q7r71OpEx/KAqXRuPbjmpmRY6XNLlX\nKGQ4Vcp6hVUi3VvXFd4YkhZNbq0UOSWs0mSF+LtZR3KZwXcfsHKfPT5WQadvO/ZWfJYr62hqJ7ub\ngroRTywQQ71lcRSL/eMAACAASURBVBmIKXJ9fcW67VgtllRWWrRKKW7euokPA9vtjuC37HY7Udvv\nepazU27cvMlytRJ1viTCU13X8ejRe2w2a05PbxQMQngkmQrvB7quZRgGlII4BC4vLsW6QxvWbUfX\ndVhrub6+BqN57bUf4JxjGAaMUaXDUxwIogh2hSAESBNb3n3vId///mt84bOfodEC4glcFdHaSis3\nq5IpFAKIFrdGXTCg9FzUmQhwlC5KSs8GnKPHTf+eANZDwChTTfJ7IztXSXo/ZTVZlcHvTC5CZShV\nzOyOXiVneSzSDUxFxk9+t5RS5X2p0hYez0Fa4CXgHhP7lLy+6E3LN8ZMDCAjg5u26AIzfi7KSDAq\n3ahpc/BgYsYa0FaU/rJSMo5ghLyTrTjSnixu8+VP3+Xz/9Qv8evX17RdR9e1PLp4wKPHT3ntzbd4\n/c23ePDwEdfbln3bs931dF1PX7zdB2CDbCCPr9Z8+2rNzbri0ydL7HxOso43Hj/lwXo9MbJNlhKw\nUorUe1QVcFVNCr6IiXlyCsSQcLMZVmlCvyMmx+x0wayu0ZXm5nJFEyB1Mn8jzrkGZzVtHLDuE4jp\njEBWGAbC0JNCxWw2g7kMZO73O/b7Lc5aaQXXlqaqyMsVHsWnXrzLzfNT1rvIfFZxspjz2puP2WzW\n7HdXjEM5Gj3tmLvdjnpWcXp6QsqDjFlsrkhJ4GwJMh0ZmC0amqbGWiPeUZudjFIUboYPIut4cXXJ\nZz/7WdbrNTkngvdUlQiSXV9v6IutcU6J4MX9AhCvr2pOjJ4H7z3i6cUVn7p7A5BWa0ZY28q4cWWW\nHVxmhHL5v9ZmYuw+E1RKEMk5k/VRVnCcHZTVqfMk7ikLSx28rKf5I/mFCRBWmmk8IBdHTQXvDzbT\n8+opMGRphMk0tRafLGNkLGW0A04xTYOLo85xHp/sEMekGVEW5MimpQQROZ9S5mmRnc1JglSM0lka\n3TuN1jgMLiGwagZ0LriSwmiFVYZklEybx4hBsZzPJzzPB8/Puc8zxEwMCe8j292eh4+f8uqr3+eV\n77zK13//7/Pm2++w7weCEqXDlBM5CalwHwIXjy9IXJCRwJSVRVknE/iAI2MSVGgqFLUSka8uDOQU\n0WT80EOKnJyeEZ3jdD7jbLGgV56uuHh+7jOfZXe54fHjR8xXS550HX23Y95UdJv2I63jj1XQWVQN\np8sVQ+1KJiGOEMvlkmZe44eBrm1pycTgScELjVspFnXNvTu3+alPv8wPXn/I2cmKhw8f0Pd7amfp\njWFzfYlWFqMrqqpmsVgQc5IWfZb088mTx/R9T+UajFWi/j94XF1N7dXBD+x2O/b7PbPZkpOTE+bz\nOcEHBjTnObPZbDg7O+X6+pqmabh16xaz2QzvewEMm0Z2GK1KthMl6CZFFyPvPHjID15/g/t3bgj9\nPybE9ytijCwqAWp1adEqUJIryKI8gIJT8OCAx7y/DDmAtYyvN/7u86VRzlPQExWGNP1flwWZkWA4\n/v7kzMB0IgX7EZKlKYOQQOmgaaESlBJoOs8sWd7hrOXvnMe/jwLt+LnAM8F3JJSmLN5WOadCSTh8\nLhnRrfbls1IqTq+Xy3OM/lc5J2zlqHJGFRfMrMQ1owKGjaJRCqUtCst5M+PlT9/my/d+mn/ul3+V\n7//ZP89f/T/+d772e7/Hk+01vY9gjXzlyJCLZaAS7lAqmZmOubRNQCO+7quqYm4dldFgtIyxOMN+\nt6dymhdu3yLuWtrdhhtNhY4RqzNnywUvnJ4xdzW5El/0MPQ01tBUjsura56Z5P+Q48cKOkqp/xz4\n14AvAi3wd4H/LOf86tFj/ifg33/uV38z5/wXjh5TA38J+LeBGvgt4D/KOT/60JPVhsVsTlM79l1b\nFphc2BEH0UZaosPQsVlH2t1W6te65ub5KV/95V+C/G36ds97D94VUaRKs1gsyDnR7Vp89Gy2W3of\nqGtHs1iCSgWn2ZFSEM6O70sKLqZ4tbPEGIRQt93S9T3W1mw2G7qugwzdbsd2u+XW7du8+eabPHr0\niM4PzBcLrLVsNjtsKSGHvqeunMx+dT1912FyYGYSmsgPXn+dX/ryF1lWmpQDlTWyEBl37wKeKi2M\nWixKSdkzZQByQZ77uwg5kZ/BOp5BZiQlOvxMqSJtcAgeYwaSy2P12HYGlDalqzI9eDqHqXRRVs7B\nZLRKULJPPWU55dyMOfy+nvwdjp5bTS8xZjpyz0hL+5AFZXzMU1mVy2cwnrO2Rgh56pAlhiGUzo08\neYqxbHhi9Ge0EszDiPaOtVbCQM5Epco9fEO4RVrwIh+68tEk6hD4wov3+Y1/81/nhfNT/sbf/ls8\nuHhKnxLdkORxCoJRoC2EXDJWRSx+aRDRGDRB5vOMyJcqJbymnKUzGmPg3r0XMD7xTjdglOZsdUKP\n58nlI65D4oZtxJNLK2Lw7PzAbrcXuYP3I4U/9PhxM51fA/474Bvld/9r4P9SSv1Mzvk4t/rrwG9w\nuK17nj3+MvAvAv8GsAb+B+Cvluf/wGO8pbPWVNaRrMzJ7Pd7vB8wupjUVw1Wa0iJnAJDH7BGc37z\nBU5PbrHeDPzO3/sjUpC2YLvboVSia1sR3W7mnKzOSmsw4stg43p9XUBGEWvf78UJU6aohbE6jmBY\npenaFqOtyFL2PW3boVNiuVwyn824urqStH3wnJ+fT+/FOTupws1nDXXV0FQ1Q9MUjyvRyb28WnN5\nuWZ2+xydMj57sZMt6+h53d+MtKbjM/fGGGCOSiOlDvfPtEifrbK0sfKNQrYUjGX0kTrCgI6A4WdA\n5YLJADLoOD1GyzxSAXRVya5Mcdmcul8lcxISXkIpwfO0niLIM+f7TBl5FIRGGfdMnlwrBY969t4b\nA50xQiAcnzNaRyzSoikEQh4HIQOkSIpBymcnHCGnDSlLidZU4nuevEEpMM6Ki4XKaCvlT04DPgVu\nnq/4t/7Vf4kv/pnP8H/+1m/yD/74FfZR7HQGreiMkWuhNdhK3tQQSEUNcSx1pTyUpoNKEa0VfTfQ\n1DW1afj2t79Nbgf0vufmPRlB0ZXipz79GVyZA3O2wmhDH4JUBOU6nMwaHj9+wo86fqygc5ytyA2i\nfgN4BHwF+NrRj/qc8+Mf9hxKqRPgPwD+nZzzb5fv/UXg20qpfzLn/Pc+6PWdtbJTZI2uhaOQsrBA\n1+s1zlnOz05x8xlNVaFBXBNCgJwZuj3GaW7eOCMHT1NbVrMTHj8dWG+vIUv5kVLCGMsQPK6pSDmz\n3e148uQxbbsTf/NuD40QFMcbUmtdDOpkdGJWN5ysVixmNc7WnJ2c8vjhAxFUT4HVasV2u6VpGqwx\nGGs5OxOSoULatUop0Wfui7G9Eup86AYeP7nk3fcecvt8iVWJHAqDVpsJV8lFgKF8+OM14FlIeLy+\nHH4+Bq5SfB2XJQrJVPJYRj3XdZqIdByCzhgojoNQLjv+cQzMJahTvK+OM5/nv0hI9yvlw3svXaT3\ndd7efydKBjkMU9mYS7dITvhwrhNWlYvpoaZca42yBmwk9hCTZ8iBIQciEa0S2ShS1rRRdI9N+Wxj\njOi+JeeEY4NWmqp2pfuYUFq8tTo/SGBUitl8wS//wpd56f59vvXKt/nt3/4af/TKK2xTEtbx2KIM\nw7jDyPtMiUDGoWjDQKNmEpyVpm5m9D6A0cTi7kAumkbWsFiuuNpd88abb3PSNNxZnmAqRdsP5HpO\nQuQ3Vidn04jSjzr+tJjOGfL2Lp77/p9TSj0ELoG/CfwXOefxMV8pr/v/jA/OOX9HKfUm8KvABwYd\nbeRC165GW41xsqt3XYvIIvhJ1NrMRO0uJRljCCkwbNdUlSJHz6yp2LQDF0+f0Lb7suIUxhrmszkv\nvHCb3guTdLeP7HY7hmGYyiljZNHFGFEqEIKn7zvR9ek7QDyN+m7Per2mrsTN8urqirt377Jer3n8\n9AmXl1c45+jaln4QxcPlfEFVGfY5U9cVzhr6rseHgRyFa7SsDPtu4MF7D/nCT7/M3AF5pN57ckqg\nhQAIEhMCspNLk7dgKwX7OT6mhXe82EqZMQasHEUWg6PAM2UrhRvD1P0BYpiyCKW0dHaOAeQJs5bR\nAPmPsJRVAYbHYJNjJKQ0zQqlMjyZyQiHT1q7voC/U8ArA5WMZZ+Y38i8USnT9BGAfjwKAQimU7Ck\nkcwYCBKEKo3JDkcWUau+Fy+pfijZzkAMsWRtgr2FKPhOlS6njzurMmanKJPliaxE0Kx2FlfNuXP7\nNsuvnnDv7kvc+ht/k9/627+NG8dNtKIbwqHUzfIeByJWGzbdDr0z3LxxC2Mtvu3pe0/vM7p2VHVD\nGDJJOayp2Wz3PLm8IqrALnfsbUPjZmSl8T6J5bazbDe7Z7C1Dzv+xEFHyd33l4Gv5ZxfOfrRX0dK\npdeAn0ZKsL+mlPrVLFfzLjDknJ+fDntYfvaBh1YyZ0QUaUrXiAL/bCbzPF3XTsBu13vmswZjK7rO\ns+v39Lsdij3rq5bgxeit7ztZoEphnNxQAA8evMe9F1+iqh3X62vW6ysGP0yAac4UijyMOEZdS7rc\ntvvC15GZlt1ux8VTIR0G34ukREm7lZaFPPQD6/WaoevolGYYJGDGMGO5nFPXFXXj5LViwhHpfeB6\nvaFtWyrlMCTBE1Ayq6Wky5Mow9FT0/lgySIZjTr8zbOg8dgWHzOQrFTBZtTUVh99oqaMonR40oT5\nlOdMI5aiZGBpwomOtWoOpVzKY3GQSVEhJnoyK5WKw+b44KwUKgl9YcyeMlk6awiX6PBe0nR+z2RO\nz2ViKCVmjOZQno2t5RzLZ+UcWBm8rKzFokhK0w4Du66nXW9JPkAs4wLFwsgaGb+IMRLzNcYYRj2h\nEAMpg3FOZGNncypTkdSGwXmSdljluHfnDl/96le43FzxjT/+Q4aUhSXOQEiI5oZCzAs9tCkS+g7b\nOxZ+wKIIMaGtE0xaadpOJHIrrbB1g65qIgofIVmNqRohnSZRd8xKykW0Yd9uP2z5TsefJtP5K8CX\ngD97/M2c8/9y9N9vKaX+CPg+8OeA//dP8XpUswZXN0gWYdDZoLPGVRY9B2csPgzI7anwZdFHJbwU\n34sLQUqKpmkwO5FgFNuRSPKZ+ekNTpfnBJ9FLdBV7Pdb0TjJ48LRaCOlVUpSz242W3LOB66Q1pM0\n5enZOX03lMHOgaoSZu5YLtZNTdM0pJRYLhYi26EhJqHyO1tmsIaBEDI5glMBmzsury7Z7/Ys7Byl\nZS3HnIvspSEXAl9WIyYmEguZ48VVkJ+p7CrAqZHfl8WWjjpNEH08Yh1LZpNKBjE914jJaFWuybOl\nTi6B7qgwK2Dv0WNKthF9EBkJpSbMZ8xeKIFQQORCzMsQ8tH5GX20Ych5aA5YUR4fpzkiQWZKBTh5\nyauUwYAyBmtMKS+iZHUhomP5OyRsBDUEnj58xA++9z0ePnhPpu6tY9Y0zOdLmrrm5ioXr3DNvK4x\nSgsQbR31EhgyYUhQ9+AqknbkSgTbPvfSHdKf/RXa/ZY//u73UDHIpLyGJEQtccowwnAfUsanjM8y\noOpjRCkj5o8qE5N07SKadgj4lKkWC0K/Y0gJrCWkXETWDAlhzaeYqKv6I63jP1HQUUr998BfAH4t\n5/zgwx6bc35NKfUE+BwSdN4DKqXUyXPZzp3ysw88/trXfoe6cuM5oJTiK1/6Ar/yi18meBnAqVyD\ndaKv0wehkWMM8+WSet4QosM6xfn5KQ8v1ozMVUglZRwYhoGmnk+Z0G67Zei7khHIqL/M6xzwDu89\nu91O9GHKjdj3ffkMIIQk7owxMPieGBLb7Ya2a7GmmlLTzUZse8eunFaiCW2sLjosStxNjWQXXdvT\ndR1+ZlE6QdIlu9GgjXSiiqfTKNopU9eHxX0M7o4xRylFTrJQRw5MymnqYuWQpkCkS7BKRyZ30qEX\n2QRdFvzUPn/utQ+YyZhRHPzGR2PDUVtGKREBt8agCl9nyshKeSJZTAm+lKBndHn8YfxDbHspGQ5Q\nyrP3UQZE6VwY3xlEjVh+btHYKZCVc9YWu1gyrxrmszlPLq947Z13+OYr38aP71kfxN1nRiyGnVas\nmpp7t27zmbv3uXl6QtsGmrqiqXu03WIqJwS+piaQqRT89N2b/MKXvsQbb7xJr0Ahqn+pDKdOh8Rl\nmQ/ThlyaCiEJ8N0PAe8D9IEcFdebNaa29HiGlKRkzQmTFE+7lqdvXJKUSM7kzMGr7UccP3bQKQHn\nXwH+2Zzzmx/h8S8BN4ExOP0+EIB/HvjfymO+ALwM/M6HPdev/RO/yAvnZ5Aztatw1uKcpWuH0vYz\nNE2Nqyp8DPQhkrKUTPOZY1YbYq6prgKrk8d0nfiTozPK2lIeWWEZJ1H1f/rkCd4PaF1SyrFbJeT3\nKWhpbYq7pPg8+yCgWoyRzWZTbEA0wQ90+z0+BtndlMFYxXa7Zb1eT9PNpnSHcg5ikaxFLNtgMLZG\n60hMvcx47VviSUNIEZUE90oKMkZuLsbAIJlHSrl0pQ6l1dH1OrSIR1mHkm08w9BNIt9w3CYdF578\nW8hy6kg7OGfJPMfAM57P1F1LTFnVSMYb2+5SqgrG45zDOkfM+TCKYfRE6ssgjGAtDGFpDWnxBx+/\ninxFyqkslsP7lvdRAnNMJfPJZfo/EwbPUKAskw9yqMYU0qK2mLpCL+Y0pyf8/GpBfesG9//oD/nG\nN7/JK69+h80+Tjml0gqVMg6Zg5s9uebk9be5vzrhU7dv8uILtzhbLmispXIG6yyuEnG0qnbUN+6y\nOjlDacGKpg7kmLFNLwTWSId3zPoS4KNY/6RYyj0yKE079Kx3W5JDZvKcYYgBZxR3zs64s5zRa8Wu\nFR1xMvzDV7/9YUsY+PF5On8F+HeBfxnYKaXulB9d55w7pdQC+K8QTOc9JLv5b4BXES4OOee1Uup/\nBP6SUuoSYXX/t8Df+bDOFcCubdnUDo0ihCiOn8YwtIOQBFcLrK0JMbHZtuzaPRhNow0NkjEoM6f3\nkZPVShZB0RJRKjObzThZLMXORsuuHrwXy90YBKTUGmOcyFWg8UOcmKopCng9YgPOWWazWSGxKay1\nKBoWiwXr7WYqFaqqwjnHYrHAe48x4roASfCDEdBUipBg8B1DGhhSy/WmYbvZkG6fkpXMmonAtiIR\nyMocfYJCwYvPtKif62IJ6HH4mZKSctz9x+7VWG6MgQglwQJKqaYlM6MY3wHPZEy5iGblXMDgSYcm\nkpIEg1h20ClCImWULWVpVAL8O1fhasE/tDFlOy+ZjREwXWczvmHJvDSTk+qhBQ8g/JVUumIxCyM8\nlZZ49KHMXkmwyd4LuK811jlcLZueqSp0rjBVzcntW3zpdMVP/cLP8k//+r/AN7/1x3zjm3/Ed777\nXR4/fcJ1G0ltj8qZ65gxbYdrO95eb/jO0yecv/4GL6zmvHznNvdv3+R0PmNeVzijST5w4R/xg3fe\n5brraUd8S9sSxeO0LzirccYWNnqBC3IUrpoS0flcOr0hezrfojtNiopm2aCMkpLVaFzl6FMkRJFh\niUOcytkfdfy4mc5/WG7Lv/Xc9/8i8D8jxMifB/49pLP1LhJs/suc87GC6n9aHvu/IuTA3wT+4x/5\n6kZqSNmtk2jq+kifZJYpxEjb9ez7jqvNmiEF6vmMRc4oAiZ3KJMYBgkGTTNDXYtujrEOrXVhDmea\nel6sg6UTZLVG2YZxV05l90tld1dKi9onCWsM3mf6oYesip5zLk6jkjF0gzg/DiGw2+0I/kCzN8bQ\n9z3BDwyhQ5GpnMVog6lmGNegY4fKYk27Xl/Td7fIOmIK3pUZtb71oWVO6ageZSwjgJzHhT1uWeXI\n5XuHWaxSGpUM5JD9iOd2TmmaLI+p6K+UkmkKzkkA7xDDpHMdvBeVvRLMcnFBmALZEeArYlMWXTlc\nVVHPGppyPV1dY5xDWYu2DpVE5gMNKgsfZgw0I1lxBJbH1zm89zyJcw2ddCZ9PxBDQCWK1GqeOqQ2\nOOok521ixMaEiaCrzMzVLBYnnJ7e4MW7L/KVX/wqb7z9Fm8/eJc//M4bvPH667z5xpusN9eEFPBk\nuhjZ7PY83u158/qa1y4uuf/wjPs3b3D/1i1un51S9Ynvvf4ev//Kq+xTIpaS08d0CNRGiwYRWsZE\nxg4eomhorMEZXfDCQIqBnKVJ0zQ1+zQQSxdMymXhpKVYrK27Ht8P9DH+yCUMPz5P50OLtpxzB/z6\nR3ieHvhPytdHPlxVCWKeBPCyRmONJiGqgLv9I4YoNqxBZarZDDcTj56u73m82xPSmsSClFIBbCX9\nXq1WNE3DZiM+2pBFmrTdSfclJ1KUYVJrLMZU5KQIIaG0onLVZJEy4iC6lAIy0RvxIcnkua3ovZdU\nuNi29n1XApmwVo0xKBzGiAKes0Ym2ZUrHSQZZByGgaurKzbbDQsnQloxhCnohHSEn5SvEOPUrlYj\nCAtTYJmOknFIkJGMZ8xQ0lH2Uy4qMYUyjlFa9EEmp1OSEY4QIzGEKejEIOoAB8wmPZPZyOvlqUM2\njhVIOavBSqlRNzPqWSN/Nw1V02CcZBumqqQ7EyvcEScoZbHFIR8EukYAXDhAouZHliwsJsm8hr6n\n27f4QUp6jOBFzjqaRu61IXhMP1BXAVtF0D1VXaOdR1nHDbfg5v0TPnvzPrvP7/jVX9zz1ttv8w+/\n+ypvPXiHdhBGcteL3c7TRw95+vgJm/WOx/uO155ccfPt97i9WmGU4vWLK95ab0laSk4QYTHxopYu\no86IfXABwzXi2WaMBOWc5DppLd8np+JeKoqMSgk2ZwumGqOU/SDOqLqqCiv5Rx8fq9krk5NYcigl\nAktomplMwYYQWG/WDOtrYpb29WI+Z9E01NaSU2Tba7rBk9UenxXzpSOrgFIGrS2gubpeY4zcQOvN\nJUO/lzZ09KJXk1IBGwV0JMtMS/AtKWpC8CKEFSNKa0IOkBSBiM+iAucqS1aZrmvJJOpKcCLvvdjH\nxp4YBYRWMAHXRid8jgwRHIFe98x38PDqkm3bUVOhfC/8EwVBSQcnp4RKCVNuvkB9CDq6AMzjjs9h\n58+xZDgJBNMYg0ACvMhrpgNOE2IkR7FPyYU0FkLJbkZuTGH9xpQne58x2Aj2VHAa6bGLde3Y3kYR\nKbNVGaq2Y2gVsQ/sdx3abpjNGpqmwlWOqplhmwVmtsDMFCZZXPRUIWHtgMsKFw/s4pHsOHbeEiWb\nIxNiZsgKrwwtil0QzzObWiqVcXVF9HN8JbigsxV+kH8b6whdg3WViJtXDa6uWCjDzGlunt/i5arh\ny/fvsG23dEOLyonQDawv17z74DGvvPo9vvHKH/Lg8pLNduDd3UD9dANk9sEzoEDLNLmguofMdcTQ\nrDWcn55hrUNjSCGigmwGiYxKGpUEjU/aiCxqVVN70QaqtENZR5sznVYi6j8ohujFdsd8AoXZR58m\nlMJ7T9cNaOO4fXLCyY0bNMsF1azB+4G6dswWM5q5qPGFEEE5qoUmZoXuBm7cPEFr2c394HG2IsRE\niD05ywyVzNEEEUjQYmQWyi4NBWwlE3xPVVdUZRgVhGfSDT3KD4JRxIBOka7vxJ00yXOEMBCjyAxI\np0v2Y2OMzB+VbCKoiDINzjhhJqPpQmCzb+n6nl5lhjCgUUSVCBoGJY4TOkVsztgkz5OL3ERh8ZVA\nI4S5CW8pGrkjwEsJtNL96iVwhChlVEwlsBx95WMJHnXoYIF01wq2YpRoBpNK6znH0jES4SxSJhaf\nJR/FFqjzATcMdEPAowiI1fLJYsZqUTOfid5yPT/BLgLVAuwsUdWOWCkqC0Ep9skw8n7GslHOtpSd\nJRCBzFWRklgLK43PoNsBFQay6wmdB+vE272qGaoK6yT4Df0erS3aSmbWDLVsnj7Q6BNS6DhZGG7e\nvEGKAzYmVJ/pzs754t0X+fynPkO9mPN/f/33ePfykghsYxkyVUqGflMulLE8ZefjJVbI7OJyuSIn\nGX6JIUzlL0quZfBxVGQlorC2wihFGHpiLzLAmUwuWJmtDCbI2Ej6JOrpjETAnIVDs77ecXl5ISCe\ntTRNzY0bN4BMVRma+QxXOVDgfWCxUlRVQ0hwud7ywu1bOGvpBqlj23Yv3uFZTPx2+73M0JCK0HdJ\nW/NBtmEEW8e8/UD7FwkCXczlNEowqejxhWRY1zXDMEyM6pF/MrUaAAE2VXG4tBhrAQNZoRNk7xna\nljh4+pwwhY0cFXiV8chNZXISUDQrAqKPS+HsMGU5EnhS6VePGE2KY0dpBJUjMftS5oqzprTK1XTe\nWlsBbYvmjby3klUk4QnlsqhlFkk2kyTsham06odOTP36gW4YGEJis99xebXnMiZaHwgpExCM5aSu\nuLGsuH2+4u7NW5yc9Mz2A/N2YLZYkmuLspB1JFnNtqrlemZE7Q/RYTZIskDK0mGkdLJCxAwDVdsS\ndnvytsd7TzCBYINwhbTCNTWuabBNTdV4tDUlGzD0dc/QFMF9MtvU06cBh6Uxteg/5ozOmV4NMDPc\n/+l7fKn9Gb7x+qu8ff2kDCGm8RZhYjwdLsEEE4zHEAPrzZb5bDZlj76U4q4ZtZHFrimFJH5yPmC1\nKviYGDuiBE5QKWOc0DIGHyE8P2L5w4+PVdC5ceMGt87OioiSYbnYcnV1zTAMtG2LtUuWy6XY3zoR\n4s5qtEERMlUzW+BTZvBRFP1mDW13jSKz3axLG5jiOyTl0KgkpwvIKgLgY9gp5U+KDEMPfig2I0U8\nqfA+GNNeZFfRRiNUvUTKoajSqVKySNAR1Tp570qVgUPlxV0iD5jcYV1kfXlJu9vR1JaqdIiizojh\n7kiEK6A3iiH1wk0uu6Hs8KNUhZzrlLXEQwl1yGAS8SiTnmDpMqyptRJh9WPaXxHbAmTKvZxnToJr\nxRiI0YubxyCavV3b0be9OLsOgS5IN27XtVxdXvHtIdOnTM6jD2eiUbBymhuPL3np5jUvvnCHF24P\nnAyBbrtl3g42KwAAIABJREFUXltSo4laPqO+EcNCXSauValMglwmYgjF6kUUKkMIeO/Z7/ZsNxuu\nLne0+46QogRKMsZaVqvlpBjZ1FXxAXM464RE1zTUtTiYtP2WZED3FWFwgi+lDEOi3Q1gGrxt6XbX\nEHo0qQztjngah896ZIEeBZtyBfAxcnV9JYTU+RxjHTHt6L3HVLaQViWzTCpitWLoOhKZ+ayicQ6d\nMjFHGldhMgw540yGrOg/Yjj5WAWd+XzO3bt3C9hn6G95cfwMgaaZMZvNygcnDgKhqO7LUhNbDQpT\nV5E5Wc25f+8O15sNMXpSDIU8JgxebTQ566mtmKPsCuMkt8QRaVOn0p2BQpLKEIqS/0RgK2lvPwjR\n0BgZWCVJJ0GnKOMyxU9pmncqwGnOTr4XEjCQlafPns1mLcLuaSZdqJRJGqIWTGdk0qaymIY8TCAg\nUALOxJaR/CeXLCYewORUOlcZRUoGpUXIykj/WYStimSouIQedbhGS5bxK0Ry8YgSIXTPMPQMfcfQ\ntvjBC5kypClLqpzD1g2msrRdi78c6FMWSYcsBUHMCT8k2mHPbtfx5HrPnYsNd27f5vb5OafLhr7S\n1FoWlVaSZWZjiKXkTFla5bFMi0conJU9m/2W7X7Pet2y2XU83rZsu8JsT6KPXBnDyWLO2WLJ6XzO\n7dWSG8sTbqxWLKuGxlhqa6mNLUO9PW5eYZYzUmPkHkAxdIHNZs+69bxzseYPXn2V9ePH2Ml1tFy+\nkt5IHMrFJedQKo6P1WjpQFkB0Y2Vck+nhI8C6pMF+6nqmuV8JuMzIaJTxqJwSkujIgRcVdF3PaSE\ncwar3Udaxx+roNN2HcYaTk9P0VpsUm6UNuw4lCdYT4sP4hvUD30BKAVPiCFiXIXKmfPTU37u577E\nxeU1Ty4uxVO78E36Xjy0YwqTnMWhUVM0iWOaMoUxsOlCjxdFQJER0KhiuyuZRIypcHEq1ECZ/cri\nva50sd+VkucZsrAS0lpSEXIUsfiU2HY9692O09qJ8DwI0zQXuntZDDFldAKPYExqPO+yqx+3zw9l\nUwk25EnbGAzaVkUb+sAIHtvZY4A/Vtsbg08q/ycEsg8MwTP4gVCM5VIUPoyMlFiqyog7qjGi+VtV\nOO/pvafaXNEFL9dDyWaRdCIkz5ATV0Ni/fiady433Hpywb0XbnHjdMG80ixrzaqqmadZYTMrIhBS\noA+BPgZ8jlzv93Qhsul6Lnc7Nvsd265l3wbaAL0qY2RIhqQyqARus6XmEXNjuLmYc2ux4uZyyXlV\ns6obVs2M5WzGrKo4t4p60WBmjmgU2clYxnqz59GTS77/7kNee/yUNy4uuOp7cXzliHHNGHgOdIbn\nj5QzVotXltIGXzpyyliqWpNVoO07SBmnHcYZKlexqGpi30FIOKVZzebknFhvNlTWSHs9iTli5T6B\nQWez2fLo8WO0NiyXJ5OcxCRLUILFbrfFB8lcBi+T4cYaKmtlIFCJkPpyPudLX/g8VxfXfPNb3+LR\n0wvRRYmJ/S4W5u6oekf5twCpsoiOeQmqTBEklBpnjg7BKk3WsMKAnRYrwnuQ9q10gNKEGY0M4USI\nCR/9xCSVmXFp6W76gYvdmjvnK8gRp6TkCUlwnLFNqmLGZIhKhiBHoLG8rcOIQ4aYVeH4KLJmCjhZ\nSybnVFV2z/HIU5ABClnyCGQu7XJf9J7xnhw8cbTNJYFWWGexjfhZqSx8HGsdWWuiUgLEpoR2jvPH\nLV034Msk9qiSl1AcS0p1IbF5csmbl9fMG8tqXrOaNTTOYVUl557FvDGUc+y9J6TE9X7LEGEI4HPR\n31GlitEIIF8ywDjtEJIpeaCNkav1hjfWGxywUJrT5YKz1YplM6NylheUxtaOpDOeRDbi2nq13vH0\nasN712vW3tMBw9jBK9c458P02gECH/9XmgVlS5QMNU/dxJjLfJ0CHyIhBVRS5DigUmboe24sl5Lx\nB8+sFj+zrgytKiUzjISAtoYcP5qZ+ccq6ABst1sem6cMQ6CqBDcYOSOqdLVGEXOl1SRp6aylcjJo\nGYOXob0YODtZ8fNf/hJ933Nx+XVCjkDR23UV0eeD99HUiomMU9cHqE6Cy0FUimlRqiLjqCWukLIY\n6FlrCoaiSElKN6PF3iTGVEBeuamkjYswTVXBirQiKEWXIpu+JWjQMZcWeHGLHINOzoIxZcjalixc\nSkfZHdXUsYHyM+Q9TDIUegTNpaWck4icpXzU+i5foXBwxqAj3x+Z26kIe2eMLQO71ohciRE+ktFK\nAo5xaG1Es9nITJ3PmdV55FPvXbHf77juIlEZUVBN4jGeZHKzZGkyLUXUbPeZx7sdig0JKUHHXkB5\nuyUQSzZhTPms8+GzGTk9osZnD5wlTQl6iaSkm+ePsF2l4JLEO7sNaruZXnclKiQUJgDKSFbeh0zM\nUhLJexCXj0ShaxTgWM55vAuP3kwe86ByTbNY6WSQwWkvs4khRRJQzWoI4LuemCL7bs++nXH77JzV\nrMZqLdczxUnQbFY7ut1Oyjn9CeTpzOaC24QQpjmlEdzUWtE0M6zVVFUl9qcFHHPOYbTUol3fE/tB\nyF+pR2nFC7dv8MUvfo7vfv+7PHj0kKEA1VqJp9LYsRrDS5qCT9lbRmYrUlnH9H5m5jRLXTxtldKF\nucukq2LLNHmaAF2m5x93rBTDFL1iEoGuPkS2bUfvI5qEIoq4WRaMI8YyUZ11YUaL6UiMGZLc4IIr\nj3c9R2S8cZGpSWgn5cgQfGEOh6l8yoWdKyzeSMzhmdEIyFidQWtMVcskvpEv42yRcpCgo5WaSlBj\nCvbgilNqTkQyP/8zf4bLqytaf0UvfO+SfgiWJdCwDL8qXYO2QmDEIw3hPL3H8X0e8FnJ4aQnoDDT\n4i0fUAaiKnKykT4NhdMzHiUCEafM6JmnGF9CKfokjGlB55UAb1l+NomllXk5o8wkMTqdR3nVA4Lz\nbNdqPFJO4oFeyKeD9wdlAGto7Bzfy6attKHtOx49eUzjLDdvnNJUFbGQb1Gq/G5kt99jnUWr973k\nDz0+VkFnHFATzZFYvKYi3os3UcqJ09NTVqsVMUacsyyWc5Gx0JrgPZvNBrdvpX2sNL0PhJD41P27\n/MpXv8Lf+d3f5b1HD4XnkDySrKtiqHAkFKVU4ULkkokc3bQ/9MjPgHspRbbbDeNyVApiHPV5nv29\n9Pw3j+6rjATBth3o+4HG6aJMOBRjx0waAtoIdSD2gWBlLilFKfW0MqJWN27ViJsjyI1KjGSVC9YT\niSGK1axCBLWmCXB5ezlLaZVznIKHVoeFYoyUTRJ0DMZZrHPYuhJwUxWnBSdZji5UAV1VB4uXDC+/\npDk9WWAv1jJXPdU9R6s7CwZVNwuMq9nvtqQojqhWyQLXSsiIseQU5WaDgm9pNEZZfJYy0Gknn3vO\nZTQnkUIWHaMpao+vr4+u2eE6qvFPpVHVUpoTvZ/GalII0uWLiSnaqyzjF+PbHEH9wyPet16ObyjN\nwYKbnMu8WxnkNYIRoRS2qoRbqGTW6unVJbOm4sW7dzFWFDVjoWD40s2zlWUYPoHl1cRczQJqyj0m\nNPSUkvhDh8CsaUSfJou8hFJq0qkRspcWbCGJXGUYOtCGX/jyz+JDz9//g2/y5OlTEdxWstD0mJaM\noOq4+wOHXeXDQs4HfbfsT5lndt0P/u1xZcu/FZkUEv1+EGEppYiDgMnGFb2XnCCA0qK73IdYfL0L\nL2iUv5g+Y0l9hCAYEDJgKdeijCwo5cqpCCiklZIyUgGF+EeSEueHvS1jLc46yaisRjvJZmzlsMZi\njYjMSydMfmbEXIpspIS4cX7OjdMzKveEvZeO5qiUqCkkQ8BqR2UrjK0YjMVHL0L61qJVLuVUxqfA\nIVdRR1dn2jJK6SZBLyGUhKRE7e+ZEZLp33p6Ep3V2GOSkJbUJNK+sg1uvmLoepTRtKqnHVrSFEQl\nM6vnDfOmoe+FRyb3oqI8E4d6a5yaP5xTRkS+qqrCuGoyC9BKk0h0fSdBOIshY8gZU1W4Zsau7Xjv\n6RNOlktUEf8PMRCU4HAKgzXVB9y/zx4fq6AjN6EB0gQgj4pr479jjJM2TdcJqFzXFbzwAierlbRf\nYZocDsNAHHpcVWOrij//z/waP/Xyy/zu17/OG2+9w36/oxuGiX07ejXJxR2xmjEV/2g08A86friW\n77NHgYCnHdWgSDHS7XtSyIQMLlvIot1UHLPI2RBS0SLSuZQa44iDdPVGLRxVppMVCXIQgDBFlBJ3\nA2sMsTiaooQEmfOxCV15HyofgmlZCBPfyFqUsTLxbU2RJD1yqdAHAXYZzixPqcUSSNQDNKezFQs3\no8+anC1DTBB96daICaE0HCCEDh97rNPM5jXWWNLcyUxV1zP0MtqBEr8qKd/jVG2N2Z0yGVIix0iO\nBjXdE89vLurozwPQeyiW5bsq9nTbRDU/oTGG1ekp63aPX3uGNJSRBuEz3XnpU9y5d4e33nqT9Vvb\nwxOH45d8fhOcUMdpnThT7tniYDr0QlgVqRfLcrViXtXYLNIXUVVkrRhSRBkLRtF2HW0IxJjZ71vU\nJ5GnU9cNq9VKJsxLFySVbolSonS/3YuWsUx6e9q2ZRhqFvM9zjopD9JhetmQMUocGlWOLGeOL//s\nz/Cpl+7z9jsPeO3113n3vffE2fPxBVfXa5mRSqK4JjNGcVock4zmj44ff6JDk7EgOyxj6a9RpkLb\nGdoqVLSk2Eu7XGuxJY6KPiiiT/TKkwu+lZIsylGQa5QLEUA7oHOxOM6p4EWpLLyD1bFwiIoxHbm4\nnkZp/Rey2jHJUZV5KlIka1EmSlmjE8QChJOTvP4I4mdd0Blx2tQYmmQ4n62Y6Rqbogj2JxnmtMaQ\nU482hrqpyAgOhc5EFdn20nFJzYKkAsl4sEnqFGugbHCh80WxMIGKEy0gE0nZk0KR7xjjLIf2Qp4W\n++F4/raIQGUze7/HbwYUmlwJWF7NG+Ig7rLkhHWGT718n7v3XuDRw6J3J3vweCfIXTECU0dSE2Wr\nnQiYRmvRrQ4B4yyqzM/NFwtevPcSThv6tsNpRQ6eLniME+H4fbsnpoyrKnaDB6SL5dt/PMLs/1gP\nbSyzxRxypm1b8YbyXhi3R63zvusw6qB6F0Jgs90WYE7hB09KoiEypvFWyyRtu99hK1Hme/HuHe7f\nu4MPgf2u5eGTS/7gH/wh3//B91lvNsJCpdxoeRwYLCf7w7e+P/UhSMNYxYtuTlaWqCybPhCHTEXC\nh0AXPH3O9EHRdYGhz5A01901SmuZAQuBummYzWbC2jaGWeVYNhWNbagsWCI5eIzKVEbwliH5qatm\nyq45ip1rrUkmCgGxfCaKUQZEeD+Ujo/OkYTCFOM9Sy5Yu4DRzmgZPbCWFOVvY6VTZqJhVVc0SmOJ\nVEY0e32EjDCJc6E22MqiouDM9azBGiVcrN0eyKgkMg9oJZle8MTsUTHI/FnBR4SxG1FZXDFDDEwj\nHccX6X1HfvZeONqYhtyBFnavzpp9t8XWDWfnp+Trgf1uT46ZF1+8y2dffJHQ9/jt/gDkxKMy6oj1\n/sw9M9JKfKBv95OaoyJjlMJqSyYxtAOPHrzHvOA+OSQMCWYNvffUdU2IAjforKltxbyqSSmz859A\nTEdrRduKvVbKuZRWMAweXdrjxlhATZkMUPg7/VQGicB6prIOYzTzpqGuKqyz7NoWFTWzuiYlkcxw\nWnOyWnDj5h3OTs65d/cu3/zmN3nv0cPChXm/I+Z0HN+A/wgCUCIh02CqmOZl9iny7uUVX//Wt1CF\n0RujZzt4tkOgi4rBgzVzlosVurKsViu8h7YPNCFxah0zXZOHSFzvcGrD6bzhfDXndFYzczWWRCRh\ncsKaeNAdLiMOemy/lzp/TOelvBIQfRyjwJeB0gxhKDiRVqVlrrFG4bQVzMDItRXcp4jnaw3R4ypA\ne2IeUFo6XSF5kdTAo0jEbSSrjpABneniwZjQROnKpaRElSPnYiQq2YvGlufRhJJfplz4R8LvLd1E\nBEMaMexxanICc59FiI7NMAvWTfaiJrjdrdFdz2K54OzkXMq/dssXP/M5fublz/GD730POySqCOGg\n0VXgNEXOz5b5sikevue9py7Zji1k1jpbtvsdXdcz7Hv0TUPTNAx+IPYdQ9txdnrKzZs3SRkG7zmZ\nL2Qmbrenqme4+ickV/r/52GtZb/fE2OkqirRMXG2iG0JL6SqalxtiV5QddHUtVhXkbVm6Dv6roOc\nSFXAWlsE0jV+6Am+x1nLrK6orGVr9qQkIxE+Ke7dvcft27dZLpd87Xf+Lu88eFfAuLG0+gkfGUnJ\ns2aSL/A58u7lBU8vL7FEGU5EPK0HNBEHqmHezJmf3AJriculdJ3qgTxfEOcremcFy0mBXb/n4uKK\nNx5ecDaruXu+4sZqybyuqXRiFjqRZ9W60EEUyljpqOSMMrrIeIqIvS4C6qkMieoqo4JkLCElQpbM\nyA8enwQIt0ajs2DSxhgBma2ZrGJ006DqTNSeNuxpUyaZupR4GouFHAowXdPHKJIosUxU50ClmzL8\nKKWhtMflfhCd7UEKpdJ9EwD5gM+AKq15iqwEh5+WUiwRC658IH1qjkKQ4PZooMIKfyh6Hrz7AOWE\nvzSr55ydnnN+fpPF/CHWVgX/kixrYpQroEixPt8KtSBctZJpWsVkpWOVwiSwSou43NBjjdxJs/mM\nykhmvN1uJ1IulC5jkdbt/f4j3cMfr6DjHHVd0/f9EZ5gJicFrZR8QK6i3e0n07uqqmTaO2VCSCJB\nmsSEz5qDvzZImTSYjm7v0MZSWSHjiTzmjMEn9m2Lokx9G0sYtW+0OiIQ/oSOqYk27qTFkkVBH9OE\nKYrijSabGlUvyMGw95m0a6mbBZ2SuTSZQ6vIAXSK1JUEYa00M1ujfYcfOt692HK5bjlZNJzOKm5W\n3SQbOkqIir50wWPUmAUpsjroFystnKHKaKraTEEnFukPHwRzSEXYXksthlYaO56blZu+7XcMOWLn\nFjdz9EnUCklBZuFyKtPixWcqeKwy1NqhVGYIgS6NHJeCeZBFzH8qWSbkrFyAMg5jCkgcNSaP2Yxk\nntIQk2BkjEGVCf10VGG9j8mVKQbAAYMIuPVBRl0qLfpOXUis2542ZboMHnPUmpcMUxcCp7iVxmeq\nOq2EiHnglanSOpdxF+cqYcSnTFM3nJ2d0e536JQ4Wcxo6lpsk5BgNasbdtuOMHhOzxbs4ydwDEKn\nxMxZ0tCXUQNRsy8NB5QCZzR1ZQmDtFuHYWC73ZFypp5VArQpMcJz1jL0Lfv9Hlu6KkopGlcxK8pz\noeSvtlhvhNBTa2isJflIGCIKBwhR6vly/hCCDpT0P80xZskKUHHMew7HMP6QAs5Gje4VIcqycg76\ncIXVAsKfnp5ytpIZp5F7ZIxB1wsBl+MKHzxtGOiU5mlM5F3Gb2r6/Y7bJyeczyrunixZxcSMyExn\ndOyZV6BUEHDbKkIW213tDB5HypVkLllhMdSmknECJBvqy8DuMAzEwUPKGJ9RPog9chBs7gSY9R0+\ndqSsiMaC07KxxMCQ2uljj1kz5CIPooHU8mMfRx95RuGfu+pTYEmROJTRFVmq73sqBSLviFAWIYKK\nkAf5aVDE0OPcGW+9/gav3b/P5fqatt2hkXtTFW8vDeQwOn2MVkASj5KCjkRtYHAKH3uRxLWaEAZ8\n7BjCQNKJZBKX6yeE0HEyX3BaXGpra+n3ezZXV5iq4unFUx4+fsIQE33yDOETCCSnnMoQYCXaxSWV\njznR+0FYsDGx3+/pup7tdkvbtiily87XQM6S4VgjMqI60/c9Xd9jkqGua1xTM1suC2gmbWDnHCkb\ntNuxbXts5USeouwaP6lu1YcdH/iS5XS0MiyWJ6RoUF4za1acnd/AzCyz5QJXiRzqfLEoE/V56gKO\nXlDeDzjr8IOn9eIptt1uUFra9E/f/R776wtmGj7/6Rf5zN1bnK9mLKyiRVHXjtSHMp6hUcbg9xEX\nBurkSSX4S2TXhdkqnGnrNI2tCJUhxgpGAfcgeFAIGZRhPltQ2WtMTqJ8N/pQjbyhXDalUgaOuMuh\nv/STPz4KHULro0bUUSDLJft6+vSCt99+h8H3AnhrRUwZYpYJleJqobVGJRlBOQwpFzA5CrnWuRqt\nLTn3EzfLlHsgj/SQJI2AMaufz2Zopbher0sTIOMqh+8GNpstu/31R/osPlZBZ+TfyMKQGSe0ljmd\nGBkGz/V6LSJW8TDlXVWVKPQbcQQQQzi5aLWZMV8GkRYtc1tX1xuMfcLp6Sl101DXDXXT4IPCugHV\nDzKQOGnEPNse/SCK3z+q40fdviIrQZnTkkaz1o6qnlFVNUMcxGhNwYMHT0DB+Y0bxSW1o+taxpRd\nGMuKOPgjz3ZD8Jnz8ztwchN19yWGdoc+XfFoULzzzgU6Ddw8PaWpDIumoip2zSoKA9iqiPetBI6M\naEV3PdaKY2RWCe2kJLNaUSlVmNMKdOEO1zNyUsznS6I2DNGTMGjjxCQw+mPpwvLhJYgFhP8IgeAn\nfWRKsEkHCEZZV6xvJJDknBkGwaMuL6/+v/bOLMayLDvL357OcKcYsqqyurrb7ba7bQsJbGRjZOOJ\nQULCwgghGQGSxRNChgd4MeLJiEcQkhFgxAt+ASMxiwebxiAkRmNhy5aN3ca0u13trqFziIg7nGlP\nPKx9b0RmZ1Vlu7syI0t3STcz7z03Mvbe55x11l7rX/9fCO0zqXRCXEdRhcu4iA5ez12uSoVmHD1q\nvaNpSgtIEsHBrG3JSwIEnLU0dSN5rXFksJrVYn7oXySL1ts0jvR9zzh5umHzVHN+oZzOMIxsu45p\nHBmnCWM0TeUON4Ozjr4fGMcR4zSzucNYS101tPMW5wwxBvquI3jPOHkUmRCl485Y2ZNfrq9Yb7fM\n53OWJyecnJwym80JIbPrR7phZIpBdvtaCbfBMw113qUer0AY4zQxwnbTk5EL5WqzY9t5moVlGAeh\nrsiZuq4PSNW2bRnHGdvtFnJmuVgwny+uWwVipK4bdDIYowTVSmKzXdNlj2ob7OKMsdvxW7seu/Mk\nv2Pe1FR6R60NlXOctJpFrTBK0QSF0xUkhQ3C1KcAFSTiMXoPitSYVBj9MuzqGqcMJ2d3aNzrKAYU\nMkbZAt1M93J4PKQDluU2WHEegFIS8eUQS0lLHrDWWCY/8fDhBb/26V9HGUU3jNdxWqZUMgGUoJgP\nTkiTsmz7tbbEmBlHj1YeYzQxlvxbFnhJDEJGNp8vOFmdEf1E13dolQjhBFtAodY6Rh/Z7bqCjNZY\nWxOfgj3wxXI640jXdQduFmv39J5QVw2L+ZLVSiIeY0Q8b69hpLRCaRhHwfsQE6P3eC/0oSmKOsSs\nbRmnicv1FVfbHc16w8nVhsVqidKOWABsPvhSMi3Xx80SKO93tLP/hY87HwVZbk+waFOzXN3h/OxV\ntK2ZpkxOimpmOD07EbyKFU7nEANGW2btjNVyxenJKV0n+Y7ZbIHR0hiqtRY+aV1LH1IjyUyb4P7D\nB8TaMK9a1GqBZ80wDjSzFVeTx+TM2O3o1l8E41muamqjcRpO5zMRmrOKeW2YOUulwWaFVQmXweWE\nQ+MUGDS9ToxagZXeLPXIebjOn6kbK7W/Hfdx6bPwPe8dUamCtL9uJjbWFkcgCfD91KZpEhqJLMKP\nUgrXkIVwbp/oljynKfLbWvi5lTmokzhXHWguIBOzKM8GHwBFXTdUVcVu6JnGkeBswSmVERfM2wGj\nRmb6IFJbpFxkbAsnsi1Vlow4lbquRUUzRJTS1HWDMVY4doeByU8Mg3DuZhCZEldR5+YAMJzN5zA4\nTNfjQ8KnyHbsyZ2hrlqR69CasFc/yKW6sQ9z3/eQvWTMD57upvMpt5QyoByzxYpXX/0wp2d32e0G\npkl6dWbzmdCCZBjHEecq5vMFyhj6vsN7w3w+BzRd13N5JXv1+XxO27QYV5GiIkTQzpEVzFenjFFK\n5evOM2tamsUd1CyxubrEVY3I6eiaWbtiGHp6YDuMbC8vsKxRYYQwYFRg5jRNZaicZlZZZk3DommY\nVw2zqqIyDo8hKMVuGK9xS3lfri5bjPzIypW3si+5HcGOEu3yggiHAr8oLH6KzNnqlI9/7GMslyvO\nzs+5d/8ev/Qrv8zkfaleilvdc07LtDXXGe89nSuHzn1Q5BhRWd0oyOSD04shMgwDfT8QfMkPlZ8n\nSx5UGUfTNOzGCe8lTzT5907Mv1BOR2khOqfgQPZRjjVOSqkF/Jdylo5tFG0r3n0YR8bJE1KW8q0W\ndcj91iIVMvYxJvpxJClwbSu/r+g+a2tEyC3v9Z/jY8/KZ3QZH7Agj1fD9hlS6XGatwuWyxNCDPT9\ngFK54Jrg4mpdclwKayd2uw5XVbiqJiXYbHbSkTxfMgy9SMlgGGMWAm+dyCqRtKy3NpY7d16h23WM\n3Zr1sGW5XFDVNe18RUoBbSXx7ozGtiviEOjjlpAGun4jLQVkptChlPR6KVV0layWCmOhR9VKsVSg\nrWJKcH/bybndb6Ke4Pwf/eT9x1Q9nWXBRlEwQsZIi03OLGYLXrt7l2/5Pd/M13/d1wuerHL8wi/+\n0iHCEJMHkSoPPoFUyNZZ76krUIeEsVJI71hORWbYkoPDqImk8yECmqapqJbEQ2+edY6qbth2O5pa\nkOzNMJKzIjt4mkbzF8rp7IFo3nt0jCRjUKqmaRx13RQlzURGgIHBR7QxuKoqAnFJJGirgkeIkSkE\nfIiHloqUR7q+F2pPo5l8IMREVdeCvC3cvyFGaYN4Bz/z/m6xnuRwbpoQf83nC5yrefjgimkcWSxP\nsM6RNEz9CITDBdY0NXWdmCnBwsQkTsVYTTtbMkwjU0hkI9U/bSnqBpbsA34KLGZLSGC0ZewH1peX\nnN05Y7E6Yb29ZEwB3VQM04gfI7EP9L1nyoqhaL1XVcu43aKy8PaIShzgH0H2g4JlEF6xwJ7VT1Hg\nxDfkAq+nAAAgAElEQVSWRvH4JkpW7qv1gPjKYRA3t3ukyHLW8JHXXuMbPvFJPv6xr+XO6Zngv7Qi\n+onN1QV+7FGU9gwlP5vLdkcrRU4KciIcuKCQf5cHz55cTqFRykDgEZoWpYVD2TqHT5FQ6G7ruma1\nWpFyxjUN1eRpWhE3jCbTddv3nO8L5XRiiIVWMWHKQroiELdnMtPWCt9tSgzDxGa7pWlbMoX/JIsD\n0cZIZDNOZCUd6eMwgFIiu1v0sE2B8YdCvWnyNa9Mio8Dx77Uvvop5gMb7o0/r4+BbC1Wy1NmswXb\nzZamaaialvl8ibGGZDR1OyMFYYDzRdK3qhuRFtEGU0nnd1ZgqprWVXR9Tz9FTuYLkonELCRTShkU\nlqgMbjZDWYd1FRjZhmYNs8WSq81lobIwpCozjIkOj55VtG7B2F+yGzcUpM717Mp9/Ui6RsEIhQdH\nPhLlixtAphtfvwWFqiea0ZrGaFbLJefn53z4wx/m/M4ZZycnBR8zwxCLkGFRFkkB6brbRzuFZKOQ\n2SkjW7YYHk2YG22ZpgFtTsgpS6UwQSrqngeEdakU7lVLnTE4qw80p9oayQdWNTFeHnoOU34fZIWf\nt01hYvCTlHKdJN58CHSlH6sKoqgYQmSaCktginTDgNZG+kgKIbXWujTrgVFWFrCUIC25dE7nUkIu\nOtY+UNUN1tVFL2hf4yxX+DO4sPe79/2/95uEvQtSKJq65fzsJabRo7QiJC+I6hRp2pZ6sWKxWFJV\nFeM40vcDdQGwDaNH6VigArVU57Qk5aO2TCGQtEW5mhSlK0lZBVoQ0EqJ8J2ua9q6ou+2ULe0zhCU\ntDb4MOLqSDMPVDPLtLtid7Vj9AM5jDijDlzL77gLytcZi73rfzJo4ZZ6GyQZa6zle77zO7h792XO\nzs54+eWXUECYRvw0MnUbqqrGatkKKxTOSNXvADct/WLaSskcjTwsjeQY9w4mxkClDfN5y263I8ai\noBpT0Y5zxDSSYmacRvpxLNLXiRhhvd1y78EDtDGcn5+z3nXC5DAMghd6OkDyi+V09vtKiR7kwoox\nHtodai+9Vynng0PJKCmJ31AnGIbhAOzTWpoHrXLQFI3s8sTs+57dbscwDIJenjzODcyWywP0/4kM\nVe+z3fyNN3t49i5JKVEiffDF+2hTl16ehLZaYADnkfM7L+HqGmsds5now0/eS8k0K1AG42ohqAKy\nsdhmRgoieNe2S1GjiBL2m8oK4XvO5KqRodSi6qDaGbauWJkKo8FPIzEmxn4gew/TSK/MgTJV5Ufp\n0b7UbZRz/6RoT73DduedTtNz9En7Zthv+sZP8rGPfQ2r5QJjLZurCzZhlK3/OEIMIgVsHftixeMw\nAKUF3KcUwnip9AGlH5McCyFgK0ddO/pe1EXRFmM1q3ZFzpnLyytxIkFyOjlFcqlsTn7iar3m5OSE\n+XLJ5WaLtoZpmphiZF40xN7LXiinY5wVxc4sWXQB5103W4YQ0SYe1AuNNTgt24WUAtMYC++L9E1U\n0qLMWBgHU4mAchaZ4G63oy8NprWzIsUaIynE0p1rb4S4T756359r+rFNW3m7/2ScPPcfXNB3Hl0F\nVqfnZB1oZoK2HqaJXT+AMiznc5rWsV5vRKVRKaxx2Kop4ELZ3/uUMXUtaNWYiMmitAMkmawr2U5l\nVGElzJiYsECzXNI4R6omsp9Q1EyTbOm0mXN65pi5ikprLh98gam/IuOAImF7mOTjL//eibNcflYd\n3tw6s9owb2c0jfQ2yXWoMAbGHOi7Ea0NVd2gjC20tulLHLIpyxJzJqu9WMH+aC4Qk8zoJyF/JxNT\nEFoT69gr56rCkpn2lDHWSPJMK6Ywsd6sqdrmgPFSWlow3AdRgkYbjXVOGgZdJZ3ARXM7lvK1LxIi\nU5E/tU60mOOehlNBzFHkTayRXp3xOlMvUPFECCMpBLlZjKgT1M6RKSJye4WD/P6jch61699186K7\nvjENKMtuN4CpWS7PWJ6cYRuLq+Q1TYppmqirRpoxEb2ulEV+OWZNFRIqRLLRGGcIORcpmNLP5DNN\n21I5ycBo59BWH6p8WimIEVOP6KolKY2Pkb4LheHQwfyM5XxFpQJ+u2SMnqv1JbHf3XCr8ca8y/z2\nPUwqProKT/Qp+4rejVV79sHpE22vA6YKk+IehxNCOHBEW2uZvLQkhBiEVjVEYromcdtvu+RhrDFV\nVT7lcM2HEISsLUPfd9IWUQozzlVM48jkRbJJoCB7fy3MkIJJU5LO6Hra+VwasNuG07NT4VN+giDB\nk+yFcjree3zw1FVN0zY0dU0KAsWOsbQ+pKmA/qS0EaIsVooBkihKTt5jjNBaaGMPrH8CuTdleS21\nq2ibmuhFcK9tWqmOFMrTvG8bVjyGnXk/r+s9YVRp7HvkmEYZRzVbMPSwOHuZO6+8xmK1pJlV2Mqg\nnWbqE5v1lhAj4+TJTuGqhrbNhO1WqnlRkuYpQ4rCAxyzRDQpSlVEG4Wra6EWtcJ1vL/ItdKy9jEz\n9CMezTR6+ilRuRrdNMxmLY7IsH6IH3eMGcYgdJn5xgWsH5v9tTvaO5THySY4rM2jW8/9gdsT8cSU\n8DHiUyIPI+vtll3X4ZRE8E3TiDJnzihtmKIg6EN+TOWz9CEabahqUW3ojSGGUKIWBJejzUG5VWmN\nNZasYPKBvuvxXrbEe7pYYw1G5aJuuyeCF6oPZQ2urrnz8ktMIbC++gC2QfgYCF74UUA0orK+LlvH\nKDpPuYjr6ULoNRZ9bJUlC5BSLAoKPVVVHZC2dVVRuwqlhCmfnAl+IpQybOWcqIMaS11VQvm47yBO\n1xf++2n7W0vAX+kGLlDyMLZuufPyq/RD5uyl11ienrNcrQg50MxrlIHGCXq12/WM40jlqhK+17hJ\n+IWFM7oW1csMunKEBO18TlIalTSZgFGOqrKYAgfeU8HmnAnjROx6tt2Acw3GOtxsxnyxRNctWE3o\nNyVKzaKTFSaKVCDiVq6J0sXS9b8z1+vPXovq0c3n/kj+ksfA7XE8Xd+z23XkFLm6WjP2HU1lsUpI\n6V1FiUyEJyqr/Y0vW55DdS9lUhTHE3xAFXd9oLJIGW0kUoxFuFHra27vmNJBeSTnfICbOKtJXlRh\nsxK5oIT0XsluwuFDKPfbe9sL5XTqujlgbvq+f0zYLZWydkIVb++qhpiz8LUoIRQ3xuLKIu0BUDGV\nJtAMUUecE0BhihE/JlncLBn8+cLi6mswopzQZ7kK+xvo+maTjxUYi2taXvvIRwnREalYrk6pZi3Z\n9ySl0UocStvMGIeJaV8ud7bgZKoD8FH7AE5aDKq6YYyBqmmwVUUsjnyaOpypyRmiFy6cGAROEGKC\ncSQpjW3E2QSgaltq7fC7jrQbqH0k9D2x64RNPnkUgUw6CNBdb4tuLHY2N1bl2uHcXJknRzu3x+Hs\n85HjNBG8ZxhFPytmUCThacsUzExN1AWgqgQku0cjqyLB4yfBTI3DKJCOvSxPpogSCGIflHBLhRFj\nLG07I4TIOE2PcJBba7FGYZwQevlCSZrTdbbNey8FnPgBJPFatHNm7Yw4BcIY6CZBcqYYSFmIm8gJ\nrR1WO6wWKV2rNDhH21TSLe49wzgK0DCEwsuSxBlFQaFVlWgb+RDphpEUI1p7kWK0lhBDwSXcUPl8\nR1COuvH3V3rB37iVDneXgmxR1NT1itOzu2TTcrHpaE9PiQps2+BjxDqLzwbvM+7Msl1v0BHOljOU\nS6LvNI0MPhL1RG0ts6rCaqERVT7Q1hXJwM5PjENHv11jUKgkXemx5ARQmqZtmWKinbcsThZERBU0\nhijb1mlEhY7u6m22D9+A2APxAMLcxymP7I5UWcv0qFt5NL+1PyI4ltvocKCUzbW0JGhg1jQo1R4A\nfMFHkg+YqsHUNUZNGO0wKHQuXNlZIp69Smw/DsIksKdPlUykQCySx9gKq61UnUZPSJ66drha8nKq\nNDCH4JkmRU6Wuqiw+iAd6EoZYXbUUJ2cSOVTfQBzOrV1NLYmJgkzQxQOXFLEqERdKZS2KK3QKpDD\ngM6Wxjmyc7QzwZ5IV6xAzrddJ0yASjFbzA5cMtqK9G7WFuNqtJVuZ1F/KHK5JdJ6JJHwrvbVyPQU\nZYLSbHrt7SyaBmdWWLuEuqHBYucNMWWyrlDKEJUr87DYNpGjIjUNarHCoQh2RzWOqFK5aKqatpLm\nwLaq2FxekeoaTCZOI34Y6bpBSL8TNLMWZytRGNDidGLfgdEYm3HacHm5Yb0LEBTGJELa0XX36Hb3\nII/IKpcoJmcUEZ2vMcQRyrYq3ViVd3Mn7370Wdt+uwMl0ZsSKQTqyjFvV1RNLSKDyjCMnt22F8Cm\nq2DKB6ogI/8BewHIREZZTSRKy0nIB2pSrSHHgMpSiY0knNOkpEhpYjck+mksjirvsbHiqGIihFzS\nCY6mmaO1gxRpa8diseC3Pv86qn66+b9QTscWMm2VBTVpksZqyNlhbKauhbg7ZfAhESJYWzFzzQG3\nME2TwPgLiGEcBtbrNU3THKoFe1PoQxMpgFZZysl2L81avnvILezfPG7vc4Ur76MeRfATfbfjdL6k\nrUWR3Ba1hrqu8RFaa8jOMeWJRdsyqxvmdSOcNs5i8g0uXyXbpuADQ9fR9x1sd+R9PcMYVssVPgSu\ntluGEMA5bOWoqoq6aXGNXI1TP6JQjNuObuOx1rG0Bh8Tu81WKjn7/EMG9nmrGxHi9ereHifylVhK\nCR+Bgqa3zjCrRAYbwCQNtcaHSKXBkIhB9LkOrlRJVU9rU0QMLSGUg4V7WSWF05paO6Z+KoBCRaUs\nBIlqYoiSWI6lRwstGmMIctpZhzUaV5X7JAu53TTJToD4AdQyRyshZHeqJM4iWmdS9GQ8SotEiHMW\nbTImKupmTtsuiDGxWV+y3W7IRbMnTJ6rqysuLi64+8orh/11LJyxOSeMEVzPNE1SDSMiZ1TLHnmf\n07kOO95ny+XphsBP9hidLOJvQ9fx9ltvsjg5pakt3XZNvVjSVDU+TLSupbGGZIy4wuDBGAiTkKpP\nE1PXEX0oeubyf6eUpHLYtIfUStXU5KzRSlM3Lcui0jmGQB887cmKej7DGUe32XJ1cUX0Hg3Mm4aU\nIUwT282GruskSs3xRtL3OkOzX9nb0qb51TRtK9p2Tl1ZVJzwQ8dUzgcZWm1oaoNrLNtdIkRfRIh0\nIYMX56BKzkajyXuibCTjYykwhqBIxNLobMk6S5k+RXIU4K1z1eGBKtgdgzEarRXO1NRVjTEKP+1B\ntAMARuknzu9xe6GcjoieFR6PrITFgUzKgWkMjFNPzomqqbGuxphaQIRGk7wn+IkcI845jFZ03Vg0\nshSnJyeFUzkIZ4nWNK4ilxWaJk8MqfD3KmK4gR8RQATPKm/w+C154AUnUTnLw3v3aWav8/JrH6Kf\nZOs4dzUhQOUyahrRYcLmSBx6puDpncEojR96uvW6JM/zATAZo+RZSILXaZoWoww+Rfpdj5u1aGOY\nLRboKeCjZ7aYU1UNwQvP8Xq9xvcj81mLbRtySgx9z+XDS7brLXtwyL7qkveTuxElHj76quTHno/d\n7IA3xlDPl8yXJzidGdY9fbch9jushqYWOWRbzyW5HiZkkTR7Un7QZGVQRih0jXaoPLHXqdBIZVL6\nBcUJmcpicWgN1mlS8gxesGrGONHBOuDfMkOWqNk0LZl0rRhhtVDaOrvnqn9Pe6GczuX6ivsPHxwo\nNDVgjJIF63eM00AmUYVA00LbWkIK+N2GoesgRU6WS+qmpusHop+orcOenXFycoLTjq3vGIeBpm1p\n2hlVUaAwxooEcUzELGC6PSctcOMeeLcb4St/Tu9rFYpC1gSQpUHPGsf52TmuWbFbb6TPatXih4Hu\n6gptG/qQMFHklMM0kaaR7W5LGHqsdZIdMpqcjDTBjuOBsL6qKnRGtKGsxccIWvinU4xMU2S5POHl\ns3N2Q0/ykW7asdtuGbuerBT1rCUhjINaaYmughelSaWxphJqkgJ9UGVrWmbMtavdb71eXNtL/C5P\nTmnmc9KwY+h7+suHTJuHVAqGWuSuXbtkwnHxcF2wN7ronBfnYwy6aaicwWlN33WHNctK086XhBBp\nmlbkmUoFyxSVFK01zlUM/Sh6X3vZ7vJ3KoyCMQb8NDFqzTD0WKsZxl5wRE+phPJCOZ233v4iKmec\ndVTO4YyQPOWc2HVbIFM3pUvayh55Cp71Zsfm4pKZMbx89y7zWUsuVJzGWpQ2zGdznKupuw4/msKy\nZpnNZtR1TVVVdLuu6CUpFvMlTd1IFJCeHf2lbNNvZDb2FXMUtWtomxl3XrlLSNBtO2arOdY6+m2H\nqUSW15DJMTIOAzrD0PVsNxuscaxWS2bzhYTYJW8VSoJAME5C5rsZB0DRti113VJXNcuqYlHPWM1P\n0Elz/617gpwtTAC6qmibhpQim6uBPE5M6wu26zUqJdErz9dkUspYdBaaVJUzmbhn8fxA2B6UOk4j\nm82a0G3YbtZMu444jsScGPpOJJzNhj4bHu4mphBwdQVJHE+MEV0J2f6scui4P1/X2/D76yuhK9UG\nncGVqhkKQs4MwwRZsG/7lELwXkQorcUXLuQQPJAPXMl70YIYI858ANsgPv+FN7j78ksFPp5IWgBx\nSmkUmqwyaItzNe1sgbGO3a7j4vIBVw8uGJ2jnbdUlTit8/NzVkUw3tmK0U8HKkdSkkZP5w4nwhaN\nb7tPMBdY+bMtx974XTdq9a5qeOmVDwHSArE8P2czDOy2PfUcctZMwygibXsdd22kupRFyyvGxOgj\nVUxUVS0sffMl3gdJIAPdMGKSIpT82qKuOVmteOs3fp5v/o7vZ9j1xG4gdwPb+xdko6nnLcpaEokh\nR7IBUzviOLFdb9htt1KtQZOLVpOcUzm/EtEUoBuFqEupF3V3dbBctq/rqwvWqxYXvVSwTs9wJ3OM\ngmkauX9xyf2HV6RqxnYI+JRZnpzi2gW7buDi8iHVrOHOy3c4nTXkYWRYX5DiyBQ8WQWCNhgDyWja\nZiYChk2F1oraGoYHDxh247UiSAgieqh1EeiThwBIO5KQwQV8mA7zaOrmqeb9Qjmde/cvePXVVwmT\nJ6WANYambWQR6lq4jsnYqqKZScer3wjZlnHCOjd0PVfmkqaegTGM3gOBSXnW202hxZC97RSkamOt\nFaqFpDBa8DshJLwPh+ZRQYY+ixtBc01FmUsm2VHVM1559cMMo+b+wytwLco6truey92Oxck5wSdQ\nHk3CakvVNtSupprNaYae7bZjmjy7yZOsqGnaklRctTNSSlTjBM5gzxY0rma1WnJndc4v/PTP8S3f\n/v08+OI9APpxJAwjunLSIFs5jHVElUhAUzt023ClhQdYKlYimKiMJSlpYZHtlX50I7Vvn37BbX+z\nLtqKs9WCRoMJM3T0qOiJIXCxvmL95gPubXrqVcu6H9kNI3XTsDpZkWPiIieq2vLKnVM+fHaO8RO6\nW/P57LnYRcaQwSq5YqzBtQ05BbCGZt5yfudUWiFGofMl75HLUu3104QrEt7G6JJYtmgtlUZrbWmd\n+EAikms++tGPcnlxwdXlBVpBVVeHnEOIkanvmUYPSN5FF+7kWhsWZq92MLFeb0EZQsrieLLCx0iM\nUXqyyl7WB0ks55xxpkaRpM9kvcFPAa1t2XKU0q7SqKckM/qd280IAJmHslysd2i9ZAyZt774gGpe\no53B1RWbzY6cNU0zp5kvAPAp0zYV2lrcbEGz9AzDyHq3ZT2OnDYtdjaXEFvLVmu72WBrx+xsfohO\nYozEEHjzrTfZbLd0XUfdNMwWC6bSxWzbRiJTq9DOUAdN5Wp2qwVvWn2gqdBKk5Qq3Nc3WiCyKg2O\nWdZaP12l5DbbAR4Qek6WM9LQk4JG6YqUFFf9wGd/+z6/+cZDonUYU3Oxe8h2mIg5c3FxwXazRTmD\nU3De1NydtZzPzlmmwLS+gBx50E1EJfpwRoOPk9CYZk0/drz+5obYTQfpmputEPv7oW4biXi0JvjA\nrtsBSfTfNfT9QD+8txIEvGBOR0rXHqMll0Ap5U7TRN/3bLZbhmFEG4v3gdrawn5X9rc5C7ZEQYiR\nvt/Rjx4fJFoxVvIXdV0zn89ZLZbM53O894yjUGx2u5H1dsfFxSXDDXljKaXdTHQ+HvLcPAY3twxf\nnmnAcC31qSEbwhB48HBNJNC0K7J2KCNOR1kDygiZesqMMWKdo21bAsIxXVWOarnE+YCezQgxMV+u\nOD07w1mHM46h7zlrWqrasVo2bLc7uq7njXsPGMaRL7z9lnSrO8PipTNQChc8p3fOOT0/o2oqtDUo\nq2mzZXxwwduf+1UR0Eu+xDPSNBoLToTMwflIYrSs2fst3/wMLYWRy4f3CcNA8gGVFMFHHl5tuBwT\nuVlRLea05y+xHAN84U26yyt0TmgiaZwwQ88KxcdfeolZjNA0fPLuq7Rtw/aNLzKlQMahUsJkaKuK\nqq5ISBO0qyztrGYYqqIYWiprdS2vpsYUCgsfIv04FIE/SYZnhbS9PIW9UE4nhMDbb72FnwYh+i5E\nWikl/BQI/hpjIyREI8M40A+StMxZ9riuquUpcyNEjyky9aISUVUVag9EVBQ4+MjQBS4vN9y/uOTy\n4go/SUQFoJRsdd65D+urBRAsag+HtxZdtcxPX+buhz+KMSuUbUgo3Kyiaqw06BX6Sm0dIQVcMwMr\nzgatqeYzXNNSp0x7csJ2u0OVXi5nLTlm1l1HCpF04XnzM1fsug6MZbPbSjLdaF7+yIdAa+5+6FWM\ntYzDILmf+YxZ22C0JoWEjon12LG+umTqe/byJpKslsZRbazQj+ZrGP+h++EDY5noRy4u7pPHKOVs\nDMMUudz2jFFjZ0uCMkxJ89Krr/HRyys+03+acbfBIHrtbvRU48iH6oZqmmhOT2i+7uuYv/0Wn37z\nnqg1GIdJ0GjLsp1TNYZu3DIGj9GVSDDNW0IQCg2lJX3RNm0BwwplXEpCG2y1Jmfp0ZLd1Qdre9WA\niO39+v/7DH4UZQNrDE0j5ewUhWck5YwyW9QX3iSmwL2H91hv1mQfMV6ATvPFkrqZCXI5BqFc6Ae2\nuy22ckwxMgTP1eUVkBmGHh88flCsrzZcrjdcXF4QQjhI4OTCv7yvGjzZnhT9fLmWJSFIId9OCYJH\nEamrzHzu6KYgCcQwMg2gfAExoojegsrshktc3aCMtCpc9Q8x1hTa1sT64oLgA7m7Q9vO8H7i8vKS\nbrNl3HVM9+4Rc2JxekrSCk1k3sorq8T68reZNS3Be9b3tzzIsJzNhZ/IB7rdhi987nO89fqnidMa\npaL0z4VcOoVK80IO7Mm8lIQ9X8Ha3S7b01F88f5DpililWxXtbaMU+Tewyt2PjApzXYcebjd8tLL\nd5gvZhKV7K7ISRpG/Djw9ptv8PnPv06TMsmPQl8BBO8LX/JE9J4cIjpF4pQYdj3j0DMxopT0UikF\nPnpBP8fAMA4Yr6lriYKCF0ejtCIEL9xSwLo7yM+8a0ZZ3QZp1fcypdSfBf7p8x7H0Y52tKeyP5dz\n/sl3OviiOJ07wB8FPgcMz3c0Rzva0d7BGuBrgU/lnB+805deCKdztKMd7YNjL37d8WhHO9oLZUen\nc7SjHe2Z2tHpHO1oR3umdnQ6Rzva0Z6pvRBORyn1l5RSn1VK9Uqpn1VK/b7nPaanMaXUjyql0mOv\nX33sO39TKfWGUqpTSv2MUuoTz2u8N00p9d1KqX+nlPpCGfcPPOE77zp2pVStlPoHSqn7SqmNUupf\nKqVeeXazeGQs7zofpdRPPOFc/dRj37kV81FK/XWl1M8ppdZKqbeVUv9GKfUNT/jerTw/t97pKKX+\nNPB3gB8Ffi/wS8CnlFIvPdeBPb39CnAXeLW8vmt/QCn114C/DPwF4NuBHTK36jmM83GbA78I/DBP\nQOI95dh/DPh+4E8B3wO8Bvyr93fY72jvOp9iP82j5+rPPHb8tsznu4G/B/x+4I8gKuL/QSnV7r9w\nq8/PHhV5W1/AzwJ/98Z7Bfw28CPPe2xPMfYfBX7hXY6/AfzVG+9XQA/84PMe+2PjTMAPfDljL+9H\n4E/e+M43lv/r22/hfH4C+Nfv8jO3eT4vlXF814twfm51pKOUcsC3Av9p/1mW1fmPwHc8r3F9mfbJ\nEtJ/Rin1T5RSHwVQSn0ceZrenNsa+F/c8rk95di/DWmzufmdXwde5/bO7/vKduXTSqkfV0qd3zj2\nrdze+Zwi0dtDuP3n51Y7HcSDG+Dtxz5/G1nU224/C/x5BE39F4GPA/9FKTVHxp95Mef2NGO/C0zl\nYn+n79wm+2ngh4A/BPwI8L3ATyl16Ap+lVs4nzK+HwP+W855ny+81efnRWn4fCEt5/ypG29/RSn1\nc8BvAT8IfPr5jOpoT7Kc8z+/8fb/KKV+GfgM8H3Af34ug3o6+3HgdwF/4HkP5Gnttkc69xGKvLuP\nfX4XeOvZD+crs5zzFfB/gU8g41e8mHN7mrG/BVRKqdW7fOfWWs75s8j1t6/43Lr5KKX+PvDHgO/L\nOb9549CtPj+32unknD3w88Af3n9Wwsk/DPyP5zWu36kppRbIRfxGuajf4tG5rZCKxK2e21OO/eeB\n8Nh3vhH4GuB/PrPB/g5NKfUR4A6wv5lv1XyKw/kTwB/MOb9+89itPz/PM+v+lJn5HwQ6ZL/9TcA/\nAh4ALz/vsT3F2P82Uor8GPCdwM8ge+Y75fiPlLn8ceB3A/8W+A2gugVjnwPfDHwLUtH4K+X9R592\n7Ejo/1lki/KtwH8H/uttm0859reQm/JjyI34v4FfA9xtm08ZxwVSOr9749Xc+M6tPT/P9cL+Mhb5\nhxFaix7xwt/2vMf0lOP+Z0h5v0eqAj8JfPyx7/wNpLzZAZ8CPvG8x13G9b3l5oyPvf7x044dqBE8\nyX1gA/wL4JXbNh+EkuHfI9HBAPwm8A957MF2W+bzDvOIwA99OdfW85rPkdriaEc72jO1W53TOTVx\n844AAABsSURBVNrRjvbBs6PTOdrRjvZM7eh0jna0oz1TOzqdox3taM/Ujk7naEc72jO1o9M52tGO\n9kzt6HSOdrSjPVM7Op2jHe1oz9SOTudoRzvaM7Wj0zna0Y72TO3odI52tKM9Uzs6naMd7WjP1P4/\nG8Jgk3QoJZ8AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x107fa3b00>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fname = 'http://crl.berkeley.edu/files/2014/04/Holly-226x300.jpg'\n", "imageFromWeb = data.imread(fname, as_grey=False, plugin=None, flatten=None)\n", "plt.imshow(imageFromWeb)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Querying image: matrix, sub-matrices, ROI" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-----------------------------------------------------------------------\n", "Image shape is (300, 226, 3) and type is <class 'numpy.ndarray'>\n", "Min = 0 ,Mean = 97.459906588 ,Max = 255\n", "dtype = uint8\n", "-----------------------------------------------------------------------\n" ] } ], "source": [ "print('-----------------------------------------------------------------------')\n", "print('Image shape is',imageFromWeb.shape, 'and type is',type(imageFromWeb))\n", "print('Min =',imageFromWeb.min(),\",Mean =\",imageFromWeb.mean(),',Max = ',imageFromWeb.max())\n", "print('dtype = ',imageFromWeb.dtype)\n", "print('-----------------------------------------------------------------------') " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x10a591438>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAFyCAYAAAD1Wm+SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXvMdd12F/Qbc+339HynDdaUeE65nAKhlha1wmkpxSD0\nggUMtULkqrUgEtAqEKIIolQKGhvQClIthhQakNiQUgjIRSklXALKzYIkyEmotNoebiKhF8671xz+\nMW6/Mdfa+3ne73xfz/P6PfPJftbaa6/LvIzxG78x5mWJquI5Pafn9M5N46Odgef0nJ7TRzc9g8Bz\nek7v8PQMAs/pOb3D0zMIPKfn9A5PzyDwnJ7TOzw9g8Bzek7v8PQMAs/pOb3D0zMIPKfn9A5PzyDw\nnJ7TOzw9g8BzetNJRL5JRL6Rvn+SiEwR+eKPZr6e06ulZxB4ByQR+dddOX/kjd+/SUS++U3c+nnM\n+f8P0jMIvHPSPYV9VuZ3cHoGgef0nN7h6RkEntMhicgmIv+RiHxQRL5HRP6GiPw6EXnXK97nS9wN\n+fST336liFxF5BPfupw/pzeTnkHgnZX+MRH5hOXzfQG8WM77rQD+EwB/DsAvAfBNAH4FgN/1is/7\n3QC+G8DPOfntZwP4RlX99le853N6i9Plo52B5/S9lgTAH73z+18BALfaXwzgt6jqL/Tf/lsR+dsA\nfpmI/DhV/eOPeaCq/kMR+QYAPwvAv58ZEfkRAD4NwH/+6sV4Tm91emYC75ykAH4RgM8/+XDPwE/2\nc//L5frfAAOSf/EVn/u1AL6fiHwOHfs5AL4LwNe/4r2e09uQnpnAOyv9r6r6F9aDIvL/APgE//p+\nABPAB/kcVf2QiPx9AJ/0is/8nwB8B0zx/5iICICfCeAbVPU7X/Fez+ltSM9M4DndSm9Jt6GqTgD/\nPYCf5oHFzwXw/QD8jrfi/s/pI0/PIPCc1vR/wuTik/mgiPwTAD7ef3/V9LUAvg+AnwILCP4tAH/k\nI8vmc3qr0jMIPKc1/Y8w3/+XLMd/GYwd/IFXvaGq/mUAfxnAvwngpwH4Xc4QntMTSM8xgXdOksec\npKrfLCK/HcAvEJF/HMAfB/BZsB6Dr39sz8BJ+loAvx4GJL/zTd7jOb0N6ZkJvHPSQz4+//5vAPjV\nAD4D1kvw4wH8OlhX30P3vfWc3wlgB/DXVPXPPZTZ5/S9l+T5vQPP6XsjicgnAPh2AF+mqv/pRzs/\nz6nSMxN4Tt9b6efC5O25V+CJpeeYwHN6W5MPEvrhAH4lgN+jqn/zo5yl57Skt40JiMi/7RNPvltE\n/oyIfObb9azn9KTTfwwLCP4FAP/uRzkvz+kkvS0xARH5GQB+O4BfAOB/AfBLAfwrAP5JVf07b/kD\nn9Nzek5vOr1dIPBnAPxZVf3F/l0AfCuA36iqX7Gc+wkAvgDAtwD4nrc8M8/pOb1z07sB/CAAf1hV\n/+6tk97ymICIvADwAQAZAVZVFZH/GcBnn1zyBXjuN35Oz+ntTD8HNnT7NL0dgcHvC2AD8KHl+IcA\nfMrJ+d8CAP/Bl/xsfNInvg9f9bu/AV/6M38qxhjAJjAScSMp7SyE5pTgnB0UyVE0IrdH1IhwXiSP\ncfrK3/F1+KX/2k/v153cMY/Q9XGvs/PPknqBjcmJld+Lp7r+Xts6R+2ZVKSv/J1fh1/6r/70lo/j\n/xvpVjupQqFQVap+zW3lS6k5e17bMf6+PPO/+h++Hr/kZ/zUh/MVxyT/4X7pdNnSV7WKVy+n7QNV\nNrWy+blVF3FsAlB81e/5g/i3vugnUvGq3eacUJ22nYpdd+gEpk77TMVU+23qtHvPiW//e38f/90f\n/BOA69it9BR6B74HAN7/vvfih/7A74+Pe+MNfPL7fyDGJpAxIIMUZb2S2mR1a17FzRG4kgMNFNo5\nUorPYMAy9nHveQM/7Ad9Emt5zztnSUi1bu2fJhayPASN++d+CCZSgVKw4pi4svszP+6NN/Ap73+/\nl0lqy2U4USo5+yaUBxd4dYXw3GdmlRXFyyWtYGsV0EHKz8e95w18yif9wPNqW/Mt8QQ5/NbBXft+\nKn6Vz0qgqeS87XXQPwUQio9749345B/wiVB+DgIEduy7gcCcu20dFPYEgPi9vlMp7rrZbwcI/B3Y\nyLD3LsffC5tSepr+m9/9e/Gxb7wbf+1bvhX/4W/6LRARfN6P/gA+/7M/M4X0IA8H46Cn+w8mkbQs\nwhYJJRBpOdu+QlWacigAUaArwzHvkse0zj3sH1OVS1kWm9AEIpT1iZPQ9qGAilpeJDKqZWQ5OzCF\nkWNJ+mlC905rR5kklsLl6cDWWYOcV0UV/h5b5POAaqdgUFJ5kPbb4Qb9PqpZJiYuDZgfEkGSi2rC\nG8DHeaALxOvnT/3vfx1/+q/+9WYEvusfffiBDFh6y0FAVV+KyJ8H8HkAfh+QgcHPA/Abb133C3/a\nF+KT3/8D8Ku/+mvwa7/050OGMYESak93dOTNgIAQAKzCwPc5A4M8By77IefMJtZskMBUWeIkBxaE\n/T2WYVUabvTcpPIr7fdn5RMVULfaUJgFEfFyFPgaY9Al436ng+GU2m9WD5WngIIsx4Joi7yfparj\nRwIBlR8J4sjvLDMiN+o/7qGV52b9QeUlS3+aldxq297Ksu0Xw+P6+zGf9sn47E/9oe422Dnf8qG/\njS/7Hb/vfn3g7XMH/gsAv83BILoI3wPgtz10YVKlCQAKjIM5unvt2f5ZOkP9sOhHYTiCweHZfBeX\nYSFdOKe1fbesrCwCoX1zwgZSiWl/BYL2yAA+P1j0WwkACiDLThEbCJ/6ULZFoYmVnAJXPHo1n7fa\n8KwNXoH5xbPVgU2jnHiIDWRxer1jcQOijGfKu9w3XTZgaYvjg9ul7eadKZOzel6GJb0tIKCqX+cL\nWP4amBvwlwB8gar+7ZvXOIJ+zmf8iKooncB0C/TYgFlaxPNGvKXUGsK+WPpbyn/GCH7CZ/+o5Zzb\n+TvLV7OMxwsP92gKT9ZT01IBqzvQ8s/fAXz+Z34AOpXiEgFOsV2ZSuX1FOOYxZECHIOBJ2xhKXur\n64XaR/oJn/mBu0Yi03qr9v0O2LOSs9J3jC6WxgfbbZraAwB+/I/4pxookgTylYf8HItVjXc3qE7p\nbQsMqupXAfiqx54/9x37vuPHfeCfwZwTYwigA8VCXfQO5Toi9z0WcGhk1U7fH5nOKvgLfsxn3b3m\nMfk63PvEguuyrRM05XO5+emzsi5ccH7Cj/qMvE9ZFWMlq6V5jK4FGKkWyLf7tzIUIJyh5y1Xjb//\nCz/qA4/IFblAIPAVPGw5RXoleHY5DhI/ZY0J6GH0e6KPXfQ5P/KfNqOXZcvYKg4sILMjp8Yo7vlY\nD+kp9A4AAPY5sc8dKoIBBTAwsgID3aj1AKzi+BggWH37x3OMe+nhO7xKoPJw7lKurkDuRqycklnA\nA3lQaAUzhYKdCb1Iymx60KOdhKcn5eDuwZNtXpic4JC/xlhOhZ5OfGQ1B/Cl2yPtl5Ny0CNuIWJS\nJg8wx8kEEocs3skzef43TwogiHslG2jb++nJgIDOHXNeYUMMkAwAOhAEiUG1X0y7d9yBiAHa/i0U\nfZX0ai7KrXw9Oi0A0Pv+KYrOdPSG8DQWgJBdBwAPAHZb1S1cV8yzJ61948f8x0MeEvZ8/p3g7Fm6\ndwaXXqXOjl1BDxSzojXLQdFTjpycn7yWiM9Zf9YkReeyfB7I5tty9/q99GRAYJ8T+77bF1HIAKZG\nXFCyLjM8cIDj+wBgxwHgRIAiHvARpJtXf4QAcGv8QwsyEXVMlV506hYQBdWvAJ9VMHMA4ET2b+UX\nyDKnwnOe+XfyjeuKc4GP8+/GZujSx7SmiZGgxoYsdlTOgSBDo8lOkRWUhoZ6nahh6snJ989yxo13\nW2YO4xm0MAl4Dd0BJG0My+GV64KT3djErixJsywlVzcq7xWtCV8DFxiw4JxSk+XaM4vyyGTXAOfC\n0KUoG1+PZ+eZZ7fxHxSrsBcHu9V91e9z7n5kbGA53hhB26IrzRlI+7Gz2l8dxkM24c3C9Fn4fEm/\nvQK2Wm1BFZxhggYExTIr4Bw/k/VOWXA3DHzsFdNJXbyGIIAcxlp595qNWiZGgCWwEqdLAsGdykxU\nufMzlnNkFS2WmqMlOpQLrwg8x7ugSRq6kREXzvDty5a76JGfKlrBvjWtg6Lu/X4awKsTO/Vf2EGd\ne6PSVr2P73Q8QS+2JA73atkUW6yWpEZG5u91IgAaTBUxkVR0Op+ahwGgBTKhEJXcL2oLJLO9U7ec\n/1YxS85DSj6qXYRvLjEGSxt808O5tE8EtVC2rMzxEcKX3MiGV+SplSHlX+yNrIeW9OoAcFT2Dnr0\nuz3BBax+L/tdMX45uf4sr/fS2r1IP5wygcM99YxXdBYQTLtb6GWrpRBCJ560zOFJxQTER0v2+2ed\nOfUMN9RiJtGeSHZa+My/E/j7PVWqRepigB7wGM5llxyEjts2T3gwPRkQ6GPyKYXFb6PViIul0vu/\neyzgzDfL+xyqsP0GZynlDtSZJZjnlX6wCDcCPYd85fYmuUcIa5SbRxoqOMgX+5JDhfFImn/KCDiH\nzbLnRXXszu+tSHzzRTd4fx02ksfpZo9nAiesL/MhGSyNTNn3AGbp+XGDFUzBikkuBQF1wjcxgQSP\nta4o3zyScZVXzXKfdyneSk8GBIAoJDUmB1aildk/rFA/GgA8WAM3rENl5IHrJD9nvOCsXPmcm4yA\nx0Csv5+xgjrelILKztaHlf6MI3D+Hp3WoOXZscfejyR6ZQGhIECvmTNe9lgKbEygXILzk+LZlpke\nJEQCQgFANwrNLfBflCy++P2jwOlmZJ1QW7Z4UgefqqqOjh/1wUJvJllgUCpAqEuABWtlIAMsa8/A\nzXEC0WKJqHcqKhpVurgZGTgq6qOqnEDtvI0eusuJnSAAMI9HFjAQl7vuq97qeVj3b+bkhLreiiM8\neC+O8JPynzK3m/uyHDpvE5UC8HtMYM33WZC2KXLIXsYPqK6jcOrM7RBkLCZwlu5zwbPf5dGA+GRA\noA+lZCC4fc0qyGfdZ2ejqRRC4zdunbc+qz4nv7bNLUVOKLnBBPhZbHkifzeViRlSCOlJgGkFgFv3\nfAhITy64eY9b3zlP8Xvtn1VR2LrenRcG+GiQT6iDH4h4wEM6Evrdu6Mj31Fs+i3rvw4zxQ/z3Qi/\n37szvPrpLP6N5WuD4lcgcpGeDAgASKWPoMs9ELhnyW5bNCm6mcS435PXDeBtXr9+awHEIxjcvrof\nOXMFHt2lKJrWp9FpuvHKpB4LALcZ1YlP+gAYHBjcjXydP+24zcAeCAiYHjMYtN1HIIBlqthOU2q+\njxJaxKFwXxURvEwmkCytruWBSQc0OAGHnrRt3kx6QiDQXYCgXa/iogLnwluCpYm89+YLPOxLRYOz\ngPV9BoYTsoqwSGe/vHIS6UDAt0zZuu1Srel0QFLL+X0qenNgUrP29xnKncLWUN875yQAyNlxz3hz\n8+7erVvvsOsREyCFz2escSy6U7iiMUtT+bdll9MJxNLBYtJn40TupScEApaKDQC3QOCeEN+zRobI\n1jjRr35PCO6xgOXEvqV9Jq8pf4+9L26XlY9rMBjRhbm6cAJlkU7cpHK99HDsLJ0CwCPdinM/+2wk\nYFQhaa3UftpSqXwc2EAq+pKE+lAexACrw1IsIeVfz4vMx2VO/SVyHA9ULwMzg+Pt9AFl1nW/E4hH\npycDAtOXRxpDjA3MAYwJTeftvrI+FNSqKG0ohrOCHlq/85zbv921YodLjgBwy/LdUpizOyp/ayyA\nxsdn3GC5x9mxG3lYn/mQsN11K9KFYQZj+4eReqj8i28Dx9MtiFtlqbtBbrmVOrL2DvQZpkg5yZ4U\n5ayfMZu4xoAAWJnEWg+xifbl2r1xTd6Xn63L/8fxgSfzGjKdkz60YOIDH+BIX2+do1qTWZT+euU9\nKrftuY9Px/jBPeZ7HpdA8/kPQ6iXr8F4Gzs+e2bK/auV6TFnR91Pbpc4zls7Ofd12Qf9Hg9P8U/C\nI3mwn3fGvrpxOY5V4UFgQvVn1/G5/Vrpj0jXrx1s2wf44J3fer0Eg36V9GSYQKymGhU4VNwteDxO\n3YoHNAqsiuR2PHgmmcFjngMAxyj7qwW3Vrp7Px36idn3W2ggn1VmhpjPMr11vfIxQLDyp4dKkoB8\ng543JmAX9DITaxCg1XNnAJQ/7fEDZgipqHKbiQWFEjAjAE0TPrKzHMzT/BKLdYlE/fZHtDrMqngM\nG6ifiAdTdOBx6QkxAYXOHarFBkxwZi65/BhmcIsd5D5vkwk8OpetAR9rNU8h4bFBqTMWcOMpzYaJ\n04B4TOyzlbpzw3sxgTznge98L77ngQWsFv8OQ2j3IypwZvWPyrAW9hEA7HW3GnJJmnXOICpOdLxh\n/+kWO3hcYpak+mrSHOkJMQEXhqlQmc4CjAkUOvYiPnbAC8/mCn+y0NqFLtgA2ZNzq15o/ioTg7jB\nD4r9QEwgR/5TV5OAjaeUkpz0evRBK4uVYqK8BueioHdSWTA5PfcMlONZZlErv40pLFZ/ZQAKJUuf\nBaDWO1euYgN9vMEZQ2myJTX/IuSmFmmlOoi8x63biMA6uYLUS0U+lOh5b3qk55KeDAj0dGyQe0r2\nYJdXNL0LXadrDgAnPlWn+fGs8+ff2k9Bky56Z2WKkX3td6eePPPPoEogI4BzWsbGAObkG8a/YtP8\nZQDwACwUvrhrXTsUJbiPlDF2DQKUwCC5bO/VXS9HNVkeDIMrNTouGRDtVzWQb87s6IZsHYN+7Bpw\nPpb6CeVfaiSHHweQcEzA86Ukl5yqLvl5LSNvOj09ELhjUKl9T60p++UthV8WlUYVHQpuddpHGnY/\nvzJ35treDBIJD+C8zwQCBOrcGNC0AsHiyDAAiNC4lTPEWmR2AFBawcUpmDg4ZrQ6rrnDvNYqpwIe\ny32jvlblL8vey1A7peSp9BJ12ZW+gWw+577B6bEHpfrze0X9tEplegC0WAw4H5UHfUip46fcvho4\n30tPDwQiPUCv67Tb552QU7Sum1BwMBsgD5KAAOjuxa283IsY32MCyRoINNrMv3QEkEEqIX96zglb\nlHG1MpS/5YtMMv6+ipskDngO1OMgOZ2WxiecgG7ukX967Da9AYL32rKBI0L/05I3IAmKEJaeLC3r\nfiryrXwCrXzMCCu4jKpvBoLD8XhWOSSqlJlCMmIROPHz45y3QPs9PSkQKPp896wH/e+zFIBtgo02\nuk4jLlBhqJanuL4ee2qf2jWrUDYBpvvyVnLrVswzbQDl/m8qfmcCMsSXZx84fWVPs0bOL4ZicCzG\nwdCYgPEQ1ZiB6GBwwgQO7EsXlkLlvFdnx/2upKn0D9R9gEICBDOs9hzP7s3nH5mABMY2q4wbQHC0\n1q2ngspZ4wPidmsZpdr19NlvPj0ZEGgWc0X9w7Zfc9cVwNEwHlS4GO+h6nlwyKsofh4/pZs379L3\nkql4hbhynVnWAA4LcHrez/xUmsp69mipnbvCdQi60umKrjyVzUeAt9Dzbz1bTn6W/lGh56X4SD//\neyvdKndbp4CBgHUhW5OCklZAuybK2Nv0Mb07kZ4MCATLKaTvAywkfL0s89GStigyBdFYtY4UvR58\n3lRCeaJjsXem+DeF3S27m5IEL9zWt1NQy64TdM2LrJ3erJ/42M6k1qOwHF/zdwuEH1T+lQFGfZ9Y\nb69BYG2tJYs5KJfkgiKjvb5wZvFvzVClR651f+qj32ndzAv17IhYj8kY9vOMfwOC6cFcB/wAAhk0\nduHVacGTAYFsd/qcKS2jYwOAuEeqf11x8Kkg+Vffl+edsLGkl/Kqys/MrVvqBKpg6ic5Pgijliqf\nla7jAfvrcWEBweN7lnPQ7E1lf/AOD4IB7WQTnDODs6f38gqdSQBAg3bajQ6+fyj9I4GgZWrNnZyd\nVEeWrIobpSEjY7aYITcR/CUmkG5HacCrpCcDAgUAhQJRGZ0i+ekrECD8fLBG+Tlo+/UMkBVagnol\nhWs2ESyFXYAzYLK0NIiWv1fhPmvExzOCxeLoEQxW9W/Kn/T9Pis4ZSoL7VzPvZXOQLPnNk7kDbeB\nHM89PVJMkP10M5KCw2y/vMX5DMf6eam7Q3VXXd6DOjIBYAmIfBYARtftwJjAHBNjCiaGuzpay6Wr\nPCA999OTAoEF+8GW+VEKR9G722hYUXpmA+1et3xHB46H4gO3UrJRsDWXVRTuNmUwgbyB8nUHfpr7\nrPB6cpzTUaE9V6xDd8/nAj+inkgfk9GdXXc4xCBax0LJRbSwz61lBFgZSO/1/twHBLQt5eA8u+33\nW61uBsbqwbtsBiA5on6WCyCa7kOrwVfEgqcDAgA49w/1E7SoughdqXevZqbRGUdnFQxKyRraE26U\nQFdfnxr4BnWsHMcY87C2J2yEBfCsa47r8Nxo5zl6nqHjPeDZiHEKi4LeZAA3wPs8N/W8423OAWFt\nh/heNrbkYB0xeasH4F55HnINrP3s2fX/WEY/c/m+nLMWLI4x6K+MWQH12MERHG+nJwYCQFTPLVq1\nMoH6HlXuqheKuPh6NYiE/f/epRQAcGbxU9Du+cRNOjsAtEAaH3daZ2MWIp9KvX1n1g7ZXUg15Mr/\nKubgjA2UgIdlzqFLd8ZLvKlYgf87YxiHk6KN4vfHMI23IJ3FCOhX/832A2Ibq9NgYczFStb5nLyX\nosV/Ozlzeck6GD7Yy1wIqL5+ryFD9Fcnkh7T2pd75hoAZA3OfhMBZJgjsAABK76w0LV8ekPdgvg8\naeG4K01bvsYCFCJS8xsUfixuckb57tO/h7pP27krnEgVZbWewLlC3GqjxzCBW15W7+ojdnbrmkfI\n/mPmezzmHrV/8nvbMdlOF4JrmpTd9jV7gKqr7+QBAlvCXAZi2Je9zlcBdxsek54MCNTIqHOhvlcg\nFpKGvjfOTet/EnMoxRfaZZ8LSSnjmTfaZ4kc37EkGgZOnHKbPxts4LxjnNgA3Z8B8FXZwOnZIsu6\n+g/c5c0yAeDwRrdjm1Pb8IWoiUT3svhmFf/eJDX7DpwKQXPXyO5rDUtLuWfLn03rV7lxVAeSSiSj\nbcinsQGRx00SfjIgAMCRrxDxLN0LFNJZN28gMpoL0KxMYECjocIbB4CQuHsCb+LIrkMfVdcLqYC7\nA0JgoOWm6Dnz1ZCcO0W/DwiPUNpFu84iLo8ZUn3z3uvueWCguwSRDz6V9m+BwUfCAO4FCeupt85D\n4ra2g3UggYEUHwkYXTEOZRC6gQPCa8cEztNBmmvbQGAsLb6uI8yGu66Ni25R1eOxMok8zPMh+nFz\nOq19oXy5S5BggAwUCnDjdVlhw/uw59NntseSyWEWdjexf9PPbT00KDaSeb+lfM0XoDpZzn2UOJMb\nhcxO5ZN7AdZY0dl5fP1DbICzwAJRLCGsep1XSn9e83m+0nWgLcmFKN3J58HIeB2ZAECtrSfH4AqM\nsuZjpEKXwTqKdDNmFCBsj77ntxZ8v0JhuNEXYVqFClqBQRQImID6Pk8sOXEPzkCgPbvxTXXLVPlJ\npTiUg5S/YUk9b7Xi3YHKjCw5pmu0XX7blB/uie4yKWquxWI134yrsl53a9++d2vAbgLLz5ER9vJY\n8yztQ6e2sQYOBI0J5PyQ1xUEPEX9leKSa55MYABE7/20anwclbco5JthAb7H1ushuWIQSP+PQKr1\nFkgDKVGkJYVErIDvG5agxKMJzSqwGXBCr2DtgnksUmcRTEtvVcMBBFT7OVy/Fg0GUIuFujY/kgJQ\nvtb3Ld6w8q8OCEdAP/stj+hx/3DsJAts6cslADWBMUb4fgOA9Bvt5EeGBJ4WCKTAe7I2DRjwT0bx\nBTJiO8DS4s3slDQsYIFECy7Rsx+Tbo4YW8+LJ6wgcEIveUxBWHz1PBk7iLrhlXTCfciKolIf8xsW\nBkp58YKc5emh2ggr1xhWXixHYGhxiyVGEcFHt2yPZgF5b6C/mC+AoJ57T/nZVXkooHrefney5uU6\nHXK8fOKo43J++IKm/uQd17RzJAt67QKD95WwfO9QCGYDGexbUkRec1GOR+bhtkugJ9ulos9YQgR3\n7gFB5DPeVYdS/GHmPhUkAKIpC+2fxfnP4gaHvNxlA8diJYXnYlsgw/O61Fde1wEg6qdfi0ODrVUr\n64/hVSQQfOSuwEPpeN/zeQf8/VZWVnKQMnPGs4TkNGwjsYGMlT0ivTIIiMiPBfDvAfgAgE8E8EWq\n+vuWc34NgJ8P4OMB/CkAv0hVP/jIJ6Qv3JWdFH7Y5IohA2MIxq0AiLiPzdb4TnqMoHAD5yClIBpK\nAqpuJxclU1K8o3sQMYFAetub6G4B8nd/HmtDMgLOtP1LP/MGGB1iAieyp3yc5XPlvK3cDkKL5uaL\nO6NcDgBWt/z8PoJBT47lsxIUXfnP1lY4SdJcxHW/vudz1uf2I1UNIR95bl1zVG9p9SBist2BoJQ8\nTmfedQq0D6Q3wwQ+FsBfAvBbAXz9+qOI/HIAXwrgiwF8C4BfC+APi8inquqHb9619B1M/2uU3zgA\nAbOAw0AWhGWN+5EQ3aCEnv9H0UF6SGejDATRMOmL66IUkb9FgSKy4Q1c7gAQIBmr4jQDcNN+kzCS\nxWe34ABMfrtO86ncuRXaPylPfFftcklMIdlARLkFiMk+8sCaeocSr5nXe7VS55b8SFP8MxC4eZeF\nu5MnRvkg5aff60op90i8qy8YXCz7FPmSkosVIh+ZZQBvAgRU9Q8B+EMAIOe8+RcD+HJV/f1+zhcD\n+BCALwLwdffubQXrDMBmTzATsC2zgDEGQ7bdC2EZlISxLPjtLp7HI6idH4/WBgDcFmcsoI6hobYB\nSrABq49gBgGQgZMRI/CnP9Do/VmHfKB+Y6ld9db3uqzpIoStCnufd14fJ6Xll5PfixdRxur3yO4N\nt2G1hjdanMp3xgQKHPr32+kQZNW+Dcvew7hcOultKajeDmc2KQPlEWRNrfL3UHpLYwIi8oMBvA/A\nH41jqvoPROTPAvhs3AEBIrl+LyyuQDCDgbHEAtIdYKoZ/04qg4HgzfqKIrX6LxS5dHYaN7YEDAJ2\nYAEG5Os5gJXDAAAgAElEQVSq/Odq1ER67jlAgkCUu8QpM4CqVdRz4wGcr+W3JBXNd3frjGA4vn/P\n0ip/eGyFZh1WDMDzlGxgoVWckYX6Nup9IxvrNTj5liDbmIC0fWaM91KrZzp22F/dArpv2XjFgQ1J\nNXEB6CQcfcgoVHqrA4Pv81x/aDn+If/tZjJFRxUKNXpupf2570wgjq9Wa+psy2g3m/JIJhA0OhQw\n8moRfX/mqgnNot5gArMfC9AqF8Kb25U+npWuAFgQlYzz0bKVsjDQZOYWVlBlxqHs8QQhIOBaPdal\nLuWmghmIngQG29uVSeiXtb6zbJGr3gRn6n7W6177a2A4xmgYAHjQ9hFMoN013auogxg0VK21iAuY\n7dW9os69vhkEgFqQRoI/EU14ID2p3oHDZ5wc40/4T0KV4smqSspKHio6HkzyRg1WekCqtbgSCVaO\n0Pn8UBxXJA7IVSygjq3uCgB6W5i0shjAt5aH0gMbEFome3lT4bmckac61s5FMBWhgnUAOBU3ykyy\npBU3+L4LK8AZGPB9ECDAZar2ZlBsQEgNxcrGDNG2QLwrIE5az7mVOgB4rgjs2+/BBpZ6P5HWVg+N\nFSpQCw/EsOGPThfhd3gu34vOBt4L4C/eu/Brfv834mPf+BgE7RIR/PMf+HR8zmf+yPtA4G6DkFAA\nC2lsyz2X9egoTNYQetIgyN/b8FMIPTPMcSly3jMBoCxkKl6CALkXQPYwiMR3qWChgoYR1300Ch8b\nka6glL9Q+iMDaBVDN9MEnppVdDgp9wNcTmV5bZc2H4P3rQxnfna0GqvMoceD6yevKGyMsQRnQ4p5\ntGbgUysBX3co3hkzYaXvdd7YV6+lSsnGqE29fb/xz/9v+KY//83t+d/53d+z5uo0vaUgoKp/Q0S+\nA8DnAfhmy6N8HwCfBeA337v25/2Uz8UP+f6fiLFtGOOCsW2QcTlVfL9vP8aC76mm50blr1wh9soK\n8n6H51bOegY9kXDGv5fSHyzuygYyv5F3b+6wSID7y37nRP8Inqnr22olFhAAgRPnby33UpaWMQc7\nyxMDIQMD32u5p5xs4XSbCq9Zq6zQlHd0jIlAGwNBPZ5ALeTBDbwpeYDDygRA2yMLuOlWti/sEtzY\nRmHO70CpBF1o53M/45/F537Gpze2+cFv/b/x7/z6r75xn0pvZpzAxwL4oZUb/BAR+XQAf09VvxXA\nVwL4VSLyQVgX4ZcD+DYAv/eBG3scsPz+Id3n70pfn2ADAFqDm8vg/lGY1kjuXzYoSP81b1R0/SzL\nQNju/H5A8wSSG8pPFpfjD10A3SVYmEB7xAICeY2QO7Hk62CVDs5pIFGWrspHVmlV/g4D2h7bUhaS\nnuff81ADBM7zilVRfqQiZH00hYvnoADA5Q44KnrFAcol4PMORToUUU/2VxDovx0N2tJ26QNErgQp\n4nGCqL2V6hHpzTCBzwDwx4Bsh9/gx387gJ+nql8hIu8B8NWwwUJ/AsBPujtGwAvSg3+Sip2VvW49\nNRE08wQyXYiKDf+6KlrS4qYi0T3raBzsTczoLct38DXZ4Kz8aApoWSrrlkAAyXcJNCaQ1SBHoUcA\nIHKVohxLT/V1a7BQVYLfS9FIVBPJrPxTqMn7aLu4pHxlVYfQnd9fl/sktmIBBK16aL0x9HtZUc7i\nAz5+gvLt886w7hCgXOuaj0G5KpsEH3wRAoLUk6z9koHHpDczTuCP44FXmqvqlwH4sle5LwcCq8C2\nvxqmiqh7g6e0LPmou6fsGUUnP66hbhzX9MfrTgUL3V8uxaUK6Puh8AX7yQpCQKuDQcsVQCl+uTWm\nKkJgF8KeVNAqNK9h63pYbXuxlkvFtTJnbYi0sQwMwpr1e6YSx2cfAhacBTkcJvrfg2n9WN82EGqx\ngldNhwyfnnF6/JQRMAD06+89JQC+mLNf4dkLhnp0BM/Tk+kdGEO8/5/pfv2ubv1Sp2I/KbwcwBKK\nrpwA2Awcq4joHtDtUupJuQ3tZP+tbWOfQYAkN7+jaGE6KeoNrBTXUKJ+NMcgBJ7vE746pJgEU/pm\nb0mxWnmWOopA5AEA2v2q9s5TB4izalxP6wqiBASh9iwXVbdVL8hjeaM7ZmyNCVR52Cgc3aBDGU7u\ne7p/em73wtJMhfjGjlDL0rkCYLxuE4hwCP7ZRxFrqlPSFQDWaiRLD6DNIDx99mGnrk+5ybBTf2aZ\nU/9OCh7fT9yA+s2Fjp+JoutO5qmV1Sl+BLekgMnvqXAqSH3bDGqr8V2fywfjGcJlQ1D3BSj57qVB\nVL3SrfIxG/WN8yV1qKqbADCv6oG21crys6Mn7Z7SHsp0+n1JZIkeMxalA1zY8PVxBQBhxJIF4Ej7\nW30/Ij0ZEKiBQVzgSto+6oJvaD2n0vlekRlwOiJ2VmbcUWddmzJMpjkygNBbsuokeAcrnxcwCByk\nuQsnPS5UKMYL5ErErOgESA2cRBIsemXKXTHWdmYcpPxxAG2p2QAhBgIexMUcYFWPM4XhN/MclJ9x\nl4Co/04gsPrmQLzd605aS3fGBh6fzgcwndQFWGp723UXAMkICm7rirctJvD2ppWO+z5Z/KD+YZHn\nnDlsmIxP3oMbvwR4BRlfrVVGAoLQCq4ATt5utDQdW67m+98CAZbio2UoIfBJNKHMBACnvuXqilAf\nV9yvnnA7rSUsN4RYy/KoVhluwYLNxLVcxnW/sQSy/uszDlZeuCqZISxKdwbs/lKPLNvSS7Duc420\n3GXv1FHe+HvmLpoGpLZunDhuk4w/e8/qvrx/oJKvkJ4YCGgpaOpaH+fPih/bOF6093ZdnDXMzLXa\na7TVkImJAoIai8C+WNBtVy+yjsAqwMUAmEUwe8ByPg8LtrUHNfOy9mvnM6oqOwk6YBZN4V3riE6v\nwTC9d4F3Wjdg9MA4YAoIQNvzb+wvino4rzGAuCZzsdzz3PVgRtHKRl2DnJ/bxoMs8vLjLYi1U2pN\nzBCpgmbhn7ONUvQWMbSfewPfYhi30pMBgaB0pveKWCwxqbcfZ8XnY6fUZ22UpZFDgQYGFBOK4e9u\nMVYgaSYIBGKUDgOOCyFT32bdm7IwAFAvQasMpW10B8bTjlaKt1yjZU49zycxj5y4RP47A0CCjZWw\nc7UsitKhrqU2hv1cHG8CAd3jHgjksSPGlMU9O+6NlkDh90wwlzI8RzYgAEYSrEzupiFBc1XS+IL6\nRepgM+hClJ60nV+kuhKAIxXQ0/KfpScDAgC8YWpBidg/689e2QBwNH5AVSpI8TmJAHMCyQDgDECm\nv9DJ2MAQwSxuRrVfGN4VBsh4AJ2awkluQVOkZT86Bdl6ra7A7fpEKkgs3xWDjR5K5wDAvQJaeVIq\nG5cpakKO9+Qs8jbKvP7e9uNZrlAchujnVtvwprKsKXPmDiys7qY7EO0QBMB2dAGCQyIz3nz63O0y\nmvNF4pkHpqG9Ug57j0tPCwQ8RXcXmdkmQCsABBOQCIaF0nuDcJOc+XZjGKhYGgYEYxghcDagEYwR\nQaxf1/rzu9hXWfx/linjBFE2V6YTEOB7G/R06/+owM+qIAmui8VagnhcX64Wa/bSDcs8rWCQbQiE\nhT0NAJ5uj7a8X0nAmMh/qz60NUwCADT/AilzMRNiAsd6LnAJI3WozziDFXsxIqvSx/7Z8dOa4IcF\nyJ/U1EPpyYDAVGDX8n1CYbKDcE5bXhwexosAlYaCWMr9OR1Ji8adyYjpokLnrJiDKlQnVKftT9vX\naWCR5y7TgXOf7qWqVriD8sfTy8s4NKQuAqWzQE0qRhAlP1UBor6NzDO45v0VJdhIAecrZbk+y+1t\nUVjXFa9dXEUni94OY6mJ/LH/Lh0ADrJPDIAxVkL9YcDUGEOhWAy3CeseCjoEsNGtM2ULPBbD2VYY\no2wvccsBP577FTy1c2npOjZiZwQUqPqnClUo9kdiwdMBAbe5AMiF7KMERE/2CRzyWgmjEFpUFbzW\ny7HnQTGVlXiWYk//zfe74tt+XItpAJIuQep9V+4EAPq5RNTLEOeTQuZ/Fgy+Z15Lir/QYwGBQVwj\nkkt6CfXREUGtOx2YwBEMuMb7CkCLVi6FqNITEDBwRNFy9iEpPJWvMYb46teqOD6faRbVedB9gc1l\nmTIJCJbrPLW5LiGQ6ciTUSKQCPCIMghvE1iWB2nb9CK8jiCwB/aq009VQ1v3+WUe9xXAmB7I84Cd\nKFU4kJUa4lQVVoNK2ILPFGhtv62sQHUCk88h4JgFIKucSH5IiRkn0iARiHh+CwKcqsaS5GTru107\nM8XdwtbYQwNXdZeHxxgIXxFARflK/5rzvT5/rtQG7QvpbxWZ4TAfF2DTlSrAIHJ8uuxYkDEB5rA4\nT3w/xi8jHlMgOBQWmBaFDLUXAftNAwBByt/nwRwVHcJgQJkglyDGBdjnaM0K8HthX1MmIEi5cyAQ\nmMLDrX12k6HYgIm/+e7EsA5Kn9/JMpwxgfwkCKAr9ix2gBUAAiTU4wwndFrE3g0jAgwSCOuhIAAy\n8SQFs7fPs/KfvX26qXoTFl3OqHquawuVasDVepUmY2kAEMrgNKD8f/a76WaFMQREQtcgwbAeF8Ad\n95HGBgRCw5slLT/fU2EAoCqYYp8Oi1EvmYECATF3dAiwAVDxwCTJTXMFDgvhdkZQLoMmG0gBpnPG\n6GDAGeV2ZlLz+jEBBaY3WkSyy2Ii0Xio1vgOXc+JOixpS1VKYSoBLoE6+vFxHPH7CQtINnAAgXIb\n0jKk1a+RfzFYbaAG3zZmogpoxR9UJzSXXA/WZNtbA996II4UTPlb7UiwgBBu3JKkkLLVNSg2VM+q\n42EQExD8mWW/mXPQvaMNE5SVAECSFbT8o0CstaUr/tT4DL88zTkCLZjFicKGk4BJyCAGWJonCQC8\nwg9rMDGEtPBSjeJMJuMQOjCGFhtosBXwmfQJwGvIBABrcolXSAWZdSEJAWqDSXQd96lG4BSAxBTb\nsB5KQtSp/uSgYOwDDd07UISCBxUsC8juAHSyrKeAD3ELIkZHI6LBMYauVDOPTShkxgzBGBpsTGpo\nuRm3E9vz4N4ECArEenrA6oMusJH587pf89uO0TnSb3keDecnkfVngF4AAMQCyDTk87N3CYBOwdzE\nXIKgU+WDYGVw6WZMBcbw9hsFlg0EyhXggGKBQBxHHWMgsMoI2mhd4DqhamtsgEBg3XIN6nwcCjwp\nEMgUAuMCXgAQEVVU2X2QT5m2GLHG8+z7Z5JlDT8/tysjaJ/OAlqGsy1Wq3Ak4YZR5sDk+AO/FggB\n9zpgZdLqsrKimgsVL2ELAAybGg+UVetwPB4G0ITa75ZsINwEKjNT/cz3zO+dFWg7r+4T35cIev81\nnpKgW7qmDQCQ7guBArO+AGoB5hTMCegtEADHX+r/lAmdZuVnKLr2NsuabXRf6PtAul3lD9k/nk4v\n0R7DxyDYtoGARF7X1gVUdzwmPTkQcFtuVUlWIwCgsVtPYvaRGiGuIaXPferqc8sfnwCDAxC079Qz\nAHLhwIJUlo8Fq/neYcGZ3rGRDJYRHy2mVPotDo6oOkPlJQQ3nge6BuSCCCmOKg+SiWsLYNbWimtq\new4CxQ7yga2tWpS8GhZVI4rSM6WmJsvp36vKq0zW1pogoCKYA9ABTKlnsAsQ9ZQBPpAyBwCw3EVz\nLWVZ4wMFdgXUWe4AgVEraou7gUNngoBEfk+qK1q9xr7cT08OBCwFCZSiVw0AmA71a/hbKOskv7op\n/MlnJzDg3oIeBJypLBmsSaqHBILa71turGpQLNuV8mmTtzgzzhJFYwVYBNYe5RAhdW3Wc1q+UuoD\nyEiTuar1A/U/YVDJitQodUKQHgGAQdXzHQwA/cqqtXoLC5R+OwCAWkxJxQDAaH3Y784yWfmH2Atu\nOumuZwrtV11XmeKNWQkGo+7BYi2k/BgDovZskemGcGQ1JVq1qgt5hMnsI9KTBIGwaLV3Sqhpv3Yb\nFFCffSrvnNA9lH7H3E3x574nCMwFCBgQQK5EggCvg5iZWKhzWq/OIHg/rXgqQad8t1LEAkaygVD2\nM8uFzCtb04ABTuEOCFBLmzFdb7TsPgM4AIG7avQwqovOXtLIp4KvdVFAkE+IcxU+vkNri2ADsMFC\nQhLFWYLki25imTaGwWjJw5Lz3IZk6W29TH+F3hyNyOS9hsuTDohOdwGm9Q6ogQGTH3ocxRisLSs4\nez89SRBgoEsXSIAYSZUuk5RAW1qmuUr1JsQUIetRUBt95wN8MKcBxT6hc7etFlvgPn8eC8D+XuQl\n8lEbEnglWs8FBZqfn8wCVuaegnrX/gbBcIEdIPrqvmfPJ8UUVru+uBpr3noAb2Fed12BUPjaz56P\nQ8OX4jdlCtU/AAFrUTGGAoFiAZOZnQQcqY8a7CAQ5Z3RxZcgynVWktrZl++HSQ7QncMUfPqLRqnM\nVRobtu4dkYjJbFMFMuaRCURTBFK2NnqNQQBglFMSQvregGC52P05VV83QtSCunAFjCAbA8AMANiT\nKQRzaEOFySVIhSWLFc9nJalAIfnFwEGeWEFTgJb6aF1d7lrsMrCJYJORYFDDWgsIeARbj8QLDtpI\nYFD5YTA4ghMH4QoEaOxDAsAyrPoshfJE4bUzgPWyiF9kANDz0xhAsLpwEfOPlYXcs6W++ss8uiau\n8YP0+7new8KLABog4Pn2Ww0MTB0QVQxV5Cim4dQlaB/VUTZZAyk5VtKN9DRBgOhOKH4JIM6BIC8k\nURGrOwMAEwShD7yPP4AA+wQcBNRdhXkGAjE+wJ/RaN+qHItvnG4BlTMAvI8OE6oHodt1awsFtjEw\nZUBlYBvDu67CasR2YQhCDz9UP0sZ5+scBCTlrQNA26IDAAdfG2Dykxe/OuuTTkzniiy/YXwEhLEE\ngSMP02NF89iWUWYcFbk1HJ2blp8BY1RdhwswhrkDOukluq7fIb+Cms064q1COhwIZgm8bwOAKqrj\nYPC6ugOBZaulD5BjYAiFaaPmnAVAiwzF0iA5DyH44rzhCuzFCOLYpF6BVOiW8RPlz93uF3NfeQp9\nCEqAwGALg9yfc7kPgMvYoGMAYtstfM8EAKVFXGMAy2r9uQX8efncDgCskwUAIIVm5Y+6IHbgg67m\n7PXYWdJi4ZSym8+jr75flr8Acy5dwDn/Q/cE+BCcArkF/FIAo46ontjqY2QQUIYAYi7AmAMyTJkl\n9pnt+f7EwFBjA8OBzAaHFRDUTNnIioPBCCAIJXndmEBEcVg5yD8LJaNToB4PL+HQulDhlt4beZLV\n11nWP4TgAAB7BhF138Fdg2FZIhcaOW71vroDMQiplLdsoAugN6RQI68DadbIu8BGhomqv87eXR1X\ndBtlpi44A0NiWGsfY1hdnquAL8qgBVRnjciKHACwCqPSv969SEAg9fzImRIS6LKN/erNKSCYDDoJ\nAnu5gAQCAGp8Sqv7ovwNCAgguCvQLP6AjM2UeXjfjfqcA7ZoIsgO3gxozBIQNW4gAQRViyihoyAu\nfNDd68oEgFB0zYk0EzFJyCpsiuTIqRmMIIUKCQbNpw9qv+/1mbbVfWLuLBj82ftU4gCDOUuB0ZwQ\nACuDpcCgC3LR47o2LB4DAPulCZAHl6LAyQyAuvLbCky2L8jhyjHZiuqbcl6UUkBKH91kUWZX0GWp\nd2YGjdInyLigngBmuRB1XNs7CvWg/AUe9r26AlH+P7kD1UukaRgklEUdjH2LjC9ECzMQFDOw9ooB\nQOb7qw4MbMZCRTF0JKsX9XpDBfmKCSLZrYmBz15M8Kah1wjwsPyJJjVwDHndmIAnq/+wcqkebvOr\nkFNZQUI2jyAwD0BQAFAWfz+6AukiTAKBAgCeaQj0Cg8hDyVg1pCFDGrsliuN72TXh/zJ5pPWg6q4\nBlAi9cwGBDSOXd09iGDaMVVALvziMXyEY2MKKKXga3N1nipzAlyA2WLBw+xVEDUq0NuygTySFVj5\nCwgaAMyq3wJxYoM6bXIaj/6kiTs9yOjPZipO1p/91TEGdNtSJka000CVJbr7MBxgmXWtTD8AAEvt\n1wxVPhYzal7jYcMMAL0QU5XGTkvVElHFmNePoIRLhD9YQFj/YAd6ygT2BQA6EJQgalp79p0LCKJk\nVEYayDRDsouF28a7hIZKjkUIvzVMSNC/mKU7dYdCch3GYAGacQEfkXnyYgoNFoJSVvF7zSkYA1Cc\nRcg78+nHgs9rMeic7svP7m5Oajhc1IP9qDblXIHAmADfD6jh4QEw5gaKy4qwy+KrRjUZ0upVKBDg\nOIFUBYhgjoGNwE/EMC2LldvhCq5u/QXtlgflrzhYgmurxOBo6vX+GrsDQDRwNI7XoviEYS0XICop\nTGIM6MG8DQIR+ecuwWQCS6wgPliZgYNAClyAV0N0hm7pLZbWiXodmKJD3a9Uo5aqDQhCQet2FQ0f\nyQRGbu0VZhEkZHeghtkCBQKxH88YwynmsGvWmEJP1iASJj9dAm+vPKdKG2VYXYJiACsInAMB9w50\nMKjxAtBp7qUzAaGRdeoKqUACfo4mzfYN2t+VH2LqN7at3P0pXndE3CUIhxAAlAvQvQ12A2K2KBtH\nBwP1fxr8QF8/EAhdyUbPQqhX7hKhzusCBO4zAfXuoblsS4FP8kQ+eT5fpCZxUF7XPm9rEyX/vkqa\nHEej5IHqPGik/tup0l/3ZWhowKi2uMWED45SaWsvVlmQszTjFVU9H2W9RWiNPbdasUYg/9ZbUNs9\nrEGI+6elizqJ5zhoBFa0tuh+w8oYIv+xfw8EXLW77DiglevJJZLl/KW4uV9sIOQztLiaXX0V44wG\nlYtBpdT1OYfvMbemoWS1o+uCgtfNvJ+eDAhYEgBkGZ0NhI8pZP0ODeNMgMGggkAUGW59/jypBdSY\nI3dHoNNo76lwhZxNkctqiTf2CbITO06LSXRS6CfumqrIB0eBUeX1/RAmW4TVMl4LsQZoirOOstBR\nCcFi6pXcrFBc4TgFAqaqVgjapxuUAiLLaGUrIDmCwQoCUd8oIA858GtWhSqwsxodY5hbUPYzFUyk\nRvYNLi+zAGIGsS/bhjEGxjYowuflK35UoxYJ0KL6zuZpsEnwBsjyV65r/zUFgUoVIJq5THaJU0fo\nAgD4NUgm0BYIVa3RgNllh2bBU/GGRW/teTHaMI0vZPi8fp/OqlpDViUaxlHZgnuRc0JusAKA8lA7\nobQJP37fDJ753WpAlI2QNOUHROI9DbbP3XxRm2wCaywBt0U8rwR2dRtavhkMGCQTCMlVast8d+BZ\nUwh7gEGcF01eIMiUqd8n2TvB6hjSryVWJPA6G8NcCJoIxNN+ZcTkIMHYDADEuwkp1L9Ut8sfkk9W\n/S35rbIQXWryS8zI9+f+uoJAEzj3x4WrJc6ryGg0urkC8GtRTCCENwJ6s4JECQRAIfYQYLrfPIB4\nDclQWBcPFKKjKEE05orIQTJ80JcIXCDoeW7ViTeCJaBcH1pylRxmU/dSCAMEwRjBW4oJlJKVshWQ\nhuIyxxrtvkfCXImFtZODsHtS31cwALsXwQYCHMgghNUPGUFgPxmArPay7Gkwwo0JABAbZWL4TO5E\nlFbMENhgNFviLuUjRwRKHxw0bIzAGNvSq1NsjyY8gms2A49cX8x8FVYnfmFeQ8y5ZHpivm7rCQhV\nDFhpk+6SABb0nzCA2u8j/JRmEwaKdvQNYTWkV2BMm+01SuCSFg7kEt3ZuGS9GrtAsAdkMLP9gLKm\nrEHcFVWVY9+523Gq+qhIdUBQzBkWfTZBXEGA7t4GAtmAl5h6Re1wgw20PJ/UKdu/s5F4cZ3pQe33\ndM4CEhzs4OEaJxwOuBGM85WYxPrgoeJvn/IT1V7trfDVrBU1fiAt+6hZf4NnCQ7IVgOGGgsIApQs\noIMPNMDnoZRomO1Rq2QH670N2pyeDAiEIAyxMQHxd8IKs/wHpVcS1sMqwLPHCYgZ1EiyCCQer5lz\nx77TlON9x077OcdAu5ACKIvQRgOW5RUHg+oClMKWsAxJn7MKimkAXaTyPIMFIyxuZYqTu1x2oOnU\nPpgI53nQh/1hJjMhxKZU4e1K3v8WCIQbMr3+qMGppFy3XS705CuNNCRjYkqD1l45zTh/N8XaQy6c\nHWQ3okxguquwDQOVzef47A74Dh7mhvG4D5sivEFqC4vjTAXG9OHCU+0Y9TJU+y8xkmQCvVwPpScD\nAg0AQvCSuCHpj+0IgvIXIDLFR48HNMVfYgStt6AAIZcfi60PNAog2Hn9gYdAIAXelWB0JajPaEAR\n+nV8vVW3ktzUuVy5uPBhlhsQdNJNUva2RC0LWF0XJR+H/EYGDQMCBXiatPj3hd0cQKCUP75rDHyC\nIkYlngv1DUHXvi3ZKQXXaWMEYuDXBFKZJpDjA2bIkGpOO47ViSCCsWlO/I1FXaxOaMKa+MxAXyhE\nBrCJ1c6G2k41ZjJFbMKRGAgMEVsKLeI1zBySDRW/SF/jEelJgUB+Ypz0wgbEBSK5XwBATgvobsRk\nRc4x42XtjysLLeMKAiRUfZCRW30CAV6RKJYY791SRxBghR8i2f8/hvpEk5HuZ3y6v+S7IeDF57tL\ngrDOsSyZK7+fOyKuYZVbLxsRkCQvICU9CFb+brUjOAcLK1hBoF4nJ+nCFBjgBACYDfR64KTrF13O\nJxdRkk4Xn5p6/GgABRCLwwNDMHSz9xHAliG3aou4kUKmD9ry8R5jDA80CzZ3QjaX8zCG4jGRIZIg\nMIbPBWmF5Loo91Zv1MtZejogwH/EBMofVrMpSXcYAELhHQgcuWsacMwkW8cL0GdfAYHGm0/FPkn5\n93kAAb6mAwFK+cH+tqTPaGhvir8No5M2rBQWRyBWQJRo8bb9v5go5Hqs4QYEPQhFVAHEBmP7qPdl\nPH+5B936j+U7apuXarZp5LTcjMpDH8sQ3bIO/hJsoAKFzR+iMh8SsYD1jAqeqg8I04wVTWhtgRMQ\nMOWffo4tTiLYVLHB48lig7XgSmxgaWsD2Gc4Y1gAANMABLbwbMh/Kb9g8/hUY1ZLofP/WlV30hMC\nAbRi/9IAACAASURBVBI4P2IsQGqQjJogr36/KfUyEEi7outisVnp9/y+H5YXi/3mBvh2PWfqwgIY\nBFBli1lmY0zfWjR52+y6ocCmfp6aYowxuMUzHYQ8bRkfDCvsdR1KNUaE/SoYlQoZga5gKsFQRoIY\nxzoaCIQbUKhQjCR6XgbyFXK2W11x8K7N6NE4k2juHWg1kbJCW/KRe5woXL9YW6BYQLGBDgZ7AoDF\nCiAWOt0AbFBs4Yblmg2S7Te2DZua67CpTVnYPJ9DY92Lcs9CJ7Yx3B1w1wBc3wQJxOreNndARH4F\ngH8ZwA8D8N0A/jSAX66q/8dy3q8B8PMBfDyAPwXgF6nqBx+8P/kzFVRZAjvegGdUPJQ5v7Ni79Os\neR6f/Tj/3oAjnrUfgKBHp0/MDrwhXedijMEIajmBoRMy4W9GHtiFwCHBwo+xFQ4FNNsBoHzdowQE\npQ42QRobSu5ANLYNm38u2yX3t23DNux7LIwxOB/BUlpbRirTPOa0abVT3O+dSbEFgMxJ7w7oCpzK\nmCM9QcquTenje48V0QpD++xbcgViu081WVDb7urKPxV7zCcQYFx3jMsV47Jhe7lVz0AAp7ej1aGD\nQX7fsM2BLdqcAcDbbXPQ3eJeFIcpdknb0RD5wfSqTODHAvhNAP6cX/ufAfgjIvKpqvrdACAivxzA\nlwL4YgDfAuDXAvjDfs6Hb99a26bts9XXsvr7osDXPaL2vo0o/tzreCpz7bdtBvrKhQjm0F0B64NN\n3nKw9tK/oxpWAcg0Sznhc/+nYJdJjWyLgzShGZqsQRDKi7T0TnTJPHY6HrQ7MEAz40IgcMF2MQC4\nXDZsCQS2vYyLDYQRSVdl0Kou0hptaUT4dOc53dLv9gowqTcoRT8+hO7E1pzkoFt9PVh9AC0wnOsM\nEBsMQ6Cu0JVbxdUNwtXPu86dAMFXpgYwLgNy3axeNtuOsaXi8/62DWy7g+q+47Jt/n1iG1vKSYKB\nCDZnZZuIA4rk6+hisRiTC2uTMeHv7HwcErwSCKjqT+bvIvIlAP4WgA8A+JN++BcD+HJV/f1+zhcD\n+BCALwLwdQ88oKIAJqFl1KKBw+ff1RXXlPK677he97Z/TeW/4rrvDSAKMFawCEawsI3sHSggiKDe\n8MaR4ev8+fGNgUG9e9mlLGauFYOLgNCeAHIJC7yrTU3dgG1jqu0uk/uWJfwxUKjAQNTjC/5MejGW\nC9EGSat/wXa54PLigm27ECMoJjC4F2PIg8qfQdK524SdfY+HlyVXGCDmkOaYZ6HN1ap9fpy2OmDQ\n6CsLsQEJcJ/FnaS2133iZciTf0L5AwimKuRq4wJyfMA2CDzpszsIjGBaG677xGWbuEzFtmkyx2gj\nQbkD2xgpXwkGvq9DoZutYKDDTdPNqeI9faQxgY/3uvt7ACAiPxjA+wD80ThBVf+BiPxZAJ+NuyDQ\nhSgrI94kxABAXXOm0FdcrzteXm3/5XXH9Xr1hrPfrvv1BCxK+a+07XECE5xkHDQ2wKyzNewYW30f\nw7p9xubBnlJJSSAIF0fd+i2+IAT7mLhcJi5bWEAA8MU9RgDM8DgJgWRzBwI0xNe4cwuZAQJyBzZn\nHQ4Al8sLXC4vTGAvlwYCBQARCOO2C3+dCLb72bILrBMduR8KK2qMCOleYLHutVCIlRMEBKT4DBgn\ngeB9d2u+FxhEmKR6WgQvd5Opl/sVL69XvNyvBQBzx9XBJUYKwuMkI+rrcsHFP0H9LwsIXLaL309x\nmbPaP4HADcugxWQDDNJFUGxb9NiUgXhsetMgIMYtvxLAn1TVv+qH32dNgg8tp3/If7uT2Nwv1G72\nz9wLwU3Bd2uk/Nh3A4ICAftOzIFchGswAoohTG+cEh4eHLR7Yyou2LyvFz5PX7MRg7IBEU03Lq4z\nFCSKXeWXAIfNK8E6rRHOcyi/zRGogGS4LpqrKyb02FTVobkmgyrqbTZSMYHNhXe7vMDlxQu8ePHC\nld8ZwcWEmf3PcuG1AZzSZDBjAxO7WAhddgGwW51tCtUNc9rSW5jBZAInOwPgaD2zCAXaMPHorckY\nEMWC9n3iSmCgQI4EjJ6MXYGrmlvwck683DsLiHiBka8JdV98zImLKi7wphPBpsA2FHv4//uOF9sF\n+zaxXy4Zfwjrz9sppvRTBqYHGae7ihYs1NBJlzd7cHqFD6SPhAl8FYBPA/DPfQT3yPQ13/AH8Z53\nv7si/6r40T/8U/Gjf9inNCQPSn8NJQ/Ff/myAcGHr6T8xAiK+pevF4NBQn0UNjAjZg3YVNOycBnA\nHKM+MtIa2LCxDZIfSV9/+L3g4IZ8eWlFqoMd7LNGzqUQK1m2fWLbBhRX+kQpMvoAQA2cxHoeDACs\nJJCgsBvG5YJBAHB517vw4sW7DAAuF48TXKjXgIJRltN0BQSxyi91zaqtoY+9+E4o+Ry2XgJ80ktw\nGYvOow3aCXBuPQTkAuR4EN9Ge0+y/NdkBKbkEPHFWyTH/9u6jWrDx4ftRwxE1V4SKuoDiyoi49Xg\nZfOYhwIWWPTniwj2fRob2Ccuw+MDUr7/FnMUYJPoNl8rcptq9N8/21D85b/5bfgr3/p/te7b7/nw\ny0fp3psCARH5rwH8ZAA/VlW/nX76Dm/d96KzgfcC+Iv37vklX/gT8YO///swr26FrxPzurcoblG4\nHfvV/f6XV7y8vsTLl6H8tv/hYAFp9a8uDEqULgBgYoe/iwQ1zdYW0BgEqUrCrgcAMEUbDRwiUjwo\n0CeQDgDThiUrxA2+9TzM3Za+Uh9Btss164JBwOj19K2PV6VoA+Az5aYCEhNrKiCYLMD9/suLCy4v\nDABevHhXUtr4jLElCAyynFk/Xl9zxlgKc7WELHxsN9jYDokZVhJBQfH26H31ewCBd+mV8tv+2Qtm\nU2YoYHydAQDqi4UM6LA+e5EBbJuzMrV8D5tAJBAb9IPw32cBeCxlDpQxcaCdkPDX0g3cx8R1m7iM\nicsYBggjPp4HcSCBegDVugo3840SCD7t+30iPv2T3o8X7sq9uFzwbX/37+Irfs8feEidXx0EHAD+\nJQA/TlX/Jv+mqn9DRL4DwOcB+GY///sA+CwAv/nefXnIbaP+/IkuumuAgCn+9aUxgQ9fa/vhly+J\n8luQ8Lrv2cVTAjWdcddoMJUInymwaU0fDj87qLucMYEKEMlmwbZUMo8XiAuErVhk5ZRdsOs1V7mJ\ndyQ44QfgS6fPordz37Ftmy1Dtk1gqC9JFiBQ7oD64oXZ9WqNk0AQTCBcgRcvXhgIvOtdHhu44IXH\nCQ6BQV+UgyQBovBAq4Gv7DvmvFqeJMO/jqUTMnbEFN20ooiXRPX++t0VOACAgSAYB68fcRoUVsU+\nje7vUyGb4KIRJB2QcYFs7pqMzUHAfPbogYuh2bZS1RW6a+CsA4GkLJmrUnnSfeI6dlzGhusYqfgv\nLhfM7QLdLoAKZIvgKDGLOaFjWMzJC2753t3YTOiw4Plj0quOE/gqAD8LwBcC+E4Rea//9P+q6vf4\n/lcC+FUi8kFYF+GXA/g2AL/33r0Vy2AOWheulgarYE72ALy8GgtIIHiJD78sEAh/v0AgxoVTlBku\ncIhwmpQOZbg4f0Q2a6wJxWtDjYUJeNQ9++DHZj45AYB6QEinYvqIuZpBGW6DZSAsa/RUXLYNclHr\nFtoU4wLqsxfPryQADC9vlMLiAVu6BBXMemFswEHgxYsAghcGZBQcHCKJN9xLsF93XPcN43qFjCv2\nvaZDR50PVYx9tzzIHplv5/SRe9VtywAQLmQN3HKWlwDAAWGz/lctvz/cNLO0Dt46E2BlDnPxvEdD\nHA1EFfMq/jYrRfbUQHJ+gQVh7Zkmv1fM645NBq7DthcHgrkr9IUFxIeP5hxZF/U6+3IHNhtF6L0H\ncwQAlrv0UHpVJvALPT/ftBz/uQC+FgBU9StE5D0AvhrWe/AnAPyk+2MEgOmWXa9m8df1/Fp///Xq\nbODaYgM5s88DeLlykBTCAy7+Cqrc9VO+ZsTa55zY5sC+b9YzMKejbln4y9jcd65+9suwKPA2iuqJ\nADqHr1uoPjNNMeaObR9Qt8wBFJAYjhzxAWdFYm5MrH7kMcnqPtRgAXbhSIsi+R4CHNwBA4JkBdvJ\ndouBMAQCmSo4WJNjUNvwpNSEWIZbWrmS1ZRiZQ7aGQTEUlh6bhI1+CIvdG3GFnigEWAKjRoViUEL\nug7v958TY9MsQ/Qi2MSuSYuHDPi75oPxe8+SuQzlgtrW121DBmqmTV/eZODqW4sIoG1V3EXNaKgF\ne3d3N3f/vC2rDavmmw8eOu/LAHzZq9z7er3i+vKlKcVO7kAM1pkTc78aAPj2Gvv71fv294xEC9wP\nFpu1NbaBTTWDNA2tgZQhBoICAR6WXKMOuUtwSHQBbdm/Hz5edOlEP69RyQolWaMO6NyAy6wGnrSy\nsdPfLYfuSuWTQoDcNRRlAULepAl/9AzEkNb8jBgLMHKpLB46nPsZHJRoeHu+z88XsWDf0A26OQhp\njKH37rU53Q2weLhqdAOGjEdXpv8TGyA1sus46sqVCTC/O+ILCEvsDEQkV6oa8ZYnSI6UzFGZ6HVz\nAVJWcm6B17pwPY4tKriCu9crAPgit7SkHTcU4Gs4OovZd+xSr5pXlJuxyewxC90sZrSb8g8Hgev+\nmi0qcnV/PqMq3iWmoXgRC9ir6y/3r1fM/ZpUUOHWHzYpx9Cz/P0egLrBBthVCBo6vZE8oBjDOAsI\nhlv96guOgR7Z3yuWkbB6UwwI4CPKMGv6aQFAgQCPEjMq7MqQFhJWrrSK2gHOfwdcgUeMFrQ8jxjx\ntm1tYQxWfsjWAUCsJyIYTYitxOu01ThBBgGHehxAIWMvALjVFum6hLIB7DKZj+zjLZRIQn6Z1fZA\ntv3wdRGG8Ei/YALFHrdts2uHWBDR5w3Yq8OJNagzOGefU9XebRmN4fLDGFBAXvGwOQ0A9t16XXIR\nWZRrB1XItnk+gF0E2wIC83UFAZkSK3blq5T4fQHhBjATiMh/uABQV4n00yUHcvhYV58OO45A4Na/\npo6ug0+iITUj/gEE3AMQFtssvzdmdKVNhUqM64tuJQV0QHSD9RPI4hJ57CDuIRFYKw4Q3X4hY1We\ncn0iFmCKQHMGMmYxiAlsiFdpyQIGoSTFBISWvXZQkliBqUYojjltReQ5fY7Elu2UvSP0STaT+VVg\n2pRaayfvcVB7j0AOo5Zo69iXKjvUqT+Vj4b68ozHMQY2iAUFdUCmDR9OYI64iiiGbOYReJ54sJKk\nu1JuSyZmnDoxp7irt2cXZC5xh3IHxP0rUWO9+x5g7iAwX7M1Bq/XK64ffmnUDOKBEanBQRlpZsV3\nILi6OxBBIkS7i0fpC+nZfxPv6uoAgJpSysFD+gBIEIj+3NqPCSPd8lusTp0pq08X9bkDsKCe6JaR\n+wmBDo6NaI0h8HtFPpg2qwetyp0JtqykUEAMismBQpuPc29uAQOC1RckXAH0WYSep1g+3JhABNs0\nXfkx1T5bzCHYCYytLVj5lfbLf/ey+co+E9Pcjxgh48qf8Y8K5aZwJKBtG2S7dMYjHjuSevWawBgN\n9j3ztZulql6SYV2H0GqX6PUKAlYOiCdFLQQDzeDwxO5W3oxIrHE5IdhkeuDSVyRQxT4iMEhsYL5m\nTCCoGZrCAbpP7LP7/TNeG6YZPkqlt9e323Zcoutry624xYtuMVvmqSLWQaWTDYDy4vGG2M/JG+JR\nXPcnB1H2ETemQI694mxzdrP525B2zG3HvEzovmNe6W1Iu1kTkD+ZvrAAchGMF761CQvICTH+zD6W\n/ZIKH8NZB33K4i/7GROg0Y8UEwi1c/vobllYZKTC4OyDJSAXALQZc7B1BkCIgD6VO9jFtmHsE1v2\nJu24XC7VTXi9GgPjwVxbB4AoY7C1MAxTcehtWkcQ7jlqMxiRFgh4vQQYDDd44S4OiPUSeKT/Mmzg\nkGNNLlU2RHLYcMxZiR6hHKuQL1p9OD0ZELAx1wO6x4i5iblHF88V+7xiztg6ADgIiKjPqgIqEASP\nctdQ2HHZyNpd0todBTJHv5fMreCkDjzxJ1KNTFv4tch+bS3F3svVSSBw1qP7rOXRVyaglR8IjBJu\nQE5UFxRouSXN6P6FJwNdmuVPxtRGO24LAJwEBcUptv+Pnm2b4KDJOtY6ruAkuWzsomwWRLygyuLN\n4tWqbR2HvoBMjarMeSZR1yZw1BtA4EaMwOIIAQImDW0CUSh9rEMYeUAw0iMIAEmKcqZggUHNFbB5\nAm5EpmZMCO5ahLzndc4Are1r4NJj0pMBgc1pZzae1qy9HO23BxPwQgbRC6qZ/r5Zn5wJ54Ncthel\nAONS1rC6h7zbLANIkTsT75yWmm4BKTpQ79lQlA+o1YBtncNQ8BUMckTg7r0kS1xAtQMBrKtNxYNj\n/qab5oIqbMz/Rl19l+oSXHsFZPD+SWCQxgjUFOVQfK0qyxWP1d2UFQgqTtFck2EDYaJbLkCt1TEA\ndtFWQKgpxOsswpnPTCACs4/oGmQQqF6kWHcw1haI4eYVP6qaiNJpyANKLpgZRA9AjAlINhuStxcj\njG5j8YZNNzPXEIjYwu6xiYfTkwEBGWJRWKcwOmOe/8tkAsUC7JNMAM5MqQFlbD781Qe6+Ces4YX6\nwXPFnLjWfd70QaW6o9ZZbEnxc5+U3pH7sHApNWgCwFyAoHUPxnlFMfO5OrFj2p/YPvcIxPaybbY+\nQPb1BwheCgC2cJfGwgJin3sIyoqLFAMoFfCVgVqAjlkXDgysrWK0KaxjLtRlAd3wo09iNo0Fnf3u\n9RJNliC0DZKFyDuyWxkSnVeh9B36mD1mHjPnZRQAmmAG0L7UwqRO/aE+bua6t5fp8ktyEaxUosFj\nlaTXDASCCYRVmTBreN1L+fOjNB5A1LqMxPzhLSbDbAUAL971wka+vXjhI+EuORR2u1x6ICyZQV8E\nNASr2EBZ5hY8XLr16jVoXelzJCT1ALRlyui7Tq3z2BXwZ+96xVV37LoDuhMdjSQ5COiybcUCLpfG\nBjJOsjCCo79cTMBuL4hWqyfauwtLyY+R+jo5WMJABdjsLlrSbVcI9Y4syp3AB9BOxHL6dzWznvsB\nAgEA+b4Ajw1EvlPhnRkgt1JFWpmkpH+WIADVZDUJAgozbNEd7IPJYlzM9J6xed2z2zxcyJhCbK+/\nKzl5THoyIAC35Ns2oJcNqhdfq00xNh/ssw1c9w37fulLimmsT0erumzuDlxe+Nbmcse4AdEJzB26\ne1eO+si16eveib1iehjFsDwSHQ9LDEfuPBaj/ObMfdUJ0YgSl90YsF4C54LWG+LcN+xejZ4TqAyy\ncCBrtmELycQgoS9F27aLzwd4QcOAOztaQSH6zUezkAQCQIKBPdP65AWev+xFCEun7mbsFt2eiysS\n+3M2pfNCepGKDWgr4fKdThICkriXTkUEUDEpws8uTrosBVrFDvwhSUPZ3aHfvI6AVXaq2zDnciwg\ngKnANrFfbTryPgbmEOzbwNzpM3cvZ7SHbXnFp3vpyYBADkEdpuzA5qvwwhV6x34duOwbxQxqRGGA\nAAtri4CHpRdXLbXuJcUVNi3Uxl1H3zl8NeDpI8GAopiN2q2fCOD5LMFEdNWccZbkUYAhSgOZgDmA\nMW0qs3rUQ3wWYXYlEdU36+F2U603ufC/rOa2XXyG2Qu8uJCLFPMEMlB4DBaexgcQwo2mmOX92n64\nVPFy1Gif6n7camRizF8IEEAZ9AOsaZBsZ4Qcj+Dyp/4Gm3CFFC1lg2ZwsoOAlU1p/+DKcDdpMNlB\nbCWf3eVEdabixzDrXEdi5hr60Gld0HMI9qtt5z6wNxCgma5ESMb2qAG+TwcEYmllbAOCDUNs2nks\ntbzvG+aLLWfQlY8eAULyJz3AVwtiVtAnBVbVmIBOzFjr361/BAmRQSoavMlyRopfoGCDVrIR41hS\nwerWDCDggeE58lXFZ6EBOk2Y5wkIhE8b4s1ddABSCbdtO2UBwZQqVkBMgAYMBSMIIGVaLnDLOEGF\n8TyMAQ8RwGKKEW+YzggCADoT0BUENCvGNiJep3bvBhLsPmB1W5yaxzJm026QowRZRrJGaz9dl7D8\nIWMb9y7EucRCUvnLOER5KqC8yE3MOgwQGAsD2Af2OTB3afUTUYntdQOBnJ+OAfGRV2MAugnm3Noc\nAh4zbrqnYApX01tRAtGEin1IQbxOasZ1MS3YaXCBAOUXOLgF2dCNBcTxSc91yyUlXjo8+DgFGOWn\nzmkCr7q4ll4YpReGFBlHCbyYMoZrdM4GXlCPgbGBPoR4LH3psihaZGC6/ksdAyDm61jUmwBF5oax\n93hMgoDfgUFAvc4VyGnW1MT1xAZQJBOxHy6AwWzd48zSS39ABIqDMcomVZ6oKwosx7MrmDtx6lJG\n2SadMydUTcnn1QxUYwFzYN/FQCC7Juvz2rkD2zZwuVygcwdUoHNALwOqW04kyleLRWAnk9u+pvBe\nAYvw5ItJQH2vTtnM+hgV1TGgc2Bumy8msSQRqnC0bSr9ibtQUERiLkFpjdnnuxYU5gpMD0xKyQ1y\nzoAJ5hC7w/SyC21FxNcJJBbgYHBpLOBCCsm0PcbUV+CuV4W4lWP6C8RgV8tjjMIrMEnFp3jAtm01\n3JViAutozQRTX1jDfOmyvOyu5DsAJEZ1APWi1kk6HkrPZVgAza179727i9PmVKRL4DLoKxId6Fy4\nAv7qaxsHM4wJiDEB60425U8wmINmzZZ+TJ24vIjJTPfTkwGBj/mYj8Ebb7zbI+DW/RejAhkEYgus\nFLGsXlLUqNiIlistPKk1uCRvwTs5MEddseJeaM+29gtWUec0gc0T3eqk8jYkS2Fx1o/g2UPc4nNZ\noCU7rvAqvt7NGuCC0MpAFAeIoGnGTLajwssRUKS0pmc/A2BZgixNwl4qR/Q+7K78F2zbju1iw79F\nxFYkjjuQhct6VvWZd4aQ9vZojwOEQ5SMhUDAWdZIhR69zqONW5v7/1g/DIqYkaH+P/7s/fXOACTy\nY9fFK89CYISfxngR5sIN0Ca2r5vFCebcEJPZYvxJvZXYPm981z86bac1PR0QePe78cYb73HF964u\nB4J8oSgzglA8Ui4kziO589pHzCsIx5z87NpTn2/mgSljDrMLIe2HnOuxOIfVngMUQtgKCCLrzErs\nB/G334ZScc9B3NOU3sfey4CN0pODEgcTOIJBX0X4MF9gAZTbABDNYIFMUF7zkxXFMRuavORAoKq2\nIKk/b+f6X9tA4ngPjoU0UA5p6zEksRjFyBzWf80zO8DnPVIGIoC7EQgogR3q7U7hehCNPcshnNWV\nsHiMKsFfm2xbPRMA+DlvfOd3nbbVmp4OCCxMgIGA3wbUXjFOlWBJCF2lC46j5T5mLVMm5k/NOW1s\n+D6pcYt+tjXvaZy6PUZoU3S4aCCZ98plA4BkBe2cmPeeouPnklDG8ZiP79N8GQRGBkm3pvQJBgkA\n/GHlfxwQhNyrUslE6nuCV9zT1hFgN2C7bNjmhVSw1Pj8PY9aoyOpvdiiRt6iosN9EnjsF/b+x1Rm\njdag+5Gtj5hHTptOEKA8DK8MH78Sk9RKHHKVBHDcpppZHJiCvZQErDVfMlQAFPl54x/8w0M7naUn\nAwLv/piPwRtvvGEAQKMCeWQUv0CiAifdKjMQxLDRBI45sY+Jfew+/9qma+4Adq1XYbPA8cKV68tH\nk25KUGEBz6yrAJosIFGN39lA3yaY5ZdGHv0kAwGRDTbP32b61RqAI5lAKH9sX5yND3BX4MwlOAOB\ndSBOBmC1FDksa4JXugP2gs5t27BvF2xzYrvMBAGRWJTc7ruyugIEu3nLS7hjKJLFLpjADawKRt6r\nyqSIPg6m7wp7T0KxFCXw0M1eMTqC0dnbSRHuKZPUKJN7UC5GVa8xM1MAaw+XsXwF2Ul7hPJHnt94\n4w08Jj0ZEAg6qGoVZ4tliIPCQMUGtEVQazy934hRf05MMR81VuwNXirD1pczH8BopbkAgnAFplqD\nToCGc3rEn/qy0wkRzf0IQZU/bWeibZFAEPuxE4NRUt/Y+lLAzIQxAGDktmaXdRBo7xjMl2IU9T8u\nIhr574HXdG8WVhC0Oc4pN6EzmlCi9uKTuWGbtiiHAMiJsCLWY3Di3iUQ+HNXUOoBW9vGWov1sR6D\nSfdE9uNruoONgqn6uA0Pffq1Q21WqlAdWo+hhL2ofa5jYo4FDBHERLVNsrtYELWmO7MrAygu73qB\nx6QnAwKxIKQNe+3uQIAwUBY0lqmQQQ0faB5WQMw/1RnULe5RySrZ1x9UBTYbszDV3vvHY/6TBWwT\n27xQg3rDZeOP6m9e3IKghpEJ3u/HFuBIa3IwJ6b4iCW6YtWfGPrs25w2TFOKhy+BfkrzySrJcX9l\nA6n0lLewlP1eZQHDsg0Cn20bULWxInH+EEn36zYbKCCI8+p8oupqgD6mLdu9qdo6/g4IEWGfOswA\nKGzdA9QUc/CzxAFk+FqDOwNALyuXH16udcHW7CqnY4Y9zoTEV1KT6HaUJf5UMZlb8Zs1PRkQiJeC\nADxNmKZDurawZRRWeLfo9mdQat6UILVf6YNC5TEE9npZX+ZKJAXC+uy3DgRqKwyFkkajpiKddhE1\njm/ZyH3tDIEtAlsKoPaDPooAiICgbQWDBLGYQCwmWttRCpjCehTcfO6NVFZfDseFynP4bQjEX/gR\nr9SaPtIzLpti3Z63uggP7ABdJhgA4iPT3tqzTXtLsr0Q1mM+DhQGAPb2ZAwxas/3RT1PRHzG5N7a\nXLKNer0WC6r5Kbkdw9ZPdICOxUSsF4RYlSqiS1Zd1kmo69mPSE8GBJIJIGYH7lBbZNBpEQvk6HLl\nYDDhb4SZ0TilU8wQsnrivsEEIBCp0WrMLEJAIh4xfez5SpODDcRvobydCpP/JkHfOMP9eqaMsv4G\nm11uN/UtLW4SrCSi/ryASLgB9YpxElRiLvfSrd+DzURd82lu3MovdxCwxWBtTV9BMYAAgbw3WXiw\ncQAAIABJREFUK2N2jxEwZNv5ecsUcJnTVjeSaSA4p7mL4f6Fyzg9jxMGFCIuQlr3pBAtN3G2UVVD\nMa5R+7VqUy0Nhm1kXGuMUUAGZgFB/MPoxXMo/vA4DHg6IFBMwAAAAQBRG0yvUMIVxjPWe9M5McSD\niEtNaP6zVMJpaL8h0FX7BRqhAyWB83uQVU6rnwpr+ywm6VKKUkOiGo0tfQpN9Tsf2IZfaOMIcrmJ\ndm2AAa8dmAuLZgyAFbpYQZbxZMtJlnIKGCCX89NKkd9MA25s3ohgTsGYNlJupfmxzz02egMI1nMw\nBWMqZBcM8ZeA+nVTJ4bauhbi92CZa+zD57Dks7g9o9RRh6T48P11MNYYA7hsgL/GdsQoUgeBZAWZ\nBzYw3m7WGAcmdy89GRAo5G42s2AU0RCDhIjpllG8GLU+vOEEHu0WW9RStxAImrNP1l5J8TsI0OKj\n033FymTtM/0vuQGyZCUsKTRhGYkFsBuQ1PkGM0gAUKorkeZz5vyJtiWwIGvCovMYMVrdAQFyfIMM\n8eXBQ6gFkwYTrVHuOAfD3+wMsUlWqofnxpiRMSQZWoFAxQBUPb6TIBCLkk6MfWZcSdQXQQ1GMG0t\nP1v6bYPMWHJ+swVvpq2TyM+LuEGqJzMDrm+fR3EYlZnjJmo27KD2L3ewYgGqMMNFcibw1Y4fkZ4M\nCCRVI/84F7TEKqwLt8ytCYQ1iM1fH8N7Ey6onoRFQPo+euCnWRN2CWLu/FFNOFDDCg/tyl9x3B4T\niPnrieas9AE4LBAJAP7wsPxNwbjrL3xGBrKj8j8GDBo7cCAIGB/DA1fDgmyAgadNMdCsqNaECLYH\nGy0n1T69VuGDqWx1Xsi8375A/oY5DAQcCITaOK+BgcAW09Vj3cJ4+9Oc2OZ+YCFpRIrzZQUWkK9M\noOYf5JufY9zE8tYjjiv8f9S9Tch1XZMedNVa+9zP837R2AixI7ZCjIIRxZDO7ySiLcGMTCCIIDQO\nghpsCDhpB5E06RAkmfTAgJmpOIoDbYxIMAloSCSaGBLEjqSNwY6SBgUT6e973/vsvcpB1VU/65zn\nL/YX7ne/73n2uc/ZZ/+sVXXVVbVq1aL1WKK+pLtGxWeBlXf/nO3tgAA7LpQ+haHRyma1KswCIX6z\nWPKJMksrLVW7dnS+34nqQ0ISKWUNDgZFzYdoik2roEifLoJKKNfiTQkSQILOSXvf/b78vqAHGs2u\nefPPxv0RhgXlNuJ5ALQMt7pVAGiBQfE2F7PoGgo/gKVYQyCLKbXS+vchxkLFfXILouqTvpbPAVvg\nnAoUhdTSQaoAy5LLMusv6/FYhUZhl1n7PZaAy4VompyszvNqQ9ZYEVnPDgQxbHvUvI0iE9n4KSuU\nO1IAfxauav2p7e2AgCMw5dmi3BTQtIDpS8aB4Kc0b/VT8UrAeY58z+WzwkpTqWsgqWQI5iuXlkp/\nUNPSuwAuFOHYPqfANUiQ9kihmdIeqgJAtkFlSHb8pvC1mm8BlD3o6r0RZ/sQA9i3NpJQ+hBkZYNK\nMXzdhefKn5TXT7EDd2UuyxK8ojDLKv1Y2dz+Q0XEAGI6cgU6AkEZEYr1DVn+fl2Rgv6YxbqKQbD+\n3a05BJ0FxBDpXv9xlOeoSJgw01yleG7Yoq2fsb0hEPAGFLFho7BkCMF/ygDYufUYf8/FP4YvDBKN\nTSpGK4lg/qB1js7fcgS4yMmHglGRVlwZROzXU0ZABmSMoAACunLFtn22tc7mOtQZdN5mxdLuDEB2\nudkEbL+bFgEvd5TnH+YWlJUfFR4nyK7b9oXtjYp/23M3IOE90iomtW8simdTFvF4fC5eO2pCapGF\nWAPDWcDV57YQBNi/lKcKAtwnALCdpGdvHjNiGeHiFMNSmWQbMfH33z53gEplMyg9SQNW5IPUErXD\nNysSLkHS3MG6ADW33q2kYtiEGzHtq2P2CtiKMyLmP8ryrCxbLsz8yZxnoKVjhgPIKIo/PsgM/Irh\nEqRrQHbweVu15WRMfUShU4zypz+17QqNre/TVzKBVk2Nre/L9YEEmboPd66wOwDtN+kWYjumPGUo\ntIA5Hvw2/PJoQkECXnR0Hqva5YcNVCx7cwkJAMUdwOY+7m1JZheul0gE/Or6AXUKtxW9lXa+yjbW\nk/sLoFXF1skf3N4OCMCjsWMYEMDW6Rt04rYhsfBvC5UMNtAoZla49QLlWKYi8KF+v76fmjP3fA1f\nHeoBKLWouvuSgxVdHzongUALAPCYGFsun/H5wy3Y9kktUf5GvfNNxR+pNvA4VCn1jSoiwlysad7j\nBgQ8j7c5seA5APQYRFD9JwDAv9mP4h9IHJegwHTZWONs37TKAlqbVC+A+jJQ77MWAkkXI+m/scGs\nHpXKzzbKXtJ8vtJGkZ69LyIi+TnPlawy6wYI/66T2rxGoWJ9Lga8IRDwhl5LkRpqjTYGrB7gkLRw\nHA8ftdyVFEEqoCEsGOIAoFaBJ+2jNzY/UIBrylPCjSp7Z0wUK5FWvaL0UI3YAur3ARhV0Tals7vp\nFK9ofoKI/ZUAkGqe7MjaQSGp4wF+2l6VmewAUC0cvG26rZF27doHz8AgLL08/t5/HPsAhAICIqzI\nxk4bD+eq7mOOkNiFowKcA0JY5rLvqOl/tBiA15IMsNB+bLRx3laA2saQck1HzV9Jl6k6dGnZjFbA\ndon9zdwK4LL05W8dE6gKtdwa+6IVCnhElzDq6bEcBhuZINPppm9CkU8gCKrZJLmaJs3MQSDLQ+/3\nvCnIvnZhpB8Xy//gBtTzbBa4HdNYBIqwqT9dYQWbi1TtUvtpeba09nkfFRS6sO9Ku0GC9LyFUMzK\n1jbWkE1fFL993wFljIWF4fmSlu9fFb8yIjt+BCBy4WuBLYJqILAt7UX5qE+mZbr5YiSyALA+iZtE\nm+QH+VxkB/Zs1dovlElzXOjEFV+CiVwwv/kyuVZ4qfd6wY9vbwYEqpCrKlbUqE+B4muA01wJBKN1\nOoIBlNODRp50sFBNFwJsAhRbAZQelOwKb4x689PKs9nb/T3yPHDr8sTF2K9TmQKiVh7BANkWhevE\n6scAuqQWNlAUXQsABDipZkEUqW37KHDsip0BhHVHl9PWtA0V+DydXQBedWl4pqSD0+4K1foIY4wA\ngQu09najDBYzfTcMBRKQAgQLMLpE5a2Xx9hbZn+spP/ek2thqS+Z5jGHVH4N6y8XF3MVQK64KPvH\nJhF9ywqNhh8kNgGGq/wOBvPKa++H0AW2djLWJmX2p1Njkeg+RwNQ0KKqCxDWVNsFeD5nGPxNuA8A\ndMYwlHoSh6KUlS7vq4WtgaCdrgtWLjIK7hVZ6pfinfdKZVG3Vmn0GTVXaBtwpkOSDauofzoQyAfw\n5Kn10Wgb6ndQYPXA6/A0YRk2B4Tndd+lMezyDMFvhOq2xSAe3BHeprGGQWa5gUCUVUcBAl5zY0Y7\n3+kg8KSN8NhwwekKg8pkOfX9AufNSKzxaAlVLFwr5fWtYwIxXMJORAKClP8S8nYQKF0WCl5x2BW2\nKXr5Tvg7pOWnKyL192iKBKFPWYCA70Qz0abut/d2ms26SLX8DAYVuhd7NToIGFWNobhNFAOjChQ0\n8LTfdIXn4yQw+CNTN/0QWmD0L2prCYJxdR99A4CxMKK2OptJmzw/AwQ+1yMAVCDwYx2Ahtdf0Mim\nlBxKli5xDyAQAtjMU4BGafntxmvD1n3vEBHPDxgwt2MIxEeqMtYzXNnHEwBQcIn1T21vBgTo0wcL\naBNhRnaHAhbBF4va15TZPFmcs4FBiw2UA2s3C9kCAgxyVmHtsqI0RSsqIxAqzZN9Ihi6YJE1BNVc\nUEgpqFnjCP5bJBChLUJZnk+1iBh/Fj/CVsusEJAEjOqS1EO9leIeSonBuKDwEnz5NOIxrGLukIHl\ns/oMAyRBjud+tmleQLBb/eevUCBfa3EOqyg9ZAeBfLpcJagCgL0euereA1Keo++zbyhPYkptpWzM\nCLJrZMW05goA4grfAGA8Tu3+0PZ2QIBjo/HfSN+/Na1bZxeqarXCwmuyAf42ij2Ggvs/xq3seEmW\nQP81mEMT7AIA8QBFLcTBymlcUP9AEQ2lakuYhdKRbi+3/iUoKBoKHGAQTIJW2bYOjhl46sbHn6Up\nnO9p/5vPRYB6Zun80UKB9Mkr74WThUzxJRiB+P3U0Yx+0zxLebYC4CJZfacHCL1rCEI+SUfn0UAg\nCsMglZ/vn4GA5B2EF76bGcZT7DcLrHmmqinHlcG5QVQomKIiIa6u4BsAPDCC8XlM4POO4gOJ/Jsi\n8pdE5G/568+KyL+4HfP7ROT/FJHvish/LSL/2GeeHWxKNmigcPkeQNMlgBaK/cOAFr+reicpy00Z\n+Sq/q+fA475aJkUqTH2cRyvUS359+EUWxKBnLStVaKtkZR6mBcfQIFLoq0FowvnEusYzVoaibI8a\njCzPrdvTb8dtzRLuVTK9vO+Y9NTOta3hsN14PJO3+UhsN7CRKPVnihrHZf5+1FbY27bN/JPSf2Xt\nhDYL8HGtBvZhTuoyNzc7p7Dc3lKbAWzCVTSl6E6Toe+PO/BzAH4cwF/1K/9rAH5aRH61qv6MiPw4\ngB8D8KMA/jqA3w/gj4vIr1LV14+eOaxI2gzaWgUgsvySo/yA1NfoUwRUWKKbM+o08wRyk+1fKVe0\nm+CohNT+cctAKxy3sgumPEBXeVRtCsSlpHOpMrKHIvDCa4d37lF63vEDDOX1to/DewmUSFmsowwR\njwDdrg53oaqBzRrtFs8ZIIIO3huQS7SZMwEIah1Juze714Gc91EuDwDwlRdM+ZMHtr5QKKZXrbLX\nFYuSWkyKhWw2VaxC4H1BeWjxAH0iaRubstNIgmwwwbxEWKiluXrd0nwxJsF7iPfymP79ke2LQEBV\n/8vto98jIr8LwG8E8DMAfjeAn1TVPwYAIvKjAH4ewG8D8Ec/ef5680JR35WILbxgw0LLdbZQfyXn\no0ABAQ4CNP+3xAn4fWTB8fcPvNe/D2qI6ORYbCLmP+Rv+C/9ex8J3iycJiAARXAsAmz4lscGhYdG\n27HNnmBTPH8o/ROWUEGKsyUJOMEGQv9pdmsPpUAr26kCQaMbvEdvH1oyGv9FEFBPDRa37LVTqjKi\n+Oja6HneZrIXS/gxeh4uRUiSs6lic4H+uHsegehjngCPYxtWN4c6jvbS0oab0jPBIUAgwQAEIn3o\nko9uf8cxAbHQ478M4DsA/qyI/AoAvxzAn+Qxqvq3ReTPAfhN+AQINLe4VN151D9GwIEGBAWPJfYo\nbABeK94tTgEAFOUH+rGhNCjHg4hf/TwOndG6dqcmiz/yOdWr15QFSrUAQDCCFFxsAMBWknIseMuP\nLZx3HgHBRIIYw8++K4qy7avFfyZp/nw1/rADQMUx3vOubIGxrOcoaelmYRtgNShNFtDBYFcKD7gq\npx6v7ONyXNDrZ+/9QCld8zDjsXWC9s/KXuI5o/EyOLyjRWMF2YZWCdsOe3zej29fDAIi8k8B+O8A\nvAfw/wL47ar6v4jIb/Jb+vntJz8PA4ePbvGsVYJjmtfu29TWXan4+gwAADzZywYATidQA4dkAbHX\ntBShkOwc+q309wfFheO4SS+pwtSKVbLQUrTtGXmWfHKNqciVBdAK7K2zbxJHajIBye/K1DowMMlq\nQGzjBFq3bAUMdlch4iz1pqKz+b5AQL2hYAJe93HYlTkL1CymX9VxjfGAgceofTxjDdARBOp9+fuH\nOAX98MIOosnivB9p/NI5AmcA/P0i+PMWKhPAgxtgtRDyVZWf7f/9ZAJ/BcA/A+DvA/A7APzHIvKb\n/w7O07bqMiUTQHRyWmUAnjSx/97G1otP6T+STTT1USw6GACdDVDpI77gMBOCVBgBQUmTreS1/CH4\nO/b4FvSKoFz8Kt+3Zdn5HryuglTyY3LJwFwwFgJief6Als0NiBfboJ2Y/xTGJJJC3Y7/sIjSuibD\nQjCJh/bSDBwq6I5ZDMhIoMY8kFBaWekyLoHgMpmoF4p+56jRSMQk3dCiaruFZ+O3j6R/pdrX0Ag5\n2lZboktUjE4/vpz0wUX49PbFIKCqJ4C/5n/+RRH59bBYwB/0p/xBdDbwgwD+4qfO+x/8p/85fslX\nXzXk/pFf/8P4Lb/x14JWqz7UWsuLUsadIQSYtLz9SMoxVEanke0zZCAw3muChAt/KGoITbHk4ll/\n2WgpTP55LIhap4EWX7BnBea+1jLg7+0OtGjPo+Ft5j5iAnQD+J00OY+zUGBDKJdntmnIW0T8i9WE\ng9MY8IktDgoNjPMm1dvquewm8K1LcEneU1OaYe08fFigFi8ZnkWny4bSrM2MDYQMVIUS4xTWXysm\nqlVZQMhCa+ze93t/sFk1Z5vGPtywx6nC60H5jSWoKv7En/vz+JP//V8ocgT8wve+ftqS+/aLkScw\nALxT1f9NRP4mgB8B8JcBQER+KYDfAOAPf+ok/8bv+Jfwj/8jP+RDMxb4Gci55c8k4xEI9q1Yn+jU\nrvTkCsEAYGwiFCoqX/B3BSh2JEYKcn6gAQqRhARk/YStUysIPM4zeFwKbXGlnKq8QXLyegQnQEJh\nn4FAG7ICHu4xgUBLbkFeNMfphy8YYiM34gkwpPx1clZrq639tLypbSBXabMCAsNjQMocBA6ringp\nMrIDY2is5/gAAv7J0BXtYhN0uCCIX6cBR2Es2zO15/C3T1mdaqs7sa80/KHXj/y6X4N/7od/tS/g\na9OL/+rP/R/4t/7Qv//Yztv2RSAgIn8AwH8F4H8H8PcC+FcB/LMAfosf8lOwEYOfhQ0R/iSAvwHg\npz958kBA5EueNOq2fZgR7Puq4I/WH0IXIE9jR/CNpG7EMdruuz3LszsiEFRFarT2OQhUAamVja7r\n8nNiW+vAga3mjwu8YhMQQctnTKCQfOImHQz1eepkARToZAMEmR0IEnhyxGQDm9qk3la9DQsAQAEM\nJI0uBV58yrmBwXDWozayIF7NmNKwvFw4YxqaXcv2WCI+TzE7kkunS3EHArcKi6tfBGEkU2t9XCx9\nBYB45o8DAOq+sNJ2Hx/ZvpQJ/AMA/iMA/yCAvwWz+L9FVf+UPZj+QRH5DoA/AuAHAPxpAL9VP5Uj\ngCJoKIKAj+p/bGut8D0lKDEJZ502UxlAktIukEUJ8ubaUFp8zEYHsrP9JmIdeh8OUKABQArtk04F\nqeJ62BMELl+sRVUtgWVJrGjDuvaAFBxI8IsAXAUBSUteH1ZVM2CFvGfIc0GLRBWpDAA27Xcl0+jN\nWf/6cI/btRHDqukKrAJQw60H6xpmCTlxek8mUAs0857IUOKOFJHOnK4ADYfLkgtqM1gVxCqbq8/y\n5MWiM+1vLeXsVpUfdABgP/GGPkt7vjxP4Hd+xjE/AeAnvuS8/ruE02ca9xm/d30LZatbDw/6b9oJ\nkGzgWeNVZQk6q6XztVl88vKnaFw7/iMoX2k/BeG6OhAoV2jaVkPO7ESCg3oBFi/SgtmaeWcG+XeZ\no781VyK1NkGvKJ5t3SPs8U1BfdX+d92THayYPMVrUTl8P4ztDV+PYHiZuFhw1atUAdPLy2XZObpM\n3NdKQ4wzEEBzz7Yoz8N24AeF3dgnRYFD4YvyNoPQ9/FftfzlmM9V/Lq9mbkDQLf+1TX4nI2KXwEg\nPivnCTCghXSBSuWtfH+7O05cisAXPy8GADwX/0JcD/Fc+hDhZWCovn/w/xsTsPnmwTzCFXA/uCww\nkmms06oiwZSDy5ZVVkAAqbQ+LLtsymsPFEKMxhD6RCaJvXygedO6UfdbowZL1NJfdAOWl/r2Ic0l\nMRuxLvLZnk8uwJdxR6RpS4AAFZ/pxfE3Ehgzvbn8q3Rv8iGIB6H85VlSJnhsKnZFxgYIoRuVgtTW\n7vtPbW8KBGJLXv8FP9ksfwOA+q9/X98rYshLm/TVEyKVICocPb2T5ka0jn9m8UuF2qxwXFkAa9z3\nSsdZA7+M0xdFtsUsZgCAVbC1BwmB13SHQ7ir4hd2UP8LPz6ku1uvKqjBBgQQsFZAOUtF+t36K7qi\n+AmZ2pzxAIKAscElvnxZAUd7zvI8YwJyQWJJ9xFKXUc4RoBBXcxlZXsVeEupqSyxgEE8XjcO5S+E\n4jeKX1gWOkjk+b6cAXB7eyBQAUD1ix5tZwPPAKDRU6ftCpSg4IeuKHlv4Ru2b8FYQ7t3WvoPKH58\nV9Y0IP03v7+XuCYgVDchwMm1zWjwxJzLFvkcs4BkgoTUz+DxhE8AwbPuCmVVjRxYbcHXwgWqO0CU\nKNY/z7V9pwBzMiwmsAUFF4uqSABBYqPU5nGwu2wqsSwHAnl4DRFfBcnWLCQYpDugCRzl32ycotpF\nltMw+N8t0b8oeAG7YATRJgmK9bd8xgDfz9jeHgiAwqBlSupHjt2pf40HyAYA2l0BE1P7lgrLcz29\nTgYd7LeSgh0oXu5p9+/r/tn7Z9R/fz3GCrZIhws5a9cfxwGdqYiCgTVyafXEgcoEOhDkuYvyxqtb\nrQp0Ej8r99a4BIq1rK8CBOUaWlymnPyjjQmwJRoAFI0If98BwGIGPW4QcYAxbAVjxgTGQFT3kQoC\nhWlsErtTfqr2sy3kvjKAovzxXe+A8srtmQx/aHtbIPAJN+BZkI20VtFHAozadwaQxpujA73pgiU8\nuQ6AbWKR2x0aNH5GGuuCnVa++vnlvX/P9e7qElftMxaWDEHI52eNRRsmTPr/sKd7EIJeqO9jy0aL\nSJpQE/hYxCXrO3YLOrIcOEjDkeeqzKK4GpG0owbYfEgD9sLASh9bfwzISIUpArONs68wFFylWYRL\nfeUiID2QKFkSPNwCtnd5jzoN2t2lvJFCbDp5j7bNP3apSyAMmU1O0fa7G/GZ29sCAQCAlsKfXSEb\nunmrmgIiZmZJ+boBgNP/yuLDJfBztGZ71oY5xbFMRCTVlI7kRO5lghhLWa1uya91PbH8vsBFBY1I\nDMrrUYnp/8sWB6ivOWcsRS7V4kXbUu153gSIUFS+/4DS76DAdiXwBl3fXAMpR/R2L/eXQpBgITxG\nEbNnakzCGUXGT6y9oXAAcCCoQdQCBg0ARnnWWicgwNCYw4gA6uNG+YjHJABoeZydUQXlf1T0ZEko\nlG7ff3p7QyDAB62K3plBQzc37cTcJzygA0D7u4MF39Su0/5tfFipdxhI5HTj3e9f+qj4y9exu3w1\nm+uB+p84r+vp8KEpcVe8OU35uYTVmBTwFOYRa9vNbbViKmxa/UrZI9+gxgnkScGNp+fc9SGBR8p/\n7LHogcRlbHdTeo/3VXpV4LGBkka8LMHqOku7qqYCb8u1s8hIa78dAOLYXN5ujgH1V23PHRCaO7Cn\nogNx35XmR3CxsIH23XZsdR0+Z3tDIFAsQX8DAEHj/I/8geYbDWD4GAD0v+tW6VsA78Nd1qPSPeBd\n1IVMI9GD0X2CwGULWnLM/7ounNeF6zQhva4T53mZEPvz8qpzDkydwLRrDvdvj+Ow1+3mINCt90P1\nm6qwqArPzpAQ4EcF7+XeP8QE0npny0k5X6q+FDmmS5Bt+uAAeD8HI4prqMcmzShYuECxroXzPHHe\nT9zPu8UrOHS6gUFdILS7BRxudfdqTAy57O9pyj/HhM6dDSQgpo0OPyeeKcXeG2KPjbCBNqtfz7yD\nxeeygbcDAkRAsiMl5VYnBFvA71l8gKd6cvruGqCnCNd72P7WJ9/Xz6riBAhUAFga1r7Sfip9vL8u\nE1R/XdcZz12vJTi8DLsDwBw4PAB4u91wvLxg2lhgs65SVsCV5hIg93i0uw+xA5GnTKJ9X5U1G6/9\nWe6scuOktwWIy7cB4iB4lfsHONOWdRrcHbgWrvPC/X7H6+trpJpz4ZpYoPahNJg87M2lmrh81GWM\nibkmdE7oWJg6oYOrZEm4Tyg8lTJEgEZJe2+uZDn6EQw6IOwM4lvKBJL2BNCrFtEpNvxJ6iYAqFJA\n6nkTKyWO4fkLbHRtL2BbFP/J+we693S8v4/1X+vCWejpdV44LwIAGcFpqlQyAIevVTfGwHFM3G43\n3F5uuN1ecHB/e8GYzHXfAMSFvvviEse2R3riO5WjO1CUz3m8RBOl8Co0psVWF4lr++WitGWF30XX\nKq/LgGwsGxZtBFy8B8ZjSmzpuhbO88K6zidxjQ0INoCI9x5bmWPi8vfrOAwE5oQ6wMTISnW3urcD\nBnNFNdbajFEETWWmQYl8Et9n/GCbZLQqIHx6ezMgEMglKTy9TMYz8u7TUpWloTRxAUAlkrlJfNw8\nDxSaVoS30fEn9HzfOLOvBgGviAHY/rxM6Un/qfwEgsvZQEv4mQrRCQgwpmAeEy8vN7y8mOIfLzfb\n324YY6biVWtaAnuglXLqXedVbaGYLLdd3J6m+OW4TsdSkM14FWWnordgaa6zt0L5fV+kIaLxJZAX\nihvGUKEj55QQjK197yEGfKIEgd337yAw5xFB1jkPrDmxrgt62Hs9jogpVACPBk3fJRdfiUVvabAS\nCNK/Z07J42iHbiDRg4qf3t4WCDjNsWIeEqNBqcpsLPXvNesCQmrwfn9T/lZ6HX7G9s+mPMUv4z1W\n+lXP4e8y+JfvTfl7APDeAMBf12mswP+ec2LqwpyHKX+hpkb/D7y8M8U/Dt/fXmBr2vf7fWwHoBfg\nIrHSZFmKEnj7gOIXThFnriwi2lND6Z8BQTKAXOwzh1M1T1rcgAiK0kcfktZxLS+57fUAPEBobXsv\nVNr6OCoPy6M7UCsHH/NMIJhX5mKsBT0OwIO3bRQmgoUoYCA2C9EBQAaBQkPWHUI3BvDE8lcAKMHk\nKF30ie3NgIAJympBkiTfGz+NmnJu/dVjBqiW/dkZ5EGI7YAEgAiuEAgYZUZRqkbZ0DrtIenHGUDN\n/jsJAi6Q98IErjPdguOYUNwAwGbF6oTAgoPHMXELJpAgMA+CgD55Ie9XEaygsqHuArCNq3Lv0f3u\nIvRW3q4f4NjdgVobIYqtrPyNljpcdeVgzoc4OPIxJF2wsTDkyqBcuAMn7vd7zN3gUt6RzTpwAAAg\nAElEQVR0s3II8NE9GGPiOiaOeTgQXAkAywuWroU5J1YNwnr+BtErYgWetUmXQGKacwWC6hJUZvAh\nJlAA99sWE4ibL1S9uQHB8zsgBADoFj2ga9CuIsECQuaD4sc/oejBAjYQ2BlBdJiS/lcQ2IcAV9D+\nu1t/AkJ1D67rsidxqhvWUBACSit0zAPzmG6dzGJ9CAQiwOS0lAL5aOOzuWMPBAA8dmDpGrD9vO2K\nZX9kAoUNPLCCVADTH3F2ghyyK0N0Y9gyZmtOXNcVylvli6nXWAu6rrgHQWFaUhW/rydwXAf0WFhz\nQQ9XfPfPpciE3Yv9RqctHxYjLozJBABIcQlclqJZu/KvkL0nyr+2vz/otPbtzYBACIwru7qv2vhl\nGqZU+m2kIMKHJAuoSp/Dg83N2BgAlV/rPT1TquiI7Kw206/EAggAlzMBUv47A4JlLJuAYUU5esfa\nI0sAgTCsz3teCowPsQD+HiDr58bTABUOPsCceIwqssRt9gPdCmWAlFaeSVB8lbyJhzhBpbdrpYtS\ngpp9pKIE9CJYWJN5+sy/xfu7DAwEsKCeCFQGVCSUmLECHZxvocWV0ARI4qkq1hwYOqD+ksF4TAYL\nBctjAs5TqzsQtq/KGx5kD7raMdhfn7G9GRDQ2rCoM7LqJ0+kV2nxJY6rzJb7PQZQAaBRf54zGvWR\nAXzsdbXJPhsLWIUJEAiK5SdA8Pjp0WZ90qEtuk0irl71hr9BATP0Uzy4qP7Pvq/xgLp/7MDe7sqo\nf5sS3WdBmiW+YvLUU2bAVF8AfbQDBQgyoacnUj0ZzqQ0BGgurNNYFwFAZPmyaMPKlI2B5SADiqjL\nqi0D7tGVxGMDAGcBqsOUXQSQlbECZwCAQLwuhN9aNis+oPz+WXUZsrZCZ6uf2t4MCMCRP1qBSKiZ\nJBRW3YWiTjBy7vCg5HVffd/mAtDS+33Q+gcTaJl7NUCTNIyWqyp7vu9gcK4yLMiRgmAMhTl4vbhV\nFKxuFPraVuorEz+CQFXfjgANCIr1z708+TwrLts07OiIpLKM8Jf4CNmAXlf8TeVfBTjIqgIQRhYo\nFaAV/KjMqKX41iXDGhCAiAldNmSIkKcV7oaS0ksygcoCWHGJyk9gAhTqiUOKAdXpSu73pgUIYHUd\neM/Rz40J9D0K1Y+/NfdVVj9ne1MggAdhL24A0CLV/E39JN5vboDk4f3UAQB8/4T6+5hro6dK/2w1\nAGAEuin7xgKqtT+vkizEfIKWWbhakAzAg+DXRBSBK51kosxDW5Yt/Gx8gBk87Ms4wNawVXhjJSTV\nZuUr9c/31xMWoMGACIK25gyVrgQHw9rnJKrMXNzYQNy/w9haUAcl0NjE6IO7AxUMhq110F2CjFFk\nfyh0agCAToXowJCk/4wHQAUy7PPmk1EsgwkgFT8YAI96BIFvpzsQFstJvdLv07AA5n5JKDeA5+81\n/waQ49zYDtiZgPb3OwOogarwW9u+ZAOW/QMb2Cx+nVzUqH8zrxrWkfUFzsgnsBwCVVgQWrYKzEVh\nG80niEaQgI0c1MLAJfx+ffi+ugy87xC9FrTaqT6TgzJJCB971c6N62R/DF0WnysuRFWCcB1csRck\nALAyQZtkVuIbYrmHgzIqYhmH12UFV5dALwOJJYIrWKsGACim3d8YGKotEAgGBmX1zMHWrAmyWp49\njvR+6/UHPw8AgDcHAl4GGgzvSSw7ZcIaJNR/lNQU6HSff7fZhdmSyJ/tIEBXYPUSYGvL3IrZgVkE\nZC0mAmX+fwOAMj340lQC+EIkpJM23p0ZcXaX7m54wsv9vOOb128gY2DOA2MemFMxJqK+ft2kZQMh\n3j+CqNPkYaIvrmiWk5H7ZAHsqR1M8AGF3pJa6qIaqK/SYaqA14JoAdllvrtcJy4odAwfZbna7Mxn\nAdXhSmuMohvNtg6kSC4Lx+d7oN6Mdwys6/Kmn37S6TJmQUUdVha9MQG6dUHfpYY/kOS/ine54Scs\ngO3zOdvbAQGUqbKgspexfwcEIOUPSOrZ3+uD8ncmgA4EFT03FpAWOAV3rw2QU35XAwDSfQJAGz6k\nr9+SYai7wwuDShpaNaBczgDu91e8vk7IEMz5guMw8JoQKKfyR8zEAaCMtrBt8/ShueB8DRO/ZUNX\nBAAqqfL8VRjzXo1omNKjWOYA+wCCAoSafSXeh7nAZwIFgcDchCvuey3x0ZXThmavRxBo4/7+WpAH\n0AwZqYCwyQgqw7kWllzGBC43aj6HA2rugbEANesPJro50GsF/BCE2rr++RMLTybA+/q2BgbDOpDw\na3EDgAeh5Sa05ngOCA04quUHytpvW+fuU3ifAACZQMsJWCvmA0QGYJk8RL9/aU3+QBFSu1MynlF8\nxMYErhOv9zvGnIAIjhsthaBVzvVzCVgnD2nR8MyV4hCqB6t8wVfV5UU+aBFDy/2+k11IHZvdWACV\nv76Pdi8A1PoKtc8SMK0/uLKRfS6CmJRlbtbVlOFZAlBMPmqGtT7XIwN4eK61sGRBrqsHHuPep0mv\ng4DqwFA/P8vDVxBwOdBd2OO78nFhXQ9M4NsJAhSIDEN1xS/01f95VHxNy78xgNY5mrRvt/q6VmvI\niAVEsEpLcMuofTABV/6zRP/XxgJC+fkYpUcrEGQ0m5ZuBRMY99fIMHtRwLzWYQU0UQJhYnEVWp1k\nB8Vw+5sGCkpgSesdbIHMpcQWQpF4iHeA8vgAgC1OoFs8wPsowYDAI3Fz9fdLmABmUX0Ot1ZgjtYN\n+u9DikPYauBRMfLUZKWzgar8OkYEY8018Sng090AdwuGBwmDDUDd1fA+lzI6QBBo1g7ZSWxq4Wly\nPYsmx41HfHh7OyDgHRZqrihg0OTLPtv6pwICDVGCgPbPwqrggzSKvmqMBBAAyj4nuxRLH0NfW1LM\nntctqfBwhaeSckYZS4NFAAsItnG/WzTZrKHiuhTnaVNm5zxazYAaPX9WQqvWFmT+/IIV3oCPitni\nnQYEOhTAgi6xdQDK/ZWITc6eDKW8tnbJ9nkIFmrGWsz18uaJaYJA8aDjmrUwy3VduN8tNZt/a0mu\nqRZml7GMexQ2QFgMIIDJjFhbMIgYQosupJS7cKlKURbKQzg/Us+Tyh8gLoA6gORwcHe7Msbw8e3t\ngACKgvjGqb6tc/yDovtg07HftDS6lr19RuXPEz0DgDoiALf+mf2WTCBZgGYyTLFEmQabLkU8BzwI\nSIs/RgrGGFYpePpEFP/FUos7QO5G3NfynPiF+/3E/bhboPBZ/vv+ksf3XLlnYFhsQU3YSL+hYm0i\nXtK7WqzaKbrNo4haiTYuv0jZ2+hIzRm4GtuSEo9QHSnoodAE6y1Hw+cKsEZDZWO8YSoV5aplldZU\n9eISPbiLYkCVJ0yhY58Pt86D1+XsTUkZyFWRCg1wpgAgjmlul7srcT8oQPAZ25sBAUbZO4B+gAnQ\n4seB1fJrMAAt+84GNBiBogDAUyAo1HMDAAJDF/Zq9cpvttRfIn/MMhs+flxnoMXUVgEDbWspcJqv\ne63lE40W5jwx5w3HvDuDYIFRm2QzfVpy/F2LYvA7NcpalcPWHWTQzt4LWPiT/ZJVnNMK4WFKtbXP\n6Yp6JhtoQ6Qlr0ATCDKltgB0AVf+9op2z5GZ+3m3+MxinKC4IeHkuNslKS/5gA4AMU+ZW2WKptzL\nKhq0Y+r7xvCL8jcmQM+nsgB+T+sv4rclZf5Ltk2A42dsbwYEUuHs7/TvFT1AiND4zgbSj62L5e6g\nEG4DGYDvPwgAH4gDPIAAGcG1eibcZfSzzgKrCSlSrLHMMlnFS4QFS3BLQCt2rQU5L8gQ3O+nW/87\n5sg6g5PKPjm56LAZdzHZaHpJLJuyDPdjBTZbcQkgS8IbUK8AHJS1sM09ILWzKWvD5QzgdJB0ih5s\nyd2mCgRkBwCgI/tkSA/IVgCOIbvlLsE9XIIAHb/fqmelkHHKDpAAQAx48L8XYP+X+AJdBo//BAsI\n4d4WkZV0qyL8sQEA2YIvshpL3QurblU2bTL3OdsbAgHGBBDtByCDd3hkAuXHj5ZfM8BTGcDOBtAE\nFk8BoMUAikvwDBBiBKAejy4I1YOOghhuocdkIZFZ/MDyqGvBcT6aYcgJGRNDrIR2Kr3NMtz3x+X1\nCOeEzgMZtPPxfiBYigpr9Znym4WSEG7wuarLUzL+2veqyQCKO5BAUeMtV9tTRsRXHbbhwKuMBOTE\nLUvtzqzELNmW39NaRvNuALAJWNDuqvzBehaAQSCoURH72Yh3fWtDhJIKD6DEBDpQSABBflbbOYGA\n+Sef3t4QCFBYgGat/fuq0P6LRARFU3Yp73koYICyNC5mr4XSsbtAb9TzmXtQhK9mBK4yRq3lJmrm\nWlJzrwJcgEAaCJRgmwaNCWFcqoBeuLAguHCe/dxkAznt+MDh8+IJBrfyXQMNjy9UtyKGBIvv/Ggd\nS5uig8Dl06bJCuq8AcZW9tWXo2dLjKz6/3yf8OigrjlCMIZYjEUnlh5p2AVZBzLYRFpxmySUpb8q\nUip8CvISyIAtiV7Ey97ztwsZXylJcQ4wFQTQfP/CAiIwWIY3XTseweDzdO8NgUBFWBQfcwsKxg+S\ngvJviWOKrS1YAWiL+iPeIy1bBYKa1bayaESbGBOpwR0MwpKxY4pVjxx3Vy5abYlSYtMrzeSzaEq+\nn3MZqMEEXa8UvIz8Z+mtCgLHUd8fuB0HzvL3LN+fx4Hp8/U5WjGEbkH2RQhhA+betqqaAbpI6jlL\n4JC+/FaC3f34DjxaSrYn6Eb7igEuYylkNnN6YRaouTgC6ACuc0CuEyevEJdbRX4EByhnApH0/2WI\nTW1YFk2lDElTfsqU2DC0KzflgrUTwzUovj8KADDng8CQGpJGlIzqc7Y3CgKdESQAlMEgV+Lm26H4\nVXGc7TgqQCte3YAquLyXZAoKPDCBFfPjOQQWtJTWTJMJxD3t012pnHNizCMYwM4EaH2CvK6FS71V\n1Kv0RCFTP4rDg2W4MZTc39+8TPn9yPfHzffHzfYnYwfDYwyzMYHaxluH5ldaFJfFVAMIrlDkaMs6\n8SrWYMgJReGiXZmJaRZcUUuGj8nhVbsXFmcZ7nMq6bQIhtyj79cagCUihyySz6WSXhY08accHvNf\nw+c5kQHEOQoQrJXFc6KPu/9f3YTGCMiGSjAx82k6CHzrZhFW2lbpegeA4k9TgX2f6OzR9KZBPCdy\nEgtz91eolh+X1OqxfFOf6VYn83BCDwOAMSLgJy8JvCUY6NH544iCojsIxO3XtoLNSgvK65bTlIsr\nFdvVuJ9zNPq/K/953HDcDtxOB4Dbidtx4DqOUH6yAaF12rYE4j1+kzS1Fk5hYPD564w2bUN7JRB7\nFfbAYdqMhUxMzTyLWEBkjBh6Dos7BHchACzIuOwBVgno0rLDAUBgLkAaYUDNHegyw+g9/3ZRXMlS\nys/bEuqGVmRdxQ8KgEiwZ/s+239qe0MgsFngQiVNuYu1L3SeCi2wevc2fj0wqhQWTQprslKh7VCq\naboLD4GuNhSYw4B1ERHS3hq4s9su4/+SwUAKLYOBzA+wzD+nq3n7Zm2WzezLwBBBlMrzaAHmGLim\nr3VwTFynKfjlQHAdJ47zwHW74ThO3K4bLgeIWYYUDzIBVOBMCg7U0YzNL1XNmZUlvTeKqnDSVTAA\nTrU+29oNj0u0J+s6jgOqB6LVBJhMpRbGBIr/7cyMIy7jujCuEf43ZSFGZeQCLjuXxSq6somIBVHF\nmUDNr9jY5A4AOSTjAMD3Lj8U5cgVoIuwgQDbfX3bCo3u7gDq30E/JZz8KDtFnx1WY158+MQrc8Zo\nA/etvn1hGyR8FqjRjTGwTsBq+zMCWB519meJCK6/R8kBkDE8+MbXjACekAn4cKHfcgOBpSto7VLF\nWKv5/bRWjKlwb4bDwXUtm+xyRcShPHMC2hFFNUfU2p9cYQcMWUhjYX1effRugEFdZek6e12F/I6x\ngMIUnip95gf0lkJ4hu2eIjELiEyomNM/Ih4z54HjsHaAGLCLA63ZnoXrSpnlYi9tEwFkuSJbP8XQ\nYTURwpv1r0hgH/SXUpoBxfhBJNVlO39L3YE9JrBirXtoR0Na9GqtBUZRM09em/IHCHDiSgxhaZOd\ndt5CQVkWzCoCGfWOIGDNfy++HBe0jGQgz/4bR0bhgwk0FlCYAICEKZatyjn0WQdvYg61opb1Obwt\ncu58WjYBLBAWST0T17pwXCeuc+KaB86aYMTgIJWK3IzxB/EUZCY4RaPaP6oI5a9AUC3+HhCMwN/K\neMBa1U3LV1yMBrT0RaPZlCUHAMRSZL6WwKGYy/KU9URYVfbFWhY13F0FbvuQn0QOgQ0hAgbInDgU\n07rJPFAxIaIR/nRhaqBh8KSQ3g4En7O9GRBolj+SOTxEu6+KEcpfFNbRcTgNXQ4Y4UaxPUqiSB2N\nsHvgrZQU4WodzywVfj+ZedZnBFq/d+UfAQATMkepW886ADNGBCpgxC2xcwGMNXxO+sJaA2PYJJY5\n1awbJi4I6sjG8naI2gBuQcPtGcNdidFW1jkj+3AkCxh9QdNa5qstlhqluHof95WXuvITZLPuQhZs\nrcrWK+6i7L2vuacujo0RkFHGl2rgNQfGmphr4bjdAIjnfxBE6XopFJcb+hynbywoAnfL6hW6GyqL\nzmddvZmuFELOEwAy6AfAXZRo0DiKTV3b49vnDoB+fs415xBep0ySTGAlGBAslpZx1AoCQHE1sLke\nfg/emX3xi4xY11Lh9/t9xw67DimnD6tx2E98CDDcgaO4AzEy0NOH67nV72/MYfPodURZqsHqwrEG\noU2xVV1YTGUrZ7Jcd5807II5iiKzfDeXMucQ4fDg4BhZubf+bi/PXad5U0Lbwqt1Adayr8lWe66/\n0sX50OaxtOoCtCDa8KDmEECHLWQT6doTYyomfXU3BtdYBha4In/AhSjjI7sr5PtFIEC6TAoDhUgT\nhxcwFUl5p1iqpuJLZwKxD/lNIPi75g6IyL8D4A8A+ClV/bfL578PwO8E8AMA/gyA36WqP/uxczVa\nFQCw8smcOgU1LgAQEf5QevqpOwigttIGCLwPlADgVYbeWBIsKwTliVMQiOoRBKxK4YrEIGBmBw53\nB6SBQNBCKpMIxK3/WCNiA8YMXCi5lwWba28ktFoPw0uzMtgyAYdIFNe8xokpA1edf8BnqQAgbv1n\nn6DU3F5v58fg3/aeMwsrG1N9FP7ibVRFjJWERgcmspQIYCrH8jx2NNTnT/DkguXWdOqWMYpMhRYC\nxVrm97t8NAEUYIBlxYyJqAhc/Y3AKcuZs5eadoRLsMOfKhOZkIwgwOD7zARE5NcB+NcB/KXt8x8H\n8GMAfhTAXwfw+wH8cRH5Var6+qHzWYO70i+6BCuEVSTKjQBAAwAGBmvpseoG1OG5Dpdw1gEEpSSF\njmAU1w4ovr896NYg1daSfBO/kh08rA4s+yrBLE09wh/Mu3faKly/zgRnxMC0DUkNHVix1oUFDmm8\nYiugl7PmzOosVUAWVAdUFoYXydSiTOYG9Dr/49qUDgXAKhPYXzHZpydZ0cViA4uUPdu0tq9IC7qO\nYxaQLfelHVIUnDFd4gdjOOlMVsB4wLouLAHWld8vtdEFRlsVmS8wlEuTWeB6qLVd3UZxK/LflLHN\nA0DLP+H9FeX/vrsDIvL3APhPYNb+392+/t0AflJV/5gf+6MAfh7AbwPwRz90TiK+uQMJBhbt5gNr\nDttsM//oFEazuPJXUBDGFUJbKxAkCLR04BDMnHhSGBv6Rcvz8IsKAEFRkx3Ude5kMII9gjb6U+dz\ncBFLVV/cQl3aTGlHtEWaobUkPKlkVihCl22yIDnFdS1zG4bV46vltz/kDswCctB6bgYGHwFgnwgU\nrBDJEMOXLwG+h9ewhVrjFUHXPq0amqNGCktIWwCmiKf/Doy5GmnkDJCL5cmBzDh1+b0YDLysS+a0\n30xMMEhrpdrMhUvxEatJYAqT3fcgT0+ErPZjAAH331934A8D+C9U9U+JSICAiPwKAL8cwJ+M+1T9\n2yLy5wD8JnwMBFADgwqu7RYzAyvqaweAoGagvCXOU/kFyOBg22sBFYQfmNWAONllo6VSWEk0gCua\n8H04qGGpuCJOGzUosYCMZI88c1gJZ0SiHgcw4cLUAgDL+SXK3e1MoAKZJhvyDyujWsiFOpfT/j4a\nkExgDi7S4SAARJ9SoduybCXJJ8q3rxXHtrb1duCS4Zkane0lQzztOUdeho9mhDtWrScKExCbmCTL\n2lHraIADgLJ91OdwDIFekn+vHAScrozTn2X4ikSZTDRCZiz5amcC2w1KwfYPgES61Ghu8qe2LwYB\nEflXAPxqAL/2yde/3O/n57fPf96/++DGunvpq6+I5FPx/QbyYQMESp39MDzpPvR/fdPuq9bzrfUk\nHTiEVVvfPNsaJ2lBKpa1ykIeHA6MlWtrYCmJejKBCG65Muh0l2B4u42NCXBV3oUWbSYqhOBUMMhn\nEViQsS33VeMeEROoy3YZINAq1WvE+grXE8tfBPjR3cprDpGYar23aQBAAYIGGA7e3V82YFUd1N6k\n/+3ecp6+1TiwkYUF/mbFSJVqMgDmb+hQYErIOI3akgTTzvs+vAVcMJ24sYB6v5/evggEROSHAPwU\ngH9BVe9f8tvP2ir/qla6Ql+jiT3pJ77nb8M3L/mAmjECjeM7q4i01DolVYsfKSg14lOYSOcYjYZT\neuqVvfLaQUjUJ5pQQFFBxt9F5JjsYoBZg6TmdtnnVHnIgJY7MKwYxrbq/ey+jrdlWicf8gJcAG3+\nfFudp1bgib5K5YmaAWUKc92i/ZD75tdHinUOSXJC1qgKXxR/FzP2k/pxVeasP8SGDOeI/TgOS85a\nC2MuDB+6TJ2tQ4j73nmFbveiKYPLAzlxu/ThggUo0JpKbHRD2X+bLnzm9qVM4IcB/DIA/6Nky04A\nv1lEfgzAP+G3/oPobOAHAfzFj534P/tv/wK+erk15f81/+gP4Yd/5T8UD97UjcOHIWxsCTZKleLK\nqTasVUALHU13oFTFIdAALpcj5FPrzQncOnCteW71PS2FCcfS5WPImtHhKA1emqOdp0c6Ahgg7VLp\nCkm53zyvwpU36K+GoBW1T6vP926BtAil6IKuAR2+xwowbhYqnr02j0RxDBE2ZQIpGHgcZQRiljhK\nYU8oAPwgM/2DOE58lIUGJO4Xnjrc8jcm5CIIHOU5smUfLTn7oLC8IXmPBI7eKI5/5bMQD0nB8H//\n/M/+HP6H//VvtKt+7/Xz7PSXgsCfAPBPb5/9hwB+BsC/p6p/TUT+JoAfAfCXAUBEfimA3wCLI3xw\n++2/+dfiH/5lf7+FXBll5Xtk0ypKTIAvHwKLob7wrShOpWM6CwSA9EfLnusCrLBYCGWLYZ4CLMH+\nxy6MealGdJRpvwY6g7EOgQ/zyX6baceLcrRX2QTMK9dQ4HiEksceADDK3+guGE/N88TdBEvwfPmx\nYMVHEQ8eEf4CBHHeHQiQTdkTbhDZlLUAixRlamP0D0pIC1w5JScDIVlWGfZVqMd3/D7mgKwBuZyJ\nOCPI/IVAj/ZMPF9zC92t4tdsF5u8JLD6ROX3PGfovrdpYQo//Ct/CD/8K38o2xvAz/1f/w/+0E//\nN/jU9kUgoKq/AOB/rp+JyC8A+L9V9Wf8o58C8HtE5GdhQ4Q/CeBvAPjpT1/BW6uhayK4ljd7oQ8U\nAKAFaoraTwLV9A1pkT8EAKwJIJsvHFS/9j2H+MJC98d5BgQxtq9MeX7S9s/aidQ/EEjiPrWUGR/E\nKQIAskgGAgD6RBcTNIfdLsvtrsLaQxwAfDgRNZU1mQWtbJhQASq0CAGEtJhKM7srENOE+fwOFNUd\ny2m6ve+Ll2HnDgvrDEacEYgHCwsTSACwzMKa28IyaGaoSxWmaD0EC0hj4dd25R2+5iLjA8LzAKWt\n4yKNjXUZ+fztFyNjsF1bVf+giHwHwB+BJQv9aQC/9WM5As9P2a16vdKj8vM9UsNQcT/sC2qLUkg5\n9FfLh2fCEINAtKojKOSzFmhMAGm5GxPAxmRUvciEVIR4sO7d1eM1JIUZBACU+RMVVKjUaeUZRzQK\nT3XtCat8yAduUlmX2lwZyycQn5PfnbKgu7W9Qjn4TMkCqqUPxS+MQEo7VzaQ7lHfQioUMeOUQGPP\nYRN+VPIFEcsupCuwFmRNjGWTgiaswlEmuOb0cT5dxGs2xkKPug6DKvMYnhoEDTky+ehdsTXtZ2//\nv0FAVf/5J5/9BICf+LIz9Q4NuHZEzIcNddp/bd8Vo//kvvp3xBrdGUC+GNKB/421bILiqqeQ3vFh\nqIvJab1ZgoXqw0sKH+Ljkf34fEhxtuGTpoJa9r0v4+v78rwFEzuoPCr8RwWqArRqu137M2z/biXy\niSrFQFrwNkpSSrDXdRHGE1eoBQM5zLoBadyGf7xKkzz0vRIK8zpM7sIwdiJqqdvKdNWw7Mn0LHOr\ngMCiQUmXhMyMclG4XrYgyRNtmaK1O5vyS4HgzcwdiMcu9C6UiBjwEB3tgJB4Ua1/3xo1rACwNF0A\nRrDBYI0Lg8cfZAFRj168k8T4Z72yFsFGsSw7ABD5l1p66eOdS8HEYl3gQr88SBZrByhUhs0bcIor\ntSEbAJQ2JYnydsmDOkCkBILUxluoUNds6ac9HbXyvONoKZPOVxAoqdexBHlR8MocAgz7yMCz++Bj\n2GCGpdYseMKq/60gYBRWQLDhizGcuFa6mJy3IYAnEwnkqveafd3iMHwuIPuu3PODaBewa+f7jO3t\ngIAQ94o1AIolTf/zGROoEBgN+Mg+EW4A/y0xgVY5OCxBRrfjErqSdpY15KjgYcn93ku+X1qW8hQs\nHjr4jO2GC5sIZgSzdCuHCW21IKPhQxRrqJEAWVmFqLCkFNf87Gm7Nrqg/W0Dkl756UHpnlgslL5u\nVr9YXSrdqEBQXYFgjQUAwiXzkZrWd7y/qlTamQA0Bp98vWgHcDvfnuQFzg50jdffNsMAACAASURB\nVE6Xj6nw/rTL7nE5GxhSahrgA0pbgIHtVgndL8b2dkAACCFnY4gr2UYoy19F67Wcg189aano9KLk\nHLcmfVvtvXcoaCUpPEk5bVqofaqg0DiCN9qa95dBRZ/qqxp9nZTwEQAy0u8ugVv/xWw3GViiENiI\nw3LXYWs4Z1ZimWrYLlzjEk9avTGEyl+h/SfRH5LAU5+H91Ay/hIERnxHQBhkO9X339+PZEURUyBA\nKfXRbrgG2oIJOAu4CjXnfcZrOGAxaKgjSo5Hy/j5OJwKAeQy43GJQC77jRUolfjNvnVQ/bDqN/io\n+vMZ25sCgSSISZW6r/mEBYiWoaZysFO8agKovvFfsIDiCmgGCYMJ+LUzPkAxGmFwxrJJPS3zDfne\nFD3Yc8uOHMsScGT0fIGOay4o7GDVLC1VlMTSdpUxLgeKylAKPhZdfkYCSss3IYvfNtPqZ42LaGFj\nBOt+Fglg86y/AgSRa0HgK5OvyAjIAPAEENpw4RPzGf3KvlXgKsC/Sj/GCgXtOsMSxkY0dLwy9pRy\nAAGWLKzLfrs8ZjNcTiURMtqqsmHZjaH2w+vvbCfPv3+yvSkQyOd6pD8PZrJary+8Rhg7JLC0rLbo\nvFT+BTwotwV8ckjQhrLK1OCZ5aqihsA6MHXZVGL1ISfVmMU2CBJAE+h0LcqwXDHE1ljS76W+tDOo\nYBpIxcmlrYr8aB7J/oCUcBXL5pLW88jwZ/M9z7BH/9tcgJ3qF4teZ1pWNyCtRVqN2i4tEYh9jfz7\ncXWpupbk5atJlarGV44c1XH5aH/WLPAeq9JXmajdYZ/cFM/ItpcyTTifCNgAo7X5Zyo/tzcFAnVr\nJKA+OxvjC5W/naQwimoE92E7pgrzyFpJOKdpXqg+f6smNGwCy3FcVq1mLRw3TxKaNgtwqs1j53Qh\nBgZj/XpBV4r6RHQtlC1mx6rTfPvP56zXUYJo5CxUGXsgCznFU6GDQMhgpacMWMJBAo/SWC20FOWX\nbuV3JvDoMmzDgwSDfpfhvj0Mx2qC+nJQaABAJfdS57bvi8wmY3T5KM/EIQfRLqeGRdUV9bZ1YIt5\nDuXZHke0Al2ebsEovgAI3hgIPNfsFLU0fY0dfOyMxWryh539bhS+xAraf/75xcBhmVYczEHRg0Zi\nlv52u+Hg7wBMVUxdmDrtb/h8djXlX2rHPCgNGUGligUAqAxUInF3wCTDi4u0hjWY4FQrJUXneZON\nbuoFGv+MnKMYJBfCJoeFptbofi26EoU/nlD95irE8J9dTdudJQBEl7OPVgFx5D5AoFYxLgDAJdT1\nygVSowhtyJYD8BhpxasQ1gxQMoHyu1qsJZhA/iL+fZT4ZAHBvaJPPg8J3hYI+FN28uj2en/6zwCA\nPGnum+3fLP0eJ0j6DxeanFDEqcW54q778xGdzgyzay3cNIegjuJ7cg3gqYBOU1UCQSpMoc+bVYx2\naj6w5QfQqrDeYm9Zt0RhRP33hQXEKKj/UniOtlx3dlQYodaBj4K4D+WxJqEUIMjnKMA2CiD6MXGf\nkMaMBGlFCQBB+135L1UsJKg/JIoVAOALfg44EKQM1fscmYJcsQB0L9MNJdOL6dcbi3Iy80QH+pBs\nweLeaZ+xvS0QABrD3J8hlhL/qC/wCXBoDFYamHSG4J+VQ/gdA4nX4poDnB6rXWjFYgRXETz+/iCA\nMEFpLgytM9RWo77NL1bBYGUhp526aoD08aEZGtQiNp0FWHCK1jMZgaQ8iVv5Jnm9bZs9lscvo12w\ng1qWKXvw98tvCiS1fiHbi8DqshESSF292Kz3tVaCgC5cUF9JuhSRib9tkRSyBJ7bNHNFynehAwh0\nDaysli3bT6MXEO0R5wgB/FCnysO/X6r83N4QCHhHO6pXYbIG0kyH5RebAjcF5+8lGzsYrjnJgNry\nURyik8XyXT5piUaPJ6rWuPhsqixJXirLi2H1GKNFnNcCbtfCeVyYx4XjOjCvVRYlzWIYdZirJslE\n2uwwf190eTqrvViHwaZFa5ZXLy4PLVi0HXq7P9PzBAPnZ5EcpQ/Htl8TPIRCX9oR4n26WXYp/rA1\ndKbxigS9Tsvq/Tx8nj/z84FkbqxlsBSXM4BLbUm3qBvBhVBOo/8EBL4fBYpGaRNmf7A8bAXB7D8C\nem/tYKJaUrqL+2SMqzIwyiO8TYAGHF+4vRkQoLJ3AGBDIIqIdvpTrFLxmz54gXKNgGkv0qkr6/mb\ntRMfqiNtfoxq43JmsIwVnNfVAop0D66VIHA5gziuC/Oy+vvHShCo+xYI8/0YI2r5yfT582rDjFZy\nbHlZtr7ISoKAJov/iEuVUf4q6N6MlEm2TVX/wgZ6H3rfVuVHZRz5SseNCqC5cCfvWzJqnqM5WpJ2\nJE7eFjBhZSMqP+z9eXr1Y18x+byfJShoowPqsz2nCKbnK8xgMOKrhqVvns/3aED2IbwA52irrQ0r\nANhBmaSYqII+mPt525sBgdpQ2WDwzmbpTmMEABoaEDi1AQUpmMRnsRe4kid9ZOHOoRlEbGxku6cY\nViOljJJZRjsv1vYXyTwEt8wGAjcDAq+uY8OICQBzHgUACgtgBZ05reIwQQAOZpppyAxeYQcBJINN\nHCit5CyLLZcMk8LmiTdxROUS+Y5AHUoRyl9ZwXMGyz5o7lmAgSlFX/fRgDZMcJGd67rK8mdePj5Y\nAEHgxP1+4jzvOO933O9nBALr6xgDxxw4xoz3U6y2otUdKEpMORPEzMEm3/VhS99EO0rKLurx/neh\nZmgEGV+2vSkQ2JmAfcoHMwCQovy0GlTqLo7b2aUnzJBFsJ7cGg4Gy628AsIyArR3lQXE0k9u4X2F\nopNrE67L3AMHgUxEUdzWwnkzNnA4VZ3HwrxKgcxjbUzA6CQXALnoQohgwpfa9juSUPqMYttXfZTk\neS/Ud936pPHaIwzRQ0/7NIY6dyBoPQwafVRWFyBAAFAyhDrhJ1O989eZkXm2dQ68j3Th1Nyb4t9x\nf73jfn/F6+u9BABXvL8dB25zxn4dB44xcs0HGfFsOcSLJjuVVeZzJgi02IB0VsaNaxHGe3y58nN7\nMyCQCAlgExRrNBPcp6mQ1ZH0D1S3xkR97w3rFExn5u3rTMUeMEWKlX4gGJhhG8dcmPPyNQQujGt6\nZF+bz5rVi83iQGrZsSxUmYknAsiVwT9PMWeV6kodkyanOgYTCBbAfNYczkIFiuYy8AJ+zo2FRpOX\nGANC+Yolk5I5x/YOXKFL4vQNVo1IPPXWu6axAAViOJL7HQRqfCB+Q3/fl0Q/nRWcunAu219r4X7e\n8fr62kDAKl/bczIAOHXByodWdpgKHQBZMa4ZkFzMZXoeCRd5aUOEUkxiZTfxNq0/2ysTuLwvPuLu\n1e3NgMCjK0AUlQiYtJln/Jn/w8ox+zkTiomo3QqZoLIARk4JlqWW2rkE4Fh7BCdMYI/FCD8p28A4\nT8h1Qc4LMmyp8nkcPvxDxLcAlVzDVrnlc48RlD4sZH0G3yJn4boeQAB4BgLV2U4WwMKYBAptyp+s\ny3E5ZbEIWQWBbPbss3rPNR5AwGfhEwj9eS9zjgSVAAO6YP6eyT7LQbEyAd7Rw9Rgug4EZoJBLC5z\nRZFZmg4rsW4pvrfjhtvthtvtsPfH4TGCXP48AUCyzSRXd5pz+vLwZH32dxRKwWbsintBRhsdw30w\npOZAfdb2ZkBABjYA2IIoeMICqt4LHnJhQrmSkyFQ2bvY5OYCx2GVsYRQ/LKMF4V1KGQNHIeBD+PC\nDNzJZQCAU7CW5orDIDNwX2PZMtd8tjFnlNx+2kakf5qFTvqxzga2GEB1B/LQ7Xt3iwIkwpxmeTIJ\nIE0rw+vUe6wAUJWfdyjMqMMqCFP7qDMBRRkZKO5FZv0hWUBrCTTFf5grstRHC65cWYpAsC4MGZju\njk2voHzcbjhuBgQvNwMB6/1OmCoTEPYvAcCXg08AGOEGVvYU7wNYJKl/u1g/ngzoc6Hg7YAA3F/S\nYiWqb1X22w9tUyBybwkGlartOf7Fd+PPYx9CW1DF0dZwwOv+IwtOhN8+J+Q8wfz2a3Gmn1sxhc8z\nF6ujSPo4Bua1sI6NCUBCkAA8CInA7idUR/2Mm+AX85+Ps1Y77iFaWI5NIJC4jlmfPL6xtk35436d\n0VWGVjQFFHR1QN5ZQLKmMgsTG275KUMZivJHwJQjBGvh9JGdWA3JA7zmftnycIPW+3YYE3i54eX2\nguOYkLW3XaFQIYqsjmTl0I/bzZR/1oVSxlPQinbyPlDvg2oDY7SGOB79/untzYDAx9wBIAXoszbP\nkBVX/n5uTkm193butDgzHLoqqGLJJwos98/tNxuocH45aasActU1C+0aa608Ny7DrzFKOurWNB9w\nBwgCleoTEB4EyY8TPxwFKLA2EECJD6AygVz1mYKGDQQ+xgTEQTBTEZPm1jJsAK189kt1mSDis+oq\nePe/oYhiIU/ZgGd6xqjOdeEsIzzXdcVCJVIs+BHuwAtuLy+4zdmGEPXyOEIBbm+ciAccHlik8pMJ\ncG3Jmr1Y/IkOBBkB8H6vsPAtdQesEs70IpUL6vTaij5yVVgFZ2nzQffHFXdahQ1WgCUsNnIlHQUw\npsCm8FjAB175xQ0179D6tlieOQZ0+lWl5r9bBH+Maavs0voUvxWAjUp4ae4xRgxhrXnhmhcwc428\nwfqGrpTqz8qcP4gxkwVEEIuWkO9D6Uutem+03o5uSpVDgZq8pJVG306S0FneCaB1WSZekO9FEByX\nxwdHK3dVAcBTi9XvhyxAN5mw74FrAeeleL1fNgJwnjjXhfu6cK0Ta13AUkwIZB4YENyGKerL7YaX\nw6n/7cC724t95q85hs80HNBrYYlVyB7OZId4KrgvQz+O8op1DdxdnFwHQgJwA4uFz6YbupCtKazm\nHRdIWfi7sirxL+a2MOFlG+0lF2zZy+VVYOnbej037UhYaSUj/48AUCOvGYFV5JJQZB/XVVpaARFa\nDycaaqv+HEAseEHf31bwNZQ/r1zQlP6mGVAX88uq265z4JonrjFxzYlrTHM/cNhNeXZgmhiJ+01/\ntCgBlaJYfbj/n8FACk4ygrAk7v7UcwhnTvJvsNnCcWMDGjzpEyBwpaePG8c3mt9LsBk5Ey/2KcG4\nWJMhVlci2JVYiWLhWsDreeGb+x3ffP2K+3li6YVLub7kZYoqw0qLzxsA4OV24LYp/e04cMwDt2Pi\nmAfmEEtAkssAwIuFmPLbcw4gFF+OAzInMG2qOaZEkRIIvMpQusXN7fInKmYkRMFYYYJAqYLwye1N\ngoDIBcWEypUMQAkGXhqb1iv8Zyp9EcpQ+vIeCQT8nYXsRgCAyBXnAvw6iw1rGYLCTh4TQ4A51C36\nxByX07zDhqPOy5JRPMVweUXaut7dJQtrXljDgcADiVz/D/T/wy9ONyH0CciAkcY/KUjLKyhJZhNi\niS2PtVYuo0vtC6pf6L9/32w72wI2cTn4Cen/BgTGZBwMnEWFhafbUB7DTjHCWmZtPx/HR9mj/NZl\n5FrA/Vz45vXE975+xf28u0Hx36ja0mn01z1h63a74eXlBS+3F7y80PLPjPJ7H11yQeTE5anBqstB\nRbw6mtgKycdtAwJnNxUI6EqpWNyoxGcyCEvrnyRKRGGJLT5D5dvIBBTmDgiW7eVyC+0sQOAAQCZA\n1Ef6oJuS09pIKHcBCSoPxARM1AJAiz7sCSqB+b6+0KcsByAtCpkqMa4Lc9icgHMaANzlHuwES3Eq\nsiAF/VOYC3CNC9c4cQ5bvV69ek0Ws91GTfyZmENO33o3Apn1dmF5vCKWdK+BwJXqJzDXIdd4ADge\nSkASINc3gJfqdjhQZ2MEAu8N79cEgzqbkJS/kFxjAsMAN0DAqfPCZRZQL8cqtgN/rziXBgh895tX\nnPdXuwvR3B8HjmPg5ThM8V/eFQDw1+0WxkMIwlCIXLhkAOI5IEtdpyX3x3Tlv0HmATks4Jj+AkFA\nWuFSUV8qfsEBixaesoxgbcGilW7ztwwELp1YOCBYEExnAhMQIrwvcCmFCYS/ZP+kYowGBHXPw2uQ\ncVCIVU3PPfiVsTIqiRWNVO9YiGDIDCGGCOaYOGbOLrwfNtQEiJX8unxSj3eo5adbebHrvHDJidMV\n4vIMQZ2HMwGh+iBGHMZwo+EK6KwnmgVwc+qTYC6ByuVksbgCEFNwZwNSliWz/8RyZzxiN0S8Rmay\nLtJYS7NKJtD2AWV5DMB5EmZluc5j2jwAXptBig+tcmHowNIzgJkAklmFA9cFvN4XvnYmcL6+Yg7F\nIcD0OO4YEzeZeH+84P27r/DVV18lEBAUbjcnST3fQFz57doO2hUABBb4C5dgGhMYErOlczYSGZL6\nSsXimasG0Cor2UGggDGBb707oD5P3+q4czLMVtuuUPh0AuyPpPpb1tUGAnlcAkGyLA2rRcu3lmKM\nWfx4AStK1iFHdiBn9gW9HR6IZIT5dos01vO8cL8sky0DQZbmmuPZK8awz/P0iHKOMYcCep7FcDDY\nhxgE5vPKtMcYQ2JKrLql8QdORsCRg7VFwJUTkB/ZSa8B0IuHjvZdPyYXGN3WCqgxAdJmEV8WXHGt\nC/fzxOtpab8tZ0CB8zrxen+1GYAiuN1umENwm4LbHLhNwcsceHn3gvfv3+P9u/d49/493r9/n6MA\nHhQ8bkdjcDkK4ryDt60jWcCwPmFykL2s/8Yo4QA+trpL8yz5LZvE+1TBBU4jdlJYijTt+fD2ZkAg\nVvrxBTpVaYFKIIQWP/huvkKpGwB05R9jdxcYwNJkFW4VDeWBOd1yW2DA7iPoR3m5BAwRqzOo5j3M\naSAyDwsynZcJ7f1+4n7ecdxPC1R5EQpVjdlsLGzBtNf7jcNTlrACABNuztjlVDAUBkMhHWI3NbiC\nMIqviaL8DB76nkOXHlPIxmJ7MQhWXRROqDHfmSMndNkCDCBOi0t1YGTKcdybmWt/wYmVWpT/vOP1\n9Rt88/raE4HUQOL19R7r/L3cDuA28e6YeLlNvLsd9v7dC969vMO7dy94efcO717e4bgdOObNlPY4\ncBxHqShFFmC90DaPMdTZhQSAzAk4LC0c8JEfs+YpU5THemJ+x7axA+K4kkFU1zr81PZmQIDVXLhC\n76iKCThNIqXMEVGJrx8Df6n85ftSsjosE68VF7s800+xllHyvNHCBlDTjZ2Cj2IjxRB9zoUbZxcu\nm7b66vnp38xXjPvdprBS4TnrbeX7+3ni5sdwWCxq8g1YTcEChKmjTgtpHcYo/izAgGMCQpl0VGsR\n1JoEW15BMIPdyse6gRT8iWBO1lrteDhoE4xVkYk4tP6SbICFXe7niW9eX/H1198Ec7IcAJ9X4IVC\nKhN4/+6G9y83fPVi+5cXCwLePAh4e3kJZZ3M72dGp88Q7YYmX4AGAMxgAsOAoKQMC9RpvLlddOIU\niBoLiQGVHZn0V4jv8zQQsv4525sBgVj8A1ZhZ+MAtsnm6+YXT+j+EzBwSzNKEIrKEIEvP59NGtPO\nBJTKb8eEHjgi2Xi+F48YGScgUgdFPU98880N8/jG/Fy3gnQFzvPE6/1uAHBcOM4Tx3kY3XXGQIo5\n5wUsgczsfATVhz8bDWnWshtFQNKtSqVnMc2m/I7K9ZgABCQVDW2YFgybPqw2DweBuGoyKH4UXbB8\nNuRarLW2vYwJXMEEXvH1N1+XKd1XlIBjOXMbAbjh5XbgO+9f8J337/Cd9+/w1fsXzwO4lYSgY8v5\nsD5ayxZ4YSn3HoBOgONcguH7Y44Agnn4cLL77hn+5OwpunR81HS9KhMACmDWRpQiC5+xvR0QYK0+\nJAAEDHzgYQx0PanFj6sd0YChAgCLgI4BAYcg7Zwm72a915oeE1jNHRBnAgSBSAByphJLZzPQVSiw\nyMB5nhnkkvSBr7Ug5wmFFcIIl0hZvuzy2EJmsI05MV3xuSSWDZ6QznP5bHHqKTGJxe4rW1MALPf7\nl5c6i2XZi8tQs9rI4OIMEhJoiTe3A+JDY/M42rUq7W1irQq9PD5RVMROrcEAV5n8Yy6WA+dKRqWA\n5erf7Jlvxw3v373gq6/e4Ttfvccv+eo9fslX7xwA0vIfx/HgXqair0dMEksu+yAIjIHjYN9R9oot\n1zJ90gHAjEuV/XyvdGOhtWv8qCzC+jnbmwEB5cIfVf0/gWQa/5qDIOVzojM/zL9LZyJRnJsA0GIx\n5xxYixYsXYHChps7Uce6E4SyKIj4SMGLozdBY3rq6O04bIbay82uFpV1OUvNymXdzzvkG8G1Lhzn\nDfO6YV4X5nVY5JxK6go75wQO90F9fJuKmJYMAIbZo6WZ4x8N6JKpGoa8JQPWZ3V3QI8JnYI1BRfn\ndoQad6bHv6LsV1XmEPDcvnn9Btd5QmHW/vDZmlNn1BSEPM78e/fuBV+9f8FX7z0G8PKSM/pY3Wnk\njL4AcXSlb8bFWhYMFEbFIQJBlIQroFLjHgQ/yhVQACATqIqU+m87RqP07LcQBNy6CAHgI8c+yo99\nDoqXRqORIXTF7y5D28SH4SINeGJOWtIm8cVNUFua2n3BB1ekMpDhw1sOcmOMCDpNn112e7Gxaqtt\nD0d772Kxwpnn3RJervPEvE7crtOKlFw3y6YrvqvqwvLZbnM4TUfobVg7nj+q/UJ8KnU0Djsrm8GW\n4rNvagUkdwcwLddh1YJ8NeL1pB8vKE5cOJePonipr7i2/+719RWnVwAeY+B2HM06wqP3txJQvd1e\n8O7lZjGB97Z/ebnFBJ5R6H/KlcQ12Q7CYN4QjCWWzwFjCQBKUJCVhLOQaoJLeZzCsqprqrorv6T1\n18oIAIJF65zP2N4MCMR6gCAQVGRLm79v9TOSy6g70Ky8tN0u2JURCJXTp3aqbtFfXlg0xs0XFEMl\nh7sKG0hLYPMJBq/BaaXXFUNQry833F5f8PLutdTGKzPbvK3WuXCed7yOgdv1guu6cOM8+DG8xPaK\nMtu328IUwZrTK/HiAawsfqGxcCYYX9jbjyDApQzE23zkiEAM940BFcFiUoxWEH/Wo+7rO9W/n3fc\nz7sV+yyBSagWlpBMIPXLwGvI8ICfzfqzLMAb3r0c9np34OXlwJzFRZQMqjECz5gOZYU5DgOA+sQf\nEYWuZICZJ2ABwsoCLAYkJAAeY0H8DXdL0ZS6i18AwMYC2izNz9jeDAhQaBkHqGygT5rkZ77xq5hg\nIb25ilsg/K8xgTgIlRIPX1fQmEA9mXWeKmIyEXvNAnB7noJEbcDpkfJkADPKjt9PG/Z7eXnBy+sr\nXu+v4efeffSAynD5ajjXZb7pFaWxbRbbmCMZgI+2QBXHnNDbBdUVOhzUllOdPUNTIFkFuNDiBgIE\nwsIAYjJMDYyOYclM3oT70GXtLIEzAV24rwuvlwVJs+BnBgvr5KghA3K4G0eLOyx5q2X+cQ7Ay8TL\nbeB2m3h5qfS/KilCyZajQIPEaA94Yo+CUX4OSddhwsHkoJ3mFgYQLsITmd8BYWcEafSid/E525sB\ngdOTPcawufpr+gOOkLbo8LpVeaq11uIVPkH/jHnl0amFGYh3mGqCQY0B6HT3RX3qkWfaGQg8In4K\nZVoaO/+MFXCG+6FRaOJuowGv7qve76+QIVae7Ew/Uhci61DPE0sGsEYuqKEOBiJYtwvrvKDnAi4W\nL+GimsOnabDGgANxtFwRKBd+BbKykXhfCSIDRlNe000j1S1CH64IGHLNRV5sXUC3+Ex99vLhzE0Y\nsPgDg542f4NVfHwm4AtHAF6MdR2C243BusfgHyWpxiKiPaqHVFSagbxkAj4iRaAlnu4YQPktrg52\nmdMyGkW53j2qMhsz7/rT25sBga+/+Qbf/e73oDeBHIIjaA2wdQGAjpFUdCo3oqHoH6r7Vlo+W+bH\nF2oWneTXTGUdjbKpqAn8EqyhFhTSwgRqnfkIBlEAlHzShElhzEDEi0ocvHqCSIDDkSWxzwvndUKX\n+tizDcMd4kE/9XOrVzJaC7guA4rzxHW/Q65yfw5OLLTBqah1Xka4B1RgKqUuZxGS2eoERKH/7MEt\nz0Ng7QSCAPM2BGJz8hfz+o1KY1gfLfq9akA9pSi9jAjsHczQnB5nud1wO27WRsMqBXGqUygTGaWn\nkdeh0XALqoce9qkYKrCZss8ZgCZx+PBW2jZYiIbsNUyOndSPEOj8ma4A8JZA4Ouv8d3vfhfybmK+\nm7jJYf5rlAsCdnQmcVKnAblakLsUVfGdRehS6LDioRgLowVPvEE1aXIsgc1OGYqlwxYqGRYHsHn3\nLJiRPiVBoAULeechEPYvo9qYCCbCcX0TZssVuDzNmHurhe8K4GACd1XoP+tSK25yXtD7BZ13XDPz\n9AMEhoFA1uTzLEZ3FaqFrFV4rU03ygWUdkgXrC/4aSAzovKSz8Lz1GWS2umVVpeDyXJrNyE4BpU+\nE3HmPDwh50iA9OrArOVnj5QFWKjEDgvBOvekqJAUgRuOlM1qhCk/fF+3B/WkF9D2yQRo/uMtaWwD\nBwnjEoZwp80f2N4MCHzv66/x3e99DxM33OSGd9MsMJxipcLbpnvDCX03+Gw2b0iRDgKwwpTDK9wu\n8dLeYufPGAHR212CaVmMayjGUpviCwcZSaoW02I5qch9430UwvpJQkAYjRYRjOWVaFmTwBnA7TLr\nf53MJDyxrmUrGJcXswSTvdjKRHot6Gmr7KzXEzoYzJMAApZ0CfAUAOpFPIRKkn45wQDqVh61uluy\ngCE+0enKQp5G8dVr9k9gKKaktHOCUuRBLGMCcEVlvX8WAOFc/6O9nw0obPhPzAUSIGfdea9w9l64\nnyVGFUdJMbabX0kwKSwgwir1VeQ4JaLLdmcCCQy8Sv9dBQApd/vp7c2AwNdff43v3m64yTu8n8D1\nMrHUC2pQMHzLByxdUwCxgGcqf4CA+b8282658jl0iLkN0dliKcfqQZ+IVwyF+JTiKHMVBsGzEMvM\nwlx4Ak0IkkQmG5Bhy5UvVczrwrUmjuvCdbv1lGKmEF+XTZj3l17LFCUAYwE7XQAAIABJREFUwN2B\nS9MdeB245G73NMuSXSOFJ4yNADIUClZi8ptvTIDuAEdJfCUnDhWKpBXnAiAOZroWdBy2IuuYHjiD\nMS14rYcxzD0IH8fuY4jgkIHbnDYFmPkAHGo9bmb5GR+I6L9P1ffSbsuFxQypRie1KdbhDgR8p0A2\nfPeBZLoDSAB4xgDqCarc8g9mZGYspRg/SD1JsF+U/vuc7YtAQER+L4Dfu338V1T1nyzH/D4AvxPA\nDwD4MwB+l6r+7KfObbnfX+Orm+D1ZeI8D1zr5tl4+oEnYrOqC2HiRSC4Sia/DKq7T04WUkFxepfo\nLv4dLfhwRsBXDh9m58U9RRZgdQHKVixHupXS/p4CtEIna2UC0xi4xohltax+1jLK71b2PAfOYfUJ\nznFijIlDJg4RYw5hvdWAM0YHFIVtmmXxQCc81mHpugzeXV4Lz5R1jIE1c7KQclaga7eyHPvl97sW\nxGsBYCLXolzLajsAER9hgZXL++A2hr9mrggk5TXsRXdpOBAg3AqJYnUpYKW/pH38sBJYl8F6jn6+\nvc9TzviVZoP7AQw8595+FzVNnak0JrCDyffRHfifAPxIufrJL0TkxwH8GIAfBfDXAfx+AH9cRH6V\nqr5+7KSv33yDr48D37ybeL0fuJ+3NjYOXrC2nlP43hD2mYaF1qSoiqDwcJ8uAqrl57J/ANj4v48W\nWPIQSt3ApGtg7YAK/Q9BGudtXhfwufCk8A9XMHbzcnYx1oKOgTEVcijG5XUAWM3o4pTlEyKSy5yN\ngeHmRi8NxQcQKycnDUaMJWbhEkTNfo5AEATgAKBzGnPg0BvTp68FWRfGWsZO1EB5wtZRtAlY1ray\nLBA7XOiXWNLRocA6xIJ+c+IYFkiesNWYBtw1Wlab0paYs/OMGBfNZ5JirsnwqwSESxlA3Tl9WO5N\nGvkF2UWFhZDN8PddplzhYzn1UpuysQKeifTX/w6jhO8vCPx/7X17rHVbVd9vzLXPOd+9PO4tF3Kx\nBRW5FKFYtIKUtGoVk9YmvpqG2kdITaxRa0L7j0iqKZU+bbTWiomJMW21xpCmrdWYYgVp8QFUwUuL\nSkEviMi9ypXC/c5r77Xm6B/jOeda+5zzcQNnf3x7ftnfWmfttdear/EbvzHmnGOOzPyHW757JYDX\nMvPPAAARvQLAIwC+FsDrL3roer3G+WrA+nyFzY0DCQZp20EjqDSpgSXDTUCP3NEg7BXhIFAhPYHg\nDr3W1gsmAD/XR2v0obyisBbtrMy6DN+EWunkUkGTGnBvdGY06UgkoFWLbEoSzkqZpVYrAwNjqBIl\nuVRh1aw7HU0KAOM0ymtNoxP5+oLK5litPlxpa/Krd034cJ/VVt76i2uVCUpDAZdBjkP1CUQZCEhX\nilK1bb1VOFmDc1YFv84ZxyAJL1fifDVk7S8gUADZm5FZd5mOlXpuXhBc+EsCN+9N6TzevrSiz0Ah\n+lrLKhQU2GBVAU5RwAU/9xQOcHAm0ABB30u0ozhZJvWNtY7Mi9InAgLPIaIPATgD8CsAXs3MHySi\nZwF4OoA3enmYP05EbwPwUlwCApvNBufnBefrQ2w2h9p5q8btFyecBW6UFILa4qy9Gz5aICZARl/y\nYKWIgz83vyMrOeY0kkBqYmgAUmcfqrWk8fMwp+YLpgn0zIEg7uhNk+KdZkAhBrPsoGzbi61AWDFh\nxcCKSUKY2b57uipRIhtnTcKYKqtZUH3RkE0wchDggEmm6OwGHj5fQlkABlk4xcMkM+nSzEEU8mFL\nggirtCELNlPVCYrkEY2F7KloqUnCqtYHDei6KkV3AVLXAkMXUrEGqBETqJm5rGBoUaJkEdqMClqP\naDV8YwLoqJCzS5PGENUMCTlMTmYCVrHNaJYNpSYgcN+Ag3JiJR0L+GQxgbcC+NsA3gPgMwC8BsD/\nJKIXQACAIZo/p0f0uwvTer3GCsD6riOsLSy0epLFYYYUv06TCgdlRs3h2jGtZq4/AK4BuWECfUrN\nnTqEbSVmrl/SYSvjGrYLsbVEY2qkxP1ZEzm5y0liPwDABd66rMJ0iIIDFByAcAAZvjTht49NP87b\nbfnsu2mSqEEaq6ByLDzKQOCCj+wL0ZzbmoRhAOvHg4AMMUribA4BcqTAJ1U7uRlkBN30rde9VtVQ\nCgoNMTzqTAAtEygCChb805uILBITlF2m96T6N0A25tn3kVlzZl3tTCbMAHluolVeq/ETA9c+klH1\nGJBGjZ0iJxbxSQQBZn5D+vP/ENHbAXwAwMsB/NatPKtPf/DYYxhKwSM3H8PhwyscrgZ83rOfiZc8\n/wGN7z/YNpAyxGMpqIACgOpZjkk8lXSJvcbuj7j8fUNS1CuWKrFH+ciCT711HKDoNJRouHb8Vk9w\neiR37+X5qduE7LRShufUD+KTcODzDIgA0v0UBqqYKmEqBXWSbbanOmEaukVHnDRRpv+ex+i4NkXX\nhzZLRBMqNPg03mY6tQsc9VXaaF3qryti2DZhPj+f8iy9bEKqlgZ3dcfOwkKxsL+zb/6ZayeaY36f\nA4LWTzfyZPMwPIiLLaV3hysnn5MxAzj4kubVaud/vfd38Wu//cFgAWCcrTfLGe7S4xoiZOaPEdH/\nBfAAgDdr3u5HywbuB/DOy5711Cc+AXcdHOAp9zzRP/fd80SsNxsc2OR9ggqx/Zk1CrxjGiIaCwBg\n25lIxeqcgpn8oe9yuax2uyFt+pV2SlEoRh1N0NMkG0rfs3XKcFSCk3D1YJO1DMcRDI2hT7KAiafE\ndgTmhkIQi1kEpFLFwLLSsOooh8cHMCZQAwRiCm9yBDbZ0gk/vhJv8KWz/ccmEJXkn8iz4nipDqLX\np9GbmI5tQVIcAJpIUgnVIZu9UGKBbUmcC1yQeHZHDw6ztrM2i6ErASWfOVkjjkNTz7X1ByQfSWZE\nRMCLHvhMfMGzP1OiV7HE5/jQox/FD/zML1xYGuBxggARPRECAP+OmR8ioochIwfv0u+fDOAlAF53\n2bPMTq1c3aG13mywXq/AB+zaVLbrTpNsCJDw1gxQTPywhrCwFIVjrLokbXY5Y8qdMQAmT9zQskZH\nbaga/Ny0GKcO4cLsHTJ5f/MLMsB1AiJRkICRAag3HfFmAc5BpuBWmwbd0Uw43Yzpwt4RdZTGjr6s\nF1F/efhyCQTycuqI2GPRejQUWG3Zh4G1gWWuQ5vN6WBQuiO1czNM4PNU8theqe8FLRug1DoBADoV\n+vIOFE/keIpN4sqBWbhGaLRaI04idx/AbBMzA/pZjoE1V0m3Ok/gXwL4aYgJ8CcA/CMAGwA/qbd8\nP4DvJKL3QYYIXwvg9wD81GXPlj0FbH843axjI0AASp2Mq2904UJmnUPnBDSIKQ8XAGBbGGQTQTJn\nuyR/hgFJYLxDGBNgwIYIQ/sHEAQIsEf/cm+AA0FLt9Ec4WzBqS0DVBlThQy5VWE8RTUuqVAAYvsO\nBpjpee2za6zoVAbgk3tKzPKz5KVzAJhr/kbwB50NOcT301RjH8CpYiLSRUSxTVtsslFcu5dUPhs1\nCQZg5jJ5Rl33Kwjbc3NHmTPBpc6RFj1tMxFmP+3ZnTGuZAboaJitLF0GAX2/rXXp3mndnjltIXFJ\nulUm8AwAPwHgPgB/COAXAfxZZn5UXszfQ0R3A/hhyGShtwD4ysvmCFjKTGCjS0jXmyHszUGX3irH\nH8yhQ7FM1extQ30VRdjUdq7izBNvfysDTV64PYYxkJuRvRcEKGX734wRao8kk2FkmHPJ+tT3eeaC\ngWg9x5FFY9DEOmNQ9tTjoYg/DkPQYsuB0Uhk3mLj8zFKYBpqKiOmccBIIyaMEvueWnFxSj7T+BFO\n3K579B6dSzCShl9nwsiTTG6EDENOIJ3XR/HPtTwhr00o+ejrHaLQ2QCoyjS2a4CLrl9sMFjdNs5e\nA3lOQOTCvvRpHYPS3trmagoYkTFi0LCMC0rQp1t1DP71K9zzGsiowSeQpMC2b58NcQ3DgM0wafis\nCio6Qw0Wfpr03VlAc1OxTxGwSMYSxSg0x5Q7WPScGeWXAQILDBro69oZWQvYfLQMFvYw7dbUaZ+k\nLdjohQIFKYvIHusgMxrbwMBK81QnRrGhzcwqmGcAIG4J9uCiBgTTJEuQ85r+CI+tplBlgCpsAlat\nDJSq+wiwtFmRZc7QdQxUJhDBh4InW1zEEUCEAJ96HGscSBhXWros08Bl559qXxXIaErRAEkEp/7c\nmQjG0qxiW1MgH7NZsrUjJ07BLqhzZpA+Xuc99Y/2bRKhvxJNu3T/BWln1g5Ycgpqm3NoUE5ZSDNg\nVSeUSYedWGmRduoMAPG8OBcgUM1JCQT030RzEGgW/pAuGhrUvlNQqTWhe6LwrByWbCtRUsFGfmRH\nQK13MRoAMMKgcKDeZpg612EuYTmSL512SxXERfObGEUNlpTBIOIJsAbu0PUIk24+4ltvBx0m/1NO\njCFV9eHUIsO8tTCYKupEIJo8jFnlqkuYY3gSCKoezCodHQx01mdRwdbJYJwAABTHiawdZlTP8+87\np2tfcmxAXA8m1HHy9Kz8mzAF2Os3JgUlJ+wCGHQdpiOWmaHeiuhH2iEQMA2WTIJxxGaTV9JNGFcV\nRVeAiTVAPumkR0Bpy9bJJltrV1AlTGRRcuHCX51iZi5hND+BAhEmi3CDCppE8PK7pcEJTFXFrHQN\nKCdFZa8CIfiuOVhnGMcogjmZyXpnQ3UVZph1/0IROIvE45uJuKmU2ADDh08zzWH1PHJlAQE4BsCt\noMRIHJuoBBvQRVcRmwBuxlUo9YXNRYAO6yRQLvHxPfwMxUqAoKx1kKOtezCQjDY1KA61IZhrbZvA\n1vqR4TLCKe19IUte1vi9tk515G3mQ4RtYFhOfXqu86l9ZGIA8fSrpx0CAQDWGaqGkh5HbMYBw7jC\nSgFgmiZMOu5diTzEl9V9XwEZAKBCIE7CanuLKgMQajpZ/6Lc2HANlO1Q+UIbLnmY2ZxZ8usEANb5\nepZBAMlOttWQ3rUhxXCi32uCDteEPq3XDMW+d9hGIumTzQA/VyDwmX36W/c0KXjYsuKYAMTBxvRI\nJCZAocQGcrukWJJVBUbKormx6cap/jMY2CQf9oyTzwkRJpABAOk+AwTJNxmlctkycbezOJKqdm/+\nWRe256ReaGAefyQzQIAgpgi3TKC1R/Vgbe1561nwrfGBnQEBcfYUpV42SlBlAYzFkq+T2o668UOx\nnYoWik7tBbunsswkq74yHcEATBSKTUiKOG3SnwIISikq/K03umdv3HSjzC6s3MauyY+pt8UDvceZ\ngLezDEWATAMmLW60PoXmsmPLBOCTqyI2QZzn6wB0ECRpVYZ3WuvAhYouLmIQF2VNLXU1wTeh9h2G\nNIi3MQY02p9iUZPeY0BY7LwzB3KoM48DaHVJWlbrh/qvB4BsAm1Pcz3clHnB7m+GC7eZAj37SG+L\nbsHRPRpouDjtDAgcHEgsONtQg6ioAjOE1L3lzHYqRUcKdO06ADeSHfYtJfQlpe229zubRpD/wx8g\nKwZJZxnKU6yGK6Yphm8Aob6luOx5o7uedXtWc9TxRKOc3ilLiimniyCMILi2N0oZaOYCJJGQWSLY\nluiatpQmOAl5T2IAVH05TJgMSUmyyp/tgMxEonEVBMwiEu2uhJok8BhTafShCbBSr0T1S1D+Qil2\nod7rgs0pH3KtNosELAYBmg9pDuKSjSJ0AJ3+9/qxxqOIN7BVqNN5HKtrfxuJsfkYvgV86rMAJ/Cx\nzFMAYNODEG2Hq6edAYHVSjbckA0bNZIN4FNVZd85ZQgsy04ra0BNjpmB3mSN5ky0gNVxZvahdvQJ\nYhKYczDmEqTEhubyh881MCagy329g7vSbtSQZ6+dcKQi2nimdWab3sdSIbBZhmyCZ491AKi62syi\nAGlRiwm4AaXrcdfwDLZgO6rBA1+sFAwSTZvBh1iAteiKSrtMGQqrt43n2fKdohzBjwYOqtX1fk5H\n7v7W0I8I2p/eY9cQC8o8G425F0OqMzbgzSVXeu3eaPMk/JVZfTEdICTh992erB3SC60cTb4MvxMY\n2XdLjGRb2hkQcCYwSIx+L2wCAfEiByCUop55dQRZmQ3ZY0JPos2qyV1bs9m2E6aJQJic4sO9+gEo\nbDQbofUBaLyBvNosrw+wd1uZ8tVoPHmXlsA0DUcJRLtSYiTR0L5acYBKQdb6LMJeGRY9SNzpkQ0r\nlwlLsI2kWEnj7JvglaSFWQRVY5U4ODU4ketDL/qaC11oZJGOzL7yYCfODAIQZFlxYgNK/0PweyZA\nei1AL3pMSxjimxYA2jZdFv7aaP4FJsAcwp/YgM/E7BmJCb+BmnMZzQNi5mLjdLzdQGClW28NJJOA\nlpiADcdNGmUnXwdyAwZ9Yk5ShKBuZA1oHVGHrSrJNFaLLeiJCBnxDUSsx5n24KaRQuiNWjtt6xiA\nP0rzTf47E1D5eBxBL0toDX83FZnQYz9TAYVRf4IMRQQ66Y3BMGArLH1BDUlEJmU9roVNYBm6LgM6\nZq8sgFK5jNqmTm0UnwaSvRkTCDSOPxV+1/oFDRNwc4AgysE1p3WMoDRCLqwlxLncrDPomUAWsNRu\n0QYdGGwDAW7/djOgxhJu0oaPGYnkHdv7mPXxRsZD6K8m+pF2BgSA6CxWuRXAVNk3nCyb2OvNaHwh\nwsAx8aWlbT2+B3b6ZBRrDB2/rqQx7UsgO+BSlwSTc+/2I7nRmXVKUMeGsizVwWV/Jy3hIAdTbQlm\nVFODVYvmoArpPH6fyufCJ+/yUGxG6lV72wScas/qmAdrx/URTxNCC1qaHH5UCDwIGKCUEG7NG+tv\nejAIO4WUIUSQEAOixmQhOJuJZsg9JgE6e6tFM1oNKxNb9Ac019uJVzWd512d7R5TKJyBwIsa4BR4\nFErJGOqtwsDOgEDVRUNDcvRInD1G2ciSyFplX7pxHDEdHQEsi2IOVitYYBATgyVhMl0MIIQaiDDk\ntrJu4UPJqRVOpOycSdXfIlFkwA/5y+wXMM2jb0pmR/Mo8nEMB8WWZ3T3qvCYSc5+nmrMqkUF07VN\nlbKy158IWbU6MGoOE04SB2CJoUQHRf9NaFwxAwQAUCgxjZYJhFkQz/Bnu4YPx6tVccu4ss8fXd2a\nus11B1hY8cY9pOyrX9nH/U0wksVu1ubp2NU24eUF6k7tufsqdBm9LRc3dixRoudK6SppZ0DAVg4y\nEYbU0ABjzbJt92YcsSprjONGFsooANRaMdCgjJb7+nPaHsIVHd/MgloZRWcRZuE3JJcpLdGhM+vw\nzuQOgvgyN21QuSz15BTQvsrP8mG3rkxmJxbYQpEFHWA2cGICvnmoV1IHIFmrdnMbrB65AYL4+N56\ndp6F3/Ojmt80dhG0rzYs66MBAQLOavz36Vn6nQGHmxJeG+1gXzAV6wdLyQoVz4ia7TV9CwQ5OYTn\n+zrlwmmRUNsilKqMEsiJ87lSBVPyKQDeLgBiBeUV0s6AgAXE5ELgKh1BPPSyyqyMpgGBcRwl3PRq\nwHh46EiqxEFSRnRHSIIt2HHHCUMFvaBqKCpbwGFTmKv6IHqNRjOBRQMAcqSmDzUN01gHmaUsAEDX\nyQgaG4DRaiqOeym/0ACA0uv8J+nZJmTpeRn85BIl56mMYMBMkjQgH+9JGorC5o+jRB6qBR6omRtB\nJ50VmMDBQQFhcqRrBsBkPWPWOOjOrVaDYTHHOo3cZlAzag4CwS043ez/uunBMTTIAf4NABiIab0o\nUApbhPeRWqsyMQKbZzTj2CVpZ0BAmIB5gc3oKyK0No1Sx1inccTBasDR4SHGcYqQzICbBd68GcST\nBjdhkYPRNOnQlWoDANJ4gC0cMuFqhDNpclDzUn11tIjpJpMb6bDWEdLzOgAw52IWOFH2Vi72/+19\nTT+QKpUhQFtIgzb78QPSWc6uxv3eCgpsy/0tcXHqn2WHRvgpQGFhRMCuUaL+7MCAjglk5hCl9vrT\nNonQknMJieyaEJrXPWtpFesOCIxZ5ruQ/++YgO2mnP0Iy4kd6GxCXUZ8RkXlSYFOhoeRgeAKaWdA\nQHakIYBJKqoQatWdgQwEVCCHQthsdDuuOrmwisKiaAJFBuug0mljYggnmGe22YQyG7H3CRg7Nnd3\n0nVy1miMXsN0102GgQ6keuKZfpmAwDuhdq5QT3AneOqHKS+cwJH8JYZb+XYyRE1lyTBmUt6wBJd1\ncqZtjlLjJpSm+7pwp9WAjij2e1qqj6TVKcpGbQ6blL+xWITGpiL+Qqs+m/kZcTFpkS0psQUkIW/+\nzRiElTfPQCXfI1IeqyCSf58Lp7+xORdUCq6SdgcEdCMLsEwpqUQYDfQ5dXbmNIVYg1BMFVWXF5PO\nIU/10iTrztLx87fmvJHFRRkApmnSXxGIKopKfJC92QsuTj0AUJzO+lbyB7T0M2aeWb1YhN6SO25z\npOZiroNF2FKWkTV61pZOVimJoJ07SET5DHiz1hZbHiHMKRMtPibB16PMdkwURtFPDgm4HFukQw2k\nexR0AOAjO4ZgyhbBSXDnLb4lWR1v8x+0wt9gKUWEJDJgVBYxUfRT64HuM/DZlkX3f7gaFdgZEOBp\nkqXmaIBNjmmuNwEaa6B61FxbT+AVAUX5VMk24cXoZIv6aThIqXLPBECqNdRkkI7WU37PcPt3X9Ze\n9ctF/20OQwV9z+JQFLfDmJkBUM7erM+24BeXFiTQBKgBzBYYBCcMWNtrdrsxBnIgaNuimdufXp8q\nBoGeOcsJKliBOmXRhd//h+xPQJTiEpZZU5nemQ/7zeuzNxtcxHvBT8d0l4KtkUyKbeuMBXA8D7bY\nyIKNqKJsYi0MEczlKmlnQECYgNVP2Oq2Vj2bjePUMgHZCkv3sZNNZxqczdrLNZurILsh7LwlcyA6\na2mo2KxPbKMgs5QoILQDLJgIyx2qnXmWKYSZA5yPc6uh1dr282Xa5MJsAh7fxQ84m1vpWmYBfh8l\n4HAggANBnHPS6AZWLT+wCkuDmu63mX/k3RKZWPcq0IhHVlduYnX90O32hAJWLjPVGidiOs6AANl/\nkNo/5c+iMElfFOG3USyZQ5MYSQaNgXyPSbrdmIDQbiBCXmuMdWbZh77oxKACFX6Ln6+MYNCJFqWE\nXUykYcojkde4fBjhIrLGXJonIB1V18ezBTZNQuAP35YynY1rbvNmIWTTLoYE7PlrZqflGNTp540J\nsI255hebgLJXXLqN2t8AQZvT4234M4ZB9beZBeixAQy7P5839dWe+x3mr6D4xoWdYyJZBoGilL9A\nTQEPeTaAIO0eZCOcsg4EM2Mg2rMBAPv9EnvzF+i5Ir+zF4JrdAMB5kmWjPiIArsDPINsSb4ACeR6\nm4HA0eEhjg6KR1lljTQDZgxFEHvQIZKjoxs4ODzC6uBAYur3zhMDchXxPJEICFNAVuoVpWn6a+bG\nF2DPHbzGCRJ7IMZkuRGilgqE3ypdz9rRtEiRc9Y4aMyMguJOUlR4tGCbqudBRZRFaAXI8zh1yg4M\nCAlgEu/fimELwh9ftReWRbepkvZ+jplxds7gFOAjQntQY+ebT6AlXyLsktfCxgrIg9MS0v4EMCec\n1KMBb/tBAwRd7r32epZmE4N8QlBeN5CZhNWpFTcrlhmAmEmg59r8Ui3hzyIiUNUQb1dIuwMCR4e4\n62ilMeZ011vdLHMoBauhOBjcuHGEo6MjHBwcYFitfAdcY4oMDTSiFeSaBnDIlb+KAkUKVQ4ACgRE\nJHMXzEYXrinPMu9b1l69FFE6SRo2ay4xA6ihn4Zi4gcGZDd1ZTo2V9c6L2VByGv79c0L57lrEHJX\nviz/c6Gfp+BWxrOWfsEQjY0eANiWH1t5UvkuEHz/EGT/BYIKPlzY89EcgjEq0Ap549nnqMT8v/MA\nv9dChadZgbafQPbfdLaAK4RUv3kCUj8hyX/tNl/Or4aoYsbE0yVtJWl3QODwEHfdOJDlwh54Ugq+\nGgYBgUG2mr5xdITDo0OsdOlxMAFDSzErmJKlmHsiiW6ARhiqVRfcJJStuqIrV75yNVApbiLo0+cA\nEN8sX3cFQNGbOhAAbJ6ibkBKtnlIBwJQmlyVEWwDAM+TncXM+Hy+DGZzFrA9WWclf9s2IHAmZACQ\nGJ1r/iAF8lQrM89BoHAAQVGAdWbQCX+MCrTAKNkKdmj/Rz9obkRL/ds5Ju3s09SX9EEGXKbEeiYQ\neWlHFowBxJFjFSIDXFi2rb9C2h0QODrEXTeOwsbX1YLMwGqQHWgHBYMbR4c4NCYwrDy0dQhS57iz\nVtYFNYRYt+/r79E2dAYBOScffim1iCOS5JqlZS3ZsgBreD9qBzU0FwVoEsuSP44IRln4fUddhEB4\nd+7BIH1lmpQ58uEbtC5o/8Vr9qgZRY7XOAA05V9OM7OgeRe7Q9fqR5xoCQA4joXVkcxzzU8osbmt\n/etNmmS/c9KyiwW0v5l9yFbs9gmxTmAKb34yB4JZAs26hy4fPq3YQQG5ARtrj2uF7K5EmFLMy4vS\nzoDAjRtHuPvuuzSkWIQdZ0CZwIDVSo5HBwe4ceMGDg+PsDpYefyBECCpOJ/9yhBWwDbtPBxGsL8X\nENiAwCdwTOJEmkpFGSSAJlWJo9fYsg3rQPuHCkR04rBJLd5AAwIM6dWqTyu3bAC2tyJsGSpCyNFp\neL3q/xPScGTqhJ3Q89K1pMElpx1VRbBVALDAobObaAEAsjRYj3cAQAh/YgIRfEgF3BhBuhYsIHYu\nihWDS/lvlcmMLziyBgvwpcR5kZDPeE1tigRglpeS8tGxADdXta2NXnHKDLOtEGeZ/VpvMxC49557\n8JR7nyTxApiVCUgRV7rHnYHBwWqFw9UKhwd2PJDOPE3ANIInoUYMqRQbZQCJk9C8xjEPI4hyLN8k\nvwYES7BGnaZJAKUUxDbYZJzVf2+CmG0+E3w/iirOq4G77WPazmdedQECtQGIQFVLrKrftJlFKpZ+\n2NmlyaRpHJtJezcyCftZgEsyTRO17ibm2pd9Sq9sBDy1B6XWaL41h/UdAAAgAElEQVR3DTr/xL6H\nC5/UPuiUvPsBZgZCd5/+mDHfr3HKJkBaKpxx1Oqw36S1fd88D/4AMvCA9mtb2m2rcAml9GNjy2ln\nQODJ99yD++67F5WRPkJrVrp1lRzls9LRgkF3psU0YSLEAg1We5o5lr0C1nM0Im3XK41iL+SPle5Z\ng0+1CqDoI20WYQiPzeSyZ2cw6DosUXA6V/r2rDY3BFKHIamWd9RADJ+JwFOitN7bfUJCcgeqlqFc\nR6lOOsXdMous7l1BmXMwOQWXKjVJRRPhvb9N268BBuqPV/zkchpQs9H+5Wz2KcAv6HpsJWbzVvoF\nQuxDo9ZFlvJuz82AYH3Y8sdaKQIgxZdVE8HXRUhwlS0V2qWdAYF7770H9913nxSAtSAAAB0eTABQ\nCKL1dJycasU0jiCoH2HSrsrsy+a9cdPiFKrFVKC+iRoBYJepaGzbvYjq5OpInHZVo/UGrfZ+rYIP\n74jkjWjU1B16xvY44ib6wwAX/gp1fBKByOZZhh+DFEBtkxT3k+h1o7mUOme8ihqBpDYLYWIYpsCJ\nltLW/Dy6kAXk2zLmZY1vYNIIvV69SOCX2ICPBrgZEyzIy5Saos9sMHplAR0D8F2UzBGYthHz0RAt\nA7w8cEbgb8ssIOhV1BUZABSPzcik5oA+97ZjAvfcEyBg66IZsaGlDQ8WtcOncUQdN3ocMZ6fA3UC\nj1Oy8cxOSjVo0ShRQEUEN+k1WG+U9mIHAiSbD/qJFW0aX1DUL5IR4E9NPdpXvdn+BT69M/W+8Oaj\n6QCswk9E0sH8wRFOzNZamAljgFBd3eUOFgJr5kCfb7ccPA+JUaBbcmtEw6CAtcNvYQIN/CRzQKmJ\nmwKzYwLUC4Egf+x3uVpN6A18F0W/vWKA6pumdKMBtnNzwwRgDIST8M/zO38bEHOqU+7sN0W2hLcg\nLM4GSGJ1XiXtDAg84QlPwJOf9CQFgOIgALKpnaSThQp4mjCu19iszzGerzEyow5DjBKYcFaziaGo\nzT6j0Ckg0PRy67hwAEjaQRsctQLT5A2BQjGL0D5dewbAdJ3YtFUGC+2QsiiUm94qWrxqPSUgUhGx\nlZFig2oZspYzNsBdd3fHWGYBoS3be0JzioXBCQhYgSN3fMzO+2tzmk/OokJIMD/XvrFkX0vblOgP\nuW9EwYMpubZ35IcxylwF4bFf9gO0voCO3jfAJSVfFH79HZr2sjymurEZgmS+APjQeGyIe3HaGRAY\niDAMRS1bujRUUtjoMoW42pbZKn9FG73YkCBSQBp/yBz5TQbcFIBpPo532q68VWcUVqXkZPa9mSoE\n2+kmpHvOs0M7tYWUGYICWgYGrKG9JaqMBvQgFf4qn36iiR0d/FLHX9LQcYlmVxsTKQtQes92h1aU\nt/0bHThmkNym5TGj/D5tloIi++9zjALk5ea5fU3wFurEhTGm7m7bUZhthZ/6XbCY/2SSJMoXwWzi\n6FuYM/s+EpJHimNXp0vxEralnQGBMgwYyqD2LgAQJi9gutHt82yHKRL78krTJEL2SSmqoy8FtcqP\ndprY2WB5Nlat9gyAJoJsQiggYJOIinJi3wRUAaB1SFmnt0uJDdgtXNRyYTAXbXwWzWsAkMwSCSha\nGlPINV0yD6yjJ/220PE7FpDPEruYPbc7vyw5E5gBgQnvnDYbnS5UXMiLH0uAh7GAzAZUS3rdNHXS\nmQJO7EIbx5bh4gC0oex+W3GvL2WXbRlKU1ZvAoYLe35WMI9stgQAmALJK6BvJe0MCAy6b32ETQrd\nuZT64bpcYe44ARwA0t4V6SHxfEJ8aWPMHL3FOwBRRamIEYdKEoikVFCtGvIrbY/GDHLbuQdsBQMD\nAMpNShL8FDK9pfVNMHyHIaP/hcBVFjgtsQA7mqJzIU1aKBmcccjf2//+nBCOeH77zv58MVm58zFr\n/EU2ANX4McZenB4T4ABhQEDOmAze2jLUBGo5vwGoDRNwAJja0QB1CGZPU5gukp8l+9/nphjQTOx9\n2oKIVM0vMXk7yiu20OUrsoGdAoHVUDCazVXnIBBykFBZG8LCNTkAGwjA5o5H0A3yDq3mQ0IAIkPZ\nQPMQGNG87oIjcVL6hxggAQLX1Bz2sidjb66cqBF+P5KMHki0XbnPosw6EDjYkGzCwsWpqGU5OjyS\nACP+u4rqyILcaf9tILANjHIKWzmVvjEJAhCwAAYlMwGn/jqNPJkKiibKBOYgFvm9hA2kHYSrKp+W\nCTDMSRuKKBhAwwa6NkL3/Gkyx6JBUWoGtkqLjkSJDaRKvTTtDAjY0smiFT4kOSTAO/7ELEI/Tpim\nUXcuHqVBJp2qaTVF0PnnXcO2/8W9dtJfN+blGsGiD02gmoCAYthQfhSjBpV1JMI7HFz+GPnd2vGh\nNFa5AJNQRRN86xHhNCpog4xoWWeCmDtdXykXJAfQxCRyWZJpgP5aAqLFFyWEbM0D/bthBiHUzgCS\n3d84Wy2GobdJblSG+QN6MGjq1cOCz83PqbZzAizKU2Z8c4cmpfLS4jtrze+PPBMQocMyoLjXS6t3\nKzNYTjsDAhI0RCfxsG4AytpWVeYD2JTMcbPBZtxgs9lgvZFj3WzAdRKvvVMy6/zZTZKExF7gBLEH\nAFI63/w65KdywwRAMXbvH312UXpvexw67TRNY33UbEiDhVI0z9ZxOxBIHbgiAp5Ay56pr3V6z79h\n5UxD0/ysueUCIc/l8vLFtT5xf9EYQe7HVicOCiH0S0CATuuG80VNAmMyngkzAVrh9z0C04pA/yQz\noFE8wEzoqdCiODbgk2JoBFBnZqQmDhFokGHBQrJxr7UP09JbLk87AwKGmMU1IGEFcQ7WcQzkncYZ\nAGw2G9RxFEGsVScSWfdqQ4GxMgtraOJYA8RAI/Dkf7eCY41HpSobIGAyyonodOR/AOSb9LnDMBo7\n3m1mABHpEmMFqjTpxPmhZqqybrXO6kBClNU1U1MG9nrwl6PXGzS/ZnWHeG4WfqBjHh0zmAl8QiLu\nM6Mvt79aAFBQKC0QZN8B8tEe0LwnWJibBz2oWjyA7APYOhqgTmkLPWdAUNIEJbT9ywGS0whAnbM5\nec7QBAzxTzYJTJ9ljXKFtDsgAFsVZ8HnYybdpk4ApILGcXTB9896DZ4mEItDziLLNJoQoe/dE2wd\n1jbmMBMkOcZMFDg9x2TQlxMrC0CdnAGApkb7UBXxIVI2kOiz0Md4J5rOi1iUNAMBOScwiItMiuo1\nMUIwrdPZuT0kb84ZOmuuvXo5zdo9A1RP/2M0grvf5//bY3vNqjJ51JU59kCQhd/NiZx7CuaF3AYX\nsQBOswFTkNtgAkazAk0XzQDLiQESkvbvAKBhAxpqrAyDREEaWmdnAEBusauzglsGASL64wD+BYCv\nBHA3gPcC+AZmfke657sBfCOAewH8EoBvYeb3XfxcJAdP0YIPshdhkZChlav7AJwFrOXIdcIAqQvd\nnBZB8pD8CggAMMQtRSIHeUU2Kk+paKa7on1d29cK0ASJ4UB+nclAIjR7ZdLFRnD/R0NN0XnAfYci\nK4P8Z+cMAz3rNQYswYBMG/sha5kFFmDaJXOBVpSyraopCb/l0bQrABeU/nec8mwt5uwhtWHWrt5f\nFliAMYVgYguJ0NR5sJYw04Si19lcgCUmkJ7kdZQBYGvAT62qcHIHEEVe4xlDGVBWKx36lF4QUeG1\nrK4wll+5lG4JBIjIhPqNAP4igI8AeA6Aj6Z7XgXg2wC8AsD7AfxjAG8goucx8/qCZ6sJro4/VEyY\nsJkqzk9PcX52hjM9np+eYnN+jvXZGdbrc2w2Gzi/bZwvXW0QqbBkCafk7EqdFgjBySifkjUg15qW\n9lZZzQgCYEEdyAVL3ldAuuUZsToWAZkYZI4/Zwap0/vko6B+JvwMYUGAzowk8ufIT9QESME74xmp\nipr82nn+Ts+X6qNjGRk0s3mWm8Rr2M2YXjsr0CHlNTGCTLc9sGav/TPnMOA1Td85/jLFn9KCIItr\n2WxIk000CuEPBtjWWe+k9bBjCWxyIn2ObD1mcwvUEWjIaEDimUh+BGwBny7dKhP4DgC/y8zfmK59\noLvnlQBey8w/owV5BYBHAHwtgNdf/Hil/JWxqcB6YqzHEWenpzg7OfHj+vwc43rtn2mziWW9KUCj\n6TODA/Jez36lRczQVI02Ssc2u+m6Ukc3A2hK8fQVDFzDy+jCZOem/U0LUPue7BSz0Y5wVZhvuGbr\n0H+X6bX+El5okxnOb2rPslHQ6NUFLUtN5c1ZwFz45cxAtjWR9BoxYl/DFhvD8daNvS8QgMZvkeh3\nXv3HPHVaXun/VH1RUIwGhNYOzMkmgNX/XPhjFMBmBIZjMJsv7h8ydmk8THHcrEIHAUXKGB795IDA\nVwH4b0T0egBfCuBDAH6ImX9E6oCeBeDpEKZgBf44Eb0NwEtxAQhY2cXun7DeTDgbJ5ytNzg9OcHp\n8bEcT06wOT9H1YVDdRzBupsxDQMKBnBr5Cbh6DWECRSlPto1GAIE4tugpWCOnYu8IMYEWgDIAGGC\nXxMIFJB2eniHyDTYwACc/QUsa6K4gBMQpOIL1unoghOBhiC1v4hn0PxZnXmQUw+S1HX+ZYoawt8A\ngX3sO8+r5ovQTiJKwWZnEBM0T55V89bg3dLfmoYDp5gMZEzAA4eY30AVS4bKbTXUlMt8AR6ENMop\nml8EX1aZhgOQk3nYAIC9WypGfvNJAoHPAfAtAL4XwD8B8EUAfoCIzpn5xyAAwBDNn9Mj+t2lqdaK\ncTPifL3B2XqDk7NznBwf4+T4GKd63Jyf6yhAWtE3FBQAK3OYAAoAiU4DcA4MhP1kKdvnWfCtMy9o\nP783gYDYalNH02qwACJMqAEClGII2iQjSwkASjINoNYPE6FwVbOQUpix9ADX//Y/eecF5mKdAXPe\nuRe6t+VrwUTofRL5HZa33iuf5zuEmYCg1wbspFTZGZZ5ggzlAvHYJYZ9Qo4DwEzLL0wGmuZmQGu7\nW57gjKCthjkLiPgUnFYbJjrfmbYOcYlUNSyAjfd+ckGgAHg7M3+X/v0gEb0AwDcD+LFbfFaX1E6q\nE8Zxg/X6HKen5zg5OcXx8TFObt7EsX7G9RoDwgFYABCvZFtxLmCWddQZAOTv+N+/4Hi3C3T2C+Tc\nJVud8v12T5XVfcVQG2mkwIcQbQ8DWYdgIFCpoFSjv9kvEPyX0ru90zHA6mMwNjBvempEQx5HgYcc\n7zBwEZahdZhAJwNr8wYil3Mik/k8V2OZPcC/z8JPISidsFHTfDY/oHTCkh2Q7O6iPB4/Mwd6ALAJ\nQR0TcNBqNLdVTDcS4GSxZwDZH2GApOYAOLbFMGG2Se8eOrtlAVLVYfhmcLxKulUQ+DCA3+yu/SaA\nv6LnD2vR70fLBu4H8M6LHvyD//Y/4u67bsjuQlPFWCue99zPwed89jNwcnyM45s3hRGcnGDabHAw\nDFiVggONMdBTZp8kwoacFoZcqq2PH5Tt0qUUDUuugZGOQLJjtYFFq8uwZyWbVajrC0jWBQQI2N9m\nJiTKX0rkHyq7uTO4zR3BvtGVpNXzSUiagXOOe/z5rO+yHm1PbrVdVorNea5jBTZnFIm+s74jACR9\nb0CdsMqO3t76j5PvIcwARLgqFzplAlNn+28BBqfs1qESO2nrtysvkklpz7V9JA2Q/BfU1M8sGdXw\ne3RyHYB3vO8DeMf73p8qhnB6fr7tSU26VRD4JQDP7a49F+ocZOaHiOhhAC8D8C7JDz0ZwEsAvO6i\nB/+tr3kZPusZn4Gbp6d47OQcN0/P8NjpGR67edPNADMJ6jShHhwAqxXKwQFWadJEM1MLAKVg++yC\nEtrBE0dfY7SdVSi+AQuh6f2aLBQaqUYDk8YeUBOg6EYiVFFJRwcyCCBAoCQQoKIjkEU0vuXVD9zB\nlmk9mFvKC6Gim8yh/LOmTycwSA/2yMbpN1dUNvMn9n4I15r2lVF5AGR1i84kmDt/7V2UAMAnUc1M\ngTRHf2Hor/mkuQPxFk4Z6srrbaQrTWxNgJkTznKicpxRNKXJyerfqYK0MhFe9Nxn40XPe46sJC0S\nj+ODj3wE3/fj/+miZgFw6yDwrwD8EhG9GuLkewlkPsDfSfd8P4DvJKL3QYYIXwvg9wD81EUPPjs7\nw8nJMY5PznB8coqbJ2e4eXKKmyenOD05wUlyDpofoECCkAJo7KcMAnA0NjAwahoCks9cpKw3uh0e\nz/ZAn9lscEqr79DlpBXsKwxJzYEQ/HAMVsiQYSXZZaiw7MZEYFDRFYzFwIsbNuDlQ+o6YSh2NU3+\nDLtvCRYyGLgAcoKRrSsju6cs+ATy+6zjZ1NCbiIlJIwIE9/e04C9QUFvyjkYaJtkW7zxBczNgZ4J\n2BAepckVMeLU10OUW16f/An2LCct24R+qW06s4PM5NQj0grDZVI7S7cEAsz8q0T0dQD+OYDvAvAQ\ngFcy80+me76HiO4G8MOQyUJvAfCVF80RAIDTszOcHJ/g+ORUQOD4FI8pCJzpqMDpyQnOTk5AED/A\nqhQcrbQIXjEJENwZo//147C5bOCEEV2gx8wAOiDgBCwZALjolGQmVGMDxgCWQIAmBwD3FRgLACQc\ndc0hxPo2jrH0NiUg4O66sh4CsowuJL0rdfpbYQHNq7mNsuN578Ag/BMEG9LN5TNrb4kJhOC3bQKl\n4QYE3Dv/FlnA5ELLOY4/Wd7aKo/ZgGh9AQl8AlA098xoStJ2zHhh5j5EQg+LrTQljS/Yvvsq6ZZn\nDDLzzwL42UvueQ2A19zKc09Pz3BTQeDmyakzgpOTU5ydnuH09AxnZ2c4OzvHQITD1QGmw6qdMSaM\n5KNBbUyomdevMc/FcjT3z4HApifH3Vbxuj6g6px+ktmDVfcwtL0MKwiTDhcKC5hQJ4JcmaTvayyR\nCh0G8/yGDvGzJO8hEGEumLBnoTcwyaxplrwug57Hyyjx76a2Fqp1fg+av9LeCSb8mdEkwQNlcA5Q\naKrHfDTJGcgLgr4UE8CZQJpMxKxtCYOkBXPAqqR3BKZ321FYTHGm5X4sA7xUSY6X3gWtHxaPltTU\neLYzLkk7s3bgYyfnuHHzFMdnaxyfjThZV5yPhM1UMNaCygOYVwBk5VQpKwzFdiVayZ4EpeiW09Cq\n1ZSomtdlUo4qtnKk9IOGbs2VLLv54OFR9bxGI1TpvIbQ5pwkZtQix0mPFiDUc8OMFQ+YOEKDuSCg\nJZHZIWblkpNEj7m55Eyg+dGCdu/Dgdvf+frsnpSvbHo5lWaOFlKgarzudo7IIwHuOW/KaPWKFPtv\nIQqwTfkd7e9pRJ1G8DTOQSBtGmKrWEPmY8jWndGJWYGRVgVmR2A79GkVJ11OKlTmPLAqMlX2BaDC\nKEUC1EgdVsVfBrhsEffbDAQeOz7D4eGZTA5ajzjbVJxvgE0dMNYBEw8CBFgpAg4KBCusVgkEiuw6\nO5hAUm68JAANcCa45RBr1U1Ac95rzVgVKIKrG4eKOgARJ4omjVZV4KdBhX4IAPE3MgOFQQODePCR\nAdtswjRHpsAm7jPvfLbHub/f70qnC5ooC3xqN8rHRSDoKAfgoBCTiNjrJgQkAMCnwyey0wIBO1GJ\nCMAp8hQnwdehvnHKC4FGNwsyeGRAMoeyreWw/Q0NBHL9WTnaCUhLIKDOW608MekNCKSMpQA0GBAA\npbDuSAXIRrq6GK2F2nCuXiHtDAh8/OQc5eAU67FiPbJ+CGtlAlMdUDGAMUBmRK1QygqrYYWDYYWD\nssKqEFZEPofAqoVo3t0N2OdMgJyBcuriLYNgp3ymYlPoSpgDTVKNoSm2iMeMOqj2HwQ4SJ9li4sE\nHFTwGQ4CzQSSjv9Gf+0aP5kEHWFYTNIxKcq7BARLbMAksWET6W2tJ9NPeBEEjGnZGQUQKFtrlwVL\nRiozphkLqBgn2+OyBYPqbGBqFwvliD4OVlHtGQDyUKaXocZHpiRnhhMhyNhNHAUFa1pfTEsNAFBh\nyGgJa43LLELnSsl0W5y8tZB2CgRQTjEyYayEqQJjJWEBdcDEahLQSqiYsoBhWIU5MBCGAgwEYQKU\ngEDfo7s2N6jZggHEBLAfJUePndk5p18FO4gOY88SxhYapdqmKcoEeIglz7buH2wrDRnTkFZGFgJr\nvAVi64Cq/Wv8FshlRAsE+cuO/ruzy4CsEXRGszHo/OeLjKDlHAGc7Ed28HIHLboy2FZrzYugYG1F\nZEzKBCbWTW11IVCYAFM3CUhAIByAwSBaEQrE9e1MSZ1yqc3t2I9AZBPHy+ymgLI/Yhd+GenLACAm\nARWGGz/aRlJfOifF9ihYMOu2pZ0BgbP1hNX5KMIOmflXWcBgYp0JaIv+SbeZpIJCssTSdiYaSNeZ\nW+cFmo6TNXoIfXMXON0YEJJhI2vbOBLl69lsII1ZQEIMAMjE4Ui+7pAJNMTfJvy+GkERngeCRGAi\n3YhJCuRjzykteYljFt8MBVqA6H/q10wTcfOMsN9j4g533/VTaF3bpr8BLMfLMxaQ3hj/m/Bp7EkT\neqX+Y414lB4dqHMKNnP583uBNGKk34Q2aMoV9J+bo/W4aI6GRrkiFyaQWEH3sXdFf6PmcdTl+7K0\nMyAANtbMyEE3wOxRdaLDyE/ycKANDzZ9BXBNae/wvzKtbVJofgeHrj5nii7/2oYNu+fFQxGdPX90\nPwNCxUQEYEIBYcJk/UNZgsUSLOIzIPI6kaPmfwsV7K+3U3Jz3qWmnPEwNZ1OpuTr95eMFZqYspVd\nL2ZQcKGzo3H/XIXGHIxCw/pC/LZ2TsGaBX8cNT7lqPtUTI3nfgZKWzSqsRZbOJbrsJ8aPG+HmBjV\n9t0wK/LR+3VTEW39tNVPl7ZHn3YGBGqFaDQ4axYgSPu6ZzolKVVgh5wAwinYNGYHCEvaxuxPZKBf\nUIu9rDs4LWhX/cGs46dhRKo6NKg5kOHDYAQGAvJhgCuKLhIxB+ay6C8Lf5/PYAda9lR9UCCQGzhV\nY6JcS++VB3dAkM7Te+3eqLSukbohiGAaceyHADP9zx+eZOFQrOcPW72lUh3kM8ODvdYa08d7dpM+\nkQh5M5olEOgBoVFEFNVBbJO2DPij4/tProgFOwMCSc7dLpTrXYU63dUO6wAgATkI0GEUIJxUnCRa\nNRxFR/c8yBORf9orI7/xymC7rEqYrGw6xbhaTAAT+8nFOoYfBxd+AwOJXqQLTMjgYnvqtdZSbvM6\nQyuv1IU1SmZLAQgXva83DTIIbMsLtLNL51+odGOO8gCP2d+HBDfabyzAQIDVD+AmAMK5Gi9o2UAA\nVfINJWFfAgAHV5XOi5jAjAXo/TEGkRSUAkCAufaYTImvkHYHBCAFMlprDZwZQLYXgahUH69t0M96\nrtzTzoqhDu0TgqJnB/GTNrf5aDcsd+S+Fwn4CCuQjUpkS7HqPyDPvgxL9eZAkZlvpYqTkBi+dJTm\nGh7YImQLKfKWso9oE/vLGcLFGABz9nl79gK1JXmLqNlxYaf2/tFGCFpiAAYEFpmap+wD4L6gC++y\nb805RzMAALDVHMhAEMug5yZAe07Rj9LvHQA6tnu1lo60MyAg4ZNS+GT/GAPQG90cUNJMpA7Czhww\nlpq1l2pf0WqdtnMNLOeZBXim8l/c/lJOLkZf04myyIhhIcRrZYBq5JPhnmMBAQ4AKOnDhKEWiUSr\nk0ioqKNuKSvcHBaTy5y+e+nenixfWN7GxtZ2y3nrQFL+pGgny5M+kWEUjkLwa0wSmkbZi2IcR9H6\n+TON7hRkD01ffeNa+P9bymMg1mDFHAAaNtA8IQt3ZgKxO/WMFSRG0LapAQGiwyeZyNzhsrQ7IFAk\njvqjj/4B7v1jT4U0SK7M7DyCV2KxcGKloJBSZwfMTOdYf5fX1gfFWhDpxXSRTnrwoYfxwmddFDsl\nujQb0kHofZW5wS6FXNpJQ3Itg4AuUS4FpVTI5KkiMQtRmkz2+d3Wyd/84LvxZX/6T7V3Ltx8VRAA\nwnTj3HCAdm5o+2Tg0p7th2itrFQFWCzAh2j+//Hgb+Clz3+Og8A4jRh1kxpxDNq8gOrRhcwZFV6L\nlBpQ17az8jTlm4OAP0v7bCgo8riIORbCOx/6MF70wDNc+HtAgAFBr6zMJ3FhO1ycdgYEikYX/qOP\n/iHufcrTAJiXdcEnoL+JCtNKs0E3F/qgk+SCHuc2WQOAOlqubkctpf/9/kcuAQFouYyFCACwbmcG\nUiJAIvcTA439nwCgOgDYh1Gq1KEsVvKKWExL37z5Xe/Gl7zgcy2bmHWtRgh56fJCcVsH4Hw1Zm6P\nlDEFhwwijaaFbQ4a9P8t73o3Xvycz8I4Thin0XepMgCw3avrNEm91pr2c1hgKbmATrU1DxVNudq8\nLaWk1RMDKLpxyq8/9GG8+DnPXPYTbHteOm8AwpjAFT2DOwMCRIPQWhBk5n/YkU0lxy8Sspo5IEDg\n9iRUk5Lp/fjfnwGxrdz8bCp3uTkvsVD7ki0+QYpTIXMfbJmx5oFY9zGsQJWhQFb7n0tBLYSB9FhE\n8IeiTIFZRgwM3OKky9VCvli2eo9it9o32xPzmtlyxX8iJ9QAgO0WjBa0qH93gICF4bJhOLP97Xyz\n2WAyEOh8Ab5VXZWPSHL1Zd+hYHMPskIYCph5Y2xkbgZEJZsGt5/L32Wm6UsDEDMWkJ7VAlXPDD6x\ntDsgUGQtQLZlwtnTMgEgOo1NGKJiAGBGmw3HuOEEhwAKD6sxVM6V+Xi41da0oDkVCCSPRYcKVTMS\ny9bHxepAgpJwEe1RSdZJ1FIUABjDMEjntBBmVredRrC5BbMcMouWTH8vnV90bbHU2X+SthOXgQzr\n2CW68gLjyEJv57YXoEwHlg1px81G1gWMY5oYlHaunjoAsI/lbwtoCvBxEnwDpbkfQMoZQMLZy9/4\nANrI2MbqFocKG0gK4Y+rhE8UFHYHBFp206StXY3id23RCVuHrjIReBypYQOpnWZj71d+XscvmHUd\ng5o1ymikoxlVpvCXIIEkxf3yqHbEoO+oi/np7Nul7y4t07BrRiEAAAVYSURBVOJ9W3hUym977/xZ\nfs7tcLF/1713uSyPvxNkc2Dpu8tF8VY1+AX3L3x1O5kDNwDg5OQmmIFpGnFy/BhGW+k1jajjGnVc\ng8cN6rhBIcbN01McPDagFMI4TThaDRhkwrEuIJJzuF0d/oSqbabremAWIZtXIVHYrjuhvRt6lL/P\n1iM+9OjHF4oYd8J9E3PklsCSgfCDmjmFCIMGjzCHklwvoALZmaYUFJLp06Q73jR64gqd5Pj8HL/9\nYQkNyakOZulxgICYPUW0omtBobimBf336e0yjJc27GDoCkBGZTmenK/xgT94FBEvcCluoGn/SRt/\nAnwCt1JtN1GyaqFG6CUv1qcMZFKZbQTAfAFFlrhTKdJGWt6iNP90vcEHP/L/wk9gjMl3L4q8cMdc\nfd0A2j728KMfs6q8cVE70VVR/ZOViOhvAPgP15qJfdqnT+/0N5n5J7Z9uQsgcB9kS7P3Azi71szs\n0z59eqUbAD4bwBuY+dFtN107COzTPu3T9aarbVGyT/u0T5+2aQ8C+7RPd3jag8A+7dMdnvYgsE/7\ndIenPQjs0z7d4WlnQICI/i4RPUREp0T0ViJ68XXnaSkR0RcT0X8log8RUSWir16457uJ6PeJ6ISI\n/jsRPXAdee0TEb2aiN5ORB8nokeI6D8T0Z9cuG9X8//NRPQgEX1MP79MRH+pu2cn894nIvoO7T/f\n113/lOd/J0CAiP4agO8F8A8BfAGABwG8gYieeq0ZW05PAPDrAL4VC3NPiehVAL4NwDcB+CIAx5Cy\nHH4qM7klfTGAfwPZQ/IrABwA+Dkiustu2PH8fxDAqwD8GQBfCOBNAH6KiJ4H7HzePamC+yZIP8/X\nryf/SzHRPtUfAG8F8K/T3wTZxPTbrztvl+S7Avjq7trvA/j76e8nAzgF8PLrzu9C/p+qZfjzt2P+\nNX+PAviG2yXvAJ4I4D0AvhzALwD4vuuu+2tnAkR0AEH1N9o1lhr4eQAvva58fSKJiJ4F4Oloy/Jx\nAG/DbpblXgib+SPg9so/ERUi+noAdwP45dso768D8NPM/KZ88TrzvwsLiJ4KYADwSHf9EQDP/dRn\n53Glp0OEaqksl0Ub+ZQmktUx3w/gF5n5N/TyzuefiF4A4FcgU2IfA/B1zPweInopdj/vXw/g8wG8\naOHra6v7XQCBfbqe9EMAng/gz113Rm4x/RaAFwK4B8BfBfDviehLrjdLlyciegYEdL+CmTfXnZ+c\nrt0cAPARyAY793fX7wfw8Kc+O48rPQzxZ+x0WYjoBwH8ZQB/gZk/nL7a+fwz88jMv8PM72TmfwBx\nrr0Su5/3LwTwNADvIKINEW0AfCmAVxLRGqLxryX/1w4Cioq/BuBldk2p6ssA/PJ15esTScz8EKTB\nclmeDPHG70RZFAC+BsCXMfPv5u9uh/wvpALg6DbI+88D+DyIOfBC/fwqgB8H8EJm/h1cV/6v21uq\nXtCXAzgB8AoAnwvghyFe36ddd94W8voEbcDPh3jW/57+/Uz9/ts171+ljf5fALwXwOEO5P2HAHwU\nMlR4f/rcSPfscv7/qeb9swC8AMA/AzAC+PJdz/uW8vSjA9eS/2uviFQB3wqJKXAKcfy86LrztCWf\nX6rCP3WfH033vAYy3HMC4A0AHrjufGu+lvI9AXhFd9+u5v9HAPyO9pGHAfycAcCu531Led6UQeC6\n8r+PJ7BP+3SHp2v3CezTPu3T9aY9COzTPt3haQ8C+7RPd3jag8A+7dMdnvYgsE/7dIenPQjs0z7d\n4WkPAvu0T3d42oPAPu3THZ72ILBP+3SHpz0I7NM+3eFpDwL7tE93ePr/3eJH4C85bgEAAAAASUVO\nRK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10a396550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Cropping an image\n", "facecolor = imageFromWeb[50:115, 95:140]\n", "plt.imshow(facecolor)\n", "plt.title('Holly')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Image transformations" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "from skimage.color import rgb2gray\n", "from skimage.filters import sobel\n", "from skimage.filters.rank import mean, equalize\n", "\n", "from skimage.morphology import disk\n", "from skimage import exposure\n", "from skimage.morphology import reconstruction\n", "from skimage import img_as_ubyte, img_as_float" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/ushizima/anaconda/lib/python3.6/site-packages/skimage/util/dtype.py:122: UserWarning: Possible precision loss when converting from float64 to uint8\n", " .format(dtypeobj_in, dtypeobj_out))\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApgAAAFgCAYAAAAfGAkgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmULOlZ3vl8sWZmrXer6r73qtWLWhKtFSSNJEBsQpaM\nBYKxLctswgdG7GCZYbHPjMEH48EeRkaYwQfNeBEGgbDASGw+QINgJIFMS2jpRVK3um+r+96++609\nM9Zv/vgisjK+eLMqas+sfH7n9OmbURGRX0RGVb31vu/zvEprDUIIIYQQQvYL56gXQAghhBBCjhcM\nMAkhhBBCyL7CAJMQQgghhOwrDDAJIYQQQsi+wgCTEEIIIYTsKwwwCSGEEELIvsIAkxBCyKGjlHpI\nKfVVR72Oo0Qp9U1KqaeUUmtKqS8+6vXsB0qpr1JKPX3U6yBHDwNMQggh+4pS6oJS6mutbd+hlPpQ\n+Vpr/QKt9Qe3Oc+dSimtlPIOaKlHzc8B+AGt9bTW+m+OejGE7CcMMAkhhEwkIxC4PhvAQ/txohG4\nFkIqMMAkhBBy6AxmOZVS/5NS6gGl1IpS6opS6h3Fbn9R/H+pKCO/WinlKKX+N6XUk0qpq0qpX1FK\nzQ2c99uLr91QSv3v1vv8lFLqfUqpX1VKrQD4juK9/1IptaSUekYp9YtKqWDgfFop9X1KqUeVUqtK\nqZ9WSt2jlPpIsd7fHNzfukZxrUqpUCm1BsAF8Eml1OeHHP+3lFKfVUotK6V+SSn150qp7yq+9h1K\nqQ8rpf6tUuoGgJ8q1vWnxbVfV0r9mlJqvtj/R5VSv2Wd/xeUUu8U3vfHlVLvs7a9Uyn1C8W//5FS\n6pHifjyulPruLT5nrZR6zsDr/6yU+pcDr9+olPpEcf8/opR6sbWOi8X7fFYp9dph70NGDwaYhBBC\njpp3Anin1noWwD0AfrPY/hXF/+eLMvJfAviO4r+vBnA3gGkAvwgASqn7APwSgG8BcDuAOQDnrPd6\nE4D3AZgH8GsAMgBvB3AawKsBvBbA91nHvB7AywC8CsCPAXgXgG8F8CwALwTwD4dcl7hWrXWktZ4u\n9nmJ1voe+0Cl1Olinf8UwCkAnwXwpdZurwTwOIBFAD8DQAH4PwCcBfBFxfp+qtj3VwG8YSDg9AC8\nBcCvCOv+DQBfp5SaKfZ1AbwZwHuKr18F8EYAswD+EYB/q5T6kiH3YChF3+l/BPDdxTX+MoAPFAH4\n8wD8AIBXaK1nYD6DCzt9D3J0MMAkhBByEPxOkZVaUkotwQR+w0gAPEcpdVprvaa1/qst9v0WAO/Q\nWj+utV6DCcDeUgRMfw/A72qtP6S1jgH8cwDaOv4vtda/o7XOtdZdrfXHtNZ/pbVOtdYXYIKcr7SO\n+Tda6xWt9UMAHgTwR8X7LwP4QwDDBDpbrXU7vg7AQ1rr39ZapwB+AcBla59LWut/V6y9q7V+TGv9\nx0UAew3AO8pr0Vo/A5MR/vvFsW8AcF1r/TH7jbXWTwL4OIBvKjZ9DYCN8nPRWv++1vrz2vDnAP4I\nwGsaXJPN2wD8stb6o1rrTGv9bgARTCCfAQgB3KeU8rXWF7TWYqaXjCYMMAkhhBwE36i1ni//Qz0r\nOMh3AngugM8opf5aKfXGLfY9C+DJgddPAvBgsnhnATxVfkFrvQHghnX8U4MvlFLPVUr9nlLqclE2\n/1cw2cxBrgz8uyu8nobMVmvdDvtaNABbnW1fy6JS6jeKsvIKTNZy8FreDZN5RfH//7LF+78Hm5nZ\nb8Zm9hJKqb+tlPorpdTN4o+Hr0P9njXh2QB+xPpD5FkAzmqtHwPwj2EysFeL6zq7i/cgRwQDTEII\nIUeK1vpRrfU/BLAA4F8DeJ9Sagr17CMAXIIJTEruAJDCBH3PADhffkEp1YYpvVbeznr97wF8BsC9\nRYn+n8GUmveDrda6Hfa1qMHXBfa1/Kti24uKa/lWVK/ldwC8WCn1QpgS969t8f7/FcBXKaXOw2Qy\n31OsIwTwWzAK+MXij4c/wPB7tgGgM/D6toF/PwXgZwb/ENFad7TWvw4AWuv3aK2/HOYeaphng4wJ\nDDAJIYQcKUqpb1VKndFa5wCWis05gGvF/+8e2P3XAbxdKXWXUmoaJqh6b1FGfh+Ar1dKfWkhvPkp\nbB8szgBYAbCmlHo+gO/dr+vaZq3b8fsAXqSU+saipP79qAZnEjMA1gAsK6XOAfjRwS9qrXsw9+g9\nAP6H1voLw05UlNg/COA/AXhCa/1I8aUApnR9DUCqlPrbAP7WFmv6BIBvVkq5Sqk3oNp+8P8A+B6l\n1CuVYUop9XeUUjNKqecppb6mCGh7MJnifJvrJyMEA0xCCCFHzRsAPFQoq98J4C1FT+EGjHjlw0UJ\n9VUwopD/AtNP+ARM8PGDAFD0SP4gjEjlGZhg6ypMX98w/leYEvAqTMDz3n28rqFr3Q6t9XWYfsl/\nA1Pmvw/AA9j6Wv4FgC8BsAwToP62sM+7AbwIW5fHS94D4GsxUB7XWq8C+CEYIdYtmHv3gS3O8cMA\nvh7mD4dvgcmilud6AMD/AiPSugXgMRhRFGCC2J8FcB2m93QBpoeVjAnKtHUQQgghx4sia7gEU/5+\n4qjXsxeUUg5MD+a3aK3/bA/nuQOmJeA2rfXKfq2PEBtmMAkhhBwblFJfr5TqFD2cPwfg0xhTexul\n1OuVUvNFmbjsDd1KYb/d+RwA/wTAbzC4JAcNnf8JIYQcJ94EU/5VMCXlt+jxLdW9GqY8HQB4GEaZ\n393NiYqA+wqMkv0N+7ZCQobAEjkhhBBCCNlXWCInhBBCCCH7yqGWyO+///5aunRubk7atUKWZbVt\nUua1STbW87a/ZGkfY0G2/TZ7DY5Tj+GlbTZ5XndjkLalad3twr5fruvW9pG2SdfTZJ8kSSqvpc+h\nyTqlY5usCajfU+keNz2XvS5pnfY1A0Acx5XX0jVLn+Ha2tq229bX12v7vP3tb98vr75jwenTp/Wd\nd9551MsghJBjzcc+9rHrWusz2+3HHkxCyLHgzjvvxAMPPHDUyyCEkGONUurJ7fdiiZwQQgghhOwz\nDDAJIYQQQsi+wgCTEEIIIYTsK4fagymJJbrdqqVXUyGGJJawaXoue78mIpxh+9nrkq65yXHS9Unn\nkoQkTYQyvu/XttnCn6b3z15DUzGSRNP3tGly/5p+rraAp+ln0WQNEk3ETpIoixBCCBlVmMEkhBBC\nCCH7CgNMQgghhBCyrzDAJIQQQggh+8qh9mAuLy/XF2CZmksm55Jxt9S3tt25m9KkR3In23ZzXJPr\nA+R702QN0nFN+vya9CM2XbvUb9mkD7SJob7UYyqdS7qeJvdB2qfJdTfty9zts0sIIYSMAsxgEkII\nIYSQfYUBJiGEEEII2VcYYBJCCCGEkH2FASYhhBBCcGMtQpZv3+NOSBMOVUkgCRdsYYQkxJBEN02E\nHk1pYrTe1KS7ybqaCFckY/I4jhudy94miU+kbbbBuMRuRUX7ef+aiHAOWiQj3Xf7M5PWIH2G0vXY\nIqXdGtATQkhT/slvfhLf85X34NX3nDrqpZBjADOYhBBCCEEvydBLm7mAELIdDDAJIYQQgizXyDKW\nyMn+wACTEEIIIUhzjZQ9mGSfYIBJCCGEEORaI99HfQOZbA5V5CMJV6IoqryWRB5NJ7DY+0kiiyYi\noqZCoyZCkqbiDFt0I72fdP+anF86romgp+kUnSZrl2jy+UjnkkQxTd5ztwKyJqIioH49Taf2SOyn\niI0QQpqQZsxgkv2DGUxCCCGEmB7MPfxhTMggDDAJIYQQgkxrZIwvyT7BAJMQQgghzGCSfYUBJiGE\nEEKQ5jl7MMm+cagin7W1tdq2JuIMaR9JQGHvZ09DaUqTcw/DFpI0FfnsVqTSVIBis1sRibQGezqN\ndC1BEOzq/XY7VWm390WiqVhnt5+9hC2couiHEHLQ5DmQM8Ak+wQzmIQQQghhBpPsKwwwCSGEEFL0\nYDLAJPsDA0xCCCGEMMAk+8qh9mA27WNscpzUF2dv263BuGQA3tTwu8k+Um+ovXbpuKZ9ePb6pV5A\nqSfSvjfSvZLuaavV2nZNTU3O7euWPgvp/jX5LKT3a2Imv1vjeOleSZ/hbr8vCCFkP+GoSLKf8Dcb\nIYQQQpjBJPsKA0xCCCGEMMAk+woDTEIIIYQwwCT7CgNMQgghZA88eHEZ7//ExaNexp5hDybZTw5V\n5COJM2xhhCTq2K1pdlNhji30kPZpugZbrCOJkZqIdaTjJEGKtJ9t0i3RxMC86fs1MbTfrcBGer8m\n4pkm5x52/iYm59L57W3SNXc6ndo2Cdu8PoqiRscRQg6fhy4t46OP38SbXnruqJeya0qD9ZxDHcg+\nwQwmIYQQsgeyHEjGPPNXZi7TbLyvg4wODDAJIYSQPZBrjTRrNlJ2VCl7L7OGo3EJ2Q4GmIQQQsge\nyPX49y5mRWk8Y4mc7BMMMAkhhJA9kOfHIIOZlRlMBphkfzhUkY8kzrCRhBHS1BlJnGHTdOKLva3J\ntJ9h2OtqOrllt5NomgiGmopU7PvVVEDUZO1NJ/nsdqpNE5FPk+OkbU3FQfY26V5Jz5Z0rjAMK685\n7YeQ0SXTGPsMZlr8HGIPJtkv+FuLEEII2QNa67EPzFgiJ/sNA0xCCCFkD2S57mcAx5VNkQ8DTLI/\nMMAkhBBC9kCugWTMM5hlBnbcS/1kdDjUHswm5teS0brdjzaMJv2ITXrZpD65JueWjm3as2hfd9P+\nRKl/z16D1PvapEdRej+pr7VJb610zU0+iya9tk33a9rH2KQHU/pcmxjcN322Wq1W5bX0fXGcUEq5\nAB4AcFFr/Ual1EkA7wVwJ4ALAN6stb51dCskZDi5Hv8Ri/0M5pgHymR0YAaTEDIK/DCARwZe/wSA\n+7XW9wK4v3hNyEiS5xrJuKvI2YNJ9hkGmISQI0UpdR7A3wHw/w5sfhOAdxf/fjeAbzzsdRHSlPwY\nqMjZg0n2GwaYhJCj5ucB/BiAwRTQotb6meLflwEsSgcqpd6mlHpAKfXAtWvXDniZhMhkx6BEzh5M\nst8wwCSEHBlKqTcCuKq1/tiwfbRpUhV/62mt36W1frnW+uVnzpw5qGUSsiVaj3+JPC9K4zkDTLJP\nHKpyQBIq2MILyVS90+lsexwA9Hq9ymtJUNHE6FoSpEgCjiYCm6bG2vb1NBWkSPvZa20qSLGFP03N\nyuM4rrxuKkiR7oN975uanDcRYTUVGjUxjm9i0C4hCdak67HvYVOR2RjyZQC+QSn1dQBaAGaVUr8K\n4IpS6nat9TNKqdsBXD3SVRKyBVk+/j6YZeZy3O2WyOjADCYh5MjQWv9TrfV5rfWdAN4C4E+11t8K\n4AMA3lrs9lYA7z+iJRKyLcejBzMv/j/e10FGBwaYhJBR5GcBvE4p9SiAry1eEzKS5Po4GK0DjmKA\nSfaP422uRwgZG7TWHwTwweLfNwC89ijXQ0hT8oES+Y21CKemm3k3jxJpniP0XAaYZN9gBpMQQgjZ\nA9lABvMbfvHDuLYaHfGKdk6WawSeM/alfjI6HGoGU5oCY08skfaRhBGS6MEWZzQV+TSZRNN0okyT\nKTpN1t50DZKgxt5PEvRIa7BFPU3WJCFdc9PJRFG0/Q9m6TO0r1F6jppMUBq2Lpsm032aiLmabmu3\n29uuiRByNGi9afOzFqXYiFMA45XFLANMZjDJfsEMJiGEELIHslwjzTW01ojTHHE6fv2YWa4RMsAk\n+wgDTEIIIWQPlB6SaTEyMhrDADNlBpPsMwwwCSGEkD1QxmRJliPN9VgGmHmuEbgOZ5GTfeNQezDt\nfkug3vcn9a3ZBupAM9NsqQ+vSe/cxsbGtvsMW6ttOt7E0FzaJl2f1Nso9RA2NUjf7riD7h9tsl9T\nU3V7m7RPE1N6YPe9p02QrkcaLiA9u4SQ0aScfrMRm58n41giT3ON0Hex2ttek0BIE5jBJIQQQvZA\nWSLvFgFmlNb/cB11slwjdJuVyL/tP3wUT1xfP4RVkXGGASYhhBCyB8qy8jhnMPsq8gYl8qsrEW6u\nx9vuRyYbBpiEEELIHihjMmNPBMTZeAaYTVXkSZ4jHcNrJIcLA0xCCCFkD5RBWb9Enoxf8FWqyJsE\njkmWI8koBiJbc6giH0lQYW+TBD2SaEUyX7eFEZJYQzqXLbyQxC22eGfYfvb1SKbgTQQvTcy+h63B\nvsam5t72cdLnJV2PfS5JYCPRZL+mgiV7DU3WCTQz9peEVNI2+1zS+0nHNREtSZ8FIWQ0yO0S+Rhm\n9zJtAswmLkVpZuyYCNkKZjAJIYSQPdAPMJMx7sHMcgSu0x95uRUJA0zSAAaYhBBCyB4oY7KNyFSU\nxklF/tTNDfzk+x/ckdF6mpsS+SefWsI7/+TRQ1glGUcYYBJCCCF7oFRed8cwg3lxqYv/ceEWcq0R\nem6zALPIYD55cwMf/8KtQ1glGUcOtQeTEEIIOW7oMbYp6iUZoiRDmmv4nkKujXG84wzvf0+yHHGW\nw8lVP6gmxOZQA0xJkNJ0wouNJLqxhRDSuaMo2nZd3W630XHSfraIQ5rSIt0H+1ztdru2jyR42e09\nbTKtpokoS1qDJGSR3k8St9ifq3QuSTxjX7MkApOEP9LUpunp6cprSXgmfa5NJklJa5+amqpt2+33\nBSHk8Mktm6JxGhUZpTl6SYYs0/AcBddRyLSGg60DzDTTUEqjxwCTDIEZTEIIIWQPZNaoyHEKMHtJ\nhig1M9RdxzEBZq7hD8lB5LlGrtEX+ZTXTIgNA0xCCCFkD9RHRY5PgBklJoOZaw3fdeAqtWUfZlJU\nV8oAs8sAkwyBASYhhBCyB0xwpsayBzNKNzOYLV/BcxTSLQLMtDBYTzINDZbIyXCoIieEEEL2QJ4D\ngetgI84Qes5YGa33EhNcRkkO11Fw3a0zmJsBZo44zVkiJ0M51AymJOqwRSNNJtMMO5ctlFldXa3t\ns7Kysu1xkqij1WrVtklCDHvbbqfoSGuQkMQzTQQ8TdYlXZ8k8rGFOdI+0pqkNTSZ7iOd375fTUVF\nkhDnxo0b265BWrv0jNjYAiJAFovZ52/ymRJCjoZyCk43STEdeojGKKtXenZuxCk8p7WjEnmuNbpJ\nBq1146lrZHJgBpMQQgjZA7oIMDfiDNMtb+wymACwHmcmg+k0y2DGRQYTGK+eU3J4MMAkhBBC9kBW\nTMHZiDJMh95Y9WCWPZQbUQrXKXswh6+/FPcYs/Wqep6QQRhgEkIIIXsg10UPZlkiH6MAs1zremwC\nTMdR2MqGtwwwkyzvH0uzdSJx5CpyuwdO6omTTK2l/kC7D0/qY7x1qz7Wyt4mHdfE3BuQDeBtJBN1\nu8dOWsP8/Hxtm2Qobt9DqfdQ6pexj5P6/qT+R/s+SObl0nGSibrdgyutXbo39ntK/bfSs9XEDF1a\np2SObn+u0nHSMyN9hvY26ZkhhOwPD19agesoPO+2mf62Tz+9jE7o4p4z9b5pm1xrBJ6L5W6CmZaH\nKysRLlxfx82NGF9yx4mDXPqeKTOY61EGr0EGs1SYJ1nez2DaVkVpluO/P3QZb3zx2QNaNRkHmMEk\nhBAy0bz/kxfxgU9erGz7rY8/jT9++Eqj480cb9ODOVWUyP/o4ct438eePojl7iuDGUxHbd+DuZnB\n1EO9MC8udfHTv/fwAa2YjAtHnsEkhBBCjpI4zbFmlbXjLEfaUKyT50AQOOgmWVEiz7C0kSDLtnfF\nOGo2ezAzeO7mqMhh2DZFQL1EvhFn/f3I5MIMJiGEkIkmTnMsd5PKtiTNETcMksoMptYwKvLifMlW\nzYwjQj+DGaXFqEhny+AwHbAp6mcwrQCzm2T9r5HJhQEmIYSQiSaSAsyBAGo7cq0RuObX6UxobIqW\nu8mWpeZRoZdkmGl5RuSjTA/mVuuOU93/f5TmCD2nViLvxdlYXDs5WI7caN0WbDQR7wCymGZtba3y\nWjJVl8QftkBkfX29tk+SJLVtkvjIFnbYaxq2LtuAWxJ+LC0t1bZJ4o8mIh9JwGMLVyTj8KaG6TbS\n/ZM+V3s/yXg/iqJdHSc9W1evXq1ts++9dH1nz9ab1+17MzMzU9unibhKWmtT431CyM6J0xwrVoAZ\nZzmShmrw0qYIAKZCD1FiAszZdv17e9TopTnm2j5We5sq8i1L5MXPpjQ3Afhc20c3qf687SYZEgaY\nEw8zmIQQQiaaKM1qGcw41bWZ3E/d3MCt9XpyQ2v0A8zp0EOUmYB1HHowoyTDXBEIlyrywezjI8+s\nVHw900zDc1S/B3Ou7aMb53jo0jLyfNMXs2n/Kjm+MMAkhBAy0Ug9mHGW1ybyvPP+R/G7n7pUOz4r\nejAB9I3Wb20kW9r9jApRmmO+YwLMcpLPYA/m9/3ax/E3X9i08kuyHO3ARZIao/XZto9ukuFtv/Ix\nfP6aqdh1kwy5Rj/gJJMJA0xCCCETTdkzORgQJWm9RH5lpSdO6cn1Zok89B34rsKNtaiWAR1FBjOY\nrqPgKoW8KJGv9BI8cX29Yhyf5hqdwEUyUCLfiFJcXe31fTFLZfo4XD85OBhgEkIImWiiJEeugbV4\ns5cwFkQ+V1Y2g6hB8hwIih5s33UQei7Wx0ToUvZgAkWJ3FX9wPDBi8sAUAmqkyxHJ/AqJfJLy+a+\nlBnbcnTkOGRwycFxqCIfSeBgC2ykKTCSYEMSjdjiD2kfSTxjC2yk9+t2u9u+H1AX3Ujv10QUI90H\n6ThJwNPk/JKAx1679HlJIh9bkCKJVqR7Kk33aSLWkbCvWZq0I51L2s8Wb9nPByBfY5P3k4Rh0mdo\ni9ikZ40Qsj+UpfDljQSzLfO9nWR5TahydTUSleWDGczAdcy/I4yFVU8vyfpiJMcpjdbNuj/9tAkw\nI6sHs+WbEnlcZDA/d8WIZ8vAtBszg0mYwSSEEDLhxGkOR6HShxlbJfJeYszTpaBxUEXue07fsmgc\nMpiRlcF0lUJ5iZ++uAzfVYgHkgEmg+n2M5izLQ9P3jAJkfJ6+yXyMRA5kYODASYhhJCJoZdkNd/G\nKM1xejqsWBUNlsiXNmJcWzVVBLFErtEX+QSug9A3/95tBq+XZP0g7SApr286NMVM185gXlzGC87O\nVUvkVg/mbNvHpeVu5Xz9EvkYZHDJwcEAkxBCyMTwnz9yAT/3R5+tbIvTHGdmwkoGM8lypLnGSi/B\na/71n+HiUjWIGkQPGK0HRQazE7i7zmD+0gc/j//04Qu7OnYnlEbpLc+0PnmO0+/B7CUZnlnq4Ytu\nn7VK5PlmibzIfpZdPuX1dinyITjkHkyp/8ymaf+j1KNoG6RLpuqSybl9ruvXr297bkA2v7aN1iWz\n7bm5udo2uydS6str2tto9042MWMH6p+PfS3SuYF6X6bUd9qk3xKQr7sJdh+oZEovvZ9k2G/3O95+\n++21fSQDfftzlYzdpedP6gO1e0ql+04I2TkbUYpPPFX9+RClORasADNOTQl4I8qwGqX4yGPm94JY\nIh/owfSLHsyTU4GY7WzCSjfpZxEPkl6SoeW7/Yyr4wCOMj6Y11YjnJkJ0fbdmg/mVFEiL22K+l+z\nA0yWyCcaZjAJIYRMDEmu8fCllUp2MUozLMy0sFTJYOp+nyEA/MkjVxG4jizyGejBDDwHoefg1HS4\n6yCxG2foJQcfYEZpjpZnVO9AkcEsjNavrPSwOBsi8JxKBjPJc7QDr+8TWoqiAPSN5csWhHGYxU4O\nDgaYhBBCJoY0y9FNsr4pOCCXyOPUZOhKgcvDz6zg7Hxr2x5M31UIPAenpoJdl4g3kgxRevA9mL0k\nQziQwTQ9mA7SXOPKSoSFmRZCK8BMM9OD2Y0zeI7CVGiC09PTYd+WqAwwx0HkRA4OBpiEEEImhjJA\n/FRhwaO1sdupBZiFyKeX5Cg7VM6f6GxrUxS6LgLPxcmpYNcl4sPKYPaSrNKDaQJMk5EdzGDaPpht\n30VaZG07gTn23HyrViIfB5smcnAwwCSEEDIxJFmOO052+ibiSabhKoUTU0E/wNRaFz2Gpgx878I0\nlALOn2gPtylyS5siVZTIg11n8HpJVskaHhRRmiP0XbSKDKY3mMFc7WFh1mQwqwGmRjvYNJVv+ebf\nt8+1KzZFvqvYgznhHKrIRxJw2Nsk8c6VK1dq2y5fvrzttmvXrtX2kcQfthhI2ufkyZONttnX88wz\nz9T2kbYtLCxUXt9xxx21fSRhiYQt6pmdna3tI53/9OnTldeSGbsk1mkisJGOk/azhVNNhTm2eObW\nrVu1fSTR0sWLF7c916OPPlrbRxL+nDhxovJ6cXGxto+EJMKyxWFNz0UI2Zo003jRuTl85rL5Po8z\no6Sea/t9m6I019DaBFNxmmO+E+CVd53Ecxam8dEnbtbOqTUqRuvPOtHBPWemdz3JZiNO+0HcQdJL\nskoPpuuofg/m1ZUI9y7MoBunlXJ9muXwXbNf4DmY7wR4yfm5whtTF+vPMNPyOclnwmEGkxBCyMSQ\n5DnmOj66RQk6SjIERYBZZjDLLGWS5X0rn99426txz5npoSry0HOhlAnS/vnX34evft7C7kvkSX4o\nPph2BrP0wUxzjaurPSzM1Evkaa7hOY5Ry7sOpkMP7/+BL6/4Z3aTDDMtjxnMCYcBJiGEkImhtNkp\ng6Y4y/sB5tKGCTDLr5UZzHDAgmirHkzfdfqWYp6j9mS0figl8jKD6Q/2YKqiBzPC4mwLoef2R2kC\nJuj2PacvZioZnGHei4sAkyKfiYYBJiGEkIkhzXN0Aq8fKJoA0q1kMOMsh+eoIoOZDXhcKiRpNWjS\n2pTTA9dB6FYDrt32YG7EKaJDyGD2EmOa3vI2ezDLwLhiU5RUVeR+UR733U1/Xs9xkOUaWmtsJBlm\nQp8inwmHASYhhJCJISlsdsosZZSaDOZsy8NqL0Gem6zlVOj1fTD7PpGuU/N2zDWglAko/cGMnuPs\nugexGx+WyKdQkRcZTMdRcByFtSjpzygPXKeawcxzeK4Dz3EqGUzXUYV3qIYC0N7DJCNyPDhUkY80\n+cYW9dy8WW+gfuqpp2rbLly4UNtmCzskgYjE9PR05bUkIpGm00hTemyhh3TNTzzxRG3b5z73ucpr\naeLLqVOGmG9JAAAgAElEQVSnatskbNGIdNzdd99d23b+/PnKa0nkI2GLq6SpMzdu3Khtk+6NPTFJ\n+gylCU22oEua/nTPPffUtkliIPszlJ4/STD02GOPVV5LYq677rqrtm15ebm2zV6/NO2HELJzkixH\nJ6xmMAPXgec6mAo8rEYpkqKMfn0t638dgGi0nuVGhe67qr8fYAKu3fYg9g6pB7PMYIZWBvPirS4W\nZkIopRD6dRW57yr4noI/mLEtejC7SYZ24PYDTjK5MINJCCFkYkgzjY7v9gNFI3QxvwpnCyV5kuVo\nB6b3sMxwAsaCyC6R51rDUQqdwMN0a/MPz7LUvNPxt2lhjXQ4k3xMBtNzHcx3fHiOyWb+94cu4+y8\nSVQErlNTkZcin8EA0y16MLtxhrbvGpsiqsgnmkPNYBJCCCFHSZLlmArdfgk6SrN+5nGwDzP0XHiO\nwnqcDmT46hlMrc0M77PzbfzO939Zf7vjKDjKlNDdelFnKKVJ+eFM8sn75fEP/fjXIPAcfOeX34XX\nv+A2nJ4OAEAwWtfwimxtOFAi9x0Haab7GcyyJ5NMLgwwCSGETAxprmsinzJDWSrJO6HbV4WvR2nF\n49LuwcyKDCYATIfVX6llQOo6zT0tu0mGTuAeWgaznOJTrr3lu3jOwmbbWOi51VGReeGD6VZL5KW9\nUZnB9Fgin3hYIieEEDIxpFleE/mUIp4yg7nZl6mwHmXblshdoe8cQOENubMgqxtnmG/7iNJsx+X1\nnTKYwRxGzQcz0/3yeCD2YBqTeM9VSKkin2gONYMpCXNct/pwS1N7pIk8ksji3nvvrby2xTuAPFHG\nFptI+3Q6ndo2aQKLfaw0rebs2bO1bU3ELfa9AmShjO/7lde2aAWQBUr29UginzRNa9vsiUbSNKam\ngit76pB0LumaHaf6t5I0aUcSH9nCJgC4fv165fXc3Fxtn0uXLtW22c+kdM3SsyxhT0eSpjEdB5RS\nLQB/ASCE+Xn0Pq31TyqlTgJ4L4A7AVwA8GatdV2RRcgOSTKNlu9Cwwh0Bn0uywBztu3B90wZeC1K\nsThrfhZKPph5rjEkvqx4Qzalm2SYbnlwVk0GMPB2UF/fIb0k65usDyP0nEoGMxnswaz4YDpI4xTd\n2Mwq91yHPpgTDjOYhJCjJALwNVrrlwB4KYA3KKVeBeAnANyvtb4XwP3Fa0L2TJrn/R7COM0rJfL5\njgkwk8xkMO0SuS/0YObaZColvF1mMNuBVwR2B9uHOZi9HUboOXWjdbeumvcK1Xw32SyRM4M52TDA\nJIQcGdqwVrz0i/80gDcBeHex/d0AvvEIlkeOIUlmRh2W/o7RQAZzdqBE7hcl8rXBANOr9xVm+WYP\npo3rOI2DLK013vFHny16GI2a+6D7MHtJ1lfQD8MYrQ+oyHMNryyRD2RXy3aAbpKhVYh8mMGcbBhg\nEkKOFKWUq5T6BICrAP5Ya/1RAIta69JI9DKAxSHHvk0p9YBS6oGm7Qdksimzk4HnFEbqWUXks9xN\nEGdm9GNQZDC3GhWptYYzJIPp76BEnuUav/Cnj+HySg9t3y0CzFHIYNqjIjU8R9V7MAtbIjN+0t3R\ntZPjyaH2YM7Pz9e22abjdi8iUO8pBICFhYXaNtvE+ty5c7V9pH46u9dQMumWzNfX1tZq2+z1S6bg\nTY6T+vekfkS7Vw+oG6tL1yz1p9o9mNJ9l/oY7f2kfaR+1cXFesxg95lGUVTbR8Juhpf6NKW+U+ka\nt1sTUO/5BOr9qVKDvvRs2T2fQN0AXjruuKC1zgC8VCk1D+C/KaVeaH1dK6XE31Ra63cBeBcAvPzl\nL+dvM7ItaWGz45cl8qzag7kyIPLxix7MQSPy0tuy/DlnVOTye+1E5FMGYxdubKAduLXex4OgSQ9m\nKfIprznN8n5wWTVaNzZFZra7KozmWSKfZJjBJISMBFrrJQB/BuANAK4opW4HgOL/V49ybeT40O/B\nLDKYUWLZFHVjk+X0HPheoSIvAilVTOwZLJPnGkNL5OU88yaUgegXbqyj7XsIDymDuZ2K3HWUCSyL\n9ZkSuerfw5Iy+E767QUObYomHAaYhJAjQyl1pshcQinVBvA6AJ8B8AEAby12eyuA9x/NCslxI8k0\nfMeB76p+BjNw6zZFfjFvez1OK32Kdpk837IHc+cZzCdubKAdOIeSwYySrGKWPoxwwKooyfLi/jk1\nH8wsN7PIA9eBvwuBEzleMMAkhBwltwP4M6XUpwD8NUwP5u8B+FkAr1NKPQrga4vXhOyZNCszmKa3\nMB4YFVlRkRc9mGu9tB+AAkKAqTWEjpn+vjvpwQSAJ2+sFz2YVXHNQdDEBxOoemEmWd6fQ17JYBY9\nl3GWwy/GT9qm9GSy4CQfQsiRobX+FIAvFrbfAPDaw18ROe4khVF4UGQwo6LfEigymBuJCZJcUyJP\nc10JpHxXVUQvZhTk8Axm2rBMXM7tXtpI0A48I/LZR5uiL9zYwFI3xovPz+MPPv0M3vCC2/qzyLfD\nzCM360sLFX7dpsgo5vsm9Tu4dnI8OdQAUzIrv/vuuyuvJYNsSSwhGa3bghdbKAHIIiLbxFoSqUgi\nH2mbvQbJrFw6fxAE257bNjQH5PtgG7nboh9ANu6empradp3SZ2EfJ4mKJLN36fySkbuNJLqxxTqS\nOEi6V9K57OuR7p8kDrKFWdK1SOIj6d7Yz650HCFk5yR53s++JZk2AWZpU9Ty0U2yvvelV6QmKzO3\nXacSOG1lU2T6EnfWgwkAbb8Q+eyjTdEfP3IFn7+2hhefn8eP/OYn8YofO9k4gxn6VgbTVXjzy5+F\nmdbmz9RyVGSc5ZgOPXguS+STDkvkhBBCJoIy4HELm50kyytZPMdROD0d4tJSD8HArO3AG96DuZVN\nkec6zXsws8EA09n3DGYvydBLzPjJXmqC6J1kMONiSl3pg/nCc3N49qnNP8ZLU/mkP2azbulEJgsG\nmIQQQiaCUqACYNOmaCCDCQALsy08dXPD9GAWRuKh1Ws4GDhtZ1O0kx7MciJQ36ZoHzOYUdEOkGQa\nWgPrcbqDHsxN0/e08MG0Ke9LXGQ4WSInDDAJIYRMBKXFDlAIV0qRz0AAuTgT4ulb3YpKejAADSz7\nnTzf2qaoeQ+mxuJMCACbPZj7KPKJkgxRkvWzouuR+XdjFXkRVJctBjae4xQq8kLks4PgmhxPKPIh\nhBAyEaRZ3s++lbPI7Wk2C7Mhrqz2Kj2YW5XIc71FD6br7KgHc7rlYTby+pN89tOmyJTI837Qemsj\nhqsUPCFYtAmKbOpgi4FNvwcz1X0T9qbXTo4nhxpgvvKVr6xts8UL0rQaaYqJJDaxj71x40Ztn6tX\n637NTz/9dOX18vJybZ8wDGvbpOk0tpCk6VQbWwAlTYqR1iCJiM6cOVN5LQl6bFERUBeuSFOCJFGM\nLaiRpgRJU3uka7TFTdJEIwl7DZKgRxJOSWKgLNs+a9Dks5eEQNK9sT8v6fzS804I2RmlghzAwKjI\naol8caYFrVGZtT0YgJb+mX/y8BXkWmNhtiUGXMBmX2IT0jyHoxQWZ1t9kU8vyfHwpRXcd9b8DO/G\nGS6v9HDX6altzlbHlMizftn95nrcqDwObGYwk0zOXgLmvmR5OcnHgaNYIp90WCInhBAyESSFByaw\nGSj20uq4xMVZ80f74CjEag+mgws3NvBDv/E3ePt7P4EL19e37MFsOs0mK8r33/6ld+K5t02j5bt4\n4voa3vR/f6j/B+bvfOIifub3H9nxdQObGcyoKJHfWIsalceBTaP13hbG7OVoyKQ/ZrO5gp4cT1gi\nJ4QQMhGkQgZzPUoxFW7+KlyYDftf75fI3WoP5rXVCHeemkKa59iIs+Eq8h1O8nEdB9/2qmcDMEHd\nX1+4haSY7x16Lj719DI24u2t3CTKDGYp1rmxgwxm4DmI0gzL3QTznXplBih8MEuj9eJ+MYM52TCD\nSQghZCIYFKj4roM401iPMkwFAwHmTKv/dTOxRlUCSN9VuLYaYa7tI/SMEGe/ejAH1dmh7+LikmkP\nW49M1vHBi8vo7lL4U89gxjvIYLqI0xzL3QRz7SEBpqv6Ip/Ac+C6CglFPhPNoWYwb968Wdtm9/k1\n7TNcXV2tbbN756QeP8msfH5+vvK6qbG2tK1Jr5x0nH3d0n2QjLule2MbhUv9llIvpY3Ux9ik91Va\nu3TfpXXZ55cMxqX7YPdSSob6Ur/l0tJSbdvKykrltfTcSs+W/VnMzMzU9llYWKhtk+6zfS7pXhFC\ndsagxU45/nAtSjE9kMFcHMhgBq5TyV4CJmi8vhZhvuMjznJ0k2xoiXwnKvJBmyIAaA0EfybL6uIz\nl1dwz5l6H3cTSoFPb6AHM2yawSwEUVsGmI4qfEVNEO/kGhlL5BMNM5iEEEImAtODuVn2jtN6ifxE\nJ4DvquK/6rzt8rgb6yaDGbjOlhlMdwclcimDCQAnpwKsRSk+d3kNvuvsOoMZpVm/TA6UJfJmIYAp\nkedY2hgeYJbXWmYwjS8mM5iTDANMQgghE0Gaa/h9kY+D9TiFUlUbIsdRWJhpISyCpEEFuTlO4fpq\nbErkvoNuPDzANEKXnfRgVjOYCzMh7jzVwXqU4lMXl/CyZ59AN95tibyawdyNyGfrDKbpwUyywVnk\nzGBOMgwwCSGETAQVH0zPwc31uJK9LHndfYu4fa5tSuRWEOYXJfLZIoPZTbKhNkUmq9e0BzOvZDDv\nPD2Fv/uy85gKPaxFKR69soYvftb8njOYvSRDJ3B3ZFPUCVysxymWuwlmt+nBjNMcvqd2NCaTHE8Y\nYBJCCJkIBhXOvutgaSOuCHxKfuobXoCz822xRO65Dm5umAxmUHhVDklgwnOcxmXiNDMq8pLnLs7g\nx9/wfEyHHtYjo+A+d6K96+k+ZeZytZfi5FSANNeNM5hnZlu4thphpZtgvi33g3uFJVOS6X4GkyXy\nyeZQRT6S0bUtSJHEJ5JZ+YkTJ2rbzp8/X3ktmVpLAhFbpGKLPAB57ZIAxd5PMu2WBCL2NUr7SEji\nD/tc0v1rgvRZSIIU+55K9086lyT8sdcqnUv6DO3zS/tISCb+9ntK5v/S52qLt6TnTxKQ7Va0RAjZ\nGbZN0a2NpCLwsTElcrsHU0FrVFTk+2G0bvdglkyFHtbjFEsbMU5NhdAaWxqeD6PsvVzaSHBq2ozD\nbJrBXJgJ8eefjZBNazz7lGzyXmZr40Lk47uaPpgTDjOYhBBCJoI03zRaD1yFWxsxpsLhQZaUwSwD\nuzKD2d1K5LPTHkxXCDADF+uRKU/PdXy0fXdXZfIoydHyHSx3E5yaMomJphnMxdkWrq72trEp2vTB\nDD2nMF5nBnOSYYBJCCFkIkgyXZkvvrSRiD2YJZJNke9tBpiht7XIZydCly0zmGWA2fbRDlz0diH0\n6aUZ5tp+JcBsmsFcnA1xZWWbALMIKDczmM2Da3I8YYBJCCFkIjAl8k0V+dJGvGWJ3HedmlekXwSB\n850iwNzCB9MtlNWN1mapyEuMyCfDcjfFfBFgbuwwwMxyjTTXmA49LHcTnJzeWYB5ejrEjbUYN9fj\nHdgUOVSRTzgMMAkhhIwV9z9yBT/7h5/Z8XGmRL7pg5lrbJnBPD0d4Nx8deiBXSLfqgfTF3owH7+2\nhrf9ygO1fW0Vecl0kcFcKRTcTUvkV1Z6+J9/6cMATP9ly3PR8l2sdBOc7OysRO67DuY7Pp64vr51\nBjPP+/2hnmMm+fz07z2M+x+50uh9yPHiUEU+kijGntwyOztb28cWAgGy2KTJ+0nH2eeX1pAkSW2b\nNBnGFmxIYpAmoo6mIhVJPGOvVTqXtC57m3Svmkw0ktbUVDBki5akyUHSGtrtduV1E0HZsHU1ufeS\ncMo+l3R9a2trtW2SiMieVCVNEyJkUrm2GuGZ5bpAbztM+bbIYBbB1VYZzFfefQqvvLsqzCuPm2kN\nZjC36MGMqz/Drq/F+MLN+vd8OYvcZir0cH0tglIm49hqGGBeXYnw8S8sYWkjRq6B0HfQ8l0sdWN0\nQg+t4nVTFmZauL62grkhs8hdRyHXQF5kiUuB0yPP7H76EBlvmMEkhBAyVmRa76q/L801fGczgwkY\nj8ed4DkKMy0PrqOMyCfOtrApqvdgRmmGOK2Xjof1YE6HLi4tdfuZw07gNjJbX4vMH8oPXlzpZzBD\nz4h8Wp6D6dBrnMEETB+mUsDMkIBcKRNUBq5j/u06SLIcV1ejXVsrkfGGASYhhJCxIs/1rvr70mxA\nRV4EV1uVyCUCz+kHe+WoyOE2RfUezDg187rraxveg3lxqdd/z7bfLMBcLwLMT11cQi/J+xnM5W6C\nlu9iKvQazyIHTAZztuXDGdZwCpPFLDPEpejnykoPvZQB5iTCAJMQQshYkWvsygInGfDBLP+/VYlc\nwnc3A8zQd9FL8uEqcrfegxmnOWIhOB6WwewEpkRevmcraFYiX49TBK6DBy8uVzKYvcTYCE0FO89g\nDuu/LBm0dfJchV6aYbWXIkoo9plEGGASQggZK0pV9E5JB4Q0ZYl8pxnMwQAzcB3E2fAA0y2EL4NE\naY5ICBCH+WCWAfDOM5gZXnrHPD59cRm9wgOz7Lls+S6mQ29nPZizrW0DTJPBLAJ4x0HZQs8M5mRy\nqCIfW4gB1IURueD8LwlsmopGbKQJOfZxTSbFAECn06lts9cviU2k8zdZg7RNEsHY4ibpmpucXxKy\nSAIb+/zS5yxNHJLuTZP3a7VatW3257O4uFjbR1qX9LzZYqemk5BsoZb03IZhWNsmfRb2dUvXTMik\nkuv6lJgPP3YdT97YwDe/8g7xmB/69b/BPWemN1Xknvm+nt7CaF1iKnBxejoszmHONaxq7Alm48Mz\nmLKKvDSCL8U1naYZzCjFC87O4uFLK7i60kPouWj5Zr2hZ1ThM63mIcC5E22cnpbHRJZ4RV8qADiO\nglKA1mAGc0I51ACTEEII2SvGb7EauH328io+d2VVDDCzXOMDn7yEN7/8PG6bNX+sBcUfpTvNYL7u\nvkW85rlnAGza/GzVg2mXyKPMjFPUWlf+eB2mIhczmA0CzLUoxUzo4dx8G09cX0foOwi9zQzm//Xm\nl6AjzGEfxlfeewYve3Z9RPMgbiHyKfEdk+GNmMGcSFgiJ4QQMlZkWtd7G7O8FnSWrMemSvD0rW4/\ng+kXGcydBpie6/SDvjJbN6zK4bnGC3KQKMlMD6m1fatJPsBmgNnagchnKvSwMBviyZsbCD0XYZHB\nbPkuZlr+0MBYwnEUZlvNezABc/1zbR89ZjAnEgaYhBBCxgpJRZ6kxuRbolRUX1rqDswi353IZ5Cg\nn8GUv26m21htU8UabauiYZN8yqCtn8HcgchnKvSwMNPCUzc30BrIYO5E3LMTBnswy9d3nOwwgzmh\nHGqJvGkvpY3UJyeZqDcxupbOZfcQSsdJZthST5/dO9ft1s2AJZNze+1Njdal67HXL12P9FnY79m0\nX9C+HmkfqQfzxo0btW1nz57ddp1ST6m9TbrHt27darQu+35J97gJ0tqlvlPpGWnSD0vIpJLlqGUr\nkyyv9WWWrEfm58GlpV7fB9PfpU3RIGXANnwWuSP2YAJG7DM18CM2GxJgAiYIHvTBvHirSYk8w3To\nYXE2xF9fuIlX3Hmy34O5E3HPThjswQRMcHzHyU6jgJgcP5jBJIQQMlbkQok82qpEXmQw40EfzFJF\nvkOj9UHCvshnWIBZtykqPTDtDOawEjlggspKibxBwLZRlMgXZ1u4uNQ9lAym5276YALm+p/FDObE\nwgCTEELIWJFrjSS3S+TDzdfLABNAZRa5o/aWwQy2CTBdoQcz3iLAHJbBnGn5mO9UbYr+3f2P4gfe\n83F86ukl8Zi1KMVU6GJhJkSW64qK/KAymK7jVErkvuvg2ac67MGcUBhgEkIIGSuyXNdLz1k21Btz\nLUr7wWBQZNgcR+F3f/DLKwHRTgm3sSnyHafWg1lm8+ysXjrEpggA3vHml+Al5+cBmGzmapTilz74\nefSSDP/fo9fFY9bjFNOhh4VCNd/yHbQOOoPpqMq53/XtL8MLz85xVOSEwgCTEELIWCGpyJNUDxf5\nxCnuOjUFwPRFlrzg7Nye1hFsY1PkDvHBBFAbF5kNsSkCgC+6fbafeW37Lh68uIzb51v4suecxtWV\nuh4BMH2nU0UPJoC+ijxwnS3HPe4FW+TzgrNzaPmOOBqTHH8OVeQjiT9sIURTMYMkDmoi9GginpGE\nH02FRk3MtqVt6+vrlddLS/WyR1MDc1ucI5mVS9djr116P0n4Y5u9S4KopqIlW4hjrwkApqamatts\n03tJTCM9W9J9sJ8t6Tlqsk1au3QfpLXaz0jT+0fIJJDn9WByK5uitSjD3Wem8Nkrq/0ezP2g7OPc\nyqZImkVerneQNBvegzlIK3Bxcz3Ga+49jcXZFj76+E1xv7XIZDDL0nqZwSytig4C362KfMz7usxg\nTijMYBJCCBkrsrzuIxln+ZY9mOdPtOG7ak8lcZuw6GXcyqbIXmeZzbOn22zVgzlIu3jPF52bw+Js\niCurwzKYRuQTei5OdHy0fLditn4Q2BlMwJTjmcGcTBhgEkIIGStyLWQw0+EZzI0oxXToY2Gm1ShL\n2JQygzlM5CP1YA7NYOa6UXa1E2wGmAszLVxdqVdK8lyjl2ToFMHo4mwLoWdmkbcOMIPpOU4tgxky\ngzmxMMAkhBAyVkg2RVv5YK5FmVFUz4b7msH0XTNve6iKXOrBzHIEnoM4zfGRx65jecO0w+wkg6kU\n8IJzczgzE+LaalRvU0oytHy332u5MNsywaXnHpiCHDAtAYGUwaSKfCJhgEkIIWSskFTkSZbXtpWU\n5eK3f+1z8dJnze/bOpRShd2RHBgGnqplKqMkx2zLQ5Rm+Pk/eRQffcIMnNhKRT7I6ekQP/8PXorp\n0EPLd9EJXdzaqPZsl9db8r1feQ9efc8p3Ls4jR99/fN2epmNsY3WARNgJnmOfIjCnxxfDlXkY/+V\nBdSFEU2FOdK57EZrScDRREQkiXCkaTiSiMOeyiIJgVZXV2vbbt6sNmrbop9hnDp1qrbt3Llzlde2\nAAaQxUE2TSfR2CIi6TOUziV9PtevVy03pOMkAZQtzGkqUGoyjanpRCj7uiUhWlPBkP18S9OLCJlU\nJB/MOM1r20rWirGJX/HcM/u+lsBzhvZghp5by95FWY6Zlo84zbEep1juDmYwt/8+dxyFN71082f8\n4kwLV1Z6ODm1+TO9FPiUvPqezd8Tr3/BbY2uazeYHszq79gyCI/SHO09mNqT8YO/tQghhIwVWa6h\nNSpZsTjTSNLhGczp8GCCm9BzhyYuQt+p+V3GaY7p0EOU5liPNgPMdItJPluxMBviimVVtF6YrB82\nnuuILQgt3+U0nwmEASYhhJCxoqw6D2Ys43SrWeQppoKDKdiFnjO0d9JY9NSN1mdaHuI0x1qUYaW7\nsx5Mm4WZFq6uVqtpawd4vVshlcgBc484zWfyYIBJCCFkrMiLFpLBnstkGx/MvYyE3IrAc4ZO8ml5\n9cxdnOb9AHM9SrFUZjAb+mDaLM6GNbP19SirlMgPC9epi3wAZjAnlSPvwbS3Sf1oUv+Z1APX5Lgm\n65LWKZ1L6q9cXl6uvLZ7CgHgypUr265pcXGxtu2uu+6qbZP6/Oz+Sql8I/UV2sdJPYtNejeb9h42\nWZe0BrtfFQAef/zxymup73R6erq2TerBnJ2drbyen6+LAqT7ZyOtXXpupW32M0ijdUI2KRXkgx6T\ncbq1D+ZBBVyhN1zk4xdG61mucfFWFwuzYVEi99FNMnSTzOrB3E2A2cJjV9cq2zbi9MAC6q0YlsFs\n+cxgTiKH/wQSQgghe2Azg7kZtCRZjmSIUvkgA65giwBTKdXPYv6L330If+9l5xEVGcxbG0YwudmD\nme9qytB8x++fq2Qjzvp+mYfJ1zx/EefmBYGlRy/MSYQBJiGEkLGiH2A2zGCuHaDoxdgUDf96WGTv\n1uMUtzYSxKmxKXryphmpu1MVee38nlOzZ4qSDKGQSTxo3vBCWaHOeeSTCXswCSGEjBViiTzLkWvU\nDNjTLEec5v0Ri/tN6A8X+QCmD7OXZOjGphwepRmmWx5ursdQCntWkXuOI85ll0rVRwUzmJPJ6DyB\nhBBCSAPKeMoukQ/+v2Q9zjAVeI08kHdD4DpbnjsssnfdJMPNdaP27gSmRL4409qzitz3nJqZe5yO\nVoDJDOZkcqgl8iZChaZG69I3tL2tibG7tE0yE5eEGJJh+q1btyqvL1++XNtH2nbnnXdWXj//+c+v\n7WMbqAOy0Mg2J28iIgGaiaKkc21sbGz5Gqgb0A/bzxbnLCwsNDruqaeeqryW7ktT4c/p06crr6X7\nPjMzU9tmC38kAZH03EqG/fZnKO1DyKRSlsgHVeNlUJVaGUx7qs1+E2xhUwQMZDCTDFdXI4Sei8Bz\ncGs9wdn5Fj719DK01rvOYPquqgXVUZoj9EbH1JwZzMlkdP7EIYQQQhpQlsEH/68BtDyn1od50Kbj\noedu24MZpTm6cYZrqxECz0HoObi5HuPkVADPVdiIM2S57s8O3wmBW+/BHLUMpulDNQHmekRHjElh\ndJ5AQgghpAGbGUwTTMZpjqCYImN7YV5fi3Gis7292m558fk5PPvU1NCvD/ZgDgaY3cR4c861fSx3\nk8azyG08t96DGRX3Y1QIPbdfIn/9z/8Fbq3Xq4Tk+EEVOSGEkLHCVpHHmQmoPFfVpvk8dGkZLzg7\nWzvHfvFdr7l7y6+X2buyRD7T8vrZxcEAM8+xux5MVyG2VeRpjtAfnQCzNZDBvLEWYyPJcOKI10QO\nntF5AgkhhJAG9FXkgxlMz4Hn1MvFn764jBedrw9LOCxCz8VqL0WujWI88BwExTCK6VoGc+e/kgMh\ngxmPWAbTTPLJobVGN8mQUPAzERxqBlMSKtgCnqbTdySaTOSRBEO2IERapyRSkSbK2CKfGzdu1PZZ\nWyxdc1IAACAASURBVFurbbPXKk2BWV9fr22TRDf2PdzLPbWRBFC22GllZaW2jyTMkYQ4c3NzldeS\nUEba5vt+5fWlS5dq+0jrkoQ/tuhLmtoj3YdWq1V5LT1HkshHEp7Z2KKf44JS6lkAfgXAIgAN4F1a\n63cqpU4CeC+AOwFcAPBmrfWtYechk0X5Y6/MYCZZDt91EAiK6k8/vYzv+6rnHPYS+7R8B0sbMRwF\n5NoEhGV2sRO4mGsHWO4mu1aRe2697zRKs9HqwfQcREnWL5PbATE5nozOE0gImURSAD+itb4PwKsA\nfL9S6j4APwHgfq31vQDuL14TAgDItDaK8SJbuZnBVJUM5kovweWVHu45M7xH8qAJPRe3NhKcmjZJ\ng9B3+9nFfgZzI9mjirwu8hklFXnLd9FLc2zE5o/pYTPjyfGCASYh5MjQWj+jtf548e9VAI8AOAfg\nTQDeXez2bgDfeDQrJKNIlmuEroMk38yI+a6qCV4euriCL7p9Ft4RlotbvoNbGzGmQw8zLQ9hkWkF\nqj2YWabh7mJUZOAKPphZfiSTfIZRZjC7SRlgMoM5CYzOE0gImWiUUncC+GIAHwWwqLV+pvjSZZgS\nOplAPvzYdfz07z1c2ZZrjdB3kGUDIh/Phe8qpLnG3/33H8F6lOIzl1dw3+0HJ/BpQui5WNpI0PJd\nzLX9voocgKUi320GUyiRJ6NlU9TyXXQLJT3AAHNSONQeTKlvrQlSL2UT83BpH6nvz+6Vk/otpb7J\nq1ev1rZJ5us2krm3vYaHHnqots+9995b2yb1B9r9iNJ9kHoB7b7PJr2BQL0/ULrHEk16ZKVeSqkX\ndWqqWgKT+k6l/lupt9Fev9RrK63d/lyl+yDdd2mtrlstb+32e2dcUEpNA/gtAP9Ya70yeJ+01lop\nJdbUlFJvA/A2ALjjjjsOY6nkkHlmuYcL16vf81muEXpuXzFuRC0KrqOQZjk+fXEZtzZiLG0kODF1\ncBZFTSgzmG3fgaN8hN5mBnM6dDHX9vD5a+t76MEUSuQjlsHsBC7W46yvJLczruR4MjpPICFkIlFK\n+TDB5a9prX+72HxFKXV78fXbAdT/mgOgtX6X1vrlWuuXnzlz5nAWTA6VuBizOEiuzQSdMrBKMg3f\ndeC5xtQ8TnOsRxnWoxTTB2iy3oSWbzKYncDDfMdkMPsl8sDDXGdvKnJfKpGPmNH6dOhhPUr7PZi2\n0p8cT0bnCSSETBzKpCr/A4BHtNbvGPjSBwC8tfj3WwG8/7DXRkaDKM36gUlJnmsErtO3KyoDKt9V\nWO2ZqsRalGI9PtgxkU0IPaMiL0vkoef0BThToYf5doBbGzFyjS0nAg3DF43WR0tFPlUEmOzBnCxo\ntE4IOUq+DMC3Afi0UuoTxbZ/BuBnAfymUuo7ATwJ4M1HtD5yxMRpXptjnWmNTuD2A5XSpkgpYKVn\nWmE24hTrUYap4Gh/zbV8oyJvBy6mQ7co72+qyKM0x831GJ6jxBaa7XAdBQVUSuyjpiKfDj2sRezB\nnDQYYBJCjgyt9YcADPut+trDXAsZTcQSeRGklT6YUZHB1BpY6ZoM5nqUFnPIjz6DudJL0PFdzLZ9\nrEdp36aoE7pIcx831+Nd9V+WlFlM1zFB5aiVyKdCDxtxim5ign/aFE0Gh/qdJ4lnmghJmop87G2S\nqEMyv7bFGJKIRNomGXfb73ny5MnaPraZOFC/xgcffLC2zxNPPFHbdurUqdq22267rfJ6YWGhto+0\nLvveSObo0mdoC2Vss3np3IAsnLLvn2RUL63BXmtTc3Tp2bKvR/qcmzyTttgKkAU9QVAXIdjrl55l\nQiaBKM37ma+Svg/mgNF64DrItcZqkcFcizKsRSmmRqAHU2ugHbg4U3hhOo7CTMvDTOhDQeHGegx/\nDwFmaVXU8s21jtos8qnQNSXyWDZa/9H/+kn8zDe9aKSCYrJ3+GkSQggZWeJMCDBLFbk9KtJ1+gHm\netGDOT0CGUzABJrf+qpn44dfa9xA/vxHvxrtwPRlxmm+pwym56rK+MV4xGaRmxL58B7MD3zyUr93\nlhwfWCInhBAysmxZIs8GR0WaXsSVQZFPlB15ibzMKnYCt/9vADhZ2CcFnoNO4O7JDN53N7O5ABBl\no5XBbPsu4jTHWhH8x1aJPMlyWhcdQ0bnCSSEEEIsojRDmutK1qu0KaqUyD0HnqsqPZhr0ehkMNv+\n8FL9XNvfcw9mXGQwtTb3apR8MJVS6AQerq+ZVqlBY/g0y5FrYw5Pjhej8wQSQgghFlEROA1aFWXa\n2BSVgUqUGhW5b5fIR0HkUwSWrWDrAHM3U3xKjCdo0S6Q5fAdZ1eK9INkKnRxfS2Co6ol8mRgGhM5\nXhzqd5402cQWL0giCOk4SUBhCy8kEYmELf6QRCSXL1+ubZOmwHQ6ncprSYQjiXxsJHHLZz/72W2P\nAwDbcPr8+fO1faRtTdYliWfs+y5Nvrl+/XptmzQJyRbUSJORbr/99to2W8jUbrdr+zzyyCO1bdJa\n7WdQ+kEtnd9+biSRlHSc9Hzbwh9J1EbIJFAGmL0kw1zb/NzPczMqMsk3jdZLFflqlEApYLVnev46\nW2QOD4OWv30Gc7btYy3avZDPczan+UQjpiAvmQpNBnOm5VdU5GXmNU75M+64MXpPISGEEFJQBh7d\nWgbTEvm4DjxHYaWb4kQnwLW1CG3fhbOHzOB+UPpRdg4wg1naFP3HDz2BlW4yUuXxkunQw/W1uC9q\nKon7Wehmo4nJ+DB6TyEhhBBSEEsl8iKDmeWDIp9SRZ7g9HSAqyvRkZfHgWYZzD33YBYl8l/+i8/j\n0Stro5nBDDxcW40w0/L6M+SBwQCTGczjxug9hYQQQkhBmdkaVJKXKvLB/r3NUZEpzsyEuLraO3KB\nD7CZwWxtEWDOt/1dzSEv8YsS+Uac4epqbzQDzMKqaNYqkScskR9bRu8pJIQQQgpKj8vBcZGbRuub\nwYnvOvAcoyw/PR3i1kZy5CbrwGYGc7sS+V5K+X4heOolGa6tRiNaIjfXP9v2KsFkwgzmseVQ/7yT\nJqnYAgdJRCKJbiRhRJP3kyai2EKSL3zhC7V9JPFRkyk90j7T09O1bbaIQxKISIIhacKQfT2PPfZY\nbZ9Lly7Vts3OzlZet1qt2j4zMzO1bfbar127VttHEvlIa7cFQ5LAJgzDbbdJk4MkcdDjjz9e2/bM\nM89UXrtu/ReDtAZ77VNTU7V9pOdWOr894arJxCtCjiNxlmO+7VdK5Lk2mcHSpigesCkCgFNT5vvz\nqOeQA5sZzPZWAWZnjz2YnoONOEOSaVxdjUY2gwmYYHqwRB4xg3lsGb2nkBBCCCmIkhxzbb9WIg+8\nTZuiJM0RuKpvLn5mxgSYo1Ai910FRx1sD2bgqr7B/LXVaKRM1kvKz2Km5SNJB0rkGQPM48roPYWE\nEEJIQZzlmO/46Fkq8tCtTvIZzGCenjY2X6Mg8lFKoeW7W2YwZ/eoIvccp28wb0rkR98aYNMpssmm\nB7M61hJgifw4wgCTEELIyBKnOebaATZi096ktYa2Jvl0kwwtb3Pc4lzbh++qkejBBICf+aYX4mQn\nGPr1L7njBL77K+/Z9fl9b9NgfnRL5OazmGt7FVP1vlCLNkXHjiM3Wrd7DaV+tCYG7YDcr2cj9ebZ\npubSGuz+OkDuy7SNtKV+S9tEG6j32Em9jlJPqbQu+35JPaySgfny8nLltWRmL63LNpy3zdIB+b5L\n99k+v3T/pL5WqV/URjqX1Nto96xKpvfScfbapedD6jGWnlv73kim/oRMAlFalshNUJLlGo4CPFf1\ne/nKmePLRRavHbiYCr2R6MEEgG/64vpgi0Hm2j5ed9/irs/vD5TIr6728Lzb6j+nj5rBEnk6aLRe\n/CzlJJ/jx+j9mUMIIYQUxKkpkZc9mJnWcB0Fz9m0KVorRkKWGcy272Iq8EaiRH4Y+I7TD657yWjN\nIS8pP4vplmeVyIsJRJxFfuwYvaeQEEIIKYhToyIvbYryHHCUgueovtG6mTnuwi96MNuBi+nQGwmR\nz2Hge2aCUVkaH8US+XTooeU7CD2nkq2MB2aok+PF6D2FhBBCCIxaPM5yzLb9fg9mXmYwXdXPhK1H\nKaYCr29W3vZdTIXu5GQwXQerUYLbZk2r0KhmMDuBh6AYa1lCo/Xjy+g9hYQQQgg2/S3bgYtuXPRg\nag1XqcJcvMhgxhmmQ6+SwZwKvZER+Rw0getgpZvitrkywBy9654KXbR9I8Qa7MGk0frx5cj/vLPF\nOpJ4RxI4SNtssYQkgJHMvW1RjCQGkdYliThs03Hp/aTjbJqKQSQhjn2sJJKSBENN9pHEQTbSOjud\nTm2bJHaan5+vvJaEQNL5bRGRZHIurV36rBcWFiqvJdGShC3wksRVTURSgPzsEjJpxFmO0HXQ9t2B\nErmGUuiXyLXWRYncg1/0YHZ8D2988e144bm5rU5/bPBcheVugrtOm597o1giv+NkB295xbPgD2Se\nAfMZO4oB5nFk9J5CQgghBEb4EfoOOoHbL5Fn+UCJPM8RpTkcpSo+mK3AwT94xR2450z9D8jjiO86\nWOklmGv7aPvuSBqtz7R8/OBr74XvOogHVeRpjunQY4n8GDJ6TyEhhBCCokReZDAlFXma6b7ABzCG\n447CSAZYB4nvGh/MduBiru2PZA9mSTk3vSTOcsy0fET0wTx2jO5TSAghZKKJU9OD2Qrcvg9mX0Ve\nlFpLD0zA+EF2Aq+RJ/JxwndNu0DLNwHmKJbIS+wSeZJqZjCPKaP7FBJCCJloojRD6LnoBC66ZYl8\nIIOZ5RprUdq3I/JcB60tZn4fV/q9p8E4BJib/qWAMVqfCl3aFB1DDlXkIwk2wjCsvJYEKdJfo5JQ\nxhZGSNNj7MlB0nH2RBtAFqlIa7C3NRHTAHWxjiSAsUUkQF1UBNSvW9pHEpHY93m305Karl0SKNkT\neSSxk/3MAPXJOtJ9l54Haa32Zy2JfCTBkL12SdAjfQ9I99lGug+EHHfKDOZgiTzPdT+DmeYa63Fa\nyWC2g9ENrg4Kf8Bgfq7jj6SKvCSwfDCTTGO65YtG670kQ+g5E5eRPi5M3nciIYSQsaAMMDuBh42o\nCDCLDGarUJavRyk6gQmoFmZaeNVdp45yyUdCMBBgvuzZJ3Dn6XpCZFTwHFXtwUxzzISemMH83l/9\nGD725K3DXB7ZR5gWIYQQMpJEqRl7ONs2c8a11n0V+enpADfW4kqJ/MxMiP/z77/kiFd9+HgD/p/f\n84p7jng1W+N7dok8NyVyoQdzpZdiaaNu40bGA2YwCSGEjCRlBjP0XHiuwkacIdfGBzP0XHRCF0/d\n7E7MxJ5hDJbIR53AtUrkaY7pUFaRJ1lOf8wx5lC/K6VeQLu3wu6l2wn2sVKfodSbZ6/r5s2btX2e\nfPLJ2japh/D5z39+5fWZM2dq+0jG2nZfoWQULr2f1Adq9+tJfX+7pUkvoNRvKfUjNumvlJ4Z6f7Z\nhvbS5yz11kqftd0HLH0WUq+wve3cuXO1fZo+3/b3RRNzfkKOG1Ga98u/c20fy90EWQ64xffH4kwL\nT1xfm5iZ48PoB5jB6AeYtRJ5lmO6JavI4zTvG+yT8YO/tQghhIwkUZohLLJy8+2gCDBNiRwAFmZD\nPH5tfWJGQg6jHJE5Dgp611HQMIb5gMlSzgyxKYqZwRxrGGASQggZSWIhg5lroyIHgMXZFh6/vs4S\n+YBN0aijijnypRdmnJoMphRIMoM53jDAJIQQMnJ817sfwOeurPY9HWf7JfKBDOZMiJvrMUvkY9SD\nCVT7MONMY2pIBjPJcvQ44WdsYYBJCCFk5Hjw4jI+9NiN/tjDSgbT2cxgAsBUMNkBZuBtqsjHAc9V\nSAsleVLYFA3LYEr+mGQ8OHKjdVvMIO3TVBhhC0QkEYlktG4jiVQuXLhQ23b9+vXaNltccvbs2do+\nCwsLtW22Sffc3FxtH+l6JDGLfb8kk9om5vWSwEbCXpd0bslMXNpmC2UkMc2VK1e23SZ9zo899lht\nm7Sf/ZlJQi378wLqz59k7C49W5JxvP1ZSII1Qo4zy90EV1d7+Ip7TwMoAswNE2AWLYdYnDXfO5Pe\ng+k54yPyAVAtkWe5yWBmObTWld8fSaaZwRxjmMEkhBAyUsRpjm6SIdfol8gHVeRlD+aZmSKDyRI5\ngDErkRcZyyQzXqe+q2pm63HGDOY4wwCTEELISLHcTTAVuIXfpfk1Nd/Z7MHcLJGXGczJDjADT8Fz\nVD/QHHU8V1VEPqXX6WCZXGttSuTMYI4tk/1dSQghZORY7sZYnG3BcVQtg2lK5GUG0wSYky7y8Rxn\nbMrjgMm4poVNUZzl8F3HzCgfCDDLrzODOb6Mx587hBBCJoblboK5jo+XnJ9HpxDwzAkq8tBzcWYm\nxFy7PoRikugELmZb43MP/IESeVyMAw1cB3/46Wfw/k9c7G8HwB7MMeZQ/+wLgqC2zZ7KIu0jIU02\nsY+VziWJJVZWViqvJSGGJHjpdDq1bbZo5Nq1a7V9JJGPfT1LS0vb7gPIIh8bSSgjXY89KUgS4UhC\nI/s4aU1ra2u1bdL5bfFMU3GLLaiRJvTYnzMAnD9/vrbtec973rbHSUIm+1ynT5+u7WNPHAJkYZt9\n3U3EaYQcF5a7CebaPn7yG+7r+2D2bYoGVOQA8Ac/9Jp+JnNSWZht4f0/8GVHvYzGBAMl8qTIYIa+\ng//2Nxfx/Ntn8aaXnut/vccM5tjCDCYhhJCRogwwZ1t+fzrNXNvHSjeBHlCRA5j44LLk9PT43Adv\nsESe5vBdhcB18ODFFSx3TdKpFPywB3N8YYBJCCFkpFjeSGpl7/mOj6VyFrlTryCQ8cF3FZK+ilwj\n8IoezCzHShlgpsxgjjsMMAkh5P9v79yj5LirO//91aOrunu6ezSj6dZo9LIl2ZZlCRuMY8cYbMAB\nQw6we3IS2ENCWDawe2AXkmUTYPPgbLJn2Rd7smdz9sQ5OOGR4CUbB9gkTo4Bgw2xjB/YGiGwZNl6\nzEiaGWlmunumX/XaP6qrpvtXt2dKUk/PTM/9nKOjqV//qvr3q6ruun1/93svs66Yr0YNzMCD6bhL\npSKZjYneVsmnuUSu+f/mK76BaTUTsbMHc+PCBibDMAyzrigSBmagNC7XLDYwNzh+onUPnufBcvx6\n8wlNwR3XDS0tkdsuhGAP5kampyIfSrAhC1cowQMlBqEq3chiE+pYch+Kubm5SNvevXsjbUNDQ5G2\nl156qW378uXLkT7nzp2LtN10001t29T84lRCAqICIeq8U1Vm5P0oQQ8lgJLHQO2XzWYjbRTyvCmR\nFMXTTz/dtj0wMBDpc99990Xa9u/fH2mThWfT09ORPlT1Hfl+oKr9UNeQEkDJ/ajPAMP0K8WqhQOj\n0e+MXFLH7GKDl8g3OLoq8ND3Xw1TTimKgKGp+Nm9wzg6cQqAL/4ZMDTULPZgblTYg8kwDMOsK0qE\nBxMAMqaGUs1qU5EzG49/85b9uHl7Fl/4/qthntNPPXAT3vczu7BQt+G6HhqOi6ypkzXKmY0BG5gM\nwzDMuqJYtTBIGJhpQ0OparepyJmNx8HtOXzoDdfh6MR8WH3owGgWWVNHSldRrtto2C4yJnswNzKb\nu/wBwzAMs+4IEq3LpBO+B5OXyDc+ozkT6YQWCbHKNsVcluMbmOzB3Lj01MAsl8uRNjnWjIqRpBKM\nU/3kmLd0Oh3pQ8Wyycmv48Ys7tmzJ9K2b9++tu0XXngh0uf555+PtMmxmnfeeWekz9jYWKSNit/b\ntWtX2zYVp0kl7pbPDXW9qPhKeVzU+1HnlEo6Ll/XF198MdKHSqJ+8ODBtu27744mHR4ZGYm0UbGU\n8rzjxqIODw+3bVNzdpx4v8bl+40aJ8P0K/NEmiIASBsqyjUbw+l4BTmY9YsQAod25HByqv0Zlkvq\nmK9YaNgu0oYGy3Hhuh6HRWxAeImcYRiGWVdQKnIgWCJnD2a/cGgsB12KdwhKgobq8paURszGgg1M\nhmEYZl0wu9jAg0+cgut5SOrRjAsDhr9ETq2SMBuPQ2O5UOQTMJjyDcy67SKhKTB1dcU4zB+8fIlj\nNdchbGAyDMMw64InT87gL5+dwG++7SbSiAxFPvzk6gt+dt9WfOzN7aniljyYHhLNBOwr5cL8D//v\nOP7x1KXVHCpzFfDHlGEYhlkXTJVqeNMNI/i1N15Pvh54MFX2YPYFA4aGd71me1tb2xJ504O5UjUf\ny3ExPlFazaEyV0FPRT6UsCROAm5KLEEhizEocQYlDpITZMcVpFDHl4Ukb3rTmyJ9KHHQqVOn2raP\nHDkS6UMlBa/VapG2e+65p22bEjvJycSBqHCFSgpOJYCXz0PcpOCnT5+OtMkCm9HR0Ugf6jzIbTt2\n7Ij0oeZTrVYjbYlEu4CASqgv9wGiYjTqnnHdeLFE8vWh7jWG6TemSnVsy0YLFASkEyoqDYcFH31M\nNqljvtpAKqGGJSRX8mDWbRfjk/PL9mF6D3swGYZZU4QQDwkhpoUQx1rahoQQjwkhTjb/37KWY2R6\nw1Sphny2c8aEtOH/0GIPZv+Sa0lTdCUezKMTxR6NkIkLG5gMw6w1fwbg7VLbpwB82/O8/QC+3dxm\n+pzpUh35TGcP5kBgYLIHs28JlsjrtgtdVWDqK3swLcfFXKWBqVJ0RY9ZO9jAZBhmTfE87wkAcnLT\ndwP4YvPvLwJ4T08HxXSFyfkqGi2Jss9c9sNG5isNFCtWWxsATJdrKCzjwUw1DUxeIu9fAhW5n6bI\nr1G+WLdxbjYaYhfQsF0c3J7DOHsx1xVsYDIMsx4peJ53ofn3RQAFqpMQ4sNCiGeFEM/OzMz0bnRM\nLD7zyHio7nVdD2/9/PdQtx38yZOv4KEfvIrFuo37P/8EXNeD53mYKtWRXyYGc8Dw46jZvuxfoiIf\nBX9z9AI+8uXnOu5jOR4OjGZwZhkjlOk9PVUOPPnkk5G2d73rXW3blECEEkZQIhW5+gmV5oKqwCIL\njajqOJQ4iGqT35OqwHL99VGF5NatW9u2L12KplygKthQIh9ZPEOJfKhzk0ql2rap80Ahz3FqairS\nZ8uWaAjdwMBApE1+T0oQRQl45OtKnRdK5ENV1qGuq0wc0Q11bKoiVBxRVFzhVD/ieZ4nhCCVfp7n\nPQjgQQC4/fbb46kBmZ5Rs5yw1F/ddmE5HopVC7OLFhKqwHzVQsNxsdDw729FLC2DU3AMZv8TGJgN\n20XW1GFoKp45PYvz81XULAemlB/V8zw0HBephF/1h1k/sAeTYZj1yJQQYhQAmv9Pr/F4mKvActzw\noR8kwi5WLBSrDcxXLcxXGmHbdKmGwjLeS8CvRQ7wEnk/E5SKtBwPCU2BoSs4O1uB63n46cVo+WLL\n8aApAoamwGYDc13BBibDMOuRbwL4QPPvDwD4xhqOhblKGo4L2/Edy4Ens1i12v4FbdOl+rIKcqBF\n5MMezL4lY+pYrNuoWU4zTZHvsbz3xjzGJ6KpiBqOLwbSVAWWw4sY6wk2MBmGWVOEEF8F8BSAG4UQ\nE0KIDwH4HID7hRAnAby1uc1sMCzbC+tIhx7MFuOy1GJgTpVjeDBZ5NP3qIpA2tBwaaERxmAWsgbe\nfFMe45NREY/VLCmpKwJ2zDzDTG/oaQzmsWPHIm1yUvBMJhPpQ8XOUTGYctwdFUsnJ8MGokmz8/l8\npE+pFK0SQMXFxUkKT8U/ygnMqfNw8803R9rOnz8faZubm2vbnpiYiPShEozL55SKfaWSjstjpc6x\nPCaAvq5jY2Nt21SsIzV2+fxR55gaV5xYSipustForLgfdf6oYgPUfEzTXLFPv+B53vs6vPSWng6E\n6TqNliVy2YOpq0qbB3OqVEc+s7wHM6EpSKgKpynqcwZTOi4t1JulIlUcGsvh8I4cvnLkTKSv1eLB\ntOubN1Z9PcLlQRiGYZhVoWG7sGzCg1mxkNBkA7OGscGoCFMmbai8RN7n5JI6Zsp16KqCGwoD2DOc\nwo3bMjg1swDX9do82HXbhaEp0FXBS+TrDDYwGYZhmFWh4biw3fYYzLnFBhbqNlRLYL7SHoN5266V\nCzalDY2XyPucXFLHiakFJDQF7zy8VC7Y1FSU6zZyyaXVSd+DKaApglXk6wyOwWQYhmFWBctxIzGY\nE3NVDBgaVEXgYrGGbVnTNzDLNRRWWCIHfCU525f9TS6po2H7hmMr2WYZyVYazXyZmqpwDOY6gw1M\nhmEYZlXwl8h9D2ZgYJ6drSCX0pFL6jg7W8GuodRSDOYKIh+guUTOFmZfE3goE5oSaS9KBqZle9BV\nPzaXl8jXFz1dIqdED6+++mrb9oEDByJ9qGTlVBJwObE1lWCcEnrIYh1KwCGLLoB4idYpUUecZPJU\nHyrR+uDgYKRNThxPJSunEpFfvHixbZsSylDJ0eXzTCVVp6qsUNdQTpguJ38H6GshXzPqnomLfI/E\nTdAuC3HK5WjOtjjiKiA6/s2caJ3ZuFiOG3qVgli5s7MV5LMGGraLs7MV3LN/BMWKH4O5ksgHaC6R\ncwxmX5MNDEx1ZQOz4ThNkY/gPJjrDPZgMgzDMF3H8zxYTnuaonzWwHS5jlzS92BOl+vYNZTCubkK\nEqoSpiFajmB5nelfOnkwgzrlrTRsL1wit1z2YK4n2MBkGIZhVmR2sYEP/dkzsfsHhmWwRF63XRQy\n/urDYDKBXNJPD7d7OIWTUwsrJlkPKGRNZM2Vy7kyG5fB5r2hEx7MQBj2wrl5/N43jvk1y9VmHkz2\nYK4rWEXOMAzDrMjsYh1HiUTXnQji4YIl8sCDCfhLoI2mqnzXcApVy0E+s3L8JQB89l0Hr2TYzAYk\nTgzmq5cW8NOLZdyzf2TJg8kxmOsKNjAZhmGYFanbbijUiUNgQLYmWg+MyFyLgblzix9nXYjpwWT6\nn1yHGMxsi4FZrFioWc5SmiKV0xStN9bcwJSrzGzbti3Sh6qsQwlQZKEHVX2HEubIlXxGRkYiy4lz\n+gAAIABJREFUfSiRCiXYkEUqlCCFEojIQg+qwgy134ULFyJt8rwpYRMluJKFJNTYp6amIm2yEIeq\nLkQJZeTqO9SxqP0oAY88R0oUI19naj8geu6p6kzUtZDvv7gCrzjXOk6FKIZZTeq2G+ayjEPwsG8E\nS+SWg8GUjoSqhAZmOqFiKO1/LlcqE8lsHgIDk1oin5jzn7vFqo2q5TTTFKlIqEpY955ZH3AMJsMw\nDLMiDdtFw3bhxhRSyB7Mmu3C1FVkmwKfXFJDLqlDVQQyhhYrRRGzOVhuiby1fn3VcsJ8mRrXIl93\nrLkHk2EYhln/BAZjw3FhKtGVhUj/pmEZpimyHBiaEhqWDUcJ09Fkk3qsFEXM5mDJg9m+UjmY0jFf\n9VeKilUL1UbTg6lyDOZ6hD2YDMMwmwTH9fDpR452DLn4+o8m8dSpy+RrdammeCuf+evxSHtokIaJ\n1n0P5vCAgaF0AsNpA8MD/vL48EAC2wfZg8n4ZEwNpq4sK/IJDEzL9iv56Go8D+afP30GL56bX5Vx\nM+301IN5/fXXR9rk2EMqbo1KCk7F5skxcFRicioGU477pGI3M5lMpI2KA63X68tuA9E4TSAah1cs\nRtWa1BjijJWKF6T2k8dAxTpSMYTy8alYx6GhoUgbdQ3lNio+kYqbjJMcnToWFYsa556k4m/la03d\nt9QYqPMlj4EaJ8NcKZWGja/+8Bw+/Y4DZKqfp05dxt58GnftHY681ggNzPZ7cbpcw188fRb/8o17\nsWt4KYY6WBpfWiL3PZj/65/dhq1pAx6AA6N+UYg/+ZXb2YPJhCiKwBP/7j4YWvv3eKuBWQqWyB3X\nT7SuKGFKrOV4/KfTUIXAa3ZGi5Qw3YU9mAzDMJuEwAs5XYr++AGAquWgbtE/ZhrNH5J1u/0H5bFm\n6qJICb/IErnvwcxnTCiKgKoIjDSNykLWJH+wM5sXKiY3l9RRrCx5MF0PWKg7oQfTivFDvFi1rkis\nxlw9bGAyDMNsEoJl7OlSdGUF8A3Mmk2nIgoMT9mDOT7hr4bIBmbddqGIpUTrNduBqfMjh7l6MqaO\nhboNx/XCWMxS1YKuKtBjqsiLVeuK0m0xVw9/2hmGYTYJgedmqtzBg9lYzoMZ5LNsfziPT84joSmE\nB9NDOqEt7We5kSVPhrkSVEUgbWgo1ywUqxYypoZi1YKhxa9Fzh7M3sEGJsMwzCYh8NxMXYUHs1MM\n5vhkEa/fs4WoEe0iZahtMZjswWSulVxSx0y5Dsf1MJxOND2YAnrMWuTswewdPRX5XLx4MdImJ9t+\n9NFHI33e//73R9oosY4s9JCFEgCwsLAQaZMFG5QIRxYQUe8HRAUblMCGEv7Iqk5qftQYqGTo8rEo\ngUg6nY60yTFQ1Pyo5OjyftSY4iS4p9qo/eIkiafGTgl/qGNR4hwZ6rrKwixKqUvFmcnJ5YFoAn3q\nnmSYKyX0YHaKwVzGgxns2+rBnC7XULddHNyeI2Mw0wktXLassQeT6QKDKR1nZyvIJXUkE74HM6Eq\nfh7MFTyYddtBzXIjP5KY1YF/TjIMw2wSwhjM8nIezOUNzNaH83SpjtFcsk3dGyB7MOvswWS6wO6h\nNJ4/O4dsUkcqoaJYtaA3a5GvFIMZ3KNymAezOvCnnWEYZpNQt12YutJZRd5wUO+wfBg8lFuXF2uW\ng6SuNA3M9hWWhuMixTGYTJc5tCOH77982fdg6ipKtUDkI8J7rROBAp09mL2BDUyGYZhNQt1ysGso\ntUIMZgeRT7hEvvR6peEgldBID6a/RK6GXqW67cBgDyZzjRway2F8Yh65pA5TV5dEPooCe4UYTPZg\n9hb+tDMMw2wSapaLXUNpTJVqZIxwteF0FEA0iEo+VcuBqasdl8jThrYk8mnmwWSYa+GW7Tm4Hpox\nmCpqlht6MB3X61ilClgyMNmD2Rt6KvKhqsfIwh9KfFIulyNtVFUbuUoKJSJZXFxccVyUsIQSZ1BC\nElk0QvWhjiULeOIITQBabCK/JzUfqk0WwVDjpIQycj/q2BTUF4E8H+r8xREMDQwMRPpQ4iqqTZ4j\nJQSiBFfyfKiqPdR9Ozc3F2mTRT2UuIphrpS67WAorUNXFZRqdljzGQBsx0XDcTumcKnbLgYMre31\nmuUgmaANzEDk03CWDFNDY58Gc23kUjp2D6cwmNRDQzGhKhBCQFMELMdDQqOT9herFobSCfZg9gj+\ntDMMw2wSAiV3PmtE4jCDpfFOMZgN20XW1No9mA0HKV3FYMo3MM/NVvCnP3gV3zsxE4p8bMeD7bhw\nPA8JlR85zLVzaCwXejABQG/+cNFUActx8YOXL7X1d1wPT56cQbFqIZ8xOmZKYLoLf9oZhmE2CYGS\ne2vawKWFdi98pWE3+3SOwcyYepsBWmm0eDArFr5y5Az+zzPn8Ad/cxyNZqJ1q+kVNTWVy0EyXeGD\nd+/Bzx3cFoZcBD9cdEXB+fkqPvLl59r6vzgxj3/xxWcxu9hAPmt2zPXKdBc2MBmGYTYJgQczSyxp\n1xouVEV0jMGs2w6yyfYl8iAGM2PqWGw4eOHcPD549x4UqxYatotkQoXteqhaLPBhusfrdg/hlrEc\nUk0PZrAkrqkCpZqFhbrdlhPz2GQRddvFc2fmUGAPZs/gTzzDMMwmIfBg5pI6SpKBWbUcbEnpnT2Y\njotcUifSFKlQFYFUQsWPzs3j7n1bUaxasBwXhuaLLxbrNkxOUcR0mWTTg6mrwRK5glLV98SXakvF\nN45OFJHQFDx7eg75rMEezB7RU5HPa1/72kibLLAZHh6O9KGqmMjVd4CogIISeszOzkbaZKERVYkm\nbiUVWdhhGEakTxwRDFWFKK7wRxbGUMKcOGKdOCIcIDpHShQTt00+PiWUiVNBiTrHVBUnagzyeaDu\nNUp4JhP3vqXOqcz8/PyKfRhmJWqWi8FkghTlVBq+6OdCkf6eadgu8hmz3YPZcFDI+p+1XFKH5wFj\ng0m4nodyzcKuoRR0VUG5ZrMHk+k6ZujB9O+thKqgVPPv60DQA/gezHfcsg1ff+E8ClmTPZg9gj/x\nDMMwm4RWD+a8lBjd92AmllWRyyKfiuWED/nBlI5DYzkIIZBLJjBTriOhKaGByR5MptukIh5MgXLT\nczlf8e/vasPB6cuL+IXX7QQA5DMcg9kr2MBkGIbZJNQsF0aL6rv9NQcZ018xsIiKKA3bRTbZvoRe\nazjhMmUuqePQjlzzbw2XFhphfsKFus1lIpmuE6jIA5GPpiwZmMH9ffxCCfvyA7ht1yCEAApZo2Oc\nMdNderpEzjAMw6wdQS7KhKqgWLXbXgsU4aamoGY5oVcowPdg6pFE64HQ4m0Ht+GO64YAIFxqDzyY\nxarFSdaZrhP8uAmWyHVpiRwAxifmcWhsEGlDw6/dcz325gdQt114nsdZDVaZnhqYn/zkJyNtciwg\nlYj61KlTkbYf/ehHkTY5vjKbzUb6UMnXbbv9i5aKd4uT3Jvql0qlIn3ixHPGTTAujx2IJgGn4gzj\nJImn4kAp4sQQXm0sJXWO48S1xh07hRzrWiwWI32o48vXlRp7nATtADA0NNS2TZ0rhrlS/FrkatPA\nlEQ+DV8Rbuoq6rYL+Zu4YQcin/ZSkcFD/lfu2hO255I6xieLSKgCuqrg0kK9Lak7w3SDiAdTFaF4\nLfh/fLKE1+3eAgD4zDsO+P0Uv265wWEbqwo/tRiGYTYJgQeTTFPUVIQbTQ+mTN12kTG1tiooQZoi\nmVxSh+V40FUFmipwqcwGJtN9QhV5kGhdUSJL5OOT8zi8o70SmqGpHWONme7BBibDMMwmIfBgUmmK\nKg1/uTvwYEb3dZCVPJi1liXyVgZTvvc+0VyOv7RQx2CKDUymu4SVfFR/qTtQkWuKwHzFQqVh4+xs\nBTcU2v3xpk7/iGK6CxuYDMMwm4R60+NIiXyqTQ9mooMHs9GMwWzzYDbjNmWyTW+lL/JRcGmhwR5M\npusk9egSeblmI58xUKxaOH6+hBsKmTBGM8DQVE5V1ANY5MMwDNNjLMcNRTSe58FxPWgtohqqTd7X\ndvzKO4FQoVyz2ryLAGDoCrKmDsf143zrtp/8PPBgtgodqpaDXFIPPZi240JTFTiuBwE/0XrG1FCz\n3PC9W2MwWwmMyUQz0TrHYDKrQTKhQleXPgNa01teyJkoVi2MTxZxaCwX2c/QFdRtp+1zSOG6HjwA\nqsJioKuhpwYmlUR9cXGxbZsSpFDJ0alk6LJYghJiUEIZWdQhJ38HgHQ6HetYchslbqHaZHETJWSh\n5kMJbGThDyUioZD7UYKUOO9HEVe0JM+bEklR114+VqVSWXFMAFCv1yNtsshLvkep9wOioh7q/M3N\nzUXaqHPKop7+ZaFu497/+jiOfPot0FQFjx2fwqPHLuJ//NKtYZ+/Hb+Ab/9kuq0NAE5MlfHxh1/A\nox+/B7/+tRfxjlu24YFDowCAN/znx6EpAq3C2HLNxnO/cz8e/N4pGLqKWtODqasKEpqCxYaDAcP/\nPqo2HIxmTZi6gsm5Kj7+8I/w5G++Gb/7jWM4vCMHVQikDBV128FvfO1FvO3gNj9uk/BghgamqjQf\n+tXQq8kw3SJjarhr79ZwW1cESlUb+/IDuLzQwPhEMcxs0IqpqXjp4gI+8uXn8O1/e2/H4//pP55G\nsWrhN+6/YTWG3/ewB5NhGKaHzC02cGmhgZdnFnDTtizOzlZwUaqec7FYw3Nnoj9Gnj8zhzOXF+F5\nHs5eXsRzZ+bwwKFR1G0HlYaNE3/wQFvqlff80Q/w48kinj0zh11DqWYtcv/HSy6pY77SaDMwkwkV\nhqbi1MwCzs1WUbcdnJ2thEvnwdLic2fmcGA0Gy6ry7R6MBOqgtlF9mAy3cfQVHzpn98Rbge1yAtZ\nE6/MLGJ2sYEP3XNddD9dwcnpMk41+wQVf2SmSjUUK1efkWSzw24ShmGYHhLEPh6d8NNfTZVqkXjI\nUtXC2dlKWI0k4OhkEZWGg4W6jalSHUcni+Exc0k9ktfv8I4cxieLGJ8sYqpUa1byWUqM3vq+gSLc\n1BWcnfVXAGbKdUyVajg3V4GhKTB1BeW6jcn5KqZKtWVV5ADCROuutyT8YZjVQlMVVBoORnMmLpZq\nmJirRgQ+gO/BDO7x8cloGrqAYsWKfDaZ+LCByTAM00Pmmx6RY80H23S5HnmIzVeDPu3hOscmixDC\n93BeWqjj+PkSXNdDsWKRHsJbxnL4m6MXQoO0ZrlhRR3ZwFxKU6Ti7OVKOLbpch3nZquhN1IIQAjg\n7GwFCVUh49MCxbiuijCOlD2YzGqjN+/Fbbkk5isWbtiWIWMsDV3B2csVCLH0OaQoVtnAvBbYwGQY\nhukhxaqFrQOJZT2YYZ/JpXjghu3ixFQZh8ZyOH6hhFxSx5a0jlcuLYYeTJnDO3J44dw8bt05GHow\ng+TScqoiP02R1ubBPDdbwXzFwrm5ChKaAiEEDE3BrTsHcfryIhl/GRwbWFoib21jmNUiMCa3phNQ\nFYFDY9FiK8CSB/PWnYM4OhEtrBIwX22EP/aYK6enMZiUcEUWtxw9ejTS5/Tp05G2OJVhKJGFXDmI\nGhclEKGq+1BCDHlclACGEgzJY6CEH9R8KFGU3EaJfKgSWXIbtR81nziiImo+VD/5/FFVj6hrH+f9\nKEEPJegql8tt29Q9Q4mP5PnIx+nE6Ojoisdi+odi1cKd1w/j2z+ZhuW4mC7VsVC3Q9V20OfufVvb\nvCsnpsrYPZTG7uE0jk0Wkc+auH6r/3fG1EgDbt/IAExdwb035PE/v3MSqiJCjyO1RJ5MKDB1FdPl\nOgxNwbHJIgzNT15dyPriOlNX8dYDBfzht05ieIBe9m4V+QQ5CrMmh/wzq0vw+Ukm/Fyvh8cGyX6m\nrmC6XMcHfnYP/uLpsx2PV6zakXyxTHzYg8kwDNMDvvD9V/HI8xMoVi2MDSaxfdDEyakFTJfrzQTR\nSz/UAgMz8HL+x789jl/646dw265BFDIGxieLKGQNHBzL4sfnix09mJqq4LadW3DHdUMYTifaSuMV\nsiY++83j+PQj/o/6cs1G2tBCEdCB0SzGJ4u4cVsGQizlGhwZMPC2gwU0HLejB9PUVWzLmqFifcDQ\nyJRLDNNNgh8zyYSK7YMmXrubNjCDz8Hr9wyhZjl47e8/hqdOXcaZy4u4/Q++hbs/9x1UGw5KvER+\nTfAnnmEYpgc8/tNpHJssoVi1kE3qOLxjEEdeuQzH9TA6aLY9yIpVC7fuHESxYmFusYHHX5rBQ7/6\nevz+e25BIWvi2GQJ+YyBscEkzhdrHQ1MAPjyh+7AXXuHUWimIAr49ftvwP/9V3fhOz+dRs1yMDFX\nwXVb06Fo5/COHI5NlrA9l8TWASNMVv33n3gj9uUzyJgaqSAP+MdPvRmmrkJTFV4eZ3qC1lxVTOoq\nvvHRN2BfPirwARB+DrZlTTz5W/fhrQfyODFVxiszi7ihMABFAS4UqyhWrXB1gbly2MBkGIZZZTzP\nw9GJeUyXayhW/ao2t4zl8J2fTqOQNcKUQQHFioXBlI6bt2fx9KuXMTlXxWt3b4GuKshnDSzU/SXr\nQtbETKmO+Q4iH2Bp2bCQNdo8mKoicPNoFnXbxXdfmsHekQEYmhp6MG8Zy2GhbiOfNZr7KuF+/vHM\nZQ1MRQnK9wk2MJme0OrBXC45utG8b/NZA6mEhp1bUpgq1TBdrmFsMInRbBIXirWw+EDr6gITn54G\nxVAxi08++WTb9mOPPRZrvz179kTa5Ng8Ko5NTqpO9aNi7qh4Ompc8r5UQm4qUTgVayhDxU1Sc6Ti\nMuMc62r6UGOg9qPiR6lrIZ8/6rxQCeer1Wrb9sLCQqQPdQ2LxaiCUD4+FW9JnWM5dpeaH3UsKq5V\njiHdsmVLpA+zcTg7W0GpZmO6VIfrecgldWzLmfjcoz/BbTu3wNCV0IPpeV7okTy8I4eHnzmHG1vU\nsPmM//2RbxqYU2Xfg7lzKHpvtTKSMfHKpfaiAUIIHBrL4eFnzoYVT0xdDY1PwDckCxkTDcmLk88Y\nsSqc6OzBZHqEFhiYy/zwAQBTU5A1tdBbX8ia+OHpWZi6ikLWRNVycHKqHMY2F6tWx1yZTGfYg8kw\nDLPKjE8WsT8/EBqDuaSOm0ezsF0P+aYHMzAwKw0HmipgaCpuGcvheydm2srdFbK+IDCfMZDPGJgq\n1VBaZom8dT9Tiz54DwXvscN/D0NXsXUggdGcufQ+kvfTP97yHswAXiJnekXwI2yl+9JoGpIBI1n/\nczRVqiGfNZDPmDgxvYBcUo+I4Zj4sIHJMAyzyoxPFPGWAwVMlWrhcnba0LBvZACFrNmWMqg1nvLw\njkF4HkLjD/A9l4Bv4KUNDZqi4NxcJYaBacLQo1/5h3fk/PdoGrGGpqCQNbEllYCuChSyJvIZM1wi\nXxqH0VHk0wovkTO9QleVsDzpcgT3eEAhY2K65Od8zWdMFLIGTk6V2cC8RtjAZBiGuUoefOIUTkzR\n6ahemVnA+x48gl/646fwl89N4M7rh6ApCibmqmEi8sM7BjGaM9seYsWqhcGkvxy3eyiFrKnhNTuW\n1LADhoasqS15GLMGTkwtrGjEjeZMpBPRqKhDOwaR0BTcuC0THn9b1oSiCGzLmRjNmdg+aEaMye25\nZFhmcjnMhIotvLzI9ABNEW1Ctk4MGBq25VoMzKyBqXIN06UaClkDhawZfqayUnw0Ex9OTMYwDHOV\nfOmpM/A8kOXonjgxg4yp4YN3XwdVEXjd7i3IZw28MrMYGoO//c4DSGgKvnLkDC4t+HlaWz2YiiLw\n6CfeiLHB9ljkRz/xxtADU8iYbcfsxD37R3BgNJp4emwwicc/eW+4BP6WA3m8fs8QAODhD9+F7TkT\nO4dSeOuBQtt+v3j7TtSsaL5ZmV++czdcTuvK9ABNVWJ51d996xh+7uC2cHtLKoHFuo2zs5UwBjPI\n9iAXJGDi01MD87vf/W6kTRb1HDlyJNLn/vvvj7RRSdtloQclwqEEFYlEYtlt6tgAsLi4GGmTBTzU\nsSiRT5wk55T4KI6gh5ozhXy+qPejBDyyIIW6NpTYiRqXPAbq/ag5y9eHSoxPXS/quspjpcZAJeOX\nhUXU+aOuK3Wfysn4qSTxzNoyt9jAxFy1Yy3j8ckS7r0xj7v2DodtgTGYMf17LPDsDaZ0vDzt3z/z\nFf/BFiAbl3JbvhmTGXhFO6Eqom1ZsNPxDE3FSEZta/drlEsCvIQa62EezJVhVhtdFUgRXnoZ+d5V\nFIGRAQPnizVsHTBQafjPtEFeIr8meImcYRjmKhifLCLfTHpOvz7fJs4BfGMwY2oR9XXrQyyOYKeV\nwGjkOEdms6MpSuSHUFzyWRPD6QQSmhIK6TgG89pgA5NhmHWLEOLtQoiXhBAvCyE+tdbjaWV8soif\nP7wdM+U6ipX2B1Cl4S+33bBtoK09EPTIZKUYzCsxFvMZPwn61T5YGaZf0FWBZIwYTIpC1ggFdAOG\nhlSz3CQbmFcPG5gMw6xLhBAqgD8C8ACAmwG8Twhx89qOaonxiSJeszOHg9uzOHa+3Yt5/HwJ+/OZ\nSGqffMYgjUdZ5HOlHkz2XjKMryKPs0RO4Rcu8D2XQojwc8UG5tXDIh+GYdYrdwB42fO8VwBACPEw\ngHcDON7tN3rh3Dz+6rmJK9rnyKuX8VsP3IRDY0X84bdP4u+PXQxfOzWz0JZaKCDfwRgcTCUwMVfF\n73z9GJ45PYv3vn5n7HF0MloZZrOhq9ewRJ4x2kRrI83PVS6l4+hEEb/z9WPdGuaakzY0fOqBm1b9\nfXpqYD7yyCORNrnCCyV4GBkZibRR/WRxCVU9Jo7wQhatALTQgxJeXL58ecVjxam+k81G1Z6USIU6\nVpzKOtR5uFrkY1HCGUrQQ41LrsZE7VcqlSJtc3NzbdtxRT7UfSSLfKj7iDq+fA0HBgYifTKZqNqY\nEn3J7xm3qlKfMQbgXMv2BICfae0ghPgwgA8DwK5du676jTKmhv2F6PVajn//jgPYM5zCB+/eg8df\nmm57bX9hAPfsj35v3XfjCPYMRyvujGZN/O7P34ya7WB/YQBvb1G4rsRtu7bgP/3TQ1c0dobpR96w\nbyv2bF2+olUnfuF1O7HYWHre/PY7D+C6rWmoisBH79sHl3jWblR6FU7DHkyGYTYsnuc9COBBALj9\n9tuv+gmwd2QAe0euzMAM2DmUwq/ctSdW34yp43BLTssARRH4xSvwWraS0JQwrRDDbGZyKR25VHTl\nIA6teTEBtH1O33/n7msa12aFYzAZhlmvTAJotbp2NNsYhmGYdQ4bmAzDrFeeAbBfCHGdECIB4L0A\nvrnGY2IYhmFiwEvkDMOsSzzPs4UQHwPwDwBUAA95nvfjNR4WwzAME4OeGpiUWMKy2uX/lCiGEkHE\nEalQAhFKFBOnig4lsohTZYYSvMiCFOpY1LmizgNFN6v7xOFqj0VVOZLHLt8fAC2wmZqaatuOK4ii\nkK9Z3PsoTkUoWcQExBM7bVY8z/s7AH+31uNgGIZhrgxeImcYhmEYhmG6ChuYDMMwDMMwTFdhA5Nh\nGIZhGIbpKj0N9KIST1+4cKFtm4rBpPaLE4NJxbFR8YlyG9UnbqJreV8qFpBK0C7HXFLJxHO5aH4v\n6jzEGWuc8xA3ZlHul0wmI33kJPgAUKvVIm2zs7Nt29R5mJmZibTJ/agY1jgxn9S4qDhQ6ljyvKk5\nU/tRUAngGYZhGGajwE8xhmEYhmEYpquwgckwDMMwDMN0FTYwGYZhGIZhmK7CBibDMAzDMAzTVURc\nIQfDMMx6RggxA+DMNRxiK4BLXRrORoLnvbngeW8uVmPeuz3PG1mpExuYDMMwAIQQz3qed/taj6PX\n8Lw3FzzvzcVazpuXyBmGYRiGYZiuwgYmwzAMwzAM01XYwGQYhvF5cK0HsEbwvDcXPO/NxZrNm2Mw\nGYZhGIZhmK7CHkyGYRiGYRimq7CByTAMwzAMw3QVNjAZhtn0CCHeLoR4SQjxshDiU2s9ntVECHFa\nCDEuhHhBCPFss21ICPGYEOJk8/8taz3Oa0UI8ZAQYloIcaylreM8hRCfbl7/l4QQb1ubUV87Heb9\nWSHEZPOavyCEeEfLa/0y751CiMeFEMeFED8WQny82d7X13yZea/5NecYTIZhNjVCCBXACQD3A5gA\n8AyA93med3xNB7ZKCCFOA7jd87xLLW3/BcCs53mfaxrYWzzP+621GmM3EEK8EcACgC95nndLs42c\npxDiZgBfBXAHgO0AvgXgBs/znDUa/lXTYd6fBbDged5/k/r207xHAYx6nve8ECID4DkA7wHwq+jj\na77MvH8Ra3zN2YPJMMxm5w4AL3ue94rneQ0ADwN49xqPqde8G8AXm39/Ef4DakPjed4TAGal5k7z\nfDeAhz3Pq3ue9yqAl+HfFxuODvPuRD/N+4Lnec83/y4D+AmAMfT5NV9m3p3o2bzZwGQYZrMzBuBc\ny/YElv+C3uh4AL4lhHhOCPHhZlvB87wLzb8vAiiszdBWnU7z3Az3wL8WQhxtLqEHy8R9OW8hxB4A\ntwF4GpvomkvzBtb4mrOByTAMs7l4g+d5twJ4AMBHm0uqIZ4fN9X3sVObZZ5N/jeA6wHcCuACgP++\ntsNZPYQQAwD+CsAnPM8rtb7Wz9ecmPeaX3M2MBmG2exMAtjZsr2j2daXeJ432fx/GsBfw18em2rG\ncgUxXdNrN8JVpdM8+/oe8DxvyvM8x/M8F8CfYGlJtK/mLYTQ4RtZf+553iPN5r6/5tS818M1ZwOT\nYZjNzjMA9gshrhNCJAC8F8A313hMq4IQIt0UAkAIkQbwcwCOwZ/vB5rdPgDgG2szwlWn0zy/CeC9\nQghDCHEdgP0AfrgG41sVAgOryT+Bf82BPpq3EEIA+AKAn3ie9/mWl/r6mnea93q45tpqHJRhGGaj\n4HmeLYT4GIB/AKACeMjzvB+v8bBWiwKAv/afSdAA/IXneX8vhHgGwNeEEB8CcAa+AnX5lLdVAAAA\nq0lEQVRDI4T4KoB7AWwVQkwA+D0AnwMxT8/zfiyE+BqA4wBsAB/daGrigA7zvlcIcSv85eHTAD4C\n9Ne8AdwN4JcBjAshXmi2fQb9f807zft9a33NOU0RwzAMwzAM01V4iZxhGIZhGIbpKmxgMgzDMAzD\nMF2FDUyGYRiGYRimq7CByTAMwzAMw3QVNjAZhmEYhmGYrsIGJsMwDMMwDNNV2MBkGIZhGIZhusr/\nB5nfCEj7PP60AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1159ff390>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Turn color image into grayscale representation\n", "face = rgb2gray(facecolor)\n", "face = img_as_ubyte(face) #this generates the warning\n", "\n", "hist = np.histogram(face, bins=np.arange(0, 256))\n", "\n", "fig, ax = plt.subplots(ncols=2, figsize=(10, 5))\n", "\n", "ax[0].imshow(face, interpolation='nearest', cmap=plt.cm.gray)\n", "ax[0].axis('off')\n", " \n", "ax[1].plot(hist[1][:-1], hist[0], lw=1)\n", "ax[1].set_title('Histogram of gray values')\n", "\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Smoothing\n", "smoothed = img_as_ubyte(mean(face, disk(2)))\n", "\n", "#smoothPill = ndi.median_filter(edgesPill.astype(np.uint16), 3)\n", "# Global equalization\n", "equalized = exposure.equalize_hist(face)\n", "\n", "# Extract edges\n", "edge_sobel = sobel(face)\n", "\n", "# Masking\n", "mask = face < 80\n", "facemask = face.copy()\n", "# Set to \"white\" (255) pixels where mask is True\n", "facemask[mask] = 255\n", "#facemask = img_as_uint(facemask)\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAEYCAYAAABBfQDEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXnUdldZ5nlt5ikkhDAlZE4gAyHAwhBkChKZSpBVlqW2\ntKSsolttnLGttsTGEizatpVeirrshoVCgag0vUobFGRISJAACSQmkIHMAyEQwjzD6T/O83vO9dzP\n/e7v+YZ873nJfa31rff5zriHe++z93VPbRgGFQqFQqFQKBQKhRF32e4CFAqFQqFQKBQKc0ItkAuF\nQqFQKBQKBUMtkAuFQqFQKBQKBUMtkAuFQqFQKBQKBUMtkAuFQqFQKBQKBUMtkAuFQqFQKBQKBUMt\nkDdAa+03Wmv/976+doNnDa214/bFswo7C621s1pr53bOv6O19qL9WabCfNBae31r7RWL309prV1+\nB7zjTj//tNaOWrTD3fbnvXfks3YaWmuXttbO2O5y7GS01t7XWvsP++A5dyo5vFMukBeLj39prX21\ntXZLa+1PW2sHbXX9MAy/OwzDRsK1O9cW5oHW2pNbax9orX2htfa51tp5rbXv24/v3+1JZxiG5wzD\n8Bd3ZLkKm6G1dm1r7WuttS/bvz/eX+8fhuH9wzA8cn+9bydiu8f4FmXaVrlJyvGl1trnF+30M621\njdYHrbUzWms37qOyLDd+YBiGk4dheN++eP5cseiDb7bWDgnHP7r4Nhy1PSW7Y7BYsH/d5P7ycP4Z\nrbXLFmu097bWjtyOct7pFsittV+V9L9J+jVJB0o6XdKRkt7VWrtHcv2dYqd0Z0Vr7f6S/l7SH0k6\nWNJhkn5b0je2s1yFHYfnDcNwP/v3ku0uUGHEzMf4XOTmecMwHKDxW/gqSb8u6bXbVJY7K66R9BP8\np7V2iqT7bF9x9i1aaw8Jh15icv9Iu+4QSf+PpJdpHK8fkfSW/VfSCXeqBfJiovxtST8/DMM/DMPw\nrWEYrpX0byUdJemFrbWXt9b+trX2xtbaFyWdtTj2RnvOT7XWrmut3dZae9li93fm4tzyWmMGX9Ra\nu7619tnW2n+y55zWWvvnxa79U621P84W6YU7FI+QpGEY3jwMw3eGYfjaMAzvHIbh4oWm4bzW2h8u\n+ujq1tr3L47f0Fq71c0cWmsHttb+srX2mYV8/CYsTGvtLov/X7e47y9bawcubj1n8ffzi930E+2Z\nv99au721dk1r7Tl2fKkyW5Tn3M61R7fWzlkwRP/UWnuNy3PhjkFr7a6LPvnsQnb+p2aaAp83Fv+P\n88zftFHD9YVF/528xXuWDF5r7cfaKiP5jdba+xbn7rkoz/WttU+31v6stXZve86vLeahm1trP30H\nNct2YMsxLu1ybIKfXrTLp1prL+Xg4t7/2Fq7avE9+OvW2sF7W+AoO5L+VTjfHdOttdPbyAR/vrV2\nUdvQRGEYhi8Mw/DfJP2YpBe11h61eF4qO621+0p6h6RDTeYO3VW7tInR//xiLj2rtfY/SPpJSf/z\n4jl/t7jWv6/3bK29etEXNy9+33Nx7ozW2o2ttV9d9OOnWmv/bs97Yb/jDZJ+yv7/Ikl/6Re01v5V\nG1nlLy7a7eV27l5tXLfctmjXD7f1Ralaaw9rrV3cWvu1xf8PbK29dtFeN7XWXtFau+viXFcOd4XW\n2kGttZ9trX1I0us3vO1fS7p0GIa/GYbh65JeLunU1toJu/PufYE71QJZ0vdLupfG3ckSwzB8WdLb\nJf3g4tAPS/pbSQdJ+q9+bWvtJEl/onEgP0wjC33YLt77ZEmPlPQMSb/VWjtxcfw7kn5Z0iGSnrg4\n/3N7UK/CnuMKSd9prf1Fa+05rbUHhPNPkHSxpAdKepOkv5L0fZKOk/RCSX/cWrvf4to/0igPx0h6\nmsbJjgn6rMW/py/O308S6tSnLv4etNhN/7O9+3KN8vF7kl7bWmtb1KN37ZskfWhRh5dL+u931SiF\nfYIXS/ohSY+V9HhJ/2Y373+HpOMlPVjShQpzUYZhGN4CKyPpUElXS3rz4vSrNC4WH6NRfg+T9FuS\n1Fp7tqSXapwDj5d0pr53sKsxfpa2Hpvg6Rrb5ZmSfr1NG5ufl/QCjeP9UEm3S3rNPijzrmRnyzHd\nWjtM0v8n6RUaGbiXSnpra+1Bm758GIYPSbpR0lMWh1LZGYbhK5KeI+lmYwNvVqdd2qguf4fG+fJB\ni2d+bBiGP9co47+3eM7zkqL9J41a38dIOlXSaZJ+084/VNM3+d9Lek3S33PFByXdv7V24mKB+uOS\nIpHxFY3flYM0LlZ/trX2gsW5F2ms++Ea5eJnJH3Nb26tHS3pbEl/PAzD/744/HpJ39bYr4/VKOOY\nie72HLbYHD2ztfZmSdctnvdKSc8Pl/6XxcL7vLCBO1nSRfxnIWOfXBzfvxiG4U7zT+OC5pYtzr1K\n0rs0TjbnhHMvl/TGxe/fkvRmO3cfSd+UdGZy7VGSBkkPt+s/JOnHtyjDL0l6m/1/kHTcdrfb9/o/\nSSdqnCRu1DhR/DdJD9H40bzSrjtl0ScPsWO3aZys77qQg5Ps3P8o6X2L3++W9HN27pGSviXpbiYn\nd7PzZ0n6ZJCzQdJDF/9/n6T/sKtrJR2xqNN97PwbkdH6t0/k51pJX5b0efv3YknvkfQzdt0zvZ8X\n951p51++Vb9o/CAOkg5c/P/1kl6x+H2GpBvD9XfRaFbwp4v/N40f12PtmidKumbx+3WSXmXnHvG9\nNP9sNcYX5zYZmyfY+d+T9NrF709Ieoade1hvXG8iN4tzW8rOrsa0RvOIN4R3/aOkF3XKcWZy/IMa\nF6S7kp1M/nrt8r/IvnPhvqVcZ+WTdJWk59q5Z0m61srxNa3Oo7dKOn275W8D+bxW46b0NyX9F0nP\n1rgeudui34/a4r5XS/rDxe+flvQBSY9OrnufpD9YvOcn7PhDNJoa3duO/YSk9+5KDrcoz0skXa9x\nQ/8Lkg7Z4ronSDpA0j01Luy/hHxpNO15Vbj+PEln7e9+ubPZ135W0iGttbsNw/DtcO5hi/OSdEPn\nGYf6+WEYvtpau20X773Ffn9VI0Oh1tojNArt4zUuau4m6YJdVaKwbzEMwyc0LjK1UOO8UePE84+S\nPm2Xfm1xfTx2P43M7d017pjBdZq0C4cm5+6mcYLaCku5WciZFu/anWsPkfS5YRi+atfeoJFlKOw7\nvGAYhn/yA230d/C55DptiAWD9EpJP6qRZfvu4tQhkr6wwSNeqfED9AuL/z9I4xxzgSkhmsaNnTTK\np889G5d1J6Azxn9Cm43N2I+nLH4fKeltrbXv2vnvqD+uHWtys8DKdyaU71D1x/SRkn60teYM7N0l\nvXfDMoHDJH1Ou5adDL12OVzjQndPkPXVofb/28K3ffm93SF4g0aTu6MVzCskqbX2BI1k3qMk3UPj\nAvNv7N7DJf1VG4MOvFHSfxqG4VuL8z+pkYn9W3vkkRpl41PWt3fRJHs9OcxwtKQHSPonjSxwujYa\nhuF8++9ftNZ+QtJzNWoVvizp/uGWAzUuovcr7mwmFv+scbf0r/3gQkX+HI1MgjTukLbCpyQ93O69\nt0Z1xp7gTyVdJun4YRjuL+k3NE48hW3CMAyXaWQxHrWbt35WI0Pi3rZHSLpp8fvm5Ny3NS7Ae/K2\nt/iUpINba+7sUYvj/YNPabWtjwjnv6JVJ5yH2u//TqOp15kaPw5HLY7vcn5orf24xoXfv7GP42c1\nbuZOHobhoMW/A4fRFGOTsn7PIBnjvbEJYtvcvPh9g6TnWJseNAzDvYZhuEl7h15/7GpM36CRQfYy\n3XcYhldt+vI2Rvg4TNK52rXsZPNXr11ukHTsFq/e1VyY9dXNW1y74zAMw3UanfWeq2AKusCbNGo/\nDh+G4UBJf6bFnDCMPlW/PQzDSRrNSX9IqzbNL9fYl2/CxlhjX3xDI9NLP91/GAbMGXZrXhiG4Vc1\n9u0lGhe717TWfqe1dvyuqq5pbrtUo/mMJGlh537s4vh+xZ1qgTwMwxc0Oun9UWvt2a21u7cxfMpf\na1S9vWGDx/ytpOe10VnrHhqFbk8XtQdI+qKkLy9YjZ/dw+cU9hCttRMWTh0PX/z/cI2Liw/uznOG\nYfiORjl6ZWvtgIWd3a9osiF7s6RfbqNzzf0k/a6ktyzYjs9oZAiP2SeVWi3XdRq9gF/eWrtHGx0A\nM9u+wr7HX0v6hdbawxd2kP8xnP+YpB9fzEPRvu8AjR+u2zQuon93kxe21h6r8cP0gmEYPsPxYRi+\nK+n/kvSHrbUHL649rLX2LCvrWa21kxYLr/91N+s6W2wwxntjE7ystXafNjpK/jtNXvV/pnHMH7l4\n9oNaaz+8D4q9pexsMKbfqPEb9ayFk9W92ujA9nDtAq21+7fWfkijr8Ubh2H4lw1k59OSHthWHRt7\n7fJfJZ3ZWvu3rbW7tdYe2Fp7jD2rNw++WdJvLp53iEaTx+81h+N/L+kHhtH2NuIAjdqDr7fWTtO4\nkZYktdae3lo7ZbH4/aJGwsYZ/G9p1EjdV9JfttbuMgzDpyS9U9L/sej7u7TWjm2tPW1xz67msDUM\nw3DrMAx/MAzDoyX9iEbzsH9urb1uUc6DFrJ5r0X//6RGP5x/WDzibZIe1Vr7kdbavTTORRctNrb7\nFXeqBbIkDcPwexqZ2t/XKETna9xFPWMYhl2G/RmG4VKNDgh/pXF39WWNdk57EjLopRoF/EsaJ6Bt\nCWVyJ8eXNNpDnd9a+4rGj+Ylkn51D5718xpZwas1Mi9v0mjbqcVf1GfXSPr64notVKWvlHReG72P\nT9/j2uT4SY02g7dpdNx5i+YR4up7CX/XVqNHvE3jmP5HjarGC7XOCL1MIzNyu8aN+5vs3F9qVGfe\nJOnj2nzD9sMaVZznWlnesTj36xpVrB9sY4Sef9Job6thGN6h0eTgPYtr3rNxzeePXY3xLcem4WyN\n7fJuSb8/DMM7F8f/T42M3jtba19aPPsJu1G2TG6kXcvOlmN6GIYbNMrBb2jcfN+gMaxp73v/d4vy\n36DR7vgPNDkYS33ZuUzjwvXqxfx1aK9dhmG4XiND+qsaTTg+pokxfK2kkxbP+X+Tcr5C4+bgYkn/\nsmibVyTX7VgMw3DVMAwf2eL0z0n6z4s2/S2NC1jwUI0E3hc12oCfrUD6DcPwTY0a9IdIel0boyz9\nlEZzjY9rnIv+VqPJqbRrOdxVXS4YhuHnNZpq/Nni8N019tlnNDLaP69xQ3/F4p7PaFxYv3JRntM0\nOizud7SFAXRhD7FgHD6v0Uzimu0uT6GwK7TW3iLpsmEYvmdYwp2AhbbqGkl3T3wgCoU9Ro3pQmHf\n407HIO8LtNaet1C33VcjE/0vGr1DC4XZobX2fQu12V3aGM7rhyVl7EyhUNgBqDFdKNzxuLNFsdhX\n+GGNqoumUd3z40NR8YX54qEaVWMP1Ghr/7PDMHx0e4tUKBT2AjWmC4U7GGViUSgUCoVCoVAoGMrE\nolAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQ\nMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqF\nQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAo\nFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQC\nuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQ\nMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqF\nQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAo\nFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQC\nuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQMNQCuVAoFAqFQqFQ\nMNxtO1/+7ne/e5CkAw88cO3cd77zHUnSMAzLY/5bku52t/Xic6y1tvLX77/LXe6y8tfx3e9+d+Wv\nJH37299eKdNd73rX5Tl++3vi/7/1rW+tvJ/nZfWMz9mqvPE6nuO/ee83v/nNtfdSvy9/+csrfyXp\nK1/5iiTpl3/5l9cLs81473vfO0jS3e9+9+Ux7w9ptS3iNVl/cYz27fVBBt7n76V9o8xmZeDZLnPx\nmd53uwNvG95Hmby8yArHkBn+StLXv/51SdLXvva1lb9+3S/90i/NTmbe9773DZJ01FFHrZ2LYzv+\nlqR73etea/fd4x73kLQ+30hT+0aZc2QyQ/tSJp/f+B3nPH8v/YEc8Txp6p9sDgMco27ZdVmff/Wr\nX5UkfeELX1g5Lk1yddttt0mSPvOZzyzP3X777ZKkV7/61bOTmdba+sAtzAbDMMxOZn7lV35lkKSD\nDz547Vy2nvH5Xlr9pgHGe/ZtiuuZ3jzj74pzfbaeid87fy/jm/fzPGmz71Q2L8ZvbrZG4r3f+MY3\nVo77b+agL37xi8tzX/rSlyRJ73//+3dbZopBLhQKhUKhUCgUDNvKILPqd1Yi7iTiLiu7xv8fdz7+\nf57Fe7Nz8Rpp2s1kLC+7vq2YZL+fZ2e7rOy+rcoWyy6t7uJiHbL7QbazzXaic4HXcytk9QS0c6+O\nGeubsdLxXI+FzMoXWQF/b3xmr049dnt30XtPhMtsT363GzAPsJjSev8767nVNf5/xj3ymDE7m5xz\neWYezJid+93vfpImRimTX5gV6uLz6lZ1cmTzcbwe7ZI0yUpkp7MxGudAKWfM5obDDz98+RtWKpsf\nosYoG0dx/vdxy++sf+O3JWMh+esaBq6Pc5E/O2qvvO9iv3qdInvpMs71aCKy+SlqQnz8oVFG5tFQ\nSNItt9yy9qy5gPbx8m51jaO3ZqGvaNNsLsm0jPGcy0A214F73vOeK+/N+i5q3bLxvrsa1958vFVd\nsm9sdmxv5plikAuFQqFQKBQKBUMtkAuFQqFQKBQKBcO2mlhgUJ05o2SORPGaDFFl5CqNqN7IzmXv\n66nNokNO9uyeSiCq/DMVCnBVAdfxnp7TTfbeWJdem84JPSeAzNktHsvUoyAzE+hdH2Us6/N4rZep\nh5489pwJQc/kZxNH0MzJNV6TqYjniOuvv16SdO9733t5DFViplqO12SI6m6Xk54ZEO/LzB+iytKf\nE9XW8bg0OeVl7++Zi0QZQ7Xt16HydIdF3keZsjkoliVzeJwzvF8xYclM7TgW1bnZuOBYZlKVzW/R\nEbRnAubzOG1NmXrmELy3JzuZw3zmPBpNGDeZb7JvKzK3iVndHPC5z31O0r5dz/TmmU3M+Hrfy+x+\nZLzn+N5bz/TMRSJ8LovmQNn8FJ37eiaN2TjYE8z3q1YoFAqFQqFQKGwDtpU2ZJXvq/8Y+qrH4MV7\n/L5s5xKflTEA7LjcSDyyab2Qatm74u54k7JJ67u43WV5KW8WNor68Y6MnZ4jeg4GvbB9PUP9rdjT\nDN5PvbBp8f1ZSLUe4rMyh9JMHrYKIZeVN2P8eo6s8TlZqLw5AibYZSc6ofTYmHiP1JeneC6bZ+g7\nQhD58zM2Ecef6ADUY1GyPsn6M7LSPeY8A8/kOZmsU19n8eesdQA+3uP3ys/FUFvZGIvjJmMaN9H4\nwPJJk0xHplKa5Cd+t7JvE/3UcyLLHAAzdplnZIx3nGP5v48ZjmWhJueMbD0T67uJE/Sm82o813MG\ndpmJ13uZtmrrzEEze2/v2L5ez/RY5oyd3hPMf4YqFAqFQqFQKBT2I7aVQWYn4LubaN/lO5e48+6x\nZNmuN17jiIyZsze9INaRDeyF7OqFu8nq0gu10mPat9qp9XavmzD1c0CPTejJQ5SD7JrMbneTcDU9\nZIkook17z8Y93uPlzBDr0mOQM0Sb9k1Duc1Z68D8gs+DtM44ZOwytmtZW0bGsDdGHbF9fe6L8uTn\nPJGP35+Fb+Kcs7Ux5JbLENdldeC6zNchMs88pzdGdyeM4Bzg8wbMesa2RiY0sxndhMnN5nPuy8Km\nxfdmCR1iiD2vU9QgZqxc73u5SV0cW/mC9JJG7JRv0ybrmYxd7iUwi/P5plqhTdYzHPNzcexmNuKR\nwXV5ioy5lzcmPcnek40b7oua8E1ssPcWxSAXCoVCoVAoFAqGWiAXCoVCoVAoFAqGbTWxQG3Yo9x7\naqwMPfVO5lwUnx2vlXY/61q8H7VFdGbJ0AudtakjVFQv9OoNMhOAOSILMYPKM3MY2cqwP5OrTC3U\nc9yL/ZGpGTPzia3CDfbC5vg9PTmIarqeI15mPtEzHeiF8NnE3GS7cPvtt0taVQVG5003leKYhzuL\n2F0nxngObOr4t1X7+v04/PWegxlE5tzXM0vLnrlV6LiefGYZP+cMLyNlJ7yd9yXtGtW/mQN6JnPR\n5Cczg8hM5XhWzIAmTf0Zw/+5zMZjPXV5LwxmZgLWy/wX35HNM1k4vTmD8ed9ENcj2Xentx7orWd6\n36ZetuE4lrOsdb33R1OuDLyjly2vF5p2q7JL686nGfbVeqYY5EKhUCgUCoVCwbCtDHLPASrbccXg\n11m4rGgI3tul+E4qOqFku44sFA+7vxjc3w3fY6DqzAksYw4yx4l4Xy+UTix3lqt9J4RacrAz7IWd\n2Vv0nD4d0emlx4j5jjaGZMpYmF6ZInqhpBzxmD8zhqXKHHRiW2zqzLjd6I0fzvlcwm+SeaDpckaZ\nsQRz1wtZlM0zPZnJEm8ccMABkqYwb5TJE44cdNBBK8/x++P84g5897nPfdbKGe/rJQegvLSFM2K9\nkII7DT3nMWSGumfjMH4/XOYiK+bh/GLCjyyUW89Zm37J3hsTffTCvGXg/VmZsnCB0TEsJjHxcnKu\nx7DOCT3NdKa5jCH2YGa9vnFd0huj2TyTyQzInOZ4dwx36yyzzx1S/xvhdeklFOoleNtqPdNj6vcV\n5vtVKxQKhUKhUCgUtgHbyiCzu8kCpm9iZ5mFourZwcXdSbaryuwzN7ER7QUE76UfjQxwFk6ll9o0\nK1u8PmNBYY2A7xCzoOJzRuzzHgPck4ss4UcMz9NL8rK74QZ7jHPcEWe79E1tAuO5Td4PeqHNdkp6\nchg4Z7RgMyIb4ohB5112eFYvxFIPmTz10g1H2c7CvEWb6YxBps+zsHZZmtc4B3nZtkoB6/cfcsgh\nkqTPfvazklYZ7xi6bu6I8pAlzthkbGbJiyKLn/mwMC97H0StamZPGhl+Z5Cjj0YPm6bNjprPTLsZ\nNYG9tOo9m/o5IZOLTebKXpjR3nooanWy+TzTBPbWMz0NYixTLL+0Lg+Zr1DG9va+wVvZovv/49y3\nr9YzxSAXCoVCoVAoFAqGWSQKcUTblWxXFHeovrvqpfGNu5QsKUcsh1+f/T/aS2W7s15KyF5q7Pi+\nTRnDyFT00h1zztm1OduTgqzvsh18vCZD3LXublrN7NpNkn9Eu6tMLjL2P/ZPxniDzJYr06BEGcnK\n3QtaP2dP8yxxBbJy3/veV1LOJMPqxQgF0hQZIENkgp0B62mTYptncwjl5VpnZKOtZhbRYJMIQJuw\nVf472il6e3/lK19ZuZbySztDA5FpDbJoN3EOiREvpEmOsoQfkSnM5gL6Ooto00scw/2Z1iPaBGcy\nk7F6IJuf4vySfS97kSo49sUvfnGl3HNHT/PTY8OjHfjurmeycdtLjNXTJMakNJnmqLdWysZGxCaJ\nqjaJCJWlyOYan8/3xv9h/iuhQqFQKBQKhUJhP6IWyIVCoVAoFAqFgmFbdVxZiDJUA5laJVLzmSkA\nKomMxudc5owSQ55kKqMshNtWobNclRJVL5kaK75rV8fifZl6vxeaKbaTh6Kbs+ozqqOkdScUP7eV\niUQWoqlnYtHrg15AfI65qiyqrTZxrMvUYFkdNwl3k6lj4/29cDu763C43YiOQdKkgnvAAx6wdn1s\nl6wtCcOVtSHnsrBNMWRXplrmfjef2Eqt6c4pfv1W7wVebu7jHW4WEM02eiYWmYo5mgV4eXeC85V/\nh6IK3GWeemJSkqmaaZ/MSS/OId7uyCplyZz0YvhAaTIRio6ZmcMv7+ipv70u0WQg+15G58IMMUyd\n35+ZfcwZvfVMZsK1VdIUB22Yza9x3PVCxGbzTG/cxjr11jNe7jime2Y5/k2MfZx9g3vmf9HEYl+t\nZ4pBLhQKhUKhUCgUDNtKFfYCVbP79XMxZWZ0NJPW2bEsVWh2X89ZLjJQGYvSC+/D7qbHvGUhcXrh\n6LYK++ToMZOwERnzMOdU01lQ9Mgg95xnIuuVweWix8JvkkSk5+DSS0fdS32+O/3TS0qTITrr9WQv\na+c5InOQIfHGwQcfLGm1vUkZC5MbHc38mVl4LcKXZSxzdNpxUIaYOEBaZ3mzPsSpKbLFXgbem81h\nvSQgPQfYXtio+9///it18rLNOT05cJlhfoERdQYsfj+yJBe9kJM9jWCco70PkL9MKxpDVGbzVdQk\nZiFTs7rEudb7Mjod+zNjn/NeZ5m3Slo0d2SJvaIzsLc9Yzo6t2ZJpbIxGu/LnCGz8Rrlwp8ZE9Zk\n3zbWYZkGKKahzpjg7FsRtZO9cKoZg8y8kmlnomZtd1AMcqFQKBQKhUKhYJhFohBnFTjGDjVLndlL\n6wyyXUa8Pnt2dn9Mw9kLYt1j5zJ7K35ndlrRNtZ3RTEAeW/HlbHpkfHw+3vJE7Yb2S49MjLeTrHu\nvV3zJucy9EIdgb1lWDcNL9eza4v2ZBm73LMljjK+E8IBShOL4/bG2MLGcEbSOusCg5yFdsvkAgaZ\n67OkQZEtlqZ5kGf6nBAZwsz2E2RMFPd94QtfWCsTDAtl8fEf5+iM+Y5aGa8T92cs5AMf+MC1Z80N\nPbtq5EKtR0lKAAAgAElEQVRaDxeYaRa4hrbM2L1op+y/Y9g2aX2O9/JulWgqC5GZMY78zmQt1q+n\n+ewlkoj2xtIk9712miOy5EOsYyLDKa2vFbLxA7LvB+2Ufd/jHN0LO5v5x2wy12ffS66nbFkotozl\njfNaL6FXNkbiOsbvj0nRdgc74wtXKBQKhUKhUCjsJ9QCuVAoFAqFQqFQMGyr7gK1Q5YnHPVkLxtU\n5gAVHWMyij/LMx5VCq7yQcXTU3PHnPabmm/EYz2j9l5O+90NhcN7dlq++01MDTYJOeb9G8PduFo0\nOrH0TC027YOt6tAzw+g56W1apiij2bmec+AmTn5zBI5iXm76mHkmC5GEai5mR5Okz3zmM5ImVaLL\nU3Qm7mWayuaZnulKNMnKzDdAJhfZ/NRzFqVM1MXfsVWIyswJjD7wMG87AW5GEZ2B+db4b+oXTS2k\nyTSDvx5CLn7THNGBO+vXTEb5jczxPn9vdKTL5oSeGUTP/A9k9zFGsjIx7mI4srkjW8/QPtHJ1n9H\nM69sPRPNLf1YNs8Axu/uzjO99UzPoRRkTt5RbnvBFTYJhZuZNPZMwfYExSAXCoVCoVAoFAqGbWWQ\nMyNvdpZx1yttHfzadyKRBfSdU9xlb5KAw5+RsWwxWUS2k4+OCY6tEllkZcqeGZ0apfVwQJmTBecy\ndnrOYXWyXTasRC+0THSAyEJoxbA5/p5ekHKQyU4vXE5EVu5Nr9/qvoyxyJx9YhKEzDkjalJ2ipMe\nfe7hfj7/+c9LmuqJA5U0sX+Rec6Sa9AH7lDH+5jLsvGUsfC9ZEWxP+I7/P5Nkg312KbsmZkDH2wN\nf6PjozTNS72wm3NG5pBNm7jTJ9dFLUuW0Cib4yO7nIWxzJjc+B5v+6hRyBygosxkTolZeXssJMdi\niEBpkpGYfMtloafpnTMyR0nGEm3i3+mtQtpmTuJZ/8RvWfbNyNouziU9LWH2vcxC0oJN5pn4HfJj\nUUsjra9jMufNKMf7aj2zM75whUKhUCgUCoXCfsK2MshZuI6IjM2LrE1m58U5Z43iLju7D4bEd1W9\nckYmqBcqLLJ00jrD6buiGHrLd1Xs7KLtmzTtWqlnlv6aYzBnc04V7MgY+rhLzgLp075ZGl/aKwuP\nFfsz25H3guxnu3QQ+zdjqzbpl0128v6+LNlEZKL4f28nn9krzhHZPBFB+DO/DnngnDOrJOXARvX2\n229fnoPhYGw5u8x9sNPOsES7TkdkAzMGOdrvZUk5Mt8Ons0zDzzwwOU5xsltt90mSXrQgx60PHfT\nTTet1DMyh9IkM4cccsiWdZsz/PsTNYHevoSs428v0RWJaAgHKE3tzDWZ5rM392RzUNSwZtq3nl9B\n7KuM/YzfGEfGIG8VntDnMNoghkuUpE9+8pNr75kL6DO3W4/wukRWONM4xe+V270ztmICG7++t57p\nJeyIZfTv7VYhJ/0c12e2xDzTtVGMM8YG86PXJdp4u1zxHtZB+2qeKQa5UCgUCoVCoVAw1AK5UCgU\nCoVCoVAwbKuJRabyiQ5xrgaAaoeGR12ZqcuzzDUxPEgWfinLlpWppEF8VqYuj6r7TO3QC5WSqUW5\nHvUGKtCsbK4KBKgiaLvMIWiOyNSNUXXuqqaorkNmXL3J9VkonR6is1qmtgaZOUJ0dsicTTOng2g+\n0TMJ6ZloZOWNalFXg3EMedopoQGzEIrIBeYT3oaYSzCmPvWpT0maZMevwVErG++0V2bKwhzmiCYs\njihjyEOmVuVY5uCcyQPl/exnPytpdb7gekwGrrnmmrX7qWcWwg2TDMabzzM7QX6yEGP0nbcTfcex\nmEFNWncuzzKuZfIR5//MZIdrsu9IdFDOrqH83odRFe/yhAocc5wDDjhg7ZmZSVMM84bM+rW8b6c4\nAYPM4T2G2vNzmGLQhzgOu4lGXM9kzmdRrqSp7dwkI57bZJ7JnANjhtBs7dBbz1C/LEMicwlhNB08\nO8v0i/xRX2+LvZlndpYEFgqFQqFQKBQKdzBmkeTcV/iRycpYH/7C4riDTAyrkiUKAb4TYXfC/Qcd\ndNDyHDvnLJg7O5XouOSMEmWISUyk9UDembMC9zmrwPt6IdxwnqGevmOLjn/ODmQ7tLmhFyzfz8Fc\nsTv/3Oc+J2mVDaR9Y654qc9iRMc2l+N4LNvRRs2E9z3ywN/MSSILKxTD8mRyyHuc2YwB1mGSnFFC\nLrLkAHN20gMu14wNGDCfG5AV2OXrrrtOknTVVVctr3ENRIRrtKTVNkQuYFEe/vCHL89RFtjaTA5j\nKDUvN79vvfVWSasyQ92zUIbUk78+z/TkGJk5+OCDJU0OahkDzTOdaXRnwJ2AqLXLxgZjirbMmLDs\n20b7xOf4dRkbGMNjZaEio0On931MaOLsNOeyZFJcn8lMdFJ18G7kHy1NprmNoRR3CrIQfbSJz9WR\n5aUtXBtMG2QMtPeVNM0b0iQX3M8Y9bL0mNWo0ci0lMyBWWKh7FtMWSJz7mXJQiHGbxL1zJzxM+2Z\nt8vuohjkQqFQKBQKhULBMAsb5Cz0SbbbjXak7Fp9Z83uhF1zFnIoPkeadifsPGCRpGknnTHIMdEA\nu7NeqkRndmJa2iwtZ3aOdoIt8h0T7zv00ENXyuLsTWS+M6Z+jsh2pnGX6+1LX0eWzMN6IUdZchmQ\nheiLDHDGHGTnon1ilhYzsj8ZUxhtC7NzzjJE1j1jkKMtYSbH/PV2mjODjGw760vZM7s/NFKwf4Qz\n8zmBZ/XmGZ7p7BrzDO194403Ls8xH2UMMs9/yEMeImmyfc5CHQGfFyk7LE42B/WSKzFeeqH9KMth\nhx22dk1M2y3ldthzg7PhtDnfg8wGOTKkLnMxCZZ/F2gL2t61HdFHwZnrmIgls1GNc0nGYjI/uTYW\n+clChfHsGJ7LnxX/StP8EkML+rNjGvidgrh2kdZTTft8TJsxthijLjNck80ztGEWVi7OM2hOpWks\nZgxynEOy9Uwc972kW5ntci+cZQ8PfvCDV8rioeBiiMnMd21PUAxyoVAoFAqFQqFgqAVyoVAoFAqF\nQqFg2FYTC6h6VwXyO3NOiiYHqJey0DSZSgNVEfdlDli838/1ws6ggohqqMzJApVGpsLM1F8gZr3z\n6ziW5buPKhR/dlRFuJokGv/PCZmJRVQRu0oFtTVqrMyxM6qxMtVP5ogXQ6J5G1Imrs8cQkEWJo5j\nlMX7JGZ6y8wvMhOlnoxFhxrK7W2JbGfhCjMzkbmAtsxCIdKu2RyEqhO1sM9F0fHJ72d+ybKMMd54\ntqsr4zkHYxo1f3QQ9fdwrat6o8mN1yXe77Iax5vLPzITnWBcZqJjp7fT3qg+9xeyrGbZPA6iI6y3\nDY7fXJNlOvz0pz8taVVtzjn6JzNJBD7eowlXNMdwIEduYsWzY5Y/B2VyEz/ei4y5jCK3tB3t4ypx\n7s9CtbpZ5NxAW7j5HohztrTuHJ7VN8qY3x/N9zLzv948k4VzjeuZXkjcLCNxNL3JxkgWri2u9/x9\nyGQ0//NnU+74fmnvTHWKQS4UCoVCoVAoFAzbyiBnrFNkgDMHvJgoxK8h2D3X+u4h7pI9zFAMxJ2F\ntMkCvMfwJLzDd2zsmLIdfC94O2BH6U5C0XnLGcaHPexhkqbdI/XMduKwQNkOcY7IGFX6nzo5Oxwd\nIPjrTER00sscrjKWFzmITpx+XdyRS5Mc0PYwfv5sypIlsKEfM2eWyIj6uTi2HNHpjL8+tnCKiMy5\n13OOoJ2dQaadkA8/d8stt0iSbr75ZkmTg0vGfmbOUTHUZOZYk80zzFnRsc1/0we98IEwlRlblc0z\n0QnM2ct4LnNA4nrYbWd2rr/+eknSQx/6UEl5OMo5I0uAQR8wz0pTQhTanv5yZpUxduWVV0qaEtD4\ndSeeeOLa+2CVb7jhBkmr7RsTOhxyyCFrZQL0T8ao0RfZfEH/uuxQP0L7+fzGXMD7vByMxZiwycdW\nZJkZh5J07bXXrpV9LvC+BrENfWzRBr1EIT30nNxiWDifZyKr7NpDrqMP4/fP74vaIWmac3rzTOZM\nH5GF9qMMhKzz99J22bd0b9YzxSAXCoVCoVAoFAqGWYR5890GO0l2zbA5/pvwS+waPMQMx9hleIBs\n3sPO3XfwhBA54ogjJOV2gOyYPLwI17Nzj7Yw0joDnO18Yrg3adqNZcwoOztCUDkjCkMBw8FOnhBR\nWZ2cKcmumwtg/pwFpV2QGULfSetJH+hXl5loc91jRn1nShmyVLsxFJTv0pEV2jlL0cuzeV/GKiAr\n3hbULzLCXk/+OsMIc8B9lMm1LMg955w1mnNymSzVNKzwxz/+8ZW/0iRP0WY7S8KQ+RxEW23vA8Yt\nTGPG5sNE+Th88pOfLEk66qijJE3y5Gwiv5knM+1blto32rJn4fuog7cBchRlx0NKgU9+8pOSVuXp\n1FNPXbtuboAhlSb5P+aYY9bOxXHKvOxzC/NT5gfBfbT9ox71qOW5Rz7ykZKmtvPvFv2JrDgDzbcv\nhnlzuaCvsvB/HMt8YJjDkGP/TjP/8k3yBDtHHnnkyrP47vh3Gi0wssa3ee7I5hnGBH2GFkDanCne\nE0TmOGNrkVlPinbcccdJmlj/LDwjv5Ffny/QxGXytLth3SIiq5wxw1HTJq2GndxdFINcKBQKhUKh\nUCgYtpVBzjzA2dGy03Kbo8jsAGfgYEFgYZwZjTZY11xzzfLcFVdcIWna9To7AGDJ/BxsAiljM1tM\ndtfseNzekbLEBCfSxHLCmDvbdOyxx0qa2oS6SVPbwVbB3jjzcPTRR0uamFV/dpYidC6AkXF7bGQG\n5sKZGXbwMc14Zi9Me7ktGX0WUz9L6zti1zrEqBfOnMHss7NFfv3ZUR6yCAzRpsuv36qMDrcry1JT\nRyCryErGmM8RGbN59dVXS5IuuugiSavylKV9l1bbCzYjY5Dp88xent/0ZxasH40EzKEknX766ZKk\n7//+75eU2ztedtllK+WkjtK6T4f3c/Qg93rzHq7p+WZkETKYD6PsSJNd8pzh8yqJl2jf888/f3mO\ntuc7AOvpzCjsKf3qWr+YktqZRmxw0R54+9L2J5xwgqSJAZQmmeZZWWIWZI1vmmvPSLFO32VaB77P\nPuciI7B5/n0/++yzJU0MJe3rLB9zH+/YKQxy/JZLU7/Covfsbu8I9N7HOPf2Pf744yVN64NsXie5\nEePANba0wf5I8tLz23J22dnk3UUxyIVCoVAoFAqFgqEWyIVCoVAoFAqFgmFbTSxQz7h6EkcGVBMe\nCgj6H9UuasIs9BDqnSzoPaonVGbSukrbyxSTPrjaDROO6JTl6ijUbKiaMrUHagBXR8VwUR5WCBUC\nKj0cG6RJnY9qjjb090aVnhvA741K4o4G/eTthAqdOrjM0Bb0QRYcnfuyUG7IDKphV4uiAsySNsRQ\nbm5igXoRxxpk1WWGZ6G69JBfyBjvcLMe6kA7xSQOXt+eGoz3e51iWK5otjJXfPjDH5a0qj6+9NJL\nJeVqZ/oshjHy+tKG9IG3M/3Is31sxUQSjphQ6PDDD1+eY5zHkIJuKoHZFSpPHyOA+crP8QzmFO9n\njlHPTL0fQxJ63eJc5+fcxG2u8Lag7B/96EclrY7XF73oRZIm57roIC1N7YPJ3SWXXLI8hzkM73vc\n4x63PMecg2rbzVyQB5zF3aSQ63k2JhNuQocqHVnLQnZlz8ZJj2e5Spt2ycK8Ub8YDsyTazA2kY85\nJwdx4Bzv3w++wT1ThziWsxBnWUg22nlPzRmieY00Oezxnmw9Q39GUxgH99+Rjog9+DzjY3B3UQxy\noVAoFAqFQqFg2FYGmd2KMwnsONhVuQE5u10M+mHlnEGD6WNX445TMdFIdi4LhcOOjp2Ws4Ex5FUv\ngH+WaAQWkV1nluaZ3ZDvFNnNZ04+PAs2MXM6op1gnt3JYs4pYGNiFmnqD9rXd4wwFrQ592UscfZ/\n2g5ZcaYjMnTuxIVsw7R4AH/KB1NP2bL0mFzj7I3LXzyH/GQpPmmLLNVoZC8zZ72YdjiT8TkCNu+c\nc85ZHovB8l1mTjvtNEnSYx/7WEmTpsmdEmG1GCvuqMJYItSXO8dyjr52GaJfeJ9ruJgnsrSygP7l\nnMvcSSedtHJNxiDz12WcuTbTRPAsxhQy6wwY2rrLL7987dkZwz03eF3o61NOOUXSavvyTXnb294m\naT2pgTS1E86iPucCxrtr8WjnTAsWNVVZmLYYoi9LmY5cZWxkdh+ITpjSumy7QynOhMyPzFfuQAtj\njcxeeOGFa++dI+gfHP6ldQ2Vf7ce8YhHSJJ+8Ad/UNK0vnjxi1+8vIZ1yY/8yI+sPY856OSTT147\nF5NfZUwuaysP88a3hPFOef3bxLEsoVF0ZKW/pfWkQ77O4JuWJY9D3vmbMdY8i7nW55m9YbGLQS4U\nCoVCoVAoFAzbyiCz8yBUmjSxPew23AaMnQc7b3YGvtuOdnGZ3SC7XmfA4k7Jd/6Ugd1RFjw+2mI5\nWxvtUDO7tIzxY8fE7t7Z5cgWuW0S5YtBwv0d7Pgpi7MZ+yNEy54C1sZZ0yxdKYi7T5AFPs/sQ2m7\nLGwg7cn9/g7YRmTG2aZot86zXR45x3N8l48cIMcZI5SxPdHGOkv7i8z4ORBTXDu7ll0/FzAezjjj\njOUx2GH62rVQ9CsMMGPDE3dQX5gaZ0OQB+YGbxv6E5nNUpc//vGPl7Qasov+j3bg/mzqwHzqobO4\njrHtPgvcR9k85B3zYkwtLE1hy+Lc6XMuLBfaP0JOxvfMFS4zjGHGqWsGSDSDliKGcpSmcU69XesA\ng4o8+DciJu3xbxNykdmD0vacQy79O8CcGa/x37BxXt5oP+7P5L3MQV6XmBobufLvF8wmPkdPecpT\nlufe+c53aq6gDjDD0mTb/bSnPW3lrzS1L33PXJKtD5jz/dvM3MW80VvPMFalaY5nfvF5DXlC5nim\nz/UxuYvPCXE94+xtDKPqcyZl4hr/zmLzHOvk37i4nvEQmXsTTnK+X7VCoVAoFAqFQmEbUAvkQqFQ\nKBQKhULBsK0mFk94whMkraoNUPlAv7u6m3NkoULlQzgbaVIHQeO7Qxz0feYsh6oHVaQ7FqCChOp3\nkw5of1QEqCJcdYp6BLVFpqrN1Abxflevcj3nMqcq6hfV514W6uRt0ctQs91AdZlltKPtXM0Y1b5Z\nVqiYQczbkn7MMiRGuIMB8oRaNgsNiIxlDm5R9egmFoA+zMIcUr/MxCjrX+pJHfjrMhcdKLwNXb03\nN5x11lmSVk2UUGsyl3ifEwKRMJSEbyJcnDRlJ6Mv3YQmtp2rxFEf097u+MdvTCQytSjzBX3oJhb0\nB2VxNSNlwbTD1aLRacZVkqjLMQvIzJiYD7Owg5SFLHDPf/7zl+d6WRvngve85z3L35g40OZuIkLb\n0eaE97rggguW10RnaZ9zY2hBd8Slr5A173PU8vSLj/fYZ9m3if69/vrrJa3OM/ymf13NHsNtulxE\nk0CvCyYn1IHvNe0lTQ6dmLAQvnDuwHzCTQdiO3kbcoywf9TXzVfiesYd4qLzv5upRBMJlzXGJ+Pc\n+5z3MIdlMsP3BnkkBKVfR9+7qUQMNpA5l9N2mclpXM/494hnxdCp/t49QTHIhUKhUCgUCoWCYVsZ\nZFgc31VFFsJDl8A4xBA6vgOKDmrOzsWdhJ/jvfz1HQxlYYfmO5fo/BVDaUnr4W6y0D9ZKDfKwO7K\nDd45BkvgwdRpV9qJ8vuODSaL8jrrk4VamQuogzOWkfl1eYIdZmcad6p+Xy+YO8iY0ugwKU07WNgX\nZwqj1iE6XkmTrGROepF9zBhz6uSsaWTTe46hGXPO7xjmx983R8DMeDvRnrBbOORJ6xobwk65wxVM\nYXRik9YD/feYQi8TsoJjp7d9lLseY4/s4OQkrSdXcvaT+jJPecgtyglj7u2Ew11MoOTtRBloS5eT\nGK5wjjjvvPOWv2nzzNkaFo0QcDBZromkr2l7d5Rk/s7CfPLe6Pzmv6PjrjSNb+SRtvfvHt8IyuKh\nTwGy7XKN3CPPPvfxOzq7StK555678l7ud60szCb37YSEMtLUhi7jjB/+evgxftNeaHNdGxWTlPXW\nM/7djg7g2XqGNs/WMzFpkMsV6xDe4dqoyDz7d5YycMzXMxxDo+fzExo9ZCZ+W6VJsxzDunob7AmK\nQS4UCoVCoVAoFAzbyiCzo3bbmbiDyXbpsCHsSNz+iV12tDn1Y5GJ9vdl4aoiY9Zjb7K0w5STsvlu\nGzY5sgR+X9yRO7IUyLRHZAycxWTXF1lqafvSQ26CrJ+iTZKfi+xJ/Cut23Fn9s09hpT3uVzQZ+x2\nM5Y4XuugLplNItfDHnnZYn2zkHVZOK4oW9EW2euQlXfODDJMjadqj/Z72MhK0oknnihpYh6yVNMw\nHFnYNMYPYzNjaLI2RDuSzSER2VzEe5BnZ1EIPcWzYYSzcmaJgmB2PEU9x5CraHcvTfbUPNM1grSZ\nh/GaG3zOjOMn01TF0HXOvMUkPN6/cZ7wdoLRj/O6tK4RcxmPSZEyrRLfXuYJD10XfWeciYs+Pq7h\nQjtJWVxzGX11aEvXWmDzz198AeaOmNxJWl/PONvKnEP7xKRU0iRPWWKhqAn0OaW3Von+NL0QnTHU\nrLQu6y7HjP3MTp/74trDwdzp98UQhMh1phHP1n2ZVmRTFINcKBQKhUKhUCgYaoFcKBQKhUKhUCgY\nttXEAhrc1cAxM12mZuQ+zrmJBvdH5wVpPfOZU/xc13NcyjLSRRV8FlKN35l6NZoHeFtwX+bQE50j\nsnKjXslUtjH7XKbSmyOop6utY4a4XttniE56rjrlfVnfx/ujc5a/19VYW12fObpQT1dvxux+GbK2\nANEMw38jfz0zohhiMP6eG1DXeXtjroVqOFMz0te0hbc36mPaDcc6f0+cb6RpvGXtxfjkmixrVq9/\novmRj3fUqtTByxsdidwJjGM8M5N/zsW/Xgfq5A5bV1xxxdqz5gYfk4wl5N/NEahXNB1wh2zMpDCn\ncMdO+or29b7nd+ZgjPo5C98XTSzoS8+ayvcyc6LEBIbvgZt58Tv7lkaTQr8vfrf47nhbfvrTn5bD\nw4i5KdPckK1nojNwtp6hP5EvNx3g/mzO7X2buC5zPKfts9CysT+ztUOUq2yMMM9kjp3Ivdclmpft\n7noGOWI8uDOkm4XtLopBLhQKhUKhUCgUDNvKILOj9R0IOw52NRnbCjKmJO58svBLWZiruIP3czEE\nWxacP7JNWSgd6uvsp7PC8T5YH+riCUZ4VsYGRnYp203G8C/Ze+cI6puxtcDrH8PVZA51IEsUEtll\nb8OYjMPL1GP6tnKkyxjkjNmMji6ZwyJ96P26iZNdbIPMIQg20MdIj6HfbsCq+bijnvRn1k4gk5mY\nqMOfHYPrZ4lnYNIyR0mO+TOjhirr+zj3uGYtOt5miQN4ljtcxcQkmUYCZOMnMkru9JYlv5kbXMYj\nc5Z9IyJb60wWjGqWsCeGr8zGVhYKNMpmJk9cE+cNaWIvY2Iifx9/Mwdy2GhngHkmYysLGxq1LD5/\n0HZR6zF30IZeF9qOfumtZ3oO/lmYt+h06d+mqBHwc722j6w0cpU5GlNf75+oGctCz3G/a7GQu1g2\nL0N8h8s6spJpmH2u210Ug1woFAqFQqFQKBi2lUHOWGLATsJ3y3GH1WPQYLl898Duix1uxuxkti+8\nh2f7Di/a/2SBuaNdj+9uCJXEbsp3etGmz8vLzj1LCbwVu+rPZveVpXacc9pgduQ9O/CsDyPDk4XE\n6bHLGZMbWeUspWVmc7YVS5sxyBl6ody4L2PaMxvReF8M19Zj6h1zTk/OXNBjsjI7vNiWGVubsb3R\nxs/bEHnIbJBjCmJnZuLckfVhlCtnm0jle/LJJ688z8vLMzMb/BiuqgeXIdoVG1m3n52z1gF4fWPi\nDW/fGAo0JsKQ1n0cskQ7MbSgtM5M+pwCQx2/bV6G6BeTaboom5c3aiIyzUCmKcPelmdmjHdk412e\n4xw9Z/8GB+M9Yyxpu0z+e+sZ2pnx4xpx2jAL/8d9vW9hTFjldeC+zC8has197sPe9/DDD195ntc3\n+9ZgWw4T7DK+VQhRf3bUbvq5Xhi7XaEY5EKhUCgUCoVCwVAL5EKhUCgUCoVCwbCtJhbRIFxaV+G5\nGi6aGmTqg5gL3NU70Zjd3xszuLiaJIbacpUE74nZq1w9ikojc24CmExkWY5Qq7jagHaKDkHS1lnj\nshAxWaiXrHxzQXSGlNYdClzdv1XYmky9m6mYY7hAd3aKoQEzNWGmbosyvonDoauZYsgfrwvyzjF3\nuIznMkdSkI2R6Bzh5d7UFGM7EMMoSev9n53LQl9l10u5Si+bpxjnZAnzsFyophn3LjvReSUzB4p9\nmPXJLbfcslIOSXroQx+68v5sPqa+vSyVwNuC34Rh8kxgWca+nYDMzCuaL3GNq4rjnO3qcsKtMV7d\nmZHsZMiltyEh0ehXLxNOdbwHecocUvleef/iOIhceLi26Njpfc4cmYWsi9+WaOIh9cMkzhnxmypt\ntp7pmUPQL5mDZpyP/b2YZGDC6bIWnR8zZ+DovOmh5ygL78j6h/f6GOcZyLavR+LYyBwV43rG2yKa\n83hbxkAIu4NikAuFQqFQKBQKBcO2Msi9sFrsAJwNjLuMzGGEnUTmDMNuhl1GlhwjhkOSJpbnsMMO\nk5Qbysf3+66FHWIv5ApG6n4ONjtjI9n99ViByPD0WGZv570xar+jQXmzUHsgk5noDNIL85axprAx\nWagjZMD7BxZwE+e1ngNUNkZiGCV/R2QTvM+RmSw8D6xCLIO/t6d1mDPLk427yMJnDruMqaxfohz6\n/ThOwdLeeOONy3M33HCDpDx4/ZFHHilJOv300yWtsjaRse7JVdRYSVN9L730Ukmr89w111yz8g4Y\nS2kKxcYc6BqJOM8gH5kTM+/P2nnOyJyXszkzaq+y/mF+YG6ANZamEJ6w+X4ONu6SSy6RtMrK0R8k\nJDYHXL0AACAASURBVPGwcnznaHuu9XkK+eV9/t1ifoCldq3D0UcfLUl65CMfufZM5I5y+n233nqr\npGkejc5VXs5MezZnZBqVqCXPnKY3Wc8wVrzvYzuzXpAmmfE1Dnjwgx8sSTriiCMkrWorYki9LEEJ\n37ueZpp+dpaXNVYWgjdqTrJkXz2n9rhu9Hbem3lmviuhQqFQKBQKhUJhGzALBjmzGc3sQUFkOP3+\nGMDfdzDsrmFrY0pLadrJs0OW1tP++k4vporO7Hric7KkHtEWTJp2XFdffbWk1R0XOy127s44wPrE\nEGP+7BgGzNtwJ9ggO2JdNklgkbES7NZ9lw7TAQviTAftCbvm/cN7ucb7opeaF0TmOAtrF4PQe3mR\nHa8LZUBWXGaiPGXsaS+16ZxZnizpSbTHzuQkjuFM08U1ngL3uuuukyRde+21kqRPfOITa88+8cQT\nJUlPecpTlsfon5g0IitnT8vTSzZBed2elPnlvPPOk7SaHvlBD3rQyvWwT5J03HHHSVq3s89Cm2UM\n8t7YBu4vZJq1LFlKnMdpZ2fcI4P8gAc8YHkO1p72diYYOTrhhBNWniNN2glP1BHRs+mlLlk4r9g/\n3q9uO+/l9mfCLDqzyXvQpDCfZmxg/JbPHZTX1yxx/s7myTj3uMxFHyP//tCu2J8TytFB+FiYfmlq\nz0xrGBNNZT5VsdxeJ57NOZ9nmCMvu+wySavMNXMe31BPIsR8FOdjLxNlyMKb7s23aWdIXqFQKBQK\nhUKhsJ8wiygWjrjjytIG99LhRg97t8GBBWTHxV9JOuqooyRNu3TsjaWJbcrsiLba5fo17PqizZAf\nY+fkDA3n2G07G8717MLcbpCysytjV+jMA22Zpamcc2D2rA9ikpdeMoOMkeWZtLfLTM+WCxaF3W7G\n8GfB2KPNcWa7hhxHO0JHvF+aZIvdutu68nx29c4U8pu6ICtZopNeG84RPm5AbN8sSQv1jEl1pMmG\nl3rD2EvTeP3Yxz4mSbriiiuW557whCdIkp773OdKmlhYf09mR9dLXR6v4TnIrjTJAUzfSSedtDyH\nveD555+/UjdpYg2xjSXRiDTJGHMPrJPPRcyLjB8836VVe/65wuU/sviZzEQGzhnkyBw7g8w55iCX\nmTPPPFPS1JZ///d/vzwHc4xsOssWxy6y6t8qypAlnOKZaFVdHp/85CevvB/7aGmSlSy1fdRexWQm\n0rqPw5w1mo5sDoyJiLzto5Y8m1ej5sU1C4zvm266aeWvJB177LGSpEc/+tGSJv8GaerXTKuz1Tzj\n1yCjjGVnteN65mEPe9jyHNejEfH7ol0+Mudl5xzfUv/exvVM5nu2JygGuVAoFAqFQqFQMNQCuVAo\nFAqFQqFQMGyriUVMtCD1DfKjU18WiJxnQqu76hMTC1QTru7jmRh+u5ox5kjfxGnAVeKoF1EpumqB\nsqP2djOI6DDlRvgxCLyrQFBXxfA+WWDunrPaHEEdegkSMkR1eaaCoV88LBG/ucZVpjHcTeZQmpkB\nRSeUTLXG+5DDLCg6cKcOziHb7jzGM5AdVz1F1RQmIl7fTULAzRG0hbdh5mgFosoTmfFxy5jGUYZQ\naZJ01VVXSZrUz34f7YQpi5cpmmvtrnMSfU+ZMJ3wY6gr3cEFUyHmDVfjUk+OZeErqR8mXW6OlCWS\nAHM25QKu+ud3/Jsd6znnZqZR9BVqcndsw9EKMxlvy5jQx2UmOtrS3i77lBM59O8essq3CWdOaZoX\nHv7wh0uS3v72ty/PXX755ZImcx435doqoVAvocqcv0eObD3TCzEWHeS5z+fl+G1ykznWMciOy8Up\np5wiaVpD+FonOv71ykjZfKwim/z1Z1POzOwQMwr6OgupG7+pfj0yynN87kTuM1nZm3mmGORCoVAo\nFAqFQsGwrQxyL8xPFjIlHmMHkbGB7GqcRYmOVh5mhGcQSP/4449fnmMHw87by8Rul514j5HNnIXi\n7tFZYnZY7Jiy5BjZs2HNeTb19GsodwzLIs07/FLP4D5jJ2KIo8zhKrJkLifZLhfwLBhZDxvIfTgW\nuKwB2jxL+MEzkWPfpVP2mOZcmnbw2diIqc57LDx1c6YxC10INkmIsl3Ixh3IwgJFmUEunAnmGGG2\n3KkqOp85i4JsvfWtb5UkPfOZz1yeg5Xj+iwVOHNR1t6UO3N+i7ICyydNcotzL06Gfh8y6uwyTDll\nwTkvY5Az1tXbc67IWOJNQu1l368YRtLnFthZGGQPy/WhD31I0uR49YIXvGB5jr5CDp1hpK+R/yxt\nMGM6S1fM9dT7qU996vIcMsM5D8v18Y9/XNI0vzirFx0HMzY9auTmPLc4ekxlVpeoqaKffL5ijDDu\nPLCAj0VpdX4mTO2FF14oadUpl3klY2uRaZjnbD2TfUNjnZg7fS5hXvLQbxFZqFW0oHEuyubHjBXv\nzf+7QjHIhUKhUCgUCoWCYVsZZHYJ2S4l24HH3UncIUvTrpy/WWpgbKJ8J8P7CFfjNoXY6BG+xkOx\n8ayYMtN3QOx4sGf1nSbMIGXz0EzR/igLhZOlR6bOsQ2zHVcW3mfO9qQZoxt3571A7ciK9w/9Qrtl\nO06Y1IxpZ4frLC87cNgaD6yPzMRQcM4u8CzkweUChi4L0xNZ4ozlou5ZGuqYOtlt4rOwTTsBMC2Z\nfVov/Xu053bbdBg0GDtnc3gm/eyhjjgHg3zOOecsz8Eaor161KMetTxHOLiY3tnnEuThyiuvlLQ6\n91H2iy++WNKUzERaTzjg/YscZbaI119//co1lMm1DsgTbKTbtO8Ns7O/kDF+wGUmzqfUzVk9tEm0\noSf3QH4e+9jHrr2LsG6nnnqqpFWtww/8wA9Imvra05rTnzw7Y2ujX4/33THHHCNpYiM9UUhMWZ6x\n0rSPywzX8y2KIVS9fFkIuDmDuvV8UbK2j6ypj4sYHtFt07mfUH3O4vOeCy64QNKqxoh1DBoj/i9N\na5uoic/S1vPdy8rLnOAaDZ6VhUyNdXK7deocv/M+tuL487XO3tiwF4NcKBQKhUKhUCgYaoFcKBQK\nhUKhUCgYtlV3ATWfhXnjnFPlUOuuypZWHQtQDaBecnodNR/q7sxYHFW2qyQAYWsIbeO/47NcLUS5\ncZ7z0Fs4EaIic/UDqlnUHq7u/sQnPrHyTFelo0rj+miq4ecyVeBWoXjmgMwsJ6pespBqMYSOt3MM\ne+b1p51Qj7rDFapoVJgeUjD2gWfNQlZi1rqsnqjG/dmUF9nuZVfzfuU9qALdzAQ1Vi/EEs/KHDvn\njMzEgjrQFt5OyJE7XUqrJguMYZxqXeZQU2MWccQRR6yVifF77rnnLo/xmyxSZCuTJvW6m2tIq7JD\nGXCMwYnO34dphdflEY94hKTJpMPVm6hoM7OcOFdHZxppctyjnb28czblAj3zv8x5LDpqudqbumNa\n4WYup512mqRpnnHzC+SB9v3zP//z5Tkyv5544omSVuUDuaN/mENc7c23M5uDqB9zJc530qpsSavm\nQMgq5jx8N6WpPaMpordbDEPWm9/mhMxchDGSZTrcyqk2Mxl157z4bMavyxpgDsMkxn8jV2QRliZz\nmvisrNyslbxsvA9Z87qxVkJGPRACZmHATdaoJ/NFNKOVpu8y7eymQtkY3hTFIBcKhUKhUCgUCoZZ\nhHnzHRPMa2awHu9jR+FsII4j7DqcDYG5i05S0rQrYmfrTlXsVHjPJz/5yeU5GCR2/jihuNMCz2bn\n7gwyz85yoLML4q/vstmFER7IGQd23tzHs93Jgnbl2ox1nSMyBhk56CXliLvPLGwacuXsfwyNlPVr\ndKSQ1tvXd8Q8k/7IHACjg5jvxGN4Hd/d80zk0JkA5CAL6cR7YpicLAlJTEAwd9BeWR8wFjNnRtqE\ndnIHqDjPuAYJxgwGOXOeYX5xh1/6mL/vete7lucI9XX44YevPBMWyJ8NQ+QsHzKazTNxXnQ5xoGH\nurscxpBQPNvLBJMUw4lJOyPMW8aYc8zniehAnoVUo+2QHZg/vy6yvdLUdvSFs73IxUc+8hFJ0qMf\n/ejlOZ7Pd46yuVY2hm707whaVLQPJJ+QJqaRa3xswUgiD84OEm6Mtsw0VbTBnibM2S5kYdqQEWQ9\nk/nobO2OeJE59m84CWSYS1zWorbd5xnmAv5edtlly3Non6J20+c3+gxZcY1EDBDg8wzfJP56O6Fp\nYj72bzjyGtczXt8YyGBfJbHaGZJXKBQKhUKhUCjsJ8zCBtl3VezOM/vkyFjBqHoIrMh8+e6T3VAM\nryVNOw52Jc508KwsRFhMMsFux3c37I7ZXTkTTHm53lltGB0PjQS4jnI7q017xDp5W7DTok0z9nKO\noA98hxhTfDrruVW6YO/DqKVwuWDXSh9ktnox0LuXKWMVkANkhb+Z3Tr3uTyyg6ecWbg2mAa/L5bT\n+znaaPeSgvCcncLsMDZdc0Nbw9b4mIz14hpnSuI1/n8YZFiYbC7AHs8ZWdo18xlgnqEM9A/MizRp\nR7Bb975HRiiT30c4Ly8nQFP1D//wD5JW7bJhpyg3/8+Sy8QwTH79nJHZk4KMmYqJo1xmIjvnTG4M\nS+rtzPUxvKO07ldw9tlnL89ddNFFkqa+zt7LPMMY8XTSsODYNzuLSFl4rzPPaFOxMfXkV9hd8/3K\nvtORjd8pYF51uY52+r06cY3LTITP9bQh49bHHW1In2U23ll6ceSPOYTxSp9Kk/xlc2ecZ3w9w7yY\nfUOpA+V1jURMo841/r2MSbf2VeKznfGFKxQKhUKhUCgU9hNqgVwoFAqFQqFQKBhmkaLG1Q78hip3\nFRfqK9QyqAZcfR0dEjLVDfdlKuJoeiCtq8D9fZG+5/9Zthie6aHCUGGgknDVANejwnADfZ5PfTNn\nHxDDvUmTSoP23Sn57rPMZ/R1llkumhVkzp+0L22/aZg7+gf5cFMYyhdNPPwcZchkLjqxuKwiM8iR\nyxO/KZP3K+cyeYjZKTnndYomLF7eneCwl4WDxIzB1YzRcZWx5qpE2pJrvP5cF01pHBzz8c4zUZV6\nmeI8E0OrOWL2Omnqc0w7vEyUgbZwdSrmWqjpfV6jntSduchVxGTrorxzDiGZweeSGOrO55CoWuY+\n759ovuRzGG3J2HI1NHIQQ8j5e+hPdwiNpkX0q5u5RNW/m95wfS/LK6p471e+U9QFZzJJOv/88yVN\nWSMzh3COZVlTdwIyB7HMMTrO8dTX76evOOYmCzwbk47eeib7fmSmfVvNMxl4ppeJuQvz0Cz8LM/0\n+5DVLPRuvJ95zU1ZuC8zs9wbFINcKBQKhUKhUCgYtpVBjuHIpGl3wW7BdyDsCthJw3j4boGdCLsM\nv5/fmdE2uyl2V76DZ4fHe7N86pSXHUzGqGXPjuyj7+Zol4yFpCyRTZTWk45koedo+8xpwMswV2R9\nkCUKgaWJDKmzMb1dcnTOy5g34O0WHfCyxCb8pV8zJ0re4axPLJOPH8AzvZ49Z0bKgtz2QuZlCULm\nrIGgfXyM4GCStW/UOmShmaJDmvc9vxmHHjKSMtAXfo5+4T4fm9ExMpsTooOYM8G8l4Q1Xl/OMVZc\nZphPYXtcixXnYUKTOQtEW2RzbuZ8PDd4O0Xtpss8v6lv5iyEMyTaPmd7oyMSId2kyQEu9oUjG3+x\nTNyfzRcwfl5fygRb7PMT8o+MeThV5JAQZT6HUHbYUtogm4uiM3J81txA+/g3Ioasc3mI65nMaZVx\nkznT8zvTLMS1g899cX7L5viYnKM3z/iz43rG24Jj2dwVE5a5jEdnYOYgn9/ivOjYm/VMMciFQqFQ\nKBQKhYJhW6nCyFpJ/R0i52LCA2cTYTEIJ+M7GNJyEm7EbcBieCy/j91JZPV6yHYtMH7O5HId7/e6\nUD52277jiumNnQWlDjHEGPaA0no7Z/avc8Se2rrG+7y9Yig138lH1tVZPd85S3l4vCzYPb97KWsp\nL/LhLEpMwervjbtzt0fHXhDGz+WJesVEIQ6OzVk+MtAmPiZ7oQwjw8612dhEdtw2F/mBpXYGGsYM\nJtdlKIYU7IXaA1k/waz4eI+JYzL2Bvlwmbn22mslTSymjxvmyMg8k8xEWk/ik9lCzhleXto6snp+\nXUxUkCV+QmtASmY/d9NNN0laTRZB4g0SjLhtbvwm+lyyVShPrxPvpS9djmGOkXu3TyYJCX3tyWG4\njm/Thz/84eU55IfvF/f5vIo87c73dg7IQtb1wrrFvuvZ52ffCPqMUIxZ+L8spC3tGrWcPWTrGeau\nTGPE+32dEb+vznwjK9i5x2RYDmSIVOrS1HaZf0wxyIVCoVAoFAqFwj5CLZALhUKhUCgUCgXDLJz0\nnA6PIZYc0SEmc56B2kc16GF2oPgJO+Oh0VBBZllaYviwLLxVDNniiKquLKxdlnGNbEr89fqSOY9j\nHkoHExLqRLu5SiM6eGXOkHNEVGVKU5v35AnEfPDSusrHZS+aX7hqHlVpDMXjv2O4N//dM3PpOR7S\nBpnTKPKE3KM29zr0EDOeeTuhisvMRuYcvitmc5PWzQMcqCVjuDUfm9GUxZ+DmhB1tWcSY9yhFvX2\n5frosCWtm75kjjk8K3NGRmWJ+YSH7PrYxz4maVLv+7Ojmt3VsVE9n6npGSOYlbmqd84yAzLTKOrt\n82Q0n6MvXFWM4x3t89rXvnZ57pnPfKakqQ3dxAL1c+Z4HkOPZo6d/M1MGvnNOXeOwlQicxCLfe9y\nTHnJ5OffYNoMMyDay79tMUxcJutzRGbCQv9kphZxPdObkzLE67wPkEdMqrLQftl6JjoTZmuBOJ9m\nYe2iA680zYP83dN1Bu/PzEo5l60P9gTFIBcKhUKhUCgUCoZtZZCzgOnRcSNz6uAvOxB3KmHnxK7B\nnWDYzRDI3hlk3sPO3d/bC54dmRV2UFnIr8wJjOvZ/WW7KnZj7My9zgT+J/C6n2NnyDXuZAErlu0U\nM2Z+LojOa9JmO8QYdsbrSx/wHK8/19FnhC7y+whx5OxaZHe9jOy4ew4cMWmJlzcyQ15e5Bfm2GU3\nMhVZ6Dg0KDA7zihxPWVy5mDOjjTMCc6weIggaVWeYt2pp4+/yN44y0X7ZEwQ7XTjjTeuvZe+ypiz\nmBAim2e4BtbSmbsYIikbM5TXZSbObz5nwoQyJh/96EdLmpyhJenWW2+VNM3DLvNZkpO5oRcK0UPe\n8ZvvBvKVjYuTTjpJ0qTpk6S3ve1tkqQnPelJklZDscHs891yVpr3cr2/L2qBYpg6rx/HnP3nGPOL\nzwWMEe5/+9vfvjwHa/msZz1LknTVVVctz/EM2gdnVddo8Gwc+XZC2FFp6gMfPxzjr68dOBbXMy5X\nmYZqEyAHzFkuF3GeyTRjvXkmssT0k59jvPfCD/bgbRATxuC06qEQkVvK6e/IwudtimKQC4VCoVAo\nFAoFw7ZuzbKwKDGBhYcQielZs/AkMGfHHnuspNUA5pdffrmkabd6ww03LM/BevC+LOUz7JzvTthF\ncS6GOfH7ORfZK3+vp2kFpOf0HfzTn/50SdLxxx8vaXWHCWsT0z46g0b92F15fXvM5najF+4mC8Ye\n2YcsxS+/udZZlPg+Zwdg6rnfw/eBzMab3zHhgJc12kp7eWOgdy8vu+0s4Hq0F/TyxtBinIuh7LJy\nS/O2J6W9nDGPdmxHHnnk8hxtRn/w/w996EPLaxin2BK7rTf9wTjyc4x9fAa8TMwTMIZZMpw4XrOQ\nUvSzM5SAsFyf+MQn1s4hz/5MwnA99alPlbSqreAZyA6hv1yukH/8KJwZ7YVymguykGogs8HvpYxG\na8AccsoppyzPvfCFL5QkvfnNb5YknXnmmctzZ5xxhqTpO+AaU2STNs/YR2SGv56gJIY1dTaR+5Hf\n4447bnkO+f3gBz8oabKhlqSnPOUpkiY59n5Gi8n3DnnimyWt+13sFAaZcmffFsYmjLm0bsubJXBh\nrcJ9PpdEeN8x9vn2Z+uZLE34Vr5Ufj/zP8/xNRagfxn3uwJtcfLJJ0uaWGJ/Pu2DHPrYismZNg21\ntysUg1woFAqFQqFQKBi2dWsG0+K7k8gGZqkK2fWyM/BdfrTf850IOw+8ti+88MLlOXZqp59+uqTV\nIPvsvAlM7V6f7IApS7SF8WdxnzNvlJ164vkrTfZD7KqwT5OmHSK7KmcRI4uNJ3lmxwrc3jHbyc4F\ntHeWpjba2Pp1Ma259w+yRnu5PPE+2idLVAJD4udigHZv061skDO79Yw9oUz89fEDQ0lZnEGGOeKv\nt1O0PaMtetFcHHOOfILdeJZeObLE0sTGwVzQ925/Hll87EqlSeZg11yesMeEhXnc4x63PEcyjic+\n8YmSVlkQ7HWRNa51uYr3OQuE5zj1JsqPNMkhfY7tqDRp1mgTZ/qoJ/MLc62/N9oZu71ipnGZG7zv\nYpScLAkCskLdPJU4snbNNdesvQeW+GUve5kk6U1vetPyHP3ytKc9TdJq3/EsvlHepjEpDf3sMsMx\nNKDeX5zj++PzxXve8x5J0kte8hJJk/25JJ1zzjmSpPe+971r9aQNkBHk0plRys13PtqgzhVRiyyt\ns8TZHMTcE9cQ0rpm4uijj157NppxBxou+t6TasCy8qwshTg+TYxXNGXSpG3L1jM8Gxnz+SLCNSho\nxLnP5wnak/ZCq5X59QBn0/cmIVExyIVCoVAoFAqFgqEWyIVCoVAoFAqFgmFbTSxQEWdOa5nKFqo9\nqtLdSJz7UMu4ugOzBFRVbn6B6hO1KM5v0kTX43zgjhCoSlGDoYbL8pNnxuKoy1CruCqDMvCXcG3+\nHlSurkagPaJ6x1VV0Qjfnfzm7BSBGsvbNyZIyJw+YwBxrz+/6UN3pIiOLu4g0zMroK+539WalDeG\n7nEVZkwu4yojkCWAQV2HjLqKl3pliU0ob2yvzFEsk+M5O3ZiquTJdEDmXBjNcZALHH+lqb6oMn1O\nwCwBFeb73//+5bnrr79+5a+Ht+KZJ554oqRVOWSujCEFjznmmOU1vUQDOBgyB7jzJTKDmtPNPpBD\nVJ7uGEP9ormKOxrHMeJOfpmZ1Nzg3wG+EVmCBcA8gQN4lmgHuPr5rW99qyTp2c9+tiTprLPOWp7D\nJJBQav69QxWO/J177rnLc3xTokmXh8dC/nimz6uE9CMplX+bfvEXf1HS1L9/8id/sjz3gQ98YKWe\n2dzH/MI48HkKIE+ZSdccwbfY27CH6BxOm3g4VuYnxq23JesZzEI9nB5jsOfUx31uXsb3KialcZnr\nrWeQlcwBl/cwv3k4SNoiM6GknrRPvFbqr2eyYA6bohjkQqFQKBQKhULBsK1UIczK85///OWxmLTB\ndwLRUQo2wxlodvAx/anfxy7M2Rd2bTgpeFIA2DvYXmeLeCY7riwodQx15MwQuyruc1Ybxph6OosY\nU3Jnu6TIBPtOnLbcqWygI/ZBlm6Va9iFeh9Gx86MgabP3HkgMjRZ4gzkOEsvHlMK+/3RudDPcV9k\nY6RpLCDP2c4fZOX1usdy816O+f1zdtI7++yzJa2ycjAcWfIe2jOGWHLmjbHM+HVGNiaSeMYznrE8\nB2N25ZVXSlplWykL5fV5gv6BTcnCJ+HcdPHFF0tand84B+viToUwSTBfriWJSY6ysH/Rqdfn7CxN\nN8iOzQ3ed7Bj2XinDXCSI8SZM6NR05XNJa9//eslrfYPTnI/9mM/Jml1DrzgggskTTLrjk+RoWfc\n+lhFI8d4cI1G1Nj6XAJTTeg6dxxkLPF+Z/eiE3sWFhUgO3OeWxyXXXaZpMlZVpraPGoUpfXvDWPL\nw/AxFmOSNL8P2SPMojTJDFqKLHws8uzfQp7JMXcYBPQrjsIu45E9d6fC0047beXZPv55L+2UOdb1\nvl9xPnfsbpIVRzHIhUKhUCgUCoWCYVsZ5EsuuUTSZNsrTTtwGBNf/bPjiKHgfLeB3RQ7L2fA4k7U\nbchiil3fwcdQNOyapWnnQjnZLftum2dSXrcLop6EgvNdUrRp8vLyrMxemJ1p3E35Th4miXc42zDn\nAP4Zc0b/Z0lAaINov5SF28nSwsakNN7ekf13WeW9GQOMHEcG2csUg85nwdyzBCWwjhzz8mZpxeMz\neQ/ld1mIaU99bM05UQjt7eG1YIORe7dniyl6I9slTbafMDNZenLgrDwaIsa7a78I8Ug5YXik9fSw\n/PVkRzG98dVXX708R9kJ9+SsUQzl5OXlviz0Y0xAAbz+MFgwlV7fnZBq+vGPf/zyN3bC1MnrzRzC\nX+rpdWS+yMIl0mZ8tzwpzaWXXrryTA9Bym/ec8UVVyzP8Z3hu8FfZyhhjOlfH+/Uj2+ZhzmkDrSF\n+0FE9i+bG6h7poHJEuzsJHi54zzs3+ToP8S49e8QY5Ix2ptzfX3AdwCZ8cQzvn6RpOuuu26XdfI5\nISZTc61DXM/4t4k5EvnLNLWZJhzZchmTVuuPtoE29fnK5+bdRTHIhUKhUCgUCoWCoRbIhUKhUCgU\nCoWCYVtNLKDIXfVJCBAocldjoZZBPRgNu6VJhYF6NHPSi9nvvCwcc0cIVAKoK9yRDvUt6qcsgxnl\nRe3hBvPUDycFVzVRhyxUWESmrqC9UDu4wX00DcmyK80RqBLdJAQ1Dse8LtSP+sYQXtJ6OLwsrFAW\n0imecxOLKGOuHkLWokNclhmIY662jKYk7uASnfv8HfF9XqfoeJeVG1nPnPR2QigmHJqkKaQZY9vV\njow3xivt5upR2iLLmMb1mBW4MwrP4JhnwSLTJ+Ho3KQDuUfdzjs8JBQOfISj41ppMk1CXe4mYMxV\nyKzPXRFZtkfqgmoZ5x1pUr/ybJ/fosp0jvB5gmxxZJHz8cM4pe1Q+bqJRXQGzpyH+FZ42/CNiPdL\n6+PU1fPIw1Zj29+HU6GbwFA+ZBZ5ltbnSp9bmGt72eOiKtzlCjMT6rQT5haHj2lkhjnaHTOjmQny\nlDlG026ZCQKy5nIR+9rlkLkKUwmcdP1ZjGHKRPY8Ly/y5eOdNQZy5d8mfmdrjgiXY+SI+5hL99Oh\nVwAAFg5JREFUXB45hqx6O+3NeqYY5EKhUCgUCoVCwTCLjBDO3uA8g7Od79LZHbDDZJfgO1R2NbC0\n7nTADgaWLQudlQUnZ4fEe323HJlnnu3OZOz+cPbz3RG7uMxRjB1WxpRH1tN34DAN1IF2c2N1npXV\nd85hdWCpnAFjVw6b5zIT60KbejtH5zxvy4x1AZGR9Xf1zm2VcCNjdKMMeHk552x6ZI79mT0WPL4X\nVtBZ0xiCcacxO66NIqg+YbEyBgtWjfZ1ZpUQajjSeWg0WDhYlCwhS5YsBscstFe9eYa+d0c8HKYI\n8+YsCs4+Mei+tD73OBO1VXImaZ0RYhx6AgzkiPJmIRjnDE++cPjhh0ua5mzvO/qf7xft7CwX36Is\nWRHPon2deaOduC9LtsL7vH+YZ/gW0a8eigsNRAzd5ddFB1Fpmkuok88tlCHTNCHTzNX8dS0L2ljq\nG+fSucPbiVCtmQMs/YGMMCadWUWe6BdP9hVZ2uwbniX1wLGX9/r3j2fEBGguF8yDrNt87kQjF5MH\neb0yjWt0UPQyxaRVtIHP58hoLxHYnmBnSV6hUCgUCoVCoXAHY1sZZFiYzHaTHWUWsguGhZ2qB/Bn\nJ5+xiTFciO/SY0pVD08Sn+k7Nc7FcEgZU8JOyNnPuGPyHVdMnextEXdKWRuyu6e+vkuP6S39/jmH\n7KIuzlKxW8X+ydtpq1S3fk0M4J8xHiCzu+WajHnvpTLuHc8YYIDcZ3b2PIP7euyLlzdqGzIGGcS0\n1H7/HEH7eH0Z57AomQYGdjizM4aVe8hDHiJptZ1hNmg7Z555D+yLh+yC2cm0FpSXumTsdPS/8DTJ\ncbz73BdDGLo88Zv3OLuMfTFzIMyO21kyH8Kq+xw0Z5kBhN6TpuQLp556qiTpvPPOW55jLGDrCdsM\nsytNfZ5pPrk/SyhBXyGXfh+/kbnMHyemrfe5Hk0rMkq5pfXvR+azE9nt7JjLf0xuxDVuIxt9b1xW\nd0JyGUcMP+bzBP1JHyAXsM7SenjEjIGmPz10Y1wreWi/+Ewfh5HNpu0zu2jGtst41Ghn65mMJY7h\nTLNkQ9HWOlvPZOuvvdGIF4NcKBQKhUKhUCgYaoFcKBQKhUKhUCgYttXEAmN8dxp4xzveIUl64Qtf\nKGlV3RfDfaBWyhzxUDG4SgK1QaYuhIbnfa7iQuXDNa42R60RVdpeJ85lKvGYY93PRceczFGLazLV\nE/VE5Zk5WWCe4Eb4rtKaG+hzV93guIcayduQ/kFmMtOdqGL2c7RvZgLDM2OmKkdmHgN65hCUib/u\nuMHvLHNgzEiUlSmTY+Sdv5lTIvLUq8sckY0fQksSWs0dHWlf1L6MDTflIgQcaj+XC8YUspZl2eMa\nd+5jzqCd3QklZuOkXzP1ZnSUkSZ1KseyUIhZqLAYMtLLCzh3/fXXr/zf78fp2jPEuanZXOEyg6PV\nk570JEnSueeeuzzHeMNMBlnxOkZHK5cLzBAyJyP6OpvreyGsooMvz8lCRtJnXibeE7N6+rGYNU+a\nvseMEa8L5WVe5n2epQ9Tpmj2tRPBt+mEE06QtDpP8Bt5wEQwc8TLxiZ9F8evtB4e1GWGuY5r/D7m\nifhNoy+lSZ5YJ7gMxG+TzzNxPePfpphpsLeewQwkyy7LOPIMoz4P7i6KQS4UCoVCoVAoFAzbyiDD\nRvjukR0Tuyl3louOJuy0nNWIzFkWKilzgNpk58J9mRNLZAN9p8exLMh3DMmWsYjU150dosNhxnrG\n8Dy+e6Vd2eE6a+zs99wAI+M7U+pFWzhTzu6a9qUvvC1gPLJg7JGBzRzpMpY4Ms7+nNjXmazG+3uO\neP7sTZz0aJPMoYc2zEK59cLEzTm5TBxjDhynYAelaSzApjA/eYIfZCXre96TMfywwh7+C9DmWaiv\nyNZkcxHnnA0H9E/GpnM9dXLWE4aPudbfhxwx/2ZOVTghXnnllWvP9oRLc8UHPvCB5e/HPOYxkvIE\nPXyvaEvkyh0lcYC79tprJeXMKs/0ZzPuaF+/j/HKNT73xW9hTJokrTsYZ05k2bhnXqK+7piJBoNy\nepn4vnM/ztb+ncexDNbSNSk7FYx3/7bGNkSGMifXbK6PfZatZ7yvt7ovc/rshT7NtKnx2dn3I2rJ\nvS2iQ6jLYdT4x/lVmuZqtH7OGu+NpqoY5EKhUCgUCoVCwbCtDPLjHvc4SasMMPZH7KB9B8QuEyaV\nnaYz0OzGMjvaGAokY3SjraqjxxTGHbzvnHgfu6osiHUWLifu8Ly87Kq533ePWWppabVNuCZj1TJ2\nay4gdafveqkXO9LMLi4GQHe7q03CXPE3Y1iyfgXRhjP+zq6V1jURPfvmjF3u2QRntn385lym0Ygs\nvKOXNnS7kSUGoq9hqTy1PKwnIdxgPz/ykY8sr4EJ8/BJgLbgmswGjjnM5744B2TMTpxnPBxSDI/l\nfddL+MFvyunzBO2SMc+ZBlBatVfk/syOFDvwOQO2V5pY4Ve+8pWSVplN5h7mVdrE7daxF6fdfH6O\nYbWcUWUsZ/buWRKPiDjn+TwV54ls7sxsl+M3zb+XJB+JviH+m3O0gctcTNe9k8O8Aerg9sXIDPWF\n/fTEadyXzSFxPZPNwZnWILMpB1utZ1xDGJOL9TSYmazFUH/SxJpnz4w22sDlAk1X9m0lHOWeoBjk\nQqFQKBQKhULBUAvkQqFQKBQKhULBsK0mFi996UslrVL9qJauuuoqSdJHP/rR5TnUdRhkQ9E7/Y95\nQJatqKdKBJnaOmY3ysKLZBlgQKT9e2YUvZAp2bOBq55QV8R86v7sqJpzQ/Ze9rXtxhlnnLF2LBrv\nezvRLhyj3plaKHNy4ne8RloPC5c5MEUnQUc00cjUpL3c9JnMZOY4IDriudottiHIwk2BzKlwjnjd\n614naVUFeeihh0qSzj77bEnSG97whuU5TCrIaJVlgSOMEPLhWax4D+pkV5cDZMfNmegPVPC9eSZT\nNSNrWV8gF9nch4qXazLHHuAORNddd52kSfWJeRzt5XVBrgir5++bM84555zl74svvljSpPL1uhDC\nLWZNpY2kyWGPkHfZeKdfvX+iPGVmPTzLnxnDavHXZYffWQjHmBUt6y/U124CQBmQK0wuvAyYETA2\nXK5wmOXZPn4wzZgjXvziF0tanXspO6aB559//vIcTr+YJDGX+PeLNqDtfQ7jPbwjWx9k36YoB1n4\n18y0AmRmnVu9LwufSV164ftcRln38Y1C1vzZXE/ZPPzl3nyb5rsSKhQKhUKhUCgUtgHbyiDDOLjh\nOjsAdg2+S4iOKexSfLcBYwGjkzmjZHnC2YWxy/HdGLtrdlPZzp9j0dnJ7wNZKDfe6zvxmFjEg7gD\ndlXORMWQTNmOjZ145ow1Z5x66qmSVh1k2GUjM86ARUY0c1BDDrjPZQ4mh/7JmFyuzwL4I0eZzEQH\nzYz9ARlbS5kyxjvW18sXQ+p4eaOTXo/V3ikM8oknnihpNRkO7QsT7CGHYtIExqSzXNwHG+jjNvaL\n9wnywPzkTEd0EM6cPmPII5+nvD+l1bkvzi/MvX4MWfd6AlhikoFIEwMWnafd8fDqq6+WNMnXTmCN\nHT/6oz+6/E2CkCOPPFLS6hxCneNc4HMCTp9ZAg2u4znOlDI/Zd+0qMVyVi86+sbkUtK6zHl5mSey\nxEKc43p3zKSP0Ur6PIH8IGvU150ZeTYymo2DOYKx7N8m2g4HPNcMxHCsmQaH7zpjqxdi1udg5jPG\nvbPwmaY1IpbNr43rmd430TVr1J1y+7oPMIe5Yx3tGRnojGXuJbPaE+yMVVGhUCgUCoVCobCfsK0M\ncra7wc6L8DqZvS67msikSRPrw84rC3UU0136MzKGMYbxymx2erY7kXl2Vi8m8fAdZgzE7fex08pC\nBtEuMEO8I4ZJkSZ7r16YoDmBumU21+xIMwY52nB6//CsLARWZAOdAeOZ2W45S8axFbKg6j27ZJDZ\n2dM+0d5YmtqFMeLnoq109t4Ygiezh5sjsIn1ZCBvectbJEnvfve7JeV1Qa6yRD0wQsxTPs/wLOQK\n5lCamB36x9mmaLeezTMxbKDPU/E+l72YetbrErUOfh9zBmHLbr755uU52gmmkHf4NYAkGzuFDQTP\ne97zlr+f9rSnSZrs1jOmkD7IQoKSFIN52W2JuY85yNsQOezNJTFpUXaMfnZZj3bGWVjHyCZKE2OH\nPLvdeXyP14U5CHl2TQagLZDRTKMxR/Dt9n798Ic/LGnya8hCcvLdytYznEOj4GuCmCbcvz8xnbT3\nXdQSZr4OvfVMtB3OvlvR3yuWPd7HXMm6zfs8WxtJedp7/Eb21TxTDHKhUCgUCoVCoWDYVgaZ3cr7\n3//+5bF3vetdK+c8HSk7CXY1mRcmuzCYj8xOMvOwjLuTLKVjtiuJnpyZZ2dM2ek7MOqQpS+NQb6d\nsYhpKd1GiF0b5YUxdNaVa6LtqbRqTzY3XHrppZJWEzvwO7PRpq9jH3h9Yzv7TrfHIMfoIFlazR4T\nHGUls0HuMbpZOuloX+ZtgvxQT2cFeqwCiKzYnO2OHcjAq1/96uWx17zmNZKmOh177LHLc5F9ifb6\n0iQjN91008pzpHWZ8fEUGbMsRXXm3R3bOmv7aH/nDAu/aQsvB/KQJV7CFhCm3OUJ+2vkCJtkZ3+I\nYJAx5kcfffRaHeaG3/md31n+vuiii6T/v717yZEiWaIA6m8bSOyDDbA6xAaYsAOGjBFiwAr4SEiI\nIbt4o0vesjKyq0Wrq+q9cyYUGZGf8PCItHTzz7mUSbeaJqMwR/h3eaUMcg6yIM05l7qyLd+b/u4p\n397n2gJV8563zUYxs2Zdr/LZ81gfS56XvsPdepnPkO+olE2/d66XPO/nz5+/9kndnDNsPHQpp8Qw\n8+9zLi2cvf/se7wtrpHrt78z5vns2GEuLLLFM1u5XpupKPL5sm2bFSXb+nPkPpF7QN8n8ve2sFAy\nCXnfLVOcerTNGrVlKe5KCzIAABQBMgAAlHvtYvHu3btzzs00xMePH8855zx//vycc7PDeprU03y/\nTR000xU9lchMk3cXi5mq6lTTTDdvgyVm+rlTFWnunwt/9GvNzvH9vjmWbSq3bOvXnOm9pDT6mHKc\nM9V1zu3poh6SpDk7PTOntetFT1Lm8/y2mdruVOLsltNluC0eMs3Bgf1YbN1y5mfb0mF5nd6WY0iZ\ndJo9Kc9tGrHfLVrSny1lsA3Iu3YM9+3FixfnnMuCIedcyifdH7Z0ec5rroce2Ja/s2/S3+dcuhVs\ngzfnILtrdedaV4s8r+tj9s/AqX7fnPOtHictmftED6pKd4ukPvs1U/9y7Nm3uwCkPs2U/Dn7NE8P\nTQbWnXPOy5cvzznnPHv27JxzzufPn39tm93/5qIG51zOT6Yb7LLMFGF5rOtFyjCf5a5dDuY1nfPc\n5Z59Ui86TZ/vljzWqfQskrJNxZYuSalH/R2eMsiA2dyTtunL5gInD93bt2/POed8+PDht/t0zDEH\n5+X89D6pB9l362a5dRmd33fXpnG9Vp+2wZs5H1u3w2zbpgKd02f2VIb5nsq2fs0cy/xO27qZ5f16\n4oc/iWe0IAMAQLnXFuQ3b96cc262lOQXQH5Rb4Nf5jRv3So4p6LqXw8ZXHFtYYa0JG2/srdWtbsM\nVMo+2+CoOYCit81J47cW5G1p7JRP9s+xdQtYfmHlV2Cfg4fcGpjBQj1IL+czg166BWu27Fyb/iWv\n0y0lcxqkbbBDWli2KQmvTQ04991sn3dOKdV1JvUi577rTI5rWzL9d7ZpibZBetvgoofi1atXtx7L\nOcgUbP35M01TWmiyrctr3oO6nNOymNaQfl7q2NOnT885NwcnzYGZXb5by++UVpdt0Gqel+u9B7ik\nBTiLOHz//v3WtpRXt8zk/pRlg1MPe2nhXJPJ6nRG4zEsTpTBnOfcPnfdmpd7wFwoqq/7mb3qwZAp\ni5RTt+RmMOSW4doGWcdsxdumgpvXcg/2noOwuvU/101avHthh7R0b0uf59rK93LKsKdgnFN5PuSM\nZrvWcpx4prOb87t3W8hlTlPa3025d2wt7KlrKe9tMbZr8cy1azP3w/l90q81pxs953KPTF3ZFgPZ\nphDN+Z+LgfTiTonbkrHpOvMn95mHf4cCAIB/0b02+2zLGObXQX5dbS0mc+GNrVVvLuBxzu0+vd0H\nZk7BNifP7+dvn+Waa/vM6cC6LPKLK78Ut1bt6BahWT55j216n9mC/dCl1aXLIr8et9b02edzc5dF\nRLY+4pH9+1fv35kC7Vr/6G0qt/k5u0UpLXQpn96WX9V3qbNzCdvtscdSZ2YGqP/elnCNOQXj1p9u\na03PNZwWj21xmbx290Odr93n6S6taNeWjs39LK/d10+mqvv06dM552Z/6uyfc93b8plSlnmPzlTN\nab3mdJoP3devX3/9nakAZ7/Qc27fR+eiL+fcngJuW+gg+/fiMmm1zxLXnXVIy9tsaTzn9kJC+X/f\nw1LHki3Zps5KP/28/zm3MwL9mdIymLLY+samf/KTJ09ufLZzLtfGNr7msbQmT6n3fX7m9KDX7vWz\nZba3pR52i2ykvLZ4Zvu++dN4Zo5T2ZaDTh/8zsDkWHJ8vW3GM3PJ6X6/fzqe0YIMAABFgAwAAOVe\nc6RJxaXJ/ZxLuiHbtlT1HDTTXR9mSqLNlESna9K1Iimj7gC+Td02X/PaimlzMFen4pOCSPqh025J\nZ+ax7vA+u2Z0KiNpurnCTr/vnF7qMQyYOefS7WSbBmYb5JDj2tLsv9PPT1mmrnRadZZZp5626XH+\n6v22fa89P+/XadGkprY6PtOT1157S+ndZaDYQ5Tj3LogZHDQlpJLWnJbnWlLac9tuX6Tvj7ncn6y\nrQc+pXy315yDsbYuQ6lHSYl3943Uhwyo65T4ly9fzjnn/Pjx45xz816SMsh109Mr5n6U+0rS7n3v\nzCCheYyPxfv372/9/fr16z96zS1Fnft//u2uHfctqftv3779redt98wp9fF/XbrJbNOlzfhi6wq2\n3ROyLeW7rWiX67UHB26DNWMOLr3WNTED4rrbVN430192N9bc81LH+/so95B5TOfcvs/kvtbdRjq2\nOeef+456HFERAAD8S/5zlxY1AAD4f6EFGQAAigAZAACKABkAAIoAGQAAigAZAACKABkAAIoAGQAA\nigAZAACKABkAAIoAGQAAigAZAACKABkAAIoAGQAAigAZAACKABkAAIoAGQAAigAZAACKABkAAIoA\nGQAAigAZAACKABkAAIoAGQAAigAZAACKABkAAIoAGQAAigAZAACKABkAAIoAGQAAigAZAACKABkA\nAIoAGQAAigAZAACKABkAAIoAGQAAigAZAACKABkAAIoAGQAAigAZAACKABkAAIoAGQAAigAZAACK\nABkAAIoAGQAAigAZAACKABkAAIoAGQAAigAZAACKABkAAIoAGQAAigAZAACKABkAAIoAGQAAigAZ\nAACKABkAAIoAGQAAigAZAACKABkAAIoAGQAAigAZAACKABkAAIoAGQAAigAZAACKABkAAIoAGQAA\nigAZAADKfwGzcNSsdpa1XgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1162cbda0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(ncols=5, sharex=True, sharey=True,\n", " figsize=(10, 4))\n", "\n", "ax[0].imshow(face, cmap='gray')\n", "ax[0].set_title('Original')\n", "\n", "ax[1].imshow(smoothed, cmap='gray')\n", "ax[1].set_title('Smoothing')\n", "\n", "ax[2].imshow(equalized, cmap='gray')\n", "ax[2].set_title('Equalized')\n", "\n", "ax[3].imshow(edge_sobel, cmap='gray')\n", "ax[3].set_title('Sobel Edge Detection')\n", "\n", "ax[4].imshow(facemask, cmap='gray')\n", "ax[4].set_title('Masked <50')\n", "\n", "for a in ax:\n", " a.axis('off')\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Immunohistochemistry example from scikit-image\n", "- More at: http://scikit-image.org/docs/dev/api/skimage.data.html#skimage.data.immunohistochemistry" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x116b06828>" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvMnvbdl13/fZp+9vf++vfb/mtVWvGnYSJVKk6EANJQdw\n4lGcP8CZOBlnyARIJpkEQUYaZGYgBpLAgCLDTByJEkmZxVKRxap69V699tc3t7/39O3O4FcWBAhy\nxECEKeB9Rvdc7NPts9f3rL32WkdIKXnNa17zmr+K8h/6Al7zmtf88vFaGF7zmtf8NV4Lw2te85q/\nxmtheM1rXvPXeC0Mr3nNa/4ar4XhNa95zV/jFyYMQohvCyE+E0I8F0L817+o87zmNa/5u0f8IvIY\nhBAq8BT4beAMeB/4J1LKT//OT/aa17zm75xflMfwq8BzKeVLKWUB/K/AP/oFnes1r3nN3zHaL+i4\n28DpX9k+A776NzX2bEO2XRNdN2gaSRRFGIaBUFWEonDj1QiasqSpS1RVpaoqhLjZXwjQ9ZtbKYuK\nsmkwbIvBaBNVs0AogPj3X/HnnpOUDY1sEPJmN4GgqgoEUNcVTV2jKoK6qhCqCkJBygbZSOqqRDY1\nmqogAUXR0AwdKcXnBxNoqoaUkrppqOsGRREgJVWZkyURdVUihEBTNBopkVLSSElV10gJEgGKiqZq\n2KZJ01Q0srk5Zn1zHVVR0MgGy9CRAuq6BhQ07abfaBqapkEIMC0bzTDRNJ31eokiJKqQn993TVlL\nhCKwHYe6qlBUBaREVVUURQEkioC6rJBIDNtCCBVdt1A1lSxNbu5JEZRVia4blFUDqMjP30uSBlUI\nmrpCyAZNFQigKAtUzUDTVJASCTf9qCiAipCCWtbUVUldV6hCIpuapq5QFAUhBHUjkQg0TUcoCo2E\nqqpBSsTnbf7dsxdI6rJAURQMQ6NpGqrPnxMIhFBQBGi6hmxu+iBNSxTFoKoyEAWe76PpFqphI5Sb\nc94c+aZP66ZBVZS/HMOKImiaBkVRKauKqqwp6xrTtJBNQ1XejAff94njCE3XUFSVIq8oy5sxoesK\nlqUjhEBRBFlW0EhBXd0M4qapURTBqxePp1LKwd/GgH9RwvD/iRDinwL/FCBwTf7b/+Ifk6cZTz5+\nwnoV8fDtt8iahjRb4bcDrs5OWcxWjFpdyiRCETV79+9wfHaErkrm03N2t3ZRNJNlknDvC+/y5pd/\njTe+8m0KLFTTRZMqUhE0UiJUBVk3SCkwDIuyzNGVkjRaIKuUNFxR1QX9Tp9njz7GNiTTyTWDzQ00\nRWF8cUmFpDvYRDYN4fia1fyaF8+f8LVf/1WqWjJdxbz57ttczacYjs/m5iHXl2v6vS6KbhFGGaON\nAUWy5tmjn/C9P/rfyZMVNDWD1ogwDEFVWMYhju1RljXzOEKoNp1+ny+880WaqkYqOZdXZyi1hszg\n5YsTLq8vuP/gNq22SZqFlLXHYp1haSqWmuBoFfPLCzYO7tHevU0w2ODk+CUvP/oJux2bxfUVSVXj\nDrfY3DvAc1tcXV2QJBkHBwe02g55smTYazE7P0EXECYph2+/TV4rCEXny7/6Db77r/9vsjzhwd0d\nppMLbCfgfLzEC7ZJG4PlekXL0VDyNclqRi+wcUyF2WyC53lsbm2gaRo/+N73sdt9uhs7SMVGCg3f\nsJEyI47XpNEcUSWIJsdUFfKkojMY0t0YEdUaq6RiGebUmPh+m6oqUXUNy7JoqCmiiNnFGb4hoYxQ\nyJmMr5nNF9x74y0m0wVN01AXDYYl2ByOKLKcqHKxW7eRIuPxz77L22/d5Utf/Tra6CGq22cwusV0\nMSdNY3y/ha5qaIqOYZnEcYyqCgzLhkYSJxmzxZonz07Y2tohcD1OTk6QNfyD3/o6UbwgTkKaSuf8\nYsnlxZS6lty9s8PhnRGqrCmbkuUy4/IqZjLOSbOSvcNbVGXIf/J7bx//be3zFyUM58DuX9ne+fy/\nv0RK+QfAHwDsbQ2k6/kYmkEYrnj41ltkZcF8tabMQ3aHHeq2g6kqHL04ZW9rg24r4MWrY+zARjcU\nvnz469iGzmi4yTIMma5WxNNrZufPUbw+fmcLofs3bx1FkJUFmmqgKoIkiVCEpCqWiCohW894/ulH\nbG4MuVov+dn7P2R89pzRxoDFYh+hqmhVxU8efcSbD99BqUrWkwmyzvEsi+l0SuB6lEnIn3z3u7z9\nlbeI5yvGRclqXmFqCm7QZjjqU1UVuqojGsH55TVNvkZBEi9jNE2jyHKcwCcN13S8Nr3tPpPZFLVc\nImSEbpqoSs3eRpuL0zF/8dNP2dk5RPfvcz6d0R5s0/eGHF8VKKaL6TnojU4STel0+8zH12itHlFV\nsbG1RR6tqOaXmK7D7tYmOB5u4FHWNV7QxfEENSZxWlAmOZPqkvVqzqDTJooi8rSikg1Vk5NlKW+8\n8w7j6wWO73A78Lm8uKLjukynV3S2DihzHZlGzK6OGLQ9ui2H4+NXdHodtm/d4l//0R/h+Q47e7sY\ndgC6TpIX5HnMKjllNR+jKhLX1iniGFWRXK9DbMsjra84nUzYufMWiqoz3OgwCxVUOyCLQ+aLFVJJ\nURTI44jeYIfF+ISu32U5v8Tr7TBPVD56dELbtyjqiiwtsCuTPDunzlOE5jJdrGl1ugS2T75OGJ+f\nc3v/K8zTDH02x/UsgsCjaRriKCKwfZqmQtFUNF1HoJLmKVXVEHgeB7u76KaBaWnUtSTPGqIowQsc\nhCIx9YAsbsjilPVqSZHHyLohKzL8ts/V1RKBSlXVGJpOmsXoavNzGfAvShjeB+4KIQ64EYT/DPjP\n/6bGqqLSVJInn37MvfsHjCenBBtb7Ny/TZNl2IHP+tUpUbLmjbf3idcp4zhk6/YDkjJHkQ2nVwuq\nOCLJajzfZtTr8PyTj5jPI9751a+jZAna9hs0iooUAlNXqIqUsqxQlYbx+RnR7JyLoyfIPMVQ4Nn1\nOR9+9DPu3toimV2gti3SxYQ4zpF5zvrqkmWnS6ft4TkGjz58zOHtfcLpmCJaInB59eSYbJ1wcLvH\nxeJDOq0hL/M127fvodkGtutRJQVBr8U/+6/+S149+YQ0XPHkk4+J1iGqUrOaT9B1nVyXoGooTYat\n21Ct8L0uZ6fHRKs5YdSwuTtgES+ohEYlJC+PLtnd3MQJDGRRktclqt2jaSySagki4uWnn2E5Lsr+\nHi3PZZWatPU2ipB4vkcta6IoJS/g4PAudSXIsjmd/oDl7IK9w/vIumLXajGfTOkOuni+w9HzzzD9\nNo6loygKttvCNBcs53PalsLxxz8izwtUUXFrc0Dg21xdXbCxtc351ZT2oOFXvvX7lHlKuFpSZjla\nCdfXY66vJlxenfI7v/NbDHo9To+O2NrcoUhSsnZCu+VhBx7rVUyVRpwcn9PqDOls30O3NBzdw9Rq\nbNulKnKuq5y8yGgPt7EthVVeo7oBu91DXNvH1nSKokAKQZKn1HnGbHyNms3pKhH5fExLrTh/ekK/\n22E1m9Lbvouq6mRpQX/YYbFY4Do+sqmpa4OmVpCqStVUqKqKrjcoikavD/3hgKvLOa7rUlc5VSko\nC4AGKAh8HffeLWYTC6nUtHyH1aKApsKxTcq8wXV0srJivZywvd39uQz4FyIMUspKCPHPgO8CKvC/\nSCkf/U3t66piuZixnE+w7R0KYLC9iWYHJMs1n376lOlkzv6dTYoixXBtwOFqtkKoGtF6RRXPGXV9\nVENHVVU++vBnpHlGpzfi6tUTgm6I3d2kUlRkIxCaioZEqWuKaI0pC0pK0tWC5fiCtu/QarVo0hhF\nFmwPu7Rci+k6xPMCwjCkZds0ZYaGx7OXL9m9tc1g0OP58+ecj68oao/N0SGLZUT88TO6bY0iz7l/\n8C6WoRFnMXGa0vZcbNdlvhyzvXOLx598yO7uLk1dcn5yTpJlxHFMXTSkTQW1QRZXPP7oMd1uF2wX\nYW3R912iV6f4PpR5QZ1EZMuGuRGyebhJXMSohkWU1zS1ScvpU1QZTRkjk5h0viAhRRUCxTDxgzZN\nVaPoDWWe0WqPmE7m9Pt9DMOgbioQKlGW4xgmWZmxDmMGwx7hYo5i1+z1+miqwcX4inA5o+9ZVHmO\nrRkEJuzcPkA1dD756CdUZZfbd+/x4w8+4jd/63eZrxNm0xW+F+C1TB5/8hPagUcahWzvjLj3xm2G\nGyPC1RrH9bA9n267z3hyyTqJuJjOKIoCQ3cJbINkNaOpnyI1C0lDXddIzwPAlhl1UTMcbFMVObf3\nbrEIY9ZJTlmX5EVDXlTYrkcuBHu379Db3GN2+oTxyWM2Rtvk4ZKernF5ccpDmTE5PcJp71AKlU5X\nYFs+RZ6iCI1wHVPVgCfwfY8syzAMcRNPE5K6rnFdm6KoKMuS1WqF7bagkViGQmoK6rrmwRsHJElE\nWSQYuoqQDZatE4YZnm+j5gmqBr5n/lw2/AvLY5BS/isp5T0p5W0p5X/372urKgoXxycMh0PG8wWD\n3X1Uy0fXDbIk5vLihO3NwY1r3UAlDJJSMl/lnF5MefLZC3q9Pvv7+0gpmVyP8V2Pna1ttkd9jl48\n4eXTnxEur9FEgWhylDKmSlesZickyyvKdEEWLinWK5LVnHi+4NWTz3jy6FMs3WJra4saQZZlN+6k\n63D88iVUNdeXVzx8+JA79x4QhRmXFxMefXbE5v4Dhnv3ePDurxDmkmXSkNcatWzQDANVVTEsi+U6\nRDcNojjD8trce+NthKqQFSmmqeM4DrYVEK5zpuOExTwjCyXLacrxywuKxiOq26TSw/GHmIaNKRuc\npkKtay5Oz7ANlW7bo8oTiiylrCuioiItYDQaUeQZebIi8BwurscopktWSRQFNEXimhq2rqGIGmRN\npx1wE4eUtNttqqbGdh3293ZREDiWzWJ8xZNPPmY46rNYLEiTnJ3tWxzc2kXWOYe3NmgFFnUZ0x/1\nObx3n8vJlF//5m9zcrlgEVZM1hnjZcJ4GSIUg8lsgVQEvf6QwWiTy+sZiqbT39jk1dEpP/34E5Zh\nwiJMiJKMuhLkeU6eldiaRpnOWV4+5cXHP+L0sw+ZnnxGeH3E7PQpTTLm+vgR8ewUW2bIZImtZMTz\nCxaTKwQNy+US37WJkpgagbDbbN7/CuPC5Dqq8NpdfN9HpHMCUyFPI8qi5vjoDMv0MXSLNE2p65vp\nQZrk1HVDURSfB3Nv+jQMw5tppq5+HlRUKMsSy7LQdZ1W4KCoNXkRkxchUtaoqkpZlmgCBv02gWfg\n2Aq+Z1KX2c9lv+p3vvOd/9/G/3fF//Df/zffeTjUcV0Po7NFe+sOuhUwPz/n8ugz9jbajAYBYZxy\nPS+ZzGIurmakBWxv7fKtb/4Gb7+5j6EW6GpDK/DZ2d4FNK4mY5arNW9/8V0ux2NEVaI1DdFyQrK4\n4tEH32fUDZhOJvwf/+Kf8xfv/Tkb3S6qAqZm8PTlCdN1SiMhznIKYZAWJVEU49kml+dXHN69Ta2o\n5FXFxfWYx4+eMtzaoT/aZTadI1TJ7u4m19dzvvrVb9EaDHG9Dklek5c1QdDG99u8eP6C+WzJi5cv\nmc2u0XUVhIpjd1BVm7ISJFlBXQniLMN2LBzXJsxKpFQQSHRdo93p4Ho26+WSPE/RFcHLF4/ptVo4\nmkpTFdiWDvLG8IUoUbUaREUUx0RhQX9jF6koKLJmuZgRxyF1WdFtBZi6SpGsUEWDZahMri+wDAvH\ndhiPx7z3wx/g2zZbGyOkKuiOBhimQxxGmCpE8Zrrq0scx0QoCnbLA0XB87ukhUJrdMAyU6nUgHa3\nR1VWBL6PaWk4rkt/OMAJApK0IQhagEocRzx7/oyz02PW4ZrRxg6jjV3G4wVJmoEqScuUooi4tbPN\n4Z0DHMdhe2OTqqnIk4Q4nPPi6SfIsmR+fcnJq+csZ1coTcb+1gbxaoqp1FxeHJOt58SrMXWeoCgG\nRVWxt7tBlUdMx+eYrsPO7ftcL0rmqwzL9Fmvo5sVFiRJUpCmFY2EQb9PnEQEgc9yuSSOC8IwwTAs\nNM2mKGpsV8G0FGzbpMxKTNMAWaPrCkWeYRkWKipCuVnJ0gwD0zAoigivpTPotvmf/6f/8fI73/nO\nH/xtbPI/2KrEX6WuKna3tlhmJZ3eFlKxKXLJyfOXlOGK1nAbRTasVwlnZzM0yyVodblz/x38wKOq\nMtIkQdY5SZKgCo3N0Taz2ZJHjx4z3N4hTTLavQBZJcjSIFpMWM0mTM6P+VkeM9g4YDGb0Wt3WIZr\nZFUTBArdTp8oqnj8/ITt7U1036aqKvL1GlszaHV6REnB3vYuaRRT1RIhBJvDAdFigpQCDZM8rtEU\nnTxr0FSb5XKN7gbkRc1suiCzTe4/fIsffO9PeP9nP+PBfp/f/I++xXqxhtogLyouL694/NkLJlcT\ndF0gqQjDBeliglAteqMNdMunKA1836d3sI81HzO/uiIwXE5fHNHudBCGQZrG5CW4jsM8iRn2AmxV\nZTVdEngtpsuQTsslzyJ0IRB1Rcu1CNcLAs+n0TXyPKSpMjqtNrIqURQo0gTXdXj06UfMV0uWecE3\nfvvbCAyyOOPs4oizo+fc2d8jLVPycE08H3N45w3yUmL6AVezNYsow/Vc1usxspG4rktgbZHEIUmW\nsFinqIqJjFPWqznTyTWe59Dv3uPNN98kTUqqqmH/4DaWbaDo4Dkm0/mCKMpQGxOpuWD52Oi8sX3A\nYBjw/p//AFPRsW0b1bQwPYuqqphfHeEHLQxTUmYNulaQxBHr1ZJBb8gbW9tcXx/TDlzuHn6VTAjC\ncEWaqEjRIUozRkGLvKjotj3mi5sl+RshiIEbz0bTNOJ4RZqVeF4LyzBRlAZNE2i6QpFlCKngujaK\nCrquo+sGpmFTFcXnQn+z/K3rJt1eQNCyMZWfz9R/KYRBURUG2zucPT5GLyXFdIpap6SLMb3AQ9c8\nfvTej5mlBZodsHd4yHCwje341FXOdD6h7wQ4qs7x9Yx33/oS8Trl4vyKd9/5Ig/efsjR+SWtQsFv\nFehNTbK4RG1K3nzwgPHFFZcvP6PrOSyXSxShk5U1cp0ia4lQ4eJ6TiV0DvYCojDGcTxWcYisS+Rk\nwfZ+g2XqOLZOq+3Q7Xa5vJxhGjoGBa12h9U6plF1FvMY3TbwfYk/6KBIHaFI6rThH/7H3+buwQbj\n02cgVOI8Y76Yo+oWpW5w55136O0uWM0mnB+9YHp1xs7+baoa0tUKXQpU4ZLEEt0x6Wo9Wp7Fez/6\nCXGc0o9Ktnc2qbOMshasypKqqRkvMwJNI09zet0O59MZnaCF394kTSNcwyOvoSxLriYXqKrAdnRs\nJ6BMI1qeR5HF7B1sIUTO+fklm7e22bVbjC9ntNojbu0aNKLh6OwUxw94+uSEvMrZu3+bdm+DMAZq\ngWJ6zJOc2fSSnY2AujCQjUrTgOM52K7NbLpmFYXUZUq4WuF4LsN2m+VsjmV6XJwfURQFQkiC1hbX\n02s8e48w1VCNESUW/e198ipDbfmM1wsuHs/QrC6O4+DYJo2i4rgmZZZydvSKvEiYL9aMtreYXc2g\nrhB5zuwspIkXZEVGNG1wzAC7ZbG8uKQd3OIkjGgSHT/z6Lc9yqrBcRyqWnA5TpkslvR7Peq6wjBs\nVNVmtU5ptyr6/TaGeZMzIuvmJohr69RVAY2kzCuKrCRSInRDpSwLhFBAFhRZSr/fRRU3092fh18K\nYTBNiz/87r/BaG9xt9vj1WdPCGcnaFqD4xqMp1NUy+fuwTaV6bN/+03yrGK1ivBtnbbrs5zMuFhf\nk6cZk9mYjz/6iN/9nd8jSnPiKCFarmi3+jRJxL/98McMhwNsy+DiesIHP/wRG90+tq5xlVX0N/dQ\nNB0aQXedU+QpcmNAVpUsZyuapiEVJqbXZnx9hVU0ZEWJUhU4lonvmuRJShqGKKaGY+zy+PFn9Hf3\nWeYJXSsgK9YUZUy5bnC9IY1seHV6gswSjk7PGB9dksQZg36f0WjA42cvqRUDw1Fxu10s12Nv/5Dp\n9TmPHn9GkmRYYURgqLiOQt2U6JqDZetchQn37t/h6OiSoqh5+uKEfqeLbuk0oqbb7QMNqiKQasJi\nMSdZx6xWK7b23mS4u8d0fE2yjNi+tc10foXj+pRlxdXlBYFncjW+Jg1X7O4MQRH82m98HWHauG6P\nJ59+yu17En+wwZ03v0R/sM3HP/w+gefS29yhMkxmYYpjdSEMsayUkSsx64aoBCl1DN1FNRtmF8+Z\nXV8w6O9SpSm6oXL37l10Q6XOMhRV5+XJOZoTEAx01us1T4+PWa8iFD3A7/UpapWg0+fk+IqdnR2a\npqLVC7AMkzyLqcucOItQPJWnxy9wbYvZPEPTKgbDbZaTNUoNnaDNqpiwDpc0sqAVdFguY/74//lT\nmkbhq9/4BntvGsiiQ645ZFlGVZpkokY3DPIoodNtsQwjXNenKlMc00KoJlFUUksFIWpu7W0SRVMs\nK0BXJWE0p9PuYVkW63UEQF5maKZN0zQUeYGUksGwR1kWaIZGux38XDb5S1FdGccxVVVx984h6+WE\nPJmzWk7Z3t2iEhXrMqK10aW3tcv2rYcYTp+kFHR6XVRNYtsqcbjk5OgVg2Gb2fKad955SFkXSEXw\n0Scfs1wumV9f8er5M+7fvkNT5JRphiwLZFPQ67eYL9ds7B6wSiqSWieqNEqp0HJtVEBWNbqu49ge\n63hN3VRomoLfCnh1dMHJ6SVRmtDrdFlMxhiKRBE1zz/7DN3S0R0Doas0siLLE6qquglApSkClW53\nSNAZ8oUvf42NnX3qWpBEMeF8gqk2UOeYqgRZk5UFl7M5UQ2H9+6yvT3CtDTiJCRLYkSTspqco1Mx\n6rdwbY179w+xLANQWIUpdVliKAqiqUmimKZpCFpdqhps2+bxp5/ged7nc1ab7nBEKcENWii6RlGV\n9EdDTk7PePL0KRs720g0eqMtFNUkiXMcyybwbcbjM8oqYRFmVLWFpvu0Om3SNGK+WKAqGq6pY4ga\nsjk9R7C6OiZLQ1RNwQ9s6jIlaDm0ApuqyAmCgNFwE9t2UKTKKgqpZMU6iTHcgKtZSJSUaIZL0BkQ\npQVFI2k0WEVrNraHSFkjgDTOyIqcdZaSlhVxklGh0OqO2N2/z9tf/jqtwS5nVytKabDOGh4/P0Gq\nBv3RkMFwiOcFqKpKHEWcn57wwz/9Nyymp1BlyLzEVCxURSfLbvINABShEYXx55m8Ak3TyJKIpq4p\nyxzD1PBcm243wDZVUG72ybKMvMzxfZfN7Q2qusDzPHRdpyxLdnZ2qKqKq6srFEVB0/4eTiWklPzK\nl79If6PH9/7szxkGDjtbIxbhmkaU7BzsERU2wXAf9E3WccjG1hbF8pyqjnj14gnp8pR7tw9RNdga\nDKhqlfPxmL3D+/za7jZRFPGDP/4eb7zxgKefPCLLEsq84O79Ozy4fYChCKbzFe/c+wqq06IRJmWW\nEXSHrC6ecnp+xVe//k0oFZIk4fT0lLv3voFl6PhBhx/+8N/yzsP7tCyDMm+Yja/QhEqmAZrKO4eH\nKIqCrusoivg85bbCNB1UVWexWDEa7ZIsFwS+RZ3GPHvyEaLKmF6cEEYhquNRriWe38Xttmn6HeI0\nQRQJtlajbHQ4efGC5y+fM9jsMex1WYzHeK02nmvSSJXNzQ71xYwiLykyhXa7hUKDZ+qkUYzZalGW\nJWWeM+x2qMuGyWqBUHSu5ys0vUHXanzHp6p1pudjOt0+GxsbXM9W3L97hyhKWEUzdrZvUTU1abZG\nmDpZsaIWIwab+3S/4fPxT/6QwDdou12E0JnPJvim4M++9ydcXIx5+PDLEL7CrgNa3YbTs6d0Og6H\nh4fEsUpRCvxWwHw2wTR1FE0nzwveePNtnr+64tbBPRbTBWdnZww3t2jKClX1cZyAPItA5lRNAbJi\nPj3BS10UoVFkKUpT0fICNnYGjAZdfrpa092/jbO1R6fXJQpXuLbOxfMnlMma6WTOwa7H4d271HVD\n4LoMt7qU8RjT2QFKtKakLArivIDZikFviBaGhGlOnt8EhBVFodfpMp6EWJpGU1VsbvW5ugwJwxBD\n17Bdl9UyRAiBPXD47LPP6PW6lGWJruufp0/H1HXNaDTCNE3Ksvy5bPKXwmMwTIPRoE9ZZHS7bVRN\nQWgCVTd490tfQzX7DHfuYrVGXM+nrFcLZJ6y2Q+4PH5GEo4ZdNoMh0M0oYCicnE14dbBHbZ2tkmS\nhCQN2dka0Q48yjKn3W6jqGCZGp1OC03TUDSTJMupEDd1B1KyCCPWRc3enQcIw0PTbdZhfNPRoiGJ\nImazBRs7e3h+lyQtcFyPfr9PnCwZDrt8/Wu/ynIxY9DpoCsKuq7S7bQxDONmPus4OLZ7E1ii5vz8\nFL/V5ktf+jJe4BO0PGRVkC6nPP7gfT788x/w6V+8x/TyhCoPEbIijRPKqmH/zn0Obj9AFQ5Pnh/z\n7NUZL1+doZsGitow7LfoBRaqKMiyjPl8gW2YCFlj6CqWoWMaGopoUBVusix1HcsJWMcZeQVC1ahk\nw8nF2Y0bHLTQDYvNrR2ux3POL66JowLdsEmSBOoKWcRcnLxCUSQlNZgmk1XC5SykUQyGwz6ua3N2\nfoTlBmzcusPZ9YJwcsVnH77Pv/wX/5zVdIKlG9S1xDYtNkcDyiKjaRrOzy9pt3rYdovjs3PKpuT8\n/JKqarh7/w1uH95lc2cbz3HJ1hGuaTCbnHF2/ITTkyeoWkqZzCGb4xsNvlYzbFlkizHTyxMkBX7b\nZbQ9olIUoqLB7g5RWwPc/i5me8TZ9ZzpcsWtg33KpqTMMwwhCKeXKM0aWUZQV1yPF2TlzfiybRvf\n90niDE01yLICREMrsBBKSVnl5OmNd6mpKkUuURQbXbexnYA8qxGKQV03CCEoyxJFUUjTFNM0bxKk\n6vrvp8fgWBZFFvPjj97Hbg9xTZ2mzrHdgNkiIxjuUqkdolzSHnTJliXr2SXp9QxRR3QCk6Dl0yDw\n3BaT6yW65TPa2uXyakxWZFyen3Hnzh5xnNLqtKnLChR5ky5qqGhCZzgaIRtBu90liVKK9YLZbEaS\nSb7wxYdWDeZTAAAgAElEQVQMh1toacWTJ59iWjqmaaIZBk9fvuAbv/nbyCyjQCdJMqqmpDvq0ul3\n0U2dTqtNkWQ3yVmiwbIskiLCgL9cw27qjIvzY95774cc7u1wefwKrcnYCBy2NoZoiopeKxRFw8vT\nl0ynZ3QGHbY2dxgNhiRZjmV72E6LLEvAuAmmJimcn10yHPWwLY29nR4aDeNVTpzmjMdTNLXGMUym\nVxfYpkEc1pRlwfn5Kft33wBFZe/2PYQsKPIFZVUjhIphmkRxys72JmG4IoxS2p0BjuMRRQm6AboG\naZbx6uRT3v7a79PUGrlU2D18QJIusJ0e8vOCscvJFKPVx1Tb7HW2SBdHCG/JsNdnsTglSTLMEnzX\npsgT4nDJ0dExURxzdnmFYVgomk63NyAIAmQp0BWdq6srqiKBRkBVkjagNRmeZSClTr/fx9RUFtcX\nNHVOWRSMr65Yzqe0/YBiMSFBols+tWox6PeZTZd0hjsYKCi6R7a6xnE18nTNcLPHajYhjWI0v0AX\nCVW1Ji8cXj4/R9dcXFVHtx3m8yUtz70plnIdhKaiKAPKKkNXJXVZoQqNqoQoLlDVghcvTnnwxj2G\nowHzRYjjWpimSVVVJHGG4zgoikIURUhZ3xTy/Rz8UghDmqZ8//vfp7t1gBQ6RdUQxRl1obP9xiG1\n2qLd26Goc6SMSXPJbDpmo2MyuH+PJA6xXYvFes16uUIqKl/71q8zHU+4uDjFtBQMUyPMElbRigf3\n32R8cc5oZ8hyPmGxWrM93MOzLDq+xdA1+eDpx8wmYwzb4Df/4X/KZLEijmuUOCTNQu7f24UqQ1cF\nHd/j8vKSeDVnp+chtZsCwLfeeouyyLi8PEfqFno4ZRj4mLbBxdWE0dYmSRLheRqO5XB9NqXOY0xd\nYzAc8qUvfYGnj37GR+/9gPHJC7qeh6VbdAKfTus2mq2jWSY//fBnVLWOZvn0Nm6hap/P871Ntg40\n0mTNanrExXjMoO1xa2sLA4VcTpksE9brENcxsXWJoihUVUGr5XMxmXD09Dnd3gZ+z2IZVSiyYKPf\nZXxxBorCcHMHTZGEUUa71efFyzM2d24zGY8Zj6/Y2h7QDkyef/oEy/OIJ6d4g22yqmD/zS9zdvqK\ng/19ro9fML2+4Go85/Y79xDmiMLoUQ9b6PaMxhbYZcrZ6THHL19ya+8Qrz9k7+Aeh7qH1+4xG09w\nHI88T4miiGGvS5JkxNGcJAppdxzC6SWeb+L7Pv3uEK/VZT5foSo6aRJy9/5D5pMpk/EVeS1x2l3O\nrq9YTi65OjulN9ohbXS6/Q1st4WhGhRljWO3oIbpaoKKyebBQ7Zv5eRFQ69loWoRaTLGaQ/pDQe8\nOrmkLEu2tjbodHxkXaAbKgBVleF6GkVqMBwOuTw/p93yCMOQLElYryU/+fAVz4+nfO1rb9LrtrF1\ngzTJaZoGTbup4P13v1VVR9f1n8smfymEoSgrLMcniXNkriJcC9PrsHvvy3j9Tc4vV6jpmioLaZIJ\nq+kJliGIoxzHNkEpeHlyzsnJCYNBj/v377OzMeRqPMZ1TExLIPBpBHT6PWpZoZgataxRDROv3WW2\nDjl++YSN0YDTJ38BZYzraNx68x0Mr8ud9gbr8Zjx9SssvaLbMvBsnVfLFe3OANtRGfZ2KNczsixh\nNBxSZDnz6YQwCcmkwh3b5f7Dt5jNJgTtEclKYgYS28wp05TPHn3CxmaXr33jN+h0e1iOzc7BbURd\ncBL4XLx6wfXFGTSSwbCDWem4jcv9O4dUtcbR+TU/++mP6GyMEKYB2gC9EVhei6F3B2PhcfzqOWUB\nPa/D4cEm9ctzykJydT1FyCFBy+Ls5Jjd7R02R0PCpOb8xUveHezSavksZldQSsYX5zhugNAtXNeh\nXM948uQprU6fdRyxDmM6bZfFak28rvFcn2i55tkH7/HuN38Xx/MZjnZ59fKI8fWMIgr56IMfs3/r\nNoreBs2laSS6YZE2FevFjPHxU7L1mla7xzd/+/cx/YAwa2iMjCjJifIKRStI8wzP88jyBFmlyCqi\nSmeUekocztncOGS5XKLZNVlxE1BWyOn3WpyenmIbJr1ej+dPn7GxvQVC0N3eZ7aYU6uCxfUlk8tz\nPC/A9wJ6vRHdXh8VSavThaZmvZrgug00BevVgo7tUFUVo40eHz8/I68Fx+dzuhtDLFvFNgPqMmUe\nVaiGShAELMsls9kMKSVe4DJfjbmeHNHIHVA6zJchWZ2jGQKBYLUK0XWVVqtFkiSfZ00qGIZBnv89\njDFIYLi9DULFb/WwvIBSCtygxdGrExpZodQZFBFVsiRNYxZxSoFg69YB55cTFss1t+/cYX9/n16v\nx2KxQAEMVaEqG3RdR0PD0hzCVYRtWETLFeFyQb/dwdBga7OPbCKCloXnORzefZPhcJ88yQiXU85P\nnpFmKyzLotPqEa5TOu0erU6bbrfLfDolzTO6/R7L1YqyrOh0etzau41uuniuT54WVGmIVuWYugDZ\n8OFPfsr19TXvvvs2d/cPcUyLq7Nzjp8/o84LdF3F9318r0PgtxBCYXK5JI8bonmGrGvyLGJve4u7\nd/ZZzSY8f/aEPA7Jq5Ja1SiFS9A/5K0v/AMaq8fRZEHQCXj77bvs7AywjZvEmslkQqffI4wTfL9F\nFieEiwXJek0WhSRxiFAkWRpj6BoPHjzAMCyWyzU7Wxu0fItwucI0Teoa4qRCGB6VMKlRKfOc99/7\nEUVVoJomt++/SZ7nWIaC65gMBj3iOKasK/I8YT6+ZDm/JlrO8T2T+/fv8Tvf/i2Ojp8TrubE4RrX\nMvFdm62NPo4p6AYOqlIzuz5nvZhClYMsKZIERQiOj845Pjrj+dMXN14hDbosEXWBJhQm11NOTy5x\nvC5RViI0l1q4bG3fo+UPObi9T3cQ4AWCy/EzPvzoh3zwF3+GYUmqJqZRCizXYL5YsbG5S1Or1IVC\ntE65upziu95N9W1ZsVys0DQDmpv6CCEEluVQSz5PdooxDIM0i+l228RxSLvdxjRssqJmtlhimiZp\nmqLrOpZ1k3IdBAFpmgJ8Xt6t/lw2+UvhMaiaBrpBMHDQTZdKlPRGG1DWOLpC4FuEk1PS6CamECcZ\n7e4Qp+Xyv/3hv6LjO+xs79HptmgFN2u5j588QlFV9vZ3EarKp48/4eu/8k3miyknr444OXnJF959\nF89xmY/HbPZH6EpOWa7QsegOt1iGKmcfvMDQBNeXnzG+eM69w00OD/Zx7S4fvnzKxs4+RSVZr9fo\npkk4nVEVMaah4wdtsqzgajrj27/7j1iuEyYXY2SZ8fiDD3jz3S8yjyI000JIgWwqnj89wWt5BJbO\najljPFngOzqttouyu0GRRfh+i3CVsFqmtNsW0XROUZbYLrxxcIBjqjSKyqc//T6d7Vu4nRGHd75I\nXisomqS906G2jlkmazbaFp41pB2YvHx5wni6IE40DF3FtmL6vQ7TZcj50TO2HjzEtVRMTWXQaaFR\n8vLpY168PMLVBKONgJatYVkOftBnPl+RFjmLuEBXfay2QRin9Ho6WZIRxilBt8cP//j/JJBLvMBF\nMVVcYVLIGEPTEEqM33UowpgHD79ImSbMphd0gxauUtE0FXWaUcURs9NjHn3yEUkS0e4MqMqUbqtN\nGoUMhl38zoizs3PyGrK8pK4lTZozPnrFoNuiaSr6/SG2qKhkASgoys2Hdra2blEUBU1VMr6eowpA\nCN59920s0+Pk7Jz33/9T3nrnLTTVoNUx6DhbvHjxgjfefEiY1yhqTZ3F7IwGRMkC17J4+ew5dw++\ngcaNKCxWC8azKTs7O5iWDqKmbkpkYyKlwt7eAUJVMG3wcNkY7TKfrxFliaoKdF3n8vIS3/dpmptS\n67LK/34Kg24YPHjzDSppMJmEaJbGwe19gtYmL18dM7k4oUhDdE2SJAm7OzsIzeJ6fs31bMrh4Zdo\n+S6B52LognU459Gjj/m1r/06igKr9Zpup89iMub5i+eUeYaiaKzWEZ7noRkm5+fn2LbNdLZARiWG\nZ+A6W+xvDfj44/cYX7xAyJhWy+Tg4ABNdbHdANvxyJsCVTa4rsXyPGNvf4/laoruODSKwdYtH8O0\nubx8wf7eHqpSoisF3//j/4vf+8f/hNl8RVU16IFKVuTMXo2xLRVdaciTmO3hHqevnjOeX+O2Xepa\nEghBXZfkVcbOrV1qBJ8+eoZuGNy/fcB8tSTZKfnkxad0tzMkPv2NvZtItnBojQ5pwhOEBgoxW1t9\nxuMxF1clpm2T5SVFUZJHCRqSpkqpixBNFuRZiOdoXF9f0Cgqt27dYtD2mM8v6LYCVAmzxZKiBNMN\nUMoSy9ZQ65vvKAz6HeazMaP9+0hU3vnCV/jpn/1LvvLFL7HOK3RV4eLkhK4XsDPwOHp+Rsu3+eGf\nfZ9OO2Bvf4cP3v8xQiqomsVwY+MmNpKuePvBIaP+gOvZ/CYvw/dZzWfkRcrxi5eoqs7uaINFuKbT\n6uI5Fmm0IF5MGF+domQJWVZQ1VBIBd1zUXQLTUBWFtzev00cXlMkKbKQNIVKmEYM+0N002QxnaAr\nKvZwA2SNRkmcTtF0l6SKWcwv6W16vPP2XX783gfkaQKNRDdN8jzF8zzW1xEXFxdsDPtIWWF+/jUp\nTTUwDBNUgeebZLVGuM5QaxXf0jBNEynlzdfPhKAoir9cjVC1v4fBR8MwMGyLMiqwTQXDANeAuggJ\nlxNklaOqgqDVpt0OaAceL1684KMPf8qDB/cYbIwwJFiOy3xyzv9L3Zv0SJZm6XnPnWe7NrqZj+Ee\nHoNH5FSZlTVndbOLlAhKYHMCJUDQQtJagP6CloIAbbQUCHCjjSABWlBAC+hmi2x1V3VlVk4VkTF6\nhM/mNg93nq8WlmxpyVwIyLaN2cJ2Zud8557vfZ/32fMnOI7Fv2uSSZJgGBbr9RKBgv6gRw7YjTZr\n3yfzIvz5FFW3mXhTxLoiK5bsbd/F8yYEiwsUIWV3b4vHDx9w78EJf/qn//f/u9yhJvAXZHnMowdH\nxKsl2/0Bpt0gyT1OTh4xnc/4+vefc3y0y/h2TLvVwGy4hF5AFKRYVs7nn3/Gxdkl6/mM8fCCpmth\nGyY319fIsoCkGUiSiLde0+p1ifOM2WyBMJ7QbLZptbd48eIVolRz53AXQzHIsoTz20vEavO5t3OE\n22kj1BqacszbN19AtuDB0Tbbgy2ipOD09JZGw0H61jNQU5HGPqYsIOoyolBze3NJp9tDUSQMU6Wi\nRlENDLsDaUFZp5SUiKJMUcQYVgtLqQmnPkpdIhYxlqGTUbC9f8Ty/js47QHRfIFawqDpUCY+l6dv\nUWWRm4vht8g4jS+/+D3L6QTXbNDbMYmDFW6rQcNS2Gq3cWwH2zEp65pgHTBOEm5vR7RaLQShJssy\nQj9gvfbZ6vYo04giLbFsl+VyzXrtkcQZuSChWAaDnV3q0qPKM968esJsPKfltlAkFX8ZIooiIhJN\n0yAIUqajMcViwb17R2hSRrSe0t02kBoWXrgmGV3xw5884PjuPn5gU1NS1yKyIiJKUJY5omghigJ5\nUVBVkKYpW1tbmEaDq9sJ3W6T+XrFcuFjq01qrf6bpvDvriyzLMM0TS4uLnjw4P53qsn/XyjR3/V1\ncrxX/8v//r/m+uyGb778mh99/BhRV/FzEdNsslwnVNikxUYrvrx5STC9ptnrcHDvLlVRk0cJi8mU\n3/7ln/PhDx5w/+Q+eZnj+wG9/jaqpHL+9imKIlGhYtgdFMUiCFNMqWY5veZ6OCUqJM6vbjAsC0mo\nsUyFjqvjLRf843/8TxEEgS++ecLtaEJ//x08P2Gr1yRPl/RdhyRY0XNdDKfBr7/4GqfR5u7D+wyH\nl7i2hqXpSLJNKVd8+sUXPHz0hwy2D1ksb9CMkseP30ORZC5evuDszVvevDpF0TbkKd9b8O7jE5Ik\nZjadIlJvToIqYzlb4a0T7uzvM52ekeUhn/z8E6RK5OZ2xKfP31BpDSRri6OHP8F1+4iSznr2Fm/0\nFLWeY8kSaSYwnSdcXQ9RJHhwsI0fLJEVhd7BLp3tbWzT4ezFF7z37rsUikmlbjQkb968xWkOuLy+\nQihq9vf6rNYz+v0tln6IVhc0JZ9SELnxC/7Jf/Hf0GgNCAOPJ3/9b1gvRxwfHzOeTGmoEvPrN7x4\n/juCIGRn5y6a6tBymyRpROQtUISK/k6PvK7IixgZgel4wuX1FXklMdjZI45ToighzwoazRbN5mbK\nq0UJWbPJ8pI8i6mKjOl0zr3j+0j15jDJsoxmp01Zwe35G4osIcsSVEUiy1L89ZI0ynGdNrqtohhw\nsN9HRmQxnON7K6IoQLYbHJ28z+47f8QoErE6R6R5zofvP2Y6HX/LBa0wbIM8T1ksA6pCoN000A2Z\nuioQBZlWq8dqteKrb15i2lt4UYG3XLGzZXF8pwXA8fExp6enbG9vs1ovSOKMLE9w3Qb7e3c/r+v6\n43+fmvxeTAxlWVKkEbPxJYOOiSnLLL0lhWSiuH3CJCDLwm+/nEAZIYoZpq5gSDJ5VZCVOaenr+h0\nWtw/eUgU+3jeClUzaVgN4nCzqV4ul9RijdG0CAsVs9lkdXtBnBRkaUVV1Ki1SFNV8YIJ/Z09dE1B\ncBpkWcZkPqHKUvZ3tliv59xcTdjpvIMiglCmdNouUeAzmk9RdY39O4d0u22m42sMw8ALAuoayiqm\n3+lQFyGj23OcpokoVIS+hyBIXA2neHHJjz75FR//9Be8fvGaf/Pn/xeTZcbh/hEVGv56TpqE6JpG\nb3uPgglJlqHbDeJ5xIuXrzk5vMPuoMUPqgMuxjPScsl6/ApNKFGsPqrdxe7fJ1vJVPmKvEpAhG6v\nxXh4Qxil6JpDVZUMz685PDgiiVYc7G8jy2A5Bhkqq9Wa2TJEtSs0zUE1ZVRVJfDmKFJEnJTkgoIf\nDlFVmek8wFtNaQ8OkQp49NHPGF2cUtcpDUPBm9xwcfYKxzA52D8izlUMp0WtGtSVQFLNsV2bME6Q\n1Y2X4ssvPsebz3FdF9syEQFBlJFUlcHuLiICRZaT5yWWY9Pq9UGUuLwe4oVLIsEgUxvUWYFkGoTR\nFOIcx3XpDXYY9LucvviGbssmCQOKrRZ5kjMZL4mjkLyo+ebpglbDgTTl8vKSVquDSoW/nOKYMkGt\n4AceFRJX10N29/q8ffsG29Exqg1PQRJERFmirgWyrECVFQRBJE1jBoMtpGcvydKYLMxoN5okkUeS\nODiORVWJdLtbG+VjsXGlypnIdz3/vxe3EtQVZ6++QZdzdE1kPpvwm7/4NSJwORwRxDlL34MyoQ7H\nxP6EMPLY392hTBOyIOT8zWs6TYsPP/oATdvQaqq8omk5qKJE6PkUSYEiKKxXIblgkyst1qnEyosp\nyoqyKMiCkJ5r4agCYpKQ+iFNp8O9eycUFTx//hIJge1Wm4vTlzQtlV7HRRUrLs/e4q2XJHlCnmfs\n7e1hNhxOT9+y1WnjrwPqWmO5DqjynIYhM5udk1Ueumli6w55HHP2+hVBWvPP/rP/ip/96h8g6Ca7\nx/f4R//pf84iLvjL331JszOg1R2gWhbTlc9ktWbvzgHd3S0kWWf/6D6rIOZ2MUeQBSxV5KDXpK3X\n1MEV6eoN0fKUtMqQnR2s7gleVJPlNVEeoqkivV4HL0hYrWLSBORKZXo9pIwjZEXCsEwCz0PTFPyo\noNUdsPIiyrKmKAri0GcyuuJ3v/m3PPvyU/7tv/5T5qsAQQBHFQgXM+I4RlJNRMNlsH+EZTeQyLm8\nPMVpGOzuHKKoDoWgILsdckVj7Ac0ewMU08JPcwRJ48/+/C/QDZudg7vs7R1Q5yVpktMd7OA0uxRV\nRZEnDLb7yKJEnuREUcLb8yskzUK1WtSqSVaLJGVOmMTYDWfjpahLJF0iyX0EBQJvTV0J5FnNYhWi\n2w7d/g6N1g6y1qKsdSpRo5Zk1nGI0zC4d3eXLBgz6GiIlQ+I3I4XLFYBe3s73+oMRKp8Q/AuioK6\nEjGNxt94MNI0RddVsiRBEUS6TRdDFWk1XHTNpCo3gqY4TimKijiOybKMwI+Io+92Xfm9mBiyJGX8\n7eg6uh4hVDJus8M3L87Y2jkmTUvEqmA6vMTAZzEZcf/kPpdnr7FNizSKGV684Fe/+jtkZcHV1RWd\nTotOb4sgCLi+vsRfB2RhwHB0y9Hjj0BzyQqNiopKtbD1muL6Gi9ccXBwgFiVtNo9ZEnnydPn9Lf7\n/P7JE47vHbGzM+DszVvsRpODgwMmt0Omw0tUTUKWZfICVL2mO+iz8mMO7h4jZSG3oynj8ZxOu00W\n5YRJSP/4PaJKx4tr9lyLl0++Ii1r3v/wl9huizBOefP2gjDySbOKf/jP/jn+as2f/B//CsuQ2ds9\n2rjxVku8MGB3MMBwGlRVxb2Td8ljn5enF9zZ36Mliuj6gsUq4uzZp2wdHCFXFUJzH6u1hbv3kNHV\nS/b3uoxvhuiGwzJaYxsKy9WKdtvi9vaG9waPKYuMq5sxaCZVVIBi0G11uLm6xLRUTl89YW1Bu9vh\nnUf3GQwGrLyAQa9JHMw51g1ur17R6B/S3T1GFGrqbyW9T58+xdRUFKlGMjTiZGN9v7q4RBZEbM1E\nEGquv1VpPnv5ir/3H/x9nj97xmg6x4tSulv7JCWUoo5hC8jkxF5KEqxRkMnyjNCTSQKfiopur4dh\nKjw83uH102dMbq9ZzydYlsnT6ZhWQ2e92iwW61qgFmRk3cByOpSaRlBUyIKM6vRoNGzkOmO+TqjJ\neXt+zdoPOXqn5H6jx8F2n+Gypqpqrq4uePfxQ6pSZL3yMfQGceqjacrmv5QXVGVOEHj0ej2yrKIu\nRERB5rPPPuMXv/gpTVcBIQNBQlEkNE0hTTcE9DdvzlBVnenk3xsQDXxfGkOakoUpq9jHMEykWqOo\nJDrNAf46wI9StjoOciFT+Tnbgy0c3SaLE1RZ4Nnpc9595wF7233eXt9Q1QKSpCDLKovJFG+9RhJk\nRHGTe6DoNpVmohvuhsJsuRT+ikqAvCgQRJH5ekGz4VIKAiAyGo2Yz+f8wR/+nCjabK7dVpsKgaKG\n6+trfvbTHzNfLJAUGUU32N4/xPSzjfrxZkQQphwf3yP0VliNLkbVZe4LqE6DOK4JpIAo9vCDBE3T\nuL6+xrQbRIFHECyQBJHQq3Adl5/++CM+/+wzLs/OkYlRRCiKnMVigeu2iJKQMEoYj8bURUxxeU2v\n2ybLMvq9FnWZMhqe0Xa6yLRJ0grRbFMIFrPJgiKvN1qECnzfR1MlRFkkjPzNttvQ0DQT2W4SpgWV\npJAmOXVRU8sFNRm93gBFUml3egiSiKLJxHkOgkgYhszCiIdpQLSeUdcCoe9TiwLj8ZIP37tLEfss\nfQ/TalBHOUJZAzJRmpJHJaKkIcg6B4f38aKMXn+P/vYBy7VP/+CIpecTBBFVHqOIGXmW4TRMZuMJ\nn3/9Nc3+Pnmlcv+dx0TeAsNQuXr9nNXwEiGLkbOETq9Jc2+HKo/Zdg+RVI1aUShqkbSSMNttbKfL\n2/MzqGpG0wlJmrPVcukfHFEVMbKQEHg+b05fY/UOOfnhPikyQZiR5imr1ZqLi0sUTePwsE1VCxiq\nimVZmx1SXQAgSRJlWVJ9+5t0ul2yPMHzA6papNvtEcUemmrwxRdfbbw+izWqqn7nR4nvRWNQVYWy\nKIiimOZ2jywtyXNouE20qkLRYtrtJuNoRaPd5c7+Lpfn59imznw+pj/ocnLygIurc4bjCZ3e9rdL\np2hzbZOkZMkKSxPJ0gJBVEFWSbOS5WqNI0kYjo3l2IjaGqvZYO6tkE2bwI8QJQVJlvnBh++DJOL7\nIVUt4DQcfN9HqAo6vS0UTSWcxbS3tkDSeXtxQy3quJZOpzvA9zZS3V63S5qVKLpDnTu4nT0WkyuO\nt2yazSZ5FVBVkBUFYhSgSzVh6rFcjFE6W4j0ebDdJD7sEgQez755wc7ODlJdE4U+siRQFSWO45Bl\nXQSxxFssKGdLDFnGMTTETpu6zEi8IaVukytNVM3GsttMpmOabpM8zzEskzgKqCQBUZZJwoy3r9/w\n4IN3ESSNOE0J85qiTpGbKm23gR+OScIA3bJRJQUEheFoSFln5LlDmQSoosBkNMdbDekO9pjOA9I0\np9np8/f/4z9mPb9GUxVKYYUoiWz1OtSCzotvXpGmKW7DYjyZ8kd/949YzOaUZUmclrTbLkpWMfdi\n4jRDNXRKIaPltMA2KcscWRZ5/OgBqzCltz1gcnOGabuE6xKlFui6JrJrMC5TNAGmywVRuEZWRKq6\nprt/QFpBa2uXuBKJsgxRVui1Wjw+ech0POHNy1PSzEeXIQmmuJZB0+ogFAlFsKRp9dnevoOkqLw9\nu0TRLJI4IwoTqooN5LcsNh6Sqvr/XEEmGIZGLcrUVLiujW1JuK6Crht4nkcq51iWQVWK5PbGl+O6\nre9Uk98L5uP/+D/8d//tP/jpO+wfHCKoGosgwHQb+HFGmmeUZUmU5hwenSCpNkkSMx1fImsCuqHx\n7rvvslz6JGlJIYjsHxxiGTZvXr/BtSwsQ0ESa7IiYzxb0tu/R6I0CfwMW5dY356yno+o6oI7d+9w\ndP8eXpAiKQbXt7c03SaarvL48UOW8zlxliEqKm+ubhFEhdVqjqErXF5e0NvqgiRjOj2GqwJB0kjT\nHFUsKYqYztYWWV2yiktWkYrYuMNqHWGqFQO7Js1Sdg6Okc0WaVYQrhf8xZ/8r1y//BpHzJDLmMXo\nisX4gsnNW6Q64mhvG4ocS1PwvRXL+YSyyCnKgq1Bn1pSUTQHUdaYLz1MXafTaaPoOppQEs2vEesU\nVTdpOA5lFhKnMZKiksYZqqJQI7BcTzEMm7ICy+0gKRq1KCHUNbG/YD2f0Gg1KMqUsir50Uc/xm22\nkAWRTquJUEkEfkqn3UWoalJy5qs1P/rxLykw2L1zhKJZ1MIG3lNVFY4mwbfwkVevTrl/7yGWZbPy\nQ9Ndy9kAACAASURBVN79wYdM5wsqFBTVYO1F9Aa7+GGMbVmYukLsrzEUEaqC29GQrW53k9FgN9jd\n2abXarHba0EaIOQpeiUQLOe8ffUSoapYrZacnp2R1RCnKUmaUlU1lrVJhtrq96EqMWSJNFjSajro\nps5gdxfTsTcms9WSQbdHGoVcXl9gWiq9vUPiLEcQRTStyWLhMZ7McVotZElEVWRs02Q0ukXX1G+t\n+irr9RLTtMmKzaF252APTZPodTssFysMw6QoKjRNI0kiHp7c5+juEbPZjH/xL/6nv2XMx7IiiHz8\nNEVUTDTTwnFdCkHBTxKcZge3u4vZ6hNEMJtecHpxxh8dfYJtW1QIfPbl7zm8cwyChChLhH60kffa\nBr1OA1tXuLmJOXn0CN0wKASRXrfBzZsXeIsJ3uoWVRFwWg2KuuAHH3/M8GbGy9dvuH9ygq7WdLtd\nPG9Fu9NjNFmSZyWIAjUwHo959Pg+ewcHvHj5hrAwKfQBsmYjSQXzxS1hEqKXBl6cUio2pt1DsNqI\nUgCZx9oLafX6NDoD/BySOOSzv/xzktWMfsdGqOGrL77EMGw6vTZZHmI3mnQ6DoYis16vsTQJU7WR\nZBVdV0jTFFW3UHSHqsxBVLi4vWTtBQx2d2mUOY5cMQlnlJGLYrT54IP3+PL3n5PEKZZjMptOUSUZ\nSTKpBZm1F7JcrnBaHYSqpmmpaLXOYu0xnVxwcX7D9vYuZSHiNh2u5mPKOGE6mqM7LfIMRFGl2WyB\nYSBJEpqukJVQ1DKi5iBqAUg6i/mUV69eMRkvOXnvY/zQ4+zqll988gcsl3NqUcGwLLIkxWm4LJYe\nAJPRzQZ4WyYslktqod4oUXMBp7WFUOfMphOC9Sl7O9t0HZtAlHn+9BW6oiMioOkmLdcBTSPKCmzH\noOXYGzBukRKFMXJdkKc5SlUwHF/SaqgsVgGy1aA7GODYNlKRIOUJulEh1DX+agp1gqY7hKGPIDYp\n0oo0LcnyegMBBuarJYaxUfJGUYRtm0gyWLaO5qdYloXvBxi6Q5IUhGGKrtvAhjrd63XQNIWyTPHW\ny+9Uk9+LxhDHCV6UUYklna7DwcEhV1dXlKKB0WqhO10ExSHMKoIoIssSdrcHGEaTbrfP7c0tfhjR\ncG2iLCHPEooyp9V2/warLcoaw/GIhzt3CZKUXFijCTVZMEOQVGS1zb37HRoNG9ftIMpNtrZl7IaD\n7TaxTA1Z0QmTlEqMmM2XOI6LLArMpmN+8sFjtntdirRAd1poTpewUqiyFFmtCOII1zaIPI+iVhFV\nDVHVMTQVMSvotk1cu6aWJebLFWEqoykSj07uMZFDxsMLwihhHSQkaYUkqyBIyIJGGPobWGrrgNvf\n/Q5qGVUT2HHbJHWO5Zosw5JckOhsN6GsCNdL8mJjYJPLAlMRiDOPXr9FHExoOzpvpiOabh9FkymL\njadfEATqSmA0HLOzd4jj2HiBT+L5ZJFPlUVAQr/fQdJlRKkmT1NCf4lt25SChKhqTKcjbHdjwPrd\nZ7/hzslPqHMZUdVAUBBlg8UqZDlbY1sGzv0mkqKCaHDy6L1N9mOeI5Qlk9GYwWCAJElMJjMOD7Y5\nfT5Cs10UxSRaz3EbLq1Om9H4FkVSkUTx251FRS1W/PVvf8vlcMLBnXtYnS6t3V38YE1ndwfR0unv\n3kUSBMIwpJFu4MNhPuPVy1OcRou6SGk4Nt5ySb/bQ200sRoWiyLjg49+xM35a/z5BNdSqaM1uTcl\niUoUrcMqDEFSESSVIstRHI0szxGoKMsCTVMRpA1nRBAldMPAshMQcjRNIwoTbNOkLDZ5mlmWUVUF\nnc6A2WxGTYlu/C3kMQiSjGq2MR2bdsvl8u05UZSyffeYQnXIabCYrtGlFVK+pt+0SeUue7tHfPrZ\nl8xnE97/4D2KPMI1NeosYnT5BuoQx91GVDVOX52ytbNPmBe4bYPTZ5/hWjauaZFnAw4GJ3S3AlbL\nW/qyyavTa+aTK47v7TEPfZrtLqJh8fzFa/bvHHF5ccNgsEfir9k/2OaD9x8j5DV//eVXeJJJtBxz\ncnKCUEbMpzPee/iAIou5HQ4Z7B7g5zqt3i6jyZSeU9ExFby1xyrOsJq7bG0NEEiRKh314B5JWrJY\nLNjav08ShPh+TpHHhN41TlOju9XDbXd4/4MPKcuas7cXfPrpX/PuOyfkVHhegeK2KRBo9PbR1Aae\nt2S98JBFicFgC6KAYPiC4/v32evcRRMrrm5mtFoNqrIkDQPyPGe1WmHYFr///e/5+d/7u0iWS7KI\nKdOCrqPSvb/Lhx/d4/z6it99eopYFKRpzHzm8ejxj/n6m+fsbDepypyLF08wDJssuos/n2M1enRb\nA0rLQUHmyXJMz9phHS5pt3cJQxlBksijFY5c0m43uIwDZpNbev1tmu0Gglxz52CHm4tzRtc3NBoO\neZZw+vol/X6H6XiKY7dZLFc02xaFovPL/+ifo5kNoqJkvlihqio7qohQFeSiTFSCYTXodPYpi5os\nj5AXMxqmQZkXiFVO7M+oqxyBmni9IEkykrImth2sdh9FkZmPLpncnNPeOeLgvU/I6xJqBUHRsR2X\ndrOJpggosrjhKUQJfhSiaCp5WaMaJv4ypNtu8t6jB2RZRre3BWJNu9Pc8CtdB0WR+O1vf8v777/P\nar2g2/1uO4bvhY5BkiREiQ3ow1+T5hv81SpMycoK6pIqjSmTgGg1YzK+oddtc3p6ShQHlGXJ4eEB\nW1tbLKYzJrfDb2lEGmmablKKJYXOYI+7d++y3W1jiSWz4TXj8Rin3SfKSmZzH2oFRZYIwhW6prA9\n2MJtWKiayHo1p9Np02t3yNMCkZrb0RWSBKpucDudoakWrVYPp9FAkmVkRUGUFCaLGevAJ04S5sMR\n/ZYF5YJ+X8FtqUR5iqy7bG0fEkUFUZJtbjzSAs/zN4RpcZP6VAkyiuGArFHUEobpkiYF6beADkVR\neO/9dzBMFc8PKSqBlqVg1inRfIRpGzi9HlktEkQpq3VAGKaomoWqGrx+9YY0i/j4o/cRqXEtk53+\nACqBoqqRDY0kS1ks16w8D9tu47S20DSXy7NzDE0nCUKC5Zqd/jZ1UWNZHRStQZrXVBXkcUrbcTEl\nhXA+I488qjTE0GUQBUpBRLMcjh69z/bBPTrdbZoth37PwtAKptMrTF1A0wTuHx8iSzWj6yuEsmI+\nmvHVV18xHo9pNJsoikLkBxzdOWQ4HIIoEcQZRw8/wN26y2hR4icqz15fcjOcMrqdM1v43AznlKWE\nKFus/YTh7YzZdMVqHaLIFg2nhSyr5HHEyxfPMUwbx+0iKSaNVh9FN1AUjbKukGQNUdaQdRvNbDJb\n+RTFZuQPIp9G02F7d4uSlFrc8B8lSUKR5c27JG9I0dlGb2ObJpapsz3oYVsyZZEAG/1DGG4IY71e\nH0GQkCWVKIq/U01+LxoD1CwWM8JozZNn37AOA97/6IdYbhPLMkiCNXnkkXoz6sSj3XCQZZnZ9Ja3\nb15imSqqJOOvlkzGQ7a3ehiGgaqqdHtbiKqBYji43QG1oBCuF6TBkjzZBMdWssTcC/jmxRnUMnbD\nYjq6oNt2UCURWYEsS5mORzRsh7oqEMqKKgmQKdjZ7vPN0+cEYcLO3iGj8YTt3R1GkzGLtYdm6Diu\ni2bolGXJ8Ooctc7QhIAynVMV/gbDZbfQzCayblGVAp1Wl8VixWK2ZL328YOQIEzIKgHZsBE1i7gU\nGY5mXFzckCQbOrBp6njrOe+885Akz3j18hS1yhHjFVkww1uvqESJRrODLOmYpr1hOo5mBGHKYrHi\n9vaGwF+xu9tDoCAKfbI0R1Y0NEMnTdPNqYZAjYxptukOBlDVuJbN8OyaaB1yc3FDkZeYtktv+wDf\nj9gdbNNuOPjzJWpdM7445eLlU6QqpS5isrIgznOWYcjW3vEGbd/aJo5WZNkCqjXtpkFBTpqGxLGP\nYxtomsJsMmW5mlMUBa67OYFN3UDXdRaLBVlWUJTgtvtEpYyXKaD3OLvxESSXGg1B0vC9GFkxKQWF\nOK1wGl3cRoeihCCOmS/WBFGBgMhyMUMQaspaAlHFsFuUaJsFtrQR1E3na0aTNYWg4LQHmyvyotgI\nmaRqEyZjyeiGBFTYpk5dFmiahlCVAFRFhm1aiGVNmWbMZ1OScEkSBxT55rYCNkSwMNykawfBRnBm\nmuZ3qsjvx6OEKKFbJnEcEsUpxw/eQzJs2o7L9c0N11dXdF2DuoooIx/JdMiTmBfPvqHT7fD+uw9Z\nLmbEUcTZ27fsbPe5uh5ycHhEb/cIUTHxM51cMshKGdNsIMk6slxiGSbT0ZAgXEGY8fTzp1R5gq4U\naBq4TYekqlnOp9xcXZD4c4Q8p9c00dWajz98B1GEJ9885+cf/wJEEVmUNuUiShiySuQF5I7OajZG\nFgq6DZMsWrIIPEpNI01qNMlke+cuCBJtt4kkCsynEy6urrm3e4RmN0nLiDwriaKULM7IahnJdNje\nbjEfXvP82Ws6nQ6iCLqp0zbbNDtbvHj6kss3r9jf2aFjKjx59jUlMu+c3KPVaZNEMYvVirKs8IMQ\nu+Fwc3OzAYs02/iLBbPREk1WiJMEQVYQyow6z5gMr0lKGUU00Atod7aYTRd4fsx4vkZURPb390my\nDMMw6LYaTEanyLWInAfoksGXX37G/vF9HPM9VLkmLRKiJKLR7lAWGZ3BXbzZNdPRDbv9LrIucTUL\nMXSLtxeXRGFCu9vFMl10vUJAZqvdIU8TQj9AlSQECdIopt3pU4oWaC0KuUnDcUiLguvzEWVdocoF\nSRTR7bZZL1dIgojdaG8CaIVyo+j0l+SySrfbZT6fMpsucFwbQTUZr9YIfgolSKrExfkrbNtFEARa\nrT6T8RBNkehJIqvlBFGHuhARihRbU5HFAlNToapwbJMsz1FliOMQ2dS+BbAoLBYL6rrm008/5Rd/\n8PNNHX07ZWRZgSioTCdz4jjFMFQaje9JduV3eVVVTZZuvAr9nTtsH9zF82NC3+Py/BSxynA0hXbD\nQfo28HM4HCEKJb1ei9F4yGKxwFsHtFtdvPUmGCQXFKIcMkFjvAqRrQ613qTUXA7uv0ec5NRZQrQe\nsp7e8M7xPVxdhyxBlquNgiwvaTU6dNs9yrygv9UhCpeE3pw0jHDsTVdudXoousHN6BbTMqAqqauK\n+WSO7wfEQUiZFzQbLqvVgiJNuLm8Qi1BrUWSMOD09TcsFrfUVUaeRfjrOSePTzDdNqrpbCAeqoxr\n22jahjkpiQrT6RRRFLAdk88//5ybmxtsy2G9XpMnIVu9JkEYc355Q5YWfPzuIw63W1y8eUlRF6R5\ngqgIZGVGlqXs7e3hWA1Gw1si32N7q8NWx0VWalRZocorJARkavzFlDz26LQcsjJjvlpSCiKCLFPW\nAopq4jRdBLHm5voM6oRW20EQKwa9La4uLjE1HZGK1XKGv1qSxxGKLKIrMrIs0+vvo2sNDMPk4vKM\nl69Oefn6hv/lf/sTFquUXv8Ova09Wu0eNZviCIKAuiyJ/IAsTVFECU1VkVUNzWyg20000yFMU+qi\n4OhgwJ2DXbb7HTrtBvPJDXUR027aOA0LVYY0XPH6xdd8+cWvmc+uef3yCS+ePScuMgYHh9x9+A53\n7z/G0Df6ljLLSZKULC1Ik5JK1OjtHNLeucOzZ89YjK8xNZGq2BC8DEVGKCokUcTzPOI4pq4KDE0l\nTzM0TWO2mFIINX4cU1Y1/d0D7hzeJ05y0jRF0xRc12W99vC8gL/6y9/w7Nlzrq6uvlNNfi8mBgSB\nIhfQNJN+fxdVbmA3FLzlko7rMBneoIgtZEnAbbUQpZLbNzfIAliailBXGKrB5fgtBwdHXA1vCAtQ\nzCZeBBQp15MVjd0MxWkz81NUd5tatxhdX6AgY9YRSpnRa9hoYkV/q8X5+Tnvf/gTfD8kDxIsQ8PU\nKvqdBqvpnPt3j3j97JRAgI9+9FPma4+b2xusTpvZ8ApJNCgrMAyF8fWQPFlS2hrtdpvPv/qa3d0j\nlmOPKIopq4woS3nx4in7R/c5vHMP1VApMDi6+y6r3/4VrDLOLi6wrRaG6dBut4nSBH+2IgvX9Dot\nut0N5/DP/uzP+PnPf85yMUXVJX7+h79iufQ4ffWa0WjC/bvH7Dw4Zp3ERIHHeDzCNi2arQanr9+y\nt3eHZtBmejuk1+thmSqy55NXNd1mh2g+QshS0vWMhnmCUESURUSr3+Ob5y84efgeihqS5hkX11ek\nsUe33cP3xxi6xGI2QqdLUmQ0Wk2eP3+G7m7jdnawVJGiyhkPLzZQ00qk1xvwP//Lf40iw4c//IRH\nH37M0eM/IMtSZtMxcRViqBFZWTG6vabXcLk+P6PtutiOQ6vb2QB3rTZeplJJOhU1pikj1glyXiJT\n4XszymSNqdTs726xXo+Zz9ab3E1d4c5ejzt3eqiKjiCIfPTh+1zcDJEMhzCtaHb7pOkmH3Xtr2g1\nezw8eZc3Z5dEKQTRxhuxPegiVQmqULDb7W8I3FGIKgukcQICyKKAYen4vg9CRZYnWI5JxcbmPprN\nOdg9YDzzKUoBXdcJggBqlcVqiWU62LZNq9X82wlqEQWJGoWySje26KomjnIOjg6IvCWRqtJybBxH\nQcTg6uycRqNBs23TcizyPMd2DLa2tjAUGX/tUUsmw5FHzBpZTdF1DX81pamZqLKMWEKz2WR9+RZL\n09HFlLz0uLg+41HrPhVsHksOjhj0dxiNbiBLodBYeQl+mLAKQmbrmPbBPQoc1v4KQRAo8wyBGNXa\niF00UyScjTAVkbKsGY2nuFt9wjBmOlvSbLrM53NMU6flmghVTBQvsZo76BjoikTDUnk5vCYNAzRZ\nxbQcalmiygRQDBQd8hJmkyk//PhDRFHky6dPee/kBH+1ot3WUI0t8rLks88+pzg9p9vvslyvkEWJ\nNE55dO8hgixSk6MYDZRK4vX5p1yPp+xu72FoEmWWUCUBtt3ADxbkcUjszdCUJrqu8vXvvuLgzju8\nObtksYr42S9/hO9NkAUd6hJVUMj8kOPDB7x9+5zjB/c5ObnH50+eUGcRwWpMnCZoho2pqYTeGkvf\nMCH++D/5L2m1OiSFwnRWoWgSRRZiSibz+Q1dUWC19Oi3OozePMVt2rR6bQ4f3CNLN4lbr4YetSiT\npSFZkYImU2Q+FDl5KOIaMoNmD81QGY+myLJIs6limW10w6Lb7fLq9Qv80OOddx8hyip+GLJ755jl\nak0UJ9yMJ9zbG1COJVqGQ4JEd3cfS1O5uHzDzfUFHTMgVWpCb4rWbqEoCmkWoekNagRURUMzzA0G\nXlWRJZ31IiAvC3RDJU5LEBRqQaIuNuj/KPZRFJXlLEBXDYo8xTRFmq7F9k7vO9Xk96Ix1DWsvIjB\njkOjYeN5Aau1j21JRHHAwd72BupZVnjRiufPv+Fw/4CO22S1nKKqOmdv3lKXNWJVsLNzQFhrJHnN\nYr7i+O4hbddAlyqy9QzDaqNoEqYukCkiHdtE0wVW/oy4iDYy4OUaXZH55smX1GXK7fAcTSoJ/QJq\niSCKSaqaQjTRnT5ppRImNXWtICKiKCp5KSAWkEcBjYZJHa6JwhhJVZFkFUGUkTWF5XL5rT6goEpS\nqlwjz0MECrYHAxbTW6a3Y66HIzqdLoKksQo2MuWqFpB1B00zaRgSy/EZn376W/7hH/8jfv35l3z6\n+Vc8ODrm4uIMt91BNRTe+fCH/O6zLwnyksODHZIo5AcffMT49oa6FrAcl9lqzVZ/gN7sYhs6VS2g\nyRKKq5PEJVQqumahqjC6GdLr30csFd5/9B5zv0A3XPpOn7yS0TUTRZFJooS7hwfYhojbkLFtBUVU\nePHsCV/97lNkxaDV7RF5IZJm02i2MDUdSRKoRIWTD37CahmgSRqreEkUlER5DZrDzv49ottXGJqE\nLkvs9PvEVYrpWiArCKJKkFbESYagKmiKQNPWCdYL5CpDVxXUOkEsCm7OhzitJpPxlDTPSPOCrZ07\nzFfTTcrT/hFpGjNbzuk02/Q7LebjIUajg2moWIbOeDZlOBqzf9dld2ePPM95+ewr7t3Z5f/8V/87\nb4JLHjy4S2dwiGD6iIqLJNXUgGlZhGGIWWgIQo0sb+IH8qTEsuSNHLquEQQRQRBQNZmqzjAMF2+d\nkqY5iiSzXC15//FDRAUaTfc71eT3YsdQVhVWo0Vv55Dz0ZzRYoYsCUyuL5GqiL19m8nknNFwyNsX\n5/jrCEXWUM2Ntl/TbZbLzSZakg0U3WJ3d5c0CtClgsnNGTdvXiHlJbOra8QkIJheo9QpnY5Fu2Mh\nCRB6a06O72IpMlkc8uDoAFdXII9RxYrhzTVxHGMZGoamIlkWWreD2umR1gp+UhDGBYJgodpdBMsl\nqUWSotzkQcYho9EE3Woxm68J4wwEGc00ybOSz3/7G2xN4GCrgRB7vP3mK8Znp5y9fMlvP/2Mdz7+\nBNkeIFg9BNmhrhR0WUEsaxRJZD6foqoKYlXym1//FR9/+BGffPIJr1+/ptlpk+U5zWaTbrfLj3/6\nE3TL4fz6FsvtotsufpwgaSrX41viPGMZRewdP0S2HcKiwDJUTE0gLz10QyXLBeaLHH8d4C2HWEZN\nnOektcgvf/Uf0uj0WUcZhWyA3mHv4U8pJYekkhlOplxdnXP6+ilFHvOzH3+Eqcm8efGETrtNf3cX\nSXdQLAfNapLXAnbDQZIFhCLh/kGD3U7BbkvFLHJEP6TwZ6TBNd88/Uu0hsG9k4ds7exSCBKm7aKb\nFsf7Xfbcknt9g/j2FKvwaZETDt/y4qsv+fLTL5iPZrx9/pJwtUQXRbq2haNAx5TZ7TcokjkyMYOO\njVJHnBy0EbM56fqGxeQN/Z5B01U4OTlAqiLevvyC+fUL2nKOd3PKUdfmYDDgcO8ORRxDHqLLNaau\nUpSwXIdkSYrv+0RR9O2Vu8BoNELTFOqyIk1TJElEEDe8UW8doOsWuq5SVhlX1+fUdUFZ5ezv73/n\nmvxeTAyCIKCbJpKss1yN2d3r4Bom/niKbahkeUxZZwhiTeAnuG6PpKq5Hi/QdZVup0WvN6BhO3h+\nSpTnNBWZwJshCSV1VWxGxThicnNJz3VRlZTp+JrHdw9Zzjwsy2K1miDLG3lumUUUiUrHdZCpaDdb\niEWNYzqsPA9V1TGcJlqRk1cCqqggq+amSa1DlI6EqKjEoU9DF8mSFEPfbIzLGoq6pkJAkBTGt1c4\npkmjYTPoNbk+f4sXZliNNtJgj7PXz/nZz37G0aMf8Psnz1FUg+V4QhKvoEppuDaxt8C2DMooodNp\nMZ1NmE3HGIbFH/7R3+GzLz5jb/8Os8WC3f37JGnBzsEdXjx7ztn1kLuHB+zuHzGbTzYUYk3BsC26\nuwbNTo/p5RlCunHqubZFHEfIkkKWVwRejCzkmIaIrpukXohq27R6W+iGgq2CZFosFhG6rqKbGmE2\nxTIUrsc3yKJEo+Gi6DaOY5EkEcF0htPegFSyqiSv4WY4wtE1xvMhZRmShwF1Av70hipL8BcjmrZI\n/8ERpm1QVCVhGLO9t4WARpkVrCdXNF0Tb7rg9uwVuqrhex5X5xe4nS0UVUNRNSRJpEhzBFskS1OC\n1ZKV71EXGbKmEscxq+WEpm0wCiM6rQ43kynK/0Pdm8RIs6Xnec+Jec45s+aqf7z/nft2NymRTYqm\nRFMCRMACCBvySgsB3hjw2l56IcBeeuOFF4bpjWXv7I1NwJIpmuLct6c7/Pcfax5yjMiYZy+ieN2W\nITevTBCts6nIyKrKRCDiO+d83/u9T+VQGgqXZ+cgK+i6y3Q65eUXn/P2y8/44NkTwuUNVzfXHB2d\nYIRbJnJLW+U0dUleaZRNyXTcR1UEdZ13LtFJjm2b1HUNtPdu0gZtW5Nlabe9SFPqumU8HnJ5qbJc\nztnbe4amKVR8M8/Hn4sVA22Daaks1z66YWNZnf13lmx58uQJy5XPycNnZFlDlhXotodQHJJaZb5N\niQuwe0PGk10ct3OyETS4jgltxWg0JAh8DE2hLQtWtzfkYYjU1LTAZGeP/nBE07ZsAh/LsjAMgzAM\nkJUWxzJpaMmqGsUwkTQTy+uRphlV05LmBcv1BsOy6Q/HNG1LmqaUecao56HLEkWedr59Ozs0TUXb\nNmz9DXka0nddFndXfOvjD8mSlLYuUeqaMo6IgjVPnxzz0YfvURcFR8cPKKoGWVOpqorAX3fJV90g\n3obQtOiaxtHREXd3N2RZgmmaHB6dcL24I8lSXrx+hb+NQNY4eecZSVFzt/I5PD5BSAqe59DWNWVZ\no1o9rMEu3uQQPyyoK4Hn9fHDBbLWGY7WRUXiBzRZgtTUjEaDDtSrqvjBlsV6TZFXmLZDkuYYhvG1\nceloNMawHAzTpa4qtusldRETbTeUeQpN3eUcDKNjgtDi2Ab/9L//HS5Ov6IpNshVgCgDfuWXvs2D\noyO47zrUTY3JZEQah4TbBVdXb2nKhMs3L7h4/QraTgxkmCbP3vuAowePOXn8Lg+fvs/xo3fYOTxA\nUhR0zaRtBZ7nIURLFAYossA2TMIgIolizt6+7VadwZq7q3P2Z312Rx4jR4PMZ3doYSuCszevuL2+\nxjJMguWarb9CqnLKNCLLUqqmQ811D3lN0zRst1tM08RxnM7PUQbT1JFlgSRJ9PseWVpA28FrdUPm\n6PiADz54Rq/nkiQd4u6bjJ+5YhBC/LfAbwHztm0/uD83BP5H4AQ4Bf6Dtm039+/9Z8A/BmrgP2nb\n9nd/9teoqauI9abhk09+GVkuEZXP8ckO55fX3C1Snj17zMtXNwx3d7HdIaP9I27XS4o8IRUWppC4\nXa75wfe/j+U6qLKgSiPc/gjT1Nk/OsQPFhi6xHp+DZVG08AiSNnd3yMvQ+zBmL2DXaI4x3F7rNZn\nXJzf8PDhM7JKQl4lXK9ikiQlbySSMEHUJsFqye7OIVkRolsqM2sPzTZRFZkq2hCsz3l4uEuW6+Mu\n4QAAIABJREFUpGRRhSkrXbCoChzdJg1jjicD4s2Gu6uY4+Nj9h9OycuCN6++xB2NWH66opVshruP\nEG2Bbiq4nomp9qiKlNlwQLadM/Iser0eRVMTJSV5krKVFN559oTjxw/54ssX5EVD2YIiqWiWwQef\n/AJvXz7niy9f8ODhY67P3pBGMaY3QR9MKCtQPQjyz5BomAxt3nv/Ea9en+G4BrQKV6cX9DRBnWek\nec58fovljFBVQZsEWLrE3fyO49keP/j+nyG1a6QiRpc0hrNdDFOjZ9vkdc3nn/4Zh08+IlzPsXSZ\nnmORFg1JmtM2NYPRkN/+7d8mSzfs7c7Y3D6nP7JZzq8QbcnDh0+Jgi2m2+Ps5Wssx2SzXjDsOwTh\nljKtsG2PSphIikqYl/RGM3TTwTQ8yjwhCDaYRo+miJGR0FQD1+tEVP7ZW2zHosgr+sNdtqGPZxgY\nlkWSxmiSIPaXJGGErhnc3d6gywrTkcuLF2e4/QmvX71gOpqSZCnHj58heRJFo1MYxtdiJNu2ub5e\nMR6NkGWZpmmomxJNVdB1FSEpVFVBS41pmgihkmUBgb8GalzPQNMVEFLnLv0Nxl9mxfDfAX/vXzn3\nnwL/rG3bJ8A/u3+NEOI94B8C79//zX8thPiZdRJVVciziJ3JFFszSIItob+kbEo0y+HxO99isU5Z\n+xGaoeKOx9j9KY1ssE0rhGJSNxJxkmE7JoOeTVMXaIpgNBrQG/TRbYt+38Pr2ajKve3bYIzTG7IM\nIxRdx3Bc7N6Q85s7tvfahCzroq2qqpSSwt0yIIhzBpMpRdGJfERZksRhZwMmWkxLRZZqmjykyEJs\nXUZRNOJtSJqmGFonbxUtVGVJnadkecTOzg7D0Yz+YMRXX73k8uaa29tb8qpkPOkjmpSBZzAcuIyG\nPWRR49om3v3yu20aWiFQBF+7Bd8u5iRJQhzHmKbJ0dERm2CNpkjYtk0rZFTNYjTe4Xa5Igi2DHoe\ndVXw6sVz6rKkFiqD2SHeaJ/z6w3XdxsUVWIwdLE9kzJPibYpSRhTVwV5luLYBre3t4gWxqMhcbjC\n1Fou3zzH0mWkumU62eeddz9CKAZ5Kdj4AaEfEAdrqmRLFq5ZL26Iw5C6KrA9F1WzEIrOweEJo8kO\n3/+zP6auYpomxrV12kYm8LdURcnzLz5nb2fMcOCxtzMmy2Nc12Y8mTGY7LBzcITdn9Gb7JMJjVVS\n4qc51+uAq8WKy9s5ZSMhdJPVakOLgqpZ1I1gtdxwc7fif/3d/4MvvnzDchOyXm/Jo5R0m3B1ekGe\nJoTbDXJbodxXTD765BPyouLpk/eo64b1ckUU+PirJXd3d4gG2qpjTOR5TlnW1FXnAF3T3m8lQBYC\nSXTbA1nuyFVV1SklJ5MJs8kIgCiKUHTtG5crf2ZgaNv294H1v3L63wN+5/74d4B/8FPn/2nbtnnb\ntm+BV8Av/qzP+IvEiiLJOKZCla1oypCiEdwsIkx7QhZn+MsVeZ4jKSatYqGqBmkckWcJ62BNXpXs\n7x6gtoLlzQ2uYyBLDdE25PjwEEm09C2NpgiQRcVmtaYsazRNwd+uUTWDKG9pJZO2lZgOR3iGRVUW\nLJe3QNMxBjQHtz/EsCx0TSEJ10TbFUGwIdz4qHWBrVRsVueoSsGg72CbFoqisPXn6HJLWdYI2WO1\niknzit3dfcq6YjKeEW5TNv6WJC1pJI0obRCthKG26LJANCWKVCGLioOdGWkQEAc+g4FLfzigbCGK\nUxpZZrlcsl4vuxmnqtmdzajzjJvLt2ThhiYv2W5DTLuPpruUtcDyBkiyytXbr4jmp1BlbPOc4f4J\nlWaSNi3XV3N0WUdXFfIqp6wryrLE0nR0Veb29pYg2BAnEcF2i9Q2aBRQbpCKNXeXp1jumIzO1i5L\nS2yrR1XUbBZzPNdi6Flso4CyypEkCVnSsN0+mtln98FTvPEew8kOo/6IB/v7NGmEnEVYQBLFeD2X\ntMiI0wRZt5jOjvGGY8xej6IV+GnFJilR7QFZq9Mb77JzcMje4QMmsz2ms10moxGmrqGoMJ/PuVvM\nOXpwwtGDI/YORpwcT5mOh5RxSr5Z49/ecHV6jqLYxHmLbrsYXp/+dIZue8zncxQBe7Mdtn7QBdK0\nwF8HpFFGVeXosoShdYDa6XQHgKbpBHdrf4UkQdu2KEJCUxSSJMKyddqm8y65OL/ij//o+2yjHNvx\nyLMSRdZ+djT4qfFvmmOYtW17c398C8zuj/eBn5ZYXd6f+38NIcR/JIT4cyHEn/vbiHFvRJkm5Oka\nx5SwLIu3V2vM3i610JlfXuKqElLT0ko2m6gl8GOoalQqJoM+dZ4h2qZz051N0BUZRZZIwg1FEqIp\nKqoMnqNTZBFNWTG/67By61XAZOcYSXe5XoQomosfRGRZwXQ6xrQMFE0lLxsUw8LpjyhR0J0eg9GI\nOPJpqxTHUGjzgHB+gaPmPD6ZMerbqJLMcDhEVmVenZ1SShrO5IDp/gOePP2At1dX/Ivf/wNev3rF\nfLkh13rU5ozdk49YzmOWd2scw2J5e8O33nuKLjKOdvr86M//kIePDhlPXMoqYxNuuVmsMZw+/eGU\n/eMjhBBdY1Sesw0C/u5v/jqz6ZCL11+iUiJVDWVZ47gjru/WJK0G5pDhYMyn/+J3+ewP/3fqNODd\n73ybb33vV7kLImbTAwzDJkkyWlmhlRXWcUwrS+zv75JuVxzvTDCoMOWGeDVHKSOGtuDq/DU7O3v4\nccEPv3yF2R9RaSZ+USFsi4OHx8RFRNVWyIpDngt0zUNIBq1kUAqVbSkx2HnIB598D2dwwJ//4Dnn\nZ9es1gtevHpJGEeoqkzVlBimiR9ESJJFI6nojgGSwLQtHM8DITMejzFNHSEEe3t7eG6f8XBEEASs\nFnc8ffoYy9FRdA0hQxhtyfItx4cTnjyYMBvrGHqD65pYPQ/FHSNZY2p1QNKYrOMWxbQxbIvxZIDj\nGuiGQlXllEWGv/LRVR1dUzpJu2GQZx0fQsgKURIjqxKO41BVFYokIUugKQo0LVG0RZYFVZkzv1ni\neEPOz66RFB3pHnL7Tcb/7+Rj233iN4ZTtG3737Rt+922bb879DoTEl2TqIoUXVWpUKkw2Ds6YeP7\nXF2f4XlO53vXSmyCjCiKkYVEmeXMr6+grnG9TvCkaQaSpBBFW4Jgg7/e3JOcuyRMHHegENt20FSH\nopHZxhVFKXN6cYtQLPJKYDgesqqxWm/I85zBcIys6ghk6hbSsqZqWuoqx9JkTE1Ck1qKZMPQNckj\nn3CzJAoDDF1H03TySmI826dsJRqhkpYlQlKxbRdd1bieb+jNHqG5h2wSUCWF8/Nz/uRPP+WzH/+I\nP/6Xv0+0ueH1y8+Q2oy6ybE9m3fefYauWyA0Vsstimyi6zY7O3vEccwXX3xB01REUcQnn3yM5xhk\n4RLbaJGaAq/fw3L73K0jdg+fMZgeYZsW84vXbK7fkmUJ+w8eMJjs4QcxsqIxGAzQDBOETJZWaJrG\n+ds3WKpAb2NsueD29CsMkZNu16RpjmF6GHafL756Q5wWXC9XYNgUQsed7tPb3UfSbSpJwfXGTMZ7\nmJYHQkFWVSRFBSEjKzYVNh9991f5zvd+g3lccLGK+Pz1KV98+ZybmzuyKIa6QaKlrgqKLCWKErZx\nSBxtSeOAeLtCanPKLGIxv+bs7UuCzYpgu0HTFCzXoay7pizf9+8doDr+JE1FU+fopsIqjNmkFbIz\nZJU05MJh6VegOciqSVGVGLaFbpn80Z/+Ib2Bw8HhHp7nUWQ5shAoQqGoKySpw83leU5dl7RtTV3X\nKIr8NVimbbuthaZpX28VFUXBsA3atsXzvHva9TfbRsC/eWC4E0LsAtz/nN+fvwJ+umh6cH/u/3MI\nSaLveZRZiK5zTyqumOw/YBvnuG4nfLJtkyBKkTUbw/KQJZW6zCmSGNvSOTk+pKwqsqqjWHv9MZcX\nNwgh0yA6uIzr3l9YBdGCpqgosk7VKqQFmE6v68DMMvxtiCSrhNsIw/Lo9Yc0QiLLSypgNNvDMF0k\nScLQFIaeg6YCVUFb5WhSSxSsUdVuSZ/neWdUq7kUtUJeNTQI7u4W1K3AdV16rs1qvaGRLeZBxjbt\nboj1yudv/vL3+N4v/RI3Z2/R5Ja9WZ/HTx4wn9+yWi/Js4LVeouh25SVRJoVZGlOmmUcHh4SBAHP\nnz8nzWKEgF/+3i9w9vY5UbhGanPG4yE7B4fImo2fVExmD2lahcPZjJu3L8iLGHswYu/BY95eXBHH\nKdsgomkayqJhudkQxymubUAWIrItV6cvqNKQ68u3XF28ZrXZopoDPn9xitMfYjgupjWilj0avc/d\nKmc4PkFRHZKkoq07t+O66lqKq7qloQUkmlrQSBppo7H/5CP+zt//9/mVv/sPQLWxbZuHDx9CI0jC\nCEWWSNOYoig4Pz3j9PUbgs2CnmczGXuIOqeuUg72drAtg/F42InOpM65+vzsksVihWHauK7LsDdA\naiQc2yNNS25ufTRrgtE/QjJ36c/ewe4fYfb32EYlqyCkqBvKtuHt5Sn94YB14DMc9pnPb5Fl+X77\nUKCrMmVRdGQqSfoaNyf91PMtSVLHY6mqr/NJvu8DXdKyqqp7Apt5L4b66ylX/i/AP7o//kfA//xT\n5/+hEEIXQjwAngB/+rP+mSIr+PM5riVzffWS9XpOUQqm02PaViJOE5AEvdEUSXcI4wTqiu1qgdo2\npLGPZRss/DXLOOHB+x/Sag7Xy4iTJx8ymh2BrHF+fYtpOYxnUwb9Pv1+nyzJSaKc2XjGeDymqio8\n2+H09C1xvEXIsAoi9o4fYPXHpHmF5Q3RdBtF1pmMJjiGjtrW1FVG01QUbU0jqTSSiqJbmKbNxu/k\n0oeHhyiqxXK9ZRslXF9fAg2HOwdAZzzqeA6aLFOkEXdXl4RZzNOPP+SdTz5BNVQ++OAp05FHz3Vp\nZZVef8xwuMM2KVFkkzitub6dI6sSu7u7FPdL0vF4TJIkbLc+iArH1fjWR++wuDlFNCllkZAXKbqh\nkOcp8yDm6Om3WQedhdmLz3/QeV88fp+slri6nmOaFgKZrGqJ84ZtGCLXJUNbJVpdI8qc/cMDjo+P\n8fpjGm3Ij98smTz4GKc3u28/runbQ3rmCNEYqOiYko6NwJALymSJKhfUVQpthRDQtiWCHM00aBQN\nozfj3e/+Co8/+pv85//lf8Xf+/u/xenbM24urzh7/Yrbyyu2/hrLMHj3nSf8wne/xbPHD3ENAWXM\ndGiyOx1g6zJ9x8HQO7equu5K2navj3rvp5jEBW/fnDEejDk9v+OLF0vs4Tuo/adk0i45ExplTK14\nqPaAnb0jhJDZmYxZLOd89Mm3efLue+zuHfDFi+fEacJg2GPjL9FVOkNbXcEwNKr7e8r1bGRZ/ro6\nIcsdnKZpOg6F53lomkZd1+zv7+N5Xmcke7+q6LgVf/nxMwODEOJ/AP4IeEcIcSmE+MfAfwH8u0KI\nl8Bv3L+mbdvPgf8J+AL434D/uG3b+md9RlmWRNstRR4TBOtuaRRlne+erpJnCTs7O0iaRlxWFFWJ\nREWVhTiO2t0kMqimQW84pD/Z6foHTJeyUXD6I4pGEEYJedXNwGG4Rdc0mrLp6D8SlHnMNliRZlva\nOmUwsCjyFOQuOkuyilBUwjgir2o2qzVZtKXKEmxdQwJaAXnV0ioGRStjekPSssF1e6iahqZpSMiI\npsWxDLI0Jo5CqizFsT020Zb9vR20JkVkAdQJj955ys7REYY34PL2hvV6yfJuTpzmzJc+dauwXges\nlj6ff/kSXdeZzSacn59yd3dHUZQMekOGwyGPHz/ulvvn56RZxtHREbaposoNUlugSS1tmSHKGMtx\nsQZ7TPcfARLBck609bF7Q3b2DpEU9X7bpiNJMrKk0TQNd/MbktDn6rJrglpsttyuNt316M347vf+\nNg+efIRqGAwHPTxNZmiruIaEozc0mU8dL2mzFU2xIY3n5Oka2xCoUkVVptRFTLC5pq5Tsqrzbkhb\nCVST6/kKw3TRFZ2mqtn6AUf7ezw6PiYMA9q2pchyNFVGFqDJUOcJkb/g889+xHJ1zdXlOZtN5z7d\nti2qrqEoGv1+HwlBz/MIgpD1KsTpTYkyQYGGYjtgGDTUtAJaqSUIfcLtmij0efzgIaok8/LVWxTV\nZDSccHV1iaoKDE3QtBnzuyuqqqAoChzHQdOV+8pShCz/3xoH0zS//n66aXRNYvdBI45j6roLCt90\ntQB/CR1D27b/4b/mrb/zr/n9fwL8k2/yJYq8YDoeYxkqcVWArDAcT1ltfHq2yWp5x76ng9LSH06R\nmoY8XCGLgnG/D3VCXpbolkvZQNFIxHmDbDikaYEcJlRVgyyr1A3kRYWiqGRZRt0qyGVBWRYE4Zo8\nzeh5Fom/Znc2o6ElSnN0qeNUpGlMlhX4vo1talRZSpUV1GVCY0ogWQjNxnF0wrwhW65wDLXbi+sq\np2/OqNQ9bMeklVoMXUZHEAQbkBqiOGbfUlndnrK5vWG2t49jGYRxzCZYo6pKd0M0FbKiY5gOsmKw\njW5pi4bxYMh8Pmc4G1GlBbe3tzw+eUCcJpRlyWg0Qlbh+jpguVxydHTCex++z/nZFYW/QneHoAou\nbi9xJgZF6yEMD8sdY1pw+fY1J48tnr7zLhcvKtbrNSgWSZJhGw11XWMZBr6/wbJtsqpG0i1oGhAg\nTAfbm7LeRghgNb/DkGs+/8H/SVHkOJYG2R1FGmFaOnq8xPRGnJ+f8uSDX0SzPGRFI0tD8mSNrDuY\nutXNnEKgqjpF01BUNbbXo0pkZKmD1TiOx87ODre3c9xejzxNELJCzzX5wY9+TCMpSLJJlnSMSssy\nkWWBplmoqsx67dM0FjvjEf5mhb9copsumtcnaWrGgx5xktNQUNZbqHMoa26uz7GaGsOw6Xs9BsMJ\nr17fEOc1i9WW6f4xWR6j6BmG0SkvJUmiLHMkWe4e+KpCoiNaS0In3HZKyCDoEPdK3QFqOtByN9/b\nto2iaBSF/42Dw8+FJLppKvpDlSyNUW2HRtbQeiMUc0C2vSBaXdCOPkBIEtHmJabSkkYxnp4Tbxc8\nevwAyx1yfbfBcDxO314z7E2JkghLU1ndXjMY9LAPD5B1E98vqNKGbZJy+OwYyXK5urxFkjVGI5fc\n1CiCJePBjIvFgjfPT/nWh99BtAKlTnGVBk9qWK43pElJXoTMdvtYlotQdBRFp6bl7vYV44HDuO+Q\nlAl+lCAsG9GCJNckcczm7gqrb2AOHa6u75h4HsHtHdd3AaJp0UTJ/OwF4/GQ13/2JxR5ytX1Bbqs\n0B8OKbIcpScYjSZQ5ezvDLi4uGJ1d83Td94nWM1Z3FyBXFDTEMUbNNVkNtzhdnHLbJTw6NEDZrMZ\n//yf/wHDUQ9ZkRhMHYLNGYPBHq1+Qv/4MWL9KacvfkAdhfzyL37A4vaMZrOlLnOEXNNIXSLM3wZs\n2jXC6+PaQ1r9iHj7BqmKePDhDkFe8PzFp+x4Ko92d5lffIUul0iiwbMdgu2Ku9srNEngOTdsoozd\nk6es+iO80YzBbBfdAHKJNA+7pJsqd1i2osJxB3z56Zogzlle3KJJJZvNAlmCvKrJkhyv3+Pw+GHn\nj/nyjCwsqNqa/sBFlVSsnoGmqwhFYKgKosrZGVqM+y5vXn6Bn+YsgpRn3/k1klbrRGNxiC0EdRFR\nhTesF5dk8Zrj/UPKwmKwf4LWHzJPUp7+wi8Rrn2e7Txk49/RCjBsFU13OqWnpnRl+OWWXq/HeDzD\n933Konvg0zRFCBmvZ6AoCmkCMoLRwKIsM7I8wjR6RHFM0zRd6/Y3GD8XgUE3dPb3pnz/Rz+mNzlm\nMIa2rZHIacothwczDNuhKSsMRRCtb6nLzunGcj0cb4jmDJH8gqKSUWSToqjwQx9daZHbirZKGe3M\naPKcpmmI0xzDcemPJ+RCwzBD4jimNTSke7OPJMtIkpSqVtAMkyhIMHWNpi3RNYm6KVhvFshKg2Xt\nsfY3SJqJYQ8pq4Y0qzuoqaaSqypRHHN8csLnX91QJglS06LLKqNenyxLEUJgWy55UaOpKlWaE6wX\nlKnMk5NDtusFb968oT8cc3ZxRX84ZjrdIa9KZrtTgs2aPAy+tviaX1+wt7vD1cU5n/34Jxw/PkZq\noVZqiqKiZ3ucvj3n+PgBhm3x4OEhhqkxsGw0RcG/e06Zb9Esk6KqUKU+vf6EJo+5OP0K11aYjvqs\n/BCEQRyvKIoKIWTSNMXy+qi6TtZKnX9lWaFpfZpiy8mT99HrkMubO6qi4eGjE2TFIMpSet6I/ZN3\nsHWNP/uD3+Py/Ir3P/5Fep5DliVcXV1A21LGIbphEScZRRHTcx1c10SXHZ48fcjvnz7n0eMHZMES\nQ5eZ38y5vrumrmtkWeX07Vlna6eoWLqFpGiogKPL9PseaZ7gug6qJpP4AdvFHfOzV9zdLmgUHXc4\nIY23aOaQJA6o64ZWgiIJScIlWbxm1O9hWRbrPKVqJa4XG9K8oN/3GAynxP6GLK958+YN3zl49LWZ\nj6ZpqKr6dYIxTVMURaGqOj/IbgXQoCjdI5wkCeN+j6YVJElGU4O/CVitAnS9y0t8k/FzERhUVe0E\nLLJM29bQStDkrG5fcnv6OQd7u4RhSJVnVEVGEga0dYmkwsff/RZZLfA3MY1sYugedZMiSfDs6UO+\n+MmnGDo0TUEYhniaiq6rbJqW4WBEhUwt6fT7Y5qqxTJMLu+uGI0GlHWBpMj0zDHBNqbvepi2SRql\nRPEGmoK2LnA8hziOOnUkLfO7JY2kIEs6mmETJx3rwPM8bNumzDPWq0WXFGxqyrwg8AOqRiLNyq4M\nGsXYroOuKjRVzjZYs1kHlHmOZXQNM00rUBUNIUEjK7SqTHWv4+j1elRFiS6Da+tM9x9xu7oj02Mc\nu8ewN6SqGk6vztEUndn+Ph+8/x7Pv/qKfJ2wN9ohPdzlfHGKMW5QjBGaNkPRE5r0lvn1G0TbMh47\nLBYLEA2SBHGccnx4TBhuKKWu7i4Ll2jV4g0HREmNEB5Vk9L3dKJgi2QPSVsLTbKRLA/F1BGGQlrX\nPPvgF+iN9jqEXRwiNAdZKMRJhqLYDCZ7KKqKEDLxdkOahzgmDPsW/mbJ490Jud/ib7bs7x/y63/r\n1xGi5W65YONHbLc+/mZL3YJhOTRNy2g0YjqdcHPbFdSKosCzLXYmY8JgQ5nnXWekpFJHG8owIg87\ndN829JGomU2H9PsnmIqBYjjMrBFVLQjCEFU3Wa/XhOstTVmwt7NPWuXEYcho0ANJYbFY0Ov1um2C\nolCWJVVVUVZVd03vE5FhGN+vHrqtQlnWLNc+imKwWm24vVuwfzAjz/Nv9Ez+XASGqqp5+eoVD44O\nOb0JKLIMWTTE8zekwQ1bW8cdjqjrmtl4yDwLiMqap+98RIlOmsPNOuTk+AlFXmNqsL67IAtqVEVg\nuy6bIEAxS0pJIskL+uMRhu0gmT2kSsaxJS5OX+MaMnkSMN7p4w0nbEuF9aagbQRv375FlqBpSybT\nAZvNBkmUDPo2dZmT5BWtYiFpHrqqI3QJ07DZZgESCmXV8uLFa8qyRjcgThMM0aKrKoqikucymbBo\naZGEQp6kJNs1J0d7XF9csl6ucL0+Vdmwd/CQB08/oEHi9//o9+gXNaaqEeY1s8NjRF1w8eYVl03O\naDYlyXKePH5GURRkaYIQLaPJjJNaYrVeoBgGmqFxeHzE+as3rG9u2J+N6e9pvHhzQ5mnKM4j7OEh\n6Sogja7ZG49QJQlLl6glieHwkM3K5+GhwWAw4TYOKcuSgozeeMjnP/wTDt/7LZqiwXP6VM2cpCh4\nfPKUspGp0GiExPX1mvFwhCJKbKnHYEfl8vaaRx9+SCOryIbJo0cfUJcNBd1sKUkNXr/Hen5LkiZI\nksRv/uZvsLm5oSgKer0Bi8WSqCyY7MzQ7B4OGrVQ2T08YbveYrom8TbEcQwenewxcHSgRbQt/iag\nyhIGrkfP9UhCn+VmS5bXOLZJHIccP36MJQtsd0iLxPX1Nbv7R8iA43r4UY7bG3B2fsGDo12qNGe4\ne0AULZB1hc16TuzPkXQboaj4vk+/378PAGHnMbn+f4qQ0zRmb2+Hpq7Z+D41DUlcU9cy88UWy7E5\nPNz/q69K/HWMsqoo6gZFlbFMlTjyif0lUpbcy0M1HNvrWIxJTF2VjMdjln7I2eUNy02EZXtEYUKw\n8UniLXG8YT6/RFFVTGeAbHig2lSSTpSlqLpGA7R1jef1MU2dvmPTFAWaotLvjYnijLv5Cs9zuLm5\n+bp8tbuzT5Ik7O1PMU2Zps5pmup+qdfQConNNqShJi8LZEWjaRXKSqAoXR3ccZxuho22ZGWOH8Uo\nVp9MGKB3WHXX6VHkDcu1z2K+wnVdaiArGq7uVqQVrLYZUdqgaRZ1I6O7Qy5v51zd3jEcDlmsltRt\nS15DUcHh8SOSNANZwY9DDh4cY3tDorTg4maB5Q759nf/BpphcH47x7UdNAqk3EdqE3THYDjZp6ol\n6rqh53rIEmRJjIxAUw0CP0SRO33+X+j3EVJXQqtD4uAK/+4NL37yKbam0LY1az+iRqJuJSxvSIVE\nksPdJqZoFCaTKYG/wtAV2rokDGPivKaRFDTLoRUqLRJCVgm2EWFagFAJowSvPySKIuyeh+YOwOzT\nGj1WUYpi9MgbibRpaYTCZHePyWyftGwQkkKvN8QyXfYP9pjuzNgEAT/84Q85ffOaPAnpOyqzoUff\nNXAMBc82yKKQRycP+M4n38GzHTzXZRsEOKaBa5ucHB/RHzioisTl1SlP3nnCcOjhuRavvvqMbeAj\nSRK6ruO6LmVZ0rYtcRx315JOGVkURXdP1DVVXeP2e4RxjG64RHFFuM2IkrxTp7b/FiYfQeA4Hm1b\nMxz16A08sqjEP4tI/ZhbacnoQOvYiI6BYR6xTWsqWWc4O8S0ByyWG64uLxn3Xa7OnmMOZGOcAAAg\nAElEQVRr0B+5LNcRitOANkUyhtytLlgHIQeHexi2QZJE3K23jEyV6WzAzflbTF3FcvqohoPTT4mS\nEFVVGQxmNGXG3d0VT54+pMxCXFunKFMG0z10a0AQN4S5jKykxHHENgpxDZWmrYijDFnV0SybwXBE\nuA3wQ4msKrH6HstGxtL7KLaFkAIkVcVIY/IWJAnSrMYeDPDjnO9+79dR7AmL+Tmut0OVymzjmLap\nOXzwjL2pSxWvmeztcXW3ZLZ/jDsc4cc50/0TyrZG0TTmmy3OcMyr07e8v/+Is+s1O5Mh05NHrJoz\nri7v+OTdp7z8/Cf85MvfQ7ImPDw4olX7LJcxlpIhVwJd0qjLhiTJCYIQ3ZBJs4K6bhD3LdyW5bCa\nf0Xoz1GkDFcKeTx7SN6U5OmWunKphYyKhibJyKZFJY3J6y2KrnJ1foGiWtijY5AUUDQUVb/PxMuI\nSsJ1O2k8ikKZFMwOc9bXF8imwe7BPrkzpdU90jRh+uADRCPIsgQDi0JUvLmZY6oahq6iti3RV69J\n4pjRyMQ0TXYOd9k9OsC2bYosYr3ckOcpjmOxWt6ye3BMzxvz2adfIGS4m18TJAWj8QHHD9+llQUP\nj465unmFYQpsZ8Ll5Sm6pRKGa3b3H2Lq8tdour/YJjiOg2EYzBcLFEXBdd2vRU5t25HJ7xZzhoMx\nP/j0T9hGJXFSo2pO5/vx1yRw+isdQsjM9o4Rus2zd9/vFGdtxXyxIq/pehMcB0WWAQnPdlEkmels\nD0X3EHofWetm4chfkucx3tBj9/gYe9Q1rwhJRVYNBCpV1SAkCVUzKIqMVy+fc3l1TrRdUeZRR3Au\nGuK8YjFfdcAP06ESGsgaKCpBmCDJJp47pM4b8iSnyitkWQVJRlIMFM1CQsbfBJiGA5JEKxqELBEG\nEVmcouomqqGTVS2G2aOoBJVQieuGUkj0vBFKK6HKGkVdkOYFSVrx+Nl3SEsFVJOd3V2CICDPS/YO\nDlkHW07PrigqQdsKHj16xPX1JXVdYhkafrDk/PyUZBuzDUtq1WA4nVLXJYP+mFVQERYt77z7AUlR\nUJQ1uwc7HE9tSDuOwWi8Qytr+FGMZuvM9sa4lknfsdiGS7bBmraoKOKUsi5xTB1LEch1zMBVGA8s\n3n90hNSEiDpCk9KOsZGuESIFkVM2MYYmo2sKabiFJmN1dwV5SFOn1FVO21TItCgImqYFodIbTWgl\nE92bMpgesdiEfO9X/haWbaJIXYfkNsoJ4gbZdPEGUzTDxLI9dvaOcXsjDN1ivV4jpJbRoM/jkyeM\nxlNWy4Cb2zlnZ285PT+nKEsaOojOZrPh5uqa1y9eMp/PAYnd3T0O9nf59sfv0VRbmjzk/OVPCBfX\nZLGPoQtcVycLl+TbNXURI9GSxBlZluH7PoZhsFp196EsSbRNQ1N3CeqiKEAS5K1gvk4J04p3P3if\nuigRUpcz02Ttr96P4a9jGKZJKXS0nkXeNrh9l6asUHWNvGlwvT55klKXJVGYYuoam8WSwYP3kcwB\nZWtRojGcTPDLDX6wxh19RKmY+ElMfyLQVIk8SWnLAkk0SJrO1WKBavd4/PAB0eIGw9FBVMR5yjKI\nsdIKx7ZRVZXeeIegaJAMi1bWiIsa0zKY7Bxyt1jhtRJtDX6wZR5XaKpFS0OWpBhKJ2yybIPb1S2j\n8TEKBvG2IIt9ZnsjhKQACi0SfhRj6hptWWG4NqvrU/r2mFpS8Po28TKjqVUaoD+eMH97S5RtmUyn\n6KaBkDQkVSOKKrIoY75aEwcb3nz1OQdHh5RZgmPoXL25YPTgI1Sjx0iTuX77mg8/3iNSTPIyIt/G\n9Psel4s5RztTLHnFbq+lihdgq2iWzXwzZ7Y/Zr5aYmoGu7sDdHNCmkQoWDiaRa60xP4KqU5QlIqe\n22OzXlCpgjBYUbbQNx3m1887spY7QLVcNE0jjEPizR2aKDFUSHoRmqaxY9nYgwNErSGkbn6r6xah\nKohGQzZt5LLmwTu7fPHjH2LYDqoiWN1FiNZgd7ZHlle0DYTxhsXdNYN+n7YqsVSZcOtzsDPF0iWi\nKOLs9AZJbijqisHAw3ZMdL3TNnjWAKFIjHd2qZoaJJ2H+gBoqJuc4uaG1fIaWQiiKMIydHqa4Ga+\nJNQlxn0PkcUcTMZQF2i6im5q5HlOv9/HsqwOPCMEhmqgCImmrMjihCTJ2EYZp9drLi+WKLqLAvQH\nNjvTPlVVkSQZo6HxjZ7Jn4vAgBAo7pSrmytaAZOhzf7ukCRJsIYDVEWQbFfMby+Jl7coioJiWIxG\nI3LRds0pmkqR+2yWN6iSTBqW9AYOPcshWF+xjSNmxgcIqWZ3NiVNc9zeFKc/Q9d1NrLg7uKzLvt7\n3+IabkOoc26uffq7J7juiLKV2Nt5zPXtNWW55GA2QDMt9o6OOLtcoJgmfX2IY414/cUf8N7DESop\nYbQk3m6xNJuibvD9FbIqMRzNSLKazcZHb8d4kz6SCpEfsDf2iBd3tHXFcDDldnWHZWs88Aa8evVj\nBtMDmrZmu1kjNw2moXJ5fU0jK8jWkCRNiMoAFQNFs9lsQhxzw9/4xV9mPp9zwRW3t5fMtxFPHj2g\nKFU+/fRTzOkJ3mgGVdYh1jSNIEx4+M77BHHEm9O3nTPW2CWO5ui2zkyZcXt5RX86wOpZNKJBFh5n\nb96y+/EIXRFIto5tmhR5RVW2VFXDcjUny2J2dvY5GXtIiszl1TmeOibaJFi2i9AqHF3j7du3LL98\ngVAcnn3n14jSFIGMrtsIIZBklSiMaNoS1XKoq4b5Nsad7vMvv/8Z7z095sVXP6FVbCzbI89rNEUl\n8O/YGdkU8RxZCMpaQWoL6kpmm5VMJ2O8Xp8gCPB9n69evmRv96DzBnEHzDed54GQWmzHYdgfsFiG\n1G2FJLqGJ1WWoK2x1RZVVMRxQluV3J6fcf0y4eN3n9F3LExF4e7uhiNvhm3bNE3DYrHANE3KskQo\ngjwv0VUN23aJUvjBD15werliOBxzfnbDe0+POTzYRUbw+PEeut6SJP8W6hjqFlD6jHcs+sOWOLwm\nihNMS8VzTXq2QbTdUCQxw2EfIUtIatc5mbUlVaXT7zmEmxJF6QxQbN1EqRX81Yr+UGfY07AdnSRX\ncXseq/UGS7i0SkEUZShy54gjZBnHsu5JUqLrYpMlVFmhbQWqbiHJEpJYEIQbJFGgGiq9fh91HrD0\nI1TXQ5I1HMtCU1qkpsRQTYSQUBWLNM7Zhj5lU+I4NsPhlI1fESc+RuYytDwaqUWUHXjG9UwkRUaR\nDXRVBa0hDC4wDA3NdJGpiOMNadwnihJMp888iBj2RzhIKHVMlOVUaYqqGoBC3UholglhDFXJ4nbF\n0cm7PH/1GeQRIu1RZTH7013ePl+jyRJFK5B1lYdPjgjmlyhqy85sxHbjMxlNCUyVbRJQ6xKD0Zjl\nbYIkFPS2JitTbq+vmOwdMxoMkSUo0oAoyXBdD9O2yZMU3/fZmY4wDQXX6JOVBYPJAFkIvI8/Ji8l\n9o5PCNYBmjfoEG9thqLpZFmGrCpQNyiyhLuzS5nG/NKv/hqNKHGHPX79b/87RGGMquoIIZMnMWnm\n8n8x92a9lt1pmtdvzfPaa8/7zBFxYvKUdjnLmVnVVXRXIwQtwQ1IXCGuQHw3LhAXIOgSXQNkZedk\np+3McITDMZ5xz3uveV6LixVtCS4AS4D8/wBHR0v7/Q/v+zy/x3N11usVYiugqxpFmkHbUqU5RVnx\n+s0rDMfG7Dl89hd/hSLrxGlCKyhIlozwjpEgqDaX8xWKojEcjYjjED/csViE6O/Gt7pmIisKNRIW\nIrYs8OrFCz5yXaSioKd1LAZJkrBtmzDspjv/Tt5cVjkNNopm0LQJcdLQ82YoskqRxSRh1NVJC46t\nEYRrbMv7QTX5o+gxaKrOdHYP3ZyyXuU0rUmUlDiWyZ07x/j7JXm8RxSrd1Zpq2Pd9WxUGcJgQxr7\n6IqKphnUtYDQiqznC/zNms1ywdHB7F1HV0TRVLKiYTya4Q3GZFnDZu+jaV0Ibr/fMQvTOCINA3RN\nRtFUqrZhuwuJkuz7nMjb+TW2bbPb7XC9Ho7joOkmAmAZJovFgvnilqou2e+2XVNLFjENGW/gohg2\nB8cPGE6OuL2+ItqvCDcLiiRgv1kQ7Nac3DtlcjCjKDphlW0oCFVCnuzIwjXjfo+ebdGzDabTCaqs\nIcoqaSUSVS1ZI2LZPXTdBFEkTBJ0w+bBo4c0bc56fs3t7YK8FfD6fbJ4z2p9y8HBFGQDb3pII2n4\naU4jCqiGiu1YBPstQlOzuL0h2O+YjIcMRyN028YaDDrBFyWmXFFmMXVd8/SbZzx9+pT1aktVNQxH\nBxycPqRVHATDZXJ6F0l1EBWTVpTp9waouoakaIiSiucNWM4XiGWKJjSdl4WGoiqoqWmaGtoaSRaY\nz286gpFucP/hY5b7AFWVMVQBVaipoh2aVGFrAopQY6oS08mQ6XjEo8cPOT45IatLShpO791lOuuS\n02sUcmTSUqaWLATdxR4eIZkD/LRGVEymR4fIuoZqGTg9l7qq8AY9ECUGsyNuV3s0s4ciG7x5eYWA\nzNdfPUPVLUzDQRS6MzvPcy4uLr63WsdJgqjIlGU3CYujhKoWsMw+sqig6zquY2EaCsO+02WEqCI/\ncCjx47gxyLJAf6BTtzba6BHr65dMJhq3zks0oaVva9S1TriukYSW1eIGRVH4w2//icHsHmKjsvN9\nBn2LHJVWkpGVlrwIEdoSXfXYbiuMgUArKGiqTRzP2e4DLMFBUjUERYNCwXU9Li4uGE9O0WWJOk1Y\n3IYMzhJE3aSRarIixe3blEWEq3tIQstmvUZWPXS1oyoXWc2bzRK1hWFPZzqasFruycINVVbiGDJl\nlqNoE4JUxp3c5c4Dn3i3Rsj3KHVO0VYMXItev0tCdl8YTCYz0jxjc/OCKi1x+zYPzu+R+GuC7Q53\nNKCsS0RdoxUEDHeIXMeIlEw0EaFtiZKE6fSI+XrBZ59+yDd/esU+j9kFMa43wU43tFLJfv4Wc3CE\nMX1IcnuFToLn6fi7JapiMJseE+03HM+mZIGPa08xhwN+/jf/ku3G5+3LK6osog4vKaI1bVnhOg7T\ngyNU3eDNy6ccTWesgwxB0RkOD2nrmjCOWWwj2qrEMWE0GtIfdLFvsiJhAsubFxzIDc7wlLJKUTST\nOA2o04jJdEAchIwGPbIkxQ8DbK/P/fc/ZHv5nLqsWK6uKeMEx7HY7nf4wQ7NMPjqqyfUVcN4OuGf\n/8u/4aOf/RRBFNnuYmRJQ7ZNFNPtIuFUmUY2aASTsBLJGo3JZIokNgiaRF7EaIZBU9UYjo2su+x2\nKV+/WDK5/zGr1QrN8DD7OXGw4+TOfezpGaY3QBBbPM/j7du3DAYDqqqiyCtcd4Asg0BDmOzJ66wL\n1G1yTE1k4FkI1EiigGXq9EcWt+uaZ88uflhN/n9T6j9stW2JZWc8ffUST7MRZInVags01FVG3+vz\n+sUSVVYwDImiKAiTENGRyNKQonYYeAMU3aQ3OGB1e4MfB5RZiCiKHBzcQdP6KJpNWTSIrUjdNEiK\njCQJbCKfJs+hbUiSBFmWyfMcuVEQ6gZbNxElgawqaYWGihzNgPVix+GoR1W+M7LoIgOnTwNUReeE\ny7KCZZZSPmzfOeMi2rKhUURMQ6SVZfJKIm9kzu8/5MnvfkmV5fQdG0lsOD09YrNdEUZbFLX7e7Ko\nM+oP2ezWNPWGuS0zHgy4nV8jtTWGriHonRNV1nRaRJqmwjI16rJz7V3e3qDqBo4m8fjxGd+8WXG9\nvEGSpzwcD3j+7ROWUcP9vzhH1EzcCbz58u/IYh1ZVhnYfcL1Levlhknf5WZ3iSprSLJOllcohsls\nNuPy1XOqPODkYEJbwmAwIAgCpDRjMBiSFSWWqSOoFm1ds9lt2aw2DAYDsrpiYA3JWoV1WKKJCqIk\ncXH5HGvdUZLPemMQIIkrhLqgZ+vsl7dIikaUJRRxjqyIeN6QP3z+Owp/zv72iqooochpqhpdM5g8\nOkRA5PREYDge0ev3yescdJmiaBiMj7ldrEAxWO59BuMjdNlENyxEJFRVJg0TWqEmLxIMJFS9M+NV\nTYntOqz9hELUGR7exRr2eHO7IykbhrM7TA6OWEcJs7sPSXIwdR3f330vf3YcB0lUCJMUWdUQBBBl\nkbxMKKsMVWwQhBbP65PnIW3VYpvdSFOVDKryh7GUfhQbQxwFiPWes5mNa42YX1dsbnJs28XQLVRB\nosiDbtxkKDSSgCEAgoSCiGzpVIJMUjRdepGpU1Y5qiYym06QRBFZgHC/A1HCMHoIgFikNEVIW1e0\niMRRhiyoyJTs9wFnH39AEkiEQUy0XVNqLbrVJ65y/N2aIokx1BnL5RyEhAaNNmuhktj6a8oqRVBb\naCoEWcByTBRNQshKsiZFVgziVsTqe2yWWwxrxPTwjCLsaNY0BXEYE4UZb6+uUTSV16+v8UYzzu6/\nh3r9mtev/4TdG6HIFpIkILVdow61JcliqqLEMhQyTaUoczRVIdjv6PVH2IpOXcW0Ykl/YLJflGw2\nG9ZoCHUFZYpCwWZfQdtgun3qMsZUVYqioqxb+oMxsiwyHA9ZbW85OzwkL0R0y6Y3GnB7CdneZ19B\nIwCCgKQoZEWJZ+skcYBnO2R5RVG1yKKMbbscnp507tcMqryl1zdoS5/A31Kke0ylx2//139gl5fM\njh/Qn5wiiirUBXWVd7L5tqXKC371+R/47Bc/5875I7J40onX/DXnxzOW81sURaFBQNatd0xRnZvF\nmunhFE2R2WchFQKT6SFJVrKOYsLQp6w61aWpGBjDIaoscXt1ga6K9OwBDSWxHyAIElFaUKEj6Sai\nZpAmOQ8fPuTy4gZBNanrBs212e8SSmRUpWQ46lPXbXdIySJNU5NnncFKkFsMw3hHNGsQ2wZd03Bs\nldvrLZbukRc18+UaQZLJ8/9b+sH/Yf0oegxlXvDbv/1b2v0OTahxHYtH7z+ibBpM0+XrL/9IW1dY\nhtZFkksKVdMQrPbUeY5lqziOgynbNEWOZWrokkLP9NBlAduAPFmhKQ3OYEgh65weHfH22VeQ+ZRl\njdiqlAWIaJiyxXQ4QzIsSlnDMAzSYEu8XdLKJq3UY7cuUOhUaKapk+c5UbSnKGNWywvmy2tUqUVq\ncgxLpKbF6Y+wbYejswM01eDo8AxFFdkGK7KqJsoUTHeKM+xzeu+I0WSE5bjYbp/NekscpYhmj2/f\nrrhYh6yiksPjj0hzhQqR84cPePH8CW0Voooxd088DgcqrtriuQ7z1ZK9H3I0O+D5119x9fIZYRiS\nVTUtNaeTIbvlnAiZWu9jWyY33/4OW0yRJZX+9AFJpnT+BhEGwzGq2SOvBOIiI29S/DhCVh0kZQi6\nyfjoiCKuyKMEURSI0ozFZsPO35MXKW9fv+TNmze0kkQQZZhWH68/JAgCFEkiCXb0TZnLl9/w9tUT\nqjzg8GDEyOvRdxyizQXb9WvqMkdWHFTdQVUMsiSiKVIsXeLjjz9CMU1Gp/c4efxTPvjF3/DTf/7v\n8+3bVyR5RhSESLWATI2mgCw2GKpEGafEmwBL0TAUlTwJaasUS4KhKeGqFVoV0WZ7vv3618wv/oRn\nC2hiQZNGLC6umF8uODl9iN2bYg0mOP1BN3pUDC5v9/Qmp4SCzV70uPfxX6MoDpblgCiw2wcI/85v\nIkmUZU5d5xiGRhxGpFFOntUdXbzfw3M02iZD13Usu8/LNwvW25xXb+ec3rnzg2ryR3FjaKqGJAgJ\ntis2+07e/Oblc0YHU/w4Ii8LyrykFUTsRqBp6o6OWyUEuxXOeAZVTF2IZGFIW1YYlklNTV52BOL1\ndkeTaaCoGIqMbrvI+pY4y5kd3EWoGy73b3Acnf1+iWvbNHlJW1a0QkmWR1SKDk2LbbnomkMSXtE2\nAnGcMpkdkFQddEaVDWQEXLdPvrvGMAyipCBNc/yNz9DttOtxHJOnObozxDYUVLlBsiSCoqGlRta7\nhluNgKzpqLJGFKfs/ICjO538Oa8bdusrRoLL9U2OYRh8++23DGYHfPaX56yXKyxNZr6PCXZbZqMh\noiDx3gcfstuvUQwFGh05lSgqME2VfbxndniELh7z7Om3qKs51uiYqhGZHd8lWL0lThM0CaIoYH5x\nwWzm8vZygTPp5LdlUzM5OMKfX+IX12x2W0xBxKhrjo87WlW8X6CpIq7XjSmLMqOqCqLQZzj0SMMQ\ngZInT76i1+tCi8W2oaxa2lbi5PiQVGqRRYnl/Ib+UKXSJETNRjN7XSNSVZkczShFGdvxWN3OefbV\nlxxNXGyzx/72Bs9x2GxWiD6ImkSw3VCWNTQtbs/rGt79A6o0RhIV4u0SqSkQRZmBbVALIo4zQ2hb\naApqWURWGtq2xjQctruA9Tbg9PwRaQlhGKP2pkj2hEzQsQYebduSNQ1BGuIqLnnesTO22333jJAV\nVusrnJ4LdDcVR1ZRVAlLt1BlhcHAQpFb0hSC/ZrV2kdWFbIkpyz+z6D3/+v1o9gYREFgOhgRrDcc\nn98nKxNsSyMJduiyjGkbvF2uqRGQZIu8zZDaCtoasSqR2xx/cYWpmIjUWJZFntXs9itERSMrShbL\nLRP3BMUwaFuokRhOj0CQyOuaNq+J05jZ0EM1BLI0pM4LmrLCNHUkzWBXNohAXjQ0tYQodPTdsmqQ\nNJ3ZeMxqG9OUIlmSIioCltnj4PCUm9v1O917Sxh1neUw8inSmvnFa04efUAcBMhiha5JRFmK6/Sp\nShnNsCjrAiSNsqzRdZ0kLdGtPoEfMpidsF1dYGpDBsMZZXXLm1ev+dkv/ooqjbhcrVA0mdl0yng8\nZutHnZtVkfEjn+HwhEHr4Ecl7z1+wO+ffA6qzenBDLfnsLl9y3a7Z3R0H9MaoKU+QrtFIEfTJaBB\nECQ++OAjbvcB+zDgaHRAf/ABVy9ekNdPsV0bRdMoioq8rJFF2K8XiE2NINaE4Z6GGoEKypI0DKir\ngtDfMhw5eLaJKDRUZYWpmfR7A3brFXN/j1PJOAOV84cfk5YlhmYhCi1xktA00MgGIBKnXXbnndMz\nqmTfUcJEmVevXlPXNe7Awe65KKKCZVk8efKEoviOuqy5c3afKInZrHfkVQmiyNHREVUDTs99d6Wv\nUCQJ2zEJtxECDXULQZBgGg7L5RbdcomTBKmQ8HoDLKtrqopii9pE7BevcZz76GaPKIpIshRNM7Cd\nHpPZAVmWdYzNsuyEd47NaDalLCqSNEBoDW6XAaY+JMkq4qjAjxK8vvuDavJHsTHUdcXN9SVnd+5Q\nJgGKKDN0TcQ6JU9jbNtkdnhAVrVsoxDD1HFtm918x8HApU4jqqwmEwJaOgaerBvcLPZ8+umnzOe3\n7IKAQwGmozHL5RJJ03FMg20Qo+YxQtMyHHvkVY7V88gi0BQVVdXZ+zvcvsXqdo43zdFVHdN2KH0B\n3/cRJJmykShbAVk30CUJsamI/RTXVpgv1gwOzwjjHD+IiQcm88USVdH45L2HPHv5lvDmBbZtMxnY\n+IrD1dUlaa3RtBqSZmP2NJIgpaVLZk6TBMPpIWo269VrBq5HmlccTkYgSPhxwpe/+bds5jdURcnB\nyRnTyQGy5lKIDZUAA8/jyy/+LWUpocp9bNVlsb3ieHbIZrlh7E3oeRMkNsRpSOKvcIxjhpMTXj17\niUHGsO8yVxWKvEIQS7IkB7FB7/Wgljh7/Clf/vrvEKoMWzUxFQVEgVYAW5NZrNbY8hnoMmKZIeQR\nqlhw/eol/X6P4cDh3ukxaRKgqRJJWPPm1UvWxoIXL14wODjCcnxEa816+QLNmiGbFkgmkiahKRpB\nlJBmAYOeRy00jA/PWF6WmM6Qb1+/4ZNPPuH+nTP8oqGgRVc11psVP/vrGW3T4Fom/vya3U5GExtu\nF0sUTWa3uMEwLMIwIkkjfN9HUiXOTu9yducEsgalbzE9vkODyM5PsF2b6VAj2K4Q/YBwmRP5Adc3\nl7iuxcHxAa+ef80/+w/+UzTVw9T7LFYx313MOTycoesGsqyi6yZpkmBqMobaYhsyQSNSIbNYZDx8\n5CIoMoqm4TRuhzL4AetH0WMwLZPj40MGQw8BSJIUz7GRaUmimF6vh+HaiKqGN5nhDsdoZo+y6jDw\nggCSUCNRU+cZYRhTZAVhnNIg0ggChm5hmzqKINDWDUnY7eiiUGNqIjIpXt/tTCeNSs8bkeYJmqnR\nNjKqYuLv9tC0iKJI0ZbUbWdyaRBpRIksL7vY9DxH1yR0XcFQVSazKQhCFzFWlwiSjKyobNdrTEPi\nw0d3UcWcp1//nu1mieu6pHlDktY4vQmNoJNXEqLuIMgKlqGRBNuuv2JZNLRUZU0YJWy2ISAy9Pq4\njoVQV1RZzrNnz1EMm6wWUd0hRauDaDE7POPp06e8ffOSPE8RUNEFiWyzYHF1SV6DKCtE/o5of0MY\n+lRIaLpJ3ZQYapeXsVisGI1G1FXGdrdEMRTSVubug08Yz05QVJ0sy1D1TvmYpilRGEBVUER7Sn9D\nFe8JtrdU6R7fXxCHW0ajEZqmocoKy+WcxfyG0bhPnATkec6je/fpaSrry+c0yQrqlNVywX6/R5QU\nGiRUVWPUHyDRUtYNw+kBhu0RpjkP3/uIvG5YbNZkdYmoyLRCxwhpm4aiyJjP52z2GxqhoRVb+uMB\nXr+P2evi6tM0ZTyacv7gEffuPmQwGHFzu2KxXmGZMjcXr3j57TNuL17xr/+H/47X333NV5//ki9/\n+0u++eMXrJZzNqs1SZJiWi6PH72H47hIkkGaQxiVfP75E9KshbajXYuiiKUbiEJNmYcYmoAiQ5rk\nhHHFNy++w/UsXNtA01RM0/5BNfnjuDE0Nc9fPGOxXqHbPaI0Q1Mlgs2Om4u3jCcTLMdFtiSc0QFZ\nktNmObphkmQ5vapCVSQUJLK0IE9S/Djj8OiMtKhpm+4d1pYl282KLIlJ45BYai808/AAACAASURB\nVLE0lcXVK2xD5OhwSLyP2bZpp2tQROq2RdEsdN1i1B+QZh0qq61rDF1FFAWysgJRpGgEqrJGAEaD\nPpaUUqQhSAINLUWR0bYtaZKjKEonhpIkmiqnb6s0ZYKmyrh2j6JsqZMaI67J6ndAFmo0TaNIIigz\ngv0Sd6TiuT3S/ZKqLkASKesaw7Coq5LxeEyoxVRhwS5IEQuR48kd1MZg7W+xTI/T4xNev71gMjlD\nVUzS/Q6zrVhcXmJ7XWSe1GTcbPf4/grDsPDGQ8LbNZvtugOIlBVvXr3m4aNzBKEhKwp0/RCRFNVw\niaKIuulIQlVVYekKnmtyOrzH/PoNJ3ce0UoNF9c3JFnM4/t3OTo9QVVVsrLovjk10+mYxe0tbdsF\nvhqKym9+/UsqIcYY9Hn0sYesD/E8j7JpqeoaURRp6wpFhFaS2IcR/ekBb69u+Y/+5q+oq4AvvvgV\n5/ce4vRH7Hd7DF2mLTL6lkajyYz7p0RRxHgywU+SDiokSVAKxFHGdr8jjGOSLMfOMyRZphUa/v7f\n/C2DyYwyA8t1cUyJxF8wOZjRoICoIyo2xvQeqmagT85xJydkWYGq9airivnCp6wk6qY75PIsRxE7\nUIsmK9RVThhuyPOS9TpAVHWQRKaHY8okxLR0dNP5QTX5o9gYVE1ndudR53EoS6ZH9/juzVsWr17w\n3/xX/zX/89/9A87okKKVCNK6+5DGiFJ8TroPuXMuYJgdkFRSOm2DroooBxPCSsAvWrZ+wGh9gWL3\nqNKKOk/QZAtRqJDIWd5eczj1KFsRUTV4/uJbjg7HHBwc4ZOh2iZ3HtxjHwd4mo4uS2zTGkUQyOsC\n0xlTtyai0qJLDbUhsL1ds93umBwfU+YJqiwzPThBM10aySIpduySDoleFAWWptJWJdvtFlU3uL6Z\nY7ojvPEBhmMTpzmVvyZPdgSbW5yejdh0EJIqT3CNMSs/YGDbmE7Xma+rFstUEXQLyzYQNIeb1Q7b\nG+KYLqur51RCj7YSef3iCXp/xqOH7zPqmfzmyy8py5BWniLaR3iNhKiLbDYr3rt3AvEGXSh48fwF\n9x+fI6s6k9OHKN4RguAQpxlBtOUnP/0rFq9fYOgKPdvgYr4n2QsUm5BFtOTs5JRvvvoTjm0wcEyO\nDj08r2NgGE6FoWlUeUrip4TrLbbdwV9//pd/wYsXz5Cp+OC992mrljrY4HkeuyRE0TQUSYdWQLVt\ndFVis9+RRj59V+E//y/+S1ZXN7x+8Yw2Crh48gVOf4yimrycL7FtmyQOuo1+NAA6Baltj8iqCtt2\n8eMMwxwxmx4xqcGyHNbbPYZho2ky4+P7DIZTet6M717d0qtq8rJhcHpOVktouk0Q1qjvNDWCN2O1\nrzn3dNq6ocoLNqsFw8GYLC3J1BJHVyjynLKpMWwLWZUoipS2bVmtNgitiKbIDIYui2BD2xQ4jvWD\navJH8ZRoEelPz5hvfBx3QJyXICuYtsXF9RX37t4nCAI0VaH3bnSjGTplXTAa9lGEBlkBxBY/CNE0\nBcc1kSSJohGpWhHDtFEUiSJLsS2DPI548+JbdrsN0EFW/DAkyzIGox60DTICVV4gCALr3ZYg3GOo\nLW0Vd6e7KCMKMmXZUqMgqDai2iMpoW4rLNvA6dmoqowiSdR1TVJUJHlDjYaoOVyv18w3qw75VtYs\n1isGgwGT4YgsDVHkliJPSLKCrGzQdBfXHWA7Jn3PQWhLQCQvG7KqRpAM0hKitMJ0eqRVwXK94r33\n32fUH+D7PoosUWRJl+loerjjE0azY2zHwOs7rKIUe3TMyd07rBcXFEWFbngMZyfs/BBRAlV3OTh+\ngKQ6uIMhsibjDvukRcPZ2SOaWiErcsq2RtJdvMGkg5su58iSgCJKuP0R48NjFpsd08MjRrND3F6f\n/S7i1esr0qzGcRyGwyFiK6LLGm0FTVVzfXuLYRg4ro7tWjx5+pw3r17z/NmfiPw1olyx2S5pqg5y\n0rQCjayjIJKHPjdvX3J8fExStMiSwaw3wFIlPMvhYDrj/Y8+5PT8nIOTM9z+gOXtmu1mz83NDbtd\nl0oWxFGnzRAFZFnCsTur9nA4QpVtNN3BGx4gmy5h0ZKioboHmIMzKtFF1oeEpU5cq5juFFV3kFqo\nypyGmrouWe1uMUwZ2hLT0L4nQeuGgaKqVHVNlhaAxHA0w+v1yZOU9XJFFAVMD6cEQUBapD+oJn8U\nG4OkaCj2mOHkBH+3p8wTHMfh5N5D/vDkKYqpk2YxL797imNKnB70EdoE3ZAwTZUwDEmTEt100TQD\nQRDwd3tWqxWqqnZ2VV1Hs2wqUUSSVVzXIU4iHENj0HfxhiPmyyVJmnUwzaYhCILuuQAUSQG1QFul\nlNkOQ63peXaXECTL5FlF0yjUgkSQlmRFg6IoeJ5HnucoikTbdKlGWdkJqhRZI8sKJFEmLzPOz89p\nGoijlKpqMC2N1eKSydBGVVo000TWdCRFR5Qkrq4uyOMQgYrDwwPSJENWO4RX3cI2CGklhawRERQD\nxbAxTZP5xWssWcJSJDRVQRJlECSqBuq6JK8hlSycwSGyJBCubpDIUXSLyeERjuew9wPiFGzvGD8q\nSeKC/WaLKoEii0SBT5oVFLXE6fkj7j54zHAwJs18dKVC10FVZXaBz8nZKZODQ5zBlLiSmJw8ZHp0\nH0WxuL26ZbfZ0O/32Ps7jo6O0DSNg4Mj0rQjGhV1RRDGqKrO2ekpt5cX5IGP1DQ0dY4gdzkLkiRR\n5ClxsGE1v6bIYqbjTiuyjxJMq0fZ1FxeXyGKXVKZruuMRiMeffABJ2enSLLMxeUrvnnyJfPrV8zf\nfEe8vmb++luqaEffkjCEiqGtoDQlPVMjC7bM376gp4n0LYWeDlXcsReKNMJ2e8iyTJtGvH7ye/zF\nFVWZUtYFSZai6zLT2YBB30aWIMs6rYIoit/zUgGyNKUsa9q2pqoKmqpiNb8FoWW/3fygmvxRbAyi\nbCDZB2jWiPV8wctnf+Tq6oJFkBIVDY0o89lPP6VKQ/zlBeHuDSMP+o6IpjYoioyoGiR5g2E5pGmK\n7/scHBwAnesNUaBVVExvgKiqiMq78FCt4+k1rUheQFG29AcTTKOz8qZpDGVN3xkhCwqJf8ty/oTd\n8gVxsELWJYqqpBZkylaibCVaSUUxTBRF4fBgTORvEN4RfXXDIaoEkkbCj3Nu50sQBbxBn7xusGyP\nV68vsTSFj99/SBIsEcodShujig01LZptc3R6wmZ5Tbq/4eWTL6mKBMc2OJwdECUxpmOjGQ6WO2J0\ncAdJtSnKiqHr0cY+n//jv2Z984bdZkWW1wiKwX6zI/QDbG9AJOiUag9Xs/n2j7/j1bMvqBuxA7fU\nERUCWa3z5jJAVnuIsoxAQ7DdEu42KLqEZtmsgxDRGPLeT/+a4clZ983qgIHVdpmPlo3smPzpzRXL\nTELs3aU1TwgbG2twiqJo5FnGm9cvieOQ3X7D19885YMPPiKJQhRVwg8DyrrC8zz+9PUXfP3735Bs\n5ohVhq13GY+TyYSyrBkP+pRZTFPE/PEPX3D+4D7ecILsDPjq6Uuub5aYpkmWhyzn1yiSiCorFE2L\nrOtopsGjh+d88PCMk4nLg5MhPaXmwFG5ev41L//0O7754p94/fwLLr77ii9/+yv2ixvkOuW7P/6G\nP/zyb5m/+hPbq6c0yZzJyMBUasLNNVVww5P/7X9k9fYZhiZi2yrHRzPuPz7n/ffvITQxjtU5L3Vd\nfwc0ajv1pWny4vlLXjz7liSOUWUR09CIo4DZZIyu//+Tdv3/6hIkGVkfEkQlhtFRgHRV5s8++xk/\n/8t/RtO22I7Fv/pX/yECFbv1iuXtNdv1gu12TZIk9AdDEDrQyWzWOSmLong3Cagpi4ooStAUnTwv\naRHQdAtR0jBsF8N0EWSNooI0zZEkBV3vouslVcI0OlFTnsUoQoUsNii68j3OO01zsiQlT7MuQLXu\naNebzQahbQjf5QoiKGi2R42CpBjUdYOu6yCKjCZDGmpkRSSK96gyTAZ9NreXOJqEXMfYuoosCmiK\nzGw0JN1viIMVilijKy3+/pamThHb7nmVpjGWZSBIdP+r2DIdeyhUFMEOsRaQJAXLGlAh4O+3pHGA\nIIJje8iCwnQ8pKpTJElCbEWaqmY0GKCqKnbPQRJboiCgZzvIsvw9liyKA4bjKYgajeKgWGMePLrP\nneMxA1tlt1qQJBl50aA5QxRnhjW+i18qNLJNUlTYlsF2tSSOQx4+uk8rwNHRCev1mrat8X2fLC/5\n9NNPuX//Hpqmoiuwub1GFVsMTULTZa7ntywWCyyn3z0rGt5RmBUMxyPJG07vnFNUJVc3t9ze3qLr\nKmkckadd0ziKIizdYDjsYxkmTVWTRQFZ5FNkEbLUQlMSR3uKojvVHz9+jKwq9Ps9Hj065/hoikhJ\nVYRcvXrKN7/7Bwr/Aqv1qaI5hzOHz/78Y2zdYLvZY9ndLa+pMqJwQxKFVFXFbrcjSRKapkFVVXab\nLXnSPRfatmE6naIoEqLQoCrC97mW/0/Xj2JjKIqSOK2o6s4skqUhP/nJB1hOD68/xPF6XF1eE8cx\nH330EQPXId3vcW2XpmqRZQVJ0pAkBd/3kWUZ27ZpmgZRFDEMo3tKSBqKpGAZNppu43oTJM1Cs3q0\nkkIrdFQkVdcxTZOiKFhvFpg9B8cbgKiSFSmG3f3w6wZqocb1egx6HoYio9FiyS2G2hF34jCgzDNE\nQUC3LFRdp6glWlGjaWWSOHt3Y6lx+y6HJ4f0+w5lmTMeDXj/0X22ixu2Vxd4SoujgtgWVFXBoG9T\npD73z47Y3FxgijVVlqCK4NoamiTQd3WK1KcqU0zLQNdVdptb2jYlSwMUWUTRdMbTQ7zeiGC3Z7+6\nJvOX1GmMpJrolkmSxdxcvsbSdFzTIoy2CFLG48dHHB0O0OSa+fyKMM0JwpiiyHD7Lqaps1xv+e7t\nkv7xQ5qqRawKku2KNs+ZjSf4QYxiDallj1RwEYwhzuCAqhYYj8cMh0Mu3rymrstuc5JUdts9siQg\nSNC0HUx4uV5h6CpJuKeMfTS5Zf1u/Ou6LpPxjDgr0NwRvdGMtKxI8wqvP2YfJqiGTd8b8MGH7zM7\nnDJf3PD2zRuuLy9p8hJT05mMx+yWW8qiRlV1EBVApCzLrjc0mXBydsrB8RFRluNHOa2oECVdFIGi\ndQeN55oMHA2jTRHCC8gu6VkFrVwxGAzI04K8LEnygjTJqKuStm44PJqhqp0FoCgKVFX9vu8QRRFl\nXqCrGgOvh9DWyLLIze01tmX8oJr8UUwlZFlmNj2mXh6zfv2Se/fuo+s6e3+LKEIeR0iKjOm4rDZL\ngiCCRuL04Iy7Dx6yC2KiJMPzPOayjNB2NwXHcYgqBaGFtqkRqpL17QLN7GO7QwpJJkhqNNdFMxTq\nxkcUJaKo6/BWRU2a14h1QV43IKtIio6i6ZimzWqzwx54bKKEKNxh2xrzxSV1seLeiUcrtuRpiq7J\nDLweYVmQ1S2S5SGLCnUad4E0cqe0u7i8wjR0sipl0HdpmpKeY3J+9x5XNxeIVNx98CGNIRKXDcPp\nGENo0U0DP04p0oDRYIzSVLRliqVDXFQ4toYfrJHLHMOwsGyd9SIhDnfUyoas7LwBH/zkJ2i6xHr+\nljzZ8+DhJ4R1S46M2+vjr+fosspgeMrTb3/PzdV3/Pynjzm/O8KSEvZByT6qCbIKs6yxRQFJFFBU\nG8k94M3FMxzNJdivWV9dMuq5XL2+pH9yzmB6j0od0CoO+/WOtsjRVZUyL3jx3bccHExx+x7J7ZrD\nwwOur95SpClFVfPg0XsgS0iCSBon3Ds94btnT/GTjOMPPkFyp0iqQxwnxKLA4z/7BW+/+wK5gSTP\nGB/OePzhx/xP//1/y6cfv8/l5SWT2ZDjwwPEWmC/DcnSCD8ouHzzhga6IJpSxdB03L7VjbFlGQnQ\nVJv1PsQeTtgECbquY3qDTr9RZ7j9EWWVYjQ1upAz0WNc12btR/zH/9l/ArJIWdRsNwGyCYZhUOUV\ns8mA1aKblpimyWq16sa/dcFms2E+n5PnIoPpCXVTsttseXB+F6c3ZLnZ/aCa/FHcGARBQGobdFVm\nu49JMCiUHkGccjW/IUwTirJGaFpoK/78zz7hwf2HzFdbkGWmB4ccDF3KZE9dhAhNA3VDmRcd1Ufq\n8guTOKCpcnRNQGgLoniPIgpkSYLYQlWWxEmBaVsYpk2aplA1IIqUcoti6TjWALHV8IYemqYhozEe\nTGiqnDBcoKsFeRxQZDl5XqJoFpKsgihQ1yWaKkNdI4sSoggiAnmcINYt0+mUyXhK3/UYjIYkaYBo\niAxPTrn/3odUTcnL50/fWWwFqqphcnjE7fwaxzK+t39LisTt4oYgCuj1x4wnR+imhW5oCG1FUUZI\nYkPblEiUCFVBWzcYtoPT95DEmjqO2QdbjPEQw5thqD0oEvztLbvNEs9U+eD8jHy/IylKJNPlwU9+\nyp999i9IK5lW0CijlO1qQ9oItJKJaAxxJ+fczHf0hwMqGrzDYzRvQpBkpFmAqdYMzIYqWhMub2jT\ngNcvn4OokORgmD0URUJ691ybz+f0bAdD1dBlieXNNeFuT5HG3Lx9ySePH7DfzMmyBMt1sGyXCji9\n9xGz43NaUUDRZE7PHzA7OCEOQnRJQawaDmdHVC2kdUmcRl3EQN/lYDYmiWJ+9ct/4sXLV1zcXPHy\nzVtEQUIUVHTToT85RLcdpgcHuP0xQZiS5DWjgzMqdFRFpz8YIFkucSXgpxkPPvgYZ3iEoFkgq12u\nqqSgKFLXZBRkwn1IXVVsNjtEWULXO+Dw7cVNF7KcBuSZj6kbGIZFkiQURfGDYbA/io2hrgrevP6c\n715+Rf/wDGvyPtu8h6BNcAZHmN6IulX4/A9fs9ttiGIf27WZnRyx3m7YbFb89tf/SFtGfPDoHqJQ\nosigaQq6rnb2VEXEsRQcW0WUaqJwhyQ0JPGOKk0J/YjRaISsiOyDAFmT0XWdNM0RGqiamvV+j6K5\nFIWIJOvYjksUJSiSCk1GlQdYpoQs8G4MKuB6I6aHd9n7IevlnPXyinC/I0oCGqEhyxNevHjFdr+n\namSKUkBRHZpaIE4jduGey+WaWjLwvClR4rMLO16B3euxC2PGB4dc3lzhuC6yJtMf9bH7fRokXry6\nZLNJ6PXG1FX3tJJlFUGUSbIQoc0xNJG3b99yvfLR3T513eC4FkglYRbRcz0U0cR1HPIsIE03PD4/\no28a+KsNVSlwdHZO0Zr4mUDe6oCOLKnUrcTzyzmiZlEJGnnjcv7hZxS1yHKzwRtNEbQ+Tn9EnoZc\nv32Kv3jBwGh4fHfGF1/8msePH+MOxtSCjm47NHU3Cj69cxeApmnwN2tW8wV9x6ata1brBTcXr/n8\nl3+PnO5wpZI6XlOXEaqkg2Si2RMsd8RmH6I4A37x7/0LFEnl5bPvuHx1wZMnT6mbhqOTY+6e38Ow\ndYI4YrPfkdclj957zIcffsjByRnHd+7w/Plzfv1Pv+Lv/5d/Q7j3URWF0PcpyxIEgaJq0Cwbw3FR\nVIesVKnlAap3Rtm4hIFIg4MoG7QClEVLkVeE0b7D1RcNkmKgKnqX2VHUyLKM2IIiKrQtaJqGaZr4\nQURZgWE5CFKD4/0w5eOPY2MoM1bzp/z2D//I+YefcP7+nxOlCnlloGojDGNAfzDm7v0H76LoJeaL\nG87OTrEsE0FsWa4XXFy86aLSaEiTkKpIyLMURRU6pVxdUeQZWZJSFEXH0JMUrue3VE0Xc980DWWe\nM5lMODiavWMKCjRVi6bbNI38rh8Cuml9r8prmhpNFXEsg6YtMS2DuoE0r4jzkjCMsEwdU1ZQZEBo\nCKKAwXDM7OAIP06wex6irGE7HlUjkhQ1QZDQNC2yor2jFOXsN3tkWcXp9RlMDhhNO8m1H/nIsogs\ny2iyzmYdoqkWbdsVT8/uY5kultljPJxQlw1RHLJardBNgyyvMa0R08MTtrsdRRTiGgplkZMVObJs\n4Xp9lvMrXn77Df528+60NtjvQgzbRbP7aKZHKymIikyS5giyQpSkeN6AMK/YhgWvLm95+PAhiqKQ\nFRV50SIiMew7VHmK7y9Q5IbNfgeyhNv3Oqv2u+zRLOlAsKZh4/s+qqqTFxlBGNIfDojCBNd1EZqa\nq5fPyXc3mE2EIVZUZU5dVmx2PrfLLdt9guOMaBs4Pj7G8Xrouk6v16H6irzkxes3yKrJx5/+FN12\nuXPvAbPjUypBoBUkZFXns5/9JT/7i18wHQ15+fSPvPzTHwkXC7S2xjMldKkm3s6JwwWmqdPvT+n1\nhrRVp2htmoa6bBAFEKiRFdD07pkJDU3bYeqjJKWqW2RV4X9n7k1+bcvy/K7P2n2/9+nvuf1ro8mI\nyIjMyKxMu1wYF5Q7WVUSlqgJspgwqQFITOAPsMQAIUYgQB54YISQAGEJGUSVsYs0Wa7MjMrIzPei\nef17tzt9s/uewb6kE6m6kMpSLuno7rP22Trn6O71O7/fb32bxfyGqsyRJH7eBM/LGlnVEIoMkiDN\nYqSvptPyyxEYaCpePfuUw+MDGt3jyZs1qjnBCY7QjYD1KmKz2ZHfor2KsmS323B1fcFiMUOSBGdn\np6iqTJZlCKkhDjdsVwukpqTIUyTR0pYFuioYDTpPQNfucAiqqt82kcAwNGQZDFNjH4YIWUKRZJoG\ndN2klToXgxoFFBmEoKoKRFtDXVOVGYauQtMS9Mf4gzGG3cMNxp2isSbhWDptmSGJlul0wjvvvEMU\nRUiKjmZ6lK1CLWSaVkXVLRw7IEkLdNvrxGRv96ubWqJuJIRicHLnDrPFklF/RLSLqIuKoDdECAlZ\nlqiKGlU3SdOS/T5iv4/wfIemKVDU7nsvlksUVcMNRthup22Rb1ZYhgSqICtKVMXEc1xaqWW1WjFb\nLnj65Anr5QZJMcgbqYOTSzJCltBMgzTrGJWuH2B6fQyvx92H75KmOTcXb1AlGUtVMVQwFTgceSTR\nhtcXr1FNGyfo4/pdY0+WOrr6/GbW3Q9lB/DqFJUrijInjPdMjw5wbYtwt2Hx5jk/+f4/5fLxj0i3\nV4TbGarcaSgausXk4Ajb85hOp8zncyRJoqqaTiimrrtdgVu15jCKOT47xe31OTg8BknBsEz6wxF5\n3aDpJud37zEc+BhShSs1PP3xD7h5+hkiWdEmK+r9DYubVzx58gjRpMgi4/XzR1y9eYoqNyTxjjwN\naaq8A7A1Fa3UiTamWclmvacoOrHYpmnQdY0sCdFVibLMCcMdaZoiKwpCV9nFCVlZfKUl+UvRfCyL\nlIPAQe0fs8l0VMtDFgZ5MScJNz9f1P1hj/3uNYN+gIqM6dg8efYcWRYM+gGTd98ljFKyouDANtkn\nNZoFbaNglRY3L75gcHSH1y9fEPgOdZ6x2ezZhAWmP2E09LuaP9mQlzmDgyGr9Q2q2olktK2CoqlU\nuUQjKaCoxFmKtNtQ151Gnx3YnJ8doqga0/P7zFdbFtsdutUj226hyfD6JVDjBAb79TXppubk5ISy\naEnyCkv3EMKkP5iCJBPGGXkBmuEwPDjiyec/4fPPvmRyeoakGpiOSdYYvPX2hzz98hmHkylRmpCk\nOfEuJ4ob3Cyk3je4lsugP+TZZ19gmiq6r9OUCTdXN9x78Dafff6Yu3fPCbKYYr/n5vUTvPfeRzMF\nOQpl0VI1EsU6wgtGjAYBF1fXWH4fSTPZbVLG5y6GpiLVLYaq0NQlQtJB6ES5YOhMOH3f5cf/4nfR\nFYHapqyuPqdIY7JFQb6fkUc7vpxf8eDdb6GbNs9eLTk6GqCpCpvNhslkgiwUhJB/fh+lacqdO2fs\nwy337t0jiiLUtuX1l5/zZZnx7Kd/xLd+428wOnmLbZHSP7iDa48QbcPycoksyzx58gTfNpgejonS\niKDXI0lj7p/dYbfb8ZNPPuHDjz8mL3OSrNN0FC1kZYUdDCn2Ib7lkNVAVZPtI/qBQ17lfPIHv09e\nZpydneH2R+SV4CJ8gy2V+KaCLkJ2u2taWUc3IQl3DCZjqqq87UdJxElGIySKqiXwHCRdRq5zZjfP\nmV2+psZHV+5wOB2iawqqrOHYfWjlP3H9/XHjlyJjqMoSz/Qx9SFh0mCaLlVVsE82xMmeNNogmoI8\n2fPs2TO+fPoFi+Ucz3d55523+OzzR5ydnZDlCQ/eeRfZNFksFuRpjKEJVDIUMhxTZ7/dYFsmEv+q\nHuv3B0iKSlmWSHKLrAiapkK3TI7PjrFMDcNUacVtOkdL1ZQE/R79fp+WhnC3pbpVj8qyhLptWO0y\nciwaxUPSbWohU5UNk77D6XRIz9PpuRZnhxP6nsdisaBG6ujlm5D5commGUiSgu0G3MxWqLrGyfEZ\nXq9HSwf3ziu5a1QpBmVZstttcRwb1VBBaWjbkijZ01IRxVsG/V6HJNxsSDY7NOBkOqQtU4o8RoiW\n/nCMY7qIPCeLt+iGxHAyRDZ06lpBMwPCuMQNRjSi2/K8mi2QlO4G9G0by1CZDPo/R+fVTYMbjIiq\nlqrt8A6GIhGvL9jfPCdZvybfzol3WzzPo98fYVgjisZCswIWyx3hLiSOQ3RDQZaVnwPRiiJjMOyh\najJVUSIrnVbi/+fyfH5yysnpMevrlzz+5Hv4NlRFSF2llEUKdI7iBwcHqKrKaDQB4PHjx2w2G/br\nFYYi8GyLn3z6CYvZFaahksQ7VpslkqKyCRNkyyVvFCx/AmaAc3BOjIk9OOHbv/rXePu9b+IGE0RZ\nIucR2WZOHu1oy4LFzQJNM7ENk6boHNuzLEHTFLIsoxUQZyma3vGCkCWqImexnJPs1+w3V1hGyyAw\n0WUJqQVFKIhaYrfNvtKa/DMDgxDiRAjxfwkhHgshHgkh/sPb+b4Q4v8UQjy5/dv7hWv+UyHEUyHE\nF0KIv/5nvUfTNPR7Ewyjh254DId9zu4eoUgNtCV5GlHmMavljMVshuM4CdLJjgAAIABJREFUOL7D\nfr/HMg0++OA9kiRB1TR++tmXfPSt73B6fg/TNMmiLa6lMer5GJpClkfYpoosy/iO31nbmya2aaBo\nKkIIdF29feh4nscu3JIkEXVVIMmQlQXbcI8kSbi+g+u6aIqEIkGVd5ZhuzClQkJ3AmTTJ2sUJNWm\nqCs0qcExJVxLI0sjVqsVeZYgpJYs6yzhikbQtBpZUTIcjOn1+xiWi6GbBEFAFmekaY5lOQhJw/NH\nLFdbVE0nLXIury/I8wxF6WCzcbRnNZ+xXi4xbYO333rAycEhdZERbpb0ApumzRn2XRANvjdCFgqj\n8YDtbsl2u0aSm1touY9hBwTDAx598ZQ7Dx5ieR7lLZNRooW2JIm2aKqMaEqSMGK12jA+PEHWLXb7\nGKHIGJqCLldM+waBKVClChmBqugcntyjlWwcf4yqughJoyxrPNOmSDO22w37/b7rvNcVltP1G3RT\nQ5HkjoymdtDhOIlI05hkv2E7v+Di2SN++qPvs7p5Tbydsbx+w83VBWG446OPv8Fsdo1nO9R1zU9+\n/ClFniJo8F2TcW8AVcmLZ0/o+z7T0RDHMlF1nV2YkhQV6DZmb4ocHNC6Y4Q7xpve5+DOe3jjczTV\npmd6jAd9RNWwXe4Y9KfY9oCign0UMp2M0TWJtu0EX9K84PLqBuho4YqQkBXBfrvDtHTaOqNtEg5G\nHqpUI7cNNJDGGXGU/8UGBqAC/uO2bd8FvgP8jhDiXeA/AX6vbdsHwO/dPuf23G8DXwP+BvBfiV/M\n9/6Yoesm9uAOij+mpOD5y0e8fPoJTR5S5zlt2fEONpsN3/zoL/Hlsyuevrji9dPX/OxHP2W72LDa\nhsxWO4KeQ02Pt7/xd3jw9b9KUqZE0Q5ZUqnaEkuHLFyhqYIw2hFvZjj1HoothjDYLLdE8Q5DKxg6\nNqZqsF8tEVmIWqWoitn5O8gypqaiygpVFuM4Ck1dsNnvMIwAWTG6OjgqkIVLI4aY9iH7VcTrV1+S\n7WaoZJ1rtGTw8tUVctU1ObMG9NEYoz/suueuT5TVtJLGbL2mlgVJnRP0fRokFFUjL0uKosJyPVpZ\nppFk7j54i/HRHaxgjGt4SGXJ5uo1yXaOJld4jo6ltITrG55/9il916AtMxZXcyRJxhmPUHs+hmkS\nLtZIheDw8JDBoEcr6+yTmlKSsYZjVGdI1mo0SMiiQaFFN11oWh4eTwgsmXC3ZxkmHJ3fZRPt2O43\nqJbGnbvHjAKL3WJOtN1wcPyAg4ffJLMmRJJCLkAxNfI04dmzZ3h+H9HKVEmC51o4vgeKjKSoFFVF\nXVY/V/vWLZW8SDg7OUaTJWZvVqTLiH/0X/7nRM9/wMsf/i6Xj/8F//c//u+ZXXzOt7/7DX70Rz9k\nenpIWWTcO5rya9/+Bp8+eswXz15So6PrFqqsYSkKTz/7GTdvLnnx+c8wmj11NIMq4+Xlgla10XQb\nbzAlmJ6TCw/LPUY3xwxO3kUMRhycnSD1HM4+/C7v/9W/SSgUUsVFcw+QNRXLUJGlBknRefL8mmcv\nL7FuiYQvXrygBVAkTL/H5PgMP3DoBwLbBF3TWKxjNvsSRf5qAKc/MzC0bXvdtu0nt8ch8BlwBPwm\n8A9vX/YPgd+6Pf5N4H9o2zZv2/YF8BT49p/6ISQZ1/epqgpTFVAVxNsF+9UMqSmxbZOr2Zwwq3D8\nMd/41q9y5+5bbLYR3//+93n+5Cm2qqPQoooG1zOp65rTu/cIgj5VDfPVirKtOTw+Yno4we/5DId9\nLEPD0mVUajxXR5MaqiymyDNurt90DEcNFKmiyiNkUdAPXFzbQqHFUAWq6NyG4zRBUTuNxpqWONwj\nqJAVcFwXzTRRVJ1oH7Lb3ZqVrtddCdBI7MM1ddVBj1t0qsZgs43YbFZomoJt+cRx5y3gOB6qqpKk\nUeecVFS4fg9Z0dBUC1nSePLkGS0dQcpxHEzD5rPHX/Dm9UX3Ol3C9z0MXSXcbqjLDMc0aOqMJNpR\nVjm9wZjR8JBBMGA+e8N+PYe2QgYs1+H8wT1026ERCqpuYZo6pqGhKDKqKmhERW/g0/MtTEvl6nJO\nmsDhyVvkFRRNzWazYrXd0EgStjdEc/rkGGyyztkpKxuSNCPNM6q6BllBkmVUTabX9xGiJdpvcSy7\n0z/UupKqrHI0rTN0zfKEosio6078Z7Na8PLp56wWV/yD/+a/xtJUAtfj/P4DDo9PEKgoqs5itaNt\nZT74+kf0BmOSNEc3LFzXvXWigrqpsAyd7bLDdzTZHs+QaPMI1+kMmZsaamEgLJ8Ek2cXc+brPUUj\nODq7j9sfg+Qgqya9fh/P75EXZadD0QqqUuLTHz9G129Zw0WBoiikaY5mGPh+j9F4ymQ6Jeh5lHmK\nrqtdtpgmCPHVtiW+Uo9BCHEOfAT8S2DStu317akbYHJ7fAS8+YXLLm7n/sRRliWvXr1ClyVEVdKk\nEWWyp0l2SE1JWZbIqsnDdz+i1lw2YYFqeMRpZx6bhBEvvviMgeuQhGscW2DaUBUZ9++/y3y5Zb0J\n6Q9HTI+O8IOAsizJ84y2LZFFjW+q5PESiZSjyYgyy1ksZtRlQuCZSGSIJiRLN5Tpnqat2G9XaBLY\nlkEShp2TVVmh6Ra+7+K5Olm6QVchLiPswOX8rQeslytoWkzdot8fImQVWTdZrdcslpfUTYltjxkP\nz9E1jzjZgKhAUjBNB0XWmd0sWCxWGKpCHMfYtoMsq0RhSlVD0yrUrUIcp9Rtg6obDCYHnN9/i5vF\nki+evSDJqs4g9uCAwaBHuNmynF8zCCz2+xuyJERTbWx3iKE71HVKkW/Q5JqmzmnrHE3pHMirhs58\nVVXQdZW6ypCVbpu4lVoGB0MURaLOKm6udtjeMWcPP6A3GlPWFbphMRof05+ccLPL2OYwObqPUGyy\nHBTNQdEsDk9Oefz0KS8ur0HpssgyTzEVg2izo8wr2rpjRbZtS1mWGIZBvzfE0i0ePHhAmqa0bVf2\nyLLMw4cPef78KUVdcXlzw4cff0yUZSw2OxpFJcxrUBSmxyd4vYCiLphvVpzevYNhOQikzm08jgiX\nc5poRzJ/zad/8M+5fPklhtyiyWA7JpKmYwQDkrSAVmG1izH9KcHoBNMZYBoOmqKT5ylN03S8nlZg\nGh7hPsVzXKoiR9dVDqdTJEmhaVqOT85452vvc+/BQyzHIxgEqLpG3RQocosi/2uSjxdCOMD/BPxH\nbdvuf/Fc27Yt8JVCkhDiPxBC/FAI8cM4K5hdv6EuQuavPkPK5mTLl3ztwQmBrWJpCv3xIcIMMIIj\nZKPPy8sF813IJo2RNJMiz3n+2WdsZzf87j/5X3j8k++jyDWuO+Ev/9pfx/R6eIMDDG/M0d37eEGA\nYRt4PY+b60vqZMf84jE9R+B7DoZuI6sKWZYg2pwqXRM4EiNH8PDOEYFjUJUpCi3jvs94NMB3Pcq8\nYLlZk6Y58X5FW4Uk0RW6krPZzlAMBd/xsXWTn3z6MxabPa2iIasOhmsji66OzzKZslRxnSGGrpCk\nO8q6YHp0wouXFzRVhe86RNGaXj/Asl2aVrBa74mSFEWz2G1jWklF1W3iska3PP7N3/hb6P4QwxnR\nqAalDPP1isPDY1bzGVJV0eQxKgVJtMOyfS7e3NC2UGQ78niJJjIsrebk8ICe75NnJZ7boxcMODk+\nwDE79WJFkSiqkjTPqGkwTZmebTNbhsSVizM6A9lgtdwQZRWyFVApHtbgkEoy2EQFbauj6R6abtHr\n9VluQk7vvoM1PkRYPZANdM3EsiwkITB1k+2m6ztUVcVsNsP3fW5ubkiShIODMefnp3z3O9/m5OSE\nxWKGqgmOjg/RdB3dMMjLmvlig+X3uVntyRuJ1XrPLtyT5hmGZaLpOi9fX3F4dIo7PGA0PaIuWxQE\noszpmYKB0fDkh7/Pz773T7j42ffJFk8o1q+xSbh395yqBhSXbaageVOyWu6yg6oL2GEYkucFqmLw\n+NEX6LrN+++/h6o0WEbXBytr8PwRptdnenaX4ajbEfPcgCTeo2kSw76N5+tfZXn++QKDEEKlCwr/\nqG3b//l2eiaEmN6enwLz2/lL4OQXLj++nfv/jbZt/9u2bT9u2/Zjx9IxTZky2SI1MU22YRQYVEWE\nosoMBgO+ePKMxXqP5Q9pJZXBcMQ+SXjw7td4+N7X8IIhhmmzmK+Zz674wQ//Hx5//hhJMWglCdXS\neHExZ77cUjUyWVmz2XU30NnxCTc3N9BmeL7ZEVM0B8f1cXt9NssNSRihSzVtGdFWMVWRIElg22bH\nurMMNqsFcbRHblpE05LGCXkSobQ5ulTRcwzKOKZMM6qipCpqZNWgrEGoGqPxIVEUE8cxmmkwnhyR\n5SXUnXZBRc5qM0dRJKbTKVmWkEcRcbyjqDJaqUVR/5XOg2HaLJdrrmczmlpws1xzs1yxDXPissbp\nj6iEytHpHaK0wLScDgfSCOoiJ81iijLG9S10Q8JQBbvVgvXsFf3ARUgVi8UNmmHg9oY8fPsdXNsg\nDHfsdjuWqx1JWrNcxYDG+fk5w56FqgmSuuDw/CGq5jCaHGLYAWgmWdOSlw2+20HOEQ15GqPQcPPm\nkrpuqBoJx5siGQGS7lI03Q6TJKsUVUmv17sFnXXM2sPDQ4qi8xpdrRas12viNKFuch48vIfv+5yf\nn3Px5hXhZkPg2EynU2RZRVEUlqsN4S5iMVvy/Okz6roiTRKOp4c0SPSGQ5Ky6bLYrKFuBapuYlsu\n48EAUaSQbtlePKPcXREvX5BHW4bDMXFe8uC9ryObHkLV0WSlY/TKXVuu29GBsspwHIO758fUZYau\nd3gOWVJxPB9dtwn8IV5vSNU2REnHv7BNjaDn4nvWX2xgEEII4B8An7Vt+1/8wql/DPy92+O/B/yv\nvzD/20IIXQhxB3gA/OGf9h6GodPv2TRlhEJMur1AkyskVSFNU15fXvD+B1/n7v0HLNZrGlqapuG9\nj75O2jTYQY8Pv/tdzh+8w+nJXaos5WAyQJZlhJDoj4ZIusx4dERVKxiWz3sffBPLcRmPD1gu1+iK\niuPZIIOidkCjweQA1/fRJAff8Qg3Ww4mQ85Oj+gFLpZlUbVQtdy6HmUoNFDnyEKibQV1niGqjDrZ\nIDUxdRYReC6L+YrZbIZje1SNoJUVZNVgNJxCK9GKFlkXt5Rvl6qqkOSSps1xXIPDw0Nsy8J1HLI8\nQZJB0QVlUyJpEkgtvV6P/miIpmnUDYRxjKybOP0BVtAnSku8wYS4bEFRaVqBaTtkaUFdgmhhs52h\n6p1ozHgwxTYthj2fxz/5EbKomR6MMSwLWVHZ7/dUddZpWADXV0u2m5TdLme52qOqKnfuTPhLv/oh\nds+hVQzSQuB6Q1oUJFlHVUxMTSfPEgxJoMsCSVRYuoLv2Z3rk2aR5zJC6aEYPdxggmJYVE2NkCTi\nNPo5Hd5xumDX6/VQVZXnz5+z2a7Y7bb4vo8kSSwWC/r9AEUCWYJnT75kNOxTZDmKonRo2lawmi9w\nTANDUTmcHCDV8OjRF+QV+MEBjWziDY7YRBXzTYQ7nBCMjwkGI2aLOU0ZM7t6QZ3tMXWJsin5+Du/\nAoqOZtoIWSLPc0RbY1kO/X4fWaYjva2u8XwLQY3r2Shyp8WQ5hmKqtMgI8lKp79ZV0hSJ7qDaPB8\nC8P8i8cx/GXg3wP+mhDix7ePvwX8Z8C/LYR4Avxbt89p2/YR8D8Cj4H/Hfidtm3/1AJHCMH5+RlZ\nvMbXKwauysDR2S2uKdM9N1evGY4GrFYrJEmiEZC1AiM4RrYPeDXfcXF5ye/93u/x5OkLPvrWr3F0\n9jZRWvHy6oovvnzOcHTI3/6tv8uv/8bf5up6xdMnL0mzClQDzbBwHI9on3J9s6RVJJAEB5MjyqIl\nK0omwwOS3Z6LZ8/44tHPqKuKuu7ERoUkgVBJi5yiKBBShWGZDIZjDE2BMsFsE0wyAlejrCt81ybo\neei2jdBMNMsljVJ8y4Eioe8J4mjGZrtks9lhyDqKqHFdncXsgpvrN0TRnoPplCSKsQwTz+6hCInr\n6wuatqBsSmRVomoanr1+iW44rLYh4+kZi1VIq1u0koHfH6EaNrptU7eC6+sbdus9g2BAmkXsoy2K\nrqDZJrbtMLu6ZtAPuL6+5mq+AsXsbm7DwLUt6rrm+PiQk5MTQGK7jbi6nBOFCYiSfbiibDN022N6\n+hCvN0bSdGyvhz8eIaQGsog63tHruwyHLmW+oUr2tHXJerunkBSuNgmS1SPKG6IkI45D8iLB67kY\nhkXdSOyjmF6vx+XFyw7noAjuP7xP0B9wc3ODaBqGgx5hGOOYLuubOW1ZE2039FyLcb+HBAxGU4aD\nMZqqcn3xijLN0dVO3emTH/2AVjSMDo/JGwnF7tFIFnGlUOk9Wm+KP32LrNXZ7Hds1zeMxj0+/tav\nMDk8wx8e0CgqjuehWx2NOs5iJgd9HNdgt1lgaC3vvn2CaDIUSSBLUDc5QrRIkoJuWKRVgWoZTMZT\nTs+OSfMM2zQoi4Sm/QtGPrZt+z3gTzLR/vU/4Zq/D/z9P++HaFuBkHR0XSDXMU1TotAgVRGvnj5D\nyBqbzYpef8LT13OE57DPoGpMNHuKZTW0zQbTUPn6N79NWBoopo9h2rRI6KbL1XLODz/5Ce9//UNs\n1+f6+prrxYq5qPjwg/d59fhLJNmgH/RwPY/F9ZLPf/wJdZVz9617bHZbNK2r3earFVF4jeWZVGVN\nEATESYGsWyRFjtFW1NQ4vkeR7tAkuHnzjKODIS0FlutQFDmebYGmk1UN+S4lUBu2y0s026VxbGRF\nxbIMLMUkTwu8wCfdRtiKjO8YRHlGFCWURcvN5ZK2FWRFg6LJhNGauhW4voNpm5RNi6LpFFlJS4vl\n9DAMHUNpoa2pmghZU1FRkCSZNC3pywayZnJ5c4kQMm2V0hY5XtDDtD1yoRIMDgmCQ0pJp2paNASu\nZxNFYWe2qsk0dY6sKFzPbpDpocg6w1EPU2toJscIKWNYQ5TJNAI0rcEyVZpG5vJ6xvL1I469lmi/\nJE5r9F6A4TkUhYKi6JiGwsh1KOMdWSqgajAtl7qFoOdTFBnT6ZQo3NK0BWGyQ3Mc1tsI3VzjWw4N\nouNyrHdU2QLH96jqgqLIsWwNoSnokkm8jWiKnHC34eL6mve++S1kWfDpD/+A47OHNI1A13V0zWKz\n3GI4YPWGzIsNaZIiKSaGrlGVDX5/QlZKKHlL06SYmqDKcpAEpt2l/ppuoqo+y8W2MwZuaqJwR3ar\n7aDpMlHSQfdF02UF8/kcTVcoshzJ9TpsifhqIOdfCuSjqnW89uPDCYiK0XiMZmpkWUJTlxwcHJBn\nEdvVEkWRKOuWoDfh+Oguh9NTojDh6uoG27C4We2oZBfDn+D0JpiBj+k49AcTbNdiG65RVZnf/Hf+\nLn/nt34bw59Qay6Xmx3T84eMDs8J+hPCKOPunbexgzHDozvs0wrd69E0gjiOubm+JNzuCHdb6qpA\niBZN6VyIRoM+ZR6TFzGy3JnS2KaOZRm3mP4Ohx8nIWEckWcldV2TpxnL+YJ4vyfcLFEkKKuGXZwi\nhExTpGxXnUy8AJIoZjG/IY5j4qTAtFwkzWS/jzvVqqTA1B3KvCZLSsJ9jG25KJKM67qEYUSU5VTI\ntLLK5dUcWTVAUVEME9nQ6A/H9HoD9vsQXTcJAp+mqXh18QZJktBNh0YYXM+2fP7lCwQy/i1Dczqd\n0A8cbEcjzSKSKCZNM8LtjjLJyPMCxbBweyM0y8b3bDQKHF3g2BqyBI4mCGwdQc1qtUIWMsktWEcA\nk9EA1zTYbrcd0jHt+A1VVbJYzkmTjLyqO7Zi2/mQQKfe9ObNJW3Z/S/C7Q7Hcdnv94RhyH6/J0tS\nsjTFtUw0pcVxDU6Pj9BkBV3XcRyPxc2MPN4z7nlcvHrG5cUrDEMjLwtMQ8M2BGW+J3AMxgcTikbw\n6MvnaG4AiklZdTs6VQNCUlBUnapsaBtB05TkeUelP5xOUVWVqiowDIOqqonjFCHJrNdbsrQTLZaE\nQl3XpElO23bU9Kpsbjklf/7xS8GV6FiPIfv1Bs/xibMcmS4NDHqDTsF5s+bofIjt++zjTmTUMVRu\nlnvqNOLi5Rs+eP8b4IzZ5oJyU6CZCj1TItpHyJpMKzLqMqFuFa6ub5ic3uHf/fd/h2i3YXJ6n/V+\nh6TIXK1jzh5+hKlovPPtv4LuGeSSjafrfPK930cze7itwLFsHM/Fth3SvGS3rbBUwXpxw/jkPrs4\nQUOhUWWUVkGRZJa7+S0NF4q8QBcSiq4gSwrRJmG/2TIcTYijCMvL0C2L7SrDcQV5EuLbJrKtUuUF\n129ec3p2FyNwkTWdfVwyPjinFQ2zmwvGPZM0zLHMHnku8+zJCwajkNFk0tF1FQ3Ncqiamv7kGIRB\nJdVMJyfEWYzi2BQNnJzeIdr2mPZdFJHz6Cc/wHACBkenCDMgqVSuFgme16dtJZIoxbKMrgQydb75\n8XssZ0vWyxWOpeI6PXqBR5zscCyPXK45u6tx8/QJg0Dj//in/4y0tTm9+wG2LQhciVdfPGV6eI6q\nByR1i9IqqJrg5YunDCzBwDdYL29ohcR2tebhW/e5e3LCZrlienqM646Y3VzRIIjDEF1WsHSNH//4\nx3zwwQcEQcDrV69I07QznRUCTdPwe0HXXLYb2rLAsA0SWSErKhzXZ7td4zs2TVEw6XvEOR0HZ7dl\nOAiw9Ipou0bWbDTT4vz+W2TZGcPjh8Q5qLaNqZkgK+R5RZWVqIpKnufkRdL92ksSqiqom4w0T3A1\nG1UzaIVEuE8xTJ80jmgbgSznaJpBFHVEOVXVMU2dtv2Tkv4/fvxSBAYhBFevX/HFo5/ywdffpchL\nGjqjFyFaLNtkc71mvbjB9GviuARh8uXlFcn2hrqKmB6dYbg9pOCA3uQ+L1685nTkc3X5JYZU4Kjg\nezb73YqqlNiHKW+bNq1mUgoJezjl7N0PqKqKOExo0hLbNJFUmeV+yze/8+tUacLses7s4nm3V98W\nKLf/xE7eXiHw3M52PI3wXRe1hTLfowmVtm2ZXc/xPB/quvv1ynMMC4qiwHNdDo5PcIOAZdyBW3RZ\nxjQN0jRm5AqKSqBLJutwha6bzGYzBqYPSoVq6aQ1GPaQyYGEQosQgiSK0TUFTVGJ9iGTyYT9ZsvV\n4hrTvodlmdQteL0BVZ1TSRKaoaNZBkkUI2SbJMt5/NmMjz96m7KV+Na3vsPk7F1SKWCXK8iSRi8Y\ndJqLmoamyiDJXFzecHh+h7ffusMisKBpUDUZXVcRkkNZZsiGgyhqFqsNbbrC1lUCL+Dlk8/47nff\n53qxRlI04qJBQ9AbTthut/QClyTa0kY5ojCpi5z9LoG2JYkzTk5OWG73OF7AYjVH0016vR4SAsux\nOT484kc/+jFJHKMqCqPBkDLJuLq+pDccMJvNuBvc6/paVY5pqpR1hVA11vMVqu0xPThhtV4Qpjmu\na9C3bCrRCbRuFGhaA0RNlUc0bYXtDTmY3iHJC3TLJs8zzLZEamosxyKrO4YwTYuiq2iaymq16vxY\n8xzD0FAUjaLMMQyLrIiYLa4YjQZomoKmGei6zuvXrzk+PibLOui87/tfaU3+UpQSbVMT7zdkaYhl\nGdQt1A3ohsnR0QmyLGNbGrvVgotXT3n00x+yW13x8HTCu2+fEYcbTh88ZF81jE/u0Ugad+6/Q5wU\nRFFElkQk8R5LUzvc/m7Jbn7Bl4//iDzdoBsKKBpPX75ms0uohYzZ61MIjaiA6fEd4loibRQevv8t\nhofnbOOaGo19nGO6HkVVst5uEFLLoD8iDiNE25LnKYeTA+qmpK1rDKNDZSJ3VGEhS7f8DJ3FesUm\nDEmLHENTCLcL5LbA0GUEFWmaUDeQVZ3knGl1JiK+56BIDaIRtMJA1j2C0ZQ47b5/XiSYusJw5CMr\nsFrM8QOXNE5+wYhEIGsqg/6Y+WpJGEfMZjPivEJICsODIwbjKfPVntH0LpIRoLsjTHeIEAJT1/Bc\nDcPQEFK3MGSp0+BcLpdsdytsS8VzbRzHYLff3Brrqp0YrBVwePYWjWqy3m1J9mv6rorSdBBnyw2Q\nNJ9gdETedkhOiQqprXl4/z5BEOCYbgdXNyzitCSKM2RV+7kRrGWaTEZjdFVjfjNDVVUsw+Tly5dU\nRWd426EUW8Iw7OQFt1tc18FxDJbLJa8vbtBNj/7kmLoRrMOcrFIxvSFJWrBeLxn1B+i6SoHEZy+v\nSbOWJAqhyAlsldXiEkPvfihcx2C7uiHaLMiTNZbZzWdFV17u93vathN8lWXRlRN1iySpSIpJmnTG\ntbbt49gesqxSFBWO41BVDbpuYpomRfHVFJx+KTKGNE2psoRf/c6vMJ/NODy6x+PPn+K4LtswZH59\nzf17b+EGPSpk7t09Zb8NefTJP+Nf/uH3+NqH77IrCyRnxDJKSeuWh/fPaIqMWNcowyUpCa+elsS7\nLb5rUZQxE/uA7eXPOLz3IZLqEHg9TMNFM3TmyxWe38PQZJKiokQhGJ+QpSWDw/sIWefJZ5+wifa8\nup4hiZKH736N05NzNps9QrSUeQxtzXyxI4titgIe3L3Hm6tL8iQB6FyS65q6KlA0naSFXZEy6pnk\neUJdlp3jt+1QJHvyqqIXDKkblf2rC+I0QtQ5geuR1dBqLrIwMIwWw4tYbC7o+waK6lDUFbKA/X7P\nQNX5+nvvEDgOl5eXaKZBHCcIIRj2hpRZDLKEYfnYbo843OEfTKGuUCWT6Z33WOxyNLcl3K+ZDG0s\ntWG1vibweuRNQxymNLXEzeUNvbeOUIREmidYssVwOGS/3xNHKYat8vp6zuUu495Hf4Wz+6d8+oM/\nZHk9p0iOQdHoDQ7QfJOklHF8B4k9+X6GLGriZMfi5g375Z7RaEKc5dyZnlKbSxRZQ5ZlTg8PCHcb\ndtsNtmETqRqmYXB+fs6jR48YD0dsNhvaqubOnTs8e/mCDz/8kCShh/wIAAAgAElEQVTrEIhREuMP\nBpilTKPZmIrMeh8xOJhSpjnhdoVoSoSoePzFY4QEd9/6kIfOmHx1RRles756xk9nb3jvw48wtRrJ\nlJGlgqEro6iCMlkxX+QsdjmuO8S2Ara71W2voIN1a7qJrBq4Xo8fffIpaVqSVxJpktNze1R1zmK+\notf3URW9Q2QWKVXZfKU1+UuRMSiyzGg8YDDsY5om+90GVUjosoLvemiagqQIwjgl3BVE+5gyS9nu\nFrz77kOm0ylBb4xudlt+miRxc/UGRWlQmowm3yHVe1Y3Fwz6Pr4XcHMzJ9zu2M7nxJsFQpQIIajb\nhqoRHEyPuqZeHCNkCctymC/WyFaPo3sfcPTgIx68/x3M4BBh+EzPH3B85z6W56MYJr7vI5pOol0U\nCaP+AEO3aGUFSZHwhwG263L39JCea5LGOzRNwbMtVjdbwn3KZr1ANAl6kxEubmiKnNF4QEtN2TYg\nGhzHgrYli3a4jkwSb9FVhaaG8eFJ53dYVjR1iaYIdFXQ69kk8R5dV1mvZmRpjK1rKEJ0EOMaylpG\n122assMDyJrJ8PAUa3DAe9/+N0grCVk3MU0dWVQEgUFexFim2WEIZImq7kqfJK6pSomsKJEkQVkW\nhGFI27Z4QYecfOvdd9Bcn1fzCMc/pR8M8SwZmRzH9LDtAf7Qwwo0ijoj3BekaYqgRAiZ8ztfIy4K\nbLfHbpcS1xAmJWVdU1YZSRIhKRpJltNKMr7voygSx4cTVE0CWgzLYHp8hBv0mBwcdiVE03B9fdlZ\nHGgG3i1+xbJdHNcnK8HyBpw9eAcMG9m02e/3GKJhefmCzWKGYg/BGDOenhLuVihyAWVMGm2w1Ja2\n3CGKENEUtJLM9dWMtmlQVR3Lsun3B52hUQ20NW0Dby6ueXO5ZLtLqaoaw9Romk5Ov6hy4iRjvd3y\n6ItnvHg9YxPGX21N/mtZ6V9xSJLEi+evSNMhsgKK1PL23XNm6yV1XWF4DorjgDBoE41ovmW/WWLb\nJkHgcffeW+BMuLiO8C0VWVSU0QrXURj1NN4sIqoyYjzqkIWzmy2OP+anj77gzatnfKdsufeRgd0/\nYRumKLXAQmBZFrIiiKKI3Trh+YsLirxlMhrh9E+5Y/vIZo84XmGoFV++uMI2LY4OjlA1C10qeLFb\nEEc7dFlwOVvh9fpQljiOg6KZtEWGrRicHE+IthvGvs9qkTAeHDKrQpbzV4zdALUVJJsM37PIs4aq\nzLEsg3USd/vxis5yn2IPTmlqhbJp0GQZ03DYrOfUteDs7hlNVXems03XxV5tNpwdH2EYBnmek5Y1\nqmYgSyq265BEHTq0bgSt7tDvHYJhUdUNruNRlTnjUQ9VlfC8Eaqqc3VzTeD3ma0v2e8zGhQW8y2T\nAxNFFlzPrphOjykzMCSVnt+nLHM++MZH/OgPP2UweZvj8xnXr3/Gbv0Mp3cXSdaRLY04j4jiBE92\nkC2bdZIiJJVaWFRCYrFa4fhjNnHJwdFddKWmKZdd+dZolGjkVUnQG1DnGVWZc3Q0pahyitagahsM\nuyMqPX36nLcf3KeucrbbLX1FwfMC0rJCMx30piW/tZcva8Fwesbi8g39/pBsu0SO5+SVxE4yUfUh\nUh3hBUOgpWkyRCORxVtEk5LnISg2jfBJi4ag13lldsFAQpZVHMdAkiuirOT5qxtkxaNta3q+xajn\nkWchUHEwHRNnFavZjqrVSNKabfjVfCV+KQJD3TRc36xYbZa89959WjJulq8RmsXzl9ccnt4lzjWE\ngCxdd9hvfUyS2fTHU4TmsNlFVHVBGi4p5yGuIfPq6QVffv5HnB5PkKwhSWOi6jbT8z6rxTX77QuO\nDwe8evYzHnztPbLtAiEMJEzSvKZtBa6uohstw7HJPkz44vMXRFGIoqicHA54672PKYoE3zVIoxjb\nsthv1gi5YH3zHMUZQlaxjRJOzs+oGonlRYgqFXiex+p1p35kBQOStsKwLRTFZrvdEsY5dVIg2S2b\n1RrVtIh2e2y3x7ouSYscISvYuksrqxTQpZupjWE6pHHEeHzIi9WcwPMpsxRTV5E1laJsaVoJXXPY\n7yLqIsfWBJYuY5otRRITaAqDcQ/N8lDNPpPJKfP1Fs1UMC2Noii6hpiuY9s2u92OOE0YDsc0gk6c\n1ljTVg2b/Ybp1EVRZD766Jvsdnsk0VLVYJsOUbpFUlXe+eAdrhZLJufv8I3qb/LP/7f/jn5ccHDm\no2hTLMVEHW2xpRBCmb1skBUKsq4TDEeolktVCIRic3GxJIkWPLw/RtdtlvOYt9/7JovZaxbbLXkY\ndsY8isZqscE0TVIlxnM6xun11Y43Fy85PT5hHW549sWXtHcgaQS1tMX0+lyv1vQHU2RZZrfZopg6\ntm+SKy3r5fz/pe49fi3JEvy8L054e29c+7zJzFeZWbanqmvazfQMhRmQgAiQlBYjSAsCglZa6a8S\nJWghcDcCJEojjSGnXXVVd2Wlf/ny2etveB9aRLLWLEAQqmOfDy/x4pw45vf7PixJplwbmP4OdVVx\ndvaQYJvSlhmKqnViGl1HahSQDRTZYTSc0LYtQRB0W4gso9fzWSxWWHa3GmwaaCTwXBfXtSjyjueh\n6zpZ0bBcBKzWKbO7FEmW8P3/j2vX/388bQO2N6SoWoJwhe2ZpGmEbhnsHByjaAMkxaWzDStITc7X\nT76kaKQuyOQNiLKczWaFpUO+veL5b/+Wv/3r/5VPHj+kP5ji792n1KfkyoDWHqF5Q2zPxzBtdscD\nFjdv0eSKKkuoypyqrqkbibKWUBUFIQSnpyccHe9xeLTLdDoiTBM2aUwlSTSyjtvfxe5NOH7vY9zR\nHoY3pr9zzNnHn3H84DGeP0FRDaoGwjjq0PYKNFVGk27ZGQzYBGsKchDQ6w0Qik0SZkwnu9y718l9\nJdEyHg7wvR5ZUeC6Ho5lY6gGutKxK7u6bouqGWimRSs1KKrAsXUMVWG1WnSEa0VntViQJiGuJWNr\nINchUr4i2864vXzDZrkiiiKKohPEKkpH3jZNE1VV0Q2DKE67iPnOHlXTEIYhsmjY2xly7/4+tm2y\nWm0oipLLy0tub2bkeU5VNYRBjiSZ1FVLXqSUUksp6dx79GN29h4jZJn54jVNnkApyNIaQUkehrje\nkDhriZOSMAyJshS7NyCOc2ynj9+fUNUyNSpFLQiyBncwoZF1WiGjWzZHh6dIkoyq6qRJRBJGyEhM\nhiNev3nLdrvFtWx6lsPN1fU7KrOEAHquTVXk38pzdcMiLxoMq49mGCwXF2jVhnJzyWjYI4piwm2E\nVFdoqozjeJSlRJjUCNlGkhRs26Uuu56H43R05//opxSSwnQ67W7P4pS6rpDlLlujii7gtN1uieOM\nOM6Q0JGF9p0DTt+TFQOopsfAEPzu97/H0B00/T9afR1Mb0hTC7brNWq7ZnV3w0effEgi+gS1glqr\n9PserqliyjHh8g2CjIPDHSx3QIpOq/oYe3vESc661ogqC310wnSgoJKRhSG3b9/g753SSBWNVHdh\nk6rB1nXSJEDTNB4+OnkHYpXIi4Cm7QJY223AMliTrbuAjWHpGOMD7o12KeOQtooZ+D5XF29QDJ27\n6zcERUjfs7m8eo5pW+weniCkirpJiBNQFQNF7iPpJTklddN0ANQsp2lhMB5wfbsgrwrquiTOGjy7\nT5GnlGWJaRjkZcre8Snx5pKj/SlVkTGa7rFYhVzP5+xPdnj29Veshw57g8/RFIkk2PLi6Te8vnjL\no0//CQ//6E8Y7p2SVgLH9bv4+LstRtcELYjjlDgpeHF+znRvl5E/wrFVvJ6LjEQYSiiyhOf2CcOQ\nXs8nTUq2mxVX10sqoTDZGdEbenj7fRxVZ3W7ZO/sv+Dy8h+pWXJ+/v/Q79+jb/eQS4Ngs6DyBmia\nS9nI0Nb0hwOu7pYcHZ3h9zzenC+x0VnNAwyrT1ybxJVEhoU/1lheX7O/5+M6PeIwQtO7EpNmOPi6\nQyNkzi9veXx2SltDsFoy3tmhbSqaMsW3fYpGkBcVnucRRltUoZAUNaozYM+1efvyC3r+iGHvYzzP\n4/J8xvWb5+zcV8B00Z0Rqi5Iypa0gboVyKpCUebd7YsQrNdrmqZhvd4ytab0+wPeXD6nbT3G4yGC\nAKFoLJeXOO6I1bLsDnaNHlVToOt/gCuGhpYsL9BNi6qRKIqKJM6/7dPnaYCqQZHFvHn+sjP7eD28\n8R4lGstNyLDnYusN569+jz/y2WYVew8+YJnUhEnJ9c2cm5srNE1GlmUGfR+/10cWOt/8/hn//t//\nktlyRrBdkmUBRZbQliVFmlFVFbIikRcJdZUBDZZl0uu7aIrKdhtAq+APRjiui2nraIaG0+9UaJOT\ne+ze+wCjv8PO6SMas4c22MEedVdvhu11zcCiYDWbE66X3NxcoZsuvcEumyShlkB3OlHuYn6DREOd\nF6iqxmIxQ5ZqkCqCzYyqiFHVBiEaNEPH8npsNgGvz1+iq9o71qXJ2HdwbYlx38LWVV48fcHsZsl0\n75i0ErijQ3RviOlPaFUTWdfwPI84jomiBEXRSNPuq98FcWTitObZ03NurhdUFYgWTENh4Pc6nb0k\nURTFt+1BocigyLx4ecf//u9+xXJZMl+uaYSMYffYNh7r0ifObIoiIo4uSII7bi+v0DQNYXjo3oQi\nb2iKsgOwZhmK2hGqX7x62aHyqpo4r7i+3RKlKv7ogKqF07N7mKaBaenkeYHn+tiuT384BllDNV3C\nrGQTxWiGjuO5LG/uEHXLbt8n2W46ylhT0bYtkuisXb3BiKIWeMNdHj28j23IXF2+AVp8z4I6I9xu\nKPMcyx4iSRZv386JkwpNM74lUPl+R0wsy641atsus9mcMIgxDIOdnQmSaFFVtVPmIajrGs9z6PVd\niqJjT3RdyP/053sxMbQt5GVNK8n4/SHbTcRoMEVXNLI8Rsg1ebamLmJE0+B6fTTbQzdc/NEuiqZz\n+fY1V+fPUaUKbzDE8CdY40P0/pS8Bk2VqYI70uUldXDH3flznn/1G8L5LT3H5uMPP6LnuKiqiqEq\nSE2NaBto2m/twm3b0kptV1CqcmRh4jojPHvMq5dXJGlFrzfE9wd4joeQZfK6JW8UKtkkaxW03ohP\nfvQX/OTP/yWPfvAnBIlgMD3BdKa8fTNjdzLFdx3yPMf1fI5PzhjsTPEGQ4Jt9M5rmOEYOqZtMhqN\nuJtdUZQpQ9/BcXWQKpIkJMsTkiKnbrtr0XCzpcxTwjBEEQK5Kdguruk5OpcXryjLkr39I4KoJC5l\nfvDj/4x/9i/+iqxVaWSVoi25m98ShiEA1TvkniRJJHFG20iUuWC5CDh/fYmu6Ji6+S09qCgqirLG\ntm0EnV3JcRyGu1Nsf8rldcTf/d1vKPKGJI2wBy7SwEUf3sd0PkCqTKQyo4pnGEqJqskYPZ9W0pAV\nnabIURH4XtePSPPOQla1DXXbmcIrYVBjUtRqt9JJEs7PX9G2NYqmohom2yhhtgioGgnVcumPJsRZ\nhmLoHX06DFjNZ2wXM4oohqpEtBC+g/WkeUlFt81dJw1IMj3HJC8ztts1lqmgaxLbYIWuGeRFw2y1\nYb1NkEUXtx6NBu9sY9W3V9qy6DIOYRCz2qxRZA3DMJjP5zx58oSyLHGdHookqJsCVRX0fRvD7D46\n3+X5XkwMklBoRI8oNchSidura1oKZElCKWP0OiJbXfLym1/z/gfvIVsm6yRls7xlffkSpQjomzK6\nJrNJMkrN4od/9k9RnCmG2WNnvIPeVuxaNUZ8yZvf/G840hLfrvGGPU4//DGVeUCNTbjakG1XvH39\nmsUyAEmjqSRkoaIIBYFAUw2CICDPc+Ik583FkuUK5rcl5xdrikJGagWa1KLQ0FQVaZ7TKt1LWQsb\nw9ulv/sxP/ln/5rSPKK39wGtPgJjyM18gWtJzO4uqQUoqsPdzQ3L+Q1D36PMM169ekXbtkx3x5w9\nuo+kSCwWKzRhYqk2qlBpqKibgrJM+ezzz0EoLNYrqDPaKsEUFZO+wcH+iE24wuj7zIIcf+8h/9V/\n9z/w2Z/8JUEukGUXGZMsbNmsUuK4CxENhh55HqMoIOQK0xZ8/tkZf/Vf/ksO94/47Rdf8/r8gjCO\nEELBUC2kViGKMhASTdMwGvfwewYP7vs8friLZWo8evg+NC2zuwuOT4/RPZ9E8ZEHD7CGu+xNPXpm\nyny2ZDGLKYuCtkpRaoVtkJAWKXndUDQtu0cH5PEGyzQQusF0ekgraeS1ie7ukxcyveEU1RvijHcp\nW0FcNRSKTST5VPKY3vCEy9s52yCmaOD03n1urt7w5uUz9vd8ZL0hTlb0HRtTMaBVSauWwXQfzRzg\njo4J4oYqXDHp6biehSSZfPD4hyiay+2i4GKWY/T3MByd+6d7bIMVju19290QisQ6WJA0Lb9/dkGe\nwaDv0DYBLQWzRcjrN7c0QiNMUlzXo61LDF2mLDLy/A+wK6GqKrbTo21yNN1mu7kiiTb4kx2Oj/bJ\n4oJwfsvZyT7L5QzVG1HJAtE2GJKM2cokacI3T1/gjHZwBkeY9ginjBhYBk22YdMEXL+5INzMURUY\nD3uYnoM93aWQxhhCkOcr0iRAkWWkVmM+n4OkUlcyURKjygJagyCMCYKCOFkwneyCaHAchzBOKZsU\nWak42OnRVDWyANVQybMaITqB72jQZ72NmW1CqtrEGh7SNhknjz+lSAImuzHhZkawWSKkhqbIsXWN\n9WLBaq5iWRarICB5+ZK9wxNc28E2TAaNiuX4oGikZU4jJGpqTF2lrjudmaZprBfXUKbcXp3Tf/yQ\nnu/z3/zr/5bz25CoAG+yj6SZ5GVFrzcmTnK+fvKSPM/p+T69wRDVkLi7u0GoUFSduUs3VAytRmoz\n3rt/+I7YLOO63UFlnha0VfvuTGaLbnRx3+lwhKYZ1FXEYrEgTSIkSeLe0SkvXi8YDT0sU+H29RUN\nLZpWMFvdYTo26mAPVTO5eX1HjUrTVqRZhusPKNru8LhtKnqOyyKR2QQhedkgaQ6mMUBXJNJoS9zW\nBPMFHz44pkhiKl2lrBxaWUKXVYbjA24XM3q9Hp5jcnB8yOXlFe7NNbWu09YtFy+f4HpD7N6AoChQ\nNBPX88nSFZrVo13eUOQprjdCMnzSUkWrLVabgjgHz9ZoqJFEi2hqNFUmz0uSJMMf9onTnNltwC9/\n9YRPP/6Mg4MJA19iuYxQTZflNqRarhFCYjDokH3XV3MEEuV3dFd+LyYGSQJZAVPRKAJwXI+q4Z3m\n2yBLYgaDfgcjUSTCNGE2u+LjT37EN0+ekjh9NsGaB48+YPfofXRnnxYdTYeySXn56ilFtOg8glmF\n5fdRnQmvn7zgOr9jOHGoswpTxMhNweXFS4Z77xPkEZv1HZ57SNXUVHVNGKTMFmviqMAwZSSx6XD2\nnkRR5EgtrOYrHF1m4JvUTUUaxziOR91AFG4xhIwqt8iyxGy+wnQG3Fxfsj89Ig1nCDmhrXMWy4gi\n2RCvbpHahCSMia0YWRLEYYSv2zRFyWQyJUuTDgIqpcRpgG27nfZNM5gMh1y9/ApDlfBdk83mjjhM\n2AYr6lYhTQSeM8DyPCyvj9AdkhzKSvAP/+ELkizDMAwePb6HaRk0ZYaiml0NPI1ZLrcsmgjPten7\nPnEcMB5PMB3/nd9DoshS2qahrjonR9tILDchy82WF69veP/DD/H7NopSMB33ef1qxdNvXnB4dEKW\nJ1xdNqiSwezukrFl00qwjVLcVtAIk8bwkQ0HDVCBJG/I4hDfn1IELynzAhWD/dP7LNYRtVRRSgVy\nW5FLJcI0SG5nmKbFeGxxG9a0Wod5UzSHweSU6+trbmZzdnffI7/MmEz3ibYZvZGBqrToQ4O8jtFk\nB992yJMc0SrUeYo3GBBsfSpJpWhlmkZl1x4TlhCmOUmeoSQStjVE17rIt+c5BFG3bcvzkiQuuThf\ndFvtkcfOtI+hpwSygqW7hEFKWaW0bYOu6+zt7RMEEY0EafEHuGLQdZXJQMc1NarEpFR6nN57QNmo\nXF9fc3t9w3Q8xNR0VsslbVHw8ekhN8++wHdshFJTuh6uv4OkWGyCLabhEm1Crjc3GKZPU1R8/HgH\n09L55Ze/p9Z9Jicf40xPCLYhrl2QLrfobUGVhmSrKzxvwmIZkk4GCFmlaiRuVwGbTYUQDn3Lpawa\nZFXQG0js7twjDmJePL3g9m6Fqo4xLRXdsKjfocZs2+qoToqEZeuMJhNevrqiPz3jdrvk0f33mZ3X\nPPndVzx6eIYkRUx6NutlzMHePlEUURcFTV7Sc2x0AYvbeYcvK0PCfE2alHjOMcPxHkLtrN1jf8hd\nvOLizRssu1s59Ca73AQNf/zjP2fv6D3OWpVKbigkhbvVlhevzlE1mYPDQ8aTAaajoIoGzVCgKrAs\nA0mSSTOFIm95+fqOnRx6vsF8fY3vueztT6hKaOqSJi+J05RvvnjC3SIgShvWqwDH7ZiN012Xw/1D\n3r59wcgfU9l90mTG4Y7P7nDM/d0xdfIBly/+nv7uCZIvsW5B1j28g8cU5RyaDUXcQWxzYL1e4Kk6\n202E6U9Y3C3IpAZVlbm6vuJoaKNoFqYk0etNeXN+Q5oV2DvHKKrObbBF0XpklcvuvY9Io7ckZcZ0\nd4cgknj56pabmzsenh0RBNeopkW6LYlyi9HuKXESMRkMMOUSzfUx/X10f8LBB39Kjsfr6zmLTUZZ\nlvSdAZ6uE0cpmmpQVjllmeN5HnnRoEoWdW5yfHDI4w+OEHLIzc0VtuHRNN0qy7IsNE3m+uYCz3PY\n2x8i3a3Q8j9A2zVtQ5EHnZuhqjFtB0QnfNE0BSFgZ2eCZTnc3tyh6zrRZonSlhThmizdcnh8ipB1\nnr36mjhZcXtzgUxJz/KwNJfd8RHL5ZJ/87/8TximxZvzKxRZo+96uLaFpgssQyGN1ixv3rK4fY0h\nZ4w8jbKIEHJD03SxVEVTqZqWMEpJshJJkfEHA+omxx/0mEwHBGHMYhWz3qYslptv93hVVaGpJrqu\nMxkNUTWJw5NDkizFn+yzDDL2jh5ycHSG1+8h5IbFYsFysaFpO7uSYXSHjkkYUNcliiLYbFbESYam\ndSfsl5cX1GWKKrcMhn3mywWNUHn19gYUl20hMzx6zE/+8l8hO1MuZhFZLRMmNa9ev+XVm3MQEo/f\nf5/JZNIdMr7r9ydJjCzLRFHE9e2MOCk6GpaiswpCigYaqSvzhGFIVZSIVoFW5fX5FRcXM5bzhNvb\nAEXx6PsjyrKk53oUecrezpgojTFMk6apMS0VVRWMJ0NMt8eHn/4Js6DG7g+xDZ22yjEsi+HOEfN1\nRF031GXO/funDPpD6rqhrKFFhrZCF1DnAbYqMbs8JwvXiKpEklRW2wTLdRGSRJ5nTCYTyloiQ8Wf\nHCFUlyiqaFBBVlB1A9PxqRAgKbRVzd3NDZYuMJTOxZlGazabNf3RhN3T95gev4+q+0iqSZqVLFZz\nJNFwcLiLRPXuTCAnjmPSrGNrGLpNK2Tm8zmnp7tIUkYSrdnf3e1uJ6Y+40kfTVOJky1nZ/eom47l\nsN2u38W+/9Of78XE0DQ1jimo8oDB0EUoCrbrkSQJ83mHc8vzjPn8locPH2MYNg0KybvW5PHRIVmW\nIRCYpokiamRyRJtxfDDGsVQu375mtrrl008/5fj4mAf3TzGVlmR5Tc+UUKQaRQiKJIS6IFxeka5v\nsfSGLIpQpJqeY+L3bHzfRZZb6rYGSSaOCppaJYsq8jRjOBywt3tIkkOcVjj2AAmFqmppa4m8lNis\nIwxNocoSjvYmyEpLlEW4/QlC9fjZn/4Fpuvx8s05mzjj5MFjwrQgq2qEpqMaCrKmUlUVlmsidEEj\nCRRhYxgDhGSQZRlZHhPHIf3RmIPTM9778I/xpu9x9vGf8fizf8rNpuWL52/YZDlRVrBex9zOlpi2\nxsnpAW3TfWmyOGO93BBtA1zbpa0byqLANE2apuHl+WvCKKJuG96+mfHyxSVFKdM2MlWdkWdd5qMs\nS8Y7E1Rd4eTeMZP9KWWdM5mMUSQFS7UQCHRFxnB0ZLlDnaVZgDuwaWSNXHK499FPaGUdyoAqXBBv\nlnj+hLrVkFDRRcPt1TlC7hqKZV0TFSVCUSizHKmRGA59TEOnqTKktkbRdJarAMMwuLm6QJEa5Lai\nrgrytkXoDqrWY7MtkIROXpV4kxHOZIozPgDh0UgmVdW9z/H2GrWKiVd3RNs5n/7x5xwen6FYIyxv\nQJbkSDRousrxwT7yt6Oxa9y2dJDbtm0Jw5g351fUVcbJvSktWedTbWTiMCTPtmiqRFUn9Pu97lp7\nsUAIwWAwIE7C7zQmvxdbCVkIlrNrwkWD53uMpydsNyHz+YIg2PDwvQdEUYRhmOxM9zqsdhJz/c2X\nfPrZ5zTUlHWN47jsGj1UGVbpnLu3T7l8+UuyPKCtC/b3pzTING3Jk6/+kfliRdtK7B+fMJ6OqLKA\n8WjA6vYCp9/j6ZNfYd7e8s//6/+eRghqNMqxR5y1WJZFmhcoiuD587eMfIcHJ4fIogUlY7yzy6/+\n+v9CVVqkT97j9HAXRRU0VU0QZmw2EVIjcXq0w2K94Mc/fJ+vv7ng7dtL+obO/T2P0e4Ri+2Cj85+\nwHq1wlI0bFNB1wTSQud2PmN7d4N/MMHSdSTJRFN6mKbJ7k7D7eKKPFgzGE9YbGN+8tOfM72nsIob\nXl/Pidcr/OGI8eEJds/h4u0byqLl7P59hiMHRVHI04L1aoWp67hWD1VtaauWsqnYrCPKqiEIShAt\n/aHDzs4OX335DVXW8v4Dm7oqUYySNA8RreDk3ohW6Ix2fa6XEYahsbf7GE1T2K5DdnfGfPP7rxmM\nfN6+eYlteARhjD/1WGzu8KdTbm+WyPYxDyZ7rGZ3rNYRt/Mty3XDzvFDXrz4ivntG0y7j64K8rJA\nR2AbNrXm0RQqmt7Sig3C0GmKlqSuaRUT3eyoTOPhkFbKqQINBXMAACAASURBVEsFx9CwemPKtsTz\nj3nyq7/h4SMTSVOwejZ385TtxZyJf4Koc6xS5vzNU+4dnyCXOToZl7czJGFws4qRbBcRplAVOIbG\nz3/6OYosIbUlZQlFnncFrqxAMzTm8yW3twGrdcbh0YSdHRvXkZEal2ATsLM7YbZ8S7yJqeoCWdH5\n5unvePjehyRJim3bWM53Czh9LyaGKIq4u71iOvQocx1Vs6jblpu3b5ER6IpOloeEYYgpdKIkJgg2\nuP4Abzykli102UQSNWUUkMRrnn3zO5oy4+jeIZJioug98rohT0qW8ytUXUGuUparOTuexTyc8/57\n97i5jnj0wQ8Iw5D5asmb18948uXfcPb4U5B78E4uEkQ5VaNQVQ1lJfP8xS3zuyUff/SAXk9FkcCy\nDNIs4fJmwenpKVG8RaIhilOyoubl+Q2fffYRvq8RpwGffPyAb5685OLVa+6fPGJ354woyRm7A6zh\nhj0qLt++xPU9vInEiSTz4vkrhDbA9gfUjWA03EXXVIRas063TPcOKBsFy29YpRJpDq9utoRxy87u\ngNGoz3g8oMhjHFfH7/W7WHVRoiqCWtR4rvzOvCWhahJ1k5OmBatlwNXNDR98/CmPHj/gwYMjnj29\nZGfQmbLSLEQ3BFSg6haOaRIkV6RxRZl3lqj5ckmRJ5gPjjBVhXUQcHR8n812waA/pG0EWR6TxRmS\nJDFfLVENnW3ccjtL+Nmf/oyyDlnPb3n9my95e7Hm+u01P/zZz7iZb3C9AWUlMA0XyzCJJIUCQZHm\n2HpFUxTIbYMsKRimiTvapchXUDek6wWaI0iyBEvvKNOlptHb2eP5m0v2jkY4lsXh0T5hkBPmJdPh\nEKIVSi2hiZbXL14xOTni/uNP+MWXzzg8+wxdbUiLFKFL9Po2ZR6gWhbr9Rp97IMkIcsSmqG9Q7J1\n8fZhvw+qjKmrGJqJ7AgW8ZaqbLDdMVGccHCwg2Oo3Ds6RNdsXr64JolS3n90/zuNye/FxKCoKmma\nguS+u1LTu32VpvPg7B5UDZqiQxtQlBlNXdDUNfvHp9QohFmK5w1J8wTKNeu7V1hKwf1HjwjLCtEq\nWJ6PlGfYrkMWlWTZisFgwGQ6QGslmjInzzJU1URSFQ6OpkRpwb2hj6fXUIXUrUbT6t3v2rSoika4\njbraq24TRTHPnr/h449PKbKC6WRIEGmsNwGrIMS1VKo8Q9IElusRJQV1qwA1tqXRlBEPTvfI4hVl\nC3lj4g7usYlzrH4PVWk5MHqURc7+7hQhKZSiT8/vdag2VWE03WW1npNlJYf3P6BqJDQ09k9GLLYJ\n82WE09/h6HSMbcvYpoxryNxuMsajHlDT8xyaqkWWWzRdoJoWeRyCanF0cEQUBdRtyoMzl+P7D7Ft\nkzDccv76At91ODs7xLZt6rL7vzZNRVFB2QgM3SFJoq4vYNgooiXcbLFMF0HJYrMmz1KoG+pKYjqZ\nUDcyq8WS8XREYzfkZcujjz7g2fO3/MMXb/jg0RG2N0bTWwyj4OHDAyxLoCsl2+UMW7ewdJtwG7IR\nErrRI94mtKKiyGOKJMYZjClRQFGJVgW2mUMlkNsKXdWZzeb0XBfqhunRCeGTFZIk4VnvzNMNWK6H\n0/eRblVs2SXcbFFVmaJsef/RH5EqY3TbZ7mJsPsemlDwXIMWhTwLkRUJocpUVYmiyeR59u5A0WAy\n0hCSTis19L0edd4p6jS926IaWh/d6kFTUOYF6yTGsWskqcVUFeTv5oP6fkwMumHyk5//Oa7Gu2in\niiJMhuMRTdsiZMH5xRscx+L69ppKqsmKGiUBGpvD8YDb5Q1tnXfIcc/C8zyiXEL3DhAUyNaI4Y5N\nvM1RlZz1XdaRiSZTRN2y3Sz4t3/97xgNPHZ2JpgnNu9/9AOCYMHd63NWyxhhDFH6J4wGHQDVtgw+\nOBtzO1vzu9+9QDMNZqs1Ly8sHp3doz9YMxw7IFqScMGgt0NVNHiOS9BE9D2H7XbNwPfQdI0g2GAa\nEu8/OqVsJLJa5npR8NsvXqGogh9//jFe/z57A484XqKqMu9//jPe3tyyjnJ6Vp+rrYSs7pJXEedv\n39I2FePRlJ7f53S0w/EpWLZLHCdoqnjHAywY9AwMw6LX63VeREuQpilCsbBtm0oruby44O//4T+A\npBCmXRa/Pxx0YhPXxrFtHp/ZKDqk2YaWEtKWqqpJkpblPMHVLRxT5aP3+yzXcz588BDbsNluVyBD\nz3O5iiJaSQXVZrVeY9gq090JF9dXCKEx8EeUNXzy2Xt88atX/P63S2ytYbJ3n8X8KaII+d0v/m/u\nP/wQTejM32SoskypyORxgqFaaKpElG5xPJtCqSmlAk33CCKBbJo8O7/gYPcAg4LZ7I7p2Q/I8xzH\ncKjTOZbRI1gEKO0NmjuhrARqq3B1u2A4OiBfV2haS53P8H0fy/bYJBLJNkGSdTRNg6pAGBppWmLp\nBkLtIuSKIt75S2WgRVFkdnY9dM0mK1K26wVFmeH2eiRJw/XtG5pWZu9wgmvZGGpF21TkWYmqykyn\nY2T1D5D5qKoqo/E+T778BWenxyRRlwNXjU6rJcsyQu2+iH3X4en5Cz785FOySKIsGkTTUiUBtq2i\nOxrLVUoQZeyc7pMKj73jMZKsI9QWOU9RpYKje++xXd3QSBrj3R00y+GDtiGNAqqq4c3FOVc3tzx6\ncA+pygkXrxnstmwXCaO9U+z+DtPJiDyJObu/g6Zp3C7WXF7dECcFl1dX3D89QNO6au18cUdbl+/+\n4J2avt/3KKuMvFAJwhR/4LJeLqnbBkmyyYuGwXgP2VgiK4KvX9zwox99xDapkCSDqqoI4y1pJfjq\nm9dkacHu7iFCQJIGDIcDvJ4JsoZj95GVFk1TSOJOeOLZFuv1ltF0RJHH2LZNsI3IyxLTNACV1Sbn\nH3/5e5qq5Cd//AMM0+HJ01c00YqyrJkvF9Rtg93rYZgOX371DE2XODk5RFNNBA1tI6Nrgv/x3/xb\nfvzZTxkNbZAyDvYGaPq74BMVZZazqjLSNGW+mhMGCWfHh4RBhqJpWHqf5y/OWS0yoizl0Qfv8dHH\nj7l8fcXd1QWrsuHkwU8IVhFqlSI1NarS4jk6ptGh6zZ5ybBvcv32DpkSWbRUbQW0JHlG3x+QiJq2\nLWmQQKrQVajyDNuwCIMQQ1JwnQE3l3dd+1EvKCuZqqoRQkFWFOKs7TyWZd5RlMoW0/KIK8FgMOxu\nuKoCRdGxdK17zxUJVZVp6VKhuq53vRJFoSyLd12Mhrop0TWTOM5Jior5fEsjgaxJ9O4fkGUFutZN\nLrouMC2dOIq+05j8XkwMkpBpJIVW7iAawWrJyck9oihC133KIscfDpiMhvzmt19w9t5DJKGhaRJF\nmbLdLGjrnGgToKsGQRTi+vvoVh/D3mMRptiOzTaMaJsWz+uzWS5xXZfVYkkcFXh9j9HOLnlgcPH6\nKVmW4nkebdUiyyZNE5JEa9yhS7Rd4PSmpFGIKkNT5xwe7bCzt8toPGa5XhEnIaq6T9sUlEWC3/OA\n7rpSVmU0TaFoCtqmpmmqbslnmtSeR1lXbKMSRbFA1KiGipAUqrrh+atXDIcunqth2TqKJDOyfX78\n0z7zxYY0LQi3AbY3QpIVmlZi4I9IkgRVk8jSGstWad6p4k1T7yq9QqLIK+K8Jgwy3l7OUbXOM/n0\n+SWupVG3Lf7I5893/4zr2xvCMEIoCpphkqUVq2XI7377Aren0dSCe6f71Hl3GFbULT1vxDfPL/np\n6CM0S8b1dJbzTSdM0VUUXbBYLBgOhyAM7m5nhP4Q3TJpEQjZwXOnPH3+irKqmM3X/PDzH3D63hSk\nNYvLLap8zB99/q/4xd/+z4R5hSRVWKZKES/p98ds04pgeY6t1WSLJcOxytvVHP/gGBmVoq4Jswah\nOry9ekNv4OP1LPI8YjIeUhUllC1Of4i16dE03aQhqw5NU2MYFlGSYLsDknyN3BgkeUNeNciOgWvq\nmIZKW5ZoqookRLdCkARCERR5iiwLZMG3kBZN1wBBFMW0bU3dQC1LBFFOnNbEeYFlOeR5yWq9pWd3\n5KmqrnC9PhdXb/G97waD/V5MDIqiso1z7j94RLK+Q5MV0jRmMByiGSpVUWLaNlc31wihMOxNCaOY\n0XjYDbwqoq1a6lrmm6fPefD+D8ix+PrlOUdnPcbDEVGSEW7nWIbJcr5CIcF2FFb5liDOqAS06Ypk\neY3S1LiqxHTQIytLhNCZHh6w3m7J4wDFNvjdr3/NT37+c2rRIMk5i/WCJCuQFYOz42Pu5heURYZj\nm8itQV7VbIKEomohiZCVtgNslNA0FcPhkNubBTQtlm2wN/GYrba4tsrPf/aIKM5RVY0s3SCLkr7r\ndVLTKkdRJSzTpOdpSHQK+KoqcR2DONygKBW9Xp/tdk1DTVWruG4fITql2Xy1pKoavnn5huUqY7vJ\nqIuaVsTEcc1sVhDoSVdEajKEkBgPVfZ2dkjzmidPznn29JyilDoZjdWtWIqsjywEft/j1dtrHj5+\nxD/83Qu+ePKah4/GSKpCIzzqtkKzFYJgQ8/vM7+b09QSO+MBrVxRNxl1KZNHAU7P4bPPPuP/+D//\nnrtFjG29Ym+3T2844OzeGWnSIOqY8cGEqkwhXfOr65dsZ89wHMHE6ZNkLcgS0/cOkJuAG01mfn2L\nM/VxeiNUzWIzv6E/rpCQaYqQ1fo529Ud987eZ7OpMU0L0xuiaCVCrlFNgdAUUGRELaMKnd5oTLIV\nHJ895vTBR1xuKnp+H9HWCFkiL0qoa2ShYdoGUbzFtk2ga6t27ItuiHZ5ngYagaSoBGFBHJcsVgGT\nnSmKUNH1Fl3TEKIhCLadj6Vs8b6jtxK+JxNDWdU0ks5qG7C+m9F3OrV9VZU0bcXu7i7MYDmfc3Jy\nQp4VgCDYLvFcA6HIaIbF7G7JcDRFKAbd9XtDVSTcXF90TT5dQhUVsg3RasPF3Yw8rRhN71MpClXe\nkCYBdbxhPBlSVRX+eMo662ZlRXQzuuXJOIZgudgwHI/Q3glcynLFi5fPcV2Pvd0DDENBaloUWaZp\nwHUcVqsISQFBJwFRFIHjOGw2G/b2Dri7nVOUNUgZ9072mM/XWKZg2Dep6xZVMxECDEWiampUoVLV\nJUJWaOSGIo8RbYNpqBRZSM8zoK25ubliPB6j6zqyqrDZBIh3grE0Lbm6myGEh1AU+v6Q5e2aqpRo\nG42Bv0OwfcvV7Q0PjibURcJo5NI2MkEwg6pgZzKmP5qAANOU8FyZ8dijqio26xlZGqIqDr2Bz91s\nRVIsGPkOw94u9+4dkJdLPHeAaSiYukVTNmiKhqJ1QsnNNsT2LLKsRNUVfvrTH/H82SWXb68p84ZP\nP32fkoKSEN2QmR5/yGZ5TVqVKIpClkXE2xlpuMFyx8RJwjpN8W0Zqa5IgjW93YaqqlBkA6Ho7O8f\ncnP5Ak10GnvIKdOIoqzQZA3T7ZFurxk4Ng0NVVPTZBlSU2HrBnVtMtk74MH7H5JVXXvT0BWaPKNq\nWgzDeOex0BBCQlHEOxlv1RG05Q4RoKoqeZEiKxKG7pCnosPuyzqGblGLBtPSUBUJQ7fRtBwhOaxW\nK9zeuONm6O53GpPfi4CTrCg8ePwJreax2KRsw4Snz56QhAt812J2O+fVq3MMy6GVOl4DjYQqK+R5\nSVEUNE23NN7Z3UdXZSxNUKdbFlfnWKLGlBrMNqUJL6iCNzTZCtG0nJ48AKHQFDHBeoWumZw8eIw3\n2EcxR2zikkZqUBSFJMvwPAff07l/POLlq2ckaYosy7iOyc5kgmlZ/O7rZ5RFQVUVCFUBSUKoCpqm\noOsdkNWyTCzbQJYU/N4AVVWJooDB0OsGryyzWi5pqhLHUhgNbcZDB00WqLIEKNR1S5o2RGnLdptz\ndT0nTbusvKkr6IbaEZZ0naOjo44YJctdgUnXMQyDupJ4+uyCX//yCVlWcHK8xycfnfLDTx9gaAWa\nUWPZgnv3j1ktu2V/lmV8+cVXfPP1N+i6ysnJDoZRkmyvmA41eo6K3DYE2wjL9BCKTFXk5NmKgz2L\nw4MJR4cP2IYt803C7WzJ8m6DqdvIdNscRReUTcp6taJIS5pa4/Zug2056EqNa1V89skDHt47wrN0\n8jTEcx1UTaLn+9RCZjjd6Vwj1phW7iEwkaqG5d0lz37/GzbrJev1Ftex0ZoFdfiCdPuGugpQVZk4\nSjFNk9u7K2SpIQ+3LGZ3KKqNYvboD3axDAddc+j1J9SNgtAMkA3KSibOWjR3hD/ZJa0yXNciSSJa\nOnmtUCSEAN2QCMJVh5wvinfvc0dw0nW9M5BLHTpeEjV5npOlHX08Cre4pkmaxJRFxna7QUIlDGNM\nw6XX81FVk8XiD5D5KAmZw/c+ZvfwmPV8xs3VC/qGyrBnk8chVVahyGqHYdvfI00KNEVnvrjGcQ2E\nrCCUmv3DfSa7O4RRQhpGPLy3y3KVMHIkmrJidvOaLN5wN7vk3oOHjI8PyRsDTXNI05jpvQ8Y9VxW\nqxWSUJEUE8f0EDUk6RrZUEFI/PpXf8PuzgGudcjtzRWG1rK7N2W1WqHrOstNQFFkZJmCZVnkdecF\nqOoc1zVpGlCU7ksQZDnPn79kMBigqjKqKpPnKf1+Z0AyTRNZEgSbLVUJitIdyF7PlswWS0AgqYLB\n0Gcy3kNINbLSHWTpRvdv8zx/B2exOl+CpqNpKpvtis0mYzHfMhjuEwYpi9kNk4c66kjhR58/4Bdf\nPEfOa/b3x3i2TBzl7O9OWK7X/O73T/iL3X12d8f4fkddNgwD6d3kLUkySZJhmT0GfsWe4/F3f/8F\n83nIyxcNqmYSbtYosuDsdMR6saUlw7F1JBlKQNgKWdGwXoUESUZbX+P3VfqOjZAK7p/2aakRoiGN\nQnx3SJFltE2F0FQM1+fn//lfEa7uyIItFQV3izl7hw8w1e7nLBcz5ttf4UohqmYyW28w3TFGf4+6\nHJE3Cuubl3z4wSdcLUJqp2S5XDJ0Zd577wyERFZLDH2TbVJiGB6ereP1exycTvn1l19x9vGPO7qT\nrFAkJaajE2y2aHqHDdR1laZpkGUZ/x3U5vz8HEXptnum6VLVBU1To2kmdRWRpjllleGaGq5jAGCa\nBnXd4LkD2rbTI45HE64vl99pTH4vJoa27byCdm/EX/7zf8Hd5TlPv/gbNEUmjGL294+4ur7F9ewu\n8izrlEXRMQixUGSDxfIOXTe4uZ3RCgnD0EjTFKXN2M67RF8arFitZ5ye3gNFR9Zt1Nagkhwco0db\nbMlbFVQT0+tTtyqS4pElCnFVE2cZE7NP39+yWs/5+MEPuF2lSG1JFEVUdc1w5HN52yU2++6ILMv+\nX+7eJEayNbvv+33fnaeYIyPHmt9Ub+y5m00aFC0alhcWoIVgLwwDJsyNYW8lr7wSIG+8kpdeCJAF\nmyYgmxBNkaLEQd3sgWyy+/Ub6tWrMbMqh5gj7jx+Xtx4yaZgkf0WAti6QKISUREZgYi4557zP/8B\nx3GI41Zf4Ps+RVG1PPi0LQD9fp/tdkuatm3vZ/Fonuft6OA5QdAljjLCbcpmE7LZhriWixIag3GH\nIPAIoxUnx0fE2w2a1gqXbMenrmvm8/lOYNOSZqIoYm9vj6vZU46ObxAlJWVdkZcNeVmhS4HbsXjl\ntRucX0yRQBAExFlOnFRcXM45ODhiMBgwmy1omgpNmsRxiqaJVlyVprs8xYbuoM/L8yvOX17S6Y6Q\nUpDkBVEYMp03vPbKBM916AZD4mi963RgvY0Iui6NEmyebej4PQxNYNkGutQwbYe6bCirijRNKYsC\n07JoECyXK4Kgh9XtIC2Hq9WHoBnce/sVJntjLs9f0FQlgezy3tdGbBdXCAyCoU+Gxo8/eoyOieMN\nOJ3/CfOrc5KwoH9wG6PrkW+nLKqIw/0JuqmzuFqgaQ693h5KCUzXYjA+IjAsmqbBMEykbOnOpuXQ\nKA3TMNluE1pcoQFaGzd95zMaRa04SgjRmsAqRbrrUuu6xPMtLM8kXEXEWYpvT9pxSxdMp1OObtyk\nbFK8z8l8FEp9PuLDv4/jvfe+oH7nX/8ukgaRhZw+fcz8+Uf85j/5R/yNX/g5pIQHnz7kG7/wi+QN\nmLbFajbn6PDk+sR7+OkDxqMJlu+yCUMCzybPIlzTQtXw4vkLfN+nOxwQFw3S7bPalAzHxySNIi8y\nBoHNZjYliiIaYaA7PcLKYnT8WptjsZjSNxtEuaYIl+iuzf0vfpWyaeiNDlDSYbONaKSOoKTr2TiO\nw2KxoNvtXguPHMdhPl+22RM7lx4hBL1e57qAbLdb9vf3uby83F1RrJbzX5Y0DQhpoes6nd6IokpQ\nTdXmUvg+ZZlTFeW1+09VVZimiVLqGtRqmgY/cJkvMy6mMQ8fnuJ5AUUZYRgV/a7DN7/5TS4vljx8\n/AjPdjBMwe1bd9lsNji22a4iVUsSGg561KrBMlvthK6brdFrGNIfjFisV+RFzccPnlGVIDWToNvh\n5cuX2I7B7VuHqCJi0As42N/n7OwK3XQRGjSqIggCou0G17YQskbXJYIGIQRZWuwi3ErKskbTTXTd\noGlqyiJB1yVSNAx6PRarNbpuXsfOATRVTRrFbNcbHNfi6uolWRqRh1sMKRBFycMffoc6T1CaTnB8\nm6xSuJbi9sihKDPe/+ABb7/7DZ5fLmhkwOvvfgXD1NBFQXe0h98bUymd1WrF4f4BtWrajUapAEmW\nJRwc7vHk6QNOTk4wDbs11NU0pGw1QJvNBtsxKVKHR08vuFrMeP2NO1R1ia075FWJb5vMLp/z9lv3\nWa/X5FVNf9TmUty+MfmBUurLP805+deiY2DHyqpR1EpjMDli3O/x/ve+xfPLNbbRMB6PGY+HTFcx\nq9USLwio65qnp2fYhs14coDvuERpgikF0XqFoGK6WtILOpiGYLg3Jq0aLCcgawSbMEIaCx49/ITx\nwKOyNVRZQ6NYbDMqucbuT/A7NvMiRRo2WZmhlRpxVFLHa0yRkRQ1SZKA1jAaDYizFF1qCMQub9C+\nnhsBdN0k2L1+0zSv99WLxYK6rnFdF8dxOD8/x/M84jjGcS0sW6JQOI5Ho3TysiTNtnT7Ppv1kiIr\nWJUpvhtQN204qtQFvd6IosyQQse2bZ4/f06v1yNNU2oliKOUxXKNZfvsjVv59sPHjxiMnnI42WPY\ndSnLGs/tcTmbY5kucV7hWBqapnN0dERTlwhNUhb1dfsrpd52JdM5cZpQVjW2Y4At0HWdOL5kstfG\nEEbbJUeTEVG4IQxzVpuMMAlxfZduz8PMaga9LkUaUZQFhuGiCWOnPLRYLBZtkS1qrqZL1mHB/sEe\nB3tjyl1hvJhucH0XiUZRloTb9LpoojtkhsDx+wSNzVAWPP3xn3Jx9pg6jel2PV48v6A76FNna/Yn\nhzRlTB6FGJaFqAsWLz/Fkib7x4dsVi85OL7JK6+9S14q4iQlrzM6nQ5JluL7HfKsZHo1Iwi6eF4H\nKVpbN8syMXSzBUJ37Mb1ek23FxDHEVKzsCwdw9TwPI/T01OMvkue5+yPBoS2zXQ6pWna/Isoilgu\nPp+I6q8F+AiAaJASHM9lvHfAwcmrvPnVX+JsHtJIk8PjIwCqIsP3XDzf5dMnT+l1R5zcvM1wMEFJ\nje1yhQ5oKGzLxNZ18iylrkuKugbdIC0qXpxP2W63+I7FF995jaNxQN81WM5e8OzpJyAFfr/Ljdu3\nqMsa3+tgWB5JlpJlKVKrqIsNq/kFnqVfX/XLKkeXDbour9t2aIN72zzHtj1smgbHca47CKValNow\nDKIwpKxy+v3+NT6QZVmbQ+j5mKbF0yfPmU6XhNuI6eUVuoDRuI9p6MTRFkMzMQzt+jnKom6l2kmC\n67pt2GnWynstx2Y8nrCNUj599ATX63F0dJenT18ym045Ojjg5OgA09IxLYswyijKBtOwEUiyLEOp\nhqJIr9tfKSVlWZIkUVskNBOEg2W66LqOJqDjW7zx+i00VVDnMWmy5ZVX7rIJUxabjKtZxKMnVzx/\nfsVquW1dprs+ZZHhOT6O1SEOM8qife8ce2fqWpa43oCzsxlPnl2ghMl6G+9SxNtRpz/oMhyO8YMu\naVawTWKypuDHDx7y6OkVT56uObp1n1tvvIPeDXC7Abfv3aTXsfBtRbKZoZUZ6TaiLkvu3Djm6Sc/\n5mvvvIJWrhn4UNcpltchyws0zQClUKpmtVoh0LCtgCwryfN2y9Z+TyDLsusOTyl1vZloOz5ompJe\n38N1TVbrJVGUsVxsUEpQliUnJycMh0Ns26UoCsqiIc9+Bo1aQLXGqwoaJUirklzB13/pb3Hj5m2+\n9Tv/N8ttSPrwYzy3j26a1EWF5wbsTfaRQkDTIJqao4N9VvP2RFlMl9dGpYPxCKRESh3Ht3mtN8I0\nXFA1yTaiEC35qDfo09k/prv/ClhdamUzO51R1zmmCX5Q4+saTa4xvVAspi/RTAd72KFROWWhsAwT\nU9PbUBVNQzN0mkrRNOD5nVYOnWVst1sGgwHz+RxN01iv1+xNRlR1gWN7JEl7P8930KSGbXk4tkaa\nlNSVxPctAs9jOPKRoiLc7GbzwMG0LKRQIOByesXJyU3OXlyy3UaM9/oIIZhPZ61Fv2nR7Qb4dU1V\naRi6YtDv8+jRp6w3IUIoxsM+sqq5mraxaJO9AVtT0O84mIbGcjYHTVI3aRtsq9jlLHQom4LFMiNL\nGzTNwtJNuh2b/cMOdZ7R2x8y6blsojZn0XBNOr0+p+chUlhkqWK9iomHLppU2FaH8/Mly0VIpxuw\nDTcEHRspCgLP5Z237/OjD15y+vyC6cWW9Trj69/4Ap8+OeP1V26w3azYhjHD4ZDReEyatga5UZow\nDPoMOhMeP3zKH/7x9/nyV9/k515/l9nHf8Ts7AHZZkHHt3n0yWPCRtHtdvF6Acf7Yz79sOF73/p9\nkkbjza/v88qduyymK4q6IXA9yrod4TqdDklREYUxcO2RCAAAIABJREFUy21IbzRsQeq8YDxqbe8c\nK6auWn7L1dUV+/v7rFcLNE1jNr3k3mvvIEzJ+dkFaZQileS9V18j8G3yJKRqaiYH+7x4+ZKqqcjz\n/HOdkX9NCoNAqJ9oXoRAiRqp6XQGR7z+1ld5+P5voelw2O0yGk14/6MPOTq5SVFVqLpG11Q77yYb\nzs6eApKyarj36htMjlsQb7Za0Bvt4Tk689mUVV7RH3SJNkuKIiMIPHRdx/FsFpenVMKhP75B1/ap\nighRxlj1Bq1IadINttQpooh0uwTbpTOcABqu0yFPU1zLRrcdlusVnaBHMd9g6hZxHV+7KwPXV4Ze\nr0eeZ3S7HcJtgpQS13XpdPxWal6khNsUx/FwbIPxqEscr8lSrgGqLGvt7j2vasNM6zaM5JMHT7Bd\nHw2NspJYhg5KJ08y4qRgs14zGnc4Or6JawmKHLR7J1RFSd2Abrp0dZsobuf4cLui7+uUeUOOg+N4\nzJdLusM+Td20+Y1Oh+ki4mqRsN5mVGWNrkr8jsFwtI8uG2zPQdDQGJKDg33SPIemwdAVtqFYxSEj\nOWa4N0Y3LCxTJ1ltePJ8SlFL4loQuDqbKOfWyYiqzIjiJfdfO6apaj75+IzLq5Dv/uBD3nz3Hu9/\n9IA3XnmFTtdgu93SNG1Ai+u6lFnJqNenyBNcXyMIupw+W1BXOp292wjdILx4Tro44+RgQriNWUUh\nbt5hfNBHdzzCrOLVt7/M0clbBJ19ludTHM+lpsZ2PTRNkKQ5aVYxW0akZYFp62RFTJ4ljEd9bt0Y\nEMXbFlfabEApNut1+xnLdhxcL5eYUiPaxvi+TbdrUhchi+kC0zRJ84wGxXh/wmy2oNfrfa4z8q8s\nDEIIG/hDwNrd/9eVUv+TEGIA/J/ALeAZ8HeVUqvdY/5H4FeAGvgflFK//dO+IKVUi8ACQuiMJ4eI\n7D6PP/l9pldX3Di6x3e+82364z1Mx6ZKEpQCmpw02vJnf/w9bt26Q5LmdD0XyzbxXZeyrtE1DVUW\nhMslyXaDpgmWsxBRV5DneAObwqi5PP2YrLIY7p0g0nO2SYGkoowiss2SIopItmvmmwVvvP0mkpqi\nSfAsk8vVFfL2AM/2KPKQ5XINQpLvFHNCtGDgZ1yF7XZ73Sa2jj2tRbxlOS3PoG7b8XbHXdPvd8my\nisGwR6fTaaXmZYltt6lQdZ0gZbsuVI3GdhMyGh7y8UcPmU4fcO/ePQbDDppwkKbNcrNmtU7RdJMk\nzpBS4nsOwtPp9/zrBKQ0TamqAqEqbNPA0DUUDbZtg4J+b0hWFHSDHpvVEiF1wqjg7GrBcpmxiVOk\ngK5ncnx8iOc5ZOmKsilxXZe6bvfzq/WaOBP0ewOkqGiqlOG4Q6NS8qLG0D1Mq914bKKaLCuoAxvP\n1VivEqSo2Z8cMp+vuXPrEMt0+b1vf4fp6gzHldw47PPw4UNGoxGmabJYLHAch+Vy2eZeIGiaik7P\n5fjGAc+fnrLdOhzf2+fkYJ9lv8cH35nx6adPiNKEL339m2zihJfTlPGNV+j1J4wOb+H29kjrBqkb\nGLbVrnDLEqmbSK3hybNzptMtCBgMe2TRFkXVUsMNyeXlJcPhkM+WA2VZIoTC0tptVRJF6IZLUWTs\nD/YZjbotcHqxwLJGKKVYr7YgTaI4oWk+H2rw03QMOfBLSqlICGEA3xJC/Bbwd4B/pZT6h0KIvw/8\nfeDvCSHuA/8F8CZwCPyuEOJVpVT907yg62AMoVFJQVJVaJ7LnXvvEa7OefnyJd1+l4ODCVWV8eLl\nE24cHhLNp/z4/R/yymuv0DSC2wf71Erx8uUZeZ4CoNU1m+kMgcSUcPr0Gd1e28LJWiDLLYYucZqM\n48N9kmRNNd8QbWfEYUK4Djk5uInhO9y5eQtlKM5OH/H845cM5yMe/tmPeecX/nPe/+ghk+GQQdfF\ntjs8f3FGXl5wsL9HUeXXYSt1XSOlvF5RdrsBUhuwXm8wdIjjNqHYsq0dCw7SJKdpBKPRiOVyied/\nRlRSLfCnOUjRUmrTvGR+teX9P31EmqaM9oY0dUlRtDjJKoLLZU6Rg5CQ5RGPHj5h/xvv0VQ5QjVU\nRY3f7WCbLakqzSIc28dxTVxTQ6gGqWlswzVCKYosx/MCGiWpRTsfR+GKwHcY9Du8/tpdRsOAcLVA\n0G4b2uIjaXY4i2a0V/OjoyG3795gb9ShrjKUFERJSNnUBB0bXVPYjoXrmuiiBRENXXJ2dsZkMiHU\nIpwg4u/87Z/n4eNTfvSDH3Hn+JeZTCZAQ5Yl9HoDkjgkCDzyLMIwDDRd4LkW3/zml+gPfDbrNcrw\nCfOE0fHrHN/f4Ozd4JOHH7J3713eOrqL5zlML04J+gP87gjNHXP28op+v09VN2iGRiM1agFoksuL\nBXEsuHP3sE1Zb3KELNENWC6X15yG7XZ7jUF5tk1W5kihcFwLlCTwbDzfxLUN6rJgMpmQJBme59HU\nkKU5mrTIyuSnOf2uj7+yMKi2ZH0mzTJ2Pwr428Av7m7/x8DvA39vd/v/oZTKgadCiEfAV4Hv/GXP\nI4RoQzV2J41SGqppwNCwgoA33v46f/yd3+X3/uA3+eW/9Ut0ugGL5YpeELCYXvH86SPeeOMNHDeg\nrBWzxWKnUDPQNEGWJJi6QVaVjEcTLq7OGXZ9siLi9u17WFaPusop04RVklMoQVIo/F6Xe8PWkzCL\nMx49eoRhW2jhgq994+cJPJdnn77P/MUL7r79NWSZkUYLLosE37lLf9Tn9h2HP/jDf8VwOKQoy2tA\n8jNL96Zp7ec3mxVhtEbTdD748Z/x6quvttwDy7l2sHJdl7OzCw4ODgiCgKvpS+7ff4Pp1YKmgX5/\nSJrkFGXGcrmiqtov2Be/9B5B4GEYOnvjMU+ePudqmrTqPdNiMplQxHNo2h25hkRokjStKfMYaMHU\nUb/XRvSpAk1v16hJFGNbPq7vY+qSWgmauqYuC4Y9B+PuAa4jMQ2JJWIW0yWOZZM3DUVZo1RLhoqS\nBKUEHc/FdTwm432enk65PJ9SVSX1ZIBntRTww4MxRVExGHSQQFklCC3H8X280kE3JIKa/XGHvIAv\nvPkanm4jhCIMN3heOzY+ffqY4+Pj9kQ0dIoiQ9dNEJBmEcNhgOfajPcmXF2ekVRw960vMQnX/Nzf\n/E+IU0EtPZShcXyvT6MpkqxCVBWlgkZJqgZ0ISkaQRwW5ElOWUmSON+trFvVa1VWWJaJrstrBqTn\neZimSZ7nKCnQNA1daGzCHE0H1zMRqmJvMuDq8gVaswunqVsy3Hy5pihbe7vPc/xUGIMQQgN+ANwD\n/lel1PeEEBOl1MXuLpfAZPf7EfDdn3j4i91t//bf/FXgV4HrD6Zp2r20JiVSCIQuELIBU8cbHLB/\n/Brjg0MW0xkf/Omf0B2M2W42mJrOweEJTtBFCp082bbZC6s5r917hTRNwNKZTWetoezVOYHvIqWP\n5x8zX0UEvS5pFiKRBKNDKmVh9/pktYDSwPN6RNmCu2++x3w548NHj1glir1BD68zIU8zmiKnY9Xc\n2neYLVOEBlezGdskwbI7hNuMvN9uIz5b6X22JfhsazEYDMmzkk6nw/e//32+8pWvYFqgVEvLlkIy\nHo9bJmXFDrTKKYqC8XjMbHaFrtlcXFxQlhV7eyO+8O47KKod/dZgOr3EMixcs8SxDTQp8VydO8d3\nKYuWeGVqDbZh0lQlXifANM2WY6ELAj+gKBMcy6Ko8vZL22joUrKON1QKDN3C0EAnR7cSijxErzXi\nRYTleVRUGIZxHU84HA5RSJI0oqxyLMcjjWKKJGG7WhMmKUVVcfPkBEM3cRxBr2vhOq1vhOVYROGK\nOKlxHJM8zej1erw4PSPNSkyj4ehoiKSm12/5E3t7e9y6dYvZ/Arb9XEs43rUA0jTik7Hx/dbX1LX\n9SmyCF2zqTQbYXUZ9DrMFzlFXSKMVnrd7Q9Yhzmu1yGKKzy/S91URNucolQUhQRloFTGer3GcQ6I\nt8VubV0zm7U4wWf09eFw2G68yhJQCFpdhRDQ73ZBKl68OMUydZRq08HKsqYT+GgypWkSPM/7XIXh\ncxGchBA94J8B/z3wLaVU7yf+b6WU6gsh/hHwXaXUP9nd/r8Bv6WU+vV/199977331O/8zr9oi8Ku\nY0CpVkyitXH0em7R5CHPHvxrzh58n/XlSwaHJ5iOR5QU3Lx5glQQJ1uErPnwRz/mnXffIt5saJqK\n1WqB6wcsF2tu3LiN0AyoGz74+COGwzGd7gDd1NqEaMflcp4yObzLYhuhTJM4StF1k73xERfnU1Sl\nMA2J2VQ8ffgBy6sHCEqKOua/+pVfZVl3eDoT3H/7yyAc5vMFcbjl9ddu0w0kQijm8zmTyeTaEbjf\n7+7Wli7L5ZqyqCnKjLJMuf/m66RpyvNnZxwcnOxyPXOqOuPwcMJ6vaYsa6QwUEojTXLKuqIqU7J4\nzVtv3We5WeJaNqtNhqF7rFYpSd5gOC6aIfnk4ccURcpXv/AWjilQquVZ+H4HKWVbuPpdwvUKqSnS\nNEYaJqbhsF5FbLYrxsMOYjdClPGKKtoQzU5J41lLme4e4HQnCLsHTp8sU3T6HdI0x5Aaxi5bNAzb\nbseQHmFWoxkuH3z8ANvSuHNnn76nURc1rttGBxZViabrmLpFmsUYWguuxnHOejGnUQVN3ZKNvKDT\nZqLmrTV7FEUMh8N2dGta1ulqtWI0Gvw5SaxM6fZ7vDg7v14lBr5DHGd4boBpWyRJhG4aaNLixYsL\nhHSpG53np5ekac42KknTnKZuu2PLFNy6O+C9d0+wdYUApLLQdclyNW/1FLKlmff7fVarBZahI5DU\ntaCsW3ypqFPCcMvR0TGbzQbfG+C4AU0teXF2QVoVOI7NN75y/98PwUkptRZC/B7wnwJXQogDpdSF\nEOIAmO7u9hI4+YmHHe9u+8tfyI4CCm2LjVLoQrbtExppXWPbDqlyWEWwWWd87Zt3SLOMXtCQJEmb\nBhWGVGW7Tw/XG5q6Yr1eMh7vsVxtODw5wTRNaiX4wZ/8oNUUGIIij3ZCGBjt79PIlG63S6MZzHdZ\njVIYrDcJy02CaTh0hnuUecj9b/xHfPffJETzC9I45M+++4dM7n2Zw71XefzwA45vv0WaFURhTBJm\naKJhMOhxcHBA0zQEQWtpZ9s2Z2dndDodmqag1w9IEomud1gu1iRJwmi0h2m2AqqiyEBJrq6u2i9q\nEFCWNVXRSq6LogBXJxIVDx48wO92WM1XuH6fKs/odT3cSgPT5WI6YzFfcfv2AcN+h27HZRuu0WVL\nvZXSaFvarKRpJFmZ4jrtVWi7WdLUNcO+j2EYhEmMqZdU0ZQympHnKxbzK8L1islJzhCFg0RoDrpm\nU6YZtuFQ1w3r5QaptcnRComqG1zfw3a7IG5TFQmqTBGqgyZ1hDSxdAPdqFkulzgjH9/rEIUhVd1c\nByM7gU0aF2R5AruWXBqS7Xbbkr3irB0xL64YdQcIaZBlCbZtYlsGyyzcgbw2tuvRVDW24+I47Xcu\n2yRYto1re6RZhaZ7LDYhjdJayf0mIU0VRaUwbRupMjQdhII8zTBcHduyaErYhNtrh2jDNDk9PcVx\nW/5HXpYYmkaNpFEVjmshywYpu+R5hlKKGg0hHS7OL8hLhe3Y+O7n6xh+mq3EGCh3RcEBfhn4n4Hf\nAP5r4B/u/v1/dg/5DeCfCiH+F1rw8RXg+3/V86hdZsFPPDENAtU0NAqkJcDQGd+6TxHlfPvJC/7o\nD/8I14VuLyAqBdXeIVK2hJs7d+5QFW2Qx2AwYrXaUCudcJuyyjesN0uqMqffGxLHIa++fh/dNqka\nWK7XKKXTVCVJGOJInULlSGrWqzm+b+N5PpUmEZ0+0yzh+P7PY9UVLx7/GU8eP0b3z/jiG19FkLBc\nTnG8DnnmkJclezv9ArQFcbFYtOuysiYIuoBC08EPHIRU1/v/4dBjOp2ilML3fZIkYW9vjzhZo+st\ntXoxW3B8cLI7GRzyPMc7OCTLMgB63SFZlmEHLmenVwhzRBYqPvrklLrReO+dt6jrkCxtUE0O0kFq\niropAYHl2CwWKw4OJ1R5RhRvqMoETWqYUqNqBKUyKcItbGaQb4nTAs/r0+/0KBAk2zVBdwjk6EKj\nTnIIbLK09TGss4S6rDC9DqrKKMuYq/M1/V4XqSwsyyLPMoqqoiqhrouWHOc4XFy8bAFEzSCO4zaH\nI3DQDNBtm263S1W3M71tuxiavqOa1zx+9rS1rdumFEWD53ZYradcxiHS0LG9LuPJfos3Je3IVTdl\ny1TcjRFlWePYPkmxJsoSvCBgvDdkPl2TZSVFU1MJhaUpTEvn6PgAz5JoNKi6RqnWHPn4+JDnz5/j\n7gr+ZrMhCAJs12lHY6UoqpyqKdvsDcdhu95iWh5lJTm7mJGX7YbP1K0/78R/yuOn6RgOgH+8wxkk\n8GtKqX8uhPgO8GtCiF8BngN/d3eCfyiE+DXgI6AC/rufdiPxbx8KQLWuAbreOhgF/SGvf+GrWIbO\n7//m/44d5ewfHuHpBk1VMrua4rouRVHhuh3qWhHFCYdHx8yXbUCoLtpNwO3btxkMeiilSKKIwOix\nWS7xuj1ElZHHU2SdkZY6abTG6o+Y7PcoK8VoOGKbQi1sxuMhKy3Bkjq37CGjzs9RV2tenn7K3de+\nSG102STgWJLNdsl+2baLltWKayaTCZqmkSRJKzqSgvHePo8ePWJ//wDbNqnrCqXaD7eqKrbb7fXc\n2O8PWko2isFgSF2X1HXZ7szzDL0uUYrr+PmqqijLnPF4yJ/86AkfP3xOLXT+2//mv0SXEUVUEZZt\nW5zuiDGO45DlKXEco+s64TYmS7YUZYrjuG2ke5pimgpb06lUWyDySqc/GKOanDpPePrpBa+/dZPV\nMsIr2vAe0/YpswZN6ugSSlEgmpxwtcSQaoc7VXzv29/i5Pg2B0eHrdtVHVHVGUVaYBjarsso6Xb6\nXF5Od7qQGtczqeua4XCIJiSWIUFKtqsFtmFh6pKu7zNbrZjNlmRR3ALXpoNhSpTeBsM8ffKCu7dv\nUVYxTVVjmBp1XVGo9v0Jt1s0zeVqNuX8fI7QBPvDCWWR4H3xNs+ezzh7Oce0HRxXZ29oo+ocx2ld\nunVdZxNH7O/voes6nucxm804Pj5utR1Nw2q1JQiCn+gQS4QQrNdrdGnhuT1m24LLqymB7zMeBjiu\n0XaXn+P4abYS7wNf+P+5fQH8x/+Ox/wD4B98rlfyl70GAFUjBFiWQ54X3Hv7iyThlE8//GM++uQZ\nX/vqezx68phev49h2niOe00iEppGVTXXKyBJG+UlpeTJkyeIRrB3cMjV1RXnl5d0el0s22c42MMw\nbKpG0uQbNrOUu/0uwtZxtAwchyTPEEWBrAsMM8AZDQDYG1nkRUEcTrE7ktFgj7pK0KSLYekopcjz\n/C/o7tM0pSgqjo+P0TRFEHSwLZc0zZnNZhwdHbG3t0cYhtR1TRAEuznUwfUCFrN5C9oKjfV2g2c7\nOxFOy6kvivaKXJYldV2zWm0Z9H2+8M4bRFlGVcZEyZKOaxHHOUgNKWTr+lS20nE7cCmyEkQLckmt\npq4qHNtlOZthdgSqgmg9JQtDyjzDFVAUG/I0pcLkahYTBJJ4+5SgY9NIiXDGON4AzRBUacgmj8Hw\n2O4o4apSzK9eYGg6e/uT1vZPFyA1DN2kQbVdYFGSWzlFluP6DgLaQolCKIVt6EglKKqSwHEpqpIw\nDCmKDIlANDUSsF0XqZtoho4hJbpsWK7mhNuE8aRLloaAQgjV5po2dYvF6DpRlLJeRwRdH1E3dDwd\n37KwrQMMw+Dp0zndoIdhSnRda8OShEQprjuf1WpFv98nTf+8GHe7XVxvxPPnzxkN92gahRQ6na7P\nehUxGh2QV4o0DWmaVmLg+RZuYPLy5c+g7PrzHEoppOMiK4N7b3+Zbbjh7NEH/L//4re5ceMGvbFD\ntz9o+RBNg2k56KaBqhscx2M8HhNttqxX7Trzxo0bDLoDNGnxb77ze3Rcl37gMZ3OCdcbDg4OWK22\nyLKmN5zw7OM/pahqPNen0Vzyum5Ts4MJIotwXAtdS7FMi6qsEEVEk8xwOh0mI49SBYzHI86en153\nCpeXlwD0egNenJ1jWRaXl5e4TkswMk2dwaBHt9vl8ePH3Lhxi8VixnbbXj2KUrHebNE0C022ZJjD\noxPqvKBSFU3TukW1Ut0apRSmaXJ01OFA6Qhpk9cV69kFUlasSx3N8DmfLjncG+O6HromsB2d8/Nz\nHKslJLXqxBa8tiwLy9agXLBdL0m2IYvljF6vw9X8nDpfY+kWb739VYqm1YPMXz7mcBJgey6uaaNy\nhaZMtHKLaTrohoWr25i6ZLFYcDjsoMotabzi4PCYzXrOYrEgCHxs2ybwfLb1lqYuGe+1I6Jl2+R5\nzdHRTeaLKa2rV41h6GzjmKurK6I45tbdO+wNx2jSwrBslqvWZi2vGxSSfr/HarWiqqpW/GbYWLak\nqizyvCJLC3xvQJJWuF5A0OnT9VvMRxMJpiXxHIPJuM/HH53juCajcY/9/X2qbIXtmDtHL526Ka83\ndJ+NjP1+nyAIWK9bAVeSJHheQF2XrFdbTNPGshzSIrm+4HQ6PnEcEqU1/eHwc51nP3uFAchVjS41\nRiev8tVftNANkwc/jLn76n2E4eB1+xRFQVVkrNZrHMehzEscx6EoCvK8NZcVCsoy54OPP6Kp5U4m\nHHM5neFYLpqsuXhxjtAMzi+uiOOUspKkWYXjuBgdD8PSKIspi5cPORqf8GQ5w+8IPljOuXPzHrl7\nxSZOeevL4I6P0DDZrNZ0u912/vdaj4nPWkVN03hxdtHKlfs9mkYiZCuRPjt7zmgwZD6fouutCUxV\nVfhBl6rR8DyLMNrSDbpomqAQBf1enziOW/R6txsfDocsFgs6ow6bTQh1jKXr5OmaoijoDCecnl6x\nWC7pBAMaSsosRIr6enOy3cYYmtZGqdWCLCvwHZuzD7/P2eNPMF0fEeyzzQWqhEcffsytGzd5Uj9i\nsH+DTs9Dqyb88R/9SwxR8/ZXfg6/O2JTZTz40Q/pDccc372P0xmwLRIcw+DuvoVud0m3L1kabcey\nWU2py4wbN26QRCFpHFHmGY7tQt1Q5hmGJoi2a2xDZ71a0HU7CKkIo4Qam0+fPUaZA6JY0B90kJrG\n3t6IKEqoyookyajcnLfevs+nDz7GsiWWqROGBUKTFHUFdUPVNGyjlIePXnBxHjJ8e0iDIE4rikIg\nlEbVtGpUz7cYDANMSxJvcuxd3KDnudd4UFEUCCE4Ojri9PR0p1htyWC6bu7uU2FZDufnUxyzdRbX\nBeyNx5iayXa7BAnR5+M3/ewVBoCu71GWJWEUU2sm99/7Gnm6Ikxzhp0+SZYjEaR5ie16IFq7r3S7\nvWYbXlxc4LseZZkjhMByTHpa/7pVz7MG1wpwgh7S8fnSLxxycX5JlNUEnT6dTo+r1QJpCC5fPoU4\nYjFbMhkNaNhwuDch2Sy5fP6Y/cMjyEPCxRWTm68yX6c7kLHdpiilmM+XKMBzAmazz2i6KxzXoijz\nnW+fQ5wmmKZ5rdw0TZPnZy/50fsfMZmMeevN17Bsl3TH5UCKHRjXsug6nQ6bzYZer9fq/VFousS2\nDcbDLttthO16zOZnhFFMlOR0Agdpu3iOhlL1NVbRIv4VjmUilAIMZK2hyob11RpLO+BgfEAUJ2yX\nERzW3LtzwrYR5FWG5/fw3B6nn7yPZf0Q1+9xdDDk7vGIKMuo4xnKkTRFShgVLFdb9k5eQfOHJMka\n3+sw3hugasV0ekm3229dkWyLpmqwnNa1SqJAqlaroWs0osK0HKRuYlgGo/EJz55Ncd0eXtNg6wZp\nHOE6BoamU2U5WZawWFxxdHzQyuAts3VdUgqhl8wuZ7hOn8ViwenzF4wPXsHxAqJkydmzJxwdHON5\nHZ4+e06Sged1sSyDPE9xHR+lWjl9VrTCOcf2W5BzZ8fX6/XI8gTbcq99Gj6z50vTFM9x0XRJk7ef\nTV4UCF3DNG2qWvHk6cVfcVb9xeOvj+z6cxx1USIVSNPG708YHd3g4PgWSVpCU2GIBseQbJczVJlz\nvDemSmOml6c8f/opSbyh4wdE0RbN0BCaJOh1W9DRMPE7A0Z7+7idLrlqUI6D1R2QNDpubw8j6DMP\nU6ThEEcZk/1j3nz3i9x77XUM10dp7c/NO6/zxuvv0uuO+PDHHxBtlqThhtVqQ9M019Zbh4eHmLZB\nrzdAaSZhlPH09IokV1RKR9MdTMvF9YLWUdnUEQqKIqOp2tHA9QNWqw15kbEN51RNznI1Z7VYkoQR\nqqqJ41YCvVi0XofD4RAloaha+/q6rul0OoSblobb1FWbe5GnHOyPaMqC7XpNkSXESdh2K15AUdUt\n1VfpgGC12oAwKXJYLBZUteDu3Td5+eKKJFki8gTf0tF1k6//wi8RDPah1rh8cUa2WVPGEU2WsJqe\ns5pNWc8vmV+esd3MeXn2DNEoOp5PlkR4ro1tWwgaXMeg3/Woy4LRqI8uBXmaEUUJNBpNrYHQ2cQx\nZdW07E2t5u7dO7w4v+LZ6QWqMcmz6torU9MVncBFqJbJWRUlk8ke222I5wZYlkUv6HHjxjHbTcRm\nU+K6IwxDp6xa9ilSZ7NJmc0jttuMOIupmwpdEyBqpN7yGuqmQQiJZdk7oxtaansWc/v2TaqyoSzr\na77PZ+Oh53mc3LyB1DTKqmqt7kSN51hIzSCMK549u/xc59jPZGGgbkNmhJSUAqJScHTndWoMfvQn\nf0odbtjOXhKYksvnj/nt3/h1HvzwB1iWyetv3qc/OaA7mnDn9ft0RmP2Dg8wbQvP76AawWgyIc0z\nsjJmvrzEsHVmsytM2yAKV5w9f0gcXxGtnrG+eo4pKsoq5tOzRzSWjnD7DCYnGH4fe3hAioETBCyX\nU85PH/PaK6+SJBmG0baPURSxN97n8fPnrMJEIdLwAAAgAElEQVQIabukRcN8HXH6cs4mUay2OZdX\nC7qdIb7fafn0dY3nW9R1uaP0mm0mp94gZEW300cKG9Cv1ZtpmtDr9YjjmMVijqbvbMOQKKnh+B6u\nqXO01+Nw0mEYGAx7DrPpOXnWFiLHNglcByk08jzfgbyKssoxXZv9G4fEpaLT7/Hpkx9ycDimKOFL\nX/k6v/3P/xlXjz7gX/5f/5R4u6IxDb75N/8zHjz4hMCy+PiDH3N6ekaRZZx++oQqTujYLl3Pw5QC\nXRNkScr0/JLN7Io8XCPrjL1hh4uXpwjZoCiIkgVCViDa4OH1ekmaphi2g+/1yPMSS6/p+A29nsa7\n777NbLri5emMKlNYlgvIHThc0uv6uI6F7Rhkacxkf8Rmu6IsCtbLBUrVLLcxm21Blgo0vSZPQ6oS\nkrQiKiritOHs5Yw0yRl0fWxdJ42T1sPDNLBtmzxrgeGiqHCdLlLq5HnGJw8fEIYxSZLhWPY1c3a9\nXrejXRiyjiKiPKXXdRkPezRVhS4Nnj45xfE/n0v0z9wo8eciK4EUGjTQ6fRYpTPeePsL/PA7a779\n7e+iaZLjk32224j+aMi9e/fAdFFSw5MN0tApigLTkRRJyvnZKV/4whdYr7ecPn1KvzfA8wJu3r1H\n3EBd59TJmmyzZbQ3Io1DxuMh466HbulcXc7oBh5ZEuJ4PralU9clpq4xOdhjvg6xPA/Pd1FVihQl\neZZc028tU8f33HZ9ZUlefeUGH378Ca6t41g6Wdpakp8+v+DGyREnJzfZhktUVVOXJdpnilTVzp/r\ncI1mdTFMmzSOEEJDqQLf94mTECkVVVVR1Q2C9upjWUa76Sgaqkpx5+YRaRJhGPtouoljejhBQ11m\nRNEKw7Ao8hpNV4i6pEpDhGq/2AgDx3Yp05Lp5RWj0aD1tYxifvC97zLuDnFljV7lvHz2Ce+89RpZ\nHOJ5LYswTnO20YaPfvh93nnrTdIk4uLlBcsHj7n9RklvfMCzp59y/6038YM+qq7oB31qJJ5dkUYh\nNQpTa4uiNExc00WjolZQFS0Aq5sGeZXx+ms3Wc0XCMFfUDQCeIFPnuekaXy9Zm6FeQ1ZFqEb7frb\n1A0aVVI3Cboc8PDhQwxp0x/1yYoGgUIJ6PS6qJ3/B7RJbLZtk2Vpq7SlZTRqlk2el+hG6/bdsjQT\nhGqw3RaX+syBqqwalMrpdQL29vaZzWYgWgBTajWj4X/ghUGp9s1VOzRcSEVRVRiWi7Q6vP3eN/j2\ncsF6tWCzDtk/PGAyGVMqRZkkWJaDphkk4ZYkialVxaDnc+/OLebTS8qiphf47A0GxHFClaWkWdHq\n28uSw70O5y8e43o2z57Muf/m28yXS4KOx9XljKDbQaiG9XIOqvVdHO1PiLOYrKmxPR9RZ1i6QpcK\nz3Ooqoq8LFBViTQERZkzHAzod11WiwWB5yPQWC5Cjk8OCLcpcbTBdtrVY8f30eWKq9mMp0+fcu/O\nIUVScr6c4tgdVNPgeA5FucW2rWt8odsLdjoH0cqt/Q55nuPa1m5EMYiTFgBrVEWaN9QUmIakqgsM\nAWUWkxcpi/kMS5WQp5i2hWZqNNJib++QcL0hW8wIAoOTwztIVdI1Tb73R3+A2+lgSrBMDdvoYdpt\nwPHe/gTHD9iulnz4ox+2Og3Lpa4E8fKSYT+gawtsVdCkEVrQoUhiMHYrWk2isduWWAZSyt0Go0uR\ngkLjcjbn+OYBaRbSDYa8+959Li8uiGITx5N0O95u7SfodHyyPGmlz7aGVu7i62yHvKgAvY2jn20R\nQtHUKQeTfWbzDfPVmqaWdDs9HN8j6AVt6O8O72qaprWEzzIsywI0kjghDlcURUHPaANj7K7L+fkl\nvRvHO4Pg4JrQl6Yprm2hGSZZ0hrI5kmKY1ncvX3MbPkf+LoSACl23Ib2aocEJ9jD0F3K3oC9m484\nOEy4cThgvZmxWq1QUrBZzFjNF2hCxzJM4nBFXrRU6ryE6WzGbLYgzwtefeV1qqphfHCI0+1hWTpl\nlZPjE7gamqjx9/tYjo1u2uQZvHH/3fYqrCpkU7NcLvADh+V6ieW6dFyP7fSCdf8JhtdFahLLbrkW\npqZxuP//kfdmPZJl2ZXed+f52mzms3uMGZGRQ1QVi2STTTYpdrcgskVAEFqAAP0qPetFLxIESJT4\n1A12cS42qyqLlZmVQ0RkTD6ETzZfu/N49HA9gyBAQZWNhlBJHcDhBofD4TCzve2cfdb61hBFbc1K\nkkj48NFdJFQ0zeB6uiQKohvHqEpTVxRFgW24mIbCh+/d5/jY5O6tI8JwQZ6XfPrJM1TN4+7du/QG\nHSRF5fz8gvFkgKVbTKfT1qYbt1LapixRDR2kElVuPQKjwQG6rLQYepEgyoz51RTbkMk3CxSpZj29\nJprN0TsuwXzK2dk5snuP2SbG8bok56/45OO/4+79O+wePSSLVxhKgSmBqnqsN9f4jo6mu8w3Ia7b\nJ0hLFMPg6P5jlssVehDw7PlLdNNgs7ymGvd48smP+Zsf/HuODt7h9//wv8HqT5BFTlaCN9jh6/j4\nLC5wHAvb6KIrBleLa7JS4XqRYrg5myim67cDPsvUsAwFIap2MGi3GaFxHKPpLZi1rmvSNCMvUiRZ\nRtMM6kqgKxpHR2PeecfgxfMTdKtDg6Cuc5bLNhHscH9Mr2tSVzlpKjBNvSVtwVvBUpIkSCiEYYTj\nWlhm20TSpHxruGuZmTGe1xrcjLpCU3RMy6HMC2gqTEvHMHX2d8ZMJt8sou5bOWMQfH173i5JUmhk\nnUa1kZ0uu0d3qYAkK7g8fUO4XHN2fEYURehqix1vipxht8PBzjaaBF3PZW9rwvc+/ID/8vd+j53x\niL2tCZN+h6FrsTPqs7M9QtMUZFWi0++BpHC9WGB7fRx/xO7efSTdxTA6mM6A4eQAzfRwOgPkWmDJ\nUIQBr559xmY1RVVaX0hZlmRp2mJtbs7wk/GQ6fU5iIKySHFsla3tAUWRUNcttEMI0Z4x6xxdg/v3\nbpOlYfup77nopslyE7BYLdnEEYP+CN/rIzcKruPd+PWLmxyIgqKu3j5WdA1Z02mahsvLcxQh2hSm\nzYImnpPMz2iiKcXmmsX1MVm8IphdslpOOb+8RKCi6S79wYTp5RWu5+F1B5TC4vRqySxMwOogOwMO\n7n8XzdlisH0Pb3AL2fDJyobJ1j6p0kHpHlDqI77za7/LapOzDDb82Z//gK+ePqfOKl5/9ZSf/NWf\nc3XyhHB+ynp+Qlkk5HlKWWQoUvs2r4qay8sZr48v+NuffIqkdckKg/UGZvOIMAzRdIXmRvsRRRF5\nniPJKkJIaKqFjEIjFHy/y+7OIabZRgL6fgvXXcwucB2Jo4NdpLrE0mX2dvtYlsSdowlbWz6anL7d\nKX6tXciyjPPzc46Pj9E0A8dxOT8/J0lS4jhtdSOiot/v3+x8PGzbxjAM6rom2oSoqkq34zGbzciS\npBWzFQVlXpAn6TeqsW/njgG5TfelpS4LoSJJCrKugKbyzuPvcfzyKR/93U95eGsPwzBwnA6S2SLN\nqRvWqxlBFDJ/c8Hh/i55VmJZzk06dYHtWNRlTZ1nvL48w/JtdnZ28Lt9DEdG1kyKpKROG6I0xrLH\nvD5fECbguhaiqqmahvl8Rq9jQhKyKWrkPKLRapLgmnK0g6a1IhUVgWGY1I3CanGJqStMRl2KPMA0\nHBxHp2zSNg1ZZNRNi4J3HI+qTrF0QZolmIbKeHJAnBd893sf8PzVOcv1nCwfsVhtyIqSwWBAGASM\nxxPCaI1jezdDxPZuXCBTFCWua5Ik7fUoTUGVb2iSJfVmjipSzs5PqeuS+SrG1DwMx6IuS+paUAuZ\nBoNGEi2boa7ZObiDbB9SSApNOUWxPOz+HZAKyqymu/cAd1vir//sj1leHuP4Hrn7Lvvv3Gf7XYPT\nZ5/yb/7t/8AP//Lf8f3f/B0Oj6ZcH5+RBms++ps/I8vnfPCr38HobZFkUzTNIE1yFEVFUwfYpoLp\njji52qAsKixvi7RSGG3f4/MnL7l9axvDEDiWQV1XeG6LpNc1hSIXLOYXKJqGrmtYhoWkSBRlgt/z\nSbKcsszp9lyC9YxuZ5fRcIuTk9foDvzBv/5tZvOQw12fNANNaSil9gg3n895c9oChXZ3dzFNm5OT\na1RVxfM8qqqgaXTKomE0HmKaKtfXbdJ2q2RtwcHr9ZLlcomm6QyHw5srUAvD0EgS4xtW2Ld0yQIQ\ncuulkCTabWP7BozjlMM7tzE9n8FkizgvSOoSXQVVgtH2Fr3xDoOtfR49/nUsbwvN7HHr/rtIlo07\nHFABTsfH8jvs375PfzAm2ETouo5lWdA0mLKKjkyeZqyjkJfnFxSSTFgINnHF6ck1otah0QiDiCJN\niIMFP/vRX/Hzn/6EaDnHUFogjaTK6IaEpoNlGcxmM8qyRJZl4mQD1Ny+tY9UFZiazLjfIw7WLR3Z\nclivW43CcrkiWIXMLq/RlYZ37u6zOxnhGDqeY2OaJi9fv0JVW4qzImtosophtITqIFghyQ2aKlOV\nGarRYszjrJ0d6E4X3fI5fv2c+dWbFhkvu8juFqo7IYgrVvMVrm2iOiMkfYysKNRFSRxl1LqF5gxQ\nVQPD0jHcLnmpUTcmYaEyz2VGtz/AHbUSdUUVbDKZaaIy2LlNVgoGw22CRGZy6z3e+ZV/Tm93H800\nuDx7zdnxa7IoJA0WZJs5otiQbeYEy3OiYEoStS5J17VR9AbT1zA9C92wKCpBltbEUU7TQF0LHMdh\ntVhhWz6K6hAnDUWtstjEBFGOqphokkF9A+Bx7A4SJnmeIuuCJE/JsobpbEWSxFi2yvbOGFWTacoC\n6vbDbWtriw8++IC9vT0W65ST0ym9gU9NTrfnt1kdssbJ62MMXW+NcKaJokhUTQlSRVWUKGjoqoVh\nGATRkkYoBEFOXnzD+vrPXK//nyxJtF/ATSxrAzRIksA2Da5mU8qy5Ld+51+g2w7d4Rjb6xBuVkTx\nqhUJ2R6d4RZ5JaFbPrLdQXG66F4fze3i9oY0koo3GGB5PqOtCb1ul3SzQRQxrqEw8mwmHZ+DSQ/P\nVjDUEttSqfOUvCgwXbdVSqaC8dY+b6YzVmHIO/fv8hv/7NdYzhdv06EUTWW9WRHHwQ3RRycMQxzH\nwfMcgs2K87MzsixBkyAKAjp+j/l8CULB9brtDUxvgGFYDHp9bEvBtVQ6rk64WdHvtedMx7FaME2a\nIkmtkq6qmrfJUaqsoMsyoq6BBqHKoGqoik1ZCXTbpyjau/5lEOP1D0jw2BQ6Ra3eHNdKok1InDRY\nrktVJCxXMwy/z3jnLnEiWsRcmSOpCsFmxeuTV0iaztbROzj9PZJMRqoriiwniVJev3rBsyef0e0P\nKc0+/aNHaIMDhDWkM9rBNC3OT8/57O8+JpqeEc9OydbnmGpJFq6QRM56PqXjWTx4eBfD0ZHkhkpU\neB2X6+mSMCrICoGh22iqSRxlGJZNHGfIkkYYZZyeT8kqWG4iqkaiqtpjh6JoGLpLngIyxHFIBeSl\nzGwRMV+uOD09becFcYRuqNRVQa/TppGZpkmwSUiShk3c4PgeqtoCgRVJJg4DbMMkilr9RhgGAHQ6\nHS4uLpAkBcvscD1d8PrkhLIWXE4DPv38OWH8nxnt9su+BF83h3bVAizd4uXlFS/mbzCVhu5wwmC4\nT6QrbZK0rHF6ekWa3rgNFym6rvODH/4Mx7GQFeg4FlkUEtcNVVWiUNFUJaams4mTNqMgrxkMt9jE\nBfMgpjvoE51c4zodVM3G293lenpJ3pTM4oza8dg92mfgGvz4J3/Ho+/9Fuv1shUxCZWsavDMNnRk\nEwZ0Om3xQoNhGMiSguNYFEVGsE5QTQfT6rAOC3p9nyCe4vsuwNs8CgBFkfH81qknyzJbWzskaY5h\nulxdXdF/Z0haFvhel8VigajAciyQZcIwQTQgVRKW7lFLS+ZXxzRFimI4WP0DUmMLW3HJggWNYvFf\n/MvfRbFyquKEujLZ3jpkfvGUTXTJy6+e45oTBuP7BPELvCbD61tMEptXX32EI+e4g0Nu3/0eIr9P\nXsTk1y/Ik5SvfvanPP7Oe0zjnN07j4jFkM7OgHu1yuc/DOh2Onz+5VP+9X/9PvOzF0SrayxDY2v7\nkELSMY8eYlsOvdEWGTZPXgcESUS340DVMhezqiRZRDx79Yxb+3tsb29j6jZR9IbFcoVm2GSZYLkI\ncdx2UOzaBkKItzMDZAkhBK9evWIxD9je2qdICxzLwbJVfKfDJpgj6gYkQRiGuK5L00AU5pyczTh+\nfcajR3skWc6rV68wTRO/59BUFY1o3w+9fh/bbt2c3cEulunz9OkrVquQozsHaIbL//lHf0pRJhzd\n3vpGdfWtbwzw92RpgCAIcW0PUzcYHRySxgGP3nvM+eUUFJPV/JI7oz3uv9vj4nzObLGkVnVQDca7\nHSaTCUKuqdI1W7s7eF4bcqtJtPHylsObn3/B0BlRNykvzudIiorQNFyvQxKuiaMVblchXJxhSg3+\nwOP6YoGhgCrLLDcBR0eHmLqBLNWYpk3dgOf2UERFI1q3pe+7FEXLGkBREY1EmQs2QYBmWDx/ecZ4\nIlHR8gpNy7l5LgSLxYLRaITne0wmE+qmfGsAiqJ26t0IBd2w2IStGy9JEjTNIIo2CFHTHfSo6xrH\ntMjLBlFU1HnK+fFz4k1MUER0tD1UwyLa5FCqDHdu05sYrNbXuMqGPNmgKwpNUzEcuti2iaxYSIrL\n/GSObS+oK59XXz0nX81xpJSm3BDEObZp0et6mE3Njz/+IVoRYGhtNoftdYkyiPMM2XDYPbrLj//k\nf2ezCfnRR5/y4P13CLOGNFrTpAWKYVPFEVsP7pMjsYwLdHXE3vYe45FHulkSJjGSDL7nU1YZT56/\noKih63Upy7ydnRQVUZSgqTKaJmOOOm+xhMBbV6OmaW2e6Kala3d9j7xo3bO+63J1ecqw2yGOYwxD\nveF/6qzXEbPpClU36Pg9imJNmrRwWMsATVEwDIuyzJkvpgzEhDQpcfw+q6Dkar7m/v37yKpKksDZ\n+Tnf/5X36Xb9b1RT/yQaA9yIUqSWp1inEnWe8+LlU7a3J5y+eYPl9kmiBUVVt1Pd7gjdtHD8IZ1O\nyzNohGAZ5uiaTFM2DIceQZTQHe9xsL/LkyfPcEa77D2wKBST8cjHS1MUTaesa4qyolYrTk+e4gcb\nxuMh4/EWRRUx8k3SpGQ9u0I3DPoji02wwB3vYFoe8yDC97soaIiqPSelaYzr+iRJQl0XlFmJYSho\nuk6WNqiGzVcv3zDeGrJcRziuTlkVGKrK0dEh19dz+r0xmVS0bIK6DTtRVZWT4zNOzi/Z29ujKAWL\n5YzdrW1U1FYO3VQ0zQ0+TlWQpYYsDdksr3n+5AsENVhjKsWhbjR29w7QpYbpccYymlNXFfHqFMcd\nM53NSJIMkWU4Kvj9HsEmZGs8xFJBZBUGOnsHByxnF2SbAtn2uLx6w9CQuH7+JdVmRhjOKOqqpSYX\nGaaioDg6UVwy2hpzdHSLN28uOD9f8MFvbuMrNhevX6AbJmIdsVmueDM7491f+1cUFahWn17XxDTB\nkFu3pOu6QMNg2OUnP/kpL18f8+H7jzFtCyMtSPIGx/FQpBaO+zUjUpHaa0xJkm6iABJ818G547BY\nhUTxGts0GI2HLVlbyO3AXJZRVAnRAEKmKmsaqd0Jvz45Z3+/i4RGUVaURYzvejiGQVnmaJp6EyQj\n09QKL1+9RpJlalFSpCVnry959+F99vcnrfP1G6xvTWOQ+IdXlP/YEo3UFlCVcHgwIZw+4+HDB5Sq\ng+kNyMJr+t0eeRgSrBMqycCwOsiGTddwCDYRsiRj2jpZlHN+eclkNGR2cUaVpVimy6dPXiN0HzSL\nIpJI45q0DOh4XaRGoagtju59lzpfEiUZ4etj+sMB0XwNdU4crrl97zbXZ2c8ffWK//72EUWs0/O7\n2J5HHKwBbtgJJkHQ5l8YuskyWKANOyBq8lqmqCTCpGEkOyR5g27WdPsuZZ60tt1GuvlbGbpuEmcp\njZAwDEizEiEckkzFqxQcx8M0W9YhDaiGegONkcmyDRQpdRIQxwskUbKKCra3d/AHt0hkjyTLScqa\ndWVSris6qkbXklgvT+mMXfb290lXEV989Od8+BsOXkfmi49fkUhX+N0BI19DkUrCvGKwN6KWbFyn\nh5VPmYsMSa158P5j/upHP2G4dcTD2sD1ekRVSVNGbNZvUHSJ977zPk6/z/xqhjc6ZO+7H1BXBSRL\nitUbplef4b98xuh2l0pZY3k+hlm3YqbKJi8qZFWjEg3f/fADfvbJFxiqRt83kVSF1atrVkHMeDhC\nVQwkFKqqfIsm/DrNejDoE8VrTEvFMHvEsUG308dxTcJwfdN824G5JKnUTUOYRLhOHyEWHB7ttOrI\nBoIwwdQV7tw+ZHp1TbcHtm0RhBuiKMEyPZ5/dUoUloy3hpiGzDxYIomcP/ivfgNZzSmKb0aJ/tYM\nH39RZG3TtJHv6+UcQ1OYzq6YTa/e8heaqiCMAqoyoypydE0jixOyLCOKIjZhQJm32z9NV3n1/Evk\nIkZkMeFqQcfzsQwT32vJT5qiMur1EULi5OSE1XqDrBp0Bnus4oKiMVgGOVeLkDiHstG4vFxwPZ9h\naDrPnz6lymKiTcBs1kbGZWXx9mj09XVhXdf0Bn0Mw8B1XRRFwXYc0iynERKbMCUvBUEU4rgtOm4w\nGpGXWTu5ripU+esMRJBllU2Yk+UNiqwjqzppniLLEoquvPVwyAiSJKKpMvIiJArm7UDU76OaNklW\nkmcl89mCoq7RnQ6DyT41FgoSvX6X3mjMaHJAHGS8efkFZy8/5vrNVzy8dxdXV9kZuJxfPGMw7qAY\nFlmh0unt41hjrq6mHN2+je56aP6I3/6Xf4DfH3H87FN+9jf/junpF1yffcX11Rk7ewc0qKiixpFL\nrq6mZMJC6t+n6j9AGj+iN7nD7GrB0y8/BWmDIkeoSolEhaw0aLpAVQQd10GRG2RKqjJFkkDXTFRJ\nJo2zt1b2vCxogE2UkJdtaM7Xr12axiiKQFEFhimjGwqKIpEXKbLcaljquqapoSxrNM1o3bbUSFSo\nqkwWZ8xmC1TD5OpyemPNdlpik6qi3Jitlos1WZYQRSFSUzC7PEdRanq+hiIKDEP7RvX2rWkM/2/r\n62h3GTBMn01cUKNxenxCvllTxxtM06Tf77d68oFHt2vjWDJF2ToIZQrkOkWVS9JgwfJ6hm22k+tV\nsGZ6vaCuBaoMhlIgUWC7NiDwXYNH7z3gg8cfMl0vScsK0+6gahbn5zNyYRDVOpU5ZJl5VKJL3Wic\nvj6BRkKoMrJuoBlWyza4Kf7tyRabdUwSpa2Ypaoos5zZ9IJ+r4Nl2FxfrcmyNlJdFvLNXEJuE6bL\nunVtCkEtKhpREcVBq4eQGtbrNUUj8P1uSwS6aR5NU7eu014P2+kgqyaGqlGkBb7rIasKOzsTPEdC\n18GwLQzHRqpBkSzSQiKsVITeQdN6+JMH6N1bmCIhPP85508+JrgKOH7xknQzYzm95sWLUxTVRjO6\nzIKCBJtCElS6SXf7HbTufez+exy+8xsMt28RLBb85C9/QDCbsb11i8nRh2zdeZ/adHl+/Iw6X5Is\nLtBVgzCpiYWJsMY43S1oBI7aoNc1TZYhKTJVXZOXFUGckBYlnu8yGlgIEWDaBraj0+t3sW2b9EYt\nWokGRfe4nqWsNgVlc0O6psbUVCRa5oemqIimQtVk6rKgqVtPSVU1xHnFYh2yjmIWmzmG1tD1TNJw\n81YAp4gG6pyO57BcztF1A1XVEJJKnFSkWYyu5myPOzRVzZ1b+9w92qMu8nbmdiOr/kXXt+Yo8Yss\nIQQ0gsloQHxwi8/n5zy+f5eiEqxnF1zMr7A0hXHPpyoTovmSq4vXdCYHZElNxzKwTJfz46eYpszW\naIhlGwy29/jiyTFOt3VfXrw5AUli53CfPGtfvOPjizYkZTLhcP+AWjTklQSqxe/8/h/y+WdPcLwO\nruujYiBVaxaXzzg9fUVVF+RFQaO2uLGO3yOKVshygyRAVzS6g94NQajAsQxGA5+qjDA0meurJf3+\nbYq83QnYttdmVqQNDYLNZsN6vWR3d5erqyuGwyF5UVGVGXEsCIIVo9EWRSJaBL2sYhg2iqwhyTJJ\nVtLXLZZxwmY+5+zZU4RloWZTyjxmb/seZakQBBtsTWG9XpI3MhebGiVLGUoCu7ODtZ/RC15wfvwp\nh/cfcLB3h//4F684fiXzz3/zd3lztabIS4x0haTmhEnN9tFdLk7OuPPw1/nZyzXNwKXndWmk54xH\n20yO7nDwzmM0d49U7YKbooSnfPgdh4/+5m8oFxuS9TkFEpJSUEUBSRSzd7DLwDIwRYkqm6RxjG7Y\nfPzRz9mEOe998CGeZfHeo++0oF0KGpEz6Dt8+SQlWEcYtsThrYdcT5dcTQPqGmrRsDtxSNMcWdIR\njYIkZGzHpiwL0jghihJ0zSbLS/JKospSFssNaTHDtBT6/TEP7t1FNcyWA3HdIY0jfNtC1BVZVqNo\nKgIZTbWZLi+RFIVHD+/i+RZX12f8yncfc3V1TlbkDP0+l9f/f7Bd/yNLCIEsSdimjqFriLogCtY8\nffqU7Z0ter0eg0GbKvzkyZck4YZx12WraxJdneIoFb4tk66mpNECUxFYKmRJgiyr7OzsYBoasgI9\n3+PO7SPSYIUhNwx8m93RgFt7W/iWxt52n63JiMFojOO5RGGC3+u2rEepwjDbM2VZ1OiyjCI1yE2N\nIrV31ldXV5imTr/ff2uuiaKI4oZ6fXl5Ta/Xoa4rNBWWi+ubfEsDhEqwjttQlKq6iX1Xbs6zrWDn\n6wHZ0cEOJ8cvWS2mWIb593F5KHT8HkgacZxiWSaqoZFmEaqhUhQlPd8j2cwoNuc8+emfsDz7lGbz\nhjw4Z2/YQRQJHd+lrivCJEEyLLzJDn5AzLEAACAASURBVDv33uP2ux8wGPUpyzXf+d4DHn34mE0h\nc3D/EaPtPRbTM+LlMXVwRrJeM9raIi0Ejz58jOeaVPkGuVgz6DrcfvAumWwTCocIl0rtEqc6RaLg\nmTZX50+5fPUz0vUrjGqDLgvG4y1Gk63WGJVGLKZvMNQaiQYhFIq85tNPnhJFgiCUOL8IKIoCw1aR\n1ArTVN9ChDVNbwOSZJk0ydvEMMuhrBrKCvKsxnF96rpuw4GKqr19CBIuLpYE64yyENi2jWNajMY9\ndvfGCCmj23N4/folZZVjWQ6qqhOnrV9GQkFRNMIoYRNEdHsjHLfHchWiyAaz5fwtbXqxWlLWv3h+\nDPyT2zHURPEGKVkSRxsUGeqm5Msvv6TXH7E92SFPY+o05/TVVy0w1tC5vXXIItiQNAm6LHjn9gG2\npSHVBcvpnM5wj47boaklJNlhrYEsCjqOim+rmI7C3f37NA2swzXpeorXGzJwdEzTZDY7w9AMptcL\nlsslt47uYaugqxr9rociV9R1SpmVb3XwZVm/JfjYpvM2baquW3S8bqjkWUTX0+n2HIoyw7YdJCmj\nqmpc16XIL5BuhtFlWb5Fg+V5jhA1t28dUFY5VZm8nbNIkkRdVYwmWyyDa7IsQ1dk6jpDlqE/2qK7\nvU+JwunZGQ/f/xDFaJjOLmjEgsV8g3bnNo/v7vH67DWOqiLyNU2dM5zscb06Jp3PGButHsPpdMk1\nh9Gth3QGW6w2Md1Kp8rXrOYXWFKXyXhMIiokUjabFU1yjUjneKqCIdeovoc5GLNa1yiShKJrqMKi\nO+jid2RWWcXB4W16/pikqpkuVwhJJQxjoiRD1TWSKEIzFUxTZ7Kzy/n5gh999Dn7e9sMuw5V2WDa\nBq6rMhh2SOKG5fq6hfFK7ZEhz3OyXKeWZK7mM+JNiGma7O6NqaoK03KI4xhZaQt8voywXYPdjo8h\nNIoyw7Hb5pDFCX/913/JcrlmZ7KNEG2Ij6yaJGmO4/e4vF5QFiZxmjByulzPVqyXcz744B7hZoXf\n63M1nVHWgtF45xvV0i9VYxBC3CC/xT/QJvwiS5ZlirxCkQVfPf2cKJiTpRGD7ghoWoip3VqiXaeH\naXYp0pTz02OefP6cNE+Q5OYmR9JGN1oFn93tk3/2U756/hLX7yOrGoZloygKaZrguy6O4/C//OQn\n7OzsoGkajuO05pq8REJhtpijaAb9fp++LHPx/G/RJZWz5y/4/m++w0d/+6fs3Ps10sbg1q1dJKkl\nO9V1a60NlhvKpsJ2LTbrEKo2t7DjaoiqZjCw8Px2FmIYBsvFlDAMsWyNNM/I8/wtV/JrEGyv6zMa\n99DU24imJIwCJEnB89odxez6qiUjyTZSU5Csl+i6SSmbHD7+5yiKoCgzCkmjUSS29ifEYYCjy2ym\nr3j28Rn9nktv0Gcy2sO3C6oqYzA45MlPPyK4uuDf/rf/Bt2O+PLNkuHRXc4vc/JKQTfGHO7v47k2\nYnnKH//P/yO7t+6wrkzivCJaznlvx6eUG4IixdlaUQcL0kTCdnX6dkOaBXgdnYOdR6TqEH98D1Xr\nICSd5vgFlVKSVTqGreN7LUG7O3C4e+suT746w7J9VsuI88s5eVHQGw5pyBCNTNPURFFb9EAL2a0E\niqLRoBJGOafnU2Rg3+kxW2zoddrcEFm1CJYhwSbB6/j4vk2SRpimzqDfIViuyJINQgim0zndTo/t\n7W3izZo8T9EMlU6vS5E3GIbHV89ft1byquTV6ymq0hAlMZ7vISOxDjJUzeL18ewb1eIvVWP4T11f\nNxAhBGWeEQYriiLj8GiXw7194rQkSjYs5+eYpo5jWmzvb+OZJpPFBN+1qOuai+sLoL0JqJocVdbI\ni5w6i3j07lE7lVZVkBXG4zGLZUCelaRZzK98+C6D/og4CVksFmyiDS9fvuTWrTss5pdsb+9iGwqS\nIqGIDLnUkbIQuc64fPOSndvfxzAtwjCk23WRcFAUqQ2jMRzCdYTtWoxGI+SmBilHV2XGww5fnkxp\nREkYrujYHTzPoa5LPM9pQSRpQZ6XLcFI09423qvLM1RVpShLNE2hkaRWMWnpyAqIpkCImrIo8Lwu\nzdJDN2wMR6PME6bTKd3+AN3qEQQFstFBlWU8w0LWLa5PnlCkG9J4jnt1SWdym/5on72dCcGbEFmW\nOX5zydHBQ1LR0OsNEapNvL5mvVmzNdnjxflT8mSFSBbcv/Mhhr+FbrgUwRy5iqhFyOzkCzTjgqtl\nhtX1kRXIF5fs9GymF5c8uzrh8W+P6U+6rKOCvDFwbI+z64CtYRddA8exSZOMXq9PtxtwMT2jkRri\nLMRMJKKoy8DwWCwXCAG6riNrLZTY0Nrr5QYZZIUaCVU3qMsGFBXPM6mpQJFpGthEKbqu4vdc0ixB\nV0ESNZZuEtcbZGESxRmaahOGMXGUth+UgKTKWJbDJmzzPiRFxrQsVqsNm03Agwe3GIxHzK5PAYko\nLMnLDU3zzUr9W98YhATi5vws6ooiiel1XcqNDGor1knLhuGoh20OmC/nzOZX1EXJRtfZrOfUTR/X\ncnn03nucvznFdW0sx25NSauAJC9wXZuyzImjACHJvA4WJEWDqhhtvoIM09kFdV3T7fqcX8/x+yNs\nr88EFcP2EGob2V7nczqOyfvv3qNKNjRFiWjKGxJPK6ltsyJjHMdBVALXtdvIuUZCqit0rUHXVdIs\nx3N0LFNGUCBJAlWV2YRrdF3H8xx0tf3/ZBnqssKwzJvdGTi2SRonyIbWujzVNuDHMDQ2cYSum4iq\noKpz+uNtXp68ZNDvcvZ6RhKHaIrOwB7T67g0us5yoxFsrhmPjnBtk9nVS8oiRBQK64uMqgi5tTck\nsnK++PwTylSwvj7BG9mIbEOQpxRxiGZUCKFyNZ+xd2ufjt8OdpeFRa56aH2L+dlz/v0f/xED3+Xd\n9z5ktQgp6CMEjDSTZL1hfn5OYww4fvk5pqNSlT18f0RVJ61oSCiEaUanNyDJMwy1oKbG9XSO7u60\niseiJM9rFvMV6+WaMIypawXVkFF1FVXSMXSdZRhRVw111WAaNo1atxAcVSFJIzpNQ5xGZHmJ4eho\nOqi6gYJEGoZomsrW1hZZ2s7LsrRmOOzT8X0uLxbcOtwnSiPSPL+51tSxTYuqLsiyFMe1cH2HJEmQ\nVYO6qMmzjGBTIGT9G9XVL1Vj+Hoo9vXj/8ffu/ne6ncaJFnQ5BlKXdLxPGaKhaTZdFyfdZQiKwqa\naZKUCr1Jj52D+yThnPViieN6nB+fkjkV0+UCRZYxbYPZYs4iWKPbPoPtI8o8x3FkJC3D7vaoJZWi\nlhGNQpoWb3cLcRziug53xncQkkNVgddI6JYBcsn1/ILhcAcJg4PRAc+//AviJODi+OfYBwO2dveY\nrZb4jkpapPS6PpQSVVygayq2Z7WzAEVBURpEEbO/PwKh4poOiJqqSjBMG0Vyuby8Ynt7RFGpbwlB\nDS2ANCtLNvMVmtZSiBRVoigqVMlFMlVUVUVQYdsOybLB9fqgdTm7jNg5uoOiSvzs448oqhxd8zDc\nPluTO/SHt5CESZ0vGHkjTr/8Mz778x8hNzIf/MaHPHz0DlVtcvb8nDKrqSnRR0M0ycO0uuSqQlnk\n/PyLj9kZe2h9mV5/zJcXK3pHd0lzlYOBg5mG/N7v/3ckUcjo9kPu/e5DBpNdqgZWr7/i+OM/owxC\n8vCMTZXyHz75IZ3BXdLKQncdHn73IZugwOt22CQZnt/n7M0pi+sp+5Mxh4cjVEOirnLKtKIiR1Js\n5qsEWVagaTBUyJICSzco8jVF3VDWFVKTM/A86iJElBI0NUgSqyAGVUNSZVAaVFkQrwNcx8XzfF4f\nT1mHElGY43bGuK6JeROtV9c1q2VMt69jGyppljDq2+S5TO6YWL6O55usVwHICnFUMw9LlmGKpjbf\nqBZ/qRrDf+r6emsMUNaCJE6JkhTLdCjLCttzW+lqlmPpMsEqQkEw6I+QJAVFNqjKlLxoh2/rMKTT\naUNrdg9uUVRK62+vGxZaSlqBZNoEmxjDsBCaxjqu0fUupmuyjltrr23VKIqCpslIoqAqK3ZGExQR\nMertIFcw2b2LGlzx849+zGP/IfVoRJJG9L0JVdVQVxJ1WaPKUnvzYLfI8CTNqRoQkoyoSt6cX9Dv\nTSgrkGWtDSSxbFRFJ8sqiqJqEeRZhiQJ0jQlzWs++ulnbI/3uHW0TVMLJAniTUzdaAi5QlFAUlUs\n16GSCjSzw3pZsJynjCfb/Nr3v8vTzz8jqBok1WHYlHRGhyiaT9GU9Ptb3PmdP8RsDKQy58XTp5i6\nxGAwYm9vj5PjN+R5zpNPP2HvToNidKklGUUukJuGCos43qDbAsdykVGoJRUMD8Pt0r19n2C1wetv\nobo9gihHVjRM18HwXcIpbB/sEaetOtG0BZ6l4tgG0fQVljREsVSaokQSYOkGpq5i6hoyFSoKpqWR\nSzKCdpdl6DK1IuO4JjLth1nbRGscxwLRzql6XZe6LJBoU7ySJCdLSwyjQ7BeIhodUwXLMPA8j6Zp\n2IQxVWVSVDVCtDLrPM+xbZumAd9vPQ9FkeF3bHRNIs1kVpuAumoHxEJIJJuMMCmIkxLRtNqUb7K+\nVY1BSH9vt/4HP78ZVOq6Tt0UOF0fO3DwOj5FlmLZXjtQOz9ncR2RJzFJnnD79l06nR6d/oC8zBBR\nRBLHdEcTHMul43qoqknZFJRFjaIbKKZCnZZYVherdqgrKKucNCuRsxrfd9nenXB5eYmiaqRZQJaH\njPoD1oslu9vbVI3GJpdaGXJ3lwPfw7JWjB2N5WxKbzSgaQSu06WsGwxdQTfatGNJUlo3ntcjjGN8\n3yfNMpJkxuvX5zx4cIgsgW5opFnMer1h0BvSmLyNw5MVDVmRME2bMpN4/tUxk9EIRQVosDQVWYAk\nayBVCCFR1g2mqeP3+sTrlKZasJ4u+eyzv2PYsxENRHHC5cufU5UxnfEOiqRSlDWZkDm694A4uEZW\nS5YXM945eocwLbn33rt88cnnnL45IViFJGXFw0fvcbh/QK5p+MN7XOY1cSbw+jq9jkN4nbPYZFia\nzfXVCVuTHbISbFlDUVRkVeZ8fkFZlxzevY2kW8hpwejQojPZoq4FWZhye3fEar2gjnpkRkRomEDD\n9taQXr+HLAkURcIyNNJ4jZAaRoMBd+7KzGcBg1GPoipJsgLV0NFUCd/RkamwTP1Gym5Q1hmdTp/1\nOkOSFKKoTSmXhYpowHFUFFkmL0ocW6dJZfIsQpbbDBAhtomiCE2RKGuBqRkgVTRNRVFW2E6Xooxx\nLYe6KhFV3V6jAkUeoUgS1TfMrvwno2Ooqoo8z6nrkqoq0TSVJEneRsyLRkLkMflmCVWJpTtMrxf8\nyX/4AZKiM57soBk2v/pbv8uv/4t/hWp1OD1fcnLczg3CNCPKBHGl0igOp2dTFNUmjEt63RF1A1le\ncnJ6RRiV1JJPXOt0tw9wBmM2ZUOtOBTYyIrHKs1ZZSWSPaARDlenbwimx2yWC3TVwNAdNM0EISEk\niShNaGgturKktnHspoXneXS7XbYnO3zy8694dT4lrSVM2yeJQiQBP//sSz7//EvCTXoDHk1Jk5Yv\nkKU1q2XE5dWSslFYhzkvXp0ThTmqqpKm7XNa5hlFkfDq5ccY5ppupyFcX6PUgmSdYSsee6ND8iAn\nnM6YnTxFLq8ZdmokJWX31hbf/fVf5c7td8jjiudfPsfv9Jjs7PL++x/iqjInz36GrQTU0TmLs6/Y\n6XdpJIv9e49JhYpUxMzPntJkSxA1RZIhqppgtQAawuU1n/z4L/nj//V/Ynb9EkOtWScRJ7MFO3ce\noHsjvJ33UPvvoXVv8/LNGt3vk5YJip5RFTG2pTHZGuI4Gl7HoW5ykNp5jiprnByf0+s4PHr/Fo4p\noSo6SVGR5TnDns2dw236noEmCWzHQJIEmmZQVQ3Pn79iE8Rsgoj1agPIxFFEtInJkvSGfyFomoog\nXOP7HkdHh607s9vFstpr6TAK0HUd3/dxHAtJLnn84TvcPthDUVoepCxAkWWkCjqez+Hu5BvV07dq\nx/CP7RaAt9FueV1jylDnCYYuUxYxb07X6KbJl589pYjmxHFKVQrivGJrextVM3j29CkHO9uYlkkQ\nhCiGweHt+4SbjCpLWC6XxCXUImDvziM6ukVZCOo8o+9YRMECx1SYTpc4tg2iIoxWmK5DXUt43ghZ\nAmmoslosmXRtqjKnaTJc20ESfWTNYbS1TdD4NJWgaWSqssH1XTQdhNQQBxHbu7ukaU5ZtOjxoqjQ\nDZn+yEdIDXUFUZwzGvqMJ0MkyeT88pJXr5ZIkoRtu8hyg7BVkGRu3Trik/VnLFcbJntb5GVKI6mk\nZY2RiTbrIM8RdYHUCPa2fN68+ITG0hj2HS5OQJV1FNlCYPP4+7/Ni1dfcXkx5/T4OcO+zXv3D7m6\nTul1R7heh7sPHlFWFY0E529OEEXF+48fkv5khWNqXL05oewXrNcbbj/+TXTb5tbde0zPjknDhMHO\nQ3xLUFeCsIyxNQvf0/jy2adYUsPdvR67E598XZMrDUWqEGwSLMenEiaNZKB7PkGcsKkVhqZFViQ4\npkvdlNRVhmEoZMmGRlTkaUaeZUjCpMza5txRarIyQYQxRdEyIvf3tlDIkTWQZIM8bY9tSAoSKpsg\nohYqjVA42N+i3/XwdnqYumC5XJIlKbqqUpYJktSQ5QmbMGfQ3UaIEiFEG3DT77BcrEluCN6KImOY\nDllRIdIMRI1lGqxWIaalYOoykii/Ua398jQGqWlRbb/oz/+RVdcl1/MzpldnjDoWURpz/9YtLKfD\n4fY+J2enaJrGyxdnOK5HGiekRczl2Slf/exj7j/+gP5whKqq9Lb63Lv/gNXyGqSCLcPl5cmUv/jB\nn950ZIXBYIChaSyDJa5nMvE72J6JIedsuTXr8A1x3aGq27CXMF1hahqq4iDSkDjZ8OxljCapPP5n\nv4PqDxjoI5Iwova7GIaDZlgUdcT19TVbwwlPn37FcDhqDVRpjqoI8jpnMvE4PNpik8YU85jt7R5J\nHKCoOePxCMNQ6fV65FlGXggkSaPb8XnnwS3yvGBnbweQkSSDz5+9oBSHYCn0PbmNo6NiM79Eq2Oa\nKCKJKzTPxbcNrhYz5sGSydE9ht4eR++9T53mrC9fkYRv+PRH/5HxYBsDA82xOHjvIa9fvuT/+j/+\niMODPXzfRndMju7dodcbYDkeZdVgmSY//JP/jd7OLW7fe4iilnhUqNEr3kxfo9YJ1ydfYst3mM1O\ncE2L2/sTrq+vmZ/O0ZoMSdH51e//FherhMurGf5gTREWzNYNk4P30NWci6sTepZMk1agNRRZ3M5W\nhEC6ieLTZIUsB032uL58QxLreB2fppaYLwIMw2Br3CFJlty7vct8FlJmLR5eM3SytGqjA2SVQW/A\n3kEfz1aINnNM3cM2NaqyIYkCqrrG77j839S9aaxk6Xnf93vPvtSpveruS9/b68ywZ4ZDzlCkZFFW\nRDmyrCAIQMRBkDhR4ChIkABBkFjf8sWIgABBPhsIkABGgPhDAAcyDSlOJIo215nhsGd6pqf3u99b\ne9Wpsy9vPpzq5jAgZRIRAvoFGn1v9anbjUad5zzb//cXq1ImiiLmsxHNeg1NNbi6nGKZDklckiQx\nqqHSbLXxFwG6puE0TbKsoJQRhlFgGjmW8YsxH39JAoMEqbzsIQipIEX5Umr9YgohRYmQChXKTVn9\nKlEQFEVl6KFrMLw6QyuaOIbKd771TUoEllUDodHubdDt9YiSHLdZx1M8RBrw1quv8k/+2T/l9PKE\nd77yq9y49QrD0TlCSFqdHqgmN282qbfWUVWduutxfn5O4Purpl7IyckJluUQBBE1T2Nje4fxcI6i\nmnzw9Ic8eHSPL//KF3n8+DGLcELDs9hud2h1O2wd7PDx82dcu9Emy2MKKdF0nRKJqdsEccIyjnDq\nTTJpsghKhDCRQlJkObalsLe7zmS+JI9j4iDCEgY1x6WQVfNLSkmaFSR5hq4IHj76iPX12xwcHqLb\nGogETSuxjRoX52NaLZN+q07NtDkdnJH5c2RRcmPvGv/wf/6fMC2dw8NDLMtgsghQtYLx8ATPa1Hm\nkvWtTdSiyZMHEccn5xRCpdbpoLkGewf7fPTBPeaLAM0QbOxuMZv6JDn0G11QK9bAr7z9Np8+PebD\n73+HL75xm6ePPiEvBjw/G9Ft1yiSBe26jplm5JqCZVm4jQ6FYmGpkvPjE/zFCFXC8OwxN27sMLy8\nBHMNXdfRVQVDsSmiiNJ2qjo+SckTHylLpBCoWgtQgZJmy8Fw+hRljG15+EFVwhpWiVuzyLKIOI7x\n3BrHozMMy6bVXePk5IyapYMCva5LmS1JYxXXcQiiaqu10Wgw91OOBuc0Gm3q9SaCjGTlUVqv14nT\nnLwQ6LpROWMXOp5bI45CDF2g6ypREJAVAl0D2xa0my5F/ov1GH45AoMQVXddFohSQa5CggQQn1lg\n4oVLkPx/zSwFlDmaUlLKgr29PbJwwcX5Ga1mjUajwbOnR8xnKc+eHrG1d52r8Zh6s46qlNiuw2Q2\n5s3XX+Pk4pzR6WPyaIlXa+FHCfV2j1rNZhkt6fS6JIUkkxqdrS0aacpiNqUuJYau0/TqfPLJx3h1\nk/PhiCRWuHPnDs31De7cfQW3Zq7w9xXpp+U5FFmMFCVl6jMaHVMqjWp1OYtBVTE1lZ3tfYSmUyYm\n00XBbLqg03YQIsa1bfK8EoEloY9imiynPkanSSFLHMcijCIGgwF5XpKVCZ1ui3anwWw8Y7nMmFwM\n6HQ1DMXG0nTiJGY0GLC9ZhBOJ9Vyl+vgjwu8Zotrt+5gqTpHp6fYjSb7B6/x+OExa2slRlnQ6fUx\nNI3paEq7t4lpW1xdXVBr1VDLlCQO+eI7bzO4HFJzK2CJ69X56P4DDm+/wfHZJa1WC9VQuXVg8J1v\nfotv/PE36K/3AcHh7hqGqfLu43ssZtcwnQa21yFWG/hS4BeC4WJCIg3Ojp9QFDkdV5LGATu7+wxm\nMSQRqqOiKgVRNkXJDPK4hqFqZOGMTr/BMinIsgTXajP3xzhODZGVmLqNadqMp/4KEKzh1W2GgxE1\nt8Fs4q8Uv/lLzH+rUQORs7HmEoZLLs8v2NzcxLRc0qxkMhvjuCatVoOFH3F6csX1gy3CIKDRMFhG\nS3TDIk4qNLxluMiioMhTyqx6KAolR9c1hCqpeTYNRUdVCnTjX0VQi5RAjoKCUCSKLCiFoJQSSkFB\nudpxWO05yBIUiYKBFCWyyJFlRp5mhP6CXq/Hw48uCcKErd4Wum6TZyrXr+9zNhiw8EdomkaZF6Ao\nDAdTGq7DtYNdLKcy99ApOX32kI8fPuFXf0Plk+mczd0Dzi6f4i8jnHqLtbU1aq6NYTYrGW2WM56f\nc/u1AxTVZke1COOINI1o9loUeZvZbIHIQrxGAyEEoZ9T5JIfvf8J9XaLrY1NksIiL3PanSZZFpGF\nKbbdZjRNmPmCb37zh7TbXYbDgGbToF5LcO0Y3VDZ3uyz1lvn9PwEwzCIV9Zq1krObegmp0dD4kjQ\nbNkswoR7HzzhYnDG7/zOl7EdB8dZsBj7hLGKoBJSGZTowsDprBOkBV/6na8zHU+4/esu51dzjo7P\neO0Lv8GH7/5zrkZjik8+plO36LVr7G70CGY6m90uSRYRTKfUanVEw+HqMkUzGtQbXTqdbW7fepVP\nHjxmY2sTBFjNFn5R8urnv8DZ+JLbd+9iWw77nT6nzx+QLGP664coTgOltU+merQ2d2h2U8ZXxwTG\nBWrhk8cx6+06p5/+iMPbn2ezbhEtjslLC1H45IUgmJ2hyxJFaEgyymwBmg0k1LZa2LaJ57nUmx5x\nlGIYBkHog0yQZbVYlhU5YVxh4GzXod5o8ezZExSlZGt7jbyIGI+H9HodPve5zzEcDldYN412u1q5\n/+4P7tHsbCFWMvk0TdH1OlkaYTuVM7bjWkxnY0zTZDyeYtoGlmWgYVCWOapQ2ej3KrsEyqok/wXO\nzx0YhBAq8C5wJqX8XSFEG/jfgH3gOfB1KeV0de0fAr9PZaHyn0sp/+Rf+vORCKVEXdUOggpi+mJH\nQZYgKZBISlmglgpoeXXdKmlQKGm1Wjw8+ZQsy/mVL/0aR8+es4xzNravQbkkSQLcWhPFrBGFGaah\nc/f1t/AXC0YTn267g2Eq1EyX1InZW+/T8xxsXaUIfZqWxsXJFcPLM54++ZTNrT385RR1ldk0PIfL\nqzMUxeHG9Ve4uniO78+5dngHy2jSbbRIliCzDKFpDAYjZB5SJAFRlqJ5p6xv30KIqrY0jMqfsIgT\nwjDnn3zjz0kzFdPwiBMficvBwT5JOFvpPGqcnp+sHJNyFFWiKgq6XvlT2pYJUufyYkyJR83pc+1g\nh8VihpTqygoO4jhmMZcIxcCpuTgaZFGKiG1UTaKWAhEkxIXCMinYv/Eamki587nXieOIdrPOD7/7\nLfzxBScPPmJ3dxcFwdnFGdrK0WnnYJ/FZMjR0RG6VeP6wSE11+HTT+5xcfyYvcPr1BUF13XIAp8v\nfelt6t0uWS4J4gBTN/CXEYbjUeo2YVJQGCVCVUmiANe10co68/MLhEzw5z6z4YQzTeVzb73DPCwx\nzIxxEGBrdeoNC0lCzXFIkgIhJa7p4oclmqKuvCArPU9RZqhqjU67QZpDzTNXXpcK/iJgPvVxam61\nfFeWbGyuURQVMKXZrDMcXnGwf0ir1aoMfhQFf7kkT1Mc2wSZsra2jm2ayHRZNUWLoiqVXJtGo0Ec\nh0ynU1zXpixKZFFSKqsSXBYYhkVZFNi2RRgGP39U4BfLGP4L4BPgBVXy7wH/l5Tyj4QQf2/1/X8j\nhHgF+LeBV4FN4J8JIW5KKYufGRSEgFJSyAyQaKpKGsfU6m3SFTZLFiVFISjKEkurPuRJlOG4FqUi\nkRTkRSV7rdcaLOwJ8/kCy3HwyxMUmgAAIABJREFUFwG5yGnWbbrtFjXXIywEhuagaDpFUWLoJkt/\njOtucnr2nLk6oe55XD88JJzNKChRNQtDVXnztVcYjIY0OjvYjR7L5Zzjk+eoqspgNOH+/fv4kyXF\nr/sUZcx4PqLtuYTqjDSRTCcD/GBJo9MmTiKSYMnH93/Iv/cf/ge4nlsBWVaCMs9rQFpSCpOrwTE7\nu+ukmUqz7lJvtBEyqrIWNWcymbBcVsRhRal0D7t7m4yHA4IgYGNjjclwydJPyPOSspQIkbCxUWd9\n41eBmCjKMS3B1tYGSRoSBhllmqHIAgpJWQJlhmNZeK7BeDSh6Zq06xbLIGFrZ4s8S9AVwd/6m/86\nJ08fEE5HPH70iOl0xs3bt5gvFpimSZakfP6tN5n5Kd/61rf47re/w5fe+QI1SyWLfc6PHvPs9Jit\n3hof/OA9/s4f/D46lfX7YHDOcnoFIqNWt7maLzHcJstsgo6JY6Q8e/yIXtOh3XYwVY1gOsTa6PHh\n/fexTIPm2jaTYUguE5yDNbIkxjLt1Qp0xvraGv4ioma3yPKk0q04Du1GnSSJWC4XaBp4rsb6Wgff\n9+m0ui+VlEUuWfohhqmhadWilKZRiaF0nefPn/8EJ7KSx8PB4Q5hkOC4Og3PRpEutm2gqspL8GxZ\nVgtrjx8/pt9/lTzP8TyP6XTKikuLsMA0NcLIR9V+sVJCvNgY/EsvEmIb+F+Avw/8l6uM4VPgq1LK\nCyHEBvDnUspbq2wBKeV/t3rvnwD/rZTyOz/r57/x+l35jT/+34mTJUWWoa86se12l8pIRmCZNoap\ng6w+8KVQCMKwYhIGC4LpkDIJsPWST977Hv1OgzQJUVVBzatovCdPP8XWVQxdZ+7HTP0lplevgBpJ\nwtp6myReMhwPuXXzJou5z/MnTznY2wdFEGUlG9t7FEJSojAPQKpmJWdWK1WlYTn48zmhPyJYTuh2\n+hSyRNEsfD9E06vNRVU3QVFRTYM0DNjbXafVabMsVBSthe2tY7k6jmMRzX0M3eFitCAtFCynju2Y\nyCJGUwvKPCEIAqbTKbdu3ao0FVSqv7xIqTk2k+kQVdMxjQZPngx5/4f38FoWv/mb71DmGa5tMxoH\nPD86Q9E9pvOM+WTOW3f38dwApZgj0pQ8DpHZjLPjR4Rzn4/vf0gYpAhVo9XpM5gMKkKy7bLW8qib\nGjVTMJ5PqXsNBoMJYVxh+x8fPaHX63H37htQlHz00T2+8Mbn+NZffJM0C3nj82/S628zvrji8vSM\n54ML7n7xHRTNJF2GRMs57/3wXbr9dW6/+hpOq4mmGsznc0aDSxynxmI2rXw2lzMajoHtbfDBgxP6\na2tYnksQxuwdXKO31mdjrY/QGth2hzBPsRsuhmERBgVuvQVqBYvV9Krrf355QbffJ01zfN9HlIJa\no46uGVxcXGGaJucn57TaNRzXoN2ur+4nFSEEQiovM5DKubpkuVzgui5ZVgDKCuGmIMlQVQXfX6Iq\nOmtrG5RlznQ6RdMVsrRAV42XD9oXr1lW5SamKXD99p33pJRf+HkCw8+bMfyPwH8NfNZLe01KebH6\n+hJ4sUGxBXz3M9edrl77iSOE+LvA3wXY2tokTWOKIqfIkqqhKDOuzk/I85Q8L3FdF9u2sW0bzayM\nZBElcRJTFAU1z8VpeYTTK7rdPnkWYNsmZ+dHGI5GEC+wDZu65zCbjul1G2zubHI2mqApOk7NZDEf\n8/TZE27cuo7tuARxRm99gzAM2djcRs8SZvMpQlHprq8h1ZxlFHFyfkSru45pKViqhV2ziTKNL7/9\nNaIw5/R8SBpn+MmSIlrQKBRsx8AwdSQ6O/s3UBTJ0emA/vYO88WCZndvZS22RFMrP8lGzeVyPCdP\nQ4IsoOZUT6AgrVyJ1tfXGY1GAFimWRmuGlV50O22GU3GlDJlbb1NveExHE5IE0mv7fL0yWO82jZ5\nqjGfLVF1C92smmJOzSWPA4RUURHMl0PqtQaJ73P3tTtMpzNM2+VqMGJve5PpfMZ4PCLxpyTLOXcO\ndqi3G0wXcw5u3qYsYDyb0+yvsVzMefroMYd7u1zf36OUBb/yK+/wvXe/S6fd4+JyxGI8Jy8Ev/Yb\nX8OsN3DcNrZQGV6cMpuFzBdTHty7x/X9HTrtFn1LZ7CcUGvUUGsOeZKSxxLNsTkfBLzxha+gGxoX\nV+cITcdxG5i2R46OhoM0ahi2wGrYFHlJUiyxZcFoMKws4YIlRS5J05QoDhBC0O7Uef7snE6/x+XF\nsLKlJ8OyLDrdBlIWqFpVGmtCI8lSFEWiUmUBeZ6/tLSPkwDLsFgsFhiGVmUSslpXd12HUkIYLknz\nbPVnldzeNl8I7Uo0TUMTSgWfocB1az/nrV6df2lgEEL8LjCQUr4nhPjqT7tGSimF+FnrRz/9SCn/\nAfAPAO7efU3KskJwl5pA13RUBYL5nDzPkSWkiiAOlkykwPJcmq0Otl3D0jRKQyf2M4q8itz+dETo\nT1jvNqg7DqPhAISGWa/j1l0WC5/B8JJWu4ujV0HItiyOTwZ4jRr9jW38uEAqBuNFgD+eskxzmq0O\njVabyWyKLArWei3M2YwTEfPqrX2mMx+VBF2Abdss/JBOZ4sb3jr3PvyY7uY1KApkGuEvQ1xhsN5t\n4AchDdfEUCWLyYQg0zBtg7Is8OdL1nrrRFFG4IecHV/QW9skpyTJNDZ7LTqd3moF28RyGgyHQ6TQ\nKMqINbcDpYai6BiGhalrJCLnjdfv8PDREZ1Wl8Xigk67T5qoREGMqlhEUYCmKqRZRJbWkIWOroGh\nqZwuQt77F3/GdDwAoL+5TTkPcJwahuWgSIWW06Dh2ZRFwr17P0TVFbrdPus7EEYxQlEQaDTbHcg9\nLocDTk9PKWTO1772NWqNDnkpcO0aZVNyNZ5g1+s0u310wyGdL/E8j8M7d9jf32Vwcc43//SP0VUN\nxVDZ3D9A0W2MskYcLdjY6uOokncfPeBr/+bfQWoqMR+SpRHPj89Y3+iS5TmqbaOYLqgCy3aYz+eY\nhoXt1kgvrzAtB0sIlsslzWadNIqJ45CbN2/SqLkoQmc8mtPp9ZhNR5iGeEnOKvOCoixRtBJVKCii\nIkoXRVVll2U1VlYRLBaLitQkBIpQMI2KyJVToCjiZQkynS9xvBqWaZOult4WyxBbWlBWlgqOY6Gq\nf/Vaia8AvyeE+B3AAupCiH8IXAkhNj5TSgxW158BO595//bqtZ95BFQjFiHwPI80TcnTmI2tbVRV\nr1LirNpdyJMUPw5ZzHzMuMSyLPI0x3ZcFsMBWZJS5DG2JiniJf5sSiwFa1s7aJrB+/fu0XY9dM3m\n5NkJ9abH+kYX8oz9w+sIw2G8SHHrXfw0o9nbIc8l7394H0VAt9WmXq9TJBGf+9znqKnwpbt3OX/8\ngPX1DS4untPp9nGFxFIllydP8IOsaiKhsYwikiRHtx2iJEXVBKfPn2Pt9hB5RJalaHaHgoIyz3Fs\nmzSTxKnk9HTAIiqRk4i5v8C2BLKA/b3q3xTHcHI0qpSXJtQbLpPZjGatweBqgq7rXIyHHB4eUvND\nHHuPOJwjS528yEGW3Lq5y4Onp+SZDyqkmUqa2HheF/KY5eQC17bY6nfZ6jSZJzl7d77A6fEpAMPp\nFM+2cEwVNPDadX73b/87+FOfMsuZLHw8zyVbxhi6gpBQopMjCOKM3/4bX+P49JI4h+dHl+zt7LJY\nzvnir36RtAh57wffZmtnn41mg+n0hP7OHqLmUFvr8LXf+z0mYx+hmYyCnLOlys7ebTr9nGcP7qEX\nS958+y4/uv89rt9+k+3rd4h8nw/e/SZHjx6y/+rrpKKkRIDQCZcRhtCRmiCKUxrNNsvl8uXT3TRN\nNLMSUiVxRL/X4dmTY7rNTUaDMXmZUKQxsvDQVY08B01RXwKJ4MdwojyvtifjOCaOY9b6fVQVvvu9\nb7O1ucNyGdDrbmAaNmleMBxOOLx5i+m84GoYom3UiIMlhqGRS0EUF9i2gW4IVE0hCP6K3a6llH8I\n/CHAKmP4r6SU/64Q4r8H/n3gj1a//+PVW/4P4H8VQvwPVM3HG8D3/9LAIASapr9srui6gb2y99Z1\nHUWoWE7VPCmKAiPPVrbgAqEoqIogjRbkpaRUVLb3Djh9+oDnJydsbvbJFwFFEmGrKnduXGd8NeDT\nTx9Tr9d5dnJGoarcPLiGmoPQawSjKd1ujywpiEvJW2++wZtvvs6zJ08ZDy85PXnG0ZMHRMspiq4x\nmU4xTYvBxQm6aTIZXNLf3CaaT7ANl3Eyo9bcIClK7FKg203GkxmUgslsQafZ4vj4ObcP9pjMI6y6\ngaqqjIdDarZFXqSoukWUlWRZwWQyptH0aDcsgsWc8VjieR6+P8a0VPJCVii4qGJVaJry0lHLtm1m\nswntdpesSCtMvq5hGBpZVqIZDr1OHderrjN1AyGAoqwIUAIoJf3eWvX1MmOZCeapoO66eE2dLAlQ\nUTENjUUY0lNVGk0Xf7LgxsE1xuMxmqIzn09QRCWA63favPu973N+csxbb73FxsYa733/PYQquJqM\nePXN11lEAbWaT7yY83w4IliM6O7doMhysihC5gmWDobrUOoeDadDabSxXIddXceWAXl0zmBwxPEz\n2Lv+Crojuba9y4OP79NY3+fWTpM0q+TQshSYhk6eVY1BVa0+gy/q9nq9znBYgVtmszmNegfXdfHn\nIXme49Qcsjip0P2aRp7nVW/hpyAFVFXFtm2CIKDf76+MZAo2NjYoy+oBKKVkPgtIswLDsAmWMYtF\nwMXVmE6ruaJ7V1O86v0S3bAoC/jFhpX/3/YY/gj4R0KI3weOgK8DSCnvCyH+EfAxkAP/6V82kVi9\nh6IoVnBNvRL6ZDlhlCBEguc1MM1VY0UTGHpFP5aFRMqSIoNgmaNqGp1ej6f3j2n314iDBcPhsJo3\nT6dE8zmyLAl8n7t375KWgpOLSwaTBUKc0O5tEvsL/CDi+PkJrXqDPIk5GUxwXY+DO6/zhXe+zOnJ\nEVeXZ3zy0Xvcun7Irev7XFwNkWWGkCqXZ6ecn5+zvXPA1t4BeRyQRDPCJCUvFeqtDRRVJ0mqAJeV\nGWVWcnL8jKxUqZkNLMPAMAw01UAIQZblhGmOEBLXs7h1uIskr8og2wBVobvWZTCYIFQFEMhSx9Cr\nkWit5lBvNsjTDClKsix52Q0vyorgVM27JXXPwsgNaq6OY+nUmw2S0EdXBIZh4Xkexw8XdNbWcTWD\nqyDDrndwvDpFtCRUVPIsBE0lj0uiKCDxA5RCcHF+ymw6QUUgs5S0KChlTuDPee3VOzx+8pCP79/n\nrS9+HikLWr0uB9khz0+OuXXnNqrQeHj/AXtrfS5PnhIuA0pFJU9D8siHUsEzDWKpVItOGVjuGmWc\nk2UzrDKiU0/56Efv4tgajumwv9MlX+5wcXbOtVdicqmglAqKZhCnOUleYAiBolYPJtOsGsiz2Yyy\nhH5/jfOL52iqhW3bHD27Ii0Stne3WUzjipKVpj81ILw4YkXPenFtlVFUAcm2XMpSUhYlZQHz2ZLN\nzW0W84gwyJmM54xHM/pdB01TUYRGUVbaCE0zyJKYn2fI8NnzCwUGKeWfA3+++noM/ObPuO7vU00w\nft6fi6YZq8zBIAkjSlR0u1aNKlWdJP8MB1J5sRkpgYIiz6HIkWWKP5+TZQXPzs+p2TVG4yHtlkHk\nzxldjSjLEsf26PbWSeKE6zduE6YJjmkRFyBVHcMwOTs+4kLAxs4O3uYhzc4a3fVNkiTj9VvvMBld\ncv2VN/j0wx8w8VNUzcayLIQQfP7znydNcqI048GH7yJVjeXjT1F1ne76BuMkwq21sQ0V8oy8yKoG\nnjBJspyGLJhNpliGjSrgcjDA9rrcONxlNJ2wvbFOGIbMFkva7Q4nlzO2NvqomqDTaawUlAXBPEBp\nOGiag6JaCFUnTkIcwyErcry6u5L1FgihkOURda9NnBYkkxnNho1rW1XnfLUNmReCVBis790CobNW\n73H16Dm6qpEEC549fMDh9T3qnS5ZPCULApaDAdEyQldUHj/6FEVWPIF2q4Ft2wxHY/YOr3PwxnWk\nLPiTP/kTZoslQlN5/4ff58tf+TXeff9HjIZT0jjhrbfeYnx2zNbWFufn51g1D9eouJ8nxyf86OMP\nMLwed97+bWRhMLy4IvQzdjYOGFwMsZUO7eYO9z94j/3dDV5/5SayOKVZv00Wx2hWZdij6TpRniOU\nShadpQWqJVcq3qLiatoeeVaiKibLZeUobZgqijSQsiJDt1otwjDEtHQUUd1yL7wuP3sPVJZ34mVv\nQUrQtGo13LJsFKFimhZpOiUMsoo4ZVjVSBsFQ7dQVAhDHykL3JpdleVFWTELfoHzy7H5KAS6ZlbG\nq0mKFCqaqqAo6mqcUwWCMn8Bi101a/IcyhSlzBFlRhYvCeYTZJHT7fbp91p88KP3uf3qK4wHV2yZ\nNqZhc35+wenpOVatznw+ZbYM6K9toDsOqtBomA0WszHLyQRRrKMKBd2w0ewGTscjTGLU+hr9vYLJ\nbEEU+MyuLiiEgmUZJHnVKQ6WIev9NRZLn8V0hO7YKPESKRUaa20M3SYIE9AM6jUPIQpMpcRQJXma\nkWaSXquJ53ls721xdTWm3TBQFIXxOOLR4yPS4ozbt/Y4vxyzs7uOYRdQSgytctBGUXj85Al7e7tY\ndoHt1pnNJtBUUFc7+L4/r+rbKCfP5iRJRrvl4biVm1QYhpimSRAURFlJmisUikWepJRRjK0K1vtt\nonBK0LRJwinLQqHXtJklAcmiYDaccHx8ytnJKfv7u4SBz+nRMxqNJrfuvsGNm3dQlGo8twgivvxr\nv858OuXDe+8zHAy4fnCAZbv0uxV0thQl/fU1xudDNrsdbK3kcj6jVu9Qa7aY+Qu+86f/mDtvfpV2\n28CwJVJGtNY3cURMISCclxw9Puby2UOaLQ9Lk9VUTMRoik2WFdW2LZUZDVSsx7IsyfKEWq3GfL5E\noGGaNnlWMhgOUBSFdqNJEC7pNj3KoqgCgVR+0pr9J26BH5cYZVmirOwBVUVHU8XLbFpVS/I8ZTIZ\nsVjG2E41KLQsi6KocPYvnM4du0aSLEmzmJrj/fS/+GecX4rAoCoVqSaKKlKNZWjVCE43qk6xUpGx\nFBWQEqFUYisJlLKSP4syI4sCQn+GKiS1mksQhWzt7TNfRoRpThGnnJ0NMXQdREmeJBQCGo0GuSxx\nTbOCeMQhYTBHNwRxMKezvo2p5pCnxEmG5zVRAgVLW2OZCda2Dtm+dounj58wm84YTi6ouwaL6RRF\nUbBNi+t725yfn0MSkUQRA5nj1ru49Q6+X+3AR9EIVWRABVQJwwSt1yUvM8aTAVm8pO6ZRHFFfV4E\nKaNZxNZWiW2oxHGKZVbcS8usUfNs4lTiL1Pu33/AtcM9PM9lMl0wGk3odpus9VqoqsAPA+q1DuPR\nnCjJMDoqQbSk6XoV+HTlyZhmsMyg7jQIlgPyZcDl0SOyqcViOmCxmFFOSso85kkaYxQ507JktvCZ\nTuf81r/2VU5OTkgjwf72Fp1en62tHbxWlyzLuHz8DKdWJ8kKilJw6/A6n376iDe+8DaqauAH1Zgu\nSGOiOGRnbw/LsSnzBNPxiBKFs7Mz9nc28KyQ6aP3cddnOP1tlospZVli1j2EabG1cYOPr4acnh7T\ncB2yNCZNU7J4Qd+rbiSpCMqyChCtVqtaLqKSfNuWjmEYJEmGaSnYts1k8pRWc70qfRUJiiRJ05dE\n6Z91fow0VFd9NUFR/HjbMYpiyqLy/YjjGNuqESchhlk5TL3wzqyymRW4SNeZzyMKmZPl/wqi3SSS\nrMjJiqrbm2VFRTRWVFRNpczKl+hzRZar/W8FDUmWxdQdg8t5dTPXHJtpPMOyW8wWIbdfeYeiSIly\nha3dFvuKQhQGPPrkY8oiQS9ASwSWDrOLY2o1j7V2G7m9ycXZGa5nYxglmlpi24KJv6DuuWiaxWQ6\notndIS4ls1lMb+cV2tvV+mwYzWnkIU8+fcj0+Jx+zWV9fRvKlKvBGRo5i8ExhzdvQpRiAM1em8uL\nEbOJTyNaoKgGi2XE977/mKLI+OtffRvfX2JZFjubLV69scF4lrCYHdNrbnB1seD27X10UbJcLNA1\nF1kIbt24yR//8Z8x8wXXDjeqyU8UM/NzTCNjY20TdTKg0aixWCzQNJMizVEUyWw+otFoYJg6iqqC\nZjJc5PR2dzj64GPOHv+I6eUR1iu3sG0DU6lQ7IbRQFCgi5KmazIeVL2eLAm5ef0arvsaw+EVzU6b\nKI24uDpFLRX+9E+/wR/8wX9GgYHb6pMrJZ1ui8HVacVnODggz2IMVSOJfU6OjugVKqZVIzLWsPqC\nV3ZeYXJ5QSpHBNEEJxqSTUMsx0FzPIim7HQtJqdXbHRabPde52p8zrrUEeToWkVKMgsdsgzXqoAr\nURKSxhmO10UqgvEipd3scH5yTiF1NN2kv7FOGFT7C0kWYxnmirwlXk4iftp50dgUAhRFRa5oW5Zl\nVf2FssRt2MxmEaAwGk3QLLvK6uZTVKVAEYIkE4SRRNFKsjzHsgwct8Nk9lc8lfj/48hSkiRRlaYh\nUBQVz/MoihIVidCqukuWJaUQCKEhSkkULAkWY3yZEgchqqJTyIzl0ufmzRucnA9obG0QxAE7165T\nZBFBEKA7NW7dvYugJE8TTk9PSSIfx6lh6U2CxRTbtjm8cYNWp4NUdIpCUmYlm+vbpFmJLCvZd5qm\naIaF22gThSmFVJnP5zRbHrVWlwO9wXw8ZHFxyvPTIU3PYn1jk9HwkixacvE0p9ZsYXsegT9DCMHO\n7m4Fn9FVBuMFCI/pYsj9T4548/XrZGmIIkNe/9w1SmlwMTgFmVfWc2GAIgSNeg2hGPjLGJDsH97h\n3kcfUsiSvb0OssyJxim6opNFEa6rEUdz6p5BnECelWRZjGlpxPFKzWdZGGHFLAxzhfbaOovBI27v\nf4FMNUCoLMKMMMmpt9eYDi9oNh2avS5RFBHMZyRpiuM5XI2uyMqcUijEaURXU3n66CG/8de+QpIE\npKVEKBr+6JKCgsCfM5sMOVWqJ6uqqqDqPPjoA/YObnN6cYVZa5OXkOYK64evEsxHKFadhq2S5QHB\nZIxbZgjH5uL8KWUUoJDj1mroYeUsbk0mFFqB7jQxLY8kSinVDKVQcT0H07S5/8kzNNVGMzVMI60y\ntZpJUWQVas8fQJljqNrPnEL8rFOWZTWFEsrKt7IyCdJ1nSxLmM9myBJKRcUxbBRNQygSTQdNV0hi\nSZFXNDFUDcsw8edLFvNfLDD8UqDdqhGlTqPRqDbL8vTllOKFbLXypSxWmPiYUiZIKu6dLEquroY8\nf35cdcCTiMfPHtPrNillQrvpkSUBWVqwvrmNYdo4NQ+hmWSloL++wfr6JmmaMh6PGY1GlGVRbbZF\nCUlYYOsOZZIjipKGW6NTbzOdzlhGIfP5nMV8iWZYL8dK3W6PmlsnzWF964C9m3dRaz3czi5+mNNf\n2+TNz7/NZL7gyePHDM7PkWVKs1VnfXMNx/VIshIpFMIopkBnNE948PSU86sJumGgKJKiTGg2m8gS\ndF0nDOMq68pL4iRjGSY8OTohSQu2dq8x9X2kaqKoFrpusVz4hGG0anBZlYHqyjSnLCW25a7Kq/Tl\nSM21PRZ+wPa1HXYOr5FrJklhscxtrNY+3b3PUdodtNoateYG43lIGCVcXA6Yz/3Kbi+r6u7FYomp\nVw1nARwcHGDqGmWZvvS18H2f58+f43ke9+7dQ1dUlmFErdHj2rV9zp5+gpIvsQ1Bo9HAqTcpFA3V\n8uhu7aK7DQrVZufaTY6OLxkNpzheDd0SqIZEEQXtRpNut7uSJ5dEaWUWZFouaV5Wo/CyRAiV0XDK\n+dmQwdUUdTU1so1qmqZWMj+KMsEwf/zcfTEB+qyZ0md/wY+hxi8ak599HZTK0KYsURVBEoekWYyq\nCUxNxdRVyrwgTRMMw6j2GfIUXddJ04wsy3+he/KXImOo0iiFxWK26rCWn/lPq4KDoihIRSKEpChT\nyiKlLBJURSLznF6nS8M2SYM5igrj4Tnz8YT9/dtMliM0Q6HdXacoCrb3dvnoo49YW1tDqgbkCZaq\n0ur1AZjP52iaRqfVxXQcslLj8uQJ7X5IsJxjOx6m7dFp2pg3b3B5eYVQDJaLKcrqpvr4w4/odrtE\nYUm7XedsOqS1/Rpuo4bXrpOGC/7Pf/4dfvuvfwVTkzx59JB+u8mzyzGSgkarSZQv0RQXVdfIQoWL\nUUC9VcdsW0RRRJYnxFFKjsLW1hbD0SWdlkeegVO3iaOcojDJMpNnx5f01tbw6hb/9Bvf5o27r7O/\nt4YuQsoyR6C+FOIESUkSJcznczyvRrPRZzAYYFkFNbtJv6dy7+Nv07zWAtcmmi9Bb9DqbjGLcyzL\nYjKe0d/qsvAvaRkFaVaytbuDZbucn59SUtXQLWHQEhqDi0sO9g9ZhhVhu5SS+WJKp9ngNKiC75e/\n+A7L2Yxv/cVf8De//rdpb+7R7bU5fvgJulmyXIxo7/ZQHI9Hnz7HNHSUUqfu9lByQZhqvPLa2yxm\nE8aLEUqeo8iSTJb0W128moNhO3SaW6SKzWAyxdAUylJCvsQ0VWQpqdWaTEYx41FAkUKW5JVvqm0y\nnwWs9dsgU1TF/Imb/7OTiBdlxWctE14EBSnlS0tBIQR5Xt3U4/GQJIkoygRFlrSbNYo0WelmSgzL\nIc8jEAWW7ZDnKYZTJ88nL/UzP+/5pcgYoKq/yrLaAVcUVplCNeOumnEZWZYRpVFl0V5KdKUCtEiZ\nUWQRipC4Xo1Op8Pa2hq9Xod3f/A95vMZzx9/yuMH9zl69oTpaIxmqJimSb/fp1aroxsGyyACqdDt\ndqk5NkkY8P5738et6dRrMLx4yOTyIWdH9zk9usdsfI4oUgxNUOQxjbpDloR4jomhayyXIbdu3aLR\nbLO+vcPa5g6l0JiFUOsMqWjjAAAgAElEQVTt8lt/6+v839/6Pk+PLnnzzbf49P5HKAJM3WAxm2MZ\nJoooWeu3kEVEUWakcaUBsSwLVVVJixzDsEjTHF03sSwHsVrZDcOIOE6Jo2pL7/j4GKTC2sYOV5dT\nri7HzGaLleWBulJnLtH1qqlmGjZZWpJl1VaebbuUovJwbLR6zPyEje1D1jd3iaKg2p9QdeJCRdg1\n4kJFqiZZAZZTR6IQBGFlsZamNNodLMticHVGy3PQVtL16XRKGMyxdA2ZF5UuI6rQ/gf7B9i2zcnR\nMZPRuFo0ajX57r/4NrPxFUQL0uUcQ1dQVY1Gp0MidQyng2o18NrrGLU2cW4SlzViaVMqBqVSlbO1\nWtXMK4qCZRATpjklGqZhkyQZYRiTpRUjwTRNkiTBWylikQWKCl7NxrY0sqy6GV+sPb/IFD7ba3ih\nlnwRFF6MKqF6YFpWtQqtqmpVtirQatSpeTa2aVLKHF1VqzK8kERRjGFoK8l9ZXX40kHtFzi/FBnD\ni6PrKv5yvlKXZdhWpWdHypWCESgq9JapKpRUxOMsXFKUKZoKWZJRFtWG3sxfVOPC6QzLNuk2m6i6\nThr51B0bhZIwjlksfbQVRO7F1piuKsRxSKfT4Yfvv8d8PkVXVNa3d1EMm7JsIKWO5tZxTIXLs9PK\n5EWqBP4UUxeYjkMYRdRNk0bNIwh8pFBorF1jMBuRxT5/49/4Ot/9sz/l0ePnBEHEeHlMmaZYpgqq\nRpoWHB5uYDk6k8mMmqPQ8hx830fXK8rz+fkxO9ubCCE4Pz+nWW+gaRVVqG/oXA1mzBfgenU6HQPH\najK6HDO4vGLtlW1AqdJP00ICWZkThFWTczAY0W63UVVtlbkJ8iKm21tjenlMp9kmMofUPZU0nhH6\nIAwHt9ZEJjNy5Euz3DIvGU6mFEWG0FS2t3YYj8cYmkA3FKazMVJUG4bHR89oeR40m3SaDTShcHlx\ngaqqrPX6PPn0AZu7+xQKhFGKYlSB/Or0KWatSbzMUPQaqqIzmS5pNWu4toMfR4znMc3+AY6ukodT\n0uCKIAyx2xlCqZaKdKETJks008LRLSDGdWsVBLjM0fVqNF3KVTZb5ORlTp4mJEKht+YRxTGSgiQp\nV5/vn9QrfDZbeBE4VFVFKJIsT9G0SkBVFMXLiYPjWBRSJcly6o0a8dWoIpcV+QrxbyHTEl0Hz/O4\nPDojL8SKFfHzn1+OwCBEZQiTx5iG/TKy5kWKilqBWKgcm6vdcpU4TghmE2quy7OzZxTpnPl4Qq+7\nwXIZcOvmIRvrBpdnYxqeS5oFzCcDVF0HRcWyXeZZhmXZbG9W3P4PP/qA5WzOwwefsL25zuG1A9a3\n9zCMOrsb25iGzuVwyMNPH3B2NeRX/9qvkQbzakqw1qAoBFma8/jZQ+Ikobd5gG2ZXEUzkpXnRJkX\nLHOB29/GFJLngyNuv/k2Jw8+YHNjh1gK/PkCvQ9FFuFaJrrM2d2qsbdZxzIEMg9wTBM/TNnc2CWM\nnnB8fMz29jrNRhvHtquUE4VmU+Hw0OPw5hoScFyD5SLik/sp81nE6dkFB3t9pjMf21E4ODhgNJvT\n7XaZzBbM5wGPHlXy6KKQ5HlIzTNZJja62SZNQkzFYKvn8fziiCK2sdUOSq5hKJIwixiNrliOz1DK\ngvFsiqZp3L37GtPplCgOsZsOP/rh92h1N+n2N9jsrfGjH/yAy+cnfOUrX+Hhk4fUPY80TRhcXlEU\nJWUScvL0AbVGB6/R4bd+79/i049+xOmje3TX1mn39pknPnlaY3NrF8O2KvNYt45e7+F19mg5dcLZ\nMXq7xfjiPaJkSZ6nxEWEn0k03QZFR7Ns8miJHwQUqUSWKW7NpNGxkEWMt8oybNNANFREKUnCgCgO\nqHlditUOwovz4vP92W3Ez36vKAqaoWPqRmUcZNmEYVi5nKsarPwoml6lj3iB+g+DpDIMCn0anS5Z\nnFSSbln1Xn6R80tSSkAUxgRRhlBNFGFhOXUcu75afKqu0XUdBVEpxUQ1N06ikLVeB9CQqoaqlPS7\nXc7PLqvZc69DvdNn7+AWjteiVqvjuQ4qBcFsyMXRQ4LJJZOrMxxd4ZU7N/hP/uP/iK/++q9yfnrE\nd77156giJo4WSJlxcHCNt9/5Al/84hd58vgTHn7yQz58/zvE00G1OBOM8M+foUUzrp7c4/iT71Ms\nLlGKJZPhOWEwpukZqEpJgeDmq6+TY7O1f4ur8Zz9g1sMJhNAIiQrB28oixzbqPQjQlEoZI5bMyhl\nzOZak3bTpUwLJpMZmqGSlxm1Rg2hG2RFzPZGnYYLah7Srtt8+Z032N1erxqnQUgpBabtVNLsPCUM\n/co0t7fGMkyY+wFCNVAUDVvXUfKcer3NMtPZPHwNzXJpuAZtdYkaXDB5do/l+JT/h7o36bEsTe/7\nfmeezz13jjEjI6eqrMqq6mp2kS2KTdFtWSJkA15I9sKQ/Vn6G1grmzBgeWXYMCBbWhAwIYE2SbOb\nPVZ1TVlVOUTGeCPizvfM4+vFiYweCAgqaFM8m4gbmwDOPe9znuf//If59SVH5xfMNxlCtjDsDkXT\ngplFktD3PBbziMn1mqqqEXXJ5eUJq8WUvd0dFtNZq1eocgQl27tbIDe8+fgx1xfnPH78CE2TePHy\nGc9fHTFfLUnDFZdHn+KoBbZeoWgNURKiGxYVFr2t+wjFIykhq2qE1ALKtm4QxmHrmFW1aV2WqdE0\nGUHXxtA0fL9DXZdYloJnaS2t2mmxBE1tuQp1XRNFSVtY4GZM/ttMx9c/X48Rr0eIuhJIaJRljaq2\n1HjHsZGa1s5fsxRG4z6iKbEtHdd1KPISzdCRJEHHM+n5Hk1T0YgS1ZDodoOvdR6/GR0DkBZt1bMs\n+4az0FDWDY1o48UVuQYaqrohTuOWwpy2N1RTDRohc2f/PtFqht/pEHQHTKbt72GRIkwDyfIpywxZ\nNFxcnLNeLijzhNl0juP57O/vs5jOOC5OoW54/O4T5vM5Tz//iE6nw8rzQNKRNRtVUvn+H/3nbDYx\nP/7xD7m8XvDpp5+CVNHrO9i2TcfrUZQ1k69+yRfPn/Pkybt0ukOi85C8UfC7W5QRPLx3QHwp+LN/\n9RF3H7/NB3/vEaUuk+UqqqRRV4I4ysjCBsfVyUWNogryLMH3A0bDLrKoGG/t4XYsPn36KZ7b5YvP\nLgiGHRTNps4zPFOlrmXSrEDVNe7d3+XpFx9TVhU1ErrpUuQxsqpiew4X51d0gyGmabBarZCVhvuH\ne6zmMwxd4ep6iel45FJFd/sRumnxPP4QS5UQdc3Jq2c8fOMRncBh8uIZDx/d54unP0eWDGazBbbj\n8fSXz0Gz6Q4PUMyWVfrZz37GztaYrufSVBWGAnkWcXL2CsOw2bl799bS7+L8lAqFd955h29/57tc\nXU559eJLLk+PyJ4/ZeewaB2gVYOs8Bjt3Wc2T5HkgjJPaKoVilmz2mR43S0uzs558PYhhhewZQfo\nuoLU5KRpiiyrNJXGerngd97/Fmm2RpIFQpR0Oh3KsmSz2dDr9ciyBstyb/Cbv72yfP359c/XGMCv\ny7Db2IR2jKiSrNX5xDFV3WA6NlWZUuQpruOQlwWBY1PYKoFpoSoNWZbS6bpkRYlE/rXO4zejMAgY\njUa3fPFfjQwyEgp1USLduCrbtk1RR0iSIElSLM0gXEYMukPqpiSvak4nlwSdHjt39tvioqpkeY7l\nemhqB1VWsP3ODa4gmJxfoGk6SVKjWx1sR0dWFXzXYTDe4dXzF6RFRhSldAMbWRa4js30esX1MuW7\nf/DH/OKjHzG++xhZqUBUXE9mLJMFlq4xGAwZLRZcnx+zmU/pjcd4/SFmtcaSLPJVTLS84t0nj5mc\nnlGWFZKtEC1jArtHVucIVPK8Jq9SOp5JUzdUVfvA+r4LskIYb9DtNjcxSRpOTyKeH0/4nd95gyyr\niKMFhqHjuB1W0RrNMPnW+29DI1ivl4yHXfKsBEWQpYI4yUAs8RyL0/WCkRSQ5QmyApatoWntJmO5\nydnqb1NVGbrdGoLcPdhjPB6DqrGzPWQ1uSQvStJwQ6/noxkG3vAO39p/gu25LGYTOh2LPF4ghMTe\n7i5plEBTYdgGeZridwd0+2OWmw1vPHjI8cuj1tdANViGCeWmokbHGx6gGw5ZuODZhz8lK2H3/ps8\nfu/3KKI5alOhKw7IMULO27Wf6ZIUDYZpIkvg2Bqma4JUs1pGKJrM1niH8/NLXNckyyJ0XcN1Hco8\nI0kSJEnCdd2WIVoUrcJRtO5Mr0lOr6/fHh2A31hVtoK29mzUdd1GDiY3lOzyV2pNRZGwLINatN2B\n51sIUSMrrUGLJEtAxdeEGL4hheHm0nWdoihuDCu0VvdeVzcCloKiaCPJhBCohoGi6uiGgqKsURWT\nOCqoRcNgaxvXdamaGlXV0DXlhtKrICsqWZZj2T5pGmPpBjt37iE1AiG3wONyvaLJCwy7g6Lq7Ow/\nYDq7JIlC8jTFssDWVdZlwXh7iGzqvP3+36NpKnRdo8hTgq2W3n1xekJeJXzrd3+fNF4ThSH/z5/9\n3xzcP6Q/2ube9j9murji7OgZqgRJFJMlCULL8L2Aq6s5VschSlLWs5igF9A0Cbqu4HoeSZoSZznd\n3hAhNxydniIahaIyiWIJoUjIsk6eJSiKxs7ODutww3p5xXC8z+7OgM1qhSTpxHGEjIQkJM6vp3ie\nS1GWKLLE/v4umioRbdZ0fBdRyji2QZrnRGHFImzodLa49+AB12cn+LZEulwxW2x4kdVkRcn51QxZ\nNTi49xAv6HMVyQjDo5QMoqQgTyL2twLuP3jIehUiNzVpvCZQe3huh/39AzZJgpCgqhoso2WfaoZH\nESV0tx8gap1aadA9QbSao8uCbtdkOXnOL6KQg7ffpywkJFT6PZt+YDGbLhjs3uP86or7BzsYhkHH\nt4mzmDSNUWRQFA3DMJBliT/43u/f8D40ft2fSAiB67pkWYbv+3gdn806uqWT//b1mzyF3wxnbj+3\nnYMkQxKnFEWB3wnIioZaNLdKT1WV0XUVqEBqFcdJUt5uO0zTJuffK3D+W9c3ozBI3KKvbYhG3To3\nvTa0aMQNF9xEVDWSgKqo8b0erquxWq2osyWeY2Nq2ximyWw6xdRUXp4+BQSWZaOZLpqpockaVVGh\niIayyIji9Ca6TaM3HmJ2BlxcT5GsIfPFAlVY2P42ttejyVNOjl6ymC1RHRdhOJjukEL2qBsdz9Mp\nUplatigrnd7eIyxTY3L6isZQCbwt/ot/GnBxcYGu6/ybf/Ov6fsWyWZOniVg1UyvLzHEAMuxePrF\nV/ze3/99BgMFTTY4OTlDlmWGwz5lXdPtBpyfz4lv7Mz7owGmYbM4XvDl82cMxzbz+ZSDrQ5l2bAJ\nV5Rljev6LJdzDg4OcSyd1XqBqkgEvsfnXxxzfNFSofd2+vQHPopoKPIcSarZRCG67uF6JkVVIuke\nR5MVbz3cQVa6XF3+gh//+Z/hWRbbd+7hj8fUW7t89OHH3HvjAzaNRF1oZGVKMbtCURRsU0cVEpvV\nmh/96MdYuoouKwzHA9ZRQdAbs7u9i3x5zfOj53hP3uXJO+/yv/7v/xtvvfseh4+ekEQxiqbQH+2R\nhjMOHpmMRwM21+fk02ui2Rn/7l99gm35vPvkXS4XgvPrMzqDbbpbb6H3HAxvjNcfICkSeRGj6QqO\n44Os89VXXzEeb2NZBienr3BUH11XkWnXw62moaVDx3HIbDbDdfzfIDa1hq/NrQPT6+t1t/Drq8xW\nip2RJgmyDFVVEEVtgZfEa1Wy2m5GlIYsz/F9H13Xmc+WpGlGmq4pqpK6+ruorvy16zVim+c3mnSp\nQb5pp2RZAkmiqWvqqr0RVV20IhYhWC3mXJwetW6/uk6n40OekcURhbZmsQkZjkfYtk2WZQz7I1zP\nQ5Zqmqbi+nqOYroIzaY3uENRC1A7NFXFKoqIwyXr6Tl7O2PGgyHX81kbQLqasUhXWE6H6eyCcLli\na2cbSdORkdnZ2WYdZxiaQs/v0fG7FIpNXRZUoqKsMgzH5/7hPRrdIYsT9IFA1A2SJLNcrzEci07f\nRZ40mKbNq1cnjLZHlEWNpCp8+IvPkWSdJ+8+ZmtbI0oTDEeirBIsy2j366ZHEiaYrothWIy2+lxf\nXtDxu3Q7AWkSoSkC2zapSsHLo2MC32A49HBdm7CpyLL8VhBkaAqGbdEo8OL0jJNpRDUTBKMHfNtz\nGPomm7QhkX2qvGH/wWMKWaA6OrNozerijM1izmA0RDNVDKlBNhVUVWXvzh18y+HZq5dsbTvcvXNA\nXQlM3UCqS1aLKacnF4z6AyanJxzee0RTZqw3BZqZossSUVxQNwZhpVBLKr2eRRxvaPKQP//Tf829\nN++Q1DVOsEXeGNhBgN0ZYdg+m80Gy7Zb0ZXpcnp2QdPQdgqWjCyDaepIosUEbLtNIy/KjOVySRD4\nREl8q/H5dcbjbzs4vS4Qt3+7wRWaqqauaxRFuqVGJ0mCbvoYRhsdqOs6RZmRFzmmYaPIGleXc8Iw\nxDAsdrbvEKcJn3zy6dc6h9+IwiDxK7mpqirkeXHjmKNSVhlVVVMWBbJoUBUZRZWpqwpN05CEQJUV\nFtM5q+szPv/4l3Q8D12Vef7FBkNVkCRQFJVaatjMBX3ngM+//Iz14JpOt0/QH5BLLblK13WyWsGw\nPeaLkOlygadrlEJF0VzKWmI2X9GUFYHfIasaLN/H6jg0soIsG+iEOFqNpguWqxWf/PyY8XibwWhE\nHKfEZYM32MFzrJa9uLqiG3h4vYB10vpW6mmOZggc22MdJ9zpd5GkgsN7dzENh4O9A6bTKxoJen4f\nv9NntYz5+KNnVE0b1WbasL83xLWNdu6UVYQkIRqJOEox7ZI8zwk3G4LAR5EhLTIsy6Lb7bJaLVmv\nVlR5n7ipkZv2e0jjDK/fxwt8luEFhu3S7Q04max46+AJ8+OSrdGIeHXK+WLCpkwo8gbbCag1A81x\noW548fRTLFmwmBzzxttv4XccvvysZaT2+kNc2yP68jmSZqEZNsvlkjyLURWJp599Tq+/xZN33ubF\nixdcT045fGNMVufUuUJjmdidPuFGxuxuoZkGWpUyfPcdJufXBLbDeDzgwTvvE0k2RaVgeQGqYZGX\nJWVd47smq01EmGakaYZtW6iqTBRFrSJ1s0HXTKqqFTtpWut3kd+8uZfr1W0noCgKeZ7f4g2vC8Wv\nFw5ZlqlFc6s2Fk0bFCPLrSZHUlTCTULP6NzYwQkkWbSGyUWJFVjIssp0Omc03ELTdMqyYXJxTb/3\n9dKuvxHrSsFrezeFqshQadDklvWmyRpyU1NnG9LNjHxzTRIvKJsUtRYk0xUjL0CkG+QqQpEk4iTH\n8F32Hh2g+BalAigypm6iVIKf/+ivOdge8vjRIeOtHsfPv2T28gVSHrGaX1IUKZPlihwTtzPi6fOX\nvDqbc3y5oRAeFxcrPvzFp/z0x39FvLnC1SrKeE62XqKjszW8y6izh1GrbPs2h9sBs5MveP7hj5l8\n9Sm6suHq8hXXiyXd7Yf4vX1Wy4QPP/qYRNIY7z3AMjtUQsXuDZhNF+RZQlWkrOczpBzyKKXj+WwP\nB8TRjDv7I7rdDnECJy9mZJuC/+QPvsP7T+6hSzWWZZCXBbpukUQ5gd+lylIGgx5lmbdvIs3EMn1s\nU+HJoy3+/gdvcX1xShImlGlGTY2qStSiQpVhvZnieEAZM+z0USuVUjZJtAGZd4jk32EwGjE0cvZH\nOp2OhixgdT0jnS+phcSDt9/lzv1HSHVFstxwfXqFN9jjPIG56uN4W8yWMVlVIiioy5wkkXl1tsF0\nPdBNhsMhLz/9iD/9P/4XtCoi2VxhexbrZM0qSehv77Nz901Ud8TLq4jadPF2xvR27nB6uSCtZLb2\nWrBUU8w2ZMfvkOY1qmYRRimOZSEjgRDkaUHgd1vHJU3GMDXiJCQvWhyg9S2tcB3/djyQJAnfMQlX\nc0xFINUVTV0jAWVRoCoKmqqiIKE0MkoDNK0WSFZ1UHWKWma2DNH0lmxWlFnrPq1o+F6PumyYz+f4\nXkAYpSAZZCVIaofL668XOPPNKAyiZccBJDdZEXVTESYRZZmiahLUFVKTo6oyNA1lXuC4OmW54ez0\nRVuJTQfDcdi7e4jXGTGdZ+hmgBeM2blziNsZoRoOXnfIsxcv+eu//CF5nDAYDHACn8VsydXpKVKa\n4BsKqlSwXF2zf2ePg/v3efjmOzx+7wO27j7B7h5SKD6vJjM+/+o5w46HrUgUWYpuusRlyXyz4sNP\nP+LTp5+yu7+F6ahcX51xcfQMs45plhf0tYyOXuIaEqqh0yCjGTaKopBlKY5rtUKYKkfXTIqy4XK2\nIK8bZFVDSK1JR5ZlbG1t4bgWWZaQZSnDgYtpKchKSw5TVRVFVUGWqKvqJo7ORVX1W3pvlmVomoIs\nVfR7HlvjEV9++SVhHKPrGnGakmYVaVIiSyqapmIZGp5jo+sqWZFj2h6rMGe8u4+maUwvTzh79Zw0\nmuM5Kp6l8dGHP+U73/ldrE6PZZxTNBKmZzNdL9AslziXyWqLRVJSSwqzxRzN0OkPx+zt7QENmmlR\nNjKW22U43sVWVZ4//RhHU9lcXyOXJYYk4Qcdvjo+JlcU/K0Rwc4O9qDP3fv3efOtJ+xtH6Choikq\nqipTFSVllrcp303T8kmKAkluvTWzLGvp4TXkWXl7+F8bxBqGcZMHod52BE1dIkkSQeCzWCzwfBfL\nsm6l1UK0vAlN07BtG9dxbr4L43ZbV1XVLRW+xRfa7kUIcesXuVyuSfOcsqyJwpijV2dMp1Oa+u8g\n+ChJ7RqyaerbNitNEwQlEpDEbZXM84oiT2kkkyoTTOIjomTK5eQVBgLb6pJXNW7QZ7XKkJQeQpIx\nLIkSGcVUsTyfKMlx3QFNXTC7uubhk3eYLTb0+wPOXr4kXkU8eO8DijCiKVccvvHtlnYrq0goeN09\ndu6FnB9/wnJ+zKvjCRoqvfEuZSMzW8/Z2dmjq40xfJU4XrLJU1TT4nt/9EdMjp8RTS+p8wy3nHN9\neYZl27z7/u9gDg7QdB3NMMiRyeIcx9ZxLJu8qrDcgCQWlGlNo6SoWk2aZni2yzoq6HZcJCoMowGR\nU5VJ6y5UVci0HZnt+BwdveKud4gKOI7VtqtVzmDYYz5bYjsm61XI/fuHrTW9olAULYhVVyrLRcT+\n3V3CZE5Du760HZPVJmZrOGDy6imq2mpWXqgqnu3g2iqSIdGIlk5sug6NqjHYPkAqQ65XS97/3W/j\ndAMOgkOSQkP1BnRHAYohY3k+i6sZQpTE6yV10+D4A64vJkQlDMYjonRDOD3F9sdkTYPjB3z51XNM\nv0cpC+7cfUSZZiwmR5xeXGM5AYarosslVG2rn6YxeVlgIVOWNUXR7vo6nQ6a0o5pr7USnU6HKAxv\nn1tN026oyzbSb/kvNE3D0dERcRghqxqD0Ta6rhLHMZIk43VclvMVZ4s5n37yCf/wH32fsqlBQJrE\nIFQUpT2yr4vFa2v6sqipGoEiaxiaSSUgKyuyrKBpKkaj/tc6k8oPfvCD/+iD/R97/cmf/MkP/qt/\n9k/bOHFNJUszJBkQFZaucXV5Tp6s0GUoi5ReMGpbnSYkiqeYpkbQGXByNuWTzz/lwZtvo5tdamFj\nO512vSUaFNVA0UyQlfbtl6ToqgqKxvjgEM9yubd3gGMa/Oznf8VqeYGpy3z8i4+IwzWdjsfLk0uc\nYEAudGTD4v69Bzy4d5ezl19wdXmGaVrce/iIPK9YrzfIqo6quTh2j707D5kvUwzDYzTsI9U5J6++\nwjBdnN4Qs7dDlIPt9jA7W6zXEVVTYbsmklyjKCrLZcbJ+ZQoSXA9neGwQ1XkLOYrBqMe4/GQu3e3\nGY08TKPBNNrUI02zKEuBEBqFECBpiKZGU/Wbji3Ftk3Oz8+pmwLXdfC8Vno9Go2RJEjTGE2zWC5j\nyqztWIJuQJTEVCXIso4ky/S6Ll3PRpQbBoEPRUxdpeRJTFM3FOmGJ4/uIlQwvR5be48om5rjk1d0\nej4lNsHwAZLeZ+/+Iboq8ZMf/iXf/uB3mW5ShCTYGfeYzkPG99+j1DpcXi7wHJ07B7v8zQ//knfe\neYM8Tyjygv3Dxzx4+B4oXYTcJ8tkgqCHrTYoUgVqQSPX+N0BsmayWs7Z2dmmqto8SFVR8H2bOI5o\nRIPnecxms5sQF4mzs1MePHjAcrlsC8KNUOp1sWgJTpClKev1iv29PV4dv2K5WnF2dsq9e4ccHx+z\nXMxvFcVvvvEGF5ML6qYhSYo2WGcdEYYRW1sjoEE3VGzbJo5jkqxkuQpphCDJaubzJVGctWOIgNEo\n4F/+z//D5Ac/+MH/9B9yJr8RowRIt4o+IQS2bWOZJqIWN/FaCtStHLouSsLlNXWVslrOURQFx3WJ\nspx1FGHZAaByfjkhK2Pm6xlhEtLv99F0lSSLkDSdYLjF3QcPuZzOKLKMMivJ6wbFsqjlhju72ySL\nK5rNjJ2By/r6Fc8/+Ql1MiPwNbqBTpxsOLs4Z70JefPxOzx8+JDzo2ecfvUJSramitfkYYQqJHrd\nEatlTFGA7vWIG43dR++g+D0+/PIFn3x5xJfPTzEtjwaFNMkoyxLD0CmSkI5jY6ltOynLMnEck8YR\nos7peCa2o5FEa7J0TRwv0VUJmgYZhSIriaOML5+94vJ6SRhV1EImyfKbotFyRtpxZARSTSNKiqJl\ny1lWS/m1bRvbNvF9G2Rx6+5tmgZpGmKZKoYCmiTh+z5+MECgoDkulu+ytTfCdVQeHO6iUmEaKkkS\nEWcpfneE2+njeiNAoaoKUCAXGo1Q2d+7x1cvr9ikgovrNUXe+lCczyKwB2j9A6Zhidcd8A//yT/h\nJx/+8kY+L1NEEV98+gllHJOsYzyrgygbHMtgvZmzXs/RLYUoDhFViSxLFFkGTX17f14TiV5bub8W\nNgVBcDtevJZI/5pg+XIAACAASURBVLaC8jU3oc0UbYHE4XCIbbed2sXFBZ7noigKy+WCLMtI03aj\nsVm3kXSy3GarCCEwjPb7yLLsVkxXlDWSojFfhjieB5JGVTVcXl5jWQadwP5aJ/IbUhi43fGWZd0G\n1mYllm5hmw6BF6ApOpbRCqwEFaKKGQxGyFKb3vzy1RGmbfKdD75LnlXIFHiegm7WDPsBy+WC2XSC\nJNfEWYhQZPxuFzfocnJ8xvJyjuO6mP0u2BaGpfOf/uEf0uQJep3QNRqUfMnl0Uf86f/5L/ns5/8v\n84vnrBYTyrIkzktMw+bR/buEkxc8/dm/o2dW7A1MHLViOb/CdS3uHOzhBR3cbp9K0Xnjve9w58Ej\nptM5rmkRJTlCVkjT9tDWZUW342NoEpokUZclMmAZKuvVgsX0grKI2BoH2I5yA9ClFGXSxrkLiSAY\nkCY1TaXx8cdf8eLlKVkuQKhMpzMc28OyHMoyR9e1m06hIi9SkBqiKGoNdLIcx7HY2R23uI/UoGry\nbdGoqxxTk9BU8F0PVdPBtAnG+0wX63Z+1g3qImIyOWY5vcTUZJqmwvM6WEaAaAxkSUdRQVIyBBpx\nlJNnFZLqoVhDCslka3sX23ZxghG9nYe88e0/JJNs5mHO/ccf8Phb3+dimvOzn37MyYvP6NoVyfIF\nWjOjya4hXxKFS4IgIOhsgTAIOl2SNGY0aP0nJRpsy8Cx2/Xsa35CWZbUdWueIsvqrYntr68ef/25\n/nX6s3ODHSwWrUeCpiu3xrKClrDUmuS0pCpZVlitVnz51UuurqYt/f/XipPneRiGQVUVxHHcAp95\ni0UIqS1CvV4P+WsmS3xDRon/8Qf/3X/7zymKAtPQKMoSSW4Vl3VVUlcNvmOhqSqTk2PSZMn55Qly\nJVgt14yGOyxXCwxdZ3trjx//9Cfs39llMnmFSoWtqQy7AXvbQ5arNYPRmIPDuyhyG/qaRBt+8ZOf\nEgzaBKisSMjiNsWqSFO+9e1vITUFmgKPH9+j42rsbQUc7g3I1nOms3OWizmWaaDLYFChyxV5tCRc\ntVoL27WoqoS6TpmcHBGuZmi6goyErmr88fe/z/V0jmzYSLqF7faQFRXPdTAsiTxN0VWdMCqI0hTb\n1LF16HsGYbRmf/8ASZGQZUGRt25IEi3IWGQVimpSCZm8hDSvW5+hpsJQZaqqwPUcqrJgs1lhGQbS\nzX2QsciLhtV6geu5pFmGojYE3R6q0nZ0uqqjKWo7ashgaRKmDnkR0+l0yIuKe3f3uL6a0OQ5Jy+e\nkUYRaZrT6fYIs4JGSDS1wHP91vlXqimLiEaxUWpBuF6wd/8eut0nSxpsJUFWZM4XFcHoAWEqsbM3\n5GryCqE5WMHb7N1/m717j7maTvjpj/8CS4lRqgVNNieNL3FsG8vt0ulvIcsumuG0Ij7VaoE/3SAr\nCnzPp6qKG/q5z/X1FNNsBVKTyeS2o8qzjG6vR11VVDdhSbcmr0jkRYHjepyenBFnGePxGNOwWCyW\nFEXBg/sPsW2bNInwPRdFVdF0C98fsFhEeH6Ppq6AgtFoyCZeM+j3OD0/ZzjcJooLyqIdmREKSZbS\n6QQMhx4d3+Bf/Iv//j94lPhGgI8Iga5KqLJ241YjE2cJXb9DU4MiS4h0w2q1YjAa8eLocxaLGY8f\nPMK0dLI0QpMUBoMRqyRi7/4h17MZB3t3ef7ZL7FEw7jjsdkkdLsdwrBFcmvROuP4vssbb97n8vgZ\ngaNhqwpOv0cSR9idLopu4w+30ZKIcBMjNxXzi1cYusXO0KPbNdANkzTOmM1W6EIj2TQU5QrTKmmq\nHJEsQanJ0hVd0yFNK7QypW4qks2C67mDkNr5teO56KpEU9Vt1oPvUeYtVTwrExqRYzsBtqHRoGJZ\nTiveCQIMo3W1StIU1/dQFZU0SmlkGdVQUVRBU5Roik4WJ2hdh6Iob0NOHMclTwuSdE3ZxERJg6K6\nWJZDnEYYusNms+bgoEuaqG26lapTIbDNlgkp5LoVF9VVGwOvu5RNyM7+IddHL+n4fSQht5F9yxDJ\nDlhFa1TbIGtqsjIlWybUDeRGw+5gB/Pxm2RNRlPZ9Pp3iaMlQ0dQXF8gpSGW4dHIAWgWl1fnWIHP\n6M4DVkJn6/E/QHcHzM8+5/rsCx7cvUOjytx79Aan5xdsVlNsv0RXBtRyQFMrFJVCkxd4jsVms0LT\nDMoyRr3BZBRFYBgK5+dzLGsLy2qLiSzL5EWB67qtsYqqtvoHSUKSVTRd5933v81qs0TULb+h2+1R\n1zXn5xdUVYl+w/7NswohaSRxhqQYjLd3OdgbUhSrtiC5BmEco+kmSZIRxzGKrLOcr1reTp6zfzjE\nsQ2ar0d8/GaMEkIIkiglDMOWzaVqmIZNXtZkeU6eFUiqium4XM2XDLcOePf977IM25sSxStkKrJo\njdI03Blu0fc6PPv8M7bHAacnX/H5pz+mzNp8hzyLMBSQmwZFBtO0GfUH7O3tcfzymMn5JbPZijAs\nkRWDZRiS5Bmm5WCaFoHfJfC7GIaJ1+kwHG0TxQ1HJ1OE4nK5SLhYbLhargiGfQaDHpommJw94+Tl\nJ9TlAk1KWFwfY6o5jiW4vnzO3cNdHj16iO/7qFqbiG3qOooioagSMhVbPZ/drT6WrdHtdlE1A9Ow\nSdOYpi5xLZMgCFCVFltohEZeaYhGQVd0PMdGVQR1ntxEq7c6kqps0GSttSfPS2zLxTRcNuuY2XRN\nJWC9irEsB0VRqaqS5XJOEATtQ5ynqDK342AUp1SN1Cr7FBVZMSjqmqA/Zv/gDr3eANEUyCIjjxck\n6zmmoSCoibJWNLYKI9SmpEgiZrMFimZhu10azeHV2YKjkwm+pTM5/QLXbvB9n/H2AeFqjSjXGFqN\noqo0qs3+g/e4+/A7DPce8NXJOa7f5ep6QtXUGI6D4QYklaBuVNabjCSuEEJBVlt7+DxtI+lep0Wp\nqv4bHcHrUfg11fk3NQ8tFvN65Xh6dsZyubzNqvR9/3ZlPx63RKSyrkjTlKpqiJIYw2jXlkkS4fsu\nRdla3c9na8ajXa6mC+qKmwJWUlUleZ5imhpZliBJytc6k9+MjgHaHbBuIqNQ0+C7LkVd0MgGBQ1p\nUaNYHo+efAchKWRJBGVMmWwo0xTPgjSeohkmSqMy7ijc/b13efniS3a2RwSey4//+i/wgg6L5Yar\nk5eslxuqqqDb7ZLmGUFvxN2DQ45enbHahLhOh90Dmd09g62tLeqipN/tE8cxlxdT8kZidjQF1SCp\ndd777j9GCIl7TxREk/Dy2accTa/pdvv85Kc/Z2d7wO7uNi8+/5hNFOJYNpcXCtvjLUb9gGg9xXVd\nlklN4HtEWU5RFGyWG4okpOt3MOSKcdfg/HJObcsIBKZqMOh2aJqKMq0xdZ3d3V3msxUff/KcxTxh\nPOziOAb9boClC6DB9hyQalzPYbGYcWdnlxevXtAP+kSbELPjUFQZ0+kC29PJ04o8a+gGQySpBd4k\nSUWWa0xDb0VDUUZRltRCkBUS1DW62ioNvd4Qu69yfX6M1fEwNpdslufYwQDbCciWlyiGTcfvEic5\n/eEehgR9T+HqNOboaIbVtfG8Plv3vkU5e87q+oJ4OmX3YESUC2y7j2c6pNNnLH2LrDDwhvcxzC59\n1cL0LHbuPyJeTNgsV1heQH/rDmHTwfT3ePl8yeRySXfUZbDdZ7OM8N0Oq/W8NU8xjJsnVibPa3w/\n+I3OoCzLX0Ud3ACQrz/XdU2WZcxmM7a2R0RRdKsm7na7hGHIZhOiaAbhaoNhdUiyEl2zmC3O6A97\nIJUkac6dO7skWcblZEEcFYSbDF1zWS0jTFMnzWIO7u5Q1UmbZF78HcyVkCQJQ1PI8nZlJgm51S8U\nKVEU0hq1S8iaTpyX1FWNYwWsNms6jo/tevz5X/1b8mTDYDzgjQcPybMCQ+3w1qMnhGGI57p4gYdl\naCRhThjG2PcekpcFRSPY2t3h4mpK1QgevfmYn/78Iyynw8nxBcvllMePH1MVbY7Aer1msZjx4PG7\nTBcxRSURxoKiMRBSG6lX1QpbB+9h+zMMtebtd3TizZQiV9jdu89u0xAnIS9ePENTbTZhQn+3XYO5\ng22QGhaza+bzKY/u32GxXuIbOlLdriB7HZOmTLBdl7oqsA2T6/kMzw9aZFyWb0hSLXJdFQkPH+wj\naom3Ht/n9PQEv+MSRSEP7h+i6ypR2vo9doM+YRjSNNDrjsjSdn9eV4KmhsViRb/fQVJUaMB2TMIw\npCxSyiwjzipqIWFpLkVdo6hAI3jx4oh3336HYGuXLMux56fUhYqpQZSs6XYHnE3mdLfu4XVGVAJW\nk1d0XZVex2HetMlkgoJuf8zF1UvWixmrLGZx+QLZ2ibL8pYWfP4VVqdHqfWQ65TlfIkmaaCY5EXI\ncHuXH/7Vv+W//Gf/DarhodQeutEliqeESUWnVlgt1uiyoDaqWz9Ix/E4O7sg6AzI84IibwiC4HaL\n8LoYvO4Q6psUKlVVOT8/p6oqtre32YQr9nZ2GY1GHB0d4TgO/X6f1WqFaRpEaUbX7FJVJfUNxb0o\nM2RFv/1egyDg2VfHt//3tV9nWaUMhz2Goy6SJCgLwfVs9bXO5DeiMDRNzWazaNc18wLLslAaGVkU\nmJpACImyqpGE1LZrVQ3I2K6P52hsTBuv0+Hb779HUSe8ujjFtf12hXm9wrcD0k5F1ZSIouWib42H\n6JpJ2TR43QFJUfHBB3d5cXSKoVs8fucJV1dTGgHHx+c0jcz2aIwkWtPavb09yrJtK93+gHoDRa1S\nCkjWIYaq0fGHNOuc+XJGv7fPeHufKouJlnNc3yHo7zAY3+Hy8hIhCwy7Q9m0yPR6s2a1nhNGKxZz\nHb9jk5cZruMTJzFdv2VHqqpKHGWUZbsx0FSZPM1aRqSusLvTpRd02N0ZEXQdXFsnChfs7Y84Pb9A\nNWSurs6RZZn1es329nYr59X0m2wLlbwqidMc03GZLxccHm6360nLoWlqoihFlhWSJMLzfbIqZr1K\nKXSBLECEIeF8hirJzFcJaZxhen1Mt4Opyiw3a4SQKZKY4aBH1VQYpoZIKzRZwtQaNBU2lwv8Xp9h\nT0HP2jdtv+uxPllw+eqIwyc7KIZBo5lYisL6+py7T3Yp8wWakDBkWBcplqEhaSrbdx6gGj6yaqEr\nOpOrOXFW0aBguz6GbqArramqbZuUZc50OqXXHVDekIdeq4AVRbklN70+qL8dJNvpdHj69ClBELC3\nv8NoNLrhQzi3uZUtwSpFllSSuCDJWiC+bEoUXUWS5XZrlxdsNhu2t7eJ4g2WZSJLDYvFgqDrcHhv\nn81mQ13XPH/+FNR/fxLWb1/fiMIgRI2uN7Ru0AWbTUy4mdMxdYq6wjDddh9u2cgy6JqB1NRURcGy\nSJjONzx597utws32uYo/5tXklNViwqODbYSaUkrw6vSSKFzjmzpZEqLbDmGa4nVH7O7fo9FNDu/d\nYx2FVEqDpNZMREW/O6IoE/7mRz9DUSoODnd5eO+Q66sTTHvA5OIEf/QWadUgFI20KnACn+vlHFlT\nuPfWG1yePOPibMKw16ExdaZhiK7njMYD3tzZbq2+3QGaoZOmKYvFCt/1eOP+Xa4vj5BlFUXXKMqE\nIg2pwhmG7aDIGlGcc1YWmLaF49U0okFVDRQFDvcD6qZEkjKicEW4ETi+S4nAdDQ0TaeqC8JVyKA3\nZLFYUBbtqLE1GpLmJWVd4fsuebJmsVhweG8PVf1VFHy7m8/QVBldUcjSitm89cK0zRrH1Rh2e0TU\nZLmE398l3czxBnuks2PMImezDFHUlCwtKJuCo+MzLNNj0DOZTE9QhM3hzh6UMyYvnmMKm7LJKKKQ\ngePz4f/3N/ijQ0Z7ByjdDlfPBYvJBMd/hup02/Qy28PXKtarKb57wMGb79PdOSRJS7JsyXRTE8Y1\nDYK8LFBUHc2QKcuUqqoIgoCmkdFUg9UyJk1yVFWjruv2ZaYoxGlCx2sxg0ZUCCHdGhqPx2OyLMN1\nXbq9DicnJyyXC7a3d0jTlKLIURSVKIqxHJvFPEFRDEzLQUigmxplDSDhOB5CanBdE2QZWWno9X22\nd3tIUs1kco7vB1xfLYnTioa/g7kSstRKTAFE06AqGr1OD1HE1EWNamvEeYkkV5hW6xBUVyV1XVCX\nCbalk26i1pCi0fH6d+mP75HECyZHn9IxG3QhePfJO1xPLxGixrUNdF3nqxfPmU0v2r1yGbP/vT9k\nEq0o0wTX1Ai6Lj1/yGQyYe/uPXq+y2YzZb7YUFc5k8kLTG+IJEJUxcUJBhRVQ1GA5XaJwikXsxlu\n0EFWBXVZ0BuOKKscSUDX90jSiKyu8TwHN+gghMJ0OueNNx5ydTVhPNxBM8wbspdKt28Tra+RaRB1\njmebyGpNspmjym1iuGaoRElCt9OhEhBGKZqqtrL1skZXNGQh4VouWdLa5q83EapqYNgqYRxT1DKq\nJhj0FNJkju8GtLN1gaYqgMFsNruxMivo+C66ZtAJHNTrBYahIIkKTTWx3AFdr0uJznS1QVVNOr0B\nm+kxFxcXjLd2WW5yJMXFsg3ueH6bI5mGpPEaQ20omwvyek1RLOj6A1xHY7MWjIZ9alXnq6efYAd9\nDnYOeKZZROsVtibI4xmWYaHWkOU5/f4QTTfo9HfIKwkkhXCzQcJFtyQcxUaWakxTR5ErwmiDEBKm\n7TC7nqOpdat6VMCUDTRFpUhS/G6AIgtURSIvBJKktM5jUjtexNGGju+2YbjLDaISuG5rcqsgI0mt\nmVBRChRNJisLfNOnEXXLwJQ1JNEgpBpFMSjrVpbdlCVbgx6gIKsSp6cXJFlJGBVMzpekuYzf+XoE\np29EYWjqmiLN0HUTTTeQaJ12BTqOpVMWDYbuoCjajXV2gbgh4BhSwenJCwY9n/VmRlLo6IaPpJm4\nTsCB4VBtJsiiDerwAw9FV3j69Cmj/oB33nobRW6I4pxPPv+M/2tyxvf/0X9Gx3E4OjpCkWqqJqZs\nKgzHZe/uA8p0zGeffkQQmMSbObZjcXH8CU5nh7qI8awBmumxyRIsLyDP1uieiWN7yHVFuDnHMByk\numGzmIOoyBsohQSqjiQ0er0elm2gKn0Go71WX29rxHFK13PJiw2qDJcXV0RRTL/fpxESi+uSTqdL\nIzJk4Pr6GlnS0G0PXjPzBGiSga4aVGXLbpQkjbKAphZczqdcLTbElcLBVp/f++ANVus5itJhtQ5J\nkgRT11sm5LANNnn9xgzDmPF4wFcvjqmrHNfVUCQFZIEsQ76eokqtJVlSNLhelzcePGS1aQlr67ih\nakryLAYqinCOIgnyPEbTQCli8s0SyXUpS5moaFDjiMHIYZZXvHpxxOxqToLKaGuX9XzG1rCHkAvy\nrGC4vU+FgqabmLZFLUDTbPyezXxdkWeX9EZDXLvNHfH8Luv1muFghCy0NmujLMnzBCEqTFPFNQ1m\nUYilG5SVhiRXNEJBFkobbitVJGHEeGeLL7/8kvVywXC0xyJZ0RsFTCZn7Iy3MXSLLG3QTQPH9zCW\nOZLSYGg6hmpgKjp5HmJo7eajKuoWrK8bNL3lpeRZwWg0Ii0El5MlaSFT5OA5/tc6k9+IwiDJEqZp\n3hphKqpClCZ4uoEiC0zdompkkFtWXVkUINqK3uQ5dw7uEcdLiqqhrnKQUpBA1y3cToDTt1lNXrFZ\nX6LqCkLW+d73vsf08op1HJOGIY8e3Ec8fhNdN/nhX/4FkqLx+PFjhASz1Zq337rP8ckVl5MT1ssp\ne7tjFtMNq1nNcnrE3t0dXp08oz/e4sGjt2mKLsWqwnA8ep0h8+W8TbHS4GB7vxXhSILJs1eUyYr5\nesP9tz9AriVUTcd3XJIkRKZis1kgJA3dNFqmp9Sq6RpREXR79DotMl4LmYoW+KKsSZIEMAmjlOGW\nQ5iEyIpE17NBqqjKHMcNkCXQdZkobAG2Zz/6iJPziF/+8pR//l//MUghkqiR5BLPNQnXG/p3D2ia\ndqa1LOOGUn0TOJxFvPnmPc6OT1ARKJpKkmU4HRczD9FkwXK9+v/bO5cYya77vP/Ofd+6devd1dVd\n3dPz5kMkPZEoWq9YimErshLEWXphwIsg2mSRIItEhoEA2SVZBFllYSgJAjiOHCAxQju2EUmRosiS\nLFEUKZGcGc57unu6q7vedd+vk8WtGY1IWSKhEacJ1AcU6tbpW1Vfz3T969xz/t/3Yeg6erWBoasY\n9RzPz6hpKbHvEc8GkGVoRUbNbTCbeizmpYOzzKHRXOdomrFzoQt5gCThoy98iCCvU2/2eJ0cPfPY\n6FbRshnjZQZmUbexnDbDg10a3S2qdpVMMVFziVQitvoNXNfCtgWev8CtlrHyZYp0jqIKwoUPQrLe\nW2N/7ybNWum5+JWvfYXOWp0PfOADpeI1iGG5denUXN5443K5BtBoMF9MkUophOp0OtRqNW7euUu9\n0aLRaOAFAb2NLr4XoahQc200TaXIy92NfKnWvN9IFccpR4MR1Vqd5loTs6Jx4/q9Mm/UkJjm+1Jd\nKVBUQZJlGJYFSEzbIstSkjglTDMURUfRDaQokFmMKgsMTSeKFZrdLpPrI2zT5PDObabzGAyHKInR\nZIKeR1hKhiw8ms0mRpaxt7dXtjJ7IYODQ6Ik5dKlS8wnU9yqg6qq3Lh6BRQ4e/EiUiasd2rs3dnj\naLDPneszfvmjnyaXNrWmw+DoLs2ay9G9OyiywF3bpGKv401iqnaVtU6fTreH50/IFElCQRwEZFnB\nbDrGMU3UIib2Pex2g3a7TS4DKo5GnimESQKajm7qCAoSL2P37i1qlTqtdhPpSwzFZDT1qekGbrWO\nbljs7R4znAT4icRxK1imTkFOnmel27bjltNky6Cz1iRNcs6du8C9wzc5Phjw6qs3eOHD58jzUlvQ\nuXCe+XTGdDam2WwCZVAQFChCYBgKi8WcZqPN0NRRtaX9mGEQ5ymaoSHyHAWBVCQ5gkJoYBhsNhsc\n7O9hSR0tdRgc7rPe22AwOEZVNCqGyjyOqNhVbHeNeDKm3egxGe6zv7dP70KKYhT4UUj/9EUmh7eI\nkgTpL1jrNDE0qDVscgFOruHYVrlqn6ZUqnWUyZi6a9NsOFSrVVr1sm+h7tbK6IJS8U+jUWMwOF6G\n2LoYjomYKVy8+CSv/vB7NJtNms1tKo6FLBKiJGY+nXHr1h36W1vMZguyXFJ1HBb+nH6/z60bN9F0\nfamD8VCkwFAVPFmgCdANBU0pUC0LVdHKLmGrwmI+wjRtojDFDxLMSsFsGjA4GpcO6opAtVTqtfdh\nEpUEFM3EsR0QKnkuEbkkI0fopUGGppuomiCJE0QhSaIIVTXRDAfIGA5H6Aqc3eqQ54IoBbNis3vr\nJtPhiJnv0emUBrCa6pCmYFtVNrfOcvrsU1y5coX/9Ad/xK/+yic5e+YCe7dv0qg4jKcjxodHpHlG\nKgT1usn6+i8xPR7xxrU36J8+T5hGOOvb1GsdnA2JW23y5tXvs7NTwVRtDu5cw2mugaWCUpCjYzh1\nwiRnc/s0TUswGQ843r1Nt/808/ExuVCWfhMpEpWKW0a8iUIv1xVqDdqdLppi4DgOh4f3aLTW2Nza\nJpcqummRodDqrqNoIbuHQxZeTKNZZa1dY3B8TK+3gSzE8o+shu+HKKrC9laP5z9U4VvffJlvfftl\n+tst+hsViixlPBqgqnqZAJZWcBwT3VCZL6bEcUy72cGxdJQio1G1UNQC1Sin1boBaiGYhwGmqZML\nl9D3WHgerWadLPTpNqt4Q5/CUnFtg3v7exR5ys7ODldu7FIoBrlwmMU6em2NztYFrIrL8WSMimRj\nrcY8SolVBbu3zs03XiI83mVjzUGkIac0i1TL6J1+gjgB07UxNR27UuGppy/i+4vSlEWBPEs4vLdP\nu9kpBXiBR9kTWGCaOpqm4EcRQZRzMJiiKDqd9gZxklEUCcPhlGarThCGHBwegVB5/fXLPPnk07TX\n2niLGaZiMxhM8f2C8xcvMDw6psghy1JMPcXQwDQF3U6dIk9ASJaNlGhaqVHJMojiHN20GI0mpPmE\nyWSCW61TcW1abZe6++56Gd/R2UKI20KIHwohXhFCvLQcawkhviSEuLa8bz50/u8KIa4LIa4KIf72\nz3x9FIRioKo2eQaO26BAp+q2cSp1TKtaZktoVnndV29iVetESU6cSlqdLv31Hq6hMTrcK92eZgMm\ng10sVfLcUxfZ6HXprK2RpilRFKEiEKrG3AvJ9QobOxeIC40///LXeOmVH7J9aod6vUEUxATzBZqi\nst5eI8syNKVsv3YrBndvXkbTVBTFYuYX2LUNdo8Sqq1TRCmMR8eIwqdd1xGZhyaz0txWKDRanTJk\nhzKW7WhwQOhP8BZTVKU0V8nSgrKLQ0VRVDTDBLVsprEqNvVGCy8IWOutMZqMybIMXTdQhI5lVksP\nAVPDtl1U3WIxDzk8HmLoFoIyD1HXNIIgIE1jsjxCKAm2nfPCR5+j020TRCHJ0n+wUrGIooBer0eS\nJA+6+RqNBrZtl9u3bgVkiqELDF1dCt9y8iwiTwJkkaCbBppdA83GMAxuvfkaliEQRcrRcEAuIRUq\no/GE8WTG4OiIdqeD6dTY3LmA1WhTazbJhUKcSRS99L3Y373Mwd3XsQoPXXp0GlUODw+5fWsXWehI\nzaJSL9eAdKtKoWgUUpCmSZn0jYqulaY1FOVugqYrqMs4NMMwCIOgjDFIEvJcEkYK9w5mDEc+7c4m\nYRhzfHTAvYM9bty6wSLwubu3y3gy48bN29w7GOD7IZpeCsYGh2MazS7zWUgUZziOQ5aW3pqqAkJI\nLFNHUgoMFaGRpimTSZnqVeSS6XRKpWIhhViu+ZisdZt0e3V0LSMKZ4++MCzxt6SUl6SUzy8ffx74\nipTyAvCV5WOEEE8DvwV8APgM8O/Fz+jHFKK0807THM2ooiomllklyxXiJAehIVDIk5w0KfD8CN2s\n4McJZqXCdRtriQAAE3tJREFUcDhEFRK3YuNWdEaHuzQqGrapkMcBh/v7hF5pbfXMM8+wsbGOppd5\njQgVz4/JFZMPf+Rv0l7f5JUfvM7X//Kb2E6F9fUeR4fHpcw1CGg1mrTbbQzDoNuogx8yvHsHXYBb\nr5IrBevb27TXz1Ktd9m7t8fBwTVC7x4y8VCylMhbEPoBRSGp1RrUWy0QCrt3bjEeDqjVbYo0XToK\nacuiaSCUH4WSZFlGnpeNM3FaLv6V8ecGCEEuBbkst4DbnSaqWio2NdUkjsotYD8Myl4IXX+g9Iui\niEbdJC0m7B+8yfMfvkSr1XrgQagssxNKF6FSExHHEUHgY1kW8/mcyWSEQka1Yjy4zKBICOZjgmCB\nZmjouonQTTTbZTGfsn/7Gtcu/4DD/btMF3MUq0L/zAXcRhPbqbDR36TiVvHjFMOpk0oVhGDuLciK\ngvF4yODeLe7dvIqrJ4TjWxzevUoeeZw9c569/SPSXCPIFJx2F6veRbMcslyQ52U7sj/3UVUdTdGZ\nLoVNjmOXBSDLQBTl4ywuU9hlRtVpcDxc8OabuxS5jm3VcJzq0iuhdHN6+eXvMZ/PGQ6HXHjiaWpu\nkzTPabfXQNFLYVuQsX8wJIrK/ghFUUjTBF3XUJTyEk1VBaqiP6S8VJYFPUWoCmmRYtoGO2dO8+yz\nz+JULRo1E6GkmNZ7dynxm8Cnlsf/Gfga8M+X41+UUsbALSHEdeAF4Ft/3QtJBBkCgUARlJ2K9RpJ\nFFIEIDRBnpQBGrquIzWNOC3orG9wtH+H3Bvx+ivfQ8lDNE2hv32Ke8cDPM+j01pjeDxDU+FPXnyR\nXnebT37ik9RbVQzXJcwdkrhNXgi653ZQnS36pwZki3t84Qt/yM52h0vPPcXVK1dodHr0Nvoc+Ae4\nrsNat83meo8oz/jua2/yS+tNhJ1yNL5Do95lNJjz9JNPoIiE2eAe3W6HSiVFMUykyKjXNaTRYLR7\nRH9rk3Vg/+51Gp1tKu0OaZagSgPTrIBioOQFkR+iawWTyQTD1IiLjMb6KRCSzpaDNw9RNIlmWuia\nA5pCGC7YObXO/sEBtZqLKlOGx8d0Wk2SOEZVFNxqlelsQcWu4s0XnN/u84NXL/PKD1/lhY98iM56\nh8TbR03AcV3iKCql2EmOrhvM53Nct4axbO5ZLBbomoFlWbx+5TLdTp1qcx0Z18gRaKpNFsU4doGu\n11nr9lAtnSBJOf/sB9HtClEa8vzHPobMM1QhiIc+uhagKpIiiaBQqTgGR3tHnD9/HtdMqNccFpMj\nlDwlSyM0ReeZp87jmHB4cEQPnfWNc8xjCOYhuqVxPJyS55Ka62BVXI6Gx9SbDWaLKe7yd0WU+Y9B\nEFB1ati2zfFwwOmdZ/izL/wRcZxz7txZpCLJcolT0ZnOYyazOfVqC9dWaLc7bG9vY2gaSRowGc6Z\n+hmvvnbAdHKNS5cuUnNjWt11TN1g4ZfFdrHwUA2Jrmq4NZfFbIpbs4njCBSdSTAjTCS5SLEskzha\n0GnarK218b0pFdtkNnl3nY/vdMYggS8LIb4nhPjccmxdSnmwPD4E7tvQ9oHdh567txz7MQghPieE\neEkI8dJ4MsG0LUzbQjXKra0g8EjzDM1QUTUNw9AeGF2YpkmuFGiaQbu9xsZGn83NTc6dO8fW6TN4\nUcx45lNxm/hRilF1sGoNPvLLH8OpdPjfX/oWQZiS5AleEGIYDRSjwcQHLzEozDqnzj7NpRc+wdyP\nSPKM559/HssymM0mZDLDciwKReCutVjb6PHMM09y+8Y1Um+MiKeMj29g24LFbMKbV69z5Y3LfOVL\nf8Z8tE+zKjCViHBxxMKbEcYR+7t7BPM5daeKbpkUaCiaharopUfjMjAkz3PIi2XwqYFuWCh6BUVz\nMCwHxdQxLZ00jZFZThbG5FGCY+tsbnTQRU7VXa7bKJSmH4XAW0QICd5iQaPWROZw4ew5xqMJg8GI\nwM/orK2TFeVuh5Tlop3runiLgJrb4OjoCN9fEMRBaZCSJMRZiiIVdN1GaA6LCHJpoKkGFcPC0E36\nW+dZ2ziL5TZRzRqF4lKoDprVwG20sasNvDin0+ujaDrDo3tsdlo06y5ZGpAXEYXMyPOMNIpptZs0\nm00atTqmqTOfTTAti43+Juubp5lM5oRBRL3ZYDpfMA8idNvBcmqYponnedi2jWVZOI6DH0SlWYui\nMxwOMYyy4M2m5S5Jq9kkTUOmsyPyvJzpBWGMtwhoN9t84KlnePrJp9nZPs3xYECWR2iKSlEIFvOY\n41FIWpgMR3Msu5y9qZpJloLvhcRJRprkIFQKylZrVVWRQpDkBcPxnOPJHFUxydMcQxMkacDg4B6O\nUy6kNxqtd1UY3umM4RNSyn0hRBf4khDiysM/lFJK8XAkzzuAlPL3gd8HuHTpOQngLyvk/R5zKG3f\nszSFZW4fhUQrNDSKZe6CIM0FquWyd3Cbrf4mvjeiWq2jqBZxIen2emUjCGPWt1QycchXv/b/ePLZ\ni6xvPIEiAwytnB5rpoHb6JKmHr1T52m1mly+/F2q7iFPPvsUSQGj8Zy5F2OZJrO5T3/rFJZl0Wq1\nONi/h2W7JFlRbqvV6jQbNQ73bnP7zpSXX34Jp1IavlacOmkScuPqNSqKJMunnHrWZjodU1HqmLZV\nLnXlKUWWIFQDQxfEcYBhWGXCVFpQMcotMU1oZaaGopRhprZNkUtkDmEQlNvCTpU09VB1jayANC4v\nISp2FdOsMp/PGQwG6IaNohZsb3WZjI9I4z6+L9E0HU01HpiYBkFAEARsb+8wHB2BaZUmO7ZNkvvk\nsUA3baRQqFZrFElKHPtkeYyugWkpJKpFa22LLAuwnYIsL8NvdVNANMWpuPhRRnt9nc989jc4npYG\nwR3HIfJjmq5BOJvQqOok3ojcdHEqLrVaFxQVu+IyHE/JC4XOWo9JIilUhfksIIxzfD/EdXM8z6NZ\ns3Fdl+l0imNbTKdTVFUtk82yDN/36ff7jMdjqtUqC29Gf6vLwaHLtetXSJNNDB10Q1CpuFTsKrpm\nMh4dEYYheVGuDbQaTbKkYDxalDsfDQNJ6ew0Ph6Sm+WXQJqWZrNCKS368mxpM79sbgr8+IHiMwxj\nTENZBt+EVCwTmReYponh6H/dR/En4h0VBinl/vL+SAjxx5SXBgMhxIaU8kAIsQEcLU/fB7YfevrW\ncuynvT5h6OM45YKOrqukabyUioqyZ3+5H2waBlkaQhqTZ6XtltANuqfOEMcxtlWhv9FnPFmwCFM0\nu87QL4jjjGqtjS0qPNXtMzqu89r3X+Fof8i5J8Ho7HBqq8fU0Rgc3kO1HXIEQRHx5NMf52h4kzfe\neI2tMzs88+yz6Fabv/r2d1h4QxZRzsZGn+1+H3sy5OqV63Q3NnEdi4pZ4fDePltbW9RcC7uic+vq\nZQzD4PBwyMULT7K1ucHezZvMBnMuej6KGxDGEaquIVUFFRAiI0tK3z+yFMNSKfICKQSaFMiiIC9y\novkckYaMR0c0nr2Eig5Fhu8nKKpKrd2k0uqSRjGJhAKVqu1Sa9SIQp+DgwN6m328hc+pU31qjRZX\nr14j9Kbk1SZRnNBulr6GaZoyHA6p1WqMRsdomoZpVPCDCW6tiaompFnG+kZvuUU3wTE04izB0HJG\nkyOSwCfNYsyKgYxyhCoIA4FuOkSZh2PWSJKAbv8MqqET+wn97U1Mu0Ich+SahlcpUKIMQ0DF0Wi4\nNqmiEgsoCgXDqrP5xA6WXSXVbJq1Fl4Co3nCdBySxGUTUa3qlJ4frTp5UaapLxYL1tfX8f3y36bV\naiGlZDKZ0Ov10AyFZkPnc//wtxmNRty9c4s8BR2VM09cIIkz7ty5w+3btzl3/gy6Xn7ApVDww5i9\n/WOklMwmh3z4gy/gWg6pG3N8NMY0quRZjpQCRSkTrAxTI4sKpCwwdIswHGHoDkiPMIjQFBvbrpCk\nZdzidCZxqjaDweG7Kgw/81JCCOEIIdz7x8CngdeAF4HfWZ72O8D/XB6/CPyWEMIUQpwBLgDf+VmF\nQdd1wjBcKtEMVFV/MHY/tKOsiv6DzD6hKmiGhaLpVJwabrPJ3b1diiyl2+1imgZzb8F0MipDVqKC\neRQRF5IwzfnQBz+CN53zza/9KfvXv8/R7lXIFnQ7dTRN4+h4hFVr4qUFnY1tTMvlcP8eu3fvkqYp\nm6fOsHP2CTIUbt+6w+HhIZrQOL21yd7uHXRVwbHL3IM8zahWXVRVp93poRsV1rsbqIqCoQgsW6PI\nY+bjY9Y6HWzbRlAKZjSRI9OY2J8hsghbV0nDBUm4oFW1yGKPPPVR8hzyhCyOyOOAg90b+N4ERSkI\n/Hm53ZskBGFCmsN8HhGnBWmac+vOTfI8p9frsZj7ZEWBhqTdrPHpX/sktqUjBEsbsYwsy0iWhiT3\nm9Ns2y7j60yT8XiMULQyTk2o2JVquYiqa5i6zmKxYDGbksYxQTIjimeoWspwdMDCmzCdHVEUGZpl\nU6m6ZHKZ9JzF5EVMngVYao43G9Jbb3P61A5Vt0Gl0cZpdKk2N6m3t+j2z1FtbaFVWihOC6PaoEAj\nDHImYw8/iLHtygNfivv2728NhxkOh9h2aeU/HA6XruYFYeiz3m0wHB3S3+zy5MULPPfcM6UkXSoE\nQczu7i4bGxtYlkG9Xse2bZAKd/cOKaRBrV7l3Lk+vfU6+/v76GoZgBuGMYcHQxbzsPywqmUSlqot\nvyxVHUXRQCr4fkwYxnieh++VLe5pmjOZzBgdD3GXYcOPrDBQrh18Qwjx6vID/r+klH8B/Cvg14UQ\n14BfWz5GSvk68N+AN4C/AP6RvJ/O+VMKg6JomKZNmub4vk8cxw+sse9PnRRFKY1CFB1Ft5CUXYIo\n5eq9ZRhYpsF4NCAIpvQ32nTbNUwdNC2nSIsyu9LSWFvbJk4UPv7RjzI5vs3htVe4/cZLXP3Bt7lz\n4w2iYM7mxgZOvYaz3qPb32Gzfw7bcJmMpvz5n7zI6dOn2Tlzno1en2rdZTwccXxwD1NV6DQafOPr\n/5dv/uU3iMKALC81+6qiExc2tfoGtXqLLE6wLINq1UbXFQ4P9pdJRyqKXvoJZnFEGvuE3hytSAnn\nIww1RytiZsNDxscHZIlPGM7I4ghVSkxDo0hDpuNDNK0gDhcsfB+BShhLZvOYOAWJgm6ZxFnKeDzE\nNE1275TBuACz0RFZvCD0p4TRgna7+UA56DjuMk4wXl4XGyRp6VGw8D003UTTTbJcIlSNopCkSUGW\nls+tmJWy+1EVTOYTDgf7OBWDc2d2MIzSCCVNMyyzgqYpyDzhcG+XxWSEoQAyRUjIc4lVrXPqwrNs\nnn6Kevc0qt3Erq9j1TrU1/rYtS7Veo84EwhFR9UtkkwAGrpmYhv2g/e8nxMRhiFCCHz/R5LqcnY0\nwjAMNM0oY/0MFV0DWWSkWUzFMrAtg8lkwv7eAUEQsN5bo1530fVSEZtkGVkOirCQQLNdo99vE3k+\nQpYqy9nUJ0lKJeV9BWcc3/+ivO9hYj8whykKSJJs6ejl4fs+tm1jmjae572rwiDeKg19HBBCHAM+\nMHzcXN4BOqx4Pmq8X7i+X3jCT+a6I6VceydPPhGFAUAI8dJDPRInFiuejx7vF67vF57w83M9EZ6P\nK6ywwsnCqjCssMIKb8NJKgzvyO/+BGDF89Hj/cL1/cITfk6uJ2aNYYUVVjg5OEkzhhVWWOGE4LEX\nBiHEZ5by7OtCiM+fAD7/UQhxJIR47aGxRyYxf4Q8t4UQXxVCvCGEeF0I8Y9PIlchhCWE+I4Q4tUl\nz395Enk+9N6qEOL7Qog/PeE8f6FWCKVW/jHdABW4AZwFDOBV4OnHzOlXgA8Crz009m+Azy+PPw/8\n6+Xx00vOJnBm+buo7xHPDeCDy2MXeHPJ50RxBQRQXR7rwF8BHzlpPB/i+0+BPwT+9KT+3y/f/zbQ\necvYI+P6uGcMLwDXpZQ3pZQJ8EVK2fZjg5Ty68D4LcO/SSktZ3n/9x8a/6KUMpZS3gLuS8zfC54H\nUsqXl8cL4DKlivVEcZUl7rfd6cubPGk8AYQQW8DfAb7w0PCJ4/lT8Mi4Pu7C8I4k2icAP5fE/BcN\nIcRp4G9QfhufOK7L6fkrlEK7L0kpTyRP4N8B/wx+LDP+JPKEX4AVwsM4EZ6P7ydI+e4l5r9ICCGq\nwH8H/omUci7Ej2KNTwpXWWplLgkhGsAfCyGeecvPHztPIcTfBY6klN8TQnzqJ51zEng+hEduhfAw\nHveM4V1LtB8TBktpOT+vxPxRQgihUxaF/yKl/B8nmSuAlHIKfJXS8u+k8fw48PeEELcpL2l/VQjx\nByeQJ/DjVgjAj1khPAquj7swfBe4IIQ4I4QwKL0iX3zMnH4SHpnE/FFBlFOD/wBcllL+25PKVQix\ntpwpIISwgV8Hrpw0nlLK35VSbkkpT1P+Hf4fKeVvnzSe8N5YIbwnK6g/Y3X1s5Qr6jeA3zsBfP4r\ncACklNdi/wBoUxreXgO+DLQeOv/3ltyvAr/xHvL8BOV15g+AV5a3z540rsBzwPeXPF8D/sVy/ETx\nfAvnT/GjXYkTx5NyF+/V5e31+5+bR8l11fm4wgorvA2P+1JihRVWOIFYFYYVVljhbVgVhhVWWOFt\nWBWGFVZY4W1YFYYVVljhbVgVhhVWWOFtWBWGFVZY4W1YFYYVVljhbfj/f9aTKENYRIAAAAAASUVO\nRK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x116298ba8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "imgMicro = data.immunohistochemistry()\n", "plt.imshow(imgMicro)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 5. Segmentation and feature extraction" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAGoCAYAAACQdkj7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVvMdetVHjbmcR2+9f3Hvb1tY8kVtEoPnAlEQEG1MUYO\nbVIQWBgIbZO7BFR60VxUrdSrpM1NUVURoUQQEokCNeCgFLDNIbgUUhIwjgO0UgEnxsb/Pv2nbx3n\nqRfrfZ455vOutfe/wR/5Gr3jZn2HueZ85zvfOed4xnjGM7JhGCxZsmTJkiW7Tsv/dQ8gWbJkyZL9\nm2/pZZMsWbJkya7d0ssmWbJkyZJdu6WXTbJkyZIlu3ZLL5tkyZIlS3btll42yZIlS5bs2i29bJIl\nS5Ys2bVbetkkS5YsWbJrt/SySZYsWbJk127lv+4BmJn9zt/6W4OZ2WG/NzOztuvMzKwPn2ZmTdua\nmVlVHodcVZWZmdV1ffyczawOfyvDNlmWmZlZ5/ZjZlaUJb+fh212u93kE8fr2tb6vj+OC38Lv2P/\nRX58Z88Xi+PnfG7z2czCRtyPmdmhaczMbAj7qKrKlsvlcdOwH8xDHn7vg8pDURRWFoWZme3DNtgf\nzmcWjlsWBb93OByO+8Exy+llx3xnbj86h/gu9onx+7/tw9ztw/Ew/qosrZBjZvwhm4yxKIrxvGWe\nOd4wl5gLc//HmsH1w+9YA33fc7wWPnX/ZZiD+WxmRTiGfofz48aKvfBcw7Y4NrQ6sGbLouC2WIfr\n9drMzDabzfHvYf9lVXGc2Bb7K2UfbddxPpuwPrD+MC+tW98YH84F95Ffz/442Jf/G8bSyrxnWTau\ng7BfGNRLeD/57+vcYd7D9SirKppfrGM+I8I84/iHw8Gurq6O24Z54TMijKFwY8U6aGQusT9cx9ls\nxjWIbbbh+mFsF6uVmZldrlYcF9Y3rjXGhvO6deuWmZmtLi95PR8/fsz9+Hny6xznhOsJwxzi+mZZ\nNn5fzj8P84zx7/d7Xr+Li4vJOFfve9/0BjpjCdkkS5YsWbJrtxuBbLzXaTZ6aNVsxjfsZfiEtwU0\nAE+n7brRC4LXHfYzC54Z3sRt19luu50cE9vCU8Pndrez4D9zLPC+cBx4QERbVRUhA/wPXuLeoTig\nE3gVmSAaeCR5lvF/qmgHDxwuRp7nlgER4TvwYuDRG059PPdc9g8PEB4b5smjlQZzKd6/Oa8pd0go\nDNDMzDrxvLuum1xTf24YG64zfrdhGD27cJxBPDaM/9A0PBY9QCAFQS1N09ALxLVXLUFc+8zN2aDI\n1+3P2+DmaJBt/X5xroOgS5x/IR5s3/ecI5wr5oEIx827evVtGMs2XFfcj1xjJ8aic1kHhN33feRp\n63d95IGoUJ4Jes8Nw8B7Cvut5DryOod91lVli/D8uILHHtA4xoDIQF4UZjhmGBsRKe53h9YxN/jE\ndV0H1LIOqKXrOluEZ8AyIASMCdcT874LzwjLMu5P70+ic6wFi58NMFyHxiFT/R/2U8p6L4qC88n1\nnb8xrJKQTbJkyZIlu3a7Ecjm1uWlmbkYPd6uZck3LL04iU/DShvfwi28H/Gm4ZFYltEThheQq5cb\n/l4UxehdSswcnhk8nFnwfKq6plei+SKYj6nje/BwME7v7eM46s12+B25BXiwXRfHbDEvQDLw0Fzc\nmshAckw+Bo/jlBIrp/cVxoJ5yfM8ysMwFiz5pDzPrRcP1f/PH8fvq5W5GsQjxvXYbDZjLhDXE3Fq\n+b2ezewgucGZxNuB/Pph4DFxLegJS76KCKJtibDVY/W5A7OAJhQ5yj0wOO8X30P+T1EtjpdVlSGT\notcGn6W7jji/6FpI7sCjRcxLp8hD0Jf/nl6LXNZylucRksY2rcsz+N+rqhqvTZgfRjbCOvT3DNGf\n5IKwvoEQFvP5eA8EQ15mJXnYrm3tKuTleA3CJ58DAfkAFT15/JjXAHmcg+SP/JpghETWh6Jan0/L\n3Jr0nx4RYx5w3ljfz2oJ2SRLlixZsmu3G4Fs4IUNEv/NnQcFRsgmeIJ4y8JDmc3nI7IIXgC8ZjDM\nwBDzrJhSPBK80XE8MxeHFcslxk/vtO/paRxkDMyBhOPkWUbkpJ4wPQnkdMqS2zCPIZ587uLqNInH\nwmsEaoQXdvX06fi9sA3QFlFjGPd+vyfjBt9nPkdyWJmNuRQiGTk3eFCz2SxmvJ1BRbCmaejpMf8X\nPvF3MH426/WY80Gc3SFps3Fu265jDN/nzfzvp9ZGL3F0ZY2Rodh1RFxFPkWoufyeZVmUE2p1Dh1i\nywW9Yt0xFu/QJ+43jEXzmcgh4Lh1XXNeEGlgHgbIGKxLn+M6g8ROoaBMronSnYqi4HwQjcu9QOSD\n3I2N1xzzUksUxN/D3RkvX1mSi/k8yi0pWsZ8+f9h7sjCDXN2Ki/N5wjyOHKP+LWsUZ9WkCqZZy7v\nim90co/h72VZRs8jReyvZzfiZXPuIWJNwwWFySY0BoR1yTXcsHjA4Dt4+bQuNKSUSmyDCcRDfbvb\nRQ8jXBAYbzyX2NcLgUTkNnxiwS2XyyjRqWEj0hDbdoTr58J+p5J2QjTAtrx53MMXC97TUf3YfAhE\nCR0mIRB8t+97vrxxTXAjK4U4d/TuVseNB0PYr1/8pKdKqADHw8tmu9tNHAl/7Jk4I3VVRSFUWC3h\nNR9SwEMOY8CcYq36Fwop+BryDJ94OVdVFT1Esf+9PKyKsuS8wsHq8dKRh2FZlmNoKaxNrCE4SOo4\nZW7cDIFJ2Mu/ZAa5jrncT7079+5E8tpsSk4wOz6AO1m/JArgRerC5v64ZuNa6s4k9rthGF9WwUhS\nECdzvV7T4QIBSM/HE1fwsxKLcG+DAo31eOGeEY+fPJn8rxfnKjOzXJ49JMmEsZDenOdRmsKExILn\nYj2bjS+tEw75s1gKoyVLlixZsmu3G4FsmKQ6UUCItyg8j1I8EHh3T6+u6IkppXJ2+7aZjeGB/X4f\nJUrh+QG6Asr2w8Bjq2dZSfiMUPpwiDxrDR/By7116xaLpDShN0dYzSW/lfarYZzeIRJ6l1oM6Cjg\nZqMX7Y+v3jIMHlZRFFYGLw7Ii17WiWLSxoUy/PhnjiKL/XMc8HKRfLapYYz7/T4qckVoAsfFWNq2\nJcppJawwE+90sVxGaFvpu5nzmrWYU2nBrSRWy6KwQZAd9ovz6VzohjTmM0Wp3nOPCDRS6AirXfEi\nrgXQ0KNHj6bHwxxkWZQQ10QzRtIPQxR20sJBv99GUHJUZuC+m8uzQNexUv6zLON+FQ3pNRrcOfF6\nCorIw7xtNhtbhbEgua9ornD3xEGeBatAkFK0gmhInmW8Rsvw3MC2ut4Hc6FCF4L1nxy/K+rE9SIB\n6wT6wro9uPvujVhCNsmSJUuW7NrtRiAbvE3piYS/H9ybk95QeDvv5e26bRrbI2YrifanIc55cElL\neCClkBOwjQXvN3PJVoMXKjkVjL8LY+m7zp4+fWpmTv4G3gxQUTjuarUiymkl3wAPG57IdruNClaZ\nH5FC0LzvY7q40kfFI24OB+4H3m2nMjMOUZF+rUV64oEPfT+hkpu5okXxHv22SqmmtA0S2ZAY2u+j\nvzFfAnq2kwnS/B9RaFg3jE33fUTBXQTki3PG8YZhYCEjk/NY18hNiLd7PCVJmodPJtrD52G/j4pC\ncbwa69IlobFfJPdJnpE8hpfZUYKKJsZJRBiGs/ToWo7TtG2EwLiGZD0WRRFJ0GhSvnAoifdlOBai\nB0TuQhopXH5KiSQs2nV5GeZ6McAzaM7v50m47/E71vkqRC/m8zkpzXtHxzcb0QqK0D1BAesC9yWu\nveaPzUZEg21IYAp/J+HDYiKA5oBhg4/wnCjGfRZLyCZZsmTJkl273Qhk8yQgD3hF9AKCx2/mpDPC\n2xVxTi+kB4QAr0I9BP7/hJyHCkWSeWNjPkdphhT+hDgmxuoYT8gTwVteBQG9+/fvm5nZnTt36LVh\n28HFd82m7JHGxZT9GOBlgRqZmUWetrLH6OW5PMEgyAvXgIWIjsXHGDCENyGHIXkHsxFtaqGpetVm\ncZ5IWUA4D8zPer3msfTc6OW6/WnOigV44dr4wmEthvSMLzV632BqgfEk1xFim3Vd87yxHg9yfT3K\nIwVech2aLymKgvuFJwyvX6WRjv88zp2K22I+lM3UNE1cpiC5Fl9eAPkbZT5pIeihaUYmouT44PXj\n9816PUpMhe8AZar8EKm6bctxKcpkbsXda1yTyPcJiw7Pl912GwkFAwEjOuHFQHH9ML8ck1LNXW4Y\n/3sUhDi5VqV8oTkciJRM7gWlYXdOsPUgzDJGO1zpANYt5tvTuZ/FErJJlixZsmTXbjcC2UCCQQse\ni6KICiYR04VH3wG9dN0YJ5b9ay1D3/eRh423NYucghfw8NVXo9j7TGUxgleAPM3V06f8mxaf3oZs\nePBM8iyz/Znall7Q136/j2TU4W3B1y0dWtG4N4UJHaPMz89uux29TWEgEc2Fz8PhEBVmqkilzwtE\nsWGRx6hc7iKTnIcyD5mHcTL5ml+IhDgdqwmoGMxDzWV59IZrggLWucTViaAslsOvBPn6nIdaNN+S\no7Qsi85RvX/WaxVFJLqoOaDWoUPm+WTezxVb13UdCTVqvs5fK0UPlIg5cc695CC0vqtx94Jv0+Hn\noXTXZHJc58lrQSiRnltzGkUo5X7B70Axk3FKsTLHmGURIjiLVDkJ2di6QFCP1vMNfR+hbhWpnbko\ngwoDI7pCdOTypZ7FZnZ6Hb+WJWSTLFmyZMmu3W4EsmFNAVgjkMWoqjHOCyaLSIr4CnR6gSKtUmiM\nuO+jKn1lyLCRVF3TQx8EIWzE2wATZbfdjpXykqvBJyu7hyHyUDWm7RGDjyn776jMRz4MURxdTZlP\nlmWU/IAXBLQJZOa/Eyk1iBw/c0JtO3pXiCNjP2C0eQHHc3kXaczlUZgyppQp40VZKacT8lGYM8Sk\nkW8riiJq8IX84oXkvwa3ptjaAuKdwXtUpOAFRDlOqf+C9Y4Z18v/lEHUDwOv284xj3QecF69IGCV\nmdd7o6rreB1ijQrby+eGonosma/C1c7Uur6xEyCHPI9zElqLJ/ft3iFgGMcgazbP83EN4TjC7pow\nxLSGTdA+WXuuYR6ee1q/F0kW5fkoRRS2AcMWuRqfl1FEpzlgREXm83nE3FV2JOanLEurpRWCrtHX\nsxvxssHDm7RJp6y7kwuiRY1eywfTxAJCLAApVOqHsf/JIBNXyCKv6nqEmOh9EeQk8PtVeMmcolYj\nZHPv7l0zG0kKXl25k4enFqOxO6STTzGFsrhp3EO2lPAhQm4a9lJ6qbdTtFez4wP5IE4Cw436IMrz\nuJcLKNbQXnPHO6f4q8VpPmzC0ImGYfDpbibtBskXH16wji6Nm3ghiV7taOpDITqfur75cHHH0oeq\nOg+77XZ8gIumm/ba8fI9DJ/Z1Hgeec4EPogMuK4bIc8wSZ/nJ6+xH9skxCJyQ53Miy+0rIUI8FoP\nQZUZ4uEkdDr534kCVTPXO8nThLEOEWqTl6/vGJvJc6OUpL93mHAsOKlKnNCXe1EUnJdV2D8c21xe\nqAdX+K3SU1SaD58Xq5VdhBCg0vMjDb2qGlMXEj5/VkthtGTJkiVLdu12I5ANPBN0rsNbdbPZkArK\nAidV/PWUPfX4zng+fd/Tm1ORR+0TkeexiippqiKJ4hPDQDBvfctbzMzshRdemH7XJRCVmuylJ8xG\nb6koCiogq8pu1PPFzAqMS0JV55KYfd+PcjTiZakIX9u2Udglk3n3oT78T1Hn3NHRcV4Yr8qynAor\n4jgMbSAMJT11fKKZgqy4fiKnwmt0OPB8q+ABaiKclOs8P9shkd8R1FUWRYSQom6nTpFZqfcwTXIP\nbh4KCV2dmjul3D6VwkRco9IdN+o1xJOaIpG2aaJwmRIDGFbLMuvh7YtCNuzgCjcLQQBUrxaBUn9v\nRL2FJKTl7/VenjWKODS868dwrpdU1/dEHBo21+94BM5nGaSUJDrBaIW5kLRGaXCuToGeVHhZH6oQ\nb26/iOgoXfr1LCGbZMmSJUt27XYjkI121PMxTCTSn0oMWvMLeVFEhYPalQ/Wdt1ZWQzGysO23tuo\nZD95yMewMM+NCedUnKGRwjPO85yeKokBZzyq3CVFT3moZlOxPcZuhSqslGd6hNvtRF7fz09E282y\nMZGMcYZP5k1csptUU1BjhSLrr4d6ZFrEiTzewcWkdT1gDakn2zkZn148U+0r0vc9vbha1hY7jb5G\nn3jmVmQM8Baruo7kR6Kkq1svXKtSiEepGI+SRK5G0aHvBKrnD1IBCBMX4TiYg4uLiwgFMucheSVz\nCWv15FXA9hS9Wwkf9OD7fkRPgqY0N+EJBBTplDyU9rPp2jbK+eA7LOp0FOso0gAEL2s5z7Ko35Pe\n05RPch01lY4OwzPHU9yVSh3lbiU/hWOYmRUiYurbM2gu9ZRUzmtZQjbJkiVLluza7UYgm1a8I8iM\nl1UVeROUqBBvsSxLxiS1CK2TmLz/OUIEghh2u13E/iH1FB6K9KXv2taeSEwfcXB4IDsXm1ZP+Fxh\nmx8nPRGhe9IbyvMR4YnnVEg+wzPbFNFlEsOFzzQ4urFSLBV1lWXJrqYq4LgJ3vNEWFRi+/D0KGAY\n0IanzB8k/6Ty6jjedrcbi1HFi/aepNmxaZUv2DOLZVPoWR4OUT6RUkKS08P+q6YZG8I5xiHnwaZ0\nZqW0wnNXJNl2HdcqZZ5w/eQe8WUAzG2IjBGQJJp6+WZeMM3h+HtNvWSTbbmdo5prEzYyqxyDTfOt\nUZdJrClHC0ZDPuZBJV/i73+lfisjzlOrNe+iOTLfvRXXlkXJws5TtqRHu9pJN5INyvNY3FUYib5J\noHaIVfM0+KhYNBV1JkuWLFmym2Y3Atm86fnnzSxmhmzWaxYvqbQI0ATjwS6foTmPXjycLMuiePo5\n+f35bBbVDjBOD/YZ4vnhu4fDgd5DKefEmh3HfmFhlTaDgldkNv4uxV0q5+MZYCgqpGfn2vqGkzSz\n0aPyhYn0zE54qvq7NpfTlgN5nhMhaZweshi+hzr21wg6RA4BqNB75EQpQE6SW0Ec/2q9HhlmItsD\ng4THm970JrsT6qPY3lc8Vvx9u92OzfvADpM4+2Uo6PXtv5kvAbNHEDesbdsRdYbPXHIVk/kAihXp\nfwpdujweW2oDHXbTBn8qFLvZbvk/ID+t/2JLafc/3KvaLptI2xUiq0hnK4j4VF0T/WyJfuA+aLvO\nGrSEgHQLRClP5GfmImSr4r14yhwOh3F+pXVG65r2YWwYOySQdO2q0K+X7dJidkQnGtemW+9VreOb\nuULOU0jXf+buWaTtvLGfZ7WEbJIlS5Ys2bXbjUA2ZMhI9ep8sYgYGxqDnznvg2wrbdcsMdzMRrSg\ncW+gDFSMdxYzQErxhLXV7nw+p3IAxvDw4UMzGz0c7y3l4rWpFLivOIbHoRXt+JyfkP3WmpbO7c9/\nZu5YmbTjVWmaLMvGtgPKvPH5l/B35frjk8gG1ftZNsqeSx0ThVolP7Pb76PmXZrn8XIfWsGN+i54\n7pin1eXliDBEhoVyPq5uCMgLIqx3pB05WxuHsa5Wq4jlR2UJV7NldsyXaLMxGM4Z55E74UZFPVpT\nNHhUKPk5IinJD+y2W6JNIBvmLeVea5smalKnjDjPoOwFlaiqCFFY20b5EIpeap43WLffj03kgHbC\nud8NCBZ5qb7v7Va4h6/CdSUyC2NgG+35fEQyZ9qo+/o6VRnYivglkA1FX/t+WmtnZnW4/5VlWFXV\nGO0AO0/uG7ZccM81lRfCdcV3r9ZrW4T5RRv7N8pGuxEvmyehRwPMd5jDxPliLrMTYZ48jx68TLKi\noBAFm1k2mWizuMOj11dSCqT2hdGeOLmT82CBpiTnYdkwdgRU9V2l5rZNE4UiCIPD33EzDcMQJVf1\nRQ3z4aRK9qeU005eLJNz0nAOEohdN14LKVbEJ8khhwNfEOtw4ytl+5RkjIadBplLyNU0bTsWteEG\nw+9CAd6s11F/HKxNvNJ90Zt/MZiNLzomcUU5uqoq3rA5HgSiqceQpNNRw7hxztDbg/m1jXAtzlEL\nB20YokQ0zgNrSXvNN01jj8M9izFhDHgAe21ApfJqF0uvyq6OBIqv9aWZOYKAhn61ENQnsn33WDP3\nAhGF534Y6DTo+WuX1no2i0JE+oJmaMsRPZROz2cQygKclIyqXmP9YV8+0a9EI3X0vEPTiiMH8pOW\nKpi5tYnn8xlSwTlLYbRkyZIlS3btdiOQjXbPI63UeXNKOW3EC/W9GSj9ISKHTITnOUMleNtTVFKK\nDb3XSI8AIQmBsLkLg2G88G7hteDvnmQA8oPBiwASk26f+8Mh8lK0mMyL4ykVVHvKKKV7VtdjZ0iB\n3KeIApoIzwSt+KJMYCnsX70ihr3Wa3s1hByBEGDs0e4Us3GcQhLfGrLJXaiGfeI1DBC2hQf+8NEj\n/kullHJBgL7wDtcan1jfILtchp5G/TCMKAeFwUJGwbrc7nZjmE46awKpYb0sLy44RwydKAU3jLso\nihEVynXTELanHW8hSnsmlOITzYqOGT2QIu7CJawV2al8yuAQgko1qVK3jsn/71xvHbNpvyQ/Hxp5\naJom+p+iK18WgHPTPjwkIEnH0eVyaQ3ClEJSaoT0U1VVRNjRtIKnjLeC6BgeRjGwOw8gvTmU4FOn\nzmTJkiVLdtPsRiCby5CIo0hj+HvbdWMiEr1H4H2FNy+8fuv7s6KaMC/7ooJzQDoqneNFDdXb0iJG\nnxjPJWejcjinROzoKYnXsnU5BXisWuyqBVdt244UU6FWaqzcU7u1sExzLIUkH/25KeWSiKfrRoSh\n4p3hO6d6nWtPeVJoZb59kSHGReKtePQ+Z6NzCLl1fx2ZNxOCBFC0l/L3EvxmY+8byoSc6F3ThHWH\n/SGOj7FhDW+3WyI9HX+UV+s6ywM5gajEFZ/6+TglNKvyQEBdtSPj0JOWMVA2360trhlByRjL3q1h\nXAMgYW0D0bjroCgZiBH71WS9ZdmYq5FIgBZ35y4nBFPCAa5ncziMiEuKiZXU0fc9Ixh4dmF+8IzT\n/Ohuux2JP2G/LGwO54rx13UdFayj/QgjGeFzv9+PZRGS/2rkGVeUZYT8VeD49Swhm2TJkiVLdu12\nI5CNIhLEwxeexicx20jC23khnXgt7J0Ob6ssR0ZW+B6ZIWFb0hEhp2JxvFsFNL2AKFki4W8s8pQ4\nbeZkz7GfV195xcxGzxLIJs8yy854E8qaGvqeXTGZHxHBRnhUzHc0TYTaYEpT9du0Llfl9+e9ukEa\nZUXXxKGrKI4Ob04otGy0lWX2C4v3mpnZNw4/PRmbojsvqQ8hRXiUz4fiYo8uloKomasQyZuyKLgf\neOeQKMIaokRP2G6329ntgECwX6IsoWN3bRsJqGJe4MkjPzibz0catDAxOR9u/WvbBM3FgcLNmH+W\nWe26PZqN1w/nceHkW5T+q8fx6HErhbG5rBd48mt3X+J6rSRC0gtrzyy+/3K9R4K1WRY9a/TzlFxL\nFOWQ4vGyLPlswLlg7lD0i3EDyW6221FixrFN/Tx51E+kity1MByBRgsX4eEzQAVynVFwGIXM4Vpd\nRluetoRskiVLlizZtduNQDZRDgQej6tXUekWH6M0O3ob2kqgEXHKMniURVmOUhFhv8jZqFee5flZ\nyX8YZVq4Qca4LBkbUm8DDyV3HpSya5RF1lks9dFIHNl7X+oFwVgXI96/F2XU9so8V5en8kwsP24e\nxyMnYQj5fvZmrmbGycBzPgSFwsAUHGxENB+qv9nMzN61/N/MbPQecb3934Ai4CXDq/OsRkooSf4o\nKhTOc3puYBcC4QDZbBCjDyy3ruuIMICKtC259zBrN0dmLq8o6+VwOEQth1XuxaMLZTLqfikp76Tp\ncSUwbpi2XijKMkIPaAB2Cr3sRDhUGVustXL5NNhOWHmKon07a+yHdU7SWtvnGTthpbUuN8axuiJZ\ns/E5hXHPXNEr5peisdJOHRENrJfDfs81y4iM5F19PumcQGbULqR3LdglzxO1f7DxXsXaQqO7Z7WE\nbJIlS5Ys2bXbjUA2hXgVrYuHw4OEN6QtlKsTrBdl/TDWHH733H9WOof91eIpLJfLKN6N/ajwpD8O\n495nZE4QN82LImoVDTSk59H3fVRHosJ/YPwUrpkcTD2bg7CDsjyPRUAlrj5p0xA+MVcai58wz8Rz\ngqoD8zziUZm5qmaRbsEn8hI2DJT6eLf9pIUJ4DxMzqfriFwwJihYPEBtSjiPy8tLsoAQn65lTnHu\nZVHYIZyvVvTDK8UYcV23223EoNqEc15Ka4PdbhcLhwrTDtdxu93yZ+R+YCpn7+8xFWzENk9ELeBy\ntbI2jAWozat++HOuhmHMSUKFIYwlYjG+BsMR+8ic96/ST0Co+J1SOu65oEhGIyeejan3lrYln+SR\n5dmVAYEIezTLc/5PZWWwZpl7Cmvh8ZMnnGcV5MTziizVohhRt6A4jZiYi6poXRBrFR2y0QhDVKf2\nOnYjXjaqlsviS5vS9CYmUDHL85FKiWJIKaT0IaJeQkjUuAoLlC+3orBBYPlw5gGMBewfPLxJJPwy\nw41QVaNki6oRn9B4006Xcy1adC/hmeinIRSkLxkWzvV9/CKVB5CnT0ZdSKVQDvvKzcbrJUl/VVEe\nHP36ILTOMpwPHqBIqD69uuKDnAWq7uYzG2+8YRjsTW9603EOw/6fIhEbbmh8d7lYRDpv2uNk7o6D\n88XDAuPE2tXQVj8M49yF7+5kWxz/6dVVVACqPVNgfd8zbHi266lzoDoJm7EbqSSLsb5v374dKbTr\nfPj+M5rkh0X9YRxZgaE9kWfJ3Hdx/gd56LH7qVM3xr66E4lvf+4+xKX05UgT0RE0KK8jVGqlbps5\nggv03hzJxGxcN3QedjuuB9DpsW7uBU03/5xhx+NwPL4UZfyFk/jS+5D3jSuixbXGOc2T6nOyZMmS\nJbtpdiOQDTxMevQQ89vvSf+Dx3D//n0zM8uQ/EdfmDwn1Q+eA0IfCLewX3rb0lu5FWid/A6opo5+\n24vHp2/kqR9YAAAgAElEQVR99Qr6YYiSfRrKw/l4lWaSHsI84LsIqeydhwPvuxaoD6/mcHVFT+Qi\nIAClanfijU36ZoT9MrF8StlZCh5ZLKr0TEewUKSAud27YkP8DZ6f9k5X5d66qkgzfumll8zM7Pad\nO2Zmdu+77pmZWfO/jsWAuNZYF5hffPdRSODnWcZtMBYIUEIJGAXJt2/dihLquNZ3wljeFNDGJz/5\nSR731VdfNbNxXSPhDhrzKhz/6dOnnMc+3BMgtTwXvouE8oMHD0bBUKHcs0ukE/6cJLpt9LBJLQ/n\n4RW7Sb8WZA3DOtput1GiHsebO+o6vuNDPGYjcsLcIjS2Wq34t8fB28d64z0lxdjeNDlPdOEoypgj\nDcdl4e87dy+qMC7OicXbLgqi21ClOswp6eRu3T8M6wTXWJ9xXh1byTcwFXDt+36U+5L7cnDCoceP\nIepIrIj69Swhm2TJkiVLdu12I5CNFkv54jUSK8PbHh6V9o/vh4EJaXgKSNTSK/fJbXmTa5LSi/nR\nM5fEm/Z+n9CFxTOAVZLn8L3UYSqLMUngKp1TE+8OTTAR7Wi/ZqNHRvFR1/1QRRmJQCSB7/3YXJAe\npwCfWRbPq3Rg9Od+TuBPO4AyUVsUY+I4eHrIv1z+1BF5+Hg4BDY1QYtrAu/x4cOHjJ/Du/2DT3xi\nsj/0FWraligcVxMFoViHyBVBaHS72RCpHgTd49o9Ckiqd3lGbT3BWLqTI9J1pq0t6hO5JphkUqJi\n0lNUdiS9Izn+rovWt+YKxwNnHBclW6SzrR8T5gHXAui4lbymP/dzZQtKwz61n1ZEUr2Hj3sAxRdK\nImDu092XJC7gHhBCEItVLy64TrSbKj59e4JKyBS+rGByrnnOYyh5oJXn69D3k3KN4wF0pby2JWST\nLFmyZMmu3W4EstHGWpQymc0ito42ydKGWmYxM4aCnI7eSCkXyVucQwp+v5GUPlgrjpbI3univc2E\nKZNlWST9r1RfsMo6R9mGt4Xfl0IL3mdZxArT+Y0KwrJsLNS0qenvnt5tMn5FOL0TSVVEQwZU2LYo\nirHlhDDhtF1A51g8ZNxBSDVcz1uBWgyPeblcMh8yl3wG8i9ANi+99BLHCcmWF1988fjdcE3wnXo2\niztcCkrkdwLSYfGhxc0BcR57n5MMxo6ZwZt9Kq0YGtcNUunzhcu7mB2v/UEKXxVlsd99WLNX63XU\ncE09bdyXh8Nh0hzNLPaifaM7HIPFl1LO4CMamktVph0QvF/flHUJn9od16MWZWKaQ9J+fvx4z6F7\nWN/3owioFIti7rAu5o59Cbbl3onymsUFylmWUQxUC7OjpmrZKBjM/KuyRoN5wVadj2e1hGySJUuW\nLNm1241ANozBi1c0q2vLpfc4jEWATu5EvWU0ITsl2aFxV6ILoCowqhzfHqatBU7lLFRqBd4X9gtP\n27ddVTG8WjxC3xqhlxj5Kvzdt4WmlwmvR+auFjbQdrsdPb8zMdxJTkfmQefH/WGsQ5D9Mf+F+erH\nhk6t5Npy8XZ97BmeOkUpw+cTaViW5TnzLFrHBHYX0OdLjx+zUBD7wTVB7PyVIJpaz2Z2N7DO5vNv\nNTOz3f79x++GvAvyDkCqq8tLoh6cC7xxzhNYi/N5lAfA/zbSfnq33dpa6iWQcwKqAsuu73siGTDs\n0I77nDht0zR2N9R3sB99OI62Nt5ut/S+VZJ+JuyozE7IGQGxo1mdQ+cqQon7nPMAVOiiFl6Gyszl\nKwWZDMcdTcZ3zvq+jyMhIq/li5a1uRlNGGy4P6uqGmu2ZF1HhdS+pYO2bT6RY4kKPYOx6FWiTmZx\nzupZLSGbZMmSJUt27XYjkI1XDDCbivDhbcg4vnjIrGgvyzGWiFwKvotKYuepRNx7YddMWCrCLFOx\nSvgP8Iratj0Z8/TnAU+nc+NE7RDZZ8KUmc1m9N4oxQ4lBMTZXUtsxtVV6UCqm/3YNNav4ow+R8Zt\n4TmG3zVHZMPYClelf9QzG7w4oHqbOI+wf58j07zAQdQBvKQOcjTYhvMtQpxFWRI1IJ9x/21vM7Ox\n3uZhYJYVZelqHabnimt1FWqBYGVRkKm2lyZ7FZCqayOO9cZaEJHd8aKd2M9nPvMZMxuRnTLBhmEY\n8wCiFEDxxzAvvsaDDD6sN+QKw3mgTcZuv+f+4Z1j/4owBydtw7kEKkf0wHDKcRRBRSRVFcCyzHrx\n9hkpOCE8Gal/qEIG2HBVFTEkNaJBtZE8j9YzJZAEeeCeLlzLCJiy/lqXM9OohKI2z0BjFEEiO8qI\n9UzYPy4b7Ua8bJIleyP27T/6o2/4Oz/ybd92DSNJlizZs9qNeNlEekioxnWxUm0wxu+6WhdqGOGt\nLHHr0uVNVN8MXmcr7VZns1nM2AjH7oQdlTkEpOKcOv5J3kdrfkTM0LfGvgisKHjyYN4oL75zbB3f\nmMzsRN7EaUBFHpp4c/Qsj180M6edJZ6OFw3txIOC16U1P36utFmd1uS8EQOKaV3dB87/IIwveOB3\n7twhkmQ7A+fNmo35kldfeYXj3Kx/YDJ+ZQUCQVyt16zFYaW/armF777yyiujgoJj1nnDdaiqivMN\nNQT8D3U7a9fQjWtHdbHCfqNxX12xpghsP5zjVsRG904en+w2qZXz1wP3MNEm7okTwpzqfZ9iQZpN\ncyNan6Z5MN+CXGuTcB6aa8kcyocR1WMMjkGJuaEor6ByIk1XN4V1gbwi5t0rQZiZrV3dHiMMUOQI\n6waaZp2r3TrVFtvvo+u6SLPR3uD9eDNeNoC7SJa7Ikn2u5be7FFyytH4tK89TEUZJ8fCr/L3WV1H\nvS7QmwYLTGVgMnMKznKDKeXSf0+piTOR3ajKcgzVyYXGIuRYssxkhiJ14EEegllZTopZ/Xd0vn0C\nFQtdqa3sJbPdchvtXcQ+664LZysPIVJN5WHyvd//X4Zzze1d//x4gz4IYSNIz/z1X/mV437d2lIx\nQ75AhOI7n834Mqkk9IbrOri+8SgWBbW6dCFef67sV7LZsOcNH+w45/A71upiuZyQSfw4lTK/cEWX\nSmVnF0hHEdeQMp0zRxn21rRtFF5VkgzWY9d1kVIxTO/3vutGgoA+E06EVtV5wvwo8cOHfbRUgrI1\n8nffbRfOiEq7sHNl10UvLxjD5a74ciM9e2Aq5+OdtVyeBaDiI0wM8sakYzFealCel+LU3JcZqFOJ\nsTknU0Nsnvr9LJYIAsmSJUuW7NrtRiEbFjX5AkDIVYQ3N3uri6dTFkVE49tpDxJ4H30feXyNJLnZ\nIfBUMVMwpTl6pBCJd0qi0Be0aRiOooMhgQqEM/R9JDWO/61Ezn6CPKRglShFw15NE83huaRo17ZR\nHx71FjHWp0+ejHIjSlYQQdXdfs+EOmzh2j14G/sftaM0+hmvy4dUQFeGdzh3HVy9HQ4H0oAxboia\nItR2Eb6z2+/HUEYIUanYo4Z9/Dk14Zy3ThTVbCw8vVguGbrS8+/kmmXuWKA6axEg10BZnuzKaDau\nMcwPvP8uy3jNNQnNPisQ0qyquBMtkCvC5q4oWqMTpSAmrml3bK55JNzDcbgG3D4VwaAAUgurT/WZ\nwhrWkoSh76POnFrQ6+9FPJdWIpCrCNDL/fNODftDCJXhYVcuwfYaIF5IEakvMj5HquB8u3IDJei8\nHiVcLSGbZMmSJUt27XYjkA1QCzyH0r3pNWmJJBek2HOXw1BBRXgXjXhht27dojcIzwDeM7wOFLg1\nbUsqLLxMNiWTPIQfa9QXPpyrihrudruxEVo4J3iAjXi5eVHw2M8///xkDl8JEuQoLGzadiyEPVec\nJmSAYRiIRoAuoqS/m0tSTpEjc20C/Pg32y1/nonsuVKt8zyfytO7bSANA7tcHX9/8uRJFHvXAkJc\nj6dPnzIBe6VFtGFsyKPcvXt3Qs4wGz1KXDPsa7ff8/sYJ+YDEvhE2GF+VqsVvw/v9kKS57gOi8Vi\nlGEKY4GHjRwAIgN5no/dRiGNc0KM1sxslucRnR7tGnAdcR0w/lmW2dNwTtpwDvcN8gPrq6uRHu7y\nif6ckewuiyIubMYxge7DuH2eCfenNv5iF1j3PKmEor2XZw5sGIaoXAHzW0lhdtM01grCuHvv3mT/\nfp5A2mgF4Wm3T99MshSUgnMFwsb8TMRN9b6XPGnXdfwe7su9jMHLSOWSU0pFncmSJUuW7MbZjUA2\neLsC2VCq3VGIEd9UmiA9kiwbm2qFbeCNskARQoNNw+/rd7QQr6qqqEe7ypSfKjRTRkxU7HViHrB/\nepoiKz6bzSg7Asosm6UJqjA70apAEIdSXg/7PY+J/2nvd5VRMYsFEBlLd8WCmpdi4aB4mF3XEV3u\nz6ArWNu1k0+zkfUX5V/C2PaHA88RsWt8h/mkcK6Xl5cRNZafmvuwcR0DGVn4BBIBgvc5M6ATeMmU\npAdzzbXwVmFMZVZ5Nh08YNKjNdbv2H9YO6TXArlL8Z5nIeHYYN4pk+qll18+fr70EssKMvGwsQbe\n8uY3cw6BGsCg0tbrvK8cGw3jJAqSe9oXGeNnyviANScMSBsGHmvuZGP8J+YpyzKiWHx/I6Kmnuat\n+URugzUark3hnh28xnj+Aa1hJ7iv3HrUSAaRCdii+/1ZSaiZSHwdDgc7iMRUytkkS5YsWbIbZzcK\n2Wj737Zp+MaFVxg1AnJMM8ZmUYgX4plAKfC66qqKWC+F1FhcOBRwEK9cWR5aPOW9l0LOqROvLs8y\n64UlFnH1HbroJT/EFr7hXIEKBi+zE4xtD0Q6BvOy3mxYlMc2uagVEU/He/SslVERxrCvzXYbsYBM\nchJbJ50OFhQ8vuJMvQfsKH9+HA+8UOTgYL7YkKw2mUOco29Tvgr5F3jnWi9FT3A+p0c9l0Z/QOUq\nfd/1PeVYgFgptyOIr+06q6WoU1tc4O/zxYLXWplkMIxl7Rhu8FhVQgefHvXi+qNdMT4x/pcDsnnw\n4otk5+Ha6DrHVV0ul2PbB6CKMJdA0kSAJ4oXV5Kz5fw41h4jC2dkWU7dg0TLUqjtmZlAeLiXKO0D\n1IjISZaNBbwiLsqIA9As6rN8gfYZ1phvVa95naieJ3w2TTPWyAmqLd2xMS+UrBK0+ayWkE2yZMmS\nJbt2uxHIhvL7kmsx550ypi8CkURDeR4pBmiFOGK6y+VylHQH6lE2U2DIPHnyhB4S2WZh/ypo6dld\nWlE8uDj98WNESSq4yZg8PsPxijwfOfMiEYNtwXrJHbOHgoQydwfxpMxGzwweT+tUEfw8+fog7Jcq\nAOG7O+cZD+JtRu1s3Vj2Lp/gx68eGjzE5tDYB78A+YDjx9f8+lSo0OeEgEBKQRVAtZSFcewleq7I\nT6lwZl1PBCX9uQK9kFEV/r/f7bh/ZV2Nop6jzH8kvihNt5CPuVguua0qE8DYxmM24zlcQK0Aqghh\n/xDVBEttfziMdWPhu0AvmAOgNxsG7u9CauQ0d/jSSy/xWcCW2gFZXoTzoeddVREyUmUMmG/N3Cs6\nCdtk+um8djJK5ZpjrPv9nmgc54b1gm3BCszzfJwP/E0QAlCQf0Zpm2/Wzkl90zAM0fOINUCSlzEn\nV0MVF5EK8wxflb86VTf2WnYzXjbhcy4qtjYMk8SumQsBSQK7dAqmqu/DLog+eSbSNZ2QAGAL30dE\nCsxYyBa29S8NvBQzecjm+l33kmToI8wDiBKUSKlrW0rIEYnIXVjslF4ZhpHqKC8QTUT6F9f0kRQT\nGbx6c/TQOKPoPHnQCbVSlZej7S1OiI9ji0MhXT/qSZ0ad+5Ckao+fCG0Zu+U4JpgvEoW8VpdTOJK\nMSNf8vIyNhtDVzoWr8oLCjFCglT+dqrGZscHfimhUowJD625C/lRUVhke/Rlhgdq+/Dh6AjIvYEw\nGK79rdu3OQ+qD9jKunzxxRfHzqiBwu+T+35MVV2PoWohm2gi3zudlLiRF50SYYps7Oppcuyot9Mw\nRD2z1FHCc6x0/WZwrVWtHs8RhC036zXnEC9s7E+LX0+FmjORFKLTXJbjs0s6obJEA2mFqoqer28s\niJbCaMmSJUuW7E/BbgSyURFJeJG7/Z5eIDtQShgDb/SqqkYlZyTCJexCtdWuY3EkPUgIFCJU4Ir5\nNJGO/Q9CAvBKyVrwFCXTHHqjHI6D5fifP8c8yyIEFiU8XQGoCpwCHSrCwVy2bUtvCt6PhiIRHtlu\ntyOS0yI0UCsdYcBfJ78/zpn7ZPIzTBUR5XQGbbdHT5/e+mEaijxHy/TXAWFbePYoLoTXOJ/N6Fnf\nDtI26LrZiydcV1VMEBD1ahgJK207Fgjiu+Fe+Gj5+cdtAlL7ot3H7GH4vhfyNBvXAo7bLJdRB1Sc\nK2V2vuKIpIo859rf/kYoroZQZJh3FCh6UgTCREBIz4X9AqGB+mzDwHW2c2QH/M/boWmInjSBTxFJ\njP/iIiIEaVi7dWgWpv1bYJUk4Is8p5SNhqo8mjWbhsEYanQ9Y8zG51Y5m/FaqJQNi9HDvrwcD4tP\nT3SpNTv2xTILkj9CWYdFBdRFEXVABeJjqBDkk/ncLFwbljqkos5kyZIlS3bT7EYgG5inQJod3/Tw\niuZIlglRYIIgJJFPj0/kuX1RphaGady9KIooKcyiJvEuvB9xrm2ACl16TxtjgMdKiR60VyiKqC8M\ne7BIjD/Pc2vOiGoqCmpc3irqqCnFi5Aj2Ww2Yww3jF8p4AfnJbVApjLfmcxd7/qrRNRt8aRALjh2\nMA1Iw4T+ChORUzMnOxK2fc/f/tv2x7X/5Ru+gWsH3v1M8heUWkHeoSy5DSRufvviS83MbE6K6/Fb\nH8++2N42P2KbK4d0zcw2YV0+CV51Xddj/3qQEwLqWX0FhETHMfYBPT3+8iDv9KvTjp2kI4ffN+s1\nrwVyK3fu3jWzEeXedb/zHgaFGohXCiE9sQGEA9yzSiTxnVEhBaWyMkoY8sdkfku64zKK0fd85vhu\nwGbGzreVQ7e4fqA8KxkE9+vy4mIsmlUas2sn4b/re+CwwBsSPafQhZxb1JvKRRW0aFbbSmBeDocD\n/6e5x2e1hGySJUuWLNm1241ANiqRsnRU1FMdKM1i1phvBUATJANPrSgKejjw1AeJmyJ+v9/vRxkZ\n6UmudESiJOeJRF0+JY/izw2eL/anjcWqqooosYrwWADq9kd65znvBfRdhwbIFkPjKClIPBwOkdCf\nypL71gwqaqhjaZyXRM9L8lLRNUc8uZ4ZhEi69rjNBz//+PnnsbHz7lRmX+P33/2zP8vz+saf/mkz\nG2Px8FwR2/7LH/hAOO5Y6Ijczerr33Pctj1u+/SDPzOZr6qu6QF/bPaFZmZ2W4rqSIevSuZbNspG\nC2Mje2m7Hb+3GnMzfr9ldfys68rMQKcNhbZfupuMk4XJvzEKUWLcuE/grb/44ovH/YMdVRT01HF3\nYvwQj4XVrlkdKPx7KfrFNV+tVsyLgHmn0v/aOqHrOq4lZeexKaHLY7IIPBxHJZdarPeu47FbQVPa\nGmE2mxGVsO0AcrOYB9eUzcys3GxG9lz42wLnFr7jKdy+wPN4mCmymTzHtG2AFji7jqtsGIicbMrZ\nJEuWLFmym2Y3AtkgTqtNf54+fcq3PN7c98IbV2tQdtvt2GxMpErgHVFypWnoIWxcL3azkXkDD/zx\no0dnpbQVbXkD8kCsGXFveBB7Jx0PFhrrJUQq3Rvj/8q2Qk2RaySl9TtEGuEr2u5gfzhE+ZxdOLdH\nocYD3mhZFHY7xOtVPFLbWt+9e5fXBMfC/1TGvut7jusqeLlYH2BqwZDPmC/mVuRhvIGhpgWQjM0P\nw2Qd+PHCPAPnl973PjMz++of/uHjscJ5/NEf/dHkO7vdzu7dv29mIwrEqlXEenA1Yzj/f3/9m2Zm\n9omLrzlui+LIsE7KorBPv+3rzMzsrfYLZjaiLK13Ouz3LIpcy/pWwUyf16hnxzX71re8NXz3eI+h\n9bCXrQGDD1EI3EfIXdwLOZvWFVLCUMwID/tRYPjttlvOL2qKtCAbvz96/Jhzh7YazGNKDZBnkeH+\noxyQNOqbyBDJvFLwE4Kr7npCrkelgzCGF154wcyOOS6sdZU10vYbuJ/msxnzqqixwrwr86zre+s1\nt6zCmU4UGKgVYzlX7F7keSRs+kbtRrxskiVL9v9P+673v/+zvs+/Ir2akv2bYTfiZYNYoHp+nctr\n1JKjgME73Q6DzaUNNGQh2MgM0vWHw6Qts1ks184GQ30fCf6xrkT+PmGXCG/dM77OGuK6wcuImhS5\nugSVuNG2tlmWjaoFYKWE/+Gia0VwURRRTiVScECFsavER75FkdLM5R/gQakcyEyYTr4uQ1kvOnfv\n+d3j7//s+cHyCi0nTrdgxth83F7bkcPmrgYLKPsj3/EdZmb2lQHhaJ6nH4ZRQBFsvDBuzCHbZ8PT\n7jrmguDt/jvlr5mZ2f97/6uO43XXCOsZ/3shII6XQp6EbTHyfGRqgfEVxolxV24Ns5mZ5Dwxpke/\nemz29dS1Ildhz8+mzRcLew7XD/kMNIpDSwNzorySO2W9He4XNweqLqJef+byPBSCda2Rzca15MU2\nKVIpOY9CGYrzuWXSQiCKnEj9UZ7n0b21FWHi2s2F5l2I7ML+PMrN5bkUtbMP3ynKks8AFf98VrsR\nLxt2iwufOKmqrnnTqMRIJRTlYRgmN6aZ0/DBNl6JVR52+EQojuGGto0nVy4iE+su4acJvUoWkLnF\nDiol+6G7F52ZvEgkzKV6R50LxSntWh8mSsfOsoxzhXln11RoaeHvVRUVWVbykr9wFHaTcVJWR8gX\nRVHwxmGYQTpcwjDHu/2O88DQ4TC9genINE3UBfPKKR+bTQklOG+EjSp54MAGX8ir+nf5lEJsoUD0\nsN9PQkhm49rHuVL1uOs435hfhKpUndlTxvGwI8lC1lbfdaTIU2E6zCFeMi+/9NJxvsIYV6tVREv/\nse/8zsn+N9/8b5vZsfgSZASErG7/o0+a2Rgqe/DggZmZ/dcf+YiZHXXRykA86ORaseA0z60M1406\nbMG0+6Qn8OBFpC+DyOnJsnGuIGuE+xNOFkK/zvHA/hDm4nMl/O7XjZZo5Prwds8dlgiIBBfMdwYm\ngUnu5UJeynmej06ISBORDOEKTXeSjig0lP86lggCyZIlS5bs2u1GIBul6CIsc7Fa0Yt7HDxApSgj\nEToMQ0QXpfgdUBDCSQ5qluLZ4O+NK6KiLAWKLOF5oxd88BwaF+5RNKEdRikzk+emYLSRsJGqrZrF\nYqBUdnYCfVqoCqNariDBtmkicoKGxDzkx7ngGunnShLB/vvs+xHCItxnUVDp16sYm8VEDBYAXq2j\nuVLPD9dovV5Hsh2KbJiUL0vrRULkF7/t28zM7Mt+4Acm38mc7EsuSJhU9ne86/h3hCJ/8cNjZ1hB\nZjg3zMXge6aE73988cVmZvZn7v36cRtX+Iz1y3OEKvM/CWj3z40oEeuN4bIwH5BuAsnAU2f1WtwJ\naA2hpStGInKrqxCdCPPz4ruPyfJ7P9NOjgO7WK3G9SwSNF4BnGKU4RwfPTqOH/enRi2KooiEPXGt\nsL7xPMmybFT/Rp8goEzMrQuL4j4EmiKiCfvzvZIoGyUyWAxRg8Diiqa1SFzRvid8tBItqAXhgUJf\nlmVEGCHyE0Tcdt0YVvxjhlATskmWLFmyZNduNwLZ0ENA8ZgTzFQ6rXbS80k75Bs6iUHDu4A3UJbl\n2P1R8gDw8lhE5jzWVuLe6jlkzgvrnAdmFiObvTsfFZ7UPJX2p/BjUaE/9dzMXGxV+2ZI3scL/sGb\nRUGpythnWWZZltl3f+hD9qdlP/hN3zT5Hef49R/f24e/AMM7ju89v3M66Z/neRSfV+LBu378x83M\n7Jfe9z6uxVoSsXOh19eu3wds3O903g+//IvHT9eJFusC3vlbm+M2/+qFr8WJcX/q3YJuDPNSQkA0\noPo+RiuKJ+PIDh9rJv8DzR0Ih91gXW+dVog6r7znreHYR2RzGbznxWLhxFen98TTv/B2MzO79SNT\nZFkWBUUeca6X0j300DQcDwtLpRMo1i6Qqjm0r/fCTCR0vEwV9reU5wg8/bk7R0raCBEB12672016\nK5mN95aXpTIboyt5lsX5V+RwZA1nx1/M7ERLBNznKMdYLJiD1FzwqV5dpeasTsgBvZYlZJMsWbJk\nya7dbgSyUSP1t20Z08dbn16BytBnY09yZaUhJo83cVWWYx9tYXloTmF1cUHPAGwcoJ5CGHGe1qvs\nORZUynF6l9+hrL906qycF8YWA3L+lIhxnojG1VVuI2p7MAxENOghvxbZEHafrKpJLuYfvPe9Uf4L\nseH5fD4W0yEn4WjoZmavhG6Qjx494riQs/mrQT5G2W+kM7ette3x52/8f6bChzCPbBRt6jzh+m6d\n7Au+w+6eUmC6uryM2hoAwZRf847jPoopY3DvcivwksFOw5r9vOpIhc6zsXf979768sn4f7M9tiP4\nwsVv8VyxX7RGIOsI9OzfCQKX9Y70a1wDtFHAPKBoEufsc5KwkYWFPCbabxSRrNHCsxTNrA7FsLDO\n5QfYpiGsCYzpyZMnXM9vDgWTF4J+UGiKNXxwnrh68G0Yk5f7Z/QkbLMTtl/vPPyZoCrMPyjmmUMx\n2J+WcbC04kT7jVbQCowoF88iV2aA71DyR8oYDk1D9i1zSxBwxTMNUj1O4qsVUdRntYRskiVLlizZ\ntduNQDZk8UCIM7xlfYOupQjnkVElrCwz5yEIM4nyJE4mROt1VMRuPp9H+ZEuoC1tPsa8TMhn+O8w\n33Oi+EsbOvk20GaOTZPno9innCsl9J1XpAJ8ms8hz995Y2heBfkNtm3WOiEz61A3EuZLa3IKh+rU\nE1Ym2yqgoL7riDZnbv+n7D/9wR/kz//xa245bQOuoqWKSHA9BleXAQOy+fC3fIuZmX1jYKXVVcW5\nahwj0MysQGO3ALZ8TRQQDFs9Q8oknLuXxFfJeIzz0By3+af5v8cx7vrjfi4uV+E7xzF8Sfvbx2O7\nhnTbfWoAACAASURBVHovB0TzmSDBA+Ynaot4f7rWx9rC4bAPDFJcR0YIWmtayTkSWR/n4eVvePPx\n76HDw3yx4DwAdWH1AXVdrdccA9Agrqfm4DzLVYsvVYIF17uqquge1jbisNoJcZ6SATKbslAryc3g\n3gKTDdv6e0/zOxqBIVttGEZUIjnw7EQ7eEaBzhSu4rlaleVYICzMwGe1hGySJUuWLNm1241ANvDq\ngDzo5Q5DFDOvXQW72bRxF5lrEvNkm2kc0Hms2oSMsVEnMaJsnEbipupJdV0XVfQzPivso6IsKRzY\nCQLTlgaWZWOlsDaPg0igq5bGqLz8uJlF7bM7l5OCp62tFzAHvuWDlyzxki/MZTlP3DMM/Xi99LrZ\n0ZvGOLU+CB7ZP3jve81sZGGdauKE41DcMJxX33VRq2QVQPTCiCqSSBQk+a5D03DOluLd17/yy2YW\nx9u7rqMEDHKTWFsqQFu4uo8v2B5zM/A+IT5Ktlhr9vDqyChb9mO7Dj9u7He33ZIB91JQCgALDfsD\nm8uvl1k4RxiuDZhhUA0o8sIyaauBNhCaf4TdvXuXtTfIIyHf4uvIcN2BwjG+SPTVsceIWoXFybwu\nckVVxWu9EXUHH2kwO4r3Aonmgmi4lt3zCuOinFbYRtlo2K51rFzdL+ZucKiRKitS08c6rIAEu76P\nWiKo1FLlIkrYVp+zz2o34mWDbn8s0gqTtF6v+UBR7TIkCvGdoigi+QdSiUUjLcvzqEcNPhFGws3j\nk/14iKjkh/YZ2e/3Y8GnWzBmcaGZl5XRMMkgULksCi5I7fMDy6A262V2RCIG30XCEzfRkydP7A//\n8A/NzGlGhX3ggeQVnW+HB4vZ8YbBOePmplRPlnHuYFzkSkV1MiEaisC4cY3wYMiLYkzgS594PCjw\nAPXUZ1wvVZOG/EnbdVybfPCGOavlBXV1dRUVuzEcIuexdT1x1ClhkSHmEI7HfM6f8XCtpFgPCfGr\nq6uR8gwHLiTPEfKFA/b06so+/alPmdm45jEm7OOtbz3SmknI6HvuT8+VL9hyfHDm+dTBahokqKd6\ne7DVxYU999xzZja+6F4ML0Jc19u3bvGe1VDbIpzHm970JjMzWzqCA+Ye50YnAiGrcB2eXl1FJRlY\nLwjzsxdT2/JlBXVn7HetKs15HqUAtC8W/+9JP2EbUMAxLyAP1S6RjxcF1hKeobhmuI4PHjwgxVwL\nd++Iovt8Nhsp36KC/ayWwmjJkiVLluza7UYgG7wx8Sb3aEPVZU8VOJodvQRFBipI57tnqqQIk4gQ\ndwTF8ulT191wqk5dSAK+c5+U1RDigcqq+OQ0i6aUEumKy0hWEBTH3htO6maQOcLvKokCj+2R691T\nSqJQlXWXFxcTtDKfz0fIDaKEE+8E+tOCNXhUM5cQxzlEqE0oow8D2prP56Nnh8I78bTZS71pGKKh\n/IgiKI8kQQUVr07n9vbt2xEiVZmhVtbWdrfj9QdFmUrG4RMo7urqagwPqfyQE1I1m1KH91KUi1DZ\n1vVxwX7nEqoiiUC6tXZtG4Uu3/ILx/1efdPRi54Xx302TTP2gykguRIo8mFON+upZFFRlgzHvfkt\nbzmeW5gnEATarhsLp73ckplVwZPHnGLtPnaUbUUPnFOnntxKx0ysy1fD3OF5cnl1RZQPFMEkvRSY\nl2V5Nvw0SPjfl3WgtIEhNjkPL7/FEgekHsJYcM/dCvOy3+95TSmbFM5tFbZdOERWSPSgKN/Y6yMh\nm2TJkiVLdu12I5ANe4eLxEOWZbEXIGjCy+Nr4SRMReYsj9+xnfN8zcbY/GG/5xv8IPI37GMjuREv\nXVI6T8nMdcBDPqMsI/QAzzqTcXo6syI7PQ+PggZBXops2Hdlvx8RDIrphCbt+3MgDm12jGPXguK8\nt1XIfnU+PIJtzuRstB8HPNm9l9Q/U6TrqaI6v1oACun7d//ET9i/+J7vOZ6LeIk7lf4pS3q+iNNr\nnk4p1r7AFPPLdhhhvEBvd27fHnNwIjFySlRW0Q/mGZI0/+pf/kszO3q5t52nazYldpiNORFP29c8\nF84V18yjdNCuuzbcf4WsqWI6L0Wecx4wdyvJl+73+5j4Imhfpftndc1zZe40oDo9d7Mxl4miyI3Q\n04HKN+s11yKQ2K2AcDJBtb1L9p+6vyfmEAquJiMxkLRyKNwsiKSKAG8UHcKcrlY8b+RkSd8XIoXv\nKkvSSmoxkCxZsmTJbprdCGSjsXm8VfuuG4vaApOiF6/llIdPNKRFnc6DxTaQkTgnPb5cLqNCLQp7\nCnvEF1PRe9GxnRHzNDshwSNx2sw1WvPdHv3+0NitbVuOVwVEtVGS9qf339HWBY0rOIWsvNkxtqu0\ndO/Jd+IpRYKCbltFIzB6smGciCdn7lw2girgfeE4s9mMcXVcR+3U+eAznzEzs/v37zNngvyUxsNh\nV1dXZIPhOqL4TyXvOX7HMAObCeesXSfruuZ4tV+8NsmyYRgZSUBOYZ0ht4AclC/Mw7oA2wpev8q+\nVHUdiX8y17lFQ7qROo9xqrT+W3/xSGu+kPlvmoZoCjkaRBow7uVyGaFC3i8Q+gz7wLwtLy7sfmC5\nKfOODdgcIiaiUXFKWZ/7w2HMkYEmrmsX+dK2HfN+QNvYyOWUj0MZIzy5olrMVfjEHHhmHwvKsa0w\nWOeLBedzK0KkKhzctW0UpYk6jL6OJWSTLFmyZMmu3W4EstHYfO9irXx7ClNDG64NwxAxtKIYaLAs\ny4h6dAuVby/ynDFa1GwgVwGmkkpG9E0TxdW1BYDvhd4LeiCL6cT4tYc6jEjECZWqpIUKfsIDhze0\nPxxGOfawDRlnrg0BzNeaVC4vo33dzU5cY2ES+XmvBTHCmAdADN7J2TTCpMJ451Lgd3FxQS/2nLwJ\n5E9eefll+6of/mEzM/vl7/iOyTFVqqN1DC1tUQ10FHmsTn6IeTvJv6j8i9k4Z8qO/PDsKKHzrv7H\neW61MKpQv/KWMKb1ek00iHMCWwljIZvMrfOttGL+5h/6oeMPP2R/Ynv48CFRCRvGuRyn2fE6aPEm\n5kyvg2cXLt8b6t8+UE+2YWEvvtO2kSCuIimfZ2NtYBgv6nhg+QnkzoJyWeeK+n1baJrc/z4q0Quq\n1208ymfhu0hDKaPUhmEsNBaW5bNaQjbJkiVLluza7UYgm0jG3ck5aOtU5aLDhr6PxPRUagXv/qqq\noqplbhu8GLzp9/s9PZhGvGbKlCPOi7Ftt1ZK29ZWxp87xg89JUEahTDCrG0jRoiiIt906pRUuf8O\nG8U5L1VrRehJosXDYaz63jmUM2mfjfnAGMPY/dzRyzf8efQw4VlvxDvEfMzBIoN6RFlG7Cv8Xov3\n3w8DUWskoYPxhnN//OQJK9e/+u///eP4wrr42b/4Fyff8ShrEARJzzr8ny0rdjvmsoAgZyLA6dGX\nbyVuNuZUfmFxlO9ZBln/D/XfYl9ZHSEGrsVW8pZ3797luaLuCC2okddBHB+/exkejPtvfOVXTuYB\nLbz9fBSCRIkOw/ysnfLB48ePzV5++aRgrdnotfv1RokmQcu1eOtN21r7gYCQvinUi4XxQtUgz8cm\nZaxD+7FpLRilZ8JxdrsdrxfW7KtBZgfXGgi1qio+R4gYcb8IgiqBVvqereO7E/WFkUleUZ9TnUOs\nzKVi/5LPneQzJTeWvcGczY142cCUwllX1Wv2rzEbH2hmU30gM1dAqH0XPOQ8E3pjYqzvx4skiUFN\nkGEx7pymFumYUnjnKYWZhEWodyQvn1PiEFFvGjdW0rmlMyDVqmXRl0XBZCrCabgm1G0C9dlpmE2O\nf+IcO/dw4gtJVHJJ4SxLW4q8DkyLyhAOK6sqIiUonZxdVLuOxAaEyw7upWlm9ncfPDj+8OCB2Uc/\naqfsPd///ZPfF476jYc01i7mYRke2l5ZG+ev/XFUnfhitYq08j5YHTuXrkBEcCEzFEViDFRRFsLD\nLZfoBy3Y09vNxnvt3r17HBsIDVqoik/Sv9uW62QuvVO0ENk7LxrGoUwTQs3DMBaxgggUzvG1FLtw\nvrO8DmOaTfYPaZ2+7/nzsJwWgOp9uF6vR3JIuG5YWxpiH4aB91tEEAiWI1zlyEokNJ1wsv3+zREy\nqIkmLzGfejhXSsHyAif9pQSDN2opjJYsWbJkya7dbgSy0eSX7xNOmKf0RoShnFyLoh54PoDp8JKK\nsoze0kQBImJ3ihoKeuNOvGnA9rIoJl0k/ViiHjOu/wRCP+yHIh7+cPyF5+vngUlSh9TgsW+1s56E\nyiin4tSqWRQJDxvU2eARv/DmN0+EOOeLxRhmEIXo1knnsBCWoozNZNu8KEZ5DVWkDZ9ERw698DuG\n6TkdSpgvFvamME4WIoZr/l993ueZmRMdHQZ7y5uPvVY+53M+x8xiAU4WDGaZZUBr4vUzjCuFpk+e\nPCG6ROJela4hiHi5WkVdX+Fjq9DlYrGwX2y/zczM3pn92OQcgTiAfG7fucOwIrx+JLefD2OCV+3F\nN0HrxnVFsSjujc8EdOg70cLbh2nIuizLET1J2BXH8+Fnri+qSU876lLQ1RUJ47zrnwzhyr90nP+R\nlo4eMHtr2ymxhuOVou7MzQPuLZ3vRfjM85zrQhXnc9nHqRAZCSVn1Mf7YeA928ozgsKeLpSNNYuQ\nrBZvw/KiiCR+iiTEmSxZsmTJbprdCGQDgyeLHhZ93/MNi7eqFg5SaLDvI0qiSXKOci2Hw6R/uDfE\nldFjx8z1x1B5f/RiQaweXRbnc44XtFKKd4p3Ws9m0f7YsgAJcieCCbSCeVlI+wSfG/I94/2xlZrr\nO/dpgvrll182M7M7IaF8O3ja+93Ods7L3+92kdfvKdeaHGZOBR0f0U+kaZiHU89O0Sa7tjqaN9Al\nvGUkgOFFbrdbIo3P+9zPNTOz3w/7/fSnP21mo0z8o0eP7NOheyXWABAO5gX7un//Pr3YB8Grx/zC\nE8b5/N7v/d5x/48fM6H+UtgfPG9IyWNN3b59m+f0c9U3T459OKDHC5Bwb2V5/N8/Xh0Rzturv2lm\nDiG4/lBD39t3f+hD9tmwv/fNx7HhHt4cDpwXoB54xjhHrNPFcsn75DLMg0c9x3MbwjkfmOOh5FHY\nH/JJTwLxAfdTnuf2OKBWrJ2Lw3H+5/NF2Gb0+vGzlhuosG9RllF+yyS60rt7UHPJM8nRRF0+ncgw\npLaA2nA9Wbh9OERtK7QPD0gGi/mcyFoLNYHucY3miwURGXJ7SsB4PUvIJlmyZMmSXbvdCGSj1Gdf\nHEmhTWwLOqnIp3hkg5gnKYpC1ctci4G8m8ZltV1AnufM47CwTKiPreSV5vP5KAGjsVWlLrr9aM4J\nNpzI76hXEcVyXczVN3ny49Qc1CmJGxiYX4+CSKXZNAb/0ksvcQzwhnxBrtKAMb+l5Jx8zFnZaGQk\nSUdGMxtzWNJLnfHlsFlVVVEBG9DExjGojrvMOBZ4xGTVAamGMTx58oTzAbo01iikXfBdoNPlcjl2\ntoQI65k8RJZl9sH6iBqAhqoKhYmYAni0vSlnCggPSGnnWgxcutzb+7/ru6Ji17t3/tLkPIpyLLY+\n7I/3xlf/j/+hmY3XBOfl6bX4DkQ1sc1//xu/YZ9N+753vjOMM6z7cP9eXV2NrQoC6sl/KORWv2va\nTPFIfQ73vUQeVNi3d8xPsCyB1rC+Ia20WCxGRAS0ciaf6yMDfIZpzhbXykVqBskxEcXJGvAsUdw3\nQIHauHGz2fB6qeDps1pCNsmSJUuW7NrtRiAbFh0J06zruoh1oVIPRB2ONVbJGx0xXMb665r/057y\nbAyE9tNNM9b6hGPCS8Qbni2kwR7r+yjfoEykyf/0d0F4vpVBHTzHSEpEpDk8glK2Hzw9jBux765t\nmScir19karZOssd7x9vtluhHmUNFWUYsnV5ycJ7Nw5oNqX9RJDnzhbeSl9L4N3NkdW0fm32hmZl9\n0eHjPBezsXgRUillVXFdPA6oBegHLYeRJ8iyLBIvxLrD2oTXj/j+rVu36C165p6fF+R71uu1fX31\nE2Zm9iuL7wzHPM7LmH9E/jJmasGrxTXyskN3Qx7OzOz+c/850QrqgRhdCDmMuqqtH1BMPC2O9lIo\nZsd7jT+H+cE533HHNTP70W//dvvVr7w/2bYKhaqwoQ85m+Zg7/pYaEIXrsm3hMLbu4HRhrUApLnZ\nbiNZIN7bP9hyvGbH68laEyl0xO/Id/R9z/smd88uszEfA/S4XC6jonNlmCrDbDDXih7RFdRUSYO7\np0+fjmK5YNgBtYhgcNM0fLawgV74VKkfCiKbOVR7POa04ft5S8gmWbJkyZJdu90MZCPxas/GwBtc\ncyoqCdL3/Vg/IhIXFObDPqsqEpHrpR7Gx255LKnI18p+L3x3rkUwj+f+zv+JR0MVAuzfMVkyRT3I\nczkRQj0XRVusDnZ/R00O63eEBYQY8fLiYpJbquuaY1H5dj8Wlc7RRlI+96aSQvAkmdtyzBzWJsk5\nE82Gufzn8y+yPAxUBRvhgaMuq64qoh6gLbR0UOmfW7dujU3I0PY5oAjNRRZhLPPFgvOp54prAySy\n2Wx4jn/u8IP8vj9Hv8ZUFgk1YSvmXUYZosXivWb2d8M515wXzU1y3zZY104jCzDNb85mM7t3//7k\n/C8kZwP79a95webVVEC0kKgHkE1ZlvbzX3T83jt/c5o7QE6uA5MqILTddktmHOWpROmDzffyPLqH\nO8lj+Lwa1gzvNU7WdJ0UeT4yyuT+gzxNJevFb9sIqsc6xDNpfXUVMWDZfkTqpfphGM9X5pvyQE4O\nixJZr1EH9FqWkE2yZMmSJbt2uxHIBl4tvMeD44XDC4K3rAyOwuVJqCnGHQeZeYldLpdLIiZ4oWxo\nJG/t2WzG+C4bOgVPqZQY9JJx5pr75VDCp47NsiyO0brckrciz0c9KGmIptx/88gGeYvXaTbVdl3E\n8b+Q/JT3fLz4Zdt1nBcIO8J7LotirNA+07bZ51S0ORgM3hvmhRLwRTHqvEkMG/MzQVmopZC6CTCG\nZq7KHv+LVCikkVaW5xyXMrLwCRaWj9UjFq51ZGwljdh503BecY0xT7wn3NqFh03khFyQtGCvqorz\ngXlaLlB7guZvNf+HsWIMV+sfNW9EgO56ziT/hDU192xCMyur0op86lnjd1VWyPJsVPs4I3WPc2Qe\nIs+ZR0OeB2PS+rXMYlQFUzFgL2SL/UFMdi45Vl87qGyuQaI25vJHPCegHrnmXu+MTd2QxwnnjHsP\n90pdVRxvKWjLa9CFQZAJl8mz91ntRrxsVH6EMM3dwOglM8jDycPg1lEF/bYsanQyDSqu2bmHtNm0\n/wkuGhaq9qrI5KXmz0FfLkprzrPMevkfFkXt6MA8Lwkx8dyE6utVsDtZfL6I01vvREcpiILFHX7H\nw+Thq69OqMePHz2K+3RgXhaLsQeQqDDjBY4be3V5ycRxdJOHz1ZeIFVdjzeFbKPz9WXd79i/mH+p\nmZl9fPHFZmb2JdVvH8cgBXNVWfJhwWJUV2Br5mjlTcOQF14KeMn8W29/exjKWJBodryuSv1GmAvz\n5MNpqhyOF1UrL748zy0P19Yng83Gh56XVvIv9bIqea1iD2n8Heewk742KrjqKfS4P+BA6svmcDjY\nrcspFXxM6KM/lPGzKFW+JwxPEu54htRVRYfooI5MOB8ShMqSRBf/sjIbnyOeyKPK1pFoLLp+bjb2\n3PPPH8cpiu17KfPA/XXhil2x5lsJ+/vCbYbYJPwPEgPWwq3LS86NFnU2QjDxa5UvttTPJlmyZMmS\n3TS7EcgGb+IL11Pe7Og5MMwghICoG2Q2drzsJIkLTx5Bqd6F3EhKkEKr2tE1vcCh3y9QFZNzAZqv\nLi+jorxek/QO+RCBIXQn3UKZdHVJZPysYn6+4EqLN5U+CYPXNJ/NeI5K98Q2W5dg9X3ov+fDH7br\nNnps8NRQnNZ1kROuhXfw5nb7vdlyKgv0f/d/1szM1sXx3P5d+6fH4zi0XAlSwLXBms2Lwp4EejRl\nh4TyizXm2zWw7074G+SA4GnCI57NZhExBUZ6quv9xNAo5IDg5QsyO87RT/PnzDJ68q2EJNsuFAX3\ng222x7laC8pXcoj/WTteaoJ5MV9w/Y3h8uk+uM8sJ9rRMJrONxFwVfF6KcW8lWfGrCwZVsU68eSB\nyXm5sVGaR/oR7ZxUz/OBNg9qv65ZniPEaqsqEpZVa1yoXJ9TeIY2DqWYmV3leUTVhmkI27c56KVF\nwrNaQjbJkiVLluza7UYgm1xiq6VrphTJzJ+hCdswRAk2TbrWziuNkIC2AkDDq4uLUYYlePIr59Gb\nOc/PyXIAjeBvpZPQ9/tv2zbyVIuwf+1m2Q8DZVdU2kLlaoaiGDs7ulyVWdw5EVTIzWbD5KF2yVSP\nqus6q6rKvu/rvo7fJyKVOPL+cBgRatimdp612eiZNU1Dzxq5G8z3JZBq2BfEHn3M3I/Pz8fe0Xnh\n4c3PNCxDzmK9Xk9aQZi52D5kgxxlFOsX34dXCxmbe0HMFN9ZLJdWV5V94w/8gF2n/c9f//Vj9EC8\n9InMk5k1bTPmY/bThmgj2u1tvT62LtD85V4KcfOiYK5G8w2KSG7fvs0iTjQM6fppnspT6PG3//3P\nHP/2DWE/uDZ4jvgWIBdhrSrhBUl+/L5YLCJRVKUDewkqLTjGtnMnZ2Rm9uTx46iwVlGbIsDB4hzK\nbZGOgeV5zqiMzpl2Pb66uuLfKIYqjfhyh+a0W+o5lHXOErJJlixZsmTXbjcC2TRCO164uKoWA5IW\nDUph8AK2wzA2yhIasMbKu7YdCz8lfsyGVyh6m83osS+Eaopxr11jJLNpCwO034Unr1L7/TAQRSD+\nvRPmnTctFGR8VjzwI8V3ymqDx02ZDWGyeQbO0sm++3MFe2w2m9FjJUPQy9PYmPdaXV4S2YCGCW9Z\nWV1VVfH7QCNDOGYlDCUvcKnxec6z0G7ruh7bEUhsn2ybMIfPP/88C+SAojAPhTBz2raNrjHQMhAa\nW1W4/F3pEN7/8ff++lhIif261gi735i2PcY2mNOXgyzLYEe0+pd/6qfM7Ei5xnzj+oExt95s2LDM\nzGy72fIeI9o8/KSZjTmGzWbDedGW2iqBVLpmeJQsgkCpFHUeDofoWYBCWaJklz8C6onyOXgOYL04\nliGZXiLGWoT7FPfI888/z21wD/sIAPZndlwLmF9QnlXmCc+eu3fujCUZYT3o2sUYxhYShwgpKcuw\ndmw1LUJVBiiu736343pQQU5S7x3FWvOgb6ykMyGbZMmSJUv2p2A3AtloiwEK07m3Kewck2o2m/F/\nrF1wkhxmNpFTYdtTkSqBwSuqq2p8o0sM1LNc/P99bYEybijT4pqcaVFhJNfi6nBKsnSE1SZyMn3T\nnBQM9OPWmHldVVYGzwxjAcLZiYeWZVnULA2m+ZI8y0b2lmtk5T99e+iDsF0okyHtCYDqfJsGFq6K\nICnrFObzCRPL7ARLz0m9sAlbONYfhVYDOHeg0qquiZ6AYOBBYlsg1iJ4yFVV2fxLxnVXluU4fkG1\nZVFYHbalPBI899+cMoqePn1q64B2zKaCixgvhEWv1usJy/Gd3/d19icxoHPflOvV0JYC+R31sGG7\n3Y4Cn520ZAYTjjmhwexdH9vy/LxRaBZ5UzA2i8IW0toZ8428DJ4Dd+/enUj6mMX1Qbiu282Gz4u9\nMMy0kdlsPudzSWvDlOXGBmxum0HuYQqHuvtI88UwfAfFxVVZTnKZ/pgUNnZtSYjCJZf8rHYjXjbJ\nkiVL9jf+i7/5r3sIya7RbsTLBt4LxRMdGiCqCL+zlSrinE4OQvM7ilpaF/ctRJIeno4yLQZz6ETe\n+poT6RwbDvvRXIrKzOR5HotpSt0Ec1FFEUldaKW8n4NWEI1KmisauFitJkjRbGQKsnaEjbsq5kyQ\ns9JGd2yQ5qqPTdCQttzNsoye6QHV81BwCPFliIXC06zrmggE49+JWoL3IvfF9H/aKI7NrByrULdF\nvREQwq1bt+x+EJyE54vWur55l5kTOa0q2/3miC63223UUsPn7XJd38hxftlx7T730ee4/yeusd1+\nv+f+MKZPfvKTx3npe6vr2v67L/5iey6MH9dRx+uZiip/w9yb1MFZlhHRIb+zkvbNn21j3iisE9/0\ncOaYgGZxsz1KLJXlKOUi7LBaaqyqqopYYfpMY56wrkcRUIjqhu9Egq1n6pH837APr7jQCaJhY7fw\nO/47DEOksIFrxfG7SMotERnVXNnr2c142Uj4yYenqOcDeCrFmOz82HXjA15kR0p5GfQ2lXfwx4Th\n/+urq/FFIfIPNNEK6vo+0k+CKWU5y/MxLCILh1RF92IqzoTPdNzZifNWxehocRfF2EdFXtBqmX9J\ninQQ94+HoztfzpUQNHxYoMWxkYyXDpp4ASC5Wdc1t610DOETL6j11ZW9ffcRMzO73x4frh8t/4Pj\nOYeXxEerzzczsy/vf3eUMwqfd6DsHMaAF+3FajWGGEXrL9Ilc4V0vmfP4XDgvCv1tCwKHhO6e1QA\nBuU6vHSGfzZdE2VZ8kWBDpV40Nez2Tif4W9adIlr9XwgOszf9jae98svvzz5Dim54dhd1zG0hmt9\nW+SI/qd3vIPjfPOb32xmY8Eu7wUhLfiwOQzzfhXIHBo+zpwOofamwfFYDnBxQco9qezaA8fda3ov\necqw2VRmS+WWMnf/YRuO1466ZRrC5z0tL53M3T8HV0Liz/Xgwo46hwehp1duHe7FoXuj2miJIJAs\nWbJkya7dbgaykWLMzHmAC/HweglhMSzl0IR6o+hB4mEp5U0kvKWSN9vtdiyyOtMPBpY5j4QEBJXX\nOaXWKlIU2uOkd+iNBZ4nqM5m4xwWRWGzE3IaZqN3CE+Fv+/3o5csvcjhWcJLXV9dEW0i3BARMjxi\nxTyIaGknaHbo+0jeBAlNhjzDdxES6vqeXv9BksXsaOrCYUrtfXv9qpmNHSuJwuqaXi1CZEBQ1Lgb\nMAAAIABJREFULwWase+IScXpsH8Vj30hyJRQBLMsJ2rGi8XCbgVvGiQD32elPkzPrZVkPJBT+QWF\n1f9kJEGsVit78OKLxzFJEWZZlkRKSgsGJRqIFUn0W7dv2yXID1JmgLXA/iuuoFcLhjlf4fiLxcI+\n8YlPHLcJyAlzhXsAiOliuRylq8KaolQMFNdFVDfPc0YJEC7CM4KyQCgAr+uIOs0QbfiuommzuB+M\ndrwchoHrQxXEibpwTyPcVpZREbv2wjFHiqKSdTgOyiUaJRMVRVTcbhIp8f14WBYi5/islpBNsmTJ\nkiW7drsRyKZ19Do19WYH8WZ88gweWCUJPRZWSQGhWYyqWBAF+ZqqGt/2ik4kkc8EYlXx7f9a6Mcf\n339fE/eUmzgcbBBBz+jT0RLLMzFgnNtWCitv37499nRBvx+JT3uKsspg4DvqsRVdN3YblZg2qaIo\n+Gtba8K4MDeU3w+e9UJk/zebTUS5haF4l1TOw8H2YQ59Et1sTPrDVqsV1wO8enilM0jVw1vfbJhD\nwooE8tMcnM/D+FxhWRRWFNMOo10XPO92N+b7zqBwT8yYJJWzjDkajF+LA/24EKfHfPvCU7Njvgfk\njLeH9glY5ziOF4/Feb8acimf+IM/mGwDT/zevXucMyCNuOfNiKR0XW/OII5JR1fX3sEs7gCMuX38\n+PHYpTYce6kitS6qABQ+l2hC1PbkxDELQReaE57l+VjSIOPElhD6LSzOQyupiMSGuo6kpbS/FKzr\nuoiqrfme17OEbJIlS5Ys2bXbjUA28G6V/eK9F6UD+hi/2dGrA4MnagQkjZFK99aOCqiE7ZHnOb0T\nTBY7RZ7p8Z25IsZeZeFPIBvNRxFVybl2fT9K3oMRIhLhXuZkEAkKSvCIV4vvrlYrfh/xdEqWCBOs\n77pRnh1x8OCNqmRMlucR2vQig2ajJ5UXRdQaoZZzxRygqPPq6opjQeGgF0X14/bH5vUSxErPMssi\nKjzQG6RWUDy52WwoF7MSsUec48NQ3Ijv9lK0fPXrV2Zfcfy5FK+6ORxGySYpelVWU25T9D4MA89j\nIY3AbBiIHu4GoVCgFhUbfd+P/Ij9Se2vvu1t9jigQi06XF9d2d2QJ9KC6VZyFH3fWyf5SnjsKj+E\nc91sNiMVXiIZyM355wrWku84Gw44GXfX95zvUnK1reSahmGIEJkK7moe01yOWXNAWu7RtG1U1Kls\nV6Laup50EPXHjtoeuPtHn6vPagnZJEuWLFmya7cbgWwQp61FMqbve3pxysJi22XXiljZEfq27lys\nlB6286j9NoXblk2rxNuCt96K/ESe55EYI9k0J+puyCjDuOV3eB9d20ZsEba3Fi+v7zp6eNowS2uK\nME/r9Zr/Q46MbZDhaTvvOg9IhvUlNjWcx3w+jzwwLWybveNdZma2yDKb/cKHzMwhUjm2ijUWZTnK\nyodPIA4wlFhY2DS8JpCQn4u8ui/AY597jF/kTWAvvviiPfbsIbcfHBvnuve5HHc915uNFdtR4t5s\nihLpsWNtClqsXGze30uLxYK5OBYeh+NunNQK5PfB/mPbCrmvvvfnfz6SXMGcvucDH5ic4x9+6lP2\n6NEj+29+7dfMzOzuvXsRcvWoQu9HnMcSOZFwje7fvz/mJMMn83YiGcOC3KYhE06fCWC/+VbnFYqI\nw/8ayQUhh3P37t2osRpzIFLE7XNp0bNA/u5zJBrJoSCsFIL3w0D22VbqvLQ4Pc9zXns+N/S56tCn\nHvtcDd45S8gmWbJkyZJdu90IZLOSZmG5i8HiLXoQJo/mFvq+j5qmacW8l1nQPInmVODZv/rw4QQt\nmI1vf3i3+C4qsKuyjJqFweB1sYHZfM48AHNW8FAl7+CFM+mZ4Q/CKrlYrejpeeRiNuYU4CWSGbbb\n0ZNkjRLONaCAt4bDffrTn7YHn/kMj2U2Ipxb0lyu67qxNYS0WKj/o6+bnHueF3b57vdMvq+ecPOR\nXzp+J/y/rKqxTbagHiIbsOra1lBpgmp65ISehlzC/eeOsi8+p4L9al4HY1jM5/QoUYODOUPNEmzt\nvGvU9phNmWFeYsXs6E0S0YVtZpIze/p/BU98uyXrzOzYuAv3BmXtnZf+XDjf+yFfgvMAuwtV/bDe\n5Q6Zfwhr6Oe/9VvNzOxrQ37n1uUl59Xs6B2jZonMMifLhLWJ1gIzaaSHv9dVFd1bRL7h3HF9Xww1\nRnme8/yRX0ReBtfzwuXBcEysoSe///uTceM8hmEgMoKEE9Y38nS4B+/cvWu9RARULaGSvA+Qsdl4\nzTXXQiWKYRjryIR5xwZ6ThGBMj2qoIIID8bkWnOcE4t9PbsRLxt94OMGq91LAQ9phD7wcFq7hDAu\nNCYIN81MZES6ruPNR6gqemoY03w248+A41hY5ZnkfNd1kUyFqjL7Fysv7JnE9cRknDDc9D4kgUXL\nLn8CexEGoBJzlo19WqQYFTcG5Fq6tuW2D189FkVuRTX5VBgN1xYv8zvhxVF97Tt4PNB/cY6lUDmz\nv/BNHIPZcQ0MH/yZ4zbiYGjI7emTJ3wAwDbhOFgv6Kp469YtPnDwQsUNrLRP3/WTRZ0ooJRwSe0K\nBz1VuzkcrP74cX76L5kSG/yawoNx91uhWBLaccHZefXhQ2q24f+qr4Xf67rm+sP61jlTVeW2aUb6\nNhTPw//w93/8vveZmdmf/Tt/ZyxwtuOcgjyDl0wT/r9YLPji+8/e/377bNv/8FVfxRcQ1hbmH+c+\ncwW3+BuKREmAkXDow4cPuXZwf+A5tRcna7lccu4h9YMQJ16E2meqLMvxpRLGgJdy1HuoaTgWkomg\nYC+9nbzTHa0PLbZ2LzFPPnkjlsJoyZIlS5bs2u1GIJtGvAt2xHSevXr5So20LItotRRlFKrh0PdU\nPiWl8ExizyMIwF0tXNOeFZUL6U1EAM0ixWUvs9NrTxaFqcMwJhFlv5mcc+/6T2B/GDe2RRKaoptN\nQzSCa+IRntnofd29d48eKv72UghXwHscJNloZlH4Bb8vf/YfHce0XJIsUJXh2opAaZ5Pi1WLorSL\ndx070GeBXIDrx9BBQG8PHjzgdfQ0cbMxFAG0/PTqakyuytqiIrcL+TJZK+EchGEorAhiSdNMCksf\nPnw4rvPfOm67H0LY9QtdrxsnBWM2rkt64vs9vVszs0ePH49UefFKM7NIiBNzxVDtiUSwIlVFxF6F\ne+7ICnfu3OF6wXrEHN+5fXuyrZnZz/21v2ZmZq/++c8xsxGN53nuaq2P88Kw8TC9977zP/lvj9+9\nuBi76gLZSRdRhJhms9mIegTZcA7C53a7jTqWRnI14fer9ZrHRsSB9y6IMEI28GK959ajp4Tz3sW9\npgKabmyquq4SQHz+OTIBO80mIc5kyZIlS3bT7EYgG5Vv8MKU2gqAHQDhcQdPp2gaegrw/hGjZAwa\n+RP3RlcBSy0G9D+rGCXGRiFKjyScvL5ZTGf2rQbQv4ekB3gmJ0RClR5JjwQetxu/igLCfLze/7+q\n6wjRaLze74uinTh/dC6E8F8Yy9XVFb1njB/e7YMHD8xs9ChXl5d2GfIvi3e+O4xF+vvQizvubb/f\nR33n2XMEUjwhhu5p3542bzbmWPz1xd8ehv0iQe17DOG4WAekFcOrRXGqSC6t1+tJzuav/MN/aNdh\nVVmOOSzpLTNfLMZ+THKvnevEWtV1RJ8HYtJc36yuJ3Ti+XzOa6/RhIuLi6hj7ovvfsHMzBYimdO0\nreXZdAxZHuZ7L51Xg/V9H5VO6Pi9XBMlbaRYvBAa9sVyORZGh7wxyCH6PNluNhG9+EruQ+y3cPeg\nEjFY0Itr5UoLmL+R54pKclmej9RsQTgwXzCsRbhJriZZsmTJkt04uxHIBt7hIPIYeZ5HDcQ0xnjK\nU9V8BpsVOWqx0qzP5VYsy8YiTnh6wdvdSfEYm585IU6Ne2NbUIr7rhvHIsWAsEkx1hn23CnvRb3P\nMccxRTqegklJDvG+DiKY2bti1D/81KeO3w/xcKVT7g8HogVKuMPzC9cX+YKmacY5+/DPHo8JttxX\nf+3x2P/nRybjb5tmZEWdYTbCW7x169akyM9vC68aCGW33XLuKVsfkA3zii7/gnkFEwnHBjOMTdVc\nbuWw39v3fu7nkkX43PPPT8br20uANYacCphPuA7IlbVty9xHnuf2vI15ncfoHhrO+d5yydxdJJd0\nQuzW7JjnABrEfphPEsRQ1fUErTRtazUkYnBcFMNWVZRTogxMYCjCk/dlADz2ZorGn/u5P5rsq21b\n7o8Cn1JkjLnwHTUxlxT6xXMKxZ3h2plZ1N2T6xFow0nb4C5fS8dSfbat12uOEzR6LdXwrUw0V02p\nKMmr2WtQlxW5W5bxGYBrHrUjeB1LyCZZsmTJkl273QhkA/Neotnx7Q2PErFt5aTDmx76nl6JNh9j\nW2WXU1F5Bq1B8fFZFbKDN8GmUNKyerVaWR1itxF/PXz6pmfaRnncOHg4nKCxv/jg0Y455oqT+1DP\nXUVAcTR4nkWeW6Y9zcMnmDhsHOXit/8fe+8Wa9uWXQf1+VyPvfd53Vt1H2XH5a8oKLGM4wSDkJK4\ncBJjjO1Kmcj+IUYRyg/iA5AQn3zwjZAVIiRsEikhfqQqjm1IVPEjIXKQEqSynYcgEiZGVXXvrXvP\nc++91ppPPtZobfTZxtq+5wI7LIvRf/Y5e68155hjjDlnb7233jp+h1yNtoW4urykd6UtneHdLpqb\nYdyCausv/83F9HjvEdevMXLmeZynBk+U/dbDWpDJ59ChMiWxxr7nO84DT3TrJNzNIqp9KfInO4ec\n4CMOoVAWXuPozrd2NSDHjyyFPj2iV1Fa/B/XhlzUPE1EnWx+J031VIaobVsWJsKILkTAtXAsUbPj\nOu/AypNIRlXG5maweVp6z5CknOcp5kUniFAez/nuLx9bGdyIUGRhsT6FORQ0Zwv/B2Itq8om/FuY\nd9rKZLVeJxGSg0jF+Fwl9sdOWiIcBDk0LiIzSS7sIDJKsNHJdtWSA+IewLH83OjzJPxemzOGXy6u\n9XUtI5ts2bJly3bvdhbIho2B0MY0eAXjMMT2A+K5atW+lxbRXAXzJA5B0JMUmZNKPMG2baOUtsQo\nfdWuWXz773c7StmMMt5KcyLzbLNI8ZQSh40e3JQ0fYJpm9imaZLPUnI9fAfeEX5WVZUgPmwQlWvv\n+z4RUuyH0yyg1WpFrxDV+bciTulbSOP6byX2XEtNhK+E5jqi1kkkgAaXW1gJyypp5eAquHG8So7D\namqM0VJ1BCJG1zLDLKKKcZr4HV+N7j+L+bm8vLQ2yKNg/YA2EzUDN9+skwreLVpTo8bl2fPnrPUB\nI1C98U4QgheQJJNRUWH4+y9+//fbH/6Jn+Dn+77nfl5J6w9zArYwlTcC46zvOqIHzdFoWwzYOI7J\n8fFZ7m+HUDyjzl8jUXJ4Vmy323hPCTrRFspVVUXxWWGhVe7eMjMbw99Xq1UUghVFklmjIW6cVA64\nYx/666XJcbnSjgmLZ2Txu1GuppWNigXr+j6q1IYb4Hm4GfECaFx4AA8yTAY1gORh4nvUcGHRs0ag\n/Xa7tRuhZHuiAcZptkyOdhLC0qSrVz/2nQTNjN0llZY9jWNMGGNMUhDK3juiKGy2LPg0S6m+i/HK\nAwxHogbZMNApQMJ7LZsaP6+vr3m9WK83Q6ITulm4gdu25WeoxH1Ctdv/3ieLK7mRYbjmdrVi6JVh\nEXEw6MC4F5+GL4owZ3iIr1ar+PCQ4jeEZuDQUILGPdDw4ESy2PcYMjuGi9HrBWv0PCT7cW0ISa5W\nq0hmkSJdPAQr9xLTLqzQEgPN+0Y6mN7udtyHmDNS/IVo830///P2gexD7CFcs6feJ90ghfaO4798\n+dIe/sJvH+cjOC43ImukDlnf9/FBKc4DVdpPKMOzmFGcnx/70pfsPu0X/9yfM7OjU0V6frhWhkkd\nKcns+KzT/WfyzPG/Tzoe3yGDNc1zTEc4AtcnsRxGy5YtW7Zs925ngWyodiwyKj7JraKM144qa3b0\nioCI8DZWAU7fA169b+19Ds/hxfPniWcDLyPpMOoKK+H5gaoI71tDEoXFhPE+HGft6Jdm0eua6zp6\nHlJs6Xuw4FoVveFvncicIHRTFAXn13vf/trhNR0OB9JoiTAkSQovetW2yTUpAsH5Xr56FXt1IMQm\noQP1pguLiGnVLhPhWoh2OBwY9tNeHhiDp7pCwRlzhO/A6wcNuWlbrk3Sc0lEWJ+EcNg0TfY0HJdS\nKNgDAQ1BXPbho0dEXM9D2IvIyd0vZsf9SdVxRyv2YyBVtqqIpg5Kb1eB2GD/yk/8BHve/M8/9mPH\n7wjq5D7sOs6R2VHQVLtjeqKNIupHv/B/mpnZ1/7YEdW9+ytH0debDz6w/yMIWfYSzsX9shNE1rat\nPQ2isYimaHdZjvPiwt55553FcTXECftP/uNfpYQSxv89+585XpMUlO/2e0YUGGaVTqB/6i/+RTOL\ntPeu66LaM1IOUowJ4cx5nqMUlqByCrmCfNL3vDb8DVEOok1HEMI6At3nos5s2bJly3Z2dhbIRvvP\nwHyBlycCmEWPgd3obm8XnrRZ9HxVor6uquTNPYhoJf4+TVNM1kouiMli8Qj7vk8K4oAMtOhwGMc4\nzrt6SyBW6sYN017qXkB0dN6O/1kKSoSH1XUd+8PrNTE578YKtEJxQ+nDXrnjKxUX84Jzw4PfXlzY\ndaAIE21COBPI13mJmAPtMKq9enwmgL11JMcyS26ubVt6c0RX4RhANqDiF0UR1wJ9SML44Mlqd8XL\nq6tEmp/UbaGcNnXN4w3iGWtSvnDXD2KDokRQ3Leub4vG7TGWndCce5dLxc+7ujZWdW2lQwJlUVAE\nd3LoCufXvf8nfvzHj//48ZOH/0RW1XUs6oQIrZPSwRjMjvOl5B7cL63cC1VVW1Utnxu/XP1pM4uS\nSlj7zxU/xXnV3IoWtHoJoF4iPMw/q9SX+7fKf1VCp/eindq+gugI/ZyGISFpfVLLyCZbtmzZst27\nnQWyoVT1CU9HUQq8jU46Dh5cgyj1nhWtVHWdSvODYXGCSqgFVJ4h5MdAhosTBa2EXVOIp73b7eht\nqqwEPRTEXOf5TlHNSfIFs5OT0U6XzC0Iopwdo0/ZfiwudHOo8jflHajLx3bhuZJiHrxESLxc9D3X\nD/FjlZfBvNPz3u34NzQ5g/AmaJ8eGbPY1THJzFLKeVPXi66GZrEYVRukbTYbjhuI7FaKXRVJXV5c\ncO2Zb8Rc6trMM9E81ob5M6Gw725viTYhaQOBSKXiWl0zbj84L9bMMdgkzzgOQ2S5SZsN7DWumWMt\nYoyYf93vwzgSAf/cn/2zZhalfpJ2HsOQeOUbx8bz32FZw/V1gkpYoB0+w73gGKt45mAv6TFKJ7+P\nnRZl/I+/pcTNuCLlW5F0fce9bfOcoBW9t7281OCiG2ZmjayNzymq0K4K0JCpOAxxjYGOMxstW7Zs\n2bKdm50FslFxyc4VGWprY3ifiJWzBfTtbYzFB49VPQVfHKnSLXdJeBcWPT38TZlVzBWJOKM/jspN\neOFM5m8Qr5cGSaeMRV74P+KpriBvFlSl7DS2AoAHOI6xAZW0cPBS+mGw0RsU9KPthWtXYFrCw5Ya\nAHphbWsPwMByLajNjMwtsOBg4zjyXGApjrImvh5B63NYWCqoc57nZdsIi3mYjz46SqIACX7TZz7D\n/YAxwKNvpT6DUjROXJOS8YLC4a0P48jjaC95GNbzg5cvWSvzqVDE+fbbb5uZMT9Tu/MlrDMwkE5I\nE2F+MIff/dM/bWZmf+vznzczh1ZctAL7weyI+pQdhe+Mw2BfD3I9WL9nEA4NexTI9WK75TwAcSDi\nQDmg8JOMMIv7TvMxFGoNe2+1XnO+lamm9TvzPJ38t/9sGYpRv7z6gn1u/Knj+ML8KosThjFOjoWq\nn9WWI1YU3Eta5M6YjcsHEgXJ8wnn8fV8mv9MCkI/xs7jZZMtW7bfNfbvnShm/L6/8Bf+PxhJtt9N\ndhYvGxUUpNfh4oRALa1U+LNFqS0lZswskQKp3HmAHtSjLCSGe3l5GePpiBeL18//B+9ou9mwmtvH\nPM2cZ+K8JnyGsX1FZk7iJqnhCHOm7LdpHBO1AvL2ncS9H+M0jol8D9aCMWjf0gE/BZmyzXLw7GeX\nl6rEq2VrANdcrhVG2SnVBT/+uqoiSkNeJ/wf+R14wZvNhsiTnqPsAVhVVTF/GH6HawN6AXPugw8+\n4Bi0lorMRvn9wdWVwONm6wIw+cL/x3G0C2ldoONtXC4BiOvrX/vacl4CckWObLPdLtpG+M9qndD/\nG/b06dMoPePQrNlxX1KhIXxex+LbePgcqVnM7+Daicwcm6wSRI299kZQZ3j0+PFxTHWdSCDhPDof\nfT8kDf3GcVj8P8r61PYrlz9yHF99HN+/Of2NxfFhQGRN00QGqTIn1eaZrQtM8jyT3HtlUcTWB6Kk\noC0jqqpKfncqv/072Vm8bLJly3b+9l9+7nNmdlTx9rp0Zil9F07hs+fP+cK7lr4t2f7/ZWfxstGa\nAu/Jet67/6z6WtM00QvVytzZxYzNjl7BKJ6BNhby8U6tsoU3AO9Q27lut1t6IKrTpLUvZVnSq2Cl\nP8QHRUxymuckV6O+hReT1IZtWlU/CWulKArOHVAD9LfgfW5cXcIkx9d58DpqGAs81xZ1PFLHUjiZ\n+YNU1cNzfyNU4IMZ1jYNx8ecTfDgb6VFxaHrWP1Ob1MagHl9qFoenqoSgLbWX3/vvdjiOhwfD2Tk\nbhqnX3U8VMHjViFXAMPxiWKKgvtCtfTwf+Qsttst2WdfCw96ePuYUyC/t99+m+cgChf2JXX3ICR6\ne5swMFWKnuvx6pW9H/JHQJnKfkPu6ebmhrlY/KRaRDg+rrGuayJJRehsdSHV9t04RrYfcr/heCpe\nWVaVjVLnxZb0Ug/T9z3n408OX1rMFfbYL21+OFzPhte02Rzvk7/b/2iYn+N5/i37bxbHn+Y5zZNI\n/s/nTzRPPAoC8TWGfCYIQ1CtquskkjF+QsR7Hi8bp7JrFh/qhTmqrJNhMUsLl8ZxTCRVCnkwwHyC\nkxIo2kvHdZDUrow47pUmu4M1bcuNmfSbkHF72iRp3K5YMZzQzMzW5kTw9NqkJ8uh6xLJEhah4hql\ngKuqKl4Twi2Q6MC4WzfHmMOVk3fBccwitXh0Qp8wbtxwXISe/NpU0hGQKryQ73F0bO3h0cheoiTQ\nfv/aL2z/fRbGhf8j7IL5v7m+ZkFs8l2EqaSvyHq9jh05ZR7ggGBsa0etVvFEfAYP0vVmwxcTDMfd\nywP62bNnnCvuScyhqATzu/t94kxhvDgPKNdd10V6raPnesOLqen7SI6Ra5rkfp0cxRcODAp6GyFS\ncD/2Pdcc178JY0OvIVKUVysKzIJGju+oyOuf6L/Ia3wlxdB8dlzGgucolYU5xDwvC2P9i5zFlSIN\n5YkBmDcNi2L9mKZwjrSGvFloKrJPVVkmzzI6q69pmfqcLVu2bNnu3c4C2QyCbLxneRfdrtD/lyW9\nIHgOlOwXNFFYinY0Wdy5RPObIWyzFhLB1kmVmLkeJ1VFL6iRBLjvpmh29HSIDCRxDbFNL3XeSgEY\nSKmjzKH/nVKeta2Cl4XXLpMISSA85Xu/tBLWGoVq7skRSv4gPTP8RFjHdxoE7TcRuISQI0JwFucT\noSv8DQl2CDBev3oViQthTETPImvk6eP4DMYL7/ZxSCgfDgfuP+1/hOtQ+aSmabjmCb1YwsWb9ToK\nwgoBhuje0XkxH++++66ZxXXUIskXL15wnUBqefPNN4/HFYKAXyOsvUfSZpEwgZBZURQMdyZyQOF4\nCEcXlkodabgb+2+1XhNJY9xeYsrPEyMS2y298adC/y9c+BnXrCQFtMPYSSRjHAauOdAfrjESPuIe\nAxiJ51o+E3it4efs5P1JlBLk4fvQTPKsAaV/ks6rTV0nZCHMmYaN67pOSFSf1DKyyZYtW7Zs925n\ngWz2kkCF1Mj19XUicQ9yoCKdqqqi9yktAJCwRaK2dp9FPJbepiTlry4vowyIJB7hsap3ejgceC4g\npIQ6jHyDk0TRuDcRCGRZbm95TfCo4WHDYz04TwXjgkcKLwbX7iXMYZhnFP/huJMbL64H63YtEvUw\nJlSriteI4+NvWqB5eXnJeWW+IniH3AMiuFpVFXNLMOwhjBtEhydPnjA+Dy9UG355RIU5w9+0jzs+\n+02f+Qz/DRSF7w6a23KS8uqNM3kexvg0FI9WZckiV3idmv/zucODSKJgPuBpo1jy2dOnbDEANMJi\nQ5frMFuKx2peUQkCo8sP4n5EHlDLGLAHVqtVbPkBkoJQwBufFwRVO1wz7i0UfsKQa9jv91x7c7kf\ns5jT+yh8p12tmMvC/tuFtdd9bkXB8XmpLY7TPCqPxZGxpGIpegnzklbcf2jyBjKEdCttV6soPKzN\nB4W0MI5jRHQyD0qY6KaJ+wDRg+4TEgQyssmWLVu2bPduZ4Fs7hKMnM21Uw6fhVfQCgLpui6RS/FI\nxswx2VzLZNJHhUpYO4bOXYwkeCvw8CH1MrjGZZXLt5hFVOQFNZVymsxP+Nn1PWnclPFBo6jgjbKw\nb55jfFsosypgqK1lzSLF9ElgXVU6B1Vll9KqW6Vz4EU/ePCA3hDQBKi4Kmo4zTPXEXOE+VUkeeNy\nFMzDSOvbVpCalzACIiMjB8jPzUcpHh68fy0u9r8DisN4lVrs1/6u4jxFnU+fPeOaMFcDFIt9Hn6/\nXq1I78Y1cU4hAhqONfQ9cyrPAyLDPla2IdazLMvoaYuQrbat6Ps+yX0MguB9uwmyrVxeyyxtJLhe\nrWwQdqjmEkaHxHA93MeOUu4NiHvvxENV8FTbKex3OyJSbQgXnxGxMFzZaCpxA8NcFhb3A48rbblR\n+O0FePEZLdTeO7SuIqbKMsS+KYuCuR/YJy31zcgmW7Zs2bLdu50VsiHDynkOrDcQJkTlv2rpAAAg\nAElEQVTC3Chi86pBWWgoSoOHM02xiZl4UpN7k4cDn5TmNoueGhg48BB97LWWuK8ynqwszcRjgveC\n45CVYtFbU/YIvC8yzoaB3jhbLoTjaBtnxoEdawzjA9MH3vPeFdDh+2ify1yEeKMX2y3nF/H5g+Sl\nfPsDLYBla4dQA6SSLmVVJQiBjEHXktjsuI8wzzgP0IoyET0jSfebirOWRZGw6ApB4Z3kUYqyjOhT\nPEptWuc9cGWuXQjzrq5r7pONIGvWKsEjnmeKirKuJCAbCmWC9RW89vV6nYhoogiT+wUtGG5vmTNs\nAprFlXBM7t5jEzwn/WTmEA1qlVYrWwmK1dwp0AllhOo6FhxLrmkU73+33yfMr0TQMtiLly85R0nB\nZzguij1/efjTVhSIjCzr4JKW8RDfLMvYkM9JNJmle6xwzyvN1RDBh/nw8j3KyMQ8MPe0WiWMWpVL\n+jjLyCZbtmzZst27nQWygVXCnqiqKqIUyevsT7BhtF2ANkTzVdqDi/ebmfWSj6FH6YQytfUyjgFG\nGzzC0onWUXoGntmJmgDmTMDEUZFN1zyNmEkkXCpBDn3XpVXG/Gq4Vqmy915ZEiMP40auZZ6myB4M\n+RDNDWGN9vt90hwMbLre1XuYHed0L6Ka8Mgo+xLGSYn5tk3YUCpmCjQ6dV0icklZdfHuvJcIDxW5\njtJ5nfisNsYD4xCepSLMqqoi6yf8BGqDB/7I5RBwXCCFjZNH8seY3HqvRXiS9WRunsBy2waEgz30\nRlgj1Jl96lOfOp53s0lQDyV6wpqgHYTPk+BvbWDGoZ6HaGMc7VH4G5QskP/C/dj8UMjFtavYmGyA\nAO+ypo1Crf99aPFQlmQI9pK/UNZYPwyJQCvGryh3d3trO0ggAV3JM8M3pMP39/tQkxN2xB8//Ozi\nuD7CQ+SOKIg8pzqXI9JciiIcnP9wOFgpEjzalhwIeLvdEvHDPmm1zVm8bHzIymypOMoQkvRv0JdQ\nU9eRqikFmnioMNHedXEBcFxH0zWLLyqvxDrLTxiTuSAg7Pc8p2pFKcwuiiKRiGhFK41zcCKkx+PE\nAx5/OIg7uQSpHxPH4mC3/u3K9Q8xixTa2eLDHufG/0cJg93c3HDz4sGIB6XqWt3c3MRQHl7C4f8a\nQsTLrG1bp6p7vPkQOkHSng7COHK8GMNGJGP4oDjhwGBv+Y6lZkvqPTuKglodjocHKB6uq/Wac0Zi\nh1KsXagPoUx26hSiCsbWti1fIEpUwZ7ynS9RVAkJHoz/m775m83M7El46Txw1GsN31AaRkgpm/Wa\nL2jcH/gbxogQ3ND3cX8E52b9wxs/LQxBVVVMtNc1XjJLYgnuFUoCjWOqZizhIigjbzab6KiAWn6H\n2vZ/8OUv2+va94vu2e9kowuX6jOHavhI9offF0WRPEdVHdsTVgZ5NlBPUiSiFibHf13LYbRs2bJl\ny3bvdhbIBl6SqhB7+i49EaHk4bMrl8DSviLaF6UoikSEEW92fgdU3cMhik+eCLOYxVAZi8f6fkGJ\n9TYKTPWQXD2FXhLB5sadiDFKWMMfrxMapqIAk4SiN9JphRQxujCahgpY9OaUelUc0UvwmJldQbKk\nLJOkPL0tFJ5BQieELfvb25hQR+dWJKVd4ScMoQGsEca9k4TyOI5J8lmVuYH8thcXnGeEVZ9Ll0mE\nbPCdsiwZmlFyhYYoVm1rL0OoEQn9V4G6rR07fc8eLRWA1S589yD87tNvvXU8VxgTpG5Ao+Z9VJbx\nuKqGLZ0f29WKJA0UVGohKIt2Ly+jJA9RBELguF98OB33wPGUELLUfdz8UCCs/HQbyScSEkMxo0ZM\nzOKawzC3//l3fqeZHREs0OFboTMqJJzW0tfKK6BT8keiKJT6cc8IyjuFMajIKEkB05T0vmE4XQRX\nrSgicpdQvpJoPIWdKNA+mWVkky1btmzZ7t3OAtnAQJdEDL2fJqIJiiZCrFK8o8W/BQVNkquwokh6\nlwzifa58LuGOHvLwvtC3nLH0uuY1rIQ2qa0NrCg4Pm0poPL7TdMkiICejaAWX3i3E2rvSpLS8Ki2\n223SEZFzGP4Pj747HCI9EvIbARkQ2Tj5F3hiMO33ceVozb3m3MSLIzkk9I+5vr5m7Bo/gSq0fUVZ\nlvQ64VnCcwXBwxf0+XYXZhFtKirq+z4RCi0FbaKI1MvjaJ4IifZGEvsPHj4kMvgIoqLheEAOmMOy\nLEnkAOohXRqJ3zCn0zhGYksY79uByg5Es5Uk/fEwwesu/20zMxvHnzOzmJfxrUA0QZ0c41QOgLlJ\nIBnc76l/rAQYIByilJ+P9xqfI0JT1144wzguJHdwLWZmrUQCuq6LvZWQUJeeSV5aSHNBStXG/YN7\nranrpF0K9iPJIF6QU+jMMBVsrev6WHrhPsu8lHSo7V20RsWQX9cyssmWLVu2bPduZ4FsmIeRQjmz\n+IaFUXpGGBaeJggv1vdvN5MOdSo5EbwKNmRyEiDqVcDTQcsBeH6+uyLpktI+dxBkU7jvARmBvaON\n4sqqiiJ70phL8zulp+JKMyX8nqKHhyilwdgw6NdyjNLFeDGvD4NHfZC2BD6n1ToGjJlZH859E64R\nXrQVRezACLaZ5HtYSBjm9tnTp2R+sR998OwhC+/FE9G9ksKYQrknI8+tvcbZleFzOBySXBgaiAGF\nfvjhh4vvPHv+PMkTXYlgJhlFZUkmIFDLe1//+uJaD07KCAyvndDIYfj7frez9957b3Guz3zTN5lZ\n2uZg0QES+27+4mJ+cB/Bk+8OB1LZ2YAPOTPJ3x26LmEGTn9jWpwb7vH878wu94Ofx78dfnYpTkkW\nqhsLfoe9BERJyalhSMotNKqA67m8vExyvir544vFUZzMcoCwl7CHD0LHXq1WCcOTQqvhOnyjNSAv\nZZviflowzgRZNyJKy+Me/2P/Tywjm2zZsmXLdu92FshGm0D5Jl/wXvGTjZgQe3b1GnjvwnOCx/oS\nDY0gn3J5mXggbKMbvAowna4uL60UkTogEHgiiIujUPHy6io2pAp/06ZSrFFxRaPabx3eVue8cpW9\nwXfZTiCMe55nIhl8p5Z5VnHTvWv3W0vOgMKIyFWMI8f1fsidsF0zPCkUoA2DFSIbow3MvGQR2FrI\ndxFxhHGiiBSe2mq14vw+D4wtzA+EROEt3t7cEAmgLQFl+AMSgedpFueeHipYVsLumqZpIShpFvcF\n1hFxfIzlo48+IrPsubRIgEw+pIDmebZvfOMbZhZzcBAXBdJGZODps2dR5BJri70qHvz7779PVhuK\nLJELwvFxP8IDr+qac4Y1PrgCXrPIyOu7judCsSjqdRKkMI5Eelo4yWLJcI3Xf/WGEZHyBwLr8q8t\nWZfY7+8H5Nb1PfOrfm+aRbSIY24vLmJuIxyHLTXC9TQuN4JrREsIPCOwVzGmK9f+QAvLsY6aH5yn\nifvNN0c0i2uDcW82m4R9q8+IwkVdfA2SP54KoJZlGdEsns93CAffZRnZZMuWLVu2e7ezQDba9tc3\ntYIHwrc0WFd3MC3MzMCZ8bF3MxcDbVvmUsgmAiNE5CzatrUNpEqk3oAeHzwsMFyaJmlVEOsGJHfj\nWEyNevKirGAOrdxllGUZx4Slw+rpO0QrrSiSGLN69Pj/q1evEuFR1qTItVZlmSAZzM8pCQzOkdQk\n0csK44WHWVUVz4l81+aELJDZEVVcBS8WiAzeKDx6Ck9eXBBhYC4/+OADM4t7FHNwsd0SCQDBKKLB\nnvN1YEA011IXhOv5KOR53n//fTLsWAfzmc+YmdnjgN58ZEDlgajQEBCHr1lSNh4Q5TdE/BLr65un\n4f4EklI5mK7rOG7ML9YXaNQjWdx/FGqVFiOwhULGTy7zoHhG4N7D2A6Hg72QtiAwZbfO8xyVN7Te\nTXKg19fXRJtYW0Q9KomG7Pd77l9tK09FBIlwHA4Hnqt0CMYsIhL8fRhHzj2iPtqW3Ct+sFYunFsV\nPXyuj00FZZ5f187iZaMPVTyA2qbhZGLzkdYshX7TOMYHpEDNVh5+ZVXxBsJGVMVlf7Mo7VplQvQ6\nGveyYWLPKf0uzuM2MjYH+4kjzOAKrZQqS6oyxhB+DsOQ9KvB7UnigWzgwo2Tn5EXn58D3Ax4YC6u\n32xBd1Y5DLw4tBPoYrxCx1TauE94ch94Cqgbk++SOYnDglAbiwHd2pFSLvI9viOq2fEhghCe3tTs\nIBleOigAfPfddxlWRbIfNzRCspinpm2jDp4UbGon09IVxlJpWl7uDKtdXibF0B+is6aE6/DSHIch\nOgnuIYd5MIvz3nVdQl7Bcb8Wrhn3/aNHj+5UPtbi16Is470gOmf4P/aNV1HHcwQvPiX/zO6lo2Eu\nLSwvHQ3+VO8cM0uISOMwWCfq8aqLRy1H9+zTPUT6tFKiXVkHyxeEKECH1N1zGhbGmnkdwUaIEWsp\nZ/g4y2G0bNmyZct273YWyKYUD9zDQO3d4fuHmEX5Bh8wgncB70vlPMwLLAq11xdbmgVkI2rPKgSp\nshC3fR+LT0X+Ap7CAcm2rltIzBxPLbAaMhNu3OR5CiWZKrB9H88pno0a/r7ZbqPHjmQoChHFq7u+\nuUnCI3f1/fHelnZ9RHLa02pVUbkS0oL28vAirDBFOgdHycU1AkmiGJJz5/q6KJrahiS60uB3ux09\ndiT9VfRyDAgKBIS33nrrzsJGiGKuHdpFchsIBAl3IEsk3t984w0iJJxLe+pgrA/H0Z6FNQEBAQgB\n18gulMGrblcrhgRZFBn2OdaToc7VivsYEQaE8hAiZNL/+pprQWVs6cY5ufs0iUJgLVDE7ER6zY77\nhwXDglbYwdWJqWoEgJRtKYperVacoyqsCUO+ojC+Wa+TbqCalNcoQlmWvO8Y9pL5WTnavSrNw4D4\nFir4SpP2VGd3/PV6nUjYcG++pmVkky1btmzZ7t3OAtmoTEvpfmpiEG9cjY2WRWGVSN4fXMGdmZPb\nKIoENVCKAfmYEzkb/DxIEhTeBv7/6vqaNFp4fNoTwxdSch4kP5J49j5HJNTQ+YQXN0pyVaU6akED\nwzAkXfiUju09QXhOiOlzfoT+ahaRjApaYrz47jiOkbSBZKWIJOKnRyS1eJBIcvv+JGZH745UbyRz\nw/GBgJFTefT4Mc+F9Rokr4P/b1y7AF9AahbzjZCbObi8BHJAoB0flEgR7NHjx0QpQDRf/epXzSwi\nS5y/63uOm60uwnFY6OiS6OyLE1AK5gqiklhfkC9q1/ESv8M8bFFgGq6xruuIADCWILcDmj5+lkUR\niT+Sa9OeVH3XJUXPmtvD/gPqKKsqEanEWhUnBFCVqEOEJuKu8zzH5Hkw7YjqhVa1A62aSt6UZcn9\nzRyiUJM5x20bW5VIxKSTCNI0z0nBNEo/dpIPG52AKOen/mSvj4xssmXLli3bvdtZIBuNi/tOcpPz\nwPxn+MZ1LC9lVOyFMXRKrmYjDDCy1BwFUHNK9CaAigStHPZ76yFhA1owYq2SIwoXfPw+vEHpO++9\nsVHYVoxhh0N51EJ2ntA66SUparm9TbsTwtuVWP8wjhFNBI8b84HrgCTKPM+cZ98kzSxtOTDNc5SA\nQa4DrQuACMI8w5vc7fcxtxS8ZqwRPgNvr7Do6cIUWbPItiiS5mad5AkoyfPwIZHWKLk9zP9NGCNy\nFc+fPbMnQRSUHSkFbeK7Dx48SFh08Nxxreik+eabb3LfIb+DYkmlKE/TFNmfrvOpWSwopRCqE3/F\nvvjyty3j9p/79ePYXrkiyUrYhRQDlf1XliWp5TCcGzI+QF9lVTEKAWFZNooT2X0vtTRI7hRjwnr6\nvKCKUSqNfnAIBezBxwEF+jyrmZPbsZir4TNB8ib4SXaak4YiYr2ja+g4jmTJFYKqlJ06uTYhXhbJ\nLG2n4j8DU+bgx1lGNtmyZcuW7d7tLJCNFh965ow2KDNhkczOK20khkh2GxhtzgvQGhPERyF2CBvH\ncXEOs1S2Hcen0OBqlRZk4ngiK+6ZWsxDochTPJLZXa/KtqtHXFUVPRzf2toslRGHV7febJKiOsTT\nwbD6AIyl3Y5eD3IJrAOR+LJZ9LDVK8RYfMuEQeLRzOcIwoHQZXN9zT3EPEDw+jVfV9c15w7e4VbQ\nD8d8e5s0lWoEYZvbR8gZKvMQ++NaWidcX1/z+CgYBsoA8gDSbts2YRziO8wBuLobXBPyRCyqleLc\nmxcv4nxIvmstMk2UZ6lrzsf3/a/H4/3i713WWLFpXV3zXsM+Qw4IrR4olNl1RH1s9yDRCdynKyfu\nqixCX7ztfxZOnFaZr6NEOqqqinkYqR/DvQuk2k0TUfynQ57rN1bfdvxbOP63H37jeD5Xo6R1Qnhm\naJuTzWaTFLXfVdw9TVPM90ljxUp+XzkWJ5mj4SMLmRo7Pis0L5yRTbZs2bJlOzs7K2TDnEp4q+4P\nB6sRS9QKdqnQn6cpxma1Al3+P01TrKxGLYFUd8MbgEduFj3rBlIR0hoAHopvFqYihjCyupomNotD\nW1hI9IfPMv47TfF6Jc5OT8cxZxQxsaJdjgvv/GaaYn1N8IjhGT8LDCi0Jq7rmnFqoB7W64T58U3P\nMEdYC0WHv7MIz9F0PWEXFxdcPxwPyAbXgZzOzTDwb2T9hPGiTgUMsc12y9zHID+1hflscR9o+20V\nhkW9zH6/53Uj/4I2BMh5oGK8dRJLnLsw/8jHeIl6oIZe0G3hcleYF+wd5LKwftiz2tKhcSgL1/rH\nfzOw9pB/dblFrZsCEkYtEebpdrfjuL8e1AU+CJJCKiNllsrgY/0uHfoxiwjNS1zhb7inUTOG9Wjb\nNsm7aDNCyu84lts/ufiDZmZ2sQ75rzDef9IeW0gPfW/fuvt7/J6Zk7gJaA6ozudjNEczS/5u5ZBk\n0pJDmiQyF1UUSSO3SfJcXkoM9xZz45+w5cBZvGxUMsJTirGwoFhq8pVdLJ0MCTdMmOzbEx0YCaNF\njw03Am68Z8+fp2rGoMHKg5KU5aJIdNNgVJV1/USYUEeBnIwJD5HW9cnBgw3aXDgGbrTCJbc1YVrK\n/1ko68aKG0ALN7122tNQTAhl2717MZs5+rGD/H6jm8UXFNfehwHEvFptOIiZHV982ptmCA+el2E+\n8LLEjezPeXBFnGbxITsMQ1JQirDWKCHU48Usrw1GUgtCh+Fz2+2W+m54YWOv4iWDuX3//fc5XjxU\nVWkZTst+t+N9Q2q/lAXgOmaLa6oJ+6eBbPEovNQwx8MwxALhcK3Yj7wvnYLx+5L0fydcUyMkDi+J\nguNfSRdc7MNnz59zv2kXXNyXeMhirbZXVwwV4n7BNYF6zqLrwyESEODQaTgdtO9hcC98dMVd0qZ5\nL5al/W+Pv2txrs/2/9NiPiYh0fh72avFm8UQon8ZUTdOQm0sEnUFstpZVXXgPNGEJR5h7u6ibt9l\nOYyWLVu2bNnu3c4C2cCYjMKbtyiiaqoiBdeZzuyYNKbIoxRosQeLe3u3KPQCUpCCQU/DTno9yBud\ncN4hA9/p02xJITSL3q0XhtRiUU0CTqdChUKPNhdaqASx+G6mZtFrwbzM8xzlL0TxVyniddMQbcIb\nhWeMZKnvOHqQBDWuDDO26BCq9FRZaxaeesIHwgBSCHspUjRPXKEmxoB5wPF9h8dLmY9EnFEVus1s\nvsPjQ4gWaHEchpjEDseH9Az+j1DT/nAgigX6Uamf1oVuIT0D71uVmxG2q6uKYRGE5+DBfj30gcF4\nce0PHjzgPUbZHlCqRTJmGAaiEewhCrYKihmHISmyvsCah7HhOtbrNe9Z3EuYD4aHgwF1NG1LarKS\nKwZZx93tbexyKuFREijcnsDe+X0v/8Fx3GHe/9Hm2xfXWrn+VXV9nEOgN8wh5o5dT4eB3weqRZdg\nLRMoy9JWJ54F3vgsOiF+S5Fhuddm/xklybymZWSTLVu2bNnu3c4C2Wjxlc99wHvdSVxa48teTmFJ\n9I1v672TzcbvCvGCiCYgvtc0qTSMdLpU1GLmkBi8ASEprBzF8lY8KO2A5zvuAT214mWc8l7wm0ny\nRvBHSGxwqE77ZTySroob13cF3iG6HKp8zZVLhF9LMSvGS6TgkaVIinh5DTMnp+6OqdI88PIvTlDa\nlYataGt06IU5JWlBobLznsKusXLmbMQTLyxt5YA5Q6Icnuzbmw3nWeXx4ZW3rrgR14hzAuHdhM+C\n+FFVlW0kkYw9+yTkaoAYkFfa3d5ynI2QH7Bv4JVP85zs+ZVQzDFGT8Yh8pXCSnTNLV2LC4wBedDL\nO/I869WK4wZy8oWZ/rwvm4bjOhyWwqTYdxtHQMBn0TIDNq2W3ynM37PHz/xmQD+/p/rVxZhwvt1u\nx9we9vMsIpuL8gwgGlua0t59Cw19fjC6xAuZYvRA7pvXtYxssmXLli3bvdtZIJtJ3uSnpPC1OdEm\neCZXTgRzEDYKvV3NsZRlLKqUvIY2RmuaJqEDqqSLMs7wPf835nVQcOZlZXBcaTCmAprDMCzirGZL\nZkkYZDIWIkUgBOQowt/xXd9OgQ2dpJsg4tRlVcWiOomzr8TbLV3Brc63dgSshyEW3ApjrYYnL6hx\ndnkeSpYITZNFhmUZuxpKfg7XxvYQ45gUh47TkvHom24l+0z+r5Trtm2TBnzs/S5U17UT+nz77bfN\nzCh1A8SBIsO+7+1B+Bu83BthveF63n33XXrLWAvkDoCqesnDvHKN+R4I8pjknpumiftkKzkhzQv0\nw5DcN5XcP9w308S/gZ2IHCFyT2wxgs6pl5f2hb/0l+xfpP3Cv39cs39a/iEzO46fTEbJPfp9YRbv\nn0PXcW1fhmulSCfo9U72SedM25GMDuGo8K5HYGZLSnRxIo/zSSwjm2zZsmXLdu92Fsjmrl7WpRPx\ng+kbt/LyGCoDIYWfePvXdZ3Ik8M7auBNgJ1SllEiR+KbhSAaj2JU6iJBHA5t1MJ4qiSPxLa385zM\nFXNBmCfH3FLPQ4vglP1XVxW/r6wrrTkoypLjBstKpWc8amGNicSTiY6cfMggKFYLKEthzvhaEXqN\n8BZxHeE7no9HoVJ8R5hsVVXF/IJ4h+qVD/N8Z4Eq5hvzwhqUoiBybEI+BnJAYIthfZ8/e8bPfirU\nhIBZRfmbkIcZx5F5M7S6QK0LamewjpeXl2R4aUtnL2NkZnaFdgt9v8irmkU2J9ofeEkezVVpbszv\nQ223rXUfvsXDLA0KkRPSNhC4F1G8a2b2d/7b/8jM0twN1mh3e2s3/+CIBtkqXRh3uMbbmxvmVPCZ\n//TXfs3MjMKin9393eMYtlv7SvsHzMzsXx7+sZnFNb4Ja4I1Iwvu5UsiUwqzhtwTUBvRkWsroIWa\nsMXaSe2NPtM8cq/k/sg5m2zZsmXLdnZ2FshGq5EZq3eMKq00hxfG9gFlmeQDtL6GcjhNEyueoUCA\namOp0J8dY4MegkjGqOhmWcTmbMpa4iXD6x8Geu7w2DfiTXfO26CXCI8EOSBRCyjcORO2n8iH4xgX\nFxecVzKEgodN2X3XmGntqqIX5wlj9ehRZdP13JPzLJEzKEQksRBUBCvMVf2H3yUy8E7mBNInKmyp\nwqRD3yderDJ9vCeoLCJ+RpDkyiFsXCtrKsIxgFJ+67d+y8yOdRoYJxhPb7/1lpnF+feyRojp/+qP\n/qiZmf2rP/mTx/OENgRY37IoovIDqt2FLbZ2+QCzI3oZNc8azEtCmR3nkjlO3BNAkmCTuZqdg9zX\nmFNt821FYWvJV7JVvAjj1ncwNv25t1J3V5Wl2THNwn3d/XqQkwooY3BoGshOmaRfC7I7V2E9n7zx\nhn3bw183M7NXYd4pNQNR1pB78m1OlMUJhh2QDZDOfBzw8vrl+Uoriih/E341T6ejTP4zPEpWEMiW\nLVu2bOdmZ4FsKsk3wApztRTi2Sg/fizLGGsHspEqZ1+prLLhXnDOW1mWcVzOG/SmLLWirmPbAVfb\nYxYR2uBUAzTmzLyUVNL7qmmYR2tmy1qLSWpCKIev+mRAF3WdtLyFKUoq3Xw3wt9Xtl7TtrFOB9eo\nrDTHDMP4EH0matFW4J5Bo4xBWZPR7R+gKLByCjku5v/QdfT6B5l3eoTei1Qkyclbav6tnRoDPFSs\n32e/5VsW48ff/Wd/+5//czOLHjZi/J1D6xj3H/0rf8XMzHbQGgv5NbKbXr2KDcqCR41zw8OG9W4v\no+5Na6yoI+bUGAbNp6HVguzL/eHAe00jGci14bge6bWCTHH/K+P0lGEsiWjlOEaxTrBcy2VzNt8m\n40Ia8sGQa/HN9qggICKYbJYmqiazRfYZox2SP8L/q7qOqiISXYFp7d/xsMv7JUGS7tw8zu9GIU4m\nnORBP00ToZcvtPN2KlmfJMLDT4RPpjl2jiwhbSOhMP8CLJUYgPHJQ7Z05/WhGH/cFg9X95Bl9z2h\nJmofmqquCYkZXpAXEm7A2WJxq4ahSgk7eDkYT7U1cy9At5lxPt8V1Cx9IMOmaUpUgkd58OJ6ur5P\n1hhGwkEYS+sK21TKhg8nPChcYSwS7ZBh0aT2Qq1awiMoPGSPF0fVvZN+LvsR5zWLIRQk9BlmFPr7\n//5bv5V0OcVYXoQHPkJQwziSaKASRRpKOhwOTKBjPrHvcM3qGLSrFQkMCOlhHjB3nSuoxBgwXoqA\nOsfF7LhWWuCsD1Uqr7tQOMZ7Gc6DlySdKDmPWXzgYs++krBUWZZRGHcMZKQ/FB7Su+BEfSWI4b58\naXX47F2kIS+ci/lAJ1QVEMX/0dtnv9/HjrYSNleR13EYWKiuDhHmwdOkSVHHGMK48SSunbOfhN9/\nh5f4KcthtGzZsmXLdu92FsiGJrTbcp4py8Kwl+u6Z7Ys+sLbHagC0JNdChG62u/pacPLUmHL6NWM\nPJ4XaPSfVW9xGsfYOwNhOgmxAPpfPXhAj5QFg3dQCifnXazEs4bN7hj0giThS0QmxIdxGBZkAT8v\nDCe5RD57qAvyU4p4WZZRZBBSMeGcCMN4OjC8NoT0RvFQ2bMdYzscUqFPJNoDCv06XEsAACAASURB\nVMB8t6tV7F2CBCo6PYJqCm+x65ioxgrjmrGngJbrqopSQhKKRKL3lHAmv4MiVEighJ84/+XFBfcb\nvH/QmLGO2LPzNNn7oQ8MvGSM+1u/9VsX8zEMA8kIkKdhqAoF0xL2apuGMka6ZzFPXrQTITf8fCBo\nC/OyaluuBe/ZMDYeI1y7l3DBfEOKBugQ4UX8XJB0wr+B3Cf3bMB18Xrb41pQBDPM84vvOO6jw98/\ncI2TXktoJeI64AIVYo2fBLFVPNv6cF2VIwGx/5UUX5Io5AQ0tecN0IqWJDRNkxTy3tXJdHLUZ/bQ\nuiMCcZdlZJMtW7Zs2e7dzgLZMK7pGi6ZHd+m8HBWQr/URmlNXScSKDD17PuuiyhImwVJQVtV15Hy\nB7QiSWd4Sfx7UdCz04JEnLc5hUzCcXZSXFc6L0ZzS7Xkuzz9Vj87S05BvdFpnhNKLzwcjLNy427/\nyHebWfQs4YXvf/nLi/9P85yMF56aeuBlWSYSGiz8hAhh8BbZKdGRFUDVxvHhPfoiQ6xJ42jcZjEf\nwI6Jt7eLRn5+7vT3pSv+xXU34nXCCnddLDgM18T2GMiTgA57dcXx4rpRTPtW6HsPu7654brhWnA8\nilIGj/7JkyfM72AtgB4qyWtgv2y2WzZ1w+/wHeSTkH98/Pix1eGcbAoW1ggIhHt4npP8BdYVzc2A\nIF66Qkf87lqQI8b4LYF0gXYNZma3//A4huZfk/IIEHj6PuZ6xnAvqwCvKypVkUrYSqj+8zxz3Ci0\nBeqB+Cr2LPZE5wgfbKAHqrMnPZmZNc3JZoh+XuwEwtNng1pRFPy+lkdcnfxGahnZZMuWLVu2e7ez\nQDa18xDMzArkAuY5CjQKjQ9v18rR+JSFRkkbyMG4c2rDMpVrYB7CM1iAEJBD0IK/YFVRJHLeMIpI\nOomOxsXPzdJ2yqVDGRSfFHTFuLpjmmlRodIb6dXgc26c9N6E5bZgtgnyAsLpJMfirwmfRTEt4tW+\ncRy+lzSTwzWrHAmoxHZkBvnPrIW+6ttCY+4Qr34WGpchj3R7e8vrR+wdeUAt4BynicfBuTAusr2c\nGKjZEa0g97GS3KGSStu2TeRdPh2KOkGXBiI+7PdEGmjdDfbfs5Dneefdd83M7PGTJ0kLAXjRn/nM\nZxbn87JKWE+2aZe8KK51vV7zHsLa4PhsB+2OtUWuSo5XY/+EeTocDonkPxrPsRA3XCvGjWOaRXTV\n3CybG2LHDq6QEvOuuUii/rZNohCwCxGy7bqO+xmI5sOALIHKkXvyMkQYy0pKB0yeM/5Z5Ntf+P/7\nsgCl6VdS5OmjOcrgw/35upaRTbZs2bJlu3c7C2RDTwF5ASd/ogWf8FrAoPFiion4pRR1eYTDfIK2\nfJYiz77vE9SjeY1J+PGeEUKuP7xoafncti09BXDxKZ8iEuSla/pmQEYncjX4u3prisBOxWl1rujh\nSG5rHEc7/MrfPv7nj/0bx++U0qraobdW0Nqp1s4YS1KEdkfx2OjWftF8zeI8N/C+UDi43/O6UdgI\n7x+eMVBXXVVkHvnrNou5EJ/bg+eMeYaHinl4DNZRmNtHjx6xyFIbrw1yPVVVcY2B6lW6H3O7aluu\n2xXaBoMRF+6bbWDkvfX222wsd+taRZvF9hJsaYx8xjDws1oHA2O7jLJMWnHUUpNDJD9NsR5NBDK1\nrqxdraK0jOQVMX6MDexDIAezmN85/OpxXoCw6z+wvGf8v4ceRZbLPMfVH76Me/E3l3tXZXBWqxX3\nF8YNZPlhqKvBfvTtQyAiqvVqmrsexzGtRQw/G8ldz9MU0Y9cq+Zuqqri9xkxynU22bJly5bt3Ows\nkA3jsiJdXZZlrLUQzx3xTi+Kd4mqdNRpoMpWJCl8iwHGuYO3oXHkfhhi3kLkuNXjZhXvNJHtQ0FO\n8bgHV1cySd5F62zgFc1mrNuBVwtvroHcefDe/NgK+anCnF4mSKu64SXifJPzNFkP9Xd++fi3f/2P\nHK9DvGmvDIHvoC0x4vf4bNf3iawOr0Xm3aNc/FtFEtme27EBcU4ghI9CbN/Xhpgd94J65UDULwVZ\nr9o2kRdqZR+CQYT/X11e0mNVOXhtADhOUyK3D4Sg0jw+XwfktBIvH9e8vbig943xYS3YlltquQan\nekEFC5GIYl3J4cDP4p7A/OLavYIIamc20mhN83fWttxXyE+hHTSO20uuZe9yDMhdqSxT+2vxvmID\nu2+zxXFmiVLUVRXzN9+xnCvWBYb/l2XJ60eOTHPM2uqhdYhEnx+jIL5pnqN0jeTa1tJSxJvmbZOo\nR1kS4ZJRK0jp4+wsXjYs2NQ+Ca7A7yAUaIXKr16+jHo+IYl7lwSNL8DDDYyNCBrl1h0DC7ASqqbJ\n8X0xFfujN8sE5CmKpC699rPB38dhiC9dhClEOiL2N4+KrnxoK+kB43cPuLt63agsxjRNyVi6QHlG\nIhjhgGmabI2XQLhJkKjHeXCD+ZdNDF8sQ48wn7jVvuj4JF4s/rrwQsbDCC/Sx6GoEVTi1WrFhx8e\naLjx8cCo3MtY5w5htIsgn4K9i7213W75ICf1FtJKYfzUIHvxgnsUD+KN01jz5zVzBYFyb+Flifvp\n2dOnpNyaC9t4o3wNHKauSzTM+nA8rCv2fdf3XCeSBu7o21SWZSyydgl1HMfMJbLLtNeVV0k2i/P9\nZlC63u/3Zv/sn5mZ2X/4S79k/yIN+7NuGrsM64+wmd7D+pI0iyFj7cyrPZmmuk5eQKXc76dkZhKa\ntJZHFEXSUfiTaqPlMFq2bNmyZbt3Ow9kI29p/6bXtye8I8ipINHX9T09Py2IY9Eh6JQ+uQhoGI6j\nKs0eKhYCT0sJMXmvY3QJUjNHfRSE4ztqquyNJuCmaSKJwAsS+rH4AlZN/hWCVtQvKcoyoh9Rhk68\n3XGkJwmvH14ohC1BIZ7n2XZCQcZ32GHTeWNAjtoZEH4sxnSDUKSD+CRFSKiDnp8jnbBQWBAIigGL\noohFv+H6gUq4TxyC0PAHBCGBiDGDQOVVXRM1ADHiuwzxBe/30HX0MtGpUyWFVi6pDsqtSiwhNMTi\nSKf6jDXBfYLP6JxOvr+KRAhU9NUj4MEjIzNbSRlAURSRrIA9FZCSJqUrp1AOpHcj6BlBM1LQ12v7\nL77ru47XKtRqzCFCcFcPHhCZUp35jhCnJysgJMmQOwpPgVJcl1OsEZDCIVwP1sOHmHFOPI/uGpMv\nzIYpsal0zy/tk0P0Ez4LqkFhKapSZPlxlpFNtmzZsmW7dzsLZIPkPLzIrZPrPkgclskuJPIhUT8M\n0UuEgKAQBug9dh1jw0AlXnoiMaHrMhYKL0DQxTxN9JzoKYgXwBisoyni3DsRZfT5HnoVHyPIN88z\nZXVgihK12LMoCiIa9Vo0ptt1HT1hzWuAYrp3si3auXSUnJNv35Dkue6Q0kDsu2lbIhuYFmx6LxHo\nRAtNKZzpurRinoEi4E0XkncY+p7euCZmW8nL+Hi7Suljn4CijLj+W2+9xb+9FYo5kTfSnOQ4jlEs\nUaIG8Igx/v3hwAJHTfofJEeE6+mHIaK44wg4D0ADz0PrAZtnnlslbUDGaVwRt0muBvcE7mF89lRL\nESAYjA2UYszlarXi8wL7D+0ZKDrq1pPrhfIC0NEFLRZOYqm+IyLQOXIC5YpA/Q7HeyiIGJGB58+f\nx4L3cAySNqSo09OeGSGS+973/UGBeinPCs19Ti7iUEs/qde1jGyyZcuWLdu921kgGxZWijfTrlb0\nOBJxzeAVfDowh563LWUf0NAJXobKoXeueyDe+pAhP+UhcJwi96D5EuYw+j5SCJEDgZeLuLqLcbNt\nAOLpUiDnadKICZNFh9wHjufk7RX9oMhVO6L6MYHSi99hXhhHDl5j3/f0XkkHDp4YkA7m/8GDB/R8\ngUiBLrDmFFGdJs4jhR9BD0ZBpQhFlq5wUNlLZICFY+x2O/5Nac0YC8a/3WzoZWLvVIogHW29FnSl\nHUvZnsGJZALNY57B5Pt66F2PnORnP/tZFoVi7hARAEL78HuPEjTv/tKH9NhNkDCatIEC3TZNlI4P\n+xloCt4zmnzhWm9ubyPCQP4MMkDS/mEYhlhAGcYLijLMr1kp6BJzh32jslVmgozMtWkI3yG63e95\nv+zkvlHJpaqqeC/A2PoCzyS/vkLHh+H5gn1zOBwoc7UTcU2NJrBDr2sSiO/gmYDzbVy0JSn4FGYZ\n96mLFGiujSxL7F1Hd7+rueHHWUY22bJly5bt3u0skA0YFuw572LoWuBIRpVIyD988IBve8RqUU/x\n3nvvHT8bPJ31ahVZHCKuxz7pDk2wwFGKr1hAKY2GRlcIyjg4xh9+4u+HYWBuhaw25by7797ZWE1E\nA8uisFm8b3wTx28kt9U0zVIy3yyp4UCuy3tb6n3SOwwe1HazITrRwl31Ene7XWTRybnZakAK/bzE\nu8bOV8LwKYrCJmE4ATFpHUHX91Fs8EQtlZkUjwriLRxa83MJ79SKgtfkUYO3J6EG5uLiIhbW4tzi\nRb/95aNk/c5J0qsXqoXDZVkmAqdAOrx/AsoCopqnicWzuHfxnV7YdWVZcj6uRfATzDPknuqmSZrg\nab2QbwOvwrs4Doukpbi4cbVQmAesDXJy+LnZbHj9NyJNhNyQl2/RSAaLxRHtQF5sHJNcKYysMUEg\nvvCbTQjD8XkPS+7PLGWN4VoHl/9hCxQ8P6SNgo+C8PmWczbZsmXLlu1c7SyQDdk74lX7ynBtCayy\n303bMhYMFhSEFoF0PhUqiX21N2Px7pxmTtZ+nlPEAfZcGH/CY68qxo2JbKQ5k6+pUa5/LXItzCPN\nM/+G42i7AHiUVV1boTFb8fo1ljuOY+I9e0kOs4hsNtttgpC0BsDnN4hWFbVh7lC34irD9fhAKcoG\n9DIkDbxOyRH5+aa3iRbAUnENb24cR+4PHI+eu9SM+Pog9fgoEhrOg1xA0zQ8LtAO8o0Yg1czgLGF\nr+TeWHsxxfbhQ7hWClqCSeXYRtpyGV5/Gc7zjeCVvxG+c3lxwePhXqhDLlHnZbPZsJ0ykAJyfMgr\nUYy0KOw6jEWZfDqnZVEkShisz0LNDGqNMJb1mscD0kZ+UOtYpnlOkIfWbuFn2zSxFkwiGjfC1Jyn\nKVET0VxKLft9e3Fxp7CvMuUOXRfbvcve1ZyLb8vCBovYJ7zoOAfa6oMt71/TzuJlo4EhfwtpQZjS\nKLGRGpfoVOosN4fbWI1LBC7ODXkP9GbpukT1Wbtv1pL8r8oy6UU+S4gG1roFY8JawjALCiY2HUI0\nUnDnXxx3iUmQ+igvoaqqkhAVk/USjrrYbnkzs6eQEBK8Hpnqm/lzHn99/P12u42SJXckh70OlNlx\n/1CpWFSaKcHiiB/aE0np7thr1jQL1WX/N37mRFiT0j4S5mIPIqc7x5cACinDfkbBH8Jo+mLxNkkI\nxKtsc/3kAekfVngJMLwXDNeMlxEoxE1dx6S8hJQxpz70+cC9TMzMvh7C2girvXL0Y4xXXxz6sqkd\nnR52Sm3czKyCBpvrBwU6N8YPUgj2Rtd1nHMU+eJ8cGLxsmydjppS8DUM7QnGvewPVb/Hz/V6zWsh\nXRrnQwoCzwxL+z6pTiDDYO6FraQBVdk2M2uwBickt17HchgtW7Zs2bLdu50HspFwjheXG8WDhEep\nybu2aSKtNngtePu/DKEJ9iK5vbVL6YHBEBO8iXCs/W6XJIVHCbfA5+yRfLTUA2F/e6FcrjebWAAG\n+qFQchkyc94W5XTCuRn+Q4LQFdNpmA+mtMxqHJNwkVKTMV/b7ZYeK/ujyxqRZOHOoegEnhnFE50X\np9RkjluoxEVRxNAdiBdCo/d7SxPsDIWF42MdZjNr7kAnHJsLZ2qYRdGIF+A0O+5Zoqzg0QORAPGy\nIPREsR6Mx4DoqEv645rwU0N60zQlCA9hLYylCfPDTp77vb0dCkuBpnAfrhxhB/8HrRvHw/nwExT6\ny8vLlLQhBB7so6ZtE1TcSFhHQ03TNEUqOPaLIANfeIoQL3vSIIR1QnJJO/BquI6Cwl0XuwNrQbMQ\nkDz613tiJc8XhuddyLo4EXr04x/LkmhFafsw3mPu3INERF7XMrLJli1btmz3bmeBbLRPjJdIoKQ4\n3tzyNkWMd5omeiee4mwWPfproUT7zyq1l1IadR1jntJjnp6seLRmsYiQCU54oxLj9+0Oesm7qE3T\ntJAS99dG5OGQAvvBa/JS4vYsnB2GSGxQ8UQQBVwfHUiTKA2YhY5hbEVRRMq0SMgDDfnko4qXqlgg\nxou8hqeTYj/4fvNmTvqnrrnfmHRXOrPzTnHcQfI6mjuzoojeONDgHd4o5qAoCtuFPAjGjb8hOcw+\nLq69BHslCbXazxOQnuYFYB7xaTHkk9BqgYWy4Rh7J9RJ+q8k8IFo3nC5JqLhMB9o5fAUfYTc2mtP\nF4wN6MLnWjWvQ1SOaxOEYL6MQaIGmped/fVKZ03cAyiyffXyZSIN41sKLGye417X4kjc01JoWjvR\nUe38Wcq9UhZFFJoV1MbCaX9eQXraJsO/IOZTSPETWEY22bJly5bt3u0skE0iq+IKi/TNncgpODrs\nQSTRPXXQzHWJfPnSnoXGXquAcigNLnTjuq6j56sy+5JP8mOEl69ekRb8TfNsdkfhHWxybBLN43B+\nwmeBpHbDEAvjhC12EM9k7ST3lXEHhLCTOHtdVUQWkKnR1gves4fXCY/Yy3f4OTRzhZ/h/yp8SDl3\nFBm6lg6D5EtwHuyF0XljbMQn3ieO1TYN117zUkRBDhWpPI1SWzWvNlucT+wXFQkFS6p0yMkXKXrz\n1z4KsqHgrBT4jeNIlEN6O9hbQHghIoCxdYcD5W7wuycipcNcgmPcYfzICY1yj4zDwPnlvEgrh42L\nRJSCLtncTbp6+tyF3jd/q/khMzP73uGvL+a0bZpUJBWMMEHWpRPi1Hylish69AbEqPeNWlPXjNL4\nefVj8vlXjG8lKLmSvOY0zwnLVxvo4WdZFJE6jVzSHRGYuywjm2zZsmXLdu92FsgGxpzNiTc937AS\nq2wcWwdv3p1w/eEN4efNzQ09RpV230LgMhxjs15HVgg8pBOFmWbLolR4i514Q4mUifPmKve7xf9d\nTqR00jJ+LPBKgQqmeY4cf41HC+PHt49G0WhSYCtc/aos6WVRbFQLN52XpF4+awoQK3bx5dUXgjz+\nFLzcn9kt5kFFMMsq9oDfiQff+PmwI1Jji2FBfpin2qEheN/Xgj61UHZ0eSO2IRA2kEqO+MLBRjx3\nNvwLn91ut/S0tcB5EoQwOARssp5shOaYgywSlZi+LxI1M3sQcnS7piGygaHtgV5ru1pxvnF/At2O\nAeEMIXfT9X2sD8K1APHdkXvy40YBayeIhOw9hw7ZjnwMyLoJ97Irmm4F+bJ4WdDRo7IkqtpLofAo\neY2iKPh9fAb/Z25FniseDalUjNYhlWWZjJf5GMnr+rYs2hwxEfEsioiGkRO7g8F2l2Vkky1btmzZ\n7t3OAtkcnAqAWfSMZ+cRq1cLb8DnUeAV4jdPQ17m0tV7mB29RBz3IPHdWyeYZ7ZkvQwiQY9jQIae\nqGIcbRaGE5lqwsevq4pvfHgZEANMGqW58cJbuRAvhlIjRRGVGQRdseGX1DLYPMeYdfB+EL9nLNpJ\nXsDzgwzQe++/fxxL+O4bwYP98MMPef1kE/1AuKYp1JVQYKB0Xpotrq0Qtptv/419gNj2BK9Z2y47\nORyDxxemySOD4/nLqEoh9UfwYJGjuLy6ijVOgtowNuS2tk7lAHMI9hbOB+Yk7Pb2liy00THUzFJG\nVVlVsdmW7EP8H6j0+tUrXvcbod00xUHDuCE34+ubtB0GanDIgHJMMcwZ7g+VU0GF/tOnT+0boU0I\n60hQmxOuGfPSrlaUJmJzQ8N/58XYJqdKwNoh/CzDujoBS7Pj2nEvSVTF53XMjntKn124tmcBtfnc\nG86N1ieoveO1Qa1Dmvv5a/U5IIwB30kEWwUNMerSdTGK4tCf/65n4O3D+FSO6nXtLF42k8AzBCwG\nF2KCqZIrJRimKUrEiIIzrHZwVWVZ8MChojOKRds2eWgw3Cc3sg/rILGOQs9KHmxM0jkqLh48DDUZ\nLieGZ/CAUYVifRlbUSRSPzPCAtKVtHDho7te6oTe/gUl3VMRHqE5iQ0qKYPiOy8/i5BZUUw2Tbzy\n41z9YFjXn5Pwgiu+VCmOREvKrR0eZF6l2+x0cbHSpJU+ulAod4V1/m84HgtlJRxjFvehfofU676P\nvVikCLPWsK6jG2tRp3dyYEou4RjC75EI92N9EcYHCRt8B4W+SE7X+32UsBHJIpVGGYfBPgq9dNB3\nBw9vFFDiWrcXF0k4Vefd68mZHe97XOP/WB+JAasy0Oltqbs3jWNC9EiKrB0tW0kJGDeIR57Gr2Qn\n7INausH6nkGzzBX7NYkD5lWaVbZHbXalJfipzydPQLpLp+51LYfRsmXLli3bvdtZIBuYJj6tKFh8\ndafchkM+2jekEC8RVte1bSWZDY8EXiM8ldV6HRGRIJCkIMoVYfV3KCtrP5fD4UDPCR7kAR6wFF8W\nRcFzAvYfBNKuHTWSCsWSoE2olk4AsHfqtGZObkcIAsMwENkA9VyEcKImHbebDT1ThCnrv77s9Oh7\n7sxlgPA/uPSuqs/Dgz8Oe/czx7WahiFBeKrgzLCDU2c+FToxS3sa+WvRHiGk4DuvOenf7hCYWUxc\nr9o2eu5hXijrA9Tj5mV0CMAsSsQoMaFy4SKqmzs1cLOl1085I4xFaMcsJHRoEXMFRAa1aozpjUCF\n9sQJes8yl4gC3O52DCVBwX1y9wnOjfnSHlTagZZkAEcA+cXyB45zVS/30vf++T9v52L/1fd8j5k5\nUo6L0Og1J4WV85zKXeH6paxjdkXiDMEK4YjnPSGDo9T7j7OMbLJly5Yt273bWSAbjQH6HIIKZcLU\n4/Yie/pGXzmPz2yZUFavTuPKh8OBHu4c4tBbHEdit97LQP6CshWCioCcbm5u6On6AtVT11w3DT13\neHr4ieMWTiZncPksszRHAfM0Ry3yoieMAjFBA2ZmK6C18B30axnDZ9frNZPQKtio9OB5mmK+6Iuh\nOO0LQGtLj41rVVVJsR5MUcrQ9/F3Mg+lINT9fk8kpkV7TOKG69hsNvyetmcACteunF4qRteRtHfX\nGgHeJnuuBBTgi0TNzMphSO4PXHMj94LH/PCk0W8G988eArOOOAFSzEX4LMaPYulPB9JIXdeRfi7E\nABVP3azXbKmwkvwl7m3M6cuXLxfj8WNQDxz/79vWvnv1V4/HH0IOTjz4L/6ZP8PvRpLCn1p85tBh\nfTuO9eb2p8ws5pZIxECPJ4d6VfYFBIF/92d/9vgZoch3fR9bkWj+Rcoa/PfjR5Y5IhI03P7TPLEW\nZvvOqDBFPx9nGdlky5YtW7Z7t7NANjSJs3tROUiBA0VcCHOj77pEngKeyQOJ/w7DYPDPlYZJD8F5\nUuoZJAWUJ4TplDZJMUIIfKIYdRiShlaUdNGOfk7GXuUwWCjoKNtKT4XnpxLmmkfypg3p2PWv75Oi\nyEZyFqM7Po5zE8aA7qkUS/VsHfFMkV1QphZyOnVRW/mlJa0T3r4KiXZO4v0gxb/0kCHNczgkTek0\nP+JZaszRCF2feR2InLpGZipEqvFwT1OtpYXGjSAbxvEdewmmUjk+bq8xfXxzI7R3SgtZvP/AGgP1\nGT/RWMws5vI0B4k5BIPt8vKSUjYqFQPzNHJf8IprMUvlgtjwru8ThqZ66/jOkUL8eTNL74+Yg4pz\nrMxRPiPQCM3R00fJdepdd0pcs3S5QbO4VooOx3GMSNrl+8IFLK59nqY0n6byNy6vi3MmUjyvaRnZ\nZMuWLVu2e7ezQDaKDLxHPwhvXeO99ABXq0SWnHLtQBnu+PRERI5FWVdN20ZP/YSHZ5YyqsZhMHxC\nC6rW0npgu91ahT7uEpNnjYUTmdQ4tLbJRozY5xCSpm9ilBHZbBI5E3r907IdQd/3i4Ze/rPa3Gue\npgQxoo5J0ZWZyycIqhhljTwimX4gfPYvSz3CCYQDttXhRP7JLM7lMAxRTiesBbx0sKXw967vk1oi\n9eA5H+Hn7e1twiZSzxLWOPkUII5Ccik+n4c9dBkQCD7La3djrMVLxngxNjDEdq45G9YL8wDkiJwN\nvtM0De9D5L9YHxRQEca63W5ZQAo5HOT4yL4MP/f7/VIs1yxpe4A9x9bYdlpg0tsFhUS/sKhzOc4v\n2imjVikUrtYVP6utBTZsd/KF42erijAIx7H5Ly/GgDnAfXS72yXNFzGnKgw7OVFaL7ZqFtEX1sq3\nhU4Ej+X3dqI+LWm78TGWkU22bNmyZbt3OwtkQxNmhJer0QZO8A4R762qip5AIo9xoiZHvR8Y8yeO\nQTQ5r8EslQlB3qFxjBGtsUAe4IAYP3I3bZtIRDCmKvMxOqbWXVXw8Cg9e2QU9ABUpTUp4zDcyVyB\n8RhtayYsKHjeaKrmUSIb2wWPDMgDMiS1QysQA6VEzJdCzL1Yxtt9Dgf7ArIg8KKZq0GFd9cl9TXa\nyM0Lr2rTO3j9mq/zzDbmAQX5eQ/b7IgUgMbJWhJUSBRjTmFD5g5oBXN8e3Nj12GeUbulXj7mqyxL\n7j+K0krVPvaUl6HHuMFKe+vTnw7TNC+O3223iXyP5jX83DWCAuGN4zMY036/T+5hjOkqjElVFEqn\nrMBcmyCby8sfOY6tqV1NC/JbYV+2kH2C2Gtj4/h5jNTM4rpdXh3HslmH1ghVGRmI+9AqosV3/+vj\ndwSNjuNot9LAEWt+eSJ/omw3MkxFfaBtW2sV2Sgz2CkIaI7mLmWCuywjm2zZsmXLdu92VshG6yc8\nU0Q9SDJPHJ9dY/qzsC98nJZMpzvkveH9v3KCiOpZwvMu0ObX5UjgAZP9op680xlSXTbVV/LMImXC\nYdydeLnrrqNHqSwdHRvi4L1ruKa1Ppi72tXdaL6LbXpFleHVy5c85yZ4LcafGAAAIABJREFU2qiY\np/Ap6kDqOh5PrlW9c1jf9/R4sV7UphPFid7p7WmOTJucIV9oZgljkKxAd1yvdebPqeuKvTX0fVIZ\nTx0xtLwA8+zmxvaY13BNrwLjS5upefFYfFaZgr6OCteJ/AiuFSgU+whoYBhHrh8iC/iJa/xG0Djb\nbrex2Z2gLKAi1GV1fU822yxRBNT+QMy073teI64f+xkCl0DYWN/Nep2wKyvx5Osm3ldANHyeGBD3\nkmHWrto72YpR1QEIOe71veTPYNr+fLPdRg0z5OVkfy/2JfKusleBH31b6EJyNab3vXt29BJx+aQK\nAmfxsvH0TrOYhF2t10mRpVL1YD6MpskubAo8iK2qbCUdC7k5hFrYNA2Tcn3Y6EoUIK3RC/WFBVHl\nVsptuCT0LA8/kgpOXHvr5GjM4strlO/4m5FhOgknVpIY7rqOSVY8TFiMJi/LzXrNh1QPumg4Dh4i\n3l6EhK8KBqpas6cmY5wIjeEakcTFtQ7jyPkkdVWo56TkvnjBEAdCEg8R4gvfQQioXa24H/CQoxCn\nC7XhOvDSxprj5yBOytPwQgRJws+LKv56qSGExPCyvZYXKx6yDx894jpiHpBw58sHYbtpshe4L0Ai\nCGuPhwmOi7V69eoVx4m5gkEF+woSNLe3SXgL84/70ZMikk6oeBGGMeGa1+s19xnuVfztRlTZH4bx\nt23LNdKXOYyEkn6wYQz0aFu+bKtyGersDh2Ps704/oz3Vr34f2GFTfMyNK0P7UleKLV7nuBvoIgz\nFOlCwxrWxrpWKFT34TUJD6/l+eKdQCVeKS394yyH0bJly5Yt273bWSCbWtAEvJnrV68SiXftqgib\nTkh3Ky0YnlTbNDyu0j5h8DYOVZV0PcTx8KZX6ZWFfPsdiTdffMgwmfYCkWIyX7g6SYhQ+82ULoym\nc0UUJBI6fd/TY1+ttQVAWgBK2RSR/lEp9rZt+dlWEMde0FdVVYkgqxZoYh0Qkquqij11YM+CJ48Q\nDRDI1eVlIkZ5Jf2IgN7maeLehDene8GTLJKQoxNmNYset28VAE8S84J59yQCs+N+xBpA1v+FoC0c\nY71ec74P7lrMnNgowiNOtBNoSgVm2dnU0d+V3q5EFSCcaRyTsKqKa1LyZ71eiJ+aOfFYSE85GRsK\nhwql+lrk/rF2jx49ih1dQX4Icwnb7X4mzNMP2qH7a7wGM7P2EOjkVz+yOK6ntk/jknQTUwNRfgif\nieHVLy3G0Mu97Dt1Js8EERCe5jl5llUS6UFhuY/A3JVy8KkMPJe1jOF1LSObbNmyZct273YeyEYS\nqzvXLROeAbwrvmcRf/R0zfA7eIsqQOnj7exQ54qWzIxva4xpvV7zd/Aomex33sTxELEgSmP6Sn4Y\n4cnXdZIQhDGRHM63G8ekURRjw+rxOBqzdvGcEWcPHg6RWRF7tJNajfmVxGfXddFLFk9KC28367V1\n4Vya/Ifkim8xoF4zm+HJvHu0uHr8+PgTCAReP4oxXfdTxJoxL/ybrNnghAr12tjf3smQ9Ip8xRtl\nf3pXXMyOkdKYSlsDrNdrnhOoDTF9JMJJwa/rRJxT85mTkzdiTknKDJBTIokhXMfFdhulbJAHlEJb\noqF5TopOCxRoCjmiKEt7FNZR2wM8Dr9/EloX3O52yd7BHAJBwttH+4PVeh2bxwnBBsZ5q7+YFJJi\n/Nst9nfNnySVzMv8HKysYhG2FhprcSSecVyXYeDxVKhV7+l5mpiv4zNHi3adxJKeW6n+XujTd2pd\nfOY1LSObbNmyZct273YWyIYihFJIWDiKMlkT4nHDSxjHMZGXYFMyYS91TmplFq9FJTvMoud1JYwY\njW3Dhr5PpNzvapXg28TCVL6HuYBxpIfjpe39uDEvfd8nxagl4rIiOw/q9jSO9JSUzUWhvvCz6zqr\nQPkO44fnDiOy2WwSaRsWIgpja+j7pAgQuQRtHOXbNGAPgYKLeYInDHv58iXRCqVJwK4BBdWdR+n0\nZMoh7yO0YDPHEhPPnb3rXf4R6FXzJaTQunwgG9AFzx05A3j9XmofDEocT6WbkJe6ub0l06uVPI9S\nzP2ewH3ZirwRDMfsDoeIJKUglnkvRwUG404ZmmB7Yb/f3t7aNaSfHNr25zlIEe2zp0/5O+wToEKO\nG+3gV6uEIdgKsxS23+/JMGM7kgl52OOPaozsLrDc+uGYq0kki+T40zTxGthCWuRxtJDdj1NFQf0z\nQ1GKim16w/dHea68rmVkky1btmzZ7t3OAtnAI9EGVVYUZECwNa0UJg7O81TBTM3VLBoECZ9f26xu\nIN1dllYFjw6ig49Qd4PiS2kF0A1DzB04uQczs0Gk3gfXNhfXiu+qHHrnmGujoB7WDQRv/fr6mvNa\nAylKXkDHNs1zUrhKwVL3GZyXBYLCZCHbDTmh9ToWpcn4HwYPE3H17nBIPMdWGFsqdOm9MMwrEANq\nLMyhZjLuwvHgDQ6CsIdxTFpPULBVhTIdwxGfXYu3qfVHZVHc2egLNrl1AOpEPgS1Fg+DoKVHX5Q1\nAcIBWhSPeOj7pF4C8wIUgHsPOSGbZ64BGIG1IJyVq8NhUzNBKYXLW+IacW13Nfozl4fcSq5NEdoo\n9/Z+v2e9EQRDPSI1M/vq1752vK71Os5v+MkmamHp0URtHEYWfKIQVIVyozjmyM/4qMzHWbJPEL2R\nz/loEOuXJF/n2aL1HREXbTDo9wh2fpJb/bhr+ESfzpYtW7Zs2f5v2FkgGzYSE0/wcDhQzgRMMI21\nblxdgnrl8Ka1+tssbVFATrtKioxjImEOCXDGiOEZu7yDtjsweJTCsllV1ULszixFeAuRRzCygsc6\nSszV52NU9oasHxkv4vdVWdLL7AQVYryjY2FpTkklbpgTalvOJ4U4gUZCvsGjWWXcJbI1YS4w1sur\nqyQnBrSl7ZFbxz4iEoD0h9ST+JwFvHGyxkTqpnHXiIZirdQWlZLbunXV9yqXhPlnG+oqythT+kfz\ndW6feIbX8aKW8fXae7tSJ9UK+mE9iWv4p8h3LW0PeO+9epUIeZItdUIVhGsfvq9tNrwsDMVdUTcS\nrgnsMUW+RVFwjpCb8SoOZmZf/epXec1vhvUnAqt+JnzqhzkPalHJA0hkeY1DP8T7WiSQYL2Mv26a\nBJ1QIBd5Y5cbPiVzdRzTMpc9uaiKjkHH6P9dnshTvo6dxcuGmlpS1Lnb7WKBE15EoKuGkARu5Hma\nKMOAydBkGia/6zqbpG+D/5sfS1mWkcKKMAA2N6CyFEYVZRlDBxJuSbpb1nVCd8WLlQ+/8F0PW6lA\nDXgrkjRFWUbpHRlnogbrwkqkVIbj4oFmUNZ1RIrBncsspe9SduNwSNR28SKiwrBTLsaaH4RwwK6t\nsl+qMnbJVBovwnN0JuY5UeIeNBnqpHSo6xVCNlDk5Rhw7W2bSH4gbKYK3ZwXp0DdS4JWiwKneWbH\n2evwE3/DcfGCqqsqUqall5M+IGtXoKk0+rUQQFQB3B8X98haQmRlWcaCQ7xs5MXNRPM80ynTYm4Y\n9lxT19x32Eu41hpECnXILCUAaQEkHIxxHJOHM2V3rv47M4t7wYoiIflQ2blDYfPnwzzN1vVfNDMv\nYbM0Tc5vt9tYkiFaiOoIbzebSE6S4zNc6WSw6CC7zq1+DF5XkaE2r/z+CSyH0bJly5Yt273bWSAb\nlULxoSZ2SAxehEpEeJitoQfYG4H+ir8//egjerrasx5hO3gmlxcX0fPSJKtIRsDqqkpox5oE9BBX\n+6moCmzlQjatFPtpyAnH8nOnnpP3bMyWENrTZ82cZ+kEPs2CKq6gQKwNPkMKbd8n9F+K+bnj4fy1\nFP2xH5F41ijqG6eJYUXMITu4CsmiKsuUZCHfWTmqK8YNMUomxEV8VUMWfvxKJPHU7gNke8K+K8Xz\nZrJ+v3c9Uo7IBtese3meZ3r1jQtJ+/nxck0ruafY7VXW05MlsO92IsSJfXiKXju6EK9ZSj4pLIbA\ngApVgqr0a+UkjsxcfykOZin2ejvPnAfeY7JuP/7bv233Yz/+2p9UVHux3Sb3N9XBhTC13mxS8V+R\n5vLPA6qhS+hOiTFN0zACgD2qaO7jLCObbNmyZct273YWyAYeD3uyBG/p5cuX9Hw1yc3YqkMx+B5i\n8cjrIAeCN/2Dhw8pwAevEB4r5OyfB2rkPM/00uD5wkNAYV8pHpSZkyiBXH34LhLNe5cvKDT2Lh0T\nR+dtwAtF/B4IAefzYo+a54InonOnaMYseqaj5GVAzDjs98mawIuG13sDGuswxOI88dgfiZT5zfW1\n3YTrZ9dRQWKV5ISePXvGz64keV7IZ0cngWSSx/ASK2bHPdG4xKtZGuvHHO/3+0j6kFj2XuLrTOBa\nmmy9kU6joN3WdR17uYT5AdUX68acRdNEkoMghZchh8VIwWaT5HWwxxTdemo7vWVBePB1sb8vLi5I\nN34e7jns53feecfCJPL8Kquj1NzZ3e+/+HuPZ/uj/4stxk/ZIUGlq7bl8UB9BkHgP/v9v98WVhQJ\nGtfCUtzTVV0nhePIU+H/oFGXZUlEjmcP9hJQnYV7DuKyFxcXRBV+Xs3iuuIatxcXUdRVi2iDYT13\n+33SPdbn2nBtZktRWtipws/fyTKyyZYtW7Zs925ngWzgOcA7hQd36Dp6lop+EiZEUdDTYAGiMCvY\nna8oIgqRn+y2CG9vHIkAVG4EnuxeqLM2zwaOSyVehTYu6xwjSXMSlJnxRZmIP6PTpe8lb5Ep1zRN\nSqkOP9UbpaipK6isJb+A6yHTr2liPgpML6FJr2Se/DWSyinCnOv1mggDXvmH3/iGmbm+7sGbwxpe\nX1/T68bfQIfVfFhdVXYrjed6ob96j1CLLDV/QXZhXSddH/k3Qa6edsyWAtirYAcBoaLX/NUV7w82\nQnPI0Y+p9h6nXP+pgt6E3YcmeE68VOcAa7QJx8Faa65svdlYAwT29OnxWgO6Amrz4pLIR9kduU6s\n5//wL1Vcp4vLZVFxkktw47+SbpPIS6Fdg8+FKtsNP4GGcJ6HDx8yqoIzY35RVMwGhX2fdEQdJW8C\n5iOjIZsNu7RqpEElusxcSwFhuWIveIFP7cxrsj88hb6UPZSLOrNly5Yt29nZWSAbbbNMXr4rOirA\nfgl/W0kNwDxNiWDercjKFOLJ+9/RUxABzXmek1qCWuLV2q97GAb+m3mMcD5tglSWJdEaxoDYrRZR\nbcbRTKU+hL3EVgxFsWgR7c+t3u2CjSbsHxb8yXwt/ibes4pIeqagSpZMgqCsKJL5xTrSIxT5/MPh\nkDTDS9o1OA8cqMdL5Phxs92wk2An60fFXuHtFQWZPTfCaPRtj83MeicPzzWR2jDm4lztGfIM+KmN\ntJgfbFt+H2sEr1n3e+mKRRXxskW4tHQYhoHXiO/ivuF95HJ8yDe8//77ZhZzqB8FpLN1gppANphL\nrDUYqrjWP/mPGvuVP3jcX3/7247j/O6v3C7mUJmgRVnGthKQ4AnXiD2B9iY3Nzdce9yPmAegmN6x\nMRXNo/gcyBTzNY4jkRHmgS0MwvnYCPDtt83suB68LyGFhFyi1BLWdZ3kFxWds+jVIT7do2xLIOcx\ncznrLMSZLVu2bNnOzc4C2Shzg2yJ3S5WyAcjh1wYYIeu4/fgpXSSC2FjJCciCY9dJVF8xS6OA49A\n2waoF1CYY3dI3BderWdLEQVJy2tto9C71giMV0v90U7Yb2aW1DmoNAqlXdo2rTIW803OWNOC9tCS\nc/ItlLUuIJF/cXkjeJTwDt966y0zi7HySjyrhw8ecM2peBAMa4L5qJvG1iKcOkqsH971PE0R2Yg8\nDT1tzK0Tp7yRNsU4LmSOPOJUEcxSkBnW48Xz52RKYh9uZR/6nIuKXCoa9DlKzE0rzC9tge3FILE3\nNafi1T/CxXPOgCbAFgUzDt958PAh55WNyxxzz5+vrCr73FeO1wtWmtbM+NYcOI8K17JOT/Mb7nr5\nTJB7Av/rXAt2rPmrkANC/tnXEmpram0MCcYnFRucuKaiFux7PvtWK95bK5FJwnPA57a0WZrW7TQu\nn9fdkSN8XTuLl41POvufu92OE6OSNvpQXLxAcDyElqSgret7blqV6NAivcuLC3spchWq8aQvn8oV\ndaqis6rA+kQkoPDWPXjNYiJ7fzhEZWnXbc8sVTD2/ThUekIlOmYkKs2Srn58mMjDa5qmCO3DcUZJ\n9rcuxEJaOq4l/B8vSSRFd7sd/4YE9e/55m82s2WPFLN40zx69Ig3x17+xvV12nS9hDiRxNXi4nEY\neL0qs8OCVecQsN+M6zRrloYmWxdymt2e9OdW6vKHH37I+cULFY6GUvOrqoo9f9B1M4xJC0uruo4h\nt2Dco3dQib3EEuYZ4Scc94MQMqubhuOEOvUgc0hpp7KMCuJSyKsab33X2T6M57u/EmSYJKyoSuO4\nXn/cSX7vO+AyLCxEG+146XtSYb7ZLRSSOeF8F9stXyZK2GFvI1GMt3nmOSt5ubRSgLterxO5GlXB\np55a08RQuhAPtKzBiiIhaX1Sy2G0bNmyZct273YWyIbehni/vevfAs8UXhgpls6DVSquUvS8jI2G\nuVS6BW/6uq7pRTCcJv1UkODEGL2SLjy0xd/cWKZpilAVIbcwNngoXm23E4TUChqE9+hDeToPKsjp\nhSE1zKIioK14TWbRe6N0jopuThNDJwcJNcE7fBLUn80iIQDeIjx3oB8NV/k+MdeuqNUsVbrt+57z\nXEuoSm+G0eLcNS5EahZDWUC7L168SAgpKimEkAr7Ij16lIRvuVfDdxFqevHiBc8NpIAwI8ImF67n\nE+b5KejGjsiAz5gd9xz7v4iIKdCKFu9N08T5RLioFOTrUQX2JgoPsbeUwj2NYwx1i2r3RjqZTvMc\niT/hXKOgWSVDtKuVVSJlhXsaaMMXNWLPkpqMcaqaclUlaE17aaFo/OrykuuFfaDFl1hX3yOI97Kg\nY30e+vuS6vESPvNrj7npZK8qoWkcR9532PsaIfk4y8gmW7Zs2bLdu50FsqH3KBTMpm35Joc3gJ8w\nvIGbtqXXg7g95f0lZl4UBQuU4EFRaluKvvZOHh+e40tI3SBej3yPK9YjNVZi8fjpWwO0Qrcu0LET\nOScnUU/v5ITHbhY9q6Hvo3cisWd6hxIX77ouyoXI3I0i4lcWxYKu7E2FM5umoYeaFNMGQ5z64uKC\nSIXtHuCZIkGJY4Xv9n2feJQwCg26uHUtnq9KpPg8Hj6D8Wv/D3jnNzc3ibyOCrUqIaNytGPYWqRh\ngIY6N25NEsMo+FnXSZdGmCZ+fb6BaD/81F7zfl1xXFwzzo21exzEb22e414K57xw0vz+Gnf7Peno\niqAp0ov7dhwTCX0lK1RO8NTsiLgnFdFFx1yRxdqs10nOgzkz2d/tasXva66GIq9e3BWyWQHBYM70\nWmGzG5cSBRr3rDQ7rv0skQvYKcJHUg6C+QUqCt/tDgfeY8yJy979OMvIJlu2bNmy3budBbKB56Fx\n07qq6JGSfSHNlPAWb5tm4emapVIO2u0uHMDMUu8F39nv95H1IyKat8LyWBT8CQtNY6tk2VWVVSKE\nCAHRGswtx4JTkU6lNS+atkl8XmndWhQ4z3OU+nEepFmkhvqcEWK47FQqMjO+UAyelzIG6bE5KjsQ\nHVAsPGPkaCp0Fg35qefPn3M+Gf9G0aisb+0onMoYxM+tK6jEfLDRlzDWzKEXIAGKdQoKArsOY0W+\nwxu8XYwbOaiyKJJcG7xPFkOjrUDTREkcYQwq43OaJiLcpJunCM3iPJXLYyKvoxRxL7/Dth3huNiP\nV2Gf+3wHkGIjeQwVN53nORamSl6tlmvEHvuH5e+z75z+6XFcUui9lufLehiSIs5R0AqZc30fmzoC\ntQVjszdHL8d9h/Vniw6gZ3eN+C6RnshJMRfs1pn7WQpsYT6qogWfs/ycXL4Kz2LclyrM+XGWkU22\nbNmyZbt3OwtkA88GyAE/i7LkW7QXb5kepqu70UJP5l/E4+yHIcp7S30NPCgWpc0zPXV4c5SDDx6b\nSsccDge2ABghtCixUBxj7+RwwJVXKRAwzKZpsg8/+ug4PvkMGFs4/sWDBxQXhKeE4yOnBW8f+ZJt\n39Pjg0cGRMamTa7Vri+oDRNxnAfxpsuy5LwC/eA7bCEBGaLVijFs5APmsDb4/RiuFVLtN7e3ETlJ\nnNr3n8c86XrBI4ZXC29uHAZ6eFog/Cqc29eBMZYdjsdW0lK30rqaKKwjBVvDMZ6GdUYOoDCzx4Gx\nh/uD+Ripg9luNtwP8L4fhe/iM0DL680myqVIwbDOoa/XwmcxPuwFePYHIIWmISJibiJcK9p8wFs/\nuLwAxo//Yy9/6s03eSytpdKcR/vtgWX3G8fPfcfwj1lXozUjPr9oZvbmm2/Sc3/vvffMzOyjsCZg\nzQL5DGVJltsoOcKExVmWkdUW/vYsMAZxH376059ezEHbtrHtc5jfWcbr89yadx3ls55dN8mzUVE+\nc8DjGNFUbp6WLVu2bNnO1c4D2YQ37d4JcJoF+RRUuEotilYYz/Oc8N/x5u0RN5XfmznOfPgd5R+c\n9DtjtHfInSv7oygKxqkLiSdrq+ZV28Yqb8hXCJKCtzhNEz3JXmp+gMTgPdZOhoRzFM6pcvb4aS4O\nrgwteNGe4aLCnviOVnBPjvFUiVeE6/B1AqUwb/Q8WvHedR3XRllpk3iaXdclORWMhZXWTspI9xkb\n2gl7cRzHyGQKewg5SI5NWo9XVZXUWnR3oIxxHGN9hhMK9WPz3q8qKiA/gPmZw3xfXl5ynxxcvRWu\n3yxVEhhdnkcZj5hnMDfbto0IRNqFMKfoPObb8DegCYwX4pSoaVtvNmwyhlzTY9SYYW99ZSkzddjv\nE+ROdp403ZvnmQ0U2ZwuzC8jHOE719fXC2FdfN8sIg6s2UJGSlqXqJLAQlJH9mqpTesc00zvP9iC\nSRp+KjrRlgNF/EOshxSW5evaebxsANPlIduuVomkAydVEuPDMMQOiKrlFI7hJ1s/a7I5WhdO04Sg\nSpgkuk1lyZsOx9HP+OQmHsAaKtSwzMXFhb0Rwggqj4GQE15MF9vtQqbDzIWY5Ph7V0RZSMKQtFUp\nChzdNTUulOk/68MumrTFQxDjb0B8WK1if5PwUN5LB03tHHlxcZF0OcVx9WXcDwMfyhtR/uX+cOE1\nhm3DuiHshWLJp+GB1A8DXxxvvPHG8fth7UHtxTxjvzeOpjpKqO0gasGr1So+GKWgGUbVc9f3yGTv\nkgjj5IiUZEIT6nCJkGrfc41AeuhljXCsdrWKEjz4G+41vGScluEoLxDtEQSHrHnxgo4hX+qYQ3mh\n+KJlEmzgXIrkFF4K+/2eoTus21ZIJ5PTcKRjJ/ccQ6oovL24ONljySw+r3APa1dYP4dK3+dLoSji\nmtvS9PlV1XVSvK3mSR1YCdUUfF3LYbRs2bJly3bvdhbIhkWFKGZ01NNbSYQrVc974qTrIuRxhzrz\nbJbAXko6iGxDXVWp1Aekc4JnxU6boGE7yiyLo7TACmjAFYCyJwXo0QivOZomZF1Ak4SHDe+Zyca2\njeOGF3tCUNHM7OBUYSuhJitF1IfMFK5r4tCHOGsJoahsj6fVUoU4XCOTlJD4EYHLzXbLvQNvVKWF\nfIhS+xJpQrV1xZOKjlF0iGQx5GQePnxo77zzjpkdZWjMoko1i1PD+a6cOrmKGiJMBE8Y17NyiA/z\nrMWiQFJWFAy3Ahn5AkRcm9lxzXGPwRACI3IVZFIWhRkIMCAKBGQNT/n/au/bWm3b0qu+cZuXtW/n\nWqcqp4hEQUTwEgKCoGhMgleClpeIkAcDPohP/gLBHyD4Eh8kBEFC4q1Q0dJEYkSf1HjDvEuqKpWq\nU+ecvc/ea615GRcfZm9ttNH6nOfsE7LMFPr3svaec44x+uijjzG+S/taI2gk5ujBIyj3yuu6zliM\nWYRHk2ua72EY4o10LESqd0ab5NRLTdPMmQZL+zEFLHByb2Jkg7CBRR4/eTJTM6EkgGyBtR2sV6u5\nBcOuG9VqMQfSqEkaGkv7X2pc1/F5tKiQcH9mOsAGeztHB+aZk8+yEtkUK1asWLEHt6uIbJyaXots\nRytWesRAAsC6nnO08MCsdqNvb/fu4SWSJj4d5+133onqAtU4azbmSTV1zWOyIAvIc/LCcK79MNBT\n9ya0V1Z3aNp2Lj6n5j+nFCFtu1DPUFMHsgqIThy0IF4RoaGxNHhdbdtye1JzpN8s8sexrEs1EtFF\nzKSjLNwejzNtejrWnYEiUJ9qpKAKb3xr4AH36qrIG4SpkWTz0giVPqCt7uXit2+8+WamN48I9Vm6\nVmjQ5PSERIxWqKXiY4ogvvDuu2z4dAp6zNdjaZLsDYrr4ApVcVTvNWKOqgDY4TkLeWxt9RylPNL/\nt03DNeM0RgeDVKviaocGxzTurDG0qrgd1oNT3DBbITQ+K6sZkkg0ZQxARXV7ezufowFtsK4BQ77Z\nbnnvIqL7xKj7G8kuMKoykmFXx/00JUySDRsBalVVc23MiFWpZwXQyRk9Gqcm0kjK1VI/r5XIplix\nYsWKPbhdRWRzCR7c931ebzDvQrW5J4HwnjPkZ4e+z5QQvXFN6eFZ67lAu5/JBkzTTINjno3DHIfd\nLvMwXPxNEUsHiXIi5toNajnI0Ss8uLV8dG9zCKurKqMbIVmn1WOUBBLRFM4VaCMi2JpmzilfgFZj\nDvphyHLLiECc5FAF47C/tYhIRczosYPANL2mREoRqweOwzDLMJi3uZGmxYhTRAUE2S5tj2v8bmrS\na1I9jc2B4zhTlKQxvTRiS0B+3333XUZtuJ7rFPXgcyDD7nc7nj9o/b1p2amcIiJTCWVztFHsa+Tk\n8PnB6jLaOIj94pwpRCdkp4iMFDodIU3FaY5f3d5mNUisDxznaPXAVddFbaSXLqaG2tMwDESFeaSE\n+Vc5D0bDkElJ43RqpMN+z/3AuB7RVGyoy67r5oyOo968dhM5wa6MuBXHAAAgAElEQVTTETFCO9Mu\nckm9dpqmWULEotrXtRLZFCtWrFixB7eriGycpBI2jmNGV0M02pk6g0c0n9YA6vUX1huAHkl/j30f\nG3g/1sjWmne00OYWBIyOk16H1JqI/EJkZhTe2Mdhv88knp1YUfsGRqsreIPjymoV4zjO40zn6AJr\n2vTlNQP2S1k+WSnTnXKd8ge6jW1H2n3rn1CaFYwFaC4gwg5CtxERsZftvFl3SnNH77zvuR7o1aXz\nQH1Em1zhdfNaSE4/ImL13nuL/Y/jyKjEyUsxp6So2W6zfq8bq22xLrNe8/wxTtQXiGQTCQN4/sgs\nDCkaUqnuCEFzSrSihLI6Ftyv9/f3c2NjisS4Zk1aYxyG+PZ3vnOayzQmEqsi2kpz/NFHHy2Jb3W/\nJvmB67sbBt67GCfqYKwhSm0LfVjYno2g6Tj/7i/9pdM2w8Ax/NDP/dxp3EYYzAblaZqbXG1tHWxd\n3ikCN40F55hJRyc7F407MWfIPcxauPUdakQTcZrL0Z7BLl/xWVYim2LFihUr9uB2FZHN2voHKLs8\nTaQhd1QN39q6I6tBEOljWPIxcloGGKOVT5GSHsybc5r8UdFuhkqB99uKF+Y9KDxXr6koqstkimGU\nYJgmHtNrFC6qBG/pcDxGbd9hzgbL5Q5dN+eWhVJlcRzsXyg0POLzvK8iwNj3AtQY+kosgtL9wZP3\nfH0v9Tyci7M6DBa5eg8MxhchPVYiFYxoGB3tJMNEFJrmSan1MT6si0GjYxl/I9LDuCYYi/egNW3L\nCBf7RQQFj/jD7343IiI++M532KuFSOY99IudkcPAX1bAsAbSfoG8U++6t3PyrAKpjNo23kkMGegb\nA9IM6EtKsDfNQnojIhdAay2Curu9Zd8O5hBsDy5d8p9+/Md5nVzum6hZ9C4Juesv/tiPRUTEH/qH\n//D0W+/n6/tM0t0ZFhB5N9Krw7o25KDTPDjdzDCO2X3uUuBE58p2ztTgWZymrufnq6HmXteu4mVD\nNmZrIFyJng2MgAFjD16v1/lDzyDFOtnkwzKOJFxwFqE3m3w/xogKY2HyeJzVJu033mT47OlTbvcy\nwS5d1VOBE0wHoehpsFcUJu/u7jK9msNhCWTmy0jSL0hfYD+uhYP5rkVlksVRFK6RIpMCpeu3O4dU\nI9eGdC6WJoLdGdt2RGQ6HPgGN/QTgQ2jCOxFfzoCaMDbbHhDYd7JzZUertBf2e92cZNSV6TTgbIj\n0mjgI0svo/u7O14/zNXHif7Gb+PnL17wnJBanuzhzaK/wJnf/NM/GhERr37+axGRp+sqoVaq7GHi\njMCassEYAEjB/UKtljQvq/U6g6Njrb5lcONxGHhtcI/h7sd9+ixts95s4pvf+EZERHzzm988jSGN\n5Z0EqnjbnNhutWK6FvO7k5d5xDLdONlL1wEl+HzB5Jx+g/nZ2Fo4HA5ZygogghtzYHCturaNO8Ct\njQ0ba4sURvs990e9qXT93kjnppyDBGkgPZ/mxUFR2qLx2HSIXtdKGq1YsWLFij24XUVkc8n0zcvP\npHgbsfQAmf4wLwMBMtNe63XG2IzUisP6NOxFwsfhu0zpCaQQXoU3VMEQrYQ0pw1WOOS5CtOwF+qd\n9JJMsRK9eQHVodtaFPRIhikPD50F3j1adBJGtzNOU4yIWj/l2Pi/a//AmMYxBvBJ5u5SEyObXff7\nmdHboKDetDZNE71X1zK6t8hvJZE1PUcwQ5uSq2qc4Fpgv0iPIK2DiEznjmlRTw+jSTAimj/8gxGR\nF+OdgXm72bBxFF4zxvetb31rse1eaZks6sH874xe5ma7JUQYc4Xo5XBG/ZRwf570cg2zwL/ZxFtv\nvRVqrWUIAFJAlLHebBgJtAaaGSzN/Qf/wT/guf38V76ymEtui/UjLRq4jv/mz/25iIj4E1/96mnc\nem+jATStSUC2PVMCKHsjABtPDzPtKnB1Xw9kKAd0O+1rmqY5hWys5n6/V9WstgtzFvzPshLZFCtW\nrFixB7eriGycSl9pr7Mcv28s3jXqOKA3gSfWmXe63W4z4j0HHGjePdN+tzF5s9Q4jvR8Oyv+Y/xo\nGOu6jvluRhEGguit3hExe5/Mr1tdqW2auY5hRfkMFJHG2A/DnPdP3zmMUrf1ukvtY4Juzn6f6Xs4\nsSds0WRo8+FgCNXhORqNDGCr8NheCSmm5vAjIqN8V097ZdBbGAv7qFU0zdysh2K/ASZaA3VsNhvO\nFfbjaopKfOqAj6xxGOuzaaJuMK/LazFY9LZarVinYCMwCC5RhDaI7vFwYK2D+4EshNFAVXWdATBQ\nw3maINbnNKkQYYBO5mh1iO0bb8zEp6mOg2jqRaoX3RuAYBiG+RmQ1kdj0RxrdH3P++4HE5wZ9Zd/\nkyIdZjaGIWqDcTeWgemtJqLnlDVSuvxJnIE42/VUYAkzL/48Qc0JO5mmHFSV/vJZgdr2OM5Qc4yp\nQJ+LFStWrNi12VVENi7qpaR1Du3TBsEIEfCZJnoPB0NzgJaceffNJqPtYERgeXU9BqGb6XPfVmsM\nHgU5Lb6TBupnWT1JPG6HMXKMTtte18yrezOgQ1DhsXTDkJGhOqHjIiYyqgwiwSzP3oh36xHTOe9I\n604Rs5fcGYz0mHLzVV1nMGBvpgWUdhxHirFtQZOSvFxXvpymWWEU1w9IOKDQEDFtNht+RzSh0b+w\nXmLUOhER94ZY2xmJpFLyeFMd5p3jHscZsj5YzdPW4zhNMxLQ9o+aiCvHqhItIhDURRwd1TTNLIoI\nWp1UI/qTP/mT8ZtlX/2Jn2DtA+OE3Abg0y9evOAcoen1iyk6cqRp27aUKMH4EX3+kZ/5mYiI+KW/\n/JcjIjUVY72l8fzxf/bPIiLiNm27QGPafUjKIxCW2v05SQSS3Qsighdxuq68ngbnZvOo1I+8/uxq\noRSn1P1iXcfnsxLZFCtWrFixB7eriGwO1izFOo3IFLMxzt7sR8mFDuYp4E2sSCT8RY75kXm18JAV\nQ+7knO4NrC3a6odh/q3VL2CjeCLefMUcPH4rnhDz/+k7jAXkmhpd8DtDjSgRX8TsqazW6xmNBm8O\nDbZCTIoxkebc+xBMm1zlCKbxfO1AoyEXcvIamTfraURZe746edNo0Hvj2bP4IDU0XopYtX/FxfTg\nybuE9zSOM5oIZJ1GCuoEq13bZrUZfIffkjJFz9GiQYyb9YGqio61hyV5JGuIUn/B/bcyiQ6V0o6Y\n76unT58yUkRDKPaLaOiR0KsQqXUmmo+I+Of//u+epi2meJWi1Wf/8lcjIkhf861f+7XFmL7n/ffj\ny1/+cvzZn/qpiDjNMTIDiLIg+YCxagMrzhnRkNZqIk7zDhJT3EeoAeE6/9Gf/Vmeg/fp3YpYX8T5\nJleuUUQTFokoBVVnzxinw8Fxjn0/U1YZXc9oa3i9WmUikl6P0Vq2o9n8On6WXcXLplixYsV+s+wr\nP/3TvyXH/dd//a//lhz3/xe7ipcNECaTIX6quqZwmfdA1JZjXGxn/ycFecoz393d8ZjwEJQCPEJo\n57suQ3zg2EcgW9Jx4H1sNhv+FlGRUzyohG1v9Qx4kl5r0Z4jUtl4H494/ZlMtnn97tG3TTPXA2xe\nvE9oHAYiwBrLG/fmrddNk8lMD4bEYVQn5IC9zTfRddbjMQ5DRhLI3qi0LQgX3/viF7M+rL0hqyrJ\n28MwlnPiYDDsx71EHzfW8v5w4HrDtmQvsMj7k08+uYjK88g1IqL9D7+4OLbXebCW7u/vGS2QASOd\nI2oI3vMy9P0s1gfEJ7YxUt3b29u4T6wIWPtAoXG3dYpqp3m7b//IibT0ra8t0VwffPABx3AURozD\n4cDI67fKPv7444ytwwlzQyJ3irJdoMwC7dEbz57NkSiog+xce3lGUSQN/UDpN97PN7ZthD9Xvb8m\nbTuFRPNpbX5eNNpVvGyKFStW7DfbfvFv/s3F/1+8eBHf/vVfP/07pdbCXg5KGQXwANJxzjqOl9tf\nTY2bxT7druJl45xDRFxFRFh/DWWQrf+j67q5X8S4ntBHgDf7rqqyvhFH6SinGb1X87DxpidFu3Cw\nIQ9Lad20TWVko1Xk/S/E1+s8RMRxnCVlneCP9OHJxnEWWiNhJuomhjRTyn141BTbstwwoyGRifV+\ngXNoNI/s3NsP8ZKc58zrOz6WcZoycbre+htQC3n27Bl534BSeimCWRxvGlsvEUCEEHtaTW6KiB6o\nK3Trp9/cSy9O2uj0p++zKMsRbAuUnVHFU17Y9jEOQyYKiB4RlzpumibLvWMeEA16L9Bt32eIu0uI\n0sPhwAc71iG4y2Btk/jUXr3kZ03qE/r4T70fERFv/4vTdUCNZYp53Uacrot34MPwUngmERWiYqDq\nKGuBusxuF9/59rf574gZTYd1/9IiylcvX2bXxGu2iy58HNO47RCREDG7WsWYzs3rxy4lPwgvnnP/\nwXRtueS395zxXo78GfN55aGv4mWjWvWn/wqU1orETkvC052mGQJqTWT+YupFf8Kh1VlRuqpmrXtQ\n2JiHs5OUWMTpojAtZOkchJ58IdZ1RsboaSiljOAiMEBDYw/xYRgW7NkRkdGpMO1lFBgR8nAyGg7V\nKB9te5g3bFZ1PVNbXGDm1hSRs107NQ8MxIs6h3w5wmPFHMh1AOwVe4NXC8eAYIaYb2485JzaphXI\n7IB1bA/vgzkjBLnIi3wEiCCWNslDarD0qqrJ6v/HcczSZar6GDGn5548ecK1CTACfouHOV46CnEH\nWzKK70oAGzHfV+v1mjQ4GMuL1IoA64eZVZrUR/bSvbGxHURTB+aErQrVjjg1veKFszXSy19LAAR8\n/vzjj+NjkKym6/fYVD4BGIAdj0deGwBrKn+2yQMb49+kcwM9DQzXc7/bLYBQEbOji3PEmm3F8fI2\niTH93YKgVEoEC5VhHbewzK/MkfD79LOsQJ+LFStWrNiD21VENtqYGSE0InWdNT558VxVLj1KgXna\nQYu69BatkOfpOrXGUgjwBrT5DVsBhojvnJSxknOEwUvnNhbNRczesofr8HSGvp9h3MkDA309yB3x\nF97ozc0NSRIxHyhSInapJOJ7CW0Q0Jukc3UIpyqjujfk564pHY9onCwV6+R4ONCz5nHSfjZW5B76\nfia5TJ4q5gw0R8+T5308HvnbpzZXiGi0WRVpFqwLRLxOnIkx3dzckFoF54r1guNoWvOj9BmL70j/\nGQBEJTSwzgAp9gjwrbff5nhqS/k0nvIVktq3E8QZNY6v/+qvch50DsauY0SAyBFaOjRC2xuur8eP\nnyyOjXNDVPrBBx/Ed2U/9/f3WVrHdXjqqqJC7tYg8SS0Tdt0XZc1eKNJFJEZzgv2wQcfkIYKY0EK\ncUrjfvrsGa8xyX6NBBTXE1FWI5ENomLP9GhE4g3fl3RnJkm1Yx0jo8EGUFEGbizdxxTka1qJbIoV\nK1as2IPbdUQ25t129HTqnIzRKVjE2/X8KPdv0OKqqi4Wt/zTfhiic+XMC945CS+HIVOb5P6dtDLy\nmodHQb3kVb2O48qdo9R7unTsg8GODwazhbe06jqKNLGZ0aJBelRVNUMrL9GTJ6uqKm8gFUr0S9sS\nKoxmTgeLaBOiQTddlVAL7yzKGzQcpmSkvdcGMTaDhqo5qavTG8EbffXqFcED3tyJa0URv/V6phCx\nqNvhqv3xOEObDSzDiC9516jd6Dmx+S8de2O0/I1A5FFLAQiHRe/029u7u1n+4gKYBbUPrbk47dAH\nf/yLp/F+NUV3qxUjgYhlOwMMJJ6QOLh59GhucTAIOyh0NGKg0qqBhiD25mKEr169yhpLWecRWQxE\nP5RCQHuEAYOw/6ZpMhAIVVvTsUnPFDnMHc/M2vY/TdNMPWPgE5LoSq2IxLu+7l7TSmRTrFixYsUe\n3K4isnHI7zkq/YwCPH3vjYmn/xgKw3LQVV3nomwXqFaOx+NMM58+wxvdPfgFVbrRytfwECwiUXit\nG+sPEl0QgWSIMsJiMUaJChvLDcOz3xqMWuG1QLs4xNLp0COEfsXIDBVezujB0HQqIof58PUAz2y4\n4ElN45hLUZj3RVoOre0JOlGPRw377TajtHGP7yg5bW/arMxbpAQvanzHIxF1Lr2MbVUmg3BiSKIn\nTxvRidYvvb5VXYji9F7LZAiMaBbz0sccKcKDxxi8znh3e8s5QvTjV/HJP/8/p23/4u/MINWxSvIg\nKRK7EeSWoifv7u6yGgoQYU/Tea3X6wWUNyIy8k58/uabb85S6+mc8NvbC7WK/X6/IGbFOCPme0yf\nDU4jwzYOk4Vvm4Zr1evE3oxZ1/X8bEnjmmwt6Fj4TDQiWz7L0j5qgVQzE1Uim2LFihUrdm12FZGN\nRy3qYXmzm9duFggcq2dM5kWreJV7zy6XS0+hqma54ws1G/YfiMdMuWBIwELIyWpFTdNknl7WdwM0\nmkQTPm7SVYg3tDJSRzZ7eY0J8yJIFnrwOKZFPLv9PpNL4Lafch2dBNRlCsa6zr3vC9tgTQx1TQlm\nj/R8LdRVNUeb3o8ACiTx6DFnjkDMeiwOh2UNSQzCWk4LM0pE5r1J3kx7PB5zESwT29IeLiKxpGco\nYr6eFRo0b29JneQ1T4zhF29+LH1/2seP7P8pfwNUFyIPIPp2QlrpVEcqc6zb7G/z6ARTieOBxubm\nq69Y88APFWUaMa8FRFv39/cLoUA9KW+E7FYrRuyYBzSjZsjKX/mViDjVZ1zqGcJuRImOIxGIbo1F\n+2s5vkqJn4a9XN9qfBZYJoPPKan9XaKp8X5G0u3ESQwxIq+Nf5aVyKZYsWLFij24XUVko70hEYLx\nPkM/4WJkleS4O4s8HBWkdDLOFMC/iJiMLiTiTETgQmPiUXTWrd8YPh557PV6zV4OeoA2Fq0N4d/I\nm8JrwbbIafd9n/UXXSJyVLYDIszMY2Ikdaav5CKuX//a/rwetfCsrO4C45hwjTTa9Wt+QVZB+3oo\nXZzy6ivQGYnn5nQjzvKgiCju2+pFM91/6uEAZUlVRWOetUcrpASSWlOGArL1MvR9JjOdMUEIKgte\nuCP5IBfQtsuI4RfWfz6q6vSbP3Zzotl/y6SZtV/Fo0wnz8U27/zbb8X9V37H6TPzzod+WQdbrVaz\njHWaL8oFJCOiD9foxYuMNNb7gmCrruM9i+cSzhERhyNav/SlL8V3P/wwIuY1tDek3SDyI8zkYM1C\nqtoQpioOSMYAy7YoewTmDlkIXIvGInetpY52DzsdU9d1szy9MKV8Hruql03v7MHCYDoYXYgWriJO\nC8Bhuiyipd/qRXRtFBjpMgTW6w1UmnZK/1iMrZ9mhUcyRRvj8lF4tJCKwE1B+ps0JoVLr+0G4IIy\nnrK6qjJNc+fAGi3tM+z3DNNhnDNr6GqbhkVhcqvZHCpPFlOZ2K+pIPrLJ534aX/OhxfY/fzwJcWR\n3cAO51U9EW+EdUqXcRwz7rLaHvgLqHb6S6fJxqk3bsTpWnkjJR4M/nld19wfm34ddIIirzB+c51b\nakZTibjH7g0O/HZahz+8+yeLff2r6kdjtTqti1/Y/IWIiPjBt38uIuYXBwrlddOQSgnprM4hykJ+\nOaTvmsSXdjge0rbL5sO2aRbNw3Vds2kZBvAF7i99SXvacpXGqKkr/Ab3FCDL+NybGr/w3nt8njxP\nY+Hcprkcx5EvHjy8fV1sTLW1bVveC3jBYq0ylSypVaw/X7sbo+9ReiBSfNk6x/msum6GiyPVWAAC\nxYoVK1bs2uwqIhtv4KLnGXOYy+a3CxDlXdfxzc0w3bzQVjwFeAZUtTMmZLKoihaLNyC66mGkN//h\neJw9BYuG2OyGSG2a4nHyZJCSoUeMkxPIYmuRDbwNRBcEEZzRrCfDq+nOIJQ+Ho8kY5w87WT6QUr2\nWNt+YYsmWAN0UEUQ10qioeFC9Mp0DL6XMTq1zYLMNZbUNxmRZeAUl+mLlURkO6PmIVEk0qPrdYxp\nje6M2NQhyiRY3O9nz1TSZRHihUojq+ugrO038JjbppnPyUAbTvLa1PWcFjLoc2/RM2PO7RTjiDTL\nsrkT6wfw4KZpeP6EixvU/9uJXblp25gSBQ/2Oxf5l/d707YL9cq2bTPWZ9xjpH1pmhkAhHXtTdK4\nT7su0zDiugBdi6XRbm5u5vs97ddh6sfDYQbWIJJO+8XcgbgUEayyMwNAwQZbyxAc9vusedvTXQoA\nYQOvzZ2vb23Mdvqo17US2RQrVqxYsQe3q4hsmP+GBw66kKrK6bylIS5i9paauqYHoiSXEbPXhZNt\nmyYGa1jLGgmlWOo599YKbbXlOYdhmJX10EB5QWJAP3MvnPl6iVBci5wePIp2Eil4vp7FbtRqrGbT\n9/2szGc1p9H2oc2oDkenqqpQ3LgmTVZclBqFQ52nC/Ovc6jyDvpbj3SquuYYMtVNa2zrNps54k3X\nEXQ+a/fSq2qWM0jneicSCBHz+gCw4v7ujt6rr0OHB+93O37HbQzCDQ/+8ePHM52/SQDgc0T0U8zN\nljdGInmJNPVPj/8i/lX/o6d5SYX7qC9E/SLnwaZWg41/lOob77zzTrz3tRPV/4s/s1xvrNUksMKv\n/bG349m/nAEB69Uqq0lCr2gltbgbu9cyGRKJ7jBORA0rq+050GEYBo4BEQgiSZCGfiJw7S+8d4Jx\na10kQloJpKEd6xBrx1VJ9V7kOWBde3OxgKsutUM4EOnY93nttEQ2xYoVK1bs2uwqIhunC+HnfU9v\nkV6o55PhYYbAIoHqQF1GBJciTtT635M8D2wD9IxHTpv1mp4M8ppQdgRqBJQUQJE9evRo0QQVIZ5l\nGj88lN39fdym34LGnnBaQXNFLJsAQf0P7wK05wuKc6tVUc/e5o4Q3a6jN0jv3hpMO8lp47dA+8D7\nb81DOx6PObQSlOmmw77f73mtHY6K89ka5LqSht7BkGYZzZFEQ0BB+Zxi/FXM3iyuNbZHneMoMgeI\nRkjZb0g+RB5YC6vVaoappvkAaSTGC4TVer3mtcD6xrV2ZNzxcKAHDbVJyEk8wvUUhKVDcb15GVkF\nokaHgW4qrvG/nv5sRET88NN/tDjH3W7H80c09dzE07Denz9/zujq7a99MyLmJs73//0JUnwQBNde\n6rZeL4wQmQZEA4rSS+cGyYKNreHd/X32W6wtrAGX0jgeDnM0IbDliDm7cnd7G7+epKlxPX/7931f\nREQ8MtJOROt938cG19pqnnhuUUH2eGR9u5LaTMRcA15Lk7ETfJLeye7X4+HAdY215bW3z7IS2RQr\nVqxYsQe364hsTDxN8/mk5jYvEaYINKc7d8oPzYu7IFRjaCt4BxHSPJj+7zTl94Z1Tzs+/QbiRE7M\nqedhER0b7yziG8dxRpqY9w+K9HmXOeoKY+osJ0xvfb2eZaxtnpnnlSZE7wVxzD57gMQDRf3FvUOt\np7E+hG3mkzpta4gqRS16zxPGdBRk0cF6e+JML0TEyRPGsV2czUXIjsdj5l0jAvEmOJWOcKJQzJn3\nVbTSG+Y9W05W2x+PF8ldL13fCOmPssZjNiALVQprM91SZqKzPq1R1qHXA2A/+fWvn/6Bv2p//+xp\nnDVvLsa1w3XdbrezxLVR/3hPitaalJIf30Xk0iCN9K14v8pTiBAKSerRaoZsMDVqpKqu53s27Q9R\n28FQqMM4zihcXKO0LdaS1lqIhrTmYpj+HxGoyoN/HiuRTbFixYoVe3C7ishGBdAigp6VeipboaaI\nmN/S+vZGlANv2VFuin0H+R88ykdGFUGCS+mZcc+Jnf4W6bRty/1616339Rz7PiOuzJAh8OCnaY4a\nRNQoYo7a1Nsiy4Ch0BqL1JCTv7m5idZYF0hRYdIGVdPQY/L+I2yLaGIcxwxtxXM0xF3bdXmkpF5b\nBPuZsM04DJlX7nPKaKLv6aHhGkz2mwVqzyJRdMMz+kz/3+12Qouf6jhpP95vo94zooWNRUH4LeoN\n2udwtHoX+7KkhuWMD7jW3jOmpLIeSSKa49oyhoXTeKfF38mv3TjO1DWoaaVz+hvf+72n8xE59e/9\nbb8tIiK+8IUvRETEm6mmwrqlUFDhOr548SJWkUdVmIN7IR3FOuY5gXbIWTvGMWMZcfFEjwLqponK\nSHNXqc6BiKppW96jkKQGcs3pn/S5hXl1Alh/Vuhn7LOzSIe12qaZa5qf8uyNOM075tFReK9rV/Gy\ncVZiPWEsGPAG+YMI1nXdrAFiutpOQ6JpKxzTuaNQfEURPCJP6Wl6SI+rkFHS3zhTrDScTvaAwUXF\nb1GY85tJx8BzBtuvcFJluhlGTTFB9+PJE6aHXA3SocpVVfHh6txLDlethduJPHJWbFUeN39R6AMg\nYg75Fbbq9DTeoOjf6zEJTU6f8wFd11ma8t4oSga7sfUYmBekPJies4JthDQRm+PCBrzNJmN7xoMH\n+1EuLzxEcSylX9IxDn0/r0kDZHiaRJtRf2g8AQFaf0miAVLXuzkAmF80L34iHGYARCAFiXmFs8nG\nbGnQdEgyDPe03levjPZK06CLcx/Hmf3bXpaX5mcchkzZlc2RXzndV4/+8U288exZRES898WT+uib\n4KAzvSKMSTngwmDYTIcKBZKnvDP2eDl3B5e448JzkxQ+rsXn5UYrabRixYoVK/bgdlWRDU1CZVed\nQwMllQi5ycQ3r7OeIj1yTgMd+4HHWlv6oRHqD5irQXpYrd4Fif6MbVfH5BEZzFmrlSST1DMWVZDY\nUiIPhL3wtI8W6qtXSr0MG4OH1cMwZDDMSwqm/TRlehmwBTtw2tapcgYbd2Pe+XRmvNk1AziibWe4\ntTPbIqUlHjL2R9gygCXpe01XuWd9MJoXXAclYuQ1QQrPIafp88dPnmTaRce0ZpHu4vVoW54bvWKA\nKwAwEd17p+nBOBdEkDHP9/1uxxSWp/JwXC1SD5b6vVTIP+z38dFHH532K6SiEZIKwvPgjFft6+5v\n//f/nv0mfvmX889+k+z27o7zS1g07u1/cpqvvu9JS4P02W2PDGAAACAASURBVMrmcLB7OiJPe2Id\nZkSz45jdYyQztr9j22YtCcwkpf/rs3S0qM3TiJ9lJbIpVqxYsWIPblcR2dDs7T1OE9+GXlDmX3g8\nkddxXGcGEFcltIRnwHqLEdCNEjGRHgTjcyiqFDGhZqckgKchJGLB9H3bdXO+3jVpzBNshGoFHjA8\nV+SBPxQQQGsF2QpkfYDX2jx53jpN0GL82mjmmuasT3mEM00zbNIgp665s9BQR+3DqH+OlvvXaMBr\nNTDSv1TVTHKJL9O1wP5WAnzgdUKUCACJ6SmtN5sMWu4Q+cb2MQwDxwu1zJV58lyfu90M/vDIEdcc\n5yr76TyqhdKqFMSd9BNWN8uiPGpP97sd59epoWCoO97f3/PfR/P6PdKrq4rn6HowfYoCtGhPSRFr\ngvxb3//9i3lhc+dqRY0eNFA+S4V7GGuVAn3G9WytmK6EwS9fvYrY7WY6/3ROfn31fF3OA1fV13V/\nPM5Ff6fpOlMLpZwHnmVW/1J1WIcxs15qMG8l6uR1PFND/jQrkU2xYsWKFXtwu6rIxvO+0zQt6jcR\nEskIhQv/mqRAZdHL8mAGK77QxKiU9LXVQCga5nWNcSRkdjBP2+HYo0IsDe2W7beqZqQJmkTTb4Ge\n+zjpmw+iQ++a8o5cq8QrckVO/F1jbg0yGiG1MYOVauMgPTGTPWCtQqDnLhHhtBi91yPE058uUK9o\no9whbYftV/C8AVcVldX+AjLozhGDm02GViKaKf1FhANEVNM0cw1C0GEREY1pzfd9Pwur2fX0WpnS\nqDgS6XAmus1qmY7oQ00vRRm3d3e8R53qHtf33HFYK8C2aS4xP+v1OkP7MSpJFCk459Vqxev0xK4x\nIpEhXSPNELhiLmQIHMqu0GdKcFh95KiIQZCk2jUn0hGRSduS3gqwdxdj5P/THOx2uwzuPtrzi6YN\ntyaUh3uB6FyRIent+QTDurm7u2ON6RJR62dZiWyKFStWrNiD21VENt7MeK52sLIemXNU2JPl6Z1u\nAjaNY/QWrZDKwagoNK9JuWmPbM5Qbav0b8TsBanAlZ5zxJxfp9yv9XBU8hlkoFuPfpIdDoeZpiNF\nDSvLPXuU0QuKbvTah9H6dF1Hj+mTRGPvdP7wzif5zBvlILI1iOdH7xPzYk115+bbETiOmFFaGHh2\nvBYQtEtjIRprvY6d9SpsQeoqqD/My2RRuDaSRsx0/7epd+vRo0fx9jvvLPbvaC7YdruNKkUWLp7m\n12ro+7lPx3rCHJFYS7RM+pR0/i6uh/W03+3mPh7Q9qRxOmHrdrvN6gAuuaASHojKMCaQPnqNb71a\nxZMnf+U0Hy3m6O8sfoO51JqZE+QiymSTtNQoXeYB48T9qWSylHQ22WaiFtN1WK1WWUM6rxt+i4hK\n6nb4LbZ12qFa6oBeX4R532Erc0ExOVt3+jzEdgercb6ulcimWLFixYo9uF1FZONiSlq7gVfoQl8w\nFRzyvPcoXkqEREEiBOQeMd726l0DSQUPHt4FqfXT8UjxMgyzZ22eAvKoSvr4NCHJnqfuaadeARLk\npq5n2WajLsE5v5doPr7+9a9nPQowePTw5Elbc38/SxinvDL2C2/8WRrrs6dP6THit0QOiaBdRGJ3\niKVV9vcg9S94y8htQ1wL3rhTrgx9nwmfcd04dUfTEH2F7b0/RqXHGYEasSqMiJzDYa7LIVpO84xx\nO/nrMAyUOYC8AZCIHAvm/+5urjEZTRDmDpHJMM4y2bWcy7l5mWRcpDMCKhK9RaDdT7/TGsJOqI4i\n5nuC3vk08bNMbtpYJLRXCdf+eapBYg1gnp6/eBH39z8VERFf/NJfO22TvkNk8+GHHy7G/f7771+U\nr6DEhch7uCev8gYR83Og6zoe0xGNRKGiHth1C+npiDP9ada3t9luM3Qi5VMgxJeeJ4fDged2jp5G\nj6e0M9gekguolfF4m83cd2V9Wa9rV/GyuQTpjGnKmphgjYX6bVXNqRqEkQ7rs3RdhIT01szEZqlh\nmEPJCwVrGNM9knpzCO4o6aKIiOl4nDU00kJXmGTEUpXviTXcsaBvBcSnT5+yADnaQwmLDNxMKJLq\ngw5ztpEGxMW5399naS5vEiUss6ryhjArSiszsPNrObQcM6oNnEzRWHGb11XSeOfUWPX/i7SUsfh2\nluJTmo/R0k6tpWjfePPNiIhYpfnW1IRz5rGJGXM7jgu+vohcB0pVVB3q3Ft6dAFUMVAI5vLWCuKw\ncZpmVuP0mV97UgxN08y4bY2I2siLbV1tEwzuMDZA73aEbx/7v7f4joqoaW7xAK2qipyIeNDjhbq2\nZuZJml35cjHmebxQtjc3s1IsnBLQyliRfrVeL9i5IyIqpCINolzJMynjCzSKKzw7xnHMaIdgDoWO\nacpaKNjyYdd8vVot9YyipNGKFStWrNgV2lVENp4W0cbF1gqcGWttMoVJu9IgU3ASZTgVTKa3rrQn\nFta6591KiiYiUdBgP04IaV5vxOyVIJT9KIX/rrEzThMjmrV5TJk2zWaTRWnwghiCJ6/uO9/5TkRE\nvPXWWzPkGVr11oBHBcb9fj5v81A9SlTzOXTvcZQUEMwjBE9laSqU/7oADtFjeSEW3q7Sq5Cs1DxK\nrhulFMFn5vm6YqfS8DhJLOYfY8A2bdNw/bo3y+bddD0jZs+a6RCLNluBTfOaW5oP5ozd0zQxkqkF\nJq42SNTFubN7bm3pwOPxyHPBmMDGvrbCe9M083waFH6P+U/jRgS/Wq3mCMCAGNg/MybSSJkBX2zN\nThKROTM5VVqRApVogISYBnlmgV9+SwADWNjT5wApHQTezXVn4AGSmKbj7PZ7RjJru89xj5GwVJqW\nPy/kGVYim2LFihUr9uB2FZENCejMq6uqitTZnsuFsdBcVbPn5Up6lncfxzHz3hx4oPDajPYBhTFr\nsqOnNU2z92q5XHqE8DZiljG4M1oPrzG9evkyaxpzL+aVeLI4IyfXI9W9SQSM4xiDySQ4KeOUjncQ\nEkmYNsQtzj3yXD7MtTEmqQfQuweM1kglVTbAoyGF0+rfuqoyWh0fg0ehur1LFVDrSJrpnHYfXj+i\nQvWMWefD+rYan0LO/RxdGZSEpccjPXinm/f6V0TwmhMubfeGS0ZoawLXB+hxjMKklcbBEbotAICg\noJ+AN/3xODfGSmE6IgiiYaSw3c5NhulYk0WhrxL4AnWf7XbL/RHibNGRNjV7FMSGVaOImaaJoBsY\nm1nT3GEMSjRbuwqxFfb1GeVZCpg2n0ec7lOXsPBzwzb3d3cRKXJ0YA3OnZQ9XTdrc2H8aT/LM79s\nJbIpVqxYsWIPblcR2dBjAvW9eWP6796+I/FdCM2+NLdF5IgnRbk5ugOGz/u+n/PzhlybDDWidDXY\nm2vMh3na0zQxB89GUkPRUWd8GLg9PJFnCWkDjw0InT7yyIDkgAaffPfddzkHhCIn7xXonTp5kfQM\nY5ZlcFi603xMci6ev2/PoF+Ywz8jIMZ5kDEqoqqyKM6vXSZnIb/BPBGRMwzZtfUaiIqz+frg+YhY\nlZ77NI654qwRZ+o6x14RRawsX38n8FesA6/74e8iyrU16XBxR8ENwzALlwGRlc4DiEY9R21ojJiv\nI36rzahYo1hT8NJvLHLYbLfxSz/wZDHuY38a3w/9jxRJQgEURLQRWeuAq+xSIG63YyRKaQtHrkqU\n5fWMoyFKCe2/uclor9ozkVKERBBKNGsRtUctjUhoOD2QP2d3+/2iBhYxZyOOAtWOOK3LSyjc17US\n2RQrVqxYsQe3q4hsWFMAgZ7kIeEFoPnN+1a0Sc1FiFiHcZI5JW40osLGvNLdbpcLOZnn4bj4mKYM\nuUL6Cke2RU4sqc15OrbD4ZD1tsDzg2eJ3PG90J0fha4jYomgipgjm+cff5yJsqEhrrE5qGR8teWR\neY4S4VTzl6dtbH5UPGySqDJC6gFA01h+WWMVl2DISCarKqtdjRJl+jY4N8pKWBS3qFOZt0wSTPQl\nWD1jnKb5nGx+cc3gTd7f3WWNq7j23jR62O+zqFZ7wCLmaEjvp1YiOv2tC7zV1SzMx8ZdCM9ZZHI4\nHjl3jGwM+aTUNi5O5969NiZm31Wnv7/0A6co/I/81/ciYu4je/78+YKQ9XSgZR+f1tlaW2+Uq7fa\nynq1yqMJb7qWjIxHMh5ROh1TXdfZOgZy0BGQ+luYP4t6iVBaWxfs/Unfs2m5qjKRRK91fpaVyKZY\nsWLFij24XUVko3WAiCUKywWS8MalXKkQ6B3MU3Kq/uoM9f2lWsIit295fs+bsnaTvq/rOqOI8C57\n9Ujw3SPrlkbeXbuzgRJ5kWg8ttZ/oLl/zCNy+RRtQrSYUHCgANlutzNyCuJVVk+Cxx0xo4p8nvxa\nRV2zs9/pgZziXJFrjDYtt+2R5Dnp7nlIy0iqruvMI/P+jwVyzWs8OEegmCQq6i2nnV17o7NpJMri\nmkUPBKKKdI1GYRBgb0iaf0o9i7eLqMf7KDC3t6jvHI9cQySwhAePE7GIr1utsgwA0VCIzLD++57n\nj/W3NlShIuR2KYOByMOpYrZCOLnbL/uMENlgMXztd6foZToJpP2B/3jP87+/QFSqiKuN3VMeSfE8\nIkeFdVLriJivlbKLeHSMVcm4BvXZts2EIHGtViYcp79t7LmE8eKebts2F3c0xCTmdhgGPofIHPA5\n+21KZFOsWLFixR7criKycU9V8fx4Yz9N3reT9x2kR4AU6UaUeTZ/b54286SGZlL6cO/1YT+IMQpU\nwgXm+V1IHBMB1TQcJ0guETm9AM+SRG84b7ANIB9N2vqEGmvblucNRNkE5En6/BMIRwHdJGSmveXk\nidpJY2nblmgiFxKDVbZtOonTnzP9L+mDCKPbx3o415MTkdBuVlvx+pz227QWZWZSFFJzqi4g7eB5\nawR8lLpQxOzVYv2g72ORU7f+l7WRhO4E1eQCWo1FTqzPRB5d4v/uwd/vdtl+tDaj54550y545+xy\ngstpmogkQ6+Ji/ihz2wUPrIMHQUpYqnL7u5PXvh6c9rfenX6e3d7QgwiC4D7ar1ex336DNICWJuo\nCWNMKmzXWU3F++pUMtn7jsCAsJFnkct2aP329PFyTdRNM0c2QJbiXkbkIf17Htk4o8W9IBWd34w1\nK6u7Dn2/5F/7DdhVvGzOEnDGspiGxYwL73DSKaQZ0kAEuGmUrgULEGEp0lKYSKS0bm5usia/tT20\n8QDGy+7x48dxsAeCh6CEH+52hGOiyIqbkzBMUI/c3mbMrVDmRIOcQhlJ4wEyTXt4YxvceE+fPFkw\n8EbMiw4LlHQ46zUXHxYxWKvxwsNYXr18yWNiLGx6M7qW3X4/N5SdfpEpjuJGOwg02m8AwkjT/zHf\na2mOZHoLL1KkDIUqZvKbGTffmWKuF7x35hgRiis0NhcbJu0B/+TJEz6UvVEV25wDTGC96ANd/7Zn\naF+w9uGkrCwFd3d3x5QMftvJS0D/r/PiFEs4xzffeisiIl68eDE3FxpzuKtYrlerqOsp/XupgYNr\ntL05rbU/9J+fYyCzZhRg4+maZ4X8us5Sxwd74Sn4xwEGmprWeTkej5wHgobs5VWZQ7M4p7Q/zDte\nntAgquUF4uk/nCuc23shM9V7FfvxMWEtboza53WtpNGKFStWrNiD21VENjN0Mflk0gDJqAQpMk9P\noWFsHDOlT6SYQGsxivfoqR9CY20f6/U6pwkxGhyahNteQHWNby1Y0/MALXnyMh6BXkKgp67t3iMt\nIOqPESdyv8rC6YwOyNKLt3d3HDdSZPCu4OXei5plZ6kZXAt41hj3MAxZoyY8Ki/6N3WdwcRJyfMp\njbikALkA79bUE6HJtq3PT4RIK1jEwVQYPL9xpA4M5wHRFTxiI+bsui5TbEXTKK9RGscg53ouzaK/\nHaeJcH/S1hhNEs7j0aNH8eTpqYC+k6ZQHZP/bZomU31lJJzGoBIP8Ij/x+r3nLZP1/z743+fthUA\nSGcFbxaqzdP++d+7jq5fRoMHg/i3zZJqSc/BJUBwJzP6P7O2fA0oYAPrOCMITn8V6s+0loEIKovi\nYFVV5ale+S5C0rxCleURsBMT13XN8e0Nas9UnMDhM6i5g0Q+w0pkU6xYsWLFHtyuI7KxpiN+XteZ\nV05v1ui/u66jN4L8qeutE1RwPGYa6i5dgBrFZrul2uFoHjHMPZFhGGaqdDmmnqMW010IyQu2oKSZ\npomFTMCWAQxArvWtJNBV1/UsCGXjo4dqFCmH4zEj6yPE0lQL++OR2zt1iXs8TdvmEaTVG5TWx+tF\nrilP+LiQYrpX6POsVCAKLIjII6VBIMxO8eH7g9VVxbw559NABPBkVVWREg4uQAf6EUCAD4cZnAGY\nq0UTiFrG45HzujdCTpKESu3GSWMxBm/40+I9sgWUALDam84xvsMawhz+8vi7IyLid1X/JdJGWVHb\nJQeQrfiR/9Uy4kDdAv9HVP4Lv7fhGLBPbwyGIapDhmCKuT7i5wTTjIwSVkbM90Rj0WdT17lSp50z\nTYEJDr/2dguhuOK9FmZGIttK/dLJf1mXknvPG0s/H/C5RDbFihUrVuz/gV1HZOOElunzKs5AQtN3\nFPeRtzXhnubdMi8rzYKeu1UK8IjZ09ExuCd8yctVuV8nDmXkII2EPl7CXdPnQH88efIkI/GDF70x\n1Ms4jpkUsHsinsvdrNesGSBygpcID7aVnDqitoxIMO1/kLy704PAc3LobD1NWYMmrxukI6z+NQl1\nSUa06bn5vs+it97QXErd79ITDlVWjxItrowirKkY+4L3/PLlSyIREZHiWnvTssog4xz9nlBJX2x3\nb1TxsL2isSyK4r2QfsuICZTy2208TXUerIuV0dVo3csjMHz3A/2vnObDrq9uwyZXCAum9bk/HBZR\nX4SIGKZr88P/83ReWMtd22Z0NRi3Eu9GnLIMhI0j0+AyCmjw7bqZkDSdP64jojm2F6zXc13qAs3T\nZFmbaRz5vHC6Ltn4NF8SOSEq8czOuUxSfybDoGMcxjEbt0tcfJaVyKZYsWLFij24XUVkA6vs7xTS\n6GQIDpjnGiPyZiZ4ChXezJF7+dhva2iYvu8zwjyO01AZzH/2/Swza+gfJ+qLqpqjE6uLoIazGEsa\nA+o46Bfy2lNdVXP+35rIYPyf5JsbHBtkoCDDhMeqyDnx6tXOkQ+iCqLNrBFCCIk6zBnK+4xYEH8l\nd8zfeCSSjNHWMMxIo/Rb9jElrxkeW9u2c13K64k2tnEcF3Qu2F7HeRCKmIhT/QE9Tpizt99++3S8\ntA3qO8Mw8N9uLgvdtO3sNSdhMveID9Lz4xIAiGyGM5FexMmTd0kBNnyCQkcolmC9oBN1v0pAiblh\nn45Fg5+k8xnHkcfurA5FdFr6+8mLF5wn3Jfs20vbIrLEOe8PB853Z30x3mdTxRy5bIwQd2sRzmq1\nyiMbq6W4xPakdTWjxfEMTSNr1qVViHaVupWTxnrkx9reMMyknJ8VZV2wEtkUK1asWLEHt6uIbJyu\nQfPk3gPhEY7i+t2zORoCrBU0jfdUKA1LxOzNDCKgdakGhJw2xx95VOKd2xSiErJReDzwgj5JCLPb\n5HHf3t7SO3wzeWKg8UF/TS9opoxWwsbghIvjMGQ0+AtETMx9MtM4zkSQ1rntx62qiuNyYtU4I4Ht\n19p7cRihCeW7d+JndSpZU+4lwuMD7Yjm0iuLpL3/QIXuIDONGSTyCWSPJki1Wq/psT9PTBDOjOF1\nqnOmXjPOj71K6TdONYK1dnNzw+jYa1hc1xbhTBLFeRe596CN48j9/f7UV+P3hPaKUPTNIrtbiwDv\n7+8ZoaJ+1BrbBeXU0xw3bZvRXMFw/+C+vb27m+Xa07ExT/gtGDgO+/3MJmDEuGu7NkqUqbRIEdL7\nY/fPpHNmz55MuDHy+2Sye3ctqECn2vL6+Sj3E8dgvT2va1fxstHiVoQ1sl3g0JrwILKHQYQUeq1B\nyVUuI+YbiFBnU67rpylL53hzl6rkRZwWBx5gXpj1YvHQ93FwfiwLV3Eed3d3vOkwD84WTAhqVc1h\nefrtwVJjMGXqdaZimL+gRnm5eyju+63rmjcsHmhILwwOsZSXr0zaYv88Dgq0TZMBAdhQautmHMeZ\n1yztngVgYbjF586ce0kPRa8z6VnSObpmDa7VVliDvbE3e7lME9c6xkmqGEvhNAJ7JzVJWt8O7e+6\njjBmODVeLPaCdVXPzNm4bg6bJihAmq097eJADVXqBHDC1xTGWlUVU2quPOtUQnjRtu0Ml8a5OiM1\n9v/GG29kTa68f+zB33Yd5x6pva2kNBdzOU28trhXYaQdMofpnFInG0EjNwcw4W7KHL2qit4aeL30\noPo+cMjX3oT/mlbSaMWKFStW7MHtOiKbZN7E10QeYh4l/RRxnkLjYGk013dvpcnwcAZgELHUIKnN\ne3VlPZhCCkkK6DBD31dIYTN5GfBGySArTVjwHOGt3e+Wmh7wqFoJ133/riU+ShoQqSD/jetz7Po+\nowlRbSE9D6XkGSz8P0dFU1vahtGUgQnOsXG7przThUzTRK+Z6VCDchIUsVplUbE33MI0EmHUiTmD\n95zm41ZIMW9MT8SL2+eIPrfWSOmAmG61ytJbmGd8rlGBR1pN8u5BTcSmQ2kmZeQCTxhp0jPQ8Kzg\njchDADURpxTWW4mUE2MBeGOT5vdJGttut4vvfve7pzGkY6KBdTQPngSl4p2TCDb9FhHNJqXkRm2g\nTnOF6wbCWaTivvzlLxNUgevp1wamaWJEYq5M6yqqdV3P7Ovpt1kzukaPlnFxI0R+mrLnaAYMQNam\nnjW6FGDweaxENsWKFStW7MHtKiKbo9U3+Hatqov5eqd8V8I/NrsZfQWsrmvmhl2ZEuBSpeZg0d0l\nDCzCURoYeB4oMsIbgAfEfPI4k3Y6lQbgzd/4xjc4RkQuGBOkEXA8wHfhqZ0OtoR5Tub5kFK/aeiV\nIwc9WP2LOePVaq59pPkmiSTmK53rSmgxqCGThuZkntM0ZQ19eyvm4voqlYzn3rG/F8krhW23W+bi\nL0UemI+u67IcNhvmDNKuOiWDzGfEvP4+/OijiJghyse+Z/Sgx4yIuDGq/dV6zTV0SfFSi9+UQrCx\neNQ5Rd4kOpr37DDmw35PIluvUaAWtJfIobGosPl9SU7iv50iEUTpfd/HKh0D67cDFD/9BlFQt1rF\ne1/84ukQKICjydhqFbjHe9HHWguYImKpkxNxegZ94d13I2KWC8A6/ChdR9ZS7+/jPYt4/TnFiL6q\nMmkBPE88olGSViUG1rHg/5j/mCauiw9T5IdtMae4ri9fvuT6Yi0S82DPtH4YLtI7va6VyKZYsWLF\nij24XUVkQ2SW1TnGacrovR2pQfqQmKMcNn5a3pHw16qiCFtnb3KYCiUxZw0PEj+ynKhGOPA44J1Q\nCA3KogKzpaRA8jwcRQYv7PHjxzNMd7f0CoFSU8gltqMHj2bD9H+MZRDP1T151jzM01E6HFJxYL+W\nk9djqkKkjk2v62jHvtioKRHaaMd0BKGqfnbmWVbYD/ardRJEb5afdkXKcRwzAkRErPAa4Vlq/n2B\nvNTx2v9Xq9UMnzUEH1VKHRoeOeJplEgsImLs++wzRm2op2GdpDl8+epVPE0R+5sp+vamTtZpzrQx\njCcENCMRhUK7Wq+j8jDHbdvOJKYWATvtviLmJvPKqYhq0PDD8cgo9jEidIv0VMyP6FWM16n6ZW4V\n/anHdBLWSmrMMKeiYaOs1Bk5d6ZEm93345ihWB2mP0rdNFOnLWi0YsWKFSt2bXYVkQ3rL9YTEVWV\nY/MN1cS6SV1Ha3QhMHrNQvXgNA/uibEXRTxaIuMc7WHNWFVVzRGX5/bTvpQ40ml6nEIfOdjH0vTm\nUtSQGID33Pc96yGOpFpZPUDrKYOhmC55MdpoBu8I8+59CZvNhp4TiSWTd1VLPh3zMnijmkSvOHaE\nRKzDcLGfiWtJIgZKIiC/LgSWERE72Q+9TKPzOIcqRIREdJj9RQNuIx6ie6ge5WPN3my3MzW99esQ\n8Xim8RO/IXGt3T+H/Z71FXiuQLu534p93O92swyyICUj5vodbBrHrEnxaGtXkY+YB6fxwT568dop\n++BEvrgmVqusNbJBpAskm0iM49wzUcdkiORRy3n67BnHQOE5SJik+djIPYJ1x1qVS4Jj7qR26VLm\nGNsu3fcjGjVrkbOGFLpJf6B5ue/7TLIbdm/SFBERLRB2ZxpJX8dKZFOsWLFixR7criKyId0J0CqS\nw80kTpH7dJTaMGQ0CqQ7SceZJB98NISNC4otKGgsp+9RitcJqsgZBEhPbmJQ4243y1ijr0F6QiJm\nb2a/3/PfiGDQmQ9PsJdeFHqMmCtDJDld/lTXWU+RU4potOGCX+4BHiRyQv9Bb+catn+NmFj7sGgr\nk94dx0z22JkQ9tIpzRy2IcvgnbcS+SlFi1pr3vQ0jnPNJzBF53tziKbr+xkpZfWLwWoKq66b17Pt\nzyOccZoyolBSLVn/VF3XGSklrpXLeyiKCfXF1ubb2TSGYYgRc2/ox3NopoPRPHm1TiUXsL6wpjrz\n4Gu7zp1kHLwOyN6XdO7jOM7IOogapv2gTvX+++9HxKmm09m94HRJizGdYZ3QeXGiS5VvZtbDasFK\nBuyf+X161OvhzCBGWaQEnRvpm4vICUM/y67iZUN4IFId8nA5R9kQkVNGTBIiZymV9LeR9ANhs4Bo\n+stMwmk+RLxoaYVZbTLEjYCRIHTmw1DG6LxjXgTU9Bp+i5cN/v88MdsCKHDz6BFDeC3ynTOOpW35\nUFIm3oi5WQ/WCGWJNs3pOSp8srHUjy9yTVE6v1ljv/EbWYEkPCeDk5/T4HBorDby6v4jIrCV80Px\noaWFcJtnTQvr2Nq2XVLuyPgaO8e26zK2awI+zgADMB5vtKXTIBQ9zuHmc4cXC+hx7t54I9N48XNv\nZZ07CCJLv0qRmg9EjDtt65DicZpmAIY1HMPOqmVa/Ue23AAAC0RJREFUqtOvCdJJwzhyfd+YYufb\n77wTERFf+p7viYjT+ifdkqXjydlnzcY6V5lCrDmbakyz+rNCnFjsz9VT4ZjCKjmW80l6Y+xqvaaz\ncQ5I8zpW0mjFihUrVuzB7SoiG2qIp/+rDoi//bPmTqEcOceAqr+hOt96TW/rAEiuFTxhCjvsLbyF\nMY1xJrykNw5P07RqxmmaaXQsNQPTEbnHsTXdHKgSPn32jI1e54AXEXmxuBFCSycMrWxeKtmfzy/B\nAEJceDTCPw/bVWXVNX/8uio5YMQp8lHFVv0tob+IXKUIe5SUoxrPtKqyxs+DRQpKJumpH08T+dqt\n6npOB58BHETEUpn1QsTklCjq3WYpXote2q6L7YX9DRZdkdIFDYTy28r+rzBsNFk6fB7aSfSeuy7u\nDEDibN567muwL1uUnwFyJQp1WL2vWUb2xyOpcW6MHmhj99wgmlceHXqa9CgUMYQZI6pIv/ECfNM0\nc3YmfXYwBnGS7e73s/6OUdr4cVvJZLj2VaZO2nWZ2nBR6ixWrFixYldnVxHZoM7gXm7XdfzMmw2z\nAt84RmVv2szbgrdRVTMMGN6c0dYsgAnmmTVWk2jMq2m7bqZlsRwuPHzAD6uIqOEpWaF3b2SBm80m\nKy6C/uadpPB4L81pbO5CATjNh2vCn6uLuaSDFp9PQ5qjCafScJXFYRgyRU4/x0+rZdE7t7GpvhDX\nhX3nKqsxTRnxoddCdAyen3YtFqogHo+ZzpFDUJ34U8fnZJejfa9jca/ZCVenaeI1WRTHxRR80tq6\nq+xeg0fMfXbdRXJarGGNMhqL1P06apQ42DH9t/TO23am2TcggNcoEZUP4yyLwVjQIjNYJ2qk0LGh\nhIjNR9O2GSzdQSIKZDonraC/8evQtG0GlHIwhNZc8Ew4GoAC10Epf6iYa89O1Hs7OR8HHOFZ+The\nz0pkU6xYsWLFHtyuIrIBGSGMRHVVNathXqjH0POUfKzS0kRE3Bg9SS+oLkfnOEywH4bsmPQsz+Q1\nI5IHdAHeSAijRGxObNcZLQb28ejRo6y5Ep7UO4k0ELTrTdPQo3H0HCIwh3JHiFdvdQDm4MXDd8Gv\ntaGjBtmHU3F4ExyjFzuujqmxcU9nvEXWtAzlhd+2Ei1XFiG05ilH3zNSRE3PCS3h7R32+wxOjyjW\n4dOuIx8h4nFYh/gcNYRzKDqbl0oitsaitMqQdto43Fnen4iy9DllD6QGxejV1jnmG5F7XVXZteH8\nWOR3OB4zQbvG6pl7aSnA/nBtSExqTcAasWJ1ea2mtv+3bZtF6l4rVPoW1k4MQYprRRRa02T7q2U/\n+v9asiJeI3SaLUXvYR1z/ZkkB4X0ttuzSrZ6brxPlQwX8y7IutexEtkUK1asWLEHt6uIbGDe3KhR\nhYtVMTcsdQNs781zXptQlBCRYEZuCD/yeDxmKC56lIaOgtfV9D2RYC4lC/JAUJfc3t3NdOFG9wIP\nAt71druluJRHCu+myAbfP3/+fBbFSmMBLTylmdPnEIdqjsdZFhvzYNQ5SjcP3L1T0Zy7Zk6yijnE\n8bSZz9FsLoTmDb46vks1PfZ0TFP01lvhzahaW3H5B0hGKGEjxq9SDRFCieJoN0HZ4TvIMzj9i3qU\nR6t30bv1XheJOoGcutRjpXRJRNGB8t6kNPC7o6CvNhBlO1Nz02NECDrRCFyfJcGy9XrN3+Be2llk\nqfeu3+/0xoHC8nHUNSOQzsaNtfwoIc8W/UNp7hA5YU47qU95XdHnktH5ajXLi6T7EfeUR1uwcZqy\nmhXurBr1Njzb6poibzgnXHsc75ywHaM/7PcMqo6SCqnGfkmc7ZKVyKZYsWLFij24XUVkw/yu9WIc\nD4eZeM57CpBfPlNDcBQTPM5FTvpC9y6ZCaQz/GjbK1344jzghR0O8UZCsGS1IUGYRJw8IXgMyKVS\nwMh6RuqmySIvRVlFzN6iekdOte5IrccpylLvHGPC37Wd+zSO9LS9LuUIpep00MVn8Buxf1zPfhhI\ndOp082NaJ2RjkPOhp+e0Osm09uesAm6sy9R1FsGQAcEiPt2T94a5PAau8znPEjekr4m6rjO2AXyH\n/SqTgNdh+B3uCalfso5jiDsX92I9RdBRjHRNOE7F2xCZIno7Wq5fWQdQs2L0gFpTisIHqbdhraPv\nx9FpvgZaQd45VZHfG430+DXWa+XZEO2zUdqYiBlV6J3/EULpc6E/iL1Wdc3r5lRTsEXU7/ViW+cr\nq1NFSM+coecWx/BeuzNR7KfZVbxsVA1uYXJy1GtJi9CV9Qbhx2LIiQcCQk1pvnQIa9iL6hz9CAv4\ntvhwoXbyMNla+sJ1LbQAivD2pSnqOVVHXdcZlQvmDC9spQnxRkrXqqjS92wMlZvT1RlJkSIvDT7A\nL8BqCSY4bbCYh9qLpOnz3W7HGx7X2rWA2GgrL6X2wsJ3xuGqqs5q3OA7PdcqIgMjeHqUcONxXBR0\nI4JcfLipj+k6K4WMQ8wVzq37H4ch07f3lzFspQqjBv9t5R7A9xkEF2vWoO1aaPYHulMUNTIXTkHj\nQArVBsJ+VtrMGpFxg+kLdW00Kpecn67rmFryZlSCAfB9XWcADLzUSCOFB3NdX5wHriVZh1h3eqzT\nVE2L4zH123UZuEQ1enTbWsbioALYStKMl9Q2ca3VuXTg1ee1kkYrVqxYsWIPblcR2VCt0cNfCQnh\nSTrxHwk1BSDAgiRSQEbZ0bZt1rDm+vGDe2hiWThpIfiq6+hl7RUyeNr4NAYBMeA3SIvAg3IqinEc\nmc7ZmZeMv/C8p2nib2ukWVKzFxld0+dPU8pvFcLAjZRjGjYLnSjGti33f2l+JvG6PLXmjLy45rrP\ntRGJQodeKYQiltdouBChqifuDaAO+VUSUnqonkJNf1mEHQYWtb2hl8qMOB+B/nqKqbU0EjV3pom0\nKdCb8eZATSFmNEO23gniaNtMeRKEszj3vVEsdW27oDyJmJtG2WQokPba5sFJWDUKgO4LztFTnnqP\ne0ps9MxIMh5/vc4gvbiuuAcWKqqWhVhZ4d7BM7q/uj3/aFV1Vo/AvIFa092MsO2cPHJv6no+h/TZ\nJSXWcRzna21jGm0NKHXYbyyuKZFNsWLFihX7f2DXEdlcUIecxjGDBTq0kBFK31+kvMbbf3XmO90+\nIm8yrFerLLoh1Dl52iwaA8673bIOgigCXiE8d41s4L0xWjHlRI5VaFn2BgvuLZcbAmn14iU1K4w+\nRRtjF3o+kdd5lDDTKWHO0ZA4FUfYnKqXd46wMiKXJ6j0XLG9q7Ke8RKPFnk4wScVE6WZDsdGbSwj\nxRQwQUbUmo59IwSWERFxfz9DegE3NkokVfXEvXAwkkqXdqiripFMK16sHkfBFZQ3sPqCK9xqfc3J\nYgdbUxqFujfubQxKj4M6HaI4NijivhEQhOsQObzbI4Smbed6hUWqXn9dSBhI7WRxrlJPm2wNXQKo\nxDRxTQ4WVfj86JolfZHNWXau0lDu9V2/P0eh73ECWAcRTRFZM7TfA59lJbIpVqxYsWIPbtXnbcwp\nVqxYsWLFPq+VyKZYsWLFij24lZdNsWLFihV7cCsvm2LFihUr9uBWXjbFihUrVuzBrbxsihUrVqzY\ng1t52RQrVqxYsQe38rIpVqxYsWIPbuVlU6xYsWLFHtzKy6ZYsWLFij24lZdNsWLFihV7cCsvm2LF\nihUr9uBWXjbFihUrVuzBrbxsihUrVqzYg1t52RQrVqxYsQe38rIpVqxYsWIPbuVlU6xYsWLFHtzK\ny6ZYsWLFij24lZdNsWLFihV7cCsvm2LFihUr9uBWXjbFihUrVuzBrbxsihUrVqzYg1t52RQrVqxY\nsQe38rIpVqxYsWIPbv8Xjw44d4+GQnkAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11597ba90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.patches as mpatches\n", "\n", "from skimage import data\n", "from skimage.filters import threshold_otsu\n", "from skimage.segmentation import clear_border\n", "from skimage.measure import label, regionprops\n", "from skimage.morphology import closing, square\n", "from skimage.color import label2rgb\n", "\n", "# create a subimage for tests\n", "image = imgMicro[300:550, 200:400, 2]\n", "\n", "# apply threshold\n", "thresh = threshold_otsu(image)\n", "bw = closing(image > thresh, square(3))\n", "\n", "# remove artifacts connected to image border\n", "cleared = clear_border(bw)\n", "\n", "# label image regions\n", "label_image = label(cleared)\n", "image_label_overlay = label2rgb(label_image, image=image)\n", "\n", "fig, ax = plt.subplots(figsize=(10, 6))\n", "ax.imshow(image_label_overlay)\n", "\n", "for region in regionprops(label_image):\n", " # take regions with large enough areas\n", " if region.area >= 50:\n", " # draw rectangle around segmented coins\n", " minr, minc, maxr, maxc = region.bbox\n", " rect = mpatches.Rectangle((minc, minr), maxc - minc, maxr - minr,\n", " fill=False, edgecolor='red', linewidth=2)\n", " ax.add_patch(rect)\n", "\n", "ax.set_axis_off()\n", "plt.tight_layout()\n", "plt.show()\n", "#plt.imshow(bw,cmap=plt.cm.gray) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6. Save information as a xls file" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# Calculate regions properties from label_image\n", "regions = regionprops(label_image) \n", "\n", "for i in range(len(regions)):\n", " all_props = {p:regions[i][p] for p in regions[i] if p not in ('image','convex_image','filled_image')}\n", " for p, v in list(all_props.items()):\n", " if isinstance(v,np.ndarray):\n", " if(len(v.shape)>1):\n", " del all_props[p]\n", "\n", " for p, v in list(all_props.items()):\n", " try:\n", " L = len(v)\n", " except:\n", " L = 1\n", " if L>1:\n", " del all_props[p]\n", " for n,entry in enumerate(v):\n", " all_props[p + str(n)] = entry\n", "\n", " k = \", \".join(all_props.keys())\n", " v = \", \".join([str(f) for f in all_props.values()]) #notice you need to convert numbers to strings\n", " if(i==0):\n", " with open('cellsProps.csv','w') as f:\n", " #f.write(k)\n", " f.writelines([k,'\\n',v,'\\n']) \n", " else:\n", " with open('cellsProps.csv','a') as f:\n", " #f.write(k)\n", " f.writelines([v,'\\n']) \n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 7. Simulating 2D images - \"cells\"" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x117cf1c50>" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACoxJREFUeJzt3U+InId5x/Hvr5KD06YlUhKWxbKrHETBhMQB4aYkB2Nq\nUN0QmR6MA4EtFHRpQYFCIrfQkp58Crn0IhoTQUqCIaUSvhhVcWl7cSz/SWtbUeSWmjistBQRklza\nJn56mNfNdqvVzO7OzM7o+X5gmHnfeTXvg63vvn92WaWqkNTPL+33AJL2h/FLTRm/1JTxS00Zv9SU\n8UtNGb/UlPFLTe0p/iQnklxN8maSM9MaStLsZbc/4ZfkAPB94BHgbeBF4LNV9cZt/ow/TijNWFVl\nku32cuR/EHizqv6tqv4L+CZwcg+fJ2mO9hL/PcAPNi2/PayTtAQOznoHSU4Bp2a9H0k7s5f4fwjc\nu2n5yLDu/6iqs8BZ8JpfWiR7Oe1/ETiW5MNJ3gM8AVyYzliSZm3XR/6q+lmSPwKeAw4AT1fV61Ob\nTNJM7fpbfbvamaf90szN41t9kpaY8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTRm/1JTx\nS00Zv9SU8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFLTRm/1JTxS00Zv9SU8UtNGb/UlPFL\nTRm/1JTxS00Zv9SU8UtNGb/UlPFLTY2NP8nTSTaSvLZp3eEkF5NcG54PzXZMSdM2yZH/a8CJLevO\nAJeq6hhwaViWtETGxl9V/wDc3LL6JHBueH0OeGzKc0masd1e869U1frw+jqwMqV5JM3Jwb1+QFVV\nktru/SSngFN73Y+k6drtkf9GklWA4Xljuw2r6mxVHa+q47vcl6QZ2G38F4C14fUacH4640ial1Rt\ne8Y+2iD5BvAQ8EHgBvDnwN8CzwD3AW8Bj1fV1puCt/qs2+9M0p5VVSbZbmz802T80uxNGr8/4Sc1\nZfxSU8YvNWX8UlPGLzVl/FJTxi81ZfxSU8YvNWX8UlPGLzVl/FJTxi81ZfxSU8YvNWX8UlPGLzVl\n/FJTxi81ZfxSU8YvNWX8UlPGLzVl/FJTxi81ZfxSU8YvNWX8UlPGLzVl/FJTxi81ZfxSU8YvNWX8\nUlPGLzU1Nv4k9yZ5PskbSV5PcnpYfzjJxSTXhudDsx9X0rSkqm6/QbIKrFbVy0l+FXgJeAz4feBm\nVT2V5AxwqKq+OOazbr8zSXtWVZlku7FH/qpar6qXh9c/Aa4A9wAngXPDZucYfUGQtCR2dM2f5Cjw\nceAFYKWq1oe3rgMrU51M0kwdnHTDJO8DvgV8vqp+nPzizKKqartT+iSngFN7HVTSdI295gdIchfw\nLPBcVX15WHcVeKiq1of7An9fVb8x5nO85pdmbGrX/Bkd4r8KXHk3/MEFYG14vQac3+mQ2l9VNZOH\nlsMkd/s/Bfwj8C/AO8PqP2F03f8McB/wFvB4Vd0c81n+zVggswp18yWh5m/SI/9Ep/3TYvyLxfjv\nTFM77Zd0Z5r4br+W37zO8rbuxzOBxeSRX2rK+KWmjF9qymv+O9iifM/9VnN4H2D/eeSXmjJ+qSnj\nl5oyfqkp45eaMn6pKeOXmjJ+qSnjl5oyfqkp45eaMn6pKeOXmjJ+qSnjl5oyfqkp45eaMn6pKeOX\nmjJ+qSnjl5ryt/fewbb+htz9+m2+/qbexeSRX2rK+KWmjF9qymv+RuZ1D8Br/OXgkV9qyvilpsbG\nn+TuJN9J8t0kryf50rD+cJKLSa4Nz4dmP66kacm4676MLuB+pap+muQu4J+A08DvATer6qkkZ4BD\nVfXFMZ+1GP9srACv+e9UVTXR/4CxR/4a+emweNfwKOAkcG5Yfw54bBdzah8lmclDy2Gia/4kB5K8\nCmwAF6vqBWClqtaHTa4DKzOaUdIMTBR/Vf28qh4AjgAPJvnIlveL0dnA/5PkVJLLSS7veVpJU7Oj\nu/1V9SPgeeAEcCPJKsDwvLHNnzlbVcer6vheh5U0PZPc7f9QkvcPr98LPAJ8D7gArA2brQHnZzWk\npOmb5G7/Rxnd0DvA6IvFM1X1F0k+ADwD3Ae8BTxeVTfHfJZ3+6UZm/Ru/9j4p8n4pdmb2rf6JN2Z\njF9qyvilpoxfasr4paaMX2rK+KWmjF9qyvilpoxfasr4paaMX2rK+KWmjF9qyvilpoxfasr4paaM\nX2rK+KWmjF9qyvilpoxfasr4paaMX2rK+KWmjF9qyvilpoxfasr4paaMX2rK+KWmjF9qyvilpoxf\nasr4paYmjj/JgSSvJHl2WD6c5GKSa8PzodmNKWnadnLkPw1c2bR8BrhUVceAS8OypCUxUfxJjgC/\nC/zVptUngXPD63PAY9MdTdIsTXrk/wrwBeCdTetWqmp9eH0dWLnVH0xyKsnlJJd3P6akaRsbf5JP\nAxtV9dJ221RVAbXNe2er6nhVHd/9mJKm7eAE23wS+EySR4G7gV9L8nXgRpLVqlpPsgpszHJQSdM1\n9shfVU9W1ZGqOgo8AXy7qj4HXADWhs3WgPMzm1LS1O3l+/xPAY8kuQb89rAsaUlkdLk+p50l89uZ\n1FRVZZLt/Ak/qSnjl5oyfqkp45eaMn6pKeOXmjJ+qSnjl5oyfqkp45eaMn6pKeOXmjJ+qSnjl5oy\nfqkp45eaMn6pKeOXmjJ+qSnjl5oyfqkp45eaMn6pKeOXmjJ+qSnjl5oyfqkp45eaMn6pKeOXmjJ+\nqSnjl5oyfqkp45eaMn6pKeOXmjo45/39B/AW8MHh9bJYpnmXaVZYrnmXYdZfn3TDVNUsB7n1TpPL\nVXV87jvepWWad5lmheWad5lmnYSn/VJTxi81tV/xn92n/e7WMs27TLPCcs27TLOOtS/X/JL2n6f9\nUlNzjz/JiSRXk7yZ5My89387SZ5OspHktU3rDie5mOTa8HxoP2d8V5J7kzyf5I0kryc5Paxf1Hnv\nTvKdJN8d5v3SsH4h5wVIciDJK0meHZYXdtbdmGv8SQ4Afwn8DnA/8Nkk989zhjG+BpzYsu4McKmq\njgGXhuVF8DPgj6vqfuATwB8O/y0Xdd7/BB6uqo8BDwAnknyCxZ0X4DRwZdPyIs+6c1U1twfwW8Bz\nm5afBJ6c5wwTzHgUeG3T8lVgdXi9Clzd7xm3mfs88MgyzAv8MvAy8JuLOi9whFHgDwPPLtPfhUkf\n8z7tvwf4wablt4d1i2ylqtaH19eBlf0c5laSHAU+DrzAAs87nEa/CmwAF6tqkef9CvAF4J1N6xZ1\n1l3xht8O1OhL/kJ9eyTJ+4BvAZ+vqh9vfm/R5q2qn1fVA4yOqg8m+ciW9xdi3iSfBjaq6qXttlmU\nWfdi3vH/ELh30/KRYd0iu5FkFWB43tjnef5XkrsYhf/XVfU3w+qFnfddVfUj4HlG91cWcd5PAp9J\n8u/AN4GHk3ydxZx11+Yd/4vAsSQfTvIe4Angwpxn2KkLwNrweo3RtfW+SxLgq8CVqvryprcWdd4P\nJXn/8Pq9jO5PfI8FnLeqnqyqI1V1lNHf0W9X1edYwFn3ZB9upDwKfB/4V+BP9/umx5bZvgGsA//N\n6H7EHwAfYHTj5xrwd8Dh/Z5zmPVTjE47/xl4dXg8usDzfhR4ZZj3NeDPhvULOe+muR/iFzf8FnrW\nnT78CT+pKW/4SU0Zv9SU8UtNGb/UlPFLTRm/1JTxS00Zv9TU/wBvgh+KmF4JfgAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x116756358>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Test\n", "from skimage.draw import circle\n", "img = np.zeros((50, 50), dtype=np.uint8)\n", "rr, cc = circle(25, 25, 5)\n", "img[rr, cc] = 1\n", "plt.imshow(img,cmap='gray')\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "\n", "import random\n", "import math\n", "from matplotlib import pyplot as plt\n", "import matplotlib.patches as mpatches\n", "from skimage import data, io\n", "from skimage.draw import circle\n", "\n", "def createMyCells(width, height, r, num_cells):\n", " \n", " image = np.zeros((width,height),dtype=np.uint8)\n", " imgx, imgy = image.shape\n", " nx = []\n", " ny = []\n", " ng = []\n", " \n", " #Creates a synthetic set of points\n", " for i in range(num_cells):\n", " nx.append(random.randrange(imgx))\n", " ny.append(random.randrange(imgy))\n", " ng.append(random.randrange(256))\n", " \n", " #Uses points as centers of circles \n", " for i in range(num_cells):\n", " rr, cc = circle(ny[i], nx[i], radius)\n", " if valid(ny[i],r,imgy) & valid(nx[i],r,imgx):\n", " image[rr, cc] = ng[i]\n", " return image\n", "\n", "def valid(v,radius,dim):\n", " if v<radius:\n", " return False\n", " else: \n", " if v>=dim-radius:\n", " return False\n", " else:\n", " return True" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x117e52550>" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFRVJREFUeJzt3X+wHWV9x/H3l4SEEZJCAo2BxPzoREeC7VVjEPwxWESD\n0xppxzT5Q1NFIzOAte3ogLXij9JxQKqjVplgImFGwIilZhx+lGSqTiFIfjSFBIwkISn3EhIMUIIt\nwSTf/nH2yNl7ds/uPbt7zu6ez2vmzj3n2T3nPsvN8+F59nnueczdERFpOqHfFRCRclEoiEiIQkFE\nQhQKIhKiUBCREIWCiIQUFgpmtsjMdprZLjO7qqifIyL5siLWKZjZOOBXwEXAMLAJWObuj+b+w0Qk\nV0X1FBYCu9x9j7u/DNwOLC7oZ4lIjsYX9L5nAU+2PB8Gzo07eYJN9JM4uaCqiAjAYZ77tbufkXRe\nUaGQyMxWACsATuJVnGsX9qsqIgNhvd+xL815RQ0fRoCZLc9nBGW/4+4r3X2Buy84kYkFVUNExqqo\nUNgEzDOzOWY2AVgKrCvoZ4lIjgoZPrj7UTO7ArgXGAesdvcdRfwsEclXYfcU3P0u4K6i3l9EiqEV\njSISolAQkRCFgoiEKBREJEShICIhCgURCenbMmcRSe/AJ89vK5v2jQcK+VkKBcnk5UVviSyfcM+m\nMb3PCZMmtZUdP3y4qzrVSVQYtB4rIhg0fJCuxQVC0rHRogKhU/mg6BQIYzlnrNRTGOX5D5/XVnbq\nLRv7UJNyS9PoX170lo49hjSN/oRJk9Rj6DH1FFpEBUKncpE6UigEkhr+8x8+T+EgA0GhICIhCgUR\nCVEoiJRUmulGTUlKaaRZh5B0zvHDhxNnFgZ95mHaNx6IbfhavCSlM+GeTbksXjp++LAWLyUoKgCi\nKBQCp96ysePsgtYqRBvrysU4CoCxeeay9n+rZ9yYz7/RrocPZjbTzP7dzB41sx1m9ldB+RfMbMTM\ntgVf78ulpj0Q1/CrHghv2XYs8kuqKSoQOpWPVdfbxpnZdGC6u281s0nAFuADwBLgRXf/atr3mmxT\nXPs+FCOp8W8aGtejmkge0jb8qF7Der9ji7svSHpt1z0Fd9/v7luDx4eBx2jsDCUlkaY3oB6DjJbL\n7IOZzQbeCPwiKLrSzB42s9VmdloeP0NEeiNzKJjZKcCPgE+5+wvAd4C5wBCwH7gh5nUrzGyzmW3+\nLUeyVkNEcpJp9sHMTqQRCN93938BcPcDLcdvAn4S9Vp3XwmshMY9hSz1kGr57x++IbL8NR98pMc1\nkShZZh8MWAU85u7/1FI+veW0S4Dt3VdPRHoty/DhbcCHgD8eNf14nZk9YmYPA+8C/jqPiko9xPUS\nko5JQ9JahDNu3Jh5vULXU5J50pRkcco0JZm20WsYkaybxUtppyS1orHmNg2Niw0GrVGorrxWL0ZR\nKAwANf7eO3Jx+9+ETLw7nyXhRdNfSYrkLCoQOpWXjXoKUjqHLn1lvDx11UZu3PcfkeddNuvtvapS\nakkNv3m8zL0G9RSkcF/cs4Uv7tnC9958c+K5J99zSuh5a0CMFhcWVfDNfffzzX3397sakRQKUqgv\n7tkSet4pGEYHQtMHv/Tp2NdUORiAUgaDhg9SmNGB0DQ6GK649ooe1Ka8vrnvfq6c9bZ+V+N31FMQ\nkRD1FERyNPHuTR1vNq688es9rE131FMQkRCFgkjO4qYbq9BLAA0fpASmrtrYcerxh5+/PvZYGdcq\nwCvBUMbZhSTqKUhhrpn75sTjzXOmropeyx9XDuUNhFZpZhXKNPMA+itJ6YGoqcmkwKibuB5DLwNB\nfyUppTFoARClbL2BTjR8EJEQhYKIhCgURCREoSAiIVk/4n0vcBg4Bhx19wVmNgX4ATAb2Asscffn\nslVTRHolj57Cu9x9qGWq4ypgg7vPAzYEz0WkIooYPiwG1gSP19DYdFZEKiJrKDiw3sy2mNmKoGya\nu+8PHj8NTIt6obaNEymnrIuX3u7uI2b2+8B9ZvbL1oPu7mYWuWRS28aJlFOmnoK7jwTfDwJ3AguB\nA82t44LvB7NWUkR6p+uegpmdDJzg7oeDx+8BvgSsA5YDXwm+/ziPikr9fWTnvray771uVh9qMtiy\nDB+mAXc29pllPHCru99jZpuAtWZ2KbAPWJK9mlJ3UYHQLC9tMGyYEV1+4XBv65Ez/ZWk9F1cILQq\nXTDEBUJTCYMh7V9JakWjyFglBULac0pKoSAiIQoFEQnRh6xkNH7WzLayo/ue7ENNRPKhnkIGUYHQ\nqVyiJd1ELN1NxppTKHQpqeErGMYmruGXMhDSzCyUcPYhLYWCiITonoKURil7BXEuHK7t4iWFgki3\nKt7442j4ICIhCgURCVEodClpLYLWKkhVKRQyiGv4CgSpMt1ozKjIALA3zm8r8//cUdjPEwGFQmlF\nBUKzXMHQnSf//vy2splffqAPNSk3DR9KKC4Q0h6XdlGB0Kl8kCkUpPaSGr6CIUyhICIhWT649XU0\ntodrmgt8HjgV+DjwTFD+WXe/q+saikhPdR0K7r4TGAIws3HACI2Pef8I8DV3/2ouNZRIT30must7\n5nW6cSbZ5DV8uBDY7e7Jn8AphYoLC5G08gqFpcBtLc+vNLOHzWy1mZ0W9QJtGxcvacpx5KLf63hc\nwSBZZP6IdzObADwFzHf3A2Y2Dfg1jX0mvwxMd/ePdnoPfcR7tKipx7hAmLnql21lxw49m3udqqrT\nDMOgrFVI+xHveSxeuhjY6u4HAJrfAczsJuAnOfyMgRTZY7goYgFORCAAjJs6RcEQmHX91rayfZ9+\n08AEwljkEQrLaBk6mNn0ll2nLwG25/AzJEJcGLRSMMAJJ50UWT7r+q0c73FdqiBTKAR7SF4EfKKl\n+DozG6IxfNg76phIz8SFwehzjr/0Ug9qUx2ZQsHdfwNMHVX2oUw1ko7OvO4B3UiUQmlFYwVpLYIU\nSaFQUQoGKYpCocKOHXo28SbioN9klLFTKIhIiEKhBuJ6A4PeSzj+0kuJMwuaeWinT16qiUEPgE7O\n/Ol4nrrgaFu5AiGaQkFqa8aDp/zu8Zk/bf+nPvzWXtamOjR8kFpqDYQs5wwihYKIhCgURCREoSAi\nIdW50WjWXpbxsyBEpF01egpRgdCpXAbe8FtfzOWcQVT+UEhq+AoGiTH81hdjG74CIV51hg8iXVIA\njE35ewoi0lMKBREJGfjhg41v/0/gR9vXyYsMisSeQrB3w0Ez295SNsXM7jOzx4Pvp7Ucu9rMdpnZ\nTjN7b1EVz8rGj48MhOYxkUGVZvhwM7BoVNlVwAZ3nwdsCJ5jZmfT2BhmfvCabwdbynUvaS1CF2sV\n0jR6BYMMqsRQcPefA6P/LncxsCZ4vAb4QEv57e5+xN2fAHYBCzPXMq7ha/GSSO66vdE4rWVvh6eB\nacHjs4AnW84bDsqyc2//EpHcZe4ju7ub2ZhbqJmtAFYAnMSrslZDpCdevGduZPkpi/b0uCbF6ban\ncMDMpkNjRyjgYFA+AsxsOW9GUNbG3Ve6+wJ3X3AiE7ushkjvxAVC0rGq6TYU1gHLg8fLgR+3lC81\ns4lmNgeYBzyUrYr5SzPlqGlJaZWm0dclGBKHD2Z2G3ABcLqZDQPXAF8B1prZpcA+YAmAu+8ws7XA\no8BR4HJ3P1ZQ3TNpNnqtUxAJSwwFd18Wcyhy73h3vxa4NkulekkBIBKmZc4iEqJQEJEQLduTwbDw\nDe1lDz3S+3pUgHoKUn9RgdCpPEKadQh1WaugUJD6WviG5IafUzDUJRBAwweRMalT44+jnoKIhCgU\nRCREw4cB8sKy6B1VJ9/2YI9rImWmnsKAiAuEpGOV9tAjydOOmpZso1AYAGkafW2DAeIbvgIhkoYP\nMhgUAKmppyAiIQoFEQnR8EFq6fz/ejmy/IE/mtDjmlSPegpSO3GBkHRMGhQKAyDNOoS6rFVI0+gV\nDJ0pFAZEp0Zfl0CQfKT5jMbVwJ8AB939nKDseuBPgZeB3cBH3P15M5sNPAbsDF7+oLtfVkC9pQtq\n/JJGt9vG3Qec4+5/CPwKuLrl2G53Hwq+FAgiFdPVtnHu/m/u3vzE0wdp7O8gIjWQxz2FjwJ3tzyf\nY2bbzOxnZvaOHN5fJLU0U46lnJY8YVz7V7+qkuXFZvZ3NPZ3+H5QtB94jbsPAX8D3Gpmk2Neu8LM\nNpvZ5t9yJEs1REI6NfrSBsJYygvW9eIlM/tLGjcgL3Rv7Pbq7keg0cLdfYuZ7QZeC2we/Xp3Xwms\nBJhsU7RbrOSq28b/mz8/N7L85B/9Ikt14iU1/Obx473bU6mrnoKZLQI+A7zf3f+3pfwMMxsXPJ5L\nY9u4+n9+lUiNJIZCsG3cRuB1ZjYcbBX3LWAScF9w/+DG4PR3Ag+b2TbgDuAyd3828o1FSiaul5B0\nrG4s6Pn31WSb4uda5C50XTnt/iltZc+9TdlUhPc/eiiyfN3ZU3tck2zSNvrchxFp7xvkMHxY73ds\ncfcFSefVbkVjVCB0KpfuxQVC0jEpt9qEwmn3T0ls+AqG/KRp9AqGaqpNKIhUUtKw4Pixns48gEJB\npP/iGn2Pw6BJoSBCuhuIha1VgFd6BK1ffVKpT166eMfzbWV3zz+1DzWROjr5R7/o/eKlEqrMlGRU\nIDS1BkOnm4malsxX0o3Eqk1L1l2tpiQ7BcLo43ENX4GQv06NXoFQXZUaPqSlAOgdNf7+ePf2w21l\n68+ZlMt7V6KnICK9o1AQqZioXkKn8rFSKIhUSFLDf/f2w5nDQaEgIiGVCIWktQhaqyCSn0qEAsQ3\nfAWCSL4qNSWpABApXqVCoewOfey8yPKp393Y45pIXa0/Z1LHG4l5rFWozPCh7OICIemYyFjFNfy8\nFi91u23cF4CPA88Ep33W3e8Kjl0NXAocAz7p7vfmUtMSS9PoD33sPPUYJDd5BUCUbreNA/hay/Zw\nzUA4G1gKzA9e8+3mpzuLSDV0tW1cB4uB2939iLs/AewCFmaon4j0WJYbjVea2YdpbPTyt+7+HHAW\njb0lm4aDMpGee+HuP4gsn3zx7h7XpFq6vdH4HWAuMERjq7gbxvoG2jZOpJy6CgV3P+Dux9z9OHAT\nrwwRRoCZLafOCMqi3mOluy9w9wUnMrGbaojEiuslJB2T7reNm97y9BJge/B4HbDUzCaa2Rwa28Y9\nlK2K5ZdmVkEzD72TptErGOKlmZK8DbgAON3MhoFrgAvMbAhwYC/wCQB332Fma4FHaexGfbm79+8T\nKHto6nc3avGS1EJiKLj7sojiVR3Ovxa4NkulqkqNX+pAKxpFJEShICIhCgWpnTTrELRWId7A/pXk\nvU9tiyx/75lDPa6JFGHyxbu1eKlLAxkKcYHQPKZgqAc1/u4M3PChUyCM5RyRuhq4UBCRzhQKIhKi\nUBCRkIG80SjVM/6sMyPLj4481eOa1J96ClJ6cYGQdEy6M3ChkGa6UVOS5ZGm0SsY8jVwoQCdG70C\nQQbdwN5TUOMXiTaQPQURiadQEJGQgR0+SP4eX/OmyPJ5y7d2/Z5HR55KvJGoacl8qacguYgLhKRj\naXRq9AqE/KmnIJmlafSPr3lT5h6D9EZiT8HMVpvZQTPb3lL2AzPbFnztNbNtQflsM/u/lmM3Fll5\nEclfmp7CzcC3gFuaBe7+F83HZnYD8D8t5+92d833iRRg/Iz2DdeODkdurdK1THtJmpkBS4Dbcq2V\niLSJCoRO5d3KeqPxHcABd3+8pWxOMHT4mZm9I+6F2jZOJL2khp9nMGS90biMcC9hP/Aadz9kZm8G\n/tXM5rv7C6Nf6O4rgZUAk22KZ6yHiOSk656CmY0H/gz4QbMs2IL+UPB4C7AbeG3WSkq5pZlVyDLz\nIL2VpafwbuCX7j7cLDCzM4Bn3f2Ymc2lsZfknox1zMXX9z4QWf6p2ef3uCbpPPGP7VvQzflseXeg\nmrd8ayGLl6T3utpL0t1XAUtpv8H4TuBLZvZb4DhwmbtH3qTspbhAaB4rWzBEBUKzvOzBINVn7v0f\nzk+2KX6uXVjIe3cKhFZlCIa4MBitzMEgxel0MzHNtOR6v2OLuy9I/Dljq5aIFGHvP7T/D2H258Lh\nf3R4pCfrFBQKIn0WFQjN8qhgKJr+IEqkj+ICofV40jl5UyiISIhCQURCah8KaWYVyjDzAI1ZhaSZ\nBc08SNFqHwrQudGXJRBaxTV8BYL0wsDMPpSx8XeiAJB+GYiegkhZjZ5yjDqedE7eBqanIFJWsz+3\nMdXipVZLHnu6rWzt61+dS30UCiIlMJbeQFQgNMvzCAYNH0QqJC4QWo8nnZNEoSAiIQoFEQlRKIhI\niEJBREIUCiISolAQqZCkKce1r3915mlJhYJIxcQ1ei1eEhlgeQVAFPUURCSkFJ/mbGbPAL8Bft3v\nuhTgdOp5XVDfa6vrdc1y9zOSTipFKACY2eY0Hz9dNXW9LqjvtdX1utLS8EFEQhQKIhJSplBY2e8K\nFKSu1wX1vba6XlcqpbmnICLlUKaegoiUQN9DwcwWmdlOM9tlZlf1uz5ZmdleM3vEzLaZ2eagbIqZ\n3WdmjwffT+t3PZOY2WozO2hm21vKYq/DzK4Ofoc7zey9/al1OjHX9gUzGwl+b9vM7H0txypzbXno\nayiY2Tjgn4GLgbOBZWZ2dj/rlJN3uftQy7TWVcAGd58HbAiel93NwKJRZZHXEfzOlgLzg9d8O/jd\nltXNtF8bwNeC39uQu98Flby2zPrdU1gI7HL3Pe7+MnA7sLjPdSrCYmBN8HgN8IE+1iUVd/858Oyo\n4rjrWAzc7u5H3P0JYBeN320pxVxbnEpdWx76HQpnAU+2PB8OyqrMgfVmtsXMVgRl09x9f/D4aWBa\nf6qWWdx11OX3eKWZPRwML5pDo7pcW2r9DoU6eru7D9EYEl1uZu9sPeiN6Z7KT/nU5TpafAeYCwwB\n+4Eb+lud/ul3KIwAM1uezwjKKsvdR4LvB4E7aXQ1D5jZdIDg+8H+1TCTuOuo/O/R3Q+4+zF3Pw7c\nxCtDhMpf21j1OxQ2AfPMbI6ZTaBxQ2ddn+vUNTM72cwmNR8D7wG207im5cFpy4Ef96eGmcVdxzpg\nqZlNNLM5wDzgoT7Ur2vNsAtcQuP3BjW4trHq6+cpuPtRM7sCuBcYB6x29x39rFNG04A7zQwa/21v\ndfd7zGwTsNbMLgX2AUv6WMdUzOw24ALgdDMbBq4BvkLEdbj7DjNbCzwKHAUud/djfal4CjHXdoGZ\nDdEYEu0FPgHVu7Y8aEWjiIT0e/ggIiWjUBCREIWCiIQoFEQkRKEgIiEKBREJUSiISIhCQURC/h9R\naBIj9ZlBngAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x116572e80>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "width = 200\n", "height = 200\n", "radius = 5\n", "num_cells = 50\n", "image = createMyCells(width, height, radius, num_cells)\n", "plt.imshow(image)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 8. Simulate particles with Scikit-learn -> sklearn" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.cluster import MeanShift, estimate_bandwidth\n", "from sklearn.datasets.samples_generator import make_blobs" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x11890a518>" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQsAAAD8CAYAAABgtYFHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFCpJREFUeJzt3V/IHNd9xvHvE9lxS2yoHadClQSWqVqQS6sEoQZqQlpI\nrPhGzo1RLoouDMqFGxJIL+QGGveuLU1yVQcUYiJKGlWQGItSWmxhyE1rW3JlR5Kj+E1sYwlZIk1L\nnBunUn69eOetR6uZnTO7O/+fD7xodnZm9+zRzrPnnDm7o4jAzKzK+7ougJkNg8PCzJI4LMwsicPC\nzJI4LMwsicPCzJI0FhaS9km6IGlN0uGmnsfM2qEm5llI2gT8CPgEcBF4EfhMRJxf+ZOZWSuaalns\nBdYi4icR8UvgGLC/oecysxbc0tDjbgXeyt2+CPxh2caSPI3UrHk/jYgPLbpzU2FRSdIh4FBXz282\nQW8us3NTYXEJ2J67vS1b9/8i4ghwBNyyMBuCpsYsXgR2Stoh6f3AAeBEQ89lZi1opGUREdck/Rnw\nb8Am4MmIONfEc5lZOxo5dVq7EO6GmLXhdETsWXRnz+A0syQOCzNL4rAwsyQOCzNL4rAwsyQOCzNL\n4rAwsyQOCzNL4rAwsyQOCzNL4rDIyU9978M0eLM+cVjkSCpcNjOHhZklcliYWRKHhZklcViYWZLJ\nhYXPcpgtZnJhMe8sh4PErNxgw6KhK6nd8Nipz+GQsSkYbFg0OQ9i47FTn8NzMmwKBhsWbYiI0laD\nWxM2NZ1dkWwI5rUY3JqwqZlsy6KqZVDUqnBrwqZssmFR1jLYCARJN21TtI8DxKZismExKx8SVdvk\nuTtiU+GwyMw7berWg5nD4iZFp02rTqXOO2tiNhZLnQ2R9AbwDnAduBYReyTdBfwTcA/wBvBwRPz3\ncsVsRkTcEAAbt/PrZ7cp2tddEZuCVbQs/jgiducuuHoYOBkRO4GT2e1emu16bCxXBUV+X7OpaKIb\nsh84mi0fBR5q4DlWqqjL4W6F2Y2WDYsAnpV0WtKhbN3miLicLb8NbF7yOVozGxqzXZT8v2ZTs+wM\nzvsj4pKk3wSekfTD/J0REZIKj64sXA4V3bdK87oS87aZHb/w+IRN3VIti4i4lP17FXgK2AtckbQF\nIPv3asm+RyJiT26soxH5bsW8VsHsfbMDnWZTt3BYSPqApDs2loFPAmeBE8DBbLODwNPLFnJZs62D\n1MlVVbM8zaZkmW7IZuCp7IC6BfjHiPhXSS8CxyU9ArwJPLx8MVdrNjRST5eaTZn68ClZNq7RpDpz\nKRweNhKnl+n2T3YG5+yZj3ldEweF2UTDomiws+4XyPrQIjNr0yR//KZuS6HO4KfZWI22ZVH3kz8/\n6crfODW72WjDos4n/7wvhaU8jgPFpmC0YVHHIgGxzPZmQ+SwMLMkDgszS+KwKOAxCLObOSwKeAzC\n7GYOC7OMW5TzOSzMMm5Rzje5sPCnh9liJhcWY/mNzaGX34ZncmGxYehNzqGX34ZnsmFh4+FWVjsc\nFj3jN359db8HZItxWPRMyi+R2+LGMmbVBYfFCEzljb/K1+kxn/ocFi1a9s1e9lugU3njL/I6pxKk\nbXBYtKjumz3/QzyzPzCc38bKTSVI2+Cw6Ni8g73sSmhly/aesnp1uC7OYdGxRVobVfeN+YCoCoH8\ntWCKOFwX57AYmHlv9jFe4yQl+Ob9LGLqY1g1h0VPLPoDw7PGEBRF4zQbiq5sX/Wax1AnfeCwaNG8\n64/U+UQcW+thVlkrYd61Xupc9NoW47BoUdVpz7KDYfbsR9k+Y7oYUurFq1Pus9VwWPTIbAikHDBV\nZ0aGehCVXVKyKByLBnbz9edZm6tRGRaSnpR0VdLZ3Lq7JD0j6bXs3ztz9z0maU3SBUkPNFXwMcq/\nmctOm25sN/vGH+OBUBV+s+FadUmHqm6NzZfSsvgWsG9m3WHgZETsBE5mt5G0CzgA3Jft84SkTSsr\n7UhVjVvMTs4qUvZJPHYbIVH3WrUw3FZXVyrDIiK+D/xsZvV+4Gi2fBR4KLf+WES8GxGvA2vA3hWV\ndfSKmtGzB8LG7aIuy9Te/BuvOfVC11MM01VadMxic0RczpbfBjZny1uBt3LbXczW3UTSIUmnJJ1a\nsAyjMdvdyLc08kFQ1kev+mQdo3ydFIVn3tTqpilLD3DG+v9M7ciOiCMRsSci9ixbhjGaN8loyl2O\n2S5bnUFdh8ZyFg2LK5K2AGT/Xs3WXwK257bblq2znKoDPeXNvvFpOoUp3nW4HpqzaFicAA5myweB\np3PrD0i6TdIOYCfwwnJFHJ/UyURF2+dVTXMem9mA3FDU4rDVu6VqA0nfAT4O3C3pIvBl4K+B45Ie\nAd4EHgaIiHOSjgPngWvAoxFxvaGyj0LVKH7ZQF3+wJnSAZJyitSaoT402yR1X4ieqDr4pxYOebOD\nmlX3Fc12nWrdZU4vM0boGZw9UzZxqKqZPYUfxCk7a1R03+xy0e2x1lNTHBY9NjsmUfVDOUXLYz4g\nlp1LMfFWRm0Oix5bRd+8zwfEskFW98tmthyHRQfG/GlfR9WBvegpZmuGw6IDdfvOUw2XpsJgqvW5\nLIdFD1QdFP6K9Wq5RbIYh8WAODSKuT7a4bAYoKmc7UjllkI7HBYD5wNlMQ7Z+hwWNkkO2focFtZL\n/uTvH4eF9ZI/+fvHYWG951ZGPzgsrPfcyugHh4UNhlsY3XJY2GAs+10SW47DwpIM4UB0d6VZDgtL\n4gPRHBa2tJQrptnwOSysUP7gT/ldiXnXZbVxcFhYofzBn/K7n1WPY8PnsLBSdX6pyi2I8XNYWKk6\nYeAWxPg5LKxUynhFSovCrY5xcFjYDcquQJ6/ovvs/UXXLEkJGhuWyssX2rSUXc1r9v4iZddedRdl\nHNyysEKz4xWpZz6Ktku9WppbIv1WGRaSnpR0VdLZ3LrHJV2SdCb7ezB332OS1iRdkPRAUwW39qR0\nRWaXyw78ea0Mt0D6LaVl8S1gX8H6r0XE7uzvXwAk7QIOAPdl+zwhadOqCmvtmW0NpFwesejao7PL\nNlyVYRER3wd+lvh4+4FjEfFuRLwOrAF7lyifdaAsHKouF1gUIu5ajMcyYxafk/RK1k25M1u3FXgr\nt83FbN1NJB2SdErSqSXKYA0oC4eN2ZxV3wUpa2HYsC0aFl8H7gV2A5eBr9R9gIg4EhF7ImLPgmWw\nhpVdpbzouyCzAeGQGJ+FwiIirkTE9Yj4FfAN3utqXAK25zbdlq2zgakzQFl2mnXe49jwLBQWkrbk\nbn4a2DhTcgI4IOk2STuAncALyxXR+sJnOKatclKWpO8AHwfulnQR+DLwcUm7gQDeAD4LEBHnJB0H\nzgPXgEcj4nozRbcm1ZmQNa9lsch21k/qQzNRUveFMBu/08uMEXoGp92kasZmHz5grH0OC7tJ/hTp\nhkVOhzpUxsVhYaXycyry4ZEaAh6fGBeHhc1VNEOz6vsfNk4OC6tU1kJwd2RaHBa2NP/k3jQ4LGxp\nbfxwr1sn3XNYWKWiU6mLzOZchlsn3fPP6lmluj+vZ+PkloWVctPf8hwWVsqtB8tzWNjouYW0Gg4L\nA8Z9QLmFtBoOCwOqrwfSV30u29g4LHqqTwdBnz+Z+1y2sXFY9JQPAusbh4WZJXFY2ODV7bL1qYs3\nJA4LG7yir8yXBYJ/B3RxDosGpV4QuM7jWLl5l0zcqEMHxeIcFg1a9nqfRW/wKQdH6muvusyiLcZh\n0WNlX+BK/Qbo2NSZCzKVOmmTw6JnUrousweNPzVvbsW5TlbPYdFjdd7wU7xq+ZReax84LHqmqJsB\n1WEw+2O6Q1bUuir6AZ6yukp5XKvPYdEz+VN7KdfqmHeKcEjKXms+BFMvkTjvti3OYdEDVQdKfpvU\n0BhaC2PRq7AXjd+k1KfVVxkWkrZLek7SeUnnJH0+W3+XpGckvZb9e2dun8ckrUm6IOmBJl/AEC1y\nYFfNGxjrgbDI6xprXXQtpWVxDfhiROwCPgo8KmkXcBg4GRE7gZPZbbL7DgD3AfuAJyRtaqLwQ1X0\nZi4ak5jXpJ7tqri5faOq67Xmt7M0lWEREZcj4qVs+R3gVWArsB84mm12FHgoW94PHIuIdyPidWAN\n2Lvqgg9Jyhs3ZU5FUeti7C2LWanhWDTGUTZZy4GRptaYhaR7gA8DzwObI+JydtfbwOZseSvwVm63\ni9m6ySobnJv35k2ZnjzlywiWfR9kXl0se2W1qUsOC0m3A98FvhARP8/fF+v/Q7XesZIOSTol6VSd\n/camLDDyB8O804cb249d/gLNeUUDmKldOasnKSwk3cp6UHw7Ir6Xrb4iaUt2/xbgarb+ErA9t/u2\nbN0NIuJIROyJiD2LFn4o6lyQp2jwM99UnlKzebYLlnLGpOoU6xSCtSkpZ0MEfBN4NSK+mrvrBHAw\nWz4IPJ1bf0DSbZJ2ADuBF1ZX5OGZ9yaf90lZdtakqC8+xgApG3OYbWnlu27z6mGMddSqfCUX/QH3\ns97FeAU4k/09CHyQ9bMgrwHPAnfl9vkS8GPgAvCphOeIKfzlumu9fLw+/82+1qLXvrFuXr1Mqc4K\n/k5VHYvz/tSHtJXUfSE6NtvKyN8uaoGMXcprnrfNFOsswelluv2ewdmh2b52nbGNeY9V576+KOty\nld1ftE3qfbYYh0WH6o7s13ms1Pv6omqwd5kfD6p7nxVzWHRskclaU7Hsax96gPaNw6JjKf3yOnMF\nxvaJuciZnrHVQV84LHoudX5BfvsyQzyIZieope5TZYh10TWHxQAt+n2QoTe9V1n+oddFFxwWNkiz\nE7SseQ4LGzS3ENrjsOgBfzrW55Bon8OiB/zGr88B2z6HhQ2SA7Z9DgszS+KwMLMkDgszS+KwsMHz\nYGc7HBY2eB7sbIfDwsySOCzMLInDwsySOCzMLInDwsySOCzMLInDwsySOCzMLInDwsySOCzMLInD\nwsySpFxFfbuk5ySdl3RO0uez9Y9LuiTpTPb3YG6fxyStSbog6YEmX4CZteOWhG2uAV+MiJck3QGc\nlvRMdt/XIuLv8htL2gUcAO4Dfgt4VtLvRMT1VRbczNpV2bKIiMsR8VK2/A7wKrB1zi77gWMR8W5E\nvA6sAXtXUVgz606tMQtJ9wAfBp7PVn1O0iuSnpR0Z7ZuK/BWbreLzA8XMxuA5LCQdDvwXeALEfFz\n4OvAvcBu4DLwlTpPLOmQpFOSTtXZz8y6kRQWkm5lPSi+HRHfA4iIKxFxPSJ+BXyD97oal4Dtud23\nZetuEBFHImJPROxZ5gWYWTtSzoYI+CbwakR8Nbd+S26zTwNns+UTwAFJt0naAewEXlhdkc2sCyln\nQ/4I+FPgB5LOZOv+AviMpN1AAG8AnwWIiHOSjgPnWT+T8qjPhJgNn/rwY6eSui+E2fidXqbb7xmc\nZpbEYWFmSRwWZpbEYWFmSRwWZpbEYWFmSRwWZpbEYWFmSRwWZpbEYWFmSRwWZpbEYWFmSRwWZpbE\nYWFmSRwWZpbEYWFmSRwWZpbEYWFmSRwWZpbEYWFmSRwWZpbEYWFmSRwWZpbEYWFmSRwWZpbEYWFm\nSRwWZpbEYWFmSSrDQtKvSXpB0suSzkn6q2z9XZKekfRa9u+duX0ek7Qm6YKkB5p8AWbWjpSWxbvA\nn0TEHwC7gX2SPgocBk5GxE7gZHYbSbuAA8B9wD7gCUmbmii8mbWnMixi3S+ym7dmfwHsB45m648C\nD2XL+4FjEfFuRLwOrAF7V1pqM2vdLSkbZS2D08BvA38fEc9L2hwRl7NN3gY2Z8tbgf/I7X4xWzf7\nmIeAQ9nNXwD/Bfy09itozt24PPP0rTzQvzL1rTy/u8zOSWEREdeB3ZJ+A3hK0u/N3B+Sos4TR8QR\n4MjGbUmnImJPncdoksszX9/KA/0rUx/Ls8z+tc6GRMT/AM+xPhZxRdKWrBBbgKvZZpeA7bndtmXr\nzGzAUs6GfChrUSDp14FPAD8ETgAHs80OAk9nyyeAA5Juk7QD2Am8sOqCm1m7UrohW4Cj2bjF+4Dj\nEfHPkv4dOC7pEeBN4GGAiDgn6ThwHrgGPJp1Y6ocqd6kVS7PfH0rD/SvTKMqjyJqDTWY2UR5BqeZ\nJek8LCTty2Z6rkk63FEZ3pD0A0lnNkaM581QbagMT0q6Kulsbl1ns2RLyvO4pEtZPZ2R9GCL5dku\n6TlJ57OZxJ/P1ndSR3PK00kdtTLTOiI6+wM2AT8G7gXeD7wM7OqgHG8Ad8+s+1vgcLZ8GPibhsvw\nMeAjwNmqMgC7srq6DdiR1eGmFsrzOPDnBdu2UZ4twEey5TuAH2XP20kdzSlPJ3UECLg9W74VeB74\n6Crrp+uWxV5gLSJ+EhG/BI6xPgO0D8pmqDYiIr4P/CyxDI3Pki0pT5k2ynM5Il7Klt8BXmV9sl8n\ndTSnPGWaLk9EwzOtuw6LrcBbuduFsz1bEMCzkk5nM0sBymaotmneLNmu6u1zkl7JuikbTdpWyyPp\nHuDDrH96dl5HM+WBjupI0iZJZ1if8/RMRKy0froOi764PyJ2A58CHpX0sfydsd5u6/S0UR/KAHyd\n9S7jbuAy8JW2CyDpduC7wBci4uf5+7qoo4LydFZHEXE9ex9vA/YWzbRmifrpOix6MdszIi5l/14F\nnmK9OVY2Q7VNvZolGxFXsjfkr4Bv8F6ztZXySLqV9QPz2xHxvWx1Z3VUVJ6u6ygrQyMzrbsOixeB\nnZJ2SHo/619tP9FmASR9QNIdG8vAJ4GzlM9QbVOvZsluvOkyn2a9nlopjyQB3wRejYiv5u7qpI7K\nytNVHamNmdarGo1dYhT3QdZHkn8MfKmD57+X9VHhl4FzG2UAPsj673S8BjwL3NVwOb7DerP1f1nv\nPz4yrwzAl7I6uwB8qqXy/APwA+CV7M22pcXy3M96E/oV4Ez292BXdTSnPJ3UEfD7wH9mz3sW+Muq\n93Hd8ngGp5kl6bobYmYD4bAwsyQOCzNL4rAwsyQOCzNL4rAwsyQOCzNL4rAwsyT/B62hCgJnPsey\nAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1188a7a58>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n = 1000\n", "clusterSD = 10 #proportional to the pool size\n", "centers = [[50,50], [100, 100], [100, 200], [150,150], [200, 100], [200,200]]\n", "X, _ = make_blobs(n_samples=n, centers=centers, cluster_std=clusterSD)\n", "image = np.zeros(shape=(300,300), dtype=np.uint8)\n", "for i in X:\n", " x,y=i.astype(np.uint8)\n", " #print(x,',',y)\n", " image[x,y]=255\n", "plt.imshow(image,cmap=plt.cm.gray) " ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of estimated clusters : 6\n" ] } ], "source": [ "myquantile=0.15 #Change this parameter (smaller numbers will produce smaller clusters and more numerous)\n", "\n", "bandwidth = estimate_bandwidth(X, quantile=myquantile, n_samples=500)\n", "\n", "ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)\n", "ms.fit(X)\n", "labels = ms.labels_\n", "cluster_centers = ms.cluster_centers_\n", "\n", "labels_unique = np.unique(labels)\n", "n_clusters_ = len(labels_unique)\n", "\n", "print(\"number of estimated clusters : %d\" % n_clusters_)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 9. Check particle neighborhood: groups (clustering algorithms)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXt8VNW99//+7skk4WaCEQ0oiArYRw8FLHpOnqqNB1tb\nrJceXu3p5XlChYpVbJu2p7b01P54jvZgbY+m3gWBknPp5fl5KtriDUoU22kVhJRWK0HlphnESMZw\nSTIzez1/rL337NlzySTknvXmldfM7OvaQ/JZ3/X9ftd3iVIKg8FgMAxfrIFugMFgMBj6FiP0BoPB\nMMwxQm8wGAzDHCP0BoPBMMwxQm8wGAzDHCP0BoPBMMwxQj+CEJFLROS1gW5HNkSkWkQODHQ7AERE\nici0Abr3uSKyQ0TaROSr3Thv0Hx/hsGHEfohgIjsEZHjInLE93NfAeelCZZSaotS6tw+auNPReT2\nvrj2COMWYLNSapxS6p7+vrnzu3Z5f9/Xd/+zReTXTkf3rojcOVBtGU4UDXQDDAVzlVJq40A3wlA4\nIlKklEp087QzgZ/3RXv6GhERQJRSdg/PLwaeBe4H/hFIAjN6r4UjF2PRD3FEZJqIPCciMccC+oWz\n/XnnkEZnBPCPweG9Y719S0T+JCJHRWS1iJwmIk86FtVGERnvO/7/ikjUudfzInK+s30J8AXgFude\nTzjbJ4nIoyJySETe9LsiRGSUMwo4LCKvABd28ZxKRL4sIk0i0ioi9zvCgogsF5H/8B071Tm+yPnc\nICK3i8jv3faJSIWI/KeIvC8iL4nI1MAt54vIG853+iMRsXzXXyQirzptf1pEzgy0c6mINAFNOZ7l\nahH5i/McDSLyP5ztvwUuA+5z2pkhciJysoisFZG3nfs/luf7mub77I24ROQUx2puFZH3RGSLiFgi\n8u/AFOAJ5/63OMf/nfPdtYpIo4hU+67bICI/EJHfAceAs0Xki8531+b8v38hWxuz8EXgbaXUXUqp\no0qpdqXUnwo815APpZT5GeQ/wB7g8hz7fgb8M7rTLgUu9u1TwDTf52rgQOC6fwBOA04H3gFeBuY4\n1/ot8P/5jl8EjANKgDpgh2/fT4HbfZ8tYBvwfaAYOBt4A7jC2X8HsAU4GZgM/NnftizPqYBfA+Vo\nMToEfNzZtxz4D9+xU53ji5zPDcBu4BygDHgF2AVcjh7V1gNrA/fa7LRtinPsl5x91zjX+h/Oud8D\nfh8491nn3FFZnmMGcBT4KBBGu2p2A8W+tn4pz/fwG+AXwHjn/I/k+L8N/t97/z/ACuAh5/wwcAna\nEnd/Jy73nXc60ALMd/5PP+p8nuBr7z7gfOf7KAPeB8519k8EznfeTwFagSk5nm0N8O/Ak8C7zrVn\nDvTf33D4MRb90OExx6Jyf653tsfRw/1JSltAL3TzuvcqpQ4qpd5CC+8flVLblVLtwK/Qog+AUmqN\nUqpNKdWBFtdZIlKW47oXosXgX5RSnUqpN4BVwGed/Z8BfqCUek8ptR8oxB99h1KqVSm1Dy3Es7vx\nnGuVUq8rpWJoIXldKbVRadfK//U/p8MPnbbtQ3dqn3O2fxlYoZR61Tn3X4HZfqve2f+eUup4lnb8\nI/AbpdSzSqk48GNgFPA/u3oAEZkIfAL4slLqsFIqrpR6ruBvIEUcLcBnOtfYohylzcL/AjYopTYo\npWyl1LPAVrTwu/xUKfUX5/tIADbwNyIySinVrJT6C4BSap9Sqtz5TrNxBvr34x5gErpTW++4dAwn\ngBH6ocO1zh+J+7PK2X4LIMCLjjtgUTeve9D3/niWz2MBRCQkIneIyOsi8j7a8gM4Jcd1zwQm+Tsn\n4Lvo0QPoP+T9vuP3FtDWqO/9MbdtBVLQc/oItm2S8/5M4Ce+Z3oP/f2fnuPcIJPwPavS/uz9gfNz\nMRl4Tyl1uIBj8/Ej9CjiGcfF8p08x54JfDrw/3gxuqNw8Z5XKXUU3Zl9GWgWkd+IyAcKbNdx4AWl\n1JNKqU50J1iBHj0ZTgAj9EMcpVRUKXW9UmoScAPwgPRNauDn0W6Ly9HD86nOdnGbEjh+P/BmoHMa\np5RyLcFmtHC5TDmBth0FRvs+V57AtVyCbXvbeb8fuCHwXKOUUr/3HZ+vJOzbaPEEvADmZOCtAtq0\nHzhZRMoLOPYYOb4TZ1T2TaXU2cDVwDdEZF6Otu8H/j3wvGOUUnf4jkk7Ryn1tFLqo+jO4K/okVwh\n/CnL/Q29gBH6IY6IfFpEznA+Hkb/obhZDwfRvvHeYBzQgfbPjka7LPwE7/Ui0CYi33YCryER+RsR\ncYOuvwSWich4p/1fOYG27QAuFZEpjitp2Qlcy+VbTtsmA19D+8VB+7aXSSoQXSYin+7GdX8JXCki\n80QkDHwT/b3+Pv9poJRqRrudHnDaFhaRS3McvgP4vPO9fxz4iLtDRD4pOogvQAyd3ZLrd+Y/gKtE\n5ArnWqWig/pnkAXRwfxrRGSM81xHfNfuiv8A/k5ELheREFCL9tW/WuD5hhwYoR86uJkQ7s+vnO0X\nAn8UkSPA48DXHH84aD/6OmfI/ZkTvH892uXwFjqY+YfA/tXAec69HlNKJYFPov3ob6L/YB9BjwYA\n/o9zvTeBZ9BBuB7h+I1/gbYIt6GDtifKeudaO9C+4tXOvX4F/BD4uePC+jPab15oW19D+73vRX8n\nV6FTZzsLvMT/RvvY/4oOntfmOO5rzrVb0RlR/uyc6cBGtAhHgAeUUpudfSuA7zn/j//kxE+uQbvd\nDqEt/G+RWzss4Bvokct76A7mRgCnIz4iIllHb77v5iG00XINcHU3vhtDDtxIu8FgMBiGKcaiNxgM\nhmGOEXqDwWAY5hihNxgMhmGOEXqDwWAY5gyKomannHKKmjp16kA3w2AwGIYU27Zte1cpNaGr4waF\n0E+dOpWtW7cOdDMMBoNhSCEihcwoN64bg8FgGO4YoTcYDIZhjhF6g8FgGOYYoTcYDIZhjhF6g8Fg\nGOYYoTcYDIZhjhF6g8Fg6CMisRgr9u4lEosNaDsGRR69of+IxSK0tjZQXl5NWVnVQDfHYBi2RGIx\n5jU20mnbFFsWm2bNoqos18qbfYsR+hFELBahsXEett2JZRUza9YmI/YGQx/R0NpKp22TBDptm4bW\n1gETeuO6GUG0tjZg251AEtvupLW1YaCbZDAMW6rLyym2LEJAsWVRXV7ICpB9g7HoRxDl5dVYVrFn\n0ZeXVw90kwyGXicSi9HQ2kp1eXlWC7qr/b1FVVkZm2bN6pd7dYUR+hFEWVkVs2ZtGvQ+ehNHMPSU\nrvzi/e03ryorG1CBdzFCP8IoK6salOLpins4XMHu3bU9iiOYDsJQH43SbtsosvvFB5PfvD8xQm8Y\ncPxBYhFBKRuwvThCIaJtAs2GSCzG2mgUdxXskEiGX9z1m7sW/UD6zfsTI/SGE+ZELWkdJO4AbJQS\nRIpQSrqMI/jvmy3Q3N22mBHB0KahtZWE0jIvwKLKygxrvRC/eT4ffn/593sbI/SGLskngL1hSYfD\nFYDtfFJMmPAZ4vFDTJiwIOe1gvedNq0ub6C5KxE3I4L+pS8EM2it11RWZj0un988nw9/5dtvc3NT\nE0mlKBngvPjuYoTekJe3315JU9NSlLKxrBJPAF3hbG/fV5AlnU1o/dfQNpi2xg4d+gVK2bS2/haA\nSZOWZFwvaMHH4y05A825niHf9brzHIbu0VcB0a6s9UKycZbv2UOHbWOT7sOPxGIsbWryRgwdtk19\nNDpkrHsj9COIQkXKHxjdtesmIAmAbXd4ufcpn3oRIiGUUoiIY51nXi9oLfuvoadzKO94pRLOq01T\n082MGTMzo73ZUkWzBZpjsQhNTTd713SfoZDrFfIcRuy7jz8g2u4IZm+5SHJZ69mscbctrp9+XmOj\nJ/IW6bnvDa2t2Cr1OyrA2miUhFIDPuu1EIzQjxAKFSn/cZqkb69k+MOVglNOuYqWlt+gVJLdu2sz\nhDnXRC3XL69/XItenLP0H5VSCaLR+oy2+lNFw+EK75rZLHWlUs8gYmUV8UJST3sjDmDQLpYiEZJK\noYA10Sg1Pn96Nosf0kW5Oz72bNb4nfv28ev33sN2hH/haafR6RP5y8ePZ/nUqd71q8vLKbEsOmwb\nS4RPVlTwxLvvDpnsHSP0I4RCRcp/XJCKiqu8c/zWbzhcmTdTJpu1fPToTvx+eZGwI8h24K6KaHQN\nlZU1Wdv7/vsv0tLyBKCyumX0vUuw7Q5EQkyffl9Oce4q9dRMOOsdqsrKuK6ykoebm1FAUqk0N0gw\nBbI+GmXdwYN02jZFIt45hebJB61xBTze0uL9pnXY+p3fv+8XebfNfrcQwNPvvTdksneM0I8QChUp\n/3GuSwYSiISZMuUWINP6BTh4cF3Oa2ezlrUFbuEKe3HxJJRK0tl5IKNNSiUyOo9YLMKOHZehVIe3\nLZtbpjcniQ2VCWdDgZrKyjTxXhONeuJdN21amugCnvC7gu3Pk4eUhZ8tj961xt3t7o+LJUJNZSU1\nlZVpQr5i7960UYPfLRSJxVh42mneswxmax6M0I8YcolU0G+fTcSzCVvQ+u3q2n5isYgTgE0JfUdH\nvsXs7Qzfv3bJdKZtEwlRXl6d9Zl6S5QH64Szgaa7PnW/hbyvvZ1Vzc2eBd8Sj2dYz7ks+opw2LPg\n/e4ggCInj9691/I9e9h4+LBnyYtzzH3Tp6eJeSQWo3rHDuJKERahYfbsvKOGXNk9gwkj9COIoEjl\n8tsHjysk+yR4js50uRmlkogUAYJSCee9SvObd40Qj7ekbdGdRxEQd7ZotwxgAqb9TE+zaFwLORKL\neUKezQ2SzW1SH40CsL2tLcPad5k1dqzXvvpolNGhECFSkaCrTzmFWyZPzmjrnfv20elcq1Mp7ty3\nj1/NnOntH4qza43Qj2B6GlxMdRApv7c/BVJnuiz1Zc+4YuwKvD/wmkqrzIVIOMNS19st9N+jxeTJ\n32TSpCXs3bvCBEz7mRMVvmxCHrSog7gdQ0iEIhFQiiIRbKW8rn9rWxuX7dhBUikSgfMVsKGlhVsm\nT07bHonFeKIl3ah4oqWFSCyWFpgdarNrjdCPYAr12wet9/SZrDZNTUvTMm20W8UfVLUcUU4Jvivw\ntg1btwrr1ysaG+H4cRg1CmbNgmuuEa644mqmTv02kG6pn3baQt/1bA4cuItTTrnWBEwHgN4QPr//\n+8bXXsuwqJ8+fNi7/hXjx3v+9qRSXHrSSXy8ooKKcJilu3Z517SBDpXbiIgrldYpuXn0mekApB03\nmKpSFooR+hFMIcHFbO6d8vJqJ1Cr/yT05KYGAC/dMZXpYjF9+v20tW2nuflh9J+NRXHxJF5//QC3\n3grFxYprroFbboGxY+HIEXjhBXjkEcXDD2/iySfvpKTkUZ+l3k5nZ5RUKmaqDWeeuSznM5nJTn1D\nT4Qvn08/2pkee3m7s9MbMXTYNk+0tKSNAZ9//32+UFnJ9ra2DMs9HyFgX3u7t8yfO4oIdg1FIt5x\n2QKzQwEj9COcroKL2dw7Z565jOnT7/MmU4kUEQ5XpE2iOvnkT1BcXOmlRcZikbTMnHfeqaS29gCL\nFsH8+SApzaasDK68Um/fsOEIF198AU8+uRodvE0Civfe+w1+l4/r3sn1TGayU9/SHeHL5dOPxGLc\nuW8fj/tcJ2Fg8cSJ7Dx6lE7bRpyAa5DVzc1c4PjknWEirF+PN0wcPZrSWbOY9tnPcs4llyCWxZPv\nvceq5mbWHTzIFePHe6MISJkQFqCU8o4b7BOjcmGE3pCXXK6QMWNmOsXH9GSntrbtPndOkpaWx7Cs\nUVRW1gDpo4eTTrqUuXM/zqJFWtBzIeLuP8bnP1/Lgw8mcbLtfG4bzbhxf9vtDssI/cCQzacP2qIO\niu3iiRNZMmkSM8eMoaG1lYpwmJubmogHxH57WxuLJ04k/NJLxL/3PSguJjhMbH/hBf58zz38+cc/\n5rMPPUSitNQbJWxta8topyI1nS9X2eOhghF6Q15yuXe0Hz6BDrAmiMejBCc7BfPaXUv7qaeeIhzu\nYP78wtowf75i/fpDbN1qc9FF7tb0IO777/+OWCzitS3onjG++8FDNp9+Q2trhngXOfntkD5ieP34\ncX68f3/ab5sNvPbaaxR/4xskFi5E5R8m8osvfAHq6pDJk7GBtxx3kZtyKeC1x11vdagEXrPR5Zqx\nIjJZRDaLyCsi8hcR+Zqz/WQReVZEmpzX8b5zlonIbhF5TUSu6MsHMPQ9ZWVVnHnmsqzCCSFvdqzf\nZw6pcgOxWIS9e1d4Qnz33f/MVVfF0/4O8yEC11yTZP16nHuEOOmkS0j/9VVEo/U0Ns7jzTdvpbFx\nnnc/9xlmzdrEWWfd1utum+DzGfJTVVZG3bRpzBs/nrpp06gqK6O6vJyw7xciBGn57S6RWIx733rL\nO8YV5ZBS/NcNN3Bs4ULUlVeS85fLGSaqRYtQt96KcmbF6sgRfHT8eJ6bPZtPT5jgTaxKAldVVAxZ\ntw0UZtEngG8qpV4WkXHANhF5FvgisEkpdYeIfAf4DvBtETkP+CxwPjAJ2CgiM1T3EqcNg5xsE6ua\nmx8BXzhswoR/BDLz2iORP3HTTd2738UXw0MPwbhxF3LkSCPvv/879J+mtuxFwhw58rLnPvK7Z/xB\n2DPPXNYLT5/C+P67TyQWo3b3bjpsm82O22bJpEk0zJ5NfTRKNB6nMhxm5pgxGee6bh+3Jo2TX4v9\n0ku8HwppS74Q5s/XPvytW+Gii7CAEqf0AcDP3nkn7fBjtu3FEYZSto1Ll0KvlGoGmp33bSLyKnA6\ncA1Q7Ry2DmgAvu1s/7nSc9PfFJHdwEWAMXeGGcGg58SJX6K5+SHv8zvv/Jzjx5t84tvBnj3LOXo0\ngRs3K5QxY+DYMRg79gLa2rah7awQEydeD0A0uoa2tq3gSIDrnsklxL2VgWN8/93HX6bAVoqlTU0A\ntMTjzBk3jtrdu+m07azBT7/bx/LNhE2sX0/ik5/MbckH0cNELfYXXcTZpaV8a8oUqsrKWLF3b0aK\n5YIJE/qkvHJ/dRzd8tGLyFRgDvBH4DSnEwCIAqc5708H/uA77YCzLXitJcASgClTpnSnGYZ+oCdC\nWFlZQzT6iDdRCpK0tb3ovNflDg4f3sioUTqFsju/10ePwtixJc491qKUjUgRlZU1vgqVWuTHj7+c\nCRMW5KyXD703e9b4/jPpaoWmNb7l/kDnwt/c1IStlCfewXrwLv5Uzopw2OsUko2NOvDaHdxhIvBG\nezu1u3czc8wYKsLhtMO+cOqpLJk0iRV792adGNZTse7PhcoLFnoRGQs8CtQqpd4X8ecwKyUi+ac3\nBlBKrQRWAsydO7db5xr6lp66I8rKqpg+/X5f/ffUf2tx8SQ6O98CbGbN0nny+TJugrzwAvzd3/0N\n0Wi9r3yCvn5QbCdMWEBT01eczJyQkx2EJ8S9aYWbQmfpdCVeDa2tGemRIZ+4K0fsxall4wY/V779\nNo8eOsSCCRNYMmmSd626adNoicf55+PHUT0cJgraRHBr408pLfWqMFnA+Y4LKRhErgiHufG113pc\nl74/SykUJPQiEkaL/H8qpf7b2XxQRCYqpZpFZCLgOrXeAvzzis9wthmGCCcihGPGzKSycjGdnVFa\nWn6N67PXWTn6D/yaa+CRRzLz53OhFDz++Ciuv34nzc3bfNvjRKP1VFbWcNppCzl69BWUaica/U9f\nwbMEJ5/8SU466aI0Ie5NK9wUOkvRlXj5xbJIhOsqK9PcNW71ypZ43LOQV779Njc4M16fOXyY148f\n59633krrTErHjuV4D4aJIUfE9ewMXRv/3unTKcky0zfbaMJ1QZHjefPRn6UUuhR60ab7auBVpdRd\nvl2PAwuBO5zX9b7t/yUid6GDsdOBFzEMGXrqjgiOBE455ZO8++56gkXM5s6FBx6ADRsKs+o3bIBk\nsoQLLogF9iii0dU0N68mVdwsk+LiyrQgrLHC+46uxCvXLFo3Tz6b++PRQ4fSPv/3oUMZncnfXXwx\nm3swTEz6ipWBdiMFq2cGXUeuH7/DJ/JuWmZwBm0++rOUQiEW/YeB/w3sFJEdzrbvogX+lyKyGNgL\nfAZAKfUXEfkl8AranFtqMm6GFj0VQn8NHNvuIByuxLJKM1arsiy47TaordVbc1n2SmmRX7MGHnvs\nGyST/4fggihBF1EKvTyhSLE3aSv4jEbge59CxCvbLNp8M2sXTJjAM4cPe58nlZSwr6MDlCLkiOtV\nixbx0ve+x5HuDBMfewyuv97bJKRy5bua6VsRDqcFbC8pK+MP77/PquZm1kajXOfUt+9KvPurlEIh\nWTcvEEyQTjEvxzk/AH5wAu0yDDA9EUJdM9799bcZN26OFywNhytoavqq41IRZs++mmee+Syf+1wt\n69dHueYaHRsbM0YHXl94QSdEdHZCXR2MHv1r2toKD+VMnvxPFBWV5629n2ub4cToSrwKDV76j3t4\nxgzqDhzgtWPHeCEWIyzCVRUVXhmDcEUF5ckkRzds0Hn0XbFhA8TjenjpcOG4cV5ef1e0xONpfvxS\nyyKpFEn0qODhQVYywcyMNfQabW3bfZ+EQ4ceZcyYmWluE12+2Oa99zZQWVnJH//4/7N584vcf/99\nrFy5n6NH44weHWLu3NP50pf2MXeuHgGksneCpIt/cfEZTJ16a1rZZOh6gXKTA98/FJppEjyubto0\ndh8/7pkRnUpxzLZJOOIK8PmHH+aeT39aR4UKGSbW1eHV1ECXW+iOf93vx18wYQJbYrG0VawGU8kE\nI/SGDPJZubn2xWIRotG1viMVhw9vJBbbwrRpdcTjLbS373OWJrRRqpPm5oc5eHAd8+Zt4h/+4etp\n99m7dwVvvvk9MteQzYfF+ef/suCFvQGTA9/P5AvW+i344HGPHjrkLe4NWkhnjx3LlljMW7D74Kmn\nkrj7brj1Vj0c7GKYKE4tendWbEs8d5wnSDYX1cwxY6iPRtOWRRwsJROM0BvSyJdamW9fqvaNi05a\ns+0Ox4pXiBT5yhtru8e224lG6zMENlgK2U84fCrx+CGC1rxIKOdz5Qow9zT7ZqS4fHp7Qk+uYG02\nC95/3OyxY9P89ADvJxLUTZvG0qYmkkrp2ayTJ2tr3a1e+dBDeqbd6NHwwQ/Cl76EO0x0f3vcWbEV\n4XDGOrH5vougi8r97F97djBY82CE3hAgX2plcF80Wu+JXXBRcb10oLaQUitN4ZvJutrZr2hufsQr\nZ+xSVlbF2LFzMlw2ImHOOus2du+uzQjyKpXI2mm418sWYO5J0HmklD3oiwk9uYK1QQven/lSEQ6z\nurk541ovHzkC6Nx7XUPVwbLgoosIXXSRV3kyHwr4yumnp6V4Bp+1O9/FYKxVb4TekEa+1Mp0MS8i\nGl2DUklP7Pyi+e67j7F//49Irxlf5Am6zrN/zNmTLtDaDVSPZZUGWmd5yxaOGTMzEOTtQKdbrsno\nNFyyBZi7E3R2rfhss22Ho9D31YSebEKYzdJ3j5nX2Ei7nTmy29rWRuORI96ClGERas84g4bWViaV\nlHDL5Ml85/XXef799/O2R6GXC8znUlq+Zw8dTo2dweR7LxQj9IY08qVW+ve1t++juXkVwQVJ3Doy\nBw7cRdCWqqy8zrtecXFl2j49oUqL6Y4d1b4JTyFGj57BqFHnMmWKnuK+d++KtAJl/tWrlEr2ifD6\nrXiRzNm2w5H+nNDTlaXv/03SibM6etOplGfJC3DtKafww3PO8Y6945xzuHT7dhLgZclk47Vjx7y1\nZ7O5lNwgq8XQLFdshN6QQT4r190XXDHKL3ap2jN+Ql4+u1vOV4ulduu0tGzwLOb0RUWSlJV9hHPP\nfTCny6SysiZnW/qieJnrgiotnTKsffT9vTZqLku/yLeqVAj45uTJ/OTAATqcgmZuJ5DwrQHr96c/\nP2cODa2tvNjWxvp3302b5OTvQBZVVjKltNQT8RV797KvvT1tYhRQcArmYMIIvaFH5LP8U4HUzBU8\n/WKt0X9uSiXYs2c5EyYsILVkYDq54ge52tKbvvSgSyuXe2i4MdD+5qqyMq6rrOTh5mZP1HccOcIn\nTj6Z9b61Y/2Tnfz+9JAIi5wyCxt8x5eI8LUzzuDf9u8niXb7uBOcgucHkzS3t7XlDdoORozQG3pM\nLsvfLW62a9eNpAbLyuffbsdNaktl1theOubkyd9k//5/A2xEwt5IIF/8IFtbTrR4WXA0YMom9B9+\ni7ymspJ1Bw96PvKNhw8TFiHsWPpuzRxXqP1VJt3JS0VOyiPoTuG6ykquPeUU6g4cwFaKpFLUR7X7\n0B+bQCmuqqjgN++9R1IpwiJp6ZODZUJUVxihN/QJ7oQlvYC4FuxwuII9e5bjDphFwkyffg+HDj3K\n4cMbcdMxjxzZwYwZDxCPt6SJanfF9kRKCOcaDRiB73uyZbjUTZvGj/bt4/X2dmy0m+b6iRM9V0u2\nwmn+yUvJQFVMNwXSq2cP3mzWYGrnLVOmcMuUKTS0trKvvZ1Vzc39UnGyNzFCb+gz9ALiqbz5trbt\nPt+9UFl5nZdBE4tt8erkuJZ9NldLd8T2RKxws6DIwBHM9qmPRj2L3h8QzVVLxo0t1EejXgnhkAjz\nKyqoDIfTzgt2CB2B1E5/J+K6ddYdPNgvAerepMs1Yw2GnpIKyqaqV6bWmS31XDKuII8ffzluboR/\n9uqJkG2920IIrok7XDNrBiOuRR5CCzGQtnzg5ePHd+kyqSor48Fzz2Xz7NlcP3EiAjzx7rusO3gw\n7ZhNs2ZxTUWFt81GFyyrKitj2ZlnZi2+tmnWLG4766wh47YBY9Eb+pBsAUy3yFm21M2pU5c7ln1h\nrpa+nJ06KHzykQg0NEB1NVSNnNFEMNsH8KzoIhHOLg3Or8h/rYbWVq8mTtDdUlVWxkUnncTjLS1e\nR9JVKYSBDlD3BCP0hj4jl1jmS90sVFz7Y3bqgPrkIxGYN0/XZSkuhk2bRpzY+8XUdcWsiUZZ1dzM\nmmiURQWWAu5qPoBboKzDybIJLiU4HDCuG0Of0l3XSaHH5ypSNmxoaNAin0zq14aGgW7RgFJVVsaU\n0lKvFHCu43bnAAAgAElEQVSnk00zr7GRSCy4IE3muX53C+gcefe8qrIy6qZN89arrd29m0gsRiQW\nSztuKGMsesOQZNgvyl1drS1516Kvrh7oFg042bJpCs18cUcIuWrWtMTjXs0cfwC4Pxbu7g+MRW8Y\nkrhunrPOum14FhWrqtLumttuS3fbRCKwYoV+HWG4lvkNEydSIuIFa7uT+ZKtfg/kDgAHjxuqGIve\nMGQpxIc+pMsJV1Wl++VHuN8eTrwUcC5/fb4A8FBKo8yFEXrDsGXYlRPO5rcfYULv0tPMl3z1e7IF\ngAdbXfmeYoTeMGwZdpOejN++Vyi0kxiKaZS5MEJvGLYMu4Ct67cfgbn1hhPDCL1h2DIoJj2dKMFJ\nU0G/vcFQAEboDcOaIVmIzBX3igqorR3RwVdD72CE3mAYTPgzayxLB15tu2fB1xFaQsGQiRF6g2Ew\n0dAAHR1a3PVahSDS/eBrtlRM9/pG+EccRugNhsHAypXw6KMwYYIWedCvM2dCSQksXtw9cQ6mYtbX\nw7p1+d1AZgQwbDFCbzD0JYWI58qVcMMN2fc1NurXHTu06EPu6/nvFUzFhPw5+GYy1rDGCL3B0FcU\nKp6PPpr+WZxVSpVvSep4PL9Vnu1e/lRMSD836AYyk7GGNabWjcHQVxRagXLBgvTPlgXXXAP+crnu\n+1zXy3Wvfft0BwGp2jl1dXp/JJKqnVNRoTuAUMhMxhqGGIveYOgrCp3JOnMmTJ0Ke/boz0rBRRfB\nLbdokY5GobIS5sxJXS8UghdfhBtvhJqazHtVVOhtnZ36mmvXwubNeptr+YdCevSQSOhz6uqgpcX4\n6IchRugNhr6iqkqL56OPaqs9m3hGIumCDDoI29qaOt7vkvnKV7Q1vm0bPPaY3r96NTz3XLqrpqFB\nu3tc/Fa+a/m7QV+l9LaWFli2rDe/AcMgwQi9wdBXRCKpCU9btmjLPSj2QUF2uftuuPbadJdMRwfc\ndZd+H/Tf19bqTsUv1OFwqgPxjyj8owK/RW/cNcMWI/QGQ19RXw/t7SmLOVuAs7o6XZBdksmUbz0U\nSgl7UORdXnpJW/5ugLaqSt/PvUZNTerewSBtvqwgk3I5LBCV7Zemn5k7d67aunXrQDfDYOg9IhG4\n7DJthYO2mF3XSVA4V66Em27SIu4nHNbuFf8MWdCfLUt/dreB7hBuu6133C+RiO4k1q5NWfwm5XLQ\nISLblFJzuzrOWPQGQ0/xW7uQLuB+l4wILFoEO3fCzTdr0S4pSQlnS0v26ycS2noPdgBz52o3DWgx\nXrNGH2tZOgjbnXbnsuLnzUuNRsCkXA5xjNAbDD3Bn7deVJQSZNfyrahID3a2tcHSpVqQQVv6rnC6\nGTN+YQUt3EqBUthK8QzwAPD8tm20ffjDjAuHufSMM7jp6qv52K9+hRWP6yyc11+HH/4wva3+Dilb\nbr//GDcu4LalJyUYDIMKI/QGQ0/wB0mD2Suui0YkJZY/+1m6iIdC6cK5cCG88gq88ELKXXP22fD6\n6+xSimuBUmApsCaZpBxo7exk/Rtv8N033uAbwGPADNuGO++Ec86BJUu0W2jpUn3NkhJ9n2z59sHM\nHhHdhqIiPRrx+/gNQw4j9AZDT/DnrQctelfAQ6GUBa+UPi6Z1AJ6330pS3revFQhMxfbhqYmdgEf\nAW4HFgHia8IpwGJn+xrnuOeAGaBTOmfO1K4i/ygCMnP7g5k9d9+t7x8Kwb336g7DMKQxQm8w9ITg\nak+Q6fe+//6UTz4Ugs98Bg4d0jn1rni6IusXeQcbuBYt8ovzNEWc/Qr4FLATsGbPhuXLUyIPuoOp\nqdE//rbu3Jmy4P2BX5Hc8QPD0EIplfcHbSy8A/zZt2058Baww/mZ79u3DNgNvAZc0dX1lVJ86EMf\nUgbDsOH3v1fqX/9Vvz78sFJFRUqJaG+7ZSk1apTe5x47apTe7nnk9c+ToC4AZQe25/qxQc2xLPXU\n2WcrFQql3zMc1m3J1lb3/uGwUrfcoj+HQvr14YdTz2IYdABbVQEaW4hF/1PgPqA+sP1updSP/RtE\n5Dzgs8D5wCRgo4jMUEoF0gYMhmFKsLjYwoUpKQZtKbe362wZ1/JfuFC/zpkD27frma6JBA8oxU2k\nu2vyIcBNts39b7zBFd5Ggcsv19b9zp1wxRW5RxQiUF6eGqkEV7gyJRKGLF0KvVLqeRGZWuD1rgF+\nrpTqAN4Ukd3ARUCkxy00GIYSweJioEXS74NXSuenz5mTLqQ1NVqAHdfK88uXsyY4kaoLrgW+5d8Q\nCqVE3i2F/Mwz+nXmTF30rKgo1U7/2rQrVqTa3d6ug7pKmZz6IciJVK/8ioj8SUTWiMh4Z9vpwH7f\nMQecbRmIyBIR2SoiWw8dOnQCzTAYBhFukNatAllTo0Xx9tt1SQO3BHEioQOm2TJgqqpg2TLa4nHK\nu3n7MqDN/SAC3/iGvl6wFPLq1XrksWqVFu/rr88U72CKaDLZdSVOw6Ckp0L/IHA2MBtoBv6tuxdQ\nSq1USs1VSs2dMGFCD5thMAwy3CDtbbellyNYtkxXoywtTXUCCxakOgV/NcqIHgCPKy2ltZu3jwHj\nLCtVx+bee/X1Zs9OP7C0VFvpyaSe2DVlSqaF3tKig7OgX912mpz6IUePsm6UUgfd9yKyCvi18/Et\nYLLv0DOcbQbD8Mc/6ShbGYJsmTr+/Hm3GuWqVfDAA1w6ZQrrX3stb8ZNkMeAS8aMgSNH0vP6y8tT\nef0i8Kc/peIGSulqmUGqq3XuvfHRD3l6JPQiMlEp1ex8/BTwZ+f948B/ichd6GDsdODFE26lwTDY\nKXQ1KdfCz1ae2CWZhBtv5Cbb5rtk5s/nQgH3A3ccPZoS8aIifZ+dO/V7t6xCUNh37MjeVn+ZZZNP\nP2Tp0nUjIj9DB1PPFZEDIrIYuFNEdorIn4DLgK8DKKX+AvwSeAV4ClhqMm4MI4JcKzy5KzhFAvkI\n9fXZRd7FtvkY0I7Oby6E1SJ0jhrFR/05+X/7t/q1tjazZo6f2bMz2+mWWd64Uc8HWLmysIbkembD\nwFFIDmZf/5g8esOQx81Hd/PPf//77NtcvvzlzFx4EZ3P7ua/g3oNVCWoVXny6W1Qq0RUZVmZeu2z\nn03fHwrpe4VC2fPvS0uV+tjHsrfzX/81Pb+/qKjrfPp8z2zodSgwj96sGWsw9AbZgrANDTo90S0t\n4LfyIX1NWNCulQcf1GmQoRCgyxk8B9wFfAh4BHgXiDuvjwAfCoe5e8oUnnvxRWZ89aveuUDKhePf\n5qe9XadbuoFZ/2ikujr9PNvueqRS6Dq5hn7FCL3B0Fu42TWgRbC1NZWeaNs6XdH15a9apYOi552X\nOj8ehyef1Bkw3/ym7ghEmGFZ/FmEFSI8bllMD4cZhQ6APQ6sSCTY+Z3vMGPGDN2GBx7Q51qWDqbO\nmZOZdRNEJDOjpqpK1+QpKkpdq7o69Qy33qpf/WIfTC812TmDAlPrxmDoTfxBWctKz3TZvl1nrbgW\nL8DYsennP/44rF+vhfrrX9cFxhIJLBGuOPdcrqit1UHRT30qlaWjlPahW5a+B2iBbmlJzW51C5rl\n4p/+SWfmBDNqlizRE6v8tXFWrMi02t1zgplFJjtnUGCE3mDoTfyuC6VSRcLc2bD33JNePXLxYp3x\nEo/rzsAdAbgC6p6rFLz6Knz1q1p4gyST6atUlZTA5s15i6ZhWXr0MHu2nsyVS5TdTCEXf+XObFZ7\n8HjDgGOE3mDoTYIieMUV2kJXSov5o4/qlEXX8gZd7x0gGk1Z6QCTJmkXiF+kOzt1xs6GDZn39mfV\nuB2F257jx9OPPe88+NrXtLX/xBPw9NOFlzUwVvuQwwi9wdCbZJsU9fTTqZoxGzfCc89p4U8kUouM\nhMM6FdJdC7akRM+k/cQn0i314mL9GkyVdMsM+49zRbiuTs+49XcYl16a7kYqdKnAriaFGQYlRugN\nht4m6LrYtEkXFtu4UYutmz/vr2jZ0QHPP68/h0LaxeNeZ+ZMbcWDrp0DsG5dqvMQ0R3FvfemRgr+\nFaGCNeVDodR18rlgghQ6Kcww6DBCbzD0NVVVWui3bElfkcq16P1LDoLe5hfnbD7vTZu0+DsljRHR\nHUK22atuKYOODi3y7upW7nUKdcFkS530n9PVouOGAcMIvcHQH+RakaqiQlvhjzySWg0ql3UdFNKG\nBt0puJ1GLtdLPp96dwKn+YKwxtof1BihNxgGgqDA1tSku2eCIplNSLvKfsl3v562OVeH0ZW1bxhQ\njNAbDEH6wgWRy+L13+vBB1PHrliRfv9sQrps2Yllv/TkOXN1GN3pdAz9jhF6g8FPX7kgcpUGCN4r\n27aqqtxC2lNLvbef06RcDmqM0BsMfvrKBZFNqHOJf7b797aQ9sVzmolSgxYj9AaDn75yQeQS6mz3\nynX/3hRS42oZUYjyp3UNEHPnzlVbt24d6GYYDJr+TBPMdq/+ur9JhxzyiMg2pdTcLo8zQm8Yahh9\nMhg0hQq9cd0YhhQmXdtg6D6mHr1hSGHWtTAMBJH9EVZsWUFk/9BcHtFY9IYhhYkhGvqbyP4I8+rn\n0ZnspDhUzKaaTVRNHlrDSGPRGwYVXa0rnW3FPoOhL2nY00BnspOkStKZ7KRhT8NAN6nbGIve0K/k\nC6QW6n/vKsvQBGsNPSWyP0LDngaqp1Z7Vnv11GqKQ8WeRV89tTrv8YMRI/SGfqMrIe+NOTwmWDv0\nGCximctFUzW5ik01mzLaOJRcOkboDf1GV0LeG/53U1traDGYxDKbi8Ztiyv4hR4/2DA+ekO/4Qp5\nKJR7qdFc/veufPf+exQV6fLsRUUmWDvY6Yn/u68yYFwXTUhCGS6a3jh+IDEWvaHfKKRcSzb/eyGF\nHyFV3t2dAzgI5gIauiCX/zuyP0J9oy7bXDOrpl/cJblcNL11/EBihN7Qa6xcqde+XrAg+0JHkDuQ\nmi+A2lXhR3fBpmRSW/LuWhzJpHHdDHayiWVkf4TL1l1GR7IDgDU71tCwULtF+tpdks1F05vHDxRG\n6A29wsqVcMMN+v0zz+jXmTMLy37pKoDaVeFHd81rpfT62KGQFnyTZz80CIqlK+Yu8WSc5Q3LWV69\nPG8GTF+Ra3QxlDBCb+gVHn00/fPq1bBzZ353i39NDXed646OTCu8q8KPfou+uBjq6vSSqya9cmji\nirlr0SsUG9/cyJZ9W9hUs6lX3SVdZfxE9keoXlftdTxrd6xl88LNQ07sjdAbTghXuGfPTlnyAKWl\nha2zUVUFra0pq9y24cUX9XXzFXPMtgSruxLfzJlG4IcyVZOr2LxwM/WN9bzc/DIvvf0StrLpSHTQ\nsKeBZZcsA/ACt37/faEdgGulr9mxhqSdpDhUTN3H62g51pJ2fsOeBuLJuHfeYM+uyYURekOPCbpc\nvvAF+NnPtHX9hz9oSxtyr7NRX69/Vq1Kv+769fD00/kXXIJ0f38kAuvW6ePWreud/Hkz8WrgcN05\nK7et5MW3XwTAxqZidEXWgCzQZZDW7QgqRldQ+1Qt7Yl2FDpi35Ho4OYNN2MrO+386qnVhENhz6K3\nxKJidEU/fhO9gxF6Q7dxBXDfvnThPnQoFQxNJuH662HKlNzuljVrIB7PzI5RqusFl4L0dv68mXg1\ncPgt85ZjLVhiYSsbSyxajrXkTMnMFqQNirsr2LayPZEXBMuySKoktrLTzq+aXEXDwgbu/N2dPLHr\nCZRS1D5Vy8xTZw4pq94IvaFb+AWwqEgHPt0g6OzZsGVLShxrarL72uvr4eWXYevW3CmQIrqD2Lkz\ntS0U0tvcjqaiIuWLP9HJVkHr3Uy8GhiC1nrdx+soCZWkBV93vrPTE3+ForWjlWvPvVb79RMdiEiG\n5S8i2MrGVnba/SyxOLfiXK469yru/eO9WYO8VZOruOj0i3hi1xPY2EPSfWOE3tAt/AKoFHzgA/Da\na/rzvffmD4RGIlrk167Vlrxt6w6iqAhOPRUOHEgdO326Pnb1an1t0K+PPQZ33w2JRKqDKSnRHUhP\nl1TNZr2bKpkDQ9BabznWkhZ83fnOTpZuWErCTgCglOLO393JOePPoe7jddy84WYSdoKbN9zMldOv\n9K5lKYuQFUIp5VnyoC37V999ldcPv869n7g3w0fvUj21mpAVwk7ahKzQoJ4clQ0j9IZu4QqgmyXz\nyiupfZ2dsH27dtcEccW0vT1lxVsWXH45LF+uLXc3PRNg92549dX0ayST8KMfpY8CbDtlcS9b1v0c\nfchuvS9b1rtrcRu6JrI/wr7YPoqsIlRSeZa560KJ7I94Qh7kJ3/4CZ3JThJ2AoUibsd5YtcThKwQ\n2Hijg+3N21m7Yy2dyc40wY8n47Qca2HZJcu8mbeumLuuH0EAvNfBUqOnEIzQG4BMMcwljq77Zfly\n2LgxlS0jol0ra9dqazuYUrl8ORw/nn7PcBi+/32bWOwZ7rrrAUSeR6k2LGsc8filwE3Ax/BX6gi6\neiwrv8VdiK89l/Xem2txG/Ljd7OATqlM2sk0f3jDngaSKpn1/FfefSVjm1KKRbMXMaVsiifaLcda\nuOcT97C9eTurt68mbuuMmnAoTPXU6rR2hKwQgpCwE1hikbSTKBQJO0F9Yz3rGtcNiho9hWCE3pAh\nhnV1UFubWxyrqrRwu/54y4I5c2DSJHjiiewplUGRB/jUp3bx+c9fS3NzKfH4UmANUI5ttwLrge8C\n3wAeA2YQCunOJB7XHcvnPgfnn5/f4s6W6RP07xdSmsHQt/hdNn7clEo3A6YkVEJHsoOQhPjM+Z/h\n0NFD7H9/P6++mxr+ifOvpKjEm+CULVOnZlZNxkSoFVtWeO2wk9qKUSgvGGwpCxEheiQ6ZAqagRF6\nA5li+Oij+QORrrVfV6ddNWvXwrZt0NiohRjSUyo7OrLddRfr13+E9vbbUWoROMNhzSnAYmARWvw/\nAjzHhz40g+pq7aNPJuG//xuWLtVn3Hijfg0GgP3Wupvpk0ik4gOuf99Y7wOLO0nKn/IIICKepd2w\np8Fzv0BKnL+98dspobdhQekCXl7/Mgf+fIAPf//DlI4uZfy54zn+geNwDnTSSX1jPVPKpmTMdPXP\nvHV9+nE7nsrQcYK6T+5+Ms0tlMtnP1jcO6IGQeWnuXPnqq1btw50M0YshVj0kLKEa2u1eFsWfPKT\nKSs+FIKrroJjx1L1biIRuPRSLa4pbOBvgG+iBb0rHgHuRmQnoZCFbaeEeu5c3dnEnTktxcW5O6Z9\n+3TOftJnNIZCulrmsmU9/fYM3SGf8K3ctpJ/ee5feKvtLW/btedeyy0fviXDnRK344QkxNervs69\nf7yX9kQ7tMC4/x6HXWRzZNYROBcoBdqB14AXgQTI54SiCUUZOfPZ2ljfWM/D2x5GoTzfvEIRkhDX\nX3C95xbKJuIrt61k6Yal2LZNSVFJn7h3RGSbUmpul8cZoTdAfh89pDoCy0plvIAWSnebWx7YLUXg\nWsorV8LNN6fEGJ4C/hnYSrolnwsFfAhYgWVdQSiUXuPGj4gO6gbz991nrK7Wz+FSUgKbNxtrvj/I\nV3nS3deR7MBWNoIQDoVpWNhAw54Gvrf5e972NIvf/fwu8FPg74E5ZP+1UsB24LfAF4FTICQhbrvs\nNm+2bb42uxZ+wk5QHCrOWwohsj/CR376ES8GYGFx+9/fnvM+PaVQoe+yHr2IrBGRd0Tkz75tJ4vI\nsyLS5LyO9+1bJiK7ReQ1Ebmi549g6E+qqtKzVvyf/a4dt0Kki2tdu+8TiUwf/ZIl8NxzcO217lkP\noAOthYg8znE3AfdTVAT33aezdawsv72WpV1Jt96qOyd//fqqKli0KNV+EbjuOiPy/UW+2vPuPtcX\n/tGzP+pVrKwYXeHlv/tF3vtsAz9Hi/wF5P61Emf/ZcAvABtCVoiK0RVZ69uv3LaS2qdqufD0C7n+\nguu59xP3IpKy6rt6Vn+8wbKsAU3JLMRH/1PgPqDet+07wCal1B0i8h3n87dF5Dzgs8D5wCRgo4jM\nUCpHqNwwJAhmpfzDP8B//qfep1SqLLBSuStHVlXBr36lrfsvf/l5lFrTzVZcC3yLRYt0LZvt29Mn\na7n3h1SOvr+zcd1OoLN93FFHTU1PvxVDd8lXebJidAWWWCgUJaESllcv96zllmMtGZZ8Gq8DYbQl\nXwgXAC8Bb4CaofjKk18hYScQhKvOvYpb/uct7HxnJzf8OpXvG9kfYTGLvcybpJ30Oqpsrqhg4Pi+\n+fcNqI++S6FXSj0vIlMDm68Bqp3364AG4NvO9p8rpTqAN0VkN3AR0LtLwRj6lWBWSkODFld/aqWI\ndoN0VTlyyRL48pfbgPJutqIMaOOkk7Sl7ubx+0cXbqfjliouLtbi7j/esrTQX399ZuDW0Lfkqj3v\nLy5mWRZ1H69LK1/Q2tGaVeTd2bG8BFxI9waIFwIvQmJaIu3aj/31MZ5sepJzxp+TdkrcjhM9Gk3r\nqCpGV+R0RQ22RUl6mnVzmlKq2XkfBU5z3p8O/MF33AFnWwYisgRYAjAl2wwbw6AimJVSUpIST6W0\n4H7lK7kXHHGJRECpcUArOrumUGLAOHbs0Ja6vwa9X/Bdq94VctftFHQvTZmSW+RNMbO+w1973vV/\n+zNtRAktx1q88sDxZBxLrKy++bkT57K1eSv2XlubmN3hA8CzurMIpnR2Jjv567t/zTjl17t+zf3z\n7/dmz3a1CMpgWpSkSx99Vygdze12RFcptVIpNVcpNXfChAkn2gxDP+Ja+JdfrgXWFdu77sq9pmsk\nolMga2sBLkXnyXeHxxC5hAULUimcLn63DWi3TDSactcUF6f8+YVOsLr1VrjsMt3mrtapNfQMVyj9\nxcXc2bD1jfXevqRKer5x97hwKMykkybpTJhOdHZNdygFOsiofQNa/LORsBNsb97uiXzF6Iphv2bs\nQRGZqJRqFpGJwDvO9reAyb7jznC2GYYZ7qSpzZtT2TS2ne4T99eJX73an3VzE3oyVDB/PheKoqL7\nufPOO5g5M+Uqypcw9vjjOu3TvxBJcJJUNoKB54cf7r2yxyORfOmUfp+964axlU3tU7VcMS09j8Of\nHSgiKKV4/K+PY2NDMTqFckw3GtYOlOi3YSvslU6YWj6Vz5z/Ger+UEc8Gffy5l2iR6IZRddy1ccZ\nTPRU6B8HFgJ3OK/rfdv/S0TuQgdjp6OzVw3DkKoqnQGzdKkW+ZKSlE+8szMVmO3sDIryx9AzXtdQ\nWB79asrKOvna1z7KD3+Ynt7pYln6Xm6+vuuq6ezU4l5onrwbeHZr8vhLJhuhzySfkHe1kLffj70v\nto9VL6/yygRXjqn0qlZ6vngHW9npxcnOROfJX9CNhv8VmAKlRaV85W+/wr/9/t9IqiR7Wvdwd+Ru\n77CQhAhJyEuprBxbmVF0rbdTJvuCQtIrf4YOpp4rIgdEZDFa4D8qIk3A5c5nlFJ/AX4JvIJOll5q\nMm4GH5EIrFjROy6JJUvg+efh9tu11dvSkrKI4/FsIq9TzXRZg++hJ0PlMs2Vs/9WDh/+FX/8o+UJ\nseuKEdH5+w88oCdv+elq3dhs34PrlrrhBn2uG9Q11SszcYX81s23Mq9+XkZ6Yr50Svd8t5OomVWT\n5gapmVXD5oWb+cHf/4AHrnyAIitlk4atMOFQOHUhJ7BasANZAS9B1T/ojqa8pDytI4nbcc/Ct5XN\n4jmL+cHf/4B7PnEPAEVWke4ArBD7YvsyntstihbcPpAUknXzuRy75uU4/gfAD06kUYa+o7sLahQS\nmAwGat1UTNeiTyS0ME+aBGPGaEH+yU9m0NHxHDpt0s2rvxadXRNDdwQPAB3Ac9j2DOrr4cEHUxlA\nflcM6GCwSzgMixfnzqzJNhvY79apqkoFc01QNjtdBSPzpVNms/azZam4q0y5QuzOht317i4e3/W4\n3n4O8DR6MlQhVv3LQBK2j97utTNkhdKqYhZZqZmzNbN0Dq5/4tRVM67iyd1PsurlVaxrXOeNVroa\nxQwUptbNCKM7C2r0ZJWlXGu5PvII7N2rP7/+Onzta3D33TOIx/8MPAvcD3wLaENkHEpdAqwAPoo7\n8Hz55dRassEZr8uXp9w2IlrkH3ywsO+ho0PP3LXt9Oc09W/yk0/IIXc6peuqCXYSyy5ZlpaRU99Y\nT/RIlCd2PeFlxtjK5u7I3Z7FDSCWMO+789j4/Y3aWs81aUqhRX4z8EWIq7h33y/N+RIPbXtIXw9h\n8ZzFaeUN/MXOsOFY/BgJO5HRyXXV+Q0URuhHGN1ZUKM7nYKf4Fqub7yRXl+ms1MXJNPCbAFXOD8p\nioth/nz4zW9SPvmtW3XH4+9w3M7InydfUtL1RCj/9+CWbfBPsjIC3zWF5IpnS6fsTHZq90eOomCR\n/REuW3cZHcnMangiQlIl0zJ1SotKmTZ9Ghu/uFHPkHXz6j9AqtbNX53tSQgtCkFF6r6R/RGiR6Pe\nPRSKORPnsORDqVzhYKe24LwFbNm3JaOT66rzGyiM0I8wulOS17/IiGWlZpYWil+E/X56pbRVnytr\nRiktvBddBLfckl77PijE/jx5dyGTBQtS2T/53E1+F5C/iJvxxxdOd3LF00oR2+QsCuYe50cQLLH4\n8JQP84cDfyBpJwlZIRbNXsSciXPY3rwd6xQL+yYb3kD77J8FOqFkdAnx0+PwUSieXsxP5v/Ey5QB\nvFx+Fwu9Nm3wOYOd2sxTZ2Z1NeXq/AaykqUR+hFIoS6Jqirtu166VAvvV7+qSw8UOqM0KMJzndJL\nW7dmL0gGqSCrK7jB2vdBIQ6OUBYsyF5LP1uswf89zJxp/PF9TdDaDZYI9h9XZBV5BcEALplyCX98\n64/8bt/vKLKKuP6C6z2BX7phqVeaAAuY5vwAo4pGsalGl1/NJrI3/vrG9AlbTh37bJZ4sFPL1snl\nEvOB9t0boTfkpaUlNSGqoyN3Xnk2IQ2OCBYv1oLqT79USmfnuGULEonULFu/IAf9/itWZF80JJu7\nCVr97aEAABWxSURBVLqONRh/fN9TaFmAqslVLJ6z2CsPbIlFaVGp5xPHMRJqn6rleCLLijY+OpOp\n2vMVoyu8zB83XrBmxxpP5MNWmMVzFqd1QN2xwvOJ+UD77o3QG/JSSF55vgyWujod6EwmtaUdXMQb\nUrXiV65M3eOuu3S1y6D1nStAnC3rx7/4SU9iDYbep1BXz5yJc/Ri3LZNSagkwycOZLh3XEIS8nLv\nLbF01o7TO7izahfNXgRA0k56212R96eBdscKzyfmA+27N0JvyJtC6VrM9fV6dSa36qPffVJfn+oI\n2tvhppv09uJiuOKKVDC1oyN9Ee9gzfvVq9Nr0mQT5K5EO1cMIlsA2tS0GZxE9keofaoWW9mErBB1\nH69jyYeWpPnEAdY1rqMj0YGNrlNfZBV5Yg1Q31ifJvKgA62dyU4e3vYw4VDY6xCKQ8XMmTgnTdgX\nzlrYLSs8n5gPdJEzI/QjnEJSKPPllUciugNwA6tuIBW0sD/+eGqfbacCutnuG5xlmy0oWkjWUDDr\np6EhM0++J6mjhv7BX5teEC8wGhwNuMJZMboiaxmC+sb6NJH34y7y7V81anvz9jRhB7plhXcl5gNZ\n5MwI/QinO26NbH7shob01EkXEe139+8T0WKb677LluUOivqt70KzhvKJuXHnDF4KdXO4wun60f1E\n9kdYu2NtxjkWlnYJOW4df315ICNY7LpyCrXCB1PFSj9G6Ec43cmrz3e+P4+9qEiv5DRnjs7UcRcH\nD4dT1/ffNxTSPvpsk6Egu2AXUrsmn5if6HMb+o5CUxSBtFr2fj96w56GtJmu551yHpeeeann1nFH\nArVP1XYp7INRuLuLEfoRTnfy6rs6P1t1yJkztQ8f0tMy/b7/tWv1ot25qkT21PrOJ+Yn+tyGviVX\n6mJwkXB/mWO/Hz04Knjk6kcyUiNdHn3lURact2BYCXsQI/SGHqUWBgOZXbl73OPdbe5rQ0PmOrPB\na/XU+u5KzE1K5eChkDRGf1aLnUxfQ1aQNDdPIcFPN+jbmexky74tzDx15rAUeTBCb+gBPSmMluv4\nQoOrPbW+jZgPfgqdTOS30l2LPmEnKLKKuG72dV7+u7/TyFdCeKBz2/sTI/SGbtNdV0q+4wsVcf/I\nwD9ZyjD0KVRwg1a6e67fYvcvQRgOhWlYmFu8/QuSD6a6NH2BEXpDt+muK8UfsBXJrJlTqNVtUiKH\nJ92ZTJStDIEfdwlCSM2KzTbLFfTM2uCC5MMVI/SGbtNdV4pbM8c/Q3bmzO6LtEmJHL4snLUQIGf9\nmxMl6B5yJ0PZ2N6C5MMZI/SGHtFd33dLi06/PJFSwCYlcvgRFGA3/bGn1MyqYe2OtRnXC7qHoHuT\noYY6Ruj7gFgkRrRe17eurKmkrKpsgFs08PSGSJuUyOFHbwdEqyZXsXnh5gzffbbKmd2dDDWUEZWr\nKHg/MnfuXLV169aBbkavEIvE2FG9A9XppH2VCLM3zzZij6ktY8ikP8v3DmQ9+L5CRLYppeZ2dZyx\n6HuZ1oZWVDzVeapORWtDa58JfSwSo7WhlfLq8kHfmZhUR0OQ/iz2NVjLE/QHRuh7mfLqciQsKYu+\nWCivLu+Te8UiMRrnNWJ32ljFFrM2zRr0Ym8wBBnJAtxfGKHvZcqqypjdMLtffPStDa3YnTYkwe60\n+3TkYDAYhi5G6PuAsqqyfhHc8upyrGLLs+j7auRgMBiGNkboe5H+9peXVZUxa9OsIeOjNxgMA4MR\neocTFWkv2yaukLAwuyE902YoBU0NBsPwwgg9PQtqBoU7Wh/1ArCqUxGtj3rX6KugqQnGGgyGQhiR\nQu8XaYA9y/dgd9hgFxbUjEVi7LhM58pLkVC5uJLOaPaFiiF70NTdfiIWfrQ+it1ugzLBWIPBkJsR\nJ/R+K1iKBBSohAIbsCgoqBmtj6I6HOs9rmh+uBkpFggDCZ1SWVlT6R0fDJqGK8InbInHIjGia6I4\n5biRor5L4zQYDEObESf0futa2e6K1oAF4y8fz9TlU9NcLgVZ3U5nMfH6iZROKfUEd++Kvd65/qBp\nmoXfYbNn+Z60+wbJ1o7WhlZU0lV5qLzOlFowGAzZGXFC77euPYs+qbCKrQyRz2V1V9ZUEl0T1TNg\nnU7CKra8nPlc5/qF2Cq2PHfR4Y2HaW1opXJRJePmjCPeEvdEPde1gqME/wjCYDAY/Iw4oQ9a15Dd\nV57P6nYnRbU2tJJoTXBkxxEmLJjgnZ/Pd+5a59PqpnHo0UMc3ngYbB3AbX64mWbVrDuOEstrZ7ZJ\nUWVVZd41/Pf2YzJ9DAYDjEChh8wJTdlE0LOYfVZ3bEsswzp3re3YlhhjZo4ByOo7dytaRtfqkYBY\nwhnfOIPYlpjXKbjn+IPCuSZFxSIxdtfuxu6wad2sg7uTlkzy2m8ycgwGg8uIFPpCcC3/Pcv3eFZ3\nMGPm/RffT1nu7drqLz27NMN3Dk6H4Ao6Oj5w4O4DTL9vOm3b27wOIBgUzjUpqrWh1euElK1oWtrE\nmJlj0veb8ggGgwEj9Hkpqypj6vKp2uoOZsw4Iuuh4PCzh5FiQUKCUtpqHzdnXEp0AxWhVUIRb4lz\n7oPnUllTSWtDK+GKcJqP3m1HUKTLq8v1fZyAsrLTq2QWWh7BuHcMhuGPEfoAQeHLmTFjZznZyb4p\n+3AZsRdiqKRid+1uptVN06KcTFd6CaVSInPVx8klxGVVZUy/bzpNS5tQtsIqSXfruHGAYKcRvLZx\n7xgMwx8j9D7yZcvkyphJQ7RPPva7mLcv0Z7g2ciz/PSUn/LS2y9xnOOMYhSzmMVNN97EB+0PpqVh\n+nl75dtayJN6Ytb0+6an+eEnLZnEmJlj0jqCrkox+DHuHYNhZGCE3ke+GazhijBt29sAPEs5XBGm\n5ckWWp5oAVuL/MmfOJmWx/VCw/vZz63qVkp+VsLVHVdTSy1jGcsRjvACL/AvD/0L/3zvP3ObdRtn\nlpyZZlHHIjGabm7Sk7nQE7N23bTLC/gGRx0u++7cl7MUQxBT/dJgGBkYofcRFL5Ea4Idl+7QLhef\n1yVaEvWWB4y3xLXQK+0nL64sxiqx2Ht8L7XUsohFzO+YjyDe+WWUcSVXMj8+nw1soNaupa6jjjMb\nzsw+IcolqYX88NOHs7pbYpGYbkuBmOqXBsPIwAi9Q9CvHa4Ip1nUflRHylIury5HinRQVIp06YNT\n/9epfPHyL7KofRFXcmXOewri7f+++j4vX/qyt89bqaoj/f6db3fmdLe0NrSmB3xDdDmRqr9q5xsM\nhoHDOpGTRWSPiOwUkR0istXZdrKIPCsiTc7r+N5patfEIjH2rthLLBLr9nmN8xp583tv0rS0yct8\nybCofTSvbk7dx02ZTCiO7jzKb1/8LeF4mPnML+j+85lPyagSXjzyYvoO/+1FLzQ+cfFErGILLBAR\nwhVh75Dy6nKsEmdfkTDjgRkAOb+Tnn5fBoNhaNEbFv1lSql3fZ+/A2xSSt0hIt9xPn+7F+6TFdcS\nD1eE9QSiHmSQZOSk39zE9PumY5XooKuEhFHnj+LYjmOpkxJ4PnyVcFw7Sdh10y7usu/ianV1mrsm\nH4Jw1bGruOu7d/GBlz/gZff4O5pxF45jWt00yqrKOP76cfb/eL+X1ePmz2eb9Zsrq8Zk3BgMI4cT\nsuhzcA2wznm/Dri2D+4B+CzxW9+k6eYmLdaBQGoh12jf145fk1VS57fP2jSLs24/i+n3Tef4q8fT\nTyyC9n3thCvCSMh3chIaVSMXc3G3nuViLub3L/+eN299k8Z5jdpS9/3vHGk84rX3wF0HdFaP0uUZ\n/M9aVlXGmcu0rz9XcBl8nVsy8xoGg2F4caIWvQI2ikgSeFgptRI4TSnV7OyPAqdlO1FElgBLAKZM\nmdKjm6dVolRKi7Wk56fnI61ksSUotGXu5qS7VvLeFXtTvnqB0R8YzfE3jtO8qpmDxQcpv6ycw88c\n9q57nOOMZWy3nmUMYzjGMU+U27a3paVvqrhKjSBsn09HyPms+bJqwhXh1PVt0lxABoNheHGiQn+x\nUuotETkVeFZE/urfqZRSIpLV0e10CisB5s6dm9sZnoe0SpQh8TJfCvSYZHQU4+aOY+wFY73ZrEDW\nSpFlHynj2C5HlI/bukSCj9EymiPqCGUU7go5ylFGM9rzvXdGOzN89K5Q+2fE5nvWfFk18Za4HjE4\nJRfiLfGC22owGIYWJyT0Sqm3nNd3RORXwEXAQRGZqJRqFpGJwDu90M6s+IWsfV87zauavdmphUz+\nCRYua9vaxpHGIzQ/0gxJ0iYcBX3fzY80py4UmDj1QfVBXuCFvBk3QV7gBS6cciEc0K6j9558LyXE\nkObGSbPobfI+a66sGjdwa3LoDYbhT4999CIyRkTGue+BjwF/Bh4HFjqHLQTWn2gj8+H6pCtrKnU2\nSqiwVaLcc2dtmsX4y8d7oqo6FSTQHYYz4ch/H08084xBruEa1rNeu4IKQKF4jMf4+P6Pe753Fdc5\n+R5JveRhtD6ace+euF3cZz/rtrOYVjeN1oZWk31jMAxTTsSiPw34lYi41/kvpdRTIvIS8EsRWQzs\nBT5z4s3smp5O/gkWLgMgmf+cjHz1AHOZywM8wAY2FGTVb2ADceLMVXNTG23ofMtZh1b058PPHtYd\nkkWqrLEiLfMGCi9UFiy1bLJvDIbhSY+FXin1BjAry/YWYN6JNKqn9HTyj7+TCFeEafpqk174O7D2\nq4vn9nDLDgveSlMSFsr/tpzbttxGraoFdJ58tlRLxf9r7+5C5KrPOI5/n9lNE9wkpkmWZLG7aSW5\nsShridKXUCKFvl7EIog3rReN9ULaBrSlForeKULtQqHVlC5uoS8IVtaLULBSEEEaV7s2vlBcSZYm\nbDZpqusYSTOz83hxzpk9c2bOTmYyO2f2zO9zM5MzM8l//zk889/nPOf5O8c4xiSTTDBBIfkLVvh3\nbrp+E5fevVQt4WQgKLcszhTrNjRvtWxS/W5E8k93xobiXxLJRmGN3pvsVZ/cc3b30d08+diTPPDu\nA0wzzSEOcYADDDHERS7yEi8xzTSXucwEE4wyuvIPhM3RvBJscTj247HgLt3Syh63mz+3mYsnLtbl\n2FsN3Op3I5J/CvQNXGnL4GSv+ijIR7s/7by8k8nCJDOVGaaZ5gme4CM+4hqu4SZu4rAd5pbCLYzd\nP0b5g3KwD23ZsQFj+M5hSudLDN8xzNCNQ2z/1vZqT53CxmCP2KiHffwLqdXAHX1pRdciRCR/zL2t\nysaO2r9/v8/MzGQ9jFWlpUQa5cPnH5nn5M9PBmmWAkGNfqIx2uhPRhncNlizEi+/X+b046dX3hum\ngnzZqymbkcMj1U3IVxtrK9cqdJesyPpkZq+6xy/uNaYV/RVqJSVSU7ZpsPWLW6lcqlB8pVgN4IPb\nBtnz4J76m7YqsS+ECrVNzcrw4WsfwndXH2ur1yqUpxfJt7VogbAutNrQK+pSGeXPow2/oxYMr3/l\n9erfde0XrmXvxN7gIu0yLL24RPGfRewTFpR/bmycU/flYPvB6v9KARioHUfxeJHZg7MdLYXcsGMD\nZlazV62I5EdfrujbTlV47eNqK+HShVLtjVRl2H3vbjaNbaoG0vlH5im/X8bM8EKwHWC8TXK1XfIP\n36lZ2TfbUKTVuZg7Mhe0WR6wauM0EcmPvgz07aQqqt0kPVh5RznwtAuf1X7y4W5PUalmTQlkrDzT\nBoMgG98qMDJ04xBzR+YoHi92dB6inyvaA9fN1QpBJIf6MtC3U1LY6DNpFSvRxdB9v9pX3X4wfgH1\n7O/PrgR5qH55pAXZKBU0e9vsqvX97VB5pUj+9W3VTauVKWmfSaaB9k7sXbUv/tLLS0HATuwcxQCM\n3DPClpu3ULpQajiudsbc7s8lIr1PVTdNtHMXbaPPJNNA5585n5oWWnp5iVMPn6qmc6oGgAIsHF1g\nobIQXBTdWP8lsVbb/mk7QZF869uqm06JUh9RM7XhO4YbNleLVv7vPf9eTT39jtt3MHLPSHDhNtYf\nvpXNU0REVtO3K/pOadRMrVELherKP76YL8DWW7ey7eA2FqcWq+2Sm5U5KtUiIq1QoO+AZOqjUSok\n2fs+Ss/EL+pGTdXScvSgu1hFpHUK9B2WttpuFsyvNE+uu1hFpFUK9B3UbLXdiYueKocUkVYp0F+l\n+Aq+G6vtdjdYEZH+pUB/FRrV0Hdjta1ySBFphQL9VUiu4EsXSlpti0jPUaAPtVOymNYWIcsAr9JL\nEUlSoKf9ksVey5er9FJEGlGg5+pKFrNewcep9FJEGlELBOrbGKzXksW8/Bwi0lla0ZOfDbJ7LZUk\nIr1BgT5mcWqRyuUKi1OL6za/3UupJBHpDUrdhBrlt0VE8kCBPqT8tojklVI3IeW3RSSvFOhjlN8W\nkTxS6kZEJOcU6EVEck6BXkQk5xToRURyToFeRCTnFOhFRHLO3D3rMWBm54H5rMfRJTuB/2Y9iHVA\n89Sc5qi5vM/RHncfbvamngj0/cTMZtx9f9bj6HWap+Y0R81pjgJK3YiI5JwCvYhIzinQd9/RrAew\nTmiemtMcNac5Qjl6EZHc04peRCTnFOhFRHJOgX6NmdkpMzthZrNmNhMe225mz5vZO+HjJ7MeZzeZ\n2aSZnTOzN2LHUufEzB40szkz+7eZfS2bUXdXyhw9bGZnwnNp1sy+GXutH+do1Mz+bmZvmdmbZvaj\n8LjOpQQF+u64zd3HY/W8PwVecPd9wAvhn/vJU8DXE8cazomZ3QDcBXw2/MyvzWyge0PNzFPUzxHA\nL8Nzadzdj0Ffz1EZuN/dbwA+D9wXzoXOpQQF+mwcAqbC51PA7RmOpevc/UXgf4nDaXNyCPizu//f\n3U8Cc8CtXRlohlLmKE2/ztGCu78WPi8CbwPXoXOpjgL92nPgb2b2qpl9Pzy2y90XwudngV3ZDK2n\npM3JdcB/Yu87HR7rVz8ws3+FqZ0oJdH3c2RmnwZuBv6BzqU6CvRr74C7jwPfIPjV8svxFz2ob1WN\na4zmJNVvgOuBcWAB+EW2w+kNZrYZeAY44u4fxF/TuRRQoF9j7n4mfDwHPEvwq+KimY0AhI/nshth\nz0ibkzPAaOx9nwqP9R13X3T3ZXevAL9lJe3Qt3NkZhsIgvwf3P0v4WGdSwkK9GvIzIbMbEv0HPgq\n8AbwHHB3+La7gelsRthT0ubkOeAuM9toZp8B9gHHMxhf5qLgFfo2wbkEfTpHZmbA74C33f3x2Es6\nlxIGsx5Azu0Cng3ORwaBP7r7X83sFeBpM/seQXvmOzMcY9eZ2Z+Ag8BOMzsNPAQ8SoM5cfc3zexp\n4C2CKov73H05k4F3UcocHTSzcYJUxCngXujfOQK+BHwHOGFms+Gxn6FzqY5aIIiI5JxSNyIiOadA\nLyKScwr0IiI5p0AvIpJzCvQiIjmnQC8iknMK9CIiOfcxC5ED9Oq2i+oAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11890acc0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "from itertools import cycle \n", "\n", "plt.figure(1)\n", "plt.clf()\n", "\n", "colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')\n", "for k, col in zip(range(n_clusters_), colors):\n", " my_members = labels == k\n", " cluster_center = cluster_centers[k]\n", " plt.plot(X[my_members, 0], X[my_members, 1], col + '.')\n", " plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,\n", " markeredgecolor='k', markersize=14)\n", "plt.title('Estimated number of clusters: %d' % n_clusters_)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 10. Pandas and seaborn\n", "### Pandas: http://pandas.pydata.org/\n", "### Seaborn: http://seaborn.pydata.org/" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAAGkCAYAAACVe+o2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8lNXVx3/PrFkn62Qhe4CwBxAEF0AUWVwRBaypuIBa\nrX2ttu7a2re8rW2tdqEur1arFS0iWLG+aq0IbqCyhy0sIUGykEzWmcky+/tHSAjDLM++TM7388lH\nM/M89zkzN5zfPeeeey8TCAQCIAiCIAgVoVPaAIIgCIIIhsSJIAiCUB0kTgRBEITqIHEiCIIgVAeJ\nE0EQBKE6SJwIgiAI1WFQ2gA+2GwOWZ6TlpaA9vZuWZ4lNbH0WQD6PGomlj4LIP3nsVqTJWtby2hS\nnOTCYNArbYJoaPmztDtc2FbVjJOtXejq9cLnD2B0SQZyUs0oy0+Fyajdz9aPlvsHADxeH0629aDT\n6YLBZEeSWYdhGYnQ6RilTROM1vtGq5A4Earl0HftePeLGhw+0YHgleI7D9sAAMkJRlw2vQizJw9D\nnIn+nOWmzubEZ7sasGV/I3pcvjPeizPpMXlkJhbOKEFWWoJCFhJahf41E6qjs8uNtZ8ewdb9TQCA\nfGsSxhSloiAraUCAHC4fDh5rwd5jrVi76Sg+/OY4VlwxFuXDM5Q0fcjQ6/Zi3eZqfLqzHgCQGGfA\nxOEZSE4wISU5DscbO1Fnc2Lr/iZ8c7AZsycNw5LZI2A2URRCsIPEiVAVR+s78Zd39sLe5UZ2ejzm\nTinAsMzEs67Lz01BbmocLhifg+2HbPjmQBP++PYezDu3AItnD4dBT7U+UnG0rhMv/ms/Wjp7kWGJ\nw8zyXAzPS4H+VAovNTUB44pSEQgEcOhEB76obMSnO+txpK4T/3XdBGSmxCv8CQgtQOJEqIYvKhvw\n+r8PwecPYPakYZg6KivqnEWcyYAZE3IxMi8F/9pSi4+3ncCJZid+dO0ExJvpz1tstlU146V/7YfP\nH8B5Y7NxwficsAMBhmEwujANI/NS8MmOOuypbsXK17bjnsXlGD4sRWbLCa1Bw0tCFXzw9XH87YMq\nGPQ6LJk9HNPGZHOaTM9OT8BN80dhRF4KDh5vx1P/2AVHt1tCi4ceH287gRfe3QedjsGSi4Zj1sRh\nrCJUvV6HeecW4NIp+XD2ePCHt/bgRLNTBosJLUPiRCjOe1/VYN3maiQnGHHjvDIU51h4tWMy6nHN\njBKML0lH7UkHfvvGTthJoERh0846rNl4BInxRtwwZySKc7n1EcMwOKfMisunF6Hb5cUzb+1Gc0eP\nRNYSsQCJE6Eo731Vg3e/qEFKogkVc0YiPTlOUHs6HYPLphdiSpkVDa3deOat3eju9Ypk7dBkxyEb\nVn98GAlmA26YMxLZAirvxpWkY845eejscuPpNbvR1esR0VIiliBxIhRj0676AWG6Yc5IpCSZRWmX\nYRhcck4eyodn4LsmJ/64bg9cbl/0G4mzOFLXgRff2w+DXofrLipFWrLwPpoyKgvTx2TD1tGDv/7r\nAPx0pBwRAhInQhG2VzVj9b8PIcFswJKLh8OSaBK1fYZhMG9qAUYXpuJoXSee37APPr9f1GfEOvUt\nXfjTukp4/X4snFGM3Iyzqyb5MrM8F8U5ydhT3YoPth4XrV0idiBxImTnQG0bXvzXfhiNOiyePVxw\nKi8cOh2DK84vRnFOMiqrW/HaR4dABz+zo93hGkiJLphWiFKRq+t0OgZXnl+E5AQj/vnFMRw83i5q\n+4T2IXEiZKX2pB2r1u9FIAAsmlGKnHRpdw7Q6xgsnFGCnPR4fFnZiH9+USPp82KB7l4v/rB2N9od\nLswsz8WEUmkWNifEGbHwwhIAwMvvH0A3zT8RgyBxImSjqa0bf1i7By6PD1eeX4SiHHk2vDQb9bhu\n1nCkJpnw/pZabNpZJ8tztYjH68eqdypRZ+vC5JGZOG9stqTPG5aZiAvG5aDN4cKbnxyR9FmEtiBx\nImSh3eHC02/thqPbg7lTCzCqME3W5yfGG7Fk9ggkmA1Y/fFh7DjULOvztYA/EMDL/3cAh77rwMj8\nFMw5Jx8MI/3GreeNy0FOegK27DtJ/UIMQOJESE53rwd/WLsbLZ29uHBCDiaPzFTEjrRkM667aDgM\nBh3+9739OHyiQxE71MraT4/i24PNyMtMxJXnF8u2o7hex+CK84tg0DN47aNDtHiaAEDiREhMr9uL\nP647nSa6YFyOovbkZiTgmhkl8PuBP6+rRL2NdioAgI+++Q4fbzuBDEscrp1VCqNBXteQYYnDjAm5\ncPZ4sGYjpfcIEidCQlxuH/74diWO1nVidGGqbGmiaJTkWnDZ9MK+nQrW7kGbvVdpkxTl6/0nsXbT\nUSTFG7Fk9nDF9iScOioLOekJ2Lq/CZXVrYrYQKgHEidCElxuH/60bg8On+jAqIJUWdNEbBhXko6L\nJg5Du8OF3/1j15AVqF2Hbfjr+wdgNuqw+CLx15txQadjsGBaIXQM8PePqtDjop09hjIkToTo2Lvd\n+N0/dqHq1MT6lReoS5j6mTYmC+ePy0Zzew9+88ZO2IbYXm/7jrXi+Q37oNfrcN1Fw5GVpvxRFllp\n8Zg+NhttDhfe+eyY0uYQCkLiRIhKc0cPnnx9B2oa7Rhfko6rLywZOOdHbTAMg5nlwzBjQi5aOnvx\nm9U7cfykQ2mzZGH30RasemcvAODamaXItyYpbNFpzh+Xg3SLGZ/urMOROipaGaqQOBGisfOwDb/8\n2zY0tffgvLHZuGx6oWqFaTAXjM/B7EnD0O504cnVO7C9KrbLmb+obMBf1lciEAhg0cxS2dabscWg\n12HBtEIEALz6QRU8XtoXcShC4kQIpsflxRsfH8Zf3tkLt9eHy6YXYtbEYaoofmDLtDHZWDSzBAEA\nz727D29+cjjmNov1+f145/Nq/O2DKpiMenzvkpEo4Xj0hVzkW5MweWQmGtu68a8ttPfeUISOCiV4\n4/cH8NW+Rqz/7BjsXW5kpMRh4YXFmj2Ge2R+Km6ca8aGL2vwyfY67DnaghvnjcL4knRNCW0o2uy9\nePG9/Thc14mURBMWXzQcGSnS7GkoFrMmDkN1fSc++Po4zh2dhYIs9aQeCelhAhrcCdNmk2dewGpN\nlu1ZUiPmZ+lwuvDV3kZ8trsBLZ29MOgZnDc2B+eOzpJtfUxqagI6Oroladvj9WPLvkZ8W9WMQAAo\nyU3GZdOLMHFEBowGPae2vD4/Wu29aG7vQWtnL+zdbji7PXB7/fD5/WDAIM6shzU9ESYdkJkSj+y0\neGSkxIkiiB6vD5/sqMP7W2rR4/JhVEEq5k8rQJxJunGpmH1zrKET6z47huKcZDx20xTodfIne6T2\nA1arutKqaoEipxjH4/WhztaFPTXtqDvZCUe3B26PDwH0FQTEGfWIM+kRZzYgzqRH/Kn/xpn0CAQA\nnz+A7l4PWu0uNLV149CJDjS0dAEAjHodyodn4IJxOYqWIIuN0aDDRZPyMLooDVv3ncThuk489+4+\nmI06jC1Ox4i8FFhT45FuiRuYU+t2eeHodqPN7oKtowfN7d1o7ugTJD+P4V+C2YDC7CQUZiejICsJ\nBVlJyM1IZC3+HU4Xvt7fhI076tBq70WcSY955xZg4vAMTUWBpcNSMLYoDQeOt+M/2+qwYHqh0iYR\nMkGRUwS0GjnV25zYdaQFe462oKbRzss5hsOo1yHPmogReSkYV5wOs4lbJCEWUkZOwbTae7HnaAuO\nNdjR5nCxvi8xzoDUJDPSks1ITTIjJdGExDgD4s0GGA066HQMAgHA7fHBYDKg0eZAp9ONVnsvmtp7\n0B70LJ2OQU56AvKticizJiE92YzEeCOMBh1cbh+6ej2oa+5C7Uk7jtZ3IhDo2xronDIrzh+XLWm0\nNBix+6bb5cXL/3cQPp8fv1wxDVkCTuLlA0VOykDiFAEtiZPX58e2qmZs2lmPo/WdAACGAXLTE5Cd\nnoCiYSnQI4AEsxEmgw5ggEAgAI/XD5fHB7fHD7f31H89Pri9fQfz6XQMzEY9LIkmpCSaYE2Jg16v\nfB2NnOI0mHaHCy2dPehwuuHs8SAQCCAQAMwmPRLMBiTGG5GWZEJqkhkmI3vhDvV53B4fbB09aGrv\nga2jB7bOXrR09sDtiXxoIsMA2WkJGF+SjtFFaUiQeccHKfrmQG0b3t96HGOK0nD/9ybJGv2ROCkD\npfU0js/vx9Z9TdjwZQ1aT+1yUJprwdjiNJTkWga2olHKmccaaclmUY4qZ4PJqEeeNQl5g9YgBQIB\n2LvcaOnsRVevFz1uL3y+AIwGHUxGHTIscchKi4eJ49yY2hlzKrV38Hg7vqxsxMyJw5Q2iZAYEicN\nU3W8Has/PoSG1m7odQymlFlxTplVNudJyA/DMEhJMiMlaWj1McMwmDe1AK98eBBrPj2CCcMzkDrE\nvoOhBomTBnF0u7Fm41Fs3X8SADChNAMXjo+togSCCMaSaMJFE4fhP9vr8OqHVfjx4nJNFXcQ3CBx\n0hi7jtjw6odVcHR7kJ0Wj3nnFiA3I1FpswhCFiaNyMThE52orG7FpzvrMWdKvtImERKh/Mw2wQqX\nx4dXPzyIVev3orvXi9mThmHZvFEkTMSQgmEYXH5eEeLNeqzddBR1dB5XzELipAHqW7qw8rXt+HxP\nI7LS4nHT/FGYNiZblTt9E4TUJCcYsWBaITxeP/53w364PLG1zRTRB4mTyvmyshG/fHUbGlq6cE6Z\nFTfOLYM1VZvbAxGEWIzMT8XkkZmob+nCax9WQYMrYogo0JyTSul1e7H648PYsu8kzEY9rplRgrKC\nVKXNIgjVcPHkPDS1dePrA00oGWbB3KkFSptEiAhFTiqkrtmJla9ux5Z9J5GTnoCbF4wiYSKIIAx6\nHRbOKEFinAFvbTyCg8fblTaJEBESJxURCATw2e56rPz7djS2dWPKKCu+f+lIWs9BEGFITjDh6gtL\nAIbBqvWVONFMBRKxAomTSnD2ePDsP/fhtY8OQa9jsGhmCeack6+KrYIIQs0UZCXhivOK0Ov24Q9r\nd6O1s1dpkwgRIM+nAvbVtOJnL3+DnYdtyLcm4eYFozEyn9J4BMGWMUVpuHhyHjqcbvx+zS602Umg\ntA4VRCiIx+vD25ur8cn2OugYBrMm5mLaaCoRJwg+nDs6Cz0uL74+0ITfvLETD94wGZlU2apZSJwU\n4mhdJ1798CAaWruRbjHjyvOLkZMu71EABBFrzCzPhU7HYMu+k/jNGztx79KJyLfSCbpahMRJZpw9\nHrzz+TFs3lUPAJg8MhOzJ+XJdoIsQcQyDMNgxoRcGPU6fLanAb/6+w7ccdVYTC6zKm0awRESJ5nw\n+vzYtLMeG76qQXevFxkpcZh/bgGN6ghCAqaPzUZKkgkffv0dVr2zF1ecX4SFM0pgoAIjzUDiJDFe\nnx9b9p3E+1tq0dLZC7NRj9mThmFKmZUq8QhCQkYXpiEt2Yx3v6jB/209jj1HW3DblWNRmE2H+2kB\nEieJcPZ48GVlIzbuqEOrvbfvuOyRmbhgfA4S4oxKm0cQQ4LstATcctlobN5Vjz3VrfjvV7dh1sRh\nWDijhNYPqhwSJxHx+f04WNuOrfubsP1QMzxePwx6BueUWTF9TBaSE+i8JYKQG7NRj/nTClFWkIqN\nO+vw2e4GbN1/ErMmDsOcKfnITqNCJDVC4iQQe7cbVcfbUVndir3HWuHo9gAAUpNMmDQiExNKMwaO\nSicIQjlKci1YftkY7D3Wiq/2ncQn2+uwcXsdxpakY9roLEwusyIpnrIaaoG8JksCgQA6u9xobu/B\niWYnjjc5UF3ficbW7oFrEuMMmDQiE2OL05CXmUindBKEytDpGEwckYnxpRk4fKIDOw/bsL+mDftr\n2vDaR1UoybVgVGEaRuSnoDArCWnJlPpTiiEnTl6fHx5v34/b6xv0/35093rR1eOB89SPF0B9kwO2\njh60dPbC4/Wf0ZbJoENxTjLyrUkoHWZBdlo8CRJBaAC9jsGYojSMKUpDh9OFQ9914HBdB4412lHd\nYB+4LiHOgJyMRKQkGJFuiUOGJQ6pSSbEmw2DfvQwG/Uw6HXQ6xgY9DpaSC8CmhSnnz77FQKBAAKB\nvojGf+ooF/+g1wIBIIAzr+l/nStxJj3Sk81ITTIjJdEEa2o8stLikWGJoz9CgtA4qUlmTB+bjelj\ns+Hy+FBv68LJtm40d/SgpbMHJ5ocOBY0MI0Gw+AModKdGrQyTN9aLObU/5tNBvz1sbkSfCrto0lx\nMugZMIwODMOgXxt0DBPU8ad/1zEATv2/Ua+DyaCD0aCD0aCHydj//zokmA1IjDciKc6IpHgjCvJS\nwXi9MVFdZ7Umw2ZzKG2GaNDnUS9a/ywTR2Se8XtmZhJqT7SjtbMXrfZedHa50ePynvHj9vjh8wfg\n9Z3+r9cXgM/vh88XQAAYOBDR3/cLAgCMehrchkOT4vTbOy+Q5Tla/0dGEIRwGIZBUnzfgLUoh9ZI\nyQUToPONCYIgCJVBWxQQBEEQqoPEiSAIglAdJE4EQRCE6iBxIgiCIFQHiRNBEAShOkicCIIgCNVB\n4kQQBEGoDhIngiAIQnWQOBEEQRCqg8SJIAiCUB2a3Fuv0+lS2gSCIAhRSGF5XLzN5sCeoy3407pK\nXH/JCMyfViixZdJjtYbfq5AiJ4IgCI3hHwJbopI4EQRBaIT+w0yHgDaROBEEQWiF/oO2h8JhEiRO\nBEEQGqFfnPyxr00kTgRBEFpBf0qd/ENAnUicCIIgNIJe3+eyfX6/wpZID4kTQRCERjCcEievjyIn\ngiAIQiUY9H1pPa+XIieCIAhCJQxETjTnRBAEcZqXXnwet9xUgRW3LsP+fXvDXve3V17CY488OPD7\nc8/+GbfeVIHlN38fO7Zvk9zOP//xaSy/5UbcvOwGvPvOurPe37Vrx4A9q/78B87tt7W14srL56K2\npmbg9/t/cg/uuO0W3Lb8JtSdOCH4M4RiIHLyxX7kpMntiwiCkJ+qgwewc8d2/O21N9B08iQeevAn\neO31f5x13ZavvsBXX36B7OwcAMChqoPYt7cSr7z2BhobG3D/T36MN9ecLRhisX3btzhx4gReeXU1\n3G43vrdkES65dB4sFsvANX/4/e/w5O+eRl5ePu66YwUOVR3EqNFjWLXv9Xjw5K9WwmyOG3ht1Z/+\ngPkLrsDcefOxfdu3qK2tQX5BgeifrT9y8pE4EQQhhPff24DNmz9Fd3cXOjo6cNvtP8Alc+Zi547t\neP7ZVdDpdcjPL8Ajj/4MvS4XfrXyF3A6HLC1NGPxku9h8ZLrcecdy5GWlg67vRMPPvQoVv7yCej1\nevj9fvzPr36L7Jwc/PGZ32PP7p0AgPkLLsf3Km7Efz/xOEwmExoaGtDaYsPPf7ESo8eMxdVXzEdR\ncQlKSkvxk5+ejm7u+/GP0NPTPfB7SUkpHnrk8YHf9+zehfPOuwAMwyAnNxc+nw/t7W1IS0sfuObE\nie/wzvp1uOMHP8SGd98BAIwaPQZ//ssLYBgGJxsbkZzct5/a1i1f4vChQ7j51hUD9zc01OORh+5H\nZmYmmpuacP6FM/DDu+854zuNZueE8okoGzUaQN+OCj6/DwbDma7uldfegMFgQHd3N5xOB+ITEgAA\nz676E3bv2gmf34eK79+ES+fOO6tP//THp3HtdUvw2qsvD7xWuWc3Rowsw9133Y7c3GH46QMPhf6D\nEIjB0CdOniEw50TiRBAS09vbg7889yLa29tx600VmDVrNn71P/+Nl15+FenpGXjhub/g/X9twOgx\nYzFv/gJcfMmlsNmacefty7F4yfUAgHnzL8PFl8zB22vXYOy48bjnnvuwa9dOOJ0OHP78EBoa6vHK\na2/A5/Xi9hU3Y+q50wAAObm5eOSxn+Pdd9bhn/9cj0fGjEVT00n8/Y23kJqaeoadf/jTXyJ+DmdX\nF1JSUgZ+T0hIgNPpHBCn7u5u/O43v8Yvfvkr1NYcO+Neg8GA5579M9aueRP3P/AIAOD8C2bg/Atm\nnPWcxoYG/PkvLyApKQm3r7gZVQcPYPSYsaztNJvNMJvN8Ho8+O8nHsOiRYuRcEp8Btuzd+8ePP7I\nQygpLUVWVja2fPUFGhrq8dIrr8HlcmH5LTdi+nnnITn5dMT1/nsbkJqWjvMvuPAMcWpoaIDFYsGz\nz7+Ev774Av7+6t/wg7vujmgnH+JNfS67x+UVvW21QeJEEBIz+Zyp0Ol0yMjIQLLFAluLDa0tNjz6\n8AMAAFdvL6addz4umDET//jHamz6dCMSExPh9Z52QEXFxQCAqxcuwt9fewX3/NddSEpKxg/vvge1\ntccwafI5YBgGBqMR4yeUo+aUOIw6FUFk5+Rgz57dAIDU1NSzhAmIHpEkJSaiu7tr4Pfu7m4kJ53e\nVfqbr7egtbUFjz3yABwOB1pszXjtby8PREY/vPse3HzLCiy/5UZMmnxO2LTXyLKyAREcP34Cjh+v\nPUOcotkJAHa7HQ8/+BNMmXIubll+W8jnTJgwERve/wjPP7cKf3/1ZcTFx6Pq4AHcecdyAIDX60X1\n0aN44fk+MZw2/Tx8vXULGIbBtm+/xuFDh/CLJx7D75/5M1JSUzBz1mwAwMxZF+H551aFfKZQjAYd\njAYdunpJnAiCEEjVwQMAgNbWVnR1OZGVlY2srGz8/uk/ISk5GZ9/tgnx8Ql4Y/XfMWHCRCxecj22\nb/sWX335xUAbOqYvnfP5Z5swadI5uP2Ou/Dvjz7A3197BRdfcine/9e7qPj+Mng9HlRW7sEVV14N\n4PRGoYNhdKHroKJFJOWTJmPVn57BjctuQXNTE/x+P1LT0gbev/iSS3HxJZcCAHZs34Z31r+Nm29d\ngW3ffoNNn36CBx9+DGaTCQaDAYzubLv6qa2pQW9PD4wmE/bt24srr76Gk529vb24+87b8P0bb8aC\ny6846/1AIIA7brsFT/9hFSwWCxISEuF2u1BcXIIpU8/Fo48/Ab/fj5f/+r8YWTYKL7z4ysC9y1fc\nMfD/d96xHA8/8jNkZmZi0qTJ2PLVF7j8iquwa+cOlJYOj2ijEOJNenRT5EQQhFBaW1vwwztvg9Pp\nxEMPPwa9Xo+f3P8Q7vvxj+AP+JGYmIhf/PJXYBgGv3/qSfzn44+QnJwMvV4Pt9t9RltjxozDfz/x\nOF55+UX4/X7c95MHMHrMWOzcsQ3Lb7kRXo8Hc+bOPyPSEIsxY8Zi0uRzsOKWG+EPBPDgQ48CALZ9\n+w327N6F2+64M+R950yZio2ffIzblt8Ev8+HJUuuR15efsg5JwAwGA145KH70drWijlz5qKsbBQn\nO99Z/zbq6+vx7rvr8e676wEAP3vil2iorx+w88Zlt+De/7oLRpMJmZlWPPazXyA+Ph47dmzH7Stu\nRk9PD2bPvgSJiYmsnvnj++7Hr1b+AuvXrUVSUhJW/uq3nGzmQpzZgO4hEDkxAQ1ub0uHDRJa4f33\nNqC2tgY/uudepU1RHW1trdjw7ju4dfntA681NNTj8UcexCuvvaGgZfLC5bBBAFj52jbUnnTgxQdm\nQx8mCtYKkQ4blCRy8ng8ePTRR1FfXw+324277roLubm5+MEPfoDiU7nzG264AZdffjnWrl2LNWvW\nwGAw4K677sLFF18shUkEQaiMQAC4cdktSpuhOdKSzKgJONBmd8GaGq+0OZIhiTi99957SE1NxVNP\nPYWOjg5cc801uPvuu3Hrrbdi+fLlA9fZbDa8/vrrWL9+PVwuFyoqKnDhhRfCZDJJYRZByM6VVy9U\n2gTVkpGRcdZrw4blDamoiQ/plr71VS0dPSROXFmwYAHmz58PoG/yUa/XY9++faipqcHGjRtRVFSE\nRx99FJWVlZg8eTJMJhNMJhMKCwtRVVWF8vJyKcwiCILQPOmWvjRgS2evwpZIiyTi1D+J6HQ6cc89\n9+Dee++F2+3GkiVLMH78eDz//PN49tlnMXr06IEFef33OZ1OKUwiCILQNGlpCTAY9CjK66uQ7Pb4\nI87ZaB3JqvUaGxtx9913o6KiAldddRXsdvvA9iFz587FypUrMXXqVHR1nV430dXVdYZYEQRBEH20\nt/et7TIzfTVsR0+0DxRJaJVI4ipJqUdLSwuWL1+OBx54AIsXLwYArFixApWVlQCArVu3Yty4cSgv\nL8eOHTvgcrngcDhQXV2NsrIyKUwiCIKICVKSTEgwG1DbqG1hioYkkdMLL7wAu92O5557Ds899xwA\n4OGHH8avf/1rGI1GZGZmYuXKlUhKSsKyZctQUVGBQCCA++67D2Yzu7JKgiCIoQjDMMjJSMCxBjs6\nu9xISYzNAjJa50QQBKEgXNc5tdl78a+vavHZngbccdVYnDcuR0rzJEX2tB5BEAQhHcU5fU59f02b\nwpZIB4kTQRCExshKi0dinAG7j7bE7MGDJE4EQRAag2EYjC5KQ1evF/uOxWb0ROJEEAShQcYV952j\n9UVlg8KWSAOJE0EQhAbJTotHTnoCdh9pQVNbd/QbNAaJE0EQhAZhGAbTxmQhAOCjb79T2hzRofOc\nCNVR22jndV9xriX6RQQRQ5TlpyIt2Ywv9jRg7tQCDMtkd/6UFiBxIhSFrxCxbYsES3q49iH1iXjo\ndAxmTxqGf35Rg7WbjuLeJROVNkk0SJwI2RFTkLg8i5yicMToOxpEiMuIvBQUZiehsroV26qace7o\nLKVNEgUSJ0IW5BQkNjaQM2SPHH1HfcMfhmEwb2oBXv2oCq99VIUReSlIS9b+NnBUEEFISm2jXRXC\nFIxa7VIL/d+PEt8R9Q130i1xuHhyHrp7vfjr+wfg82t/YS6JEyEJWnEwWrBRTtTUb2qyRQtMGpGJ\n4XkWHDzejrc2HlXaHMFQWo8QFSmcybH68G2W5glPAfXbPJTTSWoWAeofdjAMgyvPL8bq/xzGJzvq\nMMyaiNmT8pQ2ize0KzkhGkIdXCQR4oJQwRpKTlDNohSOWOsfPruSN7f3hL2uw+nC6x8fQq/bhzsX\njld1gUSkXclJnAhR4OvkxBKkSPARq1hzgKFQcjBBA4jTiC1OANDY2oW3Nh2F1xfA3deMx+Qyq2A7\npYDEiZASyVhjAAAgAElEQVQMPg5ODkEKBVeHGEsOcDBqHEgM5QGEFOIEAHU2J97eXA2/P4AfXD0O\nU1UYQZE4EZLA1ckpJUrBcHGEseIA+1H7YGIoDiCkEicA+K7ZgXc+OwaP148b55Xh4nPyedspBSRO\nhOhwcXJ8nBsfJ8rVUQ01kZK6z8RkKPWNlOIEACfburHus2p093px5QVFuGZmKXQMw8tWsSFxIkRF\nCicnxcQ8G6c1VJygGgYTfL4/tv2j5b6RWpwAoN3hwtubj6LD6caUMitWXDkGcSbli7VJnAjRENPJ\nyVUpJpZIadUBsv2e5R5IsP0+Y12g5BAnAOju9WDDV7U40exEXmYi/mtxObJS4zm3IyYkToRosHFM\nbJwcXwdX22jn7YSi3ReLAiWmMEk5mBjKAwi5xAkAfP4ANu2sw84jLUiIM2DFFWMweaRylXwkToQo\niCFMbNoQ4gTZOKdI18SSA5Srv8RkKA4g5BSnfiqrW/HJjhPw+gKYd24BFs8eDoNe/g2DSJwIwQh1\ndNHul3vOKdYFSq0DCbbfW6z3z2CUECcAsHX0YMNXNWizu1CSm4wfXD0OWWkJgtvlAokTIQgphUmO\nkTkfkdKyA9TKQCLa9ydEoNTaN6FQSpwAwO3x4T/b67C/tg1mow7fmzMSsyYOAyNTNR+JEyEIIc4u\n3L3R2jzR2BrdsCAKcjMivh/OYfEVKDU6QK0OJLj2DaDN/gmFkuLUz4HaNnyyow69bh8mDs/ALZeP\nQUqiSdRnhILEieCN3MLER5RCEU6oYl2govUX175i0yYQvd+iDRyAoStQahAnAHB0u/HB18dxvMmJ\npHgjbrlsNM6ReNsjEieCN2I7u3CviyVKwYRyilycoJbSe3L1FSC8vyKJVajvM1YGD6FQizgBQCAQ\nwM7DNny2pwFeXwAzJuTihktHIt4szZooEieCF3I4u0hOrq25LuLzB5OeFX5bFi5RFB+BUoMD1Oog\nQmjfANron0ioSZz6ae3sxftba9HU3oPMlDjcduVYlBWkiv4cEieCF2I6PC7CxEWUQhFOqNhEUVp1\ngHz6SqxBRD+R+i3S4AFgH+Hy6R+l+yYaahQnAPD5/Niy/yS+PtAEBIDLzivCNTNLRC05J3EieBHJ\n4QkRJqlEKZhQDjHYCcZC9KS1QYSQwUO419TcP9FQqzj1U9/Shf/bWosOpxsFWUm446qxyLMmidI2\niRPBGbFG4myEKZKTs9tqI9oBABZrcdj3hoJAaXUQwVakxOgfEidhuD0+fLqrHpXVrTDoGSyePQKX\nTs0XvIFsJHGSf0kwMWRgU+UVytHZbbUDP2yIdH1bc91Zzwh2umLvPScnfMq7hQwiognT4L6I1n/h\n2uPbP4R0mIx6LJhWiEUzS2Ay6LFm4xE8vWY32uy9kj2TIiciJFxH43wcXjhhEoNQ0VTwSD3aCF0L\n0ZMYUZOQ6JZrf4WLcqP1DSC8f9QaPWkhchpMV48HH337Haob7EgwG3Dr5WMwZRS/knOKnAjZ4SpM\nkUbawaNxNiPzcFGUUNQUPYkRNfEVJi6RLZv7okW3hHpIjDfi2lmlmHduAdxeH579516s2XgEXp9f\n1OeQOBFnIXYahY0whYKNA4wkVNHujZY+0nI6iUt1XiS4DCK4EKodrunXUJ9HTYOHWIZhGEwakYll\n80Yh3WLGx9tO4Hf/2IV2h3hZLRInghNsnB4XJxhOVPiOyqO9JvUIXUuCxie6DUWkyDZalCtn/2ip\nb7SCNTUey+aNwujCVByt68TK17bhuyaHKG2TOBGSwmaeaTBCR+WhHGE0BzgYrYzOuTparnsZshEm\nroMIthGu0P4h5MVs1OOqC4oxe9IwdDjdeHL1DlRWtwhul8SJUIxoInL69WMRf4S0DcTe/IbQgwPZ\nChNfuLbHtX/UMHgYajAMg2ljsrFwRgl8/gD+tK4SX+1tFNQmiRMhCC4jWT7rmcKJD5trIjk8LqNz\nrmhtNB/J+YcS+ejzgOEHDeHaDUbK/iGkY1RBKr53yUiYjXq88sFBfHuwiXdbJE6EZHBxeme/H93B\ncb2e72hfbak9oSk9vgOIcISLZKNFuGJFt1y+DxI26RmWmYgls0fAZNDhxff2Y9dhG692SJwI1ghx\nyFyiJi6idHZbx4J+rw19YZBNsZLaE1M02YgH1wFEtGcMRuztrAj5yM1IwOKLhkOv1+F/39uPxtYu\nzm2QOBGyI9ZCWzU/Wysj9MGizDXtymcQIVV0GwzNOylPnjUJl00vhNvrxwsb9sPj5bYOisSJUBSu\nURMb58UlegqHWqvC5LKDTdqVf9vi9w+hTkYXpmFCaQZONDvx3lc1nO4lcSI0weCJeK5777ElFqvC\nxBBZMdOuXJ8Xi6nXocacKXlIijfik+11cPZ4WN9H4kRoGiFVfoC08xpDcXTPfnsp4dEToQ1MBj2m\njrLC5fHh053s/71JIk4ejwcPPPAAKioqsHjxYmzcuBHHjx/HDTfcgIqKCjzxxBPw+/vyj2vXrsW1\n116LpUuXYtOmTVKYQ2gcsR2XVh0h33ObwiFmJBJpga0c3/dQHAhoiYkjMmE06PDNAfal5ZIcDP/e\ne+8hNTUVTz31FDo6OnDNNddg9OjRuPfeezF9+nT8/Oc/x8aNGzFp0iS8/vrrWL9+PVwuFyoqKnDh\nhRfCZDJJYRahcvimi+y22ohnOrG9RgpqG+2q3Q17MIMjSC4RD0GwwWzUIzstAfUtTrjcPphN+qj3\nSBI5LViwAD/+8Y8BAIFAAHq9Hvv378e0adMAALNmzcKWLVtQWVmJyZMnw2QyITk5GYWFhaiqqpLC\nJEIDWKylPO8rFtcQQhZI6IYW2WnxCASAuhYnq+sliZwSExMBAE6nE/fccw/uvfde/Pa3vwVz6tTE\nxMREOBwOOJ1OJCcnn3Gf08nOcEJ+SvMsmigCUBtiRE+UtiLS0hJgMOgBgwHugLATaJUgPt4IAEhP\nS4x4jlM/kogTADQ2NuLuu+9GRUUFrrrqKjz11FMD73V1dcFisSApKQldXV1nvD5YrAgC6IuMhM5b\nSBVdHau3Rz2AkCDEoL29G0DfYYMdHcodNsiX9s6+U3O9Ls/AwYmyHzbY0tKC5cuX44EHHsDixYsB\nAGPHjsU333wDAPj8888xdepUlJeXY8eOHXC5XHA4HKiurkZZWZkUJhExilZSekIiH4qaiFigub0b\nBj2DlER2NQWSRE4vvPAC7HY7nnvuOTz33HMAgMceewz/8z//g2eeeQalpaWYP38+9Ho9li1bhoqK\nCgQCAdx3330wm9kdWUzEBsFRkcVaGnIuol+E2BY2RJq/UkrQ+KT3lBAmMSJVds/hN8dIaI+Wzh7Y\nOnsxeWQmTMboxRCAROL0+OOP4/HHHz/r9dWrV5/12tKlS7F06VIpzCB4UpxrYe0UI11bkJsxUK6c\nnpU/UBEmxPmJLSzpWfmithcNLgIlpzAN7p9IsBk8hHpdarRQETmUqazu8wPnjslifQ8twiVEhY+T\nCHZgQkfUwfezdZAFuRmCnsuW2kb7wE+k96VGis87+LvmIkxaSc8S3Glz9GLnkRZkpsRhSpmV9X2S\nFUQQsYlYFXvRoqdwI/To7WorVSSWCElZRck29Tr4+uhtsku7Do5s5Ro8EOIRCATw6c56+P0BLL14\nBIwGdik9gCInQmIGO5RIKbRQDo2r0IS6/uyo7OznCCUWy+ujfU9CBgFiDCCiRehUQakOdhy24ViD\nHWOK0jBlFPuoCSBxIsLAJT0XfC3be9kIBxtHZrGW8nJ4cs83qYFIfcN18CAWlNKLTepsTmze1QBL\nohG3XTl2YJ0rWyitR3BGSGov2sR7qHSfWDtHRHKCwSmjoTLBPrhoJRg2qVeA/U4PXCPboTh4iBXa\nHS5s+LIGAQRw59XjkZbMvQqbIidCFCI582DHP9jphI6Wzn6NCxZrcVRhEtvxqTW1x1Vk+URP0SJX\ntpEtl8HDYIRE+YT4OHs8WLvpKLp6vai4tAyji9J4tUPiREhCsBOI5FzEFCg+bYk10a5WgRICl+iz\nX4SCf9i2PZhIIknzTeql2+XF25uPorPLjYUzSjBnCv9BIIkTEZZIToCNA+AyvxFOVEJFQVyuC/Va\ntKhJyOhaCYHi+sxoA4dofSNHZDsYqtLTBl29HqzZeAS2jl7MOScfV19YLKg9mnMiRCPa4t3g+Y3g\n+adwCzkHv8cFNsIkheOLxf32zi4nLwbA7Wys8GnBM1/nEjVRSk8dOHs8eOvTo2i192LOlHxUXDqS\ncwFEMEwgEAiIZJ9sdDpdSpswpIgkOKFG7dGOBg+egA9VICFk+5xwTjCU02NbCCHUsUklVmyjplB9\nKHa/8BlURBOmaP0T/Huk71mt4pSSxK5YoH+z1DZ7L5rb1bPxq6PbjTWfHkW7w4V55xbg+ktGsBam\nSBu/UuREyE60CAo402mxFSqucxhypovYighbEZMifci2X8L1B9foVmxhIuTH3uXGmk+PoMPpxuXn\nFeG6i0oFR0z9UOREsELs6AkIfUw4m/3duBAuRRRKmCI5O607wkhbJQXDJoIC+Ee3fNKtob7/UK9R\n5CQfHU4X3vq0r/jhqguKcc3MEs7CJPuRGQTBZpQbSiDEKvFOz8rnJExEeMJ9j2wLVqJdy6fPY0WY\ntEq7w4V/bDyCzi43rplZgkWzxIuY+qHIiWCN0Ogp3GvhFoEC3COpSI5OyFqZWHBuQqKnfuSIbPmm\n87QqTlqLnNrsvVjz6VE4ezxYPHs4Lj+viHdbkSInEieCNdE2KRUiUEBkkRKK0EWcanZubInUf1z7\nRKhIsZ0DjOV0Xj9aEqdOpwtvfHIEzh4PvnfJCMybViioPUrrEaLA5x95OOcSLs0ndsotWptqd1xi\nwmdOLdx315825ZKSi3SPVMJEiIej24O3NvVFTEsvFi5M0aBqPUI0wu25F279U7jXBzsqPtEUG4GT\nQpTEPoNJbuGM1B+R+kHoPKEQYYrGUBp8SInL48Pbm4+iw9lX/LBgurTCBFBaj+ABn/RetPvkPPWV\nr8MafJ8Sx6cH28CXaLZHel/M1Gu4QQQXYYoWNWlBnNSe1vP7A3jni2M41mDHJefk4ftzy0QrfqA5\nJ0J0pBAoNu8LQQuOigt8Pw+b75jNNVJEtUNNmAD1i9PmXfX4tqoZ40vS8eMl5dDrxJsNokW4hOxE\nSvEB4Z1ftPe5ohUHxYfB3xHXbXyifb9s+kHM+UGpduYghHGswY5vq5qRk56AOxeOE1WYokGRE8Eb\nNgISaScDLgLE9lo1OjM+QitG6jEaUnz/XOG78DlWoiZAvZFTj8uLv31YhR6XFz+7eSoKs8NHOXyh\ntB4hGUIFim0bWkINhRFSiRSf64MRWrofS8IEqFecPvzmOPYea8O1s0px5QXFkjyD0nqEZLBJEUU7\nOVfJQoNwjoyPHVLZzid9V9toZ30tmz4Mvj7U87hcz/faWBMmtdLa2Yt9NW0YlpmIy86TvjIvFCRO\nhGDYChQQPYqSUqikclxc7QxVSMB2/qb/WWw+C1eBCn4GF4R+t3SAoLr4cm8jAgHgulmlss4zDYbE\niRAFtqNvtiLV32YwbCfy5UDMijaugsVWpLgIVD9iF6WweVYk2AoTRU3i4Oj24NCJDhTlJGPSyEzF\n7CBxIkSDS3ooWqov0jPUQLTPKcZ6oMFthBMqNuLDR6CAs79rJSooSZjk5+DxNgDArPJc0Tdz5QKJ\nEyEqXAWqHyWONw+HWhaphmo3lEixiaL4CtRguM7PCXkelzQeCZO4HDrRAZ2OwdTRWYraQeJEiA7X\nCXaAW7pPSfhuWivW7urRREoJRy3mM7nOLZEwiYvX50dTew+KspORnGBS1BYSJ0IS+M5bBDsntYsV\nIM3O3YPvDSVUJxpbOQuUUuLFBj4FD2r9LFrG1tELvz+A4lzx1zRxhcSJkBQ+UdRgIjktuYVLqXOP\n+tsKFik+AqU2SJTURcepNaTDMhIVtoTEiZABqaq/ojk2McVLrGPm2RxtHu5k2bbmOtYCFQ6lhUto\nSTgJk7T0un0AgMQ45aVBeQuIIYOcJcoAv4ILtrZxESY2ghTu+mChChVFhRIoJUVIqjVJJEzS4/b0\niVOcWXlpUN4CYsght0gBwgou2NgZSpi4ilIo7LbakJFUcBQltUApuQiWREk+9Lq+0nGfz6+wJSRO\nhIKo4XwkPgRHTVyFKdx74dJ5/deHiqKiCVQouIgWidLQwmjo2w3CdSqCUhI6pp1QBf1Ht0vtkORw\ntqHEx26rHfiJdF+ka0K9HiyMwcIpVTGKlMjxd0CEJuHUXJO9y6OwJRQ5ESpETRFV8POjRU3hhIkr\n4aKlcGk+sVFCmEiQlCclsW+H9OYO+Q4zDAeJE6FqpNpCRwyiCZNYc07AmSIVLFDR0nuh0nhKV+31\nowYbiNOkJvUtvLW1dytsCYkToTGkjKqE7JfHRYjstmNh37NYS8O2z0Wg1AwJknoxGfVIjDOoInKi\nOSdCs/Cdm1Bu3ulYRGGKdg2XyEzI3JPY38/g+UQSJvWTmmRGa2cvvApX7JE4EZpHiXOaBqf02IhG\nNFEKdT3Xe8TclUIoJEbaJTXJBH+g78RdJSFxImICNTtBriIT6V4p5rXEggQpNkhNPlUUIcNR8JEg\ncSJiBimdItujMM4WD/7CxPYZ4Yhms5jnM5EgxQ5pSX3i1ETiRBDiIYeTFDt9Fk1suAhcJNukqHQk\nUYo90lQSOVG1HkEIIPKiWnaFDYNfC79LxDHWlXwEIYR+cWpSuJxc0shpz549WLZsGQDgwIEDmDlz\nJpYtW4Zly5bhgw8+AACsXbsW1157LZYuXYpNmzZJaQ5BSIqY65rkeJZQKGqKTeJMBhj0DDq73Ira\nIVnk9NJLL+G9995DfHw8AGD//v249dZbsXz58oFrbDYbXn/9daxfvx4ulwsVFRW48MILYTIpewIj\nQcQKXI/UIAgAiDcb0NWj7BZGkkVOhYWFWLVq1cDv+/btw+bNm/H9738fjz76KJxOJyorKzF58mSY\nTCYkJyejsLAQVVVVUplEEIrDJuJRQ1REDG3MRj26XV5FbZAscpo/fz7q6k5PzpaXl2PJkiUYP348\nnn/+eTz77LMYPXo0kpNPHwecmJgIp9MplUkEQYgEpfTkJy0tAQaDHjAY4A4wkj7LaNADLi+sVuWO\na5etIGLu3LmwWCwD/79y5UpMnToVXV1dA9d0dXWdIVYEQRBEH+2nChTa7L3okHh7IZ/PD78/AJvN\nIelzIomfbKXkK1asQGVlJQBg69atGDduHMrLy7Fjxw64XC44HA5UV1ejrKxMLpMIQnbYVNUpXXnH\n5kBGNW3AS4iPx+eHyahX1AbZIqdf/OIXWLlyJYxGIzIzM7Fy5UokJSVh2bJlqKioQCAQwH333Qez\n2SyXSQRBEEQI3B4fkhKULUyTVJzy8/Oxdu1aAMC4ceOwZs2as65ZunQpli5dKqUZxBBC7hG9xVp8\nxhqlwcUMFmtpyLVOwdcFv0cQSuL3B9Dj8iInI0FRO2gRLhEzyCVM6Vn5gneJ4CpCwQtw2d5PZeQE\nV+zdbvgDgDU1XlE7aPsigmABXycfbleHWIDmnWKTDqcLAJBF4kQQwqhttHNylGwm/PkSKqIRKlDR\noiYlU4EkULFHh7NvZwiKnAiCJ1xFSUwGnzrLRiz4ChTX+5Q4DZcEKrbocJyKnNJInAiCE3KJktgL\nTbkIjcVaGvJ6LlFTcCpSyoWzJFCxQ7tK0npUEEGoHrU4voLcjLBnJJ1dqRe6Im+w4ARX8kUTr2jp\nOyWipsH09xPtHqFt2h0uxJv0sCTGcCk5QfBBSjGKNN9UnGvh9Ozgqr1QAgWE3yuPWyRVzOo1NTD4\nOySh0hZ+fwDtDhcKspLAMNJukRQNSusRqqA/VaeWKKmfYOcanCoLjlbEFhGLtZhVm8F2sEnpRRIO\nsYpG1NqvRGjs3W74/AHF1zgBFDkRCiOn05KySm8woVJ60aKoUG2wfU/pdB5bgvuaoir10X6qGCIn\nncSJGIIoMYoWU5iC555CLcoNP+dUzPu5oe4NJUxaWXhL6T/14ejuO8MpwxKnsCWU1iNkRIn0zrF6\nu2BhCuU4o6X3gPApOT4IESa+jl+uSBOg9J9a6HH3neGUGGdU2BKKnAiZUKrIQU7CbWvENaUXfF+4\nZwUjRcTU/92W5skX2VDVn3K4PT4AQLxZ2R3JARInQmLEECU5xSdcxV6o10OVlveLRiSREgoXYQrn\n4Lk6fhKpoYFe15dM8/oDCltC4kRICF9hUkskFAxbgQIiixRfwhU+cBUmIYTrGylFi0RKPgz6vvJx\nj8evsCUkToQE8BEltQpSMOEECoAkIhWtEo+PMMkpWv2IIV61jXYSKIlJjO+ba2q19ypsCYkTITJc\nhUkrojSYcKm/SDtIhBOZftHiWg4eaX5JjQ48VD/zESyKoqTFmtK3ZVGdzamwJSROhIioZWdwOYgk\nUEDoKCoUYopSv11aQcg8FkVR0pBuMUOvY3CkrlNpU0icCHFgK0xcREnMCj8pHFmk7Y4GiwhboQoH\nmyo8tp9PjQ598N8EF6EigRIfg16HklwLjtZ3or6lC3mZicrZotiTiZiBjYiwFSWpSs7DVeAJpb+N\nSHaHE5dg0eJbCq5lYQqGazRFAiU+owtTcbS+E1v3ncTi2cMVs4PEiRCEGMKk1MJLMQWLjUgFI2Rd\nkpwOWaz+4WIzF5EigRKXkfmpSIirx6c76zB/WgGSE5TZnZwJBALKF7RzpPPUeSOEsggVJj5OL9w9\nanROYouuUOFkg5wDBbZ2sY2i1Pg3wIaUJDOr62w2BwCgzd6L5vYeKU3C9qpmfLqrHgumFWLpJSMk\ne47Vmhz2PRInghdSC5MYTlJtzorrZxJqv1pFKRRsbGUjUmrrczaoUZy8Pj9eev8Aunq9+NlNU1GU\nE15EhEDiRIhKNEemtCiFQotOiy9aEqVgotkeiwKlRnECgJpGO97eXI3cjAQ8ccu5MBnF39JIkDhV\nVlaivLxcdKOEQOKkHEIipnD3qjGVFO0eNTl1vs5YzLQqW8Qo3og1gVKrOAHAJzvqsPOwDTMm5OLW\ny0eLfgChIHG66aab0N7ejoULF2LhwoWwWq2iGscHEifl4Bs18RUmPmXYYpZec7lWLsESw/FysVWp\naHaoCJSaxcnj9ePNjYfR1NaD6y4qxRXnF4vavuC0Xn19PTZs2ICPPvoIubm5WLRoEebMmQOjUZlt\n1UmclEFMYYrUltB1QYMRYycFucVArGeGg60tahBbIQJF4iQOzh4PVn98CPZuD+64aizOG5cjWtui\nzDk1NDTg/fffx5o1a5CTk4PW1lbcf//9mDt3rmiGsoXESX6kFiYxBSkUQjZH1YqTYwMbwWErSlz7\njO/uFrEuUGoXJwCwdfTgzU8Ow+P14wcLx+Pc0VmitBtJnKKuc3r77bexYcMG2Gw2XHPNNXjzzTeR\nk5ODpqYmLFq0SBFxItSFlMLEdcPUcNsBnWhsDekcaY3MmUiRZg11b7i+AM4WFOoj5bGmxmPJ7BFY\nu/ko/nfDPjAYj6kiCVQ4okZODz74IK677jpMnz79rPf+/e9/Y/78+ZIZFw6KnOSFT9TERpjCOTox\njpmItGcdn9NiY8E58q2UlDKq5RLRhusDrUdPWoic+mlo6cLazUfh9fpxy2VjMKM8V1B7VEpOCCKS\nUxNTmMQ8+6gfLmcgyX3MhNxE6ke+wsS2z/gc/SGWQKm977QkTkCfQK37rBq9bh+WzB6OBdMLeVfx\nkTgRvOEqTKHuESJMXI42F+NYc7FOjuVDtAhA6E7uXComxUy1BiN0wBBrAqU1cQKAls4evL25Go5u\nD+adW4Cll4yAjodAkTgRvBEaNUUTJjFEKZhwIsVGoMQUJ6mPNBdjh3cuwiR2ZMtWpNgKFImTvNi7\n3Hh7czVa7b04b1w2ll8+Bga9jlMbJE4EL5QQJiGiFEwokQp2iEJH66GQWpSCYSNSQopTIokS2/4S\nGtXGskBpVZwAoMflxfrPqtHQ2o3xJem4e9EEmE3sd5KIJE7cZI4gRCLY4dlttWEdXf97kX7C3Rft\nuWJO9pfmWWQXJjHhmm7lMpCI1FehnhFsi5p25CBOE282YOklI1A6zIJ9NW343T92wtHtFqVtEidC\nFPjMM/UTymFFE55w17N5PVp6iuuiYaWJJoh8P0+4yFZodMtWoKIR6jOIvQs+ER2TQY9FM0sxrjgd\nNY0OPLl6J1o6hUd2JE5ESPgUQoQjUjovnKDwhY/zFCN60nLEBERPuQqJbCPdE+mZFD1pB72OweXn\nFWLa6CycbOvGk6/vRGNrl6A2SZwIwUSLmgYTbYQcSVjstmNn/bBth2v0pDW4Hm8+GDbCFAq2A4FI\nQiVUoEiw1APDMJg9OQ+zJw1Du9OF3725S5BAkTgRnBAaNQ0mmoD0vRZZiCK/F739cHZycXpaj5oi\nwTZVKrS9wQgdOAgtuSeEMW1MNuack4fOLrcggSJxIs5CyGiUbdQUTTiiRUbBhLs+khONtegpFFy3\nIxIS2Z6+JnK/hRI3LgMHIVCkJQ9TRmUNCNQzb+1BZxf3Iomoe+sRRCTE2F08lDDxxW47Bou1NOKz\nIpU1y0W0smapnCiXlCtbAQk9KDjztVB9EtwXg39va64Luw4qeK892ntPnUwZlQWXx48v9zZi1bpK\nPFgxmdOBhRQ5EbIQrQhCTIIdI9vnSb0zOtAnSmx3QlfS4XJJubJrj/+AA+DeN5TaUwfnj8vGuOI0\nHGu04+//PsTpXhIngjVS/IPnEjWxrQTj8kw5U3tincIrFnwj277XuItNKDGLJIJDIe0a6zAMg/nT\nCpGTnoAt+05iz9EW1veSOBFnINV8ExsiFTZwWWgbqi2po7VoCBEZOSIoLpGt0ChIjL6huSPtYNDr\ncNn0Quh0DF7/9yH0uLys7iNxIiRh8KhcSEqPbamyFJAD5DcfKMZC3VBEivTUcOw8ER5rajymj8lG\nm4e2DLcAAByaSURBVMOFz3Y3sLqHxIngjfBIqVYcQ0RuiwtsysjFiHyUOCqeC6FSrZEjXnZr1Ci1\nFztMHWWFXsfgsz31YLOlq6TitGfPHixbtgwAcPz4cdxwww2oqKjAE088Ab/fDwBYu3Ytrr32Wixd\nuhSbNm2S0hxCYwjfJkdY+ok4E7brybi+z/YaQtvEmw0YVZCKprYeVLOYv5ZMnF566SU8/vjjcLn6\ndhB/8sknce+99+LNN99EIBDAxo0bYbPZ8Prrr2PNmjV4+eWX8cwzz8DtFmfTQII7SqY7YlVI1Fri\nLGfalSD6KTn176HO5ox6rWTiVFhYiFWrVg38vn//fkybNg0AMGvWLGzZsgWVlZWYPHkyTCYTkpOT\nUVhYiKqqKqlMIgRApblDD6nTrrE6ICHCY0k0AQBaOnujXivZItz58+ejru70iCwQCAwc5ZuYmAiH\nwwGn04nk5NPneSQmJsLpjK6oBMGGSItx2aC2qKc416KqyXyKmuQlLS0BBoMeMBjgDvA7Fl1perx9\nc00BHRPxLCdAxh0idLrTQVpXVxcsFguSkpLQ1dV1xuuDxYqQD6WdnsVaGmJXgWLWDlANuz4EozZx\nI7RNe3s3gL7DBjs61HHYIFeON3QAAFLiDLDZHOo4bHDs2LH45ptvAACff/45pk6divLycuzYsQMu\nlwsOhwPV1dUoKyuTyySCIAhCRvpP8M3JSIx6rWzi9NBDD2HVqlW4/vrr4fF4MH/+fFitVixbtgwV\nFRW4+eabcd9998FsZndkMaF92EQ7cl5DcEPodyo07UpoC58/gH01bYgz6TEyPyXq9ZKm9fLz87F2\n7VoAQElJCVavXn3WNUuXLsXSpUulNIOIgpwpvUipulCpvej3FIdtK5IN/QzeXLQgNyPsPaHQ8lEZ\nBbkZAxV76Vn5AxV7g79rLmnVaNDggDh8ogPOHg8unZqPeHN06aFFuIQkDHb04XaX5oLFWhzyJ/S1\npWfdKxSu80dSzTdFajeaWAq1KZTgqyWypfk9deNy+7B5dz10OgZzprDzByROQxzlCyGKg34XluqJ\ndj9bJ0jOjj2RvlMlI9twUN/Kz6bd9XB0e3Dl+UXITktgdQ+d5zSEUUqYoqWLwqX3orfLbWQvheOL\nNdim9uRO25HAaIcDtW2orG5FQVYSrrygmPV9FDkNQWob7ZIIUySHESm1F8qxWaylnKIoNsLE14GG\n+lyRUmhqcpyRbAmXeo0cCQkvYoiUdhVL5LQ8HxhLfNfswIfffId4sx53XD0OBj17ySFxGkLwFSW+\nu0NEikbYCke/SJ3t0ErDvsem/UhiqSZxCYXcx2+ImXrlMh9Ika22aW7vwbtf1AAAfrRoAvIyo5eP\nD4bSejGOlKk7rjsWDK4KCwWbdB8boo2+g4WJHN/ZsO0LtulXNn0nZmRLKEu9zYl1nx+Dy+3DiivG\nYExxOuc2SJxiCKWLG7gSygH2Oyg+Jczho6/QrwNnC1Owo9NaSq80z8Ip0g1XUh5MOLGKJlJsCx+C\nkSqyVbp/hgI1jXa8+0UNfH4/br9qLM4fl8OrHRInjaM2QQqOpgY7P+BsBxhOjLiIFBdR0nI6jy/B\nfRIp4g235qn/dyB0n3CbHyxm9Vo/Q2n9mdY59F07/rX1OPQMgx9dW45JIzN5t0XipDHkFiMxdiOP\nJlBApJF5Ma9nshGmaE6Pa9QkJ2JuAhvcP4MJF93yXZzLRpgizTWxiWwJZaisbsW/t30Hs1GPHy8u\nx6jCNEHtUUGERpCqwi4SfIWJjcMIFcGIUakVbnFuNGFSy2m1YhBKQLk49eDvKpygcOmvcNeLXaii\n5pRrLPPtwSZ89O13SIgz4IEbJgsWJoAiJ9WjVNpO7PObQo3Ow0VQ/XAZnYdzlKGcHRthUnPUJAVs\n0q9iRrah7hUjsiXkJRAI4IvKRnx9oAlpyWb89PpJGMaxKi8cTIDNYe4qo9PpUtoEydGSKIWzNdTr\nodJHkSr4hCCmMAHqHJVH+jsJ1ZfB1wf/Htw/ofpG6H57YkS2WuqjaKQksdvs2mZzAOg7MqN/d28l\n8fsD+GRHHXYfbUF2Wjx++r1JyEyJ59RGpCMzKHJSGVKLktIn2oaLoADxRCpcaojNxDofp6dluBaw\nAPwrKtlGt3xTrloUJq3i8/nxf18fR9V3HSjISsJPrp+ElFOn3IoFRU4qQSxRUkJ8Itke7r1wE/D9\ncBWqSHMVoUQpnLPik85T2vGJHT0B8kS4bCJbQHh5f7h71ILWIieP148NX9bgWKMdI/JTcO/iciTE\nGXm1RZGTyhEiTEpHQtEIV1XW74TCiZQYO5mHi5S4CFMswqa0nO0cIR+4RLZiVOcNlX6VA7fXh3Wb\nj6HO5sT40nTcvWgCzEa9JM+iaj2F4budUP+PGoj2j5/t/m5iUZCbIZowaWFELuQYjUhthPoO07Py\nB364Euk+LtFtMLGaclUbHq8f6z/rE6apo6y457pyyYQJoLSeYnAVJbUIUTjYfB4210RL90UiktDx\niZa0IEz9RPtu2aT3IrUjpF8iwWUQEWvpvH60kNbz+vxY/1k1jjc5MWWUFT/guIlrOCitpzJiTZjY\nwmbhaCSB6XeQXKOtWBcmgN+i3FD38E3DckWOlKva+kirBAIBfPD1cRxvcmLyyEzRhCkaJE4yw8WB\ncBUlMSv9pD7JlY+tYolStPdiMU0Ubs+9cAIFhO4jISLFd93SUKugVBtf7TuJqu86MCI/BXcuHC+L\nMAGU1pMVtg6ZrSgpsRYqnKMQYoucohrtfTYOT80jcj7pvUj3yfE3NhQi20ioOa13pK4D//yiBtbU\nODx201RYEsQtF4+U1iNxkgkxhUltm72KDZfPx8UJxbow9SO2QLFpkw9SRbZa6KPBqFWcuno8eOXD\nKnh9fvz85qnIsyaJ/gyac9II0YSJr4MILhtWO2LbKIYosWlHK0RK8QGh/84Gf3ahQiUkuqVUnjwE\nAgF8vP0Eelxe3DBnpCTCFA0SJxlg8485kjCJVQkX7bpYcb6A+GXIWvpu2BRHRDr3Kdr9wd+FWH9T\nQyWy1QLfNTlxpK4TowpSMWeq8DWHfCBxkhgphUnsVIvWIqxguNjMZQSu1e9CqEAB7P7GhH4/FNmq\ni0AggC/3NgIArp8zAjqGUcQOEicJESJMcuf/wz2D7z94NvcJ+RxCHFGsC1M/QgWqv41+xP67E3oE\nBte2CHacsDlR39KFySMzUZyj3PdK4qQgUlROcS3xjVbeK1SkIiG3Q+E6XxELDo+tQAHR5zzFECop\nottY6Cc1cbC2HQBw6dQCRe0gcZIIOUt6hSyMHHxvJKGSUqSkhM8EutY+YzTYLtCNFkUFtykVQyWy\nVSN+fwCH6zqRnGDEqIJURW0hcVIAsYRJ7C1l2OzAUNtoV71DEFLRpfbPxhcuAgUosyvJUIxs1UZL\nZw96XF7MKM+FTqfMXFM/JE4SwCflIfTAvsGw2Tk60sad0URKjQIlRomx2j6T2HDZ4khOkSJRUg+2\nzl4AQGGW/KXjwZA4yQyXf+xchInrUQbB14cSq0giFU2gpBYwMde7DCVnx3UPvsHfs5hCxbf/hlJf\nKUGbvU+clFjXFAyJk8iIFTVFOz67H7EOgOtvJ5xI8REosZBq4eVQdXR89zcM1Q9sBEus/huq/SUn\nvW4fACA5nt/hgWJC4iQjfI8t4HMqaaQjtMMdlz243WCRklOgpN4FgJxcH3x2Mg9Gjh0bqL/kw+v1\nAwBMRuWP+iNxEhEx1oEIEaZIghTpulBi1dZcx1qgxIJESX6E7BIvNdRf8sOcKoLw+JTfcpXESSbY\nRk3RCCVMbEUpHP33B4sUW4EKFz2xjaqkFCVycOxQk0hRnylH0ql0XqfThbzMREVtUT52IwaIFjVJ\nIUzR2gr1TDFL2KWcTyInxx0lvzfqM+XpF6cOFZz8QJGTSEQacbKJmrgKUzhR4iJWodJ5dlstqwgq\nGDWUlyv9/FhCrkiK+kxdnBYnt8KWkDhpAjbCxCeCCpfOYyNQYsw/0dok9cNlB3K+bRLqYUCcHBQ5\nESHgmjYTY86JjUCpCXJwykDfe2yTrKK0Hs05SQyflN5gokVN0YTJbjt2xk/462qjth1sS7CIynWk\nNzlIgpCGhDgDGAZoV4E4UeQkAmI65UhRE1thiixCp9+zWEtDPmNwxCQ0ghJzLopEiSCkhWEYJMUb\n0eFQfs6JIicVw2f3h0jCJOTafsTakYILFC0RhHwkxRvR4XQhEFB2rROJk8KwjbrYRE18xCbUPVxS\nh2LvjE4QhLIkxRvh8wfg6PEoageJk8yIkQIUS5jEuDcYrrteR4MiJoKQlzhT32xPj8urqB0kTiqC\nbxQipricbrM27HtypfZImAhCfoyGPllwndoEVilInAgA0ggcQRDaQ39qfz2vwvvryV6tt2jRIiQl\n9Z0Vkp+fjzvvvBMPP/wwGIbByJEj8cQTT0CnI80UKzphs8kr23bUvO6JIAhxcHv7IqY4k15RO2QV\nJ5errwLk9ddfH3jtzjvvxL333ovp06fj5z//OTZu3Ii5c+fKaZbqEXP/PK1AKT2CUAa3p+/YDKXF\nSdYQpaqqCj09PVi+fDluuukm7N69G/v378e0adMAALNmzcKWLVvkNEkTCIl2CIIguNDhdEGvY2BJ\nNClqh6yRU1xcHFasWIElS5agtrYWt99+OwKBABimL8eZmJgIh8Mhp0kEQRCaIC0tAQaDHjAY4A4w\nkjwjEAigze5CXlYScnNSJHkGW2QVp5KSEhQVFYFhGJSUlCA1NRX79+8feL+rqwsWC6VzhjqU0iOI\ns2lv7wYAtNl70dHRI8kzWjt74fL4kJMWD5tN+kDBak0O+56sab1169bhN7/5DQCgqakJTqcTF154\nIb755hsAwOeff46pU6fKaZKqGLzLd7QjKthgsRYP/PT/ThAEEY5jp9Ypji+R7sRrtsgaOS1evBiP\nPPIIbrjhBjAMg1//+tdIS0vDz372MzzzzDMoLS3F/Pnz5TRJdopzLYqcNipUmMQUNqmPYycIgh9H\n6zsBABNK0xW2RGZxMplMePrpp896ffXq1XKaoSr4iJXFWnxGsYPFWip4nVKoTWD5EJySoxQdQWiD\nVnsvTjQ7MbowFSlJZqXNoUW4WiFa5CKWuLB5nhgpR4Ig1MWeoy0AgNmT8xS2pA8SJxGIFB1wTWGx\nnXcKJR58BSrafZGESuhpuMFQpEUQ8tPV68Ge6lakJJpwTplVaXMAkDhpCjbzPlwFKtT1VDhBEEOL\nrw80weP148oLimHQq0MW1GHFEIPLvAzX6Knv9VIW0VD0a7jaw+ZzUTEEQaiLdocLu4+0IMMSh4sm\nDVPanAHoJFwVUpCbEXaH8rOLIYrD7gTBPYoqZvVaP5TSIwhtEwgE8J/tJ+DzB7Dk4uGqiZoAipxE\ng+u8k5DoKVgwxEjDsREmKoQgiNii6rsO1J50YFxJOs4dnaW0OWdA4qRSgqMSNgLFV6T4CFOwfZTS\nIwht4ezx4JMdJ2A06HDjvLKBbeTUAomTigh26NHSZuFEhY1QRbqOa8QkRjqOUnoEIR+BQAD/3vYd\nelw+LJk9HNlpCUqbdBY05yQikRbUluZZcKzezvr6UKRn5Z91zlPkOadi1m1zuSeaaJLQEIS62X20\nBdX1dowpSsMlU9SZrqfISWGipcOipfcAYSm9aG1wTeeFg1J6BKEOmtq78enOeiTGG7DiijHQqSyd\n1w+Jk8iIsSCXjUCJJVKRRImPMPGJmijSIgh5cHl8eO+rWvj8Adx+5VikW+KUNikslNZTAaHSe8Gv\nhSovD5XmA4RX74USPiFl4xQ1EYTyBAIBfLztBNodLiyYXojy4ZlKmxQRipxkJpyjZhM9hBKIcFEU\nH8K1Feq5FDURhLaoPNaKg8fbMXyYBdfOEncvTikgcZKAaA6Xb3oPCB/BCBGpSPcKFSaKmghCeWwd\nPdi4ow4JcQbcuXC8qhbbhoPSehLB5ygMNuk94LRghNpFQqwoKpwIiilMFDURhPS4PT5s+KoGXl8A\nd10zBhkp6p1nGoz65TNG4ZLeK861hI2ixN5CKFKbFDERhPbYuKMObXYX5k4twOSR6thxnA0kThLC\nN70X7r5wr4shUtFESaw5JjHuJQiCHYdOdGBvTRuKcpKx5OLhSpvDCUrrKcz/t3d3sVGVeRzHf+1M\nh+JMeVkgLoqFFqi74FZAwmbXrYQLaEOorIluJOz2oiRbuFGiKIppRBkJCd4ZvTDhRqKRhnsC4UKb\n+ILSpZDSLRgiWCjyZhc6Q9uZ6Tx7ATOWcaCddtrznNPv56rTlun/nyec3zzPOec52W7Ole6/LJg6\nqGf7WbZwybb0l0uQ5RqUEst5gA16bsd1+LufVOQv1L9rF7niPNNghNMYG865p1wDKvUzKXtIDTbS\nGdWDAiSfD1cEkH/GGB06dkF9sQH9c02FZs8IOl1SztwVpS41nJnCg5b4hgqKfM1EUu81lsHErAkY\ne/85e03nf+7Rn8pnaJUlj13PFTOncTKaGdRw/n3mQX+4VwoONyzycXk8wQSMvV9u9enLk10KTS5S\n/do/WLfb+HARTpYZKqCk4QVPPmdTQyGYADsYY3TkeKcSA0b/qn5cU0OTnC5pxFjWG0f52iQ1n0t5\no/kb5Y9OIZgAi7Sf79ZPVyKqnD9Dyx93z2Xj2TBzGmfDvTn3QTOowe+VkusNv0O931BGs8sFgPyL\nJQb05clLdx4euNq+hwfminByQC4BJWnIkEq9Z6ZczlENVy5X4xFMwPj5vuOqIr0J1f51nmZOm+x0\nOaNGODkkl+2NcgmpzL+RTwQTYKfbfXF999+rmhIMqObPpU6XkxeEk4Ny3X9vpCE1GiO5b4lgAsbX\n9x3XFE8k9Y9V8zR5kjcO697owsVGskHseITUSG+mJZiA8dUXS+jED9c0NRhQVeVsp8vJG8LJAiMJ\nKOm3ATKasMrHzg4EEzD+Tp67oVgiqb9XlSpQ5HO6nLwhnCyRyz1M9+PU1kGEEuCMZNKo9YfrKvIX\nqupJ78yaJO5zso6bDvTjcb8VgPs7/3OPbkZj+svihxUsLnK6nLwinCzkhoO+7fUBE0H7hV8kSX+r\nfMThSvKPZT2L5WOpL98IJcAO8URSP1y8qZlTizX/Ee/9vyScXMDpkCKQAPtcuNKjeCKpFX982PW7\nQWRDOLlIvrcrGu7fAmCfc103JUlPLhjdU7BtRTi51EgfkTHc9wNgt/OXe/RQsV/lHlzSkwgnzyBc\ngInjVjSmm9GYli6cKV+hN69r82ZXAOBhF69FJEkL50xzuJKxQzgBgMtc7e6VJJXNLnG4krFDOAGA\ny1y/2SdJenRWyOFKxg7hBAAuc/1mr6YGAwpN9tauEIMRTgDgIn2xAd26HdcjM4NOlzKmCCcAcJEr\n3bclSY/OIpwAAJbo7umXJM3ywKPYH8SK+5ySyaR27typM2fOKBAIKBwOa+7cuU6XBQDWuRWNSZKm\nhyY5XMnYsmLmdPToUcViMR04cECvvvqq9uzZ43RJAGClVDhNKyGcxlxLS4uqqqokSUuWLFFbW5vD\nFQGAndLhFAo4XMnYsmJZLxKJKBT69Xp9n8+nRCIhv9+K8gDAcdOnPyS/36feeFKStGDeDBX5vfNY\n9kxWHP1DoZCi0Wj6dTKZJJgAYJDuu1fp3Yz0a1KRT/+7+9rNZs26/w4XVizrLVu2TM3NzZKk1tZW\nVVRUOFwRANipP5bQQ5O8/+Hdig5Xr16tr776Si+++KKMMdq9e7fTJQGAlfpiA5oS9Pb5JsmScCos\nLNS7777rdBkAYDVjjHpjA/r976w4dI8pK5b1AABDiyeSSiaNiifAsh7hBAAuER+4c6VewO/9Q7f3\nOwQAj0gk7oST3+f9Q7f3OwQAj0jNnAgnAIA1BgaMJMnvK3C4krFHOAGAS6RnTpxzAgDYIjVzKmJZ\nDwBgi9TMyceyHgDAFsnknZmTr5BwAgBYwpg74VQgwgkAYIm72aQC72cT4QQAbmGcLmAcEU4A4BZ3\np06FE2DqRDgBgEskU194P5sIJwBwjdQ5J2erGBeEEwC4hNHEuSKCcAIAt2DmBACwTepqvQkwcSKc\nAMAt0jfhToB0IpwAwCUMy3oAANukb8KdAOlEOAGAW6RnTt5PJ8IJANzibiYVToBdyQtM6gwbAACW\nYOYEALAO4QQAsA7hBACwDuEEALAO4QQAsA7hBACwjt/pAmyTTCa1c+dOnTlzRoFAQOFwWHPnznW6\nrJw999xzCoVCkqQ5c+Zo8+bNeuONN1RQUKCFCxfq7bffVmGh/Z9NTp48qffff1/79+/XhQsXsvbQ\n1NSkzz//XH6/X1u2bNGqVaucLjurwb20t7eroaFB8+bNkyRt2LBBa9eudUUv8XhcO3bs0KVLlxSL\nxbRlyxYtWLDAtWOTrZ/Zs2e7dnw8w+Aehw8fNtu3bzfGGHPixAmzefNmhyvKXV9fn1m/fv0932to\naDDffvutMcaYxsZGc+TIESdKy8nHH39s1q1bZ1544QVjTPYerl69atatW2f6+/vNrVu30l/bJrOX\npqYms2/fvnt+xy29HDx40ITDYWOMMd3d3WblypWuHpts/bh5fLzC/o/O46ylpUVVVVWSpCVLlqit\nrc3hinLX0dGh3t5e1dfXq66uTq2trTp9+rRWrFghSXrmmWf09ddfO1zl0EpLS/XBBx+kX2fr4dSp\nU1q6dKkCgYBKSkpUWlqqjo4Op0q+r8xe2tra9MUXX2jjxo3asWOHIpGIa3qpqanRyy+/LOnOLtk+\nn8/VY5OtHzePj1cQThkikUh6OUySfD6fEomEgxXlrri4WJs2bdK+ffv0zjvvaNu2bTLGpLfZDwaD\n6unpcbjKoVVXV8vv/3XlOVsPkUhEJSUl6d8JBoOKRCLjXutQMnuprKzU66+/rk8//VSPPfaYPvzw\nQ9f0EgwGFQqFFIlE9NJLL2nr1q2uHpts/bh5fLyCcMoQCoUUjUbTr5PJ5D0HFTcoKyvTs88+q4KC\nApWVlWnatGm6ceNG+ufRaFRTpkxxsMKRGXyOLNVD5nhFo9F7DiC2Wr16tZ544on01+3t7a7q5fLl\ny6qrq9P69etVW1vr+rHJ7Mft4+MFhFOGZcuWqbm5WZLU2tqqiooKhyvK3cGDB7Vnzx5J0pUrVxSJ\nRPT000/r2LFjkqTm5mYtX77cyRJHZNGiRb/pobKyUi0tLerv71dPT4/OnTvnijHbtGmTTp06JUn6\n5ptvtHjxYtf0cv36ddXX1+u1117T888/L8ndY5OtHzePj1ew8WuG1NV6Z8+elTFGu3fv1vz5850u\nKyexWExvvvmmurq6VFBQoG3btmn69OlqbGxUPB5XeXm5wuGwfD6f06UO6eLFi3rllVfU1NSkH3/8\nMWsPTU1NOnDggIwxamhoUHV1tdNlZzW4l9OnT2vXrl0qKirSzJkztWvXLoVCIVf0Eg6HdejQIZWX\nl6e/99ZbbykcDrtybLL1s3XrVu3du9eV4+MVhBMAwDos6wEArEM4AQCsQzgBAKxDOAEArEM4AQCs\nQzgBAKxDOAEArEM4AYN88skn2rhxo4wxOn78uNasWcP+aYADuAkXGMQYo7q6OtXU1Gj//v167733\n9NRTTzldFjDhEE5Ahs7OTtXW1mrDhg3avn270+UAExLLekCGrq4uhUIhtbe3i89ugDMIJ2CQaDSq\nxsZGffTRR5o8ebI+++wzp0sCJiTCCRhk7969WrlypSorK9Mh1dnZ6XRZwITDOScAgHWYOQEArEM4\nAQCsQzgBAKxDOAEArEM4AQCsQzgBAKxDOAEArEM4AQCs83+2LcLEYObGTAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x118886e48>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from scipy import stats, integrate\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "\n", "df = pd.DataFrame(X, columns=[\"x\", \"y\"])\n", "# Kernel density estimation\n", "sns.jointplot(x=\"x\", y=\"y\", data=df, kind=\"kde\");" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Acknowledgements:\n", "- [A crash course on NumPy for images](http://scikit-image.org/docs/dev/user_guide/numpy_images.html)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
dsavransky/MAE4060
Notebooks/Gravitational Stabilization.ipynb
1
54271
{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from miscpy.utils.sympyhelpers import *\n", "init_printing()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mu,rg,I1,I2,I3,n,w1,w2,w3,w1d,w2d,w3d,t = symbols('mu,r_G,I_1,I_2,I_3,n,omega_1,omega_2,omega_3,omegadot_1,omegadot_2,omegadot_3,t')\n", "diffmap = {w1:w1d,w2:w2d,w3:w3d}" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMAAAABLCAMAAAARdXguAAAAPFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo1xBWAAAAE3RSTlMA\nMquZdlQQQOkwRCK7Zs3die9sjGUlPgAAAAlwSFlzAAAOxAAADsQBlSsOGwAABUVJREFUaAXtm9Gi\nqygMRVHUe6faqsP//+uAuNEEI4idc170JQpkkQii7lpVmWWrleqHt2pr86mUuE1arLIVGQB1mwDA\n6ONWqjK6sVur1Mu0daW6UQ6ynW2e8pYGqNuEAHi7qGvjEsAZ783oduUR6Jp6kMO3I5ACqNsEBniT\nBFrT2B6mHjF2zVDX9Vv101rSKP1B5ZHlAEu7SUgBaALTrLQxAxJo5reLstXe2inWq2Y8ChxlDKBu\nE5IAmsDgJv9rnJd4umHsfGDa+JQ6e5k4B3kjAHWbkAGgCfiL4eXj/Zg1fvXyGalhnOc5lB6lQQDq\nNiEDQBKofKDeaGPPt98qvyo1LqHevFAcWwKws/EmIQdAEqhrbedKtVwDdj0JAXa9qsZK+8hneY1V\ne4Bbke4RsgD7BLr69TGjvZe5bbIL0m7rDI6nmVTs2igCuE/ICmGfwD4WNYabgy+2o3Bxu03IAogJ\n7C/W5WKu1hsAbDIdiTDpQWN5OIWIgEbXASAmMG7LZWvvzpWulxkNe9qzrxQI7jZZn94NwRYA2s5x\nHZ4HxASw9luav2rb9ZKERTeiFQijWyfWG4vou1QIAG0fC1zYfhMT6A0eHyY/XAgcFgTRCoTRLman\na3EACgBXnzECqjXrc8Q63RA4bOhH3JEI9uHk9G4YgCKgm/H4uYzF9jQaXN1Op+1z2Lr420MEDkva\nHh8IBKVGcSWmIAHQfDZ/cQpRkj1C4LBRg2RB8MQbSdKDNQiArCnEnL+YwPvkXs57JcdbAn14SvmF\nEXjZ1eEV5jCJMHGwJLDM/95foLb9hQTWR9J2tYnODqq9Z/Vp23YIN6KDdmKRB7h1uJkByE2g16Op\n7aUDK3YiVsBzXl7FxWZyBQDV1Ex1eLDJTUDm/nLNk8AvDwC7iDN0qfM1PAPwPWFrOXd0CqV1qaAq\nHZ/5NOCLwtZBAkldiqlKURZJwCNsKaat0SnEdKmkqhSNAAM8wlZaW6MjQHSpDFUpGgECeIStR9ja\nzZBH2LKvqOEJcndizna/K2wFOapY2AIB9iz2pY4LW3CcuLD15+8/MYypSpCjyoUtEGDjLnmJEAIV\ntv79u/+NbIdgqtImR20vprvWR7sCYSMdOe3LBECZsLXJUdkJMF0KBNh9qMf7AsA1LhG2IEdlJxBJ\nYyBs9jjwUMqFreBYJGxBjspPgEtjIGw2hCrsMGELjmXCFl5ELiTAw8LLECyvTx4Hx5wpxGmQo8oT\nAAGW95A83hwLhK0gRxUnAAJsMl7ewDsWClubHFUqbIEAy8NLHsOxTNiCHAV1Kdld1AAE2KhBqgCO\nj7CVOlM/W0/fyH6276/0RhPI0KXCUnzYfQYA95NDf6seX/xojCaQ1qUeYeu2NMYAdAT4B1epz6Wi\nacABzxdbSW2NjgD54Crjc6loBAjg+WIrRxkjI0A+uMpRlfgIEMDzxdbzxRaZIJdlqfvffH1Z2IKa\nVC5srQToU+T8HB1EwhYACMU5kYt4T2GqEtSkcmELhGJhCwBYH62YAFOVNjUp+5VSIBQLWwgBNpEA\nU5Vcay8FZCcgEIqFrS0EhOJKxBGIZalVTcpOQCQEfcoFcLZFwhYELVjrLCfAZSmoSfkJSAToU2ex\n+zombCEEWNfoJIGIf3EKRf5h5M9fig78QhEELdhrCXg16cIIhH6x4wmbPoXybAtBCzY7gZ2aVJjA\nRigUtgCAXZPOnUKbmlQqbIEAfSr7rKMhALC+PDcBqEnlwhYI0KcQV7YFAPZaAtnd/HRDPwL4I9xP\n936vv/BHuM79oaxpTv5acq+j/8t7+SNc06j/AN9IbNG0hz9qAAAAAElFTkSuQmCC\n", "text/latex": [ "$$\\left[\\begin{matrix}{}^\\mathcal{B}C^{\\mathcal{A}}_{11} & {}^\\mathcal{B}C^{\\mathcal{A}}_{12} & {}^\\mathcal{B}C^{\\mathcal{A}}_{13}\\\\{}^\\mathcal{B}C^{\\mathcal{A}}_{21} & {}^\\mathcal{B}C^{\\mathcal{A}}_{22} & {}^\\mathcal{B}C^{\\mathcal{A}}_{23}\\\\{}^\\mathcal{B}C^{\\mathcal{A}}_{31} & {}^\\mathcal{B}C^{\\mathcal{A}}_{32} & {}^\\mathcal{B}C^{\\mathcal{A}}_{33}\\end{matrix}\\right]$$" ], "text/plain": [ "⎡{}_{11}__\\mathcal{B}C__{\\mathcal{A}} {}_{12}__\\mathcal{B}C__{\\mathcal{A}} {\n", "⎢ \n", "⎢{}_{21}__\\mathcal{B}C__{\\mathcal{A}} {}_{22}__\\mathcal{B}C__{\\mathcal{A}} {\n", "⎢ \n", "⎣{}_{31}__\\mathcal{B}C__{\\mathcal{A}} {}_{32}__\\mathcal{B}C__{\\mathcal{A}} {\n", "\n", "}_{13}__\\mathcal{B}C__{\\mathcal{A}}⎤\n", " ⎥\n", "}_{23}__\\mathcal{B}C__{\\mathcal{A}}⎥\n", " ⎥\n", "}_{33}__\\mathcal{B}C__{\\mathcal{A}}⎦" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bCa = fancyMat('{}^\\mathcal{B}C^{\\mathcal{A}}',(3,3));bCa" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAD0AAABLCAMAAAD0x38HAAAAPFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo1xBWAAAAE3RSTlMA\nMquZdlQQQOkwRCK7Zs3die9sjGUlPgAAAAlwSFlzAAAOxAAADsQBlSsOGwAAAoVJREFUWAntWNuW\npCAMDNeZFRVY/v9fJwFCI9N0t+48zJ7TPBiUFIEKWCKIlIsEcOsGRqZdwLwEldt8AQGIpDQWA7Ak\nIwVYXxzu9mAiRsGyEUQmQnMslzxVH8S2Wq4ZnS/bAW2SBquDa+1Wr1LKDVyojzSovbXCER0iqJTW\nhtZxI1ejisWpOdB+hl5pwouPpd2u3paaSqVDi9xQPC7H2IWApfruqYJhqf2tPsbYnpaeGmuiOFWj\nEkYqRZQkaOrNpYUfH+ctpcIRijJv5L95WQfCC1Vg8ZbPfuRWLnvyuGByCch/V2zi+xBbQ4/ufLHq\n2yoozzH+tzJH9+xk9kRJdFCrYjbnaH/LjMEFKJTMPNBSkrxg5mjOMQ630GQy2hOvNaVHzg/zcolX\nZygDrWgkviVtHhtMqsu0zrKgKYLhBfMADVbhFqlJJkzLv+eUPUIfJtKh6/sBmy+gt/trbYg13taR\nL0jmUl8nZ2LnPSR2Y8xaiXwZ7ZRPEtmK+W1Yx/UyepxHvv896BNqcGfkJ9TgDvqtBkTKWw2IhX9T\nA1YBttQj7bGPzz9UHcqgBqwCbLP338/+u6XvYFADVgG22XW+vwc18FUF2D5Bf1ODmwpcUQMU5aoC\nbM+8z4FVgO0pNWAVYIszn7PW8091VgG29OxlNKsAWwK/jmYVYHsOnb3Hy8sjH4E/HvutBoXi99ng\nfz4bBK0kfeSNatBOVId9NKiBws9thUfQgxrMd+igBgo/T8n5mhrQuCj2ZTWwsX4aX1EDvfOR4JIa\n5JFn1pneOWvs0VmXz7UX1CDP2dEp6ZIaUKZ0tHBNDUTQQWIPP64G/LemY+hZtf2tsfTjRevbD4Fn\nSGrPf2u0hi8d+jERf5ScPQAAAABJRU5ErkJggg==\n", "text/latex": [ "$$\\left[\\begin{matrix}{}^\\mathcal{B}C^{\\mathcal{A}}_{12}\\\\{}^\\mathcal{B}C^{\\mathcal{A}}_{22}\\\\{}^\\mathcal{B}C^{\\mathcal{A}}_{32}\\end{matrix}\\right]$$" ], "text/plain": [ "⎡{}_{12}__\\mathcal{B}C__{\\mathcal{A}}⎤\n", "⎢ ⎥\n", "⎢{}_{22}__\\mathcal{B}C__{\\mathcal{A}}⎥\n", "⎢ ⎥\n", "⎣{}_{32}__\\mathcal{B}C__{\\mathcal{A}}⎦" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "en_B = bCa*Matrix([0,1,0]); en_B" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Ig_B = diag(I1,I2,I3)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMsAAABLCAMAAADplYPZAAAAPFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo1xBWAAAAE3RSTlMA\nMquZdlQQQOkwRCK7Zs3die9sjGUlPgAAAAlwSFlzAAAOxAAADsQBlSsOGwAAB+NJREFUaAXtW+ma\n3CgMxGey7e62vX7/d12ukoQA40m82U6+9Y8RhkKoBPiocZvu8EdvzPJ8mak/3p2pH9sQ2y6ACVt3\nd0/LGigY0x3DaI/JmMcx9Z2ZV4RbGGjaLWd/tMGMLTi6terlCPSH44J5WI7VFU/mZR77Z4yiCRZY\ndHndysA6ey3s8ZVwmY7RzONG7fP47Pv+ZZYNPUYzvGO5CRbY0GVBGuAtWpvR4z3QqKo1PdXYnrul\nXLbdDMfxRPO4+zxOQ7DW6WMx4xqdt8ASG7q84TgNz54dSFDWklek2Jl7plyebqM81t07mJ/rHDwN\nRwxitnvK9fBHA5xgfYdXdRs+Dpr46DyaaUzP7ZnGbgRJuYSN8wihv49IxTwCOWOe677vqG6AE6yP\naK1Oy3Y8sph9RYGLxs4IzmeZ9n4XqoMZDjsJ4ehiQkdHbonjNsAJ1rtZsDijV2HemGtR54sFLhn2\njTwk89L3bgN2fr/YqxQ5nl3t2g2h0x6YnYAzrPc0VpdYfbsUuKTbxXqmm5jkMveP97Ha26U7NntJ\nk8d8oGLbXcsZWGODn+hYOo3lR3C9Dc8Byzq25FyAHYc+Yl/Y/ZJLMspKN51Y7SandmhwEbvSmtVu\nNj+WuxX0iCtCci4BO9iED/EKP2EBVbnQFrdeXQKQNNgkngwcs5aA97BE5/dKR7wphy3gLg0drphm\ne7tj3b3Bo4YdNGAHe91zobujw2arclmBMGayzwJIGmxwg78KjKyl4MgFfYQ9fIZXyxUXFjTm8xKw\nrh3z0uZC9xTbyXZE0mAxWLAKjKyl4Ooai1vAuZpwwY/+My6Mnff45PVorrGFbl+bW2JIGmwcKxoF\ndrUuaym4uvfDFvCu1vSCYzIuhB3fgLb3vk1RfIChSwuSBhuJOJOBKWsMpmun6OeLvEIzSMaFsbTG\n3CrwR3W/2B0/2AfLeE8JY8ZM6OS5RgXmrDGY1oJ3hj9L/z6OPoSTP+SkXCTW7a1wYaSn+hMuGA0W\nSYNFfdnGnSnBbvucHQ/L6IHXjwBMuVBnP+tLWDj8OHGdC5IGS47LhZC1BJyc5L269zRNT1rRHlC8\nUdkWl5Zx99jas2U+ANUgabDUkBc4awpMLxN5H1uz+/fcYlNW2W3jFt5cqs/8WR+qQNJgqaFUQNY0\nuPYuVvJxtU7k5+oaQ9JgT4dC1jLwEp71Tjt/rbH+jvw1P5+GvjovnxZ3KZ4/n8sFGY9fgS6A5V2m\nlNF76srz0pbxDOt4bTBj7wm64qXMpSnjWRXtv9X85PUL1MpcmjKeETpeEyywYVjcZ7Ruh6BKVmOF\nxgd4mUtLxrtN88uECMRVsClW3O+BLXNpyHgm0fEa4ATrh+XnMq3bIaqS1Vh+DgO6zKUh492m+Wnd\nDlGVrMayxgd0kUtDxjOJjtcAJ1g/Kj+kRyECsZzbusaHfkUuJzLevZpfugUQU9lm2OymVeJyJuMZ\nreOdgTU2BMnv/RAiOqWKlcicaHyAl7igzVst45na65FDa3ARy3pMECK6oYeSkoycnpxofAA2uWgZ\nz8QkJjIevGnwdqL52T7YAqQ82rqCFOi9n2h8GN1x+fb9L5zmVggfTvNDElMZD90UuKX5QbeTXOBK\nW2ALGh+gf393ImYqGKDNWyXjWfnIL4hUxkMPBW5oftgu0SWcFC1hDalVma7TXGOZjBe5FARTJ/NA\nq/ICoYvqRPMj3e7CvBCW1SrS+EC+ySWT8XhglvHgLQNzFhlM11JakeySHOkCYXmNkcYHbJuLlvF4\nYJbx4O0Lmp/U7dglO5IliS1ofIBe4AJotDQw5VcB0tMrmh+5TLvmZ6xWWUrZhfzHufATYj6mqLmi\n+U3071PRsViEWmUbrz5bFv3EyphEJeOVenAWFVhoWrbfMqxHD9G+5EfUQa1y9yFRHYo/MC8+iVrG\nyxy7CmRRg/EuVux0sTLNh+/0VS5IYibjlUJAFjPwz2t+19+RS4F9ft1X5+WTGf25XC7Idh+o8WGt\npPPSlu0+UeMrc/l8jQ9xw8rrWTovTdnuHo0PgcBqHQ/1JauxQvNLufwyjU9HmQkTGiDOU6y4/6dc\nGrLdbRqfiMwXtY5H7YX/I2ssP5elXH6VxkexxoLW8ai9wEVjWfNLuDRku/s0Poo1FiBi6Pr8GxIW\nPAj7/3d9IRX/2nd9kKso41Yoyd4FoPnxN4D03p+sMeEkk+3u1PjkOK5c1/xyLgErJS16K61y0bId\nknZN44tZS8Ct7/ogVwWm59/1SUmr/S2cED6+rPEha7AhutZ3fSmX0Cefl/wbwDYXJdthIJmQMJz7\nq8AAwQYg68jc0ZdIx6PVQoCMC2FtQPEbQNL8qmssk+3CQOmnehhTgQGCDTDW99EtWtLxLnAhrH0D\nj9eF9t7PZDseCAkRIWXf9VHWGFzVoGg58xBwnc0LYfndgzS/6rxksh0PhIRgQGfVd32cNQbTWpD9\njNTxeAhAUi4Sy5LWD3zXRwNV84sAnAUI1tW57XN60BCESrlQtf3+j74BZM3vZF5ET1fEQJwQBZCn\nAMH6tuREolHONb/iP6MsXKhUtWdLOC3ZyIUTUgLFOoBgY3VB0xJOIFeJqmqRVarqM3+1r20ISRMJ\nqYMBggXyDo0PvmBFfq6uMSSNEwJnBQsQLEF+XuMjV7FQf0fWyN/rPMwLfiv6e8UuoqXfis7uh5bj\nGH7SIQC/UdH/VnQczT+tunYv3plIzQAAAABJRU5ErkJggg==\n", "text/latex": [ "$$\\left[\\begin{matrix}{}^\\mathcal{B}C^{\\mathcal{A}}_{22} {}^\\mathcal{B}C^{\\mathcal{A}}_{32} \\left(- I_{2} + I_{3}\\right)\\\\{}^\\mathcal{B}C^{\\mathcal{A}}_{12} {}^\\mathcal{B}C^{\\mathcal{A}}_{32} \\left(I_{1} - I_{3}\\right)\\\\{}^\\mathcal{B}C^{\\mathcal{A}}_{12} {}^\\mathcal{B}C^{\\mathcal{A}}_{22} \\left(- I_{1} + I_{2}\\right)\\end{matrix}\\right]$$" ], "text/plain": [ "⎡{}_{22}__\\mathcal{B}C__{\\mathcal{A}}⋅{}_{32}__\\mathcal{B}C__{\\mathcal{A}}⋅(-I\n", "⎢ \n", "⎢{}_{12}__\\mathcal{B}C__{\\mathcal{A}}⋅{}_{32}__\\mathcal{B}C__{\\mathcal{A}}⋅(I₁\n", "⎢ \n", "⎣{}_{12}__\\mathcal{B}C__{\\mathcal{A}}⋅{}_{22}__\\mathcal{B}C__{\\mathcal{A}}⋅(-I\n", "\n", "₂ + I₃)⎤\n", " ⎥\n", " - I₃) ⎥\n", " ⎥\n", "₁ + I₂)⎦" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Mg_B = simplify(skew(en_B)*Ig_B*en_B); Mg_B" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Circular orbit" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAABwAAABLCAMAAABUWBfpAAAAPFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo1xBWAAAAE3RSTlMA\nMquZdlQQQOkwRIlmzd0i77ts7uXj/QAAAAlwSFlzAAAOxAAADsQBlSsOGwAAAR5JREFUSA3tltty\nhDAIhsmx2yRrdHn/d11IooVMZqeXnbFcqMMnghh/AgabWRC2dR+AQefJgmBQ2GORoZH+n+uiYXS5\n5OvWCT7p2XGrI1jDsrM7P5fwaBUHjJ3qSGww4ShcwYiOQxL6RWTFzF7TTwAqsvbINfz4WOgFhWVB\ncBycs6xfpTfBrZsAG7dvP5urqiWQ6UOdTL8KJ5Q2RUo0NUGj28L7Luqvx/dYA9Oifj2kJvwv6vlP\nue2/ohvxa6lJ2dZKCjZ0WrfPkWoSiLgYHSbAxnpZrwElckaKSQTZ1U1AgNDc9pRbrZpdhbHAaujs\nPDl4HrUJoqutLSVNsjLkWOZMG9dRbTnHrIS9RHH8o/DDJiLyhsF7bvplbRPhPbwB4fcZLT1yHgEA\nAAAASUVORK5CYII=\n", "text/latex": [ "$$\\left[\\begin{matrix}0\\\\0\\\\n\\end{matrix}\\right]$$" ], "text/plain": [ "⎡0⎤\n", "⎢ ⎥\n", "⎢0⎥\n", "⎢ ⎥\n", "⎣n⎦" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iWa_A = Matrix([0,0,n]); iWa_A" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAACYAAABLCAMAAAAriQUYAAAAPFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo1xBWAAAAE3RSTlMA\nMquZdlQQQOkwRLsi72aJzd1sJj67BAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAAZ9JREFUSA3tltt2\nhCAMRbnaqYpo+f9/bRIuTRxw2nlqu8YHlsD2hIAHUDrRY1T3OXKvUjpZB4/vUmrDPpMQ033iq3X7\nb9hSclvD/JUlvolMt9o5JQd9em+swGxrjl5pa45W59hMYiSxrUD4PoaBQATLiMUAI4CWdr3CFlha\n+A1AZ8eYI7UYog0+mRg2pEbYtKRdKxcCDXKIkQQrBikwgl59aC183lojvaz2SKaEl4slOV4bq3Hq\npSZmAyp/Z96esXO0i51KyiJTYecItjHV9xyTdj4A04ksluft7fZO2tLOB+wBayq7yscNv8l779nO\n4K1UBseDnu2s1NHzwtnOKracuNrZzlujrpZ+hv1mLicGV5N/j96990snBYkFOqt6qyA5XhsH5dRV\nCpx7qfHZgPdfMCFP2dlZ89jOFs43W+V5ptLOFv5x7KWHY9LO2N1Vu7PzFOodi6ud7ez26maxCnd2\n7gc92xm3mnL340FzUqWkca0pn/oiqMAU7m8uPLSzji6asgteqAnt4dgE9TO1b12PJ7wAO1fveDJc\nvh47pz4BCxkcLy3JaBcAAAAASUVORK5CYII=\n", "text/latex": [ "$$\\left[\\begin{matrix}\\omega_{1}\\\\\\omega_{2}\\\\\\omega_{3}\\end{matrix}\\right]$$" ], "text/plain": [ "⎡ω₁⎤\n", "⎢ ⎥\n", "⎢ω₂⎥\n", "⎢ ⎥\n", "⎣ω₃⎦" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iWb_B = Matrix([w1,w2,w3]); iWb_B" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAABMCAMAAAD0mSYNAAAAPFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo1xBWAAAAE3RSTlMA\nMquZdlQQQOkwRM0iibvd72Zsm14JtAAAAAlwSFlzAAAOxAAADsQBlSsOGwAADkFJREFUeAHtXe2i\no6oOpbX1nNtqba/v/64XCAnkA8W2zp09oz+2GheLkAhaXMM4d2yVCIzdo+sr136M+TTH7fxjHP5V\njo6Dc+d7rG14vNz1PN9PC3WPXbq4CbxA+NGlCbLq3GnuLn67fsT2JxaefHpPs//j3G2+nk+unzCD\nRnOvT+wgm8AG01dMr5DT8xxasHRPfqWun0ky3ZwbZv8n7KYQpIXe21/Oj9TMTWAoM7xS2fd3r3gf\n8vKvSnp93ud7ZxTgxRfOPmewyffhHcZxfFjj13WOD9/rfHH9JYzWaesvj/P5/HLDmAwX18E47pwE\nK6wrwLH4kO6MLY1T2HP2Dr2spde5GZ1FaK8seKWy34qv0CjzDrxDGHSvs9GFpkusf3y6bp4fFMDL\nM2KvHez96D24y5RcFWCFZeBY5k7EWxonsL3MmHPV9N5mvC2Tz85N+Gwhy+KBwbCINy9eIbrltT14\nL3PouTPmJ1eHr0uPkP/b9IQr/WNKL9QdPJpd78uHWMaNgTWWg0OJFz3StzROYUcVrGp6R3jmgL9v\n/f2cwVdrpHcP3tvTP2GN4YniDq8nt5TMO4zY3r9bSvhjej6faGVgjXUMHGIb3uFg29I4he2TM0i2\n0HvveCtm7Majzxl8hUZ69+I1BuebH8Fu4ZXqBIFLuy729RiOE/S7S+jM6S2MgzXWMXBgGfKosaVx\nGnuPr4HRMfhT7b1iXKeXwnCbt21NDGu8RnqbeN0KscHbT+FxdBvPw+B/UYRx7nS/Xq+PkLnzObxm\nnuDZ61+MKQL94E7TqYOgPCHXJVhgNTgwXWhs1m88VJM+EIHwAHyUELaW3pt/UwzbCR7XL0xqH+3J\nSizWQWLAiR/OULFeunN6piGjTgPyJqzN64RZESveYZziBFXnHg/f9D4Mw884M+Bd6c+3+zz5mY24\njSk2ycd+xvPxGYLGwALreTk4ciCxv7ngKoYn1WDvEFu07SVfrmrpHePz49Sd4UbNt9d4dWS1q01W\nYKCJH8ZgWzsfvg57XWJRaXDAS1ib1zEzgbPDmtff+35kOl3dFGI0LMwFTOKa78HVTWKdBZ7oF5kI\nWpU2XBCBCKZrHlbCaf3Zi+M6FLjFzhtvjfjjuaTp7xNt5a9+YMCJH85gWzs/OIbbDbbxHrbpGXfF\nOzvwItbmddyM4Ehc4/UXn8++9/0rNDb7Ad6Uf+kVyhvDYIN9DfeL2NTXGDY/8HjQgGg5wKxtJ4pe\n8qHWe+fUiyCRcaCGt4j4c6lMb9mY8hgYcOKHM9jWUHq996JngLV5/bSB3wqHFbHovUPsgI/wynSN\nIUpTzYFGbVMO4tW/d+FQhHuGF1gcRzg2p5cHjTGpEx6IeLk1vWlcx+4eh7o4KQ2TNA3pJYYQsB4G\ny4KhYu2fYn5UpIGeTr41ESs9A15dnSQWvHP8TRPTC3NPfoZDvAXk8OJvXW8J1eNQhPsMDID0Uyph\nsa9xLA3OImiMSZ5kbG7brXFwhnHdM0IiHz7o/sODP4fplYb0EoNvv+9LksG2Xu6x2xUtEWnAJ45H\nANbmVdUpYsH7jIPVFN+nwvgU7sg4ThWu0OFAMz5juAVwKMI94cKBwAZTGKA4ll6tRNACuroRtmhb\n66sVjSmQyPE5ds/rfB7TFFxDeokB3tYlQ8W6Pjhn3oi1ef1bEnd4bXB+hZfiMFWcfryOd/cS40gR\n5zR7ec3fgtPMdLwtCmAkTbOXOBhQX8My4eGdyuTGkYmzFWcZm4MWBge2Wc/e4XyffSojDhLZP8KX\nzsszvvh7+1p6SwaY+JEMtjVEl94ioX7WnUtewNq8TpoVsei97tZ13SO8U8H4Npxf3I/oDP3pO/89\nIf3YjcY0Mx0HKkLBgcDmvoZlcp057DRbJsjwVAciXilfbaPBSi9yhL2dSNtalqNjmvghSziwrPG2\nHsS0vkxDYjGxFV54SAviCm+i37rDvob7xfLp7bHEhkdxuVnhKa/nYxaIYvYrIVbTq6YxQ8Grac2V\n5qM88ZNtYbIEp4NKa2jk5YmDGFyxfiaGKxa2xmuBa7ylP83H2Ndwv1wQBiiGZSfVZpi0ZSA2fFKI\nXEM3zXF6jjHbVgahE5r4IUs4sK2n8eJnBBmwemJjbV5ng6vcWy9gX8N9vXzuawKbvzSGwpVmmLxF\n27Z8EDS5DqMRARyKcG9AyIR9TWLxcz4B3zng90hkWBuc36nmLyuDfQ33S83Hvqawv1iMs+Tjce3H\nRODovT8mVe84eqR3KWps4n8J+LteO9K7kJli4n+TMn0TeKH+zy8d6V2IYXjP/bEy9tiuI71L6fWz\nlIeMfSFA6pLSXivEmuFzBquGQ8ZuReUNmxKAGfrTZVrFsAxvuXrI2FuiJDHGxL3SXvv540JqIxmM\nc4PBQG0zHTL2bfECtJFepb3ezPs5g67ykLHrmKxbjPSiRm+9cA3xOUOFWf8bI5r4/ztl7KhaHbIY\njIXOSK94cK4xMDo4aWPYTnzI2L1+LeqsTXH7WOipU1Z0epMADKeDhNq8Za0DZEi1cQaU3a/K2NVt\n81vJ2KkZys3CIAIRrrRqrZJGmgTrKAbyuqBCxs6sqPEsHDD+hRAIwGg6iDGQtaRQx8BAtTEG8ndV\nxq5oveG3kbHnZlhuok0EIpiViqY2rYEPOCjAVeFIw62o8YTaa2JxrtPmDMUkkSdpU29zBvRsScZe\n4/VVviljx76GQxJEAP4qyXuLjJ2aETlqDkMoWdhNnfM///6n9Cgeo0Ya0hv1bIUq3LYqOaLRe7lO\nm/NydahyKRnQM6iNM1BcpFm7xuk/kbFjXzMHn0LPGCTvOOhwbH5zwcapbsjdjWeILdqm0vvff8O0\nqtJ8kkYa6okjYCFCt62gWSsdUc9e4vWJqIrbSwZ1nBmissX2bF3GLng/kbHjPcUHn1TBmzL2hvSK\nQMT6vipjlxLyrPHE4Kn0kvbaT2b4HiYZwIqlzT0xQG2SIcVFmrVrnPwTGTulN89QZ/I3ZewN6RWB\niFW2vlrRmAL1SFW4bS1GidQ+lV7ircjYS3VojlF5lBlMGXuKi3RYu1Zy+lfOj2TsORlZmo78SvIe\nB51wNWOp1dS4zIg8ak/Yom1flbGvasXFs7fUXoP0UzIIQahqUslgy9hTXCSxkrFL6o9k7DkZWZpO\nFbwlY8+MxMMOdCDi5f1k7FnjWfihei9eo+kgNMS9bWWQdGLWFq5ZcamCLeZ3bFQpdcMllgYZu9kM\nk5O1bU8ZO2o8Sy9qYnGpA4UytrXky8dWbeGqKbCvgTPdZ0eY3rXBB2pZl7FXmmE6WbZtTxk7ajxN\nJ4RR6UDjddsqiqZTu7aKwN4G28TvWFN61wef3NcElkuUK80wXSvadsjYzQh9bIQho2Xwwb4msYeM\n/eMk7EWAfa1l8MG+prCHjH2v9PzJvLU55z+5zX9R2470tiTb+ljQUu7/jjnS25CC4gPAJoX6JnCD\nH9shR3obYhbed3+mnP1Ib0t688eCTQutbwKDH19+g15L7z6icb/Iwservdtp+ZR3Vzm7X8+9voR7\nbA/+/t3SDIUtVjhYS6+xKrsd181WoYjbXL5WQPNu0MnvKmf3C4ekRZCsJdxje769Kvtqer8iGjc+\nLXyFV3ySChGyeJd08ty1HeXsfjGmxSXcg/N50tpqRkBYm8LmuefV9H5FNM5jGF38Cq+R3q283LUd\n5exOL8u+/6rsq+lFTZ112zTbeAxjsa/wGundymu4touc3a8uSQuhWUu4h6AUH/S2NENjaVX21fSK\nR5mtDretOftGDJt419ZUN9IreN9g2EXO7v8haV7O038nVUu4h2B9f1X2tfSiYMsUrqMClEvJjSke\nnd7Ei1jOgLxSjK5V7ooYeVFSz4kblPY7ydm9cDyqN/GWb1uVnQKBxaw9NrmIDmmu1tILgi3UenJ1\nuG0tpnjIGZWFJJMnbIsYncBE6z97s5j5C+Av6k29DInAXn+fzWTVDPvI2Z1clt1SOtDCv/JfEWR3\njSNoMosO6gv4/2NkCKZxXIcCtmicW4spHu/LO3J2ktS8QQz+krabM5A5Bqnm2i5ydr/SXF5NMRzh\nuIX74FLWO/OwR3erwn7AsrCT3nmt96JWGtIr1eGW1RKjq07mgBexNq9YUx3BqbFxp4jR3yQflMSF\nqjDRcIbd5Oy+95Lf1SXcc3qxGdQNqbA+4KGM11vTi4/epO2yRePS6ntfcauG+ngMvYF4ASsZUquk\neZ0480bdS4Ocnbu2m5xdLsuOnQ33MSs0OFMzGtJL2CI6JGdf6b2klYZ6pDrctmoxOo+hbwrx2nL2\n1CpZ3Tox8SbdumTQcnbu2m5ydv/mjEtp15dw16uyN6SXmlxEp/XVioYUqEeqw21rXl083pP+D4+h\nNxCvLWdPrZLVrRNnXliiXDHklcuTb9y1/eTsfkQTy7LTGEdjHeloqRkN6SVsER2Ssy/13lIrDfVI\ndbhtzVNrdnpLXsDavGpN9RXikjfp1iWxlrPz9H62KntOhiFnd0LPnjsbgXEl+Lwqe2bEUPJ92eQi\nOiRnX0pvyWTXY1qFxjOwiBhmYgMb8XkKIGOtJdxt4qw3LUqn/zpFrMped40VbTuhcFA3XCqHINx7\nbHgSs40YmdU8KUKZZ7+a02uuv26JxqXGM/hi/cgLdgsb7BavCa4QhzDJdd09rWWuMAQvNm+YjKIf\n1TkQhPuALI9jSTMQJmcZyg2fFCIXaj05sW1VGk9eiJ3ZWJt3yxrlqDdllfm7acNy76Jo02lKb9GP\n6sUQhHtAvi9nL0JZyNlbe2/dz+MKRaBdzk5DUdnpPA9+zifKdw6Ke+RI7zsBNMvgoFP0IxMXjQjC\nPSJ/sRgHqz32PzIC0Hvj/1O7bem/H9nav8npKSbVT4X2l7iF/4Pr2P6YCLwgq+5/afDp2hVCoRAA\nAAAASUVORK5CYII=\n", "text/latex": [ "$$\\left[\\begin{matrix}I_{1} \\dot{\\omega}_{1} - I_{2} \\omega_{2} \\omega_{3} + I_{3} \\omega_{2} \\omega_{3} + 3 n^{2} {}^\\mathcal{B}C^{\\mathcal{A}}_{22} {}^\\mathcal{B}C^{\\mathcal{A}}_{32} \\left(I_{2} - I_{3}\\right)\\\\I_{1} \\omega_{1} \\omega_{3} + I_{2} \\dot{\\omega}_{2} - I_{3} \\omega_{1} \\omega_{3} - 3 n^{2} {}^\\mathcal{B}C^{\\mathcal{A}}_{12} {}^\\mathcal{B}C^{\\mathcal{A}}_{32} \\left(I_{1} - I_{3}\\right)\\\\- I_{1} \\omega_{1} \\omega_{2} + I_{2} \\omega_{1} \\omega_{2} + I_{3} \\dot{\\omega}_{3} + 3 n^{2} {}^\\mathcal{B}C^{\\mathcal{A}}_{12} {}^\\mathcal{B}C^{\\mathcal{A}}_{22} \\left(I_{1} - I_{2}\\right)\\end{matrix}\\right]$$" ], "text/plain": [ "⎡ 2 \n", "⎢I₁⋅ω̇₁ - I₂⋅ω₂⋅ω₃ + I₃⋅ω₂⋅ω₃ + 3⋅n ⋅{}_{22}__\\mathcal{B}C__{\\mathcal{A}}⋅{}_{\n", "⎢ \n", "⎢ 2 \n", "⎢I₁⋅ω₁⋅ω₃ + I₂⋅ω̇₂ - I₃⋅ω₁⋅ω₃ - 3⋅n ⋅{}_{12}__\\mathcal{B}C__{\\mathcal{A}}⋅{}_{\n", "⎢ \n", "⎢ 2 \n", "⎣-I₁⋅ω₁⋅ω₂ + I₂⋅ω₁⋅ω₂ + I₃⋅ω̇₃ + 3⋅n ⋅{}_{12}__\\mathcal{B}C__{\\mathcal{A}}⋅{}_\n", "\n", " ⎤\n", "32}__\\mathcal{B}C__{\\mathcal{A}}⋅(I₂ - I₃) ⎥\n", " ⎥\n", " ⎥\n", "32}__\\mathcal{B}C__{\\mathcal{A}}⋅(I₁ - I₃) ⎥\n", " ⎥\n", " ⎥\n", "{22}__\\mathcal{B}C__{\\mathcal{A}}⋅(I₁ - I₂)⎦" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tmp1 = simplify(Ig_B*difftotalmat(iWb_B,t,diffmap) + skew(iWb_B)*Ig_B*iWb_B - 3*n**2*Mg_B);tmp1" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAABMCAMAAAD0mSYNAAAAPFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo1xBWAAAAE3RSTlMA\nMquZdlQQQOkwRM0iibvd72Zsm14JtAAAAAlwSFlzAAAOxAAADsQBlSsOGwAADkFJREFUeAHtXe2i\no6oOpbX1nNtqba/v/64XCAnkA8W2zp09oz+2GheLkAhaXMM4d2yVCIzdo+sr136M+TTH7fxjHP5V\njo6Dc+d7rG14vNz1PN9PC3WPXbq4CbxA+NGlCbLq3GnuLn67fsT2JxaefHpPs//j3G2+nk+unzCD\nRnOvT+wgm8AG01dMr5DT8xxasHRPfqWun0ky3ZwbZv8n7KYQpIXe21/Oj9TMTWAoM7xS2fd3r3gf\n8vKvSnp93ud7ZxTgxRfOPmewyffhHcZxfFjj13WOD9/rfHH9JYzWaesvj/P5/HLDmAwX18E47pwE\nK6wrwLH4kO6MLY1T2HP2Dr2spde5GZ1FaK8seKWy34qv0CjzDrxDGHSvs9GFpkusf3y6bp4fFMDL\nM2KvHez96D24y5RcFWCFZeBY5k7EWxonsL3MmHPV9N5mvC2Tz85N+Gwhy+KBwbCINy9eIbrltT14\nL3PouTPmJ1eHr0uPkP/b9IQr/WNKL9QdPJpd78uHWMaNgTWWg0OJFz3StzROYUcVrGp6R3jmgL9v\n/f2cwVdrpHcP3tvTP2GN4YniDq8nt5TMO4zY3r9bSvhjej6faGVgjXUMHGIb3uFg29I4he2TM0i2\n0HvveCtm7Majzxl8hUZ69+I1BuebH8Fu4ZXqBIFLuy729RiOE/S7S+jM6S2MgzXWMXBgGfKosaVx\nGnuPr4HRMfhT7b1iXKeXwnCbt21NDGu8RnqbeN0KscHbT+FxdBvPw+B/UYRx7nS/Xq+PkLnzObxm\nnuDZ61+MKQL94E7TqYOgPCHXJVhgNTgwXWhs1m88VJM+EIHwAHyUELaW3pt/UwzbCR7XL0xqH+3J\nSizWQWLAiR/OULFeunN6piGjTgPyJqzN64RZESveYZziBFXnHg/f9D4Mw884M+Bd6c+3+zz5mY24\njSk2ycd+xvPxGYLGwALreTk4ciCxv7ngKoYn1WDvEFu07SVfrmrpHePz49Sd4UbNt9d4dWS1q01W\nYKCJH8ZgWzsfvg57XWJRaXDAS1ib1zEzgbPDmtff+35kOl3dFGI0LMwFTOKa78HVTWKdBZ7oF5kI\nWpU2XBCBCKZrHlbCaf3Zi+M6FLjFzhtvjfjjuaTp7xNt5a9+YMCJH85gWzs/OIbbDbbxHrbpGXfF\nOzvwItbmddyM4Ehc4/UXn8++9/0rNDb7Ad6Uf+kVyhvDYIN9DfeL2NTXGDY/8HjQgGg5wKxtJ4pe\n8qHWe+fUiyCRcaCGt4j4c6lMb9mY8hgYcOKHM9jWUHq996JngLV5/bSB3wqHFbHovUPsgI/wynSN\nIUpTzYFGbVMO4tW/d+FQhHuGF1gcRzg2p5cHjTGpEx6IeLk1vWlcx+4eh7o4KQ2TNA3pJYYQsB4G\ny4KhYu2fYn5UpIGeTr41ESs9A15dnSQWvHP8TRPTC3NPfoZDvAXk8OJvXW8J1eNQhPsMDID0Uyph\nsa9xLA3OImiMSZ5kbG7brXFwhnHdM0IiHz7o/sODP4fplYb0EoNvv+9LksG2Xu6x2xUtEWnAJ45H\nANbmVdUpYsH7jIPVFN+nwvgU7sg4ThWu0OFAMz5juAVwKMI94cKBwAZTGKA4ll6tRNACuroRtmhb\n66sVjSmQyPE5ds/rfB7TFFxDeokB3tYlQ8W6Pjhn3oi1ef1bEnd4bXB+hZfiMFWcfryOd/cS40gR\n5zR7ec3fgtPMdLwtCmAkTbOXOBhQX8My4eGdyuTGkYmzFWcZm4MWBge2Wc/e4XyffSojDhLZP8KX\nzsszvvh7+1p6SwaY+JEMtjVEl94ioX7WnUtewNq8TpoVsei97tZ13SO8U8H4Npxf3I/oDP3pO/89\nIf3YjcY0Mx0HKkLBgcDmvoZlcp057DRbJsjwVAciXilfbaPBSi9yhL2dSNtalqNjmvghSziwrPG2\nHsS0vkxDYjGxFV54SAviCm+i37rDvob7xfLp7bHEhkdxuVnhKa/nYxaIYvYrIVbTq6YxQ8Grac2V\n5qM88ZNtYbIEp4NKa2jk5YmDGFyxfiaGKxa2xmuBa7ylP83H2Ndwv1wQBiiGZSfVZpi0ZSA2fFKI\nXEM3zXF6jjHbVgahE5r4IUs4sK2n8eJnBBmwemJjbV5ng6vcWy9gX8N9vXzuawKbvzSGwpVmmLxF\n27Z8EDS5DqMRARyKcG9AyIR9TWLxcz4B3zng90hkWBuc36nmLyuDfQ33S83Hvqawv1iMs+Tjce3H\nRODovT8mVe84eqR3KWps4n8J+LteO9K7kJli4n+TMn0TeKH+zy8d6V2IYXjP/bEy9tiuI71L6fWz\nlIeMfSFA6pLSXivEmuFzBquGQ8ZuReUNmxKAGfrTZVrFsAxvuXrI2FuiJDHGxL3SXvv540JqIxmM\nc4PBQG0zHTL2bfECtJFepb3ezPs5g67ykLHrmKxbjPSiRm+9cA3xOUOFWf8bI5r4/ztl7KhaHbIY\njIXOSK94cK4xMDo4aWPYTnzI2L1+LeqsTXH7WOipU1Z0epMADKeDhNq8Za0DZEi1cQaU3a/K2NVt\n81vJ2KkZys3CIAIRrrRqrZJGmgTrKAbyuqBCxs6sqPEsHDD+hRAIwGg6iDGQtaRQx8BAtTEG8ndV\nxq5oveG3kbHnZlhuok0EIpiViqY2rYEPOCjAVeFIw62o8YTaa2JxrtPmDMUkkSdpU29zBvRsScZe\n4/VVviljx76GQxJEAP4qyXuLjJ2aETlqDkMoWdhNnfM///6n9Cgeo0Ya0hv1bIUq3LYqOaLRe7lO\nm/NydahyKRnQM6iNM1BcpFm7xuk/kbFjXzMHn0LPGCTvOOhwbH5zwcapbsjdjWeILdqm0vvff8O0\nqtJ8kkYa6okjYCFCt62gWSsdUc9e4vWJqIrbSwZ1nBmissX2bF3GLng/kbHjPcUHn1TBmzL2hvSK\nQMT6vipjlxLyrPHE4Kn0kvbaT2b4HiYZwIqlzT0xQG2SIcVFmrVrnPwTGTulN89QZ/I3ZewN6RWB\niFW2vlrRmAL1SFW4bS1GidQ+lV7ircjYS3VojlF5lBlMGXuKi3RYu1Zy+lfOj2TsORlZmo78SvIe\nB51wNWOp1dS4zIg8ak/Yom1flbGvasXFs7fUXoP0UzIIQahqUslgy9hTXCSxkrFL6o9k7DkZWZpO\nFbwlY8+MxMMOdCDi5f1k7FnjWfihei9eo+kgNMS9bWWQdGLWFq5ZcamCLeZ3bFQpdcMllgYZu9kM\nk5O1bU8ZO2o8Sy9qYnGpA4UytrXky8dWbeGqKbCvgTPdZ0eY3rXBB2pZl7FXmmE6WbZtTxk7ajxN\nJ4RR6UDjddsqiqZTu7aKwN4G28TvWFN61wef3NcElkuUK80wXSvadsjYzQh9bIQho2Xwwb4msYeM\n/eMk7EWAfa1l8MG+prCHjH2v9PzJvLU55z+5zX9R2470tiTb+ljQUu7/jjnS25CC4gPAJoX6JnCD\nH9shR3obYhbed3+mnP1Ib0t688eCTQutbwKDH19+g15L7z6icb/Iwservdtp+ZR3Vzm7X8+9voR7\nbA/+/t3SDIUtVjhYS6+xKrsd181WoYjbXL5WQPNu0MnvKmf3C4ekRZCsJdxje769Kvtqer8iGjc+\nLXyFV3ySChGyeJd08ty1HeXsfjGmxSXcg/N50tpqRkBYm8LmuefV9H5FNM5jGF38Cq+R3q283LUd\n5exOL8u+/6rsq+lFTZ112zTbeAxjsa/wGundymu4touc3a8uSQuhWUu4h6AUH/S2NENjaVX21fSK\nR5mtDretOftGDJt419ZUN9IreN9g2EXO7v8haV7O038nVUu4h2B9f1X2tfSiYMsUrqMClEvJjSke\nnd7Ei1jOgLxSjK5V7ooYeVFSz4kblPY7ydm9cDyqN/GWb1uVnQKBxaw9NrmIDmmu1tILgi3UenJ1\nuG0tpnjIGZWFJJMnbIsYncBE6z97s5j5C+Av6k29DInAXn+fzWTVDPvI2Z1clt1SOtDCv/JfEWR3\njSNoMosO6gv4/2NkCKZxXIcCtmicW4spHu/LO3J2ktS8QQz+krabM5A5Bqnm2i5ydr/SXF5NMRzh\nuIX74FLWO/OwR3erwn7AsrCT3nmt96JWGtIr1eGW1RKjq07mgBexNq9YUx3BqbFxp4jR3yQflMSF\nqjDRcIbd5Oy+95Lf1SXcc3qxGdQNqbA+4KGM11vTi4/epO2yRePS6ntfcauG+ngMvYF4ASsZUquk\neZ0480bdS4Ocnbu2m5xdLsuOnQ33MSs0OFMzGtJL2CI6JGdf6b2klYZ6pDrctmoxOo+hbwrx2nL2\n1CpZ3Tox8SbdumTQcnbu2m5ydv/mjEtp15dw16uyN6SXmlxEp/XVioYUqEeqw21rXl083pP+D4+h\nNxCvLWdPrZLVrRNnXliiXDHklcuTb9y1/eTsfkQTy7LTGEdjHeloqRkN6SVsER2Ssy/13lIrDfVI\ndbhtzVNrdnpLXsDavGpN9RXikjfp1iWxlrPz9H62KntOhiFnd0LPnjsbgXEl+Lwqe2bEUPJ92eQi\nOiRnX0pvyWTXY1qFxjOwiBhmYgMb8XkKIGOtJdxt4qw3LUqn/zpFrMped40VbTuhcFA3XCqHINx7\nbHgSs40YmdU8KUKZZ7+a02uuv26JxqXGM/hi/cgLdgsb7BavCa4QhzDJdd09rWWuMAQvNm+YjKIf\n1TkQhPuALI9jSTMQJmcZyg2fFCIXaj05sW1VGk9eiJ3ZWJt3yxrlqDdllfm7acNy76Jo02lKb9GP\n6sUQhHtAvi9nL0JZyNlbe2/dz+MKRaBdzk5DUdnpPA9+zifKdw6Ke+RI7zsBNMvgoFP0IxMXjQjC\nPSJ/sRgHqz32PzIC0Hvj/1O7bem/H9nav8npKSbVT4X2l7iF/4Pr2P6YCLwgq+5/afDp2hVCoRAA\nAAAASUVORK5CYII=\n", "text/latex": [ "$$\\left[\\begin{matrix}I_{1} \\dot{\\omega}_{1} - I_{2} \\omega_{2} \\omega_{3} + I_{3} \\omega_{2} \\omega_{3} + 3 n^{2} {}^\\mathcal{B}C^{\\mathcal{A}}_{22} {}^\\mathcal{B}C^{\\mathcal{A}}_{32} \\left(I_{2} - I_{3}\\right)\\\\I_{1} \\omega_{1} \\omega_{3} + I_{2} \\dot{\\omega}_{2} - I_{3} \\omega_{1} \\omega_{3} - 3 n^{2} {}^\\mathcal{B}C^{\\mathcal{A}}_{12} {}^\\mathcal{B}C^{\\mathcal{A}}_{32} \\left(I_{1} - I_{3}\\right)\\\\- I_{1} \\omega_{1} \\omega_{2} + I_{2} \\omega_{1} \\omega_{2} + I_{3} \\dot{\\omega}_{3} + 3 n^{2} {}^\\mathcal{B}C^{\\mathcal{A}}_{12} {}^\\mathcal{B}C^{\\mathcal{A}}_{22} \\left(I_{1} - I_{2}\\right)\\end{matrix}\\right]$$" ], "text/plain": [ "⎡ 2 \n", "⎢I₁⋅ω̇₁ - I₂⋅ω₂⋅ω₃ + I₃⋅ω₂⋅ω₃ + 3⋅n ⋅{}_{22}__\\mathcal{B}C__{\\mathcal{A}}⋅{}_{\n", "⎢ \n", "⎢ 2 \n", "⎢I₁⋅ω₁⋅ω₃ + I₂⋅ω̇₂ - I₃⋅ω₁⋅ω₃ - 3⋅n ⋅{}_{12}__\\mathcal{B}C__{\\mathcal{A}}⋅{}_{\n", "⎢ \n", "⎢ 2 \n", "⎣-I₁⋅ω₁⋅ω₂ + I₂⋅ω₁⋅ω₂ + I₃⋅ω̇₃ + 3⋅n ⋅{}_{12}__\\mathcal{B}C__{\\mathcal{A}}⋅{}_\n", "\n", " ⎤\n", "32}__\\mathcal{B}C__{\\mathcal{A}}⋅(I₂ - I₃) ⎥\n", " ⎥\n", " ⎥\n", "32}__\\mathcal{B}C__{\\mathcal{A}}⋅(I₁ - I₃) ⎥\n", " ⎥\n", " ⎥\n", "{22}__\\mathcal{B}C__{\\mathcal{A}}⋅(I₁ - I₂)⎦" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "simplify(tmp1)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIkAAABLCAMAAABz2lREAAAAPFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo1xBWAAAAE3RSTlMA\nMquZdlQQQOkwRM3diSK7Zu9sz5atNwAAAAlwSFlzAAAOxAAADsQBlSsOGwAABDRJREFUaAXtmtmW\npCoQRZGpuxVQLv//rzcYAhJMSayiVj+0vGAiEDuCQY8kWVxIlHST2Q8iqNuWTi3NOjevb6kIQMji\nGIckrqv6O6sTdCFSdYwJ+8GbCwuHN0+dJ+n5ia2NU75aJyaS0x1r38+PYRLhOJFcm2xD8p1SehCj\nUxEnbMt3b1+Mk2hLmHN7JuH28NYEizkMnyFc3QbIDcZJdj9BVmVjU7krGa+Yi3AS5pnvrUmCNwVX\nP8dJ4mRak93NJRCyJrZdWWtzabY3n2SJBlPGXF5pS1xM3JMZt2aEdDGHZNXUGFhfPsCUMhiFJc4T\nWEfZojRkUQuLCPa0xlsSXF3GNtDd0WFk34FCwohIum5OweYWkoZ19JKkw9/aVjegTkNyoH0Zmixl\nsfVIFkGUr2lO+41qSiAuV6khKTHTgiyMlthWJHJTOcEOJiEa3gVfp06vMzPM3OSb5oziTCZ680nZ\nkKXNdw0hCYE4PL24IKnN+YqBgZYQphqqsAnYeNE3BoPHcCKkqnVMwtjFOR72w2GSuGe6A8JTJdxD\noDCGO/bIoPc2gDVJqB2ecHFnHiaxHlzAJoEbeuIxDgt0ZCw99mOy+wg6z7OFqVXaBRcun4Bxe9Ab\nOdpHpIA4eUiWgpV7lLapWsdEW82scFSnR0RuF4N5SbKG+WTokbexFBNY2Qwef2kT8Uhp5vGtv4rl\n7l9wuMXFju2gi2rtZDu3L0qP/dFpOy7t5pOY8hwIZjtbDdwX6aEFlzNjEuaIiTOodf7tb8OUC48S\nf3cWSfBNwXrgtlnxbxneFE4hQd8WzeGZ+cbKSNEUkhFDH+s8JOcQjcfkB5VXwBon+UHldZPkUV7n\nGfUor3NMHuUVYvIPKS/Ndnz/7L4V/Ljy8h9jsoSp9tgvKy/07aby8u8zS/r4EGLy6/ef81IJJYPK\nC327q7wUKML8eeG/3x6rUQaZa1B5oW/3lVdUU8FeNTqZAC8Glderb/13+1Z5EaJQlnRJxpVX9u2m\n8iLlC26XZFx5oW93lddRvmJ0SXCQBvLsW390mp5WkNdrmqSTSIpvd5TXsgkh9qRK5pBE324rLxu+\n16c4TSFB3/6+8kLfHuXVrIPv/pwyT74LEdqPkzzK6xzwR3mdY/Ior3NMHuUVYvIvKa+X86DeHvvj\nyqtSJRXJ15VX8u2m8qpUSUVyWjCDygt9w/y1n/pUpT3zejkj65MMKi/0DfNrkvbMixRV0icZVF7e\nMr7TY440dUxa5fWiSrokN5QX+oY5gjTnxe2ZV/Gg+9UC/s/gOxw580LfMM8gDUl75uUVejpQ68ak\n9Pf5CkcFc2xRjw6WhrxWJdNI0DfM0WbvzKtSJTNI0DfMEeJjXqmSGSQEfcP8I8K7ClNI0DfM3xn6\nWDaF5KOVkQqRZOSfdSO9fbFO/med9H9s4xz/o/LF7r7RLPyzjnPyPw7DR+PZsghOAAAAAElFTkSu\nQmCC\n", "text/latex": [ "$$\\left[\\begin{matrix}- n {}^\\mathcal{B}C^{\\mathcal{A}}_{13} + \\omega_{1}\\\\- n {}^\\mathcal{B}C^{\\mathcal{A}}_{23} + \\omega_{2}\\\\- n {}^\\mathcal{B}C^{\\mathcal{A}}_{33} + \\omega_{3}\\end{matrix}\\right]$$" ], "text/plain": [ "⎡-n⋅{}_{13}__\\mathcal{B}C__{\\mathcal{A}} + ω₁⎤\n", "⎢ ⎥\n", "⎢-n⋅{}_{23}__\\mathcal{B}C__{\\mathcal{A}} + ω₂⎥\n", "⎢ ⎥\n", "⎣-n⋅{}_{33}__\\mathcal{B}C__{\\mathcal{A}} + ω₃⎦" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "aWb_B = iWb_B - bCa*iWa_A; aWb_B" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+wAAABNCAMAAAALrx5sAAAAPFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo1xBWAAAAE3RSTlMA\nMquZdlQQQOkwRM3dIrtmie9sFtv/ogAAAAlwSFlzAAAOxAAADsQBlSsOGwAAG71JREFUeAHtXYtW\n67CODZT23oEW2un//+vYSbatp19JC4eBtc6x49hb2pKdd6Vp2vfv5X1fvBLaW2nnln3PJDE9jAWx\nwO8g9EwWz/AKcdCTqi/3+e9Vi7t8fk3H1/vHi96FlusBtbV8+RQNDSDTpGAEiLP5bigtu7bIl+IV\niWkERWribbewIGNHVPlxhEZITIrFEAoxZana6RUHqkFDOfkcJN3cgI2FdV7W+DS93A9v4e+o0d7v\nx9eX6XSWCzr3PN7kcvs45b1zrQ4yTRpGgHib1y9vT2pvkK/EKxLTCEpSoVZpYEEgRlT5cYRGSEyK\nxRAKMWWx2ucVB6quoZp8DpJurmOnhfUVV/jrPS5278x9uZ/jLv/Mfnp7FSfyg7r6qYJMk4bRzJyW\nszy2qH51+Uq8JjENoChN/IY6CzJ2QJWfR2iAxKRZjKAQS1aqXV5xsKoaqsnnABnNVWyxsL6Ki/14\nfwv9rxcIOr19vr6+fk2X69ryNh0+sHMuL3e1+CRIQBQo4aZVwDDM4sabf9WxjpPy6+INEpNE0Sw2\nkJjqLIgRpCr/JCFJosGehlsGUIgha9UurzhgUkPlrA3TpootFlZ5sV9v0+F+/8Rif7vNF83Hw1JO\n0/tlejszlsb9hwCZFIoBwzCLG5dwtCr/CfkN4g0Sk0DRLLQtymqxvXUWpLtQ5d8kJEi02NNwywAK\nMWSt2uUVB0xoqJy1ZdrUsOXCKi/2z3jafD/fZiKnT1zWHO7L8j+F2/wIQP5u+s6fgUwaZTJgCGKt\nepZ37UdxI8HkN4k3SEwMxWCxjcSkWBRoM1X+GULCLYxEmz0NtwygFAyrdvV4RQ1eGpiG2lnOtBHG\nGsNWC6u82Jeb+fdlbX+kK/T3ZfVPn+fb7ZZao0YvbGvRkYFMGsWAcciZzQfx0GCShmLyW8RbJCaG\nYrDQtjC19RoVC69jaGeq/DOEhFsYiSZ7Wm7pRynYVe/q8YoePbcwDbWznGkjjDWGrRZWcbG/LIt6\nKQ73dNJ+We6T3+Lt+eVOX6t/rYcBoh0DCXcFEmUyYMjwavVNihSGYvKbxBskJoZisNhIIlzFVomi\nA1Pl3yHE3cJItNnTcMsACqzYVHZ4xcFjGmpnedOGG2sMWy+s4mJ/fT2E6/WX+Z49PPlLMk+X6eX8\nclhW+Y0+IVufs71fXy+X8Kg/XlBTkPhMm6J4MKkPqeAEfrnRo0u4y5AXE8JQVH6beDwsbGXh2ILo\nnqoeCc0iDVGVf5QQdwslIWeFY8/OueWgKHPGBs8tam6Zo5dGG4PyFLOvpCA3lqNgAdteWKXFfnp9\n/7ifw3c18e8aHsyTv9Md29cb2fG5UD5Mn5+h9RSu/xmIRAk9TBgiCNUvLPFTHHF9O7yuj/3Vi0Nu\nKCZfkHDErySmVhbDJA6fB7y7UCzAW5U/mVD2in6fy9zCSMhZ4dizc245KMqeoUHMreyWdq84GIyn\nmH0lBZmxlIKLmUvY9swuLXZml/Ny85Hawtnd+PuYP7F5OU7n+EbuIsZMk0SZbBgDOV8/XI/TIRyA\ncD/F7yPCSGEoitUmfiExtbMYIxHfaL7ixaViQdX26z+KEPWKuL3rc4ttz965ZaNYtmRzi7qlwysu\nRhYonVVQUMxhBs7MDHSJbS4stthPH+f0Jz+koQ/i4unoiuPfC+ZrlLt8a3cKB5Z4Io7g/E+hrOcC\ncqYOFwSGGu/ziX0W9XWZDuE9P8Av+SnA9SP+nW9zIb/si4p44ieDxNTBYrVFjQUncY63SOt7jbA2\n0rMMbjHbHOijCEETeGfuuH4B2UGo0S2cEPUKJTTsljTHCIsOErAFud5omFvULe1e4ZagGHCVP/vY\ntLGMxcGZmYHuTgRKni12jLTKc164x/BVHY5/L4fXfBcevrVbl9hx7p3OWwlQoOAghTL1U5X5VmF5\nMLh+0DN2Zk/AkQTEOiTChzSxe5UFbAG4JENWOIlzOH6lU0eqyDHlbWFPaIJyHQyvtBICEZSuDpxQ\n7AavZGYYLE5WaI6lYAGxDou9vbL8DinNLeqWdq9wS1CMTNShCbq5o7w65eCxXzIzBglsmI5jNy92\nvFuPksK/fOw6Wot9eZhy/wqnR/YnUHCQQsn6so35Qmb+fH/9eu90W7/xTSdH9C/MKkd8MK5FYv2s\nr8oCtqiyUCTC6ktPHszbInDySkEImqBch6XFvrdbFKHklXzNAtX73eKwaCSB0VWvzPN5onMruUXN\nLZBRpbJEwshdhbOgGMrcUS52BZ7NjEEC2ybfvNgvd3wie43zMx+72DrBl/K32DnOZAxalRIosRUH\nKZRrT1F8hqUdfrATWj/mVfH2MR/uwrZ6YlqYVa54k8TUyCLbIrMR6i+bkkQwo8vCBFCNghA0Qbn2\nh1daCcVhcAdKJTo2SELZK3u4xWGxt1cUi+wWNbdMK1iWyBh5iHBW3AHrokRnPocLZsYAgU1Nl7Gb\nF3tYuuu3sulkvZyW2DpZX0wulz/Xj+lrPf1CJ42CgxTK1JNXrrfr4Xa8v17xpW6yk3r9yg3FYRSJ\nVaxFYr0SbWKB43iZhSKRPwBVLLje7pYiBE1SGYbidfHublGEklcmRWjELcsJYyXfP7dgg7JXwpfQ\nYm4ltygSrh98DDJEOQuKoUx9ubEUeDZzHuEsz4lgty/26XQIv19ZX67PMpbTElsn66Hwfb4qvrx+\n6adOAgXnApRJeVE5fcZf1b/d8ns+PDzJB651CDeUxOEkINYiEb4TjoNbWOA4DjghFJuSxNd8fTbv\nVSwwplYKe0KTXAYAnKDaCYEISkcLSSg+hFhdrgiNuMVi0U4Coyskwre6fG5ltygSjh3CU1QXgw4R\nzoJiKHNXbiwJTsychwhsi3zHYs+4S209/rF1MokvXuQYYxsGRWl0kU3zweqyHMqmdD2PXtxQaPXK\nRexWEulc0MFieg/3OO/rpY9i4elba4cmKOf+/V5J5452Qswr+7gFoRcW0t0skg3aSQRJxC3DXiEY\nRYdBMZToXJjD3MwYoEuD/Phix/GPr5P4tKHvD+cClC2j4/OHt9t8P3HCI640rvD6MvXJlUXsRhKw\nhXnIzbJ47eXjeDx+LjdFmgXv27wFTVAuA/u9kk7RHW4hXgnvXtPd3qr7iFu2scijO0iEt7DJLZpE\nox8IRnkEFEOJ3iVjUTOjvy4t8sOLPR27+DpZvwXWwq0WHKRQWn3MtpfrW/ggd971Zb1PNwepRiJ2\nA4kAu9iCwClRVsNtjhS07NnAgkHDKyjXnV1eWe7ywoVTLyHilWkDoSx2E4tBr4RvMeLfbLhhEgSD\nuYdugCZKuq9Yp2Z2O5pTcnSx52PXkf+E41XfprsazS/w4hm67WBl4syhdMw99cYsdguJdC7IcHXR\noscWFgQKXkGZdnV5JbnjmwhB7DYWGA20ZIv2yk5ecQRCMZROt6Fmm/zoYsex63I43+ffu0CnE/2g\nDo1eiYMUSq+f3/7VfdtAsCB2G4l0LgAckdBY3cSCyIBXUKZdXV6ZQARlgmmubCIEsdtYYDTQmnVP\nHTeRSChuBYqhdDsO7LDJjy52X4FjfsTsd9przwW/NdoLcMV5KokQuXZn9TXc7yD0VBZP8Ir200Nb\n9l/s0xG/T3uo4gt4+tXY3rKeSWJ6GAtild9B6JksnuEV4qAnVB+w2J+g9Z+IPwv8WaDbAvZib4g+\nn17jJZEyW0cDCH+PmpDqFXxlWuo5JF+SeGhyiBYWhOGvIDREYpJuGUMhtixUO73iIDVoqJeQgyWb\nG7DNlWUv9nr0eR3ZXmXrqIOkEPaSTXW7JVvHiHxFInx9VsuT8VgWxBQjqvw4QiMkdCaYIRRiylK1\nZW6Vxi/76hrqJVRHbcW256S92EMAnfhll/xNe1bGiGyvsnVUQUKo8PQTjQzdVmvI1jEiX5EIH5dU\nTPFgFsQcI6r8OEIjJHQmmCEUYspitWFuFcfPO6sabpj8VWxnTtqLvRp9Xke219k6JEhDGoC6DVMP\nhLVODaoi5avw/CKEfgDQJMJvKXiejGezILSkKvsQakAhOtSqVbdIEi321G4ZQampnvdXSeSubk1q\nqMysl5CLJXdUsfXMniHsxV6LPq8j2xvZOgRI+L51/dkcfrimUSSrwnY9W4eQr8TLEPrxW1f5jWeI\n0sHzZDydBTGBUGUfQg0oRIVqteoWQaLFnoZbBlCqqucOVRK5q1sTGiozb5n8NWw9sxc17cXeH9ne\neNjAQNrSALim0zvq2TqYfB2eX4XQj6G2tByG8g0siEZMlX0INaEQFarVqlsYiTZ7Gm4ZQKmqnjtU\nSeSubo1pqM3sJIdw4diOCrYxs5fh9mLvj2xvZOtgIE1pABij2kY1WweTr8PzqxD6IUiY8akvQ/kG\nFsQMTJV9CDWhEBXq1ZpbGIk2expuGUCpq5571Ejknm6NaajN7CSHcOHYjgq2MbOX4eZi749sb2Tr\nYCBtaQAYo9qG/FWg7M/k6/D8OoR+iISjr+IZyjewIKyYKvsQakIhKjRUK25hJNrsabhlAKVB9dyl\nQiJ3dGtMQ21mLzmEi0d3VLCNmb2ONhd7Ifq8E9l+DenxgLQKbgB/hF+hZqD1Agk7hH4KrvIAFvge\nVma4CLesVOdifX9C4alukhh/VOk4N/UhlVFClER805Egg3xH/A+cW0nrULEtQXm20aSYqW6CF7A9\nGy6A1mIvRZ93Ituv2Tr2T6sgg+/nyLgIv5IMwyslEnYI/ZQ2en8WPAsBDVxdYUE4PYCQyFrgmIXo\nkKqcEI2FXCbESDQmh3jW3CJuKZNIVogVbglgMJ7CzM4SYqjrBgdfzVzCLrvQWuxMrIw+b/+sfsnW\n8YC0Ckvoz1kjkRyiI1tHY26KNeXIA1jkB3+BBAtc3cOC+EV6xcwJENLyzENcQm0oRGyqMkIsXnEP\nISn/W+cWdUsHCWYJipFspWafTTP3zzUGzsyMPtKE9kRYe1cXu4w+j2NXKmegJVhxRwD/xiwEkx8f\nn8T0trJKwBpzKUmkUxFLDrFGXG5nARskuCjMUIaTYIGrCQumcWVDEkqasOQQNUISBTxQLkpUCbFY\nyISQMZDTcuUbLPb3iphb1C2EBNdYbRVcm/q6NPNlqjlthILMzACX2GkiUGx0jov9P//9H2zqUkSf\nx7EL5TpgzTkSPkGJDdW0CjhIodRi0TJ/qJwC+MdWPDyRkXwwwioFCYh1SLSywHDAWZLnNkmCxMXp\nYUHwBSFogtwAa094xSMkUMADJZEnqpJQ9koKZyVGmJuOfIdF49yCLfpZZLe0e0VaImNkxg7NfgWJ\nmYEusMvk//e/MR67DPgMqFCK6PP5+MdoIQ1BYwB/HKRQEnmiOl/I0AD+cxSf2Kn96KtIZLEmidbk\nELBFhhPKY1OSIFJ7WAAulI5XYtATktgAXvEICRTwQEnkiaokROIV9xBy5DssGudWs1dUcojslnYS\n0hIZI5vMobnJzEAX2GXy1ct4EX0eaLmcxWJaNQbwj2NwhkYJ9Xnpx8cnk5oPMbYUCYhnvgGJ9lwK\neXiRhSSRh9GlaejtNilCCyTNDRDG1ggpFJgll7YGkhCJhbyDWxwWzXMrm7foFZUcIo9rJyEtkTGy\n5R5hZqAr7KyAJl9d7OESkCeHABrKWez6g5bliNiUVgFnaJTQXpR+fPyOJ6bhyCRI4FRkkVivGVpY\npOFlFpJEGpZDugva1U1JKEOmjFLhdmp9c+O6RaLALKl09JCEyMFhF7dEh6VvHrrnVrJF2SsqOUQa\nlwLtO/RJs7RExiCdHmDmhC6xkwIG+fpil8khgIZyFru+Lm4P4I9zAcqkvKj48fHbs3VESBFCH2It\nEh3JITAccEJ5bEoSGBb297EAYCgFoQyZMkrlTDC+WwQKeKAk8lhVEiIhtPsIOfKR4WAW2j23YIte\nFhjX4xVpiYxBDebQ7FWQmDmjC2woYGE3LPaMO9eAhnJu7DqeL4C4ykApxFib88EKySE6xllYy/CN\nJPLwLm3ysHQzY6nY05Yg6Yfk3+CVrYRWO25ikWzRqczoOOqnjEFbVR3TBaXqoBvY5Ne70ZIV0Ng7\nLfaBTDB44okS2pZKGnV3OFvHImARm00TW7tTjuThPSxCZIFEciOLhANNcm6AIULpYXoPH+oVnQkm\nqdhUWeRuYwFbmCfCghbZLeNeyRgFQVmxYTO76CXyey32+Gix+Q8HKZTNA0nU3eFsHeEKOGZ7Xi4Q\nsmmiDl0k4oB5OIGLbdU/Grh6AwsuZyUi0ip0EQIPlFxAYYt4xcgEUxjId2W5W1gEzCGvTMQtw14h\nGJwb2QJNlGRXuUrN7PcskR9Y7OtpiR/D1o/zfSXYHpwLULKdbRvD2ToCfBa7hUQAWoZnuDbVSa8t\nLAgMNEFuAOx6ule2ZIJJbtnGArb4CV6BH1gJxVCynZs3SlOyd7Hj2IUyKdeVcwQHKZQJpb2yJVsH\nxG4jkc4FgGtXPvXcwiKBhMuUNVUHcgOkXc/2yrSFEOy4jQVsAbRki/bKFhJ1KVAMZX1Ee48y+d7F\n7srtyzniwrTueEy2jieTmB7DgtjwdxB6MouHe4U46KnV3Rb79CuydTyVxF8mmNap/lS3/L5MMDDz\nfov9LxMMbNpcPiPnyDNzqDwutc0zWTzDK81TZNeO5cXeEI2evhFdNBsJ6G+Gf2sgOv8OodKvgYQW\nL0n8JYuoWJntbnDLkFf+kkUwM/fasLzYRyLdq7QEdZD4AHUszXpLQP8G+Uq8IvGXLIJNs8pGg1tG\nvPKXLILbvdeG5cVejUZvRLpXaQmqIOHN93C2iIaA/nX5WrwiEd7Lz89o/bwZG0hMDSyIm0dU+XGE\nRkj8JYsgsyBUe21YXuzVaPQ60v1IQH8npj1n5mzVA/pXSWjxmkT4ZcYvTxbRkq3B8YHRXHXLiD21\nW0ZQDG2dpioJZxxtlhp+Z7KI8mKvRaPXke5HAvp7Me2pzdx6PaB/jYQWb5D49ckiWrI1uE7QO6pu\nEV5pEW+4ZQBF6+q2VEm4I/MOoeG3JosoL/ZKNHoj0r1+XjcxECMtgBvTPlusUNMB/Y/i8RCTr8P1\nG+INElUWhi0KWstdmoXsQbb/TULCLYyEMSsMexpuGUAhhqxVu7zigDEN9ewzaEYgYawxbDWzy4u9\nEo3eiHQ/ENDfjWnvUBTNKqC/NFSFhCHeIDExlLbkBkLR4qZiUejNVNH5B34oIeEWRqLNnoZbBlAK\nhlW7eryiBi8NTEPtLGMJxXHCWGPYaiIUF3slGr0R6X4goL8f096hKJrVL/mEoSokDPEGiYmhtCU3\nEHqWNxULvztTRecf+KmEuFsYiTZ7Gm4ZQPHtauzp8IoxOjYxDbWzjCU0A3FjjWHriVBc7IVo9PsE\n9C/HtOcczXj5oYtKsyAMVSDhiEf8hf83ySLiY91kbD9bQ+pCKp5Xam6hXmkUv7rlAV5xEj0Yc4sw\nl1XbEpRnh5XFHLYVLGDbM7u02EvR6J1I950B/csx7Zk5ebx8sktFaOCGKpFwxK8kQkDCz89w/3+6\nXyaG0pjcgOiIqkuiIxASU0XkH/jJhJhbGIlGe3bOLWeGwhW0dN2i5hYdxes2BuMpnFVSkBlLZaJY\nJJew7YlQWuyMjYxGb0e6700WUYxpz+TPYTznlpBnIXzx9omvGlVsXGEoiiJJ2OJruRXGo/5zEojx\nHTVULKjafv1nESJe0YQ63LLP3LJRLFu6bunwiouRBUpnFRQUxuLg1MxAl9jmzGaLvRTVX0WjhxhW\nLvFMOwL6s9HrhqUGD8ZPI4uTsL/Xj/h3vs2F9UleD4lpfxacBGJ8z6wJC2kSyxzo86MIUa+ES/N3\nKLmrW/b3isjFQN1CSIAMSuGVgmsxYmpylmUsDs7MDPAmbLbYMdIqRTT6cC76WLqhnLeQlqAxoH86\nQ/McJIb8+XVaShYRf/ePcL8qso84KlIwSSIdI00S4UOaOLia8iLZosaCkwjPXPOdsmJB1fbrkhC8\nkojNQ+GVZkIY3keIeiUsdpH/esAtUGPhDxZ7eyV8UxX+0tyiblEkFk2M/32M3Fk6C/QMK3NjcXBm\nZqBL7DQRaGaY5sUuotHj+IdyFYpI5Y0B/XGQqifHmC9kUrIIGllcHX25oWCNuRQkIN4h4eVWkCka\nMLzKgpOgs4qeCJnGlQ1BCJqA2DoaXmklhOGdhKhXNKF+t0ANwaJxbsEWVRLflSwC9CwFubH4vGFm\nxvxwJgLHbl7sbjR6cnrKaQkaA/rjIFVPjiGD8YeVskYWxxketEvvKAUJiGfLLpPoTRZRZSFJENMp\nFolOsSIIgUgmNo9Oi31vt0hC2Svpwiupz+dvao4VwQLao1z7gkUjCdii6pXvShYBepaC3FgFM8OO\nwoQ2+ebFHhbX/ski6EGq/E5TBuPPkcXVE1NuKFhjKTmJLJ4su4bcCq4tSLIELnfZkiSIVMXCGm+0\ncULwcSY2D6kmixCE6PCiWySh7BX9eqHfLVSNwGM8WUQlpLRkkd3S7hUfgziNO4vSk1bmxpLgxMwJ\nnWNjIsTdGbt9sXtpCbJpAnB3QP+g1XKGnoNtJtVVRQbjz79Ax1vxNIQbKjUvFRFSH+ItEgPJIiqZ\nVCQJIlWxEHq7m4JQhsSVTxiJTxH8ZBHSubBLJ6HsFZ39YsQtSY1Iv3tuJVt0zq00TpPw3fB5Dz+I\nfLvd5vvroHd+HEPGCGclekpBbiw5b4iZM7jATgoQ7I7FnnHnGtBQzo3th8KEtmQwsRJYpC5GJUcW\nzweutRs3lDGWNS3iN5LA8E4WGBYUUiyYku0bGZJkhhnwyjTkluwVTWjELewU1s0Ctuj0Clmo416B\n7IrnPCuXjUXM7OJDAUp+58Xen2ch/bqhy7AksrgK6F94falNs4qHaZYOG5JFdLEgUhULrWpTS4JM\ndo3Dugnlc0cPIeIVnSxixC1ZjREWyRb6yFO0ZR437pWMURKVnCStXDQWNbOLnhXI2Hsv9vi0oecv\nH6TaX3PEV13H4/FzTv03HNB/1hLis2licy8Jci7oYUEyw2xjQQwOIiC27OomlId3ECJeCV9wpcSM\nRLvWKsSjHGMBW8QngOI9YFGRlExgA4mEUZKU6fUoSM3so1vk917s64f/vhJ8z3KQmm8rkMONd7C3\nSGTxTWkW0jEymyYK7CSx3qH1skCM7yhxE4sIgL+VSCK2tPcSGnML8co2QtAe5Uqul8Vsi16vpBj8\nQeiwV6hr4Rldjlk5fJsT/zQcb7HIb1jsZmaYqS8twXqGjm8h3m5D54ItAf3zMVIciLtIBCOX0nBw\nHzhbW1gwyEWTTGzd2UcIw7/ZLVAjEexj8YO8khjQCuhtsDKFE3VrSo4udhy7UCZRXQH9cZAaT46x\nKaA/xG8jkc4F38Qimb6QGabLK+nc8U2E4BaUiWAXCzj1m0gkpd0K6I0r6EI7U3JZ7POFgfUxuQ/n\n7vkVAf2fSuIvWYQ7mcSOp7rlVyWLOM9LPFz8n97mv/TDBWHh3s1fEdD/mSQel1uBuO53EHomC/ys\nkhjx361+LWv83yXwp/mfBf4s0GeB/wNJQ+eGb7shzgAAAABJRU5ErkJggg==\n", "text/latex": [ "$$\\left[\\begin{matrix}- {}^\\mathcal{B}C^{\\mathcal{A}}_{21} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{33} - \\omega_{3}\\right) + {}^\\mathcal{B}C^{\\mathcal{A}}_{31} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{23} - \\omega_{2}\\right) & - {}^\\mathcal{B}C^{\\mathcal{A}}_{22} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{33} - \\omega_{3}\\right) + {}^\\mathcal{B}C^{\\mathcal{A}}_{32} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{23} - \\omega_{2}\\right) & - \\omega_{2} {}^\\mathcal{B}C^{\\mathcal{A}}_{33} + \\omega_{3} {}^\\mathcal{B}C^{\\mathcal{A}}_{23}\\\\{}^\\mathcal{B}C^{\\mathcal{A}}_{11} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{33} - \\omega_{3}\\right) - {}^\\mathcal{B}C^{\\mathcal{A}}_{31} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{13} - \\omega_{1}\\right) & {}^\\mathcal{B}C^{\\mathcal{A}}_{12} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{33} - \\omega_{3}\\right) - {}^\\mathcal{B}C^{\\mathcal{A}}_{32} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{13} - \\omega_{1}\\right) & \\omega_{1} {}^\\mathcal{B}C^{\\mathcal{A}}_{33} - \\omega_{3} {}^\\mathcal{B}C^{\\mathcal{A}}_{13}\\\\- {}^\\mathcal{B}C^{\\mathcal{A}}_{11} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{23} - \\omega_{2}\\right) + {}^\\mathcal{B}C^{\\mathcal{A}}_{21} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{13} - \\omega_{1}\\right) & - {}^\\mathcal{B}C^{\\mathcal{A}}_{12} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{23} - \\omega_{2}\\right) + {}^\\mathcal{B}C^{\\mathcal{A}}_{22} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{13} - \\omega_{1}\\right) & - \\omega_{1} {}^\\mathcal{B}C^{\\mathcal{A}}_{23} + \\omega_{2} {}^\\mathcal{B}C^{\\mathcal{A}}_{13}\\end{matrix}\\right]$$" ], "text/plain": [ "⎡-{}_{21}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{33}__\\mathcal{B}C__{\\mathcal{A}}\n", "⎢ \n", "⎢{}_{11}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{33}__\\mathcal{B}C__{\\mathcal{A}} \n", "⎢ \n", "⎣-{}_{11}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{23}__\\mathcal{B}C__{\\mathcal{A}}\n", "\n", " - ω₃) + {}_{31}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{23}__\\mathcal{B}C__{\\math\n", " \n", "- ω₃) - {}_{31}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{13}__\\mathcal{B}C__{\\mathc\n", " \n", " - ω₂) + {}_{21}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{13}__\\mathcal{B}C__{\\math\n", "\n", "cal{A}} - ω₂) -{}_{22}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{33}__\\mathcal{B}C_\n", " \n", "al{A}} - ω₁) {}_{12}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{33}__\\mathcal{B}C__\n", " \n", "cal{A}} - ω₁) -{}_{12}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{23}__\\mathcal{B}C_\n", "\n", "_{\\mathcal{A}} - ω₃) + {}_{32}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{23}__\\mathc\n", " \n", "{\\mathcal{A}} - ω₃) - {}_{32}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{13}__\\mathca\n", " \n", "_{\\mathcal{A}} - ω₂) + {}_{22}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{13}__\\mathc\n", "\n", "al{B}C__{\\mathcal{A}} - ω₂) -ω₂⋅{}_{33}__\\mathcal{B}C__{\\mathcal{A}} + ω₃⋅{}_\n", " \n", "l{B}C__{\\mathcal{A}} - ω₁) ω₁⋅{}_{33}__\\mathcal{B}C__{\\mathcal{A}} - ω₃⋅{}_{\n", " \n", "al{B}C__{\\mathcal{A}} - ω₁) -ω₁⋅{}_{23}__\\mathcal{B}C__{\\mathcal{A}} + ω₂⋅{}_\n", "\n", "{23}__\\mathcal{B}C__{\\mathcal{A}}⎤\n", " ⎥\n", "13}__\\mathcal{B}C__{\\mathcal{A}} ⎥\n", " ⎥\n", "{13}__\\mathcal{B}C__{\\mathcal{A}}⎦" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dbCa = simplify(-skew(aWb_B)*bCa); dbCa" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAABMCAMAAABwH8EjAAAAPFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo1xBWAAAAE3RSTlMA\nMquZdlQQQOkwRM3dIrtmie9sFtv/ogAAAAlwSFlzAAAOxAAADsQBlSsOGwAADZFJREFUeAHtXYuy\n4yoOdOIk927e2fz/vy6vFhISGEjmnKqtcdUMmIdE02Ab3PFZdu9w7Bd13O6P5bh/X3YqJyc81xwP\nsd25SJiyUtionR5qGTl9zn2JYs5KbkUrRiCukYll2b3XgzuOutb5fdzvltO17HVW8vgqqNzdWW6I\nzlgpbdTOz4V3o9yUe4ViyorRGiuJQDw8D/u3p6Q2C27vq89qzJLTYV9QcDmVXmeslDaq589HNStl\nTLlXKKasbDUN+QLEo0nJ8X1YTofnDVVPh/t+v38stydSDst6QTyEK81CSi6tOJOFGWWF6m5HrmoI\nFHVm3GsUM1aKhjROOYg2Jc/Xsr7fd1ByeIUheVxj6Fycb8vhyl3d3rqHCiuLMqOscItb8UPjqhrq\nTrg3UExY2Wo5y+cg2pTcPdzz9RUqn+7gcn0nkk7u/uMt5EPd7F2WsLJoM9pKtrcduwn/vvxRTtQJ\n9waKCSvbbacSHESbkniTOUcGLjQBzpEj19nX1+tFyd7By3hIEFYWbUZboab2RK7l3aSgZMK9gWLC\nSk/jUYaBaFKyi10fg/VNvb1L14qDv0jd3uyhdyf4if6EFXchLM1oK2hnX7gWzxfFLJlwb6CYsNLX\n+lSKgWhSst+v7gq1C/cS98RBPk4+9bpbIxcvdjF/pPlzfu5vN/c85y8h3IojUJixrZAjHkHH315s\nCPgCB8xZlJazZMJ9QvEHQCw1FAxEi5LT/nx5X91q0R9P9/DFj9MbCc9XzsHj17rc7y715C55wkpp\nxrbC/SD+ABEn+EXOuZyZgpIZ9wnF90EsVRQMRIsSYA7hNV5Mc5qfKuq4x1GwOy5X/2x8KystpRnT\nijLrEvJUfLor3/Ow7vFop5ZVghJpq899RPEHQJQo1vuaUDAQgpLT5UpHuTzkd3F0hoTrzy5xMX1y\n88OPam9dHl1mjHacwyQJS6DHbVndzKWrL7uZPS/+uL5CYK3ru9wnFN8HsUgUfr23T6s6BkJQIntP\nnl1z7x79iv6ZGEYYS9PWyzEUh8NsSplJw50P+1w6x8K1MT5WuGXq6v4R3bf8wBDLN2cJmYwo4D6P\nV1cAKLpBoC/Y3CU/PCJRXP0tOa0nGIhuSmgtEq8hYBhhcpxmiSsT2H8/lmJGFWYw3BHy9ot4uG6F\nbTjsHFizJFZpUFJxX0HRCQK1N0HE6xahuLqZj9mB0CHopuT2xibK0/cyGEaY+o8oefnSR3fjRa1U\noDCD4Y4wldLB3c1Mtz3qMi7xHnZ6YWMOA40qNSipuK+g6ASB2psgFoUidJFvOAPRTYmrnHZTwrgH\nwwhTf2APMpL+vCwPdBw6TJrxqRjuCFFShM/Xc30d3/tn2ss5XOgxjz2sxCoNSgoUvrx3a6PoBcFr\nN0EsJQrnOcFgIPopWU6r2yxMa5GA3U8CfyB0UTxen8Pq47Z/0LowlPT/lWYw3BFSQRE53f1bm8Mr\nP3ATeKyFqHyLkqp7A8UACNRug3CbSQUK2rlhIAYoIciIgGGELp2RjVIbIYY7wo3iOZtuiMQN8pqU\noFAKs9uPUKTRnq0VbiqnD3q0ZyA+oAQMIwxuy6V1pS08Ga1ByPPseBiLt3ghdTcXuoSl0t1rnVA+\nuf0MBdXuB+Gcn92N9hyv7AzEPCVgGGHsD3+LGzww3BF2VPc31MMrXjZP5eK9oz4vEt1+hiLXHgCx\n7C7H4/EeUHAQ05SAYYQJZdqe45gbcQx3hI2iImv3PLhNtJj0sJaEonT1JLv9CEUa7dla1aHMeIU3\n7SGNg5ilBAwjJGd7fUOnPB3BcEeoS2ymhFfRm6XsAnD7GQrUhjXbVzOVg5ilBAwjJIentENACc0I\nhjvCZmEz8zF+pcx24PYzFKgNa9l+b0yAmKWk7uxITxH1Mt/LuWG3+3smg6UfRSFBfJ+S5Yht9C/3\nkmkOO6lm5ieJP4lCgrApmdKRlWK0ZcpKZzeWD75GtTn3JYo5K0ZzjCQbhE3JjI5MidHcunFcmGc0\n3EwiNZqZGxKn3CsUU1bqjRI5NgibkhkdmRKj+Ze6fh1UvnlhrdLCPJbZjgo1mll0yr1CMWXFbI+R\naIKwKVE6MmVOieG0GM3t+0hhnjKyKCu6SDUFCqZqgRn3GsWMlWqTVIYFwqak1JEpeaISwxliNLfv\nKYR5WuSorKgmNxK4Gs0sVrpX/rV7A8WEFbM1dqIFwqZE6sjc3kXal4fKUYvhaJOHuR63wipvRrka\nzSxcuFcoNAj3qlRZmrCibNQTLBA2JUJHpuWJM5K6Liv1ths5TI1m5C6LAGGILA1F36akTqMwrJit\nqSQaIExKpI5MyxO1GM4Qoy3jVirNriRvbLpK91pkqUG4V3txJ5M5nLDCam9HDRAmJUKNVsgTbTEc\newNDzRi3QlW7InhdViks3BciSxvEYqCYsFJpj51sgLAoEWo09xBIxvyLCFsMB0kdEwhOWCFHPIId\nE6VybL8uE+5LkaUNAr/LqIHotMIbT/EaCgOERQnZ8ZFS5biYL4iSpM5JMEjlOGFFVEknUh/ItUVM\njWZVFGklChOEa3uoVAOh+sK2IhynE4nCvSlBIQPEJiWlPhC2ZJiUKVWBYJ8VaTOe5Wcgp3IUshym\ns7EqirQ+/xFFFYSSagoXzROBYrfu6cpjgPCU/PPvf+r2lD4wMWxK6qoCwdIKRjvC6H9b5eh24n2L\nw8Fe4BkVU6EUVP0bkroqiKW0gtEuUFhtkSpHJyBhlKj3S//912uISmUPw1PIE8Ew5GSpJOm3KgLB\nwgpGO0Lmr4iGnTlSOfpMekYxBlhROZ9W/FdQVEC4WUIWvVYSfTGOglOi9s03L1yFPhAM+zdoTA5G\nlFQEgoUViNAQElIVCTOe9IEuO7xODcWYe1WtTKj4r6CogHCPbenlshsYwUPs2nEUmRIDxCYlhT6Q\nKGHiSdc6SOqWikBQWcmjnUZ92Y3hvNQHMlmO8bBimvCJFf9cFOdKAUUFhLaSu3YMRa5ngNikxG0e\ncpUjKPE4DUldVSBYWqHRnke9N6kOrQ8k8MYqQlWnhKp/A0UVRL0vBlFkSgwQ25SU+sBszhCj1QWC\nhcgRox0h9V0RUfpAN1TTDZG4KarYpxX/WQLqqqUhWwdR64tRFLkPDRAdlBQQyZzYoxuX1KExCAs3\n1qmU5TA1mlV4Ky35/QgF9UV+6NhyG/JzPQPEPCVZTua9jEvqMNoR9mDhshyuRuupW5aJfj9Dkbt2\nBIW75OPnlRaIaUo+EaNhtCMse6t6zmU5XI1WrWBnZL+foHC2AyXZmu1Npd7W6zv8sNYtsgxd4AQl\ngWHIycjfkKQOox0hWRmIcDXaQLVQFH4/Q4HRDmujrXDlLRCjlIBhyMmoGUOSOox2hGSlPyLUaP3V\nYkn4/QwF+gLWRlvhJomlCxylpO72R8VoTpBUb8knOT+KwgbxPUr+SuqGh4KU1KF6m5IpXVkpTvsr\nsUNn10IpsWtTMqMrU+K0vxK7GhVIlxK7NiUzujIlTvMv4/5K7ND9Zigkdm1KJnRlWpzmdob+SuxM\nJnIil9i1KSl1Zd+R2HVo3HJjN2OWOk1UKkF0uP9ViV2bkkJX9h2JXY/GTfRp+8RSp4kaBYge92Lj\nKxqbsCJa0T7hINqUCHWalpXNSOz6NG5tADJXqdOKH1kLEH3uf1Vi16RE6sq+I7Hr0rjJPt84U1vJ\nkhIJosv970rsmpQIXdl3JHZ9GrcNEmS2UqdJSgSIPvfGe6UJK7KVG2cMRIsSoU77jsTOPxBT45wM\nqqJxoyIsgh2UbYmdoESA6HSfhIK/JLFrUcL641sSu3l1mhSnccmSEtgISgSITve/K7HrpmREnLb8\nAXWaEKcJsY8SDzUoGUHxB0DIDwlCdORHDQMhKLFUYRhlVVmZIU5z30Xr/ZAghvuWOk2K0/wbCpLb\nsBd6wx8SJPcGin4Q35XYCUrQ/VZYkZWJ8UrfdvTqFW9k80OCqL6pTpMSOyH2YQMsNrw5SwibF8fB\nPcKUCVVaJwiM9k0Q7oeA7mBCQf6imCR23ZRUZGVivDJKOtVpqL6pTlMSuyz2oemC3m5QUqCAe4QF\nJZ0g0gtf+cVJNEaEJYpMCQPRTYkSp0VzYrxmcVpNYueumXiRFr9HyBR6an3B0ZQSOyb2Ueq0BiUV\n9xUUvyOx66akLivL4zV/ta5fneavcfH7R/SxRk4F4kpil/c81CqiQYlCQe7RDO8wLRL6QdBoD9II\ntFmHJQqqx39t1E9JTVbGxiuJ09xfc/Dt6fqQYN8H30qJHRP7qNnVoqREkVuvhYL9INC1X5HYDVBS\nkI5myJ/BjkvsaLirri0c8lMu9lHqtCYl3IqPwz3CkD+KgvriGxK7zylh49XBGZbY5ersYTb0S+M/\nLvbR6rT+H0c5jUha7yCMTkdRZEoGQDhXpsTuY0r4eHVO0iZfoztlVqw+qk7jYh9LnSZ9NM7QeoSp\n6CiKQMkoiAWiI+eUg/iAki9I7Ojzhv4pFB9rbPSglWWp06xyVhpmG0IqMyQUxGj/EohZSsAwH68B\n0JDEzv3UzB9ucrGPNVK/dEVMdVpXTVcI7hFSvSEU6IsvgYiUhI4x5KnUxIHIj4rT/s8kdvSnLk/+\nDyweDrSiH+h/q+hPfu9tsdVpVrMG034SBYEIf+ryIGVdg+3+W/zP9MD/AGTI09cjgyJlAAAAAElF\nTkSuQmCC\n", "text/latex": [ "$$\\left[\\begin{matrix}- {}^\\mathcal{B}C^{\\mathcal{A}}_{22} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{33} - \\omega_{3}\\right) + {}^\\mathcal{B}C^{\\mathcal{A}}_{32} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{23} - \\omega_{2}\\right)\\\\{}^\\mathcal{B}C^{\\mathcal{A}}_{12} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{33} - \\omega_{3}\\right) - {}^\\mathcal{B}C^{\\mathcal{A}}_{32} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{13} - \\omega_{1}\\right)\\\\- {}^\\mathcal{B}C^{\\mathcal{A}}_{12} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{23} - \\omega_{2}\\right) + {}^\\mathcal{B}C^{\\mathcal{A}}_{22} \\left(n {}^\\mathcal{B}C^{\\mathcal{A}}_{13} - \\omega_{1}\\right)\\end{matrix}\\right]$$" ], "text/plain": [ "⎡-{}_{22}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{33}__\\mathcal{B}C__{\\mathcal{A}}\n", "⎢ \n", "⎢{}_{12}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{33}__\\mathcal{B}C__{\\mathcal{A}} \n", "⎢ \n", "⎣-{}_{12}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{23}__\\mathcal{B}C__{\\mathcal{A}}\n", "\n", " - ω₃) + {}_{32}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{23}__\\mathcal{B}C__{\\math\n", " \n", "- ω₃) - {}_{32}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{13}__\\mathcal{B}C__{\\mathc\n", " \n", " - ω₂) + {}_{22}__\\mathcal{B}C__{\\mathcal{A}}⋅(n⋅{}_{13}__\\mathcal{B}C__{\\math\n", "\n", "cal{A}} - ω₂)⎤\n", " ⎥\n", "al{A}} - ω₁) ⎥\n", " ⎥\n", "cal{A}} - ω₁)⎦" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dbCa[:,1]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
MachineLearningStudyGroup/Smart_Review_Summarization
ipynbs/Dynamic_Aspect_Extraction_Part_B.ipynb
1
7311
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Dynamic Aspect Extraction for `camera` Reviews Part B\n", "\n", "Han, Kehang ([email protected])\n", "\n", "As a follow-up demonstration, this ipynb is focused on extracting aspects from datasets called `AmazonReviews`, which has much more reviews on cameras. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Set up" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import json\n", "import nltk\n", "import string\n", "\n", "from srs.utilities import Product, AspectPattern" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## s1: load raw data from `AmazonReviews` datasets" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "product_name = 'B00000JFIF'\n", "reviewJsonFile = product_name + '.json'\n", "product = Product(name=product_name)\n", "product.loadReviewsFromJsonFile('../data/trainingFiles/AmazonReviews/cameras/' + reviewJsonFile)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## s2: define aspect patterns" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "aspectPatterns = []\n", "# define an aspect pattern1\n", "pattern_name = 'adj_nn'\n", "pattern_structure =\"\"\"\n", "adj_nn:{<JJ><NN.?>}\n", "\"\"\"\n", "aspectTagIndices = [1]\n", "aspectPattern = AspectPattern(name='adj_nn', structure=pattern_structure, aspectTagIndices=aspectTagIndices)\n", "aspectPatterns.append(aspectPattern)\n", "# define an aspect pattern2\n", "pattern_name = 'nn_nn'\n", "pattern_structure =\"\"\"\n", "nn_nn:{<NN.?><NN.?>}\n", "\"\"\"\n", "aspectTagIndices = [0,1]\n", "aspectPattern = AspectPattern(name='nn_nn', structure=pattern_structure, aspectTagIndices=aspectTagIndices)\n", "aspectPatterns.append(aspectPattern)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## s3: match sentence to pattern to extract aspects" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# pos tagging\n", "for review in product.reviews:\n", " for sentence in review.sentences:\n", " sentence.pos_tag()\n", " sentence.matchDaynamicAspectPatterns(aspectPatterns)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## s4: statistic analysis on aspects extracted across all reviews" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "word_dict = {}\n", "for review in product.reviews:\n", " for sentence in review.sentences:\n", " for aspect in sentence.dynamic_aspects:\n", " if aspect in word_dict:\n", " word_dict[aspect] += 1\n", " else:\n", " word_dict[aspect] = 1" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[(u'camera', 47),\n", " (u'batteries', 22),\n", " (u'pictures', 18),\n", " (u'cameras', 13),\n", " (u'battery life', 12),\n", " (u'ac adapter', 11),\n", " (u'quality', 11),\n", " (u'shots', 10),\n", " (u'zoom', 9),\n", " (u'memory card', 9),\n", " (u'time', 8),\n", " (u'media', 7),\n", " (u'price', 7),\n", " (u'software', 7),\n", " (u'resolution', 7)]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "word_sorted = sorted(word_dict.items(), key=lambda tup:-tup[1])\n", "word_sorted[:15]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## s5: save most frequent dynamic aspects" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import json\n", "word_output = open('../data/word_list/{0}_wordlist.txt'.format(product_name), 'w')\n", "json.dump(word_sorted[:15], word_output)\n", "word_output.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## s6: stemming analysis" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from nltk.stem import SnowballStemmer\n", "stemmer = SnowballStemmer('english')" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# collect word with same stem\n", "stemmedWord_dict = {}\n", "for word in word_dict:\n", " stemmedWord = stemmer.stem(word)\n", " if stemmedWord in stemmedWord_dict:\n", " stemmedWord_dict[stemmedWord] += word_dict[word]\n", " else:\n", " stemmedWord_dict[stemmedWord] = word_dict[word]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[(u'camera', 61),\n", " (u'batteri', 26),\n", " (u'pictur', 23),\n", " (u'shot', 13),\n", " (u'battery lif', 12),\n", " (u'qualiti', 11),\n", " (u'ac adapt', 11),\n", " (u'memory card', 10),\n", " (u'resolut', 9),\n", " (u'zoom', 9),\n", " (u'featur', 9),\n", " (u'problem', 8),\n", " (u'time', 8),\n", " (u'card', 7),\n", " (u'softwar', 7)]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# frequency ranking\n", "stemmedWord_sorted = sorted(stemmedWord_dict.items(), key=lambda tup:-tup[1])\n", "stemmedWord_sorted[:15]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# save most frequent stemmed words\n", "stemmedWord_output = open('../data/word_list/{0}_stemmedwordlist.txt'.format(product_name), 'w')\n", "json.dump(stemmedWord_sorted[:15], stemmedWord_output)\n", "stemmedWord_output.close()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
jasonost/clinicaltrials
trial_criteria/Admin_Interaction.ipynb
1
16429
{ "metadata": { "name": "", "signature": "sha256:e0714909926f33bd9c934f43056d0ce53246aedc5faced57a65a751ac4e6b8e8" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import sqlalchemy\n", "from sqlalchemy import create_engine\n", "from sqlalchemy.sql import select, delete, or_\n", "import re\n", "import db_connect\n", "from db_tables import metadata, CriteriaConceptStaging, ConceptPredictors, UserHistoryCriteria, Users, CriteriaConceptLookup\n", "from db_tables import ConceptPredictorsReject, ConceptTerms, ConceptTermsReject, CriteriaText, CriteriaConcept" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "def get_concepts(concept_id, engine):\n", " \n", " #check if the concept is new or existing\n", " new_concept = [r[0] for r in engine.execute(select([CriteriaConceptStaging.c.new_concept], distinct=True).\\\n", " where(CriteriaConceptStaging.c.concept_id ==\n", " concept_id))][0]\n", " \n", " concept_name = [r[0] for r in engine.execute(select([CriteriaConceptStaging.c.value]).\\\n", " where(CriteriaConceptStaging.c.concept_id ==\n", " concept_id).\\\n", " where(CriteriaConceptStaging.c.update_type ==\n", " 'concept-name'))][0]\n", " concept_terms = [r[0] for r in engine.execute(select([CriteriaConceptStaging.c.value]).\\\n", " where(CriteriaConceptStaging.c.concept_id ==\n", " concept_id).\\\n", " where(CriteriaConceptStaging.c.update_type ==\n", " 'term'))]\n", " \n", " \n", " if new_concept == 1:\n", " #concept is new\n", " existing_concept_terms = []\n", " return concept_name, concept_terms, existing_concept_terms\n", " \n", " \n", " else:\n", " #concept is not new, need to pull old concept data to compare\n", " existing_concept_terms = engine.execute(select([ConceptTerms.c.term]).\\\n", " where(ConceptTerms.c.concept_id ==\n", " concept_id))\n", " existing_concept_terms = [r[0] for r in existing_concept_terms]\n", " \n", " #get new terms in the staging table\n", " new_concept_terms = list(set(concept_terms).difference(set(existing_concept_terms)))\n", " \n", " return concept_name, new_concept_terms, existing_concept_terms" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "def transfer_concept(concept_id, engine, term_set, concept_name):\n", " #pull other data for concept\n", " concept_terms_reject = [r[0] for r in engine.execute(select([CriteriaConceptStaging.c.value]).\\\n", " where(CriteriaConceptStaging.c.concept_id ==\n", " concept_id).\\\n", " where(CriteriaConceptStaging.c.update_type ==\n", " 'term-reject'))]\n", " concept_predictors_reject = [r[0] for r in engine.execute(select([CriteriaConceptStaging.c.value]).\\\n", " where(CriteriaConceptStaging.c.concept_id ==\n", " concept_id).\\\n", " where(CriteriaConceptStaging.c.update_type ==\n", " 'predictor-reject'))]\n", " concept_predictors = [r[0] for r in engine.execute(select([CriteriaConceptStaging.c.value]).\\\n", " where(CriteriaConceptStaging.c.concept_id ==\n", " concept_id).\\\n", " where(CriteriaConceptStaging.c.update_type ==\n", " 'predictor'))]\n", " #write all data into the new tables\n", " #instert data into db\n", " engine.execute(CriteriaConcept.insert(), [{\n", " 'concept_id': concept_id,\n", " 'concept_name':concept_name}])\n", " engine.execute(ConceptTerms.insert(), [{\n", " 'concept_id': concept_id,\n", " 'term':term}\n", " for term in term_set])\n", " engine.execute(ConceptTermsReject.insert(), [{\n", " 'concept_id': concept_id,\n", " 'term':term}\n", " for term in concept_terms_reject])\n", " engine.execute(ConceptPredictors.insert(), [{\n", " 'concept_id': concept_id,\n", " 'predictor':predictor}\n", " for predictor in concept_predictors])\n", " engine.execute(ConceptPredictorsReject.insert(), [{\n", " 'concept_id': concept_id,\n", " 'predictor':predictor}\n", " for predictor in concept_predictors_reject])\n", " \n", " \n", " " ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "def update_user_history(concept_id, choice, term_set, engine):\n", " #keeps track of which concepts were accepted and also which terms were accepted\n", " \n", " #pull all statged data for concept\n", " all_staged_concept = engine.execute(select([CriteriaConceptStaging]).\\\n", " where(CriteriaConceptStaging.c.concept_id ==\n", " concept_id).fetchall())\n", " if choice:\n", " #at least some terms were accepted\n", " #instert data into db\n", " engine.execute(UserHistoryCriteria.insert(),\n", " [{'update_id': value[0],\n", " 'user_id': value[1],\n", " 'update_time': value[2],\n", " 'concept_id': value[3],\n", " 'new_concept': value[4],\n", " 'update_type': value[5],\n", " 'value':value[6],\n", " 'accepted': 0}\n", " if value[5] == 'term' and value[6] not in term_set\n", " else {'update_id': value[0],\n", " 'user_id': value[1],\n", " 'update_time': value[2],\n", " 'concept_id': value[3],\n", " 'new_concept': value[4],\n", " 'update_type': value[5],\n", " 'value':value[6],\n", " 'accepted': 1}\n", " for value in all_staged_concept])\n", " else:\n", " #concept was not accepted\n", " #instert data into db\n", " engine.execute(UserHistoryCriteria.insert(), [{'update_id': value[0]\n", " 'user_id': value[1],\n", " 'update_time': value[2],\n", " 'concept_id': value[3],\n", " 'new_concept': value[4],\n", " 'update_type': value[5],\n", " 'value':value[6],\n", " 'accepted': 0}\n", " for value in all_staged_concept])\n", " #delete from staging table\n", " engine.execute(delete(CriteriaConceptStaging).where(CriteriaConceptStaging.c.concept_id == concept))" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "def tag_criteria_sentences(concept_id, engine):\n", " tagged_sentences = []\n", " #pull the accepted terms with term_ids\n", " term_list = engine.execute(select([ConceptTerms.c.term, ConceptTerms.c.term_id]).\\\n", " where(ConceptTerms.c.concept_id == concept_id)).fetchall()\n", " \n", " criteria_text = engine.execute(select([CriteriaText.c.criteria_text,\n", " CriteriaText.c.criteria_text_id]).\\\n", " where(or_(CriteriaText.c.criteria_text.op('rlike')('[[:<:]]' + t[0] + '[[:>:]]')\n", " for t in term_list))).fetchall()\n", " \n", " #find all the sentences where a concept term occurs\n", " for sent, sent_id in criteria_text:\n", " for term, term_id in term_list:\n", " if term in sent.lower():\n", " #check if there is a negative in the sentence related to the term.\n", " #the negative term has to be within 3 words of the concept term\n", " #or at the beginning of the sentece\n", " string = sent.lower()\n", " negative_pattern_start = r\"^[not|no|isn't|didn't]\"\n", " negative_beginning = re.search(negative_pattern_start, string)\n", " negative_in_sentence = re.search(\"[not|didn't|isn't|no]\\W+(?:\\w+\\W+){1,2}%s\" % (term), string)\n", " if negative_beginning or negative_in_sentence:\n", " inverse = 1\n", " else:\n", " inverse = 0\n", " tagged_sentences.append((sent_id, term_id, inverse))\n", " \n", " #write tagged sentences to db\n", " engine.execute(CriteriaConceptLookup.insert(), [{'criteria_text_id': v[0],\n", " 'term_id': v[1],\n", " 'concept_id': concept_id,\n", " 'inverse': v[2]}\n", " for v in tagged_sentences])" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 18 }, { "cell_type": "code", "collapsed": false, "input": [ "string = \"I am not happy happy is a test\"\n", "negative_pattern_start = r\"^[not|no|isn't|didn't]\"\n", "negative_beginning = re.search(negative_pattern_start, string)\n", "negative_in_sentence = re.search(\"[not|didn't|isn't|no]\\W+(?:\\w+\\W+){1,2}is\", string)\n", "if negative_beginning or negative_in_sentence:\n", " print 'inverse'\n", "#[(m.start(0), m.end(0)) for m in re.finditer(negative_pattern_start, string)]" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "inverse\n" ] } ], "prompt_number": 124 }, { "cell_type": "code", "collapsed": false, "input": [ "print re.search(\"[not|didn't|isn't|no]\\W+(?:\\w+\\W+){1,2}is\", string)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "None\n" ] } ], "prompt_number": 119 }, { "cell_type": "code", "collapsed": false, "input": [ "def admin_action_response(concept_id, concept_name, accepted_terms):\n", " '''This is run in response to the admins actions on the criteria review page'''\n", " #initialize the connection to the db\n", " engine = create_engine('mysql+pymysql://' + db_connect.conn)\n", " metadata.create_all(engine)\n", " \n", "\n", " if len(accepted_terms) > 0:\n", " #at least some terms in the concept have been accepted\n", " tansfer_concept(concept_id, engine, accepted_terms, concept_name)\n", " #transfer data to user history table and delete from staging table\n", " choice = True\n", " update_user_history(concept_id, choice, accepted_terms, engine)\n", " #tag sentences with the new concept\n", " tag_criteria_sentences(concept_id, engine)\n", " else:\n", " #transfer data to user history table and delete from staging table\n", " choice = False\n", " update_user_history(concept_id, choice, accepted_terms, engine)\n", " \n", " criteria_review_page_data()\n", " " ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "def criteria_review_page_data(concept_id=False):\n", " '''This gets activated when an admin chooses to review staged criteria concepts\n", " when the criteria review page is loaded'''\n", " #initialize the connection to the db\n", " engine = create_engine('mysql+pymysql://' + db_connect.conn)\n", " metadata.create_all(engine)\n", " \n", " #pull all the concept id's of staged concepts\n", " concept_ids = [r[0] for r in engine.execute(select([CriteriaConceptStaging.c.concept_id],\n", " distinct=True))]\n", " \n", " #get concept name list\n", " concept_names = [r[0] for r in engine.execute(select([CriteriaConceptStaging.c.value],\n", " distinct=True).\\\n", " where(CriteriaConceptStaging.c.update_type == 'concept-name'))]\n", " \n", " \n", " if concept_id:\n", " pass\n", " else:\n", " concept_id = concept_ids[0]\n", " \n", " concept_name, concept_terms, existing_concept_terms = get_concepts(concept_id, engine)\n", " \n", " return (concept_ids, concept_names, concept_id, concept_terms,\n", " existing_concept_terms, concept_name)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "main()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "engine = create_engine('mysql+pymysql://' + db_connect.conn)\n", "metadata.create_all(engine)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
BBN-Q/Auspex
doc/examples/Example-Channel-Lib.ipynb
1
854914
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example Q2: Save and Loading Channel Library Versions\n", "This example notebook shows how one may save and load versions of the channel library.\n", "\n", "© Raytheon BBN Technologies 2018" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Saving Channel Library Versions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We initialize the channel library as shown in tutorial *Q1*:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "A database item with the name q1 already exists. Updating parameters of this existing item instead.\n", "A database item with the name BBNAPS1 already exists. Updating parameters of this existing item instead.\n", "A database item with the name BBNAPS2 already exists. Updating parameters of this existing item instead.\n", "A database item with the name X6_1 already exists. Updating parameters of this existing item instead.\n", "A database item with the name Holz1 already exists. Updating parameters of this existing item instead.\n", "A database item with the name Holz2 already exists. Updating parameters of this existing item instead.\n" ] } ], "source": [ "from QGL import *\n", "\n", "cl = ChannelLibrary(\":memory:\")\n", "q1 = cl.new_qubit(\"q1\")\n", "aps2_1 = cl.new_APS2(\"BBNAPS1\", address=\"192.168.5.101\") \n", "aps2_2 = cl.new_APS2(\"BBNAPS2\", address=\"192.168.5.102\")\n", "dig_1 = cl.new_X6(\"X6_1\", address=0)\n", "h1 = cl.new_source(\"Holz1\", \"HolzworthHS9000\", \"HS9004A-009-1\", power=-30)\n", "h2 = cl.new_source(\"Holz2\", \"HolzworthHS9000\", \"HS9004A-009-2\", power=-30) \n", "cl.set_control(q1, aps2_1, generator=h1)\n", "cl.set_measure(q1, aps2_2, dig_1.ch(1), generator=h2)\n", "cl.set_master(aps2_1, aps2_1.ch(\"m2\"))\n", "cl[\"q1\"].measure_chan.frequency = 0e6\n", "cl.commit()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us save this channel library for posterity:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "cl.save_as(\"NoSidebanding\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we adjust some parameters and save another version of the channel library" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "cl[\"q1\"].measure_chan.frequency = 50e6\n", "cl.commit()\n", "cl.save_as(\"50MHz-Sidebanding\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Maybe we forgot to change something. No worries! We can just update the parameter and create a new copy." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table><tr><th>id</th><th>Year</th><th>Date</th><th>Time</th><th>Name</th></tr><tr><tr><td>1</td><td>2019</td><td>Apr. 18</td><td>11:25:20 AM</td><td>working</td></tr><tr><td>2</td><td>2019</td><td>Apr. 18</td><td>11:25:37 AM</td><td>NoSidebanding</td></tr><tr><td>3</td><td>2019</td><td>Apr. 18</td><td>11:25:38 AM</td><td>50MHz-Sidebanding</td></tr><tr><td>4</td><td>2019</td><td>Apr. 18</td><td>11:25:39 AM</td><td>50MHz-Sidebanding</td></tr></tr></table>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cl[\"q1\"].pulse_params['length'] = 400e-9\n", "cl.commit()\n", "cl.save_as(\"50MHz-Sidebanding\")\n", "cl.ls()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see the various versions of the channel library here. Note that the user is *always* modifying the working version of the database: all other versions are archival, but they can be *restored* to the current working version as shown below." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Loading Channel Library Versions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us load a previous version of the channel library, noting that the former value of our parameter is restored in the working copy. **CRUCIAL POINT**: do not use the old reference `q1`, which is no longer pointing to the database since the working db has been replaced with the saved version. Instead use dictionary access `cl[\"q1\"]` on the channel library to return the first qubit: " ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.0" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cl.load(\"NoSidebanding\")\n", "cl[\"q1\"].measure_chan.frequency" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's load the *second oldest* version of the 50MHz-sidebanding library:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2e-08, 50000000.0)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cl.load(\"50MHz-Sidebanding\", -1)\n", "cl[\"q1\"].pulse_params['length'], cl[\"q1\"].measure_chan.frequency" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Compiled 11 sequences.\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6280b8a0551141928c80fe8cc2b19c15", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(IntSlider(value=1, description='Segment', max=11, min=1), Figure(animation_duration=50, axes=[A…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# q1 = QubitFactory(\"q1\")\n", "plot_pulse_files(RabiAmp(cl[\"q1\"], np.linspace(-1, 1, 11)), time=True)" ] }, { "attachments": { "Screen%20Shot%202019-03-13%20at%2012.28.08%20PM.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAIdCAYAAACN9VEGAAAKzWlDQ1BJQ0MgUHJvZmlsZQAASImVlwdQU+kWgP97b3qhJUQ6oTdBepUSegAF6WAjJCEJJYQUVOzK4gqsBRURLCu6IqLgWgBZCyKKbRFsYF2QRUVZFws2VN4FHmH3vXnvzTszZ/7vnnv+U+78/8y5AFC1OBJJJqwGQJZYLo0O8WcmJiUz8X0AAQRABupAjcOVSVhRUREAlcn17/L+LoDG1lu2Y7H+/f1/FXUeX8YFAIpCOZUn42ahfALVb1yJVA4AgjIwWSSXjHE3ynQpWiDKg2MsGGfMWBx66gTTx31iowNQtgSAQOFwpAIAKM6onZnLFaBxKLEo24t5IjHK+Sj7cIUcHsqtKE/Pysoe4yGULVP/Ekfwt5ipypgcjkDJE72MCyFQJJNkcpb8n5/jf0tWpmIyhzmqFKE0NHqCoe6M7HAli1NnR06yiDfpD3ULFaFxk8yVBSRPMo8TGK7cmzk7YpLTRMFsZRw5O3aS+bKgmEmWZkcrc6VJA1iTzJFO5VVkxCntQj5bGT9PGJswybmi+NmTLMuICZ/yCVDapYpoZf18cYj/VN5gZe9Zsr/0K2Ir98qFsaHK3jlT9fPFrKmYskRlbTx+YNCUT5zSXyL3V+aSZEYp/fmZIUq7LDdGuVeOHsipvVHKb5jOCYuaZBALhEABxIAH+EAKUkE2yARywASBQARkQII+cQB6nOT8xfKx5gKyJUukIoFQzmSht47PZIu5dtOZjvYOHgCM3eGJI/KWMX43IcbVKVtOMwAehahRMGXjmABw6ikAtPdTNpM36PHaBMCZDq5CmjthG79rWEACqoAOtIEBMAGWwBY4AlfgBfxAEAgDkWgnSWAB4KL9ZKGdLALLwGpQAIrAJrANlIM9YB84CI6AY6ABnAbnwSVwDXSAO+AB6AH94CUYAu/BCARBeIgK0SBtyBAyg2wgR8gd8oGCoAgoGkqCUiABJIYU0DJoLVQElUDl0F6oGvoZOgWdh65AndA9qBcagN5An2EEpsB0WB82h2fA7jALDodj4fmwAM6B8+B8eANcBlfCh+F6+Dx8Db4D98Av4WEEIGSEgRghtog7EoBEIslIGiJFViCFSClSidQiTUgbcgvpQQaRTxgchoZhYmwxXphQTByGi8nBrMAUY8oxBzH1mFbMLUwvZgjzDUvF6mFtsJ5YNjYRK8AuwhZgS7EHsCexF7F3sP3Y9zgcjoGzwLnhQnFJuHTcUlwxbheuDteM68T14YbxeLw23gbvjY/Ec/ByfAF+B/4w/hz+Jr4f/5FAJhgSHAnBhGSCmLCGUEo4RDhLuEl4RhghqhHNiJ7ESCKPuIS4kbif2ES8QewnjpDUSRYkb1IsKZ20mlRGqiVdJD0kvSWTycZkD/Icsoi8ilxGPkq+TO4lf6JoUKwpAZR5FAVlA6WK0ky5R3lLpVLNqX7UZKqcuoFaTb1AfUz9qEJTsVNhq/BUVqpUqNSr3FR5pUpUNVNlqS5QzVMtVT2uekN1UI2oZq4WoMZRW6FWoXZKrUttWJ2m7qAeqZ6lXqx+SP2K+nMNvIa5RpAGTyNfY5/GBY0+GkIzoQXQuLS1tP20i7R+Oo5uQWfT0+lF9CP0dvqQpoams2a85mLNCs0zmj0MhGHOYDMyGRsZxxh3GZ+n6U9jTeNPWz+tdtrNaR+0dLX8tPhahVp1Wne0PmsztYO0M7Q3azdoP9LB6FjrzNFZpLNb56LOoC5d10uXq1uoe0z3vh6sZ60XrbdUb5/edb1hfQP9EH2J/g79C/qDBgwDP4N0g60GZw0GDGmGPoYiw62G5wxfMDWZLGYms4zZyhwy0jMKNVIY7TVqNxoxtjCOM15jXGf8yIRk4m6SZrLVpMVkyNTQdJbpMtMa0/tmRDN3M6HZdrM2sw/mFuYJ5uvMG8yfW2hZsC3yLGosHlpSLX0tcywrLW9b4azcrTKsdll1WMPWLtZC6wrrGzawjauNyGaXTed07HSP6eLpldO7bCm2LNtc2xrbXjuGXYTdGrsGu1czTGckz9g8o23GN3sX+0z7/fYPHDQcwhzWODQ5vHG0duQ6VjjedqI6BTutdGp0eu1s48x33u3c7UJzmeWyzqXF5aurm6vUtdZ1wM3ULcVtp1uXO909yr3Y/bIH1sPfY6XHaY9Pnq6ecs9jnn962XpleB3yej7TYiZ/5v6Zfd7G3hzvvd49PkyfFJ8ffXp8jXw5vpW+T/xM/Hh+B/yesaxY6azDrFf+9v5S/5P+HwI8A5YHNAcigSGBhYHtQRpBcUHlQY+DjYMFwTXBQyEuIUtDmkOxoeGhm0O72PpsLruaPRTmFrY8rDWcEh4TXh7+JMI6QhrRNAueFTZry6yHs81mi2c3RIJIduSWyEdRFlE5Ub/Mwc2JmlMx52m0Q/Sy6LYYWszCmEMx72P9YzfGPoizjFPEtcSrxs+Lr47/kBCYUJLQkzgjcXnitSSdJFFSYzI+OT75QPLw3KC52+b2z3OZVzDv7nyL+YvnX1mgsyBzwZmFqgs5C4+nYFMSUg6lfOFEcio5w6ns1J2pQ9wA7nbuS54fbytvgO/NL+E/S/NOK0l7LvAWbBEMCH2FpcJBUYCoXPQ6PTR9T/qHjMiMqozRzITMuixCVkrWKbGGOEPcmm2QvTi7U2IjKZD05HjmbMsZkoZLD8gg2XxZo5yODkvXFZaK7xS9uT65FbkfF8UvOr5YfbF48fUl1kvWL3mWF5z301LMUu7SlmVGy1Yv613OWr53BbQidUXLSpOV+Sv7V4WsOriatDpj9a9r7NeUrHm3NmFtU75+/qr8vu9CvqspUCmQFnSt81q353vM96Lv29c7rd+x/lshr/BqkX1RadGXYm7x1R8cfij7YXRD2ob2ja4bd2/CbRJvurvZd/PBEvWSvJK+LbO21G9lbi3c+m7bwm1XSp1L92wnbVds7ymLKGvcYbpj044v5cLyOxX+FXU79Xau3/lhF2/Xzd1+u2v36O8p2vP5R9GP3XtD9tZXmleW7sPty933dH/8/raf3H+qPqBzoOjA1ypxVc/B6IOt1W7V1Yf0Dm2sgWsUNQOH5x3uOBJ4pLHWtnZvHaOu6Cg4qjj64ueUn+8eCz/Wctz9eO0JsxM7T9JOFtZD9UvqhxqEDT2NSY2dp8JOtTR5NZ38xe6XqtNGpyvOaJ7ZeJZ0Nv/s6Lm8c8PNkubB84LzfS0LWx5cSLxwu3VOa/vF8IuXLwVfutDGajt32fvy6SueV05ddb/acM31Wv11l+snf3X59WS7a3v9DbcbjR0eHU2dMzvP3vS9ef5W4K1Lt9m3r92Zfafzbtzd7q55XT3dvO7n9zLvvb6fe3/kwaqH2IeFj9QelT7We1z5m9VvdT2uPWd6A3uvP4l58qCP2/fyd9nvX/rzn1Kflj4zfFb93PH56YHggY4Xc1/0v5S8HBks+EP9j52vLF+d+NPvz+tDiUP9r6WvR98Uv9V+W/XO+V3LcNTw4/dZ70c+FH7U/njwk/unts8Jn5+NLPqC/1L21epr07fwbw9Hs0ZHJRwpZ3wUQFCF09IAeFMFADUJnR06ACDNnZixxwWa+C8YJ/CfeGIOHxdXAKr8AIhbBUAEOqPsRtUMZQq6jo1JsX4AdnJS6j9FlubkOBGLgk6b2I+jo2/1AcA3AfBVOjo6smt09Ot+tNh7ADTnTMz2Y4JD/3hKLLQZxPDOYjL4V/kHr3YYTpaG/8gAAAGdaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjYxODwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj41NDE8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4Kbx0cbQAAQABJREFUeAHs3QecVNX58PEH2F0WWJogSJHeUVCaRizBiAUDKlEs+ceKijWJGlveRI2JMRpjjA1QbNgbSrEj9kIRRKRLkbJUaQsuLMu89zl4rjPD7OzM7MzcOzO/8/nMzu33nO+Z3Xn23HvOrRZwkpAQQAABBBBAAAEEfCdQ3Xc5IkMIIIAAAggggAACRoBAjQ8CAggggAACCCDgUwECNZ9WDNlCAAEEEEAAAQQI1PgMIIAAAggggAACPhUgUPNpxZAtBBBAAAEEEECAQI3PAAIIIIAAAggg4FOBmAK19evXy4wZM2TdunWeFmPPnj0yf/580ffgNHnyZDn//PPd16RJk4JXJzx9zTXXyOuvv57Q/jrqSWlpadR9d+zYEXU9KxFAAAEEEEAgtwWiBmoaEF177bXSpEkT6dOnjzRt2tQEQzt37vRE7ZNPPpGuXbuKvgenmjVrSsOGDc3rySeflG+//TZ4dcLTzzzzjHzzzTdx7b969Wq56667pEOHDhGDvJKSEhk7dqwceeSRct1118V1bDZGAAEEEEAAgdwSiBqo3XvvvfLII4/Ie++9J7t375ZPP/1UXn31VfnHP/7hiVK/fv3k7bffFn0PThr0aF71Vbdu3eBVaZ3++9//Li1atJCJEyfKkiVL9jn3O++8Y/L373//W2bPnr3PehYggAACCCCAAALBAlEDNW0Zuuqqq+RXv/qV1KhRQ4444ggTpM2aNcs9xubNm2X48OGmte3AAw8UvVz4448/mvWLFi2Szp07y+mnny716tWTCy64QAYNGmS2ffjhh802emmxZ8+e8te//lV0f3397W9/C7m8qcfU4+h2mp958+a55491YteuXe45tGVQ87xly5aQ3Z9++mnp3r27yauut+UI2SjKzKmnniqbNm2SN954I+JW2hq4fPly+frrr6VLly4Rt4lloQaCvXv3NvlUl/vuuy9kt7Vr18pvf/tbd/2dd94Z4qlB94033uh633DDDcZ32rRp5jh33HGHDB06NOSY+hl44IEH3GWVeWp9/vGPf5Tbb7/dnEfNb7rpJgl+EMbKlSvNZ0PXab3rPnrc4KStmlrv+vk58cQTZcGCBcGrTVAczSJkY2YQQAABBBDINAF9hFSktHXrVn20VOD555+PtNpddtRRRwWcS6MB53JeYNSoUQGnRStwzjnnmPVOq5E5hnP5NHDxxRebaefLOvC73/3ObOcEDIGnnnrKLNfjOIFS4JJLLjHzo0ePds/hBD6B+++/P6D7ap4+//xzd134hJ7/X//6V/jiwIgRI8w5H330UZNXzfMpp5zibvfxxx+bY59xxhmBZ599NjB48GAz7wQa7jaxTmzbts3sG82ub9++gcsuuyzWQ7rbOffomWOrp9O6GHCCLDP/4osvmm2cy9KBTp06BXr06BF45ZVXAk6wbdb/73//c4/hBMJm2S233BKYMGFCoH///mb+ww8/NNv84Q9/CPTq1cvdXidatmwZcAIpd1llnhdddJE55kknnRR47rnnAldffbWZd4JMcwwnCDbH7NatW0Dz7gSBbp7sSXQ/re9bb7018Nprr5l8ar1t377dbFKZhT0O7wgggAACCGSqgLZwRExOq4z5khw/fnzE9brQuRRqtnEujbrbOPeImWXfffddwAZq+oX65ZdfmuXLli0L2KDIuZ/LDdQ2btzoHuPYY4/dJ1DQlU5LmjlGvIGanlO/8DUAs2ncuHFm2apVq8wiDR7btWsX0OBRkwY8GvT5LVDT+tCyqKlNziVXE8jovJZR12uZbXJatkzZ7LyWSwMpm+bOnWv2iTVQi8VTj68Bozpqcu53NAH9X/7yFzNvgzCn1dXM6w9dpwGmTRocauBuU3FxscmnDUors7D78Y4AAggggECmCuQ5X+oRU/Xqe6+KlpeXR1yvC+1N+8ccc4y7zcCBA820Xp5s1aqVu9weTxcET9sNioqK7KS5PJrMG+3nzJljjq0dDZyWGTNtL3vqvWTNmzc3ZdHLsnqJV1NBQYHUqlXLTPvph96P5wSU4rTIybBhw+SEE04QpwVM6tSpY7JpL0tff/31brYXL15s7pnTS55Oa5Q4LX5i60k30rLGk2Lx1OPtv//+7rGrVasmTuBlLg3rOic4NPPa6cImveStL016CVkvjU6fPl3OPPNMu4l510vqmiqzMBvxAwEEEEAAgQwWqDBQq1+/vilW+JAc2qvRaYUygYK9n8gGN7qD9sDUVJWeofYYTvQr+gVf1eRcxjWH6NixowQHhIceeqgJJnSlDqWRn59f1VOlfH/t3ao9UZ3Lqub+LA3WtFeudvg4+OCDRe8ZdFrMTDBnM6OB3fHHH2/uDysrKzOLKwvONKirKMXiGWnf4M+Jfnai5UGDSU3aOUPzb5PeW+dcljWzlVnYfXhHAAEEEEAgUwUqDNQ0aHHuXZK33npLnMtPbvluvvlm0xoydepU0cBHk7awaJCgSVtANAW3lJgFlfzQoMwmPbZz2SwpQZoe0+bTue/MBCz2PBq02OBMb8rX8/o9aUDmXHo0nSEuvPBCcS4Zi3Ofl7nR37lH0HRS0CBHWyQbNWrkFkcDr7y8PGncuLFZpvV02mmnmelge12gAdCaNWvMOv2hw7TYoFznY/HU7aKl9u3bm1a+H374Qfbbbz+z6QcffGDG69MhYTRA06Sfq+BexsF1VpmFOQA/EEAAAQQQyGCBqL0+9ZKacy+XaADg3B9kWnH08qEN3AYMGGBaO3ReL2XNnDnT9MrUAM8GbrHa/PnPfxa9RKc9L3WcsfPOO8/dVXv6ffbZZ24QqJf3dN5eAtO86by+NC1dutRM216M2nJ2+OGHi3PflEyZMsUECP/9739DLsXp+XT4EacjgsmH9nwMb010M+ThhF4OdDoSGCft3WkHItZWNU1nnXWWaVE7++yzTQCtl6e1B+uQIUPcXDs39ouWTwcGVlunU4G7TicOOeQQU3bnPjJzDP0cBFvE4hlywAgzv/nNb0w+nU4JxluDZK0fe1lVW9+0l6jm84knnjC9ZZ170kydaT1pqswi+LTaI1d7l2pgS0IAAQQQQCBjBCq7uc4JaLSpy33ddttt5sZwu5/e1O4EQe56556pgL1B37lEZ5YvXLgw4LTgmGlneAq3E4LeHG57fWrvQHse7TVqe/bpeZzLe+46u42+n3/++SYbI0eOjLheewjapHnSXp52f12nHR9s0pvdtRekXa89IXWbRDoTOIPamuPYm97tOYLf1ezyyy8PXhTTtHPPoLnp3uZT37WnqnPPnbv/F198YW7Kt9voDframcMm5/JoiEV4r089h3ausPtrfWjvTPWxqTJP7ZWqPXmDk/Z0dYZXcRdppxDtcBB8Hs2bTdoz1PZqtds4994FnNY9s0ksFvZY2otVj7FixQq7iHcEEEAAAQR8L1BNc+h8gUVN2qFAWyL0UlrwfUbBO+mI+9pJoHbt2sGLK53W1rNzzz3X3NOml9cSOUalJwnaQO+d044EegkwUqcGXa/jpzVo0CBoL/9N6uVIfbSX3ktYWFgYMYN6CVQveeqlzEhJ60zvAdTLnHqp2un1KUcffbS7qe6v9R2tTivzdA8WZULvq9P7EivqvKGfvw0bNphLpPZSdfDhYrHQexD15fd6DS4X0wgggAACCFR4j1owjX5Z20trwcuDp4Nv0g9eHs90Mo5R2fk0IIhWFl1vOzNUdiwv12uQqZfyoiXtVBAtVeZd2f567Mo8o53frqsseNLPX7SyxmKhwWxFAa3NB+8IIIAAAgj4TSDqPWrpyKx+SevN8JFat9Jxfs6xN9jSOojWcoYTAggggAACCKRfIKZLn+nPFmdEAAEEEEAAAQQQ8LxFjSpAAAEEEEAAAQQQiCxAoBbZhaUIIIAAAggggIDnAgRqnlcBGUAAAQQQQAABBCILEKhFdmEpAggggAACCCDguQCBmudVQAYQQAABBBBAAIHIAgRqkV1YigACCCCAAAIIeC5AoOZ5FZABBBBAAAEEEEAgsgCBWmQXliKAAAIIIIAAAp4LEKh5XgVkAAEEEEAAAQQQiCxAoBbZhaUIIIAAAggggIDnAgRqnlcBGUAAAQQQQAABBCILEKhFdmEpAggggAACCCDguQCBmudVQAYQQAABBBBAAIHIAgRqkV1YigACCCCAAAIIeC5AoOZ5FZABBBBAAAEEEEAgsgCBWmQXliKAAAIIIIAAAp4LEKh5XgVkAAEEEEAAAQQQiCxAoBbZhaUIIIAAAggggIDnAgRqnlcBGUAAAQQQQAABBCILEKhFdmEpAggggAACCCDguUCe5zkgAyECJSUl8u2338qaNWvkhx9+MOv2228/OeCAA6R79+5SVFQUsj0zCCCAAAIIIJC9AtUCTsre4mVWyb788ktZtGiRCchat24tGqBp0oBt+fLlJoDr2LGjHHbYYZlVMHKLAAIIIIAAAgkJEKglxJb8nV5//XUTmGkQVlBQEPEEu3btEg3mNHA75ZRTIm7DQgQQQAABBBDIHgHfBmrTpk2TCRMmyPr16+XAAw+Uc845R9q0aZM98kEl0eBLg7CjjjoqaGnFk5MnTzaXQGlZq9iINekRmDFjhjRo0EDat2+fnhNyFgQQQCDHBHzZmeChhx6Sfv36yYIFC6RatWry8MMPS9u2bWXq1KkZUT3/+te/5Pe//31MedV70vRyZzxBlwZ0uo/uS0LAK4ENGzbIqaeeKm+99ZZXWeC8CCCAQNYL+DJQu+222+Rvf/ubvPDCC6JB25IlS6Rly5by73//OyMqZPPmzaYzQCyZ1Y4D2kmgosudkY6h2+o+ui8JgXQLrFq1Ss4880xp166drFy5Mt2n53wIIIBATgn4rtfn7t27Zd26dbJ9+3a3IvLz803QpjfUa9Jt7rzzThk1apRs2bJFhg0bJvfdd5/UqVNHysrK5C9/+Ys888wz5nLiNddcI88++6y8+OKLsnPnTrn88svNl8xdd91l1t9+++1mHz2eHut3v/ud3H///VK9enX55ptv5A9/+IO8//77cvjhh8v/+3//T04++WSZPXu2Oc5vf/tbEzxqIHnJJZfIgw8+KH/6059kzJgxsm3bNpkzZ06lwZT27oz1kqcL4kxoZ4MPPvjA5C14OdOZKXDsscdmTMZr1aolxx9/vHndeuutGZNvMooAAghkooDvArW8vDy54YYbRC8faoD061//Wo444gj3pcj//Oc/5YknnpCnn35a9EvjyiuvlAsvvNAEcxqkPf744zJ27Fhp2LChXH311Saw0iBtx44d8umnn0rjxo1l4sSJ5pLNpZdeKv3795ennnrKBIhnnXWWaADWuXNns1wvYWrgZvPy9ddfu8fRoTJefvllc4n27LPPliFDhsjFF18s2uKg99bF8iWmHQNs7854PkC6jwaWen8QCYF0Cuhn76KLLjKnfPTRR9N5as6FAAII5JyALy99auvWJ598IkcffbRob8iBAweaccSef/55U0F33323CcC0c0HTpk3lpptuMi1mGhxpgKcv/Y+/b9++8sADD+xTqdoS17NnTzn//PPNur/+9a8yYMAA09JWt25d2bhxo7z00ktSv35984WkLXWDBw82LV8a0Nmkl2UPPfRQ0eCuV69esmzZMunWrZu5sbpJkyZyzDHH2E15RwABBBBAAAEE4hbwXYuathKtWLHCtGZpS5cmvRR63XXXibZaafCllxX1kqS+gpN2PtDUqVMnd7HeRxOetEVNk15S1aSXEcPT0qVLzf032okhONl9dVmrVq3cVRrM6SXZeJO2+iXSqqb7aCBJQgABBBBAAIHsFfBdoKa9GTUY0/u+bJCkrVN//OMfzeVMvVFfk1661PvFNOn9bDqcR+/evc287quXSzXZ4M3MxPFDOy9oK5kOP2CT3ryvN/Jri5sm7ZFa1dSsWTMzmG28lz/1fr0WLVrE1Vu0qnllfwQQQAABBBBIr4DvLn0efPDBpjfZeeedZ27mLy8vl+LiYrn33ntFL0vq+hEjRoherly8eLFs2rRJrr/+etGeooWFheZS5S233CIzZ86UuXPnmkukiZBqEPjVV1+ZDgt6b5sGggcddJC5/6yy4+l9dprnWHrEae9NzaeOoxZr0m11H92XhAACCCCAAALZK+C7QK1mzZryxhtvmMuSPXr0EA16mjdvbnpPfvjhh6ZF64477jD3genjlLQlSoMWveFfW7h0CA/toamtYfqunRE06XG0J6cm2xJm3+1yXaedEzTpJdNx48aZgFAva+pxNAD85S9/uc9xzA5BP/TetFmzZpmBeoMWR5zUDgkdOnQwTxyIuEGEhR9//LHZh+d+RsBhEQIIIIAAAlkk4NsnE6ixtpZpy5QGY/pQ8vD0448/miE3gns+jh8/3lwy7dq1qwnItCXsF7/4hekhWa9evfBDxDSv98jpvWnBAV1MO8ax0WuvvSaNGjUylzIrGlNNW9I0SNN79HSgURICCCCAAAIIZLeArwO1ROhvvPFGM4aaDo2hl011nDTt0RncWzOR46ZjH32UlF7O1Uua2lHB3remHQe+//5706qorW/xPMUgHfnmHAgggAACCCCQGoGsC9S056WOsfbRRx9JjRo1TFCjYz7ZHp6pYUzeUfWxUNppQVsStUVRk/YM1U4HGsBxuTN51hwJAQQQQAABvwtkXaDmd3DyhwACCCCAAAIIxCrgu84EsWac7RBAAAEEEEAAgWwXIFDL9hqmfAgggAACCCCQsQIEahlbdWQcAQQQQAABBLJdgEAt22uY8iGAAAIIIIBAxgoQqGVs1ZFxBBBAAAEEEMh2AQK1bK9hyocAAggggAACGStAoJaxVUfGEUAAAQQQQCDbBQjUsr2GKR8CCCCAAAIIZKwAgVrGVh0ZRwABBBBAAIFsFyBQy/YapnwIIIAAAgggkLECBGoZW3VkHAEEEEAAAQSyXYBALdtrmPIhgAACCCCAQMYKEKhlbNWRcQQQQAABBBDIdgECtWyvYcqHAAIIIIAAAhkrQKCWsVVHxhFAAAEEEEAg2wUI1LK9hikfAggggAACCGSsAIFaxlYdGUcAAQQQQACBbBcgUMv2GqZ8CCCAAAIIIJCxAgRqGVt1ZBwBBBBAAAEEsl2AQC3ba5jyIYAAAggggEDGChCoZWzVkXEEEEAAAQQQyHYBArVsr2HKhwACCCCAAAIZK0CglrFVR8YRQAABBBBAINsFCNSyvYYpHwIIIIAAAghkrACBWsZWHRlHAAEEEEAAgWwXIFDL9hqmfAgggAACCCCQsQIEahlbdWQcAQQQQAABBLJdgEAt22uY8iGAAAIIIIBAxgoQqGVs1ZFxBBBAAAEEEMh2AQK1bK9hyocAAggggAACGStAoJaxVUfGEUAAAQQQQCDbBQjUsr2GKR8CCCCAAAIIZKwAgVrGVh0ZRwABBBBAAIFsFyBQy/YapnwIIIAAAgggkLECBGoZW3VkHAEEEEAAAQSyXYBALdtrmPIhgAACCCCAQMYKEKhlbNWRcQQQQAABBBDIdgECtWyvYcqHAAIIIIAAAhkrQKCWsVVHxhFAAAEEEEAg2wUI1LK9hikfAggggAACCGSsAIFaxlYdGUcAAQQQQACBbBcgUMv2GqZ8CCCAAAIIIJCxAgRqGVt1ZBwBBBBAAAEEsl2AQC3ba5jyIZAjAjt27JAFCxbI9u3bc6TEFBMBBHJBgEAtF2qZMiIQg8Do0aOlWrVqMmzYsH22fuyxx8y6evXqye7du0PWL1261KzTfcvKykLWpWvmvvvukzp16kiXLl3k008/TddpYz7Ptm3bXCN1Cn41bdpUTj/9dJk3b557vKefftps89xzz7nLYpnYs2ePrFixQn744Qd380jL3JVMIICA7wUI1HxfRWQQgfQI9O/f35zorbfekkAgEHJSXaZJA46pU6eGrPvyyy/N/MCBAyU/Pz9kXTpmNK9/+ctfzKn++te/SteuXdNx2rjOocGSTRdddJHY1xlnnCFFRUXyyiuvSLdu3WTx4sVmM+tfXl5ud4vpfdWqVdKqVSu5+uqr3e0jLXNXMoEAAr4XyPN9DskgAgikRUADhSZNmsi6detMwNCxY0dz3l27dslLL73k5uG9996TI444wp23LVjHH3+8uyydEz/++KMJII866ii57bbb0nnquM/VsmVLefTRR0P206BMA6sHHnhA7r//ftHWQRICCCBgBWhRsxK8I5DjAno57qSTTjIKX3zxhathW9BuuOEGs2zixInuOp14//33zfyAAQPM+5o1a+Tee++VE088UexlPQ0+NADUpK1zQ4YMkf/+979mPviHLtN19py67vHHH5dBgwbJgQceKL/+9a/loYceEtvSpK15559/vjnErFmz5Le//a3Mnj3bzGsA9+c//1l69+4teslW3++8807RwNMmzbueT8urx+3evbu8+uqr8uabb5rlH3/8sdx1113Sr18/s/8///lP2blzpzz//POiganmaejQofL111/bQ8b9ru5aPk3Blz/DD1RZebQs1uLdd981+X/hhRdClp1yyimycuVK99DRbHWjinzcAzCBAAKpF3D+myMhgAACRmDs2LF6zTNwySWXuCLO5USz7KOPPgr85je/MdNr16416zds2GDm69atG3DuTzOvww8/3F122mmnBZxWJDPfo0cPs49zT5uZd1rvAs79bu55dH89jp5/y5YtZvmFF15o5nWZc2k2oPvotHPJMOAEXIEpU6YE+vbta5bpvrqNE7wFnKAm0KtXL7PcaSkMOPfdufn45S9/GXACPXP8p556ymzTrl07867Hdu4LCzz88MPuMXWZLYNO2+Pq+Wx+dNrm2S1Q0MTmzZvN8fQ4kdJVV11l1mt5Ndl8aX1oilYeJ0A25Zk0aVJI3tTCCcRClh155JGBZcuWBZxLsYGKbNVKbTU9+eSTJl/WxwkqjY9ZyQ8EEEiLgN6LQkIAAQSMwPLly90vZktiAxOnJSngXLYz6zWY0fTGG2+Yef1y1/T222+beQ0CdHtNGoDZL3o9viYNljTo+eSTT8y8/nBab8wyp1XILLPH0sDvu+++M8s0YDnhhBPMduPHjzfLnF6eZn7w4MFmXn/873//c49lgzLNj93X6RxhtrUBkeZFA1LnRnyzPDhQc1rbzDINVHU7fd14440BPa8GPPaYziVgs12kHzZQ08Duq6++cl9Oy13Aaal0jzthwgSzu82XDdRseS644AI3yCwtLTXn1uDJluf77783x3JaFt1sRFrmtGqa7X7xi1+4tk6vWfd41tYGauE+7sGZQACBlAtw6dP5C0RCAIG9AnojuhNUyZIlS0QvYRYXF4sTWIjTMiYFBQVy7LHHmg2dIMq8O4GWedeOBJr0vjYnuBC9qV+316Q9Qdu3b2+m7dAZ5513npkfN26cedcf9j643/3ud2bZyJEjzfu1115r8qQzhYWF5nKmTtvtdTo82X2dliqpXn3vnznNz0033WQ2tZ0j7H6af72/Te8hC06///3v5bDDDjOLbGcLnbnlllukdu3apmemXjrVtHDhQvMe7Yde/nUCX/ell5r/9a9/mV2uueYac2k30v62PFdeeaVbnpo1a4oTMJqOH7Y+Iu0bvsz5VpFRo0aZvOs5tb411apVS26++WZzvJdffjlkN73MG8knZCNmEEAgJQJ0JkgJKwdFIHMFTj75ZHNTu97/VVJSYgpi76Fq27at+WLXXop6U/yHH35o1jstZOZd12sA88gjj4jeM7Zo0SL3njGzwU8/NPBzWodMUHf33XebIT90SAqnxUmOOeYYs9W3335r3nXYEKeFyd3daUky09qbMVLSHpZz5841q5zLrSGbHHzwwWZ+zpw5IcudS7oh83amU6dOdtIESM4lThPQaMBokwZMmsKHLbHrg991fw3ygpPex9ezZ0+xeQtep9OJlCf8GOHzaqsBWyy2eg+d3odHQgABbwQI1Lxx56wI+FbgV7/6lQnUPvvsM1m9erXJp21J0xm9IV07C+h67fGprVAdOnQw2+nN8Np7VJMGXdoKdeqpp4q2vOmN6TbVr19fzjnnHHn22Wdl+vTp4tzfZXpuagtPjRo1zGbamqdJOw7Y4MwscH5oC1jnzp3tbMi7bbXTICsvL/RPnLbuaQpfrmOwRUoaWIUn21IYvlwDn8qSlltbCONJiZSnsuNXZqvj0QWninyCt2EaAQRSIxD6Vyw15+CoCCCQQQI6zIUmHYZDW8T00pi9PKbLNUjSQO3WW2/VWbfHok7fc889+mbW6eVPbY3RpL0xw9P//d//mUDttddek/Xr15vVwdtpsDBt2jT5z3/+Y1qc7P7acqVPIGjQoIFdFPKuwZW+9FLkxo0bpVGjRu56vYyryQ494q7w8UQqyqO2GiDHa+tjJrKGQNYK7L15I2uLR8EQQCBegf3220+cnpTm3jQd4FZb0IKTDeRsC9lxxx3nrtbhLDRpwGWDNG29cW6Sd7exE7qfBiF6CVWHu9DWt+AAyt4b5nRYsLuYd31KwkEHHSRjxowJWR484/RuNLM2j3advTctOM92nZ/fI5VHW/D03jR11lbQ4BTpMmzwsops1VQvwUazDT4P0wggkHoBArXUG3MGBDJOwOnJ6OY5fCBbHUnfdh7QjY4++mh3W6cXoZnWAVx1PDK9/0zHINOAT5OOwaaXOTXpUwycYUDM+Gq63ukpapbbH/bGf73BXccv07HN9Ib2Sy+91AR4w4cPt5vu825b+/RxWDqQrDN0hbnx3uk9aS7J2s4M++zo0wW2PGeeeaZbHvUJL48G2ZrUSsekc3qbSvgy9bedEHScuWDbESNGVGrrUyKyhUD2Cjj/lZEQQACBEIHJkyfrDVfm5XQoCFmnM84lTrPOjo1mN3AGUw3oMBl2X313gqKAHs9pPTPLncuZdvPAjBkz3G03bdrkLrcTOjSGc9nV3UaPp+OiBQ+FocNk6HKn5c/uZt6dDg/uOW1+dKgRHcfNJjtunHOvnF1k3p1eluaYzmXZkOU6vEb4WGg6NIYeX4cuqSht3brVbBO+b0XbR8pXpPI4g/iGlEeHC7FjsjktbQGn04AZQiR8mZ73888/38fWGfA3xFaHCdHjhPtUlG+WI4BA8gWq6SGdPzIkBBBAIGkCOrSHDvFxyCGHmF6gemDtQao9NXWojvCb+aOd2N6Tpg8bb968ubk0Zy+rRttP1+lo/trBwRmY1zwDVDs+xLpvZcf2Yn2s5VF//dPerFkzN5uRllXF1j0wEwggkFIBArWU8nJwBBBAAAEEEEAgcQHuUUvcjj0RQAABBBBAAIGUChCopZSXgyOAAAIIIIAAAokLEKglbseeCCCAAAIIIIBASgUI1FLKy8ERQAABBBBAAIHEBQjUErdjTwQQQAABBBBAIKUCBGop5eXgCCCAAAIIIIBA4gIEaonbsScCCCCAAAIIIJBSAQK1lPJycAQQQAABBBBAIHEBArXE7dgTAQQQQAABBBBIqUBeSo+eoQfnqVoZWnFkGwEEEEAAgRQJePX4OQK1sAotKyuT/Px8KS0tDVuTubOFhYVZU55sKot+oiiPv3+vqB//1g9149+60ZxlY/2Ul5dLjRo10g7Ppc+0k3NCBBBAAAEEEEAgNgECtdic2AoBBBBAAAEEEEi7AIFa2sk5IQIIIIAAAgggEJsAgVpsTmyFAAIIIIAAAgikXSCnOhNob85XXnlFiouLzQ2BHTt2lIEDB6YdnRMigAACCCCAAAKxCORUoPbmm2/KsmXLpHXr1qJB29dffy15eXkyYMCAWKzYBgEEEEAAAQQQSKtATl36/O6772T//feXM844Q4YNGyZFRUUyf/78tIJzMgQQQAABBBBAIFaBnArU9uzZY8ZIszjaqpZN46XZcvGOAAIIIIAAAtkhkFOXPlu2bGkufb777ruiA9tu375dwkca1sFuNelgfdmUsqk82VQWPmv+/S17Z8y3smjaWv9mkJwhgEDaBI6/qLu069U4becLPlFOBWrHHXecPPPMM+beNA3Q9As//HFRPJkg+OPhv2mts2xqBaU8/vuM2RzpKOQkBBBAwGuBnArUli5dKieddJK0adPGtKQ98sgjpjOB15XA+RFAwL8CA87t5Nl/0slWyaZ/DLKpLFrPlCfZn/bkHk/rx6t/3nLqHrWZM2fKa6+9Zmpv2rRpsmXLFunevXtya5OjIYAAAggggAACSRLIqUCtf//+hu2ee+6RDz/8UJo2bSr9+vVLEiWHQQABBBBAAAEEkiuQU5c+O3XqJPqyw3TUq1cvuZocDQEEEEAAAQQQSKJATgVq1q19+/Z2kncEEEAAAQQQQMC3Ajl16dO3tUDGEEAAAQQQQACBCAIEahFQWIQAAggggAACCPhBgEDND7VAHhBAAAEEEEAAgQgCBGoRUFiEAAIIIIAAAgj4QYBAzQ+1QB4QQAABBBBAAIEIAgRqEVBYhAACCCCAAAII+EGAQM0PtUAeEEAAAQQQQACBCAIEahFQWIQAAggggAACCPhBgEDND7VAHhBAAAEEEEAAgQgCBGoRUFiEAAIIIIAAAgj4QYBAzQ+1QB4QQAABBBBAAIEIAgRqEVBYhAACCCCAAAII+EGAQM0PtUAeEEAAAQQQQACBCAIEahFQWIQAAggggAACCPhBgEDND7VAHhBAAAEEEEAAgQgCBGoRUFiEAAIIIIAAAgj4QYBAzQ+1QB4QQAABBBBAAIEIAgRqEVBYhAACCCCAAAII+EGAQM0PtUAeEEAAAQQQQACBCAIEahFQWIQAAggggAACCPhBgEDND7VAHhBAAAEEEEAAgQgCBGoRUFiEAAIIIIAAAgj4QYBAzQ+1QB4QQAABBBBAAIEIAnkRlmX1oilTpsiCBQtkz5490q5dOzn++OOlenXi1ayudAqHAAIIIIBAhgrkVKD2+eefy4wZM0yApvU1Z84cU20nnnhihlYf2UYAAQQQQACBbBbIqaakefPmSUFBgQwdOtS8atasKStWrMjm+qVsCCCAAAIIIJDBAjnVotalSxf57LPPZOzYsRIIBGTnzp1y8MEHZ3D1kXUEEEAAAQQQyGaBnArUmjdvLtWqVZO1a9e6ddqwYUN3Wify8/PlnTHfyqJpP28TsgEzCCCQUwL6N6GwsDBrykxZ/FuV2VQ3qpxt5fHqk5NTgdqkSZOkRo0acsEFF5iA7YknnpBPPvlEevbs6fqXlZW500wggAAC+jehtLQ0KyD0i5Oy+LMqs6luVDgby+PVJyenAjX9A6WtavXr1zfeLVu2lCVLluxjf/xF3eXo37bfZ3mmLsimX5hsKot+niiPv3+rsq1+/K1N7hBAIJJATgVqegljzZo1smzZMqlbt66sXLlSGjRoEMmFZQgggAACCCCAgOcCORWoHXfccfLuu+/Kyy+/bOC1B+jRRx/teSWQAQQQQAABBBBAIJJATgVq3bp1E31pZ4Ldu3dLixYtIpmwDAEEEEAAAQQQ8IVATgVqVrxp06Z2kncEEEAAAQQQQMC3Ajk14K1va4GMIYAAAggggAACEQQI1CKgsAgBBBBAAAEEEPCDAIGaH2qBPCCAAAIIIIAAAhEECNQioLAIAQQQQAABBBDwgwCBmh9qgTwggAACCCCAAAIRBAjUIqCwCAEEEEAAAQQQ8IMAgZofaoE8IIAAAggggAACEQQI1CKgsAgBBBBAAAEEEPCDAIGaH2qBPCCAAAIIIIAAAhEECNQioLAIAQQQQAABBBDwgwCBmh9qgTwggAACCCCAAAIRBAjUIqCwCAEEEEAAAQQQ8IMAgZofaoE8IIAAAggggAACEQQI1CKgsAgBBBBAAAEEEPCDAIGaH2qBPCCAAAIIIIAAAhEECNQioLAIAQQQQAABBBDwgwCBmh9qgTwggAACCCCAAAIRBAjUIqCwCAEEEEAAAQQQ8IMAgZofaoE8IIAAAggggAACEQQI1CKgsAgBBBBAAAEEEPCDAIGaH2qBPCCAAAIIIIAAAhEECNQioLAIAQQQQAABBBDwgwCBmh9qgTwggAACCCCAAAIRBPIiLMvaRY8//rjs3Llzn/KdffbZUr9+/X2WswABBBBAAAEEEPBSIKcCtQYNGoQEauvWrZOysjLJz8/3sg44NwIIIIAAAgggEFEgpwK10047zUVYtWqVPPfcczJo0CCpXbu2u5wJBBBAAAEEEEDALwI5e4/aq6++Kg0bNpRu3br5pS7IBwIIIIAAAgggECKQUy1qtuRffvmluQQ6bNgwu8h9t5dBCwsL3WXZMJFN5cmmsuhni/L4+zcs3fWz/v4HZMODD7ootfv2ldZjn3LnqzqR1vIEArL83PNkx7RpbrYbX3GF7H/Vle58VSbSWhbNaHh5qlWT1k88IbUP61eVYrj7elGeeV2DGisyvDw7vvhSlp9/vuspTnm6zpv783yGTlULOClD855wth966CHJy8uTSy65ZJ9j2HvWSktL91mXqQv0lz9bypNNZdHPE+Xx929VOutn08MjZfOoUVFB2s6aGXV9ZSvTVh7na6V4+MVSOmNGhVkq7NNHmj36SIXrK1uRtrJoRpzyLD20V9QsNbj0Uml42Yio20Rbmc7ylE6dJsURvv/c/DkBTrPRo6Wwbx93UbwT6SxPpb87Tnnazvwq3iKEbK/lKS8vlxo1aoQsT8dMzl36XLt2rezYsUMOPvjgdPhyDgQQQCAhgcLevRPaz687ZVt5/OqcaL6yqX6yqSxanzl36XPWrFnmc3zYYYcl+nlmPwQQQCBlApFaZpYecmjKzpfSA0domam0NSelGariwSO0zFTamlPFU6Zy931aNW1L6FdVa31KZZ6jHXuf350YWkKjHc8v63IuUFuxYoUUFBRI9eo515jol88c+UAAgSCBktfHy+7i4qiXCe3mm0fuvTTaYMSldpHv3m0etUzR0u7Vq0W3zWvWTIpOGRJtU8/WaR5Lxk+I6fx6mTdTylPmlCtqcgKcbRMmmM+ktk5V5RJo1PNUcWXptOkmj9EusZtTOOWxn8uiIYMlr3nzKp45vbvnXKA2fPjw9ApzNgQQQCCKwLbx42MK0vQQm0aOFL1B2reBmvOFaPJoy+vktaKkQZBuq606vg3UVq4KLU9FhXGWl053ggbnlS3lKXE+l5q0lcqvgdqPjndl93WaQjg/7O+OBp4EalaFdwQQQACBmAWKBu/9T7+WE7iEJ/2y1BTrl1L4/l7M2zzntQhtvchr2cJ8+ZvWKqfVJhOSafUbErnVz9ZXJpYnP7xlyQms6zrl1GDTBJ5ROoP4qd5Mq5+TZ1sXbt70n5qffnc08Ny9Zo27KpMmcq5FLZMqh7wigEDuCJgvyAp62dnehBkTqDlfkDbP4TWorRm6Tu9VK8mUQK1FiwrLo61N+sqW8tjWTb33rtJLiuGV69G8BpYVfd7McqelVwPPTA3UuFHLow8Wp0UAAQQQQAABBCoToEWtMiHWI4AAAikQKJ2+d4yx8m3b4j663bdm505SrW7duPdPxQ4mT07LRbypfOtWp7Vjr0VhH38MSRJw6mTngoWya/GieIsjtjzV6xZJQefOce+fih30suzu1cUJlcd0dHHqJ695M9/c27VrwQLZs63EdMJJhZffjkmg5rcaIT8IIJATAsWJdmxygiGzr3N5saqDkiYN2uYpgQOWLVzolqeqg5ImcPqIu+ycNz/6gLAR99q70JZHL8dVZUDfKKeIe9U2p2dxopfN9d4ufem9XhVdXow7Q1XZwfmsbbzr7sQuy+rn9OKLzdl9U54YLAjUYkBiEwQQQCBVAnZwzur1Km8Zs9vunD9fAs7A3X5MJo9OEFlZ0vLa8vj1XqhqdepIzS5dpKBTx8qKI7Y82qJWtij+lrhKT5CEDbRThN4jGEt5tKOB1o9pjatkqJUkZC2hQ+R37Cg16tWTfTpFJHQ0/+5EoObfuiFnCCCQAwLNxjwacynNtqb1ynk8kx8HJdVWvhjLU+AEQLY8lT2eKWagJG9Ys2vXmFvFbHn8PKBvkdOjM9ZWMe1UoC/fDujrfNYaX399bEOHBH0ufVueKJ9dOhNEwWEVAggggAACCCDgpQCBmpf6nBsBBBBAAAEEEIgiQKAWBYdVCCCAAAIIIICAlwIEal7qc24EEEAAAQQQQCCKAIFaFBxWIYAAAskWWHrIoaKvKqefhhrQG/H14dReJL1x3pTHyUOVk1MeeyyvyqM3mmseii+5pMrF0ZHwbXmqfLBEDqCfj4uGmzwkOjRH8Gn1GMZm+N7hLYLXpWXalkc/70l4tJUtj9a53xOBmt9riPwhgAACCCCAQM4KEKjlbNVTcAQQ8FKg7ayZoq+4009DDejgsHYcsriPkeQddHBXUx4nT3Enpzx2X7+URwdD1TwlMmBtYb++bnnitkjFDvp5eeQRk6dYh+YIzobuYyxGjw5e7N20LY9+/it4Nm60zNny2Ie1R9vWL+sI1PxSE+QDAQQQQAABBBAIEyBQCwNhFgEEEEAAAQQQ8IsAgZpfaoJ8IIAAAggggAACYQIEamEgzCKAAAIIIIAAAn4RIFDzS02QDwQQQAABBBBAIEyAh7KHgTCLAAIIJFtAxwUrvjhF40/9NJ6a5ll7siXSsy/e8qb0wda2PNq7z+lpmEjPPr+VR8cfE+3dmkiv2HgLo37OWGfuWGPOeZOZ7Phw6SyPjhXopiSXZ3dxsZROnyHV6xZJQefO7mn8NEGLmp9qg7wggAACCCCAQNoESsaPdwLb4bLx7n+n7ZzxnogWtXjF2B4BBBBIUEDHCWs25tEE9w7bTVucfjpWSlu4wk4bPJvUFjxbHtsi9FUCY7IFZy6B6WSXR8cfE6c8IS1CCeQroV3UM4ktknZ8OC/Lk8wWyfzmzc04hOVbt0rZokUJEadrJ1rU0iXNeRBAAAEEEEDAFwJFpwwx/+g0/tOffJGfaJkgUIumwzoEEEAAAQQQQMBDgZy79Dlz5kyZ7jwsd8eOHVJUVCRDhw6Vhg0belgFnBoBBBBAAAEEEIgskFMtaitXrpTJkyfLnj17pFOnTrJlyxaZMGFCZBmWIoAAAggggAACHgvkVIva+++/LzVr1pRLnS7smlq1aiWrVq3yuAo4PQIIIIAAAgggEFkgpwK1kpISqVWrljz00ENSVlZmArWBAwdGlmEpAggggAACCCDgsUBOBWo7d+4096bVr19f6tSpI999953osrPOOsuthvz8fFn+u3Nlx7Rp7jImEEAgdwXqn3aaFLRoIbX79pXah/WLC2L9/Q/IhgcfdPepXr26FBYWuvPJmsjL2/unfPOoUaKv2v36Seunnox4+KqcP7w8et6qHC9iBp3hLNRJh4GwgwQ3vuIK2f+qK/fZvErndo6//NzzQv7Wp6o8JuM6TMdPA9+2fuKJiJ+lqpZnXtduPxs5w3MUFBSkpH7Cy9N13tyfzxs0VZXy7PjiS1l+/vlBR5Pkl8U5+h7HSFPwQL62PGvvuENK5y8w65vedKPkO7dMeZFyKlBTYA3ELv5phPCXXnpJVqxYEeKuLW0kBBBAwApsGTfOTOoYW9V79rCLY3rfvXt3yHZ6f2xpaWnIsmTMxHoe/eKsyvnDz6PzVTlexLI7AY06BadI56lqWTQQjOU8wflIaNo5T3jatWuXVA/7HCSjPLGcJ3ybuOcjlCfSZ6Cq5VGj8BTpPOHbxDu/z3mc8q35733mMNvemyy7V682T5XYs3VbvIdO2vY5FahpkKYvm7TXp/6iBpyKqeb892FT67FPJf+Pjz24B+9V/YXxIMsVnjKbyqKFpDwVVrXnK0peHy+Bdeuk5IsvzON4qvKomaQOpBpBRh8bpa/SqdOk+JJLImyR3EUpLY8d+NbJcloG8k3ywLD7SDvHtwPfmkc7pXogXz1fKh9VFVSedAzkW9injzR79JF9WJO1INJAvptGjgw5fKPrrpXCrl1k35A7ZLOUzeRUoNbcGYl4yZIl8pXzi9KsWTNZ5IxG3KhRo5AgLWXSHBgBBDJKQAfE1EDatObMmCH6qBl9JfXpAhklQmYRyC0B/YdEU+0BA6R6vXpSXl7uCUBOBWqDBg2SMWPGiPb+1KStaMccc4wn8JwUAQQyQyCTHjWTGaLkEoEMEHDiA22l9kPKqUBN/zu+wrkpVcdT+/HHH6V9+/Z7b1r1Q02QBwQQ8KWAtqzpq3TadPfmdl9mlEwhgEDiAvaSbuJHSNmeORWoWcWWLVvaSd4RQAABBBBAAAHfCuTUkwl8WwtkDAEEEEAAAQQQiCCQky1qERxYhAACCCRNQLv0715dLNpT1ItUvnWrMy7UDKlet0gKOneuchZ2LVgge7aVeFaeqvS4jVR4tdHhOcq3eTDkgnPeXYsWmiEf8po3kzynk1tVUsApw84FzvGc43qVjKdz8pqdO0m1unWrlA1bnl2LF1XpONm0M4FaNtUmZUEAAV8IbHOG9tCBZ71KZQsXSvHw4ZKUoQ2cAGDjXXebIUq8Ko/b4zYZQzU45VEbNzn3JqU7qaemZAxzsnPe/LQMyVKhkfV0HJuNHi2FfftUuGksKzwvTyyZTPM2BGppBud0CCCQOwJ5zjBA2mKiPUfTkarXq2uGD9EWtTJn+KFkp/yOHaWGM0xBusqT6h63OtSKJnVLeXICmQKnxUmTaXFNcmtrNedpOzW7dDEtdSkvy08nsH4758+XwI4dST2tLU9Bp45JPW4mHoxALRNrjTwjgIBnAnq5LNbLikVDhqS1i3+B80XdbMyjqRn41gk0Gl9/fZVbTOKpOLfHbSoG8tUWIMcqnamR46cpFQP51uzaNaUDw+7jZP1Mi9rFUprkgXzTXp59CuifBXQm8E9dkBMEEMgAAXtZ0V6+yoAsk0UEEMhgAQK1DK48so4AAukTsJcV9fIfCQEEEEiXAIFauqQ5DwIIZLSA9p7US2V6+Y+EAAIIpEuAQC1d0pwHAQQQQAABBBCIU4DOBHGCsTkCCCBQkYDX441VlC+WI4BA5goQqGVu3ZFzBBDwmYDX442Fc5ROny5LDznUDNnQduZX4aujzzu9+ZYe2uvnbZxefl4nWx4dH67t02Pjy054eeLbOyVb61h7+tLx1Jr98Q9xnaM0FT1h48pB2Mba+/Pii83CRMqTip6wYTnM2FkCtYytOjKOAAJ+FUj3eGN+dSBfCCBQdQECtaobcgQEEEAgRCDd442FnNyZKezXV9rOmmkeKxTSKha+YSzzTkta3K1xsRw3jm1seZLSiuSD8jS8bIQZXy8ZrUhJefpEHHWxz6Z2PDVnRTLKk4ynNeyTxwxfQGeCDK9Aso8AAggggAAC2StAoJa9dUvJEEAAAQQQQCDDBQjUMrwCyT4CCCCAAAIIZK8A96hlb91SMgQQSJOAHZZDnwNKQgABBJIpQKCWTE2OhQACOSOwc8ECKR6+dzgCcYYmKJ0xw79l16Epfhqmo9no0dEfrO7DYSzCYXWYjnldusY07EhSOiCEZyDJ83aYjlg6BiTjhv0kZ3+fw9nyVNoxQIf0cH6HfP27s0/p0r+AQC395pwRAQSyQCBQUiIaMGgq7N3bvNthOfS5oCQEEEAgGQIEaslQ5BgIIJAzAjW7OM/8fOQRU147wKctvNfDcth8uO86FMVPw3SYlouv4hj01gfDWLjl+GnCDtOhLZjxDjsSS2tV+PlSPW+H6Uik1a/S1qpUZz7C8W154m710yE+KmvpjXC+XFlEoJYrNU05EUAgKQLV6tbd59Lh7uLipBybgyCAAALhAvT6DBdhHgEEEIhTYPfq1XHuweYIIIBAbAK0qMXmxFYIIIDAPgJ6+Sk45bVoHjzrv2nnkuGGu++WGvXqSaM/XScFnTu7edw1f75s/Pc97nxGTPx0M7ropbNHRodkueT18bJtwgQp37o1ZLmfZ3Y6dWA6qEQpTyb9U1Di+GtHgYJOHaXR9deH0G+86y7ZtXCRaKccUnSBnArUysrKZMyYMSEi7du3l4EDB4YsYwYBBBCIRUDvycm0VLZwoZQ5gcCeraFDiei87RyRSWUyeXbKE57KnFbOTCuP20ElS8qjQWXEwNIJsHctWPhzb88I5Q2vz1yez6lAbdmyZVLi9NRq06aNW+f77befO80EAgggkJUCzhdho+v/JHk/lsrqf/xDyhYvrrCY2nNVO0X4Ojnlaf3kk7Jr504pvuSSqFktGjxY6g4ZIn7uiVuza5e4y+Pn1tu6pwyR+kccISVzvpGNd/87av2Ylt1OnUU76ZAiC+RUoLbaie7z8vLk9NNPj6zBUgQQQCBLBfQyZ2HNmuayZ5m2aCxaaMYhq163SPZsK5FdixeZkteoX3+fzhJ+JKl9WD+p/uOPbtZKp+8dx86Wx3bwyGve3Pfl0Q4qtbKoPMa8XTsTSGsF6eVnrR9bN9pr1wwO7QTcBU6QVti3j1uPTOwrkFOB2vr166W8vFz++9//Ggl72bOwsHBfGZYggAACWSyw8a67Tel0DLiMH3DU3Ks2nPL49POql9uLhw834w2GfNacQI1UuUBOBWpbnag+4PxCt3Mi/W3Oo14WODcxavB24YUXulL5+flmOtuCt2wqTzaVRT9slMf99fPlRCbUz0OzHpKHv37Y9evbtK88duJj7nzwRO3u3aR69epStmqVmPu4fnqiQvWiIins2tV5dfH0MxmQgFz41oUyfe3ewYQ175f1vEwuP+Ty4GKYaa2b2n37munSefNkjw5C/FN58p2WtPwWLaR269ael6fHkz3cvFeTajLmhDHS94C9+XZXOBPB5dkxbdrecv1UnppOi6h2AvFjeWafNzu4GO50YeNGpn60RU07Ddi60Q1svek2mfA75hbKg4lqTuAS8OC8npxS70/TVOT8QdL0+OOPy8aNG+W6664z8/pDOxxosFZaWuouy/QJ/SXIlvJkU1n0c0V5/P3b5ef60YBmxPsj5Kv1FQ9i23v/3jLy2JEucnB5wgcl9XpA2HjLE1wWvZQW/igirweE1fL0e6Gfax9p4uLuF8slB+29xy68PCED+jotT14PCDt93XS5bMplkYphlmkA+vCAh6V3k71P6Qguzz4D+jrlaTuz4s9thSfxcIWWR6/I1ahRI+25yKkWtU8++UTaOB0JunTpYqDrOvcFbNq0Ke3onBABBBBIhUCv/XtFDdyCz2lHkQ9e5rfpmMujgcyYR/2W/X3yE095zBMl9jlCZi5wnyiRmdn3PNc5Faitcpr6586dK62dpvBlTg/QFStWSJMmTTyvBDKAAAIIJCoQ3pKhx6ms9SPRc6Vjv2wsz9Qzp4bQjZ4zWh75du9jyEJWZMBMeCutbQmduX5mBuT+5yyG10F4uX7e0vspzwM1vUds5MiR8sEHH8iBBx4ow50bDmfOnCmXXXaZ6aGZTKLjjjtOXn31VXnwwQfNYbUJ85e//GUyT8GxEEAAgZQLTFg6QdbsWCPFO4qjnmv1jtVuQKCX2fyabNASa3kOqH2AnNH1DF8WZ/X21TJp2aSY8qaXrbXs2tLWv1X/mPZJ90Yz1s0wrbRarmhJA7aJyyaabf1cHi1HLL870cqa7nWeBmrbt2+XE088URYtWiQdnbF79Ab/3bt3y9VXXy1ff/21PPpocpuytSXtj3/8o3z//ffmZtqWLVum25vzIYAAAlUSMF+IS/d+IeqBtAWqolS8vVi05UC38WugpuXRPNoUS3m09cPPgVpweWy5Ir1rEKQvrRs/B2o2kI5UhuBlE53PpSY/l0fzGFyemC9HBxc0zdOeBmpvv/22CdLmOb11Zs2aJbfddptp4XrxxRdl2LBhcuONN0qHDh2STtKqVaukH5MDIoAAAukWOLnNydK8TnNpVqdZyKl1mQ3Mgr+UQjby4YzNc0Xliae1yuviaavf4LaDI2bD3nBvW6sibuSzhRrQaL7D60YD61+3/bVZl0nl0fpxf3fW+ww7LDueBmp6v1hvZ06GFRsAADaRSURBVAyfFk4Xag3UbDr55JPNpA6fkYpAzZ6HdwQQQCBTBfQLUgMB+6UfXA79AtLehNpalSmBmpbH9oAMLotO2/LovXexXlYMP0a651vUaVFhebTO9KUtb9F67aY7z9HOp/mtqH5sQJpJ5dE8a3ky4TNVPVrFpHqdBmF6b5re2B+c3n33XTOrlypJCCCAAAIIIIBAKgW2lm01QbMfA2dPW9ROOeUU6dGjh7Rt21b6OoMWzp8/X4Y4z2SbMGGCnHTSSdK9e/dU1gvHRgABBDJKQL9EtJVsW1noA9VjKYTuW1BQIK1rt5a6+XVj2SWl22gZFm1eZMoT74n0S1UHxN21a5e5ET/e/VOxvS3P4i0VP0e1ovNqJwotT0GgQDo16FTRZmldXpWb7m159svbz7SGpjXjCZ5MP4uXvn+p065bTcJ76SZ4yKTt5mmgVqtWLXn//fflH85Dgl9//XXTmeDbb7+Vm2++WW666Sap5oyNQ0IAAQQQ2CugXyQ26RdKrEmDO/slFDwoaaz7p2K7BZsWRB1ANdo59Uv1grcu8NWXalXKoze468tPQ0SE33QfrT7C19ny6D2HFV0uDd8nlfP6+a9ocOi6BXXdYN+PrWnq4mmgphlo1KiR/Oc//zEvnSchgAACCEQX0Bu7NemXTGXJbquBxI7dOyrbPO3r6+TVkc4NO5ugq7KTZ8KXqi1PhwYdKiuOuTFf62frrq2SSEtcpSdIwgYhN91XcjztaKDlsa1xlWzui9WdG3SWUceOMi27lT1JwqsMpz1QW716tZx11lkxlXfSpEmiTw8gIYAAAgjsFdCWNP1iiSXZbW2Lgh8HJe3SsEvIY66ilSsTvlTjKY/e0K4vPw9QbG+6j1Yvdp0tj3Yq8GMnFv198EuLsjWL5T3tnQn0eVlHHnmkefXv39/09vz444/N87N69uwpW7ZsEZ3X53HaB6THUhC2QQABBBBAAAEEsk0g7S1q++23n9xxxx3G8dNPP5U777xT9L60bt26ubZPPPGEXHDBBfLjjz+ah1a7K5hAAAEEEEAAAQRySCDtLWrBtlOnTpV27dqFBGm6XnuDatJHSZEQQAABBBBAAIFcFfA0UNNney5ZskTeeeedEP/Ro/c+ToQHpoewMIMAAggggAACOSaQ9kufwb6DBg2Sww8/XE444QTTstanTx/57LPPZOXKlXLOOecwjlowFtMIIJCzAn1f6JuUsptOBVNGmB6WXt1Uncwb57U8aqM3iXs19lUyb5yfsX6Gp+WxnU6SNUyFdijQl1fDjmh5gnty6uckE5OnLWq1a9eWyZMny/333y+dO3c2A95qhwJ9GPuTTz7JOGqZ+IkizwgggAACCCCQNAFPW9S0FBqsXXnlleaVtFJxIAQQQCALBaadOS2hUmlLgg7pUbOwppz/xvnih2E6qtLKouX55rxv5MfSH0NaTBLCSdJOVRnctU+TPr4qj/pWpcVVB7m9us/V8sn3nyQ8qHGSqsUcRsvjVYtrMsrhaaD20UcfyahRFY8HpPeq1alTJxnl5BgIIIAAAggggEDGCXgaqJWXl5shOKxaSUmJfP3117Ju3Trz7E8eIWVleEcAAQQQQACBXBTwNFAbMGCA6Cs83XXXXeYeNb0sSkIAAQQQQAABBNIhoB0Q7FMV9HK2H5KnnQkqArjoootk7ty5pnNBRduwHAEEEEAAAQQQSLaA6ck755FkHzbh43naorZ7927ZtWtXSOZ1/sEHHwxZxgwCCCCAAAIIIJAqAe1wYFvQbItaqs4V73E9DdSee+45OffccyPmefDgwdKxY8eI61iIAAIIZLvAjHUzZIQz5lkqkhkv66djV6W3Yjx5S+Z4Y+Hn1fLY8dSq0lsx/LgVzRu/90dIssYbCz9PcHnS0VsxvDwatCQz2fHhqtLTN578aHmCx0+LdV/trar7EqgFienD2Z9//vmgJSLVq1eXDh06yEEHHWQe1B6ykhkEEEAAAQQQQCCHBDxtUVu6dKnMmTNHbr/99hByvfz5m9/8RnR4jgMOOCBkHTMIIIBALgn02r+XGQMtGWXWlhIdT01TKlu4ouU1mS14Wh4dW862CKV7fDg9fzJb8ILLk0iLUDT3WNYluzw6PpzWTzKfRhFLOew2Wp50tEja86Xq3ZNA7YsvvpAJEyaYoTimTZsme/bsCSnfihUrzPotW7YQqIXIMIMAAggggAACuSTgSaC2bNkyee2112TDhg1mzDSdDk55eXlyww03mMdKBS9nGgEEEEAAAQQQyCUBTwK1s846S/Q1fvx489Jne6Y7TZo0STRgvOKKK9J9as6HAAIIIIAAAgjEJJD2QK20tFSmTJki3bt3N08fyM/PlzfffDNiZgcOHCjaupbstHjxYpk3bx4PfU82LMdDAAEEEEAgCwTMfY8/9Yy+5tBrpMcBPTwrVfKjoEqKsnHjRhk0aJB5xmfDhg1l2LBhFe7xww8/iG6TzFRWViYTJ06UWrVqiQaNJAQQQAABBBBAIFxAh8jRDgnbdm0LX5XW+bQHas2aNTP3pRUVFZmhOPS5nhWlBg0aVLQq4eU6HEhBQYG0bdvWPP0g4QOxIwIIZLXAhKUTZMOuDfLl6i9F/2DblMxemPaYvCOAgD8ENDAbOWCk6Ul8z1f3yOIti2XisonSZr82ckAtb0ahSHugpg9a18uZtjUr2qXNZD+U/csvv5S1a9eaQXZnzPj5D2/wx0MvxV7w1gUyfe304MVMI4AAAkZABznVwVX7NO0jj5/4eNJVHpr1kDz89cPucXVsycLCQne+qhP2WPZvrw7uqa++TfvKYyc+VtXDh+yvl48ufOvCkL+nel6bh5CNE5ixx9HzqFPw5arLel4mlx9yeQJHrXiX8PLol7r+42/zUfGesa2xx9HzaNJ3O5DvmBPGSN8D+sZ2oBi30uP3ePLnS3qpKo8aabID3+p5Zp83O8Zcxr7Z1DVT5aK3LwrZwZqGLKxkpn+r/sZ+zNwxIltEJi2dJEM7Dc2dQG316tXSsmXLSpj2rk7mpc9AICCffPKJ1K9f3zxDVFvydNlHH30khx9+uPll07PqpVESAgggYAVObnOyNK/T3MwGj1iuwwrZfzjttsl410frBadknke/tGyeU3kem38NBMKHX9Lz2jzY7RJ5Dy5LKs8TnLdI59FxP1NRnuDz6nSyzhN8XC1PeErWeYLrR48ZnpJhFn7MZJ9nUOtBcmjjQ81pmhft/RsQfs50zKe9Ra1Ro0byxhtvxFS2unXrxrRdLBvpHwttodu2bZtMnz7d/eOh0127dpX999/fPYz+l5yKD5F7gjRPBP/CpPnUST9dNpVFcShP0j8iST1geP3oI2ZS+Win4Mwnc2DY4OPaaS2LvtIxGKm2oCRzYFhbBvuux0/nQL7pKE86B/LV8qRyYFg78K0GhukYyDdZj6oa3Haw/YiZv9Xl5eXufDon0h6o6R++k046KaSMOkzGN998IzrAbadOnczjo2rXrh2yTVVnatSoIddcc417mHfeececM3iZu5IJBBBAAAEEEEDABwJpD9TCy/y3v/1NbrnllpDFTZo0Mc8AHTBgQMhyZhBAAAEEEEAAgVwSqO5lYXU8Mw3S9KXTeqP/uHHjzBMJdEDc8HsbkpnX448/Xq699tpkHpJjIYAAAggggAACSRXwtEXtmWeeMYPe3nrrrW6hTj31VHPPWJcuXWTq1KnmRn93JRMIIICATwSKdxSb3pKaHb2fjIQAAgikQsDTFrVu3bqZ+9LCC9a4cWOzKPgG//BtmEcAAQS8FCjeXiyj54w2Ly/zwbkRQCC7BTxtUTvyyCNl8+bNMnToULnooovkwAMPlBUrVsjf//530SBu+/btMnv2bNNb8+CDD87umqB0CCCQEQLN6jRzW9CCh+uoauZXb18ta3asEW2p8yJtLdsqOkZcUX6RdGrQqcpZWLh5oWwr22ZeVT5YAgdQRy3PAbUPcIdXSeAw7i56LO21qGVKd9LzLtqyyHwXJqM8WoZFmxeZ8qS7LPZ86qmpY4OOUje/aiM82N8dHZw2G5OngZqOa6bjmel9afoKTz179nQX6ZhnJAQQQMBrAR1TTYe10JTMQG3i0olJPV68TvrFfen7l0oyhjbQwEJHdbdfxjr8Q7qTeuorGcOcaHnUxiYvyqOempJRngWbFshlUy6zxUn7u/VM1jAnXv/upBrQ00BNb+jXYTkqS8l+QkFl52M9Aggg4JWAbTHRlrt0pLoFdUUfi7V111bzuJxkn7ND/Q5Sr6Ce6HnSkdRNy2NbWZJ9Tj22pnSURwMZbXHSlIry1MmrI50bdnbOkr5A2vppsLhj9w5TtmT9sL87HRp0SNYhfXEcTwM1fUqAvnT8tEjP/Gzfvr15LIgvpMgEAgggkAYBHWTTttil4XTSuUFnM1hsKga+1QDgul7XSe8mvdNRFHMO9dOX3j+YzBZPPbiWxw6sm64CqZ+mVJSnS8MuMvLYkekqiuunLWoj3h8hM9fPTOq50/27k9TMRzmYp4Hapk2b5JRTTpGPP/44YhaT+QipiCdgIQIIIIAAAggg4GMBTwO1l19+2QRpDzzwgHkaQbhTMh8hFX5s5hFAAAEEEEAAAb8LeBqobdiwQXr06CFXXHGF353IHwIIIIAAAgggkHYBT8dRGzhwoBl+Y+LEiVJWVpb2wnNCBBBAIBkC2rtRX14M3ZCM/HMMBBDwr4CnLWo6/MZRRx0lgwcPFr3M2axZaC8nfTKBdjYgIYAAAn4WsEM3jBwwMq03zvvZhLwhgEByBDwN1N555x1zj5oGagcddJAZzC+4WAUFBcGzTCOAAAK+EggeamD77u0J5U2DPDveWEIHSPJOM9bPkL4v9DU99KaeOTWuo2tvvn4v9HP3SeewD+5Jwya056e+EhkfLhU9YcOyF/esLU8i46n5rTym9+eUEeaz9vCAh+P+JycVPWHjrpA07OBpoKZPHWjXrp28/vrr+wRpaSg7p0AAAQSqJGCHavBbsFWlQrEzAgj4SsDTQG3AgAFy8803y5o1a/a57OkrJTKDAAIIpFjA68umfZr0kWlnTnPaxEJbxRIptrakxdsal8h5ou2jY9HpKxmtSIm0xkXLWyLrbHmS0YrkdXnseHTJGk8tkdbFROrAq308DdRq1qwpTZo0kUMOOcQ871Mfwh78FIIbb7xRatWq5ZUN50UAAQQQQAABBDwV8DRQ0wewN27c2AB89NFH+0Bce+21BGr7qLAAAQQQQAABBHJFwNNAbciQIaKvSGnBggVSu3btSKtYhgACCCCAAAII5ISAp+OohQvr8z4feugh6devn3Tp0kW2bdsWvgnzCCCAgG8FFm1ZxHhqvq0dMoZAZgp42qKmZDt27JBJkybJ2LFjZcKECUaxU6dOcvvtt0udOnUyU5VcI4BATgrc89U9ptyxdAzQITD8nPRG71iH6UhGB4RUW8Qz7EgyOiCkujx2mI5YOgYkowNCKstjOhU4w3RoqqxjgO2A4KchbVJpo8f2JFArLy+XTz75RJ555hl55JFHQsr4+eefy+GHHx6yjBkEEEDAzwIdG3Q02VuwaYEkOp6an8tH3hBAwDuBtAdqGzdulG7duole5tSnEYwYMUKGDRsmDRo0kF69eplLnt5xcGYEEEAgfoHrel1ndkpkPDUdEsNPSYdOSHSYDj8MyxFuWZVhR2JprQo/X6rn7TAdibT6VdZaleq8hx/fDtOhy+Nt9dN9ExkkNzwPmTCf9kCttLTUBGmKc91118m5554rbdq0kW+++SYTvMgjAggggAACCCCQNoG0dyZo3ry56OVNbUm75ZZbpG3btqID3z777LNpKzQnQgABBBBAAAEEMkEg7S1qOqCt3oOmr3vuuUfGjx8vjz32mNx5553Ga/jw4XLeeefJ8ccfLzogLgkBBBDINIF7Zt4j9QrqycltTpbBbQeHZH/ETzdNhyz08Uzwjd7XHHqNdGrQyc3tgs0L5N6Z97rzmTBhy2MvnQXnecLSCTJp2STZumtr8GJfT2sd6GeqQ/0OYi/B2wz/+6t/y+Iti2X19tV2ke/fJy6baHpORyvPws0LfV+OZGYw7YFacOZ1nLSzzjrLvL7//nvTueDRRx+VV155xdy/tnLlSqlXr17wLlWaDgQC8vLLL5tHVuXn50vr1q3lpJNOqtIx2RkBBBAIF1i0eZFZZB/aHrx+xroZwbMZMa151sBm267QIZN0PpPLE45fvL0448pTUlayN8+B0NJoQKqfw0zrHal1oC8n+yEpvDz6ecyV5GmgFozcqlUruemmm0QfG/XZZ5/JU089FfI4qeBtE53WIG358uWil1/10VTffvutGQLk6KOPTvSQ7IcAAgi4Atf2utYEM7Zlxl0RYUKH8PBz0i9CzaN+QeqwI99t+a7C7EZq/ahwY49WBJfnsimXRc2FbQmtW1A36nZeruzcsLOpH21d+s/M/0TNim0JbVanWdTtvFz567a/lt5Neks85enU8OfWXS/znupz+yZQswXVS6P9+/c3L7ssWe/68PcWLVrI2WefbQ553333yaJFi4RALVnCHAeB3BawlwVtK1PxjmLTolGUXyTa8hGc9EvJ70nzqIGaXsY1LRrOgL76N1qvTui7XlbTVL+gvvmSzZTy2Hza1iZbP1pfmprXae778tTNr2vyqPWiaWvZVrf1TMuzrWybeWmAqp9Lv3/e1Fxf4eWxdaPLtUyZUh5TKUn64btALUnliniYyy+/XKpXry7z58+XefPmSVlZmbRv3z7itixEAAEEqiowcelE0ZdeArVBQVWP6eX+dkBfL/OQrHPrF78Op6IpG+pHL3NGKo8GNpmYbHnC6yZTy1OVOsipQK1GjRrG6v333zdPRNCZhg0bhvjpvWvyynAp/OalkOWZPlOY6QUIyn82lUWLRXmCKteHk4W/eVTk4DPiylmrBq2kT9M+sqpklbnfxgZp2jrQZb8u5liFhd7UfCLn7dq4q/kn15bHYuiltBZFLaTzfp0lkePa4yT6nsg5NUDTutE0/4f5pqXT1o8tj9ZfIsdOtBx2v0TO2biosVue6Wunm0PZ8uilQW0NbVTUKOPKox06Fm5aGPIPjq03r8pj6ynd79WcJuywW/bSnQVvzldcXCwvvviiOfnvf/97NxPaypY/3rl/IcsCNbeATCCAQFwCZUMelvJuQ+Pax24cPointg6MOnaUXZ32dw0EdCzLRFN4ebwcQLWqZdGAbcT7I0ICgUwvT78X+rlVqy1PXg4IW9X6CR/QV8sz9cypbvnSPaHl0acq2QafdJ4/pwK1e++9V/r27StHHnmkMbadC6699lrX3ARqTqtaVf6YuQfzyURVf2F8UgyTjWwqixaI8vjp0xWaF/2HrcbcV6UqgVroEb2fy6bPWzaVRT8ZlMf7349oOdD68SpQy6lLn9rTc+bMmdKsWTPJy8sTHf6jUaNG0eqGdQgggAACCCCAgGcCORWoaWvalClTZNy4cQZcA7djjjnGM3xOjAACCCCAAAIIRBPIqUCtd+/e0r17d1myZIlpVQvvSBANinUIIIAAAggggEC6BXIqUFNcvc7crVu3dDtzPgQQQAABBBBAIG6BtD+UPe4csgMCCCCAAAIIIJCjAgRqOVrxFBsBBBBAAAEE/C9AoOb/OiKHCCCAAAIIIJCjAgRqOVrxFBsBBBBAAAEE/C9AoOb/OiKHCCCAAAIIIJCjAgRqOVrxFBsBBBBAAAEE/C9AoOb/OiKHCCCAAAIIIJCjAgRqOVrxFBsBBBBAAAEE/C9AoOb/OiKHCCCAAAIIIJCjAgRqOVrxFBsBBBBAAAEE/C9AoOb/OiKHCCCAAAIIIJCjAgRqOVrxFBsBBBBAAAEE/C9AoOb/OiKHCCCAAAIIIJCjAgRqOVrxFBsBBBBAAAEE/C9AoOb/OiKHCCCAAAIIIJCjAgRqOVrxFBsBBBBAAAEE/C9AoOb/OiKHCCCAAAIIIJCjAgRqOVrxFBsBBBBAAAEE/C9AoOb/OiKHCCCAAAIIIJCjAgRqOVrxFBsBBBBAAAEE/C9AoOb/OiKHCCCAAAIIIJCjAgRqOVrxFBsBBBBAAAEE/C9AoOb/OiKHCCCAAAIIIJCjAnm5Vu433nhDli5dKoFAQNq1ayfHHHOM1KlTJ9cYKC8CCCCAAAIIZIBATrWovffeezJ37lypWbOmtGrVSubNmycvvvhiBlQTWUQAAQQQQACBXBTIqRY1bUmrV6+eDB8+3NS1Bmnff/99LtY7ZUYAAQQQQACBDBDIqUDtF7/4hdStW9etlg0bNkitWrXceSYQQAABBBBAAAE/CVRz7tUK+ClD6cjLpk2b5IUXXpCSkhLp37+/aABHQgABBEIEXnFa3r95KWQRMwggkIsC1UR+84iUdxsqNWrUSDtATrWoqe7MmTNl8uTJBnvQoEHSrVu3EPSysjLJz8+X0tLSkOWZPFNYWJg15cmmsuhnivL49zcrv7xc0v8n2b8e5AwBBLwRyKkWtW+++Ubefvttad68uZx55pkRI2MCNW8+iLGelcAmVilvtqN+vHGP9azZVD/ZVBatP8oT66fYm+20fsr1nzda1FJbAZ9++qnk5eXJIYccIgsWLDAnU/TOnTun9sQcHQEEEEAAAQQQSEAgpy59bt++3YyfpmOpBScCtWANphFAAAEEEEDALwI5Fahde+21fnEnHwgggAACCCCAQKUCOTXgbaUabIAAAggggAACCPhIgEDNR5VBVhBAAAEEEEAAgWABArVgDaYRQAABBBBAAAEfCRCo+agyyAoCCCCAAAIIIBAsQKAWrME0AggggAACCCDgIwECNR9VBllBAAEEEEAAAQSCBQjUgjWYRgABBBBAAAEEfCRAoOajyiArCCCAAAIIIIBAsACBWrAG0wgggAACCCCAgI8ECNR8VBlkBQEEEEAAAQQQCBYgUAvWYBoBBBBAAAEEEPCRAIGajyqDrCCAAAIIIIAAAsECBGrBGkwjgAACCCCAAAI+EiBQ81FlkBUEEEAAAQQQQCBYgEAtWINpBBBAAAEEEEDARwIEaj6qDLKCAAIIIIAAAggECxCoBWswjQACCCCAAAII+EiAQM1HlUFWEEAAAQQQQACBYAECtWANphFAAAEEEEAAAR8JEKj5qDLICgIIIIAAAgggECxAoBaswTQCCCCAAAIIIOAjAQI1H1UGWUEAAQQQQAABBIIFCNSCNZhGAAEEEEAAAQR8JECg5qPKICsIIIAAAggggECwQE4GaqtXr5b//e9/UlJSEmzBNAIIIIAAAggg4CuBPF/lJsWZ0cBs8uTJsmzZMikrK5Ndu3al+IwcHgEEEEAAAQQQSFwgp1rUNm3aJCtXrkxciz0RQAABBBBAAIE0CuRUoHbggQfKFVdcIQMGDEgjMadCAAEEEEAAAQQSE8ipS5+xEOXn55vNCgsLY9k8Y7bJpvJkU1n0A0R5/P1rRP34t36oG//WjeYs2+rHK20CtTB5vXdNg7XS0tKwNZk7q78s2VKebCqLfqIoj79/r6gf/9YPdePfutGcZWP9eCWeU5c+vULmvAgggAACCCCAQCICBGqJqLEPAggggAACCCCQBoGcDtSqVauWBmJOgQACCCCAAAIIJCaQk/eo9ejRQ/RFQgABBBBAAAEE/CyQ0y1qfq4Y8oYAAggggAACCBCo8RlAAAEEEEAAAQR8KkCg5tOKIVsIIIAAAggggACBGp8BBBBAAAEEEEDApwIEaj6tGLKFAAIIIIAAAggQqPEZQAABBBBAAAEEfCpAoObTiiFbCCCAAAIIIIAAgRqfAQQQQAABBBBAwKcCBGo+rRiyhQACCCCAAAIIEKjxGUAAAQQQQAABBHwqQKDm04ohWwgggAACCCCAAIEanwEEEEAAAQQQQMCnAgRqPq0YsoUAAggggAACCBCo8RlAAAEEEEAAAQR8KkCg5tOKIVsIIIAAAggggACBGp8BBBBAAAEEEEDApwIEaj6tGLKFAAIIIIAAAggQqPEZQAABBBBAAAEEfCpAoObTiiFbCCCAAAIIIIAAgRqfAQQQQAABBBBAwKcCBGo+rRiyhQACCCCAAAIIEKjxGUAAAQQQQAABBHwqQKDm04ohWwgggAACCCCAAIEanwEEEEAAAQQQQMCnAnk+zVfKsvXBBx/IvHnzJBAISLt27eTEE09M2bk4MAIIIIAAAgggUBWBnGpRmzZtmkyfPl3y8vKkZcuWMmfOHHnjjTeq4se+CCCAAAIIIIBAygRyKlCbMWOGFBUVycUXXyxDhgyRBg0ayKJFi1KGy4ERQAABBBBAAIGqCORUoFZaWir777+/61W/fn0pKytz55lAAAEEEEAAAQT8JJBT96jt3r1batWq5fpri9ry5cvdeZ3Iz88384WFhSHLM3XmzFGfy5dLf8jU7JNvBBBAAAEEPBWo5pz92UsOl36tG3iSj5wK1KpVqybbt293obU1rUaNGu68Tuiy12avleXrt5nlfds0kMPaNAzZJhNmHvhgqcnmyk07MiG75BEBBBBAAAEEIgjkVKCmnQi2bdsbgKnFxo0bJVLL2cvTV7itUFcc0zZDA7UlIdX95Pm9MrIcIYVwZrS+9BJ2tiTK4++apH78Wz/UjX/rRnOWjfVTXl7uCXpOBWrNmjWT77//3lzuXLNmjaxbt07atGmzD/zpfQ6UPXv2yLTlm81LW6eaNyiUoYc022dbPy1YublUXptVHJIlDTQ1QG3R4OdLviEbMIMAAggggAACvhXIqUDt1FNPlVGjRslLL71kKkTvV9Nl4emM3i1l2bqtJkibumyT6Kuvc23a74Haqs0/ygMfhLakXTWgXdb9ZxNeX8wjgAACCCCQrQI5FagVFBTIVVddZVrUTCtTixYV1mu/tnvvS1ulrVRfh7ZSVbiTT1Y0r18op/m89c8nVGQDAQQQQAABXwvkVKBma6J169Z2ssJ37UCgry+d1jQN1PQyaJdbJ5uWtbEX9K5wPy9WaB7Pe+Ir99QtnMu02pJGQgABBBBAAIHMFsipcdQyu6rIPQIIIIAAAgjkmkBOtqjFU8naqjb/1l+ZlrXgVqt4jpGubfU+Or+19qWr7JwHAQQQQACBbBQgUIuzVu0lUN1NAzgv0/1TlsiDH+4dL83LfHBuBBBAAAEEEEiNAJc+U+PKURFAAAEEEEAAgSoL0KIWI6G9BKqba6cCPyUdK43OA36qEfKCAAIIIIBAcgQI1KrgaB/TdKozFEZLp6dlutKrzqC2q51hQ/QyLAkBBBBAAAEEsleAQK0KdWsHl9XngaYzUBs3czVBWhXqjV0RQAABBBDIFAECtQRqSi81ahqnLVtbvHvu5Kk9mzmPhioUOzhvAkVhFwQQQAABBBDwsQCBWgKVY+8H00dLeRmonXZos6x40HoCVcAuCCCAAAII5IQAgVoSqvmfby6UerXy5aYTO0nXA4qScMTIh/jHmwtkwdrtMn/NtsgbsBQBBBBAAAEEskqAQC0J1Tl/bYk5ytbSsiQcreJDzF9Twr1pFfOwBgEEEEAAgawTIFCrQpXefFJn0eDsjp9auqpwqLh21Za7Lk7LXbcD6sa1HxsjgAACCCCAQGYJEKhVob7sZc56hflVOEr8u2qQpuO6kRBAAAEEEEAguwUI1JJYv/ZZoMkegNZvA+wmkYxDIYAAAggggEAUAR4hFQWHVQgggAACCCCAgJcCtKglQX/sBb3NUVL9kHSvHwKfBCoOgQACCCCAAAJxCNCiFgcWmyKAAAIIIIAAAukUoEUtBdoPfrhU9FXVe9W4Ny0FlcMhEUAAAQQQyCABWtQyqLLIKgIIIIAAAgjklgAtakmsb320lL6Sfa8a96YlsZI4FAIIIIAAAhkkQKCWwsqatnyzPPDBUmnuPDh96CHNYjrTys2l8przsHcSAggggAACCCBAoJbCz4A+tF1ffVs3iDlQW7X5Rye4W5LCXHFoBBBAAAEEEMgUAQK1FNRUv7Z7nxqwSlvHvk6sdax5/UI5LcZWuBQUgUMigAACCCCAgA8EcjJQW716tbz88sty4YUXSlFRUdKrQR/vpK8vndY0DdRWbyk1l0D1RFf+sm3E8+m205ZtFm1R09TCuVyq97uREEAAAQQQQCB3BXIqUCspKZHJkyfLsmXLpKysTHbt2pWWmteWNXs5s6JAberSTWZIj7RkiJMggAACCCCAQEYI5FSgtmnTJlm5cmXaKqZFg1pmLDU9oY6rpmmq02qmqV+bBuZdOw+s1pfT6qZJ72fr57TGtWhYy8zzAwEEEEAAAQRyVyCnArUDDzxQrrjiCpk9e7a88847Ka/1lkGXL22gdu4TM8x5nzp/72Onxs1aLeOCenlqkMYlz5RXDSdAAAEEEEAgIwSyOlCbNWuW7Nixw1RE165dpWHDvTf5R6uZ/Px8s7qwsDDaZnGvO6ztfmafL5f+YN5twGYPpK1vLZ1WtDZN6kmyz63nSMUxbd7T/Z5NZcm2uqE86f5tiP982fT7k01l4Xcn/s9yruyR1YHalClTpLy83K3LI444wp2uaELvXdNgrbR076XIiraLd/mT5x1qdvnd43tb1ML3P+3Q5u4QHsk+t/4xS/Yxw/OfrvlsKouaUZ50fXISOw/1k5hbOvaibtKhnPg5srF+Eteo2p5ZHahdeumlsmfPHiNUu3btqkklae+xF+y95Jmkw3EYBBBAAAEEEMhigawO1PwSnGXx54eiIYAAAggggEAKBXL6oezVqlVLIS2HRgABBBBAAAEEqiaQ1S1qFdH06NFD9EVCAAEEEEAAAQT8LJDTLWp+rhjyhgACCCCAAAIIEKjxGUAAAQQQQAABBHwqQKDm04ohWwgggAACCCCAAIEanwEEEEAAAQQQQMCnAjnZmSCWusi2HqHZVJ5sKot+FilPLL+R3m1D/XhnX9mZqZvKhLxdT/0kx79awEnJORRHQQABBBBAAAEEEEimAJc+k6nJsRBAAAEEEEAAgSQKcOkzCHPu3Lny+eefmwe5N27cWE4//XTz3M+gTXw9qc8pffHFF2Xjxo3mGZLdu3cXfb6pNj9v2LBB3nrrLdm0aZPUqVNHTj75ZGnatKmvy2Mzt337dhkzZoz07NlTjjnmGLM4E+tq1apVMnnyZFMH+jzZX/3qV9K5c2dTng8++EDmzZsn2sDdrl07OfHEE23xffs+e/ZsmTFjhmzbtk2aN29uytOwYUNThnHjxsnq1avN70+/fv3k0EP3PuvWj4V54YUXTD6HDh3qZi/a58vvdRWpPG+88YYsXbrU/Xzp75H+HdDPm5/rSvM3atQo6dWrl+jnKDw99thj5m/dOeecY1b5/e+c/k68/PLLcuGFF0pRUZFbnHfeeUcWL14su3fvlk6dOskJJ5xg/m5H+xy6O3s48fHHH8v8+fPl4osvdnOxcuVK0eXr168X/Xug30Ht27c36/1anuLiYpk0aZLod02DBg2kb9++0q1bt0rznK6/BbSo/fTx0l/wN998U0pKSsyHas2aNfLEE0/8tDYz3saOHSv6gWvSpIn5sGnQqR8k/WP3/PPPy9q1a6V169bmAe3PPPNMyAPr/VzCZ599Vnbt2mV+iTSfmVhXGkTrH2gNlDU40zrRz5umadOmyfTp0yUvL09atmwpc+bMEf1i9XPasmWL6JdL9erVpUOHDrJixQp55ZVXTJb1n4UlS5ZIo0aNRB/jpsHpokWLfFccDTKffvppk/fNmze7+Yv2+fJzXVVUnvfee0/0C7JmzZrSqlUr8w+B1pEmP9fVu+++K6NHjzZ/k/WfgfCk/3j+8MMP7t8FP/+d0++V119/XV566aX/3965hnhZfHF8SFBDTQzMS6kIipcsxNQ19IWLi6KCiLdNvGS6mLqLQgQhStE78YWGuqyiICoiUojtKqgvVlu1tAQv5QvXC2mSsESXDVyDgvocnIfx99/9/WGFdebxe+C3z/W3v5nPmWfmzJkzz1hdRn3mhTqaTs9LL72UPf8YOsXKof/us9revXvX8vLtt9+afsJ0UA+gF+q55uZmyzdrbsecH9pH0jp48GBHXU39i6FZLM0dWRfIo/a4hJ0/f9721q1bZ1saTR4eHrCw5xMWyNj2aWxGjBhh3jLStmPHDuvt0Pg/evTI4THAW9PU1OT279/vLl68aL2d2PIRpodGHh2EQakp6gqjmQqgsrLSvfjii+b1/Oqrr+wcDSxlzPdK9+zZE6VhE+oFwxIpLy83jwYNKT1pBKMNr8CsWbPseMuWLe7ChQtu6NChdhzLHzwYGJyFUqx8xayrtvKDJw0joKKiwrKKcXbv3j3bj1lXt2/fbrMziaFw/fp117lz50x95D/Weo4Omn8+sgQ/3rly5YobMGCAPUucol6gjihWDp91m/Tjjz9aOxLWy6Sd0RzquZKSEjdhwgTXu3dvV19fb951nh0ktjYWL+c///zjFixYYB0Z9rdu3erOnTtnHdG20tyRdYE8alZ0nMPI4eHw0rdvX9tFiakILmY+CBXWX3/95RjC9XnASEPwuCEYbDEL6b58+bINqYXpTFFX9MxoVA4dOuQ+++wz67ExlMMQKLqiQvPSs2dPq+z8cYzbsWPHWrL27t3rGGqjEaKsYVQjeNm84Mnx5/25GLYYmd5wDtNTrHzFrKu28vP222/bUJrPI2WRus7rJFZdrVq1yvTj0+23NKRHjx610YGwzo65nsMQo6yVlpb6bGRbhjvxOG3bts061xwz9FasHGZffkY7DJ2TH/IVCl506jQ6ZowgNDQ0ZCMFseaHEICJEyeakUZebty4YVmivSyW5o6sC2SoPS5ljE1TwLwQc4M8fPjQn4p+Sw+GmIDGxkZXU1Njw2uTJ082N3Rhz6dTp07mgo81Uwxj4ELHYC5clzVFXeG5YbiDxpHYQIxkYoMQKuawwSFGInbB44zhiS7wyqAvyp73GvTo0SPLAnmjcU1FipWvFHU1atQoM2rw6uzcudPqNGK+UtWVH7adO3fuE0WK4bbU6jnv0SV+leeH54rOKd6aYuXwiYxHdoD3lucErxvbrl27WgpjzQ8dYzozyJn/hqEZ9qRuIya6WJo7si7Q0Kepx7lCw6WlpcWuFPYYHt8e7YbGnyEDYoPmz59vnhoMUBrSUOjBvfzyy+GpqPbr6urMI/jqq69ar4zEETNA4GqKuvL8ly1bZsNQDKsT44UXgMaFCsELQwfkMWahMsPwpLEk7omYRzoITGBBMAr8s4ORRnlMRYqVrxR1BXcaf8IIyNuMGTMsUJrhQyQlXRHriFGDt4M4LrwaCLFSKdZzNPYInbclS5bYfnV1tWM4tFg5tBsj/HP16lUb/nzjjTfMi8swLrFc1Hcx54c6l9EB4tRwDuCdRoqluSPrAnnUHhd2GpIwwBMvAYIrNxXB1YyRxgy7NWvWZMNp3iBjyAPBq4PhwMSCWAVdEKhOA0M8FOnFUKOnmaKucK/zYNPbRBgmRDDQ6EWHwdJ+1q7dEOkf0kivk+BbKjOGahDfwWHiihe80ik9R8XKV4q6+v77781IY5Rg7dq12Ww2P9yekq5oSKkX8NZQLxDewQdDLcV6zj8XoRed54r6r1g59M9WbFv0gpSVldnWz9InTjLm/OzevdvaRd6GsHjx4mx0rViaO7IukKFmxcnZ8Bo9/9OnTzt6mvQCUFJKQrqprPr162ezvJjpRdCwjydi+jGudma4ID5mLcY88mqUDz74IPtQOTNdetGiRUnqih4mxiaeQgxlvGkYOATYoy+GbdAfEzwYFvVxhDHqhjRhcNKYYDjj1aChREcMszHUQdmjUa2trbV4Oz89P9b8hOliqL2tuiBFXRGUTqMyevRoi79BN8ThUL+lpqu33norqxOoHxguZOiqqqoqyXqOcoce6GBTV2NUU0czGadYOQzLa0z7PB8Izz31AxMJEDpyseaHGep0JpmIRx3N88EHx0axNHdkXaChTytGzsajeUhoePjg/WAWSCrCcACFjAY/fLUD8UEEfRK4TmNKzwFh0gGGQopC7EBqusLIZFiABtIHq3oDevbs2fauKKbuI+iMczELMzqZOUzHhg9lyb8rjWvkhVcrIAxfY8DFLDzvXoqVr1R0FeYHry11Q1gvkFden5CirryeCrd4olKp50L9TJ8+3eJVfewdk28IbseITq2egz/1G4YnkyMQnn+8uXxizA/hNAiziPl4YcSJ8KG20tyRdYGWkPJaebzF0MGSpkeTN8HzQe8BL044cSLVfKaoK+KBeNcdQ4bhBAJ0gEcNzwcVWyqCEUAnofB5wTCgwqZy9sO9qeTJp7NY+UpRVz5fhds86CrMU4r1HDHDGDfUCbxOKZRi5TC8L6Z98oMBRGeg0CGQYn6Kpbkj6gIZajGVbqVFBERABERABERABAICilELYGhXBERABERABERABGIiIEMtJm0oLSIgAiIgAiIgAiIQEJChFsDQrgiIgAiIgAiIgAjERECGWkzaUFpEQAREQAREQAREICAgQy2AoV0REAEREAEREAERiImADLWYtKG0iIAIiIAIiIAIiEBAQC+8DWBoVwREIF4CvJeN5YLaEpbjYWmrIUOGdNiqIrz7iqXNJkyY0Fay/u95XoTMy1p5M7pEBERABAoJyKNWSETHIiACURLgLfqsGtDWZ+fOnXbthx9+6JD0s0TOnDlzXLhWZnt+mAWhp06dakuLtef7+o4IiEC+CeiFt/nWr3InArkhwCoIvPEcqa6uduvXr7f1EcMFrRsbG80z1RHr9G7evNl98cUXtj5ruCRQe4CzXF3fvn2zZXfa8z/0HREQgXwSkEctn3pVrkQgdwS6devmevToYR+//JY/Zvv777+7DRs2uJ9++snyjgdu165drqKiwg0YMMAtXbrUlul5//337XjSpEnu0qVLGSeGMefNm2fXpkyZYkZYdrFg5++//3YfffSRW7t2ra0LzGV+7+DBg+69997L/v+ZM2eyb546dcrWD2ZJLX47vLZ69Wq3fft29/PPP2f3a0cEREAEICBDTeVABEQgFwTwuJ08edL98ccflh8MoVWrVrmmpia3cOFCd+DAAYtfwzirrKy0NVffffddu5c4MxaVv3z5svvwww/tPhZkPnz4cKtsMOqQN998M7vO7y1evNh+v6qqyl27ds2MN9bSbG5udtOmTXN9+vQxrxkev9LSUvfnn3/a94cPH27b+vr67P9pRwREQAQgoMkEKgciIAK5JTB9+nRXW1tr+WNY9Msvv3R1dXW2WHzPnj3dmjVrXEtLi9uxY4cZTbdu3XKvvPKK3f/gwQPzcpWXl/8PHyY2IAMHDnziGsbYkSNH7BzG1+zZs81L5j13S5YscePHj3dz5851n376qcW34Q1k2BO5ePGiGXt2oD8iIAIi8B8BGWoqBiIgArklMHHixCxveLPwgPXv39/OeYMMQ+27776zIdUtW7Zk9+Nlu379enYc7nAeAyuMj+P65MmTs9u8EcdMVCYLvPbaa66kpMThqcOAZOi0d+/edj8xbmPGjHnqiQnZj2tHBEQgNwRkqOVGlcqICIhAIQG8ZqEUHvtrv/zyiyPuzQ9Fch7DaezYsf6WJ7YYcT5OLrzQvXv38DDb596vv/7a7du3zx0/ftwtX77crv3666+uV69etk8MXteuXbPvaEcEREAEIKAYNZUDERCB557AsGHDbAiUgH5mlPKZMWOG87FjhYDwxhH7Fhp2hfeEx0wkOHHihNu4caP75ptv3M2bN+0yhpsXhlNff/11f6itCIiACBgBGWoqCCIgAs89gXfeeceMLmaN3r171yYeMAHh3r17rbIhzgy5c+dOq9cLT77wwgtu5cqV7vPPP3cPHz509+/ft1tGjhxpW85h+MlQKySnYxEQAQ19qgyIgAgkS6C195e1ds5nsFOnTn43e60G98+cOdOC+z/55BO3adMmu4dzH3/8cXZ/uDNu3Dg7xDPGC3hbE4wzhP/PDE9i03hfmpcVK1a4srIyO2QSA6LVCQyD/oiACAQE9MLbAIZ2RUAEnm8Cv/32m8NoYuKBnwzQFhHez8bQZ1uv8Gjte3joeFcarwLp0qVLdguevLNnz7qGhobsnHZEQAREAAIy1FQOREAERKAdBDC6Bg0aZPFmrC/aXuG9b7yQlzi2p1kztL2/r++JgAjETUAxanHrR6kTARGIlAAet5qaGos7e5okHjt2zOLXZKQ9DUV9VwTyS0AetfzqVjkTAREQAREQARFInIA8aokrUMkXAREQAREQARHILwEZavnVrXImAiIgAiIgAiKQOAEZaokrUMkXAREQAREQARHILwEZavnVrXImAiIgAiIgAiKQOAEZaokrUMkXAREQAREQARHILwEZavnVrXImAiIgAiIgAiKQOAEZaokrUMkXAREQAREQARHILwEZavnVrXImAiIgAiIgAiKQOAEZaokrUMkXAREQAREQARHILwEZavnVrXImAiIgAiIgAiKQOAEZaokrUMkXAREQAREQARHILwEZavnVrXImAiIgAiIgAiKQOAEZaokrUMkXAREQAREQARHILwEZavnVrXImAiIgAiIgAiKQOAEZaokrUMkXAREQAREQARHILwEZavnVrXImAiIgAiIgAiKQOAEZaokrUMkXAREQAREQARHILwEZavnVrXImAiIgAiIgAiKQOAEZaokrUMkXAREQAREQARHIL4F/ATpwMpdWkqjYAAAAAElFTkSuQmCC" } }, "cell_type": "markdown", "metadata": {}, "source": [ "![Screen%20Shot%202019-03-13%20at%2012.28.08%20PM.png](attachment:Screen%20Shot%202019-03-13%20at%2012.28.08%20PM.png)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table><tr><th>id</th><th>Year</th><th>Date</th><th>Time</th><th>Name</th></tr><tr><tr><td>2</td><td>2019</td><td>Apr. 18</td><td>11:25:37 AM</td><td>NoSidebanding</td></tr><tr><td>3</td><td>2019</td><td>Apr. 18</td><td>11:25:38 AM</td><td>50MHz-Sidebanding</td></tr><tr><td>4</td><td>2019</td><td>Apr. 18</td><td>11:25:39 AM</td><td>50MHz-Sidebanding</td></tr><tr><td>5</td><td>2019</td><td>Apr. 18</td><td>11:25:38 AM</td><td>working</td></tr></tr></table>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cl.ls()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "cl.rm(\"NoSidebanding\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table><tr><th>id</th><th>Year</th><th>Date</th><th>Time</th><th>Name</th></tr><tr><tr><td>3</td><td>2019</td><td>Apr. 18</td><td>11:25:38 AM</td><td>50MHz-Sidebanding</td></tr><tr><td>4</td><td>2019</td><td>Apr. 18</td><td>11:25:39 AM</td><td>50MHz-Sidebanding</td></tr><tr><td>5</td><td>2019</td><td>Apr. 18</td><td>11:25:38 AM</td><td>working</td></tr></tr></table>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cl.ls()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "cl.rm(\"50MHz-Sidebanding\")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table><tr><th>id</th><th>Year</th><th>Date</th><th>Time</th><th>Name</th></tr><tr><tr><td>5</td><td>2019</td><td>Apr. 18</td><td>11:25:38 AM</td><td>working</td></tr></tr></table>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cl.ls()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": false, "sideBar": false, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": false, "toc_window_display": false }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "0490ccadaa934d6d9a6882708736e7ef": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "allow_padding": false, "max": 1, "min": 0, "stabilized": false } }, "072cf286cd1d471bb1b8766a79641d91": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "AxisModel", "state": { "label": "Time (ns)", "scale": "IPY_MODEL_8e8ebdb406d4482ab5620aa6a4bff8ac", "side": "bottom", "tick_values": { "type": null, "values": null } } }, "0768a1a3181042fe8da6b4bbce422b65": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "AxisModel", "state": { "label": "Time (ns)", "scale": "IPY_MODEL_3f7099eb85e644d39be802793202d951", "side": "bottom", "tick_values": { "type": null, "values": null } } }, "0c7c37af1acc42ba9126e35a13d87988": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "display_legend": false, "fill_colors": [], "labels": [ "C1" ], "scales": { "x": "IPY_MODEL_f989834e0fd144cd95b580df0aaad5ab", "y": "IPY_MODEL_e8e3f7bb389f4168be4a3f68b16bf18a" }, "selected": [], "x": { "type": "float", "values": [ 0, 1, 2, 3, 4 ] }, "y": { "type": "float", "values": [ 1, 3, 2, 5, 4 ] } } }, "110f58f16ec44108a4310312eeb12166": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.4.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_f722402781aa40e5abfa266993ce0fa5", "IPY_MODEL_878486d7bb834d1891aed2a021fad962" ], "layout": "IPY_MODEL_182820199c354cb089f732d726e8b34d" } }, "12f876e9421b40429141e35e1eea7954": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#1f77b4" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS1_ch1" ], "scales": { "x": "IPY_MODEL_8e8ebdb406d4482ab5620aa6a4bff8ac", "y": "IPY_MODEL_a71a67a73d17471581bd9699c6803d86" }, "selected": [], "tooltip": "IPY_MODEL_1561859070ba41c48a54d5e58bddc084", "x": { "type": "float", "values": [ 0, 0.8333333333333334, 0.8333333333333334, 1.6666666666666667, 1.6666666666666667, 2.5, 2.5, 3.3333333333333335, 3.3333333333333335, 4.166666666666667, 4.166666666666667, 5, 5, 5.833333333333333, 5.833333333333333, 6.666666666666667, 6.666666666666667, 7.500000000000001, 7.500000000000001, 8.333333333333334, 8.333333333333334, 9.166666666666666, 9.166666666666666, 10, 10, 10.833333333333334, 10.833333333333334, 11.666666666666666, 11.666666666666666, 12.5, 12.5, 13.333333333333334, 13.333333333333334, 14.166666666666668, 14.166666666666668, 15.000000000000002, 15.000000000000002, 15.833333333333332, 15.833333333333332, 16.666666666666668, 16.666666666666668, 17.5, 17.5, 18.333333333333332, 18.333333333333332, 19.166666666666668, 19.166666666666668, 20, 20, 100, 100, 1100 ] }, "y": { "type": "float", "values": [ -0.04541570015871078, -0.04541570015871078, -0.10438285923574656, -0.10438285923574656, -0.17800024417043095, -0.17800024417043095, -0.2661457697472836, -0.2661457697472836, -0.36747649859602, -0.36747649859602, -0.4786961298986693, -0.4786961298986693, -0.5946770846050543, -0.5946770846050543, -0.7087046758637529, -0.7087046758637529, -0.8132096203149799, -0.8132096203149799, -0.9003784641679893, -0.9003784641679893, -0.9630081797094372, -0.9630081797094372, -0.9957270174581858, -0.9957270174581858, -0.9957270174581858, -0.9957270174581858, -0.9630081797094372, -0.9630081797094372, -0.9003784641679893, -0.9003784641679893, -0.8132096203149799, -0.8132096203149799, -0.7087046758637529, -0.7087046758637529, -0.5946770846050543, -0.5946770846050543, -0.4786961298986693, -0.4786961298986693, -0.36747649859602, -0.36747649859602, -0.2661457697472836, -0.2661457697472836, -0.17800024417043095, -0.17800024417043095, -0.10438285923574656, -0.10438285923574656, -0.04541570015871078, -0.04541570015871078, 0, 0, 0, 0 ] } } }, "1561859070ba41c48a54d5e58bddc084": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "TooltipModel", "state": { "fields": [ "name" ], "labels": [ "Channel" ], "layout": "IPY_MODEL_af69c3cbfaee4e319d2c44b463c2983f" } }, "182820199c354cb089f732d726e8b34d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": {} }, "19e1aafd7f63482195d9af28dee252e4": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "allow_padding": false, "max": 1, "min": 0, "stabilized": false } }, "24682eab19af4dfd8d318250d74bdc96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.4.0", "model_name": "IntSliderModel", "state": { "description": "Segment", "layout": "IPY_MODEL_31eab17e8111403280522cadf13b3439", "max": 11, "min": 1, "style": "IPY_MODEL_651d6903727244588d4c9903e14b28cb", "value": 11 } }, "2b4e49a2d49b48e3bce000e83485de3a": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#9467bd" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS2_m1" ], "scales": { "x": "IPY_MODEL_3f7099eb85e644d39be802793202d951", "y": "IPY_MODEL_bb809aa69f6b4de692ddb7c47b2a8a8f" }, "selected": [], "tooltip": "IPY_MODEL_739989c6df8b44ac8e2e610ee68b5e36", "x": { "type": "float", "values": [ 0, 100, 100, 200, 200, 1100 ] }, "y": { "type": "float", "values": [ 8, 8, 9, 9, 8, 8 ] } } }, "2ed12d1557984347b7cb67660a9ebc16": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#ff7f0e" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS1_m2" ], "scales": { "x": "IPY_MODEL_8e8ebdb406d4482ab5620aa6a4bff8ac", "y": "IPY_MODEL_a71a67a73d17471581bd9699c6803d86" }, "selected": [], "tooltip": "IPY_MODEL_1561859070ba41c48a54d5e58bddc084", "x": { "type": "float", "values": [ 0, 100, 100, 1100 ] }, "y": { "type": "float", "values": [ 3, 3, 2, 2 ] } } }, "30d949e7ba5846e89f696eade5e275c3": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "max": 9, "min": -1, "stabilized": false } }, "31750defe61d492594401d2b55a58b40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.4.0", "model_name": "IntSliderModel", "state": { "description": "Segment", "layout": "IPY_MODEL_f39a17cf33cc46afa2ee166ea8bca784", "max": 11, "min": 1, "style": "IPY_MODEL_9e46c1e4a1aa4731995efd0536d84f82", "value": 1 } }, "31eab17e8111403280522cadf13b3439": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": {} }, "36d96bdd5b284556a2073db0e65f128f": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "allow_padding": false, "max": 1, "min": 0, "stabilized": false } }, "385459ae10754d14b779ad18351d672f": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#2ca02c" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS2_ch1" ], "scales": { "x": "IPY_MODEL_8e8ebdb406d4482ab5620aa6a4bff8ac", "y": "IPY_MODEL_a71a67a73d17471581bd9699c6803d86" }, "selected": [], "tooltip": "IPY_MODEL_1561859070ba41c48a54d5e58bddc084", "x": { "type": "float", "values": [ 0, 100, 100, 100.83333333333333, 100.83333333333333, 101.66666666666666, 101.66666666666666, 102.5, 102.5, 103.33333333333333, 103.33333333333333, 104.16666666666667, 104.16666666666667, 105, 105, 105.83333333333333, 105.83333333333333, 106.66666666666667, 106.66666666666667, 107.5, 107.5, 108.33333333333334, 108.33333333333334, 109.16666666666667, 109.16666666666667, 110, 110, 110.83333333333334, 110.83333333333334, 111.66666666666667, 111.66666666666667, 112.50000000000001, 112.50000000000001, 113.33333333333334, 113.33333333333334, 114.16666666666666, 114.16666666666666, 115, 115, 115.83333333333333, 115.83333333333333, 116.66666666666667, 116.66666666666667, 117.5, 117.5, 118.33333333333333, 118.33333333333333, 119.16666666666667, 119.16666666666667, 120.00000000000001, 120.00000000000001, 120.83333333333333, 120.83333333333333, 121.66666666666666, 121.66666666666666, 122.49999999999999, 122.49999999999999, 123.33333333333333, 123.33333333333333, 124.16666666666666, 124.16666666666666, 125, 125, 125.83333333333333, 125.83333333333333, 126.66666666666666, 126.66666666666666, 127.5, 127.5, 128.33333333333334, 128.33333333333334, 129.16666666666666, 129.16666666666666, 130, 130, 130.83333333333334, 130.83333333333334, 131.66666666666666, 131.66666666666666, 132.5, 132.5, 133.33333333333334, 133.33333333333334, 134.16666666666666, 134.16666666666666, 135, 135, 135.83333333333334, 135.83333333333334, 136.66666666666669, 136.66666666666669, 137.5, 137.5, 138.33333333333334, 138.33333333333334, 139.16666666666669, 139.16666666666669, 140, 140, 140.83333333333334, 140.83333333333334, 141.66666666666669, 141.66666666666669, 142.5, 142.5, 143.33333333333334, 143.33333333333334, 144.16666666666669, 144.16666666666669, 145.00000000000003, 145.00000000000003, 145.83333333333334, 145.83333333333334, 146.66666666666666, 146.66666666666666, 147.5, 147.5, 148.33333333333331, 148.33333333333331, 149.16666666666666, 149.16666666666666, 150, 150, 150.83333333333331, 150.83333333333331, 151.66666666666666, 151.66666666666666, 152.5, 152.5, 153.33333333333334, 153.33333333333334, 154.16666666666666, 154.16666666666666, 155, 155, 155.83333333333334, 155.83333333333334, 156.66666666666666, 156.66666666666666, 157.5, 157.5, 158.33333333333334, 158.33333333333334, 159.16666666666666, 159.16666666666666, 160, 160, 160.83333333333334, 160.83333333333334, 161.66666666666669, 161.66666666666669, 162.5, 162.5, 163.33333333333334, 163.33333333333334, 164.16666666666669, 164.16666666666669, 165, 165, 165.83333333333334, 165.83333333333334, 166.66666666666669, 166.66666666666669, 167.5, 167.5, 168.33333333333334, 168.33333333333334, 169.16666666666669, 169.16666666666669, 170, 170, 170.83333333333334, 170.83333333333334, 171.66666666666669, 171.66666666666669, 172.50000000000003, 172.50000000000003, 173.33333333333334, 173.33333333333334, 174.16666666666666, 174.16666666666666, 175, 175, 175.83333333333331, 175.83333333333331, 176.66666666666666, 176.66666666666666, 177.5, 177.5, 178.33333333333334, 178.33333333333334, 179.16666666666666, 179.16666666666666, 180, 180, 180.83333333333334, 180.83333333333334, 181.66666666666666, 181.66666666666666, 182.5, 182.5, 183.33333333333334, 183.33333333333334, 184.16666666666666, 184.16666666666666, 185, 185, 185.83333333333334, 185.83333333333334, 186.66666666666666, 186.66666666666666, 187.5, 187.5, 188.33333333333334, 188.33333333333334, 189.16666666666669, 189.16666666666669, 190, 190, 190.83333333333334, 190.83333333333334, 191.66666666666669, 191.66666666666669, 192.5, 192.5, 193.33333333333334, 193.33333333333334, 194.16666666666669, 194.16666666666669, 195, 195, 195.83333333333334, 195.83333333333334, 196.66666666666669, 196.66666666666669, 197.50000000000003, 197.50000000000003, 198.33333333333334, 198.33333333333334, 199.16666666666669, 199.16666666666669, 200, 200, 200.83333333333331, 200.83333333333331, 201.66666666666666, 201.66666666666666, 202.5, 202.5, 203.33333333333331, 203.33333333333331, 204.16666666666666, 204.16666666666666, 205, 205, 205.83333333333334, 205.83333333333334, 206.66666666666666, 206.66666666666666, 207.5, 207.5, 208.33333333333334, 208.33333333333334, 209.16666666666666, 209.16666666666666, 210, 210, 210.83333333333334, 210.83333333333334, 211.66666666666666, 211.66666666666666, 212.5, 212.5, 213.33333333333334, 213.33333333333334, 214.16666666666669, 214.16666666666669, 215, 215, 215.83333333333334, 215.83333333333334, 216.66666666666669, 216.66666666666669, 217.5, 217.5, 218.33333333333334, 218.33333333333334, 219.16666666666669, 219.16666666666669, 220, 220, 220.83333333333334, 220.83333333333334, 221.66666666666669, 221.66666666666669, 222.5, 222.5, 223.33333333333334, 223.33333333333334, 224.16666666666669, 224.16666666666669, 225.00000000000003, 225.00000000000003, 225.83333333333334, 225.83333333333334, 226.66666666666669, 226.66666666666669, 227.5, 227.5, 228.33333333333331, 228.33333333333331, 229.16666666666666, 229.16666666666666, 230, 230, 230.83333333333334, 230.83333333333334, 231.66666666666666, 231.66666666666666, 232.5, 232.5, 233.33333333333334, 233.33333333333334, 234.16666666666666, 234.16666666666666, 235, 235, 235.83333333333334, 235.83333333333334, 236.66666666666666, 236.66666666666666, 237.5, 237.5, 238.33333333333334, 238.33333333333334, 239.16666666666666, 239.16666666666666, 240.00000000000003, 240.00000000000003, 240.83333333333334, 240.83333333333334, 241.66666666666666, 241.66666666666666, 242.5, 242.5, 243.33333333333331, 243.33333333333331, 244.16666666666669, 244.16666666666669, 244.99999999999997, 244.99999999999997, 245.83333333333334, 245.83333333333334, 246.66666666666666, 246.66666666666666, 247.5, 247.5, 248.33333333333331, 248.33333333333331, 249.16666666666669, 249.16666666666669, 250, 250, 250.83333333333334, 250.83333333333334, 251.66666666666666, 251.66666666666666, 252.50000000000003, 252.50000000000003, 253.33333333333331, 253.33333333333331, 254.16666666666669, 254.16666666666669, 255, 255, 255.83333333333334, 255.83333333333334, 256.6666666666667, 256.6666666666667, 257.5, 257.5, 258.3333333333333, 258.3333333333333, 259.1666666666667, 259.1666666666667, 260, 260, 260.83333333333337, 260.83333333333337, 261.6666666666667, 261.6666666666667, 262.5, 262.5, 263.3333333333333, 263.3333333333333, 264.1666666666667, 264.1666666666667, 265, 265, 265.83333333333337, 265.83333333333337, 266.6666666666667, 266.6666666666667, 267.5, 267.5, 268.3333333333333, 268.3333333333333, 269.16666666666663, 269.16666666666663, 270, 270, 270.8333333333333, 270.8333333333333, 271.6666666666667, 271.6666666666667, 272.5, 272.5, 273.33333333333337, 273.33333333333337, 274.16666666666663, 274.16666666666663, 275, 275, 275.8333333333333, 275.8333333333333, 276.6666666666667, 276.6666666666667, 277.5, 277.5, 278.33333333333337, 278.33333333333337, 279.1666666666667, 279.1666666666667, 280, 280, 280.8333333333333, 280.8333333333333, 281.6666666666667, 281.6666666666667, 282.5, 282.5, 283.33333333333337, 283.33333333333337, 284.1666666666667, 284.1666666666667, 285, 285, 285.8333333333333, 285.8333333333333, 286.6666666666667, 286.6666666666667, 287.5, 287.5, 288.33333333333337, 288.33333333333337, 289.1666666666667, 289.1666666666667, 290.00000000000006, 290.00000000000006, 290.8333333333333, 290.8333333333333, 291.6666666666667, 291.6666666666667, 292.5, 292.5, 293.3333333333333, 293.3333333333333, 294.1666666666667, 294.1666666666667, 295, 295, 295.8333333333333, 295.8333333333333, 296.66666666666663, 296.66666666666663, 297.5, 297.5, 298.3333333333333, 298.3333333333333, 299.1666666666667, 299.1666666666667, 300, 300, 300.83333333333337, 300.83333333333337, 301.66666666666663, 301.66666666666663, 302.5, 302.5, 303.3333333333333, 303.3333333333333, 304.1666666666667, 304.1666666666667, 305, 305, 305.83333333333337, 305.83333333333337, 306.6666666666667, 306.6666666666667, 307.5, 307.5, 308.3333333333333, 308.3333333333333, 309.1666666666667, 309.1666666666667, 310, 310, 310.83333333333337, 310.83333333333337, 311.6666666666667, 311.6666666666667, 312.5, 312.5, 313.3333333333333, 313.3333333333333, 314.1666666666667, 314.1666666666667, 315, 315, 315.83333333333337, 315.83333333333337, 316.6666666666667, 316.6666666666667, 317.50000000000006, 317.50000000000006, 318.3333333333333, 318.3333333333333, 319.1666666666667, 319.1666666666667, 320, 320, 320.8333333333333, 320.8333333333333, 321.6666666666667, 321.6666666666667, 322.5, 322.5, 323.33333333333337, 323.33333333333337, 324.16666666666663, 324.16666666666663, 325, 325, 325.8333333333333, 325.8333333333333, 326.6666666666667, 326.6666666666667, 327.5, 327.5, 328.33333333333337, 328.33333333333337, 329.16666666666663, 329.16666666666663, 330, 330, 330.8333333333333, 330.8333333333333, 331.6666666666667, 331.6666666666667, 332.5, 332.5, 333.33333333333337, 333.33333333333337, 334.1666666666667, 334.1666666666667, 335, 335, 335.8333333333333, 335.8333333333333, 336.6666666666667, 336.6666666666667, 337.5, 337.5, 338.33333333333337, 338.33333333333337, 339.1666666666667, 339.1666666666667, 340, 340, 340.8333333333333, 340.8333333333333, 341.6666666666667, 341.6666666666667, 342.5, 342.5, 343.33333333333337, 343.33333333333337, 344.1666666666667, 344.1666666666667, 345.00000000000006, 345.00000000000006, 345.8333333333333, 345.8333333333333, 346.6666666666667, 346.6666666666667, 347.5, 347.5, 348.3333333333333, 348.3333333333333, 349.1666666666667, 349.1666666666667, 350, 350, 350.83333333333337, 350.83333333333337, 351.66666666666663, 351.66666666666663, 352.5, 352.5, 353.3333333333333, 353.3333333333333, 354.1666666666667, 354.1666666666667, 355, 355, 355.83333333333337, 355.83333333333337, 356.6666666666667, 356.6666666666667, 357.5, 357.5, 358.3333333333333, 358.3333333333333, 359.1666666666667, 359.1666666666667, 360, 360, 360.83333333333337, 360.83333333333337, 361.6666666666667, 361.6666666666667, 362.5, 362.5, 363.3333333333333, 363.3333333333333, 364.1666666666667, 364.1666666666667, 365, 365, 365.83333333333337, 365.83333333333337, 366.6666666666667, 366.6666666666667, 367.5, 367.5, 368.3333333333333, 368.3333333333333, 369.1666666666667, 369.1666666666667, 370, 370, 370.83333333333337, 370.83333333333337, 371.6666666666667, 371.6666666666667, 372.50000000000006, 372.50000000000006, 373.3333333333333, 373.3333333333333, 374.16666666666663, 374.16666666666663, 375, 375, 375.8333333333333, 375.8333333333333, 376.6666666666667, 376.6666666666667, 377.5, 377.5, 378.33333333333337, 378.33333333333337, 379.16666666666663, 379.16666666666663, 380, 380, 380.8333333333333, 380.8333333333333, 381.6666666666667, 381.6666666666667, 382.5, 382.5, 383.33333333333337, 383.33333333333337, 384.1666666666667, 384.1666666666667, 385, 385, 385.8333333333333, 385.8333333333333, 386.6666666666667, 386.6666666666667, 387.5, 387.5, 388.33333333333337, 388.33333333333337, 389.1666666666667, 389.1666666666667, 390, 390, 390.8333333333333, 390.8333333333333, 391.6666666666667, 391.6666666666667, 392.5, 392.5, 393.33333333333337, 393.33333333333337, 394.1666666666667, 394.1666666666667, 395.00000000000006, 395.00000000000006, 395.8333333333333, 395.8333333333333, 396.6666666666667, 396.6666666666667, 397.5, 397.5, 398.33333333333337, 398.33333333333337, 399.1666666666667, 399.1666666666667, 400, 400, 400.8333333333333, 400.8333333333333, 401.66666666666663, 401.66666666666663, 402.5, 402.5, 403.3333333333333, 403.3333333333333, 404.1666666666667, 404.1666666666667, 405, 405, 405.83333333333337, 405.83333333333337, 406.66666666666663, 406.66666666666663, 407.5, 407.5, 408.3333333333333, 408.3333333333333, 409.1666666666667, 409.1666666666667, 410, 410, 410.83333333333337, 410.83333333333337, 411.6666666666667, 411.6666666666667, 412.5, 412.5, 413.3333333333333, 413.3333333333333, 414.1666666666667, 414.1666666666667, 415, 415, 415.83333333333337, 415.83333333333337, 416.6666666666667, 416.6666666666667, 417.5, 417.5, 418.3333333333333, 418.3333333333333, 419.1666666666667, 419.1666666666667, 420, 420, 420.83333333333337, 420.83333333333337, 421.6666666666667, 421.6666666666667, 422.50000000000006, 422.50000000000006, 423.3333333333333, 423.3333333333333, 424.1666666666667, 424.1666666666667, 425, 425, 425.83333333333337, 425.83333333333337, 426.6666666666667, 426.6666666666667, 427.5, 427.5, 428.33333333333337, 428.33333333333337, 429.16666666666663, 429.16666666666663, 430, 430, 430.8333333333333, 430.8333333333333, 431.6666666666667, 431.6666666666667, 432.5, 432.5, 433.33333333333337, 433.33333333333337, 434.16666666666663, 434.16666666666663, 435, 435, 435.8333333333333, 435.8333333333333, 436.6666666666667, 436.6666666666667, 437.5, 437.5, 438.33333333333337, 438.33333333333337, 439.1666666666667, 439.1666666666667, 440, 440, 440.8333333333333, 440.8333333333333, 441.6666666666667, 441.6666666666667, 442.5, 442.5, 443.33333333333337, 443.33333333333337, 444.1666666666667, 444.1666666666667, 445, 445, 445.8333333333333, 445.8333333333333, 446.6666666666667, 446.6666666666667, 447.5, 447.5, 448.33333333333337, 448.33333333333337, 449.1666666666667, 449.1666666666667, 450.00000000000006, 450.00000000000006, 450.8333333333333, 450.8333333333333, 451.6666666666667, 451.6666666666667, 452.5, 452.5, 453.33333333333337, 453.33333333333337, 454.1666666666667, 454.1666666666667, 455, 455, 455.83333333333337, 455.83333333333337, 456.66666666666663, 456.66666666666663, 457.5, 457.5, 458.3333333333333, 458.3333333333333, 459.1666666666667, 459.1666666666667, 460, 460, 460.83333333333337, 460.83333333333337, 461.6666666666667, 461.6666666666667, 462.5, 462.5, 463.3333333333333, 463.3333333333333, 464.1666666666667, 464.1666666666667, 465, 465, 465.83333333333337, 465.83333333333337, 466.6666666666667, 466.6666666666667, 467.5, 467.5, 468.3333333333333, 468.3333333333333, 469.1666666666667, 469.1666666666667, 470, 470, 470.83333333333337, 470.83333333333337, 471.6666666666667, 471.6666666666667, 472.50000000000006, 472.50000000000006, 473.3333333333333, 473.3333333333333, 474.1666666666667, 474.1666666666667, 475, 475, 475.83333333333337, 475.83333333333337, 476.6666666666667, 476.6666666666667, 477.5, 477.5, 478.3333333333333, 478.3333333333333, 479.1666666666667, 479.1666666666667, 480.00000000000006, 480.00000000000006, 480.8333333333333, 480.8333333333333, 481.6666666666667, 481.6666666666667, 482.50000000000006, 482.50000000000006, 483.3333333333333, 483.3333333333333, 484.16666666666663, 484.16666666666663, 485, 485, 485.83333333333337, 485.83333333333337, 486.66666666666663, 486.66666666666663, 487.5, 487.5, 488.33333333333337, 488.33333333333337, 489.1666666666667, 489.1666666666667, 489.99999999999994, 489.99999999999994, 490.8333333333333, 490.8333333333333, 491.6666666666667, 491.6666666666667, 492.50000000000006, 492.50000000000006, 493.3333333333333, 493.3333333333333, 494.1666666666667, 494.1666666666667, 495, 495, 495.83333333333337, 495.83333333333337, 496.66666666666663, 496.66666666666663, 497.5, 497.5, 498.33333333333337, 498.33333333333337, 499.16666666666674, 499.16666666666674, 500, 500, 500.8333333333333, 500.8333333333333, 501.6666666666667, 501.6666666666667, 502.50000000000006, 502.50000000000006, 503.3333333333333, 503.3333333333333, 504.1666666666667, 504.1666666666667, 505.00000000000006, 505.00000000000006, 505.83333333333337, 505.83333333333337, 506.66666666666663, 506.66666666666663, 507.5, 507.5, 508.33333333333337, 508.33333333333337, 509.16666666666663, 509.16666666666663, 510, 510, 510.83333333333337, 510.83333333333337, 511.6666666666667, 511.6666666666667, 512.5, 512.5, 513.3333333333334, 513.3333333333334, 514.1666666666666, 514.1666666666666, 515, 515, 515.8333333333333, 515.8333333333333, 516.6666666666666, 516.6666666666666, 517.5, 517.5, 518.3333333333334, 518.3333333333334, 519.1666666666666, 519.1666666666666, 520, 520, 520.8333333333334, 520.8333333333334, 521.6666666666667, 521.6666666666667, 522.5, 522.5, 523.3333333333334, 523.3333333333334, 524.1666666666667, 524.1666666666667, 525, 525, 525.8333333333333, 525.8333333333333, 526.6666666666666, 526.6666666666666, 527.5, 527.5, 528.3333333333334, 528.3333333333334, 529.1666666666666, 529.1666666666666, 530, 530, 530.8333333333334, 530.8333333333334, 531.6666666666667, 531.6666666666667, 532.5, 532.5, 533.3333333333334, 533.3333333333334, 534.1666666666667, 534.1666666666667, 535, 535, 535.8333333333334, 535.8333333333334, 536.6666666666666, 536.6666666666666, 537.5, 537.5, 538.3333333333333, 538.3333333333333, 539.1666666666666, 539.1666666666666, 540, 540, 540.8333333333334, 540.8333333333334, 541.6666666666666, 541.6666666666666, 542.5, 542.5, 543.3333333333334, 543.3333333333334, 544.1666666666667, 544.1666666666667, 545, 545, 545.8333333333334, 545.8333333333334, 546.6666666666667, 546.6666666666667, 547.5, 547.5, 548.3333333333333, 548.3333333333333, 549.1666666666666, 549.1666666666666, 550, 550, 550.8333333333334, 550.8333333333334, 551.6666666666666, 551.6666666666666, 552.5, 552.5, 553.3333333333334, 553.3333333333334, 554.1666666666667, 554.1666666666667, 555, 555, 555.8333333333334, 555.8333333333334, 556.6666666666667, 556.6666666666667, 557.5000000000001, 557.5000000000001, 558.3333333333334, 558.3333333333334, 559.1666666666666, 559.1666666666666, 560, 560, 560.8333333333333, 560.8333333333333, 561.6666666666666, 561.6666666666666, 562.5, 562.5, 563.3333333333334, 563.3333333333334, 564.1666666666666, 564.1666666666666, 565, 565, 565.8333333333334, 565.8333333333334, 566.6666666666667, 566.6666666666667, 567.5, 567.5, 568.3333333333334, 568.3333333333334, 569.1666666666667, 569.1666666666667, 570, 570, 570.8333333333333, 570.8333333333333, 571.6666666666666, 571.6666666666666, 572.5, 572.5, 573.3333333333334, 573.3333333333334, 574.1666666666666, 574.1666666666666, 575, 575, 575.8333333333334, 575.8333333333334, 576.6666666666667, 576.6666666666667, 577.5, 577.5, 578.3333333333334, 578.3333333333334, 579.1666666666667, 579.1666666666667, 580.0000000000001, 580.0000000000001, 580.8333333333333, 580.8333333333333, 581.6666666666666, 581.6666666666666, 582.5, 582.5, 583.3333333333334, 583.3333333333334, 584.1666666666666, 584.1666666666666, 585, 585, 585.8333333333334, 585.8333333333334, 586.6666666666666, 586.6666666666666, 587.5, 587.5, 588.3333333333334, 588.3333333333334, 589.1666666666667, 589.1666666666667, 590, 590, 590.8333333333334, 590.8333333333334, 591.6666666666666, 591.6666666666666, 592.5, 592.5, 593.3333333333333, 593.3333333333333, 594.1666666666666, 594.1666666666666, 595, 595, 595.8333333333334, 595.8333333333334, 596.6666666666666, 596.6666666666666, 597.5, 597.5, 598.3333333333334, 598.3333333333334, 599.1666666666667, 599.1666666666667, 600, 600, 600.8333333333334, 600.8333333333334, 601.6666666666667, 601.6666666666667, 602.5, 602.5, 603.3333333333333, 603.3333333333333, 604.1666666666666, 604.1666666666666, 605, 605, 605.8333333333334, 605.8333333333334, 606.6666666666666, 606.6666666666666, 607.5, 607.5, 608.3333333333334, 608.3333333333334, 609.1666666666667, 609.1666666666667, 610, 610, 610.8333333333334, 610.8333333333334, 611.6666666666667, 611.6666666666667, 612.5000000000001, 612.5000000000001, 613.3333333333334, 613.3333333333334, 614.1666666666666, 614.1666666666666, 615, 615, 615.8333333333333, 615.8333333333333, 616.6666666666666, 616.6666666666666, 617.5, 617.5, 618.3333333333334, 618.3333333333334, 619.1666666666666, 619.1666666666666, 620, 620, 620.8333333333334, 620.8333333333334, 621.6666666666667, 621.6666666666667, 622.5, 622.5, 623.3333333333334, 623.3333333333334, 624.1666666666667, 624.1666666666667, 625, 625, 625.8333333333333, 625.8333333333333, 626.6666666666666, 626.6666666666666, 627.5, 627.5, 628.3333333333334, 628.3333333333334, 629.1666666666666, 629.1666666666666, 630, 630, 630.8333333333334, 630.8333333333334, 631.6666666666667, 631.6666666666667, 632.5, 632.5, 633.3333333333334, 633.3333333333334, 634.1666666666667, 634.1666666666667, 635.0000000000001, 635.0000000000001, 635.8333333333334, 635.8333333333334, 636.6666666666666, 636.6666666666666, 637.5, 637.5, 638.3333333333334, 638.3333333333334, 639.1666666666666, 639.1666666666666, 640, 640, 640.8333333333334, 640.8333333333334, 641.6666666666666, 641.6666666666666, 642.5, 642.5, 643.3333333333334, 643.3333333333334, 644.1666666666667, 644.1666666666667, 645, 645, 645.8333333333334, 645.8333333333334, 646.6666666666667, 646.6666666666667, 647.5, 647.5, 648.3333333333333, 648.3333333333333, 649.1666666666666, 649.1666666666666, 650, 650, 650.8333333333334, 650.8333333333334, 651.6666666666666, 651.6666666666666, 652.5, 652.5, 653.3333333333334, 653.3333333333334, 654.1666666666667, 654.1666666666667, 655, 655, 655.8333333333334, 655.8333333333334, 656.6666666666667, 656.6666666666667, 657.5000000000001, 657.5000000000001, 658.3333333333333, 658.3333333333333, 659.1666666666666, 659.1666666666666, 660, 660, 660.8333333333334, 660.8333333333334, 661.6666666666666, 661.6666666666666, 662.5, 662.5, 663.3333333333334, 663.3333333333334, 664.1666666666667, 664.1666666666667, 665, 665, 665.8333333333334, 665.8333333333334, 666.6666666666667, 666.6666666666667, 667.5, 667.5, 668.3333333333334, 668.3333333333334, 669.1666666666666, 669.1666666666666, 670, 670, 670.8333333333333, 670.8333333333333, 671.6666666666666, 671.6666666666666, 672.5, 672.5, 673.3333333333334, 673.3333333333334, 674.1666666666666, 674.1666666666666, 675, 675, 675.8333333333334, 675.8333333333334, 676.6666666666667, 676.6666666666667, 677.5, 677.5, 678.3333333333334, 678.3333333333334, 679.1666666666667, 679.1666666666667, 680, 680, 680.8333333333333, 680.8333333333333, 681.6666666666666, 681.6666666666666, 682.5, 682.5, 683.3333333333334, 683.3333333333334, 684.1666666666666, 684.1666666666666, 685, 685, 685.8333333333334, 685.8333333333334, 686.6666666666667, 686.6666666666667, 687.5, 687.5, 688.3333333333334, 688.3333333333334, 689.1666666666667, 689.1666666666667, 690.0000000000001, 690.0000000000001, 690.8333333333334, 690.8333333333334, 691.6666666666666, 691.6666666666666, 692.5, 692.5, 693.3333333333334, 693.3333333333334, 694.1666666666666, 694.1666666666666, 695, 695, 695.8333333333334, 695.8333333333334, 696.6666666666666, 696.6666666666666, 697.5, 697.5, 698.3333333333334, 698.3333333333334, 699.1666666666667, 699.1666666666667, 700, 700, 700.8333333333334, 700.8333333333334, 701.6666666666667, 701.6666666666667, 702.5, 702.5, 703.3333333333333, 703.3333333333333, 704.1666666666666, 704.1666666666666, 705, 705, 705.8333333333334, 705.8333333333334, 706.6666666666666, 706.6666666666666, 707.5, 707.5, 708.3333333333334, 708.3333333333334, 709.1666666666667, 709.1666666666667, 710, 710, 710.8333333333334, 710.8333333333334, 711.6666666666667, 711.6666666666667, 712.5000000000001, 712.5000000000001, 713.3333333333334, 713.3333333333334, 714.1666666666666, 714.1666666666666, 715, 715, 715.8333333333334, 715.8333333333334, 716.6666666666666, 716.6666666666666, 717.5, 717.5, 718.3333333333334, 718.3333333333334, 719.1666666666667, 719.1666666666667, 720, 720, 720.8333333333334, 720.8333333333334, 721.6666666666667, 721.6666666666667, 722.5, 722.5, 723.3333333333334, 723.3333333333334, 724.1666666666667, 724.1666666666667, 725, 725, 725.8333333333333, 725.8333333333333, 726.6666666666666, 726.6666666666666, 727.5, 727.5, 728.3333333333334, 728.3333333333334, 729.1666666666666, 729.1666666666666, 730, 730, 730.8333333333334, 730.8333333333334, 731.6666666666667, 731.6666666666667, 732.5, 732.5, 733.3333333333334, 733.3333333333334, 734.1666666666667, 734.1666666666667, 735, 735, 735.8333333333333, 735.8333333333333, 736.6666666666666, 736.6666666666666, 737.5, 737.5, 738.3333333333334, 738.3333333333334, 739.1666666666666, 739.1666666666666, 740, 740, 740.8333333333334, 740.8333333333334, 741.6666666666667, 741.6666666666667, 742.5, 742.5, 743.3333333333334, 743.3333333333334, 744.1666666666667, 744.1666666666667, 745.0000000000001, 745.0000000000001, 745.8333333333334, 745.8333333333334, 746.6666666666666, 746.6666666666666, 747.5, 747.5, 748.3333333333333, 748.3333333333333, 749.1666666666666, 749.1666666666666, 750, 750, 750.8333333333334, 750.8333333333334, 751.6666666666666, 751.6666666666666, 752.5, 752.5, 753.3333333333334, 753.3333333333334, 754.1666666666667, 754.1666666666667, 755, 755, 755.8333333333334, 755.8333333333334, 756.6666666666667, 756.6666666666667, 757.5, 757.5, 758.3333333333333, 758.3333333333333, 759.1666666666666, 759.1666666666666, 760, 760, 760.8333333333334, 760.8333333333334, 761.6666666666666, 761.6666666666666, 762.5, 762.5, 763.3333333333334, 763.3333333333334, 764.1666666666667, 764.1666666666667, 765, 765, 765.8333333333334, 765.8333333333334, 766.6666666666667, 766.6666666666667, 767.5000000000001, 767.5000000000001, 768.3333333333334, 768.3333333333334, 769.1666666666666, 769.1666666666666, 770, 770, 770.8333333333334, 770.8333333333334, 771.6666666666666, 771.6666666666666, 772.5, 772.5, 773.3333333333334, 773.3333333333334, 774.1666666666666, 774.1666666666666, 775, 775, 775.8333333333334, 775.8333333333334, 776.6666666666667, 776.6666666666667, 777.5, 777.5, 778.3333333333334, 778.3333333333334, 779.1666666666667, 779.1666666666667, 780, 780, 780.8333333333333, 780.8333333333333, 781.6666666666666, 781.6666666666666, 782.5, 782.5, 783.3333333333334, 783.3333333333334, 784.1666666666666, 784.1666666666666, 785, 785, 785.8333333333334, 785.8333333333334, 786.6666666666667, 786.6666666666667, 787.5, 787.5, 788.3333333333334, 788.3333333333334, 789.1666666666667, 789.1666666666667, 790.0000000000001, 790.0000000000001, 790.8333333333333, 790.8333333333333, 791.6666666666666, 791.6666666666666, 792.5, 792.5, 793.3333333333334, 793.3333333333334, 794.1666666666666, 794.1666666666666, 795, 795, 795.8333333333334, 795.8333333333334, 796.6666666666667, 796.6666666666667, 797.5, 797.5, 798.3333333333334, 798.3333333333334, 799.1666666666667, 799.1666666666667, 800, 800, 800.8333333333334, 800.8333333333334, 801.6666666666666, 801.6666666666666, 802.5, 802.5, 803.3333333333333, 803.3333333333333, 804.1666666666666, 804.1666666666666, 805, 805, 805.8333333333334, 805.8333333333334, 806.6666666666666, 806.6666666666666, 807.5, 807.5, 808.3333333333334, 808.3333333333334, 809.1666666666667, 809.1666666666667, 810, 810, 810.8333333333334, 810.8333333333334, 811.6666666666667, 811.6666666666667, 812.5, 812.5, 813.3333333333333, 813.3333333333333, 814.1666666666666, 814.1666666666666, 815, 815, 815.8333333333334, 815.8333333333334, 816.6666666666666, 816.6666666666666, 817.5, 817.5, 818.3333333333334, 818.3333333333334, 819.1666666666667, 819.1666666666667, 820, 820, 820.8333333333334, 820.8333333333334, 821.6666666666667, 821.6666666666667, 822.5000000000001, 822.5000000000001, 823.3333333333334, 823.3333333333334, 824.1666666666666, 824.1666666666666, 825, 825, 825.8333333333334, 825.8333333333334, 826.6666666666666, 826.6666666666666, 827.5, 827.5, 828.3333333333334, 828.3333333333334, 829.1666666666666, 829.1666666666666, 830, 830, 830.8333333333334, 830.8333333333334, 831.6666666666667, 831.6666666666667, 832.5, 832.5, 833.3333333333334, 833.3333333333334, 834.1666666666667, 834.1666666666667, 835, 835, 835.8333333333333, 835.8333333333333, 836.6666666666666, 836.6666666666666, 837.5, 837.5, 838.3333333333334, 838.3333333333334, 839.1666666666666, 839.1666666666666, 840, 840, 840.8333333333334, 840.8333333333334, 841.6666666666667, 841.6666666666667, 842.5, 842.5, 843.3333333333334, 843.3333333333334, 844.1666666666667, 844.1666666666667, 845.0000000000001, 845.0000000000001, 845.8333333333334, 845.8333333333334, 846.6666666666666, 846.6666666666666, 847.5, 847.5, 848.3333333333334, 848.3333333333334, 849.1666666666666, 849.1666666666666, 850, 850, 850.8333333333334, 850.8333333333334, 851.6666666666667, 851.6666666666667, 852.5, 852.5, 853.3333333333334, 853.3333333333334, 854.1666666666667, 854.1666666666667, 855, 855, 855.8333333333334, 855.8333333333334, 856.6666666666667, 856.6666666666667, 857.5, 857.5, 858.3333333333333, 858.3333333333333, 859.1666666666666, 859.1666666666666, 860, 860, 860.8333333333334, 860.8333333333334, 861.6666666666666, 861.6666666666666, 862.5, 862.5, 863.3333333333334, 863.3333333333334, 864.1666666666667, 864.1666666666667, 865, 865, 865.8333333333334, 865.8333333333334, 866.6666666666667, 866.6666666666667, 867.5000000000001, 867.5000000000001, 868.3333333333333, 868.3333333333333, 869.1666666666666, 869.1666666666666, 870, 870, 870.8333333333334, 870.8333333333334, 871.6666666666666, 871.6666666666666, 872.5, 872.5, 873.3333333333334, 873.3333333333334, 874.1666666666667, 874.1666666666667, 875, 875, 875.8333333333334, 875.8333333333334, 876.6666666666667, 876.6666666666667, 877.5000000000001, 877.5000000000001, 878.3333333333334, 878.3333333333334, 879.1666666666666, 879.1666666666666, 880, 880, 880.8333333333333, 880.8333333333333, 881.6666666666666, 881.6666666666666, 882.5, 882.5, 883.3333333333334, 883.3333333333334, 884.1666666666666, 884.1666666666666, 885, 885, 885.8333333333334, 885.8333333333334, 886.6666666666667, 886.6666666666667, 887.5, 887.5, 888.3333333333334, 888.3333333333334, 889.1666666666667, 889.1666666666667, 890, 890, 890.8333333333333, 890.8333333333333, 891.6666666666666, 891.6666666666666, 892.5, 892.5, 893.3333333333334, 893.3333333333334, 894.1666666666666, 894.1666666666666, 895, 895, 895.8333333333334, 895.8333333333334, 896.6666666666667, 896.6666666666667, 897.5, 897.5, 898.3333333333334, 898.3333333333334, 899.1666666666667, 899.1666666666667, 900.0000000000001, 900.0000000000001, 900.8333333333334, 900.8333333333334, 901.6666666666666, 901.6666666666666, 902.5, 902.5, 903.3333333333334, 903.3333333333334, 904.1666666666666, 904.1666666666666, 905, 905, 905.8333333333334, 905.8333333333334, 906.6666666666667, 906.6666666666667, 907.5, 907.5, 908.3333333333334, 908.3333333333334, 909.1666666666667, 909.1666666666667, 910, 910, 910.8333333333334, 910.8333333333334, 911.6666666666667, 911.6666666666667, 912.5, 912.5, 913.3333333333333, 913.3333333333333, 914.1666666666666, 914.1666666666666, 915, 915, 915.8333333333334, 915.8333333333334, 916.6666666666666, 916.6666666666666, 917.5, 917.5, 918.3333333333334, 918.3333333333334, 919.1666666666667, 919.1666666666667, 920, 920, 920.8333333333334, 920.8333333333334, 921.6666666666667, 921.6666666666667, 922.5000000000001, 922.5000000000001, 923.3333333333334, 923.3333333333334, 924.1666666666666, 924.1666666666666, 925, 925, 925.8333333333334, 925.8333333333334, 926.6666666666666, 926.6666666666666, 927.5, 927.5, 928.3333333333334, 928.3333333333334, 929.1666666666667, 929.1666666666667, 930, 930, 930.8333333333334, 930.8333333333334, 931.6666666666667, 931.6666666666667, 932.5000000000001, 932.5000000000001, 933.3333333333334, 933.3333333333334, 934.1666666666667, 934.1666666666667, 935, 935, 935.8333333333333, 935.8333333333333, 936.6666666666666, 936.6666666666666, 937.5, 937.5, 938.3333333333334, 938.3333333333334, 939.1666666666666, 939.1666666666666, 940, 940, 940.8333333333334, 940.8333333333334, 941.6666666666667, 941.6666666666667, 942.5, 942.5, 943.3333333333334, 943.3333333333334, 944.1666666666667, 944.1666666666667, 945.0000000000001, 945.0000000000001, 945.8333333333333, 945.8333333333333, 946.6666666666666, 946.6666666666666, 947.5, 947.5, 948.3333333333334, 948.3333333333334, 949.1666666666666, 949.1666666666666, 950, 950, 950.8333333333334, 950.8333333333334, 951.6666666666667, 951.6666666666667, 952.5, 952.5, 953.3333333333334, 953.3333333333334, 954.1666666666667, 954.1666666666667, 955, 955, 955.8333333333335, 955.8333333333335, 956.6666666666666, 956.6666666666666, 957.4999999999999, 957.4999999999999, 958.3333333333334, 958.3333333333334, 959.1666666666666, 959.1666666666666, 960.0000000000001, 960.0000000000001, 960.8333333333334, 960.8333333333334, 961.6666666666666, 961.6666666666666, 962.5000000000001, 962.5000000000001, 963.3333333333334, 963.3333333333334, 964.1666666666666, 964.1666666666666, 965.0000000000001, 965.0000000000001, 965.8333333333334, 965.8333333333334, 966.6666666666666, 966.6666666666666, 967.5, 967.5, 968.3333333333333, 968.3333333333333, 969.1666666666667, 969.1666666666667, 970, 970, 970.8333333333333, 970.8333333333333, 971.6666666666667, 971.6666666666667, 972.5, 972.5, 973.3333333333333, 973.3333333333333, 974.1666666666667, 974.1666666666667, 975, 975, 975.8333333333335, 975.8333333333335, 976.6666666666667, 976.6666666666667, 977.5, 977.5, 978.3333333333334, 978.3333333333334, 979.1666666666666, 979.1666666666666, 979.9999999999999, 979.9999999999999, 980.8333333333334, 980.8333333333334, 981.6666666666666, 981.6666666666666, 982.5000000000001, 982.5000000000001, 983.3333333333334, 983.3333333333334, 984.1666666666666, 984.1666666666666, 985.0000000000001, 985.0000000000001, 985.8333333333334, 985.8333333333334, 986.6666666666666, 986.6666666666666, 987.5000000000001, 987.5000000000001, 988.3333333333334, 988.3333333333334, 989.1666666666666, 989.1666666666666, 990, 990, 990.8333333333333, 990.8333333333333, 991.6666666666667, 991.6666666666667, 992.5, 992.5, 993.3333333333333, 993.3333333333333, 994.1666666666667, 994.1666666666667, 995, 995, 995.8333333333333, 995.8333333333333, 996.6666666666667, 996.6666666666667, 997.5, 997.5, 998.3333333333335, 998.3333333333335, 999.1666666666667, 999.1666666666667, 1000, 1000, 1000.8333333333334, 1000.8333333333334, 1001.6666666666666, 1001.6666666666666, 1002.4999999999999, 1002.4999999999999, 1003.3333333333334, 1003.3333333333334, 1004.1666666666666, 1004.1666666666666, 1005.0000000000001, 1005.0000000000001, 1005.8333333333334, 1005.8333333333334, 1006.6666666666666, 1006.6666666666666, 1007.5000000000001, 1007.5000000000001, 1008.3333333333334, 1008.3333333333334, 1009.1666666666666, 1009.1666666666666, 1010.0000000000001, 1010.0000000000001, 1010.8333333333334, 1010.8333333333334, 1011.6666666666667, 1011.6666666666667, 1012.5, 1012.5, 1013.3333333333333, 1013.3333333333333, 1014.1666666666667, 1014.1666666666667, 1015, 1015, 1015.8333333333333, 1015.8333333333333, 1016.6666666666667, 1016.6666666666667, 1017.5, 1017.5, 1018.3333333333333, 1018.3333333333333, 1019.1666666666667, 1019.1666666666667, 1020, 1020, 1020.8333333333335, 1020.8333333333335, 1021.6666666666667, 1021.6666666666667, 1022.5, 1022.5, 1023.3333333333334, 1023.3333333333334, 1024.1666666666667, 1024.1666666666667, 1025, 1025, 1025.8333333333335, 1025.8333333333335, 1026.6666666666667, 1026.6666666666667, 1027.5000000000002, 1027.5000000000002, 1028.3333333333333, 1028.3333333333333, 1029.1666666666665, 1029.1666666666665, 1030, 1030, 1030.8333333333333, 1030.8333333333333, 1031.6666666666665, 1031.6666666666665, 1032.5, 1032.5, 1033.3333333333333, 1033.3333333333333, 1034.1666666666667, 1034.1666666666667, 1035, 1035, 1035.8333333333333, 1035.8333333333333, 1036.6666666666667, 1036.6666666666667, 1037.5, 1037.5, 1038.3333333333333, 1038.3333333333333, 1039.1666666666667, 1039.1666666666667, 1040, 1040, 1040.8333333333333, 1040.8333333333333, 1041.6666666666667, 1041.6666666666667, 1042.5, 1042.5, 1043.3333333333335, 1043.3333333333335, 1044.1666666666667, 1044.1666666666667, 1045, 1045, 1045.8333333333335, 1045.8333333333335, 1046.6666666666667, 1046.6666666666667, 1047.5, 1047.5, 1048.3333333333335, 1048.3333333333335, 1049.1666666666667, 1049.1666666666667, 1050, 1050, 1050.8333333333333, 1050.8333333333333, 1051.6666666666665, 1051.6666666666665, 1052.5, 1052.5, 1053.3333333333333, 1053.3333333333333, 1054.1666666666665, 1054.1666666666665, 1055, 1055, 1055.8333333333333, 1055.8333333333333, 1056.6666666666667, 1056.6666666666667, 1057.5, 1057.5, 1058.3333333333333, 1058.3333333333333, 1059.1666666666667, 1059.1666666666667, 1060, 1060, 1060.8333333333333, 1060.8333333333333, 1061.6666666666667, 1061.6666666666667, 1062.5, 1062.5, 1063.3333333333335, 1063.3333333333335, 1064.1666666666667, 1064.1666666666667, 1065, 1065, 1065.8333333333335, 1065.8333333333335, 1066.6666666666667, 1066.6666666666667, 1067.5, 1067.5, 1068.3333333333335, 1068.3333333333335, 1069.1666666666667, 1069.1666666666667, 1070, 1070, 1070.8333333333335, 1070.8333333333335, 1071.6666666666667, 1071.6666666666667, 1072.5, 1072.5, 1073.3333333333333, 1073.3333333333333, 1074.1666666666665, 1074.1666666666665, 1075, 1075, 1075.8333333333333, 1075.8333333333333, 1076.6666666666665, 1076.6666666666665, 1077.5, 1077.5, 1078.3333333333333, 1078.3333333333333, 1079.1666666666667, 1079.1666666666667, 1080, 1080, 1080.8333333333333, 1080.8333333333333, 1081.6666666666667, 1081.6666666666667, 1082.5, 1082.5, 1083.3333333333333, 1083.3333333333333, 1084.1666666666667, 1084.1666666666667, 1085, 1085, 1085.8333333333335, 1085.8333333333335, 1086.6666666666667, 1086.6666666666667, 1087.5, 1087.5, 1088.3333333333335, 1088.3333333333335, 1089.1666666666667, 1089.1666666666667, 1090, 1090, 1090.8333333333335, 1090.8333333333335, 1091.6666666666667, 1091.6666666666667, 1092.5000000000002, 1092.5000000000002, 1093.3333333333335, 1093.3333333333335, 1094.1666666666667, 1094.1666666666667, 1095, 1095, 1095.8333333333333, 1095.8333333333333, 1096.6666666666665, 1096.6666666666665, 1097.5, 1097.5, 1098.3333333333333, 1098.3333333333333, 1099.1666666666665, 1099.1666666666665, 1100 ] }, "y": { "type": "float", "values": [ 4, 4, 4.008973259578643, 4.008973259578643, 4.0228769159008335, 4.0228769159008335, 3.9999999164963085, 3.9999999164963085, 3.810601539422748, 3.810601539422748, 3.532352379871206, 3.532352379871206, 3.302043735269807, 3.302043735269807, 3.136194776613066, 3.136194776613066, 3.0345458086595984, 3.0345458086595984, 3.0001220852155135, 3.0001220852155135, 3.034192166109342, 3.034192166109342, 3.134080455785038, 3.134080455785038, 3.2929797322736354, 3.2929797322736354, 3.5000612723153353, 3.5000612723153353, 3.7412128109658083, 3.7412128109658083, 4.000000269144098, 4.000000269144098, 4.258787708980771, 4.258787708980771, 4.499939193855916, 4.499939193855916, 4.7070206483536765, 4.7070206483536765, 4.8659198133590555, 4.8659198133590555, 4.96580797320992, 4.96580797320992, 4.99987791478448, 4.99987791478448, 4.965807827833301, 4.965807827833301, 4.865919532513054, 4.865919532513054, 4.70702025117737, 4.70702025117737, 4.499938707416372, 4.499938707416372, 4.258818764372469, 4.258818764372469, 3.9999997074163773, 3.9999997074163773, 3.7411806703992663, 3.7411806703992663, 3.499999743236711, 3.499999743236711, 3.2928930077878276, 3.2928930077878276, 3.1339744460226218, 3.1339744460226218, 3.034074095460543, 3.034074095460543, 3.000000000000046, 3.000000000000046, 3.0340742529710916, 3.0340742529710916, 3.1339747503096915, 3.1339747503096915, 3.292893438114648, 3.292893438114648, 3.5000002702772766, 3.5000002702772766, 3.7411812582366326, 3.7411812582366326, 4.000000315990399, 4.000000315990399, 4.258819352209832, 4.258819352209832, 4.5000002770341485, 4.5000002770341485, 4.7071070087631774, 4.7071070087631774, 4.866025565680703, 4.866025565680703, 4.96592591059754, 4.96592591059754, 4.999999999999947, 4.999999999999947, 4.965925740970811, 4.965925740970811, 4.866025237986971, 4.866025237986971, 4.707106545334337, 4.707106545334337, 4.499999709451956, 4.499999709451956, 4.2588187191541556, 4.2588187191541556, 3.9999996606028247, 3.9999996606028247, 3.7411806251810704, 3.7411806251810704, 3.4999997026950913, 3.4999997026950913, 3.2928929746857385, 3.2928929746857385, 3.1339744226159154, 3.1339744226159154, 3.034074083344378, 3.034074083344378, 3.0000000000000617, 3.0000000000000617, 3.034074265087316, 3.034074265087316, 3.1339747737164245, 3.1339747737164245, 3.2928934712166784, 3.2928934712166784, 3.5000003108188134, 3.5000003108188134, 3.741181303454946, 3.741181303454946, 4.000000362803838, 4.000000362803838, 4.258819397428027, 4.258819397428027, 4.500000317575669, 4.500000317575669, 4.707107041865266, 4.707107041865266, 4.866025589087409, 4.866025589087409, 4.965925922713704, 4.965925922713704, 4.99999999999993, 4.99999999999993, 4.965925728854586, 4.965925728854586, 4.866025214580237, 4.866025214580237, 4.707106512232306, 4.707106512232306, 4.4999996689104185, 4.4999996689104185, 4.258818673935951, 4.258818673935951, 3.9999996137894995, 3.9999996137894995, 3.7411805799626556, 3.7411805799626556, 3.4999996621535714, 3.4999996621535714, 3.2928929415837307, 3.2928929415837307, 3.133974399209268, 3.133974399209268, 3.0340740712281558, 3.0340740712281558, 3.000000000000079, 3.000000000000079, 3.034074277203513, 3.034074277203513, 3.133974797123102, 3.133974797123102, 3.2928935043188714, 3.2928935043188714, 3.500000351360351, 3.500000351360351, 3.741181348673151, 3.741181348673151, 4.000000409617162, 4.000000409617162, 4.258819442646442, 4.258819442646442, 4.500000358117188, 4.500000358117188, 4.707107074967272, 4.707107074967272, 4.866025612494055, 4.866025612494055, 4.965925934829925, 4.965925934829925, 4.999999999999911, 4.999999999999911, 4.965925716738388, 4.965925716738388, 4.866025191173558, 4.866025191173558, 4.707106479130112, 4.707106479130112, 4.499999628368683, 4.499999628368683, 4.258818628717747, 4.258818628717747, 3.9999995669761748, 3.9999995669761748, 3.7411805347444607, 3.7411805347444607, 3.499999621611855, 3.499999621611855, 3.292892908481725, 3.292892908481725, 3.133974375802622, 3.133974375802622, 3.0340740591119943, 3.0340740591119943, 3.000000000000099, 3.000000000000099, 3.034074289319712, 3.034074289319712, 3.133974820529782, 3.133974820529782, 3.2928935374209054, 3.2928935374209054, 3.5000003919020863, 3.5000003919020863, 3.7411813938913556, 3.7411813938913556, 4.000000456430488, 4.000000456430488, 4.258819487864637, 4.258819487864637, 4.500000398658904, 4.500000398658904, 4.707107108069278, 4.707107108069278, 4.8660256359007, 4.8660256359007, 4.9659259469460855, 4.9659259469460855, 4.999999999999891, 4.999999999999891, 4.965925704622128, 4.965925704622128, 4.866025167766877, 4.866025167766877, 4.707106446028077, 4.707106446028077, 4.499999587827143, 4.499999587827143, 4.258818583499322, 4.258818583499322, 3.9999995201628495, 3.9999995201628495, 3.7411804895262666, 3.7411804895262666, 3.4999995810703375, 3.4999995810703375, 3.29289287537956, 3.29289287537956, 3.1339743523959784, 3.1339743523959784, 3.0340740469958356, 3.0340740469958356, 3.000000000000121, 3.000000000000121, 3.0340743014359726, 3.0340743014359726, 3.1339748439364636, 3.1339748439364636, 3.2928935705229403, 3.2928935705229403, 3.5000004324436262, 3.5000004324436262, 3.7411814391097806, 3.7411814391097806, 4.000000503243813, 4.000000503243813, 4.25881953308283, 4.25881953308283, 4.500000439200421, 4.500000439200421, 4.707107141171441, 4.707107141171441, 4.866025659307456, 4.866025659307456, 4.965925959062243, 4.965925959062243, 4.999999999999868, 4.999999999999868, 4.965925692505926, 4.965925692505926, 4.866025144360081, 4.866025144360081, 4.707106412926041, 4.707106412926041, 4.499999547285603, 4.499999547285603, 4.258818538281116, 4.258818538281116, 3.999999473349297, 3.999999473349297, 3.741180444308073, 3.741180444308073, 3.4999995405288207, 3.4999995405288207, 3.292892842277557, 3.292892842277557, 3.1339743289892232, 3.1339743289892232, 3.0340740348796786, 3.0340740348796786, 3.0000000000001448, 3.0000000000001448, 3.0340743135521757, 3.0340743135521757, 3.133974867343261, 3.133974867343261, 3.2928936036249774, 3.2928936036249774, 3.5000004729851675, 3.5000004729851675, 3.7411814843279867, 3.7411814843279867, 4.000000550057366, 4.000000550057366, 4.258819578301243, 4.258819578301243, 4.500000479741938, 4.500000479741938, 4.707107174273443, 4.707107174273443, 4.866025682714097, 4.866025682714097, 4.965925971178458, 4.965925971178458, 4.999999999999842, 4.999999999999842, 4.965925680389722, 4.965925680389722, 4.866025120953396, 4.866025120953396, 4.707106379823843, 4.707106379823843, 4.499999506744062, 4.499999506744062, 4.25881849306291, 4.25881849306291, 3.999999426535972, 3.999999426535972, 3.7411803990896604, 3.7411803990896604, 3.4999994999873048, 3.4999994999873048, 3.292892809175556, 3.292892809175556, 3.1339743055825835, 3.1339743055825835, 3.034074022763465, 3.034074022763465, 3.0000000000001714, 3.0000000000001714, 3.0340743256683815, 3.0340743256683815, 3.1339748907499465, 3.1339748907499465, 3.2928936367271766, 3.2928936367271766, 3.5000005135269063, 3.5000005135269063, 3.741181529546193, 3.741181529546193, 4.000000596870691, 4.000000596870691, 4.258819623519436, 4.258819623519436, 4.50000052028365, 4.50000052028365, 4.707107207375444, 4.707107207375444, 4.866025706120736, 4.866025706120736, 4.965925983294611, 4.965925983294611, 4.999999999999815, 4.999999999999815, 4.965925668273515, 4.965925668273515, 4.86602509754671, 4.86602509754671, 4.707106346721804, 4.707106346721804, 4.499999466202322, 4.499999466202322, 4.258818447844703, 4.258818447844703, 3.999999379722647, 3.999999379722647, 3.741180353871468, 3.741180353871468, 3.499999459445593, 3.499999459445593, 3.2928927760735562, 3.2928927760735562, 3.133974282175945, 3.133974282175945, 3.0340740106473123, 3.0340740106473123, 3.0000000000002, 3.0000000000002, 3.0340743377846477, 3.0340743377846477, 3.1339749141566338, 3.1339749141566338, 3.2928936698292164, 3.2928936698292164, 3.50000055406845, 3.50000055406845, 3.7411815747646204, 3.7411815747646204, 4.000000643684015, 4.000000643684015, 4.258819668737628, 4.258819668737628, 4.500000560825164, 4.500000560825164, 4.707107240477604, 4.707107240477604, 4.866025729527373, 4.866025729527373, 4.965925995410763, 4.965925995410763, 4.999999999999785, 4.999999999999785, 4.965925656157247, 4.965925656157247, 4.866025074140022, 4.866025074140022, 4.707106313619763, 4.707106313619763, 4.4999994256607785, 4.4999994256607785, 4.258818402626276, 4.258818402626276, 3.9999993329093217, 3.9999993329093217, 3.7411803086530564, 3.7411803086530564, 3.4999994189040793, 3.4999994189040793, 3.2928927429712367, 3.2928927429712367, 3.1339742587691957, 3.1339742587691957, 3.034073998531044, 3.034073998531044, 3.0000000000002305, 3.0000000000002305, 3.034074349900858, 3.034074349900858, 3.1339749375635506, 3.1339749375635506, 3.2928937029314187, 3.2928937029314187, 3.5000005946103876, 3.5000005946103876, 3.7411816199830477, 3.7411816199830477, 4.0000006904975685, 4.0000006904975685, 4.2588197139562585, 4.2588197139562585, 4.500000601366874, 4.500000601366874, 4.707107273579601, 4.707107273579601, 4.8660257529342354, 4.8660257529342354, 4.9659260075269716, 4.9659260075269716, 4.999999999999753, 4.999999999999753, 4.965925644040977, 4.965925644040977, 4.866025050733218, 4.866025050733218, 4.707106280517399, 4.707106280517399, 4.499999385119037, 4.499999385119037, 4.258818357408068, 4.258818357408068, 3.9999992860955422, 3.9999992860955422, 3.741180263434865, 3.741180263434865, 3.499999378362173, 3.499999378362173, 3.29289270986924, 3.29289270986924, 3.1339742353625613, 3.1339742353625613, 3.034073986414896, 3.034073986414896, 3.0000000000002633, 3.0000000000002633, 3.0340743620171873, 3.0340743620171873, 3.1339749609702414, 3.1339749609702414, 3.292893736033462, 3.292893736033462, 3.500000635151933, 3.500000635151933, 3.741181665201256, 3.741181665201256, 4.000000737310893, 4.000000737310893, 4.25881975917445, 4.25881975917445, 4.500000641908386, 4.500000641908386, 4.707107306681919, 4.707107306681919, 4.8660257763408685, 4.8660257763408685, 4.965926019643119, 4.965926019643119, 4.999999999999719, 4.999999999999719, 4.965925631924764, 4.965925631924764, 4.8660250273265255, 4.8660250273265255, 4.707106247415355, 4.707106247415355, 4.499999344577491, 4.499999344577491, 4.25881831218942, 4.25881831218942, 3.999999239282217, 3.999999239282217, 3.7411802182166745, 3.7411802182166745, 3.499999337820662, 3.499999337820662, 3.292892676767245, 3.292892676767245, 3.1339742119557013, 3.1339742119557013, 3.0340739742987495, 3.0340739742987495, 3.0000000000002984, 3.0000000000002984, 3.0340743741334015, 3.0340743741334015, 3.133974984376935, 3.133974984376935, 3.2928937691355062, 3.2928937691355062, 3.5000006756934794, 3.5000006756934794, 3.7411817104194647, 3.7411817104194647, 4.000000784124673, 4.000000784124673, 4.25881980439264, 4.25881980439264, 4.500000682449897, 4.500000682449897, 4.707107339783913, 4.707107339783913, 4.866025799747501, 4.866025799747501, 4.965926031759264, 4.965926031759264, 4.999999999999684, 4.999999999999684, 4.96592561980855, 4.96592561980855, 4.866025003919605, 4.866025003919605, 4.70710621431331, 4.70710621431331, 4.499999304035944, 4.499999304035944, 4.258818266971211, 4.258818266971211, 3.999999192468892, 3.999999192468892, 3.741180172998045, 3.741180172998045, 3.4999992972791514, 3.4999992972791514, 3.2928926436652515, 3.2928926436652515, 3.133974188549071, 3.133974188549071, 3.034073962182605, 3.034073962182605, 3.0000000000003357, 3.0000000000003357, 3.0340743862496176, 3.0340743862496176, 3.1339750077836297, 3.1339750077836297, 3.292893802237874, 3.292893802237874, 3.500000716235027, 3.500000716235027, 3.7411817556376743, 3.7411817556376743, 4.000000830937998, 4.000000830937998, 4.2588198496108305, 4.2588198496108305, 4.500000722991406, 4.500000722991406, 4.707107372885906, 4.707107372885906, 4.86602582315413, 4.86602582315413, 4.965926043875525, 4.965926043875525, 4.999999999999645, 4.999999999999645, 4.965925607692332, 4.965925607692332, 4.8660249805129085, 4.8660249805129085, 4.707106181211263, 4.707106181211263, 4.499999263494002, 4.499999263494002, 4.2588182217530015, 4.2588182217530015, 3.9999991456555666, 3.9999991456555666, 3.7411801277798555, 3.7411801277798555, 3.499999256737642, 3.499999256737642, 3.2928926105632597, 3.2928926105632597, 3.1339741651424426, 3.1339741651424426, 3.034073950066463, 3.034073950066463, 3.000000000000375, 3.000000000000375, 3.034074398365836, 3.034074398365836, 3.1339750311903263, 3.1339750311903263, 3.292893835339922, 3.292893835339922, 3.5000007567765756, 3.5000007567765756, 3.7411818008558844, 3.7411818008558844, 4.000000877751323, 4.000000877751323, 4.25881989482902, 4.25881989482902, 4.500000763533309, 4.500000763533309, 4.707107405987896, 4.707107405987896, 4.866025846560757, 4.866025846560757, 4.965926055991666, 4.965926055991666, 4.999999999999605, 4.999999999999605, 4.965925595575995, 4.965925595575995, 4.866024957106211, 4.866024957106211, 4.707106148109214, 4.707106148109214, 4.499999222952453, 4.499999222952453, 4.258818176534791, 4.258818176534791, 3.999999098842242, 3.999999098842242, 3.7411800825616663, 3.7411800825616663, 3.499999216196134, 3.499999216196134, 3.2928925774609477, 3.2928925774609477, 3.133974141735816, 3.133974141735816, 3.034073937950323, 3.034073937950323, 3.0000000000004166, 3.0000000000004166, 3.0340744104820563, 3.0340744104820563, 3.133975054597025, 3.133975054597025, 3.292893868441971, 3.292893868441971, 3.5000007973181253, 3.5000007973181253, 3.741181846074534, 3.741181846074534, 4.000000924564648, 4.000000924564648, 4.258819940047208, 4.258819940047208, 4.5000008040748165, 4.5000008040748165, 4.707107439089886, 4.707107439089886, 4.86602586996761, 4.86602586996761, 4.965926068107805, 4.965926068107805, 4.999999999999561, 4.999999999999561, 4.965925583459773, 4.965925583459773, 4.866024933699511, 4.866024933699511, 4.707106115007164, 4.707106115007164, 4.499999182410902, 4.499999182410902, 4.25881813131658, 4.25881813131658, 3.999999052028462, 3.999999052028462, 3.741180037343478, 3.741180037343478, 3.499999175654627, 3.499999175654627, 3.292892544358959, 3.292892544358959, 3.133974118329191, 3.133974118329191, 3.034073925834185, 3.034073925834185, 3.0000000000004605, 3.0000000000004605, 3.034074422598279, 3.034074422598279, 3.133975078003953, 3.133975078003953, 3.292893901544022, 3.292893901544022, 3.5000008378596763, 3.5000008378596763, 3.7411818912927455, 3.7411818912927455, 4.000000971377974, 4.000000971377974, 4.258819985265836, 4.258819985265836, 4.500000844616323, 4.500000844616323, 4.707107472191874, 4.707107472191874, 4.866025893374234, 4.866025893374234, 4.965926080223942, 4.965926080223942, 4.999999999999517, 4.999999999999517, 4.965925571343551, 4.965925571343551, 4.8660249102928095, 4.8660249102928095, 4.707106081904792, 4.707106081904792, 4.499999141869351, 4.499999141869351, 4.258818086098368, 4.258818086098368, 3.9999990052151366, 3.9999990052151366, 3.7411799921252897, 3.7411799921252897, 3.499999135113121, 3.499999135113121, 3.2928925112569716, 3.2928925112569716, 3.1339740949225683, 3.1339740949225683, 3.034073913717932, 3.034073913717932, 3.0000000000005063, 3.0000000000005063, 3.0340744347145034, 3.0340744347145034, 3.133975101410656, 3.133975101410656, 3.292893934646074, 3.292893934646074, 3.500000878401622, 3.500000878401622, 3.7411819365109573, 3.7411819365109573, 4.000001018191298, 4.000001018191298, 4.258820030484023, 4.258820030484023, 4.500000885157828, 4.500000885157828, 4.707107505293861, 4.707107505293861, 4.866025916780856, 4.866025916780856, 4.9659260923400765, 4.9659260923400765, 4.99999999999947, 4.99999999999947, 4.965925559227324, 4.965925559227324, 4.866024886886105, 4.866024886886105, 4.707106048802738, 4.707106048802738, 4.4999991013277985, 4.4999991013277985, 4.258818040880157, 4.258818040880157, 3.999998958401812, 3.999998958401812, 3.7411799469071028, 3.7411799469071028, 3.4999990945712227, 3.4999990945712227, 3.292892478154986, 3.292892478154986, 3.133974071515947, 3.133974071515947, 3.034073901601798, 3.034073901601798, 3.0000000000005547, 3.0000000000005547, 3.0340744468308483, 3.0340744468308483, 3.1339751248173604, 3.1339751248173604, 3.292893967748128, 3.292893967748128, 3.5000009189431753, 3.5000009189431753, 3.741181981729169, 3.741181981729169, 4.000001065004623, 4.000001065004623, 4.258820075702211, 4.258820075702211, 4.500000925699332, 4.500000925699332, 4.707107538396167, 4.707107538396167, 4.866025940187476, 4.866025940187476, 4.965926104456209, 4.965926104456209, 4.99999999999942, 4.99999999999942, 4.965925547111096, 4.965925547111096, 4.8660248634794, 4.8660248634794, 4.707106015700684, 4.707106015700684, 4.499999060786245, 4.499999060786245, 4.258817995661505, 4.258817995661505, 3.9999989115884866, 3.9999989115884866, 3.741179901688916, 3.741179901688916, 3.499999054029719, 3.499999054029719, 3.2928924450530017, 3.2928924450530017, 3.133974048109101, 3.133974048109101, 3.0340738894856667, 3.0340738894856667, 3.000000000000605, 3.000000000000605, 3.0340744589470767, 3.0340744589470767, 3.1339751482240668, 3.1339751482240668, 3.2928940008501835, 3.2928940008501835, 3.5000009594847294, 3.5000009594847294, 3.7411820269473823, 3.7411820269473823, 4.000001111818404, 4.000001111818404, 4.258820120920397, 4.258820120920397, 4.500000966240836, 4.500000966240836, 4.707107571498151, 4.707107571498151, 4.866025963594094, 4.866025963594094, 4.965926116572339, 4.965926116572339, 4.9999999999993685, 4.9999999999993685, 4.9659255349948666, 4.9659255349948666, 4.866024840072466, 4.866024840072466, 4.707105982598628, 4.707105982598628, 4.49999902024469, 4.49999902024469, 4.258817950443292, 4.258817950443292, 3.9999988647751614, 3.9999988647751614, 3.7411798564702905, 3.7411798564702905, 3.499999013488216, 3.499999013488216, 3.2928924119510192, 3.2928924119510192, 3.133974024702484, 3.133974024702484, 3.0340738773695373, 3.0340738773695373, 3.0000000000006577, 3.0000000000006577, 3.034074471063308, 3.034074471063308, 3.133975171630775, 3.133975171630775, 3.292894033952562, 3.292894033952562, 3.5000010000262844, 3.5000010000262844, 3.7411820721655955, 3.7411820721655955, 4.000001158631728, 4.000001158631728, 4.258820166138583, 4.258820166138583, 4.5000010067823375, 4.5000010067823375, 4.707107604600132, 4.707107604600132, 4.86602598700071, 4.86602598700071, 4.965926128688586, 4.965926128688586, 4.999999999999315, 4.999999999999315, 4.965925522878635, 4.965925522878635, 4.866024816665757, 4.866024816665757, 4.70710594949657, 4.70710594949657, 4.499998979702741, 4.499998979702741, 4.258817905225078, 4.258817905225078, 3.9999988179618367, 3.9999988179618367, 3.741179811252105, 3.741179811252105, 3.4999989729467145, 3.4999989729467145, 3.292892378849038, 3.292892378849038, 3.1339740012958686, 3.1339740012958686, 3.03407386525341, 3.03407386525341, 3.0000000000007123, 3.0000000000007123, 3.034074483179541, 3.034074483179541, 3.1339751950374852, 3.1339751950374852, 3.2928940670546205, 3.2928940670546205, 3.500001040567841, 3.500001040567841, 3.7411821173838096, 3.7411821173838096, 4.000001205445053, 4.000001205445053, 4.258820211356769, 4.258820211356769, 4.500001047324233, 4.500001047324233, 4.707107637702112, 4.707107637702112, 4.8660260104073245, 4.8660260104073245, 4.9659261408047115, 4.9659261408047115, 4.999999999999259, 4.999999999999259, 4.965925510762283, 4.965925510762283, 4.8660247932590455, 4.8660247932590455, 4.707105916394511, 4.707105916394511, 4.499998939161184, 4.499998939161184, 4.258817860006864, 4.258817860006864, 3.9999987711485114, 3.9999987711485114, 3.7411797660339197, 3.7411797660339197, 3.499998932405214, 3.499998932405214, 3.292892345746737, 3.292892345746737, 3.133973977889255, 3.133973977889255, 3.034073853137285, 3.034073853137285, 3.0000000000007696, 3.0000000000007696, 3.0340744952957763, 3.0340744952957763, 3.133975218444197, 3.133975218444197, 3.2928941001566807, 3.2928941001566807, 3.5000010811093984, 3.5000010811093984, 3.7411821626024637, 3.7411821626024637, 4.000001252258379, 4.000001252258379, 4.258820256574953, 4.258820256574953, 4.500001087865733, 4.500001087865733, 4.707107670804091, 4.707107670804091, 4.8660260338141645, 4.8660260338141645, 4.965926152920836, 4.965926152920836, 4.9999999999992015, 4.9999999999992015, 4.965925498646047, 4.965925498646047, 4.8660247698523325, 4.8660247698523325, 4.707105883292449, 4.707105883292449, 4.4999988986196255, 4.4999988986196255, 4.258817814788649, 4.258817814788649, 3.9999987243347315, 3.9999987243347315, 3.741179720815735, 3.741179720815735, 3.499998891863715, 3.499998891863715, 3.292892312644759, 3.292892312644759, 3.1339739544826437, 3.1339739544826437, 3.034073841021162, 3.034073841021162, 3.0000000000008287, 3.0000000000008287, 3.0340745074120132, 3.0340745074120132, 3.1339752418511386, 3.1339752418511386, 3.2928941332587423, 3.2928941332587423, 3.500001121650957, 3.500001121650957, 3.7411822078206787, 3.7411822078206787, 4.0000012990717035, 4.0000012990717035, 4.258820301793577, 4.258820301793577, 4.500001128407232, 4.500001128407232, 4.707107703906068, 4.707107703906068, 4.866026057220775, 4.866026057220775, 4.965926165036958, 4.965926165036958, 4.999999999999141, 4.999999999999141, 4.965925486529808, 4.965925486529808, 4.866024746445618, 4.866024746445618, 4.707105850190065, 4.707105850190065, 4.499998858078067, 4.499998858078067, 4.258817769570433, 4.258817769570433, 3.9999986775214067, 3.9999986775214067, 3.741179675597551, 3.741179675597551, 3.4999988513222164, 3.4999988513222164, 3.292892279542783, 3.292892279542783, 3.133973931076034, 3.133973931076034, 3.034073828905041, 3.034073828905041, 3.00000000000089, 3.00000000000089, 3.034074519528371, 3.034074519528371, 3.1339752652578543, 3.1339752652578543, 3.2928941663608056, 3.2928941663608056, 3.5000011621925164, 3.5000011621925164, 3.7411822530384553, 3.7411822530384553, 4.000001345885483, 4.000001345885483, 4.25882034701176, 4.25882034701176, 4.500001168948729, 4.500001168948729, 4.7071077370080445, 4.7071077370080445, 4.866026080627156, 4.866026080627156, 4.965926177153195, 4.965926177153195, 4.999999999999078, 4.999999999999078, 4.9659254744135675, 4.9659254744135675, 4.866024723038901, 4.866024723038901, 4.707105817088323, 4.707105817088323, 4.499998817536112, 4.499998817536112, 4.258817724351778, 4.258817724351778, 3.9999986307080815, 3.9999986307080815, 3.7411796303793676, 3.7411796303793676, 3.4999988107807196, 3.4999988107807196, 3.2928922464411294, 3.2928922464411294, 3.133973907669199, 3.133973907669199, 3.0340738167888044, 3.0340738167888044, 3.0000000000009535, 3.0000000000009535, 3.0340745316444946, 3.0340745316444946, 3.1339752886643444, 3.1339752886643444, 3.2928941994631917, 3.2928941994631917, 3.500001202734471, 3.500001202734471, 3.741182298257111, 3.741182298257111, 4.000001392698354, 4.000001392698354, 4.258820392229504, 4.258820392229504, 4.50000120949062, 4.50000120949062, 4.70710777011034, 4.70710777011034, 4.86602610403399, 4.86602610403399, 4.9659261892691955, 4.9659261892691955, 4.999999999999014, 4.999999999999014, 4.965925462297207, 4.965925462297207, 4.8660246996319545, 4.8660246996319545, 4.707105783985936, 4.707105783985936, 4.499998776994945, 4.499998776994945, 4.258817679134, 4.258817679134, 3.999998583895211, 3.999998583895211, 3.741179585160746, 3.741179585160746, 3.4999987702388298, 3.4999987702388298, 3.2928922133388343, 3.2928922133388343, 3.133973884262821, 3.133973884262821, 3.0340738046728055, 3.0340738046728055, 3.000000000001019, 3.000000000001019, 3.034074543760856, 3.034074543760856, 3.133975312071292, 3.133975312071292, 3.2928942325649366, 3.2928942325649366, 3.500001243275639, 3.500001243275639, 3.7411823434757667, 3.7411823434757667, 4.0000014395121335, 4.0000014395121335, 4.258820437448126, 4.258820437448126, 4.500001250031721, 4.500001250031721, 4.707107803211991, 4.707107803211991, 4.866026127440822, 4.866026127440822, 4.965926201385429, 4.965926201385429, 4.999999999998947, 4.999999999998947, 4.96592545018108, 4.96592545018108, 4.866024676225462, 4.866024676225462, 4.707105750884191, 4.707105750884191, 4.499998736452989, 4.499998736452989, 4.258817633915344, 4.258817633915344, 3.9999985370814315, 3.9999985370814315, 3.7411795399430026, 3.7411795399430026, 3.4999987296977286, 3.4999987296977286, 3.2928921802365414, 3.2928921802365414, 3.1339738608559893, 3.1339738608559893, 3.0340737925565735, 3.0340737925565735, 3.000000000001087, 3.000000000001087, 3.034074555876984, 3.034074555876984, 3.1339753354782403, 3.1339753354782403, 3.292894265667326, 3.292894265667326, 3.500001283817596, 3.500001283817596, 3.741182388693545, 3.741182388693545, 4.0000014863250035, 4.0000014863250035, 4.258820482666747, 4.258820482666747, 4.50000129057361, 4.50000129057361, 4.707107836314283, 4.707107836314283, 4.866026150847198, 4.866026150847198, 4.965926213501424, 4.965926213501424, 4.999999999998878, 4.999999999998878, 4.9659254380647155, 4.9659254380647155, 4.866024652818512, 4.866024652818512, 4.7071057177818005, 4.7071057177818005, 4.4999986959118194, 4.4999986959118194, 4.258817588697566, 4.258817588697566, 3.9999984902676515, 3.9999984902676515, 3.7411794947243817, 3.7411794947243817, 3.4999986891558406, 3.4999986891558406, 3.2928921471348924, 3.2928921471348924, 3.1339738374496147, 3.1339738374496147, 3.034073780440343, 3.034073780440343, 3.0000000000011573, 3.0000000000011573, 3.0340745679933496, 3.0340745679933496, 3.1339753588847366, 3.1339753588847366, 3.292894298769074, 3.292894298769074, 3.5000013243595536, 3.5000013243595536, 3.741182433912202, 3.741182433912202, 4.000001533138784, 4.000001533138784, 4.258820527884489, 4.258820527884489, 4.500001331114709, 4.500001331114709, 4.707107869415931, 4.707107869415931, 4.866026174254026, 4.866026174254026, 4.965926225617654, 4.965926225617654, 4.999999999998806, 4.999999999998806, 4.965925425948584, 4.965925425948584, 4.866024629412014, 4.866024629412014, 4.707105684679409, 4.707105684679409, 4.499998655369861, 4.499998655369861, 4.258817543478909, 4.258817543478909, 3.999998443454781, 3.999998443454781, 3.7411794495066397, 3.7411794495066397, 3.4999986486139543, 3.4999986486139543, 3.292892114032602, 3.292892114032602, 3.1339738140427875, 3.1339738140427875, 3.0340737683243506, 3.0340737683243506, 3.0000000000012297, 3.0000000000012297, 3.034074580109717, 3.034074580109717, 3.1339753822916894, 3.1339753822916894, 3.2928943318714663, 3.2928943318714663, 3.500001364900725, 3.500001364900725, 3.7411824791299813, 3.7411824791299813, 4.000001579951654, 4.000001579951654, 4.258820573103109, 4.258820573103109, 4.5000013716565945, 4.5000013716565945, 4.707107902518221, 4.707107902518221, 4.866026197660398, 4.866026197660398, 4.965926237733645, 4.965926237733645, 4.9999999999987335, 4.9999999999987335, 4.965925413832216, 4.965925413832216, 4.866024606005061, 4.866024606005061, 4.707105651577659, 4.707105651577659, 4.499998614828689, 4.499998614828689, 4.2588174982602505, 4.2588174982602505, 3.9999983966410015, 3.9999983966410015, 3.74117940428802, 3.74117940428802, 3.4999986080728562, 3.4999986080728562, 3.2928920809309568, 3.2928920809309568, 3.133973790635962, 3.133973790635962, 3.034073756208125, 3.034073756208125, 3.0000000000013043, 3.0000000000013043, 3.034074592225852, 3.034074592225852, 3.133975405698189, 3.133975405698189, 3.2928943649732174, 3.2928943649732174, 3.500001405442685, 3.500001405442685, 3.74118252434864, 3.74118252434864, 4.0000016267654335, 4.0000016267654335, 4.258820618320851, 4.258820618320851, 4.500001412197692, 4.500001412197692, 4.707107935620509, 4.707107935620509, 4.866026221067223, 4.866026221067223, 4.96592624984987, 4.96592624984987, 4.999999999998658, 4.999999999998658, 4.96592540171608, 4.96592540171608, 4.866024582598105, 4.866024582598105, 4.707105618475263, 4.707105618475263, 4.499998574286729, 4.499998574286729, 4.25881745304247, 4.25881745304247, 3.999998349828131, 3.999998349828131, 3.7411793590694007, 3.7411793590694007, 3.4999985675309717, 3.4999985675309717, 3.2928920478286696, 3.2928920478286696, 3.133973767229593, 3.133973767229593, 3.034073744092136, 3.034073744092136, 3.000000000001381, 3.000000000001381, 3.0340746043422238, 3.0340746043422238, 3.1339754291051456, 3.1339754291051456, 3.292894398075613, 3.292894398075613, 3.5000014459838584, 3.5000014459838584, 3.74118256956642, 3.74118256956642, 4.000001673579214, 4.000001673579214, 4.258820663539469, 4.258820663539469, 4.500001452739576, 4.500001452739576, 4.707107968722152, 4.707107968722152, 4.8660262444735904, 4.8660262444735904, 4.965926261966093, 4.965926261966093, 4.99999999999858, 4.99999999999858, 4.9659253895997075, 4.9659253895997075, 4.866024559191603, 4.866024559191603, 4.70710558537351, 4.70710558537351, 4.499998533744767, 4.499998533744767, 4.258817407823811, 4.258817407823811, 3.999998303014351, 3.999998303014351, 3.741179313851661, 3.741179313851661, 3.4999985269898763, 3.4999985269898763, 3.292892014727027, 3.292892014727027, 3.1339737438227715, 3.1339737438227715, 3.0340737319759143, 3.0340737319759143, 3.0000000000014597, 3.0000000000014597, 3.0340746164583625, 3.0340746164583625, 3.133975452511649, 3.133975452511649, 3.29289443117801, 3.29289443117801, 3.50000148652582, 3.50000148652582, 3.74118261478508, 3.74118261478508, 4.000001720392084, 4.000001720392084, 4.258820708757209, 4.258820708757209, 4.500001493281459, 4.500001493281459, 4.7071080018244364, 4.7071080018244364, 4.866026267880412, 4.866026267880412, 4.9659262740820775, 4.9659262740820775, 4.9999999999985, 4.9999999999985, 4.965925377483332, 4.965925377483332, 4.866024535784644, 4.866024535784644, 4.707105552271113, 4.707105552271113, 4.4999984932035915, 4.4999984932035915, 4.258817362606029, 4.258817362606029, 3.9999982562014806, 3.9999982562014806, 3.7411792686330427, 3.7411792686330427, 3.499998486447994, 3.499998486447994, 3.2928919816247433, 3.2928919816247433, 3.133973720416406, 3.133973720416406, 3.03407371985993, 3.03407371985993, 3.000000000001541, 3.000000000001541, 3.0340746285747384, 3.0340746285747384, 3.13397547591861, 3.13397547591861, 3.2928944642797657, 3.2928944642797657, 3.500001527066996, 3.500001527066996, 3.74118266000374, 3.74118266000374, 4.000001767205863, 4.000001767205863, 4.258820753975827, 4.258820753975827, 4.500001533822553, 4.500001533822553, 4.707108034926077, 4.707108034926077, 4.8660262912872305, 4.8660262912872305, 4.965926286198297, 4.965926286198297, 4.999999999998417, 4.999999999998417, 4.96592536536719, 4.96592536536719, 4.866024512378137, 4.866024512378137, 4.707105519169356, 4.707105519169356, 4.499998452661628, 4.499998452661628, 4.258817317387369, 4.258817317387369, 3.999998209387701, 3.999998209387701, 3.741179223415304, 3.741179223415304, 3.4999984459069005, 3.4999984459069005, 3.2928919485224606, 3.2928919485224606, 3.1339736970095884, 3.1339736970095884, 3.0340737077437128, 3.0340737077437128, 3.000000000001624, 3.000000000001624, 3.0340746406908816, 3.0340746406908816, 3.1339754993255715, 3.1339754993255715, 3.292894497382166, 3.292894497382166, 3.5000015676089604, 3.5000015676089604, 3.741182705221522, 3.741182705221522, 4.000001814018734, 4.000001814018734, 4.258820799194444, 4.258820799194444, 4.5000015743644335, 4.5000015743644335, 4.707108068028359, 4.707108068028359, 4.866026314693593, 4.866026314693593, 4.965926298314278, 4.965926298314278, 4.999999999998334, 4.999999999998334, 4.96592535325081, 4.96592535325081, 4.866024488971174, 4.866024488971174, 4.707105486066955, 4.707105486066955, 4.49999841212045, 4.49999841212045, 4.258817272169587, 4.258817272169587, 3.999998162573921, 3.999998162573921, 3.7411791781966865, 3.7411791781966865, 3.4999984053650204, 3.4999984053650204, 3.2928919154208227, 3.2928919154208227, 3.1339736736032267, 3.1339736736032267, 3.0340736956274976, 3.0340736956274976, 3.0000000000017097, 3.0000000000017097, 3.034074652807262, 3.034074652807262, 3.133975522732081, 3.133975522732081, 3.2928945304839243, 3.2928945304839243, 3.500001608150926, 3.500001608150926, 3.741182750440183, 3.741182750440183, 4.000001860832514, 4.000001860832514, 4.258820844412182, 4.258820844412182, 4.500001614905525, 4.500001614905525, 4.707108101129996, 4.707108101129996, 4.866026338100408, 4.866026338100408, 4.965926310430492, 4.965926310430492, 4.999999999998247, 4.999999999998247, 4.965925341134665, 4.965925341134665, 4.866024465564664, 4.866024465564664, 4.707105452964552, 4.707105452964552, 4.499998371578485, 4.499998371578485, 4.258817226950925, 4.258817226950925, 3.9999981157610507, 3.9999981157610507, 3.741179132978949, 3.741179132978949, 3.4999983648231416, 3.4999983648231416, 3.2928918823185436, 3.2928918823185436, 3.133973650196413, 3.133973650196413, 3.0340736835115196, 3.0340736835115196, 3.0000000000017972, 3.0000000000017972, 3.0340746649236445, 3.0340746649236445, 3.1339755461390473, 3.1339755461390473, 3.292894563586328, 3.292894563586328, 3.500001648692105, 3.500001648692105, 3.7411827956579664, 3.7411827956579664, 4.000001907645384, 4.000001907645384, 4.258820889630798, 4.258820889630798, 4.500001655447404, 4.500001655447404, 4.707108134232274, 4.707108134232274, 4.8660263615067665, 4.8660263615067665, 4.965926322546468, 4.965926322546468, 4.999999999998158, 4.999999999998158, 4.965925329018281, 4.965925329018281, 4.866024442157697, 4.866024442157697, 4.707105419862792, 4.707105419862792, 4.499998331037305, 4.499998331037305, 4.2588171817322635, 4.2588171817322635, 3.999998068947271, 3.999998068947271, 3.741179087760333, 3.741179087760333, 3.4999983242820516, 3.4999983242820516, 3.292891849216909, 3.292891849216909, 3.133973626789601, 3.133973626789601, 3.0340736713953085, 3.0340736713953085, 3.0000000000018874, 3.0000000000018874, 3.034074677039794, 3.034074677039794, 3.1339755695455604, 3.1339755695455604, 3.2928945966880896, 3.2928945966880896, 3.5000016892340726, 3.5000016892340726, 3.7411828408766286, 3.7411828408766286, 4.000001954459164, 4.000001954459164, 4.2588209348485355, 4.2588209348485355, 4.500001695988494, 4.500001695988494, 4.707108167334551, 4.707108167334551, 4.866026384913577, 4.866026384913577, 4.9659263346626785, 4.9659263346626785, 4.999999999998067, 4.999999999998067, 4.965925316902131, 4.965925316902131, 4.866024418750728, 4.866024418750728, 4.707105386760386, 4.707105386760386, 4.499998290495337, 4.499998290495337, 4.258817136514479, 4.258817136514479, 3.9999980221344007, 3.9999980221344007, 3.741179042541718, 3.741179042541718, 3.4999982837401746, 3.4999982837401746, 3.2928918161146323, 3.2928918161146323, 3.133973603383245, 3.133973603383245, 3.034073659279335, 3.034073659279335, 3.0000000000019793, 3.0000000000019793, 3.0340746891561805, 3.0340746891561805, 3.13397559295253, 3.13397559295253, 3.292894629790496, 3.292894629790496, 3.5000017297752537, 3.5000017297752537, 3.741182886094413, 3.741182886094413, 4.000002001272944, 4.000002001272944, 4.25882098006715, 4.25882098006715, 4.500001736530369, 4.500001736530369, 4.707108200436183, 4.707108200436183, 4.866026408319932, 4.866026408319932, 4.965926346778886, 4.965926346778886, 4.999999999997974, 4.999999999997974, 4.965925304785743, 4.965925304785743, 4.866024395344212, 4.866024395344212, 4.707105353658622, 4.707105353658622, 4.499998249953368, 4.499998249953368, 4.258817091295816, 4.258817091295816, 3.9999979753206207, 3.9999979753206207, 3.7411789973239817, 3.7411789973239817, 3.4999982431990864, 3.4999982431990864, 3.2928917830130007, 3.2928917830130007, 3.1339735799764363, 3.1339735799764363, 3.034073647163128, 3.034073647163128, 3.0000000000020735, 3.0000000000020735, 3.034074701272334, 3.034074701272334, 3.133975616359047, 3.133975616359047, 3.292894662892904, 3.292894662892904, 3.5000017703172235, 3.5000017703172235, 3.7411829313130767, 3.7411829313130767, 4.000002048085814, 4.000002048085814, 4.258821025284886, 4.258821025284886, 4.500001777072245, 4.500001777072245, 4.707108233538458, 4.707108233538458, 4.866026431726739, 4.866026431726739, 4.965926358894857, 4.965926358894857, 4.999999999997879, 4.999999999997879, 4.965925292669353, 4.965925292669353, 4.86602437193724, 4.86602437193724, 4.707105320556213, 4.707105320556213, 4.499998209412185, 4.499998209412185, 4.258817046078031, 4.258817046078031, 3.9999979285077507, 3.9999979285077507, 3.7411789521053676, 3.7411789521053676, 3.499998202657212, 3.499998202657212, 3.2928917499107278, 3.2928917499107278, 3.1339735565700844, 3.1339735565700844, 3.034073635047159, 3.034073635047159, 3.00000000000217, 3.00000000000217, 3.0340747133887254, 3.0340747133887254, 3.1339756397660206, 3.1339756397660206, 3.2928946959946703, 3.2928946959946703, 3.500001810858407, 3.500001810858407, 3.7411829765317406, 3.7411829765317406, 4.000002094899594, 4.000002094899594, 4.2588210705035, 4.2588210705035, 4.500001817613331, 4.500001817613331, 4.707108266640087, 4.707108266640087, 4.866026455133545, 4.866026455133545, 4.965926371011061, 4.965926371011061, 4.999999999997781, 4.999999999997781, 4.965925280553196, 4.965925280553196, 4.866024348530719, 4.866024348530719, 4.7071052874544455, 4.7071052874544455, 4.4999981688702135, 4.4999981688702135, 4.258817000859366, 4.258817000859366, 3.9999978816939707, 3.9999978816939707, 3.741178906887632, 3.741178906887632, 3.4999981621161265, 3.4999981621161265, 3.292891716808456, 3.292891716808456, 3.13397353316328, 3.13397353316328, 3.0340736229309564, 3.0340736229309564, 3.0000000000022684, 3.0000000000022684, 3.0340747255048828, 3.0340747255048828, 3.133975663172996, 3.133975663172996, 3.292894729097082, 3.292894729097082, 3.500001851400379, 3.500001851400379, 3.7411830217495265, 3.7411830217495265, 4.000002141712464, 4.000002141712464, 4.258821115722113, 4.258821115722113, 4.500001858155204, 4.500001858155204, 4.707108299742358, 4.707108299742358, 4.866026478539895, 4.866026478539895, 4.965926383127027, 4.965926383127027, 4.999999999997682, 4.999999999997682, 4.965925268436802, 4.965925268436802, 4.8660243251237425, 4.8660243251237425, 4.707105254352034, 4.707105254352034, 4.499998128329029, 4.499998128329029, 4.2588169556415805, 4.2588169556415805, 3.999997834880191, 3.999997834880191, 3.7411788616690194, 3.7411788616690194, 3.499998121574254, 3.499998121574254, 3.292891683706829, 3.292891683706829, 3.133973509756932, 3.133973509756932, 3.034073610814756, 3.034073610814756, 3.000000000002369, 3.000000000002369, 3.034074737621278, 3.034074737621278, 3.1339756865795185, 3.1339756865795185, 3.292894762198851, 3.292894762198851, 3.500001891942352, 3.500001891942352, 3.741183066968192, 3.741183066968192, 4.000002188526245, 4.000002188526245, 4.258821160939847, 4.258821160939847, 4.500001898696288, 4.500001898696288, 4.707108332843983, 4.707108332843983, 4.866026501946696, 4.866026501946696, 4.965926395243226, 4.965926395243226, 4.99999999999758, 4.99999999999758, 4.9659252563206415, 4.9659252563206415, 4.86602430171722, 4.86602430171722, 4.707105221249621, 4.707105221249621, 4.499998087787055, 4.499998087787055, 4.258816910422914, 4.258816910422914, 3.9999977880673208, 3.9999977880673208, 3.7411788164512854, 3.7411788164512854, 3.4999980810323827, 3.4999980810323827, 3.2928916506045605, 3.2928916506045605, 3.133973486350131, 3.133973486350131, 3.034073598698793, 3.034073598698793, 3.0000000000024722, 3.0000000000024722, 3.0340747497376754, 3.0340747497376754, 3.133975709986498, 3.133975709986498, 3.2928947953012653, 3.2928947953012653, 3.5000019324835385, 3.5000019324835385, 3.741183112185979, 3.741183112185979, 4.000002235339115, 4.000002235339115, 4.258821206158459, 4.258821206158459, 4.5000019392381585, 4.5000019392381585, 4.707108365946252, 4.707108365946252, 4.866026525353041, 4.866026525353041, 4.965926407359188, 4.965926407359188, 4.999999999997476, 4.999999999997476, 4.965925244204243, 4.965925244204243, 4.866024278310239, 4.866024278310239, 4.707105188147849, 4.707105188147849, 4.499998047245867, 4.499998047245867, 4.258816865204248, 4.258816865204248, 3.999997741253541, 3.999997741253541, 3.741178771232674, 3.741178771232674, 3.4999980404913003, 3.4999980404913003, 3.292891617502937, 3.292891617502937, 3.1339734629433322, 3.1339734629433322, 3.0340735865825965, 3.0340735865825965, 3.0000000000025775, 3.0000000000025775, 3.0340747618538395, 3.0340747618538395, 3.133975733393024, 3.133975733393024, 3.292894828403038, 3.292894828403038, 3.500001973025514, 3.500001973025514, 3.7411831574046452, 3.7411831574046452, 4.000002282152894, 4.000002282152894, 4.258821251376193, 4.258821251376193, 4.500001979779241, 4.500001979779241, 4.707108399048518, 4.707108399048518, 4.866026548759839, 4.866026548759839, 4.965926419475383, 4.965926419475383, 4.999999999997369, 4.999999999997369, 4.965925232088077, 4.965925232088077, 4.866024254903257, 4.866024254903257, 4.707105155045432, 4.707105155045432, 4.499998006703891, 4.499998006703891, 4.2588168199864604, 4.2588168199864604, 3.9999976944406703, 3.9999976944406703, 3.7411787260140623, 3.7411787260140623, 3.4999979999494313, 3.4999979999494313, 3.292891584400671, 3.292891584400671, 3.13397343953699, 3.13397343953699, 3.0340735744666376, 3.0340735744666376, 3.000000000002685, 3.000000000002685, 3.034074773970241, 3.034074773970241, 3.133975756800007, 3.133975756800007, 3.2928948615054554, 3.2928948615054554, 3.5000020135667027, 3.5000020135667027, 3.741183202622434, 3.741183202622434, 4.000002328966675, 4.000002328966675, 4.258821296594804, 4.258821296594804, 4.5000020203211095, 4.5000020203211095, 4.7071084321501395, 4.7071084321501395, 4.866026572166181, 4.866026572166181, 4.965926431591576, 4.965926431591576, 4.999999999997261, 4.999999999997261, 4.965925219971675, 4.965925219971675, 4.866024231496728, 4.866024231496728, 4.707105121943657, 4.707105121943657, 4.4999979661619145, 4.4999979661619145, 4.258816774767793, 4.258816774767793, 3.999997647626891, 3.999997647626891, 3.74117868079633, 3.74117868079633, 3.4999979594083506, 3.4999979594083506, 3.2928915512990504, 3.2928915512990504, 3.1339734161301944, 3.1339734161301944, 3.0340735623504456, 3.0340735623504456, 3.000000000002794, 3.000000000002794, 3.0340747860864097, 3.0340747860864097, 3.1339757802065376, 3.1339757802065376, 3.292894894607874, 3.292894894607874, 3.5000020541086805, 3.5000020541086805, 3.7411832478411013, 3.7411832478411013, 4.000002375779545, 4.000002375779545, 4.258821341812536, 4.258821341812536, 4.500002060862977, 4.500002060862977, 4.707108465252403, 4.707108465252403, 4.866026595572975, 4.866026595572975, 4.965926443707532, 4.965926443707532, 4.99999999999715, 4.99999999999715, 4.96592520785527, 4.96592520785527, 4.866024208089742, 4.866024208089742, 4.707105088841238, 4.707105088841238, 4.4999979256207245, 4.4999979256207245, 4.258816729550004, 4.258816729550004, 3.9999976008140203, 3.9999976008140203, 3.74117863557772, 3.74117863557772, 3.499997918866484, 3.499997918866484, 3.292891518196788, 3.292891518196788, 3.133973392723856, 3.133973392723856, 3.034073550234491, 3.034073550234491, 3.000000000002906, 3.000000000002906, 3.0340747982028153, 3.0340747982028153, 3.1339758036135246, 3.1339758036135246, 3.2928949277096513, 3.2928949277096513, 3.5000020946498713, 3.5000020946498713, 3.7411832930597693, 3.7411832930597693, 4.000002422593324, 4.000002422593324, 4.258821387031146, 4.258821387031146, 4.500002101404055, 4.500002101404055, 4.707108498354021, 4.707108498354021, 4.866026618979767, 4.866026618979767, 4.965926455823721, 4.965926455823721, 4.999999999997037, 4.999999999997037, 4.965925195739098, 4.965925195739098, 4.866024184683209, 4.866024184683209, 4.70710505573946, 4.70710505573946, 4.499997885078745, 4.499997885078745, 4.258816684331336, 4.258816684331336, 3.9999975540002404, 3.9999975540002404, 3.741178590359989, 3.741178590359989, 3.4999978783254058, 3.4999978783254058, 3.2928914850945272, 3.2928914850945272, 3.1339733693170646, 3.1339733693170646, 3.0340735381183035, 3.0340735381183035, 3.0000000000030203, 3.0000000000030203, 3.034074810318988, 3.034074810318988, 3.133975827020513, 3.133975827020513, 3.2928949608120734, 3.2928949608120734, 3.5000021351918513, 3.5000021351918513, 3.7411833382775592, 3.7411833382775592, 4.000002469406195, 4.000002469406195, 4.258821432249755, 4.258821432249755, 4.50000214194592, 4.50000214194592, 4.707108531456281, 4.707108531456281, 4.866026642386103, 4.866026642386103, 4.965926467939672, 4.965926467939672, 4.999999999996922, 4.999999999996922, 4.96592518362269, 4.96592518362269, 4.866024161276219, 4.866024161276219, 4.707105022637037, 4.707105022637037, 4.499997844537552, 4.499997844537552, 4.258816639113546, 4.258816639113546, 3.999997507186461, 3.999997507186461, 3.7411785451413797, 3.7411785451413797, 3.4999978377835412, 3.4999978377835412, 3.292891451992911, 3.292891451992911, 3.13397334591073, 3.13397334591073, 3.0340735260021177, 3.0340735260021177, 3.000000000003136, 3.000000000003136, 3.034074822435398, 3.034074822435398, 3.133975850427049, 3.133975850427049, 3.292894993913854, 3.292894993913854, 3.500002175733832, 3.500002175733832, 3.7411833834962285, 3.7411833834962285, 4.000002516219975, 4.000002516219975, 4.258821477467485, 4.258821477467485, 4.500002182486997, 4.500002182486997, 4.707108564557896, 4.707108564557896, 4.866026665792892, 4.866026665792892, 4.965926480055857, 4.965926480055857, 4.999999999996804, 4.999999999996804, 4.965925171506514, 4.965925171506514, 4.866024137869682, 4.866024137869682, 4.707018662469598, 4.707018662469598, 4.49993676165593, 4.49993676165593, 4.25878499621524, 4.25878499621524, 3.999997460683641, 3.999997460683641, 3.7412100982022576, 3.7412100982022576, 3.500058840118342, 3.500058840118342, 3.292977746394146, 3.292977746394146, 3.1340790515574763, 3.1340790515574763, 3.0341914392293647, 3.0341914392293647, 3.0001220852187345, 3.0001220852187345, 3.034192759733772, 3.034192759733772, 3.134081602576096, 3.134081602576096, 3.2929813540792727, 3.2929813540792727, 3.500063258612192, 3.500063258612192, 3.7412150263908948, 3.7412150263908948, 4.000002562719937, 4.000002562719937, 4.258789924404725, 4.258789924404725, 4.499758051512304, 4.499758051512304, 4.705295720044372, 4.705295720044372, 4.854819409373181, 4.854819409373181, 4.90342605988624, 4.90342605988624, 4.731778781587124, 4.731778781587124, 4.328185779341063, 4.328185779341063, 4.076547608212793, 4.076547608212793, 4.012690077963085, 4.012690077963085 ] } } }, "3a4cc4ad73e4436f9cb271dae2abec40": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#ff7f0e" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS1_m2" ], "scales": { "x": "IPY_MODEL_3f7099eb85e644d39be802793202d951", "y": "IPY_MODEL_bb809aa69f6b4de692ddb7c47b2a8a8f" }, "selected": [], "tooltip": "IPY_MODEL_739989c6df8b44ac8e2e610ee68b5e36", "x": { "type": "float", "values": [ 0, 100, 100, 1100 ] }, "y": { "type": "float", "values": [ 3, 3, 2, 2 ] } } }, "3f7099eb85e644d39be802793202d951": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "stabilized": false } }, "41194916d55a407aab9dd1bd9ece870f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": {} }, "45c2edcf6a1b4345967c253305b43987": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": { "min_width": "125px" } }, "5122e806f7fb48a3b1d902506f58363c": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "allow_padding": false, "max": 1, "min": 0, "stabilized": false } }, "53dca7485c1a4053b2efd051f21742fd": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "AxisModel", "state": { "label": "Amplitude", "orientation": "vertical", "scale": "IPY_MODEL_30d949e7ba5846e89f696eade5e275c3", "side": "left", "tick_values": { "type": null, "values": null } } }, "5ad23175c43b4d0db10f2e5232f30cb5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": { "min_width": "125px" } }, "651d6903727244588d4c9903e14b28cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.4.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "68a3baf2f96b4169a405aa8ad5b8412c": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#d62728" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS2_ch2" ], "scales": { "x": "IPY_MODEL_3f7099eb85e644d39be802793202d951", "y": "IPY_MODEL_bb809aa69f6b4de692ddb7c47b2a8a8f" }, "selected": [], "tooltip": "IPY_MODEL_739989c6df8b44ac8e2e610ee68b5e36", "x": { "type": "float", "values": [ 0, 100, 100, 100.83333333333333, 100.83333333333333, 101.66666666666666, 101.66666666666666, 102.5, 102.5, 103.33333333333333, 103.33333333333333, 104.16666666666667, 104.16666666666667, 105, 105, 105.83333333333333, 105.83333333333333, 106.66666666666667, 106.66666666666667, 107.5, 107.5, 108.33333333333334, 108.33333333333334, 109.16666666666667, 109.16666666666667, 110, 110, 110.83333333333334, 110.83333333333334, 111.66666666666667, 111.66666666666667, 112.50000000000001, 112.50000000000001, 113.33333333333334, 113.33333333333334, 114.16666666666666, 114.16666666666666, 115, 115, 115.83333333333333, 115.83333333333333, 116.66666666666667, 116.66666666666667, 117.5, 117.5, 118.33333333333333, 118.33333333333333, 119.16666666666667, 119.16666666666667, 120.00000000000001, 120.00000000000001, 120.83333333333333, 120.83333333333333, 121.66666666666666, 121.66666666666666, 122.49999999999999, 122.49999999999999, 123.33333333333333, 123.33333333333333, 124.16666666666666, 124.16666666666666, 125, 125, 125.83333333333333, 125.83333333333333, 126.66666666666666, 126.66666666666666, 127.5, 127.5, 128.33333333333334, 128.33333333333334, 129.16666666666666, 129.16666666666666, 130, 130, 130.83333333333334, 130.83333333333334, 131.66666666666666, 131.66666666666666, 132.5, 132.5, 133.33333333333334, 133.33333333333334, 134.16666666666666, 134.16666666666666, 135, 135, 135.83333333333334, 135.83333333333334, 136.66666666666669, 136.66666666666669, 137.5, 137.5, 138.33333333333334, 138.33333333333334, 139.16666666666669, 139.16666666666669, 140, 140, 140.83333333333334, 140.83333333333334, 141.66666666666669, 141.66666666666669, 142.5, 142.5, 143.33333333333334, 143.33333333333334, 144.16666666666669, 144.16666666666669, 145.00000000000003, 145.00000000000003, 145.83333333333334, 145.83333333333334, 146.66666666666666, 146.66666666666666, 147.5, 147.5, 148.33333333333331, 148.33333333333331, 149.16666666666666, 149.16666666666666, 150, 150, 150.83333333333331, 150.83333333333331, 151.66666666666666, 151.66666666666666, 152.5, 152.5, 153.33333333333334, 153.33333333333334, 154.16666666666666, 154.16666666666666, 155, 155, 155.83333333333334, 155.83333333333334, 156.66666666666666, 156.66666666666666, 157.5, 157.5, 158.33333333333334, 158.33333333333334, 159.16666666666666, 159.16666666666666, 160, 160, 160.83333333333334, 160.83333333333334, 161.66666666666669, 161.66666666666669, 162.5, 162.5, 163.33333333333334, 163.33333333333334, 164.16666666666669, 164.16666666666669, 165, 165, 165.83333333333334, 165.83333333333334, 166.66666666666669, 166.66666666666669, 167.5, 167.5, 168.33333333333334, 168.33333333333334, 169.16666666666669, 169.16666666666669, 170, 170, 170.83333333333334, 170.83333333333334, 171.66666666666669, 171.66666666666669, 172.50000000000003, 172.50000000000003, 173.33333333333334, 173.33333333333334, 174.16666666666666, 174.16666666666666, 175, 175, 175.83333333333331, 175.83333333333331, 176.66666666666666, 176.66666666666666, 177.5, 177.5, 178.33333333333334, 178.33333333333334, 179.16666666666666, 179.16666666666666, 180, 180, 180.83333333333334, 180.83333333333334, 181.66666666666666, 181.66666666666666, 182.5, 182.5, 183.33333333333334, 183.33333333333334, 184.16666666666666, 184.16666666666666, 185, 185, 185.83333333333334, 185.83333333333334, 186.66666666666666, 186.66666666666666, 187.5, 187.5, 188.33333333333334, 188.33333333333334, 189.16666666666669, 189.16666666666669, 190, 190, 190.83333333333334, 190.83333333333334, 191.66666666666669, 191.66666666666669, 192.5, 192.5, 193.33333333333334, 193.33333333333334, 194.16666666666669, 194.16666666666669, 195, 195, 195.83333333333334, 195.83333333333334, 196.66666666666669, 196.66666666666669, 197.50000000000003, 197.50000000000003, 198.33333333333334, 198.33333333333334, 199.16666666666669, 199.16666666666669, 200, 200, 200.83333333333331, 200.83333333333331, 201.66666666666666, 201.66666666666666, 202.5, 202.5, 203.33333333333331, 203.33333333333331, 204.16666666666666, 204.16666666666666, 205, 205, 205.83333333333334, 205.83333333333334, 206.66666666666666, 206.66666666666666, 207.5, 207.5, 208.33333333333334, 208.33333333333334, 209.16666666666666, 209.16666666666666, 210, 210, 210.83333333333334, 210.83333333333334, 211.66666666666666, 211.66666666666666, 212.5, 212.5, 213.33333333333334, 213.33333333333334, 214.16666666666669, 214.16666666666669, 215, 215, 215.83333333333334, 215.83333333333334, 216.66666666666669, 216.66666666666669, 217.5, 217.5, 218.33333333333334, 218.33333333333334, 219.16666666666669, 219.16666666666669, 220, 220, 220.83333333333334, 220.83333333333334, 221.66666666666669, 221.66666666666669, 222.5, 222.5, 223.33333333333334, 223.33333333333334, 224.16666666666669, 224.16666666666669, 225.00000000000003, 225.00000000000003, 225.83333333333334, 225.83333333333334, 226.66666666666669, 226.66666666666669, 227.5, 227.5, 228.33333333333331, 228.33333333333331, 229.16666666666666, 229.16666666666666, 230, 230, 230.83333333333334, 230.83333333333334, 231.66666666666666, 231.66666666666666, 232.5, 232.5, 233.33333333333334, 233.33333333333334, 234.16666666666666, 234.16666666666666, 235, 235, 235.83333333333334, 235.83333333333334, 236.66666666666666, 236.66666666666666, 237.5, 237.5, 238.33333333333334, 238.33333333333334, 239.16666666666666, 239.16666666666666, 240.00000000000003, 240.00000000000003, 240.83333333333334, 240.83333333333334, 241.66666666666666, 241.66666666666666, 242.5, 242.5, 243.33333333333331, 243.33333333333331, 244.16666666666669, 244.16666666666669, 244.99999999999997, 244.99999999999997, 245.83333333333334, 245.83333333333334, 246.66666666666666, 246.66666666666666, 247.5, 247.5, 248.33333333333331, 248.33333333333331, 249.16666666666669, 249.16666666666669, 250, 250, 250.83333333333334, 250.83333333333334, 251.66666666666666, 251.66666666666666, 252.50000000000003, 252.50000000000003, 253.33333333333331, 253.33333333333331, 254.16666666666669, 254.16666666666669, 255, 255, 255.83333333333334, 255.83333333333334, 256.6666666666667, 256.6666666666667, 257.5, 257.5, 258.3333333333333, 258.3333333333333, 259.1666666666667, 259.1666666666667, 260, 260, 260.83333333333337, 260.83333333333337, 261.6666666666667, 261.6666666666667, 262.5, 262.5, 263.3333333333333, 263.3333333333333, 264.1666666666667, 264.1666666666667, 265, 265, 265.83333333333337, 265.83333333333337, 266.6666666666667, 266.6666666666667, 267.5, 267.5, 268.3333333333333, 268.3333333333333, 269.16666666666663, 269.16666666666663, 270, 270, 270.8333333333333, 270.8333333333333, 271.6666666666667, 271.6666666666667, 272.5, 272.5, 273.33333333333337, 273.33333333333337, 274.16666666666663, 274.16666666666663, 275, 275, 275.8333333333333, 275.8333333333333, 276.6666666666667, 276.6666666666667, 277.5, 277.5, 278.33333333333337, 278.33333333333337, 279.1666666666667, 279.1666666666667, 280, 280, 280.8333333333333, 280.8333333333333, 281.6666666666667, 281.6666666666667, 282.5, 282.5, 283.33333333333337, 283.33333333333337, 284.1666666666667, 284.1666666666667, 285, 285, 285.8333333333333, 285.8333333333333, 286.6666666666667, 286.6666666666667, 287.5, 287.5, 288.33333333333337, 288.33333333333337, 289.1666666666667, 289.1666666666667, 290.00000000000006, 290.00000000000006, 290.8333333333333, 290.8333333333333, 291.6666666666667, 291.6666666666667, 292.5, 292.5, 293.3333333333333, 293.3333333333333, 294.1666666666667, 294.1666666666667, 295, 295, 295.8333333333333, 295.8333333333333, 296.66666666666663, 296.66666666666663, 297.5, 297.5, 298.3333333333333, 298.3333333333333, 299.1666666666667, 299.1666666666667, 300, 300, 300.83333333333337, 300.83333333333337, 301.66666666666663, 301.66666666666663, 302.5, 302.5, 303.3333333333333, 303.3333333333333, 304.1666666666667, 304.1666666666667, 305, 305, 305.83333333333337, 305.83333333333337, 306.6666666666667, 306.6666666666667, 307.5, 307.5, 308.3333333333333, 308.3333333333333, 309.1666666666667, 309.1666666666667, 310, 310, 310.83333333333337, 310.83333333333337, 311.6666666666667, 311.6666666666667, 312.5, 312.5, 313.3333333333333, 313.3333333333333, 314.1666666666667, 314.1666666666667, 315, 315, 315.83333333333337, 315.83333333333337, 316.6666666666667, 316.6666666666667, 317.50000000000006, 317.50000000000006, 318.3333333333333, 318.3333333333333, 319.1666666666667, 319.1666666666667, 320, 320, 320.8333333333333, 320.8333333333333, 321.6666666666667, 321.6666666666667, 322.5, 322.5, 323.33333333333337, 323.33333333333337, 324.16666666666663, 324.16666666666663, 325, 325, 325.8333333333333, 325.8333333333333, 326.6666666666667, 326.6666666666667, 327.5, 327.5, 328.33333333333337, 328.33333333333337, 329.16666666666663, 329.16666666666663, 330, 330, 330.8333333333333, 330.8333333333333, 331.6666666666667, 331.6666666666667, 332.5, 332.5, 333.33333333333337, 333.33333333333337, 334.1666666666667, 334.1666666666667, 335, 335, 335.8333333333333, 335.8333333333333, 336.6666666666667, 336.6666666666667, 337.5, 337.5, 338.33333333333337, 338.33333333333337, 339.1666666666667, 339.1666666666667, 340, 340, 340.8333333333333, 340.8333333333333, 341.6666666666667, 341.6666666666667, 342.5, 342.5, 343.33333333333337, 343.33333333333337, 344.1666666666667, 344.1666666666667, 345.00000000000006, 345.00000000000006, 345.8333333333333, 345.8333333333333, 346.6666666666667, 346.6666666666667, 347.5, 347.5, 348.3333333333333, 348.3333333333333, 349.1666666666667, 349.1666666666667, 350, 350, 350.83333333333337, 350.83333333333337, 351.66666666666663, 351.66666666666663, 352.5, 352.5, 353.3333333333333, 353.3333333333333, 354.1666666666667, 354.1666666666667, 355, 355, 355.83333333333337, 355.83333333333337, 356.6666666666667, 356.6666666666667, 357.5, 357.5, 358.3333333333333, 358.3333333333333, 359.1666666666667, 359.1666666666667, 360, 360, 360.83333333333337, 360.83333333333337, 361.6666666666667, 361.6666666666667, 362.5, 362.5, 363.3333333333333, 363.3333333333333, 364.1666666666667, 364.1666666666667, 365, 365, 365.83333333333337, 365.83333333333337, 366.6666666666667, 366.6666666666667, 367.5, 367.5, 368.3333333333333, 368.3333333333333, 369.1666666666667, 369.1666666666667, 370, 370, 370.83333333333337, 370.83333333333337, 371.6666666666667, 371.6666666666667, 372.50000000000006, 372.50000000000006, 373.3333333333333, 373.3333333333333, 374.16666666666663, 374.16666666666663, 375, 375, 375.8333333333333, 375.8333333333333, 376.6666666666667, 376.6666666666667, 377.5, 377.5, 378.33333333333337, 378.33333333333337, 379.16666666666663, 379.16666666666663, 380, 380, 380.8333333333333, 380.8333333333333, 381.6666666666667, 381.6666666666667, 382.5, 382.5, 383.33333333333337, 383.33333333333337, 384.1666666666667, 384.1666666666667, 385, 385, 385.8333333333333, 385.8333333333333, 386.6666666666667, 386.6666666666667, 387.5, 387.5, 388.33333333333337, 388.33333333333337, 389.1666666666667, 389.1666666666667, 390, 390, 390.8333333333333, 390.8333333333333, 391.6666666666667, 391.6666666666667, 392.5, 392.5, 393.33333333333337, 393.33333333333337, 394.1666666666667, 394.1666666666667, 395.00000000000006, 395.00000000000006, 395.8333333333333, 395.8333333333333, 396.6666666666667, 396.6666666666667, 397.5, 397.5, 398.33333333333337, 398.33333333333337, 399.1666666666667, 399.1666666666667, 400, 400, 400.8333333333333, 400.8333333333333, 401.66666666666663, 401.66666666666663, 402.5, 402.5, 403.3333333333333, 403.3333333333333, 404.1666666666667, 404.1666666666667, 405, 405, 405.83333333333337, 405.83333333333337, 406.66666666666663, 406.66666666666663, 407.5, 407.5, 408.3333333333333, 408.3333333333333, 409.1666666666667, 409.1666666666667, 410, 410, 410.83333333333337, 410.83333333333337, 411.6666666666667, 411.6666666666667, 412.5, 412.5, 413.3333333333333, 413.3333333333333, 414.1666666666667, 414.1666666666667, 415, 415, 415.83333333333337, 415.83333333333337, 416.6666666666667, 416.6666666666667, 417.5, 417.5, 418.3333333333333, 418.3333333333333, 419.1666666666667, 419.1666666666667, 420, 420, 420.83333333333337, 420.83333333333337, 421.6666666666667, 421.6666666666667, 422.50000000000006, 422.50000000000006, 423.3333333333333, 423.3333333333333, 424.1666666666667, 424.1666666666667, 425, 425, 425.83333333333337, 425.83333333333337, 426.6666666666667, 426.6666666666667, 427.5, 427.5, 428.33333333333337, 428.33333333333337, 429.16666666666663, 429.16666666666663, 430, 430, 430.8333333333333, 430.8333333333333, 431.6666666666667, 431.6666666666667, 432.5, 432.5, 433.33333333333337, 433.33333333333337, 434.16666666666663, 434.16666666666663, 435, 435, 435.8333333333333, 435.8333333333333, 436.6666666666667, 436.6666666666667, 437.5, 437.5, 438.33333333333337, 438.33333333333337, 439.1666666666667, 439.1666666666667, 440, 440, 440.8333333333333, 440.8333333333333, 441.6666666666667, 441.6666666666667, 442.5, 442.5, 443.33333333333337, 443.33333333333337, 444.1666666666667, 444.1666666666667, 445, 445, 445.8333333333333, 445.8333333333333, 446.6666666666667, 446.6666666666667, 447.5, 447.5, 448.33333333333337, 448.33333333333337, 449.1666666666667, 449.1666666666667, 450.00000000000006, 450.00000000000006, 450.8333333333333, 450.8333333333333, 451.6666666666667, 451.6666666666667, 452.5, 452.5, 453.33333333333337, 453.33333333333337, 454.1666666666667, 454.1666666666667, 455, 455, 455.83333333333337, 455.83333333333337, 456.66666666666663, 456.66666666666663, 457.5, 457.5, 458.3333333333333, 458.3333333333333, 459.1666666666667, 459.1666666666667, 460, 460, 460.83333333333337, 460.83333333333337, 461.6666666666667, 461.6666666666667, 462.5, 462.5, 463.3333333333333, 463.3333333333333, 464.1666666666667, 464.1666666666667, 465, 465, 465.83333333333337, 465.83333333333337, 466.6666666666667, 466.6666666666667, 467.5, 467.5, 468.3333333333333, 468.3333333333333, 469.1666666666667, 469.1666666666667, 470, 470, 470.83333333333337, 470.83333333333337, 471.6666666666667, 471.6666666666667, 472.50000000000006, 472.50000000000006, 473.3333333333333, 473.3333333333333, 474.1666666666667, 474.1666666666667, 475, 475, 475.83333333333337, 475.83333333333337, 476.6666666666667, 476.6666666666667, 477.5, 477.5, 478.3333333333333, 478.3333333333333, 479.1666666666667, 479.1666666666667, 480.00000000000006, 480.00000000000006, 480.8333333333333, 480.8333333333333, 481.6666666666667, 481.6666666666667, 482.50000000000006, 482.50000000000006, 483.3333333333333, 483.3333333333333, 484.16666666666663, 484.16666666666663, 485, 485, 485.83333333333337, 485.83333333333337, 486.66666666666663, 486.66666666666663, 487.5, 487.5, 488.33333333333337, 488.33333333333337, 489.1666666666667, 489.1666666666667, 489.99999999999994, 489.99999999999994, 490.8333333333333, 490.8333333333333, 491.6666666666667, 491.6666666666667, 492.50000000000006, 492.50000000000006, 493.3333333333333, 493.3333333333333, 494.1666666666667, 494.1666666666667, 495, 495, 495.83333333333337, 495.83333333333337, 496.66666666666663, 496.66666666666663, 497.5, 497.5, 498.33333333333337, 498.33333333333337, 499.16666666666674, 499.16666666666674, 500, 500, 500.8333333333333, 500.8333333333333, 501.6666666666667, 501.6666666666667, 502.50000000000006, 502.50000000000006, 503.3333333333333, 503.3333333333333, 504.1666666666667, 504.1666666666667, 505.00000000000006, 505.00000000000006, 505.83333333333337, 505.83333333333337, 506.66666666666663, 506.66666666666663, 507.5, 507.5, 508.33333333333337, 508.33333333333337, 509.16666666666663, 509.16666666666663, 510, 510, 510.83333333333337, 510.83333333333337, 511.6666666666667, 511.6666666666667, 512.5, 512.5, 513.3333333333334, 513.3333333333334, 514.1666666666666, 514.1666666666666, 515, 515, 515.8333333333333, 515.8333333333333, 516.6666666666666, 516.6666666666666, 517.5, 517.5, 518.3333333333334, 518.3333333333334, 519.1666666666666, 519.1666666666666, 520, 520, 520.8333333333334, 520.8333333333334, 521.6666666666667, 521.6666666666667, 522.5, 522.5, 523.3333333333334, 523.3333333333334, 524.1666666666667, 524.1666666666667, 525, 525, 525.8333333333333, 525.8333333333333, 526.6666666666666, 526.6666666666666, 527.5, 527.5, 528.3333333333334, 528.3333333333334, 529.1666666666666, 529.1666666666666, 530, 530, 530.8333333333334, 530.8333333333334, 531.6666666666667, 531.6666666666667, 532.5, 532.5, 533.3333333333334, 533.3333333333334, 534.1666666666667, 534.1666666666667, 535, 535, 535.8333333333334, 535.8333333333334, 536.6666666666666, 536.6666666666666, 537.5, 537.5, 538.3333333333333, 538.3333333333333, 539.1666666666666, 539.1666666666666, 540, 540, 540.8333333333334, 540.8333333333334, 541.6666666666666, 541.6666666666666, 542.5, 542.5, 543.3333333333334, 543.3333333333334, 544.1666666666667, 544.1666666666667, 545, 545, 545.8333333333334, 545.8333333333334, 546.6666666666667, 546.6666666666667, 547.5, 547.5, 548.3333333333333, 548.3333333333333, 549.1666666666666, 549.1666666666666, 550, 550, 550.8333333333334, 550.8333333333334, 551.6666666666666, 551.6666666666666, 552.5, 552.5, 553.3333333333334, 553.3333333333334, 554.1666666666667, 554.1666666666667, 555, 555, 555.8333333333334, 555.8333333333334, 556.6666666666667, 556.6666666666667, 557.5000000000001, 557.5000000000001, 558.3333333333334, 558.3333333333334, 559.1666666666666, 559.1666666666666, 560, 560, 560.8333333333333, 560.8333333333333, 561.6666666666666, 561.6666666666666, 562.5, 562.5, 563.3333333333334, 563.3333333333334, 564.1666666666666, 564.1666666666666, 565, 565, 565.8333333333334, 565.8333333333334, 566.6666666666667, 566.6666666666667, 567.5, 567.5, 568.3333333333334, 568.3333333333334, 569.1666666666667, 569.1666666666667, 570, 570, 570.8333333333333, 570.8333333333333, 571.6666666666666, 571.6666666666666, 572.5, 572.5, 573.3333333333334, 573.3333333333334, 574.1666666666666, 574.1666666666666, 575, 575, 575.8333333333334, 575.8333333333334, 576.6666666666667, 576.6666666666667, 577.5, 577.5, 578.3333333333334, 578.3333333333334, 579.1666666666667, 579.1666666666667, 580.0000000000001, 580.0000000000001, 580.8333333333333, 580.8333333333333, 581.6666666666666, 581.6666666666666, 582.5, 582.5, 583.3333333333334, 583.3333333333334, 584.1666666666666, 584.1666666666666, 585, 585, 585.8333333333334, 585.8333333333334, 586.6666666666666, 586.6666666666666, 587.5, 587.5, 588.3333333333334, 588.3333333333334, 589.1666666666667, 589.1666666666667, 590, 590, 590.8333333333334, 590.8333333333334, 591.6666666666666, 591.6666666666666, 592.5, 592.5, 593.3333333333333, 593.3333333333333, 594.1666666666666, 594.1666666666666, 595, 595, 595.8333333333334, 595.8333333333334, 596.6666666666666, 596.6666666666666, 597.5, 597.5, 598.3333333333334, 598.3333333333334, 599.1666666666667, 599.1666666666667, 600, 600, 600.8333333333334, 600.8333333333334, 601.6666666666667, 601.6666666666667, 602.5, 602.5, 603.3333333333333, 603.3333333333333, 604.1666666666666, 604.1666666666666, 605, 605, 605.8333333333334, 605.8333333333334, 606.6666666666666, 606.6666666666666, 607.5, 607.5, 608.3333333333334, 608.3333333333334, 609.1666666666667, 609.1666666666667, 610, 610, 610.8333333333334, 610.8333333333334, 611.6666666666667, 611.6666666666667, 612.5000000000001, 612.5000000000001, 613.3333333333334, 613.3333333333334, 614.1666666666666, 614.1666666666666, 615, 615, 615.8333333333333, 615.8333333333333, 616.6666666666666, 616.6666666666666, 617.5, 617.5, 618.3333333333334, 618.3333333333334, 619.1666666666666, 619.1666666666666, 620, 620, 620.8333333333334, 620.8333333333334, 621.6666666666667, 621.6666666666667, 622.5, 622.5, 623.3333333333334, 623.3333333333334, 624.1666666666667, 624.1666666666667, 625, 625, 625.8333333333333, 625.8333333333333, 626.6666666666666, 626.6666666666666, 627.5, 627.5, 628.3333333333334, 628.3333333333334, 629.1666666666666, 629.1666666666666, 630, 630, 630.8333333333334, 630.8333333333334, 631.6666666666667, 631.6666666666667, 632.5, 632.5, 633.3333333333334, 633.3333333333334, 634.1666666666667, 634.1666666666667, 635.0000000000001, 635.0000000000001, 635.8333333333334, 635.8333333333334, 636.6666666666666, 636.6666666666666, 637.5, 637.5, 638.3333333333334, 638.3333333333334, 639.1666666666666, 639.1666666666666, 640, 640, 640.8333333333334, 640.8333333333334, 641.6666666666666, 641.6666666666666, 642.5, 642.5, 643.3333333333334, 643.3333333333334, 644.1666666666667, 644.1666666666667, 645, 645, 645.8333333333334, 645.8333333333334, 646.6666666666667, 646.6666666666667, 647.5, 647.5, 648.3333333333333, 648.3333333333333, 649.1666666666666, 649.1666666666666, 650, 650, 650.8333333333334, 650.8333333333334, 651.6666666666666, 651.6666666666666, 652.5, 652.5, 653.3333333333334, 653.3333333333334, 654.1666666666667, 654.1666666666667, 655, 655, 655.8333333333334, 655.8333333333334, 656.6666666666667, 656.6666666666667, 657.5000000000001, 657.5000000000001, 658.3333333333333, 658.3333333333333, 659.1666666666666, 659.1666666666666, 660, 660, 660.8333333333334, 660.8333333333334, 661.6666666666666, 661.6666666666666, 662.5, 662.5, 663.3333333333334, 663.3333333333334, 664.1666666666667, 664.1666666666667, 665, 665, 665.8333333333334, 665.8333333333334, 666.6666666666667, 666.6666666666667, 667.5, 667.5, 668.3333333333334, 668.3333333333334, 669.1666666666666, 669.1666666666666, 670, 670, 670.8333333333333, 670.8333333333333, 671.6666666666666, 671.6666666666666, 672.5, 672.5, 673.3333333333334, 673.3333333333334, 674.1666666666666, 674.1666666666666, 675, 675, 675.8333333333334, 675.8333333333334, 676.6666666666667, 676.6666666666667, 677.5, 677.5, 678.3333333333334, 678.3333333333334, 679.1666666666667, 679.1666666666667, 680, 680, 680.8333333333333, 680.8333333333333, 681.6666666666666, 681.6666666666666, 682.5, 682.5, 683.3333333333334, 683.3333333333334, 684.1666666666666, 684.1666666666666, 685, 685, 685.8333333333334, 685.8333333333334, 686.6666666666667, 686.6666666666667, 687.5, 687.5, 688.3333333333334, 688.3333333333334, 689.1666666666667, 689.1666666666667, 690.0000000000001, 690.0000000000001, 690.8333333333334, 690.8333333333334, 691.6666666666666, 691.6666666666666, 692.5, 692.5, 693.3333333333334, 693.3333333333334, 694.1666666666666, 694.1666666666666, 695, 695, 695.8333333333334, 695.8333333333334, 696.6666666666666, 696.6666666666666, 697.5, 697.5, 698.3333333333334, 698.3333333333334, 699.1666666666667, 699.1666666666667, 700, 700, 700.8333333333334, 700.8333333333334, 701.6666666666667, 701.6666666666667, 702.5, 702.5, 703.3333333333333, 703.3333333333333, 704.1666666666666, 704.1666666666666, 705, 705, 705.8333333333334, 705.8333333333334, 706.6666666666666, 706.6666666666666, 707.5, 707.5, 708.3333333333334, 708.3333333333334, 709.1666666666667, 709.1666666666667, 710, 710, 710.8333333333334, 710.8333333333334, 711.6666666666667, 711.6666666666667, 712.5000000000001, 712.5000000000001, 713.3333333333334, 713.3333333333334, 714.1666666666666, 714.1666666666666, 715, 715, 715.8333333333334, 715.8333333333334, 716.6666666666666, 716.6666666666666, 717.5, 717.5, 718.3333333333334, 718.3333333333334, 719.1666666666667, 719.1666666666667, 720, 720, 720.8333333333334, 720.8333333333334, 721.6666666666667, 721.6666666666667, 722.5, 722.5, 723.3333333333334, 723.3333333333334, 724.1666666666667, 724.1666666666667, 725, 725, 725.8333333333333, 725.8333333333333, 726.6666666666666, 726.6666666666666, 727.5, 727.5, 728.3333333333334, 728.3333333333334, 729.1666666666666, 729.1666666666666, 730, 730, 730.8333333333334, 730.8333333333334, 731.6666666666667, 731.6666666666667, 732.5, 732.5, 733.3333333333334, 733.3333333333334, 734.1666666666667, 734.1666666666667, 735, 735, 735.8333333333333, 735.8333333333333, 736.6666666666666, 736.6666666666666, 737.5, 737.5, 738.3333333333334, 738.3333333333334, 739.1666666666666, 739.1666666666666, 740, 740, 740.8333333333334, 740.8333333333334, 741.6666666666667, 741.6666666666667, 742.5, 742.5, 743.3333333333334, 743.3333333333334, 744.1666666666667, 744.1666666666667, 745.0000000000001, 745.0000000000001, 745.8333333333334, 745.8333333333334, 746.6666666666666, 746.6666666666666, 747.5, 747.5, 748.3333333333333, 748.3333333333333, 749.1666666666666, 749.1666666666666, 750, 750, 750.8333333333334, 750.8333333333334, 751.6666666666666, 751.6666666666666, 752.5, 752.5, 753.3333333333334, 753.3333333333334, 754.1666666666667, 754.1666666666667, 755, 755, 755.8333333333334, 755.8333333333334, 756.6666666666667, 756.6666666666667, 757.5, 757.5, 758.3333333333333, 758.3333333333333, 759.1666666666666, 759.1666666666666, 760, 760, 760.8333333333334, 760.8333333333334, 761.6666666666666, 761.6666666666666, 762.5, 762.5, 763.3333333333334, 763.3333333333334, 764.1666666666667, 764.1666666666667, 765, 765, 765.8333333333334, 765.8333333333334, 766.6666666666667, 766.6666666666667, 767.5000000000001, 767.5000000000001, 768.3333333333334, 768.3333333333334, 769.1666666666666, 769.1666666666666, 770, 770, 770.8333333333334, 770.8333333333334, 771.6666666666666, 771.6666666666666, 772.5, 772.5, 773.3333333333334, 773.3333333333334, 774.1666666666666, 774.1666666666666, 775, 775, 775.8333333333334, 775.8333333333334, 776.6666666666667, 776.6666666666667, 777.5, 777.5, 778.3333333333334, 778.3333333333334, 779.1666666666667, 779.1666666666667, 780, 780, 780.8333333333333, 780.8333333333333, 781.6666666666666, 781.6666666666666, 782.5, 782.5, 783.3333333333334, 783.3333333333334, 784.1666666666666, 784.1666666666666, 785, 785, 785.8333333333334, 785.8333333333334, 786.6666666666667, 786.6666666666667, 787.5, 787.5, 788.3333333333334, 788.3333333333334, 789.1666666666667, 789.1666666666667, 790.0000000000001, 790.0000000000001, 790.8333333333333, 790.8333333333333, 791.6666666666666, 791.6666666666666, 792.5, 792.5, 793.3333333333334, 793.3333333333334, 794.1666666666666, 794.1666666666666, 795, 795, 795.8333333333334, 795.8333333333334, 796.6666666666667, 796.6666666666667, 797.5, 797.5, 798.3333333333334, 798.3333333333334, 799.1666666666667, 799.1666666666667, 800, 800, 800.8333333333334, 800.8333333333334, 801.6666666666666, 801.6666666666666, 802.5, 802.5, 803.3333333333333, 803.3333333333333, 804.1666666666666, 804.1666666666666, 805, 805, 805.8333333333334, 805.8333333333334, 806.6666666666666, 806.6666666666666, 807.5, 807.5, 808.3333333333334, 808.3333333333334, 809.1666666666667, 809.1666666666667, 810, 810, 810.8333333333334, 810.8333333333334, 811.6666666666667, 811.6666666666667, 812.5, 812.5, 813.3333333333333, 813.3333333333333, 814.1666666666666, 814.1666666666666, 815, 815, 815.8333333333334, 815.8333333333334, 816.6666666666666, 816.6666666666666, 817.5, 817.5, 818.3333333333334, 818.3333333333334, 819.1666666666667, 819.1666666666667, 820, 820, 820.8333333333334, 820.8333333333334, 821.6666666666667, 821.6666666666667, 822.5000000000001, 822.5000000000001, 823.3333333333334, 823.3333333333334, 824.1666666666666, 824.1666666666666, 825, 825, 825.8333333333334, 825.8333333333334, 826.6666666666666, 826.6666666666666, 827.5, 827.5, 828.3333333333334, 828.3333333333334, 829.1666666666666, 829.1666666666666, 830, 830, 830.8333333333334, 830.8333333333334, 831.6666666666667, 831.6666666666667, 832.5, 832.5, 833.3333333333334, 833.3333333333334, 834.1666666666667, 834.1666666666667, 835, 835, 835.8333333333333, 835.8333333333333, 836.6666666666666, 836.6666666666666, 837.5, 837.5, 838.3333333333334, 838.3333333333334, 839.1666666666666, 839.1666666666666, 840, 840, 840.8333333333334, 840.8333333333334, 841.6666666666667, 841.6666666666667, 842.5, 842.5, 843.3333333333334, 843.3333333333334, 844.1666666666667, 844.1666666666667, 845.0000000000001, 845.0000000000001, 845.8333333333334, 845.8333333333334, 846.6666666666666, 846.6666666666666, 847.5, 847.5, 848.3333333333334, 848.3333333333334, 849.1666666666666, 849.1666666666666, 850, 850, 850.8333333333334, 850.8333333333334, 851.6666666666667, 851.6666666666667, 852.5, 852.5, 853.3333333333334, 853.3333333333334, 854.1666666666667, 854.1666666666667, 855, 855, 855.8333333333334, 855.8333333333334, 856.6666666666667, 856.6666666666667, 857.5, 857.5, 858.3333333333333, 858.3333333333333, 859.1666666666666, 859.1666666666666, 860, 860, 860.8333333333334, 860.8333333333334, 861.6666666666666, 861.6666666666666, 862.5, 862.5, 863.3333333333334, 863.3333333333334, 864.1666666666667, 864.1666666666667, 865, 865, 865.8333333333334, 865.8333333333334, 866.6666666666667, 866.6666666666667, 867.5000000000001, 867.5000000000001, 868.3333333333333, 868.3333333333333, 869.1666666666666, 869.1666666666666, 870, 870, 870.8333333333334, 870.8333333333334, 871.6666666666666, 871.6666666666666, 872.5, 872.5, 873.3333333333334, 873.3333333333334, 874.1666666666667, 874.1666666666667, 875, 875, 875.8333333333334, 875.8333333333334, 876.6666666666667, 876.6666666666667, 877.5000000000001, 877.5000000000001, 878.3333333333334, 878.3333333333334, 879.1666666666666, 879.1666666666666, 880, 880, 880.8333333333333, 880.8333333333333, 881.6666666666666, 881.6666666666666, 882.5, 882.5, 883.3333333333334, 883.3333333333334, 884.1666666666666, 884.1666666666666, 885, 885, 885.8333333333334, 885.8333333333334, 886.6666666666667, 886.6666666666667, 887.5, 887.5, 888.3333333333334, 888.3333333333334, 889.1666666666667, 889.1666666666667, 890, 890, 890.8333333333333, 890.8333333333333, 891.6666666666666, 891.6666666666666, 892.5, 892.5, 893.3333333333334, 893.3333333333334, 894.1666666666666, 894.1666666666666, 895, 895, 895.8333333333334, 895.8333333333334, 896.6666666666667, 896.6666666666667, 897.5, 897.5, 898.3333333333334, 898.3333333333334, 899.1666666666667, 899.1666666666667, 900.0000000000001, 900.0000000000001, 900.8333333333334, 900.8333333333334, 901.6666666666666, 901.6666666666666, 902.5, 902.5, 903.3333333333334, 903.3333333333334, 904.1666666666666, 904.1666666666666, 905, 905, 905.8333333333334, 905.8333333333334, 906.6666666666667, 906.6666666666667, 907.5, 907.5, 908.3333333333334, 908.3333333333334, 909.1666666666667, 909.1666666666667, 910, 910, 910.8333333333334, 910.8333333333334, 911.6666666666667, 911.6666666666667, 912.5, 912.5, 913.3333333333333, 913.3333333333333, 914.1666666666666, 914.1666666666666, 915, 915, 915.8333333333334, 915.8333333333334, 916.6666666666666, 916.6666666666666, 917.5, 917.5, 918.3333333333334, 918.3333333333334, 919.1666666666667, 919.1666666666667, 920, 920, 920.8333333333334, 920.8333333333334, 921.6666666666667, 921.6666666666667, 922.5000000000001, 922.5000000000001, 923.3333333333334, 923.3333333333334, 924.1666666666666, 924.1666666666666, 925, 925, 925.8333333333334, 925.8333333333334, 926.6666666666666, 926.6666666666666, 927.5, 927.5, 928.3333333333334, 928.3333333333334, 929.1666666666667, 929.1666666666667, 930, 930, 930.8333333333334, 930.8333333333334, 931.6666666666667, 931.6666666666667, 932.5000000000001, 932.5000000000001, 933.3333333333334, 933.3333333333334, 934.1666666666667, 934.1666666666667, 935, 935, 935.8333333333333, 935.8333333333333, 936.6666666666666, 936.6666666666666, 937.5, 937.5, 938.3333333333334, 938.3333333333334, 939.1666666666666, 939.1666666666666, 940, 940, 940.8333333333334, 940.8333333333334, 941.6666666666667, 941.6666666666667, 942.5, 942.5, 943.3333333333334, 943.3333333333334, 944.1666666666667, 944.1666666666667, 945.0000000000001, 945.0000000000001, 945.8333333333333, 945.8333333333333, 946.6666666666666, 946.6666666666666, 947.5, 947.5, 948.3333333333334, 948.3333333333334, 949.1666666666666, 949.1666666666666, 950, 950, 950.8333333333334, 950.8333333333334, 951.6666666666667, 951.6666666666667, 952.5, 952.5, 953.3333333333334, 953.3333333333334, 954.1666666666667, 954.1666666666667, 955, 955, 955.8333333333335, 955.8333333333335, 956.6666666666666, 956.6666666666666, 957.4999999999999, 957.4999999999999, 958.3333333333334, 958.3333333333334, 959.1666666666666, 959.1666666666666, 960.0000000000001, 960.0000000000001, 960.8333333333334, 960.8333333333334, 961.6666666666666, 961.6666666666666, 962.5000000000001, 962.5000000000001, 963.3333333333334, 963.3333333333334, 964.1666666666666, 964.1666666666666, 965.0000000000001, 965.0000000000001, 965.8333333333334, 965.8333333333334, 966.6666666666666, 966.6666666666666, 967.5, 967.5, 968.3333333333333, 968.3333333333333, 969.1666666666667, 969.1666666666667, 970, 970, 970.8333333333333, 970.8333333333333, 971.6666666666667, 971.6666666666667, 972.5, 972.5, 973.3333333333333, 973.3333333333333, 974.1666666666667, 974.1666666666667, 975, 975, 975.8333333333335, 975.8333333333335, 976.6666666666667, 976.6666666666667, 977.5, 977.5, 978.3333333333334, 978.3333333333334, 979.1666666666666, 979.1666666666666, 979.9999999999999, 979.9999999999999, 980.8333333333334, 980.8333333333334, 981.6666666666666, 981.6666666666666, 982.5000000000001, 982.5000000000001, 983.3333333333334, 983.3333333333334, 984.1666666666666, 984.1666666666666, 985.0000000000001, 985.0000000000001, 985.8333333333334, 985.8333333333334, 986.6666666666666, 986.6666666666666, 987.5000000000001, 987.5000000000001, 988.3333333333334, 988.3333333333334, 989.1666666666666, 989.1666666666666, 990, 990, 990.8333333333333, 990.8333333333333, 991.6666666666667, 991.6666666666667, 992.5, 992.5, 993.3333333333333, 993.3333333333333, 994.1666666666667, 994.1666666666667, 995, 995, 995.8333333333333, 995.8333333333333, 996.6666666666667, 996.6666666666667, 997.5, 997.5, 998.3333333333335, 998.3333333333335, 999.1666666666667, 999.1666666666667, 1000, 1000, 1000.8333333333334, 1000.8333333333334, 1001.6666666666666, 1001.6666666666666, 1002.4999999999999, 1002.4999999999999, 1003.3333333333334, 1003.3333333333334, 1004.1666666666666, 1004.1666666666666, 1005.0000000000001, 1005.0000000000001, 1005.8333333333334, 1005.8333333333334, 1006.6666666666666, 1006.6666666666666, 1007.5000000000001, 1007.5000000000001, 1008.3333333333334, 1008.3333333333334, 1009.1666666666666, 1009.1666666666666, 1010.0000000000001, 1010.0000000000001, 1010.8333333333334, 1010.8333333333334, 1011.6666666666667, 1011.6666666666667, 1012.5, 1012.5, 1013.3333333333333, 1013.3333333333333, 1014.1666666666667, 1014.1666666666667, 1015, 1015, 1015.8333333333333, 1015.8333333333333, 1016.6666666666667, 1016.6666666666667, 1017.5, 1017.5, 1018.3333333333333, 1018.3333333333333, 1019.1666666666667, 1019.1666666666667, 1020, 1020, 1020.8333333333335, 1020.8333333333335, 1021.6666666666667, 1021.6666666666667, 1022.5, 1022.5, 1023.3333333333334, 1023.3333333333334, 1024.1666666666667, 1024.1666666666667, 1025, 1025, 1025.8333333333335, 1025.8333333333335, 1026.6666666666667, 1026.6666666666667, 1027.5000000000002, 1027.5000000000002, 1028.3333333333333, 1028.3333333333333, 1029.1666666666665, 1029.1666666666665, 1030, 1030, 1030.8333333333333, 1030.8333333333333, 1031.6666666666665, 1031.6666666666665, 1032.5, 1032.5, 1033.3333333333333, 1033.3333333333333, 1034.1666666666667, 1034.1666666666667, 1035, 1035, 1035.8333333333333, 1035.8333333333333, 1036.6666666666667, 1036.6666666666667, 1037.5, 1037.5, 1038.3333333333333, 1038.3333333333333, 1039.1666666666667, 1039.1666666666667, 1040, 1040, 1040.8333333333333, 1040.8333333333333, 1041.6666666666667, 1041.6666666666667, 1042.5, 1042.5, 1043.3333333333335, 1043.3333333333335, 1044.1666666666667, 1044.1666666666667, 1045, 1045, 1045.8333333333335, 1045.8333333333335, 1046.6666666666667, 1046.6666666666667, 1047.5, 1047.5, 1048.3333333333335, 1048.3333333333335, 1049.1666666666667, 1049.1666666666667, 1050, 1050, 1050.8333333333333, 1050.8333333333333, 1051.6666666666665, 1051.6666666666665, 1052.5, 1052.5, 1053.3333333333333, 1053.3333333333333, 1054.1666666666665, 1054.1666666666665, 1055, 1055, 1055.8333333333333, 1055.8333333333333, 1056.6666666666667, 1056.6666666666667, 1057.5, 1057.5, 1058.3333333333333, 1058.3333333333333, 1059.1666666666667, 1059.1666666666667, 1060, 1060, 1060.8333333333333, 1060.8333333333333, 1061.6666666666667, 1061.6666666666667, 1062.5, 1062.5, 1063.3333333333335, 1063.3333333333335, 1064.1666666666667, 1064.1666666666667, 1065, 1065, 1065.8333333333335, 1065.8333333333335, 1066.6666666666667, 1066.6666666666667, 1067.5, 1067.5, 1068.3333333333335, 1068.3333333333335, 1069.1666666666667, 1069.1666666666667, 1070, 1070, 1070.8333333333335, 1070.8333333333335, 1071.6666666666667, 1071.6666666666667, 1072.5, 1072.5, 1073.3333333333333, 1073.3333333333333, 1074.1666666666665, 1074.1666666666665, 1075, 1075, 1075.8333333333333, 1075.8333333333333, 1076.6666666666665, 1076.6666666666665, 1077.5, 1077.5, 1078.3333333333333, 1078.3333333333333, 1079.1666666666667, 1079.1666666666667, 1080, 1080, 1080.8333333333333, 1080.8333333333333, 1081.6666666666667, 1081.6666666666667, 1082.5, 1082.5, 1083.3333333333333, 1083.3333333333333, 1084.1666666666667, 1084.1666666666667, 1085, 1085, 1085.8333333333335, 1085.8333333333335, 1086.6666666666667, 1086.6666666666667, 1087.5, 1087.5, 1088.3333333333335, 1088.3333333333335, 1089.1666666666667, 1089.1666666666667, 1090, 1090, 1090.8333333333335, 1090.8333333333335, 1091.6666666666667, 1091.6666666666667, 1092.5000000000002, 1092.5000000000002, 1093.3333333333335, 1093.3333333333335, 1094.1666666666667, 1094.1666666666667, 1095, 1095, 1095.8333333333333, 1095.8333333333333, 1096.6666666666665, 1096.6666666666665, 1097.5, 1097.5, 1098.3333333333333, 1098.3333333333333, 1099.1666666666665, 1099.1666666666665, 1100 ] }, "y": { "type": "float", "values": [ 6, 6, 5.984457849818863, 5.984457849818863, 5.914622104270368, 5.914622104270368, 5.6602368453180425, 5.6602368453180425, 5.293156022650223, 5.293156022650223, 5.190011028931016, 5.190011028931016, 5.3020440865118905, 5.3020440865118905, 5.501282113799794, 5.501282113799794, 5.741307593508806, 5.741307593508806, 6.000000257442196, 6.000000257442196, 6.258787697677602, 6.258787697677602, 6.499939183721772, 6.499939183721772, 6.707020640079183, 6.707020640079183, 6.865919807508107, 6.865919807508107, 6.965807970181247, 6.965807970181247, 6.999877914784483, 6.999877914784483, 6.96580783086198, 6.96580783086198, 6.8659195383640075, 6.8659195383640075, 6.707020259451868, 6.707020259451868, 6.499938717550518, 6.499938717550518, 6.258787177731021, 6.258787177731021, 5.999999719154, 5.999999719154, 5.74121227971606, 5.74121227971606, 5.500060796009942, 5.500060796009942, 5.292979343371831, 5.292979343371831, 5.134080180789995, 5.134080180789995, 5.034074098489585, 5.034074098489585, 5.000000000000043, 5.000000000000043, 5.034074249942043, 5.034074249942043, 5.133974744457966, 5.133974744457966, 5.292893429839141, 5.292893429839141, 5.500000260141892, 5.500000260141892, 5.741181246932082, 5.741181246932082, 6.0000003042870675, 6.0000003042870675, 6.258819340905283, 6.258819340905283, 6.500000266898768, 6.500000266898768, 6.7071070004876745, 6.7071070004876745, 6.8660255598290405, 6.8660255598290405, 6.965925907568499, 6.965925907568499, 6.99999999999995, 6.99999999999995, 6.96592574399986, 6.96592574399986, 6.8660252438386395, 6.8660252438386395, 6.707106553609845, 6.707106553609845, 6.49999971958734, 6.49999971958734, 6.258818730458817, 6.258818730458817, 5.99999967230627, 5.99999967230627, 5.74118063648562, 5.74118063648562, 5.499999712830472, 5.499999712830472, 5.2928929829613205, 5.2928929829613205, 5.133974428467635, 5.133974428467635, 5.03407408637339, 5.03407408637339, 5.000000000000058, 5.000000000000058, 5.034074262058238, 5.034074262058238, 5.133974767864698, 5.133974767864698, 5.292893462941251, 5.292893462941251, 5.500000300683527, 5.500000300683527, 5.741181292150285, 5.741181292150285, 6.000000351100393, 6.000000351100393, 6.258819386123588, 6.258819386123588, 6.500000307440387, 6.500000307440387, 6.707107033589684, 6.707107033589684, 6.86602558323569, 6.86602558323569, 6.965925919684692, 6.965925919684692, 6.999999999999934, 6.999999999999934, 6.965925731883664, 6.965925731883664, 6.866025220431963, 6.866025220431963, 6.707106520507733, 6.707106520507733, 6.499999679045704, 6.499999679045704, 6.2588186852406125, 6.2588186852406125, 5.999999625492944, 5.999999625492944, 5.741180591267314, 5.741180591267314, 5.499999672288853, 5.499999672288853, 5.292892949859313, 5.292892949859313, 5.133974405060987, 5.133974405060987, 5.034074074257226, 5.034074074257226, 5.000000000000075, 5.000000000000075, 5.034074274174493, 5.034074274174493, 5.133974791271376, 5.133974791271376, 5.292893496043283, 5.292893496043283, 5.500000341225065, 5.500000341225065, 5.741181337368709, 5.741181337368709, 6.000000397913718, 6.000000397913718, 6.2588194313417835, 6.2588194313417835, 6.500000347981907, 6.500000347981907, 6.707107066691851, 6.707107066691851, 6.866025606642337, 6.866025606642337, 6.9659259318008555, 6.9659259318008555, 6.9999999999999165, 6.9999999999999165, 6.965925719767408, 6.965925719767408, 6.866025197025285, 6.866025197025285, 6.707106487405701, 6.707106487405701, 6.499999638504166, 6.499999638504166, 6.258818640022188, 6.258818640022188, 5.99999957867962, 5.99999957867962, 5.74118054604912, 5.74118054604912, 5.499999631747333, 5.499999631747333, 5.292892916757146, 5.292892916757146, 5.133974381654227, 5.133974381654227, 5.034074062141064, 5.034074062141064, 5.000000000000094, 5.000000000000094, 5.034074286290692, 5.034074286290692, 5.133974814678169, 5.133974814678169, 5.292893529145316, 5.292893529145316, 5.500000381766603, 5.500000381766603, 5.741181382586914, 5.741181382586914, 6.00000044472727, 6.00000044472727, 6.258819476559978, 6.258819476559978, 6.500000388523426, 6.500000388523426, 6.707107099793856, 6.707107099793856, 6.866025630049096, 6.866025630049096, 6.965925943917016, 6.965925943917016, 6.999999999999896, 6.999999999999896, 6.965925707651208, 6.965925707651208, 6.866025173618491, 6.866025173618491, 6.707106454303666, 6.707106454303666, 6.499999597962627, 6.499999597962627, 6.258818594803984, 6.258818594803984, 5.9999995318660675, 5.9999995318660675, 5.741180500830706, 5.741180500830706, 5.499999591205815, 5.499999591205815, 5.292892883655141, 5.292892883655141, 5.133974358247583, 5.133974358247583, 5.034074050024846, 5.034074050024846, 5.0000000000001155, 5.0000000000001155, 5.0340742984068925, 5.0340742984068925, 5.13397483808485, 5.13397483808485, 5.292893562247512, 5.292893562247512, 5.500000422308143, 5.500000422308143, 5.741181427805119, 5.741181427805119, 6.000000491540596, 6.000000491540596, 6.258819521778392, 6.258819521778392, 6.500000429064944, 6.500000429064944, 6.70710713289586, 6.70710713289586, 6.866025653455739, 6.866025653455739, 6.965925956033233, 6.965925956033233, 6.999999999999873, 6.999999999999873, 6.965925695535006, 6.965925695535006, 6.866025150211809, 6.866025150211809, 6.70710642120147, 6.70710642120147, 6.49999955742089, 6.49999955742089, 6.2588185495857775, 6.2588185495857775, 5.999999485052742, 5.999999485052742, 5.741180455612511, 5.741180455612511, 5.499999550664101, 5.499999550664101, 5.292892850553138, 5.292892850553138, 5.13397433484094, 5.13397433484094, 5.034074037908688, 5.034074037908688, 5.0000000000001386, 5.0000000000001386, 5.034074310523096, 5.034074310523096, 5.133974861491533, 5.133974861491533, 5.292893595349549, 5.292893595349549, 5.50000046284988, 5.50000046284988, 5.7411814730233255, 5.7411814730233255, 6.0000005383539206, 6.0000005383539206, 6.258819566996585, 6.258819566996585, 6.500000469606658, 6.500000469606658, 6.707107165997863, 6.707107165997863, 6.86602567686238, 6.86602567686238, 6.9659259681493895, 6.9659259681493895, 6.999999999999849, 6.999999999999849, 6.965925683418743, 6.965925683418743, 6.866025126805125, 6.866025126805125, 6.707106388099433, 6.707106388099433, 6.499999516879349, 6.499999516879349, 6.258818504367352, 6.258818504367352, 5.999999438239417, 5.999999438239417, 5.7411804103943185, 5.7411804103943185, 5.499999510122585, 5.499999510122585, 5.2928928174509755, 5.2928928174509755, 5.1339743114343, 5.1339743114343, 5.034074025792533, 5.034074025792533, 5.000000000000164, 5.000000000000164, 5.034074322639359, 5.034074322639359, 5.133974884898218, 5.133974884898218, 5.292893628451586, 5.292893628451586, 5.500000503391423, 5.500000503391423, 5.741181518241752, 5.741181518241752, 6.000000585167245, 6.000000585167245, 6.2588196122147775, 6.2588196122147775, 6.500000510148173, 6.500000510148173, 6.707107199100024, 6.707107199100024, 6.866025700269134, 6.866025700269134, 6.965925980265544, 6.965925980265544, 6.999999999999822, 6.999999999999822, 6.9659256713025375, 6.9659256713025375, 6.866025103398325, 6.866025103398325, 6.707106354997394, 6.707106354997394, 6.499999476337806, 6.499999476337806, 6.258818459149145, 6.258818459149145, 5.999999391425865, 5.999999391425865, 5.741180365176126, 5.741180365176126, 5.49999946958107, 5.49999946958107, 5.292892784348975, 5.292892784348975, 5.133974288027548, 5.133974288027548, 5.0340740136763795, 5.0340740136763795, 5.000000000000193, 5.000000000000193, 5.034074334755567, 5.034074334755567, 5.133974908305019, 5.133974908305019, 5.2928936615536255, 5.2928936615536255, 5.500000543932965, 5.500000543932965, 5.741181563459959, 5.741181563459959, 6.000000631980798, 6.000000631980798, 6.25881965743319, 6.25881965743319, 6.500000550689687, 6.500000550689687, 6.7071072322020235, 6.7071072322020235, 6.8660257236757705, 6.8660257236757705, 6.965925992381755, 6.965925992381755, 6.999999999999793, 6.999999999999793, 6.965925659186329, 6.965925659186329, 6.866025079991637, 6.866025079991637, 6.707106321895193, 6.707106321895193, 6.499999435796263, 6.499999435796263, 6.258818413930937, 6.258818413930937, 5.999999344612539, 5.999999344612539, 5.7411803199577145, 5.7411803199577145, 5.499999429039557, 5.499999429039557, 5.292892751246978, 5.292892751246978, 5.133974264620911, 5.133974264620911, 5.034074001560169, 5.034074001560169, 5.000000000000222, 5.000000000000222, 5.034074346871835, 5.034074346871835, 5.133974931711707, 5.133974931711707, 5.292893694655989, 5.292893694655989, 5.500000584474706, 5.500000584474706, 5.741181608678605, 5.741181608678605, 6.0000006787943505, 6.0000006787943505, 6.258819702651381, 6.258819702651381, 6.500000591231594, 6.500000591231594, 6.707107265304183, 6.707107265304183, 6.866025747082634, 6.866025747082634, 6.965926004497964, 6.965926004497964, 6.999999999999762, 6.999999999999762, 6.9659256470700015, 6.9659256470700015, 6.866025056584833, 6.866025056584833, 6.707106288793151, 6.707106288793151, 6.499999395254324, 6.499999395254324, 6.25881836871251, 6.25881836871251, 5.99999929779876, 5.99999929779876, 5.741180274739303, 5.741180274739303, 5.499999388497846, 5.499999388497846, 5.292892718144659, 5.292892718144659, 5.133974241214163, 5.133974241214163, 5.034073989444021, 5.034073989444021, 5.000000000000255, 5.000000000000255, 5.034074358988046, 5.034074358988046, 5.133974955118625, 5.133974955118625, 5.292893727758031, 5.292893727758031, 5.500000625016251, 5.500000625016251, 5.741181653896813, 5.741181653896813, 6.000000725607675, 6.000000725607675, 6.258819747870012, 6.258819747870012, 6.500000631773107, 6.500000631773107, 6.707107298406179, 6.707107298406179, 6.8660257704892675, 6.8660257704892675, 6.9659260166141115, 6.9659260166141115, 6.999999999999728, 6.999999999999728, 6.965925634953789, 6.965925634953789, 6.866025033178142, 6.866025033178142, 6.707106255690786, 6.707106255690786, 6.499999354712779, 6.499999354712779, 6.258818323494301, 6.258818323494301, 5.999999250985435, 5.999999250985435, 5.741180229521112, 5.741180229521112, 5.499999347956335, 5.499999347956335, 5.292892685042663, 5.292892685042663, 5.13397421780753, 5.13397421780753, 5.034073977327756, 5.034073977327756, 5.0000000000002895, 5.0000000000002895, 5.03407437110426, 5.03407437110426, 5.133974978525318, 5.133974978525318, 5.292893760860076, 5.292893760860076, 5.500000665558192, 5.500000665558192, 5.741181699115023, 5.741181699115023, 6.000000772421001, 6.000000772421001, 6.258819793088203, 6.258819793088203, 6.500000672314617, 6.500000672314617, 6.707107331508173, 6.707107331508173, 6.8660257938959, 6.8660257938959, 6.965926028730258, 6.965926028730258, 6.999999999999693, 6.999999999999693, 6.965925622837574, 6.965925622837574, 6.866025009771448, 6.866025009771448, 6.707106222588741, 6.707106222588741, 6.499999314171232, 6.499999314171232, 6.258818278276093, 6.258818278276093, 5.999999204172109, 5.999999204172109, 5.741180184302922, 5.741180184302922, 5.499999307414431, 5.499999307414431, 5.29289265194067, 5.29289265194067, 5.133974194400899, 5.133974194400899, 5.034073965211611, 5.034073965211611, 5.000000000000326, 5.000000000000326, 5.0340743832205925, 5.0340743832205925, 5.133975001932012, 5.133975001932012, 5.292893793962121, 5.292893793962121, 5.500000706099739, 5.500000706099739, 5.741181744333232, 5.741181744333232, 6.000000819234326, 6.000000819234326, 6.258819838306392, 6.258819838306392, 6.500000712856128, 6.500000712856128, 6.707107364610488, 6.707107364610488, 6.866025817302529, 6.866025817302529, 6.965926040846401, 6.965926040846401, 6.9999999999996545, 6.9999999999996545, 6.965925610721357, 6.965925610721357, 6.866024986364753, 6.866024986364753, 6.707106189486694, 6.707106189486694, 6.499999273629684, 6.499999273629684, 6.258818233057443, 6.258818233057443, 5.9999991573587845, 5.9999991573587845, 5.741180139084732, 5.741180139084732, 5.499999266872921, 5.499999266872921, 5.292892618838677, 5.292892618838677, 5.133974170994042, 5.133974170994042, 5.034073953095469, 5.034073953095469, 5.000000000000365, 5.000000000000365, 5.034074395336811, 5.034074395336811, 5.133975025338708, 5.133975025338708, 5.2928938270641686, 5.2928938270641686, 5.500000746641287, 5.500000746641287, 5.741181789551441, 5.741181789551441, 6.000000866048105, 6.000000866048105, 6.258819883524582, 6.258819883524582, 6.500000753397637, 6.500000753397637, 6.7071073977124795, 6.7071073977124795, 6.866025840709158, 6.866025840709158, 6.965926052962542, 6.965926052962542, 6.9999999999996145, 6.9999999999996145, 6.965925598605138, 6.965925598605138, 6.8660249629578285, 6.8660249629578285, 6.707106156384646, 6.707106156384646, 6.499999233088135, 6.499999233088135, 6.258818187839234, 6.258818187839234, 5.999999110545459, 5.999999110545459, 5.741180093866103, 5.741180093866103, 5.499999226331413, 5.499999226331413, 5.292892585736686, 5.292892585736686, 5.133974147587415, 5.133974147587415, 5.0340739409793285, 5.0340739409793285, 5.000000000000406, 5.000000000000406, 5.034074407453031, 5.034074407453031, 5.133975048745407, 5.133975048745407, 5.292893860166539, 5.292893860166539, 5.500000787182836, 5.500000787182836, 5.741181834769652, 5.741181834769652, 6.000000912861431, 6.000000912861431, 6.258819928742771, 6.258819928742771, 6.500000793939145, 6.500000793939145, 6.707107430814469, 6.707107430814469, 6.866025864115784, 6.866025864115784, 6.9659260650788, 6.9659260650788, 6.999999999999573, 6.999999999999573, 6.965925586488917, 6.965925586488917, 6.86602493955113, 6.86602493955113, 6.707106123282597, 6.707106123282597, 6.499999192546191, 6.499999192546191, 6.258818142621023, 6.258818142621023, 5.999999063732134, 5.999999063732134, 5.741180048647915, 5.741180048647915, 5.499999185789905, 5.499999185789905, 5.292892552634697, 5.292892552634697, 5.13397412418079, 5.13397412418079, 5.03407392886319, 5.03407392886319, 5.000000000000449, 5.000000000000449, 5.034074419569253, 5.034074419569253, 5.133975072152108, 5.133975072152108, 5.292893893268589, 5.292893893268589, 5.500000827724387, 5.500000827724387, 5.741181879987863, 5.741181879987863, 6.000000959674756, 6.000000959674756, 6.25881997396096, 6.25881997396096, 6.500000834481045, 6.500000834481045, 6.707107463916458, 6.707107463916458, 6.866025887522408, 6.866025887522408, 6.965926077194937, 6.965926077194937, 6.999999999999528, 6.999999999999528, 6.9659255743725765, 6.9659255743725765, 6.866024916144428, 6.866024916144428, 6.707106090180545, 6.707106090180545, 6.499999152004641, 6.499999152004641, 6.258818097402812, 6.258818097402812, 5.999999016918809, 5.999999016918809, 5.741180003429727, 5.741180003429727, 5.499999145248399, 5.499999145248399, 5.292892519532388, 5.292892519532388, 5.133974100774167, 5.133974100774167, 5.034073916747054, 5.034073916747054, 5.000000000000495, 5.000000000000495, 5.034074431685477, 5.034074431685477, 5.133975095558809, 5.133975095558809, 5.292893926370641, 5.292893926370641, 5.500000868265939, 5.500000868265939, 5.741181925206514, 5.741181925206514, 6.00000100648808, 6.00000100648808, 6.258820019179147, 6.258820019179147, 6.50000087502255, 6.50000087502255, 6.707107497018445, 6.707107497018445, 6.866025910929258, 6.866025910929258, 6.965926089311072, 6.965926089311072, 6.999999999999481, 6.999999999999481, 6.965925562256352, 6.965925562256352, 6.866024892737725, 6.866024892737725, 6.707106057078493, 6.707106057078493, 6.499999111463088, 6.499999111463088, 6.2588180521845995, 6.2588180521845995, 5.999998970105029, 5.999998970105029, 5.741179958211539, 5.741179958211539, 5.499999104706894, 5.499999104706894, 5.292892486430402, 5.292892486430402, 5.1339740773675455, 5.1339740773675455, 5.03407390463092, 5.03407390463092, 5.000000000000543, 5.000000000000543, 5.034074443801702, 5.034074443801702, 5.133975118965741, 5.133975118965741, 5.2928939594726945, 5.2928939594726945, 5.5000009088074915, 5.5000009088074915, 5.741181970424726, 5.741181970424726, 6.000001053301406, 6.000001053301406, 6.258820064397773, 6.258820064397773, 6.500000915564055, 6.500000915564055, 6.70710753012043, 6.70710753012043, 6.8660259343358785, 6.8660259343358785, 6.965926101427206, 6.965926101427206, 6.999999999999433, 6.999999999999433, 6.965925550140124, 6.965925550140124, 6.86602486933102, 6.86602486933102, 6.707106023976117, 6.707106023976117, 6.499999070921535, 6.499999070921535, 6.258818006966387, 6.258818006966387, 5.999998923291704, 5.999998923291704, 5.741179912993353, 5.741179912993353, 5.49999906416539, 5.49999906416539, 5.292892453328417, 5.292892453328417, 5.133974053960926, 5.133974053960926, 5.0340738925146695, 5.0340738925146695, 5.000000000000592, 5.000000000000592, 5.034074455917931, 5.034074455917931, 5.133975142372447, 5.133975142372447, 5.29289399257475, 5.29289399257475, 5.500000949349439, 5.500000949349439, 5.741182015642939, 5.741182015642939, 6.000001100114731, 6.000001100114731, 6.25882010961596, 6.25882010961596, 6.500000956105558, 6.500000956105558, 6.707107563222413, 6.707107563222413, 6.8660259577424965, 6.8660259577424965, 6.965926113543336, 6.965926113543336, 6.999999999999382, 6.999999999999382, 6.965925538023895, 6.965925538023895, 6.866024845924313, 6.866024845924313, 6.707105990874061, 6.707105990874061, 6.49999903037998, 6.49999903037998, 6.258817961748174, 6.258817961748174, 5.999998876478379, 5.999998876478379, 5.741179867775166, 5.741179867775166, 5.499999023623493, 5.499999023623493, 5.292892420226434, 5.292892420226434, 5.133974030554309, 5.133974030554309, 5.03407388039854, 5.03407388039854, 5.000000000000645, 5.000000000000645, 5.034074468034279, 5.034074468034279, 5.133975165779154, 5.133975165779154, 5.292894025676807, 5.292894025676807, 5.500000989890994, 5.500000989890994, 5.741182060861152, 5.741182060861152, 6.000001146928056, 6.000001146928056, 6.258820154834146, 6.258820154834146, 6.500000996647061, 6.500000996647061, 6.707107596324717, 6.707107596324717, 6.8660259811491136, 6.8660259811491136, 6.965926125659466, 6.965926125659466, 6.9999999999993285, 6.9999999999993285, 6.965925525907664, 6.965925525907664, 6.866024822517605, 6.866024822517605, 6.707105957772004, 6.707105957772004, 6.499998989838425, 6.499998989838425, 6.258817916529521, 6.258817916529521, 5.999998829665054, 5.999998829665054, 5.741179822556981, 5.741179822556981, 5.4999989830819915, 5.4999989830819915, 5.292892387124453, 5.292892387124453, 5.133974007147465, 5.133974007147465, 5.034073868282412, 5.034073868282412, 5.000000000000698, 5.000000000000698, 5.034074480150512, 5.034074480150512, 5.133975189185864, 5.133975189185864, 5.292894058778865, 5.292894058778865, 5.50000103043255, 5.50000103043255, 5.741182106079366, 5.741182106079366, 6.000001193741836, 6.000001193741836, 6.258820200052332, 6.258820200052332, 6.500001037188563, 6.500001037188563, 6.707107629426698, 6.707107629426698, 6.866026004555728, 6.866026004555728, 6.965926137775592, 6.965926137775592, 6.9999999999992735, 6.9999999999992735, 6.96592551379143, 6.96592551379143, 6.866024799110667, 6.866024799110667, 6.7071059246699445, 6.7071059246699445, 6.499998949296868, 6.499998949296868, 6.258817871311307, 6.258817871311307, 5.999998782851729, 5.999998782851729, 5.741179777338356, 5.741179777338356, 5.499998942540491, 5.499998942540491, 5.292892354022473, 5.292892354022473, 5.133973983740852, 5.133973983740852, 5.0340738561662866, 5.0340738561662866, 5.000000000000755, 5.000000000000755, 5.034074492266747, 5.034074492266747, 5.133975212592576, 5.133975212592576, 5.292894091881246, 5.292894091881246, 5.500001070974108, 5.500001070974108, 5.74118215129758, 5.74118215129758, 6.000001240555161, 6.000001240555161, 6.258820245270517, 6.258820245270517, 6.5000010777300625, 6.5000010777300625, 6.707107662528677, 6.707107662528677, 6.8660260279623415, 6.8660260279623415, 6.965926149891835, 6.965926149891835, 6.999999999999216, 6.999999999999216, 6.965925501675194, 6.965925501675194, 6.866024775703954, 6.866024775703954, 6.707105891567885, 6.707105891567885, 6.499998908754916, 6.499998908754916, 6.258817826093092, 6.258817826093092, 5.999998736038404, 5.999998736038404, 5.741179732120171, 5.741179732120171, 5.499998901998991, 5.499998901998991, 5.292892320920495, 5.292892320920495, 5.13397396033424, 5.13397396033424, 5.034073844050163, 5.034073844050163, 5.000000000000814, 5.000000000000814, 5.034074504382984, 5.034074504382984, 5.133975235999289, 5.133975235999289, 5.292894124983307, 5.292894124983307, 5.500001111515665, 5.500001111515665, 5.741182196515796, 5.741182196515796, 6.000001287368486, 6.000001287368486, 6.258820290488701, 6.258820290488701, 6.500001118271955, 6.500001118271955, 6.707107695630655, 6.707107695630655, 6.866026051368952, 6.866026051368952, 6.965926162007957, 6.965926162007957, 6.999999999999156, 6.999999999999156, 6.965925489558838, 6.965925489558838, 6.86602475229724, 6.86602475229724, 6.707105858465822, 6.707105858465822, 6.499998868213358, 6.499998868213358, 6.258817780874877, 6.258817780874877, 5.9999986892250785, 5.9999986892250785, 5.7411796869019875, 5.7411796869019875, 5.499998861457493, 5.499998861457493, 5.292892287818196, 5.292892287818196, 5.13397393692763, 5.13397393692763, 5.034073831934042, 5.034073831934042, 5.000000000000875, 5.000000000000875, 5.034074516499222, 5.034074516499222, 5.133975259406005, 5.133975259406005, 5.29289415808537, 5.29289415808537, 5.500001152057225, 5.500001152057225, 5.741182241734011, 5.741182241734011, 6.0000013341813565, 6.0000013341813565, 6.258820335707324, 6.258820335707324, 6.500001158813453, 6.500001158813453, 6.70710772873263, 6.70710772873263, 6.8660260747755615, 6.8660260747755615, 6.965926174123959, 6.965926174123959, 6.999999999999094, 6.999999999999094, 6.965925477442599, 6.965925477442599, 6.866024728890523, 6.866024728890523, 6.707105825363759, 6.707105825363759, 6.499998827672192, 6.499998827672192, 6.258817735656222, 6.258817735656222, 5.999998642411299, 5.999998642411299, 5.741179641683804, 5.741179641683804, 5.499998820915995, 5.499998820915995, 5.292892254716542, 5.292892254716542, 5.133973913520794, 5.133973913520794, 5.034073819817804, 5.034073819817804, 5.000000000000938, 5.000000000000938, 5.034074528615463, 5.034074528615463, 5.133975282812722, 5.133975282812722, 5.292894191187113, 5.292894191187113, 5.500001192599179, 5.500001192599179, 5.741182286952666, 5.741182286952666, 6.000001380995136, 6.000001380995136, 6.258820380925068, 6.258820380925068, 6.500001199354556, 6.500001199354556, 6.707107761834926, 6.707107761834926, 6.866026098182395, 6.866026098182395, 6.965926186240195, 6.965926186240195, 6.99999999999903, 6.99999999999903, 6.965925465326475, 6.965925465326475, 6.866024705483578, 6.866024705483578, 6.707105792261372, 6.707105792261372, 6.499998787130237, 6.499998787130237, 6.258817690438445, 6.258817690438445, 5.999998595598429, 5.999998595598429, 5.741179596465182, 5.741179596465182, 5.499998780374105, 5.499998780374105, 5.292892221614247, 5.292892221614247, 5.133973890114415, 5.133973890114415, 5.034073807701805, 5.034073807701805, 5.000000000001003, 5.000000000001003, 5.034074540731824, 5.034074540731824, 5.133975306219669, 5.133975306219669, 5.2928942242895, 5.2928942242895, 5.500001233140347, 5.500001233140347, 5.741182332170444, 5.741182332170444, 6.0000014278089155, 6.0000014278089155, 6.25882042614369, 6.25882042614369, 6.500001239896446, 6.500001239896446, 6.7071077949365785, 6.7071077949365785, 6.8660261215887735, 6.8660261215887735, 6.96592619835643, 6.96592619835643, 6.999999999998964, 6.999999999998964, 6.9659254532101125, 6.9659254532101125, 6.866024682077085, 6.866024682077085, 6.707105759159627, 6.707105759159627, 6.499998746588282, 6.499998746588282, 6.258817645219788, 6.258817645219788, 5.9999985487846486, 5.9999985487846486, 5.741179551247439, 5.741179551247439, 5.4999987398330035, 5.4999987398330035, 5.292892188512597, 5.292892188512597, 5.133973866707583, 5.133973866707583, 5.034073795585572, 5.034073795585572, 5.00000000000107, 5.00000000000107, 5.034074552847952, 5.034074552847952, 5.133975329626162, 5.133975329626162, 5.29289425739189, 5.29289425739189, 5.500001273682304, 5.500001273682304, 5.741182377389101, 5.741182377389101, 6.0000014746217865, 6.0000014746217865, 6.258820471361433, 6.258820471361433, 6.500001280438334, 6.500001280438334, 6.707107828038871, 6.707107828038871, 6.866026144995605, 6.866026144995605, 6.965926210472426, 6.965926210472426, 6.999999999998895, 6.999999999998895, 6.965925441093749, 6.965925441093749, 6.866024658670136, 6.866024658670136, 6.707105726057237, 6.707105726057237, 6.499998706047112, 6.499998706047112, 6.25881760000201, 6.25881760000201, 5.9999985019717785, 5.9999985019717785, 5.741179506028818, 5.741179506028818, 5.499998699291115, 5.499998699291115, 5.292892155410304, 5.292892155410304, 5.1339738433012085, 5.1339738433012085, 5.034073783469577, 5.034073783469577, 5.0000000000011395, 5.0000000000011395, 5.034074564964317, 5.034074564964317, 5.1339753530331125, 5.1339753530331125, 5.292894290493637, 5.292894290493637, 5.500001314223473, 5.500001314223473, 5.741182422607757, 5.741182422607757, 6.000001521435566, 6.000001521435566, 6.2588205165800535, 6.2588205165800535, 6.500001320979434, 6.500001320979434, 6.7071078611405195, 6.7071078611405195, 6.866026168402433, 6.866026168402433, 6.965926222588656, 6.965926222588656, 6.999999999998825, 6.999999999998825, 6.965925428977617, 6.965925428977617, 6.866024635263639, 6.866024635263639, 6.707105692955489, 6.707105692955489, 6.499998665505154, 6.499998665505154, 6.258817554783353, 6.258817554783353, 5.999998455157999, 5.999998455157999, 5.741179460811075, 5.741179460811075, 5.499998658750016, 5.499998658750016, 5.292892122308014, 5.292892122308014, 5.133973819894381, 5.133973819894381, 5.0340737713533485, 5.0340737713533485, 5.0000000000012115, 5.0000000000012115, 5.034074577080449, 5.034074577080449, 5.133975376440064, 5.133975376440064, 5.292894323596029, 5.292894323596029, 5.500001354765431, 5.500001354765431, 5.741182467825537, 5.741182467825537, 6.000001568248436, 6.000001568248436, 6.258820561798674, 6.258820561798674, 6.500001361521321, 6.500001361521321, 6.707107894242809, 6.707107894242809, 6.866026191808805, 6.866026191808805, 6.965926234704647, 6.965926234704647, 6.999999999998752, 6.999999999998752, 6.965925416861249, 6.965925416861249, 6.866024611856686, 6.866024611856686, 6.707105659853096, 6.707105659853096, 6.4999986249639825, 6.4999986249639825, 6.258817509565573, 6.258817509565573, 5.999998408344219, 5.999998408344219, 5.741179415592455, 5.741179415592455, 5.499998618208131, 5.499998618208131, 5.292892089206368, 5.292892089206368, 5.133973796488009, 5.133973796488009, 5.034073759237122, 5.034073759237122, 5.000000000001285, 5.000000000001285, 5.034074589196818, 5.034074589196818, 5.133975399846564, 5.133975399846564, 5.292894356697779, 5.292894356697779, 5.500001395307391, 5.500001395307391, 5.741182513044195, 5.741182513044195, 6.000001615062216, 6.000001615062216, 6.258820607016415, 6.258820607016415, 6.500001402062418, 6.500001402062418, 6.707107927344454, 6.707107927344454, 6.86602621521563, 6.86602621521563, 6.965926246820873, 6.965926246820873, 6.999999999998677, 6.999999999998677, 6.965925404745114, 6.965925404745114, 6.866024588450186, 6.866024588450186, 6.707105626750701, 6.707105626750701, 6.499998584422022, 6.499998584422022, 6.258817464346915, 6.258817464346915, 5.999998361531349, 5.999998361531349, 5.741179370374715, 5.741179370374715, 5.499998577666246, 5.499998577666246, 5.292892056104081, 5.292892056104081, 5.133973773081185, 5.133973773081185, 5.034073747121133, 5.034073747121133, 5.000000000001362, 5.000000000001362, 5.03407460131319, 5.03407460131319, 5.13397542325352, 5.13397542325352, 5.292894389800175, 5.292894389800175, 5.5000014358485645, 5.5000014358485645, 5.741182558261975, 5.741182558261975, 6.000001661875086, 6.000001661875086, 6.258820652235034, 6.258820652235034, 6.500001442604303, 6.500001442604303, 6.707107960446741, 6.707107960446741, 6.866026238621999, 6.866026238621999, 6.965926258936861, 6.965926258936861, 6.999999999998599, 6.999999999998599, 6.965925392628741, 6.965925392628741, 6.8660245650432286, 6.8660245650432286, 6.707105593648949, 6.707105593648949, 6.4999985438808485, 6.4999985438808485, 6.258817419128256, 6.258817419128256, 5.999998314717569, 5.999998314717569, 5.741179325156096, 5.741179325156096, 5.49999853712515, 5.49999853712515, 5.292892023002437, 5.292892023002437, 5.133973749674363, 5.133973749674363, 5.0340737350049105, 5.0340737350049105, 5.00000000000144, 5.00000000000144, 5.034074613429327, 5.034074613429327, 5.133975446660023, 5.133975446660023, 5.292894422901928, 5.292894422901928, 5.500001476390526, 5.500001476390526, 5.741182603480635, 5.741182603480635, 6.000001708688867, 6.000001708688867, 6.258820697452774, 6.258820697452774, 6.500001483145398, 6.500001483145398, 6.707107993549027, 6.707107993549027, 6.86602626202882, 6.86602626202882, 6.965926271053082, 6.965926271053082, 6.99999999999852, 6.99999999999852, 6.965925380512602, 6.965925380512602, 6.8660245416362695, 6.8660245416362695, 6.707105560546552, 6.707105560546552, 6.499998503338886, 6.499998503338886, 6.258817373910475, 6.258817373910475, 5.999998267904698, 5.999998267904698, 5.7411792799374775, 5.7411792799374775, 5.499998496583268, 5.499998496583268, 5.292891989900153, 5.292891989900153, 5.133973726267997, 5.133973726267997, 5.034073722888926, 5.034073722888926, 5.000000000001521, 5.000000000001521, 5.034074625545704, 5.034074625545704, 5.133975470066983, 5.133975470066983, 5.292894456004326, 5.292894456004326, 5.500001516931702, 5.500001516931702, 5.741182648698416, 5.741182648698416, 6.000001755502646, 6.000001755502646, 6.258820742671392, 6.258820742671392, 6.5000015236872795, 6.5000015236872795, 6.707108026650667, 6.707108026650667, 6.866026285435185, 6.866026285435185, 6.965926283169301, 6.965926283169301, 6.999999999998439, 6.999999999998439, 6.965925368396226, 6.965925368396226, 6.8660245182297635, 6.8660245182297635, 6.707105527444796, 6.707105527444796, 6.499998462796922, 6.499998462796922, 6.258817328691815, 6.258817328691815, 5.999998221090919, 5.999998221090919, 5.741179234719739, 5.741179234719739, 5.4999984560421735, 5.4999984560421735, 5.292891956798513, 5.292891956798513, 5.133973702861179, 5.133973702861179, 5.0340737107727085, 5.0340737107727085, 5.000000000001603, 5.000000000001603, 5.0340746376618455, 5.0340746376618455, 5.13397549347349, 5.13397549347349, 5.292894489106726, 5.292894489106726, 5.5000015574736665, 5.5000015574736665, 5.741182693917076, 5.741182693917076, 6.000001802315516, 6.000001802315516, 6.258820787889131, 6.258820787889131, 6.50000156422916, 6.50000156422916, 6.707108059752949, 6.707108059752949, 6.866026308842002, 6.866026308842002, 6.965926295285282, 6.965926295285282, 6.999999999998355, 6.999999999998355, 6.965925356279847, 6.965925356279847, 6.866024494822801, 6.866024494822801, 6.707105494342395, 6.707105494342395, 6.499998422255745, 6.499998422255745, 6.258817283474032, 6.258817283474032, 5.999998174278049, 5.999998174278049, 5.741179189501121, 5.741179189501121, 5.4999984155002934, 5.4999984155002934, 5.292891923696232, 5.292891923696232, 5.133973679454817, 5.133973679454817, 5.034073698656727, 5.034073698656727, 5.000000000001688, 5.000000000001688, 5.034074649778225, 5.034074649778225, 5.1339755168804535, 5.1339755168804535, 5.292894522208485, 5.292894522208485, 5.500001598014844, 5.500001598014844, 5.741182739135738, 5.741182739135738, 6.000001849129297, 6.000001849129297, 6.258820833107748, 6.258820833107748, 6.500001604770253, 6.500001604770253, 6.707108092854586, 6.707108092854586, 6.8660263322488175, 6.8660263322488175, 6.965926307401497, 6.965926307401497, 6.999999999998269, 6.999999999998269, 6.9659253441637015, 6.9659253441637015, 6.866024471416291, 6.866024471416291, 6.707105461240635, 6.707105461240635, 6.499998381713779, 6.499998381713779, 6.2588172382553715, 6.2588172382553715, 5.999998127464268, 5.999998127464268, 5.741179144283383, 5.741179144283383, 5.499998374959202, 5.499998374959202, 5.292891890593952, 5.292891890593952, 5.133973656048003, 5.133973656048003, 5.0340736865405145, 5.0340736865405145, 5.0000000000017755, 5.0000000000017755, 5.034074661894373, 5.034074661894373, 5.133975540287419, 5.133975540287419, 5.2928945553108875, 5.2928945553108875, 5.50000163855681, 5.50000163855681, 5.74118278435352, 5.74118278435352, 6.000001895942167, 6.000001895942167, 6.258820878326364, 6.258820878326364, 6.500001645312131, 6.500001645312131, 6.707108125956865, 6.707108125956865, 6.866026355655177, 6.866026355655177, 6.965926319517474, 6.965926319517474, 6.99999999999818, 6.99999999999818, 6.965925332047318, 6.965925332047318, 6.866024448009325, 6.866024448009325, 6.707105428138232, 6.707105428138232, 6.4999983411726, 6.4999983411726, 6.258817193037588, 6.258817193037588, 5.999998080650489, 5.999998080650489, 5.741179099064768, 5.741179099064768, 5.499998334417324, 5.499998334417324, 5.292891857492317, 5.292891857492317, 5.133973632641645, 5.133973632641645, 5.034073674424302, 5.034073674424302, 5.000000000001864, 5.000000000001864, 5.034074674010756, 5.034074674010756, 5.133975563693932, 5.133975563693932, 5.292894588412649, 5.292894588412649, 5.500001679098777, 5.500001679098777, 5.741182829572183, 5.741182829572183, 6.000001942755946, 6.000001942755946, 6.258820923544102, 6.258820923544102, 6.500001685853221, 6.500001685853221, 6.7071081590584996, 6.7071081590584996, 6.866026379061989, 6.866026379061989, 6.965926331633685, 6.965926331633685, 6.99999999999809, 6.99999999999809, 6.965925319931168, 6.965925319931168, 6.866024424602811, 6.866024424602811, 6.707105395035827, 6.707105395035827, 6.499998300630632, 6.499998300630632, 6.258817147818926, 6.258817147818926, 5.999998033837619, 5.999998033837619, 5.741179053847031, 5.741179053847031, 5.499998293875446, 5.499998293875446, 5.292891824390041, 5.292891824390041, 5.133973609234833, 5.133973609234833, 5.034073662308328, 5.034073662308328, 5.000000000001956, 5.000000000001956, 5.034074686127143, 5.034074686127143, 5.133975587100901, 5.133975587100901, 5.292894621515055, 5.292894621515055, 5.500001719639958, 5.500001719639958, 5.741182874789967, 5.741182874789967, 6.000001989568817, 6.000001989568817, 6.258820968762716, 6.258820968762716, 6.500001726395098, 6.500001726395098, 6.707108192160776, 6.707108192160776, 6.866026402468344, 6.866026402468344, 6.965926343749658, 6.965926343749658, 6.999999999997997, 6.999999999997997, 6.965925307814781, 6.965925307814781, 6.8660244011958405, 6.8660244011958405, 6.707105361934063, 6.707105361934063, 6.499998260089451, 6.499998260089451, 6.258817102600262, 6.258817102600262, 5.999997987023838, 5.999997987023838, 5.741179008628416, 5.741179008628416, 5.4999982533343585, 5.4999982533343585, 5.292891791288408, 5.292891791288408, 5.133973585828024, 5.133973585828024, 5.034073650192121, 5.034073650192121, 5.00000000000205, 5.00000000000205, 5.034074698243296, 5.034074698243296, 5.1339756105074175, 5.1339756105074175, 5.29289465461682, 5.29289465461682, 5.500001760181928, 5.500001760181928, 5.74118292000863, 5.74118292000863, 6.000002036382597, 6.000002036382597, 6.2588210139804525, 6.2588210139804525, 6.500001766936185, 6.500001766936185, 6.70710822526305, 6.70710822526305, 6.866026425875152, 6.866026425875152, 6.965926355865864, 6.965926355865864, 6.999999999997903, 6.999999999997903, 6.965925295698627, 6.965925295698627, 6.866024377788869, 6.866024377788869, 6.707105328831655, 6.707105328831655, 6.49999821954748, 6.49999821954748, 6.258817057382477, 6.258817057382477, 5.999997940210968, 5.999997940210968, 5.741178963409801, 5.741178963409801, 5.499998212792484, 5.499998212792484, 5.292891758186135, 5.292891758186135, 5.133973562421673, 5.133973562421673, 5.034073638076151, 5.034073638076151, 5.000000000002146, 5.000000000002146, 5.034074710359686, 5.034074710359686, 5.133975633914391, 5.133975633914391, 5.292894687719229, 5.292894687719229, 5.500001800723111, 5.500001800723111, 5.7411829652264155, 5.7411829652264155, 6.000002083196376, 6.000002083196376, 6.258821059199066, 6.258821059199066, 6.50000180747806, 6.50000180747806, 6.70710825836468, 6.70710825836468, 6.866026449281503, 6.866026449281503, 6.965926367982068, 6.965926367982068, 6.999999999997805, 6.999999999997805, 6.965925283582235, 6.965925283582235, 6.86602435438235, 6.86602435438235, 6.707105295729888, 6.707105295729888, 6.49999817900551, 6.49999817900551, 6.258817012163813, 6.258817012163813, 5.999997893397189, 5.999997893397189, 5.741178918192066, 5.741178918192066, 5.499998172251398, 5.499998172251398, 5.292891725084506, 5.292891725084506, 5.1339735390148675, 5.1339735390148675, 5.034073625959948, 5.034073625959948, 5.0000000000022435, 5.0000000000022435, 5.034074722475843, 5.034074722475843, 5.133975657320911, 5.133975657320911, 5.292894720821639, 5.292894720821639, 5.500001841265083, 5.500001841265083, 5.74118301044508, 5.74118301044508, 6.000002130009247, 6.000002130009247, 6.258821104416802, 6.258821104416802, 6.500001848019933, 6.500001848019933, 6.707108291466951, 6.707108291466951, 6.866026472688307, 6.866026472688307, 6.965926380098035, 6.965926380098035, 6.999999999997707, 6.999999999997707, 6.965925271465842, 6.965925271465842, 6.866024330975374, 6.866024330975374, 6.7071052626274765, 6.7071052626274765, 6.499998138464325, 6.499998138464325, 6.258816966946027, 6.258816966946027, 5.999997846584318, 5.999997846584318, 5.741178872973453, 5.741178872973453, 5.499998131709525, 5.499998131709525, 5.292891691982236, 5.292891691982236, 5.133973515608519, 5.133973515608519, 5.034073613843982, 5.034073613843982, 5.000000000002344, 5.000000000002344, 5.034074734592238, 5.034074734592238, 5.133975680727888, 5.133975680727888, 5.292894753923409, 5.292894753923409, 5.500001881806268, 5.500001881806268, 5.741183055663745, 5.741183055663745, 6.000002176823027, 6.000002176823027, 6.2588211496354145, 6.2588211496354145, 6.500001888561017, 6.500001888561017, 6.707108324568577, 6.707108324568577, 6.86602649609511, 6.86602649609511, 6.965926392214235, 6.965926392214235, 6.9999999999976055, 6.9999999999976055, 6.965925259349682, 6.965925259349682, 6.866024307568851, 6.866024307568851, 6.707105229525706, 6.707105229525706, 6.499998097922352, 6.499998097922352, 6.2588169217273615, 6.2588169217273615, 5.999997799770538, 5.999997799770538, 5.741178827755719, 5.741178827755719, 5.499998091168441, 5.499998091168441, 5.292891658879967, 5.292891658879967, 5.133973492201718, 5.133973492201718, 5.034073601727783, 5.034073601727783, 5.000000000002446, 5.000000000002446, 5.0340747467083995, 5.0340747467083995, 5.133975704134866, 5.133975704134866, 5.292894787025823, 5.292894787025823, 5.500001922348242, 5.500001922348242, 5.741183100881532, 5.741183100881532, 6.000002223635897, 6.000002223635897, 6.258821194854026, 6.258821194854026, 6.500001929102888, 6.500001929102888, 6.707108357670846, 6.707108357670846, 6.866026519501455, 6.866026519501455, 6.965926404330197, 6.965926404330197, 6.9999999999975016, 6.9999999999975016, 6.965925247233284, 6.965925247233284, 6.86602428416187, 6.86602428416187, 6.707105196423292, 6.707105196423292, 6.499998057381164, 6.499998057381164, 6.258816876509574, 6.258816876509574, 5.999997752956759, 5.999997752956759, 5.741178782537107, 5.741178782537107, 5.499998050626571, 5.499998050626571, 5.292891625778342, 5.292891625778342, 5.133973468795372, 5.133973468795372, 5.0340735896115865, 5.0340735896115865, 5.000000000002551, 5.000000000002551, 5.034074758824798, 5.034074758824798, 5.133975727541393, 5.133975727541393, 5.292894820127595, 5.292894820127595, 5.5000019628902175, 5.5000019628902175, 5.741183146100198, 5.741183146100198, 6.000002270449677, 6.000002270449677, 6.258821240071759, 6.258821240071759, 6.500001969643971, 6.500001969643971, 6.707108390772469, 6.707108390772469, 6.866026542908253, 6.866026542908253, 6.965926416446393, 6.965926416446393, 6.999999999997396, 6.999999999997396, 6.965925235117119, 6.965925235117119, 6.866024260755344, 6.866024260755344, 6.707105163320875, 6.707105163320875, 6.499998016839188, 6.499998016839188, 6.258816831290908, 6.258816831290908, 5.999997706143888, 5.999997706143888, 5.741178737319374, 5.741178737319374, 5.499998010084701, 5.499998010084701, 5.292891592676076, 5.292891592676076, 5.133973445388575, 5.133973445388575, 5.034073577495628, 5.034073577495628, 5.000000000002657, 5.000000000002657, 5.034074770941199, 5.034074770941199, 5.133975750948375, 5.133975750948375, 5.2928948532300115, 5.2928948532300115, 5.500002003431406, 5.500002003431406, 5.741183191317987, 5.741183191317987, 6.000002317262547, 6.000002317262547, 6.258821285290371, 6.258821285290371, 6.500002010185839, 6.500002010185839, 6.707108423874734, 6.707108423874734, 6.866026566314596, 6.866026566314596, 6.9659264285623514, 6.9659264285623514, 6.9999999999972875, 6.9999999999972875, 6.965925223000717, 6.965925223000717, 6.86602423734836, 6.86602423734836, 6.707105130219101, 6.707105130219101, 6.499997976297999, 6.499997976297999, 6.258816786072241, 6.258816786072241, 5.999997659330108, 5.999997659330108, 5.741178692100763, 5.741178692100763, 5.499997969543621, 5.499997969543621, 5.292891559574455, 5.292891559574455, 5.133973421981779, 5.133973421981779, 5.034073565379435, 5.034073565379435, 5.000000000002767, 5.000000000002767, 5.034074783057367, 5.034074783057367, 5.133975774354905, 5.133975774354905, 5.292894886331787, 5.292894886331787, 5.5000020439733825, 5.5000020439733825, 5.741183236536654, 5.741183236536654, 6.000002364076327, 6.000002364076327, 6.258821330508103, 6.258821330508103, 6.500002050726919, 6.500002050726919, 6.707108456976997, 6.707108456976997, 6.866026589721391, 6.866026589721391, 6.965926440678543, 6.965926440678543, 6.999999999997177, 6.999999999997177, 6.9659252108845475, 6.9659252108845475, 6.866024213941375, 6.866024213941375, 6.707105097116682, 6.707105097116682, 6.499997935756022, 6.499997935756022, 6.258816740854451, 6.258816740854451, 5.999997612517238, 5.999997612517238, 5.741178646882153, 5.741178646882153, 5.499997929001753, 5.499997929001753, 5.292891526472193, 5.292891526472193, 5.13397339857544, 5.13397339857544, 5.03407355326348, 5.03407355326348, 5.000000000002878, 5.000000000002878, 5.0340747951737725, 5.0340747951737725, 5.133975797761892, 5.133975797761892, 5.292894919434207, 5.292894919434207, 5.500002084514573, 5.500002084514573, 5.741183281754443, 5.741183281754443, 6.000002410890107, 6.000002410890107, 6.258821375726713, 6.258821375726713, 6.500002091268786, 6.500002091268786, 6.707108490078617, 6.707108490078617, 6.866026613127728, 6.866026613127728, 6.965926452794733, 6.965926452794733, 6.9999999999970655, 6.9999999999970655, 6.965925198768142, 6.965925198768142, 6.8660241905348425, 6.8660241905348425, 6.707105064014904, 6.707105064014904, 6.499997895214043, 6.499997895214043, 6.258816695635783, 6.258816695635783, 5.999997565703458, 5.999997565703458, 5.741178601664422, 5.741178601664422, 5.499997888460675, 5.499997888460675, 5.292891493370575, 5.292891493370575, 5.133973375168649, 5.133973375168649, 5.034073541147292, 5.034073541147292, 5.000000000002991, 5.000000000002991, 5.034074807289945, 5.034074807289945, 5.133975821168425, 5.133975821168425, 5.292894952536629, 5.292894952536629, 5.500002125056553, 5.500002125056553, 5.741183326973112, 5.741183326973112, 6.000002457702977, 6.000002457702977, 6.258821420944444, 6.258821420944444, 6.500002131810652, 6.500002131810652, 6.707108523180877, 6.707108523180877, 6.866026636534519, 6.866026636534519, 6.965926464910685, 6.965926464910685, 6.999999999996951, 6.999999999996951, 6.965925186651733, 6.965925186651733, 6.866024167127853, 6.866024167127853, 6.707105030912482, 6.707105030912482, 6.49999785467285, 6.49999785467285, 6.258816650417993, 6.258816650417993, 5.999997518890588, 5.999997518890588, 5.741178556445813, 5.741178556445813, 5.49999784791881, 5.49999784791881, 5.292891460268315, 5.292891460268315, 5.133973351762314, 5.133973351762314, 5.034073529031341, 5.034073529031341, 5.000000000003107, 5.000000000003107, 5.034074819406354, 5.034074819406354, 5.133975844575415, 5.133975844575415, 5.292894985638409, 5.292894985638409, 5.500002165597746, 5.500002165597746, 5.741183372191781, 5.741183372191781, 6.000002504516757, 6.000002504516757, 6.258821466163052, 6.258821466163052, 6.500002172351728, 6.500002172351728, 6.707108556282493, 6.707108556282493, 6.8660266599413085, 6.8660266599413085, 6.965926477026869, 6.965926477026869, 6.9999999999968345, 6.9999999999968345, 6.965925174535558, 6.965925174535558, 6.866024143721317, 6.866024143721317, 6.707104997810701, 6.707104997810701, 6.49999781413087, 6.49999781413087, 6.258816605199324, 6.258816605199324, 5.999997472076808, 5.999997472076808, 5.741178511228083, 5.741178511228083, 5.499997807377734, 5.499997807377734, 5.29297775466854, 5.29297775466854, 5.134079057408345, 5.134079057408345, 5.034191442257982, 5.034191442257982, 5.000122085218705, 5.000122085218705, 5.034192756704862, 5.034192756704862, 5.134081596725176, 5.134081596725176, 5.292981345804837, 5.292981345804837, 5.50006324847813, 5.50006324847813, 5.741215015087827, 5.741215015087827, 6.000002551018148, 6.000002551018148, 6.258789913101673, 6.258789913101673, 6.499941170015689, 6.499941170015689, 6.707022261880247, 6.707022261880247, 6.865920954293392, 6.865920954293392, 6.965808563799252, 6.965808563799252, 6.999877914781235, 6.999877914781235, 6.965807237237553, 6.965807237237553, 6.865601205348964, 6.865601205348964, 6.705292096406619, 6.705292096406619, 6.493527285981263, 6.493527285981263, 6.242069791969054, 6.242069791969054, 5.999998115862116, 5.999998115862116, 5.912061979111753, 5.912061979111753, 5.955804954607395, 5.955804954607395, 5.987309856541017, 5.987309856541017 ] } } }, "739989c6df8b44ac8e2e610ee68b5e36": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "TooltipModel", "state": { "fields": [ "name" ], "labels": [ "Channel" ], "layout": "IPY_MODEL_ac135538e5624fb58eda02fa58dd9333" } }, "7a061f2853d949568f68550f3c362e1b": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#d62728" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS2_ch2" ], "scales": { "x": "IPY_MODEL_8342a76ecdda4fb9a4e600d8ab8fc329", "y": "IPY_MODEL_30d949e7ba5846e89f696eade5e275c3" }, "selected": [], "tooltip": "IPY_MODEL_de89493a5a54462aa3afafdeebcc5adf", "x": { "type": "float", "values": [ 0, 100, 100, 100.83333333333333, 100.83333333333333, 101.66666666666666, 101.66666666666666, 102.5, 102.5, 103.33333333333333, 103.33333333333333, 104.16666666666667, 104.16666666666667, 105, 105, 105.83333333333333, 105.83333333333333, 106.66666666666667, 106.66666666666667, 107.5, 107.5, 108.33333333333334, 108.33333333333334, 109.16666666666667, 109.16666666666667, 110, 110, 110.83333333333334, 110.83333333333334, 111.66666666666667, 111.66666666666667, 112.50000000000001, 112.50000000000001, 113.33333333333334, 113.33333333333334, 114.16666666666666, 114.16666666666666, 115, 115, 115.83333333333333, 115.83333333333333, 116.66666666666667, 116.66666666666667, 117.5, 117.5, 118.33333333333333, 118.33333333333333, 119.16666666666667, 119.16666666666667, 120.00000000000001, 120.00000000000001, 120.83333333333333, 120.83333333333333, 121.66666666666666, 121.66666666666666, 122.49999999999999, 122.49999999999999, 123.33333333333333, 123.33333333333333, 124.16666666666666, 124.16666666666666, 125, 125, 125.83333333333333, 125.83333333333333, 126.66666666666666, 126.66666666666666, 127.5, 127.5, 128.33333333333334, 128.33333333333334, 129.16666666666666, 129.16666666666666, 130, 130, 130.83333333333334, 130.83333333333334, 131.66666666666666, 131.66666666666666, 132.5, 132.5, 133.33333333333334, 133.33333333333334, 134.16666666666666, 134.16666666666666, 135, 135, 135.83333333333334, 135.83333333333334, 136.66666666666669, 136.66666666666669, 137.5, 137.5, 138.33333333333334, 138.33333333333334, 139.16666666666669, 139.16666666666669, 140, 140, 140.83333333333334, 140.83333333333334, 141.66666666666669, 141.66666666666669, 142.5, 142.5, 143.33333333333334, 143.33333333333334, 144.16666666666669, 144.16666666666669, 145.00000000000003, 145.00000000000003, 145.83333333333334, 145.83333333333334, 146.66666666666666, 146.66666666666666, 147.5, 147.5, 148.33333333333331, 148.33333333333331, 149.16666666666666, 149.16666666666666, 150, 150, 150.83333333333331, 150.83333333333331, 151.66666666666666, 151.66666666666666, 152.5, 152.5, 153.33333333333334, 153.33333333333334, 154.16666666666666, 154.16666666666666, 155, 155, 155.83333333333334, 155.83333333333334, 156.66666666666666, 156.66666666666666, 157.5, 157.5, 158.33333333333334, 158.33333333333334, 159.16666666666666, 159.16666666666666, 160, 160, 160.83333333333334, 160.83333333333334, 161.66666666666669, 161.66666666666669, 162.5, 162.5, 163.33333333333334, 163.33333333333334, 164.16666666666669, 164.16666666666669, 165, 165, 165.83333333333334, 165.83333333333334, 166.66666666666669, 166.66666666666669, 167.5, 167.5, 168.33333333333334, 168.33333333333334, 169.16666666666669, 169.16666666666669, 170, 170, 170.83333333333334, 170.83333333333334, 171.66666666666669, 171.66666666666669, 172.50000000000003, 172.50000000000003, 173.33333333333334, 173.33333333333334, 174.16666666666666, 174.16666666666666, 175, 175, 175.83333333333331, 175.83333333333331, 176.66666666666666, 176.66666666666666, 177.5, 177.5, 178.33333333333334, 178.33333333333334, 179.16666666666666, 179.16666666666666, 180, 180, 180.83333333333334, 180.83333333333334, 181.66666666666666, 181.66666666666666, 182.5, 182.5, 183.33333333333334, 183.33333333333334, 184.16666666666666, 184.16666666666666, 185, 185, 185.83333333333334, 185.83333333333334, 186.66666666666666, 186.66666666666666, 187.5, 187.5, 188.33333333333334, 188.33333333333334, 189.16666666666669, 189.16666666666669, 190, 190, 190.83333333333334, 190.83333333333334, 191.66666666666669, 191.66666666666669, 192.5, 192.5, 193.33333333333334, 193.33333333333334, 194.16666666666669, 194.16666666666669, 195, 195, 195.83333333333334, 195.83333333333334, 196.66666666666669, 196.66666666666669, 197.50000000000003, 197.50000000000003, 198.33333333333334, 198.33333333333334, 199.16666666666669, 199.16666666666669, 200, 200, 200.83333333333331, 200.83333333333331, 201.66666666666666, 201.66666666666666, 202.5, 202.5, 203.33333333333331, 203.33333333333331, 204.16666666666666, 204.16666666666666, 205, 205, 205.83333333333334, 205.83333333333334, 206.66666666666666, 206.66666666666666, 207.5, 207.5, 208.33333333333334, 208.33333333333334, 209.16666666666666, 209.16666666666666, 210, 210, 210.83333333333334, 210.83333333333334, 211.66666666666666, 211.66666666666666, 212.5, 212.5, 213.33333333333334, 213.33333333333334, 214.16666666666669, 214.16666666666669, 215, 215, 215.83333333333334, 215.83333333333334, 216.66666666666669, 216.66666666666669, 217.5, 217.5, 218.33333333333334, 218.33333333333334, 219.16666666666669, 219.16666666666669, 220, 220, 220.83333333333334, 220.83333333333334, 221.66666666666669, 221.66666666666669, 222.5, 222.5, 223.33333333333334, 223.33333333333334, 224.16666666666669, 224.16666666666669, 225.00000000000003, 225.00000000000003, 225.83333333333334, 225.83333333333334, 226.66666666666669, 226.66666666666669, 227.5, 227.5, 228.33333333333331, 228.33333333333331, 229.16666666666666, 229.16666666666666, 230, 230, 230.83333333333334, 230.83333333333334, 231.66666666666666, 231.66666666666666, 232.5, 232.5, 233.33333333333334, 233.33333333333334, 234.16666666666666, 234.16666666666666, 235, 235, 235.83333333333334, 235.83333333333334, 236.66666666666666, 236.66666666666666, 237.5, 237.5, 238.33333333333334, 238.33333333333334, 239.16666666666666, 239.16666666666666, 240.00000000000003, 240.00000000000003, 240.83333333333334, 240.83333333333334, 241.66666666666666, 241.66666666666666, 242.5, 242.5, 243.33333333333331, 243.33333333333331, 244.16666666666669, 244.16666666666669, 244.99999999999997, 244.99999999999997, 245.83333333333334, 245.83333333333334, 246.66666666666666, 246.66666666666666, 247.5, 247.5, 248.33333333333331, 248.33333333333331, 249.16666666666669, 249.16666666666669, 250, 250, 250.83333333333334, 250.83333333333334, 251.66666666666666, 251.66666666666666, 252.50000000000003, 252.50000000000003, 253.33333333333331, 253.33333333333331, 254.16666666666669, 254.16666666666669, 255, 255, 255.83333333333334, 255.83333333333334, 256.6666666666667, 256.6666666666667, 257.5, 257.5, 258.3333333333333, 258.3333333333333, 259.1666666666667, 259.1666666666667, 260, 260, 260.83333333333337, 260.83333333333337, 261.6666666666667, 261.6666666666667, 262.5, 262.5, 263.3333333333333, 263.3333333333333, 264.1666666666667, 264.1666666666667, 265, 265, 265.83333333333337, 265.83333333333337, 266.6666666666667, 266.6666666666667, 267.5, 267.5, 268.3333333333333, 268.3333333333333, 269.16666666666663, 269.16666666666663, 270, 270, 270.8333333333333, 270.8333333333333, 271.6666666666667, 271.6666666666667, 272.5, 272.5, 273.33333333333337, 273.33333333333337, 274.16666666666663, 274.16666666666663, 275, 275, 275.8333333333333, 275.8333333333333, 276.6666666666667, 276.6666666666667, 277.5, 277.5, 278.33333333333337, 278.33333333333337, 279.1666666666667, 279.1666666666667, 280, 280, 280.8333333333333, 280.8333333333333, 281.6666666666667, 281.6666666666667, 282.5, 282.5, 283.33333333333337, 283.33333333333337, 284.1666666666667, 284.1666666666667, 285, 285, 285.8333333333333, 285.8333333333333, 286.6666666666667, 286.6666666666667, 287.5, 287.5, 288.33333333333337, 288.33333333333337, 289.1666666666667, 289.1666666666667, 290.00000000000006, 290.00000000000006, 290.8333333333333, 290.8333333333333, 291.6666666666667, 291.6666666666667, 292.5, 292.5, 293.3333333333333, 293.3333333333333, 294.1666666666667, 294.1666666666667, 295, 295, 295.8333333333333, 295.8333333333333, 296.66666666666663, 296.66666666666663, 297.5, 297.5, 298.3333333333333, 298.3333333333333, 299.1666666666667, 299.1666666666667, 300, 300, 300.83333333333337, 300.83333333333337, 301.66666666666663, 301.66666666666663, 302.5, 302.5, 303.3333333333333, 303.3333333333333, 304.1666666666667, 304.1666666666667, 305, 305, 305.83333333333337, 305.83333333333337, 306.6666666666667, 306.6666666666667, 307.5, 307.5, 308.3333333333333, 308.3333333333333, 309.1666666666667, 309.1666666666667, 310, 310, 310.83333333333337, 310.83333333333337, 311.6666666666667, 311.6666666666667, 312.5, 312.5, 313.3333333333333, 313.3333333333333, 314.1666666666667, 314.1666666666667, 315, 315, 315.83333333333337, 315.83333333333337, 316.6666666666667, 316.6666666666667, 317.50000000000006, 317.50000000000006, 318.3333333333333, 318.3333333333333, 319.1666666666667, 319.1666666666667, 320, 320, 320.8333333333333, 320.8333333333333, 321.6666666666667, 321.6666666666667, 322.5, 322.5, 323.33333333333337, 323.33333333333337, 324.16666666666663, 324.16666666666663, 325, 325, 325.8333333333333, 325.8333333333333, 326.6666666666667, 326.6666666666667, 327.5, 327.5, 328.33333333333337, 328.33333333333337, 329.16666666666663, 329.16666666666663, 330, 330, 330.8333333333333, 330.8333333333333, 331.6666666666667, 331.6666666666667, 332.5, 332.5, 333.33333333333337, 333.33333333333337, 334.1666666666667, 334.1666666666667, 335, 335, 335.8333333333333, 335.8333333333333, 336.6666666666667, 336.6666666666667, 337.5, 337.5, 338.33333333333337, 338.33333333333337, 339.1666666666667, 339.1666666666667, 340, 340, 340.8333333333333, 340.8333333333333, 341.6666666666667, 341.6666666666667, 342.5, 342.5, 343.33333333333337, 343.33333333333337, 344.1666666666667, 344.1666666666667, 345.00000000000006, 345.00000000000006, 345.8333333333333, 345.8333333333333, 346.6666666666667, 346.6666666666667, 347.5, 347.5, 348.3333333333333, 348.3333333333333, 349.1666666666667, 349.1666666666667, 350, 350, 350.83333333333337, 350.83333333333337, 351.66666666666663, 351.66666666666663, 352.5, 352.5, 353.3333333333333, 353.3333333333333, 354.1666666666667, 354.1666666666667, 355, 355, 355.83333333333337, 355.83333333333337, 356.6666666666667, 356.6666666666667, 357.5, 357.5, 358.3333333333333, 358.3333333333333, 359.1666666666667, 359.1666666666667, 360, 360, 360.83333333333337, 360.83333333333337, 361.6666666666667, 361.6666666666667, 362.5, 362.5, 363.3333333333333, 363.3333333333333, 364.1666666666667, 364.1666666666667, 365, 365, 365.83333333333337, 365.83333333333337, 366.6666666666667, 366.6666666666667, 367.5, 367.5, 368.3333333333333, 368.3333333333333, 369.1666666666667, 369.1666666666667, 370, 370, 370.83333333333337, 370.83333333333337, 371.6666666666667, 371.6666666666667, 372.50000000000006, 372.50000000000006, 373.3333333333333, 373.3333333333333, 374.16666666666663, 374.16666666666663, 375, 375, 375.8333333333333, 375.8333333333333, 376.6666666666667, 376.6666666666667, 377.5, 377.5, 378.33333333333337, 378.33333333333337, 379.16666666666663, 379.16666666666663, 380, 380, 380.8333333333333, 380.8333333333333, 381.6666666666667, 381.6666666666667, 382.5, 382.5, 383.33333333333337, 383.33333333333337, 384.1666666666667, 384.1666666666667, 385, 385, 385.8333333333333, 385.8333333333333, 386.6666666666667, 386.6666666666667, 387.5, 387.5, 388.33333333333337, 388.33333333333337, 389.1666666666667, 389.1666666666667, 390, 390, 390.8333333333333, 390.8333333333333, 391.6666666666667, 391.6666666666667, 392.5, 392.5, 393.33333333333337, 393.33333333333337, 394.1666666666667, 394.1666666666667, 395.00000000000006, 395.00000000000006, 395.8333333333333, 395.8333333333333, 396.6666666666667, 396.6666666666667, 397.5, 397.5, 398.33333333333337, 398.33333333333337, 399.1666666666667, 399.1666666666667, 400, 400, 400.8333333333333, 400.8333333333333, 401.66666666666663, 401.66666666666663, 402.5, 402.5, 403.3333333333333, 403.3333333333333, 404.1666666666667, 404.1666666666667, 405, 405, 405.83333333333337, 405.83333333333337, 406.66666666666663, 406.66666666666663, 407.5, 407.5, 408.3333333333333, 408.3333333333333, 409.1666666666667, 409.1666666666667, 410, 410, 410.83333333333337, 410.83333333333337, 411.6666666666667, 411.6666666666667, 412.5, 412.5, 413.3333333333333, 413.3333333333333, 414.1666666666667, 414.1666666666667, 415, 415, 415.83333333333337, 415.83333333333337, 416.6666666666667, 416.6666666666667, 417.5, 417.5, 418.3333333333333, 418.3333333333333, 419.1666666666667, 419.1666666666667, 420, 420, 420.83333333333337, 420.83333333333337, 421.6666666666667, 421.6666666666667, 422.50000000000006, 422.50000000000006, 423.3333333333333, 423.3333333333333, 424.1666666666667, 424.1666666666667, 425, 425, 425.83333333333337, 425.83333333333337, 426.6666666666667, 426.6666666666667, 427.5, 427.5, 428.33333333333337, 428.33333333333337, 429.16666666666663, 429.16666666666663, 430, 430, 430.8333333333333, 430.8333333333333, 431.6666666666667, 431.6666666666667, 432.5, 432.5, 433.33333333333337, 433.33333333333337, 434.16666666666663, 434.16666666666663, 435, 435, 435.8333333333333, 435.8333333333333, 436.6666666666667, 436.6666666666667, 437.5, 437.5, 438.33333333333337, 438.33333333333337, 439.1666666666667, 439.1666666666667, 440, 440, 440.8333333333333, 440.8333333333333, 441.6666666666667, 441.6666666666667, 442.5, 442.5, 443.33333333333337, 443.33333333333337, 444.1666666666667, 444.1666666666667, 445, 445, 445.8333333333333, 445.8333333333333, 446.6666666666667, 446.6666666666667, 447.5, 447.5, 448.33333333333337, 448.33333333333337, 449.1666666666667, 449.1666666666667, 450.00000000000006, 450.00000000000006, 450.8333333333333, 450.8333333333333, 451.6666666666667, 451.6666666666667, 452.5, 452.5, 453.33333333333337, 453.33333333333337, 454.1666666666667, 454.1666666666667, 455, 455, 455.83333333333337, 455.83333333333337, 456.66666666666663, 456.66666666666663, 457.5, 457.5, 458.3333333333333, 458.3333333333333, 459.1666666666667, 459.1666666666667, 460, 460, 460.83333333333337, 460.83333333333337, 461.6666666666667, 461.6666666666667, 462.5, 462.5, 463.3333333333333, 463.3333333333333, 464.1666666666667, 464.1666666666667, 465, 465, 465.83333333333337, 465.83333333333337, 466.6666666666667, 466.6666666666667, 467.5, 467.5, 468.3333333333333, 468.3333333333333, 469.1666666666667, 469.1666666666667, 470, 470, 470.83333333333337, 470.83333333333337, 471.6666666666667, 471.6666666666667, 472.50000000000006, 472.50000000000006, 473.3333333333333, 473.3333333333333, 474.1666666666667, 474.1666666666667, 475, 475, 475.83333333333337, 475.83333333333337, 476.6666666666667, 476.6666666666667, 477.5, 477.5, 478.3333333333333, 478.3333333333333, 479.1666666666667, 479.1666666666667, 480.00000000000006, 480.00000000000006, 480.8333333333333, 480.8333333333333, 481.6666666666667, 481.6666666666667, 482.50000000000006, 482.50000000000006, 483.3333333333333, 483.3333333333333, 484.16666666666663, 484.16666666666663, 485, 485, 485.83333333333337, 485.83333333333337, 486.66666666666663, 486.66666666666663, 487.5, 487.5, 488.33333333333337, 488.33333333333337, 489.1666666666667, 489.1666666666667, 489.99999999999994, 489.99999999999994, 490.8333333333333, 490.8333333333333, 491.6666666666667, 491.6666666666667, 492.50000000000006, 492.50000000000006, 493.3333333333333, 493.3333333333333, 494.1666666666667, 494.1666666666667, 495, 495, 495.83333333333337, 495.83333333333337, 496.66666666666663, 496.66666666666663, 497.5, 497.5, 498.33333333333337, 498.33333333333337, 499.16666666666674, 499.16666666666674, 500, 500, 500.8333333333333, 500.8333333333333, 501.6666666666667, 501.6666666666667, 502.50000000000006, 502.50000000000006, 503.3333333333333, 503.3333333333333, 504.1666666666667, 504.1666666666667, 505.00000000000006, 505.00000000000006, 505.83333333333337, 505.83333333333337, 506.66666666666663, 506.66666666666663, 507.5, 507.5, 508.33333333333337, 508.33333333333337, 509.16666666666663, 509.16666666666663, 510, 510, 510.83333333333337, 510.83333333333337, 511.6666666666667, 511.6666666666667, 512.5, 512.5, 513.3333333333334, 513.3333333333334, 514.1666666666666, 514.1666666666666, 515, 515, 515.8333333333333, 515.8333333333333, 516.6666666666666, 516.6666666666666, 517.5, 517.5, 518.3333333333334, 518.3333333333334, 519.1666666666666, 519.1666666666666, 520, 520, 520.8333333333334, 520.8333333333334, 521.6666666666667, 521.6666666666667, 522.5, 522.5, 523.3333333333334, 523.3333333333334, 524.1666666666667, 524.1666666666667, 525, 525, 525.8333333333333, 525.8333333333333, 526.6666666666666, 526.6666666666666, 527.5, 527.5, 528.3333333333334, 528.3333333333334, 529.1666666666666, 529.1666666666666, 530, 530, 530.8333333333334, 530.8333333333334, 531.6666666666667, 531.6666666666667, 532.5, 532.5, 533.3333333333334, 533.3333333333334, 534.1666666666667, 534.1666666666667, 535, 535, 535.8333333333334, 535.8333333333334, 536.6666666666666, 536.6666666666666, 537.5, 537.5, 538.3333333333333, 538.3333333333333, 539.1666666666666, 539.1666666666666, 540, 540, 540.8333333333334, 540.8333333333334, 541.6666666666666, 541.6666666666666, 542.5, 542.5, 543.3333333333334, 543.3333333333334, 544.1666666666667, 544.1666666666667, 545, 545, 545.8333333333334, 545.8333333333334, 546.6666666666667, 546.6666666666667, 547.5, 547.5, 548.3333333333333, 548.3333333333333, 549.1666666666666, 549.1666666666666, 550, 550, 550.8333333333334, 550.8333333333334, 551.6666666666666, 551.6666666666666, 552.5, 552.5, 553.3333333333334, 553.3333333333334, 554.1666666666667, 554.1666666666667, 555, 555, 555.8333333333334, 555.8333333333334, 556.6666666666667, 556.6666666666667, 557.5000000000001, 557.5000000000001, 558.3333333333334, 558.3333333333334, 559.1666666666666, 559.1666666666666, 560, 560, 560.8333333333333, 560.8333333333333, 561.6666666666666, 561.6666666666666, 562.5, 562.5, 563.3333333333334, 563.3333333333334, 564.1666666666666, 564.1666666666666, 565, 565, 565.8333333333334, 565.8333333333334, 566.6666666666667, 566.6666666666667, 567.5, 567.5, 568.3333333333334, 568.3333333333334, 569.1666666666667, 569.1666666666667, 570, 570, 570.8333333333333, 570.8333333333333, 571.6666666666666, 571.6666666666666, 572.5, 572.5, 573.3333333333334, 573.3333333333334, 574.1666666666666, 574.1666666666666, 575, 575, 575.8333333333334, 575.8333333333334, 576.6666666666667, 576.6666666666667, 577.5, 577.5, 578.3333333333334, 578.3333333333334, 579.1666666666667, 579.1666666666667, 580.0000000000001, 580.0000000000001, 580.8333333333333, 580.8333333333333, 581.6666666666666, 581.6666666666666, 582.5, 582.5, 583.3333333333334, 583.3333333333334, 584.1666666666666, 584.1666666666666, 585, 585, 585.8333333333334, 585.8333333333334, 586.6666666666666, 586.6666666666666, 587.5, 587.5, 588.3333333333334, 588.3333333333334, 589.1666666666667, 589.1666666666667, 590, 590, 590.8333333333334, 590.8333333333334, 591.6666666666666, 591.6666666666666, 592.5, 592.5, 593.3333333333333, 593.3333333333333, 594.1666666666666, 594.1666666666666, 595, 595, 595.8333333333334, 595.8333333333334, 596.6666666666666, 596.6666666666666, 597.5, 597.5, 598.3333333333334, 598.3333333333334, 599.1666666666667, 599.1666666666667, 600, 600, 600.8333333333334, 600.8333333333334, 601.6666666666667, 601.6666666666667, 602.5, 602.5, 603.3333333333333, 603.3333333333333, 604.1666666666666, 604.1666666666666, 605, 605, 605.8333333333334, 605.8333333333334, 606.6666666666666, 606.6666666666666, 607.5, 607.5, 608.3333333333334, 608.3333333333334, 609.1666666666667, 609.1666666666667, 610, 610, 610.8333333333334, 610.8333333333334, 611.6666666666667, 611.6666666666667, 612.5000000000001, 612.5000000000001, 613.3333333333334, 613.3333333333334, 614.1666666666666, 614.1666666666666, 615, 615, 615.8333333333333, 615.8333333333333, 616.6666666666666, 616.6666666666666, 617.5, 617.5, 618.3333333333334, 618.3333333333334, 619.1666666666666, 619.1666666666666, 620, 620, 620.8333333333334, 620.8333333333334, 621.6666666666667, 621.6666666666667, 622.5, 622.5, 623.3333333333334, 623.3333333333334, 624.1666666666667, 624.1666666666667, 625, 625, 625.8333333333333, 625.8333333333333, 626.6666666666666, 626.6666666666666, 627.5, 627.5, 628.3333333333334, 628.3333333333334, 629.1666666666666, 629.1666666666666, 630, 630, 630.8333333333334, 630.8333333333334, 631.6666666666667, 631.6666666666667, 632.5, 632.5, 633.3333333333334, 633.3333333333334, 634.1666666666667, 634.1666666666667, 635.0000000000001, 635.0000000000001, 635.8333333333334, 635.8333333333334, 636.6666666666666, 636.6666666666666, 637.5, 637.5, 638.3333333333334, 638.3333333333334, 639.1666666666666, 639.1666666666666, 640, 640, 640.8333333333334, 640.8333333333334, 641.6666666666666, 641.6666666666666, 642.5, 642.5, 643.3333333333334, 643.3333333333334, 644.1666666666667, 644.1666666666667, 645, 645, 645.8333333333334, 645.8333333333334, 646.6666666666667, 646.6666666666667, 647.5, 647.5, 648.3333333333333, 648.3333333333333, 649.1666666666666, 649.1666666666666, 650, 650, 650.8333333333334, 650.8333333333334, 651.6666666666666, 651.6666666666666, 652.5, 652.5, 653.3333333333334, 653.3333333333334, 654.1666666666667, 654.1666666666667, 655, 655, 655.8333333333334, 655.8333333333334, 656.6666666666667, 656.6666666666667, 657.5000000000001, 657.5000000000001, 658.3333333333333, 658.3333333333333, 659.1666666666666, 659.1666666666666, 660, 660, 660.8333333333334, 660.8333333333334, 661.6666666666666, 661.6666666666666, 662.5, 662.5, 663.3333333333334, 663.3333333333334, 664.1666666666667, 664.1666666666667, 665, 665, 665.8333333333334, 665.8333333333334, 666.6666666666667, 666.6666666666667, 667.5, 667.5, 668.3333333333334, 668.3333333333334, 669.1666666666666, 669.1666666666666, 670, 670, 670.8333333333333, 670.8333333333333, 671.6666666666666, 671.6666666666666, 672.5, 672.5, 673.3333333333334, 673.3333333333334, 674.1666666666666, 674.1666666666666, 675, 675, 675.8333333333334, 675.8333333333334, 676.6666666666667, 676.6666666666667, 677.5, 677.5, 678.3333333333334, 678.3333333333334, 679.1666666666667, 679.1666666666667, 680, 680, 680.8333333333333, 680.8333333333333, 681.6666666666666, 681.6666666666666, 682.5, 682.5, 683.3333333333334, 683.3333333333334, 684.1666666666666, 684.1666666666666, 685, 685, 685.8333333333334, 685.8333333333334, 686.6666666666667, 686.6666666666667, 687.5, 687.5, 688.3333333333334, 688.3333333333334, 689.1666666666667, 689.1666666666667, 690.0000000000001, 690.0000000000001, 690.8333333333334, 690.8333333333334, 691.6666666666666, 691.6666666666666, 692.5, 692.5, 693.3333333333334, 693.3333333333334, 694.1666666666666, 694.1666666666666, 695, 695, 695.8333333333334, 695.8333333333334, 696.6666666666666, 696.6666666666666, 697.5, 697.5, 698.3333333333334, 698.3333333333334, 699.1666666666667, 699.1666666666667, 700, 700, 700.8333333333334, 700.8333333333334, 701.6666666666667, 701.6666666666667, 702.5, 702.5, 703.3333333333333, 703.3333333333333, 704.1666666666666, 704.1666666666666, 705, 705, 705.8333333333334, 705.8333333333334, 706.6666666666666, 706.6666666666666, 707.5, 707.5, 708.3333333333334, 708.3333333333334, 709.1666666666667, 709.1666666666667, 710, 710, 710.8333333333334, 710.8333333333334, 711.6666666666667, 711.6666666666667, 712.5000000000001, 712.5000000000001, 713.3333333333334, 713.3333333333334, 714.1666666666666, 714.1666666666666, 715, 715, 715.8333333333334, 715.8333333333334, 716.6666666666666, 716.6666666666666, 717.5, 717.5, 718.3333333333334, 718.3333333333334, 719.1666666666667, 719.1666666666667, 720, 720, 720.8333333333334, 720.8333333333334, 721.6666666666667, 721.6666666666667, 722.5, 722.5, 723.3333333333334, 723.3333333333334, 724.1666666666667, 724.1666666666667, 725, 725, 725.8333333333333, 725.8333333333333, 726.6666666666666, 726.6666666666666, 727.5, 727.5, 728.3333333333334, 728.3333333333334, 729.1666666666666, 729.1666666666666, 730, 730, 730.8333333333334, 730.8333333333334, 731.6666666666667, 731.6666666666667, 732.5, 732.5, 733.3333333333334, 733.3333333333334, 734.1666666666667, 734.1666666666667, 735, 735, 735.8333333333333, 735.8333333333333, 736.6666666666666, 736.6666666666666, 737.5, 737.5, 738.3333333333334, 738.3333333333334, 739.1666666666666, 739.1666666666666, 740, 740, 740.8333333333334, 740.8333333333334, 741.6666666666667, 741.6666666666667, 742.5, 742.5, 743.3333333333334, 743.3333333333334, 744.1666666666667, 744.1666666666667, 745.0000000000001, 745.0000000000001, 745.8333333333334, 745.8333333333334, 746.6666666666666, 746.6666666666666, 747.5, 747.5, 748.3333333333333, 748.3333333333333, 749.1666666666666, 749.1666666666666, 750, 750, 750.8333333333334, 750.8333333333334, 751.6666666666666, 751.6666666666666, 752.5, 752.5, 753.3333333333334, 753.3333333333334, 754.1666666666667, 754.1666666666667, 755, 755, 755.8333333333334, 755.8333333333334, 756.6666666666667, 756.6666666666667, 757.5, 757.5, 758.3333333333333, 758.3333333333333, 759.1666666666666, 759.1666666666666, 760, 760, 760.8333333333334, 760.8333333333334, 761.6666666666666, 761.6666666666666, 762.5, 762.5, 763.3333333333334, 763.3333333333334, 764.1666666666667, 764.1666666666667, 765, 765, 765.8333333333334, 765.8333333333334, 766.6666666666667, 766.6666666666667, 767.5000000000001, 767.5000000000001, 768.3333333333334, 768.3333333333334, 769.1666666666666, 769.1666666666666, 770, 770, 770.8333333333334, 770.8333333333334, 771.6666666666666, 771.6666666666666, 772.5, 772.5, 773.3333333333334, 773.3333333333334, 774.1666666666666, 774.1666666666666, 775, 775, 775.8333333333334, 775.8333333333334, 776.6666666666667, 776.6666666666667, 777.5, 777.5, 778.3333333333334, 778.3333333333334, 779.1666666666667, 779.1666666666667, 780, 780, 780.8333333333333, 780.8333333333333, 781.6666666666666, 781.6666666666666, 782.5, 782.5, 783.3333333333334, 783.3333333333334, 784.1666666666666, 784.1666666666666, 785, 785, 785.8333333333334, 785.8333333333334, 786.6666666666667, 786.6666666666667, 787.5, 787.5, 788.3333333333334, 788.3333333333334, 789.1666666666667, 789.1666666666667, 790.0000000000001, 790.0000000000001, 790.8333333333333, 790.8333333333333, 791.6666666666666, 791.6666666666666, 792.5, 792.5, 793.3333333333334, 793.3333333333334, 794.1666666666666, 794.1666666666666, 795, 795, 795.8333333333334, 795.8333333333334, 796.6666666666667, 796.6666666666667, 797.5, 797.5, 798.3333333333334, 798.3333333333334, 799.1666666666667, 799.1666666666667, 800, 800, 800.8333333333334, 800.8333333333334, 801.6666666666666, 801.6666666666666, 802.5, 802.5, 803.3333333333333, 803.3333333333333, 804.1666666666666, 804.1666666666666, 805, 805, 805.8333333333334, 805.8333333333334, 806.6666666666666, 806.6666666666666, 807.5, 807.5, 808.3333333333334, 808.3333333333334, 809.1666666666667, 809.1666666666667, 810, 810, 810.8333333333334, 810.8333333333334, 811.6666666666667, 811.6666666666667, 812.5, 812.5, 813.3333333333333, 813.3333333333333, 814.1666666666666, 814.1666666666666, 815, 815, 815.8333333333334, 815.8333333333334, 816.6666666666666, 816.6666666666666, 817.5, 817.5, 818.3333333333334, 818.3333333333334, 819.1666666666667, 819.1666666666667, 820, 820, 820.8333333333334, 820.8333333333334, 821.6666666666667, 821.6666666666667, 822.5000000000001, 822.5000000000001, 823.3333333333334, 823.3333333333334, 824.1666666666666, 824.1666666666666, 825, 825, 825.8333333333334, 825.8333333333334, 826.6666666666666, 826.6666666666666, 827.5, 827.5, 828.3333333333334, 828.3333333333334, 829.1666666666666, 829.1666666666666, 830, 830, 830.8333333333334, 830.8333333333334, 831.6666666666667, 831.6666666666667, 832.5, 832.5, 833.3333333333334, 833.3333333333334, 834.1666666666667, 834.1666666666667, 835, 835, 835.8333333333333, 835.8333333333333, 836.6666666666666, 836.6666666666666, 837.5, 837.5, 838.3333333333334, 838.3333333333334, 839.1666666666666, 839.1666666666666, 840, 840, 840.8333333333334, 840.8333333333334, 841.6666666666667, 841.6666666666667, 842.5, 842.5, 843.3333333333334, 843.3333333333334, 844.1666666666667, 844.1666666666667, 845.0000000000001, 845.0000000000001, 845.8333333333334, 845.8333333333334, 846.6666666666666, 846.6666666666666, 847.5, 847.5, 848.3333333333334, 848.3333333333334, 849.1666666666666, 849.1666666666666, 850, 850, 850.8333333333334, 850.8333333333334, 851.6666666666667, 851.6666666666667, 852.5, 852.5, 853.3333333333334, 853.3333333333334, 854.1666666666667, 854.1666666666667, 855, 855, 855.8333333333334, 855.8333333333334, 856.6666666666667, 856.6666666666667, 857.5, 857.5, 858.3333333333333, 858.3333333333333, 859.1666666666666, 859.1666666666666, 860, 860, 860.8333333333334, 860.8333333333334, 861.6666666666666, 861.6666666666666, 862.5, 862.5, 863.3333333333334, 863.3333333333334, 864.1666666666667, 864.1666666666667, 865, 865, 865.8333333333334, 865.8333333333334, 866.6666666666667, 866.6666666666667, 867.5000000000001, 867.5000000000001, 868.3333333333333, 868.3333333333333, 869.1666666666666, 869.1666666666666, 870, 870, 870.8333333333334, 870.8333333333334, 871.6666666666666, 871.6666666666666, 872.5, 872.5, 873.3333333333334, 873.3333333333334, 874.1666666666667, 874.1666666666667, 875, 875, 875.8333333333334, 875.8333333333334, 876.6666666666667, 876.6666666666667, 877.5000000000001, 877.5000000000001, 878.3333333333334, 878.3333333333334, 879.1666666666666, 879.1666666666666, 880, 880, 880.8333333333333, 880.8333333333333, 881.6666666666666, 881.6666666666666, 882.5, 882.5, 883.3333333333334, 883.3333333333334, 884.1666666666666, 884.1666666666666, 885, 885, 885.8333333333334, 885.8333333333334, 886.6666666666667, 886.6666666666667, 887.5, 887.5, 888.3333333333334, 888.3333333333334, 889.1666666666667, 889.1666666666667, 890, 890, 890.8333333333333, 890.8333333333333, 891.6666666666666, 891.6666666666666, 892.5, 892.5, 893.3333333333334, 893.3333333333334, 894.1666666666666, 894.1666666666666, 895, 895, 895.8333333333334, 895.8333333333334, 896.6666666666667, 896.6666666666667, 897.5, 897.5, 898.3333333333334, 898.3333333333334, 899.1666666666667, 899.1666666666667, 900.0000000000001, 900.0000000000001, 900.8333333333334, 900.8333333333334, 901.6666666666666, 901.6666666666666, 902.5, 902.5, 903.3333333333334, 903.3333333333334, 904.1666666666666, 904.1666666666666, 905, 905, 905.8333333333334, 905.8333333333334, 906.6666666666667, 906.6666666666667, 907.5, 907.5, 908.3333333333334, 908.3333333333334, 909.1666666666667, 909.1666666666667, 910, 910, 910.8333333333334, 910.8333333333334, 911.6666666666667, 911.6666666666667, 912.5, 912.5, 913.3333333333333, 913.3333333333333, 914.1666666666666, 914.1666666666666, 915, 915, 915.8333333333334, 915.8333333333334, 916.6666666666666, 916.6666666666666, 917.5, 917.5, 918.3333333333334, 918.3333333333334, 919.1666666666667, 919.1666666666667, 920, 920, 920.8333333333334, 920.8333333333334, 921.6666666666667, 921.6666666666667, 922.5000000000001, 922.5000000000001, 923.3333333333334, 923.3333333333334, 924.1666666666666, 924.1666666666666, 925, 925, 925.8333333333334, 925.8333333333334, 926.6666666666666, 926.6666666666666, 927.5, 927.5, 928.3333333333334, 928.3333333333334, 929.1666666666667, 929.1666666666667, 930, 930, 930.8333333333334, 930.8333333333334, 931.6666666666667, 931.6666666666667, 932.5000000000001, 932.5000000000001, 933.3333333333334, 933.3333333333334, 934.1666666666667, 934.1666666666667, 935, 935, 935.8333333333333, 935.8333333333333, 936.6666666666666, 936.6666666666666, 937.5, 937.5, 938.3333333333334, 938.3333333333334, 939.1666666666666, 939.1666666666666, 940, 940, 940.8333333333334, 940.8333333333334, 941.6666666666667, 941.6666666666667, 942.5, 942.5, 943.3333333333334, 943.3333333333334, 944.1666666666667, 944.1666666666667, 945.0000000000001, 945.0000000000001, 945.8333333333333, 945.8333333333333, 946.6666666666666, 946.6666666666666, 947.5, 947.5, 948.3333333333334, 948.3333333333334, 949.1666666666666, 949.1666666666666, 950, 950, 950.8333333333334, 950.8333333333334, 951.6666666666667, 951.6666666666667, 952.5, 952.5, 953.3333333333334, 953.3333333333334, 954.1666666666667, 954.1666666666667, 955, 955, 955.8333333333335, 955.8333333333335, 956.6666666666666, 956.6666666666666, 957.4999999999999, 957.4999999999999, 958.3333333333334, 958.3333333333334, 959.1666666666666, 959.1666666666666, 960.0000000000001, 960.0000000000001, 960.8333333333334, 960.8333333333334, 961.6666666666666, 961.6666666666666, 962.5000000000001, 962.5000000000001, 963.3333333333334, 963.3333333333334, 964.1666666666666, 964.1666666666666, 965.0000000000001, 965.0000000000001, 965.8333333333334, 965.8333333333334, 966.6666666666666, 966.6666666666666, 967.5, 967.5, 968.3333333333333, 968.3333333333333, 969.1666666666667, 969.1666666666667, 970, 970, 970.8333333333333, 970.8333333333333, 971.6666666666667, 971.6666666666667, 972.5, 972.5, 973.3333333333333, 973.3333333333333, 974.1666666666667, 974.1666666666667, 975, 975, 975.8333333333335, 975.8333333333335, 976.6666666666667, 976.6666666666667, 977.5, 977.5, 978.3333333333334, 978.3333333333334, 979.1666666666666, 979.1666666666666, 979.9999999999999, 979.9999999999999, 980.8333333333334, 980.8333333333334, 981.6666666666666, 981.6666666666666, 982.5000000000001, 982.5000000000001, 983.3333333333334, 983.3333333333334, 984.1666666666666, 984.1666666666666, 985.0000000000001, 985.0000000000001, 985.8333333333334, 985.8333333333334, 986.6666666666666, 986.6666666666666, 987.5000000000001, 987.5000000000001, 988.3333333333334, 988.3333333333334, 989.1666666666666, 989.1666666666666, 990, 990, 990.8333333333333, 990.8333333333333, 991.6666666666667, 991.6666666666667, 992.5, 992.5, 993.3333333333333, 993.3333333333333, 994.1666666666667, 994.1666666666667, 995, 995, 995.8333333333333, 995.8333333333333, 996.6666666666667, 996.6666666666667, 997.5, 997.5, 998.3333333333335, 998.3333333333335, 999.1666666666667, 999.1666666666667, 1000, 1000, 1000.8333333333334, 1000.8333333333334, 1001.6666666666666, 1001.6666666666666, 1002.4999999999999, 1002.4999999999999, 1003.3333333333334, 1003.3333333333334, 1004.1666666666666, 1004.1666666666666, 1005.0000000000001, 1005.0000000000001, 1005.8333333333334, 1005.8333333333334, 1006.6666666666666, 1006.6666666666666, 1007.5000000000001, 1007.5000000000001, 1008.3333333333334, 1008.3333333333334, 1009.1666666666666, 1009.1666666666666, 1010.0000000000001, 1010.0000000000001, 1010.8333333333334, 1010.8333333333334, 1011.6666666666667, 1011.6666666666667, 1012.5, 1012.5, 1013.3333333333333, 1013.3333333333333, 1014.1666666666667, 1014.1666666666667, 1015, 1015, 1015.8333333333333, 1015.8333333333333, 1016.6666666666667, 1016.6666666666667, 1017.5, 1017.5, 1018.3333333333333, 1018.3333333333333, 1019.1666666666667, 1019.1666666666667, 1020, 1020, 1020.8333333333335, 1020.8333333333335, 1021.6666666666667, 1021.6666666666667, 1022.5, 1022.5, 1023.3333333333334, 1023.3333333333334, 1024.1666666666667, 1024.1666666666667, 1025, 1025, 1025.8333333333335, 1025.8333333333335, 1026.6666666666667, 1026.6666666666667, 1027.5000000000002, 1027.5000000000002, 1028.3333333333333, 1028.3333333333333, 1029.1666666666665, 1029.1666666666665, 1030, 1030, 1030.8333333333333, 1030.8333333333333, 1031.6666666666665, 1031.6666666666665, 1032.5, 1032.5, 1033.3333333333333, 1033.3333333333333, 1034.1666666666667, 1034.1666666666667, 1035, 1035, 1035.8333333333333, 1035.8333333333333, 1036.6666666666667, 1036.6666666666667, 1037.5, 1037.5, 1038.3333333333333, 1038.3333333333333, 1039.1666666666667, 1039.1666666666667, 1040, 1040, 1040.8333333333333, 1040.8333333333333, 1041.6666666666667, 1041.6666666666667, 1042.5, 1042.5, 1043.3333333333335, 1043.3333333333335, 1044.1666666666667, 1044.1666666666667, 1045, 1045, 1045.8333333333335, 1045.8333333333335, 1046.6666666666667, 1046.6666666666667, 1047.5, 1047.5, 1048.3333333333335, 1048.3333333333335, 1049.1666666666667, 1049.1666666666667, 1050, 1050, 1050.8333333333333, 1050.8333333333333, 1051.6666666666665, 1051.6666666666665, 1052.5, 1052.5, 1053.3333333333333, 1053.3333333333333, 1054.1666666666665, 1054.1666666666665, 1055, 1055, 1055.8333333333333, 1055.8333333333333, 1056.6666666666667, 1056.6666666666667, 1057.5, 1057.5, 1058.3333333333333, 1058.3333333333333, 1059.1666666666667, 1059.1666666666667, 1060, 1060, 1060.8333333333333, 1060.8333333333333, 1061.6666666666667, 1061.6666666666667, 1062.5, 1062.5, 1063.3333333333335, 1063.3333333333335, 1064.1666666666667, 1064.1666666666667, 1065, 1065, 1065.8333333333335, 1065.8333333333335, 1066.6666666666667, 1066.6666666666667, 1067.5, 1067.5, 1068.3333333333335, 1068.3333333333335, 1069.1666666666667, 1069.1666666666667, 1070, 1070, 1070.8333333333335, 1070.8333333333335, 1071.6666666666667, 1071.6666666666667, 1072.5, 1072.5, 1073.3333333333333, 1073.3333333333333, 1074.1666666666665, 1074.1666666666665, 1075, 1075, 1075.8333333333333, 1075.8333333333333, 1076.6666666666665, 1076.6666666666665, 1077.5, 1077.5, 1078.3333333333333, 1078.3333333333333, 1079.1666666666667, 1079.1666666666667, 1080, 1080, 1080.8333333333333, 1080.8333333333333, 1081.6666666666667, 1081.6666666666667, 1082.5, 1082.5, 1083.3333333333333, 1083.3333333333333, 1084.1666666666667, 1084.1666666666667, 1085, 1085, 1085.8333333333335, 1085.8333333333335, 1086.6666666666667, 1086.6666666666667, 1087.5, 1087.5, 1088.3333333333335, 1088.3333333333335, 1089.1666666666667, 1089.1666666666667, 1090, 1090, 1090.8333333333335, 1090.8333333333335, 1091.6666666666667, 1091.6666666666667, 1092.5000000000002, 1092.5000000000002, 1093.3333333333335, 1093.3333333333335, 1094.1666666666667, 1094.1666666666667, 1095, 1095, 1095.8333333333333, 1095.8333333333333, 1096.6666666666665, 1096.6666666666665, 1097.5, 1097.5, 1098.3333333333333, 1098.3333333333333, 1099.1666666666665, 1099.1666666666665, 1100 ] }, "y": { "type": "float", "values": [ 6, 6, 5.984457849818863, 5.984457849818863, 5.914622104270368, 5.914622104270368, 5.6602368453180425, 5.6602368453180425, 5.293156022650223, 5.293156022650223, 5.190011028931016, 5.190011028931016, 5.3020440865118905, 5.3020440865118905, 5.501282113799794, 5.501282113799794, 5.741307593508806, 5.741307593508806, 6.000000257442196, 6.000000257442196, 6.258787697677602, 6.258787697677602, 6.499939183721772, 6.499939183721772, 6.707020640079183, 6.707020640079183, 6.865919807508107, 6.865919807508107, 6.965807970181247, 6.965807970181247, 6.999877914784483, 6.999877914784483, 6.96580783086198, 6.96580783086198, 6.8659195383640075, 6.8659195383640075, 6.707020259451868, 6.707020259451868, 6.499938717550518, 6.499938717550518, 6.258787177731021, 6.258787177731021, 5.999999719154, 5.999999719154, 5.74121227971606, 5.74121227971606, 5.500060796009942, 5.500060796009942, 5.292979343371831, 5.292979343371831, 5.134080180789995, 5.134080180789995, 5.034074098489585, 5.034074098489585, 5.000000000000043, 5.000000000000043, 5.034074249942043, 5.034074249942043, 5.133974744457966, 5.133974744457966, 5.292893429839141, 5.292893429839141, 5.500000260141892, 5.500000260141892, 5.741181246932082, 5.741181246932082, 6.0000003042870675, 6.0000003042870675, 6.258819340905283, 6.258819340905283, 6.500000266898768, 6.500000266898768, 6.7071070004876745, 6.7071070004876745, 6.8660255598290405, 6.8660255598290405, 6.965925907568499, 6.965925907568499, 6.99999999999995, 6.99999999999995, 6.96592574399986, 6.96592574399986, 6.8660252438386395, 6.8660252438386395, 6.707106553609845, 6.707106553609845, 6.49999971958734, 6.49999971958734, 6.258818730458817, 6.258818730458817, 5.99999967230627, 5.99999967230627, 5.74118063648562, 5.74118063648562, 5.499999712830472, 5.499999712830472, 5.2928929829613205, 5.2928929829613205, 5.133974428467635, 5.133974428467635, 5.03407408637339, 5.03407408637339, 5.000000000000058, 5.000000000000058, 5.034074262058238, 5.034074262058238, 5.133974767864698, 5.133974767864698, 5.292893462941251, 5.292893462941251, 5.500000300683527, 5.500000300683527, 5.741181292150285, 5.741181292150285, 6.000000351100393, 6.000000351100393, 6.258819386123588, 6.258819386123588, 6.500000307440387, 6.500000307440387, 6.707107033589684, 6.707107033589684, 6.86602558323569, 6.86602558323569, 6.965925919684692, 6.965925919684692, 6.999999999999934, 6.999999999999934, 6.965925731883664, 6.965925731883664, 6.866025220431963, 6.866025220431963, 6.707106520507733, 6.707106520507733, 6.499999679045704, 6.499999679045704, 6.2588186852406125, 6.2588186852406125, 5.999999625492944, 5.999999625492944, 5.741180591267314, 5.741180591267314, 5.499999672288853, 5.499999672288853, 5.292892949859313, 5.292892949859313, 5.133974405060987, 5.133974405060987, 5.034074074257226, 5.034074074257226, 5.000000000000075, 5.000000000000075, 5.034074274174493, 5.034074274174493, 5.133974791271376, 5.133974791271376, 5.292893496043283, 5.292893496043283, 5.500000341225065, 5.500000341225065, 5.741181337368709, 5.741181337368709, 6.000000397913718, 6.000000397913718, 6.2588194313417835, 6.2588194313417835, 6.500000347981907, 6.500000347981907, 6.707107066691851, 6.707107066691851, 6.866025606642337, 6.866025606642337, 6.9659259318008555, 6.9659259318008555, 6.9999999999999165, 6.9999999999999165, 6.965925719767408, 6.965925719767408, 6.866025197025285, 6.866025197025285, 6.707106487405701, 6.707106487405701, 6.499999638504166, 6.499999638504166, 6.258818640022188, 6.258818640022188, 5.99999957867962, 5.99999957867962, 5.74118054604912, 5.74118054604912, 5.499999631747333, 5.499999631747333, 5.292892916757146, 5.292892916757146, 5.133974381654227, 5.133974381654227, 5.034074062141064, 5.034074062141064, 5.000000000000094, 5.000000000000094, 5.034074286290692, 5.034074286290692, 5.133974814678169, 5.133974814678169, 5.292893529145316, 5.292893529145316, 5.500000381766603, 5.500000381766603, 5.741181382586914, 5.741181382586914, 6.00000044472727, 6.00000044472727, 6.258819476559978, 6.258819476559978, 6.500000388523426, 6.500000388523426, 6.707107099793856, 6.707107099793856, 6.866025630049096, 6.866025630049096, 6.965925943917016, 6.965925943917016, 6.999999999999896, 6.999999999999896, 6.965925707651208, 6.965925707651208, 6.866025173618491, 6.866025173618491, 6.707106454303666, 6.707106454303666, 6.499999597962627, 6.499999597962627, 6.258818594803984, 6.258818594803984, 5.9999995318660675, 5.9999995318660675, 5.741180500830706, 5.741180500830706, 5.499999591205815, 5.499999591205815, 5.292892883655141, 5.292892883655141, 5.133974358247583, 5.133974358247583, 5.034074050024846, 5.034074050024846, 5.0000000000001155, 5.0000000000001155, 5.0340742984068925, 5.0340742984068925, 5.13397483808485, 5.13397483808485, 5.292893562247512, 5.292893562247512, 5.500000422308143, 5.500000422308143, 5.741181427805119, 5.741181427805119, 6.000000491540596, 6.000000491540596, 6.258819521778392, 6.258819521778392, 6.500000429064944, 6.500000429064944, 6.70710713289586, 6.70710713289586, 6.866025653455739, 6.866025653455739, 6.965925956033233, 6.965925956033233, 6.999999999999873, 6.999999999999873, 6.965925695535006, 6.965925695535006, 6.866025150211809, 6.866025150211809, 6.70710642120147, 6.70710642120147, 6.49999955742089, 6.49999955742089, 6.2588185495857775, 6.2588185495857775, 5.999999485052742, 5.999999485052742, 5.741180455612511, 5.741180455612511, 5.499999550664101, 5.499999550664101, 5.292892850553138, 5.292892850553138, 5.13397433484094, 5.13397433484094, 5.034074037908688, 5.034074037908688, 5.0000000000001386, 5.0000000000001386, 5.034074310523096, 5.034074310523096, 5.133974861491533, 5.133974861491533, 5.292893595349549, 5.292893595349549, 5.50000046284988, 5.50000046284988, 5.7411814730233255, 5.7411814730233255, 6.0000005383539206, 6.0000005383539206, 6.258819566996585, 6.258819566996585, 6.500000469606658, 6.500000469606658, 6.707107165997863, 6.707107165997863, 6.86602567686238, 6.86602567686238, 6.9659259681493895, 6.9659259681493895, 6.999999999999849, 6.999999999999849, 6.965925683418743, 6.965925683418743, 6.866025126805125, 6.866025126805125, 6.707106388099433, 6.707106388099433, 6.499999516879349, 6.499999516879349, 6.258818504367352, 6.258818504367352, 5.999999438239417, 5.999999438239417, 5.7411804103943185, 5.7411804103943185, 5.499999510122585, 5.499999510122585, 5.2928928174509755, 5.2928928174509755, 5.1339743114343, 5.1339743114343, 5.034074025792533, 5.034074025792533, 5.000000000000164, 5.000000000000164, 5.034074322639359, 5.034074322639359, 5.133974884898218, 5.133974884898218, 5.292893628451586, 5.292893628451586, 5.500000503391423, 5.500000503391423, 5.741181518241752, 5.741181518241752, 6.000000585167245, 6.000000585167245, 6.2588196122147775, 6.2588196122147775, 6.500000510148173, 6.500000510148173, 6.707107199100024, 6.707107199100024, 6.866025700269134, 6.866025700269134, 6.965925980265544, 6.965925980265544, 6.999999999999822, 6.999999999999822, 6.9659256713025375, 6.9659256713025375, 6.866025103398325, 6.866025103398325, 6.707106354997394, 6.707106354997394, 6.499999476337806, 6.499999476337806, 6.258818459149145, 6.258818459149145, 5.999999391425865, 5.999999391425865, 5.741180365176126, 5.741180365176126, 5.49999946958107, 5.49999946958107, 5.292892784348975, 5.292892784348975, 5.133974288027548, 5.133974288027548, 5.0340740136763795, 5.0340740136763795, 5.000000000000193, 5.000000000000193, 5.034074334755567, 5.034074334755567, 5.133974908305019, 5.133974908305019, 5.2928936615536255, 5.2928936615536255, 5.500000543932965, 5.500000543932965, 5.741181563459959, 5.741181563459959, 6.000000631980798, 6.000000631980798, 6.25881965743319, 6.25881965743319, 6.500000550689687, 6.500000550689687, 6.7071072322020235, 6.7071072322020235, 6.8660257236757705, 6.8660257236757705, 6.965925992381755, 6.965925992381755, 6.999999999999793, 6.999999999999793, 6.965925659186329, 6.965925659186329, 6.866025079991637, 6.866025079991637, 6.707106321895193, 6.707106321895193, 6.499999435796263, 6.499999435796263, 6.258818413930937, 6.258818413930937, 5.999999344612539, 5.999999344612539, 5.7411803199577145, 5.7411803199577145, 5.499999429039557, 5.499999429039557, 5.292892751246978, 5.292892751246978, 5.133974264620911, 5.133974264620911, 5.034074001560169, 5.034074001560169, 5.000000000000222, 5.000000000000222, 5.034074346871835, 5.034074346871835, 5.133974931711707, 5.133974931711707, 5.292893694655989, 5.292893694655989, 5.500000584474706, 5.500000584474706, 5.741181608678605, 5.741181608678605, 6.0000006787943505, 6.0000006787943505, 6.258819702651381, 6.258819702651381, 6.500000591231594, 6.500000591231594, 6.707107265304183, 6.707107265304183, 6.866025747082634, 6.866025747082634, 6.965926004497964, 6.965926004497964, 6.999999999999762, 6.999999999999762, 6.9659256470700015, 6.9659256470700015, 6.866025056584833, 6.866025056584833, 6.707106288793151, 6.707106288793151, 6.499999395254324, 6.499999395254324, 6.25881836871251, 6.25881836871251, 5.99999929779876, 5.99999929779876, 5.741180274739303, 5.741180274739303, 5.499999388497846, 5.499999388497846, 5.292892718144659, 5.292892718144659, 5.133974241214163, 5.133974241214163, 5.034073989444021, 5.034073989444021, 5.000000000000255, 5.000000000000255, 5.034074358988046, 5.034074358988046, 5.133974955118625, 5.133974955118625, 5.292893727758031, 5.292893727758031, 5.500000625016251, 5.500000625016251, 5.741181653896813, 5.741181653896813, 6.000000725607675, 6.000000725607675, 6.258819747870012, 6.258819747870012, 6.500000631773107, 6.500000631773107, 6.707107298406179, 6.707107298406179, 6.8660257704892675, 6.8660257704892675, 6.9659260166141115, 6.9659260166141115, 6.999999999999728, 6.999999999999728, 6.965925634953789, 6.965925634953789, 6.866025033178142, 6.866025033178142, 6.707106255690786, 6.707106255690786, 6.499999354712779, 6.499999354712779, 6.258818323494301, 6.258818323494301, 5.999999250985435, 5.999999250985435, 5.741180229521112, 5.741180229521112, 5.499999347956335, 5.499999347956335, 5.292892685042663, 5.292892685042663, 5.13397421780753, 5.13397421780753, 5.034073977327756, 5.034073977327756, 5.0000000000002895, 5.0000000000002895, 5.03407437110426, 5.03407437110426, 5.133974978525318, 5.133974978525318, 5.292893760860076, 5.292893760860076, 5.500000665558192, 5.500000665558192, 5.741181699115023, 5.741181699115023, 6.000000772421001, 6.000000772421001, 6.258819793088203, 6.258819793088203, 6.500000672314617, 6.500000672314617, 6.707107331508173, 6.707107331508173, 6.8660257938959, 6.8660257938959, 6.965926028730258, 6.965926028730258, 6.999999999999693, 6.999999999999693, 6.965925622837574, 6.965925622837574, 6.866025009771448, 6.866025009771448, 6.707106222588741, 6.707106222588741, 6.499999314171232, 6.499999314171232, 6.258818278276093, 6.258818278276093, 5.999999204172109, 5.999999204172109, 5.741180184302922, 5.741180184302922, 5.499999307414431, 5.499999307414431, 5.29289265194067, 5.29289265194067, 5.133974194400899, 5.133974194400899, 5.034073965211611, 5.034073965211611, 5.000000000000326, 5.000000000000326, 5.0340743832205925, 5.0340743832205925, 5.133975001932012, 5.133975001932012, 5.292893793962121, 5.292893793962121, 5.500000706099739, 5.500000706099739, 5.741181744333232, 5.741181744333232, 6.000000819234326, 6.000000819234326, 6.258819838306392, 6.258819838306392, 6.500000712856128, 6.500000712856128, 6.707107364610488, 6.707107364610488, 6.866025817302529, 6.866025817302529, 6.965926040846401, 6.965926040846401, 6.9999999999996545, 6.9999999999996545, 6.965925610721357, 6.965925610721357, 6.866024986364753, 6.866024986364753, 6.707106189486694, 6.707106189486694, 6.499999273629684, 6.499999273629684, 6.258818233057443, 6.258818233057443, 5.9999991573587845, 5.9999991573587845, 5.741180139084732, 5.741180139084732, 5.499999266872921, 5.499999266872921, 5.292892618838677, 5.292892618838677, 5.133974170994042, 5.133974170994042, 5.034073953095469, 5.034073953095469, 5.000000000000365, 5.000000000000365, 5.034074395336811, 5.034074395336811, 5.133975025338708, 5.133975025338708, 5.2928938270641686, 5.2928938270641686, 5.500000746641287, 5.500000746641287, 5.741181789551441, 5.741181789551441, 6.000000866048105, 6.000000866048105, 6.258819883524582, 6.258819883524582, 6.500000753397637, 6.500000753397637, 6.7071073977124795, 6.7071073977124795, 6.866025840709158, 6.866025840709158, 6.965926052962542, 6.965926052962542, 6.9999999999996145, 6.9999999999996145, 6.965925598605138, 6.965925598605138, 6.8660249629578285, 6.8660249629578285, 6.707106156384646, 6.707106156384646, 6.499999233088135, 6.499999233088135, 6.258818187839234, 6.258818187839234, 5.999999110545459, 5.999999110545459, 5.741180093866103, 5.741180093866103, 5.499999226331413, 5.499999226331413, 5.292892585736686, 5.292892585736686, 5.133974147587415, 5.133974147587415, 5.0340739409793285, 5.0340739409793285, 5.000000000000406, 5.000000000000406, 5.034074407453031, 5.034074407453031, 5.133975048745407, 5.133975048745407, 5.292893860166539, 5.292893860166539, 5.500000787182836, 5.500000787182836, 5.741181834769652, 5.741181834769652, 6.000000912861431, 6.000000912861431, 6.258819928742771, 6.258819928742771, 6.500000793939145, 6.500000793939145, 6.707107430814469, 6.707107430814469, 6.866025864115784, 6.866025864115784, 6.9659260650788, 6.9659260650788, 6.999999999999573, 6.999999999999573, 6.965925586488917, 6.965925586488917, 6.86602493955113, 6.86602493955113, 6.707106123282597, 6.707106123282597, 6.499999192546191, 6.499999192546191, 6.258818142621023, 6.258818142621023, 5.999999063732134, 5.999999063732134, 5.741180048647915, 5.741180048647915, 5.499999185789905, 5.499999185789905, 5.292892552634697, 5.292892552634697, 5.13397412418079, 5.13397412418079, 5.03407392886319, 5.03407392886319, 5.000000000000449, 5.000000000000449, 5.034074419569253, 5.034074419569253, 5.133975072152108, 5.133975072152108, 5.292893893268589, 5.292893893268589, 5.500000827724387, 5.500000827724387, 5.741181879987863, 5.741181879987863, 6.000000959674756, 6.000000959674756, 6.25881997396096, 6.25881997396096, 6.500000834481045, 6.500000834481045, 6.707107463916458, 6.707107463916458, 6.866025887522408, 6.866025887522408, 6.965926077194937, 6.965926077194937, 6.999999999999528, 6.999999999999528, 6.9659255743725765, 6.9659255743725765, 6.866024916144428, 6.866024916144428, 6.707106090180545, 6.707106090180545, 6.499999152004641, 6.499999152004641, 6.258818097402812, 6.258818097402812, 5.999999016918809, 5.999999016918809, 5.741180003429727, 5.741180003429727, 5.499999145248399, 5.499999145248399, 5.292892519532388, 5.292892519532388, 5.133974100774167, 5.133974100774167, 5.034073916747054, 5.034073916747054, 5.000000000000495, 5.000000000000495, 5.034074431685477, 5.034074431685477, 5.133975095558809, 5.133975095558809, 5.292893926370641, 5.292893926370641, 5.500000868265939, 5.500000868265939, 5.741181925206514, 5.741181925206514, 6.00000100648808, 6.00000100648808, 6.258820019179147, 6.258820019179147, 6.50000087502255, 6.50000087502255, 6.707107497018445, 6.707107497018445, 6.866025910929258, 6.866025910929258, 6.965926089311072, 6.965926089311072, 6.999999999999481, 6.999999999999481, 6.965925562256352, 6.965925562256352, 6.866024892737725, 6.866024892737725, 6.707106057078493, 6.707106057078493, 6.499999111463088, 6.499999111463088, 6.2588180521845995, 6.2588180521845995, 5.999998970105029, 5.999998970105029, 5.741179958211539, 5.741179958211539, 5.499999104706894, 5.499999104706894, 5.292892486430402, 5.292892486430402, 5.1339740773675455, 5.1339740773675455, 5.03407390463092, 5.03407390463092, 5.000000000000543, 5.000000000000543, 5.034074443801702, 5.034074443801702, 5.133975118965741, 5.133975118965741, 5.2928939594726945, 5.2928939594726945, 5.5000009088074915, 5.5000009088074915, 5.741181970424726, 5.741181970424726, 6.000001053301406, 6.000001053301406, 6.258820064397773, 6.258820064397773, 6.500000915564055, 6.500000915564055, 6.70710753012043, 6.70710753012043, 6.8660259343358785, 6.8660259343358785, 6.965926101427206, 6.965926101427206, 6.999999999999433, 6.999999999999433, 6.965925550140124, 6.965925550140124, 6.86602486933102, 6.86602486933102, 6.707106023976117, 6.707106023976117, 6.499999070921535, 6.499999070921535, 6.258818006966387, 6.258818006966387, 5.999998923291704, 5.999998923291704, 5.741179912993353, 5.741179912993353, 5.49999906416539, 5.49999906416539, 5.292892453328417, 5.292892453328417, 5.133974053960926, 5.133974053960926, 5.0340738925146695, 5.0340738925146695, 5.000000000000592, 5.000000000000592, 5.034074455917931, 5.034074455917931, 5.133975142372447, 5.133975142372447, 5.29289399257475, 5.29289399257475, 5.500000949349439, 5.500000949349439, 5.741182015642939, 5.741182015642939, 6.000001100114731, 6.000001100114731, 6.25882010961596, 6.25882010961596, 6.500000956105558, 6.500000956105558, 6.707107563222413, 6.707107563222413, 6.8660259577424965, 6.8660259577424965, 6.965926113543336, 6.965926113543336, 6.999999999999382, 6.999999999999382, 6.965925538023895, 6.965925538023895, 6.866024845924313, 6.866024845924313, 6.707105990874061, 6.707105990874061, 6.49999903037998, 6.49999903037998, 6.258817961748174, 6.258817961748174, 5.999998876478379, 5.999998876478379, 5.741179867775166, 5.741179867775166, 5.499999023623493, 5.499999023623493, 5.292892420226434, 5.292892420226434, 5.133974030554309, 5.133974030554309, 5.03407388039854, 5.03407388039854, 5.000000000000645, 5.000000000000645, 5.034074468034279, 5.034074468034279, 5.133975165779154, 5.133975165779154, 5.292894025676807, 5.292894025676807, 5.500000989890994, 5.500000989890994, 5.741182060861152, 5.741182060861152, 6.000001146928056, 6.000001146928056, 6.258820154834146, 6.258820154834146, 6.500000996647061, 6.500000996647061, 6.707107596324717, 6.707107596324717, 6.8660259811491136, 6.8660259811491136, 6.965926125659466, 6.965926125659466, 6.9999999999993285, 6.9999999999993285, 6.965925525907664, 6.965925525907664, 6.866024822517605, 6.866024822517605, 6.707105957772004, 6.707105957772004, 6.499998989838425, 6.499998989838425, 6.258817916529521, 6.258817916529521, 5.999998829665054, 5.999998829665054, 5.741179822556981, 5.741179822556981, 5.4999989830819915, 5.4999989830819915, 5.292892387124453, 5.292892387124453, 5.133974007147465, 5.133974007147465, 5.034073868282412, 5.034073868282412, 5.000000000000698, 5.000000000000698, 5.034074480150512, 5.034074480150512, 5.133975189185864, 5.133975189185864, 5.292894058778865, 5.292894058778865, 5.50000103043255, 5.50000103043255, 5.741182106079366, 5.741182106079366, 6.000001193741836, 6.000001193741836, 6.258820200052332, 6.258820200052332, 6.500001037188563, 6.500001037188563, 6.707107629426698, 6.707107629426698, 6.866026004555728, 6.866026004555728, 6.965926137775592, 6.965926137775592, 6.9999999999992735, 6.9999999999992735, 6.96592551379143, 6.96592551379143, 6.866024799110667, 6.866024799110667, 6.7071059246699445, 6.7071059246699445, 6.499998949296868, 6.499998949296868, 6.258817871311307, 6.258817871311307, 5.999998782851729, 5.999998782851729, 5.741179777338356, 5.741179777338356, 5.499998942540491, 5.499998942540491, 5.292892354022473, 5.292892354022473, 5.133973983740852, 5.133973983740852, 5.0340738561662866, 5.0340738561662866, 5.000000000000755, 5.000000000000755, 5.034074492266747, 5.034074492266747, 5.133975212592576, 5.133975212592576, 5.292894091881246, 5.292894091881246, 5.500001070974108, 5.500001070974108, 5.74118215129758, 5.74118215129758, 6.000001240555161, 6.000001240555161, 6.258820245270517, 6.258820245270517, 6.5000010777300625, 6.5000010777300625, 6.707107662528677, 6.707107662528677, 6.8660260279623415, 6.8660260279623415, 6.965926149891835, 6.965926149891835, 6.999999999999216, 6.999999999999216, 6.965925501675194, 6.965925501675194, 6.866024775703954, 6.866024775703954, 6.707105891567885, 6.707105891567885, 6.499998908754916, 6.499998908754916, 6.258817826093092, 6.258817826093092, 5.999998736038404, 5.999998736038404, 5.741179732120171, 5.741179732120171, 5.499998901998991, 5.499998901998991, 5.292892320920495, 5.292892320920495, 5.13397396033424, 5.13397396033424, 5.034073844050163, 5.034073844050163, 5.000000000000814, 5.000000000000814, 5.034074504382984, 5.034074504382984, 5.133975235999289, 5.133975235999289, 5.292894124983307, 5.292894124983307, 5.500001111515665, 5.500001111515665, 5.741182196515796, 5.741182196515796, 6.000001287368486, 6.000001287368486, 6.258820290488701, 6.258820290488701, 6.500001118271955, 6.500001118271955, 6.707107695630655, 6.707107695630655, 6.866026051368952, 6.866026051368952, 6.965926162007957, 6.965926162007957, 6.999999999999156, 6.999999999999156, 6.965925489558838, 6.965925489558838, 6.86602475229724, 6.86602475229724, 6.707105858465822, 6.707105858465822, 6.499998868213358, 6.499998868213358, 6.258817780874877, 6.258817780874877, 5.9999986892250785, 5.9999986892250785, 5.7411796869019875, 5.7411796869019875, 5.499998861457493, 5.499998861457493, 5.292892287818196, 5.292892287818196, 5.13397393692763, 5.13397393692763, 5.034073831934042, 5.034073831934042, 5.000000000000875, 5.000000000000875, 5.034074516499222, 5.034074516499222, 5.133975259406005, 5.133975259406005, 5.29289415808537, 5.29289415808537, 5.500001152057225, 5.500001152057225, 5.741182241734011, 5.741182241734011, 6.0000013341813565, 6.0000013341813565, 6.258820335707324, 6.258820335707324, 6.500001158813453, 6.500001158813453, 6.70710772873263, 6.70710772873263, 6.8660260747755615, 6.8660260747755615, 6.965926174123959, 6.965926174123959, 6.999999999999094, 6.999999999999094, 6.965925477442599, 6.965925477442599, 6.866024728890523, 6.866024728890523, 6.707105825363759, 6.707105825363759, 6.499998827672192, 6.499998827672192, 6.258817735656222, 6.258817735656222, 5.999998642411299, 5.999998642411299, 5.741179641683804, 5.741179641683804, 5.499998820915995, 5.499998820915995, 5.292892254716542, 5.292892254716542, 5.133973913520794, 5.133973913520794, 5.034073819817804, 5.034073819817804, 5.000000000000938, 5.000000000000938, 5.034074528615463, 5.034074528615463, 5.133975282812722, 5.133975282812722, 5.292894191187113, 5.292894191187113, 5.500001192599179, 5.500001192599179, 5.741182286952666, 5.741182286952666, 6.000001380995136, 6.000001380995136, 6.258820380925068, 6.258820380925068, 6.500001199354556, 6.500001199354556, 6.707107761834926, 6.707107761834926, 6.866026098182395, 6.866026098182395, 6.965926186240195, 6.965926186240195, 6.99999999999903, 6.99999999999903, 6.965925465326475, 6.965925465326475, 6.866024705483578, 6.866024705483578, 6.707105792261372, 6.707105792261372, 6.499998787130237, 6.499998787130237, 6.258817690438445, 6.258817690438445, 5.999998595598429, 5.999998595598429, 5.741179596465182, 5.741179596465182, 5.499998780374105, 5.499998780374105, 5.292892221614247, 5.292892221614247, 5.133973890114415, 5.133973890114415, 5.034073807701805, 5.034073807701805, 5.000000000001003, 5.000000000001003, 5.034074540731824, 5.034074540731824, 5.133975306219669, 5.133975306219669, 5.2928942242895, 5.2928942242895, 5.500001233140347, 5.500001233140347, 5.741182332170444, 5.741182332170444, 6.0000014278089155, 6.0000014278089155, 6.25882042614369, 6.25882042614369, 6.500001239896446, 6.500001239896446, 6.7071077949365785, 6.7071077949365785, 6.8660261215887735, 6.8660261215887735, 6.96592619835643, 6.96592619835643, 6.999999999998964, 6.999999999998964, 6.9659254532101125, 6.9659254532101125, 6.866024682077085, 6.866024682077085, 6.707105759159627, 6.707105759159627, 6.499998746588282, 6.499998746588282, 6.258817645219788, 6.258817645219788, 5.9999985487846486, 5.9999985487846486, 5.741179551247439, 5.741179551247439, 5.4999987398330035, 5.4999987398330035, 5.292892188512597, 5.292892188512597, 5.133973866707583, 5.133973866707583, 5.034073795585572, 5.034073795585572, 5.00000000000107, 5.00000000000107, 5.034074552847952, 5.034074552847952, 5.133975329626162, 5.133975329626162, 5.29289425739189, 5.29289425739189, 5.500001273682304, 5.500001273682304, 5.741182377389101, 5.741182377389101, 6.0000014746217865, 6.0000014746217865, 6.258820471361433, 6.258820471361433, 6.500001280438334, 6.500001280438334, 6.707107828038871, 6.707107828038871, 6.866026144995605, 6.866026144995605, 6.965926210472426, 6.965926210472426, 6.999999999998895, 6.999999999998895, 6.965925441093749, 6.965925441093749, 6.866024658670136, 6.866024658670136, 6.707105726057237, 6.707105726057237, 6.499998706047112, 6.499998706047112, 6.25881760000201, 6.25881760000201, 5.9999985019717785, 5.9999985019717785, 5.741179506028818, 5.741179506028818, 5.499998699291115, 5.499998699291115, 5.292892155410304, 5.292892155410304, 5.1339738433012085, 5.1339738433012085, 5.034073783469577, 5.034073783469577, 5.0000000000011395, 5.0000000000011395, 5.034074564964317, 5.034074564964317, 5.1339753530331125, 5.1339753530331125, 5.292894290493637, 5.292894290493637, 5.500001314223473, 5.500001314223473, 5.741182422607757, 5.741182422607757, 6.000001521435566, 6.000001521435566, 6.2588205165800535, 6.2588205165800535, 6.500001320979434, 6.500001320979434, 6.7071078611405195, 6.7071078611405195, 6.866026168402433, 6.866026168402433, 6.965926222588656, 6.965926222588656, 6.999999999998825, 6.999999999998825, 6.965925428977617, 6.965925428977617, 6.866024635263639, 6.866024635263639, 6.707105692955489, 6.707105692955489, 6.499998665505154, 6.499998665505154, 6.258817554783353, 6.258817554783353, 5.999998455157999, 5.999998455157999, 5.741179460811075, 5.741179460811075, 5.499998658750016, 5.499998658750016, 5.292892122308014, 5.292892122308014, 5.133973819894381, 5.133973819894381, 5.0340737713533485, 5.0340737713533485, 5.0000000000012115, 5.0000000000012115, 5.034074577080449, 5.034074577080449, 5.133975376440064, 5.133975376440064, 5.292894323596029, 5.292894323596029, 5.500001354765431, 5.500001354765431, 5.741182467825537, 5.741182467825537, 6.000001568248436, 6.000001568248436, 6.258820561798674, 6.258820561798674, 6.500001361521321, 6.500001361521321, 6.707107894242809, 6.707107894242809, 6.866026191808805, 6.866026191808805, 6.965926234704647, 6.965926234704647, 6.999999999998752, 6.999999999998752, 6.965925416861249, 6.965925416861249, 6.866024611856686, 6.866024611856686, 6.707105659853096, 6.707105659853096, 6.4999986249639825, 6.4999986249639825, 6.258817509565573, 6.258817509565573, 5.999998408344219, 5.999998408344219, 5.741179415592455, 5.741179415592455, 5.499998618208131, 5.499998618208131, 5.292892089206368, 5.292892089206368, 5.133973796488009, 5.133973796488009, 5.034073759237122, 5.034073759237122, 5.000000000001285, 5.000000000001285, 5.034074589196818, 5.034074589196818, 5.133975399846564, 5.133975399846564, 5.292894356697779, 5.292894356697779, 5.500001395307391, 5.500001395307391, 5.741182513044195, 5.741182513044195, 6.000001615062216, 6.000001615062216, 6.258820607016415, 6.258820607016415, 6.500001402062418, 6.500001402062418, 6.707107927344454, 6.707107927344454, 6.86602621521563, 6.86602621521563, 6.965926246820873, 6.965926246820873, 6.999999999998677, 6.999999999998677, 6.965925404745114, 6.965925404745114, 6.866024588450186, 6.866024588450186, 6.707105626750701, 6.707105626750701, 6.499998584422022, 6.499998584422022, 6.258817464346915, 6.258817464346915, 5.999998361531349, 5.999998361531349, 5.741179370374715, 5.741179370374715, 5.499998577666246, 5.499998577666246, 5.292892056104081, 5.292892056104081, 5.133973773081185, 5.133973773081185, 5.034073747121133, 5.034073747121133, 5.000000000001362, 5.000000000001362, 5.03407460131319, 5.03407460131319, 5.13397542325352, 5.13397542325352, 5.292894389800175, 5.292894389800175, 5.5000014358485645, 5.5000014358485645, 5.741182558261975, 5.741182558261975, 6.000001661875086, 6.000001661875086, 6.258820652235034, 6.258820652235034, 6.500001442604303, 6.500001442604303, 6.707107960446741, 6.707107960446741, 6.866026238621999, 6.866026238621999, 6.965926258936861, 6.965926258936861, 6.999999999998599, 6.999999999998599, 6.965925392628741, 6.965925392628741, 6.8660245650432286, 6.8660245650432286, 6.707105593648949, 6.707105593648949, 6.4999985438808485, 6.4999985438808485, 6.258817419128256, 6.258817419128256, 5.999998314717569, 5.999998314717569, 5.741179325156096, 5.741179325156096, 5.49999853712515, 5.49999853712515, 5.292892023002437, 5.292892023002437, 5.133973749674363, 5.133973749674363, 5.0340737350049105, 5.0340737350049105, 5.00000000000144, 5.00000000000144, 5.034074613429327, 5.034074613429327, 5.133975446660023, 5.133975446660023, 5.292894422901928, 5.292894422901928, 5.500001476390526, 5.500001476390526, 5.741182603480635, 5.741182603480635, 6.000001708688867, 6.000001708688867, 6.258820697452774, 6.258820697452774, 6.500001483145398, 6.500001483145398, 6.707107993549027, 6.707107993549027, 6.86602626202882, 6.86602626202882, 6.965926271053082, 6.965926271053082, 6.99999999999852, 6.99999999999852, 6.965925380512602, 6.965925380512602, 6.8660245416362695, 6.8660245416362695, 6.707105560546552, 6.707105560546552, 6.499998503338886, 6.499998503338886, 6.258817373910475, 6.258817373910475, 5.999998267904698, 5.999998267904698, 5.7411792799374775, 5.7411792799374775, 5.499998496583268, 5.499998496583268, 5.292891989900153, 5.292891989900153, 5.133973726267997, 5.133973726267997, 5.034073722888926, 5.034073722888926, 5.000000000001521, 5.000000000001521, 5.034074625545704, 5.034074625545704, 5.133975470066983, 5.133975470066983, 5.292894456004326, 5.292894456004326, 5.500001516931702, 5.500001516931702, 5.741182648698416, 5.741182648698416, 6.000001755502646, 6.000001755502646, 6.258820742671392, 6.258820742671392, 6.5000015236872795, 6.5000015236872795, 6.707108026650667, 6.707108026650667, 6.866026285435185, 6.866026285435185, 6.965926283169301, 6.965926283169301, 6.999999999998439, 6.999999999998439, 6.965925368396226, 6.965925368396226, 6.8660245182297635, 6.8660245182297635, 6.707105527444796, 6.707105527444796, 6.499998462796922, 6.499998462796922, 6.258817328691815, 6.258817328691815, 5.999998221090919, 5.999998221090919, 5.741179234719739, 5.741179234719739, 5.4999984560421735, 5.4999984560421735, 5.292891956798513, 5.292891956798513, 5.133973702861179, 5.133973702861179, 5.0340737107727085, 5.0340737107727085, 5.000000000001603, 5.000000000001603, 5.0340746376618455, 5.0340746376618455, 5.13397549347349, 5.13397549347349, 5.292894489106726, 5.292894489106726, 5.5000015574736665, 5.5000015574736665, 5.741182693917076, 5.741182693917076, 6.000001802315516, 6.000001802315516, 6.258820787889131, 6.258820787889131, 6.50000156422916, 6.50000156422916, 6.707108059752949, 6.707108059752949, 6.866026308842002, 6.866026308842002, 6.965926295285282, 6.965926295285282, 6.999999999998355, 6.999999999998355, 6.965925356279847, 6.965925356279847, 6.866024494822801, 6.866024494822801, 6.707105494342395, 6.707105494342395, 6.499998422255745, 6.499998422255745, 6.258817283474032, 6.258817283474032, 5.999998174278049, 5.999998174278049, 5.741179189501121, 5.741179189501121, 5.4999984155002934, 5.4999984155002934, 5.292891923696232, 5.292891923696232, 5.133973679454817, 5.133973679454817, 5.034073698656727, 5.034073698656727, 5.000000000001688, 5.000000000001688, 5.034074649778225, 5.034074649778225, 5.1339755168804535, 5.1339755168804535, 5.292894522208485, 5.292894522208485, 5.500001598014844, 5.500001598014844, 5.741182739135738, 5.741182739135738, 6.000001849129297, 6.000001849129297, 6.258820833107748, 6.258820833107748, 6.500001604770253, 6.500001604770253, 6.707108092854586, 6.707108092854586, 6.8660263322488175, 6.8660263322488175, 6.965926307401497, 6.965926307401497, 6.999999999998269, 6.999999999998269, 6.9659253441637015, 6.9659253441637015, 6.866024471416291, 6.866024471416291, 6.707105461240635, 6.707105461240635, 6.499998381713779, 6.499998381713779, 6.2588172382553715, 6.2588172382553715, 5.999998127464268, 5.999998127464268, 5.741179144283383, 5.741179144283383, 5.499998374959202, 5.499998374959202, 5.292891890593952, 5.292891890593952, 5.133973656048003, 5.133973656048003, 5.0340736865405145, 5.0340736865405145, 5.0000000000017755, 5.0000000000017755, 5.034074661894373, 5.034074661894373, 5.133975540287419, 5.133975540287419, 5.2928945553108875, 5.2928945553108875, 5.50000163855681, 5.50000163855681, 5.74118278435352, 5.74118278435352, 6.000001895942167, 6.000001895942167, 6.258820878326364, 6.258820878326364, 6.500001645312131, 6.500001645312131, 6.707108125956865, 6.707108125956865, 6.866026355655177, 6.866026355655177, 6.965926319517474, 6.965926319517474, 6.99999999999818, 6.99999999999818, 6.965925332047318, 6.965925332047318, 6.866024448009325, 6.866024448009325, 6.707105428138232, 6.707105428138232, 6.4999983411726, 6.4999983411726, 6.258817193037588, 6.258817193037588, 5.999998080650489, 5.999998080650489, 5.741179099064768, 5.741179099064768, 5.499998334417324, 5.499998334417324, 5.292891857492317, 5.292891857492317, 5.133973632641645, 5.133973632641645, 5.034073674424302, 5.034073674424302, 5.000000000001864, 5.000000000001864, 5.034074674010756, 5.034074674010756, 5.133975563693932, 5.133975563693932, 5.292894588412649, 5.292894588412649, 5.500001679098777, 5.500001679098777, 5.741182829572183, 5.741182829572183, 6.000001942755946, 6.000001942755946, 6.258820923544102, 6.258820923544102, 6.500001685853221, 6.500001685853221, 6.7071081590584996, 6.7071081590584996, 6.866026379061989, 6.866026379061989, 6.965926331633685, 6.965926331633685, 6.99999999999809, 6.99999999999809, 6.965925319931168, 6.965925319931168, 6.866024424602811, 6.866024424602811, 6.707105395035827, 6.707105395035827, 6.499998300630632, 6.499998300630632, 6.258817147818926, 6.258817147818926, 5.999998033837619, 5.999998033837619, 5.741179053847031, 5.741179053847031, 5.499998293875446, 5.499998293875446, 5.292891824390041, 5.292891824390041, 5.133973609234833, 5.133973609234833, 5.034073662308328, 5.034073662308328, 5.000000000001956, 5.000000000001956, 5.034074686127143, 5.034074686127143, 5.133975587100901, 5.133975587100901, 5.292894621515055, 5.292894621515055, 5.500001719639958, 5.500001719639958, 5.741182874789967, 5.741182874789967, 6.000001989568817, 6.000001989568817, 6.258820968762716, 6.258820968762716, 6.500001726395098, 6.500001726395098, 6.707108192160776, 6.707108192160776, 6.866026402468344, 6.866026402468344, 6.965926343749658, 6.965926343749658, 6.999999999997997, 6.999999999997997, 6.965925307814781, 6.965925307814781, 6.8660244011958405, 6.8660244011958405, 6.707105361934063, 6.707105361934063, 6.499998260089451, 6.499998260089451, 6.258817102600262, 6.258817102600262, 5.999997987023838, 5.999997987023838, 5.741179008628416, 5.741179008628416, 5.4999982533343585, 5.4999982533343585, 5.292891791288408, 5.292891791288408, 5.133973585828024, 5.133973585828024, 5.034073650192121, 5.034073650192121, 5.00000000000205, 5.00000000000205, 5.034074698243296, 5.034074698243296, 5.1339756105074175, 5.1339756105074175, 5.29289465461682, 5.29289465461682, 5.500001760181928, 5.500001760181928, 5.74118292000863, 5.74118292000863, 6.000002036382597, 6.000002036382597, 6.2588210139804525, 6.2588210139804525, 6.500001766936185, 6.500001766936185, 6.70710822526305, 6.70710822526305, 6.866026425875152, 6.866026425875152, 6.965926355865864, 6.965926355865864, 6.999999999997903, 6.999999999997903, 6.965925295698627, 6.965925295698627, 6.866024377788869, 6.866024377788869, 6.707105328831655, 6.707105328831655, 6.49999821954748, 6.49999821954748, 6.258817057382477, 6.258817057382477, 5.999997940210968, 5.999997940210968, 5.741178963409801, 5.741178963409801, 5.499998212792484, 5.499998212792484, 5.292891758186135, 5.292891758186135, 5.133973562421673, 5.133973562421673, 5.034073638076151, 5.034073638076151, 5.000000000002146, 5.000000000002146, 5.034074710359686, 5.034074710359686, 5.133975633914391, 5.133975633914391, 5.292894687719229, 5.292894687719229, 5.500001800723111, 5.500001800723111, 5.7411829652264155, 5.7411829652264155, 6.000002083196376, 6.000002083196376, 6.258821059199066, 6.258821059199066, 6.50000180747806, 6.50000180747806, 6.70710825836468, 6.70710825836468, 6.866026449281503, 6.866026449281503, 6.965926367982068, 6.965926367982068, 6.999999999997805, 6.999999999997805, 6.965925283582235, 6.965925283582235, 6.86602435438235, 6.86602435438235, 6.707105295729888, 6.707105295729888, 6.49999817900551, 6.49999817900551, 6.258817012163813, 6.258817012163813, 5.999997893397189, 5.999997893397189, 5.741178918192066, 5.741178918192066, 5.499998172251398, 5.499998172251398, 5.292891725084506, 5.292891725084506, 5.1339735390148675, 5.1339735390148675, 5.034073625959948, 5.034073625959948, 5.0000000000022435, 5.0000000000022435, 5.034074722475843, 5.034074722475843, 5.133975657320911, 5.133975657320911, 5.292894720821639, 5.292894720821639, 5.500001841265083, 5.500001841265083, 5.74118301044508, 5.74118301044508, 6.000002130009247, 6.000002130009247, 6.258821104416802, 6.258821104416802, 6.500001848019933, 6.500001848019933, 6.707108291466951, 6.707108291466951, 6.866026472688307, 6.866026472688307, 6.965926380098035, 6.965926380098035, 6.999999999997707, 6.999999999997707, 6.965925271465842, 6.965925271465842, 6.866024330975374, 6.866024330975374, 6.7071052626274765, 6.7071052626274765, 6.499998138464325, 6.499998138464325, 6.258816966946027, 6.258816966946027, 5.999997846584318, 5.999997846584318, 5.741178872973453, 5.741178872973453, 5.499998131709525, 5.499998131709525, 5.292891691982236, 5.292891691982236, 5.133973515608519, 5.133973515608519, 5.034073613843982, 5.034073613843982, 5.000000000002344, 5.000000000002344, 5.034074734592238, 5.034074734592238, 5.133975680727888, 5.133975680727888, 5.292894753923409, 5.292894753923409, 5.500001881806268, 5.500001881806268, 5.741183055663745, 5.741183055663745, 6.000002176823027, 6.000002176823027, 6.2588211496354145, 6.2588211496354145, 6.500001888561017, 6.500001888561017, 6.707108324568577, 6.707108324568577, 6.86602649609511, 6.86602649609511, 6.965926392214235, 6.965926392214235, 6.9999999999976055, 6.9999999999976055, 6.965925259349682, 6.965925259349682, 6.866024307568851, 6.866024307568851, 6.707105229525706, 6.707105229525706, 6.499998097922352, 6.499998097922352, 6.2588169217273615, 6.2588169217273615, 5.999997799770538, 5.999997799770538, 5.741178827755719, 5.741178827755719, 5.499998091168441, 5.499998091168441, 5.292891658879967, 5.292891658879967, 5.133973492201718, 5.133973492201718, 5.034073601727783, 5.034073601727783, 5.000000000002446, 5.000000000002446, 5.0340747467083995, 5.0340747467083995, 5.133975704134866, 5.133975704134866, 5.292894787025823, 5.292894787025823, 5.500001922348242, 5.500001922348242, 5.741183100881532, 5.741183100881532, 6.000002223635897, 6.000002223635897, 6.258821194854026, 6.258821194854026, 6.500001929102888, 6.500001929102888, 6.707108357670846, 6.707108357670846, 6.866026519501455, 6.866026519501455, 6.965926404330197, 6.965926404330197, 6.9999999999975016, 6.9999999999975016, 6.965925247233284, 6.965925247233284, 6.86602428416187, 6.86602428416187, 6.707105196423292, 6.707105196423292, 6.499998057381164, 6.499998057381164, 6.258816876509574, 6.258816876509574, 5.999997752956759, 5.999997752956759, 5.741178782537107, 5.741178782537107, 5.499998050626571, 5.499998050626571, 5.292891625778342, 5.292891625778342, 5.133973468795372, 5.133973468795372, 5.0340735896115865, 5.0340735896115865, 5.000000000002551, 5.000000000002551, 5.034074758824798, 5.034074758824798, 5.133975727541393, 5.133975727541393, 5.292894820127595, 5.292894820127595, 5.5000019628902175, 5.5000019628902175, 5.741183146100198, 5.741183146100198, 6.000002270449677, 6.000002270449677, 6.258821240071759, 6.258821240071759, 6.500001969643971, 6.500001969643971, 6.707108390772469, 6.707108390772469, 6.866026542908253, 6.866026542908253, 6.965926416446393, 6.965926416446393, 6.999999999997396, 6.999999999997396, 6.965925235117119, 6.965925235117119, 6.866024260755344, 6.866024260755344, 6.707105163320875, 6.707105163320875, 6.499998016839188, 6.499998016839188, 6.258816831290908, 6.258816831290908, 5.999997706143888, 5.999997706143888, 5.741178737319374, 5.741178737319374, 5.499998010084701, 5.499998010084701, 5.292891592676076, 5.292891592676076, 5.133973445388575, 5.133973445388575, 5.034073577495628, 5.034073577495628, 5.000000000002657, 5.000000000002657, 5.034074770941199, 5.034074770941199, 5.133975750948375, 5.133975750948375, 5.2928948532300115, 5.2928948532300115, 5.500002003431406, 5.500002003431406, 5.741183191317987, 5.741183191317987, 6.000002317262547, 6.000002317262547, 6.258821285290371, 6.258821285290371, 6.500002010185839, 6.500002010185839, 6.707108423874734, 6.707108423874734, 6.866026566314596, 6.866026566314596, 6.9659264285623514, 6.9659264285623514, 6.9999999999972875, 6.9999999999972875, 6.965925223000717, 6.965925223000717, 6.86602423734836, 6.86602423734836, 6.707105130219101, 6.707105130219101, 6.499997976297999, 6.499997976297999, 6.258816786072241, 6.258816786072241, 5.999997659330108, 5.999997659330108, 5.741178692100763, 5.741178692100763, 5.499997969543621, 5.499997969543621, 5.292891559574455, 5.292891559574455, 5.133973421981779, 5.133973421981779, 5.034073565379435, 5.034073565379435, 5.000000000002767, 5.000000000002767, 5.034074783057367, 5.034074783057367, 5.133975774354905, 5.133975774354905, 5.292894886331787, 5.292894886331787, 5.5000020439733825, 5.5000020439733825, 5.741183236536654, 5.741183236536654, 6.000002364076327, 6.000002364076327, 6.258821330508103, 6.258821330508103, 6.500002050726919, 6.500002050726919, 6.707108456976997, 6.707108456976997, 6.866026589721391, 6.866026589721391, 6.965926440678543, 6.965926440678543, 6.999999999997177, 6.999999999997177, 6.9659252108845475, 6.9659252108845475, 6.866024213941375, 6.866024213941375, 6.707105097116682, 6.707105097116682, 6.499997935756022, 6.499997935756022, 6.258816740854451, 6.258816740854451, 5.999997612517238, 5.999997612517238, 5.741178646882153, 5.741178646882153, 5.499997929001753, 5.499997929001753, 5.292891526472193, 5.292891526472193, 5.13397339857544, 5.13397339857544, 5.03407355326348, 5.03407355326348, 5.000000000002878, 5.000000000002878, 5.0340747951737725, 5.0340747951737725, 5.133975797761892, 5.133975797761892, 5.292894919434207, 5.292894919434207, 5.500002084514573, 5.500002084514573, 5.741183281754443, 5.741183281754443, 6.000002410890107, 6.000002410890107, 6.258821375726713, 6.258821375726713, 6.500002091268786, 6.500002091268786, 6.707108490078617, 6.707108490078617, 6.866026613127728, 6.866026613127728, 6.965926452794733, 6.965926452794733, 6.9999999999970655, 6.9999999999970655, 6.965925198768142, 6.965925198768142, 6.8660241905348425, 6.8660241905348425, 6.707105064014904, 6.707105064014904, 6.499997895214043, 6.499997895214043, 6.258816695635783, 6.258816695635783, 5.999997565703458, 5.999997565703458, 5.741178601664422, 5.741178601664422, 5.499997888460675, 5.499997888460675, 5.292891493370575, 5.292891493370575, 5.133973375168649, 5.133973375168649, 5.034073541147292, 5.034073541147292, 5.000000000002991, 5.000000000002991, 5.034074807289945, 5.034074807289945, 5.133975821168425, 5.133975821168425, 5.292894952536629, 5.292894952536629, 5.500002125056553, 5.500002125056553, 5.741183326973112, 5.741183326973112, 6.000002457702977, 6.000002457702977, 6.258821420944444, 6.258821420944444, 6.500002131810652, 6.500002131810652, 6.707108523180877, 6.707108523180877, 6.866026636534519, 6.866026636534519, 6.965926464910685, 6.965926464910685, 6.999999999996951, 6.999999999996951, 6.965925186651733, 6.965925186651733, 6.866024167127853, 6.866024167127853, 6.707105030912482, 6.707105030912482, 6.49999785467285, 6.49999785467285, 6.258816650417993, 6.258816650417993, 5.999997518890588, 5.999997518890588, 5.741178556445813, 5.741178556445813, 5.49999784791881, 5.49999784791881, 5.292891460268315, 5.292891460268315, 5.133973351762314, 5.133973351762314, 5.034073529031341, 5.034073529031341, 5.000000000003107, 5.000000000003107, 5.034074819406354, 5.034074819406354, 5.133975844575415, 5.133975844575415, 5.292894985638409, 5.292894985638409, 5.500002165597746, 5.500002165597746, 5.741183372191781, 5.741183372191781, 6.000002504516757, 6.000002504516757, 6.258821466163052, 6.258821466163052, 6.500002172351728, 6.500002172351728, 6.707108556282493, 6.707108556282493, 6.8660266599413085, 6.8660266599413085, 6.965926477026869, 6.965926477026869, 6.9999999999968345, 6.9999999999968345, 6.965925174535558, 6.965925174535558, 6.866024143721317, 6.866024143721317, 6.707104997810701, 6.707104997810701, 6.49999781413087, 6.49999781413087, 6.258816605199324, 6.258816605199324, 5.999997472076808, 5.999997472076808, 5.741178511228083, 5.741178511228083, 5.499997807377734, 5.499997807377734, 5.29297775466854, 5.29297775466854, 5.134079057408345, 5.134079057408345, 5.034191442257982, 5.034191442257982, 5.000122085218705, 5.000122085218705, 5.034192756704862, 5.034192756704862, 5.134081596725176, 5.134081596725176, 5.292981345804837, 5.292981345804837, 5.50006324847813, 5.50006324847813, 5.741215015087827, 5.741215015087827, 6.000002551018148, 6.000002551018148, 6.258789913101673, 6.258789913101673, 6.499941170015689, 6.499941170015689, 6.707022261880247, 6.707022261880247, 6.865920954293392, 6.865920954293392, 6.965808563799252, 6.965808563799252, 6.999877914781235, 6.999877914781235, 6.965807237237553, 6.965807237237553, 6.865601205348964, 6.865601205348964, 6.705292096406619, 6.705292096406619, 6.493527285981263, 6.493527285981263, 6.242069791969054, 6.242069791969054, 5.999998115862116, 5.999998115862116, 5.912061979111753, 5.912061979111753, 5.955804954607395, 5.955804954607395, 5.987309856541017, 5.987309856541017 ] } } }, "7a62c17a55544d42920816325e1a1959": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": {} }, "7c73001ae93544b19f05d18a3b674848": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#ff7f0e" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS1_m2" ], "scales": { "x": "IPY_MODEL_8342a76ecdda4fb9a4e600d8ab8fc329", "y": "IPY_MODEL_30d949e7ba5846e89f696eade5e275c3" }, "selected": [], "tooltip": "IPY_MODEL_de89493a5a54462aa3afafdeebcc5adf", "x": { "type": "float", "values": [ 0, 100, 100, 1100 ] }, "y": { "type": "float", "values": [ 3, 3, 2, 2 ] } } }, "7dbdbb3b142f43269fa741441883ff11": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "ToolbarModel", "state": { "figure": "IPY_MODEL_ddd19c8b9e194e08a9942e939bec829a", "layout": "IPY_MODEL_92263012278b492a9f1b6c4f0ff56c42" } }, "8342a76ecdda4fb9a4e600d8ab8fc329": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "stabilized": false } }, "878486d7bb834d1891aed2a021fad962": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "FigureModel", "state": { "_dom_classes": [], "animation_duration": 50, "axes": [ "IPY_MODEL_072cf286cd1d471bb1b8766a79641d91", "IPY_MODEL_d7ab204b03e24cfa8d4159f02ba14287" ], "layout": "IPY_MODEL_5ad23175c43b4d0db10f2e5232f30cb5", "marks": [ "IPY_MODEL_12f876e9421b40429141e35e1eea7954", "IPY_MODEL_2ed12d1557984347b7cb67660a9ebc16", "IPY_MODEL_385459ae10754d14b779ad18351d672f", "IPY_MODEL_b584ff40c57945878ce435747b67111c", "IPY_MODEL_aafad6bc42b041b699d43cb2d1fe5c2c" ], "scale_x": "IPY_MODEL_19e1aafd7f63482195d9af28dee252e4", "scale_y": "IPY_MODEL_36d96bdd5b284556a2073db0e65f128f", "title": "Waveform Plotter" } }, "893ac633d30d4e9ca175cc0aaac5e3ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": {} }, "8d324a24ca1f4a449af7987e58c3e72d": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "allow_padding": false, "max": 1, "min": 0, "stabilized": false } }, "8d3d28f582504308b011c6e283382a08": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "FigureModel", "state": { "_dom_classes": [], "animation_duration": 50, "axes": [ "IPY_MODEL_d829e29c146e4ece8f6f5b8c4f12b6b9", "IPY_MODEL_53dca7485c1a4053b2efd051f21742fd" ], "layout": "IPY_MODEL_a44c381dd7c54036aae5f46845e47ba3", "marks": [ "IPY_MODEL_918842bceca14fc9b748793a392f622b", "IPY_MODEL_7c73001ae93544b19f05d18a3b674848", "IPY_MODEL_d638ae4f6976431795a33ba1b24ec4d6", "IPY_MODEL_7a061f2853d949568f68550f3c362e1b", "IPY_MODEL_db86edeb23c44827acf5b0a480f1dd2e" ], "scale_x": "IPY_MODEL_8d324a24ca1f4a449af7987e58c3e72d", "scale_y": "IPY_MODEL_b94d787734a54d0887d66a9c8b5e1214", "title": "Waveform Plotter" } }, "8e8ebdb406d4482ab5620aa6a4bff8ac": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "stabilized": false } }, "918842bceca14fc9b748793a392f622b": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#1f77b4" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS1_ch1" ], "scales": { "x": "IPY_MODEL_8342a76ecdda4fb9a4e600d8ab8fc329", "y": "IPY_MODEL_30d949e7ba5846e89f696eade5e275c3" }, "selected": [], "tooltip": "IPY_MODEL_de89493a5a54462aa3afafdeebcc5adf", "x": { "type": "float", "values": [ 0, 0.8333333333333334, 0.8333333333333334, 1.6666666666666667, 1.6666666666666667, 2.5, 2.5, 3.3333333333333335, 3.3333333333333335, 4.166666666666667, 4.166666666666667, 5, 5, 5.833333333333333, 5.833333333333333, 6.666666666666667, 6.666666666666667, 7.500000000000001, 7.500000000000001, 8.333333333333334, 8.333333333333334, 9.166666666666666, 9.166666666666666, 10, 10, 10.833333333333334, 10.833333333333334, 11.666666666666666, 11.666666666666666, 12.5, 12.5, 13.333333333333334, 13.333333333333334, 14.166666666666668, 14.166666666666668, 15.000000000000002, 15.000000000000002, 15.833333333333332, 15.833333333333332, 16.666666666666668, 16.666666666666668, 17.5, 17.5, 18.333333333333332, 18.333333333333332, 19.166666666666668, 19.166666666666668, 20, 20, 100, 100, 1100 ] }, "y": { "type": "float", "values": [ 0.04541570015871078, 0.04541570015871078, 0.10438285923574656, 0.10438285923574656, 0.17800024417043095, 0.17800024417043095, 0.2661457697472836, 0.2661457697472836, 0.36747649859602, 0.36747649859602, 0.4786961298986693, 0.4786961298986693, 0.5946770846050543, 0.5946770846050543, 0.7087046758637529, 0.7087046758637529, 0.8132096203149799, 0.8132096203149799, 0.9003784641679893, 0.9003784641679893, 0.9630081797094372, 0.9630081797094372, 0.9957270174581858, 0.9957270174581858, 0.9957270174581858, 0.9957270174581858, 0.9630081797094372, 0.9630081797094372, 0.9003784641679893, 0.9003784641679893, 0.8132096203149799, 0.8132096203149799, 0.7087046758637529, 0.7087046758637529, 0.5946770846050543, 0.5946770846050543, 0.4786961298986693, 0.4786961298986693, 0.36747649859602, 0.36747649859602, 0.2661457697472836, 0.2661457697472836, 0.17800024417043095, 0.17800024417043095, 0.10438285923574656, 0.10438285923574656, 0.04541570015871078, 0.04541570015871078, 0, 0, 0, 0 ] } } }, "92263012278b492a9f1b6c4f0ff56c42": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": {} }, "94472b136d2c40a9805b6ad94b3ebaaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.4.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_31750defe61d492594401d2b55a58b40", "IPY_MODEL_d6a9f12103894fce9f96e7f361f02fd6" ], "layout": "IPY_MODEL_41194916d55a407aab9dd1bd9ece870f" } }, "96231612b10340089312f47857d3890c": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "allow_padding": false, "max": 1, "min": 0, "stabilized": false } }, "9cf9e49671af4768939f815ee6f2f6de": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "AxisModel", "state": { "scale": "IPY_MODEL_f989834e0fd144cd95b580df0aaad5ab", "side": "bottom", "tick_values": { "type": null, "values": null } } }, "9e46c1e4a1aa4731995efd0536d84f82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.4.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "a44c381dd7c54036aae5f46845e47ba3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": { "min_width": "125px" } }, "a71a67a73d17471581bd9699c6803d86": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "max": 9, "min": -1, "stabilized": false } }, "aafad6bc42b041b699d43cb2d1fe5c2c": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#9467bd" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS2_m1" ], "scales": { "x": "IPY_MODEL_8e8ebdb406d4482ab5620aa6a4bff8ac", "y": "IPY_MODEL_a71a67a73d17471581bd9699c6803d86" }, "selected": [], "tooltip": "IPY_MODEL_1561859070ba41c48a54d5e58bddc084", "x": { "type": "float", "values": [ 0, 100, 100, 200, 200, 1100 ] }, "y": { "type": "float", "values": [ 8, 8, 9, 9, 8, 8 ] } } }, "ac135538e5624fb58eda02fa58dd9333": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": {} }, "add375242ff64f41ab228c922b92d020": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "AxisModel", "state": { "orientation": "vertical", "scale": "IPY_MODEL_e8e3f7bb389f4168be4a3f68b16bf18a", "side": "left", "tick_values": { "type": null, "values": null } } }, "af69c3cbfaee4e319d2c44b463c2983f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": {} }, "b584ff40c57945878ce435747b67111c": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#d62728" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS2_ch2" ], "scales": { "x": "IPY_MODEL_8e8ebdb406d4482ab5620aa6a4bff8ac", "y": "IPY_MODEL_a71a67a73d17471581bd9699c6803d86" }, "selected": [], "tooltip": "IPY_MODEL_1561859070ba41c48a54d5e58bddc084", "x": { "type": "float", "values": [ 0, 100, 100, 100.83333333333333, 100.83333333333333, 101.66666666666666, 101.66666666666666, 102.5, 102.5, 103.33333333333333, 103.33333333333333, 104.16666666666667, 104.16666666666667, 105, 105, 105.83333333333333, 105.83333333333333, 106.66666666666667, 106.66666666666667, 107.5, 107.5, 108.33333333333334, 108.33333333333334, 109.16666666666667, 109.16666666666667, 110, 110, 110.83333333333334, 110.83333333333334, 111.66666666666667, 111.66666666666667, 112.50000000000001, 112.50000000000001, 113.33333333333334, 113.33333333333334, 114.16666666666666, 114.16666666666666, 115, 115, 115.83333333333333, 115.83333333333333, 116.66666666666667, 116.66666666666667, 117.5, 117.5, 118.33333333333333, 118.33333333333333, 119.16666666666667, 119.16666666666667, 120.00000000000001, 120.00000000000001, 120.83333333333333, 120.83333333333333, 121.66666666666666, 121.66666666666666, 122.49999999999999, 122.49999999999999, 123.33333333333333, 123.33333333333333, 124.16666666666666, 124.16666666666666, 125, 125, 125.83333333333333, 125.83333333333333, 126.66666666666666, 126.66666666666666, 127.5, 127.5, 128.33333333333334, 128.33333333333334, 129.16666666666666, 129.16666666666666, 130, 130, 130.83333333333334, 130.83333333333334, 131.66666666666666, 131.66666666666666, 132.5, 132.5, 133.33333333333334, 133.33333333333334, 134.16666666666666, 134.16666666666666, 135, 135, 135.83333333333334, 135.83333333333334, 136.66666666666669, 136.66666666666669, 137.5, 137.5, 138.33333333333334, 138.33333333333334, 139.16666666666669, 139.16666666666669, 140, 140, 140.83333333333334, 140.83333333333334, 141.66666666666669, 141.66666666666669, 142.5, 142.5, 143.33333333333334, 143.33333333333334, 144.16666666666669, 144.16666666666669, 145.00000000000003, 145.00000000000003, 145.83333333333334, 145.83333333333334, 146.66666666666666, 146.66666666666666, 147.5, 147.5, 148.33333333333331, 148.33333333333331, 149.16666666666666, 149.16666666666666, 150, 150, 150.83333333333331, 150.83333333333331, 151.66666666666666, 151.66666666666666, 152.5, 152.5, 153.33333333333334, 153.33333333333334, 154.16666666666666, 154.16666666666666, 155, 155, 155.83333333333334, 155.83333333333334, 156.66666666666666, 156.66666666666666, 157.5, 157.5, 158.33333333333334, 158.33333333333334, 159.16666666666666, 159.16666666666666, 160, 160, 160.83333333333334, 160.83333333333334, 161.66666666666669, 161.66666666666669, 162.5, 162.5, 163.33333333333334, 163.33333333333334, 164.16666666666669, 164.16666666666669, 165, 165, 165.83333333333334, 165.83333333333334, 166.66666666666669, 166.66666666666669, 167.5, 167.5, 168.33333333333334, 168.33333333333334, 169.16666666666669, 169.16666666666669, 170, 170, 170.83333333333334, 170.83333333333334, 171.66666666666669, 171.66666666666669, 172.50000000000003, 172.50000000000003, 173.33333333333334, 173.33333333333334, 174.16666666666666, 174.16666666666666, 175, 175, 175.83333333333331, 175.83333333333331, 176.66666666666666, 176.66666666666666, 177.5, 177.5, 178.33333333333334, 178.33333333333334, 179.16666666666666, 179.16666666666666, 180, 180, 180.83333333333334, 180.83333333333334, 181.66666666666666, 181.66666666666666, 182.5, 182.5, 183.33333333333334, 183.33333333333334, 184.16666666666666, 184.16666666666666, 185, 185, 185.83333333333334, 185.83333333333334, 186.66666666666666, 186.66666666666666, 187.5, 187.5, 188.33333333333334, 188.33333333333334, 189.16666666666669, 189.16666666666669, 190, 190, 190.83333333333334, 190.83333333333334, 191.66666666666669, 191.66666666666669, 192.5, 192.5, 193.33333333333334, 193.33333333333334, 194.16666666666669, 194.16666666666669, 195, 195, 195.83333333333334, 195.83333333333334, 196.66666666666669, 196.66666666666669, 197.50000000000003, 197.50000000000003, 198.33333333333334, 198.33333333333334, 199.16666666666669, 199.16666666666669, 200, 200, 200.83333333333331, 200.83333333333331, 201.66666666666666, 201.66666666666666, 202.5, 202.5, 203.33333333333331, 203.33333333333331, 204.16666666666666, 204.16666666666666, 205, 205, 205.83333333333334, 205.83333333333334, 206.66666666666666, 206.66666666666666, 207.5, 207.5, 208.33333333333334, 208.33333333333334, 209.16666666666666, 209.16666666666666, 210, 210, 210.83333333333334, 210.83333333333334, 211.66666666666666, 211.66666666666666, 212.5, 212.5, 213.33333333333334, 213.33333333333334, 214.16666666666669, 214.16666666666669, 215, 215, 215.83333333333334, 215.83333333333334, 216.66666666666669, 216.66666666666669, 217.5, 217.5, 218.33333333333334, 218.33333333333334, 219.16666666666669, 219.16666666666669, 220, 220, 220.83333333333334, 220.83333333333334, 221.66666666666669, 221.66666666666669, 222.5, 222.5, 223.33333333333334, 223.33333333333334, 224.16666666666669, 224.16666666666669, 225.00000000000003, 225.00000000000003, 225.83333333333334, 225.83333333333334, 226.66666666666669, 226.66666666666669, 227.5, 227.5, 228.33333333333331, 228.33333333333331, 229.16666666666666, 229.16666666666666, 230, 230, 230.83333333333334, 230.83333333333334, 231.66666666666666, 231.66666666666666, 232.5, 232.5, 233.33333333333334, 233.33333333333334, 234.16666666666666, 234.16666666666666, 235, 235, 235.83333333333334, 235.83333333333334, 236.66666666666666, 236.66666666666666, 237.5, 237.5, 238.33333333333334, 238.33333333333334, 239.16666666666666, 239.16666666666666, 240.00000000000003, 240.00000000000003, 240.83333333333334, 240.83333333333334, 241.66666666666666, 241.66666666666666, 242.5, 242.5, 243.33333333333331, 243.33333333333331, 244.16666666666669, 244.16666666666669, 244.99999999999997, 244.99999999999997, 245.83333333333334, 245.83333333333334, 246.66666666666666, 246.66666666666666, 247.5, 247.5, 248.33333333333331, 248.33333333333331, 249.16666666666669, 249.16666666666669, 250, 250, 250.83333333333334, 250.83333333333334, 251.66666666666666, 251.66666666666666, 252.50000000000003, 252.50000000000003, 253.33333333333331, 253.33333333333331, 254.16666666666669, 254.16666666666669, 255, 255, 255.83333333333334, 255.83333333333334, 256.6666666666667, 256.6666666666667, 257.5, 257.5, 258.3333333333333, 258.3333333333333, 259.1666666666667, 259.1666666666667, 260, 260, 260.83333333333337, 260.83333333333337, 261.6666666666667, 261.6666666666667, 262.5, 262.5, 263.3333333333333, 263.3333333333333, 264.1666666666667, 264.1666666666667, 265, 265, 265.83333333333337, 265.83333333333337, 266.6666666666667, 266.6666666666667, 267.5, 267.5, 268.3333333333333, 268.3333333333333, 269.16666666666663, 269.16666666666663, 270, 270, 270.8333333333333, 270.8333333333333, 271.6666666666667, 271.6666666666667, 272.5, 272.5, 273.33333333333337, 273.33333333333337, 274.16666666666663, 274.16666666666663, 275, 275, 275.8333333333333, 275.8333333333333, 276.6666666666667, 276.6666666666667, 277.5, 277.5, 278.33333333333337, 278.33333333333337, 279.1666666666667, 279.1666666666667, 280, 280, 280.8333333333333, 280.8333333333333, 281.6666666666667, 281.6666666666667, 282.5, 282.5, 283.33333333333337, 283.33333333333337, 284.1666666666667, 284.1666666666667, 285, 285, 285.8333333333333, 285.8333333333333, 286.6666666666667, 286.6666666666667, 287.5, 287.5, 288.33333333333337, 288.33333333333337, 289.1666666666667, 289.1666666666667, 290.00000000000006, 290.00000000000006, 290.8333333333333, 290.8333333333333, 291.6666666666667, 291.6666666666667, 292.5, 292.5, 293.3333333333333, 293.3333333333333, 294.1666666666667, 294.1666666666667, 295, 295, 295.8333333333333, 295.8333333333333, 296.66666666666663, 296.66666666666663, 297.5, 297.5, 298.3333333333333, 298.3333333333333, 299.1666666666667, 299.1666666666667, 300, 300, 300.83333333333337, 300.83333333333337, 301.66666666666663, 301.66666666666663, 302.5, 302.5, 303.3333333333333, 303.3333333333333, 304.1666666666667, 304.1666666666667, 305, 305, 305.83333333333337, 305.83333333333337, 306.6666666666667, 306.6666666666667, 307.5, 307.5, 308.3333333333333, 308.3333333333333, 309.1666666666667, 309.1666666666667, 310, 310, 310.83333333333337, 310.83333333333337, 311.6666666666667, 311.6666666666667, 312.5, 312.5, 313.3333333333333, 313.3333333333333, 314.1666666666667, 314.1666666666667, 315, 315, 315.83333333333337, 315.83333333333337, 316.6666666666667, 316.6666666666667, 317.50000000000006, 317.50000000000006, 318.3333333333333, 318.3333333333333, 319.1666666666667, 319.1666666666667, 320, 320, 320.8333333333333, 320.8333333333333, 321.6666666666667, 321.6666666666667, 322.5, 322.5, 323.33333333333337, 323.33333333333337, 324.16666666666663, 324.16666666666663, 325, 325, 325.8333333333333, 325.8333333333333, 326.6666666666667, 326.6666666666667, 327.5, 327.5, 328.33333333333337, 328.33333333333337, 329.16666666666663, 329.16666666666663, 330, 330, 330.8333333333333, 330.8333333333333, 331.6666666666667, 331.6666666666667, 332.5, 332.5, 333.33333333333337, 333.33333333333337, 334.1666666666667, 334.1666666666667, 335, 335, 335.8333333333333, 335.8333333333333, 336.6666666666667, 336.6666666666667, 337.5, 337.5, 338.33333333333337, 338.33333333333337, 339.1666666666667, 339.1666666666667, 340, 340, 340.8333333333333, 340.8333333333333, 341.6666666666667, 341.6666666666667, 342.5, 342.5, 343.33333333333337, 343.33333333333337, 344.1666666666667, 344.1666666666667, 345.00000000000006, 345.00000000000006, 345.8333333333333, 345.8333333333333, 346.6666666666667, 346.6666666666667, 347.5, 347.5, 348.3333333333333, 348.3333333333333, 349.1666666666667, 349.1666666666667, 350, 350, 350.83333333333337, 350.83333333333337, 351.66666666666663, 351.66666666666663, 352.5, 352.5, 353.3333333333333, 353.3333333333333, 354.1666666666667, 354.1666666666667, 355, 355, 355.83333333333337, 355.83333333333337, 356.6666666666667, 356.6666666666667, 357.5, 357.5, 358.3333333333333, 358.3333333333333, 359.1666666666667, 359.1666666666667, 360, 360, 360.83333333333337, 360.83333333333337, 361.6666666666667, 361.6666666666667, 362.5, 362.5, 363.3333333333333, 363.3333333333333, 364.1666666666667, 364.1666666666667, 365, 365, 365.83333333333337, 365.83333333333337, 366.6666666666667, 366.6666666666667, 367.5, 367.5, 368.3333333333333, 368.3333333333333, 369.1666666666667, 369.1666666666667, 370, 370, 370.83333333333337, 370.83333333333337, 371.6666666666667, 371.6666666666667, 372.50000000000006, 372.50000000000006, 373.3333333333333, 373.3333333333333, 374.16666666666663, 374.16666666666663, 375, 375, 375.8333333333333, 375.8333333333333, 376.6666666666667, 376.6666666666667, 377.5, 377.5, 378.33333333333337, 378.33333333333337, 379.16666666666663, 379.16666666666663, 380, 380, 380.8333333333333, 380.8333333333333, 381.6666666666667, 381.6666666666667, 382.5, 382.5, 383.33333333333337, 383.33333333333337, 384.1666666666667, 384.1666666666667, 385, 385, 385.8333333333333, 385.8333333333333, 386.6666666666667, 386.6666666666667, 387.5, 387.5, 388.33333333333337, 388.33333333333337, 389.1666666666667, 389.1666666666667, 390, 390, 390.8333333333333, 390.8333333333333, 391.6666666666667, 391.6666666666667, 392.5, 392.5, 393.33333333333337, 393.33333333333337, 394.1666666666667, 394.1666666666667, 395.00000000000006, 395.00000000000006, 395.8333333333333, 395.8333333333333, 396.6666666666667, 396.6666666666667, 397.5, 397.5, 398.33333333333337, 398.33333333333337, 399.1666666666667, 399.1666666666667, 400, 400, 400.8333333333333, 400.8333333333333, 401.66666666666663, 401.66666666666663, 402.5, 402.5, 403.3333333333333, 403.3333333333333, 404.1666666666667, 404.1666666666667, 405, 405, 405.83333333333337, 405.83333333333337, 406.66666666666663, 406.66666666666663, 407.5, 407.5, 408.3333333333333, 408.3333333333333, 409.1666666666667, 409.1666666666667, 410, 410, 410.83333333333337, 410.83333333333337, 411.6666666666667, 411.6666666666667, 412.5, 412.5, 413.3333333333333, 413.3333333333333, 414.1666666666667, 414.1666666666667, 415, 415, 415.83333333333337, 415.83333333333337, 416.6666666666667, 416.6666666666667, 417.5, 417.5, 418.3333333333333, 418.3333333333333, 419.1666666666667, 419.1666666666667, 420, 420, 420.83333333333337, 420.83333333333337, 421.6666666666667, 421.6666666666667, 422.50000000000006, 422.50000000000006, 423.3333333333333, 423.3333333333333, 424.1666666666667, 424.1666666666667, 425, 425, 425.83333333333337, 425.83333333333337, 426.6666666666667, 426.6666666666667, 427.5, 427.5, 428.33333333333337, 428.33333333333337, 429.16666666666663, 429.16666666666663, 430, 430, 430.8333333333333, 430.8333333333333, 431.6666666666667, 431.6666666666667, 432.5, 432.5, 433.33333333333337, 433.33333333333337, 434.16666666666663, 434.16666666666663, 435, 435, 435.8333333333333, 435.8333333333333, 436.6666666666667, 436.6666666666667, 437.5, 437.5, 438.33333333333337, 438.33333333333337, 439.1666666666667, 439.1666666666667, 440, 440, 440.8333333333333, 440.8333333333333, 441.6666666666667, 441.6666666666667, 442.5, 442.5, 443.33333333333337, 443.33333333333337, 444.1666666666667, 444.1666666666667, 445, 445, 445.8333333333333, 445.8333333333333, 446.6666666666667, 446.6666666666667, 447.5, 447.5, 448.33333333333337, 448.33333333333337, 449.1666666666667, 449.1666666666667, 450.00000000000006, 450.00000000000006, 450.8333333333333, 450.8333333333333, 451.6666666666667, 451.6666666666667, 452.5, 452.5, 453.33333333333337, 453.33333333333337, 454.1666666666667, 454.1666666666667, 455, 455, 455.83333333333337, 455.83333333333337, 456.66666666666663, 456.66666666666663, 457.5, 457.5, 458.3333333333333, 458.3333333333333, 459.1666666666667, 459.1666666666667, 460, 460, 460.83333333333337, 460.83333333333337, 461.6666666666667, 461.6666666666667, 462.5, 462.5, 463.3333333333333, 463.3333333333333, 464.1666666666667, 464.1666666666667, 465, 465, 465.83333333333337, 465.83333333333337, 466.6666666666667, 466.6666666666667, 467.5, 467.5, 468.3333333333333, 468.3333333333333, 469.1666666666667, 469.1666666666667, 470, 470, 470.83333333333337, 470.83333333333337, 471.6666666666667, 471.6666666666667, 472.50000000000006, 472.50000000000006, 473.3333333333333, 473.3333333333333, 474.1666666666667, 474.1666666666667, 475, 475, 475.83333333333337, 475.83333333333337, 476.6666666666667, 476.6666666666667, 477.5, 477.5, 478.3333333333333, 478.3333333333333, 479.1666666666667, 479.1666666666667, 480.00000000000006, 480.00000000000006, 480.8333333333333, 480.8333333333333, 481.6666666666667, 481.6666666666667, 482.50000000000006, 482.50000000000006, 483.3333333333333, 483.3333333333333, 484.16666666666663, 484.16666666666663, 485, 485, 485.83333333333337, 485.83333333333337, 486.66666666666663, 486.66666666666663, 487.5, 487.5, 488.33333333333337, 488.33333333333337, 489.1666666666667, 489.1666666666667, 489.99999999999994, 489.99999999999994, 490.8333333333333, 490.8333333333333, 491.6666666666667, 491.6666666666667, 492.50000000000006, 492.50000000000006, 493.3333333333333, 493.3333333333333, 494.1666666666667, 494.1666666666667, 495, 495, 495.83333333333337, 495.83333333333337, 496.66666666666663, 496.66666666666663, 497.5, 497.5, 498.33333333333337, 498.33333333333337, 499.16666666666674, 499.16666666666674, 500, 500, 500.8333333333333, 500.8333333333333, 501.6666666666667, 501.6666666666667, 502.50000000000006, 502.50000000000006, 503.3333333333333, 503.3333333333333, 504.1666666666667, 504.1666666666667, 505.00000000000006, 505.00000000000006, 505.83333333333337, 505.83333333333337, 506.66666666666663, 506.66666666666663, 507.5, 507.5, 508.33333333333337, 508.33333333333337, 509.16666666666663, 509.16666666666663, 510, 510, 510.83333333333337, 510.83333333333337, 511.6666666666667, 511.6666666666667, 512.5, 512.5, 513.3333333333334, 513.3333333333334, 514.1666666666666, 514.1666666666666, 515, 515, 515.8333333333333, 515.8333333333333, 516.6666666666666, 516.6666666666666, 517.5, 517.5, 518.3333333333334, 518.3333333333334, 519.1666666666666, 519.1666666666666, 520, 520, 520.8333333333334, 520.8333333333334, 521.6666666666667, 521.6666666666667, 522.5, 522.5, 523.3333333333334, 523.3333333333334, 524.1666666666667, 524.1666666666667, 525, 525, 525.8333333333333, 525.8333333333333, 526.6666666666666, 526.6666666666666, 527.5, 527.5, 528.3333333333334, 528.3333333333334, 529.1666666666666, 529.1666666666666, 530, 530, 530.8333333333334, 530.8333333333334, 531.6666666666667, 531.6666666666667, 532.5, 532.5, 533.3333333333334, 533.3333333333334, 534.1666666666667, 534.1666666666667, 535, 535, 535.8333333333334, 535.8333333333334, 536.6666666666666, 536.6666666666666, 537.5, 537.5, 538.3333333333333, 538.3333333333333, 539.1666666666666, 539.1666666666666, 540, 540, 540.8333333333334, 540.8333333333334, 541.6666666666666, 541.6666666666666, 542.5, 542.5, 543.3333333333334, 543.3333333333334, 544.1666666666667, 544.1666666666667, 545, 545, 545.8333333333334, 545.8333333333334, 546.6666666666667, 546.6666666666667, 547.5, 547.5, 548.3333333333333, 548.3333333333333, 549.1666666666666, 549.1666666666666, 550, 550, 550.8333333333334, 550.8333333333334, 551.6666666666666, 551.6666666666666, 552.5, 552.5, 553.3333333333334, 553.3333333333334, 554.1666666666667, 554.1666666666667, 555, 555, 555.8333333333334, 555.8333333333334, 556.6666666666667, 556.6666666666667, 557.5000000000001, 557.5000000000001, 558.3333333333334, 558.3333333333334, 559.1666666666666, 559.1666666666666, 560, 560, 560.8333333333333, 560.8333333333333, 561.6666666666666, 561.6666666666666, 562.5, 562.5, 563.3333333333334, 563.3333333333334, 564.1666666666666, 564.1666666666666, 565, 565, 565.8333333333334, 565.8333333333334, 566.6666666666667, 566.6666666666667, 567.5, 567.5, 568.3333333333334, 568.3333333333334, 569.1666666666667, 569.1666666666667, 570, 570, 570.8333333333333, 570.8333333333333, 571.6666666666666, 571.6666666666666, 572.5, 572.5, 573.3333333333334, 573.3333333333334, 574.1666666666666, 574.1666666666666, 575, 575, 575.8333333333334, 575.8333333333334, 576.6666666666667, 576.6666666666667, 577.5, 577.5, 578.3333333333334, 578.3333333333334, 579.1666666666667, 579.1666666666667, 580.0000000000001, 580.0000000000001, 580.8333333333333, 580.8333333333333, 581.6666666666666, 581.6666666666666, 582.5, 582.5, 583.3333333333334, 583.3333333333334, 584.1666666666666, 584.1666666666666, 585, 585, 585.8333333333334, 585.8333333333334, 586.6666666666666, 586.6666666666666, 587.5, 587.5, 588.3333333333334, 588.3333333333334, 589.1666666666667, 589.1666666666667, 590, 590, 590.8333333333334, 590.8333333333334, 591.6666666666666, 591.6666666666666, 592.5, 592.5, 593.3333333333333, 593.3333333333333, 594.1666666666666, 594.1666666666666, 595, 595, 595.8333333333334, 595.8333333333334, 596.6666666666666, 596.6666666666666, 597.5, 597.5, 598.3333333333334, 598.3333333333334, 599.1666666666667, 599.1666666666667, 600, 600, 600.8333333333334, 600.8333333333334, 601.6666666666667, 601.6666666666667, 602.5, 602.5, 603.3333333333333, 603.3333333333333, 604.1666666666666, 604.1666666666666, 605, 605, 605.8333333333334, 605.8333333333334, 606.6666666666666, 606.6666666666666, 607.5, 607.5, 608.3333333333334, 608.3333333333334, 609.1666666666667, 609.1666666666667, 610, 610, 610.8333333333334, 610.8333333333334, 611.6666666666667, 611.6666666666667, 612.5000000000001, 612.5000000000001, 613.3333333333334, 613.3333333333334, 614.1666666666666, 614.1666666666666, 615, 615, 615.8333333333333, 615.8333333333333, 616.6666666666666, 616.6666666666666, 617.5, 617.5, 618.3333333333334, 618.3333333333334, 619.1666666666666, 619.1666666666666, 620, 620, 620.8333333333334, 620.8333333333334, 621.6666666666667, 621.6666666666667, 622.5, 622.5, 623.3333333333334, 623.3333333333334, 624.1666666666667, 624.1666666666667, 625, 625, 625.8333333333333, 625.8333333333333, 626.6666666666666, 626.6666666666666, 627.5, 627.5, 628.3333333333334, 628.3333333333334, 629.1666666666666, 629.1666666666666, 630, 630, 630.8333333333334, 630.8333333333334, 631.6666666666667, 631.6666666666667, 632.5, 632.5, 633.3333333333334, 633.3333333333334, 634.1666666666667, 634.1666666666667, 635.0000000000001, 635.0000000000001, 635.8333333333334, 635.8333333333334, 636.6666666666666, 636.6666666666666, 637.5, 637.5, 638.3333333333334, 638.3333333333334, 639.1666666666666, 639.1666666666666, 640, 640, 640.8333333333334, 640.8333333333334, 641.6666666666666, 641.6666666666666, 642.5, 642.5, 643.3333333333334, 643.3333333333334, 644.1666666666667, 644.1666666666667, 645, 645, 645.8333333333334, 645.8333333333334, 646.6666666666667, 646.6666666666667, 647.5, 647.5, 648.3333333333333, 648.3333333333333, 649.1666666666666, 649.1666666666666, 650, 650, 650.8333333333334, 650.8333333333334, 651.6666666666666, 651.6666666666666, 652.5, 652.5, 653.3333333333334, 653.3333333333334, 654.1666666666667, 654.1666666666667, 655, 655, 655.8333333333334, 655.8333333333334, 656.6666666666667, 656.6666666666667, 657.5000000000001, 657.5000000000001, 658.3333333333333, 658.3333333333333, 659.1666666666666, 659.1666666666666, 660, 660, 660.8333333333334, 660.8333333333334, 661.6666666666666, 661.6666666666666, 662.5, 662.5, 663.3333333333334, 663.3333333333334, 664.1666666666667, 664.1666666666667, 665, 665, 665.8333333333334, 665.8333333333334, 666.6666666666667, 666.6666666666667, 667.5, 667.5, 668.3333333333334, 668.3333333333334, 669.1666666666666, 669.1666666666666, 670, 670, 670.8333333333333, 670.8333333333333, 671.6666666666666, 671.6666666666666, 672.5, 672.5, 673.3333333333334, 673.3333333333334, 674.1666666666666, 674.1666666666666, 675, 675, 675.8333333333334, 675.8333333333334, 676.6666666666667, 676.6666666666667, 677.5, 677.5, 678.3333333333334, 678.3333333333334, 679.1666666666667, 679.1666666666667, 680, 680, 680.8333333333333, 680.8333333333333, 681.6666666666666, 681.6666666666666, 682.5, 682.5, 683.3333333333334, 683.3333333333334, 684.1666666666666, 684.1666666666666, 685, 685, 685.8333333333334, 685.8333333333334, 686.6666666666667, 686.6666666666667, 687.5, 687.5, 688.3333333333334, 688.3333333333334, 689.1666666666667, 689.1666666666667, 690.0000000000001, 690.0000000000001, 690.8333333333334, 690.8333333333334, 691.6666666666666, 691.6666666666666, 692.5, 692.5, 693.3333333333334, 693.3333333333334, 694.1666666666666, 694.1666666666666, 695, 695, 695.8333333333334, 695.8333333333334, 696.6666666666666, 696.6666666666666, 697.5, 697.5, 698.3333333333334, 698.3333333333334, 699.1666666666667, 699.1666666666667, 700, 700, 700.8333333333334, 700.8333333333334, 701.6666666666667, 701.6666666666667, 702.5, 702.5, 703.3333333333333, 703.3333333333333, 704.1666666666666, 704.1666666666666, 705, 705, 705.8333333333334, 705.8333333333334, 706.6666666666666, 706.6666666666666, 707.5, 707.5, 708.3333333333334, 708.3333333333334, 709.1666666666667, 709.1666666666667, 710, 710, 710.8333333333334, 710.8333333333334, 711.6666666666667, 711.6666666666667, 712.5000000000001, 712.5000000000001, 713.3333333333334, 713.3333333333334, 714.1666666666666, 714.1666666666666, 715, 715, 715.8333333333334, 715.8333333333334, 716.6666666666666, 716.6666666666666, 717.5, 717.5, 718.3333333333334, 718.3333333333334, 719.1666666666667, 719.1666666666667, 720, 720, 720.8333333333334, 720.8333333333334, 721.6666666666667, 721.6666666666667, 722.5, 722.5, 723.3333333333334, 723.3333333333334, 724.1666666666667, 724.1666666666667, 725, 725, 725.8333333333333, 725.8333333333333, 726.6666666666666, 726.6666666666666, 727.5, 727.5, 728.3333333333334, 728.3333333333334, 729.1666666666666, 729.1666666666666, 730, 730, 730.8333333333334, 730.8333333333334, 731.6666666666667, 731.6666666666667, 732.5, 732.5, 733.3333333333334, 733.3333333333334, 734.1666666666667, 734.1666666666667, 735, 735, 735.8333333333333, 735.8333333333333, 736.6666666666666, 736.6666666666666, 737.5, 737.5, 738.3333333333334, 738.3333333333334, 739.1666666666666, 739.1666666666666, 740, 740, 740.8333333333334, 740.8333333333334, 741.6666666666667, 741.6666666666667, 742.5, 742.5, 743.3333333333334, 743.3333333333334, 744.1666666666667, 744.1666666666667, 745.0000000000001, 745.0000000000001, 745.8333333333334, 745.8333333333334, 746.6666666666666, 746.6666666666666, 747.5, 747.5, 748.3333333333333, 748.3333333333333, 749.1666666666666, 749.1666666666666, 750, 750, 750.8333333333334, 750.8333333333334, 751.6666666666666, 751.6666666666666, 752.5, 752.5, 753.3333333333334, 753.3333333333334, 754.1666666666667, 754.1666666666667, 755, 755, 755.8333333333334, 755.8333333333334, 756.6666666666667, 756.6666666666667, 757.5, 757.5, 758.3333333333333, 758.3333333333333, 759.1666666666666, 759.1666666666666, 760, 760, 760.8333333333334, 760.8333333333334, 761.6666666666666, 761.6666666666666, 762.5, 762.5, 763.3333333333334, 763.3333333333334, 764.1666666666667, 764.1666666666667, 765, 765, 765.8333333333334, 765.8333333333334, 766.6666666666667, 766.6666666666667, 767.5000000000001, 767.5000000000001, 768.3333333333334, 768.3333333333334, 769.1666666666666, 769.1666666666666, 770, 770, 770.8333333333334, 770.8333333333334, 771.6666666666666, 771.6666666666666, 772.5, 772.5, 773.3333333333334, 773.3333333333334, 774.1666666666666, 774.1666666666666, 775, 775, 775.8333333333334, 775.8333333333334, 776.6666666666667, 776.6666666666667, 777.5, 777.5, 778.3333333333334, 778.3333333333334, 779.1666666666667, 779.1666666666667, 780, 780, 780.8333333333333, 780.8333333333333, 781.6666666666666, 781.6666666666666, 782.5, 782.5, 783.3333333333334, 783.3333333333334, 784.1666666666666, 784.1666666666666, 785, 785, 785.8333333333334, 785.8333333333334, 786.6666666666667, 786.6666666666667, 787.5, 787.5, 788.3333333333334, 788.3333333333334, 789.1666666666667, 789.1666666666667, 790.0000000000001, 790.0000000000001, 790.8333333333333, 790.8333333333333, 791.6666666666666, 791.6666666666666, 792.5, 792.5, 793.3333333333334, 793.3333333333334, 794.1666666666666, 794.1666666666666, 795, 795, 795.8333333333334, 795.8333333333334, 796.6666666666667, 796.6666666666667, 797.5, 797.5, 798.3333333333334, 798.3333333333334, 799.1666666666667, 799.1666666666667, 800, 800, 800.8333333333334, 800.8333333333334, 801.6666666666666, 801.6666666666666, 802.5, 802.5, 803.3333333333333, 803.3333333333333, 804.1666666666666, 804.1666666666666, 805, 805, 805.8333333333334, 805.8333333333334, 806.6666666666666, 806.6666666666666, 807.5, 807.5, 808.3333333333334, 808.3333333333334, 809.1666666666667, 809.1666666666667, 810, 810, 810.8333333333334, 810.8333333333334, 811.6666666666667, 811.6666666666667, 812.5, 812.5, 813.3333333333333, 813.3333333333333, 814.1666666666666, 814.1666666666666, 815, 815, 815.8333333333334, 815.8333333333334, 816.6666666666666, 816.6666666666666, 817.5, 817.5, 818.3333333333334, 818.3333333333334, 819.1666666666667, 819.1666666666667, 820, 820, 820.8333333333334, 820.8333333333334, 821.6666666666667, 821.6666666666667, 822.5000000000001, 822.5000000000001, 823.3333333333334, 823.3333333333334, 824.1666666666666, 824.1666666666666, 825, 825, 825.8333333333334, 825.8333333333334, 826.6666666666666, 826.6666666666666, 827.5, 827.5, 828.3333333333334, 828.3333333333334, 829.1666666666666, 829.1666666666666, 830, 830, 830.8333333333334, 830.8333333333334, 831.6666666666667, 831.6666666666667, 832.5, 832.5, 833.3333333333334, 833.3333333333334, 834.1666666666667, 834.1666666666667, 835, 835, 835.8333333333333, 835.8333333333333, 836.6666666666666, 836.6666666666666, 837.5, 837.5, 838.3333333333334, 838.3333333333334, 839.1666666666666, 839.1666666666666, 840, 840, 840.8333333333334, 840.8333333333334, 841.6666666666667, 841.6666666666667, 842.5, 842.5, 843.3333333333334, 843.3333333333334, 844.1666666666667, 844.1666666666667, 845.0000000000001, 845.0000000000001, 845.8333333333334, 845.8333333333334, 846.6666666666666, 846.6666666666666, 847.5, 847.5, 848.3333333333334, 848.3333333333334, 849.1666666666666, 849.1666666666666, 850, 850, 850.8333333333334, 850.8333333333334, 851.6666666666667, 851.6666666666667, 852.5, 852.5, 853.3333333333334, 853.3333333333334, 854.1666666666667, 854.1666666666667, 855, 855, 855.8333333333334, 855.8333333333334, 856.6666666666667, 856.6666666666667, 857.5, 857.5, 858.3333333333333, 858.3333333333333, 859.1666666666666, 859.1666666666666, 860, 860, 860.8333333333334, 860.8333333333334, 861.6666666666666, 861.6666666666666, 862.5, 862.5, 863.3333333333334, 863.3333333333334, 864.1666666666667, 864.1666666666667, 865, 865, 865.8333333333334, 865.8333333333334, 866.6666666666667, 866.6666666666667, 867.5000000000001, 867.5000000000001, 868.3333333333333, 868.3333333333333, 869.1666666666666, 869.1666666666666, 870, 870, 870.8333333333334, 870.8333333333334, 871.6666666666666, 871.6666666666666, 872.5, 872.5, 873.3333333333334, 873.3333333333334, 874.1666666666667, 874.1666666666667, 875, 875, 875.8333333333334, 875.8333333333334, 876.6666666666667, 876.6666666666667, 877.5000000000001, 877.5000000000001, 878.3333333333334, 878.3333333333334, 879.1666666666666, 879.1666666666666, 880, 880, 880.8333333333333, 880.8333333333333, 881.6666666666666, 881.6666666666666, 882.5, 882.5, 883.3333333333334, 883.3333333333334, 884.1666666666666, 884.1666666666666, 885, 885, 885.8333333333334, 885.8333333333334, 886.6666666666667, 886.6666666666667, 887.5, 887.5, 888.3333333333334, 888.3333333333334, 889.1666666666667, 889.1666666666667, 890, 890, 890.8333333333333, 890.8333333333333, 891.6666666666666, 891.6666666666666, 892.5, 892.5, 893.3333333333334, 893.3333333333334, 894.1666666666666, 894.1666666666666, 895, 895, 895.8333333333334, 895.8333333333334, 896.6666666666667, 896.6666666666667, 897.5, 897.5, 898.3333333333334, 898.3333333333334, 899.1666666666667, 899.1666666666667, 900.0000000000001, 900.0000000000001, 900.8333333333334, 900.8333333333334, 901.6666666666666, 901.6666666666666, 902.5, 902.5, 903.3333333333334, 903.3333333333334, 904.1666666666666, 904.1666666666666, 905, 905, 905.8333333333334, 905.8333333333334, 906.6666666666667, 906.6666666666667, 907.5, 907.5, 908.3333333333334, 908.3333333333334, 909.1666666666667, 909.1666666666667, 910, 910, 910.8333333333334, 910.8333333333334, 911.6666666666667, 911.6666666666667, 912.5, 912.5, 913.3333333333333, 913.3333333333333, 914.1666666666666, 914.1666666666666, 915, 915, 915.8333333333334, 915.8333333333334, 916.6666666666666, 916.6666666666666, 917.5, 917.5, 918.3333333333334, 918.3333333333334, 919.1666666666667, 919.1666666666667, 920, 920, 920.8333333333334, 920.8333333333334, 921.6666666666667, 921.6666666666667, 922.5000000000001, 922.5000000000001, 923.3333333333334, 923.3333333333334, 924.1666666666666, 924.1666666666666, 925, 925, 925.8333333333334, 925.8333333333334, 926.6666666666666, 926.6666666666666, 927.5, 927.5, 928.3333333333334, 928.3333333333334, 929.1666666666667, 929.1666666666667, 930, 930, 930.8333333333334, 930.8333333333334, 931.6666666666667, 931.6666666666667, 932.5000000000001, 932.5000000000001, 933.3333333333334, 933.3333333333334, 934.1666666666667, 934.1666666666667, 935, 935, 935.8333333333333, 935.8333333333333, 936.6666666666666, 936.6666666666666, 937.5, 937.5, 938.3333333333334, 938.3333333333334, 939.1666666666666, 939.1666666666666, 940, 940, 940.8333333333334, 940.8333333333334, 941.6666666666667, 941.6666666666667, 942.5, 942.5, 943.3333333333334, 943.3333333333334, 944.1666666666667, 944.1666666666667, 945.0000000000001, 945.0000000000001, 945.8333333333333, 945.8333333333333, 946.6666666666666, 946.6666666666666, 947.5, 947.5, 948.3333333333334, 948.3333333333334, 949.1666666666666, 949.1666666666666, 950, 950, 950.8333333333334, 950.8333333333334, 951.6666666666667, 951.6666666666667, 952.5, 952.5, 953.3333333333334, 953.3333333333334, 954.1666666666667, 954.1666666666667, 955, 955, 955.8333333333335, 955.8333333333335, 956.6666666666666, 956.6666666666666, 957.4999999999999, 957.4999999999999, 958.3333333333334, 958.3333333333334, 959.1666666666666, 959.1666666666666, 960.0000000000001, 960.0000000000001, 960.8333333333334, 960.8333333333334, 961.6666666666666, 961.6666666666666, 962.5000000000001, 962.5000000000001, 963.3333333333334, 963.3333333333334, 964.1666666666666, 964.1666666666666, 965.0000000000001, 965.0000000000001, 965.8333333333334, 965.8333333333334, 966.6666666666666, 966.6666666666666, 967.5, 967.5, 968.3333333333333, 968.3333333333333, 969.1666666666667, 969.1666666666667, 970, 970, 970.8333333333333, 970.8333333333333, 971.6666666666667, 971.6666666666667, 972.5, 972.5, 973.3333333333333, 973.3333333333333, 974.1666666666667, 974.1666666666667, 975, 975, 975.8333333333335, 975.8333333333335, 976.6666666666667, 976.6666666666667, 977.5, 977.5, 978.3333333333334, 978.3333333333334, 979.1666666666666, 979.1666666666666, 979.9999999999999, 979.9999999999999, 980.8333333333334, 980.8333333333334, 981.6666666666666, 981.6666666666666, 982.5000000000001, 982.5000000000001, 983.3333333333334, 983.3333333333334, 984.1666666666666, 984.1666666666666, 985.0000000000001, 985.0000000000001, 985.8333333333334, 985.8333333333334, 986.6666666666666, 986.6666666666666, 987.5000000000001, 987.5000000000001, 988.3333333333334, 988.3333333333334, 989.1666666666666, 989.1666666666666, 990, 990, 990.8333333333333, 990.8333333333333, 991.6666666666667, 991.6666666666667, 992.5, 992.5, 993.3333333333333, 993.3333333333333, 994.1666666666667, 994.1666666666667, 995, 995, 995.8333333333333, 995.8333333333333, 996.6666666666667, 996.6666666666667, 997.5, 997.5, 998.3333333333335, 998.3333333333335, 999.1666666666667, 999.1666666666667, 1000, 1000, 1000.8333333333334, 1000.8333333333334, 1001.6666666666666, 1001.6666666666666, 1002.4999999999999, 1002.4999999999999, 1003.3333333333334, 1003.3333333333334, 1004.1666666666666, 1004.1666666666666, 1005.0000000000001, 1005.0000000000001, 1005.8333333333334, 1005.8333333333334, 1006.6666666666666, 1006.6666666666666, 1007.5000000000001, 1007.5000000000001, 1008.3333333333334, 1008.3333333333334, 1009.1666666666666, 1009.1666666666666, 1010.0000000000001, 1010.0000000000001, 1010.8333333333334, 1010.8333333333334, 1011.6666666666667, 1011.6666666666667, 1012.5, 1012.5, 1013.3333333333333, 1013.3333333333333, 1014.1666666666667, 1014.1666666666667, 1015, 1015, 1015.8333333333333, 1015.8333333333333, 1016.6666666666667, 1016.6666666666667, 1017.5, 1017.5, 1018.3333333333333, 1018.3333333333333, 1019.1666666666667, 1019.1666666666667, 1020, 1020, 1020.8333333333335, 1020.8333333333335, 1021.6666666666667, 1021.6666666666667, 1022.5, 1022.5, 1023.3333333333334, 1023.3333333333334, 1024.1666666666667, 1024.1666666666667, 1025, 1025, 1025.8333333333335, 1025.8333333333335, 1026.6666666666667, 1026.6666666666667, 1027.5000000000002, 1027.5000000000002, 1028.3333333333333, 1028.3333333333333, 1029.1666666666665, 1029.1666666666665, 1030, 1030, 1030.8333333333333, 1030.8333333333333, 1031.6666666666665, 1031.6666666666665, 1032.5, 1032.5, 1033.3333333333333, 1033.3333333333333, 1034.1666666666667, 1034.1666666666667, 1035, 1035, 1035.8333333333333, 1035.8333333333333, 1036.6666666666667, 1036.6666666666667, 1037.5, 1037.5, 1038.3333333333333, 1038.3333333333333, 1039.1666666666667, 1039.1666666666667, 1040, 1040, 1040.8333333333333, 1040.8333333333333, 1041.6666666666667, 1041.6666666666667, 1042.5, 1042.5, 1043.3333333333335, 1043.3333333333335, 1044.1666666666667, 1044.1666666666667, 1045, 1045, 1045.8333333333335, 1045.8333333333335, 1046.6666666666667, 1046.6666666666667, 1047.5, 1047.5, 1048.3333333333335, 1048.3333333333335, 1049.1666666666667, 1049.1666666666667, 1050, 1050, 1050.8333333333333, 1050.8333333333333, 1051.6666666666665, 1051.6666666666665, 1052.5, 1052.5, 1053.3333333333333, 1053.3333333333333, 1054.1666666666665, 1054.1666666666665, 1055, 1055, 1055.8333333333333, 1055.8333333333333, 1056.6666666666667, 1056.6666666666667, 1057.5, 1057.5, 1058.3333333333333, 1058.3333333333333, 1059.1666666666667, 1059.1666666666667, 1060, 1060, 1060.8333333333333, 1060.8333333333333, 1061.6666666666667, 1061.6666666666667, 1062.5, 1062.5, 1063.3333333333335, 1063.3333333333335, 1064.1666666666667, 1064.1666666666667, 1065, 1065, 1065.8333333333335, 1065.8333333333335, 1066.6666666666667, 1066.6666666666667, 1067.5, 1067.5, 1068.3333333333335, 1068.3333333333335, 1069.1666666666667, 1069.1666666666667, 1070, 1070, 1070.8333333333335, 1070.8333333333335, 1071.6666666666667, 1071.6666666666667, 1072.5, 1072.5, 1073.3333333333333, 1073.3333333333333, 1074.1666666666665, 1074.1666666666665, 1075, 1075, 1075.8333333333333, 1075.8333333333333, 1076.6666666666665, 1076.6666666666665, 1077.5, 1077.5, 1078.3333333333333, 1078.3333333333333, 1079.1666666666667, 1079.1666666666667, 1080, 1080, 1080.8333333333333, 1080.8333333333333, 1081.6666666666667, 1081.6666666666667, 1082.5, 1082.5, 1083.3333333333333, 1083.3333333333333, 1084.1666666666667, 1084.1666666666667, 1085, 1085, 1085.8333333333335, 1085.8333333333335, 1086.6666666666667, 1086.6666666666667, 1087.5, 1087.5, 1088.3333333333335, 1088.3333333333335, 1089.1666666666667, 1089.1666666666667, 1090, 1090, 1090.8333333333335, 1090.8333333333335, 1091.6666666666667, 1091.6666666666667, 1092.5000000000002, 1092.5000000000002, 1093.3333333333335, 1093.3333333333335, 1094.1666666666667, 1094.1666666666667, 1095, 1095, 1095.8333333333333, 1095.8333333333333, 1096.6666666666665, 1096.6666666666665, 1097.5, 1097.5, 1098.3333333333333, 1098.3333333333333, 1099.1666666666665, 1099.1666666666665, 1100 ] }, "y": { "type": "float", "values": [ 6, 6, 5.984457849818863, 5.984457849818863, 5.914622104270368, 5.914622104270368, 5.6602368453180425, 5.6602368453180425, 5.293156022650223, 5.293156022650223, 5.190011028931016, 5.190011028931016, 5.3020440865118905, 5.3020440865118905, 5.501282113799794, 5.501282113799794, 5.741307593508806, 5.741307593508806, 6.000000257442196, 6.000000257442196, 6.258787697677602, 6.258787697677602, 6.499939183721772, 6.499939183721772, 6.707020640079183, 6.707020640079183, 6.865919807508107, 6.865919807508107, 6.965807970181247, 6.965807970181247, 6.999877914784483, 6.999877914784483, 6.96580783086198, 6.96580783086198, 6.8659195383640075, 6.8659195383640075, 6.707020259451868, 6.707020259451868, 6.499938717550518, 6.499938717550518, 6.258787177731021, 6.258787177731021, 5.999999719154, 5.999999719154, 5.74121227971606, 5.74121227971606, 5.500060796009942, 5.500060796009942, 5.292979343371831, 5.292979343371831, 5.134080180789995, 5.134080180789995, 5.034074098489585, 5.034074098489585, 5.000000000000043, 5.000000000000043, 5.034074249942043, 5.034074249942043, 5.133974744457966, 5.133974744457966, 5.292893429839141, 5.292893429839141, 5.500000260141892, 5.500000260141892, 5.741181246932082, 5.741181246932082, 6.0000003042870675, 6.0000003042870675, 6.258819340905283, 6.258819340905283, 6.500000266898768, 6.500000266898768, 6.7071070004876745, 6.7071070004876745, 6.8660255598290405, 6.8660255598290405, 6.965925907568499, 6.965925907568499, 6.99999999999995, 6.99999999999995, 6.96592574399986, 6.96592574399986, 6.8660252438386395, 6.8660252438386395, 6.707106553609845, 6.707106553609845, 6.49999971958734, 6.49999971958734, 6.258818730458817, 6.258818730458817, 5.99999967230627, 5.99999967230627, 5.74118063648562, 5.74118063648562, 5.499999712830472, 5.499999712830472, 5.2928929829613205, 5.2928929829613205, 5.133974428467635, 5.133974428467635, 5.03407408637339, 5.03407408637339, 5.000000000000058, 5.000000000000058, 5.034074262058238, 5.034074262058238, 5.133974767864698, 5.133974767864698, 5.292893462941251, 5.292893462941251, 5.500000300683527, 5.500000300683527, 5.741181292150285, 5.741181292150285, 6.000000351100393, 6.000000351100393, 6.258819386123588, 6.258819386123588, 6.500000307440387, 6.500000307440387, 6.707107033589684, 6.707107033589684, 6.86602558323569, 6.86602558323569, 6.965925919684692, 6.965925919684692, 6.999999999999934, 6.999999999999934, 6.965925731883664, 6.965925731883664, 6.866025220431963, 6.866025220431963, 6.707106520507733, 6.707106520507733, 6.499999679045704, 6.499999679045704, 6.2588186852406125, 6.2588186852406125, 5.999999625492944, 5.999999625492944, 5.741180591267314, 5.741180591267314, 5.499999672288853, 5.499999672288853, 5.292892949859313, 5.292892949859313, 5.133974405060987, 5.133974405060987, 5.034074074257226, 5.034074074257226, 5.000000000000075, 5.000000000000075, 5.034074274174493, 5.034074274174493, 5.133974791271376, 5.133974791271376, 5.292893496043283, 5.292893496043283, 5.500000341225065, 5.500000341225065, 5.741181337368709, 5.741181337368709, 6.000000397913718, 6.000000397913718, 6.2588194313417835, 6.2588194313417835, 6.500000347981907, 6.500000347981907, 6.707107066691851, 6.707107066691851, 6.866025606642337, 6.866025606642337, 6.9659259318008555, 6.9659259318008555, 6.9999999999999165, 6.9999999999999165, 6.965925719767408, 6.965925719767408, 6.866025197025285, 6.866025197025285, 6.707106487405701, 6.707106487405701, 6.499999638504166, 6.499999638504166, 6.258818640022188, 6.258818640022188, 5.99999957867962, 5.99999957867962, 5.74118054604912, 5.74118054604912, 5.499999631747333, 5.499999631747333, 5.292892916757146, 5.292892916757146, 5.133974381654227, 5.133974381654227, 5.034074062141064, 5.034074062141064, 5.000000000000094, 5.000000000000094, 5.034074286290692, 5.034074286290692, 5.133974814678169, 5.133974814678169, 5.292893529145316, 5.292893529145316, 5.500000381766603, 5.500000381766603, 5.741181382586914, 5.741181382586914, 6.00000044472727, 6.00000044472727, 6.258819476559978, 6.258819476559978, 6.500000388523426, 6.500000388523426, 6.707107099793856, 6.707107099793856, 6.866025630049096, 6.866025630049096, 6.965925943917016, 6.965925943917016, 6.999999999999896, 6.999999999999896, 6.965925707651208, 6.965925707651208, 6.866025173618491, 6.866025173618491, 6.707106454303666, 6.707106454303666, 6.499999597962627, 6.499999597962627, 6.258818594803984, 6.258818594803984, 5.9999995318660675, 5.9999995318660675, 5.741180500830706, 5.741180500830706, 5.499999591205815, 5.499999591205815, 5.292892883655141, 5.292892883655141, 5.133974358247583, 5.133974358247583, 5.034074050024846, 5.034074050024846, 5.0000000000001155, 5.0000000000001155, 5.0340742984068925, 5.0340742984068925, 5.13397483808485, 5.13397483808485, 5.292893562247512, 5.292893562247512, 5.500000422308143, 5.500000422308143, 5.741181427805119, 5.741181427805119, 6.000000491540596, 6.000000491540596, 6.258819521778392, 6.258819521778392, 6.500000429064944, 6.500000429064944, 6.70710713289586, 6.70710713289586, 6.866025653455739, 6.866025653455739, 6.965925956033233, 6.965925956033233, 6.999999999999873, 6.999999999999873, 6.965925695535006, 6.965925695535006, 6.866025150211809, 6.866025150211809, 6.70710642120147, 6.70710642120147, 6.49999955742089, 6.49999955742089, 6.2588185495857775, 6.2588185495857775, 5.999999485052742, 5.999999485052742, 5.741180455612511, 5.741180455612511, 5.499999550664101, 5.499999550664101, 5.292892850553138, 5.292892850553138, 5.13397433484094, 5.13397433484094, 5.034074037908688, 5.034074037908688, 5.0000000000001386, 5.0000000000001386, 5.034074310523096, 5.034074310523096, 5.133974861491533, 5.133974861491533, 5.292893595349549, 5.292893595349549, 5.50000046284988, 5.50000046284988, 5.7411814730233255, 5.7411814730233255, 6.0000005383539206, 6.0000005383539206, 6.258819566996585, 6.258819566996585, 6.500000469606658, 6.500000469606658, 6.707107165997863, 6.707107165997863, 6.86602567686238, 6.86602567686238, 6.9659259681493895, 6.9659259681493895, 6.999999999999849, 6.999999999999849, 6.965925683418743, 6.965925683418743, 6.866025126805125, 6.866025126805125, 6.707106388099433, 6.707106388099433, 6.499999516879349, 6.499999516879349, 6.258818504367352, 6.258818504367352, 5.999999438239417, 5.999999438239417, 5.7411804103943185, 5.7411804103943185, 5.499999510122585, 5.499999510122585, 5.2928928174509755, 5.2928928174509755, 5.1339743114343, 5.1339743114343, 5.034074025792533, 5.034074025792533, 5.000000000000164, 5.000000000000164, 5.034074322639359, 5.034074322639359, 5.133974884898218, 5.133974884898218, 5.292893628451586, 5.292893628451586, 5.500000503391423, 5.500000503391423, 5.741181518241752, 5.741181518241752, 6.000000585167245, 6.000000585167245, 6.2588196122147775, 6.2588196122147775, 6.500000510148173, 6.500000510148173, 6.707107199100024, 6.707107199100024, 6.866025700269134, 6.866025700269134, 6.965925980265544, 6.965925980265544, 6.999999999999822, 6.999999999999822, 6.9659256713025375, 6.9659256713025375, 6.866025103398325, 6.866025103398325, 6.707106354997394, 6.707106354997394, 6.499999476337806, 6.499999476337806, 6.258818459149145, 6.258818459149145, 5.999999391425865, 5.999999391425865, 5.741180365176126, 5.741180365176126, 5.49999946958107, 5.49999946958107, 5.292892784348975, 5.292892784348975, 5.133974288027548, 5.133974288027548, 5.0340740136763795, 5.0340740136763795, 5.000000000000193, 5.000000000000193, 5.034074334755567, 5.034074334755567, 5.133974908305019, 5.133974908305019, 5.2928936615536255, 5.2928936615536255, 5.500000543932965, 5.500000543932965, 5.741181563459959, 5.741181563459959, 6.000000631980798, 6.000000631980798, 6.25881965743319, 6.25881965743319, 6.500000550689687, 6.500000550689687, 6.7071072322020235, 6.7071072322020235, 6.8660257236757705, 6.8660257236757705, 6.965925992381755, 6.965925992381755, 6.999999999999793, 6.999999999999793, 6.965925659186329, 6.965925659186329, 6.866025079991637, 6.866025079991637, 6.707106321895193, 6.707106321895193, 6.499999435796263, 6.499999435796263, 6.258818413930937, 6.258818413930937, 5.999999344612539, 5.999999344612539, 5.7411803199577145, 5.7411803199577145, 5.499999429039557, 5.499999429039557, 5.292892751246978, 5.292892751246978, 5.133974264620911, 5.133974264620911, 5.034074001560169, 5.034074001560169, 5.000000000000222, 5.000000000000222, 5.034074346871835, 5.034074346871835, 5.133974931711707, 5.133974931711707, 5.292893694655989, 5.292893694655989, 5.500000584474706, 5.500000584474706, 5.741181608678605, 5.741181608678605, 6.0000006787943505, 6.0000006787943505, 6.258819702651381, 6.258819702651381, 6.500000591231594, 6.500000591231594, 6.707107265304183, 6.707107265304183, 6.866025747082634, 6.866025747082634, 6.965926004497964, 6.965926004497964, 6.999999999999762, 6.999999999999762, 6.9659256470700015, 6.9659256470700015, 6.866025056584833, 6.866025056584833, 6.707106288793151, 6.707106288793151, 6.499999395254324, 6.499999395254324, 6.25881836871251, 6.25881836871251, 5.99999929779876, 5.99999929779876, 5.741180274739303, 5.741180274739303, 5.499999388497846, 5.499999388497846, 5.292892718144659, 5.292892718144659, 5.133974241214163, 5.133974241214163, 5.034073989444021, 5.034073989444021, 5.000000000000255, 5.000000000000255, 5.034074358988046, 5.034074358988046, 5.133974955118625, 5.133974955118625, 5.292893727758031, 5.292893727758031, 5.500000625016251, 5.500000625016251, 5.741181653896813, 5.741181653896813, 6.000000725607675, 6.000000725607675, 6.258819747870012, 6.258819747870012, 6.500000631773107, 6.500000631773107, 6.707107298406179, 6.707107298406179, 6.8660257704892675, 6.8660257704892675, 6.9659260166141115, 6.9659260166141115, 6.999999999999728, 6.999999999999728, 6.965925634953789, 6.965925634953789, 6.866025033178142, 6.866025033178142, 6.707106255690786, 6.707106255690786, 6.499999354712779, 6.499999354712779, 6.258818323494301, 6.258818323494301, 5.999999250985435, 5.999999250985435, 5.741180229521112, 5.741180229521112, 5.499999347956335, 5.499999347956335, 5.292892685042663, 5.292892685042663, 5.13397421780753, 5.13397421780753, 5.034073977327756, 5.034073977327756, 5.0000000000002895, 5.0000000000002895, 5.03407437110426, 5.03407437110426, 5.133974978525318, 5.133974978525318, 5.292893760860076, 5.292893760860076, 5.500000665558192, 5.500000665558192, 5.741181699115023, 5.741181699115023, 6.000000772421001, 6.000000772421001, 6.258819793088203, 6.258819793088203, 6.500000672314617, 6.500000672314617, 6.707107331508173, 6.707107331508173, 6.8660257938959, 6.8660257938959, 6.965926028730258, 6.965926028730258, 6.999999999999693, 6.999999999999693, 6.965925622837574, 6.965925622837574, 6.866025009771448, 6.866025009771448, 6.707106222588741, 6.707106222588741, 6.499999314171232, 6.499999314171232, 6.258818278276093, 6.258818278276093, 5.999999204172109, 5.999999204172109, 5.741180184302922, 5.741180184302922, 5.499999307414431, 5.499999307414431, 5.29289265194067, 5.29289265194067, 5.133974194400899, 5.133974194400899, 5.034073965211611, 5.034073965211611, 5.000000000000326, 5.000000000000326, 5.0340743832205925, 5.0340743832205925, 5.133975001932012, 5.133975001932012, 5.292893793962121, 5.292893793962121, 5.500000706099739, 5.500000706099739, 5.741181744333232, 5.741181744333232, 6.000000819234326, 6.000000819234326, 6.258819838306392, 6.258819838306392, 6.500000712856128, 6.500000712856128, 6.707107364610488, 6.707107364610488, 6.866025817302529, 6.866025817302529, 6.965926040846401, 6.965926040846401, 6.9999999999996545, 6.9999999999996545, 6.965925610721357, 6.965925610721357, 6.866024986364753, 6.866024986364753, 6.707106189486694, 6.707106189486694, 6.499999273629684, 6.499999273629684, 6.258818233057443, 6.258818233057443, 5.9999991573587845, 5.9999991573587845, 5.741180139084732, 5.741180139084732, 5.499999266872921, 5.499999266872921, 5.292892618838677, 5.292892618838677, 5.133974170994042, 5.133974170994042, 5.034073953095469, 5.034073953095469, 5.000000000000365, 5.000000000000365, 5.034074395336811, 5.034074395336811, 5.133975025338708, 5.133975025338708, 5.2928938270641686, 5.2928938270641686, 5.500000746641287, 5.500000746641287, 5.741181789551441, 5.741181789551441, 6.000000866048105, 6.000000866048105, 6.258819883524582, 6.258819883524582, 6.500000753397637, 6.500000753397637, 6.7071073977124795, 6.7071073977124795, 6.866025840709158, 6.866025840709158, 6.965926052962542, 6.965926052962542, 6.9999999999996145, 6.9999999999996145, 6.965925598605138, 6.965925598605138, 6.8660249629578285, 6.8660249629578285, 6.707106156384646, 6.707106156384646, 6.499999233088135, 6.499999233088135, 6.258818187839234, 6.258818187839234, 5.999999110545459, 5.999999110545459, 5.741180093866103, 5.741180093866103, 5.499999226331413, 5.499999226331413, 5.292892585736686, 5.292892585736686, 5.133974147587415, 5.133974147587415, 5.0340739409793285, 5.0340739409793285, 5.000000000000406, 5.000000000000406, 5.034074407453031, 5.034074407453031, 5.133975048745407, 5.133975048745407, 5.292893860166539, 5.292893860166539, 5.500000787182836, 5.500000787182836, 5.741181834769652, 5.741181834769652, 6.000000912861431, 6.000000912861431, 6.258819928742771, 6.258819928742771, 6.500000793939145, 6.500000793939145, 6.707107430814469, 6.707107430814469, 6.866025864115784, 6.866025864115784, 6.9659260650788, 6.9659260650788, 6.999999999999573, 6.999999999999573, 6.965925586488917, 6.965925586488917, 6.86602493955113, 6.86602493955113, 6.707106123282597, 6.707106123282597, 6.499999192546191, 6.499999192546191, 6.258818142621023, 6.258818142621023, 5.999999063732134, 5.999999063732134, 5.741180048647915, 5.741180048647915, 5.499999185789905, 5.499999185789905, 5.292892552634697, 5.292892552634697, 5.13397412418079, 5.13397412418079, 5.03407392886319, 5.03407392886319, 5.000000000000449, 5.000000000000449, 5.034074419569253, 5.034074419569253, 5.133975072152108, 5.133975072152108, 5.292893893268589, 5.292893893268589, 5.500000827724387, 5.500000827724387, 5.741181879987863, 5.741181879987863, 6.000000959674756, 6.000000959674756, 6.25881997396096, 6.25881997396096, 6.500000834481045, 6.500000834481045, 6.707107463916458, 6.707107463916458, 6.866025887522408, 6.866025887522408, 6.965926077194937, 6.965926077194937, 6.999999999999528, 6.999999999999528, 6.9659255743725765, 6.9659255743725765, 6.866024916144428, 6.866024916144428, 6.707106090180545, 6.707106090180545, 6.499999152004641, 6.499999152004641, 6.258818097402812, 6.258818097402812, 5.999999016918809, 5.999999016918809, 5.741180003429727, 5.741180003429727, 5.499999145248399, 5.499999145248399, 5.292892519532388, 5.292892519532388, 5.133974100774167, 5.133974100774167, 5.034073916747054, 5.034073916747054, 5.000000000000495, 5.000000000000495, 5.034074431685477, 5.034074431685477, 5.133975095558809, 5.133975095558809, 5.292893926370641, 5.292893926370641, 5.500000868265939, 5.500000868265939, 5.741181925206514, 5.741181925206514, 6.00000100648808, 6.00000100648808, 6.258820019179147, 6.258820019179147, 6.50000087502255, 6.50000087502255, 6.707107497018445, 6.707107497018445, 6.866025910929258, 6.866025910929258, 6.965926089311072, 6.965926089311072, 6.999999999999481, 6.999999999999481, 6.965925562256352, 6.965925562256352, 6.866024892737725, 6.866024892737725, 6.707106057078493, 6.707106057078493, 6.499999111463088, 6.499999111463088, 6.2588180521845995, 6.2588180521845995, 5.999998970105029, 5.999998970105029, 5.741179958211539, 5.741179958211539, 5.499999104706894, 5.499999104706894, 5.292892486430402, 5.292892486430402, 5.1339740773675455, 5.1339740773675455, 5.03407390463092, 5.03407390463092, 5.000000000000543, 5.000000000000543, 5.034074443801702, 5.034074443801702, 5.133975118965741, 5.133975118965741, 5.2928939594726945, 5.2928939594726945, 5.5000009088074915, 5.5000009088074915, 5.741181970424726, 5.741181970424726, 6.000001053301406, 6.000001053301406, 6.258820064397773, 6.258820064397773, 6.500000915564055, 6.500000915564055, 6.70710753012043, 6.70710753012043, 6.8660259343358785, 6.8660259343358785, 6.965926101427206, 6.965926101427206, 6.999999999999433, 6.999999999999433, 6.965925550140124, 6.965925550140124, 6.86602486933102, 6.86602486933102, 6.707106023976117, 6.707106023976117, 6.499999070921535, 6.499999070921535, 6.258818006966387, 6.258818006966387, 5.999998923291704, 5.999998923291704, 5.741179912993353, 5.741179912993353, 5.49999906416539, 5.49999906416539, 5.292892453328417, 5.292892453328417, 5.133974053960926, 5.133974053960926, 5.0340738925146695, 5.0340738925146695, 5.000000000000592, 5.000000000000592, 5.034074455917931, 5.034074455917931, 5.133975142372447, 5.133975142372447, 5.29289399257475, 5.29289399257475, 5.500000949349439, 5.500000949349439, 5.741182015642939, 5.741182015642939, 6.000001100114731, 6.000001100114731, 6.25882010961596, 6.25882010961596, 6.500000956105558, 6.500000956105558, 6.707107563222413, 6.707107563222413, 6.8660259577424965, 6.8660259577424965, 6.965926113543336, 6.965926113543336, 6.999999999999382, 6.999999999999382, 6.965925538023895, 6.965925538023895, 6.866024845924313, 6.866024845924313, 6.707105990874061, 6.707105990874061, 6.49999903037998, 6.49999903037998, 6.258817961748174, 6.258817961748174, 5.999998876478379, 5.999998876478379, 5.741179867775166, 5.741179867775166, 5.499999023623493, 5.499999023623493, 5.292892420226434, 5.292892420226434, 5.133974030554309, 5.133974030554309, 5.03407388039854, 5.03407388039854, 5.000000000000645, 5.000000000000645, 5.034074468034279, 5.034074468034279, 5.133975165779154, 5.133975165779154, 5.292894025676807, 5.292894025676807, 5.500000989890994, 5.500000989890994, 5.741182060861152, 5.741182060861152, 6.000001146928056, 6.000001146928056, 6.258820154834146, 6.258820154834146, 6.500000996647061, 6.500000996647061, 6.707107596324717, 6.707107596324717, 6.8660259811491136, 6.8660259811491136, 6.965926125659466, 6.965926125659466, 6.9999999999993285, 6.9999999999993285, 6.965925525907664, 6.965925525907664, 6.866024822517605, 6.866024822517605, 6.707105957772004, 6.707105957772004, 6.499998989838425, 6.499998989838425, 6.258817916529521, 6.258817916529521, 5.999998829665054, 5.999998829665054, 5.741179822556981, 5.741179822556981, 5.4999989830819915, 5.4999989830819915, 5.292892387124453, 5.292892387124453, 5.133974007147465, 5.133974007147465, 5.034073868282412, 5.034073868282412, 5.000000000000698, 5.000000000000698, 5.034074480150512, 5.034074480150512, 5.133975189185864, 5.133975189185864, 5.292894058778865, 5.292894058778865, 5.50000103043255, 5.50000103043255, 5.741182106079366, 5.741182106079366, 6.000001193741836, 6.000001193741836, 6.258820200052332, 6.258820200052332, 6.500001037188563, 6.500001037188563, 6.707107629426698, 6.707107629426698, 6.866026004555728, 6.866026004555728, 6.965926137775592, 6.965926137775592, 6.9999999999992735, 6.9999999999992735, 6.96592551379143, 6.96592551379143, 6.866024799110667, 6.866024799110667, 6.7071059246699445, 6.7071059246699445, 6.499998949296868, 6.499998949296868, 6.258817871311307, 6.258817871311307, 5.999998782851729, 5.999998782851729, 5.741179777338356, 5.741179777338356, 5.499998942540491, 5.499998942540491, 5.292892354022473, 5.292892354022473, 5.133973983740852, 5.133973983740852, 5.0340738561662866, 5.0340738561662866, 5.000000000000755, 5.000000000000755, 5.034074492266747, 5.034074492266747, 5.133975212592576, 5.133975212592576, 5.292894091881246, 5.292894091881246, 5.500001070974108, 5.500001070974108, 5.74118215129758, 5.74118215129758, 6.000001240555161, 6.000001240555161, 6.258820245270517, 6.258820245270517, 6.5000010777300625, 6.5000010777300625, 6.707107662528677, 6.707107662528677, 6.8660260279623415, 6.8660260279623415, 6.965926149891835, 6.965926149891835, 6.999999999999216, 6.999999999999216, 6.965925501675194, 6.965925501675194, 6.866024775703954, 6.866024775703954, 6.707105891567885, 6.707105891567885, 6.499998908754916, 6.499998908754916, 6.258817826093092, 6.258817826093092, 5.999998736038404, 5.999998736038404, 5.741179732120171, 5.741179732120171, 5.499998901998991, 5.499998901998991, 5.292892320920495, 5.292892320920495, 5.13397396033424, 5.13397396033424, 5.034073844050163, 5.034073844050163, 5.000000000000814, 5.000000000000814, 5.034074504382984, 5.034074504382984, 5.133975235999289, 5.133975235999289, 5.292894124983307, 5.292894124983307, 5.500001111515665, 5.500001111515665, 5.741182196515796, 5.741182196515796, 6.000001287368486, 6.000001287368486, 6.258820290488701, 6.258820290488701, 6.500001118271955, 6.500001118271955, 6.707107695630655, 6.707107695630655, 6.866026051368952, 6.866026051368952, 6.965926162007957, 6.965926162007957, 6.999999999999156, 6.999999999999156, 6.965925489558838, 6.965925489558838, 6.86602475229724, 6.86602475229724, 6.707105858465822, 6.707105858465822, 6.499998868213358, 6.499998868213358, 6.258817780874877, 6.258817780874877, 5.9999986892250785, 5.9999986892250785, 5.7411796869019875, 5.7411796869019875, 5.499998861457493, 5.499998861457493, 5.292892287818196, 5.292892287818196, 5.13397393692763, 5.13397393692763, 5.034073831934042, 5.034073831934042, 5.000000000000875, 5.000000000000875, 5.034074516499222, 5.034074516499222, 5.133975259406005, 5.133975259406005, 5.29289415808537, 5.29289415808537, 5.500001152057225, 5.500001152057225, 5.741182241734011, 5.741182241734011, 6.0000013341813565, 6.0000013341813565, 6.258820335707324, 6.258820335707324, 6.500001158813453, 6.500001158813453, 6.70710772873263, 6.70710772873263, 6.8660260747755615, 6.8660260747755615, 6.965926174123959, 6.965926174123959, 6.999999999999094, 6.999999999999094, 6.965925477442599, 6.965925477442599, 6.866024728890523, 6.866024728890523, 6.707105825363759, 6.707105825363759, 6.499998827672192, 6.499998827672192, 6.258817735656222, 6.258817735656222, 5.999998642411299, 5.999998642411299, 5.741179641683804, 5.741179641683804, 5.499998820915995, 5.499998820915995, 5.292892254716542, 5.292892254716542, 5.133973913520794, 5.133973913520794, 5.034073819817804, 5.034073819817804, 5.000000000000938, 5.000000000000938, 5.034074528615463, 5.034074528615463, 5.133975282812722, 5.133975282812722, 5.292894191187113, 5.292894191187113, 5.500001192599179, 5.500001192599179, 5.741182286952666, 5.741182286952666, 6.000001380995136, 6.000001380995136, 6.258820380925068, 6.258820380925068, 6.500001199354556, 6.500001199354556, 6.707107761834926, 6.707107761834926, 6.866026098182395, 6.866026098182395, 6.965926186240195, 6.965926186240195, 6.99999999999903, 6.99999999999903, 6.965925465326475, 6.965925465326475, 6.866024705483578, 6.866024705483578, 6.707105792261372, 6.707105792261372, 6.499998787130237, 6.499998787130237, 6.258817690438445, 6.258817690438445, 5.999998595598429, 5.999998595598429, 5.741179596465182, 5.741179596465182, 5.499998780374105, 5.499998780374105, 5.292892221614247, 5.292892221614247, 5.133973890114415, 5.133973890114415, 5.034073807701805, 5.034073807701805, 5.000000000001003, 5.000000000001003, 5.034074540731824, 5.034074540731824, 5.133975306219669, 5.133975306219669, 5.2928942242895, 5.2928942242895, 5.500001233140347, 5.500001233140347, 5.741182332170444, 5.741182332170444, 6.0000014278089155, 6.0000014278089155, 6.25882042614369, 6.25882042614369, 6.500001239896446, 6.500001239896446, 6.7071077949365785, 6.7071077949365785, 6.8660261215887735, 6.8660261215887735, 6.96592619835643, 6.96592619835643, 6.999999999998964, 6.999999999998964, 6.9659254532101125, 6.9659254532101125, 6.866024682077085, 6.866024682077085, 6.707105759159627, 6.707105759159627, 6.499998746588282, 6.499998746588282, 6.258817645219788, 6.258817645219788, 5.9999985487846486, 5.9999985487846486, 5.741179551247439, 5.741179551247439, 5.4999987398330035, 5.4999987398330035, 5.292892188512597, 5.292892188512597, 5.133973866707583, 5.133973866707583, 5.034073795585572, 5.034073795585572, 5.00000000000107, 5.00000000000107, 5.034074552847952, 5.034074552847952, 5.133975329626162, 5.133975329626162, 5.29289425739189, 5.29289425739189, 5.500001273682304, 5.500001273682304, 5.741182377389101, 5.741182377389101, 6.0000014746217865, 6.0000014746217865, 6.258820471361433, 6.258820471361433, 6.500001280438334, 6.500001280438334, 6.707107828038871, 6.707107828038871, 6.866026144995605, 6.866026144995605, 6.965926210472426, 6.965926210472426, 6.999999999998895, 6.999999999998895, 6.965925441093749, 6.965925441093749, 6.866024658670136, 6.866024658670136, 6.707105726057237, 6.707105726057237, 6.499998706047112, 6.499998706047112, 6.25881760000201, 6.25881760000201, 5.9999985019717785, 5.9999985019717785, 5.741179506028818, 5.741179506028818, 5.499998699291115, 5.499998699291115, 5.292892155410304, 5.292892155410304, 5.1339738433012085, 5.1339738433012085, 5.034073783469577, 5.034073783469577, 5.0000000000011395, 5.0000000000011395, 5.034074564964317, 5.034074564964317, 5.1339753530331125, 5.1339753530331125, 5.292894290493637, 5.292894290493637, 5.500001314223473, 5.500001314223473, 5.741182422607757, 5.741182422607757, 6.000001521435566, 6.000001521435566, 6.2588205165800535, 6.2588205165800535, 6.500001320979434, 6.500001320979434, 6.7071078611405195, 6.7071078611405195, 6.866026168402433, 6.866026168402433, 6.965926222588656, 6.965926222588656, 6.999999999998825, 6.999999999998825, 6.965925428977617, 6.965925428977617, 6.866024635263639, 6.866024635263639, 6.707105692955489, 6.707105692955489, 6.499998665505154, 6.499998665505154, 6.258817554783353, 6.258817554783353, 5.999998455157999, 5.999998455157999, 5.741179460811075, 5.741179460811075, 5.499998658750016, 5.499998658750016, 5.292892122308014, 5.292892122308014, 5.133973819894381, 5.133973819894381, 5.0340737713533485, 5.0340737713533485, 5.0000000000012115, 5.0000000000012115, 5.034074577080449, 5.034074577080449, 5.133975376440064, 5.133975376440064, 5.292894323596029, 5.292894323596029, 5.500001354765431, 5.500001354765431, 5.741182467825537, 5.741182467825537, 6.000001568248436, 6.000001568248436, 6.258820561798674, 6.258820561798674, 6.500001361521321, 6.500001361521321, 6.707107894242809, 6.707107894242809, 6.866026191808805, 6.866026191808805, 6.965926234704647, 6.965926234704647, 6.999999999998752, 6.999999999998752, 6.965925416861249, 6.965925416861249, 6.866024611856686, 6.866024611856686, 6.707105659853096, 6.707105659853096, 6.4999986249639825, 6.4999986249639825, 6.258817509565573, 6.258817509565573, 5.999998408344219, 5.999998408344219, 5.741179415592455, 5.741179415592455, 5.499998618208131, 5.499998618208131, 5.292892089206368, 5.292892089206368, 5.133973796488009, 5.133973796488009, 5.034073759237122, 5.034073759237122, 5.000000000001285, 5.000000000001285, 5.034074589196818, 5.034074589196818, 5.133975399846564, 5.133975399846564, 5.292894356697779, 5.292894356697779, 5.500001395307391, 5.500001395307391, 5.741182513044195, 5.741182513044195, 6.000001615062216, 6.000001615062216, 6.258820607016415, 6.258820607016415, 6.500001402062418, 6.500001402062418, 6.707107927344454, 6.707107927344454, 6.86602621521563, 6.86602621521563, 6.965926246820873, 6.965926246820873, 6.999999999998677, 6.999999999998677, 6.965925404745114, 6.965925404745114, 6.866024588450186, 6.866024588450186, 6.707105626750701, 6.707105626750701, 6.499998584422022, 6.499998584422022, 6.258817464346915, 6.258817464346915, 5.999998361531349, 5.999998361531349, 5.741179370374715, 5.741179370374715, 5.499998577666246, 5.499998577666246, 5.292892056104081, 5.292892056104081, 5.133973773081185, 5.133973773081185, 5.034073747121133, 5.034073747121133, 5.000000000001362, 5.000000000001362, 5.03407460131319, 5.03407460131319, 5.13397542325352, 5.13397542325352, 5.292894389800175, 5.292894389800175, 5.5000014358485645, 5.5000014358485645, 5.741182558261975, 5.741182558261975, 6.000001661875086, 6.000001661875086, 6.258820652235034, 6.258820652235034, 6.500001442604303, 6.500001442604303, 6.707107960446741, 6.707107960446741, 6.866026238621999, 6.866026238621999, 6.965926258936861, 6.965926258936861, 6.999999999998599, 6.999999999998599, 6.965925392628741, 6.965925392628741, 6.8660245650432286, 6.8660245650432286, 6.707105593648949, 6.707105593648949, 6.4999985438808485, 6.4999985438808485, 6.258817419128256, 6.258817419128256, 5.999998314717569, 5.999998314717569, 5.741179325156096, 5.741179325156096, 5.49999853712515, 5.49999853712515, 5.292892023002437, 5.292892023002437, 5.133973749674363, 5.133973749674363, 5.0340737350049105, 5.0340737350049105, 5.00000000000144, 5.00000000000144, 5.034074613429327, 5.034074613429327, 5.133975446660023, 5.133975446660023, 5.292894422901928, 5.292894422901928, 5.500001476390526, 5.500001476390526, 5.741182603480635, 5.741182603480635, 6.000001708688867, 6.000001708688867, 6.258820697452774, 6.258820697452774, 6.500001483145398, 6.500001483145398, 6.707107993549027, 6.707107993549027, 6.86602626202882, 6.86602626202882, 6.965926271053082, 6.965926271053082, 6.99999999999852, 6.99999999999852, 6.965925380512602, 6.965925380512602, 6.8660245416362695, 6.8660245416362695, 6.707105560546552, 6.707105560546552, 6.499998503338886, 6.499998503338886, 6.258817373910475, 6.258817373910475, 5.999998267904698, 5.999998267904698, 5.7411792799374775, 5.7411792799374775, 5.499998496583268, 5.499998496583268, 5.292891989900153, 5.292891989900153, 5.133973726267997, 5.133973726267997, 5.034073722888926, 5.034073722888926, 5.000000000001521, 5.000000000001521, 5.034074625545704, 5.034074625545704, 5.133975470066983, 5.133975470066983, 5.292894456004326, 5.292894456004326, 5.500001516931702, 5.500001516931702, 5.741182648698416, 5.741182648698416, 6.000001755502646, 6.000001755502646, 6.258820742671392, 6.258820742671392, 6.5000015236872795, 6.5000015236872795, 6.707108026650667, 6.707108026650667, 6.866026285435185, 6.866026285435185, 6.965926283169301, 6.965926283169301, 6.999999999998439, 6.999999999998439, 6.965925368396226, 6.965925368396226, 6.8660245182297635, 6.8660245182297635, 6.707105527444796, 6.707105527444796, 6.499998462796922, 6.499998462796922, 6.258817328691815, 6.258817328691815, 5.999998221090919, 5.999998221090919, 5.741179234719739, 5.741179234719739, 5.4999984560421735, 5.4999984560421735, 5.292891956798513, 5.292891956798513, 5.133973702861179, 5.133973702861179, 5.0340737107727085, 5.0340737107727085, 5.000000000001603, 5.000000000001603, 5.0340746376618455, 5.0340746376618455, 5.13397549347349, 5.13397549347349, 5.292894489106726, 5.292894489106726, 5.5000015574736665, 5.5000015574736665, 5.741182693917076, 5.741182693917076, 6.000001802315516, 6.000001802315516, 6.258820787889131, 6.258820787889131, 6.50000156422916, 6.50000156422916, 6.707108059752949, 6.707108059752949, 6.866026308842002, 6.866026308842002, 6.965926295285282, 6.965926295285282, 6.999999999998355, 6.999999999998355, 6.965925356279847, 6.965925356279847, 6.866024494822801, 6.866024494822801, 6.707105494342395, 6.707105494342395, 6.499998422255745, 6.499998422255745, 6.258817283474032, 6.258817283474032, 5.999998174278049, 5.999998174278049, 5.741179189501121, 5.741179189501121, 5.4999984155002934, 5.4999984155002934, 5.292891923696232, 5.292891923696232, 5.133973679454817, 5.133973679454817, 5.034073698656727, 5.034073698656727, 5.000000000001688, 5.000000000001688, 5.034074649778225, 5.034074649778225, 5.1339755168804535, 5.1339755168804535, 5.292894522208485, 5.292894522208485, 5.500001598014844, 5.500001598014844, 5.741182739135738, 5.741182739135738, 6.000001849129297, 6.000001849129297, 6.258820833107748, 6.258820833107748, 6.500001604770253, 6.500001604770253, 6.707108092854586, 6.707108092854586, 6.8660263322488175, 6.8660263322488175, 6.965926307401497, 6.965926307401497, 6.999999999998269, 6.999999999998269, 6.9659253441637015, 6.9659253441637015, 6.866024471416291, 6.866024471416291, 6.707105461240635, 6.707105461240635, 6.499998381713779, 6.499998381713779, 6.2588172382553715, 6.2588172382553715, 5.999998127464268, 5.999998127464268, 5.741179144283383, 5.741179144283383, 5.499998374959202, 5.499998374959202, 5.292891890593952, 5.292891890593952, 5.133973656048003, 5.133973656048003, 5.0340736865405145, 5.0340736865405145, 5.0000000000017755, 5.0000000000017755, 5.034074661894373, 5.034074661894373, 5.133975540287419, 5.133975540287419, 5.2928945553108875, 5.2928945553108875, 5.50000163855681, 5.50000163855681, 5.74118278435352, 5.74118278435352, 6.000001895942167, 6.000001895942167, 6.258820878326364, 6.258820878326364, 6.500001645312131, 6.500001645312131, 6.707108125956865, 6.707108125956865, 6.866026355655177, 6.866026355655177, 6.965926319517474, 6.965926319517474, 6.99999999999818, 6.99999999999818, 6.965925332047318, 6.965925332047318, 6.866024448009325, 6.866024448009325, 6.707105428138232, 6.707105428138232, 6.4999983411726, 6.4999983411726, 6.258817193037588, 6.258817193037588, 5.999998080650489, 5.999998080650489, 5.741179099064768, 5.741179099064768, 5.499998334417324, 5.499998334417324, 5.292891857492317, 5.292891857492317, 5.133973632641645, 5.133973632641645, 5.034073674424302, 5.034073674424302, 5.000000000001864, 5.000000000001864, 5.034074674010756, 5.034074674010756, 5.133975563693932, 5.133975563693932, 5.292894588412649, 5.292894588412649, 5.500001679098777, 5.500001679098777, 5.741182829572183, 5.741182829572183, 6.000001942755946, 6.000001942755946, 6.258820923544102, 6.258820923544102, 6.500001685853221, 6.500001685853221, 6.7071081590584996, 6.7071081590584996, 6.866026379061989, 6.866026379061989, 6.965926331633685, 6.965926331633685, 6.99999999999809, 6.99999999999809, 6.965925319931168, 6.965925319931168, 6.866024424602811, 6.866024424602811, 6.707105395035827, 6.707105395035827, 6.499998300630632, 6.499998300630632, 6.258817147818926, 6.258817147818926, 5.999998033837619, 5.999998033837619, 5.741179053847031, 5.741179053847031, 5.499998293875446, 5.499998293875446, 5.292891824390041, 5.292891824390041, 5.133973609234833, 5.133973609234833, 5.034073662308328, 5.034073662308328, 5.000000000001956, 5.000000000001956, 5.034074686127143, 5.034074686127143, 5.133975587100901, 5.133975587100901, 5.292894621515055, 5.292894621515055, 5.500001719639958, 5.500001719639958, 5.741182874789967, 5.741182874789967, 6.000001989568817, 6.000001989568817, 6.258820968762716, 6.258820968762716, 6.500001726395098, 6.500001726395098, 6.707108192160776, 6.707108192160776, 6.866026402468344, 6.866026402468344, 6.965926343749658, 6.965926343749658, 6.999999999997997, 6.999999999997997, 6.965925307814781, 6.965925307814781, 6.8660244011958405, 6.8660244011958405, 6.707105361934063, 6.707105361934063, 6.499998260089451, 6.499998260089451, 6.258817102600262, 6.258817102600262, 5.999997987023838, 5.999997987023838, 5.741179008628416, 5.741179008628416, 5.4999982533343585, 5.4999982533343585, 5.292891791288408, 5.292891791288408, 5.133973585828024, 5.133973585828024, 5.034073650192121, 5.034073650192121, 5.00000000000205, 5.00000000000205, 5.034074698243296, 5.034074698243296, 5.1339756105074175, 5.1339756105074175, 5.29289465461682, 5.29289465461682, 5.500001760181928, 5.500001760181928, 5.74118292000863, 5.74118292000863, 6.000002036382597, 6.000002036382597, 6.2588210139804525, 6.2588210139804525, 6.500001766936185, 6.500001766936185, 6.70710822526305, 6.70710822526305, 6.866026425875152, 6.866026425875152, 6.965926355865864, 6.965926355865864, 6.999999999997903, 6.999999999997903, 6.965925295698627, 6.965925295698627, 6.866024377788869, 6.866024377788869, 6.707105328831655, 6.707105328831655, 6.49999821954748, 6.49999821954748, 6.258817057382477, 6.258817057382477, 5.999997940210968, 5.999997940210968, 5.741178963409801, 5.741178963409801, 5.499998212792484, 5.499998212792484, 5.292891758186135, 5.292891758186135, 5.133973562421673, 5.133973562421673, 5.034073638076151, 5.034073638076151, 5.000000000002146, 5.000000000002146, 5.034074710359686, 5.034074710359686, 5.133975633914391, 5.133975633914391, 5.292894687719229, 5.292894687719229, 5.500001800723111, 5.500001800723111, 5.7411829652264155, 5.7411829652264155, 6.000002083196376, 6.000002083196376, 6.258821059199066, 6.258821059199066, 6.50000180747806, 6.50000180747806, 6.70710825836468, 6.70710825836468, 6.866026449281503, 6.866026449281503, 6.965926367982068, 6.965926367982068, 6.999999999997805, 6.999999999997805, 6.965925283582235, 6.965925283582235, 6.86602435438235, 6.86602435438235, 6.707105295729888, 6.707105295729888, 6.49999817900551, 6.49999817900551, 6.258817012163813, 6.258817012163813, 5.999997893397189, 5.999997893397189, 5.741178918192066, 5.741178918192066, 5.499998172251398, 5.499998172251398, 5.292891725084506, 5.292891725084506, 5.1339735390148675, 5.1339735390148675, 5.034073625959948, 5.034073625959948, 5.0000000000022435, 5.0000000000022435, 5.034074722475843, 5.034074722475843, 5.133975657320911, 5.133975657320911, 5.292894720821639, 5.292894720821639, 5.500001841265083, 5.500001841265083, 5.74118301044508, 5.74118301044508, 6.000002130009247, 6.000002130009247, 6.258821104416802, 6.258821104416802, 6.500001848019933, 6.500001848019933, 6.707108291466951, 6.707108291466951, 6.866026472688307, 6.866026472688307, 6.965926380098035, 6.965926380098035, 6.999999999997707, 6.999999999997707, 6.965925271465842, 6.965925271465842, 6.866024330975374, 6.866024330975374, 6.7071052626274765, 6.7071052626274765, 6.499998138464325, 6.499998138464325, 6.258816966946027, 6.258816966946027, 5.999997846584318, 5.999997846584318, 5.741178872973453, 5.741178872973453, 5.499998131709525, 5.499998131709525, 5.292891691982236, 5.292891691982236, 5.133973515608519, 5.133973515608519, 5.034073613843982, 5.034073613843982, 5.000000000002344, 5.000000000002344, 5.034074734592238, 5.034074734592238, 5.133975680727888, 5.133975680727888, 5.292894753923409, 5.292894753923409, 5.500001881806268, 5.500001881806268, 5.741183055663745, 5.741183055663745, 6.000002176823027, 6.000002176823027, 6.2588211496354145, 6.2588211496354145, 6.500001888561017, 6.500001888561017, 6.707108324568577, 6.707108324568577, 6.86602649609511, 6.86602649609511, 6.965926392214235, 6.965926392214235, 6.9999999999976055, 6.9999999999976055, 6.965925259349682, 6.965925259349682, 6.866024307568851, 6.866024307568851, 6.707105229525706, 6.707105229525706, 6.499998097922352, 6.499998097922352, 6.2588169217273615, 6.2588169217273615, 5.999997799770538, 5.999997799770538, 5.741178827755719, 5.741178827755719, 5.499998091168441, 5.499998091168441, 5.292891658879967, 5.292891658879967, 5.133973492201718, 5.133973492201718, 5.034073601727783, 5.034073601727783, 5.000000000002446, 5.000000000002446, 5.0340747467083995, 5.0340747467083995, 5.133975704134866, 5.133975704134866, 5.292894787025823, 5.292894787025823, 5.500001922348242, 5.500001922348242, 5.741183100881532, 5.741183100881532, 6.000002223635897, 6.000002223635897, 6.258821194854026, 6.258821194854026, 6.500001929102888, 6.500001929102888, 6.707108357670846, 6.707108357670846, 6.866026519501455, 6.866026519501455, 6.965926404330197, 6.965926404330197, 6.9999999999975016, 6.9999999999975016, 6.965925247233284, 6.965925247233284, 6.86602428416187, 6.86602428416187, 6.707105196423292, 6.707105196423292, 6.499998057381164, 6.499998057381164, 6.258816876509574, 6.258816876509574, 5.999997752956759, 5.999997752956759, 5.741178782537107, 5.741178782537107, 5.499998050626571, 5.499998050626571, 5.292891625778342, 5.292891625778342, 5.133973468795372, 5.133973468795372, 5.0340735896115865, 5.0340735896115865, 5.000000000002551, 5.000000000002551, 5.034074758824798, 5.034074758824798, 5.133975727541393, 5.133975727541393, 5.292894820127595, 5.292894820127595, 5.5000019628902175, 5.5000019628902175, 5.741183146100198, 5.741183146100198, 6.000002270449677, 6.000002270449677, 6.258821240071759, 6.258821240071759, 6.500001969643971, 6.500001969643971, 6.707108390772469, 6.707108390772469, 6.866026542908253, 6.866026542908253, 6.965926416446393, 6.965926416446393, 6.999999999997396, 6.999999999997396, 6.965925235117119, 6.965925235117119, 6.866024260755344, 6.866024260755344, 6.707105163320875, 6.707105163320875, 6.499998016839188, 6.499998016839188, 6.258816831290908, 6.258816831290908, 5.999997706143888, 5.999997706143888, 5.741178737319374, 5.741178737319374, 5.499998010084701, 5.499998010084701, 5.292891592676076, 5.292891592676076, 5.133973445388575, 5.133973445388575, 5.034073577495628, 5.034073577495628, 5.000000000002657, 5.000000000002657, 5.034074770941199, 5.034074770941199, 5.133975750948375, 5.133975750948375, 5.2928948532300115, 5.2928948532300115, 5.500002003431406, 5.500002003431406, 5.741183191317987, 5.741183191317987, 6.000002317262547, 6.000002317262547, 6.258821285290371, 6.258821285290371, 6.500002010185839, 6.500002010185839, 6.707108423874734, 6.707108423874734, 6.866026566314596, 6.866026566314596, 6.9659264285623514, 6.9659264285623514, 6.9999999999972875, 6.9999999999972875, 6.965925223000717, 6.965925223000717, 6.86602423734836, 6.86602423734836, 6.707105130219101, 6.707105130219101, 6.499997976297999, 6.499997976297999, 6.258816786072241, 6.258816786072241, 5.999997659330108, 5.999997659330108, 5.741178692100763, 5.741178692100763, 5.499997969543621, 5.499997969543621, 5.292891559574455, 5.292891559574455, 5.133973421981779, 5.133973421981779, 5.034073565379435, 5.034073565379435, 5.000000000002767, 5.000000000002767, 5.034074783057367, 5.034074783057367, 5.133975774354905, 5.133975774354905, 5.292894886331787, 5.292894886331787, 5.5000020439733825, 5.5000020439733825, 5.741183236536654, 5.741183236536654, 6.000002364076327, 6.000002364076327, 6.258821330508103, 6.258821330508103, 6.500002050726919, 6.500002050726919, 6.707108456976997, 6.707108456976997, 6.866026589721391, 6.866026589721391, 6.965926440678543, 6.965926440678543, 6.999999999997177, 6.999999999997177, 6.9659252108845475, 6.9659252108845475, 6.866024213941375, 6.866024213941375, 6.707105097116682, 6.707105097116682, 6.499997935756022, 6.499997935756022, 6.258816740854451, 6.258816740854451, 5.999997612517238, 5.999997612517238, 5.741178646882153, 5.741178646882153, 5.499997929001753, 5.499997929001753, 5.292891526472193, 5.292891526472193, 5.13397339857544, 5.13397339857544, 5.03407355326348, 5.03407355326348, 5.000000000002878, 5.000000000002878, 5.0340747951737725, 5.0340747951737725, 5.133975797761892, 5.133975797761892, 5.292894919434207, 5.292894919434207, 5.500002084514573, 5.500002084514573, 5.741183281754443, 5.741183281754443, 6.000002410890107, 6.000002410890107, 6.258821375726713, 6.258821375726713, 6.500002091268786, 6.500002091268786, 6.707108490078617, 6.707108490078617, 6.866026613127728, 6.866026613127728, 6.965926452794733, 6.965926452794733, 6.9999999999970655, 6.9999999999970655, 6.965925198768142, 6.965925198768142, 6.8660241905348425, 6.8660241905348425, 6.707105064014904, 6.707105064014904, 6.499997895214043, 6.499997895214043, 6.258816695635783, 6.258816695635783, 5.999997565703458, 5.999997565703458, 5.741178601664422, 5.741178601664422, 5.499997888460675, 5.499997888460675, 5.292891493370575, 5.292891493370575, 5.133973375168649, 5.133973375168649, 5.034073541147292, 5.034073541147292, 5.000000000002991, 5.000000000002991, 5.034074807289945, 5.034074807289945, 5.133975821168425, 5.133975821168425, 5.292894952536629, 5.292894952536629, 5.500002125056553, 5.500002125056553, 5.741183326973112, 5.741183326973112, 6.000002457702977, 6.000002457702977, 6.258821420944444, 6.258821420944444, 6.500002131810652, 6.500002131810652, 6.707108523180877, 6.707108523180877, 6.866026636534519, 6.866026636534519, 6.965926464910685, 6.965926464910685, 6.999999999996951, 6.999999999996951, 6.965925186651733, 6.965925186651733, 6.866024167127853, 6.866024167127853, 6.707105030912482, 6.707105030912482, 6.49999785467285, 6.49999785467285, 6.258816650417993, 6.258816650417993, 5.999997518890588, 5.999997518890588, 5.741178556445813, 5.741178556445813, 5.49999784791881, 5.49999784791881, 5.292891460268315, 5.292891460268315, 5.133973351762314, 5.133973351762314, 5.034073529031341, 5.034073529031341, 5.000000000003107, 5.000000000003107, 5.034074819406354, 5.034074819406354, 5.133975844575415, 5.133975844575415, 5.292894985638409, 5.292894985638409, 5.500002165597746, 5.500002165597746, 5.741183372191781, 5.741183372191781, 6.000002504516757, 6.000002504516757, 6.258821466163052, 6.258821466163052, 6.500002172351728, 6.500002172351728, 6.707108556282493, 6.707108556282493, 6.8660266599413085, 6.8660266599413085, 6.965926477026869, 6.965926477026869, 6.9999999999968345, 6.9999999999968345, 6.965925174535558, 6.965925174535558, 6.866024143721317, 6.866024143721317, 6.707104997810701, 6.707104997810701, 6.49999781413087, 6.49999781413087, 6.258816605199324, 6.258816605199324, 5.999997472076808, 5.999997472076808, 5.741178511228083, 5.741178511228083, 5.499997807377734, 5.499997807377734, 5.29297775466854, 5.29297775466854, 5.134079057408345, 5.134079057408345, 5.034191442257982, 5.034191442257982, 5.000122085218705, 5.000122085218705, 5.034192756704862, 5.034192756704862, 5.134081596725176, 5.134081596725176, 5.292981345804837, 5.292981345804837, 5.50006324847813, 5.50006324847813, 5.741215015087827, 5.741215015087827, 6.000002551018148, 6.000002551018148, 6.258789913101673, 6.258789913101673, 6.499941170015689, 6.499941170015689, 6.707022261880247, 6.707022261880247, 6.865920954293392, 6.865920954293392, 6.965808563799252, 6.965808563799252, 6.999877914781235, 6.999877914781235, 6.965807237237553, 6.965807237237553, 6.865601205348964, 6.865601205348964, 6.705292096406619, 6.705292096406619, 6.493527285981263, 6.493527285981263, 6.242069791969054, 6.242069791969054, 5.999998115862116, 5.999998115862116, 5.912061979111753, 5.912061979111753, 5.955804954607395, 5.955804954607395, 5.987309856541017, 5.987309856541017 ] } } }, "b94d787734a54d0887d66a9c8b5e1214": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "allow_padding": false, "max": 1, "min": 0, "stabilized": false } }, "bb809aa69f6b4de692ddb7c47b2a8a8f": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "max": 9, "min": -1, "stabilized": false } }, "bebbd0a9c0534c7b94b4b45f4e66a568": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": {} }, "c0d1530a498a43cc9e83cebe4159ffc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.4.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "cacd7716181840f9a418289dbbd4eef4": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#2ca02c" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS2_ch1" ], "scales": { "x": "IPY_MODEL_3f7099eb85e644d39be802793202d951", "y": "IPY_MODEL_bb809aa69f6b4de692ddb7c47b2a8a8f" }, "selected": [], "tooltip": "IPY_MODEL_739989c6df8b44ac8e2e610ee68b5e36", "x": { "type": "float", "values": [ 0, 100, 100, 100.83333333333333, 100.83333333333333, 101.66666666666666, 101.66666666666666, 102.5, 102.5, 103.33333333333333, 103.33333333333333, 104.16666666666667, 104.16666666666667, 105, 105, 105.83333333333333, 105.83333333333333, 106.66666666666667, 106.66666666666667, 107.5, 107.5, 108.33333333333334, 108.33333333333334, 109.16666666666667, 109.16666666666667, 110, 110, 110.83333333333334, 110.83333333333334, 111.66666666666667, 111.66666666666667, 112.50000000000001, 112.50000000000001, 113.33333333333334, 113.33333333333334, 114.16666666666666, 114.16666666666666, 115, 115, 115.83333333333333, 115.83333333333333, 116.66666666666667, 116.66666666666667, 117.5, 117.5, 118.33333333333333, 118.33333333333333, 119.16666666666667, 119.16666666666667, 120.00000000000001, 120.00000000000001, 120.83333333333333, 120.83333333333333, 121.66666666666666, 121.66666666666666, 122.49999999999999, 122.49999999999999, 123.33333333333333, 123.33333333333333, 124.16666666666666, 124.16666666666666, 125, 125, 125.83333333333333, 125.83333333333333, 126.66666666666666, 126.66666666666666, 127.5, 127.5, 128.33333333333334, 128.33333333333334, 129.16666666666666, 129.16666666666666, 130, 130, 130.83333333333334, 130.83333333333334, 131.66666666666666, 131.66666666666666, 132.5, 132.5, 133.33333333333334, 133.33333333333334, 134.16666666666666, 134.16666666666666, 135, 135, 135.83333333333334, 135.83333333333334, 136.66666666666669, 136.66666666666669, 137.5, 137.5, 138.33333333333334, 138.33333333333334, 139.16666666666669, 139.16666666666669, 140, 140, 140.83333333333334, 140.83333333333334, 141.66666666666669, 141.66666666666669, 142.5, 142.5, 143.33333333333334, 143.33333333333334, 144.16666666666669, 144.16666666666669, 145.00000000000003, 145.00000000000003, 145.83333333333334, 145.83333333333334, 146.66666666666666, 146.66666666666666, 147.5, 147.5, 148.33333333333331, 148.33333333333331, 149.16666666666666, 149.16666666666666, 150, 150, 150.83333333333331, 150.83333333333331, 151.66666666666666, 151.66666666666666, 152.5, 152.5, 153.33333333333334, 153.33333333333334, 154.16666666666666, 154.16666666666666, 155, 155, 155.83333333333334, 155.83333333333334, 156.66666666666666, 156.66666666666666, 157.5, 157.5, 158.33333333333334, 158.33333333333334, 159.16666666666666, 159.16666666666666, 160, 160, 160.83333333333334, 160.83333333333334, 161.66666666666669, 161.66666666666669, 162.5, 162.5, 163.33333333333334, 163.33333333333334, 164.16666666666669, 164.16666666666669, 165, 165, 165.83333333333334, 165.83333333333334, 166.66666666666669, 166.66666666666669, 167.5, 167.5, 168.33333333333334, 168.33333333333334, 169.16666666666669, 169.16666666666669, 170, 170, 170.83333333333334, 170.83333333333334, 171.66666666666669, 171.66666666666669, 172.50000000000003, 172.50000000000003, 173.33333333333334, 173.33333333333334, 174.16666666666666, 174.16666666666666, 175, 175, 175.83333333333331, 175.83333333333331, 176.66666666666666, 176.66666666666666, 177.5, 177.5, 178.33333333333334, 178.33333333333334, 179.16666666666666, 179.16666666666666, 180, 180, 180.83333333333334, 180.83333333333334, 181.66666666666666, 181.66666666666666, 182.5, 182.5, 183.33333333333334, 183.33333333333334, 184.16666666666666, 184.16666666666666, 185, 185, 185.83333333333334, 185.83333333333334, 186.66666666666666, 186.66666666666666, 187.5, 187.5, 188.33333333333334, 188.33333333333334, 189.16666666666669, 189.16666666666669, 190, 190, 190.83333333333334, 190.83333333333334, 191.66666666666669, 191.66666666666669, 192.5, 192.5, 193.33333333333334, 193.33333333333334, 194.16666666666669, 194.16666666666669, 195, 195, 195.83333333333334, 195.83333333333334, 196.66666666666669, 196.66666666666669, 197.50000000000003, 197.50000000000003, 198.33333333333334, 198.33333333333334, 199.16666666666669, 199.16666666666669, 200, 200, 200.83333333333331, 200.83333333333331, 201.66666666666666, 201.66666666666666, 202.5, 202.5, 203.33333333333331, 203.33333333333331, 204.16666666666666, 204.16666666666666, 205, 205, 205.83333333333334, 205.83333333333334, 206.66666666666666, 206.66666666666666, 207.5, 207.5, 208.33333333333334, 208.33333333333334, 209.16666666666666, 209.16666666666666, 210, 210, 210.83333333333334, 210.83333333333334, 211.66666666666666, 211.66666666666666, 212.5, 212.5, 213.33333333333334, 213.33333333333334, 214.16666666666669, 214.16666666666669, 215, 215, 215.83333333333334, 215.83333333333334, 216.66666666666669, 216.66666666666669, 217.5, 217.5, 218.33333333333334, 218.33333333333334, 219.16666666666669, 219.16666666666669, 220, 220, 220.83333333333334, 220.83333333333334, 221.66666666666669, 221.66666666666669, 222.5, 222.5, 223.33333333333334, 223.33333333333334, 224.16666666666669, 224.16666666666669, 225.00000000000003, 225.00000000000003, 225.83333333333334, 225.83333333333334, 226.66666666666669, 226.66666666666669, 227.5, 227.5, 228.33333333333331, 228.33333333333331, 229.16666666666666, 229.16666666666666, 230, 230, 230.83333333333334, 230.83333333333334, 231.66666666666666, 231.66666666666666, 232.5, 232.5, 233.33333333333334, 233.33333333333334, 234.16666666666666, 234.16666666666666, 235, 235, 235.83333333333334, 235.83333333333334, 236.66666666666666, 236.66666666666666, 237.5, 237.5, 238.33333333333334, 238.33333333333334, 239.16666666666666, 239.16666666666666, 240.00000000000003, 240.00000000000003, 240.83333333333334, 240.83333333333334, 241.66666666666666, 241.66666666666666, 242.5, 242.5, 243.33333333333331, 243.33333333333331, 244.16666666666669, 244.16666666666669, 244.99999999999997, 244.99999999999997, 245.83333333333334, 245.83333333333334, 246.66666666666666, 246.66666666666666, 247.5, 247.5, 248.33333333333331, 248.33333333333331, 249.16666666666669, 249.16666666666669, 250, 250, 250.83333333333334, 250.83333333333334, 251.66666666666666, 251.66666666666666, 252.50000000000003, 252.50000000000003, 253.33333333333331, 253.33333333333331, 254.16666666666669, 254.16666666666669, 255, 255, 255.83333333333334, 255.83333333333334, 256.6666666666667, 256.6666666666667, 257.5, 257.5, 258.3333333333333, 258.3333333333333, 259.1666666666667, 259.1666666666667, 260, 260, 260.83333333333337, 260.83333333333337, 261.6666666666667, 261.6666666666667, 262.5, 262.5, 263.3333333333333, 263.3333333333333, 264.1666666666667, 264.1666666666667, 265, 265, 265.83333333333337, 265.83333333333337, 266.6666666666667, 266.6666666666667, 267.5, 267.5, 268.3333333333333, 268.3333333333333, 269.16666666666663, 269.16666666666663, 270, 270, 270.8333333333333, 270.8333333333333, 271.6666666666667, 271.6666666666667, 272.5, 272.5, 273.33333333333337, 273.33333333333337, 274.16666666666663, 274.16666666666663, 275, 275, 275.8333333333333, 275.8333333333333, 276.6666666666667, 276.6666666666667, 277.5, 277.5, 278.33333333333337, 278.33333333333337, 279.1666666666667, 279.1666666666667, 280, 280, 280.8333333333333, 280.8333333333333, 281.6666666666667, 281.6666666666667, 282.5, 282.5, 283.33333333333337, 283.33333333333337, 284.1666666666667, 284.1666666666667, 285, 285, 285.8333333333333, 285.8333333333333, 286.6666666666667, 286.6666666666667, 287.5, 287.5, 288.33333333333337, 288.33333333333337, 289.1666666666667, 289.1666666666667, 290.00000000000006, 290.00000000000006, 290.8333333333333, 290.8333333333333, 291.6666666666667, 291.6666666666667, 292.5, 292.5, 293.3333333333333, 293.3333333333333, 294.1666666666667, 294.1666666666667, 295, 295, 295.8333333333333, 295.8333333333333, 296.66666666666663, 296.66666666666663, 297.5, 297.5, 298.3333333333333, 298.3333333333333, 299.1666666666667, 299.1666666666667, 300, 300, 300.83333333333337, 300.83333333333337, 301.66666666666663, 301.66666666666663, 302.5, 302.5, 303.3333333333333, 303.3333333333333, 304.1666666666667, 304.1666666666667, 305, 305, 305.83333333333337, 305.83333333333337, 306.6666666666667, 306.6666666666667, 307.5, 307.5, 308.3333333333333, 308.3333333333333, 309.1666666666667, 309.1666666666667, 310, 310, 310.83333333333337, 310.83333333333337, 311.6666666666667, 311.6666666666667, 312.5, 312.5, 313.3333333333333, 313.3333333333333, 314.1666666666667, 314.1666666666667, 315, 315, 315.83333333333337, 315.83333333333337, 316.6666666666667, 316.6666666666667, 317.50000000000006, 317.50000000000006, 318.3333333333333, 318.3333333333333, 319.1666666666667, 319.1666666666667, 320, 320, 320.8333333333333, 320.8333333333333, 321.6666666666667, 321.6666666666667, 322.5, 322.5, 323.33333333333337, 323.33333333333337, 324.16666666666663, 324.16666666666663, 325, 325, 325.8333333333333, 325.8333333333333, 326.6666666666667, 326.6666666666667, 327.5, 327.5, 328.33333333333337, 328.33333333333337, 329.16666666666663, 329.16666666666663, 330, 330, 330.8333333333333, 330.8333333333333, 331.6666666666667, 331.6666666666667, 332.5, 332.5, 333.33333333333337, 333.33333333333337, 334.1666666666667, 334.1666666666667, 335, 335, 335.8333333333333, 335.8333333333333, 336.6666666666667, 336.6666666666667, 337.5, 337.5, 338.33333333333337, 338.33333333333337, 339.1666666666667, 339.1666666666667, 340, 340, 340.8333333333333, 340.8333333333333, 341.6666666666667, 341.6666666666667, 342.5, 342.5, 343.33333333333337, 343.33333333333337, 344.1666666666667, 344.1666666666667, 345.00000000000006, 345.00000000000006, 345.8333333333333, 345.8333333333333, 346.6666666666667, 346.6666666666667, 347.5, 347.5, 348.3333333333333, 348.3333333333333, 349.1666666666667, 349.1666666666667, 350, 350, 350.83333333333337, 350.83333333333337, 351.66666666666663, 351.66666666666663, 352.5, 352.5, 353.3333333333333, 353.3333333333333, 354.1666666666667, 354.1666666666667, 355, 355, 355.83333333333337, 355.83333333333337, 356.6666666666667, 356.6666666666667, 357.5, 357.5, 358.3333333333333, 358.3333333333333, 359.1666666666667, 359.1666666666667, 360, 360, 360.83333333333337, 360.83333333333337, 361.6666666666667, 361.6666666666667, 362.5, 362.5, 363.3333333333333, 363.3333333333333, 364.1666666666667, 364.1666666666667, 365, 365, 365.83333333333337, 365.83333333333337, 366.6666666666667, 366.6666666666667, 367.5, 367.5, 368.3333333333333, 368.3333333333333, 369.1666666666667, 369.1666666666667, 370, 370, 370.83333333333337, 370.83333333333337, 371.6666666666667, 371.6666666666667, 372.50000000000006, 372.50000000000006, 373.3333333333333, 373.3333333333333, 374.16666666666663, 374.16666666666663, 375, 375, 375.8333333333333, 375.8333333333333, 376.6666666666667, 376.6666666666667, 377.5, 377.5, 378.33333333333337, 378.33333333333337, 379.16666666666663, 379.16666666666663, 380, 380, 380.8333333333333, 380.8333333333333, 381.6666666666667, 381.6666666666667, 382.5, 382.5, 383.33333333333337, 383.33333333333337, 384.1666666666667, 384.1666666666667, 385, 385, 385.8333333333333, 385.8333333333333, 386.6666666666667, 386.6666666666667, 387.5, 387.5, 388.33333333333337, 388.33333333333337, 389.1666666666667, 389.1666666666667, 390, 390, 390.8333333333333, 390.8333333333333, 391.6666666666667, 391.6666666666667, 392.5, 392.5, 393.33333333333337, 393.33333333333337, 394.1666666666667, 394.1666666666667, 395.00000000000006, 395.00000000000006, 395.8333333333333, 395.8333333333333, 396.6666666666667, 396.6666666666667, 397.5, 397.5, 398.33333333333337, 398.33333333333337, 399.1666666666667, 399.1666666666667, 400, 400, 400.8333333333333, 400.8333333333333, 401.66666666666663, 401.66666666666663, 402.5, 402.5, 403.3333333333333, 403.3333333333333, 404.1666666666667, 404.1666666666667, 405, 405, 405.83333333333337, 405.83333333333337, 406.66666666666663, 406.66666666666663, 407.5, 407.5, 408.3333333333333, 408.3333333333333, 409.1666666666667, 409.1666666666667, 410, 410, 410.83333333333337, 410.83333333333337, 411.6666666666667, 411.6666666666667, 412.5, 412.5, 413.3333333333333, 413.3333333333333, 414.1666666666667, 414.1666666666667, 415, 415, 415.83333333333337, 415.83333333333337, 416.6666666666667, 416.6666666666667, 417.5, 417.5, 418.3333333333333, 418.3333333333333, 419.1666666666667, 419.1666666666667, 420, 420, 420.83333333333337, 420.83333333333337, 421.6666666666667, 421.6666666666667, 422.50000000000006, 422.50000000000006, 423.3333333333333, 423.3333333333333, 424.1666666666667, 424.1666666666667, 425, 425, 425.83333333333337, 425.83333333333337, 426.6666666666667, 426.6666666666667, 427.5, 427.5, 428.33333333333337, 428.33333333333337, 429.16666666666663, 429.16666666666663, 430, 430, 430.8333333333333, 430.8333333333333, 431.6666666666667, 431.6666666666667, 432.5, 432.5, 433.33333333333337, 433.33333333333337, 434.16666666666663, 434.16666666666663, 435, 435, 435.8333333333333, 435.8333333333333, 436.6666666666667, 436.6666666666667, 437.5, 437.5, 438.33333333333337, 438.33333333333337, 439.1666666666667, 439.1666666666667, 440, 440, 440.8333333333333, 440.8333333333333, 441.6666666666667, 441.6666666666667, 442.5, 442.5, 443.33333333333337, 443.33333333333337, 444.1666666666667, 444.1666666666667, 445, 445, 445.8333333333333, 445.8333333333333, 446.6666666666667, 446.6666666666667, 447.5, 447.5, 448.33333333333337, 448.33333333333337, 449.1666666666667, 449.1666666666667, 450.00000000000006, 450.00000000000006, 450.8333333333333, 450.8333333333333, 451.6666666666667, 451.6666666666667, 452.5, 452.5, 453.33333333333337, 453.33333333333337, 454.1666666666667, 454.1666666666667, 455, 455, 455.83333333333337, 455.83333333333337, 456.66666666666663, 456.66666666666663, 457.5, 457.5, 458.3333333333333, 458.3333333333333, 459.1666666666667, 459.1666666666667, 460, 460, 460.83333333333337, 460.83333333333337, 461.6666666666667, 461.6666666666667, 462.5, 462.5, 463.3333333333333, 463.3333333333333, 464.1666666666667, 464.1666666666667, 465, 465, 465.83333333333337, 465.83333333333337, 466.6666666666667, 466.6666666666667, 467.5, 467.5, 468.3333333333333, 468.3333333333333, 469.1666666666667, 469.1666666666667, 470, 470, 470.83333333333337, 470.83333333333337, 471.6666666666667, 471.6666666666667, 472.50000000000006, 472.50000000000006, 473.3333333333333, 473.3333333333333, 474.1666666666667, 474.1666666666667, 475, 475, 475.83333333333337, 475.83333333333337, 476.6666666666667, 476.6666666666667, 477.5, 477.5, 478.3333333333333, 478.3333333333333, 479.1666666666667, 479.1666666666667, 480.00000000000006, 480.00000000000006, 480.8333333333333, 480.8333333333333, 481.6666666666667, 481.6666666666667, 482.50000000000006, 482.50000000000006, 483.3333333333333, 483.3333333333333, 484.16666666666663, 484.16666666666663, 485, 485, 485.83333333333337, 485.83333333333337, 486.66666666666663, 486.66666666666663, 487.5, 487.5, 488.33333333333337, 488.33333333333337, 489.1666666666667, 489.1666666666667, 489.99999999999994, 489.99999999999994, 490.8333333333333, 490.8333333333333, 491.6666666666667, 491.6666666666667, 492.50000000000006, 492.50000000000006, 493.3333333333333, 493.3333333333333, 494.1666666666667, 494.1666666666667, 495, 495, 495.83333333333337, 495.83333333333337, 496.66666666666663, 496.66666666666663, 497.5, 497.5, 498.33333333333337, 498.33333333333337, 499.16666666666674, 499.16666666666674, 500, 500, 500.8333333333333, 500.8333333333333, 501.6666666666667, 501.6666666666667, 502.50000000000006, 502.50000000000006, 503.3333333333333, 503.3333333333333, 504.1666666666667, 504.1666666666667, 505.00000000000006, 505.00000000000006, 505.83333333333337, 505.83333333333337, 506.66666666666663, 506.66666666666663, 507.5, 507.5, 508.33333333333337, 508.33333333333337, 509.16666666666663, 509.16666666666663, 510, 510, 510.83333333333337, 510.83333333333337, 511.6666666666667, 511.6666666666667, 512.5, 512.5, 513.3333333333334, 513.3333333333334, 514.1666666666666, 514.1666666666666, 515, 515, 515.8333333333333, 515.8333333333333, 516.6666666666666, 516.6666666666666, 517.5, 517.5, 518.3333333333334, 518.3333333333334, 519.1666666666666, 519.1666666666666, 520, 520, 520.8333333333334, 520.8333333333334, 521.6666666666667, 521.6666666666667, 522.5, 522.5, 523.3333333333334, 523.3333333333334, 524.1666666666667, 524.1666666666667, 525, 525, 525.8333333333333, 525.8333333333333, 526.6666666666666, 526.6666666666666, 527.5, 527.5, 528.3333333333334, 528.3333333333334, 529.1666666666666, 529.1666666666666, 530, 530, 530.8333333333334, 530.8333333333334, 531.6666666666667, 531.6666666666667, 532.5, 532.5, 533.3333333333334, 533.3333333333334, 534.1666666666667, 534.1666666666667, 535, 535, 535.8333333333334, 535.8333333333334, 536.6666666666666, 536.6666666666666, 537.5, 537.5, 538.3333333333333, 538.3333333333333, 539.1666666666666, 539.1666666666666, 540, 540, 540.8333333333334, 540.8333333333334, 541.6666666666666, 541.6666666666666, 542.5, 542.5, 543.3333333333334, 543.3333333333334, 544.1666666666667, 544.1666666666667, 545, 545, 545.8333333333334, 545.8333333333334, 546.6666666666667, 546.6666666666667, 547.5, 547.5, 548.3333333333333, 548.3333333333333, 549.1666666666666, 549.1666666666666, 550, 550, 550.8333333333334, 550.8333333333334, 551.6666666666666, 551.6666666666666, 552.5, 552.5, 553.3333333333334, 553.3333333333334, 554.1666666666667, 554.1666666666667, 555, 555, 555.8333333333334, 555.8333333333334, 556.6666666666667, 556.6666666666667, 557.5000000000001, 557.5000000000001, 558.3333333333334, 558.3333333333334, 559.1666666666666, 559.1666666666666, 560, 560, 560.8333333333333, 560.8333333333333, 561.6666666666666, 561.6666666666666, 562.5, 562.5, 563.3333333333334, 563.3333333333334, 564.1666666666666, 564.1666666666666, 565, 565, 565.8333333333334, 565.8333333333334, 566.6666666666667, 566.6666666666667, 567.5, 567.5, 568.3333333333334, 568.3333333333334, 569.1666666666667, 569.1666666666667, 570, 570, 570.8333333333333, 570.8333333333333, 571.6666666666666, 571.6666666666666, 572.5, 572.5, 573.3333333333334, 573.3333333333334, 574.1666666666666, 574.1666666666666, 575, 575, 575.8333333333334, 575.8333333333334, 576.6666666666667, 576.6666666666667, 577.5, 577.5, 578.3333333333334, 578.3333333333334, 579.1666666666667, 579.1666666666667, 580.0000000000001, 580.0000000000001, 580.8333333333333, 580.8333333333333, 581.6666666666666, 581.6666666666666, 582.5, 582.5, 583.3333333333334, 583.3333333333334, 584.1666666666666, 584.1666666666666, 585, 585, 585.8333333333334, 585.8333333333334, 586.6666666666666, 586.6666666666666, 587.5, 587.5, 588.3333333333334, 588.3333333333334, 589.1666666666667, 589.1666666666667, 590, 590, 590.8333333333334, 590.8333333333334, 591.6666666666666, 591.6666666666666, 592.5, 592.5, 593.3333333333333, 593.3333333333333, 594.1666666666666, 594.1666666666666, 595, 595, 595.8333333333334, 595.8333333333334, 596.6666666666666, 596.6666666666666, 597.5, 597.5, 598.3333333333334, 598.3333333333334, 599.1666666666667, 599.1666666666667, 600, 600, 600.8333333333334, 600.8333333333334, 601.6666666666667, 601.6666666666667, 602.5, 602.5, 603.3333333333333, 603.3333333333333, 604.1666666666666, 604.1666666666666, 605, 605, 605.8333333333334, 605.8333333333334, 606.6666666666666, 606.6666666666666, 607.5, 607.5, 608.3333333333334, 608.3333333333334, 609.1666666666667, 609.1666666666667, 610, 610, 610.8333333333334, 610.8333333333334, 611.6666666666667, 611.6666666666667, 612.5000000000001, 612.5000000000001, 613.3333333333334, 613.3333333333334, 614.1666666666666, 614.1666666666666, 615, 615, 615.8333333333333, 615.8333333333333, 616.6666666666666, 616.6666666666666, 617.5, 617.5, 618.3333333333334, 618.3333333333334, 619.1666666666666, 619.1666666666666, 620, 620, 620.8333333333334, 620.8333333333334, 621.6666666666667, 621.6666666666667, 622.5, 622.5, 623.3333333333334, 623.3333333333334, 624.1666666666667, 624.1666666666667, 625, 625, 625.8333333333333, 625.8333333333333, 626.6666666666666, 626.6666666666666, 627.5, 627.5, 628.3333333333334, 628.3333333333334, 629.1666666666666, 629.1666666666666, 630, 630, 630.8333333333334, 630.8333333333334, 631.6666666666667, 631.6666666666667, 632.5, 632.5, 633.3333333333334, 633.3333333333334, 634.1666666666667, 634.1666666666667, 635.0000000000001, 635.0000000000001, 635.8333333333334, 635.8333333333334, 636.6666666666666, 636.6666666666666, 637.5, 637.5, 638.3333333333334, 638.3333333333334, 639.1666666666666, 639.1666666666666, 640, 640, 640.8333333333334, 640.8333333333334, 641.6666666666666, 641.6666666666666, 642.5, 642.5, 643.3333333333334, 643.3333333333334, 644.1666666666667, 644.1666666666667, 645, 645, 645.8333333333334, 645.8333333333334, 646.6666666666667, 646.6666666666667, 647.5, 647.5, 648.3333333333333, 648.3333333333333, 649.1666666666666, 649.1666666666666, 650, 650, 650.8333333333334, 650.8333333333334, 651.6666666666666, 651.6666666666666, 652.5, 652.5, 653.3333333333334, 653.3333333333334, 654.1666666666667, 654.1666666666667, 655, 655, 655.8333333333334, 655.8333333333334, 656.6666666666667, 656.6666666666667, 657.5000000000001, 657.5000000000001, 658.3333333333333, 658.3333333333333, 659.1666666666666, 659.1666666666666, 660, 660, 660.8333333333334, 660.8333333333334, 661.6666666666666, 661.6666666666666, 662.5, 662.5, 663.3333333333334, 663.3333333333334, 664.1666666666667, 664.1666666666667, 665, 665, 665.8333333333334, 665.8333333333334, 666.6666666666667, 666.6666666666667, 667.5, 667.5, 668.3333333333334, 668.3333333333334, 669.1666666666666, 669.1666666666666, 670, 670, 670.8333333333333, 670.8333333333333, 671.6666666666666, 671.6666666666666, 672.5, 672.5, 673.3333333333334, 673.3333333333334, 674.1666666666666, 674.1666666666666, 675, 675, 675.8333333333334, 675.8333333333334, 676.6666666666667, 676.6666666666667, 677.5, 677.5, 678.3333333333334, 678.3333333333334, 679.1666666666667, 679.1666666666667, 680, 680, 680.8333333333333, 680.8333333333333, 681.6666666666666, 681.6666666666666, 682.5, 682.5, 683.3333333333334, 683.3333333333334, 684.1666666666666, 684.1666666666666, 685, 685, 685.8333333333334, 685.8333333333334, 686.6666666666667, 686.6666666666667, 687.5, 687.5, 688.3333333333334, 688.3333333333334, 689.1666666666667, 689.1666666666667, 690.0000000000001, 690.0000000000001, 690.8333333333334, 690.8333333333334, 691.6666666666666, 691.6666666666666, 692.5, 692.5, 693.3333333333334, 693.3333333333334, 694.1666666666666, 694.1666666666666, 695, 695, 695.8333333333334, 695.8333333333334, 696.6666666666666, 696.6666666666666, 697.5, 697.5, 698.3333333333334, 698.3333333333334, 699.1666666666667, 699.1666666666667, 700, 700, 700.8333333333334, 700.8333333333334, 701.6666666666667, 701.6666666666667, 702.5, 702.5, 703.3333333333333, 703.3333333333333, 704.1666666666666, 704.1666666666666, 705, 705, 705.8333333333334, 705.8333333333334, 706.6666666666666, 706.6666666666666, 707.5, 707.5, 708.3333333333334, 708.3333333333334, 709.1666666666667, 709.1666666666667, 710, 710, 710.8333333333334, 710.8333333333334, 711.6666666666667, 711.6666666666667, 712.5000000000001, 712.5000000000001, 713.3333333333334, 713.3333333333334, 714.1666666666666, 714.1666666666666, 715, 715, 715.8333333333334, 715.8333333333334, 716.6666666666666, 716.6666666666666, 717.5, 717.5, 718.3333333333334, 718.3333333333334, 719.1666666666667, 719.1666666666667, 720, 720, 720.8333333333334, 720.8333333333334, 721.6666666666667, 721.6666666666667, 722.5, 722.5, 723.3333333333334, 723.3333333333334, 724.1666666666667, 724.1666666666667, 725, 725, 725.8333333333333, 725.8333333333333, 726.6666666666666, 726.6666666666666, 727.5, 727.5, 728.3333333333334, 728.3333333333334, 729.1666666666666, 729.1666666666666, 730, 730, 730.8333333333334, 730.8333333333334, 731.6666666666667, 731.6666666666667, 732.5, 732.5, 733.3333333333334, 733.3333333333334, 734.1666666666667, 734.1666666666667, 735, 735, 735.8333333333333, 735.8333333333333, 736.6666666666666, 736.6666666666666, 737.5, 737.5, 738.3333333333334, 738.3333333333334, 739.1666666666666, 739.1666666666666, 740, 740, 740.8333333333334, 740.8333333333334, 741.6666666666667, 741.6666666666667, 742.5, 742.5, 743.3333333333334, 743.3333333333334, 744.1666666666667, 744.1666666666667, 745.0000000000001, 745.0000000000001, 745.8333333333334, 745.8333333333334, 746.6666666666666, 746.6666666666666, 747.5, 747.5, 748.3333333333333, 748.3333333333333, 749.1666666666666, 749.1666666666666, 750, 750, 750.8333333333334, 750.8333333333334, 751.6666666666666, 751.6666666666666, 752.5, 752.5, 753.3333333333334, 753.3333333333334, 754.1666666666667, 754.1666666666667, 755, 755, 755.8333333333334, 755.8333333333334, 756.6666666666667, 756.6666666666667, 757.5, 757.5, 758.3333333333333, 758.3333333333333, 759.1666666666666, 759.1666666666666, 760, 760, 760.8333333333334, 760.8333333333334, 761.6666666666666, 761.6666666666666, 762.5, 762.5, 763.3333333333334, 763.3333333333334, 764.1666666666667, 764.1666666666667, 765, 765, 765.8333333333334, 765.8333333333334, 766.6666666666667, 766.6666666666667, 767.5000000000001, 767.5000000000001, 768.3333333333334, 768.3333333333334, 769.1666666666666, 769.1666666666666, 770, 770, 770.8333333333334, 770.8333333333334, 771.6666666666666, 771.6666666666666, 772.5, 772.5, 773.3333333333334, 773.3333333333334, 774.1666666666666, 774.1666666666666, 775, 775, 775.8333333333334, 775.8333333333334, 776.6666666666667, 776.6666666666667, 777.5, 777.5, 778.3333333333334, 778.3333333333334, 779.1666666666667, 779.1666666666667, 780, 780, 780.8333333333333, 780.8333333333333, 781.6666666666666, 781.6666666666666, 782.5, 782.5, 783.3333333333334, 783.3333333333334, 784.1666666666666, 784.1666666666666, 785, 785, 785.8333333333334, 785.8333333333334, 786.6666666666667, 786.6666666666667, 787.5, 787.5, 788.3333333333334, 788.3333333333334, 789.1666666666667, 789.1666666666667, 790.0000000000001, 790.0000000000001, 790.8333333333333, 790.8333333333333, 791.6666666666666, 791.6666666666666, 792.5, 792.5, 793.3333333333334, 793.3333333333334, 794.1666666666666, 794.1666666666666, 795, 795, 795.8333333333334, 795.8333333333334, 796.6666666666667, 796.6666666666667, 797.5, 797.5, 798.3333333333334, 798.3333333333334, 799.1666666666667, 799.1666666666667, 800, 800, 800.8333333333334, 800.8333333333334, 801.6666666666666, 801.6666666666666, 802.5, 802.5, 803.3333333333333, 803.3333333333333, 804.1666666666666, 804.1666666666666, 805, 805, 805.8333333333334, 805.8333333333334, 806.6666666666666, 806.6666666666666, 807.5, 807.5, 808.3333333333334, 808.3333333333334, 809.1666666666667, 809.1666666666667, 810, 810, 810.8333333333334, 810.8333333333334, 811.6666666666667, 811.6666666666667, 812.5, 812.5, 813.3333333333333, 813.3333333333333, 814.1666666666666, 814.1666666666666, 815, 815, 815.8333333333334, 815.8333333333334, 816.6666666666666, 816.6666666666666, 817.5, 817.5, 818.3333333333334, 818.3333333333334, 819.1666666666667, 819.1666666666667, 820, 820, 820.8333333333334, 820.8333333333334, 821.6666666666667, 821.6666666666667, 822.5000000000001, 822.5000000000001, 823.3333333333334, 823.3333333333334, 824.1666666666666, 824.1666666666666, 825, 825, 825.8333333333334, 825.8333333333334, 826.6666666666666, 826.6666666666666, 827.5, 827.5, 828.3333333333334, 828.3333333333334, 829.1666666666666, 829.1666666666666, 830, 830, 830.8333333333334, 830.8333333333334, 831.6666666666667, 831.6666666666667, 832.5, 832.5, 833.3333333333334, 833.3333333333334, 834.1666666666667, 834.1666666666667, 835, 835, 835.8333333333333, 835.8333333333333, 836.6666666666666, 836.6666666666666, 837.5, 837.5, 838.3333333333334, 838.3333333333334, 839.1666666666666, 839.1666666666666, 840, 840, 840.8333333333334, 840.8333333333334, 841.6666666666667, 841.6666666666667, 842.5, 842.5, 843.3333333333334, 843.3333333333334, 844.1666666666667, 844.1666666666667, 845.0000000000001, 845.0000000000001, 845.8333333333334, 845.8333333333334, 846.6666666666666, 846.6666666666666, 847.5, 847.5, 848.3333333333334, 848.3333333333334, 849.1666666666666, 849.1666666666666, 850, 850, 850.8333333333334, 850.8333333333334, 851.6666666666667, 851.6666666666667, 852.5, 852.5, 853.3333333333334, 853.3333333333334, 854.1666666666667, 854.1666666666667, 855, 855, 855.8333333333334, 855.8333333333334, 856.6666666666667, 856.6666666666667, 857.5, 857.5, 858.3333333333333, 858.3333333333333, 859.1666666666666, 859.1666666666666, 860, 860, 860.8333333333334, 860.8333333333334, 861.6666666666666, 861.6666666666666, 862.5, 862.5, 863.3333333333334, 863.3333333333334, 864.1666666666667, 864.1666666666667, 865, 865, 865.8333333333334, 865.8333333333334, 866.6666666666667, 866.6666666666667, 867.5000000000001, 867.5000000000001, 868.3333333333333, 868.3333333333333, 869.1666666666666, 869.1666666666666, 870, 870, 870.8333333333334, 870.8333333333334, 871.6666666666666, 871.6666666666666, 872.5, 872.5, 873.3333333333334, 873.3333333333334, 874.1666666666667, 874.1666666666667, 875, 875, 875.8333333333334, 875.8333333333334, 876.6666666666667, 876.6666666666667, 877.5000000000001, 877.5000000000001, 878.3333333333334, 878.3333333333334, 879.1666666666666, 879.1666666666666, 880, 880, 880.8333333333333, 880.8333333333333, 881.6666666666666, 881.6666666666666, 882.5, 882.5, 883.3333333333334, 883.3333333333334, 884.1666666666666, 884.1666666666666, 885, 885, 885.8333333333334, 885.8333333333334, 886.6666666666667, 886.6666666666667, 887.5, 887.5, 888.3333333333334, 888.3333333333334, 889.1666666666667, 889.1666666666667, 890, 890, 890.8333333333333, 890.8333333333333, 891.6666666666666, 891.6666666666666, 892.5, 892.5, 893.3333333333334, 893.3333333333334, 894.1666666666666, 894.1666666666666, 895, 895, 895.8333333333334, 895.8333333333334, 896.6666666666667, 896.6666666666667, 897.5, 897.5, 898.3333333333334, 898.3333333333334, 899.1666666666667, 899.1666666666667, 900.0000000000001, 900.0000000000001, 900.8333333333334, 900.8333333333334, 901.6666666666666, 901.6666666666666, 902.5, 902.5, 903.3333333333334, 903.3333333333334, 904.1666666666666, 904.1666666666666, 905, 905, 905.8333333333334, 905.8333333333334, 906.6666666666667, 906.6666666666667, 907.5, 907.5, 908.3333333333334, 908.3333333333334, 909.1666666666667, 909.1666666666667, 910, 910, 910.8333333333334, 910.8333333333334, 911.6666666666667, 911.6666666666667, 912.5, 912.5, 913.3333333333333, 913.3333333333333, 914.1666666666666, 914.1666666666666, 915, 915, 915.8333333333334, 915.8333333333334, 916.6666666666666, 916.6666666666666, 917.5, 917.5, 918.3333333333334, 918.3333333333334, 919.1666666666667, 919.1666666666667, 920, 920, 920.8333333333334, 920.8333333333334, 921.6666666666667, 921.6666666666667, 922.5000000000001, 922.5000000000001, 923.3333333333334, 923.3333333333334, 924.1666666666666, 924.1666666666666, 925, 925, 925.8333333333334, 925.8333333333334, 926.6666666666666, 926.6666666666666, 927.5, 927.5, 928.3333333333334, 928.3333333333334, 929.1666666666667, 929.1666666666667, 930, 930, 930.8333333333334, 930.8333333333334, 931.6666666666667, 931.6666666666667, 932.5000000000001, 932.5000000000001, 933.3333333333334, 933.3333333333334, 934.1666666666667, 934.1666666666667, 935, 935, 935.8333333333333, 935.8333333333333, 936.6666666666666, 936.6666666666666, 937.5, 937.5, 938.3333333333334, 938.3333333333334, 939.1666666666666, 939.1666666666666, 940, 940, 940.8333333333334, 940.8333333333334, 941.6666666666667, 941.6666666666667, 942.5, 942.5, 943.3333333333334, 943.3333333333334, 944.1666666666667, 944.1666666666667, 945.0000000000001, 945.0000000000001, 945.8333333333333, 945.8333333333333, 946.6666666666666, 946.6666666666666, 947.5, 947.5, 948.3333333333334, 948.3333333333334, 949.1666666666666, 949.1666666666666, 950, 950, 950.8333333333334, 950.8333333333334, 951.6666666666667, 951.6666666666667, 952.5, 952.5, 953.3333333333334, 953.3333333333334, 954.1666666666667, 954.1666666666667, 955, 955, 955.8333333333335, 955.8333333333335, 956.6666666666666, 956.6666666666666, 957.4999999999999, 957.4999999999999, 958.3333333333334, 958.3333333333334, 959.1666666666666, 959.1666666666666, 960.0000000000001, 960.0000000000001, 960.8333333333334, 960.8333333333334, 961.6666666666666, 961.6666666666666, 962.5000000000001, 962.5000000000001, 963.3333333333334, 963.3333333333334, 964.1666666666666, 964.1666666666666, 965.0000000000001, 965.0000000000001, 965.8333333333334, 965.8333333333334, 966.6666666666666, 966.6666666666666, 967.5, 967.5, 968.3333333333333, 968.3333333333333, 969.1666666666667, 969.1666666666667, 970, 970, 970.8333333333333, 970.8333333333333, 971.6666666666667, 971.6666666666667, 972.5, 972.5, 973.3333333333333, 973.3333333333333, 974.1666666666667, 974.1666666666667, 975, 975, 975.8333333333335, 975.8333333333335, 976.6666666666667, 976.6666666666667, 977.5, 977.5, 978.3333333333334, 978.3333333333334, 979.1666666666666, 979.1666666666666, 979.9999999999999, 979.9999999999999, 980.8333333333334, 980.8333333333334, 981.6666666666666, 981.6666666666666, 982.5000000000001, 982.5000000000001, 983.3333333333334, 983.3333333333334, 984.1666666666666, 984.1666666666666, 985.0000000000001, 985.0000000000001, 985.8333333333334, 985.8333333333334, 986.6666666666666, 986.6666666666666, 987.5000000000001, 987.5000000000001, 988.3333333333334, 988.3333333333334, 989.1666666666666, 989.1666666666666, 990, 990, 990.8333333333333, 990.8333333333333, 991.6666666666667, 991.6666666666667, 992.5, 992.5, 993.3333333333333, 993.3333333333333, 994.1666666666667, 994.1666666666667, 995, 995, 995.8333333333333, 995.8333333333333, 996.6666666666667, 996.6666666666667, 997.5, 997.5, 998.3333333333335, 998.3333333333335, 999.1666666666667, 999.1666666666667, 1000, 1000, 1000.8333333333334, 1000.8333333333334, 1001.6666666666666, 1001.6666666666666, 1002.4999999999999, 1002.4999999999999, 1003.3333333333334, 1003.3333333333334, 1004.1666666666666, 1004.1666666666666, 1005.0000000000001, 1005.0000000000001, 1005.8333333333334, 1005.8333333333334, 1006.6666666666666, 1006.6666666666666, 1007.5000000000001, 1007.5000000000001, 1008.3333333333334, 1008.3333333333334, 1009.1666666666666, 1009.1666666666666, 1010.0000000000001, 1010.0000000000001, 1010.8333333333334, 1010.8333333333334, 1011.6666666666667, 1011.6666666666667, 1012.5, 1012.5, 1013.3333333333333, 1013.3333333333333, 1014.1666666666667, 1014.1666666666667, 1015, 1015, 1015.8333333333333, 1015.8333333333333, 1016.6666666666667, 1016.6666666666667, 1017.5, 1017.5, 1018.3333333333333, 1018.3333333333333, 1019.1666666666667, 1019.1666666666667, 1020, 1020, 1020.8333333333335, 1020.8333333333335, 1021.6666666666667, 1021.6666666666667, 1022.5, 1022.5, 1023.3333333333334, 1023.3333333333334, 1024.1666666666667, 1024.1666666666667, 1025, 1025, 1025.8333333333335, 1025.8333333333335, 1026.6666666666667, 1026.6666666666667, 1027.5000000000002, 1027.5000000000002, 1028.3333333333333, 1028.3333333333333, 1029.1666666666665, 1029.1666666666665, 1030, 1030, 1030.8333333333333, 1030.8333333333333, 1031.6666666666665, 1031.6666666666665, 1032.5, 1032.5, 1033.3333333333333, 1033.3333333333333, 1034.1666666666667, 1034.1666666666667, 1035, 1035, 1035.8333333333333, 1035.8333333333333, 1036.6666666666667, 1036.6666666666667, 1037.5, 1037.5, 1038.3333333333333, 1038.3333333333333, 1039.1666666666667, 1039.1666666666667, 1040, 1040, 1040.8333333333333, 1040.8333333333333, 1041.6666666666667, 1041.6666666666667, 1042.5, 1042.5, 1043.3333333333335, 1043.3333333333335, 1044.1666666666667, 1044.1666666666667, 1045, 1045, 1045.8333333333335, 1045.8333333333335, 1046.6666666666667, 1046.6666666666667, 1047.5, 1047.5, 1048.3333333333335, 1048.3333333333335, 1049.1666666666667, 1049.1666666666667, 1050, 1050, 1050.8333333333333, 1050.8333333333333, 1051.6666666666665, 1051.6666666666665, 1052.5, 1052.5, 1053.3333333333333, 1053.3333333333333, 1054.1666666666665, 1054.1666666666665, 1055, 1055, 1055.8333333333333, 1055.8333333333333, 1056.6666666666667, 1056.6666666666667, 1057.5, 1057.5, 1058.3333333333333, 1058.3333333333333, 1059.1666666666667, 1059.1666666666667, 1060, 1060, 1060.8333333333333, 1060.8333333333333, 1061.6666666666667, 1061.6666666666667, 1062.5, 1062.5, 1063.3333333333335, 1063.3333333333335, 1064.1666666666667, 1064.1666666666667, 1065, 1065, 1065.8333333333335, 1065.8333333333335, 1066.6666666666667, 1066.6666666666667, 1067.5, 1067.5, 1068.3333333333335, 1068.3333333333335, 1069.1666666666667, 1069.1666666666667, 1070, 1070, 1070.8333333333335, 1070.8333333333335, 1071.6666666666667, 1071.6666666666667, 1072.5, 1072.5, 1073.3333333333333, 1073.3333333333333, 1074.1666666666665, 1074.1666666666665, 1075, 1075, 1075.8333333333333, 1075.8333333333333, 1076.6666666666665, 1076.6666666666665, 1077.5, 1077.5, 1078.3333333333333, 1078.3333333333333, 1079.1666666666667, 1079.1666666666667, 1080, 1080, 1080.8333333333333, 1080.8333333333333, 1081.6666666666667, 1081.6666666666667, 1082.5, 1082.5, 1083.3333333333333, 1083.3333333333333, 1084.1666666666667, 1084.1666666666667, 1085, 1085, 1085.8333333333335, 1085.8333333333335, 1086.6666666666667, 1086.6666666666667, 1087.5, 1087.5, 1088.3333333333335, 1088.3333333333335, 1089.1666666666667, 1089.1666666666667, 1090, 1090, 1090.8333333333335, 1090.8333333333335, 1091.6666666666667, 1091.6666666666667, 1092.5000000000002, 1092.5000000000002, 1093.3333333333335, 1093.3333333333335, 1094.1666666666667, 1094.1666666666667, 1095, 1095, 1095.8333333333333, 1095.8333333333333, 1096.6666666666665, 1096.6666666666665, 1097.5, 1097.5, 1098.3333333333333, 1098.3333333333333, 1099.1666666666665, 1099.1666666666665, 1100 ] }, "y": { "type": "float", "values": [ 4, 4, 4.008973259578643, 4.008973259578643, 4.0228769159008335, 4.0228769159008335, 3.9999999164963085, 3.9999999164963085, 3.810601539422748, 3.810601539422748, 3.532352379871206, 3.532352379871206, 3.302043735269807, 3.302043735269807, 3.136194776613066, 3.136194776613066, 3.0345458086595984, 3.0345458086595984, 3.0001220852155135, 3.0001220852155135, 3.034192166109342, 3.034192166109342, 3.134080455785038, 3.134080455785038, 3.2929797322736354, 3.2929797322736354, 3.5000612723153353, 3.5000612723153353, 3.7412128109658083, 3.7412128109658083, 4.000000269144098, 4.000000269144098, 4.258787708980771, 4.258787708980771, 4.499939193855916, 4.499939193855916, 4.7070206483536765, 4.7070206483536765, 4.8659198133590555, 4.8659198133590555, 4.96580797320992, 4.96580797320992, 4.99987791478448, 4.99987791478448, 4.965807827833301, 4.965807827833301, 4.865919532513054, 4.865919532513054, 4.70702025117737, 4.70702025117737, 4.499938707416372, 4.499938707416372, 4.258818764372469, 4.258818764372469, 3.9999997074163773, 3.9999997074163773, 3.7411806703992663, 3.7411806703992663, 3.499999743236711, 3.499999743236711, 3.2928930077878276, 3.2928930077878276, 3.1339744460226218, 3.1339744460226218, 3.034074095460543, 3.034074095460543, 3.000000000000046, 3.000000000000046, 3.0340742529710916, 3.0340742529710916, 3.1339747503096915, 3.1339747503096915, 3.292893438114648, 3.292893438114648, 3.5000002702772766, 3.5000002702772766, 3.7411812582366326, 3.7411812582366326, 4.000000315990399, 4.000000315990399, 4.258819352209832, 4.258819352209832, 4.5000002770341485, 4.5000002770341485, 4.7071070087631774, 4.7071070087631774, 4.866025565680703, 4.866025565680703, 4.96592591059754, 4.96592591059754, 4.999999999999947, 4.999999999999947, 4.965925740970811, 4.965925740970811, 4.866025237986971, 4.866025237986971, 4.707106545334337, 4.707106545334337, 4.499999709451956, 4.499999709451956, 4.2588187191541556, 4.2588187191541556, 3.9999996606028247, 3.9999996606028247, 3.7411806251810704, 3.7411806251810704, 3.4999997026950913, 3.4999997026950913, 3.2928929746857385, 3.2928929746857385, 3.1339744226159154, 3.1339744226159154, 3.034074083344378, 3.034074083344378, 3.0000000000000617, 3.0000000000000617, 3.034074265087316, 3.034074265087316, 3.1339747737164245, 3.1339747737164245, 3.2928934712166784, 3.2928934712166784, 3.5000003108188134, 3.5000003108188134, 3.741181303454946, 3.741181303454946, 4.000000362803838, 4.000000362803838, 4.258819397428027, 4.258819397428027, 4.500000317575669, 4.500000317575669, 4.707107041865266, 4.707107041865266, 4.866025589087409, 4.866025589087409, 4.965925922713704, 4.965925922713704, 4.99999999999993, 4.99999999999993, 4.965925728854586, 4.965925728854586, 4.866025214580237, 4.866025214580237, 4.707106512232306, 4.707106512232306, 4.4999996689104185, 4.4999996689104185, 4.258818673935951, 4.258818673935951, 3.9999996137894995, 3.9999996137894995, 3.7411805799626556, 3.7411805799626556, 3.4999996621535714, 3.4999996621535714, 3.2928929415837307, 3.2928929415837307, 3.133974399209268, 3.133974399209268, 3.0340740712281558, 3.0340740712281558, 3.000000000000079, 3.000000000000079, 3.034074277203513, 3.034074277203513, 3.133974797123102, 3.133974797123102, 3.2928935043188714, 3.2928935043188714, 3.500000351360351, 3.500000351360351, 3.741181348673151, 3.741181348673151, 4.000000409617162, 4.000000409617162, 4.258819442646442, 4.258819442646442, 4.500000358117188, 4.500000358117188, 4.707107074967272, 4.707107074967272, 4.866025612494055, 4.866025612494055, 4.965925934829925, 4.965925934829925, 4.999999999999911, 4.999999999999911, 4.965925716738388, 4.965925716738388, 4.866025191173558, 4.866025191173558, 4.707106479130112, 4.707106479130112, 4.499999628368683, 4.499999628368683, 4.258818628717747, 4.258818628717747, 3.9999995669761748, 3.9999995669761748, 3.7411805347444607, 3.7411805347444607, 3.499999621611855, 3.499999621611855, 3.292892908481725, 3.292892908481725, 3.133974375802622, 3.133974375802622, 3.0340740591119943, 3.0340740591119943, 3.000000000000099, 3.000000000000099, 3.034074289319712, 3.034074289319712, 3.133974820529782, 3.133974820529782, 3.2928935374209054, 3.2928935374209054, 3.5000003919020863, 3.5000003919020863, 3.7411813938913556, 3.7411813938913556, 4.000000456430488, 4.000000456430488, 4.258819487864637, 4.258819487864637, 4.500000398658904, 4.500000398658904, 4.707107108069278, 4.707107108069278, 4.8660256359007, 4.8660256359007, 4.9659259469460855, 4.9659259469460855, 4.999999999999891, 4.999999999999891, 4.965925704622128, 4.965925704622128, 4.866025167766877, 4.866025167766877, 4.707106446028077, 4.707106446028077, 4.499999587827143, 4.499999587827143, 4.258818583499322, 4.258818583499322, 3.9999995201628495, 3.9999995201628495, 3.7411804895262666, 3.7411804895262666, 3.4999995810703375, 3.4999995810703375, 3.29289287537956, 3.29289287537956, 3.1339743523959784, 3.1339743523959784, 3.0340740469958356, 3.0340740469958356, 3.000000000000121, 3.000000000000121, 3.0340743014359726, 3.0340743014359726, 3.1339748439364636, 3.1339748439364636, 3.2928935705229403, 3.2928935705229403, 3.5000004324436262, 3.5000004324436262, 3.7411814391097806, 3.7411814391097806, 4.000000503243813, 4.000000503243813, 4.25881953308283, 4.25881953308283, 4.500000439200421, 4.500000439200421, 4.707107141171441, 4.707107141171441, 4.866025659307456, 4.866025659307456, 4.965925959062243, 4.965925959062243, 4.999999999999868, 4.999999999999868, 4.965925692505926, 4.965925692505926, 4.866025144360081, 4.866025144360081, 4.707106412926041, 4.707106412926041, 4.499999547285603, 4.499999547285603, 4.258818538281116, 4.258818538281116, 3.999999473349297, 3.999999473349297, 3.741180444308073, 3.741180444308073, 3.4999995405288207, 3.4999995405288207, 3.292892842277557, 3.292892842277557, 3.1339743289892232, 3.1339743289892232, 3.0340740348796786, 3.0340740348796786, 3.0000000000001448, 3.0000000000001448, 3.0340743135521757, 3.0340743135521757, 3.133974867343261, 3.133974867343261, 3.2928936036249774, 3.2928936036249774, 3.5000004729851675, 3.5000004729851675, 3.7411814843279867, 3.7411814843279867, 4.000000550057366, 4.000000550057366, 4.258819578301243, 4.258819578301243, 4.500000479741938, 4.500000479741938, 4.707107174273443, 4.707107174273443, 4.866025682714097, 4.866025682714097, 4.965925971178458, 4.965925971178458, 4.999999999999842, 4.999999999999842, 4.965925680389722, 4.965925680389722, 4.866025120953396, 4.866025120953396, 4.707106379823843, 4.707106379823843, 4.499999506744062, 4.499999506744062, 4.25881849306291, 4.25881849306291, 3.999999426535972, 3.999999426535972, 3.7411803990896604, 3.7411803990896604, 3.4999994999873048, 3.4999994999873048, 3.292892809175556, 3.292892809175556, 3.1339743055825835, 3.1339743055825835, 3.034074022763465, 3.034074022763465, 3.0000000000001714, 3.0000000000001714, 3.0340743256683815, 3.0340743256683815, 3.1339748907499465, 3.1339748907499465, 3.2928936367271766, 3.2928936367271766, 3.5000005135269063, 3.5000005135269063, 3.741181529546193, 3.741181529546193, 4.000000596870691, 4.000000596870691, 4.258819623519436, 4.258819623519436, 4.50000052028365, 4.50000052028365, 4.707107207375444, 4.707107207375444, 4.866025706120736, 4.866025706120736, 4.965925983294611, 4.965925983294611, 4.999999999999815, 4.999999999999815, 4.965925668273515, 4.965925668273515, 4.86602509754671, 4.86602509754671, 4.707106346721804, 4.707106346721804, 4.499999466202322, 4.499999466202322, 4.258818447844703, 4.258818447844703, 3.999999379722647, 3.999999379722647, 3.741180353871468, 3.741180353871468, 3.499999459445593, 3.499999459445593, 3.2928927760735562, 3.2928927760735562, 3.133974282175945, 3.133974282175945, 3.0340740106473123, 3.0340740106473123, 3.0000000000002, 3.0000000000002, 3.0340743377846477, 3.0340743377846477, 3.1339749141566338, 3.1339749141566338, 3.2928936698292164, 3.2928936698292164, 3.50000055406845, 3.50000055406845, 3.7411815747646204, 3.7411815747646204, 4.000000643684015, 4.000000643684015, 4.258819668737628, 4.258819668737628, 4.500000560825164, 4.500000560825164, 4.707107240477604, 4.707107240477604, 4.866025729527373, 4.866025729527373, 4.965925995410763, 4.965925995410763, 4.999999999999785, 4.999999999999785, 4.965925656157247, 4.965925656157247, 4.866025074140022, 4.866025074140022, 4.707106313619763, 4.707106313619763, 4.4999994256607785, 4.4999994256607785, 4.258818402626276, 4.258818402626276, 3.9999993329093217, 3.9999993329093217, 3.7411803086530564, 3.7411803086530564, 3.4999994189040793, 3.4999994189040793, 3.2928927429712367, 3.2928927429712367, 3.1339742587691957, 3.1339742587691957, 3.034073998531044, 3.034073998531044, 3.0000000000002305, 3.0000000000002305, 3.034074349900858, 3.034074349900858, 3.1339749375635506, 3.1339749375635506, 3.2928937029314187, 3.2928937029314187, 3.5000005946103876, 3.5000005946103876, 3.7411816199830477, 3.7411816199830477, 4.0000006904975685, 4.0000006904975685, 4.2588197139562585, 4.2588197139562585, 4.500000601366874, 4.500000601366874, 4.707107273579601, 4.707107273579601, 4.8660257529342354, 4.8660257529342354, 4.9659260075269716, 4.9659260075269716, 4.999999999999753, 4.999999999999753, 4.965925644040977, 4.965925644040977, 4.866025050733218, 4.866025050733218, 4.707106280517399, 4.707106280517399, 4.499999385119037, 4.499999385119037, 4.258818357408068, 4.258818357408068, 3.9999992860955422, 3.9999992860955422, 3.741180263434865, 3.741180263434865, 3.499999378362173, 3.499999378362173, 3.29289270986924, 3.29289270986924, 3.1339742353625613, 3.1339742353625613, 3.034073986414896, 3.034073986414896, 3.0000000000002633, 3.0000000000002633, 3.0340743620171873, 3.0340743620171873, 3.1339749609702414, 3.1339749609702414, 3.292893736033462, 3.292893736033462, 3.500000635151933, 3.500000635151933, 3.741181665201256, 3.741181665201256, 4.000000737310893, 4.000000737310893, 4.25881975917445, 4.25881975917445, 4.500000641908386, 4.500000641908386, 4.707107306681919, 4.707107306681919, 4.8660257763408685, 4.8660257763408685, 4.965926019643119, 4.965926019643119, 4.999999999999719, 4.999999999999719, 4.965925631924764, 4.965925631924764, 4.8660250273265255, 4.8660250273265255, 4.707106247415355, 4.707106247415355, 4.499999344577491, 4.499999344577491, 4.25881831218942, 4.25881831218942, 3.999999239282217, 3.999999239282217, 3.7411802182166745, 3.7411802182166745, 3.499999337820662, 3.499999337820662, 3.292892676767245, 3.292892676767245, 3.1339742119557013, 3.1339742119557013, 3.0340739742987495, 3.0340739742987495, 3.0000000000002984, 3.0000000000002984, 3.0340743741334015, 3.0340743741334015, 3.133974984376935, 3.133974984376935, 3.2928937691355062, 3.2928937691355062, 3.5000006756934794, 3.5000006756934794, 3.7411817104194647, 3.7411817104194647, 4.000000784124673, 4.000000784124673, 4.25881980439264, 4.25881980439264, 4.500000682449897, 4.500000682449897, 4.707107339783913, 4.707107339783913, 4.866025799747501, 4.866025799747501, 4.965926031759264, 4.965926031759264, 4.999999999999684, 4.999999999999684, 4.96592561980855, 4.96592561980855, 4.866025003919605, 4.866025003919605, 4.70710621431331, 4.70710621431331, 4.499999304035944, 4.499999304035944, 4.258818266971211, 4.258818266971211, 3.999999192468892, 3.999999192468892, 3.741180172998045, 3.741180172998045, 3.4999992972791514, 3.4999992972791514, 3.2928926436652515, 3.2928926436652515, 3.133974188549071, 3.133974188549071, 3.034073962182605, 3.034073962182605, 3.0000000000003357, 3.0000000000003357, 3.0340743862496176, 3.0340743862496176, 3.1339750077836297, 3.1339750077836297, 3.292893802237874, 3.292893802237874, 3.500000716235027, 3.500000716235027, 3.7411817556376743, 3.7411817556376743, 4.000000830937998, 4.000000830937998, 4.2588198496108305, 4.2588198496108305, 4.500000722991406, 4.500000722991406, 4.707107372885906, 4.707107372885906, 4.86602582315413, 4.86602582315413, 4.965926043875525, 4.965926043875525, 4.999999999999645, 4.999999999999645, 4.965925607692332, 4.965925607692332, 4.8660249805129085, 4.8660249805129085, 4.707106181211263, 4.707106181211263, 4.499999263494002, 4.499999263494002, 4.2588182217530015, 4.2588182217530015, 3.9999991456555666, 3.9999991456555666, 3.7411801277798555, 3.7411801277798555, 3.499999256737642, 3.499999256737642, 3.2928926105632597, 3.2928926105632597, 3.1339741651424426, 3.1339741651424426, 3.034073950066463, 3.034073950066463, 3.000000000000375, 3.000000000000375, 3.034074398365836, 3.034074398365836, 3.1339750311903263, 3.1339750311903263, 3.292893835339922, 3.292893835339922, 3.5000007567765756, 3.5000007567765756, 3.7411818008558844, 3.7411818008558844, 4.000000877751323, 4.000000877751323, 4.25881989482902, 4.25881989482902, 4.500000763533309, 4.500000763533309, 4.707107405987896, 4.707107405987896, 4.866025846560757, 4.866025846560757, 4.965926055991666, 4.965926055991666, 4.999999999999605, 4.999999999999605, 4.965925595575995, 4.965925595575995, 4.866024957106211, 4.866024957106211, 4.707106148109214, 4.707106148109214, 4.499999222952453, 4.499999222952453, 4.258818176534791, 4.258818176534791, 3.999999098842242, 3.999999098842242, 3.7411800825616663, 3.7411800825616663, 3.499999216196134, 3.499999216196134, 3.2928925774609477, 3.2928925774609477, 3.133974141735816, 3.133974141735816, 3.034073937950323, 3.034073937950323, 3.0000000000004166, 3.0000000000004166, 3.0340744104820563, 3.0340744104820563, 3.133975054597025, 3.133975054597025, 3.292893868441971, 3.292893868441971, 3.5000007973181253, 3.5000007973181253, 3.741181846074534, 3.741181846074534, 4.000000924564648, 4.000000924564648, 4.258819940047208, 4.258819940047208, 4.5000008040748165, 4.5000008040748165, 4.707107439089886, 4.707107439089886, 4.86602586996761, 4.86602586996761, 4.965926068107805, 4.965926068107805, 4.999999999999561, 4.999999999999561, 4.965925583459773, 4.965925583459773, 4.866024933699511, 4.866024933699511, 4.707106115007164, 4.707106115007164, 4.499999182410902, 4.499999182410902, 4.25881813131658, 4.25881813131658, 3.999999052028462, 3.999999052028462, 3.741180037343478, 3.741180037343478, 3.499999175654627, 3.499999175654627, 3.292892544358959, 3.292892544358959, 3.133974118329191, 3.133974118329191, 3.034073925834185, 3.034073925834185, 3.0000000000004605, 3.0000000000004605, 3.034074422598279, 3.034074422598279, 3.133975078003953, 3.133975078003953, 3.292893901544022, 3.292893901544022, 3.5000008378596763, 3.5000008378596763, 3.7411818912927455, 3.7411818912927455, 4.000000971377974, 4.000000971377974, 4.258819985265836, 4.258819985265836, 4.500000844616323, 4.500000844616323, 4.707107472191874, 4.707107472191874, 4.866025893374234, 4.866025893374234, 4.965926080223942, 4.965926080223942, 4.999999999999517, 4.999999999999517, 4.965925571343551, 4.965925571343551, 4.8660249102928095, 4.8660249102928095, 4.707106081904792, 4.707106081904792, 4.499999141869351, 4.499999141869351, 4.258818086098368, 4.258818086098368, 3.9999990052151366, 3.9999990052151366, 3.7411799921252897, 3.7411799921252897, 3.499999135113121, 3.499999135113121, 3.2928925112569716, 3.2928925112569716, 3.1339740949225683, 3.1339740949225683, 3.034073913717932, 3.034073913717932, 3.0000000000005063, 3.0000000000005063, 3.0340744347145034, 3.0340744347145034, 3.133975101410656, 3.133975101410656, 3.292893934646074, 3.292893934646074, 3.500000878401622, 3.500000878401622, 3.7411819365109573, 3.7411819365109573, 4.000001018191298, 4.000001018191298, 4.258820030484023, 4.258820030484023, 4.500000885157828, 4.500000885157828, 4.707107505293861, 4.707107505293861, 4.866025916780856, 4.866025916780856, 4.9659260923400765, 4.9659260923400765, 4.99999999999947, 4.99999999999947, 4.965925559227324, 4.965925559227324, 4.866024886886105, 4.866024886886105, 4.707106048802738, 4.707106048802738, 4.4999991013277985, 4.4999991013277985, 4.258818040880157, 4.258818040880157, 3.999998958401812, 3.999998958401812, 3.7411799469071028, 3.7411799469071028, 3.4999990945712227, 3.4999990945712227, 3.292892478154986, 3.292892478154986, 3.133974071515947, 3.133974071515947, 3.034073901601798, 3.034073901601798, 3.0000000000005547, 3.0000000000005547, 3.0340744468308483, 3.0340744468308483, 3.1339751248173604, 3.1339751248173604, 3.292893967748128, 3.292893967748128, 3.5000009189431753, 3.5000009189431753, 3.741181981729169, 3.741181981729169, 4.000001065004623, 4.000001065004623, 4.258820075702211, 4.258820075702211, 4.500000925699332, 4.500000925699332, 4.707107538396167, 4.707107538396167, 4.866025940187476, 4.866025940187476, 4.965926104456209, 4.965926104456209, 4.99999999999942, 4.99999999999942, 4.965925547111096, 4.965925547111096, 4.8660248634794, 4.8660248634794, 4.707106015700684, 4.707106015700684, 4.499999060786245, 4.499999060786245, 4.258817995661505, 4.258817995661505, 3.9999989115884866, 3.9999989115884866, 3.741179901688916, 3.741179901688916, 3.499999054029719, 3.499999054029719, 3.2928924450530017, 3.2928924450530017, 3.133974048109101, 3.133974048109101, 3.0340738894856667, 3.0340738894856667, 3.000000000000605, 3.000000000000605, 3.0340744589470767, 3.0340744589470767, 3.1339751482240668, 3.1339751482240668, 3.2928940008501835, 3.2928940008501835, 3.5000009594847294, 3.5000009594847294, 3.7411820269473823, 3.7411820269473823, 4.000001111818404, 4.000001111818404, 4.258820120920397, 4.258820120920397, 4.500000966240836, 4.500000966240836, 4.707107571498151, 4.707107571498151, 4.866025963594094, 4.866025963594094, 4.965926116572339, 4.965926116572339, 4.9999999999993685, 4.9999999999993685, 4.9659255349948666, 4.9659255349948666, 4.866024840072466, 4.866024840072466, 4.707105982598628, 4.707105982598628, 4.49999902024469, 4.49999902024469, 4.258817950443292, 4.258817950443292, 3.9999988647751614, 3.9999988647751614, 3.7411798564702905, 3.7411798564702905, 3.499999013488216, 3.499999013488216, 3.2928924119510192, 3.2928924119510192, 3.133974024702484, 3.133974024702484, 3.0340738773695373, 3.0340738773695373, 3.0000000000006577, 3.0000000000006577, 3.034074471063308, 3.034074471063308, 3.133975171630775, 3.133975171630775, 3.292894033952562, 3.292894033952562, 3.5000010000262844, 3.5000010000262844, 3.7411820721655955, 3.7411820721655955, 4.000001158631728, 4.000001158631728, 4.258820166138583, 4.258820166138583, 4.5000010067823375, 4.5000010067823375, 4.707107604600132, 4.707107604600132, 4.86602598700071, 4.86602598700071, 4.965926128688586, 4.965926128688586, 4.999999999999315, 4.999999999999315, 4.965925522878635, 4.965925522878635, 4.866024816665757, 4.866024816665757, 4.70710594949657, 4.70710594949657, 4.499998979702741, 4.499998979702741, 4.258817905225078, 4.258817905225078, 3.9999988179618367, 3.9999988179618367, 3.741179811252105, 3.741179811252105, 3.4999989729467145, 3.4999989729467145, 3.292892378849038, 3.292892378849038, 3.1339740012958686, 3.1339740012958686, 3.03407386525341, 3.03407386525341, 3.0000000000007123, 3.0000000000007123, 3.034074483179541, 3.034074483179541, 3.1339751950374852, 3.1339751950374852, 3.2928940670546205, 3.2928940670546205, 3.500001040567841, 3.500001040567841, 3.7411821173838096, 3.7411821173838096, 4.000001205445053, 4.000001205445053, 4.258820211356769, 4.258820211356769, 4.500001047324233, 4.500001047324233, 4.707107637702112, 4.707107637702112, 4.8660260104073245, 4.8660260104073245, 4.9659261408047115, 4.9659261408047115, 4.999999999999259, 4.999999999999259, 4.965925510762283, 4.965925510762283, 4.8660247932590455, 4.8660247932590455, 4.707105916394511, 4.707105916394511, 4.499998939161184, 4.499998939161184, 4.258817860006864, 4.258817860006864, 3.9999987711485114, 3.9999987711485114, 3.7411797660339197, 3.7411797660339197, 3.499998932405214, 3.499998932405214, 3.292892345746737, 3.292892345746737, 3.133973977889255, 3.133973977889255, 3.034073853137285, 3.034073853137285, 3.0000000000007696, 3.0000000000007696, 3.0340744952957763, 3.0340744952957763, 3.133975218444197, 3.133975218444197, 3.2928941001566807, 3.2928941001566807, 3.5000010811093984, 3.5000010811093984, 3.7411821626024637, 3.7411821626024637, 4.000001252258379, 4.000001252258379, 4.258820256574953, 4.258820256574953, 4.500001087865733, 4.500001087865733, 4.707107670804091, 4.707107670804091, 4.8660260338141645, 4.8660260338141645, 4.965926152920836, 4.965926152920836, 4.9999999999992015, 4.9999999999992015, 4.965925498646047, 4.965925498646047, 4.8660247698523325, 4.8660247698523325, 4.707105883292449, 4.707105883292449, 4.4999988986196255, 4.4999988986196255, 4.258817814788649, 4.258817814788649, 3.9999987243347315, 3.9999987243347315, 3.741179720815735, 3.741179720815735, 3.499998891863715, 3.499998891863715, 3.292892312644759, 3.292892312644759, 3.1339739544826437, 3.1339739544826437, 3.034073841021162, 3.034073841021162, 3.0000000000008287, 3.0000000000008287, 3.0340745074120132, 3.0340745074120132, 3.1339752418511386, 3.1339752418511386, 3.2928941332587423, 3.2928941332587423, 3.500001121650957, 3.500001121650957, 3.7411822078206787, 3.7411822078206787, 4.0000012990717035, 4.0000012990717035, 4.258820301793577, 4.258820301793577, 4.500001128407232, 4.500001128407232, 4.707107703906068, 4.707107703906068, 4.866026057220775, 4.866026057220775, 4.965926165036958, 4.965926165036958, 4.999999999999141, 4.999999999999141, 4.965925486529808, 4.965925486529808, 4.866024746445618, 4.866024746445618, 4.707105850190065, 4.707105850190065, 4.499998858078067, 4.499998858078067, 4.258817769570433, 4.258817769570433, 3.9999986775214067, 3.9999986775214067, 3.741179675597551, 3.741179675597551, 3.4999988513222164, 3.4999988513222164, 3.292892279542783, 3.292892279542783, 3.133973931076034, 3.133973931076034, 3.034073828905041, 3.034073828905041, 3.00000000000089, 3.00000000000089, 3.034074519528371, 3.034074519528371, 3.1339752652578543, 3.1339752652578543, 3.2928941663608056, 3.2928941663608056, 3.5000011621925164, 3.5000011621925164, 3.7411822530384553, 3.7411822530384553, 4.000001345885483, 4.000001345885483, 4.25882034701176, 4.25882034701176, 4.500001168948729, 4.500001168948729, 4.7071077370080445, 4.7071077370080445, 4.866026080627156, 4.866026080627156, 4.965926177153195, 4.965926177153195, 4.999999999999078, 4.999999999999078, 4.9659254744135675, 4.9659254744135675, 4.866024723038901, 4.866024723038901, 4.707105817088323, 4.707105817088323, 4.499998817536112, 4.499998817536112, 4.258817724351778, 4.258817724351778, 3.9999986307080815, 3.9999986307080815, 3.7411796303793676, 3.7411796303793676, 3.4999988107807196, 3.4999988107807196, 3.2928922464411294, 3.2928922464411294, 3.133973907669199, 3.133973907669199, 3.0340738167888044, 3.0340738167888044, 3.0000000000009535, 3.0000000000009535, 3.0340745316444946, 3.0340745316444946, 3.1339752886643444, 3.1339752886643444, 3.2928941994631917, 3.2928941994631917, 3.500001202734471, 3.500001202734471, 3.741182298257111, 3.741182298257111, 4.000001392698354, 4.000001392698354, 4.258820392229504, 4.258820392229504, 4.50000120949062, 4.50000120949062, 4.70710777011034, 4.70710777011034, 4.86602610403399, 4.86602610403399, 4.9659261892691955, 4.9659261892691955, 4.999999999999014, 4.999999999999014, 4.965925462297207, 4.965925462297207, 4.8660246996319545, 4.8660246996319545, 4.707105783985936, 4.707105783985936, 4.499998776994945, 4.499998776994945, 4.258817679134, 4.258817679134, 3.999998583895211, 3.999998583895211, 3.741179585160746, 3.741179585160746, 3.4999987702388298, 3.4999987702388298, 3.2928922133388343, 3.2928922133388343, 3.133973884262821, 3.133973884262821, 3.0340738046728055, 3.0340738046728055, 3.000000000001019, 3.000000000001019, 3.034074543760856, 3.034074543760856, 3.133975312071292, 3.133975312071292, 3.2928942325649366, 3.2928942325649366, 3.500001243275639, 3.500001243275639, 3.7411823434757667, 3.7411823434757667, 4.0000014395121335, 4.0000014395121335, 4.258820437448126, 4.258820437448126, 4.500001250031721, 4.500001250031721, 4.707107803211991, 4.707107803211991, 4.866026127440822, 4.866026127440822, 4.965926201385429, 4.965926201385429, 4.999999999998947, 4.999999999998947, 4.96592545018108, 4.96592545018108, 4.866024676225462, 4.866024676225462, 4.707105750884191, 4.707105750884191, 4.499998736452989, 4.499998736452989, 4.258817633915344, 4.258817633915344, 3.9999985370814315, 3.9999985370814315, 3.7411795399430026, 3.7411795399430026, 3.4999987296977286, 3.4999987296977286, 3.2928921802365414, 3.2928921802365414, 3.1339738608559893, 3.1339738608559893, 3.0340737925565735, 3.0340737925565735, 3.000000000001087, 3.000000000001087, 3.034074555876984, 3.034074555876984, 3.1339753354782403, 3.1339753354782403, 3.292894265667326, 3.292894265667326, 3.500001283817596, 3.500001283817596, 3.741182388693545, 3.741182388693545, 4.0000014863250035, 4.0000014863250035, 4.258820482666747, 4.258820482666747, 4.50000129057361, 4.50000129057361, 4.707107836314283, 4.707107836314283, 4.866026150847198, 4.866026150847198, 4.965926213501424, 4.965926213501424, 4.999999999998878, 4.999999999998878, 4.9659254380647155, 4.9659254380647155, 4.866024652818512, 4.866024652818512, 4.7071057177818005, 4.7071057177818005, 4.4999986959118194, 4.4999986959118194, 4.258817588697566, 4.258817588697566, 3.9999984902676515, 3.9999984902676515, 3.7411794947243817, 3.7411794947243817, 3.4999986891558406, 3.4999986891558406, 3.2928921471348924, 3.2928921471348924, 3.1339738374496147, 3.1339738374496147, 3.034073780440343, 3.034073780440343, 3.0000000000011573, 3.0000000000011573, 3.0340745679933496, 3.0340745679933496, 3.1339753588847366, 3.1339753588847366, 3.292894298769074, 3.292894298769074, 3.5000013243595536, 3.5000013243595536, 3.741182433912202, 3.741182433912202, 4.000001533138784, 4.000001533138784, 4.258820527884489, 4.258820527884489, 4.500001331114709, 4.500001331114709, 4.707107869415931, 4.707107869415931, 4.866026174254026, 4.866026174254026, 4.965926225617654, 4.965926225617654, 4.999999999998806, 4.999999999998806, 4.965925425948584, 4.965925425948584, 4.866024629412014, 4.866024629412014, 4.707105684679409, 4.707105684679409, 4.499998655369861, 4.499998655369861, 4.258817543478909, 4.258817543478909, 3.999998443454781, 3.999998443454781, 3.7411794495066397, 3.7411794495066397, 3.4999986486139543, 3.4999986486139543, 3.292892114032602, 3.292892114032602, 3.1339738140427875, 3.1339738140427875, 3.0340737683243506, 3.0340737683243506, 3.0000000000012297, 3.0000000000012297, 3.034074580109717, 3.034074580109717, 3.1339753822916894, 3.1339753822916894, 3.2928943318714663, 3.2928943318714663, 3.500001364900725, 3.500001364900725, 3.7411824791299813, 3.7411824791299813, 4.000001579951654, 4.000001579951654, 4.258820573103109, 4.258820573103109, 4.5000013716565945, 4.5000013716565945, 4.707107902518221, 4.707107902518221, 4.866026197660398, 4.866026197660398, 4.965926237733645, 4.965926237733645, 4.9999999999987335, 4.9999999999987335, 4.965925413832216, 4.965925413832216, 4.866024606005061, 4.866024606005061, 4.707105651577659, 4.707105651577659, 4.499998614828689, 4.499998614828689, 4.2588174982602505, 4.2588174982602505, 3.9999983966410015, 3.9999983966410015, 3.74117940428802, 3.74117940428802, 3.4999986080728562, 3.4999986080728562, 3.2928920809309568, 3.2928920809309568, 3.133973790635962, 3.133973790635962, 3.034073756208125, 3.034073756208125, 3.0000000000013043, 3.0000000000013043, 3.034074592225852, 3.034074592225852, 3.133975405698189, 3.133975405698189, 3.2928943649732174, 3.2928943649732174, 3.500001405442685, 3.500001405442685, 3.74118252434864, 3.74118252434864, 4.0000016267654335, 4.0000016267654335, 4.258820618320851, 4.258820618320851, 4.500001412197692, 4.500001412197692, 4.707107935620509, 4.707107935620509, 4.866026221067223, 4.866026221067223, 4.96592624984987, 4.96592624984987, 4.999999999998658, 4.999999999998658, 4.96592540171608, 4.96592540171608, 4.866024582598105, 4.866024582598105, 4.707105618475263, 4.707105618475263, 4.499998574286729, 4.499998574286729, 4.25881745304247, 4.25881745304247, 3.999998349828131, 3.999998349828131, 3.7411793590694007, 3.7411793590694007, 3.4999985675309717, 3.4999985675309717, 3.2928920478286696, 3.2928920478286696, 3.133973767229593, 3.133973767229593, 3.034073744092136, 3.034073744092136, 3.000000000001381, 3.000000000001381, 3.0340746043422238, 3.0340746043422238, 3.1339754291051456, 3.1339754291051456, 3.292894398075613, 3.292894398075613, 3.5000014459838584, 3.5000014459838584, 3.74118256956642, 3.74118256956642, 4.000001673579214, 4.000001673579214, 4.258820663539469, 4.258820663539469, 4.500001452739576, 4.500001452739576, 4.707107968722152, 4.707107968722152, 4.8660262444735904, 4.8660262444735904, 4.965926261966093, 4.965926261966093, 4.99999999999858, 4.99999999999858, 4.9659253895997075, 4.9659253895997075, 4.866024559191603, 4.866024559191603, 4.70710558537351, 4.70710558537351, 4.499998533744767, 4.499998533744767, 4.258817407823811, 4.258817407823811, 3.999998303014351, 3.999998303014351, 3.741179313851661, 3.741179313851661, 3.4999985269898763, 3.4999985269898763, 3.292892014727027, 3.292892014727027, 3.1339737438227715, 3.1339737438227715, 3.0340737319759143, 3.0340737319759143, 3.0000000000014597, 3.0000000000014597, 3.0340746164583625, 3.0340746164583625, 3.133975452511649, 3.133975452511649, 3.29289443117801, 3.29289443117801, 3.50000148652582, 3.50000148652582, 3.74118261478508, 3.74118261478508, 4.000001720392084, 4.000001720392084, 4.258820708757209, 4.258820708757209, 4.500001493281459, 4.500001493281459, 4.7071080018244364, 4.7071080018244364, 4.866026267880412, 4.866026267880412, 4.9659262740820775, 4.9659262740820775, 4.9999999999985, 4.9999999999985, 4.965925377483332, 4.965925377483332, 4.866024535784644, 4.866024535784644, 4.707105552271113, 4.707105552271113, 4.4999984932035915, 4.4999984932035915, 4.258817362606029, 4.258817362606029, 3.9999982562014806, 3.9999982562014806, 3.7411792686330427, 3.7411792686330427, 3.499998486447994, 3.499998486447994, 3.2928919816247433, 3.2928919816247433, 3.133973720416406, 3.133973720416406, 3.03407371985993, 3.03407371985993, 3.000000000001541, 3.000000000001541, 3.0340746285747384, 3.0340746285747384, 3.13397547591861, 3.13397547591861, 3.2928944642797657, 3.2928944642797657, 3.500001527066996, 3.500001527066996, 3.74118266000374, 3.74118266000374, 4.000001767205863, 4.000001767205863, 4.258820753975827, 4.258820753975827, 4.500001533822553, 4.500001533822553, 4.707108034926077, 4.707108034926077, 4.8660262912872305, 4.8660262912872305, 4.965926286198297, 4.965926286198297, 4.999999999998417, 4.999999999998417, 4.96592536536719, 4.96592536536719, 4.866024512378137, 4.866024512378137, 4.707105519169356, 4.707105519169356, 4.499998452661628, 4.499998452661628, 4.258817317387369, 4.258817317387369, 3.999998209387701, 3.999998209387701, 3.741179223415304, 3.741179223415304, 3.4999984459069005, 3.4999984459069005, 3.2928919485224606, 3.2928919485224606, 3.1339736970095884, 3.1339736970095884, 3.0340737077437128, 3.0340737077437128, 3.000000000001624, 3.000000000001624, 3.0340746406908816, 3.0340746406908816, 3.1339754993255715, 3.1339754993255715, 3.292894497382166, 3.292894497382166, 3.5000015676089604, 3.5000015676089604, 3.741182705221522, 3.741182705221522, 4.000001814018734, 4.000001814018734, 4.258820799194444, 4.258820799194444, 4.5000015743644335, 4.5000015743644335, 4.707108068028359, 4.707108068028359, 4.866026314693593, 4.866026314693593, 4.965926298314278, 4.965926298314278, 4.999999999998334, 4.999999999998334, 4.96592535325081, 4.96592535325081, 4.866024488971174, 4.866024488971174, 4.707105486066955, 4.707105486066955, 4.49999841212045, 4.49999841212045, 4.258817272169587, 4.258817272169587, 3.999998162573921, 3.999998162573921, 3.7411791781966865, 3.7411791781966865, 3.4999984053650204, 3.4999984053650204, 3.2928919154208227, 3.2928919154208227, 3.1339736736032267, 3.1339736736032267, 3.0340736956274976, 3.0340736956274976, 3.0000000000017097, 3.0000000000017097, 3.034074652807262, 3.034074652807262, 3.133975522732081, 3.133975522732081, 3.2928945304839243, 3.2928945304839243, 3.500001608150926, 3.500001608150926, 3.741182750440183, 3.741182750440183, 4.000001860832514, 4.000001860832514, 4.258820844412182, 4.258820844412182, 4.500001614905525, 4.500001614905525, 4.707108101129996, 4.707108101129996, 4.866026338100408, 4.866026338100408, 4.965926310430492, 4.965926310430492, 4.999999999998247, 4.999999999998247, 4.965925341134665, 4.965925341134665, 4.866024465564664, 4.866024465564664, 4.707105452964552, 4.707105452964552, 4.499998371578485, 4.499998371578485, 4.258817226950925, 4.258817226950925, 3.9999981157610507, 3.9999981157610507, 3.741179132978949, 3.741179132978949, 3.4999983648231416, 3.4999983648231416, 3.2928918823185436, 3.2928918823185436, 3.133973650196413, 3.133973650196413, 3.0340736835115196, 3.0340736835115196, 3.0000000000017972, 3.0000000000017972, 3.0340746649236445, 3.0340746649236445, 3.1339755461390473, 3.1339755461390473, 3.292894563586328, 3.292894563586328, 3.500001648692105, 3.500001648692105, 3.7411827956579664, 3.7411827956579664, 4.000001907645384, 4.000001907645384, 4.258820889630798, 4.258820889630798, 4.500001655447404, 4.500001655447404, 4.707108134232274, 4.707108134232274, 4.8660263615067665, 4.8660263615067665, 4.965926322546468, 4.965926322546468, 4.999999999998158, 4.999999999998158, 4.965925329018281, 4.965925329018281, 4.866024442157697, 4.866024442157697, 4.707105419862792, 4.707105419862792, 4.499998331037305, 4.499998331037305, 4.2588171817322635, 4.2588171817322635, 3.999998068947271, 3.999998068947271, 3.741179087760333, 3.741179087760333, 3.4999983242820516, 3.4999983242820516, 3.292891849216909, 3.292891849216909, 3.133973626789601, 3.133973626789601, 3.0340736713953085, 3.0340736713953085, 3.0000000000018874, 3.0000000000018874, 3.034074677039794, 3.034074677039794, 3.1339755695455604, 3.1339755695455604, 3.2928945966880896, 3.2928945966880896, 3.5000016892340726, 3.5000016892340726, 3.7411828408766286, 3.7411828408766286, 4.000001954459164, 4.000001954459164, 4.2588209348485355, 4.2588209348485355, 4.500001695988494, 4.500001695988494, 4.707108167334551, 4.707108167334551, 4.866026384913577, 4.866026384913577, 4.9659263346626785, 4.9659263346626785, 4.999999999998067, 4.999999999998067, 4.965925316902131, 4.965925316902131, 4.866024418750728, 4.866024418750728, 4.707105386760386, 4.707105386760386, 4.499998290495337, 4.499998290495337, 4.258817136514479, 4.258817136514479, 3.9999980221344007, 3.9999980221344007, 3.741179042541718, 3.741179042541718, 3.4999982837401746, 3.4999982837401746, 3.2928918161146323, 3.2928918161146323, 3.133973603383245, 3.133973603383245, 3.034073659279335, 3.034073659279335, 3.0000000000019793, 3.0000000000019793, 3.0340746891561805, 3.0340746891561805, 3.13397559295253, 3.13397559295253, 3.292894629790496, 3.292894629790496, 3.5000017297752537, 3.5000017297752537, 3.741182886094413, 3.741182886094413, 4.000002001272944, 4.000002001272944, 4.25882098006715, 4.25882098006715, 4.500001736530369, 4.500001736530369, 4.707108200436183, 4.707108200436183, 4.866026408319932, 4.866026408319932, 4.965926346778886, 4.965926346778886, 4.999999999997974, 4.999999999997974, 4.965925304785743, 4.965925304785743, 4.866024395344212, 4.866024395344212, 4.707105353658622, 4.707105353658622, 4.499998249953368, 4.499998249953368, 4.258817091295816, 4.258817091295816, 3.9999979753206207, 3.9999979753206207, 3.7411789973239817, 3.7411789973239817, 3.4999982431990864, 3.4999982431990864, 3.2928917830130007, 3.2928917830130007, 3.1339735799764363, 3.1339735799764363, 3.034073647163128, 3.034073647163128, 3.0000000000020735, 3.0000000000020735, 3.034074701272334, 3.034074701272334, 3.133975616359047, 3.133975616359047, 3.292894662892904, 3.292894662892904, 3.5000017703172235, 3.5000017703172235, 3.7411829313130767, 3.7411829313130767, 4.000002048085814, 4.000002048085814, 4.258821025284886, 4.258821025284886, 4.500001777072245, 4.500001777072245, 4.707108233538458, 4.707108233538458, 4.866026431726739, 4.866026431726739, 4.965926358894857, 4.965926358894857, 4.999999999997879, 4.999999999997879, 4.965925292669353, 4.965925292669353, 4.86602437193724, 4.86602437193724, 4.707105320556213, 4.707105320556213, 4.499998209412185, 4.499998209412185, 4.258817046078031, 4.258817046078031, 3.9999979285077507, 3.9999979285077507, 3.7411789521053676, 3.7411789521053676, 3.499998202657212, 3.499998202657212, 3.2928917499107278, 3.2928917499107278, 3.1339735565700844, 3.1339735565700844, 3.034073635047159, 3.034073635047159, 3.00000000000217, 3.00000000000217, 3.0340747133887254, 3.0340747133887254, 3.1339756397660206, 3.1339756397660206, 3.2928946959946703, 3.2928946959946703, 3.500001810858407, 3.500001810858407, 3.7411829765317406, 3.7411829765317406, 4.000002094899594, 4.000002094899594, 4.2588210705035, 4.2588210705035, 4.500001817613331, 4.500001817613331, 4.707108266640087, 4.707108266640087, 4.866026455133545, 4.866026455133545, 4.965926371011061, 4.965926371011061, 4.999999999997781, 4.999999999997781, 4.965925280553196, 4.965925280553196, 4.866024348530719, 4.866024348530719, 4.7071052874544455, 4.7071052874544455, 4.4999981688702135, 4.4999981688702135, 4.258817000859366, 4.258817000859366, 3.9999978816939707, 3.9999978816939707, 3.741178906887632, 3.741178906887632, 3.4999981621161265, 3.4999981621161265, 3.292891716808456, 3.292891716808456, 3.13397353316328, 3.13397353316328, 3.0340736229309564, 3.0340736229309564, 3.0000000000022684, 3.0000000000022684, 3.0340747255048828, 3.0340747255048828, 3.133975663172996, 3.133975663172996, 3.292894729097082, 3.292894729097082, 3.500001851400379, 3.500001851400379, 3.7411830217495265, 3.7411830217495265, 4.000002141712464, 4.000002141712464, 4.258821115722113, 4.258821115722113, 4.500001858155204, 4.500001858155204, 4.707108299742358, 4.707108299742358, 4.866026478539895, 4.866026478539895, 4.965926383127027, 4.965926383127027, 4.999999999997682, 4.999999999997682, 4.965925268436802, 4.965925268436802, 4.8660243251237425, 4.8660243251237425, 4.707105254352034, 4.707105254352034, 4.499998128329029, 4.499998128329029, 4.2588169556415805, 4.2588169556415805, 3.999997834880191, 3.999997834880191, 3.7411788616690194, 3.7411788616690194, 3.499998121574254, 3.499998121574254, 3.292891683706829, 3.292891683706829, 3.133973509756932, 3.133973509756932, 3.034073610814756, 3.034073610814756, 3.000000000002369, 3.000000000002369, 3.034074737621278, 3.034074737621278, 3.1339756865795185, 3.1339756865795185, 3.292894762198851, 3.292894762198851, 3.500001891942352, 3.500001891942352, 3.741183066968192, 3.741183066968192, 4.000002188526245, 4.000002188526245, 4.258821160939847, 4.258821160939847, 4.500001898696288, 4.500001898696288, 4.707108332843983, 4.707108332843983, 4.866026501946696, 4.866026501946696, 4.965926395243226, 4.965926395243226, 4.99999999999758, 4.99999999999758, 4.9659252563206415, 4.9659252563206415, 4.86602430171722, 4.86602430171722, 4.707105221249621, 4.707105221249621, 4.499998087787055, 4.499998087787055, 4.258816910422914, 4.258816910422914, 3.9999977880673208, 3.9999977880673208, 3.7411788164512854, 3.7411788164512854, 3.4999980810323827, 3.4999980810323827, 3.2928916506045605, 3.2928916506045605, 3.133973486350131, 3.133973486350131, 3.034073598698793, 3.034073598698793, 3.0000000000024722, 3.0000000000024722, 3.0340747497376754, 3.0340747497376754, 3.133975709986498, 3.133975709986498, 3.2928947953012653, 3.2928947953012653, 3.5000019324835385, 3.5000019324835385, 3.741183112185979, 3.741183112185979, 4.000002235339115, 4.000002235339115, 4.258821206158459, 4.258821206158459, 4.5000019392381585, 4.5000019392381585, 4.707108365946252, 4.707108365946252, 4.866026525353041, 4.866026525353041, 4.965926407359188, 4.965926407359188, 4.999999999997476, 4.999999999997476, 4.965925244204243, 4.965925244204243, 4.866024278310239, 4.866024278310239, 4.707105188147849, 4.707105188147849, 4.499998047245867, 4.499998047245867, 4.258816865204248, 4.258816865204248, 3.999997741253541, 3.999997741253541, 3.741178771232674, 3.741178771232674, 3.4999980404913003, 3.4999980404913003, 3.292891617502937, 3.292891617502937, 3.1339734629433322, 3.1339734629433322, 3.0340735865825965, 3.0340735865825965, 3.0000000000025775, 3.0000000000025775, 3.0340747618538395, 3.0340747618538395, 3.133975733393024, 3.133975733393024, 3.292894828403038, 3.292894828403038, 3.500001973025514, 3.500001973025514, 3.7411831574046452, 3.7411831574046452, 4.000002282152894, 4.000002282152894, 4.258821251376193, 4.258821251376193, 4.500001979779241, 4.500001979779241, 4.707108399048518, 4.707108399048518, 4.866026548759839, 4.866026548759839, 4.965926419475383, 4.965926419475383, 4.999999999997369, 4.999999999997369, 4.965925232088077, 4.965925232088077, 4.866024254903257, 4.866024254903257, 4.707105155045432, 4.707105155045432, 4.499998006703891, 4.499998006703891, 4.2588168199864604, 4.2588168199864604, 3.9999976944406703, 3.9999976944406703, 3.7411787260140623, 3.7411787260140623, 3.4999979999494313, 3.4999979999494313, 3.292891584400671, 3.292891584400671, 3.13397343953699, 3.13397343953699, 3.0340735744666376, 3.0340735744666376, 3.000000000002685, 3.000000000002685, 3.034074773970241, 3.034074773970241, 3.133975756800007, 3.133975756800007, 3.2928948615054554, 3.2928948615054554, 3.5000020135667027, 3.5000020135667027, 3.741183202622434, 3.741183202622434, 4.000002328966675, 4.000002328966675, 4.258821296594804, 4.258821296594804, 4.5000020203211095, 4.5000020203211095, 4.7071084321501395, 4.7071084321501395, 4.866026572166181, 4.866026572166181, 4.965926431591576, 4.965926431591576, 4.999999999997261, 4.999999999997261, 4.965925219971675, 4.965925219971675, 4.866024231496728, 4.866024231496728, 4.707105121943657, 4.707105121943657, 4.4999979661619145, 4.4999979661619145, 4.258816774767793, 4.258816774767793, 3.999997647626891, 3.999997647626891, 3.74117868079633, 3.74117868079633, 3.4999979594083506, 3.4999979594083506, 3.2928915512990504, 3.2928915512990504, 3.1339734161301944, 3.1339734161301944, 3.0340735623504456, 3.0340735623504456, 3.000000000002794, 3.000000000002794, 3.0340747860864097, 3.0340747860864097, 3.1339757802065376, 3.1339757802065376, 3.292894894607874, 3.292894894607874, 3.5000020541086805, 3.5000020541086805, 3.7411832478411013, 3.7411832478411013, 4.000002375779545, 4.000002375779545, 4.258821341812536, 4.258821341812536, 4.500002060862977, 4.500002060862977, 4.707108465252403, 4.707108465252403, 4.866026595572975, 4.866026595572975, 4.965926443707532, 4.965926443707532, 4.99999999999715, 4.99999999999715, 4.96592520785527, 4.96592520785527, 4.866024208089742, 4.866024208089742, 4.707105088841238, 4.707105088841238, 4.4999979256207245, 4.4999979256207245, 4.258816729550004, 4.258816729550004, 3.9999976008140203, 3.9999976008140203, 3.74117863557772, 3.74117863557772, 3.499997918866484, 3.499997918866484, 3.292891518196788, 3.292891518196788, 3.133973392723856, 3.133973392723856, 3.034073550234491, 3.034073550234491, 3.000000000002906, 3.000000000002906, 3.0340747982028153, 3.0340747982028153, 3.1339758036135246, 3.1339758036135246, 3.2928949277096513, 3.2928949277096513, 3.5000020946498713, 3.5000020946498713, 3.7411832930597693, 3.7411832930597693, 4.000002422593324, 4.000002422593324, 4.258821387031146, 4.258821387031146, 4.500002101404055, 4.500002101404055, 4.707108498354021, 4.707108498354021, 4.866026618979767, 4.866026618979767, 4.965926455823721, 4.965926455823721, 4.999999999997037, 4.999999999997037, 4.965925195739098, 4.965925195739098, 4.866024184683209, 4.866024184683209, 4.70710505573946, 4.70710505573946, 4.499997885078745, 4.499997885078745, 4.258816684331336, 4.258816684331336, 3.9999975540002404, 3.9999975540002404, 3.741178590359989, 3.741178590359989, 3.4999978783254058, 3.4999978783254058, 3.2928914850945272, 3.2928914850945272, 3.1339733693170646, 3.1339733693170646, 3.0340735381183035, 3.0340735381183035, 3.0000000000030203, 3.0000000000030203, 3.034074810318988, 3.034074810318988, 3.133975827020513, 3.133975827020513, 3.2928949608120734, 3.2928949608120734, 3.5000021351918513, 3.5000021351918513, 3.7411833382775592, 3.7411833382775592, 4.000002469406195, 4.000002469406195, 4.258821432249755, 4.258821432249755, 4.50000214194592, 4.50000214194592, 4.707108531456281, 4.707108531456281, 4.866026642386103, 4.866026642386103, 4.965926467939672, 4.965926467939672, 4.999999999996922, 4.999999999996922, 4.96592518362269, 4.96592518362269, 4.866024161276219, 4.866024161276219, 4.707105022637037, 4.707105022637037, 4.499997844537552, 4.499997844537552, 4.258816639113546, 4.258816639113546, 3.999997507186461, 3.999997507186461, 3.7411785451413797, 3.7411785451413797, 3.4999978377835412, 3.4999978377835412, 3.292891451992911, 3.292891451992911, 3.13397334591073, 3.13397334591073, 3.0340735260021177, 3.0340735260021177, 3.000000000003136, 3.000000000003136, 3.034074822435398, 3.034074822435398, 3.133975850427049, 3.133975850427049, 3.292894993913854, 3.292894993913854, 3.500002175733832, 3.500002175733832, 3.7411833834962285, 3.7411833834962285, 4.000002516219975, 4.000002516219975, 4.258821477467485, 4.258821477467485, 4.500002182486997, 4.500002182486997, 4.707108564557896, 4.707108564557896, 4.866026665792892, 4.866026665792892, 4.965926480055857, 4.965926480055857, 4.999999999996804, 4.999999999996804, 4.965925171506514, 4.965925171506514, 4.866024137869682, 4.866024137869682, 4.707018662469598, 4.707018662469598, 4.49993676165593, 4.49993676165593, 4.25878499621524, 4.25878499621524, 3.999997460683641, 3.999997460683641, 3.7412100982022576, 3.7412100982022576, 3.500058840118342, 3.500058840118342, 3.292977746394146, 3.292977746394146, 3.1340790515574763, 3.1340790515574763, 3.0341914392293647, 3.0341914392293647, 3.0001220852187345, 3.0001220852187345, 3.034192759733772, 3.034192759733772, 3.134081602576096, 3.134081602576096, 3.2929813540792727, 3.2929813540792727, 3.500063258612192, 3.500063258612192, 3.7412150263908948, 3.7412150263908948, 4.000002562719937, 4.000002562719937, 4.258789924404725, 4.258789924404725, 4.499758051512304, 4.499758051512304, 4.705295720044372, 4.705295720044372, 4.854819409373181, 4.854819409373181, 4.90342605988624, 4.90342605988624, 4.731778781587124, 4.731778781587124, 4.328185779341063, 4.328185779341063, 4.076547608212793, 4.076547608212793, 4.012690077963085, 4.012690077963085 ] } } }, "cf77b58bb11047bd8b52e3f2f5a3d800": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "AxisModel", "state": { "label": "Amplitude", "orientation": "vertical", "scale": "IPY_MODEL_bb809aa69f6b4de692ddb7c47b2a8a8f", "side": "left", "tick_values": { "type": null, "values": null } } }, "d638ae4f6976431795a33ba1b24ec4d6": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#2ca02c" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS2_ch1" ], "scales": { "x": "IPY_MODEL_8342a76ecdda4fb9a4e600d8ab8fc329", "y": "IPY_MODEL_30d949e7ba5846e89f696eade5e275c3" }, "selected": [], "tooltip": "IPY_MODEL_de89493a5a54462aa3afafdeebcc5adf", "x": { "type": "float", "values": [ 0, 100, 100, 100.83333333333333, 100.83333333333333, 101.66666666666666, 101.66666666666666, 102.5, 102.5, 103.33333333333333, 103.33333333333333, 104.16666666666667, 104.16666666666667, 105, 105, 105.83333333333333, 105.83333333333333, 106.66666666666667, 106.66666666666667, 107.5, 107.5, 108.33333333333334, 108.33333333333334, 109.16666666666667, 109.16666666666667, 110, 110, 110.83333333333334, 110.83333333333334, 111.66666666666667, 111.66666666666667, 112.50000000000001, 112.50000000000001, 113.33333333333334, 113.33333333333334, 114.16666666666666, 114.16666666666666, 115, 115, 115.83333333333333, 115.83333333333333, 116.66666666666667, 116.66666666666667, 117.5, 117.5, 118.33333333333333, 118.33333333333333, 119.16666666666667, 119.16666666666667, 120.00000000000001, 120.00000000000001, 120.83333333333333, 120.83333333333333, 121.66666666666666, 121.66666666666666, 122.49999999999999, 122.49999999999999, 123.33333333333333, 123.33333333333333, 124.16666666666666, 124.16666666666666, 125, 125, 125.83333333333333, 125.83333333333333, 126.66666666666666, 126.66666666666666, 127.5, 127.5, 128.33333333333334, 128.33333333333334, 129.16666666666666, 129.16666666666666, 130, 130, 130.83333333333334, 130.83333333333334, 131.66666666666666, 131.66666666666666, 132.5, 132.5, 133.33333333333334, 133.33333333333334, 134.16666666666666, 134.16666666666666, 135, 135, 135.83333333333334, 135.83333333333334, 136.66666666666669, 136.66666666666669, 137.5, 137.5, 138.33333333333334, 138.33333333333334, 139.16666666666669, 139.16666666666669, 140, 140, 140.83333333333334, 140.83333333333334, 141.66666666666669, 141.66666666666669, 142.5, 142.5, 143.33333333333334, 143.33333333333334, 144.16666666666669, 144.16666666666669, 145.00000000000003, 145.00000000000003, 145.83333333333334, 145.83333333333334, 146.66666666666666, 146.66666666666666, 147.5, 147.5, 148.33333333333331, 148.33333333333331, 149.16666666666666, 149.16666666666666, 150, 150, 150.83333333333331, 150.83333333333331, 151.66666666666666, 151.66666666666666, 152.5, 152.5, 153.33333333333334, 153.33333333333334, 154.16666666666666, 154.16666666666666, 155, 155, 155.83333333333334, 155.83333333333334, 156.66666666666666, 156.66666666666666, 157.5, 157.5, 158.33333333333334, 158.33333333333334, 159.16666666666666, 159.16666666666666, 160, 160, 160.83333333333334, 160.83333333333334, 161.66666666666669, 161.66666666666669, 162.5, 162.5, 163.33333333333334, 163.33333333333334, 164.16666666666669, 164.16666666666669, 165, 165, 165.83333333333334, 165.83333333333334, 166.66666666666669, 166.66666666666669, 167.5, 167.5, 168.33333333333334, 168.33333333333334, 169.16666666666669, 169.16666666666669, 170, 170, 170.83333333333334, 170.83333333333334, 171.66666666666669, 171.66666666666669, 172.50000000000003, 172.50000000000003, 173.33333333333334, 173.33333333333334, 174.16666666666666, 174.16666666666666, 175, 175, 175.83333333333331, 175.83333333333331, 176.66666666666666, 176.66666666666666, 177.5, 177.5, 178.33333333333334, 178.33333333333334, 179.16666666666666, 179.16666666666666, 180, 180, 180.83333333333334, 180.83333333333334, 181.66666666666666, 181.66666666666666, 182.5, 182.5, 183.33333333333334, 183.33333333333334, 184.16666666666666, 184.16666666666666, 185, 185, 185.83333333333334, 185.83333333333334, 186.66666666666666, 186.66666666666666, 187.5, 187.5, 188.33333333333334, 188.33333333333334, 189.16666666666669, 189.16666666666669, 190, 190, 190.83333333333334, 190.83333333333334, 191.66666666666669, 191.66666666666669, 192.5, 192.5, 193.33333333333334, 193.33333333333334, 194.16666666666669, 194.16666666666669, 195, 195, 195.83333333333334, 195.83333333333334, 196.66666666666669, 196.66666666666669, 197.50000000000003, 197.50000000000003, 198.33333333333334, 198.33333333333334, 199.16666666666669, 199.16666666666669, 200, 200, 200.83333333333331, 200.83333333333331, 201.66666666666666, 201.66666666666666, 202.5, 202.5, 203.33333333333331, 203.33333333333331, 204.16666666666666, 204.16666666666666, 205, 205, 205.83333333333334, 205.83333333333334, 206.66666666666666, 206.66666666666666, 207.5, 207.5, 208.33333333333334, 208.33333333333334, 209.16666666666666, 209.16666666666666, 210, 210, 210.83333333333334, 210.83333333333334, 211.66666666666666, 211.66666666666666, 212.5, 212.5, 213.33333333333334, 213.33333333333334, 214.16666666666669, 214.16666666666669, 215, 215, 215.83333333333334, 215.83333333333334, 216.66666666666669, 216.66666666666669, 217.5, 217.5, 218.33333333333334, 218.33333333333334, 219.16666666666669, 219.16666666666669, 220, 220, 220.83333333333334, 220.83333333333334, 221.66666666666669, 221.66666666666669, 222.5, 222.5, 223.33333333333334, 223.33333333333334, 224.16666666666669, 224.16666666666669, 225.00000000000003, 225.00000000000003, 225.83333333333334, 225.83333333333334, 226.66666666666669, 226.66666666666669, 227.5, 227.5, 228.33333333333331, 228.33333333333331, 229.16666666666666, 229.16666666666666, 230, 230, 230.83333333333334, 230.83333333333334, 231.66666666666666, 231.66666666666666, 232.5, 232.5, 233.33333333333334, 233.33333333333334, 234.16666666666666, 234.16666666666666, 235, 235, 235.83333333333334, 235.83333333333334, 236.66666666666666, 236.66666666666666, 237.5, 237.5, 238.33333333333334, 238.33333333333334, 239.16666666666666, 239.16666666666666, 240.00000000000003, 240.00000000000003, 240.83333333333334, 240.83333333333334, 241.66666666666666, 241.66666666666666, 242.5, 242.5, 243.33333333333331, 243.33333333333331, 244.16666666666669, 244.16666666666669, 244.99999999999997, 244.99999999999997, 245.83333333333334, 245.83333333333334, 246.66666666666666, 246.66666666666666, 247.5, 247.5, 248.33333333333331, 248.33333333333331, 249.16666666666669, 249.16666666666669, 250, 250, 250.83333333333334, 250.83333333333334, 251.66666666666666, 251.66666666666666, 252.50000000000003, 252.50000000000003, 253.33333333333331, 253.33333333333331, 254.16666666666669, 254.16666666666669, 255, 255, 255.83333333333334, 255.83333333333334, 256.6666666666667, 256.6666666666667, 257.5, 257.5, 258.3333333333333, 258.3333333333333, 259.1666666666667, 259.1666666666667, 260, 260, 260.83333333333337, 260.83333333333337, 261.6666666666667, 261.6666666666667, 262.5, 262.5, 263.3333333333333, 263.3333333333333, 264.1666666666667, 264.1666666666667, 265, 265, 265.83333333333337, 265.83333333333337, 266.6666666666667, 266.6666666666667, 267.5, 267.5, 268.3333333333333, 268.3333333333333, 269.16666666666663, 269.16666666666663, 270, 270, 270.8333333333333, 270.8333333333333, 271.6666666666667, 271.6666666666667, 272.5, 272.5, 273.33333333333337, 273.33333333333337, 274.16666666666663, 274.16666666666663, 275, 275, 275.8333333333333, 275.8333333333333, 276.6666666666667, 276.6666666666667, 277.5, 277.5, 278.33333333333337, 278.33333333333337, 279.1666666666667, 279.1666666666667, 280, 280, 280.8333333333333, 280.8333333333333, 281.6666666666667, 281.6666666666667, 282.5, 282.5, 283.33333333333337, 283.33333333333337, 284.1666666666667, 284.1666666666667, 285, 285, 285.8333333333333, 285.8333333333333, 286.6666666666667, 286.6666666666667, 287.5, 287.5, 288.33333333333337, 288.33333333333337, 289.1666666666667, 289.1666666666667, 290.00000000000006, 290.00000000000006, 290.8333333333333, 290.8333333333333, 291.6666666666667, 291.6666666666667, 292.5, 292.5, 293.3333333333333, 293.3333333333333, 294.1666666666667, 294.1666666666667, 295, 295, 295.8333333333333, 295.8333333333333, 296.66666666666663, 296.66666666666663, 297.5, 297.5, 298.3333333333333, 298.3333333333333, 299.1666666666667, 299.1666666666667, 300, 300, 300.83333333333337, 300.83333333333337, 301.66666666666663, 301.66666666666663, 302.5, 302.5, 303.3333333333333, 303.3333333333333, 304.1666666666667, 304.1666666666667, 305, 305, 305.83333333333337, 305.83333333333337, 306.6666666666667, 306.6666666666667, 307.5, 307.5, 308.3333333333333, 308.3333333333333, 309.1666666666667, 309.1666666666667, 310, 310, 310.83333333333337, 310.83333333333337, 311.6666666666667, 311.6666666666667, 312.5, 312.5, 313.3333333333333, 313.3333333333333, 314.1666666666667, 314.1666666666667, 315, 315, 315.83333333333337, 315.83333333333337, 316.6666666666667, 316.6666666666667, 317.50000000000006, 317.50000000000006, 318.3333333333333, 318.3333333333333, 319.1666666666667, 319.1666666666667, 320, 320, 320.8333333333333, 320.8333333333333, 321.6666666666667, 321.6666666666667, 322.5, 322.5, 323.33333333333337, 323.33333333333337, 324.16666666666663, 324.16666666666663, 325, 325, 325.8333333333333, 325.8333333333333, 326.6666666666667, 326.6666666666667, 327.5, 327.5, 328.33333333333337, 328.33333333333337, 329.16666666666663, 329.16666666666663, 330, 330, 330.8333333333333, 330.8333333333333, 331.6666666666667, 331.6666666666667, 332.5, 332.5, 333.33333333333337, 333.33333333333337, 334.1666666666667, 334.1666666666667, 335, 335, 335.8333333333333, 335.8333333333333, 336.6666666666667, 336.6666666666667, 337.5, 337.5, 338.33333333333337, 338.33333333333337, 339.1666666666667, 339.1666666666667, 340, 340, 340.8333333333333, 340.8333333333333, 341.6666666666667, 341.6666666666667, 342.5, 342.5, 343.33333333333337, 343.33333333333337, 344.1666666666667, 344.1666666666667, 345.00000000000006, 345.00000000000006, 345.8333333333333, 345.8333333333333, 346.6666666666667, 346.6666666666667, 347.5, 347.5, 348.3333333333333, 348.3333333333333, 349.1666666666667, 349.1666666666667, 350, 350, 350.83333333333337, 350.83333333333337, 351.66666666666663, 351.66666666666663, 352.5, 352.5, 353.3333333333333, 353.3333333333333, 354.1666666666667, 354.1666666666667, 355, 355, 355.83333333333337, 355.83333333333337, 356.6666666666667, 356.6666666666667, 357.5, 357.5, 358.3333333333333, 358.3333333333333, 359.1666666666667, 359.1666666666667, 360, 360, 360.83333333333337, 360.83333333333337, 361.6666666666667, 361.6666666666667, 362.5, 362.5, 363.3333333333333, 363.3333333333333, 364.1666666666667, 364.1666666666667, 365, 365, 365.83333333333337, 365.83333333333337, 366.6666666666667, 366.6666666666667, 367.5, 367.5, 368.3333333333333, 368.3333333333333, 369.1666666666667, 369.1666666666667, 370, 370, 370.83333333333337, 370.83333333333337, 371.6666666666667, 371.6666666666667, 372.50000000000006, 372.50000000000006, 373.3333333333333, 373.3333333333333, 374.16666666666663, 374.16666666666663, 375, 375, 375.8333333333333, 375.8333333333333, 376.6666666666667, 376.6666666666667, 377.5, 377.5, 378.33333333333337, 378.33333333333337, 379.16666666666663, 379.16666666666663, 380, 380, 380.8333333333333, 380.8333333333333, 381.6666666666667, 381.6666666666667, 382.5, 382.5, 383.33333333333337, 383.33333333333337, 384.1666666666667, 384.1666666666667, 385, 385, 385.8333333333333, 385.8333333333333, 386.6666666666667, 386.6666666666667, 387.5, 387.5, 388.33333333333337, 388.33333333333337, 389.1666666666667, 389.1666666666667, 390, 390, 390.8333333333333, 390.8333333333333, 391.6666666666667, 391.6666666666667, 392.5, 392.5, 393.33333333333337, 393.33333333333337, 394.1666666666667, 394.1666666666667, 395.00000000000006, 395.00000000000006, 395.8333333333333, 395.8333333333333, 396.6666666666667, 396.6666666666667, 397.5, 397.5, 398.33333333333337, 398.33333333333337, 399.1666666666667, 399.1666666666667, 400, 400, 400.8333333333333, 400.8333333333333, 401.66666666666663, 401.66666666666663, 402.5, 402.5, 403.3333333333333, 403.3333333333333, 404.1666666666667, 404.1666666666667, 405, 405, 405.83333333333337, 405.83333333333337, 406.66666666666663, 406.66666666666663, 407.5, 407.5, 408.3333333333333, 408.3333333333333, 409.1666666666667, 409.1666666666667, 410, 410, 410.83333333333337, 410.83333333333337, 411.6666666666667, 411.6666666666667, 412.5, 412.5, 413.3333333333333, 413.3333333333333, 414.1666666666667, 414.1666666666667, 415, 415, 415.83333333333337, 415.83333333333337, 416.6666666666667, 416.6666666666667, 417.5, 417.5, 418.3333333333333, 418.3333333333333, 419.1666666666667, 419.1666666666667, 420, 420, 420.83333333333337, 420.83333333333337, 421.6666666666667, 421.6666666666667, 422.50000000000006, 422.50000000000006, 423.3333333333333, 423.3333333333333, 424.1666666666667, 424.1666666666667, 425, 425, 425.83333333333337, 425.83333333333337, 426.6666666666667, 426.6666666666667, 427.5, 427.5, 428.33333333333337, 428.33333333333337, 429.16666666666663, 429.16666666666663, 430, 430, 430.8333333333333, 430.8333333333333, 431.6666666666667, 431.6666666666667, 432.5, 432.5, 433.33333333333337, 433.33333333333337, 434.16666666666663, 434.16666666666663, 435, 435, 435.8333333333333, 435.8333333333333, 436.6666666666667, 436.6666666666667, 437.5, 437.5, 438.33333333333337, 438.33333333333337, 439.1666666666667, 439.1666666666667, 440, 440, 440.8333333333333, 440.8333333333333, 441.6666666666667, 441.6666666666667, 442.5, 442.5, 443.33333333333337, 443.33333333333337, 444.1666666666667, 444.1666666666667, 445, 445, 445.8333333333333, 445.8333333333333, 446.6666666666667, 446.6666666666667, 447.5, 447.5, 448.33333333333337, 448.33333333333337, 449.1666666666667, 449.1666666666667, 450.00000000000006, 450.00000000000006, 450.8333333333333, 450.8333333333333, 451.6666666666667, 451.6666666666667, 452.5, 452.5, 453.33333333333337, 453.33333333333337, 454.1666666666667, 454.1666666666667, 455, 455, 455.83333333333337, 455.83333333333337, 456.66666666666663, 456.66666666666663, 457.5, 457.5, 458.3333333333333, 458.3333333333333, 459.1666666666667, 459.1666666666667, 460, 460, 460.83333333333337, 460.83333333333337, 461.6666666666667, 461.6666666666667, 462.5, 462.5, 463.3333333333333, 463.3333333333333, 464.1666666666667, 464.1666666666667, 465, 465, 465.83333333333337, 465.83333333333337, 466.6666666666667, 466.6666666666667, 467.5, 467.5, 468.3333333333333, 468.3333333333333, 469.1666666666667, 469.1666666666667, 470, 470, 470.83333333333337, 470.83333333333337, 471.6666666666667, 471.6666666666667, 472.50000000000006, 472.50000000000006, 473.3333333333333, 473.3333333333333, 474.1666666666667, 474.1666666666667, 475, 475, 475.83333333333337, 475.83333333333337, 476.6666666666667, 476.6666666666667, 477.5, 477.5, 478.3333333333333, 478.3333333333333, 479.1666666666667, 479.1666666666667, 480.00000000000006, 480.00000000000006, 480.8333333333333, 480.8333333333333, 481.6666666666667, 481.6666666666667, 482.50000000000006, 482.50000000000006, 483.3333333333333, 483.3333333333333, 484.16666666666663, 484.16666666666663, 485, 485, 485.83333333333337, 485.83333333333337, 486.66666666666663, 486.66666666666663, 487.5, 487.5, 488.33333333333337, 488.33333333333337, 489.1666666666667, 489.1666666666667, 489.99999999999994, 489.99999999999994, 490.8333333333333, 490.8333333333333, 491.6666666666667, 491.6666666666667, 492.50000000000006, 492.50000000000006, 493.3333333333333, 493.3333333333333, 494.1666666666667, 494.1666666666667, 495, 495, 495.83333333333337, 495.83333333333337, 496.66666666666663, 496.66666666666663, 497.5, 497.5, 498.33333333333337, 498.33333333333337, 499.16666666666674, 499.16666666666674, 500, 500, 500.8333333333333, 500.8333333333333, 501.6666666666667, 501.6666666666667, 502.50000000000006, 502.50000000000006, 503.3333333333333, 503.3333333333333, 504.1666666666667, 504.1666666666667, 505.00000000000006, 505.00000000000006, 505.83333333333337, 505.83333333333337, 506.66666666666663, 506.66666666666663, 507.5, 507.5, 508.33333333333337, 508.33333333333337, 509.16666666666663, 509.16666666666663, 510, 510, 510.83333333333337, 510.83333333333337, 511.6666666666667, 511.6666666666667, 512.5, 512.5, 513.3333333333334, 513.3333333333334, 514.1666666666666, 514.1666666666666, 515, 515, 515.8333333333333, 515.8333333333333, 516.6666666666666, 516.6666666666666, 517.5, 517.5, 518.3333333333334, 518.3333333333334, 519.1666666666666, 519.1666666666666, 520, 520, 520.8333333333334, 520.8333333333334, 521.6666666666667, 521.6666666666667, 522.5, 522.5, 523.3333333333334, 523.3333333333334, 524.1666666666667, 524.1666666666667, 525, 525, 525.8333333333333, 525.8333333333333, 526.6666666666666, 526.6666666666666, 527.5, 527.5, 528.3333333333334, 528.3333333333334, 529.1666666666666, 529.1666666666666, 530, 530, 530.8333333333334, 530.8333333333334, 531.6666666666667, 531.6666666666667, 532.5, 532.5, 533.3333333333334, 533.3333333333334, 534.1666666666667, 534.1666666666667, 535, 535, 535.8333333333334, 535.8333333333334, 536.6666666666666, 536.6666666666666, 537.5, 537.5, 538.3333333333333, 538.3333333333333, 539.1666666666666, 539.1666666666666, 540, 540, 540.8333333333334, 540.8333333333334, 541.6666666666666, 541.6666666666666, 542.5, 542.5, 543.3333333333334, 543.3333333333334, 544.1666666666667, 544.1666666666667, 545, 545, 545.8333333333334, 545.8333333333334, 546.6666666666667, 546.6666666666667, 547.5, 547.5, 548.3333333333333, 548.3333333333333, 549.1666666666666, 549.1666666666666, 550, 550, 550.8333333333334, 550.8333333333334, 551.6666666666666, 551.6666666666666, 552.5, 552.5, 553.3333333333334, 553.3333333333334, 554.1666666666667, 554.1666666666667, 555, 555, 555.8333333333334, 555.8333333333334, 556.6666666666667, 556.6666666666667, 557.5000000000001, 557.5000000000001, 558.3333333333334, 558.3333333333334, 559.1666666666666, 559.1666666666666, 560, 560, 560.8333333333333, 560.8333333333333, 561.6666666666666, 561.6666666666666, 562.5, 562.5, 563.3333333333334, 563.3333333333334, 564.1666666666666, 564.1666666666666, 565, 565, 565.8333333333334, 565.8333333333334, 566.6666666666667, 566.6666666666667, 567.5, 567.5, 568.3333333333334, 568.3333333333334, 569.1666666666667, 569.1666666666667, 570, 570, 570.8333333333333, 570.8333333333333, 571.6666666666666, 571.6666666666666, 572.5, 572.5, 573.3333333333334, 573.3333333333334, 574.1666666666666, 574.1666666666666, 575, 575, 575.8333333333334, 575.8333333333334, 576.6666666666667, 576.6666666666667, 577.5, 577.5, 578.3333333333334, 578.3333333333334, 579.1666666666667, 579.1666666666667, 580.0000000000001, 580.0000000000001, 580.8333333333333, 580.8333333333333, 581.6666666666666, 581.6666666666666, 582.5, 582.5, 583.3333333333334, 583.3333333333334, 584.1666666666666, 584.1666666666666, 585, 585, 585.8333333333334, 585.8333333333334, 586.6666666666666, 586.6666666666666, 587.5, 587.5, 588.3333333333334, 588.3333333333334, 589.1666666666667, 589.1666666666667, 590, 590, 590.8333333333334, 590.8333333333334, 591.6666666666666, 591.6666666666666, 592.5, 592.5, 593.3333333333333, 593.3333333333333, 594.1666666666666, 594.1666666666666, 595, 595, 595.8333333333334, 595.8333333333334, 596.6666666666666, 596.6666666666666, 597.5, 597.5, 598.3333333333334, 598.3333333333334, 599.1666666666667, 599.1666666666667, 600, 600, 600.8333333333334, 600.8333333333334, 601.6666666666667, 601.6666666666667, 602.5, 602.5, 603.3333333333333, 603.3333333333333, 604.1666666666666, 604.1666666666666, 605, 605, 605.8333333333334, 605.8333333333334, 606.6666666666666, 606.6666666666666, 607.5, 607.5, 608.3333333333334, 608.3333333333334, 609.1666666666667, 609.1666666666667, 610, 610, 610.8333333333334, 610.8333333333334, 611.6666666666667, 611.6666666666667, 612.5000000000001, 612.5000000000001, 613.3333333333334, 613.3333333333334, 614.1666666666666, 614.1666666666666, 615, 615, 615.8333333333333, 615.8333333333333, 616.6666666666666, 616.6666666666666, 617.5, 617.5, 618.3333333333334, 618.3333333333334, 619.1666666666666, 619.1666666666666, 620, 620, 620.8333333333334, 620.8333333333334, 621.6666666666667, 621.6666666666667, 622.5, 622.5, 623.3333333333334, 623.3333333333334, 624.1666666666667, 624.1666666666667, 625, 625, 625.8333333333333, 625.8333333333333, 626.6666666666666, 626.6666666666666, 627.5, 627.5, 628.3333333333334, 628.3333333333334, 629.1666666666666, 629.1666666666666, 630, 630, 630.8333333333334, 630.8333333333334, 631.6666666666667, 631.6666666666667, 632.5, 632.5, 633.3333333333334, 633.3333333333334, 634.1666666666667, 634.1666666666667, 635.0000000000001, 635.0000000000001, 635.8333333333334, 635.8333333333334, 636.6666666666666, 636.6666666666666, 637.5, 637.5, 638.3333333333334, 638.3333333333334, 639.1666666666666, 639.1666666666666, 640, 640, 640.8333333333334, 640.8333333333334, 641.6666666666666, 641.6666666666666, 642.5, 642.5, 643.3333333333334, 643.3333333333334, 644.1666666666667, 644.1666666666667, 645, 645, 645.8333333333334, 645.8333333333334, 646.6666666666667, 646.6666666666667, 647.5, 647.5, 648.3333333333333, 648.3333333333333, 649.1666666666666, 649.1666666666666, 650, 650, 650.8333333333334, 650.8333333333334, 651.6666666666666, 651.6666666666666, 652.5, 652.5, 653.3333333333334, 653.3333333333334, 654.1666666666667, 654.1666666666667, 655, 655, 655.8333333333334, 655.8333333333334, 656.6666666666667, 656.6666666666667, 657.5000000000001, 657.5000000000001, 658.3333333333333, 658.3333333333333, 659.1666666666666, 659.1666666666666, 660, 660, 660.8333333333334, 660.8333333333334, 661.6666666666666, 661.6666666666666, 662.5, 662.5, 663.3333333333334, 663.3333333333334, 664.1666666666667, 664.1666666666667, 665, 665, 665.8333333333334, 665.8333333333334, 666.6666666666667, 666.6666666666667, 667.5, 667.5, 668.3333333333334, 668.3333333333334, 669.1666666666666, 669.1666666666666, 670, 670, 670.8333333333333, 670.8333333333333, 671.6666666666666, 671.6666666666666, 672.5, 672.5, 673.3333333333334, 673.3333333333334, 674.1666666666666, 674.1666666666666, 675, 675, 675.8333333333334, 675.8333333333334, 676.6666666666667, 676.6666666666667, 677.5, 677.5, 678.3333333333334, 678.3333333333334, 679.1666666666667, 679.1666666666667, 680, 680, 680.8333333333333, 680.8333333333333, 681.6666666666666, 681.6666666666666, 682.5, 682.5, 683.3333333333334, 683.3333333333334, 684.1666666666666, 684.1666666666666, 685, 685, 685.8333333333334, 685.8333333333334, 686.6666666666667, 686.6666666666667, 687.5, 687.5, 688.3333333333334, 688.3333333333334, 689.1666666666667, 689.1666666666667, 690.0000000000001, 690.0000000000001, 690.8333333333334, 690.8333333333334, 691.6666666666666, 691.6666666666666, 692.5, 692.5, 693.3333333333334, 693.3333333333334, 694.1666666666666, 694.1666666666666, 695, 695, 695.8333333333334, 695.8333333333334, 696.6666666666666, 696.6666666666666, 697.5, 697.5, 698.3333333333334, 698.3333333333334, 699.1666666666667, 699.1666666666667, 700, 700, 700.8333333333334, 700.8333333333334, 701.6666666666667, 701.6666666666667, 702.5, 702.5, 703.3333333333333, 703.3333333333333, 704.1666666666666, 704.1666666666666, 705, 705, 705.8333333333334, 705.8333333333334, 706.6666666666666, 706.6666666666666, 707.5, 707.5, 708.3333333333334, 708.3333333333334, 709.1666666666667, 709.1666666666667, 710, 710, 710.8333333333334, 710.8333333333334, 711.6666666666667, 711.6666666666667, 712.5000000000001, 712.5000000000001, 713.3333333333334, 713.3333333333334, 714.1666666666666, 714.1666666666666, 715, 715, 715.8333333333334, 715.8333333333334, 716.6666666666666, 716.6666666666666, 717.5, 717.5, 718.3333333333334, 718.3333333333334, 719.1666666666667, 719.1666666666667, 720, 720, 720.8333333333334, 720.8333333333334, 721.6666666666667, 721.6666666666667, 722.5, 722.5, 723.3333333333334, 723.3333333333334, 724.1666666666667, 724.1666666666667, 725, 725, 725.8333333333333, 725.8333333333333, 726.6666666666666, 726.6666666666666, 727.5, 727.5, 728.3333333333334, 728.3333333333334, 729.1666666666666, 729.1666666666666, 730, 730, 730.8333333333334, 730.8333333333334, 731.6666666666667, 731.6666666666667, 732.5, 732.5, 733.3333333333334, 733.3333333333334, 734.1666666666667, 734.1666666666667, 735, 735, 735.8333333333333, 735.8333333333333, 736.6666666666666, 736.6666666666666, 737.5, 737.5, 738.3333333333334, 738.3333333333334, 739.1666666666666, 739.1666666666666, 740, 740, 740.8333333333334, 740.8333333333334, 741.6666666666667, 741.6666666666667, 742.5, 742.5, 743.3333333333334, 743.3333333333334, 744.1666666666667, 744.1666666666667, 745.0000000000001, 745.0000000000001, 745.8333333333334, 745.8333333333334, 746.6666666666666, 746.6666666666666, 747.5, 747.5, 748.3333333333333, 748.3333333333333, 749.1666666666666, 749.1666666666666, 750, 750, 750.8333333333334, 750.8333333333334, 751.6666666666666, 751.6666666666666, 752.5, 752.5, 753.3333333333334, 753.3333333333334, 754.1666666666667, 754.1666666666667, 755, 755, 755.8333333333334, 755.8333333333334, 756.6666666666667, 756.6666666666667, 757.5, 757.5, 758.3333333333333, 758.3333333333333, 759.1666666666666, 759.1666666666666, 760, 760, 760.8333333333334, 760.8333333333334, 761.6666666666666, 761.6666666666666, 762.5, 762.5, 763.3333333333334, 763.3333333333334, 764.1666666666667, 764.1666666666667, 765, 765, 765.8333333333334, 765.8333333333334, 766.6666666666667, 766.6666666666667, 767.5000000000001, 767.5000000000001, 768.3333333333334, 768.3333333333334, 769.1666666666666, 769.1666666666666, 770, 770, 770.8333333333334, 770.8333333333334, 771.6666666666666, 771.6666666666666, 772.5, 772.5, 773.3333333333334, 773.3333333333334, 774.1666666666666, 774.1666666666666, 775, 775, 775.8333333333334, 775.8333333333334, 776.6666666666667, 776.6666666666667, 777.5, 777.5, 778.3333333333334, 778.3333333333334, 779.1666666666667, 779.1666666666667, 780, 780, 780.8333333333333, 780.8333333333333, 781.6666666666666, 781.6666666666666, 782.5, 782.5, 783.3333333333334, 783.3333333333334, 784.1666666666666, 784.1666666666666, 785, 785, 785.8333333333334, 785.8333333333334, 786.6666666666667, 786.6666666666667, 787.5, 787.5, 788.3333333333334, 788.3333333333334, 789.1666666666667, 789.1666666666667, 790.0000000000001, 790.0000000000001, 790.8333333333333, 790.8333333333333, 791.6666666666666, 791.6666666666666, 792.5, 792.5, 793.3333333333334, 793.3333333333334, 794.1666666666666, 794.1666666666666, 795, 795, 795.8333333333334, 795.8333333333334, 796.6666666666667, 796.6666666666667, 797.5, 797.5, 798.3333333333334, 798.3333333333334, 799.1666666666667, 799.1666666666667, 800, 800, 800.8333333333334, 800.8333333333334, 801.6666666666666, 801.6666666666666, 802.5, 802.5, 803.3333333333333, 803.3333333333333, 804.1666666666666, 804.1666666666666, 805, 805, 805.8333333333334, 805.8333333333334, 806.6666666666666, 806.6666666666666, 807.5, 807.5, 808.3333333333334, 808.3333333333334, 809.1666666666667, 809.1666666666667, 810, 810, 810.8333333333334, 810.8333333333334, 811.6666666666667, 811.6666666666667, 812.5, 812.5, 813.3333333333333, 813.3333333333333, 814.1666666666666, 814.1666666666666, 815, 815, 815.8333333333334, 815.8333333333334, 816.6666666666666, 816.6666666666666, 817.5, 817.5, 818.3333333333334, 818.3333333333334, 819.1666666666667, 819.1666666666667, 820, 820, 820.8333333333334, 820.8333333333334, 821.6666666666667, 821.6666666666667, 822.5000000000001, 822.5000000000001, 823.3333333333334, 823.3333333333334, 824.1666666666666, 824.1666666666666, 825, 825, 825.8333333333334, 825.8333333333334, 826.6666666666666, 826.6666666666666, 827.5, 827.5, 828.3333333333334, 828.3333333333334, 829.1666666666666, 829.1666666666666, 830, 830, 830.8333333333334, 830.8333333333334, 831.6666666666667, 831.6666666666667, 832.5, 832.5, 833.3333333333334, 833.3333333333334, 834.1666666666667, 834.1666666666667, 835, 835, 835.8333333333333, 835.8333333333333, 836.6666666666666, 836.6666666666666, 837.5, 837.5, 838.3333333333334, 838.3333333333334, 839.1666666666666, 839.1666666666666, 840, 840, 840.8333333333334, 840.8333333333334, 841.6666666666667, 841.6666666666667, 842.5, 842.5, 843.3333333333334, 843.3333333333334, 844.1666666666667, 844.1666666666667, 845.0000000000001, 845.0000000000001, 845.8333333333334, 845.8333333333334, 846.6666666666666, 846.6666666666666, 847.5, 847.5, 848.3333333333334, 848.3333333333334, 849.1666666666666, 849.1666666666666, 850, 850, 850.8333333333334, 850.8333333333334, 851.6666666666667, 851.6666666666667, 852.5, 852.5, 853.3333333333334, 853.3333333333334, 854.1666666666667, 854.1666666666667, 855, 855, 855.8333333333334, 855.8333333333334, 856.6666666666667, 856.6666666666667, 857.5, 857.5, 858.3333333333333, 858.3333333333333, 859.1666666666666, 859.1666666666666, 860, 860, 860.8333333333334, 860.8333333333334, 861.6666666666666, 861.6666666666666, 862.5, 862.5, 863.3333333333334, 863.3333333333334, 864.1666666666667, 864.1666666666667, 865, 865, 865.8333333333334, 865.8333333333334, 866.6666666666667, 866.6666666666667, 867.5000000000001, 867.5000000000001, 868.3333333333333, 868.3333333333333, 869.1666666666666, 869.1666666666666, 870, 870, 870.8333333333334, 870.8333333333334, 871.6666666666666, 871.6666666666666, 872.5, 872.5, 873.3333333333334, 873.3333333333334, 874.1666666666667, 874.1666666666667, 875, 875, 875.8333333333334, 875.8333333333334, 876.6666666666667, 876.6666666666667, 877.5000000000001, 877.5000000000001, 878.3333333333334, 878.3333333333334, 879.1666666666666, 879.1666666666666, 880, 880, 880.8333333333333, 880.8333333333333, 881.6666666666666, 881.6666666666666, 882.5, 882.5, 883.3333333333334, 883.3333333333334, 884.1666666666666, 884.1666666666666, 885, 885, 885.8333333333334, 885.8333333333334, 886.6666666666667, 886.6666666666667, 887.5, 887.5, 888.3333333333334, 888.3333333333334, 889.1666666666667, 889.1666666666667, 890, 890, 890.8333333333333, 890.8333333333333, 891.6666666666666, 891.6666666666666, 892.5, 892.5, 893.3333333333334, 893.3333333333334, 894.1666666666666, 894.1666666666666, 895, 895, 895.8333333333334, 895.8333333333334, 896.6666666666667, 896.6666666666667, 897.5, 897.5, 898.3333333333334, 898.3333333333334, 899.1666666666667, 899.1666666666667, 900.0000000000001, 900.0000000000001, 900.8333333333334, 900.8333333333334, 901.6666666666666, 901.6666666666666, 902.5, 902.5, 903.3333333333334, 903.3333333333334, 904.1666666666666, 904.1666666666666, 905, 905, 905.8333333333334, 905.8333333333334, 906.6666666666667, 906.6666666666667, 907.5, 907.5, 908.3333333333334, 908.3333333333334, 909.1666666666667, 909.1666666666667, 910, 910, 910.8333333333334, 910.8333333333334, 911.6666666666667, 911.6666666666667, 912.5, 912.5, 913.3333333333333, 913.3333333333333, 914.1666666666666, 914.1666666666666, 915, 915, 915.8333333333334, 915.8333333333334, 916.6666666666666, 916.6666666666666, 917.5, 917.5, 918.3333333333334, 918.3333333333334, 919.1666666666667, 919.1666666666667, 920, 920, 920.8333333333334, 920.8333333333334, 921.6666666666667, 921.6666666666667, 922.5000000000001, 922.5000000000001, 923.3333333333334, 923.3333333333334, 924.1666666666666, 924.1666666666666, 925, 925, 925.8333333333334, 925.8333333333334, 926.6666666666666, 926.6666666666666, 927.5, 927.5, 928.3333333333334, 928.3333333333334, 929.1666666666667, 929.1666666666667, 930, 930, 930.8333333333334, 930.8333333333334, 931.6666666666667, 931.6666666666667, 932.5000000000001, 932.5000000000001, 933.3333333333334, 933.3333333333334, 934.1666666666667, 934.1666666666667, 935, 935, 935.8333333333333, 935.8333333333333, 936.6666666666666, 936.6666666666666, 937.5, 937.5, 938.3333333333334, 938.3333333333334, 939.1666666666666, 939.1666666666666, 940, 940, 940.8333333333334, 940.8333333333334, 941.6666666666667, 941.6666666666667, 942.5, 942.5, 943.3333333333334, 943.3333333333334, 944.1666666666667, 944.1666666666667, 945.0000000000001, 945.0000000000001, 945.8333333333333, 945.8333333333333, 946.6666666666666, 946.6666666666666, 947.5, 947.5, 948.3333333333334, 948.3333333333334, 949.1666666666666, 949.1666666666666, 950, 950, 950.8333333333334, 950.8333333333334, 951.6666666666667, 951.6666666666667, 952.5, 952.5, 953.3333333333334, 953.3333333333334, 954.1666666666667, 954.1666666666667, 955, 955, 955.8333333333335, 955.8333333333335, 956.6666666666666, 956.6666666666666, 957.4999999999999, 957.4999999999999, 958.3333333333334, 958.3333333333334, 959.1666666666666, 959.1666666666666, 960.0000000000001, 960.0000000000001, 960.8333333333334, 960.8333333333334, 961.6666666666666, 961.6666666666666, 962.5000000000001, 962.5000000000001, 963.3333333333334, 963.3333333333334, 964.1666666666666, 964.1666666666666, 965.0000000000001, 965.0000000000001, 965.8333333333334, 965.8333333333334, 966.6666666666666, 966.6666666666666, 967.5, 967.5, 968.3333333333333, 968.3333333333333, 969.1666666666667, 969.1666666666667, 970, 970, 970.8333333333333, 970.8333333333333, 971.6666666666667, 971.6666666666667, 972.5, 972.5, 973.3333333333333, 973.3333333333333, 974.1666666666667, 974.1666666666667, 975, 975, 975.8333333333335, 975.8333333333335, 976.6666666666667, 976.6666666666667, 977.5, 977.5, 978.3333333333334, 978.3333333333334, 979.1666666666666, 979.1666666666666, 979.9999999999999, 979.9999999999999, 980.8333333333334, 980.8333333333334, 981.6666666666666, 981.6666666666666, 982.5000000000001, 982.5000000000001, 983.3333333333334, 983.3333333333334, 984.1666666666666, 984.1666666666666, 985.0000000000001, 985.0000000000001, 985.8333333333334, 985.8333333333334, 986.6666666666666, 986.6666666666666, 987.5000000000001, 987.5000000000001, 988.3333333333334, 988.3333333333334, 989.1666666666666, 989.1666666666666, 990, 990, 990.8333333333333, 990.8333333333333, 991.6666666666667, 991.6666666666667, 992.5, 992.5, 993.3333333333333, 993.3333333333333, 994.1666666666667, 994.1666666666667, 995, 995, 995.8333333333333, 995.8333333333333, 996.6666666666667, 996.6666666666667, 997.5, 997.5, 998.3333333333335, 998.3333333333335, 999.1666666666667, 999.1666666666667, 1000, 1000, 1000.8333333333334, 1000.8333333333334, 1001.6666666666666, 1001.6666666666666, 1002.4999999999999, 1002.4999999999999, 1003.3333333333334, 1003.3333333333334, 1004.1666666666666, 1004.1666666666666, 1005.0000000000001, 1005.0000000000001, 1005.8333333333334, 1005.8333333333334, 1006.6666666666666, 1006.6666666666666, 1007.5000000000001, 1007.5000000000001, 1008.3333333333334, 1008.3333333333334, 1009.1666666666666, 1009.1666666666666, 1010.0000000000001, 1010.0000000000001, 1010.8333333333334, 1010.8333333333334, 1011.6666666666667, 1011.6666666666667, 1012.5, 1012.5, 1013.3333333333333, 1013.3333333333333, 1014.1666666666667, 1014.1666666666667, 1015, 1015, 1015.8333333333333, 1015.8333333333333, 1016.6666666666667, 1016.6666666666667, 1017.5, 1017.5, 1018.3333333333333, 1018.3333333333333, 1019.1666666666667, 1019.1666666666667, 1020, 1020, 1020.8333333333335, 1020.8333333333335, 1021.6666666666667, 1021.6666666666667, 1022.5, 1022.5, 1023.3333333333334, 1023.3333333333334, 1024.1666666666667, 1024.1666666666667, 1025, 1025, 1025.8333333333335, 1025.8333333333335, 1026.6666666666667, 1026.6666666666667, 1027.5000000000002, 1027.5000000000002, 1028.3333333333333, 1028.3333333333333, 1029.1666666666665, 1029.1666666666665, 1030, 1030, 1030.8333333333333, 1030.8333333333333, 1031.6666666666665, 1031.6666666666665, 1032.5, 1032.5, 1033.3333333333333, 1033.3333333333333, 1034.1666666666667, 1034.1666666666667, 1035, 1035, 1035.8333333333333, 1035.8333333333333, 1036.6666666666667, 1036.6666666666667, 1037.5, 1037.5, 1038.3333333333333, 1038.3333333333333, 1039.1666666666667, 1039.1666666666667, 1040, 1040, 1040.8333333333333, 1040.8333333333333, 1041.6666666666667, 1041.6666666666667, 1042.5, 1042.5, 1043.3333333333335, 1043.3333333333335, 1044.1666666666667, 1044.1666666666667, 1045, 1045, 1045.8333333333335, 1045.8333333333335, 1046.6666666666667, 1046.6666666666667, 1047.5, 1047.5, 1048.3333333333335, 1048.3333333333335, 1049.1666666666667, 1049.1666666666667, 1050, 1050, 1050.8333333333333, 1050.8333333333333, 1051.6666666666665, 1051.6666666666665, 1052.5, 1052.5, 1053.3333333333333, 1053.3333333333333, 1054.1666666666665, 1054.1666666666665, 1055, 1055, 1055.8333333333333, 1055.8333333333333, 1056.6666666666667, 1056.6666666666667, 1057.5, 1057.5, 1058.3333333333333, 1058.3333333333333, 1059.1666666666667, 1059.1666666666667, 1060, 1060, 1060.8333333333333, 1060.8333333333333, 1061.6666666666667, 1061.6666666666667, 1062.5, 1062.5, 1063.3333333333335, 1063.3333333333335, 1064.1666666666667, 1064.1666666666667, 1065, 1065, 1065.8333333333335, 1065.8333333333335, 1066.6666666666667, 1066.6666666666667, 1067.5, 1067.5, 1068.3333333333335, 1068.3333333333335, 1069.1666666666667, 1069.1666666666667, 1070, 1070, 1070.8333333333335, 1070.8333333333335, 1071.6666666666667, 1071.6666666666667, 1072.5, 1072.5, 1073.3333333333333, 1073.3333333333333, 1074.1666666666665, 1074.1666666666665, 1075, 1075, 1075.8333333333333, 1075.8333333333333, 1076.6666666666665, 1076.6666666666665, 1077.5, 1077.5, 1078.3333333333333, 1078.3333333333333, 1079.1666666666667, 1079.1666666666667, 1080, 1080, 1080.8333333333333, 1080.8333333333333, 1081.6666666666667, 1081.6666666666667, 1082.5, 1082.5, 1083.3333333333333, 1083.3333333333333, 1084.1666666666667, 1084.1666666666667, 1085, 1085, 1085.8333333333335, 1085.8333333333335, 1086.6666666666667, 1086.6666666666667, 1087.5, 1087.5, 1088.3333333333335, 1088.3333333333335, 1089.1666666666667, 1089.1666666666667, 1090, 1090, 1090.8333333333335, 1090.8333333333335, 1091.6666666666667, 1091.6666666666667, 1092.5000000000002, 1092.5000000000002, 1093.3333333333335, 1093.3333333333335, 1094.1666666666667, 1094.1666666666667, 1095, 1095, 1095.8333333333333, 1095.8333333333333, 1096.6666666666665, 1096.6666666666665, 1097.5, 1097.5, 1098.3333333333333, 1098.3333333333333, 1099.1666666666665, 1099.1666666666665, 1100 ] }, "y": { "type": "float", "values": [ 4, 4, 4.008973259578643, 4.008973259578643, 4.0228769159008335, 4.0228769159008335, 3.9999999164963085, 3.9999999164963085, 3.810601539422748, 3.810601539422748, 3.532352379871206, 3.532352379871206, 3.302043735269807, 3.302043735269807, 3.136194776613066, 3.136194776613066, 3.0345458086595984, 3.0345458086595984, 3.0001220852155135, 3.0001220852155135, 3.034192166109342, 3.034192166109342, 3.134080455785038, 3.134080455785038, 3.2929797322736354, 3.2929797322736354, 3.5000612723153353, 3.5000612723153353, 3.7412128109658083, 3.7412128109658083, 4.000000269144098, 4.000000269144098, 4.258787708980771, 4.258787708980771, 4.499939193855916, 4.499939193855916, 4.7070206483536765, 4.7070206483536765, 4.8659198133590555, 4.8659198133590555, 4.96580797320992, 4.96580797320992, 4.99987791478448, 4.99987791478448, 4.965807827833301, 4.965807827833301, 4.865919532513054, 4.865919532513054, 4.70702025117737, 4.70702025117737, 4.499938707416372, 4.499938707416372, 4.258818764372469, 4.258818764372469, 3.9999997074163773, 3.9999997074163773, 3.7411806703992663, 3.7411806703992663, 3.499999743236711, 3.499999743236711, 3.2928930077878276, 3.2928930077878276, 3.1339744460226218, 3.1339744460226218, 3.034074095460543, 3.034074095460543, 3.000000000000046, 3.000000000000046, 3.0340742529710916, 3.0340742529710916, 3.1339747503096915, 3.1339747503096915, 3.292893438114648, 3.292893438114648, 3.5000002702772766, 3.5000002702772766, 3.7411812582366326, 3.7411812582366326, 4.000000315990399, 4.000000315990399, 4.258819352209832, 4.258819352209832, 4.5000002770341485, 4.5000002770341485, 4.7071070087631774, 4.7071070087631774, 4.866025565680703, 4.866025565680703, 4.96592591059754, 4.96592591059754, 4.999999999999947, 4.999999999999947, 4.965925740970811, 4.965925740970811, 4.866025237986971, 4.866025237986971, 4.707106545334337, 4.707106545334337, 4.499999709451956, 4.499999709451956, 4.2588187191541556, 4.2588187191541556, 3.9999996606028247, 3.9999996606028247, 3.7411806251810704, 3.7411806251810704, 3.4999997026950913, 3.4999997026950913, 3.2928929746857385, 3.2928929746857385, 3.1339744226159154, 3.1339744226159154, 3.034074083344378, 3.034074083344378, 3.0000000000000617, 3.0000000000000617, 3.034074265087316, 3.034074265087316, 3.1339747737164245, 3.1339747737164245, 3.2928934712166784, 3.2928934712166784, 3.5000003108188134, 3.5000003108188134, 3.741181303454946, 3.741181303454946, 4.000000362803838, 4.000000362803838, 4.258819397428027, 4.258819397428027, 4.500000317575669, 4.500000317575669, 4.707107041865266, 4.707107041865266, 4.866025589087409, 4.866025589087409, 4.965925922713704, 4.965925922713704, 4.99999999999993, 4.99999999999993, 4.965925728854586, 4.965925728854586, 4.866025214580237, 4.866025214580237, 4.707106512232306, 4.707106512232306, 4.4999996689104185, 4.4999996689104185, 4.258818673935951, 4.258818673935951, 3.9999996137894995, 3.9999996137894995, 3.7411805799626556, 3.7411805799626556, 3.4999996621535714, 3.4999996621535714, 3.2928929415837307, 3.2928929415837307, 3.133974399209268, 3.133974399209268, 3.0340740712281558, 3.0340740712281558, 3.000000000000079, 3.000000000000079, 3.034074277203513, 3.034074277203513, 3.133974797123102, 3.133974797123102, 3.2928935043188714, 3.2928935043188714, 3.500000351360351, 3.500000351360351, 3.741181348673151, 3.741181348673151, 4.000000409617162, 4.000000409617162, 4.258819442646442, 4.258819442646442, 4.500000358117188, 4.500000358117188, 4.707107074967272, 4.707107074967272, 4.866025612494055, 4.866025612494055, 4.965925934829925, 4.965925934829925, 4.999999999999911, 4.999999999999911, 4.965925716738388, 4.965925716738388, 4.866025191173558, 4.866025191173558, 4.707106479130112, 4.707106479130112, 4.499999628368683, 4.499999628368683, 4.258818628717747, 4.258818628717747, 3.9999995669761748, 3.9999995669761748, 3.7411805347444607, 3.7411805347444607, 3.499999621611855, 3.499999621611855, 3.292892908481725, 3.292892908481725, 3.133974375802622, 3.133974375802622, 3.0340740591119943, 3.0340740591119943, 3.000000000000099, 3.000000000000099, 3.034074289319712, 3.034074289319712, 3.133974820529782, 3.133974820529782, 3.2928935374209054, 3.2928935374209054, 3.5000003919020863, 3.5000003919020863, 3.7411813938913556, 3.7411813938913556, 4.000000456430488, 4.000000456430488, 4.258819487864637, 4.258819487864637, 4.500000398658904, 4.500000398658904, 4.707107108069278, 4.707107108069278, 4.8660256359007, 4.8660256359007, 4.9659259469460855, 4.9659259469460855, 4.999999999999891, 4.999999999999891, 4.965925704622128, 4.965925704622128, 4.866025167766877, 4.866025167766877, 4.707106446028077, 4.707106446028077, 4.499999587827143, 4.499999587827143, 4.258818583499322, 4.258818583499322, 3.9999995201628495, 3.9999995201628495, 3.7411804895262666, 3.7411804895262666, 3.4999995810703375, 3.4999995810703375, 3.29289287537956, 3.29289287537956, 3.1339743523959784, 3.1339743523959784, 3.0340740469958356, 3.0340740469958356, 3.000000000000121, 3.000000000000121, 3.0340743014359726, 3.0340743014359726, 3.1339748439364636, 3.1339748439364636, 3.2928935705229403, 3.2928935705229403, 3.5000004324436262, 3.5000004324436262, 3.7411814391097806, 3.7411814391097806, 4.000000503243813, 4.000000503243813, 4.25881953308283, 4.25881953308283, 4.500000439200421, 4.500000439200421, 4.707107141171441, 4.707107141171441, 4.866025659307456, 4.866025659307456, 4.965925959062243, 4.965925959062243, 4.999999999999868, 4.999999999999868, 4.965925692505926, 4.965925692505926, 4.866025144360081, 4.866025144360081, 4.707106412926041, 4.707106412926041, 4.499999547285603, 4.499999547285603, 4.258818538281116, 4.258818538281116, 3.999999473349297, 3.999999473349297, 3.741180444308073, 3.741180444308073, 3.4999995405288207, 3.4999995405288207, 3.292892842277557, 3.292892842277557, 3.1339743289892232, 3.1339743289892232, 3.0340740348796786, 3.0340740348796786, 3.0000000000001448, 3.0000000000001448, 3.0340743135521757, 3.0340743135521757, 3.133974867343261, 3.133974867343261, 3.2928936036249774, 3.2928936036249774, 3.5000004729851675, 3.5000004729851675, 3.7411814843279867, 3.7411814843279867, 4.000000550057366, 4.000000550057366, 4.258819578301243, 4.258819578301243, 4.500000479741938, 4.500000479741938, 4.707107174273443, 4.707107174273443, 4.866025682714097, 4.866025682714097, 4.965925971178458, 4.965925971178458, 4.999999999999842, 4.999999999999842, 4.965925680389722, 4.965925680389722, 4.866025120953396, 4.866025120953396, 4.707106379823843, 4.707106379823843, 4.499999506744062, 4.499999506744062, 4.25881849306291, 4.25881849306291, 3.999999426535972, 3.999999426535972, 3.7411803990896604, 3.7411803990896604, 3.4999994999873048, 3.4999994999873048, 3.292892809175556, 3.292892809175556, 3.1339743055825835, 3.1339743055825835, 3.034074022763465, 3.034074022763465, 3.0000000000001714, 3.0000000000001714, 3.0340743256683815, 3.0340743256683815, 3.1339748907499465, 3.1339748907499465, 3.2928936367271766, 3.2928936367271766, 3.5000005135269063, 3.5000005135269063, 3.741181529546193, 3.741181529546193, 4.000000596870691, 4.000000596870691, 4.258819623519436, 4.258819623519436, 4.50000052028365, 4.50000052028365, 4.707107207375444, 4.707107207375444, 4.866025706120736, 4.866025706120736, 4.965925983294611, 4.965925983294611, 4.999999999999815, 4.999999999999815, 4.965925668273515, 4.965925668273515, 4.86602509754671, 4.86602509754671, 4.707106346721804, 4.707106346721804, 4.499999466202322, 4.499999466202322, 4.258818447844703, 4.258818447844703, 3.999999379722647, 3.999999379722647, 3.741180353871468, 3.741180353871468, 3.499999459445593, 3.499999459445593, 3.2928927760735562, 3.2928927760735562, 3.133974282175945, 3.133974282175945, 3.0340740106473123, 3.0340740106473123, 3.0000000000002, 3.0000000000002, 3.0340743377846477, 3.0340743377846477, 3.1339749141566338, 3.1339749141566338, 3.2928936698292164, 3.2928936698292164, 3.50000055406845, 3.50000055406845, 3.7411815747646204, 3.7411815747646204, 4.000000643684015, 4.000000643684015, 4.258819668737628, 4.258819668737628, 4.500000560825164, 4.500000560825164, 4.707107240477604, 4.707107240477604, 4.866025729527373, 4.866025729527373, 4.965925995410763, 4.965925995410763, 4.999999999999785, 4.999999999999785, 4.965925656157247, 4.965925656157247, 4.866025074140022, 4.866025074140022, 4.707106313619763, 4.707106313619763, 4.4999994256607785, 4.4999994256607785, 4.258818402626276, 4.258818402626276, 3.9999993329093217, 3.9999993329093217, 3.7411803086530564, 3.7411803086530564, 3.4999994189040793, 3.4999994189040793, 3.2928927429712367, 3.2928927429712367, 3.1339742587691957, 3.1339742587691957, 3.034073998531044, 3.034073998531044, 3.0000000000002305, 3.0000000000002305, 3.034074349900858, 3.034074349900858, 3.1339749375635506, 3.1339749375635506, 3.2928937029314187, 3.2928937029314187, 3.5000005946103876, 3.5000005946103876, 3.7411816199830477, 3.7411816199830477, 4.0000006904975685, 4.0000006904975685, 4.2588197139562585, 4.2588197139562585, 4.500000601366874, 4.500000601366874, 4.707107273579601, 4.707107273579601, 4.8660257529342354, 4.8660257529342354, 4.9659260075269716, 4.9659260075269716, 4.999999999999753, 4.999999999999753, 4.965925644040977, 4.965925644040977, 4.866025050733218, 4.866025050733218, 4.707106280517399, 4.707106280517399, 4.499999385119037, 4.499999385119037, 4.258818357408068, 4.258818357408068, 3.9999992860955422, 3.9999992860955422, 3.741180263434865, 3.741180263434865, 3.499999378362173, 3.499999378362173, 3.29289270986924, 3.29289270986924, 3.1339742353625613, 3.1339742353625613, 3.034073986414896, 3.034073986414896, 3.0000000000002633, 3.0000000000002633, 3.0340743620171873, 3.0340743620171873, 3.1339749609702414, 3.1339749609702414, 3.292893736033462, 3.292893736033462, 3.500000635151933, 3.500000635151933, 3.741181665201256, 3.741181665201256, 4.000000737310893, 4.000000737310893, 4.25881975917445, 4.25881975917445, 4.500000641908386, 4.500000641908386, 4.707107306681919, 4.707107306681919, 4.8660257763408685, 4.8660257763408685, 4.965926019643119, 4.965926019643119, 4.999999999999719, 4.999999999999719, 4.965925631924764, 4.965925631924764, 4.8660250273265255, 4.8660250273265255, 4.707106247415355, 4.707106247415355, 4.499999344577491, 4.499999344577491, 4.25881831218942, 4.25881831218942, 3.999999239282217, 3.999999239282217, 3.7411802182166745, 3.7411802182166745, 3.499999337820662, 3.499999337820662, 3.292892676767245, 3.292892676767245, 3.1339742119557013, 3.1339742119557013, 3.0340739742987495, 3.0340739742987495, 3.0000000000002984, 3.0000000000002984, 3.0340743741334015, 3.0340743741334015, 3.133974984376935, 3.133974984376935, 3.2928937691355062, 3.2928937691355062, 3.5000006756934794, 3.5000006756934794, 3.7411817104194647, 3.7411817104194647, 4.000000784124673, 4.000000784124673, 4.25881980439264, 4.25881980439264, 4.500000682449897, 4.500000682449897, 4.707107339783913, 4.707107339783913, 4.866025799747501, 4.866025799747501, 4.965926031759264, 4.965926031759264, 4.999999999999684, 4.999999999999684, 4.96592561980855, 4.96592561980855, 4.866025003919605, 4.866025003919605, 4.70710621431331, 4.70710621431331, 4.499999304035944, 4.499999304035944, 4.258818266971211, 4.258818266971211, 3.999999192468892, 3.999999192468892, 3.741180172998045, 3.741180172998045, 3.4999992972791514, 3.4999992972791514, 3.2928926436652515, 3.2928926436652515, 3.133974188549071, 3.133974188549071, 3.034073962182605, 3.034073962182605, 3.0000000000003357, 3.0000000000003357, 3.0340743862496176, 3.0340743862496176, 3.1339750077836297, 3.1339750077836297, 3.292893802237874, 3.292893802237874, 3.500000716235027, 3.500000716235027, 3.7411817556376743, 3.7411817556376743, 4.000000830937998, 4.000000830937998, 4.2588198496108305, 4.2588198496108305, 4.500000722991406, 4.500000722991406, 4.707107372885906, 4.707107372885906, 4.86602582315413, 4.86602582315413, 4.965926043875525, 4.965926043875525, 4.999999999999645, 4.999999999999645, 4.965925607692332, 4.965925607692332, 4.8660249805129085, 4.8660249805129085, 4.707106181211263, 4.707106181211263, 4.499999263494002, 4.499999263494002, 4.2588182217530015, 4.2588182217530015, 3.9999991456555666, 3.9999991456555666, 3.7411801277798555, 3.7411801277798555, 3.499999256737642, 3.499999256737642, 3.2928926105632597, 3.2928926105632597, 3.1339741651424426, 3.1339741651424426, 3.034073950066463, 3.034073950066463, 3.000000000000375, 3.000000000000375, 3.034074398365836, 3.034074398365836, 3.1339750311903263, 3.1339750311903263, 3.292893835339922, 3.292893835339922, 3.5000007567765756, 3.5000007567765756, 3.7411818008558844, 3.7411818008558844, 4.000000877751323, 4.000000877751323, 4.25881989482902, 4.25881989482902, 4.500000763533309, 4.500000763533309, 4.707107405987896, 4.707107405987896, 4.866025846560757, 4.866025846560757, 4.965926055991666, 4.965926055991666, 4.999999999999605, 4.999999999999605, 4.965925595575995, 4.965925595575995, 4.866024957106211, 4.866024957106211, 4.707106148109214, 4.707106148109214, 4.499999222952453, 4.499999222952453, 4.258818176534791, 4.258818176534791, 3.999999098842242, 3.999999098842242, 3.7411800825616663, 3.7411800825616663, 3.499999216196134, 3.499999216196134, 3.2928925774609477, 3.2928925774609477, 3.133974141735816, 3.133974141735816, 3.034073937950323, 3.034073937950323, 3.0000000000004166, 3.0000000000004166, 3.0340744104820563, 3.0340744104820563, 3.133975054597025, 3.133975054597025, 3.292893868441971, 3.292893868441971, 3.5000007973181253, 3.5000007973181253, 3.741181846074534, 3.741181846074534, 4.000000924564648, 4.000000924564648, 4.258819940047208, 4.258819940047208, 4.5000008040748165, 4.5000008040748165, 4.707107439089886, 4.707107439089886, 4.86602586996761, 4.86602586996761, 4.965926068107805, 4.965926068107805, 4.999999999999561, 4.999999999999561, 4.965925583459773, 4.965925583459773, 4.866024933699511, 4.866024933699511, 4.707106115007164, 4.707106115007164, 4.499999182410902, 4.499999182410902, 4.25881813131658, 4.25881813131658, 3.999999052028462, 3.999999052028462, 3.741180037343478, 3.741180037343478, 3.499999175654627, 3.499999175654627, 3.292892544358959, 3.292892544358959, 3.133974118329191, 3.133974118329191, 3.034073925834185, 3.034073925834185, 3.0000000000004605, 3.0000000000004605, 3.034074422598279, 3.034074422598279, 3.133975078003953, 3.133975078003953, 3.292893901544022, 3.292893901544022, 3.5000008378596763, 3.5000008378596763, 3.7411818912927455, 3.7411818912927455, 4.000000971377974, 4.000000971377974, 4.258819985265836, 4.258819985265836, 4.500000844616323, 4.500000844616323, 4.707107472191874, 4.707107472191874, 4.866025893374234, 4.866025893374234, 4.965926080223942, 4.965926080223942, 4.999999999999517, 4.999999999999517, 4.965925571343551, 4.965925571343551, 4.8660249102928095, 4.8660249102928095, 4.707106081904792, 4.707106081904792, 4.499999141869351, 4.499999141869351, 4.258818086098368, 4.258818086098368, 3.9999990052151366, 3.9999990052151366, 3.7411799921252897, 3.7411799921252897, 3.499999135113121, 3.499999135113121, 3.2928925112569716, 3.2928925112569716, 3.1339740949225683, 3.1339740949225683, 3.034073913717932, 3.034073913717932, 3.0000000000005063, 3.0000000000005063, 3.0340744347145034, 3.0340744347145034, 3.133975101410656, 3.133975101410656, 3.292893934646074, 3.292893934646074, 3.500000878401622, 3.500000878401622, 3.7411819365109573, 3.7411819365109573, 4.000001018191298, 4.000001018191298, 4.258820030484023, 4.258820030484023, 4.500000885157828, 4.500000885157828, 4.707107505293861, 4.707107505293861, 4.866025916780856, 4.866025916780856, 4.9659260923400765, 4.9659260923400765, 4.99999999999947, 4.99999999999947, 4.965925559227324, 4.965925559227324, 4.866024886886105, 4.866024886886105, 4.707106048802738, 4.707106048802738, 4.4999991013277985, 4.4999991013277985, 4.258818040880157, 4.258818040880157, 3.999998958401812, 3.999998958401812, 3.7411799469071028, 3.7411799469071028, 3.4999990945712227, 3.4999990945712227, 3.292892478154986, 3.292892478154986, 3.133974071515947, 3.133974071515947, 3.034073901601798, 3.034073901601798, 3.0000000000005547, 3.0000000000005547, 3.0340744468308483, 3.0340744468308483, 3.1339751248173604, 3.1339751248173604, 3.292893967748128, 3.292893967748128, 3.5000009189431753, 3.5000009189431753, 3.741181981729169, 3.741181981729169, 4.000001065004623, 4.000001065004623, 4.258820075702211, 4.258820075702211, 4.500000925699332, 4.500000925699332, 4.707107538396167, 4.707107538396167, 4.866025940187476, 4.866025940187476, 4.965926104456209, 4.965926104456209, 4.99999999999942, 4.99999999999942, 4.965925547111096, 4.965925547111096, 4.8660248634794, 4.8660248634794, 4.707106015700684, 4.707106015700684, 4.499999060786245, 4.499999060786245, 4.258817995661505, 4.258817995661505, 3.9999989115884866, 3.9999989115884866, 3.741179901688916, 3.741179901688916, 3.499999054029719, 3.499999054029719, 3.2928924450530017, 3.2928924450530017, 3.133974048109101, 3.133974048109101, 3.0340738894856667, 3.0340738894856667, 3.000000000000605, 3.000000000000605, 3.0340744589470767, 3.0340744589470767, 3.1339751482240668, 3.1339751482240668, 3.2928940008501835, 3.2928940008501835, 3.5000009594847294, 3.5000009594847294, 3.7411820269473823, 3.7411820269473823, 4.000001111818404, 4.000001111818404, 4.258820120920397, 4.258820120920397, 4.500000966240836, 4.500000966240836, 4.707107571498151, 4.707107571498151, 4.866025963594094, 4.866025963594094, 4.965926116572339, 4.965926116572339, 4.9999999999993685, 4.9999999999993685, 4.9659255349948666, 4.9659255349948666, 4.866024840072466, 4.866024840072466, 4.707105982598628, 4.707105982598628, 4.49999902024469, 4.49999902024469, 4.258817950443292, 4.258817950443292, 3.9999988647751614, 3.9999988647751614, 3.7411798564702905, 3.7411798564702905, 3.499999013488216, 3.499999013488216, 3.2928924119510192, 3.2928924119510192, 3.133974024702484, 3.133974024702484, 3.0340738773695373, 3.0340738773695373, 3.0000000000006577, 3.0000000000006577, 3.034074471063308, 3.034074471063308, 3.133975171630775, 3.133975171630775, 3.292894033952562, 3.292894033952562, 3.5000010000262844, 3.5000010000262844, 3.7411820721655955, 3.7411820721655955, 4.000001158631728, 4.000001158631728, 4.258820166138583, 4.258820166138583, 4.5000010067823375, 4.5000010067823375, 4.707107604600132, 4.707107604600132, 4.86602598700071, 4.86602598700071, 4.965926128688586, 4.965926128688586, 4.999999999999315, 4.999999999999315, 4.965925522878635, 4.965925522878635, 4.866024816665757, 4.866024816665757, 4.70710594949657, 4.70710594949657, 4.499998979702741, 4.499998979702741, 4.258817905225078, 4.258817905225078, 3.9999988179618367, 3.9999988179618367, 3.741179811252105, 3.741179811252105, 3.4999989729467145, 3.4999989729467145, 3.292892378849038, 3.292892378849038, 3.1339740012958686, 3.1339740012958686, 3.03407386525341, 3.03407386525341, 3.0000000000007123, 3.0000000000007123, 3.034074483179541, 3.034074483179541, 3.1339751950374852, 3.1339751950374852, 3.2928940670546205, 3.2928940670546205, 3.500001040567841, 3.500001040567841, 3.7411821173838096, 3.7411821173838096, 4.000001205445053, 4.000001205445053, 4.258820211356769, 4.258820211356769, 4.500001047324233, 4.500001047324233, 4.707107637702112, 4.707107637702112, 4.8660260104073245, 4.8660260104073245, 4.9659261408047115, 4.9659261408047115, 4.999999999999259, 4.999999999999259, 4.965925510762283, 4.965925510762283, 4.8660247932590455, 4.8660247932590455, 4.707105916394511, 4.707105916394511, 4.499998939161184, 4.499998939161184, 4.258817860006864, 4.258817860006864, 3.9999987711485114, 3.9999987711485114, 3.7411797660339197, 3.7411797660339197, 3.499998932405214, 3.499998932405214, 3.292892345746737, 3.292892345746737, 3.133973977889255, 3.133973977889255, 3.034073853137285, 3.034073853137285, 3.0000000000007696, 3.0000000000007696, 3.0340744952957763, 3.0340744952957763, 3.133975218444197, 3.133975218444197, 3.2928941001566807, 3.2928941001566807, 3.5000010811093984, 3.5000010811093984, 3.7411821626024637, 3.7411821626024637, 4.000001252258379, 4.000001252258379, 4.258820256574953, 4.258820256574953, 4.500001087865733, 4.500001087865733, 4.707107670804091, 4.707107670804091, 4.8660260338141645, 4.8660260338141645, 4.965926152920836, 4.965926152920836, 4.9999999999992015, 4.9999999999992015, 4.965925498646047, 4.965925498646047, 4.8660247698523325, 4.8660247698523325, 4.707105883292449, 4.707105883292449, 4.4999988986196255, 4.4999988986196255, 4.258817814788649, 4.258817814788649, 3.9999987243347315, 3.9999987243347315, 3.741179720815735, 3.741179720815735, 3.499998891863715, 3.499998891863715, 3.292892312644759, 3.292892312644759, 3.1339739544826437, 3.1339739544826437, 3.034073841021162, 3.034073841021162, 3.0000000000008287, 3.0000000000008287, 3.0340745074120132, 3.0340745074120132, 3.1339752418511386, 3.1339752418511386, 3.2928941332587423, 3.2928941332587423, 3.500001121650957, 3.500001121650957, 3.7411822078206787, 3.7411822078206787, 4.0000012990717035, 4.0000012990717035, 4.258820301793577, 4.258820301793577, 4.500001128407232, 4.500001128407232, 4.707107703906068, 4.707107703906068, 4.866026057220775, 4.866026057220775, 4.965926165036958, 4.965926165036958, 4.999999999999141, 4.999999999999141, 4.965925486529808, 4.965925486529808, 4.866024746445618, 4.866024746445618, 4.707105850190065, 4.707105850190065, 4.499998858078067, 4.499998858078067, 4.258817769570433, 4.258817769570433, 3.9999986775214067, 3.9999986775214067, 3.741179675597551, 3.741179675597551, 3.4999988513222164, 3.4999988513222164, 3.292892279542783, 3.292892279542783, 3.133973931076034, 3.133973931076034, 3.034073828905041, 3.034073828905041, 3.00000000000089, 3.00000000000089, 3.034074519528371, 3.034074519528371, 3.1339752652578543, 3.1339752652578543, 3.2928941663608056, 3.2928941663608056, 3.5000011621925164, 3.5000011621925164, 3.7411822530384553, 3.7411822530384553, 4.000001345885483, 4.000001345885483, 4.25882034701176, 4.25882034701176, 4.500001168948729, 4.500001168948729, 4.7071077370080445, 4.7071077370080445, 4.866026080627156, 4.866026080627156, 4.965926177153195, 4.965926177153195, 4.999999999999078, 4.999999999999078, 4.9659254744135675, 4.9659254744135675, 4.866024723038901, 4.866024723038901, 4.707105817088323, 4.707105817088323, 4.499998817536112, 4.499998817536112, 4.258817724351778, 4.258817724351778, 3.9999986307080815, 3.9999986307080815, 3.7411796303793676, 3.7411796303793676, 3.4999988107807196, 3.4999988107807196, 3.2928922464411294, 3.2928922464411294, 3.133973907669199, 3.133973907669199, 3.0340738167888044, 3.0340738167888044, 3.0000000000009535, 3.0000000000009535, 3.0340745316444946, 3.0340745316444946, 3.1339752886643444, 3.1339752886643444, 3.2928941994631917, 3.2928941994631917, 3.500001202734471, 3.500001202734471, 3.741182298257111, 3.741182298257111, 4.000001392698354, 4.000001392698354, 4.258820392229504, 4.258820392229504, 4.50000120949062, 4.50000120949062, 4.70710777011034, 4.70710777011034, 4.86602610403399, 4.86602610403399, 4.9659261892691955, 4.9659261892691955, 4.999999999999014, 4.999999999999014, 4.965925462297207, 4.965925462297207, 4.8660246996319545, 4.8660246996319545, 4.707105783985936, 4.707105783985936, 4.499998776994945, 4.499998776994945, 4.258817679134, 4.258817679134, 3.999998583895211, 3.999998583895211, 3.741179585160746, 3.741179585160746, 3.4999987702388298, 3.4999987702388298, 3.2928922133388343, 3.2928922133388343, 3.133973884262821, 3.133973884262821, 3.0340738046728055, 3.0340738046728055, 3.000000000001019, 3.000000000001019, 3.034074543760856, 3.034074543760856, 3.133975312071292, 3.133975312071292, 3.2928942325649366, 3.2928942325649366, 3.500001243275639, 3.500001243275639, 3.7411823434757667, 3.7411823434757667, 4.0000014395121335, 4.0000014395121335, 4.258820437448126, 4.258820437448126, 4.500001250031721, 4.500001250031721, 4.707107803211991, 4.707107803211991, 4.866026127440822, 4.866026127440822, 4.965926201385429, 4.965926201385429, 4.999999999998947, 4.999999999998947, 4.96592545018108, 4.96592545018108, 4.866024676225462, 4.866024676225462, 4.707105750884191, 4.707105750884191, 4.499998736452989, 4.499998736452989, 4.258817633915344, 4.258817633915344, 3.9999985370814315, 3.9999985370814315, 3.7411795399430026, 3.7411795399430026, 3.4999987296977286, 3.4999987296977286, 3.2928921802365414, 3.2928921802365414, 3.1339738608559893, 3.1339738608559893, 3.0340737925565735, 3.0340737925565735, 3.000000000001087, 3.000000000001087, 3.034074555876984, 3.034074555876984, 3.1339753354782403, 3.1339753354782403, 3.292894265667326, 3.292894265667326, 3.500001283817596, 3.500001283817596, 3.741182388693545, 3.741182388693545, 4.0000014863250035, 4.0000014863250035, 4.258820482666747, 4.258820482666747, 4.50000129057361, 4.50000129057361, 4.707107836314283, 4.707107836314283, 4.866026150847198, 4.866026150847198, 4.965926213501424, 4.965926213501424, 4.999999999998878, 4.999999999998878, 4.9659254380647155, 4.9659254380647155, 4.866024652818512, 4.866024652818512, 4.7071057177818005, 4.7071057177818005, 4.4999986959118194, 4.4999986959118194, 4.258817588697566, 4.258817588697566, 3.9999984902676515, 3.9999984902676515, 3.7411794947243817, 3.7411794947243817, 3.4999986891558406, 3.4999986891558406, 3.2928921471348924, 3.2928921471348924, 3.1339738374496147, 3.1339738374496147, 3.034073780440343, 3.034073780440343, 3.0000000000011573, 3.0000000000011573, 3.0340745679933496, 3.0340745679933496, 3.1339753588847366, 3.1339753588847366, 3.292894298769074, 3.292894298769074, 3.5000013243595536, 3.5000013243595536, 3.741182433912202, 3.741182433912202, 4.000001533138784, 4.000001533138784, 4.258820527884489, 4.258820527884489, 4.500001331114709, 4.500001331114709, 4.707107869415931, 4.707107869415931, 4.866026174254026, 4.866026174254026, 4.965926225617654, 4.965926225617654, 4.999999999998806, 4.999999999998806, 4.965925425948584, 4.965925425948584, 4.866024629412014, 4.866024629412014, 4.707105684679409, 4.707105684679409, 4.499998655369861, 4.499998655369861, 4.258817543478909, 4.258817543478909, 3.999998443454781, 3.999998443454781, 3.7411794495066397, 3.7411794495066397, 3.4999986486139543, 3.4999986486139543, 3.292892114032602, 3.292892114032602, 3.1339738140427875, 3.1339738140427875, 3.0340737683243506, 3.0340737683243506, 3.0000000000012297, 3.0000000000012297, 3.034074580109717, 3.034074580109717, 3.1339753822916894, 3.1339753822916894, 3.2928943318714663, 3.2928943318714663, 3.500001364900725, 3.500001364900725, 3.7411824791299813, 3.7411824791299813, 4.000001579951654, 4.000001579951654, 4.258820573103109, 4.258820573103109, 4.5000013716565945, 4.5000013716565945, 4.707107902518221, 4.707107902518221, 4.866026197660398, 4.866026197660398, 4.965926237733645, 4.965926237733645, 4.9999999999987335, 4.9999999999987335, 4.965925413832216, 4.965925413832216, 4.866024606005061, 4.866024606005061, 4.707105651577659, 4.707105651577659, 4.499998614828689, 4.499998614828689, 4.2588174982602505, 4.2588174982602505, 3.9999983966410015, 3.9999983966410015, 3.74117940428802, 3.74117940428802, 3.4999986080728562, 3.4999986080728562, 3.2928920809309568, 3.2928920809309568, 3.133973790635962, 3.133973790635962, 3.034073756208125, 3.034073756208125, 3.0000000000013043, 3.0000000000013043, 3.034074592225852, 3.034074592225852, 3.133975405698189, 3.133975405698189, 3.2928943649732174, 3.2928943649732174, 3.500001405442685, 3.500001405442685, 3.74118252434864, 3.74118252434864, 4.0000016267654335, 4.0000016267654335, 4.258820618320851, 4.258820618320851, 4.500001412197692, 4.500001412197692, 4.707107935620509, 4.707107935620509, 4.866026221067223, 4.866026221067223, 4.96592624984987, 4.96592624984987, 4.999999999998658, 4.999999999998658, 4.96592540171608, 4.96592540171608, 4.866024582598105, 4.866024582598105, 4.707105618475263, 4.707105618475263, 4.499998574286729, 4.499998574286729, 4.25881745304247, 4.25881745304247, 3.999998349828131, 3.999998349828131, 3.7411793590694007, 3.7411793590694007, 3.4999985675309717, 3.4999985675309717, 3.2928920478286696, 3.2928920478286696, 3.133973767229593, 3.133973767229593, 3.034073744092136, 3.034073744092136, 3.000000000001381, 3.000000000001381, 3.0340746043422238, 3.0340746043422238, 3.1339754291051456, 3.1339754291051456, 3.292894398075613, 3.292894398075613, 3.5000014459838584, 3.5000014459838584, 3.74118256956642, 3.74118256956642, 4.000001673579214, 4.000001673579214, 4.258820663539469, 4.258820663539469, 4.500001452739576, 4.500001452739576, 4.707107968722152, 4.707107968722152, 4.8660262444735904, 4.8660262444735904, 4.965926261966093, 4.965926261966093, 4.99999999999858, 4.99999999999858, 4.9659253895997075, 4.9659253895997075, 4.866024559191603, 4.866024559191603, 4.70710558537351, 4.70710558537351, 4.499998533744767, 4.499998533744767, 4.258817407823811, 4.258817407823811, 3.999998303014351, 3.999998303014351, 3.741179313851661, 3.741179313851661, 3.4999985269898763, 3.4999985269898763, 3.292892014727027, 3.292892014727027, 3.1339737438227715, 3.1339737438227715, 3.0340737319759143, 3.0340737319759143, 3.0000000000014597, 3.0000000000014597, 3.0340746164583625, 3.0340746164583625, 3.133975452511649, 3.133975452511649, 3.29289443117801, 3.29289443117801, 3.50000148652582, 3.50000148652582, 3.74118261478508, 3.74118261478508, 4.000001720392084, 4.000001720392084, 4.258820708757209, 4.258820708757209, 4.500001493281459, 4.500001493281459, 4.7071080018244364, 4.7071080018244364, 4.866026267880412, 4.866026267880412, 4.9659262740820775, 4.9659262740820775, 4.9999999999985, 4.9999999999985, 4.965925377483332, 4.965925377483332, 4.866024535784644, 4.866024535784644, 4.707105552271113, 4.707105552271113, 4.4999984932035915, 4.4999984932035915, 4.258817362606029, 4.258817362606029, 3.9999982562014806, 3.9999982562014806, 3.7411792686330427, 3.7411792686330427, 3.499998486447994, 3.499998486447994, 3.2928919816247433, 3.2928919816247433, 3.133973720416406, 3.133973720416406, 3.03407371985993, 3.03407371985993, 3.000000000001541, 3.000000000001541, 3.0340746285747384, 3.0340746285747384, 3.13397547591861, 3.13397547591861, 3.2928944642797657, 3.2928944642797657, 3.500001527066996, 3.500001527066996, 3.74118266000374, 3.74118266000374, 4.000001767205863, 4.000001767205863, 4.258820753975827, 4.258820753975827, 4.500001533822553, 4.500001533822553, 4.707108034926077, 4.707108034926077, 4.8660262912872305, 4.8660262912872305, 4.965926286198297, 4.965926286198297, 4.999999999998417, 4.999999999998417, 4.96592536536719, 4.96592536536719, 4.866024512378137, 4.866024512378137, 4.707105519169356, 4.707105519169356, 4.499998452661628, 4.499998452661628, 4.258817317387369, 4.258817317387369, 3.999998209387701, 3.999998209387701, 3.741179223415304, 3.741179223415304, 3.4999984459069005, 3.4999984459069005, 3.2928919485224606, 3.2928919485224606, 3.1339736970095884, 3.1339736970095884, 3.0340737077437128, 3.0340737077437128, 3.000000000001624, 3.000000000001624, 3.0340746406908816, 3.0340746406908816, 3.1339754993255715, 3.1339754993255715, 3.292894497382166, 3.292894497382166, 3.5000015676089604, 3.5000015676089604, 3.741182705221522, 3.741182705221522, 4.000001814018734, 4.000001814018734, 4.258820799194444, 4.258820799194444, 4.5000015743644335, 4.5000015743644335, 4.707108068028359, 4.707108068028359, 4.866026314693593, 4.866026314693593, 4.965926298314278, 4.965926298314278, 4.999999999998334, 4.999999999998334, 4.96592535325081, 4.96592535325081, 4.866024488971174, 4.866024488971174, 4.707105486066955, 4.707105486066955, 4.49999841212045, 4.49999841212045, 4.258817272169587, 4.258817272169587, 3.999998162573921, 3.999998162573921, 3.7411791781966865, 3.7411791781966865, 3.4999984053650204, 3.4999984053650204, 3.2928919154208227, 3.2928919154208227, 3.1339736736032267, 3.1339736736032267, 3.0340736956274976, 3.0340736956274976, 3.0000000000017097, 3.0000000000017097, 3.034074652807262, 3.034074652807262, 3.133975522732081, 3.133975522732081, 3.2928945304839243, 3.2928945304839243, 3.500001608150926, 3.500001608150926, 3.741182750440183, 3.741182750440183, 4.000001860832514, 4.000001860832514, 4.258820844412182, 4.258820844412182, 4.500001614905525, 4.500001614905525, 4.707108101129996, 4.707108101129996, 4.866026338100408, 4.866026338100408, 4.965926310430492, 4.965926310430492, 4.999999999998247, 4.999999999998247, 4.965925341134665, 4.965925341134665, 4.866024465564664, 4.866024465564664, 4.707105452964552, 4.707105452964552, 4.499998371578485, 4.499998371578485, 4.258817226950925, 4.258817226950925, 3.9999981157610507, 3.9999981157610507, 3.741179132978949, 3.741179132978949, 3.4999983648231416, 3.4999983648231416, 3.2928918823185436, 3.2928918823185436, 3.133973650196413, 3.133973650196413, 3.0340736835115196, 3.0340736835115196, 3.0000000000017972, 3.0000000000017972, 3.0340746649236445, 3.0340746649236445, 3.1339755461390473, 3.1339755461390473, 3.292894563586328, 3.292894563586328, 3.500001648692105, 3.500001648692105, 3.7411827956579664, 3.7411827956579664, 4.000001907645384, 4.000001907645384, 4.258820889630798, 4.258820889630798, 4.500001655447404, 4.500001655447404, 4.707108134232274, 4.707108134232274, 4.8660263615067665, 4.8660263615067665, 4.965926322546468, 4.965926322546468, 4.999999999998158, 4.999999999998158, 4.965925329018281, 4.965925329018281, 4.866024442157697, 4.866024442157697, 4.707105419862792, 4.707105419862792, 4.499998331037305, 4.499998331037305, 4.2588171817322635, 4.2588171817322635, 3.999998068947271, 3.999998068947271, 3.741179087760333, 3.741179087760333, 3.4999983242820516, 3.4999983242820516, 3.292891849216909, 3.292891849216909, 3.133973626789601, 3.133973626789601, 3.0340736713953085, 3.0340736713953085, 3.0000000000018874, 3.0000000000018874, 3.034074677039794, 3.034074677039794, 3.1339755695455604, 3.1339755695455604, 3.2928945966880896, 3.2928945966880896, 3.5000016892340726, 3.5000016892340726, 3.7411828408766286, 3.7411828408766286, 4.000001954459164, 4.000001954459164, 4.2588209348485355, 4.2588209348485355, 4.500001695988494, 4.500001695988494, 4.707108167334551, 4.707108167334551, 4.866026384913577, 4.866026384913577, 4.9659263346626785, 4.9659263346626785, 4.999999999998067, 4.999999999998067, 4.965925316902131, 4.965925316902131, 4.866024418750728, 4.866024418750728, 4.707105386760386, 4.707105386760386, 4.499998290495337, 4.499998290495337, 4.258817136514479, 4.258817136514479, 3.9999980221344007, 3.9999980221344007, 3.741179042541718, 3.741179042541718, 3.4999982837401746, 3.4999982837401746, 3.2928918161146323, 3.2928918161146323, 3.133973603383245, 3.133973603383245, 3.034073659279335, 3.034073659279335, 3.0000000000019793, 3.0000000000019793, 3.0340746891561805, 3.0340746891561805, 3.13397559295253, 3.13397559295253, 3.292894629790496, 3.292894629790496, 3.5000017297752537, 3.5000017297752537, 3.741182886094413, 3.741182886094413, 4.000002001272944, 4.000002001272944, 4.25882098006715, 4.25882098006715, 4.500001736530369, 4.500001736530369, 4.707108200436183, 4.707108200436183, 4.866026408319932, 4.866026408319932, 4.965926346778886, 4.965926346778886, 4.999999999997974, 4.999999999997974, 4.965925304785743, 4.965925304785743, 4.866024395344212, 4.866024395344212, 4.707105353658622, 4.707105353658622, 4.499998249953368, 4.499998249953368, 4.258817091295816, 4.258817091295816, 3.9999979753206207, 3.9999979753206207, 3.7411789973239817, 3.7411789973239817, 3.4999982431990864, 3.4999982431990864, 3.2928917830130007, 3.2928917830130007, 3.1339735799764363, 3.1339735799764363, 3.034073647163128, 3.034073647163128, 3.0000000000020735, 3.0000000000020735, 3.034074701272334, 3.034074701272334, 3.133975616359047, 3.133975616359047, 3.292894662892904, 3.292894662892904, 3.5000017703172235, 3.5000017703172235, 3.7411829313130767, 3.7411829313130767, 4.000002048085814, 4.000002048085814, 4.258821025284886, 4.258821025284886, 4.500001777072245, 4.500001777072245, 4.707108233538458, 4.707108233538458, 4.866026431726739, 4.866026431726739, 4.965926358894857, 4.965926358894857, 4.999999999997879, 4.999999999997879, 4.965925292669353, 4.965925292669353, 4.86602437193724, 4.86602437193724, 4.707105320556213, 4.707105320556213, 4.499998209412185, 4.499998209412185, 4.258817046078031, 4.258817046078031, 3.9999979285077507, 3.9999979285077507, 3.7411789521053676, 3.7411789521053676, 3.499998202657212, 3.499998202657212, 3.2928917499107278, 3.2928917499107278, 3.1339735565700844, 3.1339735565700844, 3.034073635047159, 3.034073635047159, 3.00000000000217, 3.00000000000217, 3.0340747133887254, 3.0340747133887254, 3.1339756397660206, 3.1339756397660206, 3.2928946959946703, 3.2928946959946703, 3.500001810858407, 3.500001810858407, 3.7411829765317406, 3.7411829765317406, 4.000002094899594, 4.000002094899594, 4.2588210705035, 4.2588210705035, 4.500001817613331, 4.500001817613331, 4.707108266640087, 4.707108266640087, 4.866026455133545, 4.866026455133545, 4.965926371011061, 4.965926371011061, 4.999999999997781, 4.999999999997781, 4.965925280553196, 4.965925280553196, 4.866024348530719, 4.866024348530719, 4.7071052874544455, 4.7071052874544455, 4.4999981688702135, 4.4999981688702135, 4.258817000859366, 4.258817000859366, 3.9999978816939707, 3.9999978816939707, 3.741178906887632, 3.741178906887632, 3.4999981621161265, 3.4999981621161265, 3.292891716808456, 3.292891716808456, 3.13397353316328, 3.13397353316328, 3.0340736229309564, 3.0340736229309564, 3.0000000000022684, 3.0000000000022684, 3.0340747255048828, 3.0340747255048828, 3.133975663172996, 3.133975663172996, 3.292894729097082, 3.292894729097082, 3.500001851400379, 3.500001851400379, 3.7411830217495265, 3.7411830217495265, 4.000002141712464, 4.000002141712464, 4.258821115722113, 4.258821115722113, 4.500001858155204, 4.500001858155204, 4.707108299742358, 4.707108299742358, 4.866026478539895, 4.866026478539895, 4.965926383127027, 4.965926383127027, 4.999999999997682, 4.999999999997682, 4.965925268436802, 4.965925268436802, 4.8660243251237425, 4.8660243251237425, 4.707105254352034, 4.707105254352034, 4.499998128329029, 4.499998128329029, 4.2588169556415805, 4.2588169556415805, 3.999997834880191, 3.999997834880191, 3.7411788616690194, 3.7411788616690194, 3.499998121574254, 3.499998121574254, 3.292891683706829, 3.292891683706829, 3.133973509756932, 3.133973509756932, 3.034073610814756, 3.034073610814756, 3.000000000002369, 3.000000000002369, 3.034074737621278, 3.034074737621278, 3.1339756865795185, 3.1339756865795185, 3.292894762198851, 3.292894762198851, 3.500001891942352, 3.500001891942352, 3.741183066968192, 3.741183066968192, 4.000002188526245, 4.000002188526245, 4.258821160939847, 4.258821160939847, 4.500001898696288, 4.500001898696288, 4.707108332843983, 4.707108332843983, 4.866026501946696, 4.866026501946696, 4.965926395243226, 4.965926395243226, 4.99999999999758, 4.99999999999758, 4.9659252563206415, 4.9659252563206415, 4.86602430171722, 4.86602430171722, 4.707105221249621, 4.707105221249621, 4.499998087787055, 4.499998087787055, 4.258816910422914, 4.258816910422914, 3.9999977880673208, 3.9999977880673208, 3.7411788164512854, 3.7411788164512854, 3.4999980810323827, 3.4999980810323827, 3.2928916506045605, 3.2928916506045605, 3.133973486350131, 3.133973486350131, 3.034073598698793, 3.034073598698793, 3.0000000000024722, 3.0000000000024722, 3.0340747497376754, 3.0340747497376754, 3.133975709986498, 3.133975709986498, 3.2928947953012653, 3.2928947953012653, 3.5000019324835385, 3.5000019324835385, 3.741183112185979, 3.741183112185979, 4.000002235339115, 4.000002235339115, 4.258821206158459, 4.258821206158459, 4.5000019392381585, 4.5000019392381585, 4.707108365946252, 4.707108365946252, 4.866026525353041, 4.866026525353041, 4.965926407359188, 4.965926407359188, 4.999999999997476, 4.999999999997476, 4.965925244204243, 4.965925244204243, 4.866024278310239, 4.866024278310239, 4.707105188147849, 4.707105188147849, 4.499998047245867, 4.499998047245867, 4.258816865204248, 4.258816865204248, 3.999997741253541, 3.999997741253541, 3.741178771232674, 3.741178771232674, 3.4999980404913003, 3.4999980404913003, 3.292891617502937, 3.292891617502937, 3.1339734629433322, 3.1339734629433322, 3.0340735865825965, 3.0340735865825965, 3.0000000000025775, 3.0000000000025775, 3.0340747618538395, 3.0340747618538395, 3.133975733393024, 3.133975733393024, 3.292894828403038, 3.292894828403038, 3.500001973025514, 3.500001973025514, 3.7411831574046452, 3.7411831574046452, 4.000002282152894, 4.000002282152894, 4.258821251376193, 4.258821251376193, 4.500001979779241, 4.500001979779241, 4.707108399048518, 4.707108399048518, 4.866026548759839, 4.866026548759839, 4.965926419475383, 4.965926419475383, 4.999999999997369, 4.999999999997369, 4.965925232088077, 4.965925232088077, 4.866024254903257, 4.866024254903257, 4.707105155045432, 4.707105155045432, 4.499998006703891, 4.499998006703891, 4.2588168199864604, 4.2588168199864604, 3.9999976944406703, 3.9999976944406703, 3.7411787260140623, 3.7411787260140623, 3.4999979999494313, 3.4999979999494313, 3.292891584400671, 3.292891584400671, 3.13397343953699, 3.13397343953699, 3.0340735744666376, 3.0340735744666376, 3.000000000002685, 3.000000000002685, 3.034074773970241, 3.034074773970241, 3.133975756800007, 3.133975756800007, 3.2928948615054554, 3.2928948615054554, 3.5000020135667027, 3.5000020135667027, 3.741183202622434, 3.741183202622434, 4.000002328966675, 4.000002328966675, 4.258821296594804, 4.258821296594804, 4.5000020203211095, 4.5000020203211095, 4.7071084321501395, 4.7071084321501395, 4.866026572166181, 4.866026572166181, 4.965926431591576, 4.965926431591576, 4.999999999997261, 4.999999999997261, 4.965925219971675, 4.965925219971675, 4.866024231496728, 4.866024231496728, 4.707105121943657, 4.707105121943657, 4.4999979661619145, 4.4999979661619145, 4.258816774767793, 4.258816774767793, 3.999997647626891, 3.999997647626891, 3.74117868079633, 3.74117868079633, 3.4999979594083506, 3.4999979594083506, 3.2928915512990504, 3.2928915512990504, 3.1339734161301944, 3.1339734161301944, 3.0340735623504456, 3.0340735623504456, 3.000000000002794, 3.000000000002794, 3.0340747860864097, 3.0340747860864097, 3.1339757802065376, 3.1339757802065376, 3.292894894607874, 3.292894894607874, 3.5000020541086805, 3.5000020541086805, 3.7411832478411013, 3.7411832478411013, 4.000002375779545, 4.000002375779545, 4.258821341812536, 4.258821341812536, 4.500002060862977, 4.500002060862977, 4.707108465252403, 4.707108465252403, 4.866026595572975, 4.866026595572975, 4.965926443707532, 4.965926443707532, 4.99999999999715, 4.99999999999715, 4.96592520785527, 4.96592520785527, 4.866024208089742, 4.866024208089742, 4.707105088841238, 4.707105088841238, 4.4999979256207245, 4.4999979256207245, 4.258816729550004, 4.258816729550004, 3.9999976008140203, 3.9999976008140203, 3.74117863557772, 3.74117863557772, 3.499997918866484, 3.499997918866484, 3.292891518196788, 3.292891518196788, 3.133973392723856, 3.133973392723856, 3.034073550234491, 3.034073550234491, 3.000000000002906, 3.000000000002906, 3.0340747982028153, 3.0340747982028153, 3.1339758036135246, 3.1339758036135246, 3.2928949277096513, 3.2928949277096513, 3.5000020946498713, 3.5000020946498713, 3.7411832930597693, 3.7411832930597693, 4.000002422593324, 4.000002422593324, 4.258821387031146, 4.258821387031146, 4.500002101404055, 4.500002101404055, 4.707108498354021, 4.707108498354021, 4.866026618979767, 4.866026618979767, 4.965926455823721, 4.965926455823721, 4.999999999997037, 4.999999999997037, 4.965925195739098, 4.965925195739098, 4.866024184683209, 4.866024184683209, 4.70710505573946, 4.70710505573946, 4.499997885078745, 4.499997885078745, 4.258816684331336, 4.258816684331336, 3.9999975540002404, 3.9999975540002404, 3.741178590359989, 3.741178590359989, 3.4999978783254058, 3.4999978783254058, 3.2928914850945272, 3.2928914850945272, 3.1339733693170646, 3.1339733693170646, 3.0340735381183035, 3.0340735381183035, 3.0000000000030203, 3.0000000000030203, 3.034074810318988, 3.034074810318988, 3.133975827020513, 3.133975827020513, 3.2928949608120734, 3.2928949608120734, 3.5000021351918513, 3.5000021351918513, 3.7411833382775592, 3.7411833382775592, 4.000002469406195, 4.000002469406195, 4.258821432249755, 4.258821432249755, 4.50000214194592, 4.50000214194592, 4.707108531456281, 4.707108531456281, 4.866026642386103, 4.866026642386103, 4.965926467939672, 4.965926467939672, 4.999999999996922, 4.999999999996922, 4.96592518362269, 4.96592518362269, 4.866024161276219, 4.866024161276219, 4.707105022637037, 4.707105022637037, 4.499997844537552, 4.499997844537552, 4.258816639113546, 4.258816639113546, 3.999997507186461, 3.999997507186461, 3.7411785451413797, 3.7411785451413797, 3.4999978377835412, 3.4999978377835412, 3.292891451992911, 3.292891451992911, 3.13397334591073, 3.13397334591073, 3.0340735260021177, 3.0340735260021177, 3.000000000003136, 3.000000000003136, 3.034074822435398, 3.034074822435398, 3.133975850427049, 3.133975850427049, 3.292894993913854, 3.292894993913854, 3.500002175733832, 3.500002175733832, 3.7411833834962285, 3.7411833834962285, 4.000002516219975, 4.000002516219975, 4.258821477467485, 4.258821477467485, 4.500002182486997, 4.500002182486997, 4.707108564557896, 4.707108564557896, 4.866026665792892, 4.866026665792892, 4.965926480055857, 4.965926480055857, 4.999999999996804, 4.999999999996804, 4.965925171506514, 4.965925171506514, 4.866024137869682, 4.866024137869682, 4.707018662469598, 4.707018662469598, 4.49993676165593, 4.49993676165593, 4.25878499621524, 4.25878499621524, 3.999997460683641, 3.999997460683641, 3.7412100982022576, 3.7412100982022576, 3.500058840118342, 3.500058840118342, 3.292977746394146, 3.292977746394146, 3.1340790515574763, 3.1340790515574763, 3.0341914392293647, 3.0341914392293647, 3.0001220852187345, 3.0001220852187345, 3.034192759733772, 3.034192759733772, 3.134081602576096, 3.134081602576096, 3.2929813540792727, 3.2929813540792727, 3.500063258612192, 3.500063258612192, 3.7412150263908948, 3.7412150263908948, 4.000002562719937, 4.000002562719937, 4.258789924404725, 4.258789924404725, 4.499758051512304, 4.499758051512304, 4.705295720044372, 4.705295720044372, 4.854819409373181, 4.854819409373181, 4.90342605988624, 4.90342605988624, 4.731778781587124, 4.731778781587124, 4.328185779341063, 4.328185779341063, 4.076547608212793, 4.076547608212793, 4.012690077963085, 4.012690077963085 ] } } }, "d6a9f12103894fce9f96e7f361f02fd6": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "FigureModel", "state": { "_dom_classes": [], "animation_duration": 50, "axes": [ "IPY_MODEL_0768a1a3181042fe8da6b4bbce422b65", "IPY_MODEL_cf77b58bb11047bd8b52e3f2f5a3d800" ], "layout": "IPY_MODEL_45c2edcf6a1b4345967c253305b43987", "marks": [ "IPY_MODEL_fce5b8ea17d24b178bd55a3ebd2afa00", "IPY_MODEL_3a4cc4ad73e4436f9cb271dae2abec40", "IPY_MODEL_cacd7716181840f9a418289dbbd4eef4", "IPY_MODEL_68a3baf2f96b4169a405aa8ad5b8412c", "IPY_MODEL_2b4e49a2d49b48e3bce000e83485de3a" ], "scale_x": "IPY_MODEL_f38f74461f534092845c7df194e683d8", "scale_y": "IPY_MODEL_5122e806f7fb48a3b1d902506f58363c", "title": "Waveform Plotter" } }, "d7ab204b03e24cfa8d4159f02ba14287": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "AxisModel", "state": { "label": "Amplitude", "orientation": "vertical", "scale": "IPY_MODEL_a71a67a73d17471581bd9699c6803d86", "side": "left", "tick_values": { "type": null, "values": null } } }, "d829e29c146e4ece8f6f5b8c4f12b6b9": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "AxisModel", "state": { "label": "Time (ns)", "scale": "IPY_MODEL_8342a76ecdda4fb9a4e600d8ab8fc329", "side": "bottom", "tick_values": { "type": null, "values": null } } }, "da91096284d444d693d75d54a5f347ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": { "min_width": "125px" } }, "db86edeb23c44827acf5b0a480f1dd2e": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#9467bd" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS2_m1" ], "scales": { "x": "IPY_MODEL_8342a76ecdda4fb9a4e600d8ab8fc329", "y": "IPY_MODEL_30d949e7ba5846e89f696eade5e275c3" }, "selected": [], "tooltip": "IPY_MODEL_de89493a5a54462aa3afafdeebcc5adf", "x": { "type": "float", "values": [ 0, 100, 100, 200, 200, 1100 ] }, "y": { "type": "float", "values": [ 8, 8, 9, 9, 8, 8 ] } } }, "ddd19c8b9e194e08a9942e939bec829a": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "FigureModel", "state": { "_dom_classes": [], "axes": [ "IPY_MODEL_9cf9e49671af4768939f815ee6f2f6de", "IPY_MODEL_add375242ff64f41ab228c922b92d020" ], "layout": "IPY_MODEL_da91096284d444d693d75d54a5f347ca", "marks": [ "IPY_MODEL_e33fcee4a35d4da99148870babdbd871", "IPY_MODEL_0c7c37af1acc42ba9126e35a13d87988" ], "scale_x": "IPY_MODEL_0490ccadaa934d6d9a6882708736e7ef", "scale_y": "IPY_MODEL_96231612b10340089312f47857d3890c" } }, "de89493a5a54462aa3afafdeebcc5adf": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "TooltipModel", "state": { "fields": [ "name" ], "labels": [ "Channel" ], "layout": "IPY_MODEL_7a62c17a55544d42920816325e1a1959" } }, "e33fcee4a35d4da99148870babdbd871": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "display_legend": false, "fill_colors": [], "labels": [ "C1" ], "scales": { "x": "IPY_MODEL_f989834e0fd144cd95b580df0aaad5ab", "y": "IPY_MODEL_e8e3f7bb389f4168be4a3f68b16bf18a" }, "selected": [], "x": { "type": "float", "values": [ 0, 1, 2, 3, 4 ] }, "y": { "type": "float", "values": [ 1, 3, 2, 5, 4 ] } } }, "e7fa8d927d004fc9be47e78c4a10cd5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": {} }, "e8d5c1f27a3d4c5d8da78f80cc35ca25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.4.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_24682eab19af4dfd8d318250d74bdc96", "IPY_MODEL_8d3d28f582504308b011c6e283382a08" ], "layout": "IPY_MODEL_bebbd0a9c0534c7b94b4b45f4e66a568" } }, "e8e3f7bb389f4168be4a3f68b16bf18a": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "stabilized": false } }, "eb501ddbfb024a14a0c77f7d7e6e218d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.4.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_ddd19c8b9e194e08a9942e939bec829a", "IPY_MODEL_7dbdbb3b142f43269fa741441883ff11" ], "layout": "IPY_MODEL_893ac633d30d4e9ca175cc0aaac5e3ca" } }, "f38f74461f534092845c7df194e683d8": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "allow_padding": false, "max": 1, "min": 0, "stabilized": false } }, "f39a17cf33cc46afa2ee166ea8bca784": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.1.0", "model_name": "LayoutModel", "state": {} }, "f722402781aa40e5abfa266993ce0fa5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.4.0", "model_name": "IntSliderModel", "state": { "description": "Segment", "layout": "IPY_MODEL_e7fa8d927d004fc9be47e78c4a10cd5f", "max": 1, "min": 1, "style": "IPY_MODEL_c0d1530a498a43cc9e83cebe4159ffc5", "value": 1 } }, "f989834e0fd144cd95b580df0aaad5ab": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinearScaleModel", "state": { "stabilized": false } }, "fce5b8ea17d24b178bd55a3ebd2afa00": { "model_module": "bqplot", "model_module_version": "^0.4.5", "model_name": "LinesModel", "state": { "color": { "type": null, "values": null }, "colors": [ "#1f77b4" ], "display_legend": false, "fill_colors": [], "labels": [ "BBNAPS1_ch1" ], "scales": { "x": "IPY_MODEL_3f7099eb85e644d39be802793202d951", "y": "IPY_MODEL_bb809aa69f6b4de692ddb7c47b2a8a8f" }, "selected": [], "tooltip": "IPY_MODEL_739989c6df8b44ac8e2e610ee68b5e36", "x": { "type": "float", "values": [ 0, 0.8333333333333334, 0.8333333333333334, 1.6666666666666667, 1.6666666666666667, 2.5, 2.5, 3.3333333333333335, 3.3333333333333335, 4.166666666666667, 4.166666666666667, 5, 5, 5.833333333333333, 5.833333333333333, 6.666666666666667, 6.666666666666667, 7.500000000000001, 7.500000000000001, 8.333333333333334, 8.333333333333334, 9.166666666666666, 9.166666666666666, 10, 10, 10.833333333333334, 10.833333333333334, 11.666666666666666, 11.666666666666666, 12.5, 12.5, 13.333333333333334, 13.333333333333334, 14.166666666666668, 14.166666666666668, 15.000000000000002, 15.000000000000002, 15.833333333333332, 15.833333333333332, 16.666666666666668, 16.666666666666668, 17.5, 17.5, 18.333333333333332, 18.333333333333332, 19.166666666666668, 19.166666666666668, 20, 20, 100, 100, 1100 ] }, "y": { "type": "float", "values": [ -0.04541570015871078, -0.04541570015871078, -0.10438285923574656, -0.10438285923574656, -0.17800024417043095, -0.17800024417043095, -0.2661457697472836, -0.2661457697472836, -0.36747649859602, -0.36747649859602, -0.4786961298986693, -0.4786961298986693, -0.5946770846050543, -0.5946770846050543, -0.7087046758637529, -0.7087046758637529, -0.8132096203149799, -0.8132096203149799, -0.9003784641679893, -0.9003784641679893, -0.9630081797094372, -0.9630081797094372, -0.9957270174581858, -0.9957270174581858, -0.9957270174581858, -0.9957270174581858, -0.9630081797094372, -0.9630081797094372, -0.9003784641679893, -0.9003784641679893, -0.8132096203149799, -0.8132096203149799, -0.7087046758637529, -0.7087046758637529, -0.5946770846050543, -0.5946770846050543, -0.4786961298986693, -0.4786961298986693, -0.36747649859602, -0.36747649859602, -0.2661457697472836, -0.2661457697472836, -0.17800024417043095, -0.17800024417043095, -0.10438285923574656, -0.10438285923574656, -0.04541570015871078, -0.04541570015871078, 0, 0, 0, 0 ] } } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
ikegwukc/INFO597-DeepLearning-GameTheory
basicGames/Basic Games.ipynb
1
303772
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Basic Games" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Iterated Prisoner's Dilemma\n", "Prisoner's Dilemma is a pretty standard game that is commonly used in game theory (for a comprehensive defintion of Prisoner's dilemma see this [link](https://en.wikipedia.org/wiki/Prisoner%27s_dilemma)). Iterated Prisoner's Dilemma is simply repeating the game and allowing the agents to choose again. Prisoner's Dilemma is implemented in a module I wrote called game_types. For an example using the PrisonersDilemma class see the pseudocode snippet below (I dicuss different types of strategies availiable in subsequent cells):\n", "```python\n", "from game_types import PrisonersDilemma\n", "...\n", "...\n", "...\n", "agent1 = Strategy() # Some Strategy for agent1\n", "agent2 = Strategy() # Some Strategy for agent2\n", "game = PrisonersDilemma(agent1, agent2) # Play Prisoners Dilemma with agent1 and agent2\n", "num_iter = 10000 # Play the game 10000 times\n", "game.play(num_iter)\n", "data = game.data # grab data from game\n", "```\n", "\n", "## Scenario - TCP User's Game\n", "\n", "In this scenario [Robert Brunner](http://www.astro.illinois.edu/people/bigdog) uploads a dataset and asks two graduate students [Edward](https://edwardjkim.github.io/) and [Will](http://publish.illinois.edu/wbiscarri/) to download and perform a variety of tasks. For the sake of simplicity in this game Edward and Will are the only ones on a special network and they recieve no interference from other people.\n", "\n", "The traffic for this network is governed by the TCP Protocol and one feature of TCP is the backoff mechanism. If the rates that Edward and Will are sending packets to this network causes congestion they (`backoff` and) each reduce the rate for a while until network congestion subsides. This is the correct implementation. A defective implementation of TCP would be one that does not backoff if the network is congested. The users in this game have 2 choices. To Cooperate (use the correct implementation of the TCP protocol) or to defect (use an incorrect implementation of the TCP protocol).\n", "\n", "The payoff matrix is below. The numbers in the box are the utility values. For this example the higher the utlity value the faster the dataset is downloaded. Will is the first player and is the first number in each box. Edward is the second player and is the the second number in each box. \n", "\n", "If Edward and Will follow the correct protocol they will both download the dataset in a reasonable amout of time (top left). If Will decides he wants the data faster and uses a defective TCP protocol while Edward still follows the correct protocol Will downloads the dataset much faster than Edward (Top Right). Vise-versa (bottom left). If they both defect they download the dataset significantly slower than if they both cooperated.\n", "![Game Theory TCP Example](http://i.imgur.com/hfWBE27.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Types of Strategies\n", "\n", "The strategies of Will and Edward will depend on what they want to achieve. Edward's part may be based on Will's work so it would make sense for Will to defect and Edward cooperates on purpose. If it's a competition they may try to defect to get a head start. If both split up the work then it may be in there interest to Cooperate. There are a lot of scenarios that can unfold but in most games agents do not know the other agents intentions or strategies so for the sake of this game we assume Edward and Will know nothing about it.\n", "\n", "I've implemented the following basic strategies in a directory called strategies:\n", "\n", "### Cooperate\n", "Cooperate: With this strategy Will or Edward (the agent) always cooperates. To create an agent that uses this strategy you can do the following in Python:\n", "```python\n", "from strategies import cooperate as c\n", "agent = c.Cooperate()\n", "```\n", "### Defect\n", "Defect: With this strategy the agent always defects. To create an agent that uses this strategy you can do the following in Python:\n", "```python\n", "from strategies import defect as d\n", "agent = d.Defect()\n", "```\n", "### Chaos\n", "Chaos: An agent uses this strategu to cause chaos by cooperating or defecting at random. To create an agent that uses this strategy you can do the following in Python:\n", "```python\n", "from strategies import chaos as ch\n", "agent = ch.Chaos()\n", "```\n", "### Grim\n", "Grim: This strategy is the most unforgiving. The agent cooperates until the opponent defects, in which case it will defect for the remainder of the game. This is also known as a trigger strategy. To create an agent that uses this strategy you can do the following in Python:\n", "```python\n", "from strategies import grim as g\n", "agent = g.Grim()\n", "```\n", "### Pavlov\n", "Pavlov: This is another trigger strategy where initally the agent will cooperate until it loses then it will change it's strategy (defect). The agent will continue to change it's strategy if it loses. To create an agent that uses this strategy you can do the following in Python:\n", "```python\n", "from strategies import pavlov as p\n", "agent = p.Pavlov()\n", "```\n", "### Q-Learning\n", "Q-Learning: This agent uses [Q-learning](https://en.wikipedia.org/wiki/Q-learning) for it's strategy where Q Learning is a model-free reinforcement learning technique. To create an agent that uses this strategy you can do the following in Python:\n", "```python\n", "from strategies import machine_learning as ml\n", "agent = ml.QLearn()\n", "```\n", "### Human\n", "Human: This agent recieves the action as input from a human player. To create an agent that uses this strategy you can do the following in Python:\n", "```python\n", "from strategies import human as h\n", "agent = h.Human()\n", "```" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "scrolled": true }, "outputs": [], "source": [ "%matplotlib inline\n", "from collections import Counter\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import numpy as np\n", "sns.set()\n", "\n", "# Importing Games\n", "from game_types import PrisonersDilemma\n", "from game_types import Coordination\n", "\n", "# Importing Strategies\n", "from strategies import chaos as c\n", "from strategies import defect as d\n", "from strategies import machine_learning as ml\n", "from strategies import pavlov as p\n", "from strategies import grim as g\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Simulating Games:\n", "## Chaos VS Defect" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Playing Game: 100%|██████████| 10000/10000 [00:00<00:00, 20385.03it/s]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA70AAAGJCAYAAABGqVQ+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8Tdf+//H3ySxiTFNT1RBJ1a0pQtVMaalSU0iiokWL\nlv6MjSEEpcJVQ1uqLUoiNYSk1Uur34iZayqlhqYVpbhFEy1JyDnJ2b8/fJ1vc4nQTByv5+NxHzdZ\ne5+1P3vnPJy+z1p7bZNhGIYAAAAAALBDDkVdAAAAAAAABYXQCwAAAACwW4ReAAAAAIDdIvQCAAAA\nAOwWoRcAAAAAYLcIvQAAAAAAu0XoBWA3rFarPvvsM3Xv3l1du3bViy++qFmzZslsNkuSxo4dq88+\n+6xIart8+bLq1q2rSZMmFehxUlNT1bdv31vaz549q6eeekoXL168ZVvnzp0VHx9/V/2fO3dOtWrV\nUteuXdW1a1d17txZ3bt31xdffHFXr9+5c6fatGmjgIAA29/lXmzdulXvv//+HfcZOnSonnnmGWVk\nZNxz//di/vz5SkhIKNBjAACAvCP0ArAb4eHh+v7777Vs2TLFxcVpzZo1OnXqlCZMmFDUpWnt2rVq\n27at1q9frytXrhTYcf744w8dOXLklvbHHntMzZo1U1xcXLb2gwcPKjU1Vc8+++xdH8PNzU1xcXGK\ni4vTunXr9MEHH2jBggX6n//5n1xfu379evXs2VMxMTFycXG562PedOTIkTtev4sXL2r//v2qW7fu\nLeea3/79738rMzOzQI8BAADyzqmoCwCA/HD27Fn961//0s6dO+Xu7i7pRjibMmWKDh48aNvvu+++\n08aNG5WcnCwfHx/Nnj1bbm5uWrNmjVavXq3MzEz98ccfeu211xQUFCTpxojehg0b5OTkpKpVq2ri\nxIny9PTUt99+q4ULF8rBwUGOjo4aPXq0/P39b6nNMAytWrVK4eHhSktL08qVK/X6669LujE6PWPG\nDG3evFklSpRQnTp19PPPPysqKkqpqamaNm2aEhMTlZmZqWeeeUZvv/22HBwcVKdOHb3++uvauXOn\nLl26pJCQEIWEhGjcuHG6fv26unbtqtjYWJlMJlsdQUFBmjZtmgYOHGhrW716tXr16iWTyaT9+/dr\nxowZslqtMplMGjhwoNq1a5frta9YsaLeeustLVq0SO3atZPFYtGsWbO0b98+Wa1WPfnkkxo/frxW\nrVqlTZs2yc3NTVevXtXo0aO1cOFCffvttzIMQ5UqVVJ4eLi8vLz0+++/Kzw8XElJSXJ0dFSvXr1U\nt25drVy5UlarVR4eHho2bNgttaxevVpNmjTR888/r7lz5yowMNC2bevWrZo1a5acnJxUs2ZN7dq1\nSytWrFDFihW1Zs0aff7555Kk0qVLa8KECapWrZrGjh2r4sWLKzExUb/99puqV6+uOXPmKDY2Vj/8\n8INmzpwpBwcHtW3bNtfrBAAAiogBAHZg48aNRkBAwB33GTNmjNGzZ08jIyPDyMrKMrp27Wp8+eWX\nRlpamtGrVy/jjz/+MAzDMA4dOmTUr1/fMAzDWLNmjREYGGhcv37dMAzD+OCDD4wBAwYYhmEYbdu2\nNb7//nvDMAxj586dxvz582973C1bthhNmzY1srKyjK+//tpo2bKlkZmZaRiGYaxYscJ4+eWXDbPZ\nbFgsFqNfv35Gnz59DMMwjLFjxxrLly83DMMwsrKyjNGjRxuLFi0yDMMwnnjiCSM6OtowDMP44Ycf\njNq1axsZGRnG2bNnbbX/N6vVarRr187Yu3evYRiGcfXqVaNRo0ZGSkqKYRiG0bdvX2P9+vWGYRjG\niRMnjClTptzSR079//TTT0a9evVs12jmzJm2bbNnzzYmTZpk+xssWbLEMAzDiIuLM4YPH25kZWUZ\nhmEYq1atMl577TXDMAzjzTffNP75z3/a6nzxxReNM2fOGB988IHxzjvv3Pb8MjMzjebNmxtbtmwx\nMjIyjEaNGhnbtm0zDMMwLl++bDRq1Mj48ccfbceuWbOmce7cOWPv3r1G7969bX/jHTt2GC+88IKt\n3qCgIMNisRgWi8Xo2rWrERsbaxiGYbz88svGxo0bb1sLAAC4fzDSC8AuODg4yGq15rrfs88+a5tW\n6+vrq5SUFLm7u2vhwoXavHmzTp8+rePHj+vatWuSpO3bt6tbt25ydXWVJIWEhKhJkybKzMxUx44d\n9cYbb6hVq1Zq0qSJBgwYcNtjrlixQp06dZKDg4PatGmj8PBwffPNN+rYsaO2bdumLl26yNnZWZIU\nGBioqKgoSdKWLVt05MgRxcTESJIyMjLk4PB/d6XcnJL8j3/8QxaLxVZzTkwmk3r16qU1a9aoYcOG\n+vLLL9WyZUuVKVNGkvTCCy9oypQpSkhIUJMmTTR8+PBcr+df+y5WrJikGyOqV69e1c6dOyVJmZmZ\n8vT0vOU1N8+vW7dukm6Met+8D3f37t0KDQ2VJHl4eOirr77KtYb4+HhZrVY1b95cDg4OeuGFF7R0\n6VI1b95c+/fvl4+Pj3x9fSVJXbp00bRp02x1nDlzRoGBgTIMQ5J05coV2zTq5s2by8npxselr6+v\n/vzzz7u+LgAAoOgRegHYhdq1a+vkyZNKT0+3TW+WpAsXLmjixIn64IMPJMkWLqUbQc0wDF24cEG9\nevVSr1695O/vr+eff15bt26VpFuCdFZWlrKysmQYhoYNG6YePXpo586diouL06effnrLfaTnz5/X\ntm3bdPz4cds03qysLC1btkwdO3aUk5OTLWhJyhZqs7KyNG/ePFWvXl2SdPXq1WzTlW8GcenGFOq/\n9pOT7t27q3379kpNTVVMTIymTJli29azZ0+1bt1aO3fu1LZt2/Thhx9q3bp18vDwyLXfw4cP2wJl\nVlaWxo8fr+bNm0uSrl27dttFpaxWq1577TXbFGSLxWILmjdD5k2//vqrLZznZOXKlcrIyLBNybZY\nLLp06ZJOnjwpR0fHW/6WN6+l1WrVSy+9pJEjR9q2XbhwQSVLlpR0Y5r8X19zN9cZAADcP1jICoBd\nKFeunDp16qRx48YpNTVV0o2VjCdPnqyyZcvecdGkI0eOqGzZsho8eLCaNm2qzZs3S7oRJJs3b67Y\n2FjbKGpUVJQaNmxoG7VNT09Xr169bPefWiyWbH2vXLlSDRo00NatW7Vp0yYlJCRo7dq1OnbsmA4e\nPKiWLVtq3bp1MpvNyszMVFxcnC2MNWvWTEuXLpUkmc1mDR48WNHR0Xe8Dk5OTncc8S5durRat26t\nDz74QI6OjqpTp45tW2BgoI4dO6YuXbpoypQpunr16m0Xjfrv0Hfq1Cl99NFH6tevn6QbI6PR0dGy\nWCyyWq0aP368Zs+efUs/zZo1U0xMjO3vNXfuXL399tuSpCZNmig2NlbSjbD/yiuv6MyZM3J0dLzt\nqs+nTp3Svn37FBcXp02bNmnTpk3atm2bGjRooGXLlsnPz0+nT59WYmKiJGnjxo22LxGaNm2q9evX\n69KlS5Kk6OhovfLKKzlew5ucnJxYyAoAgAcAI70A7MakSZM0f/58BQUFycnJSWazWW3bttXQoUPv\n+LrmzZtr7dq1ev7551W8eHHVrl1bZcuW1enTp9WjRw/99ttvCggIkGEYevzxx/XPf/5Tjo6OGj9+\nvEaOHClnZ2c5ODho+vTp2UaSLRaLYmNj9e6772Y7XpUqVdSxY0ctW7ZMc+fO1alTp9StWze5u7vr\nscces00TDgsL07vvvqtOnTopMzNTTZs2tU2h/uuI719/9/Ly0pNPPqkXXnhBK1asUKlSpW453+Dg\nYPXq1euWut5++21NnTpV8+bNk8lk0pAhQ1SxYsVbXm82m9W1a1fbcV1dXTVq1Ci1aNFCkvTGG29o\n5syZ6tq1q20hq5tTlf8qICBAFy9eVK9eveTg4KAKFSpo+vTpkqQJEyZo0qRJ6ty5swzD0KBBg1Sr\nVi2ZzWYNHTpUU6dOVVhYmK2vlStXql27dnrssceyHePNN9/U4MGDNWLECM2aNcu2ENhTTz0lR0dH\nubm5qVmzZhowYID69esnBwcHeXh46MMPP7yl3v/WunVrzZgxQ2azWV26dMl1fwAAUDRMBvO0AKDI\n7Ny5U8nJyercubMkadq0aXJzc8s21RZ5l5qaqo8++khvvfWWXF1ddezYMQ0cOFDbt28v6tIAAEAB\nK/CR3k8++UQJCQmyWCwKDg5Ww4YNNWbMGDk4OMjHx0fh4eGSbjxmYtWqVXJ2dtagQYPUqlUrZWRk\naPTo0UpOTpaHh4ciIiJyvacLAB4kNWrU0OLFi7V48WJlZWWpZs2amjRpUlGXZXc8PDzk7Oys7t27\ny8nJSc7Ozpo3b15RlwUAAApBgY707t27V5999pk++ugjpaena8mSJTp69Kj69+8vf39/hYeHq3nz\n5qpXr55effVVxcXF6fr16woKClJsbKyio6OVmpqqIUOGaMOGDTp48KDGjx9fUOUCAAAAAOxMgS5k\ntWPHDvn6+uqNN97Q4MGD1apVKx07dkz+/v6SpBYtWmjXrl06fPiwGjRoICcnJ3l4eKhq1ao6ceKE\nDhw4YLtHrEWLFtq9e3dBlgsAAAAAsDMFOr358uXLOn/+vD7++GP9+uuvGjx4cLZVRYsXL67U1FSl\npaWpRIkStnZ3d3db+81HZdzcFwAAAACAu1Wgobd06dLy9vaWk5OTqlWrJldXV124cMG2PS0tTSVL\nlpSHh0e2QPvX9rS0NFvbX4NxTjIzs+Tk5Jj/JwMAAAAAeOAUaOht0KCBoqKi9Morr+jChQu6du2a\nGjdurL1796pRo0batm2bGjdurNq1a2vOnDkym83KyMhQUlKSfHx8VL9+fW3dulW1a9fW1q1bbdOi\n7+Ty5fSCPKU88/IqoUuXrhZ1GbjP8L4AAOQFnyOFz8sr98EYAPeHAg29rVq10v79+9WjRw8ZhqFJ\nkyapUqVKCgsLk8Vikbe3t9q3by+TyaQ+ffooODhYhmFoxIgRcnFxUVBQkEJDQxUcHCwXFxe99957\nBVkuAAAAAMDO2N1zeu/3bzn5Jha3w/sCAJAXfI4UPkZ6gQdHga7eDAAAAABAUSL0AgAAAADsFqEX\nAAAAAGC3CL0AAAAAALtF6AUAAAAA2C1CLwAAAICH0k8//aSBAweqb9++CggI0IcffihJ2rt3r0aM\nGFEoNQwaNEiDBg3K936jo6Pzvc8HFaEXAAAAwEPn6tWrGjFihMLCwrRs2TKtXr1aiYmJWrVqlSTJ\nZDIVeA3/+c9/dO3aNaWmpurs2bP52vdHH32Ur/09yJyKugAAAAAAKGybNm3SM888o8qVK0u6EXJn\nzJghZ2dnfffddzp16pRef/11JScnq3Xr1hoyZIj27dunDz/8UIZhKD09Xe+9956qVKmiJUuWaMOG\nDXJyclLDhg01cuRIfffdd7b+3Nzc9P7778vd3T1bDWvXrlXbtm3l5uam6OhohYaGSpJiYmL0+eef\nq3Tp0nJyclLHjh314osvKjw8XGfOnJHVatWwYcPUsGFDde7cWY0aNdKPP/4ok8mkBQsWaPny5frj\njz80ZcoUTZw4sdCv7f2GkV4AAAAAD52LFy/aAu9NxYoVk5PTjXFBi8WiBQsWKDo6WsuXL5d0Yzr0\nrFmzFBkZqXbt2umbb75RYmKiNm7cqNWrV2vlypU6ffq0tmzZovj4eHXo0EFRUVEKDAzUlStXsh3L\nMAx99dVXeumll9ShQwd9/fXXMpvNunz5shYtWqRVq1Zp8eLFun79uqQbQbhs2bKKiorS/PnzNXny\nZElSamqqOnXqpKioKD366KPatm2bBg0apNKlSxN4/xcjvQAAAAAeOhUrVtTRo0eztZ09e1a//fab\nJMnHx0dOTk62/0lSuXLl9M4776h48eK6cOGC/Pz8lJSUpLp168rB4cZ4op+fn37++WcNHjxYCxYs\nUN++fVW+fHnVq1cv27G2b9+u9PR0jRw5UoZh2EJwjRo15OPjIxcXF0myvS4xMVEHDhzQ999/L8Mw\nlJWVpcuXL0uSnnzySUlShQoVZDabC+iKPbgIvQAAAACKVFZWlk6ePJmvfXp7e8vR0THH7a1atdLH\nH3+s4OBgVa5cWRaLRREREWratKm8vb1v+5oJEyYoPj5e7u7uGjNmjCSpevXqWrp0qaxWq0wmk/bv\n368uXbroyy+/VPfu3RUaGqpPPvlEq1at0ptvvmnra82aNZo2bZpatGghSfruu+80depULV68WElJ\nSTKbzXJyctLhw4fl7e0tb29vVahQQa+//royMjK0cOFClS5dOsfzMwzj71w2u0ToBQAAAFCkTp48\nqZkfHVHZR6rkS38pv5/W24MlX1/fHPfx8PDQjBkzFBYWJsMwlJaWpjZt2igoKEh79+697UJWL730\nkoKDg+Xu7q5HHnlEFy9elK+vr9q3b6/AwEAZhqEGDRqobdu2Onz4sMaPH69ixYrJ0dFRU6ZMsfWT\nnJysw4cPa+7cubY2Pz8/mc1mnT59WgMGDFBwcLBKlSqljIwMOTk5qVevXgoLC1OfPn2UlpamoKAg\nmUymbHX+9ecaNWro7bff1syZM/N6OR94JsPOvgK4dOlqUZdwR15eJe77GlH4eF8AAPKCz5HC5+VV\noqhLsCuJiYlaFHNFXuVr5Et/l377WQMCSt4x9N6vsrKy9Omnn9oeY9S7d28NHz5c/v7+RVzZg4uR\nXgAAAAC4Tzg6OuratWvq1q2bXFxcVKdOHQJvHhF6AQAAAOA+Mnz4cA0fPryoy7AbPLIIAAAAAGC3\nCL0AAAAAHjozZsxQnz591KFDB7Vu3VohISEaNmxYjvufO3dOW7ZsyXH7mTNnFBwcnK0tKytLLVu2\nzNa2ZcsWhYWFSZI2btyo5ORkXbhwQVOnTpUktWzZUlarVQsXLtSxY8eUkZGhNWvW3NU5paSkaOjQ\noerfv78CAwM1ceLEQn+EUXJystq1ayer1SrpxirSzZo1U0hIiEJCQjRv3jxJN1ar7tmzp4KCgvTR\nRx/ZXj9r1iz17NlTgYGBOnDggCRp6tSptte3b99evXv3vqeamN4MAAAAoMil/H46n/uqfcd9QkND\nJUlxcXE6deqURowYccf9d+3apXPnzqlVq1Y57nO7FZ/v1LZs2TLVqlVLlStXtgXhm9tuLmR1+vRp\nxcbGqkePHnesT5I++eQTtWzZ0rbv1KlTFRMTc88h8e/aunWr5s6dq+TkZFvbqVOnVL9+fX3wwQfZ\n9p00aZI+/vhjlS9fXgMGDFBiYqLMZrNOnDih1atX68yZMxo2bJhiY2Nt18Zisah3795655137qku\nQi8AAACAIuXt7a23B+dnj7VzfNbu3Xj33Xd16NAhmUwmde7cWT179tTixYtlNptVv359ubq66qOP\nPpLVatX169c1e/bsez5GQkKCEhMTNWrUKEVERGj8+PH6/PPPbdtHjx6tbt26ad26dfrpp5/08ccf\na9OmTZo5c6aqVq2qzZs3a9euXRo/frztNZ6envr6669VqVIl+fn5aezYsbZnFX/44YfavHmzrFar\nevfurR49eujTTz/Vxo0b5eTkpKefflrDhw/X3LlzdeTIEaWnpysiIkJbtmzR119/LenGI5uCgoK0\na9cuHTlyRAMHDsx2Ts7Ozlq2bJk6d+5sazt69KjOnTunkJAQubu7a9y4cSpVqpQMw1CFChUkSc2a\nNdPu3bvVt29fffLJJ5JujKyXKlUqW/9Lly5Vy5YtVb169Xu61oReAAAAAEXK0dHxvnm8UHx8vC5d\nuqTVq1fLYrEoMDBQjRs3Vv/+/XX+/Hm1bNlS0dHRmjNnjsqWLav58+dr48aNeu655+76GCaTSW3a\ntJGvr69mzJghwzBuOyIsSYMHD9aZM2c0cOBAlS1bVnFxcRo+fLhiY2M1dOjQbPsOGDBAZcqU0aJF\ni3TkyBE1bNhQEydO1MWLF7Vnzx6tXbtWFotFs2fP1vHjx5WQkKCYmBiZTCa9+eab2r59u6QbzzcO\nDQ3Vjz/+qPj4eK1cuVJWq1V9+/ZVs2bN1KRJEzVp0uSWWm+2/fWpuOXLl9fgwYPVrl077d27V6NH\nj9bs2bNVosT/PfarePHiunjxoiTJwcFBs2bN0ooVKxQeHm7bx2w2a+3atVq7du1dX+ebuKcXAAAA\nAP5XUlKS7RFBzs7Oqlu3rpKSkrLt8+ijj2ry5MkaO3as9u/fr8zMzNv25ejoqKysrGxt6enpcnV1\n/Vu1dezYUfHx8fr999+VnJx8yxcFu3fvVvfu3bV48WLt3LlTTz75pCIiInTq1CnVqVPHdk6hoaFK\nSkpSvXr1bGHbz89PP//8syTZRlJ/+uknnT17ViEhIerbt6+uXLmi06dzn4b+1wBfu3Zt25TwRo0a\n6fz58ypRooRSU1Nt+6SlpalkyZK230eNGqVt27Zp4cKFOn/+vCRpx44deuaZZ1S8ePF7vWyEXgAA\nAAC4qXr16rYFlCwWiw4dOqQqVarIwcHBtjjThAkTNGPGDE2fPl2enp62kc2/jnDeVLFiRe3fv9/2\n+/bt21W79o37jf/a503/3YfJZLIFZ3d3d/n5+Wn69Onq0qXLLcdaunSp1q9fL+lGuPX29parq6tq\n1Kiho0ePSroxYvrqq6+qcuXK+v7772UYhgzD0P79+1WtWjXbMW9eiyeeeEKRkZGKiopSly5d5OPj\nk+s1/Os5zJs3T9HR0ZJuTHWuXLmySpYsKZPJpHPnzskwDO3YsUP+/v7atWuXbUEvZ2dnOTs7y8Hh\nRmTdtWuXWrRokeuxb4fpzQAAAADwv9q2bat9+/YpMDBQFotFnTt3lq+vr8xmsxYtWqRatWqpU6dO\nCgoKUrFixeTp6Wmbmnu7KcpTp07V5MmTlZmZKavVKj8/P3Xq1EnSjdHVUaNGZVuY6WYfN//fy8tL\n169f15w5czR8+HAFBASob9++mjJlym2PNWnSJC1ZskRubm7y9PTUpEmT5OnpqcaNGyswMFCS1Lt3\nb9WpU0fPPvusevXqJcMw1KhRI7Vq1UqHDh2y9VerVi35+fkpKChIGRkZ8vPzU7ly5XK8p/e/z0GS\nBg4cqNGjR2vTpk1ydnbW9OnTJUmTJ0/WiBEjZLVa1aJFC9WqVUtZWVn65ptvFBQUJMMwFBISovLl\ny0uSfvnlF1v998pk3O7riAfYpUtXi7qEO/LyKnHf14jCx/sCAJAXfI4UPi+vErnvBBSAgwcPas2a\nNZo2bVpRl/LAYKQXAAAAAB4AkZGR+uKLL2zPusXdYaS3kPFNLG6H9wUAIC/4HCl8jPQCDw4WsgIA\nAAAA2C1CLwAAAADAbhF6AQAAAAB2i9ALAAAAALBbhF4AAAAAD529e/eqSZMmCgkJUZ8+fRQUFKSv\nv/76jq85fPiwnnvuOc2ZM+euj2M2mxUTE5Pj9i5dumR7Tm9+yO2YDxtCLwAAAICH0jPPPKPIyEhF\nRUVp8eLF+vTTT3XixIkc99++fbv69u2r4cOH3/UxLl68qDVr1tx223fffSdfX1/9+9//Vnp6+j3X\n/3eO+TDiOb0AAAAAHnru7u4KDAzUxo0bVbNmTc2ePVsHDhxQVlaWXnnlFVWsWFFr166Vi4uLypUr\np1KlSmnOnDlydHTU448/rilTpigzM1Njx47V+fPnZbFYNGHCBK1du1YnT57UggUL9MYbb2Q7ZkxM\njNq3b68KFSooLi5OvXv3liTNnz9fmzZtUpkyZXT9+nUNGzZMTz75pMaNG6c///xTkhQWFiYfHx89\n//zz8vPz06lTp/TII4/o/fff18cff5zjMR9GhF4AAAAAkOTp6aljx45p27ZtOnv2rKKjo2U2m9Wz\nZ08tX75c3bp1k5eXl9q2bavnn39eK1asUNmyZTVv3jzFxsYqLS1Njz32mGbPnq0zZ85oy5YtGjx4\nsH766adbwmdqaqoOHDigadOmqXr16hoyZIh69+6tEydOaMeOHYqNjVVGRoY6d+4sSVq4cKGaNGmi\nwMBAnT59WmPHjtXnn3+uX3/9VZGRkSpXrpyCgoL0ww8/aNCgQbc95sOK0AsAAAAAks6fP6/y5csr\nMTFRR48eVUhIiAzDUFZWls6ePWvbLyUlRZcuXdKwYcNkGIbMZrOaNGmiy5cvq0WLFpKkxx9/XCEh\nITp37txtj7Vu3ToZhqGBAwfKMAxdunRJ//73v5WSkqI6depIklxdXfWPf/xDkpSYmKg9e/Zow4YN\nMgxDV65ckSSVKVNG5cqVkyRVqFBBGRkZBXZ9HlSEXgAAAABFKisrSydPnszXPr29veXo6HjHfQzD\nsP2cmpqqmJgYvf/++0pKStLTTz+tKVOmyDAMLViwQI8//rht3zJlyqhChQpasGCBPDw8lJCQoOLF\niysxMVGHDx9WmzZt9Ouvv2ru3LkaNWqUsrKybjn2mjVrtHDhQnl7e0uS/vWvfyk6OlpDhw7V8uXL\nJd1YkOrYsWO283nqqafUsWNHpaSk2O7ZNZlMt/Tt4OBw22M+rAi9AAAAAIrUyZMndWrJE6rmlT/9\nnbokqd+P8vX1veN+e/bsUUhIiC0kvvXWW6pataqqVq2qvXv3qnfv3rp27Zratm0rd3d32+tMJpPG\njRun119/XVarVSVKlNCMGTNUv359jR07Vn369JHVatX48ePl6empzMxMvffeexo5cqQkZQuyNz33\n3HOaPn26SpUqpRYtWqhnz54qU6aMnJ2d5eTkpIEDB2r8+PFauXKl0tLSNHTo0FvO52YAvt0xH2Ym\n469fb9iBS5euFnUJd+TlVeK+rxGFj/cFACAv+BwpfF5eJYq6BLuSmJgoffWEfCvkU3//kdQp99B7\nP0pJSdE333yj4OBgmc1mderUScuWLVP58uWLurQHFiO9AAAAAHCfKFOmjI4cOaIePXrIwcFBAQEB\nBN48IvQCAAAAwH3CZDJp+vTpRV2GXXEo6gIAAAAAoLDNmDFDffr0UYcOHdS6dWuFhIRo2LBhOe5/\n7tw5bdmyJcftZ86cUXBwcLa2rKwstWzZMlvbli1bFBYWJknauHGjkpOTdeHCBU2dOlWS1LJlS1mt\nVi1cuFDxjoHnAAAgAElEQVTHjh1TRkaGbdGq3KSkpGjo0KHq37+/AgMDNXHiRJnN5rt6bX6IjIxU\njx491LNnT23cuDHbtp9++kl+fn6yWq2SpO3bt6tbt24KDAzUBx98YNtv6tSp6tmzpwIDA/X9999L\nkn799Vf17t1bL7/8ssaMGXPP50ToBQAAAPDQCQ0NVVRUlF5//XV16tRJkZGRmjt3bo7779q1S4cO\nHbpjn7dbSflObcuWLVN6errKlStnC8I3tw0aNEi1atXSb7/9ptjY2Ls6p08++UQtW7bU4sWLtXLl\nSrm4uCgmJuauXptXycnJWrt2rWJiYrRkyZJso9VXr17VrFmz5OrqamubOXOm5s6dq5UrV2rHjh1K\nSkrS0aNHdezYMa1evVrTpk3TtGnTJEkREREKCQnR8uXLVb9+fS1duvSeamN6MwAAAIAid+pS/vZV\nLQ+vf/fdd3Xo0CGZTCZ17txZPXv21OLFi2U2m1W/fn25urrqo48+ktVq1fXr1zV79ux7PkZCQoIS\nExM1atQoRUREaPz48fr8889t20ePHq1u3bpp3bp1+umnn/Txxx9r06ZNmjlzpqpWrarNmzdr165d\nGj9+vO01np6e+vrrr1WpUiX5+flp7Nixtsc2ffjhh9q8ebOsVqt69+6tHj166NNPP9XGjRvl5OSk\np59+WsOHD9fcuXN15MgRpaenKyIiQlu2bNHXX38tSXrppZcUFBSkXbt26ciRIxo4cGC2Y8fFxclk\nMunixYsqVqyYpBuPhZo4caJGjx6tAQMG2Pb/xz/+ocuXL6t8+fIym81ydHRUhQoV5ObmJrPZrNTU\nVDk7O0uSfv75ZzVv3lySVL9+/Xu+3oReAAAAAEXK29tb6vdjvvVXTdkfB3Qv4uPjdenSJa1evVoW\ni0WBgYFq3Lix+vfvr/Pnz6tly5aKjo7WnDlzVLZsWc2fP18bN27Uc889d9fHMJlMatOmjXx9fTVj\nxgwZhnHbEWFJGjx4sM6cOaOBAweqbNmyiouL0/DhwxUbG3vLY4sGDBigMmXKaNGiRTpy5IgaNmyo\niRMn6uLFi9qzZ4/Wrl0ri8Wi2bNn6/jx40pISFBMTIxMJpPefPNNbd++XZLk6+ur0NBQ/fjjj4qP\nj9fKlStltVrVt29fNWvWTE2aNFGTJk1uqdXBwUGRkZGaP3+++vXrJ0maO3eu2rVrpxo1amR7LrKv\nr6+t3lq1aqlKlSq6cuWKMjMz1aFDB6WmptpGemvVqqWEhAS9+OKLSkhI0LVr1+76WkuEXgAAAABF\nzNHR8b55vFBSUpL8/f0lSc7Ozqpbt66SkpKy7fPoo49q8uTJcnd312+//aann376tn05OjoqKysr\nW1t6enq2ab73omPHjgoICFCfPn2UnJx8yzXbvXu3unfvrh49eshisejjjz9WRESEWrdurTp16tjO\nKTQ0VOvXr1e9evVsYdvPz08///yzJKl69eqSbtyHe/bsWYWEhMgwDF25ckWnT59W5cqVc6wxJCRE\nQUFB6tevn/z8/PTNN9/o4MGDWrFihVJSUtSvXz/NnTtXS5Ys0TfffCNPT09FRETYpixXqlRJkZGR\nunLlioKDg1WvXj2NHTtWU6ZMUUxMjJo1a6YyZcrc03Xjnl4AAAAA+F/Vq1fXgQMHJEkWi0WHDh1S\nlSpV5ODgYFuEacKECZoxY4amT58uT09P2wjmX0cyb6pYsaL2799v+3379u2qXbu2JGXr86b/7sNk\nMtmCs7u7u/z8/DR9+nR16dLllmMtXbpU69evl3Qj3Hp7e8vV1VU1atTQ0aNHJUlms1mvvvqqKleu\nrO+//16GYcgwDO3fv1/VqlWzHfPmtXjiiScUGRmpqKgodenSRT4+Pre9bidPntRbb70lSXJycpKL\ni4ucnJy0ceNG2+vLli2rzz77TMWKFZO7u7ttCrSXl5euXr2qUqVKqXjx4rZzdXZ21rVr17Rz506F\nhoZq2bJlkqSmTZvetoacMNILAAAAAP+rbdu22rdvnwIDA2WxWNS5c2f5+vrKbDZr0aJFqlWrljp1\n6qSgoCAVK1ZMnp6eunjxoqTbL1o1depUTZ48WZmZmbJarfLz81OnTp0k3RhdHTVqlN555x3b/jf7\nuPn/Xl5eun79uubMmaPhw4crICBAffv21ZQpU257rEmTJmnJkiVyc3OTp6enJk2aJE9PTzVu3FiB\ngYGSpN69e6tOnTp69tln1atXLxmGoUaNGqlVq1bZFuuqVauW/Pz8FBQUpIyMDPn5+alcuXK3vafX\n29tbPj4+6tWrl0wmk1q3bq369etnq89kMskwDLm6umr06NF65ZVX5OrqqtKlS2v69OkqVqyYvvvu\nOwUFBclqtap79+6qXLmyfv/9d/2///f/5ObmJl9fX/Xv3/+e/qYm43ZfRzzALl26WtQl3JGXV4n7\nvkYUPt4XAIC84HOk8Hl5lSjqEvCQOnjwoNasWWO73xW5K/CR3m7dusnDw0OS9Nhjj2nQoEEaM2aM\nHBwc5OPjo/DwcEnS6tWrtWrVKjk7O2vQoEFq1aqVMjIyNHr0aCUnJ8vDw0MRERH3PH8bAAAAAOxB\nZGSkvvjiC82bN6+oS3mgFOhIr9lsVmBgYLbnSg0ePFj9+/eXv7+/wsPD1bx5c9WrV0+vvvqq4uLi\ndP36dQUFBSk2NlbR0dFKTU3VkCFDtGHDBh08eDDbkty3c79/y8k3sYUvKytLv/ySlPuORahsWQ+l\npKRma7tx74ZJjo4P5q33VatWty2RDwAoWPz3ReFjpBd4cBToSO+JEyeUnp6u/v37KysrS8OHD9ex\nY8dsq6G1aNFCO3fulIODgxo0aCAnJyd5eHioatWqOnHihA4cOKDXXnvNtu+CBQsKslzYqV9+SdKi\nVadU9pEqRV3KHVy5peXUT//WgPJvqZpXEZSTR6cuSb90OSBv79svdAAAAAAUlgINvW5uburfv78C\nAgL0yy+/6LXXXsu2Glnx4sWVmpqqtLQ0lSjxf9+Wubu729pvTo2+uS/wd5R9pIq8ytco6jLuScrv\np1XNS/KtUNSV/D0pRV0AAAAAoAIOvVWrVlWVKlVsP5cuXVrHjh2zbU9LS1PJkiXl4eGRLdD+tT0t\nLc3W9tdgnJMyZdzl5HR/T6lkOkzhunzZQ7cbSUXBKlvWg/c6ABQi/s0FgNsr0NC7du1aJSYmKjw8\nXBcuXFBqaqqaNm2qvXv3qlGjRtq2bZsaN26s2rVra86cOTKbzcrIyFBSUpJ8fHxUv359bd26VbVr\n19bWrVtt06LvZP/+7wvylPLsdvdu3sQ9kAUjp+uNgpWSksr9ZQBQSG53T++DsKbFndzv/13ElwzA\ng6NAQ2+PHj00duxYBQcHy8HBQRERESpdurTCwsJksVjk7e2t9u3by2QyqU+fPgoODpZhGBoxYoRc\nXFwUFBSk0NBQBQcHy8XFRe+9916ux3wQ792UbkxlHdBL3AMJAADyxS+/JOnPLxqwNgSAh16Bhl5n\nZ2fNmjXrlvaoqKhb2gICAhQQEJCtzc3N7Z6X434Q790EAAAoCKwNAQDSg/ksFAAAAAAA7gKhFwAA\nAABgtwi9AAAAAAC7RegFAAAAANgtQi8AAAAAwG4RegEAAAAAdovQCwAAAACwW4ReAAAAAIDdIvQC\nAAAAAOwWoRcAAAAAYLcIvQAAAAAAu0XoBQAAAADYLUIvAAAAAMBuEXoBAAAAAHaL0AsAAAAAsFuE\nXgAAAACA3SL0AgAAAADsFqEXAAAAAGC3CL0AAAAAALtF6AUAAAAA2C1CLwAAAADAbhF6AQAAAAB2\ni9ALAAAAALBbhF4AAAAAgN0i9AIAAAAA7BahFwAAAABgtwi9AAAAAAC7RegFAAAAANgtQi8AAAAA\nwG4RegEAAAAAdovQCwAAAACwW4ReAAAAAIDdIvQCAAAAAOwWoRcAAAAAYLcIvQAAAAAAu0XoBQAA\nAADYLUIvAAAAAMBuEXoBAAAAAHaL0AsAAAAAsFuEXgAAAACA3SL0AgAAAADsFqEXAAAAAGC3CL0A\nAAAAALtF6AUAAAAA2C1CLwAAAADAbhF6AQAAAAB2i9ALAAAAALBbBR56k5OT1apVK506dUpnzpxR\ncHCwXn75ZU2ePNm2z+rVq9W9e3cFBgZqy5YtkqSMjAy99dZb6t27twYOHKjLly8XdKkAAAAAADtT\noKE3MzNT4eHhcnNzkyRNnz5dI0aM0PLly2W1WhUfH6/ff/9dUVFRWrVqlRYtWqT33ntPFotFK1as\nkK+vr6Kjo/XSSy9pwYIFBVkqAAAAAMAOFWjonTFjhoKCgvToo4/KMAwdO3ZM/v7+kqQWLVpo165d\nOnz4sBo0aCAnJyd5eHioatWqOnHihA4cOKAWLVrY9t29e3dBlgoAAAAAsEMFFnpjY2Pl6emppk2b\nyjAMSZLVarVtL168uFJTU5WWlqYSJUrY2t3d3W3tHh4e2fYFAAAAAOBeOBVUx7GxsTKZTNq5c6d+\n/PFHhYaGZrsvNy0tTSVLlpSHh0e2QPvX9rS0NFvbX4MxAAAAAAB3o8BC7/Lly20/h4SEaPLkyZo5\nc6b27dunhg0batu2bWrcuLFq166tOXPmyGw2KyMjQ0lJSfLx8VH9+vW1detW1a5dW1u3brVNi7Zn\nZct6yMuLcJ/fLl/2kHSlqMt46PB+BoDC9d//5t74/Htw8TkCIL8UWOi9ndDQUE2YMEEWi0Xe3t5q\n3769TCaT+vTpo+DgYBmGoREjRsjFxUVBQUEKDQ1VcHCwXFxc9N577xVmqUUiJSVVly5dLeoy7E5K\nClPjiwLvZwAoPF5eJW75NzclJVVli6ie/HC/f44QyIEHR6GE3sjISNvPUVFRt2wPCAhQQEBAtjY3\nNzfNmzevwGsDAAAAANivAn9OLwAAAAAARYXQCwAAAACwW4ReAAAAAIDdIvQCAAAAAOwWoRcAAAAA\nYLcIvQAAAAAAu0XoBQAAAADYLUIvAAAAAMBuEXoBAAAAAHYr19B75swZrVu3ToZhaMKECerevbv2\n799fGLUBAAAAAJAnuYbesWPHytnZWZs2bdIvv/yisWPHaubMmYVRGwAAAAAAeZJr6M3IyFCHDh20\nefNmderUSf7+/srMzCyM2gAAAAAAyJNcQ6+jo6M2btyoLVu2qFWrVoqPj5eDA7cCAwAAAADuf7mm\n1ylTpmjLli0KDw/Xo48+qvXr12vq1KmFURsAAAAAAHmSa+h94okn9MYbb8jFxUVZWVkaMWKEatas\nWRi1AQAAAACQJ7mG3g0bNuiNN97QtGnT9McffygwMFBffvllYdQGAAAAAECe5Bp6P/30U61YsULF\nixeXp6en4uLi9MknnxRGbQAAAAAA5EmuodfBwUEeHh623x999FEWsgIAAAAAPBCcctvBx8dHy5cv\nV2Zmpo4fP67PP/+ce3oBAAAAAA+EXIdsJ06cqAsXLsjV1VXjxo2Th4eHwsPDC6M2AAAAAADyJNeR\nXnd3d40cOVIjR44sjHoAAAAAAMg3uYbepUuXasGCBbp69aokyTAMmUwmHT9+vMCLAwAAAAAgL3IN\nvZGRkfriiy9UsWLFwqgHAAAAAIB8k+s9vd7e3nrkkUcKoxYAAAAAAPJVriO9ffr0UadOnVS3bl05\nOjra2qdPn16ghQEAAAAAkFe5ht5p06apU6dOqlSpUmHUAwAAAABAvsk19Lq4uGjIkCGFUQsAAAAA\nAPkq19DbpEkTRUREqEWLFnJ2dra1N2zYsEALAwAAAAAgr3INvceOHZMkHT161NZmMpkUGRlZcFUB\nAAAAAJAPcg29UVFRhVEHAAAAAAD5LtfQu3//fi1evFjp6ekyDENWq1Xnz59XQkJCYdQHAAAAAMDf\nlutzesPCwtS2bVtlZWWpd+/eqlKlitq2bVsYtQEAAAAAkCe5hl43Nzd1795djRo1UsmSJTV16lTt\n27evMGoDAAAAACBPcg29rq6u+uOPP1StWjV9//33MplMSk9PL4zaAAAAAADIk1xD7yuvvKLhw4er\ndevW+uKLL9SxY0c99dRThVEbAAAAAAB5kutCVh06dFD79u1lMpkUGxurX375RTVr1iyM2gAAAAAA\nyJM7ht7ExERlZWXpySef1LvvvqurV6/K0dFRY8aMkYeHR2HVCAAAAADA35Lj9OaEhAQNGjRIly5d\nkiRt27ZNjRo1UmZmphYtWlRoBQIAAAAA8HflGHo//PBDLV68WC1atJB0YxXnrl27KiwsjGf0AgAA\nAAAeCDmG3oyMDFWrVs32e/PmzSVJHh4ecnR0LPjKAAAAAADIoxxDr8VikWEYtt9HjhwpScrMzJTF\nYin4ygAAAAAAyKMcQ2+jRo20cOHCW9oXL16sRo0aFWhRAAAAAADkhxxXbx45cqRCQkK0efNm+fv7\ny2Qy6cCBA8rIyFBkZGRh1ggAAAAAwN+SY+gtU6aM1q5dq2+//VaHDh2SJAUFBalDhw5ycXEptAIB\nAAAAAPi77vicXhcXF7344ot68cUXC6seAAAAAADyTY739AIAAAAA8KDLMfSmp6cXZh0AAAAAAOS7\nHENvnz59JEmTJk0qrFoAAAAAAMhXOd7Tm56erlGjRmn79u3KyMi4Zfv06dNz7dxqtSosLEynTp2S\ng4ODJk+eLBcXF40ZM0YODg7y8fFReHi4JGn16tVatWqVnJ2dNWjQILVq1UoZGRkaPXq0kpOT5eHh\noYiICJUpUyYPpwsAAAAAeJjkGHqXLFmiPXv26MCBA3/7ubwJCQkymUxasWKF9u7dq9mzZ8swDI0Y\nMUL+/v4KDw9XfHy86tWrp6ioKMXFxen69esKCgpS06ZNtWLFCvn6+mrIkCHasGGDFixYoPHjx//t\nkwUAAAAAPFxyDL0VKlRQly5dVLNmTXl7e+vUqVPKysqSj4+PnJzuuOizTdu2bdWmTRtJ0vnz51Wq\nVCnt2rVL/v7+kqQWLVpo586dcnBwUIMGDeTk5CQPDw9VrVpVJ06c0IEDB/Taa6/Z9l2wYEFezxcA\nAAAA8BDJNb1aLBY9//zzKl26tKxWq37//XfNnz9fdevWvasDODg4aMyYMYqPj9e8efO0c+dO27bi\nxYsrNTVVaWlpKlGihK3d3d3d1u7h4ZFtXwAAAAAA7lauoXfatGmaM2eOLeQeOnRI77zzjtasWXPX\nB4mIiFBycrJ69OiR7f7gtLQ0lSxZUh4eHtkC7V/b09LSbG1/Dcb2qGxZD3l52fc5FoXLlz0kXSnq\nMh46vJ8BoHD997+5Nz7/Hlx8jgDIL7mG3vT09GyjuvXq1bvtwla38+WXX+rChQt6/fXX5erqKgcH\nBz311FPau3evGjVqpG3btqlx48aqXbu25syZI7PZrIyMDCUlJcnHx0f169fX1q1bVbt2bW3dutU2\nLdpepaSk6tKlq0Vdht1JSWGGQFHg/QwAhcfLq8Qt/+ampKSqbBHVkx/u988RAjnw4Mg19JYqVUrx\n8fFq27atJCk+Pl6lS5e+q86fe+45jR07Vi+//LIyMzMVFham6tWrKywsTBaLRd7e3mrfvr1MJpP6\n9Omj4OBg20JXLi4uCgoKUmhoqIKDg+Xi4qL33nsvb2cLAAAAAHio5Bp633nnHY0ePdq2anLlypX1\nz3/+8646L1asmObOnXtLe1RU1C1tAQEBCggIyNbm5uamefPm3dWxAAAAAAD4b7mG3qpVqyomJkbp\n6emyWq22haUAAAAAALjf3d2zh3RjRWUAAAAAAB4kDkVdAAAAAAAABSXX0LtixYrCqAMAAAAAgHyX\na+iNjo4ujDoAAAAAAMh3ud7TW758eYWEhKhu3bpydXW1tQ8ZMqRACwMAAAAAIK9yDb316tUrjDoA\nAAAAAMh3uYbeIUOGKD09XWfOnJGvr6+uX7/OSs4AAAAAgAdCrvf07t69Wy+99JLeeOMN/f7772rT\npo127NhRGLUBAAAAAJAnuYbe2bNn6/PPP1fJkiX16KOPavny5Zo5c2Zh1AYAAAAAQJ7kGnqtVqu8\nvLxsv9eoUaNACwIAAAAAIL/c1erNmzdvlslk0pUrVxQdHa2KFSsWRm0AAAAAAORJriO9U6ZM0Vdf\nfaX//Oc/atu2rY4fP64pU6YURm0AAAAAAORJriO9np6emj17tlJTU+Xk5CQ3N7fCqAsAAAAAgDzL\nNfT++OOPGjNmjM6fPy9Jql69umbMmKHHH3+8wIsDAAAAACAvcp3eHB4ermHDhmnPnj3as2eP+vXr\np3HjxhVGbQAAAAAA5EmuoTcjI0MtW7a0/d6uXTulpqYWaFEAAAAAAOSHHEPv+fPndf78edWsWVOf\nfPKJUlJS9Oeff2r58uXy9/cvzBoBAAAAAPhbcryn9+WXX5bJZJJhGNqzZ49Wrlxp22YymRQWFlYo\nBQIAAAAA8HflGHoTEhIKsw4AAAAAAPJdrqs3JyUlafXq1frzzz+ztU+fPr3AigIAAAAAID/kGnqH\nDBmiF154QU888URh1AMAAAAAQL7JNfSWLFlSQ4YMKYxaAAAAAADIV7mG3q5du2rOnDlq3LixnJz+\nb/eGDRsWaGEAAAAAAORVrqF37969OnLkiL777jtbm8lkUmRkZIEWBgAAAABAXuUaen/44Qd9++23\nhVELAAAAAAD5yiG3HXx9fXXixInCqAUAAAAAgHyV60jvr7/+qq5du8rLy0vOzs4yDEMmk0mbNm0q\njPoAAAAAAPjbcg298+fPL4w6AAAAAADId7mG3n379t22vVKlSvleDAAAAAAA+SnX0Ltnzx7bzxaL\nRQcOHJC/v7+6dOlSoIUBAAAAAJBXuYbe6dOnZ/v9jz/+0PDhwwusIAAAAAAA8kuuqzf/N3d3d507\nd64gagEAAAAAIF/lOtLbp08fmUwmSZJhGDp79qxatmxZ4IUBAAAAAJBXuYbeoUOH2n42mUwqU6aM\natSoUaBFAQAAAACQH3IMvefPn5ckPfbYY7fdVrFixYKrCgAAAACAfJBj6H355ZdlMplkGIatzWQy\n6eLFi8rMzNTx48cLpUAAAAAAAP6uHENvQkJCtt/T0tI0Y8YM7dixQ++8806BFwYAAAAAQF7d1erN\nu3fvVufOnSVJ69atU9OmTQu0KAAAAAAA8sMdF7JKT09XRESEbXSXsAsAAAAAeJDkONK7e/duderU\nSZL01VdfEXgBAAAAAA+cHEd6X331VTk5OWnHjh3auXOnrd0wDJlMJm3atKlQCgQAAAAA4O/KMfQS\nagEAAAAAD7ocQ2+lSpUKsw4AAAAAAPLdXa3eDAAAAADAg4jQCwAAAACwW4ReAAAAAIDdIvQCAAAA\nAOxWjgtZ5VVmZqbGjRunc+fOyWKxaNCgQapRo4bGjBkjBwcH+fj4KDw8XJK0evVqrVq1Ss7Ozho0\naJBatWqljIwMjR49WsnJyfLw8FBERITKlClTUOUCAAAAAOxQgYXedevWqUyZMpo5c6auXLmil156\nSTVr1tSIESPk7++v8PBwxcfHq169eoqKilJcXJyuX7+uoKAgNW3aVCtWrJCvr6+GDBmiDRs2aMGC\nBRo/fnxBlQsAAAAAsEMFNr25w/9v7+5jqz7rPo5/CtgbRoG5SLLMLWBwqMsIQ4bCjI1jw7BhFAo1\nUulEidE/FtiYjijbfBgPc4hkZpDMoCZDFDEubBrNdG4rMyMR0UFQUZONG2VkgZTA2jla6bn/WDw3\njHHf7KE97bXX66+eq79fz/eQk3N493fl9LrrsmTJkiTJyZMnM3jw4Pz5z3/OlVdemSRpbGzMk08+\nmT179mTy5MkZMmRIGhoaMnbs2Ozbty+7du1KY2Nj9dgdO3b01qgAAAAUqteid9iwYTnvvPPS0dGR\nJUuW5Oabb06lUql+f/jw4eno6EhnZ2dGjBhRXf/POZ2dnWloaDjtWAAAAHg1em17c5IcOnQoN954\nYxYsWJBZs2ZlzZo11e91dnZm5MiRaWhoOC1oT13v7Oysrp0axqW64IKGjB5d/uPsa0ePNiQ5Xusx\n3nQ8nwH61stfc196/xu4vI8Ab5Rei94jR45k0aJFueOOOzJ16tQkyXve857s3LkzU6ZMyfbt2zN1\n6tRMmDAh69atS1dXV06cOJGnn346l156aSZNmpS2trZMmDAhbW1t1W3RJWtv78jhw8/XeozitLfb\nJVALns8AfWf06BFnvOa2t3fkghrN80bo7+8jghwGjl6L3vvuuy/Hjx/Phg0bsn79+tTV1WX58uVZ\nsWJFuru7M27cuMycOTN1dXVpbW1NS0tLKpVKli5dmvr6+syfPz/Lli1LS0tL6uvrs3bt2t4aFQAA\ngEL1WvQuX778FT9tedOmTWesNTc3p7m5+bS1oUOH5p577umt8QAAAHgT6LUPsgIAAIBaE70AAAAU\nS/QCAABQLNELAABAsUQvAAAAxRK9AAAAFEv0AgAAUCzRCwAAQLFELwAAAMUSvQAAABRL9AIAAFAs\n0QsAAECxRC8AAADFEr0AAAAUS/QCAABQLNELAABAsUQvAAAAxRK9AAAAFEv0AgAAUCzRCwAAQLFE\nLwAAAMUSvQAAABRL9AIAAFAs0QsAAECxRC8AAADFEr0AAAAUS/QCAABQLNELAABAsUQvAAAAxRK9\nAAAAFEv0AgAAUCzRCwAAQLFELwAAAMUSvQAAABRL9AIAAFAs0QsAAECxRC8AAADFEr0AAAAUS/QC\nAABQLNELAABAsUQvAAAAxRK9AAAAFEv0AgAAUCzRCwAAQLFELwAAAMUSvQAAABRL9AIAAFAs0QsA\nAECxej16d+/endbW1iTJgQMH0tLSkgULFuRrX/ta9ZitW7dm7ty5+cQnPpHHH388SXLixIksXrw4\nn/zkJ/O5z30uR48e7e1RAQAAKEyvRu/GjRtz2223pbu7O0myevXqLF26ND/4wQ/S09OTRx55JEeO\nHMmmTZvy4x//OBs3bszatWvT3d2dH/3oRxk/fnw2b96cj33sY9mwYUNvjgoAAECBejV6x4wZk/Xr\n1zA+6oQAAAqESURBVFdv/+lPf8qVV16ZJGlsbMyTTz6ZPXv2ZPLkyRkyZEgaGhoyduzY7Nu3L7t2\n7UpjY2P12B07dvTmqAAAABSoV6N3xowZGTx4cPV2pVKpfj18+PB0dHSks7MzI0aMqK6fd9551fWG\nhobTjgUAAIBXY0hf3tmgQf/b2J2dnRk5cmQaGhpOC9pT1zs7O6trp4ZxqS64oCGjR5f/OPva0aMN\nSY7Xeow3Hc9ngL718tfcl97/Bi7vI8AbpU+j97LLLsvOnTszZcqUbN++PVOnTs2ECROybt26dHV1\n5cSJE3n66adz6aWXZtKkSWlra8uECRPS1tZW3RZdsvb2jhw+/HytxyhOe7tdArXg+QzQd0aPHnHG\na257e0cuqNE8b4T+/j4iyGHg6NPoXbZsWW6//fZ0d3dn3LhxmTlzZurq6tLa2pqWlpZUKpUsXbo0\n9fX1mT9/fpYtW5aWlpbU19dn7dq1fTkqAAAABej16H3729+eLVu2JEnGjh2bTZs2nXFMc3Nzmpub\nT1sbOnRo7rnnnt4eDwAAgIL1+t/pBQAAgFoRvQAAABRL9AIAAFAs0QsAAECxRC8AAADFEr0AAAAU\nS/QCAABQLNELAABAsUQvAAAAxRK9AAAAFEv0AgAAUCzRCwAAQLFELwAAAMUSvQAAABRL9AIAAFAs\n0QsAAECxRC8AAADFEr0AAAAUS/QCAABQLNELAABAsUQvAAAAxRK9AAAAFEv0AgAAUCzRCwAAQLFE\nLwAAAMUSvQAAABRL9AIAAFAs0QsAAECxRC8AAADFEr0AAAAUS/QCAABQLNELAABAsUQvAAAAxRK9\nAAAAFEv0AgAAUCzRCwAAQLFELwAAAMUSvQAAABRL9AIAAFAs0QsAAECxRC8AAADFEr0AAAAUS/QC\nAABQLNELAABAsUQvAAAAxRK9AAAAFEv0AgAAUCzRCwAAQLGG1HqA/0ulUslXv/rV/PWvf019fX1W\nrlyZSy65pNZjAQAAMED06yu9jzzySLq6urJly5bccsstWb16da1HAgAAYADp19G7a9eufPCDH0yS\nTJw4MXv37q3xRAAAAAwk/Xp7c0dHR0aMGFG9PWTIkPT09GTQoLO3evuR/+6L0d5wL839jlqPUayB\n+Lw4dvTZPPNftZ7itXnmcDKq1kMAkGcO13qC18b7CPBGqqtUKpVaD3E2d911V6644orMnDkzSfKh\nD30ojz/+eG2HAgAAYMDo19ub3/ve96atrS1J8tRTT2X8+PE1nggAAICBpF9f6T3105uTZPXq1XnH\nO2wBBgAA4Nz06+gFAACA16Nfb28GAACA10P0AgAAUCzRCwAAQLH69d/pLc3u3bvzzW9+M5s2bar1\nKPQD//73v/PlL385Bw8eTHd3dz7/+c9n+vTptR4LgAGkqakpDQ0NSZKLL744q1atqvFEAP2P6O0j\nGzduzIMPPpjhw4fXehT6iYceeihvfetbc/fdd+fYsWOZPXu26AXgnHV1dSVJ7r///hpPAtC/2d7c\nR8aMGZP169fXegz6keuuuy5LlixJkvT09GTIEL+DAuDc7du3Ly+88EIWLVqUhQsXZvfu3bUeCaBf\n8r/sPjJjxowcPHiw1mPQjwwbNixJ0tHRkSVLluTmm2+u8UQADCRDhw7NokWL0tzcnP379+ezn/1s\nHn744Qwa5JoGwKm8KkINHTp0KJ/61KcyZ86cXH/99bUeB4ABZOzYsfnoRz9a/fr888/P4cOHazwV\nQP8jevtYpVKp9Qj0E0eOHMmiRYvyxS9+MXPmzKn1OAAMMD/96U9z1113JUmee+65dHZ2ZvTo0TWe\nCqD/Eb19rK6urtYj0E/cd999OX78eDZs2JDW1tbccMMN1Q8lAYD/z7x58/L888+npaUlt9xyS1at\nWmVrM8ArqKu49AgAAECh/DoQAACAYoleAAAAiiV6AQAAKJboBQAAoFiiFwAAgGKJXgAAAIolegH6\ngYMHD2b69OlnrL/73e9Okvzzn//M8uXLkyR79+7N7bffniRpbW3Nzp07T1vbunVrfvGLX5zT/d56\n6635zne+c8b6jBkz8re//e2s533pS1/Ktm3bzuk+AABqSfQC9BN1dXVnXTt48GD+8Y9/JEkuv/zy\n3Hnnnacdd+raH//4x3R1dZ3TfTY1NeVnP/vZaWu///3vM2rUqIwfP/5VPwYAgP5G9AIMACtXrsze\nvXtz55135ne/+11aW1tP+/5/1nbs2JFHH3003/72t/Ob3/wmU6dOTWdnZ5KXwvkjH/nIaedNnTo1\n//rXv/L3v/+9uvbQQw9l3rx51Z/b0tKSpqamXHvttXn44YdPO//lV6jvvffe3HvvvUmS7du3p7m5\nOU1NTVm8eHGOHTuWJPnGN76R2bNnp6mpqXosAEBvEb0AA8Btt92Wyy+/vLqF+WxXhadNm5bp06dn\n8eLFueaaa3L11VdXQ3Xbtm2ZPXv2GefNmTOnerW3q6srjz32WDWON2/enJUrV+aBBx7IihUrsn79\n+le835drb2/Pt771rXzve9/LAw88kA984ANZs2ZNnn322TzxxBPZtm1btmzZkgMHDpzzVWkAgNdi\nSK0HACAZNOiVfwf5SkH5avznampTU1N+/vOf5/777z/jmDlz5mThwoVZunRpHn300UybNi0NDQ1J\nkjVr1uSxxx7LL3/5y+zevTsvvPDCOd3vnj17cujQodxwww2pVCrp6enJ+eefnwsvvDBDhw7N/Pnz\nc/XVV+emm25KfX3963qMAAD/F9EL0A+MHDkyHR0dp60dOXIkI0eOfF0/d8qUKXnuuefy61//Opdc\ncklGjx59xjEXXXRRLr744vzhD3/Igw8+mIULF1a/N3/+/EybNi3ve9/7Mm3atHzhC1847dy6urpU\nKpXq7e7u7rzlLW/JyZMnM3ny5GzYsCHJS1eQOzs7M2jQoGzdujU7d+5MW1tbPv7xj2fz5s0ZM2bM\n63qcAABnY3szQD8wfPjwjBkzJr/61a+qa1u3bs1VV12VJBk8eHBOnjx5Tj9r8ODB6e7urt6ePXt2\nVqxYkaamprOeM3fu3PzkJz/JgQMH8v73vz9JcuzYsRw4cCCLFy9OY2Njfvvb36anp+e080aOHJnj\nx4/n6NGj6erqyhNPPJEkmThxYp566qns378/SbJ+/frcfffd+ctf/pIFCxZkypQpufXWW/POd74z\nzzzzzDk9LgCA18KVXoB+Ys2aNfnKV76SDRs2pLu7O+9617tyxx13JEnGjRuX48ePZ9myZZk7d271\nnFfa/nzVVVdl3bp1GTVqVD784Q/n+uuvz/e///1cc801Z73va6+9Nl//+tfz6U9/uro2atSozJs3\nL7NmzcqIESNyxRVX5MUXX8yLL75YPaahoSGf+cxnMnfu3Fx00UWZOHFikuRtb3tbVq1alZtuuik9\nPT258MILs2bNmowaNSqTJk3KrFmzMmzYsFx22WVpbGx83f92AABnU1c5dV8aAEWpVCr54Q9/mP37\n91f/zi8AwJuJK70ABbvxxhtz6NChfPe73631KAAANeFKLwAAAMXyQVYAAAAUS/QCAABQLNELAABA\nsUQvAAAAxRK9AAAAFEv0AgAAUKz/AQPUm+sOE7XUAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x106183d30>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Create agents and play the game for 10000 iteratations\n", "agent1 = c.Chaos()\n", "agent2 = d.Defect()\n", "game = PrisonersDilemma(agent1, agent2)\n", "game.play(10000)\n", "\n", "# Grab Data\n", "agent1_util_vals = Counter(game.data['A'])\n", "agent2_util_vals = Counter(game.data['B'])\n", "\n", "a1_total_score = sum(game.data['A'])\n", "a2_total_score = sum(game.data['B'])\n", "\n", "\n", "# Plot the results\n", "x1, y1, x2, y2 = [], [], [], []\n", "\n", "for i, j in zip(agent1_util_vals, agent2_util_vals):\n", " x1.append(i)\n", " y1.append(agent1_util_vals[i])\n", " x2.append(j)\n", " y2.append(agent2_util_vals[j])\n", "\n", "fig, ax = plt.subplots(figsize=(12,6))\n", "width = 0.35\n", "a1 = ax.bar(x1, y1, width, color='#8A9CEF')\n", "a2 = ax.bar(np.asarray(x2)+width, y2, width, color='orange')\n", "\n", "_ = ax.set_title('Chaos Agent Vs Defect Agent')\n", "_ = ax.set_ylabel('Number of Games')\n", "_ = ax.set_xlabel('Utility Values')\n", "ax.set_xticks(np.add([1,2,5],width-.05))\n", "_ = ax.set_xticklabels(('1', '2', '5'))\n", "_ = ax.legend((a1[0], a2[0]), ('Chaos Agent\\nTotal Utility Score: {}'.format(str(a1_total_score)),\n", " 'Defect Agent\\nTotal Utility Score: {}'.format(str(a2_total_score))), loc=1, bbox_to_anchor=(1.35, 1))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this scenario defecting is the [domiant strategy](https://en.wikipedia.org/wiki/Strategic_dominance). Where the agent is better off defecting no matter what other agents do." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Grim VS Pavlov" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Playing Game: 100%|██████████| 10000/10000 [00:00<00:00, 15135.32it/s]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8MAAAGJCAYAAACuKeEVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8TXf+x/H3TSKJ5MqUCLVNEVI1FJESS4NWh2oFtWWR\nKLpQzFQsofZ9l5rai2mzFKGJMrRaW6xFolpKxdBaW4Raksh67+8P4/6klqBZxH09H495yP2e7/me\nzzl5dB553+8532Mwm81mAQAAAABgRWwKuwAAAAAAAAoaYRgAAAAAYHUIwwAAAAAAq0MYBgAAAABY\nHcIwAAAAAMDqEIYBAAAAAFaHMAygyMnOztaiRYvk6+srX19ftW3bVuPHj9eVK1csfYKCgvT1118X\neG2HDh3SP//5zzwft3///mrUqJHS09PzfOzbzZ07V5s3b76jPTg4WIsWLbqjfenSpXrvvfceePyg\noCC9/PLL6tChgzp06KC2bdtq2LBhj3xesbGx6t279yPtey8RERGqUaOGfvjhhzwd94/i4uL0r3/9\nK1+PAQAA7o0wDKDIGTRokI4cOaLPPvtMa9as0erVq1WuXDl17dpVKSkphVpbrVq1NHv27Dwd88KF\nC4qPj1edOnUUGxubp2P/0bfffqusrKw72gMDAxUTE3NH+8qVKxUUFPRQxwgNDVVsbKxiY2O1du1a\npaam5vk1+zNWrFghX19fffLJJ/l6nIMHD+ratWv5egwAAHBvdoVdAAA8jIMHDyo+Pl6bNm2Svb29\nJMnW1lZvvfWW9u/fr+XLl6tXr173HWPLli2aP3++srKy5OjoqCFDhqhu3bq6dOmSRo0apUuXLikp\nKUnly5fXhx9+qFKlSumll15SnTp1lJiYqAEDBmjSpEl64403tHv3bv3666969dVXNXjwYO3du1fj\nx4/X2rVrNWzYMDk7OysxMVG//fabqlatqrCwMBUvXlxxcXGaMWOG7OzsVKNGDe3atUvLli1T+fLl\n76g3OjpajRs3VqtWrfThhx/Kz8/Psu1+46xatUqfffaZJOmpp57SyJEjVaVKlXvWFRMTo0OHDmna\ntGmysbFRy5YtLcdp2bKlJk2apISEBNWvX1+StHfvXklSo0aNlJqaqmHDhunUqVMyGAyqVauWxo0b\n90C/04YNG2rbtm2SpFWrVik6OlpZWVm6cuWK3nnnHfn5+cnPz089e/bU3//+d0nSzJkzJUlVq1a1\njHP+/HmNHj1aZ8+elSR16NBBPXv2VFhYmJKTkzVy5EhJ0vbt2/XRRx8pOjr6jlr27Nmjq1evavDg\nwWrZsqXOnz+vsmXLSpJOnTqlDz74QFevXpWbm5vMZrPatWun9u3ba//+/Zo5c6Zu3LghGxsb9e/f\nX82aNVNsbKy++eYb2djY6OTJkypWrJimTZum1NRULV++XCaTSUajUe+///4DXSsAAJB3mBkGUKQk\nJCSoVq1aliB8uyZNmmj//v333f/kyZOaNWuWPv74Y8XExGjcuHHq16+f0tLStG7dOtWrV0/Lly/X\nxo0b5ejoqDVr1lj29fDw0Lp16ywhMTU1VVFRUVq2bJkiIyMtIex2hw8f1tKlS7V+/XpduHBBX331\nla5cuaIhQ4Zo5syZio2NVcOGDXXhwoW71pudna3o6Gj5+vqqefPmunTpkrZv3y5J9x1n3759Wr16\ntZYtW6aYmBj16tVL/fr1u29dgYGBqlWrloYMGZIjCEs3v3Do3LmzVq1aZWmLjo5WYGCgJOmbb75R\namqqYmNjLX1Onz5939+FJF29elVffvmlvL29lZqaqlWrVll+N2FhYZo2bZokqUuXLpaZaZPJpDVr\n1qhz5845xho0aJAaNWqktWvXatmyZfriiy+0fv16derUSevXr7fMeMfExKhr1653rWf58uXy9fWV\nm5ubGjVqpMjISMu2IUOGqG3btlq7dq2GDx+uAwcOSJKuXbumDz74QNOnT1dMTIzmzZun0aNH67ff\nfpMkxcfHa9SoUVq7dq08PT21ZMkSPf/88/Lz81ObNm0IwgAAFBJmhgE8UbKzs++7fefOnUpKStKb\nb74ps9ksSbKzs9PJkycVHBys+Ph4ffLJJ/rll1/03//+V3Xq1LHs6+XllWOsl19+WZJUtmxZubq6\n6urVq3cc78UXX5Sd3c3/q/Xw8NDVq1cVHx+v6tWry8PDQ5LUvn17TZgw4a71bty4USaTSS+++KJs\nbGzUpk0bffLJJ3rxxRfvOs7EiRMlSVu3btWpU6fk5+dnOc9r165Zbsu9W1256dq1q15//XWlpqYq\nIyNDO3fu1JgxYyRJ9evX14cffqigoCA1adJE3bt3V6VKle46zrRp0zR//nyZTCYZDAa1aNFCwcHB\nsrGx0YIFC7RlyxadPHlSR44c0Y0bNyRJr776qqZNm6ZLly7p0KFDeuaZZ/TXv/5VCQkJkqQbN25o\n//79Wrp0qSTJaDSqQ4cO2r59u9q0aaPnnntOmzdvlre3t7799ltNmjTpjrqSkpL0zTffWG5F9/X1\n1dixY9W3b19lZGTohx9+UFRUlCTJ3d1d3t7ekqTvvvtOFy9eVN++fS3X2sbGRkePHpUk/e1vf1OZ\nMmUkSTVr1tQ333yT67UGAAD5jzAMoEjx9PTU4sWLlZ6eLgcHB2VmZiolJUVPPfWUvv32W3l6et53\nf5PJpEaNGmnWrFmWtt9++01lypTR9OnTdejQIXXs2FHe3t7KysqyhBtJcnJyyjGWo6Njjs+3971b\nH4PBILPZLFtbW5lMphz9bGzufqPO8uXLlZ6erldeeUWSlJmZqYsXL+r48eN3HcdgMFjOs127dho4\ncKBl2/nz5+Xi4nLPunLj5uamxo0ba926dUpNTVWrVq1kNBolSRUrVtTXX3+tvXv36ttvv1X37t01\natQoy23NtxsyZMhd28+fP6+uXbuqa9eu8vLyUqtWrRQXFydJKl68uFq3bq21a9fqu+++U5cuXXLs\n+8frIN38fWRmZkqSOnXqpNjYWF28eFGvvPKKihcvfkf/6Oho2djYWBbkMpvNSklJUWxsrNq2bXvH\ndbK1tbUcu1q1alqxYoVl24ULF+Tq6qo1a9bIwcHB0v6g1xoAAOQ/bpMGUKQ8//zzatiwoYYOHapr\n167p1KlTCgwM1D/+8Q8lJiYqICDA0vduocPb21s7d+7UiRMnJN185rZdu3aWmc7u3bvL19dXJUuW\n1K5du+4asv4sT09PnTx5UomJiZKkDRs26Pr165Yge8vPP/+sffv2KTY2Vps2bdKmTZu0bds21a9f\nX59++ul9x2nSpInWrVunixcvSpKioqL05ptv5lqbnZ3dXRfQusXf319r1qzRF198YblFWpKWLVum\noUOHqkmTJho4cKBefPFFS10P6uDBgypVqpT69OmjJk2aaMuWLZL+//fYuXNnxcTE6MCBA3eEaWdn\nZ9WpU8cyc3v9+nWtXr1aTZo0kXTzmecff/xRq1atuuP2aulmoF25cqXGjRtnudabN2/WO++8o/Dw\ncBmNRnl6eurzzz+XdPMW8N27d0uS6tSpo19++UXx8fGSpCNHjqhVq1b3vPX9FltbW0tYBwAABY+Z\nYQBFzvTp07VkyRJ169ZNZrNZWVlZsrOzk7OzszZu3Kj27dtLurlq8bBhw2Q2m2UwGBQYGKiBAwdq\n3LhxCgkJkXQzkMyfP1+Ojo7q27evpk6dqrlz58rOzk7169fXyZMnJemOoJrb5/v5y1/+ohkzZmjI\nkCGysbFRrVq1ZGtre8dM8/Lly/XKK6+oYsWKOdr79u2rPn36KCQk5J7jNG3aVG+99ZZ69uwpGxsb\nGY1GzZkzJ9faWrRooalTpyojI8NyHW/XoEEDXblyRSVLllT16tUt7e3bt9e+ffvUpk0bFS9eXBUq\nVFD37t3v2P9+16lp06aKiYlRq1at5OzsrNq1a6tUqVI6efKkKleurL/97W+ys7NTq1at7vrM+PTp\n0zVu3Dh9/vnnysrKkq+vrzp06CBJsre3V5s2bfTtt9+qdu3ad+y7ZcsWmc1mvf766zna33zzTUVE\nRCguLk5TpkzR8OHDtWzZMpUtW1aVKlVS8eLFVapUKX300UeaNm2a0tPTZTabNX36dJUrV+7eF1o3\nFx7r37+/ihUrphEjRty3LwAAyHsGM/drAXhCJCcn6+DBg2rUqFFhl3JfycnJmj9/vv7xj3/IwcFB\nhw8f1rvvvmtZGKugx8GDWbBggVq1aqUqVaooOTlZvr6++vjjj+Xu7l7YpQEAgEeQ7zPD33//vWbM\nmKGIiAidOnVKQ4cOlY2NjapXr67Ro0dLuvmc1ooVK1SsWDH17t1bzZs3V3p6ugYPHqxLly7JaDRq\nypQpKlmypA4cOKBJkybJzs5OjRs3zrE6KgDrZjQaH/sgLN2ss1ixYurYsaPs7OxUrFixR3rPbl6N\ngwdTuXJlvf/++7KxsVF2drbeffddgjAAAEVYvs4ML168WF988YWcnZ21fPly9enTR7169ZKXl5dG\njx6tF198UXXr1lWPHj0UGxurtLQ0+fv7KyYmRlFRUUpOTla/fv20fv16fffddxo+fLjat2+vOXPm\nqGLFinrnnXcUEhKiGjVq5NcpAAAAAACeQPm6gNYzzzyjuXPnWj7/+OOPlleT+Pj4aNeuXfrhhx9U\nv3592dnZyWg0qnLlyvrpp5+UkJAgHx8fS99vv/1WycnJyszMtDw/17RpU+3atSs/TwEAAAAA8ATK\n1zD8yiuvWF49IeVc2dXZ2VnJyclKSUlRiRIlLO1OTk6W9luv7HB2dtb169dztN3eDgAAAADAwyjQ\n1aRvf49mSkqKXFxcZDQalZycfNf2lJQUS1uJEiUsAfqPfXNzayVZAABgPRITEzVt/kGVKv1MYZfy\nUH4+tltvPf0PVXEr7Eoe3s8XpSo9j8rDw6OwSwGAXBVoGK5Zs6b27dunF154Qdu2bZO3t7dq166t\nsLAwZWRkKD09XSdOnFD16tVVr149xcXFqXbt2oqLi5OXl5eMRqPs7e11+vRpVaxYUTt27HigBbQM\nBoMuXmQGGQAAa3L5crJKlX5Gbk9XK+xSHsrlpJOq4iZ53P/tXI+ty5eTrfrvLje3Erl3AvBYKNAw\nHBoaqpEjRyozM1Pu7u5q3bq1DAaDgoKCFBAQILPZrJCQENnb28vf31+hoaEKCAiQvb29Zs6cKUka\nO3asBg0aJJPJpCZNmuj5558vyFMAAAAAADwBrOY9w9b8DSUAANbo+PFjitlkKnIzw0cPbdKQip2K\n5Mxw4q/S5SYJcnevXtilFBpmhoGiI18X0AIAAAAA4HFEGAYAAAAAWB3CMAAAAADA6hCGAQAAAABW\nhzAMAAAAALA6hGEAAAAAuM2hQ4fUq1cvBQYGyt/fXx9++KGysrIkScOGDdOOHTvy9fhJSUkaN27c\nnx4nIyNDTZs21dKlS/Ogqv939epV/ec//8nTMQsDYRgAAAAA/uf8+fMaMmSIRo8eraioKC1btkzF\nihXTpEmTCqyG0qVLa9SoUX96nA0bNui1115TbGxsHlT1/3766Sdt3rw5T8csDHaFXQAAAAAAPC6+\n+OILdenSRX/9618tbX379lXLli2VkZFxz/1mzZqlhIQEZWdnq0ePHmrVqpX27dunOXPmyGw2KzU1\nVTNnzpSdnZ169+6tkiVLysfHR3FxcXruued07NgxpaSkaPbs2TKZTAoJCdGKFSvk6+urBg0a6OjR\nozIYDJo3b56MRqPGjh2rH3/8Ua6urjpz5owWLlyo8uXL56hp5cqVGj58uC5duqS4uDg1a9ZMku66\nr42NjUaOHKn09HQ5Ojpq/PjxysrK0sCBA1WuXDmdPHlSderU0ejRo7Vw4UIdPXpUK1euVOfOnfPn\nF1EAmBkGAAAAgP85c+aMKlaseEd76dKldfHixbvus23bNp09e1ZRUVEKDw/X/PnzlZycrGPHjmnG\njBkKDw/XK6+8oq+++kqSdOnSJf373//WW2+9JUmqU6eO/v3vf6tRo0aW248NBoMkKTk5WW3btlVE\nRITKlCmjbdu2adOmTbp69aqio6M1ceJEnT9//o6aTp48qbS0ND377LPq2LGjIiMjJeme+06dOlXB\nwcEKDw9Xjx49NH36dEnSL7/8okmTJmnVqlWKi4vTpUuX1Lt3b3l7exfpICwxMwwAAAAAFuXLl9fp\n06dztJlMJp07d06urq533ScxMVGHDh1ScHCwzGazsrOzdebMGZUtW1bjx4+Xs7Ozzp8/L09PT0lS\nxYoVZWtra9n/ueeekySVK1dOSUlJd4x/+/aMjAydOXNGdevWlSSVKlVKVapUuWOflStX6saNG3r7\n7bdlMpl04MABnT59WsePH8+xb9WqVS3nsHDhQn388ccym80qVqyYJOmZZ55R8eLFJUllypRRenr6\nA17Jxx9hGAAAAMBjKTs7W8ePH8/TMd3d3XME0T9q3769evXqpZdffllPPfWUBgwYoLJly6p58+Zy\ndHSUJJnN5hz7VK1aVQ0bNtS4ceNkNps1b948VapUST179tTGjRvl5OSkoUOHWvrfmvW91+fcPPvs\ns/riiy8UHBysq1ev6pdffsmxPSsrS+vXr9cXX3yhEiVKSJIWLlyoqKgoNWrUSKtXr7bs+/PPP1uu\nS8+ePVW3bl2dOHFC8fHxdxz31nnb2NgoOzv7oWp+HBGGAQAAADyWjh8/rmnzD6pU6WfyZLzLSSc1\npI/k4eFxzz5PP/20pk+frrFjx+rGjRtKS0uTra2tXF1ddfXqVUnSxIkTZTQaZTabVbVqVU2fPl17\n9+5VYGCgbty4oZYtW8rZ2Vnt2rVTQECAnJycVLp0aV24cEFSzvCbWxC+W99mzZopLi5O/v7+Kl26\ntIoXLy47u/+Pdlu2bFGtWrUsQViSOnTooPbt2+v999+/676DBw/WmDFjlJGRofT0dA0fPvyex69U\nqZKOHTum8PBwBQcH3/+iP8YM5j9+rfGEunjxemGXAAAACtDx48cUs8kkt6erFXYpD+XooU0aUrGT\nPMoVdiUPL/FX6XKTBLm7Vy/sUgqNm1uJ3DvhgSUmJmrxymt59t/xxd/+q7c6u9w3DN+vlkqVKllu\nGS5MJ06c0E8//aQ2bdroypUrev3117VlyxbLrc35te+ThplhAAAAAMjFowTo/FKuXDnNmDFDn376\nqUwmkwYPHvzAYfbP7PukIQwDAAAAQBFSvHhxzZs3r8D3fdLwaiUAAAAAgNUhDAMAAADA/0ydOlVB\nQUF69dVX1aJFCwUHB+v999+/Z/+zZ89q69at99x+6tQpBQQE5GjLzs5Ws2bNcrRt3bpVI0aMkCRt\n2LBBly5d0vnz5zVhwgRJNxfNMplMWrBggQ4fPqz09HStWrXqgc7p8uXL6t+/v3r16iU/Pz+NGjVK\nGRkZD7RvXjGZTOrZs6el5rS0NPXr10+BgYHq3bu3rly5Iknav3+/unTpIn9/f82fP9+y/7/+9S91\n7txZAQEBOnTokOW8evTooW7dumngwIEPfU7cJg0AAADgsXU56WQej1X7vn1CQ0MlSbGxsfr5558V\nEhJy3/67du3S2bNn1bx583v2uduK0fdr+/TTT1WzZk1VqlTJEpBvbevdu7ck6eTJk4qJiVGnTp3u\nW58kLVq0SM2aNbP0nTBhglauXKnAwMBc980rs2bNUkpKiuVzZGSkatWqpd69e2vNmjVauHChQkND\nNWbMGC1cuFBPP/203nrrLSUmJiotLU3ff/+9Vq5cqTNnzigkJETR0dH66KOP1LFjR73++uuaP3++\noqOj1a1btweuiTAMAAAA4LHk7u6uIX3ycsTacnd3f+S9J02apAMHDshgMMjX11ddunTRkiVLlJGR\noXr16snBwUHz58+XyWRSWlqaZs2a9dDH2Lx5sxITEzVo0CBNmTJFw4cP12effWbZPnjwYL3xxhta\ns2aNjh07poULF2rTpk2aNm2aKleurC1btmjXrl2WVyNJkqurq7788ktVqFBBnp6eGjZsmOVdy3Pm\nzNGWLVtkMpkUGBioTp066eOPP9aGDRtkZ2enhg0basCAAfrwww918OBBpaamasqUKdq6dau+/PJL\nSVK7du3k7++vXbt26eDBg3r33XdznNP69evl6Oioxo0bW9oSEhLUr18/SZKPj4+WLl2qq1evymw2\nq1y5m8vpN23aVLt27bL8LEkVK1ZUWlqarl27poSEBP3zn/+0jDFv3jzCMAAAAICiz9bW9rFZxXnj\nxo26ePGioqOjlZmZKT8/P3l7e6tXr146d+6cmjVrpqioKIWFhalUqVKaO3euNmzYoL///e8PfAyD\nwaCXXnpJHh4emjp1qsxm8z3fQ9ynTx+dOnVK7777rkqVKqXY2FgNGDBAMTEx6t+/f46+b731lkqW\nLKnFixfr4MGDeuGFFzRq1ChduHBBe/bs0eeff67MzEzNmjVLR44c0ebNm7Vy5UoZDAb17dtX27dv\nl3RzRe3Q0FAdPXpUGzdu1PLly2UymdS9e3c1bdpUjRs3zhF4Jeno0aP66quvNHv2bM2ePdvSnpyc\nbHkPsrOzs65fv66UlJQc70Z2dna2vJu5bNmyOdr/2P9W28MgDAMAAABALk6cOCEvLy9JUrFixVSn\nTh2dOHEiR58yZcpo7NixcnJy0m+//aaGDRvedSxbW1tlZ2fnaEtNTZWDg8Mj1fbaa6+pc+fOCgoK\n0qVLl+74AmH37t3q2LGjOnXqpMzMTC1cuFBTpkxRixYt9Pzzz1vOKTQ0VOvWrVPdunUtIdzT01P/\n/e9/JUlVq1aVJB07dkxnzpxRcHCwzGazrl27ppMnT6pSpUp31LZ69WqdP39ewcHBOnv2rBwcHFSh\nQgWVKFHCctt0SkqKXFxcZDQalZycbNn3VrvJZMpxi/Xt/W/9fOvfh8ECWgAAAACQi6pVqyohIUGS\nlJmZqQMHDuiZZ56RjY2NTCaTJGnkyJGaOnWqJk+eLFdXV5nNZkmy/Hu78uXLKz4+3vJ5+/btql37\n5vPMt495yx/HMBgMlkDt5OQkT09PTZ48We3bt7/jWJ988onWrVsn6WbodXd3l4ODg6pVq6Yff/xR\nkpSRkaEePXqoUqVK+v7772U2m2U2mxUfH68qVapYjnnrWjz77LMKDw9XRESE2rdvr+rVq9/1uoWG\nhmrFihWKiIiQr6+vevXqpUaNGqlevXqKi4uTJMXFxal+/fpycXGRwWDQ2bNnZTabtWPHDnl5ecnT\n09MyO3369GnZ2dmpRIkS8vT0tIyxbds2y5cVD4qZYQAAAADIRcuWLbVv3z75+fkpMzNTvr6+8vDw\nUEZGhhYvXqyaNWuqbdu28vf3V/HixeXq6mq5xfdutzpPmDBBY8eOVVZWlkwmkzw9PdW2bVtJN2dj\nBw0apPHjx1v63xrj1r9ubm5KS0tTWFiYBgwYoM6dO6t79+4aN27cXY81ZswYLV26VI6OjnJ1ddWY\nMWPk6uoqb29v+fn5SZICAwP1/PPP6+WXX1bXrl1lNpvVoEEDNW/eXAcOHLCMV7NmTXl6esrf31/p\n6eny9PRU2bJl7/nM8N0EBgZq6NCh8vf3l6Ojo2bOnClJGjt2rEJCQmQymeTj46OaNWtKkurUqaMu\nXbrIbDZr1KhRkqS+ffsqNDRUy5Ytk6urq2bMmJHrcW9nMN/ta4on0MWLD3f/OAAAKNqOHz+mmE0m\nuT1drbBLeShHD23SkIqd5FGusCt5eIm/SpebJMjd/e4zRNbAza1E7p2AfPDdd99p1apVmjhxYmGX\nUmQwMwwAAAAARVh4eLhWr16dY4Eq5I4wDAAAAABFWHBwsIKDgwu7jCKHBbQAAAAAAFaHMAwAAAAA\nsDqEYQAAAACA1SEMAwAAAACsDmEYAAAAAP5n7969aty4sWVRKj8/P0VGRj7UGGfPnlXXrl3/dC1j\nxozRG2+88afH+aPo6GhlZ2fn+bhFDWEYAAAAAG7TqFEjhYeHW/63dOlSJScnP9QYBoPhT9WQlpam\n/fv3q2rVqtq7d++fGuuPFixYQBgWr1YCAAAAgBzMZrPl5+TkZNnZ2cnW1lb79u3TnDlzZDablZqa\nqhkzZmj79u26evWq+vXrp4yMDLVr107z58+37L9z507Nnj1bDg4OKlmypCZOnKi5c+eqRo0aat++\nvZKSkvTOO+8oJiYmRw1ffvmlGjduLB8fH0VGRqpBgwaSpC1btuijjz5SiRIl5OLiomeffVb9+vXT\nrFmzlJCQoOzsbPXo0UOtWrVSUFCQnnvuOR07dkwpKSmaPXu2du7cqaSkJIWEhGjOnDkFc0EfU8wM\nAwAAAMBtvv32WwUHB6t79+4aMmSIRo4cqeLFi+vYsWOaMWOGwsPD9corr2jDhg1q166dvvrqK0nS\n5s2b1aJFCxUrVswy1qhRozR37lxFRETIy8tL8+bNU+fOnRUbGytJ+uKLL9SxY8c7ali5cqU6d+4s\nb29vHTlyRBcuXJDJZNLEiRO1ePFiffrpp3JwcJAkbdu2TWfOnFFUVJTCw8M1f/58Xb9+XZJUp04d\n/fvf/1ajRo30n//8R506dZKbm5vCwsLy+zI+9pgZBgAAAIDbNGrUSDNnzryjvWzZsho/frycnZ11\n/vx5eXp6ysXFRTVr1lR8fLxiY2M1dOhQS//Lly/LaDTKzc1NkvTCCy8oLCxM7u7uMplMOnfunNav\nX69PP/00x3GOHz+uY8eOacqUKTKbzbKxsdHy5csVEBAgo9GoUqVKSZK8vLyUlJSkxMRE/fjjjwoO\nDpbZbFZ2drbOnj0rSXruueckSeXKlVNSUpKkmzPft89+WyvCMAAAAIDHUnZ2to4fP56nY7q7u8vW\n1vaR9h05cqQ2btwoJyenHKG3c+fOCg8PV3p6uqpUqWIJoqVKlVJKSoqSkpJUunRp7d27V5UrV5Yk\ndezYUdOnT1f16tVlNBpzHGfVqlUaMGCAAgICJEm//vqr/Pz81KdPH6Wmpur3339XyZIl9f3336tC\nhQpyd3dXw4YNNW7cOJnNZs2bN0+VKlWSdPdnl21sbAjDIgwDAAAAeEwdP35cPy99VlXc8ma8ny9K\n6nlUHh4r2H/LAAAgAElEQVQej7R/u3btFBAQICcnJ5UuXVoXLlyQdHPGd9SoUerTp88d+4wfP179\n+vWTjY2NXFxcNGXKFElS69atNWnSpBzPF0tSZmam1q1bpzVr1ljaypUrpxo1aujrr7/WiBEj9Pbb\nb8vFxUUmk0mVK1dWixYttGfPHgUGBurGjRtq2bKlnJ2d77mIl5eXl95++22Fh4c/0nV4UhjMVvKV\nwMWL1wu7BAAAUICOHz+mmE0muT1drbBLeShHD23SkIqd5FGusCt5eIm/SpebJMjdvXphl1Jo3NxK\nFHYJT5TExERp7bN59t9D4q+S2j56GH4cLFq0SD169FCxYsU0ePBgNW3aVO3atSvssookZoYBAAAA\noIhwdnZWly5d5OjoqIoVK6pNmzaFXVKRRRgGAAAAgCIiMDBQgYGBhV3GE4FXKwEAAADA/0ydOlVB\nQUF69dVX1aJFCwUHB+v999+/Z/+zZ89q69at99x+6tQpy0JYt2RnZ6tZs2Y52rZu3aoRI0ZIkjZs\n2KBLly7p/PnzmjBhgiSpWbNmMplMWrBggQ4fPqz09HStWrXqgc7p8uXL6t+/v3r16iU/Pz+NGjVK\nGRkZD7RvXjGZTOrZs6el5rS0NPXr10+BgYHq3bu3rly5Iknav3+/unTpIn9//xzPU//rX/9S586d\nFRAQoEOHDlnOq0ePHurWrZsGDhz40OdEGAYAAACA/wkNDVVERITeeecdtW3bVuHh4frwww/v2X/X\nrl06cODAfce820JW92v79NNPlZqaqrJly1oC8q1tvXv3Vs2aNfXbb78pJibmgc5p0aJFatasmZYs\nWaLly5fL3t5eK1eufKB988qsWbOUkpJi+RwZGalatWopKipKbdq00cKFCyVJY8aM0ezZs/XZZ58p\nPj5eiYmJ+uGHH/T9999r5cqVmjZtmsaNGydJ+uijj9SxY0dFRkaqWrVqio6OfqiauE0aAAAAwGPr\n54t5O1aVP7H/pEmTdODAARkMBvn6+qpLly5asmSJMjIyVK9ePTk4OGj+/PkymUxKS0vTrFmzHvoY\nmzdvVmJiogYNGqQpU6Zo+PDh+uyzzyzbBw8erDfeeENr1qzRsWPHtHDhQm3atEnTpk1T5cqVtWXL\nFu3atUvDhw+37OPq6qovv/xSFSpUkKenp4YNG2Z5vdScOXO0ZcsWmUwmBQYGqlOnTvr444+1YcMG\n2dnZqWHDhhowYIA+/PBDHTx4UKmpqZoyZYq2bt2qL7/8UtLNVbb9/f21a9cuHTx4UO+++26Oc1q/\nfr0cHR3VuHFjS1tCQoL69esnSfLx8dHSpUt19epVmc1mlSt3c8W0pk2bateuXZafJalixYpKS0vT\ntWvXlJCQoH/+85+WMebNm6du3bo98LUmDAMAAAB4LLm7u0s9j+bZeFVujfkINm7cqIsXLyo6OlqZ\nmZny8/OTt7e3evXqpXPnzqlZs2aKiopSWFiYSpUqpblz52rDhg36+9///sDHMBgMeumll+Th4aGp\nU6fKbDbf8/VIffr00alTp/Tuu++qVKlSio2N1YABAxQTE6P+/fvn6PvWW2+pZMmSWrx4sQ4ePGh5\nFdSFCxe0Z88eff7558rMzNSsWbN05MgRbd68WStXrpTBYFDfvn21fft2SZKHh4dCQ0N19OhRbdy4\nUcuXL5fJZFL37t3VtGlTNW7cOEfglaSjR4/qq6++0uzZszV79mxLe3JyskqUuLn6urOzs65fv66U\nlBRL2632W6+vKlu2bI72P/a/1fYwCMMAAAAAHku2traPzWuQTpw4IS8vL0lSsWLFVKdOHZ04cSJH\nnzJlymjs2LFycnLSb7/9poYNG951LFtbW2VnZ+doS01NlYODwyPV9tprr6lz584KCgrSpUuX7rhm\nu3fvVseOHdWpUydlZmZq4cKFmjJlilq0aKHnn3/eck6hoaFat26d6tatawnhnp6e+u9//ytJqlq1\nqiTp2LFjOnPmjIKDg2U2m3Xt2jWdPHlSlSpVuqO21atX6/z58woODtbZs2fl4OCgChUqqESJEpbb\nplNSUuTi4iKj0ajk5GTLvrfaTSZTjlusb+9/6+db/z4MnhkGAAAAgFxUrVpVCQkJkqTMzEwdOHBA\nzzzzjGxsbGQymSRJI0eO1NSpUzV58mS5urrKbDZLkuXf25UvX17x8fGWz9u3b1ft2rUlKceYt/xx\nDIPBYAnUTk5O8vT01OTJk9W+ffs7jvXJJ59o3bp1km6GXnd3dzk4OKhatWr68ccfJUkZGRnq0aOH\nKlWqpO+//15ms1lms1nx8fGqUqWK5Zi3rsWzzz6r8PBwRUREqH379qpe/e7vFw8NDdWKFSsUEREh\nX19f9erVS40aNVK9evUUFxcnSYqLi1P9+vXl4uIig8Ggs2fPymw2a8eOHfLy8pKnp6dldvr06dOy\ns7NTiRIl5OnpaRlj27Ztli8rHhQzwwAAAACQi5YtW2rfvn3y8/NTZmamfH195eHhoYyMDC1evFg1\na9ZU27Zt5e/vr+LFi8vV1dVyi+/dbnWeMGGCxo4dq6ysLJlMJnl6eqpt27aSbs7GDho0SOPHj7f0\nvzXGrX/d3NyUlpamsLAwDRgwQJ07d1b37t0ti0v98VhjxozR0qVL5ejoKFdXV40ZM0aurq7y9vaW\nn5+fpJuvbXr++ef18ssvq2vXrjKbzWrQoIGaN2+eY5GwmjVrytPTU/7+/kpPT5enp6fKli17z2eG\n7yYwMFBDhw6Vv7+/HB0dNXPmTEnS2LFjFRISIpPJJB8fH9WsWVOSVKdOHXXp0kVms1mjRo2SJPXt\n21ehoaFatmyZXF1dNWPGjFyPezuD+W5fUzyBLl58uPvHAQBA0Xb8+DHFbDLJ7elqhV3KQzl6aJOG\nVOwkj3KFXcnDS/xVutwkQe7ud58hsgZubiVy7wTkg++++06rVq3SxIkTC7uUIoOZYQAAAAAowsLD\nw7V69eocC1Qhd4RhAAAAACjCgoODFRwcXNhlFDksoAUAAAAAsDqEYQAAAACA1SEMAwAAAACsDmEY\nAAAAAGB1CMMAAAAAAKtDGAYAAAAAWB3CMAAAAADA6hCGAQAAAABWhzAMAAAAALA6dgV9wKysLIWG\nhurs2bOys7PT+PHjZWtrq6FDh8rGxkbVq1fX6NGjJUnR0dFasWKFihUrpt69e6t58+ZKT0/X4MGD\ndenSJRmNRk2ZMkUlS5Ys6NMAAAAAABRhBT4zHBcXJ5PJpOXLl+u9995TWFiYJk+erJCQEEVGRspk\nMmnjxo1KSkpSRESEVqxYocWLF2vmzJnKzMzUsmXL5OHhoaioKLVr107z5s0r6FMAAAAAABRxBR6G\nK1eurOzsbJnNZl2/fl12dnY6fPiwvLy8JEk+Pj7atWuXfvjhB9WvX192dnYyGo2qXLmyfvrpJyUk\nJMjHx8fSd/fu3QV9CgAAAACAIq7Ab5N2dnbWmTNn1Lp1a125ckULFixQfHx8ju3JyclKSUlRiRIl\nLO1OTk6WdqPRmKMvAAAAAAAPo8DD8CeffKIXX3xRAwYM0Pnz5xUUFKTMzEzL9pSUFLm4uMhoNOYI\nure3p6SkWNpuD8z34+b2YP0AAMCT4fffjZKuFXYZVqdUKSN/dwEoEgo8DP/lL3+Rnd3Nw5YoUUJZ\nWVmqWbOm9u7dqwYNGmjbtm3y9vZW7dq1FRYWpoyMDKWnp+vEiROqXr266tWrp7i4ONWuXVtxcXGW\n26tzc/Hi9fw8LQAA8Ji5fJm7xwrD5cvJVv13F18EAEVHgYfh7t2764MPPlBgYKCysrI0aNAg/e1v\nf9OIESOUmZkpd3d3tW7dWgaDQUFBQQoICJDZbFZISIjs7e3l7++v0NBQBQQEyN7eXjNnzizoUwAA\nAAAAFHEGs9lsLuwiCoI1f0MJAIA1On78mGI2meT2dLXCLuWhHD20SUMqdpJHucKu5OEl/ipdbpIg\nd/fqhV1KoWFmGCg6Cnw1aQAAAAAAChthGAAAAABgdQjDAAAAAACrQxgGAAAAAFgdwjAAAAAAwOoQ\nhgEAAAAAVocwDAAAAACwOoRhAAAAAIDVIQwDAAAAAKwOYRgAAAAAYHUIwwAAAAAAq0MYBgAAAABY\nHcIwAAAAAMDqEIYBAAAAAFaHMAwAAAAAsDqEYQAAAACA1SEMAwAAAACsDmEYAAAAAGB1CMMAAAAA\nAKtDGAYAAAAAWB3CMAAAAADA6hCGAQAAAABWhzAMAAAAALA6hGEAAAAAgNUhDAMAAAAArA5hGAAA\nAABgdQjDAAAAAACrQxgGAAAAAFgdwjAAAAAAwOoQhgEAAAAAVocwDAAAAACwOoRhAAAAAIDVIQwD\nAAAAAKwOYRgAAAAAYHUIwwAAAAAAq0MYBgAAAABYHcIwAAAAAMDqEIYBAAAAAFaHMAwAAAAAsDqE\nYQAAAACA1SEMAwAAAACsDmEYAAAAAGB1CMMAAAAAAKtDGAYAAAAAWB3CMAAAAADA6hCGAQAAAABW\nhzAMAAAAALA6hGEAAAAAgNUhDAMAAAAArA5hGAAAAABgdQjDAAAAAACrQxgGAAAAAFgdwjAAAAAA\nwOrkGoZPnTqlNWvWyGw2a+TIkerYsaPi4+MLojYAAAAAAPJFrmF42LBhKlasmDZt2qRffvlFw4YN\n07Rp0wqiNgAAAAAA8kWuYTg9PV2vvvqqtmzZorZt28rLy0tZWVkFURsAAAAAAPki1zBsa2urDRs2\naOvWrWrevLk2btwoGxseNQYAAAAAFF25ptpx48Zp69atGj16tMqUKaN169ZpwoQJBVEbAAAAAAD5\nItcw/Oyzz+q9996Tvb29srOzFRISoho1ahREbQAAAAAA5Au73DqsX79e8+fPV1pampYvXy4/Pz8N\nGTJE7dq1e+SDLlq0SJs3b1ZmZqYCAgL0wgsvaOjQobKxsVH16tU1evRoSVJ0dLRWrFihYsWKqXfv\n3mrevLnS09M1ePBgXbp0SUajUVOmTFHJkiUfuRYAAAAAgPXJdWb4448/1rJly+Ts7CxXV1fFxsZq\n0aJFj3zAvXv36rvvvtPy5csVERGhX3/9VZMnT1ZISIgiIyNlMpm0ceNGJSUlKSIiQitWrNDixYs1\nc+ZMZWZmatmyZfLw8FBUVJTatWunefPmPXItAAAAAADrlGsYtrGxkdFotHwuU6bMn1pAa8eOHfLw\n8NB7772nPn36qHnz5jp8+LC8vLwkST4+Ptq1a5d++OEH1a9fX3Z2djIajapcubJ++uknJSQkyMfH\nx9J39+7dj1wLAAAAAMA65XqbdPXq1RUZGamsrCwdOXJEn3322Z96Zvj333/XuXPntHDhQp0+fVp9\n+vSRyWSybHd2dlZycrJSUlJUokQJS7uTk5Ol/VY4v9UXAAAAAICHkWsYHjVqlObPny8HBwd98MEH\n8vb2Vmho6CMf8KmnnpK7u7vs7OxUpUoVOTg46Pz585btKSkpcnFxkdFozBF0b29PSUmxtN0emO/H\nze3B+gEAgCfD778bJV0r7DKsTqlSRv7uAlAk5BqGnZycNHDgQA0cODBPDli/fn1FRETozTff1Pnz\n53Xjxg15e3tr7969atCggbZt2yZvb2/Vrl1bYWFhysjIUHp6uk6cOKHq1aurXr16iouLU+3atRUX\nF2e5vTo3Fy9ez5P6AQBA0XD5MnePFYbLl5Ot+u8uvggAio5cw/Ann3yiefPm6fr1m/+nZjabZTAY\ndOTIkUc6YPPmzRUfH69OnTrJbDZrzJgxqlChgkaMGKHMzEy5u7urdevWMhgMCgoKUkBAgMxms0JC\nQmRvby9/f3+FhoYqICBA9vb2mjlz5iPVAQAAAACwXgaz2Wy+X4eXXnpJkZGRKl++fEHVlC+s+RtK\nAACs0fHjxxSzySS3p6sVdikP5eihTRpSsZM8yhV2JQ8v8VfpcpMEubtXL+xSCg0zw0DRkeuy0O7u\n7ipdunRB1AIAAAAAQIHI9TbpoKAgtW3bVnXq1JGtra2lffLkyflaGAAAAAAA+SXXMDxx4kS1bdtW\nFSpUKIh6AAAAAADId7mGYXt7e/Xr168gagEAAAAAoEDkGoYbN26sKVOmyMfHR8WKFbO0v/DCC/la\nGAAAAAAA+SXXMHz48GFJ0o8//mhpMxgMCg8Pz7+qAAAAAADIR7mG4YiIiIKoAwAAAACAApNrGI6P\nj9eSJUuUmpoqs9ksk8mkc+fOafPmzQVRHwAAAAAAeS7X9wyPGDFCLVu2VHZ2tgIDA/XMM8+oZcuW\nBVEbAAAAAAD5Itcw7OjoqI4dO6pBgwZycXHRhAkTtG/fvoKoDQAAAACAfJFrGHZwcNCVK1dUpUoV\nff/99zIYDEpNTS2I2gAAAAAAyBe5huE333xTAwYMUIsWLbR69Wq99tprqlWrVkHUBgAAAABAvsh1\nAa1XX31VrVu3lsFgUExMjH755RfVqFGjIGoDAAAAACBf3DcMJyYmKjs7W88995wmTZqk69evy9bW\nVkOHDpXRaCyoGgEAAAAAyFP3vE168+bN6t27ty5evChJ2rZtmxo0aKCsrCwtXry4wAoEAAAAACCv\n3TMMz5kzR0uWLJGPj4+km6tKd+jQQSNGjOAdwwAAAACAIu2eYTg9PV1VqlSxfH7xxRclSUajUba2\ntvlfGQAAAAAA+eSeYTgzM1Nms9nyeeDAgZKkrKwsZWZm5n9lAAAAAADkk3uG4QYNGmjBggV3tC9Z\nskQNGjTI16IAAAAAAMhP91xNeuDAgQoODtaWLVvk5eUlg8GghIQEpaenKzw8vCBrBAAAAAAgT90z\nDJcsWVKff/65vv76ax04cECS5O/vr1dffVX29vYFViAAAAAAAHntvu8Ztre31+uvv67XX3+9oOoB\nAAAAACDf3fOZYQAAAAAAnlT3DMOpqakFWQcAAAAAAAXmnmE4KChIkjRmzJiCqgUAAAAAgAJxz2eG\nU1NTNWjQIG3fvl3p6el3bJ88eXK+FgYAAAAAQH65ZxheunSp9uzZo4SEBN4rDAAAAAB4otwzDJcr\nV07t27dXjRo15O7urp9//lnZ2dmqXr267Ozuuwg1AAAAAACPtVxTbWZmplq1aqWnnnpKJpNJSUlJ\nmjt3rurUqVMQ9QEAAAAAkOdyDcMTJ05UWFiYJfweOHBA48eP16pVq/K9OAAAAAAA8kOu7xlOTU3N\nMQtct27duy6oBQAAAABAUZFrGP7LX/6ijRs3Wj5v3LhRTz31VL4WBQAAAABAfsr1Nunx48dr8ODB\nGj58uCSpUqVKmj59er4XBgAAAABAfsk1DFeuXFkrV65UamqqTCaTjEZjQdQFAAAAAEC+eeB3JDk5\nOeVnHQAAAAAAFJhcnxkGAAAAAOBJk2sYXrZsWUHUAQAAAABAgck1DEdFRRVEHQAAAAAAFJhcnxl+\n+umnFRwcrDp16sjBwcHS3q9fv3wtDAAAAACA/JJrGK5bt25B1AEAAAAAQIHJNQz369dPqampOnXq\nlDw8PJSWlsbK0gAAAACAIi3XZ4Z3796tdu3a6b333lNSUpJeeukl7dixoyBqAwAAAAAgX+QahmfN\nmqXPPvtMLi4uKlOmjCIjIzVt2rSCqA0AAAAAgHyRaxg2mUxyc3OzfK5WrVq+FgQAAAAAQH57oNWk\nt2zZIoPBoGvXrikqKkrly5cviNoAAAAAAMgXuc4Mjxs3TmvXrtWvv/6qli1b6siRIxo3blxB1AYA\nAAAAQL7IdWbY1dVVs2bNUnJysuzs7OTo6FgQdQEAAAAAkG9yDcNHjx7V0KFDde7cOUlS1apVNXXq\nVP31r3/N9+IAAAAAAMgPud4mPXr0aL3//vvas2eP9uzZo549e+qDDz4oiNoAAAAAAMgXuYbh9PR0\nNWvWzPL5lVdeUXJycr4WBQAAAABAfrpnGD537pzOnTunGjVqaNGiRbp8+bKuXr2qyMhIeXl5FWSN\nAAAAAADkqXs+M9ytWzcZDAaZzWbt2bNHy5cvt2wzGAwaMWJEgRQIAAAAAEBeu2cY3rx5c0HWAQAA\nAABAgcl1NekTJ04oOjpaV69ezdE+efLkfCsKAAAAAID8lGsY7tevn9q0aaNnn322IOoBAAAAACDf\n5RqGXVxc1K9fv4KoBQAAAACAApFrGO7QoYPCwsLk7e0tO7v/7/7CCy/ka2EAAAAAAOSXXMPw3r17\ndfDgQe3fv9/SZjAYFB4enq+FAQAAAACQX3INw4cOHdLXX39dELUAAAAAAFAgbHLr4OHhoZ9++inP\nD3zp0iU1b95cP//8s06dOqWAgAB169ZNY8eOtfSJjo5Wx44d5efnp61bt0qS0tPT9Y9//EOBgYF6\n99139fvvv+d5bQAAAACAJ1uuYfj06dPq0KGDfHx89PLLL+ull17Syy+//KcOmpWVpdGjR8vR0VHS\nzdc0hYSEKDIyUiaTSRs3blRSUpIiIiK0YsUKLV68WDNnzlRmZqaWLVsmDw8PRUVFqV27dpo3b96f\nqgUAAAAAYH1yvU167ty5eX7QqVOnyt/fXwsXLpTZbNbhw4fl5eUlSfLx8dHOnTtlY2Oj+vXry87O\nTkajUZUrV9ZPP/2khIQEvf3225a+hGEAAAAAwMPKNQzv27fvru0VKlR4pAPGxMTI1dVVTZo00YIF\nCyRJJpPJst3Z2VnJyclKSUlRiRIlLO1OTk6WdqPRmKMvAAAAAAAPI9cwvGfPHsvPmZmZSkhIkJeX\nl9q3b/9IB4yJiZHBYNDOnTt19OhRhYaG5njuNyUlRS4uLjIajTmC7u3tKSkplrbbA/P9uLk9WD8A\nAPBk+P13o6RrhV2G1SlVysjfXQCKhFzD8OTJk3N8vnLligYMGPDIB4yMjLT8HBwcrLFjx2ratGna\nt2+fXnjhBW3btk3e3t6qXbu2wsLClJGRofT0dJ04cULVq1dXvXr1FBcXp9q1aysuLs5ye3VuLl68\n/sg1AwCAoufyZe4eKwyXLydb9d9dfBEAFB25huE/cnJy0tmzZ/O0iNDQUI0cOVKZmZlyd3dX69at\nZTAYFBQUpICAAJnNZoWEhMje3l7+/v4KDQ1VQECA7O3tNXPmzDytBQAAAADw5Ms1DAcFBclgMEiS\nzGazzpw5o2bNmuXJwcPDwy0/R0RE3LG9c+fO6ty5c442R0dHzZ49O0+ODwAAAACwTrmG4f79+1t+\nNhgMKlmypKpVq5avRQEAAAAAkJ/uGYbPnTsnSapYseJdt5UvXz7/qgIAAAAAIB/dMwx369ZNBoNB\nZrPZ0mYwGHThwgVlZWXpyJEjBVIgAAAAAAB57Z5hePPmzTk+p6SkaOrUqdqxY4fGjx+f74UBAAAA\nAJBfbB6k0+7du+Xr6ytJWrNmjZo0aZKvRQEAAAAAkJ/uu4BWamqqpkyZYpkNJgQDAAAAAJ4E95wZ\n3r17t9q2bStJWrt2LUEYAAAAAPDEuOfMcI8ePWRnZ6cdO3Zo586dlnaz2SyDwaBNmzb9X3v3H6t1\nXfdx/HUOeMK8AM0oboNh40fWdChCHWSy/NUs2sIDtQ6TRvGPf3CjkUFGeZzyIz0rtybH1WZulkW0\niKzZKpShmVtEgWOFuNKbQuZEHNznMjxHzrn/aF2DFDvo7bm4zufx+Otcn+v7vb7vL3+w87y+33Nd\ngzIgAAAA/H87YQyLXQAAAIaqE8bwe97znsGcAwAAAAbNgD5NGgAAAIYSMQwAAEBxxDAAAADFEcMA\nAAAURwwDAABQHDEMAABAccQwAAAAxRHDAAAAFEcMAwAAUBwxDAAAQHHEMAAAAMURwwAAABRHDAMA\nAFAcMQwAAEBxxDAAAADFEcMAAAAURwwDAABQHDEMAABAccQwAAAAxRHDAAAAFEcMAwAAUBwxDAAA\nQHHEMAAAAMURwwAAABRHDAMAAFAcMQwAAEBxxDAAAADFEcMAAAAURwwDAABQHDEMAABAccQwAAAA\nxRHDAAAAFEcMAwAAUBwxDAAAQHHEMAAAAMURwwAAABRHDAMAAFAcMQwAAEBxxDAAAADFEcMAAAAU\nRwwDAABQHDEMAABAccQwAAAAxRHDAAAAFEcMAwAAUBwxDAAAQHHEMAAAAMURwwAAABRHDAMAAFCc\n4YN9wFdeeSVf/vKXs2/fvvT29ua6667LpEmT8qUvfSnNzc2ZPHlyOjo6kiQbNmzID3/4w5x22mm5\n7rrr8uEPfzgvv/xyvvjFL+aFF15IpVLJ1772tZx11lmDfRoAAAA0sEGP4QceeCBnnXVW7rjjjhw+\nfDif+MQnct5552XZsmWZPn16Ojo6snnz5lx44YX57ne/m5/85Cc5cuRI2tvbM2vWrPzgBz/IlClT\nsmTJkjz44IPp6urKypUrB/s0AAAAaGCDfpv0Rz/60Vx//fVJkqNHj2bYsGH505/+lOnTpydJZs+e\nnd/+9rd54okncvHFF2f48OGpVCo599xzs3v37mzfvj2zZ8+ubfv4448P9ikAAADQ4AY9hk8//fS8\n/e1vT3d3d66//vp8/vOfT39/f+35M844I93d3alWqxk5cmRt/V/7VKvVVCqV47YFAACAkzHot0kn\nyf79+7NkyZJce+21mTNnTjo7O2vPVavVjBo1KpVK5bjQPXa9Wq3W1o4N5tczZszAtgMAhoYXX6wk\nOVzvMYrzjndU/N4FNIRBj+EDBw5k8eLFufnmm9Pa2pokef/7359t27ZlxowZeeSRR9La2poLLrgg\nd955Z3p6evLyyy/nr3/9ayZPnpyLLrooW7duzQUXXJCtW7fWbq/+T55//n/fytMCAE4xBw+6e6we\nDh7sLvr3Lm8EQOMY9Bj+1re+lcOHD6erqyvr1q1LU1NTVq5cmVWrVqW3tzcTJ07M1Vdfnaampixc\nuDALFixIf39/li1blpaWlrS3t2fFihVZsGBBWlpa8vWvf32wTwEAAIAG19R/7B/sDmElv0MJACX6\ny1+eysaH+jJm7KR6j3JSntz1UJaPm58p/1XvSU7env3JwVnbM3Hi5HqPUjeuDEPjGPQP0AIAAIB6\nE4nXt3QAAAlLSURBVMMAAAAURwwDAABQHDEMAABAccQwAAAAxRHDAAAAFEcMAwAAUBwxDAAAQHHE\nMAAAAMURwwAAABRHDAMAAFAcMQwAAEBxxDAAAADFEcMAAAAURwwDAABQHDEMAABAccQwAAAAxRHD\nAAAAFEcMAwAAUBwxDAAAQHHEMAAAAMURwwAAABRHDAMAAFAcMQwAAEBxxDAAAADFEcMAAAAURwwD\nAABQHDEMAABAccQwAAAAxRHDAAAAFEcMAwAAUBwxDAAAQHHEMAAAAMURwwAAABRHDAMAAFAcMQwA\nAEBxxDAAAADFEcMAAAAURwwDAABQHDEMAABAccQwAAAAxRHDAAAAFEcMAwAAUBwxDAAAQHHEMAAA\nAMURwwAAABRHDAMAAFAcMQwAAEBxxDAAAADFEcMAAAAURwwDAABQHDEMAABAccQwAAAAxRHDAAAA\nFEcMAwAAUBwxDAAAQHHEMAAAAMURwwAAABRHDAMAAFCc4fUe4I3o7+/PLbfckieffDItLS1ZvXp1\nxo8fX++xAAAAaBANeWV48+bN6enpyfr16/OFL3wha9eurfdIAAAANJCGjOHt27fn0ksvTZJMnTo1\nu3btqvNEAAAANJKGvE26u7s7I0eOrD0ePnx4+vr60tzckG0PALxFDh74n3qPcNIOvfhsnn5bvad4\nY55+Phld7yEABqghY7hSqaRardYeDySEx4wZ+brPAwBDy5gx09LaOq3eY7wB05P8d72HeEOm1HsA\ngJPQkJdSp02blq1btyZJduzYkSlT/NcLAADAwDX19/f313uIk3Xsp0knydq1a/Pe9763zlMBAADQ\nKBoyhgEAAODNaMjbpAEAAODNEMMAAAAURwwDAABQnIb8aqWBOvaDtlpaWrJ69eqMHz++3mMBAA3u\nhRdeyLx583Lvvff6EE9q2traUqlUkiTjxo3LmjVr6jwR8HqGdAxv3rw5PT09Wb9+fXbu3Jm1a9em\nq6ur3mMBAA3slVdeSUdHR0aMGFHvUTiF9PT0JEnuu+++Ok8CDNSQvk16+/btufTSS5MkU6dOza5d\nu+o8EQDQ6G6//fa0t7fnXe96V71H4RSye/fuvPTSS1m8eHEWLVqUnTt31nsk4D8Y0jHc3d2dkSNH\n1h4PHz48fX19dZwIAGhkGzduzNlnn51Zs2bFt1NyrBEjRmTx4sW55557csstt+TGG2/0eyec4ob0\nbdKVSiXVarX2uK+vL83NQ7r/AYC30MaNG9PU1JTHHnssu3fvzooVK3L33Xfn7LPPrvdo1Nm5556b\nCRMm1H4+88wz8/zzz+fd7353nScDTmRIx/C0adOyZcuWXH311dmxY0emTJlS75EAgAb2ve99r/bz\nwoULc+uttwphkiQ//vGPs2fPnnR0dOS5555LtVrNmDFj6j0W8DqGdAxfddVVeeyxx/LpT386SbJ2\n7do6TwQADBVNTU31HoFTyPz583PTTTdlwYIFaW5uzpo1a9yRCKe4pn5/8AIAAEBhvF0FAABAccQw\nAAAAxRHDAAAAFEcMAwAAUBwxDAAAQHHEMAAAAMURwwCnqH379uXyyy9/1fp5552XJPn73/+elStX\nJkl27dqVr371q0mShQsXZtu2bcetbdiwIQ8++OCAjrt8+fJ8+9vfftX6VVddlT179pxwv5tuuimb\nNm0a0DEAAOpNDAOcwpqamk64tm/fvvztb39Lkpx//vm57bbbjtvu2LU//vGP6enpGdAx29ra8rOf\n/ey4td///vcZPXp0pkyZctLnAABwKhLDAA1q9erV2bVrV2677bb87ne/y8KFC497/l9rjz/+eB5+\n+OF885vfzEMPPZTW1tZUq9Uk/wzqj3/848ft19ramn/84x956qmnamsPPPBA5s+fX3vdBQsWpK2t\nLVdeeWV++ctfHrf/v1/Rvuuuu3LXXXclSR555JF88pOfTFtbW5YuXZpDhw4lSW6//fbMnTs3bW1t\ntW0BAN5KYhigQX3lK1/J+eefX7sV+kRXkWfOnJnLL788S5cuzRVXXJHLLrusFrCbNm3K3LlzX7Xf\nNddcU7s63NPTky1bttSi+f7778/q1auzcePGrFq1KuvWrXvN4/67gwcP5hvf+Ea+853vZOPGjZk1\na1Y6Ozvz7LPP5tFHH82mTZuyfv367N27d8BXsQEA3qjh9R4AgNfW3Pza71e+VmiejH9dfW1ra8vP\nf/7z3Hfffa/a5pprrsmiRYuybNmyPPzww5k5c2YqlUqSpLOzM1u2bMkvfvGL7Ny5My+99NKAjvvE\nE09k//79+cxnPpP+/v709fXlzDPPzNixYzNixIi0t7fnsssuyw033JCWlpY3dY4AAP+JGAY4RY0a\nNSrd3d3HrR04cCCjRo16U687Y8aMPPfcc/n1r3+d8ePHZ8yYMa/a5pxzzsm4cePyhz/8IT/96U+z\naNGi2nPt7e2ZOXNmPvjBD2bmzJm58cYbj9u3qakp/f39tce9vb057bTTcvTo0Vx88cXp6upK8s8r\nztVqNc3NzdmwYUO2bduWrVu35lOf+lTuv//+TJgw4U2dJwDA63GbNMAp6owzzsiECRPyq1/9qra2\nYcOGXHLJJUmSYcOG5ejRowN6rWHDhqW3t7f2eO7cuVm1alXa2tpOuM+8efPyox/9KHv37s2HPvSh\nJMmhQ4eyd+/eLF26NLNnz85vfvOb9PX1HbffqFGjcvjw4bz44ovp6enJo48+miSZOnVqduzYkWee\neSZJsm7dutxxxx3585//nGuvvTYzZszI8uXLM2nSpDz99NMDOi8AgDfKlWGAU1hnZ2c6OjrS1dWV\n3t7evO9978vNN9+cJJk4cWIOHz6cFStWZN68ebV9Xus26ksuuSR33nlnRo8enY985CP52Mc+lnvv\nvTdXXHHFCY995ZVX5tZbb81nP/vZ2tro0aMzf/78zJkzJyNHjsyFF16YI0eO5MiRI7VtKpVKPve5\nz2XevHk555xzMnXq1CTJO9/5zqxZsyY33HBD+vr6Mnbs2HR2dmb06NG56KKLMmfOnJx++un5wAc+\nkNmzZ7/pfzsAgNfT1H/svWwADHn9/f35/ve/n2eeeab2PcUAAKVxZRigMEuWLMn+/ftzzz331HsU\nAIC6cWUYAACA4vgALQAAAIojhgEAACiOGAYAAKA4YhgAAIDiiGEAAACKI4YBAAAozv8B5iqr22NH\nBl8AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x116530860>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# play the game\n", "agent1 = g.Grim()\n", "agent2 = p.Pavlov()\n", "game = PrisonersDilemma(agent1, agent2)\n", "game.play(10000)\n", "\n", "# get data from game\n", "agent1_util_vals = Counter(game.data['A'])\n", "agent2_util_vals = Counter(game.data['B'])\n", "\n", "a1_total_score = sum(game.data['A'])\n", "a2_total_score = sum(game.data['B'])\n", "\n", "# Plot the results\n", "x1, y1, x2, y2 = [], [], [], []\n", "\n", "for i, j in zip(agent1_util_vals, agent2_util_vals):\n", " x1.append(i)\n", " y1.append(agent1_util_vals[i])\n", " x2.append(j)\n", " y2.append(agent2_util_vals[j])\n", "\n", "fig, ax = plt.subplots(figsize=(12,6))\n", "width = 0.35\n", "a1 = ax.bar(x1, y1, width, color='#8A9CEF')\n", "a2 = ax.bar(np.asarray(x2)+width, y2, width, color='orange')\n", "\n", "_ = ax.set_title('Grim Agent Vs Pavlov Agent')\n", "_ = ax.set_ylabel('Number of Games')\n", "_ = ax.set_xlabel('Utility Values')\n", "ax.set_xticks(np.add([0,4,5],width/2))\n", "_ = ax.set_xticklabels(('0', '4', '5'))\n", "_ = ax.legend((a1[0], a2[0]), ('Grim Agent\\nTotal Utility Score: {}'.format(str(a1_total_score)),\n", " 'Pavlov Agent\\nTotal Utility Score: {}'.format(str(a2_total_score))), loc=1, bbox_to_anchor=(1.35, 1))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Both strategies start out cooperating, Grim never defects because pavlov never defects. Pavlov never loses a round so it doesn't change it's strategy." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Q-Learning VS Pavlov" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Playing Game: 100%|██████████| 10000/10000 [00:00<00:00, 12552.94it/s]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8MAAAGJCAYAAACuKeEVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4Tef+/vH3zkiyKSLUdIpIah4iiKFmpVpCCRmaaKst\nWs6vYgg1z1MJ55iLbw0pggQ92mpjCEURLaXGmocWiTEJmfb+/eHYR0xBs0Oa+3VdvWQ/61nP81kr\nO0nvvSaD2Ww2IyIiIiIiIpKL2DzvAkRERERERESym8KwiIiIiIiI5DoKwyIiIiIiIpLrKAyLiIiI\niIhIrqMwLCIiIiIiIrmOwrCIiIiIiIjkOgrDIpLjpKenM3fuXNq2bUvbtm1p06YNo0aN4tq1a5Y+\nQUFBfP/999le24EDB/h//+//Zfm4vXr1om7duiQnJ2f52PeaMWMGGzdufKA9ODiYuXPnPtC+YMEC\nPv744ycePygoiGbNmtG+fXvat29PmzZtGDhw4DNvV1RUFN27d3+mdR9l8eLFlC9fnl9//TVLx71f\nTEwM//rXv6w6h4iIiDyawrCI5Dh9+/bl0KFDfPXVV6xdu5bVq1dTrFgxOnfuTGJi4nOtrXLlykyb\nNi1Lx7x06RKxsbFUq1aNqKioLB37fj/99BNpaWkPtAcGBhIZGflA+4oVKwgKCnqqOUJDQ4mKiiIq\nKoqvv/6apKSkLN9nf8Xy5ctp27YtX375pVXn2b9/Pzdu3LDqHCIiIvJods+7ABGRp7F//35iY2PZ\nsGEDDg4OANja2vLBBx/w888/s2zZMrp27frYMTZt2sSsWbNIS0sjT5489O/fn+rVqxMfH8/QoUOJ\nj48nLi6O4sWLM3XqVAoVKkTTpk2pVq0aR48epXfv3owdO5a3336bHTt28Mcff/DGG2/Qr18/du3a\nxahRo/j6668ZOHAgzs7OHD16lD///JOyZcsSFhZG3rx5iYmJ4fPPP8fOzo7y5cuzfft2li5dSvHi\nxR+oNyIignr16tGyZUumTp2Kn5+fZdnjxlm5ciVfffUVAAUKFGDIkCGUKVPmkXVFRkZy4MABJk6c\niI2NDc2bN7fM07x5c8aOHcuePXuoWbMmALt27QKgbt26JCUlMXDgQM6cOYPBYKBy5cqMHDnyib6n\nderUYcuWLQCsXLmSiIgI0tLSuHbtGh999BF+fn74+fnx/vvv8/rrrwMwefJkAMqWLWsZ5+LFiwwb\nNozz588D0L59e95//33CwsJISEhgyJAhAGzdupV///vfREREPFDLzp07uX79Ov369aN58+ZcvHiR\nokWLAnDmzBk+++wzrl+/jqurK2azGR8fH9q1a8fPP//M5MmTuXXrFjY2NvTq1YtGjRoRFRXFDz/8\ngI2NDadPn8be3p6JEyeSlJTEsmXLMJlMGI1GPv300yfaVyIiIpJ1dGRYRHKUPXv2ULlyZUsQvlf9\n+vX5+eefH7v+6dOnmTJlCl988QWRkZGMHDmSnj17cvv2bdatW0eNGjVYtmwZ0dHR5MmTh7Vr11rW\n9fDwYN26dZaQmJSURHh4OEuXLmXJkiWWEHavgwcPsmDBAr755hsuXbrEd999x7Vr1+jfvz+TJ08m\nKiqKOnXqcOnSpYfWm56eTkREBG3btqVx48bEx8ezdetWgMeOs3v3blavXs3SpUuJjIyka9eu9OzZ\n87F1BQYGUrlyZfr3758hCMOdDxx8fX1ZuXKlpS0iIoLAwEAAfvjhB5KSkoiKirL0OXv27GO/FwDX\nr1/n22+/xdvbm6SkJFauXGn53oSFhTFx4kQAOnXqZDkybTKZWLt2Lb6+vhnG6tu3L3Xr1uXrr79m\n6dKlrFmzhm+++YaOHTvyzTffWI54R0ZG0rlz54fWs2zZMtq2bYurqyt169ZlyZIllmX9+/enTZs2\nfP311wwaNIi9e/cCcOPGDT777DMmTZpEZGQkM2fOZNiwYfz5558AxMbGMnToUL7++ms8PT2ZP38+\nVatWxc/Pj9atWysIi4iIPCc6Miwifyvp6emPXb5t2zbi4uJ49913MZvNANjZ2XH69GmCg4OJjY3l\nyy+/5NSpU/z+++9Uq1bNsq6Xl1eGsZo1awZA0aJFcXFx4fr16w/M99prr2Fnd+dXrYeHB9evXyc2\nNhZ3d3c8PDwAaNeuHaNHj35ovdHR0ZhMJl577TVsbGxo3bo1X375Ja+99tpDxxkzZgwAmzdv5syZ\nM/j5+Vm288aNG5bTch9WV2Y6d+7MW2+9RVJSEikpKWzbto3hw4cDULNmTaZOnUpQUBD169enS5cu\nlCpV6qHjTJw4kVmzZmEymTAYDDRp0oTg4GBsbGyYPXs2mzZt4vTp0xw6dIhbt24B8MYbbzBx4kTi\n4+M5cOAAr7zyCv/4xz/Ys2cPALdu3eLnn39mwYIFABiNRtq3b8/WrVtp3bo1FSpUYOPGjXh7e/PT\nTz8xduzYB+qKi4vjhx9+sJyK3rZtW0aMGMEnn3xCSkoKv/76K+Hh4QC4ubnh7e0NwC+//MLly5f5\n5JNPLPvaxsaGI0eOAFCpUiWKFCkCQMWKFfnhhx8y3dciIiJifQrDIpKjeHp6Mm/ePJKTk3F0dCQ1\nNZXExEQKFCjATz/9hKen52PXN5lM1K1blylTplja/vzzT4oUKcKkSZM4cOAAHTp0wNvbm7S0NEu4\nAXBycsowVp48eTK8vrfvw/oYDAbMZjO2traYTKYM/WxsHn6izrJly0hOTqZFixYApKamcvnyZY4f\nP/7QcQwGg2U7fXx86NOnj2XZxYsXyZ8//yPryoyrqyv16tVj3bp1JCUl0bJlS4xGIwAlS5bk+++/\nZ9euXfz000906dKFoUOHWk5rvlf//v0f2n7x4kU6d+5M586d8fLyomXLlsTExACQN29eWrVqxddf\nf80vv/xCp06dMqx7/36AO9+P1NRUADp27EhUVBSXL1+mRYsW5M2b94H+ERER2NjYWG7IZTabSUxM\nJCoqijZt2jywn2xtbS1zlytXjuXLl1uWXbp0CRcXF9auXYujo6Ol/Un3tYiIiFifTpMWkRylatWq\n1KlThwEDBnDjxg3OnDlDYGAg//znPzl69CgBAQGWvg8LHd7e3mzbto0TJ04Ad6659fHxsRzp7NKl\nC23btqVgwYJs3779oSHrr/L09OT06dMcPXoUgPXr13Pz5k1LkL3r5MmT7N69m6ioKDZs2MCGDRvY\nsmULNWvWZOHChY8dp379+qxbt47Lly8DEB4ezrvvvptpbXZ2dg+9gdZd/v7+rF27ljVr1lhOkQZY\nunQpAwYMoH79+vTp04fXXnvNUteT2r9/P4UKFaJHjx7Ur1+fTZs2Af/7Pvr6+hIZGcnevXsfCNPO\nzs5Uq1bNcuT25s2brF69mvr16wN3rnn+7bffWLly5QOnV8OdQLtixQpGjhxp2dcbN27ko48+YtGi\nRRiNRjw9PVm1ahVw5xTwHTt2AFCtWjVOnTpFbGwsAIcOHaJly5aPPPX9LltbW0tYFxERkeynI8Mi\nkuNMmjSJ+fPn884772A2m0lLS8POzg5nZ2eio6Np164dcOeuxQMHDsRsNmMwGAgMDKRPnz6MHDmS\nkJAQ4E4gmTVrFnny5OGTTz5hwoQJzJgxAzs7O2rWrMnp06cBHgiqmb1+nJdeeonPP/+c/v37Y2Nj\nQ+XKlbG1tX3gSPOyZcto0aIFJUuWzND+ySef0KNHD0JCQh45ToMGDfjggw94//33sbGxwWg0Mn36\n9Exra9KkCRMmTCAlJcWyH+9Vu3Ztrl27RsGCBXF3d7e0t2vXjt27d9O6dWvy5s1LiRIl6NKlywPr\nP24/NWjQgMjISFq2bImzszNVqlShUKFCnD59mtKlS1OpUiXs7Oxo2bLlQ68ZnzRpEiNHjmTVqlWk\npaXRtm1b2rdvD4CDgwOtW7fmp59+okqVKg+su2nTJsxmM2+99VaG9nfffZfFixcTExPD+PHjGTRo\nEEuXLqVo0aKUKlWKvHnzUqhQIf79738zceJEkpOTMZvNTJo0iWLFij16R3PnxmO9evXC3t6ewYMH\nP7aviIiIZD2DWedricjfREJCAvv376du3brPu5THSkhIYNasWfzzn//E0dGRgwcP0q1bN8uNsbJ7\nHHkys2fPpmXLlpQpU4aEhATatm3LF198gZub2/MuTURERJ6B1Y8M79u3j88//5zFixdz5swZBgwY\ngI2NDe7u7gwbNgy4c53W8uXLsbe3p3v37jRu3Jjk5GT69etHfHw8RqOR8ePHU7BgQfbu3cvYsWOx\ns7OjXr16Ge6OKiK5m9FofOGDMNyp097eng4dOmBnZ4e9vf0zPWc3q8aRJ1O6dGk+/fRTbGxsSE9P\np1u3bgrCIiIiOZhVjwzPmzePNWvW4OzszLJly+jRowddu3bFy8uLYcOG8dprr1G9enXee+89oqKi\nuH37Nv7+/kRGRhIeHk5CQgI9e/bkm2++4ZdffmHQoEG0a9eO6dOnU7JkST766CNCQkIoX768tTZB\nRERERERE/oasegOtV155hRkzZlhe//bbb5ZHkzRs2JDt27fz66+/UrNmTezs7DAajZQuXZrDhw+z\nZ88eGjZsaOn7008/kZCQQGpqquX6uQYNGrB9+3ZrboKIiIiIiIj8DVk1DLdo0cLy6AnIeGdXZ2dn\nEhISSExMJF++fJZ2JycnS/vdR3Y4Oztz8+bNDG33touIiIiIiIg8jWx9tNK9z9FMTEwkf/78GI1G\nEhISHtqemJhoacuXL58lQN/fNzNpaelZuBUiIiIiIiKS02Xro5UqVqzI7t27qVWrFlu2bMHb25sq\nVaoQFhZGSkoKycnJnDhxAnd3d2rUqEFMTAxVqlQhJiYGLy8vjEYjDg4OnD17lpIlS/Ljjz8+0Q20\nrl5Nsup2ubrm4/JlHaGWjPS+EJEnpd8Xcj+9J3IuV9d8mXcSkRdCtobh0NBQhgwZQmpqKm5ubrRq\n1QqDwUBQUBABAQGYzWZCQkJwcHDA39+f0NBQAgICcHBwYPLkyQCMGDGCvn37YjKZqF+/PlWrVs3O\nTRAREREREZG/gVzxnGFrf7KqT2/lYfS+EJEnpd8Xcj+9J3IuHRkWyTmy9ZphERERERERkReBwrCI\niIiIiIjkOgrDIiIiIiIikusoDIuIiIiIiEiuozAsIiIiIiIiuY7CsIiIiIiIyD0OHDhA165dCQwM\nxN/fn6lTp5KWlgbAwIED+fHHH606f1xcHCNHjvzL46SkpNCgQQMWLFiQBVX9z/Xr1/nPf/6TpWM+\nDwrDIiIiIiIi/3Xx4kX69+/PsGHDCA8PZ+nSpdjb2zN27Nhsq6Fw4cIMHTr0L4+zfv163nzzTaKi\norKgqv85fPgwGzduzNIxnwe7512AiIiIiIjIi2LNmjV06tSJf/zjH5a2Tz75hObNm5OSkvLI9aZM\nmcKePXtIT0/nvffeo2XLluzevZvp06djNptJSkpi8uTJ2NnZ0b17dwoWLEjDhg2JiYmhQoUKHDt2\njMTERKZNm4bJZCIkJITly5fTtm1bateuzZEjRzAYDMycOROj0ciIESP47bffcHFx4dy5c8yZM4fi\nxYtnqGnFihUMGjSI+Ph4YmJiaNSoEcBD17WxsWHIkCEkJyeTJ08eRo0aRVpaGn369KFYsWKcPn2a\natWqMWzYMObMmcORI0dYsWIFvr6+1vlGZAOFYcmV0tPTOXXqhFXnuHrVyJUrCVk+bnp6OmDA1jZn\nnthRunRZbG1tn3cZIiIiIg917tw5GjZs+EB74cKFuXz58kPX2bJlC+fPnyc8PJyUlBQ6depE/fr1\nOXbsGJ9//jmurq7MmTOH7777jrfeeov4+HhWr16Nra0tMTExVKtWjc8++4ywsDD+85//0Lp1awwG\nAwAJCQm0adOGwYMH07dvX7Zs2YKjoyPXr18nIiKCK1eu0KpVqwdqOn36NLdv3+bVV1+lQ4cOLFiw\ngEaNGrFhw4aHrjthwgSCg4N57bXX2LFjB5MmTaJ3796cOnWK//u//8PR0ZHmzZsTHx9P9+7dWb58\neY4OwqAwLLnUqVMnmLf8JIUKv2LFWW5YZdSTx37ig5f/SRlXqwxvVScvw6l2e3Bzc3/epYiIiIg8\nVPHixTl79myGNpPJxIULF3BxcXnoOkePHuXAgQMEBwdjNptJT0/n3LlzFC1alFGjRuHs7MzFixfx\n9PQEoGTJkhkODlSoUAGAYsWKERcX98D49y5PSUnh3LlzVK9eHYBChQpRpkyZB9ZZsWIFt27d4sMP\nP8RkMrF3717Onj3L8ePHM6xbtmxZyzbMmTOHL774ArPZjL29PQCvvPIKefPmBaBIkSIkJyc/4Z58\n8SkMS65VqPAruL5c7nmX8dSuxJ2mjCt4FHvelTybK8+7ABEREckx0tPTOX78eJaO6ebm9tiz1Nq1\na0fXrl1p1qwZBQoUoHfv3hQtWpTGjRuTJ08eAMxmc4Z1ypYtS506dRg5ciRms5mZM2dSqlQp3n//\nfaKjo3FycmLAgAGW/neP+j7qdWZeffVV1qxZQ3BwMNevX+fUqVMZlqelpfHNN9+wZs0a8uXLB8Cc\nOXMIDw+nbt26rF692rLuyZMnLfvl/fffp3r16pw4cYLY2NgH5r273TY2Nv89WzFnUxgWEREREZEX\n0vHjx5k4a3+Wnc13Je40/XuAh4fHI/u8/PLLTJo0iREjRnDr1i1u376Nra0tLi4uXL9+HYAxY8Zg\nNBoxm82ULVuWSZMmsWvXLgIDA7l16xbNmzfH2dkZHx8fAgICcHJyonDhwly6dAnIGH4zC8IP69uo\nUSNiYmLw9/encOHC5M2bFzu7/0W7TZs2UblyZUsQBmjfvj3t2rXj008/fei6/fr1Y/jw4aSkpJCc\nnMygQYMeOX+pUqU4duwYixYtIjg4+PE7/QVmMN//scbf0OXLN606vqtrPqvPIVnr+PFjRG4w5cgj\nw0cObKB/yY458sjw0T/gSn2dJi1yP/0dkfvpPZFzubrmy7yTPLGjR48yb8WNLPt/tst//s4Hvvkf\nG4YfV0upUqUspww/TydOnODw4cO0bt2aa9eu8dZbb7Fp0ybLqc3WWvfvRkeGRUREREREMvEsAdpa\nihUrxueff87ChQsxmUz069fvicPsX1n370ZhWEREREREJAfJmzcvM2fOzPZ1/25y5rNZRERERERE\nRP4ChWEREREREZH/mjBhAkFBQbzxxhs0adKE4OBgPv3000f2P3/+PJs3b37k8jNnzhAQEJChLT09\nnUaNGmVo27x5M4MHDwZg/fr1xMfHc/HiRUaPHg3cuWmWyWRi9uzZHDx4kOTkZFauXPlE23TlyhV6\n9epF165d8fPzY+jQoaSkpDzRulklPj6eFi1aYDKZALh69SoffPABgYGB9OzZk2vXrgFw6tQp3n33\nXd555x26du3KjRt3Hlf6r3/9C19fXwICAjhw4AAASUlJ9OvXj3feeYfOnTvz22+/PVVNOk1aRERE\nREReWFfiTmfxWFUe2yc0NBSAqKgoTp48SUhIyGP7b9++nfPnz9O4ceNH9nnYHaMf17Zw4UIqVqxI\nqVKlLAH57rLu3bsDcPr0aSIjI+nYseNj6wOYO3cujRo1svQdPXo0K1asIDAwMNN1s0JMTAxTp04l\nPj7e0jZr1izq1q1L165d2bp1K2FhYYwYMYIhQ4YQGhpK5cqVWb9+PadPn8ZsNrNv3z5WrFjBuXPn\nCAkJISIigrlz51KpUiUmTZrE4cOH+f3336lUqdIT16UwLCIiIiIiLyQ3Nzf698jKEavg5ub2zGuP\nHTuWvXv3YjAYaNu2LZ06dWL+/PmkpKRQo0YNHB0dmTVrFiaTidu3bzNlypSnnmPjxo0cPXqUvn37\nMn78eAYNGsRXX31lWd6vXz/efvtt1q5dy7Fjx5gzZw4bNmxg4sSJlC5dmk2bNrF9+3bLo5EAXFxc\n+PbbbylRogSenp4MHDjQ8qzl6dOns2nTJkwmE4GBgXTs2JEvvviC9evXY2dnR506dejduzdTp05l\n//79JCUlMX78eDZv3sy3334LgI+PD/7+/mzfvp39+/fTrVu3DNtkb2/PwoULadu2raXt+PHj+Pr6\nAuDp6cnEiRNJSkri+vXrfP/990yYMIHq1avz+uuvs3DhQho0aABAyZIluX37Njdu3ODHH3/Ex8eH\nrl278tJLLzF06NCn2tcKwyIiIiIi8kKytbV9Ye7iHB0dzeXLl4mIiCA1NRU/Pz+8vb3p2rUrFy5c\noFGjRoSHhxMWFkahQoWYMWMG69ev5/XXX3/iOQwGA02bNsXDw4MJEyZgNpsf+RziHj16cObMGbp1\n60ahQoWIioqid+/eREZG0qtXrwx9P/jgAwoWLMi8efPYv38/tWrVYujQoVy6dImdO3eyatUqUlNT\nmTJlCocOHWLjxo2sWLECg8HAJ598wtatW4E7d9QODQ3lyJEjREdHs2zZMkwmE126dKFBgwbUq1eP\nevXqPVDr3bZ7n+pboUIFNm7ciLu7Oxs2bOD27dtcu3aNY8eOMWzYMEJCQhgwYABr1qwhISGBokWL\nWtZ1dnbm5s2bXL16lYSEBObPn8+qVauYOHEiY8eOfeL9rWuGRUREREREMnHixAm8vLyAO0c6q1Wr\nxokTJzL0KVKkCCNGjGDgwIHExsaSlpb20LFsbW1JT0/P0JaUlISjo+Mz1fbmm28SHR1NXFwc8fHx\nD3yAsGPHDjp06MD8+fPZtm0bFSpUYPz48Zw8eZKqVatatik0NJQTJ05QvXp1Swj39PTk999/B6Bs\n2bIAHDt2jHPnzhEcHEyXLl24ceMGp09nfjr7vcG+e/funDx5kqCgIC5fvkyRIkUoUKAA+fLlo2bN\nmgA0btyYAwcOYDQaSUxMtKybmJhI/vz5KVCgAE2bNgWgSZMmT33NsMKwiIiIiIhIJsqWLcuePXsA\nSE1NZe/evbzyyivY2NhYbgo1ZMgQJkyYwLhx43BxcbEcCb33iOhdxYsXJzY21vJ669atVKly53rm\ne8e86/4xDAaDJVA7OTnh6enJuHHjaNeu3QNzffnll6xbtw64E3rd3NxwdHSkXLlylgCZkpLCe++9\nR6lSpdi3bx9msxmz2UxsbCxlypSxzHl3X7z66qssWrSIxYsX065dO9zd3TPdh/duw+7duwkICGDx\n4sUUK1YMLy8vnJycKFGiBPv27QMgNjYWDw8PPD09LUenz549i52dnSU0x8TEWMYrV65cpjXcS6dJ\ni4iIiIiIZKJ58+bs3r0bPz8/UlNTadu2LR4eHqSkpDBv3jwqVqxImzZt8Pf3J2/evLi4uHDp0iXg\n4TfLGj16NCNGjCAtLQ2TyYSnpydt2rQB7hyN7du3L6NGjbL0vzvG3X9dXV25ffs2YWFh9O7dG19f\nX7p06cLIkSMfOtfw4cNZsGABefLkwcXFheHDh+Pi4oK3tzd+fn4ABAYGUrVqVZo1a0bnzp0xm83U\nrl2bxo0bs3fvXst4FStWxNPTE39/f5KTk/H09KRo0aKPvGb4/m0AKFOmDAMGDADufDAwZswY4M51\n2SNHjsRsNlOqVCk6dOiAra0t1apVo1OnTpjNZsu1wR9//DGDBg3Cz88Pe3t7Jk2a9CTfyv/VY37Y\nxxR/M5cv37Tq+K6u+aw+h2St48ePEbnBhOvLT/fp0YvgyIEN9C/ZEY9iz7uSp3f0D7hSfw9ubpl/\nciiSm+jviNxP74mcy9U13/MuQXKpX375hZUrV1pCpWROR4ZFRERERERysEWLFrF69WqmTZv2vEvJ\nURSGRUREREREcrDg4GCCg4Ofdxk5jm6gJSIiIiIiIrmOwrCIiIiIiIjkOgrDIiIiIiIikusoDIuI\niIiIiEiuozAsIiIiIiLyX7t27aJevXqWm1L5+fmxZMmSpxrj/PnzdO7c+S/XMnz4cN5+++2/PM79\nIiIiSE9Pz/JxcxqFYRERERERkXvUrVuXRYsWWf5bsGABCQkJTzWGwWD4SzXcvn2bn3/+mbJly7Jr\n166/NNb9Zs+erTCMHq0kIiIiIiKSgdlstnydkJCAnZ0dtra27N69m+nTp2M2m0lKSuLzzz9n69at\nXL9+nZ49e5KSkoKPjw+zZs2yrL9t2zamTZuGo6MjBQsWZMyYMcyYMYPy5cvTrl074uLi+Oijj4iM\njMxQw7fffku9evVo2LAhS5YsoXbt2gBs2rSJf//73+TLl4/8+fPz6quv0rNnT6ZMmcKePXtIT0/n\nvffeo2XLlgQFBVGhQgWOHTtGYmIi06ZNY9u2bcTFxRESEsL06dOzZ4e+oHRkWERERERE5B4//fQT\nwcHBdOnShf79+zNkyBDy5s3LsWPH+Pzzz1m0aBEtWrRg/fr1+Pj48N133wGwceNGmjRpgr29vWWs\noUOHMmPGDBYvXoyXlxczZ87E19eXqKgoANasWUOHDh0eqGHFihX4+vri7e3NoUOHuHTpEiaTiTFj\nxjBv3jwWLlyIo6MjAFu2bOHcuXOEh4ezaNEiZs2axc2bNwGoVq0a//d//0fdunX5z3/+Q8eOHXF1\ndSUsLMzau/GFpyPDIiIiIiIi96hbty6TJ09+oL1o0aKMGjUKZ2dnLl68iKenJ/nz56dixYrExsYS\nFRXFgAEDLP2vXLmC0WjE1dUVgFq1ahEWFoabmxsmk4kLFy7wzTffsHDhwgzzHD9+nGPHjjF+/HjM\nZjM2NjYsW7aMgIAAjEYjhQoVAsDLy4u4uDiOHj3Kb7/9RnBwMGazmfT0dM6fPw9AhQoVAChWrBhx\ncXHAnSPf9x79zq0UhkVERERE5IWUnp7O8ePHs3RMNzc3bG1tn2ndIUOGEB0djZOTU4bQ6+vry6JF\ni0hOTqZMmTKWIFqoUCESExOJi4ujcOHC7Nq1i9KlSwPQoUMHJk2ahLu7O0ajMcM8K1eupHfv3gQE\nBADwxx9/4OfnR48ePUhKSuLq1asULFiQffv2UaJECdzc3KhTpw4jR47EbDYzc+ZMSpUqBTz82mUb\nGxuFYRSGRURERETkBXX8+HFOLniVMq5ZM97Jy8D7R/Dw8Him9X18fAgICMDJyYnChQtz6dIl4M4R\n36FDh9KlxRZfAAAgAElEQVSjR48H1hk1ahQ9e/bExsaG/PnzM378eABatWrF2LFjM1xfDJCamsq6\ndetYu3atpa1YsWKUL1+e77//nsGDB/Phhx+SP39+TCYTpUuXpkmTJuzcuZPAwEBu3bpF8+bNcXZ2\nfuRNvLy8vPjwww9ZtGjRM+2HvwuDORd8JHD58k2rju/qms/qc0jWOn78GJEbTLi+XO55l/LUjhzY\nQP+SHfEo9rwreXpH/4Ar9ffg5ub+vEsReaHo74jcT++JnMvVNd/zLuFv5ejRo/D1q1n2/z1H/wDa\nPHsYfhHMnTuX9957D3t7e/r160eDBg3w8fF53mXlSDoyLCIiIiIikkM4OzvTqVMn8uTJQ8mSJWnd\nuvXzLinHUhgWERERERHJIQIDAwkMDHzeZfwt6NFKIiIiIiIi/zVhwgSCgoJ44403aNKkCcHBwXz6\n6aeP7H/+/Hk2b978yOVnzpyx3AjrrvT0dBo1apShbfPmzQwePBiA9evXEx8fz8WLFxk9ejQAjRo1\nwmQyMXv2bA4ePEhycjIrV658om26cuUKvXr1omvXrvj5+TF06FBSUlKeaN2sMG/ePDp16kSnTp2Y\nPXt2hmXfffcd/fv3t7z+8ccf6dy5M0FBQfTu3dtS57/+9S98fX0JCAjgwIEDACQlJdGvXz/eeecd\nOnfuzG+//fZUdenIsIiIiIiIyH+FhoYCEBUVxcmTJwkJCXls/+3bt3P+/HkaN278yD4Pu5HV49oW\nLlxIxYoVKVWqlCUg313WvXt3AE6fPk1kZCQdO3bMdJvmzp1Lo0aNLH1Hjx7NihUrsuUI86lTp/jh\nhx+IiIjAbDbTuXNnWrRogZubG6NHj2bbtm1UqVLF0n/UqFEsX76cAgUKMHHiRFatWkWlSpXYt28f\nK1as4Ny5c4SEhBAREcHcuXOpVKkSkyZN4vDhw/z+++9UqlTpiWtTGBYRERERkRfWyctZO1aZv7D+\n2LFj2bt3LwaDgbZt29KpUyfmz59PSkoKNWrUwNHRkVmzZmEymbh9+zZTpkx56jk2btzI0aNH6du3\nL+PHj2fQoEF89dVXluX9+vXj7bffZu3atRw7dow5c+awYcMGJk6cSOnSpdm0aRPbt29n0KBBlnVc\nXFz49ttvKVGiBJ6engwcONDyeKnp06ezadMmTCYTgYGBdOzYkS+++IL169djZ2dHnTp16N27N1On\nTmX//v0kJSUxfvx4Nm/ezLfffgvcucu2v78/27dvZ//+/XTr1s0yd6lSpZg7dy5wJ9CnpaXh4OCA\n2WymVq1aNGvWjKioKEv/8PBwChQoANw5gu7o6MjPP/9MgwYNAChZsiS3b9/mxo0b/Pjjj/j4+NC1\na1deeuklhg4d+lT7WmFYREREREReSG5ubvD+kSwbr8zdMZ9BdHQ0ly9fJiIigtTUVPz8/PD29qZr\n165cuHCBRo0aER4eTlhYGIUKFWLGjBmsX7+e119//YnnMBgMNG3aFA8PDyZMmIDZbH7k45F69OjB\nmTNn6NatG4UKFSIqKorevXsTGRlJr169MvT94IMPKFiwIPPmzWP//v2WR0FdunSJnTt3smrVKlJT\nU5kyZQqHDh1i48aNrFixAoPBwCeffMLWrVsB8PDwIDQ0lCNHjhAdHc2yZcswmUx06dKFBg0aUK9e\nPerVq5dhbltbW1566SUAxo0bR40aNSzPQG7ZsiU7duzI0L9w4cIAfPvtt/zyyy/069eP2bNnU7Ro\nUUsfZ2dnbt68ydWrV0lISGD+/PmsWrWKiRMnMnbs2Cfe3wrDIiIiIiLyQrK1tX1hHoN04sQJvLy8\nALC3t6datWqcOHEiQ58iRYowYsQInJyc+PPPP6lTp85Dx7K1tSU9PT1DW1JSEo6Ojs9U25tvvomv\nry9BQUHEx8c/sM927NhBhw4d6NixI6mpqcyZM4fx48fTpEkTqlatatmm0NBQ1q1bR/Xq1S0h3NPT\nk99//x2AsmXLAnDs2DHOnTtHcHAwZrOZGzducPr0aUvIvV9ycjKhoaG4uLgwZMiQTLdn/vz5bNq0\niXnz5mFnZ4fRaCQxMdGyPDExkfz581OgQAGaNm0KQJMmTZ76ucm6gZaIiIiIiEgmypYty549ewBI\nTU1l7969vPLKK9jY2GAymQAYMmQIEyZMYNy4cbi4uGA2mwEs/96rePHixMbGWl5v3brVcu3svWPe\ndf8YBoPBEqidnJzw9PRk3LhxtGvX7oG5vvzyS9atWwfcCb1ubm44OjpSrlw5y02nUlJSeO+99yhV\nqhT79u3DbDZjNpuJjY2lTJkyljnv7otXX32VRYsWsXjxYtq1a4e7u/tD95vZbKZbt25Uq1btiYLw\n9OnT2b9/PwsWLCB//vzAnUB+9+j02bNnsbOzI1++fNSsWZOYmBgAdu/eTbly5TId/146MiwiIiIi\nIpKJ5s2bs3v3bvz8/EhNTaVt27Z4eHiQkpLCvHnzqFixIm3atMHf35+8efPi4uLCpUuXgIffLGv0\n6NGMGDGCtLQ0TCYTnp6etGnTBrgT/vr27cuoUaMs/e+OcfdfV1dXbt++TVhYGL1798bX15cuXbow\ncuTIh841fPhwFixYQJ48eXBxcWH48OG4uLjg7e2Nn58fcOexTVWrVqVZs2Z07twZs9lM7dq1ady4\nMXv37rWMV7FiRTw9PfH39yc5ORlPT0+KFi360GuG169fz969ezGZTGzcuBGDwUC/fv0y3DTrrkuX\nLjF79mwqV65M165dMRgMtGnTBl9fX6pWrUqnTp0wm82Wa4M//vhjBg0ahJ+fH/b29kyaNOmpvqcG\n88M+pvibuXz5plXHd3XNZ/U5JGsdP36MyA0mXF9+uk+PXgRHDmygf8mOeBR73pU8vaN/wJX6e3Bz\ne/gnhyK5lf6OyP30nsi5XF3zPe8SJJf65ZdfWLlyJWPGjHnepeQYOjIsIiIiIiKSgy1atIjVq1cz\nbdq0511KjqIwLCIiIiIikoMFBwcTHBz8vMvIcXQDLREREREREcl1FIZFREREREQk11EYFhERERER\nkVxHYVhERERERERyHYVhERERERERyXUUhkVERERERCTXURgWERERERGRXEdhWERERERERHIdhWER\nERERERHJdeyye8K0tDRCQ0M5f/48dnZ2jBo1CltbWwYMGICNjQ3u7u4MGzYMgIiICJYvX469vT3d\nu3encePGJCcn069fP+Lj4zEajYwfP56CBQtm92aIiIiIiIhIDpbtR4ZjYmIwmUwsW7aMjz/+mLCw\nMMaNG0dISAhLlizBZDIRHR1NXFwcixcvZvny5cybN4/JkyeTmprK0qVL8fDwIDw8HB8fH2bOnJnd\nmyAiIiIiIiI5XLaH4dKlS5Oeno7ZbObmzZvY2dlx8OBBvLy8AGjYsCHbt2/n119/pWbNmtjZ2WE0\nGildujSHDx9mz549NGzY0NJ3x44d2b0JIiIiIiIiksNl+2nSzs7OnDt3jlatWnHt2jVmz55NbGxs\nhuUJCQkkJiaSL18+S7uTk5Ol3Wg0ZugrIiIiIiIi8jSyPQx/+eWXvPbaa/Tu3ZuLFy8SFBREamqq\nZXliYiL58+fHaDRmCLr3ticmJlra7g3Mj1KwoBN2drZZvzH3cHXNvA55cVy9agRuPO8ycqVChYz6\neRF5CP1cyP30nhARsa5sD8MvvfQSdnZ3ps2XLx9paWlUrFiRXbt2Ubt2bbZs2YK3tzdVqlQhLCyM\nlJQUkpOTOXHiBO7u7tSoUYOYmBiqVKlCTEyM5fTqx7l6Ncmq2+Tqmo/Ll29adQ7JWleu6IyC5+XK\nlQT9vIjcR39H5H56T+Rc+hBDJOfI9jDcpUsXPvvsMwIDA0lLS6Nv375UqlSJwYMHk5qaipubG61a\ntcJgMBAUFERAQABms5mQkBAcHBzw9/cnNDSUgIAAHBwcmDx5cnZvgoiIiIiIiORw2R6GnZycmDp1\n6gPtixcvfqDN19cXX1/fDG158uRh2rRpVqtPRERERERE/v6y/W7SIiIiIiIiIs+bwrCIiIiIiIjk\nOgrDIiIiIiIikusoDIuIiIiIiEiuozAsIiIiIiIiuY7CsIiIiIiIiOQ6CsMiIiIiIiKS6ygMi4iI\niIiISK6jMCwiIiIiIiK5jsKwiIiIiIiI5DoKwyIiIiIiIpLrKAyLiIiIiIhIrqMwLCIiIiIiIrmO\nwrCIiIiIiIjkOgrDIiIiIiIikusoDIuIiIiIiEiuozAsIiIiIiIiuY7CsIiIiIiIiOQ6CsMiIiIi\nIiKS6ygMi4iIiIiISK6jMCwiIiIiIiK5jsKwiIiIiIiI5DoKwyIiIiIiIpLrKAyLiIiIiIhIrqMw\nLCIiIiIiIrmOwrCIiIiIiIjkOgrDIiIiIiIikusoDIuIiIiIiEiuozAsIiIiIiIiuY7CsIiIiIiI\niOQ6CsMiIiIiIiKS6ygMi4iIiIiISK6jMCwiIiIiIiK5jsKwiIiIiIiI5DoKwyIiIiIiIpLrKAyL\niIiIiIhIrqMwLCIiIiIiIrmOwrCIiIiIiIjkOgrDIiIiIiIikusoDIuIiIiIiEiuozAsIiIiIiIi\nuY7CsIiIiIiIiOQ6CsMiIiIiIiKS6ygMi4iIiIiISK6jMCwiIiIiIiK5jsKwiIiIiIiI5DoKwyIi\nIiIiIpLrKAyLiIiIiIhIrqMwLCIiIiIiIrmOwrCIiIiIiIjkOgrDIiIiIiIikusoDIuIiIiIiEiu\nozAsIiIiIiIiuU6mYfjMmTOsXbsWs9nMkCFD6NChA7GxsdlRm4iIiIiIiIhVZBqGBw4ciL29PRs2\nbODUqVMMHDiQiRMnZkdtIiIiIiIiIlaRaRhOTk7mjTfeYNOmTbRp0wYvLy/S0tKyozYRERERERER\nq8g0DNva2rJ+/Xo2b95M48aNiY6OxsZGlxqLiIiIiIhIzpVpqh05ciSbN29m2LBhFClShHXr1jF6\n9OjsqE1ERERERETEKjINw6+++ioff/wxDg4OpKenExISQvny5bOjNhERERERERGrsMuswzfffMOs\nWbO4ffs2y5Ytw8/Pj/79++Pj4/PMk86dO5eNGzeSmppKQEAAtWrVYsCAAdjY2ODu7s6wYcMAiIiI\nYPny5djb29O9e3caN25McnIy/fr1Iz4+HqPRyPjx4ylYsOAz1yIiIiIiIiK5T6ZHhr/44guWLl2K\ns7MzLi4uREVFMXfu3GeecNeuXfzyyy8sW7aMxYsX88cffzBu3DhCQkJYsmQJJpOJ6Oho4uLiWLx4\nMcuXL2fevHlMnjyZ1NRUli5dioeHB+Hh4fj4+DBz5sxnrkVERERERERyp0zDsI2NDUaj0fK6SJEi\nf+kGWj/++CMeHh58/PHH9OjRg8aNG3Pw4EG8vLwAaNiwIdu3b+fXX3+lZs2a2NnZYTQaKV26NIcP\nH2bPnj00bNjQ0nfHjh3PXIuIiIiIiIjkTpmeJu3u7s6SJUtIS0vj0KFDfPXVV3/pmuGrV69y4cIF\n5syZw9mzZ+nRowcmk8my3NnZmYSEBBITE8mXL5+l3cnJydJ+N5zf7SsiIiIiIiLyNDINw0OHDmXW\nrFk4Ojry2Wef4e3tTWho6DNPWKBAAdzc3LCzs6NMmTI4Ojpy8eJFy/LExETy58+P0WjMEHTvbU9M\nTLS03RuYH6VgQSfs7GyfueYn4eqaeR3y4rh61QjceN5l5EqFChn18yLyEPq5kPvpPSEiYl2ZhmEn\nJyf69OlDnz59smTCmjVrsnjxYt59910uXrzIrVu38Pb2ZteuXdSuXZstW7bg7e1NlSpVCAsLIyUl\nheTkZE6cOIG7uzs1atQgJiaGKlWqEBMTYzm9+nGuXk3KktofxdU1H5cv37TqHJK1rlzRGQXPy5Ur\nCfp5EbmP/o7I/fSeyLn0IYZIzpFpGP7yyy+ZOXMmN2/e+YVsNpsxGAwcOnTomSZs3LgxsbGxdOzY\nEbPZzPDhwylRogSDBw8mNTUVNzc3WrVqhcFgICgoiICAAMxmMyEhITg4OODv709oaCgBAQE4ODgw\nefLkZ6pDREREREREci+D2Ww2P65D06ZNWbJkCcWLF8+umrKctT9Z1ae3Oc/x48eI3GDC9eVyz7uU\np3bkwAb6l+yIR7HnXcnTO/oHXKm/Bzc39+ddisgLRX9H5H56T+RcOjIsknNkeltoNzc3ChcunB21\niIiIiIiIiGSLTE+TDgoKok2bNlSrVg1b2//dhGrcuHFWLUxERERERETEWjINw2PGjKFNmzaUKFEi\nO+oRERERERERsbpMw7CDgwM9e/bMjlpEREREREREskWmYbhevXqMHz+ehg0bYm9vb2mvVauWVQsT\nERERERERsZZMw/DBgwcB+O233yxtBoOBRYsWWa8qERERERERESvKNAwvXrw4O+oQERERERERyTaZ\nhuHY2Fjmz59PUlISZrMZk8nEhQsX2LhxY3bUJyIiIiIiIpLlMn3O8ODBg2nevDnp6ekEBgbyyiuv\n0Lx58+yoTURERERERMQqMg3DefLkoUOHDtSuXZv8+fMzevRodu/enR21iYiIiIiIiFhFpmHY0dGR\na9euUaZMGfbt24fBYCApKSk7ahMRERERERGxikzD8Lvvvkvv3r1p0qQJq1ev5s0336Ry5crZUZuI\niIiIiIiIVWR6A6033niDVq1aYTAYiIyM5NSpU5QvXz47ahMRERERERGxiseG4aNHj5Kenk6FChUY\nO3YsN2/exNbWlgEDBmA0GrOrRhEREREREZEs9cjTpDdu3Ej37t25fPkyAFu2bKF27dqkpaUxb968\nbCtQREREREREJKs9MgxPnz6d+fPn07BhQ+DOXaXbt2/P4MGD9YxhERERERERydEeGYaTk5MpU6aM\n5fVrr70GgNFoxNbW1vqViYiIiIiIiFjJI8NwamoqZrPZ8rpPnz4ApKWlkZqaav3KRERERERERKzk\nkWG4du3azJ49+4H2+fPnU7t2basWJSIiIiIiImJNj7ybdJ8+fQgODmbTpk14eXlhMBjYs2cPycnJ\nLFq0KDtrFBEREREREclSjwzDBQsWZNWqVXz//ffs3bsXAH9/f9544w0cHByyrUARERERERGRrPbY\n5ww7ODjw1ltv8dZbb2VXPSIiIiIiIiJW98hrhkVERERERET+rh4ZhpOSkrKzDhEREREREZFs88gw\nHBQUBMDw4cOzqxYRERERERGRbPHIa4aTkpLo27cvW7duJTk5+YHl48aNs2phIiIiIiIiItbyyDC8\nYMECdu7cyZ49e/RcYREREREREflbeWQYLlasGO3ataN8+fK4ublx8uRJ0tPTcXd3x87usTehFhER\nEREREXmhZZpqU1NTadmyJQUKFMBkMhEXF8eMGTOoVq1adtQnIiIiIiIikuUyDcNjxowhLCzMEn73\n7t3LqFGjWLlypdWLExEREREREbGGTJ8znJSUlOEocPXq1R96Qy0RERERERGRnCLTMPzSSy8RHR1t\neR0dHU2BAgWsWpSIiIiIiIiINWV6mvSoUaPo168fgwYNAqBUqVJMmjTJ6oWJiIiIiIiIWEumYbh0\n6dKsWLGCpKQkTCYTRqMxO+oSERERERERsZonfkaSk5OTNesQERERERERyTaZXjMsIiIiIiIi8neT\naRheunRpdtQhIiIiIiIikm0yDcPh4eHZUYeIiIiIiIhItsn0muGXX36Z4OBgqlWrhqOjo6W9Z8+e\nVi1MRERERERExFoyDcPVq1fPjjpEREREREREsk2mYbhnz54kJSVx5swZPDw8uH37tu4sLSIiIiIi\nIjlaptcM79ixAx8fHz7++GPi4uJo2rQpP/74Y3bUJiIiIiIiImIVmYbhKVOm8NVXX5E/f36KFCnC\nkiVLmDhxYnbUJiIiIiIiImIVmYZhk8mEq6ur5XW5cuWsWpCIiIiIiIiItT3R3aQ3bdqEwWDgxo0b\nhIeHU7x48eyoTURERERERMQqMj0yPHLkSL7++mv++OMPmjdvzqFDhxg5cmR21CYiIiIiIiJiFZke\nGXZxcWHKlCkkJCRgZ2dHnjx5sqMuEREREREREavJNAwfOXKEAQMGcOHCBQDKli3LhAkT+Mc//mH1\n4kRERERERESsIdPTpIcNG8ann37Kzp072blzJ++//z6fffZZdtQmIiIiIiIiYhWZhuHk5GQaNWpk\ned2iRQsSEhKsWpSIiIiIiIiINT0yDF+4cIELFy5Qvnx55s6dy5UrV7h+/TpLlizBy8srO2sUERER\nERERyVKPvGb4nXfewWAwYDab2blzJ8uWLbMsMxgMDB48OFsKFBEREREREclqjwzDGzduzM46RERE\nRERERLJNpneTPnHiBBEREVy/fj1D+7hx46xWlIiIiIiIiIg1ZRqGe/bsSevWrXn11Vezox4RERER\nERERq8s0DOfPn5+ePXtmRy0iIiIiIiIi2SLTMNy+fXvCwsLw9vbGzu5/3WvVqmXVwkRERERERESs\nJdMwvGvXLvbv38/PP/9saTMYDCxatMiqhYmIiIiIiIhYS6Zh+MCBA3z//ffZUYuIiIiIiIhItrDJ\nrIOHhweHDx/O8onj4+Np3LgxJ0+e5MyZMwQEBPDOO+8wYsQIS5+IiAg6dOiAn58fmzdvBiA5OZl/\n/vOfBAYG0q1bN65evZrltYmIiIiIiMjfW6Zh+OzZs7Rv356GDRvSrFkzmjZtSrNmzf7SpGlpaQwb\nNow8efIAdx7TFBISwpIlSzCZTERHRxMXF8fixYtZvnw58+bNY/LkyaSmprJ06VI8PDwIDw/Hx8eH\nmTNn/qVaREREREREJPfJ9DTpGTNmZPmkEyZMwN/fnzlz5mA2mzl48CBeXl4ANGzYkG3btmFjY0PN\nmjWxs7PDaDRSunRpDh8+zJ49e/jwww8tfRWGRURERERE5GllGoZ379790PYSJUo804SRkZG4uLhQ\nv359Zs+eDYDJZLIsd3Z2JiEhgcTERPLly2dpd3JysrQbjcYMfUVERERERESeRqZheOfOnZavU1NT\n2bNnD15eXrRr1+6ZJoyMjMRgMLBt2zaOHDlCaGhohut+ExMTyZ8/P0ajMUPQvbc9MTHR0nZvYH6U\nggWdsLOzfaZ6n5Sra+Z1yIvj6lUjcON5l5ErFSpk1M+LyEPo50Lup/eEiIh1ZRqGx40bl+H1tWvX\n6N279zNPuGTJEsvXwcHBjBgxgokTJ7J7925q1arFli1b8Pb2pkqVKoSFhZGSkkJycjInTpzA3d2d\nGjVqEBMTQ5UqVYiJibGcXv04V68mPXO9T8LVNR+XL9+06hySta5c0RkFz8uVKwn6eRG5j/6OyP30\nnsi59CGGSM6RaRi+n5OTE+fPn8/SIkJDQxkyZAipqam4ubnRqlUrDAYDQUFBBAQEYDabCQkJwcHB\nAX9/f0JDQwkICMDBwYHJkydnaS0iIiIiIiLy95dpGA4KCsJgMABgNps5d+4cjRo1ypLJFy1aZPl6\n8eLFDyz39fXF19c3Q1uePHmYNm1alswvIiIiIiIiuVOmYbhXr16Wrw0GAwULFqRcuXJWLUpERERE\nRETEmh4Zhi9cuABAyZIlH7qsePHi1qtKRERERERExIoeGYbfeecdDAYDZrPZ0mYwGLh06RJpaWkc\nOnQoWwoUERH5/+3df6zWdd3H8deBIzfIAUSlmenQmx9Z04EpBbIYojaVMjiQ9yAPYdx/+AcDRYOS\nAieg/Fi5NWGzaW2WpbQIsdkqxVCMLbLEsUKdghQyJz/G8RzCA5xz/9E8ExVvFM65zuHzePzF+Z7r\n+/2+v+w6u87z+ny5AAA40Y4aw2vXrj3i68bGxixZsiTr16/PggUL2nwwAAAAaCtdjuVBGzZsyHXX\nXZckWbNmTUaOHNmmQwEAAEBb+tAP0Nq/f38WL17cuhosggEAADgZHHVleMOGDfnKV76SJHnssceE\nMAAAACeNo64M33jjjamurs769evz7LPPtm5vaWlJVVVVnnzyyXYZEAAAAE60o8aw2AUAAOBkddQY\n/tSnPtWecwAAAEC7OaZPkwYAAICTiRgGAACgOGIYAACA4ohhAAAAiiOGAQAAKI4YBgAAoDhiGAAA\ngOKIYQAAAIojhgEAACiOGAYAAKA4YhgAAIDiiGEAAACKI4YBAAAojhgGAACgOGIYAACA4ohhAAAA\niiOGAQAAKI4YBgAAoDhiGAAAgOKIYQAAAIojhgEAACiOGAYAAKA4YhgAAIDiiGEAAACKI4YBAAAo\njhgGAACgOGIYAACA4ohhAAAAiiOGAQAAKI4YBgAAoDhiGAAAgOKIYQAAAIojhgEAACiOGAYAAKA4\nYhgAAIDiiGEAAACKI4YBAAAojhgGAACgOGIYAACA4ohhAAAAiiOGAQAAKI4YBgAAoDhiGAAAgOKI\nYQAAAIojhgEAACiOGAYAAKA4YhgAAIDiiGEAAACKI4YBAAAoTnV7n/DQoUO5/fbbs2PHjhw8eDA3\n3XRTBg4cmG9/+9vp0qVLBg0alPnz5ydJVq5cmUceeSSnnHJKbrrppowePTpvv/12vvWtb2X37t2p\nqanJ4sWL07dv3/a+DAAAADqxdo/hNWvWpG/fvlm6dGnq6+vz1a9+NRdccEFmzZqVSy+9NPPnz88T\nTzyRoUOH5qc//Wl+/etf58CBA5k0aVJGjhyZX/ziFxk8eHCmT5+exx9/PCtWrMjcuXPb+zIAAADo\nxNr9NulrrrkmM2fOTJIcPnw4Xbt2zd///vdceumlSZJRo0blT3/6U1544YVccsklqa6uTk1NTc47\n77xs2bIlzz33XEaNGtX62A0bNrT3JQAAANDJtXsM9+jRI6eeemoaGhoyc+bM3HLLLWlpaWn9fs+e\nPdPQ0JDGxsb06tWrdfs7+zQ2NqampuaIxwIAAMBH0e63SSfJzp07M3369Nxwww0ZO3Zsli1b1vq9\nxsbG9O7dOzU1NUeE7ru3NzY2tm57dzAfTd++p6a6uuuJv5B36dfv/5+DjmPv3pok9ZUeo0inn17j\n53jWd90AAAt7SURBVAU+gJ8L3stzAqBttXsM79q1K9OmTcu8efMyfPjwJMlnPvOZbNy4McOGDcvT\nTz+d4cOH56KLLso999yTpqamvP3223n11VczaNCgXHzxxVm3bl0uuuiirFu3rvX26g+zd+/+Nr2m\nfv165c0332rTc3Bi7dnjjoJK2bOnwc8LvIfXEd7Lc6Lz8iYGdB7tHsP33Xdf6uvrs2LFiixfvjxV\nVVWZO3duFi5cmIMHD2bAgAG5+uqrU1VVlbq6ukyePDktLS2ZNWtWunXrlkmTJmXOnDmZPHlyunXr\nlu9///vtfQkAAAB0clUt7/4Huyeptn5n1bu3nc8rr7ycVU82p99ZAys9ykf24uYnM/uciRn8yUpP\n8tG9tDPZM/K5DBgwqNKjQIfidYT38pzovKwMQ+fR7h+gBQAAAJUmhgEAACiOGAYAAKA4YhgAAIDi\niGEAAACKI4YBAAAojhgGAACgOGIYAACA4ohhAAAAiiOGAQAAKI4YBgAAoDhiGAAAgOKIYQAAAIoj\nhgEAACiOGAYAAKA4YhgAAIDiiGEAAACKI4YBAAAojhgGAACgOGIYAACA4ohhAAAAiiOGAQAAKI4Y\nBgAAoDhiGAAAgOKIYQAAAIojhgEAACiOGAYAAKA4YhgAAIDiiGEAAACKI4YBAAAojhgGAACgOGIY\nAACA4ohhAAAAiiOGAQAAKI4YBgAAoDhiGAAAgOKIYQAAAIojhgEAACiOGAYAAKA4YhgAAIDiiGEA\nAACKI4YBAAAojhgGAACgOGIYAACA4ohhAAAAiiOGAQAAKI4YBgAAoDhiGAAAgOJUV3qA9vDKKy+3\n6fH37q3Jnj0NbXLs887773Tt2rVNjg0AlOfw4cPZtu3VSo/xsfndCDhRiojh+x/ZmtPP7N+GZ6hv\nk6Pu2fVa/vd/kgEDBrXJ8QGA8mzb9mr2rb4k5/er9CQf3dY3k23jnvO7EXBCFBHDp5/ZP/3OGljp\nMQAAOoTz+yWDP1npKT6ePZUeADhp+DfDAAAAFEcMAwAAUBwxDAAAQHHEMAAAAMURwwAAABRHDAMA\nAFAcMQwAAEBxxDAAAADFqa70AB9HS0tL7rjjjrz44ovp1q1bFi1alHPPPbfSYwEAANBJdMqV4See\neCJNTU15+OGHc+utt+buu++u9EgAAAB0Ip0yhp977rl88YtfTJIMGTIkmzdvrvBEAAAAdCad8jbp\nhoaG9OrVq/Xr6urqNDc3p0uXD277Pbtea6/RTqg9u17L9u2d8v2KJMmAAYMqPcKH6qzPi317X8/W\n/6r0FB/P1jeTPpUeAj6GV155uU2Pv3dvTfbsaWjTc3RGHf11pC2fF235nNi+/bXse7NNDt3mvI4A\nJ1JVS0tLS6WH+KgWL16coUOH5uqrr06SjB49On/84x8rOxQAAACdRqdcdvzc5z6XdevWJUmef/75\nDB48uMITAQAA0Jl0ypXhd3+adJLcfffdOf/88ys8FQAAAJ1Fp4xhAAAAOB6d8jZpAAAAOB5iGAAA\ngOKIYQAAAIojho/Tpk2bUldXV+kx6CAOHTqU2bNn5+tf/3quv/76rF27ttIjAR3c7t27M3r06Gzd\nurXSo9BB1NbWZsqUKZkyZUpuv/32So8DcNKqrvQAndn999+fRx99ND179qz0KHQQa9asSd++fbN0\n6dLs27cv48aNy5gxYyo9FtBBHTp0KPPnz0/37t0rPQodRFNTU5LkwQcfrPAkACc/K8PHoX///lm+\nfHmlx6ADueaaazJz5swkSXNzc6qrvd8EHN2SJUsyadKkfOITn6j0KHQQW7Zsyf79+zNt2rRMnTo1\nmzZtqvRIACctMXwcrrrqqnTt2rXSY9CB9OjRI6eeemoaGhoyc+bM3HLLLZUeCeigVq1alTPOOCMj\nR46M/+WQd3Tv3j3Tpk3LAw88kDvuuCO33XZbmpubKz0WwElJDMMJtnPnznzjG9/I+PHjc+2111Z6\nHKCDWrVqVZ599tnU1dVly5YtmTNnTnbv3l3psaiw8847L9ddd13rn0877bS8+eabFZ4K4OTkHs4T\nwDv6vGPXrl2ZNm1a5s2bl+HDh1d6HKAD+9nPftb657q6utx5550544wzKjgRHcGvfvWrvPTSS5k/\nf37eeOONNDY2pl+/fpUeC+CkZGX4BKiqqqr0CHQQ9913X+rr67NixYrU1dVlypQprR+GAnA0Xkd4\nx8SJE/PWW29l8uTJufXWW3PXXXelSxe/rgG0haoWy5oAAAAUxluNAAAAFEcMAwAAUBwxDAAAQHHE\nMAAAAMURwwAAABRHDAMAAFAcMQzQQe3YsSNjxox53/YLLrggSfKvf/0rc+fOTZJs3rw53/ve95Ik\ndXV12bhx4xHbVq5cmccff/yYzjt79uz86Ec/et/2q666Ki+99NJR9/vOd76T1atXH9M5AAAqTQwD\ndGBVVVVH3bZjx47885//TJJceOGFWbBgwRGPe/e2v/3tb2lqajqmc9bW1uaxxx47Yttf/vKX9OnT\nJ4MHD/7I1wAA0BGJYYBOatGiRdm8eXMWLFiQP//5z6mrqzvi++9s27BhQ9auXZsf/vCHefLJJzN8\n+PA0NjYm+U9Qf/nLXz5iv+HDh+ff//53Xn755dZta9asycSJE1uPO3ny5NTW1ubKK6/M7373uyP2\nf++K9r333pt77703SfL000/na1/7WmprazNjxozs27cvSbJkyZKMGzcutbW1rY8FAGhLYhigk/ru\nd7+bCy+8sPVW6KOtIo8YMSJjxozJjBkzcsUVV+Tyyy9vDdjVq1dn3Lhx79tv/PjxravDTU1Neeqp\np1qj+aGHHsqiRYuyatWqLFy4MMuXL//A877Xnj178oMf/CA//vGPs2rVqowcOTLLli3L66+/nmee\neSarV6/Oww8/nO3btx/zKjYAwMdVXekBAPhgXbp88PuVHxSaH8U7q6+1tbX5zW9+kwcffPB9jxk/\nfnymTp2aWbNmZe3atRkxYkRqamqSJMuWLctTTz2V3/72t9m0aVP2799/TOd94YUXsnPnzkyZMiUt\nLS1pbm7OaaedlrPOOivdu3fPpEmTcvnll+fmm29Ot27djusaAQD+P2IYoIPq3bt3Ghoajti2a9eu\n9O7d+7iOO2zYsLzxxhv5wx/+kHPPPTf9+vV732POPvvsnHPOOfnrX/+aRx99NFOnTm393qRJkzJi\nxIh8/vOfz4gRI3LbbbcdsW9VVVVaWlpavz548GBOOeWUHD58OJdccklWrFiR5D8rzo2NjenSpUtW\nrlyZjRs3Zt26dbn++uvz0EMPpX///sd1nQAAH8Zt0gAdVM+ePdO/f//8/ve/b922cuXKXHbZZUmS\nrl275vDhw8d0rK5du+bgwYOtX48bNy4LFy5MbW3tUfeZMGFCfvnLX2b79u35whe+kCTZt29ftm/f\nnhkzZmTUqFFZv359mpubj9ivd+/eqa+vz969e9PU1JRnnnkmSTJkyJA8//zz2bZtW5Jk+fLlWbp0\naf7xj3/khhtuyLBhwzJ79uwMHDgwW7duPabrAgD4uKwMA3Rgy5Yty/z587NixYocPHgwn/70pzNv\n3rwkyYABA1JfX585c+ZkwoQJrft80G3Ul112We6555706dMnX/rSl3LttdfmJz/5Sa644oqjnvvK\nK6/MnXfemRtvvLF1W58+fTJx4sSMHTs2vXr1ytChQ3PgwIEcOHCg9TE1NTX55je/mQkTJuTss8/O\nkCFDkiRnnnlm7rrrrtx8881pbm7OWWedlWXLlqVPnz65+OKLM3bs2PTo0SOf/exnM2rUqOP+uwMA\n+DBVLe++lw2Ak15LS0t+/vOfZ9u2ba3/TzEAQGmsDAMUZvr06dm5c2ceeOCBSo8CAFAxVoYBAAAo\njg/QAgAAoDhiGAAAgOKIYQAAAIojhgEAACiOGAYAAKA4YhgAAIDi/B+Da0/q0X8sxgAAAABJRU5E\nrkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11885d048>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Play the Game\n", "agent1 = ml.QLearn()\n", "agent2 = p.Pavlov()\n", "game = PrisonersDilemma(agent1, agent2)\n", "game.play(10000)\n", "\n", "# Get Data from Game\n", "agent1_util_vals = Counter(game.data['A'])\n", "agent2_util_vals = Counter(game.data['B'])\n", "\n", "a1_total_score = sum(game.data['A'])\n", "a2_total_score = sum(game.data['B'])\n", "\n", "# Plot the results\n", "x1, y1, x2, y2 = [], [], [], []\n", "\n", "for i, j in zip(agent1_util_vals, agent2_util_vals):\n", " x1.append(i)\n", " y1.append(agent1_util_vals[i])\n", " x2.append(j)\n", " y2.append(agent2_util_vals[j])\n", "\n", "fig, ax = plt.subplots(figsize=(12,6))\n", "width = 0.35\n", "a1 = ax.bar(x1, y1, width, color='#8A9CEF')\n", "a2 = ax.bar(np.asarray(x2)+width, y2, width, color='orange')\n", "\n", "_ = ax.set_title('QLearning Agent Vs Pavlov Agent')\n", "_ = ax.set_ylabel('Number of Games')\n", "_ = ax.set_xlabel('Utility Values')\n", "ax.set_xticks(np.add([1,2,4,5],width/2))\n", "_ = ax.set_xticklabels(('1', '2', '4', '5'))\n", "_ = ax.legend((a1[0], a2[0]), ('QLearning Agent\\nTotal Utility Score: {}'.format(str(a1_total_score)),\n", " 'Pavlov Agent\\nTotal Utility Score: {}'.format(str(a2_total_score))), loc=1, bbox_to_anchor=(1.35, 1))\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Pavlov's simple rules out performs Q Learning here which is interesting." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Counter({2: 9596, 1: 401, 4: 2, 5: 1}) Counter({2: 9596, 5: 401, 4: 2, 1: 1})\n" ] } ], "source": [ "print(agent1_util_vals, agent2_util_vals)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Q-Learning VS Chaos" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "scrolled": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Playing Game: 100%|██████████| 10000/10000 [00:00<00:00, 15111.22it/s]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA70AAAGJCAYAAABGqVQ+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4THf///HXZBMRioiW1m2JBK01QZXaWm0pQYtKQqIt\nrbR0SdBQS0oUobbfXZSiFWKtpXq3vfWKJWopoqVUSYjlRm1JLEnINuf3h9t8m5uIJZPIeD6uyyXz\nOee8z/sckxmvOWfOMRmGYQgAAAAAABtkV9QNAAAAAABgLYReAAAAAIDNIvQCAAAAAGwWoRcAAAAA\nYLMIvQAAAAAAm0XoBQAAAADYLEIvgAdaTk6O5syZo86dO6tz587y9fVVRESELl68aJknMDBQP/30\nU6H3tn//fn3wwQcFXve9997TM888o4yMjAKv/XczZszQhg0bbhoPCgrSnDlzbhqfP3++3n333bta\nx6+//qp+/frplVdeka+vr4KDg5WQkCBJ2rlzp3x9fe+t+QJQ1PsZAAAUDkIvgAfa4MGD9eeff2rx\n4sVau3at1qxZo0qVKqlnz55KS0sr0t7q1q2r6dOnF2jNc+fOKS4uTg0aNNDq1asLtPb/+uWXX5Sd\nnX3TeK9evbRq1aqbxlesWKHAwMA7rr9r1y4NGjRIgwYN0urVq/Xdd9+pY8eOCgwMVEpKyn31fr8e\nhP0MAAAKh0NRNwAAedm3b5/i4uK0fv16OTk5SZLs7e3Vr18//frrr1q6dKn69u172xobN27UrFmz\nlJ2dLWdnZ3300Udq2LChkpKSNGrUKCUlJenChQuqXLmypk2bpvLly+u5555TgwYNFB8fr5CQEI0b\nN06vvvqqtm/frr/++ksdOnTQkCFDtHPnTkVEROi7777TsGHDVKpUKcXHx+vMmTOqUaOGpk6dqpIl\nSyo2NlafffaZHBwcVLt2bW3btk1LlixR5cqVb+p3+fLlat68uV566SVNmzZNfn5+lmm3q/PNN99o\n8eLFkqSyZctq5MiRql69ep59rVq1Svv379fEiRNlZ2endu3aWdbTrl07jRs3Trt375aPj4+k60dl\nJemZZ55Renq6hg0bphMnTshkMqlu3boaM2bMTdvyz3/+UwMGDFCdOnUsY76+vnJ2dpbZbJYkpaWl\nKTQ0VImJicrMzFRERIR8fHx07NgxjRkzRunp6Tp37pzq1KmjqVOnysnJSXFxcZo0aZKuXbsmR0dH\nffDBB2rZsqUuXLigsLAwS6Bu3bp1nkfiH4T9DAAACokBAA+or776yggODr7ltEWLFhnvvvuuYRiG\n0bt3b2PdunU3zXPs2DGjU6dOxsWLFw3DMIyEhASjRYsWxtWrV40FCxYYX375pWXet956y/jqq68M\nwzCMtm3bGjNnzrRMa9u2rREZGWkYhmGcOXPGqF+/vnHy5Eljx44dRqdOnQzDMIyhQ4ca/v7+RlZW\nlpGVlWW88sorxqpVq4yUlBSjadOmxqFDhwzDMIzVq1cbtWvXNk6dOnVTv9nZ2UbLli2NTZs2GRkZ\nGUbTpk2NzZs3G4Zh3LbOzp07jV69ehnXrl0zDMMwtmzZYrz88su37et2+80wDOOf//ynMXToUMvj\nQYMGGQsXLjQMwzDWrFlj9OvXzzAMw8jJyTFGjhxpnDhx4qYajRo1Mg4fPnzL+oZhGDt27DCeeuop\n4/fffzcM4/q/9+uvv24YhmFERkYaa9euNQzDMLKysgxfX1/jp59+MlJSUozmzZtblklISDCefvpp\n4+TJk8aMGTOM8PBwwzAMIz093QgNDTWuXLnyQO9nAABgfRzpBVBs5eTk3Hb61q1bdeHCBb3++usy\nDEOS5ODgoOPHjysoKEhxcXH6+uuvdezYMR0+fFgNGjSwLNu4ceNctZ5//nlJ0qOPPio3NzddunTp\npvW1bNlSDg7XX1a9vLx06dIlxcXFydPTU15eXpKkrl27auzYsbfsNyYmRmazWS1btpSdnZ1efvll\nff3112rZsuUt63z66aeSpE2bNunEiRPy8/OzbOfly5d1+fLlPPvKT8+ePdWpUyelp6crMzNTW7du\n1SeffCJJ8vHx0bRp0xQYGKgWLVqoT58+qlKlyk017OzsLP3kpUqVKqpXr54kqU6dOpbTqocMGaKt\nW7dq7ty5OnbsmM6fP6+0tDTt3btXVatWtSxTs2ZN+fj4aOfOnWrVqpXefvttnT59Ws2bN9egQYPk\n6ur6QO9nAABgfYReAA8sb29vzZ07VxkZGSpRooSysrKUlpamsmXL6pdffpG3t/dtlzebzXrmmWc0\nZcoUy9iZM2dUsWJFTZo0Sfv371e3bt3UrFkzZWdn5wpoLi4uuWo5OzvnenyrMPf3eUwmkwzDkL29\nveVU3hvs7G59OYWlS5cqIyNDL7zwgiQpKytL58+f15EjR25Zx2QyWbazS5cuGjRokGXa2bNnVaZM\nmTz7yo+7u7uaN2+u77//Xunp6XrppZcsAfKJJ57QTz/9pJ07d+qXX35Rnz59NGrUKL344ou5ajRs\n2FC//fabatasmWt8zJgxeuGFF2Rvb28Jif/bW0hIiMxmszp06KC2bdvqr7/+knR9v/9v/zk5OcrO\nzlbdunW1fv16bdu2Tb/88ou6d++umTNnqmHDhg/sfgYAANbHhawAPLDq16+vp59+WkOHDtXly5d1\n4sQJ9erVS++//77i4+MVEBBgmfdWAaNZs2baunWrEhMTJV3/rmaXLl0sRy779Omjzp07q1y5ctq2\nbdtNYacgeHt76/jx44qPj5ckrVu3TleuXLEEqRuOHj2qXbt2afXq1Vq/fr3Wr1+vzZs3y8fHRwsW\nLLhtnRYtWuj777/X+fPnJUnR0dF6/fXX8+3NwcHhthdY8vf319q1a/Xtt9+qV69elvElS5Zo6NCh\natGihQYNGqSWLVta+vq74OBgzZw5UwcOHLCMrVq1Sj/99JNq1ap12962bt2qAQMGqEOHDjIMQ3v3\n7lVOTo4aNGigY8eOad++fZKkhIQE7d69W02bNtXkyZM1Y8YMPf/88xo+fLhq1qypY8eO5ar7IO5n\nAABgXRzpBfBAmzRpkubNm6fevXvLMAxlZ2fLwcFBpUqVUkxMjLp27SpJCgsL07Bhw2QYhkwmk3r1\n6qVBgwZpzJgxCg0NlXT9IlizZs2Ss7OzBgwYoMjISM2YMUMODg7y8fHR8ePHJemmQJrf49t55JFH\n9Nlnn+mjjz6SnZ2d6tatK3t7+5uOHC9dulQvvPCCnnjiiVzjAwYM0DvvvKPQ0NA86zz77LPq16+f\n3nzzTdnZ2cnV1VWff/55vr21bdtWkZGRyszMtOzHv2vatKkuXryocuXKydPT0zLetWtX7dq1Sy+/\n/LJKliypxx9/XH369Llp+caNG2vs2LEaO3asrl69qqysLFWpUkVRUVEqX778bXsLCQnRgAEDVLZs\nWZUsWVJNmzbViRMnVK5cOU2fPl0RERG6evWq7O3tNX78eFWtWlV9+vRRWFiYfH195eTkpNq1a6tj\nx44P/H4GAADWZTI4/wpAMZSamqp9+/bpmWeeKepWbis1NVWzZs3S+++/rxIlSujAgQPq37+/fv75\n5yKpg9tjPwMAYHusfqT31VdfzfU9sODgYA0dOlR2dnby9PRUeHi4pOu3j1i2bJkcHR0VHBysNm3a\nKCMjQ0OGDFFSUpJcXV01YcIElStXztotAygGXF1dH/jAK13v09HRUd26dZODg4McHR3v6d6+BVUH\nt8d+BgDA9lj1SG9mZqb8/PwsV+OUpHfeeUd9+/ZV48aNFR4erpYtW6phw4Z64403tHr1al27dk3+\n/v5atWqVoqOjlZqaqoEDB+qHH37Qb7/9puHDh1urXQAAAACAjbHqhawOHjyo9PR09e3bV6+//rr2\n7t2rAwcOWG4F0qpVK23btk2///67fHx85ODgIFdXV1WrVk0HDx7U7t271apVK8u827dvt2a7AAAA\nAAAbY9XTm52dndW3b1/16NFDx44d01tvvZXrCqulSpVSamqq0tLSVLp0acu4i4uLZfzGqdE35gUA\nAAAA4E5ZNfRWq1ZNVatWtfxctmzZXLeuSEtLU5kyZeTq6por0P59PC0tzTL292Ccl+zsHDk42Bfw\nlgAAAAAAiiOrht6VK1cqPj5e4eHhOnv2rFJTU9WiRQvt3LlTTZs21ebNm9WsWTPVq1dPU6dOVWZm\npjIyMpSYmChPT081atRIsbGxqlevnmJjYy2nRd9OSkq61bbH3b20zp+/YrX6KJ54XgC4U7xe4FZ4\nXhRP7u75H4wB8GCwaujt3r27hg0bpoCAANnZ2WnChAkqW7asRowYoaysLHl4eKh9+/YymUwKDAxU\nQECADMNQaGionJyc5O/vr7CwMAUEBMjJyUmTJ0+2ZrsAAAAAABtjc/fpteYnpXwSi1vheQHgTvF6\ngVvheVE8caQXKD6sevVmAAAAAACKEqEXAAAAAGCzCL0AAAAAAJtF6AUAAAAA2CxCLwAAAADAZhF6\nAQAAADyU9u/fr759+6pXr17y9/fXtGnTlJ2dLUkaNmyYtmzZYtX1X7hwQWPGjLnvOpmZmXr22Wc1\nf/78Aujq/1y6dEn/+te/CrRmUSD0AgAAAHjonD17Vh999JHCw8MVHR2tJUuWyNHRUePGjSu0HipU\nqKBRo0bdd51169apY8eOWr16dQF09X8OHjyoDRs2FGjNouBQ1A0AAAAAQGH79ttv9dprr+kf//iH\nZWzAgAFq166dMjMz81xuypQp2r17t3JycvTGG2/opZde0q5du/T555/LMAylp6dr8uTJcnBwUHBw\nsMqVK6dWrVopNjZWderUUUJCgtLS0jR9+nSZzWaFhoZq2bJl6ty5s5o2bapDhw7JZDJp5syZcnV1\n1ejRo/XHH3/Izc1NJ0+e1OzZs1W5cuVcPa1YsULDhw9XUlKSYmNj1bp1a0m65bJ2dnYaOXKkMjIy\n5OzsrIiICGVnZ2vQoEGqVKmSjh8/rgYNGig8PFyzZ8/WoUOHtGLFCvXo0cM6/xCFgND7gMjJydGx\nY4lF3cY9qVathuzt7Yu6DQAAClxhvD+npLgqOTnVKrV5jwbydvLkSbVq1eqm8QoVKuj8+fO3XGbz\n5s06deqUoqOjlZmZqddee00tWrRQQkKCPvvsM7m7u2v27Nn697//rU6dOikpKUlr1qyRvb29YmNj\n1aBBA3388ceaOnWq/vWvf+nll1+WyWSSJKWmpsrX11cjRozQ4MGDtXnzZpUoUUKXLl3S8uXLlZyc\nrPbt29/U0/Hjx3Xt2jXVqlVL3bp10/z589W6dWutX7/+lstGRkYqKChILVu21Pbt2zVp0iSFhITo\n2LFj+uqrr1SiRAm1a9dOSUlJCg4O1rJly4p14JUIvQ+MY8cSdWmNj6q7F3Und+foeelY193y8PAs\n6lYAAChwx44lau6yoypfoaoV13LZKlWTLxxXv57iPRrIQ+XKlfWf//wn15jZbNbp06fl5uZ2y2Xi\n4+O1f/9+BQUFyTAM5eTk6OTJk3r00UcVERGhUqVK6ezZs/L29pYkPfHEE7k+eKpTp44kqVKlSrpw\n4cJN9f8+PTMzUydPnlTDhg0lSeXLl1f16tVvWmbFihW6evWq3nrrLZnNZu3Zs0f/+c9/dOTIkVzL\n1qhRw7INs2fP1pdffinDMOTo6ChJqlq1qkqWLClJqlixojIyMu5wTz74CL0PkOruklelou7i7iUX\ndQP5sPan9Nb6hD4nJ0eSSfb2xfOr9xxdAGAryleoKvfHahZ1G4BNy8nJ0ZEjRwq0poeHx23/L9K1\na1f17dtXzz//vMqWLauQkBA9+uijatOmjZydnSVJhmHkWqZGjRp6+umnNWbMGBmGoZkzZ6pKlSp6\n8803FRMTIxcXFw0dOtQy/42juHk9zk+tWrX07bffKigoSJcuXdKxY8dyTc/OztYPP/ygb7/9VqVL\nl5YkzZ49W9HR0XrmmWe0Zs0ay7JHjx617Jc333xTDRs2VGJiouLi4m5a743ttrOz++//SYs3Qi9s\nnvU/pbfOJ/RHE35Rv8feL3ZH/yXOAAAAAHfnyJEjmjhrX4H9fy35wnF99I7k5eWV5zyPPfaYJk2a\npNGjR+vq1au6du2a7O3t5ebmpkuXLkmSPv30U7m6usowDNWoUUOTJk3Szp071atXL129elXt2rVT\nqVKl1KVLFwUEBMjFxUUVKlTQuXPnJOUOufkF3lvN27p1a8XGxsrf318VKlRQyZIl5eDwfxFu48aN\nqlu3riXwStIrr7yirl276sMPP7zlskOGDNEnn3yizMxMZWRkaPjw4Xmuv0qVKkpISFBUVJSCgoJu\nv9MfYCbjfz++KObOn79itdru7qWtVv/IkQSV3+pT7I70xv8lJbd4sMPNkSMJWrXeXOw+pT+0f70+\neqJ7sXtOSMXjeQEUBWu+j8A6iut7iCSdP3NYrz5vx2uxlbi7l85/Jtyx+Ph4zV1xucB+186fOax+\nPcrcNvTerpcqVapYTvUtSomJiTp48KBefvllXbx4UZ06ddLGjRstpyRba1lbw5FeAAAAAPivewnK\n1lKpUiV99tlnWrBggcxms4YMGXLHofV+lrU1hF4AAAAAeACVLFlSM2fOLPRlbU3xvEIOAAAAAAB3\ngNALAAAA4KETGRmpwMBAdejQQW3btlVQUJA+/PDDPOc/deqUNm3alOf0EydOKCAgINdYTk6OWrdu\nnWts06ZNGjFihCRp3bp1SkpK0tmzZzV27FhJ1y9eZTab9cUXX+jAgQPKyMjQN998c0fblJycrPfe\ne099+/aVn5+fRo0apczMzDtatiBERUWpe/fueu2117Ru3bpc0xISEuTt7S2z2SxJOnbsmF5//XX1\n7t1bffv21eXL1y8OGxERoW7duqlPnz7at2+fJCk9PV1DhgxR79691bNnT/3xxx931RenNwMAAAAo\ncskXjhdwrXq3nScsLEyStHr1ah09elShoaG3nX/btm06deqU2rRpk+c8t7pC8+3GFixYoCeffFJV\nqlSxBOEb04KDgyVJx48f16pVq9S9e/fb9idJc+bMUevWrS3zjh07VitWrFCvXr3yXfZ+JSUlaeXK\nlVqzZo3S0tLUqVMnvfTSS5KkK1eu6LPPPlOJEiUs848cOVJhYWGqW7eu1q1bp+PHj+vs2bM6deqU\nVq5cqeTkZPXv318rVqzQnDlz9NRTT2nSpEk6ePCgDh8+rKeeeuqOeyP0AgAAAChSHh4e+uidgqxY\nTx4eHve89Lhx47Rnzx6ZTCZ17txZr732mubNm6fMzEw1atRIJUqU0KxZs2Q2m3Xt2jVNmTLlrtex\nYcMGxcfHa/DgwZowYYKGDx+uxYsXW6YPGTJEr776qtauXauEhATNnj1b69ev18SJE1WtWjVt3LhR\n27Zts9xySJLc3Nz0448/6vHHH5e3t7eGDRtmuVfx559/ro0bN8psNqtXr17q3r27vvzyS61bt04O\nDg56+umnFRISomnTpmnfvn1KT0/XhAkTtGnTJv3444+SpC5dusjf31/btm3Tvn371L9//1zrXr16\ntUwmk86dO2e5+rVhGBo1apSGDBmifv36Sbp+5PbSpUv66aefFBkZqYYNG+rFF1/Utm3b1LJlS0lS\n+fLlZTablZKSoi1btqhLly7q27evHnnkEY0aNequ9jWhFwAAAECRsre3f2CumhwTE6Pz589r+fLl\nysrKkp+fn5o1a6a+ffvq9OnTat26taKjozV16lSVL19eM2bM0Lp16/Tiiy/e8TpMJpOee+45eXl5\nKTIyUoZh5Hkf33feeUcnTpxQ//79Vb58ea1evVohISFatWqV3nvvvVzz9uvXT+XKldPcuXO1b98+\nNWnSRKNGjdK5c+e0Y8cOrVy5UllZWZoyZYr+/PNPbdiwQStWrJDJZNKAAQP0888/S7p+BeuwsDAd\nOnRIMTExWrp0qcxms/r06aNnn31WzZs3V/PmzW/q1c7OTlFRUZoxY4befPNNSdK0adP0wgsvqGbN\nmrpxt9yLFy8qISFB4eHhCg0N1dChQ/Xtt9+qdu3aWrJkiXr27KmTJ08qMTFR165dU0pKilJTUzVv\n3jytXLlSEydO1Lhx4+54f/OdXgAAAAD4r8TERDVu3FiS5OjoqAYNGigxMTHXPBUrVtTo0aM1bNgw\nxcXFKTs7+5a17O3tlZOTk2ssPT0912m+d6Njx46KiYnRhQsXlJSUdNMHBdu3b1e3bt00b948bd26\nVXXq1NGECRN09OhR1a9f37JNYWFhSkxMVMOGDS1h29vbW4cPH5Yk1ahRQ9L17+GePHlSQUFB6tOn\njy5fvqzjx29/GnpQUJC2bNmiLVu2aNeuXfr3v/+tpUuXKjAwUMnJyXrzzTdVtmxZlS5dWj4+PpKk\nNm3a6I8//lDr1q1Vv359BQUF6euvv9ZTTz2lRx55RGXLltVzzz0nSWrbtu1df6eX0AsAAAAA/1Wj\nRg3t3r1bkpSVlaU9e/aoatWqsrOzs1yEaeTIkYqMjNT48ePl5uZmOYJ54++/q1y5suLi4iyPf/75\nZ9Wrd/37xn+vecP/1jCZTJbg7OLiIm9vb40fP15du3a9aV1ff/21vv/+e0nXw62Hh4dKlCihmjVr\nWoJiZmam3njjDVWpUkV79+6VYRgyDENxcXGqXr26ZZ039kWtWrUUFRWlhQsXqmvXrvL09Lzlfjty\n5Ijef/99SZKDg4OcnJzk4OCgdevWWZYvX768vvrqK7m4uOjxxx/X3r17JUlxcXHy9PTUkSNH9MQT\nT2jx4sV666235OjoKBcXF/n4+Cg2NlaStGvXLtWsWfOWPeSF05sBAAAA4L/atWunXbt2yc/PT1lZ\nWercubO8vLyUmZmpuXPn6sknn5Svr6/8/f1VsmRJubm56dy5c5JufdGqsWPHavTo0crOzpbZbJa3\nt7d8fX0lXT+6OnjwYEVERFjmv1Hjxt/u7u66du2apk6dqpCQEPXo0UN9+vTRmDFjbrmuTz75RPPn\nz5ezs7Pc3Nz0ySefyM3NTc2aNZOfn58kqVevXqpfv76ef/559ezZU4ZhqGnTpmrTpo327Nljqffk\nk0/K29tb/v7+ysjIkLe3tx599NFbfqfXw8NDnp6e6tmzp0wmk9q2batGjRrl6s9kMllO5R4/frxG\njx4twzBUpUoVdevWTdnZ2Zo6daqio6Pl7Oys8PBwSdK7776r4cOHy8/PT46Ojpo0adJd/ZuajFt9\nHFGMnT9/xWq13d1LW63+kSMJKr/VR16VrFLeauL/kpJb7JaHx60/8XkQHDmSoFXrzXJ/7O4+ESpq\nh/av10dPdC92zwmpeDwvgKJgzfcRWEdxfQ+RpPNnDuvV5+14LbYSd/fSRd0CHlK//fabvvnmG336\n6adF3UqxwZFeAAAAACgGoqKitGbNGk2fPr2oWylWCL0AAAAAUAwEBQUpKCioqNsodriQFQAAAADA\nZhF6AQAAAAA2i9ALAAAAALBZhF4AAAAAgM0i9AIAAAB4KCUkJKh///7q06ePevTooc8//1yStHPn\nToWGhhZKD8HBwQoODi7wutHR0QVes7gi9AIAAAB46Fy5ckWhoaEaMWKEFixYoOXLlys+Pl7Lli2T\nJJlMJqv38Ndff+nq1atKTU3VyZMnC7T2rFmzCrReccYtiwAAAAA8dNavX69nnnlGVapUkXQ95EZG\nRsrR0VG//vqrjh49qrfffltJSUlq27atBg4cqF27dunzzz+XYRhKT0/X5MmTVbVqVc2fP18//PCD\nHBwc1KRJEw0aNEi//vqrpZ6zs7P+3//7f3JxccnVw8qVK9WuXTs5OzsrOjpaYWFhkqQVK1Zo8eLF\nKlu2rBwcHNSxY0d16tRJ4eHhOnHihMxmsz788EM1adJEnTt3VtOmTXXo0CGZTCbNnDlTixYt0sWL\nFzVmzBiNGjWq0Pftg4YjvQAAAAAeOufOnbME3htKliwpB4frxwWzsrI0c+ZMRUdHa9GiRZKunw79\n2WefKSoqSi+88IL+/e9/Kz4+XuvWrdPy5cu1dOlSHT9+XJs2bVJMTIw6dOighQsXys/PT5cvX861\nLsMw9N1336lLly7q0KGDfvzxR2VmZiolJUVz587VsmXLNG/ePF27dk3S9SBcvnx5LVy4UDNmzNDo\n0aMlSampqfL19dXChQtVsWJFbd68WcHBwSpbtiyB97840gsAAADgoVO5cmX98ccfucZOnjypM2fO\nSJI8PT3l4OBg+SNJjz76qCIiIlSqVCmdPXtW3t7eSkxMVIMGDWRnd/14ore3tw4fPqx33nlHM2fO\nVJ8+ffTYY4+pYcOGudb1888/Kz09XYMGDZJhGJYQXLNmTXl6esrJyUmSLMvFx8dr9+7d2rt3rwzD\nUE5OjlJSUiRJderUkSRVqlRJmZmZVtpjxRehFwAAAECRysnJ0ZEjRwq0poeHh+zt7fOc3qZNG82e\nPVsBAQGqUqWKsrKyNGHCBLVo0UIeHh63XGbkyJGKiYmRi4uLhg4dKkmqUaOGvv76a5nNZplMJsXF\nxalr16769ttv1a1bN4WFhWnOnDlatmyZBgwYYKn1zTff6NNPP1WrVq0kSb/++qvGjh2refPmKTEx\nUZmZmXJwcNDvv/8uDw8PeXh4qFKlSnr77beVkZGhL774QmXLls1z+wzDuJfdZpMIvQAAAACK1JEj\nR3R0fi1Vdy+YekfPS3rzkLy8vPKcx9XVVZGRkRoxYoQMw1BaWpqee+45+fv7a+fOnbe8kFWXLl0U\nEBAgFxcXVahQQefOnZOXl5fat28vPz8/GYYhHx8ftWvXTr///ruGDx+ukiVLyt7eXmPGjLHUSUpK\n0u+//65p06ZZxry9vZWZmanjx4+rX79+CggI0COPPKKMjAw5ODioZ8+eGjFihAIDA5WWliZ/f3+Z\nTKZcff7955o1a+qjjz7SxIkT73NvFn8mw8Y+Ajh//orVaru7l7Za/SNHElR+q4+8KlmlvNXE/yUl\nt9gtDw/Pom4lT0eOJGjVerPcH6tZ1K3clUP71+ujJ7oXu+eEVDyeF0BRsOb7CKyjuL6HSNL5M4f1\n6vN2vBYkx/88AAAgAElEQVRbibt76aJuwabEx8dL39UqsP/3xP8lyff2ofdBlZOToy+//NJyG6Ne\nvXopJCREjRs3LuLOii+O9AIAAADAA8Le3l5Xr17Vq6++KicnJ9WvX5/Ae58IvQAAAADwAAkJCVFI\nSEhRt2EzuGURAAAAgIdOZGSkAgMD1aFDB7Vt21ZBQUH68MMP85z/1KlT2rRpU57TT5w4oYCAgFxj\nOTk5at26da6xTZs2acSIEZKkdevWKSkpSWfPntXYsWMlSa1bt5bZbNYXX3yhAwcOKCMjQ998880d\nbVNycrLee+899e3bV35+fho1alShX805KSlJL7zwgsxmsyTJbDZr7NixCggIUPfu3fXzzz9LkrZs\n2aKePXsqMDBQISEhufo8evSounTpYnmcnp6uIUOGqHfv3urZs+dNV93OD6EXAAAAwEMnLCxMCxcu\n1Ntvvy1fX19FRUXlurDU/9q2bZv27Nlz25q3uvjV7cYWLFig9PR0Pfroo5YgfGNacHCwnnzySZ05\nc0arVq26o22aM2eOWrdurXnz5mnp0qVycnLSihUr7mjZghAbG6t+/fopKSnJMrZy5UqZTCYtXrxY\n//znP3X8+HFJUkREhGbPnq2FCxeqUqVKWrlypSRp9erVGjRokC5dupRru5566iktWrRIo0eP1tGj\nR++qL05vBgAAAFDkjp4v2FrV72P5cePGac+ePTKZTOrcubNee+01zZs3T5mZmWrUqJFKlCihWbNm\nyWw269q1a5oyZcpdr2PDhg2Kj4/X4MGDNWHCBA0fPlyLFy+2TB8yZIheffVVrV27VgkJCZo9e7bW\nr1+viRMnqlq1atq4caO2bdum4cOHW5Zxc3PTjz/+qMcff1ze3t4aNmyY5bZNn3/+uTZu3Ciz2axe\nvXqpe/fu+vLLL7Vu3To5ODjo6aefVkhIiKZNm6Z9+/YpPT1dEyZM0KZNm/Tjjz9Kun71an9/f23b\ntk379u1T//79c22To6OjFixYoM6dO1vGtmzZoqeeekpvv/227OzsLOE+OjracsulnJwclShRQpJU\nrlw5LVy4UB07dsxVo0uXLurbt68eeeQRjRo16q72NaEXAAAAQJHy8PCQ3jxUYPWq36h5D2JiYnT+\n/HktX75cWVlZ8vPzU7NmzdS3b1+dPn1arVu3VnR0tKZOnary5ctrxowZWrdunV588cU7XofJZNJz\nzz0nLy8vRUZGyjCMWx4RlqR33nlHJ06cUP/+/VW+fHmtXr1aISEhWrVqld57771c8/br10/lypXT\n3LlztW/fPjVp0kSjRo3SuXPntGPHDq1cuVJZWVmaMmWK/vzzT23YsEErVqyQyWTSgAEDLKcee3l5\nKSwsTIcOHVJMTIyWLl0qs9msPn366Nlnn1Xz5s3VvHnzm3q9Mfb3GwSlpKTo5MmTmjNnjn755RcN\nHz5cCxYsUIUKFSRJP/74o3777TcNGTJE0vX7J+fk5OSqm5KSotTUVM2bN08rV67UxIkTNW7cuDve\n34ReAAAAAEXK3t7+gbm9UGJiouVqyY6OjmrQoIESExNzzVOxYkWNHj1aLi4uOnPmjJ5++ulb1rK3\nt78pwKWnp1uOat6tjh07qkePHgoMDFRSUtJN+2z79u3q1q2bunfvrqysLM2ePVsTJkxQ27ZtVb9+\nfcs2hYWF6fvvv1fDhg0tYdvb21uHDx+WJNWoUUOSlJCQoJMnTyooKEiGYejy5cs6fvy4qlSpcts+\n/x7gy5YtqzZt2kiSmjVrpsGDB1umzZs3Txs3btTcuXPl4JB3NC1btqyee+45SVLbtm0VFRV1J7vL\ngu/0AgAAAMB/1ahRQ7t375YkZWVlac+ePapatars7OwsF2caOXKkIiMjNX78eLm5uVmObP79COcN\nlStXVlxcnOXxzz//rHr16klSrpo3/G8Nk8lkCc4uLi7y9vbW+PHj1bVr15vW9fXXX+v777+XdD3c\nenh4qESJEqpZs6bl4k+ZmZl64403VKVKFe3du1eGYcgwDMXFxal69eqWdd7YF7Vq1VJUVJQWLlyo\nrl27ytMz/3t//30bfHx8FBsbK0nav3+/nnjiCUnXT7fet2+f5s+frzJlyty2RuPGjS01du3apZo1\n7+7e6RzpBQAAAID/ateunXbt2iU/Pz9lZWWpc+fO8vLyUmZmpubOnasnn3xSvr6+8vf3V8mSJeXm\n5qZz585JuvVFq8aOHavRo0crOztbZrNZ3t7e8vX1lXT96OrgwYMVERFhmf9GjRt/u7u769q1a5o6\ndapCQkLUo0cP9enTR2PGjLnluj755BPNnz9fzs7OcnNz0yeffCI3Nzc1a9ZMfn5+kqRevXqpfv36\nev7559WzZ08ZhqGmTZuqTZs2uS7W9eSTT8rb21v+/v7KyMiQt7e3Hn300Ty/0/u/2yBJ/v7+Cg8P\nV8+ePSVdv4DVuXPn9MUXX6hu3brq27evTCaTfH191aNHj1vWeOeddzR8+HD5+fnJ0dFRkyZNut0/\n4c39GLf6OKIYO3/+itVqu7uXtlr9I0cSVH6rj7wqWaW81cT/JSW32C0Pj/w/8SkqR44kaNV6s9wf\nu7tPhIraof3r9dET3Yvdc0IqHs8LoChY830E1lFc30Mk6fyZw3r1eTtei63E3b10UbeAh9Rvv/2m\nb775Rp9++mlRt1JscKQXAAAAAIqBqKgorVmzRtOnTy/qVooVQi8AAAAAFANBQUEKCgoq6jaKHS5k\nBQAAAACwWYReAAAAAIDNIvQCAAAAAGwWoRcAAAAAYLMIvQAAAAAAm0XoBQAAAADYLEIvAAAAAMBm\nEXoBAAAAADaL0AsAAAAAsFlWD71JSUlq06aNjh49qhMnTiggIEC9e/fW6NGjLfMsX75c3bp1k5+f\nnzZt2iRJysjI0Pvvv69evXqpf//+SklJsXarAAAAAAAbY9XQm52drfDwcDk7O0uSxo8fr9DQUC1a\ntEhms1kxMTG6cOGCFi5cqGXLlmnu3LmaPHmysrKytGTJEnl5eSk6OlpdunTRzJkzrdkqAAAAAMAG\nWTX0RkZGyt/fXxUrVpRhGDpw4IAaN24sSWrVqpW2bdum33//XT4+PnJwcJCrq6uqVaumgwcPavfu\n3WrVqpVl3u3bt1uzVQAAAACADbJa6F21apXc3NzUokULGYYhSTKbzZbppUqVUmpqqtLS0lS6dGnL\nuIuLi2Xc1dU117wAAAAAANwNB2sVXrVqlUwmk7Zu3apDhw4pLCws1/dy09LSVKZMGbm6uuYKtH8f\nT0tLs4z9PRjfTrlyLnJwsC/Yjfkbd/c76+NupaS4WqVuYShf3tVq+6UgXN+3l4u6jYfOg/68AIoK\nvxfFS3F/D+G1GACsGHoXLVpk+TkoKEijR4/WxIkTtWvXLjVp0kSbN29Ws2bNVK9ePU2dOlWZmZnK\nyMhQYmKiPD091ahRI8XGxqpevXqKjY21nBadn5SUdGttktzdS+v8+StWqZ2cnKryVqlsfcnJqVbb\nLwUhOZmzBIrCg/68AIqCNd9HYB3F/T2E12Lr4cMEoPiwWui9lbCwMI0cOVJZWVny8PBQ+/btZTKZ\nFBgYqICAABmGodDQUDk5Ocnf319hYWEKCAiQk5OTJk+eXJitAgAAAABsQKGE3qioKMvPCxcuvGl6\njx491KNHj1xjzs7Omj59utV7AwAAAADYLqvfpxcAAAAAgKJC6AUAAAAA2CxCLwAAAADAZhF6AQAA\nAAA2i9ALAAAAALBZhF4AAAAAgM0i9AIAAAAAbBahFwAAAABgswi9AAAAAACbRegFAAAAANgsQi8A\nAAAAwGYRegEAAAAANovQCwAAAACwWYReAAAAAIDNIvQCAAAAAGwWoRcAAAAAYLMIvQAAAAAAm0Xo\nBQAAAADYLEIvAAAAAMBmEXoBAAAAADaL0AsAAAAAsFmEXgAAAACAzSL0AgAAAABsFqEXAAAAAGCz\nCL0AAAAAAJtF6AUAAAAA2CxCLwAAAADAZhF6AQAAAAA2i9ALAAAAALBZhF4AAAAAgM0i9AIAAAAA\nbBahFwAAAABgswi9AAAAAACbRegFAAAAANgsQi8AAAAAwGYRegEAAAAANovQCwAAAACwWYReAAAA\nAIDNIvQCAAAAAGwWoRcAAAAAYLMIvQAAAAAAm0XoBQAAAADYLEIvAAAAAMBmEXoBAAAAADaL0AsA\nAAAAsFmEXgAAAACAzSL0AgAAAABsFqEXAAAAAGCzCL0AAAAAAJtF6AUAAAAA2CxCLwAAAADAZhF6\nAQAAAAA2i9ALAAAAALBZ+YbeEydOaO3atTIMQyNHjlS3bt0UFxdXGL0BAAAAAHBf8g29w4YNk6Oj\no9avX69jx45p2LBhmjhxYmH0BgAAAADAfck39GZkZKhDhw7auHGjfH191bhxY2VnZxdGbwAAAAAA\n3Jd8Q6+9vb3WrVunTZs2qU2bNoqJiZGdHV8FBgAAAAA8+PJNr2PGjNGmTZsUHh6uihUr6vvvv9fY\nsWMLozcAAAAAAO5LvqG3Vq1aevfdd+Xk5KScnByFhoaqdu3ahdEbAAAAAAD3xSG/GX744QfNmjVL\n165d09KlS+Xn56ePPvpIXbp0ybe42WzWiBEjdPToUdnZ2Wn06NFycnLS0KFDZWdnJ09PT4WHh0uS\nli9frmXLlsnR0VHBwcFq06aNMjIyNGTIECUlJcnV1VUTJkxQuXLl7n+rAQAAAAAPhXyP9H755Zda\nsmSJSpUqJTc3N61evVpz5sy5o+IbNmyQyWTSkiVL9MEHH2jKlCkaP368QkNDtWjRIpnNZsXExOjC\nhQtauHChli1bprlz52ry5MnKysrSkiVL5OXlpejoaHXp0kUzZ8687w0GAAAAADw88g29dnZ2cnV1\ntTyuWLHiHV/Iql27doqIiJAknT59Wo888ogOHDigxo0bS5JatWqlbdu26ffff5ePj48cHBzk6uqq\natWq6eDBg9q9e7datWplmXf79u13vYEAAAAAgIdXvunV09NTixYtUnZ2tv7880+NHDnyrr7Ta2dn\np6FDh2rs2LHq1KmTDMOwTCtVqpRSU1OVlpam0qVLW8ZdXFws4zcC9415AQAAAAC4U/l+p3fUqFGa\nNWuWSpQooY8//ljNmjVTWFjYXa1kwoQJSkpKUvfu3ZWRkWEZT0tLU5kyZeTq6por0P59PC0tzTL2\n92Ccl3LlXOTgYH9X/d0Nd/f8e7gXKSmu+c/0gCpf3tVq+6UgXN+3l4u6jYfOg/68AIoKvxfFS3F/\nD+G1GADuIPS6uLho0KBBGjRo0F0X//bbb3X27Fm9/fbbKlGihOzs7FS3bl3t3LlTTZs21ebNm9Ws\nWTPVq1dPU6dOVWZmpjIyMpSYmChPT081atRIsbGxqlevnmJjYy2nRd9OSkr6Xfd5p9zdS+v8+StW\nqZ2cnKryVqlsfcnJqVbbLwUhOZkzBIrCg/68AIqCNd9HYB3F/T2E12Lr4cMEoPjIN/R+/fXXmjlz\npq5cuf6CaRiGTCaT/vzzz3yLv/jiixo2bJh69+6t7OxsjRgxQjVq1NCIESOUlZUlDw8PtW/fXiaT\nSYGBgQoICJBhGAoNDZWTk5P8/f0VFhamgIAAOTk5afLkyfe/xQAAAACAh0a+oTcqKkpr1qxR5cqV\n77p4yZIlNW3atJvGFy5ceNNYjx491KNHj1xjzs7Omj59+l2vFwAAAAAA6Q4uZOXh4aEKFSoURi8A\nAAAAABSofI/0BgYGytfXVw0aNJC9/f9dIGr8+PFWbQwAAAAAgPuVb+j99NNP5evrq8cff7ww+gEA\nAAAAoMDkG3qdnJw0cODAwugFAAAAAIAClW/obd68uSZMmKBWrVrJ0dHRMt6kSROrNgYAAAAAwP3K\nN/QeOHBAkvTHH39Yxkwmk6KioqzXFQAAAAAABSDf0Hur2wsBAAAAAFAc5Bt64+LiNG/ePKWnp8sw\nDJnNZp0+fVobNmwojP4AAAAAALhn+d6nd8SIEWrXrp1ycnLUq1cvVa1aVe3atSuM3gAAAAAAuC/5\nhl5nZ2d169ZNTZs2VZkyZTR27Fjt2rWrMHoDAAAAAOC+5Bt6S5QooYsXL6p69erau3evTCaT0tPT\nC6M3AAAAAADuS76h9/XXX1dISIjatm2rNWvWqGPHjqpbt25h9AYAAAAAwH3J90JWHTp0UPv27WUy\nmbRq1SodO3ZMtWvXLozeAAAAAAC4L7cNvfHx8crJyVGdOnU0btw4XblyRfb29ho6dKhcXV0Lq0cA\nAAAAAO5Jnqc3b9iwQcHBwTp//rwkafPmzWratKmys7M1d+7cQmsQAAAAAIB7lWfo/fzzzzVv3jy1\natVK0vWrOL/yyisaMWIE9+gFAAAAABQLeYbejIwMVa9e3fK4ZcuWkiRXV1fZ29tbvzMAAAAAAO5T\nnqE3KytLhmFYHg8aNEiSlJ2draysLOt3BgAAAADAfcoz9DZt2lRffPHFTePz5s1T06ZNrdoUAAAA\nAAAFIc+rNw8aNEhBQUHauHGjGjduLJPJpN27dysjI0NRUVGF2SMAAAAAAPckz9Bbrlw5rVy5Uj/9\n9JP27NkjSfL391eHDh3k5ORUaA0CAAAAAHCvbnufXicnJ3Xq1EmdOnUqrH4AAAAAACgweX6nFwAA\nAACA4i7P0Juenl6YfQAAAAAAUODyDL2BgYGSpE8++aSwegEAAAAAoEDl+Z3e9PR0DR48WD///LMy\nMjJumj5+/HirNgYAAAAAwP3KM/TOnz9fO3bs0O7du7kvLwAAAACgWMoz9FaqVEldu3ZV7dq15eHh\noaNHjyonJ0eenp5ycLjtRZ8BAAAAAHgg5Jtes7Ky9NJLL6ls2bIym826cOGCZsyYoQYNGhRGfwAA\nAAAA3LN8Q++nn36qqVOnWkLunj17FBERoW+++cbqzQEAAAAAcD/yvU9venp6rqO6DRs2vOWFrQAA\nAAAAeNDkG3ofeeQRxcTEWB7HxMSobNmyVm0KAAAAAICCkO/pzRERERoyZIiGDx8uSapSpYomTZpk\n9cYAAAAAALhf+YbeatWqacWKFUpPT5fZbJarq2th9AUAAAAAwH2743sPubi4WLMPAAAAAAAKXL7f\n6QUAAAAAoLjKN/QuWbKkMPoAAAAAAKDA5Rt6o6OjC6MPAAAAAAAKXL7f6X3ssccUFBSkBg0aqESJ\nEpbxgQMHWrUxAAAAAADuV76ht2HDhoXRBwAAAAAABS7f0Dtw4EClp6frxIkT8vLy0rVr17iSMwAA\nAACgWMj3O73bt29Xly5d9O677+rChQt67rnntGXLlsLoDQAAAACA+5Jv6J0yZYoWL16sMmXKqGLF\nilq0aJEmTpxYGL0BAAAAAHBf8g29ZrNZ7u7ulsc1a9a0akMAAAAAABSUO7p688aNG2UymXT58mVF\nR0ercuXKhdEbAAAAAAD3Jd8jvWPGjNF3332nv/76S+3atdOff/6pMWPGFEZvAAAAAADcl3yP9Lq5\nuWnKlClKTU2Vg4ODnJ2dC6MvAAAAAADuW76h99ChQxo6dKhOnz4tSapRo4YiIyP1j3/8w+rNAQAA\nAABwP/I9vTk8PFwffvihduzYoR07dujNN9/Uxx9/XBi9AQAAAABwX/INvRkZGWrdurXl8QsvvKDU\n1FSrNgUAAAAAQEHIM/SePn1ap0+fVu3atTVnzhwlJyfr0qVLWrRokRo3blyYPQIAAAAAcE/y/E5v\n7969ZTKZZBiGduzYoaVLl1qmmUwmjRgxolAaBAAAAADgXuUZejds2FCYfQAAAAAAUODyvXpzYmKi\nli9frkuXLuUaHz9+vNWaAgAAAACgIOQbegcOHKiXX35ZtWrVKox+AAAAAAAoMPmG3jJlymjgwIGF\n0QsAAAAAAAUq39D7yiuvaOrUqWrWrJkcHP5v9iZNmli1MQAAAAAA7le+oXfnzp3at2+ffv31V8uY\nyWRSVFSUVRsDAAAAAOB+5Rt69+/fr59++qkwegEAAAAAoEDlG3q9vLx08OBB1a5d+64KZ2dn6+OP\nP9apU6eUlZWl4OBg1axZU0OHDpWdnZ08PT0VHh4uSVq+fLmWLVsmR0dHBQcHq02bNsrIyNCQIUOU\nlJQkV1dXTZgwQeXKlbu3rQQAAAAAPJTyDb3/+c9/9Morr8jd3V2Ojo4yDEMmk0nr16+/7XJr165V\nuXLlNHHiRF2+fFldunRR7dq1FRoaqsaNGys8PFwxMTFq2LChFi5cqNWrV+vatWvy9/dXixYttGTJ\nEnl5eWngwIH64YcfNHPmTA0fPrzANhwAAAAAYPvyDb0zZsy4p8IdOnRQ+/btJUk5OTmyt7fXgQMH\n1LhxY0lSq1attHXrVtnZ2cnHx0cODg5ydXVVtWrVdPDgQe3evVtvvfWWZd6ZM2feUx8AAAAAgIdX\nvqF3165dtxx//PHHb7tcyZIlJUmpqan64IMPFBISosjISMv0UqVKKTU1VWlpaSpdurRl3MXFxTLu\n6uqaa14AAAAAAO5GvqF3x44dlp+zsrK0e/duNW7cWF27ds23+F9//aWBAweqd+/e6tixoyZNmmSZ\nlpaWpjJlysjV1TVXoP37eFpammXs78H4dsqVc5GDg/0dzXsv3N3vrI+7lZLiapW6haF8eVer7ZeC\ncH3fXi7qNh46D/rzAigq/F4UL8X9PYTXYgC4g9A7fvz4XI8vXryokJCQfAtfuHBBffv21ahRo9Ss\nWTNJUp06dbRr1y41adJEmzdvVrNmzVSvXj1NnTpVmZmZysjIUGJiojw9PdWoUSPFxsaqXr16io2N\ntZwWnZ+UlPQ7mu9euLuX1vnzV6xSOzk5VeWtUtn6kpNTrbZfCkJyMmcJFIUH/XkBFAVrvo/AOor7\newivxdbDhwlA8ZFv6P1fLi4uOnXqVL7zzZ49W5cvX9bMmTM1Y8YMmUwmDR8+XGPHjlVWVpY8PDzU\nvn17mUwmBQYGKiAgQIZhKDQ0VE5OTvL391dYWJgCAgLk5OSkyZMn39MGAgAAAAAeXvmG3sDAQJlM\nJkmSYRg6efKkWrdunW/h4cOH3/JqywsXLrxprEePHurRo0euMWdnZ02fPj3f9QAAAAAAkJd8Q+97\n771n+dlkMqlcuXKqWbOmVZsCAAAAAKAg5Bl6T58+LUl64oknbjmtcuXK1usKAAAAAIACkGfo7d27\nt0wmkwzDsIyZTCadO3dO2dnZ+vPPPwulQQAAAAAA7lWeoXfDhg25HqelpSkyMlJbtmxRRESE1RsD\nAAAAAOB+2d3JTNu3b1fnzp0lSWvXrlWLFi2s2hQAAAAAAAXhtheySk9P14QJEyxHdwm7AAAAAIDi\nJM8jvdu3b5evr68k6bvvviPwAgAAAACKnTyP9L7xxhtycHDQli1btHXrVsu4YRgymUxav359oTQI\nAAAAAMC9yjP0EmoBAAAAAMVdnqH38ccfL8w+AAAAAAAocHd09WYAAAAAAIojQi8AAAAAwGYRegEA\nAAAANovQCwAAAACwWYReAAAAAIDNIvQCAAAAAGwWoRcAAAAAYLMIvQAAAAAAm0XoBQAAAADYLEIv\nAAAAAMBmEXoBAAAAADaL0AsAAAAAsFmEXgAAAACAzSL0AgAAAABsFqEXAAAAAGCzCL0AAAAAAJtF\n6AUAAAAA2CxCLwAAAADAZhF6/3979x+rdV33cfx1OCduhANHURq35cBQak4GZhToYorSTFvBAVwc\nPURxb/3T0NDBKhVTkZSZqwlbDWtTKaTF0FqtMhStvBdh4miRLqHjD+bAww2eQ3qOnHP/0e25JaVA\nuLiu8/Hx+Otc3/O9vt/3uXZxHZ7X97NzAQAAUCzRCwAAQLFELwAAAMUSvQAAABRL9AIAAFAs0QsA\nAECxRC8AAADFEr0AAAAUS/QCAABQLNELAABAsUQvAAAAxRK9AAAAFEv0AgAAUCzRCwAAQLFELwAA\nAMUSvQAAABRL9AIAAFAs0QsAAECxRC8AAADFEr0AAAAUS/QCAABQLNELAABAsUQvAAAAxRK9AAAA\nFEv0AgAAUCzRCwAAQLFELwAAAMUSvQAAABRL9AIAAFAs0QsAAECxRC8AAADFqnj0btmyJa2trUmS\ntra2tLS05Morr8zXv/71vn3Wrl2bmTNn5rOf/WweeeSRJMlrr72WBQsW5IorrsgXv/jF7Nmzp9Kj\nAgAAUJiKRu+qVaty3XXXpbu7O0mybNmyLFy4MPfdd196enry0EMPZffu3bn33ntz//33Z9WqVbnj\njjvS3d2dH/7whxk7dmxWr16dz3zmM1m5cmUlRwUAAKBAFY3eUaNGZcWKFX23//SnP+UjH/lIkmTK\nlCn53e9+l6eeeirnnntuGhoa0tjYmNGjR2fbtm3ZvHlzpkyZ0rfv448/XslRAQAAKFBFo3fatGmp\nr6/vu93b29v39ZAhQ9LR0ZHOzs4MHTq0b/vgwYP7tjc2Nh60LwAAAByJhuN5sgED/r+xOzs7M2zY\nsDQ2Nh4UtG/e3tnZ2bftzWH8r5x00uA0NNT/+x3foREjDm+OI7VnT2NFjns8DB/eWLHH5Vj4x2O7\nr9pjvOvU+vMCqsW/i/6lv/8O8VoMcJyj96yzzsqmTZsyceLEPProo5k0aVLGjRuXO++8M11dXXnt\ntdfy7LPP5swzz8w555yTjRs3Zty4cdm4cWPfsuh/Z8+e/RWbf8SIodm165WKHLu9vSPDK3Lkymtv\n76jY43IstLdbJVANtf68gGqo5O8RKqO//w7xWlw53kyA/uO4Ru/ixYtz/fXXp7u7O2PGjMkll1yS\nurq6tLa2pqWlJb29vVm4cGEGDhyYOXPmZPHixWlpacnAgQNzxx13HM9RAQAAKEDFo/d973tf1qxZ\nkyQZPXp07r333rfsM3v27MyePfugbYMGDcq3vvWtSo8HAABAwSr+Ob0AAABQLaIXAACAYoleAAAA\niiV6AQAAKJboBQAAoFiiFwAAgGKJXgAAAIolegEAACiW6AUAAKBYohcAAIBiiV4AAACKJXoBAAAo\nlk0f90wAAAohSURBVOgFAACgWKIXAACAYoleAAAAiiV6AQAAKJboBQAAoFiiFwAAgGKJXgAAAIol\negEAACiW6AUAAKBYohcAAIBiiV4AAACKJXoBAAAolugFAACgWKIXAACAYoleAAAAiiV6AQAAKJbo\nBQAAoFiiFwAAgGKJXgAAAIolegEAACiW6AUAAKBYohcAAIBiiV4AAACKJXoBAAAolugFAACgWKIX\nAACAYoleAAAAiiV6AQAAKJboBQAAoFiiFwAAgGKJXgAAAIolegEAACiW6AUAAKBYohcAAIBiNVR7\nAACoBQcOHMiOHc9W9Bx79jSmvb3jmB/3wIEDSepSX98/38sePfoDqa+vr/YYABRK9AJAkh07ns2q\n+7dn+CmjKniWfRU56vZn/jv/NXJBTh9RkcNX1PZdyY7pmzNmzJnVHgWAQoleAPg/w08ZlREjz6j2\nGEesffffcvqIZOx/VnuSd6a92gMAULTiovevf32mYseu1LK0JGlr+1uGV+TIAMC7UU/PgbS1PVft\nMd4xy96BY6W46K3s0rTKLEtLku3PPJ8J4yp2eADgXeZ/2p9P0xOzMrwfdq9l78CxVFz09uelaQAA\nx5Jl7wA+sggAAICCiV4AAACKJXoBAAAolugFAACgWKIXAACAYoleAAAAiiV6AQAAKFZNf05vb29v\nbrzxxvzlL3/JwIEDs3Tp0px22mnVHgsAAIB+oqav9D700EPp6urKmjVrcs0112TZsmXVHgkAAIB+\npKajd/Pmzfn4xz+eJBk/fny2bt1a5YkAAADoT2p6eXNHR0eGDh3ad7uhoSE9PT0ZMODQrd6++2/H\nY7Rjbu+eF7P9P6o9xZHbvitpqvYQh6E/Pi/663Mi6T/PC/hn/fG1IvF6UWmeF8dff3heAP1HXW9v\nb2+1hziUb3zjG5kwYUIuueSSJMkFF1yQRx55pLpDAQAA0G/U9PLmD3/4w9m4cWOS5Mknn8zYsWOr\nPBEAAAD9SU1f6X3zX29OkmXLluX000+v8lQAAAD0FzUdvQAAAHA0anp5MwAAABwN0QsAAECxRC8A\nAADFEr2HacuWLWltba32GNSQ119/PYsWLcoVV1yRyy+/PBs2bKj2SEANe/nll3PBBRdk+/bt1R6F\nGtHc3Jy5c+dm7ty5+epXv1rtcQCK1VDtAfqDVatW5YEHHsiQIUOqPQo15MEHH8xJJ52U22+/PXv3\n7s306dMzderUao8F1KDXX389S5YsyaBBg6o9CjWiq6srSXLPPfdUeRKA8rnSexhGjRqVFStWVHsM\naswnP/nJXHXVVUmSnp6eNDR4Dwl4e7fddlvmzJmT9773vdUehRqxbdu27N+/P/Pnz8+8efOyZcuW\nao8EUCzReximTZuW+vr6ao9BjTnhhBMyePDgdHR05KqrrsqXv/zlao8E1KB169bl5JNPzvnnnx+f\nEsgbBg0alPnz5+fuu+/OjTfemGuvvTY9PT3VHgugSKIXjsLOnTvzuc99LjNmzMill15a7XGAGrRu\n3br89re/TWtra7Zt25bFixfn5ZdfrvZYVNno0aPz6U9/uu/rE088Mbt27aryVABlsh7zCHiHnjfb\nvXt35s+fnxtuuCGTJk2q9jhAjbrvvvv6vm5tbc1NN92Uk08+uYoTUQt+/OMf5+mnn86SJUvy0ksv\npbOzMyNGjKj2WABFcqX3CNTV1VV7BGrId77znezbty8rV65Ma2tr5s6d2/eHSQDejt8jvGHWrFl5\n5ZVX0tLSkmuuuSa33nprBgzw3zKASqjrdfkSAACAQnlLEQAAgGKJXgAAAIolegEAACiW6AUAAKBY\nohcAAIBiiV4AAACKJXoBasALL7yQqVOnvmX7hz70oSTJ888/n6997WtJkq1bt+b6669PkrS2tmbT\npk0HbVu7dm1+9rOfHdZ5Fy1alO9+97tv2T5t2rQ8/fTTh7zfV77ylaxfv/6wzgEAUE2iF6BG1NXV\nHXLbCy+8kOeeey5JcvbZZ+fmm28+aL83b/vjH/+Yrq6uwzpnc3NzfvKTnxy07Q9/+EOampoyduzY\nI/4ZAABqjegF6AeWLl2arVu35uabb87vf//7tLa2HvT9N7Y9/vjj2bBhQ7797W/n17/+dSZNmpTO\nzs4k/wjnT33qUwfdb9KkSfn73/+eZ555pm/bgw8+mFmzZvUdt6WlJc3Nzbn44ovzi1/84qD7//MV\n6rvuuit33XVXkuTRRx/N7Nmz09zcnAULFmTv3r1Jkttuuy3Tp09Pc3Nz374AAJUiegH6geuuuy5n\nn3123xLmQ10Vnjx5cqZOnZoFCxbkoosuyoUXXtgXquvXr8/06dPfcr8ZM2b0Xe3t6urKww8/3BfH\nq1evztKlS7Nu3brccsstWbFixdue95+1t7fnm9/8Zr73ve9l3bp1Of/887N8+fK8+OKLeeyxx7J+\n/fqsWbMmbW1th31VGgDgnWio9gAAJAMGvP17kG8XlEfijaupzc3N+elPf5p77rnnLfvMmDEj8+bN\ny8KFC7Nhw4ZMnjw5jY2NSZLly5fn4Ycfzs9//vNs2bIl+/fvP6zzPvXUU9m5c2fmzp2b3t7e9PT0\n5MQTT8zIkSMzaNCgzJkzJxdeeGGuvvrqDBw48Kh+RgCAf0X0AtSAYcOGpaOj46Btu3fvzrBhw47q\nuBMnTsxLL72UX/3qVznttNMyYsSIt+xz6qmn5v3vf3+eeOKJPPDAA5k3b17f9+bMmZPJkyfnox/9\naCZPnpxrr732oPvW1dWlt7e373Z3d3fe85735MCBAzn33HOzcuXKJP+4gtzZ2ZkBAwZk7dq12bRp\nUzZu3JjLL788q1evzqhRo47q5wQAOBTLmwFqwJAhQzJq1Kj88pe/7Nu2du3anHfeeUmS+vr6HDhw\n4LCOVV9fn+7u7r7b06dPzy233JLm5uZD3mfmzJn50Y9+lLa2tnzsYx9LkuzduzdtbW1ZsGBBpkyZ\nkt/85jfp6ek56H7Dhg3Lvn37smfPnnR1deWxxx5LkowfPz5PPvlkduzYkSRZsWJFbr/99vz5z3/O\nlVdemYkTJ2bRokU544wzsn379sP6uQAA3glXegFqxPLly7NkyZKsXLky3d3d+eAHP5gbbrghSTJm\nzJjs27cvixcvzsyZM/vu83bLn88777zceeedaWpqyic+8Ylceuml+f73v5+LLrrokOe++OKLc9NN\nN+Xzn/9837ampqbMmjUrl112WYYOHZoJEybk1Vdfzauvvtq3T2NjY77whS9k5syZOfXUUzN+/Pgk\nySmnnJJbb701V199dXp6ejJy5MgsX748TU1NOeecc3LZZZflhBNOyFlnnZUpU6Yc9WMHAHAodb1v\nXpcGQFF6e3vzgx/8IDt27Oj7nF8AgHcTV3oBCvalL30pO3fuzN13313tUQAAqsKVXgAAAIrlD1kB\nAABQLNELAABAsUQvAAAAxRK9AAAAFEv0AgAAUCzRCwAAQLH+F8gLOslphlB4AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1165604e0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Play the Game\n", "N = 10000\n", "agent1 = ml.QLearn()\n", "agent2 = c.Chaos()\n", "game = PrisonersDilemma(agent1, agent2)\n", "game.play(N)\n", "\n", "# Get Data from Game\n", "agent1_util_vals = Counter(game.data['A'])\n", "agent2_util_vals = Counter(game.data['B'])\n", "a1_total_score = sum(game.data['A'])\n", "a2_total_score = sum(game.data['B'])\n", "\n", "\n", "# Plot the results\n", "x1, y1, x2, y2 = [], [], [], []\n", "\n", "for i, j in zip(agent1_util_vals, agent2_util_vals):\n", " x1.append(i)\n", " y1.append(agent1_util_vals[i])\n", " x2.append(j)\n", " y2.append(agent2_util_vals[j])\n", "\n", "fig, ax = plt.subplots(figsize=(12,6))\n", "width = 0.35\n", "a1 = ax.bar(x1, y1, width, color='#8A9CEF')\n", "a2 = ax.bar(np.asarray(x2)+width, y2, width, color='orange')\n", "\n", "_ = ax.set_title('QLearning Agent Vs Chaos Agent')\n", "_ = ax.set_ylabel('Number of Games')\n", "_ = ax.set_xlabel('Utility Values')\n", "ax.set_xticks(np.add(x2,width/2))\n", "_ = ax.set_xticklabels(('1', '2', '4', '5'))\n", "_ = ax.legend((a1[0], a2[0]), ('QLearning Agent\\nTotal Utility Score: {}'.format(str(a1_total_score)),\n", " 'Chaos Agent\\nTotal Utility Score: {}'.format(str(a2_total_score))), loc=1, bbox_to_anchor=(1.35, 1))\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Q Learning significantly outperforms the Chaos Agent because the Q Learning Agent learns pretty quickly that defecting yields the highest expected utility (talked about more in appendix)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Q Learning VS Q Learning" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Playing Game: 100%|██████████| 10000/10000 [00:00<00:00, 10919.34it/s]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8MAAAGJCAYAAACuKeEVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlAlNX+x/H3sAu4Iu64EWimobiE5pbZLXOjTBNI1Oxe\ntayfG+K+73s3N0zNQHLBXLrXykIULU2Fm6WZS+JuoeIKyDrz+8PrXFEQNQa1+bz+sTlznnO+z8wA\nfeY8i8FkMpkQERERERERsSI2j7oAERERERERkcKmMCwiIiIiIiJWR2FYRERERERErI7CsIiIiIiI\niFgdhWERERERERGxOgrDIiIiIiIiYnUUhkXksZGdnc3ixYvp0KEDHTp0oH379kyYMIErV66Y+3Tr\n1o1vvvmm0Gs7cOAA//d//1fg477//vs0btyY9PT0Ah/7dvPnzycmJuau9uDgYBYvXnxX+7Jly3j3\n3XcfaI7du3fz9ttv8+qrr+Lv70+vXr2Ii4szP79+/Xr69Onz4MUXgN69e3Ps2LECHTMmJoaaNWvy\n5ZdfFui4d9q/fz9jxoyx6BwiIiLWSGFYRB4bgwcP5tdff+Wzzz7jiy++YMOGDZQvX54333yTlJSU\nR1pb7dq1+fDDDwt0zPPnzxMXF4ePjw/r168v0LHv9MMPP5CVlXVXe1BQEOvWrburPSoqim7dut33\n+LGxsQwbNoz+/fvz5ZdfsmHDBj744AOGDBlCbGzsn6q9IISFheHp6VmgY65atYoOHToQHh5eoOPe\n6ejRoyQmJlp0DhEREWtk96gLEBGBm6tfcXFxbNmyBQcHBwBsbW155513+M9//sOqVavo1avXPcfY\nunUrCxcuJCsrCycnJ4YMGULdunVJSkpi9OjRJCUlcfHiRSpUqMDcuXMpVaoUrVq1wsfHhyNHjjBg\nwAAmT57M66+/zq5du/j9999p06YNISEh7NmzhwkTJvCvf/2LYcOG4eLiwpEjR/jjjz+oXr06c+bM\noUiRIsTGxjJz5kzs7OyoWbMmO3fuZOXKlVSoUOGuetesWUOTJk14+eWXmTt3Ll27djU/d69x1q5d\ny2effQZAiRIlGDVqFNWqVcuzrnXr1nHgwAGmT5+OjY0NrVu3Ns/TunVrJk+eTHx8PPXr1wdgz549\nADRu3JjU1FSGDRvGqVOnMBgM1K5dm/Hjx9+1LzNmzGD48OE8++yz5jYfHx+GDx/O9OnTadGixT3f\nu8TERCZMmMDvv/9OVlYWbdu25R//+AcAixYtYsuWLWRkZHDjxg2GDBlC69atmTdvHj/++CMXL16k\nRo0aVK5cmbNnz3L+/HnOnTtHqVKlmDt3Lu7u7rRq1YqPPvqIlJQU5syZg4eHB0ePHiUzM5PRo0fT\nqFEjLl26xPDhwzl9+jQlSpTAzc0Nb29v+vXrd1e9p0+fZs+ePcTExNCmTRt++uknfHx8AO45zrFj\nx5g8eTJXrlzBaDTSrVs3Xn/9dfbs2ZNrXZUrV+ajjz4iOTmZ4cOHM3ny5Hu+jiIiInL/tDIsIo+F\n+Ph4ateubQ7Ct3v++ef5z3/+c8/tT548yezZs/n4449Zt24d48ePp1+/fqSlpbFp0ybq1avHqlWr\niI6OxsnJiS+++MK8rbe3N5s2bTKHxNTUVCIjI1m5ciUrVqzg7Nmzd8138OBBli1bxpdffsn58+f5\n+uuvuXLlCkOGDGHWrFmsX7+e5557jvPnz+dab3Z2NmvWrKFDhw60bNmSpKQkduzYAXDPcfbu3cuG\nDRtYuXIl69ato1evXjnCWm51BQUFUbt2bXOIvJ2trS2dO3dm7dq15rY1a9YQFBQEwLfffktqairr\n16839zl9+nSOMa5du8Zvv/1Gw4YN79rPJk2akJCQwPXr1/N4524aMmQIb7zxBp9//jlRUVF8//33\nfP3115w7d44ffviByMhINm7cSP/+/fnnP/9p3u73339nw4YNTJ8+Hbj5Ofroo4/46quvKFasGKtX\nr75rrv3799OrVy/Wr19Pp06d+OijjwCYOHEiXl5ebNq0iblz5/Ljjz/mWe/q1atp2bIlpUqVol27\ndnz66afm5yZNmpTrONnZ2fzf//0fgwcP5vPPPyciIoKlS5fy888/51lXuXLl+OCDD6hfv76CsIiI\nSAHTyrCIPBGys7Pv+fz333/PxYsX6dGjByaTCQA7OztOnjxJcHAwcXFxLF++nBMnTvDbb7+ZV/EA\nGjRokGOsF198EYCyZcvi5ubG1atX75qvWbNm2Nnd/BXq7e3N1atXiYuLw8vLC29vbwD8/f2ZOHFi\nrvVGR0djNBpp1qwZNjY2vPrqqyxfvpxmzZrlOs6kSZMA2LZtG6dOnaJr167m/bx27RrXrl3Ls678\nvPnmm7Rr147U1FQyMjL4/vvvGTt2LAD169dn7ty5dOvWjeeff57u3bvj4eFx1xgGg+Gec9zr/btx\n4wZ79+7l2rVrzJ0719z266+/8sorrzB16lQ2btzIqVOn2LdvH6mpqeZtfXx8cszdqFEjnJ2dAahV\nq1aO881vqVChAjVq1DD3uXWI+vbt283/7e7uzssvv5xrvRkZGXz++edMmTIFgI4dOxIYGEhiYiJl\ny5YlNjY213FOnDjBqVOnGD58uPm9S09P5+DBg1SvXj3PukRERMQyFIZF5LHg6+vLkiVLSE9Px9HR\nkczMTFJSUihRogQ//PADvr6+99zeaDTSuHFjZs+ebW77448/KFOmDDNmzODAgQN06tQJPz8/srKy\nzGEEMIenW5ycnHI8vr1vbn0MBgMmkwlbW1uMRmOOfjY2uR+As2rVKtLT03nppZcAyMzM5MKFCxw7\ndizXcW4FPqPRSMeOHRk0aJD5ucTERIoVK5ZnXflxd3enSZMmbNq0idTUVF5++WVcXV0BqFSpEt98\n8w179uzhhx9+oHv37owePZq//e1v5u2LFSuGp6cne/bsMe/P+fPnKVOmDLt27aJy5cqUKFEiz/lv\nBeXVq1ebjwy4fPkyTk5OHDx4kHfffZcePXrQtGlTGjZsyLhx48zburi45Bjrzv3PjaOjY66vka2t\nbY5+dz6+5auvvuLatWuMHz+eCRMmYDKZMBgMREREMHjw4DzHyc7OplixYjlCblJSEkWLFmXfvn15\n1iUiIiKWocOkReSx8Oyzz/Lcc88xdOhQrl27xqlTpwgKCuKDDz7gyJEjBAYGmvvmFhL8/Pz4/vvv\nSUhIAG6ec9uxY0fzSmf37t3p0KEDJUuWZOfOnXeFzYLg6+vLyZMnOXLkCACbN2/m+vXrd4Wy48eP\ns3fvXtavX8+WLVvYsmUL27dvp379+nz66af3HOf5559n06ZNXLhwAYDIyEh69OiRb212dna5XkDr\nloCAAL744gs2btxoPkQaYOXKlQwdOpTnn3+eQYMG0axZM3NdtwsJCWHq1KnmQ36nTZvGW2+9xaRJ\nkxgyZMg9a3N1dcXHx4elS5cCN1e6AwIC2LJlC3v37qVOnTr06NGDhg0bmlfULeGFF14wHwp++fJl\nvv3221wD9cqVK+nbty8xMTFs2bKFmJgYxo4dS1RUFDdu3MhznGrVquHo6Gg+RP/333+nXbt2/PLL\nL/esy9bW9p7vnYiIiDwcrQyLyGNjxowZLF26lLfeeguTyURWVhZ2dna4uLgQHR2Nv78/AKGhoQwb\nNsy8IhcUFMSgQYMYP348AwcOBG4GiIULF+Lk5MR7773HtGnTmD9/PnZ2dtSvX5+TJ08Cd68e5vf4\nXooXL87MmTMZMmQINjY21K5dG1tb27tWmletWsVLL71EpUqVcrS/99579O3bl4EDB+Y5TtOmTXnn\nnXd4++23sbGxwdXVlXnz5uVb2wsvvMC0adPIyMgwv463a9SoEVeuXKFkyZJ4eXmZ2/39/dm7dy+v\nvvoqRYoUoWLFinTv3v2u7Vu0aMG0adOYO3cuiYmJmEwm3NzcqFixIjt37jSfT/zdd9+ZV/lNJhPF\nixdn27ZtzJw5kwkTJtC+fXuysrJo37497dq1IykpiW+++Ya2bdvi4OCAn58fV65cyXGo9P24n/dx\n6NChjBw5kg4dOlCiRAkqVqxIkSJFcvQ5dOgQhw8fZtGiRTna/f39WbRoEevXr89zHHt7exYsWMDE\niRNZsmQJ2dnZDBgwgHr16pkvWpabevXqMXfuXN5//33z+c0iIiLy5xlMOg5LRB5zycnJ7N+/n8aN\nGz/qUu4pOTmZhQsX8sEHH+Do6MjBgwfp3bu3+cJYhT3O42LHjh00atQox2HAj6PPPvuMZ555Bh8f\nHzIyMsxHJjRr1uyRjCMiIiKWZfGV4Z9++omZM2cSERHBqVOnGDp0KDY2Nnh5eTFmzBjg5pVLV69e\njb29PX369KFly5akp6cTEhJCUlISrq6uTJ06lZIlS7Jv3z4mT56MnZ0dTZo0yfWWFyLy1+Lq6vrY\nB2G4Wae9vT2dOnXCzs4Oe3v7h7o3cUGN87h4UkLgU089xfjx4zEajWRlZfHKK688VO0FNY6IiIhY\nlkVXhpcsWcLGjRtxcXFh1apV9O3bl169etGgQQPGjBlDs2bNqFu3Lj179mT9+vWkpaUREBDAunXr\niIyMJDk5mX79+vHll1/y448/MmLECPz9/Zk3bx6VKlXiH//4BwMHDqRmzZqW2gURERERERH5C7Lo\nBbSqVKnC/PnzzY9/+eUX8y1Mmjdvzs6dO/n555+pX78+dnZ2uLq6UrVqVQ4dOkR8fDzNmzc39/3h\nhx9ITk4mMzPTfJ5d06ZN2blzpyV3QURERERERP6CLBqGX3rppRy3mLh9EdrFxYXk5GRSUlIoWrSo\nud3Z2dncfuvWHi4uLly/fj1H2+3tIiIiIiIiIg+iUG+tdPv9NlNSUihWrBiurq4kJyfn2p6SkmJu\nK1q0qDlA39k3P1lZ2QW4FyIiIiIiIvKkK9RbK9WqVYu9e/fSsGFDtm/fjp+fH3Xq1GHOnDlkZGSQ\nnp5OQkICXl5e1KtXj9jYWOrUqUNsbCwNGjTA1dUVBwcHTp8+TaVKlfjuu+/u6wJaly8/2C04HpS7\ne1EuXNAKteSkz4WI3C/9vpA76TPx5HJ3L5p/JxF5LBRqGA4NDWXUqFFkZmbi6enJK6+8gsFgoFu3\nbgQGBmIymRg4cCAODg4EBAQQGhpKYGAgDg4OzJo1C4Bx48YxePBgjEYjzz//PM8++2xh7oKIiIiI\niIj8BVjFfYYt/c2qvr2V3OhzISL3S78v5E76TDy5tDIs8uQo1HOGRURERERERB4HCsMiIiIiIiJi\ndRSGRURERERExOooDIuIiIiIiIjVURgWERERERERq6MwLCIiIiIicpsDBw7Qq1cvgoKCCAgIYO7c\nuWRlZQEwbNgwvvvuO4vOf/HiRcaPH/+nx8nIyKBp06YsW7asAKr6n6tXr/Lvf/+7QMd8FBSGRURE\nRERE/isxMZEhQ4YwZswYIiMjWblyJfb29kyePLnQaihdujSjR4/+0+Ns3ryZtm3bsn79+gKo6n8O\nHTpETExMgY75KNg96gJEREREREQeFxs3bqRLly5UrlzZ3Pbee+/RunVrMjIy8txu9uzZxMfHk52d\nTc+ePXn55ZfZu3cv8+bNw2QykZqayqxZs7Czs6NPnz6ULFmS5s2bExsby9NPP83Ro0dJSUnhww8/\nxGg0MnDgQFavXk2HDh1o1KgRhw8fxmAwsGDBAlxdXRk3bhy//PILbm5unDlzhrCwMCpUqJCjpqio\nKEaMGEFSUhKxsbG0aNECINdtbWxsGDVqFOnp6Tg5OTFhwgSysrIYNGgQ5cuX5+TJk/j4+DBmzBjC\nwsI4fPgwUVFRdO7c2TJvRCHQyrCIiIiIiMh/nTlzhkqVKt3VXrp0aS5cuJDrNtu3b+fs2bNERkYS\nHh7OwoULSU5O5ujRo8ycOZPw8HBeeuklvv76awCSkpL45JNPeOeddwDw8fHhk08+oXHjxubDjw0G\nAwDJycm0b9+eiIgIypQpw/bt29myZQtXr15lzZo1TJo0icTExLtqOnnyJGlpadSoUYNOnTqxYsUK\ngDy3nTZtGsHBwYSHh9OzZ09mzJgBwIkTJ5g8eTJr164lNjaWpKQk+vTpg5+f3xMdhEErwyIiIiIi\nImYVKlTg9OnTOdqMRiPnzp3Dzc0t122OHDnCgQMHCA4OxmQykZ2dzZkzZyhbtiwTJkzAxcWFxMRE\nfH19AahUqRK2trbm7Z9++mkAypcvz8WLF+8a//bnMzIyOHPmDHXr1gWgVKlSVKtW7a5toqKiuHHj\nBn//+98xGo3s27eP06dPc+zYsRzbVq9e3bwPYWFhfPzxx5hMJuzt7QGoUqUKRYoUAaBMmTKkp6ff\n5yv5+FMYFhERERGRx1J2djbHjh0r0DE9PT1zBNE7+fv706tXL1588UVKlCjBgAEDKFu2LC1btsTJ\nyQkAk8mUY5vq1avz3HPPMX78eEwmEwsWLMDDw4O3336b6OhonJ2dGTp0qLn/rVXfvB7np0aNGmzc\nuJHg4GCuXr3KiRMncjyflZXFl19+ycaNGylatCgAYWFhREZG0rhxYzZs2GDe9vjx4+bX5e2336Zu\n3bokJCQQFxd317y39tvGxobs7OwHqvlxpDAsIiIiIiKPpWPHjjF94X5Kla5SIONduniSIX3B29s7\nzz7lypVjxowZjBs3jhs3bpCWloatrS1ubm5cvXoVgEmTJuHq6orJZKJ69erMmDGDPXv2EBQUxI0b\nN2jdujUuLi507NiRwMBAnJ2dKV26NOfPnwdyht/8gnBufVu0aEFsbCwBAQGULl2aIkWKYGf3v2i3\ndetWateubQ7CAK+99hr+/v70798/121DQkIYO3YsGRkZpKenM2LEiDzn9/Dw4OjRo4SHhxMcHHzv\nF/0xZjDd+bXGX9CFC9ctOr67e1GLzyFPHn0uROR+6feF3EmfiSeXu3vR/DvJfTty5AhLoq7hXu6p\nAhnvwh+/8U7nYvcMw/eqxcPDw3zI8KOUkJDAoUOHePXVV7ly5Qrt2rVj69at5kObLbXtX41WhkVE\nRERERPLxMAHaUsqXL8/MmTP59NNPMRqNhISE3HeY/TPb/tUoDIuIiIiIiDxBihQpwoIFCwp9278a\n3VpJRERERERErI7CsIiIiIiIyH9NmzaNbt260aZNG1544QWCg4Pp379/nv3Pnj3Ltm3b8nz+1KlT\nBAYG5mjLzs6mRYsWOdq2bdvGyJEjAdi8eTNJSUkkJiYyceJE4OZFs4xGI4sWLeLgwYOkp6ezdu3a\n+9qnS5cu8f7779OrVy+6du3K6NGjycjIuK9tC8KSJUvo0qULXbp0YdGiRQCkpaXRr18/goKC6NOn\nD1euXAFgx44dvP7663Tt2pWPPvrIPMbEiRPp0qULXbt2Zd++fQCkpqYSEhLCW2+9xZtvvskvv/zy\nQHXpMGkREREREXlsXbp4soDHqnPPPqGhoQCsX7+e48ePM3DgwHv237lzJ2fPnqVly5Z59sntitH3\navv000+pVasWHh4e5oB867k+ffoAcPLkSdatW8cbb7xxz/oAFi9eTIsWLcx9J06cSFRUFEFBQflu\n+2edOHGCb7/9ljVr1mAymXjzzTd56aWXzFe87tOnD1988QVhYWGEhoYyffp05s+fT+XKlXnzzTdp\n27YtN27c4ODBg6xZs4Zjx44xbNgw1qxZw+LFi3nmmWeYMWMGhw4d4rfffuOZZ56579oUhkVERERE\n5LHk6enJkL4FOWIdPD09H3rryZMns2/fPgwGAx06dKBLly4sXbqUjIwM6tWrh6OjIwsXLsRoNJKW\nlsbs2bMfeI6YmBiOHDnC4MGDmTp1KiNGjOCzzz4zPx8SEsLrr7/OF198wdGjRwkLC2PLli1Mnz6d\nqlWrsnXrVnbu3Gm+NRKAm5sbX331FRUrVsTX15dhw4aZ77U8b948tm7ditFoJCgoiDfeeIOPP/6Y\nzZs3Y2dnx3PPPceAAQOYO3cu+/fvJzU1lalTp7Jt2za++uorADp27EhAQAA7d+5k//799O7d2zy3\nh4cHixcvBm4G+uzsbBwcHIiPj6dfv34ANG/enGXLlgHwzDPPcPnyZcqVK0dGRga2traUL18eJycn\nMjIySE5ONl/w67vvvqNjx4706tWL4sWLM3r06Ad6rRWGRURERETksWRra/vYXMU5OjqaCxcusGbN\nGjIzM+natSt+fn706tWLc+fO0aJFCyIjI5kzZw6lSpVi/vz5bN68mb/97W/3PYfBYKBVq1Z4e3sz\nbdo0TCZTnvch7tu3L6dOnaJ3796UKlWK9evXM2DAANatW8f777+fo+8777xDyZIlWbJkCfv376dh\nw4aMHj2a8+fPs3v3bj7//HMyMzOZPXs2v/76KzExMURFRWEwGHjvvffYsWMHcPOK2qGhoRw+fJjo\n6GhWrVqF0Wike/fuNG3alCZNmtCkSZMcc9va2lK8eHEApkyZQr169fDw8CA5Odl8H2QXFxeuX79u\nnuNWvbVq1aJKlSpcu3aNrKws2rRpQ3JyMpMmTQLg8uXLJCcns3TpUj7//HOmT5/O5MmT7/v11jnD\nIiIiIiIi+UhISKBBgwYA2Nvb4+PjQ0JCQo4+ZcqUYdy4cQwbNoy4uDiysrJyHcvW1pbs7Owcbamp\nqTg6Oj5UbW3btiU6OpqLFy+SlJR01xcIu3btolOnTixdupTvv/+ep59+mqlTp3L8+HGeffZZ8z6F\nhoaSkJBA3bp1zSHc19eX3377DYDq1asDcPToUc6cOUNwcDDdu3fn2rVrnDyZ9+Hs6enp9O/fn6ys\nLPNh366urqSkpACQkpJCsWLFuHLlCsuWLePrr7/mm2++oVy5cixfvpx169ZRsWJFtmzZwrfffsvc\nuXO5cOECJUqUoFWrVgC88MILD3zOsMKwiIiIiIhIPqpXr058fDwAmZmZ7Nu3jypVqmBjY4PRaARg\n1KhRTJs2jSlTpuDm5obJZAIw/3u7ChUqEBcXZ368Y8cO6tS5eT7z7WPecucYtw45BnB2dsbX15cp\nU6bg7+9/11zLly9n06ZNwM3Q6+npiaOjI0899ZQ5QGZkZNCzZ088PDz46aefMJlMmEwm4uLiqFat\nmnnOW69FjRo1CA8PJyIiAn9/f7y8vHJ93UwmE71798bHx4dRo0aZ2+vXr09sbCwAsbGx1K9fnyJF\niuDs7EyRIkUAcHd35/r16xQvXhwXFxfzvtrb25OWlkaDBg3MY+zdu5ennnoq1xryosOkRURERERE\n8tG6dWv27t1L165dyczMpEOHDnh7e5ORkcGSJUuoVasW7du3JyAggCJFiuDm5sb58+eB3C+WNXHi\nRMaNG0dWVhZGoxFfX1/at28P3FyNHTx4MBMmTDD3vzXGrX/d3d1JS0tjzpw5DBgwgM6dO9O9e3fG\njx+f61xjx45l2bJlODk54ebmxtixY3Fzc8PPz4+uXbsCEBQUxLPPPsuLL77Im2++iclkolGjRrRs\n2dJ8BWeAWrVq4evrS0BAAOnp6fj6+lK2bNlczxnevHkz+/btw2g0EhMTg8FgICQkhMDAQIYOHUpA\nQABOTk7MmjULR0dHQkJC6NGjB46OjpQoUYIpU6ZQpEgR/vOf/xAQEIDRaOT111/Hw8ODvn37MmLE\nCLp27Yq9vT0zZsx4oPfUYMrta4q/mAsXrlt0fHf3ohafQ548+lyIyP3S7wu5kz4TTy5396KPugSx\nUj/++CNr1641n08r+dPKsFil7OxsTpxIyL/jn3D5siuXLiUX+Lg3D4cxYGv7ZJ7lULVqdfPVC0VE\nRETkzwsPD2fDhg18+OGHj7qUJ4pWhguAvr198hw7dpQlq49TqnSVR13KAzt+dBfvlPuAau6PupIH\nd/wCFPePx9Mz93NKRKyV/o7InfSZeHJpZVjkyaGVYbFapUpXwb3cg51k/zi4dPEk1dzBu/yjruTh\nXHrUBYiIiIiIoKtJi4iIiIiIiBVSGBYRERERERGrozAsIiIiIiIiVkdhWERERERE5DYHDhygV69e\nBAUFERAQwNy5c8nKygJg2LBhfPfddxad/+LFi7neL/hBZWRk0LRpU5YtW1YAVf3P1atX+fe//12g\nYz4KCsMiIiIiIiL/lZiYyJAhQxgzZgyRkZGsXLkSe3t7Jk+eXGg1lC5dmtGjR//pcTZv3kzbtm1Z\nv359AVT1P4cOHSImJqZAx3wUdDVpERERERGR/9q4cSNdunShcuXK5rb33nuP1q1bk5GRked2s2fP\nJj4+nuzsbHr27MnLL7/M3r17mTdvHiaTidTUVGbNmoWdnR19+vShZMmSNG/enNjYWJ5++mmOHj1K\nSkoKH374IUajkYEDB7J69Wo6dOhAo0aNOHz4MAaDgQULFuDq6sq4ceP45ZdfcHNz48yZM4SFhVGh\nQoUcNUVFRTFixAiSkpKIjY2lRYsWALlua2Njw6hRo0hPT8fJyYkJEyaQlZXFoEGDKF++PCdPnsTH\nx4cxY8YQFhbG4cOHiYqKonPnzpZ5IwqBVoZFRERERET+68yZM1SqVOmu9tKlS3PhwoVct9m+fTtn\nz54lMjKS8PBwFi5cSHJyMkePHmXmzJmEh4fz0ksv8fXXXwOQlJTEJ598wjvvvAOAj48Pn3zyCY0b\nNzYffmwwGABITk6mffv2REREUKZMGbZv386WLVu4evUqa9asYdKkSSQmJt5V08mTJ0lLS6NGjRp0\n6tSJFStWAOS57bRp0wgODiY8PJyePXsyY8YMAE6cOMHkyZNZu3YtsbGxJCUl0adPH/z8/J7oIAxa\nGRYRERERETGrUKECp0+fztFmNBo5d+4cbm5uuW5z5MgRDhw4QHBwMCaTiezsbM6cOUPZsmWZMGEC\nLi4uJCYm4uvrC0ClSpWwtbU1b//0008DUL58eS5evHjX+Lc/n5GRwZkzZ6hbty4ApUqVolq1andt\nExUVxY0bN/j73/+O0Whk3759nD59mmPHjuXYtnr16uZ9CAsL4+OPP8ZkMmFvbw9AlSpVKFKkCABl\nypQhPT39Pl/Jx5/CsIiIiIiIPJays7M5duxYgY7p6emZI4jeyd/fn169evHiiy9SokQJBgwYQNmy\nZWnZsiURBynVAAAgAElEQVROTk4AmEymHNtUr16d5557jvHjx2MymViwYAEeHh68/fbbREdH4+zs\nzNChQ839b6365vU4PzVq1GDjxo0EBwdz9epVTpw4keP5rKwsvvzySzZu3EjRokUBCAsLIzIyksaN\nG7NhwwbztsePHze/Lm+//TZ169YlISGBuLi4u+a9td82NjZkZ2c/UM2PI4VhERERERF5LB07dozj\ny2pQzb1gxjt+AXj7MN7e3nn2KVeuHDNmzGDcuHHcuHGDtLQ0bG1tcXNz4+rVqwBMmjQJV1dXTCYT\n1atXZ8aMGezZs4egoCBu3LhB69atcXFxoWPHjgQGBuLs7Ezp0qU5f/48kDP85heEc+vbokULYmNj\nCQgIoHTp0hQpUgQ7u/9Fu61bt1K7dm1zEAZ47bXX8Pf3p3///rluGxISwtixY8nIyCA9PZ0RI0bk\nOb+HhwdHjx4lPDyc4ODge9b/ODOY7vxa4y/owoXrFh3f3b2oxeeQgnXs2FHWbTHiXu6pR13KAzt8\nYAtDKr2Bd/lHXcmDO/I7XHo+Hk9Pr0ddishjRX9H5E76TDy53N2L5t9J7tuRI0fgXzUK7P97jvwO\ntL93GL5XLR4eHuZDhh+lhIQEDh06xKuvvsqVK1do164dW7duNR/abKlt/2q0MiwiIiIiIpKPhwnQ\nllK+fHlmzpzJp59+itFoJCQk5L7D7J/Z9q9GYVhEREREROQJUqRIERYsWFDo2/7V6NZKIiIiIiIi\n/zVt2jS6detGmzZteOGFFwgODqZ///559j979izbtm3L8/lTp04RGBiYoy07O9t8z99btm3bxsiR\nIwHYvHkzSUlJJCYmMnHiRODmecJGo5FFixZx8OBB0tPTWbt27X3t06VLl3j//ffp1asXXbt2ZfTo\n0fe8Z3JBW7JkCV26dKFLly4sWrQIgLS0NPr160dQUBB9+vThypUrwM3bVPn7+xMUFMTixYvNY/zz\nn/+kc+fOBAYGcuDAAeDma9+jRw+6detGcHAwp06deqC6FIZFRERERET+KzQ0lIiICP7xj3/Qvn17\nwsPDmTt3bp79d+7cyb59++45Zm4XybpX26effkpqaiply5Y1B+Rbz/Xp04datWrxxx9/sG7duvva\np8WLF9OiRQuWLl3KqlWrcHBwICoq6r62/bNOnDjBt99+y5o1a1i9ejUxMTEcO3aMFStWULt2bSIj\nI3n11VcJCwvDaDQyevRoFi5cSGRkJIcOHeLnn3/m559/5qeffiIqKorp06czfvx4AObMmUPPnj2J\niIigV69ezJ49+4Fq02HSIiIiIiLy2Dp+oWDHuvuOvPdv8uTJ7Nu3D4PBQIcOHejSpQtLly4lIyOD\nevXq4ejoyMKFCzEajaSlpT1wOAOIiYnhyJEjDB48mKlTpzJixAg+++wz8/MhISG8/vrrfPHFFxw9\nepSwsDC2bNnC9OnTqVq1Klu3bmXnzp3mq0EDuLm58dVXX1GxYkV8fX0ZNmyY+fZS8+bNY+vWrRiN\nRoKCgnjjjTf4+OOP2bx5M3Z2djz33HMMGDCAuXPnsn//flJTU5k6dSrbtm3jq6++AqBjx44EBASw\nc+dO9u/fT+/evc1ze3h4mFd4DQYD2dnZODg4EB8fT79+/QBo3rw5y5Yt4+LFi5QqVYry5W9eMc3X\n15e4uDhsbGxo2rQpcPMezWlpaVy/fp0RI0ZQvHhxADIzM823vrpfCsMiIiIiIvJY8vT0hLcPF9h4\n1W6N+RCio6O5cOECa9asITMzk65du+Ln50evXr04d+4cLVq0IDIykjlz5lCqVCnmz5/P5s2b+dvf\n/nbfcxgMBlq1aoW3tzfTpk3DZDLleeulvn37curUKXr37k2pUqVYv349AwYMYN26dbz//vs5+r7z\nzjuULFmSJUuWsH//fho2bMjo0aM5f/48u3fv5vPPPyczM5PZs2fz66+/EhMTQ1RUFAaDgffee48d\nO3YANy8iFhoayuHDh4mOjmbVqlUYjUa6d+9O06ZNadKkCU2aNMkxt62trTmwTpkyhXr16uHh4UFy\ncrL51k8uLi5cv34dd3d3UlJSOHXqFBUqVGD79u34+PhgMpkoW7aseUxnZ2euX79OhQoVgJu34Jo9\ne7b5EOz7pTAsIiIiIiKPJVtb28fmKs4JCQk0aNAAAHt7e3x8fEhISMjRp0yZMowbNw5nZ2f++OMP\nnnvuuVzHsrW1JTs7O0dbamoqjo6OD1Vb27Zt6dy5M926dSMpKemu12zXrl106tSJN954g8zMTMLC\nwpg6dSovvPACzz77rHmfQkND2bRpE3Xr1jWHcF9fX3777TcAqlevDsDRo0c5c+YMwcHBmEwmrl27\nxsmTJ/Hw8Mi1vvT0dEJDQ3Fzc2PUqFEAuLq6kpKSAkBKSgrFihXDYDAwZcoURowYQZEiRfD09KRk\nyZJkZGSY+97qfytI79q1i0mTJjF79mwqV678QK+bzhkWERERERHJR/Xq1YmPjwduHpK7b98+qlSp\ngo2NDUajEYBRo0Yxbdo0pkyZgpubGyaTCcD87+0qVKhAXFyc+fGOHTuoU6cOQI4xb7lzjFuHHMPN\nlVJfX1+mTJmCv7//XXMtX76cTZs2ATdDr6enJ46Ojjz11FP88ssvAGRkZNCzZ088PDz46aefMJlM\nmEwm4uLiqFatmnnOW69FjRo1CA8PJyIiAn9/f7y8vHJ93UwmE71798bHx8cchAHq169PbGwsALGx\nsdSvXx+4eQ728uXLCQsL48SJEzRu3BhfX1/z6vTp06ext7enaNGi7Ny5k2nTprF06VJq1qyZ6/z3\nopVhERERERGRfLRu3Zq9e/fStWtXMjMz6dChA97e3mRkZLBkyRJq1apF+/btCQgIoEiRIri5uXH+\n/Hkg94tlTZw4kXHjxpGVlYXRaMTX15f27dsDN1djBw8ezIQJE8z9b41x6193d3fS0tKYM2cOAwYM\noHPnznTv3t18cak75xo7dizLli3DyckJNzc3xo4di5ubG35+fnTt2hWAoKAgnn32WV588UXefPNN\nTCYTjRo1omXLljkuElarVi18fX0JCAggPT0dX19fypYtm+s5w5s3b2bfvn0YjUZiYmIwGAyEhIQQ\nGBjI0KFDCQgIwMnJiVmzZgFQunRpOnXqhJOTE/7+/uYg7uPjQ5cuXTCZTIwZMwa4eQ63yWQiJCQE\nk8mEl5cXo0ePvu/31GDK7WuKv5gLF65bdHx396IWn0MK1rFjR1m3xYh7uacedSkP7PCBLQyp9Abe\n5R91JQ/uyO9w6fl4PD1z/+ZQxFrp74jcSZ+JJ5e7e9FHXYJYqR9//JG1a9cyadKkR13KE0MrwyIi\nIiIiIk+w8PBwNmzYwIcffvioS3miKAyLiIiIiIg8wYKDgwkODn7UZTxxdAEtERERERERsToKwyIi\nIiIiImJ1FIZFRERERETE6igMi4iIiIiIiNVRGBYRERERERGrozAsIiIiIiIiVkdhWERERERERKyO\nwrCIiIiIiIhYHYVhERERERERsTp2hT1hVlYWoaGhnD17Fjs7OyZMmICtrS1Dhw7FxsYGLy8vxowZ\nA8CaNWtYvXo19vb29OnTh5YtW5Kenk5ISAhJSUm4uroydepUSpYsWdi7ISIiIiIiIk+wQl8Zjo2N\nxWg0smrVKt59913mzJnDlClTGDhwICtWrMBoNBIdHc3FixeJiIhg9erVLFmyhFmzZpGZmcnKlSvx\n9vYmMjKSjh07smDBgsLeBREREREREXnCFXoYrlq1KtnZ2ZhMJq5fv46dnR0HDx6kQYMGADRv3pyd\nO3fy888/U79+fezs7HB1daVq1aocOnSI+Ph4mjdvbu67a9euwt4FERERERERecIV+mHSLi4unDlz\nhldeeYUrV66waNEi4uLicjyfnJxMSkoKRYsWNbc7Ozub211dXXP0FREREREREXkQhR6Gly9fTrNm\nzRgwYACJiYl069aNzMxM8/MpKSkUK1YMV1fXHEH39vaUlBRz2+2BOS8lSzpjZ2db8DtzG3f3/OuQ\nx8fly67AtUddhlUqVcpVPy8iudDPhdxJnwkREcsq9DBcvHhx7OxuTlu0aFGysrKoVasWe/bsoVGj\nRmzfvh0/Pz/q1KnDnDlzyMjIID09nYSEBLy8vKhXrx6xsbHUqVOH2NhY8+HV93L5cqpF98ndvSgX\nLly36BxSsC5d0hEFj8qlS8n6eRG5g/6OyJ30mXhy6UsMkSdHoYfh7t27M3z4cIKCgsjKymLw4ME8\n88wzjBw5kszMTDw9PXnllVcwGAx069aNwMBATCYTAwcOxMHBgYCAAEJDQwkMDMTBwYFZs2YV9i6I\niIiIiIjIE67Qw7CzszNz5869qz0iIuKuts6dO9O5c+ccbU5OTnz44YcWq09ERERERET++gr9atIi\nIiIiIiIij5rCsIiIiIiIiFgdhWERERERERGxOgrDIiIiIiIiYnUUhkVERERERMTqKAyLiIiIiIiI\n1VEYFhEREREREaujMCwiIiIiIiJWR2FYRERERERErI7CsIiIiIiIiFgdhWERERERERGxOgrDIiIi\nIiIiYnUUhkVERERERMTqKAyLiIiIiIiI1VEYFhEREREREaujMCwiIiIiIiJWR2FYRERERERErI7C\nsIiIiIiIiFgdhWERERERERGxOgrDIiIiIiIiYnUUhkVERERERMTqKAyLiIiIiIiI1VEYFhERERER\nEaujMCwiIiIiIiJWR2FYRERERERErI7CsIiIiIiIiFgdhWERERERERGxOgrDIiIiIiIiYnUUhkVE\nRERERMTqKAyLiIiIiIiI1VEYFhEREREREaujMCwiIiIiIiJWR2FYRERERERErI7CsIiIiIiIiFgd\nhWERERERERGxOgrDIiIiIiIiYnUUhkVERERERMTqKAyLiIiIiIiI1VEYFhEREREREaujMCwiIiIi\nIiJWR2FYRERERERErI7CsIiIiIiIiFgdhWERERERERGxOgrDIiIiIiIiYnUUhkVERERERMTqKAyL\niIiIiIiI1VEYFhEREREREaujMCwiIiIiIiJWR2FYRERERERErI7CsIiIiIiIiFgdhWERERERERGx\nOgrDIiIiIiIiYnUUhkVERERERMTq5BuGT506xRdffIHJZGLUqFF06tSJuLi4wqhNRERERERExCLy\nDcPDhg3D3t6eLVu2cOLECYYNG8b06dMLozYRERERERERi8g3DKenp9OmTRu2bt1K+/btadCgAVlZ\nWYVRm4iIiIiIiIhF5BuGbW1t2bx5M9u2baNly5ZER0djY6NTjUVEREREROTJlW+qHT9+PNu2bWPM\nmDGUKVOGTZs2MXHixMKoTURERERERMQi8g3DNWrU4N1338XBwYHs7GwGDhxIzZo1C6M2ERERERER\nEYuwy6/Dl19+ycKFC0lLS2PVqlV07dqVIUOG0LFjx4eedPHixcTExJCZmUlgYCANGzZk6NCh2NjY\n4OXlxZgxYwBYs2YNq1evxt7enj59+tCyZUvS09MJCQkhKSkJV1dXpk6dSsmSJR+6FhEREREREbE+\n+a4Mf/zxx6xcuRIXFxfc3NxYv349ixcvfugJ9+zZw48//siqVauIiIjg999/Z8qUKQwcOJAVK1Zg\nNBqJjo7m4sWLREREsHr1apYsWcKsWbPIzMxk5cqVeHt7ExkZSceOHVmwYMFD1yIiIiIiIiLWKd8w\nbGNjg6urq/lxmTJl/tQFtL777ju8vb1599136du3Ly1btuTgwYM0aNAAgObNm7Nz505+/vln6tev\nj52dHa6urlStWpVDhw4RHx9P8+bNzX137dr10LWIiIiIiIiIdcr3MGkvLy9WrFhBVlYWv/76K599\n9tmfOmf48uXLnDt3jrCwME6fPk3fvn0xGo3m511cXEhOTiYlJYWiRYua252dnc3tt8L5rb4iIiIi\nIiIiDyLfMDx69GgWLlyIo6Mjw4cPx8/Pj9DQ0IeesESJEnh6emJnZ0e1atVwdHQkMTHR/HxKSgrF\nihXD1dU1R9C9vT0lJcXcdntgzkvJks7Y2dk+dM33w909/zrk8XH5sitw7VGXYZVKlXLVz4tILvRz\nIXfSZ0JExLLyDcPOzs4MGjSIQYMGFciE9evXJyIigh49epCYmMiNGzfw8/Njz549NGrUiO3bt+Pn\n50edOnWYM2cOGRkZpKenk5CQgJeXF/Xq1SM2NpY6deoQGxtrPrz6Xi5fTi2Q2vPi7l6UCxeuW3QO\nKViXLumIgkfl0qVk/byI3EF/R+RO+kw8ufQlhsiTI98wvHz5chYsWMD16zd/IZtMJgwGA7/++utD\nTdiyZUvi4uJ44403MJlMjB07looVKzJy5EgyMzPx9PTklVdewWAw0K1bNwIDAzGZTAwcOBAHBwcC\nAgIIDQ0lMDAQBwcHZs2a9VB1iIiIiIiIiPUymEwm0706tGrVihUrVlChQoXCqqnAWfqbVX17++Q5\nduwo67YYcS/31KMu5YEdPrCFIZXewLv8o67kwR35HS49H4+np9ejLkXksaK/I3InfSaeXFoZFnly\n5HtZaE9PT0qXLl0YtYiIiIiIiIgUinwPk+7WrRvt27fHx8cHW9v/XYRqypQpFi1MRERERERExFLy\nDcOTJk2iffv2VKxYsTDqEREREREREbG4fMOwg4MD/fr1K4xaRERERERERApFvmG4SZMmTJ06lebN\nm2Nvb29ub9iwoUULExEREREREbGUfMPwwYMHAfjll1/MbQaDgfDwcMtVJSIiIiIiImJB+YbhiIiI\nwqhDREREREREpNDkG4bj4uJYunQpqampmEwmjEYj586dIyYmpjDqExERERERESlw+d5neOTIkbRu\n3Zrs7GyCgoKoUqUKrVu3LozaRERERERERCwi3zDs5OREp06daNSoEcWKFWPixIns3bu3MGoTERER\nERERsYh8w7CjoyNXrlyhWrVq/PTTTxgMBlJTUwujNhERERERERGLyDcM9+jRgwEDBvDCCy+wYcMG\n2rZtS+3atQujNhERERERERGLyPcCWm3atOGVV17BYDCwbt06Tpw4Qc2aNQujNhERERERERGLuGcY\nPnLkCNnZ2Tz99NNMnjyZ69evY2try9ChQ3F1dS2sGkVEREREREQKVJ6HScfExNCnTx8uXLgAwPbt\n22nUqBFZWVksWbKk0AoUERERERERKWh5huF58+axdOlSmjdvDty8qvRrr73GyJEjdY9hERERERER\neaLlGYbT09OpVq2a+XGzZs0AcHV1xdbW1vKViYiIiIiIiFhInmE4MzMTk8lkfjxo0CAAsrKyyMzM\ntHxlIiIiIiIiIhaSZxhu1KgRixYtuqt96dKlNGrUyKJFiYiIiIiIiFhSnleTHjRoEMHBwWzdupUG\nDRpgMBiIj48nPT2d8PDwwqxRREREREREpEDlGYZLlizJ559/zjfffMO+ffsACAgIoE2bNjg4OBRa\ngSIiIiIiIiIF7Z73GXZwcKBdu3a0a9eusOoRERERERERsbg8zxkWERERERER+avKMwynpqYWZh0i\nIiIiIiIihSbPMNytWzcAxo4dW1i1iIiIiIiIiBSKPM8ZTk1NZfDgwezYsYP09PS7np8yZYpFCxMR\nERERERGxlDzD8LJly9i9ezfx8fG6r7CIiIiIiIj8peQZhsuXL4+/vz81a9bE09OT48ePk52djZeX\nF3Z297wItYiIiIiIiMhjLd9Um5mZycsvv0yJEiUwGo1cvHiR+fPn4+PjUxj1iYiIiIiIiBS4fMPw\npEmTmDNnjjn87tu3jwkTJrB27VqLFyciIiIiIiJiCfneZzg1NTXHKnDdunVzvaCWiIiIiIiIyJMi\n3zBcvHhxoqOjzY+jo6MpUaKERYsSERERERERsaR8D5OeMGECISEhjBgxAgAPDw9mzJhh8cJERERE\nRERELCXfMFy1alWioqJITU3FaDTi6upaGHWJiIiIiIiIWMx93yPJ2dnZknWIiIiIiIiIFJp8zxkW\nERERERER+avJNwyvXLmyMOoQERERERERKTT5huHIyMjCqENERERERESk0OR7znC5cuUIDg7Gx8cH\nR0dHc3u/fv0sWpiIiIiIiIiIpeQbhuvWrVsYdYiIiIiIiIgUmnzDcL9+/UhNTeXUqVN4e3uTlpam\nK0uLiIiIiIjIEy3fc4Z37dpFx44deffdd7l48SKtWrXiu+++K4zaRERERERERCwi3zA8e/ZsPvvs\nM4oVK0aZMmVYsWIF06dPL4zaRERERERERCwi3zBsNBpxd3c3P37qqacsWpCIiIiIiIiIpd3X1aS3\nbt2KwWDg2rVrREZGUqFChcKoTURERERERMQi8l0ZHj9+PP/617/4/fffad26Nb/++ivjx48vjNpE\nRERERERELCLflWE3Nzdmz55NcnIydnZ2ODk5FUZdIiIiIiIiIhaTbxg+fPgwQ4cO5dy5cwBUr16d\nadOmUblyZYsXJyIiIiIiImIJ+R4mPWbMGPr378/u3bvZvXs3b7/9NsOHDy+M2kREREREREQsIt8w\nnJ6eTosWLcyPX3rpJZKTky1alIiIiIiIiIgl5RmGz507x7lz56hZsyaLFy/m0qVLXL16lRUrVtCg\nQYPCrFFERERERESkQOV5zvBbb72FwWDAZDKxe/duVq1aZX7OYDAwcuTIQilQREREREREpKDlGYZj\nYmIKsw4RERERERGRQpPv1aQTEhJYs2YNV69ezdE+ZcoUixUlIiIiIiIiYkn5huF+/frx6quvUqNG\njcKoR0RERERERMTi8g3DxYoVo1+/foVRi4iIiIiIiEihyDcMv/baa8yZMwc/Pz/s7P7XvWHDhhYt\nTERERERERMRS8g3De/bsYf/+/fznP/8xtxkMBsLDwy1amIiIiIiIiIil5BuGDxw4wDfffFMYtYiI\niIiIiIgUCpv8Onh7e3Po0KECnzgpKYmWLVty/PhxTp06RWBgIG+99Rbjxo0z91mzZg2dOnWia9eu\nbNu2DYD09HQ++OADgoKC6N27N5cvXy7w2kREREREROSvLd8wfPr0aV577TWaN2/Oiy++SKtWrXjx\nxRf/1KRZWVmMGTMGJycn4OZtmgYOHMiKFSswGo1ER0dz8eJFIiIiWL16NUuWLGHWrFlkZmaycuVK\nvL29iYyMpGPHjixYsOBP1SIiIiIiIiLWJ9/DpOfPn1/gk06bNo2AgADCwsIwmUwcPHiQBg0aANC8\neXO+//57bGxsqF+/PnZ2dri6ulK1alUOHTpEfHw8f//73819FYZFRERERETkQeUbhvfu3Ztre8WK\nFR9qwnXr1uHm5sbzzz/PokWLADAajebnXVxcSE5OJiUlhaJFi5rbnZ2dze2urq45+oqIiIiIiIg8\niHzD8O7du83/nZmZSXx8PA0aNMDf3/+hJly3bh0Gg4Hvv/+ew4cPExoamuO835SUFIoVK4arq2uO\noHt7e0pKirnt9sCcl5IlnbGzs32oeu+Xu3v+dcjj4/JlV+Daoy7DKpUq5aqfF5Fc6OdC7qTPhIiI\nZeUbhqdMmZLj8ZUrVxgwYMBDT7hixQrzfwcHBzNu3DimT5/O3r17adiwIdu3b8fPz486deowZ84c\nMjIySE9PJyEhAS8vL+rVq0dsbCx16tQhNjbWfHj1vVy+nPrQ9d4Pd/eiXLhw3aJzSMG6dElHFDwq\nly4l6+dF5A76OyJ30mfiyaUvMUSeHP/f3t3GSFXYexz/DYt7eVhAVBou1YCXh9pGA1ZpQVKKTw1K\na2EBEyhLsdwXvqCg1EIrFYyA8hBr2giJjbYJ1lZpShEbm7aKRbHclNKKIZVqKlwqEisPgbIUgd25\nL27ciEpFYXd2OZ/Pq9kzM+f8D5nNzPecs8MHxvC7derUKTt37jytQ8yePTt33HFHjh49mr59+2bk\nyJEplUqpq6vLxIkTUy6XM3PmzFRXV2fChAmZPXt2Jk6cmOrq6tx7772ndRYAAADOfB8Yw3V1dSmV\nSkmScrmc1157LZ///OdPy8ZXrFjRdPvhhx9+z/3jx4/P+PHjj1vWoUOHfO973zst2wcAAKCYPjCG\nv/71rzfdLpVK6d69e/r169esQwEAAEBzOmEMv/7660mS888//33v69WrV/NNBQAAAM3ohDE8adKk\nlEqllMvlpmWlUin/+Mc/cuzYsbz00kstMiAAAACcbieM4bVr1x73c319fRYvXpz169dn/vz5zT4Y\nAAAANJd2J/OgDRs25IYbbkiSrFmzJsOGDWvWoQAAAKA5/dsv0Dp06FAWLVrUdDZYBAMAAHAmOOGZ\n4Q0bNuRLX/pSkuSJJ54QwgAAAJwxTnhm+Kabbkr79u2zfv36PP/8803Ly+VySqVSnn766RYZEAAA\nAE63E8aw2AUAAOBMdcIY/vjHP96ScwAAAECLOalvkwYAAIAziRgGAACgcMQwAAAAhSOGAQAAKBwx\nDAAAQOGIYQAAAApHDAMAAFA4YhgAAIDCEcMAAAAUjhgGAACgcMQwAAAAhSOGAQAAKBwxDAAAQOGI\nYQAAAApHDAMAAFA4YhgAAIDCEcMAAAAUjhgGAACgcMQwAAAAhSOGAQAAKBwxDAAAQOGIYQAAAApH\nDAMAAFA4YhgAAIDCEcMAAAAUjhgGAACgcMQwAAAAhSOGAQAAKBwxDAAAQOGIYQAAAApHDAMAAFA4\nYhgAAIDCEcMAAAAUjhgGAACgcMQwAAAAhSOGAQAAKBwxDAAAQOGIYQAAAApHDAMAAFA4YhgAAIDC\nEcMAAAAUjhgGAACgcMQwAAAAhSOGAQAAKBwxDAAAQOGIYQAAAApHDAMAAFA4YhgAAIDCEcMAAAAU\nTvuW3uCxY8dy++23Z+fOnTl69Ghuvvnm9OvXL9/61rfSrl279O/fP/PmzUuSrFy5Mo899ljOOuus\n3HzzzRkxYkTeeuutfPOb38yePXtSU1OTRYsWpXv37i29GwAAALRhLR7Da9asSffu3bNkyZIcOHAg\nXysjo1UAAAz6SURBVP7yl3PRRRdl5syZufzyyzNv3rw89dRTGTRoUB5++OH84he/yOHDhzNhwoQM\nGzYsP/3pTzNgwIBMmzYtTz75ZJYvX545c+a09G4AAADQhrX4ZdLXXXddZsyYkSRpaGhIVVVV/vKX\nv+Tyyy9PkgwfPjy///3v8+KLL+ayyy5L+/btU1NTkz59+mTr1q3ZtGlThg8f3vTYDRs2tPQuAAAA\n0Ma1eAx37NgxnTp1ysGDBzNjxozceuutKZfLTfd37tw5Bw8eTH19fbp06dK0/O3n1NfXp6am5rjH\nAgAAwIfR4pdJJ8muXbsybdq0TJo0KaNGjcrSpUub7quvr0/Xrl1TU1NzXOi+c3l9fX3TsncG84l0\n794p7dtXnf4deYcePT54DlqPfftqkhyo9BiFdM45NX5f4H34veDdvCYAmleLx/Du3bszderUzJ07\nN0OGDEmSfPKTn8zGjRszePDgPPvssxkyZEguueSS3HfffTly5EjeeuutvPrqq+nfv38uvfTSrFu3\nLpdccknWrVvXdHn1v7Nv36Fm3acePbrkzTf/2azb4PTau9cVBZWyd+9Bvy/wLt5HeDevibbLQQxo\nO1o8hh944IEcOHAgy5cvz7Jly1IqlTJnzpwsWLAgR48eTd++fTNy5MiUSqXU1dVl4sSJKZfLmTlz\nZqqrqzNhwoTMnj07EydOTHV1de69996W3gUAAADauFL5nX+we4Zq7iOrjt62PX/72ytZ9XRjevTs\nV+lRPrS/bnk6s84flwH/WelJPryXdyV7h21K3779Kz0KtCreR3g3r4m2y5lhaDta/Au0AAAAoNLE\nMAAAAIUjhgEAACgcMQwAAEDhiGEAAAAKRwwDAABQOGIYAACAwhHDAAAAFI4YBgAAoHDEMAAAAIUj\nhgEAACgcMQwAAEDhiGEAAAAKRwwDAABQOGIYAACAwhHDAAAAFI4YBgAAoHDEMAAAAIUjhgEAACgc\nMQwAAEDhiGEAAAAKRwwDAABQOGIYAACAwhHDAAAAFI4YBgAAoHDEMAAAAIUjhgEAACgcMQwAAEDh\niGEAAAAKRwwDAABQOGIYAACAwhHDAAAAFI4YBgAAoHDEMAAAAIUjhgEAACgcMQwAAEDhiGEAAAAK\nRwwDAABQOGIYAACAwhHDAAAAFI4YBgAAoHDEMAAAAIUjhgEAACgcMQwAAEDhiGEAAAAKRwwDAABQ\nOGIYAACAwhHDAAAAFE77Sg/QEv72t1eadf379tVk796Dp329DQ0NSUqpqmqbxyz69PmvVFVVVXoM\nADjtGhoasn37q822/ub6bJH4fAHwtkLE8IOPbcs55/Vuxi0caJa1bnvlf/LfPafnwh7Nsvpmte3N\nZPvoTenbt3+lRwGA02779leb+fNF83y2SHy+AHhbIWL4nPN6p0fPfpUe40Pbu/t/c2GPZMB/VnqS\nj2ZvpQcAgGbk80Vl+HwBnC5t8/oYAAAAOAViGAAAgMIRwwAAABSOGAYAAKBwxDAAAACFI4YBAAAo\nHDEMAABA4YhhAAAACqd9pQf4KMrlcu6888789a9/TXV1dRYuXJgLLrig0mMBAADQRrTJGH7qqady\n5MiRPProo9m8eXPuueeeLF++vNJjAXAGamhoyPbtrzbrNvbtq8nevQdP+3obGhqSlFJV1TYvBOvT\n579SVVVV6TEAOEO1yRjetGlTPve5zyVJBg4cmC1btlR4IgDOVNu3v5oHH9uWc87r3YxbOdAsa932\nyv/kv3tOz4U9mmX1zWrbm8n20ZvSt2//So8CwBmqTcbwwYMH06VLl6af27dvn8bGxrRr9/5Hvvfu\n/t+WGu202r/v9Wz7j0pP8dFsezPpVukhPoDXRctrC68LgJPlfaTleR8BTqdSuVwuV3qID2vRokUZ\nNGhQRo4cmSQZMWJEfve731V2KAAAANqMNvlHRJ/+9Kezbt26JMkLL7yQAQMGVHgiAAAA2pI2eWb4\nnd8mnST33HNPLrzwwgpPBQAAQFvRJmMYAAAATkWbvEwaAAAAToUYBgAAoHDEMAAAAIUjhk/R5s2b\nU1dXV+kxaCWOHTuWWbNm5Stf+UpuvPHGrF27ttIjAa3cnj17MmLEiGzbtq3So9BK1NbWZvLkyZk8\neXJuv/32So8DcMZqX+kB2rIHH3wwjz/+eDp37lzpUWgl1qxZk+7du2fJkiXZv39/Ro8enauuuqrS\nYwGt1LFjxzJv3rx06NCh0qPQShw5ciRJsmLFigpPAnDmc2b4FPTu3TvLli2r9Bi0Itddd11mzJiR\nJGlsbEz79o43ASe2ePHiTJgwIR/72McqPQqtxNatW3Po0KFMnTo1U6ZMyebNmys9EsAZSwyfgmuv\nvTZVVVWVHoNWpGPHjunUqVMOHjyYGTNm5NZbb630SEArtWrVqpx77rkZNmxY/C+HvK1Dhw6ZOnVq\nHnroodx555257bbb0tjYWOmxAM5IYhhOs127duWrX/1qxowZk+uvv77S4wCt1KpVq/L888+nrq4u\nW7duzezZs7Nnz55Kj0WF9enTJzfccEPT7bPPPjtvvvlmhacCODO5hvM0cESft+3evTtTp07N3Llz\nM2TIkEqPA7RiP/7xj5tu19XV5a677sq5555bwYloDX7+85/n5Zdfzrx58/LGG2+kvr4+PXr0qPRY\nAGckZ4ZPg1KpVOkRaCUeeOCBHDhwIMuXL09dXV0mT57c9GUoACfifYS3jRs3Lv/85z8zceLEfOMb\n38jdd9+ddu18XANoDqWy05oAAAAUjEONAAAAFI4YBgAAoHDEMAAAAIUjhgEAACgcMQwAAEDhiGEA\nAAAKRwwDtFI7d+7MVVdd9Z7lF110UZLktddey5w5c5IkW7ZsyR133JEkqaury8aNG49btnLlyjz5\n5JMntd1Zs2blBz/4wXuWX3vttXn55ZdP+Lxvf/vbWb169UltAwCg0sQwQCtWKpVOuGznzp35+9//\nniS5+OKLM3/+/OMe985lf/7zn3PkyJGT2mZtbW2eeOKJ45b98Y9/TLdu3TJgwIAPvQ8AAK2RGAZo\noxYuXJgtW7Zk/vz5+cMf/pC6urrj7n972YYNG7J27dp8//vfz9NPP50hQ4akvr4+yf8H9Re/+MXj\nnjdkyJD861//yiuvvNK0bM2aNRk3blzTeidOnJja2tpcc801+fWvf33c8999Rvv+++/P/fffnyR5\n9tlnM378+NTW1mb69OnZv39/kmTx4sUZPXp0amtrmx4LANCcxDBAG/Wd73wnF198cdOl0Cc6izx0\n6NBcddVVmT59eq6++upceeWVTQG7evXqjB49+j3PGzNmTNPZ4SNHjuSZZ55piuZHHnkkCxcuzKpV\nq7JgwYIsW7bsfbf7bnv37s13v/vd/PCHP8yqVasybNiwLF26NK+//nqee+65rF69Oo8++mh27Nhx\n0mexAQA+qvaVHgCA99eu3fsfr3y/0Pww3j77Wltbm1/+8pdZsWLFex4zZsyYTJkyJTNnzszatWsz\ndOjQ1NTUJEmWLl2aZ555Jr/61a+yefPmHDp06KS2++KLL2bXrl2ZPHlyyuVyGhsbc/bZZ6dnz57p\n0KFDJkyYkCuvvDK33HJLqqurT2kfAQA+iBgGaKW6du2agwcPHrds9+7d6dq16ymtd/DgwXnjjTfy\n29/+NhdccEF69Ojxnsf06tUr559/fv70pz/l8ccfz5QpU5rumzBhQoYOHZrPfOYzGTp0aG677bbj\nnlsqlVIul5t+Pnr0aM4666w0NDTksssuy/Lly5P8/xnn+vr6tGvXLitXrszGjRuzbt263HjjjXnk\nkUfSu3fvU9pPAIB/x2XSAK1U586d07t37/zmN79pWrZy5cpcccUVSZKqqqo0NDSc1Lqqqqpy9OjR\npp9Hjx6dBQsWpLa29oTPGTt2bH72s59lx44d+exnP5sk2b9/f3bs2JHp06dn+PDhWb9+fRobG497\nXteuXXPgwIHs27cvR44cyXPPPZckGThwYF544YVs3749SbJs2bIsWbIkL730UiZNmpTBgwdn1qxZ\n6devX7Zt23ZS+wUA8FE5MwzQii1dujTz5s3L8uXLc/To0XziE5/I3LlzkyR9+/bNgQMHMnv27Iwd\nO7bpOe93GfUVV1yR++67L926dcsXvvCFXH/99fnRj36Uq6+++oTbvuaaa3LXXXflpptualrWrVu3\njBs3LqNGjUqXLl0yaNCgHD58OIcPH256TE1NTb72ta9l7Nix6dWrVwYOHJgkOe+883L33Xfnlltu\nSWNjY3r27JmlS5emW7duufTSSzNq1Kh07Ngxn/rUpzJ8+PBT/rcDAPh3SuV3XssGwBmvXC7nJz/5\nSbZv3970/xQDABSNM8MABTNt2rTs2rUrDz30UKVHAQCoGGeGAQAAKBxfoAUAAEDhiGEAAAAKRwwD\nAABQOGIYAACAwhHDAAAAFI4YBgAAoHD+D8SfiVNCZrNLAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x118d64940>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Play the Game\n", "N = 10000\n", "agent1 = ml.QLearn()\n", "agent2 = ml.QLearn()\n", "game = PrisonersDilemma(agent1, agent2)\n", "game.play(N)\n", "\n", "# Get Data from Game\n", "agent1_util_vals = Counter(game.data['A'])\n", "agent2_util_vals = Counter(game.data['B'])\n", "a1_total_score = sum(game.data['A'])\n", "a2_total_score = sum(game.data['B'])\n", "\n", "\n", "# Plot the results\n", "x1, y1, x2, y2 = [], [], [], []\n", "\n", "for i, j in zip(agent1_util_vals, agent2_util_vals):\n", " x1.append(i)\n", " y1.append(agent1_util_vals[i])\n", " x2.append(j)\n", " y2.append(agent2_util_vals[j])\n", "\n", "fig, ax = plt.subplots(figsize=(12,6))\n", "width = 0.35\n", "a1 = ax.bar(x1, y1, width, color='#8A9CEF')\n", "a2 = ax.bar(np.asarray(x2)+width, y2, width, color='orange')\n", "\n", "_ = ax.set_title('QLearning Agent Vs QLearning Agent')\n", "_ = ax.set_ylabel('Number of Games')\n", "_ = ax.set_xlabel('Utility Values')\n", "ax.set_xticks(np.add(x2,width/2))\n", "_ = ax.set_xticklabels(('1', '2', '4', '5'))\n", "_ = ax.legend((a1[0], a2[0]), ('QLearning Agent\\nTotal Utility Score: {}'.format(str(a1_total_score)),\n", " 'QLearning Agent\\nTotal Utility Score: {}'.format(str(a2_total_score))), loc=1, bbox_to_anchor=(1.35, 1))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here both QLearning Agents tend to mirror each other. I assume this is because they have the same inital parameters which will yield the same expected utility." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## QLearning Vs QLearning (Longer Game; Different Starting Parameters)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "scrolled": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Playing Game: 100%|██████████| 200000/200000 [03:44<00:00, 890.01it/s] \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8kAAAGJCAYAAAC5C3HcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlgTOf+x/F3VpFMbBFr1FbRupZK7FFLy+1GuLVluYmW\n3tI2ei0httqpXdyGWlulsQVBS+nPFkWVpLULKnYaJLEkIdvM7w8xV5oQeiWR9vP6h/PMc57zPWdm\njM88Z86xMJlMJkREREREREQEy4IuQERERERERORZoZAsIiIiIiIikkkhWURERERERCSTQrKIiIiI\niIhIJoVkERERERERkUwKySIiIiIiIiKZFJJF5JmXkZHBvHnz8PT0xNPTk/bt2zN27Fhu3Lhh7uPn\n58f333+f77UdOXKEf//730993D59+tC0aVNSUlKe+tgPmjVrFtu2bcvW7u/vz7x587K1f/HFF3z4\n4YdPtI2ffvqJHj168Oabb9KxY0d69uxJZGSk+fHw8HB69+795MU/Bb169eL06dNPdcxt27bxwgsv\nsHHjxqc67u8dPnyYkSNH5uk2RERE/ooUkkXkmRcYGMjx48dZunQp69evZ+3atZQvX55u3bqRlJRU\noLXVrl2bmTNnPtUxr169SmRkJPXq1SM8PPypjv17e/fuJT09PVu7r68va9asydYeFhaGn5/fY48f\nERHBkCFD6Nu3Lxs3bmTt2rV8/PHHDBo0iIiIiP+p9qdh7ty5VK9e/amOuXz5cjw9PVm8ePFTHff3\nTp06RWxsbJ5uQ0RE5K/IuqALEBF5lMOHDxMZGcnWrVuxtbUFwMrKivfee4+ff/6Z5cuX07Nnz0eO\nsX37dj7//HPS09Oxs7Nj0KBBvPTSS8TFxTFixAji4uK4fv06FSpUIDg4mFKlSvHKK69Qr149Tp48\nSb9+/ZgwYQJvv/02P/74I1euXOGNN95g4MCB7Nu3j7Fjx/LNN98wZMgQHBwcOHnyJL/99hvVqlVj\nxowZFC1alIiICKZOnYq1tTUvvPACe/bsYdmyZVSoUCFbvStXrqRZs2a89tprBAcH4+XlZX7sUeOs\nWrWKpUuXAlCiRAk++eQTqlat+tC61qxZw5EjR5g8eTKWlpa0adPGvJ02bdowYcIEoqKicHd3B2Df\nvn0ANG3alOTkZIYMGcL58+exsLCgdu3ajBkzJtu+TJkyhaFDh1K3bl1zW7169Rg6dCiTJ0+mZcuW\nj3zuYmNjGTt2LFeuXCE9PZ233nqL999/H4A5c+awdetWUlNTuXPnDoMGDaJNmzaEhITwyy+/cP36\ndWrWrMlzzz3HpUuXuHr1KpcvX6ZUqVIEBwfj7OzMK6+8wmeffUZSUhIzZsygUqVKnDp1irS0NEaM\nGEGjRo2Ij49n6NChXLhwgRIlSuDk5ISrqysBAQHZ6r1w4QL79u1j27ZtvPHGGxw8eJB69eoBPHKc\n06dPM2HCBG7cuIHRaMTPz4+3336bffv25VjXc889x2effUZiYiJDhw5lwoQJjzyOIiIi8vg0kywi\nz7SoqChq165tDsgP8vDw4Oeff37k+ufOnWP69OnMnz+fNWvWMGbMGAICArh79y4bNmygfv36LF++\nnC1btmBnZ8f69evN67q6urJhwwZzeExOTiY0NJRly5bx9ddfc+nSpWzbO3bsGF988QUbN27k6tWr\nbNq0iRs3bjBo0CCmTZtGeHg4jRs35urVqznWm5GRwcqVK/H09KRVq1bExcXxww8/ADxynP3797N2\n7VqWLVvGmjVr6NmzZ5YQl1Ndvr6+1K5d2xwuH2RlZUWXLl1YtWqVuW3lypX4+voC8H//938kJycT\nHh5u7nPhwoUsY9y6dYtff/2Vhg0bZtvPZs2aERMTw+3btx/yzN0zaNAgOnfuzOrVqwkLC2P37t1s\n2rSJy5cvs3fvXkJDQ1m3bh19+/blP//5j3m9K1eusHbtWiZPngzcex199tlnfPfddxQrVowVK1Zk\n29bhw4fp2bMn4eHhdOrUic8++wyAcePGUaNGDTZs2EBwcDC//PLLQ+tdsWIFrVq1olSpUrRr146v\nvvrK/Nj48eNzHCcjI4N///vfBAYGsnr1apYsWcLChQs5dOjQQ+sqV64cH3/8Me7u7grIIiIiT5lm\nkkWkUMvIyHjk47t37+b69eu88847mEwmAKytrTl37hz+/v5ERkayaNEizp49y6+//mqe9QNo0KBB\nlrFeffVVAMqWLYuTkxM3b97Mtr2XX34Za+t7/7S6urpy8+ZNIiMjqVGjBq6urgB07NiRcePG5Vjv\nli1bMBqNvPzyy1haWvLmm2+yaNEiXn755RzHGT9+PAA7duzg/PnzeHl5mffz1q1b3Lp166F15aZb\nt260a9eO5ORkUlNT2b17N6NGjQLA3d2d4OBg/Pz88PDwoHv37lSqVCnbGBYWFo/cxqOevzt37rB/\n/35u3bpFcHCwue348eO8/vrrTJw4kXXr1nH+/HkOHDhAcnKyed169epl2XajRo2wt7cHoFatWll+\nz35fhQoVqFmzprnP/VPdd+7caf67s7Mzr732Wo71pqamsnr1aj799FMAOnTogI+PD7GxsZQtW5aI\niIgcxzl79iznz59n6NCh5ucuJSWFY8eOUa1atYfWJSIiInlDIVlEnmlubm4sWLCAlJQUihQpQlpa\nGklJSZQoUYK9e/fi5ub2yPWNRiNNmzZl+vTp5rbffvuNMmXKMGXKFI4cOUKnTp1o0qQJ6enp5pAC\nmEPVfXZ2dlmWH+ybUx8LCwtMJhNWVlYYjcYs/Swtcz6RZ/ny5aSkpNC2bVsA0tLSuHbtGqdPn85x\nnPtB0Gg00qFDBwYMGGB+LDY2lmLFij20rtw4OzvTrFkzNmzYQHJyMq+99hoGgwEAFxcXvv/+e/bt\n28fevXvp3r07I0aM4O9//7t5/WLFilG9enX27dtn3p+rV69SpkwZfvzxR5577jlKlCjx0O3fD9Ar\nVqwwn0mQkJCAnZ0dx44d48MPP+Sdd96hefPmNGzYkNGjR5vXdXBwyDLW7/c/J0WKFMnxGFlZWWXp\n9/vl+7777jtu3brFmDFjGDt2LCaTCQsLC5YsWUJgYOBDx8nIyKBYsWJZwm9cXByOjo4cOHDgoXWJ\niIhI3tDp1iLyTKtbty6NGzdm8ODB3Lp1i/Pnz+Pr68vHH3/MyZMn8fHxMffNKTw0adKE3bt3ExMT\nA9z7TW+HDh3MM6Pdu3fH09OTkiVLsmfPnmwh9Glwc3Pj3LlznDx5EoDNmzdz+/btbGHtzJkz7N+/\nn/DwcLZu3crWrVvZuXMn7u7ufPXVV48cx8PDgw0bNnDt2jUAQkNDeeedd3KtzdraOscLd93n7e3N\n+vXrWbdunflUa4Bly5YxePBgPDw8GDBgAC+//LK5rgcNHDiQiRMnmk8dnjRpEv/85z8ZP348gwYN\nemRtBoOBevXqsXDhQuDezLi3tzdbt25l//791KlTh3feeYeGDRuaZ+DzQuvWrc2nlCckJPB///d/\nOQbtZcuW8cEHH7Bt2za2bt3Ktm3bGDVqFGFhYdy5c+eh41StWpUiRYqYT/W/cuUK7dq14+jRo4+s\ny8rK6pHPnYiIiPwxmkkWkWfelClTWLhwIf/85z8xmUykp6djbW2Ng4MDW7ZsoWPHjgAEBQUxZMgQ\n8wyer68vAwYMYMyYMfTv3x+4Fyw+//xz7Ozs+Oijj5g0aRKzZs3C2toad3d3zp07B2Sfbcxt+VGK\nFy/O1KlTGTRoEJaWltSuXRsrK6tsM9PLly+nbdu2uLi4ZGn/6KOP+OCDD+jfv/9Dx2nevDnvvfce\nPXr0wNLSEoPBQEhISK61tW7dmkmTJpGammo+jg9q1KgRN27coGTJktSoUcPc3rFjR/bv38+bb75J\n0aJFqVixIt27d8+2fsuWLZk0aRLBwcHExsZiMplwcnKiYsWK7Nmzx/x75V27dpnPCjCZTBQvXpwd\nO3YwdepUxo4dS/v27UlPT6d9+/a0a9eOuLg4vv/+e9566y1sbW1p0qQJN27cyHLK9eN4nOdx8ODB\nDB8+HE9PT0qUKEHFihUpWrRolj7R0dGcOHGCOXPmZGnv2LEjc+bMITw8/KHj2NjYMHv2bMaNG8eC\nBQvIyMigX79+1K9f33yxtJzUr1+f4OBg+vTpY/79tIiIiPzvLEw6b0tECqnExEQOHz5M06ZNC7qU\nR0pMTOTzzz/n448/pkiRIhw7doxevXqZL8iV3+M8K3744QcaNWqU5XTiZ9HSpUv529/+Rr169UhN\nTTWfyfDyyy8XyDgiIiKSt/J8JvngwYNMnTqVJUuWcPz4cUaNGoW1tTVVqlQxX3Bm5cqVrFixAhsb\nG3r37k2rVq1ISUlh4MCBxMXFYTAYmDhxIiVLluTAgQNMmDABa2trmjVrZr56a0hICBEREVhbWzNk\nyJAstxsRkT8ng8HwzAdkuFenjY0NnTp1wtraGhsbmz90b+WnNc6zorCEw+eff54xY8ZgNBpJT0/n\n9ddf/0O1P61xREREJG/l6UzyggULWLduHQ4ODixfvpyAgAC6devGyy+/TGBgIO3ataN27dq8++67\nhIeHc/fuXby9vVmzZg2hoaEkJiYSEBDAxo0b+eWXXxg2bBgdO3YkJCQEFxcX3n//ffr374/RaGTy\n5MksWrSIK1eu0KdPnyy3LRERERERERF5HHl64a7KlSsza9Ys8/KLL75IQkICJpOJpKQkrK2tOXTo\nEO7u7lhbW2MwGKhSpQrR0dFERUXRokULAFq0aMHevXtJTEwkLS3N/Hu95s2bs3v3bqKiovDw8ACg\nfPnyGI1GEhIS8nLXRERERERE5E8oT0Ny27Zts9zy4v4p1m+99Rbx8fE0atSIxMREHB0dzX3s7e1J\nTEwkKSnJfKsRBwcHbt++naXt9+05jSEiIiIiIiLyJPL1FlDjx49n6dKlbNy4EU9PTyZOnIijo2OW\nQJuUlESxYsUwGAwkJSWZ2xwdHXFwcMjWt3jx4ln6Ptg/N+npGU9x70RERERERKSwy9dbQJUoUcI8\nE1y2bFl++eUX6tSpw4wZM0hNTSUlJYWYmBhq1KhB/fr1iYiIoE6dOkRERNCgQQMMBgO2trZcuHAB\nFxcXdu3aRUBAAFZWVkydOpUePXpw5coVTCYTJUqUyLWehIQnu1XIk3B2duTatdt5Nr4UTnpdiMjj\n0r8XkhO9LgovZ+fcJ3BE5NmQryF57Nix9O3bF2tra2xtbRk7diylS5fGz88PHx8fTCYT/fv3x9bW\nFm9vb4KCgvDx8cHW1pZp06YBMHr0aAIDAzEajXh4eJivYu3u7k63bt0wmUyMGDEiP3dLRERERERE\n/iT+0vdJzstvYvVNr+RErwsReVz690JyotdF4aWZZJHCI19/kywiIiIiIiLyLFNIFhEREREREcmk\nkCwiIiIiIiKSSSFZREREREREJJNCsoiIiIiIiEgmhWQREREREZEHHDlyhJ49e+Lr64u3tzfBwcGk\np6cDMGTIEHbt2pWn279+/Tpjxoz5n8dJTU2lefPmfPHFF0+hqv+6efMm33777VMd81mikCwiIiIi\nIpIpNjaWQYMGMXLkSEJDQ1m2bBk2NjZMmDAh32ooXbo0I0aM+J/H2bx5M2+99Rbh4eFPoar/io6O\nZtu2bU91zGeJdUEXICIiIiIi8qxYt24dXbt25bnnnjO3ffTRR7Rp04bU1NSHrjd9+nSioqLIyMjg\n3Xff5bXXXmP//v2EhIRgMplITk5m2rRpWFtb07t3b0qWLEmLFi2IiIjgxRdf5NSpUyQlJTFz5kyM\nRiP9+/dnxYoVeHp60qhRI06cOIGFhQWzZ8/GYDAwevRojh49ipOTExcvXmTu3LlUqFAhS01hYWEM\nGzaMuLg4IiIiaNmyJUCO61paWvLJJ5+QkpKCnZ0dY8eOJT09nQEDBlC+fHnOnTtHvXr1GDlyJHPn\nzuXEiROEhYXRpUuXvHkiCpBmkkVERERERDJdvHgRFxeXbO2lS5fm2rVrOa6zc+dOLl26RGhoKIsX\nL+bzzz8nMTGRU6dOMXXqVBYvXkzbtm3ZtGkTAHFxcXz55Ze89957ANSrV48vv/ySpk2bmk9jtrCw\nACAxMZH27duzZMkSypQpw86dO9m6dSs3b95k5cqVjB8/ntjY2Gw1nTt3jrt371KzZk06derE119/\nDfDQdSdNmoS/vz+LFy/m3XffZcqUKQCcPXuWCRMmsGrVKiIiIoiLi6N37940adLkTxmQQTPJIiIi\nIiIiZhUqVODChQtZ2oxGI5cvX8bJySnHdU6ePMmRI0fw9/fHZDKRkZHBxYsXKVu2LGPHjsXBwYHY\n2Fjc3NwAcHFxwcrKyrz+iy++CED58uW5fv16tvEffDw1NZWLFy/y0ksvAVCqVCmqVq2abZ2wsDDu\n3LnDv/71L4xGIwcOHODChQucPn06y7rVqlUz78PcuXOZP38+JpMJGxsbACpXrkzRokUBKFOmDCkp\nKY95JAsvhWQREREREXkmZWRkcPr06ac6ZvXq1bME1N/r2LEjPXv25NVXX6VEiRL069ePsmXL0qpV\nK+zs7AAwmUxZ1qlWrRqNGzdmzJgxmEwmZs+eTaVKlejRowdbtmzB3t6ewYMHm/vfnyV+2HJuatas\nybp16/D39+fmzZucPXs2y+Pp6els3LiRdevW4ejoCMDcuXMJDQ2ladOmrF271rzumTNnzMelR48e\nvPTSS8TExBAZGZltu/f329LSkoyMjCequTBRSBYRERERkWfS6dOnmfz5YUqVrvxUxou/fo5BH4Cr\nq+tD+5QrV44pU6YwevRo7ty5w927d7GyssLJyYmbN28CMH78eAwGAyaTiWrVqjFlyhT27duHr68v\nd+7coU2bNjg4ONChQwd8fHywt7endOnSXL16FcgainMLyDn1bdmyJREREXh7e1O6dGmKFi2KtfV/\no9327dupXbu2OSAD/OMf/6Bjx4707ds3x3UHDhzIqFGjSE1NJSUlhWHDhj10+5UqVeLUqVMsXrwY\nf3//Rx/0QsjC9PuvQf5Crl27nWdjOzs75un4UjjpdSEij0v/XkhO9LoovJydHXPvJNmcPHmSBWG3\ncC73/FMZ79pvv/Jel2KPDMmPqqVSpUrmU48LUkxMDNHR0bz55pvcuHGDdu3asX37dvMp0nm17l+F\nZpJFRERERERy8UeCdV4pX748U6dO5auvvsJoNDJw4MDHDrn/y7p/FQrJIiIiIiIihUjRokWZPXt2\nvq/7V6FbQImIiIiIiIhkUkgWERERERHJNGnSJPz8/HjjjTdo3bo1/v7+9O3b96H9L126xI4dOx76\n+Pnz5/Hx8cnSlpGRQcuWLbO07dixg+HDhwOwefNm4uLiiI2NZdy4ccC9i3UZjUbmzJnDsWPHSElJ\nYdWqVY+1T/Hx8fTp04eePXvi5eXFiBEjSE1Nfax1nxaj0UiPHj2y1bxp0yYGDRpk7uPn54e/vz9+\nfn54eHgwc+ZMc9/k5GQ8PT358ccfzcsDBw7kn//8J926dePo0aMArFu3jq5du+Lt7c3YsWOfuFad\nbi0iIiIiIs+s+OvnnvJYdR7ZJygoCIDw8HDOnDlD//79H9l/z549XLp0iVatWj20T05XsH5U21df\nfUWtWrWoVKmSOTjff6x3794AnDt3jjVr1tC5c+dH1gcwb948WrZsae47btw4wsLC8PX1zXXdp2X6\n9OkkJSVlaRs3bhy7d++mTp17z4mlpSVLliwB7u1fYGCgeX8BxowZk+X2XfPmzeNvf/sbU6ZMITo6\nml9//ZWqVasye/ZsvvnmG2xtbfn3v//Nzp07adGixWPXqpAsIiIiIiLPpOrVqzPog6c5Yh2qV6/+\nh9eeMGECBw4cwMLCAk9PT7p27crChQtJTU2lfv36FClShM8//xyj0cjdu3eZPn36E29j27ZtnDx5\nksDAQCZOnMiwYcNYunSp+fGBAwfy9ttvs379ek6dOsXcuXPZunUrkydPpkqVKmzfvp09e/aYb+EE\n4OTkxHfffUfFihVxc3NjyJAh5rAZEhLC9u3bMRqN+Pr60rlzZ+bPn8/mzZuxtramcePG9OvXj+Dg\nYA4fPkxycjITJ05kx44dfPfddwB06NABb29v9uzZw+HDh+nVq1eWfdq4cSN2dnY0a9bM3GYymWjY\nsCGvvvoq4eHh2Y7D+PHjCQoKokiRIgDMnz+fxo0bYzQazX127dpFhw4d6NmzJ8WLF2fEiBHY2dmx\nbNkybG1tgXuz9vfHeFwKySIPyMjI4OzZmDwbPyHBQHx8Yp6Mfe+G7hZYWRXOX1FUqVItyzeDIiIi\nIlZWVs/MVaW3bNnCtWvXWLlyJWlpaXh5edGkSRN69uzJ5cuXadmyJaGhocyYMYNSpUoxa9YsNm/e\nzN///vfH3oaFhQWvvPIKrq6uTJo0CZPJ9ND7KH/wwQecP3+eXr16UapUKcLDw+nXrx9r1qyhT58+\nWfq+9957lCxZkgULFnD48GEaNmzIiBEjuHr1Kj/99BOrV68mLS2N6dOnc/z4cbZt20ZYWBgWFhZ8\n9NFH/PDDD8C9K3wHBQVx4sQJtmzZwvLlyzEajXTv3p3mzZvTrFmzLEEY4MSJE2zatImZM2dmOXXa\nwsKC1157zXzq9IOOHTtGWloaDRo0AOCHH37gypUr/Otf/2LPnj3mfgkJCSQmJrJw4UJWr17N5MmT\nmTBhAqVKlQJg0aJFpKen07hx48d+DkAhWSSLs2djWLDizFO7YX12t/JoXDhzai/vlfuYqs55tok8\nc+YanO0YRfXqNQq6FBEREZEcxcTEmEObjY0N9erVIyYm6+RKmTJlGD16NPb29vz2228PDWdWVlaZ\nExz/lZyc/MQznve99dZbdOnSBT8/P+Li4rJ9sfDjjz/SqVMnOnfuTFpaGnPnzmXixIm0bt2aunXr\nmvcpKCiIDRs28NJLL5nDuZubG7/++isA1apVA+DUqVNcvHgRf39/TCYTt27d4ty5c1SqVClbbWvX\nriU2NhZ/f38uXbpEkSJFqFixIk2bNn3o/qxfv56uXbual9esWUNsbCx+fn7ExMRw6tQpJk+eTMmS\nJXnllVcAaN26NYsXLwbu/bZ54sSJXL58mf/85z9PfDwVkkV+p1Tpyk/thvX5Kf76Oao6g2v5gq7k\nj4kv6AJEREREHqFatWps3LgRX19f0tLSOHDgAF5eXty6dct8CvAnn3zCjh07sLOzIzAwEJPJBGD+\n80EVKlQgMjIyy2zp/eBoaWmJ0WjMMov8+zEsLCzMQdve3h43Nzc+/fRTOnbsmG1bixYtIj4+nnbt\n2mFjY0P16tW5ePEizz//PGvWrAEgNTWVXr160a9fP0JDQ83bi4yMpFu3bubTzO8fi5o1azJnzhwA\nvvzyS2rUyHmy4/5vvAGCg4NxcXF5ZEAG2Lt3LwEBAeblGTNmmP9+/3RzV1dX3N3diYiIoGbNmuzf\nv5/nn7/3f/hhw4bh6OhISEjII7fzMArJIiIiIiIiuWjTpg379+/Hy8uLtLQ0PD09cXV1JTU1lQUL\nFlCrVi3at2+Pt7c3RYsWxcnJiatXrwI5X6Rr3LhxjB49mvT0dIxGI25ubrRv3x64N3sbGBiY5crM\n98e4/6ezszN3795lxowZ9OvXjy5dutC9e3fGjBmT47ZGjRrFF198gZ2dHU5OTowaNQonJyeaNGmC\nl5cXAL6+vtStW5dXX32Vbt26YTKZaNSoEa1ateLAgQPm8WrVqoWbmxve3t6kpKTg5uZG2bJlH/qb\n5Cd148YNDAZDjo89eCw/+OADhg0bhpeXFzY2NkyZMoVDhw6xfv163Nzc8PPzw8LCgnfffZfWrVs/\n9vYtTDl9rfEXce3a7Twb29nZMU/Hl7xx+vQp1mw1FsqZ5BNHtjLIpXOhnEk+eQXiPXS6tciD9Dki\nOdHrovBydnYs6BLkT+6XX35h1apVjB8/vqBLKfQ0kywiIiIiIlKILV68mLVr12a5MJb8cQrJIiIi\nIiIihZi/vz/+/v4FXcafRuG8V4yIiIiIiIhIHlBIFhEREREREcmkkCwiIiIiIiKSKc9D8sGDB/Hz\n8wMgPj6eDz/8ED8/P3x8fLhw4QIAK1eupFOnTnh5ebFjxw4AUlJS+Pjjj/H19aVXr14kJCQAcODA\nAbp27YqPj0+W+16FhITQpUsXvL29OXToUF7vloiIiIiIiPwJ5WlIXrBgAcOHDyctLQ2AKVOm4Onp\nyZIlS/j3v/9NTEwM169fZ8mSJaxYsYIFCxYwbdo00tLSWLZsGa6uroSGhtKhQwdmz54NwKhRo5g+\nfTpLly7l0KFDREdHc+zYMSIjIwkLC2P69Ok53htMRERERETkcRw5coSePXvi6+uLt7c3wcHBpKen\nAzBkyBB27dqVp9u/fv36U8k0qampNG/enC+++OIpVPVfN2/e5Ntvv32qYz5L8jQkV65cmVmzZpmX\nf/75Z3777Tfeffddvv32Wxo3bsyhQ4dwd3fH2toag8FAlSpViI6OJioqihYtWgDQokUL9u7dS2Ji\nImlpabi4uADQvHlzdu/eTVRUFB4eHgCUL18eo9FonnkWERERERF5XLGxsQwaNIiRI0cSGhrKsmXL\nsLGxYcKECflWQ+nSpRkxYsT/PM7mzZt56623CA8PfwpV/Vd0dDTbtm17qmM+S/L0FlBt27bl0qVL\n5uVLly5RokQJvvzyS2bNmsW8efOoUqUKjo7/vbm6vb09iYmJJCUlYTAYAHBwcOD27dtZ2u63X7hw\nATs7O0qUKJFtjJIlS+bl7omIiIiIyJ/MunXr6Nq1K88995y57aOPPqJNmzakpqY+dL3p06cTFRVF\nRkYG7777Lq+99hr79+8nJCQEk8lEcnIy06ZNw9ramt69e1OyZElatGhBREQEL774IqdOnSIpKYmZ\nM2diNBrp378/K1aswNPTk0aNGnHixAksLCyYPXs2BoOB0aNHc/ToUZycnLh48SJz586lQoUKWWoK\nCwtj2LBhxMXFERERQcuWLQFyXNfS0pJPPvmElJQU7OzsGDt2LOnp6QwYMIDy5ctz7tw56tWrx8iR\nI5k7dy7G8rL4AAAgAElEQVQnTpwgLCyMLl265M0TUYDy9T7JJUqUoHXr1gC88sorzJgxgzp16pCY\nmGjuk5SURLFixTAYDCQlJZnbHB0dcXBwyNa3ePHi2NjYmPs+2D83JUvaY21t9bR2Lxtn59xrkGdL\nQoIBuFXQZfwllSpl0HtG5Hf0npCc6HUhkrcuXrxoPqP1QaVLl+batWs5rrNz504uXbpEaGgoqamp\ndO3aFQ8PD06dOsXUqVNxdnZm7ty5bNq0iXbt2hEXF8fatWuxsrIiIiKCevXqMXToUGbMmMG3337L\nm2++iYWFBQCJiYm0b9+e4cOHExgYyM6dOylSpAg3b95k5cqVxMfH8/rrr2er6dy5c9y9e5eaNWvS\nqVMnvvjiC1q2bMnWrVtzXHfSpEn4+/vz8ssv8+OPPzJlyhT69evH2bNn+fLLLylSpAht2rQhLi6O\n3r17s2LFij9lQIZ8Dsnu7u5ERETg6enJ/v37qVGjBnXq1GHGjBmkpqaSkpJCTEwMNWrUoH79+kRE\nRFCnTh0iIiJo0KABBoMBW1tbLly4gIuLC7t27SIgIAArKyumTp1Kjx49uHLlCiaTKcvM8sMkJCTn\n2b46Ozty7drtPBtf8kZ8fGLunSRPxMcn6j0j8gB9jkhO9LoovPTlRuFRoUIF8wWG7zMajVy+fBkn\nJ6cc1zl58iRHjhzB398fk8lERkYGFy9epGzZsowdOxYHBwdiY2Nxc3MDwMXFBSur/07Wvfjii8C9\nn45ev3492/gPPp6amsrFixd56aWXAChVqhRVq1bNtk5YWBh37tzhX//6F0ajkQMHDnDhwgVOnz6d\nZd1q1aqZ92Hu3LnMnz8fk8mEjY0NcO8ntEWLFgWgTJkypKSkPOaRLLzyNSQHBQUxfPhwli1bhqOj\nI9OmTcPR0dF8tWuTyUT//v2xtbXF29uboKAgfHx8sLW1Zdq0acC9UwMCAwMxGo14eHhQt25d4F4A\n79atGyaT6amcvy8iIiIiIgUrIyOD06dPP9Uxq1evniWg/l7Hjh3p2bMnr776KiVKlKBfv36ULVuW\nVq1aYWdnB4DJZMqyTrVq1WjcuDFjxozBZDIxe/ZsKlWqRI8ePdiyZQv29vYMHjzY3P/+LPHDlnNT\ns2ZN1q1bh7+/Pzdv3uTs2bNZHk9PT2fjxo2sW7fOfIbt3LlzCQ0NpWnTpqxdu9a87pkzZ8zHpUeP\nHrz00kvExMQQGRmZbbv399vS0pKMjIwnqrkwyfOQXLFiRZYvXw7c+1YmpyurdenSJdtUvZ2dHTNn\nzszWt27duqxYsSJbe0BAAAEBAU+pahERERERKWinT5/mzBc1qer8dMY7cw3ocQJXV9eH9ilXrhxT\npkxh9OjR3Llzh7t372JlZYWTkxM3b94EYPz48RgMBkwmE9WqVWPKlCns27cPX19f7ty5Q5s2bXBw\ncKBDhw74+Phgb29P6dKluXr1KpA1FOcWkHPq27JlSyIiIvD29qZ06dIULVoUa+v/Rrvt27dTu3bt\nLD9B/cc//kHHjh3p27dvjusOHDiQUaNGmc/wHTZs2EO3X6lSJU6dOsXixYvx9/d/ZP2FkYXp91+D\n/IXk5elKOh2qcDp9+hRrthpxLvd8QZfyxE4c2cogl864li/oSp7cySsQ7xFF9eo1CroUkWeGPkck\nJ3pdFF463fqPOXnyJHxT86n9/+bkFaD9o0Pyo2qpVKmS+dTjghQTE0N0dDRvvvkmN27coF27dmzf\nvt18inRerftXka+nW4uIiIiIiBRGfyRY55Xy5cszdepUvvrqK4xGIwMHDnzskPu/rPtXoZAsIiIi\nIiJSiBQtWpTZs2fn+7p/FZYFXYCIiIiIiMizYtKkSfj5+fHGG2/QunVr/P396du370P7X7p0iR07\ndjz08fPnz+Pj45OlLSMjw3zP4vt27NjB8OHDAdi8eTNxcXHExsYybtw44N7vkI1GI3PmzOHYsWOk\npKSwatWqx9qn+Ph4+vTpQ8+ePfHy8mLEiBGPvOdzXjAajfTo0cNcs8lkonnz5vj7++Pv75/lelTp\n6ekEBATw448/mtumTp1K165d8fLyIioqCoBx48aZ13/99dfx9fXNss2hQ4fmeJ2r3GgmWURERERE\nJFNQUBAA4eHhnDlzhv79+z+y/549e7h06RKtWrV6aJ+cLs71qLavvvqKWrVqUalSJXNwvv9Y7969\ngXv3QV6zZg2dO3fOdZ/mzZtHy5YtzX3HjRtHWFhYtlCZl6ZPn05SUpJ5+cyZM9SvX5/PPvssS79z\n584RFBRkvsgZwJEjR4iOjmblypWcP3+evn37smbNGvOxSUtLw9fXl7Fjx5rXCQ0NJSYmhrJlyz5x\nrQrJIiIiIiLyzDpz7emOlf2Owo9vwoQJHDhwAAsLCzw9PenatSsLFy4kNTWV+vXrU6RIET7//HOM\nRiN3795l+vTpT7yNbdu2cfLkSQIDA5k4cSLDhg1j6dKl5scHDhzI22+/zfr16zl16hRz585l69at\nTJ48mSpVqrB9+3b27Nljvjo1gJOTE9999x0VK1bEzc2NIUOGmG+DFRISwvbt2zEajfj6+tK5c2fm\nz5/P5s2bsba2pnHjxvTr14/g4GAOHz5McnIyEydOZMeOHXz33XcAdOjQAW9vb/bs2cPhw4fp1atX\nln3auHEjdnZ2NGvWzNx29OhRLl26hL+/P/b29gwZMoTKlStz584dJk6cmOWU8Nq1azNv3jzg3sx9\n8eLFs4y/aNEiWrZsab7nc2RkJCdOnKBz585cunTpiZ8DhWQREREREXkmVa9eHXqceGrjVb0/5h+w\nZcsWrl27xsqVK0lLS8PLy4smTZrQs2dPLl++TMuWLQkNDWXGjBmUKlWKWbNmsXnzZv7+978/9jYs\nLCx45ZVXcHV1ZdKkSZhMpofeIuqDDz7g/Pnz9OrVi1KlShEeHk6/fv1Ys2YNffr0ydL3vffeo2TJ\nkixYsIDDhw/TsGFDRowYwdWrV/npp59YvXo1aWlpTJ8+nePHj7Nt2zbCwsKwsLDgo48+4ocffgDu\nXbwsKCiIEydOsGXLFpYvX47RaKR79+40b96cZs2aZQnCACdOnGDTpk3MnDkzy6nP5cqV44MPPqBt\n27bs27ePQYMGsWLFCl544QUg+72oLS0tmTp1KsuWLWPkyJHm9tTUVFavXs3q1asBiI2NZc6cOcye\nPZt169Y99rF/kEKyiIiIiIg8k6ysrJ6Zq0rHxMTQoEEDAGxsbKhXrx4xMTFZ+pQpU4bRo0djb2/P\nb7/9RuPGjXMcy8rKioyMjCxtycnJFClS5A/V9tZbb9GlSxf8/PyIi4vLdsx+/PFHOnXqROfOnUlL\nS2Pu3LlMnDiR1q1bU7duXfM+BQUFsWHDBl566SVzOHdzc+PXX38FMM/Unjp1iosXL+Lv74/JZOLW\nrVucO3eOSpUqZatt7dq1xMbG4u/vz6VLlyhSpAgVK1akfv365tnsRo0acfny5Vz3MzAwkA8++IAu\nXbrQoEEDKlSowK5du2jatCkODg4AfPfddyQkJPDee+9x9epVUlNTqVq1Kp6eno99PHXhLhERERER\nkVxUq1bNfMGotLQ0Dhw4QOXKlbG0tMRoNALwySefMGnSJD799FOcnJzMs6G/nxUFqFChApGRkebl\nH374gTp16gBkGfO+349hYWFhDtr29va4ubnx6aef0rFjx2zbWrRoERs2bADuheHq1atTpEgRnn/+\neY4ePQrcm5F99913qVSpEgcPHsRkMmEymYiMjKRq1armbd4/FjVr1mTx4sUsWbKEjh07UqNGjRyP\nW1BQECtWrGDJkiV4enrSs2dPmjZtysyZMwkNDQXunXqdU8C+b8+ePeYLmNnY2GBjY4OlpaX5sRYt\nWpj7vvPOO6xevZrFixfTs2dPOnTo8EQBGTSTLCIiIiIikqs2bdqwf/9+vLy8SEtLw9PTE1dXV1JT\nU1mwYAG1atWiffv2eHt7U7RoUZycnMwXn8rplOlx48YxevRo0tPTMRqNuLm50b59e+De7G1gYGCW\nC1HdH+P+n87Ozty9e5cZM2bQr18/unTpQvfu3RkzZkyO2xo1ahRffPEFdnZ2ODk5MWrUKJycnGjS\npAleXl4A+Pr6UrduXV599VW6deuGyWSiUaNGtGrVigMHDpjHq1WrFm5ubnh7e5OSkoKbmxtly5Z9\n6G+Sc9KrVy8GDhzI1q1bsbGx4dNPP83y+IPHrHHjxmzatAlvb29MJhP+/v6UK1cOgLNnz5rrf1os\nTDl9rfEXce3a7Twb29nZMU/Hl7xx+vQp1mw14lzu+YIu5YmdOLKVQS6dcS1f0JU8uZNXIN4jiurV\nc/4GUuSvSJ8jkhO9LgovZ2fHgi5B/uR++eUXVq1axfjx4wu6lEJPM8kiIiIiIiKF2OLFi1m7du0f\nuiewZKeQLCIiIiIiUoj5+/vj7+9f0GX8aejCXSIiIiIiIiKZFJJFREREREREMikki4iIiIiIiGRS\nSBYRERERERHJpJAsIiIiIiIikkkhWURERERERCSTQrKIiIiIiIhIJoVkERERERERkUwKySIiIiIi\nIiKZFJJFREREREREMikki4iIiIiIiGRSSBYRERERERHJpJAsIiIiIiIikkkhWURERERERCSTQrKI\niIiIiIhIJoVkERERERERkUx5HpIPHjyIn59flrZvvvkGLy8v8/LKlSvp1KkTXl5e7NixA4CUlBQ+\n/vhjfH196dWrFwkJCQAcOHCArl274uPjQ0hIiHmMkJAQunTpgre3N4cOHcrr3RIREREREZE/Ieu8\nHHzBggWsW7cOBwcHc9uxY8dYvXq1efn69essWbKE8PBw7t69i7e3Nx4eHixbtgxXV1cCAgLYuHEj\ns2fPZtiwYYwaNYqQkBBcXFx4//33iY6Oxmg0EhkZSVhYGFeuXKFPnz6sWrUqL3dNRERERERE/oTy\ndCa5cuXKzJo1y7yckJBAcHAww4YNM7cdOnQId3d3rK2tMRgMVKlShejoaKKiomjRogUALVq0YO/e\nvSQmJpKWloaLiwsAzZs3Z/fu3URFReHh4QFA+fLlMRqN5plnERERERERkceVpyG5bdu2WFlZAWA0\nGhk+fDiDBw+maNGi5j6JiYk4Ojqal+3t7UlMTCQpKQmDwQCAg4MDt2/fztL2+/acxhARERERERF5\nEnl6uvWDjh49yvnz5xk1ahQpKSmcPn2aTz/9lMaNG2cJtElJSRQrVgyDwUBSUpK5zdHREQcHh2x9\nixcvjo2Njbnvg/1zU7KkPdbWVk9xL7Nyds69Bnm2JCQYgFsFXcZfUqlSBr1nRH5H7wnJiV4XIiJ5\nK19Csslkok6dOnzzzTcAXLp0iQEDBjBkyBCuX79OcHAwqamppKSkEBMTQ40aNahfvz4RERHUqVOH\niIgIGjRogMFgwNbWlgsXLuDi4sKuXbsICAjAysqKqVOn0qNHD65cuYLJZKJEiRK51pWQkJxn++zs\n7Mi1a7fzbHzJG/HxOgOhoMTHJ+o9I/IAfY5ITvS6KLz05YZI4ZEvIdnCwuKhj5UuXRo/Pz98fHww\nmUz0798fW1tbvL29CQoKwsfHB1tbW6ZNmwbA6NGjCQwMxGg04uHhQd26dQFwd3enW7dumEwmRowY\nkR+7JSIiIiIiIn8yFiaTyVTQRRSUvPwmVt/0Fk6nT59izVYjzuWeL+hSntiJI1sZ5NIZ1/IFXcmT\nO3kF4j2iqF69RkGXIvLM0OeI5ESvi8JLM8kihUee3ydZREREREREpLBQSBYRERERERHJpJAsIiIi\nIiIikkkhWURERERERCSTQrKIiIiIiIhIJoVkERERERERkUwKySIiIiIiIiKZFJJFREREREREMikk\ni4iIiIiIiGRSSBYRERERERHJpJAsIiIiIiIikkkhWURERERERCSTQrKIiIiIiIhIJoVkERERERER\nkUwKySIiIiIiIiKZFJJFREREREREMikki4iIiIiIiGRSSBYRERERERHJpJAsIiIiIiIikkkhWURE\nRERERCSTQrKIiIiIiIhIJoVkERERERERkUwKySIiIiIiIiKZFJJFREREREREMikki4iIiIiIiGRS\nSBYRERERERHJpJAsIiIiIiIikkkhWURERERERCSTQrKIiIiIiIhIpjwPyQcPHsTPzw+A48eP4+vr\ni7+/P++99x7x8fEArFy5kk6dOuHl5cWOHTsASElJ4eOPP8bX15devXqRkJAAwIEDB+jatSs+Pj6E\nhISYtxMSEkKXLl3w9vbm0KFDeb1bIiIiIiIi8idknZeDL1iwgHXr1uHg4ADAhAkTGDFiBDVr1mTF\nihXMnz+fnj17smTJEsLDw7l79y7e3t54eHiwbNkyXF1dCQgIYOPGjcyePZthw4YxatQoQkJCcHFx\n4f333yc6Ohqj0UhkZCRhYWFcuXKFPn36sGrVqrzcNREREREREfkTytOZ5MqVKzNr1izz8owZM6hZ\nsyYA6enp2NracujQIdzd3bG2tsZgMFClShWio6OJioqiRYsWALRo0YK9e/eSmJhIWloaLi4uADRv\n3pzdu3cTFRWFh4cHAOXLl8doNJpnnkVEREREREQeV56G5LZt22JlZWVeLl26NAA///wzS5cu5Z13\n3iExMRFHR0dzH3t7exITE0lKSsJgMADg4ODA7du3s7T9vj2nMURERERERESeRJ6ebp2TjRs3Mnfu\nXObNm0fJkiUxGAxZAm1SUhLFihXDYDCQlJRkbnN0dMTBwSFb3+LFi2NjY2Pu+2B/ERERERERkSeR\nryF53bp1rFy5kiVLllCsWDEA6tatS3BwMKmpqaSkpBATE0ONGjWoX78+ERER1KlTh4iICBo0aIDB\nYMDW1pYLFy7g4uLCrl27CAgIwMrKiqlTp9KjRw+uXLmCyWSiRIkSudZTsqQ91tZWufb7o5ydFdQL\nm4QEA3CroMv4SypVyqD3jMjv6D0hOdHrQkQkb+VbSDYajUyYMIEKFSrw0UcfYWFhQaNGjQgICMDP\nzw8fHx9MJhP9+/fH1tYWb29vgoKC8PHxwdbWlmnTpgEwevRoAgMDMRqNeHh4ULduXQDc3d3p1q0b\nJpOJESNGPFZNCQnJeba/zs6OXLt2O8/Gl7wRH6/T9AtKfHyi3jMiD9DniOREr4vCS19uiBQeFiaT\nyVTQRRSUvPyQ0YdY4XT69CnWbDXiXO75gi7liZ04spVBLp1xLV/QlTy5k1cg3iOK6tVrFHQpIs8M\nfY5ITvS6KLwUkkUKjzy/T7KIiIiIiIhIYaGQLCIiIiIiIpJJIVlEREREREQkk0KyiIiIiIiISCaF\nZBEREREREZFMCskiIiIiIiIimRSSRURERERERDIpJIuIiIiIiIhkUkgWERERERERyZRrSD5//jzr\n16/HZDLxySef0KlTJyIjI/OjNhEREREREZF8lWtIHjJkCDY2NmzdupWzZ88yZMgQJk+enB+1iYiI\niIiIiOSrXENySkoKb7zxBtu3b6d9+/Y0aNCA9PT0/KhNREREREREJF/lGpKtrKzYvHkzO3bsoFWr\nVmzZsgVLS/2UWURERERERP58ck27Y8aMYceOHYwcOZIyZcqwYcMGxo0blx+1iYiIiIiIiOSrXENy\nzZo1+fDDD7G1tSUjI4P+/fvzwgsv5EdtIiIiIiIiIvkq15C8ceNGPvzwQ8aPH8+NGzfw8vJi3bp1\n+VGbiIiIiIiISL7KNSTPnz+fZcuW4eDggJOTE+Hh4cybNy8/ahMRERERERHJV7mGZEtLSwwGg3m5\nTJkyunCXiIiIiIiI/ClZ59ahRo0afP3116Snp3P8+HGWLl2q3ySLiIiIiIjIn1KuU8IjRowgNjaW\nIkWKMHToUAwGAyNHjsyP2kRERERERETyVa4zyfb29gwYMIABAwbkRz0iIiIiIiIiBSbXkLxo0SJm\nz57N7du3ATCZTFhYWHD8+PE8L05EREREREQkP+UakhcvXszatWupUKFCftQjIiIiIiIiUmBy/U1y\n9erVKV26dH7UIiIiIiIiIlKgcp1J9vPzo3379tSrVw8rKytz+6effpqnhYmIiIiIiIjkt1xD8vjx\n42nfvj0VK1bMj3pERERERERECkyuIdnW1paAgID8qEVERERERESkQOUakps1a8bEiRNp0aIFNjY2\n5vaGDRvmaWEiIiIiIiIi+S3XkHzs2DEAjh49am6zsLBg8eLFeVeViIiIiIiISAHINSQvWbIkP+oQ\nERERERERKXC5huTIyEgWLlxIcnIyJpMJo9HI5cuX2bZt22Nt4ODBg0ydOpUlS5Zw/vx5Bg8ejKWl\nJTVq1GDkyJEArFy5khUrVmBjY0Pv3r1p1aoVKSkpDBw4kLi4OAwGAxMnTqRkyZIcOHCACRMmYG1t\nTbNmzcy/lw4JCSEiIgJra2uGDBlC3bp1/4fDIiIiIiIiIn9Fud4nefjw4bRp04aMjAx8fX2pXLky\nbdq0eazBFyxYwPDhw0lLSwPu3Taqf//+fP311xiNRrZs2cL169dZsmQJK1asYMGCBUybNo20tDSW\nLVuGq6sroaGhdOjQgdmzZwMwatQopk+fztKlSzl06BDR0dEcO3aMyMhIwsLCmD59OmPGjPkfDomI\niIiIiIj8VeUaku3s7OjUqRONGjWiWLFijBs3jv379z/W4JUrV2bWrFnm5aNHj9KgQQMAWrRowZ49\nezh06BDu7u5YW1tjMBioUqUK0dHRREVF0aJFC3PfvXv3kpiYSFpaGi4uLgA0b96c3bt3ExUVhYeH\nBwDly5fHaDSSkJDwZEdCRERERERE/vJyDclFihThxo0bVK1alYMHD2JhYUFycvJjDd62bVusrKzM\nyyaTyfx3BwcHEhMTSUpKwtHR0dxub29vbjcYDOa+t2/fztL2+/acxhARERERERF5Ern+Jvmdd96h\nX79+fPbZZ3Tu3JlvvvmG2rVr/6GNWVr+N5MnJSVRrFgxDAZDlkD7YHtSUpK5zdHR0RysH+xbvHhx\nbGxszH0f7J+bkiXtsba2yrXfH+XsnHsN8mxJSDAAtwq6jL+kUqUMes+I/I7eE5ITvS5ERPJWriH5\njTfe4PXXX8fCwoI1a9Zw9uxZXnjhhT+0sVq1arF//34aNmzIzp07adKkCXXq1GHGjBmkpqaSkpJC\nTEwMNWrUoH79+kRERFCnTh0iIiJo0KABBoMBW1tbLly4gIuLC7t27SIgIAArKyumTp1Kjx49uHLl\nCiaTiRIlSuRaT0LC482I/xHOzo5cu3Y7z8aXvBEfrzMQCkp8fKLeMyIP0OeI5ESvi8JLX26IFB6P\nDMknT54kIyODF198kQkTJnD79m2srKwYPHhwltOeH1dQUBCffPIJaWlpVK9e3Ry+/fz88PHxwWQy\n0b9/f2xtbfH29iYoKAgfHx9sbW2ZNm0aAKNHjyYwMBCj0YiHh4f5Ktbu7u5069YNk8nEiBEj/sCh\nEBERERERkb86C9ODPxR+wLZt2xg3bhyjRo2iRYsWvP766/Tq1YuffvqJcuXK0bdv3/yu9anLy29i\n9U1v4XT69CnWbDXiXO75gi7liZ04spVBLp1xLV/QlTy5k1cg3iOK6tVrFHQpIs8MfY5ITvS6KLw0\nkyxSeDz0wl0hISEsXLjQfIVpOzs7/vGPfzB8+PDHvkeyiIiIiIiISGHy0JCckpJC1apVzcsvv/wy\nAAaDIcsVq0VERERERET+LB4aktPS0rLcsmnAgAEApKenk5aWlveViYiIiIiIiOSzh4bkRo0aMWfO\nnGztCxcupFGjRnlalIiIiIiIiEhBeOjVrQcMGIC/vz/bt2+nQYMGWFhYEBUVRUpKCosXL87PGkVE\nRERERETyxUNDcsmSJVm9ejXff/89Bw4cAMDb25s33ngDW1vbfCtQREREREREJL/8f3v3HxR1nfhx\n/LWwboYLikZjRieGkNeFP07sUIzI6s5+XP6sOUjMzu/NWcNpciieVqCm+GOQuZvgrsa6mwQVunNK\nb+7mSi0MtTRKOafQJvHEH+OJkLhLwcLu94/7tCMFrZq7Hxafj7/gve/9fF6f+qzLa9+7n/3O70m2\n2Wx6+OGH9fDDDwcqDwAAAAAApunyM8kAAAAAAFxruizJzc3NgcwBAAAAAIDpuizJGRkZkqS8vLxA\nZQEAAAAAwFRdfia5ublZ2dnZeu+999TS0vKt2/Pz8/0aDAAAAACAQOuyJL/66qv64IMPVFVVxfci\nAwAAAACuCV2W5JtuukmTJ0/WsGHDFBsbq9raWrW3tysuLk5W63deFBsAAAAAgKDks+26XC797Gc/\nU79+/eR2u1VfX6+ioiKNGDEiEPkAAAAAAAgYnyV5xYoVKiws9JbiAwcOaPny5frrX//q93AAAAAA\nAASSz+9Jbm5u7rBqPHLkyE4v5AUAAAAAQLDzWZL79u2r7du3e3/fvn27+vXr59dQAAAAAACYwefb\nrZcvX64FCxZoyZIlkqRbbrlFa9eu9XswAAAAAAACzWdJjomJ0euvv67m5ma53W7Z7fZA5AIAAAAA\nIOAu+bucwsLC/JkDAAAAAADT+fxMMgAAAAAA1wqfJXnTpk2ByAEAAAAAgOl8luTS0tJA5AAAAAAA\nwHQ+P5M8cOBAzZw5UyNGjNB1113nHc/MzPRrMAAAAAAAAs1nSR45cmQgcgAAAAAAYDqfJTkzM1PN\nzc06fvy44uPj9dVXX3GlawAAAABAj+TzM8l79+7VpEmT9PTTT6u+vl4TJkxQZWVlILIBAAAAABBQ\nPkvyunXrtHHjRkVEROjGG29USUmJ1qxZE4hsAAAAAAAElM+S7Ha7FRUV5f196NChfg0EAAAAAIBZ\nLunq1u+8844sFouamppUWlqqQYMGXfEO29ralJOTo5MnT8pqtWr58uUKDQ3VokWLFBISori4OOXm\n5kqSysvLVVZWpl69emnOnDlKTU1VS0uLFixYoHPnzslut2vVqlWKjIzUgQMHtHLlSlmtVo0bN46r\nb4u+/p4AABsXSURBVAMAAAAALpvPleRly5Zp27ZtOn36tO677z59+umnWrZs2RXvsKKiQm63W5s3\nb9bTTz+twsJC5efnKysrSyUlJXK73dq+fbvq6+u1YcMGlZWVaf369SooKJDL5dKmTZsUHx+v0tJS\nTZo0ScXFxZKkvLw871vDq6urVVNTc8UZAQAAAADXJp8ryQMGDNC6devkcDhktVrVu3fv77XDmJgY\ntbe3y+Px6MKFC7JarTp48KASExMlSSkpKdq9e7dCQkI0evRoWa1W2e12xcTEqKamRlVVVfrVr37l\nnfvHP/5RDodDLpdL0dHRkqTx48drz549GjZs2PfKCgAAAAC4tvgsyYcPH9aiRYt06tQpSdKtt96q\n1atX6wc/+MEV7bBPnz46ceKEJk6cqC+++EJ/+tOf9OGHH3a43eFwyOl0Kjw83DseFhbmHbfb7d65\nFy5c6DB28T4AAAAAALgcPktybm6unnnmGd19992SpLfffluLFy9WSUnJFe3wL3/5i+666y7Nnz9f\nZ86cUUZGhlwul/d2p9OpiIgI2e12ORyOTsedTqd3LDw83FusvznXl8jIMFmtoVd0HJciKirc9yR0\nK42NdklNZse4JvXvb+cxA3wDjwl0hvMCAPzLZ0luaWnxFmRJuv/++1VUVHTFO+zbt6+s1v/tNjw8\nXG1tbbr99tu1b98+3Xnnndq1a5eSkpKUkJCgwsJCtba2qqWlRUePHlVcXJxGjRqliooKJSQkqKKi\nQomJibLb7bLZbKqrq1N0dLQqKysv6cJdjY3NV3wcvkRFhevs2Qt+2z78o6HB4XsS/KKhwcFjBrgI\nzyPoDOdF8OLFDSB4dFmSv3579bBhw/Tyyy9r+vTpCg0N1bZt27yfH74STzzxhBYvXqzHH39cbW1t\nys7O1o9+9CM9++yzcrlcio2N1cSJE2WxWJSRkaH09HR5PB5lZWXJZrMpLS1NOTk5Sk9Pl81mU0FB\ngSRp6dKlys7OltvtVnJysoYPH37FGQEAAAAA1yaLx+PxdHbDhAkTZLFY1NnNFotFO3bs8Hs4f/Pn\nK7G80hucPv/8M23Z4VbUwOD7PvDDh3ZoYfR0xd9kdpLLd+S01JBcpdjYOLOjAN0GzyPoDOdF8GIl\nGQgeXa4k79y5M5A5AAAAAAAwnc/PJB89elTl5eU6f/58h/H8/Hy/hQIAAAAAwAw+S3JmZqYefPBB\n3XbbbYHIAwAAAACAaXyW5IiIiEu6UjQAAAAAAMHOZ0meMmWKCgsLlZSU5P3qJkkaM2aMX4MBAAAA\nABBoPkvyvn379O9//1sfffSRd8xisei1117zazAAAAAAAALNZ0k+dOiQ3nrrrUBkAQAAAADAVCG+\nJsTHx6umpiYQWQAAAAAAMJXPleS6ujpNmTJFUVFR6tWrlzwejywWi3bs2BGIfAAAAAAABIzPklxU\nVBSIHAAAAAAAmM5nSd6/f3+n4zfffPNVDwMAAAAAgJl8luQPPvjA+7PL5VJVVZUSExM1efJkvwYD\nAAAAACDQfJbk/Pz8Dr9/8cUXmj9/vt8CAQAAAABgFp9Xt/6msLAwnTx50h9ZAAAAAAAwlc+V5IyM\nDFksFkmSx+PRiRMndPfdd/s9GAAAAAAAgeazJP/mN7/x/myxWBQZGamhQ4f6NRQAAAAAAGbosiSf\nOnVKkhQdHd3pbYMGDfJfKgAAAAAATNBlSZ4xY4YsFos8Ho93zGKx6L///a/a2tr06aefBiQgAAAA\nAACB0mVJ3rlzZ4ffnU6nVq9ercrKSi1fvtzvwQAAAAAACLRLurr13r179cgjj0iStm7dquTkZL+G\nAgAAAADADN954a7m5matWrXKu3pMOQYAAAAA9GRdriTv3btXP//5zyVJ27ZtoyADAAAAAHq8LleS\nn3zySVmtVlVWVmr37t3ecY/HI4vFoh07dgQkIAAAAAAAgdJlSaYEAwAAAACuNV2W5JtvvjmQOQAA\nAAAAMN0lXd0aAAAAAIBrASUZAAAAAAADJRkAAAAAAAMlGQAAAAAAQ5cX7vKnl19+WTt37pTL5VJ6\nerrGjBmjRYsWKSQkRHFxccrNzZUklZeXq6ysTL169dKcOXOUmpqqlpYWLViwQOfOnZPdbteqVasU\nGRmpAwcOaOXKlbJarRo3bpwyMzPNODQAAAAAQBAL+Eryvn379PHHH2vz5s3asGGDTp8+rfz8fGVl\nZamkpERut1vbt29XfX29NmzYoLKyMq1fv14FBQVyuVzatGmT4uPjVVpaqkmTJqm4uFiSlJeXp3Xr\n1mnjxo2qrq5WTU1NoA8NAAAAABDkAl6SKysrFR8fr6efflpPPfWUUlNT9cknnygxMVGSlJKSoj17\n9qi6ulqjR4+W1WqV3W5XTEyMampqVFVVpZSUFO/c999/Xw6HQy6XS9HR0ZKk8ePHa8+ePYE+NAAA\nAABAkAv4260bGxt16tQpvfTSS6qrq9NTTz0lt9vtvb1Pnz5yOBxyOp0KDw/3joeFhXnH7Xa7d+6F\nCxc6jH09fuLEicAdFAAAAACgRwh4Se7Xr59iY2NltVo1ZMgQXXfddTpz5oz3dqfTqYiICNntdjkc\njk7HnU6ndyw8PNxbrL8515fIyDBZraFX8eg6iooK9z0J3Upjo11Sk9kxrkn9+9t5zADfwGMCneG8\nAAD/CnhJHj16tDZs2KBZs2bpzJkz+vLLL5WUlKR9+/bpzjvv1K5du5SUlKSEhAQVFhaqtbVVLS0t\nOnr0qOLi4jRq1ChVVFQoISFBFRUVSkxMlN1ul81mU11dnaKjo1VZWXlJF+5qbGz223FGRYXr7NkL\nfts+/KOhweF7EvyiocHBYwa4CM8j6AznRfDixQ0geAS8JKempurDDz/U9OnT5fF4lJeXp5tvvlnP\nPvusXC6XYmNjNXHiRFksFmVkZCg9PV0ej0dZWVmy2WxKS0tTTk6O0tPTZbPZVFBQIElaunSpsrOz\n5Xa7lZycrOHDhwf60AAAAAAAQc7i8Xg8Zocwiz9fieWV3uD0+eefacsOt6IGDjU7ymU7fGiHFkZP\nV/xNZie5fEdOSw3JVYqNjTM7CtBt8DyCznBeBC9WkoHgEfCrWwMAAAAA0F1RkgEAAAAAMFCSAQAA\nAAAwUJIBAAAAADBQkgEAAAAAMFCSAQAAAAAwUJIBAAAAADBQkgEAAAAAMFCSAQAAAAAwUJIBAAAA\nADBQkgEAAAAAMFCSAQAAAAAwUJIBAAAAADBQkgEAAAAAMFCSAQAAAAAwUJIBAAAAADBQkgEAAAAA\nMFCSAQAAAAAwUJIBAAAAADBQkgEAAAAAMFCSAQAAAAAwUJIBAAAAADBQkgEAAAAAMFCSAQAAAAAw\nUJIBAAAAADBQkgEAAAAAMFCSAQAAAAAwUJIBAAAAADBQkgEAAAAAMJhWks+dO6fU1FTV1tbq+PHj\nSk9P14wZM7R06VLvnPLyck2bNk2/+MUv9O6770qSWlpaNHfuXD3++OP69a9/rcbGRknSgQMH9Nhj\njyk9PV0vvviiGYcEAAAAAAhyppTktrY25ebmqnfv3pKk/Px8ZWVlqaSkRG63W9u3b1d9fb02bNig\nsrIyrV+/XgUFBXK5XNq0aZPi4+NVWlqqSZMmqbi4WJKUl5endevWaePGjaqurlZNTY0ZhwYAAAAA\nCGKmlOTVq1crLS1NN954ozwejz755BMlJiZKklJSUrRnzx5VV1dr9OjRslqtstvtiomJUU1Njaqq\nqpSSkuKd+/7778vhcMjlcik6OlqSNH78eO3Zs8eMQwMAAAAABLGAl+QtW7ZowIABSk5OlsfjkSS5\n3W7v7X369JHD4ZDT6VR4eLh3PCwszDtut9u9cy9cuNBh7OJxAAAAAAAuhzXQO9yyZYssFot2796t\nw4cPKycnx/u5YklyOp2KiIiQ3W6Xw+HodNzpdHrHwsPDvcX6m3N9iYwMk9UaehWPrqOoqHDfk9Ct\nNDbaJTWZHeOa1L+/nccM8A08JtAZzgsA8K+Al+SSkhLvzzNnztTSpUu1Zs0a7d+/X2PGjNGuXbuU\nlJSkhIQEFRYWqrW1VS0tLTp69Kji4uI0atQoVVRUKCEhQRUVFUpMTJTdbpfNZlNdXZ2io6NVWVmp\nzMxMn1kaG5v9dpxRUeE6e5bV7GDT0ODwPQl+0dDg4DEDXITnEXSG8yJ48eIGEDwCXpI7k5OTo+ee\ne04ul0uxsbGaOHGiLBaLMjIylJ6eLo/Ho6ysLNlsNqWlpSknJ0fp6emy2WwqKCiQJC1dulTZ2dly\nu91KTk7W8OHDTT4qAAAAAECwsXi+/mDwNcifr8TySm9w+vzzz7Rlh1tRA4eaHeWyHT60Qwujpyv+\nJrOTXL4jp6WG5CrFxsaZHQXoNngeQWc4L4IXK8lA8DDte5IBAAAAAOhuKMkAAAAAABgoyQAAAAAA\nGCjJAAAAAAAYKMkAAAAAABgoyQAAAAAAGCjJAAAAAAAYKMkAAAAAABgoyQAAAAAAGCjJAAAAAAAY\nKMkAAAAAABgoyQAAAAAAGCjJAAAAAAAYKMkAAAAAABgoyQAAAAAAGCjJAAAAAAAYKMkAAAAAABgo\nyQAAAAAAGCjJAAAAAAAYKMkAAAAAABgoyQAAAAAAGCjJAAAAAAAYKMkAAAAAABgoyQAAAAAAGCjJ\nAAAAAAAYKMkAAAAAABgoyQAAAAAAGCjJAAAAAAAYKMkAAAAAABisgd5hW1ubFi9erJMnT8rlcmnO\nnDkaOnSoFi1apJCQEMXFxSk3N1eSVF5errKyMvXq1Utz5sxRamqqWlpatGDBAp07d052u12rVq1S\nZGSkDhw4oJUrV8pqtWrcuHHKzMwM9KEBAAAAAIJcwFeSt27dqsjISJWWlmr9+vVavny58vPzlZWV\npZKSErndbm3fvl319fXasGGDysrKtH79ehUUFMjlcmnTpk2Kj49XaWmpJk2apOLiYklSXl6e1q1b\np40bN6q6ulo1NTWBPjQAAAAAQJALeEl+4IEHNG/ePElSe3u7QkND9cknnygxMVGSlJKSoj179qi6\nulqjR4+W1WqV3W5XTEyMampqVFVVpZSUFO/c999/Xw6HQy6XS9HR0ZKk8ePHa8+ePYE+NAAAAABA\nkAt4Sb7++usVFhYmh8OhefPmaf78+fJ4PN7b+/TpI4fDIafTqfDwcO/41/dxOp2y2+3euRcuXOgw\ndvE4AAAAAACXI+CfSZak06dPKzMzUzNmzNBDDz2ktWvXem9zOp2KiIiQ3W6Xw+HodNzpdHrHwsPD\nvcX6m3N9+fzzz67iUXXU2GhXQ4PD98QrFBNzq0JDQ/22fQAAcG1pb2/XsWNHzY5xRfi7CMDVFPCS\nXF9fr9mzZ+v5559XUlKSJOmHP/yh9u/frzFjxmjXrl1KSkpSQkKCCgsL1draqpaWFh09elRxcXEa\nNWqUKioqlJCQoIqKCiUmJsput8tms6murk7R0dGqrKy8pAt3rS+rVf8bBvvpSJv8tF2pof4/WviU\nXfHx8X7bx7WqsdEuf/6/Q9f697crKirc90TgGsJjAp3x13lx5MgRnX9jtIZE+WXzflN7Vmr65WH+\nLgJw1QS8JL/00ktqampScXGxioqKZLFYtGTJEr3wwgtyuVyKjY3VxIkTZbFYlJGRofT0dHk8HmVl\nZclmsyktLU05OTlKT0+XzWZTQUGBJGnp0qXKzs6W2+1WcnKyhg8f7jNL/xsGK2rgUH8fsl80NDh0\n9ixvKb/a/Ln6j+/GOQ10FBUVzmMC3+LP86KhwaEhUVL8TX7ZvF8Fw3MIL3oBwSPgJXnJkiVasmTJ\nt8Y3bNjwrbFHH31Ujz76aIex3r176/e///235g4fPlxlZWVXLygAAAAA4JoT8At3AQAAAADQXVGS\nAQAAAAAwUJIBAAAAADBQkgEAAAAAMFCSAQAAAAAwUJIBAAAAADBQkgEAAAAAMFCSAQAAAAAwUJIB\nAAAAADBQkgEAAAAAMFCSAQAAAAAwWM0OgMvndrfr+PE6s2NcsZiYWxUaGmp2DAAArrr29nYdO3bU\nb9tvbLSrocHhl20fP/4f9ffLlgEguFCSg9AXDSfU96Pp6h+EPbn2rHRscpViY+PMjgIAwFV37NhR\nrS+rVf8bBvtpD01+2q5U+9kJjUzw2+YBIGhQkoPUkCgp/iazU1yZBrMDAADgR/1vGKyogUPNjnHZ\nGur/Y3YEAOgW+EwyAAAAAAAGSjIAAAAAAAZKMgAAAAAABkoyAAAAAAAGSjIAAAAAAAZKMgAAAAAA\nBkoyAAAAAAAGSjIAAAAAAAZKMgAAAAAABkoyAAAAAAAGSjIAAAAAAAZKMgAAAAAABkoyAAAAAAAG\nSjIAAAAAAAZKMgAAAAAABkoyAAAAAAAGq9kBriaPx6O8vDwdPnxYNptNK1as0C233GJ2LABAD9Te\n3q5jx476bfuNjXY1NDj8su329nZJFoWGBt9r5TExtyo0NNTsGACAHqxHleTt27ertbVVmzdv1sGD\nB5Wfn6/i4mKzYwEAeqBjx45qfVmt+t8w2E97aPLTdqXaz97X/w2cqyFRftuFX9SelY5NrlJsbJzZ\nUQAAPViPKslVVVW66667JEkjRozQoUOHTE4EAOjJ+t8wWFEDh5od47I11P9HQ6Kk+JvMTnL5GswO\nAADo8XpUSXY4HAoPD/f+brVa5Xa7FRLS+dvJGur/E6hoV9X5xlOqvc7sFFem9qzU1+wQPnBeBF4w\nnBdAZ/j3IrCC5d8KzovACpbzAkDwsHg8Ho/ZIa6WVatWaeTIkZo4caIkKTU1Ve+++665oQAAAAAA\nQSP4rtjxHX784x+roqJCknTgwAHFx8ebnAgAAAAAEEx61EryxVe3lqT8/HwNGTLE5FQAAAAAgGDR\no0oyAAAAAADfR496uzUAAAAAAN8HJRkAAAAAAAMlGQAAAAAAAyXZTw4ePKiMjAyzY6CbaGtr08KF\nC/X444/rscce086dO82OBKAbO3funFJTU1VbW2t2FHQjU6dO1cyZMzVz5kwtXrzY7DgA0GNZzQ7Q\nE61fv15vvvmm+vTpY3YUdBNbt25VZGSk1qxZo/Pnz2vy5MmaMGGC2bEAdENtbW3Kzc1V7969zY6C\nbqS1tVWS9Nprr5mcBAB6PlaS/WDw4MEqKioyOwa6kQceeEDz5s2TJLndblmtvD4FoHOrV69WWlqa\nbrzxRrOjoBupqalRc3OzZs+erVmzZungwYNmRwKAHouS7Af333+/QkNDzY6BbuT6669XWFiYHA6H\n5s2bp/nz55sdCUA3tGXLFg0YMEDJycniGxpxsd69e2v27Nl65ZVXlJeXp+zsbLndbrNjAUCPREkG\nAuT06dN64oknNGXKFD344INmxwHQDW3ZskW7d+9WRkaGampqlJOTo3PnzpkdC91ATEyMHnnkEe/P\n/fr109mzZ01OBQA9E+/59CNWAfC1+vp6zZ49W88//7ySkpLMjgOgmyopKfH+nJGRoWXLlmnAgAEm\nJkJ38be//U1HjhxRbm6uzpw5I6fTqaioKLNjAUCPxEqyH1ksFrMjoJt46aWX1NTUpOLiYmVkZGjm\nzJnei7AAQGd4DsHFpk+frgsXLig9PV2//e1vtXLlSoWE8GccAPiDxcNyJwAAAAAAklhJBgAAAADA\ni5IMAAAAAICBkgwAAAAAgIGSDAAAAACAgZIMAAAAAICBkgwAAAAAgIGSDABB5uTJk5owYcK3xocN\nGyZJOnHihJYsWSJJOnTokJ577jlJUkZGhvbv399hrLy8XP/4xz8uab8LFy7Uyy+//K3x+++/X0eO\nHOnyfr/73e/0xhtvXNI+AAAAzEZJBoAgZLFYuhw7efKk6urqJEl33HGHli9f3mHexWMff/yxWltb\nL2mfU6dO1bZt2zqMffjhh+rbt6/i4+Mv+xgAAAC6I0oyAPQwK1as0KFDh7R8+XLt27dPGRkZHW7/\nemzv3r3auXOn/vCHP2jHjh1KSkqS0+mU9L+i/fDDD3e4X1JSkr788kt99tln3rGtW7dq+vTp3u2m\np6dr6tSpuu+++/Svf/2rw/2/uQL+4osv6sUXX5Qk7dq1S48++qimTp2quXPn6vz585Kk1atXa/Lk\nyZo6dap3LgAAgD9RkgGgh3n22Wd1xx13eN9S3dWq89ixYzVhwgTNnTtX9957r+655x5vsX3jjTc0\nefLkb91vypQp3tXk1tZWvfPOO94yXVpaqhUrVmjLli164YUXVFRU1Ol+v6mhoUHr1q3Tq6++qi1b\ntig5OVlr167VqVOn9N577+mNN97Q5s2bdfz48Ute9QYAALhSVrMDAAAuT0hI569vdlZAL8fXq7VT\np07V3//+d7322mvfmjNlyhTNmjVLWVlZ2rlzp8aOHSu73S5JWrt2rd555x3985//1MGDB9Xc3HxJ\n+62urtbp06c1c+ZMeTweud1u9evXTwMHDlTv3r2Vlpame+65R88884xsNtv3OkYAAABfKMkAEGQi\nIiLkcDg6jNXX1ysiIuJ7bXfMmDE6c+aM3n77bd1yyy2Kior61pxBgwYpOjpaH330kd58803NmjXL\ne1taWprGjh2rO++8U2PHjlV2dnaH+1osFnk8Hu/vLpdLvXr1Unt7u0aPHq3i4mJJ/1uhdjqdCgkJ\nUXl5ufbv36+Kigo99thjKi0t1eDBg7/XcQIAAHwX3m4NAEGmT58+Gjx4sN566y3vWHl5ucaNGydJ\nCg0NVXt7+yVtKzQ0VC6Xy/v75MmT9cILL2jq1Kld3mfatGl6/fXXdfz4cf3kJz+RJJ0/f17Hjx/X\n3LlzlZKSosrKSrnd7g73i4iIUFNTkxobG9Xa2qr33ntPkjRixAgdOHBAx44dkyQVFRVpzZo1+vTT\nTzVjxgyNGTNGCxcu1NChQ1VbW3tJxwUAAHClWEkGgCC0du1a5ebmqri4WC6XS7fddpuef/55SVJs\nbKyampqUk5OjadOmee/T2duxx40bp8LCQvXt21c//elP9eCDD+rPf/6z7r333i73fd9992nZsmV6\n8sknvWN9+/bV9OnT9dBDDyk8PFwjR47UV199pa+++so7x26365e//KWmTZumQYMGacSIEZKkG264\nQStXrtQzzzwjt9utgQMHau3aterbt69GjRqlhx56SNdff71uv/12paSkfO//dgAAAN/F4rn4vW8A\ngGuWx+PRxo0bdezYMe/3LAMAAFxrWEkGAEiSMjMzdfr0ab3yyitmRwEAADANK8kAAAAAABi4cBcA\nAAAAAAZKMgAAAAAABkoyAAAAAAAGSjIAAAAAAAZKMgAAAAAABkoyAAAAAACG/wfIfn78wBr48gAA\nAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x118dde160>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Play the Game\n", "N = 200000 # Play a longer game\n", "# agent 1's parameters are bit more short sighted\n", "agent1 = ml.QLearn(decay=0.4, lr=0.03, explore_period=30000, explore_random_prob=0.4, exploit_random_prob=0.2)\n", "# agent 2's parameters think more about the future\n", "agent2 = ml.QLearn(decay=0.6, lr=0.2, explore_period=40000, explore_random_prob=0.4, exploit_random_prob=0.1)\n", "game = PrisonersDilemma(agent1, agent2)\n", "game.play(N)\n", "\n", "# Get Data from Game\n", "agent1_util_vals = Counter(game.data['A'])\n", "agent2_util_vals = Counter(game.data['B'])\n", "a1_total_score = sum(game.data['A'])\n", "a2_total_score = sum(game.data['B'])\n", "\n", "\n", "# Plot the results\n", "x1, y1, x2, y2 = [], [], [], []\n", "\n", "for i, j in zip(agent1_util_vals, agent2_util_vals):\n", " x1.append(i)\n", " y1.append(agent1_util_vals[i])\n", " x2.append(j)\n", " y2.append(agent2_util_vals[j])\n", "\n", "fig, ax = plt.subplots(figsize=(12,6))\n", "width = 0.35\n", "a1 = ax.bar(x1, y1, width, color='#8A9CEF')\n", "a2 = ax.bar(np.asarray(x2)+width, y2, width, color='orange')\n", "\n", "_ = ax.set_title('QLearning Agent Vs QLearning Agent')\n", "_ = ax.set_ylabel('Number of Games')\n", "_ = ax.set_xlabel('Utility Values')\n", "ax.set_xticks(np.add(x2,width/2))\n", "_ = ax.set_xticklabels(('1', '2', '4', '5'))\n", "_ = ax.legend((a1[0], a2[0]), ('QLearning Agent\\nTotal Utility Score: {}'.format(str(a1_total_score)),\n", " 'QLearning Agent\\nTotal Utility Score: {}'.format(str(a2_total_score))), loc=1, bbox_to_anchor=(1.35, 1))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(I haven't had the time to look through the actions of both agents but one is short sighted and the other is not, which yields the Orange QLearning agent a higher total utility score.)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Counter({2: 167016, 1: 20014, 5: 11536, 4: 1434}) Counter({2: 167016, 5: 20014, 1: 11536, 4: 1434})\n" ] } ], "source": [ "print(agent1_util_vals, agent2_util_vals)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "# Iterated Coordination Game\n", "## Scenario - Choosing Movies\n", "\n", "In this scenario [Vincent](https://www.linkedin.com/in/vincent-reverdy/) and [Maghav](https://www.linkedin.com/in/maghavkumar/) want to see different movies. Vincent wants to see Guardians of the Galaxy 2 and Maghav wants to see Wonder Woman. They are willing to go see the movie that don't really care for but they both don't want to go see a movie alone. They both have 2 choices to defect (see the other persons movie person), or to cooperate go and see the movie they want. \n", "The payoff matrix is below:\n", "\n", "![Game Theory Movie Example](http://i.imgur.com/t5LgITv.png)\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Chaos VS Defect" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Playing Game: 100%|██████████| 10000/10000 [00:00<00:00, 21936.61it/s]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA70AAAGJCAYAAABGqVQ+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8Tdf+//H3ydw4FGna0qohkqprjFA1xFBtqVJTSEKi\nrapo6VeohgohqKE1taW0uIiYJa1eXP2ax2sqpUWjpRQtmlCSSM5Jzv794ev85BIxZKjj9Xw87kOy\n9j5rfc7O6b6P91l7r20yDMMQAAAAAAAOyKmoCwAAAAAAoKAQegEAAAAADovQCwAAAABwWIReAAAA\nAIDDIvQCAAAAABwWoRcAAAAA4LAIvQAchs1m0z//+U917NhR7du31yuvvKKPP/5YFotFkjR48GD9\n85//LJLaLly4oJo1a2r48OEFOk5qaqq6d+9+Q/upU6dUrVo1nTt37oZtbdu21dq1a2+r/9OnT6tq\n1apq37692rdvr7Zt26pjx4766quvbuv127ZtU/PmzRUUFGT/u9yJTZs26ZNPPrnlPn379tVzzz2n\nzMzMO+7/TkydOlXr168v0DEAAMC9I/QCcBgxMTH6/vvvNXfuXCUmJmrZsmU6fvy4hg4dWtSlafny\n5WrRooVWrlypS5cuFdg4Fy9e1MGDB29of/LJJ9WoUSMlJibmaN+3b59SU1P1/PPP3/YYHh4eSkxM\nVGJiolasWKFPP/1U06ZN0//+7//m+dqVK1eqc+fOWrp0qdzc3G57zGsOHjx4y+N37tw57dmzRzVr\n1rzhvea3//znP8rKyirQMQAAwL1zKeoCACA/nDp1Sv/617+0bds2eXp6SroazmJjY7Vv3z77ft99\n953WrFmj5ORk+fr6auLEifLw8NCyZcu0ZMkSZWVl6eLFi+rZs6dCQkIkXZ3RW7VqlVxcXFShQgUN\nGzZMXl5e+vbbbzV9+nQ5OTnJ2dlZAwcOVEBAwA21GYahxYsXKyYmRmlpaVq0aJHeeustSVdnp8eN\nG6cNGzaoePHiqlGjhn7++WfFxcUpNTVVo0ePVlJSkrKysvTcc8/p/fffl5OTk2rUqKG33npL27Zt\n0/nz5xUeHq7w8HB98MEHysjIUPv27ZWQkCCTyWSvIyQkRKNHj1avXr3sbUuWLFGXLl1kMpm0Z88e\njRs3TjabTSaTSb169dILL7yQ57EvW7as3n33Xc2cOVMvvPCCrFarPv74Y+3evVs2m03PPPOMhgwZ\nosWLF2vdunXy8PDQ5cuXNXDgQE2fPl3ffvutDMPQE088oZiYGHl7e+vPP/9UTEyMjh07JmdnZ3Xp\n0kU1a9bUokWLZLPZZDab1a9fvxtqWbJkiRo0aKCXXnpJkydPVnBwsH3bpk2b9PHHH8vFxUVVqlTR\n9u3btXDhQpUtW1bLli3TggULJEklS5bU0KFDVbFiRQ0ePFjFihVTUlKS/vjjD1WqVEmTJk1SQkKC\nfvjhB40fP15OTk5q0aJFnscJAAAUEQMAHMCaNWuMoKCgW+4zaNAgo3PnzkZmZqaRnZ1ttG/f3vj6\n66+NtLQ0o0uXLsbFixcNwzCM/fv3G7Vr1zYMwzCWLVtmBAcHGxkZGYZhGMann35qvPnmm4ZhGEaL\nFi2M77//3jAMw9i2bZsxderUm467ceNGo2HDhkZ2draxevVqo0mTJkZWVpZhGIaxcOFCo1u3bobF\nYjGsVqvxxhtvGGFhYYZhGMbgwYON+fPnG4ZhGNnZ2cbAgQONmTNnGoZhGE8//bQRHx9vGIZh/PDD\nD0b16tWNzMxM49SpU/ba/5vNZjNeeOEFY9euXYZhGMbly5eNevXqGSkpKYZhGEb37t2NlStXGoZh\nGEeOHDFiY2Nv6CO3/o8ePWrUqlXLfozGjx9v3zZx4kRj+PDh9r/B7NmzDcMwjMTERCMyMtLIzs42\nDMMwFi9ebPTs2dMwDMN45513jI8++she5yuvvGKcPHnS+PTTT42RI0fe9P1lZWUZjRs3NjZu3Ghk\nZmYa9erVMzZv3mwYhmFcuHDBqFevnvHTTz/Zx65SpYpx+vRpY9euXUbXrl3tf+OtW7caL7/8sr3e\nkJAQw2q1Glar1Wjfvr2RkJBgGIZhdOvWzVizZs1NawEAAH8fzPQCcAhOTk6y2Wx57vf888/bL6v1\n8/NTSkqKPD09NX36dG3YsEEnTpzQ4cOHdeXKFUnSli1b1KFDB7m7u0uSwsPD1aBBA2VlZal169Z6\n++231bRpUzVo0EBvvvnmTcdcuHCh2rRpIycnJzVv3lwxMTH697//rdatW2vz5s1q166dXF1dJUnB\nwcGKi4uTJG3cuFEHDx7U0qVLJUmZmZlycvr/d6VcuyT5H//4h6xWq73m3JhMJnXp0kXLli1T3bp1\n9fXXX6tJkyYqVaqUJOnll19WbGys1q9frwYNGigyMjLP43l93w899JCkqzOqly9f1rZt2yRJWVlZ\n8vLyuuE1195fhw4dJF2d9b52H+6OHTsUFRUlSTKbzfrmm2/yrGHt2rWy2Wxq3LixnJyc9PLLL2vO\nnDlq3Lix9uzZI19fX/n5+UmS2rVrp9GjR9vrOHnypIKDg2UYhiTp0qVL9suoGzduLBeXq/936efn\np7/++uu2jwsAACh6hF4ADqF69er65ZdflJ6ebr+8WZLOnj2rYcOG6dNPP5Uke7iUrgY1wzB09uxZ\ndenSRV26dFFAQIBeeuklbdq0SZJuCNLZ2dnKzs6WYRjq16+fOnXqpG3btikxMVFffvnlDfeRnjlz\nRps3b9bhw4ftl/FmZ2dr7ty5at26tVxcXOxBS1KOUJudna0pU6aoUqVKkqTLly/nuFz5WhCXrl5C\nfX0/uenYsaNatmyp1NRULV26VLGxsfZtnTt3VrNmzbRt2zZt3rxZn332mVasWCGz2ZxnvwcOHLAH\nyuzsbA0ZMkSNGzeWJF25cuWmi0rZbDb17NnTfgmy1Wq1B81rIfOa3377zR7Oc7No0SJlZmbaL8m2\nWq06f/68fvnlFzk7O9/wt7x2LG02m1599VUNGDDAvu3s2bMqUaKEpKuXyV//mts5zgAA4O+DhawA\nOITHHntMbdq00QcffKDU1FRJV1cyHjFihEqXLn3LRZMOHjyo0qVLq3fv3mrYsKE2bNgg6WqQbNy4\nsRISEuyzqHFxcapbt6591jY9PV1dunSx339qtVpz9L1o0SLVqVNHmzZt0rp167R+/XotX75chw4d\n0r59+9SkSROtWLFCFotFWVlZSkxMtIexRo0aac6cOZIki8Wi3r17Kz4+/pbHwcXF5ZYz3iVLllSz\nZs306aefytnZWTVq1LBvCw4O1qFDh9SuXTvFxsbq8uXLN1006r9D3/Hjx/X555/rjTfekHR1ZjQ+\nPl5Wq1U2m01DhgzRxIkTb+inUaNGWrp0qf3vNXnyZL3//vuSpAYNGighIUHS1bD/2muv6eTJk3J2\ndr7pqs/Hjx/X7t27lZiYqHXr1mndunXavHmz6tSpo7lz58rf318nTpxQUlKSJGnNmjX2LxEaNmyo\nlStX6vz585Kk+Ph4vfbaa7kew2tcXFxYyAoAgPsAM70AHMbw4cM1depUhYSEyMXFRRaLRS1atFDf\nvn1v+brGjRtr+fLleumll1SsWDFVr15dpUuX1okTJ9SpUyf98ccfCgoKkmEYeuqpp/TRRx/J2dlZ\nQ4YM0YABA+Tq6ionJyeNGTMmx0yy1WpVQkKCPvzwwxzjlS9fXq1bt9bcuXM1efJkHT9+XB06dJCn\np6eefPJJ+2XC0dHR+vDDD9WmTRtlZWWpYcOG9kuor5/xvf53b29vPfPMM3r55Ze1cOFCPfzwwze8\n39DQUHXp0uWGut5//32NGjVKU6ZMkclkUp8+fVS2bNkbXm+xWNS+fXv7uO7u7nrvvfcUGBgoSXr7\n7bc1fvx4tW/f3r6Q1bVLla8XFBSkc+fOqUuXLnJyclKZMmU0ZswYSdLQoUM1fPhwtW3bVoZhKCIi\nQlWrVpXFYlHfvn01atQoRUdH2/tatGiRXnjhBT355JM5xnjnnXfUu3dv9e/fXx9//LF9IbBq1arJ\n2dlZHh4eatSokd5880298cYbcnJyktls1meffXZDvf+tWbNmGjdunCwWi9q1a5fn/gAAoGiYDK7T\nAoAis23bNiUnJ6tt27aSpNGjR8vDwyPHpba4d6mpqfr888/17rvvyt3dXYcOHVKvXr20ZcuWoi4N\nAAAUsAKf6f3iiy+0fv16Wa1WhYaGqm7duho0aJCcnJzk6+urmJgYSVcfM7F48WK5uroqIiJCTZs2\nVWZmpgYOHKjk5GSZzWaNHTs2z3u6AOB+UrlyZc2aNUuzZs1Sdna2qlSpouHDhxd1WQ7HbDbL1dVV\nHTt2lIuLi1xdXTVlypSiLgsAABSCAp3p3bVrl/75z3/q888/V3p6umbPnq0ff/xRPXr0UEBAgGJi\nYtS4cWPVqlVLr7/+uhITE5WRkaGQkBAlJCQoPj5eqamp6tOnj1atWqV9+/ZpyJAhBVUuAAAAAMDB\nFOhCVlu3bpWfn5/efvtt9e7dW02bNtWhQ4cUEBAgSQoMDNT27dt14MAB1alTRy4uLjKbzapQoYKO\nHDmivXv32u8RCwwM1I4dOwqyXAAAAACAgynQy5svXLigM2fOaMaMGfrtt9/Uu3fvHKuKFitWTKmp\nqUpLS1Px4sXt7Z6envb2a4/KuLYvAAAAAAC3q0BDb8mSJeXj4yMXFxdVrFhR7u7uOnv2rH17Wlqa\nSpQoIbPZnCPQXt+elpZmb7s+GOcmKytbLi7O+f9mAAAAAAD3nQINvXXq1FFcXJxee+01nT17Vleu\nXFH9+vW1a9cu1atXT5s3b1b9+vVVvXp1TZo0SRaLRZmZmTp27Jh8fX1Vu3Ztbdq0SdWrV9emTZvs\nl0XfyoUL6QX5lhyet3dxnT9/uajLAHAf4HwB4HY54vnC2zvvyRgAfw8FGnqbNm2qPXv2qFOnTjIM\nQ8OHD9cTTzyh6OhoWa1W+fj4qGXLljKZTAoLC1NoaKgMw1D//v3l5uamkJAQRUVFKTQ0VG5ubpow\nYUJBlgsAAAAAcDAO95xeR/sWsbA54jexAAoG5wsAt8sRzxfM9AL3jwJdvRkAAAAAgKJE6AUAAAAA\nOCxCLwAAAADAYRF6AQAAAAAOi9ALAAAAAHBYhF4AAAAAD6SjR4+qV69e6t69u4KCgvTZZ59Jknbt\n2qX+/fsXSg0RERGKiIjI937j4+Pzvc/7FaEXAAAAwAPn8uXL6t+/v6KjozV37lwtWbJESUlJWrx4\nsSTJZDIVeA2///67rly5otTUVJ06dSpf+/7888/ztb/7mUtRFwAAAAAAhW3dunV67rnnVK5cOUlX\nQ+64cePk6uqq7777TsePH9dbb72l5ORkNWvWTH369NHu3bv12WefyTAMpaena8KECSpfvrxmz56t\nVatWycXFRXXr1tWAAQP03Xff2fvz8PDQJ598Ik9Pzxw1LF++XC1atJCHh4fi4+MVFRUlSVq6dKkW\nLFigkiVLysXFRa1bt9Yrr7yimJgYnTx5UjabTf369VPdunXVtm1b1atXTz/99JNMJpOmTZum+fPn\n6+LFi4qNjdWwYcMK/dj+3TDTCwAAAOCBc+7cOXvgveahhx6Si8vVeUGr1app06YpPj5e8+fPl3T1\ncuiPP/5Y8+bN0wsvvKB///vfSkpK0po1a7RkyRItWrRIJ06c0MaNG7V27Vq1atVKcXFxCg4O1qVL\nl3KMZRiGvvnmG7366qtq1aqVVq9eLYvFogsXLmjmzJlavHixZs2apYyMDElXg3Dp0qUVFxenqVOn\nasSIEZKk1NRUtWnTRnFxcXr00Ue1efNmRUREqGTJkgTe/8NMLwAAAIAHTtmyZfXjjz/maDt16pT+\n+OMPSZKvr69cXFzs/5Okxx57TCNHjlSxYsV09uxZ+fv769ixY6pZs6acnK7OJ/r7++vnn39W7969\nNW3aNHXv3l2PP/64atWqlWOsLVu2KD09XQMGDJBhGPYQXLlyZfn6+srNzU2S7K9LSkrS3r179f33\n38swDGVnZ+vChQuSpGeeeUaSVKZMGVkslgI6YvcvQi8AAACAIpWdna1ffvklX/v08fGRs7Nzrtub\nNm2qGTNmKDQ0VOXKlZPVatXYsWPVsGFD+fj43PQ1Q4cO1dq1a+Xp6alBgwZJkipVqqQ5c+bIZrPJ\nZDJpz549ateunb7++mt17NhRUVFR+uKLL7R48WK988479r6WLVum0aNHKzAwUJL03XffadSoUZo1\na5aOHTsmi8UiFxcXHThwQD4+PvLx8VGZMmX01ltvKTMzU9OnT1fJkiVzfX+GYdzNYXNIhF4AAAAA\nReqXX37R+M8PqvQj5fOlv5Q/T+j93pKfn1+u+5jNZo0bN07R0dEyDENpaWlq3ry5QkJCtGvXrpsu\nZPXqq68qNDRUnp6eeuSRR3Tu3Dn5+fmpZcuWCg4OlmEYqlOnjlq0aKEDBw5oyJAheuihh+Ts7KzY\n2Fh7P8nJyTpw4IAmT55sb/P395fFYtGJEyf05ptvKjQ0VA8//LAyMzPl4uKiLl26KDo6WmFhYUpL\nS1NISIhMJlOOOq//uXLlynr//fc1fvz4ez2c9z2T4WBfAZw/f7moS7iveXsX5xgCuC2cLwDcLkc8\nX3h7Fy/qEhxKUlKSZi69JO/HK+dLf+f/+FlvBpW4Zej9u8rOztaXX35pf4xR165dFRkZqYCAgCKu\n7P7FTC8AAAAA/E04OzvrypUr6tChg9zc3FSjRg0C7z0i9AIAAADA30hkZKQiIyOLugyHwSOLAAAA\nAAAOi9ALAAAA4IEzbtw4hYWFqVWrVmrWrJnCw8PVr1+/XPc/ffq0Nm7cmOv2kydPKjQ0NEdbdna2\nmjRpkqNt48aNio6OliStWbNGycnJOnv2rEaNGiVJatKkiWw2m6ZPn65Dhw4pMzNTy5Ytu633lJKS\nor59+6pHjx4KDg7WsGHDCv0RRsnJyXrhhRdks9kkSRkZGerTp4+6du2qiIgIXbx4UdLV1ao7d+6s\nkJAQff755zn6SE9PV9u2bbVjx44c7Tt27FDz5s3vuCYubwYAAABQ5FL+PJHPfVW/5T5RUVGSpMTE\nRB0/flz9+/e/5f7bt2/X6dOn1bRp01z3udmKz7dqmzt3rqpWrapy5crZg/C1bdcWsjpx4oQSEhLU\nqVOnW9YnSV988YWaNGli33fUqFFaunSpunbtmudr88OmTZs0efJkJScn29vmz5+vatWqKSIiQitW\nrNCMGTMUFRWl4cOHa8aMGSpTpox69OihpKQk+8JjsbGxNzxu6syZM5o7d649TN8JQi8AAACAIuXj\n46P3e+dnj9Vzfdbu7fjwww+1f/9+mUwmtW3bVp07d9asWbNksVhUu3Ztubu76/PPP5fNZlNGRoYm\nTpx4x2OsX79eSUlJeu+99zR27FgNGTJECxYssG8fOHCgOnTooBUrVujo0aOaMWOG1q1bp/Hjx6tC\nhQrasGGDtm/friFDhthf4+XlpdWrV+uJJ56Qv7+/Bg8ebA+Pn332mTZs2CCbzaauXbuqU6dO+vLL\nL7VmzRq5uLjo2WefVWRkpCZPnqyDBw8qPT1dY8eO1caNG7V69WpJVx/ZFBISou3bt+vgwYPq1atX\njvfk6uqquXPnqm3btva2vXv3qk+fPpKkwMBAzZ49W3/99ZcMw1CZMmUkSY0aNdKOHTvk5+enL7/8\nUs8++2yOcJuZmanY2FiNGDFCXbp0ueNjTegFAAAAUKScnZ3/No8XWrt2rc6fP68lS5bIarUqODhY\n9evXV48ePXTmzBk1adJE8fHxmjRpkkqXLq2pU6dqzZo1evHFF297DJPJpObNm8vPz0/jxo2TYRg3\nnRGWpN69e+vkyZPq1auXSpcurcTEREVGRiohIUF9+/bNse+bb76pUqVKaebMmTp48KDq1q2rYcOG\n6dy5c9q5c6eWL18uq9WqiRMn6vDhw1q/fr2WLl0qk8mkd955R1u2bJF09fnGUVFR+umnn7R27Vot\nWrRINptN3bt3V6NGjdSgQQM1aNDghlqvtV3/VNzU1FQVL371EV/FihXT5cuXlZaWZm+71n7u3Dlt\n3bpVv//+u3r27Knt27fbtw8fPlw9e/aUl5eX7uaJu4ReAAAAAPg/x44dsz8iyNXVVTVr1tSxY8dy\n7PPoo49qxIgR8vT01B9//KFnn332pn05OzsrOzs7R1t6errc3d3vqrbWrVsrKChIYWFhSk5OvuGL\ngh07dqhjx47q1KmTrFarZsyYobFjx6pZs2aqUaOG/T1FRUVp5cqVqlWrlj1s+/v76+eff5YkVapU\nSZJ09OhRnTp1SuHh4TIMQ5cuXdKJEydUrly5W9Z5fYA3m81KS0uTJKWlpalEiRIym81KTU2173Ot\nPSEhQX/88YfCwsJ07NgxHT16VNHR0dq/f79Onz4twzCUkpKigQMH6qOPPrrt48ZCVgAAAADwfypV\nqqS9e/dKkqxWq/bv36/y5cvLycnJfsnt0KFDNW7cOI0ZMybH7OPNZiHLli2rPXv22H/fsmWLqle/\ner/x9X1e8999mEwme3D29PSUv7+/xowZo3bt2t0w1pw5c7Ry5UpJV8Otj4+P3N3dVblyZf3444+S\nJIvFotdff13lypXT999/L8MwZBiG9uzZo4oVK9rHvHYsnn76ac2bN09xcXFq166dfH198zyG17+H\nOnXqaNOmTZKu3vNbp04dlShRQiaTyR5kt27dqoCAAE2cOFELFixQXFycGjRooKioKAUEBGj16tWa\nN2+e5syZo9KlS99R4JWY6QUAAAAAuxYtWmj37t0KDg6W1WpV27Zt5efnJ4vFopkzZ6pq1apq06aN\nQkJC9NBDD8nLy0vnzp2TdPNFq0aNGqURI0YoKytLNptN/v7+atOmjaSrs6vvvfeeRo4cad//Wh/X\n/vX29lZGRoYmTZqkyMhIBQUFqXv37oqNjb3pWMOHD9fs2bPl4eEhLy8vDR8+XF5eXqpfv76Cg4Ml\nSV27dlWNGjX0/PPPq0uXLjIMQ/Xq1VPTpk21f/9+e39Vq1aVv7+/QkJClJmZKX9/fz322GO53tP7\n3+9BkkJDQzVo0CCFhITIw8NDEyZMkCSNGDFC/fv3l81mU2BgoKpWrZprH7fTfism424uiv4bO3/+\nclGXcF/z9i7OMQRwWzhfALhdjni+8PYunvdOQAHYt2+fli1bptGjRxd1KfcNZnoBAAAA4D4wb948\nffXVV5oyZUpRl3JfYaYXOTjiN7EACgbnCwC3yxHPF8z0AvcPFrICAAAAADgsQi8AAAAAwGERegEA\nAAAADovQCwAAAABwWIReAAAAAA+cXbt2qUGDBgoPD1dYWJhCQkK0evXqW77mwIEDevHFFzVp0qTb\nHsdisWjp0qW5bm/Xrl2O5/Tmh7zGfNAQegEAAAA8kJ577jnNmzdPcXFxmjVrlr788ksdOXIk1/23\nbNmi7t27KzIy8rbHOHfunJYtW3bTbd999538/Pz0n//8R+np6Xdc/92M+SDiOb0AAAAAHnienp4K\nDg7WmjVrVKVKFU2cOFF79+5Vdna2XnvtNZUtW1bLly+Xm5ubHnvsMT388MOaNGmSnJ2d9dRTTyk2\nNlZZWVkaPHiwzpw5I6vVqqFDh2r58uX65ZdfNG3aNL399ts5xly6dKlatmypMmXKKDExUV27dpUk\nTZ06VevWrVOpUqWUkZGhfv366ZlnntEHH3ygv/76S5IUHR0tX19fvfTSS/L399fx48f1yCOP6JNP\nPtGMGTNyHfNBROgFAAAAAEleXl46dOiQNm/erFOnTik+Pl4Wi0WdO3fW/Pnz1aFDB3l7e6tFixZ6\n6aWXtHDhQpUuXVpTpkxRQkKC0tLS9OSTT2rixIk6efKkNm7cqN69e+vo0aM3hM/U1FTt3btXo0eP\nVqVKldSnTx917dpVR44c0datW5WQkKDMzEy1bdtWkjR9+nQ1aNBAwcHBOnHihAYPHqwFCxbot99+\n07x58/TYY48pJCREP/zwgyIiIm465oOK0AsAAAAAks6cOaPHH39cSUlJ+vHHHxUeHi7DMJSdna1T\np07Z90tJSdH58+fVr18/GYYhi8WiBg0a6MKFCwoMDJQkPfXUUwoPD9fp06dvOtaKFStkGIZ69eol\nwzB0/vx5/ec//1FKSopq1KghSXJ3d9c//vEPSVJSUpJ27typVatWyTAMXbp0SZJUqlQpPfbYY5Kk\nMmXKKDMzs8COz/2K0AsAAACgSGVnZ+uXX37J1z59fHzk7Ox8y30Mw7D/nJqaqqVLl+qTTz7RsWPH\n9Oyzzyo2NlaGYWjatGl66qmn7PuWKlVKZcqU0bRp02Q2m7V+/XoVK1ZMSUlJOnDggJo3b67ffvtN\nkydP1nvvvafs7Owbxl62bJmmT58uHx8fSdK//vUvxcfHq2/fvpo/f76kqwtSHTp0yP5+qlWrptat\nWyslJcV+z67JZLqhbycnp5uO+aAi9AIAAAAoUr/88ouOz35aFb3zp7/j5yW98ZP8/Pxuud/OnTsV\nHh5uD4nvvvuuKlSooAoVKmjXrl3q2rWrrly5ohYtWsjT09P+OpPJpA8++EBvvfWWbDabihcvrnHj\nxql27doaPHiwwsLCZLPZNGTIEHl5eSkrK0sTJkzQgAEDJClHkL3mxRdf1JgxY/Twww8rMDBQnTt3\nVqlSpeTq6ioXFxf16tVLQ4YM0aJFi5SWlqa+ffve8H6uBeCbjfkgMxnXf73hAM6fv1zUJdzXvL2L\ncwwB3BbOFwBulyOeL7y9ixd1CQ4lKSlJ+uZp+ZXJp/5+l9Qm79D7d5SSkqJ///vfCg0NlcViUZs2\nbTR37lw9/vjjRV3afYuZXgAAAAD4myhVqpQOHjyoTp06ycnJSUFBQQTee0ToBQAAAIC/CZPJpDFj\nxhR1GQ7FqagLAAAAAIDCNm7cOIWFhalVq1Zq1qyZwsPD1a9fv1z3P336tDZu3Jjr9pMnTyo0NDRH\nW3Z2tpo0aZKjbePGjYqOjpYkrVmzRsnJyTp79qxGjRolSWrSpIlsNpumT5+uQ4cOKTMz075oVV5S\nUlLUt2/OSD4dAAAgAElEQVRf9ejRQ8HBwRo2bJgsFsttvTY/xMbGqlOnTgoPD1d4eLiuXLmijIwM\n++OYIiIidPHiRUnS1q1b1aVLF4WFhSkyMtJe55gxYxQcHKygoCAtX748X+piphcAAADAAycqKkqS\nlJiYqOPHj6t///633H/79u06ffq0mjZtmus+N1tJ+VZtc+fOVdWqVVWuXDl7EL62LSIiQpJ04sQJ\nJSQkqFOnTnm+py+++EJNmjSx7ztq1CgtXbpUXbt2zfO1+eHQoUOaM2eOzGazvW3mzJmqVq2aIiIi\ntGLFCs2YMUNRUVEaOXKkFi9erJIlS2r8+PFavny5ypcvrz/++EOLFi2SxWJRq1at1LJlSxUrVuye\n6iL0AgAAAChyx8/nb18V7+H1H374ofbv3y+TyaS2bduqc+fOmjVrliwWi2rXri13d3d9/vnnstls\nysjI0MSJE+94jPXr1yspKUnvvfeexo4dqyFDhmjBggX27QMHDlSHDh20YsUKHT16VDNmzNC6des0\nfvx4VahQQRs2bND27ds1ZMgQ+2u8vLy0evVqPfHEE/L399fgwYPtj2367LPPtGHDBtlsNnXt2lWd\nOnXSl19+qTVr1sjFxUXPPvusIiMjNXnyZB08eFDp6ekaO3asNm7cqNWrV0uSXn31VYWEhGj79u06\nePCgevXqZR87OztbJ0+e1ODBg/Xnn3+qS5cuateunfbu3as+ffpIkgIDAzVr1ixJUnx8vEqWLGl/\nrbu7uwICAuzPKL7G1dX1jo/tfyP0AgAAAChSPj4+0hs/5Vt/FZXzcUB3Yu3atTp//ryWLFkiq9Wq\n4OBg1a9fXz169NCZM2fUpEkTxcfHa9KkSSpdurSmTp2qNWvW6MUXX7ztMUwmk5o3by4/Pz+NGzdO\nhmHcdEZYknr37q2TJ0+qV69eKl26tBITExUZGamEhIQbHlv05ptvqlSpUpo5c6YOHjyounXratiw\nYTp37px27typ5cuXy2q1auLEiTp8+LDWr1+vpUuXymQy6Z133tGWLVskSX5+foqKitJPP/2ktWvX\natGiRbLZbOrevbsaNWqkBg0aqEGDBjnGvnLlirp3767XX39dFotF4eHhqlatmlJTU1W8+NXVzosV\nK6bU1FRJ0iOPPCJJWr16tfbt26eBAwfKxcVFbm5uslgsGjhwoLp16yY3N7fbPq65IfQCAAAAKFLO\nzs5/m8cLHTt2TAEBAZKuzjLWrFlTx44dy7HPo48+qhEjRsjT01N//PGHnn322Zv25ezsrOzs7Bxt\n6enpcnd3v6vaWrduraCgIIWFhSk5OfmGY7Zjxw517NhRnTp1ktVq1YwZMzR27Fg1a9bMPoPq6uqq\nqKgorVy5UrVq1bKHbX9/f/3888+SpEqVKkmSjh49qlOnTik8PFyGYejSpUs6ceKEypUrd0Ntnp6e\n9pDq5uamevXq6aefflLx4sWVlpYmSUpLS1OJEiXsr5k1a5Y2bNigmTNnysXlajT966+/1LdvXzVq\n1Eivv/76XR2n/8ZCVgAAAADwfypVqqS9e/dKkqxWq/bv36/y5cvLyclJNptNkjR06FCNGzdOY8aM\nkZeXlwzDkCT7v9crW7as9uzZY/99y5Ytql69uiTl6POa/+7DZDLZg7Onp6f8/f01ZswYtWvX7oax\n5syZo5UrV0q6Gm59fHzk7u6uypUr68cff5QkWSwWvf766ypXrpy+//57GYYhwzC0Z88eVaxY0T7m\ntWPx9NNPa968eYqLi1O7du3k6+t70+P2888/q1u3bjIMQxaLRfv27VPVqlXl7+9vXwBs06ZNqlOn\njqSrl1sfPHhQs2fPtgfhjIwMvfbaawoODtZbb71103HuBjO9AAAAAPB/WrRood27dys4OFhWq1Vt\n27aVn5+fLBaLZs6cqapVq6pNmzYKCQnRQw89JC8vL507d07SzRetGjVqlEaMGKGsrCzZbDb5+/ur\nTZs2kq7Orr733nsaOXKkff9rfVz719vbWxkZGZo0aZIiIyMVFBSk7t27KzY29qZjDR8+XLNnz5aH\nh4e8vLw0fPhweXl5qX79+goODpYkde3aVTVq1NDzzz+vLl26yDAM1atXT02bNtX+/fvt/V0LrSEh\nIcrMzJS/v78ee+yxm97T6+fnp1atWqlz585ycXFRp06dVLFiRYWGhmrQoEEKCQmRh4eHJkyYoHPn\nzmn69OmqVq2aevToIZPJpDZt2ujSpUs6c+aMFi1apIULF8pkMmn8+PH3/Jxik3GzryPuY+fPXy7q\nEu5r3t7FOYYAbgvnCwC3yxHPF97exYu6BDyg9u3bp2XLlmn06NFFXcp9o8Bnejt06GBfsvrJJ59U\nRESEBg0aJCcnJ/n6+iomJkaStGTJEi1evFiurq6KiIhQ06ZNlZmZqYEDByo5OVlms1ljx45VqVKl\nCrpkAAAAAPjbmTdvnr766itNmTKlqEu5rxToTK/FYlFwcLASEhLsbb1791aPHj0UEBCgmJgYNW7c\nWLVq1dLrr7+uxMREZWRkKCQkRAkJCYqPj1dqaqr69OmjVatWad++fTmW5L4ZR/sWsbA54jexAAoG\n5wsAt8sRzxfM9AL3jwKd6T1y5IjS09PVo0cPZWdnKzIyUocOHbKvhhYYGKht27bJyclJderUkYuL\ni8xmsypUqKAjR45o79696tmzp33fadOmFWS5AIAClJ2drV9/PZb3jsh3FSpUsj+nEXeGz23+uHDB\nrJSU1Dt6DZ9bAPmlQEOvh4eHevTooaCgIP3666/q2bNnjtXIrj2nKS0tzf7sJunqqmTX2q9dGn39\nM50AAPefX389pr++qqOK3kVdyYPl+Hnp13Z75eNz89U2cWu//npMMxcfV+lHyhd1Kfe5S3e0d8qf\nJ/RmF/G5BZAvCjT0VqhQQeXLl7f/XLJkSR06dMi+/dpzmsxmc45Ae3379c90uj4Y5+b8+VNyceFb\nwbt14cLvd7T/teXT+Sa28Pn4+HDcUeTu5PK+CxfMKu0t+ZUpwIJwc6XNXIp5ly5cMKv0I+Xl/Xjl\noi7lgVOazy2AfFKgoXf58uVKSkpSTEyMzp49q9TUVDVs2FC7du1SvXr1tHnzZtWvX1/Vq1fXpEmT\nZLFYlJmZqWPHjsnX11e1a9fWpk2bVL16dW3atMl+WfStTPzyEN/GFqLjR3fozcffZeamkB0/L6Uw\nc4Midqf36KWkpKp0AdaD3KWkpDrc/ZSF5U4vyUX++bt/bgnkwP2jQENvp06dNHjwYIWGhsrJyUlj\nx45VyZIlFR0dLavVKh8fH7Vs2VImk0lhYWEKDQ2VYRjq37+/3NzcFBISoqioKIWGhsrNzU0TJkzI\nc0y+jS1cKX+eUEVmbopESlEXAAAAANwHCjT0urq66uOPP76hPS4u7oa2oKAgBQUF5Wjz8PBgOW4A\nAAAAwF1zKuoCAAAAAAAoKIReAAAAAIDDIvQCAAAAABwWoRcAAAAA4LAIvQAAAAAAh0XoBQAAAAA4\nLEIvAAAAAMBhEXoBAAAAAA6L0AsAAAAAcFiEXgAAAACAwyL0AgAAAAAcFqEXAAAAAOCwCL0AAAAA\nAIdF6AUAAAAAOCxCLwAAAADAYRF6AQAAAAAOi9ALAAAAAHBYhF4AAAAAgMMi9AIAAAAAHBahFwAA\nAADgsAi9AAAAAACHRegFAAAAADgsQi8AAAAAwGERegEAAAAADovQCwAAAABwWIReAAAAAIDDIvQC\nAAAAABwWoRcAAAAA4LAIvQAAAAAAh0XoBQAAAAA4LEIvAAAAAMBhEXoBAAAAAA6L0AsAAAAAcFiE\nXgAAAACAwyL0AgAAAAAcFqEXAAAAAOCwCL0AAAAAAIdF6AUAAAAAOCxCLwAAAADAYRF6AQAAAAAO\ni9ALAAAAAHBYhF4AAAAAgMMi9AIAAAAAHBahFwAAAADgsAi9AAAAAACHRegFAAAAADgsQi8AAAAA\nwGEVeOhNTk5W06ZNdfz4cZ08eVKhoaHq1q2bRowYYd9nyZIl6tixo4KDg7Vx40ZJUmZmpt599111\n7dpVvXr10oULFwq6VAAAAACAgynQ0JuVlaWYmBh5eHhIksaMGaP+/ftr/vz5stlsWrt2rf7880/F\nxcVp8eLFmjlzpiZMmCCr1aqFCxfKz89P8fHxevXVVzVt2rSCLBUAAAAA4IAKNPSOGzdOISEhevTR\nR2UYhg4dOqSAgABJUmBgoLZv364DBw6oTp06cnFxkdlsVoUKFXTkyBHt3btXgYGB9n137NhRkKUC\nAAAAABxQgYXehIQEeXl5qWHDhjIMQ5Jks9ns24sVK6bU1FSlpaWpePHi9nZPT097u9lszrEvAAAA\nAAB3wqWgOk5ISJDJZNK2bdv0008/KSoqKsd9uWlpaSpRooTMZnOOQHt9e1pamr3t+mAMAAAAAMDt\nKLDQO3/+fPvP4eHhGjFihMaPH6/du3erbt262rx5s+rXr6/q1atr0qRJslgsyszM1LFjx+Tr66va\ntWtr06ZNql69ujZt2mS/LBrAVaVLm+XtzZdBKFp38hm8cMFcgJXgVjhf3L2rn9tLRV3GA4nPLYD8\nUmCh92aioqI0dOhQWa1W+fj4qGXLljKZTAoLC1NoaKgMw1D//v3l5uamkJAQRUVFKTQ0VG5ubpow\nYUJhlgr87aWkpOr8+ctFXQYeYN7exe/oM5iSkqrSBVgPcsf54u6lpHB7VVH5u39uCeTA/aNQQu+8\nefPsP8fFxd2wPSgoSEFBQTnaPDw8NGXKlAKvDQAAAADguAr8Ob0AAAAAABQVQi8AAAAAwGERegEA\nAAAADovQCwAAAABwWIReAAAAAIDDIvQCAAAAABwWoRcAAAAA4LAIvQAAAAAAh0XoBQAAAAA4rDxD\n78mTJ7VixQoZhqGhQ4eqY8eO2rNnT2HUBgAAAADAPckz9A4ePFiurq5at26dfv31Vw0ePFjjx48v\njNoAAAAAALgneYbezMxMtWrVShs2bFCbNm0UEBCgrKyswqgNAAAAAIB7kmfodXZ21po1a7Rx40Y1\nbdpUa9eulZMTtwIDAAAAAP7+8kyvsbGx2rhxo2JiYvToo49q5cqVGjVqVGHUBgAAAADAPckz9D79\n9NN6++235ebmpuzsbPXv319VqlQpjNoAAAAAALgneYbeVatW6e2339bo0aN18eJFBQcH6+uvvy6M\n2gAAAAAAuCd5ht4vv/xSCxcuVLFixeTl5aXExER98cUXhVEbAAAAAAD3JM/Q6+TkJLPZbP/90Ucf\nZSErAAAAAMB9wSWvHXx9fTV//nxlZWXp8OHDWrBgAff0AgAAAADuC3lO2Q4bNkxnz56Vu7u7Pvjg\nA5nNZsXExBRGbQAAAAAA3JM8Z3o9PT01YMAADRgwoDDqAQAAAAAg3+QZeufMmaNp06bp8uXLkiTD\nMGQymXT48OECLw4AAAAAgHuRZ+idN2+evvrqK5UtW7Yw6gEAAAAAIN/keU+vj4+PHnnkkcKoBQAA\nAACAfJXnTG9YWJjatGmjmjVrytnZ2d4+ZsyYAi0MAAAAAIB7lWfoHT16tNq0aaMnnniiMOoBAAAA\nACDf5Bl63dzc1KdPn8KoBQAAAACAfJVn6G3QoIHGjh2rwMBAubq62tvr1q1boIUBAAAAAHCv8gy9\nhw4dkiT9+OOP9jaTyaR58+YVXFUAAAAAAOSDPENvXFxcYdQBAAAAAEC+yzP07tmzR7NmzVJ6eroM\nw5DNZtOZM2e0fv36wqgPAAAAAIC7ludzeqOjo9WiRQtlZ2era9euKl++vFq0aFEYtQEAAAAAcE/y\nDL0eHh7q2LGj6tWrpxIlSmjUqFHavXt3YdQGAAAAAMA9yTP0uru76+LFi6pYsaK+//57mUwmpaen\nF0ZtAAAAAADckzxD72uvvabIyEg1a9ZMX331lVq3bq1q1aoVRm0AAAAAANyTPBeyatWqlVq2bCmT\nyaSEhAT9+uuvqlKlSmHUBgAAAADAPbll6E1KSlJ2draeeeYZffjhh7p8+bKcnZ01aNAgmc3mwqoR\nAAAAAIC7kuvlzevXr1dERITOnz8vSdq8ebPq1aunrKwszZw5s9AKBAAAAADgbuUaej/77DPNmjVL\ngYGBkq6u4ty+fXtFR0fzjF4AAAAAwH0h19CbmZmpihUr2n9v3LixJMlsNsvZ2bngKwMAAAAA4B7l\nGnqtVqsMw7D/PmDAAElSVlaWrFZrwVcGAAAAAMA9yjX01qtXT9OnT7+hfdasWapXr16BFgUAAAAA\nQH7IdfXmAQMGKDw8XBs2bFBAQIBMJpP27t2rzMxMzZs3rzBrBAAAAADgruQaekuVKqXly5fr22+/\n1f79+yVJISEhatWqldzc3AqtQAAAAAAA7tYtn9Pr5uamV155Ra+88kph1QMAAAAAQL7J9Z5eAAAA\nAADud7mG3vT09MKsAwAAAACAfJdr6A0LC5MkDR8+vLBqAQAAAAAgX+V6T296erree+89bdmyRZmZ\nmTdsHzNmTJ6d22w2RUdH6/jx43JyctKIESPk5uamQYMGycnJSb6+voqJiZEkLVmyRIsXL5arq6si\nIiLUtGlTZWZmauDAgUpOTpbZbNbYsWNVqlSpe3i7AAAAAIAHSa6hd/bs2dq5c6f27t1718/lXb9+\nvUwmkxYuXKhdu3Zp4sSJMgxD/fv3V0BAgGJiYrR27VrVqlVLcXFxSkxMVEZGhkJCQtSwYUMtXLhQ\nfn5+6tOnj1atWqVp06ZpyJAhd/1mAQAAAAAPllxDb5kyZdSuXTtVqVJFPj4+On78uLKzs+Xr6ysX\nl1su+mzXokULNW/eXJJ05swZPfzww9q+fbsCAgIkSYGBgdq2bZucnJxUp04dubi4yGw2q0KFCjpy\n5Ij27t2rnj172vedNm3avb5fAAAAAMADJM/0arVa9dJLL6lkyZKy2Wz6888/NXXqVNWsWfO2BnBy\nctKgQYO0du1aTZkyRdu2bbNvK1asmFJTU5WWlqbixYvb2z09Pe3tZrM5x74AAAAAANyuPEPv6NGj\nNWnSJHvI3b9/v0aOHKlly5bd9iBjx45VcnKyOnXqlOP+4LS0NJUoUUJmszlHoL2+PS0tzd52fTAG\nHnSlS5vl7c1/Eyhad/IZvHDBXICV4FY4X9y9q5/bS0VdxgOJzy2A/JJn6E1PT88xq1urVq2bLmx1\nM19//bXOnj2rt956S+7u7nJyclK1atW0a9cu1atXT5s3b1b9+vVVvXp1TZo0SRaLRZmZmTp27Jh8\nfX1Vu3Ztbdq0SdWrV9emTZvsl0UDkFJSUnX+/OWiLgMPMG/v4nf0GUxJSVXpAqwHueN8cfdSUrjK\nrKj83T+3BHLg/pFn6H344Ye1du1atWjRQpK0du1alSxZ8rY6f/HFFzV48GB169ZNWVlZio6OVqVK\nlRQdHS2r1SofHx+1bNlSJpNJYWFhCg0NtS905ebmppCQEEVFRSk0NFRubm6aMGHCvb1bAAAAAMAD\nJc/QO3LkSA0cONC+anK5cuX00Ucf3VbnDz30kCZPnnxDe1xc3A1tQUFBCgoKytHm4eGhKVOm3NZY\nAAAAAAD8tzxDb4UKFbR06VKlp6fLZrPZF5YCAAAAAODv7vaePaSrKyoDAAAAAHA/cSrqAgAAAAAA\nKCh5ht6FCxcWRh0AAAAAAOS7PENvfHx8YdQBAAAAAEC+y/Oe3scff1zh4eGqWbOm3N3d7e19+vQp\n0MIAAAAAALhXeYbeWrVqFUYdAAAAAADkuzxDb58+fZSenq6TJ0/Kz89PGRkZrOQMAAAAALgv5HlP\n744dO/Tqq6/q7bff1p9//qnmzZtr69athVEbAAAAAAD3JM/QO3HiRC1YsEAlSpTQo48+qvnz52v8\n+PGFURsAAAAAAPckz9Brs9nk7e1t/71y5coFWhAAAAAAAPnltlZv3rBhg0wmky5duqT4+HiVLVu2\nMGoDAAAAAOCe5DnTGxsbq2+++Ua///67WrRoocOHDys2NrYwagMAAAAA4J7kOdPr5eWliRMnKjU1\nVS4uLvLw8CiMugAAAAAAuGd5ht6ffvpJgwYN0pkzZyRJlSpV0rhx4/TUU08VeHEAAAAAANyLPC9v\njomJUb9+/bRz507t3LlTb7zxhj744IPCqA0AAAAAgHuSZ+jNzMxUkyZN7L+/8MILSk1NLdCiAAAA\nAADID7mG3jNnzujMmTOqUqWKvvjiC6WkpOivv/7S/PnzFRAQUJg1AgAAAABwV3K9p7dbt24ymUwy\nDEM7d+7UokWL7NtMJpOio6MLpUAAAAAAAO5WrqF3/fr1hVkHAAAAAAD5Ls/Vm48dO6YlS5bor7/+\nytE+ZsyYAisKAAAAAID8kGfo7dOnj15++WU9/fTThVEPAAAAAAD5Js/QW6JECfXp06cwagEAAAAA\nIF/lGXrbt2+vSZMmqX79+nJx+f+7161bt0ALAwAAAADgXuUZenft2qWDBw/qu+++s7eZTCbNmzev\nQAsDAAAAAOBe5Rl6f/jhB3377beFUQsAAAAAAPnKKa8d/Pz8dOTIkcKoBQAAAACAfJXnTO9vv/2m\n9u3by9vbW66urjIMQyaTSevWrSuM+gAAAAAAuGt5ht6pU6cWRh0AAAAAAOS7PEPv7t27b9r+xBNP\n5HsxAAAAAADkpzxD786dO+0/W61W7d27VwEBAWrXrl2BFgYAAAAAwL3KM/SOGTMmx+8XL15UZGRk\ngRUEAAAAAEB+yXP15v/m6emp06dPF0QtAAAAAADkqzxnesPCwmQymSRJhmHo1KlTatKkSYEXBgAA\nAADAvcoz9Pbt29f+s8lkUqlSpVS5cuUCLQoAAAAAgPyQa+g9c+aMJOnJJ5+86bayZcsWXFUAAAAA\nAOSDXENvt27dZDKZZBiGvc1kMuncuXPKysrS4cOHC6VAAAAAAADuVq6hd/369Tl+T0tL07hx47R1\n61aNHDmywAsDAAAAAOBe3dbqzTt27FDbtm0lSStWrFDDhg0LtCgAAAAAAPLDLReySk9P19ixY+2z\nu4RdAAAAAMD9JNeZ3h07dqhNmzaSpG+++YbACwAAAAC47+Q60/v666/LxcVFW7du1bZt2+zthmHI\nZDJp3bp1hVIgAAAAAAB3K9fQS6gFAAAAANzvcg29TzzxRGHWAQAAAABAvrut1ZsBAAAAALgfEXoB\nAAAAAA6L0AsAAAAAcFiEXgAAAACAw8p1Iat7lZWVpQ8++ECnT5+W1WpVRESEKleurEGDBsnJyUm+\nvr6KiYmRJC1ZskSLFy+Wq6urIiIi1LRpU2VmZmrgwIFKTk6W2WzW2LFjVapUqYIqFwAAAADggAos\n9K5YsUKlSpXS+PHjdenSJb366quqUqWK+vfvr4CAAMXExGjt2rWqVauW4uLilJiYqIyMDIWEhKhh\nw4ZauHCh/Pz81KdPH61atUrTpk3TkCFDCqpcAAAAAIADKrDLm1u1aqX/+Z//kSRlZ2fL2dlZhw4d\nUkBAgCQpMDBQ27dv14EDB1SnTh25uLjIbDarQoUKOnLkiPbu3avAwED7vjt27CioUgEAAAAADqrA\nQu//a+9+Y6u86z6Ofwq1N3/aoosky3RhBoe6jDA20TIz4tgwOEyEsi7Q0TndA58ssKFCDPujDqyu\nQTKzNplBTUQUMVnYNBoV2crUJSIKC8Z/ybabuREzUgK2OlrXcz/g9tyrGwt/7u6UH6/XI87vXFev\n72kuTnj3ujidOHFiJk2alP7+/qxatSp33nlnKpVK9fnJkyenv78/AwMDaWpqqq7/e5+BgYE0NjaO\n2BYAAABOx6jd3pwkhw4dyu23354VK1Zk0aJF6erqqj43MDCQ5ubmNDY2jgjaV64PDAxU114ZxkBy\nwQWNmTrV3wtq63TOwSNHGkdxEl6P94szd+K8PVbrMc5Lzlvg/8uoRe/hw4dz22235Z577klLS0uS\n5D3veU/27NmTOXPmZPfu3WlpacnMmTOzadOmDA4O5vjx43n66adz6aWXZvbs2ent7c3MmTPT29tb\nvS0aOKGvrz8vvvj3Wo/BeWzq1KbTOgf7+vpzwSjOw8l5vzhzfX3uNKuVsX7eCnI4d4xa9D700EM5\nduxYenp60t3dnbq6uqxbty7r16/P0NBQpk+fnoULF6auri4dHR1pb29PpVLJ6tWr09DQkOXLl2ft\n2rVpb29PQ0NDNm7cOFqjAgAAUKhRi95169a95qctb9my5VVrbW1taWtrG7E2YcKEPPDAA6M1HgAA\nAOeBUfsgKwAAAKg10QsAAECxRC8AAADFEr0AAAAUS/QCAABQLNELAABAsUQvAAAAxRK9AAAAFEv0\nAgAAUCzRCwAAQLFELwAAAMUSvQAAABRL9AIAAFAs0QsAAECxRC8AAADFEr0AAAAUS/QCAABQLNEL\nAABAsUQvAAAAxRK9AAAAFEv0AgAAUCzRCwAAQLFELwAAAMUSvQAAABRL9AIAAFAs0QsAAECxRC8A\nAADFEr0AAAAUS/QCAABQLNELAABAsUQvAAAAxRK9AAAAFEv0AgAAUCzRCwAAQLFELwAAAMUSvQAA\nABRL9AIAAFAs0QsAAECxRC8AAADFEr0AAAAUS/QCAABQLNELAABAsUQvAAAAxRK9AAAAFEv0AgAA\nUCzRCwAAQLFELwAAAMUSvQAAABRr1KN3//796ejoSJIcPHgw7e3tWbFiRT7/+c9Xt9m+fXuWLl2a\nZcuW5fHHH0+SHD9+PCtXrszNN9+cT37ykzly5MhojwoAAEBhRjV6N2/enLvuuitDQ0NJks7Ozqxe\nvTrf/va3Mzw8nJ07d+bw4cPZsmVLvve972Xz5s3ZuHFjhoaG8t3vfjczZszI1q1b89GPfjQ9PT2j\nOSoAAAAFGtXonTZtWrq7u6uPf//73+e9731vkmTevHn51a9+laeeeipXXXVV6uvr09jYmEsuuSR/\n/OMfs3fv3sybN6+67ZNPPjmaowIAAFCgUY3eBQsWZPz48dXHlUql+ufJkyenv78/AwMDaWpqqq5P\nmsvVU0MAAAofSURBVDSput7Y2DhiWwAAADgd9W/kwcaN+7/GHhgYSHNzcxobG0cE7SvXBwYGqmuv\nDGMgueCCxkyd6u8FtXU65+CRI42jOAmvx/vFmTtx3h6r9RjnJect8P/lDY3eyy67LHv27MmcOXOy\ne/futLS0ZObMmdm0aVMGBwdz/PjxPP3007n00ksze/bs9Pb2ZubMment7a3eFg2c0NfXnxdf/Hut\nx+A8NnVq02mdg319/blgFOfh5LxfnLm+Pnea1cpYP28FOZw73tDoXbt2be6+++4MDQ1l+vTpWbhw\nYerq6tLR0ZH29vZUKpWsXr06DQ0NWb58edauXZv29vY0NDRk48aNb+SoAAAAFGDUo/dtb3tbtm3b\nliS55JJLsmXLlldt09bWlra2thFrEyZMyAMPPDDa4wEAAFCwUf89vQAAAFArohcAAIBiiV4AAACK\nJXoBAAAolugFAACgWKIXAACAYoleAAAAiiV6AQAAKJboBQAAoFiiFwAAgGKJXgAAAIolegEAACiW\n6AUAAKBYohcAAIBiiV4AAACKJXoBAAAolugFAACgWKIXAACAYoleAAAAiiV6AQAAKJboBQAAoFii\nFwAAgGKJXgAAAIolegEAACiW6AUAAKBYohcAAIBiiV4AAACKJXoBAAAolugFAACgWKIXAACAYole\nAAAAiiV6AQAAKJboBQAAoFiiFwAAgGKJXgAAAIolegEAACiW6AUAAKBYohcAAIBiiV4AAACKJXoB\nAAAolugFAACgWKIXAACAYoleAAAAiiV6AQAAKJboBQAAoFiiFwAAgGKJXgAAAIolegEAAChWfa0H\neD2VSiWf+9zn8qc//SkNDQ3ZsGFDLr744lqPBQAAwDliTF/p3blzZwYHB7Nt27Z86lOfSmdnZ61H\nAgAA4BwypqN37969ueaaa5Iks2bNyoEDB2o8EQAAAOeSMX17c39/f5qamqqP6+vrMzw8nHHjTt7q\nfYf/+40Yjf919MgLeea/aj3F+eeZF5MptR4CzsAzL9Z6gvOP94uz598Wb7wT3/N31HoMoBB1lUql\nUushTuZLX/pSrrjiiixcuDBJ8sEPfjCPP/54bYcCAADgnDGmb2++8sor09vbmyTZt29fZsyYUeOJ\nAAAAOJeM6Su9r/z05iTp7OzMO97hVhcAAABOzZiOXgAAADgbY/r2ZgAAADgbohcAAIBiiV4AAACK\nJXpJcuJDw+69994sW7Yst9xyS5577rlajwSMYfv3709HR0etxwDGsH/9619Zs2ZNbr755tx0003Z\ntWtXrUcCzlP1tR6AsWHnzp0ZHBzMtm3bsn///nR2dqanp6fWYwFj0ObNm/PII49k8uTJtR4FGMMe\nffTRvOUtb8n999+fo0ePZvHixZk/f36txwLOQ670kiTZu3dvrrnmmiTJrFmzcuDAgRpPBIxV06ZN\nS3d3d63HAMa4D3/4w1m1alWSZHh4OPX1rrUAtSF6SZL09/enqamp+ri+vj7Dw8M1nAgYqxYsWJDx\n48fXegxgjJs4cWImTZqU/v7+rFq1KnfeeWetRwLOU6KXJEljY2MGBgaqj4eHhzNunNMDADhzhw4d\nysc+9rEsWbIkN9xwQ63HAc5TqoYkyZVXXpne3t4kyb59+zJjxowaTwSMdZVKpdYjAGPY4cOHc9tt\nt+Uzn/lMlixZUutxgPOY/1xBkhO3K/7yl7/MsmXLkiSdnZ01nggY6+rq6mo9AjCGPfTQQzl27Fh6\nenrS3d2durq6bN68OQ0NDbUeDTjP1FX8qB4AAIBCub0ZAACAYoleAAAAiiV6AQAAKJboBQAAoFii\nFwAAgGKJXgAAAIolegHGgOeffz7z589/1fq73/3uJMlf//rXrFu3Lkly4MCB3H333UmSjo6O7Nmz\nZ8Ta9u3b86Mf/eiUjrtmzZp87Wtfe9X6ggUL8uc///mk+332s5/Njh07TukYAAC1JHoBxoi6urqT\nrj3//PN57rnnkiSXX3557rvvvhHbvXLtd7/7XQYHB0/pmK2trfnBD34wYu03v/lNpkyZkhkzZpz2\nawAAGGtEL8A5YMOGDTlw4EDuu+++/PrXv05HR8eI5/+99uSTT2bXrl356le/mp///OdpaWnJwMBA\nkhPh/JGPfGTEfi0tLfnnP/+Zv/zlL9W1Rx99NDfeeGP167a3t6e1tTXXX399fvKTn4zY/z+vUD/4\n4IN58MEHkyS7d+9OW1tbWltbs3Llyhw9ejRJ8uUvfzmLFy9Oa2trdVsAgNEiegHOAXfddVcuv/zy\n6i3MJ7sqPHfu3MyfPz8rV67Mddddl2uvvbYaqjt27MjixYtftd+SJUuqV3sHBwfz2GOPVeN469at\n2bBhQx5++OGsX78+3d3dr3nc/9TX15evfOUr+cY3vpGHH344H/jAB9LV1ZUXXnghTzzxRHbs2JFt\n27bl4MGDp3xVGgDgTNTXegAAknHjXvtnkK8VlKfj31dTW1tb88Mf/jDf+ta3XrXNkiVLcuutt2b1\n6tXZtWtX5s6dm8bGxiRJV1dXHnvssfz4xz/O/v37849//OOUjvvUU0/l0KFDueWWW1KpVDI8PJw3\nv/nNufDCCzNhwoQsX7481157be644440NDSc1WsEAHg9ohdgDGhubk5/f/+ItcOHD6e5ufmsvu6c\nOXPyt7/9LT/72c9y8cUXZ+rUqa/a5qKLLsrb3/72/Pa3v80jjzySW2+9tfrc8uXLM3fu3Lzvfe/L\n3Llz8+lPf3rEvnV1dalUKtXHQ0NDedOb3pSXX345V111VXp6epKcuII8MDCQcePGZfv27dmzZ096\ne3tz0003ZevWrZk2bdpZvU4AgJNxezPAGDB58uRMmzYtP/3pT6tr27dvz9VXX50kGT9+fF5++eVT\n+lrjx4/P0NBQ9fHixYuzfv36tLa2nnSfpUuX5vvf/34OHjyY97///UmSo0eP5uDBg1m5cmXmzZuX\nX/ziFxkeHh6xX3Nzc44dO5YjR45kcHAwTzzxRJJk1qxZ2bdvX5599tkkSXd3d+6///784Q9/yIoV\nKzJnzpysWbMm73znO/PMM8+c0usCADgTrvQCjBFdXV25995709PTk6GhobzrXe/KPffckySZPn16\njh07lrVr12bp0qXVfV7r9uerr746mzZtypQpU/KhD30oN9xwQ775zW/muuuuO+mxr7/++nzhC1/I\nxz/+8eralClTcuONN2bRokVpamrKFVdckZdeeikvvfRSdZvGxsZ84hOfyNKlS3PRRRdl1qxZSZK3\nvvWt+eIXv5g77rgjw8PDufDCC9PV1ZUpU6Zk9uzZWbRoUSZOnJjLLrss8+bNO+vvHQDAydRVXnlf\nGgBFqVQq+c53vpNnn322+nt+AQDOJ670AhTs9ttvz6FDh/L1r3+91qMAANSEK70AAAAUywdZAQAA\nUCzRCwAAQLFELwAAAMUSvQAAABRL9AIAAFAs0QsAAECx/ge5fYWEmb3uIwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x118de7e48>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Create agents and play the game for 10000 iteratations\n", "agent1 = c.Chaos()\n", "agent2 = d.Defect()\n", "game = Coordination(agent1, agent2)\n", "game.play(10000)\n", "\n", "# Grab Data\n", "agent1_util_vals = Counter(game.data['A'])\n", "agent2_util_vals = Counter(game.data['B'])\n", "\n", "a1_total_score = sum(game.data['A'])\n", "a2_total_score = sum(game.data['B'])\n", "\n", "\n", "# Plot the results\n", "x1, y1, x2, y2 = [], [], [], []\n", "\n", "for i, j in zip(agent1_util_vals, agent2_util_vals):\n", " x1.append(i)\n", " y1.append(agent1_util_vals[i])\n", " x2.append(j)\n", " y2.append(agent2_util_vals[j])\n", "\n", "fig, ax = plt.subplots(figsize=(12,6))\n", "width = 0.35\n", "a1 = ax.bar(x1, y1, width, color='#8A9CEF')\n", "a2 = ax.bar(np.asarray(x2)+width, y2, width, color='orange')\n", "\n", "_ = ax.set_title('Chaos Agent Vs Defect Agent')\n", "_ = ax.set_ylabel('Number of Games')\n", "_ = ax.set_xlabel('Utility Values')\n", "ax.set_xticks(np.add([0,1, 2],width-.05))\n", "_ = ax.set_xticklabels(('0','1','2'))\n", "_ = ax.legend((a1[0], a2[0]), ('Chaos Agent\\nTotal Utility Score: {}'.format(str(a1_total_score)),\n", " 'Defect Agent\\nTotal Utility Score: {}'.format(str(a2_total_score))), loc=1, bbox_to_anchor=(1.35, 1))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here Defect isn't a domiant strategy. The defect agent only recieves a non 0 utility value if the chaos agent sees the movie they intended to see. A Mixed Strategy is needed." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Counter({2: 5022, 0: 4978}) Counter({1: 5022, 0: 4978})\n" ] } ], "source": [ "print(agent1_util_vals,agent2_util_vals)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Grim VS Pavlov" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "scrolled": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Playing Game: 100%|██████████| 10000/10000 [00:00<00:00, 16447.37it/s]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8MAAAGJCAYAAACuKeEVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlclWX+//H3AQREsACx1EwRQbPUVFS0QkptbFFxoRAC\nM3Nc0r7hMmju4j4pNblrpeCOilrm2ChuqeNWpplbuGspgpqAwIFzfn84np+kdsxYxPN6Ph7z0HPd\ny/W5b+85M+9z3fd1G8xms1kAAAAAANgQu+IuAAAAAACAokYYBgAAAADYHMIwAAAAAMDmEIYBAAAA\nADaHMAwAAAAAsDmEYQAAAACAzSEMA7A5CQkJeuONN/Taa6/p5ZdfVteuXbV///67rt+9e3clJyf/\n5X7Hjx+vZ555RhcuXPjL+/ojCQkJWrRo0W3tgwYN0rBhw25rX7dundq2bXvP+x80aJACAwPVrl07\ntW/fXq1bt9Z7772ntLS0+6p3165dat269X1tezdJSUmqWbOmvv766wLd7+8dOHBAw4cPL9Q+AABA\n4SAMA7ApkydP1sqVK/Wvf/1La9as0TfffKNu3bqpe/fu+vXXX++4zcyZM+Xj4/OX+s3JydGqVavU\nqlUrzZ8//y/ty5rvvvtOWVlZt7WHh4dr7dq1ysnJyde+dOlSvfXWW3+qjy5duigxMVErVqzQl19+\nqSeffFIjRoz4K2UXqMWLF6tNmzaKi4sr1H6OHTtW6D9uAACAwuFQ3AUAQFFJTU1VXFycNmzYIE9P\nT0t7QECABg0apMzMTEnSSy+9pLp16+ro0aOKiorS2LFj9emnnyojI0OTJ09W+fLldezYMZUuXVp9\n+vRRfHy8Tp48qZYtW2rQoEF37Purr75SlSpV1KVLF73zzjvq3bu3nJycJEn79+/XyJEjlZubq8qV\nK+v8+fMaNGiQGjZsqKSkJM2YMUO5ublydnZWdHS06tatqylTpujcuXO6ePGizp8/L09PT8XGxuqH\nH35QUlKStm/fLicnJ4WFhVlqeOaZZ+Tt7a1///vfatOmjSTp3LlzOnjwoKZOnaq8vDzFxMTou+++\nU6lSpVS5cmWNGzdOpUuXtnpuAwIC9NFHH0mSNm7cqJkzZyo3N1dpaWkKDg7W+++/r379+unpp5/W\nO++8I+lGYN21a5dCQ0Mt+0lPT9fIkSN1+PBhGQwGBQYGKioqSsuXL7ecC0k6fvy43n77bW3evFkG\ngyFfLWfOnNGuXbuUlJSkV155RT/88IPq1q0rSUpLS9OHH36oM2fO6NFHH5Wnp6f8/PzUu3dvJScn\na+zYsbpy5YpMJpMiIiLUvn177dq1S7GxsapcubKOHTsmo9GoYcOG6cknn9Snn36q9PR0ffjhhxo7\ndqzV8wQAAB4cjAwDsBnff/+9fHx88gXhm9q0aaNq1apZPvv5+WnNmjVq0aJFvvV+/PFH9erVS2vX\nrpWnp6dmzZql2bNna/ny5VqwYIFSUlLu2PfNkcqnn35a5cuXV2JioiQpLy9P77//vqKiorRq1SpF\nRETo8OHDkqRTp04pNjZWs2fP1ooVKzRq1Ci99957llHfvXv36tNPP9XatWvl5uamJUuWqEWLFnrp\npZf09ttv5wvCN4WFhSkhIcHyeenSpQoODpazs7O+//577dq1S6tXr9by5ctVuXJlHTlyxOp5zcrK\n0qpVqxQQECBJmjt3riZOnKhly5Zp8eLFmjlzpq5cuaI33njDctyStGLFCr3xxhv59hUTEyN3d3d9\n+eWXWr58uQ4dOqTPP/9cr732mr777julpqZatu3QocNtQViSlixZoqCgIHl4eOj111/XvHnzLMvG\njBkjX19frVmzRh9//LG+//57y7/D//3f/6l///5avny54uPj9dlnn1lunz9w4IC6du2qxMREdejQ\nQZ9++qkef/xxvf/++2rQoAFBGACAEoiRYQA25dbwlJGRofDwcBkMBmVkZOiVV15RVFSUJMnf3/+O\n21eqVEk1a9aUJD355JNyc3OTvb293N3d5erqqqtXr8rLyyvfNgcPHtShQ4c0e/ZsSVLbtm0VFxen\n0NBQHT16VAaDQc8//7wkqXHjxvL19ZUkbdu2TZcuXdLbb78ts9ksSXJwcNCpU6ckSY0aNZKLi4sk\nqVatWrpy5YrV43/11Vc1ceJEnTlzRhUrVlRiYqLltu0aNWrI3t5eISEhev7559WyZUvVqVPnjvv5\n4osvtHr1apnNZuXl5alRo0bq27evJGn69OnatGmTVq9erePHj0uSrl+/rsaNGysnJ0cHDx6Us7Oz\nLl++rICAAO3atcuy361bt2rx4sWSpFKlSqlTp06aN2+eunXrppdfflmrV69W586dtXr16js+F52T\nk6Ply5dr3LhxlnMdFhamCxcu6LHHHtPmzZstgdzLy0t/+9vfJEknT57U6dOn9eGHH1rOdXZ2tn76\n6SdVq1ZNFStWVI0aNSzn+tZQDwAASibCMACbUadOHR0/flxXr17VI488ojJlymjlypWSpClTpuQL\nkzdD5u85Ojrm++zgYP1rdOHChXJwcFD79u0l3RiFvHjxorZs2aLHH3/cEr5usrO7cdOOyWRSkyZN\nNHnyZMuyX3/9VeXLl9d//vMfOTs7W9rvNEJ6t/rbt2+vZcuWqXbt2qpRo4aefPJJSZKbm5tWrVql\n7777Tv/9738VFRWlyMhIde7c+bb9dOnSRV26dLmt/fr162rXrp1atmwpf39/dezYUevXr7ccY8eO\nHZWYmChHR0d17Njxtu1NJtNtn3NzcyVJISEhGjp0qKpVqyZfX19VqlTptu3Xrl2r3377TaNGjVJM\nTIzMZrMMBoPi4+PVv39/2dvb51v/5ue8vDyVLVs2X8hNTU2Vm5ub9u3bZ7mlXbpxrn//bwYAAEoe\nbpMGYDPKly+vyMhI/d///Z9++eUXS/v58+f13Xff3RaUCsJvv/2mr7/+WrNmzdKGDRu0YcMGbdq0\nSa1bt9a8efPk4+MjR0dHffvtt5JuPD98c7Q4ICBA27Zts4yubt68WW3btr1tAqzfs7e3l9FovOvy\nN998U2vXrlViYqLCw8Mt7Zs2bVLnzp1Vr1499e7dW8HBwZZbtu/VqVOnlJGRoQ8++EBBQUHauXOn\njEaj8vLyJEnt2rVTUlKS1q1bZ/lx4FbPP/+8FixYIOnGKO+SJUv03HPPSZLq1q0rs9msqVOnKiQk\n5I79L1q0SD179lRSUpI2bNigpKQkjRgxQgkJCbp+/bpefPFFLVu2TJJ0+fJl/ec//5HBYJC3t7ec\nnJy0evVqSdIvv/yi119/XQcPHvzD47W3t7eEdQAAULIwMgzApnzwwQf66quv1L9/f12/fl1Go1FO\nTk569dVXLcHw96Os9zrqeqf1Vq5cqerVq6thw4b52nv27KnXX39dJ06c0L/+9S8NHz5ckydPVtWq\nVeXl5SVnZ2dVr15do0aNstx+bG9vr+nTp+cbEb6TwMBAxcTESJL+/ve/37a8cuXK8vb21s8//6yg\noKB8223dulWvv/66XFxc9Oijj1r2c69q1KihoKAgtWrVSmXLllWVKlVUvXp1nT59WpUrV1a5cuX0\nzDPPKC8v77bbySVpyJAhiomJUevWrWU0GhUYGKgePXpYlr/xxhuaPn36bc9yS9Lhw4d15MgRyyRb\nNwUHB2vGjBlKTEzUwIEDNWTIELVp00aPPvqoKlWqpNKlS6tUqVKaNm2aRo8erTlz5igvL09RUVGq\nV69evtu4f69evXr6+OOP1adPH3366ad/6lwBAIDiZTBzrxcAFKuJEyfq3XfflYeHh3799Ve1bdtW\nGzZskKura3GX9tBZuHChnn76adWtW1c5OTkKDw/X+++/rxdeeKG4SwMAAEWs0EeGf/jhB3300UeK\nj4/X6dOnNXDgQNnZ2cnX11fDhw+XdGM20yVLlqhUqVLq0aOHgoKClJ2drQEDBig1NVWurq4aP368\n3N3dtW/fPo0dO1YODg5q2rSpevfuXdiHAACFqlKlSurcubPl+eMxY8YQhAvJzdH2m88it2rViiAM\nAICNKtSR4Tlz5mjVqlUqU6aMFi9erJ49e6pr167y9/fX8OHD9cILL+jZZ59Vly5dlJiYqKysLHXq\n1EkrVqzQggULlJ6ert69e+vrr7/W999/r8GDBys4OFhTpkzRE088ob///e/q27evZWZXAAAAAADu\nRaFOoFWlShVNnTrV8vngwYOW15UEBgZq+/bt2r9/vxo0aCAHBwe5urqqatWqOnz4sPbu3avAwEDL\nuv/973+Vnp4uo9GoJ554QtKNiVa2b99emIcAAAAAAHgIFWoYbtmyZb7ZWW8dhC5TpozS09OVkZEh\nNzc3S7uLi4ul/eZtgmXKlNG1a9fytd3aDgAAAADAn1Gks0nffHemJGVkZKhs2bJydXVVenr6Hdsz\nMjIsbW5ubpYA/ft1rcnNzZODQ8G/MgUA8NcdPXpUJz6vIe/bJ5dGITqRInm/c0R+fn7FXUqJdPTo\nUU2cfkAe5aoUdyk2Je3SKf2jZ22uWwAFokjDcK1atbR79241bNhQW7ZsUUBAgGrXrq3Y2Fjl5OQo\nOztbx48fl6+vr+rVq6fNmzerdu3a2rx5s/z9/eXq6ipHR0edOXNGTzzxhL799tt7mkDr8uXMIji6\nwuHl5aaUFEa/AVhXUr8v0tLS5e0l+VUo7kpsT1paeom8Zh4EaWnp8ihXRV6PVy/uUmzOg37denm5\nWV8JwAOhSMNwdHS0hg4dKqPRKB8fH7Vq1UoGg0EREREKCwuT2WxW37595ejoqE6dOik6OlphYWFy\ndHTUpEmTJEkjR45U//79ZTKZ9Nxzz6lOnTpFeQgAAAAAgIeATbxn+EH+9dCakjrSA6DoldTvi+Tk\nY/LY1oCR4SJ29Bcp7bm98vHxLe5SSqTk5GNascHEyHARS/n1Z7VvbvdAX7eMDAMlR6FOoAUAAAAA\nwIOIMAwAAAAAsDmEYQAAAACAzSEMAwAAAABsDmEYAAAAAGBzCMMAAAAAcIszZ87o/fffV2hoqDp3\n7qwePXro559/vm29w4cPa9q0affVR05Ojp5//nl9/vnnf7XcfK5evaqvvvqqQPf5sCIMAwAAAMD/\nZGVlqVevXnr33Xe1ePFizZs3T++9955GjRp127o1a9ZUr1697qufdevW6bXXXlNiYuJfLTmfw4cP\nKykpqUD3+bByKO4CAAAAAOBBkZSUpICAANWpU8fSVrt2bcXFxUmSBg0apMuXL+vq1avq2rWrvv76\na02ePFktW7ZUgwYNdPLkSTVu3Fjp6enav3+/vL29NXHixNv6SUhI0ODBg5WamqrNmzerWbNmkqSR\nI0fq4MGD8vT01NmzZzVz5kzZ2dlp6NChys7OlrOzs2JiYpSbm6t+/fqpQoUKOnXqlOrWravhw4dr\n5syZOnLkiBISEhQSElI0J62EIgwDAAAAwP+cPXtWVapUsXzu1auXrl27ppSUFM2bN0+S1KRJE3Xu\n3Fm7du2SwWCQJJ0/f17z58+Xp6enGjVqpGXLlmno0KFq3ry50tPT5erqatnnqVOnlJWVpRo1aqhD\nhw76/PPP1axZM23YsEFXr17V0qVLlZaWplatWkmSJkyYoMjISL3wwgvasWOH/vnPfyoqKkonT57U\nF198IScnJ7Vo0UKpqanq0aOHlixZQhC+B4RhAAAAAPifChUq6Mcff7R8vvlMcGhoqPLy8iRJ3t7e\nt23n7u6uxx57TJLk4uKiatWqSZLKli2r7OzsfGE4ISFB169fV7du3WQymbRv3z6dOXNGycnJevbZ\nZyVJHh4eln0cPXpUM2fO1OzZs2U2m1WqVClJUpUqVVS6dGlJUvny5ZWdnV2g5+JhRxgGAAAA8EDK\ny8tTcnJyge7Tx8dH9vb2d13evHlzzZ49W/v377fcKn3q1Cn9+uuvllFgO7t7n3rJbDbn+5ybm6uv\nv/5aq1atkpubmyRp5syZWrBggZo0aaKVK1cqMjJSV69e1YkTJyw1v/POO3r22Wd1/Phx7dmz5679\n2NnZWUI7/hhhGAAAAMADKTk5WROnH5BHuSrWV74HaZdO6R89JT8/v7uu4+LiohkzZuijjz5SSkqK\ncnNz5eDgoA8//FAVKlT4033eDNA3bdy4Uc8884wlCEtSu3btFBwcrA8++ECbN29Wp06dVK5cOZUu\nXVoODg4aMGCARowYoZycHGVnZ2vw4MG37fvm3ytXrqxjx44pLi5OkZGRf7peW2Iw//6niodQSsq1\n4i7hvnl5uZXo+gEUnZL6fZGcfEwe2xrI78///wv8BUd/kdKe2ysfH9/iLqVESk4+phUbTPJ6vHpx\nl2JTUn79We2b2z3Q162Xl5v1lXDPjh49qjkJvxXYf9dSfv1Z74aU/cMwXJyOHz+uw4cP69VXX9WV\nK1f0+uuva+PGjZbbolGwGBkGAAAAgAdAhQoV9NFHH2nevHkymUwaMGAAQbgQEYYBAAAA4AFQunRp\ny4RdKHz3/uQ3AAAAAAAPCcIwAAAAAPzPhAkTFBERoVdeeUUvvviiIiMj9cEHH9x1/XPnzmnTpk13\nXX769GmFhYXla8vLy1OzZs3ytW3atElDhgyRJK1bt06pqam6cOGCRo8eLUlq1qyZTCaTZsyYoZ9+\n+knZ2dlatmzZPR1TWlqa+vTpo65duyo0NFTDhg1TTk7OPW1bUFJTU9WyZUuZTCZJ0uXLl/Xuu+8q\nPDxcvXv31pUrVyRJW7ZsUXBwsMLDwzVr1izL9jExMerQoYM6d+6sAwcOSLpx7t966y1FRESoT58+\nf/qYuE0aAAAAwAMr7dKpAt5X7T9cJzo6WpKUmJioEydOqG/fvn+4/vbt23Xu3DkFBQXddZ3fzyht\nrW3evHmqVauWKleubAnIN5f16NFD0o3XPa1YsUIdO3b8w/okadasWWrWrJll3dGjRyshIUHh4eFW\nty0Imzdv1scff6zU1FRL2/Tp09WkSRN17dpVW7duVWxsrIYPH65hw4Zp0aJFqlChgvr166f9+/fr\n4sWLOnfunJYvX660tDR1795dCQkJ+uKLL9S2bVuFhIToo48+0ooVKxQaGnrPdRGGAQAAADyQfHx8\n9I+eBbnH2vLx8bnvrceOHat9+/bJYDCoTZs2euONN/TZZ58pJydH9erVk5OTk6ZPny6TyaSsrCxN\nnjz5T/eRlJSko0ePqn///ho/frwGDx6shQsXWpYPGDBA7du31+rVq3Xs2DHNnDlTGzZs0MSJE1W1\nalVt3LhR27dvt7x+SZI8PT21du1aVapUSfXr19egQYMs71qeMmWKNm7cKJPJpPDwcHXs2FGzZ8/W\nunXr5ODgoMaNGysqKkoff/yxDhw4oMzMTI0fP16bNm3S2rVrJUlt27ZVp06dtH37dh04cEDdu3fP\nd0ylSpXSvHnz1KZNG0tbcnKyQkJCJEn169fXxIkTdenSJXl4eFheYVWvXj3t2bNHRqNRL7zwgiTJ\nw8NDeXl5unLlimrWrKnLly9LktLT0+Xg8OfiLWEYAAAAwAPJ3t7+gXkN0vr165WSkqKlS5fKaDQq\nNDRUAQEB6tq1q86fP69mzZppwYIFio2NlYeHh6ZOnap169bp5Zdfvuc+DAaDXnrpJfn5+WnChAky\nm813HEGWpJ49e+r06dPq3r27PDw8lJiYqKioKK1YsUJ9+vTJt+67774rd3d3zZkzRwcOHFDDhg01\nbNgwXbx4UTt37tTy5ctlNBo1efJkHTp0SElJSUpISJDBYNB7772nrVu3Srrxfubo6GgdOXJE69ev\n1+LFi2UymdS5c2c9//zzatq0qZo2bXpbrTfbbn2r71NPPaWkpCT5+vpqw4YNysrKUrly5ZSRkaHT\np0+rYsWK2rJli+rWravatWtr4cKFevPNN3X27FmdOHFC169fV4UKFfTxxx9r1apVys3NtTqK/3s8\nMwwAAAAAVhw/flz+/v6Sbox01q1bV8ePH8+3Tvny5TVy5EgNGjRIe/bsUW5u7h33ZW9vr7y8vHxt\nmZmZcnJyuq/aXnvtNa1fv16XLl1SamrqbT8g7NixQx06dNBnn32mbdu26amnntL48eN14sQJ1alT\nx3JM0dHROn78uJ599llLCK9fv75+/vlnSVK1atUkSceOHdPZs2cVGRmpzp0767ffftOpU9ZvZ781\n2Pfo0UMnTpxQRESEUlJSVL58ednZ2WncuHEaPHiwevXqJR8fH7m7uyswMFB16tRRZGSk5s6dq6ef\nflqPPPKIJkyYoEmTJumrr77SgAEDNHDgwD913gjDAAAAAGBFtWrVtHfvXkmS0WjUvn37VKVKFdnZ\n2VkmhRo6dKgmTJigcePGydPT0zISeuuI6E0VK1bUnj17LJ+3bt2q2rVvPM986z5v+v0+DAaDJVC7\nuLiofv36GjdunIKDg2/ra+7cuVqzZo2kG6HXx8dHTk5Oql69ug4ePChJysnJUZcuXVS5cmX98MMP\nMpvNMpvN2rNnj7y9vS193jwXNWrUUFxcnOLj4xUcHCxfX1+r5/DWY9i9e7fCwsIUHx+vChUqWH5o\n2L59u+bOnauZM2fq5MmTatKkiZKTk/XEE09o4cKF6tatm0qVKiUXFxc98sgjcnV1lSR5eXnp2rVr\nVmu4FbdJAwAAAIAVLVq00O7duxUaGiqj0ag2bdrIz89POTk5mjNnjmrVqqXWrVurU6dOKl26tDw9\nPXXx4kVJd54sa/To0Ro5cqRyc3NlMplUv359tW7dWtKN0dj+/fsrJibGsv7Nfdz808vLS1lZWYqN\njVVUVJRCQkLUuXNnjRo16o59jRgxQp9//rmcnZ3l6empESNGyNPTUwEBAZZJp8LDw1WnTh01b95c\nb775psxmsxo1aqSgoCDt27fPsr9atWqpfv366tSpk7Kzs1W/fn099thjd31m+PfHIEne3t6WkdyK\nFStqzJgxkqRy5cqpQ4cOcnZ2VnBwsLy9vZWdna3Y2FgtWLBAzs7OGj58uCRp2LBhiomJsYTsm5ON\n3SuD+U4/UzxkUlL+3C8EDxIvL7cSXT+AolNSvy+Sk4/JY1sD+VUo7kpsy9FfpLTn9srHx/ov+bhd\ncvIxrdhgktfj1Yu7FJuS8uvPat/c7oG+br283Iq7BNio77//XsuWLbOESljHyDAAAAAAlGBxcXFa\nuXKlPvnkk+IupUQhDAMAAABACRYZGanIyMjiLqPEYQItAAAAAIDNIQwDAAAAAGwOYRgAAAAAYHMI\nwwAAAAAAm0MYBgAAAID/2bVrl5o2bWqZlCo0NFTz58//U/s4d+6c3nzzzb9cy4gRI9S+ffu/vJ/f\nW7p0qfLy8gp8vyUNYRgAAAAAbtGkSRPFxcVZ/vP5558rPT39T+3DYDD8pRqysrL03XffqVq1atq1\na9df2tfvzZgxgzAsXq0EAAAAAPmYzWbL39PT0+Xg4CB7e3vt3r1bU6ZMkdlsVmZmpj766CNt3bpV\nV69eVe/evZWTk6O2bdtq+vTplu23bdumTz75RE5OTnJ3d9eYMWM0depU1axZU8HBwbp06ZL+/ve/\na8WKFflqWLt2rZo2barAwEDNnz9fjRo1kiRt3LhRn376qdzc3FS2bFnVqFFDvXv31uTJk7V3717l\n5eWpS5cu+tvf/qaIiAg99dRTOnbsmDIyMvTJJ59o27ZtunTpkvr27aspU6YUzQl9QDEyDAAAAAC3\n+O9//6vIyEh17txZ//jHPzR06FCVLl1ax44d00cffaS4uDi1bNlS69atU9u2bfXvf/9bkpSUlKQX\nX3xRpUqVsuxr2LBhmjp1quLj4+Xv769p06YpJCREiYmJkqRVq1apQ4cOt9WQkJCgkJAQBQQE6NCh\nQ7p48aJMJpPGjBmjOXPmaN68eXJycpIkbdmyRWfPntWCBQsUFxen6dOn69q1a5KkunXr6osvvlCT\nJk301VdfqWPHjvLy8lJsbGxhn8YHHiPDAAAAAHCLJk2aaNKkSbe1P/bYY4qJiVGZMmV04cIF1a9f\nX2XLllWtWrW0Z88eJSYmauDAgZb109LS5OrqKi8vL0lSw4YNFRsbKx8fH5lMJp0/f15ff/215s2b\nl6+f5ORkHTt2TOPHj5fZbJadnZ0WL16ssLAwubq6ysPDQ5Lk7++vS5cu6ejRozp48KAiIyNlNpuV\nl5enc+fOSZKeeuopSVKFChV06dIlSTdGvm8d/bZVhGEAAAAAD6S8vDwlJycX6D59fHxkb29/X9sO\nHTpU69evl4uLS77QGxISori4OGVnZ8vb29sSRD08PJSRkaFLly6pXLly2rVrl6pWrSpJ6tChg/75\nz3/K19dXrq6u+fpZtmyZoqKiFBYWJkn65ZdfFBoaqp49eyozM1OXL1+Wu7u7fvjhB1WqVEk+Pj5q\n3LixRo0aJbPZrGnTpqly5cqS7vzssp2dHWFYhGEAAAAAD6jk5GSd+LyGvL0KZn8nUiS9c0R+fn73\ntX3btm0VFhYmFxcXlStXThcvXpR0Y8R32LBh6tmz523bxMTEqHfv3rKzs1PZsmU1fvx4SVKrVq00\nduzYfM8XS5LRaNSaNWu0evVqS1uFChVUs2ZNffPNNxoyZIi6deumsmXLymQyqWrVqnrxxRe1c+dO\nhYeH6/r162rRooXKlClz10m8/P391a1bN8XFxd3XeXhYGMw28JNASsq14i7hvnl5uZXo+gEUnZL6\nfZGcfEwe2xrIr0JxV2Jbjv4ipT23Vz4+vsVdSomUnHxMKzaY5PV49eIuxaak/Pqz2je3e6CvWy8v\nt+Iu4aFy9OhR6csaBfa/EUd/kdT6/sPwg2DWrFnq0qWLSpUqpQEDBuj5559X27Zti7usEomRYQAA\nAAAoIcqUKaM33nhDzs7OeuKJJ/Tqq68Wd0klFmEYAAAAAEqI8PBwhYeHF3cZDwVerQQAAAAA/zNh\nwgRFRETolVde0YsvvqjIyEh98MEHd13/3Llz2rRp012Xnz592jIR1k15eXlq1qxZvrZNmzZpyJAh\nkqR169YpNTVVFy5c0OjRoyVJzZo1k8lk0owZM/TTTz8pOztby5Ytu6djSktLU58+fdS1a1eFhoZq\n2LBhysknhXueAAAgAElEQVTJuadtC8KMGTPUrl07RUREaMuWLZKky5cv691331V4eLh69+6tK1eu\nSLrxmqjg4GCFh4dr1qxZln3ExMSoQ4cO6ty5sw4cOFAgdTEyDAAAAAD/Ex0dLUlKTEzUiRMn1Ldv\n3z9cf/v27Tp37pyCgoLuus6dJrL6o7Z58+apVq1aqly5siUg31zWo0cPSdKpU6e0YsUKdezY0eox\nzZo1S82aNbOsO3r0aCUkJBTJCPPhw4f1zTffKCEhQXl5eQoNDVVAQICmT5+uJk2aqGvXrtq6dati\nY2M1fPhwDRs2TIsWLVKFChXUr18/7d+/XxcvXtS5c+e0fPlypaWlqXv37kpISPjLtRGGAQAAADyw\nTqQU7L68/8L2Y8eO1b59+2QwGNSmTRu98cYb+uyzz5STk6N69erJyclJ06dPl8lkUlZWliZPnvyn\n+0hKStLRo0fVv39/jR8/XoMHD9bChQstywcMGKD27dtr9erVOnbsmGbOnKkNGzZo4sSJqlq1qjZu\n3Kjt27dr8ODBlm08PT21du1aVapUSfXr19egQYMsr5eaMmWKNm7cKJPJpPDwcHXs2FGzZ8/WunXr\n5ODgoMaNGysqKkoff/yxDhw4oMzMTI0fP16bNm3S2rVrJd2YZbtTp07avn27Dhw4oO7du1v6/vnn\nn9W4cWM5ODjIwcFBlStX1tGjR5WcnKyQkBBJUv369TVx4kRdunRJHh4eqlDhxoxp9erV0549e2Q0\nGvXCCy9IuvG6qry8PF25ckWPPvronz6/tyIMAwAAAHgg+fj4SO8cKbD9ed/c531Yv369UlJStHTp\nUhmNRssIZ9euXXX+/Hk1a9ZMCxYsUGxsrDw8PDR16lStW7dOL7/88j33YTAY9NJLL8nPz08TJkyQ\n2Wy+6+uRevbsqdOnT6t79+7y8PBQYmKioqKitGLFCvXp0yffuu+++67c3d01Z84cHThwwPIqqIsX\nL2rnzp1avny5jEajJk+erEOHDikpKUkJCQkyGAx67733tHXrVkmSn5+foqOjdeTIEa1fv16LFy+W\nyWRS586d9fzzz6tp06Zq2rRpvr5r1KihL774QllZWcrMzNS+ffuUlZWlp556SklJSfL19dWGDRuU\nlZWlcuXKKSMjQ6dPn1bFihW1ZcsW1a1bV7Vr19bChQv15ptv6uzZszpx4oSuX79OGAYAAADwcLK3\nt39gXoN0/Phx+fv7S5JKlSqlunXr6vjx4/nWKV++vEaOHCkXFxf9+uuvaty48R33ZW9vr7y8vHxt\nmZmZcnJyuq/aXnvtNYWEhCgiIkKpqam3nbMdO3aoQ4cO6tixo4xGo2bOnKnx48frxRdfVJ06dSzH\nFB0drTVr1ujZZ5+1hPD69evr559/liRVq1ZNknTs2DGdPXtWkZGRMpvN+u2333Tq1ClVrlz5ttp8\nfX315ptv6p133lHFihVVt25dubu7q0ePHho9erQiIiIUFBSk8uXLy87OTuPGjdPgwYNVunRp+fj4\nyN3dXYGBgfrxxx8VGRkpPz8/Pf300385CEtMoAUAAAAAVlWrVk179+6VJBmNRu3bt09VqlSRnZ2d\nTCaTJGno0KGaMGGCxo0bJ09PT5nNZkmy/HmrihUras+ePZbPW7duVe3atSUp3z5v+v0+DAaDJVC7\nuLiofv36GjdunIKDg2/ra+7cuVqzZo2kG6HXx8dHTk5Oql69ug4ePChJysnJUZcuXVS5cmX98MMP\nMpvNMpvN2rNnj7y9vS193jwXNWrUUFxcnOLj4xUcHCxf3zu//zs1NVXZ2dlauHChhg8frosXL8rH\nx0e7d+9WWFiY4uPjVaFCBcsPDdu3b9fcuXM1c+ZMnTx5Uk2aNFFycrKeeOIJLVy4UN26dVOpUqVU\nunTpO/9D/QmMDAMAAACAFS1atNDu3bsVGhoqo9GoNm3ayM/PTzk5OZozZ45q1aql1q1bq1OnTipd\nurQ8PT118eJFSXeeLGv06NEaOXKkcnNzZTKZVL9+fbVu3VrSjdHY/v37KyYmxrL+zX3c/NPLy0tZ\nWVmKjY1VVFSUQkJC1LlzZ40aNeqOfY0YMUKff/65nJ2d5enpqREjRsjT01MBAQEKDQ2VdOO1TXXq\n1FHz5s315ptvymw2q1GjRgoKCtK+ffss+6tVq5bq16+vTp06KTs7W/Xr19djjz12x2eGPTw8dOTI\nEXXs2FFOTk6WCcq8vb01cOBASTd+GBgzZowkqVy5curQoYOcnZ0VHBwsb29vZWdnKzY2VgsWLJCz\ns7OGDx9+n/+K+RnMd/qZ4iGTknKtuEu4b15ebiW6fgBFp6R+XyQnH5PHtgbyq1DcldiWo79Iac/t\nlY/PnX/Jxx9LTj6mFRtM8nq8enGXYlNSfv1Z7ZvbPdDXrZeXW3GXABv1/fffa9myZZZQCesYGQYA\nAACAEiwuLk4rV67UJ598UtyllCiEYQAAAAAowSIjIxUZGVncZZQ4TKAFAAAAALA5hGEAAAAAgM0h\nDAMAAAAAbA5hGAAAAABgcwjDAAAAAACbQxgGAAAAANgcwjAAAAAAwOYQhgEAAAAANocwDAAAAACw\nOQ5F3WFubq6io6N17tw5OTg4KCYmRvb29ho4cKDs7Ozk6+ur4cOHS5KWLl2qJUuWqFSpUurRo4eC\ngoKUnZ2tAQMGKDU1Va6urho/frzc3d2L+jAAAAAAACVYkY8Mb968WSaTSYsXL1avXr0UGxurcePG\nqW/fvpo/f75MJpPWr1+vS5cuKT4+XkuWLNGcOXM0adIkGY1GLVq0SH5+flqwYIHatm2radOmFfUh\nAAAAAABKuCIPw1WrVlVeXp7MZrOuXbsmBwcH/fTTT/L395ckBQYGavv27dq/f78aNGggBwcHubq6\nqmrVqjp8+LD27t2rwMBAy7o7duwo6kMAAAAAAJRwRX6bdJkyZXT27Fm1atVKV65c0YwZM7Rnz558\ny9PT05WRkSE3NzdLu4uLi6Xd1dU137oAAAAAAPwZRR6G586dqxdeeEFRUVG6cOGCIiIiZDQaLcsz\nMjJUtmxZubq65gu6t7ZnZGRY2m4NzHfj7u4iBwf7gj+YIuLlZf0YAUAqmd8Xly+7FncJNsvDw7VE\nXjMPghvX7W/FXYZN4roFUFCKPAw/8sgjcnC40a2bm5tyc3NVq1Yt7dq1S40aNdKWLVsUEBCg2rVr\nKzY2Vjk5OcrOztbx48fl6+urevXqafPmzapdu7Y2b95sub36j1y+nFnYh1VovLzclJJyrbjLAFAC\nlNTvi7S0dHkUdxE2Ki0tvUReMw+CtDTuTCsuD/p1S1AHSo4iD8OdO3fWhx9+qPDwcOXm5qp///56\n+umnNWTIEBmNRvn4+KhVq1YyGAyKiIhQWFiYzGaz+vbtK0dHR3Xq1EnR0dEKCwuTo6OjJk2aVNSH\nAAAAAAAo4Yo8DLu4uOjjjz++rT0+Pv62tpCQEIWEhORrc3Z21ieffFJo9QEAAAAAHn5FPps0AAAA\nAADFjTAMAAAAALA5hGEAAAAAgM0hDAMAAAAAbA5hGAAAAABgcwjDAAAAAACbQxgGAAAAANgcwjAA\nAAAAwOYQhgEAAAAANocwDAAAAACwOYRhAAAAAIDNIQwDAAAAAGwOYRgAAAAAYHMIwwAAAAAAm0MY\nBgAAAADYHMIwAAAAAMDmEIYBAAAAADaHMAwAAAAAsDmEYQAAAACAzSEMAwAAAABsDmEYAAAAAGBz\nCMMAAAAAAJtDGAYAAAAA2BzCMAAAAADA5hCGAQAAAAA2hzAMAAAAALA5hGEAAAAAgM0hDAMAAAAA\nbA5hGAAAAABgcwjDAAAAAACbQxgGAAAAANgcwjAAAAAAwOYQhgEAAAAANocwDAAAAACwOYRhAAAA\nAIDNIQwDAAAAAGwOYRgAAAAAYHMIwwAAAAAAm0MYBgAAAADYHMIwAAAAAMDmEIYBAAAAADaHMAwA\nAAAAsDmEYQAAAACAzSEMAwAAAABsDmEYAAAAAGBzCMMAAAAAAJtDGAYAAAAA2BzCMAAAAADA5hCG\nAQAAAAA2hzAMAAAAALA5hGEAAAAAgM0hDAMAAAAAbA5hGAAAAABgc6yG4dOnT2v16tUym80aOnSo\nOnTooD179hRFbQAAAAAAFAqrYXjQoEEqVaqUNmzYoJMnT2rQoEGaOHFiUdQGAAAAAEChsBqGs7Oz\n9corr2jjxo1q3bq1/P39lZubWxS1AQAAAABQKKyGYXt7e61bt06bNm1SUFCQ1q9fLzs7HjUGAAAA\nAJRcVlPtqFGjtGnTJg0fPlzly5fXmjVrNHr06KKoDQAAAACAQmE1DNeoUUO9evWSo6Oj8vLy1Ldv\nX9WsWbMoagMAAAAAoFA4WFvh66+/1vTp05WVlaXFixcrNDRU//jHP9S2bdv77nTWrFlKSkqS0WhU\nWFiYGjZsqIEDB8rOzk6+vr4aPny4JGnp0qVasmSJSpUqpR49eigoKEjZ2dkaMGCAUlNT5erqqvHj\nx8vd3f2+awEAAAAA2B6rI8OzZ8/WokWLVKZMGXl6eioxMVGzZs267w537dql77//XosXL1Z8fLx+\n+eUXjRs3Tn379tX8+fNlMpm0fv16Xbp0SfHx8VqyZInmzJmjSZMmyWg0atGiRfLz89OCBQvUtm1b\nTZs27b5rAQAAAADYJqth2M7OTq6urpbP5cuX/0sTaH377bfy8/NTr1691LNnTwUFBemnn36Sv7+/\nJCkwMFDbt2/X/v371aBBAzk4OMjV1VVVq1bV4cOHtXfvXgUGBlrW3bFjx33XAgAAAACwTVZvk/b1\n9dX8+fOVm5urQ4cOaeHChX/pmeHLly/r/Pnzmjlzps6cOaOePXvKZDJZlpcpU0bp6enKyMiQm5ub\npd3FxcXSfjOc31wXAAAAAIA/w2oYHjZsmKZPny4nJyd9+OGHCggIUHR09H13+Oijj8rHx0cODg7y\n9vaWk5OTLly4YFmekZGhsmXLytXVNV/QvbU9IyPD0nZrYL4bd3cXOTjY33fNxc3Ly/oxAoBUMr8v\nLl92tb4SCoWHh2uJvGYeBDeu29+KuwybxHULoKBYDcMuLi7q16+f+vXrVyAdNmjQQPHx8Xr77bd1\n4cIFXb9+XQEBAdq1a5caNWqkLVu2KCAgQLVr11ZsbKxycnKUnZ2t48ePy9fXV/Xq1dPmzZtVu3Zt\nbd682XJ79R+5fDmzQGovDl5ebkpJuVbcZQAoAUrq90VaWro8irsIG5WWll4ir5kHQVoad6YVlwf9\nuiWoAyWH1TA8d+5cTZs2Tdeu3fjSMZvNMhgMOnTo0H11GBQUpD179qhjx44ym80aMWKEKlWqpCFD\nhshoNMrHx0etWrWSwWBQRESEwsLCZDab1bdvXzk6OqpTp06Kjo5WWFiYHB0dNWnSpPuqAwAAAABg\nu6yG4bi4OK1cuVIVK1YssE779+9/W1t8fPxtbSEhIQoJCcnX5uzsrE8++aTAagEAAAAA2B6r00L7\n+PioXLlyRVELAAAAAABFwurIcEREhFq3bq26devK3v7/T0I1bty4Qi0MAAAAAIDCYjUMjxkzRq1b\nt1alSpWKoh4AAAAAAAqd1TDs6Oio3r17F0UtAAAAAAAUCathuGnTpho/frwCAwNVqlQpS3vDhg0L\ntTAAAAAAAAqL1TD8008/SZIOHjxoaTMYDIqLiyu8qgAAAAAAKERWw/CdXnkEAAAAAEBJZjUM79mz\nR5999pkyMzNlNptlMpl0/vx5JSUlFUV9AAAAAAAUOKvvGR4yZIhatGihvLw8hYeHq0qVKmrRokVR\n1AYAAAAAQKGwGoadnZ3VoUMHNWrUSGXLltXo0aO1e/fuoqgNAAAAAIBCYTUMOzk56cqVK/L29tYP\nP/wgg8GgzMzMoqgNAAAAAIBCYTUMv/3224qKitKLL76olStX6rXXXtMzzzxTFLUBAAAAAFAorE6g\n9corr6hVq1YyGAxasWKFTp48qZo1axZFbQAAAAAAFIo/DMNHjx5VXl6ennrqKY0dO1bXrl2Tvb29\nBg4cKFdX16KqEQAAAACAAnXX26STkpLUo0cPpaSkSJK2bNmiRo0aKTc3V3PmzCmyAgEAAAAAKGh3\nDcNTpkzRZ599psDAQEk3ZpVu166dhgwZwjuGAQAAAAAl2l3DcHZ2try9vS2fX3jhBUmSq6ur7O3t\nC78yAAAAAAAKyV3DsNFolNlstnzu16+fJCk3N1dGo7HwKwMAAAAAoJDcNQw3atRIM2bMuK39s88+\nU6NGjQq1KAAAAAAACtNdZ5Pu16+fIiMjtXHjRvn7+8tgMGjv3r3Kzs5WXFxcUdYIAAAAAECBumsY\ndnd31/Lly/XNN99o3759kqROnTrplVdekaOjY5EVCAAAAABAQfvD9ww7Ojrq9ddf1+uvv15U9QAA\nAAAAUOju+swwAAAAAAAPq7uG4czMzKKsAwAAAACAInPXMBwRESFJGjFiRFHVAgAAAABAkbjrM8OZ\nmZnq37+/tm7dquzs7NuWjxs3rlALAwAAAACgsNw1DH/++efauXOn9u7dy3uFAQAAAAAPlbuG4QoV\nKig4OFg1a9aUj4+PTpw4oby8PPn6+srB4Q8noQYAAAAA4IFmNdUajUb97W9/06OPPiqTyaRLly5p\n6tSpqlu3blHUBwAAAABAgbMahseMGaPY2FhL+N23b59iYmK0bNmyQi8OAAAAAIDCYPU9w5mZmflG\ngZ999tk7TqgFAAAAAEBJYTUMP/LII1q/fr3l8/r16/Xoo48WalEAAAAAABQmq7dJx8TEaMCAARo8\neLAkqXLlyvrnP/9Z6IUBAAAAAFBYrIbhqlWrKiEhQZmZmTKZTHJ1dS2KugAAAAAAKDT3/I4kFxeX\nwqwDAAAAAIAiY/WZYQAAAAAAHjZWw/CiRYuKog4AAAAAAIqM1TC8YMGCoqgDAAAAAIAiY/WZ4ccf\nf1yRkZGqW7eunJycLO29e/cu1MIAAAAAACgsVsPws88+WxR1AAAAAABQZKyG4d69eyszM1OnT5+W\nn5+fsrKymFkaAAAAAFCiWX1meMeOHWrbtq169eqlS5cu6aWXXtK3335bFLUBAAAAAFAorIbhyZMn\na+HChSpbtqzKly+v+fPna+LEiUVRGwAAAAAAhcJqGDaZTPLy8rJ8rl69eqEWBAAAAABAYbun2aQ3\nbtwog8Gg3377TQsWLFDFihWLojYAAAAAAAqF1ZHhUaNG6csvv9Qvv/yiFi1a6NChQxo1alRR1AYA\nAAAAQKGwOjLs6empyZMnKz09XQ4ODnJ2di6KugAAAAAAKDRWw/CRI0c0cOBAnT9/XpJUrVo1TZgw\nQU8++WShFwcAAAAAQGGwepv08OHD9cEHH2jnzp3auXOn3nnnHX344YdFURsAAAAAAIXCahjOzs5W\ns2bNLJ9btmyp9PT0Qi0KAAAAAIDCdNcwfP78eZ0/f141a9bUrFmzlJaWpqtXr2r+/Pny9/cvyhoB\nAAAAAChQd31m+K233pLBYJDZbNbOnTu1ePFiyzKDwaAhQ4YUSYEAAAAAABS0u4bhpKSkoqwDAAAA\nAIAiY3U26ePHj2vp0qW6evVqvvZx48YVWlEAAAAAABQmq2G4d+/eevXVV1WjRo2iqAcAAAAAgEJn\nNQyXLVtWvXv3LopaAAAAAAAoElbDcLt27RQbG6uAgAA5OPz/1Rs2bFiohQEAAAAAUFishuFdu3bp\nwIED+u677yxtBoNBcXFxhVoYAAAAAACFxWoY/vHHH/XNN98URS0AAAAAABQJO2sr+Pn56fDhwwXe\ncWpqqoKCgnTixAmdPn1aYWFheuuttzRy5EjLOkuXLlWHDh0UGhqqTZs2SZKys7P1/vvvKzw8XN27\nd9fly5cLvDYAAAAAwMPNahg+c+aM2rVrp8DAQDVv3lwvvfSSmjdv/pc6zc3N1fDhw+Xs7Czpxmua\n+vbtq/nz58tkMmn9+vW6dOmS4uPjtWTJEs2ZM0eTJk2S0WjUokWL5OfnpwULFqht27aaNm3aX6oF\nAAAAAGB7rN4mPXXq1ALvdMKECerUqZNmzpwps9msn376Sf7+/pKkwMBAbdu2TXZ2dmrQoIEcHBzk\n6uqqqlWr6vDhw9q7d6+6detmWZcwDAAAAAD4s6yG4d27d9+xvVKlSvfV4YoVK+Tp6annnntOM2bM\nkCSZTCbL8jJlyig9PV0ZGRlyc3OztLu4uFjaXV1d860LAAAAAMCfYTUM79y50/J3o9GovXv3yt/f\nX8HBwffV4YoVK2QwGLRt2zYdOXJE0dHR+Z77zcjIUNmyZeXq6pov6N7anpGRYWm7NTDfjbu7ixwc\n7O+r3geBl5f1YwQAqWR+X1y+7FrcJdgsDw/XEnnNPAhuXLe/FXcZNonrFkBBsRqGx40bl+/zlStX\nFBUVdd8dzp8/3/L3yMhIjRw5UhMnTtTu3bvVsGFDbdmyRQEBAapdu7ZiY2OVk5Oj7OxsHT9+XL6+\nvqpXr542b96s2rVra/PmzZbbq//I5cuZ911vcfPyclNKyrXiLgNACVBSvy/S0tLlUdxF2Ki0tPQS\nec08CNLSuDOtuDzo1y1BHSg5rIbh33NxcdG5c+cKtIjo6GgNHTpURqNRPj4+atWqlQwGgyIiIhQW\nFiaz2ay+ffvK0dFRnTp1UnR0tMLCwuTo6KhJkyYVaC0AAAAAgIef1TAcEREhg8EgSTKbzTp79qya\nNWtWIJ3HxcVZ/h4fH3/b8pCQEIWEhORrc3Z21ieffFIg/QMAAAAAbJPVMNynTx/L3w0Gg9zd3VW9\nevVCLQoAAAAAgMJ01zB8/vx5SdITTzxxx2UVK1YsvKoAAAAAAChEdw3Db731lgwGg8xms6XNYDDo\n4sWLys3N1aFDh4qkQAAAAAAACtpdw3BSUlK+zxkZGZowYYK+/fZbxcTEFHphAAAAAAAUFrt7WWnH\njh1q06aNJGn16tV67rnnCrUoAAAAAAAK0x9OoJWZmanx48dbRoMJwQAAAACAh8FdR4Z37Nih1q1b\nS5K+/PJLgjAAAAAA4KFx15HhLl26yMHBQd9++622bdtmaTebzTIYDNqwYUORFAgAAAAAQEG7axgm\n7AIAAAAAHlZ3DcOVKlUqyjoAAAAAACgy9zSbNAAAAAAADxPCMAAAAADA5hCGAQAAAAA2hzAMAAAA\nALA5hGEAAAAAgM0hDAMAAAAAbA5hGAAAAABgcwjDAAAAAACbQxgGAAAAANgcwjAAAAAAwOYQhgEA\nAAAANocwDAAAAACwOYRhAAAAAIDNIQwDAAAAAGwOYRgAAAAAYHMIwwAAAAAAm0MYBgAAAADYHMIw\nAAAAAMDmEIYBAAAAADaHMAwAAAAAsDmEYQAAAACAzSEMAwAAAABsDmEYAAAAAGBzCMP4f+3db2yV\nd93H8U+hawROQRabcC8uaIA6zRY2/mgZGXEwjBsmQpnLwDGne7IHBDZ0TEWHcSBKo0vM2mRmaqKZ\nIibI0MyojKWbc4mIwkL8s91zu5nIbYYQereTtaPnfrDYDPePbdpzzn6v17PzO9fV873gpPDu72oL\nAABQHDEMAABAccQwAAAAxRHDAAAAFEcMAwAAUBwxDAAAQHHEMAAAAMURwwAAABRHDAMAAFAcMQwA\nAEBxxDAAAADFEcMAAAAURwwDAABQHDEMAABAccQwAAAAxRHDAAAAFEcMAwAAUBwxDAAAQHHEMAAA\nAMURwwAAABRHDAMAAFAcMQwAAEBxxDAAAADFEcMAAAAURwwDAABQHDEMAABAcZpH+wWfe+65fPaz\nn83hw4czNDSUG264IdOnT8+nP/3pjBkzJjNmzMjGjRuTJNu3b88PfvCDnHXWWbnhhhvy/ve/P88+\n+2xuvvnm/P3vf0+lUsmXv/zlTJ48ebQvAwAAgAY26jG8a9euTJ48OVu3bk1fX18+/OEP57zzzsu6\ndesyZ86cbNy4Mbt3786FF16Y7373u/nRj36UkydPZsWKFZk/f36+//3vp729PatXr869996bnp6e\nbNiwYbQvAwAAgAY26rdJX3755Vm7dm2S5NSpUxk7dmx+//vfZ86cOUmSBQsW5Fe/+lUeeeSRzJ49\nO83NzalUKnnHO96RP/7xj9m3b18WLFgwcuzDDz882pcAAABAgxv1GB43blzGjx+f/v7+rF27Njfd\ndFOq1erI8xMmTEh/f38GBgbS2to6sv7PcwYGBlKpVE47FgAAAF6LUb9NOkmOHDmS1atX55prrsmS\nJUvS1dU18tzAwEAmTpyYSqVyWui+cH1gYGBk7YXB/HImTx6f5uax//4LGSVtba9+jQBJY36+OH68\nUusRinX22ZWGfM/Ug+fft321HqNI3rfAv8uox/DRo0dz/fXX59Zbb01HR0eS5N3vfnf27t2buXPn\n5oEHHkhHR0cuuOCC3H777RkcHMyzzz6bP//5z5kxY0Yuuuii9Pb25oILLkhvb+/I7dWv5PjxZ/7T\nl/Uf09bWmqef/r9ajwE0gEb9fHHsWH/OrvUQhTp2rL8h3zP14Ngxd6bVSr2/b4U6NI5Rj+E777wz\nfX196enpSXd3d5qamrJhw4Zs2rQpQ0NDmTZtWj74wQ+mqakpq1atysqVK1OtVrNu3bq0tLRkxYoV\nueWWW7Jy5cq0tLTkq1/96mhfAgAAAA2uqfrCb9h9k6rnrx6+mkbd6QFGX6N+vnj88cdy9kOz0/5f\ntZ6kLI8eSY7N35dp02bUepSG9Pjjj2XHfcNpmzK91qMU5en//e90LhpT1+9bO8PQOEb9B2gBAABA\nrYlhAAAAiiOGAQAAKI4YBgAAoDhiGAAAgOKIYQAAAIojhgEAACiOGAYAAKA4YhgAAIDiiGEAAACK\nI4YBAAAojhgGAACgOGIYAACA4ohhAAAAiiOGAQAAKI4YBgAAoDhiGAAAgOKIYQAAAIojhgEAACiO\nGAYAAKA4YhgAAIDiiGEAAACKI4YBAAAojhgGAACgOGIYAACA4ohhAAAAiiOGAQAAKI4YBgAAoDhi\nGBx/haMAAAiVSURBVAAAgOKIYQAAAIojhgEAACiOGAYAAKA4YhgAAIDiiGEAAACKI4YBAAAojhgG\nAACgOGIYAACA4ohhAAAAiiOGAQAAKI4YBgAAoDhiGAAAgOKIYQAAAIojhgEAACiOGAYAAKA4YhgA\nAIDiiGEAAACKI4YBAAAojhgGAACgOGIYAACA4ohhAAAAiiOGAQAAKI4YBgAAoDhiGAAAgOKIYQAA\nAIojhgEAACiOGAYAAKA4YhgAAIDiiGEAAACKI4YBAAAoTnOtB3g9qtVqvvCFL+RPf/pTWlpasnnz\n5px77rm1HgsAAIAG0ZA7w7t3787g4GC2bduWT37yk9myZUutRwIAAKCBNGQM79u3L5dcckmSZObM\nmTl48GCNJwIAAKCRNORt0v39/WltbR153NzcnOHh4YwZ89Jt//jjj43WaP92x49XcuxYf63HoIFM\nmzaj1iPAa/bE07WeoDxPPJ1MqvUQDe7Y0f+p9QjFef7P/J21HgN4k2jIGK5UKhkYGBh5/EohnCQd\nHbNGYyyAmmtra331g+pMW9uspKNa6zGK017rARpcW9ss/7+oiTm1HgB4E2nI26RnzZqV3t7eJMn+\n/fvT3u6fdAAAAM5cU7Vabbgvx7/wp0knyZYtW/LOd7plBgAAgDPTkDEMAAAAb0RD3iYNAAAAb4QY\nBgAAoDhiGAAAgOKI4TpVrVazcePGXH311bn22mvz1FNP1XokoI4dOHAgq1atqvUYQB177rnnsn79\n+nz0ox/NVVddlT179tR6JICaasjfM1yC3bt3Z3BwMNu2bcuBAweyZcuW9PT01HosoA7dddddueee\nezJhwoRajwLUsV27dmXy5MnZunVrTpw4kaVLl2bhwoW1HgugZuwM16l9+/blkksuSZLMnDkzBw8e\nrPFEQL2aOnVquru7az0GUOcuv/zyrF27NkkyPDyc5mZ7IkDZxHCd6u/vT2tr68jj5ubmDA8P13Ai\noF4tXrw4Y8eOrfUYQJ0bN25cxo8fn/7+/qxduzY33XRTrUcCqCkxXKcqlUoGBgZGHg8PD2fMGH9d\nAMDrd+TIkXzsYx/LsmXLcsUVV9R6HICaUld1atasWent7U2S7N+/P+3t7TWeCKh31Wq11iMAdezo\n0aO5/vrrc/PNN2fZsmW1Hgeg5nyzSJ1avHhxHnrooVx99dVJki1bttR4IqDeNTU11XoEoI7deeed\n6evrS09PT7q7u9PU1JS77rorLS0ttR4NoCaaqrYSAAAAKIzbpAEAACiOGAYAAKA4YhgAAIDiiGEA\nAACKI4YBAAAojhgGAACgOGIYoE4dPnw4CxcufNH6eeedlyT5y1/+kg0bNiRJDh48mM9//vNJklWr\nVmXv3r2nrW3fvj333nvvGb3u+vXr841vfONF64sXL86jjz76sud95jOfyc6dO8/oNQAAak0MA9Sx\npqaml107fPhwnnrqqSTJ+eefn9tuu+2041649rvf/S6Dg4Nn9JqdnZ358Y9/fNrab37zm0yaNCnt\n7e2v+RoAAOqRGAZoUJs3b87Bgwdz22235de//nVWrVp12vP/XHv44YezZ8+efP3rX899992Xjo6O\nDAwMJHk+qD/0oQ+ddl5HR0f+8Y9/5LHHHhtZ27VrV6688sqRj7ty5cp0dnbmsssuy89+9rPTzv/X\nHe077rgjd9xxR5LkgQceyEc+8pF0dnZmzZo1OXHiRJLkK1/5SpYuXZrOzs6RYwEA/pPEMECD+tzn\nPpfzzz9/5Fbol9tFnjdvXhYuXJg1a9Zk0aJFufTSS0cCdufOnVm6dOmLzlu2bNnI7vDg4GDuv//+\nkWi+++67s3nz5uzYsSObNm1Kd3f3S77uvzp27Fi+9rWv5Vvf+lZ27NiR+fPnp6urK3/961/z4IMP\nZufOndm2bVsOHTp0xrvYAACvV3OtBwDgpY0Z89Jfr3yp0Hwt/rn72tnZmZ/85Cf5zne+86Jjli1b\nluuuuy7r1q3Lnj17Mm/evFQqlSRJV1dX7r///vz0pz/NgQMH8swzz5zR6z7yyCM5cuRIrr322lSr\n1QwPD+etb31rpkyZkre85S1ZsWJFLr300tx4441paWl5Q9cIAPBqxDBAnZo4cWL6+/tPWzt69Ggm\nTpz4hj7u3Llz87e//S2/+MUvcu6556atre1Fx5xzzjl5+9vfnt/+9re55557ct111408t2LFisyb\nNy/vfe97M2/evHzqU5867dympqZUq9WRx0NDQznrrLNy6tSpzJ49Oz09PUme33EeGBjImDFjsn37\n9uzduze9vb256qqrcvfdd2fq1Klv6DoBAF6J26QB6tSECRMyderU/PznPx9Z2759ey6++OIkydix\nY3Pq1Kkz+lhjx47N0NDQyOOlS5dm06ZN6ezsfNlzli9fnh/+8Ic5dOhQ3ve+9yVJTpw4kUOHDmXN\nmjVZsGBBfvnLX2Z4ePi08yZOnJi+vr4cP348g4ODefDBB5MkM2fOzP79+/Pkk08mSbq7u7N169b8\n4Q9/yDXXXJO5c+dm/fr1mT59ep544okzui4AgNfLzjBAHevq6srGjRvT09OToaGhvOtd78qtt96a\nJJk2bVr6+vpyyy23ZPny5SPnvNRt1BdffHFuv/32TJo0KR/4wAdyxRVX5Nvf/nYWLVr0sq992WWX\n5Ytf/GI+/vGPj6xNmjQpV155ZZYsWZLW1tZceOGFOXnyZE6ePDlyTKVSySc+8YksX74855xzTmbO\nnJkkedvb3pYvfelLufHGGzM8PJwpU6akq6srkyZNykUXXZQlS5Zk3Lhxec973pMFCxa84T87AIBX\n0lR94b1sALzpVavVfO9738uTTz458nuKAQBKY2cYoDCrV6/OkSNH8s1vfrPWowAA1IydYQAAAIrj\nB2gBAABQHDEMAABAccQwAAAAxRHDAAAAFEcMAwAAUBwxDAAAQHH+H2GpfQlsoDvbAAAAAElFTkSu\nQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x119877940>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# play the game\n", "agent1 = g.Grim()\n", "agent2 = p.Pavlov()\n", "game = Coordination(agent1, agent2)\n", "game.play(10000)\n", "\n", "# get data from game\n", "agent1_util_vals = Counter(game.data['A'])\n", "agent2_util_vals = Counter(game.data['B'])\n", "\n", "a1_total_score = sum(game.data['A'])\n", "a2_total_score = sum(game.data['B'])\n", "\n", "# Plot the results\n", "x1, y1, x2, y2 = [], [], [], []\n", "\n", "for i, j in zip(agent1_util_vals, agent2_util_vals):\n", " x1.append(i)\n", " y1.append(agent1_util_vals[i])\n", " x2.append(j)\n", " y2.append(agent2_util_vals[j])\n", "\n", "fig, ax = plt.subplots(figsize=(12,6))\n", "width = 0.35\n", "a1 = ax.bar(x1, y1, width, color='#8A9CEF')\n", "a2 = ax.bar(np.asarray(x2)+width, y2, width, color='orange')\n", "\n", "_ = ax.set_title('Grim Agent Vs Pavlov Agent')\n", "_ = ax.set_ylabel('Number of Games')\n", "_ = ax.set_xlabel('Utility Values')\n", "ax.set_xticks(np.add([0,1,2],width/2))\n", "_ = ax.set_xticklabels(('0', '1', '2'))\n", "_ = ax.legend((a1[0], a2[0]), ('Grim Agent\\nTotal Utility Score: {}'.format(str(a1_total_score)),\n", " 'Pavlov Agent\\nTotal Utility Score: {}'.format(str(a2_total_score))), loc=1, bbox_to_anchor=(1.35, 1))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Grim loses in the first round and always goes to other movie, the Pavlov Agent even won a round where they both ended up at the same movie and never changed it's strategy." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Counter({2: 9999, 0: 1}) Counter({1: 9999, 0: 1})\n" ] } ], "source": [ "print(agent1_util_vals, agent2_util_vals)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Q-Learning Vs Chaos" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "scrolled": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Playing Game: 100%|██████████| 10000/10000 [00:00<00:00, 15487.86it/s]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA70AAAGJCAYAAABGqVQ+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlUVfX+//HXYRaPpiKWGtcBQe06IqJp4pANZqjlkIBg\nphWm3QI1NAccUzSn701M0wZwSC0t+2XZwgFLzTFTM4dCJbUccAQEDrB/f3g9N64iJvPp+VirFeez\n9/7s996ec9Z6nc/en20yDMMQAAAAAAA2yK6kCwAAAAAAoKgQegEAAAAANovQCwAAAACwWYReAAAA\nAIDNIvQCAAAAAGwWoRcAAAAAYLMIvQBKtezsbC1cuFDdunVTt27dFBAQoEmTJuny5cvWdUJCQvTN\nN98Ue20HDx7Ua6+9Vuj9vvrqq3r44YeVkZFR6H3/2bx587Rx48Zb2kNDQ7Vw4cJb2t9//3298sor\nf2kfe/fu1aBBg/TMM88oICBAYWFhOnbsmCRp586dCggIuLfiC0FJn2cAAFA8CL0ASrXhw4fr559/\n1rJly7R27Vp99tlnql69up577jmlpqaWaG2NGjXS3LlzC7XPc+fOaffu3WratKnWrFlTqH3/r++/\n/15ZWVm3tAcHB2v16tW3tK9atUohISF33f+uXbs0bNgwDRs2TGvWrNEXX3yhrl27KiQkRJcuXSpQ\n7QVVGs4zAAAoHg4lXQAA5OXAgQPavXu3NmzYICcnJ0mSvb29Bg0apL179+rjjz/WwIED79jHpk2b\nNH/+fGVlZcnFxUVvvPGGmjVrpuTkZI0bN07Jycm6cOGCatSooTlz5qhKlSrq1KmTmjZtqqNHjyo8\nPFxvvfWWnn32WW3fvl2///67unTpohEjRmjnzp2aNGmSvvjiC40aNUrly5fX0aNH9ccff6hu3bqa\nPXu2ypUrp4SEBL399ttycHBQgwYNtG3bNi1fvlw1atS4pd6VK1eqTZs2euKJJzRnzhz17dvXuuxO\n/XzyySdatmyZJKlSpUoaO3as6tSpk2ddq1ev1sGDBzV9+nTZ2dmpc+fO1v107txZb731lvbs2aMW\nLVpIujEqK0kPP/yw0tLSNGrUKCUlJclkMqlRo0aaOHHiLcfy73//W0OGDFHDhg2tbQEBAXJxcVFO\nTo4kKTU1VREREUpMTFRmZqYmTZqkFi1a6MSJE5o4caLS0tJ07tw5NWzYULNnz5aTk5N2796tGTNm\nKD09XY6OjnrttdfUrl07XbhwQZGRkdZA3b59+zxH4kvDeQYAAMXEAIBS6oMPPjDCwsJuu2zJkiXG\nK6+8YhiGYfTr189Yv379LeucOHHCePrpp43Lly8bhmEYx44dM9q2bWtcv37d+Oijj4z33nvPuu6L\nL75ofPDBB4ZhGEbHjh2NmJgY67KOHTsa0dHRhmEYxh9//GE0adLEOHXqlLFjxw7j6aefNgzDMEaO\nHGkEBgYaFovFsFgsxjPPPGOsXr3auHTpkuHn52ccOXLEMAzDWLNmjdGgQQPj9OnTt9SblZVltGvX\nzti8ebORkZFh+Pn5GVu2bDEMw7hjPzt37jSCg4ON9PR0wzAM47vvvjOeeuqpO9Z1p/NmGIbx73//\n2xg5cqT19bBhw4y4uDjDMAzjs88+MwYNGmQYhmFkZ2cbY8eONZKSkm7po3nz5sYvv/xy2/4NwzB2\n7Nhh/POf/zT2799vGMaNf+/nn3/eMAzDiI6ONtauXWsYhmFYLBYjICDA+Oabb4xLly4Zbdq0sW5z\n7Ngxo1WrVsapU6eMefPmGVFRUYZhGEZaWpoRERFhXLt2rVSfZwAAUPQY6QVQZmVnZ99x+datW3Xh\nwgU9//zzMgxDkuTg4KCTJ08qNDRUu3fv1ocffqgTJ07ol19+UdOmTa3b+vr65urr0UcflSTdf//9\ncnNz05UrV27ZX7t27eTgcONr1dvbW1euXNHu3bvl5eUlb29vSVKPHj00efLk29YbHx+vnJwctWvX\nTnZ2dnrqqaf04Ycfql27drftZ8qUKZKkzZs3KykpSX379rUe59WrV3X16tU868rPc889p6efflpp\naWnKzMzU1q1bNX78eElSixYtNGfOHIWEhKht27bq37+/PDw8bunDzs7OWk9ePDw81LhxY0lSw4YN\nrZdVjxgxQlu3btWiRYt04sQJnT9/Xqmpqfrxxx9Vq1Yt6zb16tVTixYttHPnTvn7++ull17SmTNn\n1KZNGw0bNkxms7lUn2cAAFD0CL0ASi0fHx8tWrRIGRkZcnZ2lsViUWpqqipVqqTvv/9ePj4+d9w+\nJydHDz/8sGbNmmVt++OPP1StWjXNmDFDBw8eVM+ePdW6dWtlZWXlCmiurq65+nJxccn1+nZh7s/r\nmEwmGYYhe3t766W8N9nZ3X46hY8//lgZGRl67LHHJEkWi0Xnz5/Xr7/+ett+TCaT9Ti7d++uYcOG\nWZedPXtWFStWzLOu/Li7u6tNmzb68ssvlZaWpieeeMIaIB988EF988032rlzp77//nv1799f48aN\n0+OPP56rj2bNmumHH35QvXr1crVPnDhRjz32mOzt7a0h8X9rCw8PV05Ojrp06aKOHTvq999/l3Tj\nvP9v/dnZ2crKylKjRo20YcMGbdu2Td9//7169eqlmJgYNWvWrNSeZwAAUPSYyApAqdWkSRO1atVK\nI0eO1NWrV5WUlKTg4GD961//0tGjRxUUFGRd93YBo3Xr1tq6dasSExMl3bhXs3v37taRy/79+6tb\nt26qXLmytm3bdkvYKQw+Pj46efKkjh49Kklav369rl27Zg1SNx0/fly7du3SmjVrtGHDBm3YsEFb\ntmxRixYt9NFHH92xn7Zt2+rLL7/U+fPnJUlLly7V888/n29tDg4Od5xgKTAwUGvXrtXnn3+u4OBg\na/vy5cs1cuRItW3bVsOGDVO7du2sdf1ZWFiYYmJidOjQIWvb6tWr9c0336h+/fp3rG3r1q0aMmSI\nunTpIsMw9OOPPyo7O1tNmzbViRMndODAAUnSsWPHtGfPHvn5+WnmzJmaN2+eHn30UY0ePVr16tXT\niRMncvVbGs8zAAAoWoz0AijVZsyYocWLF6tfv34yDENZWVlycHBQ+fLlFR8frx49ekiSIiMjNWrU\nKBmGIZPJpODgYA0bNkwTJ05URESEpBuTYM2fP18uLi4aMmSIoqOjNW/ePDk4OKhFixY6efKkJN0S\nSPN7fSf33Xef3n77bb3xxhuys7NTo0aNZG9vf8vI8ccff6zHHntMDz74YK72IUOGaPDgwYqIiMiz\nn0ceeUSDBg3SCy+8IDs7O5nNZr3zzjv51taxY0dFR0crMzPTeh7/zM/PT5cvX1blypXl5eVlbe/R\no4d27dqlp556SuXKlVPNmjXVv3//W7b39fXV5MmTNXnyZF2/fl0Wi0UeHh6KjY1VlSpV7lhbeHi4\nhgwZokqVKqlcuXLy8/NTUlKSKleurLlz52rSpEm6fv267O3tNXXqVNWqVUv9+/dXZGSkAgIC5OTk\npAYNGqhr166l/jwDAICiZTK4/gpAGZSSkqIDBw7o4YcfLulS7iglJUXz58/Xv/71Lzk7O+vQoUN6\n+eWX9e2335ZIP7gzzjMAALanyEd6Fy5cqI0bN8pisSgoKEgtW7bUyJEjZWdnJy8vL0VFRUm68fiI\nFStWyNHRUWFhYerQoYMyMjI0YsQIJScny2w2a9q0aapcuXJRlwygDDCbzaU+8Eo36nR0dFTPnj3l\n4OAgR0fHe3q2b2H1gzvjPAMAYHuKdKR3586d+uCDDzR//nylpaXp/fff108//aSBAwfK19dXUVFR\nateunZo1a6YBAwZozZo1Sk9PV2BgoFavXq2lS5cqJSVFQ4cO1bp16/TDDz9o9OjRRVUuAAAAAMDG\nFOlEVt999528vb31yiuvaPDgwerQoYMOHTpkfRSIv7+/tm3bpv3796tFixZycHCQ2WxW7dq1dfjw\nYe3Zs0f+/v7Wdbdv316U5QIAAAAAbEyRXt586dIlnTlzRgsWLNBvv/2mwYMH55odtXz58kpJSVFq\naqoqVKhgbXd1dbW233xExs11AQAAAAC4W0UaeitVqiRPT085ODioTp06cnZ21tmzZ63LU1NTVbFi\nRZnN5lyB9s/tqamp1rY/B+O8ZGVly8HBvvAPBgAAAABQ5hRp6G3RooXi4uL0/PPP6+zZs7p+/bpa\nt26tnTt3ys/PT1u2bFHr1q3VuHFjzZ49W5mZmcrIyFBiYqK8vLzUvHlzJSQkqHHjxkpISLBeFn0n\nly6lFeUhFYi7ewWdP3+tpMsA/nb47AElg88ebJm7e/6DMQBKhyINvR06dNDu3bvVq1cvGYah8ePH\nq2bNmhozZowsFos8PT315JNPymQyKSQkREFBQTIMQxEREXJyclJgYKAiIyMVFBQkJycnzZw5syjL\nBQAAAADYGJt7Tm9p/kWZX7yBksFnDygZfPZgyxjpBcqOIp29GQAAAACAkkToBQAAAADYLEIvAAAA\nAMBmEXoBAAAAADaL0AsAAAAAsFmEXgAAAAD4k4MHD2rgwIEKDg5WYGCg5syZo6ysLEnSqFGj9N13\n3xXp/i9cuKCJEycWuJ/MzEw98sgjev/99wuhqv+6cuWK/t//+3+F2mdRIvQCAAAAwH+cPXtWb7zx\nhqKiorR06VItX75cjo6Oeuutt4qthqpVq2rcuHEF7mf9+vXq2rWr1qxZUwhV/dfhw4e1cePGQu2z\nKDmUdAEAAAAAUFp8/vnn6tOnj/7xj39Y24YMGaLOnTsrMzMzz+1mzZqlPXv2KDs7WwMGDNATTzyh\nXbt26Z133pFhGEpLS9PMmTPl4OCgsLAwVa5cWf7+/kpISFDDhg117Ngxpaamau7cucrJyVFERIRW\nrFihbt26yc/PT0eOHJHJZFJMTIzMZrMmTJign376SW5ubjp16pQWLFigGjVq5Kpp1apVGj16tJKT\nk5WQkKD27dtL0m23tbOz09ixY5WRkSEXFxdNmjRJWVlZGjZsmKpXr66TJ0+qadOmioqK0oIFC3Tk\nyBGtWrVKvXv3Lpp/iELESC8AAAAA/MepU6f04IMP3tJetWpVnT9//rbbbNmyRadPn9bSpUsVGxur\n+fPnKyUlRceOHdPbb7+t2NhYPfbYY/r6668lScnJyfrggw80aNAgSVLTpk31wQcf6OGHH7ZeNmwy\nmSRJKSkpCggIUFxcnKpVq6YtW7Zow4YNunLlilauXKkpU6bo7Nmzt9R08uRJpaenq379+urZs6eW\nLFkiSXluGx0drdDQUMXGxmrAgAGaMWOGJOnEiRN666239MknnyghIUHJyckKCwtT69aty0TglRjp\nBQAAAACrGjVq6LfffsvVlpOTozNnzsjNze222xw9elQHDx5UaGioDMNQdna2Tp06pfvvv1+TJk1S\n+fLldfbsWfn4+EiSHnzwQdnb21u3b9iwoSSpevXqunDhwi39/3l5ZmamTp06pWbNmkmSqlSpojp1\n6tyyzapVq3T9+nW9+OKLysnJ0b59+/Tbb7/p119/zbVt3bp1rcewYMECvffeezIMQ46OjpKkWrVq\nqVy5cpKkatWqKSMj4y7PZOlB6AUAAABQKmVnZ+vXX38t1D49PT1zBc7/1aNHDw0cOFCPPvqoKlWq\npPDwcN1///3q0KGDXFxcJEmGYeTapm7dumrVqpUmTpwowzAUExMjDw8PvfDCC4qPj5erq6tGjhxp\nXf/mKG5er/NTv359ff755woNDdWVK1d04sSJXMuzsrK0bt06ff7556pQoYIkacGCBVq6dKkefvhh\nffbZZ9Ztjx8/bj0vL7zwgpo1a6bExETt3r37lv3ePG47OztlZ2f/pZpLEqEXAAAAQKn066+/avr8\nA6pStVah9Hfxwkm9MVjy9vbOc50HHnhAM2bM0IQJE3T9+nWlp6fL3t5ebm5uunLliiRpypQpMpvN\nMgxDdevW1YwZM7Rz504FBwfr+vXr6ty5s8qXL6/u3bsrKChIrq6uqlq1qs6dOycpd8jNL/Debt32\n7dsrISFBgYGBqlq1qsqVKycHh/9Gu02bNqlRo0bWwCtJzzzzjHr06KHXX3/9ttuOGDFC48ePV2Zm\npjIyMjR69Og89+/h4aFjx44pNjZWoaGhdz7ppYDJ+N+fKcq48+evlXQJeXJ3r1Cq6wNsFZ89oGTw\n2YMtc3evkP9KKLCjR49q0aqrcn+gXqH0d/6PXzSod8U7ht471eLh4WG91LckJSYm6vDhw3rqqad0\n+fJlPf3009q0aZP1kuSi2rasYqQXAAAAAPJxL0G5qFSvXl1vv/22PvroI+Xk5GjEiBF3HVoLsm1Z\nRegFAAAAgDKkXLlyiomJKfZtyyoeWQQAAAAAsFmEXgAAAAD4j+joaIWEhKhLly7q2LGjQkND9frr\nr+e5/unTp7V58+Y8lyclJSkoKChXW3Z2ttq3b5+rbfPmzRozZowkaf369UpOTtbZs2c1efJkSTcm\nr8rJydG7776rQ4cOKSMjQ5988sldHdPFixf16quvauDAgerbt6/GjRunzMzMu9q2MEycOFG9evVS\naGioQkNDdf36deuyr7/+Wm+88YakG4+GCgkJUWhoqEJCQtS2bVvNnTtXkvT222+rT58+6tu3721n\nlr4TLm8GAAAAUGpdvHCykPtqfMd1IiMjJUlr1qzR8ePHFRERccf1t23bptOnT6tDhw55rnO7GZrv\n1PbRRx/poYcekoeHhzUI31wWFhYmSTp58qRWr16tXr163bE+SVq4cKHat29vXXfy5MlatWqVgoOD\n8922MBw6dEgffvihzGZzrvbJkydr69atatz4xr+JnZ2d4uLiJN04vuHDhyssLEwHDx7U4cOHtXLl\nSiUlJen111/X6tWr73r/hF4AAAAApZKnp6feGFyYPTaWp6fnPW/91ltvad++fTKZTOrWrZv69Omj\nxYsXKzMzU82bN5ezs7Pmz5+vnJwcpaena9asWX95Hxs3btTRo0c1fPhwTZs2TaNHj9ayZcusy0eM\nGKFnn31Wa9eu1bFjx7RgwQJt2LBB06dPV+3atbVp0yZt27bN+sghSXJzc9NXX32lmjVrysfHR6NG\njbI+q/idd97Rpk2blJOTo+DgYPXq1Uvvvfee1q9fLwcHB7Vq1Urh4eGaM2eODhw4oLS0NE2bNk2b\nN2/WV199JUnq3r27AgMDtW3bNh04cEAvv/yydd/Z2dlKSkrSqFGjdOHCBT333HPq0aOHDMNQy5Yt\n9eijj2rNmjW3nIcpU6YoMjJSzs7OatSokRYuXCjpxsj6fffd95fOKaEXAAAAQKlkb29famZNjo+P\n1/nz57Vy5UpZLBb17dtXrVu31sCBA3XmzBm1b99eS5cu1ezZs1WlShXNmzdP69ev1+OPP37X+zCZ\nTOrUqZO8vb0VHR0twzDyfI7v4MGDlZSUpJdffllVqlTRmjVrFB4ertWrV+vVV1/Nte6gQYNUuXJl\nLVq0SAcOHFDLli01btw4nTt3Tjt27NCnn34qi8WiWbNm6eeff9bGjRu1atUqmUwmDRkyRN9++62k\nGzNYR0ZG6siRI4qPj9fHH3+snJwc9e/fX4888ojatGmjNm3a5Nr39evX1b9/fw0YMECZmZkKDQ1V\n48Y3fnx44okntH379luO7dChQ7JYLPL19bW22dnZ6e2339by5csVFRV11+dU4p5eAAAAAMhXYmKi\nNYQ5OjqqadOmSkxMzLVOtWrVNGHCBI0aNUq7d+9WVlbWbfuyt7dXdnZ2rra0tDQ5OzvfU21du3ZV\nfHy8Lly4oOTk5Ft+KNi+fbt69uypxYsXa+vWrWrYsKGmTZum48ePq0mTJtZjioyMVGJiopo1a2YN\n2z4+Pvrll18kSXXr1pUkHTt2TKdOnVJoaKj69++vq1ev6uTJ21+G7urqqn79+snJyUlms1l+fn46\ncuTIHY9n7dq16tOnzy3tw4cP15YtW/Tuu+/qzJkzd31+CL0AAAAAkI+6detqz549kiSLxaJ9+/ap\nVq1asrOzU05OjiRp7Nixio6O1tSpU+Xm5ibDMCTJ+v8/q1GjRq4Jmb799ttc97be7POm/+3DZDJZ\ng7Orq6t8fHw0depU9ejR45Z9ffjhh/ryyy8l3Qi3np6ecnZ2Vr169fTTTz9JkjIzMzVgwAB5eHjo\nxx9/lGEYMgxDu3fvVp06daz7vHku6tevr9jYWMXFxalHjx7y8vK67Xn75Zdf1K9fPxmGoczMTO3d\nu1cNGzbM8zxL0vfff6927dpZX2/bts06oZejo6McHR1lZ3f3UZbLmwEAAAAgH507d9auXbvUt29f\nWSwWdevWTd7e3srMzNSiRYv00EMPKSAgQIGBgSpXrpzc3Nx07tw5SbeftGry5MmaMGGCsrKylJOT\nIx8fHwUEBEi6Mbo6fPhwTZo0ybr+zT5u/t/d3V3p6emaPXu2wsPD1bt3b/Xv318TJ0687b7Gjx+v\n999/Xy4uLnJzc9P48ePl5uam1q1bq2/fvpKk4OBgNWnSRI8++qiee+45GYYhPz8/dejQQfv27bP2\n99BDD8nHx0eBgYHKyMiQj4+P7r///tve0+vt7a0uXbqoT58+cnBwUJ8+fawhOi+XL1/ONelVq1at\n9PXXXyswMFCGYSg0NFQPPPDAnf/B/sRk3O5nhzLs/PlrJV1CntzdK5Tq+gBbxWcPKBl89mDL3N0r\nlHQJQC4//PCDPvnkE02ZMqWkSyl1GOkFAAAAgDIsNjZWn332mfWZtsiNkd5ixC/eQMngsweUDD57\nsGWM9AJlBxNZAQAAAABsFqEXAAAAAGCzCL0AAAAAAJtF6AUAAAAA2CxCLwAAAAD8ybFjx/Tyyy+r\nf//+6t27t9555x1J0s6dOxUREVEsNYSFhSksLKzQ+126dGmh91naEXoBAAAA4D+uXbumiIgIjRkz\nRh999JFWrlypo0ePasWKFZIkk8lU5DX8/vvvun79ulJSUnTq1KlC7Xv+/PmF2l9ZwHN6AQAAAOA/\nNmzYoIcfflgeHh6SboTc6OhoOTo6au/evTp+/LheeuklJScnq2PHjho6dKh27dqld955R4ZhKC0t\nTTNnzlStWrX0/vvva926dXJwcFDLli01bNgw7d2719qfi4uL/u///k+urq65avj000/VuXNnubi4\naOnSpYqMjJQkrVq1SsuWLVOlSpXk4OCgrl276umnn1ZUVJSSkpKUk5Oj119/XS1btlS3bt3k5+en\nI0eOyGQyKSYmRkuWLNHly5c1ceJEjRs3rtjPbUlhpBcAAAAA/uPcuXPWwHtTuXLl5OBwY7zQYrEo\nJiZGS5cu1ZIlSyTduBz67bffVmxsrB577DF9/fXXOnr0qNavX6+VK1fq448/1smTJ7V582bFx8er\nS5cuiouLU9++fXX16tVc+zIMQ1988YW6d++uLl266KuvvlJmZqYuXbqkRYsWacWKFVq8eLHS09Ml\n3QjCVapUUVxcnObNm6cJEyZIklJSUhQQEKC4uDhVq1ZNW7ZsUVhYmCpVqvS3CrwSI70AAAAAYFWj\nRg399NNPudpOnTqlP/74Q5Lk5eUlBwcH63+SdP/992vSpEkqX768zp49Kx8fHyUmJqpp06ays7sx\nzujj46NffvlFgwcPVkxMjPr3768HHnhAzZo1y7Wvb7/9VmlpaRo2bJgMw7CG4Hr16snLy0tOTk6S\nZN3u6NGj2rNnj3788UcZhqHs7GxdunRJktSwYUNJUvXq1ZWZmVlEZ6z0I/QCAAAAKJWys7P166+/\nFmqfnp6esre3z3N5hw4dtGDBAgUFBcnDw0MWi0XTpk1T27Zt5enpedttxo4dq/j4eLm6umrkyJGS\npLp16+rDDz9UTk6OTCaTdu/erR49eujzzz9Xz549FRkZqYULF2rFihUaMmSIta9PPvlEU6ZMkb+/\nvyRp7969mjx5shYvXqzExERlZmbKwcFB+/fvl6enpzw9PVW9enW99NJLysjI0LvvvqtKlSrleXyG\nYdzLaSvTCL0AAAAASqVff/1Vx9+vrzruhdPf8fOSXjgib2/vPNcxm82Kjo7WmDFjZBiGUlNT1alT\nJwUGBmrnzp23nciqe/fuCgoKkqurq6pWrapz587J29tbTz75pPr27SvDMNSiRQt17txZ+/fv1+jR\no1WuXDnZ29tr4sSJ1n6Sk5O1f/9+zZkzx9rm4+OjzMxMnTx5UoMGDVJQUJDuu+8+ZWRkyMHBQc89\n95zGjBmjkJAQpaamKjAwUCaTKVedf/67Xr16euONNzR9+vQCns2yw2TYWNQ/f/5aSZeQJ3f3CqW6\nPsBW8dkDSgafPdgyd/cKJV3C38LRo0elL+rLu3oh9fe7pIA7h97SKjs7W++99571MUbBwcEKDw+X\nr69vCVdW+jHSCwAAAAClnL29va5fv65nn31WTk5OatKkCYH3LhF6AQAAAKAMCA8PV3h4eEmXUeYQ\negEAAADgP6Kjo3Xw4EFduHBB6enp8vDwUJUqVXLdZ/tnp0+f1rFjx9ShQ4fbLk9KStLIkSO1bNky\na1t2drY6deqkhIQEa9vNxxlNnjxZ69evl6+vr7KysvTee+9pzJgxat++vTZt2qSFCxfK399fnp6e\n+uKLL9SrV698j+nixYuKiopSWlqaUlNT5e3trTFjxlhngi5q7777rtavXy+z2awXX3xR/v7+evfd\nd7V161aZTCZduXJFV65c0aZNmxQaGiqTySTDMJSYmKg+ffrotdde09y5c/Xdd9/J0dFRb775pho1\nanTX+yf0AgAAAMB/REZGSpLWrFmj48ePKyIi4o7rb9u2TadPn84z9Eq67eRXd2r76KOP9NBDD8nD\nw0NjxozJtezmPb0nT57U6tWr7yr0Lly4UO3bt7euO3nyZK1atUrBwcH5bltQhw8f1jfffKNVq1Yp\nOztbffv2VevWrRUWFmY9lhdffFFvvvmmTCaT4uLiJN04vuHDhyssLEz79+/X/v37tWrVKp06dUoR\nERFauXLlXddA6AUAAABQah0/X7h91SnA9m+99Zb27dsnk8mkbt26qU+fPlq8eLEyMzPVvHlzOTs7\na/78+crGYuYZAAAgAElEQVTJyVF6erpmzZr1l/exceNGHT16VMOHD9e0adM0evToXKPEI0aM0LPP\nPqu1a9fq2LFjWrBggTZs2KDp06erdu3a2rRpk7Zt26bRo0dbt3Fzc9NXX32lmjVrysfHR6NGjbI+\ntumdd97Rpk2blJOTo+DgYPXq1Uvvvfee1q9fLwcHB7Vq1Urh4eGaM2eODhw4oLS0NE2bNk2bN2/W\nV199JenG7NWBgYHatm2bDhw4oJdfftm6719++UWtWrWyPtfYw8NDx44d0z//+U9J0rp16+Tu7q5W\nrVrlOg9TpkxRZGSknJ2dtXfvXj3yyCOSpAcffFDp6em6du2aKlS4uwnlCL0AAAAASiVPT0/phSOF\n1l+dm33eg/j4eJ0/f14rV66UxWKxjlgOHDhQZ86cUfv27bV06VLNnj1bVapU0bx587R+/Xo9/vjj\nd70Pk8mkTp06ydvbW9HR0TIM47YjwpI0ePBgJSUl6eWXX1aVKlW0Zs0ahYeHa/Xq1Xr11VdzrTto\n0CBVrlxZixYt0oEDB9SyZUuNGzdO586d044dO/Tpp5/KYrFo1qxZ+vnnn7Vx40atWrVKJpNJQ4YM\n0bfffitJ8vb2VmRkpI4cOaL4+Hh9/PHHysnJUf/+/fXII4+oTZs2atOmTa59169fXx988IHS09OV\nlpamffv26fr169blixYt0r///e9c2xw6dEgWi8U6UVdKSoruv/9+63JXV1dCLwAAAICyz97evtQ8\nXigxMdEawhwdHdW0aVMlJibmWqdatWqaMGGCXF1d9ccff9wyenmTvb29srOzc7WlpaXJ2dn5nmrr\n2rWrevfurZCQECUnJ99yzrZv366ePXuqV69eslgsWrBggaZNm6aOHTuqSZMm1mOKjIzUl19+qWbN\nmlnDto+Pj3755RdJUt26dSVJx44d06lTpxQaGirDMHT16lWdPHlSHh4et9Tm5eWl5557Ti+88IJq\n1Kihpk2bqnLlypKkI0eOqGrVqqpZs2aubdauXas+ffpYX5vNZqWmplpfp6am3nXglSS7u14TAAAA\nAP6m6tatqz179kiSLBaL9u3bp1q1asnOzk45OTmSpLFjxyo6OlpTp06Vm5ubDMOQJOv//6xGjRra\nvXu39fW3336rxo0bS1KuPm/63z5MJpM1OLu6usrHx0dTp05Vjx49btnXhx9+qC+//FLSjXDr6ekp\nZ2dn1atXTz/99JMkKTMzUwMGDJCHh4d+/PFHGYYhwzC0e/du1alTx7rPm+eifv36io2NVVxcnHr0\n6CEvL6/bnrfk5GRlZGRo2bJlioqK0rlz56yj7du3b5e/v/8t23z//fdq166d9bWPj491tPm3336T\no6PjXwq9jPQCAAAAQD46d+6sXbt2qW/fvrJYLOrWrZu8vb2VmZmpRYsW6aGHHlJAQIACAwNVrlw5\nubm56dy5c5JuP2nV5MmTNWHCBGVlZSknJ0c+Pj4KCAiQdCPkDR8+XJMmTbKuf7OPm/93d3dXenq6\nZs+erfDwcPXu3Vv9+/fXxIkTb7uv8ePH6/3335eLi4vc3Nw0fvx4ubm5qXXr1urbt68kKTg4WE2a\nNNGjjz6q5557ToZhyM/PTx06dNC+ffus/T300EPy8fFRYGCgMjIy5OPjo/vvv/+29/RWqVJFR44c\nUa9eveTs7GydKEySjh8/rk6dOt1S7+XLl2U2m62vmzRpoqZNm6pPnz4yDEPjxo27i3+x/zIZt/vZ\noQw7f/5aSZeQJ3f3CqW6PsBW8dkDSgafPdgyd/e7H2UCisMPP/ygTz75RFOmTCnpUkqdIh/pffbZ\nZ60p/cEHH1RYWJhGjhwpOzs7eXl5KSoqSpK0cuVKrVixQo6OjgoLC1OHDh2UkZGhESNGKDk5WWaz\nWdOmTbNe/w0AAAAAkGJjY/XZZ59p7ty5JV1KqVSkI72ZmZnq27evVq9ebW0bPHiwBg4cKF9fX0VF\nRaldu3Zq1qyZBgwYoDVr1ig9PV2BgYFavXq1li5dqpSUFA0dOlTr1q3TDz/8kGvq7dspzb8o84s3\nUDL47AElg88ebBkjvUDZUaQjvYcPH1ZaWpoGDhyo7OxshYeH69ChQ9ZZz/z9/bV161bZ2dmpRYsW\ncnBwkNlsVu3atXX48GHt2bNHL774onXdmJiYfPf566/HivKQCuTSJbMuXkwp6TJuceMGeJPs7ZnX\n7K+qXbuu9RlnAAAAAEqfIg29Li4uGjhwoHr37q0TJ07oxRdfzDXrWPny5ZWSknLLlNOurq7W9puX\nRt9cNz+LVhxXlaq1Cv9gCsXVki7gto4f+16DHviX6riXdCVly/Hz0okee+TpefuZ6gAAAACUvCIN\nvbVr11atWrWsf1eqVEmHDh2yLk9NTVXFihVlNptzBdo/t998HtPdPoupStVacn+gXiEfiW27eOGk\n6rhL3tVLupIyqIqZy5vKCP6dgJLBZw8AUNKKNPR++umnOnr0qKKionT27FmlpKSobdu22rlzp/z8\n/LRlyxa1bt1ajRs31uzZs5WZmamMjAwlJibKy8tLzZs3V0JCgho3bqyEhATrZdFAaXHxYgr3q5UB\n3FcIlAw+e7Bl/KADlB1FGnp79eqlUaNGKSgoSHZ2dpo2bZoqVaqkMWPGyGKxyNPTU08++aRMJpNC\nQkIUFBQkwzAUEREhJycnBQYGKjIyUkFBQXJyctLMmTOLslwAAAAAgI2xuef0vjFlN5c3/0VHDm7Q\nGw/24vLmv+jo79LFttzTWxYw2gSUDD57sGWM9AJlB9P1AgAAAABsFqEXAAAAAGCzCL0AAAAAAJtF\n6AUAAAAA2CxCLwAAAADAZhF6AQAAAAA2i9ALAAAAALBZDiVdAICyLzs7WydOJJZ0GXm6dMmsixdT\nSrqM26pdu67s7e1Lugzgb6W0f2eVZnxnASiLCL0ACuzEiUQtWnFcVarWKulS8nC1pAu4rYsXTmrQ\nc5Knp1dJlwL8rZw4kagrn7VQHfeSrqRsOX5eOtFjD99ZAMocQi+AQlGlai25P1CvpMsAgLtSx13y\nrl7SVZQ9F0u6AAC4B9zTCwAAAACwWYReAAAAAIDNIvQCAAAAAGwWoRcAAAAAYLMIvQAAAAAAm0Xo\nBQAAAADYLEIvAAAAAMBmEXoBAAAAADaL0AsAAAAAsFmEXgAAAACAzSL0AgAAAABsFqEXAAAAAGCz\nCL0AAAAAAJtF6AUAAAAA2CxCLwAAAADAZhF6AQAAAAA2i9ALAAAAALBZhF4AAAAAgM0i9AIAAAAA\nbBahFwAAAABgswi9AAAAAACbRegFAAAAANgsQi8AAAAAwGYRegEAAAAANovQCwAAAACwWYReAAAA\nAIDNIvQCAAAAAGwWoRcAAAAAYLMIvQAAAAAAm0XoBQAAAADYLEIvAAAAAMBmEXoBAAAAADaL0AsA\nAAAAsFmEXgAAAACAzSL0AgAAAABsFqEXAAAAAGCzCL0AAAAAAJtV5KE3OTlZHTp00PHjx5WUlKSg\noCD169dPEyZMsK6zcuVK9ezZU3379tXmzZslSRkZGfrXv/6l4OBgvfzyy7p06VJRlwoAAAAAsDFF\nGnqzsrIUFRUlFxcXSdLUqVMVERGhJUuWKCcnR/Hx8bpw4YLi4uK0YsUKLVq0SDNnzpTFYtHy5cvl\n7e2tpUuXqnv37oqJiSnKUgEAAAAANqhIQ290dLQCAwNVrVo1GYahQ4cOydfXV5Lk7++vbdu2af/+\n/WrRooUcHBxkNptVu3ZtHT58WHv27JG/v7913e3btxdlqQAAAAAAG1RkoXf16tVyc3NT27ZtZRiG\nJCknJ8e6vHz58kpJSVFqaqoqVKhgbXd1dbW2m83mXOsCAAAAAPBXOBRVx6tXr5bJZNLWrVt15MgR\nRUZG5rovNzU1VRUrVpTZbM4VaP/cnpqaam37czAGAAAAAOBuFFnoXbJkifXv0NBQTZgwQdOnT9eu\nXbvUsmVLbdmyRa1bt1bjxo01e/ZsZWZmKiMjQ4mJifLy8lLz5s2VkJCgxo0bKyEhwXpZNFCaVKli\nlrs7P8hcumSWdLWkyyiTeA/B1pXG9/eN7yzcC76zAJRFRRZ6bycyMlJjx46VxWKRp6ennnzySZlM\nJoWEhCgoKEiGYSgiIkJOTk4KDAxUZGSkgoKC5OTkpJkzZxZnqcBduXgxRefPXyvpMkrcxYvcfnCv\neA/Blrm7VyiV7++LF1NUpaSLKKP4zvovwj9QdhRL6I2NjbX+HRcXd8vy3r17q3fv3rnaXFxcNHfu\n3CKvDQAAAABgu4r8Ob0AAAAAAJQUQi8AAAAAwGYRegEAAAAANovQCwAAAACwWYReAAAAAIDNIvQC\nAAAAAGwWoRcAAAAAYLMIvQAAAAAAm0XoBQAAAADYrHxDb1JSktauXSvDMDR27Fj17NlTu3fvLo7a\nAAAAAAAokHxD76hRo+To6KgNGzboxIkTGjVqlKZPn14ctQEAAAAAUCD5ht6MjAx16dJFmzZtUkBA\ngHx9fZWVlVUctQEAAAAAUCD5hl57e3utX79emzdvVocOHRQfHy87O24FBgAAAACUfvmm14kTJ2rz\n5s2KiopStWrV9OWXX2ry5MnFURsAAAAAAAWSb+itX7++XnnlFTk5OSk7O1sRERFq0KBBcdQGAAAA\nAECB5Bt6161bp1deeUVTpkzR5cuX1bdvX33++efFURsAAAAAAAWSb+h97733tHz5cpUvX15ubm5a\ns2aNFi5cWBy1AQAAAABQIPmGXjs7O5nNZuvratWqMZEVAAAAAKBMcMhvBS8vLy1ZskRZWVn6+eef\ntWzZMu7pBQAAAACUCfkO2Y4bN05nz56Vs7Oz3nzzTZnNZkVFRRVHbQAAAAAAFEi+I72urq4aNmyY\nhg0bVhz1AAAAAABQaPINvR9++KFiYmJ07do1SZJhGDKZTPr555+LvDgAAAAAAAoi39AbGxurzz77\nTDVq1CiOegAAAAAAKDT53tPr6empqlWrFkctAAAAAAAUqnxHekNCQhQQEKCmTZvK3t7e2j516tQi\nLQwAAAAAgILKN/ROmTJFAQEBqlmzZnHUAwAAAABAock39Do5OWno0KHFUQsAAAAAAIUq39Dbpk0b\nTZs2Tf7+/nJ0dLS2t2zZskgLAwAAAACgoPINvYcOHZIk/fTTT9Y2k8mk2NjYoqsKAAAAAIBCkG/o\njYuLK446AAAAAAAodPmG3t27d2vx4sVKS0uTYRjKycnRmTNntHHjxuKoDwAAAACAe5bvc3rHjBmj\nzp07Kzs7W8HBwapVq5Y6d+5cHLUBAAAAAFAg+YZeFxcX9ezZU35+fqpYsaImT56sXbt2FUdtAAAA\nAAAUSL6h19nZWZcvX1adOnX0448/ymQyKS0trThqAwAAAACgQPINvc8//7zCw8PVsWNHffbZZ+ra\ntasaNWpUHLUBAAAAAFAg+U5k1aVLFz355JMymUxavXq1Tpw4oQYNGhRHbQAAAAAAFMgdQ+/Ro0eV\nnZ2thg0b6q233tK1a9dkb2+vkSNHymw2F1eNAAAAAADckzwvb964caPCwsJ0/vx5SdKWLVvk5+en\nrKwsLVq0qNgKBAAAAADgXuUZet955x0tXrxY/v7+km7M4vzMM89ozJgxPKMXAAAAAFAm5Bl6MzIy\nVKdOHevrdu3aSZLMZrPs7e2LvjIAAAAAAAooz9BrsVhkGIb19bBhwyRJWVlZslgsRV8ZAAAAAAAF\nlGfo9fPz07vvvntL++LFi+Xn51ekRQEAAAAAUBjynL152LBhCg0N1aZNm+Tr6yuTyaQ9e/YoIyND\nsbGxxVkjAAAAAAD3JM/QW7lyZX366af65ptvtG/fPklSYGCgunTpIicnp2IrEAAAAACAe3XH5/Q6\nOTnp6aef1tNPP11c9QAAAAAAUGjyvKcXAAAAAICyLs/Qm5aWVpx1AAAAAABQ6PIMvSEhIZKk8ePH\nF1ctAAAAAAAUqjzv6U1LS9Pw4cP17bffKiMj45blU6dOzbfznJwcjRkzRsePH5ednZ0mTJggJycn\njRw5UnZ2dvLy8lJUVJQkaeXKlVqxYoUcHR0VFhamDh06KCMjQyNGjFBycrLMZrOmTZumypUrF+Bw\nAQAAAAB/J3mG3vfff187duzQnj177vm5vBs3bpTJZNLy5cu1c+dOzZo1S4ZhKCIiQr6+voqKilJ8\nfLyaNWumuLg4rVmzRunp6QoMDFTbtm21fPlyeXt7a+jQoVq3bp1iYmI0evToez5YAAAAAMDfS56h\nt3r16urRo4caNGggT09PHT9+XNnZ2fLy8pKDwx0nfbbq3LmzOnXqJEk6c+aM7rvvPm3btk2+vr6S\nJH9/f23dulV2dnZq0aKFHBwcZDabVbt2bR0+fFh79uzRiy++aF03JiamoMcLAAAAAPgbyTe9WiwW\nPfHEE6pUqZJycnJ04cIFzZs3T02bNr2rHdjZ2WnkyJGKj4/X3LlztXXrVuuy8uXLKyUlRampqapQ\noYK13dXV1dpuNptzrQsAAAAAwN3KN/ROmTJFs2fPtobcffv2adKkSfrkk0/ueifTpk1TcnKyevXq\nlev+4NTUVFWsWFFmszlXoP1ze2pqqrXtz8EYKA2qVDHL3Z335aVLZklXS7qMMon3EGxdaXx/3/jO\nwr3gOwtAWZRv6E1LS8s1qtusWbPbTmx1O59//rnOnj2rl156Sc7OzrKzs1OjRo20c+dO+fn5acuW\nLWrdurUaN26s2bNnKzMzUxkZGUpMTJSXl5eaN2+uhIQENW7cWAkJCdbLooHS4uLFFJ0/f62kyyhx\nFy9yFca94j0EW+buXqFUvr8vXkxRlZIuooziO+u/CP9A2ZFv6L3vvvsUHx+vzp07S5Li4+NVqVKl\nu+r88ccf16hRo9SvXz9lZWVpzJgxqlu3rsaMGSOLxSJPT089+eSTMplMCgkJUVBQkHWiKycnJwUG\nBioyMlJBQUFycnLSzJkzC3a0AAAAAIC/lXxD76RJkzRixAjrrMkeHh6aMWPGXXVerlw5zZkz55b2\nuLi4W9p69+6t3r1752pzcXHR3Llz72pfAAAAAAD8r3xDb+3atbVq1SqlpaUpJyfHOrEUAAAAAACl\n3d09e0g3ZlQGAAAAAKAssSvpAgAAAAAAKCr5ht7ly5cXRx0AAAAAABS6fEPv0qVLi6MOAAAAAAAK\nXb739D7wwAMKDQ1V06ZN5ezsbG0fOnRokRYGAAAAAEBB5Rt6mzVrVhx1AAAAAABQ6PINvUOHDlVa\nWpqSkpLk7e2t9PR0ZnIGAAAAAJQJ+d7Tu337dnXv3l2vvPKKLly4oE6dOum7774rjtoAAAAAACiQ\nfEPvrFmztGzZMlWsWFHVqlXTkiVLNH369OKoDQAAAACAAsk39Obk5Mjd3d36ul69ekVaEAAAAAAA\nheWuZm/etGmTTCaTrl69qqVLl6pGjRrFURsAAAAAAAWS70jvxIkT9cUXX+j3339X586d9fPPP2vi\nxInFURsAAAAAAAWS70ivm5ubZs2apZSUFDk4OMjFxaU46gIAAAAAoMDyDb1HjhzRyJEjdebMGUlS\n3bp1FR0drX/84x9FXhwAAAAAAAWR7+XNUVFRev3117Vjxw7t2LFDL7zwgt58883iqA0AAAAAgALJ\nN/RmZGSoffv21tePPfaYUlJSirQoAAAAAAAKQ56h98yZMzpz5owaNGighQsX6uLFi7py5YqWLFki\nX1/f4qwRAAAAAIB7kuc9vf369ZPJZJJhGNqxY4c+/vhj6zKTyaQxY8YUS4EAAAAAANyrPEPvxo0b\ni7MOAAAAAAAKXb6zNycmJmrlypW6cuVKrvapU6cWWVEAAAAAABSGfEPv0KFD9dRTT6l+/frFUQ8A\nAAAAAIUm39BbsWJFDR06tDhqAQAAAACgUOUbep955hnNnj1brVu3loPDf1dv2bJlkRYGAAAAAEBB\n5Rt6d+7cqQMHDmjv3r3WNpPJpNjY2CItDAAAAACAgso39B48eFDffPNNcdQCAAAAAEChsstvBW9v\nbx0+fLg4agEAAAAAoFDlO9L722+/6ZlnnpG7u7scHR1lGIZMJpM2bNhQHPUBAAAAAHDP8g298+bN\nK446AAAAAAAodPmG3l27dt22vWbNmoVeDAAAAAAAhSnf0Ltjxw7r3xaLRXv27JGvr6969OhRpIUB\nAAAAAFBQ+YbeqVOn5np9+fJlhYeHF1lBAAAAAAAUlnxnb/5frq6uOn36dFHUAgAAAABAocp3pDck\nJEQmk0mSZBiGTp06pfbt2xd5YQAAAAAAFFS+offVV1+1/m0ymVS5cmXVq1evSIsCAAAAAKAw5Bl6\nz5w5I0l68MEHb7usRo0aRVcVAAAAAACFIM/Q269fP5lMJhmGYW0zmUw6d+6csrKy9PPPPxdLgQAA\nAAAA3Ks8Q+/GjRtzvU5NTVV0dLS+++47TZo0qcgLAwAAAACgoO5q9ubt27erW7dukqS1a9eqbdu2\nRVoUAAAAAACF4Y4TWaWlpWnatGnW0V3CLgAAAACgLMlzpHf79u0KCAiQJH3xxRcEXgAAAABAmZPn\nSO+AAQPk4OCg7777Tlu3brW2G4Yhk8mkDRs2FEuBAAAAAADcqzxDL6EWAAAAAFDW5Rl6a9asWZx1\nAAAAAABQ6O5q9mYAAAAAAMoiQi8AAAAAwGYRegEAAAAANovQCwAAAACwWXlOZFVQWVlZevPNN3X6\n9GlZLBaFhYWpXr16GjlypOzs7OTl5aWoqChJ0sqVK7VixQo5OjoqLCxMHTp0UEZGhkaMGKHk5GSZ\nzWZNmzZNlStXLqpyAQAAAAA2qMhC79q1a1W5cmVNnz5dV69eVffu3dWgQQNFRETI19dXUVFRio+P\nV7NmzRQXF6c1a9YoPT1dgYGBatu2rZYvXy5vb28NHTpU69atU0xMjEaPHl1U5QIAAAAAbFCRXd7c\npUsXvfbaa5Kk7Oxs2dvb69ChQ/L19ZUk+fv7a9u2bdq/f79atGghBwcHmc1m1a5dW4cPH9aePXvk\n7+9vXXf79u1FVSoAAAAAwEYVWegtV66cXF1dlZKSotdee03h4eEyDMO6vHz58kpJSVFqaqoqVKhg\nbb+5TWpqqsxmc651AQAAAAD4K4rs8mZJ+v333zV06FD169dPXbt21YwZM6zLUlNTVbFiRZnN5lyB\n9s/tqamp1rY/B2OgtKhSxSx3d96bly6ZJV0t6TLKJN5DsHWl8f194zsL94LvLABlUZGF3gsXLmjg\nwIEaN26cWrduLUlq2LChdu3apZYtW2rLli1q3bq1GjdurNmzZyszM1MZGRlKTEyUl5eXmjdvroSE\nBDVu3FgJCQnWy6KB0uTixRSdP3+tpMsocRcvciXGveI9BFvm7l6hVL6/L15MUZWSLqKM4jvrvwj/\nQNlRZKF3wYIFunr1qmJiYjRv3jyZTCaNHj1akydPlsVikaenp5588kmZTCaFhIQoKChIhmEoIiJC\nTk5OCgwMVGRkpIKCguTk5KSZM2cWVakAAAAAABtVZKF39OjRt51tOS4u7pa23r17q3fv3rnaXFxc\nNHfu3KIqDwAAAADwN1BkE1kBAAAAAFDSCL0AAAAAAJtF6AUAAAAA2Kz/3979x9ZV138cf3WtFVi7\n6sKSfVHS8R1MQ1g2wOmGYZHBDIKJW7eRbVBE/cN/zMCpW4wgKswqCxINbaKZmojTMRMy0GjUOSio\nJM7hRmb8QcJmByyGpftu31ahdb3fP4xX5tg3G6Q77aePx189n55zz/s29zZ59py2ohcAAIBiiV4A\nAACKJXoBAAAolugFAACgWKIXAACAYoleAAAAiiV6AQAAKJboBQAAoFiiFwAAgGKJXgAAAIolegEA\nACiW6AUAAKBYohcAAIBiiV4AAACKJXoBAAAolugFAACgWKIXAACAYoleAAAAiiV6AQAAKJboBQAA\noFiiFwAAgGKJXgAAAIolegEAACiW6AUAAKBYohcAAIBiiV4AAACKJXoBAAAolugFAACgWKIXAACA\nYoleAAAAiiV6AQAAKJboBQAAoFiiFwAAgGKJXgAAAIolegEAACiW6AUAAKBYohcAAIBiiV4AAACK\nJXoBAAAolugFAACgWKIXAACAYoleAAAAiiV6AQAAKJboBQAAoFiiFwAAgGKNevTu2bMnnZ2dSZK+\nvr6sXr06N910Uz7/+c/X99m6dWuWLVuWlStX5rHHHkuSvPzyy1mzZk1uvPHGfPSjH83hw4dHe1QA\nAAAKM6rRu2nTptx+++0ZHh5OknR1dWXt2rX57ne/m5GRkWzfvj2HDh3KAw88kAcffDCbNm3Kvffe\nm+Hh4Xz/+9/PrFmzsnnz5nzgAx9IT0/PaI4KAABAgUY1etvb29Pd3V3f/v3vf593vOMdSZKFCxfm\n17/+dZ5++ulcfvnlaWpqSktLS2bMmJE//vGP2bVrVxYuXFjf98knnxzNUQEAACjQqEbv4sWL09jY\nWN+u1Wr1jydPnpyBgYEMDg6mtbW1vn7OOefU11taWo7bFwAAAE5H05k82aRJ/27swcHBTJkyJS0t\nLccF7SvXBwcH62uvDGMYK6ZObcm0aV6bhw+3JDla9RjjktcQpRuLr+9/fs/itfA9CxiPzmj0Xnzx\nxdm5c2fmzZuXxx9/PPPnz8/s2bNz3333ZWhoKC+//HKeffbZXHTRRbn00kvT29ub2bNnp7e3t35b\nNIwl/f0DefHF/616jMr197sT47XyGqJk06a1jsnXd3//QKZWPcQ45XvWv4l/GD/OaPSuX78+d9xx\nR4aHhzNz5sxce+21aWhoSGdnZ1avXp1arZa1a9emubk5q1atyvr167N69eo0Nzfn3nvvPZOjAgAA\nUIBRj963vOUt2bJlS5JkxowZeeCBB07YZ8WKFVmxYsVxa2eddVa++tWvjvZ4AAAAFGzU/08vAAAA\nVEX0AgAAUCzRCwAAQLFELwAAAMUSvQAAABRL9AIAAFAs0QsAAECxRC8AAADFEr0AAAAUS/QCAABQ\nLIKKJdsAAAkuSURBVNELAABAsUQvAAAAxRK9AAAAFEv0AgAAUCzRCwAAQLFELwAAAMUSvQAAABRL\n9AIAAFAs0QsAAECxRC8AAADFEr0AAAAUS/QCAABQLNELAABAsUQvAAAAxRK9AAAAFEv0AgAAUCzR\nCwAAQLFELwAAAMUSvQAAABRL9AIAAFAs0QsAAECxRC8AAADFEr0AAAAUS/QCAABQLNELAABAsUQv\nAAAAxRK9AAAAFEv0AgAAUCzRCwAAQLFELwAAAMVqqnoAgIlqZORY+voOVD3GuDRjxn+nsbGx6jEq\nd+zYsezf/2zVY5zU4cMt6e8fqHqME/T1/SVTqx4CgDNG9AJU5H/6n0vbU8szVfeeln0vJvuX7MrM\nmRdVPUrl9u9/Npse3Jep57ZXPcpJHK16gFe175nnMnd21VMAcKaIXoAKXTAtmfVfVU8x/vRXPcAY\nMvXc9kybfmHVY4wr/Yf+UvUIAJxBfqcXAACAYoleAAAAiiV6AQAAKJboBQAAoFiiFwAAgGKN6b/e\nXKvV8rnPfS5/+tOf0tzcnA0bNuT888+veiwAAADGiTF9pXf79u0ZGhrKli1b8olPfCJdXV1VjwQA\nAMA4Mqajd9euXbnyyiuTJHPmzMnevXsrnggAAIDxZEzf3jwwMJDW1tb6dlNTU0ZGRjJp0slb3T+c\nP31HDr+QfW+seorxZ9+LSVvVQ4wh3nunz3vvtfHeO5733unz3nttvPeA8aqhVqvVqh7iZL70pS9l\n7ty5ufbaa5Mk73nPe/LYY49VOxQAAADjxpi+vfmyyy5Lb29vkmT37t2ZNWtWxRMBAAAwnozpK72v\n/OvNSdLV1ZULLrig4qkAAAAYL8Z09AIAAMDrMaZvbwYAAIDXQ/QCAABQLNELAABAsUTvKKvVarnz\nzjuzcuXK3HzzzTlw4EDVI8GEsmfPnnR2dlY9Bkwo//jHP7Ju3brceOONueGGG7Jjx46qRwJgAmuq\neoDSbd++PUNDQ9myZUv27NmTrq6u9PT0VD0WTAibNm3Kww8/nMmTJ1c9CkwojzzySN785jfnnnvu\nyZEjR7JkyZIsWrSo6rEAmKBc6R1lu3btypVXXpkkmTNnTvbu3VvxRDBxtLe3p7u7u+oxYMJ53/ve\nl1tvvTVJMjIykqYmP2MHoDqid5QNDAyktbW1vt3U1JSRkZEKJ4KJY/HixWlsbKx6DJhwzj777Jxz\nzjkZGBjIrbfemo9//ONVjwTABCZ6R1lLS0sGBwfr2yMjI5k0yZcdgLIdPHgwH/zgB7N06dJcd911\nVY8DwASmvkbZZZddlt7e3iTJ7t27M2vWrIongomnVqtVPQJMKIcOHcpHPvKRfOpTn8rSpUurHgeA\nCc4v2YyyxYsX51e/+lVWrlyZJOnq6qp4Iph4Ghoaqh4BJpSvf/3rOXr0aHp6etLd3Z2GhoZs2rQp\nzc3NVY8GwATUUHMJBAAAgEK5vRkAAIBiiV4AAACKJXoBAAAolugFAACgWKIXAACAYoleAAAAiiV6\nAcaA559/PosWLTph/e1vf3uS5LnnnstnPvOZJMnevXtzxx13JEk6Ozuzc+fO49a2bt2aH//4x6d0\n3nXr1uUb3/jGCeuLFy/On//855Me9+lPfzrbtm07pXMAAFRJ9AKMEQ0NDSdde/7553PgwIEkySWX\nXJK77rrruP1eufa73/0uQ0NDp3TOjo6O/PCHPzxu7be//W3a2toya9as034OAABjjegFGAc2bNiQ\nvXv35q677spvfvObdHZ2Hvf5f609+eST2bFjR772ta/lF7/4RebPn5/BwcEk/wzn97///ccdN3/+\n/Pz973/PM888U1975JFHsnz58vrjrl69Oh0dHbnmmmvy05/+9Ljj//MK9f3335/7778/SfL4449n\nxYoV6ejoyJo1a3LkyJEkyZe//OUsWbIkHR0d9X0BAEaL6AUYB26//fZccskl9VuYT3ZVeMGCBVm0\naFHWrFmTq6++OldddVU9VLdt25YlS5accNzSpUvrV3uHhoby6KOP1uN48+bN2bBhQx566KHcfffd\n6e7uftXz/qf+/v585Stfybe+9a089NBDefe7352NGzfmhRdeyBNPPJFt27Zly5Yt6evrO+Wr0gAA\nr0VT1QMAkEya9Oo/g3y1oDwd/7qa2tHRkR/96Ef5zne+c8I+S5cuzS233JK1a9dmx44dWbBgQVpa\nWpIkGzduzKOPPpqf/OQn2bNnT/72t7+d0nmffvrpHDx4MDfffHNqtVpGRkbypje9KdOnT89ZZ52V\nVatW5aqrrsptt92W5ubm1/UcAQD+P6IXYAyYMmVKBgYGjls7dOhQpkyZ8roed968efnrX/+an//8\n5zn//PMzbdq0E/Y577zz8ta3vjVPPfVUHn744dxyyy31z61atSoLFizIO9/5zixYsCCf/OQnjzu2\noaEhtVqtvj08PJw3vOENOXbsWC6//PL09PQk+ecV5MHBwUyaNClbt27Nzp0709vbmxtuuCGbN29O\ne3v763qeAAAn4/ZmgDFg8uTJaW9vz89+9rP62tatW3PFFVckSRobG3Ps2LFTeqzGxsYMDw/Xt5cs\nWZK77747HR0dJz1m2bJl+cEPfpC+vr68613vSpIcOXIkfX19WbNmTRYuXJhf/vKXGRkZOe64KVOm\n5OjRozl8+HCGhobyxBNPJEnmzJmT3bt3Z//+/UmS7u7u3HPPPfnDH/6Qm266KfPmzcu6dety4YUX\nZt++faf0vAAAXgtXegHGiI0bN+bOO+9MT09PhoeH87a3vS2f/exnkyQzZ87M0aNHs379+ixbtqx+\nzKvd/nzFFVfkvvvuS1tbW9773vfmuuuuy7e//e1cffXVJz33Nddcky984Qv50Ic+VF9ra2vL8uXL\nc/3116e1tTVz587NSy+9lJdeeqm+T0tLSz784Q9n2bJlOe+88zJnzpwkybnnnpsvfvGLue222zIy\nMpLp06dn48aNaWtry6WXXprrr78+Z599di6++OIsXLjwdX/tAABOpqH2yvvSAChKrVbL9773vezf\nv7/+f34BACYSV3oBCvaxj30sBw8ezDe/+c2qRwEAqIQrvQAAABTLH7ICAACgWKIXAACAYoleAAAA\niiV6AQAAKJboBQAAoFiiFwAAgGL9H/RF6GF4V0+xAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x119c7b710>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Play the Game\n", "N = 10000\n", "agent1 = ml.QLearn()\n", "agent2 = c.Chaos()\n", "game = Coordination(agent1, agent2)\n", "game.play(N)\n", "\n", "# Get Data from Game\n", "agent1_util_vals = Counter(game.data['A'])\n", "agent2_util_vals = Counter(game.data['B'])\n", "a1_total_score = sum(game.data['A'])\n", "a2_total_score = sum(game.data['B'])\n", "\n", "\n", "# Plot the results\n", "x1, y1, x2, y2 = [], [], [], []\n", "\n", "for i, j in zip(agent1_util_vals, agent2_util_vals):\n", " x1.append(i)\n", " y1.append(agent1_util_vals[i])\n", " x2.append(j)\n", " y2.append(agent2_util_vals[j])\n", "\n", "fig, ax = plt.subplots(figsize=(12,6))\n", "width = 0.35\n", "a1 = ax.bar(x1, y1, width, color='#8A9CEF')\n", "a2 = ax.bar(np.asarray(x2)+width, y2, width, color='orange')\n", "\n", "_ = ax.set_title('QLearning Agent Vs Chaos Agent')\n", "_ = ax.set_ylabel('Number of Games')\n", "_ = ax.set_xlabel('Utility Values')\n", "ax.set_xticks(np.add(x2,width/2))\n", "_ = ax.set_xticklabels(('0', '1', '2'))\n", "_ = ax.legend((a1[0], a2[0]), ('QLearning Agent\\nTotal Utility Score: {}'.format(str(a1_total_score)),\n", " 'Chaos Agent\\nTotal Utility Score: {}'.format(str(a2_total_score))), loc=1, bbox_to_anchor=(1.35, 1))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is different from Prisoner's Dilema, the QLearning Agent is trying to cooperate with the chaos agent but can never predict which movie he is going to." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## QLearning Vs QLearning" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "scrolled": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Playing Game: 100%|██████████| 10000/10000 [00:00<00:00, 10869.86it/s]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8MAAAGJCAYAAACuKeEVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8jOf+//H3ZCEiFBFqa5EmWgchtqBIi1MtIi1aSZpo\naQ9a7bdiiX2Lfe+viihaidiC4BxaPYSopUhOnVJr7VuDqCUJ2WZ+f3iYIyVGNZOIeT3/kbnu676u\nzz2TOafvXPdiMJlMJgEAAAAAYEPsCroAAAAAAADyG2EYAAAAAGBzCMMAAAAAAJtDGAYAAAAA2BzC\nMAAAAADA5hCGAQAAAAA2hzAM4ImRnZ2tefPmyc/PT35+furQoYPCw8N17do1c5/g4GB9//33+V7b\ngQMH9H//9395Pu4nn3yiJk2aKD09Pc/HvteXX36puLi4+9pDQkI0b968+9oXLlyojz766E/NsXv3\nbnXv3l1vvPGG/P391aNHDyUkJJi3x8bGqlevXn+++DzQs2dPHT9+PE/HjIuL04svvqgNGzbk6bh/\ntH//fo0cOdKqcwAAYIsIwwCeGP3799ehQ4e0ZMkSrVu3TmvWrFGFChX0zjvvKDU1tUBrq1Wrlj7/\n/PM8HfPSpUtKSEiQl5eXYmNj83TsP/rxxx+VlZV1X3tQUJBWr159X3tMTIyCg4Mfefz4+HgNHjxY\nn332mTZs2KA1a9bo008/1cCBAxUfH/+Xas8LERERcnd3z9Mxly1bJj8/P0VGRubpuH907NgxJSUl\nWXUOAABskUNBFwAA0p3Vr4SEBG3evFlFihSRJNnb2+uDDz7Qf/7zHy1btkw9evR46BhbtmzRnDlz\nlJWVJScnJw0cOFB169ZVcnKyRowYoeTkZF25ckUVK1bUzJkzVaZMGb366qvy8vLS0aNH1bdvX40f\nP15vvfWWdu3apYsXL+r111/XgAEDtGfPHoWHh+uf//ynBg8erOLFi+vo0aP67bffVL16dc2YMUPF\nihVTfHy8pk6dKgcHB7344ovauXOnli5dqooVK95X74oVK9S0aVO99tprmjlzprp27Wre9rBxVq5c\nqSVLlkiSSpUqpeHDh6tatWq51rV69WodOHBAkydPlp2dnVq3bm2ep3Xr1ho/frwSExNVv359SdKe\nPXskSU2aNFFaWpoGDx6sM2fOyGAwqFatWhozZsx9xzJlyhQNGTJEderUMbd5eXlpyJAhmjx5slq2\nbPnQzy4pKUnh4eG6ePGisrKy1K5dO/3jH/+QJM2dO1ebN29WRkaGbt26pYEDB6p169aaNWuWfvrp\nJ125ckU1atTQc889p/Pnz+vSpUu6cOGCypQpo5kzZ8rNzU2vvvqqvvjiC6WmpmrGjBmqUqWKjh07\npszMTI0YMUKNGjXS1atXNWTIEJ09e1alSpWSq6urPD091adPn/vqPXv2rPbs2aO4uDi9/vrr+u9/\n/ysvLy9Jeug4x48f1/jx43Xt2jUZjUYFBwfrrbfe0p49ex5Y13PPPacvvvhCKSkpGjJkiMaPH//Q\n9xEAADw6VoYBPBESExNVq1YtcxC+V7NmzfSf//znofufPn1a06dP11dffaXVq1drzJgx6tOnj27f\nvq3169erXr16WrZsmTZt2iQnJyetW7fOvK+np6fWr19vDolpaWmKjo7W0qVLtXjxYp0/f/6++Q4e\nPKiFCxdqw4YNunTpkr777jtdu3ZNAwcO1LRp0xQbG6vGjRvr0qVLD6w3OztbK1askJ+fn3x9fZWc\nnKwffvhBkh46zt69e7VmzRotXbpUq1evVo8ePXKEtQfVFRQUpFq1aplD5L3s7e3VpUsXrVy50ty2\nYsUKBQUFSZL+/e9/Ky0tTbGxseY+Z8+ezTHGjRs39Ouvv6phw4b3HWfTpk114sQJ3bx5M5dP7o6B\nAweqc+fOWrVqlWJiYrRjxw599913unDhgn788UdFR0dr7dq1+uyzz/T//t//M+938eJFrVmzRpMn\nT5Z05/foiy++0LfffquSJUtq+fLl9821f/9+9ejRQ7GxserUqZO++OILSdLYsWPl4eGh9evXa+bM\nmfrpp59yrXf58uXy9fVVmTJl1L59ey1atMi8bdy4cQ8cJzs7W//3f/+n/v37a9WqVYqKitKCBQv0\n888/51rXs88+q08//VT169cnCAMAkMdYGQZQKGRnZz90+44dO3TlyhW99957MplMkiQHBwedPn1a\nISEhSkhI0DfffKNTp07p119/Na/iSVKDBg1yjNWqVStJUvny5eXq6qrr16/fN1/z5s3l4HDnf0I9\nPT11/fp1JSQkyMPDQ56enpIkf39/jR079oH1btq0SUajUc2bN5ednZ3eeOMNffPNN2revPkDxxk3\nbpwkaevWrTpz5oy6du1qPs4bN27oxo0budZlyTvvvKP27dsrLS1NGRkZ2rFjh0aNGiVJql+/vmbO\nnKng4GA1a9ZM3bp1U5UqVe4bw2AwPHSOh31+t27d0t69e3Xjxg3NnDnT3Hbo0CG1bdtWEydO1Nq1\na3XmzBnt27dPaWlp5n29vLxyzN2oUSM5OztLkmrWrJnjevO7KlasqBo1apj73D1Ffdu2beaf3dzc\n9Nprrz2w3oyMDK1atUoTJkyQJHXs2FGBgYFKSkpS+fLlFR8f/8BxTp06pTNnzmjIkCHmzy49PV0H\nDx5U9erVc60LAABYB2EYwBPB29tb8+fPV3p6uooWLarMzEylpqaqVKlS+vHHH+Xt7f3Q/Y1Go5o0\naaLp06eb23777TeVK1dOU6ZM0YEDB9SpUyf5+PgoKyvLHEYkmcPTXU5OTjle39v3QX0MBoNMJpPs\n7e1lNBpz9LOze/AJOMuWLVN6erratGkjScrMzNTly5d1/PjxB45zN/AZjUZ17NhR/fr1M29LSkpS\nyZIlc63LEjc3NzVt2lTr169XWlqaXnvtNbm4uEiSKleurO+//1579uzRjz/+qG7dumnEiBH6+9//\nbt6/ZMmScnd31549e8zHc+nSJZUrV067du3Sc889p1KlSuU6/92gvHz5cvOZAb///rucnJx08OBB\nffTRR3rvvff08ssvq2HDhho9erR53+LFi+cY64/H/yBFixZ94Htkb2+fo98fX9/17bff6saNGxoz\nZozCw8NlMplkMBgUFRWl/v375zpOdna2SpYsmSPkJicnq0SJEtq3b1+udQEAAOvgNGkAT4Q6deqo\ncePGGjRokG7cuKEzZ84oKChIn376qY4eParAwEBz3weFBB8fH+3YsUMnTpyQdOea244dO5pXOrt1\n6yY/Pz+VLl1aO3fuvC9s5gVvb2+dPn1aR48elSRt3LhRN2/evC+UnTx5Unv37lVsbKw2b96szZs3\na9u2bapfv74WLVr00HGaNWum9evX6/Lly5Kk6OhovffeexZrc3BweOANtO4KCAjQunXrtHbtWvMp\n0pK0dOlSDRo0SM2aNVO/fv3UvHlzc133GjBggCZOnGg+5XfSpEl69913NW7cOA0cOPChtbm4uMjL\ny0sLFiyQdGelOyAgQJs3b9bevXtVu3Ztvffee2rYsKF5Rd0aXnnlFfOp4L///rv+/e9/PzBQL126\nVL1791ZcXJw2b96suLg4jRo1SjExMbp161au41SrVk1FixY1n6J/8eJFtW/fXr/88stD67K3t3/o\nZwcAAB4PK8MAnhhTpkzRggUL9O6778pkMikrK0sODg4qXry4Nm3aJH9/f0lSWFiYBg8ebF6RCwoK\nUr9+/TRmzBiFhoZKuhMg5syZIycnJ3388ceaNGmSvvzySzk4OKh+/fo6ffq0pPtXDy29fphnnnlG\nU6dO1cCBA2VnZ6datWrJ3t7+vpXmZcuWqU2bNqpcuXKO9o8//li9e/dWaGhoruO8/PLL+uCDD9S9\ne3fZ2dnJxcVFs2bNsljbK6+8okmTJikjI8P8Pt6rUaNGunbtmkqXLi0PDw9zu7+/v/bu3as33nhD\nxYoVU6VKldStW7f79m/ZsqUmTZqkmTNnKikpSSaTSa6urqpUqZJ27txpvp54+/bt5lV+k8mkZ555\nRlu3btXUqVMVHh6uDh06KCsrSx06dFD79u2VnJys77//Xu3atVORIkXk4+Oja9eu5ThV+lE8yuc4\naNAgDRs2TH5+fipVqpQqVaqkYsWK5ehz+PBhHTlyRHPnzs3R7u/vr7lz5yo2NjbXcRwdHTV79myN\nHTtW8+fPV3Z2tvr27at69eqZb1r2IPXq1dPMmTP1ySefmK9vBgAAf53BxHlYAJ5wKSkp2r9/v5o0\naVLQpTxUSkqK5syZo08//VRFixbVwYMH1bNnT/ONsfJ7nCfFDz/8oEaNGuU4DfhJtGTJEv3tb3+T\nl5eXMjIyzGcmNG/evEDGAQAA1mX1leH//ve/mjp1qqKionTmzBkNGjRIdnZ28vDw0MiRIyXduXPp\n8uXL5ejoqF69esnX11fp6ekaMGCAkpOT5eLiookTJ6p06dLat2+fxo8fLwcHBzVt2vSBj7wA8HRx\ncXF54oOwdKdOR0dHderUSQ4ODnJ0dHysZxPn1ThPisISAl944QWNGTNGRqNRWVlZatu27WPVnlfj\nAAAA67LqyvD8+fO1du1aFS9eXMuWLVPv3r3Vo0cPNWjQQCNHjlTz5s1Vt25dvf/++4qNjdXt27cV\nEBCg1atXKzo6WikpKerTp482bNign376SUOHDpW/v79mzZqlypUr6x//+IdCQ0P14osvWusQAAAA\nAABPIaveQOv555/Xl19+aX79yy+/mB9h0qJFC+3cuVM///yz6tevLwcHB7m4uKhq1ao6fPiwEhMT\n1aJFC3PfH3/8USkpKcrMzDRfZ/fyyy9r586d1jwEAAAAAMBTyKphuE2bNjkeMXHvInTx4sWVkpKi\n1NRUlShRwtzu7Oxsbr/7aI/ixYvr5s2bOdrubQcAAAAA4M/I10cr3fu8zdTUVJUsWVIuLi5KSUl5\nYHtqaqq5rUSJEuYA/ce+lmRlZefhUQAAAAAACrt8fbRSzZo1tXfvXjVs2FDbtm2Tj4+PateurRkz\nZigjI0Pp6ek6ceKEPDw8VK9ePcXHx6t27dqKj49XgwYN5OLioiJFiujs2bOqXLmytm/f/kg30Pr9\n9z/3CI785OZWQpcvs7oNFAS+f0DB4LuHp5mbWwnLnQA8EfI1DIeFhWn48OHKzMyUu7u72rZtK4PB\noODgYAUGBspkMik0NFRFihRRQECAwsLCFBgYqCJFimjatGmSpNGjR6t///4yGo1q1qyZ6tSpk5+H\nAAAAAAB4CtjEc4af5L8+89dxoODw/QMKBt89PM1YGQYKj3y9ZhgAAAAAgCcBYRgAAAAAYHMIwwAA\nAAAAm0MYBgAAAADYHMIwAAAAAMDmEIYBAAAA4BEcOHBAPXr0UFBQkAICAjRz5kxlZWVJkgYPHqzt\n27dbdf4rV65ozJgxf3mcjIwMvfzyy1q4cGEeVPU/169f17/+9a88HdOaCMMAAAAAYEFSUpIGDhyo\nkSNHKjo6WkuXLpWjo6PGjx+fbzWULVtWI0aM+MvjbNy4Ue3atVNsbGweVPU/hw8fVlxcXJ6OaU0O\nBV0AAAAAADzp1q5dq7ffflvPPfecue3jjz9W69atlZGRket+06dPV2JiorKzs/X+++/rtdde0969\nezVr1iyZTCalpaVp2rRpcnBwUK9evVS6dGm1aNFC8fHxeumll3Ts2DGlpqbq888/l9FoVGhoqJYv\nXy4/Pz81atRIR44ckcFg0OzZs+Xi4qLRo0frl19+kaurq86dO6eIiAhVrFgxR00xMTEaOnSokpOT\nFR8fr5YtW0rSA/e1s7PT8OHDlZ6eLicnJ4WHhysrK0v9+vVThQoVdPr0aXl5eWnkyJGKiIjQkSNH\nFBMToy5duljng8hDrAwDAAAAgAXnzp1T5cqV72svW7asLl++/MB9tm3bpvPnzys6OlqRkZGaM2eO\nUlJSdOzYMU2dOlWRkZFq06aNvvvuO0lScnKyvv76a33wwQeSJC8vL3399ddq0qSJ+fRjg8EgSUpJ\nSVGHDh0UFRWlcuXKadu2bdq8ebOuX7+uFStWaNy4cUpKSrqvptOnT+v27duqUaOGOnXqpMWLF0tS\nrvtOmjRJISEhioyM1Pvvv68pU6ZIkk6dOqXx48dr5cqVio+PV3Jysnr16iUfH59CEYQlVoYBAAAA\nwKKKFSvq7NmzOdqMRqMuXLggV1fXB+5z9OhRHThwQCEhITKZTMrOzta5c+dUvnx5hYeHq3jx4kpK\nSpK3t7ckqXLlyrK3tzfv/9JLL0mSKlSooCtXrtw3/r3bMzIydO7cOdWtW1eSVKZMGVWrVu2+fWJi\nYnTr1i19+OGHMhqN2rdvn86ePavjx4/n2Ld69ermY4iIiNBXX30lk8kkR0dHSdLzzz+vYsWKSZLK\nlSun9PT0R3wnnxyEYQAAAACFSnZ2to4fP56nY7q7u+cIon/k7++vHj16qFWrVipVqpT69u2r8uXL\ny9fXV05OTpIkk8mUY5/q1aurcePGGjNmjEwmk2bPnq0qVaqoe/fu2rRpk5ydnTVo0CBz/7urvrm9\ntqRGjRpau3atQkJCdP36dZ06dSrH9qysLG3YsEFr165ViRIlJEkRERGKjo5WkyZNtGbNGvO+J0+e\nNL8v3bt3V926dXXixAklJCTcN+/d47azs1N2dvafqrkgEYYBAAAAFCrHjx/X5Dn7Vabs83ky3tUr\npzWwt+Tp6Zlrn2effVZTpkzR6NGjdevWLd2+fVv29vZydXXV9evXJUnjxo2Ti4uLTCaTqlevrilT\npmjPnj0KCgrSrVu31Lp1axUvXlwdO3ZUYGCgnJ2dVbZsWV26dElSzvBrKQg/qG/Lli0VHx+vgIAA\nlS1bVsWKFZODw/8i35YtW1SrVi1zEJakN998U/7+/vrss88euO+AAQM0atQoZWRkKD09XUOHDs11\n/ipVqujYsWOKjIxUSEjIw9/0J4DB9Mc/XzyFLl++WdAl5MrNrcQTXR/wNOP7BxQMvnt4mrm5lbDc\nCX/Z0aNHNT/mhtyefSFPxrv826/6oEvJh4bhh9VSpUoV8ynDBenEiRM6fPiw3njjDV27dk3t27fX\nli1bzKc2W2vfwoqVYQAAAAB4TI8ToK2lQoUKmjp1qhYtWiSj0agBAwY8cpj9K/sWVoRhAAAAAHgK\nFCtWTLNnz873fQsrHq0EAAAAALA5hGEAAAAAsGDSpEkKDg7W66+/rldeeUUhISH67LPPcu1//vx5\nbd26NdftZ86cUWBgYI627OxstWzZMkfb1q1bNWzYMEnSxo0blZycrKSkJI0dO1bSnZtmGY1GzZ07\nVwcPHlR6erpWrlz5SMd09epVffLJJ+rRo4e6du2qESNGKCMj45H2zSvJyclq06aNjEajJOn27dvq\n06ePgoKC1KtXL127dk3SnWc2+/v7KygoSPPmzcsxxsmTJ9WxY8c/PTenSQMAAAAodK5eOZ3HY9V+\naJ+wsDBJUmxsrE6ePKnQ0NCH9t+5c6fOnz8vX1/fXPs86I7RD2tbtGiRatasqSpVqpgD8t1tvXr1\nkiSdPn1aq1evVufOnR9anyTNmzdPLVu2NPcdO3asYmJiFBQUZHHfvBAfH6+ZM2cqOTnZ3LZ48WLV\nqlVLvXr10rp16xQREaEBAwZoxIgRWrp0qSpUqKDQ0FD9/PPPqlOnjmJjYxUVFWW+o/efQRgGAAAA\nUKi4u7trYO+8HLG23N3dH3vv8ePHa9++fTIYDPLz89Pbb7+tBQsWKCMjQ/Xq1VPRokU1Z84cGY1G\n3b59W9OnT//Tc8TFxeno0aPq37+/Jk6cqKFDh2rJkiXm7QMGDNBbb72ldevW6dixY4qIiNDmzZs1\nefJkVa1aVVu2bNHOnTvNj0aSJFdXV3377beqVKmSvL29NXjwYPOzlmfNmqUtW7bIaDQqKChInTt3\n1ldffaWNGzfKwcFBjRs3Vt++fTVz5kzt379faWlpmjhxorZu3apvv/1WktSxY0cFBARo586d2r9/\nv3r27JnjmBwdHbVo0SL5+fmZ2xITE9WnTx9JUosWLbRw4UJduXJFZcqUUYUKFSRJ3t7eSkxMVJ06\ndVS6dGlFRUWpXbt2f/o9JQwDAAAAKFTs7e2fmLs4b9q0SZcvX9aKFSuUmZmprl27ysfHRz169NCF\nCxfUsmVLRUdHa8aMGSpTpoy+/PJLbdy4UX//+98feQ6DwaBXX31Vnp6emjRpkkwmU67PIe7du7fO\nnDmjnj17qkyZMoqNjVXfvn21evVqffLJJzn6fvDBBypdurTmz5+v/fv3q2HDhhoxYoQuXbqk3bt3\na9WqVcrMzNT06dN16NAhxcXFKSYmRgaDQR9//LF++OEHSXfuqB0WFqYjR45o06ZNWrZsmYxGo7p1\n66aXX35ZTZs2VdOmTe+r9W7bvU/7TUlJMT8HuXjx4rp586bc3NyUmpqqM2fOqGLFitq2bZu8vLwk\nSb6+vsrOzn7k9/JeNhGGjx8/VtAl5Or331109WpKQZdxnzu/UAbZ23NZ+eOoWrW6+a9qAAAAeHqd\nOHFCDRo0kHRnpdPLy0snTpzI0adcuXIaPXq0nJ2d9dtvv6lx48YPHMve3v6+YJeWlqaiRYs+Vm3t\n2rVTly5dFBwcrOTk5Pv+gLBr1y516tRJnTt3VmZmpiIiIjRx4kS98sorqlOnjvmYwsLCtH79etWt\nW9ccwr29vfXrr79KkqpXry5JOnbsmM6dO6eQkBCZTCbduHFDp0+fVpUqVR5a573B3sXFRampqZKk\n1NRUlSxZUgaDQRMmTNDQoUNVrFgxubu7q3Tp0o/1ntzLJsLw/OUnVabs8wVdRi5uFHQBD3Ty2I/6\n4NlPVc2toCspfE5elk75J8rd3aOgSwEAAICVVa9eXRs2bFBQUJAyMzO1b98+de3aVTdu3DDfFGr4\n8OHaunWrnJyc1L9/f/NK6L0rondVrFhRCQkJ5oD9ww8/qEmTJpIkOzs7GY3GHOHxj2MYDAZzoHZ2\ndpa3t7cmTJggf3//++b65ptvdPXqVbVv316Ojo5yd3fXuXPn9MILL2j16tWSpIyMDPXs2VN9+/ZV\ndHS0eb6EhAS988475tPD774XNWrU0Ny5cyVJX3/9tTw8LP838b3HUL9+fcXHx+ull15SfHy86tev\nL+nONdjffPON7Ozs9NFHH+ntt9/OdYxHZRNhuEzZ5+X27AsFXUahcvXKaVVzkzwrFHQlhdPVgi4A\nAAAA+aJ169bau3evunbtqszMTPn5+cnT01MZGRmaP3++atasqQ4dOiggIEDFihWTq6urLl26JOnB\nN8saO3asRo8eraysLBmNRnl7e6tDhw6S7qzG9u/fX+Hh4eb+d8e4+6+bm5tu376tGTNmqG/fvurS\npYu6deumMWPGPHCuUaNGaeHChXJycpKrq6tGjRolV1dX+fj4qGvXrpKkoKAg1alTR61atdI777wj\nk8mkRo0aydfXV/v27TOPV7NmTXl7eysgIEDp6eny9vZW+fLlc71m+I/HIEmBgYEaNGiQAgIC5OTk\npGnTpkmSypYtq06dOsnJyUn+/v6qVq1armM8KoPpcSJ0ITNwXAJh+E86cmCzBlbuTBh+DEcvSleb\nsTJcGLi5ldDlyzcLugzA5vDdw9PMza1EQZcA5PDTTz9p5cqVGjduXEGX8sSxiZVhAAAAALA1kZGR\nWrNmjT7//POCLuWJRBgGAAAAgKdQSEiIQkJCCrqMJxa3CgYAAAAA2BzCMAAAAADA5hCGAQAAAAA2\nhzAMAAAAALA5hGEAAAAAeAQHDhxQjx49FBQUpICAAM2cOVNZWVmSpMGDB2v79u1Wnf/KlSsPfF7w\nn5WRkaGXX35ZCxcuzIOq/uf69ev617/+ladjWhNhGAAAAAAsSEpK0sCBAzVy5EhFR0dr6dKlcnR0\n1Pjx4/OthrJly2rEiBF/eZyNGzeqXbt2io2NzYOq/ufw4cOKi4vL0zGtiUcrAQAAAIAFa9eu1dtv\nv63nnnvO3Pbxxx+rdevWysjIyHW/6dOnKzExUdnZ2Xr//ff12muvae/evZo1a5ZMJpPS0tI0bdo0\nOTg4qFevXipdurRatGih+Ph4vfTSSzp27JhSU1P1+eefy2g0KjQ0VMuXL5efn58aNWqkI0eOyGAw\naPbs2XJxcdHo0aP1yy+/yNXVVefOnVNERIQqVqyYo6aYmBgNHTpUycnJio+PV8uWLSXpgfva2dlp\n+PDhSk9Pl5OTk8LDw5WVlaV+/fqpQoUKOn36tLy8vDRy5EhFREToyJEjiomJUZcuXazzQeQhVoYB\nAAAAwIJz586pcuXK97WXLVtWly9ffuA+27Zt0/nz5xUdHa3IyEjNmTNHKSkpOnbsmKZOnarIyEi1\nadNG3333nSQpOTlZX3/9tT744ANJkpeXl77++ms1adLEfPqxwWCQJKWkpKhDhw6KiopSuXLltG3b\nNm3evFnXr1/XihUrNG7cOCUlJd1X0+nTp3X79m3VqFFDnTp10uLFiyUp130nTZqkkJAQRUZG6v33\n39eUKVMkSadOndL48eO1cuVKxcfHKzk5Wb169ZKPj0+hCMISK8MAAAAAYFHFihV19uzZHG1Go1EX\nLlyQq6vrA/c5evSoDhw4oJCQEJlMJmVnZ+vcuXMqX768wsPDVbx4cSUlJcnb21uSVLlyZdnb25v3\nf+mllyRJFSpU0JUrV+4b/97tGRkZOnfunOrWrStJKlOmjKpVq3bfPjExMbp165Y+/PBDGY1G7du3\nT2fPntXx48dz7Fu9enXzMUREROirr76SyWSSo6OjJOn5559XsWLFJEnlypVTenr6I76TTw7CMAAA\nAIBCJTs7W8ePH8/TMd3d3XME0T/y9/dXjx491KpVK5UqVUp9+/ZV+fLl5evrKycnJ0mSyWTKsU/1\n6tXVuHFjjRkzRiaTSbNnz1aVKlXUvXt3bdq0Sc7Ozho0aJC5/91V39xeW1KjRg2tXbtWISEhun79\nuk6dOpVje1ZWljZs2KC1a9eqRIkSkqSIiAhFR0erSZMmWrNmjXnfkydPmt+X7t27q27dujpx4oQS\nEhLum/eugOGSAAAgAElEQVTucdvZ2Sk7O/tP1VyQCMMAAAAACpXjx4/r5MIaquaWN+OdvCyp+xF5\nenrm2ufZZ5/VlClTNHr0aN26dUu3b9+Wvb29XF1ddf36dUnSuHHj5OLiIpPJpOrVq2vKlCnas2eP\ngoKCdOvWLbVu3VrFixdXx44dFRgYKGdnZ5UtW1aXLl2SlDP8WgrCD+rbsmVLxcfHKyAgQGXLllWx\nYsXk4PC/yLdlyxbVqlXLHIQl6c0335S/v78+++yzB+47YMAAjRo1ShkZGUpPT9fQoUNznb9KlSo6\nduyYIiMjFRIS8tD6nwQG0x//fPEUGjguQW7PvlDQZRQqRw5s1sDKneVZoaArKXyOXpSuNkuUu7tH\nQZcCC9zcSujy5ZsFXQZgc/ju4Wnm5lbCcif8ZUePHpX+WSPP/lv16EVJHR4ehh9WS5UqVcynDBek\nEydO6PDhw3rjjTd07do1tW/fXlu2bDGf2mytfQsrVoYBAAAA4DE9ToC2lgoVKmjq1KlatGiRjEaj\nBgwY8Mhh9q/sW1gRhgEAAADgKVCsWDHNnj073/ctrHi0EgAAAABYMGnSJAUHB+v111/XK6+8opCQ\nEH322We59j9//ry2bt2a6/YzZ84oMDAwR1t2drb5mb93bd26VcOGDZMkbdy4UcnJyUpKStLYsWMl\n3blO2Gg0au7cuTp48KDS09O1cuXKRzqmq1ev6pNPPlGPHj3UtWtXjRgx4qHPTLaG5ORktWnTRkaj\nMUf7d999p4EDB5pfb9++Xe+8846Cg4PVt29fc53h4eHq1KmTunXrpv379/+puVkZBgAAAAALwsLC\nJEmxsbE6efKkQkNDH9p/586dOn/+vHx9fXPt86CbZD2sbdGiRapZs6aqVKliDsh3t/Xq1UvSnecI\nr169Wp07d7Z4TPPmzVPLli3NfceOHauYmBgFBQVZ3DcvxMfHa+bMmUpOTs7RPnbsWO3YsUO1a9c2\nt4WHh2v58uUqVaqUJk+erFWrVsnNzU3nz5/XqlWrdPXqVfXs2VMxMTGPPD9hGAAAAEChc/Jy3o51\n/xN5H9348eO1b98+GQwG+fn56e2339aCBQuUkZGhevXqqWjRopozZ46MRqNu376t6dOn/+k54uLi\ndPToUfXv318TJ07U0KFDtWTJEvP2AQMG6K233tK6det07NgxRUREaPPmzZo8ebKqVq2qLVu2aOfO\nnea7QUuSq6urvv32W1WqVEne3t4aPHiw+fFSs2bN0pYtW2Q0GhUUFKTOnTvrq6++0saNG+Xg4KDG\njRurb9++mjlzpvbv36+0tDRNnDhRW7du1bfffitJ6tixowICArRz507t379fPXv2zHFMjo6OWrRo\nkfz8/MxtJpNJDRs2VKtWrRQbG2tuj46OVqlSpSTdWUEvWrSojh8/rubNm0u682zk7OxsXbt2zdzP\nEsIwAAAAgELF3d1d6n4kz8ardnfMx7Bp0yZdvnxZK1asUGZmprp27SofHx/16NFDFy5cUMuWLRUd\nHa0ZM2aoTJky+vLLL7Vx40b9/e9/f+Q5DAaDXn31VXl6emrSpEkymUy5Pnqpd+/eOnPmjHr27Kky\nZcooNjZWffv21erVq/XJJ5/k6PvBBx+odOnSmj9/vvbv36+GDRtqxIgRunTpknbv3q1Vq1YpMzNT\n06dP16FDhxQXF6eYmBgZDAZ9/PHH+uGHHyTduYlYWFiYjhw5ok2bNmnZsmUyGo3q1q2bXn75ZTVt\n2lRNmza9r9YHtRkMBr322mvatWtXjvayZctKkr799lv99NNPGjBggHbs2KGlS5fqnXfe0blz53Ty\n5EndunWLMAwAAADg6WRvb//E3MX5xIkTatCggaQ7K51eXl46ceJEjj7lypXT6NGj5ezsrN9++02N\nGzd+4Fj29vbKzs7O0ZaWlqaiRYs+Vm3t2rVTly5dFBwcrOTk5Pves127dqlTp07q3LmzMjMzFRER\noYkTJ+qVV15RnTp1zMcUFham9evXq27duuYQ7u3trV9//VWSVL16dUnSsWPHdO7cOYWEhMhkMunG\njRs6ffq0qlSp8lj1/9GCBQu0ZcsWzZ8/Xw4ODmrZsqV++eUXhYSEyNPTU3/7298eOQhL3EALAAAA\nAB5b9erVlZiYKEnKzMzUvn379Pzzz8vOzs58U6jhw4dr0qRJmjBhglxdXWUymSTJ/O+9KlasqISE\nBPPrH374wXzt7L1j3vXHMQwGgzlQOzs7y9vbWxMmTJC/v/99c33zzTdav369pDuh193dXUWLFtUL\nL7ygX375RZKUkZGh999/X1WqVNF///tfmUwmmUwmJSQkqFq1auY5774XNWrUUGRkpKKiouTv7y8P\nDw+L7+GD3oc/mjVrlvbv36+FCxeqZMmSkqTjx4+rcuXKWrJkiT788EM5Ojr+qec9szIMAAAAAI+p\ndevW2rt3r7p27arMzEz5+fnJ09NTGRkZmj9/vmrWrKkOHTooICBAxYoVk6urqy5duiTpwTfLGjt2\nrEaPHq2srCwZjUZ5e3urQ4cOku6sxvbv31/h4eHm/nfHuPuvm5ubbt++rRkzZqhv377q0qWLunXr\npjFjxjxwrlGjRmnhwoVycnKSq6urRo0aJVdXV/n4+Khr166SpKCgINWpU0etWrXSO++8I5PJpEaN\nGsnX11f79u0zj1ezZk15e3srICBA6enp8vb2Vvny5XO9ZviPx5CbS5cuae7cuapVq5Z69Oghg8Gg\nDh06yM/PTzNmzFB0dLScnJw0cuTIh45z37ymR4nhhdzAcQlye/aFgi6jUDlyYLMGVu4szwoFXUnh\nc/SidLVZotzdLf8VDAXLza2ELl++WdBlADaH7x6eZm5uJQq6BCCHn376SStXrtS4ceMKupQnDivD\nAAAAAPAUioyM1Jo1a/T5558XdClPJMIwAAAAADyFQkJCFBISUtBlPLG4gRYAAAAAwOYQhgEAAAAA\nNocwDAAAAACwOYRhAAAAAIDNIQwDAAAAAGwOYRgAAAAAYHMIwwAAAAAAm0MYBgAAAADYHMIwAAAA\nAMDmOOT3hFlZWQoLC9P58+fl4OCg8PBw2dvba9CgQbKzs5OHh4dGjhwpSVqxYoWWL18uR0dH9erV\nS76+vkpPT9eAAQOUnJwsFxcXTZw4UaVLl87vwwAAAAAAFGL5vjIcHx8vo9GoZcuW6aOPPtKMGTM0\nYcIEhYaGavHixTIajdq0aZOuXLmiqKgoLV++XPPnz9e0adOUmZmppUuXytPTU9HR0erYsaNmz56d\n34cAAAAAACjk8j0MV61aVdnZ2TKZTLp586YcHBx08OBBNWjQQJLUokUL7dy5Uz///LPq168vBwcH\nubi4qGrVqjp8+LASExPVokULc99du3bl9yEAAAAAAAq5fD9Nunjx4jp37pzatm2ra9euae7cuUpI\nSMixPSUlRampqSpRooS53dnZ2dzu4uKSoy8AAAAAAH9Gvofhb775Rs2bN1ffvn2VlJSk4OBgZWZm\nmrenpqaqZMmScnFxyRF0721PTU01t90bmIEnRZkyLnJz43ezMOBzAgoG3z0AQEHL9zD8zDPPyMHh\nzrQlSpRQVlaWatasqT179qhRo0batm2bfHx8VLt2bc2YMUMZGRlKT0/XiRMn5OHhoXr16ik+Pl61\na9dWfHy8+fRq4Ely9WqKLl++WdBlwAI3txJ8TkAB4LuHpxl/6AEKj3wPw926ddOQIUMUFBSkrKws\n9e/fX3/72980bNgwZWZmyt3dXW3btpXBYFBwcLACAwNlMpkUGhqqIkWKKCAgQGFhYQoMDFSRIkU0\nbdq0/D4EAAAAAEAhZzCZTKaCLsLaBo5LkNuzLxR0GYXKkQObNbByZ3lWKOhKCp+jF6WrzRLl7u5R\n0KXAAlangILBdw9PM1aGgcIj3+8mDQAAAABAQSMMAwAAAABsDmEYAAAAAGBzCMMAAAAAAJtDGAYA\nAAAA2BzCMAAAAADA5hCGAQAAAAA2hzAMAAAAALA5hGEAAAAAgM0hDAMAAAAAbA5hGAAAAABgcwjD\nAAAAAACbQxgGAAAAANgcwjAAAAAAwOYQhgEAAAAANocwDAAAAACwOYRhAAAAAIDNIQwDAAAAAGwO\nYRgAAAAAYHMIwwAAAAAAm0MYBgAAAADYHMIwAAAAAMDmEIYBAAAAADaHMAwAAAAAsDmEYQAAAACA\nzSEMAwAAAABsDmEYAAAAAGBzCMMAAAAAAJtDGAYAAAAA2BzCMAAAAADA5hCGAQAAAAA2hzAMAAAA\nALA5hGEAAAAAgM0hDAMAAAAAbA5hGAAAAABgcwjDAAAAAACbQxgGAAAAANgcwjAAAAAAwOYQhgEA\nAAAANocwDAAAAACwOYRhAAAAAIDNIQwDAAAAAGwOYRgAAAAAYHMIwwAAAAAAm0MYBgAAAADYHMIw\nAAAAAMDmEIYBAAAAADaHMAwAAAAAsDmEYQAAAACAzSEMAwAAAABsDmEYAAAAAGBzCMMAAAAAAJtD\nGAYAAAAA2ByLYfjMmTNat26dTCaThg8frk6dOikhISE/agMAAAAAwCoshuHBgwfL0dFRmzdv1qlT\npzR48GBNnjw5P2oDAAAAAMAqLIbh9PR0vf7669qyZYs6dOigBg0aKCsrKz9qAwAAAADAKiyGYXt7\ne23cuFFbt26Vr6+vNm3aJDs7LjUGAAAAABReFlPtmDFjtHXrVo0cOVLlypXT+vXrNXbs2PyoDQAA\nAAAAq7AYhmvUqKGPPvpIRYoUUXZ2tkJDQ/Xiiy/mR20AAAAAAFiFg6UOGzZs0Jw5c3T79m0tW7ZM\nXbt21cCBA9WxY8fHnnTevHmKi4tTZmamAgMD1bBhQw0aNEh2dnby8PDQyJEjJUkrVqzQ8uXL5ejo\nqF69esnX11fp6ekaMGCAkpOT5eLiookTJ6p06dKPXQsAAAAAwPZYXBn+6quvtHTpUhUvXlyurq6K\njY3VvHnzHnvCPXv26KefftKyZcsUFRWlixcvasKECQoNDdXixYtlNBq1adMmXblyRVFRUVq+fLnm\nz5+vadOmKTMzU0uXLpWnp6eio6PVsWNHzZ49+7FrAQAAAADYJoth2M7OTi4uLubX5cqV+0s30Nq+\nfbs8PT310UcfqXfv3vL19dXBgwfVoEEDSVKLFi20c+dO/fzzz6pfv74cHBzk4uKiqlWr6vDhw0pM\nTFSLFi3MfXft2vXYtQAAAAAAbJPF06Q9PDy0ePFiZWVl6dChQ1qyZMlfumb4999/14ULFxQREaGz\nZ8+qd+/eMhqN5u3FixdXSkqKUlNTVaJECXO7s7Ozuf1uOL/bFwAAAACAP8NiGB4xYoTmzJmjokWL\nasiQIfLx8VFYWNhjT1iqVCm5u7vLwcFB1apVU9GiRZWUlGTenpqaqpIlS8rFxSVH0L23PTU11dx2\nb2AGnhRlyrjIzY3fzcKAzwkoGHz3AAAFzWIYdnZ2Vr9+/dSvX788mbB+/fqKiorSe++9p6SkJN26\ndUs+Pj7as2ePGjVqpG3btsnHx0e1a9fWjBkzlJGRofT0dJ04cUIeHh6qV6+e4uPjVbt2bcXHx5tP\nrwaeJFevpujy5ZsFXQYscHMrwecEFAC+e3ia8YceoPCwGIa/+eYbzZ49Wzdv3vk/LZPJJIPBoEOH\nDj3WhL6+vkpISFDnzp1lMpk0atQoVapUScOGDVNmZqbc3d3Vtm1bGQwGBQcHKzAwUCaTSaGhoSpS\npIgCAgIUFhamwMBAFSlSRNOmTXusOgAAAAAAtstgMplMD+vw6quvavHixapYsWJ+1ZTnBo5LkNuz\nLxR0GYXKkQObNbByZ3lWKOhKCp+jF6WrzRLl7u5R0KXAAlangILBdw9PM1aGgcLD4m2h3d3dVbZs\n2fyoBQAAAACAfGHxNOng4GB16NBBXl5esre3N7dPmDDBqoUBAAAAAGAtFsPwuHHj1KFDB1WqVCk/\n6gEAAAAAwOoshuEiRYqoT58++VELAAAAAAD5wmIYbtq0qSZOnKgWLVrI0dHR3N6wYUOrFgYAAAAA\ngLVYDMMHDx6UJP3yyy/mNoPBoMjISOtVBQAAAACAFVkMw1FRUflRBwAAAAAA+cZiGE5ISNCCBQuU\nlpYmk8kko9GoCxcuKC4uLj/qAwAAAAAgz1l8zvCwYcPUunVrZWdnKygoSM8//7xat26dH7UBAAAA\nAGAVFsOwk5OTOnXqpEaNGqlkyZIaO3as9u7dmx+1AQAAAABgFRbDcNGiRXXt2jVVq1ZN//3vf2Uw\nGJSWlpYftQEAAAAAYBUWw/B7772nvn376pVXXtGaNWvUrl071apVKz9qAwAAAADAKizeQOv1119X\n27ZtZTAYtHr1ap06dUovvvhiftQGAAAAAIBVPDQMHz16VNnZ2XrppZc0fvx43bx5U/b29ho0aJBc\nXFzyq0YAAAAAAPJUrqdJx8XFqVevXrp8+bIkadu2bWrUqJGysrI0f/78fCsQAAAAAIC8lmsYnjVr\nlhYsWKAWLVpIunNX6TfffFPDhg3jGcMAAAAAgEIt1zCcnp6uatWqmV83b95ckuTi4iJ7e3vrVwYA\nAAAAgJXkGoYzMzNlMpnMr/v16ydJysrKUmZmpvUrAwAAAADASnINw40aNdLcuXPva1+wYIEaNWpk\n1aIAAAAAALCmXO8m3a9fP4WEhGjLli1q0KCBDAaDEhMTlZ6ersjIyPysEQAAAACAPJVrGC5durRW\nrVql77//Xvv27ZMkBQQE6PXXX1eRIkXyrUAAAAAAAPLaQ58zXKRIEbVv317t27fPr3oAAAAAALC6\nXK8ZBgAAAADgaZVrGE5LS8vPOgAAAAAAyDe5huHg4GBJ0qhRo/KrFgAAAAAA8kWu1wynpaWpf//+\n+uGHH5Senn7f9gkTJli1MAAAAAAArCXXMLxw4ULt3r1biYmJPFcYAAAAAPBUyTUMV6hQQf7+/nrx\nxRfl7u6ukydPKjs7Wx4eHnJweOhNqAEAAAAAeKJZTLWZmZl67bXXVKpUKRmNRl25ckVffvmlvLy8\n8qM+AAAAAADynMUwPG7cOM2YMcMcfvft26fw8HCtXLnS6sUBAAAAAGANFp8znJaWlmMVuG7dug+8\noRYAAAAAAIWFxTD8zDPPaNOmTebXmzZtUqlSpaxaFAAAAAAA1mTxNOnw8HANGDBAQ4cOlSRVqVJF\nU6ZMsXphAAAAAABYi8UwXLVqVcXExCgtLU1Go1EuLi75URcAAAAAAFbzyM9IcnZ2tmYdAAAAAADk\nG4vXDAMAAAAA8LSxGIaXLl2aH3UAAAAAAJBvLIbh6Ojo/KgDAAAAAIB8Y/Ga4WeffVYhISHy8vJS\n0aJFze19+vSxamEAAAAAAFiLxTBct27d/KgDAAAAAIB8YzEM9+nTR2lpaTpz5ow8PT11+/Zt7iwN\nAAAAACjULF4zvGvXLnXs2FEfffSRrly5oldffVXbt2/Pj9oAAAAAALAKi2F4+vTpWrJkiUqWLKly\n5cpp8eLFmjx5cn7UBgAAAACAVVgMw0ajUW5ububXL7zwglULAgAAAADA2h7pbtJbtmyRwWDQjRs3\nFB0drYoVK+ZHbQAAAAAAWIXFleExY8bon//8py5evKjWrVvr0KFDGjNmTH7UBgAAAACAVVhcGXZ1\nddX06dOVkpIiBwcHOTk55UddAAAAAABYjcUwfOTIEQ0aNEgXLlyQJFWvXl2TJk3Sc889Z/XiAAAA\nAACwBounSY8cOVKfffaZdu/erd27d6t79+4aMmRIftQGAAAAAIBVWAzD6enpatmypfl1mzZtlJKS\nYtWiAAAAAACwplzD8IULF3ThwgW9+OKLmjdvnq5evarr169r8eLFatCgQX7WCAAAAABAnsr1muF3\n331XBoNBJpNJu3fv1rJly8zbDAaDhg0bli8FAgAAAACQ13INw3FxcflZBwAAAAAA+cbi3aRPnDih\nFStW6Pr16znaJ0yYYLWiAAAAAACwJothuE+fPnrjjTdUo0aN/KgHAAAAAACrsxiGS5YsqT59+uRH\nLQAAAAAA5AuLYfjNN9/UjBkz5OPjIweH/3Vv2LChVQsDAAAAAMBaLIbhPXv2aP/+/frPf/5jbjMY\nDIqMjLRqYQAAAAAAWIvFMHzgwAF9//33+VELAAAAAAD5ws5SB09PTx0+fDjPJ05OTpavr69Onjyp\nM2fOKDAwUO+++65Gjx5t7rNixQp16tRJXbt21datWyVJ6enp+vTTTxUUFKSePXvq999/z/PaAAAA\nAABPN4th+OzZs3rzzTfVokULtWrVSq+++qpatWr1lybNysrSyJEj5eTkJOnOY5pCQ0O1ePFiGY1G\nbdq0SVeuXFFUVJSWL1+u+fPna9q0acrMzNTSpUvl6emp6OhodezYUbNnz/5LtQAAAAAAbI/F06S/\n/PLLPJ900qRJCggIUEREhEwmkw4ePKgGDRpIklq0aKEdO3bIzs5O9evXl4ODg1xcXFS1alUdPnxY\niYmJ+vDDD819CcMAAAAAgD/LYhjeu3fvA9srVar0WBOuXr1arq6uatasmebOnStJMhqN5u3FixdX\nSkqKUlNTVaJECXO7s7Ozud3FxSVHXwAAAAAA/gyLYXj37t3mnzMzM5WYmKgGDRrI39//sSZcvXq1\nDAaDduzYoSNHjigsLCzHdb+pqakqWbKkXFxccgTde9tTU1PNbfcGZuBJUaaMi9zc+N0sDPicgILB\ndw8AUNAshuEJEybkeH3t2jX17dv3sSdcvHix+eeQkBCNHj1akydP1t69e9WwYUNt27ZNPj4+ql27\ntmbMmKGMjAylp6frxIkT8vDwUL169RQfH6/atWsrPj7efHo18CS5ejVFly/fLOgyYIGbWwk+J6AA\n8N3D04w/9ACFh8Uw/EfOzs46f/58nhYRFham4cOHKzMzU+7u7mrbtq0MBoOCg4MVGBgok8mk0NBQ\nFSlSRAEBAQoLC1NgYKCKFCmiadOm5WktAAAAAICnn8UwHBwcLIPBIEkymUw6d+6cWrZsmSeTR0ZG\nmn+Oioq6b3uXLl3UpUuXHG1OTk76/PPP82R+AAAAAIBtshiGP/nkE/PPBoNBpUuX1gsvvGDVogAA\nAAAAsKZcw/CFCxckSZUrV37gtooVK1qvKgAAAAAArCjXMPzuu+/KYDDIZDKZ2wwGgy5duqSsrCwd\nOnQoXwoEAAAAACCv5RqG4+LicrxOTU3VpEmTtH37doWHh1u9MAAAAAAArMXuUTrt2rVLfn5+kqR1\n69apWbNmVi0KAAAAAABreugNtNLS0jRx4kTzajAhGAAAAADwNMh1ZXjXrl3q0KGDJOmf//wnQRgA\nAAAA8NTIdWX4/fffl4ODg7Zv364dO3aY200mkwwGgzZv3pwvBQIAAAAAkNdyDcOEXQAAAADA0yrX\nMFypUqX8rAMAAAAAgHzzSHeTBgAAAADgaUIYBgAAAADYHMIwAAAAAMDmEIYBAAAAADaHMAwAAAAA\nsDmEYQAAAACAzSEMAwAAAABsDmEYAAAAAGBzCMMAAAAAAJtDGAYAAAAA2BzCMAAAAADA5hCGAQAA\nAAA2hzAMAAAAALA5hGEAAAAAgM0hDP//9u4/Vuu67uP463CO5w45QDjZyGnozY+s6cAfFMhkitJQ\n2oKDOSExy3/8g4FSYkVJSwjjrNya52w2q61mIW2G1GwVYkcrtxADxyp1E0SRdUs4zn1O4TlyrvsP\n10kS7gAX33PxeTz+u77X9T3X+3sO37PreX2+XAcAAIDiiGEAAACKI4YBAAAojhgGAACgOGIYAACA\n4ohhAAAAiiOGAQAAKI4YBgAAoDhiGAAAgOKIYQAAAIojhgEAACiOGAYAAKA4YhgAAIDiiGEAAACK\nI4YBAAAojhgGAACgOGIYAACA4ohhAAAAiiOGAQAAKI4YBgAAoDhiGAAAgOKIYQAAAIojhgEAACiO\nGAYAAKA4YhgAAIDiiGEAAACKI4YBAAAojhgGAACgOGIYAACA4ohhAAAAiiOGAQAAKI4YBgAAoDhi\nGAAAgOKIYQAAAIojhgEAAChO08l+wjfffDNf/OIXs2fPnvT19eXWW2/N+PHj8/nPfz5DhgzJhAkT\nsnLlyiTJ+vXr89BDD+W0007LrbfemiuuuCJvvPFG7rjjjvz1r39NS0tL7rnnnowaNepkHwYAAAB1\n7KTH8MaNGzNq1KisXbs2XV1d+fjHP57zzz8/y5Yty6WXXpqVK1dm06ZNmTx5cn7wgx/kJz/5SQ4e\nPJgFCxZk+vTp+dGPfpSJEydm8eLFefTRR9PR0ZEVK1ac7MMAAACgjp30y6SvueaaLF26NEly6NCh\nNDY25o9//GMuvfTSJMmMGTPyu9/9Ls8++2wuueSSNDU1paWlJeeee27+/Oc/Z+vWrZkxY8bAY596\n6qmTfQgAAADUuZMew0OHDs3pp5+e7u7uLF26NLfffntqtdrA/cOGDUt3d3d6enoyfPjwge3/2Ken\npyctLS2HPRYAAACOx0m/TDpJ9u7dm8WLF+fGG2/MnDlz0tbWNnBfT09PRowYkZaWlsNC9+3be3p6\nBra9PZhhsDjjjJaMHu3fZj3wc4JqOPcAqNpJj+F9+/bllltuyV133ZWpU6cmST74wQ9my5YtmTJl\nSp544olMnTo1F154Ye6999709vbmjTfeyIsvvpgJEybkoosuSmdnZy688MJ0dnYOXF4Ng8n+/d15\n7bX/rXoM/o3Ro4f7OUEFnHucyrzRA/XjpMfw/fffn66urnR0dKS9vT0NDQ1ZsWJFVq1alb6+vowb\nNy6zZ89OQ0NDFi1alIULF6ZWq2XZsmVpbm7OggULcuedd2bhwoVpbm7ON77xjZN9CAAAANS5htrb\n/8PuKWr56qczesz4qseoK8/teCzLz74uE99X9ST15/m9yf7pWzNu3ISqR+HfsDoF1XDucSqzMgz1\n46R/gBYAAABUTQwDAABQHDEMAABAccQwAAAAxRHDAAAAFEcMAwAAUBwxDAAAQHHEMAAAAMURwwAA\nAGxqxV0AAAmiSURBVBRHDAMAAFAcMQwAAEBxxDAAAADFEcMAAAAURwwDAABQHDEMAABAccQwAAAA\nxRHDAAAAFEcMAwAAUBwxDAAAQHHEMAAAAMURwwAAABRHDAMAAFAcMQwAAEBxxDAAAADFEcMAAAAU\nRwwDAABQHDEMAABAccQwAAAAxRHDAAAAFEcMAwAAUBwxDAAAQHHEMAAAAMURwwAAABRHDAMAAFAc\nMQwAAEBxxDAAAADFEcMAAAAURwwDAABQHDEMAABAccQwAAAAxRHDAAAAFEcMAwAAUBwxDAAAQHHE\nMAAAAMURwwAAABRHDAMAAFAcMQwAAEBxxDAAAADFEcMAAAAUp6nqAYBT16FDh7Jr14tVj3FUr7/e\nkv37u6se44jOPfe/09jYWPUYUJTB/jtrMPM7C6hHYhj4j9m168U88NDOnHHm2KpHOYquqgc4on3/\n82JmT38p73//YP2+DV5ekL9lsEfdYH0javfulzLymdacN7rqSerLzteSXXO3Zty4CVWPAnBcxDDw\nH3XGmWMzesz4qseoK/v3vfWC/IyXq56kvnhB/k/eiDoxO194JasvTCa+r+pJ6s/+qgcAOAFiGGAQ\nOm+0F+Qnwgvyf/JG1PHbv++lqkcA4CTyAVoAAAAURwwDAABQHDEMAABAccQwAAAAxRHDAAAAFEcM\nAwAAUJy6/NNKtVotX/nKV/Lcc8+lubk5q1evzjnnnFP1WAAAANSJulwZ3rRpU3p7e7Nu3bp89rOf\nzZo1a6oeCQAAgDpSlzG8devWXH755UmSSZMmZceOHRVPBAAAQD2py8uku7u7M3z48IHbTU1N6e/v\nz5AhR277/fteOlmjnTIOvP5qdv5X1VPUp52vJSOrHmIQcf4dP+ffiXHuHc65d/yceyfGuQfUq4Za\nrVareojjdc8992Ty5MmZPXt2kuSKK67Ir3/962qHAgAAoG7U5WXSF198cTo7O5Mk27Zty8SJEyue\nCAAAgHpSlyvDb/806SRZs2ZNzjvvvIqnAgAAoF7UZQwDAADAu1GXl0kDAADAuyGGAQAAKI4YBgAA\noDhiuCK1Wi0rV67MDTfckJtuuikvv/xy1SNBUbZv355FixZVPQYU480338zy5cvzyU9+Mtdff302\nb95c9UgAFK6p6gFKtWnTpvT29mbdunXZvn171qxZk46OjqrHgiI88MADeeSRRzJs2LCqR4FibNy4\nMaNGjcratWtz4MCBzJ07NzNnzqx6LAAKZmW4Ilu3bs3ll1+eJJk0aVJ27NhR8URQjrFjx6a9vb3q\nMaAo11xzTZYuXZok6e/vT1OT9+MBqJYYrkh3d3eGDx8+cLupqSn9/f0VTgTlmDVrVhobG6seA4oy\ndOjQnH766enu7s7SpUtz++23Vz0SAIUTwxVpaWlJT0/PwO3+/v4MGeLHAcCpa+/evfnUpz6VefPm\n5dprr616HAAKp74qcvHFF6ezszNJsm3btkycOLHiiaA8tVqt6hGgGPv27cstt9ySO+64I/Pmzat6\nHADwAVpVmTVrVn7729/mhhtuSJKsWbOm4omgPA0NDVWPAMW4//7709XVlY6OjrS3t6ehoSEPPPBA\nmpubqx4NgEI11CyNAAAAUBiXSQMAAFAcMQwAAEBxxDAAAADFEcMAAAAURwwDAABQHDEMAABAccQw\nwCC1Z8+ezJw58x3bzz///CTJK6+8khUrViRJduzYkS9/+ctJkkWLFmXLli2HbVu/fn0effTRY3re\n5cuX59vf/vY7ts+aNSvPP//8Uff7whe+kA0bNhzTcwAAVE0MAwxiDQ0NR922Z8+evPzyy0mSCy64\nIHffffdhj3v7tj/84Q/p7e09pudsbW3NT3/608O2Pf300xk5cmQmTpx43McAADAYiWGAOrV69ers\n2LEjd999d37/+99n0aJFh93/j21PPfVUNm/enG9961t57LHHMnXq1PT09CR5K6g/9rGPHbbf1KlT\n8/e//z0vvPDCwLaNGzfmuuuuG/i6CxcuTGtra66++ur84he/OGz/f13Rvu+++3LfffclSZ544ol8\n4hOfSGtra5YsWZIDBw4kSb7+9a9n7ty5aW1tHXgsAMB/khgGqFNf+tKXcsEFFwxcCn20VeRp06Zl\n5syZWbJkSa666qpceeWVAwG7YcOGzJ079x37zZs3b2B1uLe3N48//vhAND/44INZvXp1Hn744axa\ntSrt7e1HfN5/tX///nzzm9/Md7/73Tz88MOZPn162tra8uqrr+bJJ5/Mhg0bsm7duuzevfuYV7EB\nAE5UU9UDAHBkQ4Yc+f3KI4Xm8fjH6mtra2t+9rOf5fvf//47HjNv3rzcfPPNWbZsWTZv3pxp06al\npaUlSdLW1pbHH388P//5z7N9+/b87W9/O6bnffbZZ7N3797cdNNNqdVq6e/vz3vf+96MGTMm73nP\ne7JgwYJceeWVue2229Lc3PyujhEA4N8RwwCD1IgRI9Ld3X3Ytn379mXEiBHv6utOmTIlf/nLX/Kr\nX/0q55xzTkaPHv2Ox5x11lk5++yz88wzz+SRRx7JzTffPHDfggULMm3atHz4wx/OtGnT8rnPfe6w\nfRsaGlKr1QZu9/X15bTTTsuhQ4dyySWXpKOjI8lbK849PT0ZMmRI1q9fny1btqSzszPXX399Hnzw\nwYwdO/ZdHScAwP/HZdIAg9SwYcMyduzY/PKXvxzYtn79+lx22WVJksbGxhw6dOiYvlZjY2P6+voG\nbs+dOzerVq1Ka2vrUfeZP39+fvzjH2f37t35yEc+kiQ5cOBAdu/enSVLlmTGjBn5zW9+k/7+/sP2\nGzFiRLq6uvL666+nt7c3Tz75ZJJk0qRJ2bZtW3bt2pUkaW9vz9q1a/OnP/0pN954Y6ZMmZLly5dn\n/Pjx2blz5zEdFwDAibIyDDCItbW1ZeXKleno6EhfX18+8IEP5K677kqSjBs3Ll1dXbnzzjszf/78\ngX2OdBn1ZZddlnvvvTcjR47MRz/60Vx77bX53ve+l6uuuuqoz3311Vfnq1/9aj796U8PbBs5cmSu\nu+66zJkzJ8OHD8/kyZNz8ODBHDx4cOAxLS0t+cxnPpP58+fnrLPOyqRJk5IkZ555Zr72ta/ltttu\nS39/f8aMGZO2traMHDkyF110UebMmZOhQ4fmQx/6UGbMmPGuv3cAAP+fhtrbr2UD4JRXq9Xywx/+\nMLt27Rr4O8UAAKWxMgxQmMWLF2fv3r35zne+U/UoAACVsTIMAABAcXyAFgAAAMURwwAAABRHDAMA\nAFAcMQwAAEBxxDAAAADFEcMAAAAU5/8A2A8S0GdUZrUAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x116558c50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Play the Game\n", "N = 10000\n", "agent1 = ml.QLearn()\n", "agent2 = ml.QLearn()\n", "game = Coordination(agent1, agent2)\n", "game.play(N)\n", "\n", "# Get Data from Game\n", "agent1_util_vals = Counter(game.data['A'])\n", "agent2_util_vals = Counter(game.data['B'])\n", "a1_total_score = sum(game.data['A'])\n", "a2_total_score = sum(game.data['B'])\n", "\n", "\n", "# Plot the results\n", "x1, y1, x2, y2 = [], [], [], []\n", "\n", "for i, j in zip(agent1_util_vals, agent2_util_vals):\n", " x1.append(i)\n", " y1.append(agent1_util_vals[i])\n", " x2.append(j)\n", " y2.append(agent2_util_vals[j])\n", "\n", "fig, ax = plt.subplots(figsize=(12,6))\n", "width = 0.35\n", "a1 = ax.bar(x1, y1, width, color='#8A9CEF')\n", "a2 = ax.bar(np.asarray(x2)+width, y2, width, color='orange')\n", "\n", "_ = ax.set_title('QLearning Agent Vs QLearning Agent')\n", "_ = ax.set_ylabel('Number of Games')\n", "_ = ax.set_xlabel('Utility Values')\n", "ax.set_xticks(np.add(x2,width/2))\n", "_ = ax.set_xticklabels(('0','1', '2'))\n", "_ = ax.legend((a1[0], a2[0]), ('QLearning Agent\\nTotal Utility Score: {}'.format(str(a1_total_score)),\n", " 'QLearning Agent\\nTotal Utility Score: {}'.format(str(a2_total_score))), loc=1, bbox_to_anchor=(1.35, 1))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Still playing around with this one, but both do pretty bad here." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Counter({0: 9243, 1: 387, 2: 370}) Counter({0: 9243, 2: 387, 1: 370})\n" ] } ], "source": [ "print(agent1_util_vals, agent2_util_vals)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Next Up?\n", "#### Immediately: more reading, Deep QLearning, more advanced games, N>2 player games\n", "#### Later: more reading, develop games (mechanism design) given data (Cool Paper entitled [Mechanism Design for Data Science](https://arxiv.org/abs/1404.5971)), apply other deep learning models that I learn about to games\n", "#### Much Later: more reading, apply to some financial applications" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Appendix\n", "### A Few Cool Things about Q Learning:\n", "- Q Learning a model-free reinforcement learning technique\n", "- model free meaning it doesn't a need a model of the environment to determine the next action to take. It makes pretty good choices with it's action value function. This is useful for large complex environments where the rules of the environment aren't all known.\n", "- The action value function will find expected utility of an action in a given state.\n", "- A correctly implemented Q Learning model will follow a policy (set of rules) for choosing the best action, in this case the action that gives the highest expected utility.\n", "- The expected utility for each state determined by using the following update rule\n", "![Update Rule](https://wikimedia.org/api/rest_v1/media/math/render/svg/7a2a11876f4a2bef1198beb780a769cfa5c21af3)\n", "- the discount factor determines the importance for future rewards. The closer the discount factor is 0 the more short sighted it is.\n", "\n", "\n", "### Some topics in Game Theory that were indirectly dicussed above but not formally defined:\n", "- Both games above are two player normal form games. This is where a normal form game is a finite valued player game.\n", "- The Payoff Matrix is a common way to represent normal formed games.\n", "- The agents use a utility function which maps the states of the world around around them to real numbers. In the TCP example the utility values (numbers) are the download the rates. The rates may be significantly different and have units associated with them but for each action and state the numbers will be relative to there real values. Ergo in the TCP example dicussed above if one person doesn't follow the TCP protocol and another does, the download rates will be faster than the person who has reduced the number of packets it is sending/recieving. \n", "- A Nash Equilbrium is a stable state where no agent can gain a better outcome if the strategies of other agents remain unchanged.\n", "- In the Prisoner's Dilemma Game the Nash Equilbrium for both players is to defect.\n", "- In the Coordination Game 2 Nash Equilbriums exist, both agents going to the either movie as long as it the same." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
rongchuhe2/workshop_data_analysis_python
example_bridge_bike_counter.ipynb
1
10927
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Unsupervised Analysis of Days of Week\n", "\n", "Treating crossing each day as features to learn about the relatinships between various days." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Downloading Data\n", "\n", "We'll start by downloading the data (available on [seattle.gov](http://www.seattle.gov/transportation/bikecounter_fremont.htm))." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from urllib import request\n", "\n", "FREMONT_URL = 'https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD'\n", "\n", "request.urlretrieve(FREMONT_URL, 'Fremont.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# magic function to show the content of the file\n", "%more Fremont.csv" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "\n", "df = pd.read_csv('Fremont.csv') # use read_csv to load the data into dataframe\n", "df.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Let's see the type of the data\n", "df.dtypes" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "# change the Date column to datetime data type\n", "df['Date'] = pd.to_datetime(df['Date'])\n", "df.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "df.dtypes" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "# Set the index to Date\n", "df.set_index('Date', inplace=True)\n", "df.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "df.apply(lambda x: sum(x.isnull()))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# clear the data by delete the non-numeric\n", "df.dropna(inplace=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": false }, "outputs": [], "source": [ "df.apply(lambda x: sum(x.isnull()))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "df.columns" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "df.plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": false }, "outputs": [], "source": [ "df.resample('W').sum().plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "df.columns=['West', 'East']" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "df.resample('w').sum().plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "# To see whether there is any annual trend of the number of rides\n", "df.resample('D').sum().rolling(365).sum().plot() \n", "# each point is the sum of the number of rides in the previuos 365 days" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": false }, "outputs": [], "source": [ "# The y coordinate is not from 0\n", "ax = df.resample('D').sum().rolling(365).sum().plot()\n", "ax.set_ylim(0, None)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "# DateimeIndex.time return numpy array of datetime.time, the time part of the Timestamps\n", "df.groupby(df.index.time).mean().plot()\n", "# plot the average of rides at each hours of the day" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "# Create the pivoted table to investigate the pattern in each day\n", "df['Total'] = df['West'] + df['East']\n", "pivoted = df.pivot_table(values='Total', index=df.index.time, columns=df.index.date)\n", "pivoted.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pivoted.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# delete the date with non-numeric\n", "pivoted.dropna(axis=1, inplace=True)\n", "pivoted.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pivoted.plot(legend=False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": false }, "outputs": [], "source": [ "# add transparent parameter alpha\n", "pivoted.plot(legend=False, alpha=0.01)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Principal Component Analysis" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Get X with hours as mearsurement and date as observations\n", "X = pivoted.T.values\n", "X.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "X" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.decomposition import PCA\n", "\n", "X2 = PCA(2, svd_solver='full').fit_transform(X)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "X2" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "X2.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": false }, "outputs": [], "source": [ "plt.scatter(X2[:, 0], X2[:, 1])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# use cluster algorithm Gaussian mixture model\n", "from sklearn.mixture import GaussianMixture\n", "\n", "gmm = GaussianMixture(2)\n", "gmm.fit(X)\n", "labels = gmm.predict(X)\n", "labels\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "# plt.scatter(X2[:, 0], X2[:, 1], c=labels, cmap='rainbow')\n", "# plt.colorbar()\n", "plt.scatter(X2[:, 0], X2[:, 1], c=labels)\n", "plt.colorbar()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "labels" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# so labels == 1 represents the weekday\n", "pivoted.T[labels == 1].T.plot(legend=False, alpha=0.01)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "# labels == 0 represents the weekend or holiday\n", "pivoted.T[labels == 0].T.plot(legend=False, alpha=0.1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Comparing with Day of Week" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pd.DatetimeIndex(pivoted.columns)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# The DatetimeIndex.dayof week gives the day of the week\n", "dayofweek = pd.DatetimeIndex(pivoted.columns).dayofweek\n", "dayofweek" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "# Then we plot the color of the weekday\n", "plt.scatter(X2[:, 0], X2[:, 1], c=dayofweek)\n", "plt.colorbar() " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# grab the day in label 0 which is not weekend\n", "dates = pd.DatetimeIndex(pivoted.columns)\n", "dates[(labels == 0) & (dayofweek < 5)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What's up with Feb 6, 2017?\n", "\n", "[Snow Storm](https://www.seattletimes.com/seattle-news/weather/weather-service-predicts-3-to-6-inches-of-snow-in-seattle-area/)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
swara-salih/Portfolio
Group Project--Chicago WNV Kaggle Competition/NileVirus_Prediction-Swara .ipynb
1
3341056
null
mit
ogaway/EduEcon
Global.ipynb
1
62302
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 教育経済学:課題1\n", "##「第三期教育入学率に対する回帰分析」\n", "第三期教育の入学率をGDP, 人口, ジニ係数, 教育に対する政府支出割合によって重回帰分析を行う。\n", "\n", "出所 : \n", "OECD (2015), Gross domestic product (GDP) (indicator). doi: 10.1787/dc2f7aec-en (Accessed on 10 October 2015) \n", "UNESCO Institute for Statistics(2015), data extracted on 10 Oct 2015 09:13 UTC (GMT) from UIS/ISU \n", "World Bank, Development Research Group(2015), Data from database: Poverty and Equity Database. (Last Updated: 07/08/2015) \n", "より算出" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# -*- coding:utf-8 -*-\n", "from __future__ import print_function\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import statsmodels.api as sm\n", "from scipy import stats" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# データ読み込み\n", "# 第三期教育入学率\n", "# http://data.uis.unesco.org/\n", "data_enroll = pd.read_csv(\"tertiary.csv\", index_col='Country', dtype='O')\n", "data_enroll[data_enroll == '..'] = np.nan\n", "# GDP \n", "# https://data.oecd.org/gdp/gross-domestic-product-gdp.htm\n", "data_gdp = pd.read_csv(\"gdp.csv\", index_col='Country', dtype='O')\n", "data_gdp[data_gdp == '..'] = np.nan\n", "# 人口 \n", "# http://databank.worldbank.org/data/reports.aspx?Code=SP.POP.TOTL&id=af3ce82b&report_name=Popular_indicators&populartype=series&ispopular=y#\n", "data_pop = pd.read_csv(\"population.csv\", index_col='Country', dtype='O')\n", "data_pop[data_pop == '..'] = np.nan\n", "# ジニ係数 \n", "# http://databank.worldbank.org/data/reports.aspx?Code=SI.POV.GINI&id=af3ce82b&report_name=Popular_indicators&populartype=series&ispopular=y#\n", "data_gini = pd.read_csv(\"gini.csv\", index_col='Country', dtype='O')\n", "data_gini[data_gini == '..'] = np.nan\n", "# 第三期教育に対する政府支出 \n", "# https://data.oecd.org/eduresource/public-spending-on-education.htm\n", "data_public = pd.read_csv(\"public_spending.csv\", index_col='Country', dtype='O')\n", "data_public[data_public == '..'] = np.nan" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>1999</th>\n", " <th>2000</th>\n", " <th>2001</th>\n", " <th>2002</th>\n", " <th>2003</th>\n", " <th>2004</th>\n", " <th>2005</th>\n", " <th>2006</th>\n", " <th>2007</th>\n", " <th>2008</th>\n", " <th>2009</th>\n", " <th>2010</th>\n", " <th>2011</th>\n", " <th>2012</th>\n", " <th>2013</th>\n", " <th>2014</th>\n", " <th>2015</th>\n", " </tr>\n", " <tr>\n", " <th>Country</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Afghanistan</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>1.27942</td>\n", " <td>1.29312</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>3.9114</td>\n", " <td>NaN</td>\n", " <td>3.74394</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>Albania</th>\n", " <td>13.08853</td>\n", " <td>13.76232</td>\n", " <td>14.01383</td>\n", " <td>14.73868</td>\n", " <td>15.81263</td>\n", " <td>20.00498</td>\n", " <td>24.52325</td>\n", " <td>28.78627</td>\n", " <td>31.79338</td>\n", " <td>32.32131</td>\n", " <td>33.1062</td>\n", " <td>43.56153</td>\n", " <td>47.74272</td>\n", " <td>55.50096</td>\n", " <td>58.52989</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>Algeria</th>\n", " <td>13.60327</td>\n", " <td>NaN</td>\n", " <td>15.24848</td>\n", " <td>16.74901</td>\n", " <td>17.744</td>\n", " <td>18.18056</td>\n", " <td>19.76258</td>\n", " <td>20.21485</td>\n", " <td>22.28536</td>\n", " <td>NaN</td>\n", " <td>28.59671</td>\n", " <td>28.75825</td>\n", " <td>30.27547</td>\n", " <td>31.46411</td>\n", " <td>33.30463</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>American Samoa</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>Andorra</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 1999 2000 2001 2002 2003 2004 \\\n", "Country \n", "Afghanistan NaN NaN NaN NaN 1.27942 1.29312 \n", "Albania 13.08853 13.76232 14.01383 14.73868 15.81263 20.00498 \n", "Algeria 13.60327 NaN 15.24848 16.74901 17.744 18.18056 \n", "American Samoa NaN NaN NaN NaN NaN NaN \n", "Andorra NaN NaN NaN NaN NaN NaN \n", "\n", " 2005 2006 2007 2008 2009 2010 \\\n", "Country \n", "Afghanistan NaN NaN NaN NaN 3.9114 NaN \n", "Albania 24.52325 28.78627 31.79338 32.32131 33.1062 43.56153 \n", "Algeria 19.76258 20.21485 22.28536 NaN 28.59671 28.75825 \n", "American Samoa NaN NaN NaN NaN NaN NaN \n", "Andorra NaN NaN NaN NaN NaN NaN \n", "\n", " 2011 2012 2013 2014 2015 \n", "Country \n", "Afghanistan 3.74394 NaN NaN NaN NaN \n", "Albania 47.74272 55.50096 58.52989 NaN NaN \n", "Algeria 30.27547 31.46411 33.30463 NaN NaN \n", "American Samoa NaN NaN NaN NaN NaN \n", "Andorra NaN NaN NaN NaN NaN " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_enroll.head()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>1980</th>\n", " <th>1981</th>\n", " <th>1982</th>\n", " <th>1983</th>\n", " <th>1984</th>\n", " <th>1985</th>\n", " <th>1986</th>\n", " <th>1987</th>\n", " <th>1988</th>\n", " <th>1989</th>\n", " <th>...</th>\n", " <th>2005</th>\n", " <th>2006</th>\n", " <th>2007</th>\n", " <th>2008</th>\n", " <th>2009</th>\n", " <th>2010</th>\n", " <th>2011</th>\n", " <th>2012</th>\n", " <th>2013</th>\n", " <th>2014</th>\n", " </tr>\n", " <tr>\n", " <th>Country</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Argentina</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td>538035.5154</td>\n", " <td>601184.0944</td>\n", " <td>666237.9468</td>\n", " <td>700439.5025</td>\n", " <td>706116.0365</td>\n", " <td>780193.8888</td>\n", " <td>867545.4341</td>\n", " <td>895008.2139</td>\n", " <td>945659.3828</td>\n", " <td>927164.1469</td>\n", " </tr>\n", " <tr>\n", " <th>Australia</th>\n", " <td>155037.382</td>\n", " <td>178034.2597</td>\n", " <td>181796.1002</td>\n", " <td>196586.5927</td>\n", " <td>211230.1811</td>\n", " <td>228876.1743</td>\n", " <td>240244.2573</td>\n", " <td>261145.2252</td>\n", " <td>283619.2842</td>\n", " <td>299927.1378</td>\n", " <td>...</td>\n", " <td>718812.8644</td>\n", " <td>773857.9107</td>\n", " <td>825382.9291</td>\n", " <td>850582.9281</td>\n", " <td>897942.1402</td>\n", " <td>935668.927</td>\n", " <td>984763.1119</td>\n", " <td>999199.8604</td>\n", " <td>1040376.497</td>\n", " <td>1062956.442</td>\n", " </tr>\n", " <tr>\n", " <th>Austria</th>\n", " <td>79726.0876</td>\n", " <td>87043.3274</td>\n", " <td>94302.7153</td>\n", " <td>100940.7418</td>\n", " <td>104575.7382</td>\n", " <td>110618.6571</td>\n", " <td>115447.3111</td>\n", " <td>119999.7106</td>\n", " <td>128294.273</td>\n", " <td>138463.2414</td>\n", " <td>...</td>\n", " <td>285433.2141</td>\n", " <td>311310.3909</td>\n", " <td>325500.8904</td>\n", " <td>342442.8873</td>\n", " <td>339017.5061</td>\n", " <td>350124.3423</td>\n", " <td>369420.341</td>\n", " <td>378088.387</td>\n", " <td>382598.8984</td>\n", " <td>394485.5275</td>\n", " </tr>\n", " <tr>\n", " <th>Belgium</th>\n", " <td>103557.1412</td>\n", " <td>112908.7475</td>\n", " <td>120627.0074</td>\n", " <td>125781.0802</td>\n", " <td>133456.1351</td>\n", " <td>140001.5239</td>\n", " <td>145429.1715</td>\n", " <td>152579.9061</td>\n", " <td>165380.5208</td>\n", " <td>177771.0402</td>\n", " <td>...</td>\n", " <td>346243.6361</td>\n", " <td>370161.3572</td>\n", " <td>388722.7568</td>\n", " <td>405339.5371</td>\n", " <td>406396.2064</td>\n", " <td>427441.4922</td>\n", " <td>451396.963</td>\n", " <td>459785.3992</td>\n", " <td>461907.8543</td>\n", " <td>477949.3341</td>\n", " </tr>\n", " <tr>\n", " <th>Brazil</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td>1988025.804</td>\n", " <td>2142004.309</td>\n", " <td>2342708.493</td>\n", " <td>2520650.653</td>\n", " <td>2538040.151</td>\n", " <td>2771866.298</td>\n", " <td>2973856.149</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows × 35 columns</p>\n", "</div>" ], "text/plain": [ " 1980 1981 1982 1983 1984 \\\n", "Country \n", "Argentina NaN NaN NaN NaN NaN \n", "Australia 155037.382 178034.2597 181796.1002 196586.5927 211230.1811 \n", "Austria 79726.0876 87043.3274 94302.7153 100940.7418 104575.7382 \n", "Belgium 103557.1412 112908.7475 120627.0074 125781.0802 133456.1351 \n", "Brazil NaN NaN NaN NaN NaN \n", "\n", " 1985 1986 1987 1988 1989 \\\n", "Country \n", "Argentina NaN NaN NaN NaN NaN \n", "Australia 228876.1743 240244.2573 261145.2252 283619.2842 299927.1378 \n", "Austria 110618.6571 115447.3111 119999.7106 128294.273 138463.2414 \n", "Belgium 140001.5239 145429.1715 152579.9061 165380.5208 177771.0402 \n", "Brazil NaN NaN NaN NaN NaN \n", "\n", " ... 2005 2006 2007 2008 \\\n", "Country ... \n", "Argentina ... 538035.5154 601184.0944 666237.9468 700439.5025 \n", "Australia ... 718812.8644 773857.9107 825382.9291 850582.9281 \n", "Austria ... 285433.2141 311310.3909 325500.8904 342442.8873 \n", "Belgium ... 346243.6361 370161.3572 388722.7568 405339.5371 \n", "Brazil ... 1988025.804 2142004.309 2342708.493 2520650.653 \n", "\n", " 2009 2010 2011 2012 2013 \\\n", "Country \n", "Argentina 706116.0365 780193.8888 867545.4341 895008.2139 945659.3828 \n", "Australia 897942.1402 935668.927 984763.1119 999199.8604 1040376.497 \n", "Austria 339017.5061 350124.3423 369420.341 378088.387 382598.8984 \n", "Belgium 406396.2064 427441.4922 451396.963 459785.3992 461907.8543 \n", "Brazil 2538040.151 2771866.298 2973856.149 NaN NaN \n", "\n", " 2014 \n", "Country \n", "Argentina 927164.1469 \n", "Australia 1062956.442 \n", "Austria 394485.5275 \n", "Belgium 477949.3341 \n", "Brazil NaN \n", "\n", "[5 rows x 35 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_gdp.head()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>2000</th>\n", " <th>2001</th>\n", " <th>2002</th>\n", " <th>2003</th>\n", " <th>2004</th>\n", " <th>2005</th>\n", " <th>2006</th>\n", " <th>2007</th>\n", " <th>2008</th>\n", " <th>2009</th>\n", " <th>2010</th>\n", " <th>2011</th>\n", " <th>2012</th>\n", " </tr>\n", " <tr>\n", " <th>Country</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Afghanistan</th>\n", " <td>19701940</td>\n", " <td>20531160</td>\n", " <td>21487079</td>\n", " <td>22507368</td>\n", " <td>23499850</td>\n", " <td>24399948</td>\n", " <td>25183615</td>\n", " <td>25877544</td>\n", " <td>26528741</td>\n", " <td>27207291</td>\n", " <td>27962207</td>\n", " <td>28809167</td>\n", " <td>29726803</td>\n", " </tr>\n", " <tr>\n", " <th>Albania</th>\n", " <td>3089027</td>\n", " <td>3060173</td>\n", " <td>3051010</td>\n", " <td>3039616</td>\n", " <td>3026939</td>\n", " <td>3011487</td>\n", " <td>2992547</td>\n", " <td>2970017</td>\n", " <td>2947314</td>\n", " <td>2927519</td>\n", " <td>2913021</td>\n", " <td>2904780</td>\n", " <td>2900489</td>\n", " </tr>\n", " <tr>\n", " <th>Algeria</th>\n", " <td>31183658</td>\n", " <td>31590320</td>\n", " <td>31990387</td>\n", " <td>32394886</td>\n", " <td>32817225</td>\n", " <td>33267887</td>\n", " <td>33749328</td>\n", " <td>34261971</td>\n", " <td>34811059</td>\n", " <td>35401790</td>\n", " <td>36036159</td>\n", " <td>36717132</td>\n", " <td>37439427</td>\n", " </tr>\n", " <tr>\n", " <th>American Samoa</th>\n", " <td>57522</td>\n", " <td>58176</td>\n", " <td>58729</td>\n", " <td>59117</td>\n", " <td>59262</td>\n", " <td>59117</td>\n", " <td>58648</td>\n", " <td>57904</td>\n", " <td>57031</td>\n", " <td>56226</td>\n", " <td>55636</td>\n", " <td>55316</td>\n", " <td>55227</td>\n", " </tr>\n", " <tr>\n", " <th>Andorra</th>\n", " <td>65399</td>\n", " <td>67770</td>\n", " <td>71046</td>\n", " <td>74783</td>\n", " <td>78337</td>\n", " <td>81223</td>\n", " <td>83373</td>\n", " <td>84878</td>\n", " <td>85616</td>\n", " <td>85474</td>\n", " <td>84419</td>\n", " <td>82326</td>\n", " <td>79316</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 2000 2001 2002 2003 2004 \\\n", "Country \n", "Afghanistan 19701940 20531160 21487079 22507368 23499850 \n", "Albania 3089027 3060173 3051010 3039616 3026939 \n", "Algeria 31183658 31590320 31990387 32394886 32817225 \n", "American Samoa 57522 58176 58729 59117 59262 \n", "Andorra 65399 67770 71046 74783 78337 \n", "\n", " 2005 2006 2007 2008 2009 \\\n", "Country \n", "Afghanistan 24399948 25183615 25877544 26528741 27207291 \n", "Albania 3011487 2992547 2970017 2947314 2927519 \n", "Algeria 33267887 33749328 34261971 34811059 35401790 \n", "American Samoa 59117 58648 57904 57031 56226 \n", "Andorra 81223 83373 84878 85616 85474 \n", "\n", " 2010 2011 2012 \n", "Country \n", "Afghanistan 27962207 28809167 29726803 \n", "Albania 2913021 2904780 2900489 \n", "Algeria 36036159 36717132 37439427 \n", "American Samoa 55636 55316 55227 \n", "Andorra 84419 82326 79316 " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_pop.head()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>2000</th>\n", " <th>2001</th>\n", " <th>2002</th>\n", " <th>2003</th>\n", " <th>2004</th>\n", " <th>2005</th>\n", " <th>2006</th>\n", " <th>2007</th>\n", " <th>2008</th>\n", " <th>2009</th>\n", " <th>2010</th>\n", " <th>2011</th>\n", " <th>2012</th>\n", " </tr>\n", " <tr>\n", " <th>Country</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Afghanistan</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>Albania</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>32.5</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>30.6</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>30</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>29</td>\n", " </tr>\n", " <tr>\n", " <th>Algeria</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>American Samoa</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>Andorra</th>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 \\\n", "Country \n", "Afghanistan NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", "Albania NaN NaN 32.5 NaN NaN 30.6 NaN NaN 30 NaN NaN NaN \n", "Algeria NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", "American Samoa NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", "Andorra NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN \n", "\n", " 2012 \n", "Country \n", "Afghanistan NaN \n", "Albania 29 \n", "Algeria NaN \n", "American Samoa NaN \n", "Andorra NaN " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_gini.head()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>2009</th>\n", " </tr>\n", " <tr>\n", " <th>Country</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Australia</th>\n", " <td>0.7</td>\n", " </tr>\n", " <tr>\n", " <th>Austria</th>\n", " <td>1.4</td>\n", " </tr>\n", " <tr>\n", " <th>Belgium</th>\n", " <td>1.4</td>\n", " </tr>\n", " <tr>\n", " <th>Brazil</th>\n", " <td>0.8</td>\n", " </tr>\n", " <tr>\n", " <th>Canada</th>\n", " <td>1.5</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 2009\n", "Country \n", "Australia 0.7 \n", "Austria 1.4 \n", "Belgium 1.4 \n", "Brazil 0.8 \n", "Canada 1.5 " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_public.head()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Australia', 'Austria', 'Belgium', 'Brazil', 'Canada', 'Chile', 'Czech Republic', 'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Hungary', 'Iceland', 'India', 'Indonesia', 'Ireland', 'Israel', 'Italy', 'Japan', 'Mexico', 'Netherlands', 'New Zealand', 'Norway', 'Poland', 'Portugal', 'Slovenia', 'South Africa', 'Spain', 'Sweden', 'Switzerland']\n", "31\n" ] } ], "source": [ "# 4つの指標全てにおいて調査された国を調べる\n", "country_list = []\n", "for i in np.asarray(data_enroll.index):\n", " if i in np.asarray(data_gdp.index):\n", " if i in np.asarray(data_pop.index):\n", " if i in np.asarray(data_gini.index):\n", " if i in np.asarray(data_public.index):\n", " country_list.append(i)\n", "print(country_list)\n", "print(len(country_list))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "27\n" ] }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>tertiary</th>\n", " <th>log_gdp</th>\n", " <th>log_pop</th>\n", " <th>gini</th>\n", " <th>public</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>27.000000</td>\n", " <td>27.000000</td>\n", " <td>27.000000</td>\n", " <td>27.000000</td>\n", " <td>27.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>65.841442</td>\n", " <td>13.063664</td>\n", " <td>16.572529</td>\n", " <td>32.774074</td>\n", " <td>1.166667</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>18.098664</td>\n", " <td>1.393257</td>\n", " <td>1.688527</td>\n", " <td>6.160457</td>\n", " <td>0.335123</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>16.396570</td>\n", " <td>9.471810</td>\n", " <td>12.678311</td>\n", " <td>25.600000</td>\n", " <td>0.500000</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>59.257405</td>\n", " <td>12.360758</td>\n", " <td>15.661797</td>\n", " <td>27.800000</td>\n", " <td>1.000000</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>70.519350</td>\n", " <td>12.942301</td>\n", " <td>16.168299</td>\n", " <td>32.400000</td>\n", " <td>1.200000</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>77.013830</td>\n", " <td>13.995792</td>\n", " <td>17.557788</td>\n", " <td>35.050000</td>\n", " <td>1.400000</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>93.721820</td>\n", " <td>15.418777</td>\n", " <td>20.917337</td>\n", " <td>50.800000</td>\n", " <td>1.800000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " tertiary log_gdp log_pop gini public\n", "count 27.000000 27.000000 27.000000 27.000000 27.000000\n", "mean 65.841442 13.063664 16.572529 32.774074 1.166667\n", "std 18.098664 1.393257 1.688527 6.160457 0.335123\n", "min 16.396570 9.471810 12.678311 25.600000 0.500000\n", "25% 59.257405 12.360758 15.661797 27.800000 1.000000\n", "50% 70.519350 12.942301 16.168299 32.400000 1.200000\n", "75% 77.013830 13.995792 17.557788 35.050000 1.400000\n", "max 93.721820 15.418777 20.917337 50.800000 1.800000" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 2000〜2014年におけるそれぞれのデータの最新をまとめる\n", "for i in reversed(range(2000, 2013)):\n", " d = {\n", " 'tertiary': data_enroll.ix[country_list][\"%s\" % i].astype(float),\n", " 'log_gdp': np.log(data_gdp.ix[country_list][\"%s\" % i], dtype=float),\n", " 'log_pop': np.log(data_pop.ix[country_list][\"%s\" % i].astype(float)),\n", " 'gini': data_gini.ix[country_list][\"%s\" % i].astype(float),\n", " 'public': data_public.ix[country_list]['2009'].astype(float),\n", " 'year': i\n", " }\n", " if i == 2012:\n", " df = pd.DataFrame(d).dropna()\n", " df_test = pd.DataFrame(d).dropna()\n", " for j in df_test.index.values:\n", " if j not in df.index.values:\n", " df.ix[j] = df_test.ix[j]\n", "print(len(df))\n", "df[['tertiary', 'log_gdp', 'log_pop', 'gini', 'public']].describe()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "24\n" ] }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>tertiary</th>\n", " <th>log_gdp</th>\n", " <th>log_pop</th>\n", " <th>gini</th>\n", " <th>public</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>24.000000</td>\n", " <td>24.000000</td>\n", " <td>24.000000</td>\n", " <td>24.000000</td>\n", " <td>24.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>71.143427</td>\n", " <td>12.845443</td>\n", " <td>16.192417</td>\n", " <td>31.970833</td>\n", " <td>1.195833</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>10.134027</td>\n", " <td>1.312599</td>\n", " <td>1.321017</td>\n", " <td>5.622585</td>\n", " <td>0.323673</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>55.561900</td>\n", " <td>9.471810</td>\n", " <td>12.678311</td>\n", " <td>25.600000</td>\n", " <td>0.500000</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>61.977452</td>\n", " <td>12.311479</td>\n", " <td>15.528702</td>\n", " <td>27.525000</td>\n", " <td>1.000000</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>71.034790</td>\n", " <td>12.802285</td>\n", " <td>16.139006</td>\n", " <td>31.850000</td>\n", " <td>1.200000</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>77.907077</td>\n", " <td>13.692860</td>\n", " <td>16.991507</td>\n", " <td>34.000000</td>\n", " <td>1.400000</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>93.721820</td>\n", " <td>15.271679</td>\n", " <td>18.668033</td>\n", " <td>50.800000</td>\n", " <td>1.800000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " tertiary log_gdp log_pop gini public\n", "count 24.000000 24.000000 24.000000 24.000000 24.000000\n", "mean 71.143427 12.845443 16.192417 31.970833 1.195833\n", "std 10.134027 1.312599 1.321017 5.622585 0.323673\n", "min 55.561900 9.471810 12.678311 25.600000 0.500000\n", "25% 61.977452 12.311479 15.528702 27.525000 1.000000\n", "50% 71.034790 12.802285 16.139006 31.850000 1.200000\n", "75% 77.907077 13.692860 16.991507 34.000000 1.400000\n", "max 93.721820 15.271679 18.668033 50.800000 1.800000" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 外れ値を切り捨てる\n", "df = df[df['tertiary'] >= 30]\n", "print(len(df))\n", "df[['tertiary', 'log_gdp', 'log_pop', 'gini', 'public']].describe()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>log_gdp</th>\n", " <th>log_pop</th>\n", " <th>gini</th>\n", " <th>public</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>log_gdp</th>\n", " <td>1.000000</td>\n", " <td>0.974037</td>\n", " <td>0.220537</td>\n", " <td>-0.298593</td>\n", " </tr>\n", " <tr>\n", " <th>log_pop</th>\n", " <td>0.974037</td>\n", " <td>1.000000</td>\n", " <td>0.337710</td>\n", " <td>-0.394632</td>\n", " </tr>\n", " <tr>\n", " <th>gini</th>\n", " <td>0.220537</td>\n", " <td>0.337710</td>\n", " <td>1.000000</td>\n", " <td>-0.451126</td>\n", " </tr>\n", " <tr>\n", " <th>public</th>\n", " <td>-0.298593</td>\n", " <td>-0.394632</td>\n", " <td>-0.451126</td>\n", " <td>1.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " log_gdp log_pop gini public\n", "log_gdp 1.000000 0.974037 0.220537 -0.298593\n", "log_pop 0.974037 1.000000 0.337710 -0.394632\n", "gini 0.220537 0.337710 1.000000 -0.451126\n", "public -0.298593 -0.394632 -0.451126 1.000000" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 相関を求める\n", "df[['log_gdp', 'log_pop', 'gini', 'public']].corr()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: tertiary R-squared: 0.178\n", "Model: OLS Adj. R-squared: 0.141\n", "Method: Least Squares F-statistic: 4.766\n", "Date: Sun, 25 Oct 2015 Prob (F-statistic): 0.0400\n", "Time: 23:36:47 Log-Likelihood: -86.772\n", "No. Observations: 24 AIC: 177.5\n", "Df Residuals: 22 BIC: 179.9\n", "Df Model: 1 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [95.0% Conf. Int.]\n", "------------------------------------------------------------------------------\n", "const 112.9931 19.265 5.865 0.000 73.040 152.946\n", "log_gdp -3.2579 1.492 -2.183 0.040 -6.353 -0.163\n", "==============================================================================\n", "Omnibus: 1.395 Durbin-Watson: 1.855\n", "Prob(Omnibus): 0.498 Jarque-Bera (JB): 0.950\n", "Skew: 0.481 Prob(JB): 0.622\n", "Kurtosis: 2.842 Cond. No. 130.\n", "==============================================================================\n", "\n", "Warnings:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" ] } ], "source": [ "# 単回帰GDP\n", "# 説明変数設定\n", "X = df[['log_gdp']]\n", "X = sm.add_constant(X)\n", "X.head()\n", "# 被説明変数設定\n", "Y = df['tertiary']\n", "Y.head()\n", "# OLSの実行(Ordinary Least Squares: 最小二乗法)\n", "model = sm.OLS(Y,X)\n", "results = model.fit()\n", "print(results.summary())" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: tertiary R-squared: 0.204\n", "Model: OLS Adj. R-squared: 0.168\n", "Method: Least Squares F-statistic: 5.633\n", "Date: Sun, 25 Oct 2015 Prob (F-statistic): 0.0268\n", "Time: 23:36:47 Log-Likelihood: -86.390\n", "No. Observations: 24 AIC: 176.8\n", "Df Residuals: 22 BIC: 179.1\n", "Df Model: 1 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [95.0% Conf. Int.]\n", "------------------------------------------------------------------------------\n", "const 127.2287 23.706 5.367 0.000 78.066 176.391\n", "log_pop -3.4637 1.459 -2.373 0.027 -6.490 -0.437\n", "==============================================================================\n", "Omnibus: 1.636 Durbin-Watson: 1.844\n", "Prob(Omnibus): 0.441 Jarque-Bera (JB): 0.978\n", "Skew: 0.494 Prob(JB): 0.613\n", "Kurtosis: 2.985 Cond. No. 205.\n", "==============================================================================\n", "\n", "Warnings:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" ] } ], "source": [ "# 単回帰人口\n", "# 説明変数設定\n", "X = df[['log_pop']]\n", "X = sm.add_constant(X)\n", "X.head()\n", "# 被説明変数設定\n", "Y = df['tertiary']\n", "Y.head()\n", "# OLSの実行(Ordinary Least Squares: 最小二乗法)\n", "model = sm.OLS(Y,X)\n", "results = model.fit()\n", "print(results.summary())" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: tertiary R-squared: 0.073\n", "Model: OLS Adj. R-squared: 0.031\n", "Method: Least Squares F-statistic: 1.743\n", "Date: Sun, 25 Oct 2015 Prob (F-statistic): 0.200\n", "Time: 23:36:47 Log-Likelihood: -88.210\n", "No. Observations: 24 AIC: 180.4\n", "Df Residuals: 22 BIC: 182.8\n", "Df Model: 1 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [95.0% Conf. Int.]\n", "------------------------------------------------------------------------------\n", "const 86.7563 12.000 7.230 0.000 61.870 111.642\n", "gini -0.4883 0.370 -1.320 0.200 -1.255 0.279\n", "==============================================================================\n", "Omnibus: 0.863 Durbin-Watson: 1.900\n", "Prob(Omnibus): 0.650 Jarque-Bera (JB): 0.773\n", "Skew: 0.152 Prob(JB): 0.679\n", "Kurtosis: 2.175 Cond. No. 191.\n", "==============================================================================\n", "\n", "Warnings:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" ] } ], "source": [ "# 単回帰ジニ係数\n", "# 説明変数設定\n", "X = df[['gini']]\n", "X = sm.add_constant(X)\n", "X.head()\n", "# 被説明変数設定\n", "Y = df['tertiary']\n", "Y.head()\n", "# OLSの実行(Ordinary Least Squares: 最小二乗法)\n", "model = sm.OLS(Y,X)\n", "results = model.fit()\n", "print(results.summary())" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: tertiary R-squared: 0.095\n", "Model: OLS Adj. R-squared: 0.054\n", "Method: Least Squares F-statistic: 2.311\n", "Date: Sun, 25 Oct 2015 Prob (F-statistic): 0.143\n", "Time: 23:36:47 Log-Likelihood: -87.927\n", "No. Observations: 24 AIC: 179.9\n", "Df Residuals: 22 BIC: 182.2\n", "Df Model: 1 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [95.0% Conf. Int.]\n", "------------------------------------------------------------------------------\n", "const 59.6000 7.856 7.587 0.000 43.308 75.892\n", "public 9.6530 6.350 1.520 0.143 -3.516 22.822\n", "==============================================================================\n", "Omnibus: 0.449 Durbin-Watson: 1.711\n", "Prob(Omnibus): 0.799 Jarque-Bera (JB): 0.560\n", "Skew: 0.081 Prob(JB): 0.756\n", "Kurtosis: 2.269 Cond. No. 7.86\n", "==============================================================================\n", "\n", "Warnings:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" ] } ], "source": [ "# 単回帰政府支出\n", "# 説明変数設定\n", "X = df[['public']]\n", "X = sm.add_constant(X)\n", "X.head()\n", "# 被説明変数設定\n", "Y = df['tertiary']\n", "Y.head()\n", "# OLSの実行(Ordinary Least Squares: 最小二乗法)\n", "model = sm.OLS(Y,X)\n", "results = model.fit()\n", "print(results.summary())" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: tertiary R-squared: 0.230\n", "Model: OLS Adj. R-squared: 0.068\n", "Method: Least Squares F-statistic: 1.422\n", "Date: Sun, 25 Oct 2015 Prob (F-statistic): 0.265\n", "Time: 23:36:47 Log-Likelihood: -85.983\n", "No. Observations: 24 AIC: 182.0\n", "Df Residuals: 19 BIC: 187.9\n", "Df Model: 4 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [95.0% Conf. Int.]\n", "------------------------------------------------------------------------------\n", "const 116.5609 43.388 2.687 0.015 25.750 207.372\n", "log_gdp -0.5124 8.309 -0.062 0.951 -17.903 16.878\n", "log_pop -2.3396 8.698 -0.269 0.791 -20.545 15.866\n", "gini -0.1753 0.457 -0.384 0.706 -1.132 0.781\n", "public 3.8907 7.685 0.506 0.618 -12.194 19.976\n", "==============================================================================\n", "Omnibus: 0.942 Durbin-Watson: 1.795\n", "Prob(Omnibus): 0.624 Jarque-Bera (JB): 0.659\n", "Skew: 0.393 Prob(JB): 0.719\n", "Kurtosis: 2.794 Cond. No. 857.\n", "==============================================================================\n", "\n", "Warnings:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" ] } ], "source": [ "# 重回帰分析\n", "# 説明変数設定\n", "X = df[['log_gdp', 'log_pop', 'gini', 'public']]\n", "X = sm.add_constant(X)\n", "X.head()\n", "# 被説明変数設定\n", "Y = df['tertiary']\n", "Y.head()\n", "# OLSの実行(Ordinary Least Squares: 最小二乗法)\n", "model = sm.OLS(Y,X)\n", "results = model.fit()\n", "print(results.summary())" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: tertiary R-squared: 0.220\n", "Model: OLS Adj. R-squared: 0.103\n", "Method: Least Squares F-statistic: 1.880\n", "Date: Sun, 25 Oct 2015 Prob (F-statistic): 0.165\n", "Time: 23:36:47 Log-Likelihood: -86.144\n", "No. Observations: 24 AIC: 180.3\n", "Df Residuals: 20 BIC: 185.0\n", "Df Model: 3 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [95.0% Conf. Int.]\n", "------------------------------------------------------------------------------\n", "const 131.0571 31.985 4.097 0.001 64.337 197.777\n", "log_gdp 0.6721 7.823 0.086 0.932 -15.646 16.990\n", "log_pop -3.7953 8.055 -0.471 0.643 -20.598 13.007\n", "gini -0.2218 0.439 -0.505 0.619 -1.138 0.694\n", "==============================================================================\n", "Omnibus: 1.502 Durbin-Watson: 1.874\n", "Prob(Omnibus): 0.472 Jarque-Bera (JB): 0.924\n", "Skew: 0.480 Prob(JB): 0.630\n", "Kurtosis: 2.942 Cond. No. 647.\n", "==============================================================================\n", "\n", "Warnings:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" ] } ], "source": [ "# 説明変数設定\n", "X = df[['log_gdp', 'log_pop', 'gini']]\n", "X = sm.add_constant(X)\n", "X.head()\n", "# 被説明変数設定\n", "Y = df['tertiary']\n", "Y.head()\n", "# OLSの実行(Ordinary Least Squares: 最小二乗法)\n", "model = sm.OLS(Y,X)\n", "results = model.fit()\n", "print(results.summary())" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: tertiary R-squared: 0.210\n", "Model: OLS Adj. R-squared: 0.135\n", "Method: Least Squares F-statistic: 2.792\n", "Date: Sun, 25 Oct 2015 Prob (F-statistic): 0.0841\n", "Time: 23:36:47 Log-Likelihood: -86.296\n", "No. Observations: 24 AIC: 178.6\n", "Df Residuals: 21 BIC: 182.1\n", "Df Model: 2 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [95.0% Conf. Int.]\n", "------------------------------------------------------------------------------\n", "const 134.8078 30.554 4.412 0.000 71.267 198.349\n", "log_gdp 2.6818 6.614 0.405 0.689 -11.074 16.437\n", "log_pop -6.0592 6.572 -0.922 0.367 -19.727 7.608\n", "==============================================================================\n", "Omnibus: 1.602 Durbin-Watson: 1.837\n", "Prob(Omnibus): 0.449 Jarque-Bera (JB): 0.875\n", "Skew: 0.467 Prob(JB): 0.646\n", "Kurtosis: 3.057 Cond. No. 338.\n", "==============================================================================\n", "\n", "Warnings:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" ] } ], "source": [ "# 説明変数設定\n", "X = df[['log_gdp', 'log_pop']]\n", "X = sm.add_constant(X)\n", "X.head()\n", "# 被説明変数設定\n", "Y = df['tertiary']\n", "Y.head()\n", "# OLSの実行(Ordinary Least Squares: 最小二乗法)\n", "model = sm.OLS(Y,X)\n", "results = model.fit()\n", "print(results.summary())" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
fggp/ctcsound
cookbook/03-threading.ipynb
1
6992
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Multithreading\n", "In the preceding recipes, there was a single thread running; this is the default way to use Python, due to the GIL (Global Interpreter Lock). Then, the user has the possibility to interact with the Csound instance during the performance loop. This is illustrated in the following diagram:\n", "\n", "![Single Thread](img/03-threading-a.png)\n", "\n", "To use Csound in a more flexible way, one can use multithreading. Because of the GIL limitations, it is better to yield the multithread machinery through C libraries. When a C function is called from Python using ctypes, the GIL is released during the function call.\n", "\n", "Csound has an helper class called CsoundPerformanceThread. When there is a running Csound instance, one can start a new thread by creating a new object of type CsoundPerformanceThread with a reference to the Csound instance as argument. Then, the main Python thread will run allowing the user to interract with it, while the performance thread will run concurrently in the C world, outside of the GIL. The user can send messages to the performance thread, each message being sent with a call to a C function through ctypes, releasing the GIL during the function call. Those messages can be: _play(), pause(), togglePause(), stop(), record(), stopRecord(), scoreEvent(), inputMessage(), setScoreOffsetSeconds(), join(),_ or _flushMessageQueue()_.\n", "\n", "When a very long score is used, it is thus easy to implement a REPL (read-eval-print loop) system around Csound. This is illustrated in the following diagram:\n", "\n", "![Multithreading with CsoundPerformanceThread](img/03-threading-b.png)\n", "\n", "So let's start a Csound instance from Python, with a four hours long score:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import ctcsound\n", "cs = ctcsound.Csound()\n", "\n", "csd = '''\n", "<CsoundSynthesizer>\n", "\n", "<CsOptions>\n", " -d -o dac -m0\n", "</CsOptions>\n", "\n", "<CsInstruments>\n", "sr = 48000\n", "ksmps = 100\n", "nchnls = 2\n", "0dbfs = 1\n", "\n", " instr 1\n", "idur = p3\n", "iamp = p4\n", "icps = cpspch(p5)\n", "irise = p6\n", "idec = p7\n", "ipan = p8\n", "\n", "kenv linen iamp, irise, idur, idec\n", "kenv = kenv*kenv\n", "asig poscil kenv, icps\n", "a1, a2 pan2 asig, ipan\n", " outs a1, a2\n", " endin\n", "</CsInstruments>\n", "\n", "<CsScore>\n", "f 0 14400 ; a 4 hours session should be enough\n", "</CsScore>\n", "</CsoundSynthesizer>\n", "'''\n", "cs.compileCsdText(csd)\n", "cs.start()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then, let's start a new thread, passing the opaque pointer of the Csound instance as argument:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "pt = ctcsound.CsoundPerformanceThread(cs.csound())\n", "pt.play()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we can send messages to the performance thread:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "pt.scoreEvent(False, 'i', (1, 0, 1, 0.5, 8.06, 0.05, 0.3, 0.5))\n", "pt.scoreEvent(False, 'i', (1, 0.5, 1, 0.5, 9.06, 0.05, 0.3, 0.5))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When we're done, we stop the performance thread and reset the csound instance:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "pt.stop()\n", "pt.join()\n", "cs.reset()" ] }, { "cell_type": "markdown", "metadata": { "jupyter": { "outputs_hidden": true } }, "source": [ "Note that we can still access the csound instance with other methods, like controlChannel() or setControlChannel():" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "csd = '''\n", "<CsoundSynthesizer>\n", "<CsOptions>\n", "-odac\n", "</CsOptions>\n", "<CsInstruments>\n", "sr = 44100\n", "ksmps = 64\n", "nchnls = 2\n", "0dbfs = 1\n", "seed 0\n", "\n", "instr 1\n", " iPch random 60, 72\n", " chnset iPch, \"pch\"\n", " kPch init iPch\n", " kNewPch chnget \"new_pitch\"\n", " if kNewPch > 0 then\n", " kPch = kNewPch\n", " endif\n", " aTone poscil .2, mtof(kPch)\n", " out aTone, aTone\n", "endin\n", "\n", "</CsInstruments>\n", "<CsScore>\n", "i 1 0 600\n", "</CsScore>\n", "</CsoundSynthesizer>\n", "'''\n", "cs.compileCsdText(csd)\n", "cs.start()\n", "pt = ctcsound.CsoundPerformanceThread(cs.csound())\n", "pt.play()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can ask for the values in the Csound instance ..." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(69.60446804277807, c_int(0))\n" ] } ], "source": [ "print(cs.controlChannel('pch'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "... or we can set our own values to the Csound instance:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "cs.setControlChannel('new_pitch',73)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "At the end, stop and reset as usual:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "pt.stop()\n", "pt.join()\n", "cs.reset()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Author: François Pinot, March 2016" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 4 }
lgpl-2.1
jessicabodosa/digit_trial
Digit.ipynb
1
575850
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# || Digit ||\n", "___\n", "> practice really" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "import scipy.special\n", "import matplotlib.pyplot\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#defining it\n", "\n", "class neuralNetwork:\n", " def __init__(self, inputnodes, hiddennodes, outputnodes, learning_rate):\n", " self.inodes = inputnodes\n", " self.hnodes = hiddennodes\n", " self.onodes = outputnodes\n", " \n", " self.lr = learning_rate\n", " \n", " self.wih = (np.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes, self.inodes)))\n", " self.who = (np.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes)))\n", " \n", " \n", " \n", " self.activation_function = lambda x:scipy.special.expit(x)\n", " \n", " pass \n", " \n", " \n", " def train(self, inputs_list, targets_list):\n", " inputs = np.array(inputs_list, ndmin=2).T\n", " targets = np.array(targets_list,ndmin=2).T\n", " \n", " hidden_inputs = np.dot(self.wih,inputs)\n", " hidden_outputs = self.activation_function(hidden_inputs)\n", " \n", " final_inputs = np.dot(self.who, hidden_outputs)\n", " final_outputs = self.activation_function(final_inputs)\n", " \n", " output_errors = targets - final_outputs\n", " hidden_errors = np.dot(self.who.T,output_errors)\n", " \n", " self.who += self.lr*np.dot((output_errors*final_outputs*(1-final_outputs)),np.transpose(hidden_outputs))\n", " self.wih += self.lr*np.dot((hidden_errors*hidden_outputs*(1-hidden_outputs)),np.transpose(inputs))\n", " \n", " pass\n", " \n", " def query(self, inputs_list):\n", " inputs = np.array(inputs_list, ndmin=2).T\n", " \n", " hidden_inputs = np.dot(self.wih,inputs)\n", " hidden_outputs = self.activation_function(hidden_inputs)\n", " \n", " final_inputs = np.dot(self.who, hidden_outputs)\n", " final_outputs = self.activation_function(final_inputs)\n", " \n", " return final_outputs" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#creating the network\n", "\n", "input_nodes = 784\n", "hidden_nodes = 200\n", "output_nodes = 10\n", "learning_rate = 0.1\n", "\n", "n = neuralNetwork(input_nodes, hidden_nodes, output_nodes, learning_rate)\n" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "data_file = open(\"mnist_train.csv\",\"r\")\n", "data_list = data_file.readlines()\n", "data_file.close()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [], "source": [ "for record in data_list:\n", " all_values = record.split(',')\n", " inputs = (np.asfarray(all_values[1:])/255.0 *0.99)+0.01\n", " targets = np.zeros(output_nodes)+0.01\n", " targets[int(all_values[0])] = 0.99\n", " n.train(inputs,targets)\n", " pass" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "test_data_file = open(\"mnist_test.csv\",\"r\")\n", "test_data_list = test_data_file.readlines()\n", "test_data_file.close()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'7'" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "all_values1 = test_data_list[0].split(',')\n", "all_values1[0]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x7fe2b7ce5978>" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWEAAAFfCAYAAACfj30KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFJZJREFUeJzt3X+M3HWdx/Hn+/hhSw3btFxaAlpbq6GaYNj17BVBuEOD\ncgY5EzEDBjhyMRx6mo2naGKkwPkLg8uh9mIuXhGRMSQeIAYoSkDLcQWva1V+yI/SCgqtlMZtUoti\n+7k/Znrubtvtd3Zn+p6dfT6SSZzvvGe+74/f6YvPfuf7I0opSJJy/EV2A5I0kxnCkpTIEJakRIaw\nJCUyhCUpkSEsSYkMYUlKZAhLUiJDWJISHZ7dQETMB84ENgMv5XYjSW0xC3gNsKaU8uJEhR0L4Yj4\nEPAvwELgZ8A/l1J+sp/SM4Fvd6oPSUp0PnDTRAUdCeGIeD9wDfBB4CFgEFgTEa8vpWwbV74Z4MYb\nb2TZsmVjXhgcHGRoaKgTLabr5bFBb4/PsU1fh2p8jz32GB/4wAegmW8T6dRMeBD4einlBoCIuAT4\nO+Bi4OpxtS8BLFu2jP7+/jEv9PX17bOsV/Ty2KC3x+fYpq+E8R10F2vbf5iLiCOAAeCevctK41Jt\nPwRWtHt9kjSddeLoiGOAw4Ct45ZvpbF/WJLU5CFqkpSoE/uEtwG7gQXjli8AthzoTYODg/T19Y1Z\ntmjRorY31y1qtVp2Cx3Vy+NzbNNXJ8ZXr9ep1+tjlo2MjFR+f3TizhoRsQ54sJTy0ebzAJ4Briul\nfGlcbT+wfv369T39g4CkmWN4eJiBgQGAgVLK8ES1nTo64svA9RGxnj8fonYUcH2H1idJ01JHQriU\ncnNEHANcSWM3xAbgzFLKC51YnyRNVx07Y66UsgpY1anPl6Re4NERkpTIEJakRIawJCUyhCUpkSEs\nSYkMYUlKZAhLUiJDWJISGcKSlMgQlqREhrAkJTKEJSmRISxJiQxhSUpkCEtSIkNYkhIZwpKUyBCW\npESGsCQlMoQlKZEhLEmJDGFJSmQIS1IiQ1iSEhnCkpTIEJakRIawJCUyhCUpkSEsSYkMYUlKZAhL\nUiJDWJISGcKSlMgQlqREhrAkJTKEJSmRISxJiQxhSUpkCEtSIkNYkhIZwpKUyBCWpESGsCQlMoQl\nKVHbQzgiLo+IPeMej7Z7PZLUCw7v0Oc+DJwBRPP5nzq0Hkma1joVwn8qpbzQoc+WpJ7RqX3Cr4uI\n30TExoi4MSJe1aH1SNK01okQXgdcBJwJXAIsBn4cEXM6sC5JmtbavjuilLJm1NOHI+Ih4FfAucDq\ndq9PkqazTu0T/n+llJGIeAJYOlHd4OAgfX19Y5bVajVqtVon25OkKanX69Tr9THLRkZGKr8/Sint\n7mnsCiJeCTwDfKaU8tX9vN4PrF+/fj39/f0d7UWSDoXh4WEGBgYABkopwxPVduI44S9FxNsiYlFE\nnAzcArwM1A/yVkmacTqxO+J44CZgPvACcD/w16WUFzuwLkma1jrxw5w7cSWpIq8dIUmJDGFJSmQI\nS1IiQ1iSEhnCkpTIEJakRIawJCUyhCUpkSEsSYkMYUlKZAhLUiJDWJISdfyi7oJWrtm8bt26yrXX\nXXdd5drjjjuucu3s2bMr11544YWVa+fNm9eRWmk6cyYsSYkMYUlKZAhLUiJDWJISGcKSlMgQlqRE\nhrAkJTKEJSmRISxJiQxhSUrkactd5qKLLqpc++STT3aukYo++9nPVq6dO3du5drly5dPph21YPHi\nxZVrP/nJT1auffWrXz2ZdmYsZ8KSlMgQlqREhrAkJTKEJSmRISxJiQxhSUpkCEtSIkNYkhIZwpKU\nyBCWpESettxlbrnllsq1GzZsqFz7xje+sXLtI488Urn2wQcfrFx72223Va5ds2ZN5dpWTr/dtGlT\n5dpOOvzw6v/0jj322Mq1zz777GTaOahFixZVrr3ssss60kOvciYsSYkMYUlKZAhLUiJDWJISGcKS\nlMgQlqREhrAkJTKEJSmRISxJiQxhSUrU8mnLEXEq8HFgADgWOKeU8r1xNVcC/wjMBf4b+KdSylNT\nb3d6iojKtcuWLetIbStOPPHEyrW1Wq1y7Re+8IXKtZs3b65c28ppy08//XTl2k468sgjK9cuXLiw\ncu2SJUsq127btq1y7QknnFC5Vq2ZzEx4DrABuBQo41+MiMuADwMfBN4C7ATWRET1b50kzRAtz4RL\nKXcBdwHE/qd4HwWuKqV8v1lzAbAVOAe4efKtSlLvaes+4YhYDCwE7tm7rJSyA3gQWNHOdUlSL2j3\nD3MLaeyi2Dpu+dbma5KkUTw6QpIStfui7luAABYwdja8APjpRG8cHBykr69vzLJardbSr++SdKjV\n63Xq9fqYZSMjI5Xf39YQLqVsiogtwBnAzwEi4mhgOfC1id47NDREf39/O9uRpI7b32RxeHiYgYGB\nSu+fzHHCc4ClNGa8AEsi4k3A9lLKs8C1wKcj4ilgM3AV8Gug+r1tJGmGmMxM+M3AvTR+gCvANc3l\n3wQuLqVcHRFHAV+ncbLGWuBdpZQ/tqFfSeopkzlO+Ecc5Ae9UspKYOXkWpKkmcO7LXeZVk5xnm5m\nzZpVubZTp8l26lTvTmrljtYvvvhi5drly5dXrn3HO95RuVat8RA1SUpkCEtSIkNYkhIZwpKUyBCW\npESGsCQlMoQlKZEhLEmJDGFJSmQIS1IiT1vWIdPLp2SXss89bye0c+fOyrXvfe97K9fu2bOncu3Q\n0FDl2tmzZ1euVWucCUtSIkNYkhIZwpKUyBCWpESGsCQlMoQlKZEhLEmJDGFJSmQIS1IiQ1iSEnna\nspTg+uuvr1y7ZcuWyrXz58+vXLto0aLKtb18ynk2Z8KSlMgQlqREhrAkJTKEJSmRISxJiQxhSUpk\nCEtSIkNYkhIZwpKUyBCWpESetiwdQCt3UN64cWNLn/2xj32s1XYqeeCBByrXLly4sCM9qDXOhCUp\nkSEsSYkMYUlKZAhLUiJDWJISGcKSlMgQlqREhrAkJTKEJSmRISxJiVo+bTkiTgU+DgwAxwLnlFK+\nN+r11cCF4952VynlrKk0KnWz22+/vaX6l19+uXLt+973vsq1S5YsqVzrHZS7w2RmwnOADcClwIFO\nrr8TWAAsbD5qk+pOknpcyzPhUspdwF0AceD/lP6hlPLCVBqTpJmgU/uET4+IrRHxy4hYFRHzOrQe\nSZrWOnEpyzuB7wKbgNcCnwfuiIgVpZVrA0rSDND2EC6l3Dzq6SMR8QtgI3A6cG+71ydJ01nHL+pe\nStkUEduApUwQwoODg/T19Y1ZVqvVqNX8TU9S96rX69Tr9THLRkZGKr+/4yEcEccD84HnJ6obGhqi\nv7+/0+1IUlvtb7I4PDzMwMBApfdP5jjhOTRmtXuPjFgSEW8Ctjcfl9PYJ7ylWfdF4AlgTavrkqRe\nN5mZ8Jtp7FYozcc1zeXfpHHs8InABcBc4Dka4fuZUkr1o9MlaYaYzHHCP2LiQ9veOfl2JGlm8doR\nkpTIW95rRmnlUPVWru9w6623ttTHK17xisq1n/vc5yrXHnbYYS31oXzOhCUpkSEsSYkMYUlKZAhL\nUiJDWJISGcKSlMgQlqREhrAkJTKEJSmRISxJiTxtWTqAb3zjG5Vr165d29Jnn3feeZVrvY19b3Mm\nLEmJDGFJSmQIS1IiQ1iSEhnCkpTIEJakRIawJCUyhCUpkSEsSYkMYUlK5GnLmvZauYPyhg0bKtd+\n5CMfqVw7d+7cyrUAV1xxReVaT0Xubc6EJSmRISxJiQxhSUpkCEtSIkNYkhIZwpKUyBCWpESGsCQl\nMoQlKZEhLEmJPG1ZXamVU5F37dpVubaVuxzv3r27cu35559fuRZau4OyepszYUlKZAhLUiJDWJIS\nGcKSlMgQlqREhrAkJTKEJSmRISxJiQxhSUrUUghHxKci4qGI2BERWyPiloh4/X7qroyI5yLi9xHx\ng4hY2r6WJal3tHra8qnAV4D/bb7388DdEbGslLILICIuAz4MXABsBv4VWNOs+WO7Gtf008qpyHv2\n7Klc++53v7ty7eOPP165dtmyZZVrV65cWbkWvIOy/qylEC6lnDX6eURcBPwWGADuby7+KHBVKeX7\nzZoLgK3AOcDNU+xXknrKVPcJzwUKsB0gIhYDC4F79haUUnYADwIrprguSeo5kw7haPw9dS1wfynl\n0ebihTRCeeu48q3N1yRJo0zlUpargDcAb21TL5I040wqhCPiq8BZwKmllOdHvbQFCGABY2fDC4Cf\nTvSZg4OD9PX1jVlWq9Wo1WqTaVGSDol6vU69Xh+zbGRkpPL7Ww7hZgC/BzitlPLM6NdKKZsiYgtw\nBvDzZv3RwHLgaxN97tDQEP39/a22I0mp9jdZHB4eZmBgoNL7WwrhiFgF1ICzgZ0RsaD50kgp5aXm\n/74W+HREPEXjELWrgF8Dt7WyLkmaCVqdCV9C44e3+8Yt/wfgBoBSytURcRTwdRpHT6wF3uUxwpK0\nr1aPE650NEUpZSWwchL9SNKM4rUjJCmRd1tWV9q+fXvl2vvuu68jPdxwww2Va+fNm9eRHtT7nAlL\nUiJDWJISGcKSlMgQlqREhrAkJTKEJSmRISxJiQxhSUpkCEtSIkNYkhJ52rKmpJU7KLdyoesVKzpz\nS8JvfetblWtPOumkyrXePVmT5UxYkhIZwpKUyBCWpESGsCQlMoQlKZEhLEmJDGFJSmQIS1IiQ1iS\nEhnCkpTI05Z1yKxevbpy7dNPP92RHk455ZTKtZ6KrEPBmbAkJTKEJSmRISxJiQxhSUpkCEtSIkNY\nkhIZwpKUyBCWpESGsCQlMoQlKZGnLWsfrdxB+cknn6xce8UVV0ymnbZq5VRkT1vWoeBMWJISGcKS\nlMgQlqREhrAkJTKEJSmRISxJiQxhSUpkCEtSIkNYkhIZwpKUqKXTliPiU8DfAycAu4AHgMtKKU+M\nqlkNXDjurXeVUs6aYq/qQmvXrq1cu2PHjo70sGzZssq1s2fP7kgP0mS1OhM+FfgKsBx4O3AEcHdE\njP9m3wksABY2H7Up9ilJPamlmfD42WxEXAT8FhgA7h/10h9KKS9MuTtJ6nFT3Sc8FyjA9nHLT4+I\nrRHxy4hYFRHzprgeSepJk76UZTSu83ctcH8p5dFRL90JfBfYBLwW+DxwR0SsKK1cI1GSZoCpXE94\nFfAG4K2jF5ZSbh719JGI+AWwETgduHcK65OknjOpEI6IrwJnAaeWUp6fqLaUsikitgFLmSCEBwcH\n6evrG7OsVqtRq/mbnqTuVa/XqdfrY5aNjIxUfn/LIdwM4PcAp5VSnqlQfzwwH5gwrIeGhujv72+1\nHUlKtb/J4vDwMAMDA5Xe39IPcxGxCjgfOA/YGRELmo9ZzdfnRMTVEbE8IhZFxBnArcATwJpW1iVJ\nM0GrR0dcAhwN3Ac8N+pxbvP13cCJwG3A48B/AD8B3lZKebkN/UpST2n1OOEJQ7uU8hLwzil1JEkz\niHdbVlc6+eSTK9fefffdlWs9bVndxgv4SFIiQ1iSEhnCkpTIEJakRIawJCUyhCUpkSEsSYkMYUlK\nZAhLUiJDWJISedqy9tG4aUo1F198cUdqO6WVsUmHgjNhSUpkCEtSIkNYkhIZwpKUqKtDePzN83pJ\nL48Nent8jm366sbxGcJJenlsAN/5zneyW+iYXt52vTw26M7xdXUIS1KvM4QlKZEhLEmJuuGMuVkA\njz322D4vjIyMMDw8fMgbOhR6ZWyllP0u/93vfteV42vHGXO9su32p5fHBodufKPybNbBauNA/4gO\nlYg4D/h2ahOS1Bnnl1JumqigG0J4PnAmsBl4KbUZSWqPWcBrgDWllBcnKkwPYUmayfxhTpISGcKS\nlMgQlqREhrAkJerKEI6ID0XEpojYFRHrIuKvsntqh4i4PCL2jHs8mt3XZETEqRHxvYj4TXMcZ++n\n5sqIeC4ifh8RP4iIpRm9TsbBxhcRq/ezLe/I6reqiPhURDwUETsiYmtE3BIRr99P3bTcdlXG123b\nrutCOCLeD1wDXA6cBPwMWBMRx6Q21j4PAwuAhc3HKbntTNocYANwKbDPITYRcRnwYeCDwFuAnTS2\n45GHsskpmHB8TXcydlvWDk1rU3Iq8BVgOfB24Ajg7oiYvbdgmm+7g46vqXu2XSmlqx7AOuDfRj0P\n4NfAJ7J7a8PYLgeGs/vowLj2AGePW/YcMDjq+dHALuDc7H7bNL7VwH9l99aGsR3THN8pPbrt9je+\nrtp2XTUTjogjgAHgnr3LSuP/tR8CK7L6arPXNf/E3RgRN0bEq7IbareIWExjdjF6O+4AHqR3tiPA\n6c0/eX8ZEasiYl52Q5Mwl8ZMfzv05LYbM75RumbbdVUI0/iv1mHA1nHLt9L4Ykx364CLaJwheAmw\nGPhxRMzJbKoDFtL44vfqdoTGn7MXAH8LfAI4DbgjptHtnJu9XgvcX0rZ+9tEz2y7A4wPumzbdcMF\nfGaMUsqaUU8fjoiHgF8B59L4E0nTRCnl5lFPH4mIXwAbgdOBe1Oaat0q4A3AW7Mb6ZD9jq/btl23\nzYS3Abtp7DAfbQGw5dC301mllBHgCWBa/PLcgi009uXPiO0IUErZROP7Oy22ZUR8FTgLOL2U8vyo\nl3pi200wvn1kb7uuCuFSysvAeuCMvcuafyKcATyQ1VenRMQraWz4Cb8k003zS72FsdvxaBq/WPfc\ndgSIiOOB+UyDbdkMqPcAf1NKeWb0a72w7SYa3wHqU7ddN+6O+DJwfUSsBx4CBoGjgOszm2qHiPgS\ncDuNXRDHAVcALwPdd+Org2jux15KY9YEsCQi3gRsL6U8S2Nf3Kcj4ikaV8i7isZRLrcltNuyicbX\nfFwOfJdGYC0Fvkjjr5o1+35a94iIVTQOxzob2BkRe2e8I6WUvVcxnLbb7mDja27X7tp22YdnHOCw\nkktpbPxdwP8Ab87uqU3jqtP4Mu8CngFuAhZn9zXJsZxG49Cf3eMe/zmqZiWNw51+T+MLvjS773aM\nj8ZlCu+i8Y/4JeBp4N+Bv8zuu8K49jem3cAF4+qm5bY72Pi6cdt5KUtJStRV+4QlaaYxhCUpkSEs\nSYkMYUlKZAhLUiJDWJISGcKSlMgQlqREhrAkJTKEJSmRISxJiQxhSUr0fxa22+Y3DJRPAAAAAElF\nTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fe2ba77c898>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "image_array = np.asfarray(all_values1[1:]).reshape((28,28))\n", "matplotlib.pyplot.imshow(image_array, cmap=\"Greys\",interpolation=\"None\")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 0.00981296],\n", " [ 0.00291237],\n", " [ 0.01382717],\n", " [ 0.01207517],\n", " [ 0.00125286],\n", " [ 0.01440796],\n", " [ 0.0101734 ],\n", " [ 0.98560708],\n", " [ 0.00882559],\n", " [ 0.00855959]])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "n.query((np.asfarray(all_values1[1:])/255.0 * 0.99) + 0.01)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "10" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(n.query((np.asfarray(all_values[1:])/255.0*0.99)+0.01))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "8 found answer\n", "3 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "3 found answer\n", "2 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "5 found answer\n", "2 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "1 found answer\n", "6 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "5 found answer\n", "8 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "0 found answer\n", "7 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "8 found answer\n", "2 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "2 found answer\n", "4 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "5 found answer\n", "2 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "9 found answer\n", "5 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "5 found answer\n", "3 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "0 found answer\n", "8 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "9 found answer\n", "5 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "7 found answer\n", "7 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "1 found answer\n", "6 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "6 found answer\n", "0 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "4 found answer\n", "7 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "9 found answer\n", "8 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "9 found answer\n", "5 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "0 found answer\n", "4 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "3 found answer\n", "3 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "8 found answer\n", "9 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "1 found answer\n", "4 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "2 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "0 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "3 correct label\n", "3 found answer\n", "7 correct label\n", "7 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "3 correct label\n", "3 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "8 correct label\n", "8 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "5 correct label\n", "5 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "5 correct label\n", "5 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "5 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "9 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "3 correct label\n", "3 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "4 correct label\n", "4 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "9 correct label\n", "9 found answer\n", "2 correct label\n", "2 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "6 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "3 found answer\n", "3 correct label\n", "9 found answer\n", "9 correct label\n", "9 found answer\n", "1 correct label\n", "1 found answer\n", "4 correct label\n", "4 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "1 correct label\n", "1 found answer\n", "0 correct label\n", "0 found answer\n", "0 correct label\n", "0 found answer\n", "6 correct label\n", "6 found answer\n", "2 correct label\n", "2 found answer\n", "1 correct label\n", "1 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "4 correct label\n", "4 found answer\n", "6 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "7 correct label\n", "7 found answer\n", "0 correct label\n", "0 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "8 correct label\n", "8 found answer\n", "7 correct label\n", "7 found answer\n", "1 correct label\n", "1 found answer\n", "5 correct label\n", "5 found answer\n", "2 correct label\n", "2 found answer\n", "4 correct label\n", "4 found answer\n", "9 correct label\n", "9 found answer\n", "4 correct label\n", "4 found answer\n", "3 correct label\n", "3 found answer\n", "6 correct label\n", "6 found answer\n", "4 correct label\n", "4 found answer\n", "1 correct label\n", "1 found answer\n", "7 correct label\n", "7 found answer\n", "2 correct label\n", "2 found answer\n", "6 correct label\n", "6 found answer\n", "5 correct label\n", "6 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n", "7 correct label\n", "7 found answer\n", "8 correct label\n", "8 found answer\n", "9 correct label\n", "9 found answer\n", "0 correct label\n", "0 found answer\n", "1 correct label\n", "1 found answer\n", "2 correct label\n", "2 found answer\n", "3 correct label\n", "3 found answer\n", "4 correct label\n", "4 found answer\n", "5 correct label\n", "5 found answer\n", "6 correct label\n", "6 found answer\n" ] } ], "source": [ "scorecard = []\n", "for record in test_data_list:\n", " all_values = record.split(',')\n", " correct_label = int(all_values[0])\n", " print(correct_label,\"correct label\")\n", " inputs = (np.asfarray(all_values[1:])/255.0 *0.99)+0.01\n", " outputs = n.query(inputs)\n", " label = np.argmax(outputs)\n", " print(label,\"found answer\")\n", " if(label == correct_label):\n", " scorecard.append(1)\n", " else:\n", " scorecard.append(0)\n", " pass\n", " pass\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]\n" ] } ], "source": [ "print(scorecard)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "performance = 0.9609\n" ] } ], "source": [ "sum_array = np.asarray(scorecard)\n", "print(\"performance = \", sum_array.sum()/sum_array.size)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
liganega/Gongsu-DataSci
ref_materials/excs/Lab-07.ipynb
2
16909
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 연습문제\n", "\n", "아래 문제들을 해결하는 코드를 lab07.py 파일에 작성하여 제출하라." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 연습 1\n", "\n", "미국 해양대기청(NOAA)은 전세계 날씨를 실시간으로 제공한다. 한국의 경우 공항이 있는 도시의 날씨정보를 제공하며 평택도 포함된다. 평택의 현재 날씨 정보를 텍스트파일로 얻고자 하면 아래 [NOAA](http://weather.noaa.gov/pub/data/observations/metar/decoded/RKSG.TXT) 사이트를 클릭해서 파일을 다운로드받으면 된다.\n", " \n", "아니면 아래 함수를 이용하여 위 링크에 연결된 파일 내용을 확인할 수 있다.\n", "\n", " def NOAA_string():\n", " url = \"http://weather.noaa.gov/pub/data\" +\\\n", " \"/observations/metar/decoded/RKSG.TXT\"\n", " noaa_data_string = urllib.urlopen(url).read()\n", " return noaa_data_string\n", " \n", "위 코드를 사용하려면 `urllib` 모듈을 임포트해야 한다. 위 함수를 파이썬 셸에서 실행하여 리턴값을 확인해보기 바란다. \n", "\n", "이제 아래 일을 수행하는 함수 `NOAA_temperature(s)` 함수를 작성하라.\n", "\n", "* `NOAA_string()`의 리턴값을 인자로 받아서 해당 도시의 섭씨 단위 온도의 정수값을 리턴한다. \n", "* 미국은 온도를 화씨(Fahrenheit) 단위로 나타내며 우리는 섭씨(Celsius) 단위를 사용한다. \n", "\n", "주의: 위 사이트는 실시간으로 날씨 정보를 제공한다. 따라서 위 링크를 누를 때마다 온도 정보가 변한다. 예를 들어 2015년 10월 16일 0시 38분에 확인한 경우 아래 처럼 확인된 평택시 온도는 섭씨 14.2이다. 따라서 `NOAA_temperature(NOAA_string())`은 `14`를 리턴해야 한다. 하지만 다른 시각에 확인하면 다른 값이 나올 수 있음에 주의해야 한다. 어떻게 섭씨에 해당하는 숫자를 끄집어 낼 수 있는지 확인해야 한다. \n", "\n", " Pyongtaek Ab, Korea, South (RKSG) 36-56N 127-00E 16M\n", " Oct 15, 2015 - 10:58 AM EDT / 2015.10.15 1458 UTC\n", " Wind: Calm:0\n", " Visibility: 2 mile(s):0\n", " Sky conditions: partly cloudy\n", " Weather: mist\n", " Temperature: 57.6 F (14.2 C)\n", " Dew Point: 57.6 F (14.2 C)\n", " Relative Humidity: 100%\n", " Pressure (altimeter): 30.11 in. Hg (1019 hPa)\n", " ob: RKSG 151458Z 00000KT 2SM R32/2600FT BR SCT010 14/14 A3011 RMK AO2A SLP199 T01420142 \n", " cycle: 15\n", " \n", "힌트: 문자열 메소드 중에서 특정 부분 문자열(substring)의 위치, 즉 인덱스 번호를 확인해주는 메소드가 있다. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 연습 1 견본답안 1\n", "\n", "`NOAA_string()`을 실행하여 얻어진 파일의 내용을 보면 7번째 줄에서 온도 정보를 확인할 수 있다.\n", "관건은 7번째 줄에서 `14.2`를 끄집어 내는 것이다. 그러려면 14.2를 유일하게 특징지울 수 있는 무언가를 찾아야 한다. \n", "\n", "방법 1: `split` 메소드 이용하기\n", "\n", "* 7번째 줄을 자세히 살피면 섭씨 온도 정보는 세 개의 스페이스 뒤에 위치한다. 이 정보를 활용할 수 있다." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Pyongtaek Ab, Korea, South (RKSG) 36-56N 127-00E 16M\n", "Oct 20, 2015 - 04:55 AM EDT / 2015.10.20 0855 UTC\n", "Wind: from the NW (310 degrees) at 6 MPH (5 KT):0\n", "Visibility: 1 1/2 mile(s):0\n", "Sky conditions: clear\n", "Weather: mist\n", "Temperature: 68 F (20 C)\n", "Dew Point: 66 F (19 C)\n", "Relative Humidity: 93%\n", "Pressure (altimeter): 30 in. Hg (1015 hPa)\n", "Pressure tendency: 0.00 inches (0.0 hPa) higher than three hours ago\n", "ob: RKSG 200855Z 31005KT 1 1/2SM BR CLR 20/19 A3000 RMK SLP162 53000\n", "cycle: 9\n", "\n", "20 C\n" ] } ], "source": [ "import urllib\n", "\n", "def NOAA_string():\n", " url = \"http://weather.noaa.gov/pub/data\" +\\\n", " \"/observations/metar/decoded/RKSG.TXT\"\n", " noaa_data_string = urllib.urlopen(url).read()\n", " return noaa_data_string\n", "\n", "print(NOAA_string())\n", "\n", "def NOAA_temperature(s):\n", " L = s.split('\\n')\n", " Line7 = L[6].split()\n", " print(str(int(Line7[-2][1:])) + \" C\")\n", "\n", "NOAA_temperature(NOAA_string())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 연습 1 견본답안 2\n", "\n", "* 섭씨온도를 유일하게 특징지우는 문자열을 찾아야 한다.\n", "* `\" F \"`가 그런 문자열이다. (`F` 양 옆으로 스페이스가 있다.)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20 C\n" ] } ], "source": [ "def NOAA_temperature(s):\n", " d = s.find(\" F \")\n", " print(s[d+4: d+6] + \" C\")\n", " \n", "NOAA_temperature(NOAA_string())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 연습 2\n", "\n", "텍스트 파일에 저장된 문장에서 특정 단어의 출현 횟수를 확인해주는 함수 `wc_sub(filename, s)` 함수를 작성하라. `wc`는 `Word Count`의 줄임말이다. \n", "\n", "힌트: `count` 메소드를 활용한다.\n", "\n", "예제 1: `data.txt` 파일 내용이 아래와 같을 경우\n", "\n", " One Two\n", " \n", "`wc_sub('data.txt', 'One')`는 1를 리턴한다.\n", "\n", "예제 2: `data.txt` 파일 내용이 아래와 같을 경우\n", "\n", " One Two\n", " Three Four Five\n", " \n", "`wc_sub('data.txt', 'o')`는 2를 리턴한다.\n", "\n", "`wc_sub` 함수를 이용하여 `이상한 나라의 앨리스` 원작에 'Alice'와 'alice'란 단어가 각각 몇 번 언급되는지 확인하라. 이상한 나라의 앨리스 원작은 아래 링크에서 다운 받을 수 있다.\n", "\n", " http://www.gutenberg.org/files/28885/28885-8.txt\n", " \n", "위 링크를 누르면 뜨는 화면에서 `Plain Text UTF-8` 파일을 다운로드 받으면 된다. 아마도 몇 만 단어가 사용되었을 것이다.\n", "\n", "단, `filename`에 해당하는 파일이 열리지 않을 경우 `-1`을 리턴하도록 오류처리를 해야 한다. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 연습 2 견본답안" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The word 'Alice' occurs 402 times.\n", "The word 'alice' occurs 0 times.\n" ] } ], "source": [ "def wc_sub(filename, s):\n", " with open(filename, 'r') as f:\n", " f_content = f.read()\n", " return f_content.count(s)\n", "\n", "print(\"The word 'Alice' occurs {} times.\".format(wc_sub('Alice.txt', 'Alice')))\n", "print(\"The word 'alice' occurs {} times.\".format(wc_sub('Alice.txt', 'alice')))" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### 연습 3\n", "\n", "함수 `f`와 숫자들의 리스트 `xs`를 인자로 받아 `f(x)`의 값이 `0`보다 크게 되는 `x`의 값만 추출해서 리턴하는 함수 `filtering(f, xs)`를 정의하라.\n", "\n", "예제:\n", "\n", " In [1]: def f1(x):\n", " ...: return x * 3\n", "\n", " In [2]: filtering(f1, [1, -2, 2, -1, 3, 5])\n", " Out[2]: [1, 2, 3, 5]\n", "\n", " In [3]: filtering(f1, [-1, -2, -3, -4, -5])\n", " Out[3]: []" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 연습 3 견본답안" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[1, 2, 3, 5]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def filtering(f, xs):\n", " L = []\n", " for x in xs:\n", " if f(x) > 0:\n", " L.append(x)\n", " return L\n", "\n", "def f1(x):\n", " return x * 3\n", "\n", "filtering(f1, [1, -2, 2, -1, 3, 5])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### 참조: 파이썬 내장함수 중에 `filter` 함수가 비슷한 일을 한다. 어떤 차이점이 있는지 확인해보는 것을 추천한다." ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### 연습 4\n", "\n", "함수 `f`와 숫자들의 리스트 `xs = [x1, ..., x_n]`를 인자로 받아 `f(xn)`들의 값의 합을 리턴하는 함수 `sum_list(f, xs)`를 정의하라. 단, `xs = []` 일 경우 `0`을 리턴한다.\n", "\n", "예제:\n", "\n", " In [4]: def f2(x):\n", " ...: return x ** 2\n", "\n", " In [5]: sum_list(f2, [1, -2, 2, -3,])\n", " Out[5]: 18\n", "\n", " In [6]: sum_list(f1, [-1, -2, -3, -4, -5])\n", " Out[6]: -45" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 연습 4 견본답안" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "18\n", "-45\n" ] } ], "source": [ "def sum_list(f, xs):\n", " L = 0\n", " for x in xs:\n", " L = L + f(x)\n", " return L\n", "\n", "def f2(x):\n", " return x ** 2\n", "\n", "print(sum_list(f2, [1, -2, 2, -3]))\n", "print(sum_list(f1, [-1, -2, -3, -4, -5]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "참조: 파이썬 내장함수 중에 `sum` 함수가 비슷한 일을 한다. 어떤 차이점이 있는지 확인해보는 것을 추천한다." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 연습 5\n", "\n", "밑변의 길이와 높이가 각각 `a`와 `h`인 삼각형의 면적을 리턴하는 함수 `triangle_area(a, h)`를 작성하라. 그런데 삼각형의 높이 `h`는 기본값으로 `5`를 사용해야 한다. 힌트: 키워드 인자를 사용한다.\n", "\n", "예제:\n", "\n", " In [7]: triangle_area(3)\n", " Out[7]: 7.5\n", "\n", " In [8]: triangle_area(3, 7)\n", " Out[8]: 10.5" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 연습 5 견본답안" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "7.5\n", "10.5\n" ] } ], "source": [ "def triangle_area(a, height=5):\n", " return 1.0/2 * a * height\n", "\n", "print(triangle_area(3))\n", "print(triangle_area(3, 7))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 연습 6\n", "\n", "함수 `f`를 입력 받으면 아래 묘사처럼 작동하는 함수를 리턴하는 함수 `fun_2_fun(f)`를 정의하라.\n", "\n", " fun_2_fun(f)(2) = (f(2)) ** 2\n", " fun_2_fun(f)(3) = (f(3)) ** 3\n", " fun_2_fun(f)(4) = (f(4)) ** 4\n", " ...\n", " \n", "주의: 함수를 입력받아 함수를 리턴하도록 작성해야 한다. \n", "\n", "힌트: 함수 안에서 `def` 키워드를 이용하여 새로운 함수를 정의할 수 있다. 그 함수는 지역함수가 된다." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 연습 6 견본답안 1" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6\n", "36\n" ] } ], "source": [ "def fun_2_fun(f):\n", " def f_exp(n):\n", " return (f(n)) ** n\n", " return f_exp\n", "\n", "print(f1(2))\n", "print(fun_2_fun(f1)(2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 문제 핵심\n", "\n", "이 문제의 핵심은 함수를 단순히 인자로만 사용하는 것이 아니라 리턴값으로도 할용하는 것이다. 즉, 함수에 어떤 인자를 넣고 호출하였더니 어떤 함수를 리턴하는 함수를 구현해야 한다. 그리고 리턴값이 함수이므로 그 함수를 적당한 인자를 입력하여 호출할 수 있다.\n", "\n", "예를 들어 함수 `g`를 다음과 같이 정의하자." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def exp2(x):\n", " return x ** 2" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "g = fun_2_fun(exp2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "그러면 `g`는 함수임을 확인할 수 있다." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "function" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(g)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "어떤 함수인가? `help` 를 이용하여 확인하면 다음과 같다." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on function f_exp in module __main__:\n", "\n", "f_exp(n)\n", "\n" ] } ], "source": [ "help(g)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<function __main__.f_exp>" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "g" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "즉, 인자를 하나 받는 함수이며 `f_exp`를 이용해 정외되었음을 알 수 있다. 실제로 `g`는 아래와 같이 정의되어 있다. " ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "`g`를 정의하기 위해 `fun_2_fun(f)` 함수를 호출할 때 사용된 인자 `f` 대신에 `exp2` 함수를 삽입하였기 때문에 `g`가 아래와 같이 정의된 함수임을 알 수 있다. \n", "\n", " g(x) = fun_2_fun(exp2)\n", " = f_exp(x) # f_exp 를 정의할 때 exp2 가 사용됨에 중의\n", " = exp2(x) ** x\n", " = (x**2) ** x\n", " = x ** (2*x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 연습 6 견본답안 2" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6\n", "36\n" ] } ], "source": [ "def fun_2_fun(f):\n", " return lambda x: f(x) ** x\n", "\n", "print(f1(2))\n", "print(fun_2_fun(f1)(2))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
landlab/landlab
notebooks/tutorials/normal_fault/normal_fault_component_tutorial.ipynb
1
20174
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<a href=\"http://landlab.github.io\"><img style=\"float: left\" src=\"../../landlab_header.png\"></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction to the NormalFault component\n", "\n", "This tutorial provides an introduction to the `NormalFault` component in the Landlab toolkit. This component takes the following parameters. \n", "\n", " Parameters\n", " --------\n", " grid : ModelGrid\n", " faulted_surface : str or ndarray of shape `(n_nodes, )` or list of str\n", " or ndarrays. \n", " Surface that is modified by the NormalFault component. Can be a\n", " field name or array or a list of strings or ndarrays if the fault.\n", " should uplift more than one field. Default value is \n", " `topographic__elevation`.\n", " fault_throw_rate_through_time : dict, optional\n", " Dictionary that specifies the time varying throw rate on the fault.\n", " Expected format is:\n", " ``fault_throw_rate_through_time = {'time': array, 'rate': array}``\n", " Default value is a constant rate of 0.001 (units not specified).\n", " fault_dip_angle : float, optional\n", " Dip angle of the fault in degrees. Default value is 90 degrees.\n", " fault_trace : dictionary, optional\n", " Dictionary that specifies the coordinates of two locations on the\n", " fault trace. Expected format is\n", " ``fault_trace = {'x1': float, 'y1': float, 'x2': float, 'y2': float}``\n", " where the vector from ``(x1, y1)`` to ``(x2, y2)`` defines the\n", " strike of the fault trace. The orientation of the fault dip relative\n", " to the strike follows the right hand rule.\n", " Default is for the fault to strike NE.\n", " include_boundaries : boolean, optional\n", " Flag to indicate if model grid boundaries should be uplifted. If\n", " set to ``True`` uplifted model grid boundaries will be set to the\n", " average value of their upstream nodes. Default value is False.\n", "\n", "\n", "The `NormalFault` component will divide the model domain into two regions, a 'faulted nodes' region which will experience vertical rock uplift at a rate of \n", "\n", "$t \\cdot \\sin (d)$\n", "\n", "where $t$ is the fault throw rate and $d$ is the fault dip angle. \n", "\n", "While dip angles less than 90 degrees are permitted, in its present implementation, the `NormalFault` component does not translate field information laterally. \n", "\n", "The fault orientation is specified by two coordinate pairs: (x1, y1) and (x2, y2). The strike of the fault, specified with the right-hand rule convention, is the vector from (x1, y1) to (x2, y2). Give that this component creates a normal fault, in which the footwall moves up relative to the hanging wall, this means that the nodes that are counterclockwise from the strike are the uplifted nodes. \n", "\n", "To start, let's import necessary Landlab and Python modules. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# start by importing necessary modules\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "from landlab import HexModelGrid, RasterModelGrid\n", "from landlab.components import (\n", " FastscapeEroder,\n", " FlowAccumulator,\n", " NormalFault,\n", " StreamPowerEroder,\n", ")\n", "from landlab.plot import imshow_grid\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First we will make a default `NormalFault`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "grid = RasterModelGrid((6, 6), xy_spacing=10)\n", "\n", "grid.add_zeros(\"topographic__elevation\", at=\"node\")\n", "\n", "nf = NormalFault(grid)\n", "\n", "plt.figure()\n", "imshow_grid(grid, nf.faulted_nodes.astype(int), cmap=\"viridis\")\n", "plt.plot(grid.x_of_node, grid.y_of_node, \"c.\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " This fault has a strike of NE and dips to the SE. Thus the uplifted nodes (shown in yellow) are in the NW half of the domain. \n", "\n", "The default `NormalFault` will not uplift the boundary nodes. We change this by using the keyword argument `include_boundaries`. If this is specified, the elevation of the boundary nodes is calculated as an average of the faulted nodes adjacent to the boundaries. This occurs because most Landlab erosion components do not operate on boundary nodes. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nf = NormalFault(grid, include_boundaries=True)\n", "\n", "plt.figure()\n", "imshow_grid(grid, nf.faulted_nodes.astype(int), cmap=\"viridis\")\n", "plt.plot(grid.x_of_node, grid.y_of_node, \"c.\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can add functionality to the `NormalFault` with other keyword arguments. We can change the fault strike and dip, as well as specify a time series of fault uplift through time. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "grid = RasterModelGrid((60, 100), xy_spacing=10)\n", "z = grid.add_zeros(\"topographic__elevation\", at=\"node\")\n", "\n", "nf = NormalFault(grid, fault_trace={\"x1\": 0, \"y1\": 200, \"y2\": 30, \"x2\": 600})\n", "\n", "imshow_grid(grid, nf.faulted_nodes.astype(int), cmap=\"viridis\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By reversing the order of (x1, y1) and (x2, y2) we can reverse the location of the upthrown nodes (all else equal). " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "grid = RasterModelGrid((60, 100), xy_spacing=10)\n", "z = grid.add_zeros(\"topographic__elevation\", at=\"node\")\n", "\n", "nf = NormalFault(grid, fault_trace={\"y1\": 30, \"x1\": 600, \"x2\": 0, \"y2\": 200})\n", "\n", "imshow_grid(grid, nf.faulted_nodes.astype(int), cmap=\"viridis\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also specify complex time-rock uplift rate histories, but we'll explore that later in the tutorial. \n", "\n", "Next let's make a landscape evolution model with a normal fault. Here we'll use a HexModelGrid to highlight that we can use both raster and non-raster grids with this component. \n", "\n", "We will do a series of three numerical experiments and will want to keep a few parameters constant. Since you might want to change them, we are making it easier to change all of them together. They are defined in the next block:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# here are the parameters to change\n", "K = 0.0005 # stream power coefficient, bigger = streams erode more quickly\n", "U = 0.0001 # uplift rate in meters per year\n", "\n", "dt = 1000 # time step in years\n", "dx = 10 # space step in meters\n", "\n", "nr = 60 # number of model rows\n", "nc = 100 # number of model columns" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# instantiate the grid\n", "grid = HexModelGrid((nr, nc), dx, node_layout=\"rect\")\n", "\n", "# add a topographic__elevation field with noise\n", "z = grid.add_zeros(\"topographic__elevation\", at=\"node\")\n", "z[grid.core_nodes] += 100.0 + np.random.randn(grid.core_nodes.size)\n", "\n", "fr = FlowAccumulator(grid)\n", "fs = FastscapeEroder(grid, K_sp=K)\n", "nf = NormalFault(grid, fault_trace={\"x1\": 0, \"x2\": 800, \"y1\": 0, \"y2\": 500})\n", "\n", "# Run this model for 300 100-year timesteps (30,000 years).\n", "for i in range(300):\n", " nf.run_one_step(dt)\n", " fr.run_one_step()\n", " fs.run_one_step(dt)\n", " z[grid.core_nodes] += 0.0001 * dt\n", "\n", "# plot the final topography\n", "imshow_grid(grid, z)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we can see, the upper left portion of the grid has been uplifted an a stream network has developed over the whole domain. \n", "\n", "How might this change when we also uplift the boundaries nodes?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# instantiate the grid\n", "grid = HexModelGrid((nr, nc), 10, node_layout=\"rect\")\n", "\n", "# add a topographic__elevation field with noise\n", "z = grid.add_zeros(\"topographic__elevation\", at=\"node\")\n", "z[grid.core_nodes] += 100.0 + np.random.randn(grid.core_nodes.size)\n", "\n", "fr = FlowAccumulator(grid)\n", "fs = FastscapeEroder(grid, K_sp=K)\n", "nf = NormalFault(\n", " grid, fault_trace={\"x1\": 0, \"x2\": 800, \"y1\": 0, \"y2\": 500}, include_boundaries=True\n", ")\n", "\n", "# Run this model for 300 100-year timesteps (30,000 years).\n", "for i in range(300):\n", " nf.run_one_step(dt)\n", " fr.run_one_step()\n", " fs.run_one_step(dt)\n", " z[grid.core_nodes] += U * dt\n", "\n", "# plot the final topography\n", "imshow_grid(grid, z)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that when the boundary nodes are not included, the faulted region is impacted by the edge boundary conditions differently. Depending on your application, one or the other of these boundary condition options may suite your problem better. \n", "\n", "The last thing to explore is the use of the `fault_rate_through_time` parameter. This allows us to specify generic fault throw rate histories. For example, consider the following history, in which every 100,000 years there is a 10,000 year period in which the fault is active. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "time = (\n", " np.array(\n", " [\n", " 0.0,\n", " 7.99,\n", " 8.00,\n", " 8.99,\n", " 9.0,\n", " 17.99,\n", " 18.0,\n", " 18.99,\n", " 19.0,\n", " 27.99,\n", " 28.00,\n", " 28.99,\n", " 29.0,\n", " ]\n", " )\n", " * 10\n", " * dt\n", ")\n", "rate = np.array([0, 0, 0.01, 0.01, 0, 0, 0.01, 0.01, 0, 0, 0.01, 0.01, 0])\n", "\n", "plt.figure()\n", "plt.plot(time, rate)\n", "plt.plot([0, 300 * dt], [0.001, 0.001])\n", "plt.xlabel(\"Time [years]\")\n", "plt.ylabel(\"Fault Throw Rate [m/yr]\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The default value for uplift rate is 0.001 (units unspecified as it will depend on the x and t units in a model, but in this example we assume time units of years and length units of meters). \n", "\n", "This will result in a total of 300 m of fault throw over the 300,000 year model time period. This amount of uplift can also be accommodated by faster fault motion that occurs over shorter periods of time. \n", "\n", "Next we plot the cumulative fault throw for the two cases. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "t = np.arange(0, 300 * dt, dt)\n", "rate_constant = np.interp(t, [0, 300 * dt], [0.001, 0.001])\n", "rate_variable = np.interp(t, time, rate)\n", "\n", "cumulative_rock_uplift_constant = np.cumsum(rate_constant) * dt\n", "cumulative_rock_uplift_variable = np.cumsum(rate_variable) * dt\n", "\n", "plt.figure()\n", "plt.plot(t, cumulative_rock_uplift_constant)\n", "plt.plot(t, cumulative_rock_uplift_variable)\n", "plt.xlabel(\"Time [years]\")\n", "plt.ylabel(\"Cumulative Fault Throw [m]\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A technical note: Beyond the times specified, the internal workings of the `NormalFault` will use the final value provided in the rate array. \n", "\n", "Let's see how this changes the model results. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# instantiate the grid\n", "grid = HexModelGrid((nr, nc), 10, node_layout=\"rect\")\n", "\n", "# add a topographic__elevation field with noise\n", "z = grid.add_zeros(\"topographic__elevation\", at=\"node\")\n", "z[grid.core_nodes] += 100.0 + np.random.randn(grid.core_nodes.size)\n", "\n", "fr = FlowAccumulator(grid)\n", "fs = FastscapeEroder(grid, K_sp=K)\n", "nf = NormalFault(\n", " grid,\n", " fault_throw_rate_through_time={\"time\": time, \"rate\": rate},\n", " fault_trace={\"x1\": 0, \"x2\": 800, \"y1\": 0, \"y2\": 500},\n", " include_boundaries=True,\n", ")\n", "\n", "# Run this model for 300 100-year timesteps (30,000 years).\n", "for i in range(300):\n", " nf.run_one_step(dt)\n", " fr.run_one_step()\n", " fs.run_one_step(dt)\n", " z[grid.core_nodes] += U * dt\n", "\n", "# plot the final topography\n", "imshow_grid(grid, z)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you can see the resulting topography is very different than in the case with continuous uplift. \n", "\n", "For our final example, we'll use `NormalFault` with a more complicated model in which we have both a soil layer and bedrock. In order to move, material must convert from bedrock to soil by weathering.\n", "\n", "First we import remaining modules and set some parameter values" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from landlab.components import DepthDependentDiffuser, ExponentialWeatherer\n", "\n", "# here are the parameters to change\n", "K = 0.0005 # stream power coefficient, bigger = streams erode more quickly\n", "U = 0.0001 # uplift rate in meters per year\n", "max_soil_production_rate = (\n", " 0.001 # Maximum weathering rate for bare bedrock in meters per year\n", ")\n", "soil_production_decay_depth = 0.7 # Characteristic weathering depth in meters\n", "linear_diffusivity = 0.01 # Hillslope diffusivity and m2 per years\n", "soil_transport_decay_depth = 0.5 # Characteristic soil transport depth in meters\n", "\n", "dt = 100 # time step in years\n", "dx = 10 # space step in meters\n", "\n", "nr = 60 # number of model rows\n", "nc = 100 # number of model columns" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "?ExponentialWeatherer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we create the grid and run the model. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# instantiate the grid\n", "grid = HexModelGrid((nr, nc), 10, node_layout=\"rect\")\n", "\n", "# add a topographic__elevation field with noise\n", "z = grid.add_zeros(\"topographic__elevation\", at=\"node\")\n", "z[grid.core_nodes] += 100.0 + np.random.randn(grid.core_nodes.size)\n", "\n", "# create a field for soil depth\n", "d = grid.add_zeros(\"soil__depth\", at=\"node\")\n", "\n", "# create a bedrock elevation field\n", "b = grid.add_zeros(\"bedrock__elevation\", at=\"node\")\n", "b[:] = z - d\n", "\n", "fr = FlowAccumulator(grid, depression_finder=\"DepressionFinderAndRouter\", routing=\"D4\")\n", "fs = FastscapeEroder(grid, K_sp=K)\n", "ew = ExponentialWeatherer(\n", " grid,\n", " soil_production__decay_depth=soil_production_decay_depth,\n", " soil_production__maximum_rate=max_soil_production_rate,\n", ")\n", "\n", "dd = DepthDependentDiffuser(\n", " grid,\n", " linear_diffusivity=linear_diffusivity,\n", " soil_transport_decay_depth=soil_transport_decay_depth,\n", ")\n", "\n", "nf = NormalFault(\n", " grid,\n", " fault_throw_rate_through_time={\"time\": [0, 30], \"rate\": [0.001, 0.001]},\n", " fault_trace={\"x1\": 0, \"x2\": 800, \"y1\": 0, \"y2\": 500},\n", " include_boundaries=False,\n", ")\n", "\n", "# Run this model for 300 100-year timesteps (30,000 years).\n", "for i in range(300):\n", "\n", " # Move normal fault\n", " nf.run_one_step(dt)\n", "\n", " # Route flow\n", " fr.run_one_step()\n", "\n", " # Erode with water\n", " fs.run_one_step(dt)\n", "\n", " # We must also now erode the bedrock where relevant. If water erosion\n", " # into bedrock has occurred, the bedrock elevation will be higher than\n", " # the actual elevation, so we simply re-set bedrock elevation to the\n", " # lower of itself or the current elevation.\n", " b = grid.at_node[\"bedrock__elevation\"]\n", " b[:] = np.minimum(b, grid.at_node[\"topographic__elevation\"])\n", "\n", " # Calculate regolith-production rate\n", " ew.calc_soil_prod_rate()\n", "\n", " # Generate and move soil around. This component will update both the\n", " # soil thickness and topographic elevation fields.\n", " dd.run_one_step(dt)\n", "\n", " # uplift the whole domain, we need to do this to both bedrock and topography\n", " z[grid.core_nodes] += U * dt\n", " b[grid.core_nodes] += U * dt\n", "\n", "# plot the final topography\n", "imshow_grid(grid, \"topographic__elevation\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also examine the soil thickness and soil production rate. Here in the soil depth, we see it is highest along the ridge crests. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# and the soil depth\n", "imshow_grid(grid, \"soil__depth\", cmap=\"viridis\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The soil production rate is highest where the soil depth is low, as we would expect given the exponential form. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# and the soil production rate\n", "imshow_grid(grid, \"soil_production__rate\", cmap=\"viridis\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.0" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
moonbury/pythonanywhere
kaggle/video_game_sales.ipynb
2
56909
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#%matplotlib inline\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "\n", "import seaborn as sns\n", "sns.set(style=\"darkgrid\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Name</th>\n", " <th>Platform</th>\n", " <th>Year_of_Release</th>\n", " <th>Genre</th>\n", " <th>Publisher</th>\n", " <th>NA_Sales</th>\n", " <th>EU_Sales</th>\n", " <th>JP_Sales</th>\n", " <th>Other_Sales</th>\n", " <th>Global_Sales</th>\n", " <th>Critic_Score</th>\n", " <th>Critic_Count</th>\n", " <th>User_Score</th>\n", " <th>User_Count</th>\n", " <th>Developer</th>\n", " <th>Rating</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Wii Sports</td>\n", " <td>Wii</td>\n", " <td>2006.0</td>\n", " <td>Sports</td>\n", " <td>Nintendo</td>\n", " <td>41.36</td>\n", " <td>28.95</td>\n", " <td>3.77</td>\n", " <td>8.45</td>\n", " <td>82.53</td>\n", " <td>76.0</td>\n", " <td>51.0</td>\n", " <td>8</td>\n", " <td>321.0</td>\n", " <td>Nintendo</td>\n", " <td>E</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Mario Kart Wii</td>\n", " <td>Wii</td>\n", " <td>2008.0</td>\n", " <td>Racing</td>\n", " <td>Nintendo</td>\n", " <td>15.67</td>\n", " <td>12.75</td>\n", " <td>3.79</td>\n", " <td>3.28</td>\n", " <td>35.50</td>\n", " <td>82.0</td>\n", " <td>73.0</td>\n", " <td>8.3</td>\n", " <td>709.0</td>\n", " <td>Nintendo</td>\n", " <td>E</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Wii Sports Resort</td>\n", " <td>Wii</td>\n", " <td>2009.0</td>\n", " <td>Sports</td>\n", " <td>Nintendo</td>\n", " <td>15.61</td>\n", " <td>10.92</td>\n", " <td>3.28</td>\n", " <td>2.95</td>\n", " <td>32.76</td>\n", " <td>80.0</td>\n", " <td>73.0</td>\n", " <td>8</td>\n", " <td>192.0</td>\n", " <td>Nintendo</td>\n", " <td>E</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>New Super Mario Bros.</td>\n", " <td>DS</td>\n", " <td>2006.0</td>\n", " <td>Platform</td>\n", " <td>Nintendo</td>\n", " <td>11.28</td>\n", " <td>9.14</td>\n", " <td>6.50</td>\n", " <td>2.88</td>\n", " <td>29.79</td>\n", " <td>89.0</td>\n", " <td>65.0</td>\n", " <td>8.5</td>\n", " <td>431.0</td>\n", " <td>Nintendo</td>\n", " <td>E</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Wii Play</td>\n", " <td>Wii</td>\n", " <td>2006.0</td>\n", " <td>Misc</td>\n", " <td>Nintendo</td>\n", " <td>13.96</td>\n", " <td>9.18</td>\n", " <td>2.93</td>\n", " <td>2.84</td>\n", " <td>28.92</td>\n", " <td>58.0</td>\n", " <td>41.0</td>\n", " <td>6.6</td>\n", " <td>129.0</td>\n", " <td>Nintendo</td>\n", " <td>E</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Name Platform Year_of_Release Genre Publisher \\\n", "0 Wii Sports Wii 2006.0 Sports Nintendo \n", "1 Mario Kart Wii Wii 2008.0 Racing Nintendo \n", "2 Wii Sports Resort Wii 2009.0 Sports Nintendo \n", "3 New Super Mario Bros. DS 2006.0 Platform Nintendo \n", "4 Wii Play Wii 2006.0 Misc Nintendo \n", "\n", " NA_Sales EU_Sales JP_Sales Other_Sales Global_Sales Critic_Score \\\n", "0 41.36 28.95 3.77 8.45 82.53 76.0 \n", "1 15.67 12.75 3.79 3.28 35.50 82.0 \n", "2 15.61 10.92 3.28 2.95 32.76 80.0 \n", "3 11.28 9.14 6.50 2.88 29.79 89.0 \n", "4 13.96 9.18 2.93 2.84 28.92 58.0 \n", "\n", " Critic_Count User_Score User_Count Developer Rating \n", "0 51.0 8 321.0 Nintendo E \n", "1 73.0 8.3 709.0 Nintendo E \n", "2 73.0 8 192.0 Nintendo E \n", "3 65.0 8.5 431.0 Nintendo E \n", "4 41.0 6.6 129.0 Nintendo E " ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = pd.read_csv('./input/Video_Games_Sales_as_at_30_Nov_2016.csv')\n", "data.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf4AAAFhCAYAAACRX8izAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlAVFX/+PH3DIKCbCLKomaGGWlqLmSEKyCKS4CJ4ZZl\nZZqWT67pY7mvqWXaY/mIlV+1nkxxw9JChdwzd5M0EcWNdRAQEZi5vz/4OYmADsOwf17/KHfuPfec\nM3fu5y6fe49KURQFIYQQQlQL6vKugBBCCCHKjgR+IYQQohqRwC+EEEJUIxL4hRBCiGpEAr8QQghR\njUjgF0IIIaoRCfxCFGHKlCksW7bMoHnd3d2Ji4szaj3e3t4cOnTIqGUfpTj1L88yC1PSPtmwYQNe\nXl60bduW27dvm7BmQlR+Ncq7AkKUl/DwcL799lsuXryIlZUVDRs2JCAggEGDBhW7LJVKVQo1hPj4\neObOncvRo0fRarW4uLgwfPhwAgMDS2V9Zcnd3R1LS0tUKhU2Njb4+/szefLkYvelu7s7v/zyC40a\nNQIgNzeXhQsXsnHjRpo1a1YaVReiUpPAL6qlNWvWsGbNGqZPn46XlxdWVlZER0cTGhpKcHAw5ubm\nxSqvtN6DNXHiRJo3b05kZCTm5uZcuHCBxMTEUllXWVOpVGzbto1GjRpx+fJlhg4dSpMmTXj11VeL\nXc6DkpKSyM7Oxs3Nzah6KYpSagdyQlQEcqlfVDsZGRksX76cGTNm0L17d6ysrIC8M8dPPvmkyKD/\nww8/4OfnR4cOHXj33XdJSEjI9/m+ffvw9fXF09OTRYsW6afHxcUxbNgwOnTogKenJxMmTCAjI8Og\nup45c4bAwEBq1qyJWq3G3d2dTp066T8fO3YsHTt2xMPDg6FDh/L3338XWdbevXsJDAzEw8ODgQMH\n8tdff+k/W7VqFZ07d6Zt27b4+/tz+PDhIstJSUlh+PDhtG3blqFDh3Lz5k0AZs2axcKFC/PNO3Lk\nSNauXVtoOQ8eLDVp0oR27dpx8eLFAvOdPn2akJAQPDw86NSpE7NnzyY3NxeAIUOGoCgKL7/8Mm3b\ntmX16tX4+/sD4OHhweuvvw7A8ePH6d+/Px4eHgQHB3PixAl9+UOHDuXTTz9l4MCBPP/881y7do2h\nQ4fy2WefERISQps2bRg1ahSpqalMmDCBdu3aERwczI0bN4rsIyEqNEWIaiYqKkpp0aKFotVqHznf\nhx9+qHz22WeKoijKwYMHlQ4dOijnz59XsrOzldmzZyuDBw/Wz/vMM88or732mpKWlqbcvHlT8fPz\nUzZu3KgoiqJcuXJFOXjwoJKTk6OkpKQoQ4YMUebNm6dftlu3bsrBgwcLrcMbb7yhhISEKOHh4cqN\nGzcKfL5p0yYlMzNTyc7OVubNm6cEBAQUWv+zZ88qnp6eyunTpxWdTqeEhYUp3bp1U7Kzs5WYmBil\nS5cuSmJioqIoinL9+nXl6tWrRfZJ27ZtlWPHjinZ2dnKnDlzlIEDByqKoiinTp1SOnXqpJ83JSVF\nef7555Xk5ORCy3rmmWf067l48aLi5eWlbNq0qUCfnD17Vjl16pSi0+mU69evK7169VK+/fbbQstR\nFEW5du2a4u7uruh0OkVRFCU1NVXx8PBQtm3bpmi1WmXHjh2Kh4eHkpqaqiiKogwZMkTp1q2b8vff\nfytarVbJyclRhgwZovj5+SlxcXFKenq60qtXL6VHjx7KoUOHFK1Wq0yaNEmZMmVKoe0SoqKTM35R\n7Wg0Guzt7VGr/9n8759Rtm7dmmPHjhVYZseOHfTv3x93d3fMzc0ZN24cJ0+ezHfWN2LECGxsbHB2\ndmbYsGGEh4cD8MQTT+Dp6UmNGjWoU6cOw4YN4/fffzeorsuWLcPDw4OVK1fi6+tLUFAQZ86c0X/e\nr18/LC0tMTc3Z/To0URHRxd6NWHjxo2EhITQsmVLVCoVgYGBWFhYcOrUKczMzMjJyeHixYvk5ubi\n6uqqv19emK5du9KuXTvMzc354IMPOHnyJPHx8bRq1QobGxt9Ut7OnTt54YUXcHBwKLKsoKAg/RWU\nAQMG0K9fvwLztGjRglatWqFSqXB1dWXAgAEG9Z/y/68o7Nu3jyeffJK+ffuiVqvp3bs3Tz31FHv3\n7s1XDzc3N9RqNTVq1ND3bcOGDbG2tqZz58488cQTvPjii6jVanr27Mn58+cfWwchKiK5xy+qHXt7\ne1JTU9HpdPrg//333wPQpUuXQu/XJyQk0KJFC/3fVlZW2NvbEx8fj6urKwDOzs76zxs0aKC/FZCS\nksKcOXM4duwYmZmZaLVa7O3tDaqrjY0N48aNY9y4caSmprJw4UJGjx5NVFQUOp2OpUuXsmvXLjQa\nDSqVCpVKhUajwdraOl85N27cYOvWraxbtw7IC4q5ubkkJCTQvn17pk6dyvLly7l06RIdO3Zk8uTJ\n1K9fv9A6PdhOKysr7OzsiI+Px8nJiYCAALZt24anpyfbtm1j2LBhj2xfWFjYIw8yAGJjY1mwYAFn\nz54lKysLrVab77t4nISEBP13dJ+rqyvx8fGFtum+unXr6v9fs2bNfH/XqlWLzMxMg+sgREUiZ/yi\n2mnTpg3m5uZEREQYvEz9+vXznd1nZmaSmpqaL2Dcv9cNcP36dX3gXLx4MSqVih07dnDs2DE++eQT\no5IB7e3tGT58OImJidy+fZtt27axd+9evv32W44dO8aePXuKLNfZ2ZmRI0dy9OhRjh49yu+//86J\nEyfo1asXAL1792bDhg3s2bMHgCVLlhRZj1u3bun/f+fOHW7fvo2TkxMAAQEBREREEB0dTUxMDL6+\nvsVu58NmzJjBU089xS+//MKxY8f417/+Vaz+q1+/PtevX8837caNG/o6Q+k9lSFERSSBX1Q7NjY2\njB49mpkzZ7Jr1y4yMzNRFIXz58+TlZVV6DJ9+vRh8+bNREdHk52dzdKlS2ndujUuLi76eUJDQ0lL\nS+PmzZv83//9nz6oZmZmUrt2baytrYmPjyc0NNTgui5evJiLFy+i1WrJyMhgw4YNNG7cGDs7OzIz\nM7GwsMDW1pbMzEyWLFlSZAAbMGAA33//PadPn9bXKTIykszMTC5fvszhw4fJzs7G3Nxcn0hYlMjI\nSI4fP052djbLli2jdevW+iDq5OTEc889x6RJk/Dz88PCwsLgthblzp07WFtbY2lpyaVLl/juu+/y\nfe7o6FjgHQoPHhh06dKFK1euEB4ejlarZefOncTExNCtW7cS102IykgCv6iW3nrrLT788ENWr16N\nl5cXXl5ezJgxgwkTJtCmTZsC83t6ejJ27Fjee+89OnXqxLVr11i6dKn+c5VKhY+PD/369SMoKIhu\n3brRv39/AMaMGcPZs2dp3749I0eOpEePHvnKftTZZlZWFmPGjMHDwwM/Pz9u3rzJf/7zHwACAwNx\ncXGhc+fO9OnTp9B63/fcc88xe/ZsZs2axQsvvECPHj0ICwsDIDs7myVLluDp6UmnTp1ISUlh3Lhx\nRZbVp08fVqxYQYcOHTh//jyLFy/O93lgYCAXL1587LsGHtXuBz+bPHky27dvp23btkyfPp3evXvn\nm/e9995j0qRJvPDCC/z8888Flre3t+fLL78kNDSUF198kdDQUL766ivs7OyKrIdcARBVmUp5zDWz\nqVOnsm/fPurWrcv27dvzfRYaGsonn3zC4cOH9fcs58yZQ1RUFJaWlixYsIBnn30WyLuX9+WXXwIw\natSoKvECEiFEQceOHWPSpEn62wZCiIrlsWf8/fr1K/TS5K1btzh48GC+pJnIyEiuXr3K7t27mTVr\nFtOnTwfg9u3bfPHFF/z4449s3LiRFStWkJ6ebsJmCCEqgpycHNauXUtwcHB5V0UIUYTHBv727dtj\na2tbYPq8efOYNGlSvmkRERH6M/nWrVuTnp5OUlIS+/fvx8vLCxsbG2xtbfHy8uK3334zUROEEBXB\npUuXeOGFF0hKSuK1114r7+oIIYpg1ON8e/bswcXFhWeeeSbf9ISEhHxZzs7OzsTHxxMfH58vCcrJ\nySnfozRCiMrPzc0t3xvxhBAVU7EDf1ZWFl9++SVr1qwp8NnD6QLK/3/ndWFpBJI8I4QQQpS9Ymf1\nX716levXrxMQEIC3tzfx8fH069eP5ORknJyc8j3je+vWLerXr4+zs3O+Z6DvT38cY551FkIIIUTR\nDMrqj4iIIDMzU/+q0EWLFrF3714sLCyIjY3lp59+wtXVlcjISObPn49OpyMnJ4datWrx008/cfv2\nbXr37o2VlRU6nY60tDR+/fXXQnMHHpaYWPmTAOvVs5F2VBBVoQ1QNdpRFdoA0o6KpCq0AfLaUZoe\ne8Z/48YNVCoVOTk5dO3alU2bNtGxY0fCw8PZunUr5ubmfP3110Dea0rvvwr1/istFUXBxsYGrVZL\nbm4uarUaKyurKjO0qBBCCFGZPPYe/zfffMP169cZOXJkgef4ARYsWMCuXbuAvKS/4cOHM2LECCDv\nJSmnT59GURRatGjB6tWrgbwhQCMiIoweL1uI6kyr1XLhwgVSUgwb2tcQTz75FGZmZiYrTwhRcZV4\nkJ4ff/yRPn36ABAfH8/zzz+v/+x+9r6iKAWy+h8cYUwIYbjY2BjO3lpEw8Z2Jinv2pXbwCTc3J42\nSXlCiIqtRIF/5cqVmJub6wN/Udn7Op2uJKsRQjykYWM7mjxd9/EzGuqe6YoSQlRsRgf+sLAwIiMj\nWbt2rX6as7NzvhHK7mfvK4qSL6s/Pj7eoKx+KP0kh7Ii7ag4KnsbNBprUu+YtkwHB+ty6ZfK/l3c\nJ+2oOKpCG0qbQYH/4TP5qKgoVq9ezbp16/KNvuXt7c2ECRN4/fXXiY+P5+rVq7Rq1QqdTqd/DLBe\nvXqEh4fnG+DkUapKhqa0o2KoCm1IScmAmqYvs6z7pSp8FyDtqEiqQhug9A9eHhv4fX19uXbtGgBd\nu3blvffeY+XKlSQkJNC5c2fMzc3x9/dn7ty5NG3alJo1a9KmTRvUajVTpkxBpVJhZmaGj48Pfn5+\n+jIlsU8IIYQoe48N/AsWLKB27dpMmjRJn9UfExODvb09b7/9NqtWrSItLQ3IG6THzs6Oc+fOcerU\nKebOncugQYO4ffs2v/76K4cPH0ZRFPr160d6ejo2NnJJRgghhChLRg3SExERQVBQEABBQUFERETo\np8sgPUIIIUTFVexX9gKkpKTg6OgIQL169UhJSQFkkB4hhBCioivxc/wPKo1BeqpKhqa0o+Ko7G2Q\nrP6KR9rxaFqtlkuXLpm0TDc3t0JfOlVVvovSZFTgr1u3LklJSTg6OpKYmIiDgwPAIwfpOXLkSL7p\nL774okHrqioZmtKOiqEqtKEssvq1Wi2xsTEmK7+wNwNWhe8CpB2GuHTpIuu7LqCu2jQvnUrW3Wbw\nvg8LvHSqKn0Xpcmox/m8vb3ZvHkzFhYWrFq1Cp1Ox/jx4/H392ft2rV88803xMfHk5WVhb29PR07\ndmTp0qWMGTOG8+fPk5CQwJAhQ0qlQUKIkouNjcEz4Rg82cAEhV3nEMibAY1k6oMwKJ9XNNdV2+Gk\ndijTdYrCPTbwjx8/niNHjpCamqp/nG/EiBGMGjWKU6dO0b59e5YvX87HH39Meno6N2/eJDMzk7p1\n69KqVSt+/PFHQkJCaNeuHRERETg6OtK/f39WrlzJp59+WhZtFEIY48kG8PSTpikr0zTFVEexsTGk\nTJnFk9aPH83UoPIy0mD+x3IgVo09NvAvWbKk0OmffvopISEhfP7551hZWZGVlUX9+vXJyMjgwIED\nqNVqTp48yYoVKwgJCSE5OZk1a9bQunVrtFotXl5eJm+MEEJURU9a29LMto7JykszWUmiMjI6uc/J\nyYk33niDrl27YmlpiZeXF82bN8fW1ha1Ou9hgftZ/ZA/49/MzAxbW1tSU1Oxt7c3QTMqLhlJTQgh\nREVidOBPS0sjIiKCvXv3YmNjw9ixY4mKiiow3/3s/aIy/qu62NgYfF75L2pz0wyoostJJmLT23KZ\nTgghhFGMDvwHDx6kUaNG+jN2X19fTpw4QVpaGjqdDrVarc/qh38y/p2cnNBqtWRkZGBn9/gMz8r+\naIZGY43avC5mFoYNSmSI8nr0Cir/9wGVvw1l8TifRmMNWaVX/n2V/bu4rzTbodFYk2viMsv6+9Bo\nrE1eZlXfpkqT0YHf1dWV48ePM3r0aC5dukRSUhLBwcG0bduWgIAAsrOzycrK4vXXXwfyngSYNm0a\n9+7dIycnh+bNmxu0nsr+aIYpL/E/WGZ59EtVeFSmtNtQFhnYZfE4X0pKBliVXvlQNbYnKP12pKRk\nYJq0vvxlluX3UVb7waq0TZUmowN/q1atMDc359SpU9SpU4du3boxYsQIPv30U86ePUutWrWwtbUl\nMTERyDvj12g0WFlZUbt2bZKTk03WCCEqitjYGA4vnIGrnWl21Tdup8HkGXJrRwhhMkYH/oyMDO7c\nucP+/fvzTT969CibNm3Sv9zntddeY9KkSURFRTF16lR69eoFgL+/v/4lQEJUJa52tjxRp2onrQoh\nKi+j3tUPcO3aNerUqcOUKVMICgrio48+4u7duyQnJxv0Hn95X78QQghR9owO/Lm5ufz5558MGjSI\nsLAwLC0tWbVqVZGZ+iV5X78QQgghTMPoS/3Ozs44OzvTsmVLAPz8/Pjvf/9b7Pf4P05lz9Asy2zW\nslDZvw8o/QzsqyYus7CMe8nqr1gkq//RJKu/YjE68Ds6OuLi4sLly5dp0qQJhw8fpmnTpjRt2pTN\nmzczYsQIwsLC8PHxAcDHx4f169fTq1cvTp48ia2trUH39yt7hqZk9VcsZZGBXRplFsi4l6z+CkOy\n+g1bX2mUWZW3qdJUomF5p02bxoQJE7h48SI2Njb8/PPPxMXFMXToUJYtW4a9vT3bt28HwNPTk7lz\n59KiRQtq1KjBsmXLTNIAIYQQQhjO6Hv8AO7u7vTt2xc/Pz9atmyJjY0Nq1atYs6cOZw7dw5fX192\n794NwI8//shLL73EuXPnmD9/Plu3bjVJA4QQQghhuBIF/lu3bhEZGUlwcLB+2uHDh+nRowcAQUFB\n/PrrrwBEREQQFBQEQI8ePTh06FBJVi2EEEIII5Qo8M+bN49Jkybps/M1Gg12dnbFGqRHCCGEEGXH\n6Hv8+/btw9HRkWeffZYjR44AeY/sPfzYXkkH6ansGZqS1V/xSFa/YeuQrH7DSVb/o0lWf8VidOA/\nfvw4e/bsITIyknv37nHnzh3mzZtHenq6SQfpqewZmpLVX7FIVn8x1iFZ/QaRrH7D1lcaZVblbao0\nGR34Bw0axMmTJ0lKSgLA3t6exYsXM3r0aJMO0iMerywGhhHClLRaLRcuXDBpQJBtVgjDGB34zczM\nmDJlCs8++yxRUVG8//77XLp0ibp168ogPWUsNjaG8/060rBGiVI29K7l6mDzfhkYRpSa2NgYfM/7\no25UoieK9XRxufzKT/m2WTkgFqJwRv/q6tWrR7169QDo3LkzL730EvHx8SYdpEfOCAzXsIaaJham\nCfxVlZxlVizqRjUwa2JeauXHxsbQ7XYP1E1M8/3oLmvZG7tLDogrKPl9G84kh9vXrl0jOjqa1q1b\nF3uQnkcF/tOHN9G4kYspqsiVuJtAD/nRGsnUP6qHf1BlcXYWGxvD/0K64Whumh9yUo6WV7/fK9tU\nBaZuYoa6mQkPLlJMV5QwrdjYGI7uv4qrS2OTlHfj5hWAKvn7LnHgv3PnDu+//z5Tp06ldu3aJh2k\np3EjF5o+1bCkVdSzK4ds+LLIZtVorDF1OsvD67hw4QKzdr9HHdeS95/mRjofOyynWbNm+cr3/b4b\nakcTnZ0laTn+7u/51qHRWONoboZzTdMdwRf2XUhWv4Hlmzjfq9B1mFh5ZJJLVn/hCvu+XV0a80Qj\n0wVqB4faVfIpgRIF/tzcXN5//30CAgLw9fUFMPkgPaZUHtnwZZblXQbrqONqQ93Gj38Sw9jy1Y5m\nmDmbLiiXVz+VyToqeVZ/mfWTQ+muAySr39D1lUaZBbcp0474+vA6yipvpMJm9QNMnTqVpk2bMmzY\nMP00b2/vRw7SY21tzccff0xycrJ+PiGEEKKii42N4ebWTjSub5p8qisJOgj4rcxvJxgd+P/44w+2\nb99Os2bNCAwMRKVS8cEHH/D222/zr3/9i02bNuHq6qofjKdLly7s27ePUaNG8cQTT7Bu3To+/vhj\nfHx8cHNzM1mDhBBCFE9p5/BUJY3rq3naxXRtyzZZSYYzOvC3a9eO8+fPF/rZN998U+j0gIAA4uLi\nWL16NQC9e/cmIiJCAr8QolKqKpnksbExpAZE0qRGyZOpL+feJHZr1UyKqypM8xCtgeLj43Fx+WfD\ncnJy4syZM2VZhXzkOV8hREnExsawbeU+6tcxzdNHCZqbvDyqfIJmkxouNDN/wiRlaUxSiigtZRr4\nC8vsf5S8R/BM40rcTRo2a5VvWmxsDCN6rqOWWdGPFBZHljaJVT8PKfCj1eWY7mVFRZV1LVdnsnVc\ny9XxbCHTNTdMk/ijuZEOrgWn65K0Jin/UWUl5ZhuHUWVdeN2msnWceN2GoXtiq9duW2ydVy7cht7\n50I+iL1umhXEXof6BQOjLs50ueq6uFwK22h1l024TV3WgmlyW4stNsN021RsRlqhOY+Xc02zv72c\nexN7mhWYnqwz3TZbVFn3H8EzhRs3r9DQreCv70qC6fa1VxJ0mOaQsXhUSnGjcQmcPHmS5cuXExoa\nCsCqVasAJMFPCCGEKCNl+qq3li1bcvXqVa5fv052djbh4eH6rH8hhBBClL4yvdRvZmbGRx99xPDh\nw1EUhf79+0tinxBCCFGGyvRSvxBCCCHKl4zqIoQQQlQjEviFEEKIakQCvxBCCFGNlGly34Oys7MZ\nPHgwOTk5aLVaevTowZgxYxg6dCiJiYnUrFmTnJwcXnrpJcaOHYuNTd6gBStXriQ8PBy1Wo2ZmRkz\nZ86kVatWj1lb2Xj22Wdxd3cnJyeHGjVqEBgYyLBhw/SjEJ4+fZpFixaRnJyMpaUlLVq0YNq0adSs\naeIRV0roUe3Iyspi2rRp/PXXXwDY2tqyevVqLC0ty7nWkJyczLx58zh9+jS2traYm5vz1ltvYWtr\ny7vvvkujRo3QarU4OjqyePFi/QBSAKNGjUKj0fD999+XYwsKKqpNvr6+FXp7cnd354033mDy5MkA\nrFmzhszMTMaMGQPAzp07+eKLL1Cr1TzzzDMsXrxYv2xGRga9evXCz8+PadOmlUv9i3L/t5Gbm4ub\nmxsLFy6kZs2aJCUlMW/ePM6ePYuNjQ2Ojo5MnTqVxo1NM0SsqRXVjoq8f4Xi13vChAmcPXsWc3Nz\nWrVqxaxZsyrEC9aK245///vfnD17FoAnn3ySBQsWlGyfq5SjzMxMRVEUJTc3VwkODlZOnjypDB06\nVDl37pyiKIqSk5OjLFiwQBkyZIiiKIpy4sQJ5dVXX1VycnIURVEUjUajJCQklE/lC9GmTRv9/5OT\nk5XXX39d+fzzzxVFUZTExESlW7duyqlTp/Tz7Nq1S0lOTi7zej5OYe1Yvny5oiiK8tVXXykLFizQ\nf3758mUlOzu7zOtYmFdffVX53//+p//7xo0byrp165QjR44o77zzjn76kiVL9O1RFEVJS0tTunTp\novTq1Uu5du1amdb5cYpqU1JSUoXenlq2bKn4+PgoGo1GURRFCQ0N1ff55cuXlaCgICU9PV1RFKVA\nnefMmaOMHz9emT17dtlW2gAP/jbGjx+vfP3114qiFPyeoqOjlWPHjpV19QxWWDsq+v5VUYpf78jI\nSP3848aNU7777ruyrXARituOjIwM/fzz589XVq1aVaL1l+ul/vtHLNnZ2eTm5qJSqVAURf+Gvxo1\najBx4kRu3rzJX3/9RWJiInXq1KFGjbwLFfb29tSrV6/c6v8oDg4OzJo1i/Xr1wOwYcMGgoKC8h09\n+/n55TvrrIjut2PdunUAJCQk4OTkpP/8ySefxNzcvLyqp3fo0CHMzc0ZMGCAfpqLiwuDBw/ON5+i\nKNy5cwdb238GOt21axfe3t706tWL8PDwMqvz4zyqTevXr6/Q25OZmRkDBgzg66+/LvDZxo0bGTRo\nENbWeWO0P1jns2fPkpKSQseOHcusrsZq3749V69e5fDhwwW+p2eeeYZ27dqVY+0Md78dlWn/CobV\nu3Pnzvr5W7ZsmW9o+IrCkHbUrl0byNt/ZWVl6a8iG6tcA79OpyMwMBAvLy+8vLwKvaR0/1JgTEwM\nXl5e3Lx5k549ezJz5kx+//33cqi14Ro1aoSiKKSkpHDx4kVatGhR3lUyyoPt6N+/P6tWrSIkJITP\nPvuMK1dM94rMkvj7778f2b/Hjh0jKCiIbt26cejQIV555RX9Z+Hh4fTp04fevXuzY8eOsqiuQR7V\npoq+PalUKgYPHsz27dvJyMg/gE1sbCyXL19m4MCBhISE8NtvvwF5O7WFCxcyadKkYr/eu6zcr1du\nbi5RUVE0a9aswn8XhSmsHZVh/2psvXNzc9m2bRudOnUq6yoXyph2TJkyhY4dO3L58mWGDh1aovWX\na+BXq9Vs2bKFqKgoTp8+zcWLFwud734nWVlZERYWxuzZs3FwcOCDDz5gy5YtZVnlYquoO7Di0uny\n3k/t7u5OREQEb731Frdv3yY4OJiYGNMOdGQKs2bNIiAggP79+wN5R9VhYWHs27ePfv36sWjRIiDv\nHvqVK1do27YtTz75JDVq1ODvv/8uz6oX6cE2lfSIvyzUrl2boKAg1q5dm2+6Vqvl6tWrrF+/nsWL\nFzNt2jQyMjLYsGEDXbt21V9Rqoi/nXv37hEUFERwcDANGjTQb1+VzYPtcHV1pX///pVi/2psvWfO\nnImHh0eFuQpjTDvmz5/P/v37cXNzK/GVyXJL7nuQtbU1Hh4e/PbbbwV2aDqdjgsXLujf8KdSqfDw\n8MDDw4NmzZqxZcsWAgMDy6PajxUXF4darcbBwYGmTZty9uxZvL29y7taxRYXF4eZmZn+kqylpSW+\nvr74+vpdXzdMAAAgAElEQVSiVquJioriqaeeKtc6Nm3alN27d+v//vjjj9FoNLzyyisFtqlu3box\nduxYIO9sPz09HR8fH/1tgPDwcP3n5amwNqWmptKvXz86d+5cKban1157jaCgIPr166ef5uTkRJs2\nbVCr1TRs2JAmTZoQGxvLiRMnOH78OBs2bODOnTvk5uZSu3Ztxo0bV44tyK9WrVqEhYXlm9a0aVN2\n7dpVTjUyTmHtgIq/fzWm3itWrECj0TB79uyyrm6RjO1/lUqFv78/oaGh+X5TxVVuZ/wpKSmkp+eN\n9paVlcWhQ4dwc3PLd48/NzeXxYsX4+LiQrNmzbh8+XK+S8vnz5+nQYMG5VL/wjx4hpKSksKMGTMY\nMmQIAEOGDGHLli2cPn1aP88vv/xCSkpKmdfzcR7VjuPHj5OWljdSWHZ2Nn///TeuroUMtVfGPD09\nyc7OzpeVf/fu3ULPjP/44w8aNWoE5GWXh4aGEhERwZ49e9i0aVOFuc9fWJsyMzNRqVQVfnu6vw3Z\n2dnh7+/Ppk2b9J/5+vpy+PBhIG/7unLlCo0aNWLx4sXs2bOHiIgIJk+eTGBgYIUK+lD4VQhPT09y\ncnLYuHGjftpff/3FH3/8UZZVK5bC2lHR969Q/Hpv3LiR/fv3s3Tp0jKroyGK246rV6/ql9uzZ0+J\nT7TK7Yw/MTGRDz/8EJ1Oh06no1evXnTp0oXVq1czceJELCwsyM7O5qWXXmLlypVA3k5v9uzZZGRk\nYGZmRuPGjZk1a1Z5NaGA7OxsgoKC8j0G9/rrrwNQt25dPv30UxYuXEhKSgpqtZr27dvnSz6pKB7V\njqtXrzJjxgwgbyPs2rUrfn5+5VfZB3zxxRfMmzeP1atX4+DggKWlJRMmTEBRFP744w+CgoLQ6XTY\n2toyZ84crl+/zs2bN/PlljRs2BBra2tOnz5dIR5jKqxNEydOxMHBoUJvTw8ecA0fPpwNGzbop3Xq\n1IkDBw7Qu3dvzMzMmDRpEnZ25TTebTEVdYtlxYoVzJ07l1WrVlGrVi0aNGjA1KlTy7h2hiusHRV9\n/wrFr/eMGTNo0KABAwYMQKVS0b17d959992yrnYBxWmHoihMnjyZO3fuoCgK7u7u+n2w0etXKuKN\nNCGEEEKUCnlznxBCCFGNSOAXQgghqhEJ/EIIIUQ1IoFfCCGEqEYk8AshhBDViAR+IYQQohqRwC+E\nEEJUIxL4hRBCiGpEAr8QQghRjUjgF0IIIaoRCfxCCCFENSKBXwghhKhGJPALIYQQ1YgEfiFMZMqU\nKSxbtsyged3d3YmLizNqPd7e3hw6dMioZR+lOPUvzzKFECUjgV8IA4WHhzNgwADatGmDl5cXr776\nKhs2bDCqrKLGdS+p+Ph43n//fV588UU8PDx4+eWX2bJlS6msqywNGTKEL774It+0sLAw/Pz8uHfv\nXjnVSojKqUZ5V0CIymDNmjWsWbOG6dOn4+XlhZWVFdHR0YSGhhIcHIy5uXmxylMUpVTqOXHiRJo3\nb05kZCTm5uZcuHCBxMTEUllXWZo7dy7BwcH07NkTNzc3UlJSWLRoEZ9//jk1a9Y02Xrufy+ldWAm\nREUgZ/xCPEZGRgbLly9nxowZdO/eHSsrKyDvcv0nn3xSZND/4Ycf8PPzo0OHDrz77rskJCTk+3zf\nvn34+vri6enJokWL9NPj4uIYNmwYHTp0wNPTkwkTJpCRkWFQXc+cOUNgYCA1a9ZErVbj7u5Op06d\n9J+PHTuWjh074uHhwdChQ/n777+LLGvv3r0EBgbi4eHBwIED+euvv/SfrVq1is6dO9O2bVv8/f05\nfPhwkeWkpKQwfPhw2rZty9ChQ7l58yYAs2bNYuHChfnmHTlyJGvXri1QRuPGjXnnnXf497//jaIo\nzJkzh549e+Lh4QFAdnY28+fPp2vXrnTs2JFZs2aRnZ0NQGpqKiNGjMDT05MOHTowcuRI4uPj9WUP\nGjSIZcuWERISQps2bfT1E6KqksAvxGOcOHGCnJwcvL29DV7m0KFDLF26lM8//5z9+/fj6urKuHHj\n8s3z66+/EhYWRlhYGBEREfz4449A3lnnyJEjOXDgADt37iQ+Pp7ly5cbtN42bdowc+ZMdu7cWWgA\n69KlC7/88gsHDx6kefPmTJgwodByzp07x7///W9mz57N0aNHefXVVxk1ahQ5OTlcvnyZDRs2sHnz\nZo4fP05oaCgNGjQosk47duxg9OjRHDlyBHd3d8aPHw9AYGAg4eHh+vk0Gg1HjhyhT58+hZbzxhtv\noCgK77//PidPnmTixIn6zxYsWMCNGzfYsWMHu3bt4vr163z55ZcA6HQ6BgwYQGRkJHv27MHCwoJ5\n8+blK3vbtm3Mnz+fP/74A2dn5yLbIkRVIIFfiMfQaDTY29ujVv/zcwkJCcHDw4PWrVtz7NixAsvs\n2LGD/v374+7ujrm5OePGjePkyZPcuHFDP8+IESOwsbHB2dmZYcOG6YPgE088gaenJzVq1KBOnToM\nGzaM33//3aC6Llu2DA8PD1auXImvry9BQUGcOXNG/3m/fv2wtLTE3Nyc0aNHEx0dXejVhI0bNxIS\nEkLLli1RqVQEBgZiYWHBqVOnMDMzIycnh4sXL5Kbm4urqyuNGjUqsk5du3alXbt2mJub88EHH3Dy\n5Eni4+Np1aoVNjY2+kTFnTt38sILL+Dg4FBoOWq1mrlz5/LLL7/w0Ucf6a+8KIrCjz/+yNSpU7G2\ntqZ27dq8/fbb+v50cHDA19cXCwsL/WcP9+crr7xCkyZNMDMzy/c9C1EVyT1+IR7D3t6e1NRUdDqd\nPih8//33QN4ZdGH36xMSEmjRooX+bysrK+zt7YmPj8fV1RUg35llgwYN9LcCUlJSmDNnDseOHSMz\nMxOtVou9vb1BdbWxsWHcuHGMGzeO1NRUFi5cyOjRo4mKikKn07F06VJ27dqFRqNBpVKhUqnQaDRY\nW1vnK+fGjRts3bqVdevWAXnBNTc3l4SEBNq3b8/UqVNZvnw5ly5domPHjkyePJn69esXWqcH22ll\nZYWdnR3x8fE4OTkREBDAtm3b8PT0ZNu2bQwbNuyR7WvatGm+fwESExPJzs4mICBAP+3B7+ru3bvM\nmTOHgwcPkp6ejqIoZGZm5ivXxcXlcV0rRJUhgV+Ix2jTpg3m5uZERETQvXt3g5apX79+vrP7zMxM\nUlNT8wXBmzdv4ubmBsD169f1gXPx4sWoVCp27NiBra0tv/76K3PmzCl2ve3t7Rk+fDhbtmzh9u3b\n7N27l7179/Ltt9/i6upKenq6/h75w5ydnRk5ciTvvPNOoZ/37t2b3r17c+fOHT7++GOWLFlS4H79\nfbdu3dL//86dO9y+fRsnJycAAgIC6Nu3L9HR0cTExODr61vsdjo6OmJhYcHPP/9c6NWC1atXc+PG\nDTZt2oSDgwNnz54lODg43zySzCeqE7mmJcRj2NjYMHr0aGbOnMmuXbvIzMxEURTOnz9PVlZWocv0\n6dOHzZs3Ex0dTXZ2NkuXLqV169b5zixDQ0NJS0vj5s2b/N///R+9evUC8g4SateujbW1NfHx8YSG\nhhpc18WLF3Px4kW0Wi0ZGRls2LCBxo0bY2dnR2ZmJhYWFtja2pKZmcmSJUuKDHgDBgzg+++/5/Tp\n0/o6RUZGkpmZyeXLlzl8+DDZ2dmYm5vrEwmLEhkZyfHjx8nOzmbZsmW0bt1aH/idnJx47rnnmDRp\nEn5+flhYWBjc1vvUajXBwcHMnTuXlJQUIO9g48CBA0DewUatWrWwtrZGo9GwYsWKYq9DiKpEAr8Q\nBnjrrbf48MMPWb16NV5eXnh5eTFjxgwmTJhAmzZtCszv6enJ2LFjee+99+jUqRPXrl1j6dKl+s9V\nKhU+Pj7069ePoKAgunXrRv/+/QEYM2YMZ8+epX379owcOZIePXrkK/tRZ6dZWVmMGTMGDw8P/Pz8\nuHnzJv/5z3+AvGQ6FxcXOnfuTJ8+fQqt933PPfccs2fPZtasWbzwwgv06NGDsLAwIC+DfsmSJXh6\netKpUydSUlIKJC4+qE+fPqxYsYIOHTpw/vx5Fi9enO/zwMBALl68SGBgYJFlPK79kydPxtXVleDg\nYNq3b89bb73FlStXgLykwPT0dDp06MCgQYPo2rXrY8sToipTKUY+UHz58mU++OADVCoViqIQFxfH\n2LFjCQgI4IMPPuD69es0bNiQzz77DBsbGwDmzJlDVFQUlpaWLFiwgGeffdakjRFCVD7Hjh1j0qRJ\n7Nmzp7yrIkS1YPQZf5MmTdiyZQthYWFs3rwZS0tLunfvzqpVq/D09GTXrl106NCBr776Csi73Hf1\n6lV2797NrFmzmD59uskaIYSonHJycli7dm2Be+5CiNJjkkv9Bw8e5IknnsDFxYWIiAiCgoIACAoK\nIiIiAoCIiAj9pbzWrVuTnp5OUlKSKVYvhKiELl26xAsvvEBSUhKvvfZaeVdHiGrDJFn9O3fu1L90\nIzk5GUdHRwDq1aunT7ZJSEjIl9Hs5OREfHy8fl4hRPXi5ubGiRMnyrsaQlQ7JT7jz8nJYc+ePfTs\n2RMoOlGmsFQCSaoRQgghylaJz/ijoqJo0aKF/vnZunXrkpSUhKOjI4mJifrpTk5O+Z7nvXXrVpEv\n/LhPURQ5OBCimtBqtVy6dKlYy7i5uWFmZlZKNRKiajI6qx8gPT2dPn36oNVqsbOzY968eWzfvp2o\nqCh9tn/Xrl2ZOnUqkZGRzJw5kxo18o41atasyfbt2x+7jsTEdGOrV63Uq2cjfWUA6SfDlXVfXbp0\nkfHf/YCVYz2D5s9MSmTJwAG4uT2NVqslNjamWOt78smnTHLQINuUYaSfDFevnk2pll+iM/5Zs2aR\nlpbGb7/9Rq1atbh79y6KoujP1O///76HPxNCiAdZOdbDxqn4r8+NjY1hw1//pW7DugbNn3wtmUG8\njZvb08VelxCVndGBPyMjgxMnTuRLzrGxseHAgQN89913+kv997N1IyIimDhxov7tZP7+/vpbAkII\nUVJ1G9bF6alH3z4UQpQgue/atWvUqVOHKVOmEBQUxEcffcTdu3eLndUvhBBCiLJj9Bl/bm4uf/75\nJx9//DEtW7Zk3rx5rFq1SrL6hajminu/3VT32o1VnvkBQpQHowO/s7Mzzs7OtGzZEgA/Pz/++9//\nmjSrH0o/yaEqkb4yjPST4YzpqwsXLtB9+/9Q1398kp4uIZE/hr1Js2bN0GisHzv/wxwcrKlXzyZv\n2TvGLXvhwgXmbPwIG0fD2pqelM7Sdz6lWbNm+mmyTRlG+qliMDrwOzo6kpCQQM+ePalVqxbJycm8\n/PLLNGrUiEGDBuXL6gfw8fFh5syZfPbZZ0BeVr8h9/clC9QwkjFrGOknwxnbVykpGajr18PM1bAk\nvZSUDBIT00lJyTBqXaZY1sbRBntn+2IvC7JNGUr6yXClfYBUohf42NvbU6tWLRRFoXXr1owcOTJf\nJn9RWf33/y+EEEKIslWix/nMzc35+uuvqVOnjn6aZPULIYQQFVeJAr9KpeLNN99EpVIREhJCcHCw\nvKtfiCpAq9Vy4cKFYl1Cl4Q3ISqHEgX+77//Xh/chw8fTpMmTSSrX4gqIDY2hitfedC4jmG/0Ssa\nBd75vdq9EEcOkERlVKLAX69eXtaug4MDvr6+nD59WrL6y5H0lWGknx5Po7GGOircHA0/OM+XYV8M\nxi5XYFkjs/pLst4LFy6wu90XuKoNu3J5Q5eEwx+j8z0RUJ3Ib69iMDrw3717F51OR+3atcnMzGT/\n/v2MGTMGb29vNm/ezIgRIwgLC8PHxwfIy+pfv349vXr14uTJk9ja2kpWvwlJxqxhpJ8MU5YZ9hUh\nq78ky7qqHWls5lTsZasb+e0ZrsK+qz8pKYkxY8agUqmIiYmhQYMGdOzYEQcHB4YOHcqyZcuwt7fX\nD8Tj6enJ3LlzadGiBTVq1GDZsmUma4QQoiB5MY0QojBGB/5GjRqxdetWvvnmG86ePUtGRt5R86pV\nq5gzZw7+/v5Mnz6d3bt3ExISwo8//shLL73EjBkz2LlzJ1u3btU/4y+EML3Y2Bje2OxLzXqGBfJ7\niVq+7vdrtbtPL0R1U6J7/Ldu3SIyMpKRI0fy9ddfA3D48GGWLl0KQFBQECtWrCAkJISIiAjef/99\nAHr06MGsWbNKWHUhqr6SnrXXrGeGpUuJfuZCiCqmRHuEefPmMWnSJNLT8+7baDQa7OzsUKvz3gvk\n7OysH4jnwcf5zMzMsLW1JTU1FXt7w9+WJUR1Exsbw5hr/bBsbG7Q/Hev5LCCzXLWLoQoktGBf9++\nfTg6OvLss89y5MgRoOCb+uCfR/Yenq4oikGP80kWqOGkrwxjTD9ptVouXbpUrGXc3NxKfL9co7HG\n0syc2k1rGryMg51psuRTSrBsWSxXYNlyyOrXaKy5YeSy1VF1bXdFY3TgP378OHv27CEyMpJ79+5x\n584d5s2bR3p6OjqdDrVane+RvfuP8zk5OaHVasnIyMDOzu6x65EsUMNIxqxhjO2nS5cu0vnmG9DY\n0rAFrtwlKuXrEp95p6RkQDGPHSpCpntFX2dFWLa6kX2U4SpsVv+YMWM4dOgQOTk5AFhbW7N48WLe\neecdevTogVqtRqfT8frrrwPQpUsXJkyYoD/Lb926dclrL0RZamyJ+mkrg2bVAWTn/V+y60VhSrJd\nyDYlSsLowG9hYcHatWuxtLTk8OHDvPfee5w6darAoDwPevDyvgzSI6qL2NgY5q9YhG2dx1/hAkjT\n3GbKmElyn76Ki42NoccWP8wMfOpCm6hlV+Bu3NyeJjY2humHZmPjamvQsuk30pjJR7JNCaCEyX2W\nlnmXPVu3bk2jRo1QqVScOXOGAwcOoFarOXnyJCtWrGDw4MFERkayZMkSWrdujVarxcvLyyQNEMJQ\n5fl6Vds6dtSpW7fE5YiqxayeGWYuhiVuPszG1Ra7J+o8fsaHyNUCUaLAr9Pp6NevH1evXmXw4ME0\natQIW1tbyeoXFVJsbAx+v/TBzNmwHa32Vg67u++QsyRRpcTGxrDww3bY1TZs/tt3YPKCP+R3UIWU\nKPCr1Wq2bNlCRkYGo0ePLjTruaRZ/UKYkpmzOWYNLMq7GkKUK7vaUMfW0P2v3JatakzyZg9ra2s8\nPDw4deoUaWlpJs3ql8c/DCd99WglflysmAncJntM7Xb5rFce5zNsWWMf5ytxe6+U/XpLSvZRFYPR\ngT86OppZs2aRmpqKSqXi3r17fPTRR7Rt25aAgACys7PJysrSZ/V7e3szbdo07t27R05ODs2bNzdo\nPfL4h2HkUZnHK/FjW8W8UGCyx8XkcT5ZtoIsW9z8gAdzA2QfZbgK+zhfamoqGo0GCwsLcnNzSU9P\np2HDhtStW5ezZ89Sq1YtbG1tSUxMBPLO+DUaDVZWVtSuXZvk5GSTNUIIIUTpi42NofOyUWBvwGOt\nqZlEjV0puQEVkNGB/8UXX+Snn37S//3uu+8SHx/P0aNH2bRpE46OjiQmJvLaa68xadIkoqKimDp1\nKr169QLA39+fpKQkg4bmFRWTZAcLUQ3ZW6Gu+/jbBboyqIowjknu8V+7do3o6Ghat25NcnKyPpjX\nq1ePlJS8O4UPZvVD3hWA+Ph4CfyVWGxsDOd2X6WhU2OD5r8WfwX88oK/HDAIIUT5KHHgv3PnDu+/\n/z5Tp06ldu3aRWbqF/bCHsnqr/waOjWmSYPiXMpTiI2NYf3Sd6hrZ9hb8JJvZzJ43FdyyVAIIUyg\nRIE/NzeX999/n4CAAHx9fQGoW7eu/hJ+YmIiDg4OwD9Z/fc9mPH/KJIFariyHnxGo7HmdjFTqR0c\n8i4R1rWzwsnBwAeJ+SeruKT1LS7J6i/99UpWv5HLlkNWv7Hf7X2yP68YShT4/f39SUhIICEhgWHD\nhgHg5eXFoEGDUKlUKIpC165dAfDx8WHmzJl89tlnANSsWdOgy/ySBWqYkgw+0ynBC9WTaoPmV2J1\n/JZyADe3p/9/dnDxrtoYk1F8f7nExHQuXbrIf3asx76+YbeIUhOSeLfP4Afqa9x6Jau/9JatbPWV\nZYu/HEhWf3FU2Kz+P/74g7i4OBo3bsyVK1cICgrigw8+0A/Nez/wP/zu/gc/ExWD6kk1qqcNC/wA\nZJZaVQxiX98RR1fnx88ohBCiAKMDf7t27YiOjub69euMHDmSsLAwAObNm8d3332XL6sfICIigokT\nJ0pWfykoz3fQCyGEqFxMktX/oJSUFMnqL2OxsTGEvNcFCyvDAnl2ppbvl0dKspwQQlRDJg/8RZGs\n/tJlYWVGzdpyBi+EqHjkqmTFYvLAL1n9Za/EWbpZxi9rbFZ/cZVHRnKBZSWrv1TWK1n9Ri5bibL6\nL1y4wPBpwVjZ1TJouczbWayZs5FmzZoVu67i8Uoc+B8+k/f29mbz5s2MGDGCsLAwfHx8gLys/vXr\n19OrVy9OnjyJra2tZPWbSImzdA17nL7wZcs4q79cs5klq79Ulq1s9ZVljVvOyq4WNg6G72wefCKg\nuintE95ipHIXNH78eEJCQrh8+TJdu3Zl06ZNjBgxgoMHD9KjRw8OHTrEiBEjAOjSpQsNGzakY8eO\nDB06lISEBFatWmWSRgghhBDCMCU641+yZEmh07/55ptCp0+bNo3ffvuN//3vf9SvX5/+/fvj4+OD\nm5tbSapRJch774UQQpSFMkvuAzh9+jSNGzemQYMGAPTu3ZuIiIgqE/hLErxjY2O4MGc9jWwNe8oh\nLi0Jpg2WzHwhhBDFUqaBPz4+HhcXF/3fTk5OnDlzpsj5i5sF+mAQvHTpYrHqZoplY2Nj2NTpK+qp\nHAxaLlFJ4ZXf3jFJ8M7O1Bo9rxJr+DhaSqwOHsjJvBZveIbRtfgr2PEEkPf+fUM9PG9qQpLByz48\nr/ZWjsHLam/lQMsHJly5a/iIY1fuwj+bOmkawzP0Hp737hXD63z3Sg40/Ofve4mGbxcPz3tFY/hL\ntq5oFB4cqkmXkGjQcg/Pl5lk2HKFzZt8zfChvpOvJcMz//ydnmT4veSH572hM3x7vKFLwvWBv7XF\n+H4enjf9RprBy6bfSOPBL+j2HQDDvt/bDydNpmYa9jtIzf+7zbxteBbxw/OWx/68pMtWZCqlDF+h\n9/PPP3PgwAFmz54NwNatWzlz5gzTpk0rqyoIIYQQ1VqJkvuKy9nZmRs3/nn4JT4+3qBH+oQQQghh\nGmUa+Fu2bMnVq1e5fv062dnZhIeH6x/3E0IIIUTpK9N7/GZmZnz00UcMHz4cRVHo379/lUnsE0II\nISqDMr3HL4QQQojyVaaX+oUQQghRviTwCyGEENWIBH4hhBCiGinVwD916lReeukl+vbtq58WHR1N\nSEgIL7/8MqNGjeLOnby3Q+Tm5vLhhx/St29fevfune89/t7e3rz88ssEBgbSv3//Itc3Z84c/Pz8\nCAgI4Pz586XXsFJgqr765ptv6NOnD3379mX8+PFkZ2cXWFd2djYffPABfn5+vPrqq/kesazoitNP\nOTk5TJkyhb59+xIYGMjRo0cByMrK4p133sHf35++ffuydOnSItf31Vdf4efnh7+/P/v37y/dxpmQ\nKfrpQSNHjsxX1sOqy2/vUX01dOhQevbsSWBgIEFBQaSkFD6+YXXfpnJycvj444/p0aMHvXr14pdf\nfil0fdW5n+7cuaPfjgIDA3nxxReZP39+oeszqp+UUvT7778rf/75p9KnTx/9tFdeeUX5/fffFUVR\nlE2bNimfffaZoiiKsn37dmXcuHGKoijK3bt3lW7duinXr19XFEVRvL29ldTU1Eeua9++fcrbb7+t\nKIqinDx5UgkODjZ5e0qTKfrq1q1bire3t3Lv3j1FURRl7NixSlhYWIF1rV+/Xpk+fbqiKIoSHh6u\n/Otf/yrNpplUcfpp3bp1ypQpUxRFUZTk5GQlKChIUZS8Pjty5IiiKIqSk5OjDBo0SImKiiqwrr//\n/lsJCAhQcnJylLi4OMXX11fR6XSl2j5TMUU/3bd7925l/Pjx+cp6UHX67T2qr4YMGaKcO3fukeuS\nbUpRPv/8c/18iqIoGo2mwLqkn/ILCgpSjh07VmC6sf1Uqmf87du3x9bWNt+02NhY2rdvD8BLL73E\n7t27AVCpVGRmZqLVarl79y4WFhZYW1vfPzhBp3v0SyIjIiIIDAwEoHXr1qSnp5OUZPirNMubqfpK\np9Nx9+5dcnNzycrKKvQFSREREQQFBQHoR1GsLAzpp/tnEJcuXcLT0xMABwcHbG1tOXPmDLVq1eKF\nF14AoEaNGjRv3pxbt24VWFdERAS9evWiRo0aNGzYkMaNG3P69OnSbJ7JmKKfADIzM/nmm28YNWpU\nkeuqDr89Q/oKMGg/Vd23qU2bNvHOO+/oy7C3ty+wLumn/MtqNBratWtXYF3G9lOZ3+N/+umn2bNn\nDwA//fSTfofbo0cPLC0t6dixI97e3rz55pv6zlOpVLz55pu88sor/PDDD4WWm5CQgLOzs/5vJycn\n4uPjS7k1pau4feXk5MQbb7xB165d6dy5MzY2Nrz00ksFyn2wr8zMzLC1tSU1NbXsGmZiD/fTzZs3\nAXB3dyciIgKtVktcXBznzp0rEODT0tLYu3ev/sf3oMLGlqjM25Qx/bRs2TKGDx9OrVq1iiy3Ovz2\nDN2mpk6dSlBQEP/5z38KLbe6b1Pp6XnjHHz22Wf069ePf/3rX4XeEqnu/fSg8PBw/P39Cy3X2H4q\n88A/b9481q9fzyuvvEJmZibm5uYAnDp1CjMzMw4cOEBERAShoaFcu3YNgO+//57Nmzfz3//+l/Xr\n13Ps2LEC5SqFvI5ApVKVbmNKWXH7Ki0tjYiICPbu3ctvv/1GZmYm27dvL1Duw32lKEql7qui+umV\nV17BycmJ/v37s2DBAtq2bZtvGGOtVsv48eMZNmwYDRs2LFBuVdumittP0dHRXLlyBR8fn0L74r6q\n1mat8TIAACAASURBVE9g3Da1ZMkStm3bxvr16/njjz/YunVrgXKrWl8Vt59yc3O5desW7du3Z/Pm\nzTz//PMsWLCgQLnVvZ8etHPnTvr06VNoucb2U5m+uQ+gSZMmhIaGAnmXMCIjI4G8o5pOnTqhVqtx\ncHCgbdu2nD17loYNG1KvXj0g71JI9+7dOXPmjP6yyX1OTk75jpRu3bpV6ccBKG5fATRq1Eh/6ax7\n9+6cOHGiQFKWs7Mzt27dwsnJCa1WS0ZGBnZ2dmXYMtMqqp/MzMyYMmWKfr6QkBAaN/5niLKPPvqI\nJk2aMHTo0ELLdXZ21h+ZQ+XfporbT0ePHuXPP//Ex8eH3NxckpOTee2111i7dm2+cqvTb+9R29T9\nNltZWdGnTx/OnDlDQEBAvnKr+zZVp04dLC0t8fX1BaBnz55s2rSpQLnVvZ/ui46ORqvV0rx580LL\nNbafSv2M/+EjkvuXdXQ6HStXrmTgwIEAuLi4cPjwYSDvvuKpU6d46qmnuHv3rj4DMjMzk/379/P0\n0wWHPvTx8WHLli0AnDx5EltbWxwdDRvbvqIoaV+5urpy6tQp7t27h6IoHD58uNBXInfr1o2wsDAg\nb8TEF198sTSbZXKP66eQkBAgL3v/7t27ABw4cABzc3N9f3z66adkZGQwderUItfj7e3Nzp07yc7O\nJi4ujqtXr9KqVavSaFKpKGk/DRw4kKioKCIiItiwYQNNmjQpEPShevz2HtdXWq0WjUYD5GVq7927\nt9D9VHXfpiCvD+7vvw4ePFjoPkr6KU94eHiRZ/tgfD+V6hn/+PHjOXLkCKmpqXTt2pX33nuPO3fu\nsH79elQqFX5+fvoks8GDBzNlyhR9I/v370+zZs2Ii4tjzJgxqFQqtFotffv2pWPHjkDeLQCVSsWr\nr75Kly5diIyMpHv37lhaWhb56ENFZYq+grz7/4GBgfqktQEDBgDw+eef07JlS7p160ZwcDATJ07E\nz88Pe3v7Rz7OVtEY0k/9+vUDIDk5mTfffBMzMzOcnJxYtGgRkHdf7KuvvsLNzY3AwEBUKhWDBw+m\nf//+7Nmzh3PnzvHee+/RtGlT/P396d27NzVq1GD69OmV5nKjKfrpUarbb+9xfZWdnc2bb76JVqtF\np9Ph6emp/+3JNpV/mxo/fjyTJk1i/vz5ODg46LcX6aeCv72ff/453+PaYJp+knf1CyGEENWIvLlP\nCCGEqEYk8AshhBDViAR+IYQQohqRwC+EEEJUIxL4hRBCiGpEAr8QQghRjUjgF0IIIaoRCfxCCCFE\nNSKBXwghhKhGJPALIYQQ1YgEfiGEEKIakcAvhBBCVCMS+IUQQohqRAK/EEaYMmUKy5YtM2hed3d3\n4uLijFqPt7c3hw4dMmrZRylO/cuzTCGE6dUo7woIURGFh4fz7bffcvHiRaysrGjYsCEBAQEMGjSo\n2GWV1jji8fHxzJ07l6NHj6LVanFxcWH48OEEBgaWyvrK2rp16/jhhx+4evUq1tbWPPXUU4SEhNCr\nV6/yrpoQlZoEfiEesmbNGtasWcP06dPx8vLCysqK6OhoQkNDCQ4OxtzcvFjlKYpSKvWcOHEizZs3\nJzIyEnNzcy5cuEBiYmKprKuszZ49m/379zNjxgzatWuHubk5J06cYOPGjaUS+BVFKbUDNCEqGrnU\nL8QDMjIyWL58OTNmzKB79+5YWVkBeZfrP/nkkyKD/g8//ICfnx8dOnTg3XffJSEhId/n+/btw9fX\nF09PTxYtWqSfHhcXx7Bhw+jQoQOenp5MmDCBjIwMg+p65swZAgMDqVmzJmq1Gnd3dzp16qT/fOzY\nsXTs2BEPDw+GDh3K33//XWRZe/fuJTAwEA8PDwYOHMhff/2/9u49oOb7f+D483QjKa10UYyxWcYk\n1/mGJpcQ6yK+NnPL5m7GmhlfbNjMjM2YYWM21+9YuZS5hWKSmXzNvoy5fCM6RRcRur1/f/TrTJSO\nVKfD6/FXfa6v9/t8znl/Lu/36/Onbt6yZcvo0KEDzZs3p3v37hw6dKjY7aSkpBAcHEzz5s0ZMGAA\nV65cAWDGjBnMmTOn0LIjRozghx9+uG8bFy5cYN26dXz++ee0bdsWCwsLNBoNzZs3Z/bs2brlbty4\nwZQpU2jXrh1eXl588cUXupOssLAwXnvtNebMmUPr1q3p3Lkz0dHRunUHDBjA559/zquvvkqzZs24\ndOkSN27cYPLkyUVuT4jHiTT8QtwlLi6O7OxsvL299V4nJiaG+fPn8+WXX3LgwAFcXFyYMGFCoWV2\n795NWFgYYWFhREZGsnHjRiD/SnPEiBH88ssvbNu2Da1Wy8KFC/Xar4eHBx9++CHbtm3TNbB38/Ly\nYteuXRw8eJAXXniBkJCQIrfzxx9/MGXKFGbOnMnhw4f55z//yciRI8nOzub8+fOsXbuW0NBQjh49\nyvLly3F1dS02pvDwcEaPHk1sbCxubm688847APj7+xMREaFbLjU1ldjYWHr27HnfNg4dOkStWrV4\n4YUXHlj+iRMnYm5uTmRkJGFhYRw8eJANGzbo5h8/fpwGDRoQGxvL0KFDmTJlSqH1t27dyqxZszh6\n9Ci1atVi4sSJWFhYFLs9IR4X0vALcZfU1FRsbW0xMfn7q9GvXz9atWqFu7s7R44cuW+d8PBwgoKC\ncHNzw9zcnAkTJnDs2DEuX76sW2bYsGFYW1vj7OzMoEGDdI3g008/Tdu2bTEzM+Opp55i0KBB/Prr\nr3rFumDBAlq1asXXX39N586dCQgI4Pfff9fNDwwMxNLSEnNzc0aPHs2pU6eKvJuwYcMG+vXrx4sv\nvohGo8Hf3x8LCwv+85//YGpqSnZ2NmfOnCEnJwcXFxfq1KlTbEwvv/yy7tb8+PHjOXbsGFqtlqZN\nm2Jtba3rqLht2zZat26NnZ3dfdtITU3FwcGh0DQvLy9atWpF06ZNuXLlCteuXWP//v1MnjyZKlWq\nYGdnx6BBgwgPD9et4+rqSlBQEBqNhoCAAJKTk7l27ZpufkBAAA0aNMDExIT09PQStyfE40Ke8Qtx\nF1tbW9LS0sjLy9M1/uvXrwfyG5+ibv0mJSXRuHFj3f/VqlXD1tYWrVaLi4sLAM7Ozrr5rq6uukcB\nKSkpzJo1iyNHjpCZmUlubi62trZ6xWptbc2ECROYMGECaWlpzJkzh9GjRxMdHU1eXh7z589nx44d\npKamotFo0Gg0pKamUr169ULbuXz5Mps3b2b16tVA/l2InJwckpKSaNmyJZMnT2bhwoWcPXuWdu3a\n8d577+Ho6FhkTHeXs1q1atSoUQOtVouTkxN+fn5s2bKFtm3bsmXLFgYNGlTkNmxtbe97VBIVFUVu\nbi5NmjRBKUVCQgI5OTm0a9dOF7NSilq1aunWqVmzpu7vqlWrApCZmYm9vf19seqzPSEeF9LwC3EX\nDw8P3e3jLl266LWOo6Njoav7zMxM0tLSCjUsV65coUGDBkB+I1PQcH722WdoNBrCw8OxsbFh9+7d\nzJo166HjtrW1JTg4mE2bNpGens7evXvZu3cv33//PS4uLmRkZNCqVasi13V2dmbEiBEMHz68yPm+\nvr74+vpy8+ZNpk2bxrx58+57Xl8gMTFR9/fNmzdJT0/HyckJAD8/P3r16sWpU6c4d+4cnTt3LnIb\nL730ErNmzeKPP/4odEIFf3eUrFWrFlWqVCE2NrbUnfLuXq8stieEsZBb/ULcxdramtGjR/Phhx+y\nY8cOMjMzUUpx8uRJbt++XeQ6PXv2JDQ0lFOnTpGVlcX8+fNxd3cvdLW4fPlyrl+/zpUrV1i1apWu\nZ3pmZiZWVlZUr14drVbL8uXL9Y71s88+48yZM+Tm5nLjxg3Wrl1L3bp1qVGjBpmZmVhYWGBjY0Nm\nZibz5s0rtkHr27cv69ev5/jx47qYoqKiyMzM5Pz58xw6dIisrCzMzc11HQmLExUVxdGjR8nKymLB\nggW4u7vrGn4nJyeaNGnCxIkT6dq1KxYWFkVu45lnnuGf//wnEyZM4ODBg9y5c4e8vDyOHj2qK4OD\ngwOenp58/PHH3LhxA6UUFy9e1Psxyb3KentCVGZyxS/EPd544w2cnZ359ttvmTRpEpaWltSpU4eQ\nkBA8PDzuW75t27aMGzeOsWPHcv36dTw8PJg/f75uvkajoVOnTgQGBnLjxg0CAwMJCgoCYMyYMUyc\nOJGWLVtSt25d/Pz8WLlyZaF1i3P79m3GjBlDcnIyVatWpWnTpixevBjI70x34MABOnTogK2tLePG\njePf//53kdtp0qQJM2fOZMaMGcTHx1OlShVatGhBq1atyMrKYt68eZw7dw4zMzM8PDyYOXNmsTH1\n7NmTRYsWERcXR5MmTfjss88Kzff39+e9995j6tSpxW4DYNq0aaxevZrZs2dz8eJFrK2tqVevHl98\n8YXu8cmcOXP47LPP8PX1JTMzkzp16vDGG28Uu82767Koen3Y7QlhrDSqhPEqkydPZt++fdjb27N1\n61YATp06xfTp07lz5w5mZmZMmzaNpk2bAjBr1iyio6OxtLTkk08+oVGjRkD+8JolS5YAMHLkyMcm\nyYgQQn9Hjhxh4sSJ7Nmzx9ChCPHEKvFWf2Bg4H23H+fOncvYsWPZtGkTY8eOZe7cuUD+bb74+Hh2\n7tzJjBkzmD59OgDp6el89dVXbNy4kQ0bNrBo0SIyMjLKoThCiMoqOzubH374gT59+hg6FCGeaCU2\n/C1btsTGxqbQNI1Go2u4MzIydM/wIiMjdVfy7u7uZGRkcPXqVQ4cOICnpyfW1tbY2Njg6enJ/v37\ny7osQohK6uzZs7Ru3ZqrV68ycOBAQ4cjxBOtVM/433//fd544w3mzJmDUko33CkpKalQT2ZnZ2e0\nWi1arbZQRycnJye0Wu0jhi6EMBYNGjQgLi7O0GEIIdDjin/y5MkEBgZy4cIF3bR169bh6elJ1apV\n0Wg09O/fH8gfarN582a6du1K9+7ddeOHlVKcP3+ebt264ePjw5EjR/QaMiPpMoUQQoiyVeIVf2Bg\nID4+PowZM0Y37aeffsLDw4Pw8HDMzMxo0aIFAJaWluzfv5+dO3eSmJiIj48PDg4OODo6snjxYrZs\n2YKjoyPt2rXTJcp4EI1GQ3Ky9AXQh4ODtdSVHqSe9Cd1pR+pJ/1IPenPwcG6XLev1zP+ezN9mZiY\n0L59e8zMzIiJiaFevXpAfnYsCwsLzMzMuHr1KpaWlly+fJmnnnqKnJwc3ZhipZTeLyIRQgghRNkp\n8Yr/nXfeISYmhuzsbF5++WXGjh2Lvb09y5cv54svvsDU1JQPPvgAACsrK2rVqkWXLl2wtLSkdevW\naLValFK8+OKL9O7dG41GQ7du3bh+/XqJwZ0+fZqUlIo/QahXrz6mpqYVvl8hhBCivJXY8M+bN4+E\nhARGjBihG8e/cuVKvLy8mDJlCsePH2f8+PG88sorKKUIDAykV69eAEyZMgWNRkNeXh7PPPOMLhf4\n5s2bC71MpDinJiygnrX9o5TvoV3IuAb/GkqDBs9V6H6FEEKIilBiwz958mQiIyPJzMzUTXN2dqZr\n164sX76cuXPn4urqSmpqKs7OzqxZs4aFCxdiaWmJpaUlffv2RSnFsWPH8PHxAfLfbX5vDu6i1LO2\n5zlbp0coXulUtate7s9YyoMxxmwIUk/6k7rSj9STfqSeKge9Ovd17dqVsWPH6qZ17tyZXbt2cfbs\nWRwcHMjJyeGpp57C2tqaM2fOEBMTQ1RUFBMmTKBp06akpqZy7tw5wsLCsLe3x8vLi6FDh5ZrwR5F\nSsoNo+uEIh1n9CP1pD+pK/1IPelH6kl/5X2CVGLDv27duvue8ffu3ZvOnTtjYWFBamoqX375JQAn\nT57Ey8sLX19fzMzMsLOz49q1a8TGxuLp6cnYsWNRStGoUSMuXbqkS/MrhBBCiIpRYq/+efPmsWHD\nBp577jn27dtH7969iY6OxsfHh507d+Lo6Ejz5s2B/AQ+r7/+Ort27eLnn3+mfv36ugQ+zZs3Z8eO\nHezcuZOOHTtKAh8hhBDCAB46c9/t27dZsmQJK1asuG/evQl3lFK6BD73kndeCyGEEBXvoTv3xcfH\nc/r0adq0aYNGoyEnJwd/f39++uknnJycWL16NZMmTcLU1JTMzEwcHR1xdnZm06ZNdOvWDaUUNjY2\nDBkypNwLV1p20rnvsSb1pD+pK/1IPelH6qlyeOjOfQ0bNmTx4sW89NJLmJiY0KJFC7p27Yq9vT2N\nGjVi7ty5HD58mD179vDOO+9gb2/PP/7xDyZOnEhoaCj29va8/PLLuLq6lnvhSks69z2+pJ70J3Wl\nH6kn/Ug96a/Sdu4rUKVKFd3z+oyMDJ577jm6d++OpaUljRs35vjx4yilqF+/PmPHjkWj0dCpUydi\nY2Nxd3cvv5IJIYSoFHJzcyUhWyVSqgQ+d2vatCldunQBQKvV8vrrrxdK4FOQua9Zs2bMnDkT0D+B\njxBCCON34cI5on4LxdnVsUL3m5iQBARKQrZ7lOq1vAW+/vprzM3N6dmzJ1D02/QKMvcJIYR4cjm7\nOlKnrouhwxCUMnNfeno6/fv3Jz4+nhYtWpCRkYG1tXWZZ+4zFOnc93iTetKf1JV+pJ4eLDW1OiQa\nZt/G+ntenkqVuW/q1KmkpKQQFRXFhg0bWLp0KSEhIZK5z4Ck44x+pJ70J3WlH6mnkhni2f7d+za2\nz6dSdu6LjIzE3t6e4OBgcnJySExMJCQkRDL3CSGEEJVcqTr3zZkzh+joaN0ybdq0AfIz9w0bNkyX\nyW/IkCGFMvctW7YMgMWLF0vmPiGEEMIASkzZ+zAkc58QQghRuZWqV7+9vT1Xr14lPDyc9evXk5mZ\nyTvvvIODgwN//PEHn3zyCenp6SQnJ2NnZ4ezszMxMTGMHz+eP/74gxs3bjBq1KiyLkuZMdbOIMYY\nsyFIPelP6urBCsanG0KDBg2MZny6dO6rXPRq+O+9Yvf29uaHH34gIiKC3r17k5mZyaVLl7CysmLp\n0qVMmTKFWrVqMWrUKPbt20f37t2ZOXMm3t7ebNiwge7du3Po0CFef/31cinUozLWziDGFrMhSD3p\nT+qqZGfPnuGNS69StW6VCt3v7f/d4duUdUYzPl069z0cg3fue+edd4iNjSUtLU3XuW/YsGGMHDmS\nK1euEBMTw4IFC5g8eTIdOnRg3bp1zJ8/H0tLS0JCQti2bRv9+vWjZs2a/PLLL/Tt25eQkBA+/fTT\nci2YEEJUhKp1q2D5bNWK33Fuxe9SPB706txXlLVr1/LDDz/w+eef07NnTzw9PXnhhReoVasWO3bs\nACAxMZHvvvsOyH+m/+OPP+Lk5ATAkiVLSEtLw9bWtqzKIoQQQogSlDpz3/Xr14mMjGTv3r1YW1sz\nbty4Qj39CxR04iuu4594POXm5nLhwjmD7Ftycz+e5JgSomyUuuE/ePAgzs7OTJs2jTNnznDjxg00\nGg3p6ekMGTKEy5cvY2Njg729PQBOTk58/PHHnDx5kqpVq5Kenk6NGjXKrCBlyVg7g1SmmE+fPs2s\nI29i42JZofu9fvkW8+3W0bBhw2KXqUz1VNlVpro6ffo0C0PG8JRVtQrdb+rNTKavWFnkMZWaWh3S\nKzQcHWP6nZLOfZVLqRt+FxcX3at3FyxYwHvvvcfzzz/PmTNnsLOz47vvvqNv3766q/qnn36affv2\nsXfvXhYvXsz3339fZoUoa8baGaQyxZyScgMbF0ts61oZZN/F1UVlq6fKKjc3l+vXkyq8U9aDrqxT\nUm7wlFU17K2rV2hMBfsu6rhJSbkBBroRYEy/U9K57+EYvHNfcerXrw/A999/z5o1a3jhhRcYOHAg\na9eu5dy5c/j4+FC/fn3Onz8PQFZWFg4ODnTt2hVbW1usra25evUqNWvWLJuSCCHKzIUL55h+9XOs\n61VcH5yMC2l8yHij6akuhLEqdcN/6dIl6tWrx7PPPsupU6ewsLAgJydH9+y/QEFWv2vXrjFp0iRd\nVr/Bgwej1Wql4ReikrKuZ0uNhhX8/TTchaEQT4xSN/w5OTn897//Zdq0abz44ot8/PHHLFu2rNgO\ne8aUvc9YnwlVpphTU6vDZcPsu7jPT5Kt6C81tTpkVfx+H/TdS02t+Fv8BYqLS57x60ee8VcupW74\nnZ2dcXZ2pnHjxgQEBFClShVq1KhBjRo1CAgIIDMzkwYNGmBnZweAg4MDc+bMITU1laeeeopr167h\n6OhYZgUpS8b6TKgyxVwZn+mdPXuGQ75f42JmV6HxXM5J4aWIkUZ1Czsl5QYYoJ190HevMh5T8oxf\nP5Xxs6vMKu0z/po1a1KrVi0+//xzGjRowO+//06LFi343//+R/369Zk3bx59+vTBxcUFAHNzc5KS\nkgp17pPb/KKiuZjZ8bSZg6HDEEIIg3mkl/SMGDGCNWvW8J///IcbN24wYsQIUlJSuHr1Kj4+Piil\nyM3NTy8VHx/Piy++SJcuXdi+fbtuuhBCCCEqTqmv+AF+/PFH1qxZQ0ZGBitWrCAnJ4ennnpKN1Qv\nMTGRN998E8h/Ze+3336ry9zXtWtXydxXRgqeXRvidpokNhFCCONS6oZ/37591KxZk0aNGhEbGwvk\nd+C7txOfMWbuM7bOIKdPn6bdkc8wq1Oxz65zLqZwwC6k+MQmlaxzX2pqdeINEA8Y3zElnfsKM6bO\nfbm5uZw9e9YAERXfiVU691UupW74o6Oj2bBhA//+979RSmFiYsLHH3/M9evXjT5zn7F1BklJuYFZ\nHTvMG1T8s+sHdnoyEGOKqbKSzn3379tYOvedPXuGN2esoap1xf4e3M5I5ptp/YvsxFoZP7vKrNJ2\n7hs5ciR9+vShUaNGREdH89ZbbzFy5EhOnDhh9Jn7hBDCmFW1dqCarbOhwxCVVKkbfgcHBxwc8s8o\nq1atipWVFVqtluzsbMncJ4QQQlRSj9S5r4CLiwtVqlTB3d39sc/cZ6g3hEknOiGEEGXhkRv+mzdv\n8tZbbzF58mSsrKxKzNwXHR3Nxx9/zJUrVwgNDaVx48aPGkKZe1BnkNOnTxP95Uxq2dpUWDxX0q5j\n98GcYt84l5paHbQVFk4hD+z0JJ37dIypIxZI5757GVPnvkpbT5Wwc5+hvn+GzuT5SA1/Tk4Ob731\nFn5+fnTu3BkAe3t73S385ORkXeY+JycnLl++zIIFC1i5ciVDhw7l0KFDnD17lgYNGjx6ScpQSR2M\natnaUMf+qUoVk6EYU0e6yhjT2bNneHVlLyzszCs0nqyUbNYN3lpsNkHp3Hf/vo2lc1+lrScDedAx\ndfbsGbr8Zw0mrhXXETIvIZldKUV3gixQaTv3AUyePJlnn32WQYMG6aZ5e3sTGhrKsGHDCAsLo1On\nTgB06tSJr7/+mrp165KcnIyNjQ2dO3cmMjKy0jX8QlQkCztzqjhaGDoMIZ5IJq4OmNZ7sjpCljpz\n32+//cbWrVs5dOgQ/v7+BAQEEB0dzZtvvsnBgwfx8fEhJiaGYcOGAeDl5UX16tWJi4tj2rRpTJ8+\nHScnJ5KSksqsMEIIIYR4sFJf8bdo0YKTJ08WOW/lypVFTg8KCqJWrVrMnDkTgL/++uuB+7iQca20\n4ZXahYxrlPTqoCtp1ysklrv3V9LrXXIuplRILPfts37x869fvlVxwdy9T5fi51/Oqfh6upyTwtMP\nmJ+Vkl1hsTzMPjMupFVAJPfsr4S+vqk3MysmmIfY5+3/3amgSO7ZZ+0HzM9Irrhg9NxnYkLFX+Ql\nJiTxfAkX83kJFVtXeQnJJR7n5U2jinpfbjk5duwYCxcuZPny5QAsW7YMQHdXQAghhBDl65Fe0vOw\nXnzxReLj40lISCArK4uIiAhdHwAhhBBClL8yGcevL1NTU6ZOnUpwcDBKKYKCgqRjnxBCCFGBKvRW\nvxBCCCEMq0Jv9QshhBDCsKThF0IIIZ4g0vALIYQQT5AKa/h37dqFm5ub7m19xQkLCyM5+e9xlVOn\nTjVYLvOyVFL533//fXbu3Fmm+zx8+DBxcXFluk1DaNSoEQEBAbpEUZcvX+bEiRN89NFHD1wvISGB\nXr16FTnvcT3O9OHm5sZ7772n+z83N5eXXnqJESNGALBnzx6++eYbQ4VX7gqOp169evH2229z507+\nOHwPD48HrpeRkcHatWsLTZszZw69evVi7ty55RZvZVNc/T2qsLAwXY4XY3d3HY0cOZIbN0qXsnj9\n+vVs3ry5jKOrwIY/IiKCli1bEhER8cDlQkND0Wr/fuPMzJkzH4ue//qWvyyVpuHPy8srp2hKz9LS\nkrCwMDZt2kRYWBguLi40adKEKVOmlHqbj+txpg9LS0vOnDlDVlb+W3h++eUXatWqpZvv7e3Nm2++\naajwyl3B8bR161bMzMxYt24dQLEvGCuQnp6uW7bAhg0b2LJlC++++65e+87NzS1d0JVIcfVXFkr6\nDIzF3XVUo0YN1qxZU6rt9OvXDz8/vzKOroKG82VmZhIXF8cPP/zAiBEjGDNmDADffPMNW7ZswdTU\nlA4dOtC4cWNOnDjBu+++S9WqVVm/fj1vvPEGkyZNonHjxoSHh7N06VIgPwVwSEgIkH+mPnDgQPbt\n24elpSWLFy/WvRyoMiiu/DNmzCAmJgZnZ2fMzfNf0hIdHU1oaChffPEFkN94r1ixgiVLlnDgwAEW\nLVpEVlYWTz/9NLNnz8bS0hJvb28CAgLYu3cvOTk5LFiwAAsLC9avX4+pqSlbt27lX//6Fxs3bqRj\nx4507doVyK+3uLg4Dh8+zIIFC7CxseH8+fNs376dLVu2sGrVKnJycmjatCkffPCBwb6URQ08ubte\nUlJSCAkJITk5GXd3dw4ePEhoaCiQ/0M7depU4uLicHJy4uuvv2bv3r0PPM6KO54uXrxISEgIt27d\nwtvbm++//95o76i0b9+effv20bVrVyIiIvD19eXIkSNA/pXXiRMnmDp1Kj///DOLFy/G1NQU7UTB\nDgAAIABJREFUa2trVq1aRV5eHnPnzuXAgQOYmJjQt29f+vfvb+ASlU7Lli05ffo08PdxlpmZyahR\no7h+/To5OTm8/fbbeHt7M3/+fOLj4wkICOAf//gH586dIzMzk8DAQIYNG4a7uzuTJ08mNTUVOzs7\nZs+ejbOzM++//z4WFhacOnWK5s2bY2VlxaVLl7h48SJXrlzh/fff59ixY0RHR+Ps7MySJUuM5hXc\nBfWXkJDAiBEj2Lp1KwArVqwgMzOTvn37MmzYMDQaDUopzpw5w+7duxk5cqRu2vnz53VJ3QqkpKTw\nwQcfcOXKFSD/jmjBK92NTbNmzXTH2L3H1rhx43S5bDZt2sSKFSswMTHh+eefZ86cOSxatAgrKyuG\nDBnCgAEDcHd3JzY2loyMDD766CNatGjB7du3mTRpEn/99Rf16tUjKSmJ6dOnP/jNt6oCbN68WU2Z\nMkUppVS/fv3Uf//7XxUVFaX69eun7ty5o5RSKj09XSml1IABA9Qff/yhW/f1119XJ06cUFqtVr38\n8ssqNTVV5ebmqoEDB6rdu3crpZR6/vnn1b59+5RSSn366afq66+/rohi6a2o8u/cuVMFBwcrpZTS\narWqZcuWaseOHSonJ0d17NhR3bp1Syml1PTp09XWrVtVSkqK6t+/v276smXL1FdffaWUUqpjx45q\n9erVSiml1qxZo/71r38ppZRauHChWrFihS6OSZMmqR07duj+9/DwUEopFRsbq5o1a6YSEhKUUkr9\n9ddfavjw4SonJ0cppdQHH3ygNm3aVD6Vo4dGjRopf39/5efnp8aMGaOLefjw4UoppWbMmKGWLl2q\nlFIqOjpaubm5qdTUVHXp0iX1wgsvqFOnTimllBo3bpzasmWLUir/uCrqOFOq+ONp+PDhKiIiQiml\n1Lp163T1Z2w8PDzUn3/+qcaOHavu3Lmj/Pz81OHDh3X1GRoaqmbOnKmUUqpnz55Kq9UqpZTKyMhQ\nSim1du1aNXbsWJWXl6eU+vu7ayyaNWumlFIqOztbjRw5Uq1fv77Q9JycHHXjxg2llFIpKSmqS5cu\nSimlLl26pHr27FloW3cfA8OHD9d9TzZu3KhGjRqllMr/3hXUrVL538vXXntN5ebmqpMnTyp3d3e1\nf/9+pZRSo0eP1v2uVVb31t+6devuq5vly5erhQsXFlpv9erVavz48YWm7dmzR/Xv31/l5OQUOu4m\nTJigfvvtN6WUUpcvX1bdu3cvzyKVubuPpbfeekv3+ebm5hZ5bJ0+fVp169ZNpaWlKaX+/k7d/Rv+\n+uuvq08++UQppdS+ffvU4MGDlVL5dT1t2jTddho3bqz7LStOhVzxR0REMHjwYAB69OjB1q1bUUoR\nGBiIhUX+W8lsbGwKTkSKvML7/fffadOmDba2tgD06tWLI0eO0KlTJ8zNzfHy8gKgcePGxMTEVECp\n9FdU+XNycvD19QXA0dGRl156CchPctSuXTv27NmDj48PUVFRTJw4kcOHD/PXX3/x6quvopQiJyen\n0DPJLl26ANCkSRN279790DE2bdoUF5f8JPeHDh3iv//9L0FBQSiluHPnDvb29o9SBY+katWqhIWF\nFTv/t99+46uvvgLyr2QLjiWA2rVr8/zzzwP5x0ZCQoJuXlHHGYCFhUWRx1NcXByLFy8GoGfPnnz6\n6aePUCrDatiwIQkJCYSHh+Pl5VVsXbRo0YJJkybRvXt33TEWExPDq6++qrsDdHd9G4M7d+4QEBAA\n5Jevd+/ewN+3mZVSzJ8/n19//RUTExOSkpK4dq3o94bcXW/Hjh3THYd+fn589tlnunndunUrtF6H\nDh10V3Z5eXm0a9cO+Ptzqczurb+goKBCj82K8ttvv/HTTz8VuuV94cIFPv30U1atWnXfHY6YmBjO\nnTtX6C5MZmYm1apVK+PSlI+COkpMTOTZZ5/F09MTyH+UWtSxFRsbi4+PDzVq1ACK/04V3K1t0qQJ\nly9fBvLrtuANuc899xwNGzYsMb5yb/jT0tI4dOgQZ86cQaPRkJeXh0aj0RVAX8WdEACYmf1dDFNT\nU3Jych4p5rJUXPk7d+5c7K3z7t27s3btWmrUqMGLL75ItWrVUErh6enJvHnzilyn4ATKxMSk2PKb\nmpoWeoafnf33i1osLS11fyulCAgIYPz48Q9dXkMo7riAv+sF8suvT0ek4o6nx+X5YwFvb2/dD29q\namqRy3zwwQccP36cffv2ERgYSGho6APr2xiUdCK5detWUlNT2bRpEyYmJnh7exd73Nx9TNx7fNz9\n/70NVsFxqdFoCh1vJiYmlb4fQFH1Z2ZmVui35e76SkpKYurUqSxZskT3O3Pr1i3Gjx/PRx99RM2a\n97+xRinFv//970LfX2NSUEd37txh6NChrFmzhtdff73YY0vf71RRv/Ol+T6We+e+7du34+/vz549\ne4iMjGTv3r24urpiY2NDaGgot2/fBvI7zgBUr169yB6Q7u7u/Prrr6SlpZGbm0tERAStW7cu7/Af\n2YPKHxERQV5eHklJScTGxurWadOmDX/88Qc//vgjPXr0APLLHxcXR3x8PAC3b9/mwoULD9y3lZVV\nobp0dXXlxIkTAOzevbvYE4S2bduyfft2UlLy32SXnp6uO7s0hJIO7BYtWrBt2zYADhw4wPXrJb89\n8d660Wd/zZo1Y/v27QAV2kmzrBWULygoiNGjR/Pcc8W/+/HixYs0bdqUt956C3t7exITE/H09GT9\n+vW6Bqrgu2ssivt8C6ZnZGRgZ2eHiYkJhw4d0h37VlZW3Lx5s9hteXh4EB4eDsCWLVto0aLFI8VT\nWRUVr729PSkpKaSnp5OVlcW+ffsAyMnJYfz48YSEhPD003+/o3LSpEn07t272Of2np6erFq1Svf/\nqVOnyrYQ5aygjqpUqcKUKVNYvnw5ubm5xR5bBb+5aWn5b8R8mO/U3b9/f/31l64/wYOUe8O/bds2\n3S3CAj4+PiQnJ+Pt7U3v3r0JCAhgxYoVAAQEBDB9+nQCAgK4c+eO7qzZwcGBd955hwEDBuDv70/j\nxo3p2LEjULmvxIor/7Vr16hXrx49evTg/fffL3Tb3sTEhI4dO7J//35dGQs6C02YMIFXXnmFf/7z\nn7qhgcWVv2PHjuzatYuAgAB+++03+vbty6+//oq/vz/Hjh0rdJV/twYNGvD2228THBzMK6+8QnBw\nMFevXi2L6iiVkj7fMWPGcPDgQXr16sXOnTupWbMmVlZWD1wnMDCwyOPsQft7//33WblyJX5+fsTH\nx2Ntbf3whakECsrn5OTEgAEDHrjsp59+Sq9evejVqxceHh64ubnRp08fatWqxSuvvIK/v7+usTMW\nxX2+BdN79erFiRMneOWVV9iyZYtutIetrS3NmzcvNHzv7m1NmTKF0NBQ/Pz82Lp1q96jTirz71dR\niorXzMyM0aNHExQURHBwMPXr57+vOy4ujhMnTrBw4cJCw3F37drFTz/9pJv2xx9/FNrelClTdJ9B\nz549Wb9+fYWUrazcXUeNGjXCzc2NiIiIYo+tZ599lhEjRujat08++eSB27zba6+9RmpqKj179uTL\nL7/kueeeK/G3SXL1C6OXlZWFqakppqamHDt2jA8//PCBt3JL6/bt21StWhXIP6GLiIjQPdMVQghD\nyMvLIycnBwsLCy5evMjgwYPZsWNHoUdI96rQt/MJUR6uXLnC22+/TV5eHhYWFuWWBOTEiRPMnDkT\npRQ1atTg448/Lpf9CCGEvm7dusXAgQN1j24//PDDBzb6IFf8QgghxBNFcvULIYQQTxBp+IUQQogn\niDT8QgghxBNEGn4hhBDiCSINvxBCCPEEkYZfCCGEeIJIwy+EEEI8QaThF0IIIZ4g0vALIYQQTxBp\n+IUQQogniDT8QgghxBNEGn4hHtL777/PggUL9FrWzc2Nixcvlmo/3t7exMTElGrdB3mY+A25zbKy\ndOlSpk6daugwhKg05O18QtwjIiKC77//njNnzlCtWjVq166Nn58fr7322kNvq7zeta7Vavnoo484\nfPgwubm51KpVi+DgYPz9/ctlfxXJzc0NS0tLNBoN1tbWdO/enffee0+vujx8+DDvvvsuUVFRumnD\nhw8vz3CFMDrS8AtxlxUrVrBixQqmT5+Op6cn1apV49SpUyxfvpw+ffpgbm7+UNsrr5dfvvvuu7zw\nwgtERUVhbm7O6dOnSU5OLpd9VTSNRsOWLVuoU6cOFy9epH///jRo0IA+ffqUuK5SqtxOtoR4XMit\nfiH+340bN1i4cCEffPABXbp0oVq1akD+FejcuXOLbfR//PFHunbtSps2bRg1ahRJSUmF5u/bt4/O\nnTvTtm1bPv30U930ixcvMmjQINq0aUPbtm0JCQnhxo0besX6+++/4+/vT5UqVTAxMcHNzY327dvr\n5o8bN4527drRqlUrBgwYwF9//VXstvbu3Yu/vz+tWrXi1Vdf5c8//9TNW7ZsGR06dKB58+Z0796d\nQ4cOFbudlJQUgoODad68OQMGDODKlSsAzJgxgzlz5hRadsSIEfzwww9Fbufuk6U6derQvHlzTp06\npZsWGhpKjx49aN68OV26dOHf//43kP9e8mHDhpGUlISHhwfNmzcnOTmZRYsW8e677wKQkJCAm5sb\nmzZtomPHjrRt25YlS5botn3nzh3ee+89Wrduja+vL99++y1eXl7FllkIYyQNvxD/Ly4ujuzsbLy9\nvfVeJyYmhvnz5/Pll19y4MABXFxcmDBhQqFldu/eTVhYGGFhYURGRrJx40Ygv4EbMWIEv/zyC9u2\nbUOr1bJw4UK99uvh4cGHH37Itm3bdA3s3by8vNi1axcHDx7khRdeICQkpMjt/PHHH0yZMoWZM2dy\n+PBh/vnPfzJy5Eiys7M5f/48a9euJTQ0lKNHj7J8+XJcXV2LjSk8PJzRo0cTGxuLm5sb77zzDgD+\n/v5ERETolktNTSU2NpaePXuWWM6zZ89y5MgR6tatq5tmb2/PsmXLOHr0KLNnz2b27NmcPHkSS0tL\nvvnmGxwdHYmLi+Po0aM4ODgA9z9yOXr0KDt27OC7777jq6++4ty5cwAsXLiQy5cvs2fPHlasWMGW\nLVvkDoJ47EjDL8T/S01NxdbWFhOTv78W/fr1o1WrVri7u3PkyJH71gkPDycoKAg3NzfMzc2ZMGEC\nx44d4/Lly7plhg0bhrW1Nc7OzgwaNEjXCD799NO0bdsWMzMznnrqKQYNGsSvv/6qV6wLFiygVatW\nfP3113Tu3JmAgAB+//133fzAwEAsLS0xNzdn9OjRnDp1qsi7CRs2bKBfv368+OKLaDQa/P39sbCw\n4D//+Q+mpqZkZ2dz5swZcnJycHFxoU6dOsXG9PLLL9OiRQvMzc0ZP348x44dQ6vV0rRpU6ytrXUd\nFbdt20br1q2xs7MrdlsBAQF4eHjg6+tLmzZtePXVV3XzvLy8qF27NgAtW7bE09OzyM+mOBqNhjFj\nxmBhYYGbmxtubm66Owrbt29n5MiRVK9eHScnJwYMGKD3doUwFvKMX4j/Z2trS1paGnl5ebrGf/36\n9UB+Y1PU8/qkpCQaN26s+79atWrY2tqi1WpxcXEBwNnZWTff1dVV9yggJSWFWbNmceTIETIzM8nN\nzcXW1lavWK2trZkwYQITJkwgLS2NOXPmMHr0aKKjo8nLy2P+/Pns2LGD1NRUNBoNGo2G1NRUqlev\nXmg7ly9fZvPmzaxevRrIvwuRk5NDUlISLVu2ZPLkySxcuJCzZ8/Srl073nvvPRwdHYuM6e5yVqtW\njRo1aqDVanFycsLPz48tW7bQtm1btmzZwqBBgx5YvrCwMOrUqcP27duZN28et27d0j1qiYqKYvHi\nxVy4cIG8vDxu377N888/r1e9FahZs6bu76pVq5KZmQnkf55OTk66ebVq1Xqo7QphDOSKX4j/5+Hh\ngbm5OZGRkXqv4+joWOjqPjMzk7S0tEKN4N234hMSEnQN52effYZGoyE8PJwjR44wd+7cUnUGtLW1\nJTg4mOTkZNLT09myZQt79+7l+++/58iRI+zZs6fY7To7OzNixAgOHz7M4cOH+fXXX4mLi6NHjx4A\n+Pr6snbtWvbs2QPAvHnzio0jMTFR9/fNmzdJT0/XNaJ+fn5ERkZy6tQpzp07R+fOnfUqW7du3XB3\nd2fRokUAZGVlMW7cON544w1iYmL49ddf6dChg658j3pb3sHBAa1Wq/u/qMcoQhg7afiF+H/W1taM\nHj2aDz/8kB07dpCZmYlSipMnT3L79u0i1+nZsyehoaGcOnWKrKws5s+fj7u7e6ErxeXLl3P9+nWu\nXLnCqlWrdI1qZmYmVlZWVK9eHa1Wy/Lly/WO9bPPPuPMmTPk5uZy48YN1q5dS926dalRowaZmZlY\nWFhgY2NDZmYm8+bNK7ZB7Nu3L+vXr+f48eO6mKKiosjMzOT8+fMcOnSIrKwszM3NdR0JixMVFcXR\no0fJyspiwYIFuLu76xp+JycnmjRpwsSJE+natSsWFhZ6l3XYsGH8+OOPXLt2jezsbLKzs3nqqacw\nMTEhKiqKX375Rbesvb09aWlpD+wk+aCTq+7du7N06VKuX7+OVqtlzZo1escphLGQhl+Iu7zxxhtM\nmjSJb7/9Fk9PTzw9Pfnggw8ICQnBw8PjvuXbtm3LuHHjGDt2LO3bt+fSpUvMnz9fN1+j0dCpUycC\nAwMJCAigY8eOBAUFATBmzBhOnDhBy5YtGTFiBD4+PoW2/aCr19u3bzNmzBhatWpF165duXLlCosX\nLwbyO9PVqlWLDh060LNnzyLjLtCkSRNmzpzJjBkzaN26NT4+PoSFhQH5V9fz5s2jbdu2tG/fnpSU\nlPs6Lt6tZ8+eLFq0iDZt2nDy5Ek+++yzQvP9/f05c+ZMibkG7i13w4YNad26Nd9++y1WVlZMnjyZ\ncePG0bp1a7Zt20anTp10y9avXx9fX186depE69atixzieO/27/5/9OjRODk50alTJ4KDg+nWrdtD\nnaQIYQw0qoR7i4mJiUycOJGrV69iampK3759GTBgAIsWLeLHH3/E3t4egPHjx9OhQwcgP1PWTz/9\nhKmpKVOmTKFdu3YAREdH8/HHH6OUonfv3gwbNqyciyeEqCyOHDnCxIkTdY8NjMG6devYtm0bq1at\nMnQoQpSZEjv3mZqa8v7779OoUSNu3rxJYGAg//jHPwAYMmQIQ4YMKbT82bNn+fnnn9m2bRuJiYkM\nGTKEnTt3opRi5syZrFy5EkdHR4KCgujUqRMNGjQon5IJISqN7OxsfvjhB72S8BhScnIyFy9exMPD\ng/Pnz/Pdd99Jz37x2Cmx4XdwcNCNhbWysqJBgwa6XslF3SyIjIykR48emJmZUbt2berWrcvx48dR\nSlG3bl3dOGBfX18iIyOl4RfiMXf27FmCgoJo1KgRAwcONHQ4D5Sdnc306dO5dOkSNjY2+Pr6FhpK\nKMTj4KGG8126dIlTp07RtGlTfvvtN9asWcPmzZtp0qQJkyZNwtraGq1WS7NmzXTrODk5odVqUUoV\n6vDk5ORUaNyxEOLx1KBBA+Li4gwdhl5cXFzYunWrocMQolzp3bnv5s2bvPXWW0yePBkrKytee+01\ndu/ezebNm6lZsyaffPIJUPRdAI1GU245y4UQQgihP70a/pycHN566y38/Px042/t7Ox0vWH79u2r\nGw7k7OxcaOxrYmIijo6OODs7FxrvrNVqi00EUkBOFoQQQoiypdet/smTJ/Pss88WyraVnJyse/a/\na9cuGjZsCOS/QzwkJITBgwej1WqJj4+nadOm5OXlER8fT0JCAg4ODkRERBQa9lQUjUZDcnJGactW\nqeXm5nL9ehIpKfq9lKWyqFevPqampnot6+Bg/dh+fiDlM2aPc9lAymfsHBysy3X7JTb8v/32G1u3\nbqVhw4b4+/uj0WgYP3484eHhnDx5EhMTE1xdXZkxYwYAzz77LN27d8fX1xczMzOmT5+ORqPB1NSU\nqVOnEhwcjFKKoKCgJ7pj34UL5+jzn41YuDoYOhS9ZSUks4EgGjR4ztChCCGEKKUSx/Eb2uN6Vnf2\n7Bn6X43Cop6LoUPRW9aFy6yp6aV3w/8knJVL+YzT41w2kPIZu/K+4i/xGX9iYiIDBw6kR48e9OrV\nS/cO7fT0dIKDg/Hx8WHo0KFkZPz9IcyaNYuuXbvi5+fHyZMnddPDwsLw8fHBx8eHTZs2lUNxhBBC\nCPEgJTb8BQl8tm3bxvr161mzZg1nz55l2bJltG3blh07dtCmTRuWLl0K5Ofrjo+PZ+fOncyYMYPp\n06cD+ScKX331FRs3bmTDhg0sWrSo0MmCEEIIIcpfiQ2/g4MDjRo1Av5O4KPVaomMjCQgIADIf3d2\nwRvNIiMjdbm43d3dycjI4OrVqxw4cABPT0+sra2xsbHB09OT/fv3l1e5hBBCCFGEh3pJT0ECH3d3\nd65du6Z7p7WDgwMpKSlA/vus734lqbOzM1qtFq1We18Cn7tffymEEEKI8lfqBD7FvTns3r6CSqli\nE/g86ruzhRBCCPFw9BrHX1QCH3t7e65evUrNmjVJTk7Gzs4OyL+ST0xM1K17dwKf2NjYQtNfeuml\nEvdd3r0bDSU1tTpcNXQUD8/OrvpDfSaP6+dXQMpnvB7nsoGUTxSv1Al8vL29CQ0NZdiwYYSFhene\nid2pUyfWrFlDjx49OHbsGDY2NtSsWZN27drx+eefk5GRQV5eHgcPHiQkJKTEfT+uQzaMLXFPgZSU\nG3p/Jk/CkBspn3F6nMsGUj5jV2kT+Lz55pu8/fbb/PTTT7i4uLBgwQIAvLy8iIqKokuXLlhaWjJ7\n9mwAatSowahRo+jduzcajYYxY8ZgY2NTroUTQgghRGElNvwtWrQoNBb/bitXrixy+rRp04qcHhgY\nSGBgoP7RCSGEEKJMldi5b/LkyfzjH/+gV69eummLFi2iQ4cOBAQEEBAQQHR0tG7e0qVL6dq1K927\nd+fAgQO66dHR0XTr1g0fHx+WLVtWxsUQQgghhD5KvOIPDAxkwIABTJw4sdD0IUOGMGTIkELTzp49\ny88//8y2bdtITExkyJAh7Ny5E6UUM2fOZOXKlTg6OhIUFESnTp2e6Fz9QgghhCGU2PC3bNmShISE\n+6YXNTwvMjKSHj16YGZmRu3atalbty7Hjx9HKUXdunVxdXUFwNfXl8jISGn4hRBCiAr2UAl87rZm\nzRr8/PyYMmWKLvVucUl6ipqelJT0CGELIYQQojT0Gs53r9dee43Ro0ej0Wj4/PPP+eSTT/joo4+K\nTdKTl5dX6gAf17GaMo7/8SDlM16Pc9lAyieKV6qGvyBZD0Dfvn0ZMWIEkJ+e98qVK7p5Bcl7lFJc\nvnxZN12r1eLo6KjXvh7XsZoyjt/4SfmMU25uLtevJxndd7BevfqYmprqtezj+tnBk/P5lSe9Gv57\nr+STk5NxcHAAYNeuXTRs2BDIT+oTEhLC4MGD0Wq1xMfH07RpU/Ly8oiPjychIQEHBwciIiKYP39+\nGRdFCCFKduHCOb6Lex871+qGDkVvKQk3GMJsGjR4ztChGNyFC+fQ7n6Vek5VDB2K3i5o70DndZXm\n8yux4X/nnXeIjY0lLS2Nl19+mbFjxxIbG8vJkycxMTHB1dWVGTNmAPDss8/SvXt3fH19MTMzY/r0\n6Wg0GkxNTZk6dSrBwcEopQgKCpKOfUIIg7FzrY5j3RqGDkOUUj2nKjxX29LQYTyUW4YO4C4lNvzz\n5s27b1rv3r2LXX748OEMHz78vukdOnSgQ4cODxmeEEIIIcpSqRL4pKenExwcjI+PD0OHDtX16geY\nNWsWXbt2xc/Pr1DGv7CwMHx8fPDx8WHTpk1lXAwhhBBC6KPEhj8wMJDly5cXmrZs2TLatm3Ljh07\naNOmDUuXLgUgKiqK+Ph4du7cyYwZM5g+fTqQf6Lw1VdfsXHjRjZs2MCiRYsKnSwIIYQQomKU2PC3\nbNnyvpfpREZGEhAQAEBAQACRkZG66f7+/gC4u7uTkZHB1atXOXDgAJ6enlhbW2NjY4Onpyf79+8v\n67IIIYQQogSlSuCTkpJCzZo1AXBwcCAlJQWApKQknJ2ddcs5OzsXm8BHq9U+StxCCCGEKIVSjeMv\nzr3D/pRSaDSaYhP76ONxTdIgCXweD1I+45OaWh2MMHGofPfypaZWr1Q95PX1sJ9feSpVw29vb8/V\nq1epWbMmycnJuoQ+Tk5OJCYm6pYrSODj7OxMbGxsoekvvfSSXvt6XJNQGFvyiQKSwOdvUj7jJN89\n45aScgPjGsiX72E/v/Kk163+e6/Yvb29CQ0NBfJ763fq1AmATp066XrsHzt2DBsbG2rWrEm7du04\nePAgGRkZpKenc/DgQdq1a1eW5RBCCCGEHkqVwGfYsGGMGzeOn376CRcXFxYsWACAl5cXUVFRdOnS\nBUtLS2bPng1AjRo1GDVqFL1790aj0TBmzJj7OgwKIYQQovyVeMU/b948Dhw4wIkTJ9i3bx+9e/em\nRo0arFy5kuzsbK5du8bAgQMJCgoCYNy4cdSpU4c7d+4wf/583bC9wMBAOnTogFKK7777rtAYfyGE\nEEJUjFK/lhfyO+itWrWKTZs2sXHjRuDhx/gLIYQQouI8Uq9+pdR9r9yNjIxk9erVQP4Y/4EDBxIS\nElLsGP+CYYHi8ZKbm8vp06eNriPVw7xBSwghjNEjNfwajYahQ4ei0Wjo168fffr04dq1a3qN8S8Y\nyy8N/+PpwoVz/Md/Cq7mlWP4ij4SsjNg00eV5g1aQghRHh6p4V+/fr2ucQ8ODuaZZ54pdnz+o4zl\nF8bJ1dyaeua2hg5DCCHEXR6p4XdwcADAzs6Ozp07c/z48Yce41/yPoznivFhPO4JfFJTqxtj8SRJ\nyj0ex/JJAh/jJgl8Hl2pG/5bt26Rl5eHlZUVmZmZHDhwgDFjxujG+A8bNuy+Mf5r1qySNWxMAAAI\nq0lEQVShR48ehcb4l+RxTkJhjPRNQvG4lw8e7yQp8PiWT45N4yYJfB5dqRv+q1evMmbMGDQaDbm5\nufTq1Yt27drRpEkT3n77bb3H+AshhBCi4pS64a9Tpw6bN2++b7qtrS0rV64scp1p06aVdndCCCGE\nKAOPNI6/NKKjo+nWrRs+Pj4sW7asoncvhBBCPNEqtOHPy8tj5syZLF++nPDwcCIiIjh79mxFhiCE\nEEI80Sq04T9+/Dh169bF1dUVc3NzfH19iYyMrMgQhBBCiCdahTb8Wq2WWrVq6f53cnIiKckIx9UI\nIYQQRuqRxvE/rKKS+DyIMaZ8fZisb1kJyeUYSdnLSkiGh0i0mJBtXMOJErIzHqZ4Rnd8PmxGwse5\nfCkJxlMu+P94S057omNsnx083Od3QXunHCMpexe0d3B60dBR/E2jHrY1fgTHjh1j4cKFLF++HEDX\nuW/YsGEVFYIQQgjxRKvQW/0vvvgi8fHxJCQkkJWVRUREhC7BjxBCCCHKX4Xe6jc1NWXq1KkEBwej\nlCIoKIgGDRpUZAhCCCHEE61Cb/ULIYQQwrAqPIGPEEIIIQxHGn4hhBDiCSINvxBCCPEEqdDOfQ+y\na9cuxo4dy88//8wzzzwDwJkzZ5g1axaJiYkA+Pn5MWrUKEOGWSYaNWqEm5sbSik0Gg09evTgzTff\nNHRYD1RczGvWrOH777/n4sWLxMTEYGtrq1tn1qxZREdHY2lpySeffEKjRo0MWILSK67sOTk5fPHF\nF+zatQsrKyssLCwYPXo07du3N3TIevHw8CAuLg6AqKgoPv74Y77//nucnZ3vW/b48eP07duXlStX\n8tJLL1V0qGXCzc0NPz8/5syZA0Bubi6enp40a9aMJUuWGDi60is4PnNycqhduzZz586levXqJCQk\n0KNHD+rXr092djYtW7bkgw8+MHS4pZaWlsbgwYPRaDQkJydjYmKCnZ0dGo2GDRs2YGZWaZqzyk9V\nEuPGjVP9+/dXCxcuVEopdfv2bdW5c2d18OBB3f9vvPGGWr16tSHDLBMeHh6GDuGhFRfzyZMnVUJC\ngvL29lapqam66fv27VNvvvmmUkqpY8eOqT59+ty3bmhoqO7zrsyKK/vcuXPVpEmTVHZ2tlJKqWvX\nrqmff/65IkN7JAXlOnjwoOrSpYu6ePFiscvOnj1b9e/fX/3rX/+qqPDKXLNmzVRAQIC6c+eOUkqp\nqKgo5e/vr4YPH27gyB7N3cfne++9p5YsWaKUUurSpUuqZ8+eSimlcnJyVP/+/dWuXbsMEmNZW7hw\noVqxYoWhwzBaleJWf2ZmJnFxcXz00UdEREQAsHXrVlq0aEHbtm0BqFKlCtOmTeObb74xZKhlQhnh\nQIriYnZzc8PFxeW++ZGRkfj7+wPg7u5ORkYGV69eLfc4y0NRZb99+zYbNmxg6tSpuisNOzs7unXr\nVtHhlZpSiiNHjjBt2jSWLVtG7dq1i11u586dfPLJJ0RFRZGTk1PBkZad9u3bs2/fPgAiIiLw9fU1\nbEBlrFmzZmi12vumm5qa4uHhwf/+9z8DRCUqm0rR8O/evZv27dtTt25dbG1t+e9//8tff/1F48aN\nCy1Xp04dbt26xc2bNw0Uadm4c+cOAQEB+Pv7ExAQwM8//2zokEr0sDEnJSUVumXs5ORU5A+SMSiq\n7P/73/9wdXWlWrVqhg6v1LKzsxk9ejRfffUV9erVK3a5X3/9lfr161O7dm1atGjB/v37Ky7IMqTR\naPD19SU8PJysrCz+/PNP3N3dDR3WIys4Mc3NzSUmJgZvb+/7lrl16xYxMTE0bNiwosMTlVCleCgS\nERHB4MGDAejRowfh4eFA/hf1Xur/n7Mas6pVqxIWFmboMB7Kw8Zc1FWyRqMp9JwuLS2N7Oxsdu/e\njUaj4dNPP+W55x4un3xFKKrsf/75p4GiKTtmZmZ4eHiwYcMGpkyZUuxy4eHhuivjgu9nx44dKyrM\nMtWwYUMSEhIIDw/Hy8vLKO++3avgxDQxMZFnn30WT09P3bz4+HgCAgLQaDR06tTJaPqfiPJl8IY/\nLS2NQ4cOcebMGTQaDXl5eWg0GkaOHMmRI0cKLXvx4kWsrKyM+irrcXXvyZiTk5OuUyZAYmIijo6O\n2NrasmnTJgDCwsJISEhgzJgxFRprWahbty6XL18mMzPTaI9HExMTFixYwKBBg1i6dCnDhw8nOzub\nPn36oNFo6NKlC8OGDWP37t3s37+fRYsWkZeXR0ZGBrdv36Zq1aqGLkKpeHt78+mnn7Jq1SpSU1MN\nHc4jKzgxvXPnDkOHDmX16tUMGDAAgKefftroLjJE+TP4rf7t27fj7+/Pnj17iIyMZO/evbi6uvLM\nM89w9OhRYmJigPxnqh999BFvvPGGgSN+dMZ4lVFSzEqpQst06tRJ18AfO3YMGxsbatZ8mHffVR5F\nlb1q1aoEBQUxa9YssrOzAUhJSWH79u0VHV6pKaWoUqUKS5cuJTw8nI0bN2Jubs6mTZsICwtj1KhR\nHDhwgKZNm7J3717d97Njx45ERkYaOvyHVvA5BgUFMXr06Ep5d6k0CspVpUoVpkyZwooVK8jNzTVw\nVKIyM/gV/7Zt2+57O5+Pjw8REREsXryYGTNm8OGHH6KUws/Pj/79+xso0rKTlZVFQECA7rFF+/bt\nmTBhgqHDeqDiYl61ahXffvst165dw8/PDy8vL2bOnImXlxdRUVF06dIFS0tLZs+ebegilFpxZR83\nbhxffPEFvr6+VKlShWrVqvHWW28ZOly9FdylqVGjBt988w2vv/46dnZ2hZ4RR0RE0Llz50Lrde3a\nldDQUKPrGFdQXicnJ90V8ePg7rttBUP7IiIiaNGihQGjEpWZ5OoXQgghniAGv9UvhBBCiIojDb8Q\nQgjxBJGGXwghhHiCSMMvhBBCPEGk4RdCCCGeINLwCyGEEE8QafiFEEKIJ4g0/EIIIcQT5P8Ai78Q\nZrTqctMAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7ffa03b0c590>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure()\n", "\n", "ax1 = fig.add_subplot(411)\n", "\n", "idx = 0\n", "hcat1 = sorted(data.Platform.unique())\n", "for cat_val in hcat1:\n", " ax1.bar(idx,data[data['Platform']==cat_val].Global_Sales.sum(), color=np.random.rand(3,1))\n", " idx = idx + 1\n", "\n", "ax2 = fig.add_subplot(412)\n", "idx = 0\n", "hcat2 = sorted(data.Year_of_Release.unique())\n", "for cat_val in hcat2: \n", " ax2.bar(idx,data[data['Year_of_Release']==cat_val].Global_Sales.sum(), color=np.random.rand(3,1))\n", " idx = idx + 1\n", " \n", "ax3 = fig.add_subplot(413)\n", "idx = 0\n", "hcat3 = sorted(data.Genre.unique())\n", "for cat_val in hcat3: \n", " ax3.bar(idx,data[data['Genre']==cat_val].Global_Sales.sum(), color=np.random.rand(3,1))\n", " idx = idx + 1\n", " \n", "ax4 = fig.add_subplot(414)\n", "idx = 0\n", "hcat4 = sorted(data['Rating'].dropna().unique())\n", "for cat_val in hcat4: \n", " ax4.bar(idx,data[data['Rating']==cat_val].Global_Sales.sum(), color=np.random.rand(3,1))\n", " idx = idx + 1\n", " \n", "ax1.set_title('Global Sales by Platform')\n", "ax2.set_title('Global Sales by Year')\n", "ax3.set_title('Global Sales by Genre')\n", "ax4.set_title('Global Sales by Rating')\n", "ax1.set_xticklabels(hcat1)\n", "ax2.set_xticklabels(hcat2)\n", "ax3.set_xticklabels(hcat3)\n", "ax4.set_xticklabels(hcat4) \n", "fig.subplots_adjust(hspace=1)\n", " " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#data['User_Score'].dropna()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
DCPROGS/CVFIT
cvfit_DC_LOB_example_p206.ipynb
2
4974
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "from pylab import*\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from cvfit import fitting\n", "from cvfit.fitting import SingleFitSession\n", "from cvfit.fitting import MultipleFitSession\n", "from cvfit.fitting import simplex\n", "from cvfit import data\n", "\n", "from cvfit.errors import residuals\n", "from cvfit.errors import SSD\n", "from cvfit.errors import SSDlik" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "X\tY\ts(Y)\tweight\n", "2.5\t5.576\t0\t1\n", "5\t7.282\t0\t1\n", "10\t12.521\t0\t1\n", "20\t16.138\t0\t1\n", "40\t23.219\t0\t1\n", "\n" ] } ], "source": [ "dataset = data.XYDataSet()\n", "X = [2.5, 5.0, 10.0, 20.0, 40.0]\n", "Y = [5.576, 7.282, 12.521, 16.138, 23.219]\n", "S = None #[1.2003]*5\n", "dataset.from_columns(X, Y, S)\n", "print(dataset)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "from cvfit.equations import Hill\n", "eq = Hill('Langmuir')\n", "#fs = SingleFitSession(dataset, eq)\n", "eq.propose_guesses(dataset)\n", "eq.guess = np.array([0.0, 31.0, 15.0, 1.0])\n", "eq.pars = eq.guess.copy()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "coeffs, Smin = simplex(SSD, eq.theta, eq, dataset.X, dataset.Y, dataset.W)\n", "eq.theta = coeffs\n", "kfit = len(np.nonzero(np.invert(eq.fixed))[0])\n", "ndf = dataset.size() - kfit\n", "var = Smin / ndf\n", "Sres = sqrt(var)\n", "Lmax = -SSDlik(eq.theta, eq, dataset)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of point fitted = 5\n", "\n", "Number of parameters estimated = 2\n", "\n", "Degrees of freedom = 3\n", "\n", "Residual error SD = 1.200 (variance = 1.441)\n", "\n", "Minimum SSD = 4.322; \n", "Max log-likelihood = -6.730\n" ] } ], "source": [ "print('Number of point fitted = {0:d}'.format(dataset.size()))\n", "print('\\nNumber of parameters estimated = {0:d}'.format(kfit))\n", "print('\\nDegrees of freedom = {0:d}'.format(ndf))\n", "print('\\nResidual error SD = {0:.3f} (variance = {1:.3f})'.format(Sres, var))\n", "print('\\nMinimum SSD = {0:.3f}; \\nMax log-likelihood = {1:.3f}'.format(Smin, Lmax))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of point fitted = 5\n", "Number of parameters estimated = 2\n", "Degrees of freedom = 3\n", "Residual error SD = 1.247 (variance = 1.555)\n", "Parameter 1: Ymin \t= 0 \t (fixed)\n", "Parameter 2: Ymax \t= 30.1201 \t Approx SD = 3.124\t CV = 10.4\n", "Parameter 3: EC50 \t= 14.1212 \t Approx SD = 3.4052\t CV = 24.1\n", "Minimum SSD = 4.665; \n", "Max log-likelihood = -6.922\n", "Correlation matrix = [!!!! PRINTOUT OF CORRELATION MATRIX NOT IMPLEMENTED YET. SORRY.\n", "\n", "WARNING: SOME PARAMETERS ARE STRONGLY CORRELATED (coeff > 0.9); try different guesses\n", "\n", "LIKELIHOOD INTERVALS\n", "5.06-unit Likelihood Intervals (equivalent SD for Gaussian- 3.18)\n", "Lmax= -6.92151; Lcrit= -11.9841\n", "Parameter 1: Ymin\t= 0\t (fixed)\n", "Parameter 2: Ymax\t= 30.1201\t LOWER = 20.2766\t UPPER = 69.3388\n", "Parameter 3: EC50\t= 14.1212\t LOWER = 5.02122\t UPPER = 67.4515\n" ] } ], "source": [ "fs.fit()\n", "fs.calculate_errors()\n", "print(fs.string_estimates())\n", "print(fs.string_liklimits())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-2.0
jakeret/abcpmc
notebooks/toy_model.ipynb
1
744751
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 1D gaussian toy model" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "\n", "%pylab inline\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import seaborn as sns\n", "sns.set_style(\"whitegrid\")\n", "sns.set_context(\"talk\")\n", "rc('axes', labelsize=20, titlesize=20)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import triangle\n", "from clerk.stats.distances import mahalanobis\n", "import abcpmc \n", "\n", "#np.random.seed(987654321)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Data" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "mean = 1\n", "sigma = 1\n", "n = 10000\n", "y = np.random.normal(mean, sigma, n)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x1175fccd0>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAncAAAG4CAYAAAAnnMGeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl0XOd95vlvbagCCvsOcCchvRRJLZRkWbG8hF4U2Umr\n", "M46TjNNxnHROMvaxTmc6ne6TXtwz6e7EczJJpo/TbUU+cduJrU4nnU4cyVEk2ZasfRcpcX1JcAVB\n", "bAWgAFQBVaht/rgABYIgqrDeWp7POTgi7r117w98VYWH973v+3pyuRwiIiIiUh68bhcgIiIiIutH\n", "4U5ERESkjCjciYiIiJQRhTsRERGRMqJwJyIiIlJGFO5EREREyog/3wHGmIPAI8A+4AzwBWvta8sc\n", "/zHgaaDOWjs9t+23gN8DkgsOfcBa+9IaahcRERGRRZYNd8aYEPA48B+BPwV+CXjMGLPbWhtf4vgm\n", "4L8tcao7gN+21v7R2ksWERERkRvJ1y17CMhYax+x1mastd8EhoBP3eD4h4G/ADyLth8E3llTpSIi\n", "IiKSV75wtxc4sWibndt+DWPMPwHqcQLewu01gAF+wxgzYIw5YYz5ldWXLCIiIiI3ki/chYHpRdum\n", "gZqFG4wx24H/APxTrr9r1w68AHwN2Ab8OvBHxpgHVlmziIiIiNxAvgEVcaB60bYaYGr+G2OMF/gz\n", "4N9aaweNMbvmdnkArLUXcLp3571ojPk28NPAk6svXUREREQWyxfuTgIPLdpmgEcXfL8VeD9whzHm\n", "Yd67G9hnjPkpIAH8hLX2KwteUw3ECinwrbfeyhVynIiIiEi5u+uuuxb3kF4nX7h7BggaYx7CmQ7l\n", "czjdrE/NH2CtvcSCblpjzA7gPLDVWjttjLkJ+LIx5jTwtzh38X4e+HChP0hPTw/BYLDQw6WIJZNJ\n", "ent71aZlQu1ZXtSe5UXtWV7m27MQy4Y7a+2sMeaTwJ/gzFN3BnjQWjszd5cOa+0XF73MA+QWnOOM\n", "MeYzwFdwum8vAZ+31h4p8OchGAwSCoUKPVxKgNq0vKg9y4vas7yoPStP3kmMrbVHgfuW2L441M1v\n", "vwD4Fm17AnhidSWKiIiISKG0/JiIiIhIGVG4ExERESkjCnciIiIiZUThTkRERKSMKNyJiIiIlBGF\n", "OxEREZEyonAnIiIiUkYU7kRERETKiMKdiIiISBlRuBMREREpIwp3IiIiImVE4U5ERESkjCjciYiI\n", "iJQRhTsRERGRMqJwJyIiIlJGFO5EREREyojCnYiIiEgZUbgTERERKSMKdyIiIiJlROFOREREpIwo\n", "3ImIiIiUEYU7ERERkTKicCciIiJSRvxuFyAispnS6TTRaHTZYxobG/H79fEoIqVJn14iUlGi0SiP\n", "PXuMcG39kvvjsUkePHSA1tbWTa5MRGR9KNyJSMUJ19bT0NjsdhkiIhtCz9yJiIiIlBGFOxEREZEy\n", "onAnIiIiUkYU7kRERETKiMKdiIiISBlRuBMREREpIwp3IiIiImVE4U5ERESkjCjciYiIiJSRvCtU\n", "GGMOAo8A+4AzwBesta8tc/zHgKeBOmvt9GrOISIiIiKrs+ydO2NMCHgc+AbQAHwVeMwYE77B8U3A\n", "f1vLOURERERk9fJ1yx4CMtbaR6y1GWvtN4Eh4FM3OP5h4C8AzxrOISIiIiKrlC/c7QVOLNpm57Zf\n", "wxjzT4B6nIC3qnOIiIiIyNrke+YuDEwv2jYN1CzcYIzZDvwH4D4gtJpzLCeZTBZ6qBS5+bZUm5aH\n", "UmzPRCJBOpUilUotuT+dSpFIJEgkEis6bzqdJhqN3nB/Y2Mjfn/ex5xdVYrtKTem9iwvK2nHfJ80\n", "caB60bYaYGr+G2OMF/gz4N9aaweNMbvmds13zeY9Rz69vb2FHiolQm1aXkqpPaPRKINDMWIzS4e3\n", "2GQUa2MMDQ2t+LwvHxukpqb2un3T0zE+cKCTxsbGVdW82UqpPSU/tWflyRfuTgIPLdpmgEcXfL8V\n", "eD9whzHmYd7r6u0zxvxUgedYVk9PD8FgsNDDpYglk0l6e3vVpmWiFNszEokwGO+nvrF5yf2T1SGM\n", "2UJra+sqzlu75Hkno2OrOudmK8X2lBtTe5aX+fYsRL5w9wwQNMY8hDOVyeeAduCp+QOstZdY0MVq\n", "jNkBnAe2WmunjTFV+c6RTzAYJBRa3NsrpUxtWl5KqT1DoRD+QIBAILDkfn8gQCgUWvHPs9x5V3tO\n", "t5RSe0p+as/Ks+yACmvtLPBJ4LPAKPAl4EFr7Ywx5uG5O3WLeYBcIedYnx9BREREROblfbrXWnsU\n", "Z6DE4u1fvMHxFwBfIecQESlG04k0vZejjE0k2L2lgdbGxY8Ni4gUr+IeuiUiskmGx6d5+d0BRqLT\n", "fOcHfVe3ezxw+01tfOx927n3QCehKn1sikhx06eUiFS8E+dHef5wP5ls7rp9uRwcOT3CkdMjVAd9\n", "/MyhHj7zMYPP61niTCIi7lO4E5GKlc5keeFIPyfOjwFQV1PFnnYPAW+abVs6qPJ76I8kODcQ58po\n", "gplkhu88aTlyJsJvfvYu2prUXSsixUfhTkQqUiKZ5vEXzzE87ozt2t5Rxyfev52RgYv4/GG6OtoA\n", "aGmB2wzEEyleePsiZ6/EOXZ2lH/2h8/y0M/dwX23dbv5Y4iIXCff8mMiImUnl8vxzFt9V4Pd3bd0\n", "8JMf3LXs83ThUIAf29fMl/43Q211gNhMiv/nz97gW987Ti53fXeuiIhbFO5EpOKcvRLn/JVJAD5y\n", "cAvv39+J11PYM3R3723lq//iEAf2tADwv57t5U8fO6aAJyJFQ+FORCrK0NgMb5521oDd2VXP/t0t\n", "Kz5HW1M1/+n/+AAfvmMLAI89f45Hv39eAU9EioLCnYhUjEwmy9cfP006k6M66Oejd2/DU+Adu8V8\n", "Pi+/+Qt38uN3bgXgh28N8PqpcQU8EXGdwp2IVIy//MFpzl2JAfDRu7dRHVzbmDKfz8v/+dk7+dj7\n", "tgFwpj/Oy+8OrLlOEZG1ULgTkYpw9nKUv/zBaQBu3lrLzq76dTmvz+vhn/3cQT50WzsAR86McKZv\n", "fF3OLSKyGgp3IlIRvvW9E2SzOTqaQtx5U8O6ntvr9fBLD+yhvTEIwDNvXmZ0Qstni4g7FO5EpOwd\n", "tsMcOTMCwM8e2onft/4ffX6flw/d2kI45CedyfIPr1wgOZtZ9+uIiOSjcCciZS2bzfGtvz8BgNnR\n", "xJ03N2/YtaqDPh74sZ14PR4mYrP84I1L5HI5Mpk0o6OjRCKRG36l0+kNq0tEKotWqBCRspNOp4lG\n", "nelOXj0+wrn+CQA+/aEtjI2Nkc1mN+zanS1hPnRHN88d7ufCwCSHT4/QFpri6VcitHfEl3xNPDbJ\n", "g4cO0NraumF1iUjlULgTkbITjUZ57NljhGrqePwVZ/TqltYQfYMTvHGlj7qGZpo28Pr7d7cwODaN\n", "vTjOGycG+cj+aupr62ho3Li7hiIi89QtKyJlKVxbT99olthMBg/woYPbaWhspiZcu+HX9ng8fPD2\n", "bqqDftKZHO9eSGr+OxHZNAp3IlKWZtNZ3jw5BIDZ2URLQ/WmXj9U5edDd3QDMDKZoX90dlOvLyKV\n", "S+FORMqSvTRFYjaDz+vhnn2drtTQs7WR7R11ALx7YZrErAZNiMjGU7gTkbIznUhz8tIUAAd2t1BX\n", "U+VKHR6Ph4/cuQWfF5KpHK8c1eoVIrLxFO5EpOw8/cYVZtM5/D4PB/e2u1pLfTjIzd1OuDxxfoyB\n", "yNIjZkVE1otGy4pIWYlNz/L0G1cAOLC7lXAosG7nnp+vbimjo6M3nGJlT0eA/rEMk9MZXj56hU//\n", "eA8ej2fd6hIRWUjhTkTKynefO8tM0nnW7qBpW9dzx2M3nq9ucJkpVrxeDwe2V/PyqRiDo9NcHJxa\n", "t7VtRUQWU7gTkbIxGZ/lsRfOAWC21VKzjnft5oVvMF/d5MT4sq9rbwzQ3RrmSiTOq8cG2NFZp7t3\n", "IrIh9MydiJSN7z7Xy0wyTTDgZd+OOrfLuYbH4+HeA10AjE4k6L0cdbkiESlXCnciUhYmYkm+96Jz\n", "1+7jd3cTqvK5XNH1ulrD7Oh0QudrxwfJZDWxsYisP4U7ESkLf/WD08wkM1QH/TxwT7fb5dzQ/N27\n", "idgspy6MuVyNiJQjhTsRKXlDY9M88fIFAD59qIfamvV/1m69tDZWc9O2RgDeODlEOrP0CFsRkdVS\n", "uBORkvfokydJZ7I01gX5xx/e43Y5ed2zrxOPB+IzKY6fW3pqFRGR1VK4E5GSdv7KBD96+zIA//vH\n", "b6Y6WPyTADTWBdm7wxlxe+T0CFk9eyci60jhTkRK2p8/cZJcDrpawtx/7063yynY/Bx8sZkU5wen\n", "Xa5GRMqJwp2IlKzj50Z58+QQAL/4yb0E/KXzkdZUF2LPlgYATlycJJvT3TsRWR+l80koIrJALpfj\n", "W987DsDuLQ188PYtLle0cncaZ93biXiaI2c0clZE1ofCnYiUpJfevcKpi86qEJ//yX14vaW32kN7\n", "cw1b22sB+PtXLpPT3TsRWQcKdyJScpKpDN983Llrd6dp5+DN67uG7Gaav3t37kqMY2c1clZE1i7v\n", "sDJjzEHgEWAfcAb4grX2tUXHeIDfAX4VqAPeBB6y1p6Y2/9bwO8ByQUve8Ba+9J6/BAiUlm++1wv\n", "w+MzeL0efvXB/SW9RuvW9lqa6wOMTab462fOcGtPq9sliUiJW/bOnTEmBDwOfANoAL4KPGaMCS86\n", "9FeBTwN3W2vrgReAby/Yfwfw29baugVfCnYismKjEzP89Q/PAPCpD+xke2e9yxWtjcfj4cBO52d4\n", "2w5zVmvOisga5euWPQRkrLWPWGsz1tpvAkPApxYeZK39U+B91toBY0wd0ASMLDjkIPDOOtYtIhUg\n", "nU4TiUSu+fr63xwmMZshHPLzcx/rcbvEdbGtrZrO5hAAj71wzuVqRKTU5Qt3e4ETi7bZue3XbrR2\n", "xhjzy0AU+EXg3wEYY2oAA/yGMWbAGHPCGPMray1cRMpfNBrlsWeP8cM3LvHDNy7xlz84w8vHnH83\n", "7un0k5ktj/nhPB4PH7/bWQ/3+cP9jE8lXK5IREpZvmfuwsDiT89poOYGx/934DvAbwBPGWN6gEac\n", "btqvAT8A7gUeN8YMWGufLKTIZDKZ/yApCfNtqTYtDxvdnolEgmCwmppwHblcjsNvRQBoqgty05Yw\n", "V65cIZG4PgiNjY0xOztLKpW6bl8mnSab8yy5L9/+jdgHkE6leP+BFv7meT/TiTTfe76Xn3XhrqTe\n", "n+VF7VleVtKO+cJdHKhetK0GmFrqYGvt7Nwf/9AY8xDwEWvtd3G6d+e9aIz5NvDTQEHhrre3t5DD\n", "pISoTcvLRrVnNBplcChGbCbBlbFZhsZnALipy8+lC+c5czpFc0vLda8bGR6gtq6J6cT1H4bDw8N4\n", "/VXg9S15zeX2b8Q+gNhklIvhGLfvDPHKqRh///J5bm5L4Pe5M1BE78/yovasPPnC3UngoUXbDPDo\n", "NRuM+R3AZ62d74r1AFVA1BhzJ/AT1tqvLHhJNRArtMienh6CwWChh0sRSyaT9Pb2qk3LxEa3ZyQS\n", "YTDeT7i+ieePnwVga3uYO27ZQf+lDB5fgO4t2657Xbg65Ozr6r5uXy6VuOG+fPs3Yh/AZHUIY7bQ\n", "c0sNr9oXiCeyRDPNfOS2pY/fKHp/lhe1Z3mZb89C5At3zwDBubtwjwCfA9qBpxYd9wrwqDHmL3Ge\n", "yfs3wATwMrAD+LIx5jTwtzh38X4e+HBBFQLBYJBQKFTo4VIC1KblZaPaMxQK4Q8EON03yWTc6Ri4\n", "77YtBAIBfH4/Pn+AQCBw3etWu28tr13LNf2BAKFQiNbWZt6/v5NXjw3y5KuXuP/eXa5M86L3Z3lR\n", "e1aeZQdUzHWzfhL4LDAKfAl4cG7wxMPGmIfnjnsS+NfAd4EB4E6ceexmrbVngM8A/x6YBP4Y+Ly1\n", "9sgG/UwiUkZm01neODEIwN4dTbQ2Ln5SpLz8ow/tBqD38gQnL2hJMhFZubyTGFtrjwL3LbH9i4u+\n", "/zrw9Ruc4wngiVXWKCIV7MSFKRKzGXxeD/fs73S7nA13655WdnbVc2FgksdeOMfN2xqIRm88911j\n", "YyN+f96PchGpIPpEEJGiNT6V5OQlZ/zW7Te1UldT5XJFG8/j8fCPPrSbP/6rI7xydICzl7p56a0z\n", "hGuvn6w5HpvkwUMHaG3VqhYi8h6FOxEpWt99oY9MNkewysedpsPtcjbNR+7cyre+d4Kp6VleeGeI\n", "utp6Ghqb3S5LREpEvkmMRUQ21FKrUEQiEU6dvcyL7w4B8L5bOghWLT2NSDkKBnx89G5nFPAL7w6R\n", "zeVcrkhESonu3ImIq+ZXoVjc7fjW6SjZHFT5Pezfff1cduXu/vdv5++eP8vY5CyDowmamtyuSERK\n", "he7ciYjrwnPdjvNf1eEGzl6JA7C7M4TfV3kfVds767llp9MVe6Y/7nI1IlJKKu8TU0SK3skLY8ym\n", "s3g9sLuzcidfvf/92wG4HJlhOrH00mUiIosp3IlIUcnmcrxzxllDdmuLn2Cgcj+mPnj7FkJVPnI5\n", "OHVx3O1yRKREVO6npogUpfP9E0xNO6tR7O5cekWHShEK+rl3vzPNycnzY+Q0sEJECqABFSJSVI6c\n", "GQFgW0ct9eW9GMVVmUya0dHRJffdsbOaHx2GaCzJQCROd1vtJlcnIqVG4U5EisbgaJzB0WkA7rip\n", "DZIjLle0OeKxKZ5+JUJ7x/UDJwb6+2io8TExneHE+TGFOxHJS92yIlI05p+1a6oPsq2jzuVqNle4\n", "tu6aEcPzX+HaWnZ2OINKei9HSc5mXK5URIqdwp2IFIXEbJpz/c4aqrf3tOHxeFyuqHhsba3C5/WQ\n", "yeY423/jdWZFREDhTkSKxLn+CbI58Hk93LSt0e1yikqV38uOLmeS594+hTsRWZ7CnYgUhd7LTmjZ\n", "3llHVaBylhorVM9WJ/BeHolpzjsRWZbCnYi4LjGb4fJwDEB37W5gZ1cdfp+XXM65yykiciMKdyLi\n", "ur6RGXJzXbLz3Y9yrYDfx65u5+/mjLpmRWQZCnci4rqLQ870Jzu76qnyq0v2Rua7Zq9E4sRn1DUr\n", "IktTuBMRV03GZxkaSwKwZ6u6ZJezvbOOKr/zsT3/jKKIyGIKdyLiqrfsKDnA7/Oys6uy5rZbKb/P\n", "y64tDYC6ZkXkxhTuRMRVr59ylt3a2VVHQF2yec13zQ6NTRObSbtcjYgUI4U7EXHN+GQCe8kZ+dmj\n", "LtmCbOuoJVjlhOD5ZxVFRBZSuBMR17x8dIBcDvw+jZItlM/rZc9c16zCnYgsReFORFzz4jv9AGxt\n", "rcbv08dRoebvco5NpRgen3G5GhEpNn63CxCR8pZOp4lGr3/4fyaZ5sQ553m7rW2hzS6rpG1pc7pm\n", "k7MZjvSOs++mbW6XJCJFROFORDZUNBrlsWePEa69ttv18sgM2Zzz54bqrAuVlS6v18P2jjrO9EV5\n", "p3eMX3C7IBEpKuoHEZENF66tp6Gx+Zqvsbizr7HGe3XuNinczrlnFO2lSa01KyLX0CeqiLhifi3Z\n", "1npNf7Ia2zvr8ACZbI4jp0fcLkdEiojCnYhsungixdhkAoC2BoW71QhV+WltrALgzZNDLlcjIsVE\n", "4U5ENt38XTuf10NzrcLdam1prQaccJedf4BRRCqewp2IbLrLw1MAdLWG8Xk9LldTura2OqOMx6eS\n", "nO3XcmQi4lC4E5FNlcvluDzk3Lnb2l7rcjWlrSEcoKU+CMCbJ9Q1KyIOhTsR2VQTsVliM87ozq3t\n", "dS5XU9o8Hg+37WkC4HU9dycicxTuRGRTzXfJBgM+2pqqXa6m9N3e44S73r4o43ODVESksincicim\n", "mh9MsaWtFq9Hz9utRSaTpqMuc3WewB+9eZZIJHL1K51Ou1yhiLgh7woVxpiDwCPAPuAM8AVr7WuL\n", "jvEAvwP8KlAHvAk8ZK09Ueg5RKT8ZXO5q+FOz9utXTw2xbNvRGhrrKI/kuD7r/czm0zO7ZvkwUMH\n", "aG1tdblKEdlsy965M8aEgMeBbwANwFeBx4wx4UWH/irwaeBua2098ALw7RWeQ0TKXGR8hmQqA8DW\n", "DoW79RCuraNnWwsAg+NJausbaWhsvm65NxGpHPm6ZQ8BGWvtI9bajLX2m8AQ8KmFB1lr/xR4n7V2\n", "wBhTBzQBIys5h4iUv/m7duHqAI21QZerKR875pYiS6WzDI1Ou1yNiLgtX7jbC5xYtM3Obb92o7Uz\n", "xphfBqLALwL/bqXnEJHyNj+YYlt7LR49b7du6mqqaKh1VqvomwvQIlK58oW7MLD4n4HTQM0Njv/v\n", "QBD4XeApY0zTKs4hImUom80xMHdXqbtNXbLrbX5amfkALSKVK9+AijiweK6CGmDJTw9r7ezcH//Q\n", "GPMQ8OMrPcdSknMPCEvpm29LtWl5KKQ9E4kE6VSKobEY6UwWgNaGKlIpZ667TDpNNue5+v1Cm72v\n", "lK/Z1VLN8XMwNDZNfNr5O08kEiQShU+PovdneVF7lpeVtGO+cHcSeGjRNgM8es0GY34H8Flr/93c\n", "9x6gChgHZgo5x3J6e3sLPVRKhNq0vCzXntFolMGhGJEZ5994Ab+H+GSE6SmnW3Z4eBivvwq8168x\n", "u9n7Svma3rQTnHM5ON57mbA3jrUxhoZWPrmx3p/lRe1ZefKFu2eA4NxduEeAzwHtwFOLjnsFeNQY\n", "85c4z9P9G2ACeBnwFHiOG+rp6SEY1MPX5SCZTNLb26s2LROFtGckEmEw3k//2Rlghq6WMFu6t1zd\n", "n0sl8PgCdHd1X/fazd5X6tdsOXeO0YkEiUyQPV11GLNlRVOh6P1ZXtSe5WW+PQuxbLiz1s4aYz4J\n", "/Anwezhz1D04N3ji4bljvmitfdIY86+B7wKNwEvAA/PdtDc6R6E/UDAYJBQKFXq4lAC1aXlZrj1D\n", "oRD+QIDh6BgAXa21BAKBq/t9fj8+f+CabW7tK/VrbuuoY3QiwZXINLfvChMKhVb1PtP7s7yoPStP\n", "3kmMrbVHgfuW2P7FRd9/Hfj6Ss4hIpUhMZthIuY8ktvZorFUG2Vrey1HTo84d+9mM26XIyIu0fJj\n", "IrLhIhNOsPMA7c0KdxuluzV8dUm3wTE9RC9SqRTuRGTDjUw4QaO5IUSVf+lBBbJ2Ab/v6p3RwfHC\n", "R8mKSHlRuBORDTd/566zRasObrT5NXsHxxTuRCqVwp2IbKhMNrcg3KlLdqPNT2Ycm8kQiSrgiVQi\n", "hTsR2VCXh+NksjkAOpt1526jtTfXEPA7H+0nLk64XI2IuEHhTkQ21Nl+ZzGaUJXv6vqnsnF8Xg/d\n", "rU6IPnE+6nI1IuIGhTsR2VC9c+GusyWMZ24kp2ys+a7ZkxcnyOVyLlcjIptN4U5ENtT8nbsOTYGy\n", "aeYHVUxOp+gbKngZbxEpEwp3IrJholNJhuce6tdI2c3T0hCiau65u6NnR12uRkQ2m8KdiGwYe9FZ\n", "csyZvLja3WIqiMfjoaPJWUv06NmIy9WIyGZTuBORDXPq4jgAjbUBTV68ydrnwt3xs6N67k6kwijc\n", "iciGsXPhrrVBo2Q32/ydu2gsyeXhmMvViMhmUrgTkQ2RyebovTwf7oIuV1N5mmoDhEN+QF2zIpVG\n", "4U5ENkT/8BQzyQwALfW6c7fZPB4PN2+rB+CYBlWIVBSFOxHZEGf6nAl0gwEv9WG/y9VUJrPdCXdH\n", "z0b03J1IBVG4E5ENMR/udnbW4tXkxa7Yu70BcKak0XN3IpVD4U5ENsSZPud5u51dtS5XUrm2tYcJ\n", "VwcAOHZOXbMilULhTkTWXSqd5Vz/JAC7FO5c4/V62L+rBYBjvRpUIVIpFO5EZN1dHJgknckCsKur\n", "zuVqKtutPU6403N3IpVD4U5E1t18l2xdTRVtjZoGxU0H9rQCMD6V5Eok7nI1IrIZFO5EZN3ND6a4\n", "aXsjHg2mcNWu7ob35rtT16xIRVC4E5F1dzXcbWt0uRLxeT3s2/1e16yIlD+FOxFZV4lkmkuDzmCK\n", "m7c1uVyNANw61zV7TM/diVQEzSwqImuWTqeJRJy7Qqf7JsnO5YeWcJbR0VGy2ayL1cl8uBubTDIQ\n", "idPdphHMIuVM4U5E1iwajfL0K72Ea+s5eXEKgJqgjzdPDjJ4pY+6hmZ0D889u7Y0UBPyM51Ic/Rs\n", "ROFOpMypW1ZE1kW4tp6GxmYmE873nS21NDQ2UxNWkHCbz+th39x8d0d7NZmxSLlTuBORdTU8Pg1A\n", "e3O1y5XIQlefuzun5+5Eyp3CnYism8RsmonYLADtTTUuVyMLzU9mPDqRYGBU892JlDOFOxFZNyPj\n", "M1f/rHBXXHZ3N1AdnJ/vTl2zIuVM4U5E1s3QmNMl21BbRbDK53I1spDP52X/3Hx3x85pvjuRcqbR\n", "siKybq4+b6e7dq7LZNKMjl57h253Z4g3T8I7p4cZGRmhqakJv1+/BkTKjd7VIrJuhue6ZTuaFe7c\n", "Fo9N8fQrEdo73nu+bjKWBGB8apa/ePJdfuGTt9Pa2upWiSKyQRTuRGRdTCczxGdSgO7cFYtwbR0N\n", "jc1Xv6+rzxE4HCGVzjKVDLhYmYhsJD1zJyLrYnTSGSXr8UBro6ZBKUZer4eu1jAAQ+NJl6sRkY2i\n", "cCci62I+3DXXhwj49dFSrLa0OpNKD40nNd+dSJnK2y1rjDkIPALsA84AX7DWvrbEcb8G/EugA7DA\n", "b1prX5zb91vA7wEL/6n4gLX2pTX/BCJSFObDnbpki1t3m3PnbjqZITKRpK3N5YJEZN0t+89rY0wI\n", "eBz4BtAAfBV4zBgTXnTcIeB3gc9YaxuA/wI8boyZX07yIPDb1tq6BV8KdiJlIpfLvRfuNJiiqLU1\n", "1Vy9s3rq0oTL1YjIRsjXd3IIyFhrH7HWZqy13wSGgE8tOm4L8PvW2ncBrLV/DmSA/XP77wDeWb+y\n", "RaSYRCZmmU1lAeho0vN2xczn9dDV4vz7/NRFhTuRcpSvW3YvcGLRNju3/b0N1n5n4ffGmPuAOuCE\n", "MaYGMMBvGGO+A4wD/+9cUBSRMnBxyJluw+f10NygcFfsutvCXBqawl6aJJfL4fF43C5JRNZRvnAX\n", "BqYXbZsMmmOaAAAgAElEQVQGbtjvYozZB/w18GVr7ZgxZhfwAvA14AfAvThdtgPW2icLKTKZ1Kiu\n", "cjHflmrT8jDfjueuTAHQ0hAim0mTzbx3TCadJpvzkEqlljzHcvs3e1+lXLOz2Qngo5NJLvSPXR1B\n", "q/dneVF7lpeVtGO+cBcHFv8zvAaYWupgY8z9wP8A/sBa+/sA1trzON278140xnwb+GmgoHDX29tb\n", "yGFSQtSm5eX0pTEAagIZrgxcuWbf8PAwXn8VeJdejmy5/Zu9r1Kumcvl8HshnYUnXzjGPTfXXrNf\n", "78/yovasPPnC3UngoUXbDPDo4gONMb8C/Gfg16y1f7Vg+13A/dbaryw4vBqIFVpkT08PwWCw0MOl\n", "iCWTSXp7e9WmZSKZTHL69BlGJp3vd25ppbur8ZpjcqkEHl+A7q7uJc+x3P7N3ldJ1+w8n+ByJMlI\n", "vIr9+53Ho/X+LC9qz/Iy356FyBfungGCxpiHcKZD+RzQDjy18CBjzMeA/wp8YolRsJPAl40xp4G/\n", "xbmL9/PAhwuqEAgGg4RCoUIPlxKgNi0fkck0s2lnMEVXWx2BwLUrH/j8fnz+wHXbC9m/2fsq6Zrd\n", "rTVcjiQ5fn6MQKAKn++98XV6f5YXtWflWXa0rLV2Fvgk8FlgFPgS8KC1dsYY87Ax5mtzh/4rIAA8\n", "aYyZWvB1v7X2DPAZ4N/jBL0/Bj5vrT2yQT+TiGyi/jFnCpSAz0NTne4OlIquZueX/XQizelLUZer\n", "EZH1lHcSY2vtUeC+JbZ/ccGffyLPOZ4AnlhNgSJS3K6Mzq9MUaVRlyWkrsZPW2OIkWiCI6eHuWVX\n", "c/4XiUhJ0BpBIrIm/XPhrqW+yuVKZKUO7HKejzx8esTlSkRkPSnciciqpdJZhqLOVBsKd6Vn31y4\n", "s5fGic8sPU2LiJQehTsRWbVLg1NknLEUCnclaN+OBrweyGZzHD0bcbscEVknCncismq9/c7yVbXV\n", "fsKhpedwk+JVE/Jz0zZnCfAj6poVKRsKdyKyar2XnXC3o6NGgylK1B03twFw5PSwy5WIyHpRuBOR\n", "VTt9yQl3u7rCLlciqzUf7vpH4oyMz7hcjYisB4U7EVmViViSK5E4AHu6a/McLcXK7GimOuh0qb/b\n", "O+pyNSKyHhTuRGRV7MVxADwe2NmpO3elKuD3cmBPKwDvnFW4EykHCncisionzjtBoKMxQKhKgylK\n", "TSaTZnR0lEgkwk3dNQC8c3qE0bFxIpEI6XTa5QpFZLXyrlAhIrKUU3N37ra3aQqUUhSPTfH0KxHa\n", "O+LEp50gN53M8PzxOOdHTvEz94dobW11uUoRWQ3duRORFUuls5y55IS7ba1aT7ZUhWvraGhsZmt3\n", "O831zlqzk7NBamvrXK5MRNZC4U5EVuxcf5TZtDN78TbduSsLu7rrARiKpsjlci5XIyJroXAnIit2\n", "8sIYAM31QRpq9LxdOdjV3QDAdDLLRFzP24mUMoU7EVmx+XBndjRp8uIy0d5UTU3QeQy7fzTpcjUi\n", "shYKdyKyIrlcjpPn58Ld9kaXq5H14vF42NHlPGuncCdS2hTuRGRFhsamGZ9yfvnvVbgrKzs6ncmo\n", "x6ZSV9tYREqPwp2IrMh8l2ywynf1To+Uh+7WML653wpHzoy5W4yIrJrCnYisyHy4u3lbE36fPkLK\n", "id/npa0hAMBhhTuRkqVPZhFZkfnn7fbubHK5EtkInU1OuDt5cYLpRMrlakRkNRTuRKRg04kUFwcn\n", "Adi3q8XlamQjtDf68QDpTI7DdsTtckRkFRTuRKRgpy6OMz+/rdmhO3flqMrvpXWua/bV4wMuVyMi\n", "q6FwJyIFm++S3dZRR12NVqYoV1tbnaXIXj8+yGwq43I1IrJSCnciUrCjZyMA7NvV7HIlspG2t4Xw\n", "ANOJNG+cGHK7HBFZIYU7ESnITDLNqbmRsgdvbne5GtlI1UEft+x0liP70dt9LlcjIiulcCciBTl+\n", "bpRMNofHA7f2tLpdjmywe/e3AfDmyWGmpmddrkZEVkLhTkQK8vYpp3tuR0eY2ZlJIpEIkUiEaDTK\n", "2NgY2WzW5QplPd11cwsBv5d0JstL71xxuxwRWQG/2wWISGk4bJ1wFw56+eEblwBIp1IMDsWgN0pT\n", "SzsaP1s+akJ+7tnXyUvvXuFHb1/mgR/b6XZJIlIg3bkTkbzGJxNcHpkGYM/2Nhoam2lobKa+sZna\n", "+kbC4VqXK5SN8JE7twJOl/zw+LTL1YhIoRTuRCSvd844k9l6vdDVGna5Gtksd9/STrjamfPu+cP9\n", "LlcjIoVSuBORvI7Mhbv2xqDWk60gAb+PD97eDcBzb192uRoRKZQ+pUVkWblcjndOO+GusznkcjWy\n", "2X58rmv2wsAkFwYmXa5GRAqhcCciy+ofiRGZSADQpXBXcfbtaqG1sRqAH72lOe9ESoHCnYgsa/6u\n", "XTjkp6ku4HI1stm8Xs/Vu3fPvnWZTEZT3ogUO4U7EVnW/PN2t+xowOvxuFyNuOHj92wHYGwywZsn\n", "tRyZSLHLO8+dMeYg8AiwDzgDfMFa+9oSx/0a8C+BDsACv2mtfXEl5xCR4pLJZDnaO7ee7M4GspmU\n", "yxWJG7a01XJgTwvHzo7y1GsXef+BLrdLEpFlLHvnzhgTAh4HvgE0AF8FHjPGhBcddwj4XeAz1toG\n", "4L8Ajxtjmgo9h4gUnzOXo8QTaQD27Wx0uRpx00+8fwcAb50cIhKdcbkaEVlOvm7ZQ0DGWvuItTZj\n", "rf0mMAR8atFxW4Dft9a+C2Ct/XMgA+xfwTlEpMgctnNToDRV096kwRSVIpNJMzo6enWJuUgkgtkS\n", "JBzyk83BU69ecLtEEVlGvm7ZvcCJRdvs3Pb3Nlj7nYXfG2PuA+rmXvv5Qs4hIsXn9eMDANy5twOP\n", "nrerGNPxGE+/MkF7R/ya7dvaQpzqi/HkK+f4xJ2teL3X/z/R2NiI36+VLUXclO8dGAYWrzkzDdTc\n", "6AXGmH3AXwNfttaOzXW/rugciyWTyUIPlSI335Zq0+I3Ep2h9/IEAHeZFhKJBOlUilTqvefu0mmn\n", "yzadyeBZtG9eJp0mm/MsuS/f/s3eV+nXXNieVcEQNeG6a15zoCfAqb4Y0ViaP3/iJF3NwWv2x2JT\n", "/OSH99La2rrkNWVz6fO2vKykHfOFuzhQvWhbDTC11MHGmPuB/wH8gbX291dzjqX09vYWeqiUCLVp\n", "8XvNxgAIBjx4ZgaxwxMMDsWIzSSuO3ZsdBSvvwq8vuv2DQ8P33Bfvv2bvU/XdCzXnuGqNPFZP/Zy\n", "jLrq3DX7YvE41lqGhjSitpjo87by5At3J4GHFm0zwKOLDzTG/Arwn4Ffs9b+1WrOcSM9PT0Eg8H8\n", "B0rRSyaT9Pb2qk1LwF+/+gYAd9/Swe23HSASiTAY76e+sfnqMel0muGRYZpbWghUheju6r7uPLlU\n", "Ao8vsOS+fPs3e1+lX7OQ9twzGOPdS2mGoikam9qpCb33a2SyOoQxW3Tnrkjo87a8zLdnIfKFu2eA\n", "oDHmIZypTD4HtANPLTzIGPMx4L8Cn7DWvrSacywnGAwSCulh7nKiNi1uk/FZTlwYB+C+27cSCoUI\n", "hUL4AwECgesnMvb7fARusM/n9+PzL70v3/7N3qdrOpZrz62tQU70Z0hncvT2T3LX3o73XhcIXP1/\n", "RYqHPm8rz7KjZa21s8Angc8Co8CXgAettTPGmIeNMV+bO/RfAQHgSWPM1IKv+5c7xwb9TCKyRm+e\n", "HCSbzeH3eblrb7vb5UgR8fs8bGutAuDE+TFyuVyeV4jIZss7pMlaexS4b4ntX1zw559YzTlEpDi9\n", "emwQgDtubqMmpCXH5Fo7O4KcH0oyGZ+lfyTG1va6/C8SkU2j5cdE5BqJ2TRvnRoG4N4DnS5XI8Wo\n", "MeynrckZJ3fi/JjL1YjIYgp3InKNI6dHmE1l8Hjgnv0Kd7K0fbtaADjbP8FMMu1yNSKykMKdiFzj\n", "1WPOxMV7dzTTVKeHsGVpN29rxO/zks3msBfH3S5HRBZQuBORq5LJWV6bC3e37q6/Zvmp0dFRstms\n", "yxVKsagK+Lhpm7Pe8InzoxpYIVJEtEaMiFz1xrE+YjNOF1sykeCHb1y6um/wSh91Dc00uVWcFJ19\n", "u5o5eWGM8akkA6NxwvqNIlIUdOdORK56/WQEgOb6EFu7O2hobL76VROudbk6KTYdzTW0NDhd9xpY\n", "IVI8FO5EBIB0Jssbp5xwN9/dJrIcj8fDvl3OiiVnL0eZTanbXqQYKNyJCABv2+GrXbI3b1fnqxTm\n", "5u1N+Lwe0pkc5wfjbpcjIijcicic5966DEBbQxX14SqXq5FSEary07PVudN7dkDhTqQYKNyJCNOJ\n", "FK8ed1al2NUVdrkaKTVmh3Ond2wyxZXItMvViIjGNolUkHQ6TTQavW77y0eHmU1l8HqcheFFVmJL\n", "ey3h6gDxmRQvHxvhtr3b3S5JpKIp3IlUkGg0ymPPHiNcW3/N9h8eHgGgOQy5zKwbpUkJ83o8mO2N\n", "vG1HePnYML/+6Rxer8ftskQqlrplRSpMuLb+milOAqE6BkcTAOxo1107WZ2btzujZsenZjl6NuJy\n", "NSKVTeFOpMKd6YuSAwJ+Lx2Nupkvq9PSEKK5LgDAs2/1uVyNSGXTJ7lIhTt9yXkGb3d3A35fyuVq\n", "pJTt6KhmbCrFS+/087Mf2UIw4LvumMbGRvx+/eoR2Uh6h4lUsOhUkuFxZ3TjzdsbITnickVSytpq\n", "03iAxGyWbz95ml2d1468jscmefDQAVpbW90pUKRCKNyJVDB7aRyA6qCfre119Pcp3MnqhQJe2hsD\n", "DEVT9I2kuGNvs9sliVQkPXMnUqFyuRz2orMe6M3bmzS6UdbF9jZnAuy+oSniM+rmF3GDwp1Ihbo8\n", "HGNq2vnle8tOLTcm66OrqYoqv5cccLpv3O1yRCqSwp1IhTp10fnF295UTUtDtcvVSLnw+TzsmVuO\n", "rLdvwuVqRCqTwp1IBUqmMpzrd0bJ7t2h56Jkfe3Z2gDA8Pg0k3FNii2y2RTuRCpQb1+UdMZZReCm\n", "7Y1ulyNlZmt77dVpUM716+6dyGZTuBOpQKfmBlLs7q4nVKVB87K+fF4vu7qdJe7OXr5+LWMR2VgK\n", "dyIVZiKeYnDUmdtOXbKyUeafuxscm2ZqWl2zIptJ4U6kwpwbiAMQDvnZ1lnncjVSrra111Lld37F\n", "qGtWZHMp3IlUkGw2x7kB566d2dGE16O57WRj+HxednU7AyvUNSuyuRTuRCrI8fNRZpIZAPbuVJes\n", "bKz5UbMDo9PENKGxyKZRuBOpIC8cHQKgs7mGprqQy9VIudvWUUfgates7t6JbBaFO5EKMTU9y+HT\n", "zihZ3bWTzeD3ednZNT9qVs/diWwWhTuRCvH84X7SmRw+r4eebZrbTjZHz9yo2SuRONNzjwSIyMZS\n", "uBOpED944xIA29qrr04wK7LRtnfW4fc5v2r6hqddrkakMijciVSAiwOT9PY5zzzt6Qq7XI1UEqdr\n", "1ply5/LIjMvViFQGhTuRCjB/1665vorO5qDL1UilmZ8SZXA8yXQi7XI1IuVP4U6kzKUzWX701mUA\n", "7jvQjkdz28km29FZj9cDuRy8e3bc7XJEyl7eRSWNMQeBR4B9wBngC9ba15Y5/p8DH7DW/uyCbb8F\n", "/B6QXHDoA9bal1ZbuIgU5q2TQ0Rjzlvvg7e1c7R3xOWKpNIEq3x0t9VyeTjG4TNj/NRH3K5IpLwt\n", "G+6MMSHgceA/An8K/BLwmDFmt7U2vujYMPB/Af8C+F+LTnUH8NvW2j9ar8JFpDA/fLMPgP27W2hv\n", "qna5GqlUu7sbuDwc492z46TSGQJ+DeoR2Sj5umUPARlr7SPW2oy19pvAEPCpJY79G2APzl2+xf0+\n", "B4F31lqsiKzMRCzJ68cHAfj4+7a5XI1Usp3dznx3idkMR3tHXa5GpLzlC3d7gROLttm57Yt93lr7\n", "M8Dwwo3GmBrAAL9hjBkwxpwwxvzKagsWkcI99/ZlMtkcwSof992+xe1ypILV1VTRXBcA4NXjAy5X\n", "I1Le8oW7MLB4YqJpoGbxgdbawRucox14AfgasA34deCPjDEPrKxUEVmp+S7Z+27rpjqY9xFbkQ21\n", "tc15LOD144NkszmXqxEpX/k+7ePA4od0aoCpQi9grb2A070770VjzLeBnwaeLOQcyWQy/0FSEubb\n", "Um268S4OTnGu31ny6UO3d5BIJEgkEqRTKVKppRdxz6TTZHOeJfcvtS+ddqa1SGcyeG5w3uXOuZpr\n", "buS+Sr/mWtsz3zW7mwK8C4xOJDhxbpierQ1LHifrQ5+35WUl7Zgv3J0EHlq0zQCPFnoBY8xdwP3W\n", "2q8s2FwNxAo9R29vb6GHSolQm268p952Ji1uCPvITQ9w/Pgg0WiUwaEYsZnEkq8ZHh7G668C7/UP\n", "uy+3b2x0dFWvW8s1N2KfrulYbXvmu+ZMLEp9tYfJmRxPPH+cj92ucLcZ9HlbefKFu2eAoDHmIZyB\n", "Ep/D6WZ9agXXmAS+bIw5Dfwtzl28nwc+XOgJenp6CAY18Wo5SCaT9Pb2qk03WDqT5f/7u+cA+Pg9\n", "O7j1wE0ARCIRBuP91Dc2L/m6XCqBxxegu6u7oH3pdJrhkWGaW1oIVIUKft1arrmR+yr9mmttz3zX\n", "nKwO4avJ8szhYS5Ecuzfv3/J42R96PO2vMy3ZyGWDXfW2lljzCeBP8GZp+4M8KC1dsYY8/DcMV9c\n", "9LLc3Nf8Oc4YYz4DfAX4M+ASzuCLIwX+PASDQUKhUKGHSwlQm26cdDrNi4fPMRGfBeAe00gs5two\n", "j8fjeH0+AoHAkq/1+f34/IEl9y+3zz93zpW+bi3X3Ih9uqZjte2Z75r+QID33dLAM4eH6RuKMR7L\n", "0NWq5fA2mj5vK0/eJ6yttUeB+5bYvjjUzW//nSW2PQE8sZoCRWRlotEo//OZMwC0NVZdM2nx4JU+\n", "6hqaaXKrOKl4N22rp64mwNR0iteOD/DTH+lxuySRsqPlx0TKTGw6xeC482D8gT3tNDQ2X/2qCde6\n", "XJ1UOp/Xw/v2dQLw6rEbTbIgImuhcCdSZl47GSGbA7/PQ8/WRrfLEbnO+/c74e7k+VEmYhrJKbLe\n", "FO5EysyL7zrziO/e0kBVQEs8SfE5aNoJ+L1kc/DGiSG3yxEpOwp3ImXk4uAkFwadwRN7dyw9IlbE\n", "bdVBP7ff1AbAa1qtQmTdKdyJlJFn3nBWpKgJ+tjSrufrpHjde6ALgLftCInZtMvViJQXhTuRMpHJ\n", "ZPnR2064291Vg9fjcbkikRu7Z38HHg/MpjK8c3ok/wtEpGAKdyJl4vDpEcYmnYfTd3Vp7jApbk11\n", "Icx2Z1Ke145r1KzIelK4EykTz7zp3LXbs6WOhvDSk8iKuCmTSTM6OkokEiESiXDr7noAXj02wPDw\n", "yNW1bUVkbfJOYiwixS82Pcurx5wH0z94azuZ9KzLFYlcLx6b4ulXIrR3xAFIJFIATE2n+Nbj7/BP\n", "//EdtLa2ulmiSFnQnTuRMvDCkX5S6SwBv5d7btEvRyle4dq6q5Nqb9/SQWOds+ZpJK5fRyLrRe8m\n", "kTLww7ku2R870EVNSDfkpXTs7na6Zi8Pz5DL5fIcLSKFULgTKXGXh6ewF8cB+Oj7trlcjcjK7Opu\n", "AGBqJs2V0RmXqxEpDwp3IiUonU5ffSj9e8+fBqCxtoptzV5GR0fJZrMuVyhSmI7mGqqDzt3mt+yo\n", "y9WIlAeFO5ESFI1GeezZY3z/9Ys8+7YzkKK7Jcizb/Xx5IunmJnRHRApDR6Phz1bnLt3b55SuBNZ\n", "Dwp3IiUqXFtPbLaK6WQGgNtNNw2NzdSEtTKFlJY9W51w1zcc58pIzOVqREqfwp1ICTt5YQyA9qYa\n", "mutDLlcjsjrdrbUEA86voxffueJyNSKlT+FOpETNprOcvzIBwN6dTS5XI7J6Xq+H7e3VALz0rsKd\n", "yFop3ImUqItD06QzObxeDzdta3S7HJE12d5RA8C5/gkGInGXqxEpbQp3IiXq3IDzC3BXVz2hKs1t\n", "J6WtozFIbbXz//GL7/S7XI1IaVO4EylBQ2MzjESdJcb27mx2uRqRtfN6PdxlWgB4WV2zImuicCdS\n", "gl46OgxAddDP9o46l6sRWR/v2+ssndd7eYLBUXXNiqyWwp1Iiclmc7x8bAQAs70Jr9fjckUi68Ns\n", "r6eupgqAlzRqVmTVFO5ESszRsxFGJ5OARslKefH7vNx7oBOAF9U1K7JqCnciJeaZN/sAaK4L0NJQ\n", "7XI1Iuvrg7dvAaC3L6quWZFVUrgTKSHTidTVecB2d4VdrkZk/d12Uyt1NQEAXjiiUbMiq6FwJ1Kk\n", "0uk0kUjkmq8nXzpNcjaDzwvb27UihZQfv8/LB+9w7t4982YfuVzO5YpESo8mxxIpUtFolMeePUa4\n", "tv7qtqffdEbJNochl5l1qzSRDfXRu7fxDy9f4PJwjDN9UW7ermdLRVZCd+5Eili4tp6GxmYaGpvJ\n", "+cMMR52BFLs6dddOypfZ3kR3q/PYwbNv9blcjUjpUbgTKRGnLowBUBPy097gc7kakY3j8Xj46N3b\n", "AHj+cD+pdNblikRKi8KdSAnI5nLYi+PA3Nx2Hs1tJ+Xtx+9ywt1kfJa3Tw25XI1IaVG4EykBl4di\n", "xGZSgJYbk8rQ0VzDgT3OcmTPqGtWZEUU7kRKwKmLTpdse1MNzfV63k4qw6G5u3evHx8iNq0BRCKF\n", "UrgTKXLJ2Qzn+icAuEUrUkgFue+2bqr8XtKZLC9oOTKRginciRS5M33jZLI5fF4PN21TuJPKEa4O\n", "cO+BLgCefVNdsyKFUrgTKXInLzgDKXZvaSBYpVGyUlkOzY2aPXlhjCsjMZerESkNeScxNsYcBB4B\n", "9gFngC9Ya19b5vh/DnzAWvuzqz2HiDiisRTD49MA7N2hgRRSeQ7e3EZzfZCxySRPv3aRX/6p/W6X\n", "JFL0lr1zZ4wJAY8D3wAagK8CjxljrlvU0hgTNsb8PvAHQG415xCRa50dcBZOr60OsLWj1uVqRDaf\n", "z+flE/fsAOD7r18ilc64XJFI8ct35+4QkLHWPjL3/Tfn7sx9Cvifi479GyCGc4eubZXnEJE5mWyO\n", "83PhzuzQ3HZS3jKZNKOjo0vuO7inhr/6oTPn3VMvnebe/W3X7G9sbMTv12qaIvPyvRv2AicWbbNz\n", "2xf7vLV20Bjzf3NtuFvJOURkztGz4yRmnZn5NbedlLt4bIqnX4nQ3hG/bt/glT5aaj1EpnL87fMX\n", "iU/PLHjdJA8eOkBra+tmlitS1PKFuzAwvWjbNFCz+EBr7eBaz3EjyWSy0EOlyM23pdo0v+eODADQ\n", "2VJDOOgllUpd3ZdJp8nmPNdsW+u+1bw2nU47/81k8KRSm3LNjdxX6ddca3uu9eesCoaoCdddty8Y\n", "DLGrw0NkaobhaJJkpoqm+qBTaypFIpEgkUgsec1Kps/b8rKSdswX7uJA9aJtNcDUCupZ8zl6e3tX\n", "cDkpBWrT5cUTGd49GwWgoz7HlYFr5/gaHh7G668C7/WjZ1e7by2vHRsd3fRrFtvfQTldc7XtuZE/\n", "p8dXRaiqmsRsjjdP9LF/h3N/IDYZxdoYQ0NaouxG9HlbefKFu5PAQ4u2GeDRFVxjzefo6ekhGAyu\n", "4JJSrJLJJL29vWrTPP7+5YtkcwP4vB4O3rKdqsC1v/ByqQQeX4Duru7rXrvafat5bTqdZnhkmOaW\n", "FgJVoU255kbuq/RrrrU9N/rnPFAT4s1TI/SPpTl0dyd+v5fJ6hDGbFG37BL0eVte5tuzEPnC3TNA\n", "0BjzEM5Aic8B7cBTK6hnzecIBoOEQlpyqZyoTZf33GHnTt2OjmrCNdf/Pfn8fnz+AIFAYN32reW1\n", "fp+PQGBzr1lsfwfldM3VtudG/5wH9rTxlh1hNpXlwlCcW3Y24w8ECIVC+jxZhj5vK8+yU6FYa2eB\n", "TwKfBUaBLwEPWmtnjDEPG2MeXuJlORZMhbLcOdbnRxApL+f6Jzh/ZRKAPd2aMUhkXrg6wK7uBgCO\n", "n1t6ZK2IFDCJsbX2KHDfEtu/eIPjf6fQc4jI9X7wxiUA2hpDtDeqK0VkoQO7WzjXP8HQ2DQj49NU\n", "aYYgketo+TGRIjKbyvCjty4D8MFb2/FobjuRa2xtr6Wx1vlHzzu9EZerESlOCnciReTld68wNT2L\n", "1wP33drudjkiRcfj8XBbjzN44kxflJmkVqwQWUzhTqSIPPHyBQDuvqWTlgZ1yYosxexsoirgJZvN\n", "cfpyzO1yRIqOwp1IkbgwMMnJC2MAfPIDO90tRqSIVfl97NvZAsCZ/hipdNblikSKi8KdSJH4h5fP\n", "A9DeXMNBoy5ZkeXc2tOKB0jMZnnthJ69E1lI4U6kCMwk0zw7N5DigXt34PNqIIXIcurDVeza4kyL\n", "8v03r5DL5fK8QqRyKNyJFIHn3r7MTDKN3+fhE/fscLsckZJw+9zAiktDcc17J7KAwp2Iy3K5HP8w\n", "N5DiA7d201ingRQihehqDdNU56xo8dgL51yuRqR4KNyJuOz0pXHOXZkA4AENpBApmMfjYe+2OgBe\n", "OzbA4Gjc5YpEioPCnYjL5qc/2dZRy4HdLe4WI1JidnbW0BAOkM3B3z131u1yRIqCwp2Ii8anErxw\n", "pB+AB35sp1akEFkhn9fDx+/uBuD7b1xiMj7rckUi7lO4E3HREy9dIJXOUhPy8/H3bXe7HJGSdOhg\n", "J6EqH8nZDE/MTSkkUskU7kRcEp9J8r0XnW6kD93WznRsgkgkcvVrdHSUbFaTs4rkE672c/+9zijz\n", "7714jmRKS5JJZfP//+3deXgc9Z3n8Xefkrpb92FZkm+bn7ExxhgCBgwxkHBkgWQ32RxMJiHMzCYD\n", "M/tsdp4NO7th9tnZnGQ28yQkDHkIZJMQmIEQYogBB3AAgw228X38LN+yZV2tu3V2d+0fLduyLFu+\n", "pFK3Pq/n6Yd01a+qP5Wyur79q6pfuR1AZKJasbqazu44Hg+Egg5vrDt00vy62hpy84sodCmfSDq5\n", "Zx6ZOcsAABrGSURBVOksXl69n7bOPt5cX8MdS6a7HUnENeq5E3FBMumw8oPUtXazqwqoKC8jv6Do\n", "pFcoHHE5pUj6KCsKsXRhJQAv/mkPiaQGNZaJS8WdiAvW76ynrrkHgEWXlLqcRiR9JRJxotEoTU1N\n", "3Lwodbd5bVOM19fsPn6JQzwedzmlyNjSaVkRF/zurT0ATCrMorQw5HIakfQV6+xg5Zomyialxrgr\n", "L8qirrmXZ9/YR0tbJ12xDu5edhklJSUuJxUZO+q5Exlje2pa2bY39aikS6fmupxGJP2FI7nHL2e4\n", "el7q1GxTWx+xeBbhSJ7L6UTGnoo7kTF2rNeuvCiHypJsl9OIZJYpkyKUFuYAsGFnvctpRNyh4k5k\n", "DNXUd7D62KDF11Ro0GKRi8zj8bB4bhkANQ2dNLX1upxIZOypuBMZQ8+utCQdKC3M4foFZW7HEclI\n", "MyvyKczLAmDbgQ6X04iMPRV3ImPk4NF23tmc6rX77K0Gv09/fiKjwePxsNhMAuBwYzc1DTGXE4mM\n", "LR1dRMbIb1buwnGgvDjELVdPcTuOSEabM6WAvHAQgD+sOexyGpGxpeJOZAzsO9LGe1uOAvC5j6nX\n", "TmS0eb0erjSpSx8+2NlEbVOny4lExo6OMCJj4Dev7QKgsjTMR6+scjmNyMQwd1ohoSwfjgPPv1Ht\n", "dhyRMaPiTmSUVde08P72OgA+9/G5+NRrJzImfD4vl05LjSX55voa6qK69k4mBh1lREaR4zj8asVO\n", "IDX+1tIrKl1OJDKxzKkMkxcOkEg6PPtH63YckTGh4k5kFL235QgbdzcCcNd1lbQ0R48/7zIajZJM\n", "Jl1OKJLZ/D4vd12XuhRi1foaauo1NIpkPhV3IqOktz/Bz5dvA1LPkG1rj/HGukPHX6+u3kV3d7fL\n", "KUUy301XlFNSkEPSgWdWqvdOMp+KO5FR8sKqPTS29uLxwLKrplNQWHz8+Zf5BUWEwhG3I4pMCAG/\n", "l899zADwzqYj7K9tczmRyOhScScyCuqbu3j+jd0AmKoIxfl6hqyIm265egqTS8IA/PqVXS6nERld\n", "Ku5ERsHPl2+jL54kNxTg8pn5bscRmfD8Pi9fuG0uAB/sqMMebHY5kcjoUXEncpFt2t3Amq2pAYs/\n", "s2wawYD+zETGgxuvqGRaeWpolF+9shPHcVxOJDI6dNQRuUDxePz4HbA1R+r40b9uBGBmRYS5FT7d\n", "ESviokQiTjSauku9uTnK3denhiPaXN3EG2uricfjLicUufj8IzUwxiwCHgfmAdXAV6217w/T7vPA\n", "t4AyYBVwv7W2YWDe3wHfBnoHLXK7tfbdC94CEZe1trayfNU2wpE81uxoprG1B68H5laFWfmuJTe/\n", "iEK3Q4pMULHODlauaaJsUmoAY8dxKCvIoqG1lydetlw2s4DySWUupxS5uM7Yc2eMyQZeAn4O5AM/\n", "ApYbY8JD2l0OPAZ8FigB6oCnBjW5AnjIWps76KXCTjJGOJJHNOZjb23qAPKR+eXMmFquO2JFxoFw\n", "JPf4XeoFhcV8dPFUAGI9SV5ff9TldCIX30inZZcBCWvt49bahLX2KaAeuHNIu3uBF62166y1PcA3\n", "gNuNMaUD8xcBmy9mcJHxpLs3waoNNQBMLgmzyKgnQGS8Ki0MMW9GEQDL362htaN3hCVE0stIxd1c\n", "YMeQaXZg+mBmcDtrbTPQDBhjTGhg/n82xhw1xuwwxtx3YbFFxg/HcVizo5mevgQBv5dbr56K1+Nx\n", "O5aInME188sJ+Dx09yb49as73Y4jclGNdM1dGOgaMq0LCJ1DuzLgHeCnwOvAtcBLxpij1tpXzyZk\n", "b69+VWWKY/syk/bpq2trqI32AHD9gnJygh76+/sBSMTjJJ0T7wc707wLWXYsP/PYxejxRAJPf39a\n", "bOd4yzOePvNC92e6bCdAwAfzp0XYtK+Dle8f5JbFFcyoyBt2HekqE79vJ7Jz2Y8jFXcxIGfItBAw\n", "9OF8wxV8IaDTWnuA1OndY1YbY34FfBI4q+Juz549Z9NM0kim7NP99T08/1YTAJMLA4T9MWqPnvid\n", "09DQgNcfBK/vlGXPNO9ClnXjM5uj0bTZzvGWZzx+5vnuz3TbzrxABwUhD61dDo/+2wa+fGtpRva6\n", "Z8r3rZy9kYq7ncCDQ6YZ4Olh2pnjDYwpAYqAncaYxcDHrbXfGdQ+B+g825CzZ88mKyvrbJvLONbb\n", "28uePXsyYp/WRbv4we/WknQgL+TjtiUzCQZOPoA4/T14fAEqJlecsvyZ5l3IsmP5mfF4nIbGBoqK\n", "iwkEs9NiO8dbnvH0mRe6P9NlO4+J5GRz2dwwP/39Xg419lEby+O2a6YOu550lEnft3Jif56NkYq7\n", "N4EsY8yDpIZD+SKp06yvDWn3DPCWMeZJYAPwHWCFtbbFGNMOfNMYsxv4HalevM8CN57l9pCVlUV2\n", "th7flEnSfZ929fTz/ac30tndTzjbz7IrSgiHTt0en9+Pzx8gEAic07wLWdaNz/T7fAQC6bGd4y3P\n", "ePzM892fabedgQBXzytn6cEe3tl0hKdf282SBVWUFQ09EZXe0v37Vs7dGW+osNb2AXcAnweiwAPA\n", "3dbabmPMY8aYxwbabQb+EniS1N205cB9A/OqgU8DDwPtwI+BL1lrN43KFomMskTS4ZFfb6CmvhOv\n", "18Nff8qQGxr+wCIi499/+tQC8sJBunsT/OT5zXpyhaS9EQcxttZuBa4fZvrXhrx/DnjuNOtYAaw4\n", "z4wi44bjODzx4lbW76wHUgeFedNzOdrY7nIyETlf+ZEs/uqTC/jB0xv40Dbwxroabv1I5pyelYlH\n", "jx8TOQdPv7qLl9/dD8Cd103nzutmuJxIRC6GGxdVcs38cgCeWL6N5vYelxOJnD8VdyJn6YVV1fzr\n", "67sBuGFhBX/1qctdTiQiF4vH4+Fr/+Fywtl+Yt39PPrcJp2elbSl4k7kLLyy5gBPvZwap3vx3DK+\n", "/oXF+LyZN2SCyERWnJ/DX9yzAIB1O+r5/dt7XU4kcn5U3ImMYNWGGh77berpefNnFvPQl64m4Nef\n", "jkgmuuXqKdy4qBKAX7y8g10Hm11OJHLudIQSOYM31x/ih898iOPA7CkFPHz/NWQHR7wPSUTSQCIR\n", "JxqN0tTUdPwVjUb53LIqyouySSQdvvfL9bTH+tyOKnJOdJQSITV4a2tr60nTVm9p4Mk/VOMAUyeF\n", "ePCeWXR1ttE1ZPjtaDRKMpkcu7AiclHEOjtYuaaJskmxU+bNq/QTbffS1NrND5/5kG9+5Rq8uhRD\n", "0oSKOxGgtbWV5au2EY6kni25t7aTNTtaACjKDTCjoIsVb22hbFL5KcvW1daQm19E4ZgmFpGLIRzJ\n", "Jb+g6JTpiUSce5ZEeP6dOtbvrOdXf9jMJ5ZUHZ9fUFCA369DqIxP+pcpMiAcySO/oIgd+6PHC7uy\n", "whzuWjqTxqMH8fmDwx4E2ttaxjqqiIyyWGcH3d09TC8PcaCui+f/dJCGaCdTJ4WIdbZz97LLKCkp\n", "cTumyLB0zZ3IIFv3NrFqw2EgVdjdvXSWrrETmaAiuXl8/NqZlBXmAPDu9ma6E1nHe/hFxisVdyID\n", "dh7s4O2NRwAoLwpx942zyAr6XE4lIm4K+H3cef0MckMBEkmHFe8doKMr7nYskTNScScCvPzeYTZU\n", "p26oqCgJc9fSmWQFVNiJCISzA/y7G2YSDHjp7o2zalMjnd39bscSOS0VdzKhOY7Db17bxW/fOghA\n", "VVlk4EtchZ2InFCUl80dS6bj9Xho74rzz/+2k64eFXgyPqm4kwnLcRx+uWInz6y0AFQUZ/OJ62do\n", "gGIRGVZVWS43X5W6Y3ZvbQcP/2yNCjwZl3QUkwnJcRyeWL6N59+sBmDRnCJuWliC36c/CRE5PTOt\n", "iGsuTQ18ZA+2qMCTcUlHMplwkkmHf3lhC8vf3gfA9Qsr+OtPGT0rVkTOypzKCF++YxaQKvD+QQWe\n", "jDMq7mTCiMfj1NU38J1frGHFewcAWDK/lPtun05ba4ueMiEiZ+2mK8p54NMLAdh1sIW/f+xdmtt7\n", "XE4lkqLiTiaM+oYo/+Pxdazd3gjArIowM8qz+NOGGl5dvYvu7m6XE4pIOrl9yXQe+PRCPB7Ye7iN\n", "v/vR2xysa3c7loiKO5kY2mN9fP+ZbTS0pcanutKUcduSWRQWFpNfUEQoHHE5oYiko9uXTOe/f+kj\n", "BAM+Glu6+caP32HLnka3Y8kEp+JOMt7RphjfePQd9tV2AnDDwgqWLJiMx6Nr7ETkwi1ZMJlvf+06\n", "8iNBYj1x/uFna3ht7QEcx3E7mkxQKu4ko220DXz9n9/icEMnPq+H6+cXsXBOqduxRCTDmGlFPPI3\n", "N1JZGiaecHj0uc189xdrOFJbT1NT00mveFxPuJDRpYdmSkaJx+O0trbiOA6vflDLc6sO4DgQzvZz\n", "782T6ezRTRMicmESiTjRaPSU6QHgoXvn89MXtrPzUIz3tjWyfX8LN15eQn44AECss527l11GSUnJ\n", "GKeWiUTFnWSU1tZWfvvHrWw7HOdAXRcABZEAN11ewr4DNeTmF1HockYRSW+xzg5WrmmibFJs2PkV\n", "4RieqTnsPNRNWyzOKx80cMPCCubNKBrjpDJRqbiTjLJ9fytvbo3R1ZsAYFZlPjdfPYWg30dNf4fL\n", "6UQkU4QjueQXDF+stbe1YAqCXDKjgpXvH6SrJ86fPjxMdU0rV83JHeOkMhGpuJOM0NXTz5Mvbee1\n", "talnxHq9Hq6ZX86iS0p144SIuKKyNMJnb72EtzceYe+RNo40dlIXjREJZ/OZjxdr4HQZNSruJK0l\n", "EklWbajh6Vd30dSWGkC0KC/Ax6+ZSXF+tsvpRGSiC2UHuH3JdPYcbuXtjUfo7o3z9B/38+62KF+5\n", "az6LTJnbESUDqbiTcefYTRFnkp+fz/pdjfzqlZ3U1KeGOPH7vNxzwxSyfAkKVdiJyDgyu6qAytII\n", "b67bz4G6Lg4cbefhn61h8dwy7rtrPtPK89yOKBlExZ2MO62trSxftY1w5NQvu0TSYffBKNGYlwN1\n", "Jy5mvv7yCv7sjrlke3t5Y92hsYwrInJWcrL83HBZMV/42Cx++9Zh7KEWNuxqYKNt4LrLK/j0zXOY\n", "VVXgdkzJACruZFwKR/JOuli5s6uP7fuibN/fTHfviTGirriklD+/81LmTEndA9vU1DvmWUVEzsWc\n", "qjwe+dulrN5Uyy9W7KChuYvVm2tZvbmWK00Z/37ZbC6fXaLrheW8qbiTcauvP8HeI23sPtTC4YbO\n", "49M9wBVzivjMrZeyYLbGihKR9OPxeFi6qJJrF5SzasNhXlhVzZHGGB/aBj60DUyZFOG2a6dz81VT\n", "yA0F3Y4raUbFnYwriUSSzXuaWb01yuGmw8QTJx7fkxXwMW9GEdNK/dxz40wNAioiaWe4AZCvnBXm\n", "ihkLWb+rkVfer+VAXYya+k6e+P02fvHydq6aW8INC8q4duE0soIBl5JLOlFxJ65zHIfqmlb+9OFh\n", "3tl4hNbOE6dWvR4P0ybnYqYWMm1yHn6fl7bWZhfTioicvzMNgFxXW8OcEj9zp5RRfSTGgbou4gmH\n", "tdsbWbu9kbzlliWXlXHdZWVMnRQ+ZfmCggL8fh3WRcWduMRxHHYfauGdTUd4b0stDS3dJ80vzQ8y\n", "b2Yps6sKyM46+Z/p6R79AxCNRkkm9YgxERm/TjcAcntbCz5/kIrKycyaBr39CXYfbGHXwWYaWrpp\n", "74rz2ge1vPZBLQWRADPKQ8woDxHK9uuxZnISFXcyZo710L32YSuPrnibptaek+ZPKsxmyWWlzK0M\n", "cKihl8Ki4b+kRvrlq0eMiUgmyAr4WDC7hAWzS9ixq5raliS1LQk6uvpp7exn4542Nu5po7I0QmVx\n", "gPZYH6rtBFTcySjr6YuzbW+UDbvq+WB73Sk9dLk5fqZNymHqpBCFkQAeD6zfsm/EAu1Mv3xFRDJN\n", "bo6XebnZ3HJtFUebYthDLew53Epff5IjjZ0caYR1dh0LZpVw/cIKliyYTI4uz5uwRizujDGLgMeB\n", "eUA18FVr7fvDtPs88C2gDFgF3G+tbTiXdUj6648nqK5pZcf+ZrZUN7JtX5T++MmnSYsifj4yrwSv\n", "x2F61aRTbvdXgSYiMjyPx0NFaYSK0ghLr6jk4NF2qg+3cqC2nUTSYcueJrbsaeLxF7Zw6fRCphU7\n", "TJ7SQ0W2BnafSM5Y3BljsoGXgH8EngD+HFhujJlprY0Nanc58BjwMWAr8GPgKeATZ7sOST+JpMOh\n", "o61srT7KofoY+492sq+246Q7XI+ZXh5mwcxCFszIJdZ8iLKyHLbX9GkcJxGR8+T3eZlVVcCsqgKi\n", "0SaKCiJs2dfBup319PYl2L6/he37YcX6t5gyKcLC2aUsvKSUeTOKyQtreJVMNlLP3TIgYa19fOD9\n", "U8aY/wLcCTw3qN29wIvW2nUAxphvAI3GmFLgqrNch4xTnd39NDR3UReNUdPQweH6Tg7Vd3C4oZO+\n", "/sSwy4SzfeRmJSjJ9TF35iSygz4A9h1uoa4+BnurKSwu07VxIiIXgYckM0s9XD13Bn/2sals3dvC\n", "2u0NbNnbQn8Cauo7qanv5OV39wNQWpjDrMp8ZlUVUFUWoawwRFlhiPxIUD+6M8BIxd1cYMeQaXZg\n", "+mAGeO94A2ubjTHNA+3Odh0yxvrjCdpjfXR29dPe1Ud7rI+m1m4amruob+6ioSX1366e+BnX4/d5\n", "KC3IoaQwxOTiEJOLw0RCQWoO7sXnDzKprPTEZ/b309ndg9Pfc4Y1iojIuRjuRrM5k7MIAb2JALm5\n", "eeyv72V/XSeOA40t3TS2dLN2W91J6wkGfBREgkRygkRCASKhANlBP1lBH1mBgVfQh9/nIRnvJeD3\n", "Egz4yPJ7CQa8BPxesgI+ggEvpcWFhHKCZAV8+HzeMf5/ZGIbqbgLA11DpnUBoXNoFzrLdYy5RCLJ\n", "e1uO0tTWjeM4OA4kndQpxeTA+9TLSU0fPD85MJ9h5juDlj82P3livclEkp7eXpxjZy89qacueDwe\n", "PEAwGMTv9+H1pn49eTwePANtvAP/49h/PQzM83jwelKnSvvjSfrjSfriCfrjSeID7/vjSWLdqUKu\n", "s6uPnr7he91Ox+uB3JCf/HDg+CvRHWVSaQGVVVMveH+IiMj5G3qj2eAf0/3xdq6bX85VJp+Wjj6a\n", "2/tp7uijqa2Hnj6H/oHLafr6EzS0dJ9y89uF8vs8xwvD4KAiMRjwEfT7CPi9x1/BgI+Az0sgkCoi\n", "Bx/3jh8Pjx0HOXm6mVbIvBnFFzV7OhqpuIsBOUOmhYCOIdOGK9aOtes6y3WcVm/v6Dwv9IMd9Tzy\n", "9KZRWXc68nogO+ghFIScoIecgId4bzsFeWGqJpeSHfQe/2M6pu5onPa2FrKzsk5ZX3tbK16fn6zg\n", "iWs74okEne2tJPp7CPT0nDTvTMud7fzRmKfPPP28dNyf4y3PePrMC92f6bKdE+UzT9qfwWzi/f14\n", "geKIj+KID8im7mg73d09RPKL6O5z6O5z6ItDf8KhvSNGwvHhD2SRTELCcUgkIZGEvv44Dj7weIgn\n", "Uh0LZxJPOMQTcWIjnAm6UD6fhyf//mZC2Zk3GMi51EIexzn9DjHG3A78xFo7a9C0LcDD1toXB037\n", "LlBqrb1/4H0JUA+UANcCj460jtPZsGHDmf/FiIiIiEwQixcvHvGiyJFK2zeBLGPMg6SGMvkiqaFO\n", "XhvS7hngLWPMk8AG4DvACmttizHmbNdx3hshIiIiIilnvMLRWtsH3AF8HogCDwB3W2u7jTGPGWMe\n", "G2i3GfhL4ElSPXblwH0D83pPt45R2SIRERGRCeyMp2VFREREJL3o3mQRERGRDKLiTkRERCSDqLgT\n", "ERERySAq7kREREQyiIo7ERERkQySdkM4G2O+AnzPWls6YmMZt4wx/5PU8Dl5wCbgQWvtdndTybkw\n", "xiwiNXblPKAa+Kq19n13U8n5MsbcAPwTqWeFNwHft9b+zN1UcqGMMZOArcB91to/uJ1Hzo8xpgr4\n", "F2Ap0E7q7/PHp2ufVj13xpiZwP8l9chWSVPGmC+TGsz6JlJPMXkd+IMxRgNWpwljTDbwEvBzIB/4\n", "EbDcGBN2NZicF2NMIbAc+KG1tgD4DPAdY8wt7iaTi+DnQBE6bqatgWPji8B2UvvyNuB/GWOuPd0y\n", "aVPcGWN8wC9JVa4qAtJbMfB/rLUHrLUJUoXBVKDS3VhyDpYBCWvt49bahLX2KVIDmN/pci45P1OB\n", "l6y1zwJYazcCq4DrXE0lF8QY81WgE6hxO4tckGuAycBDA9+3O4AlwO7TLTBuTssOFG+5w8xKWmvb\n", "gYdIdS2/Atw/ltnk3I2wP/9pyLS7gSZr7eHRTyYXyVxgx5BpdmC6pJmBpwx96dj7gZ68pcD/cy2U\n", "XBBjzCXA10kVBh+6HEcuzJWkeu0eMcbcS+q07Lestb883QLjqeduGdA8zGuTMWYxcC/wX1GvXbo4\n", "7f4c3MgYcxPwGPC3Yx1QLkgY6BoyrQsIuZBFLiJjTD6pU+7rrbUvuZ1Hzp0xxk/qTNeD1toWt/PI\n", "BSsidUxtBKYAXwZ+PHCd7LDGTc+dtfZ1hik2B67tWQ/8hbW2yxgz5tnk3J1ufw5mjPki8BNSX0DP\n", "jkkwuVhiQM6QaSGgw4UscpEYY2YAL5O6QeazLseR8/dNYJO1duWgaeoYSV+9QLO19nsD79cYY34L\n", "3AOsHm6B8dRzdzpXAzNIXXDfQuoXZZExpnng7hFJQ8aYb5K6OebuM3Uty7i1k9RdlYMZTj1VK2nC\n", "GHMlsBZ4xVr7SWttr9uZ5Lz9R+BzxpiWgePmVOBZY8x/czmXnJ9dgN8YM7hmO2PnnMdx0usGmoHT\n", "eM9rKJT0ZYy5D/gBsMRae9oLQmX8MsYEgX3Ad0kNh/JF4NvADGttt5vZ5NwNGi7jEWvtI27nkYvL\n", "GLMfeMBau8LtLHLuBs5gVgNPAv+b1HWUrwK3Wms/GG6ZdOi5G8qDbulOdw8BEWCDMaZj4NVudM49\n", "bVhr+4A7gM8DUeABUr2wKuzS0/2khiV6eNDfZIcx5h/dDiYy0Vlre4CPAh8BGoBfA39zusIO0rDn\n", "TkREREROLx177kRERETkNFTciYiIiGQQFXciIiIiGUTFnYiIiEgGUXEnIiIikkFU3ImIiIhkEBV3\n", "IiIiIhlExZ2IiIhIBlFxJyIiIpJB/j++0ggtVN2ktwAAAABJRU5ErkJggg==\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x1175fc710>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.distplot(y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Setup" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "prior = abcpmc.TophatPrior([-5], [5])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def mean_dist(x, y):\n", " return np.abs(np.mean(x, axis=0) - np.mean(y, axis=0))\n", "\n", "dist = mean_dist" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def create_new_sample(theta):\n", " return np.random.normal(theta, sigma, n)\n", "postfn = create_new_sample" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Verification" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[-0.4025917]\n", "0.000582605098998\n" ] } ], "source": [ "theta = prior()\n", "print theta\n", "x = postfn([mean])\n", "d = dist(x, y)\n", "print d" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x11780e8d0>" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAnUAAAG4CAYAAAAjaRGjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4XOd95v3vmYIZ9EEHwV4PRUESJZGU1SxRsmzLRXIS\n", "lyjJOmWj3U2yKW9ev0nsJPba7258xd5NsoljO/bG2U1iR4mLYiu2ZUmWZDWqixTFckCwo/cyA8xg\n", "2v4xGBCsGGAOcGbO3J/r0iVicPDMDw8xg5vPeYqRTqcRERERkeLmcboAEREREcmfQp2IiIiICyjU\n", "iYiIiLiAQp2IiIiICyjUiYiIiLiAQp2IiIiIC/hyucg0zTXAl4HbgQngc5Zl/ZVpmnXA14C9wDjw\n", "acuyvrZcxYqIiIjIpRkL7VNnmqYBvAL8GPgEYALPAu8D/l8gAjwIXAf8EHivZVkvLWPNIiIiInKB\n", "XEbqbgJWAX9gWVYaOGya5tuAGeB+YKtlWTPAK6ZpfgP4KKBQJyIiIrKCcplTdwNwCPi8aZq9pmla\n", "wM1APRC3LOvUvGs7gO22VykiIiIiV5RLqKsnM2duEFgL/BLwV0AlMH3BtVNAhY31iYiIiEgOcrn9\n", "GgNGLMv609mP95mm+W3gM0DwgmsrgLCN9YmIiIhIDnIJdUcBn2maHsuyUvO+7nXgdtM011qWdXb2\n", "cZPMrdoFvfbaa1deoSEiIiJSAm688UbDjnZyCXWPk7mt+inTND9DZuHEB4B3ABuAz5qm+SDQDjwA\n", "3Jvrk2/ZsoVAILDYmmWeWCxGZ2en+tIG6kv7qC/to760h/rRPupL+2T70i4LhjrLsqKmad4JfAEY\n", "ILMf3W9alvXybJj7MtBF5rbrxyzLeiXXJw8EAgSDF97BlaVQX9pHfWkf9aV91Jf2UD/aR31ZeHLa\n", "fNiyrONcYgTOsqxR4CN2FyUiIiIii6NjwkRERERcQKFORERExAUU6kRERERcIKc5deJ+iUSCsbGx\n", "vNsJhUL4fPqxEhERWWn67SsAjI2N8b2n3qKyqmbJbUTCE9y3t53GxkYbKxMREZFcKNTJnMqqGmpD\n", "9U6XISIiIkugOXUiIiIiLqBQJyIiIuICCnUiIiIiLqBQJyIiIuICCnUiIiIiLqBQJyIiIuICCnUi\n", "IiIiLqBQJyIiIuICCnUiIiIiLqBQJyIiIuICCnUiIiIiLqBQJyIiIuICPqcLkPyk02kSicTcf0uV\n", "TCZtrEpERERWmkJdkevt7ePx54/Q0T2Nz7f0v87Y5ADl9RvsK0xERERWlEJd0UtTGWok1Lgav9+/\n", "5FZG4mEbaxIREZGVpjl1IiIiIi6gUCciIiLiAgp1IiIiIi6gUCciIiLiAgp1IiIiIi6gUCciIiLi\n", "Agp1IiIiIi6gUCciIiLiAgp1IiIiIi6gUCciIiLiAgp1IiIiIi6gUCciIiLiAgp1IiIiIi6gUCci\n", "IiLiAgp1IiIiIi6gUCciIiLiAgp1IiIiIi6gUCciIiLiAgp1IiIiIi6gUCciIiLiAgp1IiIiIi6g\n", "UCciIiLiAj6nC5DiFp1JMDweZXg8Su/gGFb3FNdubaV9UyMb22rwevXvBhERkZWgUCdLkkqneflQ\n", "H69bA6TT8z7RHeGVI8MAlAd87L6qhQ/fs431rTXOFCoiIlIiFOpk0aIzCR5/6Qxn+ifnHqsM+qip\n", "9LG6qZITPWFGJmJMxxI8s7+bZw90c8f1a3jgXSZtjVUOVi4iIuJeCnWyKENj0/xw3ykmIjMAXL2p\n", "gbdd3Uow4GN8bIS7d6+joaGB3qEIb3QM8p2nOxkYmeLp17t4Zn8377ttIx99zw4Cfq+z34iIiIjL\n", "KNRJzkYmonz7qU4SyRQej8Ed169mx8aGi64zDIO2piramqp4503reeLl0zz0eAcjE1G+98wJXj86\n", "wO/+3A1sXVvnwHchIiLiTprFLjlJp9M880YXiWSK8oCPn75zyyUD3YX8Pg/33rKRr3ziHXzkHdvw\n", "GNA1EOZjf/ks//SjoySTqRWoXkRExP00Uic56TgzRvdgBIA7b1xDS33FRdckkwmGh4cv28a7dzex\n", "tS3IVx/poH80yjces3jD6uPXPmBSXeE/79pQKITPpx9PERGRXOm3piwoNpPk+Td7ANiwqoZNbbWX\n", "vC4SnuSxfUM0t0Su2N7enQ28fmyMjq4IR06P8/G/eY07rm2kvqZstp0J7tvbTmNjo73fiIiIiIsp\n", "1MmCXjrUy3Qsgc9rcPvOtiteW1lVTW2ofsE272loZN3pEZ56rYtINMljrw2w98a1bFuneXYiIiJL\n", "oVAnVzQwOsXB45lbqjdub6GmMmBb2+b6euqqg/xw3ynC03Eef/kM4+EZtq7Sj6WIiMhi6benXNGz\n", "b3QDEKoOcP22Jtvbb66v4EN3b+XRfafpHY7w8uE+RsYqufPGtXm1m0gkGBsbW9TXRKNRxsbGGBoa\n", "IhgMzj2u+X0iIlIM9JtKLmtobJq+kSkAbru2bdmO/KoI+rnv7Zv48Stn6Owap7Mnwl9+6yh//Kv1\n", "lAeW9iM6NjbG9556i8qq3E+ySMTj9PWH6Yt04/NnFm5ofp+IiBQLhTq5rKOnRwGorihjXWv1sj6X\n", "z+vhnTetp6q8l/3HBjl4YpRPfOl5PvMfbqa6omxJbVZW1eQ0vy8rHo8Tno5SE6rH7/cv/AUiIiIF\n", "RPvUySWlUmk6zmRCnbm+DsMwlv05DcPg1uva2LUthAF0nh3jE198ntHJ6LI/t4iISLHLaaTONM2P\n", "AX8CxOY9/G7gMPA1YC8wDnzasqyv2V2krLwz/ZNMxxJAJtStpO3rqrnebOJvv9/Jqd4JPv7Xz/Ff\n", "/9OtNIbKV7QOERGRYpLrSN1O4A8sy6qe99/zwFeBCaAZ+CDwOdM0b1qmWmUFWadHAFjVUEGoyr4V\n", "r7m6pb2Z3/93u/B5DboHI/z+Xz9H3/CV978TEREpZbmGuuuBA/MfME2zCrgf+JRlWTOWZb0CfAP4\n", "qL0lykqLziQ42TMBZLYdccot17bxh798E2U+DwMjU/z+F57jbP+kY/WIiIgUsgVDnWmaFYAJ/LZp\n", "mr2maR42TfOXga1A3LKsU/Mu7wC2L0ulsmKOd42TTKXxegy2rAk5Wsuuq1r4Lw/eTLDMy8hElI9/\n", "8TlO9ow7WpOIiEghymVOXTPwLPBF4AngbcAjwP8Api+4dgq4+FDQy4jFYgtfJFcUm5kBMvuy5SMR\n", "nyEdjxOPxzlyKrPZ8PrWajxGing8lVMbyUSCVNogHo/nWUucaDRKNJpZILF1TRV//Mu7+G//5zXG\n", "wzN8/K+f4w9/6Ua2rr184IxGoyRmv5+cn3e2D+f35YW1SG6yr229xvOnvrSH+tE+6kv72N2HRjqd\n", "XvQXmab5l2RG5G61LKty3uP/Gbjfsqx7FmrjtddeW/wTy0UGBgY52pugojK/LUdGuo9SVt2KUVbN\n", "U29mbnHu3lZJSyj3rT36u8/g8ZXR1NKaVy3hiTF2bqoiFDo/tPWOzPAPTw0xFUtR5jP4+TsbWd98\n", "6fl+Y2Nj7D8Rpqomv5HGy9UiIiJilxtvvNGWLSYWHKkzTfNG4J2WZX123sPlwBlgr2maay3LOpu9\n", "HDiU65Nv2bKFQGDlJ+G7SUXlKY72dtLc1JzXqQfl6XG8FS109CWAScoDXq4z1+Hx5P5zlo5HMbx+\n", "2lZd+XzYhUyUBzHN1Rdt+Hs1sN0M85mvvcroZIx/emaET/zijVy14eLVuUNDQ/RFuqlZxD51iUSC\n", "gcGB8/rycrXIlcViMTo7O/Uat4H60h7qR/uoL+2T7Uu75JICJoA/Nk2zA3iYzPYlHwHeDoSAz5qm\n", "+SDQDjwA3JvrkwcCgfOOY5LFC5RlNub1+Xx5bZjr85fh9fvpGsgskNiyJkQgsLhNf70+H16fP++N\n", "e31+P8Fg8JI/G1vWBfnsb9zGJ774PCMTUT7796/xqV+9mas3NZx3XTAYxOdfWi3z+/JKtcjC9Bq3\n", "j/rSHupH+6gvC8+CCyUsyzpGZruST5IJeH8F/KJlWfuBBwE/0AV8C/jY7CpYKUIziRSDY5ljwdY0\n", "L+8JEvlY3VTFn/z6rdTXBJmOJfn0/9rHoRPDTpclIiLiqJzu11mW9QPgB5d4fJTMqJ24wMBYjOwU\n", "y7amyitf7LBssMuO2H36f+275IidiIhIqdAxYTKnfySzCqcxVE6wrPCPBdaInYiIyDkKdTKnfzSz\n", "bcfqpiqHK8mdgp2IiEiGQp0AMJNIMzKZ2dNtTRGFOrh0sOs4O+F0WSIiIitKoU4AGJjIbDBsAKsK\n", "fD7dpVwY7P78Xw4xMKaNMUVEpHQo1AkAA+OZFRJNdeUE/F6Hq1ma+cEuOpPiyTcG6RkKO12WiIjI\n", "ilCoEwD6xzMjdcU0n+5SssEuVFVGIpnm3547qWAnIiIlQaFOiMYSjE1lRuqKPdRB5nv4/Z9rpzzg\n", "JZ5I8W/PnaRvOOJ0WSIiIstKoU7onh3JMgxY1Vh88+kupbWhnHtuaKIy6COeSPHIsycYGJ1yuiwR\n", "EZFlo1AndA9mRrEaasooK9L5dJdSU+nn/rdvpjzgYyaR4nvPnmB4fNrpskRERJaFQp3QPZAZqWup\n", "c9/BzHU1Qe67fROBMi+xmSTffeYEo5NRp8sSERGxnUJdiZuOJRiZyIScljp3HszcGCrnvts2Uebz\n", "MB1L8N1nTjA5NeN0WSIiIrZSqCtxPfPm0zWHyhyuZvk011fwvts24fN6iEzHeeTZE0zHEk6XJSIi\n", "YhuFuhI3OJqZYxaqMPB53f3jsKqxkntvXo/HgNHJGN9//iTxRNLpskRERGzh7t/isqChsUyoq6s0\n", "HK5kZaxrreGu3esA6B+Z4tF9p0mm0g5XJSIikj+FuhJ3LtSVzo+Cua6O265rA+BM/yRPvXaWdFrB\n", "TkREilvp/CaXi0xF40SimXllpTJSl3Xd1iZuMJsBsE6P8ro14HBFIiIi+fE5XYA4Z2js3NYeoYrS\n", "CnUAb2tvZSISo7NrnBff6qO63Eeg9LpBRERcQqGuhA3NbsRbW1WG31c4aSaZTDA8PJxXG8PDw6RS\n", "qSteYxgGd+9ex0Skk4HRaZ58vZubt1fSltczi4iIOEOhroRl59M1hsqBwtmQNxKe5LF9QzS3LP28\n", "1r6es1TX1lO3wHU+r4f33LKRbz15jPB0nFc6IqxfHSfk9y/5uUVERJygUFfC5kJdbWGFOoDKqmpq\n", "Q/VL/vqJ8dHcn6vcz3tu2cB3nu4kFk/z41e7+MCdW/F6Cmf0UkREZCFaKFGi4okko5MxAJpC5Q5X\n", "47ymugruvGE1AH0j07z4Vq/DFYmIiCyOQl2JGh4/NzLXqFAHwKa2Gja2ZM6/3d8xyInucYcrEhER\n", "yZ1CXYnK3notD/ioLNf8sayr1gZpqcuE3B+/cobJKR0lJiIixUGhrkQNzoY63Xo9n8djcPfuNQTL\n", "vMwkUjzz5hDxxJVX0YqIiBQChboSdf7KV5mvqtzPPXvWAzAajvOdZ047XJGIiMjCFOpKUCqVnptT\n", "1xgKOlxNYVrXWs3125oA+NFLPRw8PuRwRSIiIlemUFeCRidjc4fYN4UqHK6mcN10dSuhKj9p4M//\n", "6XUi03GnSxIREbkshboSlL316vN6qK0qc7iawuX1eri1vR6f12BwdJqv/OtBp0sSERG5LIW6EnRu\n", "Pl0Qw9AGu1dSV1XGz9yRmV/35Ktnef7NHocrEhERuTSFuhKkla+L8849bbRvbgDgS98+wOTUjMMV\n", "iYiIXEyhrsSk02mGxrXydTE8hsHv/OwNBMq8jIdn+LtHDjldkoiIyEUU6krMVDRBbCYJQEOtQl2u\n", "Wuor+IV3bwfg8ZfP8GbnoMMViYiInE+hrsSMzZ73ClBXHXCwkuLz/ts2sXlNLQBf+OYBYvGkwxWJ\n", "iIic43O6AFlZo+FMqKsI+ijzex2upvAlkwmGh4fnPv6Fezbw///vA/QORfjf39s/t4giF6FQCJ9P\n", "LzkREVke+g1TYsYmM5sOh6o0SpeLSHiSx/YN0dwSmXvMXFfNkdOTfH9fF+lUnLoctoWJhCe4b287\n", "jY2Ny1muiIiUMIW6EpO9/RrSrdecVVZVUxuqn/v49utr6RrsYHJqhjc6w3zgjs3aGkZERBynOXUl\n", "ZnQ21NVV63iwpfL7vNy+sw2AnqEInV3jDlckIiKiUFdSkskUk5HMHmsaqcvPhlU1rGupBuCFN3uI\n", "J7RoQkREnKVQV0LGIzOkZ/+sUJcfwzC4bWcbHgPC03Fet7TFiYiIOEuhroRk59N5DIOaCp35mq+6\n", "6iDXbm0C4A1rgIlIbIGvEBERWT4KdSVkdHbla21VGR6PJvbbYfdVLZQHfCRTaZ4/0Ot0OSIiUsIU\n", "6kqIVr7ar8zv5ZZrVgFwomecroGwwxWJiEipUqgrIWNzK18V6uxkrq+juS5z5NoLb/aQTqcX+AoR\n", "ERH7KdSVkOxpEiFtZ2IrwzC45drMFieDY9McOzvmcEUiIlKKFOpKxHQsQWwms+2GTpOw3+qmKjas\n", "qgHgxbd6SSRTDlckIiKlRqGuRGRvvYJuvy6Xm69ZhQFMTsU52DnkdDkiIlJiFOpKRHbla7DMSzCg\n", "0+GWQ31NkKs2Zo4Te+3oANGZhMMViYhIKVGoKxFa+boy9lzdis/rIRZP8uqRAafLERGREqJQVyLG\n", "wgp1K6Ey6Of6bZkNiQ8eH2JyasbhikREpFQo1JWIue1MqrTydbnt3NZEsMxLKpXm1SP9TpcjIiIl\n", "QqGuBKRSacbDmREjjdQtvzK/lxu3twBw5NTIeYtURERElotCXQmYiMyQmt0QV6FuZbRvbqCy3E86\n", "DS8f7nO6HBERKQEKdSUgO1JkGJlzX2X5+bwedl+VGa07dnaM0UnNrRMRkeWlUFcCRsOZ7UxqKsvw\n", "evRXvlK2b6inpjITog8cH3e4GhERcTv9hi8Bc9uZ6CSJFeX1GOy5uhWArqEox7snHa5IRETcTKGu\n", "BIxrOxPHbF0bor4ms+L44WfPOFyNiIi4Wc6hzjTNFtM0B0zTfO/sx3WmaT5smuaYaZqnTdP8leUr\n", "U/IxHsnM56qpVKhbaR7DYM+OzNy6QyfHOHp6xOGKRETErRYzUve3QD2Qnv34q8AE0Ax8EPicaZo3\n", "2Vue5CuZShOZigPMze+SlbVpdS2hSj8ADz1mOVyNiIi4VU6hzjTN/wSEgbOzH1cB9wOfsixrxrKs\n", "V4BvAB9drkJlacJTM3MpXKHOGYZhcM2mGiBzJmzHmVGHKxIRETdaMNSZprkN+F3g1+Y9vBWIW5Z1\n", "at5jHcB2W6uTvE1Ezm2loVDnnLXN5bQ1lAPw0OMarRMREftdMdSZpukD/h74z5ZlzR9eqASmL7h8\n", "CqiwtzzJVzbUVQR9+LxaF+MUj2Hw/lvXAvDK4X46u8YcrkhERNzGt8Dn/xjYb1nWY6ZpGrOPGWQC\n", "3IWHiFaQuUWbs1hMxyflKzaTCW2JROKSnx+bzGTv6go/8Xj8su0k4jOk4/ErXrOQZCJBKm3k1YZd\n", "7SyljWwfzu9Lu76nRDzOtRubaGuspGcowjcePcLv/cL1ebVZyLKvbb3G86e+tIf60T7qS/vY3YcL\n", "hboPA6tM0/zI7Mc1wEPAnwJlpmmutSzr7OznTODQYp68s7NzMZfLJQwMDGb+Pzhwyc/3D0cA8BkJ\n", "enp7LtvOSE8vZdVpwtPRPGoZwOMrA493yW3Y1U4+bczvS7u+p/DEGMeOhblpaxkPD0V45cgATzz3\n", "Bqvq3H1LXK9x+6gv7aF+tI/6svBcMdRZlnXV/I9N0zwJ/IZlWT8wTXMn8FnTNB8E2oEHgHsX8+Rb\n", "tmwhENA2G/moqDzF0d5Ompua8fku/ut8qeMEEKeloZa2Vc2Xbac8PY63ooWaUP2Sa0nHoxheP22r\n", "2pbchl3tLKWNRCLBwODAeX1p1/c0UR7ENFfztrp69nU8T9/wFPvPwDtuuzqvdgtVLBajs7NTr3Eb\n", "qC/toX60j/rSPtm+tMtCI3VX8iDwZaCLzG3Xj82ugs1ZIBAgGLzwLq4sRqAsM9Lj8/nw+/0XfX5y\n", "djuTUE35JT+f5fOX4fX7r3jNQrw+H15ffm3Y1U4+bczvS7u+J5/fTzAYpLKygp+9x+QvHnqDlw4N\n", "0Dc6w4ZVNXm1Xcj0GreP+tIe6kf7qC8Lz6JCnWVZG+f9eRT4yBUuF4fNxJNEZ5KAVr4WkjtvWMND\n", "j1v0DU/x0OMWf/DR3U6XJCIiLqDlkC6m7UwKk9fr4cN3bwPghTd7ON034XBFIiLiBgp1LpYNdR7D\n", "oLI8v9uHYq+9u9bSXF9BOg3/8niH0+WIiIgLKNS5WDbUVVf68RjGAlfLSvJ5PXz47q0APHugm7P9\n", "kw5XJCIixU6hzsUmpjKhrqZCt14L0V271tFUV54ZrXtCo3UiIpIfhToXmwhnNjWsqdKS80Lk93n4\n", "0F2Z0bpn3uiidyjicEUiIlLMFOpcTCN1he8de9ZRXxMglYaHn9ZGniIisnQKdS6VTqeZnJtTp1BX\n", "qPw+L/e/fTMAT7xyhtGJpZ/oISIipS2fzYelgE3FEiSSaQBqFeocl0wmGB4evuTndm+r5qGAl+lY\n", "kocee4sP3bnhsu2EQqFLnhwiIiKi3w4uNak96gpKJDzJY/uGaG659Ly5zasqeOvUJI+/3ENVAMp8\n", "Fw+iR8IT3Le3ncbGxuUuV0REipBCnUuNz4Y6v89DoCy/w+jFHpVV1dRe5mzd3e3VHDlzhHgyzdmh\n", "FDdsV3ATEZHF0Zw6l8qO1NVUlmFoj7qCVxH0c9XGTODbf2yQRDLlcEUiIlJsFOpcamJeqJPicP22\n", "JgwDpmMJjp4edbocEREpMgp1LjURmd2jrlJ71BWLmsoAW9aEAHjDGiCVSjtckYiIFBOFOpfSSF1x\n", "usFsBjJ/f8e7xxyuRkREiolCnQslU2nCU3FAoa7YNIbKWd9aDcDr1gDptEbrREQkNwp1LhSemiEb\n", "BRTqik92tG5oLMrZ/kmHqxERkWKhUOdCE9qjrqitaqyktaECyIzWiYiI5EKhzoWyoa4i6MPn1V9x\n", "sTEMY260rnswQt/wpTcsFhERmU+/8V1ocmr2zNcKjdIVqw2raqivCQIarRMRkdwo1LlQdpFEdYXf\n", "4UpkqTKjdU0AnOyZYGQi6nBFIiJS6BTqXEgjde6wZW0dVbPBfH/HoMPViIhIoVOoc6HJ2ZG6KoW6\n", "oub1GFy3JTNaZ50ZZTqWdLgiEREpZAp1LpNKp4lMZ0fqdPu12O3YWE+Zz0MqlaajK+x0OSIiUsAU\n", "6lxmKpoge7qURuqKX5nfy45NDQB0dIWJxTVaJyIil6ZQ5zLhqXN71Gmkzh2u3dKIx4BYPMXzB7US\n", "VkRELk2hzmWyiyT8Pg8Bv9fhasQO1RVlbFkbAuCxl3tIpXR0mIiIXEyhzmXOLZLwYxiGw9WIXXZu\n", "zSyY6B+N8vLhPoerERGRQqRQ5zLZ26/V5ZpP5yZNdRW01AUA+NefHHe4GhERKUQKdS6THamr1pmv\n", "rnPV+moADp0YpuPMqMPViIhIoVGoc5nsnLqqci2ScJvVDUHaGsoBjdaJiMjFFOpc5twRYRqpcxvD\n", "MHjnnjYAnj/QTf/IlMMViYhIIVGoc5GZeHJuHzNtZ+JOt7Q3E6oKkErD957VaJ2IiJyjUOcik/P2\n", "qNPGw+7k93l4z60bAXj8pdOEp+MOVyQiIoVCoc5FsoskDKBSc+pc6z23bKDM52E6luSxF085XY6I\n", "iBQIhToXyW5nUlnux+vRHnVuVVsV4O7d6wB45NkTJJIphysSEZFCoFDnIvM3HhZ3u/+OzRgGDI1H\n", "eW5/t9PliIhIAVCoc5HsnDqtfHW/1U1V7NnRCsDDPzlOOq2jw0RESp1CnYuc285EI3Wl4P47NgNw\n", "onucQyeGHa5GREScplDnIpPTsxsPa6SuJLRvamDT6loAvvuMtjcRESl1CnUukUqlicxub6FzX0uD\n", "YRjc//bMaN1Lh/roG444XJGIiDhJoc4lpqIJstOqqit1+7VU3L5zNXXVAdLpzEpYEREpXQp1LjF/\n", "E1rdfi0dfp+H92Y3I3759NxorYiIlB6f0wWIPbKhrsznIeD3OlyNLIdkMsHw8MULInabNTz0uMF0\n", "LMm/PnWYd+1ZvWBboVAIn08vfxERN9G7ukuE5/ao0yidW0XCkzy2b4jmlovnzm1oqaCzJ8Ijz5/F\n", "QwKPcfnNpyPhCe7b205jY+NylisiIitMoc4lJqe1nUkpqKyqpjZUf9Hju66uoLPHIhJNMjLlZfPq\n", "kAPViYiIkzSnziXCc6FOI3WlqKE2yNrmKgAOdAw5XI2IiDhBoc4lwjoirORdt7UJgN7hCAMjUw5X\n", "IyIiK02hzgXS6bRG6oR1rdWEqgMAHOgcdLgaERFZaQp1LpBIQTyRAhTqSplhGFy3JbP4ofPs2Hnb\n", "3IiIiPsp1LlAbN7vbt1+LW3m+noCfi+pNLx1XHPrRERKiUKdC0RnQ50BVAYV6kqZ3+fh6k0NALx1\n", "YnhuBFdERNxPoc4FYvHM+WAV5X48nsvvTyal4ZrNDXgMiM0k6Tgz6nQ5IiKyQhTqXCA7UldVrlE6\n", "yWxAvXlNZp+6A8cGSWcPBRYREVdTqHOB7Jw6zaeTrOz2JqOTMc72TzpcjYiIrASFOheIzt5+rSrX\n", "ylfJaKmvoLWhAoADx7RgQkSkFCjUuUAskfm/jgiT+bKjdWf6JxmZiDpcjYiILDeFuiKXTqfP3X7V\n", "nDqZZ1Nb7VzQP3BMmxGLiLidL5eLTNP8MPBpYA1wGvhDy7K+a5pmHfA1YC8wDnzasqyvLVexcrHw\n", "dJLU7Dz4Km08LPN4PAbXbGnkhTd7sU6P8rb2VZQHcnrJi4hIEVpwpM40zW1kgtsvW5ZVDfw28M+m\n", "aTYAXwUmgGbgg8DnTNO8aRnrlQuMhc/tPKyROrnQjo0N+H0ekqk0h04MO12OiIgsowVDnWVZHUCz\n", "ZVkvmqbpA1rJBLkZ4H7gU5ZlzViW9QrwDeCjy1mwnG80PAOAx4CKoEZh5HwBv5ftG+oBOHh8iGRK\n", "mxGLiLhVTnPqLMuaMk1zIxAF/h74Q2ALELcs69S8SzuA7XYXKZeXHamrLPdjGNp4WC6WPQ92Kpqg\n", "s2vc4WpSvvKnAAAgAElEQVRERGS5LGZo5wwQAN4OfA/4HDB9wTVTQEWuDcZisUU8vVzK0HhmVWNF\n", "0Ec8vvQD3BPxGdLxeF5tJBMJUmkjrzbsamcpbSQSifP+b1ctdrWz1DYqAh7Wt1Zzum+S/dYAd19X\n", "SzQaJRpdvhWx2de2XuP5U1/aQ/1oH/Wlfezuw5xDnWVZydk/PmWa5reBXUDwgssqgHCubXZ2duZ6\n", "qVxGd39m5MVrJOjp7VlyOyM9vZRVpwlPL/0X/cDAAB5fGXi8S27DrnbyaWNgcMDWWuxqJ582VoVS\n", "nO7L/CPAOhVlVVWE/v7+JdeSK73G7aO+tIf60T7qy8KzYKgzTfM9wP9jWdY98x4OAMeB95imuday\n", "rLPZy4FDuT75li1bCAQCi6lXLpD48TAwTUOoirZVq5bcTnl6HG9FCzWh+iW3kY5HMbx+2la1LbkN\n", "u9pZShuJRIKBwQGam5rx+Xy21WJXO/m0sao1zbHekwyPRxmaCmCaJo2NjUuuZSGxWIzOzk69xm2g\n", "vrSH+tE+6kv7ZPvSLrmM1L0G7DJN8xfILIR4N3AvsAdYB3zWNM0HgXbggdnP5SQQCBAMXjjYJ4sx\n", "HsncKqypCOD3L331q89fhtfvz6sNr8+H15dfG3a1k08bPp9v7uvc8j0B7NzaxI9fPUv3UIzJKKxZ\n", "gdeeXuP2UV/aQ/1oH/Vl4cll9Ws/8H4yW5mMAv8FuH92VeyDgB/oAr4FfGx2FaysgGQqzXjk3EIJ\n", "kSvZujZEecBHGnji1V6nyxEREZvlNKfOsqzngN2XeHwU+IjdRUluxiaj5zYeLtd2JnJlXq+HazY3\n", "8vLhPp450M+//0CciqD+MSAi4hY6JqyIDY6dW3ysjYclF1dvqsfjgehMkidePuN0OSIiYiOFuiI2\n", "NBvqPAYEyvJbnSmloSLoZ2NrJQDfe/YEyexQr4iIFD2FuiKWDXUBP9p4WHK2fV0VAP0jU7x8SHPr\n", "RETcQqGuiGVvv2palCxGXVUZOzbUAvDw08cdrkZEROyiUFfEzo3UaZROFufde1YDcOTUCEdPjThc\n", "jYiI2EGhrohlQ11QC19lkdo3hdiwqgaA7zytXeFFRNxAoa6IDY1ljvQK6ParLJJhGPzUnZsBePGt\n", "XroHcz7dT0RECpRCXZFKJFOMTmZCXVC3X2UJbt+5hobaIOk0PKzROhGRoqdQV6RGxqOkZ3ej0Eid\n", "LIXf5+G+2zOjdU++enbuHwkiIlKcFOqK1PyNh7X6VZbq3TevpyLoI55I8f3nTjpdjoiI5EGhrkid\n", "W/nqwefV7VdZmoqgn3e/bQMAP3jhJNFYwtmCRERkyRTqilQ21NVVaZhO8nPf2zfh8xpMTsV57KXT\n", "TpcjIiJLpFBXpLKhLlStUCf5aagtZ++Na4HMgol4IuVwRSIishQKdUVqUCN1YqOfuWsrhgFD41Ge\n", "fu2s0+WIiMgSKNQVqaHx2ZE6hTqxweqmKm65tg2Abz91jGQq7XBFIiKyWAp1RWru9qtCndjkQ3dt\n", "BaB7MMK+gz0OVyMiIoulUFeEZuJJxsMzQOZwdhE7bF4T4gazGYBv/vgY6bRG60REiolCXRHK3noF\n", "jdSJvT50d2a07kT3OG9Ygw5XIyIii6FQV4SG5m08rIUSYqerNzVw1YZ6AP7lxx0OVyMiIouhUFeE\n", "sqGuusJPmV9/hWIfwzDmRusOnRjmYOeQwxWJiEiulAiKUHY7k8ZQucOViBvtuqqFzWtqAfinxyyH\n", "qxERkVwp1BWhobHMwesKdbIcDMPg5965HYCDx4c4eFyjdSIixUChrggNaaROltnuHedG6x7SaJ2I\n", "SFFQqCtC2VDXpFAny8QwDB64xwTgzc4h3tJonYhIwVOoK0KaUycrYc/VrWxarbl1IiLFQqGuyEzH\n", "EkSm44BCnSyvzNw6jdaJiBQLhboiM3+POt1+leWm0ToRkeKhUFdkBueFuobaoIOVSCkwDIMH5o3W\n", "HTox7HBFIiJyOQp1RSY7UheqDuD3eR2uRkrBTVe3sqktO1p31OFqRETkchTqioy2M5GVZhgGD7wr\n", "M1p34JhG60RECpVCXZHRdibiBI3WiYgUPoW6IqPtTMQJhmHws+/UaJ2ISCFTqCsyc7dfaxXqZGW9\n", "rf3caJ1OmRARKTwKdUUknU7r9qs4Zv5o3f5jgxqtExEpMD6nC5DcRabjRGeSgG6/ytIlkwmGh5cW\n", "yLa0+ljXUsmZ/gj/+OgRPvvrt9lcnYiILJVCXRGZv0edQp0sVSQ8yWP7hmhuiSzp6ze2lnOmP8Jb\n", "x4d5s3OQa7c02VyhiIgshUJdEcneevUYUF8TcLgaKWaVVdXUhuqX9LU1tWkOnhxnZCLO1x89yjW/\n", "0YhhGDZXKCIii6U5dUUkG+rqa4J4vfqrE2cYhsF1mzILJg6fHOGNjkGHKxIREVCoKyrazkQKRVtD\n", "kM2rqwH4+qNHSKfTDlckIiIKdUVEp0lIoTAMg59++zoAOs6M8cqRfocrEhERhboiMjQWBRTqpDBc\n", "tb6W9s0NAHz90aMarRMRcZhCXRHRHnVSSAzD4OfftR2AE93jvPhWr8MViYiUNoW6IpFOpxka1+1X\n", "KSztmxvZuTWzpcnXHz1KKqXROhERp2hLkyIxHp4hnkgBCnXivPkbGL/v5lXsPzbI6b5JfvjcUW7a\n", "0UQ0GmVsbIyhoSGCweAV2wqFQvh8eisSEcmX3kmLxNC8jYd1+1WcduEGxm0NQXqGo3zj8RNMhKdI\n", "JRL09Yfpi3Tj8/uv0M4E9+1tp7GxcaVKFxFxLYW6IpHdzsTn9VBbpY2HxXnzNzC+9bog33zyGBNT\n", "CQYmPGxqqyc8HaUmVI//CqFORETsozl1ReLcdiZBPB7t3i+Fpbm+go1tNQC8cqRPc+tERBygUFck\n", "tPGwFLo9O1qBzPzPjrNjDlcjIlJ6FOqKxMDoFADNdRUOVyJyaY2hcjavzhwf9kbHkEbrRERWmEJd\n", "kRga1R51Uvh2z47WTU7FOTs043A1IiKlRaGuSGRH6po0UicFrKE2yNa1IQCO9URJJFMOVyQiUjoU\n", "6orATDzJ6GQMgOY6jdRJYduzoxUDiM6kOXpac+tERFaKQl0RmL9HXXO9RuqksIWqA2xde25unUbr\n", "RERWhkJdEcjeegXNqZPicIPZhGHAdCzBW8eHnS5HRKQkKNQVgYHZRRKh6gBlfq/D1YgsrKayjLWN\n", "ZQC8bg0wk0g6XJGIiPsp1BWBQa18lSK0tS2IR6N1IiIrZsFjwkzTvA34H4AJDAGfsyzrK6Zp1gFf\n", "A/YC48CnLcv62nIWW6q0R50Uo/KAh+3r6zh8apT9HYNcs7kRv0//jhQRWS5XfIedDW7fA/7csqwQ\n", "8CHgs6Zp3g18FZgAmoEPAp8zTfOmZa63JM2N1GnlqxSZ67Y2zI3WHT6p0ToRkeW00D+b1wGPWJb1\n", "EIBlWW8ATwG3APcDn7Isa8ayrFeAbwAfXc5iS5VG6qRYVVeUYa6vBzJz67QSVkRk+Vwx1FmWdcCy\n", "rF/Mfjw7cnc7YABxy7JOzbu8A9i+HEWWsmQqPbelifaok2J0w/ZmDGAqmuDoqRGnyxERca2cJ7iY\n", "plkLPAK8Sma0bvqCS6YADSXZbHQiSnL2DE2dJiHFKFQVYOu6OgBeswZIpjRaJyKyHBZcKAFgmuZG\n", "4N+AY8BHgKuB4AWXVQDhxTx5LBZbzOUlqbv/3I78NRUeotHoeZ+PzWTO10wkEnk9TyI+QzoeJx6P\n", "L7mNZCJBKm3k1YZd7SyljWwfzu/LYv+enKrlwr7cuaWejjOjhKfiHD4xxPb1mZCXiMeJRqMX/VzL\n", "Odn3Sb1f5kf9aB/1pX3s7sNcVr/eAPwQ+AfLsj42+9gxoMw0zbWWZZ3NXgocWsyTd3Z2LrLc0nPw\n", "VGY+XZnP4NRxC8Mwzvv8wMBg5v+DA3k9z0hPL2XVacLTS//lOjAwgMdXBp789tKzo5182pjfl275\n", "npyqZX5frqr30zsS59Uj/VT5p/AYBuGJMSwrTH9//5JrKRV6v7SH+tE+6svCc8VQZ5pmC/Ao8HnL\n", "sj6ffdyyrEnTNL9LZiXsg0A78ABw72KefMuWLQQCgcVXXUI6hk4AI7Q0VNLe3n7R5ysqT3G0t5Pm\n", "pmZ8vpwGXi+pPD2Ot6KFmlD9kttIx6MYXj9tq9qW3IZd7SyljUQiwcDgwHl9Wezfk1O1XKovg5VR\n", "vvXUCaZiKaaSlWxbG2KiPIhprqaxsXHJtbhdLBajs7NT75d5Uj/aR31pn2xf2mWhFPDvgUbgk6Zp\n", "fnLe438BPAh8Gegic9v1Y7OrYHMWCAQIBi+8iyvzjU5mbm+11Fdesq8CZZld+30+H36/f8nP4/OX\n", "4fX782rD6/Ph9eXXhl3t5NPG/L50y/fkVC3z+7Klwc/GthpO9kyw/9gwV21sxOf3EwwG9T6QA71f\n", "2kP9aB/1ZeG5YqizLOtPgD+5wiUfsbccuVB2OxPtUSdusOuqFk72TDA2GeN41xjN1U5XJCLiHtre\n", "vcBlz33VHnXiBs11FaxvzSS5V48MkE6nHa5IRMQ9FOoKWDqdZmgsu/GwRurEHXZd1QLAyESUrsEL\n", "d0YSEZGlUqgrYOHpONOxJKCROnGP1oZK1jRXAXDw5IRG60REbKJQV8AGRqbm/qw5deImu7OjdZNx\n", "3jw+6nA1IiLuoFBXwLLz6Xxeg7pqrTAS92hrqqKtsRKAR57v0midiIgNFOoK2ODsytfGUDkej7HA\n", "1SLFJTu37njPJAePDzlcjYhI8VOoK2Ba+Sputqa5ioaazD6L//JEh8PViIgUP4W6AjY4pj3qxL0M\n", "w6B9Qw0AB44NYZ0ecbgiEZHiplBXwDRSJ263pinI6qbMz/e/PHHM4WpERIqbQl0By86p0x514laG\n", "YfDem9cA8PLhPk72jDtckYhI8VKoK1DRmQTj4RkAmkIaqRP32nNVI6saMithv/ljjdaJiCyVQl2B\n", "Ghw9t9N+U71G6sS9vB6Dn7lrKwDPHeimezDscEUiIsVJoa5A9c9uPGwY0BRSqBN3u2vXWhprg6TT\n", "8O0nNVonIrIUCnUFqn84AmT2qPP7vA5XI7K8/D4PP7V3CwBPvnqWgdGpBb5CREQupFBXoPpmR+pa\n", "6ysdrkRkZbzzpvXUVpWRTKV5+KlOp8sRESk6CnUFqncoM1LX2qBFElIagmU+7n/7ZgAee+k0o5NR\n", "hysSESkuCnUFKjunrrVBI3VSOt5zy0Yqgz5mEim++5PjTpcjIlJUFOoKUDqdpm9YI3VSeirL/bzv\n", "tk0A/OCFk4SnZhyuSESkeCjUFaDx8AzRmSSgkTopPe+/fROBMi/TsSSPPHfS6XJERIqGQl0Byo7S\n", "gUKdlJ7aqgD33rwBgEeePc5UNO5sQSIiRUKhrgBlQ11F0Ed1hd/hakRW3gfu2IzP62FyKs4PXjjl\n", "dDkiIkVBoa4Azd/OxDAMh6sRWXkNteW886Z1ADz8dCfRWMLhikRECp9CXQGa286kUYskpHR98K5t\n", "+LwGE5EZjdaJiORAoa4A9WvjYRGa6sp5x571wOxo3YxG60RErkShrgBpOxORjA/dtRWf12AsHOPR\n", "faedLkdEpKAp1BWYWDzJ8HhmJ32tfJVS11xfwd27M3PrvvPUMWLxpMMViYgULoW6AjMwcu4gc4U6\n", "EfjgXVvxegxGJ2P86MVTTpcjIlKwFOoKTPbWq8dj0FRX7nA1Is5rbajkrl1rAfj2kxqtExG5HIW6\n", "AtM3nBmpawqV4/Pqr0cE4MPv2IbXYzAyEeOHL+iUCRGRS1FqKDBaJCFysdaGSu65KbMS9ps/PqZT\n", "JkRELkGhrsBkR+o0n07kfB95xzb8Pg8TkRkeee6E0+WIiBQcn9MFyPn6RrIjdQp14n7JZILh4eGc\n", "r79zZwuPv9rLt588xtvMWirLz72FhUIhfD69pYlI6dI7YAFJp9PzRup0+1XcLxKe5LF9QzS3RHK6\n", "vqbcwOsxmI4l+fK/HmHnltrZdia4b287jY2Ny1muiEhBU6grIKOTMWZmV/bpNAkpFZVV1dSG6nO6\n", "tha4bmuC160Bjp4Ns7t9DRVB//IWKCJSJDSnroBkF0mARupELud6s4kyn4dEMsXrRwecLkdEpGAo\n", "1BWQ7K3XqnI/VRVlDlcjUpiCZT52bmsG4ODxYcbDMYcrEhEpDAp1BUTbmYjkZue2RiqCPlLpNC8d\n", "6nO6HBGRgqBQV0Cyoa5FK19Frsjv87JnRysAx86OMTSu0ToREYW6ApK9/bpKoU5kQVdtqKeuJgDA\n", "68fGSafTDlckIuIshboC0qvbryI583gMbmlvA2BgLMaBzlGHKxIRcZZCXYEIT8cZm8zcQlrdVOVw\n", "NSLFYf2qalY3ZUa2v/nUKZLJlMMViYg4R6GuQHQPTM79eU1ztYOViBQPwzC45ZrMaF3P8DSP7jvl\n", "aD0iIk5SqCsQZ/vDQGY7k9oqbWcikqvm+go2tmamLPzjo0e1xYmIlCyFugLRNTtSt6a5CsMwHK5G\n", "pLhcvzVEsMxDeDrO1x896nQ5IiKOUKgrEF0DmZG6tS269SqyWBUBL++/dS0Aj754iuNdYw5XJCKy\n", "8hTqCkQ21K1p1iIJkaW4Z1cbbY2VpNPwNw8f1BYnIlJyFOoKQCKZmtt4WIskRJbG7/Pw4AeuAeDI\n", "qRF+8ka3wxWJiKwshboC0DsUIZnKjCpopE5k6XZd1cLuHS0A/N0jbxGZjjtckYjIylGoKwDZW68+\n", "r0FLvTYeFsnHr97fjt/nYWQixt//4LDT5YiIrBiFugKQXfm6qrEKr1d/JSL5aGus4iP3bAPgh/tO\n", "cfTUiLMFiYisECWIAqBFEiL2+uk7t7KutZp0Gr7wzf0kdNKEiJQAhboC0K1QJ2Irv8/Db3zwOgBO\n", "903y8NOdDlckIrL8FOoclk6n5208rJWvInbZsbGBd9+8AYCHHrPoHYo4W5CIyDJTqHPY2GSMSDQB\n", "aKROxG6/+N4d1FUHmEmk+MI395NKae86EXEvhTqHZefTgUKdiN2qyv38x5++FoA3O4f44QsnHa5I\n", "RGT5KNQ57OzsrdeG2iAVQb/D1Yi4z63XtvH2nasB+LvvH9ZtWBFxLZ/TBZQ6rXwVyV8ymWB4ePiy\n", "n//QHavZf2yAiUic//6PL/P7P9+OxzAuui4UCuHz6W1RRIrTot69TNPcAzxsWdbq2Y/rgK8Be4Fx\n", "4NOWZX3N9ipdrKtfiyRE8hUJT/LYviGaWy4/Cnf95lp+8uYQHWcn+NJ3DrN93fmvuUh4gvv2ttPY\n", "2Ljc5YqILIucQp1pmgbwy8CfATPzPvVVYAJoBq4Dfmia5iHLsl6yu1C36hrUSJ2IHSqrqqkN1V/2\n", "87Uh6B1L0nFmlP3Hx9m2sYW66uAKVigisrxynVP3CeC3gP8KGACmaVYB9wOfsixrxrKsV4BvAB9d\n", "jkLdKBpLMDg6DSjUiayE23e2URH0kUimefzlMyRT2pRYRNwj11D3t5Zl7QRenffYViBuWdapeY91\n", "ANttqs31ugfnr3zV7VeR5RYs83H3rnUADI5O8/KhfocrEhGxT063Xy3L6rvEw5XA9AWPTQE5n0gf\n", "i8VyvdSVTnaPAhAo81IZgGg0uug2YjOZu+GJRCKvWhLxGdLxOPF4fMltJBMJUmkjrzbsamcpbWT7\n", "cH5fFvv35FQtl+rL5aplse2saghyzeZ6Dh4f4XVrgLbGctoaK0nE40Sj0SW9DpdT9n2y1N8v86V+\n", "tI/60j5292E+y7ymgAsnpFQA4Utce0mdnaV9dM/+w+MA1Fd5OHz48JLaGBgYzPx/cCCvWkZ6eimr\n", "ThOeXvovtIGBATy+MvB486rFjnbyaWN+X7rle3KqloV+Lp36ntbUpTlV7mFyOsUTr5zh7e3VzExN\n", "YFlh+vsLc/Su1N8v7aJ+tI/6svDkE+qOAWWmaa61LOvs7GMmcCjXBrZs2UIgEMijhOL2/TfeACbZ\n", "uq6Jq6++ekltVFSe4mhvJ81NzXltxVCeHsdb0ULNFSaaLyQdj2J4/bStaltyG3a1s5Q2EokEA4MD\n", "5/VlsX9PTtVyqb5crlqW2s67qqM8/JOTRGfSdPbB7i0tmOaaglv9GovF6OzsLPn3y3ypH+2jvrRP\n", "ti/tsuQUYFnWpGma3wU+a5rmg0A78ABwb65tBAIBgsHSXX12ui+zncnWdfVL7odAWRkAPp8Pv3/p\n", "mxf7/GV4/f682vD6fHh9+bVhVzv5tDG/L93yPTlVy0I/l05+Ty0Nfm65to1n93dzomeCphovwWCw\n", "YN+TSv390i7qR/uoLwvPUk6UmH944oOAH+gCvgV8bHYVrCxgIjLDwOzK182rax2uRqQ0XbO5gQ2r\n", "agB4tWOMswM6bUJEiteiRuosy3qazJ502Y9HgY/YXFNJONk9PvfnjQp1Io4wDIO7d6/lnx/vIDwd\n", "54sPH+V/bmrTkX0iUpR09qtDjs+GutaGCqrK9QtExCnBMh/vvGk9hgF9I1G+9O03SafTC3+hiEiB\n", "UahzyInZULdJo3QijlvVWMnOzZnX4tOvd/HYS2ccrkhEZPEU6hxyvHsMUKgTKRQ71ldz7eY6AP7m\n", "4TfpPDvmcEUiIoujUOeAaCwxd5rE5tUhh6sREcjMr3vwfVtprisnnkjxJ//nZcbD2lxVRIqHQp0D\n", "TvVOkJ2yo5WvIoWjqsLPx39pD2U+D4Oj03z+H18lmdT5sCJSHBTqHHC8K3Nbp646QF2N9vgRKSRb\n", "1oT49Q9eB8CBY0P8ww+POFyRiEhuFOoccFyLJEQK2t271/HeWzcC8O2nOnn+QI/DFYmILCyfY8Jk\n", "iU70ZELd5jWaTydSKJLJBMPDw3Mff+DWVqxTQ3R2T/Ln//QaVYEEqxsrcmorFArldWyfiMhS6F1n\n", "hcUTKU73TgAaqRMpJJHwJI/tG6K55dypEtduqqZrMEJ0JsWffv0g9+5pocx35RsckfAE9+1tL7gz\n", "ZEXE/RTqVtjZ/kkSycwqCS2SECkslVXV1Ibq5z6uBe69pZzv/uQ4k1MJXumY5N6bN2AYhnNFiohc\n", "hubUrbATs/vTVQZ9tNTnditHRJzT1ljFrdetBuBkzwSvHR1wuCIRkUtTqFth5xZJhPSvfZEicc3m\n", "Bsx1mY2JXzrUx8me8QW+QkRk5SnUrbDjXVr5KlJsDMPgzhvX0BQqB+Dxl88wNDbtcFUiIudTqFtB\n", "qVSaU70KdSLFyOf18J5bNlAR9BFPpPj+CyeZisadLktEZI5C3QrqHY4wHUsCWiQhUoyqKsp4zy0b\n", "8XoMwlNxfrjvFAmdOCEiBUKhbgVZp0cAKPN7WdNc5XA1IrIULfUV3L17HQB9w1M89VoX6ey5fyIi\n", "DlKoW0FvHc9sbLpjQz1er7pepFhtXRti944WADrOjPLyoT6HKxIRUahbUQePDwHQvrnB4UpEJF+7\n", "r2qZWxH76tEBDp8cXuArRESWl0LdChkcnaZveAqA9s3aaV6k2BmGwd5da1jdlJlK8fTrXZzum3C4\n", "KhEpZQp1K+StE5lRujKfh23rdOariBt4PR7uvWUD9TVB0mn40YunGZ6YcbosESlRCnUr5GBnJtRt\n", "31CP3+d1uBoRsUvA7+V9t22kcnarkyffGKR3dlReRGQlKdStkLdOZObbXLNFt15F3Ka6ooz33baJ\n", "gN9LLJ7ivz90iIFRBTsRWVkKdStgeHya3qEIAO2btEhCxI0aQ+W899bMHnYjEzN88m9eYGwy5nRZ\n", "IlJCFOpWwMHZrUwy8+nqHK5GRJbLqsZK7riuAa/HoHswwqe+so/wlObYicjKUKhbAW/NbmVirq+n\n", "zK/5dCJu1tZQzn+8fxseA070jPNHf/MCkwp2IrICFOpWQDbUXaP96URKwu7tjfz2z96AYcDxrnH+\n", "6EsvMBFRsBOR5aVQt8yGx6fpHpydT6dFEiIl465da/ndB26YG7H7wy89z3hYc+xEZPko1C2z7NFg\n", "fp9nbvd5ESkNd964lt/9uRvxGHCqd4KPf/F5BkennS5LRFxKoW6ZZbcyMdfXaT6dSAm644Y1fOzn\n", "d+HxGJztn+T/+6tnONWrkydExH4Kdcssu+lw+ybdehUpVbdfv5o//pWbCJZ5GR6P8gdfeHbuvUFE\n", "xC4KdcuoezBM92AYgGu3KtSJlLJdV7Xw337tVmqryohEE3zyK/t46rWzTpclIi6iULeMnjvQDUCo\n", "KsCOjVr5KlLqtq2r43O/eTurGipJJFP82Tde5yv/epBEMuV0aSLiAgp1y+i5/T0A3HLtKrwew+Fq\n", "RKQQtDVW8fnfup1rZ1fDP/LsCf7oyy8wOhF1uDIRKXYKdcvkbP/k3GTo23audrgaESkktVUBPvMf\n", "buan7twCwKETw/zOnz/NG9aAw5WJSDFTqFsmzx3IjNLV1+jWq4hczOv18Cvvv5rf+3e7CJZ5GZmI\n", "8cmv7OPL33mTaCzhdHkiUoQU6pZJdj7dLde26dariFzW7TtX82e/cwdb1oYA+P7zJ/mtP3uaIydH\n", "HK5MRIqNz+kC3Oh03wRn+iYBuO063XoVkStb21LN53/zdr75RAcPPdFB71CE3/vCs9x+bTPvv7mV\n", "sbExhoaGCAaDi247FArh8+mtXqQU6JW+DJ6fu/Ua5KoN9Q5XIyLFwOf18MC7trNrRwt/8dAbnOmb\n", "5Nk3B3jx8CDrG9L0hLsoKytbVJuR8AT37W2nsVFbKomUAoU6m6XT6blbr7dd14ZHt15FZBG2rq3j\n", "f/7unfzzjw7y7adPE0+k6eyHocgoN7WvYvPqWgxD7ysicjGFOpud6ZvkbH9mw2HdehWRpfB5Pbxr\n", "z2riMzO8eTLCsa5xxsIz/OjF0zSGyrnp6lbWt1Yr3InIeRTqbPbM/swoXWNtEHN9ncPViEgxKw94\n", "2Xvjalpqk5weTHN2IMLQ2DTff/4kDbVBrt/WzJa1IS3GEhFAoc5W0ViCR/edAuD269fo1quI2CJU\n", "6WPHljYGx2K8+FYfvcMRhsejPPHKGfa91ct1WxrZsamBgN/rdKki4iCFOhv96KXTTERm8HkN7rt9\n", "k0K4Rn4AABBYSURBVNPliIgDkskEw8PDebczPDxMKnX+8WFtTVX81J2b6R2OsL9jkJM9E0Sm47xw\n", "sJdXjvRz9cYGrt3aSHXF4hZUiIg7KNTZJJ5I8p2nOgG4a9c6GkPlDlckIk6IhCd5bN8QzS2RvNrp\n", "6zlLdW09VdW15z1uGAZtjVW0NVYxOhnlwLEhjp4aIZ5Isf/YIG92DrJpdS3tmxqp9KfzqkFEiotC\n", "nU2efPUsIxNRPAb8zF1bnC5HRBxUWVVNbSi/7YwmxkcXvKauOsidN6xhz44W3jo+zMHjQ0RnknR2\n", "jdPZNU5tpY+04ef9d9ZSVe7Pqx4RKXwKdTZIJlN868ljQOac17bGKocrEpFSUhH0s+fqVq43/297\n", "9x7kVn0dcPx7Ja2klfb98Nperw3G5mcMJXZsngmkQBgMEx5/4Lik0EBJUjpAaTv0XQh5kUkY2mlo\n", "Q2ACdFJIUhIGig0BTKAkOBiKwQbbcPyIvQbjtb1e7WpXWr3VP652keVds15d7crS+cxoVrr66adz\n", "z94rHf3uawbb9oTY/PtD9PYPMxBJ8dMXd/HLV/bwuaWdXHruCSzs0gO4lKpUWtQ54Lcb99JzKArA\n", "yotOnuZolFLVqsbj4tT5rSw+sYUDoWHeem8vHxyMkUimWfvGHta+sYcFcxq59NwTOX9JJ36ffgUo\n", "VUl0jS5SJpPl8V/bo3RnnTqTE2Y1THNESqlqZ1kWHS0Bzj21lbNPm83GXRF+9bvd7D04xI4PB7jv\n", "8Y08/PRmLljexYqzT2Cefm4pVRG0qCvSS29+wAf77eu8rrxo4TRHo5RShwvWerjy/JO44rz5vLuz\n", "l2d/t5v17+4jEkux5tVdrHl1FyfNaeTC5V18bukcGut80x2yUmqStKgrwr7eCA8+9Q4AZyzuwMzT\n", "67wqpcqTZVmcvqCd0xe00xeOsfaNbp5f383B0DA7Pxxg54cDPLJ6C8tP6eDC5XNZfkoHNR7XdIet\n", "lDoGWtRNUiqd4d7HNjAcT9NY5+XWlUumOySllJqQlgY/qz5vWHnhyby7s5eX3vyAde98RDyRZv3m\n", "HtZv7qEh6OX8JZ18dkkni05o0atWKHUc0KJukn72giB77FMO3LZqKc0N/mmOSCmlDjeREyF3Nltc\n", "d/Fcrj5/NhvkEOvePcD7e8KEIwnWrNvFmnW7aAzWcM7pszn3D2Zz2kmt1Hj0yhVKlSMt6iZh885e\n", "fvHrbQB84TMncsbimdMckVJKHWkyJ0JefnIji7qC/H5fhO79UQYiKQYiSZ57rZvnXuvG73XzqYXt\n", "LDulg08tbGNWaxDL0lE8pcqBFnXHqLsnzD2PbiCbhXkz67n+8lOnOySllBrXZE6E3NgEnbPgPKAv\n", "HGPrjn2EImn27I8QS6R5fUsPr2/pAexNuaed1Mpp81tZ2NXMvFkNui+eUtNEi7pjsHlnL99+5A0i\n", "w0l8Xje3X7tcL6CtlKpoLQ1+Fs8LsmxhIy5vHe/sDPHOzhBbdw8QS6TpC8f4zdt7+c3bewHwuC26\n", "ZgSZ2xFkdluAzrYAs9tqaarz0tzcjMejXztKlYquXRP06qa93PvYW6TSGRqCXu688Sw9J51Sqip8\n", "vBnX3tVk8dwgi+YECA0l2R+KsT8Up3cgQTyZIZXOsmvfELv2DR3Wh8uCGc21zGqrY0ZLgI6WAO3N\n", "ATqaA7Q11dJU79MRPqWKVHRRZ4xZCjwALAa2AzeJyOvF9lsuIsNJfvnSdp54eTvZLMxsDfCNr57D\n", "7Ha9FJhSqnqMtRm3uQXmz7XvZ7NZBqNJDoSiHOiLcigcIxSOMRhNApDJQk/fMD19w+O+R0PQS0uD\n", "n+Z6H80Nflob/TTX++1pDb7cX79uIVFqHEUVdcYYP7Aa+BbwY+BPgKeNMfNFZOJ75pahZCrNM+t2\n", "8/iL2xiMJgBYMKeRO79yNs31eqSrUkrlsyyLhqCXhqCXBXOaRqcnkmn6B+P0HOxjVns90bjF/lCU\n", "g6Fh9vdFGY6nRtuGIwnCkQS79x39vYJ+D80NdrE3Uui1NPiOKAAD/ppSza5SZanYkboLgLSIPJB7\n", "/Igx5q+Ay4BfFNn3lMtkskh3iNe37OOVt/fS22//ovR6XFx+3nxWXWyo1WslKqXUhHlr3MxoCeDJ\n", "DrFsgZ/W1tbR57LZLNFYmr7BOANDCfqHkgxEEvQPJXKPc9OGEiRSmdHXRWIpIrEhPjwwNNZbjvLV\n", "uGis89JU56W+1k06McTGPVnamwI01nnpmtVKe0uQutqaSR3Bm0ql6O/vP+bXjaWpqUn3N1RFK3YJ\n", "WgRsLZgmuellb39flO6eMHt6BuneF2bj9oP0D8ZHn3dZcNEZc/nSJYtoa6qdxkiVUur4NtHTq/g9\n", "MLPJw8wmDxAA7OIvmc4yHE+z96Mekhk3Nf46huNphuMZhhPp3P00yXR2tK94MsOBUIwDodjotI27\n", "9x7xnjUeF41BL7V+D36vh1qf/dfvc1Pr8+DzunFZFpZlYQEj9d9wbJgd3b3UeL1ksnac2Sy5W/aI\n", "aZmR+3w8PZPNkkqlaG0M4nJ7qPG48LhdY/6tqXHhq3HbN6/915t33+fNPc6flrvvcbv01DNVoNii\n", "LghEC6ZFGVkTy9jDq7fw5P/uGPO52W1BzjptFhefOZeujvopjkwppSrTZE6vUshKDeH2eJnd2TXm\n", "88lUmkgsRXQ4af+NJYnGkgxGE4QGIqSzbqLxFPFEOu81GXoHYjAw2ajin9zkE/SGw0X3cTQui8MK\n", "QG9B4Zf/2OWyckWsvVndssBlWWDZxWksluDgoT7Wbt5EJmuRTGVIpTJ4PC6+dIlhYVdzSedFja/Y\n", "oi4CFA5hBYDBibw4Hi9+RZis3pD9a9HlspjZEqCro44FcxpYvmgGne0fn0wzFosdrZtpl85kSAz2\n", "MnDQj6dm8v/OVDzKYLyPVDI56T7CA/243B58Xu+k+3Cqn8n0kUqnGQr30+etweN2OxaLU/0cT7GM\n", "lctSxeJUP+UUS34/brd7QrmciliOp/z6AJ8fWvwAblJpL729A7S1NeNxuxkIhzl1fgtWTZBwJMlg\n", "NEUilSGeyBBPpoklM8QTaeLJDPFkhkzGHgHMAmSzZIFkMkU4ksDtdmNZFi7LHsWzGCmIyCuOGB3p\n", "c+UVS5YFyWSShXNbCQQCZDL2EcTJVIZUOkMybT9OpTIkUmkSyQyJZJp40o4tkUiTSKWJJdJks+Nl\n", "wz5QJZaw2zmncEwH2pt8dLXrlq2JcroOsrJHWwo+gTFmBfAfInJS3rR3gDtF5KmjvXbDhg2Tf2Ol\n", "lFJKqQqxbNkyR7aNFztS9xLgM8bcgn1ak+uAGcDzn/RCp2ZAKaWUUkpBUWd6FJEEcClwDXAIuBm4\n", "QkTGPxGRUkoppZRyXFGbX5VSSimlVHnQa7IopZRSSlUALeqUUkoppSqAFnVKKaWUUhVAizqllFJK\n", "qQqgRZ1SSimlVAUo6dWDjTF/CdwO1ANPA38mIkecgtoY4wN+CFwFJIEfiMjdY7T7NyAhIn9TyrjL\n", "gTFmKfa5/xYD24GbROT1MdpdA3wH+/yALwM3isiBY+mjGjiRz7w2ZwJPikhnyQMvMw4tl58F7gUM\n", "0At8X0QenJo5KB8O5fKLwDeAOUA38E8i8j9TMwflweF1uwN4F7hBRJ4pdezlxqFl8nbgbg6/dtoK\n", "EVlX4vDLikO5nAP8CDgPCGN/Vt53tPct2UidMeYL2AXdHwJdQAtwzzjNv5NrcwLwWeArxpiVeX21\n", "GmP+E7iV3FVaKpkxxg+sBh4CGoEfAE8bY4IF7U4H7gdWAW1AD/DIsfRRDZzIZ+55yxjzp8ALQM3U\n", "RF8+HFoum7F/4P2riDQBK4HvGmMumqr5KAcO5fJk4GHsAqQeuA34b2NMcRdXPY44tW7neQj7u6ri\n", "v2cKOZjLJcDfi0h93q3aCjon1m8LeArYgr1MXgLcZYw5+2jvXcrNr9cBPxaRHSISBu4ArssFWuha\n", "4G4RGRSRHcC/A9fnPf9bIAE8AVTDlSguANIi8oCIpEXkEWA/cFlBuz8GnhKR/xORGPB3wApjTPsx\n", "9FENnMgnwD8CfwF8m+pYDgs5kcd5wGoR+TmAiLyN/ev03Cmbi/JQdC5FZBswQ0TWG2M8wEzsX/OJ\n", "KZyP6ebUuo0x5iZgCPhgimIvN07lcimwacqiLk9O5PIsYBZ2gZwWka3AOcC2o71xUUWdMcZtjGka\n", "49aAvWlla17zbUAd0FnQRzP2sGNh20V5jy8Uka9hr3DVYBGH5wNAODwnUJBjEekD+nLtJtpHNSg2\n", "nyY36SERWQK8WaI4y13ReRSRjSLy5dGG9vp/HrCxJBGXL0eWSRGJGmNOBGLAT7A3v1bL5yQ4lMfc\n", "qOdfA39eskjLX9G5NMYEcs/fZozZZ4zZaoy5oYQxlysnvsM/jT1Kd08ulwKcnWszrmJH6i7IBVB4\n", "2wQEgfz950buBwr6CBY8P3J/tJ2I9BQZ5/GmMHdQkJMJtAtMsI9q4EQ+q3E5LORIHkcYYxqxN1G8\n", "KSKrHYzzeOBkLvcAPuDzwL8YYy5wMM5yV3Qec6OcPwFuEZFQSaI8PjixTM7A3rL2Q+xdqr6GvUyu\n", "cDza8uZELluwa6yD2Lm8Hrgvt0/yuIo6UEJEXmScwtAYswmozZs0MjOFvyJHZqg277nAGO2qSYTD\n", "cwd2TgYLpo21kIy0i06wj2pQbD6reVnM51gec6NLa7B3IF7lbJjHBcdyKSLp3N2XjTFPYB9w9rJz\n", "oZY1J/J4B7BRRF7Ie64ad68oOpcishu7EBnxqjHmv7CXyeecC7XsOfEdHgf6ROR7uemv5dbvK4FX\n", "x3vjUu5T9x6HDzUaoF9EPspvlBtKPDBG2y0ljK3cvcfHm/xGFG7OPqKdMaYNu7p/D3h/gn1UAyfy\n", "qRzKozHm08B64FcicpWIxKk+RefSGHOZMWZtQXsfUE2jTcXm8X3gi8AfGWNCxpgQMBf4uTHmb0sW\n", "dXlyYplcZoz5h4L2tcCww7GWOyc+KwXwGGPy67RPHIgr5SlNHgV+lKssPwS+CTx2lLZ3GWOuxj4C\n", "5GZgrNOWVMuvp5cAnzHmFuxDoq/DHtZ+vqDdz4BXjDEPAxuA7wLPikjIGDPRPqpB0fmcymDLmBPL\n", "ZQf2L/Z7RGS8o+GrgRO5fAtYboy5FvgpsAK4FPj6FM1DOSg2j33AKfkNjTG7gJtF5NlSB19mnFgm\n", "w8AdxphtwJPYo3argPOnaB7KhRO5XIs9kvd1Y8w3sQ+cuAp7N4txlWykTkTWAN8DnsE+f1IfeYWa\n", "MWbQGPOZ3MN/xj444n3s7fEPisgTY3SbpQoONReRBPaH8zXAIewi9woRGTbG3G+MuT/XbhPwVezT\n", "GuzHPvrthtxz8fH6mOLZmXZO5HMMFb8cFnIojzdi/3C7M/cZMHL71hTPzrRyaB3vAS7HPpVJCLgL\n", "uDJ3VGxVKNG6XZUcWia3A1cDd2IfiX0f8GURqaoDoRzK5TD2KeHOxN6a+Shwq4i8cbT3trLZqvtu\n", "UkoppZSqOHqZMKWUUkqpCqBFnVJKKaVUBdCiTimllFKqAmhRp5RSSilVAbSoU0oppZSqAFrUKaWU\n", "UkpVAC3qlFJKKaUqgBZ1SimllFIVQIs6pZRSSqkK8P+rzLB/t6mCIwAAAABJRU5ErkJggg==\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x117854810>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "distances = [dist(y, postfn(mean)) for _ in range(1000)]\n", "sns.distplot(distances)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# ABC sampling with PMC" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def sample(T, eps_val, eps_min):\n", " abcpmc_sampler = abcpmc.Sampler(N=2000, Y=y, postfn=postfn, dist=dist, threads=8)\n", " eps = abcpmc.ConstEps(T, eps_val)\n", " pools = []\n", " for pool in abcpmc_sampler.sample(prior, eps):\n", " print(\"T: {0}, eps: {1:>.4f}, ratio: {2:>.4f}\".format(pool.t, eps(pool.t), pool.ratio))\n", " for i, (mean, std) in enumerate(zip(*abcpmc.weighted_avg_and_std(pool.thetas, pool.ws, axis=0))):\n", " print(u\" theta[{0}]: {1:>.4f} \\u00B1 {2:>.4f}\".format(i, mean,std))\n", "\n", " eps.eps = np.percentile(pool.dists, 90)\n", " if eps.eps < eps_min:\n", " eps.eps = eps_min\n", " \n", " pools.append(pool)\n", " \n", " abcpmc_sampler.close()\n", " \n", " return pools\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "T: 0, eps: 0.5000, ratio: 0.1000\n", " theta[0]: 0.9792 ± 0.2894\n", "T: 1, eps: 0.4495, ratio: 0.6137\n", " theta[0]: 1.0011 ± 0.2582\n", "T: 2, eps: 0.3917, ratio: 0.6086\n", " theta[0]: 0.9932 ± 0.2256\n", "T: 3, eps: 0.3414, ratio: 0.6001\n", " theta[0]: 0.9860 ± 0.1989\n", "T: 4, eps: 0.2992, ratio: 0.6127\n", " theta[0]: 0.9945 ± 0.1734\n", "T: 5, eps: 0.2653, ratio: 0.6077\n", " theta[0]: 0.9961 ± 0.1531\n", "T: 6, eps: 0.2335, ratio: 0.6008\n", " theta[0]: 0.9967 ± 0.1362\n", "T: 7, eps: 0.2053, ratio: 0.6335\n", " theta[0]: 0.9904 ± 0.1180\n", "T: 8, eps: 0.1806, ratio: 0.6219\n", " theta[0]: 0.9940 ± 0.1040\n", "T: 9, eps: 0.1577, ratio: 0.6099\n", " theta[0]: 0.9918 ± 0.0905\n", "T: 10, eps: 0.1387, ratio: 0.6207\n", " theta[0]: 0.9923 ± 0.0811\n", "T: 11, eps: 0.1228, ratio: 0.6177\n", " theta[0]: 0.9919 ± 0.0717\n", "T: 12, eps: 0.1081, ratio: 0.6057\n", " theta[0]: 0.9914 ± 0.0640\n", "T: 13, eps: 0.0959, ratio: 0.6107\n", " theta[0]: 0.9927 ± 0.0557\n", "T: 14, eps: 0.0835, ratio: 0.6232\n", " theta[0]: 0.9920 ± 0.0496\n", "T: 15, eps: 0.0729, ratio: 0.5928\n", " theta[0]: 0.9909 ± 0.0426\n", "T: 16, eps: 0.0624, ratio: 0.5891\n", " theta[0]: 0.9905 ± 0.0373\n", "T: 17, eps: 0.0554, ratio: 0.5872\n", " theta[0]: 0.9932 ± 0.0340\n", "T: 18, eps: 0.0498, ratio: 0.5938\n", " theta[0]: 0.9933 ± 0.0294\n", "T: 19, eps: 0.0436, ratio: 0.6011\n", " theta[0]: 0.9920 ± 0.0271\n", "T: 20, eps: 0.0385, ratio: 0.5685\n", " theta[0]: 0.9920 ± 0.0244\n", "T: 21, eps: 0.0337, ratio: 0.5599\n", " theta[0]: 0.9926 ± 0.0222\n", "T: 22, eps: 0.0299, ratio: 0.5498\n", " theta[0]: 0.9925 ± 0.0198\n", "T: 23, eps: 0.0261, ratio: 0.5549\n", " theta[0]: 0.9924 ± 0.0180\n", "T: 24, eps: 0.0232, ratio: 0.5258\n", " theta[0]: 0.9924 ± 0.0167\n", "T: 25, eps: 0.0205, ratio: 0.5056\n", " theta[0]: 0.9926 ± 0.0155\n", "T: 26, eps: 0.0181, ratio: 0.4697\n", " theta[0]: 0.9929 ± 0.0148\n", "T: 27, eps: 0.0159, ratio: 0.4240\n", " theta[0]: 0.9922 ± 0.0138\n", "T: 28, eps: 0.0141, ratio: 0.4017\n", " theta[0]: 0.9927 ± 0.0134\n", "T: 29, eps: 0.0125, ratio: 0.3784\n", " theta[0]: 0.9924 ± 0.0129\n", "T: 30, eps: 0.0112, ratio: 0.3383\n", " theta[0]: 0.9929 ± 0.0118\n", "T: 31, eps: 0.0101, ratio: 0.3437\n", " theta[0]: 0.9923 ± 0.0111\n", "T: 32, eps: 0.0100, ratio: 0.3518\n", " theta[0]: 0.9922 ± 0.0115\n", "T: 33, eps: 0.0100, ratio: 0.3458\n", " theta[0]: 0.9924 ± 0.0114\n", "T: 34, eps: 0.0100, ratio: 0.3600\n", " theta[0]: 0.9930 ± 0.0114\n", "T: 35, eps: 0.0100, ratio: 0.3515\n", " theta[0]: 0.9931 ± 0.0111\n", "T: 36, eps: 0.0100, ratio: 0.3637\n", " theta[0]: 0.9921 ± 0.0112\n", "T: 37, eps: 0.0100, ratio: 0.3531\n", " theta[0]: 0.9926 ± 0.0113\n" ] } ], "source": [ "T=38\n", "eps=0.5\n", "pools = sample(T, eps, sigma/sqrt(n))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Postprocessing" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def plot_pool(prob, samples):\n", " prob = np.array(prob).flatten()\n", " samples = np.vstack(samples)\n", " \n", " sns.distplot(prob)\n", " show()\n", " sns.distplot(samples, axlabel=r'$\\theta$')\n", " #savefig(\"1d_gauss_posterior.pdf\")\n", " show()\n", " sample_mean = np.mean(samples, axis=0)\n", " print(u\"mean: {0:>.4f} \\u00B1 {1:>.4f}\".format(float(np.mean(samples, axis=0)), float(np.std(samples, axis=0))))\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAn8AAAG4CAYAAAA0S4FqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmQm/l93/k3gAdXoxt9d7O72TyG5DwzQ86MNKOZ0eiW\n", "fEqKjmTlqJStyHa82uyWvbu1tlKbpNZxlDhRLFfsZLPrKFEsx7YiO2UrlmzJdiRLGknWMafm4nAe\n", "snn2jUYfQOPGA2D/eIBmk0OyD6Dx4Pi8qlhko9E/fvEQzefTv9NTqVQQERERke7gdbsAEREREWke\n", "hT8RERGRLqLwJyIiItJFFP5EREREuojCn4iIiEgXUfgTERER6SLGbp5kmuajwJ9YljVV/fgw8P8C\n", "bwGKwB8BH7csq1D9/CeBn6u2/3vAL1qWVW58+SIiIiKyF3fs+TNN02Oa5t8Dvgr4t33qc8A1YBJ4\n", "HfAI8MvVr/kF4D3A/cC9wJuBX2p45SIiIiKyZzsN+/5j4H8HfhXwAJimGQA2gV+1LKtgWdYy8Hng\n", "TdWv+bvAb1qWtVz93CeBnzmA2kVERERkj3Ya9v1ty7L+hWma76g9UB3afd9Nz3sf8Hz1zybwyrbP\n", "na8+JiIiIiIuu2P4syxr6U6fN03TA/xb4G7g71QfjgCZbU/LAF7TNAO1OYEiIiIi4o5dLfi4FdM0\n", "w8DvA6eBt1uWFa9+KgOEtz21B7AV/ERERETct6/wZ5rmEPCXQBJ43LKsjW2fPgfcAzxdezo3DgPf\n", "0bPPPlvZT00iIiIineThhx/2HES7ew5/1aHe/wYsAv+DZVn2TU/5HPAPTNP8BmAD/winh3DXTp48\n", "STAY3Gtpsk0+n2dmZkbXsgF0LRtH17IxdB0bR9eycXQtG6d2LQ/KXsJfrUfuceBtQBZYN82ttRzP\n", "Wpb1DuC3gHHgKSCIE/x+Yy9FBYNBQqHQXr5EbkPXsnF0LRtH17IxdB0bR9eycXQtW9+uwp9lWU8A\n", "Y9U/f487bBFT3cz5l6u/RERERKSF6Hg3ERERkS6i8CciIiLSRRT+RERERLqIwp+IiIhIF1H4ExER\n", "EekiCn8iIiIiXUThT0RERKSLKPyJiIiIdBGFPxEREZEuovAnIiIi0kUU/kRERES6iMKfiIiISBdR\n", "+BMRERHpIgp/IiIiIl1E4U9ERESkiyj8iYiIiHQRhT8RERGRLqLwJyIiItJFFP5EREREuojCn4iI\n", "iEgXUfgTERER6SIKfyIiIiJdROFPREREpIso/ImIiIh0EcPtAkT2w7ZtNjY2GtbewMAAhqFvBxER\n", "6Xy620lb2tjY4E+/+TKR3mjdbaVTSd7/zjOMjIw0oDIREZHWpvAnbSvSG6V/YMjtMkRERNqK5vyJ\n", "iIiIdBGFPxEREZEuomFfkRalRS0iInIQdCcQaVFa1CIiIgdB4U+khWlRi4iINJrm/ImIiIh0EYU/\n", "ERERkS6i8CciIiLSRTTnT7peqWSzurp628/ncjk2NjaIx+OEQqEd29Oq2t3RamYREXfof0rpeunU\n", "Jl/9fpyx8fQtP28Xiywtp1hKz2P4/Tu0pVW1u6XVzCIi7lD4EwEivX23XVVbLBZJZXNEB4bw7xD+\n", "ZG+0mllEpPk0509ERESkiyj8iYiIiHQRhT8RERGRLqI5f9LR7FKZtWSO9WSOtWSetWSOTM6+8TnF\n", "HL3hAkupGEN9IQajQaKRAB6Px6WqRUREDo7Cn3ScbN7mymKSS/MJZpc3KZUrO37NWqrAtZXFrY97\n", "w36OTUY5dijK2GDwIMsVERFpKoU/6QjlSoXL8wleurjKwkqKm+Oe3/AyFHV69frCAbZ36q2trZHO\n", "Q7boJZHKUwFS2SIvX1zl5YurGD4PY/0GGGmOTPSrR1BERNqawp/sqJGb8TZ6I958scS5y2u8OBNn\n", "M1PYetzn9TA93sfxySjT4330hv23DW2zV9P4jACTU9OUSmVWEzmuLiW5spgktp7FLlVYWCuy8L2r\n", "9PcGOH18mHuODREO6ttHRETaj+5esqNGbcbbyI14s3mbFy4meHV2nqJd3np8eryX+44Pc+RQHwHD\n", "t+d2fT4vY0M9jA318Mh9h0hni8zMrvHSzAqJTIlEqsD3XlrkybNL3H1kkAdPjTDcH6779YiIiDSL\n", "wp/sSqtsxmuXynztyat87i/PkUwXAaeXzzw6yAMnRxnu3/n4tb2IhP3cd3yIgVAOf3iQ87NJzl9b\n", "p2iXOXdljXNX1pge7+XBU6McGe9r6N8t7tCxcyLS6fQ/krSNZ84t85++9DLzKykAvB544NQoD5lj\n", "TRmCHR0IMzka5U33T3DuijPUnEwXmF1OMbucYrAvyN1TPbz1daUDr0UOjo6dE5FOp/AnLS+RyvOf\n", "/vRlnnh2buuxN54e5dCAwdTEWNPrCfh9PHhqlPtPjnB5IcEL5+MsrqZZ38zz5Kt5zl59hve++S7e\n", "++bjDEYb2xMpzdEqPd0iIgdB4U9aVqVS4a+fX+A/fPFFEilnMcc9Rwf5+3/rAQZCNl9/+pqr9Xk9\n", "Hk5MDXBiaoDltQwvXFhhZm6DVNbmv/7Veb7wzQu87fWH+eDbT3B8st/VWqX9bR+OzuVybGxsEI/H\n", "CYX2/gOGhqJFupu++6UlpbJF/p//+kO+/5Kz914o4OOj77mP97z5OD6vh3g87nKFNxof6uHHHzvK\n", "maNhcraXb78QI50t8o1nZvnGM7M8cHKEn3z8GI+ePkTQv/eFKCLbh6PtYpGl5RRL6XkMv39P7Wgo\n", "WkQU/qTlXJpP8K9+92kWV9MAPGSO8fMfepCxoR6XK9tZJGTw/keO8LPvfx3fePoaX/rOJRbjaV6c\n", "ifPiTJxw0ODND0zyjocOc+bkCD6v9gyU3asNRxeLRVLZHNGBIfx7DH/dYC+LdnbTi6qeUuk0ejdL\n", "S/mrp67x77/wAgW7jOHz8rEPnuHdjx9ru42Vw0GD977lLn7yTcd55pUlvvLdy7xwYYVs3uavnr7G\n", "Xz19jWgkwEPmGA/fM8brzTH6e3WSiEgj7GXRzk69qOoplU6k8CctwS6V+fR/e5H//oOrAIwOhvmH\n", "H32Eu48MulxZfXxeD4+dmeCxMxOsJXN8+4fzfOu5WWbmEiTTBZ54bo4nnpvD44ETU/2YR4e4+8gg\n", "5tFBAq85p8R99WyDYpfKrK6nOX9tlWTxMql0lmuxNOGUl0rFOYUlYHgxDC8Bw0dvjx/D523wK5Bu\n", "sdtFO+pFlW6k8CeuK9olfv1zz27N73v93aP80v/4cMf1hA1FQ3zw7Sf44NtPML+S4ulXlnn21WVe\n", "vriKXSozM5dgZi7BV757GYCekI9I0MfoUJrBvurRdD0Benv8+9rAuhHu1KNSKlVI5Ww2szapjE0q\n", "W/tVIlsokS+Wtz37/LY/r9327+sJGfT1BIhGAgxFQ4wOhBkdDNMT0k1aRGS/FP7EVfliiU/+56d4\n", "9tUYAB98+wl+5m+c7vi5cFOjvUy9vZcPvv0E2bzNSzNxXrm8inVtnQuzG+QLJTI559dK4rXhKOh3\n", "esZ6w356ewLV3/30BP2Egj5CAYNQ0Iff523YkHnRLrOazJOxg2wmPCTTeZLpAol0gWS6QDpb3HOb\n", "Hg9bvXu2XX5NX2cmZ5PJ2SyvZW54PBIyGB+OONdxtBdfpfV6SUVEWpXCn7gmm7f51c8+yYszzsrd\n", "j/y4yUd+3Gy7+X31CgcNHj19iEdPHwKgVCpzbXmT51+d4wcvL5POw/qmE7Rq8sUS+USJ1UTujm17\n", "vR5CAR8Bn4enzycYjPYQ9BsE/F6Cfh+B6srjCs7WOpWK03Y2Z5PNO7+S6TxryfwNZyffiQforfbW\n", "9fcGtnore4IGfsNDciPOkcOTrCzNYviDTE5NOzVUKpTKFYp2mXyhxGamwGbGCZbJdIH4Rpb1zTwA\n", "6ZzNpfkEl+YTAAT9XmYWcrzl9Vkevnecvp7AXv4JRES6yq7Cn2majwJ/YlnWVPXjQeCzwDuBBPAJ\n", "y7I+u+35nwR+rtr+7wG/aFlW+TUNS9fK5Ir808/8gHNXnF6tn37vfXzoXadcrqo1+Hxejk/20xco\n", "Usjnt+YtlUplUtmi8ytTJJUtVH8vspkpkMoWyRduPF2kXK44vWfARroIJBtSY8DwEu0N0h9xQp7z\n", "K0h/b4DensBte26LxSKFjBfjFj2SHo8Hw+fB8HkJBw0G+l477F+wS6xu5IitZ1iMp5lfSZGrDik/\n", "eS7Ok+fieL0e7j02xKP3HeLR0+McHtOxeyIi290x/Jmm6QF+FvgNYPuP/Z/BuYuMAQ8Cf2Ga5lnL\n", "sp40TfMXgPcA91ef+2Xgl4Bfb3Dt0qbK5Qq/+QfPbQW///mD9/O+t97lclWtz+fz0t8bvONcyFK5\n", "Qr5gkyuUyOWrvxdsNhKbHBrppYxBvliiUCxRKJYpFJ2w6PE44cuDc4JJOGQQDhr0BA16ewIMRYMM\n", "9IXwlLK8dCHG6OiIKz20AcPHxEiEiZEID54apVKpsJrIcfFajFwRXr2WxC6VOXtplbOXVvmdL59l\n", "ciTi9Kzed4j7jg/h0yISEelyO/X8/WPgp4BfBf4vANM0e4EPAKcsyyoAT5um+Xngo8CTwN8FftOy\n", "rOXq8z8J/HMU/qTqj75+nh+8vATAz73/jIJfA/m8HnpC/tcsiEhsePiRR47UvV1FPB7n/FVfywzN\n", "ezweRgbC+OnjRx45Qk9vP8+fX+GpV5Z45twyiVSBhXiaL37rIl/81kV6w37ecN84j50+xEPmmBaO\n", "iEhX2in8/bZlWf/CNM13bHvsFFC0LOvKtsfOA3+z+mcTeOWmz5l11ikd4oWZNf7Lf38VgHe9YZoP\n", "vE3BTxqnJ+TnTQ9M8qYHJimVK1y4ts5Tryzx1Nklri5tksoWeeLZOZ54dg7D5+WBUyO8sTrfcrg/\n", "7Hb5IiJNccfwZ1nW0i0ejgDZmx7LAOFtn8/c9DmvaZqBak/hjvL5/G6eJndQu4aNuJa5XA67WKRY\n", "3Ptqzu3i6yn++FvzVCpwZKyHDzw+wvz8/L7aWltbo1Ao1F0TQMm2KVc8t23Ltu0bfr8Tu1gkl8uR\n", "y915IcZuNOq6N7Kuemvafi13uu57avc2r+/YoR6OHbqLv/2uu1hey/DMuRhPn4tx7uoGdqnMc6/G\n", "eO7VGL/1hRc5MRXl4XtGOT7mp9ig99ZBvR/28p48yJpa1V7epztdy264Xo3SyPtOtzvoa7if1b4Z\n", "4OYzcHqA1LbPh2/6nL3b4AcwMzOzj7LkVhpxLTc2NlhaTpHK7v8/P7tU4YkX1sjZPvw+mOzL8Cdf\n", "++G+21uJLdLbN0gmV/83SCwWw2sEwHvnvfNiK7Ed20olN7CsFMvLy3XX1Yjr3ui6GlVTbCW26+u+\n", "G7t9fccG4NjjETIPhbmwkMWayzGzmKNgV7g4n+TivLMgxu+D0YE1xvr9DEcNwoH9zRM86PfD9vdk\n", "pVIhV6yQyZXJFsoU7DJFu0LBrlC0K5QrznNs2+bJV1YIhQIE/R6Cfi9Bv4eegJe+Hh/RHh/RsI/e\n", "sK9tt1zaz/v0dt/fjfw37Ba6h7e+/YS/C0DANM1py7Jmq49tH+o9B9wDPH2Lz+3KyZMnCQY7a4Pf\n", "ZtvY2OCll17i+PHjBAL1bXsRDAY5lO4luovd8m/nWz9cIGf78AA/8dhRJkcjddUUCYfw+PxMTkzW\n", "1Q5ApZi7Y1u2bRNbiTE2Orbj+Z7JcAjTnGrIUVDxeJyl9Hxd173RddVb0/ZrudN134v9vL5HHnJ+\n", "L9plXr64ytOvrvD8+RVWNnIUS7CwWmRh1ek5ikYCTI70MDEcYXwoTF+Pf1fzHg/i/dDTO0A8keHa\n", "QpySJ0giVSSRKrCZLVIu726/w9VUidcO4NzI5/UwNhRmcjjC5GjEef0jESZHIgz0Blpm3uet7OV9\n", "utP3dyP/DRupntN2btaos4vz+TwzMzO6hzdA7VoelD3/a1uWtWma5peAT5qm+THgDPAR4N3Vp3wO\n", "+AemaX4DsIF/BPz+Xv6OYDB42wO2ZXdmrszx4tUssdxa3UcWbcav0jt8ZN/tLK2msa45/0ndeyTM\n", "0cmBuuoB8BkGPsPfkOOYdtuWYRg7P8fvJxQKNeT9GwqFMPyNeY2NqqtRNRmG0dB/w3peXwh4/MEe\n", "Hn9wmkqlwsvnZ/nCE5eJJWwW42nsUmVrr8FXrzrv43DQYHyoh/GhHob6QwxFQ0QjAbw3BaJ66srk\n", "iswub1Z/pbg4u8rFhSSp7PbZOJlbfm3Q7yMcNK5v+B3w4fV68Hg8FAt5psf78Pr8ZPI22ZxNOlck\n", "mSqwmshSsJ1duUrlCovxDIvxDM9aKze03xMymBzt5fBoL1NjvRweczbbnhztJeh35/SZ7fbzPr3d\n", "93cjv6cbKR6P89Xvz+zq/OI7OYizi3UPb317CX/bf6T8GPBpYA5nuPfjlmXVevp+CxgHngKCOMHv\n", "N+ovVfaqt6+faP9g3TfXQvJWUz93p1yp8O3nnXl9fWEvpyb0H4K0Lo/Hw8RwD/ce6eONA0OUSmWW\n", "1zLMr6SYX0mxtJqhVK6QzdtcWUxyZfH6vomGz8NAX4j+SIBI2E8k7MdbyfPSpXVGExAMOJtqez2e\n", "G7bayeSLrCXzrCVzrCVyxDeyzMU2ie+wgbfhhaH+MMP9YQb7nC2AansuBu4QwBIba7dd+V2pVEhl\n", "i6wmcsTWMszFUluvfX4lxUZ1k+1MzmZmdoOZ2Rt7njweGB3s2QqFkyMRRgbCjA6EGRkIE420do9h\n", "u9nt+cUiN9tV+LMs6wmcPf1qH68DH77Nc8vAL1d/SZd75fIaK+vO8NL9RwJ423QOkXQnn8/LZLVH\n", "6xGc3rDVRJbltQzLaxliaxkSqTzlijOvNb6RJb5x43Dqd1++/dnFu9Eb9jM93sfYgJ9UOs/k+CB9\n", "PQaJ9RhTk1MN6Tmt8Xg89PU4p7Icm4jy6OkbP5/KFlmohcFYirnq7wsrKQp2mUoFYtXr8pz12jl0\n", "Ab+P0YEQowM9jFQDYX+vE1hrZzj3VQNsKKADqEQOir675MDk8jY/eHkRgJOHBxiJ7n1lokgr8Xk9\n", "jA32MDbYw/0nnMdK5TIbm84ReOvJHJtZ55xj5ySWAkX7zvPwDJ+Xof4Qw1Fn+HioP8TUaC/T471M\n", "j/cx0BvE4/EQj8f5+tPX6B+IUiwWSW7s7wepUslmdXV1X18LMNQDQ0fD3H80DIwyMDCA1+tjZSNb\n", "DYSbTo9hLMXyWobVRBa75FyDQrHE/Eqa+ZX0jn9PwPBunRyzPRTe/Ku/N8joYA+9Ye3ZKLJbCn9y\n", "YH5wdol8oYTh8/LmByZYX5nd+YtE2ozP62W4Ovx6s8TGGu98wzTR/kEKRefM4nKlsnW2ctDva/qJ\n", "I+nUJl/9fpyx8Z0D2M5tXZ8vVpsD+dA9Yzc8p1yusJHKs7KeIb6RY2Ujw8pGlpX1LKuJLMl0gc10\n", "gXTuxh8OC3aZeCK34/B3TSRkMDro1DASNUhsZpn29jDQG9SIg8hNFP7kQMTWM5y95PQuPHLvOL09\n", "AdZdrknEDV6Pp7roAmcX1BYQ6e1r2lwxr9fj9GhGQ5hHb/88u1RmM1PYWlyzWft922POr/zWnzPb\n", "AmM6Z5O+aR4mL69We2vDTI46i1IODUfwGzriT7qbwp8ciO++sADAQF+QB+9urS0SRKQx6h1CvtnA\n", "wACDfbtfFFa0nSH32HqGlfUMy+sZluIZLs6tcW05TalccVYtr2ZYXM3w7KsxvB4PEyMRTkz1c9dU\n", "P5paKN1Ib3tpuOW1DAtxZ0jpzfdP4vPqp2yRTnRQQ8i75Te8jA6GGR0MA8Nbj8fjcb721FUwIsQ3\n", "sizE08yvpFhP5ilXKlurl7/9/DyHhsIM98LQcKmhi2dEWpnCnzTcCxecPcEG+4IcnehzuRoROUiN\n", "GkJuZC/i6uoqVCoM9oUY7AtxanoQcPZOnF9JcXnBGR4u2mWW1rIsrcGrc+c5cbif08eHmRiJaEsa\n", "6WgKf9JQm5kCM3PO3l8PnhrVf6AisiuN7EVcWpilr3+IwZse7wn5OTU9yKnpQexSmWvLm1y4ts7l\n", "hQSlcoXz1zY4f22Dwb4gD5wa5Z6jN7cg0hkU/qShXpqJU6lAKODD1H+cIrIHjepFTCZ2Xl5m+Lzc\n", "NdnP9GgPV8cgbYc5d3WD1USO9c0833pujqfOLnH34QhvPGOjmcvSSRT+pGEKdomzl51hmzMnRjCa\n", "vIWFiMh++A0P900P8cCpMWLrWV6cWeHC7AbZvM0LFxP80v/3ND/5+HE+8LYT1fmFIu1N4U8a5tUr\n", "axSKZbxeD2dODO/8BR2o0fOWyuVyQ9oSkZ15PB7Gh3r4sUeP8tjpCV64sMLZS6vki2W+9O2LfPmv\n", "L/G210/xt955imMT9Z2pK+ImhT9piHKlwgsX4gDcfWSASKg7V801Y96SiBy8aCTAW183hTkZwK4Y\n", "fP25JZLpAt98do5vPjvHG+4d50PvOsV9x4faem5zI39gzeVy2LZOcmoHCn/SEFcWkiTTBQBed2rU\n", "5Wrc1cx5SyJysIIBH+95ZJq/8577+cYzs/zJEzMsrWZ45twyz5xb5p6jg3zoXad45L5DbXmSSCN/\n", "YN1YX+PkePtdg26k8CcN8Xx1e5fDY723POZKRKSdhQIG73nTcX7isaN878VF/vibF7g0n+DVq+v8\n", "6u88xeGxXt731rt458PThIPtdWtt1A+sdrEIpOovSA5ce71DpSVtbOZZrG7q/GCX9/q1qkYN7bTq\n", "PETNtZRm8fm8vPX1U7zldZM8f36FP/7GBV6ciTMXS/Hvv/Aiv/eVV/ixx47y3jcf59Bwi5znJ3IT\n", "hT+pW21fv3DQ4Mghberciho1tNOq8xA111IOyp1+sJge9vJ//pTJ5cVJvvb0Ik+di5PO2XzxWxf5\n", "0rcucu+xft58/xgPm8ME/T7AOcLOMHTrFXfpHSh1q4W/E4f78bbxxOdO14ihnVaeh6i5lnIQdvuD\n", "xYmJEJNDE1yYT3F+LkWuUOaVKwleuZLgP//5DEfHexiLVvjZ9z/IofGxJlUvcmsKf1KXtWSO1UQO\n", "gFOHB1yuRkSk8Xb7g0U/cGh8lDe9rsyVxSSvXlnn6lKSYqnCzEKamQX44eWneOz0BG+8f4KHzTFC\n", "bTY/UDqD3nVSl1qvX0/I4NCI5reIiPi8Xk5MDXBiaoBMroh1bZ0LsxusrGfJ5ks88dwcTzw3R8Dw\n", "8npzjDeemeDR04eIRgJuly5dQuFP6nJ9yHdAQ74iIjfpCfl5/d1jvP7uMRaWYoRDIV66vMnZS3EK\n", "dpknzy7x5NklZ3P8u4Z545kJ3nhmQieJyIFS+JN9W03kWE/mAQ35ityKViHLdpGQwY88MslH3j1C\n", "IpXn6VeW+P5LS/zwfIyiXebFmTgvzsT5j198iZPTA7z1wUl+/LGj9PaoR1AaS+FP9q3W6xcJ+zk0\n", "3ONyNSKtR6uQ5Xb6e4P86KNH+dFHj5LN2zz76jLff2mRZ84tk8nZzMxuMDO7wR981eLHHjvK+996\n", "l7aOkYZR+JN9qVQqW+Hv5OH+tj7eSOQgaRWy7CQcNHjLg1O85cGpag/gCt97cZEnnpsjVyjxZ9+5\n", "xFf++hJvfnCKv/e+04wMaEhY6qPwJ/uymsixsekM+Z7UkK+ISEP4DS8P3zPOw/eM89PvvY+/+N5l\n", "vvzdy2xs5vnO8/M8Z8X4+Q89yL2Hg26XKm1M4U/2pdbr19vjZ3xIQ74iIo0WjQT48I+Z/M13nOTr\n", "z8zyu195hXS2yKd+/xkePz3K9KjmAsr+eN0uQNrPjUO+AxryFRE5QAG/j3c/fox/90vv5IGTIwB8\n", "/+wKX/nBEivrGZerk3ak8Cd7Fk/kSKQKgIZ8RUSaZXQwzD//+2/i595/BsPnIZ0r8affucT6Zs7t\n", "0qTNKPzJns0ubwLOtgVj2otKRKRpvF4PH3z7Cf7vjz5AwPCQKzgBMJUtul2atBGFP9mzuWr4Ozze\n", "pyFfEREXHD3UyzteN4rP6yGVKfJn37lErmC7XZa0CYU/2RO7VGZx1dmzbHqs1+VqRES619hAkJ98\n", "4zE8Huec9a989zJFWxuBy84U/mRPllYz2KUKAIfH+lyuRkSkux2bjPKuN0wDzv/P33x21uWKpB0o\n", "/MmezMWcId/BviCRsN/lakRE5J6jQzx+ZgKAC7MbXFtKulyRtDqFP9mT2eUU4Mz3ExGR1vB6c5RD\n", "1T1Xv/38PHZJw79yewp/smv5QmlrTynN9xMRaR0ej4e3PXQYD5BIFfihteJ2SdLCFP5k1+ZXUlQA\n", "jwcmRxX+RERayehAmPurm0A/++oyiVTe5YqkVSn8ya7V5vuNDfYQ9PtcrkZERG726OlD9IQMSuUK\n", "33l+nkql4nZJ0oJ0tq/s2lzMme+nIV8Rkb0rlWxWV1cb0tbq6irl8mvn9QX9Pt70wCR/9dQ1ri5t\n", "cnkxyV2T/Q35O6VzKPzJrqRzNuubzhCCFnuIiOxdOrXJV78fZ2w8XXdbSwuz9PUPMXiLz909PcC5\n", "y6vMr6T56+cXOHoois+rDfnlOoU/2ZWlNSf4GT7P1ooyERHZm0hvH/0DQ3W3k0ys3/ZzHo+Ht75u\n", "ij/82nk2MwUuLyR0DrvcQHP+ZFeW1pyDwydHevH59LYREWllw/1hjlRHaV6cibtcjbQa3cVlR5VK\n", "ZSv8HdZ8PxGRtlBb+bsYTxPfyLpcjbQShT/ZUTIL2YIzsVjz/URE2sPRQ31EIwEAXrqo3j+5TuFP\n", "dhRLOsEvFPAx0h9yuRoREdkNj8fD/Sec3r/z19bJFWyXK5JWofAnO4qnnH2iJkYieDxaMSYi0i7u\n", "PTaE4fNilyq8cnnN7XKkRSj8yY7WUk7P37hW+YqItJVgwId51NkQ5uWLq5S16bOg8Cc7yOZtaicE\n", "HRqKuFuMiIjs2f0nhgHYzBS4sph0uRppBQp/ckfLaxkAPMDoUNjdYkREZM+G+8NMVc9jf0nbvggK\n", "f7KDWvjr7/UTMHSer4hIO3qguu3LXCzFRvW0JuleCn9yR8urzjFEI/0BlysREZH9OjYRJRx0DvW6\n", "OL/hcjXiNoU/ua1KpcLyutPzNxJV+BMRaVder4fjk1EALs0nXK5G3KbwJ7e1sZmnUHRW+qrnT0Sk\n", "vd012Q/4fLebAAAgAElEQVRAbD1LKlNwuRpxk8Kf3NZSdb6f4YVoxO9yNSIiUo/DY734Dee2f3lB\n", "q367mcKf3FZtscdQrwevNncWEWlrPp+XYxPVod8FDf12M4U/ua1a+BvuVfATEekEx6tDv/MrKR33\n", "1sUU/uSWinaZ1UQWgOGI3iYiIp3g6KE+vF4PlQra8LmL6a4ut7SynqF2CtCQev5ERDpCwO9jeszZ\n", "8FmrfruXwp/cUm3It6/HTzig8Cci0inumnKGfmeXN7FLOuu3Gxn7/ULTNN8HfBI4AiwAn7As6w9M\n", "0xwEPgu8E0hUH/9sI4qV5qmFv/GhHiDrbjEiItIwxyaieAC7VGElWeLwqNsVSbPtq+fPNM0e4I+A\n", "f2JZVhT4n4DfNU3zKPAZIAmMAR8CPmWa5mMNqlea5Hr4i7hciYiINFJPyM+hEef/9sV1LfroRvsd\n", "9q0Am4DfNE1P9eM8UAI+APyKZVkFy7KeBj4PfLQRxUpzpLNFUtkiUOv5ExGRTlLb8Hl5w6Zc1tBv\n", "t9lX+LMsKwv8NPA7QAH4NvALwChQtCzryrannwfuqa9MaaZar5/XA6ODYZerERGRRrtrytnvr1iC\n", "+KZ6/7rNfod9jwF/gDPcGwbeB/xboI/XThDLAOo+aiNLq2kAhgfCGD6tCRIR6TTRSJDh/hAAsY2i\n", "y9VIs+13wccHgR9alvX56sd/bprml4FPAKGbntsDpPbSeD6f32dZUlMsOOc22vbef6KLVXv+RvtD\n", "FItFisUinurv9SjZNuWKp+52mt1W7Rru5lq262tsVjvbr2Urvr52aWsv78lm1dSube10LTvhNd7O\n", "xHAPq4kcK4lCQ2qySyVA9/BGOOhruN/wl+W1Ia8EPAu8xTTNacuyZquPm8DZvTQ+MzOzz7KkZm5u\n", "DnzjxFZie/q6SqXCyoYT/nzkWFhcIL60SChTIZXN1VVTLBbDawTA66urHbfa2s21bPfX2LR2VmIt\n", "+frara29fn83o6Z2bet219Ltug6yrZDP6STYSJe4NjeP4atvW69UcoPD0V7dw9vAfsPfV4BfM03z\n", "Z4DfBd6G0xv4TuAY8EnTND8GnAE+Arx7L42fPHmSYDC4z9IEIJnOc36xyNjoGIax+3/mdLZIwXY2\n", "/jxx5BBjg2ECdoJA3zjRgaG6aqoUc3h8fiYnJutqp9lt2bZNbCW2q2vZrq+xWe1sv5at+Prapa29\n", "vCebVVO7trXTteyE13g7Q8M2z1w4D3jw+PuZHO+tq6a1gB/I6h7eAPl8/kBD9L7Cn2VZc6Zp/g3g\n", "XwP/BrgGfNSyrOeqoe/TwBzOcO/Hq6t+dy0YDBIK3dyxKHvhDwSAIoZh4Pf7d/11G3FnyqYHGBvq\n", "xW948fv9GH7/ntq5FZ9h4DPqb8ettnZzLdv9NTarHcMwWvL1tVtbe/3+bkZN7drW7a6l23UdZFt+\n", "v59o2EsyW2Z5PcddhwfrqsnwOb2Quoe3vn1v8mxZ1l8Dr9m/z7KsdeDD9RQl7qmd59vfF8RvaLGH\n", "iEgnG+7zkcyWmV/Z09R8aXO6u8sN4hvOvL6Rfv3UJiLS6Yb7nN66lfUMBbvkcjXSLAp/coNaz99w\n", "v/b3ExHpdLXwV67AUjzjcjXSLAp/ssUuldnYdJaXjwwo/ImIdLqg30M07ARADf12D4U/2bKayFE7\n", "5EfDviIi3WGk35n+vxBX+OsWCn+ypTbkGwz4iITrX40mIiKtbyTq/H8fW8tQ1Ly/rqDwJ1viG074\n", "G+kP4/HUt9mniIi0h5Go0/NXrsDSqub9dQOFP9kST2ilr4hItwn6vQxGnU2ZNe+vOyj8CeAc67Za\n", "7fkb1mIPEZGuMjXqnO6xsJJ2uRJpBoU/AWAzU6BglwH1/ImIdJvJESf8La9lKFbvBdK5FP4EuL65\n", "s9cDQ1GFPxGRbjI1GgGgXKmwvKbev06n8CcAxKsrfQejIXw+vS1ERLpJT8jPYF9t3p/CX6fTXV4A\n", "WK32/OlkDxGR7jQx4vT+La0q/HU6hT8Brvf8ab6fiEh3Gh/qAWBlPUulUtnh2dLOFP6EQrFEMl0A\n", "dKybiEi3Ght0wl++WCKRKrhcjRwkhT9htbq/H8Cwev5ERLrSUDSE4XM2+I+ta7PnTqbwJ1tDvj0h\n", "g56QjnUTEelGXq9na/RH4a+zKfzJDce6iYhI96oN/cbWsi5XIgdJ4U+29vjTkK+ISHerhb+VjSxl\n", "LfroWAp/Xa5SqbCWrIY/LfYQEelqY0POfcAulVlP5nZ4trQrhb8ul8oWsUvOUT462UNEpLsN9AYJ\n", "GE40iK1r6LdTKfx1ubVtP9nVdncXEZHu5PF4GK3N+9Oij46l8Nfl1pN5AKKRAIaOdRMR6Xpjg9UV\n", "v2sKf51Kd/suV+v505CviIgAjFVP+ogncpTKZZerkYOg8NflahN6NeQrIiJwfcVvuVy54RAA6RwK\n", "f12sUqmwtqmePxERua6vx08o4AM09NupFP66WCZnUyg6XfqDCn8iIoKz6KM29KsVv51J4a+LaaWv\n", "iIjcyphW/HY0hb8uVgt/vT1+An6fy9WIiEirqK34XUvkKNpa9NFpFP662Pqms83LUJ+GfEVE5Lpa\n", "z1+F6+e/S+dQ+OtitZ4/zfcTEZHtImE/kbAf0NBvJ1L462LrW3v8ab6fiIjcaGuzZ4W/jqPw16Wy\n", "eZtcoQRomxcREXmt64s+NOzbaRT+utSNK30V/kRE5EYjA07PX2Izr0UfHUbhr0vVhnwjIYNgQCt9\n", "RUTkRiP9TsdAhev3DOkMCn9dSos9RETkTiJhP8HqNmDxhIZ+O4nCX5daSzrbvCj8iYjIrXg8Hoar\n", "vX8647ezKPx1qfXamb462UNERG5juDrvT+Gvsyj8daFcwSaTswGt9BURkdsb2er5y1KpVFyuRhpF\n", "4a8LrVeHfEHDviIicnvD/U7PX65Q2uo0kPan8NeFaos9wkGDcNBwuRoREWlV2w8BWNWij46h8NeF\n", "akv2BzXfT0RE7sBv+OjvDQAQ17y/jqHw14XWaos9NOQrIiI7qA39atFH51D460Lr2uZFRER2aXjb\n", "og/pDAp/XaZQLJHKFoEb53KIiIjcyki15289madU1jFvnUDhr8tsbF5f6TugM31FRGQHtZ6/cqVy\n", "wz1E2pfCX5fZSDnfuH7DSySklb4iInJn0UgAw+fEBS366AwKf11mvfpT20BvEI/H43I1IiLS6m44\n", "5m1D8/46gcJfl0lUe/4GtM2LiIjsks747SwKf12mNl+jv1fhT0REdmdka7sX9fx1AoW/LlKpVLbm\n", "/GmDZxER2a1az186Z5PL65i3dqfw10UyOZui7SzTH1DPn4iI7NJQ//XdITT02/4U/rrI+g3bvCj8\n", "iYjI7oQCBr1hPwBxDf22PYW/LlIb8u0JGQT8PperERGRdqJFH51D4a+LbGzb5kVERGQvhrXoo2Mo\n", "/HWRjU3npzUN+YqIyF6NDDg9f2vJHOVKxeVqpB4Kf12kNuyrnj8REdmroajT82eXKiTTBZerkXoo\n", "/HWJUrm89c2qnj8REdmrgb4AtYOh1pOa99fO9n24q2mah4FPA28FksCnLMv6d6ZpDgKfBd4JJIBP\n", "WJb12UYUK/uXTBeo9dIr/ImIyF75vF4GeoOsb+ZZS+Y4PtnvdkmyT/vq+TNN0wN8ETgLDAE/AfxT\n", "0zQfBz6DEwbHgA8BnzJN87HGlCv7VVvs4fFANKLwJyIiezcYdeb9rSfzOzxTWtl+e/4eAyaAf2hZ\n", "VgV4xTTNNwIF4APAKcuyCsDTpml+Hvgo8GQjCpb9qYW/aCSAz+txuRoREWlHQ31BLgFrmxr2bWf7\n", "nfP3EE6v36+bprlomqYFPI7TC1i0LOvKtueeB+6pq0qpmxZ7iIhIvWonfawn81S04rdt7bfnbwhn\n", "Tt/XgWngEeAvgfcCN28AlAF69tJ4Pq/u5HoVC87iDtt2zmCsTc6NRvwUi8W9tVUs4ikW9/x1NyvZ\n", "NuWKp+52mt1W7RrWfm+Vutxoq952tl/LVnx97dLWXt6TzaqpXdva6Vp2wmtsZDt9YSc22KUy68kM\n", "fT2Brc/ZpRKge3gjHPQ13G/4ywNrlmX9WvXj75um+QXgnwGhm57bA6T20vjMzMw+y5Kaubk58I0T\n", "W4kBsJasZvJSloXFhT21FV9aJJSpkMrW180fi8XwGgHw1n+6iBtt1a5lq9XVzLYa1s5KrCVfX7u1\n", "tZv3ZLNrate2bnct3a7roNvaazul8vXevpmri4wP+Lc+TiU3OBzt1T28Dew3/L0KGKZpei3LKm9r\n", "6zngraZpTluWNVt93MQZIt61kydPEgxqeLIeyXSe84tFxkbHKFc85IsbABydGmNyJLKntgJ2gkDf\n", "ONGBobpqqhRzeHx+Jicm62qn2W3Ztk1sJcbY6BiGcedvmXZ9jc1qZ/u1bMXX1y5t7eU92aya2rWt\n", "na5lJ7zGRrfTfy5LIl3A648wOTGy9fhawA9kdQ9vgHw+f6Aher/h72s4w7m/YprmP8NZAPJB4EeB\n", "Y8AnTdP8GHAG+Ajw7r00HgwGCYVu7kCUvfAHAkARwzBY37zenT8yEMHv99/+C2/Vlt+P4ffv+etu\n", "5jMMfEb97bjVlmEYOz6n3V9js9oxDKMlX1+7tbWb92Sza2rXtm53Ld2u66Db2k87Q/0hEukCiXTx\n", "xvejz+k91D289e1rwYdlWTngHcCjQAz4HPC/WZb1FPAxwA/MAX8MfNyyrKcbUq3sS22xh9/w0hPa\n", "99aOIiIiDPZpu5d2t+8kYFnWRW7Ro2dZ1jrw4XqKksZa37y+0tfj0TYvIiKyf0PR62f8VioV3Vfa\n", "kI536wKJ2jYvOtlDRETqNBR17iVFu0w6W//KZWk+hb8usLGpPf5ERKQxBvquz+db09BvW1L463CV\n", "SuX6Bs/q+RMRkTr5DS/RiLO/31pSJ320I4W/DpfJ2RRtZzce9fyJiEgjDFY7E9Z1zFtbUvjrcIl0\n", "YevP6vkTEZFG2L7oQ9qPwl+H20g54a8nZBDw17+rvIiISC386Yzf9qTw1+G2VvpqyFdERBpksBr+\n", "8sUSmdzez5gWdyn8dbhEtedPQ74iItIog9vuKRr6bT8Kfx1uK/yp509ERBok4PfR2+Mc7aZFH+1H\n", "4a+DlcsVkhn1/ImISOMN9dUWfWivv3aj8NfBMvkytXm4Cn8iItJIg1uLPtTz124U/jpYOufs7+fx\n", "QDSi8CciIo1TO+ZNc/7aj8JfB0vlSgBEIwF8Xh28LSIijVPb7iVXKJHNa8VvO1H462C1nr/Bbecw\n", "ioiINML2e8taQr1/7UThr4PVev76tdJXREQaLBjw0RMyAK34bTcKfx2s1vOnxR4iInIQar1/65ta\n", "8dtOFP46VL5YJl90lvoOqudPREQOwGB10Yd6/tqLwl+HWtu8PvlWPX8iInIQtnr+tNdfW1H461Dr\n", "KSf8+X3erTkZIiIijVQ75i2VLVIslV2uRnZL4a9D1Xr++nsDeDza5kVERBqvttEzwGam5GIlshcK\n", "fx1qe/gTERE5CJGQgd9wokQyo73+2oXCX4dS+BMRkYPm8Xi2hn4V/tqHwl8HqlQqW3P+BrTSV0RE\n", "DlBt6Ffhr30o/HWgtWSOgu1s86KePxEROUjXe/40569dKPx1oIWV9Naf+yMKfyIicnBq272ksjbl\n", "csXlamQ3FP460NxKCoCg30PA73O5GhER6WS1nr9yBRIZhb92oPDXgRaq4S8S0j+viIgcrGhvEG91\n", "R7G1tPb6awdKBx1oLuaEv96Qev1ERORg+bwe+quLC9dSCn/tQOGvA6nnT0REmqk270/hrz0oHXQY\n", "u1RmaS0DqOdPRESaYzCqnr92ovDXYZZW01urrdTzJyIizVBb9LGeLlOpaNFHq1M66DC1bV48HugJ\n", "6p9XREQOXm3Yt2DD+mbe5WpkJ0oHHaa22GMg4sNbW34lIiJygAb6rp8mNb9tr1lpTQp/HWYh7oS/\n", "oT6/y5WIiEi3CPh9hKujTQp/rU/hr8PMr9TCn+FyJSIi0k2iYee+o/DX+hT+Osx8TOFPRESaLxqp\n", "hb+Uy5XIThT+OkgmV9yaaDvUq/AnIiLNE+1Rz1+7UPjrINt/2hpUz5+IiDRRNOzsLbuWzJPJFV2u\n", "Ru5E4a+D1H7aCgd99GqPPxERaaLasC9c33lCWpMSQgepHes2OdqLx6NtXkREpHlCfi+Bav6bi226\n", "W4zckcJfB6kt9pga7XW5EhER6TYej4ehXidWzC6r56+VKfx1kPm4wp+IiLhnKOLECvX8tTaFvw5R\n", "qVRuGPYVERFpNvX8tQeFvw6xlsyRzZcAOKzwJyIiLqiFv6XVNHap7HI1cjsKfx1iYdu+SpOjERcr\n", "ERGRbjVYDX+lcoXFuPb7a1UKfx1irnasWzRIT0jn+oqISPP1hz0YPme3Cc37a10Kfx1C8/1ERMRt\n", "Xq+HiWFn9Enz/lqXwl+HmNM2LyIi0gKmxqrhTz1/LUvhr0PUev4U/kRExE1TI0740ykfrUvhrwPY\n", "pTJLaxlA4U9ERNxV6/mbj21SqVRcrkZuReGvAyytpimXnW+wqTGFPxERcU9tu7FsvsRqIudyNXIr\n", "Cn8doLbNi8/rYXyox+VqRESkm02MXL8PzS5r3l8rUvjrAPPV+X6HhnswfPonFRER94QCBmODYUDz\n", "/lqVkkIHmNc2LyIi0kIOj/UBWvHbqhT+OsC8VvqKiEgLOTzu3I/m1fPXkhT+OsC89vgTEZEWstXz\n", "pzl/LcmotwHTNMeBl4CftSzrK6ZpDgKfBd4JJIBPWJb12Xr/Hrm1TK7I+mYeUPgTEZHWMF3deWJ9\n", "M08qW6Q3rGNHW0kjev5+GxgCapv5fAZIAmPAh4BPmab5WAP+HrmF2kpf0DYvIiLSGqbH+7b+rDN+\n", "W09d4c80zf8FSAGz1Y97gQ8Av2JZVsGyrKeBzwMfrbdQubW56ny/cNDHYF/Q5WpEREQgGgnQ1+P0\n", "9s1p6Lfl7Dv8maZ5N/CLwP+67eFTQNGyrCvbHjsP3LPfv0fubGHbSl+Px+NyNSIiIuDxeLbm/Wm7\n", "l9azr/BnmqYB/B7wC5ZlrW/7VATI3vT0DKCdhw+IFnuIiEgrOlydijS7rPDXava74OOXgecty/qq\n", "aZq17iYPTtAL3fTcHpyh4V3L5/P7LKv7XFtOAnBoMEQud/0YnWKhAIBt23X/HcViEU+xSLFYrKud\n", "km1TrnjqbqfZbdWu4W6uZbu+xma1s/1atuLra5e29vKebFZN7drWTteyE15js2qySyXg+j18YtjZ\n", "6Hl2OXnD/Ul2dtA5aL/h728DE6Zpfrj6cRT4Q+DXgIBpmtOWZc1WP2cCZ/fS+MzMzD7L6i7lSmWr\n", "O72cX+fs2euXeW5uDnzjxFZidf898aVFQpkKqWx937yxWAyvEQCvr+6a3GhrN9ey3V9j09pZibXk\n", "62u3tvbz/d1Or6+Zbd3uWrpd10G31ciaUskNDkd7t+7hdsYZCFxay/DCiy9j+DQ1qVXsK/xZlnXv\n", "9o9N07wM/LxlWX9umubrgE+apvkx4AzwEeDde2n/5MmTBINavLCT2HoWuzQPwBsfuoejh66vrkqm\n", "85xfLDI2OoZh1LejT8BOEOgbJzowVFc7lWIOj8/P5MRkXe00uy3btomtxHZ1Ldv1NTarne3XshVf\n", "X7u0tZf3ZLNqate2drqWnfAam1XTWsAPZLfu4SMTGT7/re9QqcDQ+DGmxzU9abfy+fyBdoTVvc/f\n", "LXwM+DQwhzPc+/Hqqt9dCwaDhEI3jx7LzWIbCQC8Hjg+NUTAf/0nN38gABQxDAO/v779lfx+P4bf\n", "X3c7PsPAZ9Tfjltt7eZatvtrbFY7hmG05Otrt7b28/3dTq+vmW3d7lq6XddBt9XImgyfcw+q3cMP\n", "HwoSMLwU7DKxjQKnjuq+3ioaEv4syzq+7c/rwIfv8HRpkNreSeNDkRuCn4iIiNt8Xg+To71cWUzq\n", "jN8Wo+Pd2lhtvp82dxYRkVZU2+xZx7y1FoW/Nlb7Ztq+k7qIiEirmN7a7kXhr5Uo/LWx2t5J0+r5\n", "ExGRFnTkUBRwRqpK5coOz5ZmUfhrU4lUns2Ms5efev5ERKQVHanuQlG0yyytpnd4tjSLwl+b2n5c\n", "zmH1/ImISAuaGIls7e93bUlDv61C4a9N1eZPDPQF6e0JuFyNiIjIaxk+79bxo7UTqcR9Cn9tqrZs\n", "fnpMQ74iItK6avP+1PPXOhT+2lRt2FdDviIi0spq89IV/lqHwl+bmqsO+x7WcTkiItLCaos+5mIp\n", "SqWyy9UIKPy1pVzeJrbuHJitYV8REWllR6o9f3apzKJW/LYEhb82NLdyfaWvtnkREZFWNjkSwfA5\n", "cUNDv61B4a8N1eb7hYM+hvt1ULaIiLQun8+7NT/9mk76aAkKf22oNt9vaqwPj8fjcjUiIiJ3Vhv6\n", "nVXPX0tQ+GtD17d50WIPERFpfbVFH+r5aw0Kf23o+jYvmu8nIiKtrzY/XSt+W4PCX5splcosVBd8\n", "TGubFxERaQO1nj+7VGYhrhW/blP4azNLaxnsUgVQz5+IiLSHieFtK3419Os6hb82UzvT1+f1MDES\n", "cbkaERGRnd2w4leLPlyn8NdmavP9JrbtmyQiItLqthZ9LCVdrkSUHtpMredPmzuLiEg7qYW/WQ37\n", "uk7hr83MVbd5OaxtXkREpI0cGY8CML+SwtaKX1cp/LWRSqXC7LK2eRERkfZzdGvFb4VFrfh1lcJf\n", "G4mtZ8nmbQCOTURdrkZERGT3xocj+A2d8dsKFP7ayNVFZ5Ks1+vRHn8iItJWfF7PthW/WvThJoW/\n", "NnKlGv6mRiP4DZ/L1YiIiOxNbd7fVS36cJXCXxup9fwdPaQhXxERaT/Xt3tR+HOTwl8buVLtJtd8\n", "PxERaUe1RR/zKykKxZLL1XQvhb82UbTLzFc3eD6q8CciIm3o+FQ/AOVyRce8uUjhr03MxTYplZ0z\n", "fdXzJyIi7Wh0IEwk7AfgykLC5Wq6l8Jfm6jN9wsFfIwN9rhcjYiIyN55PB6OTzodGJcWtOLXLQp/\n", "beLKtsUeXq/H5WpERET25/ikM/R7WT1/rlH4axNb4U9DviIi0saOV+9jlxeSVCoVl6vpTgp/bWJr\n", "m5cJHesmIiLtq7boI50tsrKRdbma7qTw1wZSmQLxRA7QYg8REWlvR8b7tqYvXZ7X0K8bFP7awNVt\n", "m2Fqg2cREWlnAb9v65i3y4ta9OEGhb82UJvvN9gXpL836HI1IiIi9Tk+oUUfblL4awNXtdhDREQ6\n", "yF1T1UUf8+r5c4PCXxuo9fxpvp+IiHSCY9XtXhZX02RyRZer6T4Kfy2uUqlwTWf6iohIB6lt9Axw\n", "dVHHvDWbwl+LW9nIks7ZgIZ9RUSkMwz2hRjoc+awX17UvL9mU/hrcbUhX68Hpse1x5+IiHSG2mbP\n", "l7TdS9Mp/LW42mKPiZFegn6fy9WIiIg0xl3VzZ6v6IzfplP4a3Fa7CEiIp2otujjylKSUlnHvDWT\n", "wl+L0zYvIiLSiWqLPvKFEkuraZer6S4Kfy2saJeZi6UAOKYzfUVEpIMcHu3FbzgxRPP+mkvhr4XN\n", "xTa3usLV8yciIp3E5/Ny9JDTsaGTPppL4a+FXZjdACASMpgYjrhcjYiISGMdn6wd86ZFH82k8NfC\n", "Zqrh7+T0AB6Px+VqREREGutYdd6fev6aS+GvhV2Yq4a/wwMuVyIiItJ4tZ6/1USORCrvcjXdQ+Gv\n", "RRXtEleqPwmdmh50uRoREZHGOzHVT21gqzbVSQ6ewl+Lurq4iV1yFnucnFbPn4iIdJ6ekJ/DY86i\n", "jwvX1l2upnso/LWoC7PON0E0EmBsMOxyNSIiIgfj7iNOB4el8Nc0Cn8t6oIWe4iISBcwjzhTm85f\n", "26BS0UkfzaDw16Jmqos9Tmmxh4iIdLBT1fC3mSmwtJpxuZruoPDXgvLFEleXNgHN9xMRkc52bCJK\n", "oHrSx3kN/TaFwl8LuryQoFw92eOUwp+IiHQww+flRHWU6/yswl8zKPy1oNrmzoN9QYaiIZerERER\n", "OVh31+b9XVX4awZjv19omuZbgH8NmEAc+JRlWf/RNM1B4LPAO4EE8AnLsj7biGK7hRZ7iIhIN6mt\n", "+L04n8AulTF86ps6SPu6utWA96fAb1qWNQD8FPBJ0zR/BPgMkATGgA8BnzJN87EG1dsVthZ7aHNn\n", "ERHpArWev6Jd5orO+T1w+43WR4A/syzrDwEsy/oh8E3gTcAHgF+xLKtgWdbTwOeBjzai2G6QzdvM\n", "LTuLPTTfT0REusH4UA/RSADQvL9m2Ff4syzrBcuyfrr2cbUn8K2AByhalnVl29PPA/fUU2Q3uTSf\n", "oLrWgxOH+90tRkREpAk8Hs9W75+leX8Hbt9z/mpM0+wH/gx4Bqf37/+46SkZoGcvbebz3Xu486uX\n", "VwAY7g8R9kMul9tXO8VCAQDbtuuuqVgs4ikWKRaLdbVTsm3KFU/d7TS7rdo13M21bNfX2Kx2tl/L\n", "Vnx97dLWXt6TzaqpXdva6Vp2wmtsVk12qQTs/x5+12Qvz5xbxrq6tu97X6c46BxUV/gzTfM48GXg\n", "AvBh4DRw8/LUHiC1l3ZnZmbqKautPfvKGgCjfXD27Nl9tzM3Nwe+cWIrsbprii8tEspUSGXr+2aM\n", "xWJ4jQB4fXXX5EZbu7mW7f4am9bOSqwlX1+7tbWf7+92en3NbOt219Ltug66rUbWlEpucDjau+97\n", "uL/k3GPmV9I8+8OXCAW06OOg1LPa9yHgL4Dftyzr49XHLgAB0zSnLcuarT0V2FOKOXnyJMFgcL+l\n", "tbX/8NXvAPD6e6c5ffqufbeTTOc5v1hkbHQMw6ivgzdgJwj0jRMdGKqrnUoxh8fnZ3Jisq52mt2W\n", "bdvEVmK7upbt+hqb1c72a9mKr69d2trLe7JZNbVrWztdy054jc2qaS3gB7L7vocfOV7gvzzxTQAC\n", "0UlOnxiuu6Z2lc/nD7QjbF+pwDTNceAvgV+3LOvXa49blrVpmuaXcFb+fgw4A3wEePde2g8Gg4RC\n", "3ST0gF8AABQoSURBVLe/XTpbZDHuHG1z7/GRuq6BPxAAihiGgd/vr6suv9+P4ffX3Y7PMPAZ9bfj\n", "Vlu7uZbt/hqb1Y5hGC35+tqtrf18f7fT62tmW7e7lm7XddBtNbImw+f0Hu73Hh4KhZgYibAYT3Nl\n", "Kc0jp6fqrklubb9dQj8HjAD/xDTNf7Lt8X8DfAz4NDCHM9z78eqqX9nBxfmNrT/rWDcREek25pFB\n", "FuNpLfo4YPsKf5Zl/UvgX97hKR/eXznd7ZXLzny/iZEIfT0Bl6sRERFprlNHBnjiuTnOX1unUqno\n", "oIMDotmULeTli3EAztzVvfMcRESke5nV7V7WN/PEN7p7xe9BUvhrEUW7zLkrTjf3mS6e5CoiIt3r\n", "+GQ/hs/p7Xv16prL1XQuhb8WcXFug0LR2SPpzF0jLlcjIiLSfAG/b2uz55dm4i5X07kU/lrES9Uh\n", "37HBMGNDe9oTW0REpGM8cHIUgBcV/g6Mwl+LePnSKgBnTqjXT0REutcDp5z74PxKitVE1uVqOpPC\n", "Xwsolcqcu1wNf1rsISIiXeyeo4MEDCeeqPfvYCj8tYCL8wmy+ep8P/X8iYhIF/MbPu497pwopXl/\n", "B0PhrwW8fNHp9RvuD3FoWPP9RESku91/0ukIeUHh70Ao/LWAly/V9vcb0YaWIiLS9R6sLvqIrWVY\n", "Wk27XE3nUfhzWalc4ZWtxR6a7yciInJyeoBQwDkrWEO/jafw57IrCwnSORtQ+BMREQEwfF5OVxdA\n", "atFH4yn8uay2xctAX5Cp0V6XqxEREWkN2/f7q1QqLlfTWRT+XHa2Gv5O3zWs+X4iIiJVD1QXfawl\n", "c8yvpFyuprMo/LmoXK5srfS9X/v7iYiIbDk+1U8k7Ac09NtoCn8uml3eZDNTALS/n4iIyHY+r2fr\n", "4AOFv8ZS+HPRy9XzfPt6AkyP97lcjYiISGupHfX20kycclnz/hpF4c9Fz7waA+D+k8N4vZrvJyIi\n", "sl1t0UcyXeDa8qbL1XQOhT+XZPM2L1xYAeCx04dcrkZERKT1HBnvo783ALB1z5T6Kfy55DkrRtEu\n", "4/V6eMO9Cn8iIiI383o9vO7UGABPvrzkcjWdQ+HPJU++vAjAfceHiEYCLlcjIiLSmh5/YAKAs5fi\n", "JFJ5l6vpDAp/LiiVyjz9yjIAbzwz4XI1IiIirethc4yA30e5Aj9Q719DKPy54OzlVVL/f3t3HiVV\n", "eeZx/NvV1d30RoNsbbMKxrdZFJRdhMioHEDUmWNyiHGJOjrxGDTJQScniTOZJVEniXNyPEmMTJTE\n", "JZMzDhHBDRUXcAEbgoAsL4jD0izdQEPva3XNH7cau8uG3ureW1X9+5zT5zRVt9563odb/T51733f\n", "W9sI6Ho/ERGRc+mTEWRyoXPq98PtR3yOJjmo+PNBy3ULo87vS/6AbJ+jERERiW8zL3bOkm3be/zM\n", "wRPpPhV/HguHw2zY4RR/OuonIiLSsanj8gmmptAUClO0U6d+e0rFn8f2H62gtKwG0PV+IiIinZGT\n", "mcYlX3HW/Pto+1Gfo0l8Kv481nKx6sC8PowZludzNCIiIonh8osLANi8u5S6+iafo0lsKv48tnGH\n", "841l2vh8UlJ0Vw8REZHOmDEhn0AKNDSG2GxL/Q4noan481DpqRr2FZcDOuUrIiLSFXk5GYwf7dzr\n", "98NtmvXbEyr+PPRxZKJHVp8gE8YM9DkaERGRxHJ5ZMHnop0lNDaFfI4mcan489AHkW8qUwqHkBZU\n", "6kVERLqiZcmX2vomPtmje/12lyoQjxwqqeTTfScBmH3pUJ+jERERSTwD8jIxI/sD8P5WnfrtLhV/\n", "Hnl9w37AmeU7dewQf4MRERFJULMnOQdQ3t96hMqaBp+jSUwq/jxQ3xhibdEhAObNGEVqqtIuIiLS\n", "HVdNGU5GeioNjSHe+vig3+EkJFUhHnj/k8NU1zYSCKQwb/oIv8MRERFJWDlZ6Vx52TAAXvng/wg1\n", "h32OKPGo+PPAax/uB5zbuQ3Iy/Q3GBERkQS36IrRAJSU1bB5d4nP0SQeFX8u21d8GnvwFAALZo7y\n", "NxgREZEkMOr8vkwYMwCAl9d/7nM0iUfFn8te33AAgPMHZDMxcl9CERER6ZmWo39b9hynuLTS52gS\n", "i4o/F9XUNfLuZmeix/yZIwkEdDs3ERGRWJgxPp+BeX0A59o/6TwVfy5696/F1DWECKYGuGqqJnqI\n", "iIjESmpqgAWXXwDA2qJD1NQ1+hxR4lDx55Lm5jCvRr6JXDGxgLycDJ8jEhERSS7zpo8kmBqgtr6J\n", "dzYd8juchKHizyXvbSnmwDHnGoRrZ13gczQiIiLJp19uBnMid81atf5zmkLNPkeUGFT8uaCuoYln\n", "XtkJOMu7FI46z+eIREREktMNc8YAcORE9ZkzbnJuKv5c8NK6fZworyM1kMId1433OxwREZGkNXpo\n", "HldHrqv/05rdlFfV+xxR/FPxF2OnKupY8fZeABZcPoqhg3J8jkhERCS53bZwLJkZQarrmnj2tV1+\n", "hxP3VPzF2PNrdlNbHyI7M42b5hX6HY6IiEjS69+3D9+4xgDwxsYDfFZ82ueI4puKvxg6cLSCNzc6\n", "izovvvoi+man+xyRiIhI73Dd7NEMHZRNOAzLXtxOOKx7/p6Nir8YCYfDPL16B81hyB+QxaIrNMNX\n", "RETEK2nBAHfdcDEAu/aXsW7LYZ8jil8q/mLk9Y/281dbCsC3rh1HWjDV34BERER6mSljhzBl7BAA\n", "lr+8g4rqBp8jik8q/mJgx+cnWbZyO+DseLMuKfA5IhERkd7p7hsmEEwNcLK8jkf/WERjk9b+i6bi\n", "r4dOnK7l0WeKaAqFGToom6U3TyYlRffwFRER8UPBoByWfH0iANv3neDJF7fp+r8oKv56oKExxMN/\n", "+JjTlfVkZgT58R3TyclM8zssERGRXu2qqSO4ce6FAKzZcIDV6z/3OaL4ouKvm8LhML9dsZW9h5zp\n", "5Eu/eRnDh+T6HJWIiIgA3LZwHNPH5wPw1KpP2bSrxOeI4oeKv25oCjXzxF+2sbbIuYn0N+cZpk84\n", "3+eoREREpEUgkMLSmydzQUFfmsPw82c38em+E36HFRdU/HVRZU0DP1n2Ea99uB+AWRMLWBxZWFJE\n", "RETiR2ZGkIfunE6/3Axq65t46Hcfsnr9573+GkAVf11wqKSSpb9ax7bPnG8Of3flhTx4yxQCAU3w\n", "EBERiUeD+2fxyL2zGDY4h1BzmGUrt/OrP2+hvjHkd2i+UfHXCaFQM2s2HOCBx9dx9GQ1wdQUvrv4\n", "Uu68bjypKvxERETi2rDBuTz23TnMmOBcA/j2pkP84Nfr2X+0wufI/BF0q2FjzKXAk8A4YC9wj7V2\n", "o1vv54bm5jAfbDvC86/v4vDxagDyctL50e3TGHfBAJ+jExERkc7K6pPGD781jRfW7uH5NbvZV1zO\n", "fb98hysmFnDTPMOI/L5+h+gZV4o/Y0wfYDXw78DvgduAVcaY0dbaajfeM5aqahsp2nmMl9btY19x\n", "+ZnHZ08ayu2LxjG4f5aP0YmIiEh3BAIpLL7GMGZYP558cRvHTtbw/tYjfLDtCLMnDeXaWRdgRp6X\n", "9Gf13DryNxcIWWufjPx7uTHm+8BC4AWX3rPbmpvDlJ6qYcue42zYfpSte48Tav7iYtDLCgdz24Kx\n", "jBnWz8coRUREJBamjB3CpIuu4p1Nh/jzW3soLath3ZbDrNtymLycdKaOzWfa+HwuvnBgUq7f61bx\n", "VwjsjHrMRh73RXlVPcdOVlNR3UBFdQPlVQ0cOVHF/qMVHDxWQW192ws/g6kpTLpoMDfOvZAJYwb6\n", "FLWIiIi4IZga4JrpI7ly8nDWFh1k5Xv7OHy8ivKqBt4qOshbRQcBOK9vH0bk5zIiP5eCAdnkZqeT\n", "k5VO36x0hgzIIjcr3eeedJ1bxV82UBP1WA3gy/nS3QfK+OFvPqApdO77+2WkpzKlcAgzLj6fqWOH\n", "kJ2E1b6IiIh8IS0YYP7MUcyfOYri0ko+3nGMjTuOsWt/GeEwlFXUUVZRxyd7jn/ptenBAL+4fw6j\n", "h+b5EHn3uVX8VQOZUY9lAZWdeXF9fX1Mg2lsaACc07iBQAq5mWnkZqcxqF8mI4bkMLKloh+YTVqw\n", "ZQJ0iLq6xJ0GnhJuprrsMOXBRoJpPftvbmioovpUGk2NjT1qp6L8NIHUIBnpPf+W5GVbTaEQVRWn\n", "KUtPI5iaGjdx+dFWT9tpnct47F+itNWVfdKrmBK1rY5ymQx99Cqm8vJT5GenxXwM99LAvmksnDmc\n", "hTOHU1nTwMGSKopLqjhYUsWh0ipOltdRVdtITV0TAM3hMPX19dTV1cU0DrdzmOLGQofGmPnAb6y1\n", "Y1o9tg34Z2vtynO9dvPmzb175UURERERYPLkya7MPHHryN/bQIYxZgnOci+3AoOBNR290K2OioiI\n", "iIhLizxbaxuABcBNwEngO8D11tpaN95PRERERDrHldO+IiIiIhKfdHs3ERERkV5ExZ+IiIhIL6Li\n", "T0RERKQXUfEnIiIi0ouo+BMRERHpRdxa568NY8z3gAeAXGAV8G1rbfTt3zDGZAC/Bf4WaAQet9Y+\n", "3Jl2jDE3AD8FRgCHgIc6WlA6ERhjLsVZK3EcsBe4x1q7sZ3tbgJ+hrOe4jvA31trSztqwxjTH3ga\n", "mAuUA/9qrX3a7X75wYNcDgN+DVyBs/++ADwQWfooqbidy1avDwBrgU3W2gfd65F/PNgv04HHgG8A\n", "KcCLwL3W2p7dsicOeZDLQpwx6lKgFvgD8GNrbdItmxGLXLbaZhrworV2aKvHNPZ8ebvu5rLLY4/r\n", "R/6MMYtwCrYrgeHAecAvzrL5zyLbjMLpxF3GmK931I4x5iLgGeA+a20e8H3gWWOMcaNPXjHG9AFW\n", "A08BecDjwCpjTHbUdpcATwCLgYHAMWB5B2203Gf5v4AKnJ3ta8DPjTHT3e2Z9zzK5XPAQaAAmARM\n", "Bf7J1Y75wOVctmkDWArMpuX+jEnGo/3yEWAs8JXIz3icv6VJxaNcLgO2AANwPt+LgVtc7ZgPYpHL\n", "yPMpxpg7gTeAtKi30djTdrue5LLLY48Xp31vBX5vrf3MWlsRCehWY0x7d/K4BXjYWltprf0Mp5K9\n", "vYN2AsBIYJm19l0Aa+2bgMVJQCKbC4SstU9aa0PW2uVACbAwarubgZXW2iJrbR3wA2C+MWbQudow\n", "xuQANwA/sdY2WGuLgD8Bt3nUPy+5mctrjTFpQBXw00guS4Dngcs96p+XXN0vW14c+WN4O86RqmS9\n", "84/bn/E04G5gibX2tLX2FHAjzr6ZbFz9jEdeW4Ez8Kbi7JPNwJfOYiWBWOQS4EfA/Thn5c58hjX2\n", "xDSX6UAlXRx7YlL8GWNSjTH92vnpCxhgZ6vN9wA5wNCoNvrjfAOI3rawZZOztFNgrX2z9SkhY8xo\n", "nG+3W2PRPx8V0rbP4BS1hVGPtcmNtbYMKItsd7Y2Wo4ENFpr97d6rnXOk4mbuSy01jZaaxdFHaK/\n", "HvgkBrHHG1dzCWcuAfkjcBdOUZ2svPiMB4EZxpg9xphinDMjR2LVgTji+n4JLMEpWmpwjrSst9au\n", "iEXwcaanuWw56/aUtXYSsCnqdRp7YpTLSMF3XVfHnlgd+ZsbCTL6ZyuQTdtvRi2/Z9FWdtTzLb9n\n", "tXq+w3aMMQXAq8Bya+32rnYkzkT3GdrmpDPbZXXwXPQt99prPxm4ncszIofnHwcuwjnllmzczGVm\n", "5PdHgNettR9F/p2Up31xf7/sD6QDi4ApwAxgHs5RhWTj6n4ZOVv1UuQnF+cAwxxjzD/0PPS4E4tc\n", "Yq09do72NfZ0Ybtz5PKMrow9MZnwYa19i7MUksaYrXzxBx2+6HD0t/mWTme2ei6r1e+tB4Z224lc\n", "VLkaWGWtvbcLXYhX1bTtMzj9rox6rL0dqWW76LxFP9enneeS8UiL27kEwBiTCTyLMzB81Vp7omdh\n", "xyU3c1lljPkbnC+U0yKPp5C8p33d3i/rcf42PxS5XKbCGPOfwH0411gnE1f3S2AiztHUKZHJMruM\n", "MY8C9+BcC5hMeprLjsYQjT2xyyXQ9bHHi2v+dtH28KYBTltr25x2iBziLG1n2x2daccYMx9ndswv\n", "k6TwA6fP0ZNWok9/f2k7Y8xAnAkxu4Dd7bTRchj6MyDdGDM8qv0dJB+3cnmmDWPMecB7QD9gprX2\n", "QKyCjzNu53IxMAYoNcacAm4ClhhjVsWqA3HEi894M20H2iDJWUy7vV/W4eQtvdVzIZzZlckmFrk8\n", "l71o7IlVLrs19nix1MtzwO+MMSuAYuDfOPvFxs8B/2KM+RrObJfvAA+2eq7ddowx44EVwB3W2v9x\n", "qyM+eBvIMMYswZkmfivOdZFrorb7b+A9Y8zTwGacw72vWmtPGWPaa2MQsMZaW2uMeQl4xBhzNzAB\n", "Z6Bd4EHfvOZWLgcDayKnhP4CHAVutNY2edEpn7iaS+ss0fTtlkaMMcuB49baf3S5X37w4jO+EnjY\n", "OMtI5ADfwzlCkGxc3S9xjqJuAx4zxtyPM7NyKc6s1WTT41yeq3FrbaXGntjksrtjj+tH/qy1LwP/\n", "AbwCHMC5FrD15IxKY8ysyD8fwrnoczewHmcG74pOtHM/kAE8FWmv5ecut/vnJuus0bMA50NxEqcY\n", "vj7yB/0JY8wTke224szoexpnFlE+cEfkufqztRF5m7txZq8VA/+LszZQkTc99I4HuZwJzAGuBk61\n", "2gff9a6X3vBov+wVPMrl7Thrn+7EuQ77DZx1/5KK27m01jbjrEGbjzNh5l2cAftxr/rolVjksh3R\n", "1+1q7IlNLrs19qSEw8l6HbWIiIiIRNPt3URERER6ERV/IiIiIr2Iij8RERGRXkTFn4iIiEgvouJP\n", "REREpBdR8SciIiLSi6j4ExEREelFVPyJiIiI9CIq/kRERER6kf8HvO8CxQAGeDMAAAAASUVORK5C\n", "YII=\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x117a6bf90>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHQCAYAAADHzpyUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJzs3WlwW+l95/svNgLcwVUkRVKkROmoJbVavbkXt+NuO3Hc\n", "dtzONnFlasqZTMpVuTNTk5qUX2SpOOO6YyfXqdypyp17K44rnqnMvR7bySRxx+122u7V3a3WLrXW\n", "I1ELSXEDARIkQRIgDoD74pA0W6JEUAJ5AJzfp4rVTTznAP/nkXj417N6crkcIiIiIlLavE4HICIi\n", "IiL3T0mdiIiISBlQUiciIiJSBpTUiYiIiJQBJXUiIiIiZUBJnYiIiEgZ8Od7oWEY24CzwG+apvmS\n", "YRiPAUeA+VWXfcU0zT8tcIwiIiIiso68kzrgr4FGYHlju4eBl0zTfKHgUYmIiIjIhuQ1/GoYxm8D\n", "CWBo1csPA2c2IygRERER2Zh1e+oMw9gD/C7wBHByVdHDwIJhGNcAH/Bd4A9N01zcjEBFRERE5M7u\n", "2lNnGIYf+Bvg35umOXVLcQR4EdgPPAs8B3x5E2IUERERkXWs11P3R8Bp0zRfWfWaB8A0zc+ueu26\n", "YRhfBb4K/H5hQxQRERGR9ayX1P0a0G4YxueWvq8Dvm0YxleAVuBLpmkmlsoqgYV8P/jEiRO59a8S\n", "ERERKW+PPvqopxDvc9ekzjTNB1Z/bxjGdeDfAS8Dl4GsYRi/B/QAfwB8fSMf3tfXRzAY3MgtZSOV\n", "StHf3+/aNnB7/UFtoPq7u/6gNnB7/UFtsFz/QtnIliYrTNPMGYbxaeC/AlHsver+0jTNv9jI+wSD\n", "QUKh0L2EUDbc3gZurz+oDVR/d9cf1AZurz+oDQplQ0mdaZq9q/7/MvCJgkckIiIiIhumY8JERERE\n", "yoCSOhEREZEyoKROREREpAwoqRMREREpA0rqRERERMqAkjoRERGRMqCkTkRERKQMKKkTERERKQNK\n", "6kRERETKgJI6ERERkTKgpE5ERESkDCipExERESkDSupEREREyoCSOhEREZEyoKROREREpAwoqRMR\n", "EREpA0rqRERERMqAkjoRERGRMqCkTkRERKQMKKkTERERKQNK6kRERETKgJI6ERERkTKgpE5ERESk\n", "DPidDkBEZD2WZRGPx+96TTgcxu/XI01E3EtPQBEpevF4nBdfP0d1Td2a5XOJGV547gDNzc1bHJmI\n", "SPFQUiciJaG6po76cKPTYYiIFC3NqRMREREpA0rqRERERMqAkjoRERGRMqA5dSJS8jIZi1gsdtdr\n", "tDpWRMqdnnAiUvLmErO8cjhK67a5O5RrdayIlD8ldSJSFqprarU6VkRcTXPqRERERMqAkjoRERGR\n", "MqDhVxEpetlcjoHxeRaGF6mtClBfHaSupoLqygBej8fp8EREikLeSZ1hGNuAs8Bvmqb5kmEYDcA3\n", "geeAaeDLpml+c3PCFBG3Otsf5ev/cIaBsdsXQVQEvHz4YAe1GnMQEdlQT91fA41Abun7bwAzQCvw\n", "EPCyYRjnTdM8UtgQRcSNbkZm+e/fv8CR82MrrzXWhVhIWSykLAAW01leP3GTnhY/D+0MOBWqiEhR\n", "yCupMwzjt4EEMLT0fQ3wWWC3aZqLwDHDML4FfB5QUici9+X8tRhf+vq7LFpZAHraqtm9vYo9vR0A\n", "LKYzTM8tcvjsCEPjCW5MWMwkZ3mhOU11pZI7EXGndQctDMPYA/wu8L+tenk3kDZN88aq1y4Dewsa\n", "nYi4zkg0wVf+21EWrSyNdUF+918+wh/964fY1hBauaYi4KMlXMkvPLOTR4xWACZnLb776mUiU/NO\n", "hS4i4qi79tQZhuEH/gb496ZpThmGsVxUDSzccvk8ULWRD0+lUhu5vKws192tbeD2+oPaYK36z84v\n", "8p/+6giz84tUV/r50r95nO0t1USjUax0mnQ6fdv7PLa3GVJTnBlMM5+0+ME71/nlZ3dSGfzp481K\n", "p0kmkySTyc2vWJ7c/ucPagO31x/UBoWu93rDr38EnDZN8xXDMJaXmHmwE7jQLddWYQ/R5q2/v38j\n", "l5clt7eB2+sP7mgDy7JIJNZ+PBw/fhyAUGU1//MnU4zGFvF64VefDhOP3CAegXg8zth4gsTC2kmZ\n", "Lx3jgW1BLowHmUtavPzuNZ4wqvEsrYxNzMQxzQTj4+ObU8H74IY///W4vQ3cXn9QGxTKekndrwHt\n", "hmF8bun7OuDbwP8BVBiG0WWa5tBSmQGc38iH9/X1EQwGN3JL2UilUvT397u2Ddxef3BXG0SjUV56\n", "6xI1NbUrr1mZDNHoBM3NLSzMzzExn2YgsgjAv/3lA3z04e0fuH9sbpi6O5wYkUsn8fgCNLfX8sbJ\n", "EaIzFqMzAR7baw/NzlSGMIztRXVMmJv+/O/E7W3g9vqD2mC5/oVy16TONM0HVn9vGMZ14N+ZpvkD\n", "wzAOAX9iGMYXgAPArwPPb+TDg8EgodCtHX7u4vY2cHv9wR1tEAqFCDc0fuAYr3Q6TXIxTWNTCycj\n", "KY5fngTghQ938eju+g/07M3NzeH1+QgE1l4E4fP78fkD7N/eQmQqyYXrk5w0o2xvqaO7rRZ/IEAo\n", "FCrKdnbDn/963N4Gbq8/qA0K5X42H/4C8JfATexh1y+apnmsIFGJiGvMJy1OX50BoKulktpQjleP\n", "DX7gmrGRIWrrG2nI4/0+cmg7kal5ovEkPzo6wOd+ds8mRC0iUnw2lNSZptm76v+ngM/d5XIRkXW9\n", "d34cKwMBn4ePP9FLdej23riZ6am838/v8/LJJ3v47o8vk1zM8KOjgzz3UD7poIhIadM+7CLimOh0\n", "mv6b0wDs665cM6G7F/U1QT72WBcAI9E5ro7cfhqFiEi5UVInIo7IZLKcHbB3RgpXeendVthJ0rs6\n", "w+zcXg/Ayf5pZuZv3w5FRKScKKkTEUec6Y8xl8ziAQ72BFe2HymkjzzUQcDvZTGd5TuvXi/4+4uI\n", "FBMldSKy5eKJFKcuRwHYv7ORcLVvUz6npqqCJ/a3AfDuuQne75/YlM8RESkGSupEZMsdfn+UTDZH\n", "MODhsb0tm/pZD/Y101hrz9X7f/7uDGkrs6mfJyLiFCV1IrKlIlPzXBuxF0fs7aykIrA5vXTLvB4P\n", "TzzQiMcDwxNz/N1r2rleRMqTkjoR2VJHz48BEK6poLO5MKtd19NUV8HHH2kH4G9fvcxYTKthRaT8\n", "KKkTkS0zFptjYGwWgEf3tmzK4og7+eWPdhOuDZK2svy372/oREMRkZKgpE5EtsyRpV66pvoQOzvq\n", "tvSzK4N+Pv+8ffLhu++PcvZqdEs/X0RksympE5EtMTaZ5GbEPs/1Q/vatrSXbtnHH+9mV6e9d903\n", "/vEsmWxuy2MQEdksSupEZNPlcjnOXLMXR7Q0VNK7xb10y7xeD1/47IMAXB+Z4cdHB9e5Q0SkdCip\n", "E5FNd+56nIn4IgBPONRLt2z/ziaeeagDgP/35YvMJ3XShIiUByV1IrKpcrkc3/vJEABtTVV0t9U6\n", "HBH85i/sp8LvJZ5I8Z0fXXY6HBGRgvA7HYCIlLcL1ye5OmKveHVqLt2tWhur+KVn+/jOjy/z4k+u\n", "8rOPd1Lpv3uPXTgcxu/XI1NEipeeUCKyqf7+dXuz34aaAJ2tNQ5H81O/8rHd/OjoIJMzSb7xj+/T\n", "05ShumbtuX5ziRleeO4Azc3NWxyliEj+NPwqIptmaHyWoxfsbUz29dQWRS/dssqgn9/49D4ATl2Z\n", "ZGaxgvpw45pfd0r2RESKiZI6Edk0//CG3UvXVBdkR2uVw9Hc7tlHOtnTHQbghBknqy1ORKSEKakT\n", "kU0xOZPk9RM3AfjE4x14vcXTS7ds9RYn8bk0F67HHI5IROTeKakTkU3x/bevYWWy1FQG+JlD25wO\n", "54729jTy5D57rtyR82MkFy2HIxIRuTdK6kSk4OaTaX7wznUAnn+6h1CFz+GI7u5Xn+vB5/WQXMxw\n", "/MK40+GIiNwTJXUiUnCvHBlkLmnh93n5zDM7nQ5nXU11Qfb32Pvnnb0aZWo26XBEIiIbp6RORAoq\n", "k8ny4k+uAvCxx7poqAs5HFF+9u2opaYyQDYH750dczocEZEN0z51IlJQRy+MMTG1AMAvfnSXw9Hk\n", "z+/z8sSBNl49NsS1kWnGYnO0NVUDkMlYxGJ3X0ShzYlFxGl6AolIQX3/bXsu3aHdLXRtc/5IsI3Y\n", "093A6csTxKaTvHt2lF/66C48Hg9ziVleORylddvcmvdpc2IRKQZK6kSkYIbGZ3m/PwrAp5/pdTia\n", "jfN6PDx5oJ2X3rnOaHSOgbFZetrtjYera2qpDzc6HKGIyJ1pTp2IFMxLSyteWxoqeXxfm8PR3Jsd\n", "bbV0NNvDrofPjpLNaUNiESkN6qkTkYKYT6Z57fgQAM8/ZW8RUizWmxMXi8XIZrMAeDwennqwnf/1\n", "ej+TM0kuD05RvVWBiojcByV1InLfLMvi+29eYiFl4fd5eHR3LdFodKV8ddLkhPXmxI2NDFFb30jD\n", "0vdtTdXs7Kjn2sg0R86P8dEHKijunfZERJTUiUgBTE1N8Y8/uQFAV0slx86PfqD81qTJCXebEzcz\n", "PXXba08eaOP6yDSJ+TQ3Ih72dAY3O0QRkfuiOXUict8uDU4zu2D3xD3yQAf14cYPfFVV1zgc4cY1\n", "1IV4oNdOAq+MpslkNLdORIqbkjoRuW+vnbA3621tqGRbY5XD0RTOo3u34fXAopXjRiTldDgiInel\n", "pE5E7ktseoGTl+1FCAd2NePxFM8CiftVV13Bnh32oPHlkQUyGefmBYqIrEdz6kRkXZZlEY/H1yx7\n", "8Z0hsjmo8HvY3RXe4sg236PGNi7dmCK5mOPiwBQHdjY5HZKIyJqU1InIuuLxOC++fo7qmroPvJ7L\n", "5XjlqL0ooqu5Ar+v/Dr/w7VBtjf6GZ60OHkpwgM9jUW1XYuIyLK8kjrDMH4N+DLQCQwAf2ia5vcM\n", "w3gMOALMr7r8K6Zp/mnBIxURR1XX1N22enRofJa5ZAaAHa3luzp0d0eA4UmL2flFLg9O8UCPTpYQ\n", "keKzblJnGMYe4JvAz5qm+Z5hGB8HXjIMYzvwMPCSaZovbHKcIlKELly359I1VHupry7fjv+6Sh8d\n", "jQFGJtOcuDSOsaMBbxnNHRSR8rDuWIlpmpeB1qWEzg+0ATPAInZSd2ZzQxSRYrSQsrg2PANAd0vA\n", "4Wg2n9FZCcB0YpH+obXnF4qIOCmvf1qbpjlvGEYvcAXwAL9tmuasYRgPAwuGYVwDfMB3sYdmFzct\n", "YhEpCubAFNlcDr/Py/bG8u2lWxau9tPTXseN0RlOXIqwuytcVit9RaT0beRJPAgEgZ8BXjQMox+I\n", "AK8DX8fuwftb7Ll3v5/PG6ZS7t33abnubm0Dt9cfSqsNkskkVjpNOp0G7AUSy0Ovu7bX4cklSa8q\n", "v1XGssjmPB8otyxr5b9rla93vxPlD/U1cWN0hsmZJDdG4nS22psqW+k0yWSSZDK55v1rKaU//83i\n", "9jZwe/1BbVDoentyuY3vkm4Yxn8Hpk3T/J1bXv9l4Kumae5d7z1OnDih7dlFSkQ8Huf0tQQ1dfaW\n", "JVOzFu9cTADw4X01LE6P4PVX0LKtbc37x4cHy6b87fOzxOcytNT7ecKwk7rETJxDO2sIh8tvSxcR\n", "2XyPPvpoQbr981ko8SngP5qm+XOrXg4CHsMw/hz4Y9M0E0uvVwIL+X54X18fwWD5rpi7m1QqRX9/\n", "v2vbwO31h9Jqg2g0ytjcMHVLq1+vjI0A0FAbZF9fFyNDFh5fgI72jjXvz6WTt5VblkVkIkJrS+ua\n", "5evd71T5o9lpXj0+zMS0RVVNE+HaIDOVIQxjO83NzWvev5ZS+vPfLG5vA7fXH9QGy/UvlHyGX08A\n", "jxmG8a+AbwGfBJ4HngJeBHKGYfwe0AP8AfZQbF6CwSChUGijMZcVt7eB2+sPpdEGoVAIfyBAIBBg\n", "MZ3h6tICif07m6ioqMDn9+Pz2+VruVu53++/r/u3unxPdxNHzkdILKQ5fyPOs4904g8ECIVC9/Tn\n", "WAp//pvN7W3g9vqD2qBQ8ln9Og58BvgdYAr4T8BnTdO8CHwaOAhEgbeA75im+RebFq2IOO7KUBwr\n", "k8Xr9bCnu8HpcLac1+vhwT67R84cmCS5aDkckYiILd/Vr28Dj6/x+mXgE4UOSkSKlzkwCUBvex2V\n", "wfJf9bqWfb2NHLswjpXJcv5ajL628t/SRUSKX/md6SMim2Y6kWI0Zh8gs3eHe09VCFX4eaDH7qU8\n", "ezVGNqt1XyLiPCV1IpK3SwNTAFQG/XS11TocjbMO9rUAMLeQZiAyv87VIiKbT0mdiOQll8thLiV1\n", "e7rCrj/UPlwbpKe9DoBLgwnuZXsoEZFCUlInInmJxFPMztuHxRg60B6Ag0sLJmIzi1wbSaxztYjI\n", "5lJSJyJ5uTZqDzE21YdortfWAwCdrTU01Np7a71+aszhaETE7ZTUici6UukMg+N2UmfsaNCZp0s8\n", "Hg8HdjUBcOTCBDNzOvZaRJyjpE5E1nXq8iTpTA4PuHJvursxdjTi83qwMjlePTbodDgi4mJK6kRk\n", "Xe+cjQDQ1VZLdUh7sq0WDPjoba8C4OV3b2h7ExFxjJI6Ebmr2PQC52/EAdi7Q710a9nTWQPAaGyO\n", "01cmHI5GRNxKSZ2I3NWbJ2+Sy0HA76G3o97pcIpSY20Fuzrsfft+8M51h6MREbdSUicid5TL5Xj1\n", "+BAAO7ZV4ffpkXEnH3ukDYBjF8aITGkzYhHZenpCi8gdXR2eZnBsFoCd7dUOR1PcHn+gmdqqCrI5\n", "eOW9AafDEREXUlInInf02lIvXWs4REt9hcPRFLeA38vPfagbgH8+MkDayjockYi4jZI6EVmTlcny\n", "5smbADz9YIv2psvDJ5/qweOB+GyK986NOh2OiLiMkjoRWdOJi+Mrm+k+faDV4WhKQ3tzNQ8bdlv9\n", "4F0tmBCRraWkTkTW9NoJe+h1/84mWsI6Fixfn366F4BzV2MMjs04HI2IuImSOhG5zez8IkfPjwPw\n", "sce6HI6mtDz6wDZaGioBezNiEZGtoqRORG7z1qlhrEyWCr+XZx7qcDqckuLzevjkkz0AvHp8iIWU\n", "5WxAIuIaSupE5DavL616ffLBdqp0LNiG/dwT3fh9HhZS1spiExGRzaakTkSwLItoNEo0GuWsOYg5\n", "OAXAY3vqiUajxGIxsllt0ZGvhtoQTz9o93D+4N3r5HI6D1ZENp/f6QBExHnxeJwXXz9HdU0dp/vt\n", "c14rK7yMRWeIxGYZGxmitr4Rnfyav099uJe3Tg9zfWQGc2CKvT2NTockImVOPXUiAkB1TR119Q3c\n", "GE8CsLeniYaGJurDjVRV1zgcXenZ19tId5t9HuxL2t5ERLaAkjoRWTE8kSCxkAbA2KF+ufvh8Xj4\n", "1NL2Jm+fHmE6kXI4IhEpdxp+FZEVlwbsuXQt4Uqa6isdjqZ0ZDIWsVjsttcP9lQSDHhJpbP8+Ogg\n", "v/Kx3Q5EJyJuoaRORABIW1mu3pwG1Eu3UXOJWV45HKV129xtZe0Nfm5EFvnn9wb4pWf78Hp13JqI\n", "bA4ldSICwFBkASuTxeuBPd1K6jaquqaW+vDtiyH29SxyIzLOaGyO9/snOLRHR66JyObQnDoRAeDa\n", "mN3L1N1WR2VQ/94rlMa6Cnrb7YUmP3xvwOFoRKScKakTEWIzKcYm7Yn8ezX0WnAfPbQNgPfOjjI1\n", "m3Q4GhEpV0rqRITD5yIABAM+etrrHI6m/Dyxr4XKoJ9MNsePjw46HY6IlCkldSIul8vleOfsBAC7\n", "u8P4fHosFFqowsezj3YC8MqRAbJZnTAhIoWnp7eIy10enGJscgEAQwskNs3zT/UAMBab5/SVCWeD\n", "EZGypKROxOVeOz4EQF2Vn22NVQ5HU36W97CrrUizc2nBxItvXiYajRKPx4lGo1iW5XCUIlIOtMRN\n", "xMXSVoa3Tg0DsLO9Go9He6gV2uo97FrDAa6NwsnLMX7Y4GU6nqB//BK/8okQzc3NTocqIiVOPXUi\n", "LnbswjiJhTQeoLddvXSbZXkPu4PGdir8XnI5GJmGmrowNTW1TocnImUir546wzB+Dfgy0AkMAH9o\n", "mub3DMNoAL4JPAdMA182TfObmxWsiBTW8tDr3h31VIfUcb/ZAn4fxo4Gzl6NYQ7Gad2nRFpECmfd\n", "njrDMPZgJ26/aZpmLfA7wHcMw2gCvgHMAK3ArwJfMwzjiU2MV0QKZDqR4vjFcQA+/KBOOdgqe3vs\n", "Uydm5tJMJTIORyMi5WTdf5qbpnnZMIxW0zTnDcPwA23Yidwi8Flgt2mai8AxwzC+BXweOLKZQYvI\n", "/Xvz1E0y2RyhCh+PGk28c2bY6ZBcoSVcSWNdiMmZJEPRRbY32Qsp7iYcDuP3qydVRO4ur6fEUkLX\n", "C1wBPMBvA31A2jTNG6suvQz8UqGDFJHCe31p6PXpgx2EKnwOR+MeHo+HvTsaePfsKKOxRWZnZ3nl\n", "8DSt2+bWvH4uMcMLzx3QQgoRWddG/uk3CASBnwFeBL4GLNxyzTygSSIiRW5gbIb+m9MAfOyxLoej\n", "cZ893Q0cPjeKlYWxeJbeDnshhYjI/cg7qTNNc3nyx+uGYfwv4DEgdMtlVUAi3/dMpVL5Xlp2luvu\n", "1jZwe/3B2TZ45b3rADTVh9i9vYbJyRhWOk06nV7z+oxlkc15Clq+vDebZVmb8v7FUr5WWYUfOluq\n", "GYrMMRSz6Gy5c9tb6TTJZJJksvzOjHX7c8Dt9Qe1QaHrvW5SZxjGp4D/aJrmz616OQhcBT5lGEaX\n", "aZpDy5cD5/P98P7+/o3EWpbc3gZurz9sfRtkszleOz4KwL7OABcvXiAejzM2niCxsHbiEIlE8Por\n", "wLv2MO39lEcmIpv6/k6X36mspS7HUARiiSw3Ryfu+N6JmTimmWB8fHzN8nLg9ueA2+sPaoNCyaen\n", "7gTwmGEY/wr4FvBJ4HngQ0A38CeGYXwBOAD8+lJZXvr6+ggGgxsOuhykUin6+/td2wZurz9sbRtY\n", "lkU8Hgfgwo1pEgtZAD72WDfbGkMEAgFaE9WEG5rWvD+XTuLxBeho7yhYuWVZRCYitLa0bsr7F0v5\n", "ncoaGxc5e/0q6QwsUHfH956pDGEY28tyTp3bnwNurz+oDZbrXyj5rH4dNwzjM8B/Af5vwAQ+u7Qq\n", "9gvAXwI3sYddv2ia5rF8PzwYDBIK3TqC6y5ubwO31x+2pg2i0SivHO6nuqaOt8/ZKy2b6yq4OjzD\n", "1eEZxkaGqK1vJBAIrHm/z+/H5w9sSrnf79/U93e6/G5lHU0BBiKLDMcs/H7/mid6+AMBQqFQWf+c\n", "uP054Pb6g9qgUPJd/fo28Pgar08Bnyt0UCJSeNU1dVRW13Nz4iYA+3e1rEzOn5mecjI01+psrmAg\n", "skgimWV8cp62pmqnQxKREqZjwkRcpP9mHCuTw+v10NcVdjoc1wtX+6gJ2b1zF29MOhyNiJQ6JXUi\n", "LmIO2D1yve11hCq0ma3TPB4PnY32AomrN6fJZLMORyQipUxJnYhLJBYsRqL2BrfGjgaHo5Fl7Q12\n", "UpdKZ7g5nveOUCIit1FSJ+IS10bthC5U4aO7rc7haGRZVYWHhho7sesfjjscjYiUMiV1Ii6Qy+W4\n", "NjoP2KcZ+Ly3r7IU52xvqgDg+vAMmWzO4WhEpFQpqRNxgf7hWRIL9gkOezX0WnQ6Gu2kLpXOMByZ\n", "dTgaESlVSupEXOCdsxEAGutCNIcrHY5GblUd8tHaYP+5XB2edjgaESlVSupEylwqneHoxShgL5BY\n", "a4Nbcd6uTnuLmWvD0xqCFZF7oqROpMwdPTfGQiqDBzC6NfRarHZtrwcguZhhZEKrYEVk45TUiZS5\n", "104MAdDWFKK6cu1jrsR59TVBWpaGxvtvahWsiGyckjqRMjY1k+Skac+n29le5XA0sp5dnXZv3bXh\n", "abIaghWRDVJSJ1LG3jx1k2w2R6jCR1eLFkgUu+V5dcnFDCNRDcGKyMYoqRMpY2+cvAnAY3ub8Pv0\n", "417swjVBmsMhAPpvahWsiGyMnvIiZWpofJarS4nBU/tbHI5G8rVr+09XwWZzGoIVkfwpqRMpU8u9\n", "dE31IfZ21zscjeRreV7dQspiPDbvcDQiUkqU1ImUoWw2t5LUffThTrw6FqxkNNSGqK+xT5gYGJtx\n", "OBoRKSVK6kTK0MUbk0Qm7V6eZx/tdDga2agdbXUA3BhVUici+VNSJ1KG3lzqpdvRVktPe53D0chG\n", "Lf+ZxaaTzCcth6MRkVLhdzoAEbl/lmURj9sb1lqZLG+dspO6x/c2EovFiMViZLNZJ0OUDehorsbv\n", "82JlsgzHkk6HIyIlQkmdSBmIx+O8+Po5qmvqGJpYYG6pdydjLfLqsUHGRoaorW9Eh4SVBp/PS9e2\n", "Gq6PzDAcVVInIvnR8KtImaiuqaM+3MjNWBqwe3s62lqpDzdSVV3jcHSyUcvz6sYmk6Qt9bKKyPqU\n", "1ImUkVQ6w40Re3L9nm71y5WyHUvz6qxMjstDWjAhIutTUidSRq4NT5PJ5vB6PSv7nUlpqqkMrJwu\n", "caZ/0uFoRKQUKKkTKSOXB6cA6GmrI1ShKbOlbnkI9szVKYcjEZFSoKROpEwspDIMR+xD4Hd3hx2O\n", "RgphOamLTCUZnkg4HI2IFDsldSJlYjAyTw7w+7wryYCUtm1NVVQE7Mf08YvjDkcjIsVOSZ1ImRgY\n", "XwCgt6OOgF8/2uXA6/HQ0WTPqzt+QUmdiNydnvwiZWByJkUkngJgd5eGXsvJ9mY7qTt3Lcp8Mu1w\n", "NCJSzJTUiZSBY5eiAAQDPrq31TocjRRSR1MIj8fe2uTMlajT4YhIEVNSJ1IGjlywf9nv3F6Pz6cf\n", "63ISDPjY2W4n6qcvRxyORkSKmZ7+IiVuNDrH9VF7ZWRfp4Zey9H+XnvPwVOXJxyORESKmZI6kRL3\n", "k9PDAAQDXjpbdRxYOdrfa58OMhqdYyw253A0IlKslNSJlLjlpG7Htkq8Xo/D0chm2NlRQ2XQ3kz6\n", "tHrrROQOlNSJlLDBsRlujNrngu7YVuVwNLJZ/D4vB/uaASV1InJnSupESthPTo8AEK6poDUcdDga\n", "2UwP72m3p4MnAAAgAElEQVQB4PSVCTLZnMPRiEgxWvdwSMMwngH+HDCAKPA10zT/yjCMx4AjwPyq\n", "y79imuafbkqkIvIBuVyOn5y+CcCHHmjC49HQazk7ZLQCMLeQpn9oCmNHo8MRiUixuWtSZxhGA/Ai\n", "8G9N0/y2YRgPAz82DOMqsBN4yTTNF7YgThG5xcDYLMMT9qT5x/c2MzAadzgi2UwdzdW0NlQSmVrg\n", "9OUJJXUicpv1hl+7gX8yTfPbAKZpngJeB54GDgFnNjc8EbmTt8/YCySa60Ps3K4Nh8udx+Ph4aXe\n", "Om1tIiJruWtPnWmaZ4DfWP5+qefuI8DfAM8DScMwrgE+4LvAH5qmubh54YrIsnfft+fTPX2wA6+G\n", "Xl3h0J4W/vm9AS7dmGQ+maYqFHA6JBEpIuvOqVtmGEY98E/A8aX//hZ2r93XgTbgb4EvA7+f73um\n", "UqmNxFpWluvu1jZwe/1hY21gWRbx+E+HV0eiCwyN2xsO72kPMDIywuLiIun02meDZiyLbM5TVOWW\n", "Za38txjjK1T5ncpW6p/J4Emn7/jeVjpNMpkkmUxidNXi8UAmm+PkxVEee6B1zXtKhdufA26vP6gN\n", "Cl3vvJI6wzB6ge8DV4DPmaaZAz676pLrhmF8FfgqG0jq+vv7NxBqeXJ7G7i9/pBfG8Tjcd49N0ZV\n", "lb258I2lI0Ar/HDsjEl0YpSa2gbmk2s/ICKRCF5/BXh9RVcemYgUdXz3W77evZOx2F3LEzNxTDPB\n", "+Pg4AB2NAYZjaV4/epnKbHkMw7r9OeD2+oPaoFDyWf36CPAy8D9M0/zi0mth4EvAl0zTTCxdWgks\n", "bOTD+/r6CAbduQ1DKpWiv7/ftW3g9vrDxtogGo0yNldDXdieHH9m+CqQYndXI8beNmqqQnh8ATra\n", "O9a8P5dOFl25ZVlEJiK0trQWZXyFKr9T2XL9G5uaCFSE7vjeM5UhDGM7zc32PnVPjFTw929c4+Yk\n", "7N+/f817SoXbnwNurz+oDZbrXyjrrX7dBvwQ+DPTNP9sVdEM8BkgaxjG7wE9wB9gD8XmLRgMEgqF\n", "NhRwuXF7G7i9/pBfG4RCIfyBAIFAgMmZJFOzdo/cnu4GAoEAPr8fn98uX0sxl/v9/qKO737L17vX\n", "7/MRCNylPBAgFAqt/B15fF87f//GNUaic8zMZ2ltLP1Np93+HHB7/UFtUCjrrX79LaAZ+JJhGLPL\n", "X9hz5z4NHMTeu+4t4Dumaf7FpkYrIlwbngagKuSnrbna4Whkqxk7GqkM2kO1WgUrIqutt/p1eZ7c\n", "nXyisOGIyHr6b9oLJnZur9eqVxcK+L0c2NXMsQvjnL4c4eef3OF0SCJSJHRMmEgJic+miE0nAejb\n", "HnY4GnHKw3vsVa9ndGSYiKyipE6khCz30lUG/bS3aOjVrQ4tnQM7O5/m6k2dJCIiNiV1IiXk6tJ8\n", "Og29ultnaw3N4UoATmtenYgsUVInUiJm5y2icXvXoF3b6x2ORrZKJmMRi8WIRqMrX7FYjAd22EfD\n", "HT0/vLKRsYi4W94nSoiIs4Ym5gEIVvjY3lLjcDSyVeYSs7xyOErrtrkPvJ7LZAC4PDTDWCRGZ8c2\n", "J8ITkSKinjqREjEUsXvpetvr8Ho19Oom1TW11IcbP/C1p7cNgFwOzMFphyMUkWKgpE6kBEwnFpmY\n", "XgTs+XQilUE/rQ32vLpz17VYQkSU1ImUhJNXJgHw+7x0bat1OBopFp2t9t+FC0rqRAQldSIl4YQZ\n", "A2BHWy1+n35sxda9lOCPxBaYmNrQ0dsiUob020GkyCUW0lwa+OlWJiLL2pqq8Pvs+ZWnL0ccjkZE\n", "nKakTqTIHbswRiabw+uBHe11TocjRcTn89IaDgLar05ElNSJFL3DZ0cBaGsMEQz4HI5Gik1HUwiA\n", "01cmyOrIMBFXU1InUsSSixYnTXtYrau10uFopBi1NdpJ3czcItdGtLWJiJspqRMpYqfMCVKLGTxA\n", "Z7OSOrldfbWfhtoKAE6Zmlcn4mZK6kSK2Hvn7KHX3V11VAY19Cq383g87O8NA5pXJ+J2SupEipSV\n", "yXLk/BgAj+xpdDgaKWb7e+yk7sL1SZIpnQMr4lZK6kSK1LmrUeYW0gA8sqfJ4WikmO1b6qmzMlnO\n", "XYs5HI2IOEVJnUiRWu6l6+2ooyUccjgaKWZ1VQF2ddp7GGoIVsS9lNSJFKFcLreS1D2xv93haKQU\n", "HNrdAsApbUIs4lpK6kSK0I3RmZVjn57Y3+ZwNFIKHjZaARgcmyU2rSPDRNxISZ1IEXrvnN1L11Qf\n", "WhlWE7mbfb2NVCxtTq0hWBF3UlInUgQsyyIaja58vXtmCICDO8PEYjFisRjZbNbhKKWYBfw+Duyy\n", "F9ScMpXUibiR3+kARATi8Tgvvn6O6po65pIWN8bmAPBg8eqxQcZGhqitb6TB4TiluD28p5WTlyKc\n", "vhIhm83h9XqcDklEtpB66kSKRHVNHfXhRibn7B/LgN/Lnp526sONVFXXOBydlIKH99iLJaYTi9wY\n", "nXE4GhHZakrqRIrM9RH7l3F3Wy0+n35EJX/dbbU01gUBHRkm4kb6jSFSRBbTGW5OJADobdcCCdkY\n", "j8fDoT32KlgtlhBxHyV1IkVkcHyWbDaHxwM72mudDkdK0PIQ7PnrMZKLOjJMxE20UEKkiCwPvXY0\n", "VxOq0I+nrC+TsYjFfno0WFezva1J2spy+PR1HtzZQDgcxu/X3yeRcqefcpEikc3mGFia3N7boaFX\n", "yc9cYpZXDkdp3Ta38lpDTYCpRJqXDw9xfWCYF547QHNzs4NRishW0PCrSJGIxFOk0hkAetrrHI5G\n", "Skl1TS314caVr56OMADj8TTVNfq7JOIWSupEisRwNAlAY12I+pqgw9FIKetus+djTs4kSSxoXp2I\n", "WyipEykSIzH7vM4eLZCQ+9TeXENw6ciwoQmdAyviFkrqRIrARDzJ9Jzdo7KjTcNlcn98Xg87lobw\n", "byqpE3ENJXUiReDs1SkAKgJetjVVOxyNlIOdHXZSF5lKkZhPOxyNiGyFvFa/GobxDPDngAFEga+Z\n", "pvlXhmE0AN8EngOmgS+bpvnNzQpWpFydWUrqurbV4tN5nVIAXW3236VMNsfp/il6utudDklENtm6\n", "PXVLiduLwH8xTTMM/AvgTwzD+DjwDWAGaAV+FfiaYRhPbGK8ImUnlc5wcWAa0NCrFE6F30fXNnt+\n", "5qkrsXWuFpFykM/wazfwT6ZpfhvANM1TwOvA08BngT82TXPRNM1jwLeAz29WsCLl6MK1SdJWFvjp\n", "qkWRQuhdGoI9dy2u0yVEXGDdpM40zTOmaf7G8vdLPXcfATxA2jTNG6suvwzsLXSQIuXs5OUoAI11\n", "AapDAYejkXKyvN/hopXljM6CFSl7GzpRwjCMeuCfgOPYvXW/c8sl80BVvu+XSqU28vFlZbnubm0D\n", "t9cf7LrncjlOmhEA2hsqSKfXntCesSyyOU9ZlVuWtfLfYoyvUOV3KlupfyaDJ53elM8O+KC5LkB0\n", "Js07Z4Z5qK9hzfdwitufA26vP6gNCl3vvJM6wzB6ge8DV4DPAfuB0C2XVQGJfN+zv78/30vLltvb\n", "wO31j81aRKbsTYeDzDEyOrLmdZFIBK+/Ary+siuPTESKOr77LV/v3slYbFNjqwumiQLvnR/lmT0U\n", "5UIctz8H3F5/UBsUSr6rXx8BXgb+h2maX1x67QpQYRhGl2maQ8uXAufz/fC+vj6CQXfunJ9Kpejv\n", "73dtG7i9/mC3weHvnwKgptJP344mwg1Na16bSyfx+AJ0tHeUTbllWUQmIrS2tBZlfIUqv1PZcv0b\n", "m5oIVIQ2L7acn2sTURZSWfw1HezrbVzzOie4/Tng9vqD2mC5/oWyblJnGMY24IfAn5mm+WfLr5um\n", "OWsYxvewV8J+ATgA/DrwfL4fHgwGCYVu7exzF7e3gdvrf2XE7qV7cGcDFRUVBAJrz6nz+f34/IGy\n", "LPf7/UUd3/2Wr3ev3+cjENi82BrqK+lormQkusDJy5M88sDayZ+T3P4ccHv9QW1QKPmsfv0toBn4\n", "kmEYs6u+/nfgC0AAuAn8HfDFpVWwIrKOhZTFjYg9n+LgruKa6yTl5ZE9dg/wkfOj5HI5h6MRkc2y\n", "bk+daZpfBb56l0s+V7hwRNzj7NUY2Sx4PHCgN8yR8zrOSTbHw7sb+f67NxmLzXP15jR9XWGnQxKR\n", "TaBjwkQcctK0tzLZ0xWmpkpbmcjm6W2voa3J3pjgjZM3HY5GRDaLkjqRLWBZFtFodOVrYmKCE5fG\n", "ATA6q4jFYmSzWYejlHLl8Xh49pEuAN46dZNMRn/XRMrRhvapE5F7E4/HefH1c1TX2JvBTs0uEk/Y\n", "+4qlkil++PYlausb0cw62SzPPtrJt39kMjWb4kx/lEeMVqdDEpECU0+dyBaprqmjPtxIfbiR2Jy9\n", "V1gw4KG7s5Wq6hqHo5Nyt72lhj3d9ly6108MrXO1iJQiJXUiDhgYmwWgNRzA4ym+zWClPC0PwR4+\n", "O8pCSmfBipQbJXUiWyy5aDEWmwOgtV4zIGTrfOTQdrxeD6nFDEfOjTodjogUmJI6kS02NJ4gl7O3\n", "Mmmu16pX2Trh2uDKXLrXtQpWpOwoqRPZYoNjMwC0N1UR8GnoVbbWc492AnDajDA1m3Q4GhEpJCV1\n", "Ilsol8utzKfr2qbFEbL1PrS/jcqgj2wO3jo17HQ4IlJASupEtlBkamFlgnp3a63D0YgbhSr8PPWg\n", "ff7rG1oFK1JWlNSJbKGBpaHX2qoA4doKh6MRt1oegu2/Oc3Q+KzD0YhIoSipE9lCA6P2L9AdbXXa\n", "ykQc82BfC031IQB++N4NZ4MRkYJRUieyRZKLGSJT84Cd1Ik4xef18PNP7ADg1aODJLVnnUhZUFIn\n", "skVGYvZKQ5/Xw/ZWLZIQZ33iyR34vB7mkhZvasGESFlQUieyRYajdlK3vaWGgF8/euKspvpKnnyw\n", "HYAfvHOdXC7ncEQicr/0m0VkC2SyOUaXeup2tGvVqxSHT3+4F4BrI9OYg1MORyMi90tJncgWuDo8\n", "y6KVBaBb8+mkSBzY2UR3m/2PjJfeue5wNCJyv5TUiWyB96/avSDhmiDhmqDD0YjYPB4Pn3ra7q17\n", "+/QI04mUwxGJyP3QaeIiW2A5qdvRpqFX2VqZjEUsFrtj+cGeSkIVPpKLGV45MsC/+PieLYxORApJ\n", "SZ3IJotNLzAUmQNgR7uGXmVrzSVmeeVwlNZtc3con+HpAy28dnKMHx6+wS8/txufV3soipQiJXUi\n", "m+z4xQhgb2XS0VztcDTiRtU1tdSHG+9Y/mhPM6+dHCMytcCJi+N8aH/bFkYnIoWiOXUim+zEpXEA\n", "2huD+Hz6kZPis72ligO7mgD43ltXHY5GRO6VfsOIbKK0leX0ZbunrqO50uFoRO7sF39mFwDv90fp\n", "vxl3OBoRuRdK6kQ20YXrMRZSGQC2N4ccjkbkzh7f18b2Fnt6wD++od46kVKkpE5kEx2/aA+9drZU\n", "UR3SFFYpXl6vh1/8aB8APzkzvHJOsYiUDiV1IptoOak7uKvB4UhE1ra85Uk0GuVgTyW1VQGy2Rzf\n", "feU80WiUaDSKZVlOhykieVDXgcgmGYvNcTOSAOyk7ub4tMMRidzu1i1Petsqef9amldPjFJf6SGd\n", "SvDCcwdobm52OFIRWY966kQ2yYmlXrrqkJ9d27XpsBSv5S1P6sONPLa/C5/Xg5XJMTSZpbpGeyuK\n", "lAoldSKb5Pgle9XrIaMVv7YykRJRGfTzQI+9p937/VEy2ZzDEYlIvvSbRmQTpNIZ3r8yAcBje7c5\n", "HI3Ixjy0uwWAuYU0A2NaMCFSKjSnTqQALMsiHv/p3l7vX51i0coC0NvqJxaLkc1mnQpPZEPCtUF2\n", "dtRzbWSaC4Oz5HLqrRMpBUrqRAogHo/z4uvnVuYfHbs0BUBjbYDjF8cYGxmitr4RrYGVUnFoTwvX\n", "RqaJJ9Kcvx7n2ZYWp0MSkXVo+FWkQKpr6qgPN1JX38Do1CIAOzvtyedV1TUORyeyMe3N1bQ1VgHw\n", "wyMjDkcjIvlQUidSYPHZFDNzdlK3o02rXqV0HTLs3rnzN+JcH9GWPCLFbkNJnWEYHzIMY3jV948Z\n", "hpExDGN21dfvFT5MkdIxMDYLQKjCR+tST4dIKertqKem0p6l8w9v9DscjYisJ685dYZheIDfBP5P\n", "YHFV0cPAS6ZpvrAJsYmUpIGxGQC62+rwejwORyNy77weDw9013DMjPPWqWE+/6l9NIcrnQ5LRO4g\n", "3566PwD+A/CfgdW/pR4GzhQ6KJFStZjOMDJh78yvoVcpBz3bQlQFfWRuOTps9ZeOERMpDvmufv1r\n", "0zS/YhjGs7e8/jCwYBjGNcAHfBf4Q9M0F299AxE3uBlJkM3l8ADd25TUSelLLSRoq89xLQI/Pj5C\n", "bSVU+H/aHzCXmNExYiJFIq+eOtM0x+5QFAFeBPYDzwLPAV8uSGQiJWh56HVbUxWhoHYMkvJgdNXh\n", "83pIZ3IMT+ZWjhSrDzfqGDGRInJfv3VM0/zsqm+vG4bxVeCrwO/nc38qlbqfjy9py3V3axuUW/2T\n", "ySTpxUUGRu2krrOlmnQ6vVKesSyyOc8HXlsesrIsa83y1cqx3C31v1PZSv0zGTzpdFHGvlzu83nY\n", "3VXPpYE4p69EeGBHPV6vPRPHSqdJJpMkk8k177+bcnsObJTb6w9qg0LX+56TOsMwGoA/Ar5kmmZi\n", "6eVKYCHf9+jv12oqt7dBudQ/Ho9zdTDB3NLvtUrfAiOjP93bKxKJ4PVXgNd3272Richdy9e7v9TL\n", "y73+6907GYsVbeyry7fVtXAJmFuwOH1pkLaGAACJmTimmWB8fHzN+/NRLs+Be+X2+oPaoFDup6du\n", "GvgMkF3axqQHe0HF1/N9g76+PoLB4H2EULpSqRT9/f2ubYNyq380GuW1iyaQoCroZ++uLjyrVr7m\n", "0kk8vgAd7R0rr1mWRWQiQmtL65rlq5VjuVvqf6ey5fo3NjURqAgVZewfKN/exZXRG4xE5xmNwyP7\n", "7OtnKkMYxvZ7mlNXbs+BjXJ7/UFtsFz/QrmXpC4HYJpm1jCMTwP/FYgC88Bfmqb5F/m+UTAYJBQK\n", "3UMI5cPtbVAu9Q+FQiunSOxor6OiouID5T6/H58/QCAQuO1ev99/1/L17i/18nKv/3r3+n0+AoHi\n", "jP3W8gf7WhiJDjA8McdcMku4Nog/ECAUCt3Xz3G5PAfuldvrD2qDQtlQUmea5htA66rvLwOfKHBM\n", "IiVnbsEiGl9O6rTqVcpTb0c91SE/c0mLc1ejPHNou9MhicgqOiZMpADOXZ8iB3g90NWqpE7Kk8/r\n", "Yd/OJgAuDkyStjIORyQiqympEymAU1cmAehoqaEisPaEc5FysL+3Ca8HFtNZrgzFnQ5HRFZRUidy\n", "n6xMlrPXpgDoadeeXVLeqisD7NxeD8DZq1FyuZzDEYnIMiV1Ivfp4vVJ5pP2MJSSOnGDA7vsla7R\n", "eJLotA4QEikWSupE7tPRC/aBK/XVfupr3LckX9yno7maxjp7peLlm4l1rhaRraKkTuQ+5HI5jpy3\n", "k7rOlkqHoxHZGh6PhwO77AUTA+PzzM6vfRqFiGwtJXUi9+FmJMFodA6AzmYldeIeRncDfp+XbA4O\n", "n59wOhwRQUmdyH05tjT0WlsVoKm+Yp2rRcpHRcBHX6e9YOLt98e1YEKkCCipE7kPRy/Y510+tKsB\n", "76pjwUTc4IGeRgCGIvNcHZ52OBoRUVInco9m5ha5eD0GwEO7Gx2ORmTrtTdXU1NpH0z06tFBh6MR\n", "ESV1Ivfo+MVxsjnw+7wc6A07HY7IlvN4POzqqAbgjZM3WUzrhAkRJ23o7FcR+anlrUwO7m4mVKFT\n", "JMSddrQGef8qJBbS/Pi9K3zogebbrgmHw/j9+nUjstn0UyZyD9JWlpOXIgB8aF+bw9GIOMiap7HG\n", "QyyR4x9/MsBsYv4DxXOJGV547gDNzbcneyJSWErqRO7BuatRFlIWAI/v2waZ+XXuEClfO9uriF2Z\n", "YzSWxFtRQ22VVoKLOEFz6kTuwXvnRgHY2VFPa0OVw9GIOKu9sYJgwJ6CYA5MORyNiHspqRPZoGw2\n", "t5LUPXWw3eFoRJzn83rY020vFro0MKk960QcoqROZIMuDUwyOZMC4KkHldSJAOxd2rNuOrG4csqK\n", "iGwtJXUiG3T4rN1Lt72lhu5ttQ5HI1IcWsKVNNWHADAHNQQr4gQldSIbkMvlePf9EQCePtiOR6dI\n", "iAD2nnVGdwMA/UNxrEzW4YhE3EdJncgGXL05TWRqAYCnD3Y4HI1IcdnT3YAHWLSyXB/RsWEiW01J\n", "ncgGvHvW7qVrbaxi1/Z6h6MRKS7VlQG6lqYkaBWsyNZTUieSpw8MvT6ooVeRtRg77CHYwfFZ5pJp\n", "h6MRcRdtPiySB8uyOH9lhOEJe1Xfvu4qotHoSnksFiOb1Rwikd6OegJ+L2kry5XBOL2tOkJPZKso\n", "qRPJQzwe5//74QUAKoM+BkamGByNr5SPjQxRW99Ig1MBihSJgN/Lrs56Lt2YwhycpLe1xemQRFxD\n", "SZ1Inkbjdk9cX2eYcEPTB8pmpjV/SGTZ3u5GLt2YIhpPMjW76HQ4Iq6hOXUieRifXCCesOcH7dwe\n", "djgakeLW0VJNTVUAgGtjOhdZZKsoqRPJw3EzBkCowkdHc7XD0YgUt9V71l0fnSOT1bFhIltBSZ1I\n", "Ho5etBdF9HbU4/Vq1avIepZXwSYXs1y4EV/nahEpBCV1IusYGp9lcNxe9bp8aLmI3F1DbYhtjVUA\n", "vPN+xOFoRNxBSZ3IOt44eROwV712tNQ4HI1I6di71Ft34nKMxLwWTIhsNiV1IneRy+V4cymp69lW\n", "iVcbDovkbXdXAz6vByuT481Tw06HI1L2lNSJ3MWlG1OMT9qr93ratEBCZCOCFT66WisB+PGxQYej\n", "ESl/SupE7uKNk0MAtDdV0lgbcDgakdKzq8P+x1D/UJwbozMORyNS3pTUidyBlcny9hn7rNcn97fo\n", "rFeRe9DWEKSpPgjAj4+qt05kMympE7mDU2aEmTl7cveT+3TUkci98Hg8PPNgKwCvnxgibemMZJHN\n", "sqGkzjCMDxmGMbzq+wbDMP7BMIy4YRgDhmH8m8KHKOKMN0/af9X37migtSHkcDQipWs5qZuZW+TY\n", "hTGHoxEpX3kldYZheJYStleA1ROLvgHMAK3ArwJfMwzjiYJHKbLFFlIW750fBeDZRzodjkaktDWH\n", "Qzy0uxnQggmRzZRvT90fAP8B+M+AB8AwjBrgs8Afm6a5aJrmMeBbwOc3I1CRrXTk3CipxQxer4dn\n", "Dm13OhyRkvezj3cDcOLiOJMzSYejESlP+SZ1f22a5iHg+KrXdgNp0zRvrHrtMrC3QLGJOGZ5w+FH\n", "jFbqa4IORyNS+p462EF1yE82B68fH3I6HJGy5M/nItM015oEUQ0s3PLaPFCV74enUql8Ly07y3V3\n", "axsUc/1j00lOmvaxRk8/2EoymSSZTGKl06TT6TXvyVgW2ZxnQ+WWZa38917uL/Vyt9T/TmUr9c9k\n", "8BT471YxlVvpNMlkkpqaNE8fbOdHR4d4+fB1nn+yk3TaXohUjM+BrVDMz8Gt4vY2KHS980rq7mAe\n", "uHX2eBWQyPcN+vv77+Pjy4Pb26AY6//G2RlyOQhVeKj1THL+/BTxeJyx8QSJhbWHjSKRCF5/BXh9\n", "Gy6PTETu6/5SLy/3+q9372QsVrSxF6I8MRPHNBOMj4+zs8lO4sYnF3jx1ZPs7rB/hRTjc2Arub3+\n", "oDYolPtJ6q4AFYZhdJmmudyXbgDn832Dvr4+gkF3Dm2lUin6+/td2wbFWv9MNsf/9dJbAHz8sW4O\n", "HbRnE0SjUcbmhqkLN655Xy6dxOML0NHekXe5ZVlEJiK0trTe0/2lXu6W+t+pbLn+jU1NBCpCRRl7\n", "IcpnKkMYxnaam5vZD7x54QiXBuJcHPXw/M/0FeVzYKsU63NwK7m9DZbrXyj3nNSZpjlrGMb3gD8x\n", "DOMLwAHg14Hn832PYDBIKOTurSLc3gbFVv/jF8eJTdu9cZ/68M6V2EKhEP5AgEBg7VMlfH4/Pv+9\n", "lfv9/vu6v9TLy73+693r9/kIbNLfrWIo9wcChEKhlZ+lz3xkF5cGTnDq8gRTiQxQfM+Breb2+oPa\n", "oFDuZfPh3Kr//wL2Fic3gb8Dvri0ClakJP3zezcAeKCnke62OmeDESlDTz3YQUNtkFwOXjmqBRMi\n", "hbShnjrTNN/A3pNu+fsp4HMFjknEEZMzSY5eGAfgk0/tcDgakfIU8Hv55FM9/M9XTF47fpMHO1rX\n", "v0lE8qJjwkSW/PjoINlsjuqQn6cPrj0/SETu388/uQOf18Nc0uLsjVs3URCRe6WkTgTIZnP885EB\n", "AJ57tItQxf2sIRKRu2mqr+SpB9sBOHYlQS6XW+cOEcmHkjoR4OSlMSKT8wB8aG890Wj0A1+xWIxs\n", "VgeRixTKLzyzE4CxqTTmYNzhaETKg7ojRICX3rkKQHN9BZcHYlweiH2gfGxkiNr6RhqcCE6kDO3r\n", "bWRHWw0DYwlePjzIIaPd6ZBESp566sT1YtMLnLo8CcCDfa3Uhxtv+6qqrnE4SpHy4vF4+OST9nmw\n", "750fZ3ypp1xE7p2SOnG97799nUw2R4Xfy+6usNPhiLjGRw51UB30ks3m+NbLZ2+b9rD8tXykmojc\n", "nYZfxdUWUhYvH74BwJ7OagL+tY86EpHCCwZ8HOrx8465yBunx/j/27vz+Dir+97jn1mkGUmjfbXl\n", "DW/HGBuwWWJIIHFIiEMSAmlKSJuG0PamacItaW9vm7avJE1y27RJ29uGmz1kgyYhBAKmUCAQJ2wG\n", "jDfwdrwvyNY22kea0Wz3j2csZFu2Zc9Is33fr5dekp7nmWd+58z2m3POc05thZsy34mvwdDQADeu\n", "XkZDQ0OWohTJH0rqpKg99fJhQiNRvB4Xi2dXZjsckaJz8ZwSXt4bJRpPcqAzylXLG7MdkkjeUver\n", "FPjxJFcAACAASURBVK14IsnaZ50LJFYtbaTcp1Y6kenmK3GxqLUcgNf2BYmMxrMckUj+UlInRevF\n", "bcdoDzqDs6+/UpMNi2TL4tYKvB4X0ViC1/Z1ZzsckbylpE6KQiwWO2Xw9S+e2gXARfNqKPeENQ+d\n", "SJb4S90svaAegK17uojG9FoUOR8aUydFoa+vj7XrtlERqAKgqz/C3rZBAJprvTz+3C7NQyeSRZcu\n", "bmTbvm7Co3F2HAhyySKNrRM5V0rqpGhUBKqorqkDYP3OgwDUVflZMn8mrx8OZzEykcIVj8cIBoMT\n", "7guHw/T395PwVFBZXoqZW8fOgz1s2d3Fsvn1eDzqTBI5F0rqpOj0D0XY39YPOK0DLpcryxGJFK7Q\n", "0CBPru+mqTl0yr5YNMprOzu5YL4zP+RK08Sugz0MjUTZfqCHixdqGhORc6GkTorOKzs7SALlfi+L\n", "NdmwyJSrCFSOtZKPF41GKS+rGPu/ptKHmVvLrkO9vLKzgwvnaUCEyLlQ27YUld7BMPZQLwCXLWlW\n", "945IjrliaQtul4uRSIxX9+pKWJFzoU80KSobdjitdIGyEi664NSWAxHJrqqKUi6a77w2N9suIlFd\n", "CSsyWUrqpGj0DUXZc6QPgMsvVCudSK667MJmvB43kWicHYcGsh2OSN7Qp5oUjVf3OxdHVJaXskRj\n", "dURyVoW/ZOwiiV2Hh+gfGs1yRCL5QUmdFIXDHUMc7hwB4IqlzXjceuqL5LIVphFfiYd4IskjL7ye\n", "7XBE8oI+2aQo/PLZIwBUB0oxc9RKJ5Lr/KVeVhhnAuLfbG6nPXjqlCgiciIldVLwdh/uZcueHiB1\n", "ZZ1b89KJ5IOLFzbgL3UTTyS557Gd2Q5HJOcpqZOClkwm+d7D2wCorvCySPPSieSNEq+HSxZUA/DM\n", "ljZ2HezJckQiuU1JnRS0325uY2fqg2DlohrcWj1CJK8smFnBrMZyAL63dhvJZDLLEYnkLiV1UrBG\n", "IjF+8Mh2AC5ZWEtrQ1mWIxKRc+V2ubj1ugsAsId6eW7L0SxHJJK7lNRJwbr/6d30DITxetx8OPWh\n", "ICL556ILarj8wmYAfvjodkaj8SxHJJKblNRJQTrWHeKXv9kHwPuvnU9znVrpRPLZ7e9ditvtorN3\n", "hEee3Z/tcERykpI6KUh3r91GLJ6grsrHLe9YnO1wROQ8xeMxgsEg5d5R3nqJ01p331OW/YeO0t3d\n", "TXd3N7FYLMtRiuQGb7YDEMm0TbaTl7a3A/Cx915Eub+E4aEsByUi5yU0NMiT67tpag5RX+mmxONi\n", "JBLnrgd2sOrCOkJDA9y4ehkNDQ3ZDlUk69RSJwVlJBLjG7/YCsCSubW8beWsLEckIumqCFRSXVNH\n", "c1MjVyxtAWBvW4hIwk9FoCrL0YnkDiV1UlB+9OgOOnqG8XpcfPKDl+DSFCYiBeXiRQ3UVvoAZ8oi\n", "TXEi8gYldVIQYrEYz7yyl0efPwDA+66eTWVpdGzMTTAYJJFIZDlKEUmXx+3mmktbAejsHWbfUS0f\n", "JnKcxtRJQTjW0c3XH9wBQF1lCWUlCZ7ecHhsf/vRI1RW16FVX0Xy3+zmSha0VrOvrZ/Ne/sJjcTQ\n", "iDoRtdRJgbh/3SGGI0ncLhfXr7qA2rp6qmvqxn7KKwLZDlFEMujNl8zE63ETiSZ48JlD2Q5HJCek\n", "3VJnjPlL4B+ByLjNa6y1z6d7bpHJ2LK7k3Wbnatdr1jaTH215qQTKXSV5aVctqSJl7a3s25zO+9/\n", "Wz/zW6uzHZZIVmWipe5S4DPW2spxP0roZFr0D0X4959tBqCuqoSVpinLEYnIdFmxuJHKMi/JJHzj\n", "F1uJJ3TRhBS3TCR1K4CtGTiPyDmJJ5L8y39uJNgfptTr5uql9bjdutpVpFh4PG6uWFIDgD3cy6PP\n", "a6UJKW5pJXXGmHLAAHcaY44ZY3YYY27PTGgiZ3bfryxbdncBcNuaBdQESrIckYhMt5n1ZVy9rBGA\n", "Hz+2k46e4SxHJJI96Y6pawKeBb4BPAWsAh4xxhyz1j5+thtHIpGzHVKwjpe9WOsg3fJv2dPNz35l\n", "AXjHFbNYuaiK324aJBqNTnh8PBYjkXTl1P7jSxvFYrGcjG+q9xdL+U+3b6z88TiuaDQnY5/q/cfr\n", "IJFInPf5Y9EoN79lJtsO9DMQGuWu+zbxdx+7LC/mqCz2zwFQHWS63Gklddbag8DqcZueM8bcA9wE\n", "nDWp27t3bzp3XxCKvQ7Op/z9oRjferyTZBJaakt40/wk1lraO4YYGglPeJvOzk7c3lJwe3Juf2dX\n", "Z07HN9X7C738Z7ttTzCYs7FPx36AYDCI2ztxS/vZbj800EdbxRDvvCTAAy/0sHVvkJ/81wYunV9x\n", "2vvLNcX+OQCqg0xJK6kzxlwGXG+t/fK4zWXApFbaXLhwIT6fL50Q8lYkEmHv3r1FWwfnW/7RaJy/\n", "v3sDI5EE5X4vf3f7Klrqy+nu7qY91EZVTd2Et0tGw7g8JcycMTNn9sdiMTq7OmlqbMrJ+KZ6f7GU\n", "/3T7jpe/rr6eklJ/TsY+1ftjsRgdbYepr68/7/MPlPkxppWr6+s5GNzMRtvFU1uHeM/qS6gJ5PZ7\n", "a7F/DoDq4Hj5MyXd7tcB4LPGmN3AL3Fa7T4EXDuZG/t8Pvx+f5oh5Ldir4NzKX8ikeRr929kz5F+\n", "AD5960rmtTpJnN/vx1tSQknJxN/2PV4vHm9u7vd6vTkd31TvL/Tyn+22Xo+Hkjx97mZiP4Db7T7v\n", "23tLSvD7/ZSVlXHHLSv45Fd+zdBIlB8+tpu//oPL86Ibttg/B0B1kClpXShhrd0DfBD4HE6Cdxdw\n", "m7V2SwZiEznBvY/v5NktbQD8/polXLV8RpYjEpFc0lBTxu3vXQrA81uPsm7jkSxHJDK90p582Fr7\n", "GPBYBmIROa0nXjzE/U/vAeC6K2bzoXcsznJEIpKL3rVqHi9ub2fTrk6+9eCrLJlXx8wGrSgjxUHL\n", "hEnO22w7+cYDzlSIF86t5tbVswgGg3R3d4/9BINBEolEliMVkWxzu118+tYV1AR8jETi/Mu9G4nG\n", "9N4gxSHtljqRqbTv9T7+6ccbSCSSVJa5WT4vwG83vX7Kce1Hj1BZXUdtFmIUkdxSW+nnzltX8IXv\n", "vcieI3385Ild3PaepdkOS2TKKamTnBCLxejr6zth29HuYb5872sMh2MEyjysvrSBxsaGCW8/0N87\n", "HWGKSJ64/MJmbrxmPmuf3c8D6/Zw6eJGLlnUmO2wRKaUkjrJCX19faxdt42KQBUAg8MxntzYyUgk\n", "TqnXxUUz4niYePJREZGJ3Paepby2r5sDRwf4t59s4t//4q3UVuoKSylcGlMnOaMiUEV1TR0eXyXr\n", "tgYZicQp8bp53zULaK7XQGcROTelJR7+90cup7TEQ89AmH/60QaNr5OCpqROcspwOMraZ/YxEBrF\n", "43bxnqsvoKU+f2aGF5HpFY/HTrlwavxPmSfCHR9cDsCOAz1896HXshyxyNRR96vkjJFInEdf3kfv\n", "YAS3y8Waq+bR2qQWOhE5vdDQIE+u76apOTTh/oH+Xq5dMYsbVrXy2Itt/Pf6gzRWe1i9omXsmJqa\n", "GrxefRxK/tOzWHJCf2iUpzZ10h+K4XbB9W+aw7wZVdkOS0TyQEWgkurTLBE40N/Lk+v30dDUzMx6\n", "P0eDYe55Yh/t3YM01fgIDQ1w4+plNDRMfBGWSD5R96tkXe9AmK/857Y3ErpVc1kwqybbYYlIgagI\n", "VFJbW88Nb15IdaCUZBKefa0HV0lg7OIskUKgpE6yqncgwt9+83mOBkdwuZzZ4Be0KqETkczzlXq4\n", "4eoLKPG6GYnEeOS5/YRH49kOSyRjlNRJ1vSHYnz+ey/zeucQHreLa5c3ML+1OtthiUgBq6vys2bV\n", "PNwuF32DEdZt6VZiJwVDSZ1kRXtwmO8/1cWx4DBej5tPfcAwu6ks22GJSBGY01LJdVfMBiA4MMrX\n", "H9ylqU6kICipk2l3uH2Az333ZfpDzjx0n/3DN7FiUX22wxKRIrJ4Ti1vuWQmANsO9PG1+zaTSCSz\n", "HJVIenT1q0yL48uAHe4Y4qs/3c7QSIwSD9xx80LmNLgJBoMkEvqmLCLT55JFjfT2D7L94CC/2fQ6\n", "fp+XP/3AxbjdrmyHJnJelNTJtOjr6+OHa7ew3g4zGktS4nWxvDXJsc4BunpHaD96hMrqOmqzHaiI\n", "FJVLF1RTX13OM1s7eHz9QWKxBHfccikeJXaSh5TUybTYdbif53cNE4sn8Zd6uOHquYwO91BVU0dJ\n", "SQkD/b3ZDlFEipDL5eK2NQvw+/08+dIhntpwmFg8wadvXYHHoxFKkl+U1MmU27irg3+7bwexeJJy\n", "v5f3X7uAyjIPR4ezHZmIFLt4PEZvbw8fWt1KLBrh15va+c2m1wkNj/DxGxfj9bi14oTkDT1LZUqt\n", "f+0YX7lnA7F4kgq/h5vftpDqgI9oNJrt0ERETlhmbEatlyVzAuw6PMSGXUHaujaz8oJSfuedy7Xi\n", "hOQFJXUyZZ586RBf/8VWEokkzbV+rr6oluqAL9thiYicYPwyY2+/oo7ysnY22U6OBsOEwjGuuXwE\n", "5XSSDzRgQDIiFovR3d1Nd3c3XV1dfP/hzdz18y0kEklmNZbzJ++ZRVmpnm4ikttcLhdXLZ/BW1e0\n", "4nI5k6R/6Uev8tq+7myHJnJWaqmTjOjr62Ptum2UVVSyYVcve9pCADTV+Lh6aS0vbNqrq1tFJG8s\n", "W9BAdcDH4+sPMjQS47PfeoGP37ycd181D5dLV8ZKblLTiWSMryzA+p0DYwndgtZqbl69mMbGBsor\n", "AlmOTkTk3MxurmTNlU201JURTyT55gOv8sW7X6JnIJzt0EQmpKROMqKrL8zjGzo5cHQAgOUL6rl+\n", "1Vy8mhJARPJYVXkJn73tYlYtawHglZ0d3PHVX/PslrYsRyZyKn3iSto2206+8IOt9A1FcQFXLZ/B\n", "NZe24lYXhYgUgHK/l7/92JX8+YdXUO73Mjgc5Sv3vMI//3gDXb0j2Q5PZIzG1Ml5SyaTPLhuLz9+\n", "bAeJJJR63bxr1TzmtFRmOzQRkYxyuVy8/fI5LFvQwNfu28zWPd08t/UoL29v5+a3LeQDqxdS7i/J\n", "dphS5JTUyXlpD4b4+v1b2bKnC4DZTeWsXFjNLCV0IlLAmmrL+eLHr+aJFw9y7+O7GAiNct9Tu3ni\n", "pUN8ZM0SrrtijoadSNYoqZNzEk8keeTZ/dz7+E4io3EArr20ld+7bjbPbdUYExEpfG63i3dffQHX\n", "rpjF/U/v5uFn9tM3GOH/3b+Vnz+1mw+sXsQ7r5xDaYkn26FKkVFSJ5NmD/Xw3Ye2YQ8767TWBHz8\n", "yQeW8+aLZxIMBrMcnYhI5sXjsTO+v625vJ7LFlbw8HNtvLyzm87eEb714Kv89ImdvOvKmbz10hZm\n", "tjRomTGZFnqWyRklk0k27+7igV/v4dW9b0y++fbLZ/NHNy6jqqI0i9GJiEyt8cuITaT96BHcnhIW\n", "tbbQVNPC9oMDHGgfpj8U5efrDvHgbw/x1hUz+OA7LmRWk4anyNRSUlcgYrEYfX19ZzzmXBal7h0I\n", "8/KODh574QD72/rHts9uruSPb1zGyiVNacUrIpIvxi8jdrKB/l483lKqa+qoroE5rc0MhCJssl3s\n", "OthDLJHk6Y3HeHrjMZbPr2H1yhaWz6/F63ETDofp6+sjFotNc4mkUCmpKxDHV3SoCFRNuD80NMCN\n", "q5eddlHq8GiMg8cG2Lq7i5e2t7PnyIkJoplTw5orZ3DxwlrcLhfd3ScumRMMBkkkEpkpjIhIHquq\n", "8PG2lbN400UtrN+8h/0do0Si8Nr+Pl7b34e/1M38GRXMa/LR3dGOMX0EApqgXdKnpK6AVASqTvtt\n", "8rihkSjHuoc41h3iWHeIg8cGOHB0gKPdQySTJx7rK/Ww0jTx/msX0FSZ4JHfbCfYNzTheduPHtEy\n", "YCIi45T5vCyaUcri1grCriq27eumrStEeDTBjkOD7Dg0SKU/wBMvt/Ou0mp1z0ralNQVoHg8Qc9A\n", "mJ6BMH1Do/QPRejpD/Hgs0cZjsTPeNv6aj9XLm3hyotauHhhw9jVW93d3WdMGgf6ezNeDhGRQuB2\n", "u1jYWsPCWTX0DUXYdbCHXYd6CY1EGQzDQ8+38dDzbcxuDnDl0haWzq/nwnl1VJZrzLKcGyV1eW40\n", "Gmff6/1s2tnGi9uDDAx30TsYPqXV7WQet4vKci/VFV5qA6X43BGuv7KVC2Y3jy1WPT5RU/eqiEj6\n", "agI+Vi2bwZUXtXDwaB9bdhxmKOplcDjGkY4hjnTs5YF1ewFnDPOSubXMaqqktbGC1qYAzXUVlHjf\n", "mAcv0+OpJb+l/SgbY1YA3waWAnuAT1hrX0r3vHKqZDLJse4Q9nAv9lAv9nAvB9r6iScmzuBKvW5q\n", "Kn1UVfhwxUNUlpcyd3YL1QEf5T7vWPIGcOTQPl569TAHOkYnPJe6V0VEMsftcjG7KcBQd5zrV81j\n", "OBlgo+1h1+F+jnSGSCbhSMcgRzoGT7odVAd81FX7qa30U+GDjq4+qirLKfN5KCt1U+7z4C/14Ha7\n", "zjqeWgpLWkmdMcYPPAJ8Cfge8FFgrTFmvrV24uu/ZVISiSTtPSH2t/Wzv62ffW397Dncy+BwdMLj\n", "aytLCfg9zGispqHGT311GZXlJWOJ25FD+/B4S5nZcPrBuGe7wktERDIrPBxi3SsHmdk6m6ZqD03L\n", "6xiN1dDdP0pXX4TOnhAJPPQMRoknkiSS0DsYoXcwAvSPO1PklHOX+bz4S1zs797B7JYaWuoraKkr\n", "p7m+gua6csp8ar0rNOk+oquBuLX226n/f2CM+XPgBuD+NM9d0OKJJEMjcQ61DxKKDNDTH+b1zgEO\n", "t/fR0ROms3eE8OjE3Z2+Ug8LZ9WwZG4ti+fUYubWkoyGeHrD4bNeKCEiIrmlvOLUL9SNDXAhzhfy\n", "cDhCQ2MrQyMxBkdijETizs9onN7+ELGkh2jczXA4RmLc2JuRSIyRCPTu7WXr3lO/mFcHSmmpcxK8\n", "5vpymusqaKkvp6W+goZqPx4td5Z30k3qlgA7TtpmU9vzXiyeIDwaJzIaIzIaT/0dJzwae2N71Nke\n", "Ho0xEo4yMDhMJJpgNBonEk0QicYZjSbG/o7Fk0RG4wxHYqlxb8fOGIPbBTWBEuoqSykviXHdZTO4\n", "aNFMPO43uk6T0ZDGvImIFKiKQCW1dfUTDn8Z64VpnU0ymSQ8Gic0EmU4HCUUjtEd7KPc72EwDF19\n", "YYL9kbEhO/1Do/QPjY6tEjSe2+VcONdY46O1qYrG2gpqAqVUBXzUBHwEyksoK/Xi93kp83nwetwn\n", "DOmR7Eg3qasAhk/aNgyUp3neUyQSSV7cdoyOnmGSSWd8WZLU7/H/J5zfiWQSks7vaCxBLJYgGk9M\n", "+LeTmI1P3GJjCdh0qaoopaG6lGQiQUNdJdUBH/VVfmqr/GMJ3JFD+9i+p42ugVOvYNWYNxGR4uZy\n", "uSjzeVPdqmUAHHH1Eg6HWLigBagkkUwyEokzOBxjaCRGR1cvI1EXMUoYGomN9RAlkk4S2NUXZsfB\n", "/tPfaYrb7aKs1IPf58Vf6sVX6sHjduFyQSIex+124XY5x7lw4XY74wqTyQSRSJiarVso8Xpwu1zO\n", "sW4Xbpdze7fbhev43+O2OX875z1xf2qb+41tx7e7XDA+9yzzeXnLJa1UlJVMwSMy/dJN6kIcf+a8\n", "oRwYnODYU0Qip44BOJ3tB3r48o82TD6yKeZxO1eQej3g9bjwusFNHJfbi6/Um9rmwpP67fW4iMVG\n", "WTy7irqaSjyuBEN9nZiFc6mvLsfjcdHT08P6bZ0EAi5gFKKj9AUHxu5zoL8Pt8dLLHrquLpYLEZ/\n", "Xw++0okvgT9+21zZH4vHGRroo6e0BK/Hk3PxTcf+8XWQi/FN9f5iKf/p9h0vfzwapiQczsnYp3p/\n", "LB5neCTE0EA/wa6OnItvqvdPZ/nHf274POCr9NBQ6cEfj+H2eGlqqkvFlCAUjjM0EicUjtM7OILP\n", "V8rIKAyOxBgMRYlO0OCRSCQJhWOEwue5OkbbxOWfDm2dA/ze9Yuzct/nkgdNhit5trkvzsAYswb4\n", "urV2wbhtrwKfs9Y+dKbbbty4cfqawURERERy1GWXXZaRvut0W+p+DfiMMXfgTGvyB0AT8MTZbpip\n", "AoiIiIgIpHVpi7V2FHg38GEgCHwKuNFaO5KB2ERERERkktLqfhURERGR3KBJaEREREQKgJI6ERER\n", "kQKgpE5ERESkACipExERESkASupERERECkC689SdwBizAme+uqXAHuAT1tqXJjjuTuBOoBZ4Gvik\n", "tbYzte8vgX8Exk+zvMZa+3wmY50qGaqDWcC3gGuAAeAr1tq7pqcE6Um3/MaY38cp+3gVwHestZ+Y\n", "0uAzIEOP//uALwNzgKPAF6y1P52eEqQvQ3VwHfAvwAJgG/Bpa+3L01OCzDDGXAn80lrbepr9Hwb+\n", "AWduz3XAH40r/6TqMNelUweTPUcuS/M58BbgXwEDdON8DnxnWgLPkDTLfwvwBWAWcAj4O2vtw9MS\n", "eAZl6DXQDLwG3G6tffRM95exljpjjB94BLgbqAa+Bqw1xlScdNwtwOeAW1OFOAisHXfIpcBnrLWV\n", "437yJaFLuw6MMS7gIWA7UAe8C/h7Y8yq6SnF+ctE+a21/zn+sQduxklsvjhd5ThfGXr8y4H7cVZl\n", "qQL+GPiRMWbONBUjLRmqg3nAw8BdQA3OB9vjqTe2nGeMcRlj/hB4EphwQUljzMXAN4EPAQ1AO/CD\n", "1L5J1WEuS7cOJnuOXJWB50Atzuvh/1pra4DfBb6c+rKT8zJQ/sXA93GSmEqcL3/3GWPqpiH8jMjE\n", "a2Ccu3HygbPOQZfJ7tfVQNxa+21rbdxa+wOgA7jhpON+B/i2tfZla20U+BtgpTHmotT+FcDWDMY1\n", "nTJRB28CZuAktnFr7Q7gKmD39BXjvGXqOQCAMSYA/BCnBefo1IeftkyUP4mzdnJJKsFP4rRax6et\n", "FOlJtw6W4Uxo/qq19vvW2oS19gGcb6m/O43lSMffAn8G/B/gdCvn/D7wkLV2g7U2DPw1sMYY08jk\n", "6zCXpVsHkz1Hrkq3/HOBR6y1PwOw1m7GacW5esojz4y0ym+t3Q00WWtfNMZ4gRacXqvRaYg9UzLx\n", "GsAY8wlgCDgymTvNZFK3BNhx0jab2n7yfZ684kQSWJRqpTDAncaYY8aYHcaY2zMY41RLtw4WAytx\n", "Wum+mqoDC6yy1vZMQbyZlvZz4KRtfwVstdauJT+kXf7Uaiy34XxbGwWeAe6w1rZlPtwpkYnnwGSf\n", "H7nqbmvtpcArZzjGMK6eUq/vHpx6mmwd5rJ06sCcwzlyVVrlt9ZusdbeNnag03J3DbBliuLNtLQf\n", "f2vtsDHmAiAM/Bin+3Vo6kLOuLTrINVi+RfAn072TjOZ1FUAwydtGwbKT9q2Fvi4MWa5McYHfCkV\n", "hx+nG+ZZ4BvAbODjwL8ZY9ZkMM6plIk6qMP5pt6FUwcfA+5Kja/IdZkoPzDWSncHzpiKfJF2+VNd\n", "jz/F6XYtA94H/EeqmT4fpFsHPpy1o99kjPkdY4zXGHMTsCq1L+dZa9sncdiZ6qn8DPvyQgbqYLLn\n", "yEmZKP9xxphqnO74V6y1j2QmwqmVwfIfxnndvwMnF1idmQinXrp1kGqh/DHOl/reyd5vJpO6EM6H\n", "0HjlOF1JY6y19wBfx3lT3wP04QyC7LPWHrTWrrbWPm6tjVlrnwPuAW7KYJxTKd066MXpauux1v5z\n", "qg7WAw8A75/i2DMh7efAuMNuAg7m2eD4TJT/JmCztfYnqcf/MeC/gI9OceyZkon3gb04Y0w+BxzD\n", "qZOHOfH5ke8mStKO19Mwk6jDAnC6Osin1ph0nLX8qZaqF3AulPjA9IU2Lc5a/tTwg7i1dh3O52C+\n", "5AKTdaY6+CywxVr75Lh9Zx2GkMmkbidvNJsfd0LTIoAxpgX4qbX2AmvtHJzBkHOAzcaYy4wxf3PS\n", "Oco4tSsmV6VdBzjdLF5jzPjHJqNXKU+hTJT/uPcBP5/CWKdCJso/wrgWy5Q4EJ2SiDMvE+8DAeCw\n", "tfYSa22jtfZjwIWc+PzIdyfUkzGmAaeVfiewi0nUYQE4Ux0UgzOW3xizEngR+G9r7U3W2siEZ8lf\n", "py2/MeYGY8yvTjreh9PwUUhOVwe7gFuAW40xvcaYXpz3x58ZY/7qTCfMZLLwa8BnjLkD51L8P8Dp\n", "Tn3ipOPeAXzGGHMtzofVfwCPWms7jDFVwGeNMbuBX+J0Q34IuDaDcU6lTNTBr3Cy988bY76Ic+HE\n", "Tanb5Lq0yz/umFU43fD5JBOP/2PAPxtjPgb8COe5fxPOayEfZKIO5gEvGGOuwUlkPonzRpcvYysn\n", "46fAb40x3wc24kxh85i1ttcYM9k6zHenrYPshjVtzvQcaAYeB75qrf1qNoOcQmcq/ybgcmPMR4Cf\n", "AGtwLqD6fNainRqnq4MenC+yY4wxB4BPpXpvTitjLXXW2lGcSv8wEAQ+BdxorR0xxnzTGPPN1HH3\n", "Av+Nk6HuxxkM/tHUvj3AB3G6XQZwpjS4zVqbF4NDM1QHI8DbgCuBTuBe4H/mQzdkJsoPYIzxAK04\n", "XW95I0OP/xHgvTgDY3txXgMftdZumubinJcM1cFB4BPAgzhjS28E3pl6beSbsSkITir/VuB/4LRQ\n", "duBc3Xd7al+E09Th9IaeMedcB2c6Rx46n/L/Ec4UF58zxgyO+/nS9IaeEefzGmjH6a25E+d98O+B\n", "96euis1HmXgNTIormczn14qIiIiIgJYJExERESkISupERERECoCSOhEREZECoKROREREpAAoqRMR\n", "EREpAErqRERERAqAkjoRERGRAqCkTkRERKQA5MuaoiIiGZdakuwzQB+wALjdWlssC8qLSIFRS52I\n", "FKVUQvcA8Hlr7WeA9cA/ZDUoEZE0KKkTkaJjjCnFSejustZ2pDYfAW7KXlQiIulRUicixehOWmIS\n", "OwAAAXNJREFUoBm4d9y2amC2McaTnZBERNKjpE5Eiooxxg/8NXC3tTY2bteFqd96XxSRvKQ3LxEp\n", "NrcCdcB9J21/MzBgrY1Of0giIunT1a8iUmxuBsLAvxpjjm8rAS4Hns9WUCIi6VJSJyJFIzVe7q3A\n", "g9baj4zb/m7g7cC6bMUmIpIudb+KSDFpBapwpi8Z74bU7/unNxwRkcxRUicixaQ59XvH8Q3GGC9w\n", "C/CMtXZ7VqISEckAdb+KSDE5frVr+7ht7wYagQ9OfzgiIpmjljoRKSaHU7/HT2Xyv4DvWGufzUI8\n", "IiIZo6RORIqGtTYIvEBqTjpjzB/iXPn6Z9mMS0QkE1zJZDLbMYiITBtjzIXAV4DXgQjwV9ba0exG\n", "JSKSPiV1IiIiIgVA3a8iIiIiBUBJnYiIiEgBUFInIiIiUgCU1ImIiIgUACV1IiIiIgVASZ2IiIhI\n", "AVBSJyIiIlIAlNSJiIiIFAAldSIiIiIFQEmdiIiISAH4/5K1iZi5e8MIAAAAAElFTkSuQmCC\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x117ccafd0>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "mean: 0.9926 ± 0.0098\n" ] } ], "source": [ "offset = 33\n", "samples = np.array([pool.thetas for pool in pools])\n", "distances = np.array([pool.dists for pool in pools])\n", "\n", "plot_pool(distances[offset:], samples[offset:])" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "var_vals = np.var((samples), axis=1)\n", "eps_values = np.array([pool.eps for pool in pools])" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(-0.01, 0.089999999999999997)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAApgAAAHKCAYAAACnnzuoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0FdXexvHvnPQQII0mXcqETgi9hCIgSBELCtyLFRWp\n", "Cij2jg0RFRRQVFS4UhWkqSC9R0INMFKkQ2ghJKQn5/3jYF6akHJSeT5rZUlm9uz9S7YuHvec2WPY\n", "7XZERERERJzFltcFiIiIiEjhooApIiIiIk6lgCkiIiIiTqWAKSIiIiJOpYApIiIiIk6lgCkiIiIi\n", "TuWa1wXkN5s3b9a+TSIiIiJASEiIkZXrFDCvo1atWnh6euZ1GZJNCQkJREREaD4LEc1p4aL5LFw0\n", "n4XLP/OZVbpFLiIiIiJOpYApIiIiIk6lgCkiIiIiTqWAKSIiIiJOpYApIiIiIk6lgCkiIiIiTqWA\n", "KSIiIiJOpYApIiIiIk6lgCkiIiIiTqWAKSIiIiJOpYApIiIihcZzzz1H7dq1OXXqVPqxn376iRo1\n", "ahAcHJz+9eCDD7J169Yrro2MjOTVV1+ldevWhISE0KVLF6ZNm/avY73wwgvUrl2b4OBgGjRoQHBw\n", "MHfddRczZsxIb9OuXTuCgoI4fPjwNdd369aNoKCgK46tWrWKhx9+mCZNmtCkSRMef/xxdu7cmdVf\n", "R55RwBQREZFCITo6mlWrVtG5c2emT59+xblatWqxZcsWtmzZQnh4ON27d2fAgAEkJycDjnB57733\n", "4ufnx7x589i8eTPvvfceX3/9NePHj7/ueIZh8NBDD6X3uWXLFkaNGsW7777L2rVr09v5+fmxcOHC\n", "K661LIvjx49jGEb6sZkzZ/LSSy/x2GOPsW7dOlavXk3Lli15+OGH2bdvn7N+TblCAVNEREQyJDkl\n", "jRNnLl736+TZOM7FpHDybNy/tsnMV3JKWqbrmzt3Lo0aNaJPnz7MnDmTlJSU9HN2uz39z4Zh0KNH\n", "D86dO0dkZCQAn376KQ0bNmTYsGH4+voCULduXUaNGsWZM2cyXENwcDDVqlXjr7/+Sj/WsWPHawLm\n", "/Pnz6dixY3pd8fHxfPDBB4waNYrWrVvj4uKCu7s7jz76KH369OHAgQOZ/n3kJde8LkBERETyv+SU\n", "NPp/8AenzsXdpOVJp4xX0t+biSPvwM0142ths2fPZtiwYQQHB+Pn58fixYvp1q3bNe1SUlKYMWMG\n", "1atXp1y5cgCsWbOGkSNHXtO2WbNmNGvW7F/HvDy4Jicns2bNGvbu3UujRo3Sj7dq1YrffvsNy7Iw\n", "TRO73c7ixYt56623+PnnnwEIDw8nNTWVVq1aXTPG8OHDM/w7yC8UMEVERKTACw8P58KFC7Ru3RqA\n", "Xr16MW3atPSAuWfPnvTQFx8fT2pqKm+99Vb69VFRUfj7+2dqTLvdzrRp05g9e3b6sQoVKvDWW29R\n", "u3bt9GOurq506tSJRYsWYZomYWFhVKpUiZIlS14xfrFixbDZCsfNZQVMERERuSk3VxsTR97BmfPx\n", "1z2fmJjI3r17qVatGh4eHtkeL9DXK1OrlzNnziQqKorQ0FDAsUoZHR1NREQEAEFBQcyZMye9/aZN\n", "mxgyZAi+vr506NCBEiVKcPr06Wv6TUtLIyYmhuLFi19zzjAM/vvf//L888/fsDbDMOjatSsvvPAC\n", "zz77LPPnz6dbt25XrH4GBgYSHR1NamoqLi4uV1wfExODt7f3NcfzMwVMERERyRA3VxtlAotc91xC\n", "ggtnT7pSOsAbT0/PXK0rJiaGX3/9le+++44KFSoAjtXFUaNGMXXqVBo3bnzNNY0bN6Zx48asX7+e\n", "Dh060LJlS5YsWUL37t2vaLdixQpGjBjBmjVr8Pb2vqafy0PijTRs2JC0tDTCwsJYtWoVL730EkeO\n", "HEk/HxwcjJubGytXrqRdu3ZXXPvSSy9RpEgR3n///QyNlR8UjnVYERERuWXNmzePSpUqERwcTEBA\n", "AAEBAQQGBnL//fezcOFCoqKirrkmIiKCTZs2ERwcDMDAgQMJCwtj7Nix6SuJ69ev5/XXX6dfv37Z\n", "Cpf/6NKlC2+88QaNGjXCy8vrinMeHh4MGzaM1157jZUrV5KSkkJsbCzjx49n/fr19OvXL1Nj5TWt\n", "YIqIiEiBNmvWLLp27XrN8WbNmuHn50dKSgq7d+9OD5OGYeDv70+/fv3SP6NZqlQpZsyYwdixY7nr\n", "rruIj4+nbNmyDBw4kF69el13XMMwrthm6Ga6devG5MmTr3iY6PLr+/TpQ7FixRg/fjzPPfcchmFQ\n", "v359fvjhB6pWrZrhcfIDI7Ppu7DbvHmzvVatWrm+vC/Ol5CQQEREBJrPwkNzWrhoPgsXzWfh8s98\n", "hoSEZDxBX0a3yEVERETEqRQwryM+MeXmjURERETkuhQwr+PTGdsz/cFdEREREXFQwLyObbHrWLvt\n", "eF6XISIiIlIgKWBeh1vZ/XyxZjax8cl5XYqIiIhIgaOA+S9SSuzh3fkz87oMERERkQJHAfM6Srg6\n", "Xny/N20NM8KW53E1IiIiIgWLAuZ1vNH+aVyT/DAMmLN/NpExZ/O6JBEREZECQwHzOop6ePNc8wGk\n", "xfmQtL8Oy9afyeuSRERERK5w+bvM8xsFzH8RXKUc7X3/S+q5Msxc+hdHImPyuiQRERG5ieeee47a\n", "tWtz6tSp9GM//fQTNWrUIDg4OP3rwQcfZOvWrVdcGxkZyauvvkrr1q0JCQmhS5cuTJs2Lbd/BIKC\n", "gti3b98N2+zatYvevXunf//EE08wa9asnC4twxQwb+ChzjUJLO5JSmoan8/eRlqa9sYUERHJr6Kj\n", "o1m1ahWdO3dm+vTpV5yrVasWW7ZsYcuWLYSHh9O9e3cGDBhAcrJjx5jIyEjuvfde/Pz8mDdvHps3\n", "b+a9997j66+/Zvz48Xnx49xQTEwMKSn//2KYr776ip49e+ZhRVdSwLwBb083nr6vHgARB86yZNNh\n", "AG3CLiIit6yTsaev++Xs9lkxd+5cGjVqRJ8+fZg5c+YVAezyv7sNw6BHjx6cO3eOyMhIAD799FMa\n", "NmzIsGHD8PX1BaBu3bqMGjWKM2eu/1G5I0eO0L9/f9q0aUO9evXo1asXBw4cAGDcuHGMGDGC/v37\n", "ExwcTJcuXVi7dm36td9//z3dunWjYcOGtGjR4poQa7fbGT9+PI899tgVx++9914WL17Mk08+yfnz\n", "52nQoAHnz5+nb9++6autJ06coH///oSEhBAaGsqUKVOy9PvMDtdcH/EmTNMMBiYBNYG9QH/LsjZe\n", "p11vYBRQElgOPG5Z1qlL57oB7wEVgOPAm5Zl/ZiVehrXKk2Lurexdvtxvl0QgV/pWH47uIThLZ7C\n", "280rK12KiIgUWEMWvnbd49/fPTZT7Wc+OOGG7f/t/I3Mnj2bYcOGERwcjJ+fH4sXL6Zbt27XtEtJ\n", "SWHGjBlUr16dcuUcO8esWbOGkSNHXtO2WbNmNGvW7Lrjvfrqq9SuXZsvvviCxMREhg8fzsSJE/nw\n", "ww8B+PXXX5k8eTLjxo3j448/5u233+bXX3/lzz//ZNKkSfz4449UqFCBP//8k759+3L33XdTvnx5\n", "wBGC7777biZOnEhUVBR+fn4cOHCAQ4cOcccdd/DVV18xZMgQNmzYcE1dQ4cOJSgoiHXr1hEZGUmf\n", "Pn2oXr06zZs3z/TvNKvy1QqmaZqewHzga6A48Bnwi2maRa5qVxeYADwIBAIngW8vnfMGZgGvWZZV\n", "DOgHfGeaZoWs1vXkPXUo4unKxeRYPt4wkR2RFqPXTCQpVRuxi4iI5Afh4eFcuHCB1q1bA9CrV68r\n", "Pj+5Z88eGjVqRKNGjahfvz6jR4+mb9++6eejoqLw9/fP1Jjvv/8+gwcPJjk5mWPHjlG8ePErPvsZ\n", "HBxM06ZNcXNzo1u3bhw6dAiA2rVr89NPP1GhQgXOnDlDcnIynp6e6aup/yhfvjy1a9fmt99+A2Dh\n", "woV07NgRd3f3f72beuTIEbZv387zzz+Ph4cHFSpU4LvvviMoKChTP1t25bcVzLZAqmVZky59/61p\n", "ms8Cd+EIjf/4DzDXsqwwANM0RwKnTdMsAcQCMYCbaZoGYAcSgdSsFuVfzJOHu9bii9nbSDhUHfdK\n", "u4g49Refrf+GZ5v3w8XmktWuRURECpTPuryVr9r/Y+bMmURFRREaGgo4Vimjo6OJiIgAHA/OzJkz\n", "J739pk2bGDJkCL6+vnTo0IESJUpw+vS1t+bT0tKIiYmhePHi15zbv38/o0eP5tSpU1StWhXDMK4I\n", "fn5+ful/dnV1TT9nGAaff/45v//+OwEBAdSuXRu4/kfwunXrxqJFi+jVqxcLFizgjTfeuOHv4ezZ\n", "s3h7e+Pj45N+rEqVKje8JifkqxVMIAjYddUx69Lxy5mXt7Ms6xxwDjAty4oHHsaxopkErAIGWZZ1\n", "LDuF3dmkIjUq+ZN6qgLuZ2sAsOnYVr7683/6TKaIiNwySvuUuO6Xs9tnRkxMDL/++ivfffcd8+bN\n", "Y968eSxYsIBOnToxdepUDMO45prGjRvTuHFj1q9fD0DLli1ZsmTJNe1WrFhB27ZtiYuLu+J4UlIS\n", "gwYNYsCAAaxbt47vv/+eRo0aZajeb7/9lr1797J06VIWLlzIO++8c8XnRS/XuXNntm7dyoYNG7h4\n", "8SJNmza9Yd+lS5cmLi6O2NjY9GOLFi1i9erVGarNWfJbwCwCxF11LA7wzmg70zQrAT/iuDXuBXQD\n", "Pr10Wz3LbDaDQT3r4epiEL2/AhVcHN2tOLiBv6MOZ6drERERyYZ58+ZRqVIlgoODCQgIICAggMDA\n", "QO6//34WLlxIVFTUNddERESwadMmgoODARg4cCBhYWGMHTuW6OhoUlNTWb9+Pa+//jr9+vXD2/vK\n", "KJKcnExSUhKenp4AbN26lZkzZ6Y/lX4jFy9exM3NDTc3Ny5evMgHH3xAcnLydUOmv78/zZs35/33\n", "36dr167pYdnd3Z3ExMRrxitdujQNGzZkzJgxJCUlcfDgQd577z1cXXP3pnV+u0V+EUcovJw3jlve\n", "l7te6PTGcXu8B7DFsqz/XTq+yDTNBcBDwIiMFJGYmHjd4yV93ekRejuzl+/nrw1laNbZlTZVGnCb\n", "dykSEhIy0rXkon/m8d/mUwoezWnhovksXPJyPmfOnEnnzp2v+bs4ODgYX19f4uPj2b17d3qYNAwD\n", "Pz8/HnnkETp06EBCQgLFixfn+++/Z9y4cel9lSlThieffJKePXte07eLiwsvv/wyL7/8MikpKdSt\n", "W5dnn32W0aNHc/HiRVJTU7Hb7enXJSYmYhgGCQkJ9O7dm+3bt9O8eXNKlizJfffdR8uWLdmzZ096\n", "jYmJienXdurUiRdeeIHXX389/VilSpWoUqUKTZo0YcaMGaSlpZGSkkJCQgLvvfce7777Lq1atcLL\n", "y4unnnqK4ODgTGWV7M6jkZ9u75qm2Qn43LKsKpcd247jgZ25lx17HyhhWdbjl74PBCJxPPDzAPCo\n", "ZVlNL2v/HXDcsqwXb1bD5s2bb/gLSU61M3FxJGcvpFDaz40n7iyJi+3apXcRERERZ9izZw+TJ0/m\n", "o48+yvWxQ0JCshRy8tsK5jLAwzTNQTi2KuqLYxui365q9yOw0jTNb4DNOLYkWmRZVpRpmouAD0zT\n", "fAT4DgjFsarZNqNFVK1aFQ8Pj389P7jobbwxOYyTUckcPF+E7q0qZ/gHlNyTmJjIvn37bjqfUnBo\n", "TgsXzWfhovl0vsTERA4fPszSpUvp3bs3tWrVytWxb/Y2oRvJVwHTsqwk0zQ7AxOBd3Hsg9ndsqx4\n", "0zQnXGrztGVZ20zTfAL4BiiN40GeRy+dP2KaZldgDPAJcBh4yLKs8IzW4eHhkf6ZiusJqXEbHZtU\n", "5PeNh5jxx35CG1SgdMD/76SUlJqMu4tb5n54yTE3m08peDSnhYvms3DRfDrPhQsXePjhh6lXrx6P\n", "PPII7u7ueV1ShuWrgAlgWdYOoMV1jj991fezuHLrosvPrQGa5EiBlzzatSabdp3kfEwiE+Zs540n\n", "mmIYBltP7GJC2Pe82GoQlfzK5WQJIiIiUoiVLFmS8PAMr4/lK/ntKfICw8fbnSfvrgNAuHWKlVuO\n", "kZSazKSwqUTFRzNq1bgsv+pKREREpCBTwMyGlvVvo2GNUgBMnreDhAQ7z7d6Gi83T6ITLjBqxWdE\n", "xUfncZUiIiIiuUsBMxsMw+Dpe+vi4e5CdGwS386PoLJfeUa2fBo3myuRF8/w7spxXEy6estOERER\n", "kcJLATObSvp7899Ojjf7LA07zLa9p6lZsjrPNO+HYRgci4nURuwiIiJyS1HAdIJuLStTtZzjHaWf\n", "z95GYnIqjcrWY0Cjh3gpdBC1S+XuC+ZFRERE8pICphO4uNgY1LM+NpvBiTMXmbHEAqB15abULmXm\n", "cXUiIiKFV1BQEPXr1yc4OJjg4GDatm3LpEmT8qyerl27smbNmjwbP7/Id9sUFVRVyvlyd2gVfl6x\n", "j5+W7yM0uByVyhTL67JEREQKvdmzZ1O1alUADh06RO/evalSpQrt27fP9VoWLFiQ62PmR1rBdKI+\n", "HU1K+XuTmmZn/MytpKZd/62TZy6ey+XKREREnOOvnt1v+P3hvg9kqv3Nvs+sihUr0rBhQ3bv3g1A\n", "Wloan3zyCZ07d6ZBgwa0adOGGTNmAPDiiy/y6quvpl+bmppK8+bN2bFjB2lpaYwfP5527drRvHlz\n", "XnrpJWJjYwHHBugDBgygSZMmtGvXjldeeYWkpCQA2rVrx4oVKwBYv349vXr1olmzZoSEhDB06ND0\n", "94H37duXsWPH0qNHDxo0aEDfvn05duxYtn72/EQB04k8PVwZcF89AKzDUfy67u9r2mw8uoWhi15n\n", "6f7VuV2eiIhIoWS3//+Czu7du9m+fTuhoaEA/PLLLyxdupSpU6cSHh7O8OHDeffdd4mPj6d79+4s\n", "WbKEtLQ0ANatW0fRokWpU6cO33zzDX/88Qc//vgjS5YsISEhgXfeeQeAb775BldXV9auXcvcuXOJ\n", "iIhg/vz56TUYhkFcXByDBw/mqaeeYv369SxatIgdO3ZcscK5ePFiPv/8c1atWoXdbs/TW/vOpoDp\n", "ZA2CStKmgeMNPt8t2s2Z8/Hp5+x2O7/tXUlyWgpfbf6RDUcK5u78IiIi+UmvXr1o1KgR9evX5557\n", "7qF69epUr14dgPbt2zNlyhT8/f05efIk7u7uJCYmEh0dTZMmTfDw8GDt2rUALFy4kG7dugGO2+4D\n", "Bw6kVKlSFClShOHDh/PLL7+QlJSEp6cnO3fuZMGCBSQlJfHTTz9x3333XVGTp6cnP//8M23btiUm\n", "JobIyEj8/Pw4depUepvu3btTtmxZfHx8aN++PYcOHcql31jOU8DMAY93r01RbzfiE1OY9PP29OOG\n", "YTCixVNU8i2H3W7nsw3fsjNyTx5WKiIiUvDNmDGDsLAwtm7dmv6AzbBhwwBITk7m7bffpmnTpvTv\n", "3z/99nVaWho2m40uXbqwaNEikpKSWLp0Kd27O27Rnzhxgueff55GjRrRqFEjevTogZubGydOnODJ\n", "J5/kgQce4OuvvyY0NJSHHnromnBos9n4448/aNeuHXfffTcTJkwgPj4+fbUUwM/PL/3Prq6uV5wr\n", "6BQwc4BvUQ8e61YbgA07T7J+x/H0c97uXrzUejClfUqQkpbCh2smsv9c4fk/FhERKdyqz/rlht9X\n", "+GFmptrf7PvMCgwMpHfv3qxfvx6Ajz/+GIDVq1czd+5cBg8efEX77t27s2zZMlatWkXlypWpUKEC\n", "4HgP+IQJEwgLCyMsLIwNGzbwyy+/UL58efbu3UuPHj2YP38+K1asICAggLfffvuKfsPDw/niiy+Y\n", "MmUKy5YtY8KECQQGBmbrZytIFDBzyB2NylO3quNfpIk/7eBifHL6OV/PYrzSZih+nsWx2+1604+I\n", "iEg2XP4ZzAsXLjBnzhwaNGgAwMWLF3F3d8fFxYWoqCg++OADwLGyCY5tjkqWLMn48ePTVy8BevTo\n", "wfjx4zl9+jTJycl8/PHHPP7449jtdqZPn85rr71GbGwsvr6+eHh4XLEa+c+4NpsNDw8PUlNTmTt3\n", "Lps3byYlJSWnfx35ggJmDjEMg4H318PN1ca5Cwl8v2jXFedLFgng5daDebXNUOqWrpFHVYqIiBR8\n", "PXv2JDg4mAYNGtChQwfc3Nz48MMPARgyZAiHDx+mSZMmPPbYY7Rv355q1apx4MCB9Ou7devG3r17\n", "6dKlS/qxp556ipCQEB588EGaNWvGzp07mTRpEi4uLgwbNgwvLy/uuOMOmjVrRkxMDC+++OIVNbVs\n", "2ZJOnTrRrVs3OnTowPbt23nqqaeuGPdyhmFgGEYO/HbyhnF56hfYvHmzvVatWnh6ejqlv5lL/+KH\n", "xbsxDPhgYCtqVPZ3Sr9ycwkJCURERODM+ZS8pTktXDSfhUtBns958+axYMECvvrqq7wuJd/4Zz5D\n", "QkKylHq1gpnD7mlTlYqli2K3w/jZW0lOKTwf4BURESnIYmNj2b17N1OmTKFnz555XU6hooCZw9xc\n", "Ha+RNAw4fDKGn1bsvek1e07vJyX11viMhoiISF45cOAAffr0oUqVKnTs2DGvyylUFDBzQVAlf+5q\n", "XhmAGUv+4tjp2H9tu/LvDbyx/GPGb5xSqLYrEBERyW/q1q3Lli1b+Oijj/K6lEJHATOXPHRXDQKK\n", "e5Kcksbns7bxb599PRl7mjR7GuuObOab8Bn/2k5EREQkv1LAzCXenm48dU9dAHbsP8MfYYev2+6B\n", "2l3pUKUVAL/vX8WsiAXXbSciIiKSXylg5qJmdcrQrE4ZAL7+JYLzMYnXtDEMg8cb9KJZ+RAAZkcs\n", "4te9K3KzTBEREZFsUcDMZU/dUwcvD1di45OZPG/nddvYbDYGN3mEuqVq4O3mRSXfcrlcpYiIiEjW\n", "KWDmsoDiXjzcpSYAK7ccZfOeyOu2c3VxZUSLJ3nnjucIKlE1N0sUERERyRYFzDzQuVklgio6Xin1\n", "xZztJCRef0siTzdPyhUvk5uliYiIiGSbAmYesNkMBvWsj4vN4NS5OP73u5XXJYmIiIg4jQJmHqlY\n", "phj3tasGwLyV+9h39HyGr91wJJxTsWdyqjQRERGRbFHAzEMPtq/ObYFFSLPD57O2kpp6843Vl+5f\n", "zdh1k3ln5WecT7iQC1WKiIiIZI4CZh5yd3NhYM96AOw7Gs38NX/f9JpSPiVwsblwMvY0760cT1xS\n", "fE6XKSIiIpIpCph5rG7VErRvVAGAqb/uJvJc3A3b1ykVxJCmj2Jg8Pf5I3y4ZgJJqcm5UaqIiIhI\n", "hihg5gOPdqtFcR93EpNSmTDn318j+Y+m5RvwRMPeAOw6vZcvw6blRpkiIiIiGaKAmQ8UK+JOv7vr\n", "ALB5zylWbz1202vaV2lFrzrdKebhw13V2+V0iSIiIiIZpoCZT7QOLkuDoJIAfDV3JzFxSTe95p4a\n", "nRjT6VVu96+Q0+WJiIiIZJgCZj5hGAZP31sXD3cXzscm8u38iAxdU9yzWC5UJyIiIpJxCpj5SOmA\n", "IvznziAAlmw6zI592utSRERECh4FzHyme6vbub1scQA+n72VpOTUTPex7MBawo5tc3ZpIiIiIhmi\n", "gJnPuLjYGNyzPjYDjp2+yMw//srU9csOrGNi2FQ+WTeZXacyd62IiIiIMyhg5kNVy/vSPbQKAHOW\n", "7eXQyYy/sSe4TC1KFgkgOS2FD9ZM4O+oIzlVpoiIiMh1KWDmU33uDKKknxcpqXY+n7WNtLQb7435\n", "Dz+v4rzSZijFPYsRn5zAuyvHcSLmVA5XKyIiIvL/FDDzKS8PV56+z/Eayd0Hz/HbhoMZvra0Twle\n", "Dh2El5sn0YkxfLr+65tu3i4iIiLiLAqY+VjDGqUIrV8WgCkLd3E2OuPvHa/kV56RLQdQxqckg5o8\n", "gmEYOVWmiIiIyBUUMPO5fj1qU8TLjbiEFL6cuyNT19YsWY2PO79GueJlcqg6ERERkWspYOZzfkU9\n", "eaxbLQDWbT/Bhp0nMnW9i80lJ8oSERER+VcKmAVAh8YVqF0lAICJP20nLiE5jysSERER+XcKmAWA\n", "YRgMvL8eri42zkYn8MPi3dnqb4H1B1PCZ+rBHxEREckRCpgFRLmSRXmwQ3UAFq79G+vQuSz1s+no\n", "Vr7fOptFe5czZ9diZ5YoIiIiAihgFij3ta1G+VJFsdth/KxtpKSmZbqPkNvq0LhcfQBm7pzPz7t+\n", "dXaZIiIicotTwCxA3FxtDOrp2Bvz4IkL/LxiX6b7cLG5MKTpY9QtVQOAH3fMY8aO+bpdLiIiIk6j\n", "gFnA1KwcQOdmlQCY/rvF8TOxme7D3cWN51s9TXCZ2gCsOLiei0lxzixTREREbmEKmAXQQ11q4l/M\n", "g6SUNL6YvS1Lq4/uLm481+IpOlRpxettnsHHo0gOVCoiIiK3IgXMAsjHy40n76kLwLa9Z1i++UiW\n", "+nF1ceWJhn0oXbSkM8sTERGRW5wCZgHVvE4ZmtQqDcDkeRFExybmcUUiIiIiDgqYBZRhGDx1T128\n", "PFyIiUvi6192Oq1vu93OmkNhpKSmOK1PERERuXUoYBZgJfy86Nu5JgDLNx9li3XKKf3O2bWYzzZ8\n", "w0frviQpVW8NEhERkcxRwCzg7mpRmeoVfAH4Ys42EpKyv+qYkuboI/z4Dj5Y/QUJKbr9LiIiIhmn\n", "gFnAudgMBvWsj4vN4OTZOKb/bmW7z151utOrTncAdkTu4b1V44lPTsh2vyIiInJrUMAsBCrfVpx7\n", "21YF4OeV+zlwLDrbfd5bszMP1b8fgN2n9/Hln9Oy3aeIiIjcGhQwC4kHO5iUCShCWpqdcbO2kpqW\n", "/TfzdDXvoF9Ib0oUCaBP3R5OqFJERERuBQqYhYSHmwsD73e8RnLfkfMsXHPAKf12rBrKx51eo0SR\n", "AKf0JyIiIoWfAmYhUq96Cdo1LA/AD4t3cyrKOa9/9HB1d0o/IiIicmtQwCxkHutWi2JF3ElISmXC\n", "nO1Zeo1kRtjtdi4kZv496CIiIlL4KWAWMsV9POh3d20A/twdydrtx50+ht1u53/b5zLyt3c5EeOc\n", "vTdFREQAfGK9AAAgAElEQVSk8FDALITaNChH/eolAJj08w5i45Kc2v/pi2f5de8KzsZH8fqyMRyN\n", "PuHU/kVERKRgU8AshAzDYOD99XB3c+F8TCJTFu5yav8lfQJ5ufUQvFw9OZ9wgdeXf8zBqCNOHUNE\n", "REQKLgXMQqp0QBH6dDQB+G3DISIOnHVq/0ElqvBqm6EUcfcmJjGWN5eP5cC5Q04dQ0RERAomBcxC\n", "7O7WVah8WzEAxs/aSnJKqlP7rxpQidfbPEtRDx+Kevjg5+Xr1P5FRESkYFLALMRcXWwM6lkfw4Cj\n", "p2KZ/cdep49Rya8cb7YdxmttnsHPq7jT+xcREZGCRwGzkKtewY9uLW8HYOYfezkSGeP0McoVL0Ng\n", "EX+n9ysiIiIFkwLmLeA/nYII9PUiJTWNz2dvI80Jr5EUERER+TcKmLcAb083nr63LgARB86yZFPO\n", "P4xjt9uZsmUWaw5tyvGxREREJH9RwLxFNK5Vmhb1bgPg2/kRnLuQkKPjLfprGYv+Wsa4DVNYfmBd\n", "jo4lIiIi+YtrXhdwNdM0g4FJQE1gL9DfsqyN12nXGxgFlASWA49blnXq0rlywESgFXAB+NCyrHG5\n", "8xPkX0/2qMNW6xQXE1L4au4ORj7UKMfGCq3UhFWHNvJ31BEmhP1AUmoyd1ZrnWPjiYiISP6Rr1Yw\n", "TdP0BOYDXwPFgc+AX0zTLHJVu7rABOBBIBA4CXx76ZwBzAUiAH/gTuAN0zSb5tKPkW/5F/Pkka61\n", "AFiz7Tibdp3MsbGKevjwWptnqBZQGYCvw6ezwFqaY+OJiIhI/pGvAibQFki1LGuSZVmplmV9C0QC\n", "d13V7j/AXMuywizLSgBGAp1M0ywBNAHKAC9c6mMX0Az4K/d+jPyrY5OK1KzseOJ7wpztnI2Oz7Gx\n", "irh780rrIdQoUQ2A5QfWkZTi3NdWioiISP6T3wJmEHD1ew2tS8cvZ17ezrKsc8C5S+0a4Fi9HG2a\n", "5gnTNC2g6aU2tzybzWBQz/q4utg4cz6eYZ+sYv/R8zk2npebJy+FDqL97S15pc1Q3F3dc2wsERER\n", "yR/y22cwiwBxVx2LA7wz0c4fx0roH0B5oBHwq2maByzLWpORIhITEzNZdsFSorgbI/rUY+yM7Zy7\n", "kMDI8WsY+mBdGtUomWNjPlTnPgASEnL24aLL/TOPhX0+byWa08JF81m4aD4Ll+zOY34LmBcBr6uO\n", "eQNX7w5+vdD5T7tE4JxlWR9cOr7eNM05wN1AhgLmvn37MlNzgeQJPNIugP+tPEtMfCofTt1Cx+Di\n", "NAvywTCMvC7PqW6F+bzVaE4LF81n4aL5FMh/AXM3MOiqYyYw7TrtzPQGphmIY+VyN46HflxN07RZ\n", "lpV2qUmmfs6qVavi4eGRmUsKpFpAcN0EPvghnL9PxPD7lmjsrkV5rFsNXF1y/tMTafY01h75kxbl\n", "G2IznD9eYmIi+/btu2Xm81agOS1cNJ+Fi+azcPlnPrMqvwXMZYCHaZqDcGxV1BfHNkS/XdXuR2Cl\n", "aZrfAJuB94BFlmVFmaa5BMcK5+umab6F46GfHkD7jBbh4eGBp6dntn+YgqCspycfDg7lo2mb2Rhx\n", "kiVhRzkTncjIhxpRxMstx8a12+18HT6d3/etIuLMXwxq+iiuNpccGetWms9bhea0cNF8Fi6aT4F8\n", "9pCPZVlJQGegN3AWGAh0tywr3jTNCaZpTrjUbhvwBPANjqfMSwOPXjoXD7QBGgOngKnAYMuy9EqZ\n", "f+Hp4cqLjzTmnjZVAdjy12meG7eak2cv5ui4/6xarjuymbHrviI5NTlHxxMREZHckd9WMLEsawfQ\n", "4jrHn77q+1nArH/pYz+OoCoZ5GIzeKxbLW4LLMKEn7ZzJDKGEZ+t4pVHmxBUyd/p4xmGwaPBD+Du\n", "4s4ve34n7Ng2Rq+ZyIgWT+lJcxERkQIuX61gSt7r1KwSb/RrShFPV6Jjk3hpwlpWbTmaI2MZhsF/\n", "6vagZ60uAGw9uYup23/OkbFEREQk9yhgyjWCzZJ8OLgVpfy9SU5JY/TUzUxfYmG3250+lmEY9Kzd\n", "lT51e1C++G3pYVNEREQKLgVMua4KpYvx0ZBQgir6ATDt1z2M/TGc5JTUHBmvR407ea/9SIp6+ORI\n", "/yIiIpJ7FDDlX/kW9WDU0y0IDS4LwPLNR3l10nqiY3NmE1199lJERKRwUMCUG3J3c2HEf0Lo3dGx\n", "7WjEgbM899lqjp66eu/7nJGWlsaFxNhcGUtEREScQwFTbsowDPrcGcTwPg1wdbFx4uxFRny2mu37\n", "TufouGn2NCaGTeWVpR9y5qJeJS8iIlJQKGBKhrUJKc87/ZtT1Nudi/HJvDZpPUs2Hsqx8Q6fP86a\n", "w2GcjD3N68vGcDI2ZwOtiIiIOIcCpmRKrdsDGDM0lLIlfEhNs/PZzK1MWRBBWprznzCv5FeO51s+\n", "jZuLG6fjzvH6sjEcu3DS6eOIiIiIcylgSqaVCSzCR0NaUbdqIABzlu/jgx/CSEhKcfpY9cvU5KXQ\n", "QXi4ehAVH80byz7m6IUTTh9HREREnEcBU7LEx9udN59sRofGFQBYt/0EL32xlnMXEpw+Vq2S1Xm1\n", "9RC83DwJ8PbD39PX6WOIiIiI8yhgSpa5utgY/EB9Hu1aE8OAvUfOM/zTVfx9PNrpY1UPvJ032w7j\n", "5daD8Xb3cnr/IiIi4jwKmJIthmFwb9tqvPBQI9zdXDhzPp6R41fz5+5Ip49Vya+8NmIXEREpABQw\n", "xSma172N9we2wK+oB/GJqbz99Qbmrz6Q12WJiIhIHlDAFKepVt6PMUNbU6lMMdLs8OXcHUz6aTup\n", "qWk5NmZaWhrjN07hz2Pbc2wMERERyRwFTHGqEn5efDCoJQ1rlAJgwdq/efubjcQlJOfIeNN3/sKq\n", "gxsZs3YS649szpExREREJHMUMMXpvD3deOWxJnRvdTsAm/ecYuT4NZyKinP6WJ2qtaFssdKk2tP4\n", "ZP3XrDq40eljiIiISOYoYEqOcLEZPNGjDv3vqYPNgIMnLjD801X8dTjKqeP4e/nyRttnqVi8LHa7\n", "nc83fsfS/WucOoaIiIhkjgKm5KguLW/ntX5N8fJw5XxMIi9+sZa12487dYzinsV4ve2zVPGriB07\n", "qw5uIC0t5z73KSIiIjemgCk5LiSoFB8ObkUJPy+SklN5/7swZv3xF3a7814v6eNRhFfbDKVj1VBe\n", "aDUQm03/aouIiOQV/S0suaJSmWKMGRJK9QqOt/B8v2g3n83YSnKK81Yavd296BfSWxuxi4iI5DEF\n", "TMk1fsU8eXdAS1rUuw2ApWGHef3L9cTEJeVxZSIiIuJMCpiSqzzcXHj+vw3peUc1AHbsP8Nzn63i\n", "+JnYHBszJS2FP/avIc2uz2WKiIjkBgVMyXU2m8FDd9Vk6IPBuLoYHDt9kRGfriLiwFmnj5VmT2Pi\n", "5qlM+nMaX/35o0KmiIhILlDAlDzTvnEF3nqyOT5ebsTEJfPKxLUs+/OI08fxcPEA4I8Da/hi4/ek\n", "pqU6fQwRERH5fwqYkqfqVA3ko6GhlAksQkqqnbE/hjN18W7S0pzzhLnNsPF48IN0qNIKgFWHNvLp\n", "hm9IUcgUERHJMQqYkufKlvDhoyGh1Lo9AIAZS//io2mbSUx2Tgi0GTb6hfTmrurtANhwJJyfdy12\n", "St8iIiJyLQVMyReKFXHn7aea0a5heQBWbz3GyxPWcj4m0Sn9G4bBw/Xv554anQgKrEK3oA5O6VdE\n", "RESupYAp+YabqwvP9Aqmb+caAFiHohj+2SoOnbzglP4Nw6B33bt5tc1QPF09nNKniIiIXEsBU/IV\n", "wzB4oH11nu/bEHdXG6fOxfH8uNWEW6ecNoabi5vT+hIREZFrKWBKvtSqfllGDWiBr48HcQkpvDl5\n", "A4vX/Z1j48Ulx3M+wTkrpSIiIrc6BUzJt4Iq+vPR0FAqlC5KWpqdL+ZsZ/K8naQ66Qnzf6SmpfLp\n", "+q95ackHHDp/1Kl9i4iI3IoUMCVfK+XvzYeDWhFcvQQA81bt591vNxGfmOK0MQ5HHyfi1F+ciTvH\n", "q398xJ/HtjutbxERkVuRAqbke0W83Hi9X1M6N68EwKZdJ3lh/BrOnI93Sv+V/crzZrvh+HkWJyEl\n", "kdFrJjJ/z1LsdueulIqIiNwqFDClQHBxsfH0vXV54u7aGAYcOB7N8E9Xse/oeaf0X8W/Iu92GEll\n", "3/LYsfPDtjmsPrTJKX2LiIjcahQwpcAwDIPuoVV45dEmeLq7cO5CAi98voYNO084pf8Abz/evGM4\n", "jcvWp3ZJk+YVGjqlXxERkVuNAqYUOI1rleaDQa0IKO5JYlIq707ZxM8r9jnllranqwfDWjzB8y37\n", "42pzcUK1IiIitx4FTCmQbi9bnDFDQ6lSrjh2O3wzP4LPZ28jJTUt233bDBuebp5OqFJEROTWpIAp\n", "BVZAcS/eH9CSprVLA/DbhkO8+dUGYuOTc2S8mMRYVv69IUf6FhERKUwUMKVA8/Rw5cWHG3Nvm6oA\n", "bN17mufHreLk2YtOHSclNYUxa7/k803f8U34DFLTUp3av4iISGGigCkFns1m8Gi3WgzqWQ8Xm8GR\n", "yFhGfLYK61CU08ZISUvBw9UdgF/3ruD91V8Ql+ScbZJEREQKGwVMKTTubFqJN59oRhFPV6Jjk3jz\n", "mz/ZcTDOKX17unnyfMunuataWwC2ndzFy398SGTsaaf0LyIiUpgoYEqhUq96CUYPCaV0gDfJKWnM\n", "WXeOWcuc84S5i82FRxo8QL+Q3tgMG8cunGT53+udULWIiEjhooAphU75UkX5aEgoZgVfAGb+sZ+P\n", "fwwnOcU5n5vsWDWUl0IH0apiYx6o1dUpfYqIiBQmCphSKBX38eC1xxpSp6IXACs2H+WVieuIjk10\n", "Sv91S9dgcNNHsdn0n5CIiMjV9LejFFrubi7c29yfB9pVAWDX3+cY8dkqjkTG5HFlIiIihZsCphRq\n", "hmHQ846qDO/TAFcXGyfPxvHcuNVs25szD+ecj4/mw9UTOBvnvCfYRUREChoFTLkltAkpz6inm1Os\n", "iDsX45N5/cv1/L7xkFPHSLOn8dHaL/nz+HZeXPI++84edGr/IiIiBYUCptwyalYOYMzQUMqV9CE1\n", "zc64mVuZsiCCtLTsP2EOjldM3lOzE56uHpxPuMDryz9m3eHNTulbRESkIFHAlFtK6YAijB4SSr1q\n", "gQDMWb6P978PIyEpxSn9h9xWh7fvGEGgtz/Jqcl8sn4ysyMWOaVvERGRgkIBU245Pl5uvPFEMzo2\n", "qQjA+h0nePHzNZw445zXS1b0Lce7HUZSLaAy4Lh1LiIicitRwJRbkquLjUE96/Fo11oYBuw7Gs3Q\n", "j5fz+8ZDTtmU3dezGK+3fZbHG/SiZ60uTqhYRESk4FDAlFuWYRjc27Yqrz3eFF8fD+ITUxk3cyuj\n", "vt3E+Zjs75fp7uLGndVaYxiGE6oVEREpOBQw5ZbXsEYpxo1oS5NapQHYGHGSwR8tZ9Oukzk2Znxy\n", "Qo71LSIiktdcM3uBaZrewJ1AG6ABUALwA+KBI8A2YAmw2LKsJKdVKpKDfIt68PKjjVmy6TBfzd3B\n", "+dhE3v56I3c2rcjj3Wvj5ZHp/1T+1emLZ3ll6Wi6mu3pat6hFU4RESl0Mvy3pmmapYAhQH8cgRLA\n", "DlwALgKBQAWgBTAAiDJNczzwiWVZ2nVa8j3DMOjYpCJ1qgQy9sdwdh88x28bDrF93xmG9WlAUEV/\n", "p4wzfccvRCVE88O2ORy7cIJ+Ib1xdXFegBUREclrN71FbpqmYZrmYGAvMBTH6uTjQH3Ay7IsP8uy\n", "ylmW5QN4A42BZ4ENwEvAIdM0h5umqWUaKRDKBBbhvQEt+G/nIFxsBifOXGTk+DVM+3UPKanZfyL8\n", "iYZ9aFy2PgDL/l7HOys/IyYxNtv9ioiI5BcZWTZZC9wOvAp8Y1nWv77I2bKsBODPS1+fmqZ5G/Ao\n", "jqB5P9As2xWL5AIXFxsPtjcJMUsx5n+bOXoqlulLLDbviWRYnwaUK1k0y317unowrMUTTN/xC3N3\n", "/8au03t55Y/RjL7zFdxd3Jz4U4iIiOSNjDzk8wdQ1bKsT28ULq/HsqzjlmWNAqoAK7JQn0ieqlre\n", "l7HPtqZrS8eelnuPnGfoxytZtO7vbG1nZDNs9Knbg4GNH8bV5kr721spXIqISKFx0xVMy7Jevfx7\n", "0zRdAJtlWckZHcSyrPPAi5kvTyTvebq78tQ9dWlUozSfzgjn3IVEJszZzqaIkwx5MBj/Yp5Z7rt1\n", "5aZUC6xMGZ+STqxYREQkb2VomyLTNH1M0/zUNM1DQDKQaJrmedM0V5qm+YZpmrVytkyRvNcgqCTj\n", "RrSjRb3bANi85xSDRi9n3fbj2er3tqKl9CS5iIgUKhndB/Nb4BAwAngSGAvswfHE+GvADtM0V5im\n", "2SpHqhTJJ4oVcWdk34Y827sB3p6uxMQl8d53YXwyPZy4hAwv6mfI/nOHiEuKd2qfIiIiuSGje6Ps\n", "tyzr46sPmqa5FBgD3AU8AKw0TfNLYIj2wJTCyjAM2jUsT+3bAxg7PZyd+8/yR9gRduw/y7DeDah1\n", "e0C2xzgeE8k7Kz/D17MYL7QaQCmfEk6oXEREJHdkdAXT99I+mFdLtixrsWVZg4GywN1AELDcNE13\n", "ZxUpkh+V9Pfmnf4teLRrLVxdbJw6F8eLX6zhu4W7SE7J3nZGf0cdJiE5gWMXTvLSkg/YfXqvk6oW\n", "ERHJeRkNmO8Di0zTfMQ0zeuuelqWlWJZ1nzLstoAXwMfOqlGkXzLxeZ4n/nHz4RSsXRR7HaYvWwv\n", "Iz5dxaGTF7Lcb4sKjXip9WCKuHkRk3SRt1Z8yoq/1zuxchERkZyToYBpWdZB4D5gMHDQNM03TdOs\n", "eYP23wAeTqlQpACofFtxPn6mNT1aVwHgwPFonh27knmr9pOWlrXtjOqUCmJU++cp41OS1LRUJoVN\n", "5WTsaWeWLSIikiMy/H46y7IOmqbZDMfbfEbi2Hg9wTTNqcB6YBdwEkgBagDlnF+uSP7l7ubC491r\n", "07BGKT6ZvoUz5+OZPG8nYbtO8kyvBgT6emW6z9uKlWZU++cZs+5LmpdvSGl9FlNERAqAjN4iB8Cy\n", "rCTLskbjCI+P4XhtZFdgHI4N2SMAC3j+0pfILadetRKMG9GWNg0c/4+1be8ZBn20nFVbjmapPx+P\n", "IrzaeigdqmqTBhERKRgyvIJ5uUuvhJwCTLm08XpZoBSO1cvDlmWddVqFIgWQj5cbw/8TQuOapfl8\n", "zjYuxiczeupmNkVE0v/eOvh4Z+4ZOJstU/8vKCIikqeyFDAvZ1lWKnD40peIXKZVcFlqVPbnk+nh\n", "bNt7hpVbjhJx4AzP9G5AvWrZv90dfnwHCSlJNK8Q4oRqRUREnOOmyyKmaf5immb17AximmYd0zQX\n", "ZKcPkYIq0NeLt55szhN318bN1caZ6ARembiOyfN2kpScmuV+D58/xifrv+aT9ZOZHbEwW+9GFxER\n", "caaMrGBGAjtN05wGfGZZ1paMdGyapgHcATyB4wn0KRm8LhiYBNQE9gL9LcvaeJ12vYFRQElgOfC4\n", "ZVmnrmpTCtgBPGpZ1sKMjC+SE2w2g+6hVahfvQRjpoVz4Hg081btZ8tfpxjxnxAq31Y8030W9yxK\n", "heJl+evsAWbuXMCxCyd5ulFf3F21Ba2IiOStmwZMy7KeME3zf8CXwMOmae4GfgP+xPHk+BkgDigO\n", "BAK1gZZAe6A88BfQ1bKsX282lmmansB84G1gMvAQ8ItpmrdblnXxsnZ1gQlABxwBchyO11l2uarL\n", "rwF/QEs7ki9UKF2Mj4aG8uPve5i9bC+HT8Yw7JOV/LdTDXq0qYqLLePvJC/uWYzX2j7DxLCprDm0\n", "ibWH/+RU7Bmea9kfX6/MB1YRERFnyeg+mMtxbD3UB7gIPANMBcJxfPbyNLAf2Igj1D0CnAB6AzUy\n", "Ei4vaQukWpY1ybKsVMuyvsWxgnrXVe3+A8y1LCvs0gNHI4FOpmmmf6jNNM3+QCxwJINji+QKN1cb\n", "D91Vk/cGtKSkvzcpqXamLNzFyxPWEnkuLlN9ubu4MbjJI/Sq0x2Av88f5dRFPWMnIiJ5KzP7YKYA\n", "04HppmlWAdoADXDcoi4OnMMRKncAiyzLOpmFeoJwrIpeMfSl45czgXWX1XbONM1zl46fvvSZ0WFA\n", "ExwhWCTfqXV7AOOGt+GruTtZGnaYiANnGfzRcvrfW4e2IeUxjIytZhqGwb01O3Nb0VKkpKVQPfD2\n", "HK5cRETkxjL9FLlpmjOAVZZlfY5jtdKZiuC43X65OMA7o+0uvcrye2CQZVlRpmlmuojExMRMXyP5\n", "zz/zmJ/n0wY81aMG9av5M2luBDFxyYz9cQvrth/nqR41KZqJ7Yzql3C8XCshISGHqs17BWFOJeM0\n", "n4WL5rNwye48ZmWboq44bonnhIvA1a878QZirjp2vdDpjeOW+KvAVsuyfr/sXMY/2Abs27cvM80l\n", "nysI8+kDPHlnIPM2RLHvRAIbIyKJOHCau5v4U+02z2z3b7fbM7wiWhAUhDmVjNN8Fi6aT4GsBczT\n", "QDFnF3LJbmDQVcdMYNp12qUvTZqmGYjjYZ49OFZVy5im+eCl08Vw3NZ/27KsDzNSRNWqVfHw0KvU\n", "C7rExET27dtXoOazSYidJZuO8t3iPcTGpzFtxRnubFKevp1MPNxdstTnxmNbWHZwHYMaPUJR9yJO\n", "rjh3FcQ5lX+n+SxcNJ+Fyz/zmVVZCZgDcAS20cAc4G8g/noNLcu6kMm+lwEepmkOwrFVUV8cn/H8\n", "7ap2PwIrTdP8BtgMvIfjc5/ncDyMlM40zb+BgZZlLcpoER4eHnh6Zn/VSPKHgjaf3VtXI6RmGcZM\n", "28zeI+f5beMRdh6IYvh/GlCtvF+m+joXd54vt/xIcmoyb63+lBdaDaBssdI5VHnuKWhzKjem+Sxc\n", "NJ8CmXwX+SWfX/rncBwP2hwHoq76On/pn5liWVYS0BnH0+dngYFAd8uy4k3TnGCa5oRL7bbh2F/z\n", "GxxPmZcGHs3CzyKSL5Ut4cOHg1vRu6OJzWZw7HQsz322mhlLLFJT0zLcj7+3L0+G9MHV5kpk7Gle\n", "Xvoh4cd35mDlIiIiWVvBPAQc5Oafa8zS3pOWZe0AWlzn+NNXfT8LmJWB/ipnpQ6RvObqYqPPnUGE\n", "BJVkzP/COXHmIlN/3cOfuyMZ1ieEMoEZu93dunJTSvkEMnrtJGISY3l/9ec8XP9+uph35PBPICIi\n", "t6pMB0zLstrkQB0i8i/Miv58NqwNX8+P4Nf1B9lzKIohY5bT7+7adGxSMUMP7wSVqMp77Ucydv1k\n", "Dkcfp06pq3f+EhERcZ6s3CLPENM0tXIo4iSeHq4MvL8erz3eBF8fDxKSUhk/axujvt3E+ZiMbSVR\n", "0ieQt9uN4PU2z1DBt2wOVywiIreyrNwixzTNLjje6lMCcOH/b5cbgBuOV0ZWu3RORJykUc3SjH+u\n", "LeNmbmVjxEk2Rpxkz6FlDHkgmMa1bv7wjquLqzZiFxGRHJeVjdbvBWbfpNlpHO8UFxEnK+7jwcuP\n", "NmbppsN8NW8H0bFJvP3NRu5sWpHHu9fGyyNL/9/IzJ0LaFouWKubIiKSbVm5RT4MSAEexPH09lZg\n", "8qU/t8OxbdChS+dFJAcYhkGHJhX5bHhbalTyB+C3DYcYOmYFew6ey3R/qw5uZHbEQl5c+gG/71uJ\n", "3Z6lZ/RERESArAXMOsBcy7JmWZZ1ClgDtLAs65RlWSuAO4HKwBDnlSki11M6oAjvDWxJ3841cLEZ\n", "nDh7kZHjVzN18W5SMrGdUckigQR4+5GcmszkzdMZs+5LYpMu5mDlIiJSmGUlYHoCey/7fg9gmqbp\n", "AXBps/N5wEPZL09EbsbFZvBA++p8NDSU8qV8SLPDjKV/8dy41Rw9dfVbVq8vqEQVRnd8mcZl6wOw\n", "6ehWnv/tXY5eOJGTpYuISCGVlYB5CsfDPf/Yf6mfWpcdOwNUzUZdIpJJVcv5MvbZNnRt6djAYd+R\n", "8wz9eCUL1xzI0C1vH48iDG/xJI836IWbzRV3FzcCvf1zumwRESmEsvI0wArgPtM0x1iWZQHbcGyq\n", "3gMIv9SmOY6QKSK5yMPNhafuqUujmqX5dPoWzl1IYOLPO9i0O5KhDwbjX+zGr28zDIM7q7XGDKyC\n", "zTDwdNX7hEVEJPOysoL5AeAFbDdN837Lsk7+X3v3HV9lef9//HXOyd4JIQmBEAiQmxUZYciSISDi\n", "to5a625rnXUW21q/rVq3VetA+7NaWxV3LQ5WWbKFsCG5k5CQBRlk73HO+f0RRIQASTzZ7+fjkQfe\n", "97nvi8/l9TiHd65z39dN4x3jvzcM40PDMNYAU4EVritTRFpirBHGKw/OZMqoSAC2J+Vz57Or2bj7\n", "ULPOHxDcT3eTi4hIq7U4YJqmuReYAawGyo7uvhtIBK4EzgG+BX7nmhJFpDX8fTxYcN047vvZWHy8\n", "3CivquPJd7bywqLtVNXUt6rNmoZa/pu4nAZ7g4urFRGR7qRVC+aZpvktMO+47UzDMM4CzgJqgGTT\n", "NLXOiUgHs1gszIyPYkRML15ctIM9B46walsW+9MLuf9n8Qwd0LJrLN/e/hGr0zeyJXsHv5l0M+F+\n", "vc98koiI9DgtnsE0DOMVwzDOPnG/aZpO0zR3mY0ULkU6kbBgHx7/9WRuunA4bjYLuYVVLHh1PYuW\n", "JWFv5nJGDqcDH3dvAFKLDvLb5U+wMTOhLcsWEZEuqjXXYN4ObDQMI9UwjEcNw4h1dVEi4npWq4XL\n", "Zw7h2bvPoV+YHw6Hk/eXmzz06npyC8+85qXVYuWGMVfw0LTb8ffwpbq+hhc3vckbW9/D7rC3Qw9E\n", "RKSraE3AnAz8jcYbfR4GkgzD2GoYxj2GYYS7tDoRcbnG5YymM3/yAACSMoq5+/nVrNya2azljMZG\n", "xvHseQ8zvPcQAOod9distrYsWUREupjW3OSz2TTNe4AoYCbwBhAN/BXIMQxjmWEY1xuG4efaUkXE\n", "VZxz4MsAACAASURBVLw83LjtJ6P44y0TCfTzoLrWzosf7ODpf2+joqrujOeH+ATxyIx7uHHMlfxi\n", "7E/boWIREelKWjODCYBpmg7TNNeapnkbEEnjTT9v03ijzz+BPJdUKCJtZsLwCF5+YCbjhjV++bBh\n", "1yHuem41u1MLzniu1WplfuwsvNxPv7amiIj0PK0OmCew0PgISQuNi64DtG4dFBFpV8H+Xjxyy0R+\n", "fVkcHm5WjpTW8PDrG3n7i33UNzT/eebHyyo9REphuosrFRGRrqJVyxQBGIbhBswFrgYuAQJoDJVL\n", "gXeBxa4oUETansVi4YKpMcQNDuW59xJIP1TGZ2tS2ZlSwAPXxhMV7t/stmob6nhx45scKs/jp3GX\n", "cNHQ2VgtrvpdVkREuoIWB0zDMOYCVwGXAcFHd2+iMVR+aJpmkevKE5H21D8igOd/cw7/XpLEf9ak\n", "kpZTyj0vrOXmi0Ywf/IALBbLGdsoqSmlwWHH7nTw3u7/sDc/iTsm3kiQV0A79EBERDqD1kwrLAVu\n", "BgqA/wMGmaY5xTTNhQqXIl2fu5uNmy8aweO3TqZXoBd19XZe/2w3j/5jCyXltWc8P9yvN0/N/R3n\n", "DJgIwK7cRB5c9hd25ya2dekiItJJtCZgvgJMNE1zqGmaj5mmqQutRLqhUbG9efmBmUw+qw8A2xLz\n", "uOu51WxLPPP9e97uXtw58UbumHADnm6elNaUUVhV3NYli4hIJ9Hir8hN07y7LQoRkc7H38eDh64f\n", "z8qtmfz98z2UVNTy5zc3c8GUgdx00Qg83U+//uX0gWczJHQg6zO2MmPgpHaqWkREOpquvBeR07JY\n", "LMyeEM1L983E6N942fVXG9K594U1pOWUnvH8SP9wrhp5YbOu3xQRke5BAVNEmqVPqC9P3TmVn84x\n", "sFogK6+C+19ay2erU3E4zvwEoKYkFRygruHMC7uLiEjXooApIs3mZrNy7byhPHXHNMJDfGiwO3n7\n", "y3388Y2NHCmpblFb2WWHeXztS/zuf0+TXXq4jSoWEZGOoIApIi02bGAIf7t/BrPGRQGwO/UIdz23\n", "mg27DjW7jaSCVOodDWSVHuKhFU+yKm1Ds56FLiIinZ8Cpoi0io+XO/deM5bf/nwcvt7uVFTX89S/\n", "tvLiB9upqjnzg7xmD5rGIzPuIdg7kDp7Pa9vfZeXNr9FVV3LZkJFRKTzUcAUkR9l2pi+vHz/TEYO\n", "6gXAyq1Z/Oava0jKOPOyuCPCYnn2vIcZGxkHwLacXRRVl7RpvSIi0vYUMEXkR+sd7M3jv57CDRcM\n", "x81mIbewigWvrGfRchO7/fTPMw/w9GPB1Nu4ccyV3DL2p/QL7NNOVYuISFtp9bPIRUSOZ7NauGLW\n", "EEbH9ua5dxPIKajg/WVJ7DDzue9nY4no5XvKcy0WC/NjZ7VjtSIi0pY0gykiLjW4XxAv3jed8ycN\n", "ACDxYBF3P7+GVdsyW3UTj9PpJKu0+TcPiYhIx1PAFBGX8/Jw4/YrRvHHmycS6OdBdW0DLyzawTP/\n", "3kZFVcvWvVx7cDMPLH2cD/b8F7vD3kYVi4iIKylgikibmTAigpfvn8nYoWEArN91iLueW83u1IJm\n", "ne90OlmZtgEnTj7bv5QnNrxKWX1FW5YsIiIuoIApIm0qOMCLP/3ibG69LA53NytHSmt4+PWN/PPL\n", "fdQ3nP4GIIvFwh9n/IZ5g2cAkFKUzttZ/2FT9natmSki0okpYIpIm7NYLFw4NYYX7p3OgD4BOJ3w\n", "6epUHnz5G7Lyyk97rofNnZvjr+aBKbfi6+5DjaOWr1JX4XCePpyKiEjHUcAUkXYTHRHAX+85h0un\n", "DwLgQHYp97ywlq83pp9xRnJCv9E8PvMBBvlE8YvRV2Oz2tqjZBERaQUFTBFpV+5uNm65eCSP3TqJ\n", "kAAv6urtLPx0N4+9tYWS8trTntvLO5grIs9jQFBUO1UrIiKtoYApIh1idGwYLz8wk0lxjQurb92f\n", "x13PrWZbYl6r2quoq+RLcyUNutNcRKTDKWCKSIcJ8PXgdzeM5+6rRuPlYaOkopY/v7mZNz7bTW19\n", "y4Liv3Z+yr92fsIfVjxNenFWG1UsIiLNoYApIh3KYrEwZ2I0L90/g9j+QQB8uSGde19YS1pOabPa\n", "cDgduFkar8lML8nidyue4v3dn1PX0LI1N0VExDUUMEWkU4gM9ePpO6dx9ZxYrBbIyivn/pe+4T9r\n", "UnE4Tn8DkNVi5Vfjr+WRGfcQ7tcbh9PB54nLWLD8SWoaTn9dp4iIuJ4Cpoh0Gm42Kz+fN4wn75hK\n", "WIgPDXYHb32xj0f+vpHC0uoznj8y3OC58x7m4qFzsFgsDA8bgpebZztULiIix1PAFJFOZ/jAXvzt\n", "vhnMjO8HwK6UI9z57Go2780947mebh78fNTlPDl7AdeOuqytSxURkSYoYIpIp+Tr7c59P4vnwZ/H\n", "4+vlRkV1Pc8v2sXnm4uoqmk44/kxIdH4uHs3+ZquzRQRaVsKmCLSqZ0zph9/e2AmIwf1AmBnWhX3\n", "vLieDbsPtepxkclH0rjjy4dZd/BbPW5SRKSNKGCKSKcXFuzD47+ews/mDsFmheLyWp56ZyuP/mML\n", "eUVVzW7H6XTyzs5PKK0t5+Utb/PUutc4UlXUhpWLiPRMCpgi0iXYrBYumx7DbfPDiRsUAsC2xDxu\n", "f2YVn6xKocF+5meTWywW7p30C8b0GQHAjsN7uW/JoyxLWatnm4uIuJACpoh0KaEB7vzxpnHc/7Ox\n", "BPl5Uldv552v9vObv65hf3rhmc/3DeGhaXdw58Qb8ffwpaahlo/2fkFlXfNnQkVE5PTcOroAEZGW\n", "slgszIiPYtywcN75OpGlmw6SmVvOglfWM3diNDdeOBx/H4/Tnn/OgImMihjG2zs+Jr5PHP6efu3X\n", "ARGRbk4zmCLSZfn5eHDHFaN49q5pDOgTAMDyLRn8+qmVrNqWecabeAK9Arhn0i1MGzChPcoVEekx\n", "FDBFpMsbOiCEF+6dzk0XjsDTw0ZZZR0vLNrBHxZuJCuvvFVtOhwOvk5epSWNRERaQQFTRLoFN5uV\n", "y2cO5rUHZzFheAQAew4c4e7nV/Pu0kRq6+0tau/rlFX8c8fHPLjsL+zPT2mLkkVEui0FTBHpVsJC\n", "fHj45gn8/sYJhAZ60WB38uGKZO56djU7zPxmt1NdX4PVYuVwRT5/Wv1X/t+296mqP/PjKkVERAFT\n", "RLohi8XCpLg+vLbgXC6dPgir1cLhwkoe+fsmnn13G8VlNWds48qRF/LE7AUMCGp8XOWKA+u4f8lj\n", "5Fee+U51EZGeTgFTRLotb083brl4JC/cM53Y/kEAfLMjh9ueXsnXG9NxOE5/E1BMSH+emPMQ18Rd\n", "grvVjTC/XoT6BLdH6SIiXZqWKRKRbi+mbyDP3HUOyzYf5F9f7aeypoGFn+5m1dYsbr9iFDF9A095\n", "rpvVxmXD5zGx32isFitWi34vFxE5E31SikiPYLNamD95IAsXnMs5o/sCYGYWc++La/nH4r1U1zac\n", "9vzIgAgi/MOafK3BfvpzRUR6GgVMEelRggO8ePC6cfz5V5Po08sXh8PJ52sPcPvTK9m053CL2yuq\n", "LuGurx/R4yZFRI6jgCkiPdJYI4yXH5zJ1bNjcbNZOFJawxP//JbH39pCfnHzHxv5we7FFFYV84/t\n", "H/CnVX8lpyy3DasWEekaFDBFpMfydLfx8/OH8bf7ZzJyUC8AtuzL5fZnVvHZ6lQa7Geekfz5qMuY\n", "0n8cAElHDvDAssd5Z8cnVNRVtmntIiKdmQKmiPR4UeH+PHHbFO756RgCfD2orbPz9pf7uPeFtSQd\n", "LDrtuQFe/vxm0i0smHY7vbyDsTvsLE1ZTWlN654gJCLSHeguchERGtfOPHd8f8YPj+Cdr/azfEsG\n", "Bw+X8dtX1nHe2QO4Yf4w/Hw8Tnl+fGQcI+bH8kXSCuodDfQNiGjH6kVEOhcFTBGR4wT4enDXVaOZ\n", "NS6K1z7dRWZuOUs3HWTznsPccvEIpo/th8ViafJcLzdPrhx54SnbdjqdpzxXRKQ70VfkIiJNGBHT\n", "ixfvncENFwzHw91GSUUtz7+/nUfe2MShgopWtfnS5rd4Z8cnVNY1/yYiEZGuSAFTROQU3N2sXDFr\n", "CK8+OJNxw8IB2JlSwJ3PrWbRsiTqG+zNbmt/fgobM7fxVfJK7v7qEZanrsXuaP75IiJdiQKmiMgZ\n", "RPTy5ZFbJvLQ9eMJCfCivsHB+8tN7npuNbtSCprVRkxIf64YcQEeNnfK6yp5M+EDfrvsL+zOTWzj\n", "6kVE2p8CpohIM1gsFqaMimThgllcNC0GqwVyCip5+PWNPP9+AiXltac938vNk6tGXsiL8//E1OgJ\n", "AGSVHWZvvtke5YuItCsFTBGRFvDxcudXl8bx/G+mM7hf4zPM1yRkc9vTK1m2+SAOh/O054f6hHD3\n", "2Tfx+LkPEh8Zx6XDzmuPskVE2lWnu4vcMIwxwBvAcCAF+LVpmluaOO4a4C9AGLAauMU0zfyjr00F\n", "ngcM4AjwjGmaf2+fHohITzA4KojnfjOdrzek8+8liVRU1/PKx7tYuukgV54by9kj+2C1nvqO8djQ\n", "GBZMu/2UrzscDqxWzQGISNfUqT69DMPwAr4A/gEEAn8DFhuG4XvCcWcBC4GrgVAgF3j76GvBwGLg\n", "BdM0g4ArgScNwzi3vfohIj2DzWrhomkxLFwwiymjIgFIzS7lyXe2cvszq1ixJYP6hpY/n3zn4f08\n", "uFzXZ4pI19WpAiYwE7CbpvmGaZp20zTfBvKA+Sccdy3wuWmaW03TrAEWAPMMw+gNRANfmKb5AYBp\n", "mjtonOGc3G69EJEepVegNw9dP54nbpvC6NjeAOQUVPC3j3byyydW8PnaA1TXNjSrLYfTwb93fkJW\n", "6SEeX/s3nl73GofL89uyfBERl+tsAXMosP+EfebR/cczjj/ONM0ioAgwTNPcaZrmDccObJzRnAbs\n", "bJOKRUSOihscymO3TuaFe6YzZVQkFgsUltbwj8V7ufmx5by3NInSitPfDGS1WLl1/M8ZEjIAgIRD\n", "e7hv6aP8a8cnVNfXtEMvRER+vM4WMH2BE1cgrgJ8WnOcYRiBNH7lvs00zS9cWKeIyCkNjgrioevH\n", "8/qCcznv7GjcbFYqquv5YIXJLX9Zwf/7fA/5xadebD02NIbHZj/IXRNvIsQ7CLvDzqbs7Vgtne0j\n", "W0SkaZ3tJp9KwPuEfT5A+Qn7mgqdPsCxx2sYhjEQ+JLGG4WubkkRtbWnn2GQruG7cdR4dh9dbUxD\n", "/N34xUVDuXz6AL7amMHyLVnU1NlZvC6NrzakM3VUHy45ZyBRYX5Nnj8+4izOCjX4OnU1fQMicDY4\n", "qGnoPrOYXW085fQ0nt3Ljx3HzhYwE4E7T9hnAO81cZxx7ADDCAVCju7HMIyxwBLg36ZpPtDSIlJT\n", "U1t6inRiGs/upyuO6dgoGBYeztbkCjabFVTVOli74xBrdxzC6OfF1OH+RIV6NnluLFFQDPuK9530\n", "mt1px2axtXX5baorjqecmsZToPMFzFWAp2EYd9K4VNF1NC5DtOyE4xYBaw3DeAtIAJ4EvjZNs9gw\n", "jHBgKfCsaZrPtqaIwYMH4+nZ9Ae9dB21tbWkpqZqPLuR7jCm48bAzXV2Vm/PYfG6dApKajCzG39G\n", "DAzm0ukxjBrcC4vl1Escfafe3sAf1zzHWeHDuMSYi6/7iV8AdW7dYTzlexrP7uW78WytThUwTdOs\n", "MwzjfOB14Akav96+2DTNasMwFh495jbTNHcZhvFL4C0gAvgGuOloM7fQuHTRI4ZhPHJc8y+apvnH\n", "5tTh6emJl5eXazolHU7j2f109TH18oJLZ8Ry4bTBrN+ZwyerUsjILWdfejH70hOIiQzkillDmDwq\n", "Ettp1tJcnbyaQxV5HKrIY0P2Nq4eeSHnxkzFZu1aM5pdfTzlhzSeAmBxOk//1ImeJiEhwTlixAi9\n", "ObqBmpoa9u3bh8az++iuY+p0OtmWmMfHK1NIPFh0bH+fXr5cNnMw546LwsP95NBY01DL4qQVLE5a\n", "Tp29HoCowEh+Ef9ThvUe0m71t1Z3Hc+eSuPZvXw3nvHx8Wf+OqUJnWoGU0SkJ7JYLIwfHsH44RHs\n", "Syvkk1UpbEvM43BhJa99sov3lyVxyTmDmD95AD5e7sfO++755rNiJvP+7v+yPuNbskoPUV5b2YG9\n", "ERFRwBQR6VRGxPRiREwv0g+V8tnqVL7ZmUNJeS3vfLWfT1YmM3/KQC6aFkOw//czRN8933ze4Ols\n", "zEpgfN9RHdgDEREFTBGRTmlgZCD3XxvPtfOG8p81qfzv20wqaxr4eGUKn689wOwJ/bl8xmAien3/\n", "JN3Y0BhiQ2OabK+qvhqc4OPRtW4EEpGuSQFTRKQTi+jly20/GcVP5xp8sS6NrzekU1nTwJKNB1m2\n", "6SDTRvfjJ7MGMzAy8LTtLE5awbKUNVxgzGZ+7Ex8utgd5yLStShgioh0AcH+Xlw/fzhXzBrC0k0H\n", "+XztAYrLa1m7I5u1O7IZNyycK2YNYfjAkJOWOGqwN7AybQOV9dV8tPcLvkpeyUXGbOYNmaGgKSJt\n", "Qs8dExHpQny83Ll85hDe/MMc7rxyFH1CG78i35aYx0OvrmfBK+v5dl8uDsf3K4S42dx4du7vmR87\n", "C3ebO5V1VXywZzF3fvlHymorTvVXiYi0mmYwRUS6IA93G+edPYDZE6LZuPsQn6xKIS2nlMSDRTz2\n", "1haiI/z5yawhTBvdFzeblSDvQG4ccyWXDJ3LfxOXseLAOmJDYwjwbPoxlSIiP4YCpohIF2azWpg2\n", "ui9TR0WyI7mAT1elsDv1CBm55fz1/e28uySRn8wawpwJ0bi7WQn2DuTGsVdx8bC5x9bOFBFxNQVM\n", "EZFuwGKxMNYIY6wRhplRxKerU9m05zD5xdUs/HQ3n65O5Zo5scyMj8JmsxLiHXTKthbt/i8+7t6c\n", "N2Q6Xm565J+ItJwCpohIN2NEh/D7GyeQlVfORyuTWbs9m/yiKl76cCcfr0zhmvOGMm103yYfQ1lQ\n", "WchicwV2h50vzBVcPHQucwefo6ApIi2im3xERLqpqHB/7v9ZPK88MJMpoyIBOHSkkuffS+Du51ez\n", "cfchTnxcsLvVjXMHTsFmtVFWW8G7uz7jri//yNfJqzqiCyLSRSlgioh0c/0jAnjo+vG8dN8MJo6I\n", "ACAzt5wn39nKvS+uZev+3GNBM8g7kF+Mu4aX5z/K7EHTsFltlNaWc7AkuyO7ICJdjL4iFxHpIWL6\n", "BvLwzRNJzizm3SWJ7Egu4EB2KY/+YwtGdDDXzRvGWUNCsVgshPqG8KtxP+OyYefxn8RlXDJ0TkeX\n", "LyJdiGYwRUR6mNj+wTx662SeumMqI2J6AWBmFPPwGxv5w8KN7EsrPHZsb99e/Grczwj3691kWwmH\n", "9uhudBE5iWYwRUR6qBExvXjy9insSing3SVJmJnF7DlwhIdeXc9YI4xr5w0ltn/wKc8/WJzF0+te\n", "I9g7kEuHnse5g6biYXNvxx6ISGelgCki0oNZLBZGx4Yxakhvtibm8d6SJNIOlbLdzGe7mc/EERFc\n", "O29ok886Ty5Mw2qxUlxdyts7PuLzpGVcNmwes2KmKGiK9HAKmCIigsViYcLwCMYNDWfTnsO8tyyJ\n", "rLxytuzLZcu+XKaN7ss1cw2iwv2PnTN38HTOihjOZ/uW8E3GFoqrS3lr+4eU11Zw5cgLO7A3ItLR\n", "FDBFROQYq9XClFGRnB3Xh3U7snl/ucnhI5Ws25nDhl05zIiP4qdzjGPPQI/w683tE6/n8uHz+HT/\n", "Erbm7OK8ITM6thMi0uEUMEVE5CQ2q4UZ8VFMG92XVduyWLTCpKC4mlXbsli7PZvZE/pz1exYwoJ9\n", "AIjwD+OOiTdQVVeNj4f3Se05nA5qGmrxcT/5NRHpfnQXuYiInJLNZmXOxGjeeOhcfn35WYQEeGJ3\n", "OFm2OYNbn1zJG//ZTVFZzbHjmwqXALty93Pb4t/zzo5PyK8sbPIYEek+NIMpIiJn5O5m44IpA5k9\n", "oT9LNqbz8coUyirr+HJ9Osu3ZHLhlIFcPnMwgX5NP1Jyacpaqhtq+Cp5JV+nrGJi3zHMGTitnXsh\n", "Iu1FM5giItJsnu42Lp0+mDf/MIfrzh+Gr7c7dfV2PluTyi+fWMG7SxKpqD55XczbJ1zHVSMvJNDT\n", "H6fTyebs7Ty27iWSKtI7oBci0tY0gykiIi3m7enGVbNjmT9lIP9de4D/fnOA6toGPvxfMl9uSOey\n", "GYO4aGoMPl6NyxUFegVwxYgLuHjoXDZkbOWr5FUUV5cwyCeqg3siIm1BAVNERFrNz9uda+cN5cKp\n", "A/nPmlS+WJ9OZXU97y5JYvE3afxk5hDmTxmAl0fjPzceNndmxkxmxsBJZBcfJj/98Elt1tvrKawq\n", "JsI/rL27IyIuoq/IRUTkRwv08+TGC0fw5u9nc/G0GNxsVsoq63j7y3386on/8cEKk8LS6mPHWywW\n", "evuENNnWhsxt/ObrP/HM+tfZn5+M0+lsr26IiItoBlNERFwmOMCLX14ax6XTB/PRymRWbMmguLyW\n", "95YmsWhZEuOHRzBv0gDGGKeendyQuQ0nTrbl7GJbzi4GBkVxgXEuk6PicbPpny2RrkDvVBERcbne\n", "wd7cccUofjJzMIvXpbFqWxaV1fXHngwUGuTNrPhI+vnbTzp3wdTb2JS1nS+T/0d6cRbpJVm8suWf\n", "+Hr4EB8Z1wG9EZGWUsAUEZE2E9HLl19dGscNFwxnw65DLNt8kP3pRRwpqeajlQewWOCbpAbmT4lh\n", "7NBwbFYLbjY3pg2YwNTo8SQWpPJV8kpyynIZ02dER3dHRJpJAVNERNqcp7uNWeOimDUuiozcMpZv\n", "zmDltkwqqxvYllTAtqQCQoO8mTsxmjkT+hMa5I3FYmF42BCGhw2hrqEOq+Xk2wYq6ipJK8okLnwo\n", "FoulA3omIk1RwBQRkXYVHRHALy+N46pzY/h0WQKJh5wkZZRwpKSa95cl8cHyJMYNi2DepOhjs5oe\n", "bh5NtvW/A+t5f/fnRAVGckHsuUyNHo+Hzb2deyQiJ1LAFBGRDuHpbmPUQF9+duEI8kvqWLYlg1Vb\n", "s6iorufb/bl8u7/xWs25E/ozZ2I0oUEnP4YyteggAFmlh3h9679ZtPtz5gw+h3mDpxPg5d/OPRKR\n", "7yhgiohIh+sfEcAvL4njhvnD2bj7EEs3Z7AvrbBxVnO5yQcrTMYNi+C8SdHEH53VBHhgyq0kH0nj\n", "y+SVbMneQWltOZ/s+4oxfUYoYIp0IAVMERHpNDzcbcyIj2JGfBRZeeUs25zBqm2ZlFcdN6sZ6MXc\n", "idHMnhBN72BvYkNjuC80hvzKQpYmrya77DBDeg3s6K6I9GgKmCIi0ilFhfvzi0tGcv38YT+c1Syt\n", "OTarGT8snHlnDyB+aBhhvr24fswVp1yYPacsl7e3f8SsmMmM7zsKd12rKdJmFDBFRKRTO3FWc/mW\n", "DFZubZzV3Lo/j6378wgN9GLOxGjmHJ3VbMqqtA3szktkd14i/h6+TIuewKyYKfQP6tvOPRLp/hQw\n", "RUSky4gK9+eWi0dy3fnD2LjnMEs3HTw2q7loucmHK0zGDg1n3tmNd6C7u32/tNGIMIOs0kPsyk2k\n", "vK6Sr1NW83XKam4Z+1POGzK94zol0g0pYIqISJfj4W5jxth+zBjb76RZzW2JeWxLzMPfx4OpoyKZ\n", "PrYfwwaEMDZyJGMjR3Kksog1BzexOm0jBVVFWsBdpA0oYIqISJd2/Kzmpj2HWbr5IHsPFFJeVceS\n", "TQdZsukgYcHeTB/bj+lj+hHdJ4QrRlzA5cPPJ704izC/0JPadDqdrDiwjgl9RxHkHdjufRLp6hQw\n", "RUSkW/BwtzWGyLH9yCuq4psd2azZnk1mbjn5xdV8vDKFj1emMKBPADPG9uOcMf0YFBLdZFsphem8\n", "mbCIt7Z/yNjIOGYNnMyYPiOwWW3t3CuRrkkBU0REup3wEB+uPDeWK2YN4eDhMtZuz2bt9myOlNZw\n", "8HAZ//xqP+98vZ8RMb2YMbYfU86KxM/n+6cF5VYU4O3uRXV9DdtydrEtZxfBXoFcNnwe84bM6LiO\n", "iXQRCpgiItJtWSwWBkYGMjAykOvnD2dfeiFrt2ezftchKqvr2XugkL0HCnn9s93EDw1nRnw/xg+P\n", "4JwBE5nYbwybs7azKn0jiQUpFNeUYnfYO7pLIl2CAqaIiPQIVquFuEGhxA0K5dbL4tiWmM/a7dl8\n", "uz+X+gYHW/blsmVfLj5ebkyK68OMsf2YOngi0weezeHyfFanb2TagIlNtn2oPI9w31B9hS5ylAKm\n", "iIj0OO5uNibF9WFSXB8qq+vZtOcQa7fnsDu1gKqaBlZuzWLl1iyC/T2ZNqYvM8b245q4S7BYLCe1\n", "5XA4+L9VfwWnk4n9xjC5fzxDQwdjtVqb+JtFegYFTBER6dF8vd2ZPaHx0ZNFZTV8syOHtduzSM0u\n", "pbi8lsXfpLH4mzT69vZj+tGlkfqE+h47P7XoIKU1ZQAsP/ANyw98Q7BXIJP6x3PD6CuaDKUi3Z0C\n", "poiIyFEhAV5cOn0Ql04fRFZeOWt3ZPPN9hwOF1aSU1DB+8uSeH9ZEkb/YKaP7cfU0ZHEhsbw0vw/\n", "sykrgY2ZCWSW5lBcU0pGSbbCpfRYCpgiIiJNiAr35+fzhnHteUNJzixmzfZs1u3MobSiDjOzGDOz\n", "mDcX72XYgBBGx/Zm9JCJXDLnPA5X5rEpM4GowMgm2z1UnkdtQx0DgvopgEq3pYApIiJyGhaLBSM6\n", "BCM6hF9cPJKdKQWs2Z7N5j2Hqamzsy+tkH1phby3NAlvTzfiBoUyKnYYkaG9cTqdJ4XIxUkrWJW2\n", "gT5+YUzqH8/kqHg9D126HQVMERGRZrLZrMQPDSd+aDg1tQ1sS8pjZ3IBO5MLyCuqorq2gW/35/Lt\n", "/lwAQgI8GTWkN6NjezNqSG9CArw4WJwFwOGKfD7bv4TP9i+hX0Af7px4IzEh/TuyeyIuo4Ap9THo\n", "NQAAFDJJREFUIiLSCl6ebkwd1ZepoxpnH3MLK9mV0hg2d6UcobyqjqKyWlYnZLM6IRuAfmF+jBo8\n", "n4kD6yi0pLHt8E6Kqks4VJ5HqG9IR3ZHxKUUMEVERFwgopcvEb18Oe/sATgcTtIPlbIrpTFs7k0r\n", "pK7eTnZ+Bdn5FQBYLV4M7j+PYQMb8O9Vg7fN+6Q26+z1fLT3C8b0GYkROgg3rbMpXYQCpoiIiItZ\n", "rRYG9QtiUL8gLp85hPoGO0kHi9mZUsCu5AJSsopxOCE5o4TkjMZzvlq8hJExvY59pT6gTwD78k0W\n", "J61gcdIKfN29GdVnBOMi4xjdZwR+Hr6nL0KkAylgioiItDF3Nxtxg0OJGxzKdecPo6K6nr0HjrAr\n", "uYCdKQVk51dQV29nu5nPdjMfgCA/T6KNKkK8e1NUV0BlfTUbM7exMXMbE/qN5oEpt3Zwr0ROTQFT\n", "RESknfl5u3P2yD6cPbIPAIWl1cddv1lAUVktJRW1lCTYgHisnlVEDKzEPaSAQnsOYyPimmy3tKYM\n", "Xw9ffZUuHU4BU0REpIP1CvRm1rj+zBrXH6fTSWZeOduT8klIymNfWiENtT4cSvIBeoM1ln/sL2RH\n", "bALxQ8MZE9ubQD9PAN7a/hG7cvczOmI48ZFnMbrPcPw9/Tq2c9IjKWCKiIh0IhaLheiIAKIjArhs\n", "xmCqaxvYnVJAwtHAmV9cTVm5gzUJ2axJyMZigSFRQYwxerOjYh819ho2ZiWwMSuhcQ3PXjHcOfFG\n", "wvxCO7pr0oMoYIqIiHRi3p5uTBzZh4kj++B0OsnOryAhKY+ExHz2phXSYHeQnFlCcmYJFo8J+IQV\n", "4xdRRIU1F4fTTmpRBoFeAU223dRC8CKuoIApIiLSRVgsFqLC/YkK9+fS6Y2zm3tSj7AtKY+EpHzy\n", "i6Ay24fK7L5gHYYt6AgBvZ2886XJ0OhgjOgQwoK9sVgsVNRV8sDSxxkeFstZ4UMZGW4Q6qO1OMU1\n", "FDBFRES6KG9PNyaMiGDCiIjjZjcbv0rfe6CQhqII8orgCzONL9Y1nhPs74kRHYxfRCFF1SWsz/iW\n", "9RnfAhDpH86U/uO4cuSFHdgr6Q4UMEVERLqBH85uDqKmtoE9B46wO/UIZkYxqdkl1Dc4KC6vZfPe\n", "XCzJ1dhCDGyBhdj8i3Fa7RwqzyOjKE9fncuPpoApIiLSDXl5ujF+eATjh0cAUN/gIP1QKUkZRZgH\n", "i0nKLCY/15uG3IFgcWD1K8EaUMg608mulcswooMxooMZGh3C4KggVmd8w/qMrRihgxjaexBG6CCC\n", "TnFtp4gCpoiISA/g7mYltn8wsf2DYVrjvuKyGpIyijEzikjKKCYlqzcN9XZKqGXLvly27MsFGp9M\n", "FDRyN9VeOaQWHeSr5JUARPj15oYxVxIf2fS6nNJzKWCKiIj0UMEBXkyK68OkuMYF3xvsDg4eLsM8\n", "WERSZjHmwWIOF1bicDgpyYjAGuCOzb8Yi08ZFquT3IoCMnKqGBpcj+2Eb9TzKwsJ8QrEzaao0RNp\n", "1EVERAQAN5uVwf2CGNwviAuO7ispryXxYCF7DzT+pCeW4rTYsfqWYPUv4e2tObzzYS7RfQKICHBQ\n", "Zc1njBHBU9+8Sl7lEQYGRTEoJPrYTx//MKwWa4f2U9qeAqaIiIicUpC/J5PiIpkUFwlARVUd+9IK\n", "2XOgkL1pR0ijFIcT0g+VkX4INiXtwOJWh9fYwwAkF6aRXJh2rL03L32WAD1dqNtTwBQREZFm8/Px\n", "OLbwO0BFdT370wvZaeaRsD+Hw8X1OBvcqdk5HatfMRbfMqy+pVh9y7DaPXn+nT3H7naPjvCnX7g/\n", "nh7w3Ia/MzA4isEh0cSERBPiHdTBPZUfQwFTREREWs3P250JwyM4KyaI+P4NDBgUS/rhKvakHiEp\n", "o4jM3HIqsuoBJ7jXsr0+n+1m/g/aCAqrpnbAXnYc3ntsX4CnP2dFDOPus29q5x6JKyhgioiIiMv4\n", "erkzblg444aFA42PoywpryUzr5ysvPLv/8wtp6yyDoDS8gbc8vth9SvF4l2BxeKkrLacTfszqEj6\n", "lpi+gcREBjIwMpDQIC/yK4+wMTOB6KC+9A/qSy/vYK3b2ckoYIqIiEibsVgsBAd4ERzgxaghvX/w\n", "WmnF98EzK/csMvPKycgsptxxBIt3Oc4GTzYVH2bTnsPHzvH38aDXwALyfDcd2+fj7k1UYCRT+o9j\n", "3pAZ7dU1OQ0FTBEREekQgX6exPl5Ejco9Af7yyrrSD9USvqhUg7klJKeU0pWfgUOh5Pyqjqqcitw\n", "i/TF4lWJxQJV9dWYRw5QdNibnMRQwkN8CAvxITy48c8DJansyTOJ9A+nb0AEkf7h+Hh4d1CvewYF\n", "TBEREelUAnw9GDWk9w9mPGvr7WTmlpGWU0pazgDSckaSnlxMra0Uq085Fu8Ksku9yCw7cFJ7vjEp\n", "OEJ/uN/XzY95A+dy4bAZ+Hq7t3mfeppOFzANwxgDvAEMB1KAX5umuaWJ464B/gKEAauBW0yz8arh\n", "5rYhIiIiXYOnu40hUcEMiQo+ts/ucHL4SAVpOaXkFFSSX1RFXlEVecVVHCmpxuFwAlBT6Y6bV2Dj\n", "jKdbAwCVDRUsWpbMu+9V4e3pRmiQN72DvAkN8ibPM4Ej9gxCfUOIDOxNZGAoYb69MEIH0csnuMn6\n", "5Ic6VcA0DMML+AJ4DHgTuB5YbBhGjGmalccddxawEJgD7AFeBt4GLmhuGyIiItK12awW+oX50y/M\n", "/6TX7HYHR0prjobO0eQVVZNXXMmhwiLyqwootxfhKA8BoLq2ofE60LxyADxiM7AFFVBUUkByiXms\n", "zUGOGYwKHU3vIG/8fT3w9/bAz8edxJI91DgqCfUNJsQ7iCCvAIK8AvBy92qf/xGdUKcKmMBMwG6a\n", "5htHt982DONeYD7w8XHHXQt8bprmVgDDMBYABYZh9AbGNbMNERER6aZsNivhIT6Eh/gQR+hJrzfY\n", "HRSV1nCktJojJY0/BUf/zK4eRnFuKHXWCiwe1Vg8q7F41LDfrGZvRdJJbXkYW7EFFp60f5jzPAb4\n", "DiHQz4MAXw98jwbSrKpUsNkJ8w+kl28A/l5++Hv44WFz7zZ3w3e2ZzUNBfafsM88uv94xvHHmaZZ\n", "BBQdPa65bTRL8pUXa7sLb/s/9edOVY+2f9x25nVXdap6tK3x1Pb3utp4pv30UsJCfBg+sBfnjOnH\n", "yNfu59bLzuIPN01k4e3X8Oj6//HOLQ/wxLx7uX3k3fzlP5mcPWg4A/oEEOjnwfOZ/zjWlrPOi8c/\n", "ycFptx3b9/gnOezYV8Zna1J5+8v99H/2Lp7457f8/rUNvPXt5wz+v6d5ZuOrLFjxJLd/8QcyrrmC\n", "3779X55/L4HXPtlF8pUX8+EKk8XrDvDXFR+RfOXFvPrNJ/xz81d8smMVyVdeTNaRIsoq66ipbfhB\n", "/xrsDS4fz5bqbDOYvkDVCfuqAJ8WHOfTzDZERERETsnfxwMjOgQjOoRk4HfXTzj2WvKVC/ng8fmU\n", "V9VRUTUdx9rruXPoAooqKskvLwaeZOLgwVRUOiitqIPMxme9N9gdPwiixzMPVJJUkw3AbODdpY2z\n", "pZ4jt3IhsPbwymPHngXc8dJXOKsCAHgeuPTBxXi4WyF2HY8DVy26Aws2LE4rjwIX/34RHzxyBT5e\n", "bX9TU2cLmJXAiesG+ADlJ+xrKjB+d1xVM9s4pdra2h9s19TUaLsLbn83jhrP7rUNPxzTjq5H2xpP\n", "bf9QTxpPm8VOkK+NIF8bmcDE4b2B3sAAMv8J91899tixmde9yKJH51Bbb6eyejoVK67nwbjfU1Be\n", "xpGKMuBJZo+KpabGSXVtA2RCTGQA1bUNlNU2XivqqPQHWwMWm72x0ROCqt3hpLrWjieNNzJhdeDE\n", "gfO4Y557dxu//fmYZvXvx+hsATMRuPOEfQbwXhPHGccOMIxQIOTo/sBmtnFKqampx/7bH9i3b5+2\n", "u/C2xrN7bcP3Y9oZ6tG2xlPb32+DxrMl29bqfMLdIDzIA4Apg767ctEGy+H6GQFHt+fCyk38Nu4q\n", "6u1O6hucwOP8+twYGuxOGuxOeAuuOacXDQ4nR+xTgRTinFOpt9upc9iB/+Cs9+D80e7s27ev2ePZ\n", "Whan03nmo9qJYRgeQBrwFI3LDF0HPAEMNE2z+rjjRgFrgQuABBrvIo8wTfMiwzA8gQNnauNUEhIS\n", "nIMHD8bT09OlfZP2V1tbS2pqKhrP7kNj2r1oPLsXjWf38t14xsfHt+quo041g2maZp1hGOcDr9MY\n", "ClOAi03TrDYMY+HRY24zTXOXYRi/BN4CIoBvgJuOvl57qjaaW4enpydeXj13aYHuRuPZ/WhMuxeN\n", "Z/ei8RToZAETwDTNPcCUJvbfdsL2x5xi2aFTtSEiIiIiba+zLVMkIiIiIl2cAqaIiIiIuJQCpoiI\n", "iIi4lAKmiIiIiLiUAqaIiIiIuJQCpoiIiIi4lAKmiIiIiLiUAqaIiIiIuJQCpoiIiIi4lAKmiIiI\n", "iLiUAqaIiIiIuJQCpoiIiIi4lAKmiIiIiLiUAqaIiIiIuJQCpoiIiIi4lAKmiIiIiLiUAqaIiIiI\n", "uJQCpoiIiIi4lAKmiIiIiLiUAqaIiIiIuJQCpoiIiIi4lAKmiIiIiLiUAqaIiIiIuJQCpoiIiIi4\n", "lAKmiIiIiLiUAqaIiIiIuJQCpoiIiIi4lAKmiIiIiLiUAqaIiIiIuJQCpoiIiIi4lAKmiIiIiLiU\n", "AqaIiIiIuJQCpoiIiIi4lAKmiIiIiLiUAqaIiIiIuJQCpoiIiIi4lMXpdHZ0DZ1KQkKC/oeIiIiI\n", "APHx8ZbWnKeAKSIiIiIupa/IRURERMSlFDBFRERExKUUMEVERETEpRQwRURERMSlFDBFRERExKUU\n", "MEVERETEpRQwRURERMSl3Dq6gI5gGMYY4A1gOJAC/No0zS1NHPclMAuwH93lNE0zoN0KlWZp7nge\n", "d/y5wHLA3zTNqvapUpqrOeNpGIYF+DNwC+APbAPuNE1zfzuXK2fQgs/bXwIPAuGACdxnmub69qxV\n", "mqcVn7n3ApNN07yynUqUZmrB+/Ma4C9AGLAauMU0zfzTtd3jZjANw/ACvgD+AQQCfwMWG4bh28Th\n", "o4Gppmn6H/1RuOxkWjieGIYRDLzVfhVKS7RgPG8BLgfGHX1frgP+3Z61ypk1dzwNw5hJ4z9eV5im\n", "GQi8AnxhGEZIO5csZ9CSz1zDMHwNw3gGeA7QU106mRa8P88CFgJXA6FALvD2mdrvcQETmAnYTdN8\n", "wzRNu2mabwN5wPzjDzIMI4zGpL6vA2qU5mvWeB5nIbAIaNWjr6TNNWs8TdN8ExhvmuZhwzD8gWCg\n", "oP3LlTNo7vuzL/CMaZq7AUzT/BeN3xwNb9dqpTla8pn7GTCIxhkyfeZ2Ps0dy2uBz03T3GqaZg2w\n", "AJhnGEbv0zXeEwPmUODEr9HMo/uPNwYoB740DCPfMIz1hmGc3R4FSos0dzwxDONaIIDGkCmdU7PH\n", "0zTNasMwbgRKgJ8DD7d5ddJSzRpP0zTfNU3zue+2DcOYQuOlD7rkofNp9nsUuME0zZ8Ap/0qVTpM\n", "c8fSOP440zSLgKKj+0+pJwZMX+DE6+6qAJ8T9nkCG4G7afzt+l1giWEY4W1eobREs8bTMIz+wKPA\n", "zeg36c6sue/P77xP43v1L8Cyo5dASOfR0vHEMIzhwCfAH4/+QyadS7PH1DTN3HapSFqruWPZ4vcx\n", "9MyAWQl4n7DPh8bZymNM01xsmuZFpmkmmqZZb5rm60AWjVPK0nmccTwNw7AC7wB/OPqB913AVNDs\n", "fJr1/vyOaZp1pmk2mKb5PFAGTG/j+qRlWjSehmHMBdYDL5um+Uwb1yat06IxlU6tuWPZVJj0ASpO\n", "13hPDJiJnDyt+4PpXwDDMK4yDOPEO968gOo2rE1arjnj2Q+YCCw0DKMY2Hl0f7ZhGJPbvkRpgea+\n", "P/9sGMbjx21bAA8avy6XzqNZ4wlgGMZNwMc03sX6RDvUJq3T7DGVTq+5Y/mD4wzDCAVCju4/pZ64\n", "TNEqwNMwjDtpvPD4Ohpv5ll2wnGewDOGYewFUoF7aAyYy9uxVjmzM46naZqZHPfbl2EY0UA60FfL\n", "FHU6zX1/bgLeMwzjQxqvGfo9UErjZS3SeTRrPI8uHfYqMMc0zQ3tXqW0RHPfo9L5NXcsFwFrDcN4\n", "C0gAngS+Nk2z+HSN97gZTNM064DzgWuAQuAO4OKjNwwsNAxj4dHj/g28ACwFioELgPNN09QMZifS\n", "3PE8gQUtmdEpteD9uRT4HfA5cBgYC8w7er50Es0Yz9eOHvpbwB1YahhG+XE/czumcjmVVn7mOtFn\n", "bqfTgs/bXcAvaVziLw+IAG46U/sWp1NjLiIiIiKu0+NmMEVERESkbSlgioiIiIhLKWCKiIiIiEsp\n", "YIqIiIiISylgioiIiIhLKWCKiIiIiEspYIqIiIiISylgioiIiIhLKWCKiIiIiEspYIqIiIiISylg\n", "ioiIiIhLKWCKiIiIiEspYIqIiIiIS7l1dAEiIvJDhmHMAu4GvAAHsNA0zS86tioRkeZTwBQR6UQM\n", "w3gMuAi42DTNzI6uR0SkNSxOp7OjaxAREcAwjKuB94DRpmnu7eh6RERaSwFTRKSTMAxjDxAGbDxu\n", "939N0/xnx1QkItI6CpgiIp2AYRiBQDHwtGmav+voekREfgzdRS4i0jl4HP0zt0OrEBFxAQVMEZFO\n", "wDTNAiATiO7oWkREfiwFTBGRzuNPwFWGYYR8t8MwjFmGYXh3XEkiIi2nazBFRDoRwzCuBS4H0gF/\n", "YINpmv/q2KpERFpGAVNEREREXEpfkYuIiIiISylgioiIiIhLKWCKiIiIiEspYIqIiIiISylgioiI\n", "iIhLKWCKiIiIiEspYIqIiIiISylgioiIiIhLKWCKiIiIiEspYIqIiIiIS/1/f85LNhQ78wQAAAAA\n", "SUVORK5CYII=\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x117fdced0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "max_eps = 38\n", "f, ax = subplots(1,1)\n", "\n", "ax.plot(eps_values, var_vals[:max_eps], \"-\" ,label=\"ABC PMC\")\n", "\n", "ax.plot(eps_values, (float(sigma)**2/n + eps_values[:max_eps]**2/3), \"--\", label=\"ABC analytic\")\n", "\n", "ax.axhline(1e-4, linestyle=\":\", linewidth=4, color=sns.xkcd_rgb[\"pale red\"], label=\"Bayesian\")\n", "\n", "\n", "#ticks = xticks()[0][:-1]\n", "#xticks(ticks, [\"{0:>4.3f}\".format(eps) for eps in eps_values[ticks.tolist()]], rotation=70)\n", "#ax.semilogy()\n", "ax.set_ylabel(r\"var($\\theta$)\")\n", "ax.set_xlabel(r\"$\\epsilon$\")\n", "ax.legend(loc=\"best\")\n", "ax.invert_xaxis()\n", "ylim([-.01, None])\n", "#savefig(\"1d_gauss_variance.pdf\")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x118367390>" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAoQAAAHmCAYAAADqY5+DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9//HXmcmekJ1sLGELBxK2sIqsYrUgwnVrXVvX\n", "trd7a+tS26tee9Va21rvz97WunSxVEWrUhWkUpVFIktYAgEO+5KFhJB9X2Z+f0wSEwiQCUlOlvfz\n", "8ZhHZs6c73w/CUrefM/5fr+G2+1GRERERPovh90FiIiIiIi9FAhFRERE+jkFQhEREZF+ToFQRERE\n", "pJ9TIBQRERHp5xQIRURERPo5H7sLaGKa5nTgbcuyBp3j/ZuBx4EY4GPgbsuy8ruxRBEREZE+yfYR\n", "QtM0DdM07wL+Bfie45wJwO+BG4Fo4CTwp24rUkRERKQPsz0QAg8B3wP+BzDOcc6twDuWZW2xLKsa\n", "eABYaJrmwG6qUURERKTP6gmB8CXLsiYBW89zjgnsaXphWVYhUNh4XEREREQugu2B0LKsk+04LRio\n", "PONYJRDU+RWJiIiI9C+2B8J2aiv8BQHlNtQiIiIi0qf0mFnGF7CXFpeHTdOMBiIbj19Qenq6u4vq\n", "EhEREek1pkyZ0uZ8jd4SCF8F1pqm+TKQDjwJrLQsq6i9H/BC1hv85sqHcRjtHxStqanh4MGDjBo1\n", "Cn9//y5vpz7Vp/pUn+pTfarPvt+nXTIzM8/5Xk8LhM0jeaZp/h7AsqxvWpa10zTNrwEvA3HAOuBO\n", "bz64sLqEo2VZJMeM9roof39/AgICuq2d+lSf6lN9qk/1qT77fp89SY8JhJZlfYJn0emm19884/03\n", "gDcupo91xzZ3KBCKiIiI9GW9ZVJJp/jsxDZqG+rsLkNERESkR+k3gdDAoLKuim05u+wuRURERKRH\n", "6TeBcGz0KADWH9tscyUiIiIiPUu/CYSzhkwFYFvubsprKmyuRkRERKTn6DeBcGr8BPycvjS4Gkg7\n", "sc3uckRERER6jH4TCAN9A5g6aCIA645tsrkaERERkZ6j3wRCgLmJ0wGwCg6RV37K5mpEREREeoZ+\n", "FQgnxCUzwD8EgA3HtthcjYiIiEjP0K8CoY/D2Ty5ZP2xzbjd2uJYRESkr7vvvvsYN24c+fn5zcfe\n", "eustxo4dy8yZM7nrrruYOXMmN954Izt27GjVNi8vj//6r/9i3rx5TJkyhcWLF7Ns2bJz9vXggw8y\n", "btw4UlNTmTx5MqmpqVx11VW8/vrrzecsWLCAMWPGcPz48bPaL1myhDFjxrQ6tm7dOm6//XZmzJjB\n", "jBkzuPvuu9m9e3dHfxxt6leBEGDOMM9l45yyPA4Xnf0HISIiIn1HSUkJ69atY9GiRbz22mut3ktJ\n", "SSEtLY2XX36ZjRs3snTpUr71rW9RV+fZxCIvL4/rrruOiIgIVqxYQXp6Ok8++SQvvfQSzz33XJv9\n", "GYbBV7/6VbZv3862bdvYvn07jz/+OE888QSffvpp83kRERG8//77rdpalkVOTg6GYTQfW758OQ89\n", "9BB33XUXGzduZP369cyePZvbb7+dgwcPdtaPqf8FwlGRw4gLGQjA+qOaXCIiInIx6upd5BZUtHqc\n", "PF1JYVk9J09XnvXe+R4XaldX7/K6vnfeeYdp06Zxyy23sHz5curr65vfa3ml0DAMrrnmGgoLC8nL\n", "ywPg2WefZerUqdx7772Eh4cDMGHCBB5//HEKCgraXUNqaipJSUns37+/+diVV155ViB89913ufLK\n", "K5vrqqqq4qmnnuLxxx9n3rx5OJ1O/Pz8uPPOO7nllls4fPiw1z+Pc+kxexl3F8MwmJM4nTcy3+fT\n", "41v5yqTrcTqcdpclIiLS69TVu/jPp/5NfmHlOc442cFPbrtdTGQQf3jgcnx92j+e9eabb3LvvfeS\n", "mppKREQEq1atYsmSJWedV19fz/Llyxk9ejSDBw8GYMOGDTzwwANnnTtz5kxmzpxJdXV1m322DJp1\n", "dXVs2LCBAwcOMG3atObjc+bMYfXq1ViWhWmauN1uVq1axWOPPcbbb78NwLZt22hoaGDOnDln9fGj\n", "H/2o3T+D9uh3gRBoDoQlNWXsytvHpPgUu0sSERGRTrZt2zZKS0uZN28eADfddBPLli1rDoT79u1j\n", "9uzZNDQ0UFtbi8vl4rHHHmtuX1RURGRkpFd9ut1uli1bxptvvtl8bOjQoTz22GOMGzeu+ZiPjw8L\n", "Fy5k5cqVmKbJli1bGDZsGDExMa36Dw0NxeHo+gu6/TIQxg2IISlqOAdOH2Hdsc0KhCIiIh3g6+Pg\n", "Dw9cTkFxVavjNTU1HDhwgKSkJPz9/dv9eRdqFx0e6NXo4PLlyykqKmLu3LmAZxSwpKSEzMxMAMaM\n", "GcOyZcvIzMwkJSWFjIwMvve97xEeHs4VV1zBwIEDOXXq7GXqXC4XZWVlbdZoGAa33XYb999//3lr\n", "MwyDq6++mgcffJAf/vCHvPvuuyxZsqTV6GJ0dDQlJSU0NDTgdLa+mllWVkZQUNBZxzuqXwZCgLmJ\n", "Mzhw+ghbsnZQXVdNgG+A3SWJiIj0Or4+DuKjg1sdq652cvqkD3FRQQQEtP/3a0fbtaWsrIwPPviA\n", "v/zlLwwdOhTwjN49/vjj/O1vf2P69OlntZk+fTrTp08nLS2NK664gtmzZ/Phhx+ydOnSVud98skn\n", "/PjHP2bNmjVt9t3eVUymTp2Ky+Viy5YtrFu3joceeogTJ040v5+amoqvry9r165lwYIFrdo+9NBD\n", "BAcH84tf/KJdfV1Iv5tU0mTm0Ck4DQc1DbVszt5pdzkiIiLSiVasWMGwYcNITU0lKiqKqKgooqOj\n", "ueGGG3j//fcpKio6q01mZiabN28mNTUVgG9/+9ts2bKFZ555pnmkLi0tjUceeYR77rmHoKCgsz7D\n", "2yXtFi9ezKOPPsq0adMIDAxs9Z6/vz/33nsvDz/8MGvXrqW+vp7y8nKee+450tLSuOeee7zq63z6\n", "7QhhqH8Ik+JTSM/Zxfpjm5g7bIbdJYmIiEgneeONN7j66qvPOj5z5kwiIiKor69n7969zJw5E5fL\n", "hdPpJDIyknvuuaf5HsPY2Fhef/11nnnmGa666iqqqqoYNGgQ3/72t7npppvanFRiGEarZWMuZMmS\n", "Jbz44outJq+0bH/LLbcQGhrKc889x3333YdhGEyaNIlXXnmFUaNGefMjOa9+GwgB5iTOID1nFxl5\n", "+yiqKiEiMMzukkRERKQTrFixos3jDoeDtWvXAvD1r3+d6urq5nsI27pMnZiYyG9/+9t29/vkk09e\n", "8JyPPvqo+fno0aPZu3fvOV8DXH311W2G287Uby8ZA0xNGE+gTwBut5tPj2+1uxwRERERW/TrQOjn\n", "48eMIZ77BNYf0yLVIiIi0j/160AIMDfRM8voSNEJskpyba5GREREpPv1+0CYPHA0kYGe7WjWH9ts\n", "czUiIiIi3a/fB0KHw8HsRM9WMhuObcbl9n6fRBEREZHerN8HQvBsZQdwqrIQq+CQzdWIiIiIdC8F\n", "QiAxfDCJYYMAWHdUl41FRESkf1EgbDRnmGeUMO1EOrUNdTZXIyIiItJ9FAgbzRo6DQODyroqtufu\n", "trscERER6aWys7PtLsFrCoSNooIiSIkZDcB6XTYWERGRFt566y2uv/76C5731FNP8be//Q2AnJwc\n", "UlNT29zirqdRIGyhaXLJttzdlNdU2FyNiIiI9DZFRUXNzxMSEti+fXubW+L1NAqELcwYnIqv05d6\n", "Vz2fZW2zuxwREZEer76hnpPlp1o98ioKKKorJa+i4Kz3zve4ULv6hvp21/X+++9z3XXXMWPGDGbM\n", "mMEjjzwCwIIFC/jjH//IF7/4RaZOncp3v/tdKio8g0BFRUX86Ec/YsGCBUyaNImlS5eybdvZeeAL\n", "X/gC7777bvPrAwcOMH36dF544QXee+89XnnlFX7wgx+QlZXFmDFjqKqqAmD16tUsXryY1NRUvvSl\n", "L5GZmXkxP/pO5WN3AT1JkF8gUxMmkHYinfXHNjN70DS7SxIREemx6hvq+f6qRzlVcbrtE4518IPP\n", "0W5gcBTPLnoUH+f540tWVhY/+9nP+Otf/8r48eM5dOgQX/7yl1m4cCEAH330Ea+++ioul4tbb72V\n", "f//730yfPp2nn34ah8PBBx98gGEYPPHEE/z6179m2bJlrT5/yZIlrFq1iiuuuAKAlStXsnDhQr72\n", "ta9x+PBhIiIiuP/++8nKympus3//fu6//35+97vfMXv2bJYtW8Z3vvMdPvroIwzD6OAPqvMoEJ5h\n", "TuJ00k6ks/fUQU5VFtpdjoiIiHgpNjaW9957j0GDBlFUVERRURFhYWHk5eUBcOONNxIZGQnArFmz\n", "mieB3HvvvQQEBGAYBtnZ2QwYMKC5TUtLlizhpZdeah5ZXL16NU899RQAbrcbt9vd6ny3280HH3zA\n", "3LlzmT17NgC33HIL48aNw+Vy4XQ6u+YH4QUFwjNMiktmgF8wZbUVpGWlM5IEu0sSERHpkXycPjy7\n", "6FEKqopaHa+pqeHAgQMkJSXh7+/f7s+7ULvowIgLjg4C+Pj4sHz5cv7xj38QFBREcnIydXV1zUGt\n", "KQwCOJ1OXC7PLmV5eXk8/vjjHDp0iBEjRhAWFnZWuAMYMWIEo0eP5qOPPqK+vp6GhgamTfNcVTzX\n", "aF9BQQGxsbHNrw3DYOLEiRf8XrqLAuEZfJw+XDp0KqsPruXTE1sZEbvE7pJERER6LB+nD3EhA1sd\n", "q/appsA3j9jgaK8mVHS03Znee+89Vq1axYoVK4iKigI89/2dS1OIu/fee7n55pu54447AHjnnXfY\n", "v39/m22WLFnCmjVrCA4OZtGiRW1+XktxcXHs3bu31bFf/epX3HXXXa0Cql00qaQNTbONc8vzyas5\n", "x30RIiIi0iNVVFTg4+ODr68vtbW1vPDCC2RlZVFf3/aklKZRwIqKiuYgeujQIV588cVztrn66qvZ\n", "unUr6enpLF68uPm4r68v5eXlrc41DIOFCxeyYcMG0tLScLlcLFu2jFWrVhEREdEZ3/JFUyBsQ1LU\n", "cGIb/7WTWXbQ5mpERETEG9deey1JSUksWLCAJUuWUF5ezpe//GUOHTp01uidYRjNxx577DFeeukl\n", "ZsyYwc9//nPuu+8+ioqKKCkpaXUeQFRUFBMnTsTX15ekpKTm44sWLWL16tXcfffdrdqMGDGCZ555\n", "hieffJJp06axcuVKnn/++R4xoQR0ybhNhmEwJ3Eab2auZF/5YVxul90liYiISDv5+/vz7LPPtvne\n", "gw8+2Or1vffe27z8y4IFC1iwYEGr93ft2gV4Qua1117b6r2YmBiGDh3a6tjMmTPZtGlT8+uWl4nn\n", "z5/P/PnzvftmuolGCM/hksGTAShvqORI0QmbqxEREZGeIj8/n7S0ND755BPmzJljdzmdQoHwHIaE\n", "JRATHA1A+sldNlcjIiIiPcXKlSv51re+xTe+8Q3Cw8PtLqdTKBCeg2EYTIkfD0B6rgKhiIiIeNxx\n", "xx1s376dm2++2e5SOo0C4XlMiRsHeGYbZ5eetLkaERERka6hQHgeoyKHEewMBGBz1g6bqxERERHp\n", "GgqE5+EwHIwK9swe2pK90+ZqRERERLqGAuEFJAUPA+Bg4VEKK4vtLUZERESkCygQXkBiUAIBPp79\n", "FDdn67KxiIiI9D0KhBfgYziZGJsM6LKxiIiI9E0KhO3QtPzMnvz9lNdW2FyNiIiISOdSIGyHiTFj\n", "8XH40OB2sS1nt93liIiIiHQqBcJ2CPQNYHysCeg+QhEREel7FAjbadqgiQDszN1DbX2tzdWIiIiI\n", "dB4FwnaaOmgiBgY1DbVk5O21uxwRERGRTqNA2E7hAaGMjh4BwOYszTYWERGRvkOB0AtNl43TczJo\n", "cDXYXI2IiIhI51Ag9ML0xkBYVlvBvoJDNlcjIiIi0jkUCL0QNyCGIWEJAGzJ0mxjERER6RsUCL00\n", "fdAkADZn78TtdttcjYiIiMjFUyD0UtN9hAWVhRwpOmFzNSIiIiIXT4HQS8MjhjAwKBLQ3sYiIiLS\n", "NygQeskwjOZRQu1aIiIiIn2BAmEHTBvsuY/wREkOJ8vyba5GRERE5OIoEHbAmOiRDPALBjyTS0RE\n", "RER6MwXCDnA6nExJmADoPkIRERHp/RQIO2j6YM99hPsLDlNcXWpzNSIiIiIdp0DYQRNix+Lv9MON\n", "m60aJRQREZFeTIGwg/x8/JgYnwzosrGIiIj0bgqEF6Fp15JdeRaVdVU2VyMiIiLSMQqEF2Fywjic\n", "hoN6Vz07cjPtLkdERESkQxQIL0KIXzDJMaMB2JylRapFRESkd1IgvEhNu5Zsz82krqHO5mpERERE\n", "vKdAeJGaAmFVfTW78y2bqxERERHxno/dBZimmQo8DyQDB4D/tCxrUxvn/QT4JhAK7Aa+Z1nWtu6s\n", "tS1RQRGMjEzkUOExNmftJDV+nN0liYiIiHjF1hFC0zQDgHeBl4Aw4H+Bf5qmGXzGeQuAHwMLLMsK\n", "b2zzRjeXe05Ns423Zu/E5XLZXI2IiIiId+y+ZHwZ0GBZ1vOWZTVYlvUnIA+46ozzyhu/+pqm6QRc\n", "QGU31nle0wd7AmFJTRn7Tx+xuRoRERER79gdCMcAe844ZjUe//yAZW0GfgdkAtXAT4Bbu6PA9hgU\n", "GkfCgFgAtmRrtrGIiIj0LnYHwmDOHumrBIJaHjBN8wbg68DUxja/Bd5uvOTcIzSNEm7O3onb7ba5\n", "GhEREZH2s3tSSQUQeMaxIKDsjGO3AX9oMYnkMdM0vwZ8AXivPR3V1NR4XVxTm/a0nRg9lndYTV75\n", "KY6cPt4tfXZGO/WpPtWn+lSf6lN9dm+fPZFh52iWaZoLgd9ZljWyxbEM4GHLst5pcexV4JhlWQ+2\n", "OHYU+IZlWasv1E96enqXf5Nut5v/O/oq5Q2VzI6cwqzI1K7uUkRERMQrU6ZMMdo6bvcI4UeAv2ma\n", "38Gz9MxXgBjgzJD3GvCSaZqvA7uA7+G53L2hvR2NGjUKf39/r4qrqanh4MGD7W47vSGVj45+yvH6\n", "XGaR2i19Xmw79ak+1af6VJ/qU312b592ycw89za7tgZCy7JqTdNcBPwBeALPOoRLLcuqMk3z943n\n", "fNOyrBWmacYBy4EoYDuw0LKsivb25e/vT0BAx245bG/bSxOneAJhaQ4lEWXd0mdntVOf6lN9qk/1\n", "qT7VZ/f22ZPYPUKIZVm7gFltHP/mGa+fxzOK2GMlx4wmyDeQyroqDlQc41IusbskERERkQuye5Zx\n", "n+LjcDI5YTwAByqO2VyNiIiISPsoEHay6Y17G5+oOklZTfkFzhYRERGxnwJhJ5sUl4yvwxc3brbm\n", "7rK7HBEREZELUiDsZAG+AUyKSwZgY1a6zdWIiIiIXJgCYReYNXgqANbpQ+RXnLa5GhEREZHzUyDs\n", "AhNixxDo8KxHtOHYZpurERERETk/BcIu4OPwYcyAEQCsP7pZexuLiIhIj6ZA2EVSQkYBkF12kiNF\n", "x22uRkREROTcFAi7SEJADDHB0QCsO7rJ5mpEREREzk2BsIsYhsGlg6cA8OnxrTS4GmyuSERERKRt\n", "CoRdaFZjICypKSMjb6/N1YiIiIi0TYGwC8WGDGR01OeTS0RERER6IgXCLjYncToAm7N3UFVXbXM1\n", "IiIiImdTIOxilw6dgtNwUNtQx+asHXaXIyIiInIWBcIuNsA/hNT4cQCsO6bZxiIiItLzKBB2g7nD\n", "ZgCwO8+isKrY5mpEREREWlMg7AaTE8YT5BuIGzcbjm2xuxwRERGRVhQIu4Gf05dLhkwGYL32NhYR\n", "EZEeRoGwm8xtnG18rDiL48XZNlcjIiIi8jkFwm4yZuAoooMiAU0uERERkZ5FgbCbOAwHsxOnAbDh\n", "2BZcLpfNFYmIiIh4KBB2o7mJntnGhVXFZJ7ab3M1IiIiIh4KhN1ocFg8wyOGANrKTkRERHoOBcJu\n", "1jRK+FnWNmrqa22uRkRERESBsNvNGjoVwzCorq9ha85Ou8sRERERUSDsbuGBYUyMHQvAOl02FhER\n", "kR5AgdAGcxovG+88uYeS6lKbqxEREZH+ToHQBtMGT8Tfxx+X28Wnx7faXY6IiIj0cwqENgjw8WfG\n", "oEmAtrITERER+ykQ2mTuMM9l40OFx8gpPWlzNSIiItKfKRDaZFyMSURAGADrNEooIiIiNlIgtInD\n", "4WBW41Z2649txuXWVnYiIiJiDwVCGzUtUn2q4jT7Cw7bXI2IiIj0VwqENkoMH8SQsAQA1h3dZHM1\n", "IiIi0l8pENrIMIzmUcK0E+nUNdTZXJGIiIj0RwqENpudOA0Dg4q6Krbl7ra7HBEREemHFAhtFhUU\n", "QUrMaADWays7ERERsYECYQ8wJ3E6AOm5uyivrbC5GhEREelvFAh7gBlDUvF1+tLgamBz9g67yxER\n", "EZF+RoGwBwjyDWRawgQAPs1Kt7kaERER6W8UCHuIpq3sDhQeobiu1OZqREREpD9RIOwhJsQlE+of\n", "AkBm2SGbqxEREZH+RIGwh/BxOLl06FQAdpfu11Z2IiIi0m0UCHuQy0fMAqC4voydeXtsrkZERET6\n", "Cx9vG5imOQe4C5gABAGngUzgFcuyNnRuef1LYvhgxkSNZN/pQ/zr8HpmDptqd0kiIiLSD3g1Qmia\n", "5i+AtcDtQCowFLgU+Bqw1jTNJzq9wn7myhFzAcg8tZ+sklybqxEREZH+oN2B0DTNG4H7gd3A1UCE\n", "ZVnBeEYJrwQygAdM07ymKwrtL1LjUgj18UwuWXngY5urERERkf7AmxHC7wEngQWWZa20LKsEwLKs\n", "asuy1uAJhXmN50kHOR1OJoclA7Du6GfauURERES6nDeBcALwrmVZBW29aVnWKeA9YFJnFNafTQw1\n", "8XP6UdtQx0eHP7W7HBEREenjvAmE7T3XryOFyOcCnP7MGjIFgA8OrKXB1WBzRSIiItKXeRMIdwBX\n", "m6YZ1dabpmlG47m3MKMzCuvvrhg+B4CCykLSc3bZXI2IiIj0Zd4Ewv8F4oHVpmnON03TB8A0zVDT\n", "NBcDHwFxwHOdX2b/Mzg0nvGxYwBYuf8jm6sRERGRvqzdgdCyrNeB3wCT8YS/KtM0y4Ai4F1gHPAb\n", "y7L+3hWF9keLki4DYM+pAxwtyrK5GhEREemrvFqH0LKsHwPzgD/huTR8EtjZ+Hpe4/vSSSbHjyM2\n", "OBqAVVqCRkRERLqI1zuVWJa1HljfBbXIGRwOBwuT5vOXHW+y4dhmbp14LaH+IXaXJSIiIn3MOQOh\n", "aZoTgDzLsvJavG4Xy7I0saSTXDb8Ul7f/S7V9TX8+9AGrk1eaHdJIiIi0sec75LxDuAbZ7xuz2N7\n", "l1TaTwX5BTJ/2EwAVh9cS72WoBEREZFOdr5Lxn/Fc39gy9ft4e54OdKWhUnz+ODgJxRWFbM5aweX\n", "Dp1id0kiIiLSh5wzEFqWdcf5Xkv3SQiNY1JcMjtO7mHVgY8VCEVERKRTtXuWsWmafzJNc+kFzvmK\n", "aZofXHxZcqarRi8AwCo4xOHCYzZXIyIiIn2JN8vO3M6F9ym+Es+yNNLJJsSNJX5ADAArtQSNiIiI\n", "dKLzzTL+EfAzWt8T+BPTNH9wjia+QDCQ2XnlSROH4WBR0mW8vO11Nh5P57aJ1xEeEGp3WR1yLLeU\n", "59/OwGioosLIY/q4QQT4eb0CkoiIiHSS8/0W/h3wZSC28XU4UA2UtnGuG6gDsoAHOrNA+dy8YZfw\n", "6q4VVNVVs+bQem5IWWx3SV7bfaiA/3l5ExXV9QBkHN2Bv98uJpsxXDo+nqnJcYQE+tpcpYiISP9y\n", "vkkl1cCMptemabqA31qW9d/dUZicLdA3gMuGX8rK/R/xr4PruGbMF/Fx9p6RtY0ZOfxqWTp19S5C\n", "g/0ID4ITBbXU1DaQtiuXtF25+DgNJiQN5NLx8cxIiSd8gL/dZYuIiPR53qSJEXj2LRYbLUyaz6r9\n", "H1NcXUraiW3MGTbd7pLaZeXGI/zhrQzcboiLCuKh2ydTePIogxJHsfNgERt35ZJx4BT1DW627ctn\n", "2758fvfmTpKHRzFzfDwzx8UTExlk97chIiLSJ7U7EFqWdRTANM0AIBJwAkbj2waeewijgUWWZT3S\n", "uWVKk7iQgUxOGEd6zi5WHfi4xwdCt9vNsg/28fqa/QCMGBTGo/dcQqAfFJ6E8BB/vnjJML54yTAq\n", "qurYsjePtF05pO/Lp6a2gczDp8k8fJoXV+xm5OAwpo0ZSJR/nc3fVd/idrs5mlvKx1uPcfBYIVFx\n", "lQwbFGB3WSIi0o3aHQhN0wwC/gL8R2M7N58HwqaJJ02vFQi70KKky0jP2cXBwqPsLzjM6OgRdpfU\n", "poYGF//3jwz+tcmzTM6kpIH85I5pBAX4Ul1dfdb5wYG+zJ88mPmTB1NdW8926xRpu3LYvCePiqo6\n", "DmWVcCirBIAVWzYwe+JgZk1MIDFuAIZhnPV5F6u+wcWeI6dJy8hm/5EC4vfuIiosiLAQP8JC/Bsf\n", "nz/393V2eg1dKedUOet2ZLNuezYn8sqaj//k95/x0J3TGT8y2sbqRESkO3lzyfgR4HogD8/2dPOA\n", "o8BxYAyQCKwHnuncEuVM42PHMDg0nqzSXFYd+LhHBsLq2nqefiWdzXtOAjA3dRA/uGkyvj7tW+ko\n", "wM/Hc6l4fDz1DS52HSwgbVcuG3flUFJeS1Z+Ba99aPHahxaDBoYwa2ICsyYkMDwh9KLCYUl5Den7\n", "8tmy5yTbrHwqGye/AOzPyTlv20B/J6HB/oSH+BMa4kd4iD/BAU783VWMGt1AQA8YdDtVVMWGndms\n", "257FwcZw3SQqLICKyhrKq+p4+PmNfOv6iVwxI9GmSkVEpDt5EwivBbKBsZZllZum+R5QY1nW9aZp\n", "GsB/AfcBu7qgTmnBMAwWJV3GC+l/57MT2/jKpOsJMnpA2mhUWlHLz1/6jH3HPLec/sfckdy1JAWH\n", "o2NBzcfpINWMIdWM4farRrN67XbyKgPZlJnP6ZJqsk+Vs3zNfpav2U98VDCXTohn1sQERg0Ov2A4\n", "dLvdHDtZxpY9J9myJ499xwpxn7H54pDYEAaGuPEPGkB5ZT0lFTWUlNdQWlHb6tyqmgaqairJK6w8\n", "q593Nn0iP5e+AAAgAElEQVTMtLGxzJ44iCljYgjw777JQMVlNXyakcO67VnsOVLY6r3wEH9mTUxg\n", "zqRBDI8LYv2mnfwjrYzc05X87/IdnMgv5/bFyTg7+GcnIiK9gze/lYYAL1uWVd74Oh34OoBlWW7g\n", "MdM0/wNPMLyjM4u0Q25BBU/+ZTNVVVUk7qxjcMwA4qODiY8OJi4qmOiwwA4HnM4wZ9h0/p7xNhV1\n", "Vby/7xPiaiaQsa+UUzXZDI0PJz4qmPAB/l1yKfV88osqefSFNE7kef4zuWtJCtfOH9Vpn+90GCTG\n", "+HNVyli+ce0k9h8v4tOMHD7NyOFUURW5pyv4x8cH+cfHB4mJCOTSCQnMmpjA6CERzZ9RU9fA7iN5\n", "nhC4N49TRVWt+vD1cTB+VDTTx8YyNTmOsCAHmZmZpKSkENBimK/B5aa8spbi8hpKyz1fS8prKCmv\n", "9XytqCG/sJKDWSXU1DawYWcOG3bm4OfrZOrYGGZPGMTU5FgCuyAcVtW6+Dg9m7Tdeew8WIDL9Xly\n", "DQ7w4dIJnhA4YVQ0Tqdn1La6uproUF+e+OYlPPNaBhkHC3j7k4Nk55fzo1snExSg5YBERPoqb34T\n", "1dF6DcKDQKxpmjGWZeU3HvsYuMWbAkzTTAWeB5KBA8B/Wpa1qY3z5gDPAknAEeD7lmV12ZYd63dk\n", "cyTH8+2eLMpjU2Zeq/d9fRzERgZ5QmLU50ExITqYAYHebADTMU58GBM6ifTTafwz82Oqd7jA7eST\n", "XbubzwnwcxLXWFt8VDBx0cHERwURHx1CdHhgp4/6HM0t5ZE/plFYWo3TYfD9m1K5bMqQTu2jJYfD\n", "YMywSMYMi+SuJSkcOFHMxgxP6MorrCS/qIp31h7inbWHiA4LYMqYgRzNKuDoGx9TU9fQ6rMiQ/2Z\n", "OjaOacmxTEoa2GoEr637HcETTpvuHzyX6upqPtuaQWlDBJv25LP7UAG1dQ1szMhlY0Yufj4OJo+J\n", "YdbEQUxPjvU6dNU3uMgvquRkQSW5pys4ebqCozkl7DpUQIPr80vc/n5OZiTHMTd1EJPHxODrc+77\n", "HUMCffnvr8/k+bd38UHaUTbvOckDz23gv+6aoZneIiJ9lDeB8DAwocXr/Y1fJwH/anzuh2cB63Zp\n", "nLH8LvBz4EXgq8A/TdMcYVlWRYvzEoAVwN2WZb1tmuZNwFumacZZllXjxffQbmWVtQCEBzuZODqW\n", "/KJqTp6uoKjM011dvYus/HKy8svPamsYEBHiw4R9LsaPiiF5eCSDBoZc9GhdQ4OLjIMFrNueTdqu\n", "HCpdvvhPBMO3Ft/ok0TWDaOiBsqrPLNwq2sbOJpbytHcs9cS93EaxER4Au3A8ACcDeX4hRYzetjA\n", "Dk2OaLngdICfk5/cPp3JY2Iu6vv1hmEYjB4aweihEdy+OJnD2SWekcOdOeQUVFBQUs3qTSdatRk1\n", "JJzpY2OZlhzHiEFhXTbiOyDQySUpQ1g6L4mS8ho+253Lhp05ZBwsoLbexWe7T/LZ7pP4OB1MNmOY\n", "NTGeiSM/H9GsrqlvDnu5BZWer6cryC2o4FRxVavRv5Z8nAZTxsQyL3Uw05JjvbpM7eN08K3rJzAk\n", "NoSXVuzmaG4pP3p2HT+9czpjhkVe9M9ERER6Fm8C4T+AR03TfAz4LbATKAYeME1zIxADfAlPcGyv\n", "y4AGy7Keb3z9J9M0fwhcBbzR4ryvAv+yLOttAMuyXjNNcx+tt9XrVE2BcFCUH9+5YXzzpcKqmvrG\n", "X8yeX9A5BZ8/P1VchdsNbjcUltXzybYcPtnmGaUJC/EjeXhU4yOSkYPCmi/VnY/b7cY6XsTabVls\n", "2JlDcdnn+dcwggipHUKF/wmGTzjNzTHTGTduHPUuR3NgyG2utZLcggoKSz2jXfUNbnIKPPU3eX/L\n", "JhwGDIoZwMhBYYxo8RgQ5HfOGjdl5vHs8gzq6l2EhfjxyD2XkNTiEm13MwyDkYPDGTk4nK8sGsvR\n", "3FI+zchh2748nO4a5k8bycwJg4kM7f77LsNaLLNTWlHLpt25bMjIYef+U9Q3uNi85ySb95zE6TSI\n", "CfOh6p/5FJfXXvBzDQOiwgKJjwpmYLg/A3wqufaKVKIiBnS4VsMwWDpnJAnRIfzyla0Ul9fw0O8/\n", "5XtfnsT8Lhz5FRGR7udNIHwGWIxnf+MjlmX9yTTNX+MZ3Sts8Vn/48VnjgH2nHHMajzeUiqQbZrm\n", "W8BcPKOT37cs68K/KTuovNIzyhbo1zq0Bfr7MDwhjOEJYWe1qatvIK+wkmM5xWzeeZDCKj+s48VU\n", "1dRTUl7bvBsHeC7nmokRJA+PImV4FKMTI1rdS3Y8r4zPMg+zbnv2WZMURg0OY27qYOZMGkR+7Vge\n", "/fgZTpTlkB2axzjGERLkR1KQX5uhrLq2nrzTleQ0htjc0xVk5ZVyKKuYyhoXLjecyCvjRF4Zn2zL\n", "am43MCKQEQlhLYJiOCEBsOVAOSu3ZjUvOP3fX59JQnRIx3/wncwwjOY/rxvmD2+8F3Bwq3sB7RIa\n", "7McVMxK5YkYi5ZW1bMo8yacZOWy3POEwt7D1eos+TqPxNoUQ4qKCWtwGEExsZBB+jSO71dXVZGZm\n", "EtxJWwBOHRvL09+bw89f2kReYSW//vs2TuSXc+sXx9h6H62IiHQebxamLjdNczZwA54JJQBPALV4\n", "7husBl6xLOv/vOg/GDhzSmYlcOaNSlF4Rg2vxTMK+XXgfdM0R1uWVexFf+3WNEIY6N/++wF9fZwM\n", "jhlAdKgvAQ35pKSk4Ovnz7HcUjIPn2bPEc+jsLSG6toGdh4oYOeBAsBzP9zIQWEMiwth5/6T5Jdk\n", "tfrsQQNDmJc6iLmTBzNo4OeBK8qdRGLYII6VZLO1OJMvcvl5awzw8yExPpTE+NDmY9XV1ezevZv4\n", "IaPIPl3N4eyS5kdTGD1VVMWpoio2ZZ5sbhcc6ENFlWdZlqYFpyNsGHXrC0KC/Lh82lAunzaUiqo6\n", "Pt15gp17jjI2aQhD4jyThKK64L7P9kqMC+XX35/LE3/ezJ4jhSxfs5/s/HJ+cHMqAX69Z/tEb5VX\n", "1nIoq4SDWcUcyCrmcHYxA0PoMcsIiYh0Fm8Wpv4BkGZZ1mtNxxpnFz/d+OiICiDwjGNBQNkZx6qB\n", "9y3LWtP4+vemad4HzALeb09HNTXe3WpYUu45P9DP4XXbpvObviZE+ZMQlcAV0xJwu93kF1Wx71gR\n", "e48Wse9YMdmnKnC53Bw4UcyBE5/n26iwAC4dH8ecifEMi/988eUzJzl8YfhsXtrxOvsrjpJTnEdC\n", "eKzX9RqGQUiAwYQR4UwY8fltoBVVdRzNLeNIbilHcjxfm+ptCoPjhkdw/1cmE+h37gkYF/oZeVNr\n", "R9r1pj6dBswYG0WUbxGjRsXg7++ZtFJXW0N79mjpqu/T3wd+dscUnn8nk7XbPTO7cwvKuf+2VEIC\n", "jC7psyvanqtdRXUdR3JKOZRdyuHsUg5ll5BXWHVW+9wCeOylzTz41SnnvZWiM2q9mLbqU32qz57b\n", "Z09kuM9cdO0cTNMsAj6wLOvmzurcNM2FwO8syxrZ4lgG8LBlWe+0OPZrYKRlWde0OHYM+JZlWRcM\n", "hOnp6V7fa/j0WzlUVLv4j0siSB0R7G1zr1RUN3D8VC3HT9VwsqiOqAE+jB8WxJCBfjjaMRGlzlXP\n", "74++RpWrmomhJgtj5nRpvXUNbvKL6zhZVEuDCyaPDMbHqUuH/YXb7ebTveWs2eFZ2HpAoIOb50WT\n", "ENm+cNQTVNe5yC2sJbewjpzCWnIK6ygsqz/n+ZEhPsRH+hLg5yD9oOe+24FhPtw2P5qw4L47Qioi\n", "fc+UKVPa/IXtzd9kBnDygmd55yPA3zTN7+BZeuYreCanrD7jvFeANNM0rwI+AL4N+ONZ5qZdRo0a\n", "1TzSciFut5vq17MBzwihN23B8y+FgwcPetWuaUfijrQFWOybz5vWSnaVHeCWqdcRP6D9M3w72mdH\n", "26nP3t/nuHEwOSWfZ9/IoKyqgT+vKWD66GBGD49nYEQwEaH+RA4IIDTE77yXubv6+2wakT92sqz5\n", "cSSnlPyic49kx0YGMiIhtPF+2VCGJ4QS0ng/Zk1NDW/+ayfvbi7mVEk9f/m4iJ/eMYWhseefvNPT\n", "/zzVp/pUn93bp10yMzPP+Z43gfCXwP2maa4BVjZeLr4olmXVmqa5CPgDnvsRDwBLLcuqMk3z943n\n", "fNOyrB2maS4FngJewzPxZIllWWdvCXEO/v7+7Z5IUFVTT0OD59sL9HN41bajfV5s24VJ81l9aC1l\n", "9RW8tf8DfjTr613e58W2U5+9u885k4cyKDaMn7+8iYLiKjbsKWPDntZ3ezgMCB8QQGSoP5GhgUSG\n", "BRAZ6nlEhQUQ7G9QVtWA23Di79+xhdSb6q2uqefoyVKO5JRyNKfE8zW3lKqac4/8xUQGMWpwGKMG\n", "h5M0xDMz/UKXgSeNCCbZHM5vXt1JYWkND7+whZ/dOZ1x7dj7uSf/eapP9ak+u7/PnsSbQJgEVAH/\n", "BKpM0zzR+PoslmVNbu+HWpa1C8+9gGce/+YZrz8EPvSi3g5rmlAC3k0qsZOf05fZkVNYlb+OTVnb\n", "OXj6KKOihtldlvRxIwaF8Zvvz+VP7+1m/9F8quudFJfV0NC4NqLLDYWl1Y3LHZWc+4PezsVheGbx\n", "B/r7EBjgS1Dzc8/XoJbPA3xxGi727C9l1c4dHM8r5+TpirO2HWzidBgMiR3AsIRQBg8MgppCLps5\n", "npio0LYbXEDq6IE8/s1ZPPbSZ5SU1/LwH9P48a1TuHRCQoc+T0TEbt4EwttbPA8CzE6upcdoWnIG\n", "zl52picbN2AUGVUW2WV5LMt4m4fn/6Dbt66T/iciNIBvXTeueXs/Pz9/Sitqm4Pg6ZJqisqqKSxp\n", "fF3qeV5cXtNqUW2XGyqq66moroeS9k1O8mi98HpYiB/D48MYluC53Ds8IYzBMSHNu7N4luWpJDT4\n", "4u55HD00gl9+Zw4P/zGNvMJKfvHXLXzj2gksnjX8oj5XRMQO3iw703uS0UVqNULYiwKhw3Bww9jF\n", "PLv5ZTLz97Pz5B4mxafYXZb0Mw6HQfgAf8IH+DNi0NnrdTZpcLnJP13Ktp17SBg8jAa3g6rqeipr\n", "6qmqqWvxvL7V88rqusav9fj7uDCHDWTU4AiGJ3hCYEQ37uGdMDCEp787h0df/IzD2SX84a0MCkur\n", "uW3hGP1jTER6FU2Pa0PTCKG/n7PXzZ6dHDcOM2oE1unDLMt4hwlxY3EYvSfUSv/hdBhEDPAnLsKP\n", "scMivL7/pmkB7pSUFFvv3YkIDeDJb83iyT9vYceBUyxfs5+i0mq+fcPEdu1GJCLSE+hvqzaUNo4Q\n", "DgjqnJ0eupNhGNwy0bM6z7HiLDYe32pzRSJ9X1CALw/fcwnzUgcD8OHm4/zPnzZTfZ4JLSIiPYkC\n", "YRvKGwNhSCdt/dXdxg5MYnL8OABe3/Uu9Q36pSTS1Xx9HNx7y2SunT8KgK178/jpHz5tXuReRKQn\n", "UyBsQ1njJePeGggBbplwDQYGeRUFrDm8we5yRPoFh8PgriUp3L3Uc+/u/uPFPPDc+rP2IxcR6WkU\n", "CNvQPELYCy8ZNxkaPog5iZ7lrv+RuZLqOm9mbYrIxbhm3ih+fOsUfJwG2acq+Nnzm8gtqr1wQxER\n", "mygQtqGsl18ybvLl8UvwcfhQUlPGe/v/bXc5Iv3KvMmDeeSeSwj0d1JcXsufPjzFs8szWLnxCMdy\n", "S1stuSMiYrcOzTI2TTMZmAREWJb1O9M0E4HTlmWVd2p1Nml9ybju/Cf3YDHBUVw5cg4rD3zMP/d9\n", "yJUj5xIacP4ttkSk80waHcOT35rNIy+kUVJey4aduWzYmQt4/n4ZOzySlOFRJA+PYtSQsOa1EkVE\n", "uptXgdA0zRTgZWBa4yE38Ds8i1bfa5rmNyzLer1zS+x+rS8Z995ACHBd8iI+PpJGVX01b+1ZxR2T\n", "v2x3SSL9ysjB4Tz97UtZvno7RdV+WMeKKa+qo7yqji178tiyJw8APx8HSUMjSBkRRfLwSMYOiyQo\n", "oHdfpRCR3qPdgdA0zeHAWmAA8HcgDljQ+PYBwACWmaaZY1nW+s4utDv1hUklTUIDBrBkzBdYvvs9\n", "/nVoPVeZlxMTHGV3WSL9SkSoP7OTBzTv5HIiv4w9h0+z50ghmUdOc6qoitp6F5mHT5N5+DTg2Qd6\n", "WHwYZmIYA3yqGDayrtfvlSoiPZc3I4Q/B4KBSy3LSjdN81EaA6FlWa+aprkT2AT8BOjVgbC85TqE\n", "feA2n6tHX87qA2spqSlj+a53+c4ld9hdkki/5XAYJMaFkhgXyqJLPdvc5RdVsrcxHO49Usixk6W4\n", "3HA4p4TDOZ49oN/89GPGJEYweUwMk80YRg4Kx+HoXQvni0jP5U0gvAJYbllWeltvWpa1xzTNN4BF\n", "nVKZTapr66mtdwGeEUJ3H1gtIsA3gOtTruLlba+z/thmloz5Aonhg+0uS0QaxUQEERMRxLzJnv8v\n", "yytr2Xu0kMzDp9l1qIADJ4pxudzsOVLIniOF/G3VPsJC/EgdHUOqGUOqOZCIARc3elhX7yKvsILc\n", "ggqy80tx1NaijS9F+g9vAmEokHeBc4qB8I6XY7+mbevAcw9hWR8IhABfGDGb961/k1dRwKsZK3hw\n", "7rftLklEziEkyI9pyXFMS46jurqardt3Ue87kN1Hiknfl09BcRUl5bV8si2LT7ZlATBiUBhTxngC\n", "4thhkW1+blPoyynwBL+cU+WerwUVnCqq5MyJz2UNh7hlYbL2ZRbpB7wJhEeAOed60zRNA5gHHL7Y\n", "ouzUtOQMeEYIy2yspTP5OH24cfxS/vezl9mWu5u9pw4wdmCS3WWJSDsE+jlISYlj/tRhuN1usvLL\n", "Sd+Xz3Yrn92HCqitd3E4u4TD2SW88e8DBPr7MG5EJAP8qkk7tIe8ompyzxH6zuQwINDfh4rqel5b\n", "c5Dj+RX84KbJBPp3aFEKEeklvPk//BXgcdM0nwR+2vIN0zQDgF8AqcAjnVde92s5QhjcByaVtHTp\n", "0Cm8u+9DjhSfYNnOd/j55T/Wv/xFehnDMBgSO4AhsQO4Zt5IauoayDx0mnQrj+1WPifyyqmqqWfL\n", "3vzGFqVnfYbDgJjIIBKiQ0iIDiY+OpiEgSHERwcTExFEZVUVv/zzRjKOVrIxI5es/HX89M7pJESH\n", "dO83KyLdxptA+GvgC8ADwNeBGgDTND8BxgGReCaVPN25JXavphFCP18n/r59a00wh+Hg5gnX8MS6\n", "/8f+04fZmpPBtEET7S5LRC6Cv6/TM9FkTAzgmaCy3cpny55cDp0oZFBsGENiQs8Kfb4+596XwN/X\n", "ybUzI0hNHsIrH+zn+Mky7v3tOu67bQpTxsR217cmIt2o3YHQsqxa0zQXAj8A7gZGN741FzgBPAf8\n", "wrKsXr1HWtOSMwN68bZ15zMxbiwpMaPJzN/PqxkrmBw/zu6SRKQTxUQE8cVLhjFvUhyZmZmkpKR0\n", "aLkawzC4etYwkoZG8dRft1JWWct/v/gZX1k0lhsWJOnqgkgf49XWdZZl1VmW9bRlWWPwTDIZgme3\n", "kkTLsh7t7WEQWi4542dzJV3DMAxunXAtAFmluaw9usnmikSkJ5uYNJBnfjiPEQlhuN3w15V7+eUr\n", "W6muqbe7NBHpRN7uVBIC3ANkWpb1IVDeePwDYA3wW8uyevXfEmV9PBACjIoaxozBqWzK2s4bu99j\n", "aqxGCUXk3GIjg3jqu7P5f8t3sG57Nht25pCVX85P75xOXFSw3eWJSCdo9wihaZrRwEbgN8DlLY4H\n", "A7OBXwLrTdPs1ZvlNu9S0kcvGTe5efxSHIaD01VFrDnyqd3liEgPF+Dnw49vncJdS1JwGHA0t5Qf\n", "PrOW7Vb+hRuLSI/nzSXjR/FMHnkIz64lAFiWVYFnQsmDwAzgfzqxvm7XH0YIARJC47hs+KUAvLt/\n", "DdUNNTZXJCI9nWEYXDt/FI9+bSYDgnwpr6rj0RfSeOvjg7jdfWBbJ5F+zJtAeBXwT8uyftEYAptZ\n", "llVrWdYvgZXA9Z1ZYHcr7+OTSlr6UspifJ2+VNRVsqk4w+5yRKSXSDVj+M0P5jEsPhSXG/70Xia/\n", "WpZOTW2D3aWJSAd5EwhjgYMXOGcfENPxcuzXNEIY0sdHCAEig8K5KukyALYW76agstDmikSkt4iL\n", "Cubp785h9sQEANZtz+Znf9xEUXmvvo1cpN/yJhCewHOv4PlMB7I6Xo79Pp9l3PdHCAGuHbuQAX4h\n", "1LsbWL7nPbvLEZFeJMDfh/u/MpXbFydjGHA0t4w/rs5n7fZsXBfaEkVEehRvAuHrwHTTNH9tmmar\n", "4TPTNH1N0/w5nsD4RmcW2N3KqpomlfT9EUKAIL9Arh+7CIDPsrez79QhmysSkd7EMAxuWJDEo/fM\n", "JDjAh6oaF8+9uZsf/nYtOw+csrs8EWknbwLhU8BO4IdAnmmaH5umucI0zY+APDzb2WXQiyeV1NY1\n", "NN8D019GCAHmJ17CQL9IAP6y/Q1cbpfNFYlIbzN5TAxPfXsmYwZ7FsE+nF3Cz/6wkcde+owTeX1l\n", "V3iRvqvdgdCyrEpgFp7AVwDMA5YA8/GsR/gkMMuyrF77f3551ef7GPf1WcYtOQwHl0dfAsChomOs\n", "02LVItIBsZFB3DQ3mse+Np2kIeEAbNmTx3d+9TH/9+ZOisu0moFIT+XVwtSNofBh4GHTNIOACKDc\n", "sqySriiuu5VV1DY/70+BECAxKIEpceNJP7mLVzNWcMngVAJ8vd/uSkRk7LAIfvW9uazfkc1fV+4h\n", "v6iKVWlH+WRbFjcsSGLp3BEE+Hn160dEuphXW9e1ZFlWpWVZ2X0lDMLnM4yh7y9M3Zabxi3F6XBS\n", "VF3CO/tW212OiPRiDofBvMmD+f0Dl3Pn1cmN9xfW88qqvXzzF//mo63HNfFEpAfxduu6K4C7gETA\n", "H2hzd3PLsiZffGndr2mXEl8fB/6+Tmr62V6dscHRLB69gH/u+5B3961hwYjZxARH2V2WiPRifr5O\n", "rrssicunDeW1Dy1WbTxKQUk1z7y6nRXrDnPXkhQmJg20u0yRfs+breuuAz4AbgQuAVKBSed49Eot\n", "l5wxjDazbp93XfIiwvwHUOeqZ9nOt+0uR0T6iLAQf75x7QR+d/8CZo6PB1pPPMnKL7e5QpH+zZsR\n", "woeAWjwjhKuAEsuy+tR4/+f7GPev+wdbCvIN5MbxS/nj1mWknUhn4al5jB2YZHdZItJHDBoYwkN3\n", "TCfz8Gle+uduDpwoZsuePNL35TNjdDBjx/apXysivYY39xCmAMssy3rVsqzivhYGAcqr+sc+xhey\n", "YPilJIYPBuDPWoZGRLpAyogofvW9ufz41inERATicrlJ21fO79/eTYPuLRTpdt4EwhI8y8v0Wc0j\n", "hIH9b0JJSw6HgztSvwTAkaITrD3ymc0ViUhf1HLiyeVTPf8I/WRbDr99bZtCoUg38yYQvg0sNU0z\n", "sKuKsVvTLOPQ4P49QgiQEjOa6YM9t4O+umsFVXXVNlckIn2Vn6+Tb1yTzLSkYAA+Sc/iN39Pp6FB\n", "VydEuos39xD+BJgKfGSa5nPAfqDNVUYty8rohNq6XdM6hP35HsKWvjLxOrbl7Ka4upS3937ALROu\n", "sbskEemjDMPgqqnhREdHsSrtOOsa90P+0a1T8HF2eIU0EWknbwJhYYvnM85znhtwdqwce5U3XjLu\n", "T9vWnU9syEAWj17Ain3/4n3r33xhxGxiQqLtLktE+ijDMLhz8Rj8fH1Zse4QG3bm4HK7ue+2qQqF\n", "Il3Mm0D413ae12tv/Cir0gjhma5NXsgnRz+jpLqUv+18m3tnfc3ukkSkDzMMg7uXpuB0GLz1yUE2\n", "ZuTy1F+3cP9XpuHro1Ao0lXaHQgty7qjC+voEVquQygeQb6B3Dx+KX/Y8jc+y9rGnvz9JMeMtrss\n", "EenDDMPgjquTcTgM3vzoAJ/tPskv/rKFB2+fiq9Pr7wAJdLjdfo/txr3OO516updVNU0ADAgUCOE\n", "Lc0fNpPh4UMA+Mv2N3G5dKO3iHQtwzD46lVjufELnn+Abt5zkif+vIXaugabKxPpm7zdum4i8GVg\n", "IJ77BJu28zAAXyAamA2EdGKN3aJpDULon/sYn4/D4eD21C/x6Me/4UjxCT45msaCEbPsLktE+jjD\n", "MLht0VicDoO//8ti6948Hv/zZn56x3T8fDVSKNKZ2h0ITdOcD/zrAm0agMyLrMkWTRNKQAtTtyU5\n", "JolLBk/ms6xtvLrrn1wyZDKOtreyFhHpVDd/cQyGw2DZB/vYti+fn7+8iZ/dNQN/hUKRTuPNJeOH\n", "8IwKPoBnL+MDwN8bn98FHAPW4NnjuNdpWoMQNEJ4LrdNvBZfhw8l1aW8vecDu8sRkX7kpitMvnrV\n", "WAB27D/FYy9+RnVtvc1VifQd3gTCqcAqy7KetixrM/AxkGxZ1mbLsv4MzANmAfd0fpldr2kNQh+n\n", "QaC/V1fS+42YkGgWm5cD8P7+j8irKLC5IhHpT750+WjuvDoZgIyDBTz24iaqahQKRTqDN4EwGNjV\n", "4vUeIMU0TR8Ay7KOA/8Evt555XWf5m3rgvwwDF0KPZdrxy4kPCCUelc9r2e+a3c5ItLPXHdZEncv\n", "TQFg16ECnvzrNmrqNNHt/7N33/FxFGcDx397KnfqvdiyXGWNLLlXjA0Y0xx6SCAJJQESCAQCvKEF\n", "CJDQAiQkJIQAIRBCgARIoSRgDNgGXHCRu2yPi4rVe5fuVO7eP+4ky8btTmUl3fP1Rx9Zezs3z672\n", "Ts/N7MwI0VveJIQ1QESPn/fjHkiS0WNbIZDVB3ENuK5BJTLlzLGFBNm6VyzZWLqNAy0lJkckhPA3\n", "F5+WxnUXTQZgV34tr62oosUuLYVC9IY3CeFa4GKlVILn5x2e72f12Gcq0NAXgQ207hZCmXLmuE4d\n", "O4/xMaMB+LTqS5wu+XQuhBhYF546gRu+PgWAwqo2fv/2NpzOIbsughCm8yYhfApIBnYqpZZorQuA\n", "z1igvBUAACAASURBVIBHlFJPKKX+CnwNWNUPcfa7xu5JqSUhPB6LYeHqGZcCUNFWw6d5q02OSAjh\n", "j85bOJ6rz3N3UmXvruTNj7XJEQkxdJ1wQqi1Xg18A6gGbJ7NtwCNwJ3AVUA+7lHIQ05T9z2E0mV8\n", "IjIS0pg/aiYAb+/8H1XNNccpIYQQfe/c+aOZPt69HsIbyzTrc8pMjkiIocmrlUq01u9qrTOAdz0/\n", "bwcmAl8HlgCTtdb7+zzKASAthN67YvLXCbFYsXc6eDH7DVwu6a4RQgwswzA4b04ME1IiAXjqjWyK\n", "K5tMjkqIoeeEE0Kl1INKqVMBtNbdf/m11o2eRHEZsFgp9ad+iLPfyTrG3ou0hnNGwkkAbC7NYVXB\n", "BpMjEkL4o6AAgzsun05UeDAt9g4e/cs6Wuztxy8ohOjmTQvhg8Ci4+xzLu6u4yGna1BJRJi0EHoj\n", "MzyNqYnuyWJf2fwWDfZGkyMSQvij+OgQ7r5qDhaLQWF5E0//Y7P0WgjhhaPOwKyUugn4/mGbb1RK\n", "XXyUIsHAJCCvj2IbUN1dxjLK2CuGYXD1tG9yz4onaWxr5pXNb3PL/GvNDksI4YempMVz7QVZ/Pnd\n", "HazdXso/l+/l0jPSzQ5LiCHhWC2ErwEpwHTPF0BSj58P/0rHvXzdLf0VbH/p6HR2z2Elg0q8Fx8a\n", "y+VTLgJg1YENbCrZfpwSQgjRPy48ZTyLZo4C4G8f7iJ7d7nJEQkxNBy1hVBrXY87AQRAKeUEfqG1\n", "/sVABDaQmlsP3msig0p8c07aaaw5sBFdncuL2X/nNwkTCQmyHb+gEEL0IcMwuOnSaRwoayS3pJ5f\n", "vZbNb287jRHxYWaHJsSg5s09hIuBV/opDlN1dReDtBD6ymKx8MO5VxJoCaS6pZY3tr1jdkhCCD9l\n", "Cw7k3mvmEhEaRHNrO4+9sh67rHksxDEdtYXwcFrrlQBKqSjgPNyrkkQBVcA6YJnWuu2oTzCIdc1B\n", "CNJC2BujIkdwSebXeGvH+yzb9zkLRs8hI2GC2WEJIfxQUmwod145m5+/uJb80gZ+/9YW7rxylqxV\n", "L8RReDUPoVLqatyTT78G3AX8ELgPeA/Yp5Q6p4/jGxBdLYQWi0Go7YRzZHEEF2ecTWrUSFy4eGHD\n", "a7R1ytQPQghzzFCJfO+8TAC+2FLMO58NyWlyhRgQ3sxDeB7wEuACHgEuAuYB5wA/B0KBd5RSc/s+\n", "zP51cB3jIPn02EuBAYHcOOcqDMOguLGMf+/80OyQhBB+7OuL0lg4bSQAr/w3hy17KkyOSIjByZsW\n", "wvuAWmC21voBrfX7WusNWuuPtdYPAQsAB+7kcEhpklVK+lRa3FjOnbgYgHd3fURBXZHJEQkh/JVh\n", "GNzyrRmMSY7A6YIn/5ZNeU2L2WEJMeh4kxBOAd7WWuce6UGttQb+Bczvi8AGUoOsUtLnvjXlAhLD\n", "4uh0OXl+w2s4nU6zQxJC+KkQq3uQSVhIEI0tbTz2ynoc7Z1mhyXEoOJNQtgABBxnHycw5AaWdA0q\n", "CZcWwj5jC7Ry/ewrANhfU8AHe5ebHJEQwp+NjA/njitmYRiQW1zPs29vkZVMhOjBm4TwBeDKo90j\n", "qJSaCHwT+GtfBDaQGqWFsF9MTZ7EorHuBuN/bH+P8qZKkyMSQviz2ZOSuGJJBgArsotY+uUBkyMS\n", "YvDwZkjtl8BOYJVS6g1gBVAMhABzgRs9+5UqpX7Us6DW+o99EGu/6WohlHsI+953p3+DzWU51Nsb\n", "+NPG1/nZabfKwB0hhGkuXZzO/qJ61m4v5ZUPNN89PZ6sLLOjEsJ83iSES3v8/7ueryN56rCfXcCg\n", "Tgi7Wgily7jvhVvDuHbmZfx2zZ/ZXq5ZkbeWxeNPNjssIYSfslgMbvv2DIoqGiksb+KNz6pwWfP5\n", "+qJ0AgK8molNiGHFm4TwWh/rGPQ3aRxsIZQu4/5w0qiZzE6Zxsbirfxtyz+ZMSKLEMNqdlhCCD8V\n", "agvi3qvncvcfVtHQ3MZfP9B8vqWUH31jGhljY80OTwhTeLNSySv9GIeppIWwfxmGwQ9mfpucCk1z\n", "eysvb3qTm2YdrYFZCCH636jECH576wL+8I91bM5tIa+kgTuf+YJzThrD987LlFuIhN/xqX1cKTVJ\n", "KXW5Uuomz89jlFLhfRvawOh0umi2u1sII+UNoN/EhkZz1bRLAFhXtJmNJdtMjkgI4e8iw4K56KRY\n", "HrpuLmOSIwD46MsCbnj8Uz5Zf0BGIQu/4u3SdVlKqXVADu7l637veeh7QJFS6lt9HF+/a25tp+s1\n", "Hy5dxv1q8fgFZCZMBODVbf/C3ukwOSIhhIBJY2N4+ieLuOb8TKzBATQ0t/G7Nzdzzx9XU1DWYHZ4\n", "QgwIb5auGwd8BkwH3gCWA13DRfd6/v+6UuoUbwJQSs1QSq1XSjUppTYrpeYdZ/8zlFKdSqlQb+o5\n", "mq5VSkBGGfc3i2Hhh3OuJCggiDpHA8ur1pkdkhBCABAYYOGS0yfyx7sWc9LkZABycqu59amVvPLf\n", "HOyODpMjFKJ/edNC+DAQBpystb4SWNX1gNb677hXKGkF7jnRJ1RK2YD3ca+RHIW7xfE9pVTYUfaP\n", "AV72IubjajwkIZQWwv42IiKRy7LOB2B74x7WF28xOSIhhDgoMSaU+66Zx/3fn0diTAidThf/WrGP\n", "H/1qOV/uKDU7PCH6jTcJ4VnAW1rr7CM9qLXeCbwNzPDiOU8HOrXWL2itO7XWfwHKgXOPsv9zwN85\n", "2DLZa42eEcaG4R55JvrfBepMMuImAPDyljepaKoyOSIhhDjU3Mxknr1rMZeeMZHAAIPK2lYe/ct6\n", "Hn5pHZW1rWaHJ0Sf8yYhjMSdrB1LHRDtxXNm4J7suift2X4IpdQVnhie8+L5j6uryzg8JAiLRSZM\n", "HggWi4UbZl1JiMVKS4ed3619iQ6nrCsqhBhcbMGBfPfcTH5/++lMnhAHwPqdZdz2u1V8kdNAe4es\n", "0S6GD2/mIcwDjnp/oFLKAE4Dcr14zjCg5bBtLcAh9wcqpUYDDwELAJsXz9/N4TjyAIbaBnf1YSFB\n", "2O32I5Y5Wtnj1eVtOX+qM8wSwrlJp/Gv0mXsrcnn9c3/5ltZF/Rrnf5ybqVOqVPq7NuyCVFBPHDN\n", "LD7fUsqrH2oamtv4dGsDe0rXcOMlk5mYeuLtIIP5OKXOgatzMDJOdFi9Uuoe4FHgCeA+4AHgAa21\n", "xXMv4OPALcCDWuuHT/A5/w84S2t9bo9tbwObtdaPeX62AJ8CL2it/+EZ3LIfiNBaN59IPdnZ2Uc9\n", "yJXbG1i5vYGUuCCuOyfpRJ5O9KFPK79kY/0OAC4buYRxoaNMjkgIIY6utc3JJ1vqyd538M/PSSqc\n", "06dGYg2SlU7E4Ddr1qwjdod600L4FHAmcDdwPeAAUEqtBCYDscA64FdePOcu4ObDting9R4/jwLm\n", "AdOVUs9xsJu7SCl1ntZ6zYlUlJaWhtX61dUx1uXtAhpIjIsi67AFLR0OB/v27Ttq2aPxtZw/1nnt\n", "vG9Tte558uuLWFq9ikem3Em0LbJf6/SXcyt1Sp1SZ/+UnZLp4NM1OXy0pZmSqha+1E3sL+/gugsz\n", "maES+qVOfzm3/lKnWXJyco76mDcrlbQppZYAtwHfB9I9D50KFAJ/AB7XWtuP8hRHshywKqVuBl4A\n", "rgISgY961HuAHl3ISqkxuLuvU7TWh3c3H5XVasVm+2pvc6vDfQ9IVLjtiI8fq6yvdfZn2aFWZ3hI\n", "GP+34DruXvYYDY4mXtzyd+477cdYjGN/0h5qxyl1Sp1S5/Cqc0yilV//eDrvrTrAP5fvobLOzmOv\n", "bmLRzFH84KLJRIUfOzkYKscpdfZ/2cHCq/ZtrXW71vpXWusM3AM8UoEYrfUYrfXPvUwG0Vq3AV8D\n", "vgNUAzcBF2qtW5VSz3laBA9n0IfrIx9ctk5GGJtlREQi1826HIDt5bt5d9cykyMSQojjCwq0cMWS\n", "DJ7+ySLUmBgAVm4q4sYnlrN8Y6GsdCKGFG+6jPEsT/cDIEdr/THQ5Nm+FPgEeFpr7dXsnVrr7bgH\n", "ixy+/caj7J8PBHhTx7E0eaadkUmpzXXK2LlsL9/Nyvy1vLnjfTITJ6LiJ5gdlhBCHNeY5EieuPkU\n", "PlyTx6sf7KSxpY3f/n0TK7ML+dE3p5Ecd8SpdYUYVLxZqSQeWAP8Bjijx/YwYCHwJPCFUiqir4Ps\n", "T9JCOHhcO+tbjIxIwuly8ru1L9PUdkJjhoQQwnQBFoPzF47n2TvPYE6me4Di5j2V3PzrFbzz2X46\n", "ndJaKAY3b7qMf4578Mi9uFctAcAz0jcW+CnuwR+P9GF8/a5RWggHDVugldvm/4AgSyBVLTU8v+E1\n", "6XIRQgwpCTEh3H/tPO66cjbR4VYcbZ289N4O7vj95+SV1JsdnhBH5U1CeC7wntb68cOne9Fat2mt\n", "nwQ+AL7RlwH2J6fTRXOru4VQEsLBYWzMKL47/ZsArC/awsf7Pzc5IiGE8I5hGJwyI4U/3r2YM+eM\n", "BmBfYR23/fYz3li2h/YO+aArBh9vEsIkYN9x9tmNe5TwkNDi6KCrFV+6jAePs9NOZW7KdAD+uvmf\n", "FNQVmRyREEJ4LyI0mFu/PYOHfzif5LhQnE4X//ksjxeXVXTfriTEYOFNQliI+17BY5kLDJm/3k09\n", "XpCR0kI4aBiGwQ1zryQ+NJZ2ZwdPr3kJe8fQnwVeCOGfpqcn8swdp3PJojQsFoOKunZ++eom7A6v\n", "xmAK0a+8SQjfBOYqpZ5SSh2SPSmlgpRSD+NOGN/uywD7U0PzwYQwXBLCQSU8OIxbTroWi2GhuLGM\n", "v2x6y+yQhBDCZ7bgQK65IIubvzEZgL2F9Tzxt410dMp6yGJw8CYhfALYCvwfUK6UWqGUelcptRwo\n", "x72c3TaG0KCSrilnwL2WsRhcMhImcNnk8wFYkbeGVQXrTY5ICCF655TpIzl7RhQAG3eV88xbW2Tw\n", "nBgUTjgh9KwKsgB3wlcFnAZcACzCPR/hL4EFWuvGvg+zf3TdwxEWEkSA5YhL+wmTXZxxDlOSFAAv\n", "bvw75U2VJkckhBC9c/KkCC48ZSwAyzcW8tf/7TQ3ICHwfqWSFq31A1rriUA4B1cqGa21vu/w0ceD\n", "Xdc9hBEyoGTQslgs3DzvGiKt4bR22Hl246t0ujrNDksIIXrlirPTWTw7FYB/rdjHO5/tNzki/9Xp\n", "dFHX3IHTz+eK7O1KJS2e7T6vVGKmxlZ3l7HcPzi4xYREcfO8q3ns8z+QX1/EZ8YGpjLV7LCEEMJn\n", "FovBjy+bTn2Tg+zdFbz03g6iw4NZNCvV7ND8QqfTxc68alZtKWb1thLqm9p4+ZMaZmUkMmdSMjNU\n", "gt/lBiecEHpWKlmOe3LqJ4GPPdu7Vio5G/iGUursodJt3NVlHCH3Dw5600dkcWHGWby3+2M21O0g\n", "u3Q7C8bNMTssIYTwWWCAhZ9+dw4/e34N+kAtT/9jM5HhVmaqITN7W59qsbfz6fpCvtxaw56qXKak\n", "JTJxdAzWoL5ZrdbpdLErv6Y7CaxtPHT2iobmNlZkF7EiuwiLxWDS2FhmT0pi9qQkxiRHYBjD+9Yy\n", "b1oIf87BlUqe6dqotW5WSsUCtwGP477H8NY+jLHfyDrGQ8u3J19ITvke9tcW8MKm1xkXl8rIyGSz\n", "wxJCCJ/ZrIE88IOTuPsPX1BU0cQvX1nPozcuIH10jNmhDQiXy8XOvBqWrStg9bYSHG3uW4K25e+F\n", "ZXsJDDBIGxVN5rg4Jo2LZdLYWKLCrSf8/E6ni90FNazaWsLqrcXUNByaBI4dEclJWYmEGvV0BMay\n", "ZW81ObnVdDpd5OS6///X/+0kISaE2Rnu5HBqWjw2q1cdrEOCN0fUvVLJ4Q9orduAJ5VSp+JeqWRI\n", "JITdLYRhkhAOBYEBgdw853vc9+mTtHTY+dWqF3j0rLsIDQoxOzQhhPBZZFgwv7h+Pnc98wXV9XZ+\n", "8ecvefLHp5CSEG52aP2mrtHB8o2FLFtXQHFlU/f2wACDMQnBNDosVNS20tHpYndBLbsLamGle59R\n", "ieFMGhtL5rg4MsfHMiIu7JDWO6fTxe78Gr7YWszqrSVU19sPqXtMcgQLp6ewYOpIUpMisNvt5OTk\n", "kJU1lkvPzKDF3s6WPZVs3FXOxl3l1DY6qKxt5cO1+Xy4Np+gQAtTJsQze1ISU8ZH9//JGiDeJIQn\n", "ulLJ2b6HM7C6WghllZKhIy4khouSz+DNkg8pbizjj+te5ScLrsNieDU+SgghBpXEmFB+cd187n52\n", "FQ3NbTzwwhqe/PEpxEWZ84HX7uggJ7eG7H1NdFirSEuNIzbS1qtu006niy17Kli2roB1O8ro7DGI\n", "Y0xyBGefNIb5WQkcyNtLVlYWzQ53F+/OvBp25VWTW1yP0wVFFU0UVTTx8foDAESHW5k0LpaJoyLZ\n", "m1fHM//7/CtJYGpSOKdMS2HBtJGMTo48ZpyhtiBOnjqSk6eOxOl0kVtS704Od5azp7CW9g4nm3QF\n", "m3QFAGkjbDyWOfQHpHiTEA67lUq6JqaWLuOhZXTICL6TdSGv73iH9cVbeGfXR1yS+TWzwxJCiF4Z\n", "MyKS+6+dxwMvrKGitpWfv/glv7xpIeH9fJ+7y+WirLqF3QU17M6vYXdBLfmlDd2jbt9fnw1AmC2Q\n", "1KQIUpMiGJ0cyeikCEYnRxAXdexEsaKmhY/XH+CTDQeoqmvt3h5iDeDUGaM4e94YJqZGYxgGdvvB\n", "RC4uKoSF01JYOC0FcN9juOdALbvy3Eni7oIa7G2d1DU5WLu9lLXbSw+pNyUhnFOmp7Bw+kjGHCcJ\n", "PBqLxd1lnTYqmm+fpboHAWXvKidbV9Dc2k5RleOQ5Hao8iYhfBO4Xyn1FHCPp5sYcK9UAjyAO2H8\n", "Vd+G2H+aWmXamaHq7PGncqCxhC8K1vPm9vcZHzOa6SOyzA5LCCF6JWt8HHddNZvHXllPfmkDj7y8\n", "joeun9+nddjbOthbWMfu/Bp0QS26oJa6piMvDxpqtdDicK+m0mzvONh920OINbA7OUz1fI+PDCLn\n", "QAv/Wb+Rbfur6Tn39qSxsZw1dzQLp6cQ4sW9eKG2IKanJzI93T3oprPTSV5pAzvzqtmVV8Ou/BoM\n", "VwenzRzNotlj+mUgSFS4lcWzU1k8O5XOTic7cysoLykgMGDo91J5kxA+AVyIe6WSa5VSW4AGIAKY\n", "DkQzhFYqcblcNLbItDNDlWEYXD/7CgrrS8ivK+J3a1/il2ffQ3J4gtmhCSFEr8ybPIKbLp3OM29t\n", "ISe3ml+/ns2tl03x6bk6Op2UVDWzLa+Ftft3sq+4gbyShiPOuWcNDmBiajQZY2LJGBPD2ORQigr2\n", "MT5NUdXQTmF5IwfKGjng+V5e0wJAq6MDfaAWfaD2K8/ZJSI0mDPmpHLW3NHH7bI9UQEBlu7WuwtP\n", "mdDjXsCJ2Gy2PqnjePVPTI2mraG43+saCCecEGqtW5RSC4CfAt/BvVJJlyLgOeCxoTI5davj4CSU\n", "ESGSEA5F1sBg7lh4Az9d9kua2pr59aoXeOTMO7EFnvgINCGEGIzOnjeG2kY7r324m7XbSwmzBbAg\n", "7cjdki6Xi5oGO8WVTRRXNlNS2URxZRMllU2UVbf06M6sOaRcclxod/KnxsYybkQkAT1auux2O0W4\n", "WwAnpoYzMfXQkc92RwdFFU0cKG/sThYLyxspq2nubhGclhbHkpPHMS8rmaDAvpk+RvQPr8ZNe5av\n", "ewB4QCkVCsQATVrr+v4Irj819ljHWAaVDF2JYXHcNv/7PPr5MxyoL+b59X/j1vnfH/bzRQkhhr/L\n", "zkinrsHBf1fn8cmGIhwtEVij6qisb++R9DVTXNXUPV3L0QQGGExMdU/fosbEkjE2hpiI3rWi2ayB\n", "pKVGk5Z66Ehbe1sHeUU1lBXnM3/O1AFprRO95/NEOp7ksOXw7UqpcVrrvF5FNQC6ppwBGVQy1E1N\n", "nsTlUy7m9W3/YU1hNhNix3JBxplmhyWEEL1iGAY/uHgKdU0OVm0t4YucRr7IWXfMMrGRNlISwhmZ\n", "EEZKQjgpCeHERQZRXZbH1CmTByQ5swUHMm5kJC210iI4lHi7dN15wOVAAhAAdDXDGEAQEA9M9Dw2\n", "qDUdkhBKC+FQd2HGWeyvLeDLwk28tu3fjIsZxeSkDLPDEkKIXgmwGPzk8pnUNznYvr8acI/2TUkM\n", "Z6Qn4UuJdyeAI+LDCLV99e+Z3W6nrkJ6TcSxebN03SXAP4+zWyXwfq8iGiBdXcahtsBD7pkQQ5Nh\n", "GPxozlUU15dS2FDKb9f8mcfPvoeEsDizQxNCiF4JCgzg3u/NZMWarcydkUliXKTcFiP6nDeZ0E+A\n", "DuBbQDKwBfiz5/+LgWygwPP4oNfVZSwjjIcPW5CNOxfeQGhQCI1tzfx69Qu0dbQdv6AQQgxygQEW\n", "RsYGExVulWRQ9AtvEsIpwDta67e11hXAKmCB1rpCa70SOAcYB9zS92H2ve5l66S7eFhJjkjklpOu\n", "wcAgr7aQP2W/gcs19CcMFUIIIfqTNwmhDdjb4+fdgFJKWQG01jXAu8B3+y68/tO1bJ1MOTP8zBw5\n", "hUsnnw/A5/nr+GjfZyZHJIQQQgxu3iSEFbgHk3TZ7ynfc3mIKiCtD+Lqdwe7jKWFcDi6JHMJs0dO\n", "BeCvm99mV+Xe45QQQggh/Jc3CeFK4BtKKeX5eSvgAi7usc/JuJPCQa+7hVDuIRyWLIaFm+ddzciI\n", "JDpdTn6z5s/UtNaZHZYQQggxKHmTED4BhADblFLf1FqX4R5RfK9S6k2l1Ercaxl/3Pdh9j1pIRz+\n", "QoNDuGPhD7EFWqm3N/DMhlfocB178lYhhBDCH51wQqi13gEsAlbgXsMY3ANIdgGXAqcC64F7+jbE\n", "/tE17UxkmLQQDmejIkdw87yrAdhfW8CyitUyyEQIIYQ4jFcT8Gmt12utl2itl3l+PgBMBWYAk4D5\n", "Wuvyvg+z73VNTB0ug0qGvbmjpnNJ5hIAtjfu4Y0d70hSKIQQQvTg89J1XbTWLtz3Ew4ZLpdLpp3x\n", "M5dNvoDyhipWF23ko9zPCbOF8u0pF5kdlhBCCDEo+OUSHfa2Tjo63S1EMjG1f7AYFn4w49uosHEA\n", "/HvnUv6zc6nJUQkhhBCDg18mhI2yjrFfCrAEcEHyIqYlZQLw9+3v8sGe5SZHJYQQQpjPLxPCriln\n", "QKad8TcBRgA/nnM1U5Lcsye9svltPtm/yuSohBBCCHP5ZULYs4VQpp3xP8EBQdy58EYy4icA8OLG\n", "N/g8f53JUQkhhBDm8cuEsKuF0BYcQFBggMnRCDPYAq389NSbmBAzBhcu/rj+VdYVbTY7LCGEEMIU\n", "fpkQdo8wljkI/VpoUAj3nfZjRkel4HQ5eXrtS2wq2WF2WEIIIcSA8++EUOYg9Hvh1jB+tugW9xJ3\n", "zk6eWv0CO8p3mx2WEEIIMaD8NCF0dxnL/YMCINoWyQOLbiMxLI52ZwdPrHoeXbXf7LCEEEKIAeOX\n", "CWFT96TU0kIo3GJDo3lg0W3EhcTg6HDw2Od/ILemwOywhBBCiAHhlwlhV5extBCKnhLD47n/9FuJ\n", "skXS2m7nkc+e4UBdsdlhCSGEEP3OTxNCd5extBCKw42MSOL+024hPDiMprZmHv7s95Q2VZgdlhBC\n", "CNGv/DIhbJJ1jMUxjI5O4Wen/ZiQIBv19gaeWP0cde2NZoclhBBC9Bu/TAgPDiqRFkJxZONjx3Dv\n", "qTdjDbRSY6/jH8UfUNlSY3ZYQgghRL/wy4RQWgjFiVDxE7h74Q0EWQKp72jkoc+floEmQgghhiW/\n", "Swgd7Z20dTgBuYdQHN/kpAz+b94PCDaCqHc08uCK38rk1UIIIYYdv0sIG5sPrmMsCaE4EZMTFVeM\n", "Op8YWxSODgdPrnqOT/Z/YXZYQgghRJ/xv4Sw5WBCKNPOiBOVaI3jwVNv617m7k8b3+Dv297F5XKZ\n", "HZoQQgjRa36XEDZ5BpSADCoR3okNieahxbczJUkB8J9dS3lm3St0dHaYHJkQQgjRO36XEHa1EAYH\n", "BWANCjA5GjHUhAaHcM8pN3Pq2HkArCpYz6OfP0NzW4vJkQkhhBC+88OEsGtSaukuFr4JDAjkprnf\n", "45tZ5wKQU7GHBz79NVXNMi2NEEKIocnvEkJZx1j0BcMwuGzyBdww50oshoXChlLu++RJ8msLzQ5N\n", "CCGE8JrfJYSyjrHoS4vHL+Cnp9yELdBKrb2eB5Y/xZbSnWaHJYQQQnjF7xLCplZZx1j0rekjMvnF\n", "4tuJsUVh73Dw+BfPsjx3tdlhCSGEECfM7xLCRukyFv1gXEwqj555F6mRI3C6nDy/4TXe3P6+TEsj\n", "hBBiSPC/hLBZBpWI/hEfFstDZ9xBVmI6AP/a+QF/2vwGna5OkyMTQgghjs3/EsLuewilhVD0vbDg\n", "UO499WYWjpkLwOrCjbxVspRGR5PJkQkhhBBH53cJ4cFRxtJCKPpHUEAQP553NV+ftASAA62lPPj5\n", "b8mvLTI5MiGEEOLI/C4hbPQMKpEWQtGfDMPgO1Mv4voZlxNgBFDVUsP9n/6KNQeyzQ5NCCGE+Aq/\n", "Sgjb2jtxtLnv55IWQjEQFo6ewxUp5xNri8bR2cbTa//MG9vewel0mh2aEEII0c2vEsKuKWdARhmL\n", "gTPClsAvTvsJKn4CAO/s+ognVv1RlrsTQggxaPhVQtg1oAQkIRQDK8oWwYOLbuPMCacAsLk0h3s/\n", "foKihlKTIxNCCCH8LCFsajnYQigrlYiBFhgQyPWzL+e6WZcTYAmgtKmC+z5+ko3FW80OTQghhJ/z\n", "q4SwodndQhgUaMEaFGByNMJfnZV2Cg8u+j+ibJG0dth5ctXz/DPnfzhdcl+hEEIIc/hVQthzyhnD\n", "MEyORvizjIQJPH7WT5kQOwaAt3b8l9+sfpHWdrvJkQkhhPBHfpUQNrbIlDNi8IgLjeEXi2/n1LHz\n", "AFhfvIWfffIkZY0VJkcmhBDC3/hVQtjUKusYi8ElOCCIm+Z+j6tnXIrFsFDYUMo9Hz/OtordppxA\n", "ywAAIABJREFUZocmhBDCj/hVQtjdQhgiA0rE4GEYBuemL+Znp/2YiOAwmttbeWrtn1hXuw2Xy2V2\n", "eEIIIfyAnyWE0kIoBq/JSRn88qyfMiYqBRcuVlav51drn6equcbs0IQQQgxzpieESqkZSqn1Sqkm\n", "pdRmpdS8o+x3nVJqj1Kq3rP/Qm/r6h5UEiYJoRicEsPjefjMOzkpZQYAOyr3cPvSh1meu1paC4UQ\n", "QvQbUxNCpZQNeB94CYgCfg+8p5QKO2y/04FHgW9qraOAPwDvK6Vivamvq8tYlq0Tg5kt0MqNs67i\n", "gqTTCQsKpbXDzvMbXuOXn/+B6pZas8MTQggxDJndQng60Km1fkFr3am1/gtQDpx72H4pwJNa620A\n", "WutXgU4g05vKurqMZZSxGOwMwyAzYgK/XHw3s1OmAbClbCe3L32YFblrpLVQCCFEnwo0uf4MYOdh\n", "27Rn+8ENWr/W82el1AIg4ghlj6nnPIRCDAXRtkjuXPBDVhVs4OXNb9Lc1sJzG/7Gl0Wb+eHsK4gN\n", "jTY7RCGEEMOA2S2EYUDLYdtagNCjFVBKZQL/BO7XWp/w3fbtHU5aHZ0ARIRIC6EYOgzD4JSxc/nN\n", "kgeYNXIKAJtLd3D70of4LO9LaS0UQgjRa2a3EDYDIYdtCwUaj7SzUups4B/Ar7XWT3pTUW19c/f/\n", "gwNd2O3HXxHC4XAc8v1E+VpO6pQ6j1UuxLByy+xrWF24kde2/5vm9laeXf9X1hzYyDXTLiXaFtXn\n", "dfZ3WalT6pQ6pU5/rHMwMsxsXVBKLQGe1VpP6LFtG/CA1vqdw/a9BngauE5r/ZY39WRnZ7sq69t5\n", "9n/lANx2UTLRYWbnwkL4rrGjmaUVq8htKQTAZrFyZsJ8MsMnyLKMQgghjmrWrFlH/CNhdla0HLAq\n", "pW4GXgCuAhKBj3rupJQ6A3gWOEtrvdqXiuISRuIerwIzp2URYj3+oTscDvbt20daWhpWq/WE6/K1\n", "nNQpdXpTbp5rDl8cWM/rO96htcPOf8tXUmJUcfmki6gsLB82xyl1Sp1Sp9Q53Oo0S05OzlEfMzUh\n", "1Fq3KaW+BjwPPAbsBS7UWrcqpZ4DXFrrHwF3AUHAUqVUz6f4htZ62YnU5ehwfw8MMIiODPOqFcVq\n", "tWKz2U54/96WkzqlzhMtd7Y6jZmpU3hhw+tsLdvJprId6OpcFsfOI8uaNWyOU+qUOqVOqXM41jmY\n", "mN1CiNZ6O7DgCNtv7PH/c3pbT1OrZ9m60GDpUhPDSnxoLPeeejPLc1fz6pZ/0dzewvvlKyjfUMv1\n", "c68g0hpudohCCCEGObNHGQ8YmZRaDGeGYXDGhIU8teR+shLSAVhfsoXblz7MxuJtJkcnhBBisPOb\n", "hLC7hVCmnBHDWHxYLHfO/yFnJZxMcEAw9fYGnlz1HH9c/yot7a1mhyeEEGKQ8p+EsLuFUBJCMbxZ\n", "DAszozJ5ZNEdqLjxAKzMW8sdSx9hR/luk6MTQggxGPlPQth9D6F0GQv/kByewC8W384VU79OoCWQ\n", "qpYaHlr5O17e9CaOjjazwxNCCDGI+F1CKC2Ewp9YLBYumnQ2j5/1U8ZGjwJg6d6V3LXsUfZU5Zoc\n", "nRBCiMHCfxJCGVQi/Njo6BQeO/NuvpF5LhbDQmljBfcv/zVvbHuH9s52s8MTQghhMv9JCLtaCMOk\n", "hVD4p8CAQL415QIeOeNOUiKScblcvLPrI+79+Anya4vMDk8IIYSJ/C8hlFHGws+lxY3libPv4fz0\n", "MzAwKKgv5p5PHue9PR/jdDnNDk8IIYQJ/CYhbLG7lyqRQSVCQHBgMN+d8U0ePP02EsLi6HR28s9d\n", "H/Ba0fsU1BebHZ4QQogB5jcJYRcZVCLEQZmJ6fz6nJ9x5viFAJQ6Knlg5VP8aeMbNNgbTY5OCCHE\n", "QPG7hFBaCIU4VEiQjevnXMEdJ11PTFAkLlx8sv8Lbv3gQT7Ys5wOZ6fZIQohhOhnfpcQSguhEEc2\n", "NWkS147+Bt/KPB9boJXm9lZe2fw2d370CFvLdpodnhBCiH7kVwmhxWIQags0OwwhBq1AI4DzJp7B\n", "78/9BYvGzgeguKGMRz97hie/eI6yxgqTIxRCCNEf/CohDA8JwjAMs8MQYtCLDoniR/O+y2Nn3s3E\n", "uHEAbCzZxk+WPszrW/9Da7vd5AiFEEL0Jb9KCKW7WAjvpMWN5eEz7uDmeVcTY4uiw9nBu7uXcesH\n", "D7Iyb61MUyOEEMOEnyWEMqBECG9ZDAunjp3H7879ORdPOodASyB19gb+uP5VfvbJr9hbnWd2iEII\n", "IXrJrxLCcGkhFMJntiAbl0+9mN987QHmpEwDYF9NPvd98iQvbHqdxo5mkyMUQgjhK78aYSEthEL0\n", "XnJ4AncuvIFtZbt4ZfPbFDWUsrpwI+uNLVSGNHBR1jkEB8hrTQghhhK/aiGUewiF6DtTkyfxq3Pu\n", "49qZ3yIsKJR2Vwdv7/oft3/4EBuKt+JyucwOUQghxAnyq4RQuoyF6FsBlgCWTFzEk2fcw4zISRgY\n", "lDdX8atVz/PIZ7+nsL7E7BCFEEKcAL9KCKXLWIj+EWEN5+zEBTy86A6yEtMB2F6+mzs/epSXs9+k\n", "ySH3FwohxGDmVwmhtBAK0b9GR43kgUW3cfuC60kIi8PpcrJ030pu/eBBlu37jE5ZBk8IIQYlv0oI\n", "IyUhFKLfGYbBvFEz+O2SB/j2lAuxBgTT2NbMn7P/wd3LfsmOcm12iEIIIQ7jVwlhuHQZCzFgggOD\n", "uSTzazx97s9ZOGYuAAfqi3lo5dP8evULVDRVmRyhEEKILn427Yy0EAox0OJCY7jlpGs4J+1UXtn0\n", "NvtrC1hftIXNJTv4WtrpTHCONDtEIYTwe36WEEoLoRBmUfETePSsu/gs70ve2P4u9fYG3tvzMeEB\n", "oZwdXM6ZaacQHxZrdphCCOGX/CYhNAwItUlCKISZLIaF08efzLzUGfx754f8Ty+nqbOFf+9eyn92\n", "f8TU5AxOH3cyc1KmESSTWwshxIDxm4QwzBaExWKYHYYQAggNCuHKaZdwSsoc/rHxXXRrPk1tzWwt\n", "28XWsl2EB4excMwcFo9bwNiYUWaHK4QQw57fJIQyoESIwScpPIEzE+bzo4yr2VGjWZG7hq1lu2hq\n", "a2bp3pUs3buS8TGjOX3cySwcM4ew4FCzQxZCiGHJfxLCEEkIhRisggICmZ86i/mps6hqqWFl3pes\n", "yFtDZXM1ubUHyK09wKtb/8W8lOksHn8ymZ7Jr4UQQvQNv0kIZUCJEENDfGgs38w6l0syl7CzYg/L\n", "c9ewrmgz7Z3trDqwgVUHNpAYFsfC1LkktEeaHa4QQgwLfpMQSguhEEOLxbAwOSmDyUkZNLU1s7pg\n", "Iyvy1pBbe4CK5mr+vftDAD6o/YJ5qdOZkzKdsdGjMAy5V1gIIbzlPwmhtBAKMWSFB4dxzsTTOGfi\n", "aeTXFrEibw2f56+jub2FwoYSCnNK+GfOB8SHxjI7ZSpzU6aRkTCRQEuA2aELIcSQ4D8JobQQCjEs\n", "jI0ZxTUxl3Fpxnl8lP0pNdYmNpXvoLqllqqWmu7BKGFBIcwcOYU5KdOYnpyJLchmduhCCDFoSUIo\n", "hBiSAi0BjA1N4bysLH5g/Q75dUVsKN7ChqKtFNQX09zeyhcF6/miYD1BlkCmJGUwJ2Uak+OU2aEL\n", "IcSg4z8JoXQZCzFsGYbBuJhUxsWkctnkC6hoqmJD8VY2lmxjZ+Ve2p0dbCrdwabSHRgYjLQlcJqt\n", "ilPGzSUuNMbs8IUQwnR+kxCOHRFhdghCiAGSGB7PeeoMzlNn0OBoYlPJdjYWb2NLWQ5tne0U2yt4\n", "Y8c7vLHjHTLiJzA/dRYnpc4kJiTK7NCFEMIUfpMQjk6ShFAIfxRpDWfRuPksGjefto42NhZu45Nd\n", "n7O/tZDWDju7q/azu2o/r2x+m0kJacxPncW81BlE22RKGyGE//CbhFAIIYIDg5k5YjLWGoP0DIWu\n", "y2VtYTYbi7fR2mFnZ+Vedlbu5eXNb5KZMJGTU2czb9R0Im3ygVIIMbxJQiiE8EtBAYHMTpnK7JSp\n", "tHW2s6U0x50clmzH0eEgp2IPORV7eGnTP8hKTGd+6iymJUwyO2whhOgXkhAKIfxecEAQc0dNZ+6o\n", "6bR1tLG5LIe1B7LJLtmOo7ON7eW72V6+G4thIdWWzEnBZcxOncboqBSZCFsIMSxIQiiEED0EBwYz\n", "b9QM5o2agb3DwebSHaw9sIlNpdtp62ynoLWEgp0lvLnzv8TYopiWnMn0EZlMScogwhpudvhCCOET\n", "SQiFEOIobIFW5qfOYn7qLOztdtYd2Mxnei2FbWXUOxqptdezMn8tK/PXYhgGaTFjmDYii+nJmaTF\n", "jsVisZh9CEIIcUIkIRRCiBNgC7IxL2UG4XXBZGZmUuGoZkvpTraU5bC7aj+dzk721uSztyaff+b8\n", "j7DgUKYmTWJ6ciYZMRPMDl8IIY5JEkIhhPCSYRiMiR7FmOhRXDTpbOztdnZU7GFLWQ5bS3dS3lxF\n", "c1sLawuzWVuYDUB8cAyzXHuZmTKZSQkTsQVaTT4KIYQ4SBJCIYToJVuQrXvEMkBZYwVbynaypWwn\n", "OeUaR2cbVW21fLT/Mz7a/xkBlgDS48YzNSmDKUkZTIgdQ4AlwOSjEEL4M0kIhRCijyVHJLIkIpEl\n", "ExfR3tnO9pLdrNi5inJXDQX1xXQ6O9lVuZddlXt5c8f7hAaFkJWYzpSkDKYmT2JEeKKMXhZCDChJ\n", "CIUQoh8FBQSRmTARV3wbWVlZtBkd7CjXbC/fzbbyXVQ2V9PS3sqG4q1sKN4KQFxojDs5TJpEevRY\n", "cw9ACOEXJCEUQogBFGkN5+TRszh59CxcLhflzVVsK9vF9vLd7KjQNLe1UN1Sy8q8tazMWwtAXFA0\n", "GY4tqIQJpMWOZUx0CkEBQSYfiRBiOJGEUAghTGIYBsnhCSSnJXB22qk4nU5yaw90tx7qqlw6nB1U\n", "t9exunAjqws3AhBoCWRMdAppsWOZEDuGtLixjIxIwmLINDdCCN9IQiiEEIOExWIhLW4saXFj+Xrm\n", "EhwdbWwr2clavZGmoFby6gqpdzTS4exgf00B+2sKusuGBNkYHzOatFh3+VFhybhcLhOPRggxlEhC\n", "KIQQg5Q1MJgpiRlYKjvJysrCarVS3VLLvpp89tXkdyeF9g4Hre327vWXu4QFhDCxaRzpCeMZHzOG\n", "tNgxRNoiTDwiIcRgJQmhEEIMEYZhEB8WS3xYLCelzgTA6XRS3FjGvmp3grivJp+CuiI6XU6aO1vZ\n", "Ur6TLeU7u58jPjSWCbFjur/Gx4wmLDjUrEMSQgwSkhAKIcQQZrFYSI0aSWrUSE4ffzIAbZ3t7C3P\n", "ZfWudbSGtJNfX0RJQzkuXFS11FDVUsO6os3dzzEiPJHxsaOZEDuWCbGjGRmSaNbhCCFMIgmhEEIM\n", "M8EBQUyIHYM9uomsrCxsNhut7Xbyagvd3cy17q7m8qZKAEqbKihtqmD1AfegFQODmKBIxjWtIzVm\n", "JKMiRzAqMpmRkcmywooQw5QkhEII4QdCgmxkJk4kM3Fi97YmRzO5tQe670XcX1tAdUstLlzUtNdT\n", "U7ad7LLthzxPQmgsKZHJjIoc4f4e5f4eHhw20IckhOhDkhAKIYSfCreGMTV5ElOTJ3Vvq7M3sLts\n", "L5v2baUz1KC0uYLihjJaO+wAVLbUUNlSw5aynYc8V7QtkhHhidjagyjeX83o2FGMjEwiPiQGi0Wm\n", "wxFisJOEUAghRLdoWyTTk7MIqqa7u9nlclHTWkdxQxlFDaUUNZR1/7/R0QS4E8k6ewMAm+t3dT9f\n", "kCWQ5IhERkYkMcLzvesr3CqtikIMFpIQCiGEOCbDMIgLjSEuNOaQ1kSABkcTxQ2lFNWXUVBbxJ7S\n", "/TQZrd1dz+3ODgrrSyisL/nK80ZYwxkZnsiIyCQSQ+JwNLUSWhdJasxIwoJDZT1nIQaQJIRCCCF8\n", "FmkNJzJhIpMSJmK328mx5JCVlYUl0EJZUyUljeXdX6UN7u/N7a0ANDqa0I4mdHVu9/O9W/Yp4L7n\n", "MTE0joTweBJDY0kMjycxLI6EsDgSw+IJCbKZcrxCDFeSEAohhOhzwYHBjI5OYXR0yiHbXS4XjY4m\n", "T5JY0Z0sFteXUtFcTaerE4DWdjsF9cUU1Bcf8fkjgsNICIsjLiQGo8VJaW4tI6KTSAh1z9MYGhTS\n", "78coxHAiCaEQQogBYxgGkbYIIm0RZCSkdW+32+3s2LGDUWmp1Hc0UdlcTUVzNRVNVVS2VFPRVE1V\n", "Sw2dLicAjW3NNLa5R0kDrK87dDR0WFAICWFxxIfFkRAaS0JYLPGhsSR6tkXIqGghDiEJoRBCiEHB\n", "MAyibVEk25JQ8RO+8nins5Pa1noqmqvcyWJzNaUN5RyoLKLVcFBjr8fpSRib21tprisiv67oiHVZ\n", "A4KJC4khuDOQVMc24sNjiQ2JJiYkqvt7lC2SQEtAvx6zEIOFJIRCCCGGhABLQPfSfZmebXa7nZwc\n", "932LQcFB1LbWU9lSTWVzDZXN1VS21FDVXENlSzVVzTW0OzsAcHS2UdJUDkB+4ZG7pQ3crZmxtihi\n", "QqPd30OiCA8Mo6G5jpDaCBIj44m0hhMcGDwQp0CIfiMJoRBCiGGhZ8I4KeGrj7tcLuodjVQ117hb\n", "F+vL2VecS0BYIPVtTdS01lHbWk+HJ2l04aLe3kC9vYG8usKvPN+/Spd1/z8k0EakLYIoa0T396ge\n", "3yM9360Ed7diCjGYSEIohBDCL7i7pCOJtkWSFjfW3brYltQ93yK4k8amtmZqW+upaa2jprWeWk+i\n", "WGOvp7aljprWOursDbhwdT93a4ed1iZ793KAxxN2IJRwaxgRwWGEB4cSHhxGuDXM/T04lIjgcMKt\n", "7u0RwWEEugJwuVzHf2IhfCQJoRBCCOFhGAYR1nAirOFfGSHdpWsAzJiJY3HQTr2j0dOS2Ei9o5GG\n", "w77XOxppbbcf8hzN7S00t7dQzoklkF1CC2yEBocSFhRCaHAIIUEh7v8HhRAW7P7u/grt3hbgtFDf\n", "3khVSw02pw2j659hYHiO2cAAw8CCAQZYsOBod+BwtmHvcEC7d+fR3uGgzdnudVlfy5lZ53BJ1CUh\n", "FEIIIbzUlTgm2GyMYsRx92/rbKfB0UhFfRU5e3cRNzKeNlc7jY4mmtpaaGxrprmtmUZHM01tzTS1\n", "tdDc1nJIKyRAS4edlg47Vb4EXeBLISD3+Lv0edkhVOdIayKPZWUef8dBThJCIYQQop8FBwQRHxpL\n", "uCWU1rBGskYd7KY+GqfTSUt7K41tzdQ01pKzbxcJIxNpp4OW9lb3V5v7e3PXzz22da0/LfpXfUfj\n", "sLgvVBJCIYQQYhCyWCzu+wqtYcQERWIPazqhRLKL0+mkpaOV2qZ6duldpKWlEWwNxuVyub9w4e7t\n", "dOF0ucDTHtn1mN3hIDc3l/HjxxEc7N0o6ra2NnJz87wu62s5M+tsLKoj0DL00ynTj0ApNQN4AcgE\n", "9gI3aK3XHWG/7wCPAonACuD7WuuKgYxVCCGEGCosFgvhwWEEhgZQERzNyIikE04mwX2vZFtpMxNj\n", "x3lV7mDZFq/L+lrOzDpzSnO8KjNYWcysXCllA94HXgKigN8D7ymlwg7bbyrwHPAtIB4oA/4ysNEK\n", "IYQQQgxPpiaEwOlAp9b6Ba11p9b6L0A5cO5h+10BvKO13qC1tgN3A0uUUkeYaUoIIYQQQnjD7IQw\n", "A9h52Dbt2d6T6rmf1roGqPFsF0IIIYQQvWB2QhgGtBy2rQUI9XE/IYQQQgjhJbMHlTQDIYdtCwUa\n", "D9t2pOQvFGg60YocDofXwXWV8basr+WkTqlT6pQ6pU6pU+oc/nUORoaZM2wrpZYAz2qtJ/TYtg14\n", "QGv9To9tjwMJWuvve36Ox32vYbzWuvZ49WRnZw+PacSFEEIIIXph1qxZxpG2m50QBuOeG/xx3FPP\n", "XAU8BozTWrf22G8a8BlwHpANPAMka60vGPCghRBCCCGGGVPvIdRatwFfA74DVAM3ARdqrVuVUs8p\n", "pZ7z7LcVuA54GXfLYDJwjTlRCyGEEEIML6a2EAohhBBCCPOZPcpYCCGEEEKYTBJCIYQQQgg/Jwmh\n", "EEIIIYSfk4RQCCGEEMLPSUIohBBCCOHnJCE8AUqpI07ieLz9lVLGiZb1to6Beq7BpDfH1VfnxJvn\n", "MSNeM373fXGc3rxWhrrBfpyD4XU2EHWaGau317tSKqD/ohLCw+Vy+d1Xenq6pb/LpaenB3r53Dek\n", "p6ffm56ertLT042BOs709PSJXfX1+G7xJgYf9vepzt6eo8PLpKenG76ea2+vIV/Ora/xdl17Pc9x\n", "f/4+++A4vXqt9OYa6ovfZ2/qGSp19vYa6ovfi5fnZ8i8Vny83v+Wnp7+/fT09NG9vQa8Pbd9VVbq\n", "HPxfw3oeQs+nqgnAWGAisAtYobU+5kErpSye/WcCClgHLD1eOU/ZcGA+cAHgBP6ktd552D7G4c+l\n", "lLoceA1oAzYBrwDva61LT6BOn+JVSk3BvUzgpcer4whlo4DRQI7W2tlje6DWuqOf6vTpHCmlQoAZ\n", "wHRg5eG/j+OU9fXc2oDJnrIfa62rvKjTp3g9195pwBzgD17W6evvszfH6etrpTfXkK/vCT6dH88+\n", "vl5DvanT1+PszTXk07Xga6yeskPpteLT9e7Z/hbwTcAOfI57kYZPtNY1x4m1N+fW12tI6hyihntC\n", "+GPg20AcsBH3L84JfAi8prUuPMofnBtxv/iigR3A2bhXSPkf8ILW+sAxXri/8Oy/B7ACzcAPAIvW\n", "uvMYsdqApbiX8JsJfA+IAD7C/eL/XGtdd5SyPsWrlPob4NJaf1cplQjMAy72nKMXtNYblVKWnm96\n", "PcreBPwQeB/IAdZrrfcppazAaK313iOV7WWdPp0jpdT9nnOigH979v0a7uviL1rrzcf4ffp6bu8B\n", "zvEc3yvAm8BlQCfwotZ62zHq9ClepdSjwPmeul7A/cduCWAAr2qts49Rp6+/z94cp6+vld5cQ76+\n", "J/h0fjxlfb2GelOnr8fZm2vIp2vB11g9ZYfSa8Wn691T9gzgZuAPwJW4r6cO4D/A34C1Wmv7Ecr1\n", "5tz6eg1Jncepc7Aa7glhHe4X+Tbcy92NAWZ7vgqB+3WPNZN7lKsCzsSd8ScCjwAjgErcb+T3aK0d\n", "R6mzCpjveVOYhvtN/0Gt9Uuexy8CnFrr93uUMbTWLqXUX4E8rfXPPdvnA10XXa7WOu0YdXodr1Kq\n", "BDjV82b2MjAJ2Ir7zWoscNPRPnErpU4B3gK2AzWAC1iL+1N3vtb69qOU86nO3pwjpVQ1sBD3utnr\n", "PbHuxf1pewRwm9Z6x1Hi9fXc1gALgAZghecc5eJ+E48CbtVa5x+lTp/i9Vzvsz3n9k+4W012eR4e\n", "66lzy1Hq9PX32Zvj9Pq14tnem+vW1/cEn85Pj+P05RrqTZ2+HmdvriGfrgVfY/WUHUqvFZ+ud89j\n", "IcBu3Nd9gWfbBcCNnnP3qNb6/qMcp6/ntjfXkNR5jDoHq2E7qEQpNR2oADZrrVu01rla6xW4P2E9\n", "C3wd+NERys0E6nB/8mvXWhcCtwKtwF9xfzL73lHqnIH7Db4Autdg/jVwg1Iq0LPbY0DwUcJ+Evcb\n", "DUqpAK31Wq315VprC3DE7jFf41VKnYP7Is5VSkXj/lS9BHdydSfQAlzTI+5DaK2/wP2HLdkT8z7c\n", "b8znA2OUUrcrpeL6sk5fzpFSah5QrbXeBUQCU4AzgKuAuwEHcNWR6uzFuZ0PVHrqdAFpwLm419++\n", "D3dL0ZXqCDeV+xqvUmoikA/UKqWScSfIpwHXA/cCtcD1nlaMr/Dx99mb4/TptdKba8jX9wRfz4+n\n", "Tp/fT3pRp6/vfT5fQ75eC735nQyx14rPfxs8j7fjbm2tUEoFeZ7jfa31uYAN+N0RyvXm3Pp6DUmd\n", "x6lzMBuWCaHnTUfjbsa967CH7Vrrz4EbcL+AD5fv+fqRPtjkfykwQmu9DPg/3H+EjmS/p94f9tj2\n", "LhADTFRKjQNGaq3/1bNQV5Oy1joH96dbtNadSqmgrjcLrfXmo9Tpa7xVuLtf/4D7zW251roed1dc\n", "FfAQcLo+xj0xWutngU+AZM+n0w88z1uE+9N39RHq/NCXOg87R/t6nKPgHm+QRzpHB4AcpdSLuO8/\n", "3NEVl9a6BLgf96fuIx1nPr6d21ygSil1GlAPXK7d9/p0eBKCnwKL9ZG7EgqAHd7E67ne9+G+N+1u\n", "3H9UXvJ8Ou3QWhcDDwKLjtQS1cWH32ceUO3jce7D3XXm1WsFH69bzznaA2TjThx7Ot57gq/nB3r3\n", "fuJ1nT3e+7w6Tk8L/F7crWy+XEO+XvNdsXr7Pg29f63c5cNx4nl+b6+Frr8N1/fYdiLXO1rrDs8x\n", "rMfdJdnhOZYA5b5vsU0fdg/kYX8DvbrefS0rdR6/zsHuWC0xQ5bnTadVKfU/4FnlHozwDPCK1rrF\n", "0/x+Pu4um8PL1iillgFPKqWuxv0pIAp3yxTA6bg/eR6p3gal1KfAZUqpfwNlWus8pVQOcCHuLq1P\n", "e5ZRSs3F/cmx0vNJo73H87VzHD3ifUIpda0n3ogTiHcTcDtwOXDe/7d37uFyVUXa/yUkkSAX4VEY\n", "DfeBXWBQ8BkHjBMUQUV0QLl4YbzCh6DcEgKKclECgQCK4kxERwifSrgaQEiAyQcKMUggMToqiKUy\n", "DggYvAEmEiXC+f54V5Odffbu7rP7nJz06XqfJw+c7l39rrV27bVrVdWqBfzFzLbzFI4ADkcv/FIk\n", "Q/U5YDbwOTO7FoWLZrn7TDPbpqSty0x5Ru9GidUr2+FMq+uj0WR7obs/a2YbpfF6tnp0wN1/a2bf\n", "RTlmlwDTzGySuy9Ol3yQtGovkW2M7eeSLvweeSJaje3vgXuA37r7X4Br0u818oTeQ4nupWuWm9n3\n", "kH5+DTipVXsbL9l0D76efn+cmd3v7rOTF+QIFFbthzTBjUKendlI99u5n8vNbDHwuxoG8cYRAAAb\n", "ZElEQVT9XGFmC4B/M7NvAU+0elaS3DIz+wTy6rStt2mMnjGzm4Cvmtn70Er+G63mhDRGG6CXcdvj\n", "k3jr6lDdZ6wx980DvpL6OQvlxVX2M2eozUE5ae8GxrSrQ9TUeXdfZWY3Av9pZocD/96qrTnZ5WZ2\n", "JwN4tnPPytWpn4cxgGclyTa8nAN5Vv5sZrcDh5vZXNrQdzPbHPhZauf17n4fSVdMG5VGIf0oG5uG\n", "HtzMGn1vqQedyAZne3q7PmNE5xACmNmmyAvxbmAi8hI8hSb3KV6dO7YrmmgmoEkKFJbaBzjS3Zc2\n", "4Vxrt5mZvQ15M/ZAOSRL0+ebISNnGUpQvg94KBkxhwALK7wOZZwTgTeg/JfZA2zvG4A93f3zpoTp\n", "g1CI5xivyKMpyB+FEp5fDWyTVtmtZPYA9nb3/zCzYxPn5kVOM3s58P+AH6HQ4HHoJToGrchnJW9A\n", "GcfWwErPbTQx5Qt9BFiKditvgHLOftqkrbuiEMCW6MUDbY5t7jdGoQT2LdDkf5y7/6QNuVnIGF6C\n", "wkZN22sKcx0JvBfpg6N8qoeBU93d2+A8GoU7Ku+nmb0JeLG7z09/b+Dy2A6onw253N8HoGdld3LP\n", "Svpua+CZ5Hlq6O0/u/tFrfQ2L5vmhE+gRcnOyCv/FHq5Vs4Jud/6GPIAvCqNT6n+FWQ60qGaz9gm\n", "yAs2oH4mHToeLRZfg3Lr/oa87W3pUPqdtnUhzYVTkN5uj/Ll/kyLebrwG7OREXhv6mPps9KYn81s\n", "HPLQHoryvh5Ec0Lls5KM9Oc9eXvN7BiUxzcR2K7JXNTIgX7hOUl/vxWFiovvhsb3V6UxWQ6sBL6F\n", "PJqVi/Uc52h3fz7p+ylI/3akjbGtKxucA9fb9Qkj0iA0s5ehCXs0stIfR5PZc8De6AV5jbuvLMjt\n", "iYyMJ9IqN//dbijscba7/6KE86XI4zYWPbg/A+71tIMQuB3Yxd23Ttc3HviTgM+hyXpjZBwuRhPy\n", "Hs0MwhznBign6V602+wpk1ftFGB6sb2msM4ngMvc/dvps9HIQ3QoeknNrDAEdkET4IPu/tX02Xjg\n", "RBTymFJ8yadrGveENMb3p39/Ri+eSSgx+rGC3AzgVe7+zjT5fiaNzy+BVyb5o7w8KX8ZStqen/ts\n", "QzT5743CRV/2kpITqZ/HpX5eUvhuIvBpSnTBzCYnudXo/l+SPt8YvXxWowm93+qxRG8fQoZrIzeq\n", "D/iPYnuTHkxL/VmJXmwPo5fbJKQbc7zEm2prvK+/AT7v8r6OQXr1cnefWnE/70Avwcnu/lBugtwY\n", "mMqanaVlY/tGZKhc5u43Nsan8TyaPGqvbDwrObllqNzMLbnPxqUxbaW3a8mmZ9LQ87oXmsCvq5gT\n", "nkBe0FW5z88AtnT3E8vGJ11TV4dqPWMFTnf3WamfO6E8s0novlxb0s/JibMPuBt5pzdDhuQklFd3\n", "bcVzVkvnk9yxaOy/j3b7bpLauzcKPc919xVFziqYduPui3S/9NkuXD8OeBla+L8OzSdXlT0rTX7j\n", "TLS7+KNV96Vw/VgUnu5L/38LJfqern0f8CHgHGBPZHjshhZ6c9Eu9WfaaOM4ZJhPQPmOKyjR98GU\n", "Dc7WnOsbRpxBaGZbIW9bfiJYjVZY8/LGQUGuzFv3v+7+qJkd4u43tOC8DvgjSmrfFj20/wXc6u5z\n", "0oS+c36FbApDjUNJ14uRgXQU8mhuhFaD17j7ghacq4Bt0CrzFmC+u19Z0dZXoMn3RuAraCfe8Wjy\n", "/QNwTtUEYwqn3IomozejF9SBaHz/AFzu7g+UeH3y96QPhToAHgNuaRilFZzXofpil5jZQmTwfip9\n", "Nwn4AnBi0cOS+vkLYNNkqDTKNjyDXvCne/Wus3w/35Lk3olyd37t7p+pkHs52l25II3J4cAl7n5u\n", "bgHQMJzWKkfQYozmu/tNFZxlujcR5WrOc/dry+Ry7S16X9+cvv4bCqcuK7mfjbG9BhlKp6XPW5ZY\n", "KOjfV4GtkFGwAhkd56Wx29mVeF/kLLufv0M7dfuV3Wgie0zq43LgNC9Jz2gxJ3wQ+GGZvifZujpU\n", "6xmrkD0Bbex4Hu3AP7uCs0xvv+zu5+WuGZcWC0W9raXzFXKz3H1mG5z5UOpcd19S1q+SftaSayVr\n", "8sS+xFVmZK1yMy3kGt7ClyCDsp/3NI3TXJR/+Tcz2wItZN4GfBQ4xd2vatLWRqi5Tj/blg3OkYGR\n", "uKnkBOThe7trB9YRaDffKJTvMSN5w15AmnCeRt6nycgouxqYZWanAl9Kk20Vjgf+5O6HuPsHkvxS\n", "NPmfZmbT3X1V8YF39+eSUfJfwMXAhq4E5T8C56IV+mZtcL4/cS5Gk+vpZnZ2sZ8JRwE/cfdpwA7I\n", "oFoF/BZ5or5hZhtVcJ4APOruhwOXpjb2oZfmTsAUMxtbskLO35N3oJDtpUn2XDM716qPZroR5U9d\n", "n9p3J7wQ9lmMvL27VIzPgvQi2h+YiQyOH5PC6iZvYat+fg0ZKc+jzQGvNbPL06qwiI+hxPYp7n4K\n", "CoF9IE0iDcwys01KDKdmY3RekzEq071lSe4sM5tu1UdkHYcMhQ+hBPyLUU2tJ4FXAFPN7EUl9/NY\n", "ZEieDHzYzM4B5daY2Whrvks8r3/bA19E3pzlyON7GQrJFXO4qu7nf6NyD5c3uZ9lsn9BZUN2Ar5u\n", "hR2lLeaETwHTU5spGR+or0N1n7Ey2ZkoteJRYJKZzU4eqSLK9PZDZrZFTne+WKG3dXW+KDcV6VJT\n", "znRfnkTzwMnAjWbmaV7fsaRvreTObSbXDqe7r3BtnKFgDDaT26FxD939qTJjMGElcAbSHdz9T2ne\n", "OwfVYr26RVtv6KCfbckGZ2vObsFINAi3RMYYAO7+hLvf4O5HI0/cfsiLQu6avvSy/SpwPgq1TkYv\n", "jJNRbtvM9DIpw7Yox6thqPwC7UC6Lf3WW0zhwH5I19+NXjxnm9m7gM3dfWZ6yV9Xk3M/9HIvYgPk\n", "UQHl23zb3T+cPBbT0Ut6UgXnrqyZgHZF3s/3u/vpyJiYiPIoiijek9+5+43pnpyBQjylSfnICzUV\n", "Vec/HbjYlH/4vCmctzvQb2ceWkEvT/9/JPKyHenuF6IQ/U4oH2sg/TwTbQYwZEwXMQF5vxphhOuR\n", "5/XIpGMfQjtgy0JgzcboTKrHqEwPliJP0cnIU/TSin5myEMDCttf4e6HuTywX0BV+MvG6MPIm/M0\n", "2txxkJmdZWYbuvvz3vwUjWb6dzYa18klclX383O0vp9lskckXbgQhUV3zwu0mBOmIc/m55vMCXV1\n", "qO4zViZ7i6sk0xnABWjhVCZbprdPAUfk9HbfCr2tq/NFubntcOaMw5uR7h6GcjInA0vM7PtmdlJx\n", "UdtE7l+aybXJec8AOScDS5tx5n5jhbvf6cmD3TCWXTuPlxcN9CHqZ1PZ4GzN2S0YiQbhHODjZvaR\n", "/Krf5Mq/Ea2Y9yoKeWfeum8Dn0zG3GiTN/Eo4GF3vxXlKb2+TNCV3Dza3a9Gtcq+DFyZ2lxaB6vA\n", "eXAF57gKzquA/UyJ8Y+ichGN8MVS5HHbvoLzduR1GotW+J9MsmNdNZhWoyT0Iq4AjjWzIwZyT0AP\n", "obtf6u5fQgnqy9Amn8eQ0XK+F0Lc6QVzBTDBzC5BuZkLcm1djLxSZZ5FkPfrLJOn65hCP+9q0s8b\n", "gFPN7M2uUhB9KNT41vT9B5HnpgxXUK23NzQZo7p6AGu8rzfQ3/t6DwqprjVGZmbIg/fdpDOLUG7t\n", "W9CiaecKrgauAvY15YOW6d8q5PHLc9a+n53I5uaEBfSfE2bQfE7I61DxWbmLah1qJtfsGeuEsxO9\n", "rSvbCSfAQjT2P0xzwyEotH4Hyo9+1yDLNZO9fTA5zWxLM3uPmd1pZreb2RQze62ZvdjXeOFbvbuH\n", "op/DMbYjjXO9xogpO5PcuX3u/j3TsUQfB95lZkvQdv6lpmT2nYH5ZbIA7n63mX0GmG4qTbC55/Ja\n", "KjAPTV5TUJhmFMr9u8cUOnklmjQafNsgpfk/yKiZk75qVLu/LP3drOzMPLQ6OQ6FowCuruJMvKPd\n", "3c3ssyiUvhHwPjN7BFhm2g39jxTCEDlcg0JSq83sT+m/Y4C/m9k/oRzGmwuco9x9kWlzyNHAO83s\n", "PnRPftDknmyNdrG+sNPPtUP0HGS8rExt6beLy5UQ/kUzuxd5c/ZHXrP7Ult3o9qzCMrJeywZ60+2\n", "20/knT0XJak3cCVwvJntg5LC+00W6b4sKuhtyzFKmIdCkicgPRhNE90r4Bq0K/dF6ZovmUp//Niq\n", "va/PoA0cJK7n3P02M1uFNhDMMbPr3P2ikn6OSfo3A3kZN0RlOH6T+lmqf7n7+QOUU7c/Whi0vJ91\n", "Zc3W2hW6KM0J55jZlbQ3J1yLUgD+nntWxtJEhzqUqyWb+nmrmZ3P2np7Fa31tpZsJ5w59AulAovN\n", "bCnKjX5ikOXWJecXUMrGPORJPRJFSZaY2dmuHNKqNJBu6mcvcq7XGFGbSsxs34bnApXceBN6weyA\n", "NnksQYn2/aq6J/kx6FzJZ83sLOQdusrdTzblUlUWKk3y70j/+xTa8XsRMvDucveTctddh4y9J1E4\n", "+iGU53QLqmV0uzVJ0E/92wBtCNkFGfYrEucFqd93ufvUErnR6d9uKMn9LcgjuAWwKPX38qqxAca4\n", "ai01EqI/gLya/w3c5u7nV3COT5wHoFDlDqntS1AI7+KC3FHIwP5OuuYOd/8dNWDaefnX1I5voQd5\n", "vrtPbyHXCM/0tepnTmYMMNZVX60xRl9MfbnNlR9YxTcW6e0b0RjtyJoxqtTbJPuvaAfpU6jG5AWU\n", "6F4T+c1RPt+OyPj8VeK8sKng2r+xMQpTT3CFuptdOwkZZ/uhcO8WKC3g6jL9K8gaygEcxwDuZ11Z\n", "W7Mp4gz0nM5x91PamRMKv9OWDg2W3EBlTZ7E1bm/29LbTmQ74Sz8Tq0zY+vKDRVnmj9WoN3kT+Y+\n", "3xN5n94AvMfdF66LtnYiG5zdhxFjEJrZoaiMxea5zzZDpQRWopfA016o32Rmr0b1o4rnpb4G5SYd\n", "l7waZYeV5z1953nK90sv17+iVe6L0Ev52fTdGJRjs1W65lnk4bkjXX8MOtWgapfwjmjFOAXl4Jzr\n", "Cts1wmN7IQPx7sJE25CbigyMz6LyEobc388Cj7t7v9VNgfOHwAx3vz19tzta5T/q7j+vkJuKjNWz\n", "UPHaVyLv0Gp09NSjJZyvTtcuQCH3UajG03fTeFbtEO7nWUyfj0ahyF3R+aP3FR/iMtncSnx3lIv3\n", "W9dpKe3IjUYGx7bIu3eSu9/RhuxGyEh6EQrbPu1rCi83rtkSlVn5ONKn25AX9KfJM7RPGreFXiih\n", "kZM9Fm18mo+MseeARumLR7x//bYtUS7jMUhfbkU6+HNvXZohz/kMOqXhAfRcPo909omiLhTknkOL\n", "poWotM6mwD+jEO7ikvtZS7Ywts+isb0TedQ/DXzK3X9WMScUZRtj9ADSg+2R97lY16yW3CBxNu7J\n", "giT3oLv/JT2/N6PzgIt6W0t2kDg/zhq9zcuOhrU3dnQiNxycqf+XAUe7+69K2nMhWlyf3OS5Xu/7\n", "2Uuc3YSRZBDORzWwZpjOuDwCxfUXIQ/AnAq549ApJg8jo+wyd78vvZRf6wpBV9X8anj6nkIejl+h\n", "EO5icjXWCjKvRaHe1yEP31Xu/sbc9ycir9DU4gOfvr8ReRbnpP4dDByYf3mb2fiiwZSTuyLJHQIc\n", "4DoHtHHNZq6NAlWcV6DTIQ4B3lngfKGOXAvOt+UNxyaco4D/i2pI3pHGa1dkfK5AL/WZJf2s7Vms\n", "K9uOnJnt5SUlCgqyP0iyywvXlBkec1BYaT7abLIfMnKWAGe5+8+atDcvOwFtPNkEuAvlZPars9lE\n", "rsHZCGWt5fFp0d7xyOg/390fLFtpN+G8L/VzrUXIYMiWyO2HFk0LkM49XHZPBplzXfdza2Tsb4bu\n", "5znufr+Z7ekl5Vnqyg4iZ5X+DUSHmsoNB2cyLL6GaqVORwvXx3Pf74/qhb5qsNraK2M7XJzdhBFh\n", "ENoaN/s27v4HM/sx2hxyD8o3+yRa1V9SIjseeQD+mn7jIJTsvjHKxZrShLPM03c78E/IMOzn6TNt\n", "GLgVhYa/YWY7u/svbU31/P2Ai9x9jwrOPyCP5tPps++g+oUnucJapyFPy+w25B4ApiXe05H36/IB\n", "cE5zhUQHm7MRojsPeRAvSr+3PcqDeh0wzt1PLBmjMs/ig8jg+l7RgBwM2SZydwCLanD+PHEuLJO1\n", "9sJK73VtJGhXdi/0nOyNQlJ3tSnXMpTVBufksva24PxkjnMg/Wwq26Ktn0I7CtcV53D0M38/D3VV\n", "QBgIZ6XsOuDsp39DpLdDxpmu2whFU3ZDxzD+BB2sMAptFnJ3/0RBpqv62Suc3YaRssv4rSj8MNpU\n", "uHO1u5/q7je5+wwUsny9lW9BX4VCYKtQeYkJ6FzCTdHOWDedBFHEHsi4eQYZhYvc/WPufr2rUO+Z\n", "wL9YodaYK+foTNYkzjfCArvYmor/VZsAdkRFhDfNfXYKOpavUWLmVFSEtx25w1AOI+jl8csBcm4x\n", "FJw5z8tngW+mz/7u7r9y97kooXdGSVtBZUHmouK8FyNv7cvRhodvmuozjh9k2Sq5aUluRpnuNZH9\n", "B6SzVZzbpuvWKivk7kvc/d2o7uahRd1rIXufux+KzkIuk22H87CanFXtbcZ5WJO2diLbrK0Hr2PO\n", "4ehn/n4eXoOzmexQc5bp31Do7ZBxJi/TM6gE02zgxSgKdDRyONxD+dzXVf3sIc6uwkgxCB9AOUkP\n", "oR2EvzGzsbkb9Ag6q7ffCRymEJcjL+HxrqOOnkBJ2K9ARy6VHX/0U7Rq+KDrqKyj0u81dm4/ALze\n", "S8K+7n6Pa+PKaNeGhY3QSuNbyEA6ryiT8BAqIH2ZqYI9yBD7NTJ4X4fyzRYNktxwcTYmxtWeO+7K\n", "zEalz//qJaHcxniiMPMf3f27qObbdJSX8zA6UaDM61ZLtk25TSt0r257/xeVa5lrZgebTuLI4zvA\n", "PmW614FscPYe5xs64CyTHWrObhrbKs5GLtrK5Fz4CMpRPwNt9rrQS1JsurCfvcLZVRgRIeMGTJs8\n", "pqGQ7b8hg20nVND41+5+chPZTVHpiW+gxNHLPRcCrZB5PfADzx2vZCpj8ZLUjoe8xLXvCpfmywZs\n", "mNr8P8Byb5KYmpTx7cCVDUPBVK5kE5Rf93hZP+vKDQen5Q6Ah7UKgja+L83fyn0/FhlSxbNTN0TG\n", "WWVeYF3Zdc1pNcJKncoGZ3AG5zrhrMpZH+NNir53YT97grObMCIMQktHeiUj4qXAP7iSk09AeT/z\n", "0Nm1f2zxO1uhvK+JqHRI00PKc3KNnLeNUB2it6JQ5/meyznIt7fOA5+7bqxrJ2nDCN0B7eJ9GcrZ\n", "+81gyg0HZ3GMckZi08PjrTwhuNSwHCzZdc2ZG8uNUemWA1GYeRXaOTsL+EqZJ6GubHAGZ3AOHaep\n", "MsUHUMrSE+hknR8hQ6PPdF7yhSiKVfbu6Ip+9hpnt2HEGITFh8QUun01Kjdxf8VDlPdEjUmGy2TA\n", "3H22NakzZgP09LXxwG+KaseVPvB5zrI+m9mRwEHuXlZAtpbcuuZsY4w2RqWAqibF2p7FurLDyVn4\n", "bALyTP8P8LdWnAOVDc7gDM6h4zSzu1EJpEa5qj60aXGhu19qZhOBg1058YPW1nXdz17j7Dr09fWN\n", "iH9Zlm0wkM/bkBvVAeeYks/uzrLspizLbs6ybH6WZfOyLJuTZdlH0/cTsyw7Y6Ccea4sy1482HLr\n", "knMwxqiEc4N29KAT2fWBs5nuDZZscAZncA4+Z5ZlB2ZZ9svc3+OzLNsny7Lzsyz7UZZl16TPx3Zz\n", "P3uVs5v+dbWHsK7XrRNPVB1OMzsQ+IK775z+Ho8KSL8NuaDd3d9n1TXc2uE8P3EO1CvZT244ODsZ\n", "oyG+n6Wy6ylnZViprmxwBmdwDi2nqfbsJHc/nAKSZ3A2cJpr01nx+67pZy9xdivGtL5kvcY81rjZ\n", "d0Nu9neg0wguRQVwHyu5Wa3ktquQq8u5Ayo6DLxQ6uYu4C4zuwKYbenYvQ76+XiJ27qu3HBwdjJG\n", "Q3k/q2TXR85tO+Cskg3O4AzOoeW8HphmZjNR0ekXct1dBY9/gRbFdea+9amfvcTZlehaD2Fdj1KH\n", "nqi6nBPQMTdXU3jg0/ffRAWaT+3yfnbCWWuMurCfwRmcwRmca8HMDkB1WZ9FJc8WIgNwJ1S0/jB3\n", "XzwYbe2lsR2u+9m1GO6Ydd1/WZadmGXZ1RXfTcyy7N4sy/YdLLlBkD0gy7I7syxbkGXZBVmWvT3L\n", "sg2zLNsty7LHsiyb1O397ISz7hh1Wz+DMziDMzgrrtsuy7IpWZZ9PcuyhVmW/SnLsh9mWfaZwWxr\n", "L43tcN7PbvzXzYWprwcmmdlMMytWEH8AFUHefxDlOpJ199uAj6Bj67ZCp3s8jsrT/Gdx9del/eyE\n", "s+4YdVs/gzM4gzM4+8HdH3b3LwHHo2LUewGHu/vZg9zW4epnr3B2Lbo2ZAz13OydyHUqm/uNjVEd\n", "o1HAaHf3kdLPwRif9Dttj1G39TM4gzM4g3Mw0G397BXObkVXG4QAZrYd8C7gNWhjwqvQUTPfbrKy\n", "qi3XqWxddFM/u2l8OpENzuAMzuAcLM666LZ+9gpnN6LrDcIGBup161SuU9m66KZ+dtP4dCIbnMEZ\n", "nME5WJx10W397BXObsKIMQgDgUAgEAgEAvXQzZtKAoFAIBAIBAKDgDAIA4FAIBAIBHocYRAGAoFA\n", "IBAI9DjCIAwEAoFAIBDocYRBGAgEAoFAINDjCIMwEAgEAoFAoMcRBmEgEAgEAoFAjyMMwkAgEAgE\n", "AoEeRxiEgUAgEAgEAj2OMAgDgUAgEAgEehxhEAYCgUAgEAj0OMYMdwMCgUCgF2Bm+wInAhsCzwNf\n", "cfd5w9uqQCAQEMIgDAQCgSGGmZ0DHAgc5O6PDHd7AoFAoIhRfX19w92GQCAQGLEws/cCVwJ7uPv9\n", "w92eQCAQKEMYhIFAIDCEMLOfAlsC9+Q+vsndvz48LQoEAoH+CIMwEAgEhghmthnwJHCBu396uNsT\n", "CAQCVYhdxoFAIDB0GJf+u3xYWxEIBAItEAZhIBAIDBHc/ffAI8B2w92WQCAQaIYwCAOBQGBocRbw\n", "HjPbovGBme1rZuOHr0mBQCCwNiKHMBAIBIYYZvZ+4BDg18AmwPfd/ZvD26pAIBBYgzAIA4FAIBAI\n", "BHocETIOBAKBQCAQ6HGEQRgIBAKBQCDQ4wiDMBAIBAKBQKDHEQZhIBAIBAKBQI8jDMJAIBAIBAKB\n", "HkcYhIFAIBAIBAI9jjAIA4FAIBAIBHocYRAGAoFAIBAI9DjCIAwEAoFAIBDocYRBGAgEAoFAINDj\n", "+P+xG2rdYVe1+gAAAABJRU5ErkJggg==\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x117a6bf90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "acc_ratios = np.array([pool.ratio for pool in pools])\n", "plot(acc_ratios, label=\"ABC PMC\")\n", "plot(2 * np.array(eps_values), label=\"analytic\")\n", "xticks(np.arange(len(eps_values)), [\"{0:>4.3f}\".format(eps) for eps in eps_values], rotation=70)\n", "#semilogy()\n", "ylabel(\"acceptance ratio\")\n", "xlabel(r\"$\\epsilon$\")\n", "legend(loc=\"best\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from scipy.special import erf\n", "def p_theta_eta(theta, eta):\n", " phi = lambda t: (1 + erf(t / np.sqrt(2))) / 2\n", " ybar = np.mean(y, axis=0)\n", " return 1. / (2 * eta) *(phi((ybar - theta + eta) / (sigma / np.sqrt(n))) - phi((ybar - theta - eta) / (sigma / np.sqrt(n))) )" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def get_ticks(ticks, num=7):\n", " return [float(\"{0:<.2f}\".format(tick)) for tick in np.linspace(ticks[0], ticks[-1], 7)]" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from scipy.stats import norm" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAA30AAASqCAYAAADtFgKgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8FHX+x/HX7G52s7vpjZAEQv8qglhP7IiIZz31ztOz\n", "+xMbKiIqdsWCvZ56et7peXZPPRv27qnYO8hYIIUSSgIEElJ3fn/MZkkgJAuZ3dnZ/TwfD4w7Ozvz\n", "2STvnUz5zFczDAMhhBBCCCGEEMnJZXcBQgghhBBCCCFiR3b6hBBCCCGEECKJyU6fEEIIIYQQQiQx\n", "2ekTQgghhBBCiCQmO31CCCGEEEIIkcRkp08IIYQQQgghkpjs9AkhhBBCCCFEEvPYXYCdlFIPA6W6\n", "ru8XfjwSGKTr+qsxXm+X9SilQsBxuq4/Ecv1dlq/G7gOOBHIBF4HztJ1fVkirjv8/fqxm6f20HX9\n", "k96Waef7FSmds37AzcB+gB/4DDhf1/U5cVj3luSsDLgDGI95QPB1YJqu60vCz2dhvp9DgHRgVvj5\n", "2vDztr1fkbo526CWscBHwHhd1z+Mw/q2JGc95iSKnPX4vIi9VM6aUmoSMB0oA+YCF+q6/l4c1huL\n", "rPW4zdtgWXH9bImVVD/TZ4T/dXgR2CkO691wPcXAc3FYb4cZwAnA8cBemOGN1/q3ZN2jgRWY36fO\n", "/z6Pcplbsk5hnZTLmVLKBTwPDAMOBXYDVgPvKKXy4lDCDDbjd14ppQGvANnAOGBvoD/wcqfZnsHc\n", "eJ4YXmYu8J5SypMA71ekYM46U0oFgUcBLY6rncHm5SyanGwyZ1E+L2IvJbOmlDoRuAe4HhgFfAC8\n", "pJQqj8PqZ2Bd1nKj3OZ1LMuOz5aYSPUPCY2Nf4jx+qFG1hPPM05KKS8wBThH1/V3wtOOBhYopXbV\n", "dX12Aq57FDCnu+9TL8scC3wNnAucHe/3KyJSLmfAGGAssLWu6zqAUup4oA44CHMDEhNbmLMiYA5w\n", "sa7rVeHX3AE8r5TKBgZj/qE5Xtf198PPHwMsAv4M/IRN71dEpGLOOrsdqAaGxmNlW5izHj8XlFI/\n", "0EPOlFJze3oeiPvZ1RSVclkL7yRdDdyo6/rD4WkXYJ4l2wOojOG6Lc8a8BY9bPN0XV/daVlx/WyJ\n", "pVTf6YPw0Rql1PuYP9CrlFIn6ro+RCmVC9yGeZRAAz4FztN1/efwa0LAtcAp4eXshHnk5QZgVyAA\n", "LABm6rr+aA/riZyiV0rlYx5FOQjzCN5s4AJd17/ttM5TgJOBnYFlwHW6rv+j4w2FLz3YW9f1wd28\n", "3+0wT42/3zFB1/VKpVQFsGd4fVssRusehflHZXd6WuZeQAjI2IJ1CmulWs4qw8v+ecPvAZCz2d+9\n", "DVidM13XlwLHdFp+GXA68Lmu66uVUsPDT33c6TVrlVK/Yh4hfZ0Yvl8RtVTLWcc8BwIHAAcC32/x\n", "d2/j5fa07i3ZnvX2udBbzlp6eV52+uIn1bKmgIHA0x0TdF03gO239BvYZeHxzVpub9u8TtNj8tli\n", "l1S/vBPWHzU5HKgAbgV2Dp8afhUziBOB3TF/iT4KB7rDJMxfhsOBNcCbwELgd5iXJX4I/EMpVdTd\n", "ejoXEr5m+S1gR+BIYBfMyxo/2OD0+U3AX4Gtgf8C9ymlBnZ6fgqbvtSgLPx10QbTF3d6LipKqeOU\n", "Uv9QSt2mlJoYw3WPAgYppWYrpZYopd5SSnV873pa5oA+rFNYK6Vyput6na7rr4U3ip3n94drj1oc\n", "c9axvheAKszvy2mdXgvmRr9jPg9mxgqtfL+iT1IqZ+H1FAD/DNe+alPz9SYeOYsiJz3mLIrnRfyk\n", "WtZGhL/mKqXeVUotVUp9oJTadRPzb1KCZK1zPd1t8yz7bEkkcqYvTNf1lUqpdmCtruu1SqkJmL+A\n", "ebqurwnPNlkptS/m0YAbw9Me1nX9ewClVCFmIO/Wdb0pPO0GzF+Y4cCyDdezQRn7Yx7RGKHr+q/h\n", "1x8P/ApMBi4Kz/egruvPhp+/CvPyxZ0xf2nRdb2+h7caAEK6rrdvML0Zsyk8Kkqps4HBuq6f2nm6\n", "1etWSvkxLy1bAlyAeaTzbMwPsx2iWKZ/c9cpYieFctaFUupQzKOwt3VcahLl6+KSsw1cDswMf31L\n", "KbU9Zv/sPOD+8PeqHrOpPgfwdlP3Fr1fYY0Uy9nfgRd1XX8zfLR+s9mUs41yopSaT885+6KX50Wc\n", "pVDWssJf/w1cgfl7eCrwrlJqe13X50Xz/UqUrG3w9EbbPF3XF2PBZ0uikTN9m7Y94AYWK6XWdPzD\n", "3AHZqtN88zv+R9f15Zi/JCcppf6ulHoH+DL8tDuKdY4CajtCG15mK+Ydh0Z1mu/nTs93BCXaD/x1\n", "gCt8NKozH9AQzQLCH1AzgXSl1B1KqStjtW5d19dhftiM13X9Y13XvwBOwvy+TwYae1jm2i1Zp4ir\n", "ZM1ZhFLqJOBZ4Cld16dvxuvilrPOdF3/MZyzozG/nyeGvz9HYF42tBioBYLAG5jN8Z3rPokteL8i\n", "ppIyZ8q8scR2mAcEO4u6v8qunHWXk95ytjk5FLZJyqwBreGv1+m6/pSu69/qun4W8AtwZjQLSKSs\n", "ddbdNs+Kz5ZEJGf6Nq0Fs+HzdxtM1zB3Jjqs6/gfpVQJ5rXF1Zh3AHoJ8wzVl0SncRPTPawPHJhH\n", "NzYU7S9idfhrf7qeKi8FXohyGXsCS8KB3xxbtG5d1xs3eGwos6G9rIdlloQfW/F+Rewka84AUEpd\n", "htm7cbeu6+duzmuJY87ClxCN13X9qY5puq6vU0r9hpklwkdydwpfotSi63qDUur7zsvs4/sVsZOs\n", "OTsRcztQo5Tq/LrXlFIP67o+OYplxHV7Bj3npLecRZNDYatkzVrH7/gPG0yfBwyKchkJk7Vetnml\n", "mDdM6utnS8KRM31ddb72dw6QB2i6rs/XdX0+5vXUMzF/cbvzF8ybhuyp6/pNuq6/wvrr7DsHy9jo\n", "laa5QL5SquPa6Y67Fu0cfs4K32FePz6u0zoGAeWY15BHo53uPzwsX7dSakel1NrwpZwd09yYR2Dm\n", "9LDMQeFlfr+56xQxlwo5Qyk1HXNjc/kW7gDFLWeYeXlCKbVjp9dkYzbvz1VKZSql3ldKbaPr+srw\n", "H5pDgW0I90dY8H6FtVIhZ8dh9ieNCf/bPzz9FCDaswjxzFmPOVFKZfWUs96e34L3IKyRCln7GvOs\n", "WmRnVpl39BwJ/BblMhIma/S8zZsDHEvfP1sSjpzp62oNoJRS/XVdf1sp9SnwH6XUVGAp5nXRB2OO\n", "F9KdKsxLEf+klPoc8xflVsygdr7uuPN6IoNA6rr+rlJqNuYv4hTM6/UvDS/zgWjfRPgX1xu+ZKAL\n", "XdeblVJ/A25VSq0AlgN/A97Xdf3z3l4f9iFQpJQq0HV9RTj4fl3XG2Ow7m8xL0n4u1LqLMwPnYsw\n", "P1Tv0nW9JYpl9vi8iLukz5lSalvM/oEHgQeVUsWdnq7vLSth8czZF8D/gH8qpU4D2jB7T5YB/w6v\n", "0wPcGf6eZQL/Al7Tdf2jaN5vz99NEQNJn7Nw303neTvubrlI1/UVvb0+LG45iyIn9T3lLLyMHp8X\n", "tkiFrDUqc0iDmUqppcCPmC02g4H7ent9WMJkjSi2eRt8bzb6bHGihDvTp5SaEcfVbTjA5u2Yt2b9\n", "Lvz4MMw9/hcwj3IMB/bXN2hY7ahZ1/VngDuBuzGHGJiCeSRyHl3vShRZT/iXvrPDw/O/gnm6Pxfz\n", "6E/FZryvuzCv5d6Uy4HHMe/e9C7mrYH/tMHrN7lDpOv6SuAo4Dql1GTMox7Zm7nux3pYd+T1utm4\n", "exDm9+Rl4BvMI2B7dQpeb8vs7fmYi/Pvda+cmDMw63ZIzo7C/Hw9BajB7L/p+De10+sTJWcGZq/Q\n", "t8AszFtjl2LeQrtj43cU5uVJszEHCX4H805xG77fJZt4vzGXaDmDuNaUijnb0DQ2PhuSMDmj+5x0\n", "fJ3aaZ5N5Sya5+Mi0bLmxG2a0/521HX9SuAWzAMN32Pe7XKiruu/dHp9omat83Zp6ia2eavous3b\n", "0KbOtMaM5b/XhmEk1L8RI0YYdteQCjX3VPeIESO0ESNGfGx3fanwvZZ6kr9uJ+Ys2b7XUlPy17yp\n", "uiVnqVF3otWTrDX3VHciZy3Zvtdb+i/hzvSJhHAB8LzdRQiR5CRnQsSe5EyI+JCsJTjp6RPduVM3\n", "b/crhIgdyZkQsSc5EyI+JGsJTs70iY1IaIWIPcmZELEnORMiPiRriU8zjLj3JW6SUsoHNAHDMG/t\n", "6hQLMO9g5DROrNuJNbuBX4F0Xde35HbFlnJwzsCZP38n1gzOqzuhcgaOzprTfvYdnFi3E2tOqKxJ\n", "zuLOiXU7sWbLc5Zol3fuHP76q61VbJkFdhewhZxYtxNrBvP3OxFuq+3knIEzf/5OrBmcWXei5Ayc\n", "nTUn/uzBmXU7sWZInKxJzuLPiXU7sWawMGeJttO3BODxxx+nuLi4t3nFFmitrSXUsBYAo72d9MFD\n", "bK4o+dXU1HDsscdC+Pc7AUjOYsxoa6O5qhLNY37EurNz8GRn9/Iq0RcJmDOQrMVcy6JqjPYQAC6f\n", "l7R+/W2uKPklYNYkZxZr+uVnGr7/lsDW2+DKyOh2HtmuxVYscpZoO33tAMXFxZSVldldS9JpXb6M\n", "2k8/wjdgIH61NaG2NvylpWjahsO9iBhJlMtOJGcxVnnhubgaGymZdhEArtxc0nLzJGvxkSg5A8la\n", "TNU+9x+aXnyOwpNOxVc+CLxefLJNi6dEyZrkzGplZTQNHgThAyrdceXkkpYn27U4sCxnciOXVOJy\n", "487IQEtLw2hrY+Hl01k0c4bdVQmRdEouv5p+p04GYPkjD1Fx+smE1q61uSohkkvuwX+g5JIr8JYN\n", "oOH7b6madjar33jV7rKESA493PKj9pknqTjjZNqWLY1fPaLPEu1Mn4ihtPx8svc7gNCaegzDYMDM\n", "W/CPUHaXJUTScQeCuPx+AAqOPxlPfj7uzEybqxIiubh8Ptz+AEZ7iMDoMWTccS++sgF2lyWE4635\n", "9BPWfj6brD33wZ2VtdHzeX86mqJTJ5OWn29DdWJLyZm+FCWn44WIsfCdkSVrQsSe5EwI67iDQdzZ\n", "OeDufjdB8uZMstOXQlqX1lD3/DOs038CwDAMEmnIDiGSRdXF06i5587IY8maENarfeYpqq+8hObq\n", "SkByJoRVAqPHkLXnONzB7m/iAmAYIcmbw8hOXyrxeMI9fV6MUIiFl09n4TVX2F2VEEmn9IprKZp0\n", "OgDLH/83FaefTHv9apurEiK55B56OCUXX463pIzGH7+natrZrHr1ZbvLEiLp1T3/LBVnnkLLooV2\n", "lyI2g/T0pZC0/AKyJ/ye0No10tMnRAy5g0Fc/gAABcecgCc/H092js1VCZFcXD4f7kAQoz2Ef5vR\n", "lN9xD76ygXaXJYTjrfn4f6z98nOy9tm327N9uYf9kYKTJuEtKLChOrGl5ExfipLrsYWIoU6XvEjW\n", "hIg9yZkQ1nFlZODOzkZzubt9XvLmTLLTl0JaltZQ98KzrPtZB8AIyfXYQsRC1UXnUXOv9PQJEUsr\n", "nn6CqisvoWVhNSA5E8IqwTHbk7XXPpG7UHdH8uY8stOXQjSXG3cwA82bBsDCKy5i4YzLbK5KiORT\n", "euV1FP2f2dO34slHzZ6+VSttrkqI5JJ32B8pufhy0vqX0Dj3R6qmncOqWS/aXZYQyaGHHbqVs16k\n", "cvIpNC+YH8eCRF9Z0tOnlMoFbgUOBNKB2cD5uh6+TaRICGmFhWTvZ/b0AZRddxMBtbXNVYloSc6c\n", "wxUIRI6Q5h99HP3OOhdPbp7NVYloSdacoaOnj/YQ/q23kZ4+h5GcJa76D9+j4ZuvyZ4wEVf6xmf7\n", "cg46lPxjTsBbWGhDdWJLWXWm75/AWOAIYFegCXhdKeWzaPkiBjRNk1PzziI5cyDpfXAkyZrDSM4c\n", "SXKWoFwZmeag7FpP4/TJ349OY9VO33jgb7quz9Z1fR5wOTAAkNNICaRlyWLqXniGpl9+BuR6bAeS\n", "nDlE1fSpLL3v7shjIyRZcxjJmgOsePIxqq+8hJbFiwDpU3cgyVmCythhJ7L2HIfLt+n9b/kb0nms\n", "2umbDRytlCpUSnmBU4A6QC72TSCax9O1p+/KS1h45SU2VyU2g+TMIUqvuo7CkyYBsOKpx6g442Ta\n", "alfYXJXYDJI1B8g74kizp69fMevmzaXq/CmsfOm/dpcloic5c6hVr8+i8qxTafp5nt2liM1g1Th9\n", "xwLvAkuBdqAR2E/X9XqLli8skFZYFO7pWwtA2dXX45eePieRnDmEOxikvaOn76hj6XfmFNLypKfP\n", "QSRrDuDy+XD7gxAKka62pvz2u/ENKLe7LBE9yVmCWv3e2zR+9y3Z+x+Ay7vx2b7s/Q8i78hj8BYV\n", "2VCd2FJWnel7DPBjNuPuDrwBPKeUKrVo+SIGtE1cqy0SluTMgaTXyJEkaw4jOXMkyVmCcmdk4s7O\n", "hk3kSvLmTH3+q18pNRY4ADhB1/XXdV3/HDgGsyH3vL4uX1inZfEi6l54lqZffwHkemwnkZw5S9UF\n", "57L07/dEHkvWnEOy5hzLH/831VddQkvNYkBy5iSSs8SWsfMuZO6xN6407ybnkR5a57Hi8s6O+yN/\n", "2TFB1/U2pdQ3wNBNvUgpNQO4yoL1iyhp7vA4fWnhnr6rLyN98BAGXn+rzZWljAVKqQ2nXa3r+owo\n", "Xis5c5DSGTNpXbgQgNr/PEnD118w+J4HSOtXbHNlKaEvOQPJmmPk/+loAtvtgCvNy7qf57H8oQfI\n", "/8tx5B/xZ7tLSxWyTUtRq99+g9Vvv0HZldcSGD3G7nKSXV+3aRFW7PT9Ev46BvgGQCmlAdsAr2zq\n", "ReFiZ3SeppQaBCywoCbRjbR+xWRP+D2hhnBP31Uz8Y/Y6BdJxM5gXdcrtvC1kjMH6dzTl3fk0RSd\n", "Npm0/Hybq0oZfckZSNYcIzJOXyhE+nBF+W134xsoPX1xJNu0JLXq7Tdo/PF7cg84BM2z8a5C1r4T\n", "yT3sj3jlQGY89HWbFtHnyzt1Xf8GeBN4WCm1u1JqK+A+oAy4u8cXC1vJNdnOITlzmE5XvEjOnEWy\n", "5kySM2eRnCU2d2YW7izp6Us2Vt3J40jgQ+AJzFvwDgH21HW92qLlCwu0LFpo9vT99isAhiHXYzuM\n", "5MwhKi+YIj19ziZZc4Dlj/6L6qsuoXVpDSA5cyDJWYLK3GVXsvbYG83t3uQ8kjfnsWTIBl3X1wDn\n", "hP+JROV2485Y39O36Jor8A4op/ym220uTERDcuYcZVdfT+sic8Do2mefouHLzxn01/vx9i+xuTIR\n", "DcmaM+T/+RgC2++Iy+uj6ZefWfbg/eQfdQz5fzra7tJEFCRnzlX/wbusem0WJRdfQcaOO9tdjoiS\n", "VeP0CQfwFvcne9/9CTU2AOYA0v7h0tMnhNXcgU49fX88iqJJZ0pPnxAWi/T0GQa+YcOlp08Ii6x6\n", "41Uaf5pD7kF/QHNtfFFg5l77kHPgoXiLpafPSWSgthQm12QLEXtmzuQSGCFiSbZnQljHnZWFOyur\n", "554+ubTTcWSnL4U0V1dR9+JzNM3v6OkzMEIhm6sSIvlUTjubZf/4W+Sx9D4IYb3l/36Q6hmX0rp8\n", "GSB96kJYJWPs7mZPXw8HU2S75jyy05dCNI+nyzh9i669iupLzre5KiGST9k1N1Bw3MkA1P33P1Sc\n", "eQqtixfZXJUQySX/qGMpmX4ZnvwCmn77laoLzqX2mSftLkuI5NDD/tyaj/9H5blnsPbTT+JXj+gz\n", "6elLId7+JWRP6NTTd/nV+IePsLkqIZKPO5gR6enLPfxICv/vNNLyC2yuSojk4kpPX9/TN2Qo5bf9\n", "Fd/AQXaXJYTjrXr1ZZp+/Zncgw/r9vmM3fYge7/95eZkDiNn+lKY5pIeCCFiTXqNhIg9yZkQ1nFn\n", "ZePOzNrk89LT50yy05dCmqsqqXvxWZoq5gNyPbYQsVIx7SyWPXh/5LFkTQjrLXvoH2ZPX+0KQHIm\n", "hFUyd9uDzD326nEeyZvzyE5fCon09HnMnr7FM6+mavpUm6sSIvkMuPYmCo47CYC6F56j4sxTaFko\n", "4w0LYaWCY443e/py82iqmG/29D31uN1lCZEcetifW/v5bCqnTmbN/96PWzmi76SnL4V4S0rDPX2N\n", "AJRcdhX+YdLTJ4TV3MEg7enhnr4/HEHBiafgLZCePiGs1KWnr3ww5bfeha98sN1lCeF4K2e9SHN1\n", "JbkHHNLt88Gdx5K113i8paVxrkz0hZzpS2HSAyFE7EnOhIih8OVlkjMhrOPOjqKnTziO7PSlkObK\n", "BdS9+BzNFQsACIVkTCMhYqHi3Mkse+jvkcfS+yCE9Zb+836qZ1xGW10dIDkTwipZe44jY+zuPc4j\n", "42I6j+z0pRDNk9ZlnL4lN15L1QVTbK5KiOQzYObNFBxzAgB1L/2Xysmn0FJZYW9RQiSZwuNOomT6\n", "pbhzcmiurKDqwqmseOIRu8sSwvl62Zlr+OZLKs87i/p334pTQcIK0tOXQrylZWTvO5HQunUA9L/4\n", "SgIyTp8QluvS03fI4RQcdzLewkKbqxIiuUR6+gDvwHLp6RPCInUvPEfL8qXkTjyw2+cD2+1I5q67\n", "4y0dEOfKRF/ITl8Kk3FWhIiRTrGS3gchYk+2Z0JYx5OTQ/u6hk0+L9s1Z5LLO1NIc8UC6l78L83h\n", "y8yk/0GI2Fgw5XSWP/zPyGPJmhDWW/r3e82evtWrAMmZEFbJ2ns8mb/brcd5QiHJm9PITl8q8Xhw\n", "Z2SgecwTvEtuvo7KaWfbXJQQyWfg9beRf/SxgHnr68qzJtE8/zebqxIiuRSeeAolF16KOzOL5uoq\n", "qqafx4pHH7a7LCEcr7dducYfvqNq2tmsev2VuNQjrCGXd6YQX9kAssdPJNQU7um76DICQ6WnTwir\n", "uYNB2teaPX05Bx1K/jEnSE+fEBYze/oCoGl4ywZQfsud+AYNsbssIRyv7rn/0L56NdkTJnb7vH/U\n", "tpTfcQ++soFxrkz0hez0pTDpgRAihsI9D9L7IETsSc6EsI47JwejvW2Tz0venEku70whTQt+o+6l\n", "/9JcVQlI/4MQsWCEQiw45zSWP/LQ+mkynpEQlqv521+pvvpy2tesAWSbJoRVsvaZQMZOu/Q4jyFj\n", "PTuO7PSlkMg4feGevppbbqBi6mSbqxIiyWgaA66/jfw/HwPAyldfovKsU2n69RebCxMiuRSdfCol\n", "F16KKxikZdFCqqafx/J/P9T7C4UQveh5Z27dT3OoOn8KK196Pk71CCvI5Z0pxDdgoDlOX0dP3wWX\n", "4h86zOaqhEgumqbhzsggtK4RgJwDDiH/6OPwFhbZXJkQycXl90d6+tJKShl4y52kS0+fEH1W+58n\n", "MVpayB63b7fPp281kvLb7sY3sDzOlYm+kJ2+lLP+6I1cky1E7EnOhIg9yZkQ1vHk5BJqkHH6ko1c\n", "3plCmn771ezpq66KTAvJ9dhCWMpobaViyumseOzh9dOk10gIyy25+w6zpy/8x6nkTAhrZO87keAO\n", "O/U4j/SqO4/s9KUQLa1rT9/i226kcsoZNlclRJLxeCi7/lbyj/wLAKten2X29P08z+bChEgu/Sad\n", "Yfb0+f20LFlM9fTzWP6vf9hdlhDO18vOXNOvv1B1wbnUPft0nAoSVpDLO1OIb2B5uKevCYD+500n\n", "fdhwm6sSIrl09PQRzln2/geRd+QxeIukp08IK7n8flx+P5rLRVpxfwbefCfpg6WnT4i+WvHU42ge\n", "N1l77N3t876hw6SH1oFkpy+FaS450StErEnvgxCxJzkTwjqevFyMtvZNPq9pmmTOgSzb6VNKTQKm\n", "A2XAXOBCXdffs2r5ou+afv2FVW+9RmDkaLxlAwDkemyHkZwlvlBzM5VTziB92AgKjjkBWN9rJBtJ\n", "55CsJb4ld97K2q++oPTiK3Clp0vOHEhylphy9vs9LUuW9DiPEQphhEJyAsFBLPlJKaVOBO4BrgdG\n", "AR8ALyml5F6uCURL8+AOZkC4p2/JHTdRcdapNlcloiU5cwbN66Xs+lvIO+LPAKx68zUqzz6VdfPm\n", "2lyZiJZkzRn6nX4W/S+4BM3rpXVpDdUXnceyf95vd1kiSpKzBNbL+YDm6kqqpp/Hisf/HZ96hCX6\n", "fKZPKaUBVwM36rr+cHjaBcB4YA+gsq/rENbwlQ8me18PoaZmAIqnTid9yFCbqxLRkJw5h6Zp5sGV\n", "cM6y9/s9eUf8GW+/fjZXJqIhWXOOjnH6NJcLT1E/Bt50h2zTHEJylriMUIgVTz6KKxAkc9fdu53H\n", "WzaQATffgX+w5M1JrLi8UwEDgcgtfHRdN4DtLVi2iCG5BMZRJGcOJTlzHMmak4RbFCRnjiM5S2Du\n", "3LzInd67o2kaSOYcx4qdvhHhr7lKqXeBbYB5wMW6rs+2YPnCIut+0Vn99hsEttkWb2kZAKFQSMbt\n", "cAbJmUO0NzRQee6ZpI/YioKjjwOkp89hJGsOsfi2G2n49htKL7sKV5pXcuYskrMEpblc5Ew8gLYV\n", "y3uczwgZ0tPnMFb8pLLCX/8NPADsD/wIvKuU2sqC5QuLuNK8XXv67rqVirMm2VyViJLkzCFcfj9l\n", "M28m7/A/AbDqrdepPOc01s35webKRJQkaw5RPHkK/c+/GM2TRuvyZVRfPI1lD/zN7rJEdCRnCczo\n", "pakv0kP74N/jVJGwghVn+lrDX6/Tdf2p8P+fpZTaEzgTOLe7FymlZgBXWbB+ESXfoMFkeTwYzeGe\n", "vinn4xs82OaqUsoCpdSG067WdX1GFK+VnDmE5nKZB1eaWwDInrA/eYf/CW+/YpsrSxl9yRlI1hzD\n", "5Q+YPX2ahqegUHr64k+2aUko1NJC7VOP4cnOIWPnsd3O4ynqx4Abb8c/dFicq0tJfd2mRVix07co\n", "/HXDw9jzgEGbelG42BmdpymlBgELLKhJREEugYm7wbquV2zhayVnDiU5i7u+5Awka44kObOFbNOS\n", "kabhycvH5UvvYRbp6Yujvm7TIqy4vPNroAH4XceE8F2ZRgK/WbB8YZF1+jxWvvQ8LYsXRaYZoZCN\n", "FYnNIDkWzup0AAAgAElEQVRziPY19VROnUztf56ITOvoNRKOIFlziEU3X8/Ca6/EaGsDJGcOIzlL\n", "UK60NLIn7E9gm9E9zmcYhvwN6TB9PtOn63qjUuoOYKZSainmNdmTgcHAfX1dvrCO5vXiCmZE7shU\n", "c/fttDesZdi/nujllcJukjPncAUzKJt5M6H6egBWv/MWq996jdLLryY4Rm5Ml+gka87R/5ypNOo6\n", "uN201q5gyS3Xk7XPBIonT7G7NNELyZmzta2sY/FN15G193iKz55qdzkiSlZc3omu61cqpRqBO4Ei\n", "4Btgoq7rv1ixfGGN9MFD0NLSIj19/c6Zhm+gjIHqFJIzZ9iwpy9r/ARy/3C49PQ5iGTNGbr09OXl\n", "S0+fw0jOElN7QwO1Tz9BWkEBwe136nYed04uA264Df+w4XGuTvSFJTt9ALqu3wjcaNXyRKysv/RF\n", "eiCcR3LmPJqm0cuN0EQCkqw5i2zPnElylng0l8vs6fMHNj2PpkXGyBTOIYNrpJB1P81l5Usv0FKz\n", "JDJN+h+EsFbbqpVmT9+zkTGHpddIiBhYdOO1Zk9fOFtGKCQ5E6KPXH4/2RP2x7/VyB7nMwwDo709\n", "TlUJK8hOXwoxe/qCaG43YPb0VZxxss1VCZFc3FnZlM28mdxD/gDA6vfepnLK6TR++7XNlQmRXPqf\n", "ez79p12Epmm01dVRfcn5LL33LrvLEsL5ejl40t7QQPWlF7DkjlviVJCwgmWXd4rElz50GJrPixHu\n", "Nep39nn4Bgy0uSohkovmcuEOdOrpG7cvuQcfhrdYevqEsJLLH8AdNC9Bc+fmMvDG20mXccOE6JO2\n", "1aup/c8TpBX3J7jtdt3O4woEGHD9rfiHj4hzdaIv5ExfqjE26OmTS2GEiCnJmRCxYWy4PRNC9Jnm\n", "dps9fen+Tc8jeXMk2elLIY1zfmTlyy/QumxpZJr0PwhhrdbaFVSeN5m655+NTJOePiGst2jmDBZd\n", "f3XksfT0CdF37owMsidMxD9C9Tif9PQ5j+z0pZCOcfpwmT/2mnvvYsHp0tMnhJU8uXmUXXczOQce\n", "AkD9B+9See4ZNHz9pc2VCZFcis+bTvG5FwDQtnoV1ZdeQM3dt9tclRDO19uxE6OtjYWXXciiG66J\n", "T0HCEtLTl0L8w0fgSvdhtLQC0O+sc/GVltlclRDJxezpC0KL2dOXudc+5BxwCN7+/W2uTIjk4g4E\n", "zKxh3kBp4A23kS7jhgnRJ621tdT+5wl8ZQMIbDO6+5ncbsquu5mA2iq+xYk+kTN9qabT0Ru5JluI\n", "2JOcCREj0tMnhOU0T0dPX/qm59E0yZwDyU5fCmn84Tuzp2/5ssg0wwjZWJEQyad12VIqp51F3Yv/\n", "jUwzDOk1EsJqC6+9kkU3Xht5LL2zQvSdJzuH7H0nkj6057PmhhGSnj6HkZ2+FKJ5fbiCGZFx+pbe\n", "91fmn3qizVUJkVw8+QWUXXsTOb8/CID6jz6g8twzWfv5pzZXJkRy6X/+xRRPmQZA+5o14XHDbra5\n", "KiGSQe8HTxZeeQnVV10ah1qEVaSnL4X41Va4/H6MVrOnr+iMc/CVlNhclRDJRXO7cQczIJyzzN33\n", "ImfiAXj7S9aEsJLZ02eO0+fKyJCePiEs0Lq0htrn/kN6+SD8W43c5HxlV9/Q6x0+RWKRM30pR3og\n", "hIg9yZkQcRHOl+RMCGtoaWl48vLQeujpg0j0hIPITl8KafjuG1a+/CKttSsi04yQ9D8IYaWWJYup\n", "nHY2K19+ITJNxg8TwnoLZ1zG4puvjzw2DAMjJH3qQvSFJy+f7H32I33QkB7nMwCjvS0+RQlLyE5f\n", "CnH5fLiCwfU9ffffw/xTT7C5KiGSS1pRP8quvZHsiQcAsObTj6mcOpk1n/zP5sqESC79L7yUfmdN\n", "BSC0bh3Vl17A4ltvsLkqIZJB7wcpF103g6pLLoh9KcIy0tOXQvxbjcQVCGC0mkdmik4/C5/0GQlh\n", "qfU9fWbOMnbZjex9JuAtKbW5MiGSS+eePi09nQHX34p/+AibqxLC2VoWLaT2hefwDx1Oeg95Kr18\n", "Bv5hkjcnkTN9qabzuEYuV5fHQghrGDIephDxEY6X5EwIa2heL57cPDSfr7c55W9Ih5GdvhTS8M1X\n", "rJz1Im11dYDZ/xBqb5deIyEs1LywmqppZ7Py1Zcj04yQjB8mhNWqr7yExbfdGHksPX1C9F1aYRHZ\n", "+0zAN7C8x/kMI4QRknH6nER2+lKI5jPH6cNt/tiX//M+Fpx2ohypEcJC3v4llF57I9kTJgKw9ovP\n", "qDxvMvUfvGtzZUIkl5KLL6ffmecAEGptYeFlF7LohmtsrkqI1FBz6w1UTjvH7jLEZpCevhQSGDkK\n", "dzCI0WYemSmcdCbeon7mZZ5CCEt09PSF2syevuBOvyNrz3F4S6WnTwgruQNBXP5wT58njQEzb5Fx\n", "w4Too+bKBdS9/CJ+tTXpQ4Zucr7+F1yKf+iwOFYm+kr+2k81nc7quWRnT4jYMGScPiHiQ8bpE8JK\n", "mteHJy8PVy89fZqmRXGPT5FI5K/+FLL2qy9YOesl2lavAsI9fSHp6RPCSs2VFVSdfw6rXn8lMs0w\n", "ZJw+IaxWddl0au68OfJYevqE6Dtv/xKyx+2Lt7Ssx/kMw5Bx+hxGdvpSiCs93RynTwv39P3rASpO\n", "OwmjpcXmyoRIHt6yAZRecwNZ4ycA5g2UKs87i9XvvGlzZUIkl9JLr6To9LMBMEIhFl4+nYXXXGFz\n", "VUIkgSiOUdb89TYqzj499rUIy0hPXwoJbDPa7OlrN4+EFp58Gp6Cgl5P4Qshohfp6Ws3e2cD2+1A\n", "5q6793rUVAixecyePr/5QNOkp08ICzT99gurXnsF/zaj8A0ctMn5iqecj2/w4PgVJvpMzvSlmM4H\n", "b6QHQohYkZ4+IeJCxukTwlKaLx13bi6a19vzfC4XhKRtwUlkpy+FrP38U1bOeon2+npgff+D9BoJ\n", "YZ2m+b9Rdf4UVr35WmSa9PQJYb2qSy6g5q7bIo+lp0+IvvOVDSB73Hi8xSU9zmf29Mk4fU5i+U6f\n", "UmqsUqpNKbWX1csWfePy+3EHg+Ayj4iueOQhKk4/mVBjg82Vic0lOUtcvvJBlF5zPVnjxgPQ+P23\n", "VJ53dpcbuwhnkJwlttLLZ1B06pmRxwuvvJjqKy+xsSKxpSRrzrP0vr+y4Mz/s7sMsRks7elTSgWB\n", "R4lccCESSWD0GFyZmRDu6Ss44f/w5OfjDmbYXJnYHJKzxKa53bgDGYTCOfOPHsOgO+/FWzrA5srE\n", "5pCcJT53IIjbH4w8LrvmBvwjtrKxIrElJGuJpfGnOax++02C2+2At2TT48v2m3wuPhl/1lGsPtN3\n", "O1CNBDdxdbrCTHogHEty5iCSM8eSnCW4DS+Ylqw5lmQtgbj9ATy5uWhpaT3Op2lalzFpReKzbKdP\n", "KXUgcAAwxaplCmut+ewTVr7yEu1r1wDS0+dEkrPEt+6Xn6m6YEqXIRpCIUNy5iCSM2eouug8au65\n", "I/LYCIWkp89hJGuJxzdoMFnjxpNWWNTjfGZPn+TNSSzZ6VNKFQD/BCYBq6xYprCeK92POxCA8Dh9\n", "K554hIoz/o/2+tU2VyaiITlzhvQhQym9+noy9xwHQOPcH6madjYrZ71gb2EiKpIz5yi98jqK/u+0\n", "yONF11xB9WUX2liR2ByStQQWxUHK5Q/ez/xTT5ADLQ5iVU/f34EXdV1/Uyklg1ElqOCY7XFnZUM4\n", "oAXHnIAnPx9Pdo7NlYkoSc4cwOzpCxIK58y/9TaU33EvvjLp6XMIyZlDuINBXIH1PX2lV14n4/Q5\n", "i2QtATV89w31H75Hxs5jezzbV3TqZNIKi8yhG4Qj9HmnTyl1IrAdsO0GT8m12YnIkPHDnEhy5lxm\n", "zuTSTieQnDnMBmcjZJvmHJK1xOUKBPHk5KJ5et5F0DQNQ7ZtjmLFmb4TgTKgRikF6wP7mlLqYV3X\n", "J3f3IqXUDOAqC9YvorRm9kes/eoLsvYajzsY7NLTJxvLuFgQzkhnV+u6PiOK10rOHGLdvLksuv4a\n", "MvcaR/Y+E4Bw74PkLF7injOQrNmh8sKpgEH/KecDYGBu0+TMQ9zINi0J+YePwOXzYrS29Thfxzh9\n", "sm2Lub7krAsrdvqOA9I7Pe4P/A84BXhrUy8KFzuj8zSl1CBggQU1iW6YPX3ByAax9unHafz2awbf\n", "9yBpBYU2V5cSBuu6XrGFr5WcOUT6sBGUzpiJ0dwMwLqf57H8oQfI/8tx5B/xZ5urSwlxzxlI1uxQ\n", "etV1tFZVRh4vnjkDT2ERg26728aqUops05JVFD19Kx55iHXz5jL0X4/L0F+x1ZecddHnnT5d1xd3\n", "fqyUagn/7yJd11f0dfnCOsHtd8SdnRMJc/5Rx9LvzCmk5eXZXJnojeTMOTSPB3cwSCics/ThivLb\n", "78Y3oNzmykRvJGfO4g4GaPf7I49LLpuBf9gIGysS0ZKsJa61n3/Kmk8/JnP3vfDk5G5yPhnr2Xli\n", "dQ2EXOTrAHI63vEkZw4gOXM8yZlDSNYcT7KWAFwZGXiyc9Dcvff0CWex6u6dEbquLwTcVi9X9F39\n", "Rx/Q8O3XZI+bgMvvl+uxHUxylrga5/zI4puuI2vceLL2Hg9IT59TSc4SW9UF56KlpVF81lRg/diz\n", "mlt+ZE4jWUscgZGjcAUC0MsYfIZhYLTJ35BOIt3OKcTlD+AOBCEczrrnnqZi8im01iyxuTIhkodf\n", "bUXpVTPJ2HUPAJp++5Wq86dQ+8yTNlcmRHIpnTGTwhMnRR4vvvE6Ks8/x8aKhEgSUZxzrXv2KSrO\n", "mkTbsqWxr0dYwvIzfSJxZey4c5frs/P+eBRFk84kLT/fxqqESC6Rnr7wVtM3ZCjlt92Nb6D09Alh\n", "JXcg2KWnr/9FlxEYLuP0CdEX9R99QMNXX5K1z7499uvl/eloik49k7T8gjhWJ/pCzvSlMDkdL0Ts\n", "Sc6EiA9Nkz9phOgrd1Y27uwcNFfPV9vKts155BMyhdR/+B4rX32ZUHMT0NH/YF6PLYSwRsP331I1\n", "fSr1H30QmdbRaySEsE7ltLNY9o+/RR539KkLIbZccNvtyNprHK5OZ9G7YxgGobZ22bY5iOz0pRCz\n", "py8Q6elb+eJzVEyeRMvCapsrEyJ5BEaOovSq68jYZVcAmisXUHXBFGqfeszmyoRILmVX30jBcSdH\n", "HtfcegMVU7sd01sIsTmiOBmw6pWXqDznNJorZIhEp5CevhSSsfMueHLzIjt9uX/4I4UnTZLrsYWw\n", "kObx4A4ECTWaj70DB1F+21/xDRxka11CJBt3sGtPX/GFFxMYKuP0CdEXq999i8bvvyN74gG4fL5N\n", "zpdz0KHkH3M83sKiOFYn+kLO9KUwTdOiOZgjhNhs64MlfQ9CxFCnfGmaFtUZCiHEprmzc3Dn5ICr\n", "522Xmbc4FSUsITt9KWT1+++w8rWXCbW0RKZ1jB8mhLDG2q++oOqiaaz57JPINCMUkr4HISxWMeUM\n", "lj30QOSx9M4K0XcZO+5M5u574Urz9jhfR94kc84hO30ppGOcvo4zDytffoHKyafQvGC+zZUJkTyC\n", "225H6ZXXEtxhJwBaFlZTdeFUVjz6L5srEyK5DLjhFgqOOT7yeOkdt7Lg7NNsrEiI1FH/7ttUTjmd\n", "xh+/t7sUESXp6UshmbvsiicvH81l7uvnHPwH8o89EW9hoc2VCZE8tLQ03IEAoXXrAEgrLaP81rvw\n", "lQ+2uTIhkos7EKQ9vVNP39QLSR86zMaKhHC+Va+/QuNPc8k9+A+Rvxe7kzV+Arl/OBxvv+I4Vif6\n", "Qs70pTDpNRIi9qTPSIgY2SBWsk0Tou/cubl4cnK69Mt2R3r6nEd2+lLI6nffYtVrszDa2iLTpKdP\n", "CGutmf0xVRdPY+1XX0SmSa+RENYyDIMFZ5/K8kce6jJNciZE32TushuZu+8Z1UEUo13G6XMS2elL\n", "IS5/AFcgEHm88rWXqTxrEk2/6DZWJURyydjpd5Refi3BbbcDoKVmCVXTz+tywwkhRN8NvPEO8o86\n", "JvJ46T13sOCMk3t4hRCiN4ZhRHUGb83sj6k8bzJrO920TCQ26elLIZm77o4nvwDN7QYg5/cHk3/U\n", "sTLGihAW0tLScAeDhJrCPX39ihl4y52kDxpic2VCJA9N03AFArga1vf09Tv7PNKHDLWxKiGcb+WL\n", "/6W5qpLcgw7tcb6MsbuRPX4C3pLSOFUm+krO9KUw6X8QIvYkZ0LEjrbBOH2GIZeaCdEX7tw83NnZ\n", "vc4nPX3OIzt9KWTV22+w6vVZGO3tkWlGSHr6hLBS/YfvUXXJNBq++yYyTXImhLVCzc1UTDmdFY//\n", "OzJNevqE6LusPfYiY+xuUc1rhNq7/E0pEpvs9KUQdyCIKxCM3JFp1ZuvUXn2qaybO8fmyoRIHhm7\n", "7kHp5dcQGDkKgNYVy6m+6DyW/v1emysTInloXi9lN9xG3h+Pikxbet/dLDj1RBurEiIJRHmAsuG7\n", "b6g8/xxWv/tWjAsSVpGevhSSudseeAoKI+OuZO/3e/KO+DPefv1srkyI5OGK9PQ1AeDJL2DgzXeS\n", "Plh6+oSwiqZpuAMBCI+HCdBv8hR8A8ttrEoI56t97mna6mrJmXhgj/MFtt2OzF3G4i0dEKfKRF/J\n", "Tl/KWX8ER3qNhIiVDXIml3YKEXOyTROi7zx5BRitbb3OZ/bQxqEgYRm5vDOFrHzjVVa9/kqX3iLD\n", "CEmvkRAWWvX2G1RdcgGNc36MTJPxMIWwVvvatVROOZMVTz8RmWYYhvQXCdFHWXvvQ8bOu/Q6n5m3\n", "Nsmcg8hOXwoxe/oCkaOhq999i8pzTqfx+29trkyI5JG193hKLr8Gv9oKgLZVK6m+eBo199xpc2VC\n", "JA9XIEDZ9beQd9gRkWnLHriX+ZOOt7EqIZwv2jvgNv2iU3XhVFa+9HyMKxJWkcs7U0jmHnuRVrS+\n", "fy9rnwnkHno43n7FNlYlRHJxpaXhDgQwmpsBcGfnMPCmO2T8MCEspLlcuINBCOcMoOj0s/GVltlY\n", "lRDOV/vkYxjt7WSP27fH+dKHK8pvvQvfwEHxKUz0mez0pZINLi+TMVaEiBXpnRUi3sysyUZNiL7w\n", "5BcQamzsdT7pV3ce2elLIatem0XT/N/IPfCQyLSOXiP5w1QIa6x8bRa1Tz5K/l+Oxz/CvMTTCIUk\n", "Z0JYqK2ulsqpk/GPHkP+EX8G1o/TJ1kTYstlj59Ay+LFUc1rtJvj9Glu9ybnaWsPUbmkngWL66la\n", "uoY1DS00NLXidmnkZqWTl5XO8LIcRpTn4vfJbkksyXc3hbgyMnAFApHH9R++x6pXX6bkosvJ2Ol3\n", "NlYmRPLI3ncivqHD0MIHQNvX1LNo5gwydt2DkmnT7S1OiCThzsmlbOathNbUR6Yt/+f9NC/4jeFP\n", "vxAZj1YIsZlCRlT5aa6uYum9d5J76OEUHn9yZLphGFTWrOG7X5bz7c/LmTN/Beuae7/Zi8ulsVV5\n", "LnuMKWW3bfuTn+3v09sQG5OdvhSStcfeePuXRB5n7jmOnN8fjLd/fxurEiK5uLxe3H4/Rkur+Tgj\n", "k4E33Eb6sOE2VyZE8oj09LWs7+krnHQGvv4lkbFohRCbx2hrY/ljD+PJziFjl117nNdbNoCBN99J\n", "WvlgqmrqmbOgju9/Wc6Pv9Wyau36XJYWZjBqaD5DS7Mp759FbmY6gXQP7SGDVWuaWVrXiF5Zx5z5\n", "tfxUUcfcBXX848UfGDk4n313GsCe25WSLmcALWHJd1Ep1Q+4GdgP8AOfAefruj7HiuWL2JDLX5xF\n", "cuZM0vfgPJI1Z9JcLsmag0jOEpOnqAiXJ63LtPaQwdrmdlasaWX5mlaWr2lh8aoWKlY0UbVyLi2t\n", "68/k5WWlM26HMsYML2TM8EIKczd9xi4vK50hpdnsOto8+VBX38Qn3y/mo+8WM3dBLXPm1/KPF39k\n", "3A5lTBxbzrCynNi86RTR550+pZQLeB6ze/pQoAGYAbyjlBqp63pdX9chrLHy5RdoWbKYnIkHRKZ1\n", "jNMnO4CJTXLmHHUv/pe6556m4LiTSR86DFjfayRnIBKfZM0ZWpfWUHnhuQS235G8Q81hGwzDINTe\n", "jku2aQlPchZ7hmFQU9tIxZJ6lq9qpHZVEw1NrbS2hcL/2jEMCBnG+q8hg1BrMe0traz76TfWNrez\n", "trmdhubuh3HwaDCoXwaDBuQxYmAO2w4vpKQguMX5y8tK5+A9hnDwHkNYVtfIW59X8fbnlbw2u4LX\n", "ZlcwrCybw/Yexh5jSnC7ZXu6uaw40zcGGAtsreu6DqCUOh6oAw4CHrVgHcICrowMNP/6Iy5rPv4f\n", "K19+nv7nX0zm2N1srExEQXLmEDkHHEy62jqygxdqbGThNZcT3HkspdMvtbk6EQXJmgN4Cgopu+4W\n", "Qg1rItNWPPwPmn7WGfbYM2g+n43ViSikXM4Mw2B1Uz31zWtpC7URMgw8LjeDcgdsNG9LeyuVqxZu\n", "ND3N5elx/uUr1zGvso55lXVULq5nXbOB0Zi1cTFaO1pgzcbTDVdk/jS3Rka6m/xgGgPywRNcQ7bf\n", "Q27QQ04wjcLQOsoe/hdZg8ZTfPTULotpbW9lYX2NuapO/01zeyjN2niYsLb2NmrWLqdjVg0NPDBh\n", "j3yOnqj4et5S3vi0ki/m1nDr41/xyGtzOHifYsaOKsHtCu9gahpuzUV+IHfj9yUAa3b6KjED+nOn\n", "aR3XV8h52ASSPW5f1s3/JfI4Y7c9yJ4wEW9JqY1ViShJzhzC5fXiDvgxWtsA0Px+6elzFsmaA2hu\n", "N+5gAFpbItMKTz4NT2EhLtnhc4KUytmPS3Xu/+JRljXUdpleGMzn3oOv22j+VetWc9nbN280fcP5\n", "m5rb+HF+LR/99AuftD6+fsYgMByyjAwOLzqNfvkBCrL9ZATSSPO4qW9ZyWUfbLzeAa5spi3tj7e4\n", "P5nb7xCZvrx5Nef/8KL5oB2oBwyDwr9szb1HTN1oOXXrVnHRm9dvNL0omM893bzf2nUrmfb6NZuc\n", "f+eRxew8spia2gb++96vvP3dPJ6sfoEnq6NbfmPrOu7//DFO2v5I8gJJ9+sVtT7v9IVPwb+2weQp\n", "mNdnv9nX5QsLdTdOn3AEyZlzaZqGEer+0hiReCRrziX9s86RajkbkjuQ7PQsBuaUkefPJs2VhkvT\n", "yPAGu50/kObn0K0mbjTdbaTx9bxl/FK9km9/Wc68ijra2g1wt+AfMISi3AD98oMU5wXwp6eR4Q1w\n", "2NYbH3AMNhvdLj+r3Y2PRvMmSZ343V4OKt65yzTDMAi4uz/AEkjzc+CI8WAYkT15A2OT79ef5mfi\n", "0L0wWD8/hkGGr+v8xflBJv9pDPvv2Z9b31nE0rpGNGBomXmTmExfRrfL/7W2gk8Xfk3l6oXcuN8l\n", "+NPSu50v2Vl+Oxyl1KHA9cBtHafsRWKoe+E52lbWkb3v+qAbIRmnz4kkZ4mr9tmnWPnS8xSefBq+\n", "geWA9PQ5mWQtMTVXV1F92XSCO+8SGXtWxulzrmTPWcDr57p9L4z69zLd42ds/j5U1dRTsWQNlTX1\n", "VCxeTV19MzAbMEdVGFqazXYjitheFbL1oHzSPNFtYzJ8QY4bc3i3z7UMXEFo9aqu83v8HFW210bz\n", "hlpbMdra0DxddycyfRmctP2RUdUCkOXLYNJOf4l6/qH9irjvmGl89/Nybn/ya35a0ETWNsWc+Jcd\n", "up1/dL+tOHDEeF79+V2e/+l1jtn2sKjXlUws3elTSp0EPAA8qet6jwNSKaVmAFdZuX7RM1dmJq51\n", "6yKP1342m7rnn6F4yvlk7bm3jZWljAVKqQ2nXa3r+ozNWYjkLLHlHnI4/m1Go7nNj9dQSwsLr7yY\n", "wPY7Unap/CjiwJKcgWQtkXlLSim99iaMxrWRaSseeYh1P81h6MNP4A52f8RfWEq2aZuhtx2+tvYQ\n", "n/64hNnfL+ErfRkN61q7PF+Q42eXbYoZXJLNkNIsRg7OJzsjBpcyR3m23AiFzG3b6DGUXbHxpZnx\n", "MGZEIXdNG8ctj33JZ3NquPRvH3H1abuSm9n1TJ6maRwz+g98XPkFb/32P/408kC8Hq8tNW8By7Zp\n", "mmHRpRBKqcuAa4G7dV0/dwuXMQhY8M4771BWVmZJXWK9UGsrzfN/ixyRMQwDV3o6vrKNm4KFdRYu\n", "XMi+++4LMFjX9Yq+LEty5gzNFfMx2s1LOg3DgFAI/4iNPrSFhazMGUjWnKBl+XJC9asB85byC5at\n", "Y36ji3VaGrmZ6Ww9KI8B/TJtrjL5yDbNWoZh8OE3i/j3q3NZvtI8MF+Y62cHVcSQ0mzKi7MoL84k\n", "IxD7nZSWmiXUPvc06YOG4N9qZK/zh9pa8Y/YyvYz6+0hg78//z2vfVLBwOJMbjp7TzL8aRvN9/h3\n", "z/PivDe5YPfT+V3ZdjZUGj2rt2lg3Th90zFDe7mu6xt3borE0E1Pn91BFdGTnDmTpmlIl5GzSNbs\n", "ZRgGS+saqV3dBEAg3UMgPc386vPgdrtY19xGZc1a5v5ay5xFDcxZ3NDtbeWHD8jhmP23YsetimR7\n", "l2AkZ7B2XSt3PfU1n/5YQ5rHxcG7D2b/XQdRXpxpy++rluYlraAIV/qmx9brMj+Yf1vanC23S+PM\n", "I7bFrWnM+ngB1//rc64+bSxpHneX+X5Xth2v/PwuS9eusKlSe1kxTt+2mNdhPwg8qJTqfC/Wel3X\n", "G/u6DmGN2mefwmhqImvv8ZFphhGSXiMHkJw5x4onHmHl66/Q79TJkTvjGoaB0d6O5nb38mphN8ma\n", "fVpa25n10QJmfTw/csajO940N4UNSzlj6WssztyGz3N2oDAzjbFDsthmWAF5/fJZsbqJz+bU8MXc\n", "pVz9z08ZOTiPUw4dxYiBcjv3RJAKOatYWc2KxpWM6qdI92x8GWbt6nVc8ffZVC9dw+ihBUw5ajuK\n", "87u/0Um8pOXnkzVuPKG1a3ufGfN2q0ZrC5rP/hujaJrGpMNGU1vfxOwflnDnk99w/rE74nKt3yEd\n", "mhWgO8kAACAASURBVFfOg4fdIjdy6YOjABdwSvhfZ5djhlokAHdmJu2dTjk0fP8ttU88QtGkM8jZ\n", "/0D7ChPRkJw5RN4fjyKw3Q5oHvPSEiMUYuHl0/FvM5oBM2baXJ2IgmTNBr9Ur+S2x79m0fK1pHvd\n", "7D6mhNJCsy+vsamVxqY2GtaZXxubW8lOz2H2dkMYVuDjkAE59Mv2suKJR2h841uGPPBvPFsXs//Y\n", "QSxYvJrHXpvH53NrOP+uDxm3QxnHH7g1RbkBm99xykv6nH1S/RUv/PQGV447l1H9tury3Oq1zVz6\n", "t49ZvKKBQ/YcwimHjlo/3pzdNuPSlCU3X48rI4PBd90Xu3o2g9ulcf6xO3LF/Z/w4beLUINyOXTP\n", "oZHnXZorZXf4wJohGy4DLrOgFhFj2fv9npaqqsjjwOgxBG+/h/QBA22sSkRDcuYcLp8Plz8A4WEa\n", "NJeLsmtuiKo/QthPshZbTW3NzK76qsu0uQvqePfzxbTW9uOQPYdwzEQV6V9qamvm84XfAuEBm0lD\n", "09Lwur1s5y0htKY+spz8vxxPzhmT+XzNb7DGfAXAhIkeRo4p4MMPW3n/64V88v1iDtlzCIfsOYSM\n", "oJvvauZuVKfX7WW7/pLZWEmFnC0KD05ell3SZXprWzvXPfQZi1c0cMS4YZx08MiEufS4af5vrHz1\n", "JQJbj8I3aHCv8/e/8FL8Q4fFobLo+dLcXHLizpxz23s8PGsu2w4rZFD/bgaoT0GWD9kgEtgGR2/M\n", "nj57ShEiqW3YP+tyJ0TfgxB2W9vSwH1fPLrRdHdZOpcc9gd22rrfRvPf89nDG82f78/lrl263vdD\n", "0zTWtjRw5+wHu53/3qkzef/rah559Seee+9XXvjgN3YcnckPvv90O/99hzr+ZJOw0aL6GoLeANm+\n", "rjcTeujlOcyrXMle25cm1A4fgMvvJy2vAM0b3U1jNE0zh0iJcV2bKzcrnSlHbc+1D37GrY99yW1T\n", "98aXJu0VstOXQmqffhxcLrJ2Xz/WiowfJoS1lj38IKvffZPiyeeSVlgEmIPSGqF2yZlIeRneIJN/\n", "dwIhA977spoffltOdoaPP4/feqMdPoCMtACn73Rsp2OW5v9lVC+j8sIpZO21D9n7TIg8G3D5mLTD\n", "UXT8Gdox1HO6x4fLpTF+p4HsPqaU979ayKyP5vP5D3W4C7ciPyudkUPyGD4gF7dL67YHS4hotbW3\n", "UbN2OcPyBnXZqfvyp6XM+mgBA/plcs6R2yXUDh+At38JWXvvQ6ipKar5DcMg1NyEK8qdxHj63chi\n", "DtxtEK9+UsHjr8/j/w7Zxu6SbCc7fSnEnZmF0dYWebzu53ksf+gBCo45gbzD/2RjZUIkD+8hR+Ie\n", "PoZaTzoF7QYet8aia6/CW1JC+c132l2eEHHzzI+z6J9ZxB7lv4tMS/f42LN8LLc/8RXffuNjSMk2\n", "zDhp7EbjakXmT0tn36F7bDTdGNROU/n2GJ3+OK17/hnWfjabcXf+DW/ppm/d70tzs//YcibuMpA5\n", "82t55eMFfPLDEt7/xeCnPIMz/ziaHYd23QFtaW/lmR9n4U9L54iRB2zut0KkmJqG5YSMEKVZ6+9P\n", "09zazv3//R6XS+PC43Yk3Zeof4JH39S37IF7aV2+nOGPPh3Derbc/x06im/05bz44W/su9MAysOX\n", "edY2rqRm7XK2KRphc4Xxlai/cSIGcn5/EC2LF0Uepw9XDLz1r6SXD7KvKCEczjAMfl24irc+q+KL\n", "n5ayYtX6uw66NCjL9TFy/GS222EYOWubYzOYrhAJxjAMXtLfpl+woMtOn2EYPPD893z4zSK2HpTH\n", "VZPGEuxmPK3eaG437kCAUGj9MA25h/2JgpNOxVtQEN0yNI1RQwsYNbSA2tXreP7935j10Xxm/ONT\n", "jpowgmN/v378sTSXh3fmf0zQG5CdPtErt+Zm3KBdGd1v/fisz7z9M0vrGjl83DAGl2TbWN2mNf7w\n", "Havfe5vgjjvjLS7pdf6iM87BV9L7fHbxpbk59bBRXPPgZ9z//Pdcf+buaJrGXz99iHkrfuPRP96F\n", "1735nz9OJTt9qcToOoaRjNMnxJarb2jh/a+reeuzKiqWmDeTyAp62WnrfmTRTFu7Qc3qFipqm6iq\n", "a+b1OebNKwb1z2LU0HxGDy1g60F55Gal7p3ERPJa1VRPc1sz/TOLukx/7r1fefWTCgb1z+LKLdzh\n", "i+imT31L5Wf7mfSHUeyzYxn/z959x1dV3g8c/9yZPcgOSUiAwMNSQUCGooKbtra1rfrTOureo47W\n", "0YpVW/eso+6qWBT3qIgV9wCUJetBhLBCAmSQve49vz/OTcgkN8mdyff9euUF59wzvvfkfHPOc84z\n", "7nrhO1753wbqGlyce+LYlmtlVlw6P5YW4HK7sFmlfZDoWmZcGpdMObNlevuuSl7/ZCMpiVH837Fq\n", "P2sGlzU2DntySkvv092xWK0Yro7jY4aSyWMymDI2g8Vrivhs+Q6OPDib7PhM1u3eSGFFEXmDcoId\n", "YsBIoW+AMFwu9sybizU6hrgp0/bNl3H6hPBafaOL79YW89ny7SxdW0yTy43NamHaAZkcOyWXCSqN\n", "PU8+SuXXX5Bx1XXYExJpdLn5sbCSDbWRrN5SzrrNpRTsrOC9LzcDkJEczai8JEZ7foakx2Gz7ctH\n", "t9ugoclFQ6MbiwVioxzysEaEvJ2VuwDaFPpW/7SHF/+7luSESG69YBqxfSjwVa9czs777iLh6OOI\n", "O3RGy3zD5TI7luhljgzPTuSuyw/jpse/5u3PfyI7LZbjp+UBkBKThC7ZRFntXlJiknoduxh4nn57\n", "NU0uNxf8ahxRIVutEyKHDsNis2I0NnW/sIeroQ6bER/S16XzfjmO5XoXz727mqljM8jx9Ki6be9O\n", "KfSJ/skWF4/Fse9XXr+1gOLHHmbQr35D6ulnBTEyIUKXy+Vm5cY9fLZsO9/8sJPaevNimJsRx1GT\n", "hzBzYg6JcfuqbKb+4Xxip8/AGhUFgMNmJWHuQ0xxRnDqo0/R2ORiw9ZyVm/aw/qCMtYXlPLp99v5\n", "9PvtgNnBZ3SkAwyDhiY3jU1tn6I6HTaGZyUwcVQaRx8yhOSEqAAdCSG8V1pbDkBKtDkYel19Ew/8\n", "ZxlYLFx/xiSS+viGO3rsAWTdchtGQ2PLvPIP3qPis0Xk3HE3USNH7Wft/RsUF8mt50/jyvs/4cm3\n", "fmB0XhK5mfGkxiQDsLumRAp9wmvrC0r5fv0uDsxPYeq4zGCH0z2392/u9rz8ArXr1jD8X89jiw/d\n", "YREykmP49cx8XvloA29/8RNjDzDbWu6oLApyZIElhb4BwmKzkXD8bFx79rTMc+bkMuSeB4nMGxbE\n", "yITwvff1x7yr/8ewpFyuP+yiDp+vKlrH3V/uG0zW4unpb1y64k8zLsHtNtiwrYzPl+/gixU7qLAU\n", "4hyxDMs4C3E2C3ablUqrhY12xa/j2m7fGhGBbtrDIyvf2zfz2CSsdjtjvnqSaw69gLHDkhk7zLyB\n", "dLsNPtuwkud/eJEmt4HbbeA2DCxYiGtIJbP6cCKcNiIcNtxug11lNWwo3cjmotd57R2IcNqIjnRg\n", "tVgYnZrPldPaj3MsROBV1FcCEO/prn7eR5pdZbX87qgRjBma3OftW+x2bNExuKlpmZdw/M9IOuU0\n", "nKlp+1nTO6mDorjylAnc/twSnnzrB26/aDrJUWYBtqSmrM/bFwPH3A/XA3DacaNC+m0YQMVXn1O1\n", "dAkJR8zyqhCXctqZ2AclhXSBr9lJR+bzwdcFvPHJRqaOnwxAYUVxkKMKLCn0DSTtxw6zWEJubBUh\n", "+mpT6Vb+veI1ouyRJEV23lg+0h7RUr0Dw+zWvbHJTX21k4dfWc5364opq6wHIC7aydSDstgZsZ1I\n", "p53WDYkSIzu/0NktNpKcsS1LGoaBxekkxhndYVmr1UJmchxJMfGecPZtf2RKNpcc0rHnwmXb1vHY\n", "kh+pqm2krs5NQ30jiXERnbYzMgyDBT9+SoQ9glnDpncarxC+NjJ5GCeP+wV5idkUl9bw1mc/kZYU\n", "zclH+7C3vE6uaT3oeLBbU8ZlMml0Ot+tK2bxmiIOyB3FpYecxciU4b7biejX1mwqYcWG3Ywfmdry\n", "oC+U2QclYR+UBDbv2qyahVgfJp0fRUc6OPnokTz99mo++qqYUSnDyYhLDXZYASWFvgHCXV9Pyfz/\n", "YE8YROzEyfvmyzh9op/5fMtiAK6cdi4HDx7X6TJD4ofw66yz0VvK0FtK2bitnOq65jYMW0mIdTJr\n", "Ug4zxmcxfmQqdpsVOM6r/RfefxfRK5Zx25//ijXCrPbpbmwkIi8PW2TnVTFHpQ7ngdm3eP0dD84Z\n", "zdM5f8flcvPul5t48b/rKHK5Of5nYzq0Z6qsr+L5FfMZlTJcCn0iYPKT88hPzgPgn/NX4HIbnHH8\n", "KM+Dk76r/PpLip94hMSf/6rNNa2vbfraO+cXY1m2vph5H2keuOoIBsd1HEtQiNa2lu9g2c7VTMo6\n", "kJc/3ATA6cf1vrpxIEWPGYc1wvuq14Zh4KpvwO5yYfGyoBhMs6fn8c7nP/H+VwX864ZLSBvU8UFs\n", "fyaFvgHEFhffchMK0LirmJ3330XCsSeQfv7FQYxMCN/5cc8mbBYr4zoZf6eopJp5H2m+WllIXYOr\n", "ZX5WagyTx2QwIieRUXlJ5GcnYrX27qYx45IrqVm/DkurwWqLH30QV1Ul+c+93KttdsVms/KrI/IZ\n", "OyyZ259dwnPvraXR5eaUo/f1DhcfGUduQhYbSwpocjVht8mffRE4u8pq+N+SrWSlxjBjQtdj5/VU\n", "7OQp2FPTwLUvj/d++jF7F7xP1o23EDNhok/2k5Mex9QDMvl61U5W/1TCAfneDQchBq7VuzQvr3qL\n", "uioHqzZWcrBKY1ReGLUBNQyzcbkX9n60gIrPPyFnzh1EqdF+DqzvHHYbpx8/igf+s5x5CzVXnDIh\n", "2CEFlFz9A6iopJq1m0v4cWs5RaU17Cmvpaaukdp6F3UNTS01VSwWWqpdOhxmW54Ih62lXU+E00Zc\n", "jJPk+EiSEyLJTIkhNyOe9OQYbF3cqFojIkg8bjau0tKWefbUNHLueoCoYb2rquJyuSncU8224koq\n", "qhuoqWvCZrPgdNhIiosgLSmarNRYnI7Qf/oj+ge34aZg7w6GJGThtO8rdLndBvMXbWDeQk2TyyAj\n", "OZrDDsrigPwURg4Z1KdeBNuzRkZii45u86Yh/dKriPDjeJgjcgZxzxUzuOHRL3npg/XERjr42WH7\n", "2uoOHTSEgvLtFFXvJjs+DDoSEP3GB18X4HIb/HbWiC6vT71hcTjMcfpaDc4ef8QsEmefSESmb8/x\n", "Xx+Zz9erdvLmZxul0Ce6tb3C7Bxk6TKzvelpx4XuEA3tlb3/DrUb1jPoZ7/06s1dwtHHkXTS73Cm\n", "Z3S7bKg44uAcXlu0kY+/28ZJM/PJTosLdkgBI4U+H3Abbt7Xi1hRtJoGVxOGYeCw2bll5tXU1Tfx\n", "8XfbWLh4C5t27AWLC+eopQDYkixYrRasFgsxFhvp5Ue1tC8ytwuNTY2UpHxGvWF4qmIauA2gzkrD\n", "yslt4nDarWSlR1Mz+CsinXYinTYiI+zYbRYcNgfXH3B6m+UtFgsN7ibu+eTBDt/JYbNzw+GXAebr\n", "+9KKOrYXV7GxsJQFRfOpbWiirn5fQRXDSsOGjk9WbTY3sWNWEh1pJybKSVy0gwinHYfVzvUzOr5d\n", "bHQ1cu9X/2ozL9YZw6/HHC83q6JbFizcdcwNNLr3dTfd2OTivrnL+GpVISkJkZz987HMGJ/V6zd5\n", "3mnX1shq7dD+yNfSBkVz20XT+dM/v+TJt1eTNzihpQ1Jc7f5RZVS6BOB09DoYuHiLcRFOznch2/5\n", "9umknbofOsoYlZvEiJxEvl9XTGlFXZ97HhX9W2FFEWBhw48NTByVicoNn7d89tQ07MVF4GWTH4vV\n", "2qPePkOBzWrh98eP4h//XsrLH2quP2NSsEMKGCn0+cBHG7/gxZWvA+ZFx4oFp93JV6sKefrt1ewp\n", "r8VqtTB5TDrj8hN5tehjWveg4gbsNgf3nnl4h23XNzVw5utvmNv2/FgBh83BnVcdzp7yOgp3V7Gl\n", "qIItRZVs21WOPWsnFY1AI1BtbieyzsJ7bz1CTWIGJTmjibRbcTqsWCxNrGE9RrsLpdWw8bdnvqWs\n", "oo4du6tbuqnH6iJq0g6IAOu+mqLYLXau/8MhuA2D+gYXJXvrKC6t4afCErZFFdMAlNcBdfu2/8n3\n", "25g8Op3Y6FZvZAyD5TvXdDgOa3f/yEOzb8Vp890bGdH/WCwWshP2FWrcboMH/7Ocr1YVMnZYMjec\n", "NZmE2Ij9bKHvtt/2V+p++pHsv9zWMs8AjCbvxz3qrcEpsfzpjEnc9MTX3PXCUh7645EMio8kI9Zs\n", "rF5UtdvvMQjR7OtVhVRUN/Cbmfk+r/FR/tECdr/wHMkn/x/RY/a13TVcLr+0Uz9qUg4/bivn0++3\n", "c9LMfJ9uW/QvOyqKsLtiwLBxWpi05WsWO3Ey9sRErx+eGIaB0dCAu7ERqyN87s+mHZBJfnYCX6zY\n", "we+OGsHQwZ13+tbfSKHPBzaXbcVpc/DQ7FtJjh5EQ6OLR+av4M5/L8Vus/CbmfmcePjwlqeDJ/Go\n", "19uOsDt55ZTHuvx8RLsxJZtcbnbumcWWnZVs3rmXLUUVFJXUUFFSzqaqNRTXN7CuwuxuOr6pmlsK\n", "5xERPYy5KUe227LBUopx2K1kpcaSlRpLdlosQzLiGJIxi8yUmDYDSGMYnbYVMgyD+sZD2b7brNq6\n", "+qc9rN5UQmV1A/cvXYbNamHiqHROmJ7HBJWG0+bgxd881CoKg88LviUpKhGbRTqbET0z98P1fL5i\n", "B6Pzkrj1gmlEBKCqceY1f6J2g24zb/dTj1O/tYAR8970e5fd44ancPbPxvDsu2t4/I1V3HDWZPKT\n", "8vj9Qb9mdKrcrAr/a3K7eGH5a6xY2QjEcezUXJ/vI+HIo3Dm5mFp9bKv8tuvKHvrdTKvuq7NgO2+\n", "MGNCNk+/s5p3fvwv2yJjuXLaOT7dvugfquqr2Vtfiasylclj0hk5ZFCwQ+oZtxsDw+ue3WvX/MCe\n", "l18g7dwLSTz2BL+G5ksWi4UzThjDra++wyMfvc/9Z50W7JACQgp9PnDRIWdw9sEnE2mPoLyynjue\n", "W8z6LWWoIYO4+rSDyUqNDVgsdpuVnPR4ctLjOWx8VpvPKnYeSnlRCfVNbhqaDOoaXJS55jA6O4e/\n", "Wy1mW0KLBYfdSnyMk7hoJ9GR9j7dpFosFiKdEeRnRZCflcSJh43AMAy2FFWyZE0RX60qZMnaIpas\n", "LSInPY5zfjGWiaPS2uzz2Pwjer1/MXD98NMe5n+8gczkGG4+Z0pACnwA1gizTV9rqRdcQkR6RsDG\n", "aPrl4cNZvKaIb37YyZcrCpkxIYsTRx0bkH0LUVlfxYKNn+Kqz2B03iwGp/j+GmhxOLBFRbUZnD12\n", "ynQSZh6Nc3DWftbsnfgYJ5PHZPB907d8vbWcy6eejVUeRIp2DGBQ5QSK97g57czwessHsOvF58Dl\n", "ImHWMV4tHzX2AHLvfYiIHN8/2PG3CSqVmPwNbHPXsb7g+PDqbKeXpNDnI5H2COoamrj16W/YuH0v\n", "R0zI5opTxodUJyaRditp8c62Mw2DyPzAjlNisVjIy4wnLzOek48eycZt5bz75SY+/X4btz79LVPG\n", "ZnDFKROIj3F2vzEhOlFT18iD85ZjAf54+sEBP5cMo00NbqxWK4af2/S1ZrVauOKU8Vx+76f8661V\n", "TBiV5tPOaoTYn+aB2Y1GJzMn53SzdB+0Sylfj9PX3qxJOXz/hRMDg6qGGuIjAvdAV4SHjQXVFK5L\n", "Z8rYDPJzEoMdTo85B2fj2lvm9fJmzoXHOH3tWSwWhiUNZsNezXMfrODOi2YG7MFssMhjKh9pbju0\n", "cftejpqcwzWnHxxSBb7GPbspff0VatevbTPf7XZjtOryOhjycxK5+v8O5qFrZnJgfgqL1xRx5f2f\n", "sr6gtPuVhejEyx9qdpXW8JtZIxgV4Eb0W2+4hqKH7mkzzzAM3J5OngJlcEospx4zkr1VDcxbqLtf\n", "QQgf2VtnFvosLiczDhrsl32UvjmfrTddT93mTW3mG26zTZ8/TByVjh2zTXB5TYVf9iHCl2EYzF2w\n", "HoD/OzZ8euxsLX76YcRMPKRH67gbG3HX1/spIv9SGeZDqfVFW1n5Y/9v8y6FPh95+cP1LZ1FXPrb\n", "8SH3tMBis2OLT8Bi3/e0391Qz/abrqPwnn8EMbJ98jLjue3C6ZxxwmhK99Zy4+NfsWRNUbDDEmHk\n", "zs8f5foP7uS9LzeRkRzNqccE/sKb9Ze/kXb+pW3m7XnhWQouPhd3TU1AY/nl4cPJSI7mvS83sa24\n", "MqD7FgPXT0XmzdOQlJQ2HXX50qCf/4qsG/5CRM6QlnnVK5ez5Y+XsXfRR37Zp8NuJSfZ7BF3+abt\n", "ftmHCF9frSpEby3j0AMHMzw7/N7yAbhdTT26f20qKWHbjdex+4Vn/RiV/2TFm0NNWCKrefGDdQF9\n", "MBsMUujzgU++38Yr/9tARnI0N5w1GYc99A6rfdAgEo46lsj8ES3zLA4n2X+7k6w/3xzEyNqyWi2c\n", "fPRIbjlvGhaLhb8/v4TPlsnFVXhnS/l2dpTtweU2OPfEcUF5295Zm76UM/7A0CeexRYTE9BYnA4b\n", "5544Dpfb4Om3V/f7C5oIDct/2gHAQUN937aumcXhwBodjcW+r5VK9AEHMeT+R0g8+ji/7Xd0ttk7\n", "8NIN2/y2DxF+GpvcvPD+Ouw2C2f+LPQHKe9MU3kZe154juqVy71ex5aURM7td5N+fschuMLB4Diz\n", "0Jc9xMKGreV8ubIwyBH5V+iVTsLMwh9W8vAb3xATaeev5071e3fwfWJ0MqaR1eq3qjB9cfCoNG67\n", "cBqRThv3/2cZry3+hr9+fC/fblsW7NBEiHIbbspqK6ircTBhZCpTxgZnsFjD7YJ2T0rNsYyCU+Ca\n", "MjaD8SNTWVH8A7ctfJJd1SVBiUMMDC6Xm5+0FevOsRw1blz3K/RF+zZ9VqvXvQ721nFjJxO58xA2\n", "rIP6xuA2jRCh44OvN7OzpJoTpg/1S8dFgWBxOHDmDOnRw0mzTZ87bB8oZsdncHjeFGaPH4/DbuXp\n", "t1dTU9fY/YphSgp9fVBUUs3Tq5/Clv8dfzpzMjnpccEOqUv127ZS+ub8ju0fMDAaG4IU1f6NGZrM\n", "rRdMw2G38p+F61m/5ycKyuWtn+hcSVUFbtxYGiM4/1cHBK2KdcGl57Pr2X91mG+4moLygMVisXD+\n", "L8dhi6lkdfkKtpXtDHgMYuBYvmE3FSWRzBxyODmJ/nvwUvz0E2y75QaaSts+xDBcLr+2U89OyGBW\n", "/iHUVttZulaaHwioqmlg3keaqMQaqlKWsLo4PNtQ22JiiTt0BpH5I3u0nuF249pb7qeo/Cs2IobL\n", "ppzN7LHT+e2sEZRW1PGfftwGXgp9vVRT18itz38GVhdDkzOZoNKCHdJ+WRwObHFxWOxtq7vtvPvv\n", "bLn+6iBF1T2Vm8SNZx2Cu96sLrdpt9ywis698eUPAOSmpgX1AcyQO+8j5bSz2swr++87FFx2AfUF\n", "m4MTU0Y8B+RmA/DR8g1BiUEMDIu+M6s9zpzkx147gdQzz2HwdTdiS9w3DlrD9m1svf5q9vznJb/u\n", "+8iJ5neTpgcC4Pn311JZ08jEg518u+M79tSEcSd0vXhgUvzoQ2z7y5/9EExg/WbWCDKTY3jni01s\n", "Ltwb7HD8Qgp9veByubn7xe8orNgFwIFDhnSzRvA5MzJJmHl0h7FUMq+9gbx7Hw5SVN45eFQaV540\n", "DcNtYeWWLezcUx3skESI2VVaw8LlPwIwZWRwxwuyOCOxtmvTl3j8z8n955NEDhsepKhg9mSzncnS\n", "jQUU7qkKWhyi/6qqaWDx6p1kp8Uyws/d1VudTmxR0WbVaQ/H4Cxy7ryP1N+ftZ81+y4vM57cjDi+\n", "W7eLvVXh2Wuh8I1VG3fz4bdbyMuMJyndrDU1JME/Pdb6W9X3S9nzylwadxX3aL30y65myD/u9VNU\n", "gRPhsHHBrw/A7TZ4+NUVNDaFXtOnvpJCXw8ZhtkhwvfrdzE0z2xAnh4b2HHuequzOtcWqxV3CLbp\n", "a+/Ig4cQ70jA7ajmL//6mj3ltcEOSYSQp99ZTUPpIE4bcgnHjzw8qLEYhrtD1VKL1YolyE0eshLM\n", "v1OGvZYnXl8Vtm0wROhauHgLDU1ujjkkNyDVq9tXlzbb9AWmWvexU3JpcrlZuHhLQPYnQk9FdQP3\n", "v7wMq9XC5SePZ2PpZuxWO9lhWuhzpKTiTM/A4ujZmK5Wux13Y/9oBzdpdDozJ2azcVs5cxesC3Y4\n", "PueTQp9SyqaU+odSqlApVamUmq9UiNd37KVX/reB977aTG5GHJPGm1XIMsKg0Ffzw0rK3n69wxMc\n", "AzBqw6MANSx1MBZHA8XlFdz0+FeUVtQFO6SAGkh51hNfryrkmx92MiYvhV9OHUd8ZPCqdjaVllBw\n", "6fmUvjm/w2dGU1NQx8RMjjarwSUMcrN8w26pmrYfkms953K5effLzUQ6bRw71f9v27f97S/suGNO\n", "h4Kf4XJhBOAG9KjJQ4iKsPHfrzbT5Ar9B6ehKJzzzOVyc9/c7ynZW8fvjx9FTmYUBeXbGZ6Ui9PW\n", "s0JTqIjIzSN2ynTsg3o+tm1TWTnuuv5xT3bRSQeSmRzD659s5IsVO4Idjk/56k3fHOBM4AzgcCAb\n", "eN1H2w4Z73zxE3MXrCdtUBS3XjCNpJg48hKzW8b5CGXWqGisMbFga9umb/fzT7Pp4nMwmpqCFJn3\n", "zjjoJO47/i/89khF4Z5qbnzsK4pKBlRVzzkMgDzriV1lNTz86gqcDhuX/S7442PaBiUx5O4HSTzh\n", "523mVy35hi1XX0LVt18HKTKIckRy3sRT+cMhJxLptPHY6yvZvkvG7uvCHCTXeuST77ezp7yWkMHm\n", "mwAAIABJREFUIydl8vyquXxesNiv+xt8/U1kXHlNm+qd7vo6tt10HTsfvMev+3551Vs8vPRfHDVp\n", "CHv21vHJdzJ8Qy/NIQzzzO02ePyNVSzTu5g0Op3fzBzBhpJNGIbB6NT8YIfXa4ZhYLh6fi9Y+c2X\n", "7JhzI3U/hm8HKIs2fcVzy14FIDrSwU1/OISoCBsP/mdZvxq0vc+FPqWUE7gCuEFr/bHWejlwKnCo\n", "UmpaX7cfCtxug2ffXcNTb60mMTaC2y6cTnJCFLNHzuLu425qeYIeyiLzRxB/5CwcySlt5qedcwFD\n", "H3+mzVhHoWpIYhY5CYM5c/ZYfjMznx27q7j24c9ZXxDGjaa9NBDyrKdq6hq564WlVNc2cv4vx4VE\n", "77kWiwWL04k1MqrN/JhJU8i9/xHiDp0RpMhMx+YfweEjD+Ky342ntt7Fnf9eSlVNaPbeGyySaz1X\n", "U9fIix+sxemwcdghg/i8YDHrd2/06z6tNhvWdl3LW5wRZP/tH2Ree4Nf972lfAfLd67hhBlZOB02\n", "Xlqwjtr60H9wGkrCNc+aXG7+OX8FH367hWFZCVz3+4lYrRbGpo7khsMv5bAhk4MdYq8YhsHOB++h\n", "4rNPerxu7CHTyL79TqIPOMgPkQXGt9uW8cGPn1BcZRbwcjPj+fOZh+A24G/PLGZJP+mp1xdv+sYD\n", "ccCnzTO01luAAiC4dzg+UFxaw63PfMubn24kKzWWe66YweDU8ByDhU6qoFis1k7nhzKLxcLZPx/L\n", "xb85kMqaRm547EteWrCOxqZ+PWZSv86znqqtb+K2ZxezYWs5syblcFwAqpN5w3C5MDo5D4M5Tl9n\n", "jjg4m58fNpQtRZXc9PjX0hlFW5JrPWAY5kPR0op6fjszn0ar+fY4NSbZr/t1NTRgsbS9hbFYLGCx\n", "gp/bqTc36Wi0VXHSkfmUVtTz7LtrpJ1sz4Rdnu301DD6aMlW8rMTuO3C6URHmlU57TY7EzLHMSQx\n", "K8hR9pJhEHPwJOztXgx4w2KzQWN4P/SYPmQSAF9sWdoy7+BRadx4tlmIv/3Zxbzw37U0hPnYnL4o\n", "9GV7/m1f8bWw1Wdhp7i0hhf+u5ZL7l7EsvW7mDAylXuumEFGsveDVoaSkjdepfzD9zu9KLlqa3DX\n", "h99N3+zpQ5lz3lQSYyN45aMNXHrPJ7z/1eb++sS1X+ZZb6z+aQ9X3vcpq38q4dADB3PFyeNxuV24\n", "3MH/Y1zx+SdsvfZyalav6vCZu6EBV3XoVEc+/5cHcNzUXDYV7uXK+z9lydoiuWk1Sa55ye02mLdQ\n", "8+G3Wxg6OJ5fz8xvGUs11483v+76ejad+3tK5v+n44eGQWNZqV/P5az4dAA2l23jNzPzycuMZ8E3\n", "Bbz6vw2SQ94Lmzwr3FPFU2/9wKX3LGJdQSmHHTSYOy4+lPgYZ7BD8xmL1UrkSEXMQRN6tb67oZ7K\n", "75cGpD2tP0zJnkCEPYKFGz+jtnFf28TJYzK467LDSE2MYv7HP3Lx3Yv44JuCsB3A3Rd1+qIBt9a6\n", "/R1XPRDpg+13yTAM8wfzj2zrP7V2q63T5RuaGmh0uWlyGTQ2NdHU5KaqromaaoOSvbUU7KxgXUEp\n", "emsZhttNQryNC04aw/SDBgMNVNbWY7FaiY2IMf+4u93mUw7P9jtMu1wtVSc7nW5qaukpyTAMjKYm\n", "rPubbmzE6nTum25owBoR0e20I2MwTaWlHdo8Va9cTumb88n6081EjzuwT7+PQGpyNWGz2pig0nj0\n", "+lm8+ME6FnxTwBNvrOLZd9cwZmgSY4clk5USS1pSFDFRDqIjHUQ6bTjsVmxWK1ZrcNt/9VDQ8izQ\n", "3G43jS43DY1NNDS6qa13sae8lh+3lfPt6p1s2FqOxeLixCOG8LtjRlHTVMPCDZ/x9roPuWTa2UzN\n", "Odjs3MHt3pdrLpc53ZxLLheG270vt1wuM9eac8fT6Uqb6aYmrJHmoTYaG83pqKiWaXdjIwkzj8Y5\n", "OKtD5xLuhnq233ozCUcdS/r5F/v/IHbDMAywGFz624NITYxi3kea255ZTG5GHIeNzyI/O5HUxCji\n", "Y51ERdix26zYrJagt5kMkAGTa9C2V+fOfr/1jfXNH9LoclFVVUdlbRNbd9aycPEW9KbdJCdE85dz\n", "puK0W1m2ZTkWID8pDzALaBans2Xb7tpaLJGRLdOumhqsUVH7pqursUZH75uuqsIaE7NvurICa2wc\n", "uQ8+TlMnXcuXzHuJhsIdDH34CSyR/vl1jU1TACzdsZKjhh3KX86dwnUPf8FLC9azfMNujpuaS352\n", "IvExTqIj7TjsHe9HRPDyzO120+h24XK5aHIZNLlcnmuOm8YGC+UVdRTuqWTbrmrWbi6loLAci62R\n", "pIQoTj9hLFPGZuBy11LV0ECsM6Z393bd3cvV1++73hgGRl3dvuuNYWDU1WKNim6ZdtfWYotuNV1T\n", "g81T/dmcrsYWE7tvuroaW6w57aqqoqFwB1gtHd6ee6ti0f+o31JA9KjR2BwODMMIq+tFlCOSX6ij\n", "eW3N+9z/9ZPccPhlWD3HIj87kUeuncnLH2r++/VmHnttJU+++QMjchIZOyyZnPRYUhKjGBQXSYTT\n", "RoTDRoTTFpLXTV8U+moBq1LKqrVufacTAfT0sbYN4IK51+FMiMTR5OLCRbt56oRs7p5+Je76Onbc\n", "eTs5t9wOQE11JTvu/Bv/PNZ86uZocnPRot082Xr5f9xOzhxz+aqqCoruuo1H2i3/8NGDqf/hMJzu\n", "Rq4ofpf5g09ieEYsU4ZHMfj1R3kkI53Hl3W//VCebrLYMEaOpnJH24dq7pg4+P05FBtgXbOaHXfe\n", "RvolV2GPN9tHheJ02iVX8Ne1L1HTWMuFi3Yz97AUqiNsWIdbuHrRXl7Lm83SFbtZugKuKHqHB9OO\n", "pmn8dwBc9EkxL0xPoSbCht1q5ZovqzpsP/Xiy7n+h2cBuODj4pbt2yxW/vhFZY+X5+TT25zfveTz\n", "PCsqCp066msWvc2OLz7inYnm2F7Di+sYu72ON/OH01gwjpG12zmotoC1SYdxQF4iEyJ/pPbdFzi7\n", "cN/yR+2oJ3ZEI1sqVlOzdjXV3y8l9Yw/AARsOvnUM3CVl4G1kwvnWedSnZrOljWrKX3vHRyDEok7\n", "1Bxeouy9d7AHcLrw7fksrFjH8jzzZvqI+r3sjbTxvTWT598Yz9F7l7PXFsPS2JEAHFO9mKrMUlYM\n", "jQGLhSPW7sUVH8spF97Rl1+7T7U6n/t6h92vc01fcT5PHJVGo828Ebniw2IeOzqVf8y4CqfNyba/\n", "3kDWzbe23JBuuvk6Hj06lSabeU5fuaCYR49JpWrtEeC28uedr5N03V+oKfyJ6h0Gxzz1FY7fTaXs\n", "py2UQYft+WJ68E234q6pNqtxlpe3+X7uqYdhjY1h68aNNGzfStl7b5Nx8eUA1G/rbnoLZe+90+10\n", "+kWXkd6YQP3y9Sx59SIyLr6ca09I5d23lzD0k/ncvXkizuGryNjbwMy1lcyblozFamFy0yCOWlfV\n", "YXsV/3cij61+ncyyBo5YV8G86WYVu+blB193Y8vD5FDgo1zz071jBBgGV324iwePz+ChGddguN1s\n", "+8ufGHKH2cHPMws3ctSn/+KBE8x7QQyDqxfs4v7j06lfdQQWw+DPO+fz9uCTsdssjBwcwy8XP8cD\n", "J6Tz6FJ4dIm5/BO/yOXvUy/BYtBm++33F8rThgFN5WUUP3IfKaf/AVti78bXdOcrLGPGsWXdeixO\n", "Bzvv/QdpF1yCw9MTaOHdd5B2wSXYEweF7PT48y5khSWTom2FLD779A6f5536K9xDF2ADzv1kF/My\n", "k9FbbbjXJnDB19u4PWUWFXaz4H1p0Xu8lDuRevUjFquFcxcV8+q0ZCqj7OQnZHPSBz922H71qb/i\n", "0a0fAnDuomLmHdDSX4jPkt/S16oISqlDgG+BHK31jlbzNwOPaq07HbFRKTUHuKVPOxci/N2qtZ7T\n", "3UKSZ0L0iVd5BpJrQvSRXNOE8D+vr2mt+eJN30qgEjgSmAuglMoDcoHPu1rJE+yc1vOUUhFAHZAP\n", "BL+Bjvc2A0ODHUQvhGPc4RizDdgIRGqte9t4UvLMFI6//3CMGcIvbl/kGUiuQfj97puFY9zhGLNc\n", "03wjHH/3EJ5xh2PMvrqmtejzmz4ApdQ/gLM9P7uBx4AarfWsXmzL0FqHTgVYL4RjzBCecYdjzOCb\n", "uAd6nkF4xh2OMUN4xu2rmAd6roVjzBCecYdjzCDXNF8Ix5ghPOMOx5jB93H7anC2mwEH8JLn3w+A\n", "S320bSGESfJMiMCQXBPC/yTPhAggnxT6PL0vXev5EUL4geSZEIEhuSaE/0meCRFYvhinTwghhBBC\n", "CCFEiArFQt+twQ6gF8IxZgjPuMMxZgi9uEMtHm+FY9zhGDOEZ9yhGHMoxtSdcIwZwjPucIwZQi/u\n", "UIvHG+EYM4Rn3OEYM/g4bp905CKEEEIIIYQQIjSF4ps+IYQQQgghhBA+IoU+IYQQQgghhOjHpNAn\n", "hBBCCCGEEP2YFPqEEEIIIYQQoh+TQp8QQgghhBBC9GM+GZzdW0opG3A7cBYQBywALtVa7+pi+UnA\n", "Q8B4YAdwm9b6xQCF2zqOnsb9KvDbdrP/p7U+1q+BdkEp9QRg01qfv59lQuJYt4rHm5hD4jgrpdKB\n", "u4FjgChgMXCN1npNF8v7/ViHY65JngWe5FmfY5I8C7BwzDNPTJJrvY+np+dsNvAgcCxQC7wGXKu1\n", "rvVVTN7oRdy/BOYAI4GdwL+01vcEJtpO4wm7XPMy5lOAG4B8zOP8NHCP1todmCg7janbuNst/x4Q\n", "o7We2ZP9BPpN3xzgTOAM4HAgG3i9swWVUqnAh8B3wATgYeAZpdQxAYm0rTl4GbfHOOBPQEarn9/5\n", "N8SOlFIWpdTfgAuALsfmCKVj7W3MHkE/zkopK/Am5h+PE4HpwF7gY6VUUifLB+pYzyH8cm0OkmcB\n", "IXnmM3OQPAuIcMwzTzySa303B+/zLAL4CEj0xH4K8HMgGIWnOXgf9wTPZ68DYzHPg1uUUpcEJNK2\n", "sYRdrvUg5hOAl4AngQOAP2Me6xsDEWcn8fTk70PzOhcCs71dvrWAvelTSjmBK4DLtdYfe+adCmxW\n", "Sk3TWn/TbpXzgDKt9ZWe6Q1KqYOBazETOiTj9vzByQeWdPU0JxCUUsOAZzD/eGztZvFQOdZexxwq\n", "xxk4CJgKjNZaa09sZwClwM+A9k+8/H6swzHXJM8kz7oheRaEmEPl9x+OeQaSa/jgePciz07DLCxP\n", "1Vrv9Sw/B7i4r7H0RC/iPgIo11rf7pku8LyROg54LIBxh12u9TDmC4HXtNbNx3SzUmo08AfMt7IB\n", "08O4m9fJB+4AvgEsPd1nIN/0jcd8vf1p8wyt9RagAJjRyfIzgM/bzfsMONQ/4XWpp3GPwixMrw9A\n", "bPszDdiC+eRwczfLhsqx7knMoXKct2BeCDe0mtf89CWxk+UDcazDMdckzwJH8sw3JM8CJxzzDCTX\n", "fKGn5+xxwMLmAp9n+ee01of4KB5v9TTuxUCCUupUpZRVKTXOs9xS/4faRjjmWk9ivh24td08Axjk\n", "h7i605O4m6sLvwDcCaztzQ4D2aYv2/PvjnbzC1t91loW8H0ny0YrpZK01qU+jq8rPY17HNAA3Op5\n", "jVwLzAdu11rX+y3KdrTWc4G5AEqp7hYPiWPdw5hD5TiXAh+0m30FZjuIhZ2sEohjHY65JnkmedYl\n", "yTOfkTwL3L2D5JpvjndPz9kRwCKl1G3A6Zg39G8ANwfyONLDuLXW3yilLsasevgiYANewXyrEzDh\n", "mGs9iVlr/V3raaVUPOZb4PbnvN/18FiD2Q7RBdwHPNWbfQbyTV804NZau9rNrwciu1i+rpNl6WJ5\n", "f+lp3GM8/67DrHN7K+Yr8H/5LcK+C5Vj3RMheZyVUicCfwfua64a004gjnU45prkWWgKyeMsedZr\n", "kmehKySPdQjkWk/P2QTgXGAoZqc4V2O263vSB7H0RI/iVkrNAP6J2YHOJMzOX44FbvFznH0RrrkG\n", "gFIqGngLiMBs2xeylFITgT8CZ2mtm9+897hNXyALfbWA1dNIuLUIoLqL5SM6WZYulveXnsZ9M5Cm\n", "tX5Ia71Ga/0f4ErgTKVUMF4feyNUjnVPhNxxVkqdjdlL2Dyt9fVdLBaIYx2OuSZ5FppC7jhLnvWJ\n", "5FnoCrljHSK51tNzthEoAc7QWi/TWr+DWfA7I8DHsadx3wQs0lrfqLVeqc0eMK8FbpBc8z2lVArw\n", "P8xquMdrrbcFOaQuKaUiMd/+3qy13tTqo5Bu09d8QDPbzc+i4+vv5uUHt5s3GKhqXVc7AHoUt9ba\n", "0FpXtJu92vNvjo9j85VQOdZeC7XjrJS6CXgWeFxrfdZ+Fg3EsQ7HXJM8C0Ghdpwlz/pM8ixEhdqx\n", "DqFc62mebQfWtXobAubbU4A8H8TjrZ7GnYPZC2ZrSwAHMMS3oflMWOaaUioP+BrIBQ7XWrevohpq\n", "pmC2+b1LKVWplKrE7BV2hme6s2rOnQpkoW8lUAkc2TzDc+Bz6dgQFOBLzC5uW5vpmR9IPYpbKTVf\n", "KfVGu9mTMF95b/RblH0TKsfaa6F0nJVS1wO3YT6FubKbxQNxrMMx1yTPQlAoHWfJM5+QPAtRoXSs\n", "QyzXeppnXwATlFKt+6wYh9kWqsBHMXmjp3H/iNlzamvjADfwk18i7LuwyzWlVBrwiWdyutZ69f6W\n", "DxGLMXv2PcjzMx5zWJWlnumd3m4oYB25aK3rlVKPAfcqpfYAuzG7of1Ua71EKeUAkoESrXUjZjem\n", "1ytzwMKHgKOB/8PsmSlgehH3POBVpdTVwDuYY5fcgznwY00gY2/FQqvXwKF6rNvpLuaQOM5KqQMx\n", "2zs8gzk+TUarjyswq5oE9FiHY65JngWN5FkvSZ5JnvWQ5Fov9OKcfQK4HHhBKXUr5hu0u4F/a63L\n", "fBGTn+K+G/jc84b1P5htPO8DHtVaVwUq7nbCMde6i/lRz/QsoL7V+W1orYsDHWwr+4u7DmhdrRPP\n", "2766dtU9uxXowdlvxuyp5iVgEWYXpb/1fHYoZq8/0wC0OU7N8Zh/+JYBl2DW0f40sCEDPYv7dcyB\n", "OM8GfsBM5Ae11n8NbMhtGLRt8BnKx7pZdzGHynE+BTOPzsV82lLY6ucqzMFhg3GswzHXJM8CT/Ks\n", "byTPAi8c8wwk1/qip3l2OJDkiWcuZrvEgI7T59GTuL/GPI4/B1YAD2B24vPHwIbcRjjmWpcxK6Wi\n", "gF8DMZhVZ1uf28Fu07ffY+3F8l6xGEaP1xFCCCGEEEIIESYC/aZPCCGEEEIIIUQASaFPCCGEEEII\n", "IfoxKfQJIYQQQgghRD8mhT4hhBBCCCGE6Mek0CeEEEIIIYQQ/ZgU+oQQQgghhBCiH5NCnxBCCCGE\n", "EEL0Y1LoE0IIIYQQQoh+zB7sAERwKKWOASYCw4A7tdabghySEP2S5JoQ/id5JkRgSK6FL3nTNwAp\n", "paYBJ2ut7wTmAjcHOSQh+iXJNSH8T/JMiMCQXAtv8qZvgFFKOYHngV94ZtVgPrERQviQ5JoQ/id5\n", "JkRgSK6FP3nTN/CcAezWWm/wTGcDEUGMR4j+SnJNCP+TPBMiMCTXwpwU+gae84G3W01PAIqCFIsQ\n", "/ZnkmhD+J3kmRGBIroU5qd45gCilEoFJwGql1D88s08F3gheVEL0P5JrQvif5JkQgSG51j9IoW9g\n", "mQBUaa3PA1BKRQJXAu8HNSoh+h/JNSH8T/JMiMCQXOsHpHrnwJIOrGg1PRvYobVeFKR4hOivJNeE\n", "8D/JMyECQ3KtH5BC38BSDRS2mj4fuDVIsQjRn0muCeF/kmdCBIbkWj8ghb6BZTUQCaCUOhao11q/\n", "FNyQhOiXJNeE8D/JMyECQ3KtH7AYhhHsGEQAKaX+BpRivqqfo7WuD3JIQvRLkmtC+J/kmRCBIbkW\n", "/qTQJ4QQQgghhBD9mFTvFEIIIYQQQoh+TAp9QgghhBBCCNGPSaFPCCGEEEIIIfoxKfQJIYQQQggh\n", "RD8mhT4hhBBCCCGE6Mek0CeEEEIIIYQQ/ZgU+oQQQgghhBCiH7MHO4BgU0o9D2RprY/xTI8B8rTW\n", "//XzftvsRynlBn6vtX7Zn/tttf9BwL3AbCAS+Aa4Rmu9LgD7tgG3A2cBccAC4FKt9S4v138CsGmt\n", "z281z+vv09n6wncGak61i6Wzc7RP530f4/FHzmUDDwCzMB8gLgD+qLXe2WqZeOBu4BeYefmeZ5kS\n", "X3yvgUzyrMvzMh3znDsGiAIWY14L1gQgHn/kWbfbDOb1fCCQXOv+vkkpNRX4Epiltf48APH0ONe6\n", "W6eneRTo7+wL8qYPDM9Ps7eBSQHYb/v9ZACvB2C/zZ4GpgInAdOAOmCBUioiAPueA5wJnAEcDmTj\n", "xXdXSlmUUn8DLqDt7wy8+D7drC98Z6DmVHfn2Bx6cd77SK/23dX3UUpZgPeBBOBI4AggE3i33Sbm\n", "Y958n+XZ7yDgE6XUgH/g6AOSZx3PSyvwJpAPnAhMB/YCHyulkgIQ2hx8f23zZpvBvJ4PBJJr+7lv\n", "UkrFAC8ClgCGNoee51p363idR0H6zn0mhT7zF9b+lxaoX2LLfrTWu7TW9QHaL5hP5x/TWn+jtV4P\n", "3AzkAKP9uVOllBO4ArhBa/2x1no5cCpwqFJq2n7WGwYsAi4CtnayyH6/jxfrC98ZkDm1v3Ost+e9\n", "j+LyR86lAWuA87TWP2itV2G+9TtYKZXgWX88ZoHvXK31/zxvWk4DcoGTffolBybJs47n5UGYN23n\n", "aK2/8zyhPwOIBX7m57h8nmc92GZQrucDiOTa/u+b7ge2EaBj0ptc62adqZ7FepJHAf3OviJPW00G\n", "gFLqU2A4cItS6iyt9TDP6977MJ8aWoBvgau11hs867iB24BzPduZhPk05h+YTwqigc3AHVrrF/ez\n", "n5bX9kqpZODvmBepQZivmK/VWq9otc9zgT8Ak4FdwO1a66eav5CnOsIRWuuhXXznb4BTlVKvYj4J\n", "PRcoBTb19iB6ue/xmK/VP22eobXeopQqAGZ44urMNGALcArwSiefd/d9ultf+NZAzKn9nWO9Pe+9\n", "Euic01oXYxbgmvefDVwILNFa7/XMHuH596tW61UppTZivhkMeBWlfkjyrK0tnn1vaH+MgMT9Hkkv\n", "BOHa5u02/XY9Fy0k1zqhlJoNnIBZJXKVV0fSC37Ite7W+RYv88hf3zkQ5E2fqbmk/mugALNO72RP\n", "VZH/YibnscChmAnwpSfJm52H+cv/NVAJLAS2A4cABwCfA08ppdI620/rQDx1jj8CJgK/A6YAe4DP\n", "lFK5rRa9C3gY8wnEG8DjSqkhrT6/gv1XPzgd8+lnMVDd/B201hX7WacDpdTvlVJPKaXuU0od68W+\n", "sz3/7mg3v7DVZx1oredqrc/eT33t/X4fL9YXvjXgcqqbc6xX531nQijnmuN5C/Mp8BTMKkCttw8w\n", "pNWydswnp6n726bwmuRZ289KtdYfaK1bV0O7ArNt38KuttmZEMkzb7fpk+u52C/JtXaUUimYVSLP\n", "A8q72k53ApRr+1snx/P/39NNHvnqOweLFPpa0VqXAS6gSpsdDczCPOlO0Vov01qv11pfApRhPtVu\n", "9rzWepXW+jsgBjNJr9Ba/+h50vMPwInnyXcn+2ntOMwnEqd6XjGvxqyeUg5c0mq5Z7TWr2mtC4Bb\n", "MH+XLX8YtNYVnWy7tZcwL4SzMf9IfQi8rpTK8upgAUqpy4AJWuvztdbXaK0XerHvaMCttXa1m1+P\n", "2XC2t/r8fYTvDbCc2h+fnPchlnPNbsa86fgS+EgpNdgzfwmwHnhCKZWhlIrG7GAjEfN3J3xE8qxz\n", "SqkTMd+G3Ke11j1YL1TyzNttyvUvQCTX2vgX8HZzfvRGAHPNm3VepPs86vN3DiYp9O3fBMAGFCql\n", "Kpt/gKHAqFbLtbz61VrvxjwpzlZK/Usp9THwnedjmxf7HAeUaK03ttpmI2YPZONaLbeh1efNTyG8\n", "upHy1F8+AThTa71Aa70Es6pWHXC1l9tIBe4AIpVSDyil/urNekAtYPU8HWstAvPJSo/54vuIgOmX\n", "OeWFPp/3oZRzrWmtV2utl2K2j7BhdtrSfIxPwqx6VAiUYN7sfIhZdUb4z0DNsxZKqbOB14B5Wuvr\n", "e7BeKOVZt9uU61/QDchcU0qdhVnwvLbdR163cQtwru13HW/yyBffOdikTd/+NWDW5z2k3XwLUNVq\n", "urb5P56n3N9gNvB8F3gH2Mm+hO5OTRfz7UBjq+nOGvN6e+I1v95viUlr3aSUWo5Zh9wbM4CdWutL\n", "vVy+2TbPv5m0fc2eBbzVw20188X3EYHRX3OqO74470Mm5zxVkGZprec1z9Na1yqlfgIGt5q3Hpjk\n", "qebUoLWuVkqt6u1+hdcGap4BoJS6CbMN1SNa6yt7uHrI5JmX25TrX3AN1Fw7C7PKZJFSqvV2P1BK\n", "Pe9529mdQOZaV+sM9kx3lUcr2JdHvvjOQSVv+jpq3RZgDZAEWLTWm7TWmzDrWN+BebJ25v8w6wTP\n", "0FrfpbV+n33tV1onW1dDBqwFkpVSI5tnKLPXocmez3zhR8+/B7XahwUY2+qz7rjo/A9Kd1Zi1mc/\n", "stW+8zB79OvtOCe++D7CfwZCTnXHF+d9KOVcHvCyUmpiq20mAArPMVVKxSulPlVKjdVal3kKfMMx\n", "8zIsq8aEOMkzc5/XYxb4bu5FgQ9CK8+82aZc/wJPcs1s/zYa87w7CLPKKZidn3j7xi6QudbVOnme\n", "dbrKozGtPvPFdw4qKfR1VAkopVSm1vp/mD36vKqUmuFJsKeAnwOru1h/KxAP/FYpletpU/AIZvK2\n", "rmvcsp/WK2utF2E+AXpZKTVdKTUOeN6zzSe9/RJKqQTPq/MOtNlV7ULgeaXUoUqpUcDjmE8wHulu\n", "fY/PgTRPo9bmsVyivdh3PfAYcK9S6jil1MHAPOBTz+t0b/bdpvtkb77P/tYXftfvc6oG6SnbAAAg\n", "AElEQVQT7c/Rbs97L/bht5zzYt/tc2Yp8AXwtFJqslJqAvAqZg9x//bstwLzyfODSqnRSqlDMJ9o\n", "f6C1/rKL/YjeG/B5ppQ6ELMN3zPAM8psS9r8E+3lPkImz7zZZi+uf6LvBnyuaa0Lmwu5noLuFs9H\n", "O7TWe7zcR8Byrbt1vMkjb79zKAu5Qp9Sak6Ad9l+0M37Mev1rvRM/wrzSc5bwDLMRrbHeaotNftN\n", "83+01vOBBzFPknWYPRD9HrNDg9Y9EbXsx/M0obVfe5Z/HzOxB2E+ESrowfd6CLN+d1d+h1lX+WXP\n", "PoZ59tH8CvwhzI4YOuVpZHwKcLtS6hLMpxwJXu77ZmAuZuPzRZhdFf/Wm9g950f731nz9/l8P9+n\n", "tc7W96sgnNf75ed4fJFTLdrl1EZCN6daazkGrY51d+d98z46zTs/51yHbbQ7R9r8TrXZO+JJwArg\n", "PcxusMsxu9huXfXoFMwqTt9gDjT8MWau+kWo5Rn4NaZe5Rlm28sOgnjtar+NXuWZxymY9zXnYlaX\n", "K2z1c1W7fewvzxYQoDzr5vs0b3NzN9vsyfXPJ0It18L0mvYcoX2f2Fpn17TOlulsH0G/pnli7m6d\n", "3uSRX+8lfX5eG4YRUj8jR440gh3DQIi5u7hHjhxpGTly5FfBjnEgHGuJp3/H3ZOYQynv+vuxHqgx\n", "STzd55kco/CLKdTi6a8x9zTuULmmDYRj7c1PyL3pEyHjWuDNYAchxAAjeSeE/0meCREYkmshRHrv\n", "FF150NMFsBAicCTvhPA/yTMhAkNyLYTImz7RKUlSIQJP8k4I/5M8EyIwJNdCi8UwAtqfxX4ppSIw\n", "OxfJx+zKNVxsxhyIM9yEY9zhGLMNswOSSE8PUkEVxnkG4fn7D8eYIfziDqk8g5DNtVD7vYZaPBB6\n", "MYVaPCGVayGaZ94Itd+rt8Ix7nCM2ed5FmrVOyd7/t0Y1Ch6Z3OwA+ilcIw7HGMG8/wOha7qwznP\n", "IDx//+EYM4Rn3KGSZxC6uRZqv9dQiwdCL6ZQiwdCJ9dCNc+8EYq/V2+EY9zhGDP4MM9CrdC3E2Du\n", "3LlkZGQEO5Z+ofr7pVSvWE7ctEOxxsZ2+NwwDGyJidjjE7BYZOg6fygqKuL0008Hz/kdAiTPfKxx\n", "1y7KFrxHRM4QIoeP6PC5YRhYnQ4cGYMlz/wkBPMMBnCuNZWXUbt+PY5Bg7BERXm1jtHQiCMrC5uX\n", "y4vgCMFcG7B55guNpaW4qyp7ta55bXPiSM/AYpUWY77kjzwLtUKfCyAjI4Ps7Oxgx9Iv1JSVULW3\n", "jJjMDGzRMR0+3zP339SsXkXOU//GnpAYhAgHlFCpdiJ55mONUVHEDR+OIzWdiPT0Dp/XrF7Fnrn/\n", "ZtDZ5zFo9i+CEOGAEip5BgM517KzqY+Pw2hs8nqVwvvvoqmhgdyn/u3HwIQPhUquDdw884GGCCfu\n", "iuherVv1/VJKX3+F5IsvJ+HIo3wcmfDwWZ6FWqFP+Fj0AQdhjYmFLtpuppx+FrakJCnwCdEHjuRk\n", "4o88CndVVaefR487kNz7/0lEdk6AIxMifGReeS3OnCHBDkOIAcNwuXDX1mE0NWGx97xIEDtxMvGH\n", "zsCZJYXtcCDvYoUQIiBCp9MsIfytfOEHFD3yAA1FhT1bMYQ6lxOiv6vbtJFtN17D3kUf9WErkrPh\n", "Qt709XMVX3xK1XdLSDjqWGwxnbfpM9xuDMOQtkZC9FLDju2UvPkakcNHEDVSdfjcMAxwuzHcbmn3\n", "IAaEmAkTsTgc2BOTvF7HcLsxGqWHdyECJWqEIve+f/apTZ/hcmG4XFhsNh9HJ3xN7j76OVtCIo7k\n", "lC6TseTVlym4+FyaSvYEODIh+g+LMwJHahrWLjqgqNPr2HrtlZS9+2aAIxMiOBypaUQOHYY1MtLr\n", "dXY99RibLznPj1EJITrq/Zu62nVr2XLdVZQveN+H8Qh/kTd9/VzMgeM7fcPXLOWU07FddDmOJO+f\n", "xgoh2nKkphJ/+EzcNdWdfh41agy59z1MRE5ugCMTInh6eiuZftHlODMz/RKLEKIjo6nJbNPXyzd1\n", "0WPGmte2bGmLGw7kTd9AIG0khBBCBFDZu29R/OhDNPa0FolcroQImJofVrLt5uuo/KYPw8DJPWbY\n", "kDd9/dzeT/5H9fJlJB53AtbIjlXPWupjS5s+IXqtfstmSt95kyg1ustx+nBJmz4xcMQcMhVLTCy2\n", "uDiv1zEMA3dDA1a5HgkREDETJpJ7z8Nd1lLpjmEY0OTqde+fIrDk7qOfsycOwpGcAl3caJa+8SoF\n", "l55HY1GojLEqRPixREaZbfo6ebACUP/TRrZefxWlb7wa4MiECA5negaReUOxOiO8XmfPv59h86Xn\n", "SWcuQgRU79/U1RdsZuuf/0jpm/N9GI/wFymW93MxEyZii4uHLp6aJv/mFNLOvdAsGAohesWZnkH8\n", "EbNw19R0+nlk/ghy732YiCHSpk+IrqSdcwG2lBSsTmewQxFiQDAaG3HX1va6TV/k0GHk3vMgEUPy\n", "fB+c8DmfFPqUUoOAe4HZQCTwDXCN1nqdL7Yv+kaqbvYPkmchrtt2DdLuIVxIrvVdyeuvUvXtVySf\n", "dib2+ATvV5T2QQOG5FnwVS7+muLH/8mgX55E7MTJvduI5GzY8FX1zqeBqcBJwDSgDliglPK+Xofw\n", "i/KPFlD27lu4Gxs6/dwwDNwuc5w+EfIkz0JU3U8bKXntFeoLNnf6ect4mG53gCMTvSS51kdx0w8j\n", "4bifYYuK9nqd5nH65Ho0YEieBVn8YUeQe/cDvS7wGYaB0dSE0dTk48iEP/iq0DcLeExr/Y3Wej1w\n", "M5ADjPbR9kUv2ZOSsScnY7F0/qsue+dNtlx2Pg1btwQ4MtELkmchyhoVhSMlFUtk5/cqDVsL2Hr9\n", "1ZTMmxvgyEQvSa71kTNzMJF5Q7E4HF6vUzLvJQouuxBXxV4/RiZCiORZSOj9Q5bG4iK23ngdu198\n", "zofxCH/xVZu+b4BTlVKvAnuBc4FSYJOPti96KXbiZGxx8V3W1U765UmknHkOzhRp0xcGJM9ClHNw\n", "ltmmr662088jcoea7R5yhwY4MtFLkmtBkHLamdiSkrAnJAY7FBEYkmdB5m5sxFVbB4bRq56lnRmZ\n", "DLnzfiKHDvNDdMLXfPWm73QgFigGqoHzgNla6wofbV/4k1SlCReSZ+FM8iycSK710Z6XX6ToiUe6\n", "7NyoS5ImA4nkWZBVLPqI7bfcQO36tb3fiFzbwoavCn0vAVGYjXEPBT4EXldKZflo+6KXyj54j7L3\n", "3sJwuTr9vKWtkSRtOJA8C1G1ej0lr8+jflvn1aSlTV/YkVzro/gjZpJ43M+wRHjfPMscN7ZJrkcD\n", "h+RZkCUeN5shd91P9JhxvVq/ZaxnGWYlLPS5eqdSaipwAjBVa73EM+80YB1wNXBtF+vNAW7p6/7F\n", "/jmSU2hMSulyyIbyD96l8ovPGPL3e4nM7ziotPCpzUqp9vNu1VrP6W5FybPQZo2OxpGShjUistPP\n", "Gwt3UPTPBxj0sxNJPevcAEc34PQ6z0ByzVecWdm4amp6VGWs9M35VH+3lLwHH8WZOdiP0QkfkWta\n", "f9CHhyyuir0U3nU78TOOJOOyq3wYlGilT9e01nzRpm+I59/vmmdorZuUUsuB4V2t5Al2Tut5Sqk8\n", "oPPu70SvxB4yFVtCYpcX3kGzTyT51N/jTE0LcGQD0lCtdUEv15U8C2EROUOwHHEk7rr6Tj93ZmUz\n", "5O4HiMyTdg8B0Jc8A8k13+nhzWTySSeTds4FMm5s+JBrWphzNzS0XLd606bPnpBovjQYnu/r0MQ+\n", "fb2mtfBF9c4fPf8e1DxDKWUBxrb6TARTd0P0SU2acCB5JkRgSK75wK7nn6b4yUelK3fRFcmzEFD2\n", "3ltsn3Mj9VsLer8RqY4dNvpc6NNaLwcWAs8rpQ5VSo0CHgeygUf6un3RN6XvvkXZ++90+bm06QsP\n", "kmehrWbtakpee5WGwh2dfm62e5A2feFAcs03Eo46lsRjZ0MP3h4YhoG7qUnyZACQPAsNySedzJC/\n", "39PrWijSpi+8+Kojl98BnwMvY3bBOwyYobXe5qPti16yp6RgH5TU5ed7P1rAlisu7FvPTSJQJM9C\n", "lC0mhv9n777j4yjOBo7/9rranXrv7dx7x93G1ACBUJNAeEMILZAECJDQO5iaQBIIEDqEXkIJxRRj\n", "G4O7je2zbKsXq/eTdHe77x8nyRbqd3sn+TTffBLbt7Ozc45Hu7MzzzO6mBgkg6HP487KQxRf/0cq\n", "n3nSzy0TPCT6mpeMKakY09OHtWSs/sP3KbzyUtrzRcb+MUL0s9HAi5f+iqOD4puvp+zh+1VskOAr\n", "quzTZ7PZmoDfdf5XGEXC5i5AH9l/fET4qhOIPP0sDHFxfmyV4AnRz0YvY1oGZq0Opb3vmD59XDyp\n", "9z2MKbPfUBVhFBF9zXuKogw7dCDipFOIOveXGGJifNMoYVQR/Wzkye3tuNrbkTRaj2L6NAYjKXfc\n", "R1Bur0Qjwiik1kyfMKqJpZuC4HuinwlCl0P/fIzKp5/w4EzRjwTBX2r+8zKlt92Eo/LQSDdF8ANV\n", "ZvqE0av2nTfpKC4k4uTT+jzujulzoSgKUj/bOgiCMLDWndtp+OIzQmbNxRAX3+u4e9bDHT/rydtU\n", "QTjahB93Im0HhpePQ1EUFKdL9BNB8JOY8y8kbNES8CKOVnE5URwOJL1exZYJviB+qgY4fUwMuoio\n", "fo83rvmMwqsupXXndj+2ShACiyYkFF1UNJp+bnqu2lqKb7iaQ/98zM8tE4SRYUxLx5iWPqxzGtd8\n", "SuHvL8X+w07fNEoQhN68TORXevtNlNxxs0qNEXxJzPQFuLAFi9D3MfPQxbLiWCJO+SmG+P7LCIIw\n", "MFNmFpJeh9LRdwYzXVSUiOkTxhxFUQbdMehIlhWriDj1DBFjLgh+Ire3I7e3I+n1Hq/2Sr71bkw5\n", "uSq3TPAFMdM3BojtGATBDwbrZqIfCmNI+aMPUv3isx6cKfqJIPhL5TNPUnrHzbiaGj2vRELc344S\n", "YqYvwNW+9TodhyqIOOHkPo9377EiYvoEwWMtWzfT+PWXhM6djz4mttdxEdMnjDURPzmVtsL8YZ3j\n", "julzorhcSFqtj1omCEKX+Et/R/ixx4MXz3+Ky4XscKAVfXbUE08fAU4XHYM2PKLf401rv6TwD5fR\n", "smWTH1slCIFFExqGLjq630B2V2MDxX++horHHvZzywRhZJjSMzGmpA3rnOb1ayn84xW0bP7eR60S\n", "BEFtZavvpvgv1450M4QhEDN9Ac68aAn2g/1nUDMvXkb48SdjSEjwY6sEIbAE5eSiMRpQHM4+j+ss\n", "4aTe8yCm7Bw/t0wQRoYCSMOK6IOwYxZjOfYEcT8SBD+R29pwtbWhMZk8Xu2VeP2NBGVkq9wywRfE\n", "TF+gG9I6a7EWWxC8JmIaBKFb2f13UfPayx6cKfqRIPhLxWMPU3bPbSjOvpOQDYWkSKLXHiXETF+A\n", "q3n9FZz19YQfd2Kfx5XOOCMR0ycInmv+fiNN69cStmARusjeW6QoigKyLGL6hDEj4qdn4qwoG9Y5\n", "IqZPEPwr8ZobsO+zedXfFJcLub293y2LhNFDPH0EOF1M3IAxfc0bvqHwD5fTvHGDH1slCIFFazaj\n", "i4pC0vV905NbWyn+y7WUP3y/n1smCCPDlJWFITl1WOe0bNlE4TVX0rj2S980ShCE3rxcpVLx+CMU\n", "XXOlSo0RfEnM9AU489LltB880O/x0PkLsaxYhSExyY+tEoTAEmQdj8ZoRHHJfR7XBAeTcvcDBIm9\n", "jISxQh7+g2TozNmYj1mMIUncjwTBH1ytLcjtbWh1oR7XkXDVNRhSh/eCRxgZYqYv0A3yBkeSJBFC\n", "IQg+5u5noqMJY0fpXbdS+/YbHpwp+okg+EvZ/XdT/uC93lfkwUsewf/ETF+Aq371RRR7G5aVq/o8\n", "3h3TJ2KNBMFjTRvW0bRxPebFy9BZwvss07UnpohVEsaCqDPPxVlfN6xz3H1ExPQJgr8k33Q7bQf6\n", "z/A+FIosI7e3ow0OVqlVgq+Ip/wAp4+NRWux9Hu8ZfP3FF59BY1ff+HHVglCYNFaLOijo5G0fb9H\n", "UxwOSm78E6X33uHnlgnCyDBlZQ07bMD+w04Kr/099Z985KNWCYKgtsp//YPCqy4Z6WYIQyBm+gKc\n", "edlKOgoK+j0eMnM25oWLMSQl+69RghBggidMQhMUDHLfMX3odKTctZqgXKt/GyYII8WD1V7Bk6aQ\n", "9uDfMCanqN8eQRB6cbW04GrvQBfs+XAg7pIrMMSLvTWPBmKmL9DJCgywFYN7mwaxFlsQfEnE9Alj\n", "ieJwUHLXLdR9+L4nZ6veHkEQ+lZ6+01UPv7wsM9zyQoNdicOlwyShNLfC09hVBEzfQGu+pUXQFGw\n", "LF3RbxkR0ycI3mn85iuav/8Oy/KVaEPD+iyjIGL6hDFCqyXqzHOR29qGdZqiKCD26RMEv0m554EB\n", "M7z/WF2Lg9e/r2Ld/gZaO2T0WolZaSGcu0JPutks9nse5cRTfoDTx8SiNQ8Q07djG4V//B0Nn37s\n", "x1YJQmDRWcIHjOkDKLn5Bopv+4sfWyUII0PSaDBmZQ97yVf7gf0UXfdHat9500ctEwShh2GsQNle\n", "3MwfXz3Ap7vrCDJomZMRRqzZwLiNb9N68x9Y993QB4/CyBAzfQHOsvxYOkpL+j0ePHkqoQ8/LmIo\n", "BMELwZOnogkJHfAGmnzbPQRZx/mxVYJwdDFl55C2+lGMqWkj3RRBGBNcLc3IHR1odQMPB3aVtnDv\n", "B0UA/N/CeFZNikSrkVAUhQ0HLuT2r8ppe/0HFEMQi6aLfTZHKzHTF/BETJ8gjAburib6mhD4XE1N\n", "lN1zu4dZOEUfEQR/Kf7ztVQ9/cSAZQ5W2bn/wyIU4IaTUjlhShRajfu5UpIkFmRbuOW8yZiMOh54\n", "eTMbdpb5oeWCJ8SgL8BVv/gcTevWDlimK6ZPEATPNHz5ObXvvolst/dbRgEU2eW/RgnCCNGYTESe\n", "eQ4h02YM6zxFUVA6Y/oEQfC9tAf+StxlV/Z7vLy+nbv+W0ibQ+aqlUlMSQntVUaRZbKijdx20VyM\n", "eg2rX9zMDwdrfNlswUNi0Bfg9LFxaM3mfo/b9+6m6OorqXv/HT+2ShACiy4iEn1UNAyQDKn0jlso\n", "vuFaP7ZKEEaGpNdjysxBHxs3rPMcpSUU3XAN1S8/76OWCYLQU/+rwWpbHNzxfiGNdhcXLU5gfnbf\n", "+SFq336doj9cRmawk+vPn4MsK9z5zEaKDzX5suGCB0RMX4CzrDyOjoryfo+brONJe+hvGFNEDIUg\n", "eCpk6nS0IaEDLqVOuuk2grJz/dgqQRhBHixlNiSnkHrfQ5jSM33QIEEQfszV3ILscKA1Gnt83tzm\n", "4s73C6lqcnD2nBhWTYrst46oM84m9te/RR8VzYw4+N1Z03jk1a3c8q8N3H/FIqLDg3z9NYQhEjN9\n", "AU6R5cFj+kQIhSD4nEhlLYwVjqoqyu67k8av1ox0UwRB6IeiKBRdexU1L/67x+ftDpl7PyykuLad\n", "EyZHcsbMmCHUdfj3K2an8ssTxlNVZ+dPj62loLxR7aYLHlJtps9qtV4E/AlIBnYD19psti/Uql8Y\n", "PsXlovrl59GEhmFesLD/cmKfvqOG6GejU8Pnn9CyfRvhJ5yExmDss4wsKyiy2H/saCH6mue0ZjOR\n", "Z54N8vDeKLr36XOhOJ1Ig2QTFAKD6GcjR5Ik0v72T1zV1d2ftTtlVn9chK3CzjE5Fn61MH7QF5aK\n", "LCN3dPTYX/PMFTkAvPDRHv74yFecujiLny7Nxhxi8N0XEgalylO+1Wq9AHgMuBuYBHwFvGe1WsWa\n", "wRGmi4tDZ+l/n762gwfcb3pef9WPrRI8IfrZ6KXtjOmTpP5/pJbffxeFV/cfMC+MHqKveUdjNGLM\n", "yEYfPfgMwZGcNdUU/+VaKp950kctE0YT0c/U53C6WLejjFf+t5e3v9xPXnGd+2VKf4441u6UWf1R\n", "EduLW5iZFsrlyxPRDGGFSsOnH1N09RW0Hdzf/ZkkSZy1MpcbL5xDWLCeN9bkcdFdn/Lix3toau3w\n", "6jsKnvP6VZrVapWA24B7bTbbs52fXQMsBxYChd5eQ/CMpNViWbGqx1ucHzNmZJL24F8xpqb7r2HC\n", "sIl+NrqFzpiFNsw84Gx5wnV/JjhLxPSNdqKvqcSDmD59dAyp9zyIKTPLBw0SRhPRz9RnK6xl9Yub\n", "OVTb2uPzzCQLZ6/MZd6kBDSaw4M4RZaRW1pQnE5q2xRWf1zMgUo7M9NCufr4FPTaoc0LhR93IpE/\n", "OwdDbGyvY3MnJTDNGstH6wt4c00e//l0H/9de5DfnzuDeZMSvPvCwrCpsX7CCqQC/+n6wGazKcB0\n", "FeoWvDXIjdcd0yeC+o4Cop8d5SREXztKiL7mpfbiIir+9hDBU6YTNv+Y4Z0s+shYIfqZimyFtfzl\n", "n+vpcLg4+ZgM5k6Kp6nFwdrtpXy7q5x7nvuelLgwzlqZy6KpiWi1GlxNTRTdcDUtSTk8oJ1Hg93F\n", "EquF3y5NHPKAr9sA/dao13LakiyOn5fGh+sLeOl/e7n72e+44YI5zJ8sBn7+pMagr+vVdYTVal0D\n", "TAT2AtfbbLYNKtQveEhub6f6pefRR0YROmdev+VETN9RQfSzUaz+fx/S+sNOIk46tf9YJAVk2YUW\n", "vX8bJwyX6Gte0kdHE3HG2WiGeU9RFAVcIqZvjBD9TCVNrR3c/ex3OBwubrhgNvMnJ3YfWzQ9ieJD\n", "TbyxJo8vt5Tw4Eubefl/e5lhjUVWFHaM+zWlNXa0Gpn/WxTP8ZMih510TJFlZEfPmL6+mIw6Tl+W\n", "zaSsKP78j3U89PJm/nbNMuKjQjz+7sLwqPGU37UJ3HPAk8BxwC5gjdVqHadC/YKnJAl9fDzasLB+\n", "i3SUFFP0pz9Q/eKz/muX4AnRz0YxXWQUusjoATPlVjyymoIrL/FjqwQPib7mJU1QMKaMLHSRUcM6\n", "T25ppvjm66l47BEftUwYRUQ/U8m/3tlJbWM7vzhhfI8BX5eUuDD+cO4Mnrh+BcfPT6eqzs4H6/L5\n", "aH0Bh+rbOCbHwoNnZ3HC5CiPskw3rV9L0bVX0bJty5DK56ZGcNkZU2jrcPHUu7uGfT3Bc2q8SnN0\n", "/nqnzWbrygZyudVqXQRcClylwjUED2gMBizLj8VVW9tvGX1SMmmrH8Eo9kUa7UQ/G8VCZ89Fawkf\n", "8C1n/O+vFbFKRwfR19TgwTJNbWgYqXetxpSd44MGCaOM6Gdeam5v4aXNH/NN7W7CJ0vs1RRw+xcf\n", "EqwP4pqFv+1V3hymoTLycyatUuhwuNAoEOx0oNHpSYo4vVf5Vmc7jx18H3CHJ3QNB4O0Ri7POvlw\n", "vQuXEL7qBJzREdy/9h/uD6UjyutNXDH3Vz3qXjYzhY+/O8CWto+56/NtZMXGkx6ewrT4CZj0Jm//\n", "aoR+qDHoK+38deePPt8LpPd3ktVqvRW4RYXrC16QJEls0+c/+Var9cef3Waz2W4dwrminx3lJEka\n", "OIuaoBZv+hmIvuY1e56Nyn/9g9DZ8wiZMWtY54o+clQR97QRJEkSnxd/hi4G2oGdle7Pwwx9L5d0\n", "Ki72VOV1/zm2wcG5X1SxI8sM1t6DPpfiYldj73w6obo+BmWKglN2salsR69DfbVHkiROW5rOIztf\n", "Y3t1Bds78w0G64M4a9LJnJCzTOxte5i397Ruagz6tgAtwJzO33dlZZoAfNLfSZ2NvfXIz6xWazqQ\n", "r0KbBMDV0kL1yy+gj4kldObsfsspsjzoWmxBFRk2m63Aw3NFPxvF6j54F7ttLxGnnN7vjUpR3Pv0\n", "CT7nTT8D0de8ZkhMIuK0M9EYh7cnl6IoKE4nisOBpBexr0cBcU8bQTW1Ttr3ziIrJoHbfr0Yk86I\n", "RtIcMSfXk9kYymtnu2fiul6utJ9WSXZjQ5/lQ3VBPD3jqs6Jgc7/7eOdjHufPgchGgPP/vQhlM7/\n", "HHFan+aOSyX641MorWng+osmUth8kE/2r2VT6Q5WZS9BJ4ln0k7e3tO6eT3os9lsrVar9WHgLqvV\n", "egj3muzLgAzgH97WL3hO0mjQx8WjDQ7ut4yjqpLyB+/FcuzxxF18mR9bJwyH6Gejmy4qBl1k1YBv\n", "Jg/9/VFcDfVkPyf2xBzNRF/znjYkFFNGJnJry/BOdLkoufXPhEybQdINN/umccKoIPqZ997/Jh+5\n", "MZozT59OmDF0WOd23as0kgT97C8rSRJ6afBhQuv2rdS88R/ifnsZlmUrh9wGrUbL8bNz+dc7u6gu\n", "CeGcRadyfM4ydBotOo0Y8PmCKumxbDbbzVartRV4BIgFtgKrbDZb3sBnCr6kCQrCsmwlrvq6fsvo\n", "omNIvf8RTBkipm+0E/1s9AqdMw9dROSAZeIu/z3GVLHn8NFA9DU1DH+ZpqTTkXLHvQTlijweY4Ho\n", "Z55r63Dy1ZYSosODmDMx3qM6FKeze58+b7LlhkyfSdj8BRiSUoZ97qJpSTz97i6+2lLCTxZlEm4y\n", "D36S4DHVciLbbLZ7gXvVqk/wD7FP39FF9LPRTOyJGUhEX/Ncy45tVL/wLGELFxM8acrwTlYUFEUR\n", "8TxjhOhnQ7OheDNfF2zkgulnEh8aw4ad5djbnZyyKBOtxrO+YrftofTeO7AsXYF56Qqv2ufprS0i\n", "zMSUnBi27auiqs5OTESQV+0QBiY2ZgtgzoYGql95YdA0ul0xfYIgeKbuvbeo//iDAcsoiiL6mTAm\n", "mNIziTjtdIyp6cM+V5EVFEeH+o0ShKPYp/vXsrlsJ7IiA/Dl5hIAls8a/uxal+CJk0lb/VfvB3yy\n", "jOLoQHE4Bi/chzkT3DOVm/Ye8qodwuDEoC+ASTqte5++kP7Xejsb6im+4WoqHn/Ujy0ThMCii45F\n", "O8jyzsp//YODvznfTy0ShJGjNZsxpWehNQ9/qVbpnTdTcuuNPmiVIBydKltq2ElVi48AACAASURB\n", "VFVpY3xMDolhcTS3drA9r4rsZAuJMcOL5etFhdUnbQfyKLrhWuo+fM+j82dPiANg0+7eg77Klhoq\n", "W2q8ap9wmGrLO4XRRxsSinnpSuSG+v7LmC2k3vsQpqxsP7ZMEAJL2Pxj0MfGDlgm9uLLMCYl+alF\n", "gjDSPHuYTL7lTkxZYp8+QeiyqXQ7AIvS5gCw8YcKXLLCgim9N2IfDtnhQLa3ep29PSjHStr9D3sc\n", "sx4fFUJybCjb91fhcMrode75qP01Bfz5s/s4NmsRv5l1nsftEw4TM31jnIibEAR1DLa/mIjpE8aK\n", "5u++pfyR1djzbMM+V1EQ/UQQjrCt/AcApidMBNyDPoD5kxO8qrfl+40U33wDLVs3e9dAwNOXPF2m\n", "5sTQ3uFif/HhSYqMiBRCDSFsKtvRvaxV8I4Y9AUwR00NNa++SOvO7QOWU1wuEWskCF6offM1Gj75\n", "eMAy7j3IXGLzaSHgmXKthJ9yOoaE4c9sK4oLuUPE9AkCgEt2kVdbQIolkajgCFwumR15VcRHBZMc\n", "G+ZV3WELFpJ238OEzprjVT2KoqC0tyN7GNMHMDEzCoBdB6u7P9NqtExLmEidvYGyRhHvpwYx6Atg\n", "Gr0efVw8muCQfsvIdjvFf7mW8ofu82PLBCGw6OLi0EZGDFim+rmnOXjxBSjigVYIcLrwCEwZGWhD\n", "hx9vVPHg/RRd9wcftEoQjj5ajZZ//uQerj7mYgD2FdXT0uZkeu7A4QRD5/1LSEd5GUU3XU/Nqy96\n", "XMek7kFfz/i9CTHupd67q8QuHmoQMX0BTGs2Y166HLmxsd8ykslE6j0PYsoWMRSC4CnzgkXY8/cP\n", "WCb6VxdhiI1DYzT6qVWCMII8nNFOvOYGjJlZKjdGEI5eRp2BxDB3spOt+yoBmG6N8bpeuaMDua0V\n", "xaV4FdNnSExyP0d6sd9zhNlEUkwoe/JrcblktFr3nNT4GHe+ib1V+1mVvdjj+gU3MdMX6Aa570qS\n", "JJabCYKXFEBSBo6P1Wg0KCq8VRWE0a7xqzVUPPoQ7UWFHp2vyCJ+RxD6stVWiUYjMTnb+0Ff45pP\n", "Kb7lRto8iL3tRYXnyElZUdjbnRwsa+j+LDEsjqnx44kL9f77CmKmL6B1VJRT8/qrmDIyCRo/sc8y\n", "iqJ079PnzZseQRjLal57GVdDA+HHndhvGXdMn1NsPC0EvKBJU1EAfWT0sM9VZBm5vQ2tmBEXhB6a\n", "7Q72FdVhTYskNEjvdX3hx59E0MRJKB2ex+JBZxIzlzsWV2MweFzPpMwo/vdtIbsO1JCT4g6XkCSJ\n", "vyy50qv2CYeJmb4ApjEYOmP6gvsvJMuU3HQdpffc7r+GCUKA0cfGoxtkn77ql5+n4NJf4xpgubUg\n", "BAJ9VBSm9IyB7z39qHzicQqvuswHrRKEo9uOvCpkBabnqjjrpcLiE1djA8U3X0/lv/7hVT0TM90v\n", "iX44KPbl8xUx0xfAdJFRmJcsR25u6reMpNWScuf9BOVa/dgyQQgsYYuX0lGQP2CZmJ9fgDYyEp3F\n", "4qdWCcII8nC5V9xlV2JISla5MYJw9GnuaAEg1OBOxrdjvzuz5VSVBn1yezuyvRU0WiSN53NAOks4\n", "qXfe73VuiJiIIGIjg9mdXyNWxPiIGPQFPBFDJAi+J/qZIHQ59O7bNHzxOa0rTqM9NJp2p0y7U6bD\n", "qXT+KtPuVNBIYNJrMOo0mIN0RATrCA/SEOtwEjTSX0IQRthnB77h5R3vcP2iy5iROJk9BbXodRpy\n", "UsJVqb/23Tepe+9tYi+6FGNKqld1qZUbYlxqBF9vK6WippWE6P4zzwueEYO+ANZeXETt228QlDsO\n", "U05uv+W69ukTMX2C4Jnql14A2YVl2cp+yyiK4u5r4g2mEGAURWHXgRq+2FzMroM1tFW0YHFNoWxN\n", "PR2almHVJSkyWmwEBZtIjjOTGh9GZpKFeZMSiDSbfPQNBGH0KWkoByAhLA57u5OCsgasaZHodeo8\n", "q0WfdR6hc+aBy7vESYqioDgcXsf0AeR0Dvr2FdWJQZ8PiEFfANOYTO6YvqCB35mW3H4jpqxsUu+8\n", "308tE4TAYohPwNXSPGCZ2jdepWXLJjIeexJ9bJyfWiYIvrV9XxXPvP9Dd8a9YJOO3AmZROmcTDdp\n", "Meo0GPUSRp0Gg07T+auEQadBlt0zf20OmUa7i7pWB9ZvXiO6tpjHp12CraiOPQW1APzzrR1Mz43l\n", "lyeOJztZnZkOQRjNihvL0Gt0xIVEs/NADbIC49MHjh0fNjUm6GSZkttvJGTqdJJuuNmrqrpmMfcV\n", "17FkxuFl3rsO2ciryefUcavQeLEUdawTg74Apo+Jxbx4GXLrwG9aU269C1PuOD+1ShACj3nJMjpK\n", "SwYsE3XmucRefDn6SJVv2oIwAlrbHPzrnV189n0RGgmOmZrITxZmMi49Eq1Gou3gAc/i+uZfiTY6\n", "mscs4TicLsqqWth5oJqvt5ayxVbJtrwqfnH8OH62PEfMmAsBS1ZkShsrSDTHo9Fo2Nv58mOcioM+\n", "2W5HttuR9HqvYvokrZaU2+/BlON9boisJAsajUReUX2Pz9fkr+ebwu9YkDpTbN/gBTHoEwDJfXMW\n", "N1BB8NxQ+o/YE1MIAJW1rdzxzEYKyhvJTLLwuzOnkX1EnFH1ay/TvPFbYn55IdqwsOFfoLOf6HVa\n", "0hLMpCWYOXlhJtv2VfLoq1t5/sM91DW185tTJ4mBnxCQqlpq6HA5SDEnAHTPeI9Lj1DvGi89R+OX\n", "n5Pw+2sHzT49KAVVniNNRh1p8WEcKG3A6ZLRdW7S3rU5fVnTITHo84KYIw1gbQf2U/P6y7TlHxyw\n", "nKK49+kTBMEzVS/8m6Z1awcs447pc6oW8C4II2FPfi1XP/o1BeWNnLggnQevWtxjwAdgXrSUiBN/\n", "MmhoQV8UWUbuaO9zg/ZpubE8+PslpMWH8f7ag7yxJs/j7yEIo1lTewvxoTGkhScjywp7C+tIiAoh\n", "Iky9uNa4iy4h5bZ7vB/wAYrLidzWpkKrIDc1gg6Hi6KKw5nnuwd9jYdUucZYJQZ9AUwTHIw+Ng6N\n", "aeAfEmV3307RDVf7qVWCEHgM8QlozeYBy9S99xYFV1xMR0mxn1olCOpas6mIP/9jHY2tHVxy+hQu\n", "PWNq95v4IxkSEjGmpSPphr+YqOb1Vym86jKcdbV9Ho80m7jt4vlEhwfx4kd7xJ5eQkDKjkrnryfd\n", "zqnjV1FS2USL3aHqLF83lV5Clq2+m5Lbb1Slrq6N2fcV1XV/lmQ+PNMneE4M+gKYISER8+JlGBIS\n", "ByyXdOOtpN33sJ9aJQiBx7JiFcFTpg1YJvLUM0j/+9Nep8YWBH9zuWSe/e8PPPzKVowGLbf9Zh4n\n", "HZPhk2tFn30eGY8/hT4qut8yUZYgrvn5TAAeemULLXaHT9oiCKPBngL34EftJC6yvRWX3a7K6pPE\n", "G24i9Y77VGgV5KZ2JnM5YtCXEBqLhCQGfV4SMX2Bbgh9Waw2EwTv9LUUre+CorMJo4uiKNgdbeg0\n", "Wgy63unWD1ZW8Pjbm8krriMuIZhLfzaJ6EgXrR12gg29l2/W2xuoe/5ZnHtt6H/1SySdHkmCMF0w\n", "Qdre9Tc57bS73IO2rnAgrV1DuDMEk87Yq3xLRysOl4OkRD0/WZbMu18f4PF3vuP3Z83BoNX3Kt/m\n", "bMcpOzHpTOg0Ylsi4eizv8Sd1CQnVd2Zvoq//5WWLZtJuuk2JL13Wy1IsvtxU40I29S4MAx6LXnF\n", "h5O5GHQGTh2/iriQ/l8GCYMTg74AZt+7m/r/fUTw1OkDzi4osozidIp9+gTBA7LDQdVLz6KzRBA2\n", "b0G/5br36ZNlrzKlCYIa8mryeW/vp/xQuY/mjhZ+N/dCFqXP6VFm54Fq7vrsaeTwEkzh0Ajct/FT\n", "AC6fcwFLMub1qvfF7W+zW7OT4GyZ4j3PoXSO5C5OP56F0RN7lX+5+EvW1ezu/rOkKGhkuGTuBSzJ\n", "mt+r/L+3vMbXhRu7/xw0AzYB//muhV/OX9Wr/FObXuHrwo1oNVpSzYksTp/LcdlL0GnF449wdDhQ\n", "Uo9OK5EWP3AIwXAlXn09dttej5Zh/5giy7haW9BYvN9ORavVkJ1sYW9BLW3tTkxGd/vOm3Ka13WP\n", "deKnXgDThISij41FY+z9tvRIFQ/di8ZoIuOxJ/3UMkEIHBLupdSSrvcsw5EaPv6Axq+/IOWu+wlS\n", "IbW1IHjq47wv+ffW11AUhdiQKHKjMrCYDmfZlGWFN7/I48WP9qCNjmB8YhQZCRYAlM7lIwlhsX3W\n", "PSE2B91ULc7GBtIlqXvpWKyx74fBnFB3+EFXufHrbaTtLkEZ39Fn+eyodByys7stza0dbM+r4ovS\n", "Gs6a5cKo7/nyMjMylVZnGw32BvLrS3hu2xusK9rEjUuu7HOmUhBGE6dLpqC8kbQEM3qdui8L1Uwq\n", "duiJx5HtLWQ9+Zwq9eWmRrA7v5YDpQ1MzIxSpU5BDPoCmjElFWnxUuS29gHLJVxzA0GZ2X5qlSAE\n", "Fkmvx7xsJa6agRNKhJ9wMpFnn4chpu+HZUHwhz1Vefx7y2tYTGFcOe9CJsZae2x70NTawcOvbOH7\n", "3YeIspi47uxzGJ8x9Fii5ZnHsCxjAW15NqQhzKYtj5nK8piphz/IPBGN2YIhpu+07MfnLOX4nKU9\n", "Pnu6dRfvfHWA/3xq4/wTJ/Q4dmLuck7MXe7+bu3NPLPlP+TV5NPsaBWDPmFUanO0UdhQSmJYHNU1\n", "LhxOmexk72fQfszV1ITc0YZWF+p1XfGXX4UhKXnwgkOUe0QyFzHoU48Y9AW4obzIkZBUW4stCGPS\n", "UN+YipA+YYTlRmVy4YyzyInKICsyrcexipoWbnlyA2XVLUzPjeHqn8/EEjrwSpG+VDz2CB2lxcT9\n", "5jIPWzm8jnLeceNYv6OMt77Yz+LpyaQn9L0MLswYyu/mXkhzRwtmkwf7BwqCHxTUl3Lzmgc4Zdwq\n", "4ttnAO5Ny9VW/sA9tJcUkfyX27yvTJJAGWJs+xDkdCZzsR2RzEXwnggsCWCtO7dT++Z/6KgoG7Bc\n", "V0yfIAjD52ppofrl52ne9N2A5RRFQXE6h570RRB8QKvRcnzO0l4DvvyyBq7921rKqls4Y1k2t/xm\n", "vkcDPoCIk0/FsvI4j85VZBmlwzGsvWODjDouPWMqLlnhsde3Icv9Dxo1Go0Y8Amj2qHmKgDiQqI5\n", "UNIAQJYPZvqSb76DxOvV2WZBkWVcLa2qLRmNiwzGHGJg/xHJXATviUFfANOEhqGLiUWjHySm77GH\n", "KbjyEj+1ShACi6TVYohPRBs28INk45pPKfz9pdh/2OmnlgnC0FTWtnLzkxtoaG7ntz+dzK9OnohW\n", "4/naD2NqGoaUtMEL9qHxqzUUXn0F9t27hnXerPFxLJqWhK2wjo82FHh0bUEYDSpbqgGIDY1if0k9\n", "Go1EWj+z195QFAVJUWeNV83Lz1N49RUoKm3QLkkS2SnhHKptpaHZHaLU7uzgtV3/5dP9a1W5xlik\n", "+vJOq9U6D/gGWG6z2b5Wu35h6EwZmUh6HUp73wHxXRKuvBpDerp/GiWoQvSz0UNjMrlj+vrZTLqL\n", "ZcUqIk49HUNcvJ9aJnhrLPQzp0vm/hc2Ud/UzsWnTebkhZneV6ooIHn2xt+ybCURJ5+GIX74/eQ3\n", "p05ii62S5z/czbxJ8URZRMze0WIs9LWhqrG7Z7ciTOEcLDtIalxYrwRFanA1NSJ3dKBVIXtnzPn/\n", "hzYyEk2Qen0uJzmcLXsr2V9Sz8xxceg0Wt7a/RE5URkcm71IteuMJarO9Fmt1hDgBUR42OgxpKA+\n", "CQZYDiOMLqKfHcVENztqjJV+9uYXediK6lg6I5mfLFJhwAeU3X8XNS+/6HkFHi4RizCbuPDkCbS2\n", "OXnyHTGjfrQYK31tqOo6B31tzTo6HC6yktWP5wMoufkGqp5+wid1qyEnxb2ktWuJp1ajJSo4onsm\n", "VBg+tZd3PgQUIzruqNC8ZRO1b76Oo7pqwHKKLA8rfkIYcaKfjSLOhnqqX36elu1bByx35D59wlEh\n", "oPpZUX0prR32Hp9V1dl57bM8wsOM/Pb0KapdK/LMczAvXubRuYosIzs6PL4nHTsnjQkZkazfUc6G\n", "nQPHs7/5w4dc+v6fe/29CH4XUH3NW7Eh0eREZVB6yL2sMdMHSVwAUu97mLjLrlSlLsXlQra3qfos\n", "md056Dtyk/bYkCjq7A04XA7VrjOWqDbos1qtJwInAOr8CxK8pg0zo4uJQdIPvH9Y5T8fI//SX/up\n", "VYI3RD8bfSStDkN8AtqQgdNeN33zFYV/uIyWLZv81DLBU4HYzx5Y9wRXfHBTj0QLr3yylw6HiwtO\n", "HE9o0MD3ieEwpKZ5nL695fuNFP3pDzRv3ODR+RqNxBVnTsOg0/C317ZT29h/jJFDdlLTWsfe6gMe\n", "XUvwXiD2NW/9euY53LXyTxSWNwJ075GpPsW90ksFdf99h6Jrr8RRUa5KfQBRliAizaYeg77IIPdA\n", "sM7eoNp1xhJVBn1WqzUaeAq4CBCpdkaJoJxczIuWoLMMnPUp7vKryPzn035qleAp0c9GJ21oKGFL\n", "V2DKzhmwnHnRUtIf/Qehs+b4qWWCJwKxnzW2N1PRXEVWZFr3nnyVta2s2VRMUkwoy2alqntB2fOH\n", "ydC580l/8G+ELVjo8eVT4sL4v59MpKm1g0de2dJvNs8JMe4+u7d6v8fXEjwXiH1NTUWHmgBIjVc/\n", "26yiKDjr6pEd6syYRZ56BmmP/lPVvfrAvcSztrGNmgb3bHxUsHv/vlq7+OfiCbVm+p4A3rXZbJ+o\n", "VJ+gliHvHyaCjY4Cop+NMg6ni8aWDlwiJjaQBFw/219TAEBOVHr3Z+9/cxCXrHDWyhyvMnX2pfSO\n", "m6l9+w0vavC+P514TAazxsexdV8V76092GeZrm0r8uuKvL6e4JGA62tqKj7UhCXU4PHWKQNROjoo\n", "vvFaal97WcVK1Q9d+HFc36zEKfzfjLOJCREbtnvC65Q9Vqv1AmAa8OOAgAHvIlar9VbgFm+vL/Sv\n", "aeN6mjesI2zRUnThEf2Wc+/TJ2L6/CDfarX++LPbbDbbrYOdKPrZ6KAoCrsO1vDFpmJ27K/mUG0r\n", "4c5mVjbvpDE2neS501liDSfY0DvT2pH79EkasVuOD/m9n3WeeyujtK/try0AIDsyA4C2DieffVdE\n", "eKiRRdPUfTMPEHXuz3HWefYm3t1POlCcTiQvsgpKksSVZ0/jyge+5LkPdjM1J5qMxJ7L5EIMwcSE\n", "RJFfV+xOX6/SUrcxRNzTfKStw8mh2lYmZUb7pH6N0Ujaw4/jqh046/RQKbLcHdMnadXLNHpkXN/c\n", "SQnkRmeSG61OwqmjiMf97MfU2LLhAiAZqOhsVFeH/chqtT5rs9ku6+ukzsbeeuRnVqs1HchXoU0C\n", "oLOEo4uOGfTGWfXMk7QXHCTn1bfFTc+3Mmw2W4GH54p+NoIUReHbXeW8/D8bBZ1xFqFBeqZkRxMh\n", "heHIq+BAk8Qnayt4/fsqzpgZw6pJEei1hwd3Ld99S+07bxB/5R8xL1wyUl9lLPB7P4PR3deKGkoB\n", "yIhIAWD9jnKa7Q7OXJGDXqf+CwhTehYdJs9ie+w/7KT6lReIvfA3hB93olftiAgzcdU507ntqW9Z\n", "/eJmHv7Dkl6p79PDk/m+dDuN7U1YTOrvhRbgxD3NR0oONaMovlna6QuNX39B45pPSbr+JoInT1Wt\n", "3uzOTenzSsb0ck5v+lkPagz6fgGYjvhzArAW+DXwqQr1Cx4KGjcByWQC18BT7nEXX4Y2OloM+EY3\n", "0c9GyN7CWp54eyf7i+vRSLB4ehLHz09nYkYUms5lcR1Vk6ipqGHN7nre3VbNs+sq+HBnDefOjWNB\n", "thmNJBE6dz7mJcv6jHlwOF3klzVSUtmEokBagpmsJIvok/4XkP0sKiiCrIg0wjsHNWu3uQeBK2er\n", "HMvXSZFlj2P6gidNIW31Ixg93Nz9x2aNj+OkYzL4YF0+b3yex8+PH9fj+P/NOJsr5v6KIL2pnxoE\n", "HwnIvuatkoZy6toaKC13v5zw1aBPcblwNTahOByDJvsbCsvSFUScdKpH+2sOWG+okdjIYPKK6sVs\n", "vAq8HvTZbLYeOZGtVmvXTuClNptNbKYx0kSoUUAQ/cz/Gprbef7DPXyysRCARdOSOHeVlZS4Pm7C\n", "CkQE6zljVgzHTozgrc1VfLyrjkc/LeG9rSZOmhLFnKwwQo54xLG3O9m89xAbdpbz/e5D2NudParM\n", "TLRw+ZlTyU3tf2m2oK5A7WcXzjir+/fNdgfb9lWSmWghMWbgjLOekNvaKLnzZoyp6USc+BPPKlH5\n", "vnX+iePZsLOcN7/IY+WcVOIig7uPdSWGEPwrUPuatz47+A0f7lvDAtOZAKT2db9RgaPyECU3X0/w\n", "tBlEnvJTdSr1UW6InJRw1m0vo7LO3qPvCsOnxkxfX8RQYxRoXPsVzZs2Yll+LNrQ/n9wKIqC4nCI\n", "tyhHH9HPfEBRFD7/vohn3v+BplYHafFhXHrGVCZm9h043lFWSs2br2HKyibIOh5zkI5fLUzghClR\n", "vLKxkvV5DTy2phTtFwrp0SbM4QU0tDgprmzC4XTPwsdGBrNsZjLpCWY0GomttirW7Sjjuse+4brz\n", "ZzFvUoI//wqEngKqn23cVY7TpXDM1ESf1C/p9USd8wvo6Bi8cB8URQGnQ7UZCIBgk54LT57Agy9v\n", "4ZVP9vL7c2aoUq+guoDqa56obXUvY6yudj+Lpcb7ZsmxISGR1Af+ityoztYHiiwjt9lV7bddcpLd\n", "g7684jox6POS6oM+m81WAqgXxSl4TBcRgT46Bkk78P/N1S8+i33PbrKeeh5t2NGxfnysE/3MN+qa\n", "2njste18t7uCIKOWX58ykZMXZqLT9h/3JBmN6OPi0AT1vBnFmQ38/thkzpsby5o9dTRv38bKzZ/w\n", "VsR8foicRGp8GLPGxzF/UgKZP1rKedy8dLbYKrnn2e+47/lNPPT7xb2SUAi+F4j97Jvt7gmWhb4a\n", "9Gm1mDKzPE4Q0VFYwKF//Z3I088k+qzzVGvX4unJvLEmjy82FXPWilyfzHIKngvEvuaJWns9WklD\n", "WYWD8FAj5hCDD6+m3hi7dfsWat9+g7iLL8e8ZJlq9QLkpB7O4LlwahKf7P+K3VX7+d3cX6HVjPl/\n", "MsPiq5k+YRQInjQFTXDIoFPu0b/4FbqoKDHgE8a0vOI6bn9qI/XN7UzJjuaqc6YTGzH4W0V9VDTm\n", "JcuRm5v7PB5rNnDO3DiUOauQjCdzdXwyeq2mOx6wPzOssfzpl7O4/emN/SahEIThaG7tYKutkswk\n", "3yzt7ObFs6QxPYPUex/ElK5uhj6NRuLslVbuf3ET7359gEvPUC/ZhCCopdZej8VkobTWzpRs32Tu\n", "BJAdDlyNTeBlltwuIdNnETb/GAxJKSq0rqespMMZPAF2V+axvngz5089g8jggfehFnoSg75AN4Q1\n", "1pIkiUUVwpjQ5mzn7d0fs6l0O9X2OhwuJ6uyFzPTvIw7nv6W9g4X//eTiZy6OItPDnzFc5+59xqT\n", "OhPLScCq7CVcMP1nPStWYE3ldl4t+arzA6k7j8Wy6Cmck7IESZKQJKl74PbZgW94Zee73fV2XWdZ\n", "5gLOm3IaALMnxHPywgz++00+977/JuW6rYfbI4FBo2d28jR+MVWlmAwhoG3eW4lLVlgwxXfLhR01\n", "1ZTecwdB48ZjWbbSs0p8dD9aMCWB2IggPvu+mF+cMJ6w4MOzKO3ODnQarZg5EEaMrMjU2etJDEkC\n", "fBfPB9C2by9l99+FeekKzIvVmZlTfBTTFxKkJykmlP0l9ciyQmRnHG6NvU4M+oZJDPoCWMOaT2nZ\n", "toXw405EYwrqt5yiKCgup4jpEwKa0+Xkri//iq3mICadkdiQaIxaPUZCuefZ73A4Za47fzYLpriX\n", "vZmNYWRFpKF0PYF23tAig3reZNoL86l9920siSHEmyJQ6HnzC9UFdZ6ugMvVvY+RQavHYgw7on73\n", "LyZdz414f3XyRL7ffYjt+0qJn6BFq5G6z2nsaCZaJKIQBrCt/Ad0Gi2T4saxPa8KgJnWOJ9dTxtm\n", "Jurs80D2bKNmRVHA4UB2ONCoHBuk1Wo46ZgM/v3f3Xy1pYSTF7pnE1/Z8S5v7/mYe4+9nsxIdbKG\n", "CsJwdbgczE6aRnuziX34druG4ImTSb33YeTWFlXqU2QZpa0NuaMDjUH9Jak5qeF8ubmEsupmojrv\n", "wTWtdeREZah+rUAmBn0BTBcZhT4qBgbZCLr2zf/QsmUT6Y/8HUOCb+I8BGGkFTWUcailmrnJ0/nd\n", "3F9h0BlwumT+9Le1NLXWc/nPpnYP+AAWpM5kQerMQeuVTEHoY+OYHJvEzKQV/ZZr359H5TNPEHX2\n", "z4k64ywWp89lcfrcQes36rWcf+J4Vr/YSlr9bK47f3b3MVmWh7BtuDCWPbPlP9gdbTx56n1s3VdF\n", "WLCejCTfxYdqDAaM6ZkeJ4hw1ddRtvpuzMtWEn/JFSq3DpbNSuH5D/fw6cai7kFf11YW5c2VYtAn\n", "jBiTzsgfj/kN/37/B2C/z5K4HKbezFx7/kGqnv0XUWeeS+RPfzb4CcOUk+we9OUV1xMV637RWWsf\n", "03v3eUQM+gJYyLQZ7qydg8zeRZ5xNrEXXYI+ynfrxwVhpGVGpvL4yXfikl0YdO43kf/9Jp+84nqW\n", "zkzmuHmePewZ4uIxL16KbLcPWM6YnUPaA49iTE0f9jUWTUvina8O8M32Mn5WUk9W54a1mkFe6Ahj\n", "m6Io1NjrSTEnUFbdQnW9nWOmJKIdJJ5UhQt7fKouIpLUu1Zjys5RsUGHRYSZmDU+jo0/VFBY3kha\n", "gpmEsFgAKpqqfHJNQRiOokNNgG9n+uT2dlxNzYCCpPV+SbMpK5vUex7AmOabmbecFPdAb39xPUvS\n", "Ds/0CcMjnhgC3FDWWEuS5KvtVQRhVNFr9Zg6N2FubXPw6qc2QoP0/ObUWDiAjwAAIABJREFUyT5f\n", "2uyOnfWso0mS1L2p9Otr8tRslhDAmtqbcbgcRAVHsG2fe0AzLTfGp9dsO3iAsvvvpPm7b316HW8s\n", "mZ4MHM5kGh0SCUBVq2cZRwVBTUUVjUSEGXvEnKqteeN6Su+6mdZdO1Sr01cxfQAZSe7tjPKK60k0\n", "x3HJ7F+yKG3wlTJCT2LQF8Dq//chde+9jeJ0DlhOURQUpwPFwxgMQTgafbS+gBa7g58uzfYqLbY9\n", "bx81r79Ke2H+oGUVWUZxuTy6zgxrLFnJFtbvKKOkssmjOoSxpbrzTXhUcER3PJ+vB32GhASizjwH\n", "U67Vo/MVRUF2OJDb21Vu2WGzJsRh0GtZu60UgOhg96CvukUM+oSRZW93Ulln9+ksH4B58TJS7lpN\n", "yNTpqtSnKApyW7vP+q3JoCM1LowDpQ0EaYNYnrmA9Ihkn1wrkIlBXwByumQ27TnEN4VtbGky8uHO\n", "Ogqr2/p9C1P/0fsUXnUp7QcP+LmlgjAyZFnhow0FmAxaTjrGu+Uo2uBg9HFxSAMkSwLoKC2h6Lo/\n", "Uv3Scx5dR5IkzlyRi6LAW1/s73U8ryafj/O+9KhuITDV2DsHfUER7MirIi4ymPioEJ9eUxMUjDEt\n", "E124hwmGFIWSW/9M2YP3qtuwIwQZdcwcF0tpVTNl1c2YdEYsxjA6XJ5tKC8IainuXtrp63g+QFHv\n", "Rb+zpprS226k+sVnVavzx3JSwulwuLqXvwrDJ2L6Asz6HWU89d4uqursuPc5zYANlbChkqgQHQuy\n", "LSzKtZAebepezhZ+wk+IOucXGGJiR7TtguAvewpqOVTbyvJZKYQEeZch0JCUjHnREuS2gd9w6hOT\n", "SL3/Ya/2H5s/KYGEqBC+3FLCBSdNwBJ6ONPna7veZ3vFHhalzSHEMPj+gkLgCzOEMi9lBkZnJC1t\n", "pRwzNck/F/biYVLSaEi5416Ccsep2KDeZlhj2bCznC17K0lcGMo/TrkHndiuQRhBm8t2su1gJaCQ\n", "4sPtGgBkux1XSzOSRqdKTJ8+OoaUO+71WSwuuAd9n35XxP7iejISfZeMKpCJQV+AcMkKT7+3i/fX\n", "HkSv03DyMRnMmhCHvqqU8kaZbcXNbC1q4v3tNby/vYY4s57c+GBSI42EmXSEhTsJrYUgg47YyCCi\n", "LAPPWgjC0aKlo5WvCzYyMTaX1HD3Q++aTcUALJ+pzkayQwllUGM/TI1G4uSFGfzr3V18srGQM1fk\n", "dh9LMSeyvWIPJY3lWKOzvLuQEBDGxWQxLiaL99ceBEqZmBnp82s2b9lE9UvPYV66guAJkzyrRHEv\n", "hZZ8mKhohtX9knOLrZKTF2aKAZ8w4l7c/haVjXXAMp/u0Qfu8J/at14j5oKLMKark3zFlzF9ANkp\n", "hzdpP3auyLLrCTHoCwCyrPC317by+ffFpMaHcf35s0mJC6Pm7TdoL8gn95SfsmRcOA6XzNbCZtbm\n", "NbCzpJm1+zpTaisKGhQUJJTO2b9oi4nZE+P5ycJMn79xEgRfyq8r5t9bX+O08cdxXngS7Q4X32wv\n", "JTo8iMnZ3mesbd25nYY1nxIyc86gW54oR+zT56kVs1N58eM9fLgun9OXZqPVuh+Mky3uaxc3iEGf\n", "0NPeAnes2rg03w/6gnJyiTr9LDQhni8jVZxO5LY2tMG+m7GOjQwmOTaUnfurcThd6HVi0CeMrFp7\n", "PRqX+4V7mo9j+iJPO4PgadPBpc4ST0VRkDs6kO2taIJ802/TE8zotBrySsRWDZ4Sg76jnKIoPPH2\n", "Dj7/vpiclHDu+O2C7uVq+thYXE2N3WX1Wg1zMs3MyTQjKwrl9R1UNHSg/e4rIrZ+ycETfk1lbBbF\n", "h5rYW1jLR+sL+Gh9AQumJPDrUyYRGyGWjAlHn0PN7gQWiWHuDam376uitc3JCfPT0aiQul4bZkYX\n", "E4s0yIa0ztpaylbfhXnpcuIvu8rj64UE6Vk+K5UP1uWzeW8lcybGA5BiSQCgpLHc47qFwLS3sBZz\n", "iIGEaN/G84G7PxjT0wdd7jyQ8ofvR2uxkP7g31RsWW8zrLG8t/Ygu/NrmZrj2wQ3gjAQu6MNu6MN\n", "bZuFSLORUB9m7uwmqzszV3bXLQRNnEzyX25Vtd4uep2W9EQzBWUNbCrZyZr8bzh1/CrxknMYxKDv\n", "KPfS//by4foC0hPM3Hbx/B7xSWHzjkHfT5yeRpJIijCSFGFESTsJ7YXnYI2P7z7ucsl8t7uCN7/Y\n", "z/od5WzaU8k5x+by06XZ6LQi/49w9DjUUg1AbIh7Vm+LrRKAWePjVKnfmJ6BWatB6XAMWE4bEUHq\n", "PQ9iysr2+prHznEP+j77vqh70Jdkdv9a1ljhdf1C4KhpsFNZZ2fuxHifb0vSxdtlXgnX3kBQpvf9\n", "ZDDTOwd9W22VYtAnjKiujcbbW/Rkx/k+iYurpRm5pQXJZFJlGbUkSSTfehem7NzBC3shJyWc/cX1\n", "HDhUyaayHcxMnCwGfcMgnt6PYh+uz+c/n+4jISqE2387v/eeLooyjFijngW1Wg3zJyey+neL+MO5\n", "0wk26nj+wz1c9dCX7M6vUfFbCIJvVTa7B31xoYcHfUFGHePSVVzq5mE/81RmkoX0BDPf766gscWd\n", "cTBYH8TKrEXMTJyiyjWEwLC3wJ3B05rmYTbNYWr44jPKH15Ne1GBx3VISN6Gvw7JpKwo9DpN94ug\n", "lo5W6uwNfriyIPTUNehTHEafb9cAUPXCs5Tefydya6tqdSqKoto9rj85ye64vqYG9/Clxi6Weg6H\n", "GPQdpdbvKOOfb+0gPNTIbRfPJyLM1KtMzWsv0/D5/watS1EUFJezz/3DJEli+axU/nHdco6fn05R\n", "RRPXPfYNf3ttG3VNbap8F0HwpUMt1eg0OiKCLFTUtFBe3cKU7GjVZqybv/+W2rdew1kz+MsQb/bp\n", "O5IkSayYnYLTpfD11pLuzy+edR7H5Szxun7h6Nfc0cIn+79iY/5eAMar+ZJjACHTZhB52hnooz3P\n", "Bq24XLhaW1RsVd9MBh3j0yPJL2ukvK6WC9++mn9tfsXn1xWEHws1hJAdMhG5Odwvg774S64g+eY7\n", "0YaGqlan4nDgavLtdgo5qe6XV9VV7sFlrRj0DYsY9B2FNuws54GXNmPUa7nlonn9xmno4hPQhQ9+\n", "o2/57lsK/3gFTd+u67dMaLCBy382ldW/W0R6gplPNhZy0Z2f8sRbOyirbvb4uwiCr81LnsHx2UvQ\n", "SIff6M8Yp972JFpLuDumTz/w1g9yexvFf7lWtf3HlsxIRiPBV1tKBi8sjDlljYd4avOr/FC7E61G\n", "6s5852u6iEiMqWlovEjCUvn0Pym86jIVW9W/8Rnue2RJeQd6rZ6aVrFBu+B/GREpZMlLkRtiSPXD\n", "8k5A9Vm5yif/TvGNf1K1zh9LiQ3FoNdSXOIEoE4M+oZFxPT5gaIoHGqppra1HqfsREEh1ZJERFDv\n", "fUYK60uosx9OvtIVgpFqSSLcZOaDdfk8+c5ODHotf7lwDoawFnYeOhzD0xWxkWxOwLxwCe35B3vU\n", "X2qvocnZ2qO0ND6ZxPmrMWf0Xotd1nSIpvbDgzpNqMSl56ew19bOB1+V8t91+fx3XT4zrLGcdEwG\n", "ySkaWh29lwvEhUYTZuz9RklRFL/FmQhj06njV3X/fmvXoM+q3qAvKHccGoMBZZAsaJLBSMrdDxCU\n", "o07MQ0SYiQmZUfxwsIa6xjYizL1n+4Wxq2tj9vpaiYwkCyaDH2/3Xj5Mxl3yOwyJA2fCVcuE9CjA\n", "vXdnVFA4Na11frmuIPxY16bjKX6Y6XM2NCC3tqINU+9a8Vf8AUNKqmr19UWr1ZCVZMFWWIsl3URt\n", "qxj0DYcY9PnY7sp9PPH9S5Q3V/b4/Mp5F7IwbU6v8u/s+R/rijb1+vzs3LP5YYuJ73cfIjzUyM0X\n", "zSUnJYJHNzzdZ/kr513I/PjesT3vln/Lt7V7e31+We5pLKX3w+jru/7bb/1P3LCSddvL+GBdPlts\n", "lWyxVRI2fhfOsN4zD/193+e2vo6sKJw/7Qx0WvHPUfAdRVHYU1BLTEQQ8VHqZjEcyiOuJEkosjrp\n", "sbvMm5TArgM1fLe7guPmpatat3B06xq8ONuM5I73zywfQO3bb9C49kuiz/0lusgozyqRJNVSyQ9m\n", "XHoEGgl259cSNSGCisoqOlwODNqBZ+4FQW1FFU1Emk2EBvn+3175Q/fRUVZC0vU3q1epJIHsffjC\n", "YHJSwtlTUMtPM37GxNQEn18vkIinbB/7In8Dh1qqmZcyg8SwWPQaPZIkkWpJ6rP8gtRZpFqSaLY7\n", "qKhpprymlYqaFp7bWYJiD2NyVjRXnTOduEj30pl5KTNIMnf9oz/86JlqSaL6+X+DJGFZtrL781nh\n", "OcQbw7tLKgCKQqIxss/9w2YnTSUmpPeNO9mcgE6rYcmMZJbMSCa/rIEP1uXz5cEKXM16tBoJa1oE\n", "uSnhaDQSiWHxveoA90zitorddMgOLpn9iyH9nQqCJ8prWmho7mDxtL77nqca135J86bvsCw/Fm3o\n", "wG9NFVlGcTqRdOr86J07MZ6n3t3Ft7vEoE/oqbpz0Kd0BJHjp6WdAGELl6ANj0AzSF8YkCzjtLei\n", "CQvz+UqQYJOe9AQLeUV1LJ3hjheqba0jPky91QCCMJjWNgfV9Xam5foni2zyTbdjP5inap2Ky4Wz\n", "oRFNULAqGUH70/XzTNMcT250ps+uE4jEoM/HLptzPmdOPInY0ME3ga5rbKPQFsyaTQaKD7UDwUAw\n", "4aFJLLJGs2RmMrPHx/W4Cc5Nns7c5Ol915eYhGy39/hsTmQuc340o9e6czvVj99Jw69/S/hxJ/Y4\n", "tiB1FgtSZw3a9oxEC1ecOY1f2Sey5vsiXl+Tx47CduriwrjhgtmkRPb9AHD1Mb/lxs9Xs+bgOo7L\n", "XkJGRMqg1xIET3RtUG1NVzeLoS4yCn10DNIQZqpLbv0zplwrqberE9cXHxVCRqKZbfuqaG1z4KSN\n", "L/I3kGJJYEbiZFWuIRydaroHfSaykv036NPHxGBMTfOqjppXX8Ru20PmP59BG+b7+KbxGZEcLGtA\n", "L4cSFxKN3en5HoOC4ImupZ3+SOICnaE1irovVGpff4W2/fvIePwpVRPE/FhXMpf9xWJp53CJQZ+P\n", "SZI06IDP6ZJ57+uDvPLJXto6XOi0GmZPiGNaTgxTc2JIjffsbad56Qo6ykoHLRc0aQppDz2GMdn7\n", "AVdokJ5TFmexfHYqz3+wm482FHDNX7/m6p/PZM6E3rN9Rp2Bcyefyr1rH+eT/V/z29k/97oNgtCX\n", "PZ2p69XOYhg8cTKaoOAhxTEl33o3QblWVa8/Z0I8+WX72Lm/mrR0HS/teJsl6fPEoG+MmxI3nh22\n", "OlyKidQ4/zxIdlOUwwHpHoj++QVoIyP9MuADmJARyQfr8ontmMYlJ//ML9cUhC4u2cUHts/RhDWR\n", "GjfNL9d01FQjt7eh1ak3OIs+73x3v/XhgA8gISqEYJOOvGIRfztcInvnCKtrbOO6x9by7//+gF6n\n", "5eLTJvPCrcdx86/nccriLNISzJ4vb1GGFhPhrl/dLE6hQXou+9lUrvn5TJxOmbue2ci67WV9lp0W\n", "P4EIk4XvSrchD7HNgjAU28p38/7ez2hoa2RvQS0GvZaMxN4JlLw2xMQVkka9vfq6TO1cDrTjQDXh\n", "JvdDcn1b40CnCGPA0vQFNO4dT0ZiOFqVticZispnn6Li748id3g5Wyb7Y6c+t/GdyVzEHrTCSKhv\n", "a2Rj3Rq0scWk+Wmmr/SWP1P9ygvqV+yHfqvRSGQnh1Na1UKL3eHz6wUSMdM3gooqGrntqW+prLOz\n", "ZHoyF/90MuYQw+AnDoHidFL13DNozBbMCxYOXFZRwOnsM6bPW0tmJBMfFcxNT2zggZc2YTLOZea4\n", "uB5lNP/P3nmHx1Gd+/+zRVr1LlldsmX7uGIbG2NjUxNKKElISOCSBNLzS0ggCYQ0LhgIJZRw0wmE\n", "GwjkklBCgIRimmnG2Bg3XI5c1CWrd2lXW+b3x6yMbGRrV5qZ3ZXO53n02DOaPee7q/nuzJlz3ve1\n", "2zmpdBntg50MeAdJiTc2yYZi6rKhbjOvVq1nbvYcag72MH9GtmH1+YbpeukFBrZvI+Pc87HHu455\n", "7KGYPgN9Nqcsk3inne1720hwLiTRmUCXKjA95alu6sHn16goNuEhxzHIOPtc4otLsDnHn4xCCwTw\n", "u904TbgmjUZuZiI5GYnImk6VUVphOYcKsw8lUGLRrHzZnb9mqKXZ0DY1vx9fXx/O9HTD4taPxqyS\n", "DLbva2NffReLZlkTBzkZUDN9EaKprZ+f37uels5BvviJOVz9heMNG/ANE1dUhDN97FgOz/591P74\n", "h3T86wlD+x9GlGXx3187EbvNxm0PbaLm4EdnIS5fchE/POkbasCnMJQujx4n0dbqR9NgTpnxBarj\n", "cnKJy83FZh/75rTxl7dQ+9Orje3f6WDe9Gyqm3ro7vOQkZhGp1sN+qY6++r1c2CmhfF8AHH5BbhK\n", "SieUyKHruWep+9FVDNXXGqjs2IiyTLr6PLR0Do59sEJhIMPxt8n2VJItyNwJEAj4DX+40f3KWur/\n", "+1o81VWGtjsas0oyscUP8ucdD/D07rWm9zdZUIM+E2jqbeF37z7IB80fLY0A0Nnr5vr71tPV6+Fb\n", "Fy7k4o8Lw81nczpJO+1jJM1fMOaxCTNnUXbHPWR/9mJDNYxkYUUOP/zCUjxDfn751014vOan9VUo\n", "ut09OO1O6pr0pWZmFKhOXrKUlJWrQ3qyWfjT6yj75T2Ga1g4U48b3rG/jYyEdHo9/fgsSJ2tiF6G\n", "kxxYVZT9EIHAhOL5ADLP/xRl//MHXGXTDRI1NiKYHELWqOLsCmtp6tGXFeemGP9QcjQ0vx9fVyeB\n", "oSFD28046xOU3fkbEmbOMrTd0ZhZkoGm2Wj21rC/s8b0/iYLatBnAnta9/FG9bs09n506tzvD3Db\n", "g5s42D7AxWfO5vzVJqabDSd2yOA4o9FYdVwh56+eTl1zH4++OPqAWKEwkm53L+kJqRxoMHnWI9SY\n", "voDR0bM6x83SB33b97Zx+vSVXLzwAgJq0Del2VffRZzTbtlysWEa776d1ocemHhDFsd3izJ90Le9\n", "poF97dWW9q2Y2tS263Wci7PGzvJuBL7ODhpvvp6u554xvnGDa9EejbzMRFLjU0Gz0akKtIeMIYtu\n", "hRDTgDuAM4FE4F3gainlTiPajzXquvWEJeUZH82G+ehaye7qDlYvKuQLZ88xTYO/r4+2vz1EXF4+\n", "KUtPOOaxmqah+f2mxPQdyeXnzuO93c089fp+PnZCqeU3JLGM8ll4aJpGt7uH0owi9td3k5IYR15m\n", "ouH9dDzzFO59lWR96rMhadK8QxBn7BKeWcUZJMQ72FnVzncuOsPQtqcise61LY27qA9so7RYGB7D\n", "OhbZn7sET9WBCbWhBQIEBt1oXi82g71yNCqKM3DYbWzseYE3Xj7IXz9zDwlxCZb0PVWJdZ8ZRYIv\n", "F19LCTOXFlrSX1xOLiW330Ogx9gwAM3vx9/fR8Djwe46dnz7RLHZbMwqyWTnkOtQTVLF2Ez4aiCE\n", "sANPATOBTwInAd3AK0IIa+aqo4zhGb7C1MMTluzY38Zjr1SSl5XEdz+32NRgcZvDTnxhcUgpr71N\n", "jdT99BraHnnQND3DJLicfP2TCwgENP732Sn1vT4hlM/CJ6AFuHDeOZxUtJym9n5mFmeY4rm4adNw\n", "Zof2hPbgb39F9fevMFyDw2FnVkkmdc29KpvZBJkMXnt170YcJXsoKLBmwDSSuMJi4osmVv6nb9MG\n", "6n52NX2bNxmkamxccQ6mF6Yx0Kt/Zm2D6kbSTCaDz4zC3luAt3o+ouijZa1Mw4TVXQPbt1B/43X0\n", "bdpgeNujMaskA7wuOge7Veb3EDFipm8RsAKYK6WUAEKILwEdwHmACTlho5vG3mZSXSmkuD5MSuLz\n", "B/j949uwAT/64lLTg3XtiUmknXoG/q6xL1xxBYWU3HY3iRUzTdU0zPL5+SysyOG93c3sqek4lFyj\n", "tb+dLU07ETkzKMsotkRLDKF8FiYOu4OL5p/H9n2twHrTshimnLACZ0ZoBd/zr7oGV0mpKTrmlGey\n", "Y38blbWdLBF5pvQxRYh5rzV26zFCcwuLrO/c759wTF/qiSeRfuoZxBdZex2YXZpJdbULO3pyjeK0\n", "Akv7n2LEvM+MovZgsDC7RSufAh4Pvq4ObBqGZtlMXrKMlBUn4So25xp3JLOKM9CqEgjQTY+n71DJ\n", "IsXRMWLdRw26QStH7Bt+hGBxBHnk8fl9tPS3f2SW7z9vV9HQ2sc5K8tNySA4GlqocUY2m6Upqm02\n", "G5eerReo/vtaeWh/TVc9f978KFua1AzgKCifjZP9wSyGFWbG84XoH5vdblqs0vD3yp4aNUMxQWLe\n", "ax2DnWh+O/NLLZw5QL/m1F3/Ezqe/qcRrRnQRniIsiy0IX1JZ7taMmY2Me8zo6g92EtORiJJCdbM\n", "zA/u3knj7TfTt+ld4xu3sL7mzJIMvA0zmTl4PilxSZb1G8tMeIgvpewAnj9i95Xo67OnZB7Va1Z9\n", "E6f9w4+2u8/Doy/uISUxji+cM9cSDd62Vtr/72FcZeUkLThuzOM1n8/S+IkFFTnMLc9i854WGlv7\n", "KMxNoSA4UG7qbbFEQyyhfDZ+9tXrQd5mzfS1P/4o3tZWMs+9YMxjNU1D8wyhJRlfC2x2MPvgHpV9\n", "cEJMBq8N+nvBm0hZgfVPvnMv/xr+no+W5QkHTdPwezyWxAaNRJRlHhr0qTghc5kMPjOCvkEvHT1u\n", "jp9j3eqM5MXHU3rzHQTcxpYn0QIBtMEB/AMDOJLMH4RlpyeSGZdLQ42G06HKjoeC4RHeQohPArcC\n", "dw9P2U8lnA4ny4oWsbhg/qF9j71SSb/bx6VnzzG8Ft/RsMXFE1dYiD05Zcxj/QP91F13LU2/NT6V\n", "/LE4b5Wejvv5d6oBmJacg81mo2mUrKeKw5nqPguH/fXdJCU4yc8ypwZkXH4hzuzQZu/bHvozB674\n", "OprX+Li7jFQXBdnJ7Klt4x87nuXl/W8Z3sdUJNa81uceJOAYIsGWYnkSF5vNRnxJKfH5E1sW6amu\n", "ov66H9P5n6cNUhYahTnJJNrSsA+lkRRnfNInxdGJNZ8ZRU2T/oCkLN/qBzTGrzjxtjRTf9P1dJpU\n", "83k0ZpVk0NHjob1b1dcMBUOHxkKILwP3AY9KKa8d49g1wA1G9h+N9A0MsXZDDdnpCZyzstyyfp3p\n", "6aSdcgaB3rGfuNoTkyj+xR0kzRYWKPuQk44rIP3peF7ZVMsXPzEXV5yTnKQsmvvaLNVhIVVCfOQz\n", "vlFKuSacRpTPQmfA7aWxrY8FM3Kw281Zwpy66mQ8B/aHdGzuV76JMycHe7w5D39EeSbrNvfyz10v\n", "MSd3Jh+vWG1KP1GOIT6D2PRazcEevHWzmFMaobhoAxJEJEyfQeltd1lapw/0QasoKOb9rfGcfOGU\n", "9E64qGvaBHm/Zh/Ogv2kZVnnV39/H77uLmzOeEMztsfnF1By8+0kzKgwrM2xmFWSwbs7D7K3rovs\n", "9En7oMawa5phgz4hxM+Bm4HfSimvGuv4oNg1R7RRDlQZpSkaeP6datxDfv7rrDnEOS0uixhi7JCV\n", "8XwjiXM6OHN5GU+8upe3tzVwxrJScpOy2N26D5/fNxmn66dLKasn0oDyWei8VbOJ7XU1aHbzlnYC\n", "aGHUw7PZbKbWxJxTmsm6zfW47Al0uye2xC6GmbDPIHa9Vtc0iK+pglWrF1vZLQDe1hYabruJxHkL\n", "SD/94xNqK9SYdKOZU5rJ+3taqKzt5IR51sZExiDqmjZB9rTuJ65kL/bkpZb12f3yWjqeepzcy7+G\n", "q7Tc2MYtqtM3zKxgWENlbScrFkzaxEuGXNPAoOWdQohr0U17XSimnSp4fX6effMASQlOzllZZmnf\n", "ntoa2v/+N9x7K8c+GP3GNWDCkrOxOHtFGTYbvPBODQCrSk/gwnln4wv4LNcS7Sifhcf62vdY1/AK\n", "oJmXxAVoe/hBet54LaRj9Tp9XjSTLozDF0BHIHEqD/omTCx7bTiGdaaJDzqOhiM9g+wvfoXk45ZM\n", "qB1N0wh4PAQGrV+yNTtYpF2qhEimE8s+M4qWPj0Ge1a+dQ8Ysj71GYrX3GL8gA/wDw5MOKY3HIZj\n", "2ZVfQ2PCUylCiOPQ12E/ADwghBh55vZIKQcm2kes8vr7DXT2evjMaTMty8o0jD0xibiCQuyJoU13\n", "N9x8Pa7yGZTecofJyg4nPzuZhRU5bN/XRkvHAGfOPNnS/mMF5bPw6Xb3YNPs4I+josi8G+D4wmL8\n", "A/0hHdvx5GP0b3mP8nt+T3yB8YV4pxem43TY8XriGKIDr99LnMP6Wm2xTKx7bX99F3FOO6WWxwiB\n", "PT4eV3FJSGEFxyIw0E/DbTeRtupk8r/7A4PUhcahm8hadRNpJrHuMyPQNI1uTzckw7SUbGs7NynL\n", "ZtNdt5MwW1D88zWmtH8kKYlxpC3Yyl6/D3/gJBwmhXFMFoyY6bs42M7XgCagccTP9w1oP6a46+0/\n", "8Zf3HwPgpY012Gxw3mpr4xIA4nJzSVt9CvHFoRXJLbr+Zkpuus1kVaNzyhK9ltRb2xoi0n+MoHwW\n", "Jl3uHmx+FwnxTgpzx05oNF7STj6V5EWhzWxkffbzTP/9/aYM+ADinHYqitIZ7NO/2rvdvab0M8mJ\n", "Wa95fX6qm3ooL0izPpxgGANKkjiSUyi56XbLB3wAqUnxFOUmU1nbScDC9PNTkJj1mVG0dg7id/aD\n", "BpmJ1s3M+7o68ff0mLKEuvBnN1D04+sMb/dYxCV60BK7qGtW17uxMKJkw8+BnxugJebxB/y817Cd\n", "WdnTaWzrY1dVB4tn5ZKXGaH6IWH5OXJPR1YuLOSPT27nza0NfOb0WRHTEc0on4WHpml0uXvxeRKp\n", "KEo39emfFgiEXqfPZjMzpA/Ql6ft3V7AeUuOJ8FpXbr7yUIse63YMJyjAAAgAElEQVSqsQefX2NW\n", "SWTKnA3s3EHLn+8ldfUpJC+eYIxShGL6AGaUJfG2rGVnXT0Ly0J7cKoIj1j2mVFUH+zB5hok0ZFi\n", "6YqM1r/+hf7Nmyj62Q1gYHF20O8kNU2z9I4yMzGDAXcnH1QdpDwCZWpiiQg9CpycdLq7CWgBcpIy\n", "efW9OgDOOCEyF4yBnR/Q/sSjDDXUh3S8pvkJuN0mqxqdtOR4Fs/OZV99N41tfRHRoJhcDPrceANe\n", "NK/L1Hi+gMdD61//l/5NG0I6XtM0tCEPmj/05C/hMrs0k0B3HtneuaS4zClToYhO9tZ24izay2Da\n", "3oj075peQfYlX8Q1Y+aE29KGPPj6InM9SMzpwDV3E6/t3RyR/hVTg5qmHnwHp3Ni3kmW9pv/3e9T\n", "9LPrsRk84AMIeL14W1sNb/dYFKbrS2M/qFOrxcZCDfoMpK1fjwHIStQHfYkuJysjlE3IkZZG3LQC\n", "bCEWtm3+zT3UXP09k1UdnZMX60s839yqTKuYOHZsLEs/HV9rkanxfNjtxJeU4kgLrY+eV9ZS88Pv\n", "Mrhnt2mSZpfqg9xKFdg+5ZB1nTjzq6nx7IpI/46kJFzFxThD9MOxaLrnThpvWTNxUeNgTqF+Part\n", "aIlI/4qpQXVjD/7mMj6z4CxrOw4EwlsIFgbtjz5M/X//2LRkZaNRlqOHg+5rbrKsz1hl0uXEjyTt\n", "g3oWpqGBeFo7BzlzeSkJrsh8xK6SUli1Gm0otIyc+VdejWu69bGHw6xYUIDTsY23tjaSVd5C31A/\n", "F847J2J6FLFNQlwCCd2zCHTWmjrTZ4+LI+2U0/F3doR0fNrHziLz058lfpp5mdoKspNJTYqjsk4N\n", "+qYalQ2t2Er8FKRZnBRiBEbFCRVe+3NcFtb7Gsn8kiL44MPMigqFGVQf7CHR5bA8BMhzsAlt0A2p\n", "xi8pzfvqN3FkZWGzWzenlJ+SA0D7YDv9g16SE1XysqOhZvoMZHimr75eLzdw+rIIxwKEce212e3g\n", "M2/J2VgkJ8axeHYu1U09PCfX8c/dL0SsTpNicrC/oZt4p52SPPOSuABhxR7ZbDbTsqaN7GNWaSYH\n", "2wfo7vOY2pciehhwe2nq1pdV5SZHZtDX+dyzNN19O0ONBqzYsNnQfJEp3ZOXnAUaDPh7cXtU+SCF\n", "8Qx5/TS09FGan4bd4oyTTXfeStujD5vXgcUJkI4vWMApSV/A11rEXvWw85ioQZ+BnFy+nJ+svgK5\n", "GzJSXcybHrmnrb3vrqf9yX/g6wjtSaWmaQSGPBEdaJ20UF8Kqw0l4PF56PdO+ozNCpPw+vzUHuyh\n", "vDANh8O8rzlvexutf3uIgR3bQjpe0zQ0n9fUmD4AEUw7v7euy9R+FNHD/oZuiNfr2uUmZ0VEQ+pJ\n", "q8n8zOdxZk/82qcFAvi7OyNyTXI6nMTbkiDezd565SGF8VQ1duMPaMw0cSXK0Si56XamffM7prSt\n", "+Xx4OzsIeKx74JjiSmbZ9ArQHKpe3xioQZ+BZCVm4OifRm+PjZMWFkS0XogzK5u4vGnY4kKb5m59\n", "8M9Uf+cbEKEnqwDL5+djt0FvlwP4cOZUoQiXmoO9+PwaFUXmXlDtcfHEFxVjTw5tNrH/vY3U/Ogq\n", "ete/aaquWSUZOIslz8oXTe1HET3sre3C5tIHfTlJkXng6MzIxFVUgt2VMOG22v72ELU/uRrNG1qI\n", "gtFUpM0k0J+mYmMVpjD8QG44BttKtIB5Dx173lxH461r8FQfMK2P0Rh+0LlH+fWYqJg+g3lreyMA\n", "qxcVRVRH4iyBzRkHIQbT5n3tWzhzckIeJJpBeoqLBRU57Go7QFwptA10UJ5ZHDE9ithlf303ABXF\n", "5tY+cqSlkbb6VAJ9odUHSl62nLSTTyG+yNyl37NLM3Hm1rN/QMUkTRX21nUS6MnmwlmfZGZWWeSE\n", "hFHC5FjkffnrOLKysMfHGyAqfL674st89eW1yCR1E6kwnr11XTgL97Hf5+MMSi3rN+DxMNTcjE0L\n", "YI83vqRP+ukfJ/O8T5pWi/ZoZKYlkJeVhKzRVwfYDPgOmoyomT4D8fsDvLOjkYwUF/NmRG5p5yHC\n", "jTWKghi6lQsL0IYSAX3Qp1CMh3V1b+AslpQXpFrQW3g+s2K5WnqKC4eWyJA2oGJjpwh7ajpJtWdz\n", "yZJzyAsmNrCag3/4DU2/u8e45csWZgA8kpyMBLLSEpA1HcpDCsOprO0kLq+eLa3vW9rvUH0tB++5\n", "g963TVxtYuJM4rGYU5pJ78AQTe39Eek/FlCDPgPZWdVOd98QKyO8tBOg6+UX6XjqCQLuwZCO1zSN\n", "gNtteqzRWKxYUECgP43sgUXMzo5cNlFFbFPr3oMzv4bphebO9LmrDtD+6CO494deF03z+QhYsGQt\n", "2ZkMTi91rd2m96WILC0dA7R1DTJvelZEn3BnffbzZF7waWwOx4Tb0vx+fL09lnhlNGw2G6Isk44e\n", "D21dkalhq5icDLi9NLR3Qbyb/JRcS/tOqJhFyZpbST/946a0rwUC+Lq78ff2mNL+sRDlmYDGrgPt\n", "lvcdK6hBn4G8tU1f2rlqkbXT2qMRPy0fZ04u2EO7+Hb+60lqr/4e3uaDJis7NjkZicyeVkzjrkKy\n", "481La6+YvAx5/QzRjzOQSHycuSvYHSkpxBUWYU9IDOl494F91P74h3Q+85SpugCyk/QB7/YqVfty\n", "srOzSr/JmR/hFSZx2TnEFxuzVK33zXU0XP8z3JV7DGlvPAzHCVXWqiWeCuPYV98FLj1RXWHqNOsF\n", "mDgT5z3YROMvb6Fr7Qum9TEa62vf46nWP+LIOsj2fW2W9h1LqEGfQexolrze+ygpBa0siIKlnUkL\n", "F5G6clXI8RCZn/4sZb/+I/GFkY1FBH2JZyCgsWlXZAegitiksq4DnEOkxJlcqgGIy80jbdXJxBeF\n", "Fnvqml5B6e13k/3Zz5usDAoy9AyOexqUjyY7Ow9Ex6BPCwQwap4x7bSPUfrLX5E0f6FBLYaPKNMH\n", "fbuq1MyBwjgqa7uwJ+hLEAvTrB30+bq78La1mraqK76wiOIbfmHJNW4kiXEJ9Hv7SUhzs2Nfm1qS\n", "fRTUoM8gtlRVoSV2U1GaamqK+FDRAoGoqx8WKiuP00s3rN/RFGElilhke1UTNrtGdrI1WdHCubjo\n", "sbMmihnBmWIFvuoFNDSoOmOTnV1V7SS6HMwweTnzWNT++Ad0/PNx4xqMUGwQgD/gZ9DViCurky2V\n", "rRHToZh87K3rxDY86Eu1dkVT79tvcvC3v2Kosd60PiJRX7M4Tb9vTM8eoq3bTVObiusbjciPTiYJ\n", "O2p1Ay2rKI+skCBtf3+ErrXPh3y8XqdvKGLpsUdSmJNCeUEaW2QrA+7I61HEFrvr9WXWRRnmz3r0\n", "bXqX9scfxdvaEvJrNJ/PkhpGC/JnURY/n+q6Iby+yMbqKsyju89DXXMfxRUefr/pIfa1V0dEh6Zp\n", "5P2/75F66unGtBcI4Ovrwz8QmXqtNmzcvf5PJE8/QF1zL21docXHKxRjUVnbRZKnhK8efzEzMs3N\n", "5HwkmedeQNFPb8BVYl6G34B7gKGmRtPaH42cpCwSnC60BD2TtlriOTpq0GcAfn+Auk79pu+EmRFM\n", "lT0CV0kZzuzQM7j1b9xA7Y+uou+9jSaqCp2TFhbg8wfYvDv0m2mFQtM0auo8xB08jjNmLje9P2d2\n", "DvHT8rGFuIw64HZTd921HPz9/5isTGfe9Gx8/oAqWDuJGV56mJbbz1s1G+kbiswTbpvNRlxuHvHT\n", "jJm5GKqroeHm6+l+ydrYoGHsdjvZiRkQpw86t1aqa5Fi4jQHky7NzS/jnFmnkZZgRYbpwzE7YV/L\n", "fX+k+d7fmdrHkdhsNorTCuj1dQIBNeg7CqpOnwFs39eG196PA8hNiXw8H0Dy8hXE5YW+Vjx5+QrS\n", "Tj095Ngks8ktHSSufCevfJDIyUsiH2eoiA1aOwfp7ISVxUuZP02Y3l/CjAqw28AfWmp5m8tF8c2/\n", "JEnMMVmZznEzc3jmzQNs39fGgorIpPFXmMvOA3ppG0fSAAxCfmpexLQYeTMZX1pOyU236x6LEIVp\n", "+Wwb2AUOL1tkKx9fHh0PdRWxywf79cHIcTMj833srq7C39eDMz3TtD7yr7qG+ELrExoWpxdQ1VlL\n", "RnbgUFyfqtd3OGqmzwDe3NqALd5NsjOFeEfkipsfhs8XVoFcq+qHhYrf2YMzr46djVUMedXSNEVo\n", "DM96zCnLsq7TMGJhbTYbNoIxtxYwvyIHu00tdZnMbNvbSrzTzkCgG4fdQW6Shef+CAZ27qD+xp/R\n", "t3mTIe3ZbLaIlxAajhPKzPGypbKVQJTEvStilx3BQd/CCA36Wh64l/ZH/2ZqHza7ncDQkKl9jMZl\n", "iz/Lwxf9hkWl5XT1eag52Gu5hmhHDfomiNcX4J0dTSTWr+Lnp30v0nIA/Wlry5//SO+G9eG9bshj\n", "SaxRKOQk6zcuPscAW1UQvSJEhhMuLJplzQW18/l/0/HPx8PyTSDgJ2BRnFJKYhwVxRnImg7cHpXQ\n", "ZbLR1jVIdVMP82dm09zfyrTkHBwhlukxmoSZs8n76rdInGXcDHtgcBBvW+S+/0vS9UFfcRn0Dgxx\n", "oEHVvFSMH03T2LGvjZTEOMry0yKiofCan5H3rStM7SPgHWKosZHAoLXxuCnxyTjtDo6fo692UBng\n", "P4oa9E2QzXua6Rv0cvL8WczMNqY+kRG4ZlTgzAx9+t5TV0vtz35Ex1MGZl6bADlJunZbvJs3tqg6\n", "Y4qx0TSNrZUtpKfEm16UfZj4omKceXlhFaNu/s3d1P7sGhNVfcjjH/wbSrbj82vsqu6wpE+FdWze\n", "o8eZzZuVRN9QP0Vpkattane5iMvLw5Fm3M1s872/oemeOw1rL1xmZJaxuvQE5gfDHtRNpGIi1DX3\n", "0tI5yOLZudjtkVl2qPl8pi957N+4gebf/gp3dZWp/RyNZXOnYbfBpl3NEek/mlExfRPkxQ01AJy5\n", "PHoGfDaHg9STTsHfFXryhvjiEkpvvSui8RMjyQkuUUpMHWL9jkZ6+heSlhxasgzF1KT2YC8dPR5O\n", "XVJs2QU1acFx2F0J2Jyhf5Xmf/9aXKXWxAZtb95Dg68KbMVsrWzleBG5eC+F8QwPQk6cU8bcOd/D\n", "5XBFVpDByzELvn9tROPMyzOLuXLlVxlwe3ny2Rd4e3sj/3W2NfG4isnHe7v1QUh/znvcs34bV634\n", "Kna7dXMvvu5uPDXV2JMSsceZdz+VuuoU0j92JvFF1mYmHSYtOZ455Vnsru6gq9dDRmqEvxejCDXT\n", "NwFaOgd4f08zojTTspmFUAk3Zkiv02dNnFEoJMcnkeZKwZXqxusL8NrmukhLUkQ5WypbAI22jLf5\n", "t3zFmk4DgbDL7tkcDrCoNMq05Bw0AiSmeNmwoymq4nYVE2PA7eV92UJpfirT8zNZlD+PObmRe2jX\n", "fN8faLzrdvx9xsXR2BwOAl7rY4OOJCkhjuNFHjUHe6lrVnFCivGxaXczNptG9WAl1Z11lg74ADw1\n", "VbT+5T4Gd2w3va9Il/9aubAQTYP1O6wtHRHtqEHfBHh5Yy0BDc5aEV0ZvdxVB2j76wO491aG9bqA\n", "14u/r88kVeFz2eKLuHzJRTgddl7cUK1uWBXHZItsBecQB/p3s6d1nyV9Nt//R3pffy3s13l7ui1J\n", "UpGXosc2zp7poqm9n6rGHtP7VFjDe7ub8foCrDrO+ix5o5HzhcvIuugS7IlJhrWpBQJ4m5sJDEa+\n", "Rt7qRfrn/Pr75hW1VkxeOnrc7DrQzvQKO26fmzm5My3XkHzcYgp/9FOSj19mel/e9g48NZFZ3tk1\n", "2M3COcnYbKjwoCNQg75x4g9ovPRuDYku56GLQbTgSEvDVT4De1J4F9/G22+i8c5bTVIVPqeUn8ip\n", "FUs56bgC6pr72FWlYpIUo9M36GX7vjYKi/RlnbnJ1pROSZg5C2d2eH11Pv0k9T+7Bm+L+fEG05L1\n", "QV9xiR5zuH67euo5WXhtsz74iJZBnz3eRVxBfljxrWPR++Y6mu6+DU+EYoNGsmJhAYkuJ69sqsWv\n", "sngqwuStrQ0ENCiers9cz43AoA9AG7JmBq7lf/9Ex9NPWdLXSPa1V/PNZ37Ca3WvMW96NjsPtNPc\n", "YW1CmWhGDfrGyfrtjbR1uznt+GJuWPdLbnj17khLOkRcdg6pK1aGHQtR+JPrKbruRpNUjZ9zVpQD\n", "8PQb+yMrRBG1bNzZhM8fYPoM/Sut2KKEFsnLlpO8+PiwXpP5yc9QetdviS8w/2Z9WkouAImpHuLj\n", "HLy1rVHNmE8C2roGeX9PM7NKMigriEwWwCMJDHmw2YzNHJp6yukUX/8LEufOM7Td8ZAQ7+SUJUW0\n", "dbt5f49KEKEIHU3TeHVzHXa7DW+CnnwpEjN9/Vu34O1st6Svgu//iLyvfdOSvkYyPbOEpLhEth7c\n", "yceW6TGFa9+tsVxHtKIGfeNA0zQee7kSuw3OWV1ETXcDDoMvdhNlPEvHbE4nWgRqq4zFgopsZpVk\n", "8M6OJmqa1PI0xUd59T095jM1Sy+dUJJu0ezHOOJgbXa74QkvjkZJegHfWX4ZZ88+hWVz82ho7WNf\n", "fZclfSvMY+27NQQ0OHtFWVQM4r0tzVR97//R/dILhrZrs9nQfJGNDQJ4ce/rPPbBs5y3ajoAT61T\n", "DyAVoSNrOtlf382yubns6zxAQWoe+cEHclahaRqd/3marn8/Y0l/NrudgNttSV8jcdgdLJw2h5b+\n", "dmbOjCM5MY6179bg9al6z6AGfePijS0NVDf1cPLiYtx2PUPmjKzoyd7Z+Z9naP/Ho+OqBeZtb0Xz\n", "RVc9L5vNxiVn6bWfHnpuV4TVKKKNprZ+tu1tY/6MbDqH9MK3xcH6Wmbi3r+Plgfuw70vvNhZTdPw\n", "9/fht6BWX3J8EqdNX0l+Si5nnajHHj/3drXp/SrMY9Dj499vHSA1KY5TlhRz/3v/x7Uv3kLbQOSW\n", "v8flTaPoJ9eTsnyF4W37u7txH4jsIOut2k08uet5crIdLJmdy479bexW4QaKEPlXcJXSp06Zye/O\n", "v5mrT7J+Bsxms5H3zSvIveyrlvSn+f0Myj14aq2fZVtSMB+AHa07OfvEMrp6Pby8sdZyHdGIIYM+\n", "IYRDCHGbEKJRCNErhHhciMmZG3zQ4+PB/+zC6bDzxU/M4UCnfiJNz4xMatrRSJgtiMvPh7jwKnJ0\n", "PvMU9Tf8PKLFcI/GCXOnsbAih027mg+lPZ5qTCWfhcO/XteTtnxiZTlfWHQh3zvxKyTFJZrerzMz\n", "k8RZs8NOXOGpqaL+v39Cz2svmaRsdJbMzqMgJ5l179fT1hX5xBjRTDR77dk3D9A74OWCkytwxdnZ\n", "2LCVTncPWQkZEdVlT3ThzMwyvN2WP99L+2P/Z3i74bC0cCGaprGlaScXn6k/gHzg2Q+iYpY1lolm\n", "nxnFvvou3t7WSEVxOgsrckiKS6Q0oygiWjSPdTNv3tYW2v/+CJ6qA5b1OcyyokU47A5er3qHT506\n", "g3inncde2Yt7KLomNCKBUTN9a4DLgC8BpwDFwJMGtR1VPPDMB7R1DXLhaRXkZyezs0UCMDt7RoSV\n", "fUjC9AqSl68Muw5L5gWfpvTWu4jPN3+WJFTWVb3DT9beRlNvM9/49AIcdhu/fWwLPf3RtwzVAtYw\n", "RXwWKs0dA7y0sZb87CRWLypkemYJJ5cvt6RvZ1Y2yUuXhR076yotp/jGW8k871MmKRsdu93G5z82\n", "G58/wKNrpaV9xyBriEKvtXQO8NgrlWSkuLjg5BnsbK2kx9PHCUWLLE//PhJ/fz+ax5zv5PyrriHv\n", "m1eY0naoLC1cCMA7dZuZPyObk44rQNZ08sIGFSs0QdYQhT4zCn9A4/5/7QDgK+fNN70o+rHoeev1\n", "sDO6T4T4/AKmXfF9UledbFmfw6S5Ujhj+kkclz+P1GQnF5w8g7auQR5/Za/lWqKNCV8lhBDxwJXA\n", "T6WUr0gptwCXAKuEECsn2n408eKGal7cUEN5QRr/dZbQ10gPdlOQmmdZtsBQCAwO6nFDYWJzONB8\n", "0TWYCmgBDnTW8l7jdqYXpvOFc+bQ0ePh1gc3MuSdOmu0p5LPQkXTNP701Ha8vgCXnj0Hh8P6m97x\n", "ZELTvalZUrLhSE5fWkxpfipr361h5wFrAvpjjWj1ms8f4K5HNuMZ8vOVC+aRkhjH83vXAXBK2YmR\n", "koWmadRc+31a/nK/Ke3bbDYC7shm3ytJL6Qiq4z3mz6gpb+db3xqIcmJcTzwzAcqRnacRKvPjOSx\n", "lyvZVdXBSccVsGi2tTF8R+Kpqab75Rct7dPudOLr6rS0z2G+sexSLl9yEXGOOC4+U5CbmcgTr+5l\n", "x/62iOiJFoy4S1oMpALrhndIKWuAasD6Ib4JaJrGf96u4g9PbCM1KZ6ffvkE4pwObDYbt535E/77\n", "1KsiLfEQ7gP7abz7dtyVe8b1en9vb8TjJ0ayrGgRdpudt2vfQ9M0Pnv6LFYdV8jOA+2suX/DVJrx\n", "m/Q+C5fHX9nLpl3NHDczh9OOD2+2zQga7ryVzhf+M67XahoM7tppaaB7/9AAmk3juxctxm6DOx5+\n", "T6WyHp2o85rX5+fOR95jd3UHpywu4vSlJVS2HWBzw3YqssoQOZFbaWKz2Sj675vI+sznTOtjqKaW\n", "7nHUwzSST8w6HU3TeL3qHXIyEvn+JUsY8vq58f4N7K2LzI1tjBN1PjMKTdN4+o39/N+Le8jJSOTb\n", "nz0u0pJIO/UM8r5qbSyhpmn0bdxA298fsbTfI0l0Obn60qXYgNse3Ehl7dT1qxGDvuG7rSMrIDaO\n", "+F1Momka++q6uPl/3+Xef24nNTmeG7+5gsKclEPH2Gw2cpKNj2MYL/HFJSSfcOK4C+Qe/P2v6XjG\n", "+toqRyPNlcLSwoVUddaxuXE7druNH156PCsXFrBjfxtX3Pkq/3m7ir6BST/4m7Q+C5cBt5f7/rWD\n", "h5/fTXZ6Ald/YWlEls2kn3kOcXnTxvXa3tdfo/lPv8Pfbc0swXsN2/jOsz/n9ap3mDs9i69csICO\n", "HjfX/vYN3tnRREDVHRtJ1HgtENDYVtnK1b9+g/Xbm1hYkcP3Pr8Ym82GyxlPWkIqly++KKLLxrRA\n", "AK2vD2dGpml9dD77FJ79e9HGkS3XKFaXnsA1q77FRfPPA2DFggK+/dlFdPd7+PHv3uKRF3bT3eeJ\n", "mL4YJGp8ZiRVjd3c8peN/PnpD8hIcfHFz+Vww+u3se1gZJLQedvb8PX3oQ1GII5b0+jfvIm4/MjX\n", "Ep0/I5srL15M/6CXn/z+LR5/pZJBz9SL8Qsv08foJAEBKeWRa5U8QIIB7RtCV0sDdXUSragADQ2t\n", "pw9fewctCfnkxOfj6+lC6+ykJ7OArh439bUHaGuW7CEJm01j7gwnZ8/OwOtqAzLxdXbia28jYeYs\n", "AHydnXjbWkmcNTu43YG3tYXE2XM+3G5pIVEEtzva9d+LuQB429vxtTaTOGfeoW1vy0GS5s4Pbrfh\n", "bT5I0rwF+nZbK97mZpLmf7gdGBzEmZND4myBzT6+EhLT/t93cWbpg1hPXS2OlJRDwfme2hocaWmH\n", "Lu5WbV+84AK2NO3k0Rf+RP7ZP6C4eBY/vuwEnn/yTR5/9yD3/nM797+yjiUpPlJyM0nKyyIh3kF6\n", "TwfF0+ZhT8/AZoNCXxe5xXk4MzL5oHkPtsaDaCnJkJYKwMzs6SQ4XeP63CwgJnwGsOut5/DNKAO7\n", "HQ0Nm9xHYOZ0jiuYj91up3/7VpLmLzxUxHnbq08xNKscLXjj6tizl76yUhK9Jfh8YJM76CueTXvf\n", "EPvruxioXMvulCxypyfyqVMr2PrqQ3RVFHPhgnOx2Wz0bXqX5OOXHWq/b+MGkpeecGi79931pCw7\n", "8cPtd94mZfmKD7fXv0XKiSsPbfe8/QapK1Yd2u7f+j5Ji5bgTE8nZekJ4/qMUletJu30M3Dm5OLv\n", "68Pb2kzC9AoAfN3d+Ls6cJVNN2y7uBc0NP73/X/Q2VpPeWI6556TzAsv9fLrB15nZhoULppLUW4K\n", "GTYPfd378RdOo6wgFUd/P7aeXrSiAkROBba+gY+0v+/ANnyFwfwLvX3HPD4GMNxre1r30e7sQevq\n", "hv5+MmYIyjNL8HV20NXUxgEtjSGfn+6WGjo7DnAwKZ32nkE6aptx9PXT4Mzn7BWL+fLqfGiogRkV\n", "lGUUc9fyK3D1DEFw5Zi3rRV/V9eh65K3tRVfV+eh65K3tSW4LT7c7ug4dF3ytjTj6+z48LrUfFDf\n", "Dl6XhpoP4u/oOFQ3r+Uv9xOXX0DCLIGZw87c4AxFwOMh0N+Hr6P90LXV29KM5vMRX1h06D1pPt+h\n", "OphGbi8vXnzY9idWlpPHAA++/DqPv9vCExvXMycFCrOTiC/IY0bGdJIH+0hw2Ji/fC4J8U68rS3s\n", "b9mPLyc4SO7o1Eu45OYgciqgo/Mj/fsTXCSkppv4CUeEmLim9bQ3U3NgB01JGXT1udH6+4nr6sJf\n", "WE5ufBF9bR0MHTzIAXs2u6vb6e9uIjehnoIF6WQV9vPwxv3k9AfonNcN6N+X3oNNH94LdnfhbWo8\n", "5DFfdxdDjQ2H7v18XZ36dvDez9fVyVBDPUnz9ThTX2cnQ/W1JC1cFNzuYKi+7tB229/+ir+7k+xL\n", "vmSqR0fDZreTc+llaJqmX5e6u/B3dx3SNtTYgC0ujrhc/dox1NSIzekcYzuOuNzccW139r7Gx1cN\n", "8na1xt82NLB23fPk56VRXn48+ZmppLu7cCW5WLhMkBDvZM/ODfjsGmQFvdrSCk4ns2cvI94R95H2\n", "YwEjBn2DgF0IYZdSjnwM5wL6w2zLAXDw4EEDZB3OzlefpvHNl3h6qZ7hrKLZzYJ6N/+cWYG3egGz\n", "BhtYPFjF41mrARC23Sz2ViKDx/ub3dRudfNq5y6+MefTDOzeycDmTeR88csAUbHdv3kTWRdehG2C\n", "sU1abT22xiY6n/4nCXMXkLxQX5rQ/vdHSJh/XES2L8k5jUqhnxcAACAASURBVM5XH6XD9Ta+4/Qn\n", "VgVb/s335s1joy2dte7XKdraRWW3i8p+PXPj+Vu6eNO9hN1JejmNi3s2sPzck0leeBzXrb+H87d0\n", "UpnvorJAP/7nJ3+XgnTji3qPOJ8nUswxJnwG0Hz3b/n9x3PxBc/DK19s5g8fz+WWk67C5Yij/sbr\n", "Kfzp9djj9URDHb+9b9Tj+3adAgEH1zY9wW+mfRqvXf+6uvbgeuTHc+lw2PnL229w5YvNPHZmARnd\n", "dmakFVF/+y2HtV//y1sP377j9sO37/rl4dt333H49q/uovCnSYe2G267mbxvX4k9MZEJTbD096Nt\n", "2oin+gADW94n5wuXAzCw6wMGtm4m51Jjty/9xBk8tPc53tn1L3rq3by4NIMrzrqMyle3kSh38nir\n", "7qvZg/Usdr7PM8v0m8yKZjfz6908szSDG5d9k7h91R9pf/NrT/LkktSQjrcnJmJPND67qkE+AxO8\n", "9qu19xKfnsDcxkGmt3g4+PEVXDb7XPq3bWHrq5t4OGEpAAtt25kVqOKtxfp1Z+7gINPbPaSuXsb5\n", "4nhqXn4Rd+Uesj/3XwD0b9sy9rbcQ/bnjd3OuujzEAgwmJLKwBvryMzKtmS2MdDaSv+77xBwu8k4\n", "93xs2Oh5cx2B/n4yztFn4PTtATLOOdeS7bj31yE636Zutn5Opxzox1cb4NXBVNw7V7Ky6wCJfg9v\n", "7TmHTy0vpOfNdbxx4G1enqUfv+xAP0lDAd6Yk8pNy74F7276SH++mdPJm7/E9M83VKbSNU2uf5Gm\n", "55/hiRP1G//SNg/L9w/wj3nT8R5YRLmnmVW9u3g553SSE5wsSa6jvH4TTxRl0lJl46TBNFYcGKB0\n", "VTLV27fj3r+XnjdeI+8r+oMMo7cH91fS+/o6ci/7CgGfD23hYjwNtQx1RrbEiNbaRtfzz+LMzSUt\n", "oIHNRtfz/8GZmkrq6lMB6Hz+36Zt+wI+Gp95jq64AO4ZyZAI83b30uex83ilB3wuPta9lX5HIu+e\n", "djrnn1DAqw/9D+0OP5tnJANw6u5e+lx2zv/c98l0pR5qP+PcC7A5jRhOHY6B17RD2CaaclgIsRzY\n", "AJRIKRtG7K8Cfi+lvOsor1sD3DChzhWK2OdGKeWasQ5SPlMoJkRIPgPlNYVigqhrmkJhPiFf00Zi\n", "xNB0G9ALnAb8DUAIUQ6UAW8c7UVBsWtG7hNCuAA3MBOIpdSMVUDMrF0aQSzqjkXNDmAfkCClHG/Q\n", "h/KZTiz+/WNRM8SebiN8BpPfa9H2d402PRB9mqJNj7qmGUO0/V1DJRZ1x6Jmo65ph5jwTB+AEOI2\n", "4MvBn1bgD8CAlPKMcbSlSSkjF5U+DmJRM8Sm7ljUDMbonuo+g9jUHYuaITZ1G6V5MntN6RmbaNMU\n", "bXpAXdOMIBY1Q2zqjkXNYLxuoxahXgfEAY8E/30eiGw1VYVi8qF8plBYg/KaQmE+ymcKhYUYMugL\n", "Zl+6JvijUChMQPlMobAG5TWFwnyUzxQKazGiTp9CoVAoFAqFQqFQKKKUaBz03RhpAeMgFjVDbOqO\n", "Rc0QfbqjTU+oxKLuWNQMsak7GjVHmyalZ2yiTVO06YHo0xRtekIhFjVDbOqORc1gsG5DErkoFAqF\n", "QqFQKBQKhSI6icaZPoVCoVAoFAqFQqFQGIQa9CkUCoVCoVAoFArFJEYN+hQKhUKhUCgUCoViEqMG\n", "fQqFQqFQKBQKhUIxiVGDPoVCoVAoFAqFQqGYxBhSnD1UhBAO4BfA5UAq8AJwhZSy5SjHFwP/A5wF\n", "DAJPANdIKQetUXxIR7i6PwWsAWYDTcCfpJR3WqN2VD33Ag4p5TeOccwy4NfAYqABuFlK+bBFEkfT\n", "E4rmi4GfAjPRP+c/A3dKKQPWqBxV05i6jzj+30CylPJ0AzUon0WAWPRZUFPMeS0afBZsN6rO2XHo\n", "OSd4vAAOAL+QUj5ulJ4j+opKf4RzLgkhKoBtwGwpZWMktFjpxRD1fBX4EVCOfg7dKaV80GAdUeWz\n", "UIlmP4ZCtHp2LKLJ06FilfetnulbA1wGfAk4BSgGnhztQCGEC3gJyABOAi4GzgcicVO3htB1Lwn+\n", "7klgPvBj4AYhxHcsUXq4FpsQ4ibgm8BRa3MIIXKBF4H3gCXAb4AHhBBnWiL0cC2hav4E8AhwH7AQ\n", "+An6Z/0zK3SOoick3Ue85lvAuaEeHwZrUD6zjFj0WVBPzHktynwG0XfOhqNnFfAc8BpwPPBL9PPx\n", "EgP1RK0/wj2XhBCzgbVAYqS0WOXFMPR8FvgDcBswB/gVcL8Q4gIj9RB9PguVNUSZH0MhWj07FtHk\n", "6VCx2vuWzfQJIeKBK4HvSSlfCe67BKgSQqyUUr5zxEsuBfKBFVLK7uDxa4BvW6U52Ge4uk8FuqSU\n", "vwhuVwdH52ejfzlapXsG8AD6l17tGId/HeiUUl4V3K4UQhwPXIM+ILCEMDV/C3hCSjn8mVYJIeYC\n", "X0F/UmYZYeoefs1M4BbgHcBmoBblM+WzMYlFr0WTz4JtR9U5Ow49PwLekFL+KLi9N/h53QT8faJ6\n", "gv1HpT/CPZeEEFehfy57gekR1GK6F8PUkw1cL6X8a3D7ASHEFcAZwLMG6Ykqn5mo23Q/hqg7Kj07\n", "FtHk6VCJhPetnOlbjD69vW54h5SyBqgGTh7l+LOBtcM3osHj/yKlXG6uzI8Qru53gXQhxCVCCLsQ\n", "YkHwuE3mSz2MlUANsACoGuPYk4E3jtj3OrDKBF3HIhzNvwBuPGKfBmSaoGsswtE9vOTjr8DtwC6D\n", "tSifWUss+gxi02vR5DOIvnM2XD0zgbeP2LcVmCmEyDdIU7T6I6xzCfgk8A3g6ghrscKLIeuRUt4n\n", "pbwDQAjhFEJ8DpiLsTf80eazUIlGP4ZCtHp2LKLJ06FiufetjOkrDv7bcMT+xhG/G8ks4FUhxM3A\n", "F9Df3D+B66SUHtNUfpSwdEsp3xFCfBt9GvZhwAH8A/1ps2VIKf8G/A1ACDHW4UXA5iP2NQJJQogs\n", "KWWH8Qo/SjiapZTvjdwWQqShz049b5a+Y2gJ57MGfU22H7gbuN9gOcpnFhKLPoPY9FqU+Qyi75wN\n", "1/uNQOkR+8qD/+YBBycqKFr9Ee65JKX8WPDY04zSMB4tVnhxHD4bjuvagD6R8Gcp5XNG6SH6fBYq\n", "UefHUIhWz45FNHk6VCLhfStn+pKAgJTSf8R+D5AwyvHpwNfQp10vAn6AHm90n5kiRyEs3UKIk4Hf\n", "AXcAy9ADeM8CbjBZ50RIAtxH7Bu+4R/tbxNVCCGSgH8BLvR1zlGLEGIp8EPgcinl8PptI2ONlM+i\n", "l5j2GcSO1yzwGUTfORuu9x8GLhZCfC44S3M8+mcGEG+QpnCIeX9YSZR58QB6HNpX0c8pI5d9R5vP\n", "QiXW/RgKyrMRYCLet3LQNwjYhRBH9ukC+kc53gu0A1+SUr4vpXwG/Yb0S0IIK5cVhav758CrUsqf\n", "SSm3BbMYXQP81GLd4TCI/n5GMrw92nuMGoQQOcDL6EspzpFS1kVY0lERQiSgf7FfJ6U8MOJXRsYa\n", "KZ8pn5lCrHjNIp9B9J2zYekJ9n8z8CD6jdtjwF3BX3cfebwFxLQ/rCTavCil7JBSbpd61s5bgB8I\n", "IYzyW7T5LFRi3Y+hoDxrMRP1vpWDvmFhBUfsL+Kj098A9cDuEU9pAXYH/y03VtoxCVd3CXomo5Fs\n", "BOL46NR9tFAHFB6xrxDoGxnrFW0IIcqB9UAZcIqU8shlBtHGiegZzn4phOgVQvSiZ/Y6Obg92pKP\n", "cFE+Uz4znBjzmhU+g+g7Z8PVg5TyZvS4o2Ip5Uz0pVleQkyUYzAx6w8riSYvCiFOFUIsOmL3B+jZ\n", "ELMM6ibafBYqse7HUFCetRAjvG/loG8b0AucNrwj+AbK+GggKMCbwBIhxMi4wwXoMRrVZokchXB1\n", "7wWO/BJcAASA/aYonDhvoacTHsnpwf1RiRAiDz21McBJUsoPIqknRN5FD9ZeFPxZDDyFHmC+CL3u\n", "ykRRPlM+M5QY9JoVPoPoO2fD0iOEuEII8SspZUBKORwv9GngTYvjeYeJSX9YSRR68cd8NHPgcqBZ\n", "StluUB/R5rNQiXU/hoLyrEUY5X3LErlIKT1CiD8Adwkh2oBW9PS566SUG4UQcejpf9ullF7gXuB7\n", "wF+FEDeiP725A3hIStkZxbrvAN4QQvwceBSYh55I4PdSyj6rdB+BjRFLm0bR/ABwrdCLQ/4a+Djw\n", "X+iZHSPFWJp/H9w+A/CMyG6lSSmbrRY7gmPpdqPHPjDi972A+4hlaONG+Uz5bBzEotci6jOIvnN2\n", "HHoqgXuEEO+hPz2+FPg8+t/ZDKLVH2PpspJo8+JYeu4BXhBCXA08jV4u4UfoIQKGEG0+M1G31X4M\n", "hWj17FhEk6dDxRLvW12c/Tr0TDWPAK+ipyi9KPi7VehT2SsBpJQt6E8QsoD3g697AovrhwUJR/d6\n", "4Bz0Atdb0b8U/8SHAbmRQOPwJAajfdbnoBfXfB/4DnqM1zprZR7GUTULIRKBC4Fk9GUbjSN+Ih1n\n", "dMzPOoTjjUD5LDLEos8gNr0WDT6D6Dtnw9HzErrPbwR2oqcwPy+o0wyi1R/jOZcs1xIhL471N3sJ\n", "/fz6ErAdfcD3XSml0YnAos1noRLNfgyFaPXsWESTp0PFEu/bNC0a3qtCoVAoFAqFQqFQKMzA6pk+\n", "hUKhUCgUCoVCoVBYiBr0KRQKhUKhUCgUCsUkRg36FAqFQqFQKBQKhWISowZ9CoVCoVAoFAqFQjGJ\n", "UYM+hUKhUCgUCoVCoZjEqEGfQqFQKBQKhUKhUExi1KBPoVAoFAqFQqFQKCYxatCnUCgUCoVCoVAo\n", "FJMYZ6QFKCKDEOJMYCkwA7hdSnkgwpIUikmJ8ppCYT7KZwqFNSivxS5qpm8KIoRYCXxeSnk78Dfg\n", "ughLUigmJcprCoX5KJ8pFNagvBbbqJm+KYYQIh54ELgguGsA/YmNQqEwEOU1hcJ8lM8UCmtQXot9\n", "1Ezf1ONLQKuUsjK4XQy4IqhHoZisKK8pFOajfKZQWIPyWoyjBn1Tj28AT4/YXgIcjJAWhWIyo7ym\n", "UJiP8plCYQ3KazGOWt45hRBCZADLgA+EELcFd18C/DNyqhSKyYfymkJhPspnCoU1KK9NDtSgb2qx\n", "BOiTUn4dQAiRAFwF/CeiqhSKyYfymkJhPspnCoU1KK9NAtTyzqnFNGDriO1zgQYp5asR0qNQTFaU\n", "1xQK81E+UyisQXltEqAGfVOLfqBxxPY3gBsjpEWhmMworykU5qN8plBYg/LaJEAN+qYWHwAJAEKI\n", "swCPlPKRyEpSKCYlymsKhfkonykU1qC8NgmwaZoWaQ0KCxFC3AR0oE/Vr5FSeiIsSaGYlCivKRTm\n", "o3ymUFiD8lrsowZ9CoVCoVAoFAqFQjGJUcs7FQqFQqFQKBQKhWISowZ9CoVCoVAoFAqFQjGJUYM+\n", "hUKhUCgUCoVCoZjEqEGfQqFQKBQKhUKhUExi1KBPoVAoFAqFQqFQKCYxatCnUCgUCoVCoVAoFJMY\n", "NehTKBQKhUKhUCgUikmMM9ICrEQI8SBQJKU8M7g9DyiXUj5ncr+H9SOECABflFL+n5n9HkXLvYBD\n", "SvmNI/Z/HbgWKAZ2AT+SUr5mgR4H8AvgciAVeAG4QkrZMpHXjPV+hBDTgDuAM4FE4F3gainlTkPf\n", "4BRE+Wx0nwkhMoG7gHOBBOAd9HNutwV6DPdZ8PP+YJSXrpZSrh9vv4rQmKo+G+u7O5LnnEk+Kwbu\n", "Ac5Af1D/AvBDKWXTiDbS0D+TC9C/W/4dPKbd6Pc4FVFeO6rXInYfFUGvxfQ1barN9GnBn2GeBpZZ\n", "0O+R/eQDT1rQ7yGEEDYhxE3ANzn8M0AIcTnwO+BWYAHwOvCMEKLMAmlrgMuALwGnoA/Sxvpsjvma\n", "sd6PEMIOPAXMBD4JnAR0A68IIbKMeVtTGuWzUXwG/BlYAXwGWAm4gReEEC4LpK3BYJ8BC4E29M95\n", "5M/GCfarCI0p57MQv7vXELlzbjx9H/U1Qggb8B8gHTgNOBUoAJ49oo3H0W+8Lw+2kQm8JoSYUg/2\n", "TUR57XCvZUbBfdQaIuO18fQbNUy1LwRb8OfIfVb1DYDVTwSEEDOAB4D5QO0Rv7MBNwK3SykfDO67\n", "Bv1Jx2qgxkRd8cCVwPeklK8E910CVAkhVkop3wnzNSvQnzSN9X4Wod98z5VSyuAxXwI6gPOAh816\n", "z1ME5bMjfBbkDOC64fNaCHEd+kzZXGCriboM95mUcgP6A5WdR/ucx9OvIiymos+O9d19rhDiMeAq\n", "4LtWn3MmXc+qgJ3AT6SUtcHf3wM8JYRIl1J2CyEWow/4zpBSrgsecynQAHwesHylwyREeY3DvHY+\n", "+rUrIvdREfRazF/TptqgD4JPa4QQ64AK4AYhxOVSyhnB5Vd3oz+1sAEbgB9IKSuDrwkANwNfC7az\n", "DP3Jy23oT+6T0E+cW6SUDx+jn0NT9EKIbPQZqfPQn869A1wjpdw6os+vAV8BTgBagF9IKe8ffkPB\n", "pQenSimnH+U9r0Qf7FwM/OOI3wmgdOR+KaUGLAnlwxyLMbQtRp8eXzei7xohRDVwMvpnEe5ruhj7\n", "/dSgf96VI/YNP8XLGPtdKUJA+eyjvANcErwx7Q721wEcCOUDPRYR8NnwoO9YS1PH068iPKaaz471\n", "3Z2Jfs6lYNI5Z7HPTgk+XLl0RP/FwLeAjVLK7uDuWcF/3x7RRp8QYh/6bIUa9BmD8trh90mm3kdF\n", "qddi/po21ZZ3wodPTS4EqtFjbE4ITlU/h27Es4BV6Cf1W0FDD/N19JicC4FeYC1QDyxHX+70BnC/\n", "ECJvtH5GChH62uCXgKXA54AT0ZdLvS4OX1r5S+A36DMC/wT+KIQoHfH7KznGUgMp5d+klF8+ylOi\n", "2cF/M4UQrwohmoUQrwshVh6tvaMhhPiiEOJ+IcTdQoizQtBWHPy34Yj9jSN+F85rSgnh/UgpO6SU\n", "zwcHg8Ncib4mfe1R+lWEh/LZR/kC+g1pM9A//B6llD1Ha3M0osBnJcH/LwDKhRDvCCGahBAvCSFG\n", "fvbj6VcRHlPKZyF8dxt2zkWBzw57jRDiX+grCE5EXz4+8ljQr3/DxzrRfZp7lH4V4aO8NsJrRt5H\n", "xZDXYv6aNhUHfQBIKTsBP9An9WDnM9BPsIullO9LKfdIKb8DdKKP9od5UEq5XUr5HpCMbsgrpZR7\n", "g091bgPiCT59G6WfkZyN/uTgEinlO1LKD9DXCXcB3xlx3ANSyieklNXADeh/t0NfAlLKnlHaDpW0\n", "4L8PAfcFNX0AvCqEmBNqI0KI7wJLpJTfkFJeLaVcG4K2JCAgpfQfsd+DHow+ntekhvt+hBCfRH9i\n", "dvfwMgWFMSifHcYj6BfEc9FvDF4EnhRCFIXaQLT4TAiRAExHH8Reg/6EuxH9pmNOKG0c840qwmKq\n", "+myU725Dzrlo8dkR+65Dvwl9C3hJCFEY3L8R2APcK4TIF0IkoSfXyED/2ykMRHlt9Puk8d5HxZjX\n", "Yv6aNmUHfaOwBHAAjUKI3uEf9BubkYOFQ0uxpJStwJ+ALwsh/iSEeAV4L/hrRwh9LgDapZT7RrTp\n", "RY9LWzDiuMoRvx+eFTDqy9wb/PcXUsq/Sym3SimvAPYC3w6lASFELnAL+s3gPUKI60PsexCwB5+U\n", "jcSFPhMS7mv6CPP9CCG+DDwB/F1KeW2IuhXjZ0r6TOgxA58ALpNSviCl3Ii+lMQN/CDENqLFZ/1S\n", "Sjf6A6MzpJRvSyk3AV9G/7t9J5Q2QtSuGB+T3mdH+e6e8DkXTT4buUNK+UHQZ5eg/z0uD+73oieH\n", "ykR/8NLO/2fvvsPjKK+GD/9m+2pVVtWS3GTL1rjhbozpJfQSSGiBAKEkpEEKeYEEAuQNIXlTSPKl\n", "FxIgoSUkARJ6M80Y3HD3uBdZtiWra/vuzPfHyo6tuivNFknnvi5d4CnPHK327M4zT4tXKl4m3o1c\n", "pNZIzbWE9/dR7pDKtQFeN6uMxDF9vQkTH19zbJftCvHKxCGBQ//TWft/H9hDfIaf54B9/Dd5++Pv\n", "ZbuN/1ZeIP4UoSuzBhEfaqZe22X7JqAqwTJOAvZ1Vq6SsafzvxUc3Vw+GngmyXMqO/+d8O+jqupd\n", "xPvZ/0LTtK8kE7gYsJGaZ4e61ByOWdO0qKqqq4iP20hENuTZ4XM0TTvqddU0zVBVdQP/7eYykOsK\n", "cwzrPOvjs9uM91w25FklsLezq9/pmqY9eWiHpmkBVVW3dR5zaNsmYH5nd8Kwpmk+VVXX9HFdYZ6R\n", "mmsJ7e/HUMu1If+dNtJb+o7si7weKAIUTdO2a5q2nXh/6u8Rf2P25FPEuzedpGna/2ma9jz/7UN/\n", "ZGJ1nbr9kA1Asaqqh8ahHZphaEHnvnRYSfwJxeEPLDU+o+c0YFuCZcTo+cOlP6uJ920/9YhrVwHj\n", "ifdvT+acqs5zVpHA76Oq6u3EP6julgpfykmexVuaIT4j2qEYFOIzfW7p8YzusiHPxgNvq6o6T1XV\n", "DlVV5x6x30q8y9H6RMoYwO8h+jYi8qyfz24z3nPZkGdVnedUAY+rqjrviP0FxCdg29D573xVVRer\n", "qjpd07TmzgpfNfHPFhmjnhqSawnsT8CQyrUBXjerJFXpU1X1OFVVo6qqnnzEtrNUVf1IVVW/qqqr\n", "VVU9ZzABqap632DOT1J7/JJqhaZprxGfcelvqqqe1JlMfyDebaKnBYghPtAzH7hUVdXxnX2af0E8\n", "UY/s33v4OkeerGnaG8Sf9jyuqurxqqrOAB7uLPP3fcR91JMaVVULOpvJE3HU1MOdT+t/CnxPVdVL\n", "VFWdDDxIvGvCbxK8xiKgTFXVks5jFTU+rqDP8zRNCwG/Bn6squrZnTeQTwKLO7u/dbt2f+cc8fs8\n", "2Nvvo6rqTOJ9zx8CHlLj4yAO/eQk+DomJdn3dapzLQvz7NAU0D05Ms9+msY8O8pA80xV1fs0TVtF\n", "/AbsYVVVT1Dj495+Q7xV7BcJXuNt0ptna/o45yPiXYd+p6rqsaqqTgf+TPzm5+fJXNdM2ZZnA4lp\n", "EIZ9niXw2f1Nknyv9yCb8mwZ8A7wR1VVF6iqOgf4G/GZGB/pLKONeAvPz1RVnaqq6rHEW45e1DTt\n", "3d5f6cFJ5n09zPIMzMu1p9T03jseZRC59r1E76OyJdfo/7MhkVzL+u+0/iRc6VNV1UN83Q3liG3T\n", "iH+4PEX8Ce+zwDOd2wfq3kGc25+uC2w+SHyczerOf19M/KnNM8RbwCYD9s6uE91omvZ34GfEk3Uj\n", "8dmGPk28K+GRsw4dvo4af7p/pEs6j3+eeBIXEn/6szOJ3+vnxPtyJ6Lra4CmafcAP+r8XdYQH8B6\n", "lqZpR7ZA/JyjF10+0h3Ep6m/X1XVLwL3EF/gMpHY7gYeIz7JxRvEpy2+tMsxXcvo85zO38fdx+9z\n", "BfH3/o3Eu1TUHfHz1T5iHYyE39dpyrVsy7OzE8yzrzL08uzQa30Z8S+5xztjmNgZw54jzus1z7T4\n", "wP505tmJvZ3TOZD9fOKv6b87zyslPvX1wSSva6Zsy7OkYkrSSMyz/j677yXx9/pQyDOD+IPnj4D/\n", "EJ8qvoX4VPZHdvG7gnhXwveJv2dfJ/55k0oJva+HQZ5B6nLtMrL33rGvXPtWP/uPvI/Kllzr87Mh\n", "iVzL2u+0hBiGkdBPTU3N72pqat6oqanRa2pqTj5yW5fj3qipqfldouX2cB1joOem4ifb4slUTDU1\n", "NUpNTc172RJPNr5GZsWTjlzLttdnOMed5N++1zzL5riz5Sfb8mwkvI7Z9JNo3JJnaX2tJc+GUczJ\n", "xp0tuTYSXutEfhJq6VNV9TziTxtu7bLrJI5YpLDTYnrvxyyGrm8A/8p0EMOd5NqIJ3mWBpJnI57k\n", "WRpIngkk17JKv7N3dva1/SPx6bhbuuweTfdFCvfx38V7xfDxs84pgUWKSK4JJM9STvJMIHmWcpJn\n", "opPkWhZJZMmG3wHPapr2iqqqXVeczyG+ztSRBrxIoaqqzs7/VhOf1ScrqPHZebJKJmJSVbWvfVXp\n", "iyQxWRSTFeLv786BwL1JS65la54lKov+rglLJua+8izdhthrnVV5diiWzv8OuVwbYn/7wxKNW/Js\n", "UBLJNcmzBAzBvz0wNL/ThuBrneh3WsL6rPSpqnod8UG2M7vsOjSgNEB8UcIjJbRIYeeMNL0NUNza\n", "y/ZM2ZHpAHqQbTFlWzyQfTEFe/jw+46mafelKteGWJ4lKtv+rokYijHD0Iw77XkGwzLXhuLfHoZm\n", "3EMxZugl14j/PpJniRmqf/uhGPdQjBn6+E5LtqD+WvquIz6l+P7OCx5K2BdVVX2E+EKFlV3OqQRq\n", "+7twZ7D3Hbmt8ynN1scee4zy8vL+ihBppIdCND//HJF9eyn7zGexeDyZDmnI2L9/P1dffTXAJE3T\n", "elv7MCW5JnmWepGGenwrl+EYM56c6TMyHc6Ilck8A8m1VNODQQKbNhLavZPCCy9GUZJaY1qYqL9c\n", "U1X1DSTPMs4wDIxgED0UJNrcTHCzhq2oCFtJCZa8AsK7tuOZu0ByKUsl+J2WlP4qfZ/m6Ob2CuLr\n", "WNwIvAbcD5zS+d9DTmPgixTGAMrLyxkzpmtvAJEpeiBApLmJ0nPPR1EUXJMmZzqkoaqvbifpzDXJ\n", "M5PEgkHCAR/KqWdg6DFclZUolqSWPxXmy5Y8OxyL5Nrg6OEwkYZ6jKlTMVQVe24utsLCTIcles81\n", "ybMs4Fu1gvqH/0jpDTdjq6yEyv/Ws9s/WELHB0up/NjZWOUhfrYzrctyn5U+TdPqjvy3qqrhzv/d\n", "q2lag6qqvwBWdDa3PwlcBSwAbjYrQJF5rW+8ysHHH6XsxptxjBlHLBjA6nJnOqxhRXJt6NGDQXZ8\n", "/no8cxdQeP5FgEK0qQlbQQGK3Z7p8EQPJM+Gpv2//n+Etm9l1Oe/jMXpIubrwJKTg8XZtYegyAaS\n", "Z9nBMbEaz/xjIdp9HpWc6TPJOWY2RjgMUukbMQby+NvKbQAAIABJREFUSPrwApWapq0jvkDkpcAq\n", "4ALgQk3TNHPCE9nAe96FVN75bRyVY4gc2E/T008RbWrMdFgjgeRaFrO4XIy+57vkzj8WgMCGdez6\n", "+pfxfbQyw5GJJEmeZbmyGz5L4cWXYnG60INB9n7vPg785v9lOiyRHMmzNNKjUaIN9eQffxI2b/dW\n", "cWtuLtacHCKNB4kF/BgRmWBzJEhk9s7DNE2rpXM2mSO2vQC8YGZQIrvowSAWpwvFaiXSUE+srQ1D\n", "1zMd1rAmuTY0KIoF+6j4GBLnhGrKb7uT3FmzMxyVSJTk2dCgB0O4xlcB8YctJZ/+DDlz5mY2KJEw\n", "ybP0antnMdHWVtxTpvV7bGT/PvY9+ANKr/4MeSfIMonDnQw+EX3Sw2EiBw5A5zglz6w5FJ5/IfaS\n", "0gxHJkRmRZqbMCLhw/+2ejxY3S6M2JCaMVyIrBZrb0cP+o/a5iivwAgEMhSRENnNWuCl/e030f39\n", "ToaKrcCL9/yPkzNnXhoiE5kmlT7Rp/CeXdTe+01aX3v58DYjEs1gREJknhGLseu2W2n4y8NH71As\n", "RBsbpeInhEkOPvUYe751O7G2tqO2634/ulT8hOjGVlTMqJu/jNWT2++xlpwccqZMI3KwIQ2RiUyT\n", "Sp/ok6t6MmO/90MKTj/z8La2pe/R+K+nMxiVEJmlWK2M/cGDlFz56aO2t7z0PDu/+kUi9QcyFJkQ\n", "w0vZZ26i4n++hSUv7/C20O5d7L79a7S8Ir0DhTjEiMWIBvzoAX//B3eh+3w0v/IiejCYgshEtpBK\n", "n+iXEY2gWP/bHV/v6ECxJTUcVIhhR4lEsLhcR20rOONMxv3fT3FUdF2CSggxEDGfD6vHc9RaYo7K\n", "0VTedR9FH/9kBiMTIrt0LP+A3V+/hfCePUmf277kHdrffpNYe1v/B4shS+7cRZ8iB/YTa+/AmpNz\n", "eJv3zHOwFhZlMCohMiva0kzM345iOfoj1OJ0QUxmQRPCDHowSKSxsdvi0YrNhgWIhcNYHY7MBCdE\n", "lvHMX0isvQ2r15v0ufknnwYnnYqtqDgFkYlsIS19ok/1f/o9+3/2IwzDOGq7TO8rRrKmfz5N7T3f\n", "ItbR3m1fLBiSJU2EMEFwi0btfd+kfck73fYZFguRffswojLGXAiAWEsLzqpqbAXJV/oUiyU+Q3uj\n", "fHcNZ9LSJ/pUfutthPfWHvWkNby/jsDateSffgbumikZjE6IzCi95jN4jjsOi+Po7p2GYVD3f/fj\n", "mljNmG//b4aiE2J4yDlmFmO/+wOMULjbvtbnn8W3ehXjHvixdKcWI15o9y70cLhbq3gyjGiU5hee\n", "w+bxUHzZp0yMTmQLqfSJPunh0FHj+eIbDbDbsLhzej5JiGFODwSw2J3du50pCpW334VzzNgMRSbE\n", "MBOJdv8OArznXkjx5VdJhU8I4OCTjxHasY2K2+4ceMXPYkFva8M5U9aaHa6k0id6pQcChOvqsFit\n", "KHb74e2OytE4Ro/BOXZcBqMTIjP0UIjQvrpev1gtDgd6OISVvB73CyESE67bSywYwNrDA0bFZsOI\n", "yjADIQBKr7ueaA/jX5OhWCwUnn8RSo480B+uZEyf6FV4by0HfvEg7e+93W2fjKMQI1V4by37fvJ9\n", "Wt94tcf9hmEQOXiQmK//hXGFEL3b/6ufU//bX/a6P9beQaTxYBojEiI7xTp88YnETGD4fOi6bkpZ\n", "IrtIpU/0yjVpMqPv/g75p57RbV/b4tdp/PuTGYhKiMxyTaxmzD33U/Cxs3vc71uxjLoffJfAhrVp\n", "jkyI4aXiG3dS/tX/6XGfHgmz94H7aHzq8TRHJUT20CMRmv79DLHWVtPKbF38Oju/9Fn0UMi0MkV2\n", "kO6dom+xnlv0FJsNa0lJmoMRIjsY0Uiv3Wg88xaQu/A4XFUT0xyVEMOLEY323o3a7mD0PffjrJqQ\n", "5qiEyB6630dgwzrCe2vxnnmOKWU6x1fhmX8sFqfTlPJE9pBKn+hVeP8+IgcPYs0vQLEc3Sicd/Jp\n", "2EvLMhSZEJkTrttLtKkpnhc93JAqigLRWAYiE2L4iLa2EKnbi8Wd0+NELgCK1YoRDILcnIoRylbg\n", "pejSKxn4SL7uXBMnQZdlusTwIN07Ra9aXnqeA7/+fxiR7tNlK4oi4/rEiNT4z79z4Fc/7/NLMdbR\n", "Tmj3rjRGJcTwEli/jv2/+jmBTRt6PygWI1S7Gz0YTF9gQmSRWDAAMfMfMh4amy73ecOLtPSJXpVe\n", "cz25i07AYrN32xfYrBHcolF82ZUyZbYYUcpuvJnwnt3dWr+PVP/nP2Lzehn7nQfSGJkQw0fe8Sdi\n", "L6/o8+FK21tv4lu1nMrbv4VrQnUaoxMi84I7ttH62ivkHDPL9J5XvmUf0PzCc4y5937ck1VTyxaZ\n", "I5U+0Ss9GkHppdOA4rBjHzUKi8uc2aKEGCr0ULDX7maHVNz6dazFxWmKSIjhyYj2vEbfIQVnnEnh\n", "+RfgGC3rYoqRx5rjwYhGibW3m17pc08/BvfsuVLhG2ak0id6ZOg6wU2bMHQdW35+t/2uqoko6lRs\n", "hUUZiE6IzNADfkI7d2CxO/p94GHIuD4hBiy4fSuRlmYcxX1PGCbdz8RIZSsuoeCMM1Gs5t/KW3Nz\n", "MWJRYuEwVofD9PJFZsiYPtEjIxSk4ZE/0vrKi70f1MvMnkIMV+H9+2j48x/o+PD9Po/Tw2HCtXuI\n", "tbelKTIhhpeGvz5C89N9Lwtk6DqRhgbC++rSFJUQ2SPa1paSCt8hitVGcMtmos3NKbuGSC+p9Ike\n", "Wdw5VH7zHoovvaLH/bGOdhr/+TStb76e5siEyBzXhGpG3/4t8k8+rc/jAuvXUP+HXxPcuiVNkQkx\n", "vJTf8jVG3fzlPo8xolEO/PYXtLz0fJqiEiI7tL31Bgd+90siDfUpu4Z//Tr2P/gDgls3p+waIr2k\n", "e6foXUzvdZditWErLMRRUZHGgITIvES6k3nmzCd3wUKc42UNMSEGwujj++cQi8NBxe3fwj1hUhoi\n", "EiJ7uGfMJLR3L0oKlytxT52Ga8rduCfVpOwaIr2kpU/0KNrSTHjPTvRQqMf9FrebvEUn4qqZkubI\n", "hMicUO0ewnV1GHr/N6Qypk+IgYm1tRHavg09GOj3WEWxood7/p4SYriyuNzkzj8WW35Byq6hWCwo\n", "ioVYR0fKriHSSyp9okcBbSMNj/6Z0PatfR5npGB9GCGyVdvbb9Lw6J8w+rnJNAyDSMMBQrt2picw\n", "IYaR0J5dND7xKP716/o9Vg/4CWzehB6JpCEyITLPMAxiHe39ziJtilgM38rlhGr3pP5aIuWk0id6\n", "lLfweCpuuwP31Om9HtP27lsc+O0v0xiVEJlVcvlVlH/tG1hc7j6PUxQlPhHFv59JU2RCDB8504+h\n", "4mv/Q+68Bf0e2/b2mxz86yPE2lrTEJkQmdf0z79R98MHiNQfSPm1Qrt30fyfZ4kebEj5tUTqyZg+\n", "0bt+xlTYCotQKkdjGAaK0vN6fkIMJ3oohJLgs7KKW2/DMXpMiiMSYnhKtHt04bkXYsnxYO9naQch\n", "hgvveRdhyfFgLUhd185DXNWTGPW5L+KaWJ3ya4nUk5Y+0aPQrp2E6/ZiGEavx3hmzSHv2EVS4RMj\n", "ghGJ4Fu7mlhHe0LHK1YreiSc4qiEGH6C27cRqt3T5/fPUXRZPkiMHEYohGuyisXZ91qxZlGsVqKy\n", "/NCwIJU+0aOWl1+g8anH+j3O0GVMnxgZYn4fzc/+k44l7yZ2vK+DwGaNmN+f4siEGF5a33yNpn7W\n", "6DvEiEbjDyllrT4xAujBIDG/P60P22M+H62vv4J/4/q0XVOkhlT6RI9KP3MT5bfe1ucHS3DrZhoe\n", "fojg9m1pjEyIzLAVeKn46jfwnntBQsf7Vi6n6e9PyFgIIZJUcvW1lH/pqwnd2Eabmzj4xF/xrVye\n", "hsiEyKymf/6NPXffTiSN3yux9jaC2qa0XU+kjozpEz0yImHo5wvXkuPBVT0pLf3KhcgKCazRd0j+\n", "SafiPfNcHKNHpzAgIYYfIxSGBGcmtJeWUX7L13HXqCmOSojMK7r8KpzVk7AVFqXtmo7yCoovuxJH\n", "1cS0XVOkhrT0iW6MaBT/hvX9zobmqBxN7oJjZQC9GBHCdXsJbN2S1Jpghow1EiIpeiCAf90aYq0t\n", "SZxlyPJBYkSItbdhKy5Nz3INR1CsNvT2xMazi+wllT7RTczno+npp2h/P4GxS/JFK0aIwMb1ND/3\n", "T6JNjQkdb0SjBHfsILRnd4ojE2L4iLa20Pz8s/hXr0r4nEhDA751q1MYlRCZF21tJdbSkpHJ86JN\n", "TTQ9/SS+VSvSfm1hnoS6d6qqOgb4KXA68YriS8DXNU3b17n/LOCHQA2wBbhD07SXUhKxSDlbQQEV\n", "37gTva3v2ZpiHe20vPQCnrnz8J55TpqiG74kz7JbwRln4Rw/od9uz4fEfB00/eMpCk4/E+fYcSmO\n", "TiRK8iy7OcorqLjl6+hJTIDUtvgNjHAIz8w5Mpt0FpFcM1f7e29z8LFHGPW5L+EYMzat1zZiUQxd\n", "xyY9u4a0flv6VFVVgOeBAuBU4BSgAvh35/5pwHPAU8Bs4Fngmc7tYqjqZ40+AMVuxzF2HE7p5z1o\n", "kmfZz9D1pLqQ2Qq8lH/xKxRedEkKoxLJkDwbGpLtqlly5dWUf+UbUuHLIpJr5vOefR6jv3Uv9orK\n", "tF/bXlpGwRlnYiuvSPu1hXkSaekrA9YDd2qathtAVdWfAv9SVdULfAVYomna9zuPv0dV1RM7t9+c\n", "gphFikWbGglu3Yy1oABrjqfX4yxOF7nzFuCqnpTG6IYtybMs51vzEbGWluRb7aJRsNtTE5RIluRZ\n", "lgvV7iG4RcNeXoHF4Uz4PCMm42ezjOSayaJtrShOV8YebihWG3pHB9ai9E0iI8zVb0ufpmkHNE27\n", "6oikHUM8IT/UNK0FOAlY3OW0xZ3bxRAU3LGdpmeeJrx7V7/HGooBev+tgqJvkmfZr+31V2h7642k\n", "zok0HqRDppLPGpJn2S+obaTlhX8Ta0l8IpeYr4Pgxo1Em5tSGJlIhuSauSL1Bwjt3JnRGMJ1e6n/\n", "3S/pWP5hRuMQA5fUkg2qqj4DXAQ0E2+uBxgN7O1y6D4gvR2OhWly5y3AXlKCEe2/i03bq6/Qqr9E\n", "xS1fS0NkI4PkWXYqveFzxJqSu6lsf+9tYh3t5M4/Nu2zrYm+SZ5lp4IzzsIxdnxS+RLavo3299/F\n", "VlyU1qnsRWIk1wYvsEWj4ZE/UXzpFbiqJ2ckBsXhwDGhGtfE6oxcXwxesuv03Q18r/O/r6mqOgfI\n", "AYJdjgsBrsGHJzLFSGBMH4B99Bjs3sIURzPiSJ5loURz4kjFn7gcq9crFb7sJHmWheLj+Yykzsk5\n", "ZhaeufNwjqtKSUxi0CTXBinvuBOwl5aBJXPfJfaSUqzeQqz5sjbzUJXUkg2apq3TNG0ZcCVgBa4D\n", "AkDXjvdOwGdKhCLtQjt3ENq5I6HB9J5jZuGeNTsNUY0ckmfZJ9rain/NKqItzUmfm0iLuUg/ybPs\n", "1LFqBeHa2qTPkzzLXpJrgxfr6ADFkvHJiiw2G9H2vmd2F9mr35Y+VVXLgNM1TXvy0DZN0wKqqm4j\n", "3jy/B+g6lVAl0Oentqqq9wH3JhuwSL32pe/RvnQJoz73pcRaKGRMX6J2qKraddt3NE27T/Isu0Wb\n", "Gml78zVyZswid/6xCZ8X6+ggtHsXitWCvaQ0hRGKI6Q9z0ByzSzti99ADwVxjq9K+BxD1wnt2oER\n", "i+Ke3O1vL1JHvtPSIFy3F/+mDTjKK1CcmW0IDW7bQutvX6b48ivJXXBcRmMZQXrNs2QLSqR7ZxXw\n", "uKqqWzRNWwGgqmoBoAIPA3biU/Hef8Q5pwFv91VoZ7BHBayqahWwI5HAReoUX3olOXPmY7H1//bw\n", "r12Nf8M6yq67EcfoMWmIbkiboGnazl72VSF5lrVcEyYy6uYvYYTCSZ0Xrt1N27tvYSsulkpf+qQ9\n", "z0ByzSylNyY/dhbDoOWFf+OZv1Aqfekl32lpEG08SOurL5F/yukZf3/bCovIP+sccmbOyWgcI0xf\n", "eZaURCp9y4B3gD+qqvo5IAr8AKgHHunct6Lz6cuTwFXAAmTK3SFLj8VItAOBrbAIz6w5WPPzUxrT\n", "CCB5lu2iyU8J754yjZzpM2Qty+wheZblBtJNU7FaGXXzl3HKBBPZRHLNJO4ZMym74XMoGRzPd4it\n", "qBhrQQFKAo0CIvsksmSDAXwC+Aj4D/EpdVuAUzRN82uatg64BLgUWAVcAFyoaZqWqqBFavnXrCLS\n", "UJ/QsY4xY/HMnos1Typ9gyF5lt2C27YQ2LQJPZJcSx8MbAIYkRqSZ9kt2tKM/6OVAxo7i8WCEQ6Z\n", "H5QYEMk18+h+f7JzG6WWYiHW0YFhZFNQIhEJVdU1TWsEru9j/wvAC2YFJTLHMAxa/vMcFo+H4k9e\n", "kdg5ugygN4PkWfYKaJtoe+tNSq66BuyOhM8zdJ3g9m0Y4TDuqdNSGKFIlORZ9oo2N9H+7mJyjpmN\n", "bc685M5tPEiodg/5J56MxW5PUYQiGZJrgxc5sJ/Wd97CNX4CtixZFN23agWtL79AxW13kDNtRqbD\n", "EUmQ9llxFEVRKL/1NmIJPmmNNB6k9ZUXyTvhZApOOyPF0QmRGd6zz8M1aTKKNcmPTEWh7fWXic6c\n", "LZU+IfrhmlBN2Y2fx4hEkj7Xv3oV4QP7yZu3AKTSJ4YJPRwmtGMbFrs9ayp9rupJuL78VdxTp2c6\n", "FJEkqfSJbpJpubO43LinTsc1KTOLhQqRDno0MqDuNYqiUHbj53FUTTA/KCGGoYH2HCn42NlYcvNk\n", "fLkYVpxjx1F8yWWQ4aUajmTzFia0pJfIPkmt0yeGv1hbG4EN64i2tiR0vNXjwTNrDs6x41IcmRCZ\n", "0/Heu4Tr9g7sZIsFwsmPBRRipAls3kRg/foBtfQBEEt+siUhslksFMIwsnBcuKIQbWnGkCW7hhSp\n", "9ImjRBrqaX35RYJbtyR8jqHHZECvGLaMWIyOD9/Hv+ajAZ0fPdhA+4fvoweDJkcmxPAS3LKZtncX\n", "D2jCJN3vx79uDaE9u1MQmRDpF21p5uCjfyZc2+8yoWnX+trL7Pzy54gebMh0KCIJ0r1THMVVPYlR\n", "X7wVI5T4LGhN/3oam7eQUTd/KYWRCZEZitVK6Y2fR29rHdD5gY3rCe2tJXfufCyuzC6sK0Q28559\n", "Hs5JNQmtEdtVtLmJtrffxJqXLz1PxPCgKChWC9HmJpzjxmc6mqPkLToR77nnYy8blelQRBKk0ie6\n", "S3JMhWuyinOCrI8khrFBjF/IP+V0LLm52AqzYxC+ENlKj0ZQBjh2yTF6DGU33IxL1uoTw4StwEv+\n", "aR+DLOxCac3Lk+WIhiDp3imOEtqzm8BmDT2Jlr6cY2bhrlFTGJUQmRM5sB/fimUJj3Pt0QAWnBZi\n", "JDEMg/a3FxOq3TPwMqIypk8MH0YshjGArs7pokcjhAeRryL9pNInjhLYtIHWV14i1tGe8DmKxTKg\n", "MRhCDAXRpiY6VnxAZP++AZ2v+/341n5EaNcOkyMTYhiJxfB9tIrgxvUDLiK4fQsdyz4wMSghMkMP\n", "h6l78P/wr12T6VB61fTEX6m9/56kGglEZkn3TnEU75nn4Bw/AcVqTfic9qVLCG7dTMWtt2ErLExh\n", "dEKkn3vqNMquvWHAXVmibS10LHkHW0EBzvGydIMQPVFsNkqvvwm9rW3AZfiWL8NeXkHugoUmRiZE\n", "BhgGbnVqVi+NUHzF1di8hViczkyHIhIklT5xFEPXIcmZOB2jR2OvqMTidqcoKiEyazBjFxzllZRe\n", "dxOu6kkmRiTEMDTIMULFV1yNo7LSpGCEyByL04ln9tyBL1+SBhaHAyMss1IPJdK9UxzFv3oVwd3J\n", "dUNzjh1PzvRjZGZCMSz5Vq/Cv3b1oJ64ZvPTWiGyQXhfHb5lSwc1dlaxWNBlTUwxTAyFbpPR1hYC\n", "mzdlOgyRIKn0iaO0vfc2HUveS/7EJGf8FGKoCG7fRseKD2GAswoCBLdupv39AeSVECNEtKUZ3+pV\n", "RBsGvu5XpP4AHR8sITaILqJCZJphGOz537tpe/O1TIfSr4ZH/szBJx+TtZqHCOneKY5Sdt1NhJOc\n", "sCK0Zxdti9/Ae+4F5C1clKLIhMgM73kXkjNtBopl4M/I/Ks/wlZSQt6iE0yMTIjhI2fqdCyfvm5Q\n", "XTxDu3cR3L4Vz8w5WPPzTYxOiDQyDArOOpdofX2mI+nXqC/cgrWgYMBLrYj0kkqfOIoejSR9c2vN\n", "LyB34XG4JsqYJTEMhcMwiAofQNGlV+AorzApICGGqUGO6cudfyz5J52Co3K0SQEJkX6KxYJrbBV6\n", "afYvfK4oCsYQ6IYq4qR7pzhMDwTwrVpBpCG5p0u2Ai85U6djLy1NUWRCZIYeDtO6+HXCewe3FpFi\n", "saBHs3dAvhCZ1rFyOb7Vq+KTiQ3CYM8XIhvooaExQYphGIR27cS35qNMhyISIJU+cVjM10H7O28R\n", "2LQx6XMNXfpzi+HHCIcJbNYI7RjcGnuR+gO0L3mPaEuzSZEJMbyEdu3Ev2bVoMbO6sEgvpXLCWjJ\n", "f4cJkS32fOduDj7+aKbDSFjTP5/Ct3J5psMQCZDuneIwe0kpo27+MrqvI6nzjFiMg489gqt6MqXX\n", "Xp+i6IRIP2tuLqWfvg69I7mc6CpcV0tw6xZyZ88Br6xlKURX3vMuiI+dHUylLxTEt2oF1vx83OpU\n", "E6MTIn1Kr7l+yMyIqSgK5V/8KtaiokyHIhIglT5xtIFMLW+xkDN7LjkzZ5sfjxCZZsJyC57Z88hb\n", "dKKMNRKiN6HBj521FXgpuepa3JNrTApKiPSzeDy4J6uZDiMpRlDG9Q0F0r1THBau24tv3WpiSbZq\n", "KIqCe9oMXFUTUhSZEJkR3LGddpOmgDdkWRMheqSHQrS8+Rrh2sGNnY0Xpsu4PjFkGbo+5CZGMaJR\n", "fKuW07FiWaZDEf2QSp84LLy3lvZ33ybadDDpcxVkAWox/MTaWglu2kisfXCVPj0UxLd8Gf7160yK\n", "TIjhwwiHCO3YRrh296DLCm7bQtsbr5oQlRDpV/ejB6j7yQ8wIkNo4i/DoP2dt4g2NWU6EtEP6d4p\n", "DstdsBBbSSkM4Clp6xuvEq7by9h770exydtKDA+eWXOw5uXDIBeeNSIR/GtXY/V6gRnmBCfEMGHN\n", "y6fkU9cMeuwsQHDbVhSrlfwzzpK1w8SQM+oLt+JbuRzFbs90KAlT7HZKb/gcjsrKTIci+iF35+Jo\n", "A+wW41ankjNn3qBmXhMiGxnRKIrVOqgyrLl5FF/5aRlrJERvoub0FCk870KsxcVS4RNDkhEJ4xw7\n", "LtNhJE2xWIj5/Vg9uZkORfRBuneKw/zr1+LfsH5A4yGc46tw10wZ9M2xENmk7e3F+NeatP6QIWON\n", "hOhJcNsW2pe+a8rYWWDQi7wLkQl6wI/u92c6jAGJ+X20vvYyHcs+yHQoog9S6ROH+detpWPpuwNu\n", "rZMxfWK4Ce/fR3D7NlPKCm7ZTMsrL5pSlhDDSaytjeCWzcT8vkGXFTnYQNs7iwnv32dCZEKkT+Pf\n", "nmDPXbcTbR6CY+OiMcJ7dqM4nZmORPRBuneKw4o/cRk5c+YMqFtMYON62t9/j5KrriFn+jEpiE6I\n", "9Cs8/0LCdXWmlBXavQswMHQdZZBT0wsxnHjmzMNa4B302FmAaFMjoa1b8MgSQmKIKfn0Z3BPPyae\n", "C0OMNT+foos/iaNqYqZDEX2QSp84TI9FUYyBtfLZR1VQcObZOMeONzkqITJHD4dNq6B5zzo3PtZI\n", "KnxCdGPG2FkAd80UPDNn4Rg91oSohEifWHs7Vm/hkB2Pqlht6L4OrA5ZqD1byd2HAOJrw7S/8zah\n", "vbUDOt9WVIR7cg3W/HyTIxMiM6KtrbS+/gqhPYOfRv4w6QItRDetb76Gf/Uq08qToQZiqIm2thJp\n", "bhyyFT6ASONBGp/8K75VKzIdiuiFVPoEEJ9S3rdyGcHNmwZehkxSIYYRIxImUldHtLHBlPIiBxto\n", "W/wm4QE+WBFiuIrU15v2cMWIRmn/YCkdyz80pTwh0qFj2VJqv32naWPIM0LXsTgc2ErLMh2J6IV0\n", "7xQAWJxOym76PLGWlgGdH2tvo/FvT+CZN5/iT15hcnRCpJ+9pJTiy640bTa1WEsLod078MyeY0p5\n", "QgwXhedfSHifeROvBDdr2LxDb1yUGLkKzjgLx+ixQ3oGdHtpGbYTT8VROTrToYheSKVPHDaYljqL\n", "y03eSafKDa0YVszsJuaaNBn39Bk4x8hYIyGOpEcipo11VWw2ii+7Atdk1ZTyhEgHPRBAsdmG/phv\n", "iwXd78Oam5fpSEQP+q30qao6CvghcCbgBj4AbtM0bX3n/rM699cAW4A7NE17KWURi5SINNTj+/AD\n", "7GWjsBUlPwhXsdtxT67BUVGZguhGBsm17OJfuxr/ujW4p8/E6vGYU6guY40yTfIsu0Sbm2h55SUc\n", "o8pNW5TawIBoFOx2U8oTyZM8S1y0tYXgju3DYmHz8O5dNP79CYou/iQ502ZkOhzRRZ+PFFRVtQD/\n", "AiYBFwHHA63A66qqFqmqOg14DngKmA08CzzTuV0MIdGWZnyrVhCp3z/gMgw9hmHClNsjkeRa9tGD\n", "AcK1tRjRiCnlGbEY7Uveo33pElPKE8mTPMs+RjRK9GADMRPXJgtt20bTv/+FETEnd0VyJM+SE969\n", "i/o//AbfyuWZDmXQFJcT9/QZMntuluqvpW8WcBwwVdM0DUBV1WuAJuB84ERgiaZp3+88/h5VVU8E\n", "vgLcnJqQRSq4J6uUfuZGjFBowGU0/fNpjEiYMd/+XxMjGzEk17JM7oLjsHqLzOtuoyiEdm7HVlxs\n", "TnliICTPsoy9tIziSy5FDwRMKzN6sIGY3x9fBkJa+zJB8iwJOcfMouLrd5iyTmWmOcorcYyqwFZQ\n", "kOlQRA/6q/TtIp6gm4/YduhdWUg8cZ/qcs58ibU3AAAgAElEQVRi4EozghNpNsiuZ55587HL052B\n", "klzLMoaux3PCrLFGFgtFl1yGa3KNKeWJAZE8y0KGyd2e844/Cau3EIvbbWq5ImGSZ0kwolGMaBSL\n", "bXhMs2HoOrFQCKvTmelQRBd9vsM0TWsCXuyy+VbABbwCfBfY22X/PkDu/IeYwMYNBLZouCbXYHEM\n", "LFGdVRNxVMqYvoGQXMs+zf95FiMcwjNnvmllGhjxtfqG+mD9IUryLPv4PlqJf/1aco6Zbd7YWcyv\n", "SIrESZ4lLtbRQceyD7AWFWEZJpOf+Nd+xIHf/YqKW7+Gc/yETIcjjpDUnYeqqhcBDwA/0TRtE5AD\n", "BLscFiKe2GIICdXuxrdy+aDGQCgWC7qMoTCF5FrmxdraiDQ2mlpmaNtWGp95Gn0Q3aiFeSTPMs+I\n", "hIkc2G/qJEfRpibaXn+V4LYtppUpBk7yrHex1hZa33wN/0erMh2KaeyjKij6xKXYK8dkOhTRRcJt\n", "yaqqfgb4PfCEpml3dG4OAF2bhZyAz5ToRNp4zzwH5/gJg1ojpmPZUnwrV1D+pa/gHF9lXnAjjORa\n", "dvBecBExkyt9sZYWor52U5eCEAMjeZYdchcch7Wg0NT1yfRggMiBfRhheQiZaZJnfXOMHsOoGz+H\n", "ER0+3wmOikqwWLDIeNqsk1ClT1XVu4g3x/9C07SvHLFrD9C1P18lUJtAmfcB9yYWpki1+E3o4AYR\n", "OydU46iqxl42ypyghp8dqtpt7ajvaJp236F/mJ1rkmeDkIKKWe7CRVi9Xqw5OaaXLQ5Le551lnkf\n", "kmtJM+O7pytH5Wic46twjhtvarmimz5zTfKsf4auo4dCKNbhMZ7vECMSRh9G4xQzrN/vtEQlsk7f\n", "7cST9m5N0x7osvtd4BTg/iO2nQa83V+5ncHe1+VaVcCO/s4V5mt/9y2i7e3kTJ0+4DLsJaVYcnNl\n", "8HzvJmiatrO3nanINcmzgQnvq6P19VdwjqvCMdrcLipGTDe1PNFN2vMMJNcGqunZf4Ku45kzz9Ry\n", "pTU9LXrNNcmz/umRCM3/fgZ72ahht8Zx65uv0/H971L1s1/LTJ6D1+d3WjL6rPSpqjqTeD/sh4CH\n", "VFUtP2J3G/ALYEXnk5cngauABYzAKXeHOv/GDeiBwKAqfUBKWkdGAsm1LKPrxDra0f1+U4uNNjcR\n", "WLqE3PnH4lanmFq26J/kWfbRA370YNfhXYPX8f67hLZvpeCMs0wvW/RN8iwxRjBAeM9uYi3Nw67S\n", "55k5m/xTT5MKX5bpr6XvCuKTvdzY+XOkuzVNe0BV1UuAHwJ3ABuBCw+tyyKGjpJPXUOkoX5QZYT3\n", "76P5mX+Qf/rHKDz3ApMiGzEk17KIY/QYCi+4eFDrVvZED4WINjXKzIKZI3mWZbznXUisybyF2Q+J\n", "1B/AWlhkerkiIZJnCbDm5VP4icsgHD5qu2EY7G8Ns3Gfn+0NAerbIhzsiOAP6wQjOoZhoCgKdquC\n", "224hx2Eh323Dm2OjONdOSa6dsnw75QUOijx2rBZlUHHGdIOOUIyOYIxwTMdps+BxWCnI6b0KYS8b\n", "BdK1M+v0t2TDXcBd/RzzAvCCmUGJ9DP0GIoyuA8Gm9eL9/wL8cycbVJUI4fkWhaKRU0v0lFegfPj\n", "l+AcV2V62aJ/kmfZJ1XdnQvOuwD3hEkpKVv0TfIsCaEQdN57tfijvKW18PrGZva1HF0R9DgteJxW\n", "ijw2LIqCYRhEYgaBiM7BjgiRWM+t5VaLEq8A5jsozbNTkmfHm2OjwG3Dbbdgt8Yn8Y/EdAIRnRZ/\n", "lGZflPr2MPVtEerbwzR2ROgpTQtzbEwa5WZRdT7HVecfLusQIxwiFgxidY24SVmzllTDBdHWVtre\n", "eQt7UfGguhhYXG6cVROwFRWbGJ0Q6df+3jsEtmjkHrsIi8kLzA6nWdqEGIxQ7R5aX38F14Rq08fO\n", "KljQw2GsMoOgyEKGrlP/yEM4ykahVE/hmVUHeW7VQSIxA7tVYeHEfKaPzqFmVA7lBQ48zt5ntzUM\n", "43CFrbEjwsH2CAfawuxvi3CgNcyBtjCrWjoGFKc3x0Z1qZtCj51clxWHVSEc1WkNxNjeEGDZjnaW\n", "7Wjnkff2c+HsEs6fWYzNGq/EHnzir4R2bKP6j38xdXZeMXBS6RPoAT/BzZugauLg+5XLJBViOLAo\n", "RFuaDz+BNVP7kncIbtHwnn2e6WULMdQYwSB6yPwxfaGdO2j/8H2KLrxExhWJrGNEIlicTmq31/GT\n", "D6w0+qIU5ti4ZF4JJ9d4+6zkdaUoCjkOKzkOK5Xenh9S+sMxGtrjFcIWf5S2QJRgVCccNVAUcFgV\n", "nHYL3s5uoqV5Dkrz7ThtfS/nva8lxKvrm3ljUwt/ff8A721p5QunVTKh1E3h+RdhrxwtFb4sIpU+\n", "gaO8gtKrrzNl0or6h36HrbiYytvuNCEyITIj99hF2IpLUjKNdrSlBVuhtIYL4RwzFu/5F2KEwv0f\n", "nCTd74uPydXlQaTIPorDwVu50/jLyr0oSpRL5pZwybwS3PbUVJByHFbGF1sZX2xuV8sKr5NrTyjn\n", "knklPLrkAIs3tXDXP3fwpdNHc8LkQoyo+cMkxMBJpU/EmfTFmH/6x3CrU00pS4hMiU/3bn4rH4D3\n", "zHNwTqxOSdlCDDkpuinMOWYWlrx8bIWFKSlfiIHSdYPf/msNLy7ZS4Hbxm1nj2FqpSfTYQ1KnsvG\n", "l04fzaLqfH72ai0/e7WWhvYwF80sJFJ/QNZvzhJ9t9uKESG4dQvtHywh1tE+6LKcY8fjKK8wISoh\n", "MsOIxTj4+KP4161JzQUsFowUdGcTYqhpe/tNWl9/FT1sfksfkJLJmIQYDF03+M0/VlPw70c5z9jK\n", "Dy+fOOQrfEeaOz6P714ygeJcO48trUf78U+o++kPMx2W6CSVPkG0uZHgpo3mrEmmKOiRyODLESJD\n", "DF1HsdlMX67hkNCO7TT+429Em82fpl6IoUSxO4h1dKBYzL8VibW10fLyi/hWrTC9bCEGwjAM/vDM\n", "Wl5+fyeNo6q5cHYJRZ7hN9HQ+GIX3/vEBMry7dyfezYrTr420yGJTtK9U5C74DhsxaVgGIMuq/XN\n", "1wluXM+Ye7+LTdZIEkOQxW6n4Ozz0dtaU1K+Hgxi6IPPNSGGutwFC7EWFaOkYD0vQ4+h+zpAJpEQ\n", "WeLf727nP+/toKqygKs/MRePkaIW7ixQnGvnngur+PYzO/jzazvxlhZy+vxxmQ5rxJOWPgEcGsM0\n", "eJ5Zsym5/rNYc/NMKU+IjDApH3qSM30GheddIA9FxIinRyODXh+2NzZvId5zL5B1Y0VWWL7xAA89\n", "u47CPCf33HgcOaS2R5RuGET1GKFYBH80RHs0QMzoee4G3TAwTHjo39WoAgf3XFhFiS3Cv/7yCuu3\n", "N5p+DZEcaekTtL33NpF9dXjmzB90WfbSMiwFXhRZG0kMUQFtI21vLyZnxszUDT6XtfrECKdHIhz8\n", "6yPYSkrxHDMrJdeQmQNFNqg72MEP/7Icm9XC3TcsJPzHn9LiclF43kUJnb+tYx+N4XZaoz5aI37a\n", "Ij7aowGuHXcGhY7cbsffue7P1AW7Dx/4wfTPUOnuPnP0t9Y/TF2wCZtixWmx47LacVkcfGXSxyl3\n", "dZ8IaUPbbqyKhTKnF6/d0+eDmzFFTm5vfpHV4XweeHg0D371FEYV5ST0ewvzSaVPEKnbS3D7NlMq\n", "fUBKW0mESDXF4QDMa/3uKtbeTutbr+OZOYfc+cem5BpCZD1dx5KTAykcA96xbCn+NasovvTKlF1D\n", "iL6EIjH+75HlBEJRbrtqLjXjCuk44yxCO3ccdVxrxEeO1Ynd0v22/A87X+qxEndx5aIeK30TPOUU\n", "2D1YULAqVqyKgkWx4LD0/DB+gqecPFsOESNKKBYhpEdojfqw9FKZ+9OuV6gPxYc/OCw2RjkLGeX0\n", "ctXYUylx5nc7vur2O9m2M0zbi1u5/08f8KNbT8LlkOpHJsirLvBeeDHh3btNKSu4dTMtLz5P0Scv\n", "J/+kU0wpU4h0ck2oho+dnbr1vQwDIxQ+XLkUYiSyOJ0UfOwc9Pa2lF1DDwax5Ha/KRYiXf7wzFq2\n", "17Vy9nHjOXXeWAAcFaPpcNt4r3EDG9p2s7F9DwfDbXxLvZwpeWO7lXFe+QKCsTD59hwKbB4K7Dnk\n", "2dx4bD2vuXfzhHOTijHZ488rX0BDqJWGUCv7g83Uh1rYE2jgpqqzezy+IxrgzKlF7G6t4sUlO/nV\n", "06v5+qfmpqxrt+idVPpEfGFck2ZPs1dUUnzlVeSkqLuOEGkRi0GKvpCs+fl4zzwH16TJKSlfiCEj\n", "xUsq5J9yOvbSspReQ4jevLNqLy8v3cWEynw+e/ExQHwGz0e0//DqgZWHj/NYXcwumIhV6XnSoZNL\n", "ZqQl3kSdXnr0/Z1hGLRF/eTYnN2ODcTC3Lr6t8wN5jE7fyKbJ4xl8Ypapowr5PwTJ6YrZNFJKn0j\n", "XMzvp/W1l7EVFuIcP2HQ5Vk9udi8XqweeboqhqbGZ/5BtKGegtPPTNk1DD2GYRjypFOMWL7Vq2hf\n", "ugTPnHnYi0tScg1FUVLWTVuIvtQ3+fnV0x/hdFi549oFOO3xCt2eu/6HuZYwtcePZVbBBKblj2Oc\n", "u6zXrpRDgaIoFNh7XmuwIxpgat5YZi1ewfaSWupm5JOTU8xDbx9g0thLUcfLhGbpJJW+Ec6IhAnX\n", "7cWIhE2p9AEYsRR1ixMiDWz5+UQa6lN6jfYP38e3/ENKrpL1i8TIZPXkothSu5xCaNcOAm+8QtF5\n", "F+EYPSal1xLikFhM50ePf4DfepAvX3Qqo0v/+xB81OdvJU/bwDcnTspghOlT6izgdvUy2ieeD+F9\n", "TG/cwPr6zSheBz94dDk///qp5HtkqEO6SKVvhLMVeCm+/Cr0jnZTytMjYQ785pe4p06j/PNfNqVM\n", "IdIpd+EiHGPHp/YiuoGS2/OTUSFGAtekyfFhBSmYKv4QIxbD4nCmZB1AIXoSjob5wQt/Y6f3Qzwl\n", "Fk6ac/lR+xW7HfcIqfAdKc+ew6l5Mzhr5tnUte3nhSU7eXbbAX7y+AruvfE4LJah29I5lMgnoQDd\n", "vO4vis1O4UWX4Jk917QyhUgnPRxGMWmMa2/yTzgZa5F0axEjmxGNovSyeLpuGGyo87N0WxvbGwK0\n", "B2PkOCyML3YxvyqPeVV5WPu5UXRNnIR76nTso8pTEb4QhxmGwft7VvDnFf+gNdyCYrFxnnrqUWPD\n", "9VCIWDDASKzeGLEYHSs+xLbVS+Upp3HDWaOo3bOUFZvqeepVjU+dPQWArY07mVg0Dosiy4inglT6\n", "RrjAFg3fyhW4JtdgK/AOujxFUXCOHYvNO/iyhEi38IH9NP7jb7gnTsI1uSal15Ju0GIkO/j4X4gF\n", "fBSc+rFu+7Yc8PPnd/ez5UAAAJtFIddlpbEjwvaGIG9uaqE0z875M4s5a0YhdmsfN4gpnixGCIA/\n", "rHiC17a9A4aF6P4JfPOcT7FgytEzce65+w4MQ6f8C7dmKMoMUhR8q5aTu/B4ACwWha9fNY+v/XQx\n", "T7yqMXlcIWUVUe56/YdMKqri5vlXM847OsNBDz9S6Rvh9ECAcO1uHGPHQYFJhRqgR6NYe3mCK0S2\n", "sjgc2AqLIMVdTUK7dxLYtJHC8y4wbSytEEOJtaQEff/Ra/Q1+yI8/kE9ize1ALBwYj7nHlNETbkb\n", "u9VCTDfYeTDI6xubeUtr4eH39vPqhmZuPrWCqRXdu0vrwSBt7yzGXaOmdGImIc6YeAIrt+6hbs04\n", "PnnCrG4VPoCKO+4iuHVrBqLLPMViofTT12P1/nex93yPg29edyy3//IdfvLYCu75wiwWjpnD0j0r\n", "ufPVH3DZ9PO5aMqZWC1yL2kWqfSNcJ6Zs7Hm5Zu6JlnTc/8kvGsHVT//ba9dd4TIRrbCIgpOPhU9\n", "GEzthQyw5nhQXO7UXkeILJW38PjDEyZFYjovrGni6eUNBCM644tdXH9iOdNHH12Rs1oUqsvcVJe5\n", "+dTCMp76sJ5X1jVzz7928vE5xXxq4aiju3xaLaDr8Qc5QqTQru0Ke5dNYdJYL1d1dlXsJhzGUVqa\n", "3sCyjB70A8WH/z1prJfPf2Imv/jbR/z6ic386JbrOXn8Qn6//DGeWPssy/eu5mvHf5YSj+SwGaTS\n", "J0xfkyz/pFOxXnRJytY5EyKV0jHFu3N8Fa5Jk3HIWCMxQhnReCvf8p3tPPLefva3hslzWblmUQVn\n", "TCvsd7xensvGTSdXcnKNl1++vpdnVzVS2xzma2eNwWmLd/e02B3kn3EWblkTU5io63I7tfXt/OYf\n", "a8hx2bjjmvnYbd27G0fqDxDt6MAygh+EG7pO26svY/XkUnzZlYe3n7VwPFtrW3hxyU5+9tQq7rhm\n", "Pg+ecw8PrXySj/ZvwCB1kz2NNFLpG+FaF79OuK6OvIWLTCvTXlqG1etN+WQYQpit9fVX8K9fR8Fp\n", "H8OSk5PSaxlRGWskRqbgrh1s+etTvBwcxVv+IiwKnDeziMvml5HrSu6muKY8h+9fOpEHX97Dip3t\n", "/OjF3dx53nhs1vhNuaIo6OEwVre0qovBMQyD5za9SoOvkZvmfwqAYDjK/z26nGA4xu3XzKe8uOdZ\n", "mQ/8/teEa3dT8Y1vjdj1WRWLBd3nw1XTvSX0sx8/ht3723lvdR1/q9jMFWeq3HrcDTQGminJkVY+\n", "s8hd+QgXa2sjsn+f6eUaUVkQVww99lHlWDweSPH6YYau0/zif2h67l8pvY4Q2WbN1gZ++PcNvLBL\n", "Z0dzlAUT8vjxFdVcf2JF0hW+QzxOK3eeP46543NZvcfH79+qw+hcCsK/fi31f/wtMb/fzF9DjDDR\n", "WJTfLfsrj635F8vr1tAR8mEYBr/6+2p27mvj3EVVnDS794lHRn3hVspvvW3EVvgO8Z5zPq5J3SdJ\n", "s9ss3HntAkoL3fz1pU2889FeFEWRCp/JpKVvhCs4+1zc6lRTy/Sv+YiWV1+i7IbPkTv/WFPLFiKV\n", "3FOnozgcKNbUfjQqFgsWu0OmkhcjxpY9zTz8nw2s2XoQgPmzFvGleSVMLDWnBc5utfC1s8Zy3zM7\n", "Ds/uedmCMhSrFUfl6BF/sy0GriPs48H3/sC6eo2JheO4/aQvkOv08O93trN4ZS3quEI+e/GMPssw\n", "gn4sTleaIs5uejDQ43ZvnpN7bjyO23/xDj97YiVlhW7U8d0rfYZhEIgGybFL632ypNI30oXCYHIf\n", "c+fEakbd9Hnc048xtVwhUk2PRkjX8IH8U07DUVWVnosJkSFtvjB/eGYti1fWAjB3ShlXnz2FcbFm\n", "otEIumFg6aFCtrZ1J/5YCN3Q0TuTUkFhVsEEPLbuN8+b2msJ6REuOUXhz2/7+PsaH6Veg5OnTceW\n", "l49FuneKAWgJtnH/4v/H7ta9LBg9i1uOux6XzcmarQ089Nw6vLlO7rxuAfY+eof4167GiOlY8/LS\n", "GHl2MgyD5n/9HcVioeKWr3fbX1WRzx3Xzud//7iU7/7pA350y8lUlBzdZfaZjS+zeMf7fPvUr8gE\n", "L0mSSt8IFvN10PT8s9iLS3FVTzKtXGtuHordhsXpNK1MIVJND4c58Kuf4xg9htz5C1N/QasVIxgC\n", "eforhqkte5q5/08f0tQWpHqMhxNPchK072PV359ieXMz/5nm5vuzbmKUq/u6rn/d8yb7gk3dtn9/\n", "+md6rPQ9vOtV6g4dXwUu4E+t7+DcdyknuHuZTVGIflgUC4ahc/akU7h+7uVYFAu19e088PAyFAXu\n", "uHY+Jd7eHygYhkHLSy8QPrBvZK7P14WiKDhGVZAzrfeW0XlTRvH5T87i10+v5t7fv88PbzkJb95/\n", "7yeD0RD7Ouq5542fcM+pX6E8rywdoQ8LUukbyWI6sbZ2LDa76UXLmD4x5BgGrslq2lr6Ahs30Pyf\n", "Zyi9+jPYR/g03mL4Wbv1IN95aCmRSIxrz5vKsujT/G3bHgCq7SGqc+xMyh9D1Oj5u+LjFcfhjwWx\n", "YEFRFBTiqem19zxRxrmj5tMW9RMzdAKxEDua21m/v5Xn1h+g2rsS78KF5J9w8uHjF+94nwWjZ+Fx\n", "pHbCJjG05Ttz+e4Z/4Pb7kJRFFo7QvzvHz/AF4jwtU/NYUZ1SZ/nK4pCyXU3EGtrS1PE2S93wcL4\n", "2Pk+nLuoisaWAE+9tpnvPLSU733+eHJc8XvVT838OE6bgyfXPse9bzzIt0/9CmMKKtIR+pAnlb4R\n", "zJqfT9HFn0Dv6DC1XD0cYv8vf4ZbnULFrbeZWrYQqWJxOsk9dhF6R3uarufAObZKWsTFsLOjrpXv\n", "/ukDYjGdO687lkXHVODZfBzNganMKp/GhNwKLHv39bmO6/HFyY01P6W0y3CCsfCY7wCvaXt4N6jw\n", "8bL/jp/d39HArz98lFyHh8tnXMBZk07Gosi8dqJnOY54S14gFOV/H1rKvkYfl3+shtPnj0vofN3v\n", "lzGlXcQCgW5LX3R19TlTaGoL8uqHu3ng4Q+596bjDnej/cS0c3FaHTzy0dPc++aDfOf0rzMmXyp+\n", "/ZFK30iXghY5xe6g+PKr8MydZ3rZQqRUl2UUYrrB+r0+lu1sZ0dDgNZADIsCxbl2aka5mVrhYUpl\n", "zuF1wZLhqp6MxeXGmp9vVvRCZFxHIMIDD39IIBTl9mvms+iY+I3YeTWnHz4m2tpKJA1L+ly5sIwd\n", "B4M8scdN4yo/X6o2sFgUvK58rpp5Mc9sfJk/rXyKlXVrueW468lz5qY8JjE0RaI6Dzz8IZt3t3DG\n", "grF8+pzEugw3v/Q8FpcL59jxKY5waGl88jGi9fsZ/+Ave634KYrCly6dRZsvzAfr9/Pjx1Zw+zUL\n", "Dq/heb56Bg6rg2c3vYzdItWZRMirNIL5163Bt2o57hmzsOUXmFauoijYK8qxumTgvBg62t5ZTMcH\n", "75N/yulYC4t4d0srf1/WwL7WMABWC+S7bMQMg7qWMGtrfcBB3A4Li6rzOVX1MqUiJ6knukZM1uoT\n", "w8tP/vEG+xsDXHZGTY9T2Eca6qn/8x9w10wh55hZKY3FalH42llj+M6zO3jlg134gxFuvWIObqeT\n", "i6eezakTFvGbDx9l1b71fPv1H3PXKbdQ6ilOaUwie7UG23ht27tcMu2co1p+YzGdnzy2go82N3Ds\n", "tHJuuWx2Qp/zRixGaNdOYm2tUunrIvfYhbiqJ/f7OlqtFv7nmvnc94f3WbJmH7/6+0fccvl/X/8z\n", "J53EyVULcdoc6Qh7yJNK30hmGESbmyFi/o2ngiW+IK7d/PGCQqSCc1wVoT17OBhU+P2/d7G21ofV\n", "onDaFC+nqF4mj3Lj6GzR6wjG2HzAz7q9PpZsaeWNjS28sbGFSq+Dj00r5BTVS76774/XmN9H66sv\n", "kTNtBt5zzk/HryhESj259G3WWZ+ldNpkrj77oh6PsbhzcE+dkbbZND1OK98o2c2a2u387qPj2LSr\n", "mUtPn8yJsyrx5uZzx0lf5PE1z7Bk9wqsSmrX5xTZqyPs4/63fsGulloq8so4ftx8IN7b42dPruK9\n", "NXVMn1jM7dfOx2pNrJVasVopvOCi+IRd4iiuqomQ4NJITruVu69fyF2/fY9XP9yNx23nhgunH674\n", "SYUvcVLpG8FyjpmFJafvwbQD1fz8c/jXrmbCz38j0xSLIcExbjxLPzrAw//ZTzhqMGdcLjedXEFZ\n", "fvcvlFyXlbnj85g7Po9PLxrF+r0+3tzUwtJtbTy65ACPL61nYXU+Z04rZFplz61/is3+/9k77/Co\n", "yqyB/+70mUx6b5AGSSC00Etoiggigh0LllWxruDasZddP3V117VgYdeuoBQREKT3HjpkCKSQTnqd\n", "Pvf7I4hIkZQ7kwTu73l4eO6de99zMjNn3nve9xRUgUFoY+M88efJyLiVzLJc5mfPAVHgtiGjzvtg\n", "rDQaMab2O2+vLndgDA5k0IQIKlwxLFyfzaz5+/hk4X56dwlmWK8IrukxgUlJYzFq3TMfyrRv7E47\n", "b238mNyqfMbEpzE4ujE1xeUS+eCHPaxNzyepsz8v/GUgWnXzFgZEswXkfL5zIloacFRXo/K9cKSZ\n", "l17Ny/cO5ukPNrJw3TGMBjU3XZ7oAS0vLprt9CUmJs4ClCaT6d7Tzl0BvAl0BTKBp0wm0zLJtJRx\n", "G6LT+afJ9C3FZ/hI/K+ZfMEKTTLnRrYzz2KxOvjwxz2sSS/GS6vk/pFhDOvi26QQHoUg0CPKSI8o\n", "I3cNc7DeVM2KQ5VsyqxmU2Y14X4aLk/2Z1hXXwK8ft/5Vmg0GAcNQZfQ1Z1/msyfINuZNNRa6/j7\n", "2g9B4aK3ajyjk3v/6fWeDms29OiFwtePqUFBXDUsng17Cli3u4B00wnSTSf4cN4+JgyL5ZaxSei1\n", "8lq4O2ivtuYSXXyw/UsOl2YyKCqVv/S9GUEQGh2+H/eyYvtxEqJ8efHewaeqRzZpXLOZks9moeua\n", "iF7+jT8nFfN/wGzKIO6j2U0qaOZr1PLqtCE89f4Gvv4lA2+DhvFDYs+6ThRFtuanMyCyN0qFvHt/\n", "Ok3OpE5MTBQSExNfAe7jtKLmiYmJ3YBFwBygN/ATsPDkeZl2TMWCH6nbud0tY6v8/FF6eSN4IFn/\n", "YkK2M89zvLiGx/61jk7Lv+A612HeujGOtK5+Laq25q1TcVWvQN69OZ5XJseQ1tWXslo7X20pYdoX\n", "R3hy7jG+3VrC5qPV5FVYqLeKmOsacLlE7A4nDRY7tQ02KmssVNdZEUUP9Y+4xJDtTDpEUeSDrV9R\n", "76yB4i48PPaKP72+4qf5lH37Fa6GBg9peBK7HYBAXz2TRiTw7vQRfPrs5dxxVTcCfLQsXHeMv/17\n", "PUVl9Z7V6yKnvdvaYtMqNh/fSWJQPA8PuhOFoMDlEvlw3l5+3ZZLXKQvr0wbglHf3FQVEXVICM7q\n", "arfofTHge8U4ol75e7MqWAf56Xll2hD8jFpmzd/H+t35Z13z69H1vLv5M/6XPleeQ8+gSUtaiYmJ\n", "ccBsoDtw/IyXHwU2m0ymf5w8fiExMYa8TbwAACAASURBVHHYyfPTpFJURnpE0YWrXtp2DX9ALlLR\n", "LGQ78zyrdx7nw3n7sFnt0HsAVyV44+3d+vwAQRBIDvciOdyLu4Y52Hikmh05tRwqbCC7zHLquv51\n", "R+hmPs7cgDTMyrMnPi+dip5dghndL5qB3cPkst8SINuZtJjtFo6eKMJZ488N3cbja/zzBzhDSg+c\n", "dXUIGs/l4diKi6jduA6fkaPxHjjk1PmwQC+uH92FiWlxfLHkEIs2ZDFz1ib+76E0gv31OF1Oeaeg\n", "FXQEWxsVO5jj1QXc0ft6NEo1LpfIR/P3sXxro8P32v1D8DY0/7uq0Bvw6j8IQXY6zovKx7dF+Y6R\n", "wUZevm8wz3y4kXe/S8do0JCa+HuD9rSYAaw8toFfj60n2CuQa5L/fCHqUqKpcQyDgVzgJhpXZU4n\n", "Dfj+jHNrgZtbpZmM2/G9bCyOslK3jG05lkn53G8JmHwD/ledO6Ff5ixkO/MQFquDWQv2sWpHHgad\n", "iqfuGEj/CBUuNzTQ9dapGNczkHE9AzHbnBwpMZNXYSGvwoqhKJhKhy/JwcGIai1KpQK1SoFSIeBw\n", "usgtrmXL/iK27C8iIdqP6Tf3oXOY3OKhlch2JiF2m4Kq9H54eYlMmppwweu1nWJwOR0ITSziIAUK\n", "nQ5dXDzaTjHnfF2jVnLvpB74eWv5culhXv1iE10H5eNwOZg+5B6P6XkR0u5tzVtr5OGBdwKccviW\n", "bckhLsKXV6e1zOEDcFqt4LA3uVjJpYrocFC3exeG7j1QNGMhKC7Sl+fuHsiLn2zhH59v5/UHhtK1\n", "kz8ABrWeZ4Y/zMyVb/LNvgUEefkztFN/d/0JHYomfRtNJtM3wDcAiYlnJU5GAgVnnCsColurnIx7\n", "ER3u24nTRHUi7OHpGLr3dJuMiw3ZzjxDbnEN//flTvJKakmI8uXJ2/sTHuSFrajQ7bL1GiW9oo30\n", "iv6tH1gkCoMBTXjEee/JKaph7sojbNhTwIx31zFjSuo5S+HLNA3ZzqTl5w1ZWG0iU8enoGtCPpzL\n", "ZkXwcJVMlZ8/qj79/tTOAK4f3YWisnpWbM/FEplLlauYUcVD6BUmR/e2hI5ka6IoMmvBaQ7f/UPw\n", "8WqZw2c2ZVD65X/xGT5Sztm+ADVrV2HOOETkU89d0D7PpEd8EE/c1pc3vtjBy59t5a1H0ogIbpxb\n", "Awx+PDP8IZ5f/TYfbv+KUK9gEgJj3PAXdCykWIIwAJYzzlkBnQRjy7gJW0E+lcuWoouPd0v/GIVW\n", "C1otgtyyQSpkO2smddZ6lAolenXjWySKIiu3H2fWgv2IEfvwHnCCcpXAk2sX0D2nhsSCBgLHjGdA\n", "4tCzxpqVtZTNFYfPOj8tdhxDA89+IJyVtZQtFRmnjn8LyrwvdhxDApP/cK3odPDBti/YfHwnaqUa\n", "jVKNVqlBo1Qzpeck+kX25Mnb+5HWO5J3v9vFW1/vpN5s58rBMS1/c2TOh2xnzaDBYmfxpmx8vDRc\n", "MfDC84ijspKif7+NPqkbxv4DPaDh74gu5wULlwmCwH2TenAou5zifXFoU0r4eu8CeoQm/aFvm4wk\n", "tBtbE0WRjxfs55fNOcRG+LTK4QPQxsZhHDwUhd4goZYXJ76jx+B7xbhmO3y/MbhHBA9c14sPftzL\n", "S59u5c1H0vDzbgwx7+QXyfTBf+G7fT/hozVeYKRLAymcPjNwZhC/FvjTbOjExMSXgBclkC/TEpRK\n", "BETEk8nt7kB0ORFFUc5D+p3sc6x2vmwymV5qwr2ynTWBsoYK1udsY2teOjlV+Tw4YCojYwdTWWvh\n", "gx/2su1gMV46FandoiixO1AqlI2J+7EBlGkriTKeu3R0hC6AJGMUcFolAsBHde5JPUznTxdjxMnr\n", "f7/DqPpjbzJnfR2Vc36ie6CSgrgo7E47VqcNm9NOvd2Mw/X7bvzgHuGEBqTx/Meb+XjjTxysD+XO\n", "IWMJNPi35K26mPG4ncGlZ2sAy7bkUG+2c9u4JHSaCz9OKPR6vNNG0hYzQs2aVZT/OIfIZ1740zlJ\n", "p1XxwHW9eG5WPXpzZ3LJYVPuTtJiBnhQ2w5Dh5rTnC4nvx5dz5iE4ahO5mqKoshnPx1gyaZsYsJ9\n", "eHVa6xw+AAQBfdckt1RGv9gQlEpEhx2nxYJS1zJ//8rBMZRVmZmz8ggvz97KPx4YeirqoE94Cr1C\n", "u6Ho2EUFW2Nnf0AKpy8PONNFjwDOLqlzGieVfen0c4mJiTFAtgQ6yVwATVg4vmPHIVptbpNR8uF7\n", "AMS8+4HbZHQwYk0mU04L75Xt7E8ob6jku/0/sSl3B07RhVKhpEdoEkaNgQ27C/ho/j5qG2ykxAcy\n", "/eZUQgPOdtbMR0znnaQnRgxiYsSgJuszKWIwkyIGX/A6hUaLLj6BwYOGMrJzzAWvj4v05ZX7BvPM\n", "6pVsK89gx+INpHUewJQe1xBg8Guyfhc5HrczuHRsDRoXV1RoWLjuGHqtiquGNq3XpEKnw5DUzaM9\n", "+n5DExWNrnsKiOIF+6b16hLM0J4RbM5owKtPHt8fWMSg6D6olXLkyhl0qDntqz3zWJq5hlpbPTem\n", "TEAURT5f3FjAJzrUm9fuH3LBQkQXwmW1Yq+ulh2+ZiDaHVSvXI6hWwq6uPgWjXHrlUmUVZtZtSOP\n", "t77exbN3DUCpaLTzDu7wQevs7A9I8U5sBEaccW4UsF6CsWXcSGty+pwukcoGO0VVVnLLLJTW2rA5\n", "XH+4JnDKVCJfeK21aso0ItvZn5BZns36nG2Ee4dyf//bmH3NW/y13/2sXGnjza93YnM4mTa5B6/f\n", "P/ScDp/ocCCKrnOM7F4EtRpD775oIqOafE98lB+P9n0Ee3Z3RIsX63K28ugvL7Esc61cnrr1yHbW\n", "BP6XPpeHlzxHlbWKcYNjmlXOXnS6L7rkz9AndUOf2K3JbYRuG5eE4PBCU5VAn/AUbG2k90WMR21t\n", "ddZmlmauIdonnAmJlwHwzfIM5q89SmSwkdclcPgAKhbOo+CFp7G7qUjexYi9uIi67VsR7S3fhBAE\n", "gYdv6E3vLsFsP1TMZwv3y/PhOWjJTp8Af4jO+A+w6+SW+/fALUB/5PLW7ZqqFcuwZmfhM2I0gurP\n", "vwZWu4usUjOZJWYyT5jJr7BSXG3D4TrboAKNapLDDaREejEgzhcdstG1ENnOmsHAqD48nfYQvcO7\n", "oRAUbNpXyEfz9lJdZyM5JoDpU/oQEXTumH7R4SDvxWfQdo7F9zLPl3YWFApcVgtKVdNzDoZ2j6Go\n", "ZCxfLDlIdHIVlsADbM1LZ0x8GkoPF8no4Mh21kxyq/LZUbAXtTUQwaFnwrCm7fIBlH7zBZbMIwTe\n", "OAWFtg3SJB1Nd9yiQrwZ3TealTtEug/uj5dGzs9qJW1maxmlx/h017cYNV48kfYABrWeH1YdYc6K\n", "I4QHevH6A0Pw95Hm++g/+TrUIaGo/OSw+6aijYklOPoONOeprttUVEoFT9/Rn6fe38DiTdmEBnox\n", "acTZO4eiKFJcV0q4d8g5Rrm4aYnTJ3JaWovJZDqQmJg4GXgTeAo4DFxtMplM0qgo0xqcThdmqwMR\n", "MOjUp7a7ld4+uKxWOGPV0+kSyauwcuyEmaMn/x0vt3C6f2fQKOgcpCPEW41eo0CjUlBvdVLV4CCn\n", "zMLGzGo2Zlbz2XqB/l1KuXpUIikJwXJuX/OQ7awZCIJAakQKNfU2Pp6/j/V7CtCoFPxlYgpXp8Wd\n", "+t6f52b8JkzCVefGnpV/Qv2u7ZR+sZ/w6Y+jDgpu8n3XjUrgWH4VG/cKXDXiBm4ekiz3FGs+sp01\n", "kwWHlgFQlxPDkB4RBPvrL3DH7/ikjUSh1SGoPdej7zfsJcVU/boUn7SRTV7cuXZUAit3HGfB2mMM\n", "7tGyQhMyp2gTWytrqOCfmz5GFEVmDLmHMGMwP60/xpdLDxPsr+e1B4YQ6Nv07/CFcFZVo+0kfXG8\n", "ix1BqcJZU93ivL7f8NKrefGewTz+3jr++/MBwgINDEoJ/8M1s3Z8zda8dF6//EmifMPPM9LFSbOd\n", "PpPJNOoc55YCSyXRSKbFOJwuDhwrI91UyrH8KrIKqqkz/76yKQhg1KsxGjR469V40QP18nycIljs\n", "Lspq7ZTV2XGe5uGplQIJIXq6hBnoEqKnS6ieYG/1eR04URQpqLSxK7eWss2bGb5yI9/sHokzuTc3\n", "Xt6VfsmhsvPXBGQ7az57M0t559t0KmosJHb2Z/rNfYgK8b7gfYJSiS4uvs2cPnVYBL5hESiNF9b1\n", "dARB4JEbe3OsoJol64oZlBRL765yD7/mINtZ8yipK2VLXjp6VyDm6iAmpjUv/0YVGoqhZ+8mh1hK\n", "icLLiFdqfww9ezf5nuhQb/p3C2XHoRIOZ1eQHBvgRg0vbtrK1gwqPXEBnekd1o0eoUks35rDZz8d\n", "IMBHy2v3DyHEX7odXEvWMUSHQ87nawGi00nlzwtR6vUE3TK1VWMF++t5/u5BPP3hRt7+Zhf/eHAo\n", "XaJ/33ntEZrEmuzNvLnxI/5++VMYtV6tVb/DIHeNvAjIzKtk+dZcNu0t/IOTFxHkRVykL/qTVYzq\n", "zHZq6m3UNtgorWg4KzzTV68iNkhH50At8SF64kP0RAdoUSubPkELgkBUgJaoAC3OpDEcqxqF8YiN\n", "bQeLeWX2NlLiA7lrQvdTTTRlZJqDy+Xi453fcHn8MLoExgKNu9lfL8tg3ppMFILA1PHJXDuqy5/v\n", "7p1JM8K+pEYb3QmFTouiBSucBp2ax2/ty5P/2cA736bzn8dHSZKXIiNzLpZnrkNEpDo7koRof5Ji\n", "mvc77jKb2+yBWGk0ok/uhqoZu+kAk0cmsONQCQvWHSU5Vq7g2dEwaPQ8lfYAAgLr0vP54Me9+Hhp\n", "eHXakPOG/LeUivk/YMk+RviMJ+XF7eaiUCBaLOglauWSEO3HE7f25fXPt/Pq7G28/dfhhJzM5x/W\n", "uT/HqwtYeHg57275jGeHP3zJRMnITl8HxekS2bK/kHlrjnI0rwqAAB8dA3rbiI0yEhqoR61SIIoi\n", "Ig6GdeqPRtUYUuOorKD0268QojqzO0jAgROlApQKFwJ2oIGB/iFoz1GpbHuFCbvoPOt8f/8uaBR/\n", "vF6p11Nrz2LU5f6k9PVnw54CDucX8eRXBxjUqTd3jOtBeNAfV1j2FB1EpVDhpTHgpTEQoPNFpZS/\n", "pjKNfLt/IWuyN1NjreWptAex2p289dVOth0sJjzQi8dv69vsBYWKBT9St2MrAZNvRBXQNiv5rWmd\n", "0rWTP7ePS+bzJYf41/e7eeEvAxEEAYfLyb7iw6RGpEioqcylzICo3qQfK+BYRRgTx8Y168HWmpNN\n", "8Yf/xth/EF6p/dyo5Z8ggstmQ6lt+sJISlwgCdF+bD1QRGFZHUqdmVBj8xxHmbZFISjYfrCYd75L\n", "R69V8fJ9g+kUJn1URNDtd+IoL5cdvhYgCAJ+V16FYJBu53VgSjj3TEzh058O8PLsrbz5cBpeJ4tO\n", "3dxjIserC0kv3M9Xe+dzZ58bJJPbnpGfpjsILtHFoROZ7Crcz87jGVhNqRSV2BEEGNg9jCsHx9An\n", "MYT7f36a/bk1kPvH+1PDU045fYJShTooGKVKwfzidVQ7Gs6S19M39pxO31fHV5/z+u4+nc9y+gA+\n", "z1pObUY9LoUAOtAkNJ7ftDuAbftPMG5ILDdd3vXU7sQH27+k2lJz6n6FoCDUGMRTaQ8S4R3a5PdL\n", "5uJjT9FBFmWsINw7hIcH3kltg41XZ2/jcE4FvboE8eydAzDoml9S3WfEKFCrUXi1TYiH6HBw4vP/\n", "oY3qROi0h1o0xuSRCew5UsrOwyUs3pjN1WlxfLjtCzYe38HMEY/QK+zsBvIyMs2ls08MxbsT8Dcq\n", "GdYrsln3qsMj8J947Vl55J6kZuM6zB9/QPQrf0fp1bRdHkEQmDwinre+3sXba7+gwHmQf1/1MmGy\n", "49dh2He0lDe+3IFapeDFewaREOWe9jbOujoUzVhQkDkbsb4el9OBQqLF/onD4ykqr2fxxmze+GIH\n", "L947CJVSgUJQ8NdBdzFz5ZuYSo9hddjQqjyfa+xpZKevneNwOlidvZmfDi+ntKECANEl4KiNY8yA\n", "ZK4b3YXI4N8nr9t7XYvNaUchCAgICIKAQlCgV/+eqKz08cFn2AhcFjO3VSixn2wAfXqwp0F57i//\n", "lOiRp13/+x16xdnXiy4Xj/10HFt4CCX33th4TmzM+9MkxPDtskx+3pDFyu3HuW50AtekxXNj9wlU\n", "WqqptzVQZ6vnRH05leYqQryCWvYGylwUVFlq+GDbF6gUKqYPvgfBpea5WZvIKqhmeO9Ipk/pg1rV\n", "svAMpY8vui5dUajapgeXoFLh1W8gxlbsfigUAjNuSeWRt9fwv8UHSYkPZELi5WzJT+f9rZ/z1pXP\n", "4aeT8/1kWsfqHceptzi4ZkQCalXznDeFVou2UydEe8tbBbUWXVwChpReza4cOrhHBAE+ByjIViN2\n", "ElmWufaS2RnoaJTWl+On8znVU/HI8Upe++82RBGevXMA3WIDJZfpqKygetWvaOO7oPLxlXz8S4ma\n", "zRuo/ccrdH7nfVS+0ryX91zTgxMVZrYfKub9H/bw6E19EAQBg1rPcyP+irfG69SmyMWO7PS1c97b\n", "+j+25qejRIWzNApHeRh9o5O459Fe54xHHx7TtHho0dk48Q4MSGyWPkMCk5t8raBQED3jGfTdU+il\n", "Odug0np14pct2cxZcYSvf8lg6aZsbhmbxLX9h6JqQh7hbz1Y5FCKi5/Pdn5HtbWWqb2vJ9onkhc/\n", "2UJWQTVjBnTi4Rt6o2hO/t4ZuBoaENo4nt/QLaXVJb4DfHQ8enMfXp29jbe+3sk700dwa8/JfLnn\n", "R2bv+p6/Db1PIm1lLkVcLpGfN2ahUiq4cnDLqhOKNvsFG6O7E210JxR6/QXbFJ2JWqXgykExfLvC\n", "TECskTXZm7kp5Wr06jZoOyFzXhpsZv5v7Sf4ar15adQMCksbeOnTLVhtTp6a2p/URPeU6Bft9sYi\n", "Lk4Xxn5y3mdr0HaKwfDIDMkcPgClQuCJ2/ry7EebWLUjjxB/A7eMTQIg0HBp1Zfo8G3qL3Yu6zwS\n", "H0sCdbvTMJb35YWbJvDC3UNblYBctWIZFQvn4Wo4O0xTapRGI1gs53xNrVIwMS2eT5+9nJsu70q9\n", "xcH7P+zl/jdWsWJbLg7nnzfLXnJkFf/eMltumnsJMKxzf4ZE92V811HM/ukA+46WMbB7GA9d36tV\n", "Dp81N5vjM5+gfsc2CbVtPoJCgctmbfU4A7qFMWFYLHkldXy++BDju44iMSiebfm72VmwVwJNZS5V\n", "0k0nKCitZ3ifSPy9m+/s5L30LKVffy69Ys1EbGHRprGDY1AKShTlnTHbLazL2SqxZjKtZXb695TU\n", "lZIS2pXyahvPf7yF2gY7D9/QmyE93ddyQxUYRMCk62WHTwK00Z1QGrxwtaJR+7nQaVU8/5eBhAYY\n", "+O5XE8u35l74posQ2elrxxSW1fHBV7mU7EtgYNfOvPe3UfRNan1emyYiCoVeD2r3b/QKCgWOhoY/\n", "LVRh0Km5bVwynzxzOROGxlJebeG9uXv+1PlzuVzsLNjH5rxdvL1xluz4XeQMik5l+pB72LyviMWb\n", "sukc5s3fbu2LshmVZc+FJiKK4DvvQRufIJGmLcNsOkzBay9St731D5J3TuhOdKg3SzZls9tUyrR+\n", "t6JUKNmeLzt9Ms2n2lJDhbmKnzdkATAxrenN2E8n+O778E4bIaVqzcZls1L8/r8p/ug/zb43wEfH\n", "0J4RlGWFoBSULMtci0v884VJGc9iKjtGv4iejOk8huc/3kxFjYW/TOzOmIHu7ZtnLy+X2zRIiKBU\n", "Yj2eizU/T9Jx/b11vHzfYLwNGj78cQ/bDhSd8zqX6DoVSXaxITt97ZQjxyt54r0NFJXVc8NlXZh5\n", "1wDJSrHruybiPWIkCg80yK3ZuI7cGQ9iPpJxwWsDfHRMu7Ynn828nAnDYqmo+d35+/UM50+hUDBz\n", "xCOkhqewp/gQ7239rzwBX+RU1Fj48Me9aNRKnrlzwKlWJK1BUKtRB4c0qym6O1CHhRNw3U3N6iF2\n", "PrRqJY/f2heVUuC9ObvxUQXyxpineWDA7RJoKnOp8bNpJQ/+PJM9hRl0jwskvoVFMJReRnQxLXMY\n", "pUJQa/AeeRmB19/UovuvGhYLDi2B9mTSOg/A6Tq7krVM2xFuDOGuXrfy8qfbTj07TRrh3gW94g/+\n", "TfmcrxGd8ndBKpx1dRS8/Bx1O7dLPnZksJEX7xmIWq3kza92cii7/A+vN9jNvLVxFj9l/Cq57PaA\n", "7PS1Ixwn8+yyCqp54ZMt1DXYeOj6Xkwd303SvDWX2YwgeGZVyjhgMJ3/7x0M3Xs0+Z5AXz3TJvfk\n", "02d/d/7+M3cP085w/tRKNY8NvY/uIV3Znr+HeQflfsoXK6Io8t6c3dQ22Ln76u5/KF7U6rFt0oaR\n", "tASVrx+asPAW9eo7F3GRvtx6ZTIVNVY++HEPnXwj5dxXmWZjddhYlbUJpajFVefX4l0+OJnP18YI\n", "goC+S9dmF3L5jeSYAOIifMnbE83wiFGnioXItA/u6jOFf361j+zCGq4cHMPt45peg6Cl+I4dj9Lo\n", "Le/0SYjSaCT8yZn4jhjtlvETOwfw9NT+OF0ir3y2layC6lOv2Zx2cirz+W7fT+wq3O8W+W2J7PS1\n", "E2xOOzNXvcmszXN57uNNNFjsTJ+SypWDY6SVU1xE8az3MWcclnTc86HQaMDVsh24M52/ypPO3+Pv\n", "rSe3uLGtg0apZsaQewn2CmTZ0XXUWuukVF+mnbB8ay67Mk7Qp2sw44fESDZu7tN/o2T2x5KN1xpc\n", "Tgcuh3SVDSePTKB7XCCb9xWxZpe0YTIylwYbcrdTb2vAWhRJiL+RgSnhLRqnYsEP5L/6PLaCfIk1\n", "bD6CQoHTZmtR+JYgCFw1LBaXS2TZ1hzplZNpFfOWF3Awq5yhPSO4/9qeHlnoEtRqfIaPcrucSw2l\n", "3oCjuspt4/dLDmXGlFQarA5e+GQzBaWNz45+Oh+eGDYNlVLFe1v+S151odt0aAtkp6+d8N2+n8iu\n", "zGP9/mxq6+08eF0vRvWNllyO0ssLfWJyY06fh3BabTiqqy984Xk43fkb3S+aY/nVTH9nHQvXHUUU\n", "RXy0Rp5Je4i3xz6Ht1a6HSCZtuNIWRYLDy/H5rBRXWfl88UH8dKpePTmPpJO5OHTH8dv7HjJxmsN\n", "1cuWknXvHbjOU/iouSgVAjOmpKLXqpg1fz8lFe4v3CRz8SCKja0JBBRYi6OYMDQWZQuLJvlfPZmg\n", "KbejCmz71jvmTBP5zz1JzdpVLbp/eJ9IjHo1y7fmYHfIIX3tib2ZpfTuEszfbk1t8Xe1qTgbGrAW\n", "FyJKUIBL5tzYS09Q8smHOCor3DL+iNQoHri2J9V1Np77aBPF5fUAxAV05sEBt2N2WPj7+vepMLvP\n", "+fQ0stPXDsivLuKXzDWoHEZqj3bhjqu6Sb7D9xtKbx+8+vZFF+u53IqiN1+n6J9vtHqcQF89M6ak\n", "8vxfBuJtUDN70UHe/2EvDqeLKN9w/PVyf5yLAVEU+XLPPL7dt5Ccqny+XHqYeouDW69MJtBX4sUK\n", "pQptdCdpx2whxgGDiJj5smQhngChAQamTe6B2erg3e/ScboadzeqzNVyDqzMn3LwxBGOVxegqAlH\n", "J3i1uhiGKiRU0u92S9FERBJy970t3p3RaVSMGdiZ6jobG/deXLsAHZ2YcB+evWtAi3u2NgeL6TB5\n", "Tz2G5dhRt8u6VLFmZ+GyOxAkatR+LsYNieWuCd0pq7bw7EebTi2ODu3Unyk9rqG8oZIFh5a5Tb6n\n", "kZ2+dsCXe37EJbqoz+rK6NQYrhvl3sRjTzfHDX/8GSKefFay8QZ0C+PdGSOIj/Ll1225vDp7GxZr\n", "2zX8lZGWbfm7OVKexYCo3ghmf1Zsz6VTmLekYZ0AosMB7WiVVh0Sikov/UPx6H7RDOkZzsGschas\n", "Pcr2/D08suQFNubukFyWzMVDkFcAKX6p1OdFc1n/Thj1LctfE51OHLW17SbnSellROkfAIqWP/6M\n", "HxKDIMCSjdmIonhR7QR0ZB69uY8kBb6agq5bCmGPPo62U4xH5F2KGPv2x2/MWLdXmr92VAJTxydT\n", "Wmnm2dN2/CYlj+XBAVO5o/f1bpXvSWSnr43ZXXSAPcWHcFYH0tUvkYdv6OXWOPSS2R9TPm+OR8vR\n", "KjQaXFZpH64DffX848Fh9EsOJd10gn98uQO7Q9656Og4nA6+2bcQpaBgSsokPlmwH1GEaZN7tLo9\n", "w5mc+Pwz8l58BkdVpaTjtgaXzdbojEqIIAg8eF0v/L21fLPsMEqrHy7RxXf7f8LmaPsiNjLtkzBj\n", "MHVHkhDr/bi6FQVczEcyyHnkPuq2bZFQu1YigrOhvsXzYFigF/2TwzAdL+fRxa/w6tp/X7Ql3jsS\n", "3gb3VyT/DUdZKSpfPxRaaaqqy5wbQanEUVaGy+ze9IQbLuvKbVcmcaKigWc+3ERhaR2CIDAydjAq\n", "N+40ehrZ6WtjlDYfXOURaEtTeOYO94clGAcMRhsV7fFKfo7y8lbl9Z0LvVbFzLsG0DcphPSME/zr\n", "+3RcJ8PXXKKL/Jpz92CRab/8emw9JXWljEkYjinTRkZuJUN7RdAzQfqWCsF33kPIPQ+g9PaRfOyW\n", "IIoihW//g7yXZ0o+tq9Ry6M398HhFPl8QTZXJoyivKGSpZlrJJclc3GQkVvB4ZwK+iWHtqpariG5\n", "O5EvvIohpaeE2rWO6lW/kn3fnThKT7R4jKuGxQIKHPVGCmqK2V9y4bZEMh0fZ0MDJZ9+hK1QDu31\n", "FJWLFpDzt79KviB6JjeNSeTOq7pRVmXmmQ83kltU41Z5bYHs9LUhdoeL2T9mYT3Wk0cmjiDAx/35\n", "DpqoKIz9B7ldzulYjh6h4LUXqN+5TfKxVUoFT9/Rn+SYANbvLuDzJYcQRZG/r3uf51e9TZ21XnKZ\n", "Mu7jSFkWerWOq+Kv4PPFB9GoF4hYsgAAIABJREFUldw9obtbZIlmM6rAoHYTdiYIAsFT7ybi8Wfc\n", "Mn7fpFCuHBxDTlENtsJYvDVeLDi0jBpLrVvkyXRs5q48AjSGPrUWhUKJ0th+imx5DxpK9Kv/hzok\n", "tMVj9O4STGSwF8UZIQAsy1wrkXYy7R3R4cR8YF9bq3HJoE/qRuhf/4agcv+O23Wju3DvNSlU1Fh5\n", "6oONZ/XxAzp0f07Z6WtDvvs1g6zCasYM6MTgHi0rhd1c2qJXkjYugcjnX8X3sivcMr5Oo+KFvwwk\n", "MtjIgrVH2bi3kJ5hydTbGvjx4BK3yJRxD48O/gtvj32OpesLqay1cv3oLoQEGCSX46yvx15ThdCK\n", "vB53oA4KxuXGvoF3TehGSICBRWuOMzxiFGaHhR9kG5E5g+zCanYcKiE5JoCUuMAWjyOKIrbSElyu\n", "9pVzrfTxgVZWd1QoBCaNSMBe64OvIpRdhfspqSuVSEOZdosAvpeNwWf4yLbW5JJBGxOLQqnAWeuZ\n", "BcqJw+OZMSUVi9XB87M2s/XA71FjDXYzr6z9N4syVnhEF6lpX088lxAHs8qZtzqT0AAD91yT4hGZ\n", "1WtWUfLBv7AVeTYsQVAoEF1ORKf7VkeMBg0z7xqAXqvkvTm76e7Tl1BjMMuPrqOwpthtcmWkRRAE\n", "rPUaFm04RkiAQZJdhnNRt30LeU/OwHL0iFvGbw2uhnq39Scy6NRMv6kPLhE2r9EwOnYoYxNGuEWW\n", "TMfD5XJxvKrg1C7fjZd3bVUqgLOmhuNPTKfq55+kUlEyXFYb9tLWOWmX9Y8mwEdLdXYYIiLLM9dJ\n", "pJ1Me8ReVor9xIl2Ex1yKSEolDRkHKRiwQ8ekTe6XzTP3T0QQSHw98+3s2BtY4uwelsDJXWlfL13\n", "foe0d9npawMaLHbe+S4dgMduScWga1lVtObi1bsPXv0HojR6e0Te6YhOF+aDB3DZ3bfTGB3qzaM3\n", "pWKxOXnry3Ru7HYNTtHFl3vnu02mjLSIosinPx3A4RS5Z2J3tGr3TK6+oy4ncubLaDvHumX8luJq\n", "aCBv5pOUz/3ObTJ6JARxdVochaUNqIt7E+XrmSgDmfbP9oI9PL78NbaWbCY+ype+SSGtGk/l60vU\n", "62/iN/YqiTSUjvLvvuL4M39r1ZykVimZNCIB84lQglSRJATGSKegTLvCWVvD8aceo2ZNy/o7yrSe\n", "qsWLcFqsHiua1C85lDceGoa/t47//nyQ/8zdg6/GjxdGPoqv1pvZ6d+z9Mhqj+giFbLT1wY8t/Bz\n", "Ss0lXDe6C91iWx4601yUPr7oE5NQenve6atZsYyS/32Co+Ls+GgpGdorgkkj4ikorWfHVuge0pX0\n", "wv0cOtH+dnRkzmbHoRLSM07Qu0swg1Lc54w4LWYElQpB7ZkFl6aiMBiIeHImQbff6VY5U8cnExHk\n", "xU/rj3Ewy702KdMxEEWRBYeXNVa2rArmxstat8t3alyrDYVe4v6aEhB4w81EvfYGilb+Bowd1Bmj\n", "TkvVnr6khvaWSDuZ9obC4EXYo39Dn5Tc1qpcsgTdfhfGfgPcGjV2JglRfvzz0eHERfqyYvtxnv5g\n", "I2qnLy+Mmo6/zpfPd//AjweXdpjqvbLT52G+37KRfCEdn66ZTLkiyaOyXfX1ILTNR+531UQi/vY0\n", "mtAwt8uaOr4bCdF+rNmZT7Imjfv63UJSkHt7H8q0jNN7XFntTj79aT9KhcB9k3u4rcKso6Icy9Gj\n", "7TZER+llxFlb51YZOo2KGVNSEYB/fZ+OWe5zecmzt/gw2ZV5OCrC6BoS1eo8c1EUaTh0ANFqkUhD\n", "aVHo9IiW1rcSMujUXJ0WR22DjUUbsiTQTKY9YisuQullRB3cut1vmZYjCAKCQoG9uBBr3nGPyQ3y\n", "0/PmI2mM7hdNZl4Vj76zlsI8gZcv+xvBXoHkVRciIjt9MmdQWlXP/COLEEV4aMgU1CrPvf0NB/Zx\n", "fOaTmA/u95jM0xEEAVHiXn3nQ61S8ORt/dBrVfywuJhknz4o2lnBDplGtuXvPtUo/IeVRygub+Dq\n", "tDiiQ923G205dpTid9+k4dBBt8loLfYTJVhzst0qIykmgMkjEygub+Dzxe33vZBxP6Ionip65SiK\n", "4+6J3Vu96OJqaODE7E+omO+ZHJyW4Kqvo37/3laPM2lEPN4GDfPWZFJd55l5TsYzWLKOkffis9gK\n", "C9paFZmTVC75mYK/v+z23n2no1UrmX5zHx64ricWm4PX/redBcsLeT7tMR4ZeCeKNtpQaS4dQ8uL\n", "AFEUeXXhj6CrpYtXDwYneHaXT5/UjcBbbkMTEeVRuadjqyilZtN6j2yDhwd58fANvbDYnLz51U7s\n", "jo5bYvdixeKw8sXuHxFFEYMrkHlrMgny03PLWPfahlff/oQ/NbPdhum4rFaK3nqd2i0b3S7rlrFJ\n", "RId6s3RzDmv3m/hs13dyw/ZLkF2F+zhSnoWzIoRB8YmSpB0ovbwIf+wJAm+YIoGG7qF83lzKvvkC\n", "l6V1u5EGnZqbx3SlweLgh1WZEmkn0x5QR0aiiYrGWSNtn2GZluPVO5XQh6eDh6N1BEFg/JBY3p0+\n", "gs5hjfPmc+/v4uCxSo/q0Rpkp89DLNhwiCLVLhSiiscvu8XzCiiVqAODUQV6LofwTOrWraVmzSrE\n", "Vk6wTWV4nyjGDOhEVkE1ny8+5BGZMk1n/qFfKDdXcnXi5cxdWojDKXL/5B7ote7txeOsrUUQFO2u\n", "XcNvKLRaIp55Eb+rrnG7LI1ayWNTUlEoBD7ZsIRfj67nx0NL3S5Xpn3R2TsGdXkXnIWNzYmlQBRF\n", "XA3mdhtGDRA05XbCHpmBQtf6HrnjhsQQEmBgyaZs8kqrOVBikkBDmbZEFEXsRUX4jh6DLiaurdWR\n", "OYk6KBilTo+tIB+n1YLoxgKB56JzuA/vTB/B9aO7UFpl5rmPN/PPb3dRXm0+dU177eXXPp96LjLy\n", "Smr5Zv0OBIXINUlXEmDw86h80enEWVPjUZnnImDyDYTcdZ9Hk/rvm9SD6FAjizZkse20XisybUtO\n", "ZT4/m1YSbAjAu7YbB7PKGdwjnIFuLN4C0LB/L3W7trtVhhQoVCqctZ6x2YRoP267Mona7M6onF4s\n", "ylhBdmWeR2TLtA/mLM+m5lg8Nw5LJSK49U3UHdVVVC1e5NHwq5YgKBS4zGZJok/UKiW3X5mEw+ni\n", "hRXv8vf173OiXi6S1FEpnzeHmtUrER1yvnN7xVFZyfGnHqN262aPy9aoldxxVTf++dfhxEf5snZX\n", "Pve/sYrvV5iorK/n6RVvsCxzbbsr8CI7fW7Gam8ML7RV+nNP0iPc0GOsx3WwZJrIfvhe6tN3elz2\n", "mbgs5gtfJCE6rYonb++PWqXgX3PSmb9/FbN2fO1RHWT+iCiKzN71HU6Xk2viJ/G/n0146dXcN6mH\n", "22U76mqp+nkhrjr3FkqRAsuxTCqXLPKIrOtGdaF/UiT1mcm4RBcfbf8SRztdqZSRlj1HTrB8ay4x\n", "4T7ccFlXScZ0mc3U702nYf8+ScZzJ87aOioW/Ii9rPWN1Yf3iaJ7XCCVOaE4XA6+3P2jBBrKtAXq\n", "qE5ULVsMLldbqyJzHhR6PcYBg9B2leZ3qyUkRPvxz0dH8PANvdFqlHyzLIOH3ltEcXU5/02fwz83\n", "f0KNtf08b8hOn5v5dOF+copqGDc4hitSu6JSujd07Vzok7oR8dRz7SKHyVpYQOl3X+GyeS5vKCbc\n", "h3uuSaGuwc6CPetYnbWJAyUZHpMv80cEQeChQXdya8/rWLSkFpvdyaM39SbIz/07wIak7oQ+NB2l\n", "j4/bZbWWus0bsZeeQPTAQ4dCIfDYlFSCVJ1wlEaSU5XP9/s943DKtB3VdVbem7sHhULg0Zv7SFZc\n", "TB0SSuBNt+A9aIgk47kT67FMzKYMSULEFAqBR27sjaI6EqEhkO0Fe9ialy6BljKeQnS5sJeXow4I\n", "IGTaw+06PPlSR6HR4j1wCK7aWmylpVjz89pkZ02pEBg7qDOfPHM5t4xNwlHrQ1X6QKgLYHv+HmYs\n", "fZnNx3e1i10/2elzI2t35bF8ay5xEb7cc01Km+nhstsQNBqU3m3/oGvNNOGsqUa0e7ZYxLjBMQzv\n", "HUX1kQQQ4b/pc7E5PRsHLvM7YcZg8g4EkVtcy1VDYxncI8Ijch01NW5rBSE1gTdMwWfUGI/lHhoN\n", "Gp65oz/Kou6IZiN1tW0/Qcm4D7ujMQqltNLMlCsSSYiSLu3AUVnZZu2BmotXn74EXn8jqqAgScaL\n", "DDYy5YokzJndEEQln+36jhpLrSRjy7iX6jWrKHrvHezlZQgKZYeZKy51BEFB/Z6d5D3/NA4Jduxb\n", "ikGnZsoVicx+bgy3jO6NMmco9uOJ1Fga+NeWz1i2b0+bO34d41e5A3Iou5z/zN2DXqviqan90Kjb\n", "ZrXImp+H+WgmijbYYTwXPiNG43v5lSi9Wp830hwEoXElOykkFseJaPJrivhqzzyP6iDzO4vWH2P5\n", "1lxiI3y4++rubpfnrKnh+PNP0bB/j9tlSYlos+BsaPBYM9qEKD+enToUx+EhrF6q5Wh+lUfkyniW\n", "0vpyps1/kQPFmQxKCeNGicI6AYpnvU/5vDkdKixOUChxlJdLZmeTRyYQHxKJLS+BGmsdm/N2STKu\n", "jHvRxsbhqqv1WLE5GenQBIUSdOtURLujzR0rb4OGKVck8r/nruC+odcQUHQF9rwufPjlce5/YxVz\n", "Vpo4UdE2+c6y0+cGcotrePnzDYiBOTxxW19JEuNbiuVIBkVvvIq9vKzNdDgLlwtHTY3HDVOjVjLz\n", "rgEENvTF1WBk+dF1cuhNG7Bqx3E+W3QAf28tz9010CMLIgqjEeOgYdDBkvJdZjOFb/+j8SHaQ/RJ\n", "DOGxKQOw2By88PFmMnIqPCZbxv002M08+8u/qRPLCQx1MONk9Vap8Bk+CkSgnVbHPR+VS3/m+LOP\n", "SxJOrVIqeHpqf7TVXXAc6Uc47l/YkmkZ5iMZNGSasOTmItrtBE25HaWXV1urJdNMlD4+6GLjcTbU\n", "Y8nJpuSzWdiK27Z4n06rYtyQWGbNmMgrk6cyqm8UZVVmvv4lg7+8voKnP9jI0s3ZHu3tKcn2T2Ji\n", "ohJ4DbgD8AaWAQ+ZTKYTUozfkSgsq+PFTzfiiNqByqcCuzEfCGszfbz69EMVGoZS57mKmRdCtFgo\n", "/uBfaCOjCZ56l0dl+xq1vHrvMJ75bx21AdvZttPMgEhR0oced9FR7exEfTlb89KZ0PUyFm/M5rNF\n", "B/DSqXnp3sGEBBg8ooOrvg59164Iio6Vn6HQ6tB26ozvZVd4VG5a70hsdifvzd3DzI828fCNvRnV\n", "N9qjOrQlHdXWLoTFbuWJRe9Q7SxFVR3D6zfejEGnlmx80eVCodXid7lnv69SoPLxIfCWOyQLpw4N\n", "MPDsnQN48ZOtvP6/bbx4z2C6x7Vdy6T2SHuwM2tONpWLfyLskcfabRsfmaYjCALW7GM0HNhHwDXX\n", "tbU6QKNOPeKD6BEfxLTJPdm0r5DVO/M4mFWOybaZ2ekOYrUpXJbSk0EpYfh7t76FzPmQKubvJWAq\n", "cDtQAXwIzAPSJBq/Q5CRU8Grn2/CEr4dpU8FA6P6MCg6tU10EUWxMSG5sqJdOXwAglaLJjwC37Hj\n", "2kR+WKAXb983nuc/8WPloTIqy7by15v6EODjPkOTiJfoYHaWWZ7NmxtnUW2pYcfuOvbsVOBn1PLK\n", "tMHERvi6Xb7LYqF6zUp0CR3P4QMQVCp80kbirK5G5efv0aICl/XvhK9Ry1tf7+Sdb9NZfWg/E4fH\n", "0r9z2xeE8gAv0cFs7UJU1Nfw5JJ3qBFLUNWF8851DxEWKF0USvWalWjCoxDU7SOVoLl49emH6HLh\n", "qK1BJVH+e8+EYB6/rS9vfbWTFz7ZwvSb+pDWJ1KSsS8SXsLDdiY6nVT9+gvew0fhKC9DExNH4I23\n", "yA7fRYS2cyxhDz6Ko6oSZ0M9toI8XLW1+I0d39aq4aVXc8XAzlwxsDMlFXU8u3obtc5KjpPH7EOb\n", "+GRDJHHGRIYmx9M5UPoQ+VZ/yxMTEzXAX4FnTCbTKpPJtBu4GRiamJg4uLXjdwScThc/rs7kmc9+\n", "xdppA0q/MlLDU3h00N0o2iiZvXbTegpefxFXfX2byP8zBKWy8UG2rs4jlQnPRaCvnv97KI0+XYPZ\n", "lXGCh99azeqdeThd7bN4RUezM7vTztwDP/P8qrepsdSiOdGTPTsVxEf58s/pwz3i8AE4LWaqV6+g\n", "fsc2j8hzG6JIzaYNFP3nHY+K7ZccyjvTR9AlxosMYTlvbfkPryz+ksq69ve7IhUdzdaaQlZBNTM/\n", "X0qNWIK2vhP/nDRDUodPFEWsuTmc+N/Hko3ZFggKBdbcHPLfeBV7qTQFIYb2jGDmXQNQKuDNr3fy\n", "3pzd7Dp+mLL6Szts2pN2JjocpyqGuywWqlcup3rZErDbUSiVaMI9U0hMxnMISmWjI+9wULV4EaIo\n", "4qxrLKhkKyr0eEP3cxEaYOTTa1/j6bQHSQnqhtJYi7rzYY77LeJ/S/Yx86NNksuUYkmuN43b8mt/\n", "O2EymXITExNzaFyt2SKBjHaJ0+li68Fivl2ewfHiWrySTbi8arksbhh/Sb2pTdoz/IY+OYX6PbsR\n", "HW3/xT4fAlC3dTP1+/cSNu0hj8v3Nmh4+b7BLN2cw39/Psi736Xz/ep9jBkSxlX9ekoa9iQBHcbO\n", "impP8OKqd6myViHYDViOdcdWH8xNYxK46fJEycrC/xnO+joUegOumhpC7nngoqjCVrd5A159+iK6\n", "XB5dlY4MNvL2Q5fx+ToNywoWcKB+C9MW7CFR34/JvUfQKy4CZQcIj24GHcbW/gxRFDmcU8HSTTms\n", "35OPKOrpGzieJ24Zi5dOI4kMl7kBQaPFUVWFz9DhGAd2SJ/4D1izs1CoVAgG6SJk+ncL4+2/Duef\n", "36SzYmcWG2wbUGlcjI5J44ZeY/HTtX1l7TbAbXYmulyINhsKXWP0TvGs91GHh+OV2h8cDgKvuwml\n", "n39rdJfpQARPvRtUKmxFRYiKEorf+jthM57EkJgEgL2kGFVwSJvs9ioUClIjepAa0YNKczU7CvZQ\n", "XF1JREIfVm3aT/ZqaeVJ4ZVEnfy/4Izzhae9dlEgiiKlVWaO5lWxK+MEOw8XU1FjRSHAmAGdGD+6\n", "HwV1eQyPGdgmD5m2gnwsWUfRJXXHVVWJ/7gJHtehuVSvXoGhZy9cdhsKtQaX3Y5C7TlnSxAErhoa\n", "S9+kEH5Ylcna4uXMzV/MnMOBRGu60icqidTYWOIi/NraCWyXdmZ3OCmtMnOiooH8E3Vk5lVxOKeM\n", "ilAnzpoYhJIujEmN44bLuhLq5vw9URQRBAFHdTU5Mx4ifMaTKA0GFKqOGW52JoE3TAHAkp2FKiCQ\n", "yvlzCb7zHo+EfCoUAnePGs5V1T15f908TK50TM4NvL4yA13hYHomBNEl2o/4KD/CA70I8NWhUnbY\n", "cKl2aWsXwul0caykhN3Hj1FQZCfziIv8E41NgWPCfbjr6u6kJoa0Ws5vdgZQ+M6bGLr3QN+9B4JC\n", "gUKjbfX4bY2hWwqGbinYCwtx+fpQn74LfdckdHHxrRq3U5gP/5w+nKWbspmTXo4t8CArclazInsN\n", "Iepo+oT2YlKPUfh76zpEjrkEuMXORFGkfMEPOEpL8Z84CZfZgjYmFmd1FYLLBQoF6tC2q7Mg43mE\n", "354pBQHsdgy9+oAA5mNHEZQq8mY+TswHn6Ly9QNRpGrJIvyvngQ0fp9cZjNKg/vrD/jrfbkiYcSp\n", "46QIJfNnSStDiqchA+AymUxn1jq2As1NklICfLlxLt4BPghOJ6E7Migd0pOJSWMQ7XaqflmC/8TG\n", "D8NqMbPrm/cpGJTcWC3M4SJy52GKB/fk2u7jEO12KpcsImDSdaeu3/Hlv8kdlASiiMLpJGr7EbYl\n", "dKYT/REddqIObSAreQROpwunw0qwaT4bEqJwuJy47A0Myy1mTXwItsxUfLUKbsNE/F13EBbohVhn\n", "w2/hBgpuaPy9Eu12Khb8QOCNt5w6Lp8/l6Cbbv39eN4cgm6+rfHYZmt8/fTjeXMJmnLa8Y9zCLrl\n", "dqCxOEXZD98TPPVuRKsVa14uJz79iNBpjyBo2tUu1XkRR43BKghUbN2KYNBz4qP/EHb/I6jDwgEo\n", "/3EOAddce8poKxctwG/81QgnH+QrFy3Eb/yE8x//vBC/cU07njwkiISv6plb5UUl+WSb8wlfsojn\n", "472x5Kagt4cyuu4gR2P7odVp0etUhB9dzJ6EcESlEoUg0MOUzaEusYRrk+mX0JnwAxuw9On325/b\n", "mqdzye3su8Wz0cZG4EJEl55Jjk6H3qcXevwIytlPtV8Y9V4BOF1gzPuVPD8FpV5q7KKV5PxS8v2V\n", "FJb1Qqz3JbX+KHmaIErVfug0Kq4o8yO8Tze6T+iBQaei/Jd51CckoIlsLAZSvXY1+i5dfj9esxJ9\n", "l0Q0Ub8dr0CXkIQ2+uTxql/RdU0+7Xj5yeNOiKJIyaz38Rk+GnVIME6zmbpuKeRlZ6EOCm7Rm93e\n", "Ma9dTV36TupT+6PQ6rCXnqBm03pCpt4NNIavmDMO4jtqDNC4kmnONOEzbMSpY8uxTLyHpP1+nHUU\n", "78HDLng8LXUspTnx7Nr4K0f848g1V7J3wxEqrOV84hULQLAxk84UkRkVikqhJKDBTmR1A1WdB+Gn\n", "CMVQX4lPVQFlnXuiEAQUtgyCGvKp7BYHgK66FkNhOdGjxxPn3+ksfQ4c3ERFxn4quzXK01bVYsvI\n", "/e3taa0XLLmtfbFhDt6BvuhPVKCtqsPYbwADonpjzTuOvbgQY/9BAOQc3E7m4R2UdY3ChYiYcwKK\n", "Kynt1I0QoQuG8iL0NWUURHTD5RJxlu9FYclgf4QBl9JKeI2ZwFoHew1xUJTE8FAn/QNdJFydiiDY\n", "OLphHbaC/FPfA0vWMWyFpx8fbXw9bWTj8bGTx8NHIooiddu2YMvLxWf0FbgsFiwx8VQWFmEIuTgf\n", "osWCAor/+ymh9z+MusGMQqfjxKcfETz1bpS+jSHqFfPm4n/VRISTu0qVixbid+V4BE3jbmrlzz/h\n", "N3bcqeO4jOW8Mv4KNmd0Y+2xHXTJ2sGO5Hpys0v44ZsSRtQe4GBYb5RaLRq1gl6lW9ieoAWVBkEQ\n", "SD2Wz4HYKDTKIILEeOKztpIX3x9BrUYhCISb1rAr3geXunFOGpSfT+WAboT5hTMwug+VSxbhN+bK\n", "U/ocn/8te7r4IaoazSZk2yFK+yYS5h/BgKje57z+aEz4b29Ru5rTjqenY8k+hs0pYqutoz7n5G9C\n", "QBAEBFFTUtIKdWUuGnqlUl9WDjQ+R9f16EPu/v2AiKu+nrLvvyE8MhqUKpwNDZz48F9EPf8KqFS4\n", "6usp/fwzwqY/gSAIOGtrqPhpHsG3NRYldNXVUbV8KQHX3XjquHrtavwnTDwlr2bdGvzGX/378Ya1\n", "+F054eRxPbUb1+E7djzFxcW/aSzZyq7Q2rL5iYmJ1wE/ACqTyeQ67fxGYIfJZJpxnvteAl5slXAZ\n", "mY7PyyaT6aULXSTbmYxMq2iSnYFsazIyrUSe02Rk3E+T57TTkWKnL+/k/+H8cZs+Elh4vptOKvvS\n", "6ecSExO1gAVIADzTjfjCZAOxba3EGbQ3ndqbPtC+dFICRwGdyWRqaUOWi93Omkp7+lybSkfUGTqe\n", "3lLYGci2Bh3vs/+Njqh3R9RZntOkoSN+9tAx9e6IOks1p51CCqdvL1ALjAS+AUhMTIwBOgPrmzOQ\n", "yWSyJiYmYjKZjkmglySc1CenrfU4nfamU3vTB9qfTif1aY3RXtR21lTa2+faFDqiztAx9ZbAzkC2\n", "tQ752UPH1Lsj6gzynCYFHfyzz2lrPZpDR9QZJJvTTtFqp++ksX0IvJ2YmFgGlNLYa2WtyWTa3trx\n", "ZWRkZDuTkfEUsq3JyLgf2c5kZDyPVGXtngPUwNcn//8F8HwNfhmZixvZzmRkPINsazIy7ke2MxkZ\n", "DyKJ03ey+tLjJ//JyMi4AdnOZGQ8g2xrMjLuR7YzGRnP0h4bKb3c1gqcQXvTB9qfTu1NH2h/Osn6\n", "SENH1Lsj6gwdU+/2qHN71OlCdESdoWPq3RF1hvand3vTpyl0RJ2hY+rdEXUGifVudcsGGRkZGRkZ\n", "GRkZGRkZmfZLe9zpk5GRkZGRkZGRkZGRkZEI2emTkZGRkZGRkZGRkZG5iJGdPhkZGRkZGRkZGRkZ\n", "mYuY/2fvvsOkKs/Gj3/PlO29sOzS2z4KUlUUFQv2XmIv0ffVxETz0xhLir6RJCbGxMSYnhiNiTEx\n", "lmjsFVAUlCICUh46Cwvbe5udcn5/nFlcli2zu2fa7v25Li7g1HvOnHtmnvM0KfQJIYQQQgghxBAm\n", "hT4hhBBCCCGEGMKk0CeEEEIIIYQQQ5gtk7P3RCnlBB4ArgfSgTeBW7XWFT1sfyGwECgG9gN/0lr/\n", "vNP6c4BXu+xmAmO01vvCEM9Zwe0VsAN4QGv9XKf1KcCvgIuxruVzwB1a6+a+YgljTIO6Rl3O9UfA\n", "qbX+Si/bHAU8CswCSoEfaa2f6rR+0NfI5ngien06bTsJWAsUdz5PjN5Dtr1nEY7btvc2xPhjKj8i\n", "GHNEr3PwnJJrAyR5Fvk8szHumLvWnbaNmzwLbvNd4GYgD1gN3Ka1XhtqTJGOWSk1FvglcDLWe74I\n", "+JbWutSumLuJKe5yzaaYJwMPA8djXeslwJ1a6z3hiNmuuLtseynwLDBea13S0zHDXdO3EPgycB1w\n", "IjAaeKG7DZVSs4PrXgCmAd8G7ldK3dJps+nAp8DITn8KsQqIdsdzPPA6sBiYAzwEPK6UurLTZn8C\n", "jgPOBc7HSs4/hRhLuGIa7DVCKWUopX4IfBUrAXraLh94C1gFzAZ+HYzn9E6bDfoa2RxPxK5Pp+2L\n", "gbeB5G5Wx+I9ZEdM0Yh70O9tKGItP6IQc0Suc3/i7rS95Fr4Y5Y8i1zcMXWtO20fV3mmlLofuAe4\n", "LbhNKfCGUiq9n3FFLGY1pWvzAAAgAElEQVTgRWAEcCpwGlAUXGa7eMw1u2JWSqUG1xvAKcCZWA8G\n", "3lBKJcRq3F22LcS6xn3mbthq+oIX6zbg/2mt3wsuuxLYqZSap7Ve3mWXk4A6rfUDwf/vUkpdgfUG\n", "/D647AhgfU9PTmyO527gA6313cH/bw0+Dfgh8IxSajRwFbBAa70ieLybgMVKqbu11n1+KNsdU3DZ\n", "gK9R8PwTgcexCt49Pi0Iugmo1VrfHvz/FqXUHOAu4B2brpFt8QSXRfL6oJS6Hev92QpM6LIu5u4h\n", "O2IKRSze+yHGHVP5EemYg8vCfp1Bcs2O91/yLHJ5ZnfcwWWxdq3jMc/SsAp8t2qtXw4e72bgM6wC\n", "1/t9xRSFmLOwfuif31EbqZR6EHhVKZWlta4bbMydYo+7XLM5z87AKqDP1Fo3BY//5eBx5wIf2hFz\n", "GOLu7AmsWveT+4ohnDV9s7CquJd0LNBa7wZ2AfO72f4TIFMpdaVSyqGUOiK43cpO2xwBbIpQPJOB\n", "j7os+wyYrJQaifUkI9Blm2WAHzghSjHB4K4RwDxgd/A4O/vYdj7wQZdl72NVkYM918jOeCCy1wfg\n", "AuArwJ3drIvFe8iOmEIRi/d+KGItP0IRazkUKsm1wZM8i1yeQXzm2lDPsxOAROD5Tsdr1FpP0loP\n", "usAXppjrgY3ADUqp9GDB9cvAVjsLfEHxmGt2xvwJcE5HgS+oo8Yse5BxdmX35wPKag1ZAPwolADC\n", "2advdPDvru2P93Vad4DWerlS6uvAP4CnACfwb+DHcKC99GHAUUqpz4B8rALhPVrrLXbHE1w+tsuy\n", "8cG/C4L7VGit/Z1eg08pVQGMCSEeu2MaoZSqZHDXCK3108DTAEqpvjYfhdU2vmuMKUqpXGy4RjbG\n", "k4P1QRrJ64PW+tTgtid3szrW7iG77utQxNy9H4pYy48Ix2xLDoUpbsm17kmeRe4zLS5zbRjkWTFQ\n", "CRyrlHoguG4NVv84uwrUtuaZ1rpMKXU+VvPPOqxCSDndFyAHJR5zzc4801Z/1K79Y78DNAFLBx/t\n", "F2yOu0ZZzawfwGpOnBVKDOGs6UsBAp3f/CAPkNR1Y6XUfOC3wM+Ao7A6w54B3B/cZBLW0xoXVrXn\n", "5cH/L1VW21db48EqeF6hlLpMKeUKVqt+Cyv5EoLHa+tmv56OF86YCMY02GvUX91dA0/w76Qe1nds\n", "E+o1sjOeSF+fvsTSPWTnfR2KeL/3QxFr+RGKeMuhUA3XXJM8i808g6GZa7GYZxlYtXC/waoNOQ9o\n", "Bj5QSuWFGFOkYgZIUEolYvUH3I/VZO8kYAvwUrDWL1riMdf6ivkgwcqnW4HvhKFWtT96jVsp5cK6\n", "jx7SWn8e6kHDWehrBRxKqa7nSMRKuK7uBRZprb+ntV6rrRFq7gK+q5TKDj7ZygS+pLVepbX+CLgk\n", "+Bquszue4Pl/BDyJdeGfxRrdx8B68tIa3Lernl5fOGMCqLfhGvVXd9eg4/9NPazv2CYcIzn1Fk9z\n", "FK5PX2LpHrLzvg5FvN/7oYi1/AhFvOVQqIZrrkmexWaewdDMtVjMMy/WD+ivaa1f01qvAq7BKhTa\n", "dR1tzTOskS9nABdrrZcG3/uLsGoHb7Ap5oGIx1zrNc86L1RK3Qv8DviJ1vr3RFdfcd+L1Wz25122\n", "MXo7aDgLfR1DnRZ2WT6KQ6vAwar6XdVl2QrATbAaPNgO+8DoNFrrVqyhbrurPh9sPGitf4T1hGi0\n", "1noyVtWqF6sD5h6s5i4HLnCw5D2ip+NFIKbBXqP+2oM1olRnRUCT1roee66RnfFE+vr0JRbvoUi9\n", "Z/F+74ci1vIjFPGWQ6EarrkmeRabeQZDM9diMc869lnfaXsPVp+q8SHGFOmYxwL7tdZlnbavx6rt\n", "m2RTzAMRj7nWZ54paxyRP2IVxO/RWt8X4Ri701PcjUADVmvIOUC9UqoRa6RPgA1Kqe/0dNBwFvrW\n", "BoM7uWOBUmo8MI5DOyeCNRLUzC7LjsDqFLpdKXWRUqqxc3W8sobbLQY22B2PUupWpdQvtdaBTol3\n", "EbA0+IHxEVazi+M67XYC1jXt2kE3IjHZcI3660OstsSdncIXox3ZcY1siycK16cvMXcP2RRTxOOO\n", "wfcWYi8/QhFvORSq4ZprkmexmWcwNHMtFvOs4z6Y22mfZKzBVLaHGFOkY94KFHRuxqus+e8mBtdF\n", "SzzmWl8xg9W17EbgBq31w8SGnuL+KPgg6GRgKla5aSbwP8FtzqaXKTLCNpBL8Avi98DDSqkqrI60\n", "vweWaK1XKKXcQC5QrbX2YvXl+yBYvfqv4Iv5BfA7rXWTUmoxUAs8pZS6B6sG8CfB43Y7WeEg49kC\n", "PKKUWoU1+tDVWG3qFwSPV6qUehZr3oz/xbqpHwP+rkMcltbumLA6/Q74GnXDoFNVcTfxPA7cE3xC\n", "8ijWXDJXYU2zYcs1sjMeIn99ehWL91AY3rOIxI39720oYi0/wh4z0bnOocTdq+Gaa5JnUcuzQcdN\n", "bF7rXsVonu1SSv0D+IOypg8oxRorwos1cOCghSHPXgE08G+l1F3BWH8ItAB/tyPmHsRjrg0qZqXU\n", "ucDXsOZZfEt9MUoxWFMmeAiPwV7rg6Z8UEp11Aru1lrX9nTScNb0AdyHNVLNP4BFWNXplwbXHY9V\n", "nT0PQGu9DDgLq5PtZ8AjWKXVbwXX12O96HasYXEXYVVxLtBat4chnneArwM/wHqqdgFwbjDODjdh\n", "JezrwEvAu8F9+sO2mGy6Rp2ZHDzZY9d4KrDes9lYE8jeAlyntV7SaR87rpEt8UT6+vSwfVcxdQ/Z\n", "GFNE4w7DexuKWMuPsMccpevcZ9w9bN/VcM01ybPI59mg447Fa93D9l3Fap49HzzeaqzJt0/RWtf0\n", "M66IxKy19mFNyl4KvBY8ngnM1wdPLWC3eMy1wcZ8dXD/hVgD5+zr9OdLMRx3T8fslWGafW4jhBBC\n", "CCGEECJOhbumTwghhBBCCCFEFEmhTwghhBBCCCGGMCn0CSGEEEIIIcQQJoU+IYQQQgghhBjCpNAn\n", "hBBCCCGEEEOYFPqEEEIIIYQQYgiTQp8QQgghhBBCDGFS6BNCCCGEEEKIIcwV7QBEdCilTgeOBCYC\n", "P9Va74hySEIMSZJrQoSf5JkQkSG5Fr+kpm8YUkrNAy7XWv8UeBq4L8ohCTEkSa4JEX6SZ0JEhuRa\n", "fJOavmFGKZUAPAmcH1zUgvXERghhI8k1IcJP8kyIyJBci39S0zf8XAdUaq23BP8/GkiMYjxCDFWS\n", "a0KEn+SZEJEhuRbnpNA3/HwF+G+n/88GyqIUixBDmeSaEOEneSZEZEiuxTlp3jmMKKWygKOAz5VS\n", "DwYXXwn8J3pRCTH0SK4JEX6SZ0JEhuTa0CCFvuFlNtCktb4JQCmVBNwOvBbVqIQYeiTXhAg/yTMh\n", "IkNybQiQ5p3DSwHwWaf/nwOUaq0XRSkeIYYqyTUhwk/yTIjIkFwbAqTQN7w0A/s6/f8rwA+iFIsQ\n", "Q5nkmhDhJ3kmRGRIrg0BUugbXj4HkgCUUmcAHq31P6IbkhBDkuSaEOEneSZEZEiuDQGGaZrRjkFE\n", "kFLqh0ANVlX9Qq21J8ohCTEkSa4JEX6SZ0JEhuRa/JNCnxBCCCGEEEIMYdK8UwghhBBCCCGGMCn0\n", "CSGEEEIIIcQQJoU+IYQQQgghhBjCpNAnhBBCCCGEEEOYFPqEEEIIIYQQYgiTQp8QQgghhBBCDGFS\n", "6BNCCCGEEEKIIcwV7QAiSSn1JDBKa3168P9TgfFa69fDfN6DzqOUCgDXaq3/Gc7zdjp/AfAz4HQg\n", "GfgEuFNrvaGbbY8FPgQWaK0/iEBsTuAB4HogHXgTuFVrXTHQfUJ5vUqp0cAjwAKshx9vAt/SWu+3\n", "+zUON5Jnvd53NwH3AKOBjcDdWuvFEYjN9jzrsu0fAafW+itdlmcDDwPnAEnAcqxrssmO1zWcSZ51\n", "n2fRvOeilWddtonod/hwMYzzrdffSgO5522MLRbyrc9tYslwq+kzg386/Bc4KgLn7XqekcALETgv\n", "SikH8CIwGbgAOA6oB95TSuV02TYVeAowIhFb0ELgy8B1wIlYP4b7ujY97hPK61VKGcBrQCZwMnAS\n", "UAi8YteLGuYkz7q/764Hfgv8BDgCeB94WSk1LgIhLsTGPOuglDKUUj8EvsrB73mHvwDHApcA84A2\n", "4E2lVOIAX4f4guRZ999n0bznFhKdPOvYLhrf4cPFcMy3UH4rLaT/97xdBnLuPvcJJd9CzclYM9wK\n", "fQaHfhhG6sPxwHm01hVaa0+EzjsT6wvwf7XWq4JPO68D0oBzu2z7S2APEbomSqkE4Dbgu1rr97TW\n", "a4ArgeOVUvMGuE8or7cA2ADcpLVer7Veh/Uka45SKjNsL3j4kDw7+L47J/jl+QPgp1rrJ7XWO4C7\n", "gG3ACeEMLEx5hlJqIrAI+BpQ0sPpFwC/11ov11pvBu4DxgCH2/cKhy3Jsy55FtwmKvdclPOsQ0S/\n", "w4eZ4ZhvI+jlt1Lw/r2dftzzdolmvvUzJ2PKsGreGWQCKKWWAJOA+5VS12utJwabhfwC6wmiAXwM\n", "3KG13hLcJwD8CLgxeJyjsJ66PIj1RDEF2An8WGv9VC/nOVA9r5TKxXryfy6QjdUU5S6t9Wedznkj\n", "8D/A0UAF8IDW+rGOFxRsdnCS1npCN693d/DYW7peAyCr0zHOAc7G+uJcF+rF7Esfsc3Cql5f0rFA\n", "a71bKbULmI91Lfq7z1/o4/VqrcuAqzvFOBq4GVihta4P+cWJ3kiefXHfZQMKGAv8u2Ol1toEZod4\n", "PXsV4Tw7IbjPPKzXfQWdXlcXy4ErlVLPYtXI3AjUADtCe2WiD5JnB+cZhPGei+E8C9t3uDjIsMo3\n", "rXU5vfxWUkrNxXrgsqTTPn3d8yGL4XwLKSdj0XAs9HU8MbkYWA08DzwUbDbyOlALnAG0YD0R+FAp\n", "pbTWtcH9bsL6YE0AGrE+XP8LzA0e+y7gMaXUW8E2wgedp3MgwbbF7wAB4LLg8e4D3ldKzdBa7w5u\n", "+hBwC7AK66nKH4LH73jCcBvg7u7Faq1rgDe6LL4Nqy/E28E48rAKSzcAdb1cu14ppa7Fqv5vAN7S\n", "Wr/dW2xY1eoApV2W7+u0rl/7hPJ6u8T8EtaHdC1wSg/nFP0neXbwfaeCy7KVUouAacBm4Dta6359\n", "McZAno0B0Fo/DTwdjKmncK/BeiJaDvix3u/TtdYNPe0g+kXy7NDPd1vuuXjKM7u+w0WfhlW+dTlf\n", "d7+VBnLP93T8uMm3EL/7YtJwa955QDAJ/UCT1roaq0nIUcAVWutPtdabtda3YN3gN3fa9Umt9Tqt\n", "9SogFavD+G1a663BJzoPYiX0lB7O09mZWE8ergw2Rfkcq6lKHVaSdnhca/281noXcD/W+3Z0p9fS\n", "0M2xu6WUugDrydAvtNY6uPhPwH+DSTYgSqlvALO11l/RWt/Zcaw+YksBAlprf5flHqwO+IPep4fX\n", "29l9wDFYHd/fUUoV9XBeMQCSZwfuu4zgqr8Bfw7G9DmwSCl1WCjHDB43JvOsF//A+kF+DnA88Bbw\n", "glJqVD+OIfogeXbQ5/ug77k4zLNBf4eL0A3TfOvut5It928c5lvcGraFvm7MBpzAPqVUY8cfYALQ\n", "+UfZgSYiWutKrA/bG5RSf1JKvYf1NIXgsfpyBFCttd7W6ZherNHIjui03ZZO6zueViaE/MqClFI3\n", "YD0xekZrfU9w2fVYHxx3ddk85LbqSql84MdAklLqEaXU90PctRVwBJ+SdZYINA92n+5eb1da68+1\n", "1iux2nU7sUZ0EuEzLPMM8Ab/fkBr/YzW+jOt9a3AVuDrIR43JvOsl3iPxXqq/WWt9Zta6xVYTYXa\n", "gDtCjF0MzLDMMzvuuTjMs0F/h4tBG/L51sNvpRYGf//GVb7Fu+HYvLMn7Vjt/ud2WW4ATZ3+39rx\n", "j+CTjuVYHadfAV4G9vNF4valpYflLr74kQjWU4iu+vWBrpS6F6s9+W+01rd3WnU9VpV3WbCauuO4\n", "byilngw+rerLfGB/8Edsf+wJ/l3IwdXto4CXBrNPL68XpdQIrOGsn+lYprVuVUptB6SmL7yGa551\n", "3Kvru+yyGRgf4uFjLs/6MDb494H3SWvtU0qtweqnIsJnuOaZHfdcvOWZHd/hYnCGZL6F8Fvp3eDi\n", "wdy/8ZZvcW241/R1HmZ1A5ADGFrrHdoaXW8X1hOI+T3sfxVWJ9b5WuuHtNavAfnBdZ2TqqfhXDcC\n", "uUqp4o4Fyhpd6OjgOlsope7B+oK8r2sBCLgWa1SzmcE/ZwaX3wiE+sTFT/cfLH1Zi9UO/eROsY4H\n", "xgE9zS/U5z59vF6wfmT/Uyl1ZKdjZGL1u7LtuosDJM/gU6wniXM7bW8AU4HtIZ4ipvIsBFuDf8/s\n", "dAwDqz/j1m73EIMheWbPPRdveWbHd7jov+GQb+Pp/beSHfdvvOVbXOtXTZ/qZtJPpdQZWBOlFmN9\n", "qH5ba/3mQANSSi3UWi8c6P791GidUhVqrd9VSn0MPKuU+iZWJ/BvA+dhzevRnRKsvjr/VkrdjfWB\n", "+zBWknZuH9z5PAcm/9ZaL1JKLcdKqtuwOrB+L3jMP4f6IoJJmBBsLtB13QysPg+PA48rpUZ2Wv3/\n", "tNb3dtm+PfjPUq11VSjnwEqWEUqpPK11VfBLNllr3dLbflprj1Lq98DDSqkqoBL4PbAk2Cynu3N/\n", "N7hNt/v08XobtNYtwEpgKfAXpdRXAR/wU6yRrf7WzesbtP7e1+HOtTjNs0uVUscBi4nDPFNKPQL8\n", "WClVjtWf7xas5j9/COUcRDDPgvus62ufTg4ZzlxrvUYp9TbwpFLqFqAa+CZWrcRvujnGoMVang0k\n", "pkEY7nnWAFyINaBLr/fcEMuzfV2uUbff4Xbrz309xPKsgx35loWVbyuIwd+P9PxbyQ/8TWvdPoDf\n", "cF1FJN+wJmBfGMo+nXQ3TcdAthkwu+/rkGv6VDeTfiqlpmJVSf8bq035f4GXgssH6v5B7NuXrpNr\n", "/hKr/f/a4P8vwnpi8xLWk/kpwJnamuvnEFrr54BfYY2ctAlrpKFrsZpsdZ5M88B5gjd0ZxcHt38N\n", "q6o/G+vJz65+vK5Hsdpxd+cKrPf5RqymA/s6/fleD/t092TpUaC7pOjobHwF8EDwi/b7WJN59hUb\n", "WJ2Dn8bqfL8Ia8jiS7s5d8cx7u9jn95e7zeD8ZpYE/d+BryKNXxvHdbQwD01mRiskO/rCOVaPObZ\n", "b7Dew7jMM63194GfB1/LOqxO8WdorTvXQMRKnoE1hHVf+3To+p53uAzrS/2fWNd9ItZ139PNtnaI\n", "tTzrV0z9JHl26Of7/YR2zw21POtuu3AL6b4eAnnWIRz55sDKt5j8/djLb6WcTr+VQr3no51v9/dj\n", "nw6h5FuoOTlQ9t7XpmmG9Ke4uPhPxcXFi4qLiwPFxcUndl7WZbtFxcXFfwr1uN2cxxzovtH6E48x\n", "9zfu4uJio7i4+KN4ijmW/vTzWoc914bDdYyVP/GYZ8PkWst32hCKuT9xS55F9FpLng2hmAcSdyzk\n", "23C51n39CammT30x6edtXVbNp9Mkh0FL6LkNs4hfdwEvRjuIoU5ybdiTPIsAybNhT/IsAiTPRJDk\n", "W4zos0+f6n3Sz1EcOsnhfoKTHIoh5VfaGg5YhInkmkDyLOwkzwSSZ2EneSY6kXyLEaEM5HJg0k+l\n", "VNdZ7lOw5r/pbMCTHCqlEoN/T8LqKBo3lDUCUNzpT9zKGg466uLwWjvBur+11r2NUhWRXIvnPIO4\n", "fP/jMs8g7q51TOVZRyzBv+Mu1+LsvT8g1LglzwYllFyTPAtBHL73QP/jjoV8i8NrHep3Wsh6LfSp\n", "Lyb9nNFlVUdn0lasSQ07C2mSQ6XUQnruoLith+WxbGe0AxigeIw7HmMGaOvmg+8HwRGlwpJrQzDP\n", "ID7f/3iMGeIz7ojnGQzJXIvH9x7iM+54jBl6yDWs1yN5Fpp4fe/jMe54jBl6+U7r74H6qunrbdLP\n", "v2FNdNh1MusiYG9fJw4Gu7DzsuBTmm1PP/00I0eO7G63YSnQ1oZnx3YcmZmYXi/+ulocSckYSUng\n", "dNG2YR2ZC07HSEiIdqiiG2VlZVxzzTUAk7XWPc3JFpZckzzrn8aPl5EwYRK0tmCaJr7KCtwjC8E0\n", "8TXW48rIInHsuGiHKboRzTwDybX+8JTsIuDx4EhIBMOgfV8pCUWjMP1+cLnx7i0hfd7x0Q5T9KCv\n", "XFNKLULyLOpMj4eWzRtx548g0N6Or7ICZ2oaRkoKOJ14Nm0k/cSTcSQNqIJVhFmI32n90leh71oO\n", "rm4vxJqz40bgXeAB4KTg3x1OYeCTHPoBRo4cyejRXVsDDF+tWzWlzzxF3pf/l8QxY6Gw8MC6hg8W\n", "k1Cyi6LCQpzJyVGMUoSgt2Ynkcw1ybNumH4/pXojjpJd5Fx4ibWwyPpd4m9oYP/jf6DgtjtJk2sW\n", "62Ilzw7EIrl2sDq9kep//5OiO7+D4XJBQcGBdRVP/Jn08RMZMWoUhhG26a+EPXrKNcmzGODZU8Le\n", "F58j5/KrSZo0+aDfjk0rPqZZb6ToiitxpaZFMUoRAtuaLPda6Otj0s9KpdRvgNXB6vZngKuBo4Gb\n", "7QpQgDM9g4Jbv4krI+OQdenHzSftuPn4G+ql0BfHJNeiL9DWRs6lV2C2tB6yzpmRQdG3voORkoxp\n", "mvJjNE5JnkWfaZokTpxEwde+YRX4usi76jociYkEWlpwpqZGIUIxWJJnscFISKDg1m/iTEk5ZF3q\n", "kUeTMmsOgYYGkELfsBHy5OydHJiEUGv9OdbkkJcCa4DzgPO11tqe8Ia3QHs7vqYm/A0NuLOyMByH\n", "vl2Gy4XD5cLfUI+nbB/+pqYoRCrCRHItQvytrbSX78fhcuPs5uEKgCM5GcOE9rIyvFWVEY5QhJHk\n", "WYQE2trwVpSDP4ArM6vbbRzJyeBw0F62n/bKighHKMJI8ixCAh4PvuYm/A31uDIyun24YjidOBIS\n", "8Dc10V5Rjq++PgqRikgLZfTOA7TWewmOJtNp2evA63YGJSxV/3yKtq2byb3i2j6feLaXllL518co\n", "uOU20o+ZF6EIRbhIrkVOe+leSu77NtkXXkLq9Jm9bmuaJuW/fhhnahqj7/tBhCIU4SJ5FjmmabJn\n", "4fdwZeeQ86Ur+ty+6eNl1L/7JuN+9iju/PwIRCjCRfIssmr++wJNKz8h/5obcKan97qtr6qS0h8v\n", "JP+GG8k8+dQIRSiipV+FPhFZ2edeQMP7adaTzz4kFBZR8PX/R/JhUyMQmRBDh3tkISNuvBnD6exz\n", "W8MwyD7rPBImTIxAZEIMHYZhMOKmW2jbpkNqHp1crEieOg1XTk4EohNi6Mg84xwMlxtHN806u3Ll\n", "5TPipq+RMm16BCIT0TaQ5p0iQnxNjaTOPrLbZp1dGS4X7vwR+GqrIxCZEEOHt7qKhMIi3CMK+t4Y\n", "SBg9BtPThr+t6zRTQoie+D0eMP0kTwltvi5XTi6ujEy81VVhjkyIocVfV0PqzNmhPch0OEgoLMJb\n", "WxOByES0SaEvBnmrq2lc+Qmmz9f/fauqqHjiz9I+W4gQNCxdgresbAB7GjQseY+mVStsj0mIoaZl\n", "0wZa1n2G4ej7R2hXbdu2Uv3i82GISoihxd/YQOPyjwh42vveuOu+DQ1U/P2v0l99iJNCXwzyVVVQ\n", "+dfHaNv4eb/39WzVMpiLECEw/X6aVnxC9fPP9HvfQHMTDYvewQwEwhCZEEOLd/8+Kv78e/xNjf3e\n", "t+GDxfjr6qw5/IQQPfLVVFP176dpXt3/h5GeHdvwVVaAfKcNadKnLwYljJvAyNvvGtCw8Glz52EG\n", "/NbE7UKIHhlOJzmXXDagGnVnegYFN38DRx+d5IUQkHzETIruGRdSV4Wu8i67CtPhCKmpmhDDmbto\n", "FAVfv21Avx1TZ84m5YgZONK7H71aDA1S6ItB/rpaHN0MsRsqw+HEX1eLs2CkjVEJMbT4W1owfd4B\n", "NTk7cIzGRgixL6AQw5W/sWFABb4DfD78LS3dzjcmhLD4ampC+u34/uY63tlYw766dqYWpXDxnHwm\n", "jUjGcDrx1dXKnM9DmDTvjDFV/36apo+XYZpm3xv3IOBtp/LJv1D2u0dtjEyIoaNp9Uoq//6EVWgb\n", "hJa1a9j9nTvxN0uTaiG6CrS1se8XD9G2bcugjuOrqWb/Iz+jYekSewITYoip/s+z1C9Z1GuXg4Bp\n", "8uf39/HbRaVsLW/F5TT4ZEcj9/5nJ2tKGjH9fqr/9RT7fvlQBCMXkSSFvhjjzMiibcf2AVXPdzBc\n", "bhJGjyX7gottjEyIocNdNArT68Vs73+H984cCQlknnYGjiR5MirEIQyDhLFj8dfWDu4wLheJ4yeQ\n", "MmO2TYEJMbS4c/NoL9kNvfx2/M/qSt7ZUMu43ER+fc0U/vTlYr5zzlgcBvz8jT1sq/LgLhxF9vmX\n", "RDByEUnSvDPGpEyfQXJxaENa98QwDNKPPQ4G05xGiCHMmZxC1lnnDq7JGZB8+DTMgL/XL1ohhisj\n", "IcGadsgYXJ65srJJmzsPBtECRoihLHFyMQmjx/a4/vPSZp5dWUlumpv7LxxPepL18//I8enceeYY\n", "fvp6CX9YvI+fXXYMjmQZE2KoklJBDDEDAQItLbYdL9DSjE+anQlxCH9T46ALfF8w8NXWYnq9Nh1P\n", "iKHBX18PNpXTDIcDf1MjgUHWzgsx1JimSaC159+OXn+APy7ehwF864zRBwp8HY4cn86pU7PZU+Ph\n", "tXXVBFpaZBT4IUoKfTHCW13N7nvuoOXzdbYds/bll9j1jZsJeDy2HVOIeFf6sx9T+dfHbBsC3rN7\n", "FyXfuYPGZR/acjwhhoL6Re9Q+pOFePeV2nI80+9n/68eZt/DD9pyPCGGAl99Hbu+eQvNq1f2uM2r\n", "a6spb2jnrOk5FI/sfjCka44dQUayk+dXVVLx1pvsvOVG/I0N4QpbRIk074wRrqwsss45D3z2zUWU\n", "fsKJZF9yKY7ERHMTaIEAACAASURBVNuOKUS8y73iGprXrLZtCHj3iALyr7+R9OPm23I8IYaCtBNO\n", "wt/SgiPDniHgDaeTrLPPI3XGLFuOJ8RQ4ExLJ+eyKzFb27pdX9vi5YVVVWQkO7n86BE9Hic9ycXF\n", "c/L420flfJw0mfP/72ycMn3DkCM1fbHCMEgcM5akSZNtO6Q7Lx98/kGNBCrEUGO4nKROn2nb8Zyp\n", "qbgLCvE3yFNRITqYra0kq8NxZWTadsyk8RMIeLr/cSvEsORwkFBQSNLESd2ufnF1FR5fgCuOHkFq\n", "Yu8POk+bmkN6kpMXdwZobfP1OhKoiE9S6IsBpt+Pr64OsH8wCNM0ad34OYE2+aIUwtfUSKC11fbj\n", "Gg4H3ppqvNVVth9biHjjb27C1zTIufl6ObandK/txxUi3pg+H/66uh7XVza28/aGWgoy3Cw4PLvP\n", "4yW5HZw3M5dmT4B3dT2tWzR+G8eZENEnhb4Y0Lx6JSV330bbls22H7tx6RLKfvMI3vL9th9biHgS\n", "8HrZddvXqXn+WduP7aurZe/3v0PD4ndtP7YQ8abqH3+j9P578Tc3237syif/wv5fPCS1EGLYa920\n", "gV3fvIXWHsaCeG5lJf6AyWVHj8DlDK1S4fRp2bidBpUffMi+n/+E9tI9doYsokz69MWAtLnHYgZM\n", "HEn2973LOOEk0k9aQOK4CbYfW4h44nC7Gf2Dn+ArL7P92M7MLIruudfW5tlCxKvca64neeZsnKmp\n", "th87/9obcObkhKUWUYh4kjJ9JgW334mjmylRyurbeV/XMSo7kROmhN7EOj3JxfziTN7dOInZVy1g\n", "8pTBTSEmYot8asYAf3MzrtzcsHSaNVwujEAAf5v9TdqEiDdmezuu7Bzbj2sYBs7UNPxNjbYfW4h4\n", "E2huIiG/50EjBsORlEygRb7PhPC3teJKT8fZzWBJz6+qJGDCZUfl43T0r+vQWUfk4DecvPl5bVhq\n", "60X0SKEvynz19XgrK8L61NL0+2hc+gHt+/eF7RxCxDLTNGnZvAnTG945vjx79tCyYX1YzyFELGsv\n", "3Yuvrjas5wi0NFO/dIk08RTDlr+xgfZ9+zAchw7OUlrr4YMtdYzJSWTe5P5XJkzIT6a4IJkNu+vZ\n", "+/6HtEsf2iFDCn1R1rTyY/bcdw+ePbvDdo62bVupX/QO/ob6sJ1DiFjmb2ig/LePUPvyi2E7h+n3\n", "U/nEn2n+7NOwnUOIWFfzyovse/CHts2D2Z36d9+i/p23CMgE0mKYal73GXu//11auxkL4rmVFZgm\n", "XHH0CBzGwAYIPG1qNuPbK6h8+b94qyoHG66IEdKnL8oyTzkNd8FIHIlJYTtHytQjSC4+jKTJU8J2\n", "DiFimSszk8J77sUMw8idHQynk6I7v4Mzq+9R0oQYqnIvv4bMU063bR7M7uRccAm43N02axNiOEif\n", "dwKurBwM18E/43dXt7FsWwMT8pKYOzF9wMefNzmTv2aM5rfusfxl6vTBhitihNT0RZmvoR5HckpY\n", "vyABcDrxN0p/IzE8mYEApqftkC/IcAi0yhDXYvgKtDZHJM9MT6s07xTDlr+hASMx8ZBce3ZFBSZw\n", "xdwRGAOs5QNr+oYTpmRS3exj5ZpdgwtWxAwp9EVRe+lePDu2R+RcgaZGat94hdbNGyNyPiFiRaC1\n", "lYYliwi0hn+uStM0aVm/lob3F4f9XELEmqZPV9G+JzL9f7xVVdS88KzMQSuGnfZ9pVazTtM8aPn2\n", "ilZW7GykuCCZOePSBn2eUw/PJsXfxo6X36Blw+eDPp6IPin0RVHrls2U/+E3eCMwwIq/oYH2PSUY\n", "LnfYzyVELPE3NtCw5D2aPv4oIudr+mS5TNIuhqXm1Supfu5fmF1+jIZD2xZN+769BGRkajHMeHbv\n", "pPKvj9FecvBYEP9eUQHAlccMrpavw8T8JFR6AOfeHTS1+QZ9PBF90qcvitLmnYB71OhuR1+yW8Ko\n", "0WRfdAkJ48aF/VxCxBL3iALy/+crEIGmYIZhkH/d/+BIH3hfCiHiVfaFl5C5IDLdCDLmn4TpcOCS\n", "PrRimEk9ai7OnLyDugVtKWthTUkT00alMn30F7V8jd4WFlWuY3XdNsraagCDgqQsvqcuJ9nZ+9zQ\n", "hmEwe85EnmhJwV2TyJfC9YJExEhNXxT5GxtxOF22PJEJhcPpxt8g/frE8GL6/WGfquGQc0qTMzEM\n", "Rbyppbc9rKOEChGL/I1NOFwH/3Z8bpU1wublR+cfWNbgbeHuz5/ghX0fsbe1ivzETEYkZtIe8PVZ\n", "4OtwQnEmbqfB2yv2RKQGX4SX1PRFSevmjbSVlJA4diwOd0JEzumrqab2jVdInzuPtLnHRuScQkST\n", "v9Hqy5owZhwJIwoidt6Gjz7AWO4k74qrI3ZOIaKp7r23CbS1kawOj9iDzPbSvdS/+xZ5V12HKzsn\n", "IucUIppat2ymbdtWEsdPODDq+9byFj4L1vJNLUo9sG2GO4ULCo/BaTiZnzuNFJdV0AuYobd6SU9y\n", "cXKRgXv9B2x8yc+0i8+29wWJiJKavijx1dbS8O5bBCJc8+ZITCJh9JiInlOIaAm0t9O+rxTPzsgM\n", "mNTBX1uLK1uanYnhw1ddRcvaNf0q8NU0e1m9q5FPtjewv87T75oEf0MDjrR0iEAXCSFigb+xkcZl\n", "S/HX1R1Y9t811QBcelT+IdufM/JoziyYc6DAB+Aw+vfT/4TiLPw4WVYmo+XGO6npi5KUmbNx5eVj\n", "OCJX7nbl5JJx0gKcObkRO6cQ0eTOzSX7gkswItwsJevMc6wfo0IMExknn0rakXND2raq0cuTH5Xx\n", "yY6Gg5aPy03kkiPzmTcpI6TCY8oRM8AwcGVmDihmIeJN8hEzyE9Px3BaP9/L6ttZsaOBCflJTCtK\n", "GfBx97VWs6RqPVeNPumQ3Du8eCR/HHcsVbt8XNnSTnpKZFqnCftJTV+U+JuaIlrg62A4nQSapF+f\n", "GB5Mnw/T643OuT0yqqAYPkKdEmXjvmbueGYbn+xoYPKIZK6Ym8+18wqYOyGdkhoPj7y9lwde2U1V\n", "Y2h5G/B6o5bjQkRaoLHhQIEP4LV11ZjABbPyCDDwh5vPli7lzfLVvF2x5pB1hmFw2tRsvL4Ai1bt\n", "GfA5RPRJoS8Kmtd9RsOit/E3N0X83O3791H2u0dpWPp+xM8tRCT56uso//Pv8O6N/JeUaZrUvPwS\n", "5Y//KeLnFiLSqp97hsali/tsnrmhtJmfvLobr9/kaycX8eMvTeDSo0Zw4ew87j57LI9ePZnZY9NY\n", "t7eZu57dxmclfX9HtulNlD70AL7aWrtejhAxqWX9WurefA1/g1VD3ur1s2RzHbmpLsYWebl7/eOs\n", "rd85oGPfMPY0MlwpPLP3fbY37T9k/fx8L9dVL6bklddlQJc4FlLzTqXUaOARYAFWQfFN4Fta6/3B\n", "9WcAPwOKga3At7XWb4Yl4iHAcLrw7N5F4sTJOFMHP4FmfziSk0mZNp2UGTMjel7RN8kzexkOB470\n", "dHwN9YQ2TpmN5zYMnBkZpEybHuEzi75IntnPmZ1N++ZNvTbJrGho5+dvluALwJ1njuboCRmHbFOY\n", "mch3zx3Le5tqeWJpGT95bTfXzSvgvJm5PR7bcLtJnTUHR1KSba9H2ENyzV5GUhLe8jICk6bgzMhg\n", "2dYG2rwBzpuVzeO736SqvQFvYGDz6WUlpPH1iefwsy3P89iuN/nR1OtwO74oImRkpuIfM5mPG3I4\n", "ZUc1R0zKs+tliQjqs6ZPKWUArwGZwMnASUAh8Epw/VTgZeDfwCzgv8BLweWiG4kTJpJzyeW4cyOf\n", "NK6sbFJmzMJISo74uUXPJM/s50zPIP34k0idMSsq5884/kQSRo+NyrlF9yTPwiNlxmyyzz6vx/Ve\n", "f4BH3t5LsyfAV04s7LbA18FqSpbDDy+aQFaKi78vK+evH5bhD3Rfu5BcfBjJU4/AkSzfabFEcs1+\n", "CWPHk33+RbiDI1G/u7EWwwAjfxc7W8o5PncqR2VPGfDxp2WM49T8Wexrq+GV/SsOWudMz6D4tONp\n", "cKXy5vLdPRxBxLpQmneOADYAN2mt12ut12E9uZmjlMoCbgeWaa0f1Fpv0Vp/H1gWXC664W9ujkp/\n", "vg7Sry8mSZ7ZzPT7wRfdvj7Sry/mSJ6FgdnW+33+3MpKtlW0cmJxJgsOzwrpmJMLkvnJJRMZk5PI\n", "G+tr+N2i0h4LfgGvF9M3sBoOETaSazYLNDUd6M+3u7qNbRWtHDHeybs1K0hzJXHtmFMGfY7LRp9A\n", "UVIOWQmph6ybOiqNopwklq3fR0NzZOe+Ffbos+ShtS7XWl+ttS6BA9X1NwMrtNZ1wHxgSZfdlgSX\n", "iy5aNqyn5rl/4a2siFoMbTu2sfeH/0fD+4ujFoM4mOSZvfyNjZQ++ENaNnwetRhMv5/Kvz3B/kd/\n", "EbUYxMEkz+xX8fcnqHnpecxA98O576pq479rqshPd3PTSYX9mtIhL93Njy6ewJSCZJZuqec37+7t\n", "tuDXvOoTdt99O776+gG/DmEvyTV7Na1eSdXTT+KtsiZhX7rFmrLBOWoLbQEvl42aT6pr8E2ck52J\n", "/GTa9SzIP7QLkLd0L1/b+xJH137O4tUyoEs86ld1k1LqJaAEOAb4SnDxKKC0y6b7AZkMrhuurGwM\n", "pwvTH72nku68EWRf9CXSjzshajGInkmeDZ7hdpM6+ygciZHuzdcpBqeT5GnTyb7wkqjFIHomeWaP\n", "lOkzcWZkddt6xR8w+ePiUgImfPWkIpLd/Z9PLzXRyX3nj0ONTOGjbQ08+VHZIQNJJBSOIufyq3Cm\n", "RbaPvAiN5NrgJRSNOjANUMA0+WhrA8kJDs4bM4Njcw7jpLwjbDtXT/P4ObOyGXH2uXyaoXjr490y\n", "oEsc6m8bw/uwkvZD4F2lVBGQAnQdq9kDSK/qbjjz8sk45VQSRhZFL4aMDBJGjcIcxPC+IqwkzwbJ\n", "kZRE8rRpJKvDoxpH6szZOFIGPneSCCvJMxskjB5DxvyTul337sZatle2MX9KJrPGdl8gC5gmzb42\n", "fAF/j+dISXDy3XPHMjYnkTfX1/DKZ9UHrU8cNx73yCIMp0zSHqMk1wbJnZdP+gkn4s7LZ2tZK1VN\n", "XuZOyGBm9nhumXhuvydcHwhnWho5h03hyCOK2FPeiC6REXPjTb8mZ9dafw6glLoS2ANcD7TCIYPj\n", "JQLNvR1LKbUQuL8/5x8KrDbZ0f9icjjd+OobcGdlYbj6dRuIgduplOq67Ada64WdF0ieDZ7p92O2\n", "tx80n1G0BNraME2zX83axKBEPM+Cx1nIcMw1T/fz8zW2+XjmkwqS3Q6uO76g222e3buUN8pX4Tet\n", "pqE5CelMTR/LqfkzmZRWeNC2qYlOvnfeOL77wg6e/ricKQXJHF7Uqd+Rt52Az4dDvs8iSb7TIsTX\n", "1Igj+H324TarGfPxU3oeEClcDKeTUw7PYfm6/SxetYfDxuVEPIZhKKQ8C0Wfn45KqRHAAq31Mx3L\n", "tNatSqntWNXze4Cu1VZFwN7ejhsMdmGXc40HBjbJSBxo3aqpfvZfpM2dR9LESVGNpeXzddT851lG\n", "3vpN0uYeG9VYhpEJWutd3a2QPLOP6fNRcu/dJE0uJnPB6VGNJeDxUPHbR0gYM46ib90T1ViGkYjn\n", "WfA4CxlmuVb597/StnM7uZdcfkiN9rMrK2ny+LluXgHZKe5u989LzGBc8ggy3Sm0Bbzsba3iw+oN\n", "qLRRhxT6AHLT3NxxxmgWvrSLR97Zy88vn0RmsvUzpu6tN2j+dBUT//C4TN8QOfKdFgFNn66i9uUX\n", "yTjxFNxjx/HJ9gbSk5xMHxX+5swB02RTYwnTMsYB0Lp5I7kv/JvjM45h6WeJ3HThEbhd0a/IGOJ6\n", "zLP+CqU+eDzwT6XUkR0LlFKZgMIamelDrKF4OzsF+MCOAIeShIJCkooPi2o/ow6JEyYy8o57pMAX\n", "O8YjeWYPwyDnkstJHDMu2pHgSEwk65wLyL/p5miHIizjkTyzTfopC0g+fCpGl0LW3hoPb39eQ2Fm\n", "AmfP6LkmYEH+TBZOvYY7plzMd9Xl/Gbm17lPXcm83MN63OfwwlSuOmYEtc0+nvyw7MDy1COPpuh7\n", "/ycFvtgxHsk1WyRPKSZ1zpE4UlPZVt5KbYuPo8an43KGv/XI30ve46Etz7O50SqLJ4wZR8Ett5N7\n", "yik0tnhZubE87DEI+4TSDmIlsBT4i1Lqq4AP+ClQAfwtuG51sMr9GeBq4GisUZpEJ46UFFJmzIqJ\n", "5ifO1DRMvw/T74+J5qZC8swuhtOJe2Qh7rx8W4/b7PFTUt1GeYOX1EQHRVmJjMru+wFO0sRJ4I3u\n", "1BHiAMkzGzmTU0g7cu4hy/+xvIyACdcdV4Db6WBN3Xampo8l0dl9jV8Hh2FQnD6qz/OePyuPFTsb\n", "+XBrPScWZzJ7XDoJBSMx3NH/bhUHSK7ZxJGSSvJhUzGcLlYsL8ORXcaM8SMicu7jc6eyqHItL+//\n", "mMPSL8WZmoqRlMgpI/J56YMdvL9mL8fNiN4YFaJ/QpmywQQuAT4DXsUaUrcOOElr3RJsq30xcCmw\n", "BjgPOF9rrcMVdLzyNTbERIHvAIeT9vJyAvKDNOokz+xjmiZmu8e245XWevj9olK+8qTm+y/t4neL\n", "SvnZG3v45r+2cc+z21myua7PUcz8rS0E2rrv+yQiR/LMXqbn0Dxbv7eJ1bubmFqUwlHj03m3Yg2P\n", "bHuJx3e/NahzbW/aj8dvfVc5HQY3n1yE0wGPfbAfj8/qExjwePC3ytyYsUByzT7+piZwODFNk+Ul\n", "5SRM/oz32t6JyLmnpBVxePoYPm/YTUmLNV2Ew+miyNXG2NxEVm+uoK1d5siMFyGVQLTW1cD/9LL+\n", "deB1u4Iaijx797D/kZ+RPu8EUmcf2fcOEdC4dAn1i95hzMKfkDRpcrTDGfYkz+yx+87bcOXmknfl\n", "tYM6TsA0eW1tNf/6pAKv32RkZgJzJ6QzMjOBlvYAm/e38OnuRn63qJQluo5bFxSRn55wyHF8NdWU\n", "/e5RMk85lfzrbxxUTGLwJM/sUfXMP2j6ZDm5V157oFY9YJo8tdxq7vXl40ayrGYTfy9ZRKYrhfNH\n", "HjPgc5W0VPDglmc5PH0s35x8IU7DwbjcJM6dkcvLn1Xz5voaLpydR+XfnsBbWc7EP/5VBk6KAZJr\n", "g9e6aSNlf/g1maecRs3ow6lJ2YbbgFNHHDqPXricVXAkmxr38E7FGm4cfwaNH39E3euvctqpN/BE\n", "tZ9PN1dIbV+ciKFqp6HNXTCS7HMvwHD13rwlktKOmUfGyQtImhDdQWWEsFPBrbfTXrJrUMfw+AL8\n", "+p29rNjZSEayk2/ML+TYSRk4Ov2QvHA2VDV6+cvS/aze1ci9L+zk3vPHMS734D5FzqxsRtxyG+kx\n", "8rBHCDtkX3AxzuxcnBmZB5Yt29bAzso2jp+SiTe5ir9seYsUZyLfVpcxOjlvwOcqSspFpY1mbf0O\n", "/l7yHjeMPQ3DMLh4Tj7vbarjxU8rWXB4FjkXX4q7aJQU+MSQkTSlmNwrrsZwuVm+swrXiD2kGCkc\n", "m9Nzv1e7zcycyIjELJZVb+Ly0fNJnTWH9LnHYiQVwIb3WbZuvxT64kT4J/YQgNXPKGHUGBJGjY52\n", "KAc4EpMwfT6ZYFMMKY7ERBLHjh/w/s0ePz96eTcrdjYyrSiFX14xmeMmZx5U4OuQl+7m22eP4Ybj\n", "R1Lb4uP+l3ayu+rgZpyGw0FCbh6+psYBxyRErAl4PCRNmowjward9voD/OuTcpwOg7PnJPPotpcB\n", "uG3SBYMq8AG4HE6+Mel8xibns7hyHR9UfQ5AWpKTLx2ZR7MnwEufVuHKygZ/z/P9CRF3nE7cIwpw\n", "5+XzYc1GDKefU/Nn4nJEbiwGh2Fw6ajjuWHcaSQ53DiSkjEDJhOL0hmRk8KKjWV4g02sRWyTQl+E\n", "WG2yY+9ym/4ArZs2YsoXpRgCTK8XcxB951q9fh58bTe6rIXjp2Ry7/njyEzpvUGEYRicOzOXWxeM\n", "otkT4KE3SqhvPbSPg7+2Dn9Dw4BjEyJWmF4v/tbWg2rUFm2qo6LByxnTshmblc7MzAlcN3YBUzPG\n", "2nLOZGcCt0++kBRnIn8vWcSeYP+iM4/IISfVxVuf19LY5iPQ3Iy3stKWcwoRTaZpWr8dTWho9VKd\n", "tB1MB2cVzop4LMfmHMb8vGm4Hdb3oWkYeLZu4djD8mj1+Ni0qzriMYn+i71SyBDkb2hg1ze/TsPi\n", "d6MdyiHqXn2J8t//Gn99XbRDEWLQ9vzw/9j/6MOYgf4/dfT6A/zs9T3oslZOmJLJ/zt1FG5n6B+R\n", "Jx+WxeVH51PZ6OUXb+3BH/iiBt2zayd77ruHxo8/6ndcQsSa+kXvsPd7d9G2fRsAHm+AF1ZVkugy\n", "uOTIfJKdCdw84WxOyZth63nzEzP56oSzcBoGle3WBNUJLgcXzMrD4wvw5voa9v3yp5T9/lFbzytE\n", "NHjLy9h56000Ll3Cp7ubaN8xndmOuaS7U/reOczq33qN/b/6OXMKrELgp5srohyRCIX06YsAZ0YG\n", "hXfcQ6Ax9pp3ZV/4JRzJybhycqMdihCDNvK2O/Fs34rRz1p10zT5w+J9fF7azNET0vnGqaNwOvrf\n", "L+jSo/LZXd3GJzsaeX1dNefPspq1JYwZy6h7F5J8+NR+H1OIWJN5+llWf77UVADe3lBDbYuPi+fk\n", "kRWsGQ9Xv7o5WZP5xfSbDvrhe+rUbF5YXclr62o495Y7SR/T97QPQsS6hJGFjP7e/fgbm/h0ZRNm\n", "cxaXxsgYDFlnnkvORV+iqGAU7ld28amu4IbzpkU7LNEHqemLEGdyCu6CkdEO4xCGw9HtsNtCxCWf\n", "F3d+/+cven5VJUu31DOlIJnbTxs9oAIfWD90v3pSERnJTv71SQX766zcMpxOjIQEAs3NAzquELEk\n", "0NqCKzsbR1ISHm+Al9ZUkZzg4PxZkXl42LWmI8nt4JwZOTR7/Cze3oLZJtM2iKHBcCdAZjaf7Wli\n", "RIab0SHMDRsJhtNJoM1DUoKLaRNy2bmvgZoGmZYo1kmhLwK8DQ0Dam4WKb76OhpXfhLtMIQYFH9D\n", "A/6W/heqPtnRwLMrKxmR4ebb54wl0T24j8WMZBc3zi/E6zd57IP9Bw2U1Lp9G77a2kEdX4hoCng8\n", "eKurD9Smv7uxloZWP+dMzyE9KXqNh86YloPbafDG+ho8VZV4du+KWixC2MFbV0vA72VzWQut7QHm\n", "jEuPiZFp2wNe9rZWEWhpoXHFcuYoa8qWNVqaeMY6KfSFmen3s/u2r1H97D+jHUqP6l5/hbrXXpZJ\n", "2kVcq/rXU+y9/3sEWlpC3mdvjYffvldKosvgnrPGkplsz4/WeZMymDkmjfV7m1m7xyqItqxfS8Uf\n", "f4Nn1w5bziFENLRu3sie795J06oVeP0BXv6sisSUNjanvceu5vKoxZWR7GJ+cSZV9a2UPvwQ9e9F\n", "ZvJqIcIh0NrK7tu+Ru1/nufTXVbXoCPHpUc5KvCbAe5Z/wSPbH2Jurdeo/a/LzJzjNXMe922qihH\n", "J/oiffrCzHA6GfODB/FWxe4TkLyrrsORkoLDHTtzCArRX3lXXUfavONxpITWyd3jDfDLt/fQ5g1w\n", "xxmjGZeX1PdOITIMg+vmFbBuTxNPLStj+uhJpMyYReqMWSRNnmLbeYSItNSZsxn9fz/CNAMs1vXU\n", "NPsYf+ROdrTuZ29rFeNTCyIaT8A0WVa9kZmZEzh7ei6LNtXxj1n/yw8uHfhk8EJEmyM5mTEP/pKK\n", "fTtY8W45ia4EphZFfwAXp+FgWsY4llZvoOz005k+4jBchYWkJbvZsENG8Ix1UtMXAWbAb80fFMNM\n", "j7TFFvHN39aGMzUt5O0fX7qfPTUezpqew3GTM/veoZ/G5SVx0mFZlNR4+HBrPYZhYAYC+KUPrYhj\n", "/vZ2cBgY7gReXVuNK72OcuduJqQUcFxu5AcqWl6ziT/vepP/7FvG+LwkDi9KYW1pC3tKayIeixC2\n", "8np4vno9DRPfZfKEVhJcsfGT/aS86QC8X7WegKcNh8Ng2sRcymtaqKyV/rSxLDbuoCGsvaKcQBwU\n", "qNp2bKdh6ZJohyHEgHgrK/FVhd60bPn2ehZvrmNCfhJfPi58NROXH52P0wEvrq4kYJqY7e00fbwM\n", "X3192M4pRLgEPB7atmgwHHxe2sze2jaypmwF4OoxJ+OIQn+jY7IVhUnZLKpcR2lrNWdMy8FhBvjk\n", "vdW0bt0S8XiEsINn7x48zc2srt+C2Z7ACaPGRTukA6akFVGYlM3q2u007NlO/fuLmTrBGsRpw06p\n", "7YtlUugLs/2/fIjy38X+nEGNH31I68aN0Q5DiAFpWrGM0gcfoL1sf5/b1rZ4eez9/bidBrefNvqQ\n", "ufhM08QX8NsSV356AicWZ1Fa186KHY00r1tD/Vuv46+TWggRf7wV5ZT/7lfUv/Mmr6+rwZFdTrOr\n", "mqOzi1Hpo6MSk8vh5PJR8zExeXHfMuZOSKfA7aVw+Su0bNsalZiEGAzTNCn79S/Y8+df044Hf00h\n", "R423vzXKQBmGwXE5U/GaPvYsfovmNas5YoLVmk2aeMY26dMXZoV3fBtfdWW0w+hT3tXX4cjIiHYY\n", "QgxIxmlnkTipGMPV90faY+/vp7HNz/+eMJJRweGvS1urWVW7lY2NJexqKeeUvBlcOeakQ/bd0VzG\n", "npZKjsqeQqortD6AF83JY4mu4z+rKznmsnmkzTuBxHET+vcChYgBiWPGUvTteymrbmH1P7dTOMEF\n", "7jQuHXV8VOOakzWZiSkjWVG7hfMK53LktCJ+7ruYu/KmcmgWCxHbDMOg8O7v8YtP/gbNOygKTDww\n", "/2WsmJd7GLtaynFddCR5hYcxIi+bpAQnG3bIYC6xLLbuoiHI9LThSLRvgIhwkn59Il4FmppCGoho\n", "xY4GVu5sZGpRCmdOz2Fr0z6eLlnMjpayA9sUJeWQ5krudv+VtVt4rWwlT5a8y9zsYs4deTRjU3qf\n", "F7AoK5F5rRkqsQAAIABJREFUkzJYtq2B9XubmV6UhOn3Yzid/XuRQkSZGQhgetp5f0sDJnDxhJnM\n", "V/NxGtFtNGQYBpeOOp6fbX2BJZXrOX3qfF5dW83bH5dw0tHygEXEn6bmOtY27yLQksa8oujUovdm\n", "RGIWt0++EADT48HldKDGZbN2axVNLe2kpSREOULRHSn0hZGnZDfe2lpcaaEPLhEtZiBAy8oVtG3R\n", "ZC44PdrhCBGy9vIyPDu248rJ7bWmr7Xdz+NL9+NyWBOoOwyDNFcSJa2VzMycwPG5U5mWMY70Hgp8\n", "AAvyZ5LiTGRZ9SaW12xmec1m5mYXc82YU8hO6DnPz5uZy7JtDby+rprDEpNo3biBrDPPxpEc/dHY\n", "hAiFGQjQuPwjjNQ0lmyuI9nt4NhJGVEv8HWYljGOb02+mBmZ43EYDo7Ic+LY8Cn7VmVSdNSsaIcn\n", "RMhat2raayvJa53C3nIXRy2I7VZYzZ99SqvehBo3jrVbq9hSUsecw3p/GCqiIzY+rYeo2ldfouzR\n", "h2N6YvYDDIOWTRvwt0ltn4gv7SW7qfrXU7Tt3N7rds+tqqSm2cfFc/IONOssTMrh0Rlf5c4pl3Bs\n", "zmG9FvgA8hMzOb/wGH4y7XrunHwxE1NHsqZuBz6z9z6AUwpSUCOTWb27iYq1G2jbuZ2A5JqII4Gm\n", "JureeJVdL79GVZOXeZMzSHLHzk8IwzCYlTURR7AQumC0weyW7axdtzvKkQnRP3Vvv0nLk09Svmki\n", "eZ6JjM1JjHZIvWrdtBFffT1qrNWvT5fURjki0ROp6Quj3CuuIfP0szEcsfPF2BPDMMi74hqc2TnR\n", "DkWIfkmdcxTOzEwMZ88fZ/vrPby+rpr8dDcXzck7aF26u/+1bYZhMDNrItMzJ7C3tYr8xL472Z87\n", "Ixddtpc3Ew/jK+eOwyW5JuKIMyODgq/dyj9f3QH19Sw4LLanIZpz5GS+uv4McsuSOcs0MaIwsqgQ\n", "A5F39XWsWrObttdKOH1CRszfu7mXXoEzK4viBGvy+C1S6ItZsV8aiWNmmycuCnydSb8+EW8Czc3Q\n", "RxOzX326DMf4tVx77Ahb5zpyGAZjU/JD2nbuxAxy09z/n737jo7iuvs//p7ZplVf9V5BKxAgercB\n", "AwZ3Q9ziHju9Oe2X5sQlcZInT6rjJE8cx4kddxt3G7AxvSMQVUKLeu9ttdq+M78/BJgigcCSts3r\n", "HJ8TZmbXH5O9u3Pn3vu9bCnrxWJW9jJS+B9rn42i+naSojTkJV14VNzbwnQqZudE0NxppbRaqZar\n", "8B+y3c6+6j4AZuVEeDnN8HhsVqIjdCTEhGKq7UaWZW9HUgzCv3okfsRWbsJeU+kfUztPkhwOej5a\n", "S88nH3k7ikIxLK62Vsw7tiFZrYOel2WZf5RtpjmiGK2hi7yMsXti2u44ey8+lSiwYpIBh1uiaMtB\n", "2v77H7/6flAEt+4NH3HkQDlkF+PO24pTcns70kVdlQJLzEco3rDH21EUimGxlhzFWlbK/qpeIvUq\n", "8hJ9f933s5XreOmlX9G99n2MGQb6rE6aO/u9HUsxCKXTN0pspSV0vPRfZIfjM72PR5LxSPKYPDUR\n", "VCrcXV2oY+MufrFC4QM8fX1YinbjGGQ9nyTLPFf7CbssxUj2UL6edgtxw5iGORLWteznx8f+w5He\n", "6rOOXzXBgEYlUGuqRUZGdrnGJI9C8VnIHg+2kqP07N+MKqKHtLAYdKqLV8v1FrfkYX3rARpsB0kQ\n", "bBwo78LlVh6wKHyfrbKc5jVrsFidzMyKQCX69tROABcSqh4zHRoPxsyBad8napUpnr5IWdM3SiIX\n", "L0VfMHnYc7FlWaa6w86hOgsVbTYauh30WN3YnAM/VIIAkSFqYsLVZMToyI7TMyU9jDSDbsTmewtq\n", "NYYbbkablDwi76dQjLaQ3HHE33X/QAM5gyzLvFi3ic0dR5D6I5loW8Ts1KQxy5WmjwME/lzxLg/l\n", "3khhdA4AUXo188dF8YFpAtPGjSdR59sL9BUKGHggGHbzbbzw0bOIWLklfY63I12QKAhsbDtEp9DH\n", "3IU3UHnYzoGyVuZOUn7bFL5tR6aWdxfG4Cm1MjfHt6t2njIrxsiTU8sQo2zMjI8GoLyhh8Uz0r2c\n", "THEuZaRvlEh2+7A6Y063xIeHO3nolQp+9EYVr+xto6i6D4vdQ0KEhoKUUApSw8hL1KPXijR0Odhq\n", "6uW5nS1879VKvvFiOW8UtdFpGZkRA0EU8diU9UYK/+Cx2wedIumU3FT2N6NyROI0zeSe2Rljmmty\n", "VBbfG38zoiDwVNX7lFuaTp+7ZvJAAZe1B1qGerlC4XM+Li1HjG7DIMeRF57q7TgXJAoi1ybNwi17\n", "EOLrANhyoMHLqRSKi9vTdAiL0EOIHMqktDBvxxmWyVFZhIha9jQdJjs5ElGAivoeb8dSDEIZ6RsF\n", "1uMlOKoq0WXnIg7xJF+WZXaU9/Li7la6+t1o1QLzciOZlxtJXlIoseGDT53xSDItvU5OtFo5VGeh\n", "uNbC60XtrNnfzlUTDNwyM37I1w6Hu7cH8/tvEzZlqrJfn8Knubu76V73PrrM7PNGp3UqDUs0K/hb\n", "ST2LcuNJjwkZ83wFkZl8K+cG/lTxDn8sf5uf599Bij6W3AQ94xP1aI4VUf3XErK/+a0xz6ZQXIru\n", "te9TfXQ7ZME1SbN8vpogwPyYCbzesJ3W+oPca4ti46F8+m+bSpjed6elKoJbc9EOwo6VowpLYVpa\n", "LBqVf4zLaEU1c0IyCN29nwbXy6QlplPV2ItHkv1iemowUTp9o8Bj7qVv13Y08YmDdvr67G6e2drM\n", "7kozWrXATdNiuXFqHJH6i//foRIFUg06Ug06luQbsLk87Co3896hDj4p7WarqYdbZsZz49Q41KpL\n", "b2yCWoM62kBIXv4lv1ahGEuyx427sxNRqzuv0+eRZN7Z34vo0XHLTO9tElsYncMDWVfzTtPus45f\n", "MzmG4goPR+zhZCnl5BU+zmk2k1hrRRObxPLpRm/HGRadSsOS+Ckca9kOqXH0tWnYc6yZpbPGdtRf\n", "oRiussZSChptlMfEMGeef0ztPGV6Qj6HdYdpS4pknDuaupY+mtotpCf6R/XRYKF0+kZBaOE01IZY\n", "BJXqvHNNPQ5+/UEdrWYnxiQ931yaRlKU9rL/XXqNiqUTDSzOj2abqYeX97bxyt42dlWYeWh56iWP\n", "cKjCwoiYvxB1vPdulBWK4dDExWO4/iYYZHrnropeGrsdXDUh+jO1r5FwZdwk5hiMZxW+mJsbyfMJ\n", "hRzsklnh9BCiU76KFb6rKnMma/Th3KCNRSWe/7vmq5YmFLI2voiYnFjMG8PYdqhR6fQpfNYnYd2U\n", "z41FOprN1Ixwb8e5JJNjxjHhjh8RkZFDF81s2l9PeX2P0unzMf4xduxnpP7+QTt8Zc1WHn6zmlaz\n", "k1XT43j85uwRuyFViQJLJhj40x3juGpCNLWddn6ypootZZc+r1pQqQf2PlMofJjs8SC7nMBAtb5T\n", "FW49ksya/e2oRFg9Y3h76I22cysdalQiywsM9Ds8bNxf76VUCsXwFJnaAZiV7V83cLHaSH4z6X6+\n", "nXs149KiOHSinV7LZ6uorVCMBofbSZelF09fDNNTY9GN4H6yY0EtqghR65Cs/YxLGyjmUtmgrOvz\n", "Nf71qfIDtuOl9Kxfi7v37A/78aZ+nni/FpvLw9eWpHDn3MRRmescHqLia0tS+cGKdERR4G+bGnlu\n", "RzMeafhbPjgbG2j58+8wb9864vkUipEgORy0/uOv2MrLAfhP7Qb+XPkuVreDneW9NPU4WZxvIDHS\n", "u6N8F7K8IJqbe/ZiffEZpEtonwrFWOp8923Eou1E6QTyknx/z7BzJYfEYCst4e66D4hwWth1pOni\n", "L1IoxpjHdILVR+IIPT6eeeP8a2rnKa6Odlr//iRxpTsHirkonT6fo3T6Rppajaul6ayRsuPN/fzq\n", "gzrcksT3V6Rz1QTDqMeYkxvJ/96aS5pBx4dHuvj9+nrsruHtUySGhxM2aw5hhdNGOaVCcZkkD6rY\n", "OGRrPzs7S9neWUK304KIyJoDJ0f5pvv2fpORehWRaclsVWVRVKpU8lT4pnYhFI3NwtTMSL8tyqAK\n", "Cyd+8SJsopZthxq9HUehOI8QEkJHSzcRMkzL8K8R9VNEfSj6gikY5s0nLTHidDEXhe9QOn0jLCQn\n", "d2Cvu5SBktY1HXZ+8+FAh+97V6czK3vsnuAkRWl5YnU2k9PC2F/TxxPv19Lv8Fz0deqoaPR5+Yhh\n", "/lEuWBF8RH0okQsW0l8wjudqP0Gv0vKNnOvZW9FPc4+TJfkGEnx0lM8teXiu9hP+VPEOk69dTK0u\n", "kbe3nr+5vELhbRZHP3vcBj4wzGaGn03tPFNI7jgSp00hNyeRkqpOus12b0dSKM7Spo/n5dCZpIzL\n", "IETjn7fmqrAwQidNRhUVTW5qFHanh+YOi7djKc7gn58sH+bp64OTC91bzU5+9UEtNqfEN5emMdsL\n", "G22G6VT89LpMFoyLxNRi5bF3a+i1uS/+QlFU1vUpfJrbZueZ6o9wSC7uy1hGrCaKN/a3oRYFVs/w\n", "3VE+lSDS6TRz1FxDmaeUaVmRlFR1UlbT5e1oCsVZXj/2AevtL6EO7WNKmn8VljiX5HCwoDAFWYZd\n", "R5u9HUehOMuOA7UAzM2N8nKSz8aFzFbTNogZWKte2dDr5USKM120ZJzRaEwE/hdYDuiBvcD3TSZT\n", "ycnzV588nweUAz8ymUzrRy2xD7OVn6Dn47WETZmGIyaRX31QS4/VzRcWJrFw/Mg1ZJfkRiWICAjD\n", "KvWuVgl8a1kaodpmNpR284t3a3jkpiyiLrBFhK2slJa//IH4+79I+IxZI5ZdMTSlrQ2PLEk0/f43\n", "1EWKmAwNzIgex7yYfDYe76bV7GLl5BjiI3xzlA9AEAS+mLWCn5Y8zzs12/hOvY6cLjWvb0zkkQfn\n", "ejtewFPa2fBYXTZs69ax0uyhMjaCMJ3/VO0cTOum9aQfLEKXPJ+dh+O4bkG2tyMFNKWdDZ+9opyQ\n", "ta+QrR3H9Ez/3i7LVVODuOZZhLxY4BoqG3tZND3N27EUJ11wpM9oNIrA28A44EZgPtALbDQajTFG\n", "o3Ei8B7wGjAVeBd45+TxoKOOikIVFo7L6eR36+pp7nFy49RYrp0SO+z3cEouKi3NbGw7hFNyDXrN\n", "947+i/sP/In7DvyRBw88yXeO/JNHSl+k02ke8n1VosCXFiVzzeQY6rocPP5uDb3WoUf8tMkpxN15\n", "D2FTpw87u+LyKW3tEsgyYTNmkRuXxc3J87gvcxkuj8ya/R1oVILPr+UDiNKEcW/GUqyih6JMqC64\n", "kqLSVqqblKeio0lpZ8O3o3YfJ+JU9LhjmZzl+23qYjwZqTw3TUtodjMlVR109ylTPEeL0s6Gr8fW\n", "y5ravVQKOsYn6AnV+vfDlZCERKoXT2NfioAY3kNVo1LMxZdcbKSvEJgLTDCZTCYAo9F4D9AFXAcs\n", "BHaZTKbfnLz+EaPRuBB4CPjK6ET2Xer4BMLnL+SpTS0cb+5lXm4kd81LvOjrTH0NHOmt5qi5ljpr\n", "GxIDC1/zI9JJ1Z/fYZwSmUWnsw+PLOGUXPS5bTTaOtGKmvOuBVjXsp/csGTGhafwhYVJCAKsPdLF\n", "L96r4dGbsgbdFF5tiEGWpEG3nlCMCqWtDZOgUhGaX0CI3cbqk8feO9hBp8XFjVNjMYQN3g58zWxD\n", "HrsM49ggVLIi3kPxh/DaJyf48b3KyPooUtrZMG2s3ElztI4q7Tz+mOPfU84AUvMKiREqaOmtQdZZ\n", "2H20mWvnK6N9o0RpZ8O0t+EQ73XsxJmVz9cK8rwd5zNTRUSSlzeDDysbiEzporK+F1mWhzUrTTH6\n", "Ltbpq2WggZ4449ipUjwGBhrua+e8Zgtwx0iE8zeSzcaa/Z3sKO8lL1HPN5amIg7jg/5G4w5OWBpR\n", "CSI5YUlkhSWSHZpItGbwQipfyl553rFTe5Sdy+K28UrDwNYLUepQZhrGs2TaZCQ5hvVHu/jFe7U8\n", "elMmESGDfBRkGXe/BZU+FEFUln+OMqWtXQLJ8elT+j67m7eK2wnTqVg13Tf25RsOQRC4L2MpsZoI\n", "Vo2fzLG0OnYebqK6qZfsFP+/yfZRSjsbhqquWqp76sGcSJwugjSDztuRRsRVcZMp7alGnVDP7iNK\n", "p28UKe1smPY0FA/8j54kZmT5b7GkMxWEp6NX6ZAiG7HYcmjrtpEY43/bvQSiC3b6TCZTF7DunMPf\n", "BkKAj4FfAufWP24G0kcqoL9w1NdR9tTfOWJJJyExmx9emzHszTVvTJ6LR/YwISKdENXlrUUa6imK\n", "TtTwvXGrONBTQXFPBRvbD7Ox/TCFidksl+ayoaSbX7xXyyM3nt/x69u1g96NH5HxxG/RZSo/jqNJ\n", "aWvD1/CrxxDDwoi5YRUAbx3ooN8hce/8RMJD/GtkOkYbwZ2R02j/3f/yQNZEfkomL60v42cPzPF2\n", "tICktLPhu7EuhLDjTXROdwfMU/qsj/bxg4p2/rBcy5FDrfRZnUSE+u76X3+ltLPh6bGbaak6zr1F\n", "fTTGdfvd79dQXMeO8v/eqeel2ZH0hvVS2dCjdPp8xCUN3xiNxhuBXwN/MJlMZUAocO7EeAcDDTuo\n", "VFtE3rIkIWt1/PjajLOKpHhkia3tR/m4tXjQ106JymJadO5ld/guRCOqmRqdw4NZV/NU4Vf53rhV\n", "TIvKIS00ji9emczyiQZqOuz84r1a+uxnr/ELnVJI2s9/qXT4vEBpa4PzSB4MN6wiJGccAI3dDtYd\n", "7SQ+QsPKyTFeTnd5VBGRGG76HBO/+RXyMw3sLWmhvL7b27GCgtLOBpcTk4mYdQcHtBOYmOM/o+cX\n", "E3XFYqruvwlZ5YLwTvaVKPtjjgWlnQ1uX8Mh+kIEdhlyyckKnHYWMi4PzUNfZ+rcLyBbB/brU/iG\n", "YXf6jEbj/cAa4FWTyfSjk4dtwLnzPnRAUNX6b+uy8qtXj3EoNJvbbppJesyn31uHe6v5Wcl/ebb2\n", "Y95r3otTGsZ2CaNEFESmRufw3fGruC31CkRB4IuLPu34PfpODd3WT4vHqKOiEdQXLfCqGGFKWxtc\n", "VVct31n7GCZNP6EFk5Flmf/saMYjwf0LktCo/HMKsqBWo0vPALeHu6+ZAMALa497OVXgU9rZhe2u\n", "sVASkcvEnOEXIvN1utQ0lmbP56dzf4TUG8+uI8rWDaNNaWdD21NfjFMtcoxJTJodODVsVBGRZMZk\n", "snLiHJBVVCqdPp8xrDt6o9H4MAPD8U+ZTKaHzjhVD6Scc3kK0DCM93wMeHR4MX2XzeHml//eS4/F\n", "wQMLEijMGNjLyOyy8mL9JvZ0mRAQWBQ3mVUp89CKvtGJOjVd51THT60SWHe0kx9t3cBP5i4g2zCw\n", "pkh2u3B1d6Ex+Ocoio+pNhqN5x573GQyPXbqDyPd1gKlnUmyxL8OvEprfweCywla2Ffdx+H6fgrT\n", "w5jlxxtHw0BxGrfFwuSMKArHx3HwRDtHKzqYPM7/qyZ6wZi3s5Pv+RgB0NYAOntt1LRYKEwP89uN\n", "oocSKauITUomM6mKgyfasNpdhIb4R/EnH3TBtqa0swu7Jf9mDu57nzyDwW8KkA2X5HER6uonIVpH\n", "ZYNSwfMzuuhv2nANZ5++HzLQaH9mMpl+fc7pHcAi4Ikzji0Btl3sfU+Gfeycf1cWUH2x1/oKSZL5\n", "0yvF9NQ38ZhlM5mORcDAEP1ztZ+wv6ec3LBkHshcTnqo7w7di4LAFxYmYda0UKw+zqNlVdyTtpzl\n", "6Ua63nkLW8kRsv/6DKoI/76x9gHZJpOpZqiTo9HWAqGdAeyq209FVw0PFTmJPfwBljsf5NntzahF\n", "gS8sTPb7NUeO2mran/sX0vUrcWd2QHUW/11byv9+6wq//2/zgjFvZxA4bQ3A9Moavt+8EavxRm9H\n", "GVGyLNP8h9+iCgtn3qIv8uoGEwdN7SwoPLf/oRimIdua0s4uruWEje8f2oezwAPkejvOiDJv2kjf\n", "jm0UzrmPDTVuusx2YiKDavbuSLrgb9qluGCnz2g0TmFgHvazwLNGozHpjNNm4CngwMknL68CdwKz\n", "CJKSu69tMLH7aDNTxqeTO+1+BPenUyNvT7sCY0QayxOmIgq+/6RUEAS+PWcqfzzYy2FVMS+0fkBJ\n", "Xw1fX3kNcXffp3T4RpnS1obmdDt5+ci7qEU12d/8NnpTDS/sbae7380dsxNIDYDKgprkVJK++yO2\n", "h/VSdXAfaVPUlBVr2X+8lVkTky7+BophUdrZhbklD2pRxRZNLg0xDr4/IbA2VRYEgbi770c/YSJz\n", "eyVe3WBiz7FmpdM3wpR2Njy7K3upibuKHxUmezvKiItcuAjD9TeRcNwKNWVUNvQQo/yWed3FeiO3\n", "n7zmQQYqKzWd8c93TCbTMWAVcAtwELgeuOHUviyBbP/xVl7+2ESCQc8P759DSGoKurRPC08lhhhY\n", "kTjdLzp8p4iCwA+mL+aWyJuRbOEUW4/xU9O79FmVofkxoLS1Iawt30yHtYtr85YQFxZLpT6FDaXd\n", "pMfouHFaYKw3ErVaxDA9yzLnkhqRRLe6AlFv4cX1ZUNux6K4LEo7G4LT7eQbHzzMc8VrKC7vwp2Q\n", "QmpK4E3r18TGIdls5KRGEW/QU1TagtsjeTtWoFHa2UXYnW6KT3QgJiaTNnGct+OMOFGvR3a7yE2N\n", "ApWL0npl/awvuNiWDQ8DD1/kmrXA2pEM5etaOvv5w0sH0KhFfnL/bCJ0Ig6HM2CKntyUn0NW+O38\n", "sWwtLRoLb2xv4j6VntDsHG9HC1hKWxtaZnQqxrhcbh63lP6WLv6+qRFRgK8vSfXb4i2DEVUaPO3t\n", "3Glcye/2P0diQR1V+8PZfbSZ+VOUkYiRoLSzoe1pOEi3rZfuThtOp5qZEwN3Palk7cfT3cWEiSI7\n", "Kyo4WtHBNGOCt2MFDKWdXdyR8g5cThczMwN3T1bJbkforSZk2ib2tbdyH9O8HSnoBc4d0xhxuSV+\n", "+8J+LDYXX109BYuzitIH7qB7w7lb0vi3wrRofjNzNYbmBWRtfIPDT/wP/VaHt2MpgtC05En8cukP\n", "6PvnP6l5/BHMvf2smhHPuES9t6ONqP5DxdT/+Afkdwvkx+XSI9ahiuji5Y/KkCRltE8xujZW7QAg\n", "vtTFLxpeZI671suJRofkdFL/sx/R8fortOiK0GaWselo0AwwKXxAe38n+47W83jjy8yv3uLtOKOm\n", "641XiXnpVfQO6JCrlFkrPkDp9F2il9Yfp6K+h6tmphOZ0slv9z/LX5YnYJ4YeKNgKdEh/M+qfHZO\n", "v4VfR1/Hw0/vptt87tY6CsXYqFl0K3+NXkZyQiSfmxF4oxChBZNJfexXRMyczd2Fq4kKiaQgL5La\n", "lj72H2/1djxFAGs0t3C8vYJJCUY2mtN4Kus2smcUeDvWqBC1WlJ+/Ajx9z/IdflXAnCg9YByQ6oY\n", "ExZHP9/+8BF29K3nqZzPk7p0ibcjjZrY2+8i7ee/QKfORNZaOdJY4e1IQU/p9F2CQyfaeHNzBcmx\n", "YUyb7ebPu59Fo9Lwzel3kZUZmD+QYToVP7khm6UFMVQ29PKDp7bT2G7xdixFkOnpc/DXt0vpDjHw\n", "raWBNa3zFEGjQZA8yB4PeXE5/O36J/jyVcsBeH3jCeWmVDFqNlbtBGCyYTodPTbysuPQhod7OdXo\n", "Uen1SP39zM+ciUrW4Iyopby+29uxFEFgf9MRPLKEozecCblxhCQFbnETQaVCdjgwRk8C4JMTe72c\n", "SBF4d06jpN/m4s+vHkQlCqxYqeEfB55Hp9Ly8OwvMV7nu9sxjASVKPDgZB1fnqymrdvCD976Cx+V\n", "7vN2LEWQkGWZZ17aSX+/nTvnJpARG7hln2UZrKXHkGxWtCoNmUmRzClIwlTbzdHKDm/HUwQoj+Qh\n", "Vm+gry6cMI+dWdmR3o406pzNTYjtnUwwTEbU2fngsPKbphh9u+uLAdC2G5iZHublNKPP1dnJIjkE\n", "2aPiWOcx5eGllymdvmH6zwcldPbauXXpeA53F6FTa3n4ym+ifuw3dLz8grfjjbrOV19gRs9xbrkm\n", "GXdEI88efp7NZQe9HUsRoPY3HsbmGphKvKW4gdCizTzR+BJXpwf2nnV92zbT9s+/42r9dDrnrUvH\n", "A/D2lkpvxVIEuC9Mv42/XPs4lUXH+WnT6+Q3HfJ2pFHl6min+ff/g2X/XlZPGZhed7DjgJdTKQJd\n", "v9PKkdbjaJxRfKduA1kbX/J2pFHXteY14g5sQWpPRuOIw+FxejtSUAuMcpOj7PCJdj7aU0tWciS3\n", "LTPiIYfmvjayDek4fvU7XM1N3o446pK+/hBiVDT3xcXh+KSfDe1v8n8HnyU67CGmpY/3djxFAGky\n", "t/C7nU8zMX4835z+VZ5++yiehDlc+8ANaKKjvR1vVEUuWUb01SvRZWafPmbMjMGYaeBAWSvNHf0k\n", "xwX+02HF2GvqsFFsDUd75Tf47tzArmSpjo0j+Sc/Q58zDoNaQ5JtHtVlIbR2WUmMCfV2PEWAKmo8\n", "jEfyYG9N4L25V/OzRQZvRxp1CQ98GTEykqinD2HrktCptN6OFNSUkb6LcLo8/HXNIURR4KHbp6FR\n", "i4SodWQbBvbkk10u1JGBW3L3TLLdBsCXly1lXuR1yIKH327/O/XdbV5Opggka0rXIcsyK8cv5um3\n", "j9Jvc3Hf0mySk2IQxMD+yhIEAcnhRJbO3jfs2gVZoO3nw53V3gmmCHi7Dg88vJyTE46oC9wp1DDQ\n", "zlRqLZ4+C4IgcE3eFeDWsa+kxdvRFAFMq9ISo43H05XEtMxIVBER3o40JmS7jfHp0fRYHHT0KMUA\n", "vSmw76BGwJubK2jptHLDwhzGpZ89yuBsbkK2Wr2UbGzJsoy97Dh9uwfKen/32mvJFechqew8sfa/\n", "yjxtxYhoNLews66IzKhUPF0J7D7azNxkFYuSPN6ONmY8VivmbZuRbAMPWSRZYn3Hi4RMLGJDURU2\n", "h9tDLlcPAAAgAElEQVTLCRWBaM/BWrI8nUwLgnVGALLbja3kCPbqKmZNHCimsa9U6fQpRs/8jBnk\n", "WG4k1uJmamLwTLSzV1Yyw1kPwAmlYJJXKZ2+C2jp7GfNRhPREVruXGE8//xTf6Ll7096IdnYEwSB\n", "3q2bsFdXn/7zE6vvIt4yh6ZD2cp6I8WIePPkKN+NeSt5+u1jqFUid2Y4aP39b3C2BscNWX/RHsxb\n", "NuHpMwMgCiJTkvJBY8cRWcP2Q41eTqgINFWNvViaWri3ZxuuHZu8HWdMuDra6HrrDVxNjcRF6xmX\n", "FsWxyg76bS5vR1MEKI9HotjUxq2W/aifD457R4DeTz4i1TLwu2WqVTp93hQ8jxouw7/ePYaUfJzk\n", "cRoE1RJAc9b5pO/+EHdHu3fCeUHC/V9EFf3pHHS1WsUTt97Bd/60hefXlmLMNFCQE+vFhAp/1t7f\n", "OTDKF51GRUkIXWY7dyw3krV8PLbCiQiq4Pi6irpqOYJGgyYh8fSxG/Ov5qPybcgplXy8r4qr52R6\n", "MaEiEBxpOc7a8s3cVnA9m/abadNEY7/vu0Sl6b0dbUxok1JI+Oq30OeOA2D2xCQqGnopNrVxxdRU\n", "L6dTBCJTXTf9NhdVV93FklnBsSwIIOELXyJaF4b4532U1XR5O05QU0b6hnC0ooP9LcVokmtwiuZB\n", "py9KdjuiNrgWpUr2s6ezGiJD+OE9s0CW+ePLB7DalaekissTHxbLo4u/w405N/De9iriDXo+d9U4\n", "PGYzgkqNIAR25c4zSQ77Wd85kbpwrjMuQdA4qbQfpr61z4vpFIHgk6odFDcdxelxs7W4gYhQLVOT\n", "dQG/bvZMolqN++SI+uyCJEDm49Ki05WDFYqRVFw2UP+gMD0UQR0cDzFP0cpuspKjqOyt4Bebn6Su\n", "R5mx4g3B8+1+CSRJ5ul1u9BklaBT6fjhFV8jVHv200/r8RI8ncEzygcgSxKW3bvo2bD+rOMFObHc\n", "ujSPtm4b/3znqJfSKQLBxIQ8tmyz4fbIPHjDJITmBqzHjoAneNb0AbhaW+l687XT6/oArjcuQyvq\n", "UCdXsX5vhRfTKfyd2d5HUeNh0qNSMLfpsZj7+ZyhA8HW7+1oY0qyWjFv24KtrJSc1CiishowqT5i\n", "R22Rt6MpAtABUxvjnS1MCLFd/OIAIssy1gP7WOo6gUdwcKytjD0Nxd6OFZSUTt8gNh2opiV8O4LK\n", "w9fn3ENKROJ51/Ss+4D255/1QjovEgTsFScYrGTLHVcbyU2LYuOBan6/8SWcbmUvFsWlK6nqZF9p\n", "CwU5scyfkoyzqYGut17HFSTr+U5xVFXgbG5Ccnw64hCuDeOewlWoWiax9UALHo90gXdQKIa2rXYv\n", "HsnD0pwFfFJUT7hkp6C9hP59e7wdbUy5+8xYDx9EdrkQBIEZydOQZVhbtt3b0RQB5Jn9L/PvojVU\n", "1HezWGyk76V/B1XxO0EQsJ0oIyFSi6cnHhXq05vUK8ZWcI0vD4PL7eG5fR8ixllYmDafeekzBr0u\n", "7p4H8PT2jHE67xIEgdhbP3/Wur5T1CqR731+Ot99+V/s6yjnP8UiX5n9eS+kVPgrWZb5zwclAHzh\n", "+okIgkD47HmoY+OCZj3fKRELrgS1BvU5bW1F3iKqsqNZu6uGQ+XtzMg//4GUQnEhsiyzqWoXalFN\n", "ftRknj62i+ysVLJWLwB3cFWG1SYmEXv7nehzB/aaXTRpPDu2xtEo1FPX00hGtLK2T/HZWJz9bKre\n", "hUETB0zDvvxzJE8Ijgq5Z4r93O24XBp45hARUiqN5lrqe5tIj0rxdrSgooz0nWP97lp6q9MYr57H\n", "V+feMeR1kt0eVGuMznTuur5TMpIi+dykFUjWcDZWb+NAkzLVUzF8e461YKrtZv6UZIyZMQC4zb0g\n", "qryczDtkp33Qp8GLpw/sEbqluGGsIykCQIe1i25bD7NTC9lxoB1JhmvnZyM7Hd6O5hWiWnN6Xd/k\n", "cbGoejIA2Fi105uxFAFif+MRPJKHENvA9/bUICmUNJjEUIgK12JriQdgjzLaN+aUTt8Z7A43r39y\n", "Ar1Www9X3I5WpRn0ur5dO3BUnBjjdL5B9njoWfchnWteHfT8rVdNIK53HrIk8tTu5+i29Y5xQoU/\n", "aeht5r8H19Bl7eXlj8oQBbjnmgkA2MpN9G3bgmQLjr0wz2WvrKT1H389a10fQH6WgcSYUPYcbcau\n", "7NmnuETxYbE8feP/cOfk1Xy8txZDiEBhzS6cLcE1hfoUd28PXW+vof/wQTRqFVOTJiM7tWyp3qMs\n", "U1B8ZqemMbZWRrJAqiO+tTKopnaeIssyfRs/5lbXUXqaolGLao61mbwdK+gonb4zvLe9ih6Lg5sX\n", "jSMqXDfkdbYTJsybPxnDZD5EFJGdTrTZuYOe1qhFvrNqMe56I1a3lb/ueQ5JVtYeKQa3puRDPjix\n", "kQ+Ki6lpNrN4RjppCREAyE4X/YcP4ukJrmnUp3jMvagio5Cls9uPIAgsmp6G3elhb0lw3qgrPhut\n", "WsuR4330Wpwsm5qE1NaCo6Lc27G8QnY6kfotqCIHSujPLUjB1TieSforgnY2j2JkWJz9HGk9TkpY\n", "CuZuLRMj3PRt3+LtWF4hCAKSw0F4Ti5Iam5KupdHFn/H27GCTnAtlLkAi83FW1sqiAjVcPOiwTs0\n", "p0RfewPSyekgwUYQBKJXXIsYOfQeM/mZMVyVdQVbujuwhKhwSx60KuX5guJs9b1N7K4vJjs6nd27\n", "JERR4PbleafP6435xN5+F2KQlbY+JXzGLFCrUYWdv/5j8fQ0Xt90nDePfcysSZ8/r7qwQnEhkiTz\n", "5uYKVKLANcsmE9mXgOwKzlFjTXwCUSuuRZuWBsCM/ETkV9NpqzCguXbw2T4KxXCUtpXjkTzEyNlU\n", "AmHLVpKQGryfqejlK0m3iXD8KM2NKlRBunTDm5Q7cQY2hX5zayn9Nherl4wnNOTCjVKyB1e53cFI\n", "9gvvY3TfdQVoG2dTtScLc19w3kwoLmxNyVpkZApC59HQauGqGemkxIWfPu82m4O2w3eKbLefN9IH\n", "kJ4YQcK4Nlp0RbxTGqSzDhSXbW9JCw1tFhbPSCMuSodkD871fKeIKjWePgsAUeE6JmTHYqrrptus\n", "7NenuHyz06byl2sfx9KQjCDA5KShZ5AFi7QIkTC9hpKqTm9HCUpB3+lzSx5+t/1pPmx/jsgouG5B\n", "9gWv73r3LfoPBPcePrIk0fnKC7T87ckhr4kM0/KF6yZjd3p49r1jY5hO4Q/qehrZU19MjiGDvXsk\n", "RAFuXTb+9HlL0R663l6DxxycI+qnWEtLaHji0UH/HpbmLER2aVhbvpF+Z3Cue1RcOlmWeXPTwFTO\n", "1bOSaP2/p3DUVHs5lXe5Otppe/YfmE9OvZs7KRlZhn2lyvRpxWcTpY2hvLqfVUIFqkN7g3I93ymy\n", "JNHz5uvcb9lNS6eVjh5lAGWsBX2n7+3SddT01uM2x3DLlQXodRcbWZBxVFeNSTZfJYgiuswsopav\n", "vOB1y2ZlYMwwsONwE0crOsYoncIfnFrAPTl8HnUtFq6cnnbWKJ86Lh6p34LsCe5RYlGnJWzWHATd\n", "+U+Ir5qejbslG6fkYO2JTV5Ip/Ana09sYkv1bvaXNWOq62bupCRSEyNRRRvwWPq8Hc+rBI0GbXIK\n", "+vwCAOZOSgIGKgorFJ/F0YoO3B6ZhJQ4HHW1Qb1OVBBFNMnJyHOuBODQiXYvJwo+Qd3pq+lu4M3S\n", "deAMIbRzKtfMz7roa8LnLiDmptWjH87Hhc+cjSo6+oLXiKLAl1dNBuCf7xxVNpNWnHZt3lX8ceUj\n", "7NsrIwhw29K8s85rklOIXnkdakOMlxL6Br1xAvr8iYiDdPqSYsPI0k5Gdmn4wKSM9imGZnc7eP3Y\n", "B7xy5F1e/2RglO+O5UZU4eGEz19IWOE0Lyf0LnVUNOGz5yFGDDx4SooNIys5ksPl7fRabbT1K1PR\n", "FJen2NQGQMqV84lZdYuX03hfxOx5jJ+SA8DBE22Y7X1srd4T1COgYyloO30eycPTRS8iyRKO6gJu\n", "WTSREO3F1w+dWz49mEk220Ubal6GgeWzM6hpNvPi1r38o+hFpEHWKCmCT3OTQFWDmQVTUkhPjDjr\n", "nKfPgqBSFnnDQHVBeYhNsxcVZuFuzsbmtrO7/sAYJ1P4i111+7G6bBRET6OspofZE5PITYse+Fy5\n", "lG0JAASVCo/50xHPOZOScMkOvrX2Yf6293kvJlP4s4OmNvQ6FeMNwVvA5VypeoiN1HHoRDvPHHiF\n", "v+17ntoeZd/ZsRC0nb6jrWVUdtdCVyqRUhor52Ve9DUtf3sS87bNY5DO98myTNszf6fh0Z9e9Np7\n", "r51IaIiateUb2VS1k7Xlyt9hsJNlmdc/Gdjr8rZlZ4/y9Xy0lvb//BN3T7c3ovkc6+GD1Hzvmzjq\n", "6847t7AwFXdbBsnmq1ias9AL6RT+YEPFdgRBoK50YHbG7cvzcLW20PDEo9hMZV5O5xtcHe00/+m3\n", "dL75GgDzJiWDR4PWZeB4ezmNZmWqp2J4DjYfo6KzhuYOC00d/Txg20v/pvXejuUzOl95gW80vI25\n", "38n48EkAbK3Z6+VUwSFoO31TkwuYG3ozthojn1sy/qKjfLIsEzKxAISg/Ss7iyAIRC5aSuLXvn3R\n", "a6MjdNyx3Ii1yoiGEF47+p4yXSbIHavq5HhNF7MnJpGdcvb2H6FTp6NJTkHQar2Uzrdok1OIvfMe\n", "tKlp552Li9ZTkJVItUlLl1JpUDGIyq5aKrtrGR9lxFRhZ+aERPIyDKiiogmfPRcxJMTbEX2CKiKC\n", "iPlXEH3N9QDkpEaRGBOKuW5gfd/Gyh3ejKfwE7Is8+/i13l8858oKmsEQFM4c9B12cEqfPY8rLd9\n", "GQBrm4EIbRg76orwSB4vJwt8QduD6bM62bPbTbQ+YlijfIIgoDfmEzlfeZp+SkhOLjLDm6p5/cIc\n", "UqINWKvycHicPHvgFWUOd5CR5E8/K69vODXKN/6861T6UCLmLkAVev7+dMFIm5KKNi4BQRz86/qK\n", "qanIMmw/1DTGyRT+YGfdfgAs9ckA3HFyL0wxJAR9Xj4hOeO8ls2XiLoQ9PkTwT1w4ykIAvOnpGBr\n", "j0OvCmVrzR6cHpeXUyp8XUVXDa2WdmalFnK0vAeAcXMmEzn/Ci8n8x0hObkUZMciClBc1sH8jJn0\n", "2s0caT3u7WgBL2g7fe9urcTmcA9rlO8Uyaqs5zuXZLUNq6y+Ri3y4E2TcHckE+ZK5mBzCbvq949B\n", "QoWveHL3v/nrnuc4UtXCofJ2po6Px5h5dqEWWZbxWPuH7OAEK1mWcff2InvOfxK6YEoKoiiw/ZCy\n", "JkJxvrunrOLuvPuoPK5lujEBY2bMyXZmVR68nUMQRVyWPiTnwDrH+VOSQRYxuMfR5+xnb/1BLydU\n", "+LodtQNbes1Lm8nh8g6S48JI0Cp1DM4VLriZkh5OWW0X0xIGCkltU6Z4jrqgvLPqszp5b3sV0RG6\n", "YY3yyR4PtT/8Dr2ffDQG6fxL29N/pf7xh4d18zBrQiJT8xLoLB1PuDpCueEIIjXdDeyuP0BzXytv\n", "bRrYE+z25XnnXdf2zP/R/Kff4bFYxjqiT+vfv5fqb3150O1ioiN0FI6L40RdD80d/V5Ip/Bloihy\n", "8ACAcLrN2Y4dofb/PYTteKlXs/kad3cXjY89TOerLwKQl24gNiqElhNxFCZNJD4s1ssJFb7M7XGz\n", "o66ISF04GnsiNruLL1evofvDd70dzee0Pfcvbj/8X2RJpq1Bx6oJK7lm/BJvxwp4wxviChBt/Z0k\n", "hMWeHuW7c0X+8Eb5RJHYz9+Dq1mZPnWu2DvuRpOWMay9ZwRB4MEbJ/HQH9rRVV7NvJtnjkFChS9Y\n", "U/IhAAsSF/N/61soyIllUm7cedfF3nkPvZs/QQwNHeuIPi3EOIGUyYWEjDt/OizAoulpHDzRzob9\n", "lahTqghR61g98ZoxTqnwRVWNvew/3kpBTiwTswc6LfqCycTdeS+CRqkoeCZVVDSxd99L+JwFwMC2\n", "Q/OnpPD+djsrEm4jPz7RywkVvqy4+Rh9DgvX5S3l8ImBugWem+9GL/R6OZnviblpNXJYPPzrCHtL\n", "Wnj0izd5O1JQCJqRvuKmY3z7w0d4v3TzJY3ywUBnRR0Ti944YZRT+h91VDSyffjTXrOSI1k+J5OG\n", "1n4+2ls7iskUvqK6u559jYcYH5NFUdHANJc7BhnlA5DtdsImTlamd55DHRWNqNUOOr0TYN7kZLQa\n", "FdsPNrO1eg/vHP8Is0MZLVXAmk0D+/LduvSMBwayjCY+Hk3s+Q9egpkgioSkZiCdsWThyqmpAGw7\n", "qEyfVlxYXlwOdxeuYmnuAorL2tBoVBiNKejzjN6O5nPUhhgSQ4XT+2Fa7cp62bFwyXdWRqPxH0aj\n", "8Zlzjl1tNBoPGY1Gq9FoPGw0GleOXMTPzuay88yBlxGA2krVJa/l89hsyA6lMt5QJIsF6yVME7pr\n", "RT56nYpXPjIpDX0I/tjOhvL6sfcBmJ+4hP2lbRTkxFI4Pv686zwWC26rssH4UASVGnttzaBraEND\n", "NMyblExLh515iQuxux28X7bBCyn9SyC1s8G0dPaz83AjOSlRTDcmACDZ7bi6OkFU9sEcitvcg/Pk\n", "zB5jpoEEg549x1pwuJTqgpcr0NsaQHRIJDfmX00YBqqaeinMCEenFP8ZkmTtZ1mCA5dbYs8xZUuU\n", "sTDsTp/RaBSMRuMvgC8D8hnHJwLvAa8BU4F3gXdOHvcJrx19j05rNytyl7J1lxlDhI5r5mcN67Wu\n", "zg6qvnw/5m1bRjWjP+t87UXan//X6cXvF2OIDGH1kvH0WBy8tblilNP5F39uZ4ORJIn4sFgmJxop\n", "2jdww3TnCuOg04Fb/vonmn/ziyFHs4KdtfQYjY8/jM00eIWzJTMHtnToa0jGoI9ifcVWzPa+Qa8N\n", "doHWzs7VZungneMf8ea2UiQZVi3OPd3mLEV7qP3et3BUlHs5pW+S3W6afvkIXe++CQzM9Lliaio2\n", "h5v9x1u9nM7/BHpbG8yBslb0Hge37fw7PR+v83Ycn9X19ptM3P8eIZKDrcpI+pgY1lCX0WjMAZ4F\n", "CoBzdwh+CNhlMpl+c/LPjxiNxoUnj39lpIJersquWtZVbCE5PAFPUy52Zw33XDsBnWZ4Tzk1sXGk\n", "/vxxPD09o5zUf8XddT9iWBjiJeyrdvOVuazbVc3bWytZMS+Dgx0HyI/LJSM6dRST+jZ/bmdDEUWR\n", "B6bfzrGqdn7y/i4m5cYyZdz5o3wACV/5JvYTZQgqZQRiMPq8fFJ+8siQ08ynjo/HEKFj56FW7r77\n", "av57+A3eM23g7sLVY5zUtwViOzvX+vItfHBiI3JtIXFR2Syc+un3asTCRYjhkYg6ZR/MwQhqNck/\n", "fBhdyqf7Yl45LY03N1ew7WADC6akYHZYCNXoUSujpRcUDG1tMEXHW7GpdGi//ygRHqW41lBiP3cb\n", "YlgY6WuqOHSinZ4+B9EROtosHcSGGlAp7WvEDXekbx5QC0wCqs85dwWw5ZxjW04e97oXD7+FLMt8\n", "vuAW1u2qJyYyhJVzs4b9elmWEURRWftwAYJKhWy7tO0sQnRq7lo5AafLwz8+2sq/DrzC0/tfQpKC\n", "urSx37azC5FlmRfWlgFw7zVDP8SVbP1o4gbvECoGbkYFlRqpb/DRO5VKZNnsDPptLnR92cTqDXTZ\n", "epUquecLyHZ2it1lZ1P1LkLEMOxtidxwRQ5q1ac/9ZKlD1V4OKJO2ZR9KCpdCJ7+T9fEZqdEkp4Y\n", "wb6SVjac2MXX3vsJRY2HvJjQbwR0WxuMyy1x0NROcmwYKZFa1LFKxdehCGo1ks3KoulpSJLM9kON\n", "rD2xiW9++HMOtSiVhUfDsDp9JpPpJZPJdL/JZGob5HQq0HjOsWYg/bOGGwnfnvsAX5zxeY4eAofT\n", "w+3L89AOc5RPstlw1FSfMSFBMRS3uZeu99/BcwlrspbOyiAjKYL9RS6mxk+hvLOajyu3jWJK3+bP\n", "7exCDpS1UVrdxZyCJCZkxwx6jc1Uhqf34vs9KqD/2GHslYNPi14+e6A41cZ9jfxh5c/59twvDKuy\n", "bjAJ1HZ2ypaaPVhdNjxtGYRoNFx9xkNOZ2MD9sZ6pVDSMLiam7AU7QEGpngum5WO2yPR3qjFJblZ\n", "X77FuwH9QKC3tVMaepuR5IEH1sdrOnHb7CxMUJYpDIfHamNGdwnhsoON++uYGD9QcOqTyu1eThaY\n", "RuKbPxQ4t8qJA/CJx4gGfRTTYmexdlcNCTGhp2+KhsNRX0vD4z87/cWvGJr18CFsx44iWYc/lUEl\n", "Ctx7zQQkGRw1EwjThvLykXfosHaNYlK/5dPtbCgej8RzH5QgCHDPNYNPS5QliY5XX6T93/8c43T+\n", "x93RTufLL+BsPvdeaUByXBhTx8dTUtVJZ7d7jNMFBL9sZ6dIssS6E5tRCSrMdUksnZVBuP7TbRn6\n", "Dx+k+de/wN2lfMdeTOebr2PZu+f0SPniGemIokDR4X4KkyZyvL2Cis4a74b0b37d1k6xOPv58Ybf\n", "8MstTwJQVNpKnLuX2TtfoG/7Fu+G8wO2wweRDxcxJzuCyoZe3P0R5MZkUtx8jC6rsqxqpI1Ep88G\n", "6M45pgN8ZiLz6xtP4PZIfH65EY16+P/J+rx8Un/6KGHTZoxiusAQeeViYm77/CVPz5tdkMSErBiK\n", "S3pZlroCu9vBswdeVaaknc/n29kpsixT0z2wKHvDvjpqW/pYNiuDzOTIQa8XRJGEL3+dhC99bSxj\n", "+iVNQiJJD/2AsGlD73G54uRWNOv31IxRqoDiN+1sMCc6qmm2tKG3ZYJbx3ULss86H7noKlJ++hjq\n", "mMFH3BWfSvziVzF87rbTI+UxkSFMNyZQUd/DnPiBffzeMykVcj8Dv25rp2yp3oPT42JacgGyLLO3\n", "pIXu8ASSfvRzwucv9HY8nxex4Ari77yX+UunAbBhby1LcxYiyzKbqnd5OV3gGYnN2euBlHOOpQAX\n", "LMVjNBofAx4dgX//BTV1WNiwt5bU+HCWzEi7+AvO4OnvB0FA1J77vaQYlMeDx2pFdQkbawuCwP3X\n", "T+RHf93BkSI9BRPz6LGbsbnshGr1oxjWK6qNxvP263ncZDI9NozX+nQ7O9PR1jKe2PoXVuVfw9r1\n", "WkK0Ku4eYpTvFMlqVQq4DJMginj6zKjCwgY9P6cgmdioEDbsrePOq/MJ0wfdBtxj3s7AO23tXPnx\n", "uXxtytf404vHmG5MID0x4qzzHosZUdmQfdik/rP7H8tmZbD/eCuVJjXZhnT2NhykxdJOUnjQrkUO\n", "it+0oUiyxIaKbWhENUuy59PQZqG5o595ExPQiSColGJJwyFLElNT9cREhrC1uIE7ViwiRL2GTVU7\n", "WT1hJaIyHf2ztLOzjESnbwewCHjijGNLgAsuzjoZ9rEzjxmNxizOX+x7SZxuJ2qVGlEY+JC8tK4M\n", "jyRzzzUTUKmG/8GxV5TjaG5Cm5T8WeIEFU+fmY6XniN89jzCCqcN+3UTs2OZNTGRotJWfnjlzSwo\n", "yAzURp5tMplqLvO1PtXOhiLJEi8deRuA1ppIeiy93L0yn5jIwWfsSHY7Pes/RJOWgcZgGI1IAUeW\n", "JPp270RQqYi5cdV55zVqkesX5vD8h6V8tKeW1UvGAWB12gLxQcpgxrydwdi3taEcOexBtodx/cKz\n", "R/nM27cguT3o0jOUdZ7D5GxswLxlI3F33osqNJTZBUkYInRs2l/PNx5czpG2ktP3GkEq4H/TLuRY\n", "q4lmSxuLsuYSoQtn/bETpDk7uEJ0A8po+nBJVivmt17n1uQYnjapKSrp5OpxiwBwSi5CxKAfePks\n", "7ewsl/NtJZz855SngCuNRuNjRqMx/+R+LLOAJ0ci4KX698HXeXTTH+mxm6lo6GHboUbGpUUxf8ql\n", "dd5c7W10vf4y7o72UUoaeCSHA8nhRBOfcMmvveeaCQgCvPFxDWd/vIKWT7ezoeyqO0B1dz3TEqay\n", "ZYeZhJhQblqUO+T1ks2KrdyE7cjBMUzp5wQB+wkTon7oEfWVczMJ0ap4f0cVbo/Ea0ff56vv/4Qu\n", "m7JG4hx+2c6GYu53svVgA8lxYczITzzrnLOpCfOG9V5K5p9cTQ0gCHBy71CNWmTlvCysdjf9rfF8\n", "c+79JIQp1RmHKaDaGsD6iq0ArDjZQdlX0kKkZCflyGZczU3ejOZXJKcDT083M+cXIIoCH+6s5q4p\n", "N3N34SpC1EHf4RtRl9PpkzmjnqXJZDoGrAJuAQ4C1wM3mEwm04gkvASlbeVsqtqJ3WUnXBvGC2sH\n", "NjG+77qJl/xkM3TyFJK+/X00CYkXv1gBgDYxiegV16KKvvQRm+yUKBZNS6O6ycyOw4MXqQgyPtvO\n", "huLyuHjl6LuoRTU95Vl4JJkv3TSJEO3QEwrUhhhiVt9G5KKrxjCpfxMEgdhbbid08pQhrwkP1bJs\n", "dgYdPTa2FjcQF2rA7nbwzvGPxjCpX/C7dnYhH++txeWWuG5BNqJ49m9e5KIlJDz4FWWU7xKEz55H\n", "1OKlqCI+nSa7Ym4mKlFg7c5qZe35pQmotgYwJ3Uqi7PnMS42iy6zHVNdN0L+JFK+9i20aX5XhNRr\n", "NLFxGK6/mfisVOYUJFHV2MuJum5vxwpIlzy902QyLRnk2Fpg7YgkukxOj4tn9r+MgMCXZ93F0fJO\n", "ik1tFI6PY2repY88ufvMSlnryyCIIh5zL6Jef8k3F3etzGf7oUZeXF/G/CkpZ+0tFWx8tZ1dyMaq\n", "nbT3d1IYPZs9e+zMyE9gTkHSBV/jsVhAkkBpa5fs3PVG51q9eDzrd9fy6gYTT/2/xbx9fD0bK3dw\n", "Y/5y4kKVqUfgn+1sKB6PxNpd1YRoVSyblXH++f5+ZQ7FZZAlCY+lD1X4QMcvNkrPvMnJ7DjcxJHy\n", "DgrzgnY93yUJpLZ2yqLsuSzKngvA7iNNyDLMyYlU1qdfBkEUcfeZuXZ+FruPNvPBzmqMmcrv1IQ0\n", "5eoAACAASURBVEgLmDutNSUf0tjXworxi8gxZPGfk2Xiv3B9wSW/V/vL/8Wya6fyFO8yyG43bf/+\n", "Jy1P/v6SX5sUG8bKeVk0d/SzYV8dAGZ7H3vqi0c6pmIULMqay83Gazi+LwatWuQrq6ZcsOPft3M7\n", "7S/8G49l8M3GFRdmKd5P3U9/MNBxHkS8Qc/KuZm0dFrZeqCJWwquwyW5efXIe2OcVDGaOvq7+E/x\n", "63x80ER7t40lM9PPKt7j6TPT+L+/wl5+wosp/Ze7vY3mP/8e87bNp4+tWjywTvaNTcrfqWLAziPN\n", "rOg5wLS2w8iS5O04fkf2eOh44XkSPnyetIRwdhxqoqfP4e1YAScgOn11PY28V7aBhLBY7px8E1sO\n", "1FPdZGbJjHRy06Iv+f008Yk4GuqUaTCXQVCrCRmXR8ytd1zW629flodOq+LVj8uwOVz8autTPLn7\n", "Wep6lCmfvk6vCaG7IpPeHrjjaiPJcYNXlzxFm5M7MNlH+YG8LKrQUCKXr0S8QLXcW5aOR6sWee0T\n", "E3NSZ5Idnc622r3K/mIB5K3j61lXvpn3DxYBcMPCnLPOCxotutxxyDarN+L5PUGnQ5eTS+iMWaeP\n", "5WUYKBwfx+HyjtPT0Op7m7C7zt12ThEMuvvslFR1IKVmoe1tV2aJXQZBpUKbnkHMTau5fkE2bo/E\n", "R3trgIFtoLptvd4NGCAC4pOZFpnM3YWr+eqse0BS88K642jVInevvHCZ+KHoJ0wk5vqbRzhl8Aif\n", "MYvLLcZiiAzhxity6DI7+HBnDbdOuh6PLPF00Yt4JM/IBlWMqGOVHazfXUNmUsTpJ+EXotKHErV8\n", "JerLWAOqAH3+RHQXWTcSG6XnhityaO+28d7WKu6bdgtLsucTF6r8nQeCNksHm6t2EhcSR31ZBDPy\n", "z9+mQdDpCCucRuiUqV5K6d/U0QbCZ80Fp+us47dcNR6ANzaeYE99MT9Y/8Tpwh6K4LL7aDOSDKmz\n", "Com54fyKyorhiZg9F0GrZcnMdPQ6Net21eBye3hi65P86ONf4/S4Lv4migsKiE6fKIpcb1zKpEQj\n", "b26uoLPXzk2Lcok3XFp5clmWkdxuJKvyRPSzkqxWXF2dl/Xa1UvGE67XsGZTOUZDPvMzZlLeVcP7\n", "pk9GOKVipDhcHp56/RCCAN+6bepF12PKHg/uvj7liehnJYi4u7qQLjCKc9uyPKIjdLyxqZwEbTpf\n", "m30P/5+9+w6PqkofOP69U9J7pYTQOfReBKSIBbG7ihUVe9dddde1/HZddde6ay+79rYqllVBRUV6\n", "7x0OLUBIL6Qn039/zIABAqRMyiTv53nyQO6ce+87Sd6599zTYkKjmzBI0Vi+3PoDLo+b6PL+gIkL\n", "xh05U67H5cJVVITMiNwwhsmEs6wUV/lvXakH9UxEdY5l+eZsQh3tCLOGMHP7L9La18plluZgc9qP\n", "2LZg7QEMPIxKkZkmG8pdUYG1vITTh6dQUFzFyi05dI3tTFFVCfNlsfYGa1V3XLmFFXw9bydxUcFM\n", "Pb1Xnfe37d3DvgfuoWrH9kaIrm0p/mU2++6/G2dx3aeIjwi1ctkZvSivdDBjzg5uHHo5MSFRfL55\n", "pnTzbKE+/Wk7mfnlXDCue60GX+9/6AEK/vtBE0TWujlystn/4B8onvvLccuEhVi57pw+2Owu3p25\n", "pQmjE40pszSHBXuX0z68HVvXhZDaLpLBR00qUvjNVxx48i84C/KbKcrWwePxkPv6yxx44rc1wQ3D\n", "4Lpz+wLw+ew0zul1OqX2cmnta8U8Hg8vLH2bu7//P6qc3vFm2QXl5O/Yw19yvyI0bVszRxj4Spcu\n", "Yu8f7mBKL++whZmL93CeOh2r2co3237GKT2+GqRVVfrem7UFu9PNdef2IzS47uvOB3fpRux5F2KO\n", "kqfgDRUxajQdHnkMS3Tdx1QCnDu2K4mxocxanEZluYnbRkzD7XGzNW+nnyMV9eV0u3hu8ZvM2ric\n", "/y3YTXJcGNPO7l2rfZNuv1u6m/mBNSGRxOtvJurMKScsN2l4KqpzLIvWZ7Bya3YTRSca09Zc7yQi\n", "ibZBuN1wyWk9jlmmIea884maMAlztFzTGsIwDGLOu4B2995/xPYB3RMY3ieZTbvz6UB/woPC+Hbb\n", "T5TZTjyzrghMqzI2sK/oAP2Seh1eP27BugPkWqIpPmMq1gSZybWhwgYNocPDj5HavydDeiWyZU8B\n", "Bws9nN5tLPkVhSzau6K5QwxoAVvpO/SU5ZANO/JYvCETlRrLxKEp9Tqmu7KS4M5dCOpYv/3Fbywx\n", "sRgeD656Th4QZDUz7ew+OF1uPvpxG0M7DOClKY9xds+J/g1U1NvPuxawKmMDX6xahNvt4e6pgwmp\n", "7cMWt5vQXrWrIIrjMywWgtp3wHWw8ITlTCbD1+3W4PUvN1BRJWMjAt0Z3cfx5MRHWL/aTEJMKOOH\n", "HHvdchUVE9ZvACZrUDNE2LoEtetQ49CPa8/pg8mAj2bt5EI1mXJHJd9sl/UwWxu3x80XW77HwOCS\n", "fucA3pa/+WsOYLWaGTy0u9w7+oElKhqT2YyrvJzzfJNSzVqcxgW9z8RsMvPNtp9wy+Rv9RaQlb6t\n", "uTu4c9ajrM3cDIDD6eKNrzdgMuC2SwYe87SzNuxZmTgK8jBMsr6K3xgmytevpWLLpnrtPnFoCt1T\n", "opm/9gDb9xXSLrLu6y2KxnGwspgZm2dhNYIo3NGFs0Z1rtV6Va7SEip37ZAZO/3MmZ9HybLFJyzT\n", "uV0Ul53ei4LiKt7+1vvZuadwPx+u/0qWpwlQK9aUYLO7uXB892PG0Vbu1LiKZcY7f/K43ZQuXYKj\n", "4Lfx6l07RHPO2K5k5JVTkdGR3/WdwgXqzGaMUjSGQ618Y1OHkxLVHoBtewupyshgVJdwwsNkPJ+/\n", "GCYTFVs308eRRXJcGPPXHiCYCC7sfSaTe07A7ZH7h/oKuEpfub2CV1a8T7m9goggb5/fr+ftIiOv\n", "nHPGdqVHPZZoACj8+gsynvgrHpf0F/YXd1kZ+R++hyMvt177m0wGN184AIC3vtmE2y03pi3Fu2s/\n", "p8JRSdXeHsSHR3HD+bVbD9O2N42Mvz9G5TYZW+ZPBV98Run8ebgdJ27Bu/T0XnTrGM0vK/ezfHMW\n", "n2+eySw9h2Xpa5ooUuEvxWU2vlu0m5jIYM4e3fmI19w2Gzlvvkr+Z580U3StU+WmDeR/9hHOoyYp\n", "m3Z2H2Iig/lqzh4mtD+dqJDI4xxBBCK3x82Xm7/HMAwu9bXyAfy0fB9jyrZx4fK3cdvtJziCqAt3\n", "VRV5b7+JMzuTc8d2xe5w8cuKfVwx4ELO6TUJi7nuw7eEV8BV+t5e8ykFFQf5Xd8p9EroRkZeGTPm\n", "7CA2MrjeSzQAxE29kna334NhlpY+fzFHRtL+/j8T2m9gvY/Rr1s84wZ3ZMf+IuavTfdjdKK+VmVs\n", "YMWBdQTZE7DndOKOSwcdsRj0iYT07kOHPz4iXTv9LOHq64i/6hpM1hP/HqwWE/dfNRSrxcSrX6zn\n", "kp4XYjVZeH/dF1TYK5soWuEP/5u/i0qbi6mTehISdORNkCk4mOS7/0D8JVObKbrWKWzAIJLv+j1B\n", "qUdWssNDrdx8YX/sTjcvfb5OHlC2MgYG1w65lCsHXEiHqHYAlFXYWbw+g1XdJtLh9w9gCpIu1P5i\n", "Cgmh/R8fJnzocM4YmUqQ1cz3S9JwuaSFr6ECqtK3cO8KluxfTc/4rlzSdwput4eXP1+H3enm1osH\n", "1vrG82gejwdXSTHmqCg/RywMw8BV0rAuRtPP60uQ1cx7M7dSVvHb07TNOdtZnr62oSGKOgoyW4kw\n", "x1CyvTcTh3ZiZN92td7XWVCAKTgY4ySVE1E3hsmEx27DVYvlZlLbRTH93L4Ul9n56Nv9XNxnCkVV\n", "JXy88X9NEKloiKKqEgAKiiuZtSSNuKgQzh7d5ZhyrooKcDgwhdRt2SJxYobJhMlswVlw7HJE4wZ3\n", "ZPSA9mzZU8B3i/Y0Q3SisRiGwYDk3lzUZ/Lhbb+uTsfudHN672iC5N7R7wzDwF1aSkSolUnDO5F7\n", "sJIVW2QSsoYKmEpfhaOS99Z+TqglhLtPuR6zycwPS9PYmlbImIHtGTuoQ72Oa9ubRuFXM3DbZG2d\n", "xmLbl0b6Xx/Glr6/XvsnxYZxxZm9KCqz8f73WwGosFfy/JL/8PrKD8kqrV/3UVE/iZZUileNJsoS\n", "x00X9q/VPh63m9x336Jiq3TrbCweh4P8/37EwR9mnrTs+eO6MbxPMut35uHK6UpqdEfm7F7E+qyt\n", "TRCpqI/CyiJ+/8NjvLd2Bh98vxWb3cXVZ/cmyHpk75Tiub9Q9NMPIK1NjaZs5TIyX3gWT7WxyYZh\n", "cMclg4gKD+LDH7aSlinjKVsrl8vNol9Wc1bpBiakygPMxmLLzCDj749xbmfvPB3yMKXhAqbSF2YN\n", "5aHxd3H3KdfTLiKRzLwyPvh+K5FhVm67uP7dBw2rlYqtm7Dvr1+FRNSCw0nogIEEtWtf70NcPLEH\n", "XdpH8dPyfWzZU0BYUCg3DbuCKqeNF5e9jcMlsxE2Bbfbwysz1mN3erj14oFER9Ry8LrbjREWRtXW\n", "zY0bYBvnLCokpN+Ak5YzDIPfXzGEuKhg/jt7J1NSLiIyOIJKp3TxbKneX/cFFY5KrM4o5q05QLeO\n", "0Zw+IvWYcubYOCrWrcHjcjZDlG2DMz/Pu+SMcdQSGZHB3Hv5EBxON899vIYt2bt4fN6LFPtaaEXr\n", "sHRjFrklDgaEVRKUta+5w2m1PFVVBHXtRupAxVCVxJY9Bew64F372e1x8+vuxeSVH9vqLo4vYCp9\n", "AL0SujG840CcLjfPf7KGKruL2343kNiokHof0xQZRcKV1xLaS/kxUlFdSI+ehA8airuq/jeUFrOJ\n", "O6cOwjDgpc/XUWlzcmrnkZzWdQxpB9N5Z+3nMgNhE/hpxT427y5gVL92nFqX1nWTicjhI4mZcl7j\n", "BdfGmYJDiL94KiZL7Qa5R0cE88C04eDx8NHXGTx12l8Y3WlYI0cp6mNt5iaWp6+lV3w3Vi3xPmi5\n", "5aIBmGuYqdqa3I7E627EFFz/66I4sejTziC4cxeo4Zozsl87zju1K+k5pXy0YDmbczUfrf+66YMU\n", "jcLj8fD1/J0UWSLpPO1qwvrXv9FBnFhIt+5EjhqDu6qKC8d3B7wTNwKsydzEv1d/wgfrv2zOEANO\n", "QFX6Dvn0Z83O9CJOG5ZS49pEteW223EW5mOYAvLHEFAMkwl7QQG2/fV/Kta7cxwXTehBVn754Snn\n", "bxh6OV1jOjF3zxJ+3rXQX+GKGuQdrOS9mVsID7Fw+yUDMYzaLY3irqzAUVCAVMmbhruiHHtBPm6b\n", "7aRlB3RPYNqUPhQUV/HKp5twSZfAFqfSUcU7az7DbJjo7BzLngMlTBreiX7d4o8o57bbcVWU4S4v\n", "a6ZI2xbDMGHPzcV58OAxr11/Xj+6dYxmy8pwEoLbsXDfCtZk1m/pItE8tuft5p01nx0zwdXyzdns\n", "3V/AKT2jaR8rD1Yam2EYOAvz6R/joluHaJZsyCAzv4zhHQaiErqz8sB6NmTLsITaCrjazlqdyxe/\n", "7iA5Lozbflf/JyzOwgLS7riRslUr/RidOJHCzz8h64Xn8JxkWvkTuWZKb7p1iObnFftYsjGTYEsQ\n", "D5x6KylR7UmJrn/3UXF8c3Yv4tON3/Dql2uotDm58YL+xEfXfoKIrJf/RfaLz8nafE2katdO9t93\n", "N1U7tteq/CWn9WRk33as35nHJ7O3NXJ0oq6+3vojeRWFTEiZwA9zC4iLCubmGsbSlq1azt4/3I0j\n", "M7MZomx73HYbGU88SsGXnx3zWpDVzIPXDic0OIjcDT0xG2b+vepjSm1SIQ8ETpeT/6z+hJ92LeBA\n", "Sdbh7S63hxmz1vFI1gymmnY1Y4RtS+HXX5Lx5F+5ZFwqbo+3tc8wDG4cejmGYfDums+xO2XJjNpo\n", "sZW+zJLsY9aOyi2s4PmPV2M2mfjTNcMJC6n/AFpLXDyJN96KNfHkC0oL/4g+YzLJd/++QTM3Wi1m\n", "Hpg2jCCrmZc/X0d6TimJ4fE8f/aj9Evq5cdoBcCugr28u3YGP+gFrN2dwZBeiZwx8thxRCeScM10\n", "Ik+dIMuhNJHgTp1Jvv0ugnvULh9MJoM/XDWU9gnhfPHrThZvyGjkCEVd/K7vFC5SU1i3MBany82d\n", "UwcTEXbs9PDhQ0cQf+nlWOITmiHKtscUFEzC5dOIOf+iGl/vkBDBvZcPwVYSTnBhX4qqSnhn7edN\n", "HKWoj+/0LxwoyeLM7uPoldDt8PZfV+1nV76DVWOvJqlHl+YLsI2JGjeR5HvuZ+ywLrRPCOfXVfvJ\n", "LiinS2wnpvSYSFZZLp9t+q65wwwILbLSV2Gv5OlFr/PC0rfZV3QAgCq7k6c+XEVphYNbLx5Ar9TY\n", "Bp3DUViINSGJ4E6dT15Y+IUlJhZc7hq7w9RFp+RI7r5sMBVVTp54dwVlFXZMRov8Uw5oJbYy/rX0\n", "LVxuF/bdgwg1hXPXZYNr3a0TwO1w4K6olDGzTcgUGoo1MRlHXl6t94kItfLI9JGEBpt54dN17Ew/\n", "yOyd83l3jdykNrcQSzD7N7YnM6+CiyZ0P+4SKY68PEK69cAUKss0NJWgjim4S0txH6f3ythBHbhg\n", "XDcKdnYg2p3CkHb9ZOx5C7f3YDpfbPmemJAorhr4W4W+uMzG+7O2EBJk5vxxPbxjOkWTsMTHe5dw\n", "KDrIVZN743R5+PRnDcCVAy+iXUQiumAPTpm86qRa5J3y66s+JLssj4v6TKZzTAput4d//Xctu9KL\n", "OHNkKpNPqX9FzeNyUfD1DBxZGTKWrxkYJhOly5aQ+a9njpjuuq4mDk3h0kk9ycov56kPVmFzuPwY\n", "pXC6Xby87F3yKwqJrxpERV4s15/fn6TYsFofo/jXnylduqhOlUThP86DBWT/+1VsB9JrVb5z+yju\n", "v2oYDqeLJ99fxs87FzN713xm75zfuIGKE/rwh20s2ZBJ365xXHdu32Net6Xvp+DLz3CXlzZDdALg\n", "4MxvvMtk1GD6ef1QnePIXt2Piqxk+TxswexOOy8vfw+X28XtI68hPOi3691b/9vIqKyVXD0wnIRI\n", "WYi9qRkmE+VrV9Fr8Qy6totg3pp00jKLCbYE8X8T7+XxSfdjMdduErO2rEXWevYeTGdc55FcMeAC\n", "AN6btYVlm7IY2COB2y8Z1KAPTY/dhi0tjeI5P/srXFFHtrTdhA0c0uBK97QpfRg9oD0bd+Xz9Aer\n", "cDiPrERuzd2Byy2Vwfr4assPbMzZRqfQHqRvTGaoSuLsuj5ssQZx8NuvGzSGU9Sffd8+XGVlmGNr\n", "3ytiVP/2TD+3L4VFDqr0YKKCInlv3QzWZ8n6is3hu4W7+XLuTjokhPPw9JFYzDV8ZloslK9bi21v\n", "WtMHKPDYbZSvXU1Qp5q7vVstJh68ZgSRYcH855vN7NjfsJ4uovG4PW66x3Xm7B4TGdL+t3Gzc1bu\n", "Y8m6/XQMcTPiwPJmjLBtq9TbCO3eg+vO64fHA298tRG320NieDxmkwwfqY0WWenrl9yb20dei8kw\n", "8fkczTcLdpOSFMFD143AamlYyB4g7oKLiTnnfP8EK+os5uxzCe7SGVdlw9YEM5sM/jhtGEN7J7F6\n", "Ww7PfPhbi9+y9DU8Nu8FXlvxAW6ZQKTOpvQ6jdEdRrFvRXfCQ4O45/K6dev0eDwEdepE8h33NmgM\n", "p6i/sH79ibvwEtxldZs84uKJPTh3bFfSD7iIzBuDxTDzwrK32V8kY/2awo78PVQ5bXyzYDdvfbuZ\n", "mMhg/nbL6OOuiWmYTSRMv4mQntKFujmYQkJJuv5mjNDQ43bdTIwN5YFpw3C53Tz94SqKy04+s65o\n", "eiHWEO4cdR3Th0w9vG1n+kHe+GojQaEhjLh+KnEXX9qMEbZtsVPOJ7RXbwZ3iWLMwPZs21vInFWy\n", "xnZdtMhK301DL8diMvO/+bv4+MftJMWG8rdbRtc4eL22PG43tqxM7NlZYDJJ185mZhhm7FkZlCxa\n", "0KBunlaLmYenj2Rwz0RWbMnm/95cSkm5nUHt+tIrvhuL96/itZVS8aurUHMoe1d2wVZlcNfUQXWa\n", "rdO2by/2nCxwuaUrUzMzDANXaTEVehuO/NqN8TMMg5svGsCYge3ZpQ0Sy0ZT6aji1RXvy3ikRrYj\n", "fw+Pz3+Re795hne+20RcVAhP3TGWdvHhx5R1FhZgz8nBVVyMyWSSXGtuLje29H1UbKl5aYahKomr\n", "Jvcm72Alz3+yBpfbQ05Z7cfdiqZj8t0fpueU8td/LyO2qpC7z0ghOSZU8qy5mUzYsjK5tmMZYUFm\n", "3v52E5l5MitubbXImo/FZOHTnzXvztxCfHQIf799bJ3GEtXEnr6f9IcfoHLzZj9FKRqq6MfvOfjj\n", "TNwNbPELtpr5y02nMH5IR7btLeSBlxaSk2fn4Ql30Su+G4v2reTVlR/glK6etfbud1vYk1nMmSNT\n", "OXVQx1rv5/F4yP3wHXLfeEUuji2EMy+fzKcex5Ze+yeiZpPBA1cPZ1jvJHZvDqdD5RjuHHG9/E4b\n", "UWZpDk8veh2700n21vYkx4Xz1J1jSUmKrLF8+YZ17H/oPlzFxU0cqTie7Befp2TRguO+ftnpvRjR\n", "N5n1O/J4/rtZ/OHHx2XMbAul9xXy59cWE1RSwH2Fs+ldULslcETjK507B8eP33DnuT2otLl4+sNV\n", "VNl+m8SlzFbOP5f8Rx6q1KBFVvo+/Vnz35+2kxQXxj+O85Szrsxx8STdehfBqXWbbl40nuiJk0i6\n", "7ibwQ+uB1WLi/quGMfX0nmQVlPPAy4tYsjaXh8bf6W3x27eSf6/62A9Rt07VW3Dmrk5n1pI0OiVH\n", "cstFA+p2ILeb+CuuIebs8/wcoagvS2IS7e65n6Dkuq1jabWYeGj6SIb2TmL3pijempFGRZWMz2wM\n", "eeUFPDHvZcrs5dj39qVHdC+ev2c8HRIijrtPaO++JN14G+aYhs1kLfzDMAwSpk0n+syz8bhqfsBo\n", "Mhncd9UwOiaGs2RlGVYjiPfWzmBBmowTaw4V9spj1k70eDz8smIfD7+xlLIKO5ddMpLUe+8jpHuP\n", "ZopSHC1y9FiSbrqNMYM6MPmUzqRllvDUh7/N67A2azMrDqzjHwtepUTWxjxCi6z0zV2dTud2kTx7\n", "16knvOjVhruyApetCkdONkGJSZgjan5qKpqeKSQUw2LBkZOFLTurwUs5mEwG157Tl0evH4nVbPDy\n", "jPW88PEm7hp2C6emjuA8dbqfIm9dZu+czyvL38PtcbNj/0Fe+2I9YSEWHrl+JCHBtZsNy+Px4Cot\n", "xZ6ZgclkwpqU3MhRi9oyDANLdAyuijIchYW1ns0TvK3oj14/klP6t2PDznween0JhSVVjRht21NU\n", "WczDPz9PQWUhjgM9GddpNP+441RiImsew+cqLcFZVISrrJSgdu2l9bUFsUTHYAD2jAPYDqTXOHQh\n", "ItTKI9ePItSIonTzEILNIby+8kMW7l3R9AG3YVWOKp5d/AZ/+fWfFFeVAN5lGZ79aDUvz1hPBA4e\n", "uXYok1JMWGJjsURFN3PE4hBTSCimoCAc2dncOL4947qGsnZ7Lk9/4G3xG99lFBf2PousslyeWvgq\n", "Zfby5g65xWiRlb4BPRJ45q5xdRpHdDx5H71P1nNPwXGevInm5ywp4cAjf6J84zq/HG9U//a8fP9p\n", "DOiewIot2dz3ryX0Np1Op6jad1NsCzweD59u/JZ3137OppztbD2QwePvLMfpcnP/1cPomFj7By62\n", "PbvZe9+dVO7a0YgRi4YwDBN57/6HnDdeqdPYPKvFzJ+vHcHZo7uwJ6OY+19ayK4DRXg8Hg4UZzVi\n", "xK2fx+Nh/spcCjPDcGb05NphF3DfVUMJttY8E53H5SL9rw9T8MWnGDJbXYtVsXkT6f/3II6szBpf\n", "75QcyYPXjsBdHoV9+3BCLCG8tuID5uxe3MSRtk0Vjkr+vvBVtubtpFN0ByKs4cxfk86dz81l8YZM\n", "eneO5W89C2n3xWu47fbmDlcch7uyksy/PMj1XWwM7pnIyq3ZPPT6YrILyrly4IVM7Dqa3YX7eGLe\n", "S8e06LZVLXJRi7svG0x4aMNn/PN4PEROOoPy5cvALBfIlsocGUXCtTcQ0rUbHo/HL0+uk+LCePK2\n", "MXy/JI2PftzKKzPWM2flfm65eAA9UmL8EHXg+8+a/6Jte2kXkcitg27mhQ+2U1xm545LBx13Aejj\n", "McfEEnvhJVhj4xspWuEP4cNGYElOxm2zYQ4JqfV+ZrOJOy4ZSFJsKB/9uI0HX13MhLMcLM2fw7WD\n", "L2FKz9OkxamOKm1OXp2xnoXrM4iOHM6D14xgQPeEE+7jdjqJv3o6ztycJopS1EdQSgqJN9yCEXL8\n", "B9dDVRJ3TR3MS5+vw7pzFDF9NpASVbcu2KLuDlYW8+yiN9h9cB9jUodzSfdLeeztFazfkUeQ1cyN\n", "F/TjvFO74dyfQulSC4ZFZp9uqUxhYSRcPo3g7j34v8mdePPrjfyycj/3/HM+N5zfj1tGXo3FMDNn\n", "z2Jm75zP1P4y7KRFVvpMDbx5cFVU4CotwWO3Y2AQOXqsnyITjcEwDIJTOuG227EfOIAjN5uw/gMx\n", "Bdfcvam2TCaD88d1Y/SA9vznm00s25TFfS8u4IwRqUyb0oe4qBBmbp/DmNRhxIe1vXExm7K3MVQN\n", "5rKel/PMuxvJL65i2tm9mTK6S62PUblTY01IxFlYQFiffo0XrPCL4FTvWouOjHSc4RFgsxHcuUut\n", "9jUMg6mn9yI1OZJ//nctvy4oIqJvMO+v+4JdBXu5cdgVRyxmLI4vPaeUpz5YRXpOKX26xPHgtcNP\n", "2LPFlr4fc1QUzrw8rDExWGPkwVVLZg6PwBwegbOwAPBgP5BO+KAhx5Q7Y2QqZZUO3vluM2b7OMJP\n", "SWr6YNuQElsZD//yDAWVB5nQZTTxJSO4958LcTjdDO2dxG3nKeLdFbiyMvC4XESeIveOXyGH0AAA\n", "IABJREFULZlhGAR37oLH4cCTdYAb+hgMTO3L6zN38NqXG/h5xT5uOH8yvRN7cGrqiOYOt0Vokd07\n", "G6p8/VrS/+/POAry5elzADEMg/IN68h54xVcZaV+O25CTCgPTx/Jk7eOITU5kl9W7ueWp+bw4qxf\n", "+GjDV9w3+3Hm7lmC29O2lnU4q8d4zkq6jMfeWEt+cRXXn9ePy8+s/Vpf7spKsl54joOzf5AlUAKM\n", "x+ki4/H/o3zThjrvO6p/e174wwRSI7tQsm4UFlsci/ev4oHZT7Ixe1sjRNt6lFSVMmvlZu5/aQHp\n", "OaVcMK4b/7hj7EmHMhT99AOZzzyJLJgRWAyTifzPPqFgxqfHndzlogndueH8fhQU2/njK4vYtDu/\n", "iaNsO6KCIxiRMogzUiazeUFHPpm9g4hQK3+aNpzHbjqFqNx9pP/lz9izMuXeMYAYhkGF3kb2i88x\n", "unMYbzw4ifGDO7IzvYiHXl/CvDke0jJLmjvMFqFFtvQ1hNtuI6h9e+Iu/B3msIbP+imaVmjPXlhv\n", "vh1XSQnmqGgMkwnDT11zB/VK5KX7JjJnVTr//Wkbv84rJ6zDQBydtvPmqo/5Zdcirh1yCX0Se/rl\n", "fC1d6b5U/v7jKoIsJv5w5RAmDa/bzLbOoiISp9+IYUjX6UBjWCzEX3YVQSmdcJaWeCe48nhqXXnv\n", "mBjB8/eO572ZW/h+aRBBHfdQ2GEPX2z+ngHJveWG6Sgej4c5u5bw3povsVVYMDiVP04bxvghKSfd\n", "11laQuT40wju3EV+rgEocsQpEByEIzcHa7v2NebZxRN7EB0RxMufr+fRN5dy9eTeXDKpJ2aTwbw9\n", "SxmZMlha0f2gpNxO2c5e/LJyP4ZRxpTRXbj23L5EhFpxOxyYo6OJn3qVTNoSgEI6dyX55jvw2KqI\n", "TTDxwFVDOH98Nz74fiurt+WwelsOYwa25+rJvUltFwWAw+XAam5b3XdbTaWvZNF8HPn5hA0YhGEY\n", "hPbu29whiXowLBasCYngdmNL203ue2+TfOOthPTwT0XMbDYx+ZTOTBjSkZmL9/DVvCDK8mMJ7bKL\n", "3ezjr3P/xR9PvY0RHQf55Xwt2bzV6XTtksofpw2nW8faXeRcJSVkvfw8cZddhWEyY41PbOQoRWMJ\n", "7uSt5DuysynZOgdHXi7JN91W+/2tZm773UCG90nmtS/CKNicSFZMBGs65jK8j8zeWt2zC98ix5KH\n", "x2Umskrx2D0T6dzuxDmX/e/XCBswEGtiMiazmZBuMmV8ILLEe8c5u8rLsW/cQP5H75L65LOYjhpT\n", "O2l4Kslx4Tz38Wo++nEbK7ZkMfn0SN7e8hH/3fQtU/udy6SuY7CYW81tW6Nyu92HF1l3uz38snI/\n", "H3y/ldIKO13aR3HnpYPo3SWOspXLyd+1g4hRowGDkJ69mjdwUS+G2eydNdztoSotjYLPPib1d1P5\n", "x+1jWb8jj49nb2PpxiyWb8pi0vBULpiUwtPL/8mZ3cdxgTqTIEtQc7+FJuGXTw+llBl4ErgOiARm\n", "A3dqrXP9cfyTcTudmKKjKZnxKaF9+mJY28Yvr7VzFhVhiY6G4GBv1xjfB7g/nnaHBFuYenovpozp\n", "ysyFu/l2YSSVGZ0I6ZTG5vXQLaLSL7PH+pO/8+yiCd258dKxWC21b6lzOxxgslClNWF9ZQxfa2CY\n", "TFRs3UzU+Im4Kiswh4bVaUKl4X2See1Pk/joh238sDSNv729nIE9Erhqcm/6do3DMAzK7OVEBAVO\n", "zwt/51p66X7MpHJK7JncfeNoQoJOfOl1VVYQ1DGFkgXzSLjsqvqcUrQwhmFgT9tNqOqDq7wcU0jI\n", "MXnWr1s8L99/Gm9+vZFF6zPY+UEh3QYPI8++kbfXfMp323/moj5nM67zSIJbwU1qY9w72l0O5u1Z\n", "ykz9C/eOvhF7cRRvf7eZXelFhAabuf68flwwvhsWswmPy4UpKprSZUsIGzgEU2jLuuaL+nGXl2GY\n", "TJiio/G4XAzulcigngms2prDRz9uY86q/SzcsYmw3g5mbJ7FnN2LOV+dwendTyXE0rC5JFo6oy5T\n", "dx+PUuoJ4AbgWqAQeB1waq3H1fE4XYC0X3/9lZSUE3d78Xg8ZD79BHFTrzzcXcLjdsvYolbK43FT\n", "qTXOvBySpt/k9+OXVTr4cWka3y7cTXGZHbPJYOygDkwZ3YV+3eKpdFaRWZJDt7hUTEbd/sYOHDjA\n", "6aefDtBVa723vjE2R54BlCyYiz03h4jhI/E4XWAY0s2slfK4XGCxkPvvV+n02N8xhdatS1laZjHv\n", "z9rKWt89W89OMZw2KpHPDrzBgOTenNZtDEPa9WuUp6r+yjPwf64NuPQe/njl7xjV//izMzoPFpL9\n", "6gskTL8ZT2Ulhtnst9mMRcvicbsxLGaKfp5N+OChRI4afUyZDTvzeH/WFnYdKAarjSSVQXnYbty4\n", "uHbwpc267mxLvabd+9qDrCvXFFeVYDFZSKocxu4N3knaJg5NYfp5fYmLCiHj6SeIvfASTEFWDMMk\n", "edaKedxuqtL2ULVjO+3v+j0ut4d5q/fz0Y/bKSwrI6LLXozEfTg9DiKDwrl1xDRGpgxu7rAB/17T\n", "DmlwS59SKgi4B7hba/2rb9sVQJpSarTWellDz3FIVdoeTEFBWJKScBYWgtVK+ZqVRAwfBSAVvlbM\n", "MExUbd9CWL8B2HNzsMTGUrFpI8GdUrEmNnzGs4hQK1NP78UF47szf80Bvlu0m4XrMli4LoOOieF0\n", "61fO6orZxIZGM6zDQPonKfok9iA2tGn6/jdlnrnKy6nctoXwocNxFhVBUDBlK5YRPmS45FgrZ5jN\n", "VO3agTkmFkdhAZZoNx67Ddu+vYQPGXbS/bt2iOZvt4xmW1ohX8/fyYot2ewq2E9w13DWujezNmsz\n", "VpOVwe37clrX0Qxvgd2oGyPX/nH9OfTqcWyFr2zVckL7DQS3G2d5Gc7iYuzp+wlK9i6ZIjeirZNh\n", "MuGx2anaoYkcOx5HYSGWmBhKly0mYvgoTMHBDOqZyL9+P4E123OZuWgPazcHg7UDQckHWFlqwVyQ\n", "xhCVRLv431rQq3dpbOkaI89+3rWQyPhYEmz9Sd+SSKkzmL5d47h+RAxd20ViDTPjyMvFGhtH+eqV\n", "RI311i0lz1ovw2TCtmcXQSmdsOdkY4mLY0xoEaOm92XW9nK+nh9M1f5UYrtm4YjfS0xw6x7P6Y/u\n", "nYPxNsvPP7RBa71PKbUXGAfU+2bUnpONu7SUkB49cdlslCxagPNgIbFTzsMwm4m78BK5CW1D4i66\n", "FAB3aSlVBw+S8+arJN9+D6boGMxBQZStXE7YgEEN6qIRbDUz+ZTOnDUqlc17Cpi9bC/LN2WRuaoI\n", "S1IHiuLymbN7EXN2LwLg0n7ncFn/8/3x9k6m0fLM43JRtnwpkWPH4XG5cBYUkPXS83R46C+YgoIJ\n", "Skom+da75MLYRoR070lI9554qmzYKzIpWTgPV0kxIb0UprBwbHvTAA8hXbsf9xh9usbxSNdRZBeU\n", "M3d1OvPXtCe7IgtzfBbu2FxWZWwgI8NFYZcYeqTE0Ck5EqvF+1le5bQRZLI2582r33MtLMQ7WUCl\n", "3o4lJgZLUjLuigoOzvoW24EDhPUfiGEyefNMrmltgmG10u6OewBwFhZQtWsHuW+9QWivPhhxcXic\n", "TsrXrGL4mFMZ3ieZ7IJyFq7LYNH6JNZtK2LdtiLAuyZt/27x9EyN4qucN0mN7kD3+M50iUmhS0wK\n", "7SISW+p4Jb/nWVDuIIp2dQZHJRMTXUy89BQGdY2heNY35M3bQfzvLsMwm4k6Y7Jcz9qQmDPPBsBd\n", "VoatpJict94g/vJpXDZxBJNHd+HXd//H1zvaUWbqxNN6B1NGOzhtWCcSYn67l3x1+fskRSTQLTaV\n", "jlHtSAqPx2wKvEns/FHpO9Q/LOOo7ZnVXqsTj9OJs7iY8nVrKFuxjMRp0/G4nIT17YezsPDwbI5y\n", "cWy7DJOJuIsvxRwZiX3vHvBA1kvP0+mZF7FERmIKDSXzuX/Q4U+PYLJa8Xg8lC1bQsTosRiGgcfj\n", "wVVSjCW65vWuDMNgQPcEBnRPoKLKwbJNWSzblMW6jTk4gwsxRR7EFHmQ2b8WsXfdajomRtA+IZz4\n", "6BDiokKYd+BXdh7cSUJ4HKZSv0y07vc8c5WV4Sovw1VZRc5bb2AKD8cUFgYmM/FTr8QwTIcvjJJr\n", "bZNhMhHapx+GyYQ9IwMMKPphFpbERMwxsZjCwiiZOwdrfAIRI08BoGr3TkwRkQQlt6NdfDiXn5rC\n", "5RO7cOCgnVVbc9iwM4/te/ezx+7mlZXrATCbDDomRZCSFEFx5Ab2OtYTaY0iNjSWxPBYkiLiGJM6\n", "lJ4JXY+JscJeidvjxuF2+utt+z3X3HYbjoOFFP0yG3NkJJFjxoHHQ9RpZ2IKDT2cX5JnbZNhGJjD\n", "wkm46lqcxUU4DxZgz8zg4Hf/I0T1xhQSQmx5ARP2zuWyB24ju6Cc9Wt3s2/9NuYXW5m7Op1F68sI\n", "6+Zhm2Mn2/J3Hj52sBHG1PZ3EBUWRERYEKHBFsJCLJgsLvYU7yY2LILw4FBCg4IJMQcTYg1uqvG3\n", "fs8zR2ECZwxP4YywfCJW/EJy0Egc+w4S0r0XptCw3+4dpcLXdhkmYs4+F2tSEvZ9aYSazAxZP5NR\n", "dz/EzB1VzNuQAx+8yh0zT6Vjl2QGdE+gR8k2lpiW4zJ5/24iqlxUhlpJjenIM2c9fMwpnG4XuwrS\n", "CLOGEmoNIcQSjNVkwWKyNPtETP44exjg1lofvQiNDQipofyJmAH2r1mNLSkJt2HG0akLtszM30qE\n", "hkH170XbFREFWVkAeBwObJPO4kDaHgDcFeXkblxP1crlGCYLHpeT7Befo+PDj4HJwGN3kPnsk6Q8\n", "9g8Mw8DtdJD51BOkPP4UhsnAY7OT+eKzpPz5L2AY9IioInzVW1zx+z+zO6OYHXtySZ37Ke8l9mTu\n", "9k1Y3U6uLFjAs4necRahHbZy2S7N56PjsBdXHYq4IY+F/J5nafPn4ujbDwwD24TTycjN+62VNDYe\n", "8mW9KOHjckNODgD25HaYwyIo3rwZ3G4OzptLSM+ehDldYDZTNPMbQrp1J2zoMAzDROFXMwju3pPw\n", "4SMZ0c6g29KfCerZg4Od+7IvpxzrvFnssSaw4kAyu/e4ONO+HHuyh93tHeRaskjaUcqGGCszHDuw\n", "lqYwoWg9uRHJZESnYjIMBhXPZn9SFTr48MOVhj5+9Xuupa9bhz0pCUeHjuDyUJKd7XvVAnaHXNOE\n", "V2j44Wuau7IKx9CR7Nu6FTwebDt3UL51M6VLF2OYzKTm7yYuawVnTLue7GIb2evzsK4o5eduk8ip\n", "yiepNI2hRQf4X89YXp+3kC62HAaWp/FdnPfhTGfPfgZZ1vNzf293tpRCO72yqpjbowMhGWNIqcyh\n", "R+k+lnccjclkkFiZRseq1czrE48n//BkFy3qmvb7sSF0bFeFx26ltIfCkVGtPhkZLXkmvCKj4dBn\n", "sNtN1djxUF7I5BSDcXFBHHxzD+27nYLeuYdt23fz56wvKO50AZ7wcsyh5dyxfjmvTOjBzuwsps//\n", "jGu2fsJn/a5izKD2nDE0hX2PP8Lzo0PA93DhhgV5vDs+geiQKJ6c8AcynvsHHR546PBDvvRnnuCt\n", "UyIx+R60nzdnDz+c0R1r1eGHgH5rUmzwRC5KqUuALwCL1tpdbftiYJXW+g/H2e8x4K8NOrkQge9v\n", "WuvHTlZI8kyIBqlVnoHkmhANJNc0IRpfra9p1fmjpS/d9297jmym7wh8c7ydfME+Vn2bUioYqAJ6\n", "AEc//WnJ0oBj+x21fIEYdyDGbAZ2ASFaa1s9jyF55hWIv/9AjBkCL25/5BlIrkHg/e4PCcS4AzFm\n", "uab5RyD+7iEw4w7EmP11TTvMH5W+DUApMBH4BA5Pn9sZWFiXA2mtbUoptNa7/RBXk/HFvLe546ir\n", "QIw7EGOGw3E3JGnbfJ5BYP7+AzFmCMy4/ZBnILkWkL97CMy4AzFmkGuaPwT4735vc8dRF4EYM/jt\n", "mnZYgyt9vmR7HXheKZUP5OFda2W+1nplQ48vhJA8E6KpSK4J0fgkz4Roev6aRuZRwAp87Pv3R+BO\n", "Px1bCOEleSZE05BcE6LxSZ4J0YT8Uunzzb70gO9LCNEIJM+EaBqSa0I0PskzIZpWS1wU6G/NHUA9\n", "BGLMEJhxB2LM0PLibmnx1FYgxh2IMUNgxt0SY26JMZ1MIMYMgRl3IMYMLS/ulhZPbQRizBCYcQdi\n", "zODnuBu8ZIMQQgghhBBCiJarJbb0CSGEEEIIIYTwE6n0CSGEEEIIIUQrJpU+IYQQQgghhGjFpNIn\n", "hBBCCCGEEK2YVPqEEEIIIYQQohWTSp8QQgghhBBCtGJ+WZz9eJRSZuBJ4DogEpgN3Km1zj1O+bN9\n", "5RWwB3hSa/3FUWUeAm4FEoA1wD1a6w0tNWalVCrwL2Ai4AHmAvdprTP8FfNR8bwJmLXWN5+gzHDg\n", "JWAwkAE8obX+qNrrYcCLwMV4/0a+AP6gtS5vjJj9GHcP4HlgLN6f9Xzgfq11ekuN+aiylwIzgC5a\n", "6/11iCPg8qwx4pZca7KYmzTP/BX3UWXbTK5Jnsk1rSljPqqs5FmA5JnvnAGXa4GYZ/6K+6iytcq1\n", "xm7pewy4FrgGGA+kAF/VVFApNRb4AZgHDAWeAd5RSl1RrcxfgT8B9/jKZAA/KqUiW2rMwP+AJOB0\n", "4Aygg2+bXymlDKXU48AteP9oj1cuEfgJWA0MAV72xXxmtWL/BsYA5wLn4/3Q+be/Y/Zn3EqpcN/r\n", "BnAaMBnvh/uPSqmglhjzUWXb4/0Z12fhzMcIvDzze9xIrjV6zE2ZZ/6M+6iybS3X/BozkmdNErdc\n", "0yTPaII888UTcLkWiHnmz7iPKlvrXGu0lj7fD+se4G6t9a++bVcAaUqp0VrrZUft8kdgodb6j77v\n", "d/pq348DnymlIvAm7Z1a6+98x7sVWI83aRa0wJhj8P6yzj/0REkp9RQwSykVo7UuamjMvmN2A94B\n", "+gEne5p2E3BQa32v7/sdSqmhwAPAL0qpFOBKYJLWeqXv+DcB85RSf9RaZ/kjZn/HDZyF90N2kNa6\n", "zHf8a33HHQksboExV/cusAHvB2Rd4gm4PGukuCXXmiBmmijPGiHu6tpMrkmeyTWtiWOuTvKsheeZ\n", "77gBl2uBmGeNEHd1tc61xmzpG4y3iXv+oQ1a633AXmBcDeV7AEuO2rYe6KGUagecCgQDX1Y7XqnW\n", "urvW2i83oo0QczGwFZiulIr0ffhcC+z0Z9ICo4F9QH8g7SRlxwELj9q2AG+zNnif0Lg58n0tBVx4\n", "fwf+5M+4VwDnHEpan0NPPWIbGGd1/owZAKXUHUAy8EQ94gnEPGuMuCXXji8Q8wwk1/xB8kyuaScj\n", "edZwgZpnEJi5Foh5Bi0g1xpzTF+K79+j+x9nVnvt6O2pR23r4vs3GegF5AGnKKWe9L22Dm8f521+\n", "iBf8G3OS1jpbKXU+3ib8Irx/SDnU/CFQb1rrT4BPAJRSJyveEW9/9uoygTClVDze95mrtXZVO75T\n", "KZULdPJb0Pg17jitdabv++r+DJQBixoerZefYy5USvXC269/PBBTj5ACMc9Acq3Jci0Q8wwk1+oR\n", "X00kz+SadkKSZ34RkHkGgZlrgZhn0DJyrTFb+sIAd/Vfvo8NCKmh/EfA5UqpqUopi68Z8z68f+xB\n", "QBTeJymv4K3RngeUAwuVUgktLGaAIKVUMN4+3Vl4m10nADuAb3xPbppDGFB11Dab79+Q47x+qExN\n", "P4OmcrK4j6CUuh24E/hzIzwZq60TxqyUsuD9G3pGa725AecItDzzZ9wgueZPgZhnILnW2DGD5Jm/\n", "BWKuSZ41bszQcvMMAjPXAjHPoJFyrTErfZWASSl19DmC8SbcEbR3RpongPfxvtEZeGfTMfA+6XDg\n", "/SHcprX+Xmu9Grgab2Jf08JiBm/z/MXAQOBirfUirfUS4CK8T3im+ynmuqrE+36qO/R92XFeP1Sm\n", "0WY6q4UTxX1EXEqpR4DXgH9orV9vgtiO52QxP4K328NzR5Ux6niOQMszf8YNkmv+FIh5BpJrjR0z\n", "SJ75WyDmmuRZ48YMLTfPIDBzLRDzDBop1xqz0ndoqtP2R23vyLFN4ABorZ/A+0QmRWvdA29TpgPv\n", "gMdD+2yqVt6Gt19slxYacyqQpbXOrla+GO8Tm+5+irmu0vHOAlVdB6DMF1s6kKSUOvyH43uikMRx\n", "fgZN5GRxo5QyKe80uE8Af9JaP9rEMR7teDGXAiV4p3YeChQrpUrxztQEsEUp9ec6nAMCK89Acq2l\n", "5log5hlIrjVVzJJn/hOIuSZ51jQxt8Q8g8DMtUDMM2ikXGvMSt8GX3ATD21QSnUBOnPs4ESUUncq\n", "pf6ltXZX+0O/CFjkS9BDM+iMrLZPKN4BsbtbaMw7gWTlnXr10D5hQDffa81hMd7+v9Wdxm8/3yV4\n", "x3qOqfb6qXj/Vo4eeNyUThY3wKvAjcB0rfXzNL/jxbxEa+3B+3fWFxjk+7reV2YKtZ/iOBDzrDHi\n", "llzzj0DMM5Bca6qYJc/8JxBzTfKsaWJuiXkGgZlrgZhn0Ei51mgTuWitbUqp14HnlVL5eAfSvg7M\n", "11qvVEpZgXigQGvtwPsE4wWl1Gq8s/1cBVwGTPIdb69S6mPgDeWdAjYD+CveJyMft8SYgZmABj5X\n", "Sj3gi/VxoAL40B8x18CgWvNuDTG/A/zJ91TjJbzrv1yJd20StNYZSqkZeNcDuQFvsr4FfKj9OLW1\n", "v+NWSp0L3IZ3rZyflHcGrEMO+j5IW1TM+qgFNJVSh57q7NNaH6xNAIGYZ40RN5JrTRJzM+VZg+Nu\n", "q7kmeSbXtKaMWfIsoPMMAjPXAjHPGhx3fXOtMVv6AB7FO1PNx8BcvM3pl/peG4u3OXs0gNb6F+B2\n", "4G/AFuAC4Fyt9dJqx7sJ77S7H+Od1SYBOE1rXdgSY9ZaO/EurJkBfO87ngcYp4+cHtafPBy5QOPR\n", "MecCZ+NdA2YtcAdwjdZ6frV9bsL7QfQD8A0wB+/7bEwNjfsq3/6P4R38nFnt65IWGvPxjllXgZhn\n", "fo1bcq3JYm6OPPNH3Mc7Zl0FYq5Jnsk1raliPt4x60ryrOnzDAIz1wIxz/wR9/GOeUKGx1OffBRC\n", "CCGEEEIIEQgau6VPCCGEEEIIIUQzkkqfEEIIIYQQQrRiUukTQgghhBBCiFZMKn1CCCGEEEII0YpJ\n", "pU8IIYQQQgghWjGp9AkhhBBCCCFEKyaVPiGEEEIIIYRoxaTSJ4QQQgghhBCtmKW5AxDNQyl1JjAM\n", "6AY8rbXe08whCdEqSa4J0fgkz4RoGpJrgUta+togpdRo4DKt9dPAJ8CjzRySEK2S5JoQjU/yTIim\n", "IbkW2KSlr41RSgUB7wPn+zZV4H1iI4TwI8k1IRqf5JkQTUNyLfBJS1/bcw2Qp7Xe4fs+BQhuxniE\n", "aK0k14RofJJnQjQNybUAJ5W+tudm4Ntq3w8BspspFiFaM8k1IRqf5JkQTUNyLcBJ9842RCkVAwwH\n", "NiulnvJtvgL4uvmiEqL1kVwTovFJngnRNCTXWgep9LUtQ4AyrfVNAEqpEOBe4PtmjUqI1kdyTYjG\n", "J3kmRNOQXGsFpHtn25IMrK/2/TlAhtZ6bjPFI0RrJbkmROOTPBOiaUiutQJS6WtbyoHMat/fDPyt\n", "mWIRojWTXBOi8UmeCdE0JNdaAan0tS2bgRAApdRZgE1r/XHzhiREqyS5JkTjkzwTomlIrrUChsfj\n", "ae4YRBNSSj0OFOJtqn9Ma21r5pCEaJUk14RofJJnQjQNybXAJ5U+IYQQQgghhGjFpHunEEIIIYQQ\n", "QrRiUukTQgghhBBCiFZMKn1CCCGEEEII0YpJpU8IIYQQQgghWjGp9AkhhBBCCCFEKyaVPiGEEEII\n", "IYRoxSzNHUBTUkq9D3TUWp/p+74v0EVr/UMjn/eI8yil3MA0rfV/G/O81c6fArwATMJb0Z8N3Ke1\n", "zvK9ngw8C5wJhAIrgPu11luaIDYz8CRwHRDpi+1OrXWuP/ZRSr0JmLXWNzf0vKJ2JM9qzrOjyp4C\n", "LAYmaa0XNkFskmdCCCFEG9bWWvo8vq9DvgWGN8F5jz5PO+CrJjgvSikD+B6IBiYCE4D2wEzf6ybg\n", "f0AP4AJgDFAM/KqUimuCEB8DrgWuAcYDKZz8Z3PSfZRShm8h0Vs48nfekPOK2pE8OyrPjiobDnwE\n", "GE0Rm89jSJ4JIYQQbVZbq/QZHHuj1VQ3XofPo7XO1Vrbmui8ScAW4Cat9Sat9Ua8rRFDlVLRwCDg\n", "FOAGrfVqrfU2vDdoEcC5jRmYUioIuAd4SGv9q9Z6HXAFMFYpNbq++yilugFzgduA/f44r6gTybNj\n", "86y6fwHpNNHPRPJMCCGEEG2qe6ePB0ApNR/oDvxVKXWd1rqbUioW+CfeFi8DWA78QWu9w7ePG3gC\n", "uNF3nOF4WxOeAkYDYUAa8Het9UcnOM/hbmdKqXjgH3grWLHAMuABrfX6aue8EbgeGAHkAk9qrd86\n", "9IZ83ekmaK27Hv1mtdY5wFXVyqYAtwIrtdbFSql9vnPvOPpnBMTU4edaoxPFBgzG2+VrfrV49yml\n", "9gLj8P4s6rLPqb59RgP7gMuBz/10XlE3kmfV8qza9nOAKcA5wMa6/1hrJnkmhBBCiBNpay198NvT\n", "9YuBvcDzwAhfN8cf8N5cngWMxXtDs9h3k3rITXhv2C4GSoGfgQPASGAAsBB4SymVVNN5qgfiG+/y\n", "CzAMmAqMAvKBBUqpztWKPgO8DPQBvgbeUEqlVnv9HmrRfU4p9Q3eJ/Kj8HbHQmtdqLX+UWtdvWvW\n", "PXjH9v18smMedfxpSqm3lFL/VEqdVYvYUnz/Zhy1PbPaa3XZpxOA1voTrfX0E4wbqs95Rd1InlXL\n", "M9/2BOBt33srOtlxTnB8yTMhhBBC1ElbrPQBoLU+CLiAMq11Ad7JF4YDl2ut12qRFbM/AAAgAElE\n", "QVStt2ut7wAO4n1if8j7WuuNWuvVQDjem8x7tNY7fS0VTwFBQM/jnKe6yXifhl+htV6mtd6Mt2tl\n", "EXBHtXLvaK2/1FrvBf6K9/d2+MZWa11Sw7Fr8ijeG9HFwC9KqQ5HF1BKXYC3ReSfWmtdi2Me2u8u\n", "YIjW+mat9f1a659rEVsY4NZau47abgNC/LhPYxxD1ILk2RF59m/g20O5UR+SZ0IIIYSojzZb6avB\n", "EMAMZCqlSg99AV2B3tXK7Tn0H611Ht4buelKqX8rpX4FVvteNtfinP2BAq31rmrHdOCdPbN/tXI7\n", "qr1e4vtvUK3f2W/7btZar8I7rsaMd0a9w5RS04Evgc+01n+q7XGVUonA34EQpdQLSqm/1HLXSsDk\n", "a/2pLhgo9+M+jXEMUT9tMs+UUtfhrXg+cFTxWo/rkzwTQgghRH21xTF9x2MHCvF2H6vOAMqqfV95\n", "6D++J/jL8E7KMBP4DsjitxvSk6k4znYL4Kj2fU2TUdTqZtHX/W2S1vqzQ9u01pVKqd1Ah2rlHsE7\n", "juoVrfW9tTl2NeOALK31nXXcL933b3uO7ALWEfjGj/s0xjFE/bTFPOuIdzmUFCBbKVX9uD8qpd73\n", "tXaejOSZEEIIIeqlrbf0VR/HtgWIAwyt9R6t9R68Y4T+jvdmqyZX4p3lcpzW+hmt9fdAou+16jeL\n", "NU1lDrAViFdK9Tq0wTfj3Qjfa/7QBfivUmpYtXNEA+rQOZRSf8Jb4Xu0HhU+8Harq88siRvwjtea\n", "WC22LkBnvGO2/LVPYxxD1F5bz7MtwNV4xwoO8n1N9hW7Eahti53kmRBCCCHqpU4tfaqGBYV9Ewk8\n", "C/QCdgIPaq1n+zvQRlIKKKVUe631HKXUcmCGUur3QA7wIHAe3rWmarIfiAIuVUqtxHsz9zzem8/q\n", "Y1aqn+fwQs1a67lKqWV4bxbvAUqAh33H/E9t34Tv5jLI1w3uaKuARcDbSqlbACfwNN7ZCT9QSg3E\n", "O4bvHeAdpVS7avuWaK0ranGOhUCSUipBa52vvGuWhWqtK060n9bappR6HXheKZUP5AGvA/O11itr\n", "en+13aeaY5YPqMcxmlwry7U2n2eH8qjasey+/2ZorfNreQ7JMyGEEELUS61b+lQNCworpfri7Wr1\n", "Od7xKt8C3/i214tS6rH67lsLRy8a/S+806dv8H1/Ed6n8t8Aa/FOEjFZa729poNprb8AXgTeA7bh\n", "nUFvGrCdI2fSO3we341adRf7yn+PtwtbLN4Wjb11eF8v4R2fVFOMHuB3wHpgFt7p04vwLh79J7zT\n", "rZvwtjhk4Z1Z79DX7486R403ar5JNC4HnlRK3YG35SK62n41xubzKPAJ8DHeNb/S/p+9+w6Pqzzz\n", "Pv4901RHXbKsLrfHvRdsbLDpEFpCCS2BvCEh2RRSFthssgE22ez7ZpNNYbNphMBuKCkk9JKAMWBw\n", "k7tcHsuyeu+9TDnvHzNyZLlItkc6Gun+XBeXrXPOnPOT8SPPPU8Dbj7d9xf8+zGS1wwY+v/8bJ4b\n", "Mmfz93os2lqYtrPHgKOEZzs7lVP9vRwX7SyofwSvGfy9hFU7E0IIISYTwzRPNyLqREqpXxJ4c7Ye\n", "WK+1fm/gmNb6kkHXbQSKtNb3nfpOwz7H1FqP1UbOIRGOmeHscgffRG/WWl84yrGGyzEZ/qxHva1N\n", "hj/H8SIc21kwy4T+sxZCCCEmkxH19Km/byj85SGn1jFo492gTZx+bo4IX/8I/MXqEBOdtLVJT9qZ\n", "EEIIIUJu2Dl96u8bCt/DyRsKZ3Lyxrs1BDfvFRPKj4PL3ItRIm1NIO1MCCGEEKNgJD19Z9pQOBro\n", "HXJMNt6dgOSN6JiQtjbJSTsTQgghxGg4Y0/foA2FFw45NTBnoofARruDnfPGu0qpiOCv0wksTx42\n", "gkuRh51wzB2Gme0Q+PuttT7lkvtj2dbCuZ1BWP7/D8vMEHa5h21nQgghxGQ13PDOuzn9hsJPEdh8\n", "N2PIazKAyuEeHFxl7eHTnD463OvHoRKrA5yjcMwdjpkBeoPtaLBHtdaPMEptbQK2MwjP///hmBnC\n", "M/eZ2pkQQggxKQ1X9N3FicPHphLYi+rTwFvAdwksSf7dQddsYAQb7wb/AX5k8LFgz8PRp59+mvT0\n", "9FO9bNJ5fUsp7/61gMudNaz4+DXsq+jm6fcrccdG8C835GPv6aTtr2+Qdu992N1xVscVp1BbW8ud\n", "d94JMENrXXyay0alrUk7GznT76fx2d8Ru3wlRkQEmCb4/BguJ6bHQ8eWzUTNnkPs8lVWRxWnMMJ2\n", "JoQQQkxKZyz6tNbVg78esqFwg1LqMWBnsDfhOeAOYAVwTts1EBxqlp6eTlZW1jneYuJo6+zjrT17\n", "cadkc5G/nCSfh2mrZ9JhunlpTxOFDU42+FqJnzOHlBkzsTudVkcWZ3baoZRj3NaknZ2C6fcTkZaK\n", "r3AvidfecMI5b1srEb09pK28gIiMTIsSihEKuyHLQgghxGgb8ebsgxzf2E9rXUhg0+Obgd3AtcB1\n", "WmsdmniT2582FtHd6+XqC3JI/8znicjNA+DGpSlEu2z8ZVcjtgVLid9wGZ6a6jPfTIQjaWtjyNva\n", "invdehI+cv1J5xzxCaR+4lP4u7vx98t0MSGEEEKEl2G3bBhMa11JcLL8oGOvAa+FMpSAPo+P3e/v\n", "JTMigsuVG8P4+37D7kgH1y9O4bnt9bx1oIXrl6Rg9vXR/t4mIvLyicjJtTC5CAVpa2PH9HjoPqKx\n", "uVwYtjN/DmYYBt0HD2L2dOFevXaMEgohhBBCnJ9z6ekTY2DLvmpyWkv5YvmfsPcPXakfrpifiNNu\n", "8PahFkzTpL+qgsZn/xdfZ6cFaYUIX/3VVdT+6Pt079k17LWm30/DE7+kr7xsDJIJIYQQQoTGWfX0\n", "ibHz123l7I+bz82fvAx7TOxJ592RDlZNi2NzURuHarqZm51L+lcewJGUbEFaIcKXI30qU7/64AnH\n", "TNNk46FW3tWtNHZ6mDklihuXpJCfGkX6F7+K4ZL5s0IIIYQIH9LTNw7VNnWxv7iReRnRZGScvoi7\n", "bG4iAG8dbAHA5nDgb2vFNM3TvkYIcSJvYwO2yEhskYHFUz0+Pz/bWM0vNlVzuLabXo+fD4+289Af\n", "j/G3A80Ydjumx4uvo93i5EIIIYQQIyNF3zhU8PYOPtK6gw3DLBI4NyOaKXEuth9rp8/jB6DnWDFl\n", "D36FvrJw3F5LiLFjmiZ1v/453fv3nXD86a31vKtbmZ4Wxc/umslvPqX452tziI2086t3a3htXxP+\n", "7m5qfvYTGn//jEXphRBCCCFGToZ3jkNbijvIx8/CmDOvEmgYBhfOjOPPOxvZVd7B6unx2JwO4i6+\n", "FFdWzhilFSJM+XzYk5LoKz1G1MxZAOwoaefVvU1kJrh4+IZcopyBtXSW5Lj5zkfzefTFUp78oJZM\n", "dwb56VOJ23Cpld+BEOdNKfUg8BUgT2vdr5R6ElgCNAMRQAlwt9baq5RKBH4ATAecQDlwn9a6fdD9\n", "8oB9wE4CKxBHAu9orb8Z3HLmW0C21romeH0aUAXcq7V+SimVDfwQSAWigvf5itbaM6p/EEIIMcFJ\n", "T984U93Qyb5GP+ULLyFx7uxhr18zPR6ALUcD/+ZG5OQRpWbj7+kZ1ZxChD27ndhFS0m4/CoAuvp8\n", "/HJTNU67wdeuzD5e8A3ITIzggauzsRsGP95YR//iCzF9siWcCHt3Ac8Ctwe/NoEHtNYbtNZrgscG\n", "Nq58FnhJa71ea30hsA345SnueSD4+kuAC4ENSqkFwXsfAW4ddO3HgTLAVErZgReB/wi+/gLAA/xr\n", "qL5ZIYSYrKSnb5zZvKcKgDUzEkZ0fU5yBBkJLnaWddDr8RPptGHYbHhamjE9HhyJiaMZV4iwZJom\n", "vvZ2TNM8vh3KHwsaaOvxcfuqNHKSI0/5uplTovnU2nR+/V4Nv3y3mm9cbeBxuXAmp4xlfDGBXPf1\n", "F/8DuCXEt/3jyz+84YHhLlJKrQeKCBRuvwOeCp4yguftQBxQp5TKBaZorV8cdIufAjHDPCaKQI9h\n", "d/Dr3xMo+n4S/Ppa4OXgM9cC5VrrHYNe/xDyAbUQQpw3+UE6ziQ/91M+3vw+y/NOXrHzVAzDYPWM\n", "ePq9JrvLOgAwvV6qv/co9U8+PppRhQhbra+9RNX3HsHbUA9AZXMfb+xvYkqck2sXnXkF3MvnJbIo\n", "O5Y95Z3se+YFyr7+JdkqRYSre4HfaK2PAH1KqZXB499XSr0DHASyCAzXzCAw1PM4rbVfa91xivvO\n", "VUq9o5TaSKDn7sda6+LguVqgSymVr5SaAVQAA/sSTQWODXlGn9Zahq4IIcR5kp6+caSmsYvH3evY\n", "ENdObOTI/9esynfzfEEDO0o6WD0jHsPhIOXue4kMzlMSQpwo7tIrMb0+bG43AM9sq8Pnh0+uScfl\n", "GH6D9s+tz+Brzx3lia48vvvAR7HHjuxDGiGGCvbIDdsrF2rB+XlXA6lKqS8R6NH7IuAjMLzzr8Hr\n", "HiUwx+5hAgXg4Hs4gVu01kNXNDqotd5whscPDCd1AE8DVwSPlwE3DXlGMrBaa/3KWX+TQgghjpOe\n", "vnHkw33VdNqjyF655Kxel5cSSXKsk13lHXh9ge0aXKmp+Luk90GIU/F3dhA9fyH26Bh0bTc7SjpQ\n", "6dGsyHeP6PUpbie3rEilxh/FH7fVytw+EY7uAh7XWl+ptb4auIBA8ZVKcHhnUCXg1FpXA41KqesH\n", "nbsfGPz1SD1PYJ7gWmDToONbgXyl1AoApZQBPBK8TgghxHmQom+cME2T3Ts0dhssH+EbzwGGYbA8\n", "z01Xn5/Dtd3Hj/va2+jcsS3UUYUIa97mJrydXUCg3T29tQ6AO1enHZ/fNxJXLUhiaoKLvx5oofjt\n", "zXgaG0YlrxCj5NPA/w58ERxC+TxwOcHhnUqptwj0yD0SvOwTwB1KqfeUUluBxcBnTnHvM20WawZX\n", "+6wAdmmtzUHHTQLzGx9RSm0Ctgfv9a1z+xaFEEIMkOGd40RtURk373ySBVlLcUfOO+vXr8hz82Zh\n", "MwUl7czPDMyrb3nxz/j7+oievxBbVFSoIwsRlmr+68d4G+pJ//LX2VPRxaHqbpblxjJn6nDrUZzI\n", "abfxyTXpvPqn92h7+i94pn4NZ0rqKKUWIrS01otPcewLwBfO8Jom4LZh7lsKrDnNuUcH/f7mQb//\n", "xqDflwAfOdMzhBBCnD0p+saJDyo9/C7rDj6/OumcXj83M5oop42C0g7uvjAdwzBIvvUOjIgIKfiE\n", "GGTK579Ef0U5pmHw9NZ6DOD2C6ac072W5cbyp9zZPFKfy08TsskPbVQhhBBCiJCQ4Z3jxHu7K8Fu\n", "Z9ncqef0eqfdxsLsWOraPVS39gNg2GyYvb0y30iIQfzdPTjiE/igqI2ypl7WzYon9zRbNAzHMAxu\n", "XZkGhsGzbxwMcVIhhBBCiNCQom8cKC+qxFNSzOKsGGIj7cO/4DSWBbd52Fn69xW0ve1tNP35D3hb\n", "ms87pxDhrmvvbnwd7Xh8fp7dVo/DFizazsOSnFhmJjvo3lVAxbsfhCipEEIIIUToSNE3Duz+YD93\n", "Nr3L5ZSd132W5LgxgF1lfy/6+o4V019Whtnff54phQhvpsdD0/N/oOn3T/NmYTMNHR6uXJDElDjX\n", "ed3XMAyuUbGs6DxCwf6qEKUVQgghhAgdmdNnMb/f5OUqB605t/Cry2ee170Soh3MmBLFoZpuuvp8\n", "xETYiV22AnPJMhxp5zZnSYiJwnA6mXLfP9DR0snzzxQT7bJx07KUkNx71YKpfH73NXhrDK7u8xIZ\n", "IT9ahRBCCDF+SE+fxQ6WNFHX3M2qaXFERzjP+35Lc2Pxm7C34sQ9+mTPPjHZmaaJ2dPLC3ua6Ozz\n", "8dGlKbgjQ1OcOe02Lp+XRFevl3d3V4bknkIIIYQQoSIfR1us4G/bWNhdwvppq0Nyv2W5bn6/vYFd\n", "ZR2smREPgLepkba/vU7cxZcSPW9+SJ4jRDgxPR5aXnuJjthUXtvXSnKsk6sXJof0GZcqN00b36bh\n", "+SK44B9Dem8hRotS6kHgK0Ce1rpfKfUksARoBiKAEuBurbVXKZUI/ACYDjiBcuC+4L57ocx0D6AG\n", "b+Uw5PxngSeAecD1WuvvhPL5QggxEUlPn4V6+7wcPlzJ2p4iZjpO3xNnmiZe/6lX4CxoKWJP67Hj\n", "X+elRJIY42BXWSc+f2DPW9PjwXBF4EgJzVA2IcKNv6eH3qNF7H1rCx6fye0r04hwnPzj73TtrM3T\n", "xUvVW+nzeU77jOS4SHJjfOzuiqa6UXrWRdi4C3iWwCbsENgM/QGt9Qat9cB+ezcEf30WeElrvV5r\n", "fSGwDfjlKGQ60+buAN8A7FrrvVLwCSHEyEhPn4U2763mgD2d2ZfPIzIn/ZTX9Ps9PFn2NrGOSO7I\n", "Xn/COZ/p53flG2n2dLI+ZQGfyLkEp83B0pxY3j7USnF9D7PSo3FlZOJIm4Ij6dz2ABQi3Nnj4uhe\n", "fz2PP1tEdlIE61T8Sdd82HSIl2u28ejcu3DZTvzR+ErtDt6s28mW5sN8ecb1TI08uS0ZhoH7ims5\n", "8nYV7xRUcudVs0ft+xETy62//3zpqY7/4eM/zwvF9aejlFoPFBEo3H4HPBU8ZQTP24E4oE4plQtM\n", "0Vq/OOgWPwVihtzTBvwKyAKmEigS/yXYg9gL5AWP36O13q2U+iLw0eB9GoO/H7jXZ4CZWusHg1n2\n", "AD8H0oFnlVI/AT6ntb5dKfVp4HOAPfjMR87mz0IIISY66emz0Fs7ygHYMPfUxVi/38OPil5gc9MB\n", "irtqMM0TP/y0Gzb+cdZN5ESlsqlxPz8tfhmP38vSXDcAOwet4mlzOPC1dyDEZGT6fPx+ay2mCbev\n", "SsNmGCecf6t+N78oeY1mTwd1vS0nvf5jGWu4LHUxVb1NfPfwc1T1NJ3yOSunxRHhtLFxZ8VJ7VWI\n", "cehe4Dda6yNAn1JqZfD495VS7wAHCRRv+4AMAkM9j9Na+7XWQ/9hyQa2aK2vAlYRKMQg0HtXGjz+\n", "GPBZpZQBJAGXaa0vIPBB9IpB93oWuDFYSF4FvK21/m+gFriNvxenqcBDwFqt9VIgQil1QjEqhBCT\n", "nfT0WaSqoRMKd3FbbC8ptlzgxGXj/abJz4pf4UBHOUvip/HF6ddhDHmjCpAVlcK359zOT46+xN62\n", "Y/yy5HX+T/bVOGwGu8o6uX1VYNXO/toa2p5+ivj1lxB30Yax+BaFGBe8ba0c++2TVB2NZUZ2Dsvz\n", "3Cec/6DpIP9TvpF4RzT/pG4lM+rkuX5RdhefzL2UzKhknip/m/+r/8Ajc+8k2RV3wnURdri3bztN\n", "td0UVSxnVk7iqH5vYmI42x66s73+VILz864GUpVSXyLQo/dFwEdgeOdfg9c9CvwQeJhAATj4Hk7g\n", "Fq31M4MOtwArlFIbgHYC8wIH7A7+WglcqLU2lVIeAr12ncH7H1/RTGvdqZR6F7gSuAd49DTfzjSg\n", "UGvdF3zdKecCCiHEZCY9fRZ5e0c5HfYoZkf2YHpPnif0QvWH7G47xjx3Dl+cfh1O2+nrc5fNyf0z\n", "rkfFZrKz9Sj13ibmZcZQ2thLY0fg3rbISKLnzCN60dJR+56EGJ8MDtb2keJt5+blqSd8eFLaVccT\n", "pX8j2h7BQ+qWUxZ8g12atpjbsy6mzdvNOw37T36SzUbS9Dw2ueezZX9NyL8TIULoLuBxrfWVWuur\n", "gQuAK4BUgj1oQZWAU2tdDTQqpa4fdO5+YPDXECjOWrXWdwH/CUSfLoBSagFwg9b6NuDLBN6TDP10\n", "89fAZ4BUrXVh8JifwDDOAcXAbKWUK3jfPyilMs70zQshxGQjPX0W8PlN3imooDs+gxm3r8UxZKuG\n", "Hl8f7zUdINUVzxemX3vGgm+Ay+bki9Ovo6GvjbzoKSzPa2JvRSe7yjq4Yn4SjoRE7IuXYjjPf1sI\n", "IcJJo9fBE97Z5OREsDQ39oRzmxr34zG9fCn/OrKiRrbQ0VVTlpEemcji+GmnPK8uW0dLpebDfdV8\n", "8po5p+yhF2Ic+DSBwg8ArXWPUup5AkM+s5VS/0Sg188G/J/gZZ8AfqaU+kcCw1OOEijIBnsLeEYp\n", "tQwoAwoGFWDmoF/N4Ou7lFLvEZjPt4vAMNLj12qttyulpgP/NegZ7wOvEej5M7XWjUqp/we8q5Qy\n", "Cczpqz7HPxchhJiQpOizwP6jDTS29XLZojQiTrE3X5Q9gu/NvZs2bxexjqgR3zfeGUO8MzCNYWmu\n", "m9+8X0tBaaDog0AvhK+zE1tUlLwRFZPGXzYewTThxqWpJ/29vzvnUi5Kmc+0mFMvpHQqhmGwJGH6\n", "ac9HOG0syYll69E2yus6yE2PO+21QlhFa734FMe+AHzhDK9pIjCX7kz3PQicdG/gU4OueRN4M/jl\n", "pWe6X3A+XyeB+X0Dr79n0CWbgsee4u8L0QghhBhChndaYGNBBas6D3NZ+Tt429tOeU20I+KUKwSO\n", "VFqci+ykCAqruuj1+AHor6qk6t8epuWVF875vkKEk/ayCtJefZLlZg2rp59cfBmGcVYF30iYpslH\n", "jr7KP9S/KkM8hTgPSql8YCfwnNZa9kERQojzIEXfGOvz+Niyv4b2tDxSpiZjc4zecMvleW48PpP9\n", "lYF/Kx1JySRefyMJV107as8UYjz5sLid/ZHZLM6Px24bm95twzBIv+xSnkq9nIKDdWPyTCEmIq11\n", "idZ6idb6MauzCCFEuJOib4zt1vX09vuYs2QWcRdtwBZ92jnu5215nhsjspMdJYEVtW1RUURk52H2\n", "94/aM4UYL0zT5NVd9exxz2TlxacabRY6rf2ddHl7j3+doGaSk5PMkYoW2rukvQkhhBDCWlL0jbEP\n", "9gXmlq+aFodh+/sff0t/J16/L6TP2uUpIHLhZgrqKvH5A/PnDbsdb0c7fin8xAR3pLyF0pp2VuS5\n", "SYwJ9Kh7/T5a+kM7SuxIRxX/WPgbXq7ZdsLxxVkxOHxeduv6kD5PCCGEEOJsSdE3hjxeH9sP1HKN\n", "9zCxz/8KT2PD8XO/Knmdfz7wFN3evpA9b35cDgB9yUc4Wt8DQO+xYioe/Crt724M2XOEGI+2v7eP\n", "r9S+yFW28uPHPmw+xAOFv2F3a3HInpMXM4UYeyRvNeyhw9MNgOn3s2zjb7i34U12HpYhnkIIIYSw\n", "1ohW71RKZQE/Ai4hUCi+AXxNa10TPH8F8H1gFlAEPKS1fmNUEoexvUWNdPd6iVp9MTGuCuwxgeXj\n", "j3XVcqCjnLnuHKIdEcPcZeTmxeWS7kijNqmejSXlqPTZuDKzSL//68QsXR6y54jQkHYWOj6fn7eK\n", "upiatpoHVeDDD7/p59Xa7fhMP7nRaSF7lsvm4CPpK/hdxTu8Wb+LmzPXYthsTL37U/zba62YugG/\n", "38Q2RnMKhRBCCCGGGranTyllAK8C8cB64GJgKvBy8Pxc4CXg9wSWaX4ReCF4XAyy81DgE//FczOI\n", "XrAIW1RgO4aBYWHXT10V0ucZhsHN2asDz+7ZA4AtIgK7Ow5/d3dInyXOj7Sz0Np7tJHmLi+ZCxTR\n", "uYGir6DlKDW9LaxNnkeSyx3S512csgC3I4q/1e8+PrfPlZrGorw4Wjv7KK1pD+nzhDgfSqn1Sql6\n", "pdQ7SqlNSqktSqlRmfiqlLpbKXXdaNxbCCHEyI1keGcacAC4V2u9X2u9j0BvxFKlVAJwP/Ch1vrf\n", "tdZHtNbfBj4MHheD7NL1RLvszExxHJ/PV9XTxM7Wo0yLSWeOOzvkz1yRNJ1Ibzx97ir21QfmFhl2\n", "O/31dfg6OkL+PHHOpJ2F0Ls7K8A0WTsjUNyZpsnLtdswMPhI+oqQPy/C7uTqKcvp8fWzsWHv8ePz\n", "01wkeDvZd7Qx5M8U4jyYwFta6w1a6/XAt4HvjMaDtNZPaa1fHo17CyGEGLlhh3dqreuAOwa+Dg5B\n", "uw/YrrVuVUqtA54b8rJNDLOB62RT29RFdWMXd0ceo+7fXiLl43fgyszir3W7ALg2feWobJhuGAZr\n", "Y1fw+tFSDtv7WZgGPYcO0Pjc06T/w5dxr1kb8meKsyftLHR8Pj9Fe4v41+o/k3H0Msi8hMMdlZR1\n", "17MycRbpkYmj8txL0xZR09vMgrg8AEyfj/w//CfXGFPZd3Q6N158+g3dxeT2wQ03lV744vN5ofp6\n", "BIzgfwOSgDql1EXAwwQ+EI4l8DNpPTBTa/2gUsoO7AZWAJ8FbidQQD6ntX5MKfUx4EHAA1QT+Pn0\n", "MFAD/Br4FZBFYBTDS1rrf1FKPQn0AnnB4/dorXefxfcihBBiBM5qIRel1AtAObAK+EzwcCZQNeTS\n", "GiD03VZhbFdwBb/oq64n+ZaP40hOAWBOXDbLEmawNGH03hDeOH0evpoZ7C0JrNgZOVOR+a1HpeAb\n", "p6SdnZ/DZS1UeKMoWP8poufOByDOGc2apDlcOWXpqD03yh7BZ/KvIi9mChDoUc/8p2/xzqyrKSxu\n", "wufzj9qzhTgHlwSHd34IPEFg6Pg84C6t9Qbgz8AtwLPAjUopG3AVsBGYBtwKXAhcFDw/i0CR932t\n", "9TrgFSCOQFEIgZ9VW7TWVxH42fa54HETKA0ef4xAMSmEECLEznb1zm8R+GG9GXhLKZUBRBP4lG6w\n", "PiDy/ONNHLsOB4q+xfnxuDKysEUG/nguSJrN/TNuwGaM3kKqcVEO5kyNpqiuh5YuD4YjMLzUJ/P6\n", "xitpZ+dh+4FaAObNmoozNbBgS2ZUMp+bdg0zYzPHNIs9IpIF2bH09Hkprmob02eL8DG0l+58vx6h\n", "jcHhnWuAJQSKvirgp0qp3wIbAIfWuhN4F7gSuAd4HFgA5BIoAN8i0FM4A/gacKlSahOwBhj8SUcz\n", "sEIp9TvgP4HBq5YN9OxVIj/ThBBiVIxo9c4BWutCAKXUbUAFcDfQw4k/vAl+3XWmeymlHiEw7GPC\n", "8/lN9hc3kp0YQbLDg2m3j3mGlflxHKzupqC0g8vnJYFh0K0PETVtBo74+OpHRRsAACAASURBVDHP\n", "M0mVKKWGHntUa/3I4APSzs7P9oO1uO1+5qa7rI4CwEJ3P/v6m9lb1MCsnNEZWipOMKJ2Jk5QT6DH\n", "7XFgmta6MzjscuDTyF8D/wQkaa0Lg71+B7TWVwMopb4G7CfQS/eI1rpBKfUL4KODnnEP0Kq1/pxS\n", "agbSoyeEEGNq2KJPKZUGXKK1Pj6fSGvdo5QqJjDkrALIGPKyDAKf2J1W8B/gR4Y8Kw8oGUHusFJa\n", "3UZ3r5db4+oof+AJUu64m6hZJ70pGVXL8908+UEtO0oCRV9XwTbaN79H+hful6Jv7ORrrUtPdULa\n", "WWhUN3bSWNvMIzXP0f36SiJvvMnSPP7eHjJe/CWL7DPZf1Rxy6WzLM0zSZy2nYnjTILDOwEf4Aa+\n", "CiwC3lNKVQOHCcyxQ2u9XSk1Hfiv4Nf7lFJvK6U2E+iZ20qgl3A78IpSqgPoIDDE80vB570NPKOU\n", "WgaUAQXBUQwDeQZ+Hfi9EEKIEBpJT18egR/URVrrnQBKqXhAAU8CTgLLy3930Gs2AO+FNGkYKzzW\n", "BEDipZeRcdVSDKdzzDNMiXORmxzJ/spOSjoayVtxAbErVxM5fcaYZxGnlIe0s/O2+3A9vTYXJZ/4\n", "BnkZozdkeiQa+9qJc0WR+c+PUPh8Oc1lLfj8JnbZr09YTGv9LjBlpNcHe/Y6CczvG7jHD4AfDLn0\n", "leB/gz066Pen2hbiU4Pu+Sbw5khzCSGEGLmRFH07gPeBx5VSnwW8wP8lMBzkqeC5ncFhZM8RWO1r\n", "BYGVBwVQWBxYrn1OZiy2jh48hh/8Xly2sxpde95W5rt5MeV9vqPb+NmSzxGJHV9/P3bX+BgGN8lJ\n", "OwuBvcGtEeZnxmJ3O+jy9hLjGPspQu827OeJsr9yX/41rEmew+yMWN7eV09ZTTvTMqVnXYQPpVQ+\n", "gUVdngjO7xNCCBGGhv0oXGttAh8D9hD4BG8T0ApcrLXuDs4/+ihwM4HJ2NcC12mt9WiFDid+v8mB\n", "Y81kxNlJ7G3FsNt5t7GQ+/f+ksL2sjHNsmKaG39HEl68bGvW+Ht76dj8ruzXNw5IOzt/Pr/J/qON\n", "zIz2kBbpp9XTxZf2/oKnKzaNeZbZ7ixM4L3GQkyvl0VmLVl9DRwsaRrzLEKcD611idZ6idb6Mauz\n", "CCGEOHcj6mrSWjcxaAjGKc6/BrwWqlATSUVdBx3d/VyZ46Hi298g4eqP8L77GD2+PrKiUsY0S15y\n", "JPE9uXSbRbzbWMiy5lZ6jx4hWs3B7naPaRZxMmln56ekqo2u7n7ubH2Nhic+YNcNq/CaPtIixr5n\n", "bUpkIio2i4Md5dQ3VpK1869M9UzjYEkz166dNuZ5hBBCCDG5je34wknoYGkzAFNWLifrI4uo6Kil\n", "9MgWFsdPI8EZM6ZZDMNgZVYab7elUGzU0LH0SjIuWo8rM2tMcwgxGvYWNWAaBq2f+Dqzp8B7Rc/i\n", "MOxckDTbkjwXpcxHd1byga+KG794P0XPlGA71oRpmhiGzOsTQgghxNixdqWDSeBwsOhTWXHg97G5\n", "LTAab13KfEvyrJwWh68xsFfZ5qaDmP39mD6fJVmECKW9RQ0AzEuPoMzbQlVvE0sSpuN2RFmSZ2Xi\n", "LCJtTjY3HcSw25md6aa5vZe6ZtkfUwghhBBjS4q+UabLmolzmiTXH8Pr8/Fh0yFiHZEsibdmiNec\n", "qdFEdE/F1plMRmQSnvp6mv/yJ/x9fZbkESIUfD4/h0qbWRbTRWxfB5ubDgCwLnmeZZki7E4uSV3E\n", "ssSZ9Ha2s6q7iJy+enRZi2WZhBBCCDE5SdE3itq7+qlq6GJRmoOm/3mC5rdeJz8mnTVJc3HYxn6D\n", "dgC7zWB5TjxdB1cw1T+N3qNF9FdV4u/ttSSPEKFQUtNOb7+PDR37qf/1fxNjjyQzMpkF8XmW5rot\n", "+2LuzF6PvaOTjLojRJhedLkUfUIIIYQYWzKnbxTpssDQzoy508m46QH8Hi9fNwxM09q9Z1fkx/He\n", "kTZ2lHZw27qLMZxO2aBdhLVDJYG21nvdJ5ia4+Qmw+BjGWvGzdw5V0YmGXfdRclTxRjBnwtCCCGE\n", "EGNFevpG0eHgMK7ZOYn4+/uPvwG1+o3oopwYHDaDgpJ2APy9vZYXokKcj0PBubOz01zjpp0NFRHh\n", "Im9KLMeq2uj3yDxaIYQQQowdKfpGkS5rxjBNsir24WtrszrOcVFOOwuyYihr6qOuvZ+eIk39bx/H\n", "9PutjibEOTlU0sQio5GElqpx+/fY29TIFa27mNpdz7Gq8fPzQAghhBATnxR9o8TvNymqaGVakhPP\n", "9s10fPC+1ZFOsCI/sC9fQUkH3sYGbBERmF6vxamEOHv1Ld00tvWy1NlM8x+fhXHaa+3v7iLF6aXf\n", "cBwfBSCEEEIIMRZkTt8oqazvoLvXS+78bNLWfQZznK2OuSzPDe/W8LemHbyXVs33ln4Wm8tldSwh\n", "ztrAtii+dVeSPitq3A3rBNAdlTzTuZl1Fy+h7iU4XNYMTLc6lhBCCCEmCenpGyVHgiv0zcpJZHfd\n", "IX5+7FUqexotTvV3STFOpqdF0dDdRU1vC/sbjlgdSYhzMrAa5vQUJz8o+jMfNh2yONHJnDYHJd11\n", "FPWVEB/jpEhW8BRCCCHEGJKib5To8lYAZpTtoPDgh2xpPozXHF+LN6zIc+NtngJA7XtvUfuL/7I4\n", "kRBnr6i8ldl9VfQffYdDLSWUd9dbHekk+dFTSHa5aSw+xB2t72Orq6K1Y3z1/gshhBBi4pKib5Qc\n", "KW/BZYfolmpch4qYEpFIblSa1bFOsCzPjb8zAac/koreRlzTpssqniKs+Hx+iqvayHWDd8cOHD6T\n", "VUmzrY51EsMwWJ4wE4/PQ096LF32SIoqpLdPCCGEEGNDir5R0NvvpbSmnWlZiVRfvIRXFsWxPHHG\n", "uJtrlJscQUqsC09TGu/nR1CaHT/uMgpxJuV1HfR7fHgXLOPxC+OJiY0nL3p8fbgyYHniTEpTIzgw\n", "L5YOezRFFa1WRxJCCCHEJCFF3ygormzD7zeZlZvIzvqDACxNGH+LNhiGwfJ8N32NgSGepW0VFicS\n", "4uwcCQ6jjk1oodvXx5KE6eP2g4uZsZnEO2NoJ7DwzBGZ1yeEEEKIMSJF3ygYeDO3uGoH/Xv2EueI\n", "ZnrMVItTndryPDf+jkTW9NzIBR+UUvvzn1odSYgRK6poQfVUknboPWJ6fSxNmGF1pNOyGQaPzrmT\n", "b3jn8aXmN6kprpTh1EIIIYQYE7JlwyjQwT240pJiuKluOlfMXI3NGJ/19dyMaKKcDvaX+bhTZRGz\n", "YJHVkYQYsaLyVuzOCJb43eTnriI/NsvqSGeU5HLTGxdP9cyVNDTYqGvuJj05xupYQgghhJjgpOgb\n", "Bbq8hYTYCNIvuQCzo4NUqwOdgdNuY3FOLFuK22mdvoj4KelWRxJiRPo9Pkpr25k1bSbJV68l1R4e\n", "P84ip00npjMRT1MNReWtUvQJIYQQYtSNz+6nMNbU1kNjaw+zchKhv9/qOCOyPM8NQEFJB/T1WpxG\n", "iJEprWnH7zfJT4vCFiYF34BpSU4AjsgKnkIIIYQYA1L0hdjAfL51zbtofe1lTK/X4kTDW5Ibi82A\n", "PcVN1P78MWp//pjVkYQYVnFVG9N6a1hx5G08dbVWxzkrUw58wEPVf+JYaYPVUYQQQggxCUjRF2ID\n", "8/kS1Uz8Xg/Y7RYnGp470oGaGs2hhn6qVB4165daHUmIYRVXttJmj8GdkoDp91sd56z0TcvgxcWL\n", "KKruxOeXxVyEEEIIMbqk6Auxw2UtGAb0znQTfdkV43b5+KFW5Lkx7SY/cRXyTMnbVscRYljFVW20\n", "JdiIXLsM19QMq+OcleeNUsryium1t1NZ32F1HCGEEEJMcFL0hZDX56eoopXsDBf/ue9JfnT0Basj\n", "jdiyPDf4HUT3p1HWUUNDR6PVkYQ4La/PT2l1O7HTi3jw8G9p83RZHemsDOzb6Yivo6hcNmkXQggh\n", "xOiSoi+ESqrb6Pf4WNu1lRsKWljqHJ97851KRkIEGQkubGVRfPnNOkofl3l9YvyqqOtgSl81N+88\n", "xIWtUcQ7w2sFzEXx+dyyrZmH9n/AkfJmq+MIIYQQYoILryXvxrlDpYE3byV5diLKndyUOsviRGdn\n", "WZ6b1wqz+OPKRNJmJbDC6kBCnEZxZRttSf3sjYlkcXKu1XHOmtsZTdnS6bxoNpFUXWd1HCGEEEJM\n", "cNLTF0KHS1vA5uNAZAMV83NId6dZHemsLM9z4/PG0BE3hcLGYrr7e6yOJMQpFVe10pfaTGF2NLPV\n", "SqvjnJPp+Qvpd9mo7DlKv8dndRwhhBBCTGBS9IXQodJm3GltePxeliXMsDrOWVPp0cRE2OmvyeeT\n", "M66Cvj6rIwlxSseqW7DHN5LsdJMdlWJ1nHOyPHEmud752FtiKKluszqOEEIIISYwKfpCpKElsCn7\n", "lV113L+lh2WeBKsjnTW7zWBJTiyJJSbTfvgUfZs3Wx1JiJP4/SZN5ZV86a1GbqmLDZsVcodKccVx\n", "96Zd3FuxGV0um7QLIYQQYvRI0RcihccCq10mrr6auZd9lNy0aRYnOjfL89xUOpPZffXnSbz6Wqvj\n", "CHGS+pZuGjzRHJ57I8vmrrM6zjkzDIPI2/8P/zXlWlnBUwghhBCjSoq+EDlwrAkANSuDyFkKe0x4\n", "rSY4YFF2LH67g+1VHkyv1+o4QpykuKoNv2EjfloeEVnZVsc5Lxk5acREOqSnTwghhBCjSoq+ECks\n", "biTKZSfXbcOwh++iqLGRdlR6NEfre2koOoavq9PqSEKcoKSqDUyT3ASn1VHOm80wmJXioqe2jo7u\n", "fqvjCCGEEGKCGrY6UUpNAb4PXA5EAduAr2utDwTPXxE8PwsoAh7SWr8xaonHoeb2XqoauvhYfAPV\n", "33qAxOs/SpSaY3Wsc7Ysz03U0X00ffdpIr/6ddzLVobtvKlwIm1tZEorm3i46llSdi+FvJusjnNe\n", "/P393LbjV2yPnMbhsg2smJNhdSQhhBBCTEBn7OlTStmAvwAzgOuBNUAb8LZSKkkpNRd4Cfg9sBh4\n", "EXgheHzSGBjaGbtmLSn3fBpXRqbFic7P0txY9kbn8/gll/PVij9S3lZldaQJT9rayBXXdPHEjFtI\n", "Wr3a6ijnzeZyUXznvbxykckL+nWr4wghhBBighqup28RcAEwR2utAZRSnwCagY8Aa4EPtdb/Hrz+\n", "20qptcD9wH2jE3n82V/ciH1KKft9ZayIXkl6TJzVkc5LVmIESXGRVDb6MWO7KKjaR25CltWxJjpp\n", "ayNQXF9NR+ZG4n3zcKVPjF6xJTmZ/E97N2XdRVZHEUIIIcQENdycvjICbziPDDpmBn9NJPBGdNOQ\n", "12wCwndJvXOw90gDkUk1FLccJsYZbXWc82YYBotzYulrTCCnycPekl1WR5oMpK2NwMYjBbii2kiI\n", "nTibmSdHR5LWFE9cVyNV7XVWxxFCCCHEBHTGok9r3ay1fl1rbQ46/GUgEvgrkAUMHftXA4T3knpn\n", "ob65m+q2JqZ6GvjnF6uhYKfVkUJiSU4sF7dobtzVQWtVKc3dsqT8aJK2NjJ76wv5wt/quWHrxGhn\n", "AL7mZu7ddpSZdX28dXi71XGEEEIIMQGd1eqdSqnrge8BP9RaHwaigd4hl/UReKM6KewpasCe0EBV\n", "kotjn7+V6IVLrI4UEvOzYngvYRG/Xbqe2gQnBdX7rI40qUhbO1lnXxf1/ZX8ZM1M4m+8zeo4IWNP\n", "SuLoTZ/jwxmx0s6EEEIIMSpGvLeAUuoe4FfAs1rrh4KHe4CIIZdGAF0juN8jwMMjff54tedIA/bE\n", "egAWJc3EHhVrcaLQiHLamZMZQ2FFIjEpdpq6ZR+xEChRSg099qjW+pHBB0LZ1iZKOwPYVVMIhonZ\n", "mU56zhSr44SMYRgszkjluf0JdNCF1+fFEcbbvowDI2pnQgghxGQyoncWSqlvAt8BHtNa3z/oVAUw\n", "dDWFDKByuHsG/wF+ZMhz8oCSkWQaD/x+kz1H63DMbEUZyaS6wnsBl6GW5MRSVlrPfV3rWDvnGqvj\n", "TAT5WuvSM10Q6rY2EdrZgIP1RcR1+4ghC9sE20JkqtvGrIPZmDFJOG6Tgu88DdvOhBBCiMlm2OGd\n", "SqkHCbwJ/daQN6EAm4GLhxzbALwXmnjj29HKVjo6vazvv4G7Xi+m9bWXrI4UUouyY1ndeRizYBv+\n", "TtmkfbRJWzuzS9M/wtXv2fn0zj9j+v1WxwkpX10t17bthcZ6mtp6rI4jhBBCiAnmjB8pK6UWEphX\n", "9BvgN0qp9EGn24HHgJ3BIWTPAXcAK5gkS8jvOBhYaW/h8jnkXPH/8Ld3WJwotLKTItieuYotflgX\n", "n2B1nAlN2trwSmvaeTLpKu5bk8ws21lNRx73InJyqbzqHg5srWd/cRPrl8oWKUIIIYQIneHeOX08\n", "eM2nCawUWD3ov69orQuBjwI3A7uBa4HrBvYZm+gKDtXisBssmZWK2dePLWLolKvwZhgGi7Jjae/x\n", "cqy6zeo4E520tWEcqwr8HcydOrGGUQ+YlxEFQGFxo8VJhBBCCDHRnLGnT2v9TeCbw1zzGvBaKEOF\n", "g+b2Xo5WtrFwRgocO4Lf78ceFWV1rJBblB1L8d4iKv7wJ6Z/9dMYE2wu1XghbW14TUeKifP3kZM8\n", "MRcszYn0sra3iKr9vXDLYqvjCCGEEGICmVhjpMZQwaHA0M5VM+Kp/+2vaPnLHy1ONDoWZsUwr6eM\n", "1vIKdpbt5IPyHVZHEpOQ32+SdmwXD9T8GaffY3WcUeFrqGMx9bR11/G7XS/jNyfWvEUhhBBCWEeW\n", "iTtHWwtrsCXWMnfeajLmP4Sva9hdKsJSXJQDPWMtb7X2ELfzaWJd0azJXi49fmLMHKwvorfbzovu\n", "5TQv2cBs18QaRj0gaqaibUMytbVv8VLRa6zMmceslGlWxxJCCCHEBCA9feegu9fDnopiImbu4ZWy\n", "l/H19k7oImhhdgxer0Fe7Awaupspa62yOpKYRB7f+Sz/sf1HYPMxbUq01XFG1dypEfhaAnsQ7qja\n", "a3EaIYQQQkwUUvSdg126HtNdC8CaJifeulqLE42uBVmxLOo6xqJtgU3oC6rlzagYG9UddVS21zC3\n", "JYHsnmbyk1xWRxpVWf52rq2uJLHDlKJPCCGEECEjRd852LKvBntiPQ5spBeW0va3N62ONKpmT40m\n", "w9dKU3s0dgwKqvZZHUlMEgXBwmdKjY1bm98nJ3piz3Pzt7YyNS4CT2ci1R11VHfUWR1JCCGEEBOA\n", "FH1nqd/jY8fREmwx7cxLn036pz5Dyh2fsDrWqIpw2KiYs46XzNnMSp7JsZZymrpbrI4lJoEdlXsx\n", "DINNLOZ/Z30cd/LE3i8yeu48IjZcSXNPYJ8++YBFCCGEEKEgRd9Z2q3r6Y+pAWBF5iL8vX0WJxob\n", "C7NiAJgZuYwvrrqHGOfE255CjC+tve0caSphekI+HR028lMn5lYNQy2cGoG/LY3krsWszJKtG4QQ\n", "Qghx/qToO0ub91VjdsWxNHUZ84400XP4oNWRxsT8zGguadtLyhtbuShvFZHOyfEGXFjHAG6adzXL\n", "WlJY3HWMGQmT48eVs7KEz7Zup70wgTjHxO7ZFEIIIcTYmBzvokKk3+NjW2EtKc4MHtrwaVxNrXTv\n", "3ml1rDExLS0ap8NgpyfR6ihikoiPjOPW+dfhaotnaXcx02Mm9ny+4/w+HPkz6TNt7Dxcb3UaIYQQ\n", "QkwAUvSdhd26np4+LxcuysQwDOKvuJrkW263OtaYsNsMmuZdyFZvGvXN3VbHEZNIgTmFJ1IvJ29m\n", "htVRxkT03PnkXnIhfTYXWwtrrI4jhBBCiAlAir6zsHlvNQBrFwXefJp9k2M+34AFwXl9e4saLE4i\n", "JgvTNDla0UpanBN3pMPqOGMmN85GWmIUBYfq8HgnSQ+nEEIIIUaNFH0j1Ofxse1ADWlJ0czMTqDx\n", "j8/SsfUDq2ONqfkZUdzcvBnj948D0O/z4PP7LE4lJrLqTZtZVreTufGTq/Dp3ruHz1W+gL2rnX1H\n", "G+j1Tq4PmIQQQggRWlL0jdCuw3X09HlZtygDwzCwx8TibZhcPV7ZyVHUxk7lNdds3i7ezKdfeICD\n", "DUVWxxITjGmax39f2WMQ7+0mL2Hy9PIBOJKScV5yNT2Rfn6y94c8uesPVkcSQgghRBiTom+ENu+p\n", "xpl7kCLnm7T3dhCzbAUJV33E6lhjyjAMzLlLKPLEQn80fd4+tlfusTqWmGAK6zVfe/1fKajaxyFv\n", "HC8krSYnP93qWGMqMn8aM5bNJToikV5vPwXV+/D7J1dvpxBCCCFCR4q+Eejz+Nh+sBpnSh31vXXE\n", "umIw+3qtjmWJ+cF5fd2NbmJdMWyv3IPflDejInS2Ve6msr2GCIeLorJmAPJTJt++kHafhzVz0/E2\n", "p9He18mhxqNWRxJCCCFEmJKibwR2Ha6nP7IR097PqqzF1P/657S+/qrVsSwxb2o0n61/g/hn/5sV\n", "mYto6W3jSOMxq2OJCcLv97Otcg/uiFgyD1YxZ89rzInuJTbSbnW0Mdf+wftc+saPiKmLA2BLxeTY\n", "HkYIIYQQoSdF3wh8uK8ae1ItABdkLSVm4WKMqGiLU1kjPSGCgilLeTLhIlZlLQFga8Uui1OJieJw\n", "YzFtve2szFxMW1I2NbZ4ctJirY5liahZioyvfA2fkQdeV6BXXYZ4CiGEEOIcSNE3DI/Xx7aD1TiT\n", "6oiLiGVu6kwipk0j7sJ1VkezhGEYxKlZNPTZcPunkhSVgE+Gd4oQGfgAYXX2Ug63G7wXN5/c3FSL\n", "U1nDlZ6B0x3HhYuy8TanEW1z09rXbnUsIYQQQoQhKfqGsedIA72043AYrMxags1mw98zOefzDZif\n", "GZjXd/BwHT+79rt8etltFicSE0VNZ2DO7Ny0WRw+1gjArCmTs1cdwPR4uHBWAp7Suczqu46kqASr\n", "IwkhhBAiDE2uddDPwdbCWszeWP5p+T+Tnx1D5XcfxnC5SL7p41ZHs8y89EgerP4TvudTsF/2I6vj\n", "iAnkmxd/mfbeDjpef5V5776Jjr+ArKQIq2NZpv1vbxCz9UMyc2/jw/3V3PfRBdjt8lmdEEIIIc6O\n", "vHs4A7/fZPvBWuJjXczNTyXWFUPyrXcQqeZYHc1SKfGRvDztGn4efwk+nwztFKEVF+nGtnIdmyJm\n", "kZaeiN1mWB3JMrFr1pL1nX9n0dLptHX2s7+40epIQgghhAhDUvSdwZHyFlo7+lg5N/34G0+bO5aY\n", "+QstTma9rOmZdHv8HK1stTqKmICOVLWzPzqPvKxEq6NYyhGfgOE3Wbs4E4D391RbnEgIIYQQ4UiK\n", "vjPYWlgDwKp5gY2hTa8Xf3ePlZHGjQWZMdhNH4d3HLQ6iphgTK+XwqJ6AOZMnbzz+Qb4vV7y/c0k\n", "xzrYsr8Gr/SuCyGEEOIsSdF3BtsP1uFy2Fg0KxXTNCm5//M0PvOU1bHGhbkZ0TxU/TzRG18AYEfV\n", "Xn5V8AymaVqcTIS7xmf/l3kvPUaytx0lRR/tf3uDuv/4Huvzo+n0N/Pjd3/HseYyq2MJIYQQIoxI\n", "0Xcadc3dVHZWkjW3Ca/Zh2EYZH7zEeI3XG51tHEhPtrJc/Pv4OexF9Hn8bGtYjdvFb/PkSbZqF2c\n", "Hb/fzx8KX6G8tQqA2I/dzpOJF5M0JZlo1+TblH2ouMuuIOObj7Bs7QKMiB62N2xhU8lWq2MJIYQQ\n", "IoxI0XcaOw/X4UgrpyZyG+VtgTejps+Pa2qGxcnGj7k58Xh8JodLmlmbuwKA98u2W5xKhJvCes2f\n", "DrzKG0ffBeDQkWoqnCnMzoqzONn4YHO6oL+POXmJuP0Z4HXxYUUBXr/P6mhCCCGECBNS9J3GjkPV\n", "2BPrSIxIYHbqDPob6vH3dFkda1xZkBVDvLeL0k2bWTBlNvERbrZU7JI3o+KsbC7bAcC63BV4W1s4\n", "oOsAmJMhQzsH+Pv76d76ARepJLxN6bT3dbK/7pDVsYQQQggRJqToO4V+j4/9DQcxHF7W5a/E8JtU\n", "PvwNGn8n8/kGm5MRzZ1NmzD2bMdus7M6ZxkdfZ3sq5XFXcTI9Hv72Va5m5ToJFTKdFpefoElL/wQ\n", "t6+HOVNjrI43bnRt20LLqy9yQU4UvqapALwfLJaFEEIIIYYjRd8pHDjWhBlfCQR6Hwy7ncx/+Q7J\n", "t9xmcbLxJcppZ+PiW/hN9AV0dvdzUe4qALZU7LI4mQgXBdX76fH2sjZ3BTbDRvR1N/PvGbeSkp5I\n", "bKTM5xsQd/ElpN37eeZdsIBofypGfzQ7q/bh8XmsjiaEEEKIMCBF3yls1xXYEhpIjUwjNyELAH9P\n", "D/Zo6XkYamFWDH4T9h5tZHpSLg+u/TyfWXa71bFEmNgcnAO6NicwJ3TfoSrajQgWZ8daGWt88nnB\n", "088F8zLoPbqAf1jwZZx2p9WphBBCCBEGzrroU0r9Qin16yHHrlBK7VFKdSul9iqlrgpdxLFXWNSG\n", "/+hK7l56E6bPR/v2rZg93VbHGpcWZseS1d9I659/D8DyzIW4HC6LU4W/ydDOAO5Zcgv3LruNnIRM\n", "evQhDuwrBWCRFH0n8Xf30PLyC1yY5sPfmchBLT+ThBBCCDEyIy76lFKGUupfgc8C5qDjc4GXgN8D\n", "i4EXgReCx8NOS0cvpdUdzEmdycrshfja22n5yx9pffM1q6ONSzPSoljSV05jfRtmf7/VccLeZGln\n", "A9JiU7hixsUAdHy4mYXv/i9RDpiVHmVxsvHHU1dLX/FRZuckEBVhZ8v+GtkXUwghhBAj4hjJRUqp\n", "acBvgHlA+ZDT9wMfaq3/Pfj1t5VSa4PH7wtV0LGy90gDAEtmpQHgSExkyue+jOmRguZU7DaDuoUX\n", "s72kgys6vEyNiLA6UtiaTO3sVDwXXcN39qeyLMuN0y4jz4eKnDGTiPx8IvPzWTq7hQ/2VlNe20Hu\n", "VNnaQgghhBBnNtJ3VquBMmA+UDLk3Dpg05Bjm4LHw87uYNG3eFYq1HygjgAAIABJREFUAKbPh9nX\n", "i2EYVsYa1waG4u06XGdxkrA3adrZqRQcqgXDYHG2zJ09LZsdb3sbq+cHVvDcUlhjcSAhhBBChIMR\n", "9fRprZ8GngZQSg09nQlUDTlWA2Sfb7ixZpome4saiItxkZ8Rj6ehgfbNm4jInYYjPt7qeOPWopxY\n", "pvfW4HruQzxzHsCZnEKPp5eCqn1cmLscmyG9NiMxWdrZqbS89jLFu9oAN8vzpOfqdPwdHTT99TXm\n", "zpyLw26wpbCa+QshMSqezLh0q+MJIYQQYpwKxbvxaKB3yLE+IDIE9x5Te8pKaOpuZeGMFGw2A9PT\n", "T+8RTV/pMaujjWtT4lykR8NufzJ+Z2ARl6f2/InHtv2Wg/VFFqebMCZMO/P6vBxuKD4+H830++mq\n", "qCK1ZC/TUyNJccuKlKdlM8AwcKtZLJyRSmlbCf+66ce8ot+2OpkQQgghxrFQFH09wNCJXBFAVwju\n", "Paae2fcikYs3kZcX2B/MmT6VpI/dQsyiJRYnG/8S5s/j/SjFodpAXXJxXmDPvo3HPrAy1kQyYdpZ\n", "QfU+vr3xB/z54OsAGDYbB6ddwB+S1rJymvTynYk91k38ZVfhiIvngvnp+DuSiLa7+aB8B72eoZ8J\n", "CCGEEEIEjGh45zAqgIwhxzKAyjO9SCn1CPBwCJ4fEu29Hf+/vTuPj6q+9z/+mplksq9kIyQQtnzZ\n", "wyaLyOaCiNqqtdaltrbVbrZ2ubbX/mor1fZqW9tbu9jaW1vrcttrXauooAKiyBJkX/yyBUICCYHs\n", "IevM/P6YEAOKCkwyS97PxyMPnDNnTt5ZPuZ85nvO90vpsd34mhOZNaoQAE99PejSxI9lwsAkFm2u\n", "pnhTGUXDMxmRMYz+SVmsKdtAY1sTiW7dpwWUfMBlmz+x1i78GK+NiDoDWFbyNgDnDCgC/JdVr7FH\n", "AZgyWE3fR3E4nXiaGpgyOoc/PrOZmIYCauK3sOrAeuYOOTfY8ULB2dSZiIhIRApE0/cWMBv4abdt\n", "c4EVH/aizj/AC7tvM8YU8P4JLHrFspJV+Bxe4pqG0D8jkbplr9P87jaSps/ElZQUjEhhZWRuPAWe\n", "aoa/uIi65CtIvXgB5w+ewRObn+Wt/cXMHz4n2BFDwWBr7b4zfG1E1NmRpmo2VmxnWHoBA1MH0H70\n", "CIf+50/UHswiNzOfAWla4/Gj+LxejvztLwCYgRewc1czsUUOlu5dqabP72zqTEREJCKdyTCWo/Pj\n", "uN8Bs4wxC40xIzrXGDsHeCAQAXuD1+vlZfsGPq+T8ZnjAYgdOgyf1+u/h0Y+kjvKyYD8TF5MKKKx\n", "aDrgv8TT5XDy6u4VWk/s9EVcnQEs2eP/XbhwqH/SUWdcPGVx2bg6WjlveIpmyf0YHE4n8WOLyPz8\n", "l5g+tj/e1jgGxBVgj+5lf+2HDvyKiIhIH3UmTZ+PbotGW2u3AlcCVwMbgMuAy621NiAJe8HGim1U\n", "t1bjOZLLOYX+yRBdScmkXnwproTEIKcLH2MLs7FxeazZ6J9kMjUuhRuKruKmidcEOVlYirg6a/O0\n", "8/relSS5Ezhv4GQAnLGxLPIWsCNuIDMLU4OcMHzEjxkHTgfTxvqXboiuLuRLE68lOyEjyMlEREQk\n", "FJ325Z3W2rkfsO0l4KWAJAqCAck5pLYYKir7MW5YJj6vl47GRo06nKZJBUk4gLXbKvjk9DyiUlK5\n", "zFwQ7FhhKRLrDJ+Pq0ctwIcPd5Qbn9dLVdlhtpQfozA7jpwUXdp5OrzHjpEZF8+gnCR27WjirmvP\n", "JTZaM5+KiIjI+2mWEiAtJp2j24cyKDWP1KQYDvz4Do4+/jddkniaUuOjGJkVzZXFf+XgX/8S7DgS\n", "YtxRbi4pnMuCwvMBqHnhOcrvvZvMtlpmFmodzNNVs+gF9t9+GzNNGu0dXt7ZcTjYkURERCREqekD\n", "duyrpq3DS9HwTACybvk68ePGa6TvDEwYksafsi5h+/gFwY4iIS7l4gUsSRzLMXcCM4ar6TtdyTNn\n", "M+BH9zD1nKEArNx8MMiJREREJFSp6QM27aoCYHxhZte2uBGjghUnrE0dmszR6GTe3lIR7CgS4rZs\n", "L+Mtby4ThmWQFBuIiYT7lqjUNGhvI79fLAMyE1j3biUtbR3BjiUiIiIhSE0fsMEexuV0MDI/iZay\n", "A3hbtcjxmeqfEsPgzFh27K+hYslifB5P13O1zXW8W7UniOkkVLQdOsiSYv9MkxeMSgtymjDmdNH0\n", "TjEX5DtpbfOw/t3DdHg9rCvfpMvTRUREpEufbfraPO3srd5PXWMre8rrGDk4nagjlZTd+X2a1qwK\n", "drywdu7QZC6qeYdDr7zqX+Ae//f7u6/cwwOrH6bDo9GIvmTX0RI6vO81/z6fj/Lf/jdFbz5B/1Q3\n", "o3Ljg5guvLUdKOXIY39jQob/UvQ3N5bzl3X/yy/e+hPbq3YFOZ2IiIiEij7b9L1Rspo7Xr2Px4sX\n", "4/PBRJOFe1ABA+74MQkTJgc7XlibPiyFF1Kn8FT+fKLS/KM4blc0swZN4eixGt4qLQ5yQukttS31\n", "LFz6a372xm+7tjkcDlZPuYZHMi7g4tHpunf2LLjzB5Lz7e9RcO5kBmQmsHZ7JTPypwHw3I5XgpxO\n", "REREQkWfbPq8Xi//tq8S5YyisSIdgAkmC09dHbhcOOPigpwwvGUnuxmeE8+W8iYqy6q6tl824kJc\n", "ThfP7ViM1+sNYkLpLS/vXEa7t4NpeRO7trW3d/DKhsN0xCYwd6TW5jsbDocDp8uFp76OmePzaGv3\n", "cPRQHKOzCtlUsYO91fuDHVFERERCQJ9s+laWrqOysYrZBVPZvrORlEQ3mSWbaNqyETTqEBBzR6QS\n", "7Wln2yNPUPPSCwBkxKcza9BUDjZUsrZ8Y5ATSk9rbG3ild3LSY5JZO7g6QC0lu5n/SNPUt/YwtwR\n", "qcS7XUFOGRma1q9j2ubncfh8rNhQxpUj5wPw7I7FQU4mIiIioaDPNX0dXg9PbnsRl9PFpPQZVNe3\n", "Mn54Fp6Gemqeexq6TTwiZ+7cYSm4XE6OHKggZtjwru2fHDkPBw6e2f6yJpqIcP+2r9Lc3sIVIy/G\n", "HeVfeN3b3kbD6pUMbalg/tj0ICeMHB1Vh0kbPYohucmsf/cwAxMGMzR9EGvLNlJWdyjY8URERCTI\n", "+tw86Sv2raaysYp5w2axe28bAFNGZ5OQ0594MzLI6SJHQoyLicPSeWzXdEydk6LO7blJ2Xxx4mcY\n", "nV2oe7kiWF1LPS/vXEZaXArzhs7q2r6rOZYHUudxzuAkclNjgpgwsiTPPh8fMCcRHv73NlZsKOfG\n", "ok9R39rAgOScYMcTERGRIOtzTd+0vIkcOVbDhUPP456HNuFyOpgwPAPvoVIczj438NmjLhyVxspd\n", "dby0rowxowbgjI/H4XBw8fDZwY4mPSw5Jolbp34eH76uUT6Ap5fvBuCT4zOCFS1yeb2cNySZ/6WD\n", "V9eWcvnMOXpjRURERIA+eHlnvDuOa8Zchq8tht0Hark4uYaa++6ivVKLiQfa6Nx48tNjOLZlM3tv\n", "vYW20n3BjiS9xOFwMC1/ItPzJwHgbWtj57e/iWvLOkxOHKa/lmkINE9jAw2/XMgN7j3sO1TPnvK6\n", "YEcSERGRENHnmr7jirdXApA7YyrxY8bhcGlCiUBzOBxcMjadA1H9eGfGDbgHFgQ7kgSJ0+1mae55\n", "tDuiuHJiZrDjRCRXYhKp8y8j66pPAbBkjWbuFBEREb8+2/St3HwQgIn5CSRMnkJ0VnaQE0WmmYWp\n", "tCam8XyJj4aKqo9+gUSk/eXVvFQZS13BKCYOSgx2nIjkcDqJMyMYl+EkIzWOZesO0NTcHuxYIiIi\n", "EgL6ZNNX29DK5p2HmZXSSAbNuu+lB8VGO1kwLp3GVg9Llm6l9vUlJzx/uOko9698iNLa8iAllJ7W\n", "smc3/3phIz7g6kmZqrce5mhv5br0KmKO1fNacSkA7Z52ntn+Ms9u14LtIiIifVHEN31er5ffr36E\n", "jYe2dW1bufkg8Z4W5pe+Tt1rWseqp10yth9x0U6iXnuexq1b8LW/N/pQXn+ItWUbeXj9P7WEQ5hb\n", "snsFT297ibaOthO2H3j+30x9428M6edm8uCkIKXrO5q3bmHo7lUkOjtY9FYJXq8Pj9fDkt0reGrb\n", "IioaNeIuIiLS10R80/fK7uWs2L+GZSWrurat2FBGU1Qcabd+m6QZsz7k1RIIibEu5o9N569pc3iz\n", "/7nQ7f7JCf3HMHlAETuqdvP63pVBTClno7Kxisc2Ps1LO5fS3NFywnOPuyfyYPalXDe9P06N8vW4\n", "+LFF9P/aNxkx0XDoaBOrth4iNjqWz43/FO3eDv5c/ARenzfYMUVERKQXRXTTV9FYxf9ufo4kdwJf\n", "nHgNAAePNLK9pJpReUlkJMfjSkgIcsq+4ZMTMkiMi+bZ9Uc4sr/8hNG+L038DPHRcTy68SkONx0N\n", "Yko5Ez6fjz8VP06rp40vTLyGlNjkruc2bitjfUkdg/L7UZSvWusNDqcTp8vF5aOSiMLDk6/uxOfz\n", "MT1/EhNzx7L1sGXJ7hXBjikiIiK9KGKbPq/Xyx/XPkabp50vTPxM14noq29Ybq18kQVJR4KcsG9J\n", "iHHx6cmZNLd7KX7ocUr/3+34vP7Rhn7xadw04dO0dLTyx7WPahQizCzZvYJth3cyKXcsMwae07W9\n", "4qEHeefPj+Hyebnx3Bzdy9fL0o/s58dVz9K6bw/F2ytxOBx8ZfINJLjjeWLTs1Q0HA52RBEREekl\n", "Edv0Pb39JXZU7WLKgPHMGDgZgLZ2D4s3VLK2XxEmQbPa9bYLR6cxIC2GlXVx1F58HQ7ne79+swum\n", "MTVvAiMzh+vevjCyr6aMRzc+RaI7gVsmXX9CY/dO2ig8DQ3MGZnG0Ky4IKbsm6KSkki47CrK3Rk8\n", "/soOPF4faXEp3DzpWgozBhPligp2RBEREeklEftX32QMZVh6AV+d8tmuE9G3NpXT0NxO/8njSTkn\n", "J8gJ+55ol5OvzsnlR8+2Ur26hl+NryY+Ix3wr+n33XNv0WhQmEmNTWJE5jAuLTyf9PjUru0VVfU8\n", "sr4BZ/Z0fjtNtRYM0dk5DMzOYXb9Id7YUc3S4lIumjqIc/Mnc27+ZNWaiIhIHxKxTd+4nJGMzR7R\n", "dWLT1tDAjn88Q5SjgIvHpAc3XB82on88F49JY/HWGp54ag2X+3aTddPNOOPidBIahlLjUrhz9m0n\n", "/OxqX1vMnzd20NLu5evn55ISH7H/mwkL105IJWbtMlY8dYQZRZ8jPjY62JFERESkl0Xs5Z3ACSei\n", "a4r3UlixheuTyslKdgcxldw4PYf89Bha1q2mrLYNh1s/j3DWvc58Ph873t5E0aZFTBiYyByT+iGv\n", "lN6Q3FLDtKgqStrieOzlHcGOIyIiIkEQ0U3fce0dHh57u4I/9r+MKZdpiYZgi4l28t15+azoN4n/\n", "qhnOls37TrnvkaZqPF5P74WTs2J3V/LzBsPT+fP4ypxcjd6GAHdOLuZb3yAxM51FK0vYXvL+GXI7\n", "PB0cPVYThHQiIiLSGyKi6fN4PWypfPcDn2vZu4dnnl3LoZoWLhiTQXaqJpQIBXnpMdw+fyBen4+f\n", "Pbmdrc8vptmeOAqxv7aM/3z1Xh4qfgKvVzN6hoJth3fS7nn/JEje5mYq1m3gvsfX4/XCrfMK6Jeo\n", "ywhDhTvKxVfn9Cexo5nlv/07x1re+xl2eD3c++YfuGvprzjSVB3ElCIiItJTwr7p6/B6+P2aR7hn\n", "+QOsLdv4vufL31xF/jN/ICMOrpuaFYSEcipFAxP55gV5uFsaOfaPR1i7ueyEmTszE/qRFd+P5ftW\n", "8eDaR9X4Bdnbpe9wz/IH+MPaR9/3XENZORW/uo/UI6VcNzWLovzEICSUDzOifwK3ta/CW1/HH/61\n", "savWopwuRmQM5XDTUe5a9mutlSkiIhKBwrrpa25v4edvPsjK0nWYfkMYlz3ihOcb65v4ZWk//pJ5\n", "ETfNzife7QpSUjmVGcNT+MYnRvLAwGu4f/Ux7nl4NaUV9QDER8fxoznfYni/wazYv4Zfvf1nWjpa\n", "g5y4b3p55zIeWPUwMS43C4bPPeG5lrYO7lu0n99kXkZBUSFXTMwIUkr5KKO+9mVKzAxWbDzIi2+V\n", "dG3/9JjLuGbM5VQ1HeWu13/FvpqyIKYUERGRQAvbpu9w4xEWLv01myq2M7H/GH445zZio2MBaN1f\n", "QvUby/nlI2sor21jyuShTB2SHOTEcipFAxO59zrD6Nx41m2v4KUf/oJf/m4xKzcdxEk0P5z9TUZn\n", "FVJcvom7l/1GI369qMPTwd/WP8nfNjxJSmwSC8//LoUZQwDwtrZS+fRT3P2H5Ww90MgwM4Cb5+Tr\n", "Pr4Q5o6L4dvz8kiJc7HqHy+y8Z/Pdz139egFfLboKo421/CjpfdTUnMgiElFREQkkMJyLnWfz8ev\n", "Vv6ZktoDXDjkPL406VpczvdG8Vqamjnw5z+xN+NyigZnc+P07CCmlY8jK9nNXZ8sYMuK9Rx78wi/\n", "KWlixb5iYtwuJposZo69ioy4NyjMGIzTGbbvVYSdRTuX8vKuZQxIzuEHM28lK/G9Ubwjtc1sWbSU\n", "lKg8poybxrcuyiPKpYYv1GUmufn+hTk0PPRP/romma9OPcqowf0A+MSIi8hOzOCNktXkp+QGOamI\n", "iIgESlg2fQ6Hg1smX8+BuoPMHXIuAD6PB19HBxWVNdz3/AEqMq+isCCd710yEJdTJ6LhwOFwMG72\n", "JHwzirivtp3Vhzzs2LSH1ZvLWbXlELHuNByTkhmR1EB+dlKw4/YJlxTOpbmjhStGzOsaSfc2N7Nu\n", "11F+838baU05n7mj0vnGnHzVWRgpzE+l+KbbKH3tEAv//DZ3fW48JieRqLQ0puZNYMqA8RqxFRER\n", "iSABafqMMS7gp8DngSTgFeBWa+3hQBz/gwzrV8CwfgVdj2sWv0zJspX83Dmd5g4f54/J5ksz++OO\n", "0qhQuHFERVGQEUVebAOVi/6N8wu3sbI+nteLD/Dyqn28snofM4sGcMMlI8jNSMTr84KPiB8BDEad\n", "uV3RXDv2E12Pq/YfpPzO7/NA+gJaYhL5/JyBzBudpgYhDJ0zLJ1v4eKB18rY9IsHaDP9mXDHfwCc\n", "8ufZ4fUQ5dS90SIiIuEmUCN9C4HPATcC1cCDwNPAzLM5aFtHG2+VFjN5QBHJMe+fDdDTUI8zMYkN\n", "m0t5fKODkUfBnenhC+fnMXdE2tl8agkBDqeTlIvmk5CdwnVjs7hmRh7vbCnnn6srWLGxnJWbD7Jg\n", "xmDyRtSweM/rfHLkPGYNmkqUKywHsD+OhfRAnfl8PuyRPbR7Oxh70mRIAL72dsoP1fBi8UFeXVPK\n", "1NiRjEzx8qlLBzM4Q0ughLPpw1KIj3ay/Klsnq4cxJzHVnPzpyfhqj6MO3fACfvWNtfxn0vu5dyB\n", "k7ncXEh6fGqQUouIiMjpcnSfIv9MGGPcQBXwTWvto53bBgElwAxr7arTOFYBUPL3Z55gV/t+lpWs\n", "orGtiU+MmMdni648YV9Ph4edX/8yL+bOZUWD/1K/mcNTuGF6ttYHi0A+n5f6N5bhPdZEzje+w9ub\n", "D/H3Rds5dLSJ+ILdOLL24sVLSmwyswZNYc7g6SFzT1JZWRkXXHABwGBr7b4zOUZP1NlzLz3PAV8l\n", "r+5+k/115WQl9OM3C37SNZJTVdPMmm2HaHr2n9TXNPDvtGlkJkVz1aQM5o5I0+WcEeRAdQv/vaSM\n", "A9WtDItq5MsHX2Twnx4mNiG+a5+tle/y+zV/p7q5FpfTxeTcccwZPJ3xOaNOuKc6WAJRZyIiIpEq\n", "EEMi4/Ffarb8+AZr7X5jzD78IxAf+2T0uPve/D3utDiSYxK5cuR85g2bBUDDqreoPuZhZWMyr2+s\n", "INc5hmOH65hg+vOZKVkMzdKoQ6RyOJxEpaQQPWIkraX7mZKfzPDhR3lnSAZ/3zKCpvI8kgaV0dyv\n", "jBfsa7xgX+P+i+9kYOqAjz54eAh4nf3gtZ/jTo3F6XAyLX8iFw6exfa91ex4x9K++k3+zzkKgGTP\n", "YK5I3sW3L8pjypAkol2RfRltX5SfHsu9Vw/h6XVVrC2u5Z8Jkym5bxmzxmQyNbWVnKZKxlx1Nb+7\n", "9G7e3F/MSzuXsqZsA2vKNnDFyIu5ftwVwf4SRERE5EMEounL6/y3/KTtB7s9d1om5o7l/HGzGVjp\n", "o3H7AdbUHmH3fotv/Tpyj+7lH5kX4I5yMHrSRG4Y14+CjNiz+gIkPCRMmOz/j44O2o9UUf/yC8z8\n", "9veYem4mz7xTRdSijSxOOgdymsgY2MD+PR0kF7aSmhTTdQyv18sru5fTPymL/knZZManh8QoxccQ\n", "8DrLSxzAqJxJxNblkPnkYu6O2Ulrh5cYbxs/Ll/HrilFjB/Wj6lDkklPOOeswkvoi4lycv20bC4a\n", "ncaiTUfZ8W4tz689BNWrqI9OZM/OJeRmJDK6YQ8XJY2ixsxjX+s2sh0DOVxzjNTEGNzR79VScfkm\n", "2j0d5CZlkZOURWxUzId8dhEREelJgWj64gGvtdZz0vZW4Iy6seIlGRS/Uc7QloMsqF3HH3P8JxLJ\n", "0YMYPdHwjeGZTB6cREJMWJysSw9wulzk3v4DnDExRLUf4/pCF2VP7iRm3mW8uqOeA8WtpD77Hb44\n", "4AZS0hLJz0pkTsnrlMyex+KGf+Hw+SgqbWbToAQSoxPJTczhKymziSkchdMJDp8PT8VByM3C1ljc\n", "ziiiaxtwZWYS5XQRGxXLQGcSUan+e0d9Ph+e+jpITKS6pQ58PmhqIiophfrWxkB8yQGvswMrBrI/\n", "0Qm+Su46tINhZiT5I3Mpyk9kQPId/CBd98X2RZlJbm46rz/XT8tmS1kTm/encrCyicO1rZRWNTP8\n", "yDrWxw1iww4XkE7e0SdYGZNDcWIh8bFRzGzeRVN6DtsGb6Ul6iiDD7dSk+CiMSGeGEcCs9rOISll\n", "EK6kZGLdLhJa6nEnJ1LuqwCnl/jWVqIT4nHHJRAd5WJgVBpxCUk43G4cOEigDVdsLLXtTXh8HnzH\n", "mnG63dS11Af7WyciIhKyAtH0NQNOY4zTWtt91ewYoOk0j+UCSHU1kZ4cS0pmOu8OvYDP9IsiLz2W\n", "3BQ3LpcDaKG2poXaAISXyOH44peZEu/jnNxESit8lL6SSUFqO+W1lWwoL2V25Vr+1ZiLM7mA6Ogm\n", "pm8uZpVrOM1RDRxtPcaula/z89yrAXB5Pdxe+Sy/GHwJMWYdLq+Pbyw5zAPz/Ws+5rrTuH7RbvLu\n", "+hkA3vZ2Dv7XQpy3f4dfbHr0hP2jj3Xd+3Y271IEvM5GJTeSPzSHvPRYXDGf5eb0FBxOB9BEbRvU\n", "VlScRVyJBDmxkGNcYJLx+XzUt3ioq5vPpBYPwzscNLR4cG1zE58Ux5DoYzS0ekg+tIU9tU1U1fbD\n", "ERdDYelWtvVPoiK7g6boKjxvPc+K2KHsjPMPUH+6+i02xRWwr6gCZ1wTn3inlm15sezJ9r+Xcfkb\n", "PjbFDOva/0vNaxg9fxa/bXuHimNHu/bf8d5bH3o3UERE5CSBmMhlCrAayLfWlnfbXgL8wVp7/yle\n", "txC466w+uUj4+4m1duFH7aQ6EzkrH6vOREREIlUgRvo2AQ3AHOAJ6JodcBCw4lQv6vwDvLD7NmNM\n", "DNACDANOvowtlJUAg4Md4gyEY+5wzOwCdgOx1trWMzyG6swvHH/+4ZgZwi93IOpMREQkIp31SB+A\n", "MeZe4KbOjyr864cds9aefwbH8llrw2ou+HDMDOGZOxwzQ2By9/U6g/DMHY6ZITxzh2NmERGR3hCo\n", "VazvBKKBxzv/fRm4NUDHFhE/1ZmIiIiInLaANH2dMwre3vkhIj1AdSYiIiIiZ0KrLIuIiIiIiESw\n", "UGz6fhLsAGcgHDNDeOYOx8wQerlDLc/HFY65wzEzhGfucMwsIiLS4wIykYuIiIiIiIiEplAc6RMR\n", "EREREZEAUdMnIiIiIiISwdT0iYiIiIiIRDA1fSIiIiIiIhFMTZ+IiIiIiEgEC8ji7KdijHEBPwU+\n", "DyQBrwC3WmsPn2L/+Z37G2Av8FNr7b9O2ucHwFeADOAd4DZr7aZQzWyMGQj8GpgD+IClwHetteWB\n", "ynxSnj8BLmvtLR+yz2TgAWA8UA7cY619rNvz8cBvgCvx/478C/iOtbapJzIHMPcw4H5gBv7v9XLg\n", "P6y1B0I180n7Xg08CRRYa0tPI0fY1VlP5Fat9VrmXq2zQOU+ad8zqjUREZFw1dMjfQuBzwE3ArOA\n", "PODpD9rRGDMDeAlYBkwEfg48bIy5tts+dwHfB27r3KcceNkYkxSqmYFngSzgAuBCILdzW0AZYxzG\n", "mLuBL+M/ETvVfpnAYmAdMAH4bWfmi7rt9hBwLnApcDn+k+iHAp05kLmNMQmdzzuAucDF+BuWl40x\n", "7lDMfNK+/fF/j89kDZWFhF+dBTw3qrUez9ybdRbI3Cfteza1JiIiEpZ6bKSv8wTgNuCb1trXO7dd\n", "C5QYY6Zba1ed9JLvASustd/rfLyr8x3lu4F/GmMS8Z+I3mqt/Xfn8b4CbMR/EvhGCGZOxX8Ccvnx\n", "URJjzL3Ai8aYVGtt7dlm7jzmEOBhYDTwUe9a3wzUWGu/1fl4pzFmInA78KoxJg+4DjjfWru28/g3\n", "A8uMMd+z1h4KROZA5wbm4W8aiqy1jZ3H/1zncacAb4Vg5u7+CmzCf9J/OnnCrs56KLdqrRcy00t1\n", "1gO5uzujWhMREQlnPTnSNx7/JVvLj2+w1u4H9gEzP2D/YcDKk7ZtBIYZY3KA84AY4Klux2uw1g61\n", "1gbkRLQHMtcB24GbjDFJnSfUnwN2BeoktNN0YD8wBij5iH1nAitO2vYG/ku1wD/q4OXEr+ttwIP/\n", "ZxBIgcy9Blhw/ES00/F38tPOMmd3gcwMgDHm60A2cM8Z5AnHOuuJ3Kq1UwvHOoPQqzUREZGw1ZP3\n", "9OV1/nvy/TQHuz138vaBJ20r6Pw3GygEqoBpxpifdj63Af/htMugAAAGS0lEQVQ9OzsCkBcCmznL\n", "WlthjLkc/yVptfhPjir54JPaM2atfQJ4AsAY81G7D8B/j1Z3B4F4Y0w//F/nYWutp9vxO4wxh4H8\n", "gIUmoLnTrbUHOx93dwfQCLx59mn9Apy52hhTiP8+tVlA6hlECsc6A9Var9VaONYZhGStiYiIhK2e\n", "HOmLB7zdT2g6tQKxH7D/Y8BnjDGfNsZEdV6a8138J29uIBn/yMDv8L9LexnQBKwwxmSEWGYAtzEm\n", "Bv89SofwX0o0G9gJPNc5EhEM8UDLSdtaO/+NPcXzx/f5oO9Bb/mo3CcwxnwNuBW4I8AjPafjQzMb\n", "Y6Lw/w793Fq79Sw+R7jVWSBzg2otkMKxzqB3ak1ERCRs9WTT1ww4jTEnf44Y/CeRJ+icZe0e4BH8\n", "f7yfxD9DnAP/O/ft+P+wf9Vau8hauw64Af/J6o0hlhn8l5tdCYwDrrTWvmmtXQlcgX/E4qYAZT5d\n", "zfi/nu6OP248xfPH9+mx2Ts/hg/LfUIuY8wPgT8A/2WtfbAXsp3KR2X+If5L+X550j6O0/wc4VZn\n", "gcwNqrVACsc6g96pNRERkbDVk03f8em7+5+0fQDvv6QLAGvtPfhHGfKstcPwX57Tjv8m/uOv2dJt\n", "/1b893oUhGjmgcAha21Ft/3r8I9ADA1Q5tN1AP+sht3lAo2d2Q4AWcaYrpOhznfJszjF96CXfFRu\n", "jDFO45/a/R7g+9baO3s548lOlbkBqMe/VMFEoM4Y04B/9kGAbcaYO07jc0B41Rmo1kK11sKxzqB3\n", "ak1ERCRs9WTTtwn/H9w5xzcYYwqAQbz/hnuMMbcaY35trfV2O3G7Aniz86Tz+KxwU7q9Jg7/BA97\n", "QjTzLiC7czrx46+JB4Z0PhcMb+G/p6W7ubz3/V2J/17Pc7s9fx7+35WTJ9LoTR+VG+D3wJeAm6y1\n", "9xN8p8q80lrrw/97Ngoo6vz4Quc+l/Dxp+0PxzrridyqtcAIxzqD3qk1ERGRsNVjE7lYa1uNMQ8C\n", "9xtjjuCfHOJBYLm1dq0xJhroBxy11rbjf0f+v40x6/DPYHc9cA1wfufx9hljHgf+2DmteTlwF/53\n", "+h8PxczAC4AF/s8Yc3tn1ruBY8Cjgcj8ARx0u2TpAzI/DHy/8536B/CvZ3Yd/vW2sNaWG2OexL/G\n", "1Rfxn4D+D/BoIJdrCHRuY8ylwFfxr/22uHNGx+NqOhuDkMpsT1oU2hhzfKRiv7W25uMECMc664nc\n", "qNZ6JXOQ6uyscwei1kRERMJZTy/Ofif+2dceB5biv0Ts6s7nZuC/PGs6gLX2VeBrwE+AbcAngEut\n", "tW93O97N+KeSfxz/TG0ZwFxrbXUoZrbWduBfKLocWNR5PB8w86QpzwPJx4mLDp+c+TAwH/+aZuuB\n", "rwM3WmuXd3vNzfhPrF8CngNew/919qSzzX195+sX4p/M42C3j0+FaOZTHfN0hWOdBTS3aq3XMgej\n", "zgKR+1THFBER6RMcPp/+7omIiIiIiESqnh7pExERERERkSBS0yciIiIiIhLB1PSJiIiIiIhEMDV9\n", "IiIiIiIiEUxNn4iIiIiISART0yciIiIiIhLB1PSJiIiIiIhEMDV9IiIiIiIiESwq2AEkOIwxFwGT\n", "gCHAfdbavUGOJBKRVGsiIiISbBrp64OMMdOBa6y19wFPAHcGOZJIRFKtiYiISCjQSF8fY4xxA48A\n", "l3duOoZ/FEJEAki1JiIiIqFCI319z41AlbV2Z+fjPCAmiHlEIpVqTUREREKCmr6+5xbg+W6PJwAV\n", "QcoiEslUayIiIhISdHlnH2KMSQUmA1uNMfd2br4WeCZ4qUQij2pNREREQomavr5lAtBorb0ZwBgT\n", "C3wLWBTUVCKRR7UmIiIiIUOXd/Yt2cDGbo8XAOXW2qVByiMSqVRrIiIiEjLU9PUtTcDBbo9vAX4S\n", "pCwikUy1JiIiIiFDTV/fshWIBTDGzANarbWPBzeSSERSrYmIiEjIcPh8vmBnkF5kjLkbqMZ/+dlC\n", "a21rkCOJRCTVmoiIiIQKNX0iIiIiIiIRTJd3ioiIiIiIRDA1fSIiIiIiIhFMTZ+IiIiIiEgEU9Mn\n", "IiIiIiISwdT0iYiIiIiIRDA1fSIiIiIiIhFMTZ+IiIiIiEgEU9MnIiIiIiISwdT0iYiIiIiIRLD/\n", "D6Ia/5WMRtr/AAAAAElFTkSuQmCC\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x118488810>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nbins = 6\n", "rc('axes', labelsize=40, titlesize=30)\n", "#rc(\"ticks\", size=20)\n", "sns.set(style=\"ticks\")\n", "with mpl.rc_context(rc={\"figure.figsize\": [15, 20]}):\n", " for i in range(36/2):\n", " subplot(5, 4, i+1)\n", " title(r\"Iteration: {0}, $\\epsilon$: {1:>4.3f}\".format(i*2, eps_values[i*2]), size=15)\n", " ax = sns.distplot(samples[i*2], hist=False, axlabel=r'$\\theta$', hist_kws={\"rotation\":.3, \"fontsize\":30})\n", " ax.set_xlabel(r'$\\theta$', size=15)\n", " ax.locator_params(axis = 'x', nbins = nbins)\n", " ax.locator_params(axis = 'y', nbins = 5)\n", " min_val, max_val = ax.get_xlim()\n", " x_grid = np.linspace(min_val, max_val, 1000)\n", " plot(x_grid, p_theta_eta(x_grid, eps_values[i*2]), \"--\")\n", " if i*2>=22:\n", " xlim([0.96, 1.04])\n", " \n", " if i*2<=14:\n", " ylim([None, 9])\n", " \n", " rv = norm(loc=np.mean(y), scale=1/np.sqrt(n))\n", " plot(x_grid, rv.pdf(x_grid), \":\", color=sns.xkcd_rgb[\"pale red\"])\n", " fill(x_grid, rv.pdf(x_grid), color=sns.xkcd_rgb[\"pale red\"], alpha=0.2)\n", " tick_params(axis='both', which='major', labelsize=15)\n", " #i = 37\n", " #subplot(5, 4, 20)\n", " #title(r\"Iteration: {0}, $\\epsilon$: {1:>4.3f}\".format(i, eps_values[i]))\n", " #ax = sns.distplot(samples[i], hist=False, axlabel=r'$\\theta$')\n", " #ax.locator_params(axis = 'x', nbins = nbins)\n", " #min_val, max_val = ax.get_xlim()\n", " #x_grid = np.linspace(min_val, max_val, 1000)\n", " #plot(x_grid, p_theta_eta(x_grid, eps_values[i]))\n", " \n", " ax = subplot(5, 4, i+2)\n", " plot(1, label=\"ABC PMC\")\n", " plot(1, \"--\", label=\"ABC analytic\")\n", " plot(1, \":\", label=\"Bayesian\")\n", " legend(loc=2)\n", " ax.set_axis_off()\n", " subplots_adjust(hspace = 0.40)\n", " \n", " #savefig(\"1d_gauss_posterior_evolution.pdf\")" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from scipy.stats import gaussian_kde" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAA3MAAASNCAYAAADpdgedAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", "AAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNf1sN8tWvUuJCQhECC49N4NGPfeE3fHNXbsxD+n\n", "Oo6T2NhJviR24hQ7ieMWF2zHJSSuuOBKB9GLdEEgCYQ6Eupl2/fH7ApJbBWStui+z8ODdubOzBlp\n", "z8w99zSd3W5HoVAoFAqFQqFQKBShhT7QAigUCoVCoVAoFAqFwn+UMadQKBQKhUKhUCgUIYgy5hQK\n", "hUKhUCgUCoUiBFHGnEKhUCgUCoVCoVCEIMqYUygUCoVCoVAoFIoQRBlzCoVCoVAoFAqFQhGCGAMt\n", "QLAghCgBrpRSbhNCPATskFK+24/n/wS4VkpZJ4T4APiRlLKwv87f7ToXAf8PiAR2AbdLKZv6+zp9\n", "QQgRAzwHzEBbSPiplPIdF+MSgSqgoNvm70spvxJCzAf+BsQA5cCNUspKx3EPAjehfa9XSCkfGcj7\n", "UfhPGOnZjcCPATvQCvyflHJrf1+nL/ihZznA80A6YAAel1K+7Nh3NfBLwAocBe6WUh4WQuiB3wEX\n", "AjbgAHCXlLJ2wG9M4Rfhomvdrnc58JKUMnGgruEvfujaMOCfwFi099MHjrF2D7oWCfwVWAa0A/8D\n", "lkspVT+pICJc9EwIMRV4EkhA+y7eJaXc1t/X6Qv9qGc/dwytRbu/ol7H/wnIk1JeMmA3M0Aoz9wJ\n", "uj8gzwQi+vn8ZwM6ACnlRQOkjMOAF9AeLBOAQ2gTr2BhOdAopZwEnAP8XQiR7WLcAuArKeXMbv++\n", "EkKYgLeBex3neBttMooQ4kLgG8AsYApwhhDimwN/Swo/CQc9E8BjwHlSypnAr4GV/X2dU2A5vunZ\n", "U8D7UsoZwFnAk0KILCHEOOAfwDcd+54B/uM45jZgJjBTSjkNKAL+OKB3o+grIa9rThzfyT84rxdE\n", "LMc3XfsTsEdKOR3tHTUfuMWLrj0IZKO9z2YBk4B7BvBeFH0j5PXMYSx9AvxOSjkL+BXwen9f5xRY\n", "zqnpWQaanl3o2LcS7f3XhcPYu4Gef8+QQXnmeqITQnwXmA08LoSwAB+iTdyWoq1eb0dbhW9yrMhs\n", "BKahPXgtwM8AE9pq90tSyoeEEP9ynP9zh+dsLSdWcu4E7kVbCakCvielPCCEeBFoAKYCOUAh2upM\n", "ixDiEQAp5cO95D8X2CylPOj4/A9gJ/BdTzftUIongZFoD6J/Syl/K4TIdcj6MZpi6BzyrRVCTEAz\n", "pCId25+TUv5DCJGFthpygdNj1o3Lgescsh9xrDhdjaaA3VkEpAgh1gCxwDNSyqeBuUCDlHKDY9wL\n", "wJ+FECnAFcCrUso2xz39C7gReMvTvSsCQqjrWTuax7vK8XkrMFwIYZRSWtzddBDq2eWcmBznAmag\n", "DU3/dnabNLwHvC2EGAXsAfKllOZu964mmMFLqOuac6L5CvAD4DVfbjoIdW2l47pIKTuEEHuBUUAj\n", "7nVtFvCmU9eEEO8Dt6BFpiiCi1DXs3OBA1LKjxyf3wOKvd10iOjZSClllRAiXUppFUIY0d53XdEk\n", "QoiJwE+AR4HzvN13MKI8cz2xSyn/BuQDP3a4cX8GmKWUsx0rZxWc8HbZgd1SyklSyv8BPwS+JaWc\n", "CywEfiaESJFS3uoYf4aUssxxHEKIM9G+QMsc534NLZTCySy0L9ZEIAv4JmiK6Oqlh6a4Zd0+HwUS\n", "hBBxXu77FeAFKeUctJWMc7p5tbKALxweiJ8CbziU4SfAu45jLgSWCiF0UspyhyettzI65TvS7XMZ\n", "MMLFODPwLtpD8GLgB0KIy3ofL6XsBGrQVi9H9Dr3UTfnVgSekNYzKWWplHKV49w64AngHU+GnIOg\n", "0jMppV1KaRNCfAGsQ3up1qNNOqY6wm5AW600AMOllBullDsc954MPAS86eW+FYEjpHXNwT+Bp9HS\n", "Bnwl2HRtpZSyGkAIMRNtYroS97qWCWwGrhZCRAshotAiT4b78TtQDB6hrmfjgSohxHNCiC1oXjpf\n", "nD2hoGf/deyzCiHmOI69A4dnzjE/fhm4GQiKlKS+oDxz3rkYSBRCnOP4bEJbBXGyptvPlwCXCCFu\n", "QFMiHZpnqc7FeXXA+WgrGccApJQvCSH+4ljVsAMfdVuV2w2keJHVXQiK1d0BQohY4HQgWQjxK8fm\n", "WGA62sukUUq5wiHfx0IIK9pq0krgZSHEPGA12oqTN/e0q8WDk2STUv6628dyIcQ/0TxvH7s5r9XX\n", "cyuCllDSMxxjY4EX0RYTzvdhbFDpmRMp5RlCiDTgUyFEoZTyRSHEt4HnhBAG4A2gFOjsdj9j0SYP\n", "X0sp/+5FHkVwETK6JoS4B21C/KLjHF4JZl0TQpyHNgH+npRyl2ObK13rAH6PNvnfjLZo+SGaN08R\n", "GoSMnqF51S5EMw63CCEuBT4UQoyUJ6IwehBqeuaQIx8tiuY84AMhxBi00OYnpZT7HDKFJMoz5x09\n", "2pdtpmOFYT6ae9dJM3R9sXegJWhuRVt9MOM5xl/nYr+OEzHX7d22272cC+Aw2oqek2ygXjpCD91g\n", "cPy/sNs9LgJ+67heb4XRAxYp5QfAOLRV+ZnAbodieJMvq9vn3t40AIQQ9wqtOEP3a3b2vj8hRASQ\n", "huaF633ubHp6KRXBTSjpGUKIkcB6x7XPkFI2ejkkGPXsG06vvdQKmPwPmCW03NRCKeV8x+rp39H0\n", "rthx3BmOe/+XlFKFWIYeoaRrNwNzhRDb0UKwooUQ24QQmR6OCTpdAxBC/BDNA3CtlPJVxzZPupYM\n", "/F5KOVVKeSaa1+CAF3kUwUMo6dlRtO/hFgCpFXAxAJ6+/6GkZ5kOAw7H/X2MFuI8HViMFv21HXgE\n", "WCK0kOaQQhlzrrGgraKA5g26VwhhElolt6eB37g4ZhwQD/zS8WVdhhYT7PzCW7udEzQF+xi4xrEq\n", "jhDiVrQ43iL6luj9KbBACJHn+PwderreT8IxCd0I/MghQyLaitGljiHJQovVRghxCZpRtUcI8Rpw\n", "jZTyDbScvEa8hzW+A9zpONcItDAAV0pzGtoDDaHlw92GtmK5CUgVQix0jLsNWC+lbHCc+wYhRIzQ\n", "qoDdjMO9rghaQlLPHN/Jr4C3pZTXSyk7vB0TpHr2HbScC6c8lwGfAdHAenEiwfxnwCdSyuNCiEVo\n", "enWTlPIJb/etCBpCUtccRs5Ux0TxQqBNSjlLSlnh4Zig0zXHBPMeYL6U8vNuu9zqGlqe0DOO45Mc\n", "Mr3qRR5FYAlJPQNWAblCiFmO8y1Fq1bsNm8uBPXs346IEueCpAGtxkR2N2P0IWCNlPJiL/IEHUFh\n", "zAkhlgfZtd8D/iCEuAmtqk8JWmz7XrTf2Y9cHLMT7ctVILTCHVPQ4qedhtVKYI0QYrLj811SytVo\n", "CZyfCyH2oJXVv9jhcnb+644zXvoR4Uhk7Y4jVvhWtATqfcBkTija2UKID9zc7/VoRuAuNIPpdSml\n", "s5KRGe2hsQMtUfcKKaUNLVH0Bsf2jcBKKeXXQquGt10I4Sq2vwOIc9zrp2ix5c7V/meFEHc5xn0P\n", "GOEYtwH4u5TyM6nlJF2JVvRkD1o89K2Oe3/f8TveDOxGK9LwiuPcru55wAnk99odQfa7CEk9A+5G\n", "e/lc6fiub3d4C1KceubmnoNNz24BFgshdgJfA89LKd9xLI58G/hICFEITHCMBa2qmB34fbd7/4+b\n", "+x00gk3XgkzPIHR1rTu67scH+p3muO7DeNa1O4UWQfIo2gT9v9305mdedO05oMZx7k1onvCV3a49\n", "6Cg983rtkNQzqRXzuhytSuRutArFV0opOwOtZw68vdO86dkh4HbgP0LzwP0SuERK2e7iWt2fMa7u\n", "ecDp03XtdnvA/40fP94+1K492NcdP368fvz48Sv8ue748eNzx48f3xaq9zxUrxuMMg2V6zr1zJ9r\n", "Kz0L7WsHkzxD6W8Q6HfaUPpdB/q6wSjPUPkbBFrPhtLv+lSu61MBFKE1av6dlPKMXtuvA+5Dcy3v\n", "Bu7xIZFRERjy0Eoa3+DncervOUh40LO5aCtlOrTY9m9JrZKnIvhw6pm/KD0bBByrty+gFZKIBH4t\n", "pXyv2/5L0FZtLWhV2p4LiKAKX1DvtCDFBz37AZqnpMax6S4p5f5BF1ThC0rPQgCvxpwQ4n60fl3N\n", "vbZHo7mRp0gp2x1xsBejuZkVQYbzQSmE8OeYEiBmgERSdMODnunQ8iauklIeElrls9GAHHwpFd7o\n", "y4RE6dmgcgNQI6W8SWitFXbgeGc5JqBPAHOAVmCdEOJdR/i6IshQ77Sgxq2eOZiFlne7PSDSKXxG\n", "6Vlo4EvOXBFanlLvpMp2tCo2zphTI1rDWYVC4T/u9Gw8cAz4oRDiSyBJSqkMOYWib7yFluQOjupq\n", "3fZNBIqklA1SK8e9Fq3XpUKh8A9PegZac+0HhRBrhBAPDKpkCkUYorPbvXtChda74nUp5UI3++8F\n", "zpdSXuSvAEKrPNiO5soNRF+wYjRPh7pu+F47ENc1oBloUb5UOwTXeiaEOA0t4XcmcBAtUfr3Usov\n", "/BUowLo2lP72gb72ULtuX3QtHq1C2jNSyn87ti1G60t0rePzI8BhKeXz/ggzRPUskNceatcN1LX7\n", "Rc8c23+JFrrXhFYd9x+OSo4+o+aOQ+a6gbx2SOgZnGLTcKGVW30MTZmu8mH8crTqT64oOhVZThG3\n", "5VfVdcPm2oG6bruL8IRHpJTLfTz+GJq3QAIIIT5CCwPzaMwFqa4Ntb99IK891K4LPuqa0HpYrgT+\n", "1n2CCTSglQh3Eg/Ue7qg0rOgufZQu24gr32qegbwF0dpexzVf2ei9RF0SZDqGQy9791Q/L4HtZ45\n", "OSVjDvgn2srIFb4UPnEI0UMQofV9KHr11VcZPtxVRVKFIvSorKzkhhtuAMiTUh48hVMdQivJO9Zx\n", "niVoJas9onRNMVTwR9eEEBnAJ2jFunoviBQC4xw5Pi1oIZaPezqf0jPFUKG/9Exo/ch2CSEmoeWm\n", "ngl49H4rPVMMFfo6d/THmHP2qbgOiEPrg3EbWn+izx0W5F+klB6bVLvACjB8+HBGjPDWN1ChCDn8\n", "Df/ooWdSymeFELcDrzmKoayTUq46FVmUrinCFF907UEgEXhICOHM6XkWiHXo2g/RGvLq0fruuW1O\n", "7U0OpWeKMKU/9OwBtOiSDmC1lPKjvsqh9EwRpvg1d/TJmHNUplnk+Pn1brsMLg9QKBR+407PHCub\n", "8wMklkIRNkgp70Nrp+Nu//toeakKhaKP+KBnrwOvu9uvCF3qG9t587P9HK5sYpZI57LTx2I0+FJr\n", "UXEqnGqYpUKhUCgUCoVCoRjCVNe38sDf1lJTrxW231VUS2FpHQ/cPA+DvnehbkV/osxlhUKhUCgU\n", "CoVC0ScsVhuPv5JPTX0b150rWPHI+UzLS2Pjnkre+epUygYofEEZcwqFQqFQKBQKhaJPvPPVQQpL\n", "61k6I5vrzhUkxkXy02/NJTHOxKsfFVBd3xpoEcMaZcwpFAqFQqFQKBQKv2lo7uDNz/YTHxPB3VdN\n", "Q6fTQioTYk3cctFkOi023ly9P8BShjfKmFMoFAqFQhHyWK02SisbOVLVhM3mtVuSQqHoB/79iaS1\n", "3cK15wriYkw99p0xewTZw2JZvfkwVXXKOzdQqAIoCoVCcQoca2ijqdVMZloskRGqwK9CMdjY7XY+\n", "3XyY1z4u5FhDOwCZqbHcdeVUZk/ICLB0CkX4UlbdxKoNJWSmxXLBwtEn7TcY9Fx9tuBPr2/jvTWH\n", "uOOyKYMv5BBAGXMKhULRB45UNfH0yl3sKqoFINJk4LwFo7jx/IlER6pHq0IxGFisNv78+na+2l5G\n", "dKSBM+fkYLXaWbfrKMuf3cj3vjmD8xaMCrSYCkVY8uL7+7Da7Nx68SQijK6D/ZbMyOalD/byyaZS\n", "rj9PEBMVMchShj9qxqFQKBR+svfQMZY/u4H2TivT8tLIGhbHtsIq3v36EPn7qnjkzoUMT40NtJgK\n", "RVjTabby25e2kF9QxcTcFH5y4xyGJUcDcPmRsTz87Ab+9vYOhiVHM0ukB1hahSK82FVUw6a9lUwa\n", "ncKCKZlux0UY9Vy4aDQrPipk9ZbDXLpk7CBKOTRQOXMKhULhB0eqmnjkuY2YLTbuv3EOv7n7NL77\n", "jek8/cBZXH76WMprW/jpU2soq24KtKgKRdhitti6DLmZ44fx6F0Luww5gLycJB6+YwEGvZ4/vrqV\n", "+qb2AEqrUIQXVpud59/ZC8Adl03pKnrijvMX5hJh1PP+mmKsKp+131HGnEKhUPhIp9nKY6/k09Zh\n", "4QfXzWLJzOyufRFGA7dfOoU7LptCXWMHDz2zgWMNbQGUVqEIT6xWG394Nb/LkPvl7fOJMp0caDR+\n", "ZDK3XjyJxpbOromnQqE4dT7dVMqh8gbOmD2CcTnJXscnxkWybNYIKo61sLWgahAkHFooY06hUCh8\n", "5JVVBZRUNHL+wlxOnzXC5ZjLlo7lxgsmUFPfxsPPbKC5zTzIUioU4YvZYuOJ17exflcFU8am8uCt\n", "84gwui88dNHiMYzLSeKr7WXs2F89iJIqFOFJdX0rL7y3l9goIzdfNMnn4y5ePAaAD9cXD5RoQxZl\n", "zCkUCoUPlFY08u6aQ2SmxXL7pZM9jr36rPFcfNpoSiub+PULm+gwWwdJSoUieDlwpJ6/vrGdh/65\n", "niff3MHmfZV+tRBoau3k0ec38vX2o0zMTeGXt7n2yHXHoNdxzzemo9fBc+/sUSFeCsUpYLZY+cOK\n", "rbR1WLjjsimkJkZ7P8jBmOxEJuamsE1WU1HbMoBSDj1UARSFQqHwgt1u55//3Y3NZufOy6d6nUDq\n", "dDruuHwqx5s7WLuznMdezufBW+ZiMKj1M8XQ5K3P9vPyhwU9tn2yqZTsYXFceUYeZ8we4dbDZrfb\n", "Wb+7gmf+u5u6xnbmTx7Oj2+c7VUPneSNSOLMOSNZveUwX249wllzR57y/SgUQw2bzc5Tb+2koKSO\n", "xdOz+qRHFy7KpaCkjo82lHDrJZ4XRRW+o4w5hUKh8MLaneXsPljL3EkZzJnoW98qg17HD6+fTXOb\n", "mc37Kvnrmzu475qZ6PWeE8UVinDjg3XFvPxhAcOSo7n3mzOYODqF0opGVm0o4attZTz55g5e/aiA\n", "s+eNYsa4YWSkxmC3a+FcBcV1fLW9jMOVTRj0Om68YALfOHM8Bj/16PrzJvDV9jJWfFTIkhnZmFRP\n", "SIXCZ8wWK399YwdfbitjXE4S379ulteiJ644bXoWz76zh083l3L9+RNUb9Z+QhlzCoVC4YH2Dgsv\n", "vLsHo0HPty+b6texEUY9D94yj188vY7P848QYdRz91XT/Z6IKhShSklFI8+9s4eEWBO/u2cx6Skx\n", "AIhRKYhRKdx4/kTeXXOIjzaU8Obq/by5ev9J5zAa9Cydmc115wpGpMf3SY5hydFcsngMK78s4v21\n", "xVx5Rt6p3JZCMWQoq27i8RVbOXS0ATEqmeV3LOizERZhNHDu/FG8/fkB1u08yplzlJe8P1DGnEKh\n", "UHjgzc/2U9vQztVnjyczzf/ecdGRRh66fQEP/XMDH28spa3dwg+un4VRhVwqwhwtPHkXFquN+66d\n", "2WXIdSctKZrbLpnMdecKdh6ooaC4jmMN7RgMOpLiIskbkcTMCenERZ96o+FvnjWOjzeV8tZn+zl3\n", "wah+OadCEa40tnSy8osDvPP1ISxWG+fMG6mlGUSemulw/sJc/vPFAT5cV6KMuX5CGXM+YLHaKKtu\n", "pqSikbqGdhpbOujoPFHQICrSSHxMBLHRJhJiI0hNjCY1MYqk+Ci1Aq/wGSHEfOB3Usoz3Ox/Bjgm\n", "pfzZ4Eo2dKmobeG/Xx4kLTGKb545rs/nSYyL5Df3nMajz23k6x1Hae2w8NOb5pzyS1GhCGY27qlg\n", "z8FjzJ88nHmThnscGx1pZMGUTI/Nh0+VuBgT3zxzHC9+sI//fH7Ar0p8CkW4YLfb2X2wli37qmho\n", "7iA2KoLkhCjSkqKIizZR19jO7oO1bNxdQafFxrDkaG6/dAqnTcvql+tnpMQwZ2IGW/ZVUXTkOHk5\n", "Sf1y3qGMmkm4wWyxsmZHOet3lbPjQE0P481XDHodKYlRpCVGk5YUzYj0OHIy4hk1PJ4R6fEqd0bR\n", "hRDifuBGoNnN/ruAKcCXgyjWkOf5d/dgsdq47ZIpp2x4xUVH8OhdC7saHf/i6fX88vb5JMZF9pO0\n", "CkXwYLfbeWP1fnQ6uOXi4DGaLl4yhvfWHuLdNYe4ePFov6rxKRShTmu7mSde28amvZVex2amxnLh\n", "aaO5YFFuv+e2XbhoNFv2VfHh+mL+75qZ/XruoYgy5nphtdn5cF0xb322n/qmDgBGpMcxaXQqo7MS\n", "GJYUTWJcJJEmAzqdDrvdTluHheY2M82tnTS2dHKsoZ3a423a/w1tyMP1FJTU9bhOfIyJaXlpLJya\n", "yYKpmSoJVFEEXAm80nuHEGIRMA/4JzBhkOUasmyT1WzaW8nkMaksntE/K5JRJiO/vG0+f31jO19s\n", "LeOnT63l0TsXugw/UyhCmW2ymoNlDSyentXnPLeBIDLCwPXnTeDJN3fw+ieS731zRqBFUigGBbPF\n", "yqPPb2LvoWNMHZvGNeeMZ3hqLK3tZo41tHOsoZ2Wtk4SYk2My0lm5PD4PhU58YVZIp2MlBi+2n6U\n", "2y+dQqwKeT4llDHXjaq6Vn738haKjhwnJsrIFcvyOH/BKLKGxZ3Sea02O3UN7RypauJwVRPF5Q3s\n", "Kqpl3a5y1u0qJzbKyEWLx3D56WOJjzH1090oQgkp5UohRG7v7UKITOAh4ArgmsGWa6jSYbbyz5W7\n", "0Ovgrium9usLzWjQ8/1rZ5EcH8XKL4v4yZNreOTOheRmJvTbNRSKQPOfz4sA+OZZ4wMsycmcNSeH\n", "/31VxKebD3PZ0rHkZASPsalQDBSvflTI3kPHWDQtk/tvnNOjVc7orMRBlUWv13HO/JGsWFXIxj0V\n", "ql3IKaKMOQeFJXX86oVNNLZ0smzWCG6/dApJ8f0T/mTQ6xiWHM2w5GhmTUgHtBCUsupmvth6hE83\n", "H+bN1fv5YO0hbrl4MuctGDVgqyGBxGazs31/NV/kl7H/SD0tbWaS4iOZmJvCmXNymDQ6NdAiBiPf\n", "ANKAD4HhQIwQokBK+bKng4QQy4GHB1688GTFqgLKa1u4bOnYAXnJ6fU6br1kMskJUTz/7h4eeGoN\n", "v7htPlPGpvX7tYYQxUKI3tsekVIuD4AsQ5rDlY3sPljL9HFpjMke3EmiLxgMer514SR+86/NvLKq\n", "gAdvmRdokRSKAWX/4XpWfllEZmos3792VlD0PF0yI5sVqwpZs+OoMuZOEWXMAUVlx3n42Q20d1q5\n", "+6ppXLho9IBfU6fTkZMRz7cunMTVZ49n1foS3vhU8re3d7JuZzk/umF2vxmTwUBxeQN/f3snhaX1\n", "gBZmmhhnoqa+jcOVpXy8sZRZE9K5+8ppDE/1v2JguCKlfBJ4EkAIcTMwwZsh5zhuObC8+zaH56+4\n", "34UMMwpL63j364NkpsVy4wUDG9V6+eljSYqP5C//3sZDz2zg57fOY/YE3/rYKU5itJSyJNBCKOCj\n", "jaUAXDAI79K+Mn/ycCbmprBhdwWFpXVMGJUSaJEUigHBbrfzr/f3YrfDvVfPIDpICm9lpcWRNyKR\n", "HftraGzRwjsVfSM4/qIBpL6xnUef20hbh4Uf3zCbpTNHDLoMUSYtpHPpzGyeemsn+QVV/ODPX/Hz\n", "W+aFRZWfz/OP8NRbOzBbbCyalslVZ4xjXE4SOp0Oq83OnoO1vLl6P9sKq7nviS+575qZLOqnqkkh\n", "iB1ACHEdECelfNbVfsXA0NKmJYfb7PB/V88gyjTwj8hls0aQEGviNy9s4tcvbObBW+Yy10vlP4Ui\n", "WGnvtPD5lsMkx0cyf3Lwfo91Oh03XzSJB/62lufe2cNj31uiipIpghKb3cauykKONlZgtduw2W0n\n", "jdFx4rvbM7BLR1l1E4Uth8mdFk+JZQclhb3HaONO/gmPUWI9r+l6nHu5tL2Zopbijgpe3PAhE3NT\n", "e4zToUMMG8uIhIGrcBsuDGljzmaz84dXt1Lf1MGtF08OiCHXndTEaB66fT5vfXaAFR8V8LO/r+UX\n", "t85n+vhhAZXrVHhz9X5eWVVAbHQED9w896Ty1Aa9junjhjEtL43P84/w9Mpd/PalLXz78ilcumRs\n", "gKQODA6vwiLHz6+72P/SYMs0lLDb7fz539uoqG3hqjPyBjXkcZZI56E7FvDo85v4fy9u5mc3z2Ne\n", "EE+EFQp3rN1xlJZ2CxcvHhP0vRQnj0llyYxs1uw4yiebSjl/YW6gRVIoemC32/nz+ufZWLbtlM4T\n", "MRKqgFd25vePYP2IaTSsPbaPtcdO3qfT6bhvwW0sGjln8AULIXwy5tz1vxJCXAL8ErAAL0gpn+t/\n", "EQeOTzaVsquolnmThnPFsuAwHHQ6HVefPZ6cjHgeeyWf5c9t5IFvzWH+APbeGSg+2lDCK6sKSE+J\n", "4dE7F5LtoZCMTqfjrLkjGZOdyMPPbODZ/+2ho9MalMnzivDkP18UsXFPJdPy0rjpgomDfv3p44ax\n", "/I4FPPL8Rn770mbuv2kuC6eGnt4rhjarNpSg18G5C0YFWhSfuP3SyWwtrOLFD/axYEpmWKU3KEKf\n", "vdX72Vi2jXEpuVwy4RwiDBHo0PXwctl7xOvYe/xUWHKMNz87wNSxqVx+et5JY3p/sttdB//Yex/j\n", "wzh3cnUfZ7fDM//bTUenhe9+Ywb6bus/reZ2Xtm5kpd2vM38ETMx6FXVd3d4Nebc9b8SQkQATwBz\n", "gFZgnRDiXSll9UAI2t80NHfw0gf7iI40cs83pgVdwZGFUzN5+I75/Ppfm/ntS1t48JbQWqnfsLuC\n", "f/xnJwmxJq+GXHdGZyXy2L1LePAf63j5wwKiI41cvHjMAEurGOrsPFDDKx/uIzUxip/0qvI1mEzN\n", "S+ORby9k+bMb+P3LW/jJTXP8atRqt9tpajWj10FsdETQPdcU4U1xeQP7Dx9nzsQM0pNDo91GamI0\n", "N54/kWciDpO+AAAgAElEQVT+t5vn393Dj26YHWiRFIou8st3AXDdtMuZknFSgSeP2O12Xn79K+wN\n", "6Xzn7DODqkVId3Zlm1i1oYQ0xjJpVM9CeCX1R1h9aC0HjhUzYVie6xMofPLMuet/NREoklI2AAgh\n", "1gJLgbf7VcI+YrfbT1pJ6M4bqyXNbZ3cfukUUhKiTlplCIZJ0Izx6Tzy7YU8/OwGfvfyFpZ/ewHT\n", "8oI/5HLvoWM8viIfU4SBh+9Y4LMh52R4aiy/vmsRP/3bWv75393ExZhYNiuwIbCK8KX2eBuPr8hH\n", "r9fxwLfmBnxlfvKYVB65UzPoHnslnx/fMJslM7I9HlN05Dgfbypl7Y6jNLeZARiWHM2Zc3K4clke\n", "MVGqh4/Cd9otHeyqLKChvQmb3ebxXepEh451u8oxpNeSMU7HJ0Vf9djbe2yPzx7yd07+5Or97O/4\n", "nrLEZdvJGl/PmtKjJHxVjfBQDMUf2aOMkUzNmECkURV2UPSNg8dK0Ov0jEv1v5jQpr2VHCpvYOnM\n", "7KA15ABmTUhn1YYSduyvOamq+ZSMCaw+tJb9xw4pY84DXo05d/2vgASgodvnJiBgNYjNVjMv7Xib\n", "DYe30mxudesC7k70PHit8mNee7P/5Oj9oO+10+/jdIBxBljtdn6VvwrDtm4jfUxM9UMML+f0cJhj\n", "r81ux2yxYZgOpgg9v9r8KWzpoyxTILrTyt8KV/P8QUPP5PQ+/C49HZYSncQN069gVtZUTxIpwgyL\n", "1cbvX95CQ3Mnd10xlQm5wVHRbtLoVB69cxEPP7uBx1fkU1BSx3Xnih59KJtbO1mz4ygfbyrlYJn2\n", "KE5NjGLymFSsNjsFxcd449P9fJF/hF/evkD1sVP4xPH2Rn6x+jGqW1wksPiAKRc+r9zH55X9K9eA\n", "kwSmJPi0cjef9qPsmXHp/Oac+4kzqSrNCv+w2qwcOn6EnMQsvxcE7HY7//5UotPBtef459EbbCaP\n", "0Qy4guK6k/aNSc4B4EhDxaDKFGqcSgGUBqC7qR8P1Hs6YCB7X63c9xGfFH1NcnQi4xPGoNfp0bsx\n", "TCpqW6g53kb2sDhSE6NO2u/JEPRsIno4ri/n7HZMY2snR2uasel0jMpMIDLCfeywx1XUPt6b53Nq\n", "/5mtNsqqmrBZbWSkxpIQY/J4nC/nbO2wUFHbQmenjuz0OCIMei/n9HQT7mK84WhTJU+sf5Y/X7ic\n", "tJh+ndCr3ldBzIpVBRSW1rN0ZjYXnRZcZdQn5Kbwm7tP4w8rtvLemkN8sqmUyWNSSYqLpLq+lcKS\n", "OixWO3q9jvmTh3P+wlxminQMjkWP9k4Lb67ez1ufHeCnT63hd99dPOiNYRWhx3/3fUR1yzHOGL2I\n", "qRkT0Ov06HQ9F8lOzp/RWvys/OIAs0Q6Z88b6XFsTzzv9+YV7P1u9Wd875F7Dtbyef4RsobFcsXp\n", "eT3yd1yN9yZ7YW0Ra0o3827hp1w/7XKPcikUvTne3ojZaiY73v92NV9tP8rBsgaWzsgmJyN4vXKg\n", "tarKyYijsLQOq9XWI80hLTYVnU5HVXNNACUMfk7FmCsExgkhkoEWtBDLxz0dMFC9r+x2O58e/Jp4\n", "Uyx/uWA5UREnG2hO2jss3PLox8RGGPjjrecSYQzualvd+WLrEf70+jYqSk389p7FQaWgjS2d/PSp\n", "NbRUN3PbJZO5Yln/ucM/XF/MP/6zi47h8fz63iUDEjK2+uAansl/ja9LNnHlpAv689Sq91WQsmN/\n", "tdZENS2W735jelCEVvcmb0QSf/nRMj5cV8zHG0vYVqilJOt0MDozkcUzsjhzTg6pidEnHRtlMvKt\n", "CycxIj2eP72+jeXPbuTPPzyd5Hj3z0eFYnPZDuJNsXx7zvUY/Sg48NUXm7HWZXL9/NNDtqXOGaPt\n", "tFXks3ZnOTIx7pSfC6fnzif/6C42HtmmjDmF39S1HQe0yCF/aO+w8OL7e4kw6rnpwsEv5tUXJuam\n", "cqSqlOKKRvJGnLhfo95AWkwKVc21AZQu+PHHmDup/5UQ4ofAx4AeeF5KGRA/aGVzDY0dzSweOdej\n", "IQfaakVLu4VLlowNKUMO4IzZOXR0Wvnb2zv5xdPr+O13F5OV5l8+2kDQ3mHh0ec3UlbdzOWnj+1X\n", "Qw7gwkWjKatu5r01h3jitW08eMu8fu8HtCBnFs/kv8beatnfxpwiCGlo7uCJ17ah1+n48Q2zgzqn\n", "LDLCwBXL8rhiWR4NzR20dVhIio/0uQfemXNyONbQxssfFvDkmzv45W3zg9JwVQSe4+2NHGurZ3bW\n", "VL8MuabWTjbvrWLk8HjGjghd769Op+O+a2ZSXtPCxxtLGTU8gUuW9L0Al8loYnzaGHZW7qOxo5mE\n", "yMC/rwcDR4G8F4BRQCTwaynle932h3Ql9MGiy5iL8c+Ye+G9vRxraOfqs8czPDU0wnsn5qbwyaZS\n", "CorrehhzAKnRSchjh7DZbOh7u8sVgGaEeUVKWSKl7Op/5WxkLKV8X0o5T0o5R0r5j4EU1BNFx0oA\n", "yEvN9Tp21YZi9Hod54VI2eTenL8wlzsum0JdYwe/eHo91fWtAZXHbLHy/17cjCytZ9msEdx68eQB\n", "uc7tl0xmWl4am/ZW8tZn+/v9/HGmWLLjh1NUV+pTvqUidNH6yW2nvqmDmy6YyPiRyYEWyWcS4yIZ\n", "nhrrdzPzq84Yx7S8NLbsq+Lz/CMDJJ0i1DlUdxiAMckjvYzsydfbj2Kx2jhrTk7ILxRERRr5+W3z\n", "SIqP5Ll3dpNfUHVK53P+LkuPl/WHeKHCDUCNlHIpcD7wlHNHt0ro5wCnA3cKIdIDImWQU9fq9Mz5\n", "/o76YF0xqzaUkJuZwNVnh05rpwm52j3uP3JytlZCVLxWqbmz+aR9Co2wMHGPNJYDkJuU43Hc4cpG\n", "DpY1MHtCOmlJJ4clhQqXLR3LTRdMpKa+jZ//Yx0VtS0BkcNqtfH4iq1s31/DnIkZ/N81M/vdY+bE\n", "YNBz/01zGJYczasfF57yC9YVWQkZtJnbaepQD4xw5v21xeQXVDFj3LB+9yIHK3q9jvuunYkpwsBL\n", "H+yjrcMSaJEUQUhFk/ZczUn0vR0GwOf5h9HrYNlsz+/gUCE9OYZf3DoPo0HPY69s4dDRBu8HuWF4\n", "nFaBunpohYm9BTzk+FmP5oFz0lUJXUppBpyV0BW98CfM0mqz8+w7u3l65S4SYk3cf9Mcj7UVgo2s\n", "tDiiTAaXupYUqRXvamhvGmyxQoZTyZkLGo61apZ8WqznwhVrdmhG39KZoV/m/uqzx2Ox2nj9E8lP\n", "nvyah25fMKgeBrPFyh9f28aG3RVMHZvGAzfPHfCw1cS4SB68eR73P7WGP7y6lSe+v7Rfw0wzHC/d\n", "yuYaEqKCJx8xHLHZbdS1HqfD2qmVPnfjDXW1yu+yWqmbNYTeY8uqm/jXp/nEJxu57tIRVDZXOS/k\n", "0/FuL+X2eN/O6ep4d8sivt5/73GGSLhgaQbvfH2IFau3c9UZ4/w6HiDOFEOEIXhDUhWnRn27NpHy\n", "J0fnSFUT+w8fZ9aEdFISwicfU4xK4Yc3zOZ3L23h0ec38sf7lrrMTfVGelwaQJ+rg4YiUsoWACFE\n", "PJph9/Nuu4OqEnow41xYTojyPM9pbTfz+Iqt5BdUkZMRz0O3zw+Z8Eoner2O0VmJyMP1dJitPQzR\n", "RMd8rKFDGXPuCAtjrmv1Isr988But7NmRxmmCAPzQ6j5tieuP28CyfGRPL1yFw/+Yx3fuWIaZ80d\n", "+DCX5jYzv31xM7uKapk8JpVf3DZv0FaA8nKSuOeq6fzlje389sUtPH7vEqIi++drnB6rlcetba1j\n", "PKpR+UBxqK6UJ9Y/G7DJjXGytky8fM3nAbl+oImeCZ82f8mn73kf25soYyS3zLyaM8cs6n/BFAHn\n", "RFiX78bcF1u1sN2z5oSHV647p03L4taLJ/Gv9/fx6HOb+O13T/M7v3aYozpybevJZdfDGSFEDrAS\n", "+JuU8t/ddgVVJfRgptXcDkBshPtFhONNHTz0zHqKyxuZJdK5/6Y5xEaH5oLbmOxECkrqKK1o7OGc\n", "cLb1aOkMbFrRIONXJfSwMeYSIuMwGtzfzqGjDRytaeG06VlE99PkPxi4YNFoUhKieOL1bfzlje1s\n", "k9XcfunkPq0g+kJhaR2Pr9hKdV0rC6dm8uMbZmMaZFf+2fNGcuBIPR+uL+Gvb+7gJzfO7hcDNilK\n", "c+Ufb2885XMpXGOz2/jrxn9R01LH/BEziTfFOkqfn/z3c1li3OUm9y0nurP3YC1HqpsYNTyBid36\n", "ybnLkHR9fW/Fyb0d79s4t+XVfT7enVB2Dlc1cehoA6OzEhk1PN7n4+12O7uqCng2/1WmpI/v8jgo\n", "wgenZ875LPSG3W7nq+1HiY40Mn9K5kCKFjCuWJZHea1WEOXxFVv5xa3zepRO94YzyqNxCIXvCyEy\n", "gE+Ae6SUX/TaHTSV0IOdFrNmvMS4MebMFivLn9tAcXkj5y/M5TtXTPXruxlsjMnWHDLF5Q09jDnn\n", "/bea2wIiV4DwqxJ6yFs1drudurYGMh0hcu7YuEfrArpkevZgiDWozJ+SyV9+uIw/vLqVNTuOsmVf\n", "JZcsGcOFi0b3W27gsYY2Xv9E8smmUkBrQnntuaKrp9Vgc8dlUykub2TNjqOIUclctnTsKZ+zy5Wv\n", "4rIHjKJjJZQ3VbF01Hy+t+CWQbvuul3lvLd5C6OzEvj95UsHfQEimGhtN3Pbrz+lskrHb35xjl/F\n", "VL4s3sDfN7/MmtLNXDX5wgGUUhEIfFkY7c7+w/VU17WybPaIkMrP8QedTsd3rpxGdV0r+QVVvLKq\n", "gFv8KPQVZYwk0hhJ49B6rzyIFjr5kBDCmTv3LBAbTJXQg51WcxsRhgi3oe2vflTIwbIGzpqbwz1X\n", "TQv54kNOY+5gr7y5aEeV+iFmzPlFyBtzbZZ2OiwdJHsJC8kvrMKg1zFTeDb6QpXhqbH8/ntLWL35\n", "MCtWFfDWZwf4zxdFTBmTyiyRTl5OEiOHx5MUF+mTwtvtdmqPt7PnUC2b9lSycU8FVpudnIx47r5q\n", "GlPHBnZVPsKo54Gb53LfH7/kxff3Mnl06in3NkqMdBpzyjM3UBw4pi2kzsicNGjXrK5v5ck3d2CK\n", "MPCTG+cMaUMOICYqggsX5fLWZwdYu6O8R4Nnb8zOmgpozZAV4cfx9kbSY1J9Hv/1jqMALJ0Rfouk\n", "3TEaHO+bJ77kv18WsWBKJhNyPefodycxMm5I5ftIKe8D7vOw/33g/cGTKDRp7Wxz65U71tDGu2sO\n", "kZ4czXeuCH1DDmBkRjx6HRyu7KkrJzxz7YEQKyQIeWOutVOz1GNNMW7HHG/qoOjIcaaOTQvqflKn\n", "isHRcuH0Wdms2X6UjzaWsKuoll1FJ6poGQ06EmJNJMRGEhlhwGDQYTToMRr0WKw2OjqttHZYqKlv\n", "pb3T2nVcbmYCFy8ew9lzc4LGjZ+SEMUPrpvFw89u4LEV+fz5B6ef0t83QSXZDjgH6zTP7tiU3EG5\n", "nsVq4w8rttLSZuZ735xOToYqbANw3oJc3v78AB9vLPHLmIuPjCMjbhgHHSXsFeGDzWajzdxOjId3\n", "ac/xdtbuKCcuOoIZ48O/snxMVATfv3YWP/v7Wv787208+eMziDD6tjCUEBlPydBqTaDoB1rNbW7n\n", "th+sK8ZssXH12aLf6gYEGlOEgYyUWI5W9wxJjlGeOa+E/DfA+cf1lCC6TVYDMHtC+L9wAKJMRs6Z\n", "P4pz5o+ivqmd3UW1lFQ0cqSqifrGDhpbOqmpb6XDbMNitfU41mjQE2UyMDw1lqxhsYiRycwU6eRm\n", "JgTlys+sCelcuSyPlV8W8fTKXfzw+tl9PleMUfsOtanVnwGjrLECkyGiq1z3QLNiVQEFJXUsnp7F\n", "ufNDs7fkQJCREsNMkc62wmpKKhrJzfQtRwogKz6D7RV7aOls9biIpggt2izeiy10Z1/xMeoa2zl3\n", "/qgBr2QcLEwek8pFi0bz/rpi3l9b7HNrk5iIaCw2C2arWVWDVfhMi7mNYbEne8ptNjtfbisjOtLI\n", "stmhX529O9npceQXVNHU2kl8jAk44ZlTczP3hLwx5y1BFGCroyfZ7IkZgyJTMJEcH8XSmSNYOtP1\n", "frvdjs1mx2y1dXnoQo0bL5jI7oO1fLG1jPmTMzltun89kpzo9XqijJEBW/0RQswHfielPKPX9uvQ\n", "QlYswG60pPKQ7Gxe13ac1JjkQVkYyC+o4j9fFJGVFsu9V88IysWIQHL+gly2FVbz8cYS7rpims/H\n", "ZTgKn1Q11zAmJTQNZA+69gPgdqDGsekuKeX+wZYvEDife57epd0ZKiGWvbn+/Al8ua2MNz6VnDkn\n", "h8S4SK/HOHN+2sztyphT+ESn1YzFZiHWdLI+7is+Rk19G2fPHRl2uao5GfHkF1RRVtXMxNFaKLPK\n", "mfNO6M3ce9FVutXFFx40Y2XHgRpSE6MYNVyFWPVGp9NhMOiJMhlD0pADLX/uRzfMJsKo55//3UVz\n", "a2efzxUTER2Q1R8hxP1oCeKRvbZHA78ClkkpF6MllV886AL2A2armcaOZr/KnveV0spG/rAinwij\n", "np9+a25Yh1f3lbmTMkiINbF2RznWXh56T5xo4eGxmnjQ4k7XHMwCbpJSnuH4NyQMOYCWTt+NOavV\n", "xvpd5STFRTJlrO85duFAfIyJa84RtLRbeOfrgz4d0zUZtSjPgsI3Wh1l+KNd6GO+w0HR14XrYGZE\n", "utZT70j1iXSXIVrN0i9Cc/beDWffCXcvoLLqZhpbOpk6Nk2tzIcx2cPiuO5cQX1TB/96f1+fzxMd\n", "ERWoB0YRcCUnt29uBxZKKZ2zACMQkk+0+jatQlVq9MA2t69vbOeR5zbS0m7h/66Z2VUhS9ETo0HP\n", "adOyON7cwe6Dtd4PcJAYqYVkhnDVV3e6BjAbeFAIsUYI8cDgihVYujxzJu+NvwtK6mho7mTB1Myg\n", "yaEeTC5YlEtSXCQfriumpc3sdXyM8YRnTqHwhXZLB6BVQ+3NrqJaDHodU8aE30JKTrrmdDlSdeL9\n", "EmGIwKg3Kv3xQMg/hU+EhrjO3dhzSGtMPDkMv/SKnlyxLI/RWQl8sqmUfcV9a0gdExFNq6Udu4t+\n", "YgOJlHIlWhhl7+12KWUNgBDiXrTSzqsHVbh+oq7N0ZA4ZuA8c/WN7fz86fXU1Ldx4wUTWDYrvPIJ\n", "+pulM7UQua+3H/X5mK4WHh2hWfXVna45eB24CzgTWCyEuGjQBAsw/oRZbtqrtfqZP3n4gMoUrERG\n", "GLh06Rha2i2s2lDidXyMSXkWFP7RYdUijCINph7bm9vMHCw7jhiVHDaFT7ozIkPzzJX1KoISHRGl\n", "jDkPhPw3wdsLaO9BZcwNFYwGPXdfOZ37n1rDC+/t5fF7l/jtjY2JiMJqs2K2mjEZTd4PGASEEHrg\n", "MSAPuMrHY5YDDw+gWH7jbMbua0Nif6k81sLyZzdwtKaFS5eM4eqzxg/IdcKJSaNTSU2MYv2ucu6+\n", "arpPhSycxtzx4GvhUSyE6L3tEUfDYV/5i5SyEUAI8QEwE/jA3eBg1LO+4m1h1IndbmfT3kqiIw1M\n", "Hzd0G8dfuGg0b6zez6oNJVy5LA+9h56r0V3FtcLCmOsPPVN4odOqeXwje81DCoqPYbPDtLzwbLMV\n", "H2MiPiaCymMtPbZHGUxdBq7iZMLGmHOVM2e329lzqJbEOFNXHK4ivJk4OoXTpmWxblc563aVs9jP\n", "JvHR3WKzg8WYA/6JFm55ha+FTxwv1uXdtwkhcoHifpbNZ5y6GmeK7fdzb5fVPPZKPs1tZr5x5ji+\n", "deFEFVbtA3q9jtOmZfHumkPsPVTrU4n5BEc/xqaOFi8jB53RUsqSvh4shEgEdgkhJgGtaN655z0d\n", "E4x61ld89cyVVTdTUdvCadOyfC7NH47ERkewdEY2n24+zI4DNcwS7nXnRAGHsPAsnJKeKXyjw6IZ\n", "LqZeBXOKyrR0hfEjBz73PFBkpMZSWtGIzWbvWiQxGU00djR7OXLoEvphlo6kbefDsjtVda0ca2hn\n", "8phUNbEbQnzrookYDTpe/rAAq82/cElnbkMAE9XtoFWwFEJ8WwgxE7gNmAJ8LoT4QghxeaCEOxX8\n", "KbDgK63tZp5euYuHn91Ae6eVe6+ewc0XTVL67gfzJmmhcpv3Vfk0PoyS0XvompSyAXgA+AL4Gtgj\n", "pfwokAIOJs4QphgX79LubNxTAcC8IRpi2Z3zF+YC8NGGEo/jYiJUzpzCP5yeOVOvMMtDR7V0hbEj\n", "wteYG54Sg9lio77phL6YDBFdvxPFyYS8Z67d4XZ1lSTqzJtSIZZDi6y0OM6aO5KPN5ayfmc5S2b6\n", "7p3rmqh2Dv5E1bHaucjx8+vddoXF8rcvbUT8Ib+gir+9vZPa423kZMTx/WtnMX7kwBZXCUcmjUkl\n", "OtLI5r2VfPuyKV4NYZMhAoNOH9LGnDtdc/z8upvDwpoOq/uCC93ZvLcSvV7H3ElDr9VPb8blJJGb\n", "mcCWfVU0t5mJi3ZdNberNYGqZqnwkU6ra8/cwaMNJMVHkpLgvVBRqDI8VYveqTzWSmqiNl+INJjo\n", "tHRit9vVYq0LQt4z12lxnSQKUFCilc6elKuMuaHGVWeMQ6+Dtz7f71cxkyjHS9dZSUrRfzgNZHdt\n", "RHylvqmdx1/J55HnNlLf2M4154znLz9cpgy5PhJh1DNLpFNV19qjgpg7dDqdVigohI05xcl0WFx7\n", "ArrT3GZm/+F6xMjkroa+QxmdTsfiGVlYrDY2761wOy7aqPpkKfyjK2eumz42tnRSU9/G2DCv0JyR\n", "ouXtVtWdCOU3GUzYsWO2uatdNbQJeWPOXcUfgANH6jEa9IzKHJiCC4rgJTMtlsXTsykub2S7rPF+\n", "gAPnKphy5/c/Ts9crJcCC57YsLuce37/OV/vOIoYmcyff7iMG8+fOKRzd/qDeZM1L8sWP0It1cQ0\n", "vOh6l3rIFd5dVIPNDjPHh2fxhb7gzMteu7Pc7RingazeKwpfOeGZO6GPpRVa0anRWeFtzA1P1eYI\n", "lcdau7Y5axh0qiIoLgl5Y875h43o5YruNFspKW9kTHaCTxXaFOHH5cvGAvDhet9rEUQa1ANjoDjR\n", "x8p/z5zdbuelD/bx/17cgtlq464rpvL7e5eQqxZq+oXZEzLQ6SC/0HdjTuX/hBeeolycbN+vLYz5\n", "UihnqJA9LI7RWQlsl9U0u+k5ZzKqRUKFf3QVQDGemNserdEKgIR7Qb8TYZYnPHORzoV2i9IhV4S8\n", "ldNh6STSYDophra4vAGrzc64HBV6NVQZl5NM3ohEtuyrpPa4b14E56q080Gq6D9azW3o0HnNyemN\n", "zWbnH//ZxdufHyArLZY//t9SLl48BoOHUuAK/0iMi2RMdiKFJfW0d3oPY4kxRdNu6cBmsw2CdIrB\n", "wOmZ81TFd8f+GqIjjYwL40p6fWHhlEwsVjs797uOAulaJFTvFYWPuAqzdBpz2cPC25hLS4pGr9f1\n", "9MyphXaPhL4xZ+10+fI5cESr+DMuR710hjLnLxyNzQ4fbyz1abwKsxw4WjrbiImIQq/z77Hj7OU0\n", "JiuRx+5dosKmB4hpecOwWG0UltR5HdvVwsOiQi3DhU4PKQugVYeuqG1hWl4aRkPITx36lVkTNE/l\n", "Nlntcr96ryj8pcNFARSnMZcV5sac0aBnWFJ0j5w553NJ9ZpzTcg/kTstnUS5zJfTjDlVFGFoc/rM\n", "bKIjjXyef9inQigm9cAYMNos7V0FZnwlv6CK1z4uJD05mkfvWkhinH9ePYXvTMvTGkDvKqr1OjYm\n", "vPpmKTgRjRBhcF3kekdXiKXKl+tNXk4y8TERbJPVLt8zaiKq8BdXrQmOVjcTH2MiITb8iw9lpMRQ\n", "19hBp9kKnAg3VVFTrgl5Y67drWeunuhIY9i7oxWeiYo0snBqJtX1bRQ6qpt6IlIl2Q4YHZYOogy+\n", "G2Ot7WaefHMHRoOeB2+Zpwy5AWbymFQMeh27DvhgzBkD18JDMTB0WDsxGSLces73HtK+F1MdRr/i\n", "BAa9jhnj06k93uayIqwKEVP4S2evpuEWq43Kulayh8UGUqxBIy1Je8fUNmjvGFVEyDMhb8x1OnLm\n", "utPabqasupm8EUld3eMVQ5eljj5zX28v8zr2RDiMeun2Nx1Ws8dKeb1Z8VEhdY3tXH3WuLBukBos\n", "REcaGT8ymQNH6mlxU8jBSVSEZlgrPQkfXL1Lu7OvuI646Ahy0uMHUarQYZbQPJY7XOTN6fV6jHqj\n", "yplT+ExXzpzjnVld34rNZg/7EEsnwxzG3LHjWvSHKk7nGY/GnBBCL4R4WgixXgjxhRBibK/9Vwgh\n", "tgghNgshvjOwop6M3W6nw9p50gSxuLwRux3Gjgjv8q0K35g+bhgJsSbW7izHavVcsKErHEZVTOpX\n", "7Ha7Nln00Zirqmvlw3XFZKXF8o2zxg2wdAon08alYbPD3uJjHsepcOTwQ/PMudbPYw1tVNW1MnF0\n", "ilogdcOUsZrHcp+bnFOTIUJ5FRQ+07s1QU2d5qFKT+57a59QItVhzNUcd3rmVN6pJ7x55i4HTFLK\n", "RcADwB977X8COAc4DfiREGJQrSezi5higJKuXhyqUIJCS6Y9bVoWx5s72HPIyyTVqCapA4HZasaO\n", "3ePKf3fe+mw/Vpud684VqofcIDJlTCoABcWei6BEqpCXsKPDau5RBr07BQ4DZdLo1MEUKaTISIkh\n", "OT6SguI6t3lz6r2i8JXePZRrjmuVHYcl+9/aJxTp8sw5wixVpXHPeDPmTgM+ApBSbgLm9NpvBpKA\n", "aEAHeK8w0Y+4axheXN4AhH9jRYXvLJiSCXhviqxKSA8MvpQ9d1LX2M5nWw6TlRbLkhnZAy2aohvj\n", "Ryaj152YvLsjUiWjhx2ewiz3OYz7ibkpgylSSKHT6Zg4OoW6xnaq60/OJVWeOYU/nCiAoj1rnd+p\n", "9CFizKUmakW2nJ65CL3yzHnCmzGXADR2+2wVQnQ/5o/AVmAP8J6UsvvYAafLmDOe7Jkz6HVh31hR\n", "4RVW10EAACAASURBVDtT81KJjjSwZV+lx3HKlT8wOCf9vhRAWb35MBarnctOH4tBlUAfVGKiIhg5\n", "PIEDR45j8RCSrAo6hBddKQtujLmC4mMYDXrV6scLTs/lPhdhyiaj8swpfKfT0olep8eg1yJTauqH\n", "Vphl75w5Z5Vds03NzVzhbabUCHTPdtZLKW0AQoiRwPeAUUAukCGE+Iankwkhlgsh7N3/AcV9Fb6z\n", "q5TyidAQm81OaUUjORnxKjxL0UWE0cCM8emU17ZQVn1ytTEnA1BCurj3d14Isby/Th4q+OqZs9ns\n", "fLKplEiTgWWzRgyGaIpeTMxNodNs7YpwcEVXzpzyzIUFVpsVm93mMsyyw2zlUHkjY0ckYopQ71RP\n", "OD2XrsKUlWdO4Q+dVjMmQwQ6nZajWl2vhVk6qzyGO7HREUSaDNQ6PHNGvWbMWWyWQIoVtLhuKHOC\n", "dcAlwFtCiAXArm77ogAr0CGltAkhqtFCLt0ipVwOLO++TQiRSx8NOotN6z8RoT9xG5V1LbR3WslV\n", "jYUVvZg3KYMNuyvYsq+KEW4qsg2Ax2G0lLKkv04WqnRYOgD3DYmd7CqqoaqulbPnjiQmynX+jmJg\n", "mZCbwqoNJRSU1DEux3WfzkiVWxpWmB0TJGcoU3dKyhuw2eyMUxVlvTImO5EIo54DR05ugxNpMGG2\n", "mrHZbW7bPygUTpytQpzUHG8jKT5yyCyo6HQ60hKju1oTOD1zznm/oifenij/BdqFEOvQQip/IIS4\n", "TgjxbSnlfuAlYL0QYg2QCLw4oNL24sQL6IQxV1yuip8oXDNn4nAAtha6z5tTJaQHBnch0b1Zu7Mc\n", "gLPm5gy4TArXTMjVDDhPfRkjVQuPsML5LjW6aBheVKZ5aFV7EO8YDXpGZSZQUtF0UpiyCuFX+IPF\n", "ZumKOrPZ7NTUt3WFHg4V0pKiaGzppMNs7Zrnm63KM+cKj545KaUduLvX5v3d9v8J+NMAyOUTzj9q\n", "9xdQicOYy81UxU8UPUmKj2R0VgIFxXV0mq1uV7gi9MauyY2if3C2evDkmbPa7GzcU0FSfCQTVdW8\n", "gJGZGktinMljERQVZhleOEOXjPqTpwQHy44DkKfy5XxibHYiRUeOc6SqqUcRNufE3Gw1E2X0njus\n", "GNqYbZau52xDcwcWq23I5Ms5SevKm2vrejapuZlrQtrX7+oFdKKSpfLMKU5mWt4wOi02CkvdT1SN\n", "BmPAVn+EEPOFEF+42H6Jo5/jeiHEHYGQ7VTosDrCLD145vYVH6OhuZMFUzIxqF5WAUOn0yFGplB7\n", "vI36pnaXY1SYZXhhsZ4c5eKkqOw4pggDOaqgmE+MzdYMuINlPXNOI9RkVOEHFpsVo7P4iSNvbKjk\n", "yzlJSzzRa865GGJRnm2XhIUx1/0FVFLRSFJcJMkJUYESSxHETB+nNXbdeaDW7RjNMzf4DwwhxP3A\n", "s0Bkr+0RnOjpeDpwpxAifdAFPAWcHhxPnrmNuysAWDg1c1BkUrgnb4TrCakT1cIjvHD1LgXoNFs5\n", "XNnE6KwEVVnWR8Y4jbmjx3tsd0YQWVSYmMIHLDZLlz7WNWqLailDbF7rbE9Q39iuFkO8ENJP566c\n", "OcdDsr3TQlVdKyOHuy5uoVBMHpOKXq9j54Eat2MCGGZZBFyJ1rOxOxOBIillg5TSDKwFlg62cKdC\n", "pw85c9tkNVEmA1PHpg2WWAo3jHWE1BWVHXe536Q8c2GF2U2YZUlFI1abnTyVL+czuVmJ6PU6Dh3t\n", "uRBichSXUZNRhS9YrJYufazvMuaGVnhuUrzDmGvq6FoMUfrjmpA25nqHWVbUtgCQPUyFgyhcExMV\n", "wficJA4cOU5ru2vvm9FgDMjqqZRyJeDqwglA95lBE1rBoZDBmfTvKicHoPZ4G2XVzUwZm0aEMaQf\n", "S2GBc/JedMS1MXeihYcKeQkHXOWfAxx0GCTO0EGFdyIjDIxIj6PYUQXUSddkVHnmFF6w2+09wizr\n", "m7Q0haEWceY0Xuu6eeaUZ9s13loTBDVdLyDHH/loTTMA2Sq2X+GBKWPTKCytR5bWM9NFtKJJHxFs\n", "qz8N9Oz3GA+4LzWI1tMReHgAZfKLrjAug+t2Azv2a57SGeOHDZpMCvekJESRkhDZVfyiN0EaZlks\n", "hOi97RFHSxyFB5zlvp2TRyeHK7SCYqNUqx+/GDU8gcOVTdQ2tHUVrYhQfbIUPmK127Bj74o6G6ph\n", "lskOz9zxpg4VZumFkDbmer+Auow55ZlTeGDiaEdj15I6l8ac0RB01SwLgXFCiGSgBS3E8nFPB/R3\n", "T8dTxeyhwALQFfY6Y5wy5oKFsSOS2LKviuNNHSTF9wzvMegN6NAFJLfUA6qnYx+xOP6OvfXzcFUT\n", "ACMzVOqCPziLxRypajphzHWFiQWVzgwoQoj5wO+klGf02v4D4HbAme9wl6PdlYKTo87qGx2eufih\n", "FWaZ3M0zp8IsPRPixpzjBeT4Ix+t1oy5rGGxAZNJEfxMGHXCmHNFhN6I1WYNZHNXO4D4/+y9eZQk\n", "V3ng+4vIyLWy9uqqrupF3a2WriSEhJCwQGIxtvGGeQMe+Z1hxmaMwdbDNm+ewQ9jZgbE+MyxZ2zs\n", "sRljs9nGG362B8Y2MgIvrELILAJJSLpS7137XllbLpER74+IyIqqysqq7s49v9/hoK6IyLy3ouKL\n", "e79dqdcDaa31h5VSbwM+gxca/VGt9VQjJna1bBledr9yXNfl28/N0dcdl3zXJuK0r8ydGV/mrptH\n", "tp0zDKOhVV+F6rKXfF6czjAykCIRb+mtQt055r/HLs+scedNnuxYQc5ch8iMX9Drx4G1MqdfCPyE\n", "1vqx+s6qNdipzC2uZolaJl3J8pEt7UrUipBORlkKeeYkzLI8Lf2G3rL2ew/45Nw6VsRgpMN6cQhX\n", "Rk9XjKPDafTFJYqOu6sMfmAcsJ0isTpXcPM9C/f4//546PingE/VdTJVZGexojAzixssrea49/Yx\n", "DENaEjQLQd7c2TLKHPiFgiRnri0oJ5/LqzlW1vKoWwYaNa2W5dhIoMytlo51YJhlUNDrT8qcuxN4\n", "l1LqMPCg1vrX6jqzJsfekUK0nMnS35PoyPWxvyfB8mpW+sztQ0tXGgiHWbquy/jcGocHu6SEsrAv\n", "N58YYDNnc2k6s+ucJRagqhP0hikXZvnMRS/9L/CYCs3B9UF7gony7QmikabLLRWuknI9Wy/NeO9G\n", "8ZZfOWNDaUzT2K7MdViYWIWCXgAfB+4Hvgd4qVLq1XWbWAsQ3ts6jsvSao6BDguxDOjvjrO6UcAu\n", "OlimJX3m9qC1PXOhBSiznmd9s8CtpwYbPCuhFbjpxAD/8C+XePrCIifHtldqi5ZKSBeAzmrSWStK\n", "slrGM6f9cNebTvTXdU5CZQZ6EnSnolyc2m3wgIa28BCqzM5iYgCXpj1F5DpR5q6YqGUyOtjF5ZlV\n", "XNf1wpIDz4IYCQF+W2udAVBKPQjcATy418XNVtCr1oT7Pq5u5Ck6bsdVsgwIir4EoZYdtOZcUUGv\n", "llbmwjlz47NS/EQ4ODef8PPmzi/yw/ec3HZOEm2rT2GPpsQAz1xcxIqYUv68yTAMg+tGe/jOuQWy\n", "eZtEbPvfLmpabNrZBs1OqCblmoYHytzxw1LJ8mo4NpJmYm6N5dUc/T2JTgyzLItSqhd4XCl1C7CB\n", "5537aKXPNFtBr1oTdlQElSw7rfhJQFB8aymTxTIjnbQvu6KCXi0djxhO2p6UtgTCFXDkUJquZJRn\n", "L+2u8C+JttVnZw5AQDZvc34yw/VHe4lakXIfFRrIicM9uO7Wxj6MhFm2D6Uwy8iWDF6czmAacFTW\n", "1KsiyJsLDM3Rzu0zVyropZT6aa31CvBO4HPAF4EntdYPNXKCzUY4zDLoMddpbQkCwp65RvUAbgVa\n", "2jMXLnc+MeeFAolnTjgIpmlw+mgv335unvXNwrYqUdLPpPrs5Zk7c3mZouNKvlyTEvQXuziV4cbj\n", "28Ngo6YsrO3CzmJi4CkhIwNdxKJiZLkaxoa8qtqT8+s8//RQqIBD5+T8VCjo9XG8vDmhDEFhKSsS\n", "ZSnwzHWoMtcf8sx1WJjlFdHinrkta7/0mBOulFK1vontjZGtzrWg1oy9cuaeu+zde3Vc8uWakRO+\n", "MnehXKGgiEW+gzam7czOnq1rmwUy63lp83MNHB707t30wjrgebJBwiyF/SnnmevUMMv+bTlzEg2y\n", "Fy2tzIU3iBNza3QlLHrTsQbPSmgVTh/zlLkzl7crc9EOtKDWmuIenrlzk16lxKByotBcBJUMyxVB\n", "iUUsXNel6G88hNalsKOaZZC2MCbG0atm1PfMTQXKnBRAEQ5IOId1Zc1T5nrTHarMdW9vHC7RIOVp\n", "aWUu+KOaRJiaX+fIcLoj+3AIV0fgmTszvr30egfnNtSMctXyAM5PrJCIRUpWbKG5SCWijAykuDi1\n", "O2eu1ARZLKUtT7iYGHihgQBHhkQur5aBngSxqLc3AaRPlnBg7B2V2sHrj9uJBDlzy51XzfKKaG1l\n", "zrcIr6zmsYuuWBGFK2JkIEU6Gd3lmbOk6ljVKTg2lmltM7bkC0Uuz65xcqwX0xQjTLNyYrSH5bUc\n", "S6vbK1dueRrEg93qhIuJAUz5nrlRWVOvGsMwGB1MMb2wjuu6JUVZ1hVhP8Jhlp2uzHUlo1gRk6XV\n", "LNGIhe3YuK7b6Gk1HS2tzAVhcLMLnhta8uWEK8EwDE4f62NqYZ21jXzpeFQ8DlXHLtq7QiwvTa/i\n", "OC4nx6T0eTMTLoISRlp4tA/hYmIAE3OeN2lMPHPXxOHBLjayNpn1vIRZCgemFGYZsVhdz2NFTJLx\n", "lq5XeNUYhkFvOsbKWr5kbJLQ/t20tDIXPPCzC57FWJQ54UopFUEJhVpKmGX1KTj2ruInQb7cqSN9\n", "jZiScEBO+H3GLuwItYz5Rg/JYWh97J05c/NrWBGTQ/2pRk6r5QnnzYnxQzgo4bSEzHqenq5YR6cQ\n", "9XbFyaznpNJ4BVpcmfO088m5TUCUOeHKKRVBGd8KtZTmrtXHC7PcXuL8/ESgzIlnrpk5djjol7Vd\n", "mQs2p1LRsvUJFxNzXZfJ+XVGh1JEJPz5mgiUuen5delfKhyY7TlzuY4NsQzoTcfYzBUxDW8PIcrc\n", "blpamSsUbSKGWUowlpAQ4Uq5/ohXRfHsRNgz54dZSi5Q1SgXZnl2YgXTNDh+WJS5ZubIoS5MY6v5\n", "cYBsTtuHwDAa9T0B65sFxobEOHqtBIWdpubXQ+H7sq4IlQmUFROT9awtypxfydN1PJVF1pzdtLQy\n", "Z/tFFSZm1xjqTZDo0Jhi4eoZGUiRjFtcmNpS5qTqWPUpOIVtDYkdx+XC1ApHh9PEpSlxUxO1IowM\n", "dnF5ZrtnrmT0EDlpeexSWNdW9cVRMY5eM6XG4RJmKVwBgXGl4Ov9osz5ylzRixQQg8huWlqZCyrk\n", "za9kOTIsVkThyjEMgxOjPUzMrpEv+NZpqTpWdXbmzM0tb7KZK5bysYTm5uhwmsx6vtTzCKSaZTsR\n", "bI6iZpTpxQ0AaRdSBQ71JTENmF3cEE+2cGCCvUc+71VtFGXO+/2LvjJnSwGUXbS0MmcXbUw8q760\n", "JRCulpNjPTguXPI9D1J1rPrYTnFbmGXg5QnysYTm5thwkDe3FWoZFU9D2xAuhT635Clzw/3JRk6p\n", "LYhETAZ6k8wtb0rxBuHABMpcNucA0NPVmQ3DAwLPXLAlk73ZbirGJSqlTOADwG1ADniz1vps6PyL\n", "gPcBBjABvEFrnS/3XbXAdmxwPU39qChzwlVyYszLm7swucLpo30NCbM8gKy9DngX4AJ/oLX+/bpN\n", "7hpxXdfLmYuUUeaGRZlrBY6NeO/X8dlVnndqEAi18GjBhVUpdTfwa1rrV+44/hrgPwM2npx9pBHz\n", "qzfhggvzy15BsaE+UeaqwaG+JPrSUmmvIhEfwn5sKXOeZy7wTHUqvb5nMgg7FRnazX6eudcCMa31\n", "PcA78RQ3AJRSBvAh4Ce11i8D/gk4WauJlqPg2KWESPHMCVfLSb+P1nm/j1aDwiz3lDWf3wReBdwL\n", "vF0p1VvPyV0LRdfBxS0pyRBS5kZEbluBo77SfXmmnGeutcIslVLvAD4MxHccj7IlZ68AfkYpNVz/\n", "GdYfu2hjGiamaTLnK3OHRJmrCsP9KRzHZTHjlVZvReOHUF8CT3k2K2GWAL3d3qvaFmVuT/ZT5u4F\n", "HgLQWj8K3BU6dyOwALxNKfV5oE9rrWsxyb0oOHYphvao5MwJV0nQFPnCpKfMWY3JbagkawAFoA9I\n", "4nnC3XpO7lqw/ZyqncqcaRqMSsW8luDoyO72BFbrhiOfAX4UT47C3Ayc0VqvaK0LwJeBl9d7co2g\n", "4GxVm51f3iQZj9CVjO7zKeEgDA94SvHc8iZWxJIwS2FfgnfqZtZT6jpemfPDTHN+DqEoc7vZT5nr\n", "ATKhn4t+OBjAEHAP8H7g+4DvVUq9kjpiO0VsG6yIIc1NhasmGbcYHezi/GQG13UbldtQSdbA89R9\n", "A3gS+Dutdfjapia4j8F9dV2Xy7NrjA11EbVaOm23Y0gno/R3x7kcypmLtWgLD631J/DCKHfSA6yE\n", "fl4FWsYDfi3YTrFUoGhuaZOhvmRHNymuJoGHc3ZpA8u0ZCMq7EvwjGxsSs4cbIWZ5v2lRgwiu9mv\n", "ln8GCCe1mFprx//3Ap4VUwMopR7C8yZ8bq8vU0o9ALznqme7A7tYoJj3SihLc1PhWjgx1sMjT0yx\n", "mMmWmltXqWLSeaXUzmPv1Vo/sOPYnrKmlDoO/DxwHbAB/KlS6j6t9V/vNWi1Ze1aCDckBlhazbG+\n", "WeC200ONnJZwhRwd7ubJc/Nk8zaJmNWMLTwOKmt7scJ2GewGlip9oJnk7FooOAUs02IzZ7O2WeDG\n", "4/2NnlLbEBia55a8IihtUM3yWuVM2IfgnbqxEShzne2ZS8YtopbpFYSJSzXLcuynzD0MvAb4K6XU\n", "i4HHQ+fOAWml1PV+oYaXARWTxX1hfyB8TCl1Ajh/RbMGHNeh6DoUi3BE8uWEa+TkqKfMnZ/McPx4\n", "VZu7ntRaXzjAdZVkLQEUgZzW2lFKzeKFXO5JNWXtWgk2L4FnbitfToqftBJHR9I8cXaeybl1Th3p\n", "bcYWHgeVtb14BrhBKdUPrOOFWP56pQ80k5xdC3bRC7OU4ifV51D/lmcumrTaYSN6rXIm7EPwjKxv\n", "eO/W7g5X5gzDoDcdJ5d1oaep1pymYT9l7pPAq5RSD/s/v1Ep9XogrbX+sFLqTcCf+8VQHtZaf7qW\n", "kw1TeiG6pihzwjVzYszPm5vKcP0Jr+ZBnRfd/WTtY8BXlFJZvJyfP6rn5K6FnWGWW5UsRW5biSAv\n", "+fLMqqfM+X/PfIuFWYZwAXbI2duAz+ClIHxUaz3VyAnWC9spErdiW8VPpC1B1RgOeeasLotNO9vg\n", "GQnNTqCsrG0WScQixKORBs+o8fSmY4xnHUxaMk+75lRU5rTWLvCWHYefDZ3/HHB3Dea1L6VQBUeU\n", "OeHaOTEatCfIYJmjQH0LoBxA1n4L+K26TaiKBC/eIMxSPHOtSdBGYmLOy5srFQpqQU+D71m4x//3\n", "x0PHPwV8qkHTahgFxyZtprY8c72izFWLZNyiOxVlbnmDruvawjMn1Jhg77G2bnd8iGVAbzrOhTmI\n", "0ZprTq1p2eoDJTera0pbAuGaGRlIkYhFuDC1UvI4iCu/Oti7PHNrGAYcEc9cSxG8Zyfn1oGGtfAQ\n", "aoDt2FimxdySeOZqwaG+FLNLm1hmpJlyTIUmJXinrq4VRZnz6e2KgeupLHaLtcOpBy2rzAUvRNcx\n", "pS2BcM2YpsGxkW4m5tYwfLGQRbc6lJQ5f/M/MbfKob4kidh+Ud5CMzHUl8SKmEzMe565aOu2JhB2\n", "UHBsrMhWzpz0mKsuh/qT5PJFDDcixg9hXwLPUy7ndnwly4DedBy3pMyJZ24nLa/MWaYllguhKhw/\n", "3I1ddJlZ8HIaZNGtDmFZ3czZLGZy4k1vQSKmwehQF1Nza7iuG6pmKVbSVsZxHYpOkahpMbe8AcCg\n", "KHNVJfB0Oo6B67oUZTMqVKDg2BgYgCH7W5/edBwcr2q9GBB307LKXL7gbSDSibj0wxGqwnE/h+vy\n", "7JrXD0heGFWhlDNnWkzNeyF6o0NdjZyScJWMDXWxnrXJrOeJ+n3mRE5am0CxsPxqlr3pmBRcqDJB\n", "ERSn6G9GxVAoVMB2bCJ+iyRR5jz60uEwS5GfnbSsMje97BVRSCfEBS1Uh+OHvYqWl6ZXiZqWLLhV\n", "IpwzN+mH6I0NiWeuFQnnzVW5H6PQILY85xHmljYlxLIGBK0eAruHbEaFSthFm4hfn1CUOY+edLyk\n", "zMnebDctq8zNLHqbwu5UosEzEdqFkmduZhXLjMgmtUoEYXjRyJZnbuyQeOZakTHfozoxt7aVMycL\n", "a0sTbvOTtx3pMVcDBnu9fYrtRySLN1uohO0UMQ1vey7KnEdfOo7rSM7cXrSsMje95ClzfV2izAnV\n", "4VB/kmQ8wqXpDFZEPHPVYivMMlqqhDg6KMpcKxK0gZmcXyu1mhA5aW0CxcK2vRBAUeaqT9DqIR8o\n", "c7IZFSpgOzaGG4RZSvQZ+EptEGbZur1Na0bLKnMzgTKXTjV4JkK7YBhbFS0tw5JQmCqxM8zSNOCw\n", "KHMtSeBRnZxfJ2oGOXOysLYygXza/uvuUJ+sqdWmv8czOhfyrvdfWVuECnjPh3jmwngFUMQztxct\n", "q8zNr3gW/v60WBGF6nFsxKtoiWtKKEyVCDxzQZjlof4UUatlXz0dzUBPgngswtTcuoRZtgnB3y9Q\n", "NCRnrvpELZO+7jjZnHePxVAoVMJ27FLlRlHmPBKxCNGI562UNWc3Lbujms94ylwyKg+6UD2Oj3hF\n", "UBzHkAW3SgRWtGIRllZzpbwrofUwDIPRwS4m59cwDAPTEKNHqxMYW/J572dpGF4bBnsTJWVOSqsL\n", "lbCdYik/rCcte1zw1p500s89lb3ZLlpSmdvM2axt5oCtRsSCUA2OH/aKoBRtQ6w/VSIogJJZ9e6n\n", "tCVobY4cSpPNF1nMZKXqaxsQbIyyOQeQnLlaMdSblGqWwoEoODaO75nrTokyF9DjFzyUNWc3LanM\n", "Tc6tgeEtPEHjWkGoBoEyVyi4EpddJYKNy/Kqp9RJw/DWJpw3J1VfW5+SMpd1MU2jlN8lVJeB3kTH\n", "9clSSt2tlPpcmeOvUUr9i1LqK0qpNzdibs2M7dg4RYOuZBQr0pLb9JrQmwoKCUme9k5a8imZnFsH\n", "U5Q5ofoc6vMqWubzLo7r4DhOo6fU8gQhRcsrvjInnrmWJvj7Tc6tY0WiJc+r0JoEisXGZpHB3gQR\n", "02jwjNqTod5kSJlrfwOIUuodwIeB+I7jUeA3gVcBrwB+Rik1XP8ZNidFp4jruhRtyZfbSa9fvX6z\n", "kG/wTJqPllTmxsUzJ9SIoKJlThLVq0YQErGw4r2AxTPX2oz6Dd+n5r1ec5Iz19oE8rm56Ujxkxoy\n", "2JsoVePrkDCxM8CPAjutAzcDZ7TWK1rrAvBl4OX1nlyzEij6tihzu+jv8t5POfHM7aIllbnJuTUM\n", "3zMnOXNCtTk+0lNKPu6QRbemBJv9+cUcpgHD/VL6vJUJwiyDxuEiI61NsHl0HFPy5WrIUG8S1/X0\n", "mk4wEmqtPwGU+0V7gJXQz6tAb10m1QIEz4brmKLM7aA3ncB1IWeLMreTltSExufWMCOe5yQqnjmh\n", "yhw/3I272Fm5DbUk2OzPL+YYHuiVtgQtTl86TiphMTm/TmLUopAXGWllSpUVXUM8czVkIOyZ62xv\n", "9grQHfq5G1iq9AGl1APAe2o4p6ahIMrcnvSm4zBjkrc7Qn7OK6V2Hnuv1vqBche3nCbkui6Tc2t0\n", "H7fYACwz0ugpCW3G8cPd8B3Pglovr4NSygQ+ANwG5IA3a63Phs6/CHgfXsjKBPAGrXVLBI4H9zCz\n", "bnP9SQmxbHUMw2BsqItL06vcIGGWLU/JYOWaoszVkMEOLICyB88ANyil+oF1vBDLX6/0AX8D+0D4\n", "mFLqBHC+JjNsIFvyaNDTFa98cYfR2xUD1+yUaJCTWusLB7245Uzky2s5NrI26S5PD7XMaINnJLQb\n", "x0a6G5Go/logprW+B3gnnuIGgFLKAD4E/KTW+mXAPwEn6zWxayUcNiJtCdqDsaE0edvBlX6MLU/p\n", "7+eYHJIQ6JqRSkSJW96+pcNkxgVQSr1eKfXTfp7c24DPAF8BPqq1nmrkBJuJknHMFc/cTnrTcU+Z\n", "EwPiLlrOMzcxuwZAV9IEW3LmhOpzqC+JZfiLbv1eGvcCDwForR9VSt0VOncjsAC8TSl1K/Cg1lrX\n", "a2LXSnhxkkqW7cGonzdXLBoUXQfHdTCNlrMNCoTDLCVnrtakk0lW6YxqlgC+Z+Ee/98fDx3/FPCp\n", "Bk2rqSk9GxJmuYuedAzXMTvNGHIgWm71nZhbByCV8qYuYZZCtTEMg+6kF96QrV8J3B4gE/q56Ide\n", "AgzhLYjvB74P+F6l1CvrNbFrpRCy/Esly/bgiP93tG2/oINYSluWkudclLma0+OvK5v5XINnIjQr\n", "4bBnUea205eOg2tQdDvDGHIltJxba2LO88zF494+VwqgCLWgpyvBKjC1uMrpoboMmWF7UriptQ6a\n", "3C3glXLWAEqph4C7gF3NWAOaKWE8vDiJZ649CP6OhbxXiKrg2MRo+MbjihLGBY/A2BI1LbpTkrZQ\n", "S3q7kkwAmQ1R5oTyFELGFVHmtpOMWxhuBMeVapY7aTlNaLKkzHkWYekzJ9SCvq4UE+swMZ/xghxr\n", "z8PAa4C/Ukq9GHg8dO4ckFZKXe8XRXkZ8JFKX9ZMCeOFog2ugWmaDA9ITk47EHhYczkXok3TwuOK\n", "EsYFjyCsqzeVwDCkYXgt6UsnYB1WN7ONnorQpIRzWEWZ245hGJiGiYN45nbScprQ+Owa6WQUw/As\n", "wpbkzAk1YKA7CeswtbhWryE/CbxKKfWw//MblVKvB9Ja6w8rpd4E/LlfDOVhrfWn6zWxa6XglMYB\n", "lgAAIABJREFUFMA1GelPYUVaLrJbKEN3KkZ3KkrWV+YkzLJ1CULJ+9ISYllr+tIpT5nLimdOKE+4\n", "VYhUs9yNZVrkDWf/CzuMltKEikWH6YV1Th/rK1kvJMxSqAVDPV0wDTNLq3UZT2vtAm/ZcfjZ0PnP\n", "AXfXZTJVJm/bXiXLQxJi2U6MDaW5kHUw0x1Xna+tyGxsAjDQLV7zWjOYTsEMrItnTtiDwFNuuCZd\n", "SQl73kmgzGXzNomY7P8DKt6J/Xpfha77ELCgtf7lmszSZ2Zxg6LjcuRQmpy/eZAwS6EWdKcSAMwu\n", "rTd4Jq1PtpD3ip8MijLXTowd6uLcvIFJ04RZClfBmu8lGkiLMldrBnu8d+BGviVahAoNIDCMxawo\n", "EVPCnncSNS0MA5ZWNxkd7N7/Ax3CfjFPe/a+ClBK3Q/cit9LpJaM+/lyR4fT25K2BaHaxPzw3aW1\n", "DQq2xGdfCzm7gOsa4plrM8YOpUv9GKXvT+uytukpc4M9oszVmsEeL5RVlDlhLwJlLhmTfLlyRP1e\n", "jUurmw2eSXOxnzK3rfcVXgW9Ekqpe4DvAj4I1NyEMD7jKXNHDqVLD3xEWhMINSDw+Lo4jM/WLW+u\n", "LSkUbc8zNyRtCdqJsaEuXMdbQiTMsnUJFItDfWJsqTV9vvczK8qcsAd526vUKMpceeIRL/R0aW2j\n", "wTNpLvZT5vbsfaWUGgXeDfw8dVDkAMZnvfylo8Np7KKNZVpSfUuoCaXwXdPh4nR98ubaFduxpS1B\n", "GzI2FPLMiTLXsmwGylyvyGetifoRH9mClFYXyhOEPafiUvykHPFooMyJZy7MfjGKlXpf3YfXzPjv\n", "gcNASin1tNb6j/f6smvtfTUxt4ZpGowOdVFwbAmxFGpGSZkzHC5NZypfXJmO733lUAQ3wqF+CeNq\n", "J8YOdYEjYZatzmY+DzEY7hfPea0J9iwFx8YuOlLdV9hFUOm0Ky6euXIkot59WdkQZS7MftrQnr2v\n", "tNbvB94PoJT698BNlRQ5/zMPcA29r8Zn1xgZSBG1IhQcW9oSCDUjsKAapsOla/PMdXzvK5ciUdMi\n", "asnGpZ1IJaIkYjGKSJhlK5OzCxCDdDzR6Km0PWEj4WImy7AYuIQdrJeUOfHMlSMR8zxzK+tSETbM\n", "frurTwJZv/fV+4BfUEq9Xin102WurWkBlMx6nsx6nqPDnvXQLopnTqgdwbMVj5vXqsx1NKsbWTC2\n", "QiOE9qLPr/oa9CoTWgvXdUs5OmIcrT3RkDK3sCybUWE36zlPmUsnRZkrRyomnrlyVHx779f7KnTd\n", "x6o5qXJMzAaVLL2oTwmzFGqJ5RfW6e22mLq0Lj1NrpLxOS9ENRmVkJF2pC+dYgFYyEgLj1ZkbbOA\n", "Q5EIW+88oXaUCrYZDvPLshkVdrOR8wxj3UnxlJcjUOZWN3INnklz0TJxT0HxkyOHPM9cwbGlx5xQ\n", "MyzT8yT1dFm4LlLR8iqZWPCVOanM1ZYMdHul1uczUlmsFZlb2sQwHQxMTKNltgMti2EYRIwIhukw\n", "vyLKnLCbjbynpPSIMleWoDDMalY822Fa5u09PrvVYw68HA0JCxFqRWClTqe9Z+wai6B0LJO+MteV\n", "kJCRdiRogry4KspcKzK/vAmGS8QQr1y9iBgRMFxR5oSyZPNe2HNvlyhz5QicOOub4pkL0zLK3MTc\n", "DmVOcuaEGhIUQEklPRGRvLmrY2rBu29iZWxPgnL2i9LzpyWZW9oAw8EyZC2tF9FIVHLmhD0J8o97\n", "upINnklzEuzN1nKizIVpGWVufHaV7lSU3nQc13W9nDnxzAk1IrD+JBOexVp6zV0dM8ueEUbi/9uT\n", "4V7PuLYiPX9akrnlTTAdWUvrSCxieWGWkjMnlCFX8CoD94lnrixB1FSuUKBgFxs8m+ahJZQ5u+gw\n", "vbBRKn5SdLw/oOTMCbUi8PoapkN/d1zCLK+SOV+Zi1lSzbIdSfnhs5lN8TK0InPLm2A4Ip91xIpY\n", "mBEJsxTKkyt6njlpTVCe0r7fdMisSxXlgJZQ5qbm1yk6binEsuD3NJIwS6FWBC8M27E5frib2aVN\n", "NrKFBs+qtdjM2axseJt8kdX2JPi7buRy5AtiJW015pe9AihxUebqhmVGMCMuS5ksxaLT6OkITUbB\n", "Dva3IpPlCPZmhuGysibKXEBLKHNB8ZNwJUuQvjhC7QierYJjc93hHgAuz0io5ZUwvbCOYXqblWhE\n", "FqZ2JFhYXcNhakHaE7Qac74yJ8aW+hE1vZw5x4WlVcn7EbZTKPr7W2kVUpZoyDO3sibyE9ASyly5\n", "4icgYZZC7QhepLZT5PhhL7xXiqBcGZPz62D4ypzIaluyZSV1mJwTZa6VKDouCytZMB0xjNaRqGmV\n", "3ouSNyeEyeZsHPw0IpHJspT2/YbDioRZlmiJpyXIVzo24m2qbQmzFGpM8GzZRZvjRz3P3KUaeuaU\n", "UibwAeA2IAe8WWt9tsx1HwIWtNa/XLPJVInJuTUoeeZEVtuR0t/VdLy/d5Ozn5wppX4BeBMw5x+6\n", "X2v9bN0nWgeWMlkcxwFDPHP1xDIjpQ275M0JYTLr+dKaKc6K8pTWHEM8c2Fa4mm5OL1KLBphZNAr\n", "gy05c0KtiZQ8c3bJM3dxqqZFUF4LxLTW9yil7gbe5x8roZS6H7gV+HwtJ1ItpkKeOVmY2pPSO9hw\n", "PU9s87OfnL0Q+Amt9WMNmV0dCXrMgRhb6okVsXBxAZd5aU8ghFhZz5VkUsIsyxPcF0PCLLfR9GGW\n", "Rcfl8swqx0fSREwDCMUUywIk1AjTMImYEQqOTVcyylBfkou1rWh5L/AQgNb6UeCu8Eml1D3AdwEf\n", "BIxaTqRaTIVy5mKSM9eWBO9gw3SYnG9+zxz7yBlwJ/AupdSXlFLvrPfk6snc0mbI2CLyWS/CYWIL\n", "4pkTQmTW82A4GJiYRtNvzxtC6V1lSDXLME3/tEwvrFOwHY77RShAwiyF+mCZVulZOznWw2Imx3Lt\n", "EtZ7gLC2WPRDwlBKjQLvBn6eFlHkwAuz7El7VjTxzLUnwTs4HjdaJWduTznz+ThwP/A9wEuVUq+u\n", "5+TqyezSxlYYtMhn3QgXcJiTnDkhxMpaHsN0iBjilduLksfScMUzF6Lp3+BBaNt1fqgbQMHxSsRL\n", "aIhQS6KmVSq2c2qsl689NcO5yRVeqIZrMVwG6A79bGqtg7rV9wFDwN8Dh4GUUupprfUf7/VlSqkH\n", "gPfUYqIHYSNbYDGT4+R1MaYRWW1XAiU9HjOYz2TJ5mwS8Yb9rc8rpXYee6/W+oHQz5XkDOC3tdYZ\n", "AKXUg8AdwIN7DdhoObsWZpc2tjxzIp91I5CZSMRloTWVuYPImXAVBJ45Ueb2JthLGBFHWhOEaPo3\n", "+EW/gmDYM7dVulVCQ4TaYZkRbL9B/akjvQCcn6iZMvcw8Brgr5RSLwYeD05ord8PvB9AKfXvgZsq\n", "KXL+Zx4AHggfU0qdAM5Xc9J7EbQT6UlbTBelZ067EngZYn5/26mFdU6O9TZqOie11hf2uWZPOVNK\n", "9QKPK6VuATbwvHMfrfRljZaza2FueRNDqs3WnUBx7uuNMr/SkjlzB5Ez4SrIrOe8gkRiXNmTsAEx\n", "kxHPXEDTPzFBntJ1ZcIsJUFUqCVR0yoV2wmUuXOTK7Ua7pPAq5RSD/s/v1Ep9XogrbX+8I5r3VpN\n", "oloEylx3OgIr4plrV4JCQVbUi/6dmFtrpDJ3ECrKmZ8n9zm8Spf/qLV+qFETrTVzS5skEl6EqShz\n", "9SPYt/T3xDh3PkvRcUv1AITOZnk1B6ZD1Iw1eipNS/CuisYM8cyFaPo3+KXpDKmExVBfonRMqlkK\n", "9cCKWGwWPMvpcH+KVMLi3ERtlDmttQu8ZcfhXSXRtdYfq8kEqsz4rOdR70r5ypzIaltiGAZR08Ky\n", "PPtCoMQ3K/vJmdb643h5c23P7NIG/YeiLCFhlvUkeBf2dUdxnALLq1kGe5MNnpXQDCyv5TBiLjFL\n", "Iln2IjCGxKKwtFnALjpYkaYv/1FzmvoOFOwiE3PrXHe4B8PYslyVCqDIAiTUECvkmTNNg5NjvUzM\n", "rZHN2Q2eWfMTbOpTyaAAiixO7YoVsYhEPGXu8nTtejEK1WNts8BG1qavx5NLKVBUP4J73dPt/Vca\n", "hwsBS5ms55mTve2eWH5l7EDfXZWKlkCTK3Pjs2s4jlvq8xUgOXNCPYiaVilnDrxQS9eFC7VtUdAW\n", "jM+ukUpYRKygNYEsTu1K1LRwDYdkPMKlGVHmWoG5pQ0Aen1lTjzn9SPYqPekvXvfonlzQg1YWs1h\n", "mK4ocxUIPHOWf4uWpaIl0ORhlhemdufLgbQmEOqDZVrYxULp51NjW0VQbrpuoFHTanqKRYep+TVO\n", "Heml4HgyLJb/9iVqRrGLNkeHuzk/maFYdIhI2EtTM7fkeYN605bktNaZYDPa3eXd8+Bv0U747T4+\n", "ANyGl3/6Zq312dD5XwDeBMz5h+7XWu9KK+gkHMdleTVHzHBkvaxAsO8vKXO1axfVUjT1ExPkJwXF\n", "JwICz5wsQEItiUYsiq6D4zqYhhkqgiKeuUrMLG5gF12ODneXWjtEpWl422KZEQqOzamRbp67vMz0\n", "4gZHDqUbPS2hArO+Z667y1PmZPNYP4KIom6/B2fwt2gzXgvEtNb3KKXuBt7nHwt4IfATWuvHGjK7\n", "JmR1I0/RcbxqliKPe1Jq7eHnaS9mxLMNTR5meW5iBcPwGjaHKZSqWcoDL9SOwIIahFoeG+nGihic\n", "m1hu5LSaniBf7uhwmrx40dseK+Lllh4f8cLhL0neXNMz63uD0l3eO07ks37s9MzNLLSlMncv8BCA\n", "1vpR4K4d5+8E3qWU+pJfQbbjWV7NgeEpKLK33ZtoqE8jiDIX0LTKnOu6nJ1YYWyoi1Riu1XfFmVO\n", "qAPB81XyLlkmx0d6uOCHkgnlCSpZHh1OhzxzIqvtipdbapdymy9L3lzTE+TMpVK+MifyWTdKpdWj\n", "kIxb7eqZ6wHCISxFP/Qy4OPA/Xi9HF+qlHp1PSfXjCytZsH0DMcij3sTtMMxA2VOck6BJg6znFnc\n", "YH2zULZBs4RZCvWgpMw5W9Urrz/ay7nJFS7NrDZ7P62GseWZ66aw7OUcStPw9iVqWthFm2PimWsZ\n", "5pY2sSIG8ZhXJVqKidWPYF0pukVGBlLMLK7juu62it1tQAYIV64ztdZhC+hva60zAEqpB4E7gAf3\n", "+jKl1APAe2owz6Zhye8xBxCLSJ+5vTAMA8u0MHwv5kL7eubOK6V2Hnuv1vqBchc3rTYU5Mtdf2T3\n", "hrngeBvEmOThCDUksKAWQsrcjcf7+Yd/ucSzl5ZEmduDS9OrREyDw4NdW150Mby0LVYkSsGxOdSX\n", "JBaNiGeuBZhd2mCoL0nRlTDoehMYoQtFm5GBFBemMmTW8/Sm4w2eWVV5GHgN8FdKqRcDjwcnlFK9\n", "wONKqVuADTzv3EcrfZm/gX0gfEwpdQI4X81JN5KlTA7DEM/cQbDMCA5FrIjRzmGWJ7XWFw56ccUn\n", "5gAViV4P/AfABp4AftZvynrNnA2UuaO7N8x5W5Q5ofaU88yp6/oB0BeX+IEXn2jEtJoax3G5OJ3h\n", "2Eg3UcskX5TNYrsT/G1dHI6NpLk8vUrRcYmYbeVpaBuyeZul1Ry33zBEvuhVgpMmxfUjvK6MDHj7\n", "m5nFjXZT5j4JvEop9bD/8xv9/WJaa/1hP0/uc3j7yn/UWj/UqIk2C16YpXjmDkLUtLDdIn3diXZW\n", "5q6I/XZYe1YkUkolgV8BbtVaZ5VSfw78CPB31ZjYViXLvl3nckWvSaA88EItCaxj+VB7guOHe0jE\n", "IuhLS42aVlMzs7hBNl8stRMpFAt+SIRs7NuVwOtacLxQy7PjK8wsrjM2JBUtm5Gg4MboUJqc7XlR\n", "xTBaP6xQxMfIQArwPKU3Hu9v5LSqim/Uf8uOw8+Gzn8cL29O8FlezZVy5kQeK2P5of2DPQnOTiy3\n", "Y5jyFbNfAZRKFYmywEu01oFabAFVaZjiui5nx5c51J+kp2u3wpYvKXPywAu1I+4bC8LKXMQ0OH2s\n", "j8szq2xkC3t9tGMp9YYc9dIl8sUCcZHTtiaozldwbE74SvwFad/RtEzOrwMwOpgqvdviYhitG8G+\n", "JV8sMOwrc21a0VK4ApZWsxglz5ysmZWwzAi2YzPQm8AuumTW842eUsPZT5nbsyKR1trVWs8BKKXe\n", "CnRprf+xGpOaW95kaTXH6aO7vXKALEBCXQhCjwLjQYA63o/rwnOXpUXBTi5Oe6+LE6Pepj5XzBOz\n", "RE7bmZhfPMMu2pwMejH6kRVC8zG94CtzQ10hw6jIaL0IK3OBZ25mUZS5TmcxkyOR8LxLIo+VCdrh\n", "DPQkAGlPAPuHWVasSOQrdv8dOA386/0GO2hFIn3RC2G76bryYQeBMifWC6GWBC/UnL3dAxfkzT17\n", "aYnbbzi039dcUUWiVifwzJ0Y9Tb1+WJejC5tTqCs54r5UsGqc5OizDUrU75n7vBgF9+ZkiiXehO3\n", "goiPvChzQomFlU16RiOsADEpgFIRy9ytzHV6Qbr9npg9KxL5fBAv3PJ1Byl8ctCKRM9cXPTOXTdQ\n", "9nsCZS4qC5BQQ2KRrUU3TJDbEBgd9uGKKhK1OhcmM3QlLIb6vJds3s7TE5PcqXYmXjJ65BntjzPY\n", "mxDPXBMztbClzOXHfcOoeM/rRlheUoko3akYM4vrDZ6V0Eg2sgU2sjZjXYEyJ/JYiVgkSqFY2FLm\n", "pNfcvsrcnhWJgK8DPwV8Efhn3/vw21rr/32tk9IXlkq5SeXIF/NEI9GOT3gUakt8D2VusDfJUF+S\n", "Zy4uSuJtiFyhyNT8GjedGCjdk1yxIFb/NifsaQA4OdbL15+eYWUt124V+tqCqfl1+rvjJOOWRLk0\n", "gJi1PRd7bKiLsxPLFIsOkch+mS9COzK37JWbSHdFwBV53I+EFSdfLNDf48nSvChzlZW5/SoSAZFq\n", "TyhfKHJ2YpmTR3qJR8t/fd7Oy8Mu1Jxgk5qzdyfX3npqkM9/c5zx2bVSs+RO59J0BsfdypdzHAfb\n", "scXq3+aUwpF9Ze76I54yd25ihTvUcCOnJuygYDvMLW2Uol5Emas/wb0O5OXIcBp9aYmZxQ3GDkkU\n", "Qycyt+Qpc6mUAesij/sRrDl9vd59mluSMOWmC8w9O76CXXT3zJcDbwGSh12oNeFE9Z3cev0Qn//m\n", "OE+cna+KMtfIno7VIigIc4PvUQ88NZIz194kSkYPr2fZqVARFFHmmou5pQ0c1yt+Ap5hFCSsq56U\n", "Ij78e3/EV+DG59ZEmetQ5n3PXDJhwrqkEO1HIEM93Z7DZ1aUuX2rWdadpy94+XI37ZEvB4EyJ4uP\n", "UFt2ehzCPP/0IABPnJmv1nClno7AO/F6OgLbejp+t9b6pUAvXk/HpuKMr8ydPuYZYkr9IMUz19bs\n", "lJNTUtGyaZmYWwNg7JCvzBXzGBilxu9C7YnvkJcjw54CNzG71rA5CY0lCLOM+1Hp4qyoTBA15RpF\n", "+rrjzC5WpStaS9N0ytwTZ73N8a3XD+55jVTIE+pBJc/c6GAXg70Jnjy7gOtWxUHWkJ6O1eS5y8vE\n", "ohGO+ZuTnIRwdQTxHVVfRwZSdCUszk5I645m4/KM1yT8+MhWH8iY5J/XleiOdeWo740LFG2h85gv\n", "KXPSmuAghL3bI/0p5pY3cJymClSqO02lzNlFh++cm+fIoTSDvck9r5MwS6Ee7CzsEMYwDJ5//RDL\n", "a7nSBukaaUhPx2qRzdtcmlnl+iO9pSR+CbPsDHbKiWEY3Hi8n4m5dVbWco2cmrCDS/67KggNzxUl\n", "/7zeGIZBLBIthVmODnVhGjAunrmOJVDmIlFPIRGZrEy4Hc7wQAq76LK02tlFUJoqtuLM5WU2c0Vu\n", "u2Foz2scx6Hg2PKwCzUnXEK6HKW8uTPzHD/cc63DNaSnY7W4MJnBcdxSvhxs5YSIMtfexMrIyU0n\n", "Bnjs2Tn0pSW+65bD9ZpKR/V0vBouz6xiRQxGB4Mwy4KEQTeAeCS2FYYejTA8kBLPXAczt7RJf3ec\n", "ouMpJFFT9reVCOdpD/d7jp+ZxY2KTqB2p6mUuW+fmQPg9tN7N2LOOxK6JdSHSmGWALf7Rodv6jle\n", "/dJT1zpcQ3o6Vgt9yeu5d/3RLWVuK2dOZLWdKS2sxS0v3E0nvJznZy4s1lOZ66iejleK67pcnlnl\n", "yKF0yHteIBVNNHhmnUfMim3LxT5yKM03npllbbNAOinvy06i6LjMLW9y6kgPWXsWgERUWrpUIpyn\n", "PTzgGaZmFze45eTe6VntTlMpc48/t3++XFAxLW7Jwy7UlrArvxyHB7s4NpLm22fmyBeKxPZopXFA\n", "GtLTsVp859wCALec3CpctFX2XCz/7Uw5z5w63o9hwDMXlho1LWEH88tZNnPFbdV383aevsQ1RxUI\n", "V0gsEmWjsBUWdmykm288M8ul6UxHb0g7kfnlTeyiw+hgmk3beyaSsr+tSDhqarjfc/7MdHhFy6ZR\n", "5rI5m6fOL3JqrLdio9lN/wWYFGuiUGN2lpAux103H+aTnz/DE2fnufOmkaseqxE9HauF67o8dX6B\n", "wd4EIwOp0vGchFl2BPEyRo+uZJTrDvfw7OUl7KKDJc2QG86lGS8lN1DmHNcha+fEM9cA4pEYy5tb\n", "KdInx7wKsOcnRZnrNCZDFWbPl5Q5kclKhHsAH/H3HNPzna3MNc0K+53zi9hFhxc9r/KGeNP3zMnD\n", "LtSahG8dC6xl5XjRzd7z+vWnZuoyp2ZkYm6NlbU8zzs1uK0q3pbhpXPj2DuBLaPH9nBkdV0/uXyR\n", "85PSoqAZCFpFnBzzPHE5O4+LK2tpA4hbcbLFXKkScvA3EVnpPCbn1wEYG+oiW8hhGqb0mduHsAHx\n", "8GAXpml0fM5p0yhz33rWy5e7+3mV8ys2C35zRbEmCjUmYkaIR2IlpaQcN58coCth8S9Pz1SrRUHL\n", "EYRYPu/Udovyhi+rYvlvb/YyegTPQxV7MQrXwNlxT1G4/oiX1xq81xIin3UnFU3gum4pbeTocDdW\n", "xJTejB3I5HzgmUuzaedIWnFpFbIPJQNiMU/UMhkdTHF5ZrVj92DQRMrcE2fnGOiJlxaavRDPnFBP\n", "ktFESSkphxUxufPmEWYXNzgz3pl9tZ7cQ5krxf/LZrGtSfme151y8oIbvFyGx7yuGkKDOTO+THcq\n", "xiG/+lsgnylZS+tOsiQzfvVCy+T44W4uTmUoFp1KHxXajCnfMzc61MWmnSUh8rgvQc2MbMgYsrZZ\n", "ILO+d0pMu9M0ytzaRoEX3XIY06xskRDPnFBPUtFkRc8cwCvuOArAF745UY8pNRWO4/ItPUdfd5xj\n", "w93bzm155iTMsp2xIhbRSHSXMtffk+DkWA/fOb9ANm83aHYCwOpGnpnFDU4f7S1Z/SX/vHGUDCD2\n", "lsycGuslbzuMd3i4WKcxObdGdypKdypGtpCVSpYHoCuQn7wnP0eH00Bn92psGmUOtjbFldgsiGdO\n", "qB/JaIKNCjlzAHeoYdLJKF/61gRFp7Pc/OcmVlhey3HnTcO7DDEbslnsGLqiydLCGuaOG4cp2A5P\n", "nVtswKyEgLN+1MDpUB/IjZJhVIwt9Sa1YzMKcPqoVwTl2YtSAbZTyOZtpubXS31qvTBLWS/3IxXz\n", "ip6sF0SZC2gaZa6/O74rTKscm7Z45oT6kYomKBQL2MW9PQtRy+Te28dYzGR58mxn5Qd9/Rmv8Eu5\n", "Sp7imescUtFk2XDkO5QXavmNZzq3QFAzUK4PZCnMUtbSuhPc83B7glv8/c9T58Xw0Slcml7Fcb0C\n", "OHbRxnZskuKZ25fAM7de8CpYBhV6L0x1bs5p0yhzd986um+IJYQ8c7IACXWglNuwj3fuu1/oeZU/\n", "++jFms+pmfjaU9OYpsEdNx7adS4I45KcnPYnFU2WrKRhnndqiK6ExVeemMLpMK91M/Gds35ea6js\n", "fSnMUuSz7gQGrs1QmOXxwz2kEhZPnV9o1LSEOhNULz051lvK/5Kcuf3Z6dk+MdaLaRqlIk+dSNMo\n", "c99957EDXVfKmZMHXqgDKctfdCsUQQGv+Mfxw908/O1JFjOVFb92YXphnWcvLXPb6SHSqd295DYK\n", "mxiGUUpWFtqXrlgS27FLjeIDopbJ3beOMr+8ybOXJHysEdhFh6cvLHJsJE1f95YsSs5c4ygXZhkx\n", "DW46McDk/DpLq52xhnQ6Fya9XoMnx3pCDcNFHvcjYkZIWPGSZy4ejXB8pJtzkysdl+oS0DTK3FDv\n", "wR7gICxBQkOEepAsEw5TDsMwePW9Jyk6Lp955ELtJ9YEfOlbXsGXl7/gSNnzm4UsKSshZZY7gJIH\n", "O7+7cevL/OfjS9/uvAJBzcDZ8WWy+SK3nhradnxDiok1jGD/squdh+85Ddq9CO3N2YkVTMPzyq7m\n", "vKqWaT8fTKhMVzS1zRhy/dFecvki47OrDZxV42gaZe6gZPJegmN3PN3gmQidQFfMj83Or+977Svv\n", "PEZXMsrfffk82Vx7V+9zXZcvfHMcK2LwkuePlr1mPb9RSlQW2pu92hMA3H7DIbqSUb702AS2lF2v\n", "O994Zhbw/g5hVv13Wnesq+5z6nQCeVnfUTToBX64+jeenq37nIT6ki8Uee7yMieP9BKPRlgL5FH2\n", "tgciFdse2n/azwd+7lJntohqOWVuNbtKxIxIUQWhLvTGvSpTy9n9rT3JuMXrXnE9qxt5/vHrl2o9\n", "tYby1PlFLk6vcveto2VDLF3XZSW3Sm+8u8ynhXYj7SsEmdxuo0fUMvmeu46xtJrjkSem6j21jufR\n", "J6exImapGE1Axn+n9YiM1p3gnq/ktq8rp4/20dcd5+tPz0iOaZvz3OVl7KLDLb43NpMLHBViXDkI\n", "XdEk64WNUqPwoIDiEx1WhC6g5ZS5TH6dnlhaQreEutCf9MpFL2cPllj7mpedojsV5TOPtHchlL/7\n", "8jkAXvPSU2XPbxay2I5NT0I2ip3AwD5y8sP3nADgwYfP12tKAjC7uMG5yRVuOz1EKhGZgvmhAAAg\n", "AElEQVTddi7YPPaIJ6Du9CU9I+HS5nYvgmkavOjmEZbXcmhpUdDWPHnOUzpuOTkAwGpOos6uhHQ8\n", "jeu6JY/mdYd76E3H+NazcyUFr5NoPWUutyoPu1A3+hKBZy5zoOtTiSj/9gduYrONwywvz6zyyOOT\n", "nBzrKS1EOwkszn1i9e8IBpJeiMviZvkQl6PD3bxQDfOdcwsdazltBP/8jcsA3HPb2K5zmdwqCStO\n", "zNrtWRdqS1c0RdS0WN7cva689HYvx/Sf2jy6o9P52lMzmKZRCn8O1szumOxvD8Kgv+YsbHhrjmka\n", "3H76EIuZLJdnOi9vrqWUuc1Cls1CtmQFFoRa0+c/a0ubBy95+0P3nOTEaE+tptRw/uTTT+O48Prv\n", "v2lPD3lwv8Qz1xkEHuzFCnLy737wJgD+5O+f7kjLab1xHJd/ePQiiViEl71gtzK3lM2UjFVCfTEM\n", "g75kL0tlPNm333iIod4EX3xsoq2Ngp3M0mqWZy8tccvJAbr9NIWFDc8TO5Tqb+TUWoZB/z4tbG55\n", "sF940zBAR4bzt5QyN7fuVXga6tq/ubggVIMr9cyBV2L6/h+9rVZTaihfe2qaR56Y4qbr+nnxrYf3\n", "vC6Q1WGR1Y6g37eS7gwbC3Pj8X5e8vxRnr6wyGcfFa9DrXn48UlmlzZ52QuO7AqxzNt5VrIZDol8\n", "Noz+RC/L2QyOu70oUMQ0+P67r2MzZ/Ppr1xozOSEmvK5r4/jumwrHhYocwOizB2IwaSvzG1sKXMv\n", "ef4osWiEf/765Y4zGLaUMje/sQjAoVT50C5BqDaxSJTeRA/Ta3NX9LlDfe1XoGdhZZP3/+W3sCIm\n", "P/djL6iYtzqz7oXSDXcN7XmN0D70J3owMErv6L24/3XPpyth8dG/fZJL0wc3kAhXRsF2+LOHnsE0\n", "De773ht2nZ+TtbThDKb6cVxn22Y04EdedopUwuITn3+OtY18A2Yn1Ipi0eGhr14gapm8MtRfeW5j\n", "kZ54mlgkWuHTQkDJMxeSn1QiyktuHWVyfp3Hn+uscH6r0kmllAl8ALgNyAFv1lqfDZ1/DfCfARv4\n", "A631R2o4Vy6tTAIw1jNSy2EEYRvX9R7h8ZmnWc9v0FWjUvvNJms7WVrN8p4PPcLSao43/R+37htG\n", "Op7xwhwOdw/XY3pCg4lGooz1jHBhaRzHdTCN8nbCwd4kP3vf7fz6n36DBz7yVf7r/3Uvo0P1q97W\n", "7HJWLf78M88wMbfGD91zgrGh3Tk4l/21VOSzcVzXd4RHLn+DC8vjuzyk3akY933PDfzx3z/N73/i\n", "Cd7+717YUkXfOkXOroZ//NplpubX+YEXX1cKsczaOWbX5rlleLfhRSjP4bSXaziRmd52/F+94hRf\n", "eGycP3noaZ5/egjTbB25uRb288y9Fohpre8B3gm8LzihlIoCvwm8CngF8DNKqZquDOcWvdCck33H\n", "9rlSEKrHdX1eQvrF5fFaDtNUshbmMT3L23/7i1ycXuVHXnqSf/Xy8hUsA1zX5ezCBbpjXWL57yBO\n", "9R9n084yvVq5R9bL7zjKG374ZuaWNvnF3/kiD397sp4hMU0rZ9XAdV3+9otn+et/fo6RgRQ/+epb\n", "yl53dtGrtnuq/3g9pyeEONnv7WPOL10ue/51332aG4718YXHxvnYg0+1WquCtpazq+XyzCp/8HdP\n", "Eo9FeP33q9LxC0uXcXE53nukgbNrLfqTvfTGuzm7dHHb+nHDsX7uvX0MfXGJv/gH3cAZ1pf9lLl7\n", "gYcAtNaPAneFzt0MnNFar2itC8CXgZfXZJZ4xU++PfMUh7oGJc5fqCtq6HoAvjbxeC2HaRpZKzou\n", "F6cyfPor53nH+7/Euz/0CPPLm/z4D93Ez7z2+ftaiM8vXWJuY5Fbhm9sKWuycG2oIU/J//rk/nLy\n", "Y997Iz973+1sZG1+7Y+/xi/8jy/wt188y/nJFQp2TRuLN42cVZN8ocg39SwPfOSrfPhvnqQ3HeM9\n", "b37xrlw5AMdx+NrEt4lGotwweLIBsxUArh84gWmYfGPi8bLGDCti8p9+6m5Gh7r4X587wzv+55d4\n", "5InJVimK0pZydrVkczb/8OhFful/fpmNrM3P3Xc7g71bqRhfHX8MgFtH1F5fIezAMAxuGb6RhY2l\n", "knEq4C0/ehtDfUk+/lnN7/x/jzG9sLv/abtRMcwS6AHCiQ1FpZSptXb8c+FSTKvA1ZSZjAD81j98\n", "kK7+NI7r4rguuA6O6+Li/Xcpm2FlfYmXqjuZmJi4imEE4eoYdvpIbFp88tEHeers0ySsOKZpAnsr\n", "KmuLpdK4kQMOUzdZe9uf/Aax7i5fvjxrvgvguOSLReyiAy6lXy99MsrhwSTfXnmSb30CwMV1wf90\n", "6N8e06tz5PObPP+GGxgfr6k3U2girjNHMVYdPvbFv+Sr3/ka0UjUC7esoNDf/CKb8dlVzq7mOPMV\n", "4CveYxe1IlgRE9P0CkIERoHgq4zQ/+UyG8HXHUTW6iZnb//T9xHv6fJkw/ufjy8tof27u/OsG/y7\n", "/P+Hv6BQdLBtp/QNqZMWh4a6eP8Xv7bjez3W8xtMrc5w99E7WJjprLySZuPm+EkeO/8kb/2L/8hA\n", "speIEdklLyPKIdub4ZlMlv/6IBgPQizqyUfENDBNY9tHjG3/qJ4xLZcpbYibUs5guxyxY10KHfbX\n", "N1+i3G1ndknM1uny59nj52DsYhEKxSKu62L2GRw+meJT5x7jU+e87yy6DheWx+mJpxmye2TNvAJu\n", "TZ7mC0tf5j1/8+uc7D9GxDT9EH+D0Ztt1i8v89nzX+azH4aYZRKLRrZkZueXVVlerpYrlLMS+ylz\n", "GSBcWzwQRvCEMXyuG6jY5VIp9QDwnnLnPvVrf7nPVDye5hF+g1850LWCUG2e5itX+pEzSu2ytr1X\n", "a/3AjmN1k7Vv/9GnK8+4SryVR+oyjtB8PMmXGjHsQWStbnL2rT/8+/1nXCO+dYBrnuYR/ogP1Hwu\n", "wv483egJXBkiZ9fAMxXO/eCvfrZu82g3vt7oCVSfg+4dgf2VuYeB1wB/pZR6MRCOn3kGuEEp1Q+s\n", "47nJf73Sl/mT2DYRpVQcyAKngeI+86kF54FGxJp02riNHLsR40aAM0BCa507wPXtLmud9Ldv9Nid\n", "Nu6VyJrIWfuN3WnjNmpskbPtdNpz12nPe6PGvdK9IwBGpcRzpZTBVkUigDcCdwJprfWHlVI/Arwb\n", "L/fuo1rr37uamSulXK11Q/ybjRq708Zt5NitMG67y1qnjdvIsTtt3CsZW+Ss/cbutHEbObbIWePH\n", "7rRxGzl2K41b0TOntXaBt+w4/Gzo/KeAT13JgIIg7EZkTRBqj8iZINQekTNBqC8t1TRcEARBEARB\n", "EARB8BBlThAEQRAEQRAEoQVpFmXuvR04dqeN28ixO23cSnTavZDnvf3HbfTY5ZC/gYzbjmOLnDV+\n", "7E4bt5Fjt8y4FQugCIIgCIIgCIIgCM1Js3jmBEEQBEEQBEEQhCtAlDlBEARBEARBEIQWRJQ5QRAE\n", "QRAEQRCEFkSUOUEQBEEQBEEQhBZElDlBEARBEARBEIQWRJQ5QRAEQRAEQRCEFsSq52BKKRP4AHAb\n", "kAPerLU+W+a6DwELWutfrse4SqkXAe8DDGACeIPWOl+nsV8HvAtwgT/QWv9+Ncb1v/tu4Ne01q/c\n", "cfw1wH8GbH/Mj1RrzAOM/XrgP/hjPwH8rNa6av0x9ho3dL6qz9Z+49by2aowl4bI2UHGrtX9aKSc\n", "+d/fEFnrNDmrNHYnyZrIWWfIWaWxQ+dlTdu6ri3k7IBjy96xDda0aslZvT1zrwViWut7gHfiTXQb\n", "Sqn7gVvxHtCaj6uUMoAPAT+ptX4Z8E/AyXqM7fObwKuAe4G3K6V6qzGoUuodwIeB+I7j0dCYrwB+\n", "Rik1XI0xDzB2EvgV4Lu11i8FeoEfqfW4ofO1eLYq/b61frb2olFyVnHsGt+PhsgZNE7WOk3OKo3d\n", "gbImcrZ1vC3lrNLYofOypm3NrZ3krOLYPrJ3rPG4ofNNL2f1VubuBR4C0Fo/CtwVPqmUugf4LuCD\n", "eNpoPca9EVgA3qaU+jzQp7XWdRoboAD0AUm837laD8sZ4EfZfR9vBs5orVe01gXgy8DLqzTmfmNn\n", "gZdorbP+zxawWYdxa/lsVRq31s/WXjRKzvYbu5b3o1FyBo2TtU6Ts0pjd5qsiZxt0a5yVmlsWdNC\n", "tKGc7Tc2yN6xHda0qslZvZW5HiAT+rnou5JRSo0C7wZ+nurfsD3HBYaAe4D3A98HfK9SqqybtQZj\n", "g2dt+QbwJPB3WuvwtVeN1voTeO7ocvNZCf28imflqBp7ja21drXWcwBKqbcCXVrrf6z1uDV+tird\n", "61o/W3vRKDmrODa1vR8NkTNonKx1mpxVGpvOkzWRs+1zajs5qzS2rGltL2f7jQ2yd2z5Na2aclZv\n", "ZS4DdIfH11o7/r/vw/sF/h74JeDfKqXeUIdxF/CsDVprbeNZQnZaQGoytlLqON5Dch1wAhhRSt1X\n", "xbHLsbJjPt3AUo3HLKGUMpVSvwF8L/Cv6zRsLZ+tStT62dqLRsnZfmPX8n40m5xBA2Wtw+QMOk/W\n", "RM626DQ5A1nT2l3OKo4te8e2X9Ou+NmqtzL3MPDDAEqpFwOPBye01u/XWt+lvSTAXwP+XGv9x7Ue\n", "FzgHpJVS1/s/vwzP0lEtKo2dAIpAzhfSWTy3eS15BrhBKdWvlIrhuckfqfGYYT6IFx/8upDLvKbU\n", "+NmqRK2frb1olJxVHJva3o9mkzNorKx1kpxB58mayNkWHSVnIGsa7S9n+40te8c60EpyVtdqlsAn\n", "gVcppR72f36j8irUpLXWH95xbTVj7SuOq5R6E/DnftLhw1rrT9dx7I8BX1FKZfHiZ/+oimODfx93\n", "jPk24DN4yvxHtdZTVR6z7NjA14GfAr4I/LNSCuC3tdb/u5bj1vjZqjhujZ+tvWiUnO07dg3vR6Pl\n", "DBona50mZ2XH7jBZEznrHDnbNbasaW0vZwcZW/aO7bOmXbOcGa5by/VWEARBEARBEARBqAXSNFwQ\n", "BEEQBEEQBKEFEWVOEARBEARBEAShBRFlThAEQRAEQRAEoQURZU4QBEEQBEEQBKEFqXc1y6ZGKXUB\n", "+FGt9TeVUu8GvqW1/tsqfv9ngX+jtV5USj0IvF1r/Uy1vj80zn14jQ6LeH1A3qy1Plftca4GpVQK\n", "+AjwAjxjwi9prf+mwvW3A5/WWo+Fjn038BtABMgCP6+1/kbofB9e1aM3ho8LjaFd5MofywD+EHhC\n", "a/0+/1gE+E3g+/Heqb+htf5gLca/GpRSdwO/C6SASeDHtdbTFa7/L0C/1vqt/s8xvOalL/Uv+TTw\n", "Dq2148vn7+I1lF0H3qW1/lzNfhlhTzpAzpJ4z9pdeGvHo8DP1bMlQCWuVc78Y+8CfgLvPfKnWuv3\n", "+sePAR8FRvCaF/83rfWf1ep3ESrT7rK24/wngInwc9poDiprla5TSv0KXr+6Il7z9fu11rnQZ/v9\n", "4/+v1vp/1fY3unbEM7edcGnP7wGiVf7+78PvIq+1fnWNFLkU8CfAa7XWdwB/C/xOtce5Bh4AMlrr\n", "W4BXAR9QSh3ZeZFSKqKU+gW8MrjpHaf/FPhF//f7b8DHQp/7YeBfgBupbWl04eC0vFwBKKVuBv4J\n", "+DG2/073A9cDzwNeBPw/SqkX1WIOV4qviP018FZf5v4ab1NY7tqjSqm/Bt7O9t/v54FBrfXzgNuA\n", "e/DuAcDfAL+ntb4NeD3wMaXUSE1+GWE/2l3O/iNe4+Tb8J7DJPDLtZjDlVINOfPXrvuAFwK3Aq9U\n", "SgVy9qvAV7TWtwM/CPyeUmq4Vr+PsC/tLmvB+XfgGfGaZi91UFmrdJ1S6vvwZO0OrfXz8YyRYaOK\n", "Afyxf7xpfvdKiGduN4ZS6ueAO4FfV0rZeN3f/ztek8QI8Bjwf2utV30LzVfxFpd3ATbeAhMDhoGP\n", "aa3frZT6Q//7/1kp9Wrgy2xZdn4G70EqAjN4nqbnlFJ/BKwAzweO4TVt/Dda63Wl1HsBtNbv2TF/\n", "F89CHjSQ7AY29/ulfYXq/cBxvBfTX2itf1UpdcKf62fwFhnDn9+XlVI34QlH3D/+Ea317ymlxoAH\n", "gR8qYy15Ld6mD631Zd8C9X8Cv7XjumBBuw/PExAmAwz4/+7Z8fu9FXgD8PH9fmehrrS6XAH8LN7z\n", "fhF/ofV5LfBBv3nrslLqL4AfB75W6YYopV6Dt0GNARt4BoqvKqUewHv2DwGHgW8Db/Lvy1vwlMc8\n", "nlf6fq3100qp+4G7tNY/vWOYFwErWuuguesfAP9DKdWvtV7ace1PAV8AngL6g4Na699USgUGoSG8\n", "d8uiUmoIOBJ4CLTWF5RSZ/A2mx9DaATtLGdfAM77n3OUUt8Cbt7vhrSKnAGvA/5Ma73pz/sP8d4j\n", "f4W35gVrehooAM5+v7tQU9pZ1lBKvRL4AeD32f6c7kmTydqe1wGrePvWlFLKxWvCHt5H/id/jumd\n", "96VZEc/cblyt9e/iNSn8RT8E8JeBgtb6Tq31C4ApvG7w4ClPT2itb/EbGL4NeIPW+kXAS4BfVkoN\n", "aK3f6F///7P35nGWldW993fvM5+au6vngW5o6qFBmUWZGnAKUUTNa65JCDegUYzmXl69uWpI1CbR\n", "6P2YmHjVqOnAq4kKRkRlUEAEGQRB5rEfuqHnsbqqa64z7v3+8ex96lR1zXXO2WdY38+nP33q7H32\n", "XqfqPOd51rN+a61LtNZ7GWsS+GbgfwMXe9f+AVDcCPFMzIDaCKzE2xHXWn9ussHpTQR/hWkmuQ/4\n", "GPDpWbzv/wRu1FqfDbwR06zS3xVcCdzvRcI+BfxQKRX27L7Ne807gE1KKUtrvV9rfcYUEpM1wJ6i\n", "n/cCqyd5H7/TWn/QOz6RjwP/oZTagwmh/2XR635fa/3bWbxfobLU9Ljyjv2PKaRNEz/T+5jkM12M\n", "UupE4AuYDY8zMZPZrV5kHe89/iFwEmbh9lmllI3Z9Pg9rfU5wL8B53u2fXuSSe8Y27TWGaAbOCYa\n", "rrX+O63115hkkai1zimlvohpTnsQeFhrfQTYpZT6M+89nYz5vS6f7r0LZaVux5nW+pda6+3efY8D\n", "rsU4OlNSY+NsNVN/j3wRuNyb018APueNPyE46naseRvy/wL8CcZxnJEqHGtTnqe1fgy4D9iN+Ru1\n", "efdGKfV24EJMqhLUSGROnLnZcRnwbqXU00qpp4F3M35H8KGix+8C3uDpqP8J49U3TXFdC7OLfbPW\n", "ugdAa/1dYJUXEXOBu7TWWa11DniesYjUpCilzgX+HtiotV6FGVzT6n2VUk3ARcDfe+/vUcwkcppn\n", "w4DW+nuefXdjBvepwK3AJ5VSPwb+ALMDNdMHf7LP3Ky+LDxbj8PILDdprddgdi5/XPSFIdQONTOu\n", "ZmA+n+m3ASswu69PYz7TeWCDZ9+PtNaHvfF0A2ayczCL10eVUl/D7MTeOA/bZrJv0jGstf5rzA7t\n", "LuCb3tPvBv5IKfUsZpPlHswOq1A91Ms4A0ApdRYmJ/prWuufz3B6LY2z6b5HfoHJk1sFnAx8WlWJ\n", "lFsYR82PNaVUBLgZuFZrfYjZR6aqbaxNeZ4y8tF1mI3HFcBO4J+UUmsxf4s/9WwDiczVFTbGUTnD\n", "i069ESMN9BmCglP0DKa4x5OYXZQs038YrEmOW4xpsIuTu90ZrgVG3/wrrfUO7+d/BV6nlJpuYIe8\n", "/88teo/nYXYDLSYfJDmt9Z3AicB/AWcAzyuljp/Bvt2YXSOfibuRM3EO8KLW+ikAbzcsi9ntEWqL\n", "WhpX0zHxM72KmT/TNmacnlH0/s/H7LrD+DEX8n/WWl+JWTBsx0TJb53hPrswkxVQmKg7Mbv+s0Ip\n", "dZ6364q3UPguZhfY5zKt9WneLuoazzaheqiXcYZS6o8wGwaf0lp/aabzqaFxxhTfI56c+SRgi2fb\n", "duCXGCmfUF3U8ljzNxfOxjg6/+w5ZdcA71dK/dsMr6+2sTbVefsxY+c/tdbDXsRuC3AJJq0nAdzt\n", "vfezMRLaD89gU+CIMzc1OYzuF0y+2P9QSkW9sPC3MBGviZyIyVH7jOfoXIzR5frOUr7ommAGz92Y\n", "gdIJoJS6GjiC+WDPZ+L7LXCRGkuOfg/wmta6d6oXaK0HvNf9L8+GNswO0uXeKR2edtvXRGeAF5RS\n", "PwDer7X+IUbOOcAM8jJMwYQPe9dajZEF3DGH9/ckcLK/uFSmWlECeGUO1xCCo1bH1XT8DPiAMkV7\n", "2oH3M17+Mhn3AW9XSinPvksxk3vcs+9ypVSb93v5EHCbUmqxUmo30Ku1/irwGUyEfDoeBxZ7EXsw\n", "+TqPeGN+Kib+ft6MmdhDnj1XYJLmwUyC7/Hew9swObf3zmCTUH7qbpwpU6X5q8DbtNY3z/JltTTO\n", "fgZcoZRKKqViwJ8BP/XklDvxZHPe73oTZs4WgqdexppfcOVRrfXaIofsW5iI4EwOTbWNtanO68eM\n", "nf/Hm9MsjLLsUa31V7TWG4reuy+hncmRDZyqcOaUSY6stnvfDvyjUupKjGxxJyaZ9UXM7+1/TfKa\n", "ZzGOyctKqYcwCZ9PYMLMYHYcHlJKnYKXzKy1vhejGb5PKfUCpizxZV4o2v9XjK+fvl55ia3FaK0f\n", "wmi071cmQfyjmFA/Sqm3KqWmcnr+BHiTUuo5TMnnm7TWfhGRLOZL5BlM4u57vRD032Emn2cwg+NW\n", "rfWDSqmVnsxgXO6M97v+HNDsvddfYgbKDu/4FmWSXidS+B1o02LhGuAWT9r1z5jk4KEp3ldgn68g\n", "P9dTEaBN/t+13OMKGDeuXizFuJqE4td/E3jVs/NxTCGgh5RSm5VSX53sM621fgmzqXGzN37+HniX\n", "1nrEu/ZBTBGhlzHSk3/w5DWfB36llHoCEzn/c8/ujyiltniPNxfdJ4uZqP7F+z38MXC1d96k43SS\n", "38//wexyPouZnDOMVRH8EPBXSqnnMfKYy7RXwKGSVNtYa8Bxdp9S6jDlHWf/4P1/g/e5fVop9bV6\n", "GWda6zswv+PHMTK5J7TW/+kdfg/wEW+c3Qe8oLX+zSx+fyVFxtk46nlOOwb/d10rY2268zBFanZh\n", "/kbPYtbjk/2d1k33OykX8/pcu64b+L+uri630e4dxH27urrsud63q6trXVdX12itvudGvG812tRo\n", "9/Xv3dXVdWFXV9dfzPF1m7u6ur5Za+856N91UPeuJnsa8W/QaOMs6N91UO+52uxptL+Bf99GGmu1\n", "dN9pWxMo0wx3C2M9uz6itX6x6PjHgQ9iKsSAKSkqcrfqZcPMp0xKTVTzqQeUkcc+CbyleCwpI2/9\n", "DEbScaPW+t8DMlGYG0uAuTb3nWyXVagQSqm/xhQniABf9woNCNWNjLMaQ5kquFd5PyYwBdeWzSBN\n", "FYJHxloVMlOfucsAR2t9gVLqIoz29z1Fx88ErtRaP10uA4XSobV+xZMzz+U1OwGpFFkBlEnQ/Tam\n", "T+DE57+CScYdAX6jlLpNa3248lYKc0FrPVMy92SvmY0kRigDSqmLMYWgzlOmSMEnAzZJmAUyzmoP\n", "b5PkuwBKqa9j5OniyFU5Mtaqk2lz5rxKgb42dh0wsfnlWcB1SqmHlFKz6WUmCMLUfBmTf3VgwvMb\n", "ge1a635PB/4wUslMEMrB2zFVeX+KyYW5LWB7BKGuUUqdDZwiahNBmD+W684c+VSmu/x7gfdprX9Z\n", "9PxnME2bB4GfAN/0KvPMGq9qUwojAZx1v7ESsgNYL/et63sHcd8QpspUXGudnulkpdRVmGaWX1BK\n", "3Y+RNGvv2AXAX2qt/8j7+Xpgt9b6hrkYFPBYa6S/fdD3brT7zmmsTYeXcL8Go0o5HrhNaz2nticN\n", "Os6CvHej3Teoe5dsnBWjlLoV+KrW+oE5vk7Wjo1x3yDvXTPjbFbOHIBSahmmyuFGv1qZUqrVD4sr\n", "pf4CWKy1/vw019iMqWYoCI3M9VrrzcVPKKUeYExXfjqggcu11oeVUq8HvqS19ttDfAV4eDq5g4w1\n", "QQAmGWvToZT6ItCttf6K9/MzwFu98vCTnb8ZGWeCMKdx5qNMK5eHtdavm+G8zcg4E4Qpx9m0zpxX\n", "anW11vqLSqlWTFnqk7XWKWV6kT0HnIzJ4/kv4Aat9V1zsUwpdQKw/fvf/z7Ll0+s3CsItcnBgwe5\n", "4oorADZorV+dy2u9yFyhmJCXM/cipgHpMPAIpuTvRDnmTNeVsVYifv3UHr73i61sWN3ONe99PV+/\n", "5Vl2HRjgE39yJievXxy0eQ3FQsbaRJTpp3mt1vrtSqmVwANAl1f+e7bXkHEm1B2lHGc+SqnLMcW+\n", "rp3Ha2WcCXXHfMfZTAVQbgG+40UNIsC1wHuVUs1a6y1entz9QBq4d66OnEceYPny5axePVO/aUGo\n", "OeYr/7CUUn8M+GPtE5imoTZm02ROjlyxLTLWFkb/UJo7HnuW9sXLuP4vL2FxW4JPfqCT//efH+Ce\n", "p/t5+4WnBW1io7JgqZXW+k6l1Cal1OOYsfbRuThyxXbIOBPqlFJKGrswPTrnbYeMM6FOmdM4m9aZ\n", "8+SU75/m+E3ATVMdFwRh7mitL/EfFj13B6bJqBAwP7z3FYZTOf783a9jcVsCgBNWt3POyct5/KWD\n", "bN3Zy0nrFgVspTBftNafCtoGQWgEtNb/GLQNglAPTFvNUhAEQRjj6GCKux7dydJFSd5x3vi86Hdf\n", "dDwAP32wJAokQRAEQagaZltjQ6g84swJgiDMkjse3kE25/AHF28gEh7/9fn6EzpZv7KVR58/wOGj\n", "IwFZKAiCIAilZcvPnueKz/6Cp7ZKe9tqRJw5QRCEWTCSynLnb3bQ1hzlreesPea4ZVlcfuEJOI7L\n", "z3+zY9JruK7L9+56mT/+25/ziX95gMO94vQJgiAI1cvBnmFue/A1Bkey3Hj7CxKhq0LEmRMEQZgF\n", "9z6+m+HRLJddcDyxSGjSczadsYr25hh3/XYXqXTumON3PbqTH/7yFXJ5h217+p9nboUAACAASURB\n", "VPjnm5+SiVEQBEGoWl7e2Vt4vOvgIIdkE7LqEGdOEARhBhzH5c7f7CAStvn9c9dNeV40EuLSc9cx\n", "PJrl3t/tHndsX/cQN9z+Is2JCN/69Fs4e+MyXni1B73raJmtFwRBEIT58Yo3R206fRUAL+3one50\n", "IQDEmRMEQZiBZ7Z1s//IMBeevoq25ti0577j/HXEoyFu/qVmaDQLQC7v8E/ff5J0Js/H/vA0Frcl\n", "uPxCUzDlvif2lN1+QRAEQZgPevdRwiGLd15gin4VR+qE6kCcuTpmaCRDNucEbYYg1Dx+Dtw7z18/\n", "w5nQ0RLnv721i/6hDN/88bM4jst//Pxltu3p45KzVnPBaWZ389QNnTTFwzylD4vUUhAEQag6Mtk8\n", "O/b3s35lGyeu6SAcstm+R9Qk1cZMTcOFGuWH92q+f9dW2ptjbP7QuRy/qi1okwShJjncO8LvXjrI\n", "hjXtdK3tmNVr3nPRBn730iEefHofL73Ww5H+FKuWNHPNe08tnBMK2Zx64hKv+uUoyxYly/UWBEEQ\n", "BGHOvLa/n1zeRa3tIBK2WbeylZ37B8jmnGMqOgvBIX+JOkTv6uV7v9hKIhambyjNF7/7OKnMscUY\n", "BEGYmV88uhPHhctmEZXziYRt/vYDb+Tc16+gdzDNxnWL2PyhN9GUiIw776TjjHO4fU9fKU0WBEEQ\n", "hAXj58ud6G1kbljdTi7vsOvgQJBmCROQyFwdcvtDRhJ23VXn8NTWw9z66+38+L7tXHHpSQFbJgi1\n", "RTaX557HdtGSjHKhl/w9W1qbolx31Tm4rotlWZOec8LqdgC27+3j/NNWLtheQRAEQSgVerdx5tRx\n", "vjNnVF6v7u1jgzd/CcEjkbk6Y3g0yyPP72fVkmZO3dDJH71dsag1xq2/3k5P/2jQ5glCTfH4i4cY\n", "GM7w1nPWEp2iHcFMTOXIQZEzJ5E5QRAEocrYtruP5kSElZ1NAAUHbvve/iDNEiYgzlyd8dz2I2Rz\n", "DheevgrLskjEwlxx6UYy2Tzf+8XWoM0ThJri/idNpcm3nL2mLNdvTkRYtijJTpGsCIIgCFVE/1Ca\n", "Az3DdK3tKGxKrl3eKkVQqhBx5uqM57Z1A3B615LCc295w1rWrWjlV0/s5rV9spsiCLOhfyjNEy8f\n", "4vhVbRy3orVs91m1tJm+wTTDXhsDQRAEQQiabZ5ipLjwV6EIyoFBqZZeRUjOXJ3xzLZu4tHQuMEX\n", "si2uftcpfO7fHuXG21/g7685b1rplyA0MkOZYQZSgzzy/D6c2ACnvb6T3X37ACOZtPDGTuG/wjPg\n", "jauJz/mPx1479tziThcrOsqLe/dywqp2QpZNW7xVxqggCIIQGNorftK1dnxu3IbV7Wzf08eugwOS\n", "N1cliDNXR/QPpdl7eIgz1dJjSsaeqZZy5klLeWrrYf7xe0+yamkzB3uGSWfzXH7hCZxy/OKArBaE\n", "6iDn5PnW4//Jg7seKzwXfz3c1fsb7rq7vPeOnw7/+NQD8JT5eV37aj554V/QmVxU3hsLgiAIwiTo\n", "XaY5+MSWPH4RlJd39IozVyWIM1dHvOolpJ64dvLB9T//2+ls3vJbHnxm37jnH3/xIH93zXm8/oTO\n", "stsoCNXKva8+xIO7HmN16wq6Fh/P/U/sI2RbvOUNawFwccHr7e16D1wAt+hx4byx59yxFxWOFz93\n", "dDDF0690c9yKFtavbGMgNchzh17mO0/9iL+64JryvmlBEAShoRkYznDdvz5MIhbm+g+fSzIeIe+4\n", "bN11lFVLmmlrjo07/+yNywiHLP7rV69wzinLpUdqFSDOXB2xfa/RN5+wanJnbnFbgn/++EVs3dlL\n", "Lu+wfHETew8P8fc3PsbXfvgM//qpNxMOSRplECilQsAWoAuz7P+I1vrFouMfBz4IdHtPXaO1fqXi\n", "htYxD+58jJBls/mSj9PT63DnD3/NW96whg+edWZZ79vTP8pVd93DsuaV/M83vQHXdfn0L7/IE/uf\n", "Yyg9THOsqaz3FwRBEBqXnz+yg10HBwG48zc7+MO3dLHrwACj6Rwnrz9WHbK4LcHV7zqFLT99ga/e\n", "/DT/8NHzK22yMAFZudcRvjM3Xdg7HLJ53QmdnN61lOWLmzh74zIufdNxHOgZ5tdP7q2UqcKxXAY4\n", "WusLgL8FvjDh+JnAlVrrS7x/4siVkFQuzau9uzhx8Xpa4y2FxO+Tjiu/zHFRa5x4NMSBI8OAycs7\n", "a+XrcVyHbb07yn5/QRAEoXF5dlt34fEvHt2J47i8tKMHgJPXT56Cc/mFJ3DaiZ08/+oRDveOVMJM\n", "YRrEmasjXt3bR1tzlM72+Jxe9743d2Fb8ItHZeEYFFrrnwG+pm4dMLHu71nAdUqph5RSn66kbY3A\n", "nv79uLis7zCSSr/v24Y15c8HsCyLpYuSHDo6NiGesGgdAK/17i77/QVBEITGJJtzeGXXUdavbOVt\n", "56yl++goz28/UnDwpquncPbGZQC8tLO3IrYKUzOtzHIW0q93AZ8BcsCNWut/L6OtwjQMDGc4fHSU\n", "M09aOucqeEs6EpyhlvLk1sPsPjjA2uXlK8MuTI3WOq+U+g7wXuB9Ew7fBHwDGAR+opR6p9b6zgqb\n", "WLccGDwMwJq2FQBs29tHOGRzXIXGwtKOJLsPDjI0mqU5EWFFy1IADg0dqcj9BUEQKo1S6q+BdwER\n", "4Ota6+8GbFLDcbBnmEzOYcPqdt7yhrX88vHd3PnIDp7S3axe2syKzqll/n5Kz27pkxo4M0XmppR+\n", "KaUiwFeAtwEXAR9WSi0tl6HC9Lw6C4nldLz1HBORuO+JPSWzSZg7WuurMJsnW5RSiaJDX9Va92qt\n", "s8CdwBnTXUcptVkp5Rb/AyT0OgW9o2b8LEp04Dguew4NsmZZ8zFVYcuFn0Duy1WWJBdhYXF4WJy5\n", "ObBj4mdeKbU5aKMEQTgWpdTFwLla6/OAi4HjAzWoQfHl/Ss6mzh5/SJWdDbx6PMHyGTznH/qymlf\n", "6zt6/jWE4Jg2Mqe1/plS6g7vx3WMl35tBLZrrfsBlFIPA5uAW8pgpzADr3rNwE9Y1Tav17/h5OUk\n", "YmEeenY/f/bOk6XHVYVRSl0JrNZafxEYBRy8+odKqTbgOaXUycAI8Gbghumup7XeDGyecI91iEM3\n", "KWPOXBu9AynSmTyrljRX7P6+M3eod5jjV7URCUVoT7TSPSLylTmwXmu9M2gjBEGYFW8HnldK/RRo\n", "Bf53wPY0JPs9R2zlkmYsy+IPLt7AN255ltamKO88f/20r13UGicStjnYI85c0MxYzXIa6Vcr0F/0\n", "8yAwP09CWDA7PGfu+Hk6c7FIiDe9bjn3P7kXvftoRQo/COO4BfiOUuoBjOTkWuC9SqlmrfUWL0/u\n", "fiAN3Ku1vitAW+uOo6Nm/HQk2ti5ewiAVUsr58wtLThzo4Xn2mOt7B86XDEbBEEQKsgSYA1GAXY8\n", "cBtwUqAWNSD7ugewm49y2NnOQzv3klzhcvWVbTQnorzU9zxWn4VlWViYDX7/sfkfWpb30ptKB/sm\n", "hNm1JtBaX6WU+hTwmFJqo9Z6FOPItRSd1sKxRRvG4UlePjdPW4VpeG1/P8l4eEH9PjadsZr7n9zL\n", "Q0/vE2eudOxQSk187novclbAG1Pvn+oiWuubMHlzQhnoHe0jZNm0xJrZd8RU8QoqMufTGm9hR98e\n", "Urk08XBsqpcKgiDUIkeAl7XWOeAVpVRKKdWptT5GWy5rx/KQyqX5XeYnxE7u5ib92Pwu4ikxb3kx\n", "yftOeUfpjBNmtXb0makAypTSL2ArcKJSqgMYxkgsvzzd9UT6VR5SmRz7u4fYuH7xguSRp3ctoSUZ\n", "4aFn9vGBy19HyBapZQkQ6VcN0DfaT3u8Dduy2dftReYCcOYOF0Xm2mJmr2wgPSTOXAVRSj3FmOrk\n", "Na31B4O0RziWnv5Rtu46Sk/fKKuWNnPqhiUVy28VSsbDGAXKV5RSK4EmoGeyE2XtWB7u2vZrRkLd\n", "OP1L+POL30w4FAIswMV1wcXx/ndxXRfXW/77j10Xfvn4TvbzIj964Q42HXcOS5s7A31PdcSc1o4z\n", "ReZmkn59ArgbU0jlBq31gXkaLSyA3QcHcVxYv3JhlffCIZvzTl3J3b/dxYuvHeHUDUtKZKEgVDfD\n", "2VE6kyYa3X3UOFQLiXLPleZEhGQ8PD4yFzPO5EBqkKVNU5eHFkqHUioOoLW+JGhbhPG8tKOH//j5\n", "y+w+OMjgSGbcsbbmKJddcDzvPH89LcloQBYKc0FrfadSapNS6nHMGvKjWmt3ptcJpeOR3U+AY9Pc\n", "/UYu7bp4XtfY+dwz7H41jX38Czy65ynevfHtpTVSmBUzFUCZSfp1B3DHVMeFyvCany+3cuEpi5vO\n", "WMXdv93Fg0/vE2dOaAgc12E0myIZMf0Ze/pHCYdsWpsqtyi0LIulHUkO9Q7jui6WZZGMGmdyJDs6\n", "w6uFEnIakFRK3Y2ZH6/Ter76I6FU7Dk0yGe+9QiZnMOqJc1sXLeIk9Z1sHxxE1t39vKrJ/bw/bu2\n", "8uP7tvGBy1/H75+7LmiThVmgtf5U0DY0Kqlcml19+3CGO1jcPH8VSntLjHy/icbpI6+Wyjxhjswq\n", "Z06obl7bb5y59fMsflLMKcd3sqg1xiPP7eea954q0hWh7knl0ri4JCOmE8SRvhSd7fGKV3Rd2pFk\n", "54EBhkaztCSjBecylZPk8goyDHxZa32DUupE4BdKqS6ttRO0YY3MDbe9QCbn8L//9Cw2nbF63LEL\n", "T1/FFZeexD2P7eJHv9rGv97yLMsXJTlDOiUJwpTs7tuHi4sz3EJHS3ze12lvjkE2TjLUxO7+fSW0\n", "UJgLslKvA3bs6ydkW6xd1jLzyTMQsi0uOG0VgyNZnt3WXQLrBKG68SNfyUiCXN7h6GCKxW2JGV5V\n", "ejrbzYR6pM/YEw/Hx9knVIRXgO8DaK23YXJ4Vkx1svRzLD8He4Z5cuthTl6/iAtPXzXpOcl4hPdc\n", "tIHrP3wulgXfv3trha1sKKSfYx3QPWLSE51UE+0t88/Jbk5GAGgJd9A90ksunyuJfcLckMhcjeM4\n", "LjsPDLB6aTPRSKgk17zwjFXc9tBrPPj0Xs7euKwk1xSEamU0mwKMM3d0II3rwuK2+e9UzpclHUZW\n", "2d03yvqVbYXInG+fUBGuBk4FPuYVZWgFpswFl8IM5edXv9sDwO+96bgZo+UbVrdz1knLeOLlQ+w5\n", "NMiaEmxwCscgRb3qgJ4R01vVzcQXFJlrShhnLmG14bp76R7pZUWLRMUrjUTmapz9R4ZIZfIlkVj6\n", "qLUdLFuU5JHnD9A/JBIvob4pROaiCXr6zePOQCJz5p5+AZaE78zlxJmrIDcArUqpB4GbgatFYhks\n", "Dz2zj3g0xHmvXzmr888/1QRSn9LSo1EQpqJ3xHQSczMxOlrnH5lrihtnLuyY+cvv2SpUFonM1Th6\n", "lxmQam1Hya5pWRbv3nQC//bT5/nJr7dz1WWnlOzaglBtFMsse/qN47S4PYDIXLufs+c5cwWZpThz\n", "lcLreXVl0HYIhoM9w+zrHuKNpywnHpvdcuX0LhMVeG7bEd696YRymicINUvP6FhkriUx/2JfybgZ\n", "l3bOOIT96YGFGyfMGYnM1ThbPWeu1E2+f+9Nx7G4Lc7tD+/gYM/wzC8QhBplzJmLc8SLzAWTMzfe\n", "mfMLsoxKzpzQoPjRtbNOmr1sq7M9weK2OK/t6yuXWYJQ8/SOHMXChlyUJi/vbT74MkvHd+ZSgyWx\n", "T5gb4szVOFt39hKNhFi3wB5zE4lGQlx12Slksnm+/qNncF1p/yLUJyOZ4pw5LzLXWvnI3OK2OJZl\n", "cuagSGYpkTmhQXnyZePMnXnS3HK3169s40h/StIEBGEKhjIjRIgDFs2JBThznswynzLRvb6UyCyD\n", "QJy5Ksd13XH/ihkazbL74AAbVrcRDpX+T3nRGas4e+Mynt12hHse213y6wtCNZDOmwVfPByjf8g0\n", "I25trnzj4XDIpqMlPiaz9Jy5EcmZExqQbC7Pc9u7Wb20mWWLknN67fFeDvnO/SL5EoTJGM6OEHLN\n", "PNe8gMhcIhbGsiCTNmvQ4YwoSYJAcuaqiCf3P88Pnv0J+4cOk3fys3pN9GzYYVn80X/djAXgVfuy\n", "sCjU/bLGHltYRecwdpY19rj4OiyCxJlZbnj1V/xwfxTbto65jo2FWnICHz7rT2iONc337QtCIGTy\n", "WQCioSgDw2bx19Y0/4TwhbCkPcGr+/pwHJd42NggkTmhEXlpRy+pTJ4z59Evbr2nVNlxoJ/TupaU\n", "2jRBqGlc12U4O0rMMek5zQvImbNti2QsTHrUhQ6Zr4JCnLkq4fBwD//0m3/DxWVd+2qioQi+e+WX\n", "Y3Zdl7HYnMu+7iGODqVZv7KVRDRUOObighfFc/2fvR/8x+acsfML1y26h3+dCFl6+1Nk7ZDJ65lw\n", "nVQuzW/3PAXAJ877UMl/N4JQTtI5E42LhiL0D6cJh6xCUnel6WxPoHcfpX8oTUdrnEgoQsazTxAa\n", "iae2+vlyc2+Ps2pJMwD7uyXfWxAmkslnTcAgbyJyTQuc75KJCKlRM09JX9RgEGeuSvj1jkfIOTk+\n", "es5/5+L15854fjaX58+uv5ukbfN/PvB7hOzp++8sBNd1+eTXHmLrC0f5zLWb6JpQOdNxHf76l1/i\n", "sT1PM5AapDUuvX2E2mEsMhdhYChDa1N0xn5W5aLQnqBvlI7WONFQhExenDmh8XhKHyYatjnlhMVz\n", "fu2KTqMQ2X9kqNRmCULNM5wdAcDJhUjEwoQWmKbTFI9w+Kg4c0EiOXNVwtbuVwE4e9Wpszr/0ecP\n", "MDiS5ZKz15TVkQMTGbzyHRsB+K97XznmuG3ZnLvmLFxcXjisy2qLIJQa31kyMss0rQFJLGG8MwcQ\n", "C0ULzqYg1DvZfJa+0X5ePXSAnUcOo05MMJwdpHe0j6Oj/fSN9tOXGqA/NcBAapCB9BCD6SGG0sMM\n", "Zcy/4cwIDlkWdYTY19NHKpsilUuTm2XqgiDUO77DlcuGFpQv59OUiDCazhMPx8SZCwiJzFUBjuOw\n", "vXcnq1tX0BydOecslc7xg7u3YtsWl77puApYCKduWMKJa9r53UsHOdw7wtIJCekbFq0DYGffXs5b\n", "e3ZFbBKEUuA7SxYhhlM5TmiqfPETnyUd49sTREORggxUEOqVbD7Lt3/3fR7e/Tsc1/RoT5wB24GP\n", "3P7j+V30RPPff7/1DgBCls2mdW/iQ2f/CWE7VAKrBaE2GfGKlOTSoQVVsvRJxsO4rumNKs5cMIgz\n", "VwX0jvaRyqVZ275qxnOf297Nt259nn3dw1y+6XhWerkBleAd563nqz98mnse28Wf/v7Gccd82/f0\n", "76+YPfWEUioEbAG6MNmMH9Fav1h0/F3AZ4AccKPW+t8DMbQO8Z25jOcztQbpzLVPdOaiDKZFKibU\n", "N7dt/SUP7nqMlS3LOK59NS++1kNvf9prFu7lg3v53H6+t+tne4/L4fbPc9mxv5/uvlFOOX4xiViI\n", "A4OHuX/HI6xpW8ll6i3BvVlBCBhfZplNh2hOLny+S8aMQxgPxxnKyHwVBOLMVQFHRkzj787k1I2/\n", "847Lt299jl88uhPLgkvPXcdV7zylQhYaLjh9Jd/+yXM89Mw+rrj0pHF5RS3RJuLhWOG9CHPmMsDR\n", "Wl+glLoI+ALwHgClVAT4CnA2MAL8Ril1m9ZeR11hQfgyy9FRsyBsaw5eZjkuMicyS6HOuW/HIyQi\n", "cb74tk+TTln82U/u5oRVbXzq4ovmfc0f37eN7zz+Eu84/xze9LoVDKWHuea2T3Pfa78RZ05oaPzo\n", "mZsPl0RmGY+ZSHfMjnM4243ruoHlnTcqkjNXBfSM9gLQmeyY8pz/uPMlfvHoTtataOWfrt3Ex953\n", "GpFwZf988WiYszcuY/+RYXYeGN+/x7IsOpOLODLSW1Gb6gWt9c+Aa7wf1wHFXvFGYLvWul9rnQUe\n", "BjZV1sL6xY/MpUaNvCvIyFxbcwzbgqODpvddNBQh5+RwHCcwmwShnBwd7ad7uIeTl5xIIhLnoWf2\n", "4TguF5+5ekHXXbnEK4LiVbRsjjVx8tIu9g4cYCA1uGC7BaFWKUj386WRWSZiJi4UtWPkXUfyvANA\n", "nLkqoMeLZi2ewpnbfXCAnz6wnZWdTXzpYxdw4pqpnb5yc/5pKwF4+Nlj5ZSLkx0MZ0ZISZ+ReaG1\n", "ziulvgP8X+AHRYdagf6inweBtgqaVtdk8lksy2Jo2BRIaAvQmQvZFq3NMY4OmDEUCxtbMo5MjkJ9\n", "8mrvTmAs7/qBp/diW3Dh6TOnHUzHyk6vPUFRRcsTF5t7vHZ094KuLQi1jO9suU6IphI4c/GoceZC\n", "lrnWaE7WgJVGZJZVQM9IHwCLE+2THv/x/dtxXLj6XaeUZOAthLNPWkY4ZPPEy4e4ckLeXJvXkmAg\n", "M0w8Eg/CvJpHa32VUupTwGNKqY1a61GMI1fc76GF8ZG7Y1BKbQY+VzZD64hMPmNy00bMbmVLgM4c\n", "wKKWOAd6zAI0EjLjPZPPFpqIC1OyQyk18bnrtdabA7BFmCV7Bw4CcFz7ag72DKN3HeX0E5fQ0bqw\n", "OWS5157gwJGxXnMrW5YDcHCoe0HXFoRaphCZc0oVmTMyS9s1LoVE5iqPOHNVwEDaSD7a4q3HHBtJ\n", "ZfnNc/tZvjjJOScvr7RpxxCPhTl5/SKe236E/qH0uPyi1qjZCR1MD7G0ae69gRoZpdSVwGqt9ReB\n", "UcCh0NadrcCJSqkOYBgjsfzydNfzFrCbJ9xjHbCjlHbXA5l8lmgowlDKTEClSAhfCO2tMV7b389o\n", "Okc05EXmpNfcbFivtd4ZtBHC3Ogpyhl/6Kl9AGw6Y2FROYBYJMSSjgT7uscic8ublwDizAmNTdqf\n", "Txy7IJFcCHHvGgVnTiowVxyRWVYBfjJqUyRxzLFHnjtAOpPnzWevxS5zP7nZcnqXmRCf23Zk3PMt\n", "sTFnTpgztwCnK6UeAO4CrgXeq5T6kJcn9wngbuAR4Aat9YHgTK0vMrkM0VCE4dEcQEl2KhdCR4vZ\n", "IOkbTBMtiswJQj3SM+opU5Lt/O6lQ9i2xbmvX1GSa6/sbKKnP0Uqbcb2kiZTZExyu4VGplhmWRJn\n", "zpNZuq5xKdKy+Vhxpv0relX0bgSOA2LA57XWtxcd/zjwQcDf5rpGa31sV2lhWoYyI4Qsm9gkMqrH\n", "XzISlItKsFNZKk7vWsJ//Pxlnn7lMBcW2eU7cwPizM0ZT075/mmO3wHcUTmLGodMPksymmB4yExw\n", "QUuZF3nyst6B1JgzJzudQp3SO3KUiB0mYsXZtucox69qK1l0fOWSZp7ddoQDPcOsX9lGS6wZ27Lp\n", "lwIoVYFS6inG8sFf01p/MEh7GoVMkcwyEV+4M+fLLHHM/6IkqTwz/RWvALq11ld6Eq9ngNuLjp8J\n", "XKm1frpcBjYCI5lRmqLJY0q55vMOz23rZvniZEX7yc3E8avaaUpEeOG1nnHPN0dNI/GhzPBkLxOE\n", "qiSTz9IRamN41HPm4sE6c+1FkblYQWYpkTmhPukd7WNRsoNtu/vI5V1OWV86iX6hCEq3ceZsy6Y1\n", "1kxfamCGVwrlRikVB9BaXxK0LY1GsczSj6othEJkLu9F5nIyX1WamWSWPwI+W3RubsLxs4DrlFIP\n", "KaU+XWrjGoWh7AhNkeQxz+vdRxlO5ThDLQ3AqqkJ2RZda9o5cGSYgeGxHZikJxMdlWqWQg3hF0Ap\n", "OHOJYFOJO1pMZO7oYFFkTnY6hTrEcR36U4O0x1t5ZbfJndu4bup+q3NlldeeoDhvri3eSr84c9XA\n", "aUBSKXW3UupXSqk3Bm1Qo+DPJ6WSWfrXcDxnTuaryjOtM6e1HtZaDymlWjCO3d9MOOUmTG+sNwMX\n", "KKXeWR4z65uRzAhN0WOduae1Ua+e0VVdzhxA13GmPYI/AQOFanujuXQgNgnCXMk7efKuUyiAEg3b\n", "RMKhQG0aL7OUyJxQv6SyaVxcmqNJ9hw20se1y1tmeNXs8RUtxe0JWmPNpHJpsjKmgmYY+LLW+veA\n", "jwDfV0pJHYcKkPY/+06IZAlklvGCM2fmzrSkBVScGf+KSqk1wK3AN7TWN084/FWt9YB33p3AGcCd\n", "01xrM1IufRyZXIask6Mpemzxk5d2GBnj6zd0VtqsGVFrx5y5szcuAyDhtSOQPnPjkHLpVYzvJJkC\n", "KNnA8+VgfAGUzpCUehbql+HsCABNkSQ7Dw8Rsi1WeC0FSsGyRUls22Lf4TFnzleQjGRHaQsFP94b\n", "mFeA7QBa621KqR5gBbBv4omydiwt43LmSlIAxThx+awFtkTmSsSc1o4zFUBZBtwDfFRrff+EY23A\n", "c0qpk4ERTHTuhumuJ+XSj2W4UMlyfGQun3d4ZfdR1ixrCby63mR0ec6c3jUWmfOduRFpGFmMlEuv\n", "YvxJJxqKMpLK0hJwWwIYy5nrHUgRts1XdM7JB2mSIJSF4YyZ/5KRBHsPD7Gis4lwqHTBmXDIZtWS\n", "JnYfGsR1XSzLKlSNHsmmJm0HJFSMq4FTgY8ppVYCrcCkVZpl7VhaMvkMuBa4VklllvmcBVGpZlki\n", "5rR2nOmveB3QBnxWKeXnzm0BmrTWW7w8ufuBNHCv1vqueRjc0PhtCZIT2hLsPjRIKpPnJE/OWG20\n", "NcdYtijJ9r19hUkyEZbInFBb+BGvSCjM8GiW5YtLFxWYL8l4hGgkRP9whohtNnJyzsR0ZUGofUa8\n", "yFzINTmrp5ZBhbJ+RRt7Dg1xqHeE5YubxkXmhEC5Afj/lFIPej9frbV2gjSoUUjnM1iEAKsgkVwI\n", "/jVyWRuioiQJgmn/ilrrazH9rqY6fhMmb06YJ762eGJbgq07TR+ck0qYDF5q1q1o5bEXD9I3lKaj\n", "JV6UMyfOnFAb+JNOyAqTy7tVIbMEaE1GGBjOEAmZhac4c0I94itT8rkw4JRlM2X9qjYefGYfO/b3\n", "G2cuKs5cNaC1zgFXBm1HI5LJZ7HcELZtEQ0vPBIeDdvYFmQzQJPkzAWBFsWBUAAAIABJREFUJJsG\n", "jC/zioXHLyK3evJFVaWROYDjVhiJyu4DJnE9ZIeIhaJSzVKoGQpOkmO+CpsDbkvg09oUY3A4U5BZ\n", "ZvPizAn1x3DGROZyaTP+OtvjJb/H+pVmntqx31Sw9CNz/r0FodHI5DKFfLmJLbHmg2WZCF82Y64l\n", "OXOVR5y5gEnlxnJ2itG7jpKMh1mztHSVvUrNuuVmktx5cKzMczwSl8icUDP4uWiuYyahaonMtTRF\n", "GE3nsFyTWJ6VyFxFUUotVUrtUUp1BW1LPeM7VOmU+Zx3th1bCGyhHL+yDYAd+01v6mRRzpwgNCLp\n", "fKZkxU98ErEwmUzR9YWKIs5cwPg7GPEimWUqnWP/kSGOX9WGbS9816RcrF1hHM1dB8acuWQ4Tior\n", "rQmE2sCPzPn9cUpRprkUtDaZ74Ns1gVEZllJlFIR4NuY0ulCGfFlliPeb7qzvfTOXEdrnPbmGK9N\n", "iMyJzFJoVDL5LE7eLqkzF4+GSXtLv4w0Da844swFTHqSyNzOgwO4Lqz3dhSrlVVLmgmHLHYfHCw8\n", "F4/EpJqlUDP4kbm8VyyyWiJzrU3m+yCdEWcuAL4MfJMpKusJpcMvljU0bD7n5XDmANatbOVw7wjD\n", "o1lx5oSGxnVd0vkMbt4mEStdT9VELEQ6bcZx1hFnrtKIMxcwfjg6VuzMeTuI61dUd9nkcMhmaUeS\n", "Az1jG9ixUJRMLoPrugFaJgizw3eS8nkTAa+WNiB+i4R02hR3k5y5yqCUugro1lrf4z1VvdKIOsCf\n", "/wYGcoRsi/bm2AyvmB/+xujOAwMkvRY6ktstNCI5J4fruqWPzMXCpArOnMxXlaY6NEUNzFgBlDFn\n", "ztf2V3tkDmBFZxNPbj1caLgcC0dxcck5OSLSkFWocvzIXM6be6ouMufJVqTPXMW4GnCVUm8FTge+\n", "q5R6t9b60GQnSzPjheErU/oG8ixqS5YtrWCsCEo/Z3Sanq6S1zNv5tTMWKguCm0DSpwzF4+GC4XE\n", "crL5WHHEmQuYVM6s1oplljv2D2DbFmuXV2/xE58VXinpAz3DbFjdTsR7H5l8Vpw5oerxI3O+xL9a\n", "nLkWz5kbHTVOnMhWKoPW+iL/sVLqfuCaqRw57/zNSDPjeeM7VIODedYtLU9UDsY2RnfsH+BNZ7QD\n", "XkU/YT7MqZmxUF1kPWfOdUobmUvEwuAaZ04ic5VHZJYBM7E1geO47DwwwOqlzUQjpdMzl4sVnZ4z\n", "d8RILaOeAye7nkItUHDmvLknGasOZ86PzI2kjMxSInNCPZL2NjOzGavwmS8Hq5c2Ew7Z7NjfT9RT\n", "wcgcJTQiBUfLtUvSMNwnHg2BayLrkuNdeSQyFzBpLyTg58wdPjrCaDrHuirPl/NZ7jlzB3vGO3OF\n", "UL4gVDE5r/KJrwpJVE01ywnOnMhWKo7W+pKgbah30vkMFha4Nm1lypcDk9+9dlkLuw4MELa8Dcec\n", "VF0WGo/CxqBjG2lkiTBRPouwFZYc7wCojpVLA1MogOK1JtjXPQTA2mXVL7GEIpmlF5nznVKRsMwN\n", "rxz6jcBxQAz4vNb69qLjHwc+CHR7T12jtX6l4obWGf4OYjZnErdLKTtZCK1eAZThkTyERLYi1Cfp\n", "XIaIHQHKG5kDWLW0mdf29zMwZDYa07LhKDQguaLIXKyE6i8/yheyQzJfBUB1rFwaGN/p8Z2gfYeN\n", "M7dySXNgNs2FZYtMMvmhXtP8VSJz8+YKTBW9K5VSHcAzwO1Fx88ErtRaPx2IdXVKoQCK93GtFmeu\n", "OWnG0eiIAy0iWxHqk3QuQ9g2n/VyO3PLF5u56nDvaKHqsiA0GoWomWsRjZQu0yoeNY5hiJAoSQJA\n", "cuYCxo/M+Tr+vV5kbvXS2nDmopEQrU1RevpNz55oUQEUYU78CPis99gGJn4bngVcp5R6SCn16Ypa\n", "VscUInNV5swlYmFsC0ZG/Zw5mRyF+iOVTxPy9pTLKbMEWFnI7x4hGo5KzpzQkPhzievYxKKl7DNn\n", "xrFthaRgVwCIMxcwvm5/YmTOly/WAp3tCY70p3BdtygyJxPlXNBaD2uth5RSLRjH7m8mnHITcA3w\n", "ZuACpdQ7K21jPeJH5jIZl3DIJhKujq9Ey7JIxiOMpLxqlrLTKdQhmVwG2/WcubJH5sbyu2MhceaE\n", "xmS8zLLErQkAm5DMVwFQHdvQDYyv24+EzJ9if/cQne2JklYZKjedbQle29fP8GhWZJYLQCm1BrgV\n", "+IbW+uYJh7+qtR7wzrsTOAO4c5prbUb6X82Ir+3PZKsnKufTlIgwOprHsiyJzM0O6X9VY6TyGZKu\n", "UaGUOzJXqLzcM0ysM8pQZris9xOEaqRQAMUtT2TOIkTWSZXsusLsqK7VSwOSyWWIhiLYlk0qneNI\n", "f4rTTuwM2qw50dkeB6C7b7TQ/Fwic3NDKbUMuAf4qNb6/gnH2oDnlFInAyOY6NwN011P+l/NDt9J\n", "ymRcErHqagXSlIhw4MgQUTssCeWzQ/pf1RCO43g9r0w0vNw5cx0tccIhiyNHR4kuj5AelTlKaDwK\n", "G4OOTayUOXPe/Gm5UgAlCMSZC5h0PlOQWO73KkKuqpHiJz6d7QkAevpTRBOSMzdPrgPagM8qpfzc\n", "uS1Ak9Z6i5cndz+QBu7VWt8VkJ11hb9LmU67tFZZZK45EWE0nSdphyWhXKg7/A0/J2cWga1ljszZ\n", "tkVHa5yegRRrQlHSuQyu62JZVlnvKwjVhO9oua5VFpklrk1OcuYqTnWtXhqQdD5TKH7i92pbXkP5\n", "cjDmzB3pG6W9WWSW80FrfS1w7TTHb8LkzQklxN+lTGccEi3V9XXYlDBjKWSFpGm4UHf4c0Q+ZxGy\n", "LZoq0ONxUWucV/f2cUIoiotL1skVUgMEoREYlzNXBpklrk3edXBcB9uqjhz0RkB+0wGTzWeJeqWZ\n", "Dx81FSGXeuX+a4XOtjFnzp8Y01L2WagB/InNyVtVlzOX9Ba3ISss1cGEusOPEORyFi3JaEUiZIta\n", "4+TyLra3jy3tCYRGI5cfaxpe2j5z3rVc27uPqEkqiThzAZN1coS94ifdR02vtqUdiSBNmjOLvZy5\n", "nv5UUWsCmSSF6qc4GTxRgcjAXPAjc7ZlS2ROqDt8Zy6fG9u4KDeLWs1chWOWPlLRUmg0skWRuVL2\n", "mUt4Mks3b4+/j1ARpv0GVUpFgBuB44AY8Hmt9e1Fx98FfAbTE+tGrfW/l9HWuiSXzxG2zY7G4YIz\n", "V1uRuXYv16FvKE001AbIQBZqg+Jk8ILmv0pojnvOHCHSjiw6hfoi68kss9mxjYty4ztz+ZyJAso8\n", "FSxKqaXAk8BbtNavBG1PIzC+z1wJc+Y8ZYvrWBCSsVVpZnLLrwC6tdabgEuBr/sHPEfvK8DbgIuA\n", "D3sDU5gDOSdHxJdZ9o4WmnDXEolYmGgkRN9girBtBrT0GRFqAT/i5boWySqTWfoLXMsNiWRFqDv8\n", "OcLJWxV35nKeMyfjKji8NeS3AekRUUHGcuasksos/Ws5eRlbQTCTM/cjwK+sZ2MicD4bge1a636t\n", "dRZ4GNhUehPrF8d1yLtOocfc4aMjLO1I1Fx1LcuyaG+J0TeYLkQZJcdHqAWKk8GrVWZpubb0mRPq\n", "juIIQaWcuY5WoyLJetOTFOoKlC8D3wQOBG1II1GuPnO2bRGPhgrOnETmKsu0zpzWelhrPaSUasE4\n", "dn9TdLgV6C/6eRBTWl2YJf7ORdgOM5LKMjSarTmJpU97c5S+oUwhMie7MkItUJjYHLvqCqAUFriu\n", "TdbJ4bpusAYJQgkpzt1prpAz56te8ll/wSnOXBAopa7CqL7u8Z6qrR3sGqY4tSBawsgcGKll3nfm\n", "ZKOkosy4elFKrQFuBb6htb656FA/0FL0cwtwdIZrbQY+N3cz6xN/MovYYbq9SpZLaqz4iU97c5xc\n", "vo9sxiw4ZVemwA6l1MTnrveaegsBky+OzFWbM+flzLmumRzzTr5QLEkQap2CFN+xC5/1ctOSNM5c\n", "NgdYkg4QIFcDrlLqrcDpwHeVUu/WWh+a7GRZO5YO/zMfskKE7NL60IlomEFfwixrwIUyp7XjTAVQ\n", "lgH3AB/VWt8/4fBW4ESlVAdG87wJEzafEs+IcYYopdYBO6Z7Xb3iOzxhO1yzxU982luMfGV41AHE\n", "mStivdZ6Z9BGCJMzJjmpvtYEfmTO8aqD5Yoq3wpCrVNoLOxWTmbpR+YyGSAmkbmg0Fpf5D9WSt0P\n", "XDOVI+edvxlZO5YE38mKhEs/5uKxEH3e0k/WgAtmTmvHmVYG12Gkk59VSvm5c1uAJq31FqXUJ4C7\n", "MXLNG7TWon2eA/6gCofC9PSnAOj0yvzXGgVnbsQsjkVmKdQCuXwOCxuwCtW4qoWCM+cAFtKeQKgr\n", "sgHkzCViYcIhi0zaNc6czFNCg+GPu2gZNgbj0TC5rHEsZGxVlmn/mlrra4Frpzl+B3BHqY1qFHyH\n", "J2KHOXrUOHMdLTXqzHntCYaGzYJTdmWEWiDn5LG91OGqjczlLIiIbEWoLwqLPdemqULFhyzLNChP\n", "p/10AInMBY3W+pKgbWgk/E3BaLj0Yy4RC+Omx5QkQuWQpuEBUpwz1zuYBoqamtYYfmRucMiLzMlA\n", "FmqAnJPDwiSBV1trAt8eP6FcInNCPVFciKFSkTkwUsuU78xJ9EBoMHKFyFx5ZJa40jQ8CMSZCxB/\n", "IgmHwhwd8CJzNe7M9Q9nCFm2TJJCTZBz8p7Msvoic7ZtkYiFCg2OZYNEqCcKbQEqmDMH0NJUFJmT\n", "eUpoMHxFWKwcOXPRMK7jOXMytiqKOHMBkiuKzB0dTBEO2bQkKzeplRJfZtk3mCYcioh8RagJck4O\n", "y61OZw4gEYuQ9wJyEpkT6okg+syBqWhZWHDKPCU0GH7ELBYp/ZhLxMKFyJxsPlYWceYCpLiaZe9A\n", "mo7WWM01DPfxI3N9g2kidlgKoAg1Qc7JFyafamsaDmZyzEl1MKEOKc6Zq1SfOfAqWkr0QGhQ0jmz\n", "gVGeyFyoMLbEmass4swFSKGapR2ibzDFohotfgKmJ5ZtweBIhogdloWnUBNknSx4fdzi0epz5pJx\n", "Ux0MZHIU6otsUc5cskJ95gDjOLohzwaJzAmNRdbbHYyXOTInGyWVRZy5APE/7PmcRS7v0tEaC9ii\n", "+WPbFs3JKAPDGcIhceaE2iDn5HEdm3DIJhKuvq/DRCxcVABFxpRQP4x9nm2zo18hmhIRicwJDYv/\n", "mY9HS+/MxaJhXJFZBkL1bUU3EP6HPettDtZq8ROflmSUwZEMS+www9nRoM2pKZRSEeBG4DggBnxe\n", "a3170fF3AZ8BcsCNWut/D8TQOiPn5HCdeFXmy4GJzDEi1SwrhVIqhOml2gW4wEe01i8Ga1V94i8q\n", "Y6FIRdMLkvFIYcGZzUtkTmgsMvksrmuVKTI3JrOUDf3KUn1b0Q2EP5n5lbVqtS2BT2tTlKGRDGE7\n", "TE4myblyBdCttd4EXAp83T/gOXpfAd4GXAR8WCm1NBAr64yck8dxrKrMlwNPtiI5CJXkMsDRWl8A\n", "/C3whYDtqVt8iWMsHK3ofZviYVlwCg1LNp8DxyJWhmh4PBoupC3I5mNlEWcuQPyJJJV2gNptGO7T\n", "koziuBCyQjJJzp0fAZ/1HtuYCJzPRmC71rpfa50FHgY2Vdi+usNxHBzXwclbVddjzqc4iiCTY/nR\n", "Wv8MuMb7cR1wNDhr6hu/SFY5IgTTkRwns5RNR6GxyDo5cG1ikdI7c+M3H2VsVZLqXME0CP5Oux+Z\n", "62ip3Zw5gJYmMylbrjhzc0VrPQyglGrBOHZ/U3S4Fegv+nkQaKucdfVJzjXOkZO3KpqzMxckobzy\n", "aK3zSqnvAO8F3hewOXWLP0fEI5WOzEWksbHQsPgVnKNlcObisZBsPgaEOHMBMtGZa0lWdlIrNQX7\n", "XRvXdck7eUJ2dS6SqxGl1BrgVuAbWuubiw71Ay1FP7cwQ8RAKbUZ+FypbawnxvpcWdWdM+dKAZRZ\n", "skMpNfG567XWm+d6Ia31VUqpTwGPKaU2aq0nTQKWcTZ/Mt7mRCJa2U3MZFwaGy+Qko0zofKYPHG7\n", "jDJLGVtBUJ0rmAZhYs6cH9mqVVqbfGfOLD6zTk6cuVmilFoG3AN8VGt9/4TDW4ETlVIdwDBGYvnl\n", "6a7nTaybJ9xjHbCjNBbXPoWdQ9cmkajOr8LxshXZ6ZyB9VrrnQu5gFLqSmC11vqLwCjgeP8mRcbZ\n", "/EnnMgAkylBVbzpMNUszL2VECjYfFjzOhODIV0xmKc5cJanOFUyDMJYz5wJW3UTmHH8w53MQrm3p\n", "aAW5DiOd/KxSys+d2wI0aa23KKU+AdyNyae7QWt9ICA764ZCZM61qzwyJ5NjBbkF+I5S6gEgAlyr\n", "tU4HbFNdkvbKOCdjwckscxI9EBqMvGtkluWOzMnmY2WpzhVMg+AniI6MOlhWiOZad+a8yJybH4vM\n", "CbNDa30tcO00x+8A7qicRfVPYbKpYpllIhbGFZllxfDklO8P2o5GIJPznLkKyywTsTAW/hwlkTmh\n", "sci7eXDCZcmZS8RC45RZQuWQapYB4sssR1N5muIRQnbleu2Ug1bPGc2LMyfUAAXnqJojc7GIyCyF\n", "uiSTz+I6Fsl4ZWWWtm2RiJnonOT1CI1GITJXBmcuFh3LR5XNx8oizlyA+IuzkRGnENWqZfycuXzO\n", "iyRI2WehiilIrKrYmUuIzFKoU7L5XGBjLxk3eXPSmkBoJFzXxSFftgIokbBN2DbjWSTMlUWcuQDx\n", "I1fDo/lCVKuW8R3SnDeGJTInVDNjBVCqW2YpzpxQj2SdHDjBOHOmcbglc5TQUORdr5ZTmSJzMNY3\n", "UuaryiLOXID4Oxf5nFUXkTm/AIqXCiESFqGqGWtNUL2RufGtCURmKdQPfvPieECROdexxZkTGoqx\n", "1AKrfM5c1KwDZWxVFnHmAsRPvnYdm5ZkbbclABNiT8RCZEzFadmZEaqaca0JqtSZS8SKchBkc0So\n", "I/x+V4FE5hIRXNcmmxOZpdA4FNZkZZJZgtdqxJXNx0ojzlyAZIsKMNRDZA5MdM535mRnRqhmaqEA\n", "ipR6FuoVv99VMpDInOmHlZGcOaGB8DcE3TLKLBOxEK5ry+ZjhZnVt6hS6o3Al7TWl0x4/uPAB4Fu\n", "76lrtNavlNbE+mWsNLpdFzlzYPLm+jMuNiKzFKqbca0J4tXpzNm2JTkIQl3il0iPx8qzqJyORCwM\n", "GZucIy0Eg0IpFcL0Uu0CXOAjWusXg7WqvilWo5QrMhePmo0S2cyvLDOuYJRSnwT+FBia5PCZwJVa\n", "66dLbVgjUFxNr54ic7l+iCKLT6G6Gdc0PFqdzhxALBIhjUTmhPoiTw7cRCBR8UQsjNtvy5gKlssA\n", "R2t9gVLqIuALwHsCtqmuyRbJLMvRZw7GinZJ1LuyzEZmuR34A2CyJmhnAdcppR5SSn26pJY1ANmi\n", "ZNSWeonMJaMFWZg0ZBWqmVqQWQIkvYRy2RwR6gXXdXFxAsuZS3oLTgcHx3Eqfn8BtNY/A67xflwH\n", "HA3OmsbAn0MsbMKh8mRZxb1ec6LMqiwz/jW11rcCU/1VbsIMxjcDFyil3llC2+qeXD6LTQiw6kZm\n", "2Zwca3Isg1moZsa1JqhSmSVAPCLVwYT6IuiNlHgsPDZPybgKDK11Xin1HeD/Aj8I2Jy6x5/zQlb5\n", "pM3xWAhcm1xeot6VZKHfol/VWg8AKKXuBM4A7pzqZKXUZuBzC7xn3ZB1clieP11PMkvpizWOHUqp\n", "ic9dr7XeHIAtQhHFlb2qOjIXMzlzsjki1AvZgMdecf/GrJMlRn3Mv7WI1voqpdSngMeUUhu11qMT\n", "z5G1Y2nIetLHcjpziVgYhi1RZi2cOa0d5/0tqpRqA55TSp0MjGCiczdM9xrPiHGGKKXWATvma0ct\n", "k3VyWN6EUj8yy0ihlLosPgFYr7XeGbQRwrH4zlzIDpVNclIKkjHz3ZCRMupCnVCcLx4LIF9VWn4E\n", "j1LqSmC11vqLwCjgeP+OQdaOpcGPzIXtMkbmvAIoeSdTtns0CHNaO87lW9QFUEr9MdCstd7i5cnd\n", "D6SBe7XWd83F0kYn5+QLu4MtTbXfZw4m5szJJClUL/7EFglVb1QOoCkeAyCdk/Ek1Af+3GATImRP\n", "lo5fXhLxsMxTwXML8B2l1ANABLhWay3lRcvI2AZm+ea8hC+zdGVcVZJZ/UU97/A87/FNRc/fhMmb\n", "E+ZBLm+apkbDttnNqAOMM2cmZ5FZCtWM//mMhat7IyUZi+JmLIl0C3VDtgKLyulIRCVnLmg8OeX7\n", "g7ajkfDnvEgZx13ci3rn3Tyu62JZld+saUSqV1vUAGSdLK5TP20JQAqgCLWDH5mremdOGhwLdYYv\n", "bQyXMXdnOopz5kRmKTQKGX/clVGNEo+Oja28K5ViK4U4cwGSdXI4+fppSwAisxRqB3+zwW/KXa2Y\n", "hadE5oT6wZ8bwkFF5uJjOXMyTwmNQipr8tjKGZkzMktRZ1Wa+tD21Si5fA4nH6O1ziJzY4nlEkmY\n", "C0qpNwJf0lpfMuH5jwMfBLq9p67RWr9SafvqjbRXUCQWqe7x5/fEkolRqBfSOW9RGQpmI2VcNUuZ\n", "p4QGYTTjj7syR+aKiwuFY2W7lzCGOHMB4bouWSeH69p1FZlrTkhkbj4opT4J/CkwNMnhM4ErtdZP\n", "V9aq+iblTWyJao/MeVGEQl88QahxRtLlX1RORzwakpw5oeFIZc3GRTRczshcGFfaU1UckVkGREFL\n", "XGc5c5GwTTwsTY7nwXbgD4DJsoXPAq5TSj3kVZAVSkAhMhetcmcuFgHXIi/OnFAnDKdN0cJoQJG5\n", "4rwekS8LjULBmSvjuIvHpFJsEIgzFxAFCaJr05Ks7sXkXGmKG2dOEstnj9b6VmCqX9hNwDWYXo4X\n", "KKXeWTHD6hi/1H+iyp05X2aZd8WZE+qDUd+ZC6j4kG1bhbwhiR4IjULay5kr57grjnqLmqRyiMwy\n", "IAo7Fo5dVzlzAE3xOMPIQC4hX9VaDwAope4EzgDunO4FSqnNwOfKb1rtkvZ2KZPR6tb0+z2x8q40\n", "YZ2BHUqpic9d7zUcFqqIYU/iHGQl2UgoTBZTVVoQGoGCGqXMMkvJR6084swFhO/MuW59VbMEaInH\n", "OAxSSr0EKKXagOeUUicDI5jo3A0zvc5bwG6ecK11wI6SG1mj+J/PZLS6x5/fmsBBNkdmYL3XE1Wo\n", "ckYzJjIXD9SZixhnThQkQoMw5syVb86Le9WXQTb0K4k4cwFRkCC69ZUzB9CSjANjZXCFOeECKKX+\n", "GGjWWm/x8uTuB9LAvVrru4I0sF7IeDLLplh1j79kPILrWjgisxTqBD93J8hKstFwmBFEZik0Dv6c\n", "F4uUb+kfDdtjPRxlbFUMceYCIlcss6yzyFxbIgHO2IQtzA4vqnCe9/imoudvwuTNCSXE35FPxqtb\n", "ZunnzGG5OI6DbUuqs1Db+CXSg4zM+dGJTE7mKaEx8J25eBkjc5ZlFfpHijNXOcSZC4hCzlw9Ruaa\n", "orj9lkySQlXjO3NNsep25mLREJa/0+nmiUrdqrKhlIoANwLHATHg81rr24O1qv7wCzHEA5Q4x7yK\n", "fqOiIBEaBD+HLV7mol9hO0wOkVlWElkVBIS/kHSd+uozB5j349qSMydUNf6uYXO8usefZVnYVgiQ\n", "nc4KcAXQrbXeBFwKfD1ge+qSlLfRlwjQmYt7Ek8/SigI9Y6/7oyXWd4cCZn5SloTVA6JzAWEvyiz\n", "XJumRHWXRp8rLckIOLYklgtVTc7J4ToWyUR1O3MAIStEHtnprAA/Am7xHttM3S5EWAB+IYZEgDlz\n", "8WgEXHHmhMYhk/fb8ZTbmYswimw+VhJx5gLC37GIhiKE7Mn6RNcuzV5kTnZlhGom5+TBtU0p5f+f\n", "vTuPk+WqC/7/qareZ737zZ6Q5RiWaNgCAbKgBBCjEH0EBOGHQhCQBwVEiQ/h5qc+okA0IkQMIFEh\n", "CJiogBAEYoCwypKQkJzkJjfbvbnr7L13VT1/nKqZvnNnerbuqurq7/v1Csx098w5M7e/U/U937Mk\n", "XNbOBMmcxFQvaa3LAEqpEUxi98fx9iid5neSjXGKczGXg7ps1CUGR3j96HUyl3PMNVWW2kQn+Xcx\n", "KRVWreI8Z6dXRko5fM+WG0+RaK7vgm/1RTLn2MG0Fbk49pxS6iTgRuCDWutPrfDaXch5jmsW3uTF\n", "uZNsMZuH+kKVUKyanOfYp8J7sl4fx5ML1qPKJnjRSf5dTEq1goNK8z1eiBqHkVI2OORYkjmRXCaZ\n", "65PKXDDSWZEpYT2llNoBfBl4o9b6lpVeL+c5rk/TbYEFQzHuJBtWJ+pyw7lWcp5jn4qsMhcUKSr1\n", "ek/bEQuSfxeTUuW6uSmLc81Ar4yUcuDZuL7ceIrk8nwX3+uPZC4c6ZyrycWxx64AxoArlVJXBo+9\n", "UGtdi7FPqdP0WuDAUL4QWx/CRFIqc2JQtIKzSks9roiHM86kMhed5N/FpNRsxdwbxLmbV68MB5U5\n", "H9msQSSXh4uFTcZJ/qa+YWVOkrne0lq/BXhL3P1Iu6YbJHMx7iQb3tDKrstiULieC3YEyVw2Ay3Z\n", "XChKyb+LSanZmknm4lwA3ivZjIOFg295+L4fd3eEWJKHh9UnfwJzGZPMlWtycRT9z/XiP+NxKGfa\n", "bsiuy2JAuL7ZwbnY42QuPPpAqt7RWVVlTil1HvAerfXFix6/FHgXZvvmj2mtP9L9LqZTORhhT/qB\n", "xeuVsc1W6q7nknGkACySx8fFJr5pXmuRz2ShBRWpzIkUaPkLuznHZbhorr1NqczFQimVBT4GnALk\n", "gT/VWn8u3l6lm+u7gE0+6/S0nUI2B1WZZhmlFYellVLvAK7DBFv741ngauB5wIXA5Uqp7b3oZBqV\n", "g/LzcIwLwHspY5kETo4nEIlledj09qLWLeEaBNkARaSBG6zdydrxDfSNFMxAjuy6HJtXAIe01hcA\n", "LwD+Nub+pJ6H2fQr4/T2OKxC1lyvpDIXndXMMdoNXAYs/tc/G9hM1GeMAAAgAElEQVSttZ7WWjeB\n", "bwIXdLl/qVUNdvlJbTIXVOOqcoaPSCDf9/EtH8fqj2QuvDjK7mAiDcKdjuOctTFUyOH7MuAYo88A\n", "4SZDNmaGl+ghz/ewfBvL6m0yFx59IOfMRWfFZE5rfSNLB9koMN32+SxmFzCxCuHC0HB0MG3CQyOn\n", "y9WYeyLEsWrNFpblz5/flnSF4OIolTmRBn5QIbCt+NaslgrBETqebNQVB611WWs9p5QawSR2fxx3\n", "n9IujLteK0oyF7mNDItNAyNtn48Ak52+QA5YXRBWrEZLxZh70hvhWojpchW2xdyZeMkBqwkU7iab\n", "6bPKXK0hF0fR3zzPx8PFieCmspNiPmOO0LGkIBQXpdRJwI3AB7XWn+rwul3IveOG+ZaH5ff+mhdu\n", "7CebC23Imu4dN5LM3QOcqZTaBJQxUyzf2+kL5IDVBbVmA5z0JnPhhg3TlYGvzMkBqwkUbvHfL5W5\n", "Yk7O7RHp0Gi6YHvYMZ+MlM9lTGXOkspcHJRSO4AvA2/UWt/S6bVy79gdPh4OvT8OJDz6oCnJ3Eas\n", "6d5xLX9NfQCl1MuBYa31dUqptwI3Y6ZrflRr/dhaejrIGq0mODA2lM5plvlsDlowW5E1PiJ5Zqum\n", "MpeNcTe9tSgF26hLMif6XbXRMpsPxVwVd2wLfBvPl2QuJldgluZcqZQK1869UGtdi7FPqeZbbiRx\n", "J8lc9FaVzAXZ4fnBxze0Pf554PM96VnKhQeVpnUDlGI2C1WYqQ58ZW5N5BiQaMxVzTTnXJ8cmxFe\n", "HOstWTMn+lut7mLZHo4V/0CKjWN2+BOR01q/BXhL3P0YFJ7nR7aD83CwF4RsLhSd/jgxN4XCucRZ\n", "O/4LWi+EGzbMyblYqybHgERnrmYGf8PDuJMuTOakMif6XbXeAtvDseKPPQsHX6ZZigFQb7Sw7Gh2\n", "cB4qmOuVHPsRHUnmYtJy49+auZdKksythxwDEpG5qnlfxnlo8VqEyVyjJRdH0d+qdTPNMpOAZM7B\n", "Aby4uyFEz5XrZlZHFMncSDDjTJK56EgyF4Nmy8UNpnbkYjw0tZfC3YzKksytmhwDEp254Ly2fLY/\n", "krlwbV84PVuIflVrmMpcJgHXPsfK4FserufH3RUheqpcj27Tr1KQzLmyHjUy8f81HUAz5QZYZjQw\n", "0yeVgbUaCoK5Upc1Pl0gx4B0Wfi+zPfJNMtMcAGWBeUdyTEgfaBSa2JZPtkkJHO2g2X7lGsNRkvp\n", "XL8uBCwkc1EMomQdB9+zJJmLUPx/TQfQTLkBtknmnBgPTe2l4aAyV2lIZa4L5BiQLgsrxoVs77dp\n", "7obwAizJXEdyDEgfCNerJmEn2TCuZio1SeZEqoUDmFFVxC1kp9goSTIXg5lyAyvYVciyFi+PSofw\n", "JrnakMrcOsgxID1WCd6XxVx/JXMtz8X3/dT+3RDpF1YIkrCTbNbOgA9z1Royc12kWTVI5qKqiFu+\n", "7BQbpfj/mg4gU5lzE7GbV69kgwt1rSnJ3FrIMSDRqDWakINCLv7qwGqE0yx9POpNl0IuvX87RLpV\n", "wmQuE3/sZZ0MtGC6IkfoiHQLBzCzEQ2iWNh4srlQZNI5xy/hwjVzSVgz0CthJaEuW6mLBAorxqU+\n", "q8xheZSrElOif1Wa4XrV+GMv3M1Wdl0WaVeNPJlz8PHwfdlcKAqSzMVgttJIzG5evbKw+14L15XR\n", "GZEsYcW4X3azDCtz2B6zFUnmRP+qhjvJJqAyF1YHZddlkXbhNS+q6c02NlgeLbn/i4QkczEwa+b8\n", "vjnjaj3mq462x5xUEkTChIdv98uASratMjdXkanLon9Vg5vKJGw+FCaU4To+IdKq2jDXvKjuOx3L\n", "AdujWpd1c1GQZC4GM3OmMpfrk23R16N9Wtis3HyKhKm3wlHK/hhQCePJsnypzIm+Fm7EUExSMieV\n", "OZFy85W5iGajOJYDlketLjswR0GSuRjMlOtguYmYZtIr8/OybY85ufkUCdNoRTtKuVHt0yzLVRkc\n", "Ef2r0jSJUxJ2kg2rg2U5QkekXH1+rWpUyVwGLI+qJHORkGQuBjOVsDIX/8WsV7LzlQSpzIlkabY8\n", "XMwFpn+SufZKtwyOiP5VC6Z7JWGaZVgdrMkROiLlaq1oK+IZ28Gyfco1ia0oSDIXg+lyDcuK7ryP\n", "OGTaKnNy8ymSpFJrgmUWZSfh4OLVcMLKnCVrUEV/C6d7JSH2ink5D1UMhoVkLh9Je+E94JzMJImE\n", "JHMxmK3WgOi2iI1DVtbMiYQqV5tgB8mcHf8N5WpYloVjOVi2bIAi+lutFe2uep2ER5NUJJkTKRcu\n", "LYhqenM462W2VoukvUEnyVzEao0W9SCo+uVGcj3mfzZbkjmRLOVaE2yzw1a/TLOEYN2c5csa1Igo\n", "pc5TSt0Sdz/SJrypzCTg+lfKmSqFnIcq0i7c9Ct8z/daWKyQzYWiIclcxGbLTazwRjLFa+bCErtl\n", "ecyWJZkTyVGuNrGCylw/JXNZJyPTLCOilHoHcB0QzZ3PgHBdj6YXrleNvzKXD9YPhTe6QqRV0zPX\n", "jVI+mj9pYXzPSTIXCUnmIjZdrs9P8eqnG8m1aj9nblqSOZEgs+X+WzMHZhMUSyrdUdkNXAZYcXck\n", "Tar11vz1LwlnPIbXqXC2jBBp1XTNIEopX4ikvXDXzIokc5GQZC5iU7P1+SleeSe9lbnwZ7Nsl8kZ\n", "mTMtkmOmvBCD/bRuNetksR1fKnMR0FrfCMie2l1WrrWwrHCKc/zXvzD+G67ElEi3sDJXjGhGWC5M\n", "5mQ9aiT6504mJSZnavPTLPMpnmZp2zZZO0Mr6zF5SEZmRHLMVNqnWfZPDOadHNizsgFKgiildgHv\n", "jrsf/aJSa4Jjrn+FBFz/wupgQypza7FHKbX4sau01rti6ItYpTCZi2pGWHj0SEXOcIxEx2ROKWUD\n", "HwLOAerAa7XW97c9//vAbwOHgoder7W+t0d9TYXJ2cGYZgmQz+TxMx6Ts1KZE8kxG5zzCJBLwFSv\n", "1TLJnEu52sTzfGxbZgDGLbiB3dX+mFLqVGBPDN1JvEqt1bb5UPzJXHgNbvktXNfDcWSy0iqcprV+\n", "sJvfUCl1HvAerfXF3fy+YkG4VjWqpQVDwXROSeaisdKdzIuBnNb6/CDY3h88Fnoy8Jta6x/1qoNp\n", "MzlbS9TFrJfyTo6606TWcKnUmpQK6U5eRX+YmWuAFU6z7J/3ZC6TxbdcPN+nUm8xXOyfvvcxP+4O\n", "pEm5tlAVT8LMlEIm2AzCdpmrNhkblv1uohZsNvRKYC7uvqRZa37joYiSuVyYzMlgfhRWGoZ6FvAl\n", "AK31d4GnLnr+KcAVSqlvKKX+qAf9S53J2frCbpZ9dCO5HvlMbj5xnZqV0RmRDGFlzrbshcO4+8D8\n", "4I/sEBsJrfWDWuvz4+5HmrRX5pKwZjxMKC3bZUZiKi6y2VCP+b6P64fTLKOJu3DXzFpT4ioKK1Xm\n", "RoGZts9dpZSttfaCz28APgjMAjcppV6ktf5CD/qZGlNtyVwSLma9lM/k8II9BCZmahy/bTjmHiWX\n", "TGmOzkylgT3m9d1gyvzfC9tleq7OcVuH4u2QEGtUaT/jMQGVufmYclw5vzEmWusbg6nJokfqDXd+\n", "aUFUm36Fa2Ll2I9orPSvOgOMtH3ensgBXKO1ngFQSn0BOBdYNpmTxeJmA5Ri0abFwm4/aZV3crg0\n", "Ad+sFRxMq10sLlOaIzJTbmBv9vtqiiW03fzaHlNzAxtPoo+Vq02scAOUBAxm5tumWcqRH8kl944b\n", "U6lHv1Y1bKfuyrVqnda00dBKydxtwKXAZ5RSzwDuCJ9QSo0BdyilHg9UgOcCH+30zWSxuJlmObzZ\n", "Yo5BqMwFF0rLG+TjCVa7WPyoKc1KqeWmNO8EvqC1fk93uzk4ZssNHMcjZ/dX/IWVRMtxZdqy6EtJ\n", "2wBFpln2B7l33JhKre1s1Yg2/Qpjqy7HfqzXmjYaWmnN3E1ATSl1G6ZS8PtKqZcrpV6ntZ4G/gi4\n", "Bfg6cKfW+kvr7PRAqDVaVOstgqnEibiY9dL8AnfHZWJwk7nVWnJKc9vnNwCvxwyaPFsp9aIoO5cW\n", "zZYXHFzs9vU0S6nMiX40W2lg2S4ZK4Ntx79zZHtMzVUlmYuZbDbUI5VaC8t2sXGwrGiWJuYdc6Pb\n", "9Br4vvzT9lrHFF1r7QNvWPTwvW3P34C5yRSrcGTaJDTFggmm1Cdz7QeHSyVhJTKlOQLhVCrfalHI\n", "9tfOde1VBKnMLUnOv0q4mXLDDKQkYL0cgGM7OJaD50hlLk5BBUI2G+qRaq0FtodjRTeAGV6vfMul\n", "3nQp5PrnGKB+JL/dCB2arACQywONZGzN3Evt6xEmpqUytwKZ0hwBc8Pm41ktCplC3N1Zk/nBH9uT\n", "ZG5pXT//SnTXbKUBQ14iDgwP5ZwcTdtlVjZAESlVqTfBaUW6tKC96l2uNiWZ6zH57Ubo8FQVgFzO\n", "h8YAHE0QBPPwsM3BIJEVy7oJeF4wpRngNUqplwPDWuvrgqM/bsHsdPkVmdK8PhMzC+c8zp8x1Sfm\n", "18zJNEvRp2bLDexRN1EDmXknR9luyHEfIrUqtRaW45Kzo7vmLVyvPOYqTbaMFSNrexBJMhehQ5Mm\n", "mbMz5may2GeVgbUKL9ibxjLse7CK5/nYthwlsxSZ0hyNyZkaOOa4jH5L5sLBkWLJYmpWKt2i/8yU\n", "G+C4idr8q5jNY9lVZuckmRPpVK42wW5Fes2bH7CRnWIjEf8K5AFyKKjM+cHNZDGb7mQu/MMxOuLQ\n", "cj0m5QZUxGxipjZ/zmPfJXPBxbFUtGWapeg7vu8zW6mDlaxkrpDJYzme3HCK1Jqr17Bsf2HpSwTk\n", "2I9oSTIXobAy59LEwuq7m8m1CsvsI8MOsPDzCxGXiZkaOGFlvL/iL0zmCkUo11o0mm7MPRJi9ar1\n", "Fi3fBctP1EBmLpMDu8VMWQZIRDrN1cy9VynCuJvfAM9xmSnLetRek2QuQoemKowO5ai3ahSzhci2\n", "iI1LmKwOD5mf88CErJsT8ZqcqWPZwTTLPtvNspQ1aw4KBbPN8+FpGRwR/cNMsTQ3deF7OQmKmTxY\n", "MF2pyhbqIpWmKmUAhnIRJnPz0yxbzEllruckmYuI5/kcmqqxbVORSpDMpd1CJcEkc7IJiojbxEwN\n", "O2NOfOi33SzDG+B8kMwdmpBkTvSP2UoDK1hiUMqVYu7NgqGgLy0asqOlSKXpirn3GilEF3e2ZVNw\n", "CliZlkyzjIAkcxE5Ml2j0XQ5bssQ1WaNUp/dSK5HMWNuPnN5c/MplTkRt4mZGkNBpbjfpjmHyVwm\n", "Z6ZXHpqSeBL9Y3quMb/5UJIqc0NZc4NrZZpmGrYQKTMbTLMcKUQbd8VsEZymnOEYAUnmIrL30CwA\n", "x28botqsmjd5yg0HI552toltwSMHZmPukRhkrutxeKrKyLD5s9evyZyVMdWDg7IGVfSRiZna/Hs3\n", "yrU7KynlgrhyWnIeqkilcsNcK6KeETaULWI5LeaqUvHuNUnmIrL34BwAx20t4PreQEyzDJO5aqvG\n", "cVuHeHj/rKxJELE5PF3D9XyGh/u7Mufb5sIoGwqJfnJkurYwzTJBg5lhZQ6nyRFZhypSqNI0gxRR\n", "H4c1nC+B02JaNhfqOUnmIrL3sFmAummTOdovSRezXgnXIsw1ypy0Y4S5apNJ2VJdxGT/ERODhZIZ\n", "UBhK0Lqd1cg5WRzLpoWZsiJrUEU/mWg74zFJ17+hsDKXack0S5E6rudTawXJXMRFhOFcCcuCqcpc\n", "pO0OIknmIvLIfjPFcHzMbNPfb9uir8dQbggwydzJO0cBeHj/TJxdEgMsTOayebPmbDh4f/YLy7Io\n", "ZYtUWzW2jhXYe0gukKJ/TCS0Mldqr8xJMidSZq7SAMcMAI7khyNtO5zCPFmWa1WvSTIXAd/3uX/v\n", "FDu3lGhZ5mIRdVDFIWM7FDMFyo0KJ+8YAeDh/bJuTsRj/xFTyQrX7Yz0WTIH5ia40qxy0o4RjkzX\n", "qNRkLYLoD4enqzjB5j1JSubaK3MHZZMukTITMzWI6ZoXTmGutWpU661I2x40ksxF4NBkldlKk9NP\n", "HGe6ZpKZscJIzL2KxlCuxFyjwmnHm8rc7kenYu6RGFRhJcsPRimH+2yaJSzE04nbzWCQbCok+oHv\n", "+xw4UqY0bJK50UJyBjPDG85C0ZNqt0idQ1PV+QHM4XzEyVxuYdMumcLcW5LMRSBMYE4/YYyZurlY\n", "jOYHI5kbzpWYbZQ5cfsIQ8Usdz84EXeXxIB6cN8MI6UcNbeKYzvk+3Cq83hxjKbbZMd2c4bjIwfk\n", "5lMk30y5QbnWIlcwo/PjhdGYe7RgvGj6Uhgylblmy425R0J0z+GpKlYmmGYZcWVuLG9iy8o2ZHOh\n", "HpNkLgJ37TkCwFknb2KmbkbSByWZGy+MUm/Vqbk1zj51M/uPVJiUERoRsUqtyWNHypx2/CiTtWk2\n", "FcawLCvubq3Z5uI4AOPjZhOXB/ZNx9kdIVblsWADMCtbJ2NnFnaQTIDx4G+BU6jj+bAv6KsQaXB4\n", "qoqVq2NbduSbfm0umeuVlavJ7ss9JslcBH587yFyWYezT93MRMVU6TYVkzMy2Utbh7YAcLg8weNP\n", "2wzAj+87FGeXxAAKq+OnHT/CVHWaLUFS1G/CZG54zCXj2NwdDBQJkWSPHjSDmK5dYyw/kqiBlIzt\n", "MF4YxbXNzWZ4jJAQaXDgSAUrV2M8P4ZtRXvLH15nrVxNpjD3mCRzPXZ4qsrD+2d54uO2kMs6HKqY\n", "m69tpS0x9ywa24Nk7lBlgvOesBOAb//ksTi7JAbQnfebuDv1ZHPO46ZSvyZzYwDMNmc586RxHtg7\n", "LZugiMS775EpsDzK7izbhjbH3Z1jbC6OU/PnAF/WdYtU2bN/CitbZ9tw9HG3ubQJMMncozJI0lOS\n", "zPXYLT94BIBnPNEkMgfnjjCUK81v2Zp2W0vmD8ih8hFO2jHCCduG+cE9B5mtNGLumRgkP773EJYF\n", "m7ea9TDbSsm7oVyNzUVzcTxcmeSJp2/B8+H2+w7H3CshOrvvkSkyxRo+PjuGt8XdnWNsKW7C9V2s\n", "XJ2f7pF13SIdGk2XvVOHwYrnmjeaH8axHZxCXTbr6rFMpyeVUjbwIeAcoA68Vmt9f9vzlwLvAlrA\n", "x7TWH+lhX/tOs+Vx83ceIpexec65J9JoNXhs7iBnbD417q5FZmdw4d43ewDLsnj+M07hY5+7iy9+\n", "60F+/RfOirl3ySGx1jsHJyrc/eAE55yxlSN1k/icNHZ8zL1anxNGdwDwyPQ+fvmc8/nMV+/j1h8+\n", "yjOfdFzMPUuHleJQrN30XJ37H53ixDN9DgHHjWyPu0vHOHn8eL6398ccd6KLfmiScrXJUDEbd7dS\n", "TWKt9x7YNw0Fk0SdOBb9NcK2bE4Y2ckj7n72Hppheq7O2HD/bTzWD1aqzL0YyGmtzwf+CHh/+IRS\n", "KgtcDTwPuBC4XCmVvL/SMfq3W3dzYKLCJeedwnAxy56pR/B8j9M2nRR31yJz8vgJOLbDfYf3APD8\n", "Z5jfxWe+eu/8ongBSKz1zE3/vRuAi59yErsnHgTg5LETYuzR+m0tbWYoW+T+iQc57fhRTt45wnfv\n", "emx+TZLYsGXjUKzPbXfsw/Nh6/Fm46skDmaesfk0AHae1KDlenzz9r0x92ggSKz12Pfu2o89ZDbJ\n", "OnX8xFj6cOaW0/AtF4pz3CGzSHpmpWTuWcCXALTW3wWe2vbc2cBurfW01roJfBO4oCe97DNz1Saf\n", "/sq9/NMX72bTSJ6XXaIAuO2h/wHgnJ1nx9m9SOWcLD+z9XTun3yIfbMHKBWyXP6SJ1FruFxx7W18\n", "587HaLa8uLuZBBJrXeZ6Pjd/5yG+8K09HLdliPPO2cYP9/2EkdxQbBe2jbIsiyftOJuD5SPsnniQ\n", "Vzz/Z2i5Pu/95x9wQA487oZOcSjW6NBklU9/5V6yWTjMHrJOljO3nBZ3t45x5pZTsS2baedhshn4\n", "5M2a/UdksLHHJNZ66OBEhS9++wGyW/bjWA5nbzszln6orY8DwNl0gH//xv20XLnf64WO0yyBUWCm\n", "7XNXKWVrrb3gufZ9sWeBsXX0wQH43ev/lNyo2TbVb/vfdv4Sjy39uuWfW+67rO77dX59+JHnmTer\n", "fbKFPZLn7Tf9F57vcaQyyebSJra5Yzz66KMdv2uanDt8Nj/St/P7/3IlO4a2Yts2W84254782c2f\n", "x/qyRca2sW0LCzAbnSVnt7P1aMzM31g7q/ySmGJt+ZhaXSR0iqeln+kYgdb8i/Ct8Fv4xzyHtYrv\n", "7fl4gH0K1IZyXP6Jz1Jt1rjkjAvYt2/f8n1IuHNKZ/L1ydv4Pzf9OTuGtzF6Zp0Hyk1e+w83knVs\n", "HNtm6c0C+zumltOYXXOsddIpDlfrmDiDla5L4TOdrjZruTatt41jv341r17ue3iujz8KxR0+e/dW\n", "edYpT+fIgWSOzj+peAbff+R2CqcfZHLO4vLrv0DWcYLrUjpjZy3WcU1byUZjbZk4W+4du9x1rdOj\n", "K737V3ufutrv0una6C883fZ2XO5rfc+HHS5Wtckztj45trg7ydpOtmzTKN3JvdU9/Nrf/CvZjA3z\n", "USWx1W69cbZSMjcDtB+I1h5o04ueGwEmO30zpdQu4N1LPXf3P96yQlfS4/l/9p9xd0FEZ7dSavFj\n", "V2mtdy16TGItInfzba7hL+Luhui+1cZaJ53i8BgSZ2tzN9/mI1wTdzfExnQjzmANsSZxtjF3823+\n", "gQ/G3Q2xNmuKs5WSuduAS4HPKKWeAdzR9tw9wJlKqU1AGTPt672dvlnQiaM6opTKAzXgDMBdoT+9\n", "sAeIY97HoLUbZ9txtOsAu4GC1rq+itenPdYG6d8+7rYHrd21xlonneLwGBJniWh70NqNq+1uxhms\n", "IdYSGGcweO+7QXu/x9XuuuLM8v3ly7pKKYuF3YYAXgM8BRjWWl+nlPol4ErM2ruPaq2vXU/PlVK+\n", "1jqWWmtcbQ9au3G23Q/tpj3WBq3dONsetHa72fZScai1vjeu/vRLu3G2PWjtxtl2N9vtRqzJv0H6\n", "242z7X5qt2NlTmvtA29Y9PC9bc9/Hvj8WhoUQhxLYk2I+C0Th0KILpNYE6J75NBwIYQQQgghhOhD\n", "kswJIYQQQgghRB9KSjJ31QC2PWjtxtn2oLXbyaD9LuT9nv524257KfJvIO2msW2Js/jbHrR242y7\n", "b9rtuAGKEEIIIYQQQohkSkplTgghhBBCCCHEGkgyJ4QQQgghhBB9SJI5IYQQQgghhOhDkswJIYQQ\n", "QgghRB+SZE4IIYQQQggh+pAkc0IIIYQQQgjRhzJRNqaUsoEPAecAdeC1Wuv7l3jd3wNHtNbvjKJd\n", "pdTTgPcDFrAXeJXWuhFR2y8BrgB84GNa67/rRrvB9z4PeI/W+uJFj18KvAtoBW1+pFttrqLtlwNv\n", "Cdr+CfBGrXXXzsdYrt2257v63lqp3V6+tzr0JZY4W03bvfp9xBlnwfePJdYGLc46tT1IsSZxNhhx\n", "1qnttuflmrbwulTE2SrblnvHFFzTuhVnUVfmXgzktNbnA3+E6ehRlFKvB56IeYP2vF2llAX8PfD/\n", "aa2fA3wVOC2KtgNXA88DngW8TSk11o1GlVLvAK4D8osez7a1eSFwuVJqezfaXEXbReBPgIu01s8G\n", "xoBf6nW7bc/34r3V6eft9XtrOXHFWce2e/z7iCXOIL5YG7Q469T2AMaaxNnC46mMs05ttz0v17SF\n", "vqUpzjq2HZB7xx632/Z84uMs6mTuWcCXALTW3wWe2v6kUup84OnAhzHZaBTtngUcAd6qlPpvYFxr\n", "rSNqG6AJjANFzM/crTfLbuAyjv09ng3s1lpPa62bwDeBC7rU5kpt14Bnaq1rwecZoBpBu718b3Vq\n", "t9fvreXEFWcrtd3L30dccQbxxdqgxVmntgct1iTOFqQ1zjq1Lde0NimMs5XaBrl3TMM1rWtxFnUy\n", "NwrMtH3uBqVklFLHAVcCv0v3f2HLtgtsBc4HPgD8AvDzSqkly6w9aBvMaMsPgDuBz2mt21+7blrr\n", "GzHl6KX6M932+SxmlKNrlmtba+1rrQ8BKKXeDAxprb/S63Z7/N7q9Lvu9XtrOXHFWce26e3vI5Y4\n", "g/hibdDirFPbDF6sSZwd3afUxVmntuWalvo4W6ltkHvHvr+mdTPOok7mZoCR9va11l7w8a9hfoD/\n", "BP4Q+A2l1KsiaPcIZrRBa61bmJGQxSMgPWlbKXUy5k1yCnAqsEMp9WtdbHsp04v6MwJM9rjNeUop\n", "Wyn1PuDngV+NqNlevrc66fV7azlxxdlKbffy95G0OIMYY23A4gwGL9YkzhYMWpyBXNPSHmcd25Z7\n", "x9Rf09b83oo6mbsN+EUApdQzgDvCJ7TWH9BaP1WbRYDvAT6ptf7HXrcLPAAMK6VODz5/Dmako1s6\n", "tV0AXKAeBOlBTNm8l+4BzlRKbVJK5TBl8m/3uM12H8bMD35JW8m8p3r83uqk1++t5cQVZx3bpre/\n", "j6TFGcQba4MUZzB4sSZxtmCg4gzkmkb642yltuXeMQL9FGeR7mYJ3AQ8Tyl1W/D5a5TZoWZYa33d\n", "otd2c659x3aVUr8NfDJYdHib1vqLEbZ9PfAtpVQNM3/2411sG4Lf46I23wrcjEnmP6q1fqzLbS7Z\n", "NvA/wG8BXwe+ppQCuEZr/W+9bLfH762O7fb4vbWcuOJsxbZ7+PuIO84gvlgbtDhbsu0BizWJs8GJ\n", "s2Palmta6uNsNW3LvWN6rmkbjjPL93t5vRVCCCGEEEII0QtyaLgQQgghhBBC9CFJ5oQQQgghhBCi\n", "D0kyJ4QQQgghhBB9SJI5IYQQQgghhOhDUe9mmShKqQeBy7TWP1RKXQn8WGv9H138/l8GXqa1nlBK\n", "fQF4m9b6nm59/0VtWcA/AD/RWr+/7fE3Ar8NFDEHTP621rrRiz6slVLqPOCDQAnYB7xSa71/La9T\n", "Sv0q8E7MlrUPAa8Kft9nANdizgjJYXZeurr3P5VYLO1xptqDvXQAACAASURBVJTKYt6fzwpe9p9a\n", "6z/oRfvr0aU4+wFmO+zwb8c/a63fr5TaBvwjcDLgAZdrraPcrloE0hJnSqlXAm/H7PBWAf631voH\n", "SikHuBq4BHPv8j6t9Ye73f56bTTOgu3ePwA8O3jpF4F3aK09pdTPBl8zCpSBK7TWt/T6ZxJLG4BY\n", "K2Leb0/FFH2+C7wpyuM3OulxrPXlNW3QK3PtW3k+F8h2+fv/AsGp8VrrF/XwBvNs4KvA/6LtZ1JK\n", "XYY5WPLngSdgErq39aIPaxUE02eBN2utHx98/NG1vE4p9VRMQF6mtX4ScC/wf4Mv/Thwg9b6XOCZ\n", "wOuVUhf39IcSy0l1nAGvBk4Hngj8LHChiuaw5BV1Kc6GgMcB52itzw3+CweMPgjcqrV+AvBK4DPB\n", "jYCIXt/HmTJ7jv8l8Pzgb/efAjcGT78eE2dPAJ4G/J5S6mnd7sN6dCPOMNfqLUEsnQOcj/lbA/Dv\n", "wLVa63OAlwPXK6V29PBHEp2lPdb+GHNI+TmY92IRM2geux7G2q8Hz/XlNW2gK3MBSyn1JuApwHuV\n", "Ui3Mae9/iTkU0QF+hBmxmA1GZL6DeQNcAbQwb/IcsB24Xmt9pVLqH4Lv/zWl1IuAb7IwknM58GbM\n", "oY8HgN/VWt+nlPo4MA08CTgJc0jjy7TWZaXUVQBa63cv8TO8EfMmfYjgD0DgVZjRyykApdTvYCpY\n", "HSmlLsUEcw4zWvN2rfV3lFK7MDes24CdwO2YSt+sUuoNmIttA6gBr9da362Uej3wVK316xY18zRg\n", "um3E42PAXyulNmmtJ1fxus2YQPuI1vrh4LldwObg4+uATwNorWeUUrsxIy0iHmmOsxlgCFO5ygR9\n", "rK70C+mTONsE/BwwB/ynUuo44Css/Ju8CHhD8Du7XSl1H/ACzBlJInr9Hmc1zHv9QPD5D4CdQfX7\n", "JcDfaXNI8pRS6lOYa8D3O/1C+iXOtNZXK6X+Jnh8K+YQ6Aml1FbgBK31J4Lf2YPB9ewFwPWdfnbR\n", "U2mNtQxwK7An+DpPKfVj4OyVfiF9HmtHgp+9L69pg16ZA/C11h/EHEr4dq31v2MCrKm1forW+ueA\n", "xzCnv4MZkfmJ1vrx2hxY+FbM1L6nYSpA71RKbdZavyZ4/cVa60dZOBTwucAfABcF3/uTQPvBh08G\n", "no8JnOMJRua01u9e5gYTrfWbwz/0i5wJ7FBKfVEpdTsm2Zlc4nXzlFJnAn8GvFBr/WRMkN2olCoF\n", "L3lm0KefAZrAlUopG/grzAjP04G/J5hyprX+8BLBCOYPziNtP0MDOAScsIbXnQlklVL/Fvyx+SDm\n", "phOt9fVa62rwM70AM/LypU4/u+ipNMfZTcAUsDf47z6t9Rc6/TL6KM5OxBza+jXgVzEXyJOBP8dc\n", "BG2t9ZG27/No8DUiHn0dZ1rrh3RwOK4yU5qvBv5da93EvK8eaXv5XlZ4r/VRnJ0QfN5SSv055hDo\n", "/cA3tdaHgYeUUq8OfqbHY36vOzv97KLn0hprLa31f2mtdwfPnQK8BfhMp19GGmKNPr6mSTK3tF8C\n", "fkUp9SOl1I+AX+HoUYlvtH18KfA0ZeZNvx8zYj+0zPe1MBn+p8I3i9b6euAEpdSpmKD9kta6qbVu\n", "AT9hodK0HjlMuf5/YeY+b8YEWyfPA47DjAr9CPhnzCjQGUH/PqO1Pqi19jFViudrM1L6GeDbSqkP\n", "YEaIPrZCO8u999w1vC6H+be6HDgXE5DXtb8ouAD+E/CrbSNQIhnSEmfXYEZJt2P+6G9RSr11ha/p\n", "lzhraa0/p7V+tdZ6Tmtdx0xlfglHVyeP+poV+iSi1XdxpszU3k9jpve+Nnh4qffo4vfxYv0SZ/Ov\n", "01q/E9iEmQFwbfDwrwAvCwZlfx/4MgvrV0VypCXWwueeAnwd+IDW+j9X+FZpiLW+vaZJMrc0G1Ma\n", "P1ebucTnsTCfFoLqTxAEP8ZMQ/oBZtSkyfJvCILnFj9vsTDnun2Bqb/C91rJXuCm4CasCXwCMzrS\n", "iQ18VS+sjTkXM1JyZ/B8e8A44eda69/E/CHbDfwhC3Ovl/MQJvCB+U0ktgZ9Xu3r9gJfbvsD8fHw\n", "51NKWUqp92OqkT+vtf7aCv0R0UtLnF0AfCwY0ZzBLJ5eaX1m38SZUupSpdRzFvW9ARwMXjve9twJ\n", "mJFMkRx9FWdKqZOBbwVtXxzEFMDDmIpD6ASOrtQtpZ/i7FlBdYPghvx6TLUl9Eta658NqhUnBX0T\n", "yZKWWEMp9TLMoMEfaq3fs8y3aJeGWOvba5okcwtamEoPwM3Am5VSuaAM/HcsXdE6ExgB3qXNtKqL\n", "MGvSnOD5sHoU8oPv/dJgHjxKqdcAhzFv5I3cUC7ls8CvK6UKQRn9xcD3VviarwGXKKVU0L8XYP7o\n", "FIL+/bJSaiz4vbwO+A+l1Bal1MPAhNb6GuBdmHnhnXwPU8EIk8vfAr7V/sdkhddNBz/fi5RZPwdw\n", "WdvPdw3wHOBpWus7VuiLiE4a4+w7wEuDdrLALwMr7X7VL3E2g7mYvS/4O+Jgpgf9i9baBb6AmU6D\n", "Uuoc4PHAf6/QJ9F7fRlnwd/yW4HPaq1/I6gEh/4d+C2llBPcbL2Uo6eZLaWf4uxi4K+Cn88GXoHZ\n", "cAnMjJMXBz/D8zBTnb+yQp9ENFIXa8ps4HUN8Dyt9adW+S37Ptb6+ZqWiGROmcWRcXl98P+fw9yw\n", "/CbwJ8CDmMWrd2F+T0vtAnk78HngbqXUNzALPP8HU1YGM8LwDaXUE8Iv0Fp/BTNH+C6l1J3Ab2JG\n", "3HxMwLbvkgQL86WvUsFC1hW0f/2HMH/wfwDcjdmeNRwZukaZBaZH0Vr/FDNt8VPKrEP7E+BSrXUl\n", "+N77MW/2uzEl8f8blP3/FPiqUup/MOtpXhu08ztKqeuCj3e1tdPEJF9/HfweXg68Jnjd8cE0hZ2d\n", "Xqe1/jzw18CtSqm7gGcAlyulTgLeBGwB/ksp9Vjw/V69it9f18T8vl5SjH1Kc5y9HRhVSt0d/CwP\n", "A3+hlNqVhjgDPoy56P8w6M8M8P8Hz70ReJZS6ifAf2G2fp5dxe+vq5IWawMYZ19TSh1k43H2BsxU\n", "5cuC92b43ybMNKj7g35+D7P51TdSFGd/gakm3I65CW6wsIPg64C3B3F2FfA5HawJj5LE2VH6/Zq2\n", "VKz9MEjywl3BP9r23HeD75f2WIv9mrau97Xv+7H/d9ZZZ/mD1nbc7Z511lnPOeuss96wxq/dddZZ\n", "Z13brz/zoLSbxD4NWrth2xJn6W87Sf0ZxH+DQYuzuH/Xcf3MSevPoP0byL1jsttd89EEyhzC9x6t\n", "9cXKHMz8cczBendiDhVcPDogkmkbZg3dWiw1+iN6oD3O2h77DcxWxOfH1zOxRhJnCbfomrYdM6Vt\n", "HDM16FVa6wfj7J9YFYmzhFJm6vnHgFMwUwn/FFOd+Thy79iPJNYSaE3JnFLqHZhzXeaCh64GrtBa\n", "f10pdS1m556V5rCLBNBar7TIdKmvWc30M7FBS8QZSqlzMXO+RR+ROEu2JWLtL4F/0lp/Vil1EWb6\n", "04Px9E6slsRZor0COKS1/s1guuztmGmIcu/YhyTWkmmta+Z2Y+aghostn6y1/nrw8Rcx2+ALITbm\n", "qDhTSm3BLKL+Pbq/eYcQg2zxNe184CSl1H9hbkJlF1whNuYzwJXBxzZm50S5dxSiiyzfX1vlU5kz\n", "LW7QWj9TKbVXa31C8PhzgdcE24yu5fvlMVuqnsHKZ8b0wh7gNGk31W3H0a6DuVEsLNqRbVXCOMNs\n", "7Xsj8EeYOLlBa73S8RLLfc84Y22Q/u3jbnvQ2u1KrAXXtAbwOq319UqpdwEZvcwh8h2+3yDGWZxt\n", "D1q7cbW90TgbwexIeh3wPrl3lHb7oO2+ibM1r5lbxGv7eASY6vTiYIeW5S6McZ6ZskfaTX3bcbVb\n", "U2an3nZXaa13rfLrn4K5WF2L2eL38Uqpq7XWHQ+lTmisDdq/fZxtD1q7sPFYAzgC/Efw8edYelvx\n", "eRJniWl70NqNs+01x1mww/SNwAe11jcopf6y7Wm5d5R2k9x2X8TZRpO5HymlLtRa3wq8kIUzUZYU\n", "dOKojiilTgd2f+ITn2Dnzp0b7I4QybB//35e8YpXAJyhtb5/vd9Ha/19zLodlFKnAJ9aKZELvm4X\n", "EmtiAHQr1gLfBF4E/DNwIQsH3i5J4kwMivXGmVJqB+bw6TdqrW8JHpZ7RyGWsN44W28yF87NfBtw\n", "nVIqB/wUc4jzWrkAO3fu5MQTT1xnd4RIrI1M/1g8B9pa4rE190ViTaRUN2LtbcBHlFJvwFQLfmO9\n", "/ZA4Eym11ji7AhgDrlRKhWvn3gL8jdw7CrGsNcXZmpO5YJvm84OP78OcXC+E6KL2OOv0mBBiYxZd\n", "0x4GLom1Q0KkiNb6LZjkbbGLIu6KEKm11t0shRBCCCGEEEIkgCRzQgghhBBCCNGHJJkTQgghhBBC\n", "iD4kyZwQQgghhBBinuv5TM2u+UhBEQNJ5oQQQgghhBDzrv/CT3n1VV/i9vsO4fsb2Uhb9Jokc0II\n", "IYQQQoh5n/vG/Xg+fOizt/Pyd32RH997MO4uiWVIMieEEEKIvtFsuXz0P+7k9nsPxd0VIVKp3nRp\n", "uaYat+9wmXK1yee/uSfmXonlSDInhBBCiL7xvbsO8G+33s//+fC34u6KEKk0V2kc85htWzH0RKyG\n", "JHNCCCGE6Bt79k3Pf1xrtGLsiRDpVKkdG1ct14uhJ2I1JJkTQgghRN84PF2d/3jfoXKMPREinap1\n", "k8yddvzo/GNzlWZc3RErkGRugFTrLb783YeWLJ8LIYQQ/WBiujb/8ZG2xE4I0R3VoDL3zCcdz4fe\n", "8VxyGZt60425V2I5kswNkA/96+184NM/5sM3/STurgghhBDrMjGzkMwdbkvshBDdUambKlypkOGk\n", "HSMUCxmaLUnmkkqSuQFRq7e47fZ9AHz/p/vxPDkzRAghRP850l6Zm5LKnBDdFk6zLOYzAGQzDo2m\n", "rJlLKknmBsTuR6dotkwglmst9h+RdQZCCCH6S73pMldtsn1zCTg6sRNCdEc4zTJM5nIZWypzCSbJ\n", "3IDY/egUACfvHAHgMUnmhBBC9JlwvdyZJ42bz2ckmROi25rBzpW5jEkTclmpzCWZJHMD4r5HTDJ3\n", "wbknAPDYYUnmhBBC9JcweTt+6xC5jM2sbOglRNeFM7kyQTKXzdg0WpLMJZUkcwNi9yNTDBWznHvW\n", "dkCSOSGEAFBKnaeUumXRY7+hlJITqRPoULBGbut4keFSTrZLF6IH3GBfhYzTXplz8X3ZbyGJJJkb\n", "AHPVJvsOlznzxHF2bhkC4MBEJeZeCSFEvJRS7wCuA/Jtj50L/FZsnRIdhRuebB0rMlLKSmVOiB5o\n", "hZU5Z6EyB3JweFJJMjcA7g+mWJ5x0jgjpSwZx2ZyVtYZCCEG3m7gMsACUEptAf4M+L3wMZEs4YHh\n", "W8eLjAzlKNea81UEIUR3hElbxjF/BnMZB0DWzSWUJHMD4L5g85MzTxrHsiw2jeaZmKnH3CvRSfvU\n", "L6XUzymlvq6UukUp9SWl1Pa4+yeOVau3+OTN9/Dw/pm4uyJWSWt9I9ACUErZwEeBtwJzcfZLLO9w\n", "UJnbMlZgpJTD96FclamWQnRT0z26MpfLmv9vyI6WiSTJXEp976f7efP7buGO3Ye475FJwFTmADaN\n", "5Jmarcnc54RaYurXXwO/q7W+GLgR+MO4+iaW95XvP8wNX9a8/5M/jLsrYn2eApwBXAvcADxeKXV1\n", "py9QSu1SSvnt/wF7IujrwDo8XSOXsRkdyjFczAIwJ1Mto7Rn8XteKbUr7k6J7mot2gAllzWVuaZU\n", "5hIpE3cHRG/ccPM9PPjYDNf+6x2Uq002jeTZNl4EYNNIgZY7xWylyehQLuaeiiWEU7/+Kfj8ZVrr\n", "/cHHWUBOyU2g+x+dBuCBvdO4rofjyFhZP9Fafx94IoBS6hTgU1rrt67wNbuAXe2PKaVORRK6njky\n", "VWXLeBHLshgpmeuXrJuL1Gla6wfj7oTorXDqcnbRmjmpzCWT3G2kUK3R4oG95sby0YNzTM7WecLj\n", "tmBZZu7z5tECAJNyPk8itU/9Cj7fD6CUOh94E/BXMXVNdHBwcmFToQOTssFQn1k8TcFa4jERs2bL\n", "Y2quztYxMzBZKprx6HKt1enLhBBrFB5NEA5Khkldy5U/i0kklbkU2neojOebc3j2BUcQ/NxZ2+af\n", "3xQkcxMzNU45bjSWPoq1UUq9FLgC+EWt9ZFVvH4X8O5e90ssaE/m9h+pcPzW4Rh7M5D2KKUWP3ZV\n", "UD1bVlBlOH+lx0T8JmZq+D5sGTfXsGLO3MLUG5LMCdFNizdACadbNqUyl0iSzKXQ3oNm7f4Lzz+N\n", "H917kHKlyYXnnjj//OZRsxRLdrTsD0qpVwKXAxdprSdX8zUy/St67ZsKydEfsZDpXyl3uO1YAoB8\n", "kMxV63KDKUQ3tRZtgBL+f6sllbkkkmQuhR49OAvASTuGefGFpx/z/PiwSeamZmWdQcL5wQ571wAP\n", "ATcGlYdbV6o2iGjVmy6Npksh51BruBw4Uo67S0KkzuG2A8MBCjmzKYNU5oToLjeYThmulZNz5pJN\n", "krkU2h9UBY4LDghfbHwkSObm5HiCpFo0zWtLjF0RqxDupnf6iePc9cCR+RgUQnTPkfCMubFgmmVe\n", "KnNC9EJ4NMH+8kEefuxhsEfM4y1J5pJIkrkUCi94W4LRy8XGgsrctCRzQnTFXMWcc3XyjhHue3hS\n", "KnNC9MDhabM0ILy25aUyJ0RPtFoeVr7Cu295L3W3zo7sycDjpTKXULKbZQodnqoxOpQjH5wLstjC\n", "NEtJ5oTohnBr9JGhHNs3l2TNnBA9EE6z3LZommW1IZU5Ibqp5Xpktj9M3TX3iQeaD2OVpucrdiJZ\n", "JJlLGd/3OTxdnV8gvpRCPkMh50gyJ0SXzFVNZW6klGXH5hKzlSaVWjPmXgmRLoenqmQce/581EIw\n", "zbImlTkhuqrlejijE2TtDG96+qsBcMaOzB8mLpJlw9Msgw0aPgKcBXjA67TWeqPfV6xPudqk3nDn\n", "F4gvZ3wkL2vmhOiScM3ccDHHjs0lwOxoedrxY3F2S4hUmZypsXk0P39mamH+aAKpzAnRTU3XxSrO\n", "cfLYSTxxhznyxR6aljVzCdWNNXOXAENa62crpX4B+DPg17rwfcU6hGsKtgbn8CxnfDjPfY9M4Xk+\n", "tm1F0TUhUmu20l6ZMxsP7T8iyZwQ3TRTaXLCcQ4f+u4/cv/Eg/i+RfZUm9n6pri7JkSq1O1psD1O\n", "2XQim4vjZK0cXqEsa+YSqhvJXBUYU0pZwBgg+93HaPHWzZ7v4fs+lmVhWwuzaseG87ieT7nWZKSU\n", "i6WvQqRFuGZuuJRjxxazpbOsmxOie8zxHy2mtn6X/37wMMVMAc/3yGxv8EDrFuCCuLsoRGo0LHPE\n", "1fEj27Esi035LRxwD8ih4QnVjWTuNqAA3IPZQv3SLnxPsU6Hp6o4W/Zx89R3+Oy/TOOzcMCjhYUd\n", "JHXuEBSeDH/5zQd4y7NfzdbS5hh7LUR/C3ezHC5l5zceOjAhO1oK0S2z5Qb28BS1zGGeevw5/MGz\n", "fwfP9/j1j7ybyth+Hpp6lFPGT4y7m0KkQssyhYHxgpldMpId5aD9GOWmDFImUTeSuXcAt2mt/1gp\n", "dSLwNaXUE7XWx1TolFK7gHd3oU2xjAcmHib7uDuouFnO2vo4MraDhYWPj+d7uJ6H53scmqow2ZxD\n", "T97L337n4+x67lvj7npa7QkO+m53lRz6nS4LG6Dk5g9XlcqcEN0zW2lgj0wAcMGp52FZFo7l4Eyd\n", "DGNHuGP/PZLMCdElrmOSuU1Fk8yN5sw5c3PN2dj6JJbXjWRuCJgJPp4EssCSe+IHN7C72h9TSp0K\n", "7OlCPwSgy7djWfCqJ7ySFzzh6cu+7vPffIAP3/QTzrpI89ND97F3Zj8njO6MsKcD47TgAHCRYvPT\n", "LItZshmbUiEjyZwQXTRTbmAPmVuNM7acOv94rrmFBnDfhNxGCNEtnm32X9gUVOZG86OAJHNJ1Y2j\n", "Cd4LPEMp9Q3gq8A7tdbVLnxfsQ6T7j581+G8k5/U8XXjI+asuRNzpmp010HZgFSI9ZqrNMjnHHJZ\n", "B8uy2BGcNef7/spfLIRY0WylgVWaIW+X2FJc2PCkaI2C5/DY7MEYeydEungZk8yNF00SNxJU5iqu\n", "LB9Iog1X5rTWU8BLutAXsUG1Vp2aNY1fHmd0qPNulmPBweH55hYAdk88xCU976EQ6TRbaTJczM5/\n", "vnPLEHv2zTAxU2NLhzMfhRCrM1NuYOVqjGWPmz+aAKCYzzBdL3Fw7vD8Zl9CiI3xnRqWbzOUNUft\n", "DGXNdazm1uLslliGHBqeIo9OPwaWT7YxjrPCcQPjQTLXqhSxLIv9MqopxLrNVRpH7Qp7+glmasrf\n", "fPrH3PBlLRU6ITZoujaLZfuM5kaPeryQy+DWClRbNeYaUjUQoht8u4nt5+YHR4bzJqlreHI+cRJJ\n", "MpciE9UpAIr26AqvXJhmOTPXYmtpMwfKh3vaNyHSyhzx0WKorTKnTjHTwH54z0E+efM9PLB3Oq7u\n", "CZEK03UTQ+P5o89uLBUy+E0zE2W6Jut5hNgo1/OxHBfHX7imDeckmUuybmyAIhLi0JzZ6Ws4O7Li\n", "a4eLWTKOxdRcne2nbeGug/fSdJtkneyKXyuEWDAXbH4yOrRQmVOnbGaomKUc7HL5yME5Tj9xPJb+\n", "ic6UUucB79FaX6yU+jngbwAXqAOv0lrLtIUEmGmYzU/Gi0cnc0OFLP6sib2p2gwnjh0Xed/EyhbF\n", "2bnA54D7gqev1Vp/Or7eiXau64HTxPGH5x8byQ8B0PBkmmUSSWUuRfbPmmRu8cjlUizLYmw4z9Rs\n", "nfGCqeTN1Od62j8h0ijcybJ9mmUxn+Ev3vRsfvmCxwFwaFJ2tkwipdQ7gOuAfPDQXwO/q7W+GLgR\n", "+MO4+iaOVm6Z69PmRclcqZjFb5rYm67PHPN1In5LxNlTgKu11hcH/0kilyC1ZhPL8XBYuKaNBNMs\n", "m75U5pJIkrkUOTQ3CcDm0uoqAGPDeabn6owFyZxMURFi7WbL4RlzR1e1TzlulEuefgoABydlg9+E\n", "2g1cBoSLjF+mtb4j+DgLyD9cQlRb5p9irHD0zJNSPoPfNDmCXMMSa3GcPQV4kVLqVqXUR5RSw8t/\n", "qYjabM0MPmashWvaSMFU5lqSzCWSJHMpMhmsmduyymRufCRPreEylDFBKqOaQqzd7BLTLEPza1PL\n", "cgFMIq31jUCr7fP9AEqp84E3AX8VU9fEIvVgF72x4tBRj5eKGXDNipFKU3LvJFocZ8B3gbdrrS8E\n", "HgDeHUvHxJJm6yaZy84XUqGYy+G7Ni0acXVLdCBr5lKk3Kziuw6jpdVthR7uaJnxZfG4EOs1Uz52\n", "mmUo3BRlrtKMtE9i/ZRSLwWuAH5Ra31khdfuQm5EI9HwauDAaKF01ONDhSy+a+Ks0pT1PBHYo5Ra\n", "/NhVWutda/geN2mtw12h/g2zTnVZEmfRKjfMoEjGXrimZTI2uFlajiRzEVlTnEkylyK1VhXcDEOF\n", "1f2zhsncwoVQRjWFWKv5NXNLVOYyjk0h51CuSTLXD5RSrwQuBy7SWk+u9Prgwrpr0fc4FdjTg+4N\n", "tEYwvWu8dPSMvFIhC64DyDUsIqdprR/c4Pf4klLqf2utvw/8PPA/nV4scRatcliZsxYqcxnHxncd\n", "vIxcyyKypjiTZC5F6l4d380ctUV6J+EUsGbdzLaVUU0h1m6pDVDate9qKRLLV0rZwDXAQ8CNwajo\n", "rWusOIgeafnBdObC0dMshwoZGZDsH+GBm78DfFAp1QQewwygiIQIK3O5tsqcY1vgO3gyzTKRJJlL\n", "Cd/3aXh1/NboqpO5seHFyZxcCJNi0TbOZwAfBzzgTuBNWms5hTohwmmWS62ZA5PMTc7IQElSBaOf\n", "5wefbomxK6KDFnXwoZgtHPV4qZiFlrmVqcqAZGK1x5nW+nbg2bF2SCyr3DBxlLPzRz1ueRl8y8X3\n", "/fnDxEUyyAYoKVF3G/h44GbMtJNVCCtztSCHkwthMiyxjfPVwBVa6wswu4H9Slx9E8dasTJXMJU5\n", "35f8W4j18qwmuNljbiK3jRfBt7F8SwYkheiCWstc03LO0dc0y3fA8ml5raW+TMRIKnMpEV7EfDfD\n", "8GqnWQaVuUrFOup7iNiF2zj/U/D5k7XWXw8+/iJwCWbRuEiAw7UD5M7+Dm/58n/T8JrYlo1j2diW\n", "bbZRHz4Dzx+l0fLIZ524uytEX/KsBpZ/7LVt26YS2YyD5WdlQFKILqi3zPrUnHN0vNl+Bg9TPMg6\n", "q7vPFNGQylxKVII5zrjZNVfmynOmYlCVZC4RltjGuX0oeg5Y+VR4EYlqs8beka/ijEyxbWgLp286\n", "hVPGTuC4ke1sG9rCRGWKx0rfwh6epN5w4+6uEH3Lt5s4/rHVb8e2OGXnCG7TodyoxNAzIdJl2cpc\n", "UP+pt2TdXNJIZS4l5itzrdXvZjkWrPGZnmvhFGzZACW5vLaPR4Cplb5AtnKOxvf33o7n1MlPKt73\n", "0t875vmfHryXXbf8Fc72h6k1WsuuqxNd0Y0t00UC+b6Pb7vY7tLXtvOeeByPPJKZ37hBCLF+YbKW\n", "zxx9vXLI4GIqcyJZJJlLiXIz3Eo2h+OsruDqODYjpRwzcw2KxxWlMpdcP1JKXai1vhV4IfDVlb5A\n", "tnKOxk8O3APAWOvUJZ8/e9uZ5Cjhjx2hVpd1Bj3WjS3TRQI13SaWZaZ5LeWME8fxH8zQ8GZlcwYh\n", "Nqjhmt2XC4uSOVsqc4kl0yxTIgyurL22kf/xkTxTs3VK2YJU5pIn3DHjbcBVSqlvYQZgPhtfl0Q7\n", "ffgB/FaGzfntSz5vWRbj9k6sbIPD5RULqkKIJVSC3fUca+klBJtHC+CZ9ahNV44BEWIjGu7ylTmQ\n", "ZC6JpDKXEgtl8fwKrzza+HCeRw7McnymwKHKkV50annitgAAIABJREFUTazDom2c7wMuirM/4lie\n", "53GofAS/NsxYafm4G89s4WDjAfbOPMaTOTnCHgqRDuW62ZAhs8wty6bR/HwyV3cb5DIynVmI9QqT\n", "uUJ2UTIXDKY0ZJpl4khlLiXCOcz5Ne4wFG6CkrGy86V1IcTKJmpTuL6LVy8y0mEt3HhuMwAHyoei\n", "6poQqRLOGlmuMjc2lAd/IZkTQqxfeC9YXFQcyATxVwt2uxTJIclcSoRbMi/efWglYTJn+Q6u5+J6\n", "suOeEKtxqGwq2X69yEiH40BG82bz0anadCT9EiJtKmFlzlq6Mmfb1vyNZkOmgAmxIU0vWDOXXZzM\n", "mfirNSWZSxpJ5lIivNgV1jjNcmw4SP6CUU2pzgmxOofKE0CQzHWqzOXHAZhuzETSLyHSJlwzl7GX\n", "HzTJ2uZGU65hQmxMmMwVF02zDOOvIslc4kgylxLhxS6fXWNlbrhgPnBliooQazFVM8mZ3ywwUlo+\n", "7jYXTTI325RkToj1CG8eO23wFd5oyjVMiI1peU183yKfOXrwJBtUv6uSzCWOJHMpUWmaC9jiOc4r\n", "GQ8qc55r3goyRUWI1ZlrlM0HrWzHytxwoYDv2tRacvSHEOtRbYa7NS9fmcvZ4XoeuYYJsREtvwme\n", "TTbrHPV4JtiTod6UGEsaSeZSIpzDXMytMZkL1sy5LfNWkFFNIVZnrm6SOb+VZbRDZa6Qc8DNUvfk\n", "6A8h1qMWrgnvUJkL14uX6xJnQmyE67fAc8hmjk4R5qcyt+TM1KSRZC4lwrJ3KVdY09eNj5jXhwMt\n", "st5AiNWZa1QAk8x1qszlsxn8VpaGJHNCrMt8Za7Dbs3hmVhzNYkzITai5bfwPfvYZM6RdalJJclc\n", "StSDrWKH1liZGwtuQptNK/g+UpkTYjVmG3PmAzfLSGn5m8xC3sFvZWlSx/O9iHonRHqE17d8h92a\n", "w2ROKnNCbIyHu0xlLphm2ZJkLmkkmUuJMLiG8murzOVzDrmMTSNYzyqHQQqxOnONCpaXJWM7FPNL\n", "b5kOkM+aaZYAlaasmxNircJ1cPkOh4EXgucqDdmcQYiN8HwXfIts5ug1c1KZS67l70BEX2m4DXwf\n", "Srm17WZpWRajw3mCkw1kzZwQqzRXL2O5WUZKOSzLWvZ1+ZypzAGUGxWGc0NRdVGsglLqPOA9WuuL\n", "lVJnAB8HPOBO4E1aaz/O/omFGSO5laZZunIGlhAb5eOaDVAWVeZyThaa0HRlzVzSSGUuJRpeAzyH\n", "Yn75i91yRody1GvmfqUh5XMhVqXcrOC1Mh3XywHkcxlwzbhZOVhnJ5JBKfUO4DognJ9+NXCF1voC\n", "wAJ+Ja6+iQVNz9w85jIddrMMKnO1liRzQmyEh4fv22ScRclcEH9SmUseSeZSouk1wXMo5J2VX7zI\n", "6FCORiNYMyeVOSFW5Pke9VYDr+l0PGMOzDTLsDI3J8lc0uwGLsMkbgBP1lp/Pfj4i8AvxNIrcZRm\n", "cPPYKZkrOGEyJ9cwIdbL8zywfPCXqcwhlbkkkmQuJVqe2X2okFv7zNmxoTy+Z5JAWTMnxMoabhMf\n", "H99zGF2hMpfN2FieiUupGiSL1vpGoP3OpH2+7BwwFm2PxFKangtwzCHG7fLZ4EZTtk0XYt1aQRV8\n", "6WmW5jrW9KQylzSyZi4lXN8F3yafW0dlbjgHXnDOnIxqCrGicHc9vJUrcwAZS6aA9Yn27UZHgKlO\n", "L1ZK7QLe3csOCWgFlYDCKo4mkClgPbdHKbX4sau01rti6IvosnBKM76NYx+9FjyfzR39GpEYXUnm\n", "lFLvBC4FssDfaq2v78b3FatntpLNdtxVbzmjQzkIKnMy4iLEysJBD9/NdDyWIJSxsrSQZK4P/Egp\n", "daHW+lbghcBXO704uIHd1f6YUupUYE+P+jeQwmpBLtspmQsqc3Kj2Wunaa0fjLsTojfCWLOwj9nY\n", "KxxMack0y8TZ8DRLpdRFwDO11ucDFwGP2+j3FGvnbaAyNzaUww8qczIXWoiV1doqcytNswTI2uY1\n", "UvlOrHDHyrcBVymlvoUZ7PxsfF0SofAGs5DtcDRBVtbzCLFR4WCIzbH3ktmsg+9ZC1MxRWJ0ozJ3\n", "CfD/2LvzOGnOut77n6rqbebeEpKQFUkAuTiKCAFUIEI4IIqCLI/bEfEBF0AQw6OgEjzJnSPggsSD\n", "ioAsBp8H5SUYAUGWI2DYZUci8INgIgQCZL3Xmenuqnr+uKp6+p57uru6p3q6uvv7fr14MdPTU1Uz\n", "9/xS9bt+v+u6Pu+cewuwH3heCceUMSXEE8+Z27vSgDRL5hSkIiPlyVwaF2uzrEd11oD1rjY0rpqs\n", "yvDg7OOv4AclpUK66eg5c626X5C0q+4SkYl1s/mp2yZztRDSkG6q58SqKSOZOwO4C/AYfFXubcC9\n", "SjiuFJSkm6sPrUywmuXqSq03Z07lc5HR+itzewskc828MqcFhkTGFvcqc4OTuZXsa6oaiEwufwYM\n", "g5Mb92pRCEnYi0epjjKSuVuAL5pZF/iyc27dOXe6md2y9Y2aLD4defAF2+wLUsRqs96rzLU1qlk2\n", "TRZfQL2kLInYuzJ6zlwjWzZ9raPKnMi48kpAc2gy52MsryyIyPi6vTbLk9ODWqTKXFWVkcx9CLgE\n", "uNI5dw6wB7h1uzdqsvh09Hqcg+ikCatFrK7UenPmVJkrXSmTxZ1zIfAa4J74Ffd+1cxsp8eVyWz0\n", "2ixr7CmQzLUi3wK21tECKCLjitOYNAlo1gc/sjQbWWVOD5oiE8ufJ6Ng+zbLNIn86ulSKTteAMXM\n", "3oFfAezj+BbLZ5pZOuLbpETdIRNWi+ivzGnOXGU9CthjZhcB/wt40YyvZ6n1t1kWSeaatSyZa6sy\n", "JzKufIGvYZ0nzboflFQLmMjkukOSuV6bpZK5yillawIz+50yjiOTGTaSUsSevjlzHe3RU1VrwAHn\n", "XIDfyFiTr2Zovbc1QbFkbqWRJXPamkBkbPk+qls3Me5Xr/sHzW6oB02RSeWrwUbhNslctgBKnOo+\n", "VjXaNHwBbE5YnSyZazVqBKgyV3EfBlrAl4DT8Ps6yozkbZZBGrFaYG/HVr1BmsJ6Rzm4yLj8PqrD\n", "k7lGLYI0JEH3MJFJ9ZK57doso5A0CX08SqUomVsAO63MhWFAq1GHVCuBVdhvAx82sxc4584D3uec\n", "u7eZbZsdaLGh6crbLJtRkzAcPU+1Va/BWk1bE0yXFhtaUEkak45os2zU/YOmWsBEJrfe8d1ZtXCb\n", "BVCyylxKQpIm2654KbOhZG4BbI6kTP7PuadZ51gaasPV6toDHM4+vh2ow+BJklpsaLryzb9Xsr2t\n", "RmnUIzgW0lYb8zSVstiQVI+vzEXD2yx7lTklcyKTyu9RtW2eJ+vZnDnwHWGN2uhteWR3KK1eAO1u\n", "HnyTVeYAVlp+ERTNmauslwA/5Jz7IPBe4Plmtjbja1pa67GvzK3UW4Xe32xEpGmkrT9EJpCSQBr4\n", "hG2ARs0/aKYku3hlIoslnwpQiwbPmQNNyakaVeYWwFoefNuUxYtaaUakSagArSgzuwN4wqyvQ7z1\n", "bIuB1XEqc0moNmaRCaSBnzNXiwa3NNezB03NmROZXLvr42dQZS7fxkrPitWiytwCWGvvPJnLl3VW\n", "m6XIaHmbZaterM2kqWROZGK+2jZ8H9UwDFSZE9mhjWzOXD0aPGcOtPJ51SiZWwD5hNX6TpK5hp9v\n", "0FEbmMhIG1lr80qzeGUuTSK6ii+RscRJDEFKmA5/XAmCgIAIgpQkUUInMol8zty2yVzfnDlV5qpF\n", "ydwC2Oxx3mEyl4S0VZkTGakdd0hTaNVH7zEHm4MlCYkeNEXGkD80BoPXe+oJNJ9HZEfygcrtigP1\n", "vspcV8+KlaJkbgEMC76iWtnDZlelc5GR2t0OpCGtRrGYa9Y1oikyibw1OSzwuBJmCZ86TEQm06vM\n", "1U4eqKxpzlxlKZlbAOtDepyLatb9AijdRMs6i4zSjjuQjJPM1SCJsu/VxuEiReUVgLDAas159U5z\n", "v0Um08kWQNm+zTLYrMwpmasUJXMLIN+aoLHNSEpRrUYNEt8GFiuhExmqk3SzZK7YdiD5hsagB02R\n", "cYzTZpknfKoaiEwmn2rT2CaZC4KgVyHXfaxatDXBAshX1mtEkydz+Zwe8DfCKJx8zzqRRdeJO6Rp\n", "6OOmgP740l5z1eWcC4HXAPcEEuBXzcxme1XLLU/MogLJXESNDmi6QAU5534Q+EMze7hz7h7AVfgY\n", "uxZ4lpmls7w+8fJ4G/Q8GWUDJqrMVYsqcwtgo5TKXNSb06OJrSLDdXuVuWLjYX6fuazNsqs2ywp7\n", "FLDHzC4C/hfwohlfz9LL70dRgTZLVeaqyTn328CrgXz53yuBS83soUAAPG5W1yYnyitujdr297Yw\n", "qwEpmasWJXMLIN/ksbnTOXNaCUykkG4aQxoVbrPM56SC4qvi1oADzrkAOAAo856x/OEyKrDAV57w\n", "qQWscq4DnohP3AAuNLMPZB+/E3jkTK5KTpIPnjQH7KEaacCkkpTMLYB85a5mwWXSt9Ns1E5osxSR\n", "weIxK3PNvsq3NluttA8DLeBLwKuAP5/t5ch61nkSFmmz7CVzirEqMbOrgf4Hi/7d34/iB06kAvLn\n", "v+agNstQAyZVpDlzCyBffWjQSEoRetgUKSZNU2K6pElIs1m8Mkear2ap+Kqw3wY+bGYvcM6dB7zP\n", "OXdvM9u2QuecOwhcvpsXuGw28n1UC1Xm/HvyFZ5lKq53zm197QozOzjGMfo329wH3DHszYqz3ZO3\n", "TzYHtFnWArVZ7pKx4kzJ3AJo94KvnDlzGnERGay32msa+iStAD9nLlsARclcle0BDmcf3w7UYXBJ\n", "KLuxHux/zTl3PnD9VK5uCeWJWa3Aolx5wreueanTdIGZ3bDDY3zGOfcwM7sGeDTw3mFvVpztnl4y\n", "N6jNMtQCKLtkrDhTMrcA8uRrZYeVuVT7h4iM1FuNMimezNWikCDVhsZz4CXAXzvnPohP5J5vZmsz\n", "vqallidmeUVgmFrWZrmhylxV5StW/hbwaudcA/gC8ObZXZL0i1M/WDlo2k4+YKJB/2pRMrcAuiXM\n", "mcv3mQM9bIoM01vtNQ2p14pPO85vgvm+kFI9ZnYH8IRZX4dsyhOzIgug1KK8MqcYq5qsyvDg7OOv\n", "ABfP8npke/lgfmtAm2VdyVwlaQGUBdDN2r52VJmr9+0zpyAVGSivzKVJ5NsnC6qFfrBFgyUixeVb\n", "79QLrNacD5jk8+xEZDxxGpMmAY36gDlz+aCknhMrRcncAuiNpDR2uGl4ojZLkVF6lblkvMpcvXcT\n", "VDInUlQvmSswZ64XY13dw0QmESfx0K6TvPq9oXmplaJkbgHkCzKsNpoj3jlY/5w5bU0gMlgvGUvD\n", "sSpz9awyp2ROpLi8LTmvbA+TP2gqxkQmE5Mnc9vf2xp59VutzJWiZG4BdNO8MldOm6UqcyKD5YMd\n", "aRLSGKMy18hWm9XWHyLF5VW2Im2WjSzh04OmyGSSNB7adZLHoeZ+V4uSuQWQrz60uoNkrn/pdM2Z\n", "Exms078AyhiVuUakypzIuPJ4aRRI5uo1PWiK7ESSxqRpMCSZywcl9ZxYJVrNcgEkaZc0CWg2Jv/n\n", "rEUhIarMVZlz7vnAY/FLpv+Fmb1+xpe0lDp9WxPUo+LjYc3sJriuxRlECsuTufwhcpg84dODpshk\n", "EobPmatHNUi1AErVqDK3AGISP39njJav7Wj/kOpyzl0MPMjMHoxf0vluM72gJZa3SYZEhGFQ+Pvy\n", "Nku1gIkUl9+P8vgZpt6rfuseJjKJhASSkNqAgcpmTR0mVaTK3AJI0uEjKUXVwjpdtABKRT0K+Lxz\n", "7i3AfuB5M76epZXHR1RgE+N+zZpvg1ZlTqS4cZK5pualiuxISgxpc+DzZKNWh44G/atGydwCSLOy\n", "eBAUrxJspx7V6KI2y4o6A7gL8Bh8Ve5twL1mekVLKn9QrI2bzNVVmRMZV97W3BywiXG/zTbLeKrX\n", "JLKoEhIYMmduc8BEz4lVojbLBZAQE6TFF2IYpB75YyiZq6RbgPeYWdfMvgysO+dOn/VFLaP8JhYV\n", "2Peq30rdV+basSpzIkXliVmjwJy53oNmogETkXElaQJBQlqgzVIdXNWiytwCSIOEgMk3DM81tEpR\n", "lX0IuAS40jl3DrAHuHXQm51zB4HLd+fSlkv+oDhuZW6l3oCONjSeouudc1tfu8LMDs7gWqQk3V5l\n", "rsACKNl7NCApMr58z+KAaGCnV179VoxVSynJnHPuzsCngEdkVQPZRSkJITuvzDVUPq8sM3uHc+6h\n", "zrmP4yvqzzSzdMj7DwIH+19zzp0PXD/Fy1wK+eIKtQKVgn6blTlVDabkAjO7YdYXIeXqZg+YeZvy\n", "MPl79KApMr682hamg5v2GvWINAkUYxWz42TOOVcHXgUc2/nlyESCmKCEjlntg1VtZvY7s74G2XxQ\n", "rIdjzplr1EmTQC1gImPI461VIJlr9SpzmjMnMq48boJgcHGgXgshDZXMVUwZc+ZeArwCuKmEY8mY\n", "0jSFoJzKXN7GotX2RAZrd3181AtsYtyv2YggDVX5FhlD/tCYrwY7TCurfutBU2R83TivzI1I5pKw\n", "15Ip1bCjZM459xTgZjN7T/bSzpZTlLHFaQIBRCUmc22tticy0Ea+iXE4Xptlox5BohFNkXHEqX9o\n", "LFKZy9ss41QxJjKu/N4UBoNTg1rND0p2FWOVstM2y6cCqXPukcB9gdc75x5nZt/e7s1alKF8G1mV\n", "IBxSFi+q2ZvToyAtkRZlWDAbHZ/MFVldr1+zHqk9RWRMYyVztTppCt1UVQORcfXmzI1os0xVmauc\n", "HSVzZvaw/GPn3PuBpw9K5LL3H0SLMpRqre2TuaiMZK5Wg1jJXMm0KMOCWc/bLAvse9XPTxyPNKJZ\n", "cc655wOPBerAX5jZ62d8SUstTrukSUCjPjre1AImMrl8oHHY82Q+Zy7WgEmlaJ+5ObeZzO18YdKV\n", "RhOAjtosRQbK25Cb41bmGr7NUi1g1eWcuxh4kJk9GLgYuNtML0j8Q2MaUotGz+LIHzQTPWiKjK23\n", "h+qwZC7KYgzFWJWUts+cmT28rGNJcWsbWTI35gbG22nV67AGbbWBiQyUr/ZaZEGGfnmbpUY0K+1R\n", "wOedc28B9gPPm/H1LL0kjSEJqddG3+NqedVAD5oiY+v0KnODU4O8+q0Bk2rRpuFz7nhWmauNuUz6\n", "dlqNml86XVsTiAzUq8wV2MS4X7MekSYhCRosqbAzgLsAj8FX5d4G3GumV7TkEnxlrl4b3UhUj/x8\n", "nkTVb5Gx5fe2UW2WqQZMKkfJ3Jxby7YRqJXQZtnQAg0iI+VzSsdO5rI2y5SUOIlLqaZL6W4Bvmhm\n", "XeDLzrl159zpZnbLdm/Wol7Tl6QxaVIwmcvbLEl24cqWlhb1WlDr2eJe0ZDiQL0WQRKA7mOVomRu\n", "zm3klbmojNUs82ROIy4ig/TaLOvjtVn6wRIfp52kq5tgNX0IuAS40jl3DrAHuHXQm7Wo1/QlJJBG\n", "1KKCyVwSkqDukinSol4LKk/makPuTfmACfhNxnUfqwYtgDLn1rv5nlclVea0D5bIUN2kS5oGhZZK\n", "79fM4gtQK3NFmdk7gM845z6Ob7F8ppmlM76spZYG+Zy50Y8rtWxxhlQtYCJjy7e6GtbplQ+YAHQS\n", "3ceqQpW5OZfveVUfc2W97TTrEWkaaLU9kSE6cafww2W/Rt3PNfDHUIxVlZn9zqyvQTal2Zy5KCy6\n", "mmWgNkuRCWz0KnPDk7n8PtbVfawyVJmbc2v5nlclVOZ6S6erzVJkoE7ShTSkMWYyd0JlTiOaIiOl\n", "aUpKQkBIEIxO5qIoqxoECWmqgqrIOPL54MOm7eTVb0BTcipEydyca2cjKY0xF2PYTqOuZZ1FRumm\n", "XV+Zq483VyCKQoJ8zpxGNEVGitMEAnpxU0SAf6+mC4iMp9fpNaIytzkoqRirCiVzc24jnzMXlTdn\n", "TvtgiQwWJ93Cq+ttlS/53NacOZGRulmcBGM8quTv1YOmyHjy+9KwaTv1WtSrzGnud3UomZtzG11/\n", "w2qUNmdOk8dFhummWZvlmJU52NyMVVUDkdHyhCykeKzl79V8HpHxtHvPk4OLA7UogNS3POs+Vh1K\n", "5uZcPjIy7p5X28nn9KSkJIkmkItsJ0796nrjzpmDzYnlqsyJjDZJMrfZZqlBSZFxdOLRnV5BEGwO\n", "mCjGKkPJ3Jxrd8tL5vJNw0EtKiKDxFllbpI2y3zJZy2AIjJa/rAYBsWTubyVWTEmMp58AZRRnV5h\n", "sLlfqlSDkrk5lwdfKZW5Rn8ypxuhyFZJmpCSkCaRnzswprwypwVQREbL58xN0mapB02R8eQdI6MW\n", "1IvQfaxqlMzNuV6b5ZgbGG+nUY9IE+0fIjJILy6S0K/+Oqa8fSWvqIvIYHlCFo1RmcurBrqHiYwn\n", "j5lGbfiCelGQb02gGKsKJXNzLr/ZteqNHR+rUQvVZikyRDuvWKfhRJW5fJWwtc5GmZclspDySkG+\n", "cFAReeKn+Twi48mf+5oj2iy1kFf17Hw9e5mpvMy9UkJlThNbq885d2fgU8AjzOzLs76eZZPHWzrh\n", "Aij5XITj7Xap1yWyiNY7eTI3/pw5LTIkMp6inV6RpgtUjipzcy4fGWk1mqUcrzd5XDfCynHO1YFX\n", "AcdmfS3LqlexTiarzOXJXL45q4gMtp4NekRDNjHeKq8aKMZExtPJBvFbteGdXlGoealVo2RuzuUL\n", "layU0GYJ/S0qCtIKegnwCuCmWV/IsuoNcky4mmVDbZYiha13fDJXGyOZy9+71lH1W2Qc+XPfqAVQ\n", "amqzrBwlc3MuTv1IykqzrGQuXzpdQVolzrmnADeb2Xuyl4IZXs7S6iVzSTTRAijNbNBlQwugiIyU\n", "x0ltjDbLWlY1UIyJjKdbcA2GWqT9UqtGc+bmXJzkc+bKSeZqYcQG6oWuoKcCqXPukcB9gdc75x5n\n", "Zt/e7s3OuYPA5bt4fUshv3mlE7ZZNqMadDYrDlKq651zW1+7wswOzuBapAS9ZG6CypySOZHxxGmx\n", "NRjqgVZlrholc3MuxlfmVkuaM5ffCFU+rxYze1j+sXPu/cDTByVy2fsPAgf7X3POnQ9cP50rXA69\n", "uEhDatH4xdFWvQnruglOyQVmdsOsL0LKky+Akm/pUUQvmdOAichY4mzO3KgFUPJ43OjqObEq1GY5\n", "57rZSEoZ+8xB341QlTmRk7SzuIiICIJJkrlsARS1p4iMlFfC62NU5uqqzIlMpJt2fddJfXjXSR5j\n", "GpSsDlXm5lySzZkb52Y3TL4P1rqWTq8sM3v4rK9hWeULDo2zul6/vB1aN8Fq0xYg1ZDHSW3Evlf9\n", "6lENupoqMA+cc58GDmWf/qeZ/fIsr2fZJWmcrdQ8vM6zWZnTfawqlMzNuSRrsxxnTsEweZAqmRM5\n", "WWeCTYz75RPLNXG8urQFSHXkD4uNMdos62H9hO+VanLOtUCDk1USExdaqble0wIoVaM2yzmX4EdS\n", "Jmn52k6ezGlZZ5GT5aP946yu1y9fdVZzUitNW4BURP6w2BinMldTC9ic+H5g1Tn3bufce51zPzjr\n", "C1p2SRr7NstoRJtlFo9tzZmrDCVzcy4lJijxnzEfAdVqeyIn67VZBpPNUc0XKupoRLOStAVItXQm\n", "SObye5jaLCvvGPASM/tR4BnAG5xzeiadoSSrzNVqw/+ztxljuo9Vhdos51xKQphOViXYTjOqQxc2\n", "OgpSka16CzKM0fbVb7XhK3Pax7GytAVIheQLDtXHSubqJ3yvlK6sLUC+DFwHYGZfcc7dCpwNfGPr\n", "GxVnu8N3etVHbrvTzGJMAyZTNVacKZmbc2kQE1BeMteoZcmcWlRETtJrs5x0AZRmgzQNeqvQSrVo\n", "C5BqyUf+W2Os1py3WapqMDVlbQHyVOA+wLOcc+cA+xnQ2qw42x0pMaTNwnPmlMxN1VhxpmRujsVx\n", "AkFCSDkbhgM0a/5YSuZETtbpLZU+WZtlox5BEmrOnEgB+ZycVq34PU5Vg7nxWuCvnXMfyD5/qpkl\n", "s7ygZZeQQBpQj4Ync81aFmO6j1WGkrk51u4mECaEJVbm8iDVKkUiJ9vo+rmkk24F0sySuViVucrT\n", "Knuzl89RbTWKD57oQXM+mFkXePKsr0O8JPXFAdKIMBw+Zy4f9Ff1uzo02XSOtTuxr8xNuLLedvJ2\n", "Fq1SJHKy9U4+Z26yylyzHkEaEmf7Q4rIYHl1LV84qIg8mVP1W6S4buLvSUE6Oi3oxZjuY5Wx48pc\n", "tifP64C7Ak3ghWb2Tzs9roy20YkhTIjKrMzVVZkTGWQjX12vNmEy14hIk5AEPWiKjJInZONU5hp1\n", "VeZExtXNBk6KdHo16hFpEmjApELKqMw9Cb+U80OBHwP+ooRjSgHr7Q5BkE68gfF2Vhoqn4sMspFt\n", "2dGccDVLP2cuItGIpshIeUKW35eKaGUDLbEeNEUKy1uaiyyoV6+FkGrud5WUkQW8CXhz9nEIGnLe\n", "Lcc3/INlrcRkrlXPkzk9bIpstbmJ8WSLDjWyNsskUHyJjJLPLR2vzdLHZt42JiKj5QMnRSpzeTIX\n", "K8YqY8dZgJkdA3DO7cMndi/Y6TGlmOPtDWDyZdK306vMJarMiWyVr/LanLDNMgoDSENStGibyCjd\n", "JCZNYWWMNsv8vdr+Q6S4XptlgTUYGr2FvJTMVUUpC6A45+4CvA/4GzN7YxnHlNGOt7PKXInJXL6p\n", "scrnIifLRy+b9cm3AwmJIEhIEiV0IsPEaReSkGaj+D2uUauTpqhqIDKG/N5WK5DMNesRaapVmauk\n", "jAVQzgTeAzzTzN4/4r0Hgct3ek7x8vk75SZzvp1FLSqlud45t/W1K7JNUGXO5HNJJ63MgU/mEvzN\n", "sxmWt0ekyKKJ0xjSkEa9+LhzvRb6qkGoe5hIUfm9rcgaDK1GTZW5iikjC7gUOABc5py7LHvt0Wa2\n", "vvWN2QPswf7XnHPnA9eXcB1LJ6/M1SdcjGF5R5WlAAAgAElEQVQ7vRYVVebKcoGZ3TDri5BytOMO\n", "aQrN2uQxF1HzyVzc6c3vEZGTJcS+MlcvvmJzPp9HiwyJFJdPIYgKFAeajQjSQJW5CiljztwlwCUl\n", "XIuMaT2rzDUm3PNqOyvNhm9R0To2IifpJL7tq1Gf/D+d+ZwELZ0uMlySxqTpZMlcjJI5kaLWep1e\n", "o2Ot1fBz5hLFWGVo0/A5lrdZllmZ8yMuKp+LbKebdCGNxmr72ipvY9H2HyLDJUGXIImIouLxVotC\n", "v5ejqgYiha1lC+rVw9HFgWbDz5lT9bs6lMzNseMdH3xltmo1s1WKFKQiJ+vGHUhCPzI5oXyO63q3\n", "XdZliSyklJggHS/Wem2WWjFWpLDjYyVzNUhDCFIt5FURSubm2EbHj+yv1IrvwTNKvg+WWlRETtZJ\n", "O6RJSHMHbZb5vpBrG0rmRAZJ05Q06BKMORskXwAl0VQBkcLW2vm0ndHFgbzNErS+QlWU158nu269\n", "W35lrhaFkEQkWgmsUpxzdeB1wF2BJvBCM/un2V7V8ukmXUhqvh15Qnll7lg2EioiJ+smXQggTMd7\n", "TKnVsnuYkjmRwtY6eWVudLzVopAg9clcJ+nSQAt5zZoqc3OsnbVprexgz6vtBKluhBX0JOBmM3so\n", "8GPAX8z4epZSN+1AEo21IMNW+RzX40rmRAZqZ3NKi2xi3K9Ri0iTiDRItNecSEFrvWk7xTq9tJBX\n", "tagyN8c2kqzNst4q9bhBWiMN1ko9puzYm4A3Zx+HoGx7t8VJTEJMmkQ7qszVozqkarMUGWYjzlbX\n", "Y7zVmsMwIMzm2bXjDisFVucTWXb56uhF91CNgogYtVlWhZK5ObaRtVmuNsubMwcQUiMOY9I0JQiC\n", "Uo8tkzGzYwDOuX34xO4Fs72i5ZM/XBLvLJlrhHWIN2+eInKyjazzpMgmxluF1EnxMVv2YKfIIsrv\n", "b0Wn7URBzSdzsZK5KlAyN8fa3Q7UYG+z3JtViB9xaWtT40pxzt0FuBp4uZm9cdbXs2zytuadVuYa\n", "NZ/MrSmZqxzNTa2OvA25Foy/j2oU1OiyGbMiMly+1VWrYJtlPsjS1hY7laBkbo5txG2fzLXKTeYi\n", "6nSy4yuZqwbn3JnAe4Bnmtn7C7z/IHD5tK9rmaznlbkdzplr1OqwAesdzZkr2fXOua2vXWFmB8c4\n", "Rj439cnOuVOBzwJK5mbg6MY6ALUCS6VvFeGTuV41XUSGymOlVfCZrx42WAPWurqPVYGSuTnWyebM\n", "7W2tlHrcfOn0jc4GNPeWemyZ2KXAAeAy59xl2WuPNrP17d6cPcAe7H/NOXc+cP30LnGx9Ub5k8jv\n", "szOhVuRHPrUASukuMLMbdngMzU2tiGPr/j9tjWj8ZK4e1tlgs1VTRIZrx/mCesUqc81sC4Mja8en\n", "dk1SnJK5OZYnc62SV7OMsraWY+11zij1yDIpM7sEuGTW17HM8q1A0h1W5vI5POsa0awczU2tjqPr\n", "fhGuSbpD8mrehmJMpJC8XXKlUSyZy587D69psbwqUDI3x/JVhJoFNnkcRz30xzu6vm3RR2Qp5SOX\n", "QRJRiyZfGGg1u1mudRVfVTTO3FS1M0/PsY18qfTJKnOgvRynpIx2ZqmYXjJXsDiwUm9BAodVmasE\n", "JXNzLMYHX/nJnL8R5nMWRATWs5atWlDf0Sqve+or2fH0oFk1485NVTvz9BzL7j8rBRdk6NfQgOQ0\n", "ldHOLBXTm7azUmzazmqjBetweF2VuSpQMjfH4tRX5holL1LSyJI5zekR2ZRX5iZZkKHfnqa/WaoF\n", "rJLGmpsq05Pff1oF27765dW84239s4kU0Yk7pGnAvlaxeNuTJXPHNpTMVYGSuTmVpikJXUImmyA+\n", "TCNqQOLnzImIly+mUN9xMudvlu1EizNUjeamVkeeiK1OkMw1oiakGpAUKaqTdCAJaTWLpQV7Wytw\n", "WK3MVRHO+gJkMp1uAlGXIK0RBuX+M+aVvuNqsxTpyee4TdL21W9vcxXYrPSJyMmOdfyI/97G6tjf\n", "my/OoAFJkWI66QZpt06r4B6q+7IOE1W/q0HJ3Jxab8cQdYkotyoHsCcbCT2qXmiRnqNZO0mrtrOt\n", "QPat+NUs24lGNEUGWev4h8R9K+Mnc/mKsWoBEymmSxviGisFK3P7s7l1a9ovtRKUzM2ptY0uQdSl\n", "Rvmbeu9v7QHg8Pqx0o8tMq8Or/l42NPYYTK32iSNI7VZigyxnlXCD2T3o3HsrfsE8FhbK+2JjJKm\n", "KTEd0rhWuM3ywB4fY+sdVeaqQMncnDp6vA1Rh0a4s5av7Zyy4jcKP7KhG6FI7vCGT+byNslJ7V9t\n", "QFyjm60eJiInW4/9iP+BlfGTuVNW/fccbasyJzJKJ+lCkBAkNRq1YmnBGfv2AarMVYWSuTl1x9E1\n", "gjClFbVKP/Ypqz6ZO9ZRMieSy9ss97V2lsw1GxEkkW9rEZFt5W3Ip65Oksz5e9haR8mcyCjHszgJ\n", "0+Lb7pxxwMfYRqxkrgqUzM2p244dBaBVKz+ZO21vPuKi8rlILm/ZmqTtq18QBIRpnSRQZU5kkHa8\n", "QZoEnLJ3/MGTO+3Nkrmu7mEio+TPeuN0eu1fWYUk0NzvilAyN6duO3YEgNX6zubvbOf0/T6ZW491\n", "IxTJrXXWSJOAfQU3VR2mRgvCmHZX1TmR7XRSvyDD3tXx54XvX22RxiEbuoeJjHQ8a0duRMWTuSAI\n", "CJIGXRRjVaBkbk4dWsvn75SfzJ22dy9pGtBOFKQiubV4HeI6e1o7356zEfiK+qH1ozs+lsgiimkT\n", "pHWisFjbV7+9Kw2I66oaiBRwx5q/D62MOW2nRpMkbJMk6TQuS8agZG5OHV73LV/7drgYw3b2rNSh\n", "W6OT6kYoktuIN0gnrBRs1Yr8IMzNRw7t+FgiiygJOoTpZFvv7Fmpk8Y1zUsVKeC2o1kyVx8vmasH\n", "Lah1OHxcz4qzpmRuTh3JVtbbP8FKX6P4OT0N3QhFMmma+kp1t8ap+3e+guyeuo/bm+64fcfHElk0\n", "nW4Hoi51JpsTvqdV8yvG0iZNVTUQGebWbNrOuCs1t6IVggC+c+jwNC5LxqBkbk4d2fDBd8beU6Zy\n", "/Hrgy+dxnEzl+CLzZK2zTkJM2m1yyt6dJ3Onrvp5qd8+pMqcyFbfOXIHAM1wsmkEURQSJk0IEi3k\n", "JTLCbcf8fehAa/9Y37cn28/xW7qPzZySuTl1pO3L4mcduNNUjr8S7iUIE755uyoHInds+JHHtNPg\n", "lH07T+ZO2+Nvmt9Rm6XISW465O87q9HknSfNwH/vbet3lHJNIovq9jV/fzt1Zbxkbm/DJ3M3H9Z9\n", "bNaUzM2pY13fZnlKa99Ujr+v4Y97wy3fnsrxRebJHdnNrp6u0GrsfAGUM/f7ivptx/WgKbJV3n68\n", "rzn5/W1vzX/vtw7fWso1iSyqO9Z8p9fZp5w61vedkiV/3z5yW+nXJONRMjeHkiSlTZbMrRyYyjnu\n", "1PIPm1+77ZapHF9kntyaJV37m+ONXA5ywRlnA3DbmirfIlt98w5/3zltdfL726nZvfHruoeJDHW4\n", "7Qcr73LaaWN937kHzgDg20c0YDJrSubm0K2H1qGxRpjW2dcofwEUgHNPPR2Ar91681SOLzJPbrj1\n", "JgDOWB3vZjeIO/sc0hQOdZTMiWx10xGfgJ17yp0nPsbpe3yV4aY79KApMsyx+BBpu8nZdxpvsPKC\n", "088C4LY1VeZmTcncHLrxO4cJmsfZGx0gCMbfg6eIe5zpKwffPPydqRxfZJ5cf8u3ALjb6WeXcryV\n", "RoMoXmWdI8Tao0fkBLcc98ncd9/5nImPcd4pvmrwjcOaKiAySDeJaQfHSNurHNgz3nzwu9/Z3w8P\n", "dzVnbtZ2PPnDORcCfwncB9gAfsXMvrrT48pg/3HjjQRRzBmrp0/tHPc5727wKbi1rRthFSjOZuvr\n", "h79JmgTc5653Le2Ye6MDHIpu4rpvfgd33pmlHVcmpzirhts7N5OGId9z3rkTH+PC8+/Gm74e8s1j\n", "3yzxyqQsirVq+MahmyBIaSUHCMPxigOnrhyAJGIdzf2etTIqc48HGmb2YOB3gZeWcEwZ4rPf+DIA\n", "33f2PaZ2jgOtfTSSvXTqt/GN7xyZ2nmkMMXZjKx3NjgU3wzr+7nvPcpLuu5x6gUEAbzn2s+UdkzZ\n", "McXZjN1+9Ajt2iEa8am0GpNtGg5wwdmnwNp+jqW30Y47JV6hlESxVgGfudE/T565Mn7XSRAErCSn\n", "kTSP8O1DSuhmqYxk7iHAuwDM7N+AB5RwTBng27cd44aNLwDw4AvuM9Vznb//AoJ6h9de835tvDp7\n", "irMZee2H3g1BwjnN82nUo9KO+4h73R+Af/vmJ1lvd0s7ruyI4mzGXv+x/0MQwAV7dzZYGUUhp9fP\n", "hSDlz979Dm49tFbSFUpJFGszliQJ7/3qRwG495n3mugY37XnbgQBXP3Zfy3xymRcO19jG/YD/du/\n", "x8650MyK7jYdATztb36Pxv7tNggdN4ko8v7sPWNVlEtMZk46b/FjpyQEYcIZx84hOgo3HruxvOva\n", "4lHnXci1H/kEnw6u5gkvfzs+95/OHL1F0z7ce3Ao6+l/p3HWu5adx9oYsRBM4ZhDzzfpMYe8N4xJ\n", "k4jHPuBCbryxvHg7K9xH7fYVjnIdP/eaZ0BSQ/E1vs7h3qbQZcRaheJsxHuDvi8XjrNxzz/ExPex\n", "Ee/L4u1Hfug+O463R9/1vrz22k/zodvfwge/+s8Ege5hk6rgPW1EnEFpsbbd1+fw+fHk96YQJiSH\n", "T+PCe99ponh7yBn34t8/9wHefftbePe1/wypYmwnJo2zMpK5w0D/ZjADg9E5dxC4fLuvffX1Hy3h\n", "UpbHF4FH/tE/zPoyZLTrnHNbX7vCzA6OeZzCcQaKtWl4Fh+a9SXIcGXEmuKsIp72MsVbRe36PU1x\n", "Nn0/89q3z/oS5ERjxVkZydyHgccCb3LO/RDw74PemF3ECRfinGsC68A9gLiE6xnX9cAFOu9Cn3sW\n", "542A64CWmW2UcLzCcQaVjLVl+ref9bmX7bxlxpribP7OvWznndW5Z3ZPq2CcwfL93S3b3/uszjtR\n", "nAU7nQvlnAvYXJEI4Klm9uUxj5Ga2UzqsrM697Kdd5bnXoTzlhFnZV+TzlvNcy/becs8t+Js/s69\n", "bOed5bmrdk/Tv8Hin3eW556n8+64MmdmKfBrOz2OiAymOBOZPsWZyO5QrImUR5uGi4iIiIiIzCEl\n", "cyIiIiIiInOoKsncFUt47mU77yzPvWznHWbZfhf6e1/888763NvRv4HOu4jnVpzN/tzLdt5Znntu\n", "zrvjBVBERERERERk91WlMiciIiIiIiJjUDInIiIiIiIyh5TMiYiIiIiIzCElcyIiIiIiInNIyZyI\n", "iIiIiMgcqu3myZxzIfCXwH2ADeBXzOyr27zvr4Bbzez5u3Fe59wDgZcCAfAN4BfNrL1L534CcCmQ\n", "Aq8zs1eWcd7s2D8I/KGZPXzL648F/ifQzc75mrLOWeDc/wO4JDv354FnmllpS6oOOm/f10v92xp1\n", "3mn+bQ25lpnEWZFzT+v3Mcs4y44/k1hbtjgbdu5lijXF2XLE2bBz931d97TN9y1EnBU8t54dF+Ce\n", "Vlac7XZl7vFAw8weDPwu/kJP4Jx7OnBv/B/o1M/rnAuAvwKeYmY/DLwXuGA3zp25EvgR4CHAbznn\n", "DpRxUufcbwOvBppbXq/3nfNhwNOcc3cu45wFzr0C/D5wsZldBBwAHjPt8/Z9fRp/W8N+3mn/bQ0y\n", "qzgbeu4p/z5mEmcwu1hbtjgbdu4ljDXF2ebrCxlnw87d93Xd0zavbZHibOi5M3p2nPJ5+75e+Tjb\n", "7WTuIcC7AMzs34AH9H/ROfdg4AeAV+Gz0d047z2BW4HfdM79K3CKmdkunRugA5wCrOB/5rL+WK4D\n", "nsjJv8f/BlxnZofMrAN8CHhoSeccde514EFmtp59XgPWduG80/zbGnbeaf9tDTKrOBt17mn+PmYV\n", "ZzC7WFu2OBt27mWLNcXZpkWNs2Hn1j2tzwLG2ahzg54dF+GeVlqc7XYytx843Pd5nJWScc6dDVwG\n", "/Drl/8IGnhc4HXgw8OfAI4FHOOe2LbNO4dzgR1s+BVwL/JOZ9b93YmZ2Nb4cvd31HOr7/Ah+lKM0\n", "g85tZqmZ3QzgnHs2sMfM/mXa553y39aw3/W0/7YGmVWcDT030/19zCTOYHaxtmxxNuzcLF+sKc5O\n", "vKaFi7Nh59Y9beHjbNS5Qc+Oc39PKzPOdjuZOwzs6z+/mSXZxz+F/wH+Gfgd4Oedc7+4C+e9FT/a\n", "YGbWxY+EbB0Bmcq5nXPfhf8juStwPnCmc+6nSjz3dg5tuZ59wO1TPmePcy50zv0J8Ajg/9ql007z\n", "b2uYaf9tDTKrOBt17mn+PqoWZzDDWFuyOIPlizXF2aZlizPQPW3R42zoufXsuPD3tLH/tnY7mfsw\n", "8OMAzrkfAv49/4KZ/bmZPcD8JMA/BP7WzP5m2ucF/hPY65y7e/b5D+NHOsoy7NwtIAY2siD9Dr5s\n", "Pk1fAr7bOXeqc66BL5N/dMrn7PcqfH/wE/pK5lM15b+tYab9tzXIrOJs6LmZ7u+janEGs421ZYoz\n", "WL5YU5xtWqo4A93TWPw4G3VuPTvugnmKs11dzRL4R+BHnHMfzj5/qvMr1Ow1s1dveW+ZvfZDz+uc\n", "+2Xgb7NJhx82s3fu4rlfD3zEObeO75+9qsRzQ/Z73HLO3wTejU/mX2tmN5V8zm3PDXwS+CXgA8D7\n", "nHMALzOzt0zzvFP+2xp63in/bQ0yqzgbee4p/j5mHWcwu1hbtjjb9txLFmuKs+WJs5POrXvawsdZ\n", "kXPr2XFx7mk7jrMgTad5vxUREREREZFp0KbhIiIiIiIic0jJnIiIiIiIyBxSMiciIiIiIjKHlMyJ\n", "iIiIiIjMISVzIiIiIiIic2i3tyaoFOfcDcATzezTzrnLgM+a2dtKPP57gJ8zs9ucc+8AfsvMvlTW\n", "8fvO8wvAc/HLmx4HfsPMPrXlPVcD3zCzZ5d9/kk5534QeDmwCnwT+AUz+1bR9znnQvzeHz8OJMBX\n", "gKeb2S3OufsAr8i+JwUuNbN37cKPJVssQ5w5554J/DKwAnwK+GUza5d9DZPYaZz1ff0U/NLQT+37\n", "ue8CvBY4EwiAPzKzN0z3J5LtLHqcOefq+L/Ph2Rv/Wcze17Z55/UNOOs72un4v/78jwz+4dp/Swy\n", "2gLF268Dz8DH21eBXzWzm51zEXAl8Ch8rvAnZvaqss8/qWnHm3Pu+4F3mtk5U/1BSrLslbn+fRn+\n", "O1Av+fiPxD/gYGY/MaVAdMAfAz9qZvcDXghcveU9vw1cxHT3fRpLtunkm4Fnm9n3ZB+/dsz3/RJw\n", "P+B+ZnYf/F4rL82+9v/iHyzvBzwZ+Hvn3FIPXszQQseZc+6JwK8DjwC+F5/Q/VbZ1zCJkuIM59yP\n", "Ax8H7smJ/55/AHzEzL4f+DHgFc65O0/px5HhFjrOgP8buDtwb+D7gYc5536q7GuYxC7EGdl+U38D\n", "7N/6NZmJRYi3++PvVQ8ys+/DD4j/fvblp+Pj7XuBBwLPcc49sOxrmMQ04805Fznn/h/8fnp7p/yj\n", "lEYPtxA4554F3B94iXOuC/wz/obyUCACPoMfHTySjcZ8DLgPcCnQBZ4PNIA7A683s8ucc3+dHf99\n", "zrmfAD7E5ijO04BnAzHwbeDXzewrzrmrgEPA9wF3Ab6EH5k55py7AsDMLt9y/ev4KsC3s88/BZzl\n", "nKuZWdc593DgR4FXAqcW+YU45x4LvCD7mY4DzzWzjznnDuJvpGcAZwGfy859xDn3a/jgb2fX9HQz\n", "+6Jz7unAA8zsV7ec5oHAITP7aPb564D/7Zw71cxuL/C+OwHXAp80s07fz/7M7OMLzSzOPr4HcDv+\n", "9y2zsahxVgd+ET9qeQeAc+4ZQHPUL2RO4ix/37Ozn/Pvthz/MHBK9vFeoIOvkstsLGqc1fB/a3uA\n", "Fv7ZpQGsjfqFLEicAfxedo17yR7yZebmOt6yivc9zCx2zrWA8/DVOYAnAK80swS4wzn3RuAXgE8M\n", "+4UsQLxdmF3nTwFlbgI/VctemQNIzezl+B3mn2tmb8UHV8fM7m9m9wVuwrfzgc/eP29m32N+9/nf\n", "BH7RzB4IPAh4vnPuTmb21Oz9DzezG9nM+v878Dzg4uzYfwv072J/IT75+m/AOcBPgw/CbW58mNl/\n", "WbYzfDZydyXw1iyROwf438DPUzCRcc59N/Ai4NFmdiE+wK52zq1mb3lQdk33wj+4XeZ8u+Of4kdT\n", "fwD4K7JWGDN71TaBCP4/Nl/v+znawM3AuQXfd46ZfczMPptd96nAZcDfZ++LnXOBc+6rwD/gq3Qa\n", "zZydRY2zDvDdwJnOuXc65z4HHMQPHgw0R3F2bvb5o83sY9sc/w+An3TOfQM/uHK5md0y7GeXqVrU\n", "OOsC/wjcAXwj+99XzOwdw34ZixJnzrlHAT+Mv8eBKnNVMdfxln0tds49Hv93eRFwVfal8+j7W8XH\n", "3HnDfhmLEG9m9gkz+2XgxmE/a9UomdveY4DHOec+45z7DPA4fHDkPtj38WOBBzrfM/1S/IjZngHH\n", "DfCtSG80s1sBzOz1wLnOufPxAfsuM+tkN6/PA3cqcsHOuT34ROZuwK9kFYM3ApeYH+UsOpL3I8DZ\n", "+BGhzwD/Hz4RvEd2fW8ys+9kidFr8QGYAG8CPuqc+3P86NDrRpxn0N/e1qRz5Pucc3fH9zx/wMz+\n", "Mn/dzFIzu3t27c/PqpRSHXMfZ9nLDXxLzE8DD8iO9aIRh5q7ONsqe9h+J36g5Fzge4DfrUorjvQs\n", "Spy9DF+JuDP+ofI059xvjjjUIsTZdwF/gp/rk1e9VZmrrrmLNzN7i5mdAVwBvDv7b/t2f6ujigJz\n", "H2/zSsnc9kJ8Wfx+5vv2fxD4mb6vH4XeDeezwH3JJiXjRxuG/Yc22ObrAZv91ut9r6cjjkV2Hd8F\n", "fCQ798PN7DD+ofJ84E+zoHo68LPOub8acbgQeG/+s2c//0Pwo+5wYhBE+edm9mT8f8SuA36HLfP2\n", "tvFf+KDPf4Y6cDp+9Kfw+7IE7SPAX5vZM/P3OOd+LvsPEmZ2A/Av+H8nqY5FiDPwf4v/aGZHs0rd\n", "G/AjkMPMVZwNcDp+hPXV2bVdB/wffHuRVMeixNlDgdeZWTd77W+AUQN0ixBnP4VfvOHd2b38AfiW\n", "vqeNuCaZjbmJN+fc3Z1zF/W99NfAXfFTcr6Gr+7lzuXESt12FiHe5lIlkrmsl3ZWnp79fxc/wg5+\n", "4uOznXONrAT8SrYfaf9uYB/wP7N2j4vxc2Wi7Otx3zHBB9e78UnVHwM4554K3IL/Ix57tM35uWPX\n", "AG82s583sw0AM/uomX1XX0C9El+p++aIQ74PeJRzzmXH/zH8f3Ba2fX9pHPuQPZ7+VXgbc6505xz\n", "XwNuM7OXAf8T3xO+9VoP9n36cfzIav7Q+0v4hRQOb/m2ge9zzj0Y33rzZDO7Mv+G7IH694Gfy877\n", "UvxN/5oRP3upZvx3va0ZXtNCxlnmzcDPOOda2QDC44GPj/hdz02cDfoBzOxm4AayVp7sd/1Q/JyQ\n", "XVW1WFvCODvdOXdwynH2MeBns/fVgZ/Ej+YfHHLIRYizK83sHn338k8CnzCzUQOzpVOcneCUvo93\n", "M95+zTl3Ouz8voZP1v7OOXda9vmT8G2gtwFvBX7J+QVBTsEv8vWWAcfJTSXetvl3nlq8bdEY/Zby\n", "TfJ3XYlkDti2l3eX5KNb/wT8iXPuyfhE4Ab8xNX/wP+etlud7nPA24EvOuc+iJ80+Ul8SRn86MIH\n", "nXPfm3+Dmf0Lvj/4ec65a/ErLT4mKzvn/+uX90pf4bJJrFv8Gr7l5Il5WT/736Dy+uXZ8V7m/OTS\n", "E5jZF7LfyRudc5/NfhePNbPj2bV8C3gH8EV8OfzFWcn/hcB7nXOfxM+j+ZXsPM9wzr26/9zZeTrA\n", "E/GTUa8F/gfw1Ox7zsl+hrOGvQ8/NykF/qjv586Xa34C8IxsJPM38f3snx7wO5mWWf5dDzKra1rU\n", "ODsV+Et85fdT+LhYxU9uv3xB4myYx+Pj7PP4keUXm9mHC3xf2aoWa8sWZ+/D/8zTjLPnAvudc1/M\n", "fpavAX/EcsTZVj8z+i1ToTjb1J/M7Wa83Qnfxrjj+5qZfRCfaP5r9qz0M/j/poPf2umr2XV+HDg9\n", "e/8snh+3LtyyW/E2k2SOCf6ugzQtNo82Gwl7Hb4E28T/8m/E/zF+OXvbK8zs78e9COdcamYz6QGf\n", "1blnfV7n3A8D9zazV4zxvQeBM83s13Zy7km+dyfm7bzO7+/yajaXy30GsIGfmJzgWxaeZRMs6DJv\n", "v4t5PW9+bnylSnFWwXMPiLMGc3xPm7d/g7LOyxLF2SzPvZPzOr9lyafwW7gkzPH9bJbnrsJ5d/v5\n", "sQo/c9XPO05l7knAzWb2UPwkzJfjV855qZk9PPvf2Dc9mZkz8HN7xrHdyI+U7zFAYmYX4ZejfjF+\n", "cvSlWfwF+EnVUn2Ks+raGmcvQve0eaU4q7CsGPAq4Bj+/nUlup/NM8VbxYyzz9yb8HNDwCeBHfze\n", "Gs459zj8ZoPPMbOj5V6iTIOZjZpgut33bNcWIyUzs7c6596efXo+fpn7R5rZB7LX3gk8itH96zJj\n", "irPq2ibO7kD3tLmkOKu8l+Db9p6ffX6h7mfzS/FWPYXbLHPOuX34iZF/hZ/U+Dkz+4xz7lLgVDN7\n", "3pjHa+JX4LkHs1ku9HrgAp13oc89i/NG+EnJrS2T+AtzfhPQx+MXmLjK/PLv+V4zTzW/AtQ4x5tl\n", "rC3Tv/2sz71s591RrG2Js3OZ73ua/t4X/7yzOvdEceacewpwrpm9yDn3fvy8yPfO+f0Mlu/vbtn+\n", "3md13onibKxkzjl3F/ykzJeb2VXOuQNmdij72vcAf2Zmjxzy/Qep3gRakd12hZkdLPJG59yZ+MnH\n", "e83stOy1x+Erdc8e8n0HUayJFIq1LBgL3OUAACAASURBVM7+DXiwmX0ze033NJFiBsaZc+4aNlvs\n", "7oufj3o/M2tkX9f9TKSYgXE2zgIoZwL/CjzTzN6fvfZR/H4an3DOPRs/+vK741yZ8xs+X/eGN7yB\n", "s846a5xvFamsb33rWzzpSU8CuIeZfXWc781WxDrPzP7AObcfv7TvV/ArP13jnHslfmTzTWMeV7Em\n", "C2fSWBsQZ98Bnq17msiJdnJPy2WVuWfg2y5fqvuZyIkmjbNx5sxdChwALnN+t3qA5+A3pe4AN7G5\n", "LPI4YoCzzjqL8847b4JvF6m0Sdo/3gxclY1o1oFLgC8Br3bONYAvsDl/dexrUazJgho31raLs68B\n", "L9c9TWSgnbY0pvil+nU/ExlsrDgrnMyZ2SX4m91WF23zmohMyMzWyDbH3eLiXb4UkYU1JM50TxOZ\n", "AjN7eN+nF8/qOkQWTVU2DRcREREREZExKJkTESnROz9yPdd8+sZZX4aIiIgsgXHmzImIyAh/+Q//\n", "DsAP3/dcwjCY8dWIiIjIIlNlTkSkJOvtbu/jY+udGV6JiIiILAMlcyIiJTl8rN37+NDRifaKFxER\n", "ESlMydyS+Lt3f4m3fmCirWFEpKD+ZG5tozvknSIiIiI7pzlzS+Bbtx7jb99jAFx84Xkc2Nuc8RWJ\n", "LKb+ZG6jvdPtmERERESGU2VuCXz71uO9j7/27SMzvBKRxdZfjWt3khleiYiIiCwDJXNL4Pa+uTt3\n", "HNY8HpFp6a/GbXTUZikiIvMrSVL+4z9vZaOjTpMqUzK3BPoXYjh8TMmcyLS0O/3JnCpzIiIyv972\n", "wa/yuy//EFe//7pZX4oMoWRuCdxxpD+Zaw95p4jsxAnJnObMiYjIHPvK1+8A4F8/9fUZX4kMo2Ru\n", "CfTP4zl8XMmcyLT0t6K01ZYiMjVPe/G/cMVrPjbryxBZaFEYANBN0hlfiQyj1SyXQP9D5ZFj2shY\n", "ZFqUzIlM39G1Djfdeoybbj0260sRWWhR6Gs+SaxpA1WmytwS6H/AXG9rUQaRaTlxARQlcyLT0D8P\n", "vKuHTJGpCXxhDhXmqk3J3BLodDdvdkrmRKanrcqcyNT1x9axNXWbiExbmLVbSjUpmVsCJ1bm9IAp\n", "Mi39sdZRxUBkKvqTuePrGqAUmZY4K8kpl6s2zZlbAp1sifSVZk0r7IlMUf9G4XGsvhSRaWj3dZuo\n", "MldtzrkIeDVwTyAFngE0gLcDX87e9goz+/vZXKEM081iLQiUzVWZkrkl0O7E1KJQyZzIlPVXDDSX\n", "R2Q61GY5Vx4DJGZ2kXPuYcCLgH8CXmpmV8720mSUvNskVDJXaWqzXALtbkyzHtJqRJozJzJF/YMl\n", "qsyJTEd/BfzYupK5KjOztwJPzz49H7gDuD/wE865a5xzr3HO7Z3V9clwnV5lbsYXIkMpmVsC7U5M\n", "vR7RatQ0Z05kivrnzHUTVeZEpqHTVWVunphZ7Jy7CngZ8Abg48BzzexhwH8Cl8/w8mSI/J6mNstq\n", "U5vlEtjoJDTqEc1GxEa7S5qmCkyRKehP5lSZq7YBc3k2gKuABLgWeJaZ6R+yYk5os9QCKHPBzJ7i\n", "nDsT+DfgwWb2zexLbwH+bHZXJsPkAyexBicrTcncEuh0Y/bvadBqRCSpn8tTr0WzviyRhdPuxAQB\n", "pKnmzM2BrXN5Xpy9fqmZfcA59wrgcfiHTakQLYAyP5xzTwbOM7M/ANbwAyVXO+eebWafAB4BfHLE\n", "MQ6i6t1M5C3N/Vtcya643jm39bUrzOzgdm9WMrcE2p2Yes1X5sBvT6BkTqR8nW5Cq1FjbaOrylzF\n", "mdlbnXNvzz49H7gdeKSZfSB77Z3Ao1AyVzn9c+Y0D7zy3gxc5Zy7BqgDlwBfA17unOsANwFPG3aA\n", "7AH2YP9rzrnzgevLv1zpl1fBNTi56y4wsxuKvlnJ3BJodxKa2Zw5gPWNmH2rM74okQXUiWPqp97K\n", "2s2rmjM3B/rm8jwe+GngR/q+fBQ4MIvrkuHanRiCGAhOaG2W6jGzNeBnt/nSRbt9LTK+XjKnylyl\n", "KZlbcHGcECcp9VrYV5nTSKbINLT33Eh83qeo7zmLOD571pcjBfTN5fk40Or70j78ynsDqf1rNjY6\n", "XZrf92Ho1mh37jrry1k2Y7V/yXzLW5o76jSpNCVzC643t6CxxqHoFiDVXnMV5pyrA68D7go0gRcC\n", "N6INVudC3LwdgNpp36J7i25+VbbNXJ4Y+KRz7mFmdg3waOC9w46h9q/ZONo+Qtg6DsDx9vqMr2bp\n", "jNX+JfNNbZbzQcncgssD8Rur13C8cwvRafdRW0q1PQm42cye7Jw7FfgccAXaYHUuJLX13n4vsW5+\n", "VbfdXJ4vAa92zjWAL2TvkYo51j3a+/h49/AMr0RkseUFgSRJiZOUKNRK6FWkZG7BbXRiqLU5Ht4C\n", "QLj/FiVz1fYmNh8gQ6CD32DVOeceB3wFeI6ZHR3w/TJLtbXeh91EcVZlQ+byXLzLlyJjOt7djLO1\n", "WJU5kWnoxglJkp7weRRq8bwq0qbhC67TTQhXNp/7wz2H1WZZYWZ2zMyOOuf24RO7F6ANVudCnKRQ\n", "3+h93knXhrxbRCa1Hm/GVjtRMicyDe0tA/9aBKW6VJlbcO1OTNDYvNkFzbWTAlSqxTl3F+Bq4OVm\n", "9kbn3AEzO5R9udAGq1qYYffFcUIQbe551Q6UzO0yLcywJNrJOkT5xxvD3ywiE2l3Egi7BI110vW9\n", "mjdXYUrmFtxJyVwUc2Tj2AyvSIbJVtV7D/BMM3t/9vK7nHO/UXSDVdDCDLPQ6cYQba4UG9Oe4dUs\n", "JS3MsCTW+6px7URxJjIN7W5M/byvUDvrv9j44g8omauwwsncgFX2vghcBSTAtcCzzExLuFVIu5P0\n", "krmzV87jprUbuW1t6GrbMluX4ve2usw5d1n22nOAPy26warMxrH2BkHYN78g7Qx5t4hMqtuXwHVT\n", "VeZEpqHTTaid9V8AhHsO0VGbZWWNU5nbbpW9zwCXmtkHnHOvAB6HbwOTimh3NytzZ6+ew01rN3K0\n", "rbUzqsrMLsGvqreVNlituKPrx0/4PFFlTmQq+gdKVAEXmY4T5siFsSpzFTbOAihvAvJKQb7K3oVm\n", "9oHstXcCjyzx2qQE7Ww1y4CQM1ZPB+BY5/iI7xKRcR3Z8HEVpnUA4kCVOZFp6Kab7cwJmgMuMg0n\n", "JG9Rl642Dq+swsncNqvs/d6W7z+Kbw+TCtnoJARRl0bYZF9zLwDHlcyJlO5o28dVM9gDQKJkTmQq\n", "4nQzgUsCJXMi0xD3bUsQRF0/L1wqaawFULassvd3zrk/7vvyPmDoZCytsLf7Op2YoNahGa5woOWT\n", "ubVYydwu0gp7S2K949u9msEqa+kdJEF3xHeIyCQSVeZEpq7d7buHhTHdripzVTXOAijbrbL3Gefc\n", "w8zsGuDRwHuHHUMr7O2+dsevsNeMWhxY8clc/x49MnVaYW9J5MlcK1yFGBJUmROZhv6BklTJnMhU\n", "bHQ272FBpDlzVTZOZW67VfYuAf7MOdcAvgC8ueTrkx1a73QIophWrcX+lm//0lLOIuVb7/pV9RrB\n", "CgCp2r9EpuKE2Api0jQlCILZXZDIAsrvaQCEXTpK5iqrcDI3ZJW9i0u7Gindsbavwq3UVtjf8g+Z\n", "3VTJnEjZ1rtZZS5agS6koR4yRabhhGpcmNCNU+o1xZlImTa6qszNi3FWs5Q5dLzrtyVYrbfYv7oK\n", "QCdR+5dI2TbyNsuo5V8IEq3+JTIFaRBDmj2+aMl0kanY6PYN/IfxiVsVSKUomVtwax1fmVutr7C3\n", "4Stz2pdHpHzt2MfVSuQHTYIwJtZDpkjp0iAmSGsEaUgQJoozkSlY70/moq42Da+wsVazlPlzPEvm\n", "9jRWCcMQkpBYCzOIlG4jT+ZqftCEMKGbqDInUrowIUwj0iBVBbzinHMR8GrgnkAKPAPYAK4CEuBa\n", "4Flmpn/EijmhzTJIVAGvMFXmFtxG7Cewrtaz1q+kToyWTBcpWzu78bVqLUgDUGVOZDqCmCCNiKhl\n", "c+YUZxX2GCAxs4vw+xO/GHgpcKmZPRQIgMfN8PpkgLzbBFCcVZySuQXXa/1qNAEI0hqp9r8SKV0e\n", "a81ag5AagW5+IqVLkhTCmJAaIZHmzFWcmb0VeHr26fnA7cD9zewD2WvvBB45g0uTEdpxXxdXkKjN\n", "ssKUzC24bra5aqvWACBMa6Sh2ixFyraR3fh8MhdllTl1DomUKU5S32ZJRBj4QZNY7cyVZmaxc+4q\n", "4GXAG/DVuNxR/LZXUjGd/mQuTBVnFaY5cwuum2TJXN1X5iLqdLVkukjp8lViW7UGUVCDsEs30Uim\n", "SJm6cUwQJoRJzY9GB4lW2ZsDZvYU59yZwMeBVt+X9gF3DPte59xB4PLpXZ1sp7/NMghSOl11de2i\n", "651zW1+7wswObvdmJXMLrptuPmCCT+aCIGWj26FVb8zy0kQWSi+Zq+dtlm1V5kRKtp5tARISEQWo\n", "zbLinHNPBs4zsz8A1oAY+KRz7mFmdg3waOC9w46RPcAe3HLc84Hrp3DJkjmhMgd0EiVzu+gCM7uh\n", "6JuVzC24OEvm8jlztaAOwOG1Y0rmRErUzZK5lXozW5hBD5lV5pyrA68D7go0gRcCNwJvB76cve0V\n", "Zvb3s7lC2c5GVh0Ig4goCAjClLYqBlX2ZuAq59w1QB24BPgS8GrnXAP4QvYeqZj2lj2JFWfVpWRu\n", "wcVpDNBL3OqhT+aOrq9z5/0zuyyRhdNfmYuCGgSJKnPV9iTgZjN7snPuVOBzwBXAS83sytlemgzS\n", "7vg4i7JkDmCjo3ngVWVma8DPbvOli3f5UmRM+TSdiDoxnd49TqpHydyCyytzzcgnc7UsmTuysT6z\n", "axJZRHHaJU0DmrU6taBGEKZ6yKy2N7FZEQiBDnB/wDnnHgd8BXiOmR2d0fXJNtpxVpkjohZGEG/u\n", "8Sgi5cmTt0bYZC3p0IlVmasqrWa54GJ8Za5ZO7Eyd3xjY2bXJLKI4jSGJKRWC6mFfpxsvas4qyoz\n", "O2ZmR51z+/CJ3QvwizM818weBvwnWnShcvKNjMMgJAoi/1pHD5kiZcsrc43QPz8qmasuVeYWXJJt\n", "EN6I6pv/34XjbT1kipQpSWNIA2pRSJTNTV1XZa7SnHN3Aa4GXm5mb3TOHTCzQ9mX3wL82YjvP4gS\n", "vl3VjU+cMweb1TrZFWOtsifzK5+m0wj9mguxFkCpLCVzCy5P5vI2y14yp8qcSKniNIE0pB6Fvv2L\n", "LZuuSqVky6S/B3immb0/e/ldzrnfMLNPAI8APjnsGFplb/fllbkoCKmFvrmo3VWc7aKxVtmT+dVL\n", "5rLnR61mWV1K5hZcEuTBWD/h/1WZEylXQkyahNRroV8ABbQvT7Vdit+s+DLn3GXZa88B/tQ51wFu\n", "Ap42q4uT7XVif08Lg4goS+Y63XiWlySykOIkm6YT+cqckrnqUjK34NJem6UfWcnnzuV79YhIOXpt\n", "lrXNytyGKnOVZWaX4JdJ3+qi3b4WKS5fHr0WRr0400OmSPmS1G+t06r5ZK6baNCkqrQAyoJLghjS\n", "kDAbwdxM5vSQKVKmhKzNsm8BFLV/iZQrT9yiYDOZU5yJlC9vs1ypt4DNvVSlepTMLbogJkij3qet\n", "er4wg9osRcqU4gdOGrVoM5nTwgwipcorc1EQEeVxpsqcSOm2VuZiVeYqS22WCy4NYsK+ZG6l7oNy\n", "o6s2yypyztWB1wF3BZrAC4EvAlcBCXAt8Cwz027UFZOQQBJklbms/UvJnEip8lavKIyoZ3HW1Zw5\n", "kdL1KnONrM0y1f2sqlSZW3Dplspcs+7bLP9/9u48WrarrPf+d61VVXufc3LSEEhCn0gzL/YQFYFo\n", "gsSGi75RXpt7BRxyVUAihiFgExVOhh2vSrzgiBEjGBuUFxgBL2iQV8QE9QoEYzQ3+CSRRAwGDKQ9\n", "J+fsXbXWfP9Ya1atql1Ve9euVVWrqn6fMTKyd3Vrnn32c+Z65jMbreWprRcB95jZNwLfBlwBvAm4\n", "tHgsAi5aYPtkBE+G9zGNJKZZVAy0lkekWmFToSROaCYhztSfiVQtK5K5Q60DgCpzdaZkbtXFKXGp\n", "ALvZ0OGPNfduIOysFwNt4Blmdn3x2LXAhYtomIzmvYcoIyImjiMa4SZTcSZSqTBA0ogapQq4bjJF\n", "qpaRT7M81MrXzKUozupK0yxXmPc+T+bS3l/zRiNfM6eRzHoys2MAzrnD5IndzwG/XnrJUfLt1KVG\n", "wohlXIyPdStzSuZEKhUODc93s8zjTNO/RKoX1sydtJFX5jqaaVJbSuZWWJpmRHFGnO5cM9fxSubq\n", "yjn3eOAa4Aoz+xPn3K+Wnj4M3L+HzzgCvGE2LZRBoZOLyGOtpcrcItzhnBt87LLiYG9ZEd3dLEvT\n", "LFNV5kQqlxWVuEMbeWUuTLuU+lEyt8KOF9s1x5TXzOWVOY2w1JNz7kzgQ8ArzewjxcM3OufON7Pr\n", "gOcDH97tc4ob2CMDn302cEeV7ZVcZ7AyV9xkKs7m6hwzu3PRjZDZ6hSJW6NvzZziTKRq3mf4LOrO\n", "6EqVzNWWkrkVtrWd71gZR+WjCfI1c7rJrK1LyadRvt45F9bOXQK8xTnXAm4B3rOoxslwIZ7CwEkz\n", "0aCJyCyEmGomDZpJHm/amEGkep4MiEiKtalh2qXUj5K5FXYiVOai8jTLPJlLtcaglszsEvLkbdAF\n", "c26KTKBbmYtCMqfKnMgstLOdlbmOkjmRymVkRD7urk3NtAFKbSmZW2FbRTKXsPPQcJXLRaozWJlr\n", "NUJlTnEmUqVON5lr9NbMKc5qa8TZqXcBHwBuLV52pZm9azEtlFE8Gfiou2usKnP1pWRuhW21d1bm\n", "NruVOXV+IlUpH2QMvQ1QVJkTqVY6rDKn/qzOwtmpL3HOnQbcBFwGvMnMLl9s02QcH2XgY5LiHtKr\n", "MldbSuZW2HY4XLWUzIWFrNqVSKQ622lRBY8GKnOazixSqe6auUaDVqOozKk/q7N301vnHc5OPRdw\n", "zrmLgNuAV5vZ0QW1T0bw5Gen9qZZqjJXVzo0fIVtd/pvMAEOtPLKnOY+i1QnVMF7yZymf4nMQrky\n", "1yo2GkpVAa8tMztmZkdLZ6f+LPBx4LVmdj7waXSMTk3llbkwzdIrmautiStzzrlnAm80s+c6554O\n", "vJ98ZAU077lWwpq5MKoC0Ggk+CxSMidSoRMhmSs6vY2wm6UqBiKVCslcK2n21sxpLU+tDZyd+k7n\n", "3Clm9kDx9PuAt+zy/iMo4Zs7H2XEvqlkbjEmOjd1omTOOfeTwIuBUA4/F7hc857radg0yySOwMea\n", "ZilSoZDMNaL8n9QwzTJTZU6kUmGApJEk3Qq4+rP6GnF26gedcz9uZp8AngfcMO4zdG7qgkSeiLh3\n", "NIGSuXma6NzUSStztwMvBP6w+P5c4Kma91xP3XU8cdL/hI8VlCIV6lbBi3OvNsKusWj6l0iVepW5\n", "hg4zXg7Dzk59NfAbzrk2cDfwskU1TsbpXzOnDVDqa6JkzsyuKUZDgo8Bv2NmNzrnLiUvg7+uwvbJ\n", "FNppfiNZnmYJEPlYQSlSoe1QmSsGTjbDTaYqcyKVColbM2moMrcExpydet682yKT8UVlrjvNMlIR\n", "oK6m3c3yvZr3XF/dakG0szLnYwXlnEw071mW0+D61FCZUwVcpFrdZK7RYEO7WYrMhPeeKM6IS9Ms\n", "UX9WW9Mmc5r3XGPtNJx9NVCZQ5W5OZpo3rMsp61ifWozJHPd6V+aZilSpZC4tZIGrUbYnVk3mSJV\n", "CgeE90+zVJzV1X6TOV/8/xXAFZr3XE/tYs1c2PEriHxCFm0vokkiKylsNhRibbOZ32Sq86sv51wT\n", "eDvwRGAD+EXgU8DV5EPQNwMXm5kf9Rkyf+Ems9XQNEuRWQnLdGKS7uwuTbOsr4mTuaLK8Ozi65vQ\n", "vOfa2k5DtaB/mmVEjMrlItXZGhg4aSWa/rUEXgTcY2Yvcc6dBtwE3AhcambXO+euBC4iX0IgNVFe\n", "MxduMlWZE6lWmG0SRTFxHIOPQMlcbenQ8BXWCRugDFTmYhIFpUiF2p3+ZE67fy2FdwNhd70YaAPP\n", "MLPri8euBS5cRMNktFCF22g0e3GmQRORSoXZJnE3TYjwaJJCXU27Zk5qrJ31r+MJImKIfb7ANYoW\n", "0TSRlRKmpIRkLoxkZkrmasvMjgE45w6TJ3Y/B/x66SVHybdUlxrJfApRXv1u6PwrkZnYLgYo4yhP\n", "5iIfa5pljSmZW2GdLBxN0Ox7PC6mpqRZuqNqJyKTCwMnrXI8+Uhr5mrOOfd44BrgCjP7E+fcr5ae\n", "Pgzcv8v7j6AdmucqJG6tRrO7y57ibK60Q/Ma2Or01swBRCSKsxrTnfwKC9WCsEg8CMG51WkrmROp\n", "QLcyV441n+AjVebqyjl3JvAh4JVm9pHi4Rudc+eb2XXA84EPj/sM7dA8f5nP8ECzkeRVA6/K3Jxp\n", "h+Y10CmSuSQKyVwEcaYZXTWlO/kVFipzzaR/A5SQzJ1ob3No48Dc2yWyajpp2C69VAX3sdYY1Nul\n", "5NMoX++cC2vnLgHe4pxrAbcA71lU42S4jBR8TBJH+U2l11E7IlXbCrtZdqdZ5nstZB4S5XK1o2Ru\n", "hXWysOtX/zTLpAjOcNCxiEynuz61VOmOdJNZa2Z2CXnyNuiCOTdFJpAfTRCRJGFjBq3lEanajjVz\n", "xERRhyzLSoeIS11oN8sV1hm2jgeIo/z7E20lcyJVCAMn5ViLdJMpUjlPBj6mEeflgcjrqB2RqrWL\n", "2Sa9aZYxRBlpptkmdaRkboV1wnk8jcHKXG/NnIhMrztw0uhP5nSTKVKtjAyymKSY6xURa2MGkYq1\n", "01CZy+8XY2KIPJmSuVpSMrfC0uIGc2OgMtdN5lSZE6lEL5nrDZyEkUwRqY4nxfuIJC5uX3wEkW4w\n", "Rao0qjKnZK6elMytsDRM/RqszMWqzIlUKS0dZBxEJHjdZIpUKp9mGRHHpcqcBk1EKhUODQ/3izEJ\n", "RF7TLGtKydwK6wy5wQRoFGvmVJkTqcawgZPYqzInUjUfZcU6uVxEojgTqVjY1CtsmBdFMVHsu+vD\n", "pV6UzK2wUC0Y3ABFlTmRaoVY22yWkrkoIYp9d7qKiEwvXx/Xu3XRWh6R6oV+qxHn949xEXPqz+pJ\n", "RxOssCxU5poDlbm4ASlsF+eISP04554JvNHMnuucezrwfuC24ukrzexdi2udDEp9sT51cM0csN1u\n", "7zjrUUT2a7Ay19tlL0y9lPpwzjWBtwNPBDaAXwQ+BVxNvkPUzcDFZqZsvEY6xf1hI0yzLNbOtTu6\n", "b6wjJXMrrFuZG5xmWQTntipzteSc+0ngxcDR4qFzgcvN7PLFtUrG6a2Z6/2TGjq/E+02hzY3F9Iu\n", "kVWTr48rVeaivDKXphnNhiYb1dCLgHvM7CXOudOAm4AbgUvN7Hrn3JXARcD7FtlI6dcOh4YXGw2F\n", "ypyKAPWkf/lW2LCpX9Arm2+nSuZq6nbghUAYZj4XeIFz7jrn3O86505aXNNkmNTna3bKRxMk6vxE\n", "KuW9h8j3VebiYs1cR9Ms6+rdwOuLr2OgDTzDzK4vHrsWuHARDZPRwtq4sMdCGJzsqD+rJSVzKyzz\n", "Kd7332ACNItkrt3R3Oc6MrNrgPK/mB8DXmtm5wOfBt6wkIbJSJlP8VlEs9GbThl3jwDZXlSzRFZK\n", "GDSJ6J9mGUWa/lVXZnbMzI465w6TJ3Y/R/+951HglIU0TkYKlblGUjpnDthSnNWSplmusIwUfO9w\n", "1aBbmctUmVsS7zWzB4qv3we8Zbc3OOeOoKRvbjKfx1qjUZ7+FTYaUuc3J3c45wYfu8zMjiygLTID\n", "YdfYcjKXdKczbwMHFtEs2YVz7vHANcAVZvYnzrlfLT19GLh/l/cfQf3ZXA2tzPnemaoycxP1Z0rm\n", "VlhGCllMI+kvwDaTUJlTUC6JDzrnftzMPgE8D7hhtzcUAX+k/Jhz7mzgjhm0b+2FgZNyrCWRdo2d\n", "s3PM7M5FN0JmJ9xIxoNr5oBt7bJXS865M4EPAa80s48UD9/onDvfzK4Dng98eNxnqD+bv07YzTIp\n", "bYDiexU7mbmJ+jMlcyvM+yyvzA3s8NVN5rRmru7CIpBXAFc459rA3cDLFtckGSYjKwZOerEWkjlt\n", "NCRSjWGVuZDMaXCyti4ln0b5eudcWDt3CfAW51wLuAV4z6IaJ8OFgZOwYV63P1MyV0tK5lZYXi2I\n", "RlfmVC6vrWJE5tnF1zcB5y20QTKW9yneR3276SXFSOa21qaKVCJM/YoprU0lrE3VoEkdmdkl5Mnb\n", "oAvm3BSZQHea5UAy11EFvJa0AcoK82T4LCYZSOZaSb67pQ5/FKlGFoUqeCmZ0xEgIpXqFDs0R9HO\n", "6cyqGIhUJyRzYfC/WwFXEaCWlMytsN4NZv80y1YRnFrIKlINTx5r5UOLkygcAaI4E6lCb81cqTKn\n", "QRORyqU+j7Ww+3miowlqTcncCvOkfefxBL01cwpKkSp4sh2xFqan6DxHkWqEG8lkSGVOM01EqtOd\n", "Zpn0T7NsZ4qzOlIyt8I8Wd9C8aDVyKdZqjInUo1hsdbt/LRmTqQS252QzPUqc0l3N0sNmohUJe1O\n", "syySuViVuTpTMrfKimmWg7rJnNdNpkglonRHMtdIwjRL3WSKVCEc8xGmVkJvOrMGTUSqk/oM6PVj\n", "sSpztabdLFdUlmUQeaLS2oJgo5H/taeqzIlMLY81dkyzbMZh+pfirK6cc88E3mhmz3XOPR14P3Bb\n", "8fSVZvauxbVOBoUdK8uVuUYcKnOKM5GqhMpc2GOhocpcrSmZW1HDDlcNetMsNcIiMq0Qa4MDJ41Y\n", "a1PrzDn3k8CLgaPFQ+cCl5vZ5YtrlYyzPWzNnOJMpHKpD9Ms8/vFUAFPNaOrljTNckV1hhyuGmx0\n", "p1mq8xOZVu/sq8ENUHSTWXO3Ay8Ewhak5wIvcM5d55z7XefcSYtrmgyz3c5jLSRwoIqByCx018w1\n", "wgYoef+mOKsnJXMralS1AGCzdfiI0QAAIABJREFUmSdzmUZYRKbWrYJHA5W5sGuspjPXkpldA5T/\n", "cj4GvNbMzgc+DbxhIQ2TkbaK9aeNvjVzxa6xijORyoQKXKvYACUMTmpGVz1pmuWK6lULdiZz4dDw\n", "VEEpMrVRlbmmKgbL5r1m9kDx9fuAt+z2BufcEZT0zU272M2yUV4zlyjO5uwO59zgY5eZ2ZEFtEVm\n", "JCs2QGkWM7m6FXDdN9aSkrkV1c6KXb+GFF83W0Uyh4JSZFqjKnNNVeaWzQedcz9uZp8AngfcsNsb\n", "ihvYI+XHnHNnA3fMoH1rL+wMm5Qqc42wm6XOmZuXc8zszkU3QmarV5krDg3vJnPqz+po4mRuYPev\n", "JwNXAxlwM3Cxmflqmyj70a0WREMqcw0tZBWpSjvdefYV9JK5jm4y6y70Wa8ArnDOtYG7gZctrkky\n", "TPecuXhnZU67M4tUJyzDaXUrc5pmWWcTJXNDdv+6HLjUzK53zl0JXEQ+PUUWrLeb5fCjCXwWkaky\n", "JzK1E+HsK0Ykc7rJrK2iwvDs4uubgPMW2iAZK+xmGWILyhsNqT8TqUpGPs2yt2YuDJoozupo0g1Q\n", "Bnf/eoaZXV98fS1wYVUNk+l0RzCHVOaSJAYfK5kTqUA4yLhcLYDe9BSNZIpUI1TByxugNBNN/xKp\n", "Wlgz1xpYM6cZXfU0UTI3ZPevqPT1UeCUKhol09vqbAPDp1k2kihP5opgFZH9G3aQMfSqB6mOABGp\n", "REjmmsOOJtCgiUhlMlJ8FtFI8jQhHAfSUTJXS9NugFLOBg4D9497sXb+mp9xlblmI4YsxicKyjnQ\n", "zl8r7kQ7HzhpxP3/nIZdY7VmTqQaIZYapWmWTVXARSqX+Qx8RJLkNZum1qbW2rTJ3I3OufPN7Drg\n", "+cCHx71YO3/Nz3ZneLUAIIljvNeauTnRzl8rbqs9fOCk1dRGQyJV6lbmkvI0Sx21swwGNs97OvB+\n", "4Lbi6SvN7F2La50MysjAxyRxXpnrTbPUjK462m8yF3b/eg1wlXOuBdwCvKeSVsnUToxYxwMQx/k0\n", "S4+CUmRaYeCkkQxfM6dkTqQaYV1cq68yp2mWdTdk87xzgcvN7PLFtUrG8aTgo3xZDr2ZJ+rP6mni\n", "ZG5g96/bgAuqbZJUoTfNcvhfceRjfLQ9zyaJrKSwAUojGjHNUjeZIpUIsdQcOs1S079qLGye94fF\n", "9+cCT3XOXURenXu1mR0d9WaZP+/zylwc58lcd3BS/VktTbqbpSyJcLhqY0hlDiDyiSpzIhUIAyfl\n", "dTzQm2aZaSRTpBLh+IFmscMelDcaUpzV1ZDN8z4GvNbMzgc+jfZSqJ2MDO97G6CEe0n1Z/U07Zo5\n", "qanuDWY8ojJHjI+UzIlMK1TmmgMDJxvFDaduMkWqMW6apeJsqbzXzB4ovn4f8JZxL9bmefPno7RY\n", "M1dMs9SgybxNtHmekrkV1V3HM6oyVyRz3nuiKBr6GhHZXXvIQcYArYY6P5Eq9ZK5XmWuN2iiwckl\n", "8kHn3I+b2SeA5wE3jHuxNs+bP48HH3fvD1UBn7uJNs9TMreittPdKnNhm9l0x/QwEdm77RHJ3Eaz\n", "BaBdY0UqEtbMhYESKG+ZrjhbAmHzvFcAVzjn2sDdwMsW1yQZxpMS+Y3u96F/0zTLetJd/Ioadrhq\n", "WUxMSj7SqWROZP9CFbxZqhYAbDRC56eKgUgV0iHTLFtFZU43mfU2sHneTcB5C22QjOUjT+R722qE\n", "e0n1Z/Wku/gVNew8nrK4qMy1sw6bc2uV7NXAmTxPBq4GMuBm4GIz8+PeL/MTYq01MCjSTBJ8Fukm\n", "U6QinSKWWk1tgCIyWxnQW4LTbGhtap1pN8sV1e7uZtkc+nyYZqlt0+unOJPnKiDMcbgcuNTMvpH8\n", "X9eLFtU22amdhYGT/lhrJDH4WNMsRSoSplJuNspr5kIyp4qBSBWyLIPId+8TId9/wfsoP0xcakfJ\n", "3Irq3WAOL74mUf5Xr7N5aimcyROGxZ5hZtcXX18LXLiQVslQ3cpcoz/WkiQCdX4ilQlVgY1SMqdp\n", "liLVChXw8jTLOC76M8VZLSmZW1GjdtgL4uKA43AendTHkDN5ytuNHgVOmW+LZJxOEWsbjcFplqrM\n", "iVQp3EhulKZZboTzHBVnIpUIFfColCIkcQSZ+rO60pq5FdVbxzN8mmVcBGm7o8rcEiiXdg4D9+/2\n", "Bp3LMz/tsMPeQKyFkUyvyty8THQujyyfbmWuWdoAJdHGDCJVCjO2YoZV5hRndaRkbkV1z+NpDE/m\n", "kiifC328vT23Nsm+3eicO9/MrgOeD3x4tzfoXJ75CbFWrhYA+fk8PlYyNz8Tncsjyyf1KZ7+Kc2t\n", "4ggQr5tMkUp0hlTm4m5/pspcHSmZW1HdZG7EoeFJMc1yS5W5Ogs7Vr4GuMo51wJuAd6zuCbJoG4y\n", "N2zgxMd4FGMiVcirAjHNRu8mc6PYsVnTv0Sq0Z1mGZWmWSaRNkCpMSVzKypsgBJGLQclRZIXzsiS\n", "ehk4k+c24IJFtkdGG1WZg3wBuY/U+YlUISMFH+U7xRaSJM6PANFNpkgletMse8WAUJnTNMt60gYo\n", "KyrtruMZnq83upU5JXMi0xi2w14QoWmWIlXJyCCL+5I5TWcWqVbYzbIvmSs2QFGc1ZMqcyuq40dX\n", "C6C3Zm6rrWROZBrds6+GVuYSVeZqzjn3TOCNZvZc59yTgavJNx26GbjYzPy498v8ZD4FH9NoDI5D\n", "qzInUpVOWiRz0cBulj7SmrmaUmVuRYUbzKHreIBGsc5AlTmR6YTK3GZr55TmiBgij/fKB+rIOfeT\n", "wFXARvHQ5cClZvaN5EeCXLSotslOngzvIxpx1Pd4pMqcSGWGTrOMi2mWirNaUjK3osIN5qhz5sI0\n", "y3CEgYjsT4i1A0PWp4bdwMLgitTO7cAL6Z3l+Awzu774+lrgwoW0SobyZODj/May7wntsidSlXBk\n", "VbkyF0f5BigaNKknJXMrquM7+Cym1Rixm2XYAEWHhotMJRxkPCzWQjIXRjqlXszsGujbbrScJRwF\n", "Tplvi2QcH6VEPs7XyZVEPq+Ai8j0topB/qS0G3pSVOaIvDZBqSGtmVtR+dqC/l2/yppJAzrazVJk\n", "WilpPnDS3PnPaZim0lFlblmU71IOA/ePe7Fz7gjwhlk2SHo8WZ647RDpCJD5ucM5N/jYZcXZprIC\n", "wn1hUppmmSQx+HwQJc1S4hH3lrIYSuZWVOpTyGKSJBr6fDPO/+q3Nc1SZCp5ZS7qO/sqCNNUVJlb\n", "Gjc65843s+uA5wMfHvfi4gb2SPkx59zZwB0zat9ayzcTGl4Bz1Blbk7OKY7OkRUV7gvjUmWukcR5\n", "ZY58cLKZDN+PQRZDydyKCrt+DbvBBGgUa+naOjRcZCoZ6Y7t0gNV5pZGyAReA1zlnGsBtwDvWVyT\n", "pCzfRCgjZucAZT7NUlO/RKoQ7guT0pq5RpIfTQAanKwjJXMrKiumfiWDC8ULoTLXVlCKTCVsytAY\n", "UgWPiyNA2lqbWltFleHZxde3ARcssj0yXOYziCAaUZlTMldvOgJkeYTKXBL1UoQoirShV41p0uuK\n", "yhh1Hk8uHCau3SxFphNibXBTBuhV5rYUZyJTCdXtaMhtS0SiDVBqTEeALJftojLXiPsHTmJ60yyl\n", "XpTMrajMh2rBmA1QgHamioHINDzZ0BtM6FXmttqKM5FphGpAPKQyF6Nd9mpOR4AskfaQ3SwBoqI/\n", "63glc3WjZG5FjVvHA9AqFq+2UwWlyDTCNMthwpqDba1NFZlK9yDjaEhlLtL0rzrTESDLpZvMRaMq\n", "c+rP6kZr5laQ9x5Pih9XmWvkf/UKSpHp+CgdWi2AXme4pSNARKbS2a0yR34Tql32loKOAKmxkMzt\n", "mGYZJaRo0GROJjoCRMncCgoLxcmioZsyQG/NnJI5kSlFo6dZKpkTqUbYRCiOhm2Akj+23WlzsHVg\n", "ru2SfdERIDUWNsYbTOaSKKaN1szNyURHgCiZW0HdHSrHVOZajXz0UkEpsn/ee4j86GSu6Ax1BIjI\n", "dLpnXw2Jtd6gieKs5nQEyBLoFMtvGnF/ihAGUlQEqB8lcyuoG2hZTLJrMqegFNmvcZsyACRFZ7it\n", "owlEpnKi2ERocFMG6MXfifb2XNske6cjQJZHqII3ksHKXP69plnWjzZAWUGd7jboo8+Z2yiSOQWl\n", "yP6FKvioZK4RhelfGjQRmUaYqjy4KUP+WD5oclzJnMjUwoytRtRf70m6lTndN9ZNJZU559w/AA8U\n", "337azH6ois+V/Qk3mJEffoMJsBE2QPG6yRTZr3HreKDo/LzOcxSZVjjeY1wyt6VkTmRqob8KR1gF\n", "IfbUn9XP1Mmcc24TwMyeO31zpAq9Xb9GF167lTmdFyKybyfaw7dwDppJA7Leeh8R2Z8wVTmJdt62\n", "hPjTdGaR6YXzh5tx/86wYYqzNvSqnyoqc18FHHTO/UXxeZea2ccq+FzZp1AtiEZM/QJoNTXNUmRa\n", "YY3OqGSuuwGKkjmRqYQ1c4ObMkAvwdOaOZHphdldrUZ/rIXdLbeVzNVOFWvmjgG/ZmbfCrwCeIdz\n", "TmvxFqh3uOqYZC5p4LNIlTmRKRzvJnPDx8WaxY2nkjmR6YQplMOSufDYlipzIlPrTbPsr8w1Yu0a\n", "W1dVVOZuBW6HfIci59wXgUcDnx18oQ5+nI8wpWtw8WpZoxGDj8lQMjdjEx38KMvl+PYJYHSsJUrm\n", "RCpxoqgGNIfEWiNqgNf0L5EqdIpplq2BZC4MWmpDr/qpIpl7KfCVwMXOuccAJwN3D3uhDn6cj+10\n", "fLUAyA8T97Eqc7M30cGPslyObxexNqRaAHkFHLSWR2Ra25081garBVBU5jJN/xKpQth3YWMg1sKG\n", "KErm6qeKZO5twO85564vvn+pmWUVfK7sU7hxHFuZS2LIYjLtZimybyfCDWa88wYTYKNYmxpeJyL7\n", "E6puQ6dZhopBqjgTmVaozDUbA9Msk0SDJjU1dTJnZh3gJRW0RSoSkrnmiGoB5Mmcz2JSlMwtCx0B\n", "Uj9hw4VhU78ADjQ3AW2ZLjKtkMwNTv2C3mCKbjJFpheOrBqszIUKeNggReqjknPmpF5OdBeKD68W\n", "QKjMJWToJnMZ6AiQeurGWjIimWu1AE2zFJnWVlHdbjWGTLNMtAGKSFU6WYrPIpqN/k30mkkCHU2z\n", "rCMlcyvoeHsLGL62IGg0QjKnNXNLQkeA1NDWLtMsDzY3ACVzItPaKqZQbjRaO55rqTInUpnUd8DH\n", "JHHU93h3zZw29KodHSGwgh7e3kMyl0T4LMZHKZnXEscloCNAamjc1C+Agy0lcyJVCNWAzebOZC48\n", "pt0sRabX8R3IYpKk/xYjLN3pKJmrHVXmVlCY+tXawzRLyG80Nxsbc2mb7NuejwABHQMyL92pXyOS\n", "uUOb+Zq5dqabzDmo5BgQrU2tp7C5yeaQaZabLSVzIlXJfIrPknzX85JmQ0ft1JWSuRUUkrlh01GC\n", "JI56yVxnW8lc/e35CBDQMSDzsltl7lBRmesomZuHqY8B0drU+gpTu4b1VQeaYW2q1oCLTKs7zXKg\n", "MheO2glHF0h9KJlbQaFaMC6Zi6KIyOsMrCWiI0BqKNw8bjSHD4Yc2swfV2VuaWhtak2FAZHN1s6B\n", "k4OqzIlUJvUdyJo04oFplokqc3WlZG4F9ZK50dMsASKfV+a2NJpZezoCpJ7CzePmiIGTzVYTn0Wk\n", "kTq/JRHWpr7NOfcU4Frn3FM1cLJ44QbywJCBkwNFBbytgUmRqWWk4DdoNQcqc8U9ZUdHE9SOkrkV\n", "FJK5UTeYQUyCL71eRCYTqtqbzVGHhieQJaSxOr8lobWpNRWq2+G4j7KD3WROcTYHlaxNBa1PrauU\n", "FJ/FtJr9RxOEAoHirH6UzK2gcNbOuGmWAAkNOmiapch+hUrAsGoBwEYrJHNaY7AktDa1pkI1ICRu\n", "ZSdpo6F5mnptKmh9al2lWQp4GJLMHSjWq24rzmpHydwK6t5gDhnBLGvGrSKZU2VOZD9Cp3ZgyHbp\n", "AK1mgs9iMq+RzCWhtak11SliaNiauUMbYW2q4myJaH1qDXWnKvuEVqN/mmV3OnOme8a6UTK3gnpT\n", "v8bvULnRaHEcrZkT2a9w3s6BIdUCyHeNjXxCFinGloHWptZXmnXwPuLAxpANUDbzwZRUgybLROtT\n", "a6g7U2tYZa4YtFQFvH6UzK2g9i7VgmAjyZ9/ePvEzNsksoraPo+1gxujB04iknxBuYjsW9tvQ9bg\n", "0ObOZO5AsdFQByVzS2TP61O1NnV+ThSD+z5LhmyA0sCnMe1EydwcTLQ2VcncCtpKt/BpzKHNXZK5\n", "Itk7ekLJnMh+bGdbABza2Bz5mtgnZFGK954oika+TkRG6/g2Pk04OCSZ29xo5GtTtWvsMtnz+lSt\n", "TZ2fE+3ifjBt0Bg4Z67RiPM480rm5mCitanx7i+RZbOd5iOYBzfH5+qbRTJ3bEvJnMh+5DeYcfec\n", "q2FimhBp23SRaWR0iLIGzcbO25ZWuMlEMbZE3gacXKxPfSdan1oLJzr5AGVMY8fgY7MR47OEjpK5\n", "2lFlbgW1/TY+bQwdwSw72NyEDhzb2ppTy0RWS6eY+tVsJCNfk9CkAzzcOUFrlx1mRWS4LGoTc2Do\n", "c1EUQdYg0/SvpaH1qfUUkrmEnfePjSQfNFEyVz+qzK2gjt+GNOHAxvhcPVQTVJkT2Z+0mPo1uLag\n", "rFF0it3pKyIykTRLIc6G3mAGsW+SaZqlyFTChnjJkFpPs1sBV5zVjZK5FeO9z28w9zDNMqzzOd5W\n", "ZU5kP9KoDVljx65fZc043xzl6NbxeTVLZKVsdfIbzEY0Zjqzb0KcFudkich+nCjuB5tDYq3VTPBp\n", "QkaHzGtGbJ0omVsxW50tiNhTZe7QRj5lRcmcyOS892R08srckHU8QavYNfa+h4/Nq2kiK+WhrYcB\n", "aEajK3OhahemiYnI5EL8DDva6uBmvtEQQDtVda5OlMytmONFIPq0wWZrfDJ32oGTADi2/fDM2yWy\n", "atppGyJPlDVIktH/lG4meQX8ASVzIvty39E8dsLAyDCNItE73tF0ZpH9OradzyA52Ny5Q/OBjV4y\n", "t6VBk1pRMrdiQkfWoEkcj98G/REn5cncwx1N/xKZVIi12O+y0VCrSOaOK5kT2Y8HHs4HHDcao89z\n", "DMmczk0V2b8Hj+exdtLGzs2GGklM5PMiQTiPTupBydyKCZssjFtbEDzi8El4H3FCI5kiEytv4TzO\n", "wWbeKT50QoMmIvsRBkIOjEnmwhqfh05oponIfj1UnDt8aHP42anh3lIbetWLkrkVE24wm/Huydwp\n", "hzag02A7U1CKTCqsNW0wPtbCCOfRLd1kiuzHg8fzgZDNIVO/glax0ZAGTUT271ixUdfhzYNDn29G\n", "xYZeWp5TK0rmVkyY77w5ZgQzOHyohU+btL3mPotM6uF2HmutZHyshWQuxKaITObBE3ll7lBz+Dlz\n", "0IvDB1WZE9m3UNk+/aRDQ5/fiPMBlaPbWjZQJ0rmVsw9Dz0AwEnN4YFYttlKIG2SornPIpO6//hD\n", "AGzGo28wAU4+kMfiUSVzIvty//GjAJxSbNo1zGYjv8l8UGtTRfbtoe081s485bShzx9q5BW7+x5+\n", "aG5tkt0pmVsxXzj6IAAnb47u9IIoimj4Fj5O6WibWZGJ3Hssj7WDzeHTUYLTD54CwLH20Zm3SWQV\n", "PbSVx85pBw+PfM3JG3mfd+/DD86lTSKr6Fj7OD6LOOOU4feQpxYxeM+DD8yzWbILJXMrJnRkpx44\n", "eU+vbxTrDI61NTVFZBL3FiOTJ7XGV8HPOHwqAA93VDEQ2Y8wpeuRh0b3a6cVfd59D+smU2S/ttLj\n", "0Glx+inDZ5w84lCezH3hmAZN6kTJ3Ip5oJj6dfpJo0cwyzajPGC/qA5QZCL3FQMnhzfGJ3OnHT6A\n", "7zQ5niqZE9mPcHzOIw+PTuYeeSivgD+wpelfIvu17U/gO01OO3n4ZkNnnJLH2f2aZlkrSuZWzANb\n", "+Q3mGScNn+886GCSJ33/cf8XZtYmkVV0z9H7AXjMqY8Y+7pTT9rAt1tse62ZE9mPMBBy1oh1PACP\n", "Ojl/7ui2pjOL7Ecn7ZDF28TZBhvNZOhrzjoln2kSNiWSelAyt2Ie3H4QnyacccreplmeupEH5l33\n", "3zPLZomsnC8+fB8ATznzrLGv29xoEKUbpPEWaZbOo2kiK2WLo/h2i9NOGr0+9fTDh/BpwrGOkjmR\n", "/bj3RD5Dq+VHzzZ53CMegc8iHmxrNledKJlbMcfSh/BbBzjr9N13swQ446S8qnD3A6rMiUziaOdB\n", "/HaLJ5x56q6vbfpiB7AT6gBFJuG9px09TNQ+QJKMvmV59OmH8O0NHs5UMRDZj88/9EUADiWjl+k8\n", "6tRD+O0DPJxpzVydKJlbIUe3j5FGW/jtAzzy1PHbpQePPfWRANxz7N5ZNk1kpXSylC2OQXtvsXZq\n", "Ix80uf2ef59100RWygMnHoQ4pZmNH6A8+VCLePsk0ugED26pOicyqc/c+3kATt44ZeRrTj7Ugq2D\n", "dKITHG+fmFfTZBeNaT/AORcDvwV8JbAF/LCZ/eu0nyuTu/O+uwA46E+jMWYEs+ycR52JvzPmP49/\n", "fpZNkykpzurl3++/G6KMQ9HpxHG06+sfe8pj+ML2P3HzZ+/k65/4VXNooeyH4qx+br3nMwCc3Dh9\n", "7OuiKOJwfDoP8Z/827138RWP/i/zaJ7sk2KtfkKsPfrQ6KUDcRyx4U+mzRf43NF7OOe0x8+reTJG\n", "FZW57wRaZvZs4KeBN1XwmbIPn/i3fwHgsYcfu+f3nHHaSWQPn8xD6Rd5WIca15nirEY+fuenADjr\n", "4KP39Hp3xhMAuPWLd86qSVINxVnN3HjXrQA8+tDusfbok/Kb0E9+5raZtkkqoVirmU/fdyfegzvj\n", "iWNf94jmGQDc8vnb59Es2YOpK3PAc4APApjZx5xzX1PBZ1bGe9/7Gl96gr7H+18X3tv/Qu/7PqH3\n", "tfd9r8sGPrv3WTs/b/Treq/2Aw+G78ut+dfP3stf2N/gmxHnP+Wr2aszTjtIcvQM/OH7ufa2j/Bd\n", "T/s24lizb2uo1nEGO39PM5+VnqQ/dkqxNCqOBn/3s4HYgN7ne98fO74/2nvX7H9R3/WywdeO+Pei\n", "k3X46zv+DoCvOvNLBxs11Nd+yZfwztsP8Bl/O//x4Od49OEziaLdK3oyd7WPM+j/Xfa+vy/w/S/s\n", "vj4819+/ld/R/5n9zzDyNaUA3vF6P3D9UsP6rjHQw3U/fCtt83f//gl8FvGsJ30Fu/n6J34FdudH\n", "uP7f/p7v/upv4qRdjg2RhVqKWCvbcS822Mvs+HZEXOYfNvazBvvLna/vlw2Jsf7nR7cN8tkmnz/x\n", "WbKjp/K0J5w52No+Z5/8JXw+/Xv+8va/5blP+noONve2rEdmp4pk7mSgvBIydc7FZpaNesOABOBH\n", "/uh1tE7ehHB/4+l93bUjHADQPVHPmfFT+bKzDnDXXXft+T1P8I/jti/cwh9+9F384UffhffRkB+1\n", "fsiT2H6wO5d8+P6+k5s2zrpt6cZa2R5jDRRvQXr/I/nSLz95T7EWe0/z7kdz/NT/wyv/+KcBijjT\n", "D3NaFcfabOMMBmJtdJyBYi1IHng8T3pWa9dYe9oZB8k+ehr3Hv4sL/69i4v739Cf6Yc5jRr2aTvj\n", "bNe/YsXbbp7EubT8Q9x11+hz5J54+AAfufEk7jj1dr7/bT+a92VB349YP9BJ7TfOop0jZpNxzr0J\n", "+Hsze3fx/b+b2dBJtM65I8AbprqgyPK7zMyOTPKGSeKseP4IijWRiWJNcSayLzPt0xRnIsCYOKui\n", "Mve3wHcA73bOfT3wT6NeWDSiryHOuQ3gBPBkYBGHMN0BnKPrrvS1F3HdBLgd2DSzrQo+b89xBrWM\n", "tXX6u1/0tdftulXGmuJs+a69btdd1LUX1qfVMM5g/X7v1u33fVHX3VecVVGZi+jtSATwUjO7dcLP\n", "8Ga2kHrsoq69btdd5LVX4bpVxFnVbdJ163ntdbtulddWnC3ftdftuou8dt36NP0drP51F3ntZbru\n", "1JU5M/PAj077OSIymuJMZPYUZyLzoVgTqY62LRQREREREVlCSuZERERERESWUF2SucvW8Nrrdt1F\n", "XnvdrjvOuv0s9Pu++tdd9LWH0d+BrruK11acLf7a63bdRV57aa479QYoIiIiIiIiMn91qcyJiIiI\n", "iIjIBJTMiYiIiIiILCElcyIiIiIiIktIyZyIiIiIiMgSUjInIiIiIiKyhBrzvJhzLgZ+C/hKYAv4\n", "YTP71yGv+x3gi2b2M/O4rnPua4E3ARHwWeAHzGx7Ttf+LuBSwANvN7PfruK6xWc/E3ijmT134PHv\n", "AH4e6BTX/N2qrrmHa/934JLi2v8MvNLMKttSddR1S89X+ru123Vn+bs1pi0LibO9XHtWP49Fxlnx\n", "+QuJtXWLs3HXXqdYU5ytR5yNu3bpefVpvdetRJzt8dq6d1yBPq2qOJt3Ze47gZaZPRv4afKG9nHO\n", "vRz4cvJf0Jlf1zkXAb8D/KCZfQPwYeCceVy7cDnwzcBzgNc4506p4qLOuZ8ErgI2Bh5vlq55PvAy\n", "59wZVVxzD9c+APwCcIGZnQecAnz7rK9ben4Wv1vj/ryz/t0aZVFxNvbaM/55LCTOYHGxtm5xNu7a\n", "axhrirPe4ysZZ+OuXXpefVqvbasUZ2OvXdC944yvW3q+9nE272TuOcAHAczsY8DXlJ90zj0b+Drg\n", "reTZ6Dyu+1Tgi8BPOOf+GjjVzGxO1wZoA6cCB8j/zFX9stwOvJCdP8enAbeb2QNm1gb+BvjGiq65\n", "27VPAM8ysxPF9w3g+ByuO8vfrXHXnfXv1iiLirPdrj3Ln8ei4gwWF2vrFmfjrr1usaY461nVOBt3\n", "bfVpJSsYZ7tdG3TvuAp9WmVxNu9k7mTgwdL3aVFKxjn3aOD1wI9R/Q9s5HWBRwLPBn4TuBB4nnNu\n", "aJl1BteGfLTlk8DNwPtI6wv+AAAgAElEQVTNrPzafTOza8jL0cPa80Dp+4fIRzkqM+raZubN7B4A\n", "59yrgENm9pezvu6Mf7fG/axn/bs1yqLibOy1me3PYyFxBouLtXWLs3HXZv1iTXHW36aVi7Nx11af\n", "tvJxttu1QfeOS9+nVRln807mHgQOl69vZlnx9XeT/wH+HPgp4Pudcz8wh+t+kXy0wcysQz4SMjgC\n", "MpNrO+eeQP5L8kTgbOBM59x3V3jtYR4YaM9h4L4ZX7PLORc7534deB7wf8/psrP83Rpn1r9boywq\n", "zna79ix/HnWLM1hgrK1ZnMH6xZrirGfd4gzUp616nI29tu4dV75Pm/h3a97J3N8C/xXAOff1wD+F\n", "J8zsN83sayxfBPhG4I/N7A9mfV3g08BJzrknFd9/A/lIR1XGXXsTSIGtIkj/k7xsPkv/AjzFOXea\n", "c65FXib/3zO+ZtlbyecHf1epZD5TM/7dGmfWv1ujLCrOxl6b2f486hZnsNhYW6c4g/WLNcVZz1rF\n", "GahPY/XjbLdr695xDpYpzua6myXwXuCbnXN/W3z/UpfvUHOSmV018Noq59qPva5z7oeAPy4WHf6t\n", "mV07x2v/PvB3zrkT5PNnr67w2lD8HAeu+RPAX5An828zs7srvubQawM3AP8DuB74K+ccwJvN7H2z\n", "vO6Mf7fGXnfGv1ujLCrOdr32DH8ei44zWFysrVucDb32msWa4mx94mzHtdWnrXyc7eXaundcnT5t\n", "6jiLvJ9lfysiIiIiIiKzoEPDRURERERElpCSORERERERkSWkZE5ERERERGQJKZkTERERERFZQkrm\n", "REREREREltC8jyaoFefcncALzewfnHOvB/7RzP5XhZ//IeC/mdm9zrk/A15jZv9S1eeXrvNjwCvI\n", "tzf9V+BHzOwe59wB4ArywwZj4GPAxfM8D2cc59wzydt3EPgP4MVm9rlJX+ecO5V8y9qXmtkni8ce\n", "BfwB8AQgA15mZvM8E0UKqx5nA6+5Bvismb2q6uvvl+JsPaxDnDnnXgn8EHAA+CTwQ2a2XXUb9kNx\n", "JiKLsu6VufK5DN8ENCv+/AuBCMDMXjCjju9c4DXAs8zsK4DbgF8onv5ZIDazrwS+krwD/Jmq27Af\n", "xaGT7wFeZWZfWnz9tklf55z7r8DHgafS//d5BXCdmX0Z8GLg3UVyK/O36nEWXvOTwHnM9ny1iSjO\n", "1spKx5lz7oXAjwHPA76MvD97TdVt2A/FmYgs0lpX5gqRc+5i4Fzg15xzHeDPgV8lP+E+AW4EftzM\n", "HipGP/+ePDm6FOiQJ0gt4Azg983s9c653ys+/6+ccy8A/obeqOnLgFcBKfB54MfM7Dbn3NXAA8BX\n", "AI8H/oV8JPSYc+4yADN7Q7nxZvZJ59yTzSx1zm0CjyMfzQS4DrijeF3mnPtH4Gm7/UCcc99Bngi2\n", "gIeB15rZ3zvnjgBfDjwKOAu4iXxk9CHn3I8CLwe2gRPAy83sU865lwNfY2Y/MnCZrwUeKI0uvh34\n", "n86508zsvgle9yrgB4A/KbW/AbwA+NHiz36Tc+424NvID+KU+VvlOMM591zgW4HfBk7byw9EcSYz\n", "sMpx9gPAr5vZ/QDOuVcAG7v9QBRnIrLq1r0yB+DN7AryE+Zfa2Z/St6Ztc3sXDP7auBu4I3h9cA/\n", "m9mXFqfP/wTwA2b2tcCzgJ9xzj3CzF5avP65ZnYXvRPevwl4HXBB8dl/DJRPsX8G+U3h04DHAN8D\n", "eac32PEFRcf3ncC/k1cGri4e///M7Pbiuk8ELgHePe6H4Zx7CvBLwPPN7BnkHdo1zrmDxUueVbTp\n", "vwBt4PXOuRj4DeBbzezrgN8BnlO04a1DOj7IO/d/L/0ZtoF7gMdO8joze76Z/f3Aex5JXpH8Yumx\n", "u8hvDGQxVjbOnHOPAf4n8P3kN7S7UpzJjKxsnAFPAc50zl3rnLsJOALcN+wzAsWZiKwDJXPDfTtw\n", "kXPuRufcjcBF9Fe0Plr6+juAry3WKLyJfBrKoRGfG5GPpr0z/MNsZr8PPNY5dzZ5B/lBM2ubWQf4\n", "Z+ARe2mwmb3PzB4FXAb8Rfm5YurK9cBvmtmf7/JR3ww8mnwE9kbgj8hvUJ9ctO/dZvafZubJp4d8\n", "q5ll5Eni/3bO/Sb5aOzbd7nOqN+9wZvhvb5uL+/pjG2RzNvSx1kxbeqdwCVm9vni2nuhOJN5WYU4\n", "i8graxeSJ19fU3zWL+3yUYozEVl5SuaGi8mnoTzdzJ4OPBP43tLzRwGcc4eAfwS+mnwx9uvIR/fG\n", "3dBFQ56P6K1vKG9O4nf5LJxzT3LOnVd66PeAJzrnTiue/2/Ah4CfMrM3DvuMATHw4fBnL/78zwFu\n", "Lp4vdzpJ+N7MXkJ+03A78FPANbtc59/IO9nw52iSj0B+dp+vK/vP4rWnlh57LPloptTH0scZ+U3l\n", "2cBvFDeLLwe+zzn3O+M+D8WZzM8qxNlp5L+L7zWzo2bWBt5BXlkbR3EmIiuvFslcMXd9UV5e/L9D\n", "PvIHeWXrVc65VjHl4rcZPgL4FOAw8PNm9mfABeRz+JPi+bT0mZB3Zn9BfrP3qwDOuZcCXyDvNPY6\n", "ql/2GOBPnHOnF9+/iHzazH3Oue8G3gx8s5m9s7jekV0+76+Ab3HOueL130bewW8W7fu/nHOnFD+X\n", "HwH+l3PudOfcZ4B7zezNwM+Tr8HoM3DtjwOnO+dCZ/w/gL8zswcH3rbX13UVo8B/RvF365y7EvhS\n", "4K93+bNXasG/10MtsE2rGmd/Z2ZPKN0o/jZ5peJlu/ysFWcVqlusrWGcPdI5d2SGcXYv+WYh3+uc\n", "2ywqdd8JfHwN4+wrga9DcSYihVokc8DQufNz8rLi/+8Hft059xLy3bPuJF8o/n/If07Dds26CfgA\n", "8Cnn3EfJF1PfQD6FA/LRvI86574svMHM/pJ8Pv7rnHM3Ay8Bvr2Y5hH+KwtrEy5zxaLxMjP7KHnH\n", "/NdFZeB7yTs5gF8u/v+20hSbNxSf92aXL+Ye/Lxbip/JO12+YcovAN9hZg8XbfkcecfyKfLpJ79c\n", "TLH5ReDDzrkbgF8Bfri4ziucc1cVH/+G0nXawAvJF3/fDPx34KXFex5TtPesca/bxSuB5zjn/pl8\n", "m+sXm9lDe3hflRb5ez3Kotq0ynE2yhsUZ3NTt1hbtzj7K/I/8yzj7LeAvySvGn6KfGv/S1m/OPsj\n", "4JDiTESCyPvJdtF2zp1B/o/p88jn0n8AuLV4+koze9ekjXDOeTPbzyje1BZ17UVf1zn3DcCXm9mV\n", "E7z3CHCmmf3oNNfez3unsYzXHYizjHwTgIx8etDFxc3SXNs0jXW7brg2+Q6CirOaXnsW/dk07ZnW\n", "Mv4dVHFd1ijOFnntRf6ZRWS0iY4mcPn87rcCx8inKJwLvMnMLp9B22S2HkW+5mASw0ZapWJD4uxy\n", "4FIzu76YynYR/TvGSX0pzmpK/dlKUZyJyNqa9Jy5XwOupHfw9DMA55y7iPxwz1eb2dEK2yczYma7\n", "Lege9p4d02JkJnbEmZldX3x9LfAtKJlbCoqzWlN/tiIUZyKyzvY8zdI594PAY83sl5xzHyFfH/Es\n", "4CYzu9E5dylwmpm9bpIGOOc2yHe8ejJ7PKOpYncA5+i6K33tRVw3Id8EYNPMtvb6piFx9qPku7E9\n", "tnj+m4CXFrutTWTBsbZOf/eLvva6XXfiWJtVf1Z89jrG2SKvvW7XXdS199WnicjsTZLMXUdvWsJX\n", "AwZcZPnZSjjnvhR4i5ldOOYzjqAFtCKXmdmRYU8MibNbgaebWat4/iLgQjN71bgLKNZEgBGxVkV/\n", "VrzuCIozkZF9mojM3sQboACURjKvJj+/5hPOuVeRj3T+9ISf9STg9ne84x2cddZZE7dFpI4+97nP\n", "8aIXvQjgyWb2r/v5jFKc/Rr5Wp7rnHO/TV6pe/c+Pk+xJitn2lirsj8rPk9xJiunij5NRGZj0jVz\n", "ZZ68A7zCOdcG7qa3LfIkUoCzzjqLxz3ucVM0R6SWpp1m5cm3Eb/KOdcCbiE/b2nfbVGsyYqaJtaq\n", "6s+67VCcyYpaxHIYERljX8mcmT239O15FbVFREoG4uyCRbVDZJWpPxMRkWVWl0PDRUREREREZAJK\n", "5kRERERERJaQkjkREREREZElpGRORKQi2+2UN73jk3z8ls8tuikiIiKyBpTMiYhU5G//6T/463+4\n", "i1+5+uOLboqIiIisASVzIiIVSdMMgE46+fmdIiIiIpNSMiciUplo0Q0QERGRNaJkTkSkIu2iMici\n", "IiIyD0rmREQqst1OF90EERERWSNK5kREKqJkTkREROZJyZyISEW225pmKSIiIvOjZE5EpCLlylyW\n", "aUdLERERmS0lcyIiFSkncx1thiIyE+1Oxs+/9e/4y4//26KbIiKycErmREQqst3pJXDtjpI5kVn4\n", "/L3H+Mdb7+HN/+8/LropIiIL15j0Dc65M4BPAs8DMuDq4v83AxebmeYWichaKlfmlMwtB/Vpy0ex\n", "JSLSM1FlzjnXBN4KHCM/Hfdy4FIz+8bi+4sqb6GIyJLYKiVz2x3tbFl36tOW05Z2jRUR6Zq0Mvdr\n", "wJXAzxTfP8PMri++vhb4FuB9FbVNKvQ3N32WB45u84LnnLPopsgYzrkEuAp4KuCBVwAt4APArcXL\n", "rjSzdy2mhTJO35o5VQ+Wgfq0JdTWrrEiIl17rsw5534QuMfMPlQ8FBX/BUeBU6prmlTp//mDG/jt\n", "a/6JB49tL7opMt63A5mZnQf8HPBLwDOAN5nZc4v/lMjVVHn617aSuVpTn7a8VPUWEemZpDL3UsA7\n", "5y4Evhr4feBRpecPA/eP+wDn3BHgDRO2USr08Ik2Jx9qLboZ6+QO59zgY5eZ2ZFhLzazP3XOfaD4\n", "9mzymDoXcM65i4DbgFeb2dHZNFemsdW3Zk43nDWnPm1J6TzHhZqoTxOR2dtzMmdm54evnXMfIZ/+\n", "9WvOufPN7Drg+cCHd/mMI8CR8mPOubOBO/bcYpmKFo7P3TlmduckbzCz1Dl3NfCdwPcAjwWuMrMb\n", "nXOXkt88vq7qhsr0ytMsdcNZb+rTlleaKbYWaOI+TURma+LdLEs88BrgKudcC7gFeE8lrZKZ0dlX\n", "y8HMftA5dybwMeDZZvYfxVPvA96y2/tVMViMcgKnNXNzN23FQH3akuikvQ1GvfdEUTTm1SIiq21f\n", "yZyZPbf07QXVNEXmQZW5enPOvQR4nJn9CnCcfIv0a5xzrzKzT5Bvn37Dbp+jisFilKdWal3P3O27\n", "YqA+bblkpcpcJ81oNpIFtkZEZLGmqczJElIyV3vvAa52zl0HNIFLgM8AVzjn2sDdwMsW2D4Zo61D\n", "w0VmLi1V5todJXMist6UzK0ZTf2qNzM7DnzfkKfOm3dbZHLtTgbNE9De1G6WIjOSZv3JnIjIOpvo\n", "0HBZTn0dn9bMicxMu3UvB57+1zQedyupYk1kJsqxpWRORNadkrk1UF7Ho+3SRWYnO/QFAJqP+XTf\n", "Jg0iUh1V5kREepTMrYFOqo5PZNbSzON9L9YybZ8uMhP9yZwGKEVkvSmZWwMdbcogMnPtTgqN7e73\n", "qsyJzEb5iJ1yYiciso6UzK0B7bAnMnudTkbU7CVzuskUmY2sFFs6O1VE1p2SuTXQ0WJxkZlrdzKi\n", "OJ/y5b2mWYrMSnmgJFUFXETWnJK5NaBkTmT22p0MimQuijTNUmRWUlXmRES6lMytgXICp45PZDba\n", "aQaxYk1k1spHE6gyJyLrTsncGuhbLK4bTJGZaHcyiHrxtZ1uj3m1iOxXX2VO05lFZM0pmVsDfZU5\n", "bcogMhPtTkoUK5kTmTWtmRMR6VEytwbKRxOoMicyG+U1cwBbSuZEZqI820TTmUVk3TX2+kLnXAJc\n", "BTwV8MArgBbwAeDW4mVXmtm7qm6kTKfd1/FpFFNkFganWXYyJXN1pj5teWWqzImIdO05mQO+HcjM\n", "7Dzn3PnALwHvB95kZpfPpHVSCW2AIjJ7+dEEpZ1js84CWyN7oD5tSZUTOK2ZE5F1t+dplmb2p8DL\n", "i2/PBu4HzgVe4Jy7zjn3u865k6pvokxLU1JEZi+fZlmuzCmZqzP1acsrzbR0QEQkmGjNnJmlzrmr\n", "gTcD7wA+DrzWzM4HPg28ofIWytQ62sZZZOY6A9MsU5+OebXUgfq05dRXmVOfJiJrbpJplgCY2Q86\n", "584EPgY828z+o3jqfcBbxr3XOXcEdY5z17+bpUYx5+wO59zgY5eZ2ZEFtEVmaLvT6dsApZ2qMrcM\n", "1Kctn/7dLNWnzZn6NJGamWQDlJcAjzOzXwGOAxlwjXPuVWb2CeB5wA3jPqMI9iMDn3s2cMdErZaJ\n", "qDK3UOeY2Z2TvGHExgxbwNXkcXczcLGZ6S+zRrY7KVHU+16VuXpTn7a8ytMsddzO3E3cp4nIbE1S\n", "mXsPcLVz7jqgCVwCfAa4wjnXBu4GXlZ9E2Va2gBl6QxuzPDLxeOXmtn1zrkrgYvIKwdSE+2BowjS\n", "TMlczalPW1KqzImI9Ow5mTOz48D3DXnqvOqaI7PQ6WQkZ3yGxqPuYit9waKbI7swsz91zn2g+PZs\n", "4D7gQjO7vnjsWuBbUDJXK4PTKjuqzNWa+rTllaae1pP/Ad9p0UmftujmiIgs1MRr5mT5dNKM1tm3\n", "AHD/8c8suDWyF6WNGb4T+B7gm0tPHwVOWUS7ZLRt3+77XpU5kdnoZB2SR/wnAO1Oe5dXi4isNiVz\n", "a6BvmqXXQcbLorQxw8eBzdJTh8m3UR9JGzPMXzvNk7ckSkh9Suq1AcqcaWOGNbHN8e7XR9NjC2yJ\n", "iMjiKZlbA33nzPmtBbZE9mLIxgwpcINz7nwzuw54PvDhcZ+hjRnmr5PlAyWteIPj6cNkqDI3Z9qY\n", "YU1s+4e7X291jo95pYjI6lMytwa2O72byhRV5pbAsI0Z/gW4yjnXAm4pXiM1EtbMbSR5Mpd6bcwg\n", "MgvtqJTMZRqgFJH1pmRuDWx1eglciqZ+1d2YjRkumHNTZALhKIJWvAFApg1QRGaiPIV5cBdZEZF1\n", "Ey+6ATJ722lvgXiKFouLzEI4+6qVNAE0zVJkRsqDkttaBy4ia07J3BooJ3NZpGROZBY63cpcC4BM\n", "0yxFZqKvMpcpmROR9aZkbg1sl6ahZJpmKTIT4SiCVlIkc6rMicxEuR9TMici607J3Bpo91XmlMyJ\n", "zMJgMueVzInMRHmgpJNptomIrDclc2tgu9TZeSVzIjMRdq/sVeY0zVJkFvoqc1ozJyJrTsncGuj0\n", "JXOqFojMQti9ckOVOZGZKlfmUu0aKyJrTsncGuiUFosTqVogMgvhpnKjURxNoMqcyEyUZ5jouB0R\n", "WXdK5tZAWMsD4JXMicxEmGbZq8wp1kRmoTxQovMcRWTd7fnQcOdcAlwFPBXwwCuALeBqIANuBi42\n", "M199M2UafTtYapqlyExkWajMaZrlMlCftrx81CEqvtY0SxFZd5NU5r4dyMzsPODngF8G3gRcambf\n", "CETARdU3UabVNw1FlTmRmQjreFqqzC0L9WlLqrz2W0eAiMi623MyZ2Z/Cry8+PZs4D7gXDO7vnjs\n", "WuDCSlsnlSgfsEqckWYaaBapWprlyduBYs2cpjTXm/q0JaZkTkSka6I1c2aWOueuBt4MvAO6Mx0A\n", "jgKnVNc0qUq5s4si2G7rXB6RqmVhzVxDlblloT5t+Xjv8bHWzImIBBNvgGJmPwg44HeBzdJTh4H7\n", "q2mWVCmsmYt8/td9oq1zeUSqFtbuNJMm+EhTmpeE+rTlkmaeKE67/ZkGTURk3U2yAcpLgMeZ2a8A\n", "x4EUuME5d76ZXQc8H/jwLp9xBHjD/psr+xEqcwktOpzgREeVuTm6wzk3+NhlZnZkAW2RGQqVuUaS\n", "ALFuMmtOfdpySjMPUUbsm6RskWlTr3lTnyZSM3tO5oD3AFc7564DmsAlwL8AVznnWsAtxWtGKoL9\n", "SPkx59zZwB0TtEMmFDq7xLfoRCfYUmVuns4xszsX3QiZvTBo0kwSIh9pzVz9qU9bQmmaQZwSkYCP\n", "tWvs/KlPE6mZPSdzZnYc+L4hT11QWWtkJnwx/SuJmgCcaOuQVZGqdStzcYOIGI82Gqoz9WnLKa/M\n", "eWIa4BMNmojI2pukMidLKkz3apBvzLCtaZa15ZxrAm8HnghsAL8I3AV8ALi1eNmVZvauxbRQRgkH\n", "GTcbeTJHlJFlnjiOdnmniOxVmnqiKCMizuNM05lFZM0pmVsD4SazESpzHU2zrLEXAfeY2Uucc6cB\n", "NwGXAW8ys8sX2zQZJ+yq14yTIpnzZN4To2ROpCpplkHsiaOYKIu1Zk5E1p6SuXUQhWSuBR62O5pm\n", "WWPvprdOJwbawLmAc85dBNwGvNrMji6ofTJCtzKXhGSuQ5p5GsmCGyayQroboBAT+QQizTQRkfU2\n", "8dEEsnzCNMtmUZnbUmWutszsmJkddc4dJk/sfhb4OPBaMzsf+DTaPa+WfLFmrpU0iHxMFOfTLEWk\n", "OmlaJHNRQoTWzImIKJlbA901c3GxZi5VZa7OnHOPB/4K+AMzeyfwXjO7sXj6fcDTF9Y4GalXmWsQ\n", "R/k0y1TJnEil0iyDyBMRExdrU0VE1pmmWa4BH2VEQCvWBih155w7E/gQ8Eoz+0jx8Aedcz9uZp8A\n", "ngfcsIfPOYIqeHPlS8lc2AAlTXWjOUc6/2oNtNOUKIIkSohJtNGQiKw9JXNroHuTGW8AsJ0qmaux\n", "S4FTgNc7515fPPZq4Decc23gbuBlu32Izr+avzDNMkn6N0CRudH5V2ugXaz5jsmnWUaxp5122Iib\n", "C26ZiMhiKJlbcVmxWBygVXR22gClvszsEvLDiwedN++2yGR6u8b2VwxEpDpbxcySOIpJonx3oRPt\n", "NhtNJXMisp60Zm7FZT4/YBUf04jz3L2dqTInUrVQAU/iJN82PYJ2R9umi1QprPnuTrMEttra1EtE\n", "1peSuRWXZr0DVptJkcxpAxSRyvUlc8VNpmJNpFphgCSOEuJuZU5xJiLrS8ncikvT/IDViFJlLlW1\n", "QKRqvjzNMsr/adXOsSLVCmu+k1Iyp3XgIrLOlMytuKx0wGozzju+jm4wRSrnycBDHBdbptPbrEFE\n", "qhGq3UncWzO3pTgTkTWmZG7FpZnvnsnTCNMsM3V8IlXzUQY+3x49VAzamargIlXqJnNRgyRUwNuq\n", "zInI+lIyt+LSojJXXjPX0Q2mSOXyaZb5P6lhmqUqcyLV6hTLBJIoJonyPk1np4rIOtvz0QT/f3t3\n", "GyTZVd93/HsfuntmH7SSEBIIg7QJcIISkwSIIeJBECBlklDYxG8SYirELpJAYrlsF3EUR1pVqApx\n", "kFLBJTs2hhBcBSlDBFW4IqDABFUAE0gwDwEfkFiZiJKRWKSVZndnuvvekxf3nu7bDzO7PX27+z78\n", "Prxgprunz9Fsnzn3f//n/I8xpgO8F7gO6AFvBx4E/gD4dv6y37LW/n7ZnZTDS1NHEDhCokIwpwtM\n", "kbI53ExmTnvmqktzWj2NqlmGEWGQgNM4E5F2W+ScuTcAj1hrf9YYcwXwVeB24A5r7Z0r6Z0sbX5m\n", "ThOfSPlScFlGzi//0lirNM1pNeTHVBzGxGEKqYI5EWm3RYK5DwEfzr8OgQHwfMAYY14HfAf4RWvt\n", "TrldlGUkaQphShiEdPNgLtEyS5HSufymCTAqzKBz5ipNc1oNDSaWWfpxpmBORNrrkvfMWWvPWWt3\n", "jDHHySbBfwX8L+BXrLU3Ad8FbltNN+WwkiQrgDK5zFIXmCLlc6PM3LgAii4yq0pzWj35asxxFBOH\n", "Ws4sIrJIZg5jzNOBu4G7rLX/1Rhzwlp7Nn/6o8C7LvLzp9DkuFZp6oO5kG6cZ+acgrk1Om2MmX7s\n", "dmvtqQ30RVbIBenosPBodAyIxlqVaU6rH38zMgoiIn92qjJz66Q5TaRiFimAcg3wSeAt1trP5A9/\n", "3BjzC9baLwGvBL580Hvkg/3U1PteD5y+9C7LIgZJkhVACSI6UQdQZm7NTlprH9h0J2QNgpTAZWNs\n", "vGdOY62qNKfVk892d/yeOaCfqprlGmlOE6mYRTJztwAngFuNMbfmj/0i8B+MMQPgIeDNJfdPluQz\n", "A2EQ0ouUmRNZHUfgpvbMaflXlWlOqyG/5zuKIuLRONOcJiLtdcnBnLX2ZuDmOU+9pLzuSNn6SXbH\n", "MgqiwjJLXWCKlC5IgexogtEyS+2ZqyzNafU0kZmLsszcIFFmTkTaS4eGN5zfGB4GId1OtgQsdekm\n", "uyTSSC5wM9UstWdOpFx+TMVRRJzvmdM4E5E2W6gAitSPX+YVBTG9OAvmtMxSZAXyQkMwzswNtGdO\n", "pFR+ZUknjOj4zJwy4CLSYgrmGm44LOyZi31mTheYImVyzhEEDqaCOZ3pKFKuJM0CuKwAigPGxxWI\n", "iLSRgrmG648ycxGdKL/AVDBXWcaYDvBe4DqgB7wd+BbwPiAFvgG81VrrNtVHmeWDNp+Zi0d75jTW\n", "RMrk96FGUTEzp3EmIu2lPXMNNygGc3GESwNl5qrtDcAj1tqXAT8J3AXcAdySPxYAr9tg/2QOf9Nk\n", "es9couVfIqXyN0g6UTw6bkfjTETaTMFcw40yc2FEFAXgQhwqgFJhHwJ8mfQQGADPs9bemz92D/Cq\n", "TXRM9tfPDy32mblOfgyIMgYi5fI3IzthPFptogy4iLSZllk2nJ/k4jCiE4XgQtJAwVxVWWvPARhj\n", "jpMFdr8GvLPwkh2ys7GkQnwBhiCYXGapPXMi5Rpl5uKYTjT5mIhIGymYa7jBcHzOXBSFkAakgSa+\n", "KjPGPB24G7jLWvtBY8yvF54+Djx2Ce9xCrhtNT2UaYO80FAwXQBFS5rX6bQxZvqx2621pzbQF1kR\n", "P6Y6UUx3FMxpmaWItJeCuYbzGYM4jIijAKdllpVmjLkG+CTwFmvtZ/KHv2KMucla+1ngNcCnL/Y+\n", "+QXsqan3vh44XWZ/JeOr6YVkV5fKzG3ESWvtA5vuhKxWkp+T2o1i+nkwp3EmIm2mYK7hBsl4mWUU\n", "huACUgVzVXYL2QsZMp4AAB59SURBVDLKW40xfu/czcC7jDFd4JvAhzfVOZnP740LggDI9vMADJWZ\n", "EymV3zPXjWK6+RWMxpmItJmCuYYbjgqgxIRhXgAl0JKUqrLW3kwWvE17+Zq7IgsYJJMFUJSZE1mN\n", "xCUQQBxFo2WWWs4sIm2mYK7hBoUyzgCBllmKlG4UzOVHEsT5eNNFpki50jyY68YdhlF280Q3TUSk\n", "zRTMNdzogNU8U5AVaFAwJ1Imv5zZ75nzJdN1kSlSrtTvmYtjhp0gf0zjTETa65KDOWNMB3gvcB3Q\n", "A94OfAt4H1l08A3grdZaV3435bCGiT+TJ1+P4kKcjiYQKdWoAEq+Zy5WNcvK05xWTwnjPXNJnGfm\n", "NM5EpMUWOTT8DcAj1tqXAT8J3AXcAdySPxYAryu/i7IMn5nzy74CQgjc6O6miCzPL2eeXmapcVZp\n", "mtNqaJyZ69CN8+XMKJgTkfZaJJj7EOCr64XAAHietfbe/LF7gFeV2DcpgT9MtVsM5tDyL5Ey+Qx4\n", "mB8aPlpmqYxBlWlOqyGXB269OKYXdQAtsxSRdrvkZZbW2nMAxpjjZJPgrwHvLLxkh6ykulTIKDMX\n", "+mBuvJenk0+EIrKc6QIo/mgCZeaqS3NaPfkx1evEJMN04jERkTZaqACKMebpwN3AXdbaDxpjfr3w\n", "9HHgsYv8/CngtkU7KYfnD1jtxNlFZkhIwjhjJyt32hgz/djt+aHe0hB+PEV5Zq6rjEEtaE6rH39O\n", "ajfuMoyHOBeQapnlOmlOE6mYRQqgXAN8EniLtfYz+cNfMcbcZK39LPAa4NMHvUc+2E9Nve/1wOlL\n", "77IswmfmulOZOf+4rNxJa+0Dm+6ErNaoamwwVc1SGYPK0pxWT44E5yAOQ6IohDQYBXiyFprTRCpm\n", "kczcLWRLTm41xvh9BjcD7zLGdIFvAh8uuX+ypDTPGMT5RvEo3zOnzJxIeQZTe+bGBVA0zipMc1oN\n", "paTgAoIgIA4DcCFpoHEmIu21yJ65m8kmumkvL603UrphfjHZ8wVQAh/MKTMnUpbxMsssI9fNlzUr\n", "Y1BdmtPqyZGCy+axKArBBTpuR0RabZFqllJDvppeZ5SZ88ssdSdTpCzJVDDXUWZOZCUcKYEP5nxm\n", "TnvmRKTFFMw1nK/y5StX+mp7A2XmREoz2jMX+qMJ8mBOmTmRUhUzc2EezDmNMxFpMQVzDeczBj1f\n", "zTIP5vYGCuZEyjI+Z26yAIoycyLlygK3oPCAgjkRaTcFcw3nl1l2R5m57J+8PxxsrE8iTeP3psZ5\n", "MBdHES4NdJEpUjIXjJdZAgQK5kSk5RTMNZzPDHT9njmfmUsUzImUZZj4ZZZ5Bny0l0cXmSLlSpm8\n", "dAlABVBEpMUUzDXc+IDVLDPngzll5kTKMyqAkgdzWWGGAKdz5kRKNZOZI1I1SxFptUXOmZMams3M\n", "Zf8/GGrPXJUZY14IvMNa+wpjzF8FPgZ8J3/6t6y1v7+53sm06aMJRsGcLjJFyhWkBMwus3TOEQTB\n", "AT8oItJMCuYazmfmep08Mxf6PXMK5qrKGPM24B8AO/lDzwfutNbeubleyUH83tRYyyxFVsxNBnOE\n", "EGSVm/3NFBGRNtEyy4ZLR4eGZ8FcHGbxez9RMFdh9wGvZ1yy7fnA3zbGfNYY87vGmGOb65rM4zNz\n", "cWGZpXMqgCJSJucchCkB46At1NmpItJyCuYazmcGRnt5tGeu8qy1dwPFaPuLwK9Ya28CvgvctpGO\n", "yb6SfG/cdGZOyyxFyuPHWTidmWN81qOISNtomWXDpUxmDOIwgkSHhtfMR6y1Z/OvPwq862I/YIw5\n", "hYK+tRkVQMkPCw+CfM8cyhas0WljzPRjt1trT22gL7ICPmArLrP0x+0omBORtlIw13DOpeDGE14c\n", "xlkwp2WWdfJxY8wvWGu/BLwS+PLFfiC/gD1VfMwYcz1wegX9a73RMsvCnh2df7V2J621D2y6E7I6\n", "/qZJOGeZZZJqrIlIOymYazgXpODCUZUvn6EbJMoY1IDL//+fAHcZYwbAQ8CbN9clmcdfZMZRsQBD\n", "CArmRErjC3eFE5k5v2dONyhFpJ0UzDWcIwU3LtfcyQugKDNXbXmG4cb8668CL9loh+RAvpplJxr/\n", "SQ10NIFIqfpJttc7CArBXB7Y7WlOE5GWWjiY0/lX9ZLt2RlPfH5Pj4I5kfL4qrGdsJCZcyEETudf\n", "VZjms3rZywt3FZdZjop6Dfob6ZOIyKYtFMzp/Kv6cTgCN574/MWmCqCIlGe8zLKQmSPEkVXgi3X+\n", "VeVoPqufQb7MsnienF9muacKzSLSUoseTaDzr2rGBSkBhWWW+cXmUJk5kdL4kumdqFiYIfvzmuj8\n", "q6rSfFYz/nzUsLDMMhoFc5rTRKSdFgrmdP5VDQXpVGYuD+Z0gSlSmvEyy87oMb+vR8FcNWk+q59x\n", "AZQ5yywVzIlISy1bAGWh86909tUmpBNn8vhlYArm1kZnX7XA6NDwQmYuyC84h05jrSZ0nmPF+QIo\n", "xWWWUahllmumOU2kYpYN5hY6/0pnX62fC1ICNw7murEP5nQXc0109lULjDJzc5ZZaqzVhs5zrDi/\n", "Zy4MlZnbIM1pIhVz2GBO51/VxVQwN15mqYlPpCyJS3FuMjMXapllXWg+qwm/Z24mM+egr8yciLTU\n", "wsGczr+qjzR1EDrCtLBnLl9mqQtMkfKkJOBConBcbMjv69FYqy7NZ/XiA7ZiMBcHMThVaBaR9lq0\n", "mqXUyCAZEgRuYs+cX2aZaB+PSGlSl4ALCIvBXJ6Z00WmSDkGSTZvzdszN9AySxFpKQVzDdYf+DLO\n", "44lvvGdOwZxIWVKXzmbmAn+RqbEmUgZ/YyQu7JmLR2enapyJSDspmGuwXX8mT+GfuRNnpdOVmRMp\n", "T0oKaUAUFs+/yr7u60xHkVIM/J65iQIo8cRzIiJto2CuwfqDbH9B8YDVXqhlliJlcy7FuXBqmWVe\n", "Mn2gwgwiZRgFc8F4u3+c30AZKpgTkZZSMNdg/tydqHDAarejAigiZcsKoAQTyyxVMl2kXMN8z9zk\n", "Mss8M6e9qSLSUgrmGmzenrk4inBpoMycSIlS0pkCKD6Y0/IvkXKM98wVM3M6bkdE2k3BXIPtJXlm\n", "rngXMwrAhVkmQURK4cgLoESFYC5f/qXMnEg5/FLKeQVQfNZORKRtFMw1mL+ILGbmoijMgjll5kRK\n", "41yemQuKwVy+zFKZOZFSjDJzE6tNlJkTkXZb+NBwqY/xZvHixBeCC7JS6lJZxpgXAu+w1r7CGPNM\n", "4H1ACnwDeKu11m2yfzIp9Zm5QjXLOIiyw4yVmRMpxWjPXFRcZpln5rQPXERaSpm5Buv7AigTB6wG\n", "uFTLLKvMGPM24N1AL3/oTuAWa+3LgAB43ab6JvM5UpwLJpdZ5hecysyJlGM4Z89cR5k5EWk5BXMN\n", "1p+3v0CZuTq4D3g9WeAG8Dxr7b351/cAr9pIr2Su1KUQuJllln4pmII5kXL47FsnGs9pHWXmRKTl\n", "FMw12Pw9cyqAUnXW2ruBYgQQFL7eAU6st0dykNExHy4kjgvLLCNfmEHBnEgZ/J65TlTMzHUAHbcj\n", "Iu2lPXMNNi7jPJ2ZC3HoIOMaKaZRjwOPXewHjDGngNtW1SEZGxaDuWg2MzdQlb11OW2MmX7sdmvt\n", "qQ30RVbAB2zdaM4ySxX1EpGWWjiYU2GG+vCFF4pHE0RhAGmQlVKXuviKMeYma+1ngdcAn77YD+QX\n", "sKeKjxljrgdOr6B/rTY6rDgN6USzmTmdM7c2J621Dyz6Q5rT6sPvi+vExWAuG2eJ0zgTkXZaaJml\n", "CjPUy2jiCwqVv6IQp2WWdeEvIn8ZuN0Y83myGzAf3lyXZNpoGaULsqM/cuPDjDXWqkpzWr2M98xp\n", "maWIiLdoZs4XZvi9/Pvpwgx/E/hoSX2TJQ3mlHHO9swFEDiccwRBsN+PywblGYYb86+/A7x8k/2R\n", "/Q3SbMlyQDTxeEeZuTrQnFYjidMySxGRaQtl5lSYoV4G+1azzP7ZdSdTZHk+WxBOB3OhSqZXnea0\n", "ehntmYs7o8d8YJdqPhORllq2AMpChRlUlGG9BkmWMSieyROFwSiYG6bDiaydrISKMjScv2kyHcz5\n", "sTVUAZQ60ZxWYT771puTmUt03M66aE4TqZhlr+QXKsygogzrNS7jPL6LGQQBwSiY00XmGhyqKIPU\n", "h8+8zWTmIu2ZqyHNaRXmi5z0Ot3RY504wrlgtARTVk5zmkjFHDaYKxZmeLcxpgt8ExVmqJR+npnr\n", "TmXfAsaZORFZjt8zVzzPEcZ75hTM1YLmtBpI8jmrV1hmma02CUgVzIlISy0czKkwQ32MqlmGnYnH\n", "x8GcJj+RZfllltF0MJeXT9fe1GrTnFYfiRvi0pA4Hm/3j8IQUlVoFpH2WqgAitTLYM5dTBhX3VNm\n", "TmR5+y6z9AVQdP6VSCkSEkjDrJBXzldo1jJLEWkrBXMNNpyzZw4g9Jk5TX4iS/M3TYqFhgB6HWXm\n", "RMqUuDnBXF7UK0UFUESknRTMNdgw38sznZnzGQRV2RNZ3r7LLENfZU/jTKQMKUOcC7NsXC6KQpwL\n", "tWdORFpLwVyD+YxBdzozF6gAikhZ/BEg0VRmrjvKzCljIFKG1GfmwqnMXBrglJkTkZZSMNdgvvJX\n", "dyYzpwIoImXZG+bnOU5l5vxNFGXmRMqRkoCLpjJzfpmlxpmItJOCuQbzhRd6cXficV9CXZk5keX5\n", "YG4mMxdn40x75kTKkc4rgBKGWTCnQ8NFpKUUzDWYzwhsTWfm8mBOGQOR5fXzYK4zUwAlz8wpYyCy\n", "NOccLkhwaUgnni6AomWWItJeCuYaLMkzc93OZDAXocOMRcoyWmY5nZmLsu9T7ZkTWdpoJYkL6XbG\n", "S5qjKMClIY4E59w+Py0i0lwK5hrMB3Pb08ssw2wi9IUbROTw+nk1y3mZOecgQcuZRZblC3qRhlk2\n", "LueXWRKgpZYi0koK5hoscdmSlDie/Gf2JdR9SXURObx+flNk+jzHThRBGo1uqojI4fmbjyExQVAM\n", "5rJllqDVJiLSTgrmGixxw5nN4jCuutcf6iJTZFkDv2cumszMxXEIaahgTqQE/uZjOFU11lezBBX1\n", "EpF2ii/+EqkrX/mrM52Zy5dZ7g37m+iWHJIx5v8AZ/Nvv2ut/blN9kcyo2WWU8FcFAa4NCKNdIEp\n", "sqx+mleNZTKY60QhLs3mOG0dEJE2UjDXYCkJzoXZnoKCOMj20F0YKJirC2PMFoC19hWb7otM2h3u\n", "AdALexOPd+IQ0ohUe+ZEljbMb5pEwdRNkygkcPkNykRzmoi0TynBnDIG1ZT6ZZZTmblOkO3t2R3s\n", "baJbcjh/GThijPkE2bi9xVr7xQ33SRhnuLc6k8FcFGXLLNNAF5h1ovmsmvze1OlgDiDKL2W02kRE\n", "2mjpYE4Zg+pKgwRchzgKJh7vhFkwd2GoYK5GzgH/3lr7HmPMs4B7jDHPttaqfNuG7SXZODrSnQzm\n", "4ijMllkqM1cbms+qywdz00eAAAQuxjHOkouItEkZmTllDCrIOUfKEJdEdKYLoORV93QXs1a+DdwH\n", "YK39jjHmDPBU4PvzXmyMOQXctrbetVg/GeAcbHUmjwCJwgDSCALHME2Iw2ifd5CSnDbGTD92u7X2\n", "1ALvofmsos4PdgGIg87Mc3HQYQD0tcxSRFqojGBOGYMKGqRDCBykEWE4mZnrhl1wuotZM28Cngu8\n", "1RhzLXAZ8NB+L84vYE8VHzPGXA+cXlkPW6qf9CGN6HXnZQx85dg+cXd73V1rm5PW2geWfA/NZxV1\n", "vp8Fc52wO/NcRBbM7eoGpYi0UBnB3CVnDJQtWB8fqAXp5Jk8AN2wA4kyc2tSRrYA4D3AfzbG3Jt/\n", "/yZdYFbDIB1kwVxn9qSXMK+810/6HEHBXA0oA15RO7sXAOhFs8FcnG8d8EueZaXKmtNEpCRlBHOX\n", "nDFQtmB9fDAXutl/4m7UzYI5LUlZhzKyBVhrh8DPLt8dKdsgHeDSiE48u4wySLO9PBprtaEMeEXt\n", "9H0w15t5Lg58ARQdTbAGpcxpIlKeMoI5ZQwqaDffXxC42f0FR7pb0Ic9LbMUWdog7UMS0+vMCeaC\n", "KAvmlAWvC81nFXV+L5vTevFsMOeXXmpOE5E2WjqYU8agmnwmYF5mbrvXxT0e6AJTpASJG0Laoztv\n", "maWLSRlX4pNq03xWXb4AynZnXjCXV2jWcTsi0kKzVx/SCKNllsxm5ra7MaSR9heILCl1KQlDXBrO\n", "XWbpz79SlT2R5ZzvZ/PV1pzMXDffR+eLpIiItImCuYbywVw0J/m61cuCuX6qbIHIMkYZt3T+Mkt/\n", "wLGq7IksZ3eYBWpHulszz3XzZZY6O1VE2kjBXEPtDnwwNz8z59KIgbIFIksZ7dFJQ3rd2WCuG2RZ\n", "hPODC+vslkjj+BsiRzqzVWF9hctdLbMUkRZSMNdQfgnlvANWe70IkpiBUzAnsgy/79QlEUe2ZrPg\n", "vSi78Hxi79xa+yXSNP7GydHebGZuK99Hd07LLEWkhRTMNZTfCD6v8td2N8YNOwzdgGEyXHfXRBrj\n", "nM+4JR22e3OKDcXZhefjFxTMiSzD36A8OmeZ5XZ+0+RcX+NMRNpHwVxDPbGbTWr+YrJoqxfhhlnG\n", "bkeTn8ihneufB8AlMVvd2WDuSOcIAGd3Nc5ElrGX7OGSKNvzPaUX93BpyLnB+Q30TERksxTMNdRj\n", "uzsAbOcXk0UnjvZgFMxp8hM5LH/x2KFHGAYzzx/tZuNvR8ssRZaym17ADTtzCw31uhEMO5xXMCci\n", "LaRgrqHO5sHc8e7RmeeuuGwLlygzJ7Isn5nrhrMZcIBjvTyY000TkaX00wsw7M4vNNTJVpucH6rQ\n", "kIi0j4K5hvKZgHnBXCcO2QrzwgwK5kQO7Vw/u3jsRfODuePd7YnXicji+skgO89xn8zcse0Obthh\n", "N7lAmqYb6KGIyOYomGuonf45XBJydGv+ReZl21mQd/bCE+vslkijnN3Nxs+ReHY5M8Cx7S1cEupo\n", "ApEl+BUk+wVzx490R1sHtG9ORNpGwVxD7Qx2cMPu3Ap7AD92xZUAfO+HP1pnt0Qa5ZGdRwG48sjl\n", "c5/f7sW4YZedgW6aiByWv2nCoMvR7dnjdo4f7eKG2VlzWm0iIm2jYK6BkjRhZ/AErr/FlZfNHk0A\n", "cPLqawB48NGH19k1kUb54bnHAHjy0QOCub1tzic7DNNknV0TaYwz57Objq6/xfGj3ZnnLzvSxQ16\n", "+WsfXWvfREQ2TcFcAz22+zgOh+tv8aTLtue+xjzlaQA8fO7MOrsm0iiP7p7FDWOuOnFs7vNHtzu4\n", "/jYOx490kSlyKGfOZzdNuhydu8zy8uM93F621PkHO4+stW8iIpumYK6BfrDzQwDc3jZPunz+nrln\n", "PvXJuGGHswNdYIocRpqm/Gj3DG7vCE+5cv6euasu38btZWPwkfNa0ixyGA+ezVaQ/NjlT577/JNO\n", "bNFLjwPwZ/n8JyLSFvM3VC3AGBMCvwk8F9gDft5ae/+y7yuH972z38++2D3O1VfMv8i8/HiPoH+E\n", "ve0nSNKEKJy92ynVoXFWPQ+fP0NKQnrhGH/uaSfmvubqK46MMgYPPfEwf/HqZ6+zi7IgjbNq+vbD\n", "fwrAc556/dzngyDguiufwgPA9x59aG39EhGpgjIycz8FdK21NwK/CtxRwnvKEuwPs2uPJ3WvoTtn\n", "SQpkk98RdxUEKfed+dN1dk8OR+OsYuwj2TgLd0/wtKuPz33Ndi/meHAVAP/3B99ZW9/k0DTOKmaY\n", "Jjy48yDp7jY3POOafV934w0ncf0e33r4fpxza+yhiMhmLZ2ZA14MfBzAWvtFY8wLDvMmf3b2MTiS\n", "7++a+juczvnD7PIX+f8f/Yxzk9+OHnYzbzz9rmk69fzUCxxp4evJN3Djnky8uXNT/Zz+73DTz82+\n", "z/TENP1d8fmd/nn+6HtfJd3b4i885Rlz2/Su7Z3kPu7ng1+5hzf+ldfTjbON5QEB+Rfjr2UhD589\n", "W/ZbljLOoDDWpj6/88x+Poufx9mfcrjZwVd4br9LrNSlxRfu26+JkTI9Lopjf07b44dnRtDCfU5c\n", "yn/72qcAeOblzyIK9x8nr37uj/OxM1/gC9/7Ci966ou49sSTCfL/ARpnSzqzU2ql0JWOM5j8TM+L\n", "OVKmzknzL3Izb0U6++ZT779/UONwc9sfNVd4cnYcTs27k13Yd2zu935F0/P9t878CQO3R/rYM3jO\n", "9Vfu+3Ov/onr+MA3n8xe90E+8vU/5AVPey5hkN2vDrJBNv5aFraCOU1ESlJGMHcZ8Hjh+8QYE1pr\n", "L/Xkzgjg1j94O90T8/d3yeLih2/gpa89xoMPPrjva244fi3fuD/ijx/9En/83S+tsXfN1z+7678s\n", "a/3qsuNs1BeNtfKkZ6/ib9x47YHj7KU3HONTH346jx/7Ov/2E/9ujb1rh5LHmsZZBbk04orHruXc\n", "4z/k3OP7v+7He8/hy2fu5/2f/z3ev77utcIK5jQRKUmw7HIEY8wdwB9Zaz+Uf///rLVP3+e1p4Db\n", "lmpQpP5ut9aeWuQHFhln+fOn0FgTWWisaZyJHMrCc5qIlKeMzNzngNcCHzLGvAj42n4vzAf7qeJj\n", "xpgesAs8E9jEQUyngZNqt9Ftb6LdCLgP2LLW7pXwfpc8zqCSY61N//abbrtt7ZY51jTO6td229rd\n", "VNtlz2kiUpIyMnMB4+pfAG+y1n57wfdw1tqNLGTfVNtta3eTbTeh3TLGWdl9UrvVbLtt7ZbZtsZZ\n", "/dpuW7ubbHuT/80isr+lM3PWWgf80xL6IiL70DgTWT2NMxERqRsdGi4iIiIiIlJDCuZERERERERq\n", "qCrB3O0tbLtt7W6y7ba1e5C2/S70eW9+u5tuex79G6jdJrZdtXEmIpRQAEVERERERETWryqZORER\n", "EREREVmAgjkREREREZEaUjAnIiIiIiJSQwrmREREREREakjBnIiIiIiISA3F62zMGBMCvwk8F9gD\n", "ft5ae/+c1/0OcMZa+y/X0a4x5q8BdwAB8H3gjdba/pra/mngFsAB77XW/qcy2s3f+4XAO6y1r5h6\n", "/LXAvwaGeZu/W1abl9D23wNuztv+OvAWa21pJVX3a7fwfKmfrYu1u8rP1gF92cg4u5S2V/X72OQ4\n", "y99/I2OtbePsoLbbNNY0ztoxzg5qu/B84+c0ETnYujNzPwV0rbU3Ar9K9gdhgjHmHwN/iWwyWHm7\n", "xpgA+B3gH1prXwp8Gji5jrZzdwKvBl4M/LIx5kQZjRpj3ga8G+hNPd4ptHkT8GZjzNVltHkJbW8D\n", "/wZ4ubX2JcAJ4O+sut3C86v4bB3037vqz9Z+NjXODmx7xb+PjYwz2NxYa9s4O6jtFo41jbPx440c\n", "Zwe1XXi+LXOaiBxg3cHci4GPA1hrvwi8oPikMeZG4CeA3ya767OOdp8NnAF+yRjzP4DLrbV2TW0D\n", "DIDLgW2y/+ay/ijfB7ye2d/jc4D7rLVnrbUD4H8CLyupzYu1vQv8dWvtbv59DFxYQ7ur/Gwd1O6q\n", "P1v72dQ4u1jbq/x9bGqcwebGWtvG2UFtt22saZyNNXWcHdR22+Y0ETnAuoO5y4DHC98n+bINjDFP\n", "BW4F/hnl/2Hat13gKuBG4DeAVwGvNMbMXc6wgrYhu7P5v4FvAB+z1hZfe2jW2rvJln7M68/ZwvdP\n", "kN1RLM1+bVtrnbX2EQBjzD8HjlprP7Xqdlf82Trod73qz9Z+NjXODmyb1f4+NjLOYHNjrW3j7KC2\n", "ad9Y0zib7FPjxtlBbbdwThORA6w7mHscOF5s31qb5l//DNkfiv8O/Avg7xtj3riGds+Q3dWz1toh\n", "2V3H6buNK2nbGPMMsj/G1wHXA9cYY36mxLbnOTvVn+PAoytuc8QYExpj3gm8Evi7a2p2lZ+tg6z6\n", "s7WfTY2zi7W9yt9H1cYZbHCstWycQfvGmsbZWNvGGbRvThORA6w7mPsc8LcAjDEvAr7mn7DW/oa1\n", "9gX5Ztt3AB+w1r5/1e0C3wWOGWP+fP79S8nuKpbloLa3gATYyyfEh8mWqKzSnwDPMsZcYYzpki1H\n", "+cKK2yz6bbJ1+D9dWJ6yUiv+bB1k1Z+t/WxqnB3YNqv9fVRtnMFmx1qbxhm0b6xpnI21apxBK+c0\n", "ETnAWqtZAh8BXm2M+Vz+/ZvyalDHrLXvnnptmWvtD2zXGPNzwAfyzb2fs9bes8a2/wvweWPMLtk6\n", "9feV2Dbkv8epNn8J+ARZMP8ea+1DJbc5t23gy8A/Au4F/tAYA/AfrbUfXWW7K/5sHdjuij9b+9nU\n", "OLto2yv8fWx6nMHmxlrbxtnctls21jTO2jPOZtpu4ZwmIgcInFvlfCsiIiIiIiKroEPDRURERERE\n", "akjBnIiIiIiISA0pmBMREREREakhBXMiIiIiIiI1pGBORERERESkhhTMiYiIiIiI1JCCORERERER\n", "kRpSMCciIiIiIlJD/x+bpzJ9H3YNgwAAAABJRU5ErkJggg==\n" ], "text/plain": [ "<matplotlib.figure.Figure at 0x11844c450>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x_grid = np.linspace(0.4, 1.6, 1000)\n", "with mpl.rc_context(rc={\"figure.figsize\": [15, 20]}):\n", " for i in range(len(samples)/2):\n", " subplot(5, 4, i+1)\n", " title(\"Iteration: {0}, eps: {1:>4.3f}\".format(i*2, eps_values[i*2]))\n", " \n", " kde = gaussian_kde(np.array(samples[i*2])[:, 0])\n", " plot(x_grid, kde(x_grid))\n", " plot(x_grid, p_theta_eta(x_grid, eps_values[i*2]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
maxentile/msm-learn
notebooks/Cython.ipynb
1
32045
{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "# following: http://nbviewer.ipython.org/url/jakevdp.github.com/downloads/notebooks/memview_bench.ipynb" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "%load_ext cythonmagic" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "import numpy.random as npr\n", "from numpy.linalg import det" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "X = npr.randn(1000,3)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 23 }, { "cell_type": "code", "collapsed": false, "input": [ "## 0. Python-only version\n", "\n", "def euclidean(x1,x2):\n", " return np.sqrt(sum((x1-x2)**2))\n", "\n", "def pairwise_v1(X,metric=euclidean):\n", " n,dim = X.shape\n", " D = np.zeros((n,n))\n", " \n", " for i in range(n):\n", " for j in range(n):\n", " D[i,j] = metric(X[i],X[j])\n", " return D" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 24 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit pairwise_v1(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1 loops, best of 3: 8.13 s per loop\n" ] } ], "prompt_number": 25 }, { "cell_type": "code", "collapsed": false, "input": [ "%%cython\n", "\n", "import numpy as np\n", "\n", "cimport numpy as np\n", "from libc.math cimport sqrt\n", "cimport cython\n", "\n", "# a function pointer to a metric\n", "ctypedef double (*metric_ptr)(np.ndarray,np.ndarray)\n", "\n", "@cython.boundscheck(False)\n", "@cython.wraparound(False)\n", "cdef double euclidean(np.ndarray[double,ndim=1,mode='c'] x1,\n", " np.ndarray[double,ndim=1,mode='c'] x2):\n", " cdef double tmp,d\n", " cdef np.intp_t i,N\n", " \n", " d = 0\n", " N = x1.shape[0]\n", " \n", " for i in range(N):\n", " tmp = x1[i] - x2[i]\n", " d+=tmp*tmp\n", " return sqrt(d)\n", "\n", "@cython.boundscheck(False)\n", "@cython.wraparound(False)\n", "def pairwise_v2(np.ndarray[double, ndim=2, mode='c'] X not None,\n", " metric = 'euclidean'):\n", " cdef metric_ptr dist_func\n", " if metric == 'euclidean':\n", " dist_func = &euclidean\n", " else:\n", " raise ValueError(\"unrecognized metric\")\n", "\n", " cdef np.intp_t i, j, n\n", " n = X.shape[0]\n", "\n", " cdef np.ndarray[double, ndim=2, mode='c'] D = np.empty((n,\n", " n))\n", " for i in range(n):\n", " for j in range(n):\n", " D[i, j] = dist_func(X[i], X[j])\n", "\n", " return D" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 28 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit pairwise_v1(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1 loops, best of 3: 8.15 s per loop\n" ] } ], "prompt_number": 29 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit pairwise_v2(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1 loops, best of 3: 2.26 s per loop\n" ] } ], "prompt_number": 30 }, { "cell_type": "code", "collapsed": false, "input": [ "%%cython\n", "import numpy as np\n", "\n", "cimport numpy as np\n", "from libc.math cimport sqrt\n", "cimport cython\n", "\n", "ctypedef double (*metric_ptr)(double[::1], double[::1])\n", "\n", "cdef double euclidean(double[::1] x1,\n", " double[::1] x2):\n", " cdef double tmp,d\n", " cdef np.intp_t i,N\n", " \n", " d = 0\n", " N = x1.shape[0]\n", " \n", " for i in range(N):\n", " tmp = x1[i] - x2[i]\n", " d+=tmp*tmp\n", " return sqrt(d)\n", "\n", "\n", "def pairwise_v3(double[:, ::1] X not None,\n", " metric = 'euclidean'):\n", " cdef metric_ptr dist_func\n", " if metric == 'euclidean':\n", " dist_func = &euclidean\n", " else:\n", " raise ValueError(\"unrecognized metric\")\n", "\n", " cdef np.intp_t i, j, n_samples\n", " n_samples = X.shape[0]\n", "\n", " cdef double[:, ::1] D = np.empty((n_samples, n_samples))\n", "\n", " for i in range(n_samples):\n", " for j in range(n_samples):\n", " D[i, j] = dist_func(X[i], X[j])\n", "\n", " return D" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 31 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit pairwise_v3(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "10 loops, best of 3: 44.7 ms per loop\n" ] } ], "prompt_number": 32 }, { "cell_type": "code", "collapsed": false, "input": [ "%%cython\n", "\n", "import numpy as np\n", "\n", "cimport numpy as np\n", "from libc.math cimport sqrt\n", "cimport cython\n", "\n", "# define a function pointer to a metric\n", "ctypedef double (*metric_ptr)(double*, double*, int)\n", "\n", "@cython.boundscheck(False)\n", "@cython.wraparound(False)\n", "cdef double euclidean_distance(double* x1,\n", " double* x2,\n", " int N):\n", " cdef double tmp, d\n", " cdef np.intp_t i\n", "\n", " d = 0\n", "\n", " for i in range(N):\n", " tmp = x1[i] - x2[i]\n", " d += tmp * tmp\n", "\n", " return sqrt(d)\n", "\n", "\n", "@cython.boundscheck(False)\n", "@cython.wraparound(False)\n", "def pairwise_v4(double[:, ::1] X not None,\n", " metric = 'euclidean'):\n", " cdef metric_ptr dist_func\n", " if metric == 'euclidean':\n", " dist_func = &euclidean_distance\n", " else:\n", " raise ValueError(\"unrecognized metric\")\n", "\n", " cdef np.intp_t i, j, n_samples, n_dim\n", " n_samples = X.shape[0]\n", " n_dim = X.shape[1]\n", "\n", " cdef double[:, ::1] D = np.empty((n_samples, n_samples))\n", "\n", " cdef double* Dptr = &D[0, 0]\n", " cdef double* Xptr = &X[0, 0]\n", "\n", " for i in range(n_samples):\n", " for j in range(n_samples):\n", " Dptr[i * n_samples + j] = dist_func(Xptr + i * n_dim,\n", " Xptr + j * n_dim,\n", " n_dim)\n", " return D" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 33 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit pairwise_v4(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "100 loops, best of 3: 4.68 ms per loop\n" ] } ], "prompt_number": 34 }, { "cell_type": "code", "collapsed": false, "input": [ "from scipy.spatial.distance import pdist" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 26 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit pdist(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "100 loops, best of 3: 2.5 ms per loop\n" ] } ], "prompt_number": 27 }, { "cell_type": "code", "collapsed": false, "input": [ "X = npr.randn(500,100,3)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 35 }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy.linalg import det\n", "BC = lambda X,Y: det(X.T.dot(Y))/ np.sqrt(det(X.T.dot(X)) * det(Y.T.dot(Y)))" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 36 }, { "cell_type": "code", "collapsed": false, "input": [ "BC(X[0],X[10])" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 39, "text": [ "0.00097428727055857804" ] } ], "prompt_number": 39 }, { "cell_type": "code", "collapsed": false, "input": [ "def pairwise_bc_v1(X):\n", " bc = np.zeros((len(X),len(X)))\n", " for i in range(len(X)):\n", " for j in range(len(X)):\n", " bc[i,j] = BC(X[i],X[j])\n", " return bc" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 40 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit pairwise_bc_v1(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1 loops, best of 3: 13 s per loop\n" ] } ], "prompt_number": 42 }, { "cell_type": "code", "collapsed": false, "input": [ "%%cython\n", "import numpy as np\n", "\n", "cimport numpy as np\n", "from libc.math cimport sqrt\n", "cimport cython\n", "\n", "ctypedef double (*metric_ptr)(double[::2], double[::2])\n", "\n", "cdef double euclidean(double[::2] x1,\n", " double[::2] x2):\n", " cdef double tmp,d\n", " cdef np.intp_t i,N\n", " \n", " d = 0\n", " N = x1.shape[0]\n", " \n", " for i in range(N):\n", " tmp = x1[i] - x2[i]\n", " d+=tmp*tmp\n", " return sqrt(d)\n", "\n", "\n", "def pairwise_v3(double[:, ::1] X not None,\n", " metric = 'euclidean'):\n", " cdef metric_ptr dist_func\n", " if metric == 'euclidean':\n", " dist_func = &euclidean\n", " else:\n", " raise ValueError(\"unrecognized metric\")\n", "\n", " cdef np.intp_t i, j, n_samples\n", " n_samples = X.shape[0]\n", "\n", " cdef double[:, ::1] D = np.empty((n_samples, n_samples))\n", "\n", " for i in range(n_samples):\n", " for j in range(n_samples):\n", " D[i, j] = dist_func(X[i], X[j])\n", "\n", " return D" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "def myloop(X):\n", " s=0\n", " for i in range(X.shape[0]):\n", " for j in range(X.shape[1]):\n", " for k in range(X.shape[2]):\n", " s+=X[i,j,k]\n", " return s" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 50 }, { "cell_type": "code", "collapsed": false, "input": [ "%%cython\n", "import numpy as np\n", "\n", "cimport numpy as np\n", "from libc.math cimport sqrt\n", "cimport cython\n", "\n", "def myloop_c(np.ndarray[np.double_t,ndim=3] X):\n", " cdef int i,j,k\n", " cdef double s\n", " s=0\n", " for i in range(X.shape[0]):\n", " for j in range(X.shape[1]):\n", " for k in range(X.shape[2]):\n", " s+=X[i,j,k]\n", " return s" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 53 }, { "cell_type": "code", "collapsed": false, "input": [ "X.shape" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 48, "text": [ "(500, 100, 3)" ] } ], "prompt_number": 48 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit myloop(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "10 loops, best of 3: 110 ms per loop\n" ] } ], "prompt_number": 52 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit myloop_c(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1000 loops, best of 3: 239 \u00b5s per loop\n" ] } ], "prompt_number": 54 }, { "cell_type": "code", "collapsed": false, "input": [ "%%cython\n", "import numpy as np\n", "from numpy.linalg import det\n", "\n", "cimport numpy as np\n", "from libc.math cimport sqrt\n", "cimport cython\n", "\n", "def mymat_c(np.ndarray[np.double_t,ndim=3] X):\n", " cdef int i,j,k\n", " cdef double s\n", " s = 0\n", " \n", " \n", " \n", " return s" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 63 }, { "cell_type": "code", "collapsed": false, "input": [ "mymat_c(X)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 64, "text": [ "0.0" ] } ], "prompt_number": 64 }, { "cell_type": "code", "collapsed": false, "input": [ "X.shape" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 62, "text": [ "(500, 100, 3)" ] } ], "prompt_number": 62 }, { "cell_type": "code", "collapsed": false, "input": [ "%%cython\n", "import numpy as np\n", "from numpy.linalg import det\n", "\n", "cimport numpy as np\n", "from libc.math cimport sqrt\n", "cimport cython\n", "\n", "def mymat_c(np.ndarray[np.double_t,ndim=2] X):\n", " cdef int i,j,k\n", " cdef double s\n", " s = 0\n", " \n", " s += det(X)\n", " \n", " return s" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 66 }, { "cell_type": "code", "collapsed": false, "input": [ "X[0].shape" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 69, "text": [ "(100, 3)" ] } ], "prompt_number": 69 }, { "cell_type": "code", "collapsed": false, "input": [ "sq = npr.randn(100,100)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 76 }, { "cell_type": "code", "collapsed": false, "input": [ "mymat_c(sq)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 77, "text": [ "1.5574946108189126e+76" ] } ], "prompt_number": 77 }, { "cell_type": "code", "collapsed": false, "input": [ "%%cython\n", "import numpy as np\n", "from numpy.linalg import det\n", "\n", "cimport numpy as np\n", "from libc.math cimport sqrt\n", "cimport cython\n", "\n", "def binet_cauchy_c(np.ndarray[np.double_t,ndim=2] X,\n", " np.ndarray[np.double_t,ndim=2] Y):\n", " \n", " return det(X.T.dot(Y))/ sqrt(det(X.T.dot(X)) * det(Y.T.dot(Y)))" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 86 }, { "cell_type": "code", "collapsed": false, "input": [ "binet_cauchy_p = lambda X,Y: det(X.T.dot(Y))/ np.sqrt(det(X.T.dot(X)) * det(Y.T.dot(Y)))" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 73 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit binet_cauchy_p(sq,sq)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1000 loops, best of 3: 662 \u00b5s per loop\n" ] } ], "prompt_number": 78 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit binet_cauchy_c(sq,sq)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1000 loops, best of 3: 616 \u00b5s per loop\n" ] } ], "prompt_number": 79 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "%%cython\n", "import numpy as np\n", "from numpy.linalg import det\n", "\n", "cimport numpy as np\n", "from libc.math cimport sqrt\n", "cimport cython\n", "\n", "cdef double binet_cauchy_c(np.ndarray[np.double_t,ndim=2] X,\n", " np.ndarray[np.double_t,ndim=2] Y):\n", " \n", " return det(X.T.dot(Y))/ sqrt(det(X.T.dot(X)) * det(Y.T.dot(Y)))\n", "\n", "def pairwise_bc_c(np.ndarray[np.double_t,ndim=3] X):\n", " n_samples = X.shape[0]\n", " cdef double[:, ::1] D = np.empty((n_samples, n_samples))\n", " cdef int i,j\n", " for i in xrange(n_samples):\n", " for j in xrange(n_samples):\n", " D[i,j] = binet_cauchy_c(X[i,:,:],X[j,:,:])\n", " return D\n", "\n", "# pointers\n", "def pairwise_bc_pointers(double[:,:,::1] X):\n", " cdef int n_samples,mat_size\n", " n_samples = X.shape[0]\n", " mat_size = X.shape[1]*X.shape[2]\n", " cdef double[:, ::1] D = np.empty((n_samples, n_samples))\n", " cdef int i,j\n", " cdef double* Dptr = &D[0, 0]\n", " cdef double* Xptr = &X[0, 0, 0]\n", " for i in xrange(n_samples):\n", " for j in xrange(n_samples):\n", " #D[i,j] = binet_cauchy_c(X[i,:,:],X[j,:,:])\n", " Dptr[i*n_samples+j] = binet_cauchy_c(Xptr+i*mat_size,\n", " Xptr+j*mat_size)\n", " return D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stderr", "text": [ "\n", "Error compiling Cython file:\n", "------------------------------------------------------------\n", "...\n", " cdef double* Dptr = &D[0, 0]\n", " cdef double* Xptr = &X[0, 0, 0]\n", " for i in xrange(n_samples):\n", " for j in xrange(n_samples):\n", " #D[i,j] = binet_cauchy_c(X[i,:,:],X[j,:,:])\n", " Dptr[i*n_samples+j] = pairwise_bc(Xptr+i*mat_size,\n", " ^\n", "------------------------------------------------------------\n", "\n", "/Users/joshuafass/.ipython/cython/_cython_magic_57aa37c15d80b7bc1ad7aebcebadc62b.pyx:34:45: undeclared name not builtin: pairwise_bc\n", "\n", "Error compiling Cython file:\n", "------------------------------------------------------------\n", "...\n", " cdef double* Dptr = &D[0, 0]\n", " cdef double* Xptr = &X[0, 0, 0]\n", " for i in xrange(n_samples):\n", " for j in xrange(n_samples):\n", " #D[i,j] = binet_cauchy_c(X[i,:,:],X[j,:,:])\n", " Dptr[i*n_samples+j] = pairwise_bc(Xptr+i*mat_size,\n", " ^\n", "------------------------------------------------------------\n", "\n", "/Users/joshuafass/.ipython/cython/_cython_magic_57aa37c15d80b7bc1ad7aebcebadc62b.pyx:34:50: Cannot convert 'double *' to Python object\n", "\n", "Error compiling Cython file:\n", "------------------------------------------------------------\n", "...\n", " cdef double* Xptr = &X[0, 0, 0]\n", " for i in xrange(n_samples):\n", " for j in xrange(n_samples):\n", " #D[i,j] = binet_cauchy_c(X[i,:,:],X[j,:,:])\n", " Dptr[i*n_samples+j] = pairwise_bc(Xptr+i*mat_size,\n", " Xptr+j*mat_size)\n", " ^\n", "------------------------------------------------------------\n", "\n", "/Users/joshuafass/.ipython/cython/_cython_magic_57aa37c15d80b7bc1ad7aebcebadc62b.pyx:35:50: Cannot convert 'double *' to Python object\n" ] } ], "prompt_number": 89 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit binet_cauchy_c(X[0],X[-1])" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "10000 loops, best of 3: 50.6 \u00b5s per loop\n" ] } ], "prompt_number": 87 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit pairwise_bc(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1 loops, best of 3: 13.9 s per loop\n" ] } ], "prompt_number": 83 }, { "cell_type": "code", "collapsed": false, "input": [ "def pairwise_bc_p(X):\n", " n_samples = X.shape[0]\n", " D = np.empty((n_samples, n_samples))\n", " for i in xrange(n_samples):\n", " for j in xrange(n_samples):\n", " D[i,j] = binet_cauchy_c(X[i,:,:],X[j,:,:])\n", " return D" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 84 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit pairwise_bc_p(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1 loops, best of 3: 14.2 s per loop\n" ] } ], "prompt_number": 85 }, { "cell_type": "code", "collapsed": false, "input": [ "X.shape" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 82, "text": [ "(500, 100, 3)" ] } ], "prompt_number": 82 }, { "cell_type": "code", "collapsed": false, "input": [ "%%cython\n", "import numpy as np\n", "from numpy.linalg import det\n", "\n", "cimport numpy as np\n", "from libc.math cimport sqrt\n", "cimport cython\n", "\n", "@cython.boundscheck(False)\n", "@cython.wraparound(False)\n", "cdef double distance(double[:,::1] X,\n", " np.intp_t i1,\n", " np.intp_t i2):\n", " cdef double tmp,d\n", " cdef np.intp_t j\n", " d = 0\n", " \n", " for j in range(X.shape[1]):\n", " tmp = X[i1,j] - X[i2,j]\n", " d+= tmp*tmp\n", " return sqrt(d)\n", "@cython.boundscheck(False)\n", "@cython.wraparound(False)\n", "def pairwise_no_slice(double[:,::1] X not None):\n", " cdef np.intp_t i,j,n,dim\n", " n=X.shape[0]\n", " dim = X.shape[1]\n", " cdef double[:,::1] D = np.empty((n,n))\n", " for i in range(n):\n", " for j in range(n):\n", " D[i,j] = distance(X,i,j)\n", " return D" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 105 }, { "cell_type": "code", "collapsed": false, "input": [ "X = npr.randn(1000,3)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 106 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit pairwise_no_slice(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "100 loops, best of 3: 4.83 ms per loop\n" ] } ], "prompt_number": 107 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit pdist(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "100 loops, best of 3: 3.25 ms per loop\n" ] } ], "prompt_number": 98 }, { "cell_type": "code", "collapsed": false, "input": [ "%%cython\n", "\n", "import numpy as np\n", "\n", "cimport numpy as np\n", "from libc.math cimport sqrt\n", "cimport cython\n", "\n", "# define a function pointer to a metric\n", "ctypedef double (*metric_ptr)(double[:, ::1], np.intp_t, np.intp_t)\n", "\n", "@cython.boundscheck(False)\n", "@cython.wraparound(False)\n", "cdef double euclidean_distance(double[:, ::1] X,\n", " np.intp_t i1, np.intp_t i2):\n", " cdef double tmp, d\n", " cdef np.intp_t j\n", "\n", " d = 0\n", "\n", " for j in range(X.shape[1]):\n", " tmp = X[i1, j] - X[i2, j]\n", " d += tmp * tmp\n", "\n", " return sqrt(d)\n", "\n", "\n", "@cython.boundscheck(False)\n", "@cython.wraparound(False)\n", "def pairwise_v5(double[:, ::1] X not None):\n", " cdef np.intp_t i, j, n_samples, n_dim\n", " n_samples = X.shape[0]\n", " n_dim = X.shape[1]\n", "\n", " cdef double[:, ::1] D = np.empty((n_samples, n_samples))\n", "\n", " for i in range(n_samples):\n", " for j in range(n_samples):\n", " D[i, j] = euclidean_distance(X, i, j)\n", "\n", " return D" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 103 }, { "cell_type": "code", "collapsed": false, "input": [ "%timeit pairwise_v5(X)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "100 loops, best of 3: 4.77 ms per loop\n" ] } ], "prompt_number": 104 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "%%cython\n", "import numpy as np\n", "from numpy.linalg import det\n", "\n", "cimport numpy as np\n", "from libc.math cimport sqrt\n", "cimport cython\n", "\n", "cdef double bc(double[:,:,:] X,\n", " np.intp_t i1,\n", " np.intp_t i2):\n", " return sum(X[i1])\n", " #return det(X[i1].T.dot(X[i2]))/ sqrt(det(X[i1].T.dot(X[i1])) * det(X[i2].T.dot(X[i2])))\n", "\n", "def pairwise_bc_no_slice(double[:,:,:] X not None):\n", " cdef np.intp_t i,j,n\n", " n=X.shape[0]\n", " cdef np.ndarray D = np.zeros((n,n),dtype=np.double)\n", " for i in range(n):\n", " for j in range(n):\n", " D[i,j] = bc(X,i,j)\n", " return D" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "X = npr.randn(500,10,3)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 20, "text": [ "<MemoryView of 'array' at 0x10d169300>" ] } ], "prompt_number": 20 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
texib/pixnet_hackathon_2015
doc2vec-IMDB.ipynb
1
50042
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# gensim doc2vec & IMDB sentiment dataset" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "TODO: section on introduction & motivation\n", "\n", "TODO: prerequisites + dependencies (statsmodels, patsy, ?)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load corpus" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Fetch and prep exactly as in Mikolov's go.sh shell script. (Note this cell tests for existence of required files, so steps won't repeat once the final summary file (`aclImdb/alldata-id.txt`) is available alongside this notebook.)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "rm: temp: No such file or directory\n" ] } ], "source": [ "%%bash\n", "# adapted from Mikolov's example go.sh script: \n", "if [ ! -f \"aclImdb/alldata-id.txt\" ]\n", "then\n", " if [ ! -d \"aclImdb\" ] \n", " then\n", " if [ ! -f \"aclImdb_v1.tar.gz\" ]\n", " then\n", " wget --quiet http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz\n", " fi\n", " tar xf aclImdb_v1.tar.gz\n", " fi\n", " \n", " #this function will convert text to lowercase and will disconnect punctuation and special symbols from words\n", " function normalize_text {\n", " awk '{print tolower($0);}' < $1 | sed -e 's/\\./ \\. /g' -e 's/<br \\/>/ /g' -e 's/\"/ \" /g' \\\n", " -e 's/,/ , /g' -e 's/(/ ( /g' -e 's/)/ ) /g' -e 's/\\!/ \\! /g' -e 's/\\?/ \\? /g' \\\n", " -e 's/\\;/ \\; /g' -e 's/\\:/ \\: /g' > $1-norm\n", " }\n", "\n", " export LC_ALL=C\n", " for j in train/pos train/neg test/pos test/neg train/unsup; do\n", " rm temp\n", " for i in `ls aclImdb/$j`; do cat aclImdb/$j/$i >> temp; awk 'BEGIN{print;}' >> temp; done\n", " normalize_text temp\n", " mv temp-norm aclImdb/$j/norm.txt\n", " done\n", " mv aclImdb/train/pos/norm.txt aclImdb/train-pos.txt\n", " mv aclImdb/train/neg/norm.txt aclImdb/train-neg.txt\n", " mv aclImdb/test/pos/norm.txt aclImdb/test-pos.txt\n", " mv aclImdb/test/neg/norm.txt aclImdb/test-neg.txt\n", " mv aclImdb/train/unsup/norm.txt aclImdb/train-unsup.txt\n", "\n", " cat aclImdb/train-pos.txt aclImdb/train-neg.txt aclImdb/test-pos.txt aclImdb/test-neg.txt aclImdb/train-unsup.txt > aclImdb/alldata.txt\n", " awk 'BEGIN{a=0;}{print \"_*\" a \" \" $0; a++;}' < aclImdb/alldata.txt > aclImdb/alldata-id.txt\n", "fi" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import os.path\n", "assert os.path.isfile(\"aclImdb/alldata-id.txt\"), \"alldata-id.txt unavailable\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data is small enough to be read into memory. " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[4]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[line_no//25000]" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "201306 docs: 70000 train-sentiment, 70000 test-sentiment\n" ] } ], "source": [ "import gensim\n", "# from gensim.models.doc2vec import \n", "from collections import namedtuple\n", "\n", "SentimentDocument = namedtuple('SentimentDocument', 'words tags split sentiment')\n", "\n", "alldocs = [] # will hold all docs in original order\n", "with open('./data/new_parsed_no_spam.txt') as alldata:\n", " for line_no, line in enumerate(alldata):\n", " tokens = line.split()\n", " words = tokens[1:]\n", " tags = [line_no] # `tags = [tokens[0]]` would also work at extra memory cost\n", " split = ['train','test','extra','extra'][line_no//70000] # 25k train, 25k test, 25k extra\n", " sentiment = [1.0, 0.0, 1.0, 0.0, None, None, None, None][line_no//70000] # [12.5K pos, 12.5K neg]*2 then unknown\n", " alldocs.append(SentimentDocument(words, tags, split, sentiment))\n", "\n", "train_docs = [doc for doc in alldocs if doc.split == 'train']\n", "test_docs = [doc for doc in alldocs if doc.split == 'test']\n", "doc_list = alldocs[:] # for reshuffling per pass\n", "\n", "print('%d docs: %d train-sentiment, %d test-sentiment' % (len(doc_list), len(train_docs), len(test_docs)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Set-up Doc2Vec Training & Evaluation Models" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Approximating experiment of Le & Mikolov [\"Distributed Representations of Sentences and Documents\"](http://cs.stanford.edu/~quocle/paragraph_vector.pdf), also with guidance from Mikolov's [example go.sh](https://groups.google.com/d/msg/word2vec-toolkit/Q49FIrNOQRo/J6KG8mUj45sJ):\n", "\n", "`./word2vec -train ../alldata-id.txt -output vectors.txt -cbow 0 -size 100 -window 10 -negative 5 -hs 0 -sample 1e-4 -threads 40 -binary 0 -iter 20 -min-count 1 -sentence-vectors 1`\n", "\n", "Parameter choices below vary:\n", "\n", "* 100-dimensional vectors, as the 400d vectors of the paper don't seem to offer much benefit on this task\n", "* similarly, frequent word subsampling seems to decrease sentiment-prediction accuracy, so it's left out\n", "* `cbow=0` means skip-gram which is equivalent to the paper's 'PV-DBOW' mode, matched in gensim with `dm=0`\n", "* added to that DBOW model are two DM models, one which averages context vectors (`dm_mean`) and one which concatenates them (`dm_concat`, resulting in a much larger, slower, more data-hungry model)\n", "* a `min_count=2` saves quite a bit of model memory, discarding only words that appear in a single doc (and are thus no more expressive than the unique-to-each doc vectors themselves)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Doc2Vec(dm/c,d100,n5,w5,mc2,t2)\n", "Doc2Vec(dbow,d100,n5,mc2,t2)\n", "Doc2Vec(dm/m,d100,n5,w10,mc2,t2)\n" ] } ], "source": [ "from gensim.models import Doc2Vec\n", "import gensim.models.doc2vec\n", "from collections import OrderedDict\n", "import multiprocessing\n", "\n", "cores = multiprocessing.cpu_count()\n", "assert gensim.models.doc2vec.FAST_VERSION > -1, \"this will be painfully slow otherwise\"\n", "\n", "simple_models = [\n", " # PV-DM w/concatenation - window=5 (both sides) approximates paper's 10-word total window size\n", " Doc2Vec(dm=1, dm_concat=1, size=100, window=5, negative=5, hs=0, min_count=2, workers=cores),\n", " # PV-DBOW \n", " Doc2Vec(dm=0, size=100, negative=5, hs=0, min_count=2, workers=cores),\n", " # PV-DM w/average\n", " Doc2Vec(dm=1, dm_mean=1, size=100, window=10, negative=5, hs=0, min_count=2, workers=cores),\n", "]\n", "\n", "# speed setup by sharing results of 1st model's vocabulary scan\n", "simple_models[0].build_vocab(alldocs) # PV-DM/concat requires one special NULL word so it serves as template\n", "print(simple_models[0])\n", "for model in simple_models[1:]:\n", " model.reset_from(simple_models[0])\n", " print(model)\n", "\n", "models_by_name = OrderedDict((str(model), model) for model in simple_models)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Following the paper, we also evaluate models in pairs. These wrappers return the concatenation of the vectors from each model. (Only the singular models are trained.)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from gensim.test.test_doc2vec import ConcatenatedDoc2Vec\n", "models_by_name['dbow+dmm'] = ConcatenatedDoc2Vec([simple_models[1], simple_models[2]])\n", "models_by_name['dbow+dmc'] = ConcatenatedDoc2Vec([simple_models[1], simple_models[0]])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Predictive Evaluation Methods" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Helper methods for evaluating error rate." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import statsmodels.api as sm\n", "from random import sample\n", "\n", "# for timing\n", "from contextlib import contextmanager\n", "from timeit import default_timer\n", "import time \n", "\n", "@contextmanager\n", "def elapsed_timer():\n", " start = default_timer()\n", " elapser = lambda: default_timer() - start\n", " yield lambda: elapser()\n", " end = default_timer()\n", " elapser = lambda: end-start\n", " \n", "def logistic_predictor_from_data(train_targets, train_regressors):\n", " logit = sm.Logit(train_targets, train_regressors)\n", " predictor = logit.fit(disp=0)\n", " #print(predictor.summary())\n", " return predictor\n", "\n", "def error_rate_for_model(test_model, train_set, test_set, infer=False, infer_steps=3, infer_alpha=0.1, infer_subsample=0.1):\n", " \"\"\"Report error rate on test_doc sentiments, using supplied model and train_docs\"\"\"\n", "\n", " train_targets, train_regressors = zip(*[(doc.sentiment, test_model.docvecs[doc.tags[0]]) for doc in train_set])\n", " train_regressors = sm.add_constant(train_regressors)\n", " predictor = logistic_predictor_from_data(train_targets, train_regressors)\n", "\n", " test_data = test_set\n", " if infer:\n", " if infer_subsample < 1.0:\n", " test_data = sample(test_data, int(infer_subsample * len(test_data)))\n", " test_regressors = [test_model.infer_vector(doc.words, steps=infer_steps, alpha=infer_alpha) for doc in test_data]\n", " else:\n", " test_regressors = [test_model.docvecs[doc.tags[0]] for doc in test_docs]\n", " test_regressors = sm.add_constant(test_regressors)\n", " \n", " # predict & evaluate\n", " test_predictions = predictor.predict(test_regressors)\n", " corrects = sum(np.rint(test_predictions) == [doc.sentiment for doc in test_data])\n", " errors = len(test_predictions) - corrects\n", " error_rate = float(errors) / len(test_predictions)\n", " return (error_rate, errors, len(test_predictions), predictor)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Bulk Training" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using explicit multiple-pass, alpha-reduction approach as sketched in [gensim doc2vec blog post](http://radimrehurek.com/2014/12/doc2vec-tutorial/) – with added shuffling of corpus on each pass.\n", "\n", "Note that vector training is occurring on *all* documents of the dataset, which includes all TRAIN/TEST/DEV docs.\n", "\n", "Evaluation of each model's sentiment-predictive power is repeated after each pass, as an error rate (lower is better), to see the rates-of-relative-improvement. The base numbers reuse the TRAIN and TEST vectors stored in the models for the logistic regression, while the _inferred_ results use newly-inferred TEST vectors. \n", "\n", "(On a 4-core 2.6Ghz Intel Core i7, these 20 passes training and evaluating 3 main models takes about an hour.)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from collections import defaultdict\n", "best_error = defaultdict(lambda :1.0) # to selectively-print only best errors achieved" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "START 2015-07-25 01:21:54.710897\n" ] }, { "ename": "PerfectSeparationError", "evalue": "Perfect separation detected, results not available", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mPerfectSeparationError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-6-ae19afedce59>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 21\u001b[0m \u001b[0meval_duration\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m''\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 22\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0melapsed_timer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0meval_elapsed\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 23\u001b[1;33m \u001b[0merr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0merr_count\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtest_count\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpredictor\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0merror_rate_for_model\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrain_model\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrain_docs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtest_docs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 24\u001b[0m \u001b[0meval_duration\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m'%.1f'\u001b[0m \u001b[1;33m%\u001b[0m \u001b[0meval_elapsed\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 25\u001b[0m \u001b[0mbest_indicator\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m' '\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m<ipython-input-4-5df3addd049e>\u001b[0m in \u001b[0;36merror_rate_for_model\u001b[1;34m(test_model, train_set, test_set, infer, infer_steps, infer_alpha, infer_subsample)\u001b[0m\n\u001b[0;32m 27\u001b[0m \u001b[0mtrain_targets\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrain_regressors\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mzip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdoc\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msentiment\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtest_model\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdocvecs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mdoc\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtags\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mdoc\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mtrain_set\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 28\u001b[0m \u001b[0mtrain_regressors\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msm\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0madd_constant\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrain_regressors\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 29\u001b[1;33m \u001b[0mpredictor\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlogistic_predictor_from_data\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrain_targets\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrain_regressors\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 30\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 31\u001b[0m \u001b[0mtest_data\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtest_set\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m<ipython-input-4-5df3addd049e>\u001b[0m in \u001b[0;36mlogistic_predictor_from_data\u001b[1;34m(train_targets, train_regressors)\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mlogistic_predictor_from_data\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrain_targets\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrain_regressors\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 19\u001b[0m \u001b[0mlogit\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msm\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mLogit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrain_targets\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrain_regressors\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 20\u001b[1;33m \u001b[0mpredictor\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlogit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdisp\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 21\u001b[0m \u001b[1;31m#print(predictor.summary())\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 22\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mpredictor\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/statsmodels-0.6.1-py2.7-linux-x86_64.egg/statsmodels/discrete/discrete_model.pyc\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, start_params, method, maxiter, full_output, disp, callback, **kwargs)\u001b[0m\n\u001b[0;32m 1374\u001b[0m bnryfit = super(Logit, self).fit(start_params=start_params,\n\u001b[0;32m 1375\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmaxiter\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmaxiter\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfull_output\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfull_output\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1376\u001b[1;33m disp=disp, callback=callback, **kwargs)\n\u001b[0m\u001b[0;32m 1377\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1378\u001b[0m \u001b[0mdiscretefit\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mLogitResults\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbnryfit\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/statsmodels-0.6.1-py2.7-linux-x86_64.egg/statsmodels/discrete/discrete_model.pyc\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, start_params, method, maxiter, full_output, disp, callback, **kwargs)\u001b[0m\n\u001b[0;32m 201\u001b[0m mlefit = super(DiscreteModel, self).fit(start_params=start_params,\n\u001b[0;32m 202\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmaxiter\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmaxiter\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfull_output\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfull_output\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 203\u001b[1;33m disp=disp, callback=callback, **kwargs)\n\u001b[0m\u001b[0;32m 204\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 205\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mmlefit\u001b[0m \u001b[1;31m# up to subclasses to wrap results\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/statsmodels-0.6.1-py2.7-linux-x86_64.egg/statsmodels/base/model.pyc\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, start_params, method, maxiter, full_output, disp, fargs, callback, retall, skip_hessian, **kwargs)\u001b[0m\n\u001b[0;32m 423\u001b[0m \u001b[0mcallback\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcallback\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 424\u001b[0m \u001b[0mretall\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mretall\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 425\u001b[1;33m full_output=full_output)\n\u001b[0m\u001b[0;32m 426\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 427\u001b[0m \u001b[1;31m#NOTE: this is for fit_regularized and should be generalized\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/statsmodels-0.6.1-py2.7-linux-x86_64.egg/statsmodels/base/optimizer.pyc\u001b[0m in \u001b[0;36m_fit\u001b[1;34m(self, objective, gradient, start_params, fargs, kwargs, hessian, method, maxiter, full_output, disp, callback, retall)\u001b[0m\n\u001b[0;32m 182\u001b[0m \u001b[0mdisp\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdisp\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmaxiter\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmaxiter\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcallback\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcallback\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 183\u001b[0m \u001b[0mretall\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mretall\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfull_output\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfull_output\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 184\u001b[1;33m hess=hessian)\n\u001b[0m\u001b[0;32m 185\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 186\u001b[0m \u001b[1;31m# this is stupid TODO: just change this to something sane\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/statsmodels-0.6.1-py2.7-linux-x86_64.egg/statsmodels/base/optimizer.pyc\u001b[0m in \u001b[0;36m_fit_newton\u001b[1;34m(f, score, start_params, fargs, kwargs, disp, maxiter, callback, retall, full_output, hess, ridge_factor)\u001b[0m\n\u001b[0;32m 246\u001b[0m \u001b[0mhistory\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnewparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 247\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mcallback\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 248\u001b[1;33m \u001b[0mcallback\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnewparams\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 249\u001b[0m \u001b[0miterations\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 250\u001b[0m \u001b[0mfval\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnewparams\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0mfargs\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m# this is the negative likelihood\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/statsmodels-0.6.1-py2.7-linux-x86_64.egg/statsmodels/discrete/discrete_model.pyc\u001b[0m in \u001b[0;36m_check_perfect_pred\u001b[1;34m(self, params, *args)\u001b[0m\n\u001b[0;32m 184\u001b[0m np.allclose(fittedvalues - endog, 0)):\n\u001b[0;32m 185\u001b[0m \u001b[0mmsg\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"Perfect separation detected, results not available\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 186\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mPerfectSeparationError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 187\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 188\u001b[0m def fit(self, start_params=None, method='newton', maxiter=35,\n", "\u001b[1;31mPerfectSeparationError\u001b[0m: Perfect separation detected, results not available" ] } ], "source": [ "from random import shuffle\n", "import datetime\n", "\n", "alpha, min_alpha, passes = (0.025, 0.001, 20)\n", "alpha_delta = (alpha - min_alpha) / passes\n", "\n", "print(\"START %s\" % datetime.datetime.now())\n", "\n", "for epoch in range(passes):\n", " shuffle(doc_list) # shuffling gets best results\n", " \n", " for name, train_model in models_by_name.items():\n", " # train\n", " duration = 'na'\n", " train_model.alpha, train_model.min_alpha = alpha, alpha\n", " with elapsed_timer() as elapsed:\n", " train_model.train(doc_list)\n", " duration = '%.1f' % elapsed()\n", " \n", " # evaluate\n", " eval_duration = ''\n", " with elapsed_timer() as eval_elapsed:\n", " err, err_count, test_count, predictor = error_rate_for_model(train_model, train_docs, test_docs)\n", " eval_duration = '%.1f' % eval_elapsed()\n", " best_indicator = ' '\n", " if err <= best_error[name]:\n", " best_error[name] = err\n", " best_indicator = '*' \n", " print(\"%s%f : %i passes : %s %ss %ss\" % (best_indicator, err, epoch + 1, name, duration, eval_duration))\n", "\n", " if ((epoch + 1) % 5) == 0 or epoch == 0:\n", " eval_duration = ''\n", " with elapsed_timer() as eval_elapsed:\n", " infer_err, err_count, test_count, predictor = error_rate_for_model(train_model, train_docs, test_docs, infer=True)\n", " eval_duration = '%.1f' % eval_elapsed()\n", " best_indicator = ' '\n", " if infer_err < best_error[name + '_inferred']:\n", " best_error[name + '_inferred'] = infer_err\n", " best_indicator = '*'\n", " print(\"%s%f : %i passes : %s %ss %ss\" % (best_indicator, infer_err, epoch + 1, name + '_inferred', duration, eval_duration))\n", "\n", " print('completed pass %i at alpha %f' % (epoch + 1, alpha))\n", " alpha -= alpha_delta\n", " \n", "print(\"END %s\" % str(datetime.datetime.now()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Achieved Sentiment-Prediction Accuracy" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.094800 dbow+dmm_inferred\n", "0.099920 dbow+dmm\n", "0.101000 Doc2Vec(dbow,d100,n5,mc2,t8)\n", "0.101320 dbow+dmc\n", "0.109600 dbow+dmc_inferred\n", "0.111600 Doc2Vec(dbow,d100,n5,mc2,t8)_inferred\n", "0.158760 Doc2Vec(dm/m,d100,n5,w10,mc2,t8)\n", "0.184000 Doc2Vec(dm/m,d100,n5,w10,mc2,t8)_inferred\n", "0.215160 Doc2Vec(dm/c,d100,n5,w5,mc2,t8)\n", "0.232400 Doc2Vec(dm/c,d100,n5,w5,mc2,t8)_inferred\n" ] } ], "source": [ "# print best error rates achieved\n", "for rate, name in sorted((rate, name) for name, rate in best_error.items()):\n", " print(\"%f %s\" % (rate, name))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In my testing, unlike the paper's report, DBOW performs best. Concatenating vectors from different models only offers a small predictive improvement. The best results I've seen are still just under 10% error rate, still a ways from the paper's 7.42%.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Examining Results" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Are inferred vectors close to the precalculated ones?" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "for doc 25430...\n", "Doc2Vec(dm/c,d100,n5,w5,mc2,t8):\n", " [(25430, 0.6583491563796997), (27314, 0.4142411947250366), (16479, 0.40846431255340576)]\n", "Doc2Vec(dbow,d100,n5,mc2,t8):\n", " [(25430, 0.9325973987579346), (49281, 0.5766637921333313), (79679, 0.5634804964065552)]\n", "Doc2Vec(dm/m,d100,n5,w10,mc2,t8):\n", " [(25430, 0.7970066666603088), (97818, 0.6925815343856812), (230, 0.690807580947876)]\n" ] } ], "source": [ "doc_id = np.random.randint(simple_models[0].docvecs.count) # pick random doc; re-run cell for more examples\n", "print('for doc %d...' % doc_id)\n", "for model in simple_models:\n", " inferred_docvec = model.infer_vector(alldocs[doc_id].words)\n", " print('%s:\\n %s' % (model, model.docvecs.most_similar([inferred_docvec], topn=3)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(Yes, here the stored vector from 20 epochs of training is usually one of the closest to a freshly-inferred vector for the same words. Note the defaults for inference are very abbreviated – just 3 steps starting at a high alpha – and likely need tuning for other applications.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Do close documents seem more related than distant ones?" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TARGET (72927): «this is one of the best films of this year . for a year that was fueled by controversy and crap , it was nice to finally see a film that had a true heart to it . from the opening scene to the end , i was so moved by the love that will smith has for his son . basically , if you see this movie and walk out of it feeling nothing , there is something that is very wrong with you . loved this movie , it's the perfect movie to end the year with . the best part was after the movie , my friends and i all got up and realized that this movie had actually made the four of us tear up ! it's an amazing film and if will smith doesn't get at least an oscar nom , then the oscars will just suck . in fact will smith should actually just win an oscar for this role . ! ! ! i loved this movie ! ! ! ! everybody needs to see especially the people in this world that take everything for granted , watch this movie , it will change you !»\n", "\n", "SIMILAR/DISSIMILAR DOCS PER MODEL Doc2Vec(dm/m,d100,n5,w10,mc2,t8):\n", "\n", "MOST (2046, 0.7372332215309143): «i thought this movie would be dumb , but i really liked it . people i know hate it because spirit was the only horse that talked . well , so what ? the songs were good , and the horses didn't need to talk to seem human . i wouldn't care to own the movie , and i would love to see it again . 8/10»\n", "\n", "MEDIAN (6999, 0.4129640758037567): «okay , the recent history of star trek has not been good . the next generation faded in its last few seasons , ds9 boldly stayed where no one had stayed before , and voyager started very bad and never really lived up to its promise . so , when they announced a new star trek series , i did not have high expectations . and , the first episode , broken bow , did have some problems . but , overall it was solid trek material and a good romp . i'll get the nits out of the way first . the opening theme is dull and i don't look forward to sitting through it regularly , but that's what remotes are for . what was really bad was the completely gratuitous lotion rubbing scene that just about drove my wife out of the room . they need to cut that nonsense out . but , the plot was strong and moved along well . the characters , though still new , seem to be well rounded and not always what you would expect . the vulcans are clearly being presented very differently than before , with a slightly ominous theme . i particularly liked the linguist , who is the first star trek character to not be able to stand proud in the face of death , but rather has to deal with her phobias and fears . they seemed to stay true to trek lore , something that has been a significant problem in past series , though they have plenty of time to bring us things like shooting through shields , the instant invention of technology that can fix anything , and the inevitable plethora of time-travel stories . anyone want to start a pool on how long before the borg show up ? all in all , the series has enormous potential . they are seeing the universe with fresh eyes . we have the chance to learn how things got the way they were in the later series . how did the klingons go from just insulting to war ? how did we meet the romulans ? how did the federation form and just who put earth in charge . why is the prime directive so important ? if they address these things rather than spitting out time travel episodes , this will be an interesting series . my favorite line : zephram cochran saying \" where no man has gone before \" ( not \" no one \" )»\n", "\n", "LEAST (16617, 0.015464222989976406): «i saw this movie during a tolkien-themed interim class during my sophomore year of college . i was seated unfortunately close to the screen and my professor chose me to serve as a whipping boy- everyone else was laughing , but they weren't within constant eyesight . let's get it out of the way : the peter jackson 'lord of the rings' films do owe something to the bakshi film . in jackson's version of the fellowship of the ring , for instance , the scene in which the black riders assault the empty inn beds is almost a complete carbon copy of the scene in bakshi's film , shot by shot . you could call this plagiarism or homage , depending on your agenda . i'm sure the similarities don't stop there . i'm not going to do any research to find out what they are , because that would imply i have some mote of respect for this film . i'm sure others have outlined the similarities- look around . this movie is a complete train wreck in every sense of the metaphor , and many , many people died in the accident . i've decided to list what i can remember in a more or less chronological fashion- if i've left out anything else that offended me it's because i'm completely overwhelmed , confronted with a wealth of failure ( and , at high points , mediocrity ) . *due to heavy use of rotoscoping , gandalf is no longer a gentle , wise wizard but a wildly flailing prophet of doom ( whose hat inexplicably changes color once or twice during the course of the film ) . *saruman the white is sometimes referred to as 'aruman' during the film , without explanation . he wears purple and red for some mysterious reason . *sam is flat out hideous . the portrayal of his friendship with frodo is strangely childlike and unsatisfying . yes , hobbits are small like children , but they are not children . *merry and pippin are never introduced--they simply appear during a scene change with a one-sentence explanation . the film is filled with sloppy editing like this . *frodo , sam , pippin and merry are singing merrily as they skip through along the road . one of the hobbits procures a lute at least twice as large as he is from behind his back--which was not visible before--and begins strumming in typical fantasy bard fashion as they all break into \" la-la-la \" s . awful . *aragorn , apparently , is a native american dressed in an extremely stereotypical fantasy tunic ( no pants ) , complete with huge , square pilgrim belt buckle . he is arguably the worst swordsman in the entire movie--oftentimes he gets one wobbly swing in before being knocked flat on his ass . *the black riders appear more like lepers than menacing instruments of evil . they limp everywhere they go at a painfully slow pace . this is disturbing to be sure , but not frightening . *the scene before the black riders attempt to cross the ford of bruinen ( in which they stare at frodo , who is on the other side on horseback ) goes on forever , during which time the riders rear their horses in a vaguely threatening manner and . . . do nothing else . the scene was probably intended to illustrate frodo's hallucinatory decline as he succumbs to his wound . it turns out to be more plodding than anything else . *gimli the dwarf is just as tall as legolas the elf . he's a dwarf . there is simply no excuse for that . he also looks like a bastardized david the gnome . it's a crude but accurate description . *boromir appears to have pilfered elmer fudd's golden viking armor from that bugs bunny opera episode . he looks ridiculous . *despite the similarity to tolkien's illustration , the balrog is howl inducing and the least-threatening villain in the entire film . it looks like someone wearing pink bedroom slippers , and it's barely taller than gandalf . \" purists \" may prefer this balrog , but i'll take jackson's version any day . *the battle scenes are awkward and embarrassing . almost none of the characters display any level of competency with their armaments . i'm not asking for action-packed scenes like those in jackson's film , but they are supposed to be fighting . *treebeard makes a very short appearance , and i was sorry he bothered to show up at all . watch the film , you'll see what i mean . alright , now for the good parts of the film . *some of the voice acting is pretty good . it isn't that aragorn sounds bad , he just looks kind of like the jolly green giant . *galadriel is somewhat interesting in this portrayal ; like tom bombadil , she seems immune to the ring's powers of temptation , and her voice actress isn't horrible either . *boromir's death isn't as heart wrenching as in jackson's portrayal of the same scene , but it's still appropriately dramatic ( and more true to his death in the book , though i don't believe jackson made a mistake shooting it the way he did ) . *as my professor pointed out ( between whispered threats ) , the orcs ( mainly at helm's deep , if i'm correct ) resemble the war-ravaged corpses of soldiers , a political statement that works pretty well if you realize what's being attempted . *while this isn't really a positive point about the film , bakshi can't be blamed for the majority of the failures in this movie , or so i've been told--the project was on a tight budget , and late in its production he lost creative control to some of the higher-ups ( who i'm sure hadn't read the books ) . let me be clear : i respect bakshi for even attempting something of this magnitude . i simply have a hard time believing he was happy with the final product . overall , i cannot in any way recommend this blasphemous adaptation of tolkien's classic trilogy even for laughs , unless you've already read the books and have your own visualizations of the characters , places and events . i'm sure somebody , somewhere , will pick a copy of this up in confusion ; if you do , keep an open mind and glean what good you can from it .»\n", "\n" ] } ], "source": [ "import random\n", "\n", "doc_id = np.random.randint(simple_models[0].docvecs.count) # pick random doc, re-run cell for more examples\n", "model = random.choice(simple_models) # and a random model\n", "sims = model.docvecs.most_similar(doc_id, topn=model.docvecs.count) # get *all* similar documents\n", "print(u'TARGET (%d): «%s»\\n' % (doc_id, ' '.join(alldocs[doc_id].words)))\n", "print(u'SIMILAR/DISSIMILAR DOCS PER MODEL %s:\\n' % model)\n", "for label, index in [('MOST', 0), ('MEDIAN', len(sims)//2), ('LEAST', len(sims) - 1)]:\n", " print(u'%s %s: «%s»\\n' % (label, sims[index], ' '.join(alldocs[sims[index][0]].words)))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(Somewhat, in terms of reviewer tone, movie genre, etc... the MOST cosine-similar docs usually seem more like the TARGET than the MEDIAN or LEAST.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Do the word vectors show useful similarities?" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "word_models = simple_models[:]" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "most similar words for 'comedy/drama' (38 occurences)\n" ] }, { "data": { "text/html": [ "<table><tr><th>Doc2Vec(dm/c,d100,n5,w5,mc2,t8)</th><th>Doc2Vec(dbow,d100,n5,mc2,t8)</th><th>Doc2Vec(dm/m,d100,n5,w10,mc2,t8)</th></tr><tr><td>[('comedy', 0.7255545258522034),<br>\n", "('thriller', 0.6946465969085693),<br>\n", "('drama', 0.6763534545898438),<br>\n", "('romance', 0.6251884698867798),<br>\n", "('dramedy', 0.6217159032821655),<br>\n", "('melodrama', 0.6156137585639954),<br>\n", "('adventure', 0.6091135740280151),<br>\n", "('farce', 0.6034293174743652),<br>\n", "('chiller', 0.5948368906974792),<br>\n", "('romantic-comedy', 0.5876704454421997),<br>\n", "('fantasy', 0.5863304138183594),<br>\n", "('mystery/comedy', 0.577541708946228),<br>\n", "('whodunit', 0.572147011756897),<br>\n", "('biopic', 0.5679721832275391),<br>\n", "('thriller/drama', 0.5630226731300354),<br>\n", "('sitcom', 0.5574496984481812),<br>\n", "('slash-fest', 0.5573585033416748),<br>\n", "('mystery', 0.5542301535606384),<br>\n", "('potboiler', 0.5519827604293823),<br>\n", "('mockumentary', 0.5490710139274597)]</td><td>[('1000%', 0.42290645837783813),<br>\n", "(\"gymnast's\", 0.4180164337158203),<br>\n", "('hollywoodland', 0.3898555636405945),<br>\n", "('cultures', 0.3857914209365845),<br>\n", "('hooda', 0.3851744532585144),<br>\n", "('cites', 0.38047513365745544),<br>\n", "(\"78's\", 0.3792475461959839),<br>\n", "(\"dormael's\", 0.3775535225868225),<br>\n", "('jokester', 0.3725704252719879),<br>\n", "('impelled', 0.36853262782096863),<br>\n", "('lia', 0.3684236407279968),<br>\n", "('snivelling', 0.3683513104915619),<br>\n", "('astral', 0.36715900897979736),<br>\n", "('euro-exploitation', 0.35853487253189087),<br>\n", "(\"serra's\", 0.3578598201274872),<br>\n", "('down-on-their-luck', 0.3576606214046478),<br>\n", "('rowles', 0.3567575514316559),<br>\n", "('romantica', 0.3549702763557434),<br>\n", "('bonham-carter', 0.354231059551239),<br>\n", "('1877', 0.3541453182697296)]</td><td>[('comedy-drama', 0.6274900436401367),<br>\n", "('comedy', 0.5986765623092651),<br>\n", "('thriller', 0.5765297412872314),<br>\n", "('road-movie', 0.5615973472595215),<br>\n", "('dramedy', 0.5580120086669922),<br>\n", "('time-killer', 0.5497636795043945),<br>\n", "('potboiler', 0.5456510782241821),<br>\n", "('comedy/', 0.5439876317977905),<br>\n", "('actioner', 0.5423712134361267),<br>\n", "('diversion', 0.541743278503418),<br>\n", "('romcom', 0.5402226448059082),<br>\n", "('rom-com', 0.5358527302742004),<br>\n", "('drama', 0.5320745706558228),<br>\n", "('chiller', 0.5229591727256775),<br>\n", "('romp', 0.5228806734085083),<br>\n", "('horror/comedy', 0.5219299793243408),<br>\n", "('weeper', 0.5195824503898621),<br>\n", "('mockumentary', 0.5149033069610596),<br>\n", "('camp-fest', 0.5122634768486023),<br>\n", "('mystery/comedy', 0.5020694732666016)]</td></tr></table>" ], "text/plain": [ "<IPython.core.display.HTML at 0x1535b84d0>" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import random\n", "from IPython.display import HTML\n", "# pick a random word with a suitable number of occurences\n", "while True:\n", " word = random.choice(word_models[0].index2word)\n", " if word_models[0].vocab[word].count > 10:\n", " break\n", "# or uncomment below line, to just pick a word from the relevant domain:\n", "#word = 'comedy/drama'\n", "similars_per_model = [str(model.most_similar(word, topn=20)).replace('), ','),<br>\\n') for model in word_models]\n", "similar_table = (\"<table><tr><th>\" +\n", " \"</th><th>\".join([str(model) for model in word_models]) + \n", " \"</th></tr><tr><td>\" +\n", " \"</td><td>\".join(similars_per_model) +\n", " \"</td></tr></table>\")\n", "print(\"most similar words for '%s' (%d occurences)\" % (word, simple_models[0].vocab[word].count))\n", "HTML(similar_table)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Do the DBOW words look meaningless? That's because the gensim DBOW model doesn't train word vectors – they remain at their random initialized values – unless you ask with the `dbow_words=1` initialization parameter. Concurrent word-training slows DBOW mode significantly, and offers little improvement (and sometimes a little worsening) of the error rate on this IMDB sentiment-prediction task. \n", "\n", "Words from DM models tend to show meaningfully similar words when there are many examples in the training data (as with 'plot' or 'actor'). (All DM modes inherently involve word vector training concurrent with doc vector training.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Are the word vectors from this dataset any good at analogies?" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Doc2Vec(dm/c,d100,n5,w5,mc2,t8): 28.70% correct (2873 of 10012)\n", "Doc2Vec(dbow,d100,n5,mc2,t8): 0.01% correct (1 of 10012)\n", "Doc2Vec(dm/m,d100,n5,w10,mc2,t8): 27.24% correct (2727 of 10012)\n" ] } ], "source": [ "# assuming something like\n", "# https://word2vec.googlecode.com/svn/trunk/questions-words.txt \n", "# is in local directory\n", "# note: this takes many minutes\n", "for model in word_models:\n", " sections = model.accuracy('questions-words.txt')\n", " correct, incorrect = len(sections[-1]['correct']), len(sections[-1]['incorrect'])\n", " print('%s: %0.2f%% correct (%d of %d)' % (model, float(correct*100)/(correct+incorrect), correct, correct+incorrect))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Even though this is a tiny, domain-specific dataset, it shows some meager capability on the general word analogies – at least for the DM/concat and DM/mean models which actually train word vectors. (The untrained random-initialized words of the DBOW model of course fail miserably.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Slop" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "This cell left intentionally erroneous. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To mix the Google dataset (if locally available) into the word tests..." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from gensim.models import Word2Vec\n", "w2v_g100b = Word2Vec.load_word2vec_format('GoogleNews-vectors-negative300.bin.gz', binary=True)\n", "w2v_g100b.compact_name = 'w2v_g100b'\n", "word_models.append(w2v_g100b)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To get copious logging output from above steps..." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import logging\n", "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)\n", "rootLogger = logging.getLogger()\n", "rootLogger.setLevel(logging.INFO)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To auto-reload python code while developing..." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.3" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
oyamad/gth_solve_numba
loop_jitting01.ipynb
1
63015
{ "metadata": { "name": "", "signature": "sha256:e14733313b2a73e565c5741a6238ebcd7d54ced1d7266a411ce59a29890be54c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "from numba import jit\n", "from gth_solve_jit import gth_solve, gth_solve_jit" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "@jit('float64[:](float64[:,:])')\n", "def gth_solve_jit2(A):\n", " A1 = np.array(A, dtype=np.float64)\n", "\n", " if len(A1.shape) != 2 or A1.shape[0] != A1.shape[1]:\n", " # raise ValueError('matrix must be square') # Not supported\n", " raise ValueError\n", "\n", " n = A1.shape[0]\n", "\n", " x = np.zeros(n, dtype=np.float64)\n", "\n", " # === Reduction === #\n", " for k in range(n-1):\n", " scale = np.sum(A1[k, k+1:n])\n", " if scale <= 0:\n", " # There is one (and only one) recurrent class contained in\n", " # {0, ..., k};\n", " # compute the solution associated with that recurrent class.\n", " n = k+1\n", " break\n", " for i in range(k+1, n):\n", " A1[i, k] /= scale\n", "\n", " for j in range(k+1, n):\n", " A1[i, j] += A1[i, k] * A1[k, j]\n", "\n", " # === Backward substitution === #\n", " x[n-1] = 1\n", " for k in range(n-2, -1, -1):\n", " for i in range(k+1, n):\n", " x[k] += x[i] * A1[i, k]\n", "\n", " # === Normalization === #\n", " norm = np.sum(x)\n", " for k in range(n):\n", " x[k] /= norm\n", "\n", " return x" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "gth_solve_jit2.inspect_types()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "gth_solve_jit2 (array(float64, 2d, A, nonconst),)\n", "--------------------------------------------------------------------------------\n", "# File: <ipython-input-2-b14bcb5c0c5e>\n", "# --- LINE 1 --- \n", "\n", "@jit('float64[:](float64[:,:])')\n", "\n", "# --- LINE 2 --- \n", "\n", "def gth_solve_jit2(A):\n", "\n", " # --- LINE 3 --- \n", " # label 0\n", " # A.1 = A :: pyobject\n", " # del A\n", " # $0.1 = global(np: <module 'numpy' from '/usr/local/lib/python2.7/site-packages/numpy/__init__.pyc'>) :: pyobject\n", " # $0.2 = getattr(attr=array, value=$0.1) :: pyobject\n", " # del $0.1\n", " # $0.5 = global(np: <module 'numpy' from '/usr/local/lib/python2.7/site-packages/numpy/__init__.pyc'>) :: pyobject\n", " # $0.6 = getattr(attr=float64, value=$0.5) :: pyobject\n", " # del $0.5\n", " # $0.7 = call $0.2(A.1, dtype=$0.6) :: pyobject\n", " # del A.1\n", " # del $0.6\n", " # del $0.2\n", " # A1 = $0.7 :: pyobject\n", " # del $0.7\n", "\n", " A1 = np.array(A, dtype=np.float64)\n", "\n", "# --- LINE 4 --- \n", "\n", "\n", "\n", " # --- LINE 5 --- \n", " # $0.8 = global(len: <built-in function len>) :: pyobject\n", " # $0.10 = getattr(attr=shape, value=A1) :: pyobject\n", " # $0.11 = call $0.8($0.10, ) :: pyobject\n", " # del $0.8\n", " # del $0.10\n", " # $const0.12 = const(int, 2) :: pyobject\n", " # $0.13 = $0.11 != $const0.12 :: pyobject\n", " # del $const0.12\n", " # del $0.11\n", " # branch $0.13, 71, 45\n", " # label 45\n", " # $45.2 = getattr(attr=shape, value=A1) :: pyobject\n", " # $const45.3 = const(int, 0) :: pyobject\n", " # $45.4 = getitem(index=$const45.3, value=$45.2) :: pyobject\n", " # del $const45.3\n", " # del $45.2\n", " # $45.6 = getattr(attr=shape, value=A1) :: pyobject\n", " # $const45.7 = const(int, 1) :: pyobject\n", " # $45.8 = getitem(index=$const45.7, value=$45.6) :: pyobject\n", " # del $const45.7\n", " # del $45.6\n", " # $45.9 = $45.4 != $45.8 :: pyobject\n", " # del $45.8\n", " # del $45.4\n", " # branch $45.9, 71, 80\n", "\n", " if len(A1.shape) != 2 or A1.shape[0] != A1.shape[1]:\n", "\n", " # --- LINE 6 --- \n", "\n", " # raise ValueError('matrix must be square') # Not supported\n", "\n", " # --- LINE 7 --- \n", " # label 71\n", " # del A1\n", " # del $45.9\n", " # del $0.13\n", " # $71.1 = global(ValueError: <type 'exceptions.ValueError'>) :: pyobject\n", " # del $71.1\n", " # raise <type 'exceptions.ValueError'>\n", "\n", " raise ValueError\n", "\n", "# --- LINE 8 --- \n", "\n", "\n", "\n", " # --- LINE 9 --- \n", " # label 80\n", " # del $45.9\n", " # del $0.13\n", " # $80.2 = getattr(attr=shape, value=A1) :: pyobject\n", " # $const80.3 = const(int, 0) :: pyobject\n", " # $80.4 = getitem(index=$const80.3, value=$80.2) :: pyobject\n", " # del $const80.3\n", " # del $80.2\n", " # n = $80.4 :: pyobject\n", " # del $80.4\n", "\n", " n = A1.shape[0]\n", "\n", "# --- LINE 10 --- \n", "\n", "\n", "\n", " # --- LINE 11 --- \n", " # $80.5 = global(np: <module 'numpy' from '/usr/local/lib/python2.7/site-packages/numpy/__init__.pyc'>) :: pyobject\n", " # $80.6 = getattr(attr=zeros, value=$80.5) :: pyobject\n", " # del $80.5\n", " # $80.9 = global(np: <module 'numpy' from '/usr/local/lib/python2.7/site-packages/numpy/__init__.pyc'>) :: pyobject\n", " # $80.10 = getattr(attr=float64, value=$80.9) :: pyobject\n", " # del $80.9\n", " # $80.11 = call $80.6(n, dtype=$80.10) :: pyobject\n", " # del $80.6\n", " # del $80.10\n", " # x = $80.11 :: pyobject\n", " # del $80.11\n", "\n", " x = np.zeros(n, dtype=np.float64)\n", "\n", "# --- LINE 12 --- \n", "\n", "\n", "\n", " # --- LINE 13 --- \n", "\n", " # === Reduction === #\n", "\n", " # --- LINE 14 --- \n", " # label 134\n", " # $134.2 = iternext(value=$phi134.1) :: pyobject\n", " # $134.3 = pair_first(value=$134.2) :: pyobject\n", " # $134.4 = pair_second(value=$134.2) :: pyobject\n", " # del $134.2\n", " # $phi137.1 = $134.3 :: pyobject\n", " # del $134.3\n", " # branch $134.4, 137, 332\n", " # label 137\n", " # k = $phi137.1 :: pyobject\n", " # del $phi137.1\n", " # jump 117\n", " # label 117\n", " # $117.1 = global(range: <built-in function range>) :: pyobject\n", " # $const117.3 = const(int, 1) :: pyobject\n", " # $117.4 = n - $const117.3 :: pyobject\n", " # del $const117.3\n", " # $117.5 = call $117.1($117.4, ) :: pyobject\n", " # del $117.4\n", " # del $117.1\n", " # $117.6 = getiter(value=$117.5) :: pyobject\n", " # del $117.5\n", " # $phi134.1 = $117.6 :: pyobject\n", " # del $117.6\n", " # jump 134\n", "\n", " for k in range(n-1):\n", "\n", " # --- LINE 15 --- \n", " # $137.2 = global(np: <module 'numpy' from '/usr/local/lib/python2.7/site-packages/numpy/__init__.pyc'>) :: pyobject\n", " # $137.3 = getattr(attr=sum, value=$137.2) :: pyobject\n", " # del $137.2\n", " # $k137.5 = k :: pyobject\n", " # $const137.7 = const(int, 1) :: pyobject\n", " # $137.8 = k + $const137.7 :: pyobject\n", " # del $const137.7\n", " # $137.10 = global(slice: <type 'slice'>) :: pyobject\n", " # $137.11 = call $137.10($137.8, n, ) :: pyobject\n", " # del $137.8\n", " # del $137.10\n", " # $137.12 = build_tuple(items=[Var($k137.5, <ipython-input-2-b14bcb5c0c5e> (15)), Var($137.11, <ipython-input-2-b14bcb5c0c5e> (15))]) :: pyobject\n", " # del $k137.5\n", " # del $137.11\n", " # $137.13 = getitem(index=$137.12, value=A1) :: pyobject\n", " # del $137.12\n", " # $137.14 = call $137.3($137.13, ) :: pyobject\n", " # del $137.3\n", " # del $137.13\n", " # scale = $137.14 :: pyobject\n", " # del $137.14\n", "\n", " scale = np.sum(A1[k, k+1:n])\n", "\n", " # --- LINE 16 --- \n", " # $const137.16 = const(int, 0) :: pyobject\n", " # $137.17 = scale <= $const137.16 :: pyobject\n", " # del $const137.16\n", " # branch $137.17, 187, 201\n", "\n", " if scale <= 0:\n", "\n", " # --- LINE 17 --- \n", "\n", " # There is one (and only one) recurrent class contained in\n", "\n", " # --- LINE 18 --- \n", "\n", " # {0, ..., k};\n", "\n", " # --- LINE 19 --- \n", "\n", " # compute the solution associated with that recurrent class.\n", "\n", " # --- LINE 20 --- \n", " # label 187\n", " # del scale\n", " # del $phi134.1\n", " # del $137.17\n", " # del $134.4\n", " # $const187.2 = const(int, 1) :: pyobject\n", " # $187.3 = k + $const187.2 :: pyobject\n", " # del $const187.2\n", " # n = $187.3 :: pyobject\n", " # del $187.3\n", "\n", " n = k+1\n", "\n", " # --- LINE 21 --- \n", " # jump 333\n", "\n", " break\n", "\n", " # --- LINE 22 --- \n", " # label 201\n", " # $201.1 = global(range: <built-in function range>) :: pyobject\n", " # $const201.3 = const(int, 1) :: pyobject\n", " # $201.4 = k + $const201.3 :: pyobject\n", " # del $const201.3\n", " # $201.6 = call $201.1($201.4, n, ) :: pyobject\n", " # del $201.4\n", " # del $201.1\n", " # $201.7 = getiter(value=$201.6) :: pyobject\n", " # del $201.6\n", " # $phi221.1 = $201.7 :: pyobject\n", " # del $201.7\n", " # jump 221\n", " # label 221\n", " # $221.2 = iternext(value=$phi221.1) :: pyobject\n", " # $221.3 = pair_first(value=$221.2) :: pyobject\n", " # $221.4 = pair_second(value=$221.2) :: pyobject\n", " # del $221.2\n", " # $phi224.1 = $221.3 :: pyobject\n", " # del $221.3\n", " # branch $221.4, 224, 328\n", " # label 224\n", " # i = $phi224.1 :: pyobject\n", " # del $phi224.1\n", "\n", " for i in range(k+1, n):\n", "\n", " # --- LINE 23 --- \n", " # $A1224.2 = A1 :: pyobject\n", " # $224.5 = build_tuple(items=[Var(i, <ipython-input-2-b14bcb5c0c5e> (22)), Var(k, <ipython-input-2-b14bcb5c0c5e> (14))]) :: pyobject\n", " # $224.8 = getitem(index=$224.5, value=A1) :: pyobject\n", " # $224.10 = inplace_binop(rhs=scale, lhs=$224.8, fn=/?) :: pyobject\n", " # del $224.8\n", " # $A1224.2[$224.5] = $224.10 :: pyobject\n", " # del $A1224.2\n", " # del $224.5\n", " # del $224.10\n", "\n", " A1[i, k] /= scale\n", "\n", "# --- LINE 24 --- \n", "\n", "\n", "\n", " # --- LINE 25 --- \n", " # label 269\n", " # $269.2 = iternext(value=$phi269.1) :: pyobject\n", " # $269.3 = pair_first(value=$269.2) :: pyobject\n", " # $269.4 = pair_second(value=$269.2) :: pyobject\n", " # del $269.2\n", " # $phi272.1 = $269.3 :: pyobject\n", " # del $269.3\n", " # branch $269.4, 272, 324\n", " # label 272\n", " # j = $phi272.1 :: pyobject\n", " # del $phi272.1\n", " # jump 249\n", " # label 249\n", " # $249.1 = global(range: <built-in function range>) :: pyobject\n", " # $const249.3 = const(int, 1) :: pyobject\n", " # $249.4 = k + $const249.3 :: pyobject\n", " # del $const249.3\n", " # $249.6 = call $249.1($249.4, n, ) :: pyobject\n", " # del $249.4\n", " # del $249.1\n", " # $249.7 = getiter(value=$249.6) :: pyobject\n", " # del $249.6\n", " # $phi269.1 = $249.7 :: pyobject\n", " # del $249.7\n", " # jump 269\n", "\n", " for j in range(k+1, n):\n", "\n", " # --- LINE 26 --- \n", " # $A1272.2 = A1 :: pyobject\n", " # $272.5 = build_tuple(items=[Var(i, <ipython-input-2-b14bcb5c0c5e> (22)), Var(j, <ipython-input-2-b14bcb5c0c5e> (25))]) :: pyobject\n", " # $272.8 = getitem(index=$272.5, value=A1) :: pyobject\n", " # $272.12 = build_tuple(items=[Var(i, <ipython-input-2-b14bcb5c0c5e> (22)), Var(k, <ipython-input-2-b14bcb5c0c5e> (14))]) :: pyobject\n", " # $272.13 = getitem(index=$272.12, value=A1) :: pyobject\n", " # del $272.12\n", " # $272.17 = build_tuple(items=[Var(k, <ipython-input-2-b14bcb5c0c5e> (14)), Var(j, <ipython-input-2-b14bcb5c0c5e> (25))]) :: pyobject\n", " # del j\n", " # $272.18 = getitem(index=$272.17, value=A1) :: pyobject\n", " # del $272.17\n", " # $272.19 = $272.13 * $272.18 :: pyobject\n", " # del $272.18\n", " # del $272.13\n", " # $272.20 = inplace_binop(rhs=$272.19, lhs=$272.8, fn=+) :: pyobject\n", " # del $272.8\n", " # del $272.19\n", " # $A1272.2[$272.5] = $272.20 :: pyobject\n", " # del $A1272.2\n", " # del $272.5\n", " # del $272.20\n", " # jump 269\n", " # label 329\n", " # jump 134\n", " # label 324\n", " # del $phi272.1\n", " # del $phi269.1\n", " # del $269.4\n", " # jump 325\n", " # label 325\n", " # jump 221\n", " # label 328\n", " # del scale\n", " # del $phi224.1\n", " # del $phi221.1\n", " # del $221.4\n", " # jump 329\n", " # label 332\n", " # del $phi137.1\n", " # del $phi134.1\n", " # del $137.17\n", " # del $134.4\n", "\n", " A1[i, j] += A1[i, k] * A1[k, j]\n", "\n", "# --- LINE 27 --- \n", "\n", "\n", "\n", " # --- LINE 28 --- \n", "\n", " # === Backward substitution === #\n", "\n", " # --- LINE 29 --- \n", " # jump 333\n", " # label 333\n", " # $const333.1 = const(int, 1) :: pyobject\n", " # $const333.4 = const(int, 1) :: pyobject\n", " # $333.5 = n - $const333.4 :: pyobject\n", " # del $const333.4\n", " # x[$333.5] = $const333.1 :: pyobject\n", " # del $const333.1\n", " # del $333.5\n", "\n", " x[n-1] = 1\n", "\n", " # --- LINE 30 --- \n", " # label 350.1\n", " # $const350.1.1 = const(LiftedLoop, LiftedLoop(<function gth_solve_jit2 at 0x108e181b8>)) :: pyobject\n", " # $350.1.7 = call $const350.1.1(A1, i, k, n, x, ) :: pyobject\n", " # del A1\n", " # del $const350.1.1\n", " # $350.1.10 = exhaust_iter(count=2, value=$350.1.7) :: pyobject\n", " # del $350.1.7\n", " # $350.1.8 = static_getitem(index=0, value=$350.1.10) :: pyobject\n", " # $350.1.9 = static_getitem(index=1, value=$350.1.10) :: pyobject\n", " # del $350.1.10\n", " # i = $350.1.8 :: pyobject\n", " # del i\n", " # del $350.1.8\n", " # k = $350.1.9 :: pyobject\n", " # del $350.1.9\n", " # jump 444\n", " # jump 350.1\n", "\n", " for k in range(n-2, -1, -1):\n", "\n", " # --- LINE 31 --- \n", "\n", " for i in range(k+1, n):\n", "\n", " # --- LINE 32 --- \n", "\n", " x[k] += x[i] * A1[i, k]\n", "\n", "# --- LINE 33 --- \n", "\n", "\n", "\n", " # --- LINE 34 --- \n", "\n", " # === Normalization === #\n", "\n", " # --- LINE 35 --- \n", " # label 444\n", " # $444.1 = global(np: <module 'numpy' from '/usr/local/lib/python2.7/site-packages/numpy/__init__.pyc'>) :: pyobject\n", " # $444.2 = getattr(attr=sum, value=$444.1) :: pyobject\n", " # del $444.1\n", " # $444.4 = call $444.2(x, ) :: pyobject\n", " # del $444.2\n", " # norm = $444.4 :: pyobject\n", " # del $444.4\n", "\n", " norm = np.sum(x)\n", "\n", " # --- LINE 36 --- \n", " # jump 462.1\n", " # label 462.1\n", " # $const462.1.1 = const(LiftedLoop, LiftedLoop(<function gth_solve_jit2 at 0x108e181b8>)) :: pyobject\n", " # $462.1.6 = call $const462.1.1(x, k, norm, n, ) :: pyobject\n", " # del norm\n", " # del n\n", " # del $const462.1.1\n", " # $462.1.8 = exhaust_iter(count=1, value=$462.1.6) :: pyobject\n", " # del $462.1.6\n", " # $462.1.7 = static_getitem(index=0, value=$462.1.8) :: pyobject\n", " # del $462.1.8\n", " # k = $462.1.7 :: pyobject\n", " # del k\n", " # del $462.1.7\n", " # jump 498\n", "\n", " for k in range(n):\n", "\n", " # --- LINE 37 --- \n", "\n", " x[k] /= norm\n", "\n", "# --- LINE 38 --- \n", "\n", "\n", "\n", " # --- LINE 39 --- \n", " # label 498\n", " # $498.2 = cast(value=x) :: pyobject\n", " # del x\n", " # return $498.2\n", "\n", " return x\n", "\n", "# The function contains lifted loops\n", "# Loop at line 30\n", "# Has 0 overloads\n", "# Loop at line 36\n", "# Has 0 overloads\n", "\n", "================================================================================\n" ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "gth_solve_jit2([[0.4, 0.6], [0.2, 0.8]])" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "array([ 0.25, 0.75])" ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "gth_solve_jit2.inspect_types()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "gth_solve_jit2 (array(float64, 2d, A, nonconst),)\n", "--------------------------------------------------------------------------------\n", "# File: <ipython-input-2-b14bcb5c0c5e>\n", "# --- LINE 1 --- \n", "\n", "@jit('float64[:](float64[:,:])')\n", "\n", "# --- LINE 2 --- \n", "\n", "def gth_solve_jit2(A):\n", "\n", " # --- LINE 3 --- \n", " # label 0\n", " # A.1 = A :: pyobject\n", " # del A\n", " # $0.1 = global(np: <module 'numpy' from '/usr/local/lib/python2.7/site-packages/numpy/__init__.pyc'>) :: pyobject\n", " # $0.2 = getattr(attr=array, value=$0.1) :: pyobject\n", " # del $0.1\n", " # $0.5 = global(np: <module 'numpy' from '/usr/local/lib/python2.7/site-packages/numpy/__init__.pyc'>) :: pyobject\n", " # $0.6 = getattr(attr=float64, value=$0.5) :: pyobject\n", " # del $0.5\n", " # $0.7 = call $0.2(A.1, dtype=$0.6) :: pyobject\n", " # del A.1\n", " # del $0.6\n", " # del $0.2\n", " # A1 = $0.7 :: pyobject\n", " # del $0.7\n", "\n", " A1 = np.array(A, dtype=np.float64)\n", "\n", "# --- LINE 4 --- \n", "\n", "\n", "\n", " # --- LINE 5 --- \n", " # $0.8 = global(len: <built-in function len>) :: pyobject\n", " # $0.10 = getattr(attr=shape, value=A1) :: pyobject\n", " # $0.11 = call $0.8($0.10, ) :: pyobject\n", " # del $0.8\n", " # del $0.10\n", " # $const0.12 = const(int, 2) :: pyobject\n", " # $0.13 = $0.11 != $const0.12 :: pyobject\n", " # del $const0.12\n", " # del $0.11\n", " # branch $0.13, 71, 45\n", " # label 45\n", " # $45.2 = getattr(attr=shape, value=A1) :: pyobject\n", " # $const45.3 = const(int, 0) :: pyobject\n", " # $45.4 = getitem(index=$const45.3, value=$45.2) :: pyobject\n", " # del $const45.3\n", " # del $45.2\n", " # $45.6 = getattr(attr=shape, value=A1) :: pyobject\n", " # $const45.7 = const(int, 1) :: pyobject\n", " # $45.8 = getitem(index=$const45.7, value=$45.6) :: pyobject\n", " # del $const45.7\n", " # del $45.6\n", " # $45.9 = $45.4 != $45.8 :: pyobject\n", " # del $45.8\n", " # del $45.4\n", " # branch $45.9, 71, 80\n", "\n", " if len(A1.shape) != 2 or A1.shape[0] != A1.shape[1]:\n", "\n", " # --- LINE 6 --- \n", "\n", " # raise ValueError('matrix must be square') # Not supported\n", "\n", " # --- LINE 7 --- \n", " # label 71\n", " # del A1\n", " # del $45.9\n", " # del $0.13\n", " # $71.1 = global(ValueError: <type 'exceptions.ValueError'>) :: pyobject\n", " # del $71.1\n", " # raise <type 'exceptions.ValueError'>\n", "\n", " raise ValueError\n", "\n", "# --- LINE 8 --- \n", "\n", "\n", "\n", " # --- LINE 9 --- \n", " # label 80\n", " # del $45.9\n", " # del $0.13\n", " # $80.2 = getattr(attr=shape, value=A1) :: pyobject\n", " # $const80.3 = const(int, 0) :: pyobject\n", " # $80.4 = getitem(index=$const80.3, value=$80.2) :: pyobject\n", " # del $const80.3\n", " # del $80.2\n", " # n = $80.4 :: pyobject\n", " # del $80.4\n", "\n", " n = A1.shape[0]\n", "\n", "# --- LINE 10 --- \n", "\n", "\n", "\n", " # --- LINE 11 --- \n", " # $80.5 = global(np: <module 'numpy' from '/usr/local/lib/python2.7/site-packages/numpy/__init__.pyc'>) :: pyobject\n", " # $80.6 = getattr(attr=zeros, value=$80.5) :: pyobject\n", " # del $80.5\n", " # $80.9 = global(np: <module 'numpy' from '/usr/local/lib/python2.7/site-packages/numpy/__init__.pyc'>) :: pyobject\n", " # $80.10 = getattr(attr=float64, value=$80.9) :: pyobject\n", " # del $80.9\n", " # $80.11 = call $80.6(n, dtype=$80.10) :: pyobject\n", " # del $80.6\n", " # del $80.10\n", " # x = $80.11 :: pyobject\n", " # del $80.11\n", "\n", " x = np.zeros(n, dtype=np.float64)\n", "\n", "# --- LINE 12 --- \n", "\n", "\n", "\n", " # --- LINE 13 --- \n", "\n", " # === Reduction === #\n", "\n", " # --- LINE 14 --- \n", " # label 134\n", " # $134.2 = iternext(value=$phi134.1) :: pyobject\n", " # $134.3 = pair_first(value=$134.2) :: pyobject\n", " # $134.4 = pair_second(value=$134.2) :: pyobject\n", " # del $134.2\n", " # $phi137.1 = $134.3 :: pyobject\n", " # del $134.3\n", " # branch $134.4, 137, 332\n", " # label 137\n", " # k = $phi137.1 :: pyobject\n", " # del $phi137.1\n", " # jump 117\n", " # label 117\n", " # $117.1 = global(range: <built-in function range>) :: pyobject\n", " # $const117.3 = const(int, 1) :: pyobject\n", " # $117.4 = n - $const117.3 :: pyobject\n", " # del $const117.3\n", " # $117.5 = call $117.1($117.4, ) :: pyobject\n", " # del $117.4\n", " # del $117.1\n", " # $117.6 = getiter(value=$117.5) :: pyobject\n", " # del $117.5\n", " # $phi134.1 = $117.6 :: pyobject\n", " # del $117.6\n", " # jump 134\n", "\n", " for k in range(n-1):\n", "\n", " # --- LINE 15 --- \n", " # $137.2 = global(np: <module 'numpy' from '/usr/local/lib/python2.7/site-packages/numpy/__init__.pyc'>) :: pyobject\n", " # $137.3 = getattr(attr=sum, value=$137.2) :: pyobject\n", " # del $137.2\n", " # $k137.5 = k :: pyobject\n", " # $const137.7 = const(int, 1) :: pyobject\n", " # $137.8 = k + $const137.7 :: pyobject\n", " # del $const137.7\n", " # $137.10 = global(slice: <type 'slice'>) :: pyobject\n", " # $137.11 = call $137.10($137.8, n, ) :: pyobject\n", " # del $137.8\n", " # del $137.10\n", " # $137.12 = build_tuple(items=[Var($k137.5, <ipython-input-2-b14bcb5c0c5e> (15)), Var($137.11, <ipython-input-2-b14bcb5c0c5e> (15))]) :: pyobject\n", " # del $k137.5\n", " # del $137.11\n", " # $137.13 = getitem(index=$137.12, value=A1) :: pyobject\n", " # del $137.12\n", " # $137.14 = call $137.3($137.13, ) :: pyobject\n", " # del $137.3\n", " # del $137.13\n", " # scale = $137.14 :: pyobject\n", " # del $137.14\n", "\n", " scale = np.sum(A1[k, k+1:n])\n", "\n", " # --- LINE 16 --- \n", " # $const137.16 = const(int, 0) :: pyobject\n", " # $137.17 = scale <= $const137.16 :: pyobject\n", " # del $const137.16\n", " # branch $137.17, 187, 201\n", "\n", " if scale <= 0:\n", "\n", " # --- LINE 17 --- \n", "\n", " # There is one (and only one) recurrent class contained in\n", "\n", " # --- LINE 18 --- \n", "\n", " # {0, ..., k};\n", "\n", " # --- LINE 19 --- \n", "\n", " # compute the solution associated with that recurrent class.\n", "\n", " # --- LINE 20 --- \n", " # label 187\n", " # del scale\n", " # del $phi134.1\n", " # del $137.17\n", " # del $134.4\n", " # $const187.2 = const(int, 1) :: pyobject\n", " # $187.3 = k + $const187.2 :: pyobject\n", " # del $const187.2\n", " # n = $187.3 :: pyobject\n", " # del $187.3\n", "\n", " n = k+1\n", "\n", " # --- LINE 21 --- \n", " # jump 333\n", "\n", " break\n", "\n", " # --- LINE 22 --- \n", " # label 201\n", " # $201.1 = global(range: <built-in function range>) :: pyobject\n", " # $const201.3 = const(int, 1) :: pyobject\n", " # $201.4 = k + $const201.3 :: pyobject\n", " # del $const201.3\n", " # $201.6 = call $201.1($201.4, n, ) :: pyobject\n", " # del $201.4\n", " # del $201.1\n", " # $201.7 = getiter(value=$201.6) :: pyobject\n", " # del $201.6\n", " # $phi221.1 = $201.7 :: pyobject\n", " # del $201.7\n", " # jump 221\n", " # label 221\n", " # $221.2 = iternext(value=$phi221.1) :: pyobject\n", " # $221.3 = pair_first(value=$221.2) :: pyobject\n", " # $221.4 = pair_second(value=$221.2) :: pyobject\n", " # del $221.2\n", " # $phi224.1 = $221.3 :: pyobject\n", " # del $221.3\n", " # branch $221.4, 224, 328\n", " # label 224\n", " # i = $phi224.1 :: pyobject\n", " # del $phi224.1\n", "\n", " for i in range(k+1, n):\n", "\n", " # --- LINE 23 --- \n", " # $A1224.2 = A1 :: pyobject\n", " # $224.5 = build_tuple(items=[Var(i, <ipython-input-2-b14bcb5c0c5e> (22)), Var(k, <ipython-input-2-b14bcb5c0c5e> (14))]) :: pyobject\n", " # $224.8 = getitem(index=$224.5, value=A1) :: pyobject\n", " # $224.10 = inplace_binop(rhs=scale, lhs=$224.8, fn=/?) :: pyobject\n", " # del $224.8\n", " # $A1224.2[$224.5] = $224.10 :: pyobject\n", " # del $A1224.2\n", " # del $224.5\n", " # del $224.10\n", "\n", " A1[i, k] /= scale\n", "\n", "# --- LINE 24 --- \n", "\n", "\n", "\n", " # --- LINE 25 --- \n", " # label 269\n", " # $269.2 = iternext(value=$phi269.1) :: pyobject\n", " # $269.3 = pair_first(value=$269.2) :: pyobject\n", " # $269.4 = pair_second(value=$269.2) :: pyobject\n", " # del $269.2\n", " # $phi272.1 = $269.3 :: pyobject\n", " # del $269.3\n", " # branch $269.4, 272, 324\n", " # label 272\n", " # j = $phi272.1 :: pyobject\n", " # del $phi272.1\n", " # jump 249\n", " # label 249\n", " # $249.1 = global(range: <built-in function range>) :: pyobject\n", " # $const249.3 = const(int, 1) :: pyobject\n", " # $249.4 = k + $const249.3 :: pyobject\n", " # del $const249.3\n", " # $249.6 = call $249.1($249.4, n, ) :: pyobject\n", " # del $249.4\n", " # del $249.1\n", " # $249.7 = getiter(value=$249.6) :: pyobject\n", " # del $249.6\n", " # $phi269.1 = $249.7 :: pyobject\n", " # del $249.7\n", " # jump 269\n", "\n", " for j in range(k+1, n):\n", "\n", " # --- LINE 26 --- \n", " # $A1272.2 = A1 :: pyobject\n", " # $272.5 = build_tuple(items=[Var(i, <ipython-input-2-b14bcb5c0c5e> (22)), Var(j, <ipython-input-2-b14bcb5c0c5e> (25))]) :: pyobject\n", " # $272.8 = getitem(index=$272.5, value=A1) :: pyobject\n", " # $272.12 = build_tuple(items=[Var(i, <ipython-input-2-b14bcb5c0c5e> (22)), Var(k, <ipython-input-2-b14bcb5c0c5e> (14))]) :: pyobject\n", " # $272.13 = getitem(index=$272.12, value=A1) :: pyobject\n", " # del $272.12\n", " # $272.17 = build_tuple(items=[Var(k, <ipython-input-2-b14bcb5c0c5e> (14)), Var(j, <ipython-input-2-b14bcb5c0c5e> (25))]) :: pyobject\n", " # del j\n", " # $272.18 = getitem(index=$272.17, value=A1) :: pyobject\n", " # del $272.17\n", " # $272.19 = $272.13 * $272.18 :: pyobject\n", " # del $272.18\n", " # del $272.13\n", " # $272.20 = inplace_binop(rhs=$272.19, lhs=$272.8, fn=+) :: pyobject\n", " # del $272.8\n", " # del $272.19\n", " # $A1272.2[$272.5] = $272.20 :: pyobject\n", " # del $A1272.2\n", " # del $272.5\n", " # del $272.20\n", " # jump 269\n", " # label 329\n", " # jump 134\n", " # label 324\n", " # del $phi272.1\n", " # del $phi269.1\n", " # del $269.4\n", " # jump 325\n", " # label 325\n", " # jump 221\n", " # label 328\n", " # del scale\n", " # del $phi224.1\n", " # del $phi221.1\n", " # del $221.4\n", " # jump 329\n", " # label 332\n", " # del $phi137.1\n", " # del $phi134.1\n", " # del $137.17\n", " # del $134.4\n", "\n", " A1[i, j] += A1[i, k] * A1[k, j]\n", "\n", "# --- LINE 27 --- \n", "\n", "\n", "\n", " # --- LINE 28 --- \n", "\n", " # === Backward substitution === #\n", "\n", " # --- LINE 29 --- \n", " # jump 333\n", " # label 333\n", " # $const333.1 = const(int, 1) :: pyobject\n", " # $const333.4 = const(int, 1) :: pyobject\n", " # $333.5 = n - $const333.4 :: pyobject\n", " # del $const333.4\n", " # x[$333.5] = $const333.1 :: pyobject\n", " # del $const333.1\n", " # del $333.5\n", "\n", " x[n-1] = 1\n", "\n", " # --- LINE 30 --- \n", " # label 350.1\n", " # $const350.1.1 = const(LiftedLoop, LiftedLoop(<function gth_solve_jit2 at 0x108e181b8>)) :: pyobject\n", " # $350.1.7 = call $const350.1.1(A1, i, k, n, x, ) :: pyobject\n", " # del A1\n", " # del $const350.1.1\n", " # $350.1.10 = exhaust_iter(count=2, value=$350.1.7) :: pyobject\n", " # del $350.1.7\n", " # $350.1.8 = static_getitem(index=0, value=$350.1.10) :: pyobject\n", " # $350.1.9 = static_getitem(index=1, value=$350.1.10) :: pyobject\n", " # del $350.1.10\n", " # i = $350.1.8 :: pyobject\n", " # del i\n", " # del $350.1.8\n", " # k = $350.1.9 :: pyobject\n", " # del $350.1.9\n", " # jump 444\n", " # jump 350.1\n", "\n", " for k in range(n-2, -1, -1):\n", "\n", " # --- LINE 31 --- \n", "\n", " for i in range(k+1, n):\n", "\n", " # --- LINE 32 --- \n", "\n", " x[k] += x[i] * A1[i, k]\n", "\n", "# --- LINE 33 --- \n", "\n", "\n", "\n", " # --- LINE 34 --- \n", "\n", " # === Normalization === #\n", "\n", " # --- LINE 35 --- \n", " # label 444\n", " # $444.1 = global(np: <module 'numpy' from '/usr/local/lib/python2.7/site-packages/numpy/__init__.pyc'>) :: pyobject\n", " # $444.2 = getattr(attr=sum, value=$444.1) :: pyobject\n", " # del $444.1\n", " # $444.4 = call $444.2(x, ) :: pyobject\n", " # del $444.2\n", " # norm = $444.4 :: pyobject\n", " # del $444.4\n", "\n", " norm = np.sum(x)\n", "\n", " # --- LINE 36 --- \n", " # jump 462.1\n", " # label 462.1\n", " # $const462.1.1 = const(LiftedLoop, LiftedLoop(<function gth_solve_jit2 at 0x108e181b8>)) :: pyobject\n", " # $462.1.6 = call $const462.1.1(x, k, norm, n, ) :: pyobject\n", " # del norm\n", " # del n\n", " # del $const462.1.1\n", " # $462.1.8 = exhaust_iter(count=1, value=$462.1.6) :: pyobject\n", " # del $462.1.6\n", " # $462.1.7 = static_getitem(index=0, value=$462.1.8) :: pyobject\n", " # del $462.1.8\n", " # k = $462.1.7 :: pyobject\n", " # del k\n", " # del $462.1.7\n", " # jump 498\n", "\n", " for k in range(n):\n", "\n", " # --- LINE 37 --- \n", "\n", " x[k] /= norm\n", "\n", "# --- LINE 38 --- \n", "\n", "\n", "\n", " # --- LINE 39 --- \n", " # label 498\n", " # $498.2 = cast(value=x) :: pyobject\n", " # del x\n", " # return $498.2\n", "\n", " return x\n", "\n", "# The function contains lifted loops\n", "# Loop at line 30\n", "# Has 1 overloads\n", "# File: <ipython-input-2-b14bcb5c0c5e>\n", "# --- LINE 1 --- \n", "\n", "@jit('float64[:](float64[:,:])')\n", "\n", "# --- LINE 2 --- \n", "\n", "def gth_solve_jit2(A):\n", "\n", " # --- LINE 3 --- \n", "\n", " A1 = np.array(A, dtype=np.float64)\n", "\n", "# --- LINE 4 --- \n", "\n", "\n", "\n", " # --- LINE 5 --- \n", "\n", " if len(A1.shape) != 2 or A1.shape[0] != A1.shape[1]:\n", "\n", " # --- LINE 6 --- \n", "\n", " # raise ValueError('matrix must be square') # Not supported\n", "\n", " # --- LINE 7 --- \n", "\n", " raise ValueError\n", "\n", "# --- LINE 8 --- \n", "\n", "\n", "\n", " # --- LINE 9 --- \n", "\n", " n = A1.shape[0]\n", "\n", "# --- LINE 10 --- \n", "\n", "\n", "\n", " # --- LINE 11 --- \n", "\n", " x = np.zeros(n, dtype=np.float64)\n", "\n", "# --- LINE 12 --- \n", "\n", "\n", "\n", " # --- LINE 13 --- \n", "\n", " # === Reduction === #\n", "\n", " # --- LINE 14 --- \n", "\n", " for k in range(n-1):\n", "\n", " # --- LINE 15 --- \n", "\n", " scale = np.sum(A1[k, k+1:n])\n", "\n", " # --- LINE 16 --- \n", "\n", " if scale <= 0:\n", "\n", " # --- LINE 17 --- \n", "\n", " # There is one (and only one) recurrent class contained in\n", "\n", " # --- LINE 18 --- \n", "\n", " # {0, ..., k};\n", "\n", " # --- LINE 19 --- \n", "\n", " # compute the solution associated with that recurrent class.\n", "\n", " # --- LINE 20 --- \n", "\n", " n = k+1\n", "\n", " # --- LINE 21 --- \n", "\n", " break\n", "\n", " # --- LINE 22 --- \n", "\n", " for i in range(k+1, n):\n", "\n", " # --- LINE 23 --- \n", "\n", " A1[i, k] /= scale\n", "\n", "# --- LINE 24 --- \n", "\n", "\n", "\n", " # --- LINE 25 --- \n", "\n", " for j in range(k+1, n):\n", "\n", " # --- LINE 26 --- \n", "\n", " A1[i, j] += A1[i, k] * A1[k, j]\n", "\n", "# --- LINE 27 --- \n", "\n", "\n", "\n", " # --- LINE 28 --- \n", "\n", " # === Backward substitution === #\n", "\n", " # --- LINE 29 --- \n", "\n", " x[n-1] = 1\n", "\n", " # --- LINE 30 --- \n", " # label 370\n", " # $370.2 = iternext(value=$phi370.1) :: pair<int64, bool>\n", " # $370.3 = pair_first(value=$370.2) :: int64\n", " # $370.4 = pair_second(value=$370.2) :: bool\n", " # del $370.2\n", " # $phi373.1 = $370.3 :: int64\n", " # del $370.3\n", " # branch $370.4, 373, 443\n", " # label 373\n", " # k.1 = $phi373.1 :: int64\n", " # del $phi373.1\n", " # label 347\n", " # A1.1 = A1 :: array(float64, 2d, C, nonconst)\n", " # del A1\n", " # i.1 = i :: int64\n", " # del i\n", " # k.1 = k :: int64\n", " # del k\n", " # n.1 = n :: int64\n", " # del n\n", " # x.1 = x :: array(float64, 1d, C, nonconst)\n", " # del x\n", " # $347.1 = global(range: <built-in function range>) :: range\n", " # $const347.3 = const(int, 2) :: int32\n", " # $347.4 = n.1 - $const347.3 :: int64\n", " # del $const347.3\n", " # $const347.5 = const(int, -1) :: int32\n", " # $const347.6 = const(int, -1) :: int32\n", " # $347.7 = call $347.1($347.4, $const347.5, $const347.6, ) :: (int64, int64, int64) -> range_state64\n", " # del $const347.6\n", " # del $const347.5\n", " # del $347.4\n", " # del $347.1\n", " # $347.8 = getiter(value=$347.7) :: range_iter64\n", " # del $347.7\n", " # $phi370.1 = $347.8 :: range_iter64\n", " # del $347.8\n", " # jump 370\n", "\n", " for k in range(n-2, -1, -1):\n", "\n", " # --- LINE 31 --- \n", " # label 396\n", " # $396.2 = iternext(value=$phi396.1) :: pair<int64, bool>\n", " # $396.3 = pair_first(value=$396.2) :: int64\n", " # $396.4 = pair_second(value=$396.2) :: bool\n", " # del $396.2\n", " # $phi399.1 = $396.3 :: int64\n", " # del $396.3\n", " # branch $396.4, 399, 439\n", " # label 399\n", " # i.1 = $phi399.1 :: int64\n", " # del $phi399.1\n", " # jump 376\n", " # label 376\n", " # $376.1 = global(range: <built-in function range>) :: range\n", " # $const376.3 = const(int, 1) :: int32\n", " # $376.4 = k.1 + $const376.3 :: int64\n", " # del $const376.3\n", " # $376.6 = call $376.1($376.4, n.1, ) :: (int64, int64) -> range_state64\n", " # del $376.4\n", " # del $376.1\n", " # $376.7 = getiter(value=$376.6) :: range_iter64\n", " # del $376.6\n", " # $phi396.1 = $376.7 :: range_iter64\n", " # del $376.7\n", " # jump 396\n", "\n", " for i in range(k+1, n):\n", "\n", " # --- LINE 32 --- \n", " # label 443\n", " # del x.1\n", " # del n.1\n", " # del A1.1\n", " # del $phi373.1\n", " # del $phi370.1\n", " # del $370.4\n", " # jump 444\n", " # $x399.2 = x.1 :: array(float64, 1d, C, nonconst)\n", " # $k399.3 = k.1 :: int64\n", " # $399.6 = getitem(index=k.1, value=x.1) :: float64\n", " # $399.9 = getitem(index=i.1, value=x.1) :: float64\n", " # $399.13 = build_tuple(items=[Var(i.1, <ipython-input-2-b14bcb5c0c5e> (30)), Var(k.1, <ipython-input-2-b14bcb5c0c5e> (30))]) :: (int64 x 2)\n", " # $399.14 = getitem(index=$399.13, value=A1.1) :: float64\n", " # del $399.13\n", " # $399.15 = $399.9 * $399.14 :: float64\n", " # del $399.9\n", " # del $399.14\n", " # $399.16 = inplace_binop(rhs=$399.15, lhs=$399.6, fn=+) :: float64\n", " # del $399.6\n", " # del $399.15\n", " # $x399.2[$k399.3] = $399.16 :: (array(float64, 1d, C, nonconst), int64, float64) -> none\n", " # del $x399.2\n", " # del $k399.3\n", " # del $399.16\n", " # jump 396\n", " # label 440\n", " # jump 370\n", " # label 439\n", " # del $phi399.1\n", " # del $phi396.1\n", " # del $396.4\n", " # jump 440\n", " # label 444\n", " # $444.3 = build_tuple(items=[Var(i.1, <ipython-input-2-b14bcb5c0c5e> (30)), Var(k.1, <ipython-input-2-b14bcb5c0c5e> (30))]) :: (int64 x 2)\n", " # del k.1\n", " # del i.1\n", " # $444.4 = cast(value=$444.3) :: (int64 x 2)\n", " # del $444.3\n", " # return $444.4\n", "\n", " x[k] += x[i] * A1[i, k]\n", "\n", "# --- LINE 33 --- \n", "\n", "\n", "\n", " # --- LINE 34 --- \n", "\n", " # === Normalization === #\n", "\n", " # --- LINE 35 --- \n", "\n", " norm = np.sum(x)\n", "\n", " # --- LINE 36 --- \n", "\n", " for k in range(n):\n", "\n", " # --- LINE 37 --- \n", "\n", " x[k] /= norm\n", "\n", "# --- LINE 38 --- \n", "\n", "\n", "\n", " # --- LINE 39 --- \n", "\n", " return x\n", "\n", "\n", "# Loop at line 36\n", "# Has 1 overloads\n", "# File: <ipython-input-2-b14bcb5c0c5e>\n", "# --- LINE 1 --- \n", "\n", "@jit('float64[:](float64[:,:])')\n", "\n", "# --- LINE 2 --- \n", "\n", "def gth_solve_jit2(A):\n", "\n", " # --- LINE 3 --- \n", "\n", " A1 = np.array(A, dtype=np.float64)\n", "\n", "# --- LINE 4 --- \n", "\n", "\n", "\n", " # --- LINE 5 --- \n", "\n", " if len(A1.shape) != 2 or A1.shape[0] != A1.shape[1]:\n", "\n", " # --- LINE 6 --- \n", "\n", " # raise ValueError('matrix must be square') # Not supported\n", "\n", " # --- LINE 7 --- \n", "\n", " raise ValueError\n", "\n", "# --- LINE 8 --- \n", "\n", "\n", "\n", " # --- LINE 9 --- \n", "\n", " n = A1.shape[0]\n", "\n", "# --- LINE 10 --- \n", "\n", "\n", "\n", " # --- LINE 11 --- \n", "\n", " x = np.zeros(n, dtype=np.float64)\n", "\n", "# --- LINE 12 --- \n", "\n", "\n", "\n", " # --- LINE 13 --- \n", "\n", " # === Reduction === #\n", "\n", " # --- LINE 14 --- \n", "\n", " for k in range(n-1):\n", "\n", " # --- LINE 15 --- \n", "\n", " scale = np.sum(A1[k, k+1:n])\n", "\n", " # --- LINE 16 --- \n", "\n", " if scale <= 0:\n", "\n", " # --- LINE 17 --- \n", "\n", " # There is one (and only one) recurrent class contained in\n", "\n", " # --- LINE 18 --- \n", "\n", " # {0, ..., k};\n", "\n", " # --- LINE 19 --- \n", "\n", " # compute the solution associated with that recurrent class.\n", "\n", " # --- LINE 20 --- \n", "\n", " n = k+1\n", "\n", " # --- LINE 21 --- \n", "\n", " break\n", "\n", " # --- LINE 22 --- \n", "\n", " for i in range(k+1, n):\n", "\n", " # --- LINE 23 --- \n", "\n", " A1[i, k] /= scale\n", "\n", "# --- LINE 24 --- \n", "\n", "\n", "\n", " # --- LINE 25 --- \n", "\n", " for j in range(k+1, n):\n", "\n", " # --- LINE 26 --- \n", "\n", " A1[i, j] += A1[i, k] * A1[k, j]\n", "\n", "# --- LINE 27 --- \n", "\n", "\n", "\n", " # --- LINE 28 --- \n", "\n", " # === Backward substitution === #\n", "\n", " # --- LINE 29 --- \n", "\n", " x[n-1] = 1\n", "\n", " # --- LINE 30 --- \n", "\n", " for k in range(n-2, -1, -1):\n", "\n", " # --- LINE 31 --- \n", "\n", " for i in range(k+1, n):\n", "\n", " # --- LINE 32 --- \n", "\n", " x[k] += x[i] * A1[i, k]\n", "\n", "# --- LINE 33 --- \n", "\n", "\n", "\n", " # --- LINE 34 --- \n", "\n", " # === Normalization === #\n", "\n", " # --- LINE 35 --- \n", "\n", " norm = np.sum(x)\n", "\n", " # --- LINE 36 --- \n", " # label 472\n", " # $472.2 = iternext(value=$phi472.1) :: pair<int64, bool>\n", " # $472.3 = pair_first(value=$472.2) :: int64\n", " # $472.4 = pair_second(value=$472.2) :: bool\n", " # del $472.2\n", " # $phi475.1 = $472.3 :: int64\n", " # del $472.3\n", " # branch $472.4, 475, 497\n", " # label 459\n", " # x.1 = x :: array(float64, 1d, C, nonconst)\n", " # del x\n", " # k.1 = k :: int64\n", " # del k\n", " # norm.1 = norm :: float64\n", " # del norm\n", " # n.1 = n :: int64\n", " # del n\n", " # $459.1 = global(range: <built-in function range>) :: range\n", " # $459.3 = call $459.1(n.1, ) :: (int64,) -> range_state64\n", " # del n.1\n", " # del $459.1\n", " # $459.4 = getiter(value=$459.3) :: range_iter64\n", " # del $459.3\n", " # $phi472.1 = $459.4 :: range_iter64\n", " # del $459.4\n", " # jump 472\n", " # label 475\n", " # k.1 = $phi475.1 :: int64\n", " # del $phi475.1\n", "\n", " for k in range(n):\n", "\n", " # --- LINE 37 --- \n", " # label 497\n", " # del x.1\n", " # del norm.1\n", " # del $phi475.1\n", " # del $phi472.1\n", " # del $472.4\n", " # jump 498\n", " # label 498\n", " # $498.2 = build_tuple(items=[Var(k.1, <ipython-input-2-b14bcb5c0c5e> (36))]) :: (int64 x 1)\n", " # del k.1\n", " # $498.3 = cast(value=$498.2) :: (int64 x 1)\n", " # del $498.2\n", " # return $498.3\n", " # $x475.2 = x.1 :: array(float64, 1d, C, nonconst)\n", " # $k475.3 = k.1 :: int64\n", " # $475.6 = getitem(index=k.1, value=x.1) :: float64\n", " # $475.8 = inplace_binop(rhs=norm.1, lhs=$475.6, fn=/?) :: float64\n", " # del $475.6\n", " # $x475.2[$k475.3] = $475.8 :: (array(float64, 1d, C, nonconst), int64, float64) -> none\n", " # del $x475.2\n", " # del $k475.3\n", " # del $475.8\n", " # jump 472\n", "\n", " x[k] /= norm\n", "\n", "# --- LINE 38 --- \n", "\n", "\n", "\n", " # --- LINE 39 --- \n", "\n", " return x\n", "\n", "\n", "\n", "================================================================================\n" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "sizes = [10, 50, 100] # [10, 50, 100, 1000]\n", "rand_matrices = []\n", "\n", "for n in sizes:\n", " Q = np.random.rand(n, n)\n", " Q /= np.sum(Q, axis=1, keepdims=True)\n", " rand_matrices.append(Q)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "for i, Q in enumerate(rand_matrices):\n", " print 'rand_matrices[{0}] ({1} x {2})'.format(i, Q.shape[0], Q.shape[1])\n", " %timeit gth_solve(Q)\n", " %timeit gth_solve_jit(Q)\n", " %timeit gth_solve_jit2(Q)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rand_matrices[0] (10 x 10)\n", "1000 loops, best of 3: 182 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "100000 loops, best of 3: 5.2 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "1000 loops, best of 3: 281 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "rand_matrices[1] (50 x 50)\n", "1000 loops, best of 3: 1.12 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "10000 loops, best of 3: 63.1 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "10 loops, best of 3: 21.1 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "rand_matrices[2] (100 x 100)\n", "100 loops, best of 3: 3 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "1000 loops, best of 3: 429 \u00b5s per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "10 loops, best of 3: 164 ms per loop" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] } ], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "import platform\n", "print platform.platform()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Darwin-13.4.0-x86_64-i386-64bit\n" ] } ], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "import sys\n", "print sys.version" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "2.7.8 (default, Jul 2 2014, 10:14:46) \n", "[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.40)]\n" ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "print np.__version__" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1.9.0\n" ] } ], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "import numba\n", "print numba.__version__" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "0.15.1\n" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "import llvm\n", "print llvm.__version__" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "0.12.7-5-gc0ae9c2\n" ] } ], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
bsd-3-clause
joshwalawender/KeckUtilities
telescopeSchedule/Site Calendar.ipynb
1
8987
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from pathlib import Path\n", "from astropy.table import Table\n", "\n", "from telescopeSchedule import get_telsched" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "def site_table(ndays=5):\n", " sched = get_telsched(from_date=None, ndays=ndays, telnr=None)\n", "\n", " site_list = ['HQ']\n", " site_list.extend( sorted(['ANU', 'CIT', 'UCB', 'UCD', 'UCLA', 'UCSD', 'UCI', 'UCR', 'Yale',\n", " 'USRA', 'NU', 'IfA', 'Stanford', 'Swinburne', 'UCSB', 'UCSC']) )\n", " site_list.append('Other')\n", "\n", " t = Table(names=['Run'] + site_list,\n", " dtype=['a40'] + ['a100']*len(site_list))\n", "\n", " for prog in sched:\n", " row = {site: '' for site in site_list}\n", " row['Run'] = f\"{prog['Date']} {prog['TelNr']} ({prog['ProjCode']})\"\n", " tonights_observers = prog['Observers'].split(',')\n", " tonights_sites = prog['Location'].split(',')\n", " for obs,s in zip(tonights_observers, tonights_sites):\n", " if s in row.keys():\n", " row[s] += f\"{obs}, \"\n", " else:\n", " row['Other'] += f\"{obs}, \"\n", " for site in site_list:\n", " if row[site] != '':\n", " nobs = len(row[site].split(',')) - 1\n", " row[site] = row[site].strip(', ')\n", " row[site] += f' ({nobs})'\n", " t.add_row(row)\n", "\n", " return t" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<i>Table length=16</i>\n", "<table id=\"table4830594216\" class=\"table-striped table-bordered table-condensed\">\n", "<thead><tr><th>Run</th><th>HQ</th><th>ANU</th><th>CIT</th><th>IfA</th><th>NU</th><th>Stanford</th><th>Swinburne</th><th>UCB</th><th>UCD</th><th>UCI</th><th>UCLA</th><th>UCR</th><th>UCSB</th><th>UCSC</th><th>UCSD</th><th>USRA</th><th>Yale</th><th>Other</th></tr></thead>\n", "<thead><tr><th>bytes40</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th><th>bytes100</th></tr></thead>\n", "<tr><td>2020-03-10 1 (H277)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Lemaux, Pelliccia (2)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>\n", "<tr><td>2020-03-10 1 (N028)</td><td>Topping, Runco, Pahl (3)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Shapley (1)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>\n", "<tr><td>2020-03-10 2 (K300)</td><td>Alvarez (1)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>\n", "<tr><td>2020-03-10 2 (E339)</td><td>Ragland (1)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>\n", "<tr><td>2020-03-11 1 (S322)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Shimakawa, Onodera (2)</td></tr>\n", "<tr><td>2020-03-11 1 (N028)</td><td>Topping, Runco, Pahl (3)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Shapley (1)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>\n", "<tr><td>2020-03-11 2 (C197)</td><td></td><td></td><td>Buzard, Camarca, Wallack (3)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>\n", "<tr><td>2020-03-11 2 (E350)</td><td>Ragland (1)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>\n", "<tr><td>2020-03-11 2 (E341)</td><td>Ragland (1)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>\n", "<tr><td>2020-03-12 1 (S322)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Shimakawa, Onodera (2)</td></tr>\n", "<tr><td>2020-03-12 1 (U169)</td><td>Topping, Runco, Pahl (3)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Shapley (1)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>\n", "<tr><td>2020-03-12 2 (U149)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Theissen, Aganze, Hsu, Gerasimov (4)</td><td></td><td></td><td></td></tr>\n", "<tr><td>2020-03-13 1 (C206)</td><td></td><td></td><td>Scoville, Darvish Sarvestani, Faisst (3)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>\n", "<tr><td>2020-03-13 2 (H311)</td><td></td><td></td><td></td><td>Liu (1)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>\n", "<tr><td>2020-03-14 1 (C206)</td><td></td><td></td><td>Scoville, Darvish Sarvestani, Faisst (3)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>\n", "<tr><td>2020-03-14 2 (U010)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Martin (1)</td><td></td><td></td><td></td><td></td><td></td></tr>\n", "</table>" ], "text/plain": [ "<Table length=16>\n", " Run HQ ... Yale Other \n", " bytes40 bytes100 ... bytes100 bytes100 \n", "------------------- ------------------------ ... -------- ----------------------\n", "2020-03-10 1 (H277) ... \n", "2020-03-10 1 (N028) Topping, Runco, Pahl (3) ... \n", "2020-03-10 2 (K300) Alvarez (1) ... \n", "2020-03-10 2 (E339) Ragland (1) ... \n", "2020-03-11 1 (S322) ... Shimakawa, Onodera (2)\n", "2020-03-11 1 (N028) Topping, Runco, Pahl (3) ... \n", "2020-03-11 2 (C197) ... \n", "2020-03-11 2 (E350) Ragland (1) ... \n", "2020-03-11 2 (E341) Ragland (1) ... \n", "2020-03-12 1 (S322) ... Shimakawa, Onodera (2)\n", "2020-03-12 1 (U169) Topping, Runco, Pahl (3) ... \n", "2020-03-12 2 (U149) ... \n", "2020-03-13 1 (C206) ... \n", "2020-03-13 2 (H311) ... \n", "2020-03-14 1 (C206) ... \n", "2020-03-14 2 (U010) ... " ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "site_table(ndays=5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.10" } }, "nbformat": 4, "nbformat_minor": 4 }
bsd-2-clause
AugurProject/Simulator.jl
test/workbench.ipynb
3
5770
{ "metadata": { "language": "Julia", "name": "", "signature": "sha256:ffe211f4cf239e551beb097b1c14bd3a3fa754bf67ee217a2ddf4e55952a2de5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "reload(\"repl.jl\");" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "xdump(sim)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "using PyPlot;\n", "PyPlot.svg(false);" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "subplot(221);\n", "colorbar(contourf(mean_repdelta[\"hierarchical\"], origin=\"upper\"));\n", "title(\"hierarchical\");\n", "ylabel(\"reporter\");\n", "\n", "subplot(222);\n", "colorbar(contourf(mean_repdelta[\"cflash\"], origin=\"upper\"));\n", "title(\"cflash\");\n", "\n", "subplot(223);\n", "contourf(mean_repdelta[\"PCA\"], origin=\"upper\");\n", "title(\"PCA\");\n", "xlabel(\"reporting round\");\n", "ylabel(\"reporter\");\n", "\n", "subplot(224);\n", "colorbar(contourf(mean_repdelta[\"k-means\"], origin=\"upper\"));\n", "title(\"k-means\");\n", "xlabel(\"reporting round\");" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "function buildplot(metric)\n", " plot(1:sim.TIMESTEPS, mean(track[\"PCA\"][metric], 2),\n", " 1:sim.TIMESTEPS, mean(track[\"cflash\"][metric], 2),\n", " 1:sim.TIMESTEPS, mean(track[\"fixed-variance\"][metric], 2),\n", " 1:sim.TIMESTEPS, mean(track[\"k-means\"][metric], 2),\n", " 1:sim.TIMESTEPS, mean(track[\"hierarchical\"][metric], 2))\n", "end\n", "\n", "fig = figure();\n", "\n", "subplot(221);\n", "buildplot(:MCC)\n", "grid();\n", "ylabel(\"Matthews corr. coeff.\");\n", "legend([\"PCA\", \"cflash\", \"fixed-variance\", \"k-means\", \"hierarchical\"],\n", " bbox_to_anchor=(-0.15, 1.35),\n", " loc=\"upper left\",\n", " ncol=4);\n", "\n", "subplot(222);\n", "buildplot(:spearman)\n", "ax = gca();\n", "ax[:yaxis][:set_ticks_position](\"right\");\n", "ax[:set_xscale](\"linear\");\n", "ylabel(\"spearman rank corr.\");\n", "grid();\n", "\n", "subplot(223);\n", "buildplot(:beats)\n", "ax = gca();\n", "ax[:set_xscale](\"log\");\n", "xlabel(\"reporting round\");\n", "ylabel(\"beats\");\n", "grid();\n", "\n", "subplot(224);\n", "buildplot(:liars_bonus)\n", "xlabel(\"reporting round\");\n", "ylabel(\"liars' bonus\");\n", "ax = gca();\n", "ax[:yaxis][:set_ticks_position](\"right\");\n", "ax[:set_xscale](\"log\");\n", "grid();\n", "\n", "fig[:canvas][:draw]();" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "fig = figure();\n", "errorbar(timesteps, mean_rep_liars[\"PCA\"], yerr=std_rep_liars[\"PCA\"]);\n", "hold(\"on\");\n", "errorbar(timesteps, mean_rep_liars[\"cflash\"], yerr=std_rep_liars[\"cflash\"]);\n", "errorbar(timesteps, mean_rep_liars[\"fixed-variance\"], yerr=std_rep_liars[\"fixed-variance\"]);\n", "errorbar(timesteps, mean_rep_liars[\"k-means\"], yerr=std_rep_liars[\"k-means\"]);\n", "errorbar(timesteps, mean_rep_liars[\"hierarchical\"], yerr=std_rep_liars[\"hierarchical\"]);\n", "xlabel(\"time (# reporting rounds)\");\n", "ylabel(\"liars' reputation\");\n", "ax = gca();\n", "ax[:set_xscale](\"linear\");\n", "grid();\n", "legend([\"PCA\", \"cflash\", \"fixed-variance\", \"k-means\", \"hierarchical\"],\n", " loc=\"center right\",\n", " bbox_to_anchor=(1.4, 0.55),\n", " ncol=1);\n", "fig[:canvas][:draw]();" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "fig = figure();\n", "metric = :MCC;\n", "timesteps = 1:sim.TIMESTEPS;\n", "errorbar(timesteps, mean(track[\"PCA\"][metric], 2), yerr=std(track[\"PCA\"][metric], 2) / sim.SQRTN);\n", "hold(\"on\");\n", "errorbar(timesteps, mean(track[\"cflash\"][metric], 2), yerr=std(track[\"cflash\"][metric], 2) / sim.SQRTN);\n", "errorbar(timesteps, mean(track[\"fixed-variance\"][metric], 2), yerr=std(track[\"fixed-variance\"][metric], 2) / sim.SQRTN);\n", "errorbar(timesteps, mean(track[\"k-means\"][metric], 2), yerr=std(track[\"k-means\"][metric], 2) / sim.SQRTN);\n", "errorbar(timesteps, mean(track[\"hierarchical\"][metric], 2), yerr=std(track[\"hierarchical\"][metric], 2) / sim.SQRTN);\n", "grid();\n", "xlabel(\"time (# reporting rounds)\");\n", "ylabel(\"Matthews corr. coeff.\");\n", "legend([\"PCA\", \"cflash\", \"fixed-variance\", \"k-means\", \"hierarchical\"],\n", " loc=\"center right\",\n", " bbox_to_anchor=(1.4, 0.55),\n", " ncol=1);\n", "fig[:canvas][:draw]();" ], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
gpl-3.0
twosigma/beakerx
doc/python/TableAPI.ipynb
1
11263
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Python API for Table Display\n", "\n", "In addition to APIs for creating and formatting BeakerX's interactive table widget, the Python runtime configures pandas to display tables with the interactive widget instead of static HTML." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from beakerx import *\n", "from beakerx.object import beakerx" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6cc688d4ca4e4d6d9f0dbdf14285f73f", "version_major": 2, "version_minor": 0 } }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pd.read_csv('../resources/data/interest-rates.csv')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c109cc21d4f948b395009abcdb65dfe2", "version_major": 2, "version_minor": 0 } }, "metadata": {}, "output_type": "display_data" } ], "source": [ "table = TableDisplay(pd.read_csv('../resources/data/interest-rates.csv'))\n", "table.setAlignmentProviderForColumn('m3', TableDisplayAlignmentProvider.CENTER_ALIGNMENT)\n", "table.setRendererForColumn(\"y10\", TableDisplayCellRenderer.getDataBarsRenderer(False))\n", "table.setRendererForType(ColumnType.Double, TableDisplayCellRenderer.getDataBarsRenderer(True))\n", "table" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c6acb414397f494b84c0046870db07bc", "version_major": 2, "version_minor": 0 } }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df = pd.read_csv('../resources/data/interest-rates.csv')\n", "df['time'] = df['time'].str.slice(0,19).astype('datetime64[ns]')\n", "table = TableDisplay(df)\n", "table.setStringFormatForTimes(TimeUnit.DAYS)\n", "table.setStringFormatForType(ColumnType.Double, TableDisplayStringFormat.getDecimalFormat(4,6))\n", "table.setStringFormatForColumn(\"m3\", TableDisplayStringFormat.getDecimalFormat(0, 0))\n", "\n", "table" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "table = TableDisplay(pd.read_csv('../resources/data/interest-rates.csv'))\n", "table\n", "#freeze a column\n", "table.setColumnFrozen(\"y1\", True)\n", "#hide a column\n", "table.setColumnVisible(\"y30\", False)\n", "\n", "table.setColumnOrder([\"m3\", \"y1\", \"y5\", \"time\", \"y2\"])\n", "\n", "def config_tooltip(row, column, table):\n", " return \"The value is: \" + str(table.values[row][column])\n", "\n", "table.setToolTip(config_tooltip)\n", "\n", "table.setDataFontSize(16)\n", "table.setHeaderFontSize(18)\n", "\n", "table" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mapListColorProvider = [\n", " {\"a\": 1, \"b\": 2, \"c\": 3},\n", " {\"a\": 4, \"b\": 5, \"c\": 6},\n", " {\"a\": 7, \"b\": 8, \"c\": 5}\n", "]\n", "tabledisplay = TableDisplay(mapListColorProvider)\n", "\n", "colors = [\n", " [Color.LIGHT_GRAY, Color.GRAY, Color.RED],\n", " [Color.DARK_GREEN, Color.ORANGE, Color.RED],\n", " [Color.MAGENTA, Color.BLUE, Color.BLACK]\n", "]\n", "\n", "def color_provider(row, column, table):\n", " return colors[row][column]\n", "\n", "tabledisplay.setFontColorProvider(color_provider)\n", "tabledisplay" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mapListFilter = [\n", " {\"a\":1, \"b\":2, \"c\":3},\n", " {\"a\":4, \"b\":5, \"c\":6},\n", " {\"a\":7, \"b\":8, \"c\":5}\n", "]\n", "display = TableDisplay(mapListFilter)\n", "\n", "def filter_row(row, model):\n", " return model[row][1] == 8\n", "\n", "display.setRowFilter(filter_row)\n", "\n", "display" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "table = TableDisplay(pd.read_csv('../resources/data/interest-rates.csv'))\n", "table.addCellHighlighter(TableDisplayCellHighlighter.getHeatmapHighlighter(\"m3\", TableDisplayCellHighlighter.FULL_ROW))\n", "\n", "table" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Display mode: Pandas default" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "beakerx.pandas_display_default()\n", "pd.read_csv('../resources/data/interest-rates.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Display mode: TableDisplay Widget" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "beakerx.pandas_display_table()\n", "pd.read_csv('../resources/data/interest-rates.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Recognized Formats" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "TableDisplay([{'y1':4, 'm3':2, 'z2':1}, {'m3':4, 'z2':2}])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "TableDisplay({\"x\" : 1, \"y\" : 2})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Programmable Table Actions" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mapList4 = [\n", " {\"a\":1, \"b\":2, \"c\":3},\n", " {\"a\":4, \"b\":5, \"c\":6},\n", " {\"a\":7, \"b\":8, \"c\":5}\n", "]\n", "display = TableDisplay(mapList4)\n", "\n", "def dclick(row, column, tabledisplay):\n", " tabledisplay.values[row][column] = sum(map(int,tabledisplay.values[row]))\n", "\n", "display.setDoubleClickAction(dclick)\n", "\n", "def negate(row, column, tabledisplay):\n", " tabledisplay.values[row][column] = -1 * int(tabledisplay.values[row][column])\n", "\n", "def incr(row, column, tabledisplay):\n", " tabledisplay.values[row][column] = int(tabledisplay.values[row][column]) + 1\n", "\n", "display.addContextMenuItem(\"negate\", negate)\n", "display.addContextMenuItem(\"increment\", incr)\n", "\n", "display" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mapList4 = [\n", " {\"a\":1, \"b\":2, \"c\":3},\n", " {\"a\":4, \"b\":5, \"c\":6},\n", " {\"a\":7, \"b\":8, \"c\":5}\n", "]\n", "display = TableDisplay(mapList4)\n", "\n", "#set what happens on a double click\n", "display.setDoubleClickAction(\"runDoubleClick\")\n", "\n", "display" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "runDoubleClick" ] }, "outputs": [], "source": [ "print(\"runDoubleClick fired\")\n", "print(display.details)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Set index to DataFrame" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv('../resources/data/interest-rates.csv')\n", "df.set_index(['m3'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "df = pd.read_csv('../resources/data/interest-rates.csv')\n", "df.index = df['time']\n", "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Update cell" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dataToUpdate = [\n", " {'a':1, 'b':2, 'c':3},\n", " {'a':4, 'b':5, 'c':6},\n", " {'a':7, 'b':8, 'c':9}\n", "]\n", "tableToUpdate = TableDisplay(dataToUpdate)\n", "\n", "tableToUpdate" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tableToUpdate.values[0][0] = 99\n", "tableToUpdate.sendModel()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tableToUpdate.updateCell(2,\"c\",121)\n", "tableToUpdate.sendModel()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## HTML format\n", "\n", "HTML format allows markup and styling of the cell's content. Interactive JavaScript is not supported however." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "table = TableDisplay({\n", " 'w': '$2 \\\\sigma$',\n", " 'x': '<em style=\"color:red\">italic red</em>',\n", " 'y': '<b style=\"color:blue\">bold blue</b>',\n", " 'z': 'strings without markup work fine too',\n", " })\n", "table.setStringFormatForColumn(\"Value\", TableDisplayStringFormat.getHTMLFormat())\n", "table" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Auto linking of URLs\n", "\n", "The normal string format automatically detects URLs and links them. An underline appears when the mouse hovers over such a string, and when you click it opens in a new window." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "TableDisplay({'Two Sigma': 'http://twosigma.com', 'BeakerX': 'http://BeakerX.com'})" ] } ], "metadata": { "celltoolbar": "Tags", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.8" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": false, "sideBar": false, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": false, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
lisitsyn/shogun
doc/ipython-notebooks/ica/ecg_sep.ipynb
4
7779
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Fetal Electrocardiogram Extraction by Source Subspace Separation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### By Kevin Hughes and Andreas Ziehe" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook illustrates <a href=\"http://en.wikipedia.org/wiki/Blind_signal_separation\">Blind Source Seperation</a>(BSS) on several time synchronised Electrocardiogram's (ECG's) of the baby's mother using <a href=\"http://en.wikipedia.org/wiki/Independent_component_analysis\">Independent Component Analysis</a> (ICA) in Shogun. This is used to extract the baby's ECG from it." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This task has been studied before and has been published in these papers:\n", "\n", "Cardoso, J. F. (1998, May). Multidimensional independent component analysis. \n", "In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 \n", "IEEE International Conference on (Vol. 4, pp. 1941-1944). IEEE.\n", "\n", "Dirk Callaerts, \"Signal Separation Methods based on Singular Value\n", "Decomposition and their Application to the Real-Time Extraction of the\n", "Fetal Electrocardiogram from Cutaneous Recordings\", Ph.D. Thesis,\n", "K.U.Leuven - E.E. Dept., Dec. 1989.\n", "\n", "L. De Lathauwer, B. De Moor, J. Vandewalle, \"Fetal Electrocardiogram\n", "Extraction by Source Subspace Separation\", Proc. IEEE SP / ATHOS\n", "Workshop on HOS, June 12-14, 1995, Girona, Spain, pp. 134-138.\n", "\n", "In this workbook I am going to show you how a similar result can be obtained using the ICA algorithms available in the Shogun Machine Learning Toolbox." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First we need some data, luckily an ECG dataset is distributed in the Shogun data repository. So the first step is to change the directory then we'll load the data." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# change to the shogun-data directory\n", "import os\n", "SHOGUN_DATA_DIR=os.getenv('SHOGUN_DATA_DIR', '../../../data')\n", "os.chdir(os.path.join(SHOGUN_DATA_DIR, 'ica'))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "# load data\n", "# Data originally from:\n", "# http://perso.telecom-paristech.fr/~cardoso/icacentral/base_single.html\n", "data = np.loadtxt('foetal_ecg.dat')\n", "\n", "# time steps\n", "time_steps = data[:,0]\n", "\n", "# abdominal signals\n", "abdominal2 = data[:,1]\n", "abdominal3 = data[:,2]\n", "abdominal4 = data[:,3]\n", "abdominal5 = data[:,4]\n", "abdominal6 = data[:,5]\n", "\n", "# thoracic signals\n", "thoracic7 = data[:,6]\n", "thoracic8 = data[:,7]\n", "thoracic9 = data[:,8]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Before we go any further let's take a look at this data by plotting it:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "# plot signals\n", "import pylab as pl\n", "\n", "# abdominal signals\n", "for i in range(1,6):\n", " pl.figure(figsize=(14,3))\n", " pl.plot(time_steps, data[:,i], 'r')\n", " pl.title('Abdominal %d' % (i))\n", " pl.grid()\n", " pl.show()\n", "\n", "# thoracic signals\n", "for i in range(6,9):\n", " pl.figure(figsize=(14,3))\n", " pl.plot(time_steps, data[:,i], 'r')\n", " pl.title('Thoracic %d' % (i))\n", " pl.grid()\n", " pl.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The peaks in the plot represent a heart beat but its pretty hard to interpret and I know I definitely can't see two distinc signals, lets see what we can do with ICA!\n", "\n", "In general for performing Source Separation we need at least as many mixed signals as sources we're hoping to separate and in this case we actually have a lot more (9 mixtures but there is only 2 sources, mother and baby). There are several different approaches for handling this situation, some algorithms are specifically designed to handle this case while other times the data is pre-processed with Principal Component Analysis (PCA). It is also common to simply apply the separation to all the sources and then choose some of the extracted signal manually or using some other know criteria which is what I'll be showing in this example." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we create our ICA data set and convert to a Shogun features type:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import shogun as sg\n", "\n", "# Signal Matrix X\n", "X = (np.c_[abdominal2, abdominal3, abdominal4, abdominal5, abdominal6, thoracic7,thoracic8,thoracic9]).T\n", "\n", "# Convert to features for shogun\n", "mixed_signals = sg.features((X).astype(np.float64))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we apply the ICA algorithm to separate the sources:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Separating with SOBI\n", "sep = sg.transformer('SOBI')\n", "sep.put('tau', 1.0*np.arange(0,120))\n", " \n", "sep.fit(mixed_signals)\n", "signals = sep.transform(mixed_signals)\n", "\n", "S_ = signals.get('feature_matrix')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And we plot the separated signals:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Show separation results\n", "\n", "# Separated Signal i\n", "for i in range(S_.shape[0]):\n", " pl.figure(figsize=(14,3))\n", " pl.plot(time_steps, S_[i], 'r')\n", " pl.title('Separated Signal %d' % (i+1))\n", " pl.grid()\n", " pl.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can interpret the results! First we are going to exploit the known fact that the baby's heart rate is about twice that of the mothers.\n", "\n", "Our interpretation of the results is as follows:\n", "\n", "* separated signal 1 -> baby ECG\n", "* separated signal 2 -> still a bit mixed baby +mother\n", "* separated signal 3 -> baby ECG\n", "* separated signal 4 -> slow drift due to breathing of the mother\n", "* separated signal 5 -> mainly mother ECG but still a bit mixed and noisy\n", "* separated signal 6-8 -> mothers ECG, with 8 being the best\n", "\n", "And thats the proof of concept Fetal Electrocardiogram Extraction by Source Subspace Separation using the Shogun Machine Learning Toolkit!" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 1 }
bsd-3-clause
robertarles/jupyter-notes
Temp_sendclicks.ipynb
1
3754
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mongo connection Collection(Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'kinesis_traffic'), 'recorded_clicks')\n", "done with [18534] lines\n", "clicks [[{'price_format_id': 2, 'campaign_type_id': 1, 'redirect_url': 'https://www.google.com/search?q=offer+link', 'click_pixel': False, 'language_raw': 'qu', 'traffic_type_id': 1, 'campaign_id': 22030, 'creative_id': 14121, 'ip_address': '52.42.0.110', 'subid_1': 'SUB_ID/', 'test': False, 'request_date_utc': '2016-10-05 21:56:26.756469', 'location_id': 107, 'offer_id': 8146, 'country': 'US', 'create_campaign_direct_channel': False, 'region': 'OR', 'domain': 'c.demo-newtrk.cakemarketing.com', 'client_id': 3, 'session_id': 'bb23b051-adf5-437b-8ca7-67f9e5fdc4bb', 'create_campaign_copy_parent': False, 'price_received': 2, 'city': 'portland', 'click_id': '08caba62-d61e-497c-b6a7-672f767117ae', 'first_touch_by_publisher': True, 'tracking_id': '81bc8891-9e8c-409e-a64a-c46deabfe7c8', 'visitor_id': 'd79af5d1-cc30-487c-9f47-e24c715209ee', 'price_owed': 1, 'offer_contract_id': 8686, 'user_agent': 'HasOffers Mobile AppTracking v1.0', 'first_touch': True, '_id': ObjectId('57f7d3f3c1518133c37786e0'), 'browser_version_minor_id': 2, 'request_date': '2016-10-05 14:56:26.756469', 'language_id': 77, 'publisher_id': 6683, 'create_campaign_copy_parent_pixel': False, 'isp_id': 35832, 'create_campaign_internal_campaign_redirect': False}]]\n" ] } ], "source": [ "import json\n", "from pymongo import MongoClient\n", "import random \n", "\n", "MONGO_CONFIG = {\"host\": \"localhost\", \"port\": 27017}\n", "user_agents = [\n", " \"Mozilla/5.0 (Windows NT 6.1, Trident/7.0, rv:11.0) like Gecko\",\n", " \"Mozilla/5.0 (iPhone, CPU iPhone OS 9_3_4 like Mac OS X) AppleWebKit/601.1.46 (KHTML, like Gecko) Version/9.0 Mobile/13G35 Safari/601.1,apple_iphone_ver9\",\n", " \"HasOffers Mobile AppTracking v1.0\",\n", " \"Mozilla/5.0 (Linux, Android 5.0.1, SAMSUNG SCH-I545 4G Build/LRX22C) AppleWebKit/537.36 (KHTML, like Gecko) SamsungBrowser/2.1 Chrome/34.0.1847.76 Mobile Safari/537.36,samsung_sch_i545_ver1_suban50\"\n", "]\n", "\n", "recorded_clicks=MongoClient(**MONGO_CONFIG).kinesis_traffic.recorded_clicks\n", "print(\"mongo connection\", recorded_clicks)\n", "\n", "clicks = []\n", "with open('/Users/robert/dev/bigdata/traffic_gen/clicks.json', 'r') as clickfile:\n", " for line in clickfile.readlines():\n", " try:\n", " click = json.loads(line)\n", " click[\"user_agent\"] = random.choice(user_agents)\n", " if click[\"client_id\"] == 3:\n", " click[\"traffic_type_id\"] = 1\n", " clicks.append(click)\n", " recorded_clicks.insert_one(click)\n", " except:\n", " pass\n", " # print(\"decode skipped for [{}]\".format(line))\n", "print(\"done with [{}] lines\".format(len(clicks)))\n", "print(\"clicks [{}]\".format(clicks[:1]))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
Yangqing/caffe2
caffe2/python/tutorials/create_your_own_dataset.ipynb
1
38351
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# How do I create my own dataset?\n", "\n", "So Caffe2 uses a binary DB format to store the data that we would like to train models on. A Caffe2 DB is a glorified name of a key-value storage where the keys are usually randomized so that the batches are approximately i.i.d. The values are the real stuff here: they contain the serialized strings of the specific data formats that you would like your training algorithm to ingest. So, the stored DB would look (semantically) like this:\n", "\n", "key1 value1\n", "key2 value2\n", "key3 value3\n", "...\n", "\n", "To a DB, it treats the keys and values as strings, but you probably want structured contents. One way to do this is to use a TensorProtos protocol buffer: it essentially wraps Tensors, aka multi-dimensional arrays, together with the tensor data type and shape information. Then, one can use the TensorProtosDBInput operator to load the data into an SGD training fashion.\n", "\n", "Here, we will show you one example of how to create your own dataset. To this end, we will use the UCI Iris dataset - which was a very popular classical dataset for classifying Iris flowers. It contains 4 real-valued features representing the dimensions of the flower, and classifies things into 3 types of Iris flowers. The dataset can be downloaded [here](https://archive.ics.uci.edu/ml/datasets/Iris)." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:root:This caffe2 python run does not have GPU support. Will run in CPU only mode.\n", "WARNING:root:Debug message: No module named caffe2_pybind11_state_gpu\n" ] } ], "source": [ "# First let's import some necessities\n", "from __future__ import absolute_import\n", "from __future__ import division\n", "from __future__ import print_function\n", "from __future__ import unicode_literals\n", "\n", "%matplotlib inline\n", "import urllib2 # for downloading the dataset from the web.\n", "import numpy as np\n", "from matplotlib import pyplot\n", "from StringIO import StringIO\n", "from caffe2.python import core, utils, workspace\n", "from caffe2.proto import caffe2_pb2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Raw data looks like this:\n", "5.1,3.5,1.4,0.2,Iris-setosa\n", "4.9,3.0,1.4,0.2,Iris-setosa\n", "4.7,3.2,1.3,0.2,Iris-setosa\n", "4.6,3.1,1.5,0.2,...\n" ] } ], "source": [ "f = urllib2.urlopen('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data')\n", "raw_data = f.read()\n", "print('Raw data looks like this:')\n", "print(raw_data[:100] + '...')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# load the features to a feature matrix.\n", "features = np.loadtxt(StringIO(raw_data), dtype=np.float32, delimiter=',', usecols=(0, 1, 2, 3))\n", "# load the labels to a feature matrix\n", "label_converter = lambda s : {'Iris-setosa':0, 'Iris-versicolor':1, 'Iris-virginica':2}[s]\n", "labels = np.loadtxt(StringIO(raw_data), dtype=np.int, delimiter=',', usecols=(4,), converters={4: label_converter})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Before we do training, one thing that is often beneficial is to separate the dataset into training and testing. In this case, let's randomly shuffle the data, use the first 100 data points to do training, and the remaining 50 to do testing. For more sophisticated approaches, you can use e.g. cross validation to separate your dataset into multiple training and testing splits. Read more about cross validation [here](http://scikit-learn.org/stable/modules/cross_validation.html)." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "random_index = np.random.permutation(150)\n", "features = features[random_index]\n", "labels = labels[random_index]\n", "\n", "train_features = features[:100]\n", "train_labels = labels[:100]\n", "test_features = features[100:]\n", "test_labels = labels[100:]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XucXHWZ5/HPYxKBFkhc0iNIQrcMjs6oiNJhYQDNbRURo/uSZXFgFMdMxo7OgBGvLCQEowuvGBgvxI2wM46JSERlAHWXCR0W2FlDOlwCGNZFzIURQkNIALlI4Nk/fqeS6kpVn1Pdp+pc6vt+vepVVef8+pynTlU9fep3nt855u6IiEi5vCrrAEREJH1K7iIiJaTkLiJSQkruIiIlpOQuIlJCSu4iIiWk5N4mZjbOzJ41syPSbJtCXLPNbHOr19Ng3ePNzM2sN3p+lZl9OaVlH2lmz1Y9v8PMzklj2dHybjazs9Ja3gjr+TMzu9fMnjGz+a1eX1mY2VwzuzXrOLKk5N5AlFwrt1fM7Pmq501/qd39ZXc/0N23ptm2nVr9hXH3ue7+1QRxPGJm02OW9bC7H5hGXGb2FTP7x5rlv8fdV6Wx/BhfAG5294Pc/cqxLCjtf3AJ1/lOM7vLzJ4zs/VmdnQ719+ImV1tZr+OvttnZx1PKyi5NxAl1wOjBLEV+EDVtH2+1GY2vv1RSj0ley96gAeyDgKa365mth/wz8A/AK8FrgGuN7MJLQivWXcDnwTuzTqQlnF33WJuwGZgds20rwDXEj6wzwDnACcAvwR2Ao8C3wAmRO3HAw70Rs9XRvN/Ef39/wHe0GzbaP77gF8Du4BvAv8bOKfBa+kCvg88RUgaXwA2V83/L8DD0XoeAOZE098GvAC8DDwLPBFNnwPcE7XfClwYsy2/CDwG/BvwiTqvc1H0+I+An0fbcgdwWzT9GuAV4PkojgXAUdFyPh7FMFCZVrXeO4AlwGC0nX4KvDaaN7t6G0TTHgGmA6cBfwBeita3oWp550SPXwVcBGwBHgf+ETg4mleJ7aPRMoeALyb83N0Wbe8XonUfCewPLAO2AduBK4H9o/aHRNtsKHp/bwQOj+ZdWrOsK2q3UZ3XNTeK4RvRe7CoavqD0Tp+AUxtEP+pwNaq5xa977MbtJ8LbIo+S78B5lbNm034Hn4+en2/Az5aNb8buAl4mvAdXALcmmAb/xI4O+sc04qb9tzH5j8CPwAmEhL9buBcYDJwInAK8Dcj/P1fABcC/46QlC5ptq2Z/RGwGvhctN7fAseNsJzFwFRCojgV+FjN/F9HsU8kfEF+YGavc/f7gE8Dt3v49TI5av8scHbU/gPAuWZ2Wr0VR9PPBWYCfwK8d4Q4P0f4J9MNHBq9dtz9I4Qv9vuiOJZV/c27gDcD72+wzI9Gt9cTEs3lI6yfaH03AZcBq6L1HVun2VzCNpgO/DFhL/Xva9r8OSGZvhe42MzemGDd7yL8I/9ktO6HgaXAG4CjgTcCvcAF0Z+8CvgucARhj/+lShzu/oWaZZ0Xt/6quDcR3odLzex0wnvzwWjaOsJ3oJ63ULVn7CGb3hdNr2c74b07GPhr4Js13ThTgAMI798ngeVmdnA0bznhn8KhwDzgrxK+vtJSch+bO9z9Rnd/xd2fd/f17r7O3XdHX8QVwLtH+Pvr3H3Q3V8CVgHHjKLtacA97v7P0bzLgSdGWM4ZwFfc/Sl33wJ8q3qmu69290ej1/QDwt5SX6OFufuAu98ftb8X+OEIr/kM4Gp3/5W7/x5YNEKcLxG+xEe4+x/c/X+N0LZiobs/5+7PN5j/vap1XwScaWaWYLlxzgKWuvtv3f0Z4MvAX5hZ9fdrkbu/4O53EX4Rvb3ZlUTLmwucF71/TwNfA84EcPchd/9p9Fl8GvgqI3/+ktjq7ss9HAd6nrCz8lV3/7/uvpvwC/Y4Mzu8zt8eSPiVVG0XcFC9FUXfpYc9GABuAU6uavIC4bP7krvfALwI/EnUzfMhwq/G59x9I+HXaUdTch+bbdVPzOzNZvYzM3vMzJ4m7CVPrv+nQOieqHiO8GVotu3rq+OI9o4eGWE5h9XEvaV6ppmdE1Vn7DSznYQ94YavwcxOMLNbzWzIzHYRkk+j9sNirV13jf8azb/FzH5jZp8boW3FtibmbwH2I/wSGqvXM/y1bAFeTdizBcDdm3mvGzmUEHP1+3MToQsLM3tNVHG0Nfr8DTDy5y+J2m3aA3y7av1PELrJptT522cJe+HVDibsYe/DzE4zs3VmtiNa9nsYHv8T7v5y1fPKdnwdMI7kn62OoOQ+NrWn1PxvwP3AUe5+MGHvMI09w5E8StUXK9oTrbcXVfEYoVumYk+5pZkdSfh52w8c4u6TCH2rlddQ7xSiPwR+TOh3nQhcRePX/Gijdddy96fd/TPu3kvYK/uCmVX2QuueyjT6xzaS2nW/SOhL/j3hWASw58DhIdWLjlnu7whJr3rZfyD0Dadpe7TcN7n7pOg2MdruEPqj3wAcF33+Ztb8fe3r+D2AmXVVTTs05m+2AZ+oWv8kdz/A3dfViXfYL5Tos/k26hwgNrMDgOsIv0ReF332bibZ92c74R9Mos9Wp1ByT9dBhJ+dvzezP2Xk/va03AS808w+ECWlc6naY6xjNfBlM5sU1dF/umregYQv8xDhuziXsOdesR2YUlPtcBCww91fMLPjiboIRlj3X0W/cF4DLGzUMHo9fxwlhF2Eg4GVvbbthGMGzfpo1bovBlZH/xAeBA4ys/dGr20hUP0atwO9I3ThXAMsMLNeMzuIcKziGnd/JS6gaJzB7iTBR3utVwFXmFm3BVPM7D1Rk4MIe7NPmdkhhJ2LarXb7bHodraFsRXzGP5Pqp7vABdEn2+iz9HpDdoOAOPM7FNR5cy5hO62el1s+xF+7QwBL0fHZ2bFxAJA1B15PeFYxgFm9lbgL0f6GzN7tZntT/jnMcHM9k+piy43lNzT9VnCAcpnCHvx17Z6he6+HfjPhAqKJwkH9O4m7JXWs5CwB72ZUOnwT1XL2kiojLgzavNmwgGzin8B/h+w3cwq3Qz9wNfMrNLXvHqEWG8Evk34cv86Wl4jbyIkh2cJ1T9/7+53RPO+Svgi7zSzpAcGIfTDroxe2zjgvCiup4C/Bb5HqObYwfBusGsJiWeHmd1ZZ7nfjdrczt5Ko3MTxjSV8PqS+iyhy+FOwj+9mwkHViF8BiYSPgf/Snh/q10BfCTabsuif2x/TXjfniAc8K23B76Hu/8oWs+Poq6fjTQ4MO7uLxAOvM4lVD2dDXwwSsa1bXcCnyFUMe0ATifsuCTVTziQvR24mlB+OZIBQsXVccB/jx6f2MT6cs/if8lKkZjZOEI3wenufnvW8cjIosFR33f3W7KORcpFyb0EzOwUQpnbC8CXCHtjR7p7o713ESk5dcuUw0mE7oAnCLX1H1JiF+ls2nMXESmhxHvu0dH0u81sn4McUW30kJndE93mphumiIg0o5kTAZ1LGIZcOyih4lp3/3SDefuYPHmy9/b2NrF6ERHZsGHDE+4+UrkzkDC5m9kUwjkflhBO1DRmvb29DA4OprEoEZGOYWaJRt8m7Za5gjD6baRBGR82s41mdp2ZTa3XwMzmmdmgmQ0ODaU9eE9ERCpik3s0Uuxxd98wQrMbCadtPRpYQxgMsg93X+Hufe7e190d+6tCRERGKcme+4nAHAuXYvshMNPMVlY3cPcnq0rvvgvUOy2qiIi0SWxyd/cvufuU6AROZwID7j7sslRmdljV0zmEA68iIpKRUV+OzMwWA4PReZX/zszmEC5WsYNwVSIREclIZoOY+vr6XNUyAsBll8G0aTBjxt5pa9fC+vXw+c9nF5dIDpnZBndveAGdCp1+QLI3bRqccUZI6BDuzzgjTBeRUSnTVeKlqGbMgNWrQ0Lv74fly8Pz6j15EWmK9twlH2bMCIn9kkvCvRK7yJgouUs+rF0b9tgvvDDcV7poRGRUlNwle5U+9tWrYfHivV00SvAio6bkLtlbv354H3ulD379+mzjEikwlUKKiBSISiFFRDqYkruISAkpuYuIlJCSu4hICSm5i4iUkJK7iEgJKbmLiJSQkruISAkpuYuIlJCSu4hICSm5i4iUkJK7iEgJKbmLiJSQkruISAkpuYuIlJCSu4hICSm5i4iUkJJ7mV122b7XIV27NkwXkVJTci+zadOGX2i6ciHqadOyjUtEWm581gFIC1UuNH3GGdDfD8uXD78QtYiUlvbcy27GjJDYL7kk3Cuxi3QEJfeyW7s27LFfeGG4r+2DF5FSUnIvs0of++rVsHjx3i4aJXiR0lNyL7P164f3sVf64NevzzYuEWk5c/dMVtzX1+eDg4OZrFtEpKjMbIO798W1S7znbmbjzOxuM7upzrz9zOxaM3vIzNaZWW9z4YqISJqa6ZY5F9jUYN4ngKfc/SjgcuDSsQYmIiKjlyi5m9kU4P3AVQ2afBD4XvT4OmCWmdnYwxMRkdFIuud+BfB54JUG8w8HtgG4+25gF3BIbSMzm2dmg2Y2ODQ0NIpwRUQkidjkbmanAY+7+4aRmtWZts+RWndf4e597t7X3d3dRJgiItKMJHvuJwJzzGwz8ENgppmtrGnzCDAVwMzGAxOBHSnGKSIiTYhN7u7+JXef4u69wJnAgLufXdPsBuBj0ePTozbZ1FiKiMjoTxxmZouBQXe/Abga+L6ZPUTYYz8zpfhERGQUmhqh6u63uvtp0eOLosSOu7/g7v/J3Y9y9+Pc/eFWBCttduqpsGzZ8GnLloXpIpJrOv2ANDZ7Npx//t4Ev2xZeD57drZxiUgsnc9dGluwINyffz5cfz3ccQcsXbp3uojklvbcZWQLFsBJJ8Htt4d7JXaRQlByl5EtWxb22E8+OdzX9sGLSC4puUtjlT72pUvhttvCfXUfvIjklvrcpbE1a4b3sVfu16xR94xIzul87iIiBZL6+dxFRKQ4lNyL6s1vhvnzh0+bPz9ML5rLLtv3uq5r14bpIiWy6r5V9F7Ry6sufhW9V/Sy6r5VLVuXkntRzZwJy5fvTfDz54fnM2dmG9doTJs2/MLdlQt7T5uWbVwiKVp13yrm3TiPLbu24Dhbdm1h3o3zWpbg1edeZJWEPnUqbNsG/f1w5ZVZRzU6lYTe3x9eU/WFvUVKoPeKXrbs2rLP9J6JPWw+b3Pi5ajPvRNceeXexD51anETO4RE3t8Pl1wS7pXYpWS27tra1PSxUnIvsvnz9yb2bdv27YMvkrVrwx77hReG+9o+eJGCO2LiEU1NHysl96KqdMn098PWrXu7M4qY4CtdMqtXw+LF4b66D16kBJbMWkLXhK5h07omdLFk1pKWrE+DmIpqYGB4H3vlfmAgu5hGa/364X3sM2aE5+vXq3tGSuOst50FwAW3XMDWXVs5YuIRLJm1ZM/0tOmAqohIgeiAqsSLqy9X/blIYSm5d7K4+nLVn4sUlvrcO1mlb7tRfXncfBHJLe25d7q4+nLVn4sUkpJ7p4urL1f9uUghKbl3srj6ctWfixSWknsnG6m+PMl8Eckt1bmLiBSI6txHKy+13XmJQ6TF2nmO806i5F4rL7XdeYlDpIXafY7zTqJumXrycm7xvMQh0iJpneO8k6hbZizyUtudlzhEWqTd5zjvJEru9eSltjsvcYi0SLvPcd5JlNxr5aW2Oy9xiLRQu89x3kmU3GvlpbY7L3GItNBZbzuLFR9YQc/EHgyjZ2IPKz6womXnOO8kOqAqIlIgqR1QNbP9zexOM7vXzB4ws4vrtDnHzIbM7J7oNne0gUvk1FNh2bLh05YtC9NBdfAiMqIk3TIvAjPd/e3AMcApZnZ8nXbXuvsx0e2qVKPsRLNnw/nn703wy5aF57Nnh+eqgxeREcSez91Dv82z0dMJ0S2bvpxOsmBBuD//fLj+erjjDli6dO90nWtdREaQ6ICqmY0zs3uAx4F/cfd1dZp92Mw2mtl1Zja1wXLmmdmgmQ0ODQ2NIewOsWABnHQS3H57uK8k9grVwYtIA4mSu7u/7O7HAFOA48zsrTVNbgR63f1oYA3wvQbLWeHufe7e193dPZa4O8OyZWGP/eSTw31tH7zq4EWkgaZKId19J3ArcErN9Cfd/cXo6XeBY1OJrpNV+tiXLoXbbgv31X3wqoMXkREkqZbpNrNJ0eMDgNnAgzVtDqt6OgfYlGaQHWnNmuF97AsWhOdr1oTnqoMXkRHE1rmb2dGEbpZxhH8Gq919sZktBgbd/QYz+xohqe8GdgD97v5gw4WiOncRkdFIWueuQUwiIgWis0KOVhqDg+IGIKWxjHYMYirpQKlFi0b/t0kuLKGLT0geKLnXSmNwUNwApDSW0Y5BTCUdKHXxPmOsk0lyYQldfEJyw90zuR177LGeWwMD7pMnu194YbgfGGh+GV//uruZ+8knh/uvfz39ZaQRZ5x2rKPNwtC85vVc3uMsYp9bz+U9TbURGQvCsc7YHKs993rSGBwUNwApjWW0YxBTSQZKLVoEZuEGex8300WT5MISuviE5IWSez1pDA6KG4CUxjLaMYipJAOlFi2CsM8enlceN5Pck1xYQhefkNxIsnvfiltuu2Uq3RCV7ofa50lUulMq3Si1z9NYRhpxxmnHOjIw2m6ZlRtXeteSrmHdLV1LunzlxpVNtREZC9QtM0ppDA6KG4CUxjLaMYippAOlFi4c3d8lubCELj4heaE6dxGRAlGde9HF1ZiXtAa9DCp17rYouzr3+T+bz/jF47GLjfGLxzP/Z/PbHoNkS8k9r+JqzEtag1501XXuWDZ17vN/Np/lg8t52V8G4GV/meWDy5XgO4y6ZfKskrAbXYwjbr60Xe8VvSGx1+iZ2MPm8za3JYbxi8fvSezVxtk4dl+0uy0xSOuoW6YM4mrMS1KDXiZbdtavZ280vRXqJfaRpks5KbnnWVyNeUlq0MukZ1L9evZG01thnI1rarqUk5J7XsVdjEMX68ilJbOW0DWha9i0rgldLJm1pG0xzDt2XlPTpZyU3PMqrsa8pDXoRVdd545nU+d+5fuvpL+vf8+e+jgbR39fP1e+/8q2xSDZ0wFVEZEC6cwDqmnUfsctI41ztacRhxRW3Pnei3g++FafI1+aV67knkbtd9wy0jhXexpxSCHFne+9qOeDb+U58mV0ytctk0btd9wyKgn9pJPC2RqrzwGTJtWxl05cHXwe6uRHw2zvGTebUdTXm6XO7JaBdGq/45aRxrna04hDCifufO9FOh98u86RL6NTvuSeRu133DLSOFd7GnFI4cSd771I54Nv1znyZXTKldzTqP2OW0alS2bpUrjttnBf3Qefp9ciuRNXB5+HOvl26rTX207lSu5p1H7HLSONc7WnEYcUUtz53ot6PvhWniNfRqd8B1RFREqscw+ojlU7auVVwy4tlkbtuOrPi03JvVY7auVVwy4tlEbtuOrPi0/dMvW0o1ZeNezSImnUjqv+PL/ULTMW7aiVVw27tEgateOqPy8+Jfd62lErrxp2aZE0asdVf158Su612lErrxp2aaE0asdVf158Su612lErrxp2aaE0asdVf158OqAqIlIgqR1QNbP9zexOM7vXzB4ws31O7mlm+5nZtWb2kJmtM7Pe0YUtIiJpSNIt8yIw093fDhwDnGJmx9e0+QTwlLsfBVwOXJpumCQb+JOXwUFpDGLKy2uJjOViDM0so5XrSTIop2gDd+Jeqy3K9rWWaZsXJc493D3xDegC7gL+fc30/wmcED0eDzxB1OXT6Hbsscd6UwYG3CdPDvf1nidt0w5xcRTptUSgPcto1XpWblzpXUu6nEXsuXUt6fKVG1c21SZv8vxa8xJHGvIUJzDoCfJ1oj53MxsHbACOAr7t7l+omX8/cIq7PxI9/030D+CJRsscVZ97koE/eRkclMYgpry8FkZ/MYZml9Gq9SQZlFPEgTt5fq15iSMNeYoz1UFM7v6yux8DTAGOM7O31q6v3p/VCWqemQ2a2eDQ0FCSVQ+XZOBPXgYHpTGIKePXksbFGJIsox3rSTIopygDd+Je65ad9eOtnt6O11qmbV6UOKs1VQrp7juBW4FTamY9AkwFMLPxwERgR52/X+Hufe7e193d3Xy0SQb+5GVwUBqDmDJ+LWlcjCHJMtqxniSDcooycCfutfZMqh9v9fR2vNYybfOixFktSbVMt5lNih4fAMwGHqxpdgPwsejx6cCAJ+nvaUaSgT95GRyUxiCmvLyWkkgyKKcsA3fy8lrzEkcaihLnMHGd8sDRwN3ARuB+4KJo+mJgTvR4f+BHwEPAncCRcctt+oDqpZfuezBxYCBMb6ZNO8TFUaTXElm4sD3LaOV6Vm5c6T2X97gtMu+5vKfuwbAkbfIk7rWyMNvXWqZtnpc4SfOAaitoEJOISPM686yQOasNl+HSqGFPQxr19iPNb2c9dF62aSsVrr48J8q1517dTz1jxr7PJVNplDm2K464No3mVy5y8dxLz+2Z1jWhq2XnZcnLNm2Vdm/PIki6516u5A65qg2X4fKSiFqZ3NtdD52Xbdoqeaovz4vO7JaBzGvDZbg0atjbFUdcmyTLaEc9dF62aTsUsb48L7TnLm2Tl71M7bkXh/bc99WZe+6qDZeMFbIeOse0PUevXMldF8HItYULs44gSBJHXJtG89t9kYu8bNNW0UVDRq983TIiIiXWmd0ykkvN1CmP5VzsaZo+Pfs42nWAtIwHYluhaPX22nOXlmq2TrneAcIsap3zEEe7DpaW/aBsGvJUb9+5de6SK81WO4z2/ORpy0McSu75kaeqHXXLSC4kqVNO41zsaZg+vX4clS6aMtWwd1KtfBqKWG+v5C4tleQ82Gmciz0Nt95aP45bb21fHGmc2z5P6ymLUp7PXWQs0qhTzkutc17ikPYr4nuv5C4t1Wydcr267Sxqnd/97uzjaFcNe9lr5dNQxHp7HVAVESkQHVCVYdSXulfW26Jo9dJSTNpz7xAqd9sry22Rp3ppKSbtuYvk0AW3XDAssQM899JzXHDLBRlFJGWl5F5iqmXeKy/booj10lJM6pbpEOqW2SvLbZGnkY5STOqWEcmhItZLSzEpuXcI1TLvleW2KGK9tBSTumVERApE3TJSSq0+AKoadGmkaJ8N7blLobTyYKhq0KWRPH02tOcu0iTVoEsjRfxsKLlL7rWrRl016NJIET8bSu6Se+0693gRz9kt7VHEz4aSu0hENejSSBE/G0ruUiitrFFXDbo0UsTPhqplREQKRNUyIiIdLDa5m9lUM1trZpvM7AEzO7dOm+lmtsvM7oluF7Um3PIo2oCIJOIOcHbK2Sgr760tyu69LePnS5oT2y1jZocBh7n7XWZ2ELAB+JC7/6qqzXTgfHc/LemKO7lbJk8DItIUN8CoE85MmYf3Ng8xSOuk1i3j7o+6+13R42eATcDhYw+xcxVxQIQkk4f3Ng8xSPaa6nM3s17gHcC6OrNPMLN7zewXZvaWBn8/z8wGzWxwaGio6WDLoogDIhqJG2CUl4tktMuWnfXfw0bTW6FMny8ZvcTJ3cwOBH4MnOfuT9fMvgvocfe3A98Erq+3DHdf4e597t7X3d092pgLr4gDIhqJG2DUrgFIedEzqf572Gh6K5Tp8yWjlyi5m9kEQmJf5e4/qZ3v7k+7+7PR458DE8xscqqRlkgRB0RIMnl4b/MQg2QvSbWMAVcDm9x9WYM2h0btMLPjouU+mWagZVLEARFJxA0w6oQLhlS/t3g2721ZP1/SnCTVMicBtwP3Aa9Ek78MHAHg7t8xs08D/cBu4Hlggbv/60jL7eRqGRGR0UpaLTM+roG73wFYTJtvAd9KHp5ULFpU3v5nEcmORqhm7OKLs45ARMpIyV1EpISU3DPQabXfItJ+OitkxjphSL6IpEdnhRQR6WBK7hnrhNpvEWk/JfeMqZ9dRFpByb0A9A+gmPS+SZZ0QLUAdNC1mPS+SSvogKqISAdTcs8p1cIXk943yQt1yxSAft4Xk943aQV1y4iIdDAl9wJQLXwx6X2TLKlbRkSkQNQtI9JAGgc3dYBU8k577tJx0jjQqYOlkhXtuYuIdDAld+kIadSfq4ZdikTdMtJx1C0jRaZuGRGRDqbkLh0njfpz1bBL3qlbRkSkQNQtIyLSwZTcRURKSMldRKSElNxFREpIyV1EpISU3EVESkjJXUSkhJTcRURKSMldRKSEYpO7mU01s7VmtsnMHjCzc+u0MTP7hpk9ZGYbzeydrQm3M+msgyLSrCR77ruBz7r7nwLHA58ysz+rafM+4I3RbR6wPNUoO9zFF2cdgYgUTWxyd/dH3f2u6PEzwCbg8JpmHwT+yYNfApPM7LDUoxURkUSa6nM3s17gHcC6mlmHA9uqnj/Cvv8AMLN5ZjZoZoNDQ0PNRdphdGEIERmLxMndzA4Efgyc5+5P186u8yf7nG7S3Ve4e5+793V3dzcXaYdZtChcDKJy0s7KYyV3EUkiUXI3swmExL7K3X9Sp8kjwNSq51OA3409PBERGY0k1TIGXA1scvdlDZrdAHw0qpo5Htjl7o+mGGdH04UhRKRZ4xO0ORH4S+A+M7snmvZl4AgAd/8O8HPgVOAh4Dng4+mH2rnUFSMizYpN7u5+B/X71KvbOPCptIISEZGx0QhVEZESUnIXESkhJXcRkRJSchcRKSFz32esUXtWbDYEbMlk5cFk4IkM19+MosSqONNVlDihOLGWIc4ed48dBZpZcs+amQ26e1/WcSRRlFgVZ7qKEicUJ9ZOilPdMiIiJaTkLiJSQp2c3FdkHUATihKr4kxXUeKE4sTaMXF2bJ+7iEiZdfKeu4hIaSm5i4iUUEckdzMbZ2Z3m9lNdeadY2ZDZnZPdJubUYybzey+KIbBOvNzcxHyBLFON7NdVdv0oozinGRm15nZg9EF3k+omZ+LbZogzrxszzdVxXCPmT1tZufVtMl8myaMMy/b9DNm9oCZ3W9m15jZ/jXz9zOza6PtuS66Gl4y7l76G7AA+AFwU5155wDfykGMm4HJI8w/FfgF4QydxwPrchzr9HrbOoM4vwfMjR6/GpiUx22aIM5cbM+amMYBjxEG1OQpzA5PAAADHUlEQVRumyaIM/NtSrgU6W+BA6Lnq4FzatrMB74TPT4TuDbp8ku/525mU4D3A1dlHcsY6SLkTTCzg4F3ES40g7v/wd131jTLfJsmjDOPZgG/cffaUeaZb9MajeLMi/HAAWY2Huhi3yvYfZDwzx/gOmBWdAGlWKVP7sAVwOeBV0Zo8+HoJ+R1ZjZ1hHat5MDNZrbBzObVmZ/oIuRtEhcrwAlmdq+Z/cLM3tLO4CJHAkPAP0RdcleZ2Wtq2uRhmyaJE7LfnrXOBK6pMz0P27Raozgh423q7v8GLAW2Ao8SrmB3c02zPdvT3XcDu4BDkiy/1MndzE4DHnf3DSM0uxHodfejgTXs/S/Zbie6+zuB9wGfMrN31cxPdBHyNomL9S7Cz+C3A98Erm93gIQ9oncCy939HcDvgS/WtMnDNk0SZx625x5m9mpgDvCjerPrTMvkcxoTZ+bb1MxeS9gzfwPweuA1ZnZ2bbM6f5poe5Y6uRMuETjHzDYDPwRmmtnK6gbu/qS7vxg9/S5wbHtD3BPH76L7x4GfAsfVNMnNRcjjYnX3p9392ejxz4EJZja5zWE+Ajzi7uui59cRkmhtm6y3aWycOdme1d4H3OXu2+vMy8M2rWgYZ0626Wzgt+4+5O4vAT8B/rymzZ7tGXXdTAR2JFl4qZO7u3/J3ae4ey/h59mAuw/7z1jTHzgH2NTGECsxvMbMDqo8Bt4D3F/TLBcXIU8Sq5kdWukXNLPjCJ+zJ9sZp7s/BmwzszdFk2YBv6pplvk2TRJnHrZnjY/QuKsj821apWGcOdmmW4HjzawrimUW++afG4CPRY9PJ+SwRHvuSS6QXTpmthgYdPcbgL8zsznAbsJ/xHMyCOl1wE+jz9p44Afu/j/M7JOQu4uQJ4n1dKDfzHYDzwNnJv1ApuxvgVXRz/OHgY/ndJvGxZmX7YmZdQH/Afibqmm526YJ4sx8m7r7OjO7jtBFtBu4G1hRk5+uBr5vZg8R8tOZSZev0w+IiJRQqbtlREQ6lZK7iEgJKbmLiJSQkruISAkpuYuIlJCSu4hICSm5i4iU0P8HN+3W5cl0ewUAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11268b290>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEICAYAAABYoZ8gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XucHFWd9/HPlyQCEQwoo7LkMiiuq3LVCboLK4REFkUC+9Jl44ZHWfUZDboLD7I+aiSQsHlUdDF7MxjBexQi3gKCK5fh4iqQAQPhprJAIAbJCCaIQSTJ7/njVJOeTvdMdaZnurr7+369+tXdp05V/bq6+9fVp+rUUURgZmadY5dmB2BmZmPLid/MrMM48ZuZdRgnfjOzDuPEb2bWYZz4zcw6jBN/C5C0q6SnJP3JGKzrOEn3j/Z6aqx7N0khaXL2/MuSPtygZf+ppI1lz2+WdEojlp0t7zpJf9uo5Q2xngMl3Zl9HnpHe33tQtL7JV3T7DiKwol/BLIvX+m2TdLTZc/njmC5g5JSRDwTEXtExPrGRN4Yo/1liohTI+L8HHH8WtKRwyzrFxGxVyPikvRJSRdVLP+YiLi0EcsfxkeBH2Sfh2UjWVCjf/xyrnO6pNWSNku6VdKBY7n+WrKdjF9m3+M5zY5ntDnxj0D25dsjIvYAHgZOKCtb3uz4LJE0vtkxNNA04O5mBwH1b1dJuwPfB5YBewPfAr5bkPfndqAXuKvZgYyJiPCtATfgIWBWRdk44GzgAeA3wHJgr2za84FLgCeAjcAtpC/DvwBbgT8AT2XPdwMCmJzNewmwBPgv4HfAfwPTytZ7PPDLbLlLgJuBU2rE/fwsro3AGtIe5f1l0xcAD2bruQs4Pis/LItxSxbnr7PyvwbuAJ4E1gIfG2a7zQceA9YB763yOj+ePX4p8MMszseB67LybwHbgM1ZHP8I/FkW1/8GHgF+VCorW+/NwHnAbcAm4NvApGzaceXbICv7NXAkcBLwR+DZbH23li3vlLL3fSFpZ+Ax4IvAntm0Umx/n73mAeCfcn7GflLx2ZgK7J69x49kMf47sGtWvwu4KlvHE6Sku282rdrnbNA2qvK63g9cB/wn8Nuy9+Z9wM+zdfwA2K9G/LOBB8qe75LFfHSN+u8D7iN99u4H3l027bis7GPZ6/sVMLds+ouBK0mfw58CnwCuybGN+4E5zc4no33zHv/o+ifgWFLCmExKFp/Npr0XGA/sB+wDfBD4Y0R8CFgFvDfSP4cP1Vj235GS9AuBR0mJBkkvBS4F/g/pi78eeN0QMS4mJdVu0hfz1IrpPwf+ApgEfAq4RNI+EfEz4Azg+izOl2b1n8xi24v0I3CWpOOqrVjSScBpwFGkpPPmIeL8v1ks+wD7AucCRMTfABuAY7M4/i2rPw54PfBK4MQay3wnMJf0HjyPlPyGFBHfAy4AvpKt7/Aq1d4HnAz8JfAKUhK6oGz6OKAHOAB4C7BY0styrPsvGPzZeJj0eZoMHER6rX8KfCSbZRfgQtIPxP5Z2WezZeX9nFV6I7Ca9D78S9YscgZwAvAS4GfA12vM+xrSTkHp9Wwj7Uy8pkb9R0mfiReQfnT+U1J53WmAgD8hfX8ulLRHNm0Z6YfoJcA84N05X19HcOIfXe8DPhIR6yPiD6Tk/LeSRPoR6AJeHhFbImJVRPy+jmWviIjbI+JZ4BvAoVn5bGBVRFyRTfsMae+slpOB8yJiY0Q8SNqbe05EXBoRj0bEtoj4GmnPquYPSURcGxF3Z/VvB1aQEnutdX8hIu6LiKfIfrxqeJb0BZ8aEX+MiBuHqFuyICI2R8TTNaZ/qWzd5wDvyLHMPOYCn46ItRHxJOlfzdzsfS85JyL+EBGrSHu1B9e7kqyJ5N3A6dn7twn4JDAHICIei4jvR8TT2bRPUPu9yOuBiPhCRGzNtuv7gH+OdAzlWdJ7eKSkl1SZdw/Sv6tym4A9q60oIlZGxIORXAPcQNqJKtkMfCIino2I75L+LR4gaTfS9+Dj2WtfTfpXaxkn/lGSfcmnAFdK2pidUfIz0jZ/EXAx6YN8maR1kv6fpHF1rOLXZY83k75UkJLjI6UJ2V7Vr4aI8SXl9UnNM+V13pOdRVJ6DQeQ9vaqknSEpBskDUjaRPoHUav+oFgr111hMenfS5+k+yWdOURdgG0x/MHwynVPlDRpmHny+BMGv5a1pCaZF2bPt0bEb8qml79/9a5nAnB32fvzPdI/DCTtKemLkh6W9CSpyavme5fTIxXPp5H2tEvrHyA1ZU2uMu9TpL33ci8gNeXsQNLs7ADwE9myj2Fw/APZ57uktB1fSvonkPez1XGc+EdJRAQp4R4TEXuV3XaLiN9EOlNnQUT8Genv89+Q7amR9lx21qOUfekk7UJqyqgV4wbSD1TJ1LJ5/5TUZtwLvDDSWTH3k75UteJcQWpqmhIRk4Avl9WvFmvVdVeJdVNEnB4R04C3AR+XdMQQceTZhpXr3pztGf8emFiaIGkC25N2nmWvJyXE8mU/TWp6aKRHSUn25WWfr0kR8aJs+kdIn4XpEfECUrNj+XtR+Tp+D4yTtGtZ2Usr6lTO8whwasVnfPeIuK1KvHcDh5SeZJ/NA6lysFrS80nHb84DXpx99q6j9mep3K+zOHN9tjqRE//ouhD4pKQpAJJeLOmE7PEsSa/OPvxPkr7AW7P5HgOGbfOtYSXweklvyZoCziQdNK5lBTBf0iRJ00ht7iV7kA6cDgC7SHo/aY+/5DFgSpYYS/8g9gAej4g/SPoL0g/aUOt+b3aO/R6kA8lVZXt/+2fr2ETaViPdXqeWrftc0g8WwL3ACyXNzF7bQgZ/Vx4DSrFU803SsY2pkvYE/hn4RvZDOySlfhR/yBN81rTyReBfJe2jZIqkN2VV9iTtBW+UtA/w8YpFVG639aT3eq6kcZJOo8ZOQ5kLST/Cr8zi31vS22rUvRrYPTsNeFfScajfAz+uUnd30r+ZDcA2SbOBo4eJBYCsWfVyYKGk3SUdTGp+q0nS87ImIgETlPqU5PmRaUlO/KPrfOAa4DpJvyOdlfHabNp+pLMsSmfLXElKhJAOwL1T0m8lDXsee7mIeJTUVv1vpDOJJpPO1nmmxiwfz+o9TDoj46tly7qd9MXuJ+1d7p89Lvkh6WymDZLWZYnt/cBnstf7YdJeW61Yv0s6CHcTqZ37v4Z4aa8CridtrxuBz0TEzdm0xaQDpBslfXCIZVT6GilJ/4r0A/ehLK7fAKeT2oXXkfYgy5tmLiH9I3hC0k+qLHcp8B3S+/0/pD394ZqmSqaQztLK6wxSwu4n/SD+kO0/zp8hNY08TkquV1bMO+hzFhFbSScdnEN6vVNIZz3VFBHfBP4D+E7WnLQaeFONuk+TDrS/n3R21hzgpIjYUqXub4CzSAn8cdLZVJXxD+V9pGbMx4DPA18apv6NpH9lryV9B54mnRzQlpRjJ8RaWLbX/2tSH4OfNjseG5qkr5MOeN/Q7FisfTnxtyFJbybtbT5DOqPkXcABEfHHpgZmZoXgpp729EZSp6sNwEzgr530zazEe/xmZh3Ge/xmZh2mCBdH2sE+++wT3d3dzQ7DzKxl3Hbbbb+JiK48dQuZ+Lu7u+nv7x++opmZASApd+/k3E09WYeOn0m6osq0MyXdk3XtvzbrCFSatlXp+turJa3Muz4zMxsd9ezxn07q0Vh5rQ1I16DpiYjNkuaROi6VRiN6OiIOrTKPmZk1Qa49fqWh8I4HLqo2PSL6ImJz9vRmql+gyczMCiBvU88SUvf7bcNVBN5DGvyhZDdJ/UrDvJ1UayZJvVm9/oGBgZxhmZlZvYZN/JLeCmyocbW9yrqnkAaY+HRZ8dSI6CENzrFE0surzRsRyyKiJyJ6urpyHZg2M7OdkGeP/whgtqSHSBenOia7nsggkmaRLg8wOyKeuyBY6ZroEfEA6SJbh408bCuM88+Hvr7BZX19qdzMCmnYxB8RH42IyRHRTbqa3nURcUp5HUmHka6ANzsiNpSV7126tnd2WdgjgHsaGL812/TpcPLJ25N/X196Pn16c+Mys5p2+jx+SYuA/ohYSWra2QP4VnYJ64cjYjbpUrqfl7SN9CPzyYhw4m8nM2bAihUp2c+bB0uXpuczZjQ7MjOroa7EHxHXk5priIgFZeWzatT/CWkQaGtnM2akpH/eeXD22U76ZgXna/XYyPX1pT39s89O95Vt/mZWKE78NjKlNv0VK2DRou3NPk7+ZoXlxG8js2rV4Db9Upv/qlXNjcvMairk9fh7enrCF2kzM8tP0m1Zn6lheY/fzKzDOPGbmXUYJ34zsw7jxG9m1mGc+M3MOowTv5lZh3HiNzPrME78ZmYdxonfzKzDOPGbmXUYJ34zsw7jxG9m1mFyJ35J4yT9TNIVVabtKulSSfdLukVSd9m0j2blP5f0V40J2zqWx/g1G7F69vhPB+6tMe09wG8j4gDgs8CnACS9mjRO72uA44DPSRq38+Fax/MYv2YjlivxS5oMHA9cVKPKicBXsseXATOVBt89EbgkIp6JiAeB+4HDRxaydbTyMX4XLNg+CIyHezTLLe8e/xLgw8C2GtP3Ax4BiIgtwCbgReXlmXVZ2Q4k9Urql9Q/MDCQMyzrSOVj/M6b56RvVqdhE7+ktwIbIuK2oapVKYshyncsjFgWET0R0dPV1TVcWNbJPMav2Yjk2eM/Apgt6SHgEuAYSV+vqLMOmAIgaTwwCXiivDwzGVg/wpitk3mMX7MRGzbxR8RHI2JyRHSTDtReFxGnVFRbCbwre/z2rE5k5XOys372B14B3Nqw6K3zeIxfsxEbv7MzSloE9EfESuBi4GuS7ift6c8BiIi7Ja0A7gG2AB+IiK0jD9s61oc/vGPZjBlu5zergwdbNzNrAx5s3czManLiNzPrME78ZmYdxonfzKzDOPGbmXUYJ34zsw7jxG9m1mGc+M3MOowTv5lZh3HiNzPrME78ZmYdxonfzKzJlq9ZTveSbnZZuAvdS7pZvmb5qK5vp6/OaWZmI7d8zXJ6L+9l87ObAVi7aS29l/cCMPeguaOyTu/xm5k10fxr5z+X9Es2P7uZ+dfOH7V1OvGbmTXRw5serqu8EZz4zcyaaOqkqXWVN0KewdZ3k3SrpDsk3S1pYZU6n5W0Orv9QtLGsmlby6atbPQLMDNrZYtnLmbihImDyiZOmMjimYtHbZ15Du4+AxwTEU9JmgD8WNJVEXFzqUJE/J/SY0n/ABxWNv/TEXFowyI2M2sjpQO486+dz8ObHmbqpKksnrl41A7sQo7Enw2a/lT2dEJ2G2q8xncA54w8NDOzzjD3oLmjmugr5WrjlzRO0mpgA3B1RNxSo940YH/gurLi3ST1S7pZ0klDrKM3q9c/MDBQx0swM7N65Er8EbE1a66ZDBwu6cAaVecAl0XE1rKyqdkAwH8HLJH08hrrWBYRPRHR09XVVcdLMDOzetR1Vk9EbASuB46rUWUO8M2KedZn9w9k8x6242w2rPPPh76+wWV9fanczKwOec7q6ZK0V/Z4d2AWcF+Veq8E9gZ+Wla2t6Rds8f7AEcA9zQm9A4zfTqcfPL25N/Xl55Pn97cuMys5eQ5q2df4CuSxpF+KFZExBWSFgH9EVE6RfMdwCXZweCSVwGfl7Qtm/eTEeHEvzNmzIAVK1KynzcPli5Nz2fMaHZkZtZiNDhPF0NPT0/09/c3O4xiWrAAzjsPzj4bFi1qdjRmVhCSbsuOpw7LPXdbSV9f2tM/++x0X9nmb2aWgxN/qyi16a9Ykfb0S80+Tv5mVicn/laxatXgNv1Sm/+qVc2Ny8xajtv4zczagNv4zcysJid+M7MO48RvZtZhnPjNzDqME7+ZWYdx4jcz6zBO/GZmHcaJ38yswzjxm5l1GCd+M7MO48RvZtZh8ozAtZukWyXdIeluSQur1DlV0oCk1dntvWXT3iXpl9ntXY1+AR0jz9CLzRie0UNCmrWcPHv8zwDHRMQhwKHAcZLeUKXepRFxaHa7CEDSC4FzgNcDhwPnSNq7QbF3ljxDLzZjeEYPCWnWcoZN/JE8lT2dkN3yXtLzr4CrI+KJiPgtcDW1B2q3oZQPvbhgwfZr85cPvZinTjPiMrNCydXGL2mcpNXABlIiv6VKtbdJulPSZZKmZGX7AY+U1VmXlVVbR6+kfkn9AwMDdbyEDjJjRhpv97zz0n215JqnTjPiMrPCyJX4I2JrRBwKTAYOl3RgRZXLge6IOBi4BvhKVq5qi6uxjmUR0RMRPV1dXfmi7zR5hl5sxvCMHhLSrKXUdVZPRGwErqeiuSYiHo+IZ7KnXwBelz1eB0wpqzoZWL9TkXa6PEMvNmN4Rg8JadZy8pzV0yVpr+zx7sAs4L6KOvuWPZ0N3Js9/i/gWEl7Zwd1j83KrF55hl5sxvCMHhLSrOUMO/SipINJTTfjSD8UKyJikaRFQH9ErJT0CVLC3wI8AcyLiPuy+d8NfCxb3OKI+NJwQXnoRTOz+tQz9KLH3DUzawMec9fMzGpy4m8njexF6x65Zm3Lib+dNLIXrXvkmrWt8c0OwBqovBftvHnpnPqd7UXbyGWZWaF4j7/dNLIXrXvkmrUlJ/5208hetO6Ra9aWnPjbSSN70bpHrlnbcuJvJ43sReseuWZtyx24zMzagDtwmZlZTU78ZmYdxonfzKzDOPGbmXUYJ34zsw7jxG9m1mGc+M3MOkyeoRd3k3SrpDsk3S1pYZU6Z0q6R9Kdkq6VNK1s2lZJq7Pbyka/ADMzq0+eq3M+AxwTEU9JmgD8WNJVEXFzWZ2fAT0RsVnSPOB84G+zaU9HxKGNDdvMzHbWsHv8kTyVPZ2Q3aKiTl9EbM6e3gxMbmiUZmbWMLna+CWNk7Qa2ABcHRG3DFH9PcBVZc93k9Qv6WZJJw2xjt6sXv/AwECu4M3MrH65En9EbM2aayYDh0s6sFo9SacAPcCny4qnZteP+DtgiaSX11jHsojoiYierq6uul6EmZnlV9dZPRGxEbgeOK5ymqRZwHxgdkQ8UzbP+uz+gWzew3Y+XLP6nXtusyMYmaLFv3zNcrqXdLPLwl3oXtLN8jXLd6qONc+wV+eU1AU8GxEbJe0O/Aj4VERcUVbnMOAy4LiI+GVZ+d7A5oh4RtI+wE+BEyPinqHW6atzWiNJUMCL0OZWpPiXr1lO7+W9bH5283NlEydMZNkJy5h70NzcdazxGn11zn2BPkl3AqtIbfxXSFokaXZW59PAHsC3Kk7bfBXQL+kOoA/45HBJ38yKa/618wcldIDNz25m/rXz66pjzZXnrJ47I+KwiDg4Ig6MiEVZ+YKIWJk9nhURL4mIQ7Pb7Kz8JxFxUEQckt1fPLovxyw599y0pyyl56XHRWs2qaWo8T+86eFhy/PUseZyz11rS+eem5pHSk0kpcfNTpx5FTX+qZOmDluep441lxO/meW2eOZiJk6YOKhs4oSJLJ65uK461lxO/Nb2zjmn2RGMTJHin3vQXJadsIxpk6YhxLRJ03Y4aJunjjWXx9w1M2sDHnPXzMxqcuI3M+swTvyj6S1vgQsuGFx2wQWp3GwYzer9evTRI19GKXad6567RZTnssy2s2bNgrPOSo/PPDMl/bPOgs98prlxWeFV9n5du2ktvZf3Aoz6QdIbbhjZ/INi19jGbvn44O5oKyX7I4+EH/84Jf0zz2x2VFZw3Uu6Wbtp7Q7l0yZN46EzHhrVdY/0EhHNjL2T+eBukZx5Zkr6N92U7p30LYex7v169NHVewrvTLPP2o3VY6xVbmPPiX+0XXBB2tP/y79M95Vt/mZVjHXv1+uvr95T+Prr61/WtL2qx1ir3MaeE/9oKm/Tv/HGdH/WWU7+NqxW7v3ayrF3Cif+0XTNNYPb9M88Mz2/5prmxmWF18zer0cdNbL5y2Mn3HO3iHxw18ysDfjgrpmZ1eTEb2bWYYZN/JJ2k3SrpDsk3S1pYZU6u0q6VNL9km6R1F027aNZ+c8l/VVjw2+S88+Hvr7BZX19qdyGNJbXkx+Nnq/Nvh5+pVlfnYUW6rnbrK/OanZIVqGI4w/n2eN/BjgmIg4BDgWOk/SGijrvAX4bEQcAnwU+BSDp1cAc4DWkAdo/J2lco4JvmunT4eSTtyf/vr70fPr05sbVAhbusNswOkq9R9duWksQz/UeHemXbqziz2PWV2dx7YPXDiq79sFrnfwLZLQ+hyOVZ+jFiIinsqcTslvlEeETga9kjy8DZkpSVn5JRDwTEQ8C9wOHNyTyZpoxA1asSMl+wYJ0v2JFKrdC6IRxXyuT/nDlNvaK+jnM1cYvaZyk1cAG0mDrt1RU2Q94BCAitgCbgBeVl2fWZWXV1tErqV9S/8DAQH2vohlmzIB58+C889K9k35NzRg/tpE9X4s6/q0VX1HHH86V+CNia0QcCkwGDpd0YEUVVZttiPJq61gWET0R0dPV1ZUnrObq64OlS+Hss9N9ZZu/PacZ48c2sudrUce/teIr6vjDdZ3VExEbgetJ7fXl1gFTACSNByYBT5SXZyYD63cy1uIotemvWAGLFm1v9nHyL4xO6D06c/+ZdZXb2Cvq5zDPWT1dkvbKHu8OzALuq6i2EnhX9vjtwHWReoatBOZkZ/3sD7wCuLVRwTfNqlWD2/RLbf6rVjU3rhYwVuPHjlbP1yKNf3vNO6/ZIcnP3H8m17zTPcOLoqjjDw/bc1fSwaQDt+NIPxQrImKRpEVAf0SslLQb8DXgMNKe/pyIeCCbfz7wbmALcEZEXDVcUO65a2ZWn3p67vqSDWZmbcCXbDAzs5qc+K2QfMbMdt4W1mhu6rFCGunwf+3E28LycFOPmZnV5MRvheEestt5W9hoclOPFZKbN7bztrA83NRjZmY1OfFbIRWph2yzeVtYo7mpx8ysDbipx8zManLiNzPrME78VkjtfNpi3jFYT/vBaYxfNB4tFOMXjee0H5w2xpF2riKOk9tIbuO3QmrXUxhLY7CWD8c3ccLEHS7Ve9oPTmNp/9Id5p/XM4/PHf+5MYm1U+V9j4rGV+e0lteuib97STdrN63doXzapGk8dMZDzz0fv2g8W2PrDvXGaRxbFmwZzRA7Xt73qGh8cNdaUif0Vs07Bmu1pD9UuTVOUcfJbaQ8I3BNkdQn6V5Jd0s6vUqdf5K0OrvdJWmrpBdm0x6StCab5t14q6kTxrbNOwbrOI2rWq9WuTVOUcfJbaQ8e/xbgA9FxKuANwAfkPTq8goR8emIODQbkP2jwA0R8URZlRnZ9Fx/Q8zaVd4xWHtf11t1/lrl1jhFHSe3kYZN/BHxaETcnj3+HXAvsN8Qs7wD+GZjwrNO1a69VfOOwfq54z/HvJ55z+3hj9M4H9gdI0UdJ7eR6jq4K6kbuBE4MCKerDJ9IrAOOKC0xy/pQeC3QACfj4hlw63HB3fNzOpTz8Hd8XUsdA/g26QB03dI+pkTgP+uaOY5IiLWS3oxcLWk+yLixirL7wV6AaZObZ+2NDOzosl1Vo+kCaSkvzwivjNE1TlUNPNExPrsfgPwXeDwajNGxLKI6ImInq6urjxhWQtqxIHa5zo2nduaHZvavXOQFV+es3oEXAzcGxEXDFFvEnAU8P2ysudL2rP0GDgWuGukQVvrWrhwZPOXOjZtja2gdHrj0v6lLZP8S52D1m5aSxCs3bSW3st7nfxtTA3bxi/pSOAmYA2wLSv+GDAVICIuzOqdChwXEXPK5n0ZaS8fUrPSNyJi2EPjbuNvXyPtmNXqHZtatXOQFV9D2/gj4seActT7MvDlirIHgEPyBGLt69xzB+/plzponXNO/U0/W7dtrfpp3LqtNTo2dULnICs+99y1UdfIjlnjdqnRsalGedF0QucgKz4nfmsprd6xqRM6B1nxOfHbmBppx6xBHZui9To2dULnICs+X53TzKwN+OqcZmZWkxO/mVmHceK3hmnk5ZPb6VLMZkXjNn5rmEaOmtWuI3CZjRa38ZuZWU1O/DYijRwusROGXjQrAjf1WMO4qcesedzUY2ZmNTnxW8M0crjEdh160awI3NRjZtYG3NRjZmY1OfGbmXWYPEMvTpHUJ+leSXdLOr1KnaMlbZK0OrstKJt2nKSfS7pf0kca/QI6UTuf3ujxaM1GX56hF/cF9o2I27Pxc28DToqIe8rqHA2cFRFvrZh3HPAL4E3AOmAV8I7yeatxG//Q2vVUx9J4tJuf3fxc2cQJE33ZYrMcGtrGHxGPRsTt2ePfAfcC++WM5XDg/oh4ICL+CFwCnJhzXusw86+dPyjpA2x+djPzr53fpIjM2lNdbfySuoHDgFuqTP5zSXdIukrSa7Ky/YBHyuqso8aPhqReSf2S+gcGBuoJqyN0Qq9Wj0drNjZyJ35JewDfBs6IiCcrJt8OTIuIQ4B/B75Xmq3Koqo2UkTEsojoiYierq6uvGF1jEaOW1tUHo/WbGzkSvySJpCS/vKI+E7l9Ih4MiKeyh5fCUyQtA9pD39KWdXJwPoRR21tyePRmo2NPGf1CLgYuDciLqhR56VZPSQdni33cdLB3FdI2l/S84A5wMpGBd+p2rVXq8ejNRsbec7qORK4CVgDbMuKPwZMBYiICyV9EJgHbAGeBs6MiJ9k878FWAKMA74YEcPuvvmsHjOz+tRzVo8v2WBm1gZ8yQYzM6vJid8a5uijmx2BmeXhxG8Nc8MNzY7AzPJw4jcz6zBO/DYiRx9dvUexm33Mimt8swOw1nb99dsft+vF48zajff4zcw6jBO/NcxRRzU7AjPLw4nfGqa82cfMisuJ38yswzjxm5l1mPZI/OefD319g8v6+lK5jZl2GhvArJ21R+KfPh1OPnl78u/rS8+nT29uXB1m4cJmR2BmebTHefwzZsCKFSnZz5sHS5em5zNmNDsyM7PCaY89fkhJft48OO+8dO+kPyY6YSxgs3bTPom/ry/t6Z99drqvbPO3UdEJYwGbtZs8Qy9OkdQn6V5Jd0s6vUqduZLuzG4/kXRI2bSHJK2RtFrS6IyuUmrTX7ECFi3a3uzj5G9mtoM8e/xbgA9FxKuANwAfkPTqijoPAkdFxMHAecCyiukzIuLQvKPD1G3VqsFt+qU2/1WrRmV1Vl1dAGx4AAAFxklEQVS7jgVs1m7qHnpR0veB/4iIq2tM3xu4KyL2y54/BPRExG/yrsNDL5qZ1WfUhl6U1A0cBtwyRLX3AFeVPQ/gR5Juk9Q7xLJ7JfVL6h8YGKgnLDMzq0Pu0zkl7QF8GzgjIp6sUWcGKfEfWVZ8RESsl/Ri4GpJ90XEjZXzRsQysiainp4eX9zXzGyU5NrjlzSBlPSXR8R3atQ5GLgIODEiHi+VR8T67H4D8F3g8JEGbdYoy9csp3tJN7ss3IXuJd0sX7O82SGZjbo8Z/UIuBi4NyIuqFFnKvAd4H9FxC/Kyp8vac/SY+BY4K5GBG42UsvXLKf38l7WblpLEKzdtJbey3ud/K3tDXtwV9KRwE3AGmBbVvwxYCpARFwo6SLgbcDabPqWiOiR9DLSXj6kZqVvRMTi4YLywV0bC91Lulm7ae0O5dMmTeOhMx4a+4DMRqCeg7vDtvFHxI8BDVPnvcB7q5Q/AByy4xxmzffwpofrKjdrF+3Tc9esTlMnTa2r3KxdOPFbx1o8czETJ0wcVDZxwkQWzxy2NdKspTnxW8eae9Bclp2wjGmTpiHEtEnTWHbCMuYeNLfZoZmNqrp77o4FH9w1M6vPqPXcNTOz1ufEb2bWYZz4zcw6jBO/mVmHceI3M+swhTyrR9IA2y//UK99gNzX/i+YVo4dWjv+Vo4dHH8zFSX2aRHRladiIRP/SEjqH7WRvkZZK8cOrR1/K8cOjr+ZWjF2N/WYmXUYJ34zsw7Tjom/cqD3VtLKsUNrx9/KsYPjb6aWi73t2vjNzGxo7bjHb2ZmQ3DiNzPrMC2b+CWNk/QzSVdUmXaqpAFJq7PbDqODNZOkhyStyWLb4TKkSv5N0v2S7pT02mbEWUuO+I+WtKls+y9oRpzVSNpL0mWS7pN0r6Q/r5he9G0/XPyF3PaSXlkW02pJT0o6o6JOYbd9zvgLue2rGXboxQI7HbgXeEGN6ZdGxAfHMJ56zYiIWp0+3gy8Iru9Hlia3RfJUPED3BQRbx2zaPL7V+CHEfF2Sc8DJlZML/q2Hy5+KOC2j4ifA4dC2mkDfsX28bhLCrvtc8YPBdz21bTkHr+kycDxwEXNjmWUnAh8NZKbgb0k7dvsoFqdpBcAbwQuBoiIP0bExopqhd32OeNvBTOB/4mIyt75hd32FWrF3zJaMvEDS4APA9uGqPO27O/iZZKmjFFceQXwI0m3SeqtMn0/4JGy5+uysqIYLn6AP5d0h6SrJL1mLIMbwsuAAeBLWTPhRZKeX1GnyNs+T/xQzG1fbg7wzSrlRd725WrFD8Xf9kALJn5JbwU2RMRtQ1S7HOiOiIOBa4CvjElw+R0REa8l/bX9gKQ3VkxXlXmKdN7tcPHfTrpuyCHAvwPfG+sAaxgPvBZYGhGHAb8HPlJRp8jbPk/8Rd32AGTNU7OBb1WbXKWsKNseGDb+Qm/7ci2X+IEjgNmSHgIuAY6R9PXyChHxeEQ8kz39AvC6sQ1xaBGxPrvfQGonPLyiyjqg/F/KZGD92EQ3vOHij4gnI+Kp7PGVwARJ+4x5oDtaB6yLiFuy55eREmllnaJu+2HjL/C2L3kzcHtEPFZlWpG3fUnN+Ftg2z+n5RJ/RHw0IiZHRDfpL9d1EXFKeZ2KdsHZpIPAhSDp+ZL2LD0GjgXuqqi2EnhndpbDG4BNEfHoGIdaVZ74Jb1UkrLHh5M+Z4+PdayVIuLXwCOSXpkVzQTuqahW2G2fJ/6ibvsy76B2M0lht32ZmvG3wLZ/Tiuf1TOIpEVAf0SsBP5R0mxgC/AEcGozY6vwEuC72edjPPCNiPihpPcDRMSFwJXAW4D7gc3A3zcp1mryxP92YJ6kLcDTwJwoThfxfwCWZ3/ZHwD+voW2PQwff2G3vaSJwJuA95WVtcy2zxF/Ybd9JV+ywcysw7RcU4+ZmY2ME7+ZWYdx4jcz6zBO/GZmHcaJ38yswzjxm5l1GCd+M7MO8/8BlFkDyPlKrkIAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x112858ad0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Let's plot the first two features together with the label.\n", "# Remember, while we are plotting the testing feature distribution\n", "# here too, you might not be supposed to do so in real research,\n", "# because one should not peek into the testing data.\n", "legend = ['rx', 'b+', 'go']\n", "pyplot.title(\"Training data distribution, feature 0 and 1\")\n", "for i in range(3):\n", " pyplot.plot(train_features[train_labels==i, 0], train_features[train_labels==i, 1], legend[i])\n", "pyplot.figure()\n", "pyplot.title(\"Testing data distribution, feature 0 and 1\")\n", "for i in range(3):\n", " pyplot.plot(test_features[test_labels==i, 0], test_features[test_labels==i, 1], legend[i])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, as promised, let's put things into a Caffe2 DB. In this DB, what would happen is that we will use \"train_xxx\" as the key, and use a TensorProtos object to store two tensors for each data point: one as the feature and one as the label. We will use Caffe2's Python DB interface to do so." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This is what the tensor proto looks like for a feature and its label:\n", "protos {\n", " dims: 4\n", " data_type: FLOAT\n", " float_data: 6.69999980927\n", " float_data: 3.0\n", " float_data: 5.19999980927\n", " float_data: 2.29999995232\n", "}\n", "protos {\n", " data_type: INT32\n", " int32_data: 2\n", "}\n", "\n", "This is the compact string that gets written into the db:\n", "\n", "\u0016\b\u0004\u0010\u0001\u001a\u0010ff�@\u0000\u0000@@ff�@33\u0013@\n", "\u0005\u0010\u0002\"\u0001\u0002\n" ] } ], "source": [ "# First, let's see how one can construct a TensorProtos protocol buffer from numpy arrays.\n", "feature_and_label = caffe2_pb2.TensorProtos()\n", "feature_and_label.protos.extend([\n", " utils.NumpyArrayToCaffe2Tensor(features[0]),\n", " utils.NumpyArrayToCaffe2Tensor(labels[0])])\n", "print('This is what the tensor proto looks like for a feature and its label:')\n", "print(str(feature_and_label))\n", "print('This is the compact string that gets written into the db:')\n", "print(feature_and_label.SerializeToString())" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Now, actually write the db.\n", "\n", "def write_db(db_type, db_name, features, labels):\n", " db = core.C.create_db(db_type, db_name, core.C.Mode.write)\n", " transaction = db.new_transaction()\n", " for i in range(features.shape[0]):\n", " feature_and_label = caffe2_pb2.TensorProtos()\n", " feature_and_label.protos.extend([\n", " utils.NumpyArrayToCaffe2Tensor(features[i]),\n", " utils.NumpyArrayToCaffe2Tensor(labels[i])])\n", " transaction.put(\n", " 'train_%03d'.format(i),\n", " feature_and_label.SerializeToString())\n", " # Close the transaction, and then close the db.\n", " del transaction\n", " del db\n", "\n", "write_db(\"minidb\", \"iris_train.minidb\", train_features, train_labels)\n", "write_db(\"minidb\", \"iris_test.minidb\", test_features, test_labels)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, let's create a very simple network that only consists of one single TensorProtosDBInput operator, to showcase how we load data from the DB that we created. For training, you might want to do something more complex: creating a network, train it, get the model, and run the prediction service. To this end you can look at the MNIST tutorial for details." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The net looks like this:\n", "name: \"example_reader\"\n", "op {\n", " output: \"dbreader\"\n", " name: \"\"\n", " type: \"CreateDB\"\n", " arg {\n", " name: \"db_type\"\n", " s: \"minidb\"\n", " }\n", " arg {\n", " name: \"db\"\n", " s: \"iris_train.minidb\"\n", " }\n", "}\n", "op {\n", " input: \"dbreader\"\n", " output: \"X\"\n", " output: \"Y\"\n", " name: \"\"\n", " type: \"TensorProtosDBInput\"\n", " arg {\n", " name: \"batch_size\"\n", " i: 16\n", " }\n", "}\n", "\n" ] } ], "source": [ "net_proto = core.Net(\"example_reader\")\n", "dbreader = net_proto.CreateDB([], \"dbreader\", db=\"iris_train.minidb\", db_type=\"minidb\")\n", "net_proto.TensorProtosDBInput([dbreader], [\"X\", \"Y\"], batch_size=16)\n", "\n", "print(\"The net looks like this:\")\n", "print(str(net_proto.Proto()))" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "workspace.CreateNet(net_proto)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The first batch of feature is:\n", "[[5.5 2.5 4. 1.3]\n", " [5.2 4.1 1.5 0.1]\n", " [7.3 2.9 6.3 1.8]\n", " [6.5 3.2 5.1 2. ]\n", " [4.9 2.4 3.3 1. ]\n", " [5.7 2.6 3.5 1. ]\n", " [5.6 2.5 3.9 1.1]\n", " [5.2 3.5 1.5 0.2]\n", " [4.8 3. 1.4 0.3]\n", " [5.8 2.7 5.1 1.9]\n", " [7.2 3.2 6. 1.8]\n", " [6.8 2.8 4.8 1.4]\n", " [6.6 3. 4.4 1.4]\n", " [7.6 3. 6.6 2.1]\n", " [5.9 3.2 4.8 1.8]\n", " [5.5 3.5 1.3 0.2]]\n", "The first batch of label is:\n", "[1 0 2 2 1 1 1 0 0 2 2 1 1 2 1 0]\n", "The second batch of feature is:\n", "[[6. 3.4 4.5 1.6]\n", " [6.7 3.3 5.7 2.1]\n", " [5.8 2.7 4.1 1. ]\n", " [5. 3.5 1.3 0.3]\n", " [5.8 4. 1.2 0.2]\n", " [5. 3.4 1.5 0.2]\n", " [5.9 3. 4.2 1.5]\n", " [4.8 3.4 1.6 0.2]\n", " [6.7 3. 5.2 2.3]\n", " [5.5 2.3 4. 1.3]\n", " [4.8 3.1 1.6 0.2]\n", " [6.3 2.8 5.1 1.5]\n", " [5. 3.5 1.6 0.6]\n", " [5.8 2.7 3.9 1.2]\n", " [7.2 3.6 6.1 2.5]\n", " [4.3 3. 1.1 0.1]]\n", "The second batch of label is:\n", "[1 2 1 0 0 0 1 0 2 1 0 2 0 1 2 0]\n" ] } ], "source": [ "# Let's run it to get batches of features.\n", "workspace.RunNet(net_proto.Proto().name)\n", "print(\"The first batch of feature is:\")\n", "print(workspace.FetchBlob(\"X\"))\n", "print(\"The first batch of label is:\")\n", "print(workspace.FetchBlob(\"Y\"))\n", "\n", "# Let's run again.\n", "workspace.RunNet(net_proto.Proto().name)\n", "print(\"The second batch of feature is:\")\n", "print(workspace.FetchBlob(\"X\"))\n", "print(\"The second batch of label is:\")\n", "print(workspace.FetchBlob(\"Y\"))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.14" } }, "nbformat": 4, "nbformat_minor": 1 }
apache-2.0
michigraber/neuralyzer
notebooks/dev/DimensionalityReduction.ipynb
1
2004103
null
mit
rsignell-usgs/notebook
IRIS/Untitled.ipynb
1
16128
{ "cells": [ { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [], "source": [ "url = 'http://opendap.oceanobservatories.org/thredds/dodsC/ooi/rsignell-usgs-gov/20161123T152332-CP03ISSM-RID26-07-NUTNRB000-telemetered-nutnr_b_dcl_dark_full_instrument/deployment0001_CP03ISSM-RID26-07-NUTNRB000-telemetered-nutnr_b_dcl_dark_full_instrument.ncml'" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import xarray as xr\n", "b = xr.open_dataset(url)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x11ec2550>]" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAF5CAYAAABjkgsvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XuYJVV97//3BxAUhUFFmHi8YVDAqOCMqHjXUVE8ai5E\nHUW8+8N4O+PJAxqNeDnGOyMoqEeCBNExhiRqiIYIRjECcpxBUAFvgDcYFMFB5Q7f3x9VjXua3TPT\n1Xt3z655v55nP+xetar2d00P05+uWrUqVYUkSVJfbLXQBUiSJI2S4UaSJPWK4UaSJPWK4UaSJPWK\n4UaSJPWK4UaSJPWK4UaSJPWK4UaSJPWK4UaSJPWK4UaSJPXKxIabJK9KcnGSa5OclWTfjfR/fJLV\nSa5L8oMkLxzSZ1GSo5Nc2va7MMlTxzcKSZI0ahMZbpI8B/gAcDjwEOBc4JQkO8/Q/z7AycBpwN7A\nkcCxSZ480Od2wKnAvYA/B+4PvBz4xbjGIUmSRi+T+ODMJGcB36yq17VfB/gZcFRVvXdI//cAT6uq\nBw+0rQIWVdUB7deHAP8b2LOqbp6HYUiSpDGYuDM37RmWpTRnYQCoJqGdCuw3w26PaLcPOmVa/2cA\nZwLHJFmb5DtJ3phk4v6MJEnakk3iD+6dga2By6e1Xw4snmGfxTP03zHJdu3X9wX+kubP5GnA22nO\n5LxpBDVLkqR5ss1CF7AZ2Yom8LyiPRN0TpJ7AH8NvGN65yR3BfYHLgGum8c6JUmadLcH7gOcUlW/\nHvXBJzHcXAHcDOw6rX1XYO0M+6ydof/VVXV9+/VlwA21/iSkC4DFSbapqpum7b8/8KnZFi9Jkm71\nfODToz7oxIWbqroxyWpgGfAFuHVC8TLgqBl2O5PmUtOgp7TtU74BLJ/WZw/gsiHBBpozNpx44ons\ntddesxnCxFmxYgUrV65c6DLmxZYyVsfZL46zX7aEcV5wwQUcdNBB0P4sHbWJCzetI4Dj25BzNrAC\n2B44HiDJu4C7V9XUWjYfBV7V3jV1HE0QOhA4YOCYH2n7HAV8iOZW8DcCH5yhhusA9tprL5YsWTK6\nkW2GFi1a1PsxTtlSxuo4+8Vx9suWMs7WWKZ1TGS4qarPtmvavJ3m8tK3gf2r6ldtl8XAPQf6X5Lk\n6cBK4LXAz4GXVtWpA31+nmT/ts+5NOvbrARuc2u5JEnafE1kuAGoqmOAY2bY9uIhbafT3EK+oWN+\nE3jkSAqUJEkLYhJvBZckSZqR4UYbtXz59HnW/bWljNVx9ovj7JctZZzjNJGPX9gcJFkCrF69evWW\nNPFLkqQ5W7NmDUuXLgVYWlVrRn18z9xIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqRe\nMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxI\nkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqRe\nMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxI\nkqReMdxIkqReMdxIkqReMdxIkqRemdhwk+RVSS5Ocm2Ss5Lsu5H+j0+yOsl1SX6Q5IUb6PvcJLck\n+ZfRVy5JksZpIsNNkucAHwAOBx4CnAuckmTnGfrfBzgZOA3YGzgSODbJk2fo+z7g9NFXLkmSxm0i\nww2wAvhYVZ1QVRcChwDXAC+Zof8rgYuq6tCq+n5VHQ2c1B7nVkm2Ak4E3gJcPLbqJUnS2ExcuEly\nO2ApzVkYAKqqgFOB/WbY7RHt9kGnDOl/OHB5VX1iNNVKkqT5ts1CF9DBzsDWwOXT2i8H9phhn8Uz\n9N8xyXZVdX2SRwMvprlsJUmSJtQkhpuRS3In4ATg5VV11Wz2XbFiBYsWLVqvbfny5SxfvnyEFUqS\nNJlWrVrFqlWr1mtbt27dWD9zEsPNFcDNwK7T2ncF1s6wz9oZ+l/dnrXZE7g38G9J0m7fCiDJDcAe\nVTV0Ds7KlStZsmTJ7EchSdIWYNgv/GvWrGHp0qVj+8yJm3NTVTcCq4FlU21tIFkGnDHDbmcO9m89\npW0HuBB4ELAPzWWpvYEvAF9p3/9sROVLkqQxm8QzNwBHAMcnWQ2cTXPX0/bA8QBJ3gXcvaqm1rL5\nKPCqJO8BjqMJOgcCBwBU1fXA+YMfkOQ3zaa6YOyjkSRJIzOR4aaqPtuuafN2mstL3wb2r6pftV0W\nA/cc6H9JkqcDK4HXAj8HXlpV0++gkiRJE24iww1AVR0DHDPDthcPaTud5hbyTT3+bY4hSZI2fxM3\n50aSJGlDDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeS\nJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlX\nDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXDDeSJKlXtum6Y5JlwDJg\nF6aFpKp6yRzrkiRJ6qRTuElyOPAW4FvAZUCNsihJkqSuup65OQR4UVV9cpTFSJIkzVXXOTfbAmeM\nshBJkqRR6BpujgWeN8pCJEmSRqHrZanbA69I8iTgPODGwY1V9fq5FiZJktRF13DzYODb7fsHTtvm\n5GJJkrRgOoWbqnrCqAuRJEkahTkv4pfkHknuMYpiJEmS5qpTuEmyVZK3JFkH/AT4SZLfJPnbJK56\nLEmSFkzXOTfvBF4KvAH4Rtv2aOCtNJON3zTnyiRJkjroGm5eCLysqr4w0HZekl8Ax2C4kSRJC6Tr\nJaS7ABcOab+w3SZJkrQguoabc4FXD2l/dbtt7JK8KsnFSa5NclaSfTfS//FJVie5LskPkrxw2vaX\nJTk9yZXt68sbO6YkSdr8dL0sdSjw7+0ifme2bfsB9wQOGEVhG5LkOcAHgFcAZwMrgFOS3L+qrhjS\n/z7AyTSXzJ4HPAk4NsmlVfXlttvjgE/TPFbiOpr5RP+Z5AFVddl4RyRJkkal05mbqvoacH/gX4Gd\n2te/AHtU1ddHV96MVgAfq6oTqupCmgd5XgO8ZIb+rwQuqqpDq+r7VXU0cFJ7HACq6gVV9dGqOq+q\nfgC8jObPZ9lYRyJJkkaq65kbqupSFmDicJLbAUuBvxuopZKcSnP2aJhHAKdOazsFWLmBj7ojcDvg\nyu7VSpKk+bbJ4SbJg4HvVtUt7fsZVdV5c65sZjsDWwOXT2u/HNhjhn0Wz9B/xyTbVdX1Q/Z5D/AL\nbhuKJEnSZmw2Z26+TRMSftm+LyBD+hVN+JhYSd4APBt4XFXdsND1SJKkTTebcLMb8KuB9wvlCuBm\nYNdp7bsCa2fYZ+0M/a+eftYmyV/TTJheVlXf21gxK1asYNGiReu1LV++nOXLl29sV0mSem/VqlWs\nWrVqvbZ169aN9TNTNfuHeCd5LHBGVd00rX0b4JFVdfqI6pvp888CvllVr2u/DvBT4Kiqet+Q/u8G\nnlZVew+0fRrYqaoOGGg7FHgj8JSq+n8bqWEJsHr16tUsWbJkFMOSJGmLsGbNGpYuXQqwtKrWjPr4\nXde5+S+GL9a3qN02bkcAL09ycJI9gY8C2wPHAyR5V5J/GOj/UeC+Sd6TZI8kfwUc2B6Hdp/DgLfT\n3HH10yS7tq87zsN4JEnSiHS9Wyo0c2umuyvw++7lbJqq+mySnWnCyK40c4D2r6qpy2aLadbcmep/\nSZKn09wd9Vrg58BLq2pwsvAhNHdHnTTt497Wfo4kSZoAswo3Sf6lfVvA8UkG56tsDTyYZhG8sauq\nY2gW5Ru27cVD2k6nuYV8puMt5DwiSZI0IrM9czM1AyjAb4FrB7bdAJwFfHwEdUmSJHUyq3AzdUYk\nySXA+6tq7JegJEmSZqPTnJuqetuoC5EkSRqFzo9fSHIgzUJ39wK2HdxWVd4bLUmSFkSnW8GTvBb4\nBM0jDB5C82TuXwP3Bb40suokSZJmqes6N38FvKKqXkMzkfi9VfVk4CiatW4kSZIWRNdwcy/+cMv3\ntcAO7ftPAj53QJIkLZiu4WYtf1ih+KfAI9r3uzH8YZqSJEnzomu4+QrwzPb9J4CVSb4M/CPwr6Mo\nTJIkqYuud0u9gjYYVdXRSX4NPBL4AvCxEdUmSZI0a7MON+2Tv/8GOI7mGU1U1WeAz4y2NEmSpNmb\n9WWpqroJOJQ5rJEjSZI0Ll3n3JwGPG6UhUiSJI1C17MvXwLeneRBwGpgvWdMVdUX5lqYJElSF13D\nzTHtf18/ZFsBW3c8riRJ0px0fXBm18tZkiRJY9X12VIHJ9luSPu2SQ6ee1mSJEnddD0D8wmGP0Nq\nh3abJEnSgugabkIzt2a6ewDrupcjSZI0N7Oac5PkHJpQU8BpSW4a2Lw1zbOl/mN05UmSJM3ObCcU\nf6797z7AKcDvBrbdAFwC/PPcy5IkSepmVuGmqt4GkOQS4B+r6rpxFCVJktRV11vB/wGau6OAXZg2\nd6eqfjr30iRJkmavU7hJcj+aB2c+cvomXMRPkiQtoK4rFB8P3AT8T+Ayht85JUmSNO+6hpt9gKVV\ndeEoi5EkSZqrruvcnA/sPMpCJEmSRqFruDkMeG+Sxye5a5IdB1+jLFCSJGk2ul6WOrX972nT2p1Q\nLEmSFlTXcPOEkVYhSZI0Il3XufnaqAuRJEkaha5zbkjymCQnJjkjyf9o216Q5NGjK0+SJGl2OoWb\nJH9B82ypa4ElwHbtpkXA34ymNEmSpNnreubmzcAhVfVy4MaB9m/QhB1JkqQF0TXc7AGcPqR9HbBT\n93IkSZLmpmu4WQvsPqT90cBF3cuRJEmam67h5uPAkUkeTrOuzd2TPB94P/CRURUnSZI0W13XuXk3\nTTA6Ddie5hLV9cD7q+pDI6pNkiRp1rquc1PAO5O8j+by1J2A86vqd6MsTpIkabY6hZski4Ctq+pK\nmodoTrXfBbipqq4eUX2SJEmz0nXOzWeAZw9pf3a7TZIkaUF0DTcPB/5rSPtX221jl+RVSS5Ocm2S\ns5Lsu5H+j0+yOsl1SX6Q5IVD+vxlkgvaY56b5GnjG4EkSRqHruFmO2DbIe23A+7QvZxNk+Q5wAeA\nw4GHAOcCpyTZeYb+9wFOppkAvTdwJHBskicP9Hkk8GmaO8H2AT4PfC7JA8Y2EEmSNHJdw83ZwCuG\ntB8CrO5eziZbAXysqk6oqgvbz70GeMkM/V8JXFRVh1bV96vqaOCk9jhTXgt8qaqOaPu8BVgDvHp8\nw5AkSaPW9VbwNwOnJtmb5mwIwDJgX+ApoyhsJkluBywF/m6qraoqyanAfjPs9gjg1GltpwArB77e\nj+Zs0PQ+z5pTwZIkaV51OnNTVd+gCQM/o5lE/AzgR8CDq+rroytvqJ2BrYHLp7VfDiyeYZ/FM/Tf\nMcl2G+kz0zElSdJmqOuZG6rq28DzR1jLRLrggoWuQJKkybDnnrD99uP/nM7hJslWNAv47cK0M0BV\nNeyhmqNyBXAzsOu09l1pnnk1zNoZ+l9dVddvpM9MxwTgoINWAIumtS5vX5IkbelWtS947GNh0SJY\nt27dWD+x6yJ+j6C5s+jeQKZtLprLRmNRVTcmWU0zx+cLbT1pvz5qht3OBKbf1v2Utn2wz/RjPHla\nn9s48cSV7LXXkk2uX5KkLcsffuGfOnOzZs0ali5dOrZP7Hrm5qPAt4CnA5fRBJr5dARwfBtyzqa5\n62l74HiAJO8C7l5VU2vZfBR4VZL3AMfRhJgDgQMGjnkk8NUkrwf+neY7sRR4+YYK2WsvWGK2kSRp\ns9E13NwPOLCqfjTKYjZVVX22XdPm7TSXjr4N7F9Vv2q7LAbuOdD/kiRPp7k76rXAz4GXVtWpA33O\nTPI84J3t64fAs6rq1sdLSJKkzV/XcPNNmvk2CxJuAKrqGOCYGba9eEjb6TRnYjZ0zH8G/nkkBUqS\npAXRNdx8CPhAksXAd4AbBzdW1XlzLUySJKmLruFm6uzGcQNtRTO5eKwTiiVJkjaka7jZbaRVSJIk\njUincFNVPxl1IZIkSaMwl0X8/hj4X8BebdP5wJFV9eNRFCZJktRFp2dLJdmfJsw8DDivfT0c+F6S\nJ4+uPEmSpNnpeubm3cDKqnrDYGOSdwPvAb4818IkSZK66HTmhuZS1N8PaT8OeED3ciRJkuama7j5\nFbDPkPZ9gF92L0eSJGluul6W+jjwf5PcFzijbXsUcBjNc58kSZIWRNdw8w7gt8D/Bt7Vtl0KvJWZ\nn8wtSZI0dl3XuSmah1CuTLJD2/bbURYmSZLURadwk2Q3YJuq+uFgqElyP+DGqrpkRPVJkiTNStcJ\nxcfTrGsz3cPbbZIkSQuia7h5CHDmkPazGH4XlSRJ0rzoGm4K2HFI+yJ8IrgkSVpAXcPN6cAbk9wa\nZNr3bwT+exSFSZIkddH1VvDDaALO95N8vW17DM3ZnCeOojBJkqQuOp25qarzgQcDnwV2AXYATgD2\nrKrvjq48SZKk2el65oaquhT4mw31SXIM8JaquqLr50iSJM1G1zk3m+oghk88liRJGotxh5uM+fiS\nJEnrGXe4kSRJmleGG0mS1CuGG0mS1CuGG0mS1CvjDjcnAleP+TMkSZJu1TncJHlMkhOTnJnkf7Rt\nL0jy6Kk+VfVK17iRJEnzqVO4SfIXwCnAtTRPCN+u3bSIjSzsJ0mSNE5dz9y8GTikql4O3DjQ/g1g\nyZyrkiRJ6qhruNmD5sGZ060DdupejiRJ0tx0DTdrgd2HtD8auKh7OZIkSXPTNdx8HDgyycOBAu6e\n5PnA+4GPjKo4SZKk2er6VPB30wSj04DtaS5RXQ+8v6o+NKLaJEmSZq1TuKmqAt6Z5H00l6fuBJxf\nVb8bZXGSJEmz1fVW8OOS7FBVN1TV+VV1dlX9Lskdkxw36iIlSZI2Vdc5Ny8E7jCk/Q7Awd3LkSRJ\nmptZXZZKsiOQ9rVDkusGNm8NHAD8cnTlSZIkzc5s59z8hubuqAJ+MGR7AYfPtShJkqSuZhtunkBz\n1uYrwF8AVw5suwH4SVVdOqLaJEmSZm1W4aaqvgaQZDfgZ1V1y1iqkiRJ6qjThOKq+klV3ZJk+yR7\nJnnw4GvURQ5Kcuckn0qyLslVSY5NcsdN2O/tSS5Nck2SLyfZfWDbnZMcleTCdvtPkhzZzjGSJEkT\npNM6N0nuBnwCeNoMXbbuXNHGfRrYFVgGbAscD3wMOGimHZIcBrya5k6uS4D/A5ySZK+qugG4O/BH\nwOuBC4B7t8f8I+DZYxqHJEkag663gn+Q5gGZDweuBZ5Kc3v4D4Fnjqa020qyJ7A/8NKq+lZVnQG8\nBnhuksUb2PV1wDuq6uSq+i5NyLk78KcAVfW9qvrLqvpiVV1cVV8F3gQ8I0nXPyNJkrQAuv7gfiLw\n+qr6FnALzUTiE4FDgTeOqrgh9gOuqqpzBtpOpblL6+HDdmjnBy2meVQEAFV1NfDN9ngz2Qm42nlF\nkiRNlq7h5o78YT2bq4C7te+/AyyZa1EbsJhp6+hU1c00d23NdOZmMU34uXxa++Uz7ZNkZ+DNNJem\nJEnSBOn64MzvA3vQzF85F/j/klwCHAJcNtuDJXkXcNgGuhSw16yr7CDJDsC/A98F3rax/itWrGDR\nokXrtS1fvpzly5ePp0BJkibIqlWrWLVq1Xpt69atG+tnpnkG5ix3Sg4Ctqmq45MsBf4DuAvNWjcv\nqqp/nOXx7grcdSPdLgJeQPPk8Vv7JtkauA44sKo+P+TYuwE/BvapqvMG2r8KnFNVKwba7gT8J/Bb\n4BntZOOZal4CrF69ejVLlozzZJUkSf2yZs0ali5dCrC0qtaM+vhdnwp+4sD71UnuDewJ/LSqruhw\nvF8Dv95YvyRnAjslecjAvJtlNAsLfnOGY1+cZG3b77z2ODvSzNE5euDYOwCn0EyQfuaGgo0kSdp8\nzXrOTZLbJflxklsvE1XVNVW1pkuwmY2qupAmgHw8yb5JHgV8CFhVVWsHarwwybMGdv0g8OYkz0jy\nIOAE4OfA59v+OwBfBrYHXkYToHZtX94tJUnSBJn1mZuqujHJ7cdRzCZ6HvBhmrukbgFOornVe9D9\ngFsnwlTVe5NsTzNBeCfg68DTBs7OLAH2bd//qP1vaOb67Ab8dPTDkCRJ49B1QvHRwGFJXlZVN42y\noI2pqt+wgQX72j63WUSwqt4KvHWG/l9jvAsPSpKkedI13OxLM4flKUm+A/x+cGNV/flcC5MkSeqi\na7j5DfDPoyxEkiRpFLreLfXiURciSZI0Cp3uBErylSQ7DWnfMclX5l6WJElSN11vc348zRO5p7s9\n8JjO1UiSJM3RrC5LJXnwwJcPmPYk7q1png7+i1EUJkmS1MVs59x8m2btlwKGXX66FnjNXIuSJEnq\narbhZjeaxe0uAh4G/Gpg2w3AL9undEuSJC2IWYWbqvpJ+9ZHEkiSpM3SJoebJM8EvtQ+fuGZG+pb\nVV+Yc2WSJEkdzObMzeeAxcAv2/czKXyUgSRJWiCbHG6qaqth7yVJkjYnXR+/QJJlNM+X2oX15+BU\nVb10roVJkiR10SncJDkceAvwLeAymktRkiRJC67rmZtDgBdV1SdHWYwkSdJcdZ07sy1wxigLkSRJ\nGoWu4eZY4HmjLESSJGkUul6Wuj3wiiRPAs4DbhzcWFWvn2thkiRJXXQNNw+mec4UwAOnbXNysSRJ\nWjCdwk1VPWHUhUiSJI2Ci/FJkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqRe\nMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxIkqReMdxI\nkqReMdxIkqReMdxIkqReMdxIkqRembhwk+TOST6VZF2Sq5Icm+SOm7Df25NcmuSaJF9OsvsG+n4p\nyS1Jnjna6iVJ0rhNXLgBPg3sBSwDng48FvjYhnZIchjwauAVwMOA3wOnJNl2SN8VwM1AjbZsSZI0\nHyYq3CTZE9gfeGlVfauqzgBeAzw3yeIN7Po64B1VdXJVfRc4GLg78KfTjr8PsAJ4CZBxjEGSJI3X\nRIUbYD/gqqo6Z6DtVJqzLA8ftkOS3YDFwGlTbVV1NfDN9nhT/e4AfAr4q6r65ehLlyRJ82HSws1i\nYL3gUVU3A1e222bap4DLp7VfPm2flcB/V9XJoylVkiQthM0i3CR5VzuBd6bXzUnuP8bPfybwRJpL\nUpIkaYJts9AFtN4PfGIjfS4C1gK7DDYm2Rq4S7ttmLU082d2Zf2zN7sCU5e3ngDcF1iXrDfV5l+S\nnF5VT5ypqBUrVrBo0aL12pYvX87y5cs3MhxJkvpv1apVrFq1ar22devWjfUzUzU5NwW1E4q/Bzx0\nat5NkqcAXwTuUVVDA06SS4H3VdXK9usdaYLOwVX1T0l2AXaettt3aSYrn1xVPxlyzCXA6tWrV7Nk\nyZLRDFCSpC3AmjVrWLp0KcDSqloz6uNvLmduNklVXZjkFODjSV4JbAt8CFg1GGySXAgcVlWfb5s+\nCLw5yY+AS4B3AD8HPt8e95dMm8vTnsH52bBgI0mSNl8TFW5azwM+THOX1C3ASTS3eg+6H3DrtaKq\nem+S7WnWw9kJ+DrwtKq6YQOfMzmntCRJ0q0mLtxU1W+AgzbSZ+shbW8F3jqLz7nNMSRJ0uZvs7hb\nSpIkaVQMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5Ik\nqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcM\nN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5Ik\nqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcMN5IkqVcM\nN5IkqVcMN5IkqVcMN5IkqVcmLtwkuXOSTyVZl+SqJMcmueMm7Pf2JJcmuSbJl5PsPqTPfklOS/K7\n9vhfTbLdeEYyOVatWrXQJcybLWWsjrNfHGe/bCnjHKeJCzfAp4G9gGXA04HHAh/b0A5JDgNeDbwC\neBjwe+CUJNsO9NkP+BLwH8BD29eHgVtGP4TJsiX9j7aljNVx9ovj7JctZZzjtM1CFzAbSfYE9geW\nVtU5bdtrgH9P8tdVtXaGXV8HvKOqTm73ORi4HPhT4LNtnyOAD1bV+wb2++EYhiFJksZo0s7c7Adc\nNRVsWqcCBTx82A5JdgMWA6dNtVXV1cA32+OR5G7t/lck+UaSte0lqUeNZxiSJGlcJi3cLAZ+OdhQ\nVTcDV7bbZtqnaM7UDLp8YJ/7tv89nOYS1/7AGuC0JH8897IlSdJ82SwuSyV5F3DYBroUzTybcZkK\neR+tqhPa969Psgx4CfCmIfvcHuCCCy4YY1mbh3Xr1rFmzZqFLmNebCljdZz94jj7ZUsY58DPztuP\n4/ipqnEcd3ZFJHcF7rqRbhcBLwDeX1W39k2yNXAdcGBVfX7IsXcDfgzsU1XnDbR/FTinqlYkuU97\n/IOq6tMDfT4D3FhVLxhy3OcBn9rUMUqSpNt4/uDP3VHZLM7cVNWvgV9vrF+SM4GdkjxkYN7NMiA0\nc2iGHfviJGvbfue1x9mRZo7N0W2fS5JcCuwxbff7A1+coZxTgOcDl9CEK0mStGluD9yH5mfpyG0W\nZ25mI8kXgV2AVwLbAscBZw+eXUlyIXDY1JmcJIfSXPZ6EU0YeQfwJ8CfVNUNbZ/XAW8FXgZ8u+37\neuCBVXXx+EcmSZJGYbM4czNLz6NZf+ZUmjVoTqK51XvQ/YBFU19U1XuTbE8zWXgn4OvA06aCTdvn\nyHbBviOAuwDnAk8y2EiSNFkm7syNJEnShkzareCSJEkbZLiRJEm9YrjpKMmrklyc5NokZyXZd6Fr\nmo0kj0mNXjHyAAAH/klEQVTyhSS/SHJLkmcO6bPBh40m2S7J0UmuSPLbJCcl2WX+RrFhSd6Y5Owk\nVye5PMm/Jrn/kH6TPs5DkpzbPux1XZIzkjx1Wp+JHuMwSd7Q/t09Ylr7xI81yeHt2AZf50/rM/Hj\nBEhy9ySfbOu8pv27vGRan4kea/uzYvr385YkHxroM9FjBEiyVZJ3JLmoHcePkrx5SL/xj7WqfM3y\nBTyH5vbvg4E9aSYqXwnsvNC1zWIMTwXeDjwLuBl45rTth7Vj+p/AA4HP0awXtO1An4/Q3H32OOAh\nwBnA1xd6bAP1fZFmbaS9gAcBJ7f13qFn43x6+/38Y2B34P8A1wN79WWMQ8a8L83aVOcAR/Tp+9nW\neDjN0hV3o7k7dBfgLj0c507AxcCxwFLg3sCTgN36NFaaddx2GXgto/l39zF9GWNb49/QPEXgqcC9\ngD8HrgZePd/fzwX/w5jEF3AWcOTA1wF+Dhy60LV1HM8t3DbcXAqsGPh6R+Ba4NkDX18P/NlAnz3a\nYz1socc0wzh3but7dJ/H2db4a+DFfRwjcCfg+8ATgf9i/XDTi7HShJs1G9jel3G+G/jaRvr0YqzT\nxvRB4Ad9GyPwb8DHp7WdBJww32P1stQsJbkdzW8Ygw/iLJpb0/dbqLpGKZvwsFHgoTRLCQz2+T7w\nUzbfP4edaB7lcSX0c5ztaeHnAtsDZ/RxjDSLb/5bVX1lsLGHY71fmsvGP05yYpJ7Qu/G+QzgW0k+\n2146XpPkZVMbezZW4NafIc8H/r79uk9jPANYluR+AEn2Bh5FuxjufI51Ete5WWg7A1sz/EGc01c4\nnlSb8rDRXYEb2r+YM/XZbCQJzW9L/11VU3MXejPOJA8EzqRZ9fO3NL/1fD/JfvRkjABtcNuH5h/A\n6Xrz/aQ5O/wimjNUf0SzwOjp7fe5T+O8L82CrB8A3gk8DDgqyfVV9Un6NdYpf0azDts/tF/3aYzv\npjnzcmGSm2nm9b6pqj7Tbp+3sRputKU4BngAzW8RfXQhsDfNP5oHAickeezCljRaSe5BE1CfVFU3\nLnQ941RVg0vSfzfJ2cBPgGfTfK/7YiuaFeb/tv363DbAHQJ8cuHKGquXAF+qqrULXcgYPIdmod3n\nAufT/CJyZJJL27A6b7wsNXtX0EwE23Va+65AX/6yrqWZR7ShMa4Ftk3znK6Z+mwWknwYOAB4fFVd\nNrCpN+Osqpuq6qKqOqeq3kSzwvbr6NEYaS4H3w1Yk+TGJDfSTDh8XZIbaH6z68tY11NV64Af0EwY\n79P39DLggmltF9BMRoV+jZUk96KZMP3xgeY+jfG9wLur6p+q6ntV9SlgJfDGdvu8jdVwM0vtb4yr\naWa7A7de8lhGc71x4lXzyImph40C6z1sdGqMq4GbpvXZg+YfpTPnrdiNaIPNs4AnVNVPB7f1aZxD\nbAVs17Mxnkpz19s+NGep9ga+BZwI7F1VF9Gfsa4nyZ1ogs2lPfuefoPbXs7fg+YsVR//H30JTQi/\n9YHMPRvj9jS//A+6hTZrzOtYF3p29SS+aE4NX8P6t4L/GrjbQtc2izHckeaHwz7tX77/1X59z3b7\noe2YnkHzA+VzwA9Z/3a9Y2hu43w8zW/V32AzujWxre8q4DE0qX/qdfuBPn0Y59+1Y7w3za2V72r/\ncXhiX8a4gbFPv1uqF2MF3gc8tv2ePhL4Ms0Pxbv2bJwPpbkz5o00Sxk8j2bO2HN7+D0Nze3N7xyy\nrS9j/ATNxN8D2r+7f0Zza/jfzfdYF/wPY1JfwF+1f1GvpUmTD13ommZZ/+NoQs3N017HDfR5K81t\ne9fQPJZ+92nH2A74EM2lut8C/wTsstBjG6hv2PhuBg6e1m/Sx3kszZov19L8VvSftMGmL2PcwNi/\nwkC46ctYgVU0y0tc2/6w+DQDa7/0ZZxtnQfQrOlzDfA94CVD+kz8WIEnt//+7D7D9j6M8Y40D5++\nGPg9TWh5G7DNfI/VB2dKkqRecc6NJEnqFcONJEnqFcONJEnqFcONJEnqFcONJEnqFcONJEnqFcON\nJEnqFcONJEnqFcONJEnqFcONpN5I8rgktwx5orCkLYjhRlLf+EwZaQtnuJEkSb1iuJE0UZJsm+So\nJJcnuTbJ15M8dFq3Ryc5t91+ZpI/Gdj/Xkm+kOTKJL9L8p0kT53nYUgaI8ONpEnzPuDPgBcADwF+\nBPxHkp3a7QHeC6wAHgr8Cvi3JFu3248BtgUeDTwQOAz43bxVL2nsUuXlaUmTIcn2wFXAwVX1j23b\nNsAlwErgW8B/Ac+uqpPa7XcGfg68sKpOSnIucFJVvWMBhiBpHnjmRtIk+WNgG+CMqYaqugk4G9hr\nqgk4a2D7VcD3B7YfBfxtkv9O8tYkD5qPwiXNH8ONpC1KVf09sBtwAs1lqf+X5FULW5WkUTLcSJok\nPwZuBB411dBeltoXOH+qCXjEwPY7A/cHLphqq6pfVNX/raoDgSOAl4+/dEnzZZuFLkCSNlVVXZPk\nI8D7klwF/Aw4FLgD8PfAPm3XtyS5Evgl8E6aScWfA0iyEvgS8APgLsAT+EMwktQDhhtJk+YNNGdn\nTgB2oJlE/JSqWpcEmjk3bwCOBHYHzgGe0c7NAdga+DBwD+BqmqDz+vkcgKTx8m4pSZLUK865kSRJ\nvWK4kSRJvWK4kSRJvWK4kSRJvWK4kSRJvWK4kSRJvWK4kSRJvWK4kSRJvWK4kSRJvWK4kSRJvWK4\nkSRJvfL/A5iCuZJneCQUAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x8ea9e10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "b['nitrate_concentration'].plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
brucefan1983/GPUMD
examples/empirical_potentials/phonon_dispersion/Phonon Dispersion.ipynb
1
88008
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Phonon Dispersion\n", "# 1. Introduction\n", "- In this example, we use harmonic lattice dynamics to calculate the phonon dispersion of diamond silicon." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Importing Relevant Functions\n", "- The inputs/outputs for GPUMD are processed using the [Atomic Simulation Environment (ASE)](https://wiki.fysik.dtu.dk/ase/) and the [thermo](https://github.com/AlexGabourie/thermo) package." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from pylab import *\n", "from ase.lattice.cubic import Diamond\n", "from ase.build import bulk\n", "from thermo.gpumd.preproc import add_basis, repeat\n", "from thermo.gpumd.io import create_basis, create_kpoints, ase_atoms_to_gpumd\n", "from thermo.gpumd.data import load_omega2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2. Preparting the Inputs\n", "- The structure as specified is 64-atom diamond silicon at zero temperature and zero pressure. \n", "- Weuse the minimal Tersoff potential [[Fan 2020]](https://doi.org/10.1088/1361-648X/ab5c5f).\n", "\n", "## Generate the [xyz.in](https://gpumd.zheyongfan.org/index.php/The_xyz.in_input_file) file:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Create Si Unit Cell & Add Basis" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Atoms(symbols='Si2', pbc=True, cell=[[0.0, 2.717, 2.717], [2.717, 0.0, 2.717], [2.717, 2.717, 0.0]])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a=5.434\n", "Si_UC = bulk('Si', 'diamond', a=a)\n", "add_basis(Si_UC)\n", "Si_UC" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Transform Si to Cubic Supercell" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Atoms(symbols='Si64', pbc=True, cell=[10.868, 10.868, 10.868])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Create 8 atom diamond structure\n", "Si = repeat(Si_UC, [2,2,1])\n", "Si.set_cell([a, a, a])\n", "Si.wrap()\n", "\n", "# Complete full supercell\n", "Si = repeat(Si, [2,2,2])\n", "Si" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Write [xyz.in](https://gpumd.zheyongfan.org/index.php/The_xyz.in_input_file) File" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "ase_atoms_to_gpumd(Si, M=4, cutoff=3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Write [basis.in](https://gpumd.zheyongfan.org/index.php/The_basis.in_input_file) File\n", "- The [basis.in](https://gpumd.zheyongfan.org/index.php/The_basis.in_input_file) file reads:\n", "```\n", "2\n", "0 28\n", "4 28\n", "0\n", "0\n", "0\n", "0\n", "1\n", "1\n", "1\n", "1\n", "...\n", "```\n", "- Here the primitive cell is chosen as the unit cell. There are only two basis atoms in the unit cell, as indicated by the number 2 in the first line.\n", "\n", "- The next two lines list the indices (0 and 4) and masses (both are 28 amu) for the two basis atoms.\n", "\n", "- The next lines map all the atoms (including the basis atoms) in the super cell to the basis atoms: atoms equivalent to atom 0 have a label 0, and atoms equivalent to atom 1 have a label 1.\n", "\n", "**Note:** The [basis.in](https://gpumd.zheyongfan.org/index.php/The_basis.in_input_file) file generated by this Jupyter notebook may look different, but the same concepts apply and the results will be the same." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "create_basis(Si)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Write [kpoints.in](https://gpumd.zheyongfan.org/index.php/The_kpoints.in_input_file) File\n", "- The $k$ vectors are defined in the reciprocal space with respect to the unit cell chosen in the [basis.in](https://gpumd.zheyongfan.org/index.php/The_basis.in_input_file) file.\n", "- We use the $\\Gamma-X-K-\\Gamma-L$ path, with 400 $k$ points in total." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "linear_path, sym_points, labels = create_kpoints(Si_UC, path='GXKGL',npoints=400)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The <code>run.in</code> file:\n", "The <code>run.in</code> input file is given below:<br>\n", "```\n", "potential potentials/tersoff/Si_Fan_2019.txt 0\n", "compute_phonon 5.0 0.005 # in units of A\n", "```\n", "\n", "- The first line with the [potential](https://gpumd.zheyongfan.org/index.php/The_potential_keyword) keyword states that the potential to be used is specified in the file [Si_Fan_2019.txt](https://github.com/brucefan1983/GPUMD/blob/master/potentials/tersoff/Si_Fan_2019.txt).\n", "\n", "- The second line with the [compute_phonon](https://gpumd.zheyongfan.org/index.php/The_compute_phonon_keyword) keyword tells that the force constants will be calculated with a cutoff of 5.0 $\\mathring A$ (here the point is that first and second nearest neighbors need to be included) and a displacement of 0.005 $\\mathring A$ will be used in the finite-displacement method." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 3. Results and Discussion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Figure Properties" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "aw = 2\n", "fs = 24\n", "font = {'size' : fs}\n", "matplotlib.rc('font', **font)\n", "matplotlib.rc('axes' , linewidth=aw)\n", "\n", "def set_fig_properties(ax_list):\n", " tl = 8\n", " tw = 2\n", " tlm = 4\n", " \n", " for ax in ax_list:\n", " ax.tick_params(which='major', length=tl, width=tw)\n", " ax.tick_params(which='minor', length=tlm, width=tw)\n", " ax.tick_params(which='both', axis='both', direction='in', right=True, top=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Plot Phonon Dispersion\n", "- The [omega2.out](https://gpumd.zheyongfan.org/index.php/The_omega2.out_output_file) output file is loaded and processed to create the following figure. The previously defined kpoints are used for the $x$-axis." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "nu = load_omega2()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoMAAAJJCAYAAADRHT1cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hb5fXA8e/VsGVb3nuv7J04gwRCwg4zZZVNyixdtHRCW35QWkahtJTSCRRKGaUtZY+EQAJk7+UR24lXvKc8Za37+0O2bAc7sR3LGj6f59GjXElXemNdXR294xxFVVWEEEIIIcTEpPF0A4QQQgghhOdIMCiEEEIIMYFJMCiEEEIIMYFJMCiEEEIIMYFJMCiEEEIIMYHpPN0Ab6UoiiyzFkIIIYRPUVVVGek+0jMohBBCCDGBSc/gSUgeRjHWFMX5o02OLf8i76vwFDn2BPQdB6MhPYNCCCGEEBOYBINCCCGEEBOYBINCCCGEEBOYBINCCCGEEBOYBINCCCGEEBOYBINCCCGEEBOYpJYRYpytWLHC000QbiDvq/AUOfbEqZKeQSGEEEKICUyCQSGEEEKICUyCQSGEEEKICUyCQSGEEEKICUyCQSGEEEKICUyCQSGEEEKICUyCQSGEEEKICUyCQSGEEEKICUyCQSGEEEKICUyCQSGEEEKICUyCQSGEEEKICUyCQSGEEEKICUyCQSGEEEKICUyCQSGEEEKICUyCQSGEEEKICczrg0FFUUIVRblMUZRfKoryoaIoDYqiqD2XacN8jiBFUb6nKMomRVHqFUUxK4pS1vN8P3D3/0EIIYQQwlvpPN2AYTgHeHO0OyuKMgN4F8jquckKdAJpPZfzgCdPsY1CCCGEED7JF4JBgDpgF7ATqAT+NpydFEVJBTYAccBm4D5gs6qqDkVRQoAFwBVuabEQQgghhA/whWDwXVVV3+rdUBQlYwT7/gVnILgRuEBVVUvvHaqqdgBf9FyEEEIIISYkr58zqKqqfTT7KYoyF7ioZ/Ob/QNBIYQQQgjh5PXB4Cm4oed6n6qq+R5tiRBCCCGEl/LnYHBpz/VeRVEiFEX5jaIoJYqidCuKUqMoyv8URTnDoy0UQgghhPAwfw4GJ/f79y7gB0AyzpXE8cDlwOcnSy2jKMqQFyGEEEKI8eKumMSfg8GInus1OFPIfAsIU1U1EsgE3gcU4AlFUVZ4polCCCGEEJ7lz8Ggpt/1r1VV/ZOqqmYAVVVLgauACpwB4U+GehJVVYe8CCGEEEKMF3fFJP4cDLb3+/fvj7+zJzD8c8/mSkVRtOPSKiGEEEIIL+LPwWBVz3WTqqoNQzzmcM91EBDt/iYJIYQQQngXfw4GD43w8TLuK4QQQogJx5+DwfU911GKosQM8ZhpPddtQKP7mySEEEII4V38ORh8k755g987/k5FUQzAXT2ba1VVdYxXw4QQQgghvIVPBIOKosT0XoDIfndF9L9PURTX/0dV1Ubg0Z7NHyuK8s2eABBFUdKB/wCpgAX41fj8T4QQQgghvIvO0w0Ypvohbt963HYmUNpv+1FgOnAj8EfgKUVR2ukLKC3AGlVV9w/1whf//nP0Wg06nQaDVoNepyHUoCMhPIjUqGCyY0LIjAkh1hiITucTsbUQQggPM1vtNHV0U99moa6ti2PNZiqbu6hr68bUZcVstWO1O7A6VGw2ByqgKKCgoNMqaDUKeo1CoF5L7aTL0DgsPPRuHrGhASSEBRJtNBBjDCAmNJDo4AC0Wvl+EkPzlWBwVFRn4p2bFEV5D7gTmAcYgXLgE+A3qqrmneg5cqvbRvSaGgUCdVpCDTpiQgPJiA5mUXoUS7KimJYQikYjH0ghhPBHqqrS1GGh2mSmsqWL0oYODte0Ud7USVOHhZYuK+3dNqw9wd2YiZkKwN83l5zwYVqNQqBOQ3CAFmOgjohgPVEhASSGB5ERE8K0+FBmJYcTGRIwlq0TPsAngkFVVU+pzoqqqq8Dr49Rc07IoUKX1U6X1U5dWzd5Va18cLDGdb9OoxAWpCcjOpgF6ZGsmBLL0sxo6VUUQggfoKoq9W3dFNe3c7S+g6P1HRyubeVIXQcN7d3YHN6bmMLuUOm02Om02Glotwy5bFIBAnQajIE6oo0BpEYGMzUhlLmpESzJjCIiWIJFf+MTwaAnhQfpcThUHGrvxfmB6v33SNkczl+OTR0W9pS38NwXzl9yQXotyZFBzE+N4IKZ8aycEicBohBCeFCr2Up+VSt51a3kVbVyuKaN4vp2Oi12t7yeooBWcQ4BazUKGkVBo4BGo6AAqurMgab2fP/0fi+Zuy2AgqLRjkmPowp02xx02yw0dlgorG3nk4I61/0aBUICdcQYA0mPDmZmUhinZ8ewKCMKvXxv+SRFyqoNTlEUFThpiRdVVemw2DnW1Mm2kkYOVpg42tBBTauZ1i4rnVY7o/0TRwbrmRIfyplTYrlmUQoxRsPonkh4lZUrVwKwceNGj7ZDjC15X31bS6eFvRUtHKgwkVdtIq+6lYqmrjF9DQWICw1kcpyRGUlhzEwKZ1K8kbSoYEIN+lE/7/HHXqfFRlWLmaqWLqpauihr6KC4rp2i+naONXe5tffSoNcQawwkKzaEOSkRLJ8cQ05apMxZHAeK4hxEHc1oqgSDQxhuMHgyqqpS19ZNbmULW440sbO0iZKGDlrNthE/V2igjhlJYayalcBVOSmndPIQniNBg3+S99V32OwODte2sbe8pefSzNGGjjF/neiQAJZNiuG0rCjmpkQwOd5IoG7sK5+O5NhzOFSONXdRWNvG4do2cqtM7ClroabVfNJ9FUZfnSHUoCMtKpg5KeGsnBLHiikxGAJkcHIsSTDoBmMVDA7F1GVlb3kze8qa+aywnkOVJuwjfKnIYD1Ls6NZszSDJVlSTc9XSNDgn+R99V4Wm4MDx1rYdrSRbUeb2FPePOqhXp0G7I7BgyKtRuG0rCjOmx7PGZNjyI41ur6g3Wksjr2qli72lDezu8x5OVhpGnJUS6eBtKgQwoL0dFps1LZ202q2jngULDhAS1JEELOSwlgxJY7zZ8YTEigB4mhJMOgG7g4Gj2e22tlZ2sSmogY+O1xHQW37yXfqR69VmJ4YxlfmJXP94lT5xeXFJGjwT/K+eo/jg79dZU2YraOrKzAp1khChIGq5k6ONnR+6X6dRmHl1DgunJXAOdPjPLK4wh3HXkunhS1HGvmiqJ7PCxuobBl8yDw4QMsFMxNYPS+J5IggNhc3srusiaK6dipbumg320bUmxgSoCUjOoSFmVFcPDuBhemRkoVjmCQYdIPxDgaPV23qYn1eLevyatl6pHFEczwUICvWyJU5ydy6LEMCQy8jQYN/kvfVc1RVpaiunc8L6/mssJ5dpc10WUfe8xcSoGVeWgQL0iKZlxpBVUsXL24p5Uj9l4eQp8aHcvXCFC6fn0y0MXAs/huj5u5jT1VV8qvbWJdXw9rcWvKrWwd9XFK4gWsWpfHVRSkkhgcB4HA42H/MxMd5tewua+ZIfTtNHZZhL8BUgGhjAFMTQjljUiyr5yaRFBk0Rv8z/yLBoBt4Ohjsz9RlZX1eLW/tq2RzccOIVjErQEZMCJfPT+b25ZkES2DocRI0+Cd5X8eXqdPKpuIGPiusY0NBPfXt3SN+jozoYBakRbIgPZIFaZFMTQhFo8C6vFqeXHeYwuNGaLQahUvmJHLL6ZnMTQkflyHg4RjvY6+8sZN3D1Tx5t5Kiuu+PIqlUeDsafGsWZbOGZNiBv07Fde2sS6vlu0lTRTWtlHX1o19mF9ueq1CckQQ81IjOG9mPOdOiydQP/ZzMX2NBINu4E3BYH91bWbe21/NG3uOkVs1+K+zofT2GN6yLJ3rl6RJ17uHSNDgn+R9dS+b3cGOkibe3l/FliMNHGvqGtHwo0GvYU5KBDk9gd/8tAhijuvR23qkkcc+KmB/RcuA242BOq5bnMrXTs8kOcL7eqU8deypqkpuVStv7a3kf3sraeqwfOkx0xJCufWMTFbPSzrp4pnCmjbeO1DFliONFNe309JpHXZbwgw6JsWFsmxSNJfNTWJKfOiI/z++ToJBN/DWYLC/A8daeG1HOW/vqxrxZGidRiEnPZLvnjOZZZNi3NRCMRgJGvyTvK9jw2p3UGMy96x4bWXLkUZyq1qpauka0ahIVmwI81OdQd+81AimJoSiHyK9SW2rmYffz+ed/VUDbg8J0HLb8ixuOyOT8CDvzd7gDcdet83OutxaXttRzpYjX85mHWMM5JbTM7h5afqwM2HYbA4+K6pnXW4te8qbqWjuHPbcT51GISHcwJyUcM6dHs8FM+MJCfTe93AsSDDoBr4QDPZq77bx5t5KXthUMmh6hFCDjo5u25AnUmOglnOmx/PjVVNJjgh2c2uFN5y4xdiT93VoNruDDoudjm4bzZ0WGtstNLR3O687uqlv7eZYSxeVzV1Um0YW9IEzs8LslPCeHr9I5qVEEB588i9+q93BP7aU8ruPC+no94M6QKfhptPS+ebKbI/PBxwObzv2jta389LWMv69q+JLHRXhQXpuOyOTNcsyRhVgN7Z38/7BKjYU1JNX3Up9W/ewjxdjoI6s2BBOy4zm0rmJzEr2nqH+sSDBoBv4UjDYy+FQ2XC4jue+KGHr0S//Mpsab3QmyG4eOpFqZkwwd63I5uqcFBlGdhNvO3GLseFt76uqqj1lx7ppaO+mucNKh8VGl8VOh8VOl8VGp8WOxebArqo4HCq2nupKdoeK3UHfv3vu7199yT7gsSqqCvaebbPVTofFRme3nfZuG9220a3kHUyYQcfk+FDOmBRDTnok0xPDiA0decB2qNLED/69n8O1A+vPXzo3ifsunEaSFw4HD8Xbjr1epk4rr+4o58UtJdS2DpzTGWrQcdsZmdy+PAvjKaSTUVWVvRXNvLe/mh2lTZTUdwwI7E9Eo0B8mIGZSeGcPS2Wi+ckEh7ku6X2JBh0A18MBvs7eMzEMxuKWJtb+6X7LpqVgNGg49P8OhoGmeMBEKjTcN6MeO67aJr0Fo4xbz1xi1Pjife1o9vG4do2yho7KGvs7Ll0UNfmDABHm07Fm0SHBDAvNYJzZ8Rz6ZxEjKeYbN9qd/CnDUf4w6dFA7I0TIoz8tDqmSzL9r1pM95+TrHYHLy1t5JnNhRT3jQwPU+MMYC7z5nMtYvSCBijUnbtZisfHqxhfUEthypbqWk1D3txSpBeS0ZMMIszorhkTiILM6J8pvdQgkE38PVgsFd+dSvPfFrMB4eqByQEDdBquPG0dC6cncBznx9lY2H9kL/eM6KD+fqKbK5ZKL2FY8HbT9xidNz9vpqtdme1jIpmcquctXJLGztGXe5yPCkKhAToCNRpUBQwWx20dw9dhWlOSjirZiWwamYCWbHGMWtHcV0b3//3fg4cM7luC9Jruee8yXxtWeaYBSPjzVfOKTa7g7f3VfHMhmJKjpvSlB4dzI8umMrFsxPdEnzlV7fy7v5Kth5pori+nbZhVgFTFOd8x2nxoSzNjubiOYmkR4eMefvGggSDbuAvwWCvwzVtPLH2MOvzB/YUhgfp+cH5U7h2YQpv7K3ir58dobTxy4lVwdlbeMmcRO6/ZIZHEqv6C185cYuRGev31Wp3sLO0iS3FjWwvaWR/hQmLfWQ9fQE6Z53YGGMAkSEBGAN1BAdoCQ7ovdYSqNOi0ShoFWfqFOe/+67736bVgOa42zSKgkbDgMcG6jQYA3UE6bVUm8xsKKjjo9waCmraBm2nosCi9CgumJXABTPjSYkc29EIVVV5fWcFD7yTO+BHb056JE9ePZeMGO/8ch8uXzun2B0q/9tzjN99XEiVaWAZvMWZUTx46UxmJIW5tQ1dFjsf59ewPq+WfRUmqlu6sA6z91CrKESG6MmKNTI/NYKVU2NZnBHl8frLEgy6gb8Fg712ljbx2IcF7C5rHnD7tIRQfnHZTJZkRVPR3MljH+SzPr9u0N5CBZibGsH9l8wgJz1ynFruP3ztxO2vVFWl2+ag02Kn0+Kc1+ZwzY/rmy+n1SjotRr0Wud1gE6DXqshJFA7IFXGWLyvpk4rGwvrWJ9fx8bDdSftvdBqFLJiQpgUZyQtOpiM6BDSo4JJCDcQExpIaKBu3Ie4VFXlYKWJDw/VsPZQzZA1f3UahaXZ0ayalcB5M+KJCzW4pT1dFjs/f+sQb+w55rotQKvh++dP4Y7lWWg1vjEEeCK+ek4xW+38c2sZz2woxtTVl0ZGo8ANS9L5wflTxrXjoaS+nXf2V7GpuIGi2nZauoaf2gac1VjiwwxkxYQwOyWc0zKjWZAeOW49zhIMuoG/BoPg/D+ty6vlkQ/yKTuuF3D1vCTuv2QGMcZAHA4H/9l9jD9vHLq3MD40kDvPzOKW0zNkCHmYfPXE7e3sDpWG9m6qTWZqTF1Um8zOhROdVpo7LDR1WGjptNLcaaGj20aX1T7iVavHC9BqMBp0GAN11FSUoLGZOXf5acQYA4kNDXT2yoUGEGs0EBfm3NYcF3yYrXY+ya/jzb2VfFZYh/UERcqzY0NYnBnFnJQIZiSGMTUhFIMXJNu1O1R2lzXz0aEa1ubWDFm6LECn4czJsayalcC541C67Wh9O998Zc+AHslpCaE8de08piW4t+dpPPn6OcXUZeUPnxTx4pbSAfM4I4P1/PziGVyxINkj8/YsNjsbD9ezLq+G/RUmjjV3jaqyTaBOQ1RIAInhBtKjgpkcH8rMpDDmp0USNoYpiyQYdAN/DgZ7ma12nt9UwjOfFg84wCOC9dx/3AewrLGDX7yby2eFDYNOxA3UabhodiL3XzyDKKMMIZ+Ir5+4PanLYqesqYPShg5KGjopbeigtLGDiqZOakdQwcBT9Fpn7rPkiCASwgyYrQ42FzfQNsT8ueSIIM6aFsuy7BgWZUSNatWsu1jtDrYdbeTDQzWsy62lYYgKIMEBWs6a5qzdu3Jq3CmtHB2J9Xm1fO/1fQPmJl65IIVffWUWQQGeD6DHkr+cU4rr2njwnTw2FTcMuH355Bge/sps0qI9v5ixs9vGZ4X1fFFUz8HKVsqbOmntso4oAXp/GgUMei2hBh3hQXqiggOIDTOQFG4gJTKI1KhgkiKCiA81EBZ04p5+CQbdYCIEg72qWrp45IN83jtQPeD25ZNjeOTy2aRG9X0ALTYHv/+kiJe3lQ3o1u+l4Jz8ff8lM1iYEeXupvskfzlxu5PF5qC4rp2CmlYKatrIr26lqLadmlbzyXcegQCthqCeuXMGvRZN77y5nrlwWo2CQ1Wx2h1Y7SoWmwOr3UG3zUFHt21ENcOHa25KOOfNiOec6fFMSwj1qpWMZqudL4oa+OhQDevzawc9B4BzLvK50+NZNSuB5ZNjxrX3UlVVnt9UwsMf5LsW1wToNDx02UyuWZTqVX/PseJP5xRVVVmbW8sv38sb0MNs0Gv4/nlTuPX0THQenpt3PFVVKahu47OiOvaUtVDS0EFNq5n2btuYL/BS6Ju3q9UoKAo95ys4+ItVve2RYHCsTKRgsNdnhfX89H8HB3wAg/RafnbxdG5Ykvalk+i63BqeWHuYokFqUwLEhwXyzZWTuOk0KX3Xnz+duMdCl8XOoSoT+ytaOFRpoqCmjeK69lEFWlEhASSEGUgMN5AQbiA2NJCokAAigwOICgkgIlhPZHAARoOOYL32lL5UeucctplttHfbuH7NrTh0Bu598GEa2izUt3fT0NZNfXs39W3d1LaaaR6ivFZGdDBfmZ/MV+Yle91ihvZuGxsP1/HhoRo2FtQNmcMtxhjA+TMTuHBWAqdlRQ9Z7cOdbHYHD76by8vbyl23pUYF8ecbcpiVHD7u7Rkv/nhO6ei28duPC3lhc8mA6RwL0iJ48qvzyPSyz8lQKpo62VRUz4FjJo7UO4PE5k4Lnd127GMcX5T9+hJAgsExNRGDQXB+AJ9cV8gLW0oG/KI5a2osv75qzqCTvCuaO3nonVw2HK4f9AvcoNewel4yP794+rDLEPkzfzxxD5fdoXKkvp195S3sO9bCvvIWDte2DXt4V6tRSIkMIiM6hMyYEDKig8mICSE9OoTEcINH588N533ttNioajFT1dJFXVs3qqoyOT6UuSneVQmhpdPC+vw6PjpUw+dF9ViGSDuVHBHEBTMTWDUrgZz0SI8uxmgzW/nWq3v5vLDedVtOeiR/uynHJ6qInAp/Pqfsr2jhJ28cGDDvM0iv5acXT+fGQTopfEmXxcbBqlbyq1qdvYkmM/XtZpo7rLSarX1J4R3qsIahJRh0g4kaDPbaW97Mj/97YECvX2SwnkevmM2qWYmD7mOxOXj6kyL+OdQQsgKLMqJ48LIZzEj031/pJ+PPJ+7jWe0ODlWa2FHSxPaSJnaWNg07v1dqVBDTEsKYnhDKtMQwpsSHkhYV7LW54Hz9fa02dbEut5a1uTVsL2kaMkDPjAlh1SxnD+BsLynn1dDezc3P7yCvutV126Vzk3jiqjlescDG3Xz92DsZq93BXz87wlPrByYKP3NKLE9cNYf4MPesRPcmqqrS3m2jvs050tDQbqHLYqPb7sBic2CzO7hzxaTex0owOFYmejAIzvlBj390mL9vLhlw+3WLU3ng0pknPMmuPVTD42sLOFI/eFqJ1MggvnfuZK7MSR3TNvsCfz5xm6129le0sKOkiR2lTewua/5SbdLBTIozMjclgrmp4cxIDGNKQihhPtaL7Ivva3FdO2tza1iXW8P+fomYjzctIZQLZyWyalYCU+KNXhEA9qpq6eLG57dztN+55u5zJnPPuZO9qp3u5IvH3mgcqjTx/X/vo7C2r5MiKiSA3351LiunxnmwZd5BFpC4gQSDfTYXN/DD/+ynul9y0GkJofzxhgVkn6Q6QEl9Ow+8m8umooZB03iEBGq5ZmEqP75gKoaA8Vll6Gn+dOJ2OFTyqlvZVNzApqIGdpQ2DTmk2CvGGMi81Ajmp0UwLzWC2SnhPhf4DcYX3ldVVTlwzMTaXGcKmKF+rAHMT4twDgHPTPC6eYy9Shs6uOG57a55zhoFHrtiDl9dNLF+ZPrCsTdWzFY7v/24kGe/ODpgKtPXz8zihxdM9chcVW8hwaAbSDA4kKnLys/ePDhgxXFwgJZHLp/NV+Ynn3T/TouN36w9zOu7Kujo/nJPkVaBMybH8tDqmV5b6mes+PqJu8Zk5ouier4oamBzcQONQ9S37pUcEUROeiQzk8OYEhdKWJCOTosdm13F5lCxOxzYHWBzOIPIgJ7EzgE6jevfxkBn2oWwIL3XDvt56/vabbOzo6SJ9Xm1rMurHfCjrr/eJNDnz0zg/BnxXj/0VlDTyk3P76C+zZnSRq9V+P2187lo9uDTWPyZtx577rT1SCPf/dde6tr6UhrNT4vgD9fNH/MKNr5CgkE3kGDwy1RV5dUd5fzi3bwBvT/XL0njwUtnDnsu1393VfD7T4qoaB48MW12rJGfrJrK+TMTxqTd3sbXTtydFhvbjzbxeVE9m4oahlw93ssYqCMk0BmwdXbbabeMbXqFAJ2GMIOeiGA9scZAEsKdCZ3jQw3EhxlICA8kLtS5ong8U1B40/ta12ZmY0E9nxTUsqmoYcgVwEF6LSumxHLBrHjOnhpPeLBv9NAW1LRy3d+2uVZnG/Qa/nJjzoQdKvSmY288NbZ384P/7Gfj4b5FQxHBev5w3XyWT471YMs8Q4JBN5BgcGi5VSa+/ereAYXGF6ZH8qcbF4yopFRelYkH381jZ2nToMFCeJCeNUvTufvsyei8dNHAaHj7iVtVVQpr29l4uI6Nh+vZVdZ0wqoY3kqrUUiOCCI9Opi0qGDXdVqUcyXyWCce9uT76nA4S8B9WlDHhsN1HDjB/L+IYD3nTIvngpnxLJ8c63MJmIvr2rn2b1tpaHf2SIcG6nj+a4tYnDlx85p6+znFnRwOlWe/OMoTaw+7FpdoFPjRBdO4a0XWhJk3ChIMuoUEgyfW3m3j3jcODBg2Tggz8NebcpibGjGi5zJ1WnjkwwLe3leJ2frl+WY6jcLKqbHcd9H0k85R9AXeeOJuNVvZXNTAxsJ6NhTUDRh6GQvBAVqMgTpCDTqMBj3GQC16rQadRhmQQFUFrDYHFrszubPF5ry0ddto7bJi6rKOSWCqKM7h60lxRibFGp3XPZfRlkgb7/e1qcPC5uIGPi+sZ8Ph+iErgACkRQVz9rQ4zp8Rz+LMKK9L2jtcpQ0dfPWvW13HZ2igjpdvXzLic46/8cZzynjbXdbMN1/ZTW1r3+fgotkJPH7V3HGreuNpEgy6gQSDJ6eqzl9kj31Y4FocEqDT8Ojls7kyJ2XEz+dwOPjntnL+tLF4wAe6v6RwA2uWZXDb6Zk+21voDSduVXUu/Piop5RYUV3bqOr0ajUKqZFBpEWHkBYV5BqqjQ0LJC7UOVwbGawfs+BDVVXMVgemLmeN4bqeZM61JjO1bWZqW7upazVTZTK75pKNVIwxgOzjAsTsWCOJ4YYT9jK4+301W+3sKm3mi+J6Nhc3kFvVOuTwu06jsDAjkrOnxXH2tHiyY0N8vofkWHMn1/x1m2uxSHCAln/etpic9InbI9jLG84p3qCuzcy3XtnDztJm121T40N5bs3CAZW0/JUEg24gweDwfV5Yz3de2zsgt+B3zp7E98+bMuovoF2lTfzyvbwh0130Tna/78JpzEjyrZyFnjpxmzqtfHiomrf3VbKvwjSiguvBAVqmxIcyLSGUqQmhZMUayYh21sz01tV7XRY7Fc2dlDV2UtbYQXlTJ+VNznrG5U2dIw5+gwO0ZMcayY4NcQWI2XFGMqJDCNBpxvx9tTtU8qtb2VzcwKbiBnaUNNF9gpXaUSEBrJway9nT4lg+OZbwIN+Y/zccdW1mrvrzVsqbOgFnLfQXb1nM0uxoD7fMO0gw2Mdic/Dw+3n8Y2uZ67YYYwB/u3khC9IiPdgy95Ng0A0kGByZssYO7nxpN4dr+7LEr56XxONXzSFQN/o5SQ3tZh55v4CPcmuGzFcXHRLAxXMSufucScQYvXsFJIzfidvhUNlytJF/7yxn29GmYQ/9BgVoyUmLYF5qJLNTwpmWEEpqZDAaD1aXGGvdNjulDZ0U16G/qx8AACAASURBVLU7L/XO66P17ScMuAaj1SikRQVTU7gfvbmJH33jFlKigkmNDCI5InjYc/K6bXYOHHMm6N5R4szR2N49dIJurUZhXmoEZ0yKYcXUWOamRHi0Aoi7tHfbuOavW8mtciaUDtBqeG7NQs6cMvEWCAxFgsEv++/uY/z0fwex2HuyFOg0/ObquVw2N8nDLXMfCQbdQILBkWvvtvHtV/cMWNm1OCOKv96UQ2TI6OZh9ffBgWr+sKGIguq2IUvzpEQGcVVOCneemUWwl+YtdNeJW1VVdpY28cbuY2w92sSx5pP3fik4/2anZUWzNDuauakRZEaH+FXgNxJ2h0plcxfF9W2uQPFIfQfFde2DVtUZjhhjAMmRwSRHGIg1BhJjDCQ2NJDIkABUVeVQZSs7SpvYV9Fy0hyNWbEhLJ8UwxmTY1mSFeUX+RlPxGp3cOuLO/miqAFwBsB/uTGH82bEe7hl3kWCwcHtLG3izpd2DagJfs+5U7j7nEk+P21iMBIMuoEEg6Njszt44J1cXtneVyg+MyaEl25dPGZzNlo6LTy5rpC391XSOkRpMwVIiw7molmJ3LY8w6t6DMfqxK2qKnvKm/nvrmNsPdpIRXPXsGr8JoQFsmxSDJfOSWJRZtSEmVx9KlRVpbHDwpGe4PBIfW+g2E5lS9eYps7pLyHMwOLMKM6YFMPpk2NIjghyzwt5IVVV+cF/9vO/PZWu2x67YjbXLk7zYKu8kwSDQytr7ODWF3cOSLB+3eJUfrl6ls8upBqKBINuIMHg6KmqynNflPDIh/muL8n4sEBeunUJUxNCx/S1th9t5A+fFrG95MTpT2JCAjhzSiy3L8/0+BzD0Z64LTY7n+TX8eGhavaUt1BtMg8r+IsK1rMgPZLL5yezcmocIRL8jakui52Shg5u/s6PsRkiueDy6zjW0smx5i4qm7sG1FI9mcyYEBZnRLEoM4olmVGkRAb5ZQ/GcDyxtoA/bjji2v7uOZO557wpHmyR95Jg8MRMXVa+9coeNhU3uG47d3o8f7huvs+lVjoRCQbdQILBU/fhwWq++/o+19BXeJCev39tETnpYz+J1+Fw8N7Bap7/ooSDlaYTDo/qtQpZMUZWTo3h2kVpZI5zuprhnLhVVaWop27s1iONFNS00tQxvGHKiGA9s5PDuWhWIpfOTcTo50OJ3mKw99XuUKltNXOsuYtqUxcN7ZaeIvPdtHRaUFVIjQpmUUYUizIjR5Sn05/9a0c59/7voGv7moWpPHbl7AkbGJ+MBIMnZ7U7+MkbBwb0NOekR/L8moWjTiflbSQYdAMJBsfGliMN3PnSbtdE+CC9lr/clMMKN07+ttkcvLH3GP/eVcHBY62uCcRD0WkUEsINzEoK48wpcayYGkNyhPvSEBx/4jZ1Wdh+1Llo4MAxE0cb2mnqsAx7tWt4kJ7ZyWGsmpXIV+YlSfDnIfKFPDZ2lDRxw3PbXD39Z02N5dmbF/rdkN5YkmNveFRV5dcfHeYvn/X1OE+KM/LybUtICPf9H2ISDLqBBINj5+AxE2te2EFTTw1bvVbh6Wvnc+E41RDdUtzAC5tL2F7SNOQcw+NpFAg16EgICyIxwkBKRBCZMSFMSQglKSKIuNBAQgK0aDRDf0HZbA7q2s3UmLqpa+umpL6dksZO3ln/BfaAEIwxSbSabcMa6u2lKBBnDGR2SjgXzEzgotmJMuzrJeQL+dRVNHWy+o+bXeeK6Ylh/PeupXKMn4QceyPz900l/PL9PNc0prSoYF69Y4nP1zSWYNANJBgcW0fq27n5+R2uhLFajcLvr53HJXPGd5l/S6eF13dWsC6vhvzqtiHT1QzXYJ+4sTxiggO0pEQGMT8tkkvnJLI0O8Yv04f4A/lCPjUd3Tau/PMWCmqc6amiQwJ4+9un+/wX9HiQY2/k3t1fxff/vc/VA50UbuDVO04jIybEwy0bPQkG3UCCwbFXberihue2c7RnVZdGgd9dM4/V85I91iZTp4WPcmvYeLieQ5Umatu6T5rewx20GoUwg46UyCBmJ0ewcmosyyfHEOSl6XHEl8kX8ug5HCp3vbybdXm1gHP04LU7TmNhhlQXGQ459kbnk/xavvHyHtdUorjQQF65fQmT48d2oeN4kWDQDSQYdI+6VjPXP7ed4rp2wBkQ/ubquVyxYOTl69zFbLGxs6yZ7UebyK9upcZkpqnTQqvZitnqwOFQR9T7p1GcwZ5BryXMoKe+4ghaSztrLl9FToZz1WiYH1WLmKjkC3n0nlpfyFPri1zbj185h68uSvVgi3yLHHuj90VRPXe8tAuz1RkQRoUE8PJtS5iRFObhlo2cBINuIMGg+9S3dXPjc9td1UoUBZ64ai5XjaKesSe1m23Ut5nptjnQahQ0GgWtoqDVOC/RIQEE6r+ctkBO3P5J3tfR+aywnq+9sMM1f+vW0zP5v0tneLZRPkaOvVOz/Wgjt764k46eaUPhQXpeunUxc1MjPNyykTmVYFCWZ4lxFxsayKt3LGFaT85BVYUf/3c/7x2o8nDLRsZo0JEZa2RaYhiT40PJjjWSERNCapSzZu9ggaAQok9lSxff+9deVyC4NCuan140zbONEhPOkqxo/nn7EkINzmk5pi4rNz6/nUOVJg+3bPxIMCg8ItoYyGt3nMb0RGdXvEOF7/1rH+t75gwJIfybxebgW6/scZUKiwsN5Onr5ksKGeERC9Iiee2O04gMdk7ZaTPbuOn57RzuWdDk7+RTJzwmMiSAf962mOxY5+otm0Plm6/uYVNRw0n2FEL4ukc+yGdfRQvgnFP7zPULiA0N9HCrxEQ2KzmcV24/jfCeOdzNnVZueG6ba467P5NgUHhUjDGQV24/jbSeusUWm4M7XtrFztImD7dMCOEu7+6v4sUtpa7te1dNY3GmrBwWnjcjKYyXbl1MaE9uy4Z2Czc8t42yxo6T7OnbJBgUHpcQbuCV25eQ1JMBvstq59YXd1JQ0+rhlgkhxlp5Yyf39Ss1t2pmArcvz/Rgi4QYaG5qBC/euojgnrrFta3dXP/sdo41d3q4Ze7j9cGgoiihiqJcpijKLxVF+VBRlAZFUdSey4hnGiuK8lS//Te6ocliFFKjgnn59iXEGJ3DRG1mG2v+vsOvP3xCTDRWu4O7/7XXVZ4yPTqYx6+eIzWHhdfJSY/i+TWLCNQ5w6TKli6uf3Y7ta1mD7fMPbw+GATOAd4Gfg6sAqJH+0SKouQA3x6jdokxlhVr5B+3LsLY0z1f29rNzX/fQXNPaSohhG97an2ha56gTuMsSxkmtbSFl1qaHc2zNy8koGdRU3lTJ2v+vgNTl9XDLRt7vhAMAtQBHwC/AO4czRMoiqIB/oqzWtjusWuaGEszk8L52805rg/f0foObv3HTjotw6spLITwTluPNPKnjUdc2z84f6rP5XETE8+ZU2L5840L0PWUAS2oaetJUn1qpUy9jS8Eg++qqhqvqurFqqo+CHw8yuf5DpAD/AE4NFaNE2NvWXYMv7tmHr0jR3vLW/j2q3ux2ce/TJwQ4tQ1d1i45/V9rnyCy7Kj+fqZWZ5tlBDDdM70eH595RzX9o6SJu5+bS92h/8UpfD6YFBV1VMOvxVFSQF+CVQBD5xyo4TbXTwnkQcu6atC8GlBHb96P9+DLRJCjIaqqtz7vwPU9My1igzW87tr5qHRyDxB4TuuzEkZkBB9XV4tP3/roN9UKfP6YHCMPA2EAt9XVXViZJD0A187PZNvrMx2bb+4pZQXN5d4sEVCiJF6Y08la3P7ksk/cdVc4sMMHmyREKNz55nZ3NmvR/u1HRX87uNCD7Zo7Ph9MKgoyqXA5cB6VVVf93R7xMj86PypXDw70bX90Ht5bCio82CLhBDDVdnSxS/eyXVt37AkjXNnxHuwRUKcmntXTeOK+cmu7ac/LealraUea89Y8etgUFGUEOAZwAJ8a5TPMeRFuJ9Go/DkV+cyr2eiuUOFb7+6h/xqyUEohDdzOFR+/N/9tPVLI/Ozi6d7uFVCnBqNRuHXV81h5dRY120PvpM7bqVU3RWT+HUwCDwEpAFPqKrqH325E5BBr+XZmxeSHBEEQIfFzm0v7qSuzT/zPQnhD/65rYzNxY0AaBT47VfnEhyg83CrhDh1eq2GP92wYEAnxXde28vBYyYPt2z0/DYYVBRlHvBdoBR4eLTPo6rqkBcxfmJDA3nhlkWuEkFVJjPffHkPFpusMBbC2xytb+fRD/sWfN15ZjY56VJuTviP4AAdz61ZSEqks5Oiy2rntn/spKqly62v666YxC+DwZ6cgn8DtMDdqqq6990R42JKfCjP3LCA3kWIu8qa+cW7uSfeSQgxruwOlR/8Zz9mq/OH2rSEUO45b7KHWyXE2IsxBvLiLYsIMzg7Keraurn1xZ20mX0vKbVfBoPAGmARsA7YoCiKsf8F6B2r0Pa7Xeux1ophWzEllnsv7Fve/8r2cl7dXu7BFgkh+nthcwl7y51VRvRa55zfQJ2cXoV/mhQXyl9uyhmQlNoX8+L6azCY3nN9PtA2yOWGnvvP6Hfb8nFuoxilO5ZncdncJNf2A+8cYldpkwdbJIQAKGvs4DfrDru2v3P2ZGYmhXuwRUK437LsGB7rl5T6s8J6/u+dXJ+aTuavwaDwY4qi8Osr5zAjMQwAq13lrpf3UGOSBSVCeIqqqtz7xsEBw8P984QK4c+uyknh7rMnubZf3V7O85t8Jy+uXwaDqqo+qKqqMtQF+EfPQz/rd/tGDzZZjFBQgJa/3ZxDVEgAAA3t3Xzr1T1YfaxrXgh/8frOCrYe7Vs9/MRVc9Fr/fIrRohB3XPeFFbP6xu1euSDfD4rrPdgi4bPJz6piqLE9F6AyH53RfS/r2fhiJggUiKD+eP1C9D2zNXYXdbMrz8s8HCrhJh4akxmHu5XLvKOM7OYnSLDw2JiURSFx6+aw4K0gXlxj9S3e7hlJ+crwVN9v8uefrdvPe6+tPFvmvCkpdnR/OiCqa7t5zaV8NGhag+2SIiJRVVVfv7WIVdy6YzoYO45d4qHWyWEZwTqtPzlphwSw50lF9vMNm7/xy5Mnd69wthXgkEhhnTn8izOnd5X4upH/zlAaUOHB1skxMTx/sFq1uf3VV947Mo5GPSyelhMXHGhBp69eSEGvTPEKmno4Nuv7fHqFcY+EQyeaP7fcZfSYT7f13oev9K9LRfjQaNRePLquaRGOZN/tnXb+MYrezBb7R5umRD+rbnDwgNvD6w9fFpWtAdbJIR3mJUczpNXz3Ntf1HUwMMf5J9gD8/yiWBQiJMJD9bzp+tzCOiZsJ5f3SoJqYVws1+9n09jhwWAxHDDgBygQkx0F89J5O5z+hKuv7C5lNd3emdeXAkGhd+YnRLOA5fNcG2/tqOC9w/I/EEh3GHb0Ube2HPMtf3w5bMINeg92CIhvM/3zpnMhbMSXNs/f+sQO70wL64Eg8KvXL84jUv7JaS+938HONbc6cEWCeF/LDYH9791yLV90ewEzp4Wf4I9hJiYNBpnFZ7p/fLifv2fu6lo8q7vJQkGhV9RFIWHL5/lKh7eZrbx3X/t8+qJu0L4muc3lVBU50yXERKg5f8umenhFgnhvYIDdDx7cw7RPXlxmzos3PHSLjp6VuB7AwkGhd8JM+h5+rr5A/IPPv1JkYdbJYR/ONbcOeDzdM95U0joSaMhhBhcSmQwf70pB722r4bx9/+9D4fDO0rWSTAo/NKCtEi+f15frrNnNhSzrac6ghBi9H7xbh5dPSv1pyWE8rVlGZ5tkBA+YmFGFA9/ZbZre21uLU95SUeFBIPCb921Iptl2c40Fw4V7nl9H6Yu7078KYQ3W59Xy8d5fTkFH758FjopOSfEsH11USq3nJ7h2n76kyKvWOgon2Lht7Qahd9dM4/IYOcKx2qTmQfePnSSvYQQg+my2Hngnb50TdcuSiUnPcqDLRLCN/3souksnxzj2v7Bf/ZxqNLkwRZJMCj8XHyYgUevmOPafmtflVf8ChPC1/zh0yIqW7oAiAzW85NVklNQiNHQaTU8c90CMmNCADBbHdz50i7q27o91iYJBoXfWzUrgSsXpLi2f/bWQepazR5skRC+pbiujWe/OOravu/C6UT2rIwUQoxceLCeZ29eSGigDoAqk5m7Xt5Nt80zlbMkGBQTwgOXzSA5wplupqXTyo/fOICqescqLiG8maqq/PytQ1jtzs9LTnokV+WknGQvIcTJTIoz8vT18+lJfMHusmZ+/uYhj3w3STAoJoQwg57fXD0XpedDt/FwPa9s986yQEJ4k7f3VbHtqLNiglaj8KuvzELT++0lhDglZ02N474Lp7u2/7P7GH/fXDru7ZBgUEwYS7Ojue30TNf2w+/nU97oXVnghfAmpi4rv3o/z7V9y7IMVyUFIcTYuH15JlcsSHZtP/x+HhsP141rGyQYFBPKDy+YypR4IwBdVjs/keFiIYb0m7WHaWi3AJAQZuB7/XJ3CiHGhqIoPHL5bOanRQDOVGjfemXPuK4wlmBQTCgGvZYnrprrmqOx9Wgjr+2o8GyjhPBCB4618PL2Mtf2A5fOwNgz2V0IMbYMei1/vSmHpJ5qPh0WO197YQdljR3j8voSDIoJZ25qBHecmeXafuSDfKpNXR5skRDexe5Q+dmbh+jtNF8xJZZVsxI82ygh/FxcqIF/3LqY8CBnbtyGdgtr/r6Dhnb3p5yRYFBMSPecO8WV46m928ZP/3dQhouF6PHq9jIO9gxRBeg0PLR6Jooii0aEcLfJ8aE8t2YhgTpneFba2MltL+6ko9vm1teVYFBMSAa9lsevmuNaXbzhcD1v7av0bKOE8AJ1bWYeX3vYtf2tlZNIjw7xYIuEmFgWZUTx9HV9KWf2HzNx5z930WVxXw5CCQbFhLUoI4qbT0t3bf/i3TyPZoAXwhs8+kEBbWZnL0RmTAhfX5F1kj2EEGPtgpkJPLR6lmt7c3Ejt7y4w209hBIMigntx6umDUhG/cA7UrtYTFxbjjTw5t6+HvKHVs/EoNd6sEVCTFw3npbOjy6Y6tredrSJNX/fQavZOuavJcGgmNBCAnU8duVs1/YHB2v46JDULhYTj8Xm4P63+n4MXTInkeWTYz3YIiHEt86axH0X9tUB31XWzJV/2kJF09jmyJVgUEx4yyfH8tWFfeW1/u/tXNrc8MtLCG/27BdHOVLvTGNhDNRx/yUzPNwiIQTA11dk83/9Po9Fde1c/PQXfHhw7DouJBgUAvjZxTOIDQ0EoK6tmyfXFXq4RUKMn4qmTv7waZFr+/vnTSE+zODBFgkh+rv1jEx++9W5BGidYVur2cY3XtnD7f/YRUFN6yk/vwSDQgDhQfoBPSEvbS0d1+zvQniKqqr84t1czFYHADMSw7h5afpJ9hJCjLcrFqTw2p2nuea5A6zPr2XVU1+w+plNp/TcEgwK0ePSOYksnxwDOMsB/ezNg9gdkntQ+Le1ubWsz++rg/qry2eh08pXgxDeKCc9kg/uXj5gahM408+cCvnEC9FDURQeWj2LgJ5kn/uPmXi1XzkuIfxNe7eNX7yb69q+fkkaC9IiPdgiIcTJhAfrefyqubzz7dO5eHYiWs2pJ4SXYFCIfjJjQvjmymzX9uNrD1PXZvZgi4Rwn999XEi1yXl8xxgD+MkF006yhxDCW8xJieCPNyxgz8/P4883LDil55JgUIjj3LUi21Wqrs1s4+H38z3cIiHG3qFKEy9sLnFt//ziGYQH6z3YIiHEaIQH67lwduIpPYcEg0Icx6DX8st+md/f3lfFpqIGD7ZIiLFld6j87K1D9E6JPX1SNKvnJXm2UUIIj5FgUIhBnDE5hsvm9n053v/2IcxW99WFFGI8vbqjnP0VLQAEaDX8cvUsFOXU5x0JIXyTBINCDOHnl0wnNFAHQElDB89vKjnJHkJ4v7o2M49/VODa/sbKbLJijR5skRDC0yQYFGIIcaEGftivLuQfNxRTY5LFJMK3/eq9fNrMzmL3mTEhfKPfgikhxMQkwaAQJ3DDkjSmJYQC0Gmx89iHsphE+K7PCut5Z3+Va/uXq2dh0Gs92CIhhDeQYFCIE9BpNfzfpX2VSd7aV8XusiYPtkiI0WkzW7nvjQOu7dXzkjijJ8m6EGJik2BQiJNYlh3DhbMSXNsPvpOHQyqTCB/z648KqOqZ5hAZrB9Q+F4IMbFJMCjEMPz0oumuyiQHK038d/cxD7dIiOHbeqSRl7eVu7YfvGwm0cZAD7ZICOFNJBgUYhhSo4L5+plZru3H1xbQarZ6sEVCDE+nxcZP+g0Pnzs9fkDaJCGEkGBQiGH6xspsEsMNADS0W/jDJ0UebpEQJ/fkukLKmzoBCDXoePhyySkohBhIgkEhhik4QMe9F/bVbn1hcylH6ts92CIhTmx3WTN/71dy7v5LZhAfZvBgi4QQ3kjn6QYI4Usum5vEy9vK2FnajM2h8sv38njxlsWjfr6WTgsFNW2UNXZQ0dRFVUsXLV1W2sxWWrtstJqt2B0qWo2CRlHQaMCg0xIZHEBEsJ6okACiQgJIiQwmLSqY1KggkiKC0Gvld95E195t457X96H2rHVaPjmGq3NSPNsoIYRXkmBQiBFQFIUHLp3Jpc9sQlVh4+F6Pi+s58wpsSfd12Z3kFfdiilhIeawFJY++gnVbkhirdUoZEQHMy0xjOkJoUxNCGN2cjgJ4dIjNJH84p3cvuHhQB2PXjFbhoeFEIOSYFCIEZqVHM7VOSn8e5dzRfEjH+Rz+qQYtJovf9G2d9vYeLiO9Xm1bDhcj6nLChlnAdDlpmomdofKkfoOjtR38P6BatftieEGFqRFsiA9kgVpEcxMCnetkBb+5cOD1fyn34r3X10+i5TIYA+2SAjhzSQYFGIUfnD+VN7dX02X1U5BTRv/3V3BNYvSAGcw9kVRPW/urWRtbg1mq2PI5wnQaZgSbyQ71khqZDApkUFEGwMJM+gINegJNegI0GmwO1TsDhVVhU6rjeYOK82dFpo7LdS1dlPR3ElFUycVTV3UtA4eZFabzLx/sJr3D1a7XjsnLZIzJsdw+qQYZieHDxrQCt9SberivjcPurZXz0ti9bxkD7ZICOHtJBgUYhTiwwx8fUUWT613rih+Yu1hlmVH8/7BGv65tYzKlq4h9guk/eheDK0VvPr0w2THhqAb4/l9nRYbRbXtFNS0kl/dRl51KwePmeiy2gc8zmJzsPVoI1uPNvLE2sOEGXQszY7mjEnO4DAzJkSGFX2MxebgW6/soaXTmfYoOSKIh1bP8nCrhBDeToJBIUbpzjOzeG1HObWt3TS0W1j++MZBHzc1PpQLZydw7vR4ZiaFcdZZv3Le3lPzeKwFB+iYmxrB3NQI1202u4OCmjb2ljezp7yFPeXNlDV2Dtiv1WxjbW4ta3NrAUiNCuKcafGcPS2OJVlRBOqkhq23e/TDfPaUtwDOuaO/u2Ye4UF6D7dKCOHtvD4YVBQlFDgLWAQs7LmO7rl7uqqqBUPsZwAuBi4EFgNZgB6oBbYCf1ZVdaNbGy/8WnCAjhVTYl1zB/vTahTOmhrLPedOYUZSmMd72HRaDbOSw5mVHM5NS5231baa2VzcwKbiBjYXN1Db2j1gn4qmLl7cUsqLW0oJDtByxqQYzpkex1lT44iT9CRe570DVbywudS1/ZNVU1mcGeW5BgkhfIbXB4PAOcCbo9jvXeDcftvdgBVI7bl8VVGU36uq+r1Tb6KYiMxWO58X1g96n92hsj6/jmqTmfsvmcFpWdGDPs6T4sMMXLEghSsWpKCqzkUnvcHh1iONtHfbXI/ttNhZl1fLujxnr+Hs5HDOnhbHudPjmZXs+WB3osutMvGT//ZVGTl/Rjx3LM86wR5CCNHHF4JBgDpgF7ATqAT+Nox99EAR8Czwbm8PoqIo2cCjwNXAdxVFKVRV9U9uabXway9uKaWmpzctxhjAG99YxsvbyvjntjLXopHcqlau/ds2Lp6dyH0XTfPaFZ2KojApzsikOCNrlmVgsTnYWdrEJ/l1fFpQS+lxQ8oHK00crDTx+0+KiA8L5Oxp8Zw3I45l2TEY9DKcPJ6qTV3c+uJOOizOOaHp0cE8cfVcCdCFEMOmqL0ZSb2UoihaVVXt/bYzgN6U+icaJl4GbO+/b7/7FGA9cDZQoqrql35CK4qiAnj730d4RkunhTMf30Cr2dl79svVM7lpaQYA9W3dPPvFUV7aWjpgJXGgTsNdK7J585FvolFtbNy4cfwbPkpH69v5tKCOT/Lr2FnahM0x+OfCoNdwxqRYzp0ex9nT44gLnTjDyStXrgQY1/e1zWzl6r9spaCmDXCWm3vjG8uYEu+e+ajCO3ni2BPep/cHoKqqI/4l6PU9g4MFc8Pcb8sJ7lMVRXkJZzCYqShKlKqqTaNto5h4/rih2BUIZsaEcO3iNNd9saGB/PSi6dxyegaPfVjA2/uqAOi2Ofj9J0Xo5qwh5shHHmn3aGXFGsmKNXL78ixMXVY+L6zn04I6Nhyuc61cBTBbHazPr2V9vnM4eW5KOOdMj+fc6fFMTwyV3qox1GWxc9fLu12BoE6j8JcbcyQQFEKMmNcHg27U2O/fMq4lhq2qpYt/bC1zbf/ogqmDln9LDA/i99fO56bT0nnw3VwOVbYCYAuKombmdTz4Ti4/umAqIYG+9TEMD9Jz6dwkLp2bhM3uYE95C5/k1/Jxfi1H6zsGPHb/MRP7j5n47ceFJIUbOGd6POdMj2NpdrSsTj4FnRYbt/9jF1uO9J3GHr1iNqdPivFgq4QQvsrrh4mPN9xh4mE8zxPAD3GuLk5Uj/tDyDCxGMp9/zvAazsqAJibGsFb31x20h4vu0PltR3lPPZhwYCFGSmRQTxx1VyWZnvfApPRKGno4JOensGdpc3YhxhODg7QsnxyDOdMd6auiTEGjnNLx954DdV1Wmzc+uJOth3tG8z4+6xz1QAAIABJREFU0QVT+dZZk9z6usJ7yTCxgFMbJp6QwaCiKMlAAWAEfq2q6r2DPOakfxhf+9uJU1fS0MG5v/3MFeS8cvuSEfXGVLV0cc5PnqMrsm+aqqLAN1dm871zpwzaw+irTJ1WNhbWsT6/jo2H62gz2wZ9nKLAzKQwTp8UwxmTYliUEeWTi1DG4wu5oqmTr/9zN3nVra7bJBAUEgxOHMOZauOXcwbHmqIoOuAVnIFgOc6VxUIMy1PrC12B4NKs6BEPyyVFBBF3+A06YmZgnf0VTF1WVBX+uOEIm4sbefra+aRFe+eK45EKD9azel4yq+clY7X3rU7+JH/g6mRVhUOVrRyqbOWvnx0lQKdhYXqkKzicmRQ25lVafNHm4ga+/eoemvvN0bz3wmnctSLbg60SQviDCdczqCjKn4G7AAtwtqqqm4d4nAwTiwHyq1u56Okv6D0k3vjGMnLSI0f8PL2/4l9/5yN+8O/9bCpucN1nDNTx8OWz/LqWbG9Ow0/ya/kkv47d5UMPJ4NzSHleagQL0yPJyYhifloEYQbvq6rhrt6ZLoudpz4p5NnPj9L7Z9JrFR5aPYvr+i1cEhOX9AwK8PPVxGNJUZRHcAaCduCGoQJBIQbz5LpCVyB47vS4UQWC/cWHGXjp1sU8+8VRnlh7GJtDpb3bxnf/tY+dpU3cf8kMv1xk0T+n4ddXZNNqtrL9aJMr4XVxXfuAx3da7Gw50uhaLKEoMDnOyKykcGYkhTGz59rfyq512+y8vbeK360vpNpkdt0eFxrIn2/MOeXjTwghek2YYFBRlJ8B9wEqcIeqqv/1cJOED9lT3uxKlwLw/fOmjsnzajQKX1+RzdLsaO5+ba9r+PTlbeUcqmzlTzcsICkiaExey1uFGfScNyOe82bEA1BjMrPliDMw3Hakkap+gRA4h5ULa9sprG3nf3srXbenRgUxJS6UzJgQMmJCyOq5TggzoNH4Rkobs9XOvooW1ufV8vb+KurbBpYIXJYdzVPXzJNygEKIMTUhgkFFUe4BftWz+V1VVV/wZHuE73ly3WHXvy+dm8SMpLAxff45KRG8d/dyfvLfA7x/sBqAfRUtXPKHTTx97XzOmDxxUoYkhPeVyQPnoptdZc3sLm1iV1kz+dWtDDaqXNHURUVT15duD9RpiA8zEBcaSFxYIHGhBuLCAokOCSAkUEdIoA5jv4tOq6BVFBRFQatR0CigoGCxO7DYHVhtDqx2B9091xabA7PNQWfkJBwaHf/ZVYHZ5qDbaqe759psc2C22um2OjDbBl47VBWr3UFjh4VjzV2DDpnHGAP44flTuWZRquRqFEKMOb+fM6goyjeA3nJz96qq+uthvo7MGRSAc+L+Dc9tB0CrUfj4njPJijWO+vlONL9HVVWe31TCox8WuIICjQI/vWg6t52RKYEA0NFtI6+6ldxKE7lVreRWtVJU14bV7n+f1fiwQNYsy+DmpRkYfSwfpRg/MmdQgMwZHJKiKGuAP/ZsPjTcQFCIXqqq8sTavl7BqxaknFIgeDKKonD78v9n777DoyyzBg7/nknvIQkJpBF6771XxQYqiG3tva66rnVd111d3c+y6roudrGLKAKCHaT3EnoPIZVU0ttk5vn+mMnMBCmBzGSSybmvK1fyTntP0Myc9ynndKJffDj3fr6VvNJqzBqeW7KXAzmlPHtZH49cR3g2gvy8GZoUwdCkCNttNbVmDuWWkZJfRmp+OSn55RzJLyc1v7ze7tvmTinoGBnE8E6RTO0dw+guUR5VbkgI0Ty1iGRQKeU4R+a4ajr8hPsKtdZm63NmAu8DCnhJa/0310cqPM3SvbkkpxcB4Otl4I9TujbJeYd1jGDJ/WO469MtbE2znP+rzRkcyS9n9nWDPaJIszP5ehvoFRt60un70iojuaXV5JRUkVdaTW5JNbmlVRRVGCmrrqWsupZy23cTtWYzZg1ms8asNSazRmOZbvbxsnz5Wn/29VL4eBnw9/Fiy8b1KF3LBedNxt/HCz9vw0m/+/sY8PO2f1cKvA0GwgN9SGgTSIBv6072hRBNr0VMEzekALRVR611qvU5KUBH6+05p3yGxYwTexnLNLHQWnPJG6vZnWUp8HvTqCSemd670a97NlM61bUmnpi/k/lb7Rsl4sIDeO/GIfRs79x1i6JxZKpOuIv8vyegcdPEnjz/4Pi7xZzhy7fJoxPN3tK9ubZE0M/bwD0Tm764r5+3F6/M6s+TF/WgbrlgZlElM2ev5efdx5o8HiGEEJ6nRSSDWmvVwK9Uh+ckncXzlrvvtxPNkdaa15cetB1fN6ID0SHuKeehlOKOcZ1574Yhtk0EFTUm7vx0C++vPnKGZwshhBCn1yKSQSGa2rJ9uezMLAYso4J3ju90hme43uSeMcy/ZxSJEZZ2dVrDs4v38Myi3aft4CGEEEKcjiSDQpzgxFHBa4cnum1U8ETdYkL49p5RDEoMt902Z20qd326hcoakxsjE0II0VJJMijECZbvz2NHhn1U8O7xTb9W8HQig/34/PYRXNinne22X/bkcPU7637XsUIIIYQ4E0kGhXCgteY1h1HBa4YlNsvWX/4+Xrx57SDuGGefvt6eUczl/1vDodxSN0YmhBCipZFkUAgHKw7ksb2urqC3gbsnNK9RQUcGg+LJi3ry7KW9qWu9m3G8khn/W8v6lAL3BieEEKJJVBlN/LircdUlWkTRaSGawolrBa8ZmkBMMxwVPNH1I5OIDQ/gvs+3UWk0UVJVyw3vb+SlWf24dECcu8MTQgjhAuXVtcxefpg5a1Mpq65t1GvJyKAQVqsO5rMtzd5t5O4JXdwcUcNN7hnDV3eOpG2IpTNJjcnMA18m899lB6VwuhBCeJitacc5/9WV/Pe3Q41OBEGSQSGA348KXj0sgXZhzX9U0FHf+DC+vWcUXaPtvZNf/vkAj3+zE6PJ7MbIhBBCOMuCbZlc9fY6Mosqbbd1jApq1GtKMigEsO5wAVuOHgfqRgWb71rB04lvE8jXd49iZKdI221zN6dzy5xNlFYZ3RiZEEKIxvpiYxoPfZWM0WSZ8Qn19+blWf1Z+qfxjXpdSQaFAP63/LDt51lD4mkfFuDGaBonLMCHj24ZxoxB9vWCqw7mM+utdWQXV57mmUIIIZqrJTuyefLbndSt/OkeE8KSP47lisHxGAxn3Y64HkkGRau3Pb2I1YfyAfAyKO5qZnUFz4Wvt4FXZvXngcldbbftO1bKZW+uYXdWsRsjE0IIcbaS04t4aG6yLRHsFx/G3DtHkGDtSNVYkgyKVu9/yw/Zfp7Wr73T/rjcTSnFQ+d14+VZ/fG2XjXmlFRz5VvrWL4/183RCSGEaIjj5TXc+9lWaqxrvzu1DWLOzcMID/R12jkkGRSt2sGcUn7anWM7bkk7iBvqisHxfHTLMEL8LZWkymtM3PrRZr7YmObmyIQQQpyO2ax56Ktk22aREH9v5tw0jIgg5yWCIMmgaOVmr7CvFZzSM4bu7ULcGI3rjO4SxTd3jyIu3LIW0mTWPDF/Jy/+uA+zWUrPCCFEczR7xWGW78+zHb8yqz+Jkc6fvZJkULRa6YUVLEzOsh3fM7HlrxU8nW4xIXx7zyj6xIXabvvf8sM8MDeZKqPJjZEJIYQ40a7MYv79ywHb8R3jOnF+73aneca5k2RQtFrvrkrBZB0VG9kpkkGJbdwcketFh/oz946RTOoRbbvtu+1ZXPXOenJKqtwYmRBCiDpGk5lHvt5h+4wa3KENj0zt7rLzSTIoWqW80mrmbkq3HXv6qKCjID9v3rl+MNeP6GC7bXt6EdPeWE2ytS+zEEII93lr+WH2ZpcA4O9jqQ7h4+W6lE2SQdEqfbDmCNW1lp1ZfePCGNMlys0RNS1vLwP/uLQ3f5/eGy/rTuPc0mqufHsd87dmuDk6IYRovQ7mlPLGMnuVi4fP605SIzuMnIkkg6LVKaky8um6o7bjeyZ0RqnGFexsiZRS3DgqiY9vGUZ4oA8ANbVm/vTVdp7/fq9tekIIIUTTMJs1j8/faSsj0z8hnFvGdHT5eSUZFK3OJ+uOUmpt7N25bRBTXbQgt6UY3SWKhfeOrtfT+J2VKdz04UYKy2vcGJkQQrQuC5Izba1RfbwUL13RzzZ740qSDIpWpcpo4sM1qbbju8Z3bnQbH0/QITKI+feMYkpP+8aSVQfzufg/q9hytNCNkXkWrTVrD+dz72dbGfrPXxn87C/c9ckWKmpq3R2aEMLNyqpreeGHfbbj28Z2oltM05Q7k2RQtCoLtmWSX1YNQLtQfy4dEHeGZ7QeIf4+vHP9EO6baC+8nV1cxVVvr+e9VSloLdPG56qkysicNUc479WVXPvuBpbszCavtJqC8hp+3H2Mx77ZKf++QrRybyw7SF6p5fMpJtSv3nuxq3k32ZmEcDOzWfPuqhTb8S1jkvD1lushRwaD4s9TuzOoQzgPzd1OcaWRWrPmuSV72XikkH/N7Of0yveebE9WCZ+sP8rC5Ewqak5dy/G77Vn0jw/jtrGdmjA6IURzcTivjA9WH7EdP3FhT4L8mi5Fk09C0Wr8tj+Xw3nlAAT7eXP1sEQ3R9R8TeoRw5I/jqF/Qrjttp/35DD1tZX8Jn2NT6u61sSCbZnMnL2Wi/6zii82ptVLBIP9vLlhZAe+u28M0/rH2m5//vu9rD2U746QhRBu9q8f9mE02WsKXjog9gzPcC4ZGRStxjsr7aOC1wxLINTfx43RNH/xbQKZd+dInv9+L3PWpgKW+ow3f7iJ60Yk8uRFPQn0lbeQOka/MMqi+zHyhWUn3XjTPSaE60d24LKBcQRbr/hfmdWfzOMVbE0rwqzhvi+2sei+0cS3cX67KSFE87Q5tZBf9uTYjp+Z1rvJK1zIyKBoFbanF7HhiGUjhLdBcfNo12/V9wS+3gaemd6bD24aQlSwn+32T9encfF/VrP2cOseyaquNbF4RxbXv7+BzAG3Uxw3ol4i6OOlmN4/lnl3jeTHB8dy3YgOtkQQLP++s68bTNsQy79tYXkNd326RdoDCtFKaK35vx/tm0YuHRBL3/iwJo9DLutFq+C4VvCSfu2JDQ9wYzQtz6QeMfz0YDhPfruTn3ZbrmCP5Jdz7bsbmDEojicv6lkvWfR0B3JKmbspnflbMzheYbTc6HAlHxvmzx9GdODKIQm2RO9UYkL9mf2HQVz9znpqzZpdmSU8+e1OXpnVv1XWvxSiNVm2L5dNqfZSMg+f57qWc6cjyaDweOmFFXy/M9t2fPs4WaR/LiKD/XjrusF8szWTZxbtpsxaq3H+1kyW7s3l8Qt7cNWQBI8t1VNeXcuSHdl8uSmNrWknadunNf7Fqfzn/iuY1CMa77NoHTUkKYK/TevFXxfuBiz/pv3jw7lxVJKTohdCNDcms+bFH/fbjq8dlkhipHuWiEgyKDzeB2uOUNdMY0yXKHrHNv0QvKdQSnHF4HjGdo3iH4v3sGSHJckurjTyxPydfLr+KE9c2JMxXT2jvZ/JrFl3uIBvt2Xy465syk+yIzguPIBZQ+L5+sWH8a4p5fze953Tua4b0YEdGcXM22JpB/js4j30bB/KsI4RjfodhBDN04JtmezPKQUg0NeL+yZ1dVsskgwKj1ZcYWTupnTbsYwKOkdMqD9vXjuIWYNzeXrhbtIKKwDYnVXCde9vYGzXKB6c0o3BHdq4OdKzp7Vmd1YJC7Zlsmh7FrnWul+OfLwU5/dqx5VDExjTJQovg2LBc6WNOq9Simcv68P+nFJ2ZBRTa9bc89kWFt8/lnZh/o16bSFE81JlNPHvXw7Yjm8b2+mMS0pcSZJB4dE+23jUVtaje0wI4zxkxKq5mNA9mp8fiuR/vx3inVUpVBkt/TRXHcxn1cF8RnWO5N6JXRjVObJZr3/TWrM9o5ifdh/jp93HSLGWIDpR57ZBXD00kRmD4oh0wRpJfx8v3rpuMNPeWE1BeQ35ZZYNJXPvHIGft5fTzyeEcI/PNqSRWVQJQGSQL7ePde+mRkkGhceqrq3feu72cZ2adULSUvn7ePGn87tz7fAOvPbrAb7anG6bll97uIC1hwvoGh3M9SM7cPnAOEKaSUkfo8nMxiOF/LT7GD/vzuFYSdVJHxcV7Me0/u25fGAcfePCXP7/UGx4AP+9dhDXvb8Bk1mTnF7EM4t288KMfi49rxCiaVTWmJi9/JDt+L5JXdz+vijJoPBYi5Kz6rX2md6/aYt4tjbtwvz518x+3Da2E7OXH2ZBciYma1Z4MLeMpxfu5p9L9jKlZwyXDohlXLe2+Ps03WiX1ppDuWWsOpjPmkP5rE8pOOkaQLCs35naux2XDYxjdOfIs9oM4gwjO0fy5EU9eXbxHgC+2JhO37hwrh0uhdKFaOk+23CU/DJLCarYMP9m8XctyaDwSFrreqOCN46S1nNNpUt0MK9c2Z8Hp3Tl3VUpfLMlw5Z0VdeaWbIzmyU7s/H3MTCyUyQTukczNCmCbjHBTk26SqqM7MooZlt6EdvSjpOcXmR7Az6Z8EAfJveIYWrvmCZPVE/mltFJ7MgoYmFyFgB/W7SLHu1DGJTY8tZhCiEsqowm3lphL3V298QuzWIJiCSDwiNtOFLInuwSAPx9DFwrreeaXEJEIP+4tA+PTO3Ot9sy+WJjOnut/00Aqoxmftufx2/78wDLaFyf2DC6xATTKSqIDpFBRAX70jbEjxB/H/y8Dfh5GzBryxRvldFEflkN+WXV5JdVk1dazZH8cg7llnE4r4yckt9v/DhRfJsApvSM4fzeMQxLimjyEcDTUUrxrxn9OJBTxt7sEowmzd2fbuG7+8cQHSIbSoRoiT7fkEZ+meW9qV2oP1cOiXdzRBaSDAqP9OEae8PvGYPiCQ/0dWM0rVuIvw83jEzihpFJHMgpZWFyJj/sPEZKfv1NGhU1JjamFrIxtdBlsYT6ezOqcxRjukYxtmsUiRGBzXodaYCvF+9cP5hp/11NUYWRnJJq7v98G5/dNrxZJa5CiDOzjAoeth3fPaFzsxgVBEkGhQdKL6yo1+fxZinc22x0iwnhkak9eGRqD9IKKlh+IJd1hwvYllZ0yg0c58rXy0Dn6GAGJoYzMCGcgYlt6BQV1OKKYidEBPKfqwdy44cb0doy6v3Sz/t54sKe7g5NCHEW5m5Kt5Wqig7x46qhCW6OyE6SQeFxPlqbatvNOrZrFF1jQtwbkDipxMhA24ghQFZRJfuPlXI4r4zDeeVkF1fapn8rqk1U15qpMZlRypLo+XobiAjyJSrYj6hgXyKD/UiMCKRz22C6RAeT0CbAY0bPxnVry5+mdOMVa12yt1ekMDChDRf0aefmyIQQDVFda2L2cvuo4F3jO7t9XbIjSQaFRymvrmXuZnuR6VtGu7d2k2i42PAAYsMDmNgj+pSPMZt1ixvZc5Z7J3Zha9px2xrLR+Ztp3u7EDpGBbk5MiHEmXy1Kd02+xEV7NcsdhA78ozLZiGsvtmaQWmVpWdup6ggxndr6+aIhDO11kQQLL/7q1cNIL5NAACl1bXc/ekWKk9RHkcI0TwYTeYTRgU7NatRQZBkUHgQs7l+OZmbRie16uRBeJ7wQF9m/2GwrUzSvmOl/OXbnWit3RyZEOJUFiVnkVVsGRWMDPLlD8M7uDmi35NkUHiMFQfyOGLdoRri783MQc1jy74QztQ3Pox/TO9tO56/LZPPN6a5MSIhxKmYzZq3V9pHBW8enUSAb/MaFQRJBoUH+cChnMzVQxMI8pMlscIzXTU0gVmD7Rc7f1+0h+3pRW6MSAhxMsv25XIgpwyAIF8vrh+R5N6ATkGSQeERDuaUsupgPgAGhW2HqhCeSCnFs5f1oWf7UABqTGbu+Wwrx8tP3WFFCNH0HOsKXjMskbDA5tGb/USSDAqP8OHaVNvP5/WKISEi0H3BCNEE/H28eOu6QYT4W0bAM4sqeWBusq0ftBDCvTanFrL56HEAfLwUt45tvtUtmn0yqJQKUUpNV0o9q5T6QSmVr5TS1q8eDXi+QSl1h1JqnVKqSClVqpTappR6RCklbSk8QHGFkflbM2zHUk5GtBYdIoP495UDbMcrD+TxxrKDboxICFHHcVTwsgFxtA8LcGM0p9fsk0FgMrAQeAq4AIhs6BOVUj7Ad8DbwAggAPACBgAvAquVUsHODlg0rXlb0qkymgHo2T6UYR0j3ByREE3nvF4x3DOhs+349aUHWXso340RCSEO5JTy695c2/Gd4zu5MZozawnJIEAu8D3wd+COs3jec8BFQBVwExAIBAHTgEJgKJZEUbRQZrPm0/VHbcc3jOzQrHvNCuEKfzqvGyM6WS6CtIYH5iaTZ217JYRoeo6jguf3iqFLdPPuhNUSksHvtNYxWuuLtdbPAL805ElKqXbAA9bDx7TWH2mtTdpiMXCL9b5rlFL9nB+2aAqrDuWTWlABWMrJXDog1s0RCdH0vL0MvH71QCKDLCtf8kqreWhuMmZZPyhEk8surmRRcpbt+C6Hkfvmqtkng1rrcy2vPxPwA4qBd07yuguBA4ACrj3nAIVbfbIu1fbzrMEJBPpKORnROsWE+vPqVQOoGxhffSif/y0/5N6ghGiFPlp7lFrrhdiwpAgGJbZxc0Rn1uyTwUaYaP2+UmtddYrH/Gz9PqkJ4hFOll5YwdJ99jUZ149sflXdhWhK47q1rbd+8N+/HGBDSoEbIxKidSmvruXzDfalS7c14x3Ejjw5Gexl/b77NI/ZY/3eU8lCsxbnsw1p1HXhGts1io5RQe4NSIhm4KEp3RiaZBmJMGv445fbKCiT9YNCNIVvtmZQUlULQIfIQCb3jHFzRA3jyclge+v3rNM8pu6+YOvX7yilTvkl3KfKaGLuJnsLLikyLYSFt5eB/1wzkDbW4rY5JdU8PG+7rB8UwsXMZs0Hq+2dsG4Z3REvg3NzBVflJJ6cDNYNE1We5jEVDj9LiZkWZMmObI5XGAGICw9gUo9oN0ckRPPRPiyAV67sbztevj+Pd1aluDEiITzf0n25tg2Nof7eXOHQMrK58+Rk0Cm01qf8Eu7zsUM5mT+MSHT61ZcQLd2kHjHcMc5e2+yln/az5WihGyMSwrO953DBdc3wRIL8nL+h0VU5iScng+XW76cr+e3Ys6zMhbEIJ9qeXsT29CIAfL0MXDUkwc0RCdE8PTK1OwMTwwEwmTV//CKZkiqjm6MSwvPsyixmwxHLxZa3QXHTqCT3BnSWPDkZrFsPeLrCc3X3lWmtS10cj3CSj9fZRwUv6deeyGA/N0YjRPPl42XgjWsGEurQv/jpBbvcHJUQnud9h7WCF/Vt36xbz52MJyeDdTuFe5/mMXU7jve6OBbhJIXlNXy3w74nSMrJCHF68W0CeWGGva7+guQsFiZnujEiITxLTkkV3223fy61lHIyjjw5GfzN+n2sUsr/FI85z/p9aRPEI5xg3uZ0amotfYj7xoUxICHczREJ0fxd3K89MwfZF7M/9e0u0gsrTvMMIURDfbYhzVZkemhSG/rFt7zPJU9OBucD1UA4cNuJdyqlpgHdAQ180bShiXNhNms+32gvJ3O99CEWosGemd6LxAjLMunS6lr+9FUyJik3I0Sj1NSa+XyD/XPpplEtb1QQnJAMKqWClFKdlFLDlFLjlVJ9rH2BnUYpFVX3BTj2dQl3vE8pZft9tNbHgNethy8qpa5XSnlZX+8i4EPrfV9orXc4M17hGmsPF3DUoQ/xtH7Sh1iIhgrx9+HVqwbYdt5vSj3ObGlXJ0Sj/LArm3xrUfd2of6c37tlFJk+0Vkng0opL6XUpUqpN5VSO7D0/j0IrAOWAduBTKVUoVJqsVLqUaVUUiPjzHP42upw+7oT7ks84XlPAd9j2VH8MVCulCoHlgCRwCbgrkbGJprI5xvtG0dmDoonwNfLjdEI0fIM7tCGP07qajt+7deDJFt35gshzt6ctam2n/8wPBEfr5Y54drgqJVSHZRSLwGZWKZg7wb6WF9DneQrHLgIeAE4pJT6RSl1pXPDPz2ttRGYhiXhW49l2lgDycBjwBjZRdwy5JZW8fPuHNvxtcNPzPuFEA1x78TODO5gmWCpNWse/HIb5dW1bo5KiJZnR0YR29LsZc6uHtZyP5fOmAwqpdoqpf4D7AceBqKBHcD/gFuAwUAHIBTwBWKAHsAFwF+B77DU/JsMfKGU2mFdr9dgWmvVwK/UkzzXrLV+W2s9UmsdprUO1loP1Fq/qLWuOZs4hPvM25xRb4Fut5gQN0ckRMvk7WXg1SsHEGwtiJtaUMG/ftjn5qiEaHkcy5xd3K89bUNabpmzhpTHTsHS2u0I8BGWNXYHT/P4uinbA8DPANbdvBcD1wLTgQVKqUe01v9uROyilTCbNV84bByRUUEhGicxMpC/T+/Nw/O2A/DJ+qNc2Kcdo7pEuTkyIVqGgrJqFjmUk7mhhZc5a8g0cQZwE9BNa/2PMySCJ6W1rtJaf6O1ngn0xLJ5w/dsX0e0TisP5pFx3NJiOjzQhwv7tHdzREK0fDMGxTGlp32x+yNf76BMpouFaJC5DmXO+seHMTCxzRme0bw1JBnspbX+WGttcsYJtdaHtNa3Af/njNcTns9x2/7MQfH4+8jGESEaSynF8zP6EB7oA1i6kzz/vdTfF+JMak1mPnWYIr5hZJL7gnGSMyaDurHdj5v4dYVnySmpYum+XNvxNS14ga4QzU10iD9/n25v0vT5hjRWHcxzY0RCNH+/7s0lq7gKgMggXy7u1/Jnq85pD7RS6mnr1+gGPv5PSqmnz+VconWbuyndVhh3eMcIukQHuzkiITzL9P6xTHWojfbY1zsorTK6MSIhmreP16Xafr56WIJHzFada0GcZ4C/AUuVUnc04PGPWB8vRIOZzJovZeOIEC6llOK5y/rSxjpdnFVcxT+XyHSxECdzIKeUtYcLAPAyKP4wvGVvHKnT2OqIvsBsawHqlp+QALyRAAAgAElEQVQai2ZlxQH7UHxEkC8X9HFqYxshhFXbED/+cWkf2/GXm9JZcUCmi4U4keOo4Pm9YogND3BbLM7UmGQwB0vh6VosRZ1/VUpFOiUqIai/ceSKwfH4ecv1hhCuckm/9lzU137B9fg3srtYCEdl1bV8uzXTdnx9Cy8n46hRI4Na67eBKUABMA7YqJTqc/pnCXFm2cWVLJONI0I0GaUUz17ah4ggS9Wv7OIqXv5pv5ujEqL5WJScRXmNpbBKl+hgRnbynPGvRjfR01qvAoZg6UncEVirlLq8sa8rWrd5mzOw7hthVOdIOkYFuTcgIVqByGA//jatl+34o3Wp0rtYCEBrzWcb7OVkrh2WiFLKjRE5l1M6Kmut04DRwDwgGJinlJINI+KcmM2arzan245bcr9HIVqa6f1jGdetLQBawxPzd2I0md0clRDutSOjmN1ZJQD4eRuYOSjezRE5l1OSQQCtdaXW+irgKetNTyulvlZKBTrrHKJ1WJdSYOs4Ehbgw/m9Ys7wDCGEsyil+OdlffD3sXw87M0u4f3VR9wclRDu5biG/eJ+7Qmz7r73FE5LButorZ8HLgNKgcuBdYAkhKLB5m6yjwpePjDOI2o4CdGSJEQE8tCUbrbj1349QFpBhRsjEsJ9SqqM9foQe0o5GUdOTwYBtNaLgZHAYaAvEOKK8wjPU1xh5Mfdx2zHVw5JcGM0QrRet47pSK/2oQBUGc38ZcFOpHGUaI0WbMuk0mjZONKjXQiDEsPdHJHznWsyuBJYe7oHaK33AkOBn8/xHKIVWpCcaWv+3TcujF6xoW6OSIjWydvLwAsz+mKwrpFfdTCf73ceO/2ThPAwWms+W2+fIv7DcM/aOFLnnJJBrfUErfUVDXhcsdb6Aq21QWstc33itLTWfOkwRXzlUBkVFMKd+ieEc8PIJNvxc0v2UC61B0UrsjXtOPtzSgEI8PHi0oFxbo7INVwyTSzEudiVWcLebPturen9Y90ckRDiofO6ERVsrz345m+H3ByREE3nM4eNI9P7xxLq71kbR+pIMiiajbmb7X90F/VtT1iAZ/7RCdGShAX48PiFPW3H765KISWvzI0RCdE0iipqWLwj23b8hxGeW+bMuyEPUkotc8K5tNZ6shNeR3igKqOJhcn23VpXyRSxEM3GjIFxfL7hKFvTijCaNM98t4ePbh7qkWunhKjzzVb7GvY+caH0i/e8jSN1GpQMAhMADZzsL79ue9mZ3hVkG5o4pR92ZVNaZVmLlBQZyPCOEW6OSAhRx2BQ/OPSPkz772q0hpUH8vh5Tw5Te7c785OFaIFO7DjiieVkHDU0GfyYUydzVwF+wEdOiUi0So61BWcNSZARByGamT5xYfxheCKfWndW/uO7PYzr2pYAX9kbKDzPxiOFpOSVAxDs5+3xa9gblAxqrW861X1KqQuAaK31zc4KSrQuRwvKWZ9SCIBBwRWDPavNjxCe4s/nd2fJjmyOVxjJLKrkvVUp3D+5q7vDEsLpHAcoLh0QS5BfQ8fOWibZQCLczrEP8cTu0cSE+rsxGiHEqYQH+vLI1B6249krDpNbUuXGiIRwvuJKI9/vsm8cuXqo524cqSPJoHCrWpOZeZszbMdSW1CI5u2qoQn0aGdpKlVRY+Lfvxxwc0RCONei7VlUGS0bR3q2D6VPnOc3P5BkULjVigN55JZWAxAV7MekHtFujkgIcTpeBsWTF9lLzczdnG6rDyqEJ/jKYYr46qGtYw27JIPCrRzXZcwcFIePl/wvKUSdKqOJXZnF/Lgrm4XJmSzdm8PBnFLMZvcWZxjXrS3ju7UFQGv455K90rdYeITdWcXszCwGwNfbwGUDPLPjyIk8e0WkaNbySqtZti/XdjxriEwRC1FTa+bnPcf4eksG6w4XUG2tc+YoPNCHSd2juWpoAsM6Rrhl5OIvF/dk1cE8zBpWH8pn+f48JsrIvmjhHEcFL+jdjrDA1tH8QJJB4TYLkzOptY5wDOnQhi7RwW6OSAj30VqzIDmTV34+QMbxytM+tqjCyPxtmczflsmwpAgev6gHgxLbNFGkFt1iQrh6WCKfW9t1/fP7vYztGoW3jO6LFqrKaGKBQ/ODq1vRGnZJBoVbaK35eot948isIVJORjQfpVVGDuaWkXG8kszjleSUVFFSaaS40khFjQmT1mit8TIoAn29CfD1oiBpCl7GMuZuSiMpMohuMSG0CfJt0PnSCyt49OsdrEsp+N19HSID6dw2mAAfL4orjew7VkJ+WY3t/o2phcycvZYbRybx+IU98Pdpurp/D03pxqLkLMqqazmUW8aXm9K5boRnF+cVnuun3ccorjQCkBARwIhOkW6OqOk4ox1dRAMeA9KOTjjYnVXCvmOlAPj7GLiob3s3RyRaqyqjiS1Hj7P16HH2ZJewJ7uEowUVZ/9C7QYC8Ng3O203RQX70jU6hD5xoQzrGMmwpIjfTTutOZTPvZ9vpajCaLutTaAPN4xM4orB8SREBNZ7vNaanZnFfL4hja+3ZFBr1mgNc9amsvFIIW9dN5jEyPrPcZW2IX7cPaEzL/20H4D/LD3IzEHxUohatEiOa9ivHJyAweD5G0fqOKMdneNjTkdWFwubb7baRwWn9m5HiH/rWJch3E9rzZ7sElYeyGfNoXw2pRaedF2eM+SX1ZBfVsC6lALeXXUEpaB7TAgjOkUyuksUm1ILeX/1EUzW5RIGBbeN7cT9k7qc8m9CKUW/+HD6xYdzz4Qu/HXhLlYcyANgT3YJl/9vDe/fNJQBCU3TR/XWMR35eF0qOSXV5JZW8/G6VO4c37lJzi2Es6QVVLD2sGVk3qDgilY2W+WMdnRCnBWjycwih3UZ0nFEuJrWmn3HSlm8I4slO7JJPcPIn7dB0bltMB0iA4lrE0BsWADhgT6EBfgQ5OeNQSm8DIpak5mKGhPlNbX8/V+vUOsTzMSLL+dwXhmHcststcrsccC+Y6XsO1bKnLWp9e6LDvFj9nWDGdyh4Wv/EiMDmXPzUD7dkMaz3+2hxmSmoLyGa95Zzye3DmNIkut7fPv7eHH/pK48tWAXYClEfc3wRELlAk+0IPO22EcFx3drS/uwADdG0/Qa3Y5OiLO1fH8eBeWWNU/tQv0Z1TnKzREJT1VYXsPXW9KZuymdw9Y+oyfTuW0QozpH0Tc+jF7tQ+kaE4yf99lNdb56bCsAr1/9DwBMZk3m8Ur2HSth89HjbDhSyK7MYtsooKP+CeG8c/3gc+q+o5Ti+hEd6NU+hFs/2kxRhZFKo4mbP9zEZ7cPp1+860cIrxySwDsrU0grrKCowsh7K1P40/ndXX5eIZzBZNb1mh9c1Yo2jtSRDSSiyX3jsHHk8kFxeLWidRnC9bTWbDxSyOcb0/hh5zFqTL+fAg7282ZSj2jGdWvL6C6RLhkF8DIoEiMDSYwM5Pze7QAor65l89HjrNifx+6sYrSGkZ0juXtC50Zv/BjcIYKv7xrF1e+sI7+shtLqWm74YCNf3jGCHu1c20HB19vAQ+d15aG52wF4b/URbhiVRFSwn0vPK4QzrDyQxzFrW8WoYF8m9Yhxc0RN72w2kBRorWe5OB7h4Y6X17B0X47teOYgmSIWzlFrMrNkZzZvr0hhz0k6YgT6ejG5ZwyX9GvP+G5tm3TXbZ0gP2/GOxRsdrYu0cF8cutwrn5nPcWVRooqjNzw/kYW3z+GaBf3/J7eP463lqewP6eUihoTs5cf5q+X9HLpOYVwBseNIzMGxePr3frKIzX0N54AjHZhHKKVWLQ9C6PJMk3WPyFcaguKRqusMfHR2lQmvLycB75M/l0i2D8hnBdn9mPzU1N445qBTO3dzi2JYFPp2T6Uj28ZRrCf5Vo/t7SaOz/dQnWtyaXn9TIoHj6/m+34k/VHySo6fb1EIdyt8IQBiitb2caROq0v/RVu5biLWDaOiMaoMpr4YPURxr64jL8t2l2vULO/j4Frhyey+P4xLLx3NFcOTSDQt/WsiumfEM5b1w2mbgXGtrQinl6w2+Ut487rFWPbxVxTa+Y/Sw+69HxCNNai5EzbAMXAxHC6RIe4OSL3kGRQNJmDOaXsyLD2fPQyMK2f1BYUZ89oMvPFxjQmvrycfyzeU68Ac5tAHx6c0pW1j0/m+cv70icuzI2RuteYrlE8eVFP2/Hczel8au0W4ipKKR6dat848vWWDDKOn0PNRiGayDdbM20/t+ZlS63nUlm43dcOo4JTekUTHtiw7gxCAJjNmkXbs3jt1wO/Kw3TPsyfu8Z3ZtaQ+FY1Angmt47pyO6sEr7dZvnAe3bxHoYlRdC9netGP0Z1iWJYxwg2Himk1qyZvfww/7y8r8vOJ8S52n+slJ2Z1gEKbwPT+sW6OSL3kZFB0SRMZs2CbXIFJs7N+pQCpv13NQ/OTa6XCEYF+/L0Jb347c8TuHFUkiSCJ1BK8cKMvvRsb9lNXFNr5oEvt7l8/eADk7vafp63OYPsYlk7KJofx2VL5/WK+V13oNbkbN45w5RSHzTiXFprfWsjni9asNWH8skpqQYgKtiPcS7aTSk8y9GCcl74fh8/7j5W7/awAB/uHN+JmyQBPCN/Hy9ev3oA095YTXWtmX3HSnn5p/385WLX7fQd1TmSwR3asOXocWpMZt5ekcIz03u77HxCnK1ak9k2Yg5wRSsfoDibd1F/4MZzPI/C0sFEksFWyrG24GUDYvHxkkFpcWolVUb+u+wQc9ak1qsT6O9j4PaxnbhtbCfCAlrvVfzZ6hYTwhMX9uCZ7/YA8O6qI0zsHs2oLq4p+K6U4v5JXbjpw00AfL4xjXsmdHZ5eRshGmrVwXzySi0DFG1D/BjbtXU3PzibZNAIrHNVIMJzlVQZ+clhZGem7CIWp2A2a77ZmsG/fthn61JT5/KBcTwytTux4a2rTZSz3Dgqid/259n6GD82fwc/PzieAF/XlNkZ360t/ePD2J5RTE2tmbdXpkjdQdFsOK5hv3xgHN6tfIDibJLBQq31RJdFIjzWkh3ZVNdaRnd6tQ+1rV8SwtG+YyX8dcEuNqUer3f7oMRwnp7W21ayRJwbpRQvzerHlFdWUFJVS3phJa/+eqDejmNnn++Pk7ty60ebAfhsw1HuGt+ZtiHSlUS4V3GFkV92S/MDRx6fCiulDEqpm5VSvyql8pRSRqVUkVJqg1LqL0qp1llUqAk5ThHLqKA4UVl1Lc8t3sPF/1ldLxGMDfPnP9cM5Ju7R0ki6CTRIf485bBW8L1VKeyy7qZ0hUk9oukda7n4qzKaeW9VisvOJURDfbcjy7b8pG9cmEt317cUHp0MKqUCgV+AD4DJQBRQDoQCw4DngJ1KqU5uC9LDpeaXs/mo5QPe26C4dEDr3bov6tNas3hHFpNfWc57q49gMlsKv3obFHdP6MyvD49nev9YlJLe1c40a0g8IztFAmDW8Ng3O6g9Sf9mZ6gbHazzyfqjFFcYXXIuIRrKcRfxzEFxboyk+fDoZBD4KzAJy+aVJ4BwrXU4ls0w1wBFQAfgPbdF6OEWJNt3a03o3lYa1wsAUvLKuP79jdz3+TbbLnOAEZ0i+OGBsTx2QQ/ZJewiSimen9HX1n91d1YJH6076rLzndczhu4xlpGXihoTn25w3bmEOJPDeWVsSysCwMdLMX2AJIPg+cngtdbvH2qt/6W1LgbQWtdorb8EHrLeP1Ep1cYtEXowrevXFrx8oEwRt3aVNSZe+Xk/F7y2itWH8m23RwX78frVA/ji9hF0jZEpG1frGBVUrxbga78eIL+s+jTPOHcGg+LO8fbJlw/XHKHK6No6h0KciuOypUk9ookIkuYH4PnJYIz1+7ZT3L/F4edAF8fS6iSnF9kKBIf4eTO5Z7SbIxLutGxfDue9uoI3lh2yrdcxKLhpVBLL/jyeSwfEyZRwE7ptbEc6RgUBUFpVy8s/7XfZuab1j6V9mKWsTH5ZDfMdWoAJ0VRMZl2/tuDgBDdG07w0KBnUWhu01i1xsVeq9fvAU9w/2Po9R2st705OtjA5y/bzhX3b4e/jmhIWonnLLq7krk+2cMuczWQct3eiGJAQzqL7xvDM9N6E+kvNwKbm5+3F0w6lXuZuTmdHRpFLzuXjZeDWMR1tx++uSrGtERWiqaw9nE92cRUAkUG+TOguzQ/qnDEZdMXmCusO30Rnv+5JvGv9frNS6nGlVJj1/L5KqauAV7GsJ/xzE8TSqhhNZr7bbk8GL5N1Ga1Orcmye3TKKyvqdRAJC/DhhRl9mX/3KPrEhbkxQjGxRzSTe1hG7LWGvy3ajdlFSdrVwxIJ8besAz2SX84ve46d4RlCOJfjFPGlA+Kk+YGDhvxL7FNKfaSU6t7YkymlfJRSdwAHgZsa+3oN8BrwJpYOKC8ARUqpIqAS+BLYB0zXWn96qhdQSp3yS5za6oP5tqLB7UL9GW7dvShahy1HjzPtv2t4bsleymvs68OuGBzPsofHc82wRAwG+RtqDv56SS98rR+K29KKWLwz2yXnCfbz5voRHWzHb61IQWsZHRRNo7TKWO+idObgljlA4aqcpCHJ4EbgemC3Uuo3pdSdSqkGf7Iri4lKqbeBLGA20BbYfk4RnwWttQl4EHgYqLXeHIb99w6xxiKczHFdxqUDYvGSD/5Woaiihifm72Tm7LXszS6x3d41Opi5d4zg5Vn9iZQd5c1KUlQQN49Jsh2/+OM+qmtds8HjplFJtsQzOb3odwXGhXCV73dmU2W0rFXu0S6E3rEyK+HojLUbtNZjlFLTgeeB8cA44E2l1EEsGzB2APnAcaAGCAfaAB2BIVjW6wVhGZ0zYhmpe1Zrnef03+YESql2wEIsNQU/Av4NHAbaA1cATwMfKKW6aa2fONlryJXr2SurruVnhymgywa2zCsw0XBaa+ZvzeT57/fWayPn72PggcnduHVMR1spE9H83DuxC19tSud4hZGM45V8su4ot411fvnV6FB/ZgyK48tN6QC8veIwwzpGOP08Qpzom62OG0dabmWL0+UkjRkdbFAhL631IqXUd8AFwG3AJUB369c1p3lqXWQpWAo/f6i1ds0cxMl9jCURfF9rfZvD7YeAfymlMq2PeVQp9anWencTxuaxft59zHYF1j0mRNrPebhDuaX85dtdbDhSWO/2yT2ieWZ6bxIiZKN+cxfq78P9k7ryj8V7AHhj2SFmDU4gLND5G3tuH9eJuZvT0RqW7svlUG4pXaKlnJBwnYzjFWy0vj95GRSXyhr232nwpbq2+EFrPRPLyNosLGvy1mHZtVuGZeQvB9gNzAf+BAzTWnfRWj/flImgUqoXcJ718NWTPUZr/QlQgOXfYVoThebxHKeIZVTQc5VWGXnh+71c+PqqeolgbJg/b18/mPduHCKJYAty3YgOJFr/exVXGvnf8kMuOU/ntsFM7hFjO/5orRShFq7lWNliTJco6Y99EudU4l9rXQh8Y/1qrhy7rx85zeNSgEggyaXRtBK5pVWscSgmLO3nPI/ZrJm/LZP/+3EfeaX2QsVeBsWtYzrywOSuBPlJ95CWxtfbwKMXdOe+zy1lWT9cm8pNo5NoHxbg9HPdMjqJX/fmAJbWYH+e2p2wACkvJJzv980PZIDiZDx5EY9js83TlbGp295W6sJYWo3vtmdTV5liRKcIYsOd/0Ei3Gd7ehEzZq/lz/O210sEB3dow+L7x/DkRT0lEWzBLu7bnv7xloX1NbVm3vzNNaODIztH1mtRN29zukvOI8Se7BIO5pYBEODjxXm9Ys7wjNbJk5NBx93Kt5/sAUqpaUBdW4wNLo+oFXC8ApPagp4jr7SaR+Zt59I315Ccbi9MHBPqx2tXDeDru0bK2lAPoJTiT+fbq4jN3ZROxvEKl5znptFJtuM5a1OlCLVwCcfPpKm9Y+Ri9RQ8NhnUWqcAP1sPH1RKvaCUigZQSgUrpW4C5ljvTwUWNXWMnuZQbik7M4sB8PUycGHf9m6OSDRWldHE/5YfYtLLy5nnULDV18vAPRM6s+zhCVw2UNrIeZJxXaMY0sHSqt1o0ryx1DWjg5cNiCPcukEl43glS63TxkI4i8msWeTY/ECmiE/JY5NBq5uAvVh+z8eBHKVUCZYp4Q+BCCwbXmZorWtO9SKiYRZss//RTe4ZLWuAWjCTWfPV5nQmvrycF3/cT2l1re2+KT1j+PmhcTx6QQ+5yvZAltHBbrbjr7dmkJpf7vTzBPh6cfVQ+wqeD9ekOv0conVbn1JATollOUtUsC9jukS5OaLmy6OTQevu5cFYCk+vBAqBQKAE2Ao8C/TVWm9zW5AeQmvNgmTHQtNyBdYSaa35bV8uF72+ike/3mHr4wnQqW0Qc24eyns3DiEpKsiNUQpXG9U5ipHWrkEms+Y/Sw+65DzXj+xgK0i/LqWAfcdKzvAMIRrOsbLFJf1i8Zb2c6fk8f8yWutKrfXrWuvxWutIrbW31jpMaz1Ya/10UxS/bg22HD1OxvFKAEL9vZnYQxq7tDQbUgq45t313DxnE/tz7PupooL9eO6yPvz04DgmdI8+zSsIT/Kww+jgguRMDlkX4TtTXHgAU3vbF/TPkdFB4SRVRhM/7rI3P5BdxKfn8cmgaBqOV2AX94vFz9vLjdGIs7EhpYBr3lnPVe+sZ32KvV5goK8XD07pyopHJnDdiA7S1L2VGZIUwbhulos6s4bXfj3gkvPcPLqj7edvt2VyvFxW7IjG+3VvDmXW5S0do4LoFy/t505H3t1Fo9XUmlni0NxersBaBsckcF1Kge12L4PiuhGJrHhkIg9O6SbrAluxP51nHx1cvCObAznOr8A1pEMbesdadqJX15qZt0XKzIjGO7GyhWxyOz1JBkWjrTiQR1GFEbBM+9TtRBTNj8ms+Wn3MWa9tfakSeCswfEse3g8z13WV6r0CwYkhDOlp31pwOzlh51+DqUUN45Msh1/sTEds5SZEY1QWF7D8v32FWDS/ODMzumSXynlDZwPjAE6Wl9nH7BQa73ZeeGJluA7h6370wfEYjDIFVhzU1FTy9dbMvhg9RFSC+rXjfMyKGYMjOO+SV3oECkbQ0R9903qyq97cwFYtD2Lh6Z0IzHSuW0GL+nfnmeX7KG0qpYj+eWsSylgtOz8FOdoyc5saq0XFAMTw2XDWwOc6/xPGlC36rfuk18DTyqllgP3aq33NTI20QJU1NTyyx57fbDp/eUKrDlJL6zgi41pfLYhjeJKY737vA2KyyUJFGcwICGcMV2iWH0oH5NZ89bKwzx/eV+nniPQ15uZg+KZszYVgM82HJVkUJwzaT939s41GWwHbAPWAumAHzASmAJMBLYopW7XWn/ulChFs/Xr3lwqjSYAukQH06NdiJsjEjW1ZpbuzeHzjWmsPpSPPmHGLdTfm2uHd+CmUUm0C/N3T5CiRblnYmdWW3uOf705gz9O6ur0/3euHZ5oSwZ/3p1DbmkV0SHy/6c4O2kFFWw5ehywzHpcLM0PGuRck8ExWuu1J96olEoE3gQuBj5RSsVorV9tTICieVuU7DBF3D9WFum6idaa7RnFLErOYtH2TPLLfr8jMzEikFvHdOSKwfGyKUSclZGdIhmUGM7WtCJqTGbeXZXCXy/p5dRzdIsJYVhSBBtTC6k1a+ZtzuDeiV2ceg7h+RY61Lsd360tkcGy9rkhzukT4WSJoPX2NGCaUupO4HXgZaVUsNb62UbEKJqp4gojKw7k2o5lirhpaa3Zd6yU73dms2h7FkcLft9DVikY27Ut1w5L5LxeMVQZTeSXVbPvWCkFZdUUltdQUF5DUUUNlUYTlTVmqowmqowmlLIs7vdSCoMBgny9CQvwISzAh/BAH6KC/UiICCQxMpBQf+k248mUUtw3qQu3zLEsCf98Qxr3TuxCRJCvU8/zhxGJbEwttJ3jrvGdbUWphTgTrTXfOiSD0n6u4VwyPKC1flsptRP4FnhGKWXQWv/dFecS7vPT7mMYTZY5yH7xYbJItwlU15rYkFLI0r05/Lo3l8yiypM+LiLIl0GJ4cSHB3C80shbKw7z5Lc7KXRRDbfwQB86RAbROzaUfnFh9IkLo1tMCL7eUrDAU0zsHk3P9qHszS6h0mjiwzVHePj87k49xwV92tEm0IfjFUYyiypZeSCPiT2k0LlomJ2ZxaTkWVonBvl6cV7PmDM8Q9Rx2VyR1nqtUmo8sAx4WilVrLV+zVXnE03PsQH4tH4yKugKRpOZHRnFrE8pYH1KAZtTj9vWaJ7IoCy7uUzaUlqhbgdoUyiqMFJUUcT29CLqFgr7ehsYnNiGMV2jGNe1Lb1jQ2WneQumlOLeiZ2573NL9845a1O5fVwnp44K+3l7MWtIAu+sTAEsG0kkGRQNtWCb/TNpap92BPhK84OGcloyqJQKAOJO+IrFssGkHfASIMmgh8gtrWLtYcuCcqUspSFE4xhNZo4WlLMjo5hNqYVsSyvicF6ZbfT1TBpSms3Xy0DbED+ign2JDPYjIsiXyGBf2gT6EuTrhb+PFwG+XrYOMmatMZs1tWZNeXUtxZVGiiuNFFUaySmuIq2wgrTCCqprzb87V02tmXUpBaxLKeCln/bTJtCHid2jubhfe8Z2bSujhi3QhX3a06ntAVLyyimtqrVN5TrTNcMSbcngsn25ZBVVEhse4NRzCM9jMmsW77Ang5cNkCnis3GudQafxZLoOSZ+Z+r1Iu/8HuSHncdsycfQpAjah8mb9ZmYTGayiiupCE3CGBjJU9/uJP14JRnHK8grraa0qhZnlNoNC/ChQ2QgiRGBdIgMpENEEInW43ah/k4fnTObNXll1RzIKWVnZjG7MovZkVFs61Vd53iFkfnbMpm/LZNQf2+m9m7H9AGxjO4cJSOGLYSXQXHXuM48+s0OwNJL+JbRHZ2a2HeMCrKVsjFrmLspnYccOqEIcTIbjhSQW1oNQFSwL6M6R7o5opblXEcG/4KlruCp3sFrgOhFXugAACAASURBVGwgE8iyfs88xWNFC1RvirgVbRw5kFPK6oP5bM8oIrWgnLIqy2aLGpMZs1lbRtK0ZURNa02tSWM0W0bXbIler1kAfLoh7ZxiUArah/rbErwOkUH1Er+wwKbdzGEwKGJC/YkJ9Wds17a223NKqlh9MJ9VB/NYfSi/3g7nkqpa5m3JYN6WDBIiArh6aCKzhsRLKZEW4NKBsbz0837ySqs5VlLFd9uzmDk43qnnuHZ4or2UzZYMHpjcVS4YxGl9t93eEvWivu3xll7qZ+Vck8HtQAb2RM8x4cvSWuc7JzzRHGUcr1/H6aI+7dwckesUVdQwe/khftufx5H88gZP2TaWr5eB6FA/OrcNonPbEBIiAqyjfUHEtwnA36f5r4WJCfVn5uB4Zg6Ox2zW7MoqZsnObBZvz6638SW9sJKXftrPq78c4LxeMdwypiNDOrSRMkXNlJ+3FzeNSuKln/YD8O6qFGYMcm7v18k9o+ttJFl7uIAxXaUItTi5mlozP+yyJ4OtaYDCWc61tMxAZwciWo7FO+x/dGO6RHlcHSez2cyctUf5aF3qScu1OOEEKLOR6IgwIoJ8iAsPoFNUED3bh9I1JoSENoGEBnh7VDJkMCj6xYfTLz6cxy/oQXJ6EQuTs/h2W6atM0qtWfPDrmP8sOsYAxLCuWNcJ6b2bielRZqh64Z34M3fDlFRY2LfsVJWHsxnfLe2Z35iA/l5e3HZwDg+XJMKwFeb0yUZFKe05lA+RRWW95HYMH8GJ7Zxc0Qtj1SeFWftxELTnqKqppbnf9jHV5vTqTL+fkNEnQAfL6KCfUmICCQy2JdQfx+C/SybLry9DPh4KXy8DHgbFCH+PrQL87d8hfoR5OfDhAkTAFi+fHnT/GLNjFKKgYltGJjYhscv7MH3O7P5YmMam1KP2x6TnF7EPZ9tJSEigDvHdWbWkHjbphbhfmGBPlw1NMGWrL2z8rBTk0GAWYPtr//j7mMUVxibfAmEaBkcly1d0j9WlhScA0kGxVk5lFvGnuwSwFI65PzeLb+Ok9ls5v9+3Mf7q1Ntzc0deRsUAxLCmdonhisHJxAW6NxCu62Zv48XMwbFM2NQPPuPlfLB6iN8uy2TGpMlGU8vrOSpBbt487dD3D2hM1cOSWgRU+StwS2jO/LxuqOYzJo1hwrYlVlMn7gz7SNsuF6xofSNC2NnZjE1tWYWbc/k+pFJTnt94RmqjCZ+3n3MduxJAxRNSVZYirPieAU2qXs0IS2888SCbZn0+/svvL3yyO8SwS7Rwbx4RT8OPHcBX989itvHdpZE0IW6twvh/67ox+rHJ3L/pC6EO4wCZRdX8fTC3Yx/6TfmrDlC1SlqLYqmkxARyEUOfV/fXZXi9HNcOcS+MeWrzRlOf33R8i3bl0t5jeX9oGOUpfC9OHuSDIoG01qz2CEZnD6g5V6BFVXUcOmbq3lwbjJl1bX17hveMYJfHxrHr38az5VDEjAY5M+kKUWH+PPw+d1Z+/gknrq4J1EOa1JzSqp55rs9jHtRksLm4I6xnWw/L96RfcqOOOdqev84W9manZnF7Mkqcerri5bvuxMqW3jSWuumJJ9yosF2Z5WQkm9v9TOphXYG+HxDGkOe+5Xt6cX1bu/dPpTfHh7P3DtH0iUmxE3RiTqBvt7cNrYTqx6dyF8v6UXbEHtSmFtqSQonvrycT9cfpeYkRa+F6/WND2NkJ0s9N5NZ8+HqI059/bBAHy7oba9WMG9LulNfX7RspVVGlu6zd1qaLs0Pzpkkg6LBHKeIz+/drsWt3aqtNXPThxt58tud9aaEQ/29+eTWYSx5YCwd2wa7MUJxMgG+Xtw6piOrHp3IM9N6ERNqTwqzi6t4asEuJr68nLmb0jCaJClsareP62j7ee7mdMpPGGlvrCuHJNh+XrAtk+paGQ0WFr/sybFdCPZsH0qXaLmIP1eSDIoGMZt1veH4lrZI90heGcNeWMry/Xn1br98YBzJT59Xr1iyaJ78fby4aXRHVjwykacv6VVv+jizqJLHvtnJlH+v4JstGdRKUthkJnSLplNUEAClVbV8s9W5a/tGdY4kztqO7niFkaVN2HNbNG/1mx/IqGBjSDIoGmRL2nGyi6sACA/0aVE1v5buzeG8V1dSWG7vgBHo68XXd43k1asGyJrAFsbfx4tbrCOFT17Ug4gg+6aeowUVPDxvO+e/tpKFyZmYGtKwWTSKwaC4cVSS7XjOmlTMTvx3NxhUvQ4n8zbLVLGAwvIaVh+097eY1q9lDVA0N/IpKBpkiUOh6Qv7tMOnhbT6+e+yg9z60eZ608L948PY/NQUhiRFuDEy0VgBvl7cMa4zqx6dyCNTuxMWYN99nJJXzgNfJnPh6yv5fme2U5MT8XszB8cT4mepVJaSX86Kg3lneMbZmeWQDK48mE+etQetaL1+2JVte18fmBhOQkSgmyNq2VrGJ7pwK7NZ8/1OezJ4SQu5Anvk6+28/POBerfdOa4jC+8bQ6CvlNj0FEF+3tw7sQurH5vIQ1O6EeJv/297IKeMez7bysVvrObn3cfQWpJCVwj28+bKofa1fXXFop0lISKQoUmWrhIms2bxjqwzPEN4upa8bKk5kmRQnNHmo8fJtV6JRwb5Mrxj8x9Ru3XOJuY51CUzKHj96gE8cVEvN0YlXCnE34cHpnRl9aOTuH9SF4J87Ruc9maXcMcnW5j+3zX8sDNbpo9d4MaRSdRV9Vh5II9DuWVOff3LBsbZfv52W6ZTX1u0LMeKq9hwpBAApeDivrJesLEkGRRntMThKvyCPu3wbsZTxGazmZmz19QrN+DvbWDx/WO4dEDcaZ4pPEVYoA8Pn9+dVY9N4q7xnQlw2PW+M7OYuz/bysSXl/PxulQqapy787U1S4wMZEpPe0eiOWudW2bmkr6x+Frfe3ZkFDs92RQtx5Kd2dQN8o/oGEl0qL97A/IAzfdTXTQLJrPm+132Vj8X92u+V2Bms5nL/7eWLUeLbLeF+Huz9M/j6RXrvDZZomWICPLl8Qt7sOqxidw2piN+3va3u7TCCp5euJtR/1rGC9/v5Yi1fqZonJtHJ9l+/mZLJsUVRqe9dligT73apgtkdLDVWuQhzQ+aE0kGxWltSi20LdaOCvZleMdIN0d0cmazmRmz17E9w15IOirYl1WPTiQuXBYWt2ZRwX48dUkvVj02kfsmdqm30aSowsjbK1OY+PJyrnlnPYu2Z0kdu0YY2SmSHu0std4qjSbmbk5z6uufOFUsG4Nan7SCCranWy74vQ2qXlFyce4kGRSnVX8XcXu8DM2z1c9V76wnOd0+Ihgd4sfyP08kXHoJC6voEH/+PLU7656YxN+n9yYhIqDe/etSCvjjF9sY8uyvPDQ3mV/25Ei7u/9n77zDojrT93+/U2CAoTcRUQQpYkOxx67RxDRjEtPbpm/6JtndfONukk3bJL9N2ZLd9F6MaZpoNPbesCtFiggivbdhGOb8/jjjKUgZmDP9+VyXV+aVc868BpjznKfcdz9hjMmyg5/uPqOo5uPc1EghmC+tb0PmmTrFrk24Bz9L2pZmJUciNIA+45WAgkGiRzrNHH6VlIgXu2iT7v2fZ+JAkXhTiND7YvMTc6DX0cQwcSH+PhrcPj0eW5+ci4/umIgFI6MhfcZpajfhx8OluOezTGS8sAEPfnkIX+0rxpmaFsWmkc1mDhWNBpQ3GDxuwvmq9FiE+osB28bsCsWu7atRy1pVfjysrMA14fr8IklQkNC0ctDdkuiR/adrUd18vkTsi8kuOEX83OqTWHdSvNmEB/hg65MUCBJ9o1YxzEuNxrzUaJQ1tGFl5lmsPFiCkto24ZgWYyfWHC/DGou0UlSgL8YOCcbo2GCMiNIjPjwAcaH+CPLr/ueN4zi0GDtRXNOKwupm5FU041BxHY6U1KPJwA+vJEQE4O0bxmPMEM/oa9Vp1bhpylD8Z0sBAOCjXUW4ZLRyN+2l42Px1T6+/PzLsTI8e8Uot7PGJAZGYVUzsssaAQA+GpVsYImwDbpjEj2y5riYjl88ZpDLlYjf316AT3YXCesAXzU2PD6bAkGi38QE++GR+Ul4eN4InDzXiLXHy7D2eBmKalplx1U2tWNjdiU2drFE06gYzBm/h6qzA7Nf3wKO43vmGlo7YOyjTFpY3YLr3t2N168dhys8RC/t1qnxeHdbIUxmDvtP1yLrXCPSBgcpcu2MYaGIC/NDSW0bmgwmbMmpxKUuWrUglEWqdzs7ORKBOm0vRxP9gcrERLeYOs1YJ50idrEP21VHSvHS2hxhrVUzrH1kJsL01D9CDBzGGEbHBuOPl6Riy5NzsP6xWVh+2UjMS42S6RZ2xWTmYNYGwKQLwZmaVhTXtqKqqb3XQDBI8tBi6DDj4a8P4x+/5XrEUMSgYB0uGS029n++94xi12aM4WqJTNQPNFXsNaw57rr3JHeHUihEt/AlYt7LNyrQ16Ws2w4X1+HxFUeEtYoB39w7DcPCA5y4K8LTYIwhZVAgUgYF4u6ZCeg0cyisasbx0gacPNeIMzUtOFPTitL6NrQaex400WlVGBzsh+ERARgeEYDRscHIGBaKIaF+OF3dgrs/zUShRdrmX5vzkVvehLduSHd7l5zbpsUL/V0/HS7F04tTEaRQJmfJ+Fj8c3M+AGBrbiUaWjsQ7E9ZIk+ma4l4/sioPs4g+oN7f9oQduMXSTp+8RjXmSKubTbixvf3Qpo8+c/NE5AxLNR5myK8ArWKISk6EEnRgVg6Qf61dlMn5l96JTi1Fl9+8SUAwFerQqi/T6/9bAmRevz44EV4+OvD2H6K9/P9LasCN763Fx/eMQkRel+7/XvszaT4UKQOCkROeRPaOjrx/cGzuPOi4YpcOyFSj7FDgnHsbAM6OjmszyrHsolxfZ9IuC1UIrYvVCYmLuCCErGLCE2bzWZc8e+dMHSIpbdnLkvFpQo2pxPEQPDVqKHpaIHWUI/4iADERwQgJtjPqsGGYD8tPrp9Iu6eIQZKR8824Jr/7kaRG4thM8Zwy9RhwvrzvWcUnZy+QuKRLvWpJTwT6RTx5S5yT/IkKBgkLmDf6VrUtvAl4uggX2QMdY2s2+8+zURpvTjpefnYGNwzM9GJOyIIZdCoVVh+eRpeWDJakLk5U9OKa/67W6af6W4sGR8LvS9fgCqsasGeghrFri19SN1dUCMoHxCeR0FVM3LKmwCcLxHTFLHSUDBIXMAvXYSmVS5QIn5r4ylsza0S1omRevzzhnQn7ogglOfWqcPw31syBOu8mhYjbnxvL7bmVvZxpmui99XgmgnisMdne5QbJBkc4odJ8fyDaldNVMKzWCu5J81JjhQeMAjloGCQkMGXiF0rHb8jrwpvbcwT1npfDVY9eBFUKvrxJTyPRaMG4at7piDEMhDR1tGJez7LlP1euhPSUvGG7AqUNbT1cnT/kErxUKnYc1kj6Rd0lbYlT4PupoSMPYU1qLOYyw8K0mGCk0vEDa1G3P1pprBWM+CH308nLUHCo8kYFobvH5iO2BDeMq+jk8ODXx12S8eNpOhATEvgPc07zRy+3qecX/Glo2OEsvqBolpFA03CNaASsWOgYJCQIfUiXjzG+SXia/+3B+0mcWDkH8vSkRwd6MQdEYRjSIzUY+X905AQwUsmdZo5/OHbo/hyn3KlVkdx6zQxO/j1gRIYTcr4FUcG+mJ6YgQAgOPkn1+EZ0AlYsdAwSAh0NFpxrqTrjNF/Nzqk8irbBbWV4yLwZLxsb2cQRCexeAQP6y4bxpSB/EPQBwHPPPjCXywo9DJO+sfF6dFIzqIl8mpamrH+pPK9fdJ/Wl/pmDQ46ASsWOgYJAQ2F1Qg3pLiTgmWIfxcSFO28vOvCqZ1VxMsA5vX08DI4T3ERnoi2/unYpxEu/iF9dk46Odp524q/6hVatw4+ShwlpJR5JFowZBq+YrGEdL6lHcxUKQcF/yK8USsS+ViO0KBYOEwFoXKRE3tBpx92din6BGxfDdA9NoYITwWkL8ffDF3VOE6VkA+NsvWfhsT5HT9tRfbpw8FBrLZ8r+07XItdzkbSXE3wezkiKF9c/HaJDEU5AKTc9JoRKxPfGauytjLIUx9i/GWC5jrIUx1sAYy2aMfcQYm+3s/TkbVyoR3/D+Xpmw9OvXjkNsiL/T9kMQrkCgTouP75yMiRK3nb+uOokvFMyy2ZPoIB0WjZL6FRcpdm2aKvZM1spKxIN7OZKwFa8IBhljjwA4BuAhAMkAzAB8AKQCuBPArc7bnWuwK78aDW18iTg2xM9pJeJ3tuYju0zMGCweMwhXT6A+QYIAeFmlj++chAlDxd/P5T+dwDf7lZvQtSdSmZmfDp9DS7tJkesuSIsWtBlzypuQL+k1JtyTC0rEqeRFbE88PhhkjN0H4G3wPsyvAhjGcVwgx3F+AGIA3AZgtxO36BLIp4gHgTHHl4hLalrx/9bnCuuIAB/8+8bxDt8HQbgygTotPvndZIyTPLA9/eNxrHaDjNjUhDAkRvLT0c3tJsWyeHpfDeamiMGCu2oyEiLSrODclCgEUInYrnh0MMgYiwfwhmV5P8dxf+Y4TniE5jiunOO4zzmO+8gZ+3MVOjrN+C2rQlgvHuOcEvEN7++F2WJdygB8cfcU6hMkiG4I0mnx2e8mY6xlqITjgD+sOIItOa7tVMIYkw2SfKVgRvPSMWIJeu1xciNxd2QJCpoitjuefqd9FIA/gH0cx73v7M24KnsLa4QS8eBgHdKdUCJ+dvVJme/w/bMTkRoT5PB9EIS7EOynxad3TkZSlB4AYDJzeODLg9h/utbJO+udayYMgY+lpHvsbANOlDYoct15qVHCdbPKGnGmpkWR6xKOJ7+yCbkVVCJ2JJ4eDN5k+e/XTt2FiyP19Fw02vEl4mNn6/GpREYmPtwff7o01aF7IAh3JDTAB5/fNQVDQnmnEkOHGXd9ckCxAMsehAb4YPFoMYunVHYwUKeVTRWTV7H7suaY+L2jErFj8NhgkDGWCOD848RhxthUxtjPjLEaxlgbYyyHMfY6Y8yrHzk6zRx+k0wRXzrasel4s9mM2z/aL6zVKoav75nq0D0QhDszKFiHL+6aggg9L+rc1G7C7R/td+nM2E1TxEGSVYdL0azQIMmlkiDz1+PUN+iurCWhaYfjscEggCTJ6zkAdgK4HIAWAAcgBcCTAI4wxkb1dBHGWI9/PIHMolpUNxsBABF6X2QMc6wX8Z9/OC54IQPAXy9PQ4zFj5UgCOuIjwjA53dNRpDFs7umxYg7Pj6A2hajk3fWPZPiQzHCUt5uMXZi9RFlBkkWjIwWBajPNuBsHQlQuxtdS8TzqEQsw14xiScHg9LGt2cBnAIwleO4IAB6AIsBVIKfKP6eMeaVeWhZiXhUNNQOFJrOKmvAt5lnhfWowUG4fXq8w96fIDyJkTFB+OiOSULf3OnqFtzzWSYMHZ1O3tmFdB0k+VqhUnGwvxYXjYgQ1uuoVOx2SEvE81KpROwoPDkYlP7bOABXcxy3DwA4jjNzHPcrgN9Zvp4CYGl3F+E4rsc/7o7ZzMk+LB09RXznRweE1xoVw6e/m+TQ9ycIT2NifBjevj4d55MEB8/U4fEVR2A2u97n1TUTYoXA9XhpA46fVabPcbGk1WUtlYrdDun3zFnKFq6MvWISTw4Gpaqj6ziOy+16AMdxa8BnDAFgvkN25UIcOVuP8kYDACDUX4spw8Mc9t4vrslCRVO7sP7TJSmI0Osc9v4E4alcOiYGyy9LE9a/nijHy2uznbij7gnx98Hlkpv9V/uVcVK5OE2scBwqrkdZQ1sfZxCuQkFVM5WInYQnB4PSJpQLAsFuvhZnx724JNKs4MVp0dCoHfPjcKamBR/uPC2sEyMDcM+sRIe8N0F4A3fNGI47L4oX1h/sPI2Pd53u+QQnceMUsVS86sg5NBk6ejnaOkIDfDA9MVxYU6nYfZB+r2YnR1KJ2IF4cjCYBd52zlpcr45iRziOw68SlX5HThHf+uE+nM9oqxjwye8mO+y9CcJbWH5ZGhaNihbWf/sly+UCo4nDQgWdxFZjJ1YpNEgi/Tz7lQSo3Qbpz6dURJywPx4bDHIc1wpgj2WZ0suh579WZNcNuRgnzzWipJYvnwT6ajB9RHgfZyjD+9sLUFwrlm0emDMCcaH+DnlvgvAm1CqGt28Yj/EWH2OOAx5fcQQnz7mOBiFjDDdJsoNf7StWpB974ahonJ+FO3CmFpWWdhjCdSmpbcVxiz6mVs0wLzW6jzMIJfHYYNDCZ5b/XsIYuyAgZIxdBiDZslzrsF25ANKsIG/yrrb7ezYZOvCaxHs4JliHpxb1FqcTBGELOq0aH9w2EcPC+Qeuto5O3PvZQVQ3t/dxpuNYOn4IfCXOIccUGCSJ0PtisqUHmuOADdkVfZxBOJv1Er3bi0ZEINhP68TdeB+eHgx+BL5crAbwA2NsMgAwxlSMsUsAfGg5bi+8KBjkS8TiL94lox2Tjr//84Po6BSf+t+/baJD3pcgvJlwvS8+uG0i9Jb+q9L6NjzwxUEYTf3porEfwf5ambDwV/uUkZm5ZJT4ufbbSQoGXR3pPelSB92TCBGPDgY5jjMBuAJACYA0APsYY40AmgD8CiAafLB4LecJWjFWklfZjMIq3p3A30eN2cmRfZxhO7vzq7GroEZYXzp6EEbHBtv9fQmCAJKiA/GvG8cLkjMHiurwl59OuIxE1s2SUvHqo+fQqMAgyYI0scy4u6BakeEUwj5UNhpw8EwdAL6P/OI0CgYdjUcHgwDAcVwhgDEAXgIf+GnAD4scAvA0gMkcx5U6b4eOR9pQPTclCjqtfUvEZrMZD351SFj7adV4+4bxdn1PgiDkzE2Nwp8vET2/V2SW4BOJJ7gzmTA0FCnRgQD4UrYSgyRDQv0xanAQAKCjk8O2U1U2X5OwD9IS8ZTh4QgL8HHibrwTjw8GAYDjuAaO45ZzHDeK4zh/juP0HMdlcBz3d47jXNfA005I+wUdUSJ+aW2OzHLuxSWjBLFZgiAcx72zErB0fKywfuGXLOzIc36Q1HWQ5GuFSsUL06hU7A78SlPETofuyF7G6eoW5JTzop4+GhXm2lnUs6LRINM3S4kOxDUZXifpSBAuAWMMLy8dg/Q4fsLYzAEPfnkIRdXOfyZeMj5WNkhyotT2QZKFEmmdLTmVLtMnSYjUthix73StsF40ioJBZ0DBoJchzQrOTo4Umsrtxb2fZeK8ExZjwAd30NAIQTgTnVaN927NwKAg3vGn0WDC/V8cRJvRuR7GwX5aXCZxJPnmgO3ZwdRBgRgS6gcAaGo3YW9hTR9nEI5mQ1Y5Oi03iYxhoYgOIicqZ0DBoJexzoETW9tyK3FUIhNx0+ShpClIEC5AVJAO792WAR+L61BOeROe+fG40wdKlk0SqwarDp+zOUBljMlLxVkkQO1q0BSxa0DBoBdxtq5V0PDSqhnmj7SvqOfj3x4VXgf4qvHCVaPs+n4EQVjP2CEheF7yO/nD4VJ8oVCv3kCZMjwM8RZNxKZ2E9YeL+vjjL6Rloo3ZlXCbHaNCWoCaDR0YFd+tbCmErHzoGDQi5BmBacn2lfU880NuahtMQrrl5aMgUpFP24E4UrcMCkO12UMEdZ/+/kkDhfXOW0/jDFcP0kcJFlxoMTma04cFopQf/6zrrzRILhcEM5nc3aloD07OjYIcWFUOXIWdHf2IhxVIm4ydOA/WwqEdWJkAJZIJhgJgnANGGN4YclomQTL7788hBonOpRckxELtcVLbn9RLQqrmm26nkatklmbUanYdZD2sEv9pAnHQ8Ggl1DRaMBByxO/WsWw0I7p+Ie/PgyTpBTz7i0ZdnsvgiBsQ6dV4783ZyBIxw+TlTUY8Og3R4SmfkcTFajDfInKwYpM27OD0lIxScy4Bq1Gk0z70VFOWET3UDDoJaw/WY7zveFThofZTdQz61wDtuaKv+CLRkVjhEVMliAI12RouD/euiFdWO/Mr8YbG3J7OcO+XC8ZJPn+4Fl0dNomCTMrKRI6LX+7y6tsxmkXkNLxdrbmVsHQwX9fk6P1SIzUO3lH3g0Fg16C1HXEniViqdOIj1qFN69P7+VogiBchXmp0Xhk3ghh/Z8tBU5z7ZidHInoIF8AQHWzEZuyK226np+PGjOTRNvNDVQqdjrStqVLqETsdCgY9AJ4UU9eX4sx+01srT1WhtPVrcL68YuT4O9jXx1DgiCU49EFyZiZFCGs/7DiCCobDQ7fh0atwnUScfoVCmgOLkyjUrGr0G7qxOYcMcAnSRnnQ8GgF7Axq0IQfs4YGoooO4h6ms1m/N9Px4V1WIAPHpgzopczCIJwNdQqhjevT0dkIJ+Vq2kx4rEVzukfXDZRDAa3napCWUObTdebPzIalrkUHCyuQ1WT84ZkvJ2dedVobjcBAOLD/ZE6iFqJnA0Fg16A1ATcXlnBf28pQL3Ef/jvS8fY5X0IgrAvEXpfvHV9OpglcNpdUIN3tuQ7fB9Dw/1x0YhwALxt3neZZ226XliADybGhwEAOA7YlE3ZQWchFZpeNHoQ2PkfNsJpUDDo4TS3m7DDzqKeBqMJ/94s3ixGROrtOq1MEIR9uWhEBB6eK2b239x4Cvsl/rGOQpodXJFZYrNgtKxUnEXBoDPo6DRjg+T/PUnKuAYUDHo423KrBHP21EGBGBquvKjn0z+egFEy7ffPm2hohCDcnUfmJ2GyJZNm5oBHvj4sE5J3BItGDRLE8c/WtWF3gW3ewlJrup351Wg1mmy6HtF/9hXWoqGNryINDtZh3JBgJ++IACgY9HjsXSKubDTgpyOlwvqixHCkxdAvN0G4Oxq1Cm/fmC5z73hq5VGH+hfrtGpcLRGs/8bGQZKh4f5IiuIlTIwmM3bn2xZcEv1HKjRNJWLXgYJBD8ZoMmOLZGLLHsHgQ18fFvQLVQz4140TFH8PgiCcQ0yw8IHxAAAAIABJREFUH/6xbJyw3pRTiY92FTl0D1LNwd9OVqDOxuzkvJGioPWmHNska4j+0WnmsP4klYhdEQoGPZjdBdVoskxsxYX5YWSMshNbx87Wy/qIrpsYhzC9fcSsCYJwDvNSo3H3jOHC+tV1Ocgpb3TY+4+MCcK4uBAAgLHTjB8Pl/ZxRu/Ml1jTbcmpdGim09s5VFyHaovVYYTeFxnDQp28I+I8FAx6MNInsEVpyqfjH/n6sPBap1HhhatGK3p9giBcgz9ekir4FxtNZjz2zREYOjod9v43TJJqDpbYFMBNGBoi9CGWNxqQVea4wNbbWS+ZIr44LVrwoCacDwWDHkqnmZNNbC1SWNRz/YlyFNVIBaaT4aOhHyeC8ER8NCq8fUM6fC2/4znlTXh9vePs6i4fGwM/rRoAkFvRhCMl9QO+lkatwpwU0Y1ks43uJoR1cBwnm+BeJPGLJvqP2WxGVlkDfjxUiv9tLcCLa7Jsuh7ZQ3goh2XpeB9MGKpsOn75qhPC67AAH9w3O1HR6xME4VqMiArE8stG4i+rTgIAPtx5GnNSImU2b/YiUKfF5WNjsPIgrzW44kAJxtvwmTYvNQqrjpwDwPcNPjw/SZF9Ej2TU96E4lo+gRDoq8H0xIg+ziDOU91swHeZpdhTWIO8iiZUNbejo1PZ9gYKBj0U6RSx0un4r/YVy9T7n7syTbFrEwThutwydRi25FYJVmJPrjyKdY/OQmiA/XuFb5gcJwSDq4+ew18uT0OA78BuYbOTI6FWMXSaORw9W4+qpnbBdYWwD1ILwDmpUVRJ6gWz2Yy1x8vxxb4zOFHaKLi12BP6bnggHCef2FJSANpsNuPvv2YL69gQP1w5LraXMwiC8BQYY3j1mrEItwR/FY3tePqH4w4ZwpgwNBQjLLIwrcZOrDle1scZPRPi74MMS2aR44CtuVQqtjdymTMqEXfH1txKLPnPLiQtX4eHvj6MvYW1fQaCvhoVgnQaRNn4MEOZQQ9Emo7X+2owPTFcsWv/d1shGg3iD+er15DtHEF4E5GBvnjt2rG469NMAMC6k+VYefCszC3EHjDGsGziELy8NgcAb09ny3vOGxmF/UW8GsLmnEpcZ+f9ezMlta3CoI6PWoXZyfZvLXAXmg0mvLQmC6uPnUNLe89DWT4aFYaG+WPU4CBcNCIC0xLDERcqN5Fgywe+DwoGPRDpE9iclEj4atSKXNdkMstt56L0mOGAfiGCIFyL+SOjccvUofhiLy8C/fzqk5g6PNwuDkdSloyPxavrctFp5rC/qBaFVc1IiNQP6FrzU6Pw91/5wHJHXjWMJjOVLu2EdHDkohHhCNRpnbgb16CkrhX/98Nx7MqvRk8ui7Ehfrg4LRo3TRmK5GhlpeG6Qj/5HohMUkbBEvEr63LQJpGTeEMiRksQhHfxzOI0JEQGAABajJ146rujNnsH90VUoA5zU0TR6O8sPYQDYUSUHnFhfgB4D/cDRY73XvYW7O2E5U5UNhpw64f7MPPVLdiRd2EgGBXoiwfnjsDx5xZi15/n4bkrR9k9EAQoGPQ4SmpbkS1Jx0slFGzBYDThsz1FwnpcXDDGDglR5NoEQbgffj5qvLksXRhO23e6Fp/sLrL7+y6bOER4/f2hs+gcYADKGJMJUG8iiRm7UNPcjkxLoM0Yn1X2Rhpajbj3s0xMeWUTduRVy76mYsDMpAj89vgs7H9mAZ5alOLw7CkFgx6G9AlMyXT8Mz+dkI2y//OG8YpclyAI92VcXAh+P0eUlXp1XQ4Kqprt+p5zU6MQoRcHWLbnVQ34WvNSpdZ0FeRGYgc2ZVcK2a+Jw0K9cmr77U2nkPHiRvyWVQHpj5hGxXD9pDgce3YRPr9rikMygD1BwaCH8ZsdSsQNrUaZBdSMEeEYFh6gyLUJgnBvHp6XhJExvDtJu8mMJ1cehanTbLf306pVuHq8qGCwMrNkwNeakhAGfx++p/pMTSsKq1ts3h8hR5qgWJjmXSXiw8V1mPLyRry5IQ8mSQZbzYCl42Nx7LmFePWasdDrnD++QcGgB1Hd3I4DZ/h0vIoBC9KUScc/ufKo8GTHGPDGsnRFrksQhPvjo1HhH9eNg1bNl4sPF9fjvR2Fdn1P6eTvhqwK1LYYB3QdX40aM5NE8WNyI1GWlnYTduSLJVFv6Rc0mcy459MDuPqd3ahobJd9bVFaNI48uxBvXJ8Ofx/nB4HnoWDQg9goSUFPHBaGCL3t6fjqZgM2Sj4gLxk1CFFBOpuvSxCE55A2OAiPSlw83tqQh5xy+3n+JkcHIj2O71nu6OTwk6Ry0V+6looJ5dh2qgpGE58lTh0UaPdpc1cgs6gWE17cgA1dHiyGhfnjt8dn4d3bJrrkNDUFgx6ELB2vkKjnUyuP4XxyW82A164dq8h1CYLwLO6fnYhxQ4IBAMZOM5749ig67FgulmoMfptZMuB+P+l08oGiOjS0ddi8N4LnN9k9ybOzgmazGU9/fwzX/m+PTIvXR6PC81eOwrY/znVqT2BfUDDoITQZOrArv0ZYK5GOr2w0YGuu2Jx9xbhYl3yiIQjC+WjUKvxj2ThBq+/kuUaZLqnSXD4uBjot/1455U04eW5gmcioIB3GWoLYTjOH7acGPpBCiBhNZmzKEbNjnuw6Ulrfiote3YKvD8j7VyfFh+LIXy/G7dPjnbOxfkDBoIewNbcKRstTeFpMEOLCbE/HP/ndUUlWkOHFJaNtviZBEJ7LiKhAPLUwRVj/Z0u+IHWlNEE6LS4dHSOsv7VhkERaKpY+ABMDZ29hDZosGbLYED+kWYaMPI31J8ox+7WtKGswCH+nUTG8fPUYrLx/ukv1BfYGBYMegtKinmX1bdhxSmz8vSp9sEtMPBEE4dr8bsZwZAzjfX9NZg5/+v6Y3aaLr5NoDq46cg6Gjp7tvHpjjqRUvO1Uld3Fs72B37Lk9yTGmBN3Yx/+8tMJ3PfFQdmkcGKkHrv/PA83TRnqxJ31HwoGPYB2U6fsaXbRaNvT8U9Js4IqhhevpqwgQRB9o1YxvHrNGPio+dvLsbMN+GjXabu819Th4RgSyruINLR1YEPWwAZAxsQGI9Sfb4Gpbm4XfHSJgWE2c11kzjyrRNxqNOHSt7bj871nZH9/+/R4bHpitlsOWVIw6AHszq9Bczufjh8W7o8UG5tUS+tbsVPSf7h0QqzbpLoJgnA+I6IC8egCcbr4H7+dQpEdNPxUKobrMuSDJANBrWKYlSy6NW2jvkGbOHq2HpVNvKRKWIAPJsaHOXlHylFa34rpf9+M7PIm4e+0aob3bs3A81eOcuLObIOCQQ9A6XT8k98eE15rVAwvuPEPOEEQzuHeWQlCn1i7yYw/fX/MLuXXazJicf4jb2d+NUrr2wZ0ndmSYHBrLukN2sJ6SVZwwcgowbLQ3cksqsXc17ehvlWcOI8O9MX2p+a6/bQ0BYNujtnMYUOW+MG10Eah6ZK6VuwpFLOC12UMgY6yggRB9BOtWoXXrh0r8y7++kCx4u8zJNQfM0bwwtEcB/xw8OyAriPNDB4qrieJmQHCcZxcUsZDXEe+yyzBde/uEQY1AWBqQhj2PD0PMSF+TtyZMlAw6OYcLqlHdTOfjg8P8MH4oaE2Xe+Jb48KrzUqhmevSLPpegRBeC+jY4Nx76wEYf3K2hyUNQwsc9cb12aIgyQrD54dUAYyQu8rk5jZJXHOIKynoKpZsPXz91FjhsThxV15a+MpPPndMZmv8M1ThuKbe6dBpfKMMMoz/hVejLRher6N6fgzNS3Yf7pWWN8wKY6yggRB2MSj85OQEMF7mTe3m/DMjycGLBDdE4tGDUKQRe2guLYV+ySfY/2BSsW2Iy0Rz06OhE6rduJubOfZ1Sfx1sY8Yc0APHtFGl66eozzNmUHKBh0czZI+gUvtjEd/8fvxF5BrZrhr1dQryBBELah06rx6rVjhb6+zTmVWH30nOLvcVV6rLBeOcBBkjkp8iESpYNWb+A3hWXOnMlj3xzBp7uLhLVaxfDJnZNw50XDnbcpO0HBoBtTWNWMgio+Ha/TqoS+mYFQVt8me5q+fmKc4CRAEARhC5Piw3Db1GHC+rnVJ4X2FqWQ2tOtPVGGJkP/e/7GDQlBsB8vMVPR2I4cycQo0TdlDW04erYBAN9mNFci5u1u3PHxfvx0RPS89lGr8OPvp2N2ivv+m3qD7vZujLREPDMpEn4+A0/H//F7+QTx8stG2rQ3giAIKU9dkopYS6N9XWsH/vZzlqLXHx0bhNRBvKyWocOMX46V9fsaGrVK1uNGEjP9Q3pPmpYYLgTW7sYN7+2Raff6adVY/9hMjB0S4sRd2RcKBt0Y6S/exTZMEVc3G7AzT2yWvnp8LPUKEgShKHpfDV5eKvZZrT56TlEfYMYYrptou+bgHOobHDDSe5KtyhbO4qb392JvoVglC9RpsPmJ2RgeqXfiruwPBYNuSnVzOw4W1wEAVAyYb0M6/unvj8s8iJ+/inoFCYJQntnJkViSPlhYL//pxIAt5LpjSfpgaNV8c+Lh4nrkV/a/zCsdIsksqhtQudkbaTR0YK9ElmyBGwaDt3ywF7sLxH9DqL8WO/441yOkY/rC64JBxpieMVbCGOMsf+5w9p4GwubsSmHMPWNYKML1vgO6TkOrEZtyxKffxWMHkdsIQRB2Y/nlaUL5sLi2Ff/anNfHGdYTrvfF/FQxCFmZ2X/NwaggnSCWbTJzsuCA6JmtuVXo6ORvSmNigxET7F4B1G0f7ZM5b4X4a7H1yTkI8fdx4q4ch9cFgwBeBDCkz6NcnN8UKhEvX3UC5yW5VAx48SryICYIwn5E6H3x9KWpwvrdbYU4VaHcoMaySeLH+/eHStEhEQm2FulUsbR3jOgZpdqWnMFdnxzA9lNiq1SIHx8IBntJIAh4WTDIGJsA4CEA+5y9F1toM3ZiZ774ATVQSZlmgwlrj4kyAPNTo7zqh58gCOewbGIcJsXzAvkmM4f/++G4YlZ1s5IiERXIV0qqm9sHFMxJS8XbSWKmT4wms6y/csFI9wkGn1p5VFYdC/bTYPMT3pMRPI/XBIOMMRWAdy3LB5y5F1vZkVcFQwf/tDsiSo/hFkHX/vL8zyfRafmQYwBeucazRDQJgnBNVCqGl68eI/T3ZZ6pw4oBDnx0RaNW4RqpI8kArjthWCgCffl2mdL6NuRXNiuyN09l/+laNBlMAIDYED+MjAl08o6s45W12VgpsS8M9NVg0xOzEab3rkAQ8KJgEMDDACYC+C/HcYedvRlbUCIdbzCa8ONhUUNpZnIEIvQ6m/dGEARhDUnRgbhvVqKwfmVtNqqalNEevE4SDG7Oqez3dbVdJGaoVNw7cvODaDA2cCcsR/H+9gK8u71QWOu0Kqx7fKbX3ge9IhhkjMUCeAFABYDlTt6OTXSaOWyWpLQHGgy+tDYHJklZ5tWlY23eG0EQRH94aN4IDAv3BwA0Gkx4cY0y2oMJkXpMHCaWoX+SPPhai7RUTHqDPcNxHDZm235PciTfHyzBS2tzhLVGxbD6oRmIDfF34q6ci1cEgwD+BSAQwJMcxzU4ezO2cKi4DjUtRgBAZKAv0gcggmkymbHigFg6mTI8zCtG5wmCcC10WjVeXCIOra06cg478pQJvJZ10Rzsb9/fbMkQyf7TtWg1mhTZl6eRVdaI0vo2AECQToPJw8OcvKPe2Z1fjSdXiiYLKgZ8dc8UJEe7R2nbXnh8MMgYuwLA1QC2chz3xQDO7/GPM5CWiBeMjIJK1f99vP5bDoySCbvXrqWsIEEQzmFmkn20BxePjYG/xZUpr7JZsEmzlphgP6RYAgRjp1lm10mISO9Jc1OjoFW7blhxuqoZt3+8X9DVZQD+d0sGJg8Pd+a2+oW9YhLX/a4pAGMsAMC/AXQAeNDJ27EZjuNs7hc0m834dM8ZYZ0eF4Jh4QMbQCEIglACqfbgmZpW/Htzvs3X1PtqsHhMjLCWVkOsZaakb3CHRHqEEJEnKFy3RNzQasQV/94laCECwItXj8bCUQNT4/A0PDoYBPA3AEMBvMlx3ICaUTiO6/GPoymoasbp6hYAgL+PGtMTI/o440L+uTlfmEQGKCtIEITz6ao9+N72QhRW2T7BKy0V/3L0HNqM/cs4zpT0DSpVvvYkztW34eS5RgCAVs1k+oyuhMlkxqX/3InmdrHUf9eM4bh5yjAn7mpg2Csm8dhgkDGWDuBRACXgg0K3Ryo0PSspEjqtut/X+HDnaeF1Wkyg1/dJEAThGiybGIcJQ/keaGOnGc+uPmnzDW5SfCjiLQMqTe0mrD9Z3scZcibHh8FHw98m8yqbcc7SG0fwbMwW70lTE8IRqNM6cTc9s+y9PbLv3bzUSPzl8jQn7sj18NhgEMDbANQAngHALDZ0wh/Jcb6Wv3P5MSJbS8Rf7SsWtKAA4KWrSVeQIAjXQKVi+NtVo3G+DXpHXjXWnehf8NYVxhiu6zJI0h/8fNSYHC8OROzMo1KxFHdwHfm/H47hUHG9sE6O1uOD2yY6cUeuiScHg+fzv58BaOrmz3n+Z1kro2lgJyqbDDhSwv9Aq1UM81Kj+n2NNzeeEl4PC/PH+KGhiu2PIAjCVkbHBuPWqWLp7m+/ZKGl3bYp3qUTYoUAc3dBDUpqW/t1vrRvcDuVigUaDR3YWyh6+bpiv+C3mSX4ar/4ABAe4IPVD14ElcqTQ5+BQf9H3IRN2ZU4XzGZOCwUoQH9U0jfmFUuE179y+UjldweQRCEIvxhYQoiLA4QZQ0G/MvGYZKYYD/MTBJ72b6TOE5Yg/TcnfnV6FTINs/d2ZZbJQxjjI4NwmAXkyc7UdqAP38vSsj4qFX45eEZ0PlonLgr18Vjg0GO4+I5jmM9/ZEceqfl7+KdtVdrsDUd/8KabOF1hN4XCwboZ0wQBGFPgv20ePpS8WH1gx2FyK9s6uWMvpEOknx38Gy/fJBTBwUiQs97Hde3duDkObeWqlUMV54ibmg1Ytm7e3D+28wAfHLnJNLT7QWPDQY9iZZ2E3bmi70qC/sZyB0ursOZGrE08oeLkxTbG0EQhNIsnRCLSfGig8hfV9k2TLIgLQoh/vxwQ2l9G/ZIypt9oVIxucQM9Q2io9OMLbmu6TpiNptxxb93olUyOf7nS1MxfUT/1Te8CQoG3YAdeVUwmng5mJToQAwN79+sy/KfTgivA301uMkNx+kJgvAeGOOHSdSWZr/dBTX45VjZgK/nq1FjSXqssF7Zz0ESWd8gWdNh/+laYRgxNsQPaTFBTt6RyL2fH0RxrTg5fMmoaNw3O7GXMwiAgkG34DcbSsRnaloEHSgAuGtmvFLbIgiCsBsjY4Jw+7R4Yf3imiyZTlx/uTZjiPD61xPlaGjrsPrcGZKs0qHiOpv24Ql0bVtyliNXV/6zJV/mkzw8wh/v3DzBiTtyH7w2GJT0D37i7L30hqnTjM05A0/HP/3DceG1j0aFR+ZRiZggCPfgsYuTEBnI9+tVNLbjbYkiQn8ZHRssZLDaTWb8fPSc1edGBemQOojXZO3o5LCvH2VmT6OrE5ar9AsePFOH/7c+V1gH+Kqx+qEZNDlsJfR/ycXJPFOH+lb+CTY6yBdjYoOtPre22Yg9BeKH1rKMIfSLQRCE2xCk0+KZxeIwyUe7ipBbPvBhkusmitnBlf2cKp4lcyPx3r7B7LImlFoEnAN1GkxJCOvjDPvTbDDh1g/3CZ7DKgasvH+ay4pguyIUGbg4XZ/AVCrr0/HLVx0XfjnUjOGZy0hOhiAI9+Kq9MGYMpwPODrNHJ5dfWLAwyRL0mPho+Zve0dL6nGqwvrAkvQGeaT3pLkpUdCqnR9GXPe/3bKBkb9dOQppMdYnTggKBl2arun4/pSIW40mrD8hnrtwVDT8SF+JIAg3gzGGF5aIwyR7C2vx6wCdSUIDfLAgTRTs788gyaT4MPharOkKq1pwtq5/4tWewoZs8f/9AheYIn529UlkS7LFC0ZG4RZJrylhHRQMujCnKppRbFHL1/tqMC0x3OpzX16TjU7L0zMD8NISsp4jCMI9SY4OxG3TRBWEl9Zko02SCeoPUnu6Hw+XoqPTbNV5Oq0ak4d7tzXdufo2nCjlBxK1aoY5KZF9nGFfNmVX4NPdRcI6OtAX792a4bwNuTEUDLowUhPw2cmR8NWorTrPbDbL+mGmJoQjTN8/xxKCIAhX4rEFyQizOC+V1rfh3e0FA7rOrKRIRAfxQynVzUZskQzoWXPuebyxb3CT5J40NSEcQU7syatsNOCBLw4Ja42K4YcHp1Nf/ACh/2sujKxfMM16L+J/bclHu0l82n1lKWUFCYJwb4L9tHhyYYqw/u/WggGVatUqhmsmiIMk32ZaP0gyM1nsG/RGa7rfXGSK2Gw2Y+l/d8Moyeq+dX06YkP6p8FLiFAw6KJUNbXj6Nl6APyH19wU64PBj3aeFl6nxQQhPiJA8f0RBEE4musnxWHUYFEe5pW1OQO6jlRzcEtuJSqbDFadlxIdKEjdNLR14Hip91jTNRo6sFciqePMfsE/fX8cZ+tEYenrJg7B5eMGO20/ngAFgy7KlpxKnB+YyxgWihB/68q8q46UoqFNFER9/spR9tgeQRCEw1GrGJ6TfKatOV4mk8+yloRIvWB312nm8NPhUqvOY4x5rRvJttwqdHTyN6VRg4MQ6ySf3805lbI2qOER/nj92nFO2YsnQcGgi7IhW5qOtz4r+LpEdHNwsA6ThjtfA4ogCEIpJsWH4UpJFuj5n0/CZOUQiJTrMsRBkpWZZ62Wq5H2De7K956+wY3Zzi8RN7Qa8cAXB4W1Vs2w8v5pTtmLp0HBoAti6OiUTapZ+4t3tKROljp/YmGy4nsjCIJwNk8vToWflh+oyylvwtf7i/t9jcVjY+Dvw18jr7IZR0rqrTpv+ghR1eFQcR1ajZ5vTdfRaZYN2vTXCUspbnx/r6wf/s1l6YjQ65yyF0+DgkEXZE9BDdo6eNmEhIgAJETqrTrvr6tOCq8DdRpcI3nyJQiC8BRigv3w4NxEYf2PDadQ32rs1zX0vhpcNiZGWFvrSBIVqENKtGhNt/90bb/e1x05UFSLRgMf9A4O1gl9m47kjd9ykVUm6gkuHjOI+gQVhIJBF0RaIp5vZYm4rL4NR8+Kzcy3k+gmQRAezN0zExAXxvet1bd24I0N/fctlmoO/nzknNXahReNEPsGvaFUvClbzArOHxkNxqx3wlKCE6UN+NfmfGEdoffBv28c79A9eDoUDLoYHMdhs+QXz9oS8V9XnRBea9UMj81PUnxvBEEQroJOq8byy9KE9Rd7zyC7rLFf15gUH4r4cF6OpKndhPUnrXM2mZEklop35vd/gMXd2CwpEc/rRw+7EhhNZtz8wV6Z7/CK+6aRnqDC0P9NF+PkuUaUN/IyB8F+WmQMC+3zHIPRhM054lTb4jEx0GjoW0sQhGezMC0aMyxZOjPHD5P0x7eYMSbLDn5rpT3d5OHh0Fjs8bLLGlHT3N6PXbsXhVXNOF3dAgDw06oxLcF6JywluOezTJlCxtOLU5FoZesUYT0UMbgYUqHpealR0FhhAv7KulyZ9RzJyRAE4Q0wxvDsFWk2+RYvnRALy+nYXVCDktq+haz1vhqkx4UI690DkLdxF6Ql4hlJEdBprXPCUoLVR0uxTSLfMyk+FPfMTOzlDGKgUDDoYmzK6V+/oNlsxrcHxKfZycPDrNYkJAiCcHeSuvEtNnRY71scE+yHmRK5mO+sHCTxlr5B2T0p1XEl4oZWI5789piw9vdR4/PfTXbY+3sbFAy6EOUNBsEEXKNimJXctwn4J7vPCJPHAPDCktF22x9BEIQr0tW3+IMdhf06f5mkVPzdwbMwW2EzJw0Gd3poMNjQ1oEDRXXCep4Dg8GbP9gns5v7780ToPPROOz9vQ0KBl0I6ROYtSbg72wVJ6wSI/VItkgeEARBeAvBflr84WJRV/WdrQVWW8wBvPd7iD//eVta34Y9hX2XfdPjQgSdwrN1bSiu6b9Psquz7VSV4L88dkgwooIco+n3/o4CnDgnDgNdMS4Gs/thyUr0HwoGXYiNWf0rEW/NrUR1s6it9cxlI+2yL4IgCFfnhklxSI7mBwtajZ34x3rrpWZ8NWosSY8V1tYMkvhoVJgicXjyxOzg5mx5D7sjKK1vxd8lntOh/lq8fX26Q97bm6Fg0EVoNZqwS9KEbI2kzAu/ZAuvI/Q+Dk3hEwRBuBIatUomNfPtwRKcPNfQyxlyrs0YIrxed6IcDW0dfZ7jyX2Dpk4ztkqGNxxlQXfje3thsUAGA/Dl3VNIRsYB0P9hF2FnXjWMFpudlOhAxIX593p8fkUTCqqahfXv54yw6/4IgiBcnVnJkZiTwvdacxzw4i/ZVkvNjI4NRloM76zRbjLj56Pn+jxHGgzuLqi2qtfQXThUXI/6Vj4gjg7ydYjryItrslBcK1qq3jVzONIGB9v9fQkKBl2Gjf10HVkuEZn206pxx/RhvRxNEAThHSy/bKQgNbOnsEYm19UX100Us4PW2NOlRAciQs8PrtS1diCrn6LXroy0h31eapTdXUeyyhrw4Y7Twjou1E+W6SXsCwWDLoDZzMlEo+f3kY6vbzViX6Hoh7lsUhyl0QmCIACMiArEzVOGCuuX12YLVZe+WJIeCx+LtuvRknqcqmjq9XiVimF6omeWiqVOWPNT7VsiNpvNuOOjA4LLiJoBX9071a7vScihCMIFOHq2HtUWBfsIvY9MzLQ7nludJfmlYXj6khQ775AgCMJ9eGxBMgJ1vAxJUU0rPttTZNV5oQE+WJAmVmZWWjFIMsMDJWaKa1qRV8m3IflqVLJyuD14/pdsVDaJLi5PLUpFXGjvrVKEslAw6AJIS8RzU6KEEkd3mExmrDku9rLMTY0k7SWCIAgJYQE+eFTiz/7PTXmoazH2coaI1J7ux8Ol6OjsPas4fYRoz3agqBbtJuun5A6qAAAgAElEQVQFr10VaYl4emI4/Hzs5zqSU9aIz3YXCevESD3un0MuI46GgkEXQGr301eJ+J1tBejoFJuUX7iKRKYJgiC6ctu0eMSH89mlRoMJb2/Ks+q8WUmRGGTR06tuNmJLTmWvxw8J9Rfex9BhxqEz9Tbs2jXYnGP9PclW7vh4v6w8/MVd5DLiDCgYdDIlta3IKef7Unw0KsxM6j0d//EuscF2VEwQYkL87Lo/giAId8RHo8LTi0Xt1c/3nkF+ZXMvZ/CoVQxLJ0g1B/seJPEkiZkmQwf2SkS37SlZ9sIvWShvFMvDf1iYQvc0J0HBoJPZlC1Pxwf49lzy3ZRdgbpWUfvqL5fTpBVBEERPLEyLxtQEXhi608zh5bXZfZzBIy0Vb8mt7NPNxJP6BnfmVQvVp7SYIAy2U3CWX9GEj3aKyY2EiAA8OJck0pwFBYNOZlM/0vF//1VUZY8K9MXUxPBejiYIgvBuGGNYflkazquibM6pxI68qt5PAjA8IgCT4kMB8EHkT4dLez1+WmK48B7HztZbJVjtqsjvSfbLCt72kVgeVjHg87upPOxMKBh0Il3T8Qt6+cU7U9MiTHcBwP2zqcGWIAiiL0bHBuPaCaJ+4Iu/ZMPUx1AIIM8Orsw826t4dYi/D0ZbxJHNHLDPCm9jV6TTzMl6JO1VIn5pTRbONYjZ1kcXJCE2hKaHnQkFg05k+ykxHT9qcBBigntOx/911UnhtU6jIpFpgiAIK3lqUQr8LROxuRVNVvUBXjYmRjgnr7IZR0p6HwzxhL7Bo2frUWOZuo7Q+2DckN5lzgZCQVUzPpCUh+PD/fHo/GTF34foHxQMOhFpv2Bvvo+tRpOstHHV+FgSmSYIgrCSqCAdHpBUU97YcAot7aZezwnw1eCyMTHCui9HkoskEjPu2jcoFZqemxIFVS8yZwPltg/343ySlS8PT1H8PYj+QxGFkzB1mrElV/zF6y0YfG1dLs5bXjLG2y0RBEEQ1nP3zASJZEw73tte2Oc50lLxz0fOoc3Ys4bgpPgw+Gj4W2pBVQvKG3ofOnFF+muL2l/e+C0XpfWi9/DD80aQuLSLQMGgkzhUXC9MBkcH+WJ0bM8m4N9KVPCnDA9DoE5r9/0RBEF4En4+avxhoViOfG97ISobew/YJsWHChqCTe0mrD9Z3uOxOq0aE4eFCmt3KxWX1reJMmdqFWYkRSp6/YpGA/6zJV9YDw31w+MXk3uWq0DBoJPYJHsCi+7RBPzr/cVolTyNPnfFKLvvjSAIwhO5ZsIQpA4KBAC0dXTizY2nej2eMSbLDn7bhz2dO/cNSoWmpySEQd+LzNlAuOPj/Tjvl8AAfPw7mh52JSgYdBIbZf2CPafj/7VZfJIaFu6P1JieM4gEQRBEz6hVTCZEveJACU5VNPV6ztIJsTjfOre7oAYlta09HjtdIve1u6Cm1wlkV0OWoFB4ivjbzBJkl4n/n2+aMhSJkXpF34OwDQoGncDp6hYUVLUAAHRaFaYndu86crSkDuck/RVPLKSJK4IgCFuYnRwpOD2ZObl+a3fEBPthpqRk+l0vgyRjYoOFjFp5owFFNT0Hjq5Eq9GE3QWiHI6SFnStRhP+8tMJYR3qr8ULV1GFy9WgYNAJSJ/AZiZFQqft3gT8uZ+zhNdBOg2uHBfb7XEEQRCE9Tx96UiZEPXugt5LusskpeLvDp6F2dx9xk+jVmHK8DBh3dd1XYVd+TUwmnjtxeRoPeLClBvquO/zg2g3ibqO/7slg9QwXBD6jjgBa0rEtc1GHCkWda1umUq6ggRBEEqQNjgIS8eLQtQvr83uMcADgAVpUQjx5wf3SuvbsKcXUelpXUrF7sDmHPGeNC9Vuazgjrwq7MgTA+J5qZGYkkDOWa4IBYMOpqG1AweK6oT13B56M57/5aRg1aNRMTy2gErEBEEQSvHkomT4WqRgTpQ2YvXRcz0e66tRY0m6WJnpbZBEGgzudYO+QbOZw6ZsqcyZMv2CZrMZD311SFjrtCq8c9MERa5NKA8Fgw5m66lKdFqeQNPjQhAVqLvgGJPJjLXHy4T1/NQoQb+KIAiCsJ2YYD/cPXO4sH59fS4MHT3rCF6bIWYS150o79F/eOSgICGLWNNixKmK5m6PcxVOnmtEZVM7ACDEX4vxQ0P7OMM6/vzDcTS0icLef186FjofZSeUCeWgCMPBWPME9r/tBYJNHQA8dyU12xIEQSjN/bMTER7gA4Av/366u6jHY0fHBiPNoubQbjLj5x4yiSoVw7QEaanYtfsGN0lKxHNToqBWwHXkVEUTVkos/8bEBmHJeOp5d2UoGHQgpk4ztkpcR3qa2PpoV5HwOi0mEDEhPXsWEwRBEAMjUKfFowuShPW/t+SjzuLN2x3LJorZwd7s6bpKzLgy0gSFUq4jd358QGhzUqsYPr5zkiLXJewHBYMO5OCZOjQa+LT54GCdIH4qZWtuJWolH0bLL0tz2P4IgiC8jRsnD0VCRAAAoMlgkmm7duWq9Fj4qPnb5tGS+h41CqV9g/sKa4TWIFejotGA46UNAPje9JkKuI68szVfZjn3+IIkROgvbIciXAsKBh2IVOF93siobl1HpJpXEXpfTB/RvQYhQRAEYTtatQp/vCRVWH++twhnalq6PTY0wAcXp4kVnZU9DJIkRuoRGegLAGg0mJB1rlHBHSvHFsk9aVJ8GIL9bLM6bWg14o3fRFeXIaF+eGheUi9nEK6CRweDjLGhjLHHGGM/M8aKGWPtjLEmxthRxtjfGWMxjtzPJskv3vxuxvfLJN6QAHCPpLmZIAiCsA+LRkULvsIdnRxeW5/b47HXSkrFPx4uRUen+YJjGGNdSsWu2Te4UeES8QNfHoJJkgV977YMm69JOAaPDQYZY3EAigC8CeByAHEADAD8AIwF8CcAJxljcx2xnzM1Lciv5KfKdFqVrIxwnud/Pim89lGrKBgkCIJwAIwx/N9lok3dmmNlOFxc1+2xs5IiMSiIL3tWNxtl2TUp0mCwN11CZ2Ho6JT5J9vqOrI7v1rWH3nZmEFIiwm26ZqE4/DYYBDAeVuPNQCuAxDGcVwwAH8AiwGcBhAK4CfG2CB7b0ZaIr4oMeIC1xGTySx7Sls0OppU2gmCIBzEhKGhuGyMWCx6eW12txqBahXD0glSzcHuB0mkNqP7T9d2m0F0JnsKa9BmkdJJiAjAcEvf5EAwm814UKIp6KdV483rx9u8R8JxeHK0UQdgPMdxl3Mc9x3HcXUAwHGckeO4X8EHhAYAQQDus/dmuvYLduWdbQWy9PpfaHCEIAjCofzxkhRo1Xwv94GiOmzIquj2uOsk9nRbcitR2WS44Ji4MH/EWpQgWo2dOHa2/oJjnInUFtXWEvErv+agrlXUXXxxySjSxnUzPPa7xXFcA8dxR3v5eg6AvZalXRsbmttN2FdYK6zndeM68olE32rU4CBEBdH0FUEQhCMZFh4gs/58fX0uTN1k9IZHBGBSPN9j2Gnm8NPh0m6vJ+sbzHedUjHHcdgsqUTZYkFX0WjAhztPC+vkaD2uyYjr5QzCFfHYYNBKzv92qns9ykZ25lXDaPlASYsJQkywXDdwR16VTE7mmcUjQRAEQTieh+aOgN6Xd8rIq2zGD4e6D/Sk2cGVmWe7LSlPH+GafYM55U0418BnMwN1GkyMH7jryN2fHsD5ohZjwId3kKagO+K1wSBjTAPgIsvyhD3fS2oC3l06/pW12cLr8AAfkpMhCIJwEuF6X9w3K0FYv7HhVLc2dZeNiYG/D59HyKtsxpGSC8vA0xLEz/LMM3W92t05EmmJeE5KFLTqgYUCa4+V4XipKJtz0+ShiAv1t3l/hOPx2mAQwIMABgEwA/i0p4MYYz3+sQazmcPmnCph3bVEXNloQFaZKCdz50Xx/fk3EARBEApz18zhiNDzOoHljQZZG895Anw1soGT7hxJBgXrBEFro8mMQz1MKDsauczZwPoFTSYznvpe7MQK0mnwwlVknWpvbI1JesIrg0HG2FgAr1iW/+Y4Lste73W8tAHVzbwJeHiAD8YNCZF9/W+/iG+tVTPcPyvRXlshCIIgrMDfRyOzqXtnSz4aJAMS55GWin8+cg5txgszf1IZsT0uYE1X3dwuZDFVDJidPDDXkad/PI6WdvHf++b16aSA4cZ43XfOIjT9E3i9wYPg9QZ7hOO4Hv9Yg/QJbE5KFFQSE3Cz2Yz1J8uF9YKR0dDQBBZBEITTuWFSHOLD+ZJno8GEd7ZdaFM3KT5UOKap3YR1J8suOEYqMeMKweCWnEqcv31NHBaG0ACffl/jdFUzvpNkQicMDbFZp5CwDltjkp7wqsiDMRYG4DcAwwHkAbiM47gLNQEUpLd+wfe2n0ZHp/gN/OvlJCdDEAThCmjVKjy1SLSp+3hXEc5JPHcBvmTXdZCkK1MTwoTXR0rq0dJussNuracvmTNruOvTTJy/c6kZwwe30dCIu+M1wSBjLBjAegCjARQDWMBxXPciUgpR0WjACUtzLW8CLh8M+UAyjj9yUCBiQuRTxgRBEITzWDxmEMYN4V00jCYz3tp46oJjlk6IxfmCz+6CGpTUtsq+Hq73ReqgQACAyczhQFFt10s4DKPJjO2nxB72BQMIBr/aV4zCatG7+YE5iQjT9z+7SLgWXhEMMsYCAKwFMBFAOfhAsNje7yu1KZqSEIZAnWgCvregRuglBIA/X5oKgiAIwnVgjOFPl4ifzd8dPIu8iibZMTHBfpiZFCk7pivTXMSabt/pGrRY+hqHhvkjMVLfr/ONJjP+9otomxqh98WTi1IU3SPhHDw+GGSM+QH4GcB08LqCCziOy3PEe0v7BbuKer60VhwcCfXXYnaK7SbhBEEQhLJMHxGBWZYhCzMHvLY+94JjlklKxd8dPAuzWd6/5Sp9g5tkQtNR/Z5A/eN3x2DoEEW437mZLOc8BY8OBhljPgB+ADAXQD2AhRzHnez9LGUwdHRiZ57EBFwyvl/dbJBpM902bRgIgiAI1+RPl4jZrw1ZFcjsUupdkBaFEH++8lNa34bdXQK+ycPDhFLyidKGbieT7Q3Hcdgk6WFf0M+Bj9NVzVh1RBTgnpoQhsnDw3s5g3AnPDYYZIypAXwF4BIATQAu5TjuUO9nKcdeqQl4ZADiJSbgL/6SI7zWqBgenpt0wfkEQRCEazBqcDCWpA8W1n//NUc2vemrUWNJeqywXpFZIjs/2E+L0bF876GZ48u1jia/shkltfwATICPGpOHh/Vxhpz7vjgoDo2oGP53i11dXAkH47HBIHh3kWssr7UAfmKMlffw54DSb765B1FPs9mMtSdE+YG5KZEkJ0MQBOHiPLEwBVo1n97LPFOHjZKSKwBcP0ksFa8/WY76VqPs687uG5S2Lc1KjoRPP+47q46U4lRFs7C+d2YCQvxpaMST8OQoRPpv0wGI7uXPwFQ3e4DjOFlvxlxJMPjxriIYTWLPxV+vJMV2giAIVycuzB83TxFbel5bl4NOSW/gyJggjJVMHv90WO5p7Oy+wc2Se1J/NAHNZjOe+fG4sA711+KpRcmK7o1wPh4bDHIct5XjOGbln3gl3/tURTNKLXpUgb4aTIoX0/Hvbi8UXidH68nHkSAIwk14eN4I6H01AHg/4u8PySeHpYMk3xwokZWSJ8WHQmNpHMwpb0KNRE3C3tS1GJF5hu9zZAyYk2J9/uMvq06imZxGPB76jtoBaZPurJRIwQQ8s6gWlU3iB8AfaSSfIAjCbQjX++LeWQnC+s0Np2DoEAOlK9MHQ6flP+9zyptwvLRB+Jq/jwbpcaId6d5Cx+kNbjtVhfNJzPS4EMF3uS/K6tvw9X5RhW1cXDDmkPKFR0LBoB3Y0kO/4ItrsoXXwX5aLEgb5NB9EQRBELZx14zhQjBV1mDAp7uLhK8F6bRYPDpGWK84IB8kmS7pG9xdUA1HIe0X7M8U8X1fHBSCSBUD3rt1otJbI1wECgYVpq7FiINn6gCcT8fzwWB9qxFHLebgAHDzlKFO2R9BEAQxcAJ8NXh0/ghh/Z8t+TKpmGWSQZLVR86hzShmDqdJ+ga7ys/Yi45OM7bmyvUFrWFTdgWOnRUzmzdPGYboIJ3i+yNcAwoGFUaajp8wNBRhFhPwl9Zky8byH1tADbgEQRDuyA2ThyI+nO/3bjSY8M62fOFrU4aHCV9rajfhV4l6xPihIfC1TPGerm5BeYPB7nvNLKpDk4H3Qx4crBOs8XrDbDbjiW+PCutAXw2evzLNbnsknA8Fgwojdx3hn8DMZjN+PnpO+PvZyRH9GusnCIIgXAetWiWzYftkVxHKGvihQcaYLDsoLRXrtGpMGBoqrB2hN7hZ0sM+f2S0Va4jr67LQX2bmO18ZekYGhrxcOi7qyAdnWZsy5WO7/PB4Bf7imGQyMk8ewXJyRAEQbgzi0fHCFIy7SYz3t4oupxeO2EI1JbJ4X2na3G6ukX42tQEid6gA0rFMgu6kX2XiGubjfhgR5GwTh0UiMvHDe75BMIjoGBQQQ6eqUOjJB2fEs2n4/+3tUA4JjEyAMPCA7o9nyAIgnAPVCqGPy5KFdYrD55FYRUvzBwVpMNciXzLtxJHEqn49F47i08XVjWj0BKI+mnVmJbQt33c/V8eRKdFEocBeJ+GRrwCCgYVROo6Mm8kbwKeVdaAc5K+kMepV5AgCMIjmJEUgYtG8AFWp5nDPzacEr4m1Rz8/uBZmDr56tC4uGChb7CoplUoL9sD6T1pRlIEdFp1r8cfPFOH/adFyZsl42MRF05auN4ABYMKsilb0puRyo/vv/iLKCej91VTup0gCMKDeEqSHVxzrAwnLNqCc1OjBAmayqZ2bM2tAsD7GGcMk/QN2lFvUFoinm/FFPEjXx8WXuu0Krx+zVi77ItwPSgYVIgzNS0oqOLT8TqtCtMSw2EwmmRlgKUThjhrewRBEIQdSI8LwaJRonbfa+tzAfBDJtdmiJ/5K6SlYgf0DTa0deBAkRho9iUp8+W+M4JzFgA8felIaGjQ0Wug77RCyNLxI/h0/D82nBJkZhiDrL+EIAiC8AyeXJgCy7wItp+qEpIAyyaKweDmnEpUNvEtQ1OlfYN2mijekVcFk+UGNHZIMKJ60Qg0mcyyKlZMsA63T4+3y74I14SCQYWQ9QtaSsRSSYGJw0Kh12kcvi+CIAjCviRFB+Lq8WLg99q6HHAch4RIPSZbvOk7zRy+P1gKgA/OztvWnalpxbl65fsGZVPEfWQF/7r6BNoktnpvXZ+u+H4I14aCQQVobpeXg+elRmFTdoUwWQwA/7d4pDO2RhAEQTiAxxYkwcfiQ3+ouF4IxqSagyszS8BxHHw1akwcFib8vdJTxZ1mDlukMmepPVvQVTYa8I0kcTFhaAimWDF1THgWFAwqwM68KnR08un4tJggDArW4XVL3wgARAX6YrxEaJQgCILwLOLC/HGTxGb09fW56DRzWDxmEPS+fFWosLoFB4p4u9KpCfYLBg8X16HeYpEXHeSL0bFBPR770FeHZP7D/70lQ9G9EO4BBYMKIJvYGhmFikYDcsqbhL+7a8ZwZ2yLIAiCcCAPzRsBfx9eviW3ogmrj5bC30eDKyQqEufbh6Ti03sVnije2KVE3JPryMEzddhvCU4B4JqMIeQ/7KVQMGgj5i7p+HmpUXhxTZaw1qoZ7plJwSBBEISnE6H3lT38v7HhFIwmM26QlIrXHi9Dk6EDY4eEwM+i+1dc2yqb5LUVqQXdvF5KxA93kZJ5ZckYxfZAuBcUDNrIsdIGVDcbAQDhAT4YMzgI60+Iv4gLRkaTpyNBEISXcM+sBIT4awEAJbVtWHGgGGOHBCN1EO9I1dbRiZ+PlsFHo8LEeLF9aK9CEjMlta04VcE7ofhqVJgxIqLb477cd0Y2uEJSMt4NfedtZLNEaHpuahQ+31cMY6foQ7z8chocIQiC8BaCdFr8fk6isP7n5ny0dXTKHEnOaw7KS8XKBINS84PpieHw87nQdYSkZIiuUDBoI5tz5Qrv720vFNYjovSIDSErH4IgCG/itmnxGGTpvatqasfHu4pw9fhYYdr4aEk9csobZcHgHqWCQZktavcl4r+skkvJvH0DScl4OxQM2kB5gwEnShsB8L2BkXoflEl8iJ9YSD7EBEEQ3oZOq8Yj85OE9bvbCqBiDBdLnEpWHCjB2CHBQt/g2bo2lNS22vS+ze0mmb1ddxZ0lY0GmRtKxrAQTB5OUjLeDgWDNiAdHJkyPBz/T2JSHuirwaWjY5yxLYIgCMLJXDdxCOLD+cpQo8GE/20vwPWSUvGPh0th5jhZ3+C+07ZNFe/MqxLalEbGBGFwiN8FxzzYRUrmnZtJSoagYNAmpJIyM0aEY7/kF/maDPIhJgiC8Fa0ahX+sDBFWH+86zSSo/WItQRo9a0d2JBVgWmJyvkUy2TOuskKZhbVCjqHAHAtSckQFigYHCCGjk7syq8W1gXVLTIf4iclHwIEQRCE93H5mBikxfCCz4YOM/6zpQDXSfyKVxwoUWyIhIO8WjV/5IXB4CPfHBFe67QqvExSMoQFCgYHyJ7CGqEBNyEyAOtPlAtfm0Q+xARBEF6PSsXw1CViYuDr/cWYnhiO8xrQO/OrEeavFYSqS+sH3jdo1McIMmcReh+MGxIi+/oXe4pISoboEfpJGCCbJen4xEi9zId4+eVpztgSQRAE4WLMSY7E5Hjees5k5vDVvmJB+4/jgB8Pn8OkeNGabqBTxa0hCcLruSlRUKlE1xGTyYyX1uYIa5KSIf5/e/caHFddxnH8+yRpmt7SSem9tA2lFGhruUiLUpQCtqjcZRAUUZkiKioqFwfE6gvGC4ijgo46jpcXXl6ggiiOWlMaBqFoEWEsUAqhhV5I03sbmqQkjy/Oye7JZjfZTXf3tGd/n5nMnst/M0/bTc+Tc/7/58mkZHAI3J1VkeX7L2zbm9qeVD+cBRm/kYmISGUyM74UuTv4x2e38q4T0oWgf/f0Zs487vD7FB9sSNc2zHxErFIyMhglg0PwUuuBVOug0cNr2Lw7XU7merWeExGRiDMax6UWdLgH3UYawi4lW/YcTJWXAXiqZRfuXtD3f6t2DF2jgrI1tdVVnH3ChNS5zFIyZ8xsUCkZ6UfJ4BA0Rfo+1kfmBg6rNpYvVjIoIiJ93XrBiam5gqvWt3FWZBXxvzbtYlSfeYOF9SmOPiI+c9Y4Rg9PX5f6l5I5fYh/AkkyJYNDEJ0v2LqvM7W9dK76EIuISH8nT6nnklOmpvY3RRaKND2/nVNnpKcXFfqouM8j4khJmWylZCaqlIxkocylQLvau/jPa+kfru7I7fwVF2rhiIiIZHfz0jnUhAs7/rdlH7PGjwKgq7uHupr0o+JCksGDXd10jJ2R2j8/0oLupt8+k9oeMaxapWQkJyWDBWp+aXvqlvuw6vRqrTmTRjMlS7V3ERERgJnHjOKqhekuJNFFHRu2H0htP9myM+95g/98eQdeFcw/nDNpNNPHBV1PfvXkRrZG2qPe8f6TVEpGctIno0DRCu+HutM/rCoyLSIig7np/BOoGxZcerft7aC2Oth+bdebqYUk2/Z28Fqe9QabIpUtzjspuCuYrZTMR9/ZWIzwJaGUDBbgUHcPzS+19Ts+pq6GZfMmxxCRiIgcTSbV1/Hxs9ILDWsjd+t6VxhDfo+KgzJn6QWNvSVl7swoJXP/h047rJgl+ZQMFmDtxt3sjxSX7nWl+hCLiEiePn3O8YwJK1Ec6ExfU3o7iEB+fYrXbd2XWsRYdeggp89oYPu+Dh7IKCVzRqSotUg2SgYLEO372KvKgpIBIiIi+Rg7chifOie9Arg6XFTS1d2TOrYmj3qD0WlLI/a0UF1l3PhrlZKRwikZLEDTC639ji1sHMfIWvUhFhGR/F23uJHxo4cD0N2TTvqqw2KEb+zrYNPOgecNRmvejtzzCms37mLtpnS1iyvPmK5SMpIXJYN52rijnVfa2vsdX6E+xCIiUqCRtTV87rzZ/Y5Hy5UN1Kd4+74OntsctkLt6aZuz0Y+l1FK5uuXzi9ewJJoSgbzFO1F3GvK2DrmTxsbQzQiInK0u3rRdKYNUJJsoEUk0WlLdfs30z7+ZLZFSsncqVIyUgB9UvKULRm8/my1nhMRkaEZXlPNF95zQs7zawaoN/iPyHzBut0t7J6xJLU/dWwdH1EpGSmAksE87O84xFOv9v0Nrba6iusWN8YTkIiIJMLlp03j+Amjsp5r3dfJqzv6T0/qONTN4xt2pPY7x0zGq9Nlae5TKRkpkJLBPDy+YUefAtMAy+apD7GIiByemuoqbhmgacGall1Zju1M1RGcMW4kB8el37+wUaVkpHDKZvLQlOURsRaOiIhIMbx33mTmT6vPei7bvMFoSZmOQ91gwaW8yuCHH1YpGSmcksFB9PQ4qzPqC544aQyTtFxfRESKoKrKcrY0zexTHHQdSV+Ttu/vTG2rlIwMlZLBQTy3ZW+fqvAAtyybE1M0IiKSROfMmcCiLI932/Z30hKZN7i+dT9b9hwEwCLjrLtLpWRkyJQMDmJVRqHpevUhFhGRIjOznN2soo+Ko4+IozPZGzatVikZGbKK+OSY2WQz+76ZvWJmHWbWamZ/MrPzB3vvyuf7JoMfXDi9ZHFKZWhubqa5uTnuMKTI9O8qh2vRceNYcuKEfseji0iydcJ6a+92nnngvpLGJsmW+GTQzBYA/wNuAmYBncB44CJgpZndPtD7X3hjf/p7ATcv1SNiEREpjWxzB594eQfuzs4DnTzz+p5+59sevqccoUmCJToZNLMRwMPAMcAzwHx3Hws0AN8hyO++YWbL8vl+75h1jPoQi4hIycyfNpYL3zalz7Gd7V280tbOo+vbyKxBvbCxga6tL5YxQkmiRCeDwCeBmcAB4GJ3Xwfg7vvc/VbgIYKE8Jv5fLMVF51cqjhFREQA+OLSOX0WhwCsaWAMteEAAAWSSURBVNnBqhf7PiJWKRkplqQng9eEr79x9y1Zzn87fD3dzHJX/QQmjK5l7lT1IRYRkdKaPXE0l5wytc+xPz+3jUdfbOtz7CqVkpEiSWwyaGZjgLeHu3/LMWwNsDfcHnAxyY3nzi5SZCIiIgO77b1970+sadmV6joCUFdTxV0qJSNFkthkEDiZdBmmddkGuHsPsD7czdlSpMrgY++cWdzoREREcji2YSQXzJ2U8/yKi+eqlIwUjXnmbNSEMLNLCeYEAtS7+/4c4x4ELgP+4O5XRI4n8y9GREREEsvdM6ecDirJv1aMimwfHGDcm+Hr6BLGIiIiInJEUp2UHIaSWYuIiIgcbZJ8Z7A9sj1igHEjw9cDJYxFRERE5IiU5GRwa2R7as5R6XPbShiLiIiIyBEpycngi6T7eM/LNsDMqoDe9fvPlyMoERERkSNJYpPBcPXw2nB3aY5hZwK9laSbzOyXZuZ5fi0p9Z9Bjm5mtsDMusLPy/JBxt4bjms1s2PKFaMMXeT/i9UDjJloZs+G43aZ2cIyhigJpuuVQH7/D+Ujsclg6Dfh6zVmNiXL+VvD16fdfX3k+CGgdZCvrpJELInh7s8Bd4e79+b4DGJmi4AvhLufdfed5YhPSiv8914NLADagHPd/d+xBiVJpOuVHLakryb+CcFFdibwZzO71t2fD7uTrAA+EI77csb7nnD3JeULUxLsLoLP2Vzgh6Q/cwCYWS3wc6AaeMjdHyh7hFJ0ZjYdWAXMJpiPfL67vxBvVJJQul7JYUv0nUF3PwhcCuwETgfWmdleYA9wG8Gcwjvc/e/xRSlJ5u5dwHKgB7jczK7MGPIVgjmte4AbyxyelICZHQc8RpAIvg6co0RQRI5kiU4GAdz9WWA+cB/QAgwnSA4fAZa6+7diDE8qgLuvAe4Pd39gZuMAzOwU4Pbw+M3urhXtRzkzm0OQCDYCrwLvdvcNsQYlIjKIxCeDAO7+hrt/3t2Pd/c6d5/o7he5e1PcsUnFuJMgOZgIfM/MaggeDw8DVrr7L+IMTg6fmc0DmoFjgZcIEsGNsQYlIpKHikgGReLm7u3AJ8Lda4HfE0xdaAduiCsuKY7wLu9qYDKwjuDR8OZYgxIRyZOSQZEyCe9E/yzcvSR8vUN3j456jcCjwHjgv8ASd38j1ohERAqgZFCkvH4U2d5AsMJYjm4zgYZw+zPuviPOYERECqVkUKRMzMyAeyOHZgOLYwpHiqcF6E0AHzCz2XEGIyJSKCWDIuVzA7AE6CSYX2bAT81seIwxyeF7HXgPsJug13mTmc2MNyQRkfwpGRQpAzM7Frgn3L0LuJogeTgR+GpccUlxhCWslgF7gRnAKjObFm9UIiL5UTIoUh4/BuqBZ4G73b0VuCU8d5uZLYgtMikKd18LvA84AMwiuEM4Kd6oREQGp2RQpMTM7BrgQqAbWO7ubwGEtQWbCGoN/tTM9PN4lHP3J4GLgDcJ7vo2mdn4eKMSERmYLj4iJWRmE4DvhbvfcfenM4bcQJA4LAI+X87YpDTcvRm4jGBu6DxgpZk1DPwuEZH4KBkUKa37CerPbQC+lnnS3Vsix+8ys8ayRSYl4+4rgSuALuBU4K9mVh9vVCKSYMPMbPwgX8NyvVnJoEiJmNklwFWAA9e7e0eOod8FngZGEcwtlARw90cIFgq9RXDn9y9mNireqEQkoc4C2gb5ylnKTMmgSAmY2VjSBaZ/4u6P5Rrr7t3AcoKk4QIzu7YMIUoZuPuDwEcI5osuBv5kZiPijUpEpC9z97hjEBEREZGY6M6giIiISAVTMigiIiJSwZQMioiIiFQwJYMiIiIiFUzJoIiIiEgFUzIoIiIiUsGUDIqIiIhUMCWDIiIiIhVMyaCIiIhIBVMyKCIiIlLBlAyKiIiIVLD/A1yhXdtx+vACAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 720x720 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "figure(figsize=(10,10))\n", "set_fig_properties([gca()])\n", "vlines(sym_points, ymin=0, ymax=17)\n", "plot(linear_path, nu, color='C0',lw=3)\n", "xlim([0, max(linear_path)])\n", "gca().set_xticks(sym_points)\n", "gca().set_xticklabels([r'$\\Gamma$','X', 'K', r'$\\Gamma$', 'L'])\n", "ylim([0, 17])\n", "ylabel(r'$\\nu$ (THz)')\n", "show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Phonon dispersion of silicon crystal described by the mini-Tersoff potential." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- The above figure shows the phonon dispersion of silicon crystal described by the mini-Tersoff potential [[Fan 2020]](https://doi.org/10.1088/1361-648X/ab5c5f)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 4. References\n", "[Fan 2020] Zheyong Fan, Yanzhou Wang, Xiaokun Gu, Ping Qian, Yanjing Su, and Tapio Ala-Nissila, [A minimal Tersoff potential for diamond silicon with improved descriptions of elastic and phonon transport properties](https://doi.org/10.1088/1361-648X/ab5c5f), J. Phys.: Condens. Matter **32** 135901 (2020)." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.1" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
tritemio/multispot_paper
out_notebooks/usALEX-5samples-PR-raw-out-all-ph-22d.ipynb
1
474306
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "**Executed:** Mon Mar 27 11:34:36 2017\n", "\n", "**Duration:** 8 seconds." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# usALEX-5samples - Template\n", "\n", "> *This notebook is executed through [8-spots paper analysis](8-spots paper analysis.ipynb).*\n", "> *For a direct execution, uncomment the cell below.*" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "ph_sel_name = \"all-ph\"" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_id = \"22d\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# ph_sel_name = \"all-ph\"\n", "# data_id = \"7d\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load software and filenames definitions" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " - Optimized (cython) burst search loaded.\n", " - Optimized (cython) photon counting loaded.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "--------------------------------------------------------------\n", " You are running FRETBursts (version 0.5.9).\n", "\n", " If you use this software please cite the following paper:\n", "\n", " FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET\n", " Ingargiola et al. (2016). http://dx.doi.org/10.1371/journal.pone.0160716 \n", "\n", "--------------------------------------------------------------\n" ] } ], "source": [ "from fretbursts import *" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "init_notebook()\n", "from IPython.display import display" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Data folder:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "data_dir = './data/singlespot/'" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import os\n", "data_dir = os.path.abspath(data_dir) + '/'\n", "assert os.path.exists(data_dir), \"Path '%s' does not exist.\" % data_dir" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "List of data files:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'12d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/007_dsDNA_12d_3nM_green100u_red40u.hdf5',\n", " '17d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/004_dsDNA_17d_green100u_red40u.hdf5',\n", " '22d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/008_dsDNA_22d_500pM_green100u_red40u.hdf5',\n", " '27d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/005_dsDNA_27d_green100u_red40u.hdf5',\n", " '7d': '/Users/anto/Google Drive/notebooks/multispot_paper/data/singlespot/006_dsDNA_7d_green100u_red40u.hdf5'}" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from glob import glob\n", "file_list = sorted(f for f in glob(data_dir + '*.hdf5') if '_BKG' not in f)\n", "## Selection for POLIMI 2012-11-26 datatset\n", "labels = ['17d', '27d', '7d', '12d', '22d']\n", "files_dict = {lab: fname for lab, fname in zip(labels, file_list)}\n", "files_dict" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "('22d', 'all-ph')" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ph_sel_map = {'all-ph': Ph_sel('all'), 'Dex': Ph_sel(Dex='DAem'), \n", " 'DexDem': Ph_sel(Dex='Dem')}\n", "ph_sel = ph_sel_map[ph_sel_name]\n", "\n", "data_id, ph_sel_name" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data load" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Initial loading of the data:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "d = loader.photon_hdf5(filename=files_dict[data_id])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Laser alternation selection\n", "\n", "At this point we have only the timestamps and the detector numbers:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "([array([ 16030, 90752, 117066, ..., 47999910064,\n", " 47999915269, 47999979355])],\n", " [array([1, 1, 1, ..., 1, 0, 0], dtype=uint32)])" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d.ph_times_t, d.det_t" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We need to define some parameters: donor and acceptor ch, excitation period and donor and acceptor excitiations:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [], "source": [ "d.add(det_donor_accept=(0, 1), alex_period=4000, D_ON=(2850, 580), A_ON=(900, 2580), offset=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We should check if everithing is OK with an alternation histogram:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAFFCAYAAAAn5APNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAJ/wAACf8BB8w+RgAAIABJREFUeJzs3Xl4VNXh//H3nS37RiALSEAQUDaN2lIUFAWVXa1YtJVq\ntRX5KlC6uABSoQhuVERcUGvV+quyuCIUl+CGUrUVXFABFxACWQgkIclktnt/fwxMiJONCxgSPq/n\n8ZF77jn3npPJ3Hzm3DMzhmVZFiIiIiJy0BzN3QERERGRlkpBSkRERMQmBSkRERERmxSkRERERGxS\nkBIRERGxydVYhSVLlvDPf/4Tp9NJmzZtmDVrFrGxsQwePJguXbpE6i1YsICOHTuSl5fH/PnzCQQC\n5ObmMnPmTDweD16vl6lTp7Jx40YMw2D69On0798foN42IiIiIkczo6GPP/jyyy+54YYbePHFF0lK\nSuJf//oXr776KuPGjWPFihXce++9teqXlJQwevRoli1bRnZ2NjNnzqRNmzZMnDiRuXPnEgqFmD59\nOt9//33kGD6fL6pNWloakyZNOuKDFxERETkUDd7aS0hIYPbs2SQlJQHQp08fdu7cybp169ixYwdj\nx45lzJgxvPbaawCsWbOG3NxcsrOzARg7diwvv/wyAKtXr2bMmDEA5OTk0LdvX/Ly8hpsIyIiInI0\na/DWXk5ODjk5OQAEAgHuvfdehg4ditPpZNiwYVx11VVs2bKFK664gpycHAoLC8nKyoq0z8zMpKCg\nACBqX0ZGBoWFhQBRbfaXi4iIiBzNGl0jBVBaWsqUKVNISEhg8uTJOJ3OyL7OnTszbNgw8vLycLmi\nD7e/rmmaUfscDgehUKjeNiIiIiJHs0aD1JYtWxg/fjxnn302t9xyC4Zh8MQTTzBq1CjS09MBsCwL\nt9tNZmYmGzZsiLQtKioiMzMTgOzsbIqLi0lNTY3sy83NJRQK1dumPh/t/AiX0aQMeNQzDIP6lqkF\nrSB92vbB42yehfdWwE9g45fgajzYNjSOlqS1jANaz1gaHEcwhLvHSRjuI/8c8Yf8fLbrs0O69hwT\nj0kLEbSC/CT7J83dDWkFGrwiFBcXM27cOMaPH88VV1wRKf/www8pKytj8uTJ7Ny5k9dee42nnnqK\npKQk7r77bvLz8+nQoQNLly5lyJAhAAwePJglS5Ywbdo0tm3bxvr165k1axamaUa1GTx4cMOdNlxU\nVQQPw/CbX0pKHGVl3jr3BcwAJUYlHmfgR+5VmBUIYFUGMFyNXzBTUuIor2ccLUlrGQe0nrE0NA4r\nGMQoqcJwH/nniD/kp3JvAPchfGhMQ8/3lqQ1jCNgBiC7uXshrUGDQerpp5+mtLSU5557jmXLlgEQ\nFxfHggULmD59OqNGjcKyLKZOnUrnzp0BmD17NhMmTCAYDNK9e3fmzp0LwMSJE5kxYwYjR44EiLw7\nr6E2IiIiIkezBj/+4Gi1rmDdMTMj1S25RzPe2gtgbf0ao461bz/UGl6hQusZB7SesTQ0DisYxOh0\nAobbfcT74Q/52Vy+EbfD/rmOhcekpQiYAQZ1P6O5uyGtgD7ZXERERMQmBSkRERERmxSkRERERGxS\nkBIRERGxSUFKRERExCYFKRERERGbFKREREREbFKQEhEREbFJQUpERETEJgUpEREREZsUpERERERs\nUpASERERsUlBSkRERMQmBSkRERERmxSkRERERGxSkBIRERGxSUFKRERExCYFKRERERGbFKRERERE\nbFKQEhEREbFJQUpERETEJgUpEREREZsUpERERERsUpASERERsUlBSkRERMQmBSkRERERmxSkRERE\nRGxSkBIRERGxSUFKRERExCYFKRERERGbFKREREREbFKQEhEREbFJQUpERETEJgUpEREREZsUpERE\nRERsUpASERERsUlBSkRERMQmBSkRERERmxSkRERERGxSkBIRERGxSUFKRERExCYFKRERERGbFKRE\nREREbFKQEhEREbFJQUpERETEJgUpEREREZsUpERERERsajRILVmyhFGjRnHRRRdx9dVXs337drxe\nL1OmTGH48OGMGDGCtWvXRurn5eUxatQohg4dyi233ILf7wew1UZERETkaNZgkPryyy9ZtGgR//rX\nv3jxxRc577zzmDZtGvfddx/p6emsXLmShx56iJtvvpmKigpKSkqYMWMGjzzyCKtWrSI2NpZFixYB\nMH/+/Ca3efjhh3+UwcvRyQr4sfy+6P8s8/Ac3zSxQqHo/w7T8aPOZ9VzPvPInE9ERH48roZ2JiQk\nMHv2bJKSkgDo3bs3jz/+ODt37mTBggUA5OTk0LdvX/Ly8gDIzc0lOzsbgLFjxzJx4kQmTpzI6tWr\nuf/++5vU5oYbbmDSpElHYLhSl9C86WCGapUZqW0wrvo9ANZ7eViB2rOEhtuDcebgI9Ifa/mzsGVz\nVLnx2z9CcirWJx9iFWyP3n/GYIyklMZPsOZ1rP+uiW5/4a/g1FxbfW7Qpg1YK5ZEn6//OdD/3MN/\nPhER+dE0GKRycnLIyckBIBAIcO+99zJs2DCefPJJsrKyIvUyMjIoLCwEqFWemZlJQUEBAIWFhU1u\ns79cfiQF2yAYAse+CUrTxNqxDWveNKj2wu7iqCZWXLztIGWV7oZgIHpHm3YYjgMmSbM7gtMJuwrD\n/djffvt3sPHz6PanngFNCVL7pbWFmFioKIOKvVC2h9DOfKyK6vD+lDYYMbFNP97+/hXm1+qftWdX\n+B9JyZCQHB5LaclBH7clszZvgB+EcQwHxkknN0+HREQOkwaD1H6lpaVMmTKFhIQEJk2axOOPPx5V\nx+FwEAqFosqdTicAZh23MRprUx/DMEhJiWtK1496DY0lEHKRnp6Ax+k5on3Y5XDg7NiBtNvvA6Dk\nhiuxqr2wuwgrGMBwu7BCIRJ/fR0Alcv+CX4fng/yIseodrlIOXdok85XsewFgtu3RpWn3DQLIzaO\nSreTgMMg+Ve/wZGUTOWzTxDYuIHkpFgcKXFUelwEHAYJY6/CkZpG9ZuvEtj0BUlJsThT4vCufAH/\n+o9qDmyBFQwQO3gYro6d8fkqw+1HX4K7SzeqV6+i+t08eOff7H3n35FmnpNPw31Sn8i2M7sDjuTU\nRsfn31JK1cfvRbYNAIdB7M8GEDvgXAJfbaBy8RPEepzEJLhrGhoGRiO/+wfjcD5PKpc9XbvAsjDL\n9hB33siaMqcL13HhF16+//0HAjVh2fvqy9H9c7lJ+dnPwvU/fB+rsiKqTszZQxochxUM4E6Px3Af\n2ecIgD/kpog43E5345Xr0VquXa1hHIFQk/78iTSq0d+kLVu2MH78eM4++2ymTp0KQPv27SkuLiY1\nNfxHpaioiNzcXEKhEBs2bIi0LSoqIjMzE4Ds7OyDblMfy7IoK/M2WKelSEmJq3csATNACZV4nHXM\n3thkWRbWojtrl/kDmIEQJSWV4YKZD2IAViAAW78GlwsD2LcX03CAP0D1e29FjmE4DKorq2sOahgY\nA8+vsw9mIASmBT36hGfBtn4NVZWUlVdj+Gr2l++txjDdtbcNL6Y/CKZFZWwyRlwaptMT3v/GKoiN\nh+1bwOcPz065XLAnPPvjfX1lrX5UVvgwyrxYye2wTgrf0ouJceH7+EMAfOv+i2/df2t3vm3N76bR\n/1yMbj2jf8ZVfizTgj6nY3TrFSmvTmuDr8yLVenDMi28b7+B9+03ao73k4F1/sysYDA8a7Zf0U6s\nVxaHZ+v2C4Ug+ziMCy6JFCWnJ7PXig4YlhmCkuhZRtxujNT06HLA/PwTsKyo8r2PP1izkZyK47d/\nDNfPexUq90bVNwYNC/fhw3ew/P7I7775wXvhmccfqO5+Mskp8ZTv3fe7FRePYdTMWlrBIEZJFYb7\n8D1H6uMP+Skr9+J2BG0fo6Hne0vSGsYRMAOQ1Xg9kcY0GKSKi4sZN24c48eP54orroiUDx48mCVL\nljBt2jS2bdvG+vXrmTVrFqZpcvfdd5Ofn0+HDh1YunQpQ4YMOeg2gwcfmbU3EmbVdVvsIBjDfwGh\nmj8m1rInwv8/cN2RwwE9Twn/e/sWiE8Ewwhv77tNZ1xwMYbLjbn0H1D1LdaLT2M5nFC8s+4Tb1iH\nFRcHe3bXvX/ThlqbxqjLMLKOw9q0ASt/S3T9fbcBjW49I4EoPiUO/wl9YNu3NeP733vg94f7X1IU\nCRTW8mew9gervWWQlILRow9WUbj/Rpt2GJ1PiD5vbFz4tuV+vupat0+tgB/KS2v279yO9doL0ccJ\nhaBNu5q2O7djPXFfZLe3V1+44FKsYAC2fF3Trtpb9/GAWlEpqwOOX15Xs53WFuOiX4XrrXkdEpNr\n9n36EVFiYjHOGV6z7XRh9AjP8FmffBT+mf6AceG+47+9CkpLsB65m3KHEQ6mgHHDdPDEYL72Iuzc\nBpaFFRsXuS3tuO4WjOSDuL0rInKIGgxSTz/9NKWlpTz33HMsW7YMgLi4OP7+979z6623MnJkeFp/\n5syZpKWlATB79mwmTJhAMBike/fuzJ07F4CJEycyY8aMg2ojR1D7jjgmTK3ZdjT9I8WMDp1qF4z9\nLQmxTiorfABYr78I5aVYT95/cH3Kj77ddyBr7eq6+9NvEPT9afSONu3C+7v3wujeK3p/PYzjOsNx\nnWu2f7Ag3Fr/H6w3981uHRCs8FVj1TGrUtfxjcuvrTnels1Yzz+F9ckHWF99AnvL62/cvXfNcToe\nj3HyT7H2lmG982pNnYAfvt1I8JtNmP+4DyrL6wwtAPTKDa9X2/g5tDvg5XlxAfh8WNu+qylzOjHS\n2obPPeryWocxv/wEKivCoRigugpi4zF6NrB4PxTEfOn/hf9dXhqexex6YvhnsvUb2BO+PrjcTgLb\ntoZ/vksex3IYUJBfcxxPTDhUAljRSwVERI4kw7LqmK8/yq0rWEdVhf3p9aNJY7f2uiX3OKxrpCzL\nwvzDODiuM84/zm64biCAtfVrDFfjawkOHIf17mtYFT8IA5s3YPxkYO2yn56N4XRi+X113jbC48Ew\nHOE/qntLo/d362VrMXhD7NyysEp3Q+GO6B0ZWZHg0WD777+JflefrxpMEw5YjG3kdMHodWrjxyvb\njfXkQhwOA9O0ACt8LNMMv1Nwv5Q2GPtnDQ9sHwph3Xdb9IHbZuL49Q11ntN8cE6tNwQAkJCEY/yN\nddf/x32wfxH+foaBY8qsqLopKXHseeT+uoP27/6M48S+WE8uwNqwDsdtCzBS2tR5zkPlD/nZXL4R\nt8P+GqnWcEsMWsc4AmaAQd3PaO5uSCug1XZy2BkDz8f4YeGwMfXX98Q0fLxOXQ+9U0eQkdoGUu3/\n8TZyumJMuOXw9SelDcakGfb/2BkGnNo/ujghqf4m1/zh4E5x6W/C4e5g6tfBCumzuESkeSlIiUgt\nhsOBMWh44xUPbHOQM4PGgeurmlLfUc+7Gc0WN6EuIq2MgpSItB67irAOXA+W1rZJt6ZFROzSFUZE\nWg1zYe11f45p82p9ZIWIyOGmICUiLd/x3TE8NW/KsL7dBGV7mrFDInKsUJASkRbPMXhUrW3ziQVY\nn3zYTL0RkWNJ0z88SERERERq0YxUK2eZJhz4oYroXU4iIiKHi4JUaxcKYc7/S3P3QkREpFVSkDpW\nJCVj9Dm9ZrueL6cVERGRplOQOlakZ+C49Orm7oWIiEirosXmIiIiIjYpSImIiIjYpCAlIiIiYpOC\nlIiIiIhNClIiIiIiNilIiYiIiNikICUiIiJik4KUiIiIiE0KUiIiIiI2KUiJiIiI2KQgJSIiImKT\ngpSIiIiITQpSIiIiIjYpSImIiIjYpCAlIiIiYpOClIiIiIhNClIiIiIiNrmauwMiIkeKtfwZrNj4\nyLYxfAxGSptm7JGItDYKUiLSalmf/rfWtnHOcFCQEpHDSEFKRFodY/TlGOddFNm2Vi7G+uKTZuyR\niLRWClKtjOWrxnruiZoC02y2vog0F6NNu1rbVlxCM/VERFo7BanWxjSxPlrT3L0QERE5JihItVY5\nXXCM/W3Ntiem+foiIiLSSilItVYxsRjtc5q7FyIiIq2aPkdKRERExCYFKRERERGbFKREREREbNIa\nKRE5Zljvr8ZKSo5sGz89GyMlrRl7JCItnYKUiBwzrHdfq7VtnHQyKEiJyCFQkBKRVs8YeAFGn9Mj\n2+Z7b8DmL5qxRyLSWihIiUirZ3TqCp261mx/uR4LsF5ZjBVf86nnxtAxGBnZzdBDEWmpFKRE5Jhl\nbfy81rZx1tBm6omItFQKUiJyzDGG/wLj3FGRbevV57E+XnvEzpdfuZ1NZV8Ru8dNtTcQKe+W0p3j\nEvTBuSItWYsMUg9+8iChoFWrbHjHUWTHt2+mHolIS2Ikp0JyamT7wNt7R8L3lVtZtX0FhsPAMmuu\nXR5njK0gFbJCBEL+qHKnw4Xb4T6kvh6tPir+D5XByqjys7POxTCMZuiRSFiLDFJf7fmq1sUIYFD2\n4GbqTW3l/jK+3fttVHlGXAbt4zs0Q49E5GgxoP0AcmK78E351/yn6D3bx/m2/Bse2/hQVPkZmQO5\nsNPPo8p3VRfz9NdPRpV3T+nB8I6josqbg2mZtbZf3b6SqmAV7MtIHxbVPWN4dta5R7prIg1qcpC6\n+eab6dmzJ7/+9a/ZtWsXgwcPpkuXLpH9CxYsoGPHjuTl5TF//nwCgQC5ubnMnDkTj8eD1+tl6tSp\nbNy4EcMwmD59Ov379weot01Drur+Wzom5PBa/io+KHq/3nrvF77L+0VrospHdryQE1N7NnX4EV+X\nb+Ktnaujyk9r+xNy008jv2o7z3zzVNT+s7LPOSJByqoox7zr5gMKrPori8gRUegtYGfVjqjynMRO\ntIlJr9lOzqFv4in4Q37+g/0gtV+yJ4X0mLZUh7x1nn+/gBlgZ1V+VHm72AwAvEEv7xW+U2tfyDIp\n9O7k5Da5AFhArDOW45O6UBWw8Aa9mJaJiYllWWwq20iSO6nWMTzOGI5P6kJdqoNeDrxazf1kFr5Q\ndaNjvrzrrwFYtf0V9vh2c89nc2vNSE3u9SfcDjdbK7ZQ9YMZrMpgJccndsHtcBMwg42eS6QpGg1S\nW7duZebMmaxbt46ePcPBY/369Zx77rnce++9teqWlJQwY8YMli1bRnZ2NjNnzmTRokVMnDiR+fPn\nk56ezsqVK/n+++8ZN24cK1aswOfzRbV5+OGHmTRpUoP9inclkOhOikxjL/3uGWKcMZH9F3Uaw/FJ\nXagMVlLsLcLpcOHAIGSZmFYIX8h30D8sgL2BvWwu2xhV/sOLRdfkbnRPOZFd1cV8VPwfW+dqEtOC\nveXgckLCvotYSipGQlLD7USkXpWBSnxm7T/q/pCfgBmo89bZF6UbWLXtlajyX3T5Za0g9UMby76k\nOlSNw3DgwIHDMHAYTgwMnIaTjok5tI/vwK7qYj7ZvT7SrqR6FwCnpJ/KiI6j+W7vtzz85f2NjuvU\ntj9hbJdfUlxdxD2fzo2UV4eqeT1/VZ1tNuz5LKrsh7co65MRl8Uf+9xU5767PptDZaAiqvy4hI6R\nf5f4Srim+/ia8xpEboW+X/guFYG9lPlLAQhYwVovJF/dvpJvyjfX2zcLGN1bby6QQ9dokFq8eDE/\n//nPyczMjJStW7eOHTt2MHbsWEKhENdeey3nn38+a9asITc3l+zs8NuHx44dy8SJE5k4cSKrV6/m\n/vvDT/ScnBz69u1LXl4eQFSbG264odEgtV/44uOkzF8GgIkJloU3WEXADESmi3/V9Up6pfXmzZ15\nrNr2Cp/v+ZRdvmIMDAzDgbFv/tiBgWEYdEvuQVZ8NpvKNvJuwVuR85UHygEY0uEC+mcM4MvSDSz7\n7tmofnVKPJ5B2eeyuWwTHxX/h/UlH/N9xdbI/t5pfRmYdTYhM1TnfX+X4cJhONhZtYM/fRj9szi9\n7U+56eTpkW2jWy8c197YpJ+ZiDRs6XfPsGLby7XKLCxS3Cn0SD2JtYXhWe7wtQPMfXMrp6SfSnZ8\nB7bs/ZYvSzfw8tbnWbltOQEz8MNTALCx9Es2ln5Zbz/OP24Y7eM7UFxdxGvbVza5/3t8e2pdt+q6\nxgBsKP2M2z6ehrXvOnlcYg7nZA/GH/KzYc9nHJcYDi2+UDVv7niDnMTOOAwHMW43waCJgREOgUb4\n28a+KvuSQftutb1d8Gatcy3Y8Df8Zs26rv0hqkvyCZGyWGcsV3a7pklj/L+eta+LD36xgK0V3/FN\n+WZcDldkNuqsrHNwOVy8XfAmXZK64jScAGyr3Nak84g0ptEgdeON4T/O771XMw3t8XgYNmwYV111\nFVu2bOGKK64gJyeHwsJCsrKyIvUyMzMpKCgAiNqXkZFBYWEhQFSb/eVNMSJnNCNyRke2V21fwZs7\n3uDJzX9vsN2nu9fz6QGv8H7o551/QVZ8NuX+MjaVfRW13+OIIdGdSKwzFghfuLbs/Y5Cb919L/eX\nUb4v7AFs2fste3wlFPh38M2eb+psM6zjSGKdcQDEu+JpF5tB0AqSX7m9wbGJyOHRLaUHye5k/rfr\nIyA8Q7I/RAFYlknmAW9yOTX9dHqknsQHzjjyq2qepzHOGGKcMXgc4SULJyR348ruv8WyTEJWCMuy\nMDHDt8osk+2V3/OfovcJWSYBM0DICgHQu83JnLLvVhtA29h2dfa7IrA36lbdgRw4SI2p/Ynusa44\nsuPa0zutb3gsbU+vtX/ocSMi/05JiaOszFvv8QHeLXwbX6iaDXvCHzFR6C0gaAZw7ZvRczpcpHpS\nGX/i9Q0e52D9Y9OjtbbPbX8eca44LjhueK3yJzY9dljPK8cuW4vNJ0+eHPl3586dGTZsGHl5ebhc\n0YdzOsPp3zTNqH0Oh4NQKFRvm4YkJsaQkhIXVZ69N4Ou3q5R5e1SUklJieMM9085Pr1j5MJlWRbW\nvleTlmXx5e4vWbtzLR/ufp+vq75id/VuDIfB6C6jObP9mZHjxbjCF8Z4nwfDYfDfkg/4b8kHQHja\nOzbWRUpKHKcm9+G+DvdF2n1T+g33rw/PzL1fvCY8I+YIz4ad2OZEdlTsoNwfnvValb8Cl8OFw2HQ\nr/1PufVnt1JYWciv/v0rYmJdpKcnYLoC7HYYuD0uUtIP7zuPrICfQGkshqvxdwEZhlHn49HStJZx\nQOsZS0PjsIIB3OnxGO6G11Q2ZrujCgcBCgPf4Pf7KLNKcDgMJuReyykZp1BYWciOyh1sKduCy1Fz\nnctMyCTRnRh1vPNTzuX8btGLoA3DwLIsUoijE/W/y3hd0To+2LWW1TtfY/XO8NfaGA6DnNQODDj+\nZ1H1E60YDIfBNu8WXi9cQZm/DMNh0KdtH87LOS9SL9mTTEpCHCkpHbkjc27UcZqqKb9bDsOgPFjG\nP795PFKWkZDBrDNm2T5vQ/of148e1d2iytukJuJxRv9+uD2N/50RaQpbQeqJJ55g1KhRpKeH7/1b\nloXb7SYzM5MNGzZE6hUVFUVuCWZnZ1NcXExqampkX25uLqFQqN42Damo8FFG9Cuik5N+wslJP6mz\nTVmZlxiS6Oypf/1QibsMy7TYXr6d7eU1ryitgBOruiZQVGNSjZe4UDI/a3dm1HHaudrX+YqtDVlc\n26PmFVhiQgwVlT6S3Em0i83AG6zii9LwV1eErCDZce1xOVy0i82gpKSSPd4qTNPCVx2kpKQSqzy8\n7feHtw8nKxDAKqvGcDW+KLMpr1BbgtYyDmg9Y2loHFYwiFFSheGu+9ZZU31ZvJGO/r0sXPcA331f\ns3C5rLyaEmclLhLJojN7DR9uo+Y6EKqizutQfZr6mFg+Fx3jO0WVx5qJdbavqPBhmRbbyrexrbzm\nllUsCWQ4jqupGOSw/E40ZRznZA+JeidevCv+iP1O5ib3g+Tocm9FCG8dj1HAH/0iXsQOW0Hqww8/\npKysjMmTJ7Nz505ee+01nnrqKZKSkrj77rvJz8+nQ4cOLF26lCFDhgAwePBglixZwrRp09i2bRvr\n169n1qxZmKYZ1Wbw4Ob7KINT00+nZ2rvqPL9t/B+qH18By7qdEmTjx/niqNLUs2MWUpKHGUO7wH7\n4zlt35R6wAzQLblHna+mROTwO7XtT8jtdHxku109t86OtK7JJ3B9z8mNV9wnKy6ba+u4RZbsriNZ\n/EgGtz+/2c4t8mOyFaRuu+02br31VkaNGoVlWUydOpXOnTsDMHv2bCZMmEAwGKR79+7MnRuePp44\ncSIzZsxg5MiRAMycOZO0tLQG2zSH/WsZROTY87OM/nTuel7jFY8yca44uh6waFtEfjxNDlIHhpuM\njAwWLVpUZ71BgwYxaNCgqPKEhATmzZt3UG1EREREjmaO5u6AiIiISEulICUiIiJiU4v8rr1jWsDP\nSYUWSXu38nHFP3BW++lm+vD69lD/5yeLiIjIkaAg1cIYFRVMfC8E5ANLAagEdlZtV5ASOUSuvXux\ndu+qKUhKwXA3/jlqInLsUpBqYeLd8ViueLypSezq1gm/GeCzPZ8Ql51K3+bunEgL127xEkzj+ci2\n4/qpcMLBf7m5iBw7FKRamDhnPKYjlricPrS94g+U+vbw1zVXckq65qNE7Cptm8jubIPT2p5IiicF\na+d22NX0r6oSkWOXFpuLyDHv214dWdTfSfHll+G4egpGr9zGG4mIoCAlIiIiYpuClIiIiIhNWiN1\ntAsGsfbsqdku21N/XRH5URg+Hw6/P6rcjI3FOgrf5efweonbtCmqPJiaiq9T9JcjH43SX3oZZ1lp\nVHnRuHFgGHW0OHx+++pvKfVFn/twSY1J5bELHjtix5cjq8UHKUdVFQ6fL6o8lJCA5fFg+P0Y9Vzw\ncB388D07dpDw6WdR5d5uJ1DdtWtUubu4mKT//CeqvPr446nqHf3lyFH27MK8c+pB91NEjpzk99eS\n+tZbUeXFl45p0vPak59P/IYvosq93bvh69wZo7oaV3l51P5QfDxmYmL0AU0z/N8PGQY4nTjLy2n7\n/AtRuyt79aozSDm8XtouWxZV7s/MovT85vkuwpjt23AXFde7P/2FF/EUFESVF1z9G6yYQ/v+1FJf\nKXuq95AvcNhPAAAgAElEQVQWm3ZIx6nLnmq9OG7pWnyQSnnnHZLXRgeVwit+RXW3biS/9/5BXfA8\n+fnEbdocVe494QT8HY/DvWsXyWvXRu0342LrDFLO8r0k/fd/0R13OpsWpPZLbYPR6YAvJc3p0vS2\nInJE+LOzCSUm4Nq9B3dJSZPbuYuKSHnvvajylPfeI5SUhHPv3jrbVXfqROm550S2Q8nJBNu0IWbb\nNrIe/0dU/b2nncbu0aNq+ts+m8o+fXBUVpKyJvr8NQcOEff1N1HFRjAU/odpEvvtd1H7zRgP/g4d\nAEhYvx4sq9Z+yxNDVa+6P04i45//xFlRWbu+203Bb6+p2XY42P6nPwKQ+eRTeApr3lnpLimpM0jt\n70PbZcuI/a6mz9f7dsPwOrtSp7TYNJaNjg6Xh2rMy2OaXDc/P5/zzjuPHj16ABAMBomLi+O6667j\n3HPPPex9Oxj//e9/ueuuu/D7/TgcDv70pz9xxhlnAOHv6l2zZg0Oh4OBAwdy4403ArBy5Ur++te/\nkpWVBUBycjJPPvkkAA888ACvvPIKpmly2WWX8Zvf/KbO8z7yyCM8/fTTpO975/oJJ5zA3Xffjd/v\nZ9q0aXz11VcAXHzxxVx99dUAfPzxx8yePZvq6mpycnK46667SE5Otj32Fh+k9qvulIMZn4C7qAh3\nSQlxX3+Nq7ycmB07APBnZdVc8HbvjrRL/N//SH3zrch2fRew1LfeIpSQgBEMArD39NOo6tWbmK1b\nawU1IxDAUVVVc7zKCgAq+/ahvF8/PAUFpC9/pd5xGD4fMdu2AeA2gxiB8KtP4/huOH498SB+IiJy\npJUOOhvviSeS/O67pL2RFymP27iRxHXra9V1lZViHNeeYMdOxO57ju/96U+oOvEk4r/8gqSP/kso\nIR5Mk1BCPM7K8HWksk8f4jZvxlFdTezWrWT944lax606sQfOKi8AocQEgqlp4eueaZL0v//hKdiJ\nIxAAwN8ug/IzzsC1q6R2kDJNHF5vZNO57xpWffzxFI+5BEe1jw73319TPxQic98fvAP5s7PZed14\nANJfXo4RCkXVKbpsbOTflstFdbduAHiKinH+YBbOcrlw7wtLRjAEhoGZkBDe6ah7ie/306dhud1k\nPvEksd99R8qaNVguNzH5O3BWVBJKSACHgxh/HTN4LUBiYiIvvFAzu7hp0yauvvpq0tLSyM1tnneb\nhkIhJk+ezKJFi+jduzcbN25k3LhxvPPOO6xZs4ZPPvmE5cuXY1kWl112GW+88QZDhgxh3bp1TJo0\nicsvv7zW8VavXs3bb7/NSy+9RCgUYty4cfTs2ZN+/fpFnXv9+vXMnj2bs846q1b5v/71L/x+P8uX\nL6eqqooRI0bQv39/unbtypQpU3jwwQfp1asXjz32GLfffjt33nmn7fG3yCA17mPoumUNKZ5Pidm2\nHYDSc87Bd/zxpL7xBinvriH5Px/UalN6zqA6L3iG349z717MmBgst4tQQgLOykqqevak4uS+JHz+\nOQmffU4oKQkAy+Mh5PHgz8qiusvxkYuPZ8dOEj9eR9ymTcR/+WVUn0NJSfiPOy5yYXFUVOLZuRP3\ntmrarv2IUEoKAO7CIuK+Cb8StLAwDBdwZO//i0jdzAfmRP7twCL7hM74unUnJn97nfUN04RQCPeu\nkjqvA8bOAtp+WDNDHWjbluquXaju2oXdI0fW2w93URGJ/6tpF/ftt5HbXPFfbYyUV/Xqxe7hw/Hk\n55P9yKMAxOTvqPe4rr17iftqI66yMtqsXBm133I6MRMTsfYtg4j9/ns6zr0DhyN8TQolJVHZuzdg\nkbz2Pzj37iVl3wtLwzQJJSZQNnAgAG3+vQqAjGcX1zpHaN+tSmdlBWZ8PNtuCs9WdLhvAa7du2n/\n4EO1+nOwUt5dU2t754TrCCUlUbpoFicd9NGOPt27d2fcuHE8+eST5ObmsmPHDv7yl79QWFiIYRj8\n5je/4aKLLuLDDz/kvvvuIysri82bNxMTE8O8efPIyclpsM3cuXPxeDxYlsXChQsZP358rSAHUF1d\nzU033UTvfXdZunXrhmVZlJWVYZom1dXV+Hw+TNPE7/cTGxsLhEPQd999x5IlS2jTpg033XQT3bt3\nJy8vj5EjR+LxeAAYPXo0L7/8cr1ByjAM5s2bR8eOHZk2bRrZ2dlYloXX6yUYDOL1ejFNE4/Hw6ef\nfkqbNm3o1asXAJdddhlnnHEGc+bMwWnj9wtaaJAasAUStm/EaUQPuqpHD0JJ0VN0gYyMWtvJH3xI\n/MZNuHeFL0a7hw+j8pRTotp5TzyRXWMan3qN/+or4vdNIR7Yl/387drV2pewYQMJGzZgGAbWD6a/\n9ys98wzSY9ricLgw2ndstA8icpikpMFxB6wd2r4VgPjNX5OwOfqW135tn3uets/VfDL6nvPPp6rn\nSXgKCvDs3ElMahJebyCy35eT06TuBDIy2DNsWM1xg0GcFRVR9favBfK3b8/WGbdGH+gHi7Jjvv+e\njO+/r1Xm7VqzbMCfnR35dzA1teYwTgchTwz+7Gz2DL0ArH1BqqKi1gy/GRfP3p/9LNwmEKg1Q5X6\n5luREAUQSkjEjIuLbFeedFJkRr/mxNGzUO0feBAMcO2uvdao9JxBOPv9NKp+6IBztBYnnngiy5cv\nB+BPf/oTo0eP5rLLLmPXrl2MGTOGLl3Cj+mnn37KrFmz6Nq1K7fffjuPPfYYs2bNarDN119/zZtv\nvknbtm0BokIUQEJCAqNHj45s33///XTt2pXMzEzOP/98XnnlFQYOHIhhGPTr148BAwYA0LZtW666\n6ir69evH66+/zrXXXsuqVasoLCzk7LPPjhwvMzOTt99+O+q85eXl9OrVi9///vd069aNJ554guuv\nv57nn3+eX/3qV7z66qsMGDAAn8/HmDFj6Nq1KytXriQzMzNyjMTERFwuF7t376bdD/5ON1WLDFIA\nm4cOJKVTr8h2YN+D7O/YEX/HxkNHzPffE/ODC4gd/uwsdg8fFlXua9++zn6EEhOpOGD6NSbGhX9v\nFZbbReXJJ9eqV9U2jTbJPXA4PYfcTxFpOsc5I+CcEZFta9t3BPO/o6hqB05HzQs4/761HaHEJHwd\n2kcdJ9C2LcG0NIJpaVSddBIpKXGUl3mj6h00l4vQAcEmyr5F5vUx42IpHXR2VHmgbVuq+vSJKrdi\nY8mf8vvIdkpKHGU/GMeBt+wi7Q5Y5F2+b2Zqv7JBg+rtH9DoonbL4cByOHAdsDbNOuB2X0t5N+Lh\nEhcXh9fr5dNPP+Xpp58GwkHl/PPP57333uO0007juOOOo+u+tbwnnXQSb775ZqNtOnToEAlRjbEs\ni7vuuos333yTp556CoBnnnmGyspK1qxZg2EY/OEPf2DhwoXccMMNPPRQzWzjeeedx8KFC/n888/r\nnFyoa7YoOTmZRx99NLJ91VVX8cADD1BQUMDTTz/N8ccfz7/+9S8qKir43e9+xwsvvIC7jnfVWpZl\nezYKWnCQ8qanErdvUePBqDj1VLwHzBTtF7S50CzYpg1765hurLd+ejolF10Y2a7rghRhBuouF5Ef\nldHxeKz2HdhbvhG3I/pCXJl7CpW50TPaRyszIYGyc85pvGJTGQbek37cG2UF1/7uRz3f0ezzzz+n\ne/fumHW8c9M0TYL71vbuv6UGRO6GNNYmrokzeF6vlylTplBVVcWSJUsii7ffeustLrzwwsi5L730\nUh599FGuuOIKnnvuOa65pubNBKZp4na7ycrKori45h2aRUVFZGVlsXr1ahYsWIBhGPTu3Ztrr72W\ntWvX8otf/AIIByLLsnC5XLz11lvMnDkTh8NBcnIyo0ePjtQtKiqKHLti38xuakMvTBrRYoOUXWZC\nQs1iRRERkSbYU73noN5hdzDHPZiPVfjhbM3nn3/O4sWLeeyxx0hISKB3794sXryYyy+/nOLiYl5/\n/XXmzZtXZ2ACbLWpq08TJkwgPT2dBx54oNbsTq9evXj99dcZuW8NYF5eHn379iU+Pp6///3v9OzZ\nk/79+/Puu+/i8/no3bs3JSUlLFq0iDFjxmCaJsuXL+f666/n7LPPrvXuxKKiIu655x5OO+00unbt\nypIlS+jRowdt27alV69erFq1itNOOw2/38/bb7/N2Wefzcknn0xJSQmfffYZffr0YcmSJZx11lk4\n6nnzQlMcc0FKRETkYKTG2J+taExabNpBHb+qqoqLL74YCM8qxcfHc+edd9K9e3cA7rnnHm677Tae\neeYZTNPk//7v/zj99NP58MMP6z3m3XffzcyZMxttU1RUVOdi8/fff58PPviArl27cskll0T6ds89\n93DdddcxZ84chg8fjsfjoU+fPkyePBmPx8MDDzzA7bffjs/nIyEhgfvvvx+n08m5557Lxo0bueSS\nSwgEAowePbrWmqn9MjIyuOOOO5gyZQqmaZKRkcG8efMAuOWWW5g1axbDhg3D5XJx1lln8ctf/hLD\nMFiwYAEzZ87E5/PRrl077r777ib//OtiWPWtdD6KffGLgXxz5WW06RG9kLClaejWXsAM0C25B54G\n1kiV+vbwuzVXckr6qUw75bbD2jcrEMDa+jVGEz64tMFblC1IaxkHtJ6xNDQOKxjE6HQCxiF+mvhj\nGx/m1e0ruf30u+iecmKddfwhP5vrubXXVMfCY9JSlC6axYi7lzd3N6QV0HftiYiIiNikICUiIiJi\nk4KUiIiIiE0KUiIiIiI2KUiJiIiI2KSPPxAREWnA7mmTMfeWN17RJkdSMm1uv++IHV+OLM1IiYiI\nNMDcW45ZVnpkjl1WekRDmhx5mpESERFphCMllbYL/nHYj7tr0m9stfN6vZx11lmcd955zJkz5zD3\nqn6fffYZL7zwAjNmzGiw3hdffMGsWbPwer0kJydzyy230LNnTwCWLFnCE088QSgUYsiQIfz5z38G\noKSkhBtvvJGCggJiYmKYM2cOJ54Y/bluoVCIOXPmRD4wtG/fvvzlL3/B4/GwcuVK/vrXv5K173sw\nk5OTefLJJwGYO3cua9asweFwMHDgQG688UYAvvvuO6ZOnUp5eTmpqancc889ZB/whd2N0YyUiIhI\nC7NixQrOOOMM3njjDfbs2fOjnXfz5s21vquuPjfccANXXXUVL730ErNnz2bKlCkEAgG++uorHnnk\nERYvXsy///1vvv32W55//nkAbrvtNgYOHMiKFSuYMWMGkyZNqvMLjJ9++mkKCwt5+eWXWb58OdXV\n1Tz22GMArFu3jkmTJvHCCy/wwgsvRELUG2+8wSeffMLy5ct58cUX+eijj3jjjTcA+OMf/8g111zD\nihUruOKKKyLBrqkUpERERFqYZ599lhEjRtC/f3+effbZSPkDDzzA0KFDGTVqFDfddBOBQIBgMMjs\n2bO54IILGDFiBHfeeScA5eXl/PnPf+aSSy7hwgsv5KGHHgIgPz8/MlN04YUX8vOf/5wNGzZQVFTE\n/fffzwcffMBf//pXAC666KJaXzAMsGfPHoqLixk6dCgAnTp1IikpifXr17N69WoGDx5MUlISDoeD\nMWPG8PLLLxMMBnnnnXcYMyb8fYannHIKiYmJ/O9//4sae69evfj973+PYRgA9OzZkx07dgCwfv16\n8vLyuPjii7nmmmvYtGkTEP5C5Orqanw+H9XV1fj9fmJjYykoKIiMF2DYsGFs3ryZgoKCJj8WClIi\nIiItyIYNG9i6dSuDBg1i9OjRPPvss4RCIfLy8li1ahXPP/88y5cvxzAMVqxYwTPPPMO3337LihUr\neOmll9i0aRMffPABc+fOpV+/fjz33HMsW7aMjz/+mJUrVwKwfft2hgwZwksvvcT48eP5wx/+QEZG\nBpMmTaJfv37ceuutALz44ou0a9euVv/S0tLIzs7mlVdeifT3m2++obi4mMLCwshtN4DMzEwKCgoo\nLS3F6XSSmJgY2ZeRkUFhYWHU+E8//XROOOEEAHbu3MlTTz3FsGHDAGjbti2/+93veOGFF7jsssu4\n9tpr8fl8nH/++eTk5DBw4EAGDRpEx44dGTBgAIWFhWRkZNQ6fkZGxkEFKa2REpFjzjPf/JMPitdG\ntvf4djdjb0QOzuLFixk6dCgej4ezzjoLv9/PqlWrWLduHUOHDiU+Ph6AO+64A4AJEyYwevRoXPu+\nN/Xvf/87AL///e/5/PPPefrpp4HwuquNGzdy8sknk56ezgUXXADABRdcwIwZM9i2bVuT+/jggw8y\nd+5cHn30UU477TT69euHy+Wq81ad0+nENM069zkc9c/3fPXVV1x//fWMGzeOM888EyAyqwZw3nnn\nsXDhQj777DO+/vprKisrWbNmDYZh8Ic//IGFCxdG2h3MeX9IQUpEjjl7fLvJr9yO03BGbg+4HLoc\nytGvsrKSV155hYSEBAYPHoxlWQSDQf75z3+Sm5tbq+7u3bsJBoORALVfYWEhHo8Hy7J48MEH6dix\nIwClpaXExMSwe/dunE5nrTamaUaVNcQ0zUhgAxg1ahQ5OTlkZWXVWmNVVFREVlYW6enphEIhKisr\nSUhIqLVv+vTpfP755xiGwaRJkzjnnHN48803mTp1KlOnTmXUqFFA+Jbi888/zzXXXFOrH263mzff\nfJMLL7yQ2NhYAC699FIeffRRxowZE7Xma/95m0pXDhE5Zs05/R66JHdt7m5IC2CWldp+h11jx3Wk\npDa5/ksvvUSHDh1Yvnx5pGzbtm0MHTqUs846i9dee42rr76a2NhY7rzzTrp168bPfvYzVq5cyciR\nIwH485//zOWXX86ZZ57Jk08+yfTp06msrGTcuHFce+21nHrqqRQVFbF27Vr69+/PypUryc7Opn37\n9jidToLBYKP9nDFjBuPHj+ecc87hjTfewLKsyDvwJk2axPjx40lKSuK5555j8ODBOJ1OBg0axNKl\nS7nqqqv49NNPKS0tpU+fPlEBce3atdx88808/PDDtfYlJCTw+OOP07NnT/r378+7776Lz+ejd+/e\n9OrVi9dffz3yM8jLy6Nv375kZWXRoUMHXn/9dc477zxeffVVOnbsGHW7ryEKUiIiIg1wJCUfuWOn\npB7U8ZcuXcqVV15Zq6xjx44MHz6cLVu2MGLECH7xi18AkJuby29+Ew5/27dv5+KLLwZgyJAhDBs2\njH79+jF79mxGjRpFMBhk+PDhjBo1ivz8fOLi4li2bBl33HEHiYmJzJ8/HwgvAn/ggQe48cYbueuu\nu7jooot49NFHo9ZJzZo1i+nTp/O3v/2NtLQ0HnzwQQBOPPFErr32Wq644gqCwSBnnHEGl112GQC3\n3nor06ZN47nnnsPlcvG3v/0tajYN4L777oucw7IsDMPg9NNPZ9q0aSxcuJDbb78dn89HQkICCxcu\nxOl0ct111zFnzhyGDx+Ox+OhT58+TJ48GYB58+Zx6623ct9995GYmMjdd9/d5McDwLDquil5lPvi\nFwP55srLaNPjp83dlUOWkhJHWZm3zn0BM0C35B54nJ5625f69vC7NVdySvqpTDvltsPaNysQwNr6\nNUYdv8g/1NA4WpLWMg5oPWNpaBxWMIjR6QQMt/ugjvngF/fx5s487vzJvU2ekfKH/Gwu34jbcXDn\nOtCx8Ji0FKWLZjHi7uWNVzwG5efnc9FFF/HRRx81d1daBL1rT0RERGrZv3ZQGqcgJSIiIhEdOnSI\nfGq4NE5BSkRERMQmBSkRERERmxSkRERERGxSkBIRERGxSUFKRERExCYFKRERERGbFKREREREbFKQ\nEhEREbFJQUpERETEpiYHqZtvvpmnnnoKAK/Xy5QpUxg+fDgjRoxg7dq1kXp5eXmMGjWKoUOHcsst\nt+D3+223ERERETmaNRqktm7dytVXX82rr74aKbvvvvtIT09n5cqVPPTQQ9x8881UVFRQUlLCjBkz\neOSRR1i1ahWxsbEsWrQIgPnz5ze5zcMPP3zkRiwiIiJymDQapBYvXszPf/5zhg4dGinLy8tjzJgx\nAOTk5NC3b1/y8vJYs2YNubm5ZGdnAzB27FhefvllAFavXn3QbURERESOZq7GKtx4440AvPfee5Gy\nwsJCsrKyItsZGRkUFhYC1CrPzMykoKDgoNvsLxcRERE5mjUapOpimmZUmcPhIBQKRZU7nU7bbRoS\nF+8mJSWuKd09qhmGUe84AiEX6ekJeJye+ttX+3A4DGI84bqHkxXwEyiNxXC5G63b0DhaktYyDmg9\nY2loHFYwgDs9HsNd/3OkLrFxbhwOg9TUONLTmva88YfcFBGH29n486E+x8Jj0lKUO4zm7oK0EraC\nVPv27SkuLiY1NRWAoqIicnNzCYVCbNiwIVKvqKiIzMxMALKzsw+6TUO8VQHKyrx2un9USUmJq3cc\nATNACZV4nIF625f6qjBNC58/SElJ5WHtmxUIYJVVY7iCjdZtaBwtSWsZB7SesTQ0DisYxCipwnDX\n/xypS7U3gGlalJZ6KTGb9rzxh/yUlXtxOxp/PtTnWHhMWgrTtJq7C9JK2Pr4g3PPPZclS5YAsG3b\nNtavX8+ZZ57JgAED+Pjjj8nPzwdg6dKlDBkyBIDBgwc3uc3gwYMPeWAiIiIiR5qtGamJEycyY8YM\nRo4cCcDMmTNJS0sDYPbs2UyYMIFgMEj37t2ZO3eu7TYiIiIiR7MmB6kDw01CQgLz5s2rs96gQYMY\nNGhQVLmdNiIiIiJHM1szUnL0+Wz3J1zzzhWR7RNTe/LnvlObsUciIiKtn4JUC2cYDtJi0iLblgWl\n/j1UBg/vwnMRERGJpiDVwqV4UnhkwJOR7cpAJVe9c3kz9khEROTYoS8tFhEREbFJQUpERETEJgUp\nEREREZsUpERERERsUpASERERsUlBSkRERMQmBSkRERERmxSkRERERGxSkBIRERGxSUFKRERExCYF\nKRERERGbFKREREREbFKQEhEREbFJQUpERETEJgUpEREREZsUpERERERsUpASERERsUlBSkRERMQm\nBSkRERERmxSkRERERGxSkBIRERGxSUFKRERExCYFKRERERGbFKREREREbFKQEhEREbFJQUpERETE\nJgUpEREREZsUpERERERsUpASERERsUlBSkRERMQmBSkRERERmxSkRERERGxSkBIRERGxSUFKRERE\nxCYFKRERERGbFKREREREbFKQEhEREbFJQUpERETEJgUpEREREZsUpERERERsUpASERERsUlBSkRE\nRMQmBSkRERERm1yH0njGjBm89957JCcnA3DGGWdwww03MHXqVDZu3IhhGEyfPp3+/fsDkJeXx/z5\n8wkEAuTm5jJz5kw8Hg9er7feNiIiIiJHq0MKUp988gmPPPIIXbt2jZTdcccdpKens3LlSr7//nvG\njRvHihUr8Pl8zJgxg2XLlpGdnc3MmTNZtGgREydOZP78+XW2SUxMPOQBioiIiBwptoNUZWUlW7Zs\nYf78+WzdupVevXpx8803k5eXx/333w9ATk4Offv2JS8vD4Dc3Fyys7MBGDt2LBMnTmTixImsXr26\nVps+ffqQl5fHhRdeeKjjExFh6XfP8unu9ZHtnVX5zdgbEWlNbAepoqIizjzzTKZPn05mZiZ33HEH\n06ZNo6ioiKysrEi9jIwMCgsLAWqVZ2ZmUlBQAEBhYWHUvv1tREQO1Y6qfL4q/aK5uyEirZDtIHX8\n8cfz4IMPRrYnTJjAgAEDCIVCUXUdDked5U6nEwDTNOts05C4eDcpKXEH2+2jjmEY9Y4jEHKRnp6A\nx+lp8vFi/BYOh0GMJ9z2UFgBP4HSWAyXu9G6DY2jJWkt44DWM5aGxmEFA7jT4zHcDT9HYmNdOBwG\nC89dSE5STqQ8xhmD0+FsUj/8ITdFxOF2Nv58qM+x8Ji0FOUOo7m7IK2E7SD1xRdfsGXLFoYPHw6A\nZVk4HA6ys7MpLi4mNTUVCM9c5ebmEgqF2LBhQ6R9UVERmZmZAPW2aYi3KkBZmddu948aKSlx9Y4j\nYAYooRKPM9Dk41UGqjBNC58/SElJ5SH1zQoEsMqqMVzBRus2NI6WpLWMA1rPWBoahxUMYpRUYbgb\nfo5UVwcxTYvqvRZey4qUe6lucj/8IT9l5V7cjsafD/U5Fh6TlsI0rcYriTSB7Y8/sCyLOXPmsGvX\nLgD+8Y9/cMEFFzB48GAWL14MwLZt21i/fj1nnnkmAwYM4OOPPyY/P7w2YenSpQwZMgSAwYMHs2TJ\nkqg2IiIiIkcz2zNSvXr1YvLkyVx55ZWYpkm3bt24/fbbcTgczJgxg5EjRwIwc+ZM0tLSAJg9ezYT\nJkwgGAzSvXt35s6dC8DEiRPrbSMiIiJytDqkjz+49NJLufTSS6PK582bV2f9QYMGMWjQoKjyhISE\netuIiIiIHK30yeYiIiIiNilIiYiIiNikICUiIiJik4KUiIiIiE0KUiIiIiI2KUiJiIiI2KQgJSIi\nImKTgpSIiIiITQpSIiIiIjYpSImIiIjYpCAlIiIiYpOClIiIiIhNClIiIiIiNilIiYiIiNikICUi\nIiJik4KUiIiIiE0KUiIiIiI2uZq7A/L/27v3+Jju9IHjnzO5hyRSJKTEvdgfqrWLErZNlCCJxFql\n22jRn7bbluoFQdySJi1eqAalW6RaRUKzQqgKqpa61KX6c1lRIRIkCLlKMjPn90fkNCMXkkYzkz5v\nr/Y15zvn8jzzncuT75k534cjs+Ame67s0padbZx5stGfazEiIYQQou6RQqqOSstLZcmpRdpyO5f2\nUkgJIYQQNUwKqTrG1sqWF9uN1ZYNqp4vkqJrMSIhhBCi7pJCqo6x0dng5zlEWy40FEohJYQQQjwk\n8mVzIYQQQohqkkJKCCGEEKKapJASQgghhKgmKaSEEEIIIapJCikhhBBCiGqSQkoIIYQQopqkkBJC\nCCGEqCYppIQQQgghqkkKKSGEEEKIapJCSgghhBCimqSQEkIIIYSoJimkhBBCCCGqSQopIYQQQohq\nkv3bsFoAABjeSURBVEJKCCGEEKKapJASQgghhKgm69oOQAghatq3qdu5kH1eWz53+2wtRiOEqMuk\nkBJC1Dk/3TzOD+n7azsMIcQfgBRSfxBZhbfZnbZTW3aycebPjbvXYkRCPHzvdJ5CQ7uG2rK7g3st\nRiOEqIukkPqDuJZ/laWnF5u0/bPjeO22o3U9erg9Va19q6qq/VeaoijV2p8QNaVl/VY0cWxa22EI\nIeowKaTqOCtFx+jH/ldbVlFZ/d9/AZQprHq790FRdOhQUBQdilFFyb7N7uxDuFq7mKzrpKvH/JaT\nARifHE66/kaZQmqIaz/t9vG80zzr0gsFhU/TN9Dctim6UoXWxYI0+rv0xl5np7X9reEAHHT2JN+5\nTJYhR2vfl32U+laO2Cm2KIqCgoIOBZ2iQ7n771JBGi3sPGhg7cyGG9vIMeThqLPX9nFdn0mP+o/T\nwaG11vbnep1woTl6VY9BNWrt2YZcco35WN39bcbp/PP8904y9XQOABzN/T8MqhF324ba8RUULbbi\nLBWedu5OT6euXC/K5FR+ksljZVSNeNi60cq+udamQ8FKseKm/jYHso+hoqICqNotVCBTf5sTeWdM\ncilS9aSmXqWvY/Goo17Vk2+8Q7f6nShSiziY/RNNbBujYkRVwYhR279BNbD79g90q9/JJEZXK2f8\nH/EG4KvrWzGoeqrieO4Z+jXoBaioKnePV/zv84w4mtk20R6tEh+2eBeAU3lJZBtyteJce1wNRriR\niWJljaIodHZ9HFsr2yrFJYQQv4Wi3vvpZwFODe/D+RdH8Eh7yz815eLiwO3b+eXeV2Qsop1z+xr9\nYFBVle2Xt5q0rfzviopWBoMe7n54OVvVB9CKmnb2LQE4dycZRVFoYesBQHJBao3E6mnrgYu1Eyfz\nau6LwvV0juQa8yq8v4vzY/yU9d8aO969Oju2r1I+re2a80tBSrWOpShKmeL2t3KyqgcUF5cPQ0mx\nauDXQtZaZ4XeaCh/A1UFK2vtOTrmsXE8YteQf1/axLnbZ/n4qeU1NiJVaCjkXNZZbHQ21d5HZa93\nS1IX8ri1fA6D58XXdhiiDpARqT8YRVEY2NzPpO2Jht0wqAZUVIzq3ZEJVcWoL8SYdhGjToeVoqP1\n3dGSV3+ZwU39bc7dSdb24Whlz9wWkwA4k3+efGOhdt+RnJN42nmgu2e0wdulJ1aKFefvXCLX8Gtx\nE5G6HCNGLhWmwa+74SmnJ2hs7QoUj2D1cnoSJytHjHfjNqICKsdzz9DY5hGT0S2AXvWfoKFNA87f\nucTlwqta+/rrCVzXZwJwMvucyTbt7VsBkFaUjoJCZ8f2ANzSZ9HRsQ3/49AOgEK1iEesXWhg5UzJ\nWIvx7qjR/uyjfJ4RV7z/UkWUg86eYQ19OZefzNHc/6OF3aMAJo9r6SLKXmfHWLe/o0Cpca7i/xep\neu4YC3jMoSX5xjuczDtHaxcP8vIKyTHmsfv2D7R3aKXty6AauFCQim+DPtoImk75dTQN4HLhVTo5\nPgZA2OUlJqOSrtbOZOqzmP7oazyIH3JO0Mqu2d1RQ6DUkZS7bToUvJz/DMBHV6K5VHAFAGtrHXq9\nkZTCKwS4emOru/uHhaqiGo3g2pCNl2KBSv4oEEKIh0RGpGrZ7z0iVRVqURHqxSQUa9N6u9BYBJg+\nbZxdHLiTXcGoQRXlGvIxUHZf9XSOWCk1f+mzQmMR+runqZxdHMi62x+2Ohusld/+t0bR3dNq97JT\nbLHTle1bVf21CCtNAXRVyL8ujBpA5Xmoej1Ki7bsv3mAtLy0MvcPbDaY+jZONRKHjEj9qi7kISNS\noqbIiJSoMttyPkjsdLbcoWbeWOtZOdTIfh6Urc4GW2y0Y+utanb/Noo1NndPiz4IRVGwQr6oXxW9\n3fvWdghCiD8oubK5EEIIIUQ1SSElhBBCCFFNZlNIJSYm4u/vj6+vLyEhIRQWFt5/IyGEEEKIWmQW\nhdSNGzeYMWMGK1asYPv27djb2/PJJ5/UdlhCCCGEEJUyi0Jq3759PPHEEzRtWny9l+eee47NmzfX\nclRCCCGEEJUzi1/tXbt2jSZNmmjL7u7uXLt2rcL1f+nojlLfmSJj0e8R3kNVZLCuMA+DsWpXjn4o\nDPpyfohflqovQtWbQby/UV3JA+pOLpXmYfh98/utr8nKXu+WpC7kkdvSs7ZDEHWEWRRS5V3Kysqq\n4t+g+82OfZjh/P6a3H+VWuPR64FXtb//KhahruQBdScXc8nj0SY1cJkFc369V4Wl5/HYg7+3CVEZ\nszi116RJE9LT07Xl9PR03N1llnYhhBBCmDezKKS8vLw4evQoqanFc7TFxMTg4+NTy1EJIYQQQlTO\nbKaI2bNnDwsWLECv1/PYY48RGRmJg8Pve4VrIYQQQoiqMJtCSgghhBDC0pjFqT0hhBBCCEskhZQQ\nQgghRDVZXCFlSVPJzJgxAx8fH4KCgggKCmLevHnk5+czceJEBg0axODBgzlw4IC2vjnmNmXKFD7/\n/HOAasVe2Ta/t9K5XL9+nccff1zrm6CgIFJSUsw6lw0bNuDv709gYCBjxozh8uXLFtsn5eViiX3y\n6aefMnjwYPz8/LS4LLFPysvDEvujxBdffEFgYOB9YzL3PISFUC3I9evX1V69eqlpaWmqqqrqrFmz\n1I8++qiWo6pYQECAmpSUZNIWGRmphoWFqaqqqhcvXlT79u2rZmdnm11uycnJ6ujRo9WuXbuq0dHR\nVY598eLFqqqqakRERLnb1HYu3377rfrWW2+VWddcczl16pTq7e2tZmVlqaqqqmvXrlVHjRplkX1y\nby5ffvmlOmrUKIvrkyNHjqh+fn5qQUGBqqqqOn78ePVf//qXxfVJeXl89tlnFtcfJU6ePKn26dNH\nDQwMrDQmc89DWA6LGpGypKlkcnNzSU5OZtGiRQQEBBASEsLt27dJTExk2LBhAHh6etKlSxcSExPN\nLrf169czdOhQfH19tbbqxL5r1y6TbTp37kxiYmKt53Ls2DHS0tJ47rnnGDZsGDt27AAqf47VZi71\n6tUjPDwcJycnADp16kRaWlqZmCyhT+7NpXPnzly5csXi+qRbt27ExcVha2tLTk4ON2/epEGDBhb3\nOikvDxcXF4vrD4Ds7GxmzZrFO++8o7VZ4mtEWBazuLL5g6rqVDK1KT09nd69ezN9+nTc3d354IMP\nmDZtGunp6SY5uLm5aTmYU26TJk0C4D//+Y/Wdu/jX1nsV69eLXeb2sirvFxsbW0ZOHAgL730EsnJ\nybzwwgt4enqWG6855OLp6YmnZ/GUFkVFRSxcuJCBAwcSHR1tcX1SXi6+vr5YWVlZVJ9A8QwMsbGx\nzJ07F3d3d/r168fs2bMtrk/Ky2P16tUW1x/Tpk3jn//8J/Xr19faLPV9S1gOiyqk1CpOJVObWrVq\nxdKlS7Xl1157DS8vLwwGQ5l1dTpdue3mlpvRaCzTdr/YK9qmtk2YMEG73bJlSwYOHEhiYiLW1mVf\nEuaUy61bt5g4cSL16tVj/PjxrFy5styYLKFPSucyYcIEk+e7JfXJsGHDGDZsGPPmzWPy5Mnlvk9Z\nQp+U5DF37lwmT57MJ598ot1nCf3x+eef4+bmhre3NwcPHtTa69L7ljBPFvXMsKSpZE6dOkVCQoK2\nrKoqOp2OZs2akZGRobWXjFBZQm4eHh5Vjr1p06blblPbVq9ezY0bN7RlVVWxsbEx61ySk5N57rnn\naNeuHVFRUVhbW1tsn5TO5eOPP8bKysri+uTChQv89NNP2nJgYCCnT5+uMCZLySMoKIjTp09bXH/E\nx8dz8OBBAgMDCQ0N5cKFC4wYMcJiXyPCclhUIWVJU8moqkpERATXr18HYNWqVQwYMAAfHx/Wr18P\nQEpKCsePH6d3794WkZu3tzcbNmwA7h97v379APDx8Sl3m9p26NAhvvjiCwCuXLnCjh076N+/v9nm\nkpGRQXBwMMHBwUydOlVrrygmc82jvFwURQEsr09SU1OZPHkyeXl5AGzZsoUePXpU6TVuznkcPnyY\nNWvWAJbRHzExMcTHxxMXF0d4eDitWrVi3bp1dep9S5gni7uyuSVNJRMTE8Pq1asxGo20a9eO999/\nH51Ox4wZMzh79iwAb7/9Nt7e3oB55hYSEkLHjh0ZNWoUubm5VY69sm1qM5f09HRCQ0NJS0tDVVXe\neOMN7cvo5pjLwoULWblyJW3bttVOHTk4OPDZZ58RGhpqUX1SUS6LFy9m+vTpFtMnACtXrmTjxo1Y\nW1vTvn17QkNDq/UaN8c88vPzLeo1UtqhQ4eIjIzk66+/tvj3LWH+LK6QEkIIIYQwFxZ1ak8IIYQQ\nwpxIISWEEEIIUU1SSAkhhBBCVJMUUkIIIYQQ1SSFlBBCCCFENUkhJaotJCSEoKAgAgMD6dChAwEB\nAQQGBvLmm2+Snp7OCy+88NBjGDNmDDk5OQ/9OKVNmTKFDh068PPPP5u0f/fdd3To0IG4uDitbc+e\nPYwYMYKBAwfi7+/PxIkTSUlJ0e4PDg7Gx8eHoKAghgwZgp+fHx9++CF6vR4o/hl3ySz2pQUHB2tz\nf3l7e3PmzJlyY83JyWHOnDn079+fIUOGMHToUL788sv75jhgwABefPFFk7bSsZw8eZI5c+bcdz81\nISYmRrumz7p168q9mnttmT59OocOHarSNqX7Tghh+SxqihhhXiIjI7XbHTt2ZO3atSZzXJVcXPFh\n2r9//0M/xr0URcHDw4MtW7bQqVMnrX3z5s00atRIW05ISCAqKooFCxbQoUMHALZv387IkSOJiYnR\nJkudNm2ado2agoIC3nnnHcLCwpg9e7Z2vOooKipi1KhRPP300yQkJGBtbU1mZibvvvsuly9fZvLk\nyeVud+DAAdzd3bl48SLnzp2jXbt2JrkDnDt3zuSq0A/T0aNH6dixIwAjRoz4XY75oMLDw2s7BCFE\nLZNCStSIey9HlpqaSmBgIIcPHyYqKoqUlBSSk5PJyMigV69etG/fnm3btpGenk5YWBhPPfUUWVlZ\nhIWF8csvv6DX6/H19eW1117DYDAwc+ZMfv75Z3Q6HZ06dWLOnDlMnz4dgOeff541a9bw448/smLF\nCoqKisjMzOQf//gHY8eO5euvv+bbb78lJyeHK1eu0Lp1a/z8/NiwYQMpKSm8/fbbBAQEEBUVRVJS\nEteuXePmzZt07dqVsLAwbG1ty+Q7aNAgtm7dypQpUwDIzc3l7NmzPP7449o6ixYtYvbs2VoRBeDr\n68vx48dZvnw5s2bNKvPY2dnZERoaio+PD++9995v6pNt27Zhb2/P+PHjtTZXV1fmz5/PM888w+jR\no3Fzcyuz3bp163jmmWfIyMggOjq6TLGQkZHBxx9/TE5ODmFhYYSGhrJ+/Xrtat5NmjRh5syZuLu7\nExwcjIuLC8nJybz88sssXryYoKAg9u/fT3p6Oq+88grDhw8nPz+fmTNncunSJTIzM3F1dWXRokWc\nOnWKXbt2sX//fpycnEhNTSUrK4upU6dy5swZwsPDycrKwsbGhgkTJtC3b1++/vprEhMTMRgMXLx4\nETc3NxYuXIirq6tJHiEhIQCcP3+eW7du4e3trfXnzp07Wb58OQaDAWdnZ0JDQ2nTpg0hISFkZmaS\nmpqKn58f+/bt46WXXsLHx4eEhASWL18OQKNGjQgNDaVly5akp6czZcoUMjIyePTRR7l9+/Zv6lch\nhHmRU3vioSk9knLixAmio6PZsmULW7duJScnh7Vr1/Lqq69qHz6RkZH06NGDjRs3Ehsby9GjR0lI\nSODYsWMkJSURFxdHbGwsUFyolXzAr127FhcXF6Kjo5k/fz4bN24kOjqahQsXUlRUBMCxY8dYuHAh\nO3bs4Pz58xw6dIg1a9YQGRnJ4sWLtTh/+uknli1bxvbt28nJyanwNFLjxo1p1aoVP/zwAwDffPMN\nAwYM0HLOzMzk0qVLPPnkk2W27dmzJ8ePH6/wcXN3d8fJyYkLFy488GNdnhMnTpR7fFdXV9q0aWMy\nv1qJ69evs2fPHgYPHkxAQABbt24t88HfuHFjxo8fT48ePQgNDeXgwYNs376d9evXs2nTJvr378+0\nadNM8tmyZYt2WtBgMPDVV18RFRVFZGQkRqORvXv30rBhQ9atW8c333yDp6cnGzZswNvbG29vb8aO\nHUtQUBBQ/LwyGAy8/vrrvPLKK2zevFmbMPjKlSsAHDlyhPfff5+EhAQcHR2JiYkp9zFKSkpizZo1\nbN68mR9//JH4+HiSk5NZsmQJq1atYtOmTbzxxhu88cYbJtvFx8fzyiuvaMvnz58nIiKCFStW8O9/\n/5uAgADefPNNAObMmUP37t2Jj4/nvffeIzk5+X5dJ4SwIDIiJX4XvXr1wt7eHij+IO/Tpw8Anp6e\n2gf1nj17+Pnnn7VTgvn5+Zw9exYvLy+ysrJ4/vnn8fLyYtSoUTz66KNljrFs2TJ2795NXFwcSUlJ\nGAwGCgoKAOjSpQsNGzYEiick9fLy0o6flZWl7WPQoEE0aNAAgKFDh7Jq1SpeffXVMsdSFAV/f382\nb95Mz5492bx5M7Nnz2bu3Lna/YqiUFRUhJ2dncm2hYWF9328FEXB0dFRi/9eqqpqM9VXto+SQvJe\nFcUQGxtLt27dcHNzw83NDU9PT9avX8+4ceMqPM53333H+fPnGT58OKqqoqoqd+7c0e6/t5h75pln\ngOLTwXfu3CEvL48BAwbQrFkz1qxZw8WLFzlx4gSPPPJIhccsKUZKnketW7emW7duHD58GIBOnTpp\n23fs2JGbN2+Wu5+hQ4dq/ePv78++ffvIysriypUrBAcHa6OFubm52vOkvOL04MGD9OnTR5v0dsiQ\nIbz//vtcvXqV/fv3a6Onbdq04S9/+UuFeQkhLI8UUqJG3O97PDY2NibL1tZln3pGo5GlS5fSvHlz\nAG7duoWdnR0ODg7Ex8dz+PBhDhw4wOjRo5k5c6Y2wSgUF11BQUH4+vry5JNPMnToUL755psqHR8w\nKU5UVUWnq3jQ9tlnn2XBggWkpKRQUFBAixYttPsaNGhAixYtOHLkCE8//bTJdocOHTI5BXiv1NRU\n8vPzad68Oaqqlnsq6MaNG1rBV5GuXbuyevXqMu3p6elcvnyZzp07m7SrqkpMTAz5+fn4+Pigqip5\neXl89dVXvPzyyxUeR1VV/va3vzFhwgQA9Ho9t27d0u4vKaBL3FtYQvGoYmxsLMHBwQwZMgQ7Ozvt\nC/flMRgMZU4nGwwG9Ho9iqKYHFNRlDLrlij9PCjd33379tWKYoBr167h7Oxcbj5Q/Nwtr02v16PT\n6Uzuv18BLISwLHJqT9SImpiysXfv3kRHRwPFIwDBwcHs3LmT3bt3M27cOHr06MHEiRPx8vLi3Llz\nQPEHoV6vJzk5mfz8fMaPH89f//pX9u7dCxR/uFZFYmIieXl56PV6Nm3aVOlEpfXr16dbt26EhIQQ\nEBBQ5v53332XiIgITp8+rbVt2bKFbdu2mZwWKi0nJ4fIyEheeOEFbG1tadOmDVA86lPi+++/Jycn\nhz/96U+V5uLr64u1tTXz58/XipIbN24wadIkhg8fro2elNi7dy95eXns2bOHxMREdu3axc6dO8nN\nzWXHjh0m61pZWWn77NWrF1u2bNFGfZYtW8akSZMqja1EyfNm3759DBs2jKCgIJo3b87evXu1vrOy\nsirTj61atdJihuJTaz/++CPdu3d/oOOW2Lp1K0VFReTn5xMfH4+Pjw/du3dn79692q8rN23aVOYX\njPfq2bMn33//PdeuXQMgLi6Ohg0b0qxZM/r06aOdkk5JSeHIkSNVilEIYd5kRErUiKr8sqyidadP\nn054eDj+/v7o9XoGDRqEv78/BoOB3bt3M2jQIBwcHPDw8NAurdC/f39GjhzJihUr6N27N76+vjg5\nOdG2bVs8PT25ePFilWJ1dXVl7Nix3Lp1Cy8vL4KDgyvNJSAggAkTJrBkyZIy++7Xrx/16tUjIiKC\nzMxMbYb5tWvX4uHhoa0XGRlJVFSU9t2fZ599ltdff13b37Jly4iIiGDBggUYDAYaNWrEp59+avIl\n+JEjR2ojL4qiMG/ePHx8fFi1ahUfffQRfn5+2NjYoNPp+Pvf/17upSk2bNjAiBEjTPZbv3597cv8\nb731ltbetWtXlixZwqRJk5g7dy7BwcFaseHm5sYHH3xQ7mNd0fKYMWOYMWMGsbGx6HQ6unTpwqVL\nl4Di03cffvihyeiRjY0NS5YsITw8nHnz5qHT6YiIiKBZs2ba6b0HYWdnx8iRI8nJyWHIkCHaKOeM\nGTO070U5OjoSFRVV7vYl8bdt25apU6cybtw4jEYjDRo0YOnSpQCEhoYydepU/P39adq0Ke3bt3/g\n+IQQ5k9Ra2IoQYg6ICoqiuzsbO3XXKJuCwkJoWPHjowaNaq2QxFCWDA5tSeEEEIIUU0yIiWEEEII\nUU0yIiWEEEIIUU1SSAkhhBBCVJMUUkIIIYQQ1SSFlBBCCCFENUkhJYQQQghRTf8PUCUJoo/LrrkA\nAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11d23aef0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_alternation_hist(d)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If the plot looks good we can apply the parameters with:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "# Total photons (after ALEX selection): 2,103,572\n", "# D photons in D+A excitation periods: 691,365\n", "# A photons in D+A excitation periods: 1,412,207\n", "# D+A photons in D excitation period: 1,237,157\n", "# D+A photons in A excitation period: 866,415\n", "\n" ] } ], "source": [ "loader.alex_apply_period(d)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Measurements infos" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "All the measurement data is in the `d` variable. We can print it:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "singlespot_008_dsDNA_22d_500pM_green100u_red40u G1.000" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or check the **measurements duration**:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "599.99974193749995" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d.time_max" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Compute background" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compute the background using automatic threshold:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " - Calculating BG rates ... " ] }, { "name": "stdout", "output_type": "stream", "text": [ "[DONE]\n" ] } ], "source": [ "d.calc_bg(bg.exp_fit, time_s=60, tail_min_us='auto', F_bg=1.7)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x103bc9860>" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAEbCAYAAABDQ1cBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAJ/wAACf8BB8w+RgAAIABJREFUeJzs3Xd8E/X/B/DXZacTKKUMFZWlyJAtQyoglFHKVtQWAbVl\ng6AIiLJF4YeCgF+pqKiAoigUkSVTZJUtojIEkdVJW2jTrLvP748011yTNEnbtI15P3mE3H3uc5/7\n5NPc3fs+d7njGGMMhBBCCPE7soquACGEEEIqBgUBhBBCiJ+iIIAQQgjxUxQEEEIIIX6KggBCCCHE\nT1EQQAghhPgpCgL+YxISEnDnzh2P57t58yZ69OjhhRpJ5ebmYsKECS7z/fjjj+jTpw+ioqKwYcMG\nl+lffvkl+vTpg759+2Lp0qUe1WnEiBE4fvy40+lxcXGIiorCgAED0LdvXwwaNAgHDhyQTJ8+fbpk\nnpkzZ2Lz5s3iuNFoRLt27fDBBx+4VacrV64gNjYW/fv3x9ChQ/HXX38Vm27r5MmTiIuLK7b8P/74\nA23btsWAAQMwYMAAvPXWWwCAe/fuISEhAb1798awYcPE75KzdGfi4uLQrl07CIIgpjHG0KlTJ7u2\nqiy+++47zJw5Uxwvq7YoS1u2bLFrvwMHDiAqKkocv337NmJjY9G7d2+MHz8eer3e7fKLftfj4uJw\n/fp1cXpWVhZmzpyJHj16oE+fPhg0aBD279/vstyMjAy88sor6N+/PwYOHIijR4/a5cnPz8fkyZMR\nExODmJgYbNu2DQCwYsUKfPzxx25/BuIhRghj7MaNG6xHjx5eX87169dZ9+7di82TkpLCunXrxu7e\nvct0Oh3r168f++eff5ym37hxg3Xp0oXp9XpmNpvZ4MGD2fHjx92u0/Dhw1lycrLT6bGxsezUqVPi\n+Llz51jbtm3Z5cuXxenNmjVjhw8fFvO8+eabbNOmTeL4Tz/9xMaOHcs6d+7MzGazyzrFxsay/fv3\nM8YYO3LkCOvfv3+x6bZOnDjB4uLiii3/m2++YcuXL7dLnzt3Lvvkk08YY4xt3ryZTZkypdj04uof\nGRkpaZPk5GTWvn17Nm3atGLnLW9Go5EtWbKEtWjRgs2cOVNML6u2KEtJSUmS9svMzGS9e/eWrLsJ\nCQls+/btjDHGVq5cyd5//323yy/6XV+zZg2bPHkyY4wxg8HAoqOj2UcffcQEQWCMMXb58mXWpUsX\ncV1wZtq0aWzt2rWMMcauXLnCOnbsaJdn+fLl7L333hM/15NPPsnu3LnDli9fzv73v/+5/RmIZ6gn\nwEelpKQgNjYWgwcPxtChQ/Hbb78BALp27YrU1FRs2rQJkydPxksvvYSoqCjMnz9fnHfJkiWIiorC\n0KFDMX78eMkRKwBkZmZizJgxGDRoEJ599lmcOnUKgOUopF+/fhg0aBAmTZoEo9GI5ORkxMbGYvjw\n4XbLWb58Ofr06YOYmBgxkl+wYAFSUlIwceJEp5/tyJEj6NChA4KDg6HVatGjRw/s2LHDYfrOnTsh\nCAJ4nkd+fj6MRiN4nodKpSq2/ebNm4eePXvipZdeQlZWVrFtCliOYq2aNGmC3r17Y+PGjWJafHw8\nZs6cifz8fIfL27RpE3r37o0HH3wQe/fuLbZuADB48GB07twZANCoUSOkpqYWm/7bb7+Jf5v169e7\nLP/cuXM4duwYBg4ciNGjR4vl7N+/H/369QMAREdH45dffoEgCA7TGWOIi4vD22+/jYEDB6Jfv374\n/fffxWV0794dO3fuFMd37NjhVm/TpUuXMHjwYAwYMADz588X55k+fTri4+PRp08fHD58GOfOncNz\nzz2HgQMHIj4+HmlpaeJnc5TetWtXfPjhhxgyZAj69u0r9qKcOXMGJpMJU6dOldSjJG1hXVfc6Vlz\n9/McOHAAvXv3xuDBg7F7925JGbNnz8bo0aPFcbPZjJMnT4o9AwMHDhT/BtZtAwAkJydjxIgRDutl\n23tz7949hIeHAwB27twJrVaL0aNHg+M4AEC9evUwZ84cmEwmpKSkoH///mLvkvUFAN26dUNMTAwA\noG7dujCZTHbrSuvWrTFs2DAAQLVq1RAaGirpZeF5HqNHj8bKlSuLbVfiGUVFV4CUzMaNG9G5c2fE\nx8cjOTkZp06dQrNmzcSVE7DsGLZu3QoA6NmzJ55//nlcu3YNZ86cwbZt25Cbm4uBAweiW7dukrIX\nLFiAZ599FpGRkbh16xaGDRuGHTt2YNmyZfjmm28QHh6OZcuW4Z9//gFg6Vr+8ccfUbNmTQwfPhw7\nd+6ESqXCkSNHsHnzZjDG8OKLL+LRRx/FzJkzMXLkSCxbtszpZ0tLS0ONGjXE8fDwcPzxxx/gOM4u\n/c8//8T999+Pvn37okuXLlAqlejcuTOaNWvmtPydO3fi6tWr2LFjB27evIno6Ohi29SRBg0aSE4J\ntG/fHqmpqViyZImkS9n6eU6dOoVly5bh7t27+Oabb9C9e3en9QMg7mQAYNmyZeLfqGj6008/DQB4\n8803MWvWLLRu3Rpz585Fenp6seUHBQUhNjYWUVFR+Oabb/Daa6/hq6++Qnp6urjRl8vlCAgIQHZ2\ntsN0a/Akl8vxww8/4PDhw5g2bZr4nXvqqacwe/ZsAJYg6uzZsxg2bBiOHDlSbN3eeOMNTJ48GZ06\ndcKaNWvA87w4LSIiAomJiTCZTBgyZAhWrVqFiIgI7Ny5E/PmzcP777+Pt956yy59+fLlAIDq1avj\nu+++w9q1a5GYmIj3338fbdq0QZs2bbBp0yZJPUrSFrZs10VnXH2eJUuW4M0338T69evxwAMPYNSo\nUQgMDARg+b4+9NBDaNGihVheVlYWQkJCxGWHh4eLO3536zdjxgzxs+bl5eHrr78GAJw9exatW7e2\ny//kk0+Kw0UPKKys31MAWL16NR577DFotVpJnieeeEIc3rZtG8xmM+rVqwfAEphMnz4dDRs2xNix\nYx0ug5QMBQE+qkOHDhg3bhwuXLiAp556Cs8//zwA6RFry5YtodFoAAD3338/cnJycOjQIfTu3Rty\nuRyhoaGSldPq8OHDuHr1qnj+mud5pKSkoFu3bnjhhRfw9NNPo2fPnmjYsCGSk5PRtm1b1KlTBwDQ\nq1cvJCcnQ6VSITo6GkqlEoDliOnIkSOoX7++y8/GHNzJWi6XO8wrk8nw22+/4dChQzhw4ACUSiXi\n4+OxdetWcedeVHJysniUVqdOHXHD1qFDB4wdO9auTR3hOA5qtVqSNnXqVPTt2xe9evWSpCclJaFT\np04ICAhAjx49MH/+fNy6dQu1a9d23ggF3nvvPZw7dw5ffPGF0/SsrCxkZWWJn6Nfv35YsmRJseVO\nmzZNHB46dCg++OAD6HQ6h23vbGchk1k6EgcPHgzA0n5ZWVnIzs4GAGi1Wjz66KM4ceIEAKBVq1Yu\nP29OTg5SU1PRqVMnseyvvvpKnG4Nyv755x9cu3YNo0aNAmMMjDHI5XKn6VbWHVaDBg2wb98+l/Up\nylVbeMrV57l48SLq1KmDBx54AAAQExODgwcP4vr16/jhhx/w5ZdfIiUlRSzPk7+fMwsXLkTLli0B\nABs2bMDo0aOxa9cuu7KWLFmCgwcPQq/Xo0uXLnjxxRcxatQocBwn1oPjOElwtWbNGjEIc2b79u14\n9913sXr1ajFt3bp10Ol0JfqbkeJREOCjWrZsie3bt2Pfvn3Ytm0bkpKSJCsNALudlHXD4mhDYUsQ\nBKxbtw4BAQEAgNTUVERERGDGjBkYPHgw9u/fj9dffx0TJ05E9erVJRvAohtdW2az2a3PFhERgdOn\nT4vj6enpqFGjBmrUqOEwPTk5GU8++SRCQkIAWAKOU6dOOQ0CrPW0sta3ZcuW2LFjR7FtanXhwgW7\ngCYoKAizZs3CzJkz0bRpUzE9KSkJWVlZ6NatGxhjUCqV+PbbbzFp0iSn9RMEAVOnTkVGRga+/PJL\n8ejPUXpWVpbDz1OcxMREjBw5EgqFQmwPhUKBiIgIZGZmIiwsTDzFUqVKFdSoUcMuPTQ01G55Rf/+\nUVFR2LlzJxhjiI6Oxr///ltsvVzV3RrU8jyPhx56CD/88IM4npOTg7S0NIfpVtbTRLY7Kmccfebi\n2sK2THe/68V9nuzsbNy+fVvSPW9tn927dyMzMxNDhgyB0WjErVu3MHLkSCQmJuLevXtifus6Yv3M\nVu7Wr0+fPpg9ezaysrLQtGlTsVcAAKZMmYIpU6Zg06ZNOHXqFGrWrOm0JwAAFi9ejIMHD2L9+vVi\nT0pR69atw6efforPP/9c7AUAgDZt2qBevXp499138e6777pVd+IeuibARy1ZsgSbN29G//798fbb\nbzu8StyRDh06YOfOnTCbzcjNzXV4ZW+7du3Elf3cuXMYNGgQjEYjoqKiULVqVcTHxyMmJgZ//vkn\nAODEiRPIyMiA0WjEtm3b0LFjR7Rp0wZbt26F0WiEwWDAjz/+iHbt2kGhUMBkMhVbx/bt2+PIkSPI\nyclBfn4+du3ahSeffNJp+iOPPIJDhw7BYDCA53kcPHgQjz32mNPyn3jiCezYsQNmsxmpqak4efKk\nR2169uxZ7Nq1C0OGDLGb9tRTT6Fx48bYvn07AMspmTt37uDAgQPYs2cP9u7di8WLF+P777+XbNyL\nWrBgAXJzc/HJJ5+IAYCz9KpVq6J69epiN7v1quriHDx4ED/99BMASxdu8+bNoVKpEBkZKR65/fTT\nT2jVqhU4jnOabru8AwcOoE6dOggODpa0x8GDB/H777/j8ccfd1mvoKAg1KlTR/wsW7ZscXgk+/DD\nDyMzM1O8buPLL7/E22+/7TS9JDxti6pVq+LChQsAIB45u8tRvWfNmoWGDRsiNTUVV65cAWNM/F6N\nGDECO3fuxKZNm5CYmIjatWvjs88+g0KhEA8QAMu1KNbej2rVqonf6Z9//tmteh09ehS1atVC1apV\n0atXLxgMBqxatUoMInJzc3Hs2DGXPSGfffYZkpOTiw0AduzYgTVr1uDrr7+WBAAA8MgjjyAhIQGn\nT592+MsCUnJe6wn49ttv8dVXX0Eul6NatWqYO3cu7rvvPkmenj17QqVSidFtfHy8XVcqceyFF14Q\no3CFQiGee3XW9WdNj4yMxOnTpzFgwACEhISgRo0a4tGI1cyZM/HWW28hKSkJMpkMS5cuhUqlwsSJ\nEzF8+HBoNBpUqVIF7733Hq5cuYLw8HBMmTIFaWlp6NWrFyIjIwFYrhUYNGgQzGYzevbsie7du8Ns\nNqNGjRp46aWX8Omnnzqsa0REBCZOnIjY2FiYTCY8++yzePTRRwHAafr58+fRr18/KJVKdOjQAYMG\nDXLadt27d8eZM2cQHR2NWrVqoUGDBgCA2NhYTJ482a5NActFXNaeEa1Wi6VLl6JWrVoO23zmzJni\nTiwpKQmDBg0Sj7gBy0VSixYtwt69ex2ejsnJycHXX3+N+++/Xww0OI4TN5BF0zdt2oRFixZhxowZ\nYIyhcePGTj+71YIFCzB9+nSsXr0aVatWxeLFiwEAEyZMwLRp05CUlITg4GDxtIKzdAC4evUqBgwY\nAKVSKR6lWdskMDAQDz/8MOrWreuyTlYLFy7Em2++icWLF6NRo0Z230/AckT/wQcfYN68eTAajahS\npQoWLVrkMN362TztFve0LV5++WVMmzYNGzdudHnNhyefZ/HixZg4cSJUKpVbp9PefvttvPHGG1i5\nciVq1aolntYbN24c5s+fj+XLl6Nz5864du2aw/mt33WO4yCTycTPp1Kp8OWXX+KDDz5A//79oVQq\nwfM8nn76abz00kvF1mnVqlUIDAxEXFwcGGPgOA6JiYk4d+4c9u3bh3nz5mHVqlXQ6/XiKRGO4yQX\nGqtUKsyYMQOzZ8/Gli1bXF78S9zkjZ8c/PHHH6xr167s7t27jDHG1q1bx4YNGybJk52d7fBnIsS7\nTp8+Lf50zWQysWeeeYZduHChxOUdO3aMjRgxoqyqR3xMbGwsO3nyZJmWuWLFCpaens4YY2zPnj1s\n/PjxZVo+IaSQV3oCAgMDMX/+fLFbsGnTplizZo0kz5kzZ6DRaDB8+HDcuXMHPXr0wJgxY0p8gQ1x\nz0MPPYQVK1bg888/B2MMAwcORMOGDcu9HtevX8f48eMlR2esIPr/8MMPcf/991fq8svCokWLcPjw\nYbGO1vp16NABr7/+eqUvH/D86NqdujVo0AAjRoyAXC5HlSpVsGDBgjKpa0VYs2YNNm/ebNdO9evX\nF3soCKlIHGMuro4pJZPJhISEBDRt2hSvvvqqmL5z504cOnQIM2fOhMlkQnx8PHr27OnyTmeEEEII\nKRteDQKys7Px6quvIjAwEMuWLSv2yt+ff/4Z69ats+sxIIQQQoh3eO3CwH/++QcJCQmIjIzE9OnT\n7brDdu/ejfDwcDRv3hxA4U+UXCnuimoi5c7PoEghai/3UVt5htrLfdRWnintKXSvBAHp6emIi4tD\nQkICYmNjHea5ceMG1q5di9WrV4Pneaxbt068raQrmZl5ZVnd/6ywsEBqKw9Qe7mP2soz1F7uo7by\nTHh4sOtMxfBKELB27VpkZ2fj+++/F++vrtVq8corr4g/B4mLi8ONGzcQExMDnufRq1evYn/WRQgh\nhJCy5fULA8uaIAgUJbqJImrPUHu5j9rKM9Re7qO28kxpewLo93iEEEKIn6IggBBCCPFTFAQQQggh\nfoqCAEIIIcRPURBACCGE+CkKAgghhBA/RUEAIYQQ4qcoCCCEEEL8FAUBhBBCiJ+iIIAQQgjxUxQE\nEEIIIX6KggBCCCHET1EQQAghhPgpnwsCTp8+DZ1OV9HVIIQQQnyezwUBrVu3RrNmjbB165aKropb\ndDodzp07S4ELIYSQSkdR0RUoibt3c/DKKy+iRYtW0GoDoFIpoVKpoVKpHLzUUCqVUKvVUCpVUKtV\nBe9qN/IU5lUqC5ehVCrBcZzLem7dugWTJo3F3bs5CAkJxdKlKxEdHVMOLUR8hU6nw99/X0K9eg0Q\nEBBQ0dUhhPgZnwwCAIDneZw4kVxhy7cGD9ZAwRIgKMV3uVyBM2dOged5AJbAZcyYl6HXr8BDDz2E\n2rXroEaNCMjl8gr7DKRiUZBICKloHGOMVXQlPGE9Ag8JCcGRI6egUChgNBoLXgYYjaaCd6ODlwEm\nkwkGgwEmkxEGg9FBXvs8tu/FL8MAg8EAd5tULpcjIqImatWqjdq166B27dqoWbM2ateujVq1rOO1\noFKpStRWYWGByMzMK9G8/qgs28toNCIjIx3p6WkFL9vhNNy+fRvHjh2BIAjiPHK5HN27R6FGjZqo\nXj0M1aqFISysuviqXr06qlULg1qtLpM6lgZ9tzxD7eU+aivPhIcHl2p+n+wJsB41hYfXqOiqOGQ2\nm5GTk422bR/HvXt3xXSNRovRo8chIyMdt27dxK1bt5CScgsnTx7HyZPHnZYXHl4DtWvXKQgWaqNW\nrdp2gQN1JXufwWCQ7MiL7tjT0gqHs7OzPS6f53ns2LHNZb7g4BBUq1YN1atXlwQJlldYwaswLTAw\n0K3TV4QQ/+NzPQGnTp1CWFgdn9jpudvdq9PpkJJyC7du3cKtWzdx+7btu2U4IyO92GVVrVpV7D2w\nBgkNGjyEkJDqYrAQHBziVr199Tx1Seqdn58v7rj1+ru4cuW6w516eno67t7NcVmeUqlEeHiNgle4\n3XCNGhEID6+BoKAgREY+gbt3C4PE4OAQbN26E3l5ecjMzERmZgYyMjJw545luPCViYyMDOh07h0t\naTQaMSCoVq2a2KvgLIAIDa0Cmcz5NcM6nQ4ZGTdQvfp9PvX9qEh0dOs+aivPlLYnwOeCAEEQfOoL\nYtkxXUa9evVLtcE0GAxITU3BrVu3cPv2TYfvqakpku7looKCgov0JNS2CRws74cP/4pJk8b53Hlq\n24ArODgEM2fOQpMmzYo9Wk9PT0du7j2XZavVagc7dfsde3h4OEJDq7h91F3aawLy8/PFACEjQxok\nSN8tL3d7J+RyOapVC5MECtbg4fbt2/jhh2+Rn5+PwMBAvPbaNDz9dBQ0Gg00Gg3UajU0Gi3UanWl\n632oyOCWdmzuo7byDAUBRGQ2m5GWlir2INy9m4FLl67aBAuWl8lkcrtMuVyOZs0eh1wut7nWgYnD\ntu/WydI0R/kKy3Enn6s0nhdw8+Z1t6/FAACtVmu3Y3/ggToICqpis2O3TAsODvHaDq2sgkR3mEwm\n3LlzR9KzUDR4sA0q7tzJFC9sLQnbgKAwSLAEClqtJV2t1kgCCLVaA63Wmk9jF1xoNIXzSKdroNFY\n8jj69U5FX4RJOzb3UVt5hoIA4pSjlUkQBGRkZOD27Zu4ffu25PTDpUsXcebMKa/Vx7ph5jhOMuxJ\nGmCfJgiCw67x6Oh+aNToEXEnb92x16hRA4GBQXY7Ctr4SAmCgJyc7IIehUycOnUCs2bNsMvXtWt3\naLVaGAx66PWWl8FggF6fX/BuTbOkexvHcZLgQKlU4ubNG5JeMoVCge7doxAQEFgkIFGLAYg1eLGd\nZglqbPMVzaNxeCqlpN8tXz01VxoVtR76altTEECc8nRl0ul0aNaskeTcd0hICJKTzyIgIBBAyXbk\n3ua43qH47bcLHq3MFAQUryzaWRAEGAwGMSDIz88Xx/PzrYGCfTCh1xuKpNu+FwYc0nIs6Xl5OuTn\nl9/NupRKpaQHRK1WIzAwAAqFskjgYN/DYTvPxYsXsXHjN8jPz0dAQADGjJmAyMiuCAjQQqPRQqst\nfNdqtcVex1GeSrszLe/1kDGGpKQfMGXKRNy7d9enToMCFASQYpRkZarobtOSKot6UxDgmi9+PxwF\nL8HBwdi6dRc4TiYGEoUBiDSoKDqtMMCQ9nBYg5bCAEUa7Hh7U2sNKCzBgQZabQC0Wsu7dby49IAA\n6bhGo/U44PD0+8EYg9lsLmgnIwwGPbRaGVJSssT2tvz0Wtr2ha+ibW20yWOZZjQaXc5fVEkOIioK\nBQHEqdJ1QZbPeeqyVNp6UxDgHp1Oh8zMmz7zKx2g4oOXatUCkJKS7TKosPZeXLp0CYsXv2NXTr9+\nAxEQEAC9Ph/5+YUvvV6P/Hyd+J6fb3kv7kLh0nAUcKjVKpw795vkOhLrNUXWHb3181rvqaLX671W\nR0ekPTAaqFQqCALDlSuX7fLu2fMrmjZtVm51KykKAohTtFPzDLWX+3yxrSoyuC2bU3OeHZ0yxmAy\nmcTgQKfTOQ0WbNMd5bOk54vBh+27TpeP/Hydy54OlUol7oALX4XXV6hUamg0agQHB4LjFOJpEWt6\n4cWi1vwqu526s/zWW747Oj1ZVqcTK4pf3iyIEEI8FRAQ4BNHdoClrkuXrrTrvfBkp8RxnPh8lNBQ\nL1YWloAjJycbrVo1ldwgLTg4BMePn0WVKlXdvmahvAPMsmhrX0Y9Af9hvni0VpGovdxHbeUZfzk1\n58vX5vhaW1vR6QDiFG2oPUPt5T5qK8/4U3vRtTnli04HEEIIqTR86bQLASrHD0sJIYQQUu4oCCCE\nEEL8FAUBhBBCiJ+iIIAQQgjxUxQEEEIIIX7Ka0HAt99+i759+6J///4YOXIkbty4YZdn5cqV6NWr\nF6KiovD55597qyqEEEIIccArQcCff/6JVatWYf369di8eTOefvppvPnmm5I8e/fuxYEDB5CUlITN\nmzfjp59+wrFjx7xRHUIIIYQ44JUgIDAwEPPnz0dwsOUmBk2bNsXt27clefbs2YPo6GioVCpotVrE\nxMRgy5Yt3qgOIYQQQhzwShDwwAMPoH379gAAk8mEDz74AL169ZLkSU1NRc2aNcXxiIgIpKSkeKM6\nhBBCCHHAqxcGZmdnIz4+HgEBAZgwYYJkmqO7Fcvlcm9WhxBCCCE2vHbb4H/++QcJCQmIjIzE9OnT\n7R7hWLNmTaSnp4vjaWlpkp4BZziOQ1hYYJnX97+I2soz1F7uo7byDLWX+6itypdXgoD09HTExcUh\nISEBsbGxDvN069YNq1atwuDBgyEIAn788UeMHTvWZdmMMXq4hJvoQRyeofZyH7WVZ6i93Edt5ZlK\n+QChtWvXIjs7G99//z02btwIANBqtXjllVewb98+zJs3D127dsWFCxcwaNAgmEwmxMTEIDIy0hvV\nIYQQQogD9Cjh/zCKqD1D7eU+aivPUHu5j9rKM6XtCaA7BhJCCCF+ioIAQgghxE9REEAIIYT4KQoC\nCCGEED9FQQAhhBDipygIIIQQQvwUBQGEEEKIn6IggBBCCPFTFAQQQgghfoqCAEIIIcRPURBACCGE\n+CkKAgghhBA/RUEAIYQQ4qcoCCCEEEL8FAUBhBBCiJ+iIIAQQgjxUxQEEEIIIX6KggBCCCHET1EQ\nQAghhPgpCgIIIYQQP0VBACGEEOKnKAgghBBC/BQFAYQQQoifoiCAEEII8VMUBBBCCCF+ioIAQggh\nxE9REEAIIYT4KYU7mVJSUnD16lXIZDI8+OCDiIiI8Ha9CCGEEOJlxQYB+/btw4oVK5CSkoL77rsP\nPM/j5s2bqFu3LkaPHo3IyMjyqichhBBCypjTIGDGjBlQKBSYNWsWmjVrJpl2/vx5rF+/Htu3b8e7\n777r9UoSQgghpOw5DQKGDx+Ohg0bOpz22GOPYcGCBbhw4YLXKkYIIYQQ73J6YaBtAKDT6QAAv/32\nG7Zs2QKTyQQAaNSokZerRwghhBBvcXlh4Icffohr165hypQpGD16NOrXr4+jR4/inXfeKY/6EUII\nIcRLXP5EcP/+/ViwYAF27NiB6OhofPHFF/jrr7/Ko26EEEII8SK37hOg0Whw6NAhdOjQAQBgMBi8\nWilCCCGEeJ/LIKB27dqYMmUK/v77bzzxxBOYPn06Hn744fKoGyGEEEK8yOU1AYsWLcLPP/+MSZMm\nQa1Wo0mTJujfv3951I0QQgghXuQyCAgICMD999+PTZs2QSaT4amnnkJgYKDbC5g2bRoaN26MYcOG\n2U3r2bMnVCoV5HI5ACA+Ph69evXyoPqEEEIIKSmXQcAnn3yCr7/+Gt27dwdjDBMnTsSoUaMwZMiQ\nYue7du3QnRA2AAAgAElEQVQa5syZg9OnT6Nx48Z203NycpCbm4tff/215LUnhBBCSIm5DAK+++47\n/PDDD6hSpQoAYNSoUYiNjXUZBGzYsAEDBw50+pyBM2fOQKPRYPjw4bhz5w569OiBMWPGQCajZxoR\nQggh5cFlEBASEoLQ0FBxvFq1atBoNC4Lnjp1KgDg0KFDDqfr9Xp06NABM2fOhMlkQnx8PEJDQxEX\nF+du3QkhhBBSCi6DgCZNmmDs2LEYOnQoFAoFtmzZgvvuuw979uwBAHTr1q1EC46KikJUVBQAQKVS\nYfjw4Vi3bh0FAYQQQkg5cRkE/P333wAs1wbYWrNmDTiOK3EQsHv3boSHh6N58+YAAMYYFArXTzbm\nOA5hYe5fmOjPqK08Q+3lPmorz1B7uY/aqny53Ot+9dVXuHbtGurWrYvc3FxcuXLF7qmCJXHjxg2s\nXbsWq1evBs/zWLduHWJiYlzOxxhDZmZeqZfvD8LCAqmtPEDt5T5qK89Qe7mP2soz4eHBpZrf5VV4\nn3/+OSZNmgQAyM7OxhtvvIH169eXaGF79+7FW2+9BQCIi4tD/fr1ERMTg5iYGLRo0QKDBg0qUbmE\nEEII8RzHGGPFZejTpw++/fZb8d4A+fn5eOaZZ/Djjz+WSwWLEgSBokQ3UUTtGWov91FbeYbay33U\nVp7xek8Az/OSmwNptdpSLZAQQgghlYPLawKaNm2K6dOni131W7ZsQZMmTbxeMUIIIYR4l8uegNmz\nZyM0NBRz587FO++8g8DAQPG8PiGEEEJ8l+vf5MFy/39bJ06cQOvWrb1SIUIIIYSUD5c9AQkJCTAa\njQAAo9GIhQsXYvz48V6vGCGEEEK8y2UQ0K5dO4wePRonTpxAv379cOvWLWzZsqU86kYIIYQQL3IZ\nBIwfPx4tWrRAXFwcxowZg+XLlyM8PLw86kYIIYQQL3J6TcDChQvFYcYYwsLCsHHjRvz+++8AgOnT\np3u/doQQQgjxGqdBQHCw9AYEQ4cO9XplCCGEEFJ+nAYBw4cPR1BQULEz5+bmusxDCCGEkMrJ6TUB\nU6ZMwYYNG6DT6eym5efnY926dXj11Ve9WjlCCCGEeI/TnoCVK1ciMTERPXv2RMOGDXHfffdBEARc\nv34df//9N5577jmsXLmyPOtKCCGEkDLk8gFCOp0OR48exT///AOZTIYHH3wQHTp0gEqlKq86StAD\nhNxHD+LwDLWX+6itPEPt5T5qK8+U9gFCLu8YGBAQgK5du5ZqIYQQQgipfFzeJ4AQQggh/00UBBBC\nCCF+ioIAQgghxE+5DAJSU1Px8ssvIyoqCunp6Rg5ciRSU1PLo26EEEII8SKXQcCcOXMQHR0NjUaD\nqlWrokWLFpgxY0Z51I0QQgghXuQyCEhJSUH//v3BcRwUCgXGjx+PtLS08qgbIYQQQrzIrWsCTCYT\nOI4DANy5c8erFSKEEEJI+XB5n4Bnn30W8fHxyMzMxLJly7B161bExcWVR90IIYQQ4kVuBQEPPvgg\nDhw4AL1ej7fffhtPPvlkedSNEEIIIV7kMgiYN28e3nrrLbRr105Mmzp1KhYtWuTVihFCCCHEu5wG\nAXPnzkVaWhqOHTsm+Umg2WzG1atXy6VyhBBCCPEep0HAgAEDcOnSJZw/fx7dunUT0+VyOR5//PFy\nqRwhhBBCvMdpENC0aVM0bdoUnTp1Qo0aNSTTzGaz1ytGCCGEEO9yeU3A5cuXMXnyZOh0OjDGwPM8\nUlNTcezYsfKoHyGEEEK8xK07Bvbv3x8ajQajR4/GI488goEDB5ZH3QghhBDiRS6DAI1Gg8GDB6Nl\ny5aoUqUKFi5ciKNHj5ZH3QghhBDiRS6DALVaDZPJhLp16+Kvv/6CXC6HyWQqj7oRQgghxItcXhPQ\npUsXjBo1CgsWLMBzzz2HU6dOISQkpDzqRgghhBAvchkE9O7dG/369UPNmjWxcuVKJCcnIzo6ujzq\nRgghhBAvchkEJCQkYMeOHQCAxo0bo3Hjxl6vFCGEEEK8z+U1AQ0bNsSuXbuQnp6O3Nxc8UUIIYQQ\n3+ayJ+CXX37Brl27AAAcx4ExBo7j8Oeff3q9coQQQgjxHpdBwJkzZ0q1gGnTpqFx48YYNmyY3bSV\nK1di69atEAQBQ4cOxYgRI0q1LEIIIYS4z+XpgJK6du0aRo4ciZ07dzqcvnfvXhw4cABJSUnYvHkz\nfvrpJ7oLISGEEFKOXPYElNSGDRswcOBAREREOJy+Z88eREdHQ6VSAQBiYmKwZcsWySOLCSGEEOI9\nXusJmDp1arE/JUxNTUXNmjXF8YiICKSkpHirOoQQQggpwmVPAM/zkMvlOHPmDEwmE2QyGVq1alXq\nBTPG7NLkcnmpyyWEEEKIe5wGAVlZWZg4cSI6duyIhIQETJo0CVWqVEFaWhoWLFiALl26lGrBNWvW\nRHp6ujielpYm6RlwhuM4hIUFlmrZ/oLayjPUXu6jtvIMtZf7qK3Kl9MgYPHixWjTpg0SEhIAAFWq\nVMHmzZtx8uRJfPzxx6UOArp164ZVq1Zh8ODBEAQBP/74I8aOHetyPsYYMjPzSrVsfxEWFkht5QFq\nL/dRW3mG2st91FaeCQ8PLtX8ToOA48ePi/cHsNWqVSvcvHmzRAvbu3cv9u3bh3nz5qFr1664cOEC\nBg0aBJPJhJiYGERGRpaoXEIIIYR4zmkQoNFowHGcOD5z5kzJNHctXLhQHO7atSu6du0qjo8ePRqj\nR492uyxCCCGElJ1ifx2Ql1fYJdO6dWsAwL1797xbI0IIIYSUC6dBQJ8+ffDmm2/CaDSKaTzPY968\nefQUQUIIIeQ/wOnpgJdffhmvvfYaunbtipYtW4LjOJw+fRotW7bE8OHDy7GKhBBCCPEGp0GAQqHA\n0qVL8fvvv+PkyZNgjGHEiBF4/PHHy7N+hBBCCPESlzcLatKkCZo0aQKdTofLly/j3r17CA4u3U8S\nCCGEEFLxnAYBf//9NxYuXIiIiAjExcVhxIgR4DgORqMRy5cvR/v27cuznoQQQggpY04vDJw9ezY6\ndOiA6tWrIy4uDnPnzsXhw4eRmJiI//u//yvPOhJCCCHEC5z2BGRnZ2PkyJFgjGHTpk3o3r07AKBl\ny5Ywm83lVkFfxwx6IOUmULMOOLX791cghBBCvM1pEGB9mA/HcahWrZpkmkzmtYcPumS6chFME+YT\nO1R28hCEz5YC+XmANhCykZPAtepY0dUihBBCABQTBNjeLdB2uKJlvfoKoNaAixoIrn5jQOABQQCY\nAAgMYAKYNa3oizkZdjQuplnLZzbT+CJ5GCDwYLZlmE3An79Z8gJAfh6Ej98FnugCThMAqNSAWg0o\nVZbhghenKhhXFp2uAVQqQKUCJ/Pu0xZ9tffCF+vti3UmhPx3OA0CLly4gLZt2wIAcnNzxWHGGHQ6\nXfnUzoEcWQSCDJmQb1kP+4cRV3I8DxzaXWy93fpMCoUlKFCqpIGCWiMOcyoV7oYEQeBlNnmsgYQ1\n4LAGH4WBB7t4DuzbT4F8HaANAPfiBEvvhUxWqYLBoiqi14UxZvmbikEhXzjO2wSLYhpvCRoLxtkf\nZ8G2fwcY9JbANuZ5cE1bA0olIFdY3hUFL6XS68Gfu5hBD9OVmz7TI2dFARch9jjGmMP9jquHBNWp\nU8crFXJl9fPboWB6NNf/hFrt7gdXpRrAyQBZwct2WHzJAY4rkkdeMGxJ52zzivk4m/llRdLl9sux\nycNMJrA5EwC9TcCk0YKbNAccY4DRABiNYEYDYDIABgNgMhakG8TpMBrATNJxR3nABO83PscVtgnn\noC2KTnOUVsr8nIP8jDHg2AGAt7lWRa4AWrYHB1h6hpztlG124HKOgTeapenisDW/ULiTL482l7S/\nTBoYKBRigCAZt0njbNPcmIdTKO3KsM3D/joLtuFTy/daGwAudgy4lh0s9bP+vTgZwFnqW1kCx4o+\nNVfSJ+P5YuBS2jpX1FMEfbGtgdI/RdBpEFBZrX5+OwCAYzzqdqwFVbAaCpUccpWs4CWHouBdrpLZ\nTCsc52Tls2FiJw/B9NkK5Bo0CFLroRw5zisbHssRqdkuUAjVypCTkWM50jQVBBxGI2DUOwwqWPYd\n4Pwp+wXUesCyQ2CW0x6SUyPWUyDWNMkpl2LyV0ZyeUHAURB0WMfltsGh3CbdNq3INJu8XNEy5HKw\nvFzg+EH7OjRrDU6lAePNgMlkOa1kNgFms+XdVGTc+uL5cmsmHgrkysIQJGRCDjcuErYGjzbBgd24\njANgE2SKwwXpMs5mPtvyONdpAHDtsvR7J5MDjZtbeshkcnDyon9XJ39nhaLId8JRfhk4uUIyb0jV\nQNzNNTku28H8kMnBzp0AW/e/wl652DHgmrcVT3uCMZvToDZpglBkvGAYzHVeh/PbTCuSlxXJy65c\nBA7utGxTVGogshdkDRoXfO8Vzj+3zXDVsGBk3TXarFPS+TgvXJNW0UFiafhtEFAaMgVXbJDgKJhw\nPl50XjlkcsuG59bZDJxefwlmPQ+FRo4WzzdA7ebVS11/d3kaUTODHsLkOPD5hsKNvFYN2ftflXlk\nzNwJGuymOb6ugxkNYEtmgjeYC+utUYKb+h44rbZwQ8PJHG/Y5ZbeherVg8rtCKSs25oJgiUQLBo4\nSMZNkkCCuQouiqSxu1m4fTEfZzV9YOY0hT1ytU2WDT6DdMcBFO6kwKTpkp0HJDsWx+k243blWYet\nOzvyn2btHSwmkIBcURjIy4sEbkWDEQA4c0zak6gN9Mp2zxtKGwS4vGNgZSVXy9D6xUcAxsAbBZiN\nPHijUGSYl6Rbxi3v1vH8PDN4U9luODg5B7mSg1lfWK5Zz+PEmr8Q9nAo5CoZZArLS67kxGGZQga5\nwjrOQaaUQW4zTabgCsYt0wrnKUiz5lHKStTbwak1SOk2EWf2G2Dm1FAwAx5/So06XlgROI4rWAFL\nf56bA3Cz+2T7ej9Yv9Rle4uztq6tVEMwCxAEBiYwy75PHLZ9wZKHZ2Cs6DsHxivBBAWYoHZeFmNg\nHIMgZ2AcwBSOl2MdNocYce3fFDDO8jczcxqc1vRDXtsHoArWQq4uDKIVanlhcFwwrFDLIJN7/5dF\nTBJMMDCDHmzqcPD5RpsgUQVu1oeW0yU8b3+KyNEpIbNZTGMO8xcEYnZpPLRqGfJz9YXpDuZntteV\n5N0Drlyw73V5sAGgDbTvGZGciuEs65eD0zPiuIv5C8cd9K7Y5bUMs+xMYNdm+z9I177ggkOkn9n2\nNJvZdtgMlYKDQW+UtLdlHrPzduatfx+DtDwPesgkbZ2fB6TeBB6oV3ZfzErKJ4MAhVaOFs81QM3H\nqrnO7AYmMPAmmyDBwIM3FQkmDAJ4U+E4bxRgLsgnjht58AYBvEmAUWeSBAGW5QAZl3PKpM4ucSgS\nHNgGEQUvpe24ZQW/dYYD49QAADOnxqlfOWQKlyGTyyDpM2LMchEjkyRBkokVTLZJY8w6D4NkErO+\nFcxUtFyxMNvZLQkCz5B6Xlrvkwc5/Jv6OzgZV7AvYAUHjIXlWzvBLAePDHK5DGaTYNk5Wj+LdbEC\nE+tatCxrXku+ws9gN90mH+MZeCMAmzqfOADgwCHnf9PKgJMGbQKnwF87b3kwO1fYo6a29KZJAgab\ndGvgYHmX9tSJ86jte+A429MAADhFEG52m2QfJEbULnkzeJg/KCwQBg975W5OmY2zsqcLe12E3ajz\nxuxKe3TKDHoIB3+2790aMsKjOoeW4TUBYo+jbRBnvT6oIJBgeh1uvZeIs/Lu0raOqJjr3sqbz50O\nSL+aDbMKUKgqx5XSzpiNPHa+nQxzfmEkqtDI0eWNFuBkHAQzA28WLEd9ZgGCmUEwCQVpTEznbaZZ\nxpnNPJZpvMmmDF4QxznGwWgwF04zW6b53s8qKpi4T+Es75x1R4OCoy6bNFgPmJxMLyhLMDPoc4x2\niwqK0EKpUVgOsmRckVdhmqyYaZyMs+wQOcs7x1l2vpL8BWn25ThflsALOP75X+CNhcGtXCVDs0EP\nWw7ObIJoMSA2Fg6bJcGyJa9Qhr1w1tN8ioLgQAwiFDKkX8wBEwq/+JycQ52W4WLgIPlzl9UlQzYF\nadQK6A321084W5TAM1w/nio5uyGTAQ92rgW5Um75m9j8TYuOW78DdsNya34UGS863Un5Bd8Z2++7\nrZs//GofbA3s5PAzikGywCS9VVWraJGZkeewN6qwF8vSRmAMgqQXDE56xwrzFy6v4ADQyOPizn/F\nX3MDlutgo95pX+n3M4AfXhMgCEKFXDlaErfOZuD015dgzufF3ovKcE2AwDsIMswCTDozDv/vd/AG\n6Ua+9YhHLKcYAOkRFlc4INkecOJ/NnmsWTlxnCuS364MjiuSp8iGp2CHypsEHPzgN5gN0oArckpz\nKNSKwp24uEN2vOOuFhaIrCydw+llzWGQqJUjam7bSr3hKevvNBNYkR43m162IgGD2CNnk88aZFjT\nC4MNHoLZpzZtPqdoUAEOMOnsu9+VAXIAnP3OuZJfvvHU648j9L6giq6GS357TYAvqN28Omo8WhV5\nafkIrKGtNBt3mZyDTC4H1Pb1aflCQ7uNfM3GZXPaxZtavNDArt5BNQI8KkOhkkOmKJ+7YSpUljoW\nrXNl+Y44Y/1OK4wokx45TsZBqVFA6YUeboG3HOUZco04sPisJEiUq2VoP6oJ5ErP/95uHTcVyRIa\nqkVOTr7by+BNAo4mnrcLyFsNawSZnLMczfLSo2TLuM2LZ4XXjQjSYefj0qNusUze5mjdtjybcbPR\n8fl3TmbpoeG4gqCBg9jzALEXorDnSaVWwMwL9r1bMg6QWQJzSw9XYXmuerNs04r2fjGB4bfv/pZc\nG6bQyhFYQ+v238uXUU/Af1hJf29rNvKVLnBxR2nrXRG/T/bVtq6o33KXVGXtlStORdfZU2XVu1UR\n3y1fa2tbdDqAOOVrG+qKRu3lPl9sq4oMuPwlIC+LnWlFfbd8ra2t6HQAIYS4QaGS+8Q5Xlu+VufK\negrUHb7W1mWFggBCCCFlxl93pr6q4p4JTAghhJAKRUEAIYQQ4qcoCCCEEEL8FAUBhBBCiJ+iIIAQ\nQgjxUxQEEEIIIX7K54KAP+/8CT2vr+hqEOK39Lye1kNC/iN8LggY+tNQDNkTg19S9ld0Vf6z9Lwe\nl3Iu+NxG3hfr7Wt1/iVlP4bsiaH1sJz42vfDl/lrW/vkzYLyzLl458xs3G74CgIVQVDL1VDL1FDJ\n1eKwWq6GquDddljGlW/co+f1uJ57DfcH1YVGXjmfA27rl5T9WPzbO8gz5yJQEYTXm81A55pPVUhd\nGGNgBU9iYSh4DKh1GljBg1wsKb+m/oIPfl+EPHMeAhWBmNTkdXSM6OzgYS/2d8m2lqoxATpzHhzd\nSJvZzee8nML6F1/OkbRDWPHHB9CZ8xCgCETCI2PRunpb8Iy3vAQePDMXjkvSi77MkmkCE4qdXvQl\nCA7yii8BAuNh4o04m3UWArPcGz7PnIt5p99Ch4gnESAPKFjXNFDL1dDINIXro7hOFkyTa6CSFbzL\n1dAUTFfKVF57aiNA62J58bV2Bny3rcuCzz07oOkXTUs1v1KmlAQHxQUMRQMLlU1+R/k0cmme5LSj\nWPL7e+IXa0qTN/BEREeYBTN4ZoZJMMHMzOAFHibBBJ6ZYRbMMDEzeMEMc0Eea7q5IM3MzDALpoJx\n3jLMbKYLlukKFYfc/Pwi02yWyUw2dTHDxBtxO/+W3c4sRBlaMFS4Q7Y8ClyyS7YMienWcWYztSAv\nY9K5JOM+9XUkZYgDVxhI2K5TkoBBI1kH1eK4RrI+F532250z+PTix9CZdQiQB2Bko3g0r9aycN0q\neLeM85J1xS7dZv205OHFMvgiZZkKxmUKhnyDwcUyeMn6axAMdm2k4lRQyBWQQQ65TA4ZZIXvnBxy\nTg4ZJyt4Lxy3ptnnkUHOKdzIYymvuDwyTo6r965gz61dMAoGqGRqdK8ThXrBDSBAAGMCBDDxHYwV\npNu8MwHaACXydAZLPsbAYH1ndmUwJli2NkyQlAGgcJl2ZTBJfcyCCaczT4JnhQ8+ClQE4btuW3wi\niPG7BwhZgwC1TI3Rj06AwAQYBAOMvAEGwQADLx12Ns02zfaP768UBRsCo2C0m1ZFVRVKmRIcCo/S\nOI4TxzlwsE7ibP4VZBTn4sAVHOlZ50NhGZJ0y+NBJeNivsIU63x6cz6u5l6xq/fDwfWhVWgl9Rbr\n64BSKYfJxNvUR8qtcriio47L0Zl1+CvnD7tpj1drhVBVqGUjK5NLNrjiS6ZwnG43j0KSLnOa3748\ncWNvM90smPDSwVjkmQsf7hKgCMDSdv8Dx1mOAA184XpnEMf1RcZt1k/JNKN9Xgc7wv8KDhwUMgXk\nnAIKTgFFQVsrZAoITEC6Ps1unhqaCMhlcvACDwGC2OMjsKI9QILYY0NKJrHTGtQPaVjR1XDJLx8g\nVNbdNbxgtg8aeAMMgtFmuDBw0PN6p0GHseA925CFy/cu2S3r4eD6CFYGQyGzrvgKKDhlkXEF5DIF\nlDIlFAUbc6VMCXnBNKV1wyFTQMlZ0+VQyJSFZciUCKsShLx7JoflW/MoCjbwHMdBz+sxZE8M8sy5\nkrZe3+X7Sh0RO6v3ig6JHtW7PJ9e5qzO77RZXKnb+vVmb9p1m9YPbeC15THGYBSMRdY5S4Cg5/Uw\nCgboC9ZBvV2woYdBMCIjPw1H0g/Zlf1EeEdUU1ezWX8K1ysFZ7ue2Kc7mke6LkrnCQ8Lwd1sY5Ey\nnT9cx9n3Y03k125/P6xHvLaBgm2QUDR4cBRIFJ1PkJwikqbd1t3Cmkur7eoxrP5IRGhrQsbJwHEc\nZJCJBwQyzjpckMpxCAnWIi/XCA4yyDgOHGTiQUdxZRSWxUnmLbYMTgYjb0DCoRHQ2QS3gYog3Bf4\ngFvt7Ot8rifgj4w/EGwOr9QbSsD5SlyeXUwl2an56rmxsqh3eT/C1FfbWs/rcU+R7hPrIUDrYnkp\nq3auiEcJ+1pb26rUpwP27NmDpUuXwmQyoUWLFpgzZw5UKpUkT8+ePaFSqSCXW6Li+Ph49OrVy2mZ\ngiD4zHPMK/qLVdKVSc/rcSPvX9wX+IBPbOStSlvvitj4+GpbV9Qz30uK1sXy4YvBuJWvtbVVpQ0C\nMjMzERMTg40bN6JWrVqYM2cOqlatigkTJoh5cnJy0KdPH/z6669ul+tLQQBQsV8sX9tQVzRqL/f5\nYlvRulg+fDEY92WlDQK89nu5X3/9FS1atECtWrUAAM8++yy2bNkiyXPmzBloNBoMHz4cMTExWLFi\nBQRB8FaVKoRGrkH9kIY+FVkS8l9E62L5oHb2LV4LAlJTU1GzZk1xPCIiAqmpqZI8er0eHTp0QGJi\nIr7++mscOXIE69at81aVCCGEEGLDa0GAo7MM1vP+VlFRUZg7dy5UKhUCAwMxfPhw7Nmzx1tVIoQQ\nQogNr/1EsGbNmjh//rw4npaWhoiICEme3bt3Izw8HM2bNwdgCRwUiuKrxHEcwsICy77C/0HUVp6h\n9nIftZVnqL3cR21VvrwWBHTq1AmLFy/GzZs3UadOHXz33Xfo1q2bJM+NGzewdu1arF69GjzPY926\ndYiJiSm2XMYYXTTiJrrAxjPUXu6jtvIMtZf7qK08U2lvFhQWFob58+dj9OjRMJvNaNiwIRYuXIi9\ne/di3759mDdvHuLi4nDjxg3ExMSA53n06tULgwYN8laVCCGEEGLD524W5Gs/EaxIFFF7htrLfdRW\nnqH2ch+1lWcq7U8ECSGEEFK5URBACCGE+CkKAgghhBA/RUEAIYQQ4qcoCCCEEEL8lNd+IkiAd96Z\ng8uXL4IxhsuXL+Hhh+tDJuNQu3YdLFiw2Ol86elpWLRoAdLT08HzZvTrNxCDBw8FAGzevBGbNm2E\nTCZD1aphmDr1TcntmS9e/AszZryOjRt/BADs2PETNmxYB47jAADZ2dnQ6/XYto3uzFjW9Ho9+vfv\nhcjILpg+/W0AwOnTJ/HaaxNQt+6DAACz2YyQkFAkJIxF06bNXZa5fPn7OHbsKGQyDk880QFjxkyU\nTN+6NQmHDh3EwoX/5/Y8hBBiRUEAAJ1Oh7//voR69RogICCgzMqdMWOWONy5c1v873+rERDg+k5Y\nixcvRLt27TF48FDk5ubipZdi8cgjj0GhkOObb9bh00+/QmBgEDZu/AaLFs3H++9bHry0ceMGrFu3\nBjxf+BCmnj37oGfPPgAsO6mEhBGYNu2tMvuMvoIZ9EDKTaBmHXBq7zzYZPfunWjTph1++WU/xoyZ\ngNDQKgCAunUfxGefFT4T49SpE5g+fQoSE79A7dp1nJb3yy/7cf787/jyy2/AGMOoUSPxyy/70bnz\nU8jLy0Vi4kfYvv0ntG7d1q15CCGkKL8PArZu3YJJk8bi7t0chISEYunSlYiOLv6uhSXBGLN7nsLk\nyeMxZswE1K/fQJLeo0dPtG/fEQAQFBSEOnXuR2rqbTRq9Chef30GAgODAACPPPIYNm3aCAC4cuVv\nXL58EfPnL8L06a85rMNnn61C8+aPo23bJ+ymmc1mfPjhEhw/fgxyuQKdOnXGqFHjMG/eW1AolLh6\n9QpycrLRuXMXjB07EWazGYsXv4OLF/+CTCbHo48+htdem1bqdvIGdvIQhM+WAvl5gDYQspGTwLXq\nWObLSUr6HrGxwwEAmzd/jxdffMlhvpYtW6Nz5y7YvPl7jBkzAZ9+ugrVq4ejX7+B0nozAQaDHkaj\nEYIgwGQyQa1WA7Ds7ENDq2DcuEk4evSwW/PYyszMwHvvLcCtWzcgl8vxwgsvokePXhgyJAZPPhmJ\ns2fPQKfLw7BhI9GrVzQyMzMwd+7byMvLBWMMQ4c+g+7d+5ZRyxFCKsp/MgiYNm0Ktm7d4jIfYwwZ\nGenizvnu3Ry89FIcqlcPF7vPnYmOjsG77y4pVT3ff3+5w/Snn44Sh48ePYyLF//ErFnzEBpaBffd\ndyXoEVQAABnrSURBVD8AwGQy4ZNPPkLXrt0BAPXrN8CMGbNw8+YNh2VmZGRg27atWL/+e4fTv/9+\nA27evIm1a78DYwxTpkzA2bOnAQDXrv2DFSsSwZiAMWNewZ49P6Nq1aq4ceM6Pv98PQRBwOLFC5Ga\nmoKIiJoOyy9rwtqPwE4ecp2RMeBuDoCCACw/D8LKd4CQUKDI3zhDxkEQLPm4Vh0hix3jdn0uXPgL\n169fR4cOT0Iul+P99xeJAYEj9es3xNGjlvq/9FKCwzyRkV3x88870L9/TwAcWrZsjXbt2gMAevWK\nBgBs377V7Xlsvf/+e2jU6BEsWvQBMjMzMG5cPDp1igQA8DyPTz/9Crdv38LLL8ehRYtW2LHjJzRu\n/BgSEsYiKysLiYkfUhBAyH+AX18YaDab7Y7OGWMwm80VVCOpXbt2YMGC2Viw4P/ErmUAyMnJxpQp\n4xEcHILhw192q6ykpO8RFdULISEhDqefOJGMnj17Qy6XQ6FQYNmyj9C8eQsAQJ8+MVCpVFCrNeje\nPQrJyUdQv35DZGdnYdy4eHz11ed47rkXyi0A8IjAQwwARKwgvewkJX2PLl2ehlKpxBNPdITRaMT+\n/c6vu+A4DhqNttgyN2/eCJ0uH0lJO5CUtAOMMXz2WWKZzHPiRDKio/sBAMLCquPrr38QT4UNHPgM\nAKBWrdpo3rwlTp48jrZtn8DWrUmYPv017Nu3G9OmVc5eH0KIZ/6TPQHvvrvEraN0nU6HZs0a4e7d\nHDEtJCQUp0//UabXBgBw2bNQVGLiR/j55x1YtuwjPPxwfTH933//wdSpr6JTp0iMGzfJ7fL27duD\nWbPmOZ1e9DHP6elpYjey7TTGAJlMjpCQEHzxxTc4e/Y0TpxIxoQJo/H66zPQseOTbtepNGSxYwA3\njtSZQQ9hcpzlVICVNhCyxV/YXRtQ0tuV6nQ67N69CwEBARgypB8ASyC5ceM3iI8f63Cev/76Aw8/\nXK/Ycg8f/hU9e/aGuqCeffv2x7p1X2DkyPhSz1P0aZ3Xr/+LGjUsT/mU/r0ZZDIZGjdugg0bNiM5\n+QiOHz+Gfv364eOP10guSiWE+B6/7gkICAjA0qUrERISCgDiNQFlHQAAsOtxKM4nn/wPhw//isTE\nLyQBQEZGOsaPH4WhQ19wEQBIl5WTk42MjHQ0aNDI6RwtW7bB7t07wfM8zGYz5syZidOnTwEAdu/e\nBbPZjPz8fPz88w507PgkDh7cj+nTp6Bly9ZISBiLVq3a4OrVv93+jOWFU2sgGzkJ0BZckGm9JqAM\nLw7cuXMbatasic2bt+O775Lw3Xdb8OmnX+GPP87jzz//sPvbHzt2BEeOHLK7BqCoRo0exYEDeyEI\nAgRBwMGDB/Doo4+VyTwtW7bBjh0/AQCysu5g/PgE3Lt3FwDE9Js3b+D3339DmzZP4H//W46vv/4K\nTz3VDZMnv4Hg4GCkpaW43UaEkMrpP9kT4Ino6Bh07fo0/v77MurVq++VAABw3BPg6MLAvLxcrFv3\nBcLDa2DKlHFgjIHjODz3XBwuXbqIe/fuYcuWTUhK+gEAEBgYhBUrinb3Spd1/fp1REREFFu/gQOH\nIDX1NkaMeB4A8NRT3RAZ2QW//LIXCoUCo0ePRF5eHnr16otOnTrDbDbj8OFfERs7BBqNFrVq1cKA\nAYNL0DLex7XqCFmTVkDqTSCi7H8d8OOPm/DMM89L0urUuQ9PP90DGzd+g7t3czBy5AsALMFg1aph\nWLLkQ1StWg0AnF4YGBc3Ah9++D5iY4dAqVTh0Ucb45VXRhVbF3fnefXV17F48UIMH/48OM4yXr16\nOADgxo3rGDkyFjzP4403ZqJ69eoYMmQo5s2bhRdfHAqFQolu3bqhWbPHS9xmhJDKgZ4i+B9WFk/j\nmjfvLTz2WDMMHDikjGpVedHTy4AhQ2KwcOESu1+sFEVt5RlqL/dRW3mGniJIvMyzaxmIr6O/NyH+\nhHoC/sMoovYMtZf7qK08Q+3lPmorz1BPACGEEEJKhIIAQgghxE9REEAIIYT4KQoCCCGEED9FQQAh\nhBDip/z+ZkHelJJyG88+2x/16lnu+sfzPNRqDYYNG4lOnToDAN55Zw6OHz+GqlWrgjEGk8mMpk2b\nY9y4ieLTAp05f/53TJkyTvI42o8//hwqlQofffQhDh/+BSqVGu3adUB8/BjJDYuOHz+Kjz9eiU8/\n/coLn9w/6fV69O/fC5GRXTB9+tuSaampKXjmmX4YMeIVt573cOrUCSxf/r74N8vLy0NaWip++GEb\nli5dhH//vQaO48AYw40b19GnTz9MmvQabt++hcWLFyI7+w7kcjlee20GGjV6xCuflxDi+ygIAKDn\n9bieew33B9WFRl62d5MLCAiUPEv+ypXLePXVsahSpQqaNGkGAHj++WEYMmQoAMtPIJct+z+8/fYM\nLFnyYbFlnz///+3de1zOd//A8Vd1FZVDjbtiNPxW5LThdqjEXTlEBxcyNofb4f55LO6x8Zh00Bhq\nyyHmNBsJzalQEhsV7vFz5xByCttc5jByWA5p6qrv74/mUjooqw3X+/lX3+/30/X9XO++36739bk+\n1+edTr9+A/Hz+6DY/u3b4zl+PI2tW7eSnZ3P3LlhbNmyiYEDB5OXl8eaNZFs3rxJr9Z91+bm8yAz\nh1pWpqhMjJ79C88hKek7OnbszH/+s5dx4yYUK/qUkBBHjx69iYsrLDf89Nr9T2vf/u+sWrVOtz1p\n0r95991hWFpaMmNGmG7/sWNHmTfvc8aO9QNg6tRJDBkyjD59vDh48ACzZ3/CmjUbq/iZCiFeFXqf\nBPzn+l7mpIeSrX2AuaoWH7cNpJvNP6rtfM2avYmv7xA2bVqvSwKKMjQ0ZNy4ifTr1xuN5iJNmjRl\n1Kj3mDv3C+rVq1+s7alTJ7l7N4t//WsEJiYmjB07jrffbs+FC+dwcelOzZo1yc7OxtnZhfXroxk4\ncDDHjx/lwYMHBAZ+QmTk8jL7+f33e1mxYjkGBgbUrl2bwMBPuH79F5YtW4SlpSXXr/9CrVq1CQ6e\nQYMGDUlJSSI6OgojIyNq1KjBlCmB2No2qerwPZdrJ25xbP0FtDn5qEyNaPeuHQ3fqv/sX6yk+PjN\nuvLBcXGb+ec/xwCFI0Dbt8fz+ecR/PyzhpSUJHr18gAgI+MskZHLCQ9fUM7jbgEMUKuLL8ucm5vL\n55/PIjh4BmZm5ly4cI6cnBxdmWFHR+cyl4uOilrBrl07UalUNG/uwJQpQaxduwqN5iI3b2aSlfUr\nrVq1YcqUIExMTFi+fAkHDx5ApVLRoEFDIiLm/sFoCSFeBK9kErDw9Dy+v773me0URSEr91eU3wvu\nZGsfMCMtCAsTy2dW/XOx+QcTW01+rv69+aYdu3btLPN4jRo1aNzYlosXf6RJk6bF3hEWZW5ujotL\nd3r29ODUqZNMnfoRUVEbcHBoxZYtMYwePQKtViE5eTe3b98CoGPHLnTs2IVjx46Wef5ff71DaOin\nfPllJG+80YT4+C1ER0fRo0dvzp/PYOnSFbRs2Zr166MJD59NRMQSli9fzNy5X9C4sS27d39LevqJ\nak0C0mN/5NqJW89spygKufeflIbW5uRzODIDk9qqEn9jQwMDCn5fO6vhW/Vp61t+lb+izp3L4PLl\nyzg5uWBkZMT8+eEMGzYSIyMj9u/fh7m5Oc2bt6BXr77Exm7QJQEtWjiUmwDk5eURFbWCiIglJY7F\nxW3G3r6FLpksrBFhw4IFczh9+iRmZrUYP35Cid/bv38fe/YksXJlNKampsyePZ3k5F0AnD17mpUr\n11K7dh0CAz9mw4ZoPDw8+fbbRLZu3QHA8uVLOH/+PA0bNqtwfIQQLya9nhiYr+TrEoDHFBTylaqt\nNV/Ss2vJV6SNv38wPXsWvpi0bt2G1q3bcvToITw8PHFy6srw4cP58MNxtGzZ+pnDz0Wlp5/A3r45\nb7zRBIB+/Qbw8ceBANjbt6Bly9YA+PioSUs7Qn5+Pq6uPZg40Y958z7H1NQMT0+fCp+vOikFldv/\nvOLjN+Pq2gNjY2O6dHEmNzeXvXuTfz+2hd69+wLoEqnTp09V6HFTUnZjb9+cJk2alji2efNGhg37\np25bq9WSnn4cZ2cXvv56DUOGvMeUKR+h1WqL/d6RI4dxde2BqWnh9RUUNB0PD08A3Nx6UqdOXQwM\nDPD09ObQof/yt79ZYWPTgNGjh/LVV0txcelOmzZtKh8kIcQL55UcCZjYanKF3qX/lv8bg5J9yNY+\n0O0zV9Vig9vWKp8bUNS5c2d1kwVL7ddvv3HpkqbcevNarZbo6Khiny8rioJKpeLevXv07evN5MkT\nuX07m337UmjYsFGF+1e0njwUvhu9du1qiWMFBYUVDg0NDXn//X/j5dWP1NT/Y/36tezcmcDs2XMq\nfM7Kauv7PxV6p67Nzee7kENoc54kdipTI3pN71hibsDzLlf68OFDkpJ2YWZmxqBB/QAFrVZLbOwG\nWrRoydGjh9FoLpKQEA8oGBubEBu7gVatZj3zsffsSdK9QBd1/nwGxsYm2Ns/mfRXv359XnutHh07\ndgHA0bErWq2WGzeu8/rrT/7+T/99s7KydIlC0WOKomBoaIiBgQHLlq3k1KmTHDmSyowZwYwaNRIP\nD3VlwiSEeAHp9UhATaOafNw2EHNV4Sz8x3MCqjIBeLo0Q0bGWeLjt/DOO++W2v7Ro0csXrzg989z\ny564p1Kp2Ls3RVf7/YcfLpCRcYaOHbuQkXGG4GB/8vPzefToNzZs+IYePXpXuM+tWrXmp59+5MqV\nywB8910iixdHAIUJzKVLGgC2bduCo6MzBQUFDBrUD0VRGDhwMP/7v378+OMPFT5fdVKZFM4BUJkW\nvrg9nhNQlZMDv/tuBzY2NsTF7SQmJp6YmG2sXLmWM2dOEx4eSqdOXdiyJVF3LDw8gj17knQf0ZTn\nxInjtGv39xL7jx8/Rvv2HYrta9PmLQoKCkhLOwJAevpxjIyMSlxHHTp0ZN++FB49+g1FUVi8OIJd\nuwqH+r//fi85OTlotVp27EjA2dmFCxfOM2rUe9jZ2TNy5L/w8PAkIyPjecMlhHiBvJIjAZXRzeYf\ndPpbF65k/0wjc9sqHwHIyXmoqyUPBpiZmREcPINmzZ6MBDx+5wyQn19A+/Z/JzDwE93xsiYGfvpp\nKOHhoWzatA6VSsWMGWHUqVOHTp26kJZ2hH79+qHV5uPp6YO7e88K99nS8jWCgqYTEhIAKFhYWBIQ\nEMKVK5epV68+S5cu5JdfrmFtbUNAQAhGRkaMHz+BoKCPUamMMTY21n188CJo+FZ9rBwsyc7Mwbwa\nvh2QkLCVd955r9i+119vhKtrDw4f/i+ffvpZsWPt2nWgZcvWbN0aS9eu3cucGJiVlUVu7iMsLCxK\nHLty5ecSL+7GxsbMm7eIiIhwFiyYg0plzOzZc0p8FOTk1JWLF39k7NiRALRu3ZbBg4eyevVKLCws\nmTTp39y7d5eOHbvg6zsEIyMjnJ27MWrUe5iZmVO7dm0++yz0eUIlhHjBSBXBV1hVV+M6duwoixbN\nL/aVx1eJvlcvi4z8iuzsB3zwwaRnttX3WFWWxKviJFaVI1UEhRBCCPFcZCTgFSYZdeVIvCpOYlU5\nEq+Kk1hVjowECCGEEOK5SBIghBBC6ClJAoQQQgg9JUmAEEIIoackCRBCCCH0VLUmAcnJyXh7e+Ph\n4UFAQAC5ubkl2ixZsoQ+ffrQu3dvVq1aVZ3dEUIIIUQR1ZYE3L59m5CQEL766iu+/fZbatasyZdf\nflmsTUpKCvv27SM+Pp64uDgSExNJTU2tri4JIYQQoohqSwL2799Pu3btaNCgAQCDBw9m27Ztxdok\nJyfj5eWFiYkJpqam+Pj4lGgjhBBCiOpRbUnAjRs3sLF5sra5tbU1N27ceGab69evV1eXhBBCCFFE\ntSUBpS1E+HQJ04q0EUIIIUT1qLYqgjY2Npw+fVq3nZmZibW1dYk2N2/eLNam6MhAaQwNDf/wMon6\nRGJVORKvipNYVY7Eq+IkVn+eahsJ6Nq1K2lpaVy9ehWAmJgY3N3di7Vxd3dn27ZtPHr0iJycHBIS\nEkq0EUIIIUT1qNYCQnv37mX+/PlotVrs7e0JCwvj4MGD7Nmzh5kzZwKwbNkyEhMTycvLw8fHh/Hj\nx1dXd4QQQghRxEtXRVAIIYQQVUNWDBRCCCH0lCQBQgghhJ56aZKAiixBrK+mTp3KmjVrAMjJyeGj\njz6ib9++eHp6cvDgQV07fY7hpk2b8Pb2Rq1WM3r0aK5cuSKxKsfXX3+Np6cnXl5euucv8SpfdHQ0\narUakPuwPCEhIbi7u9O/f3/69+/PnDlzJF7lOHv2LEOHDkWtVjNs2LCq/9+lvARu3bqlODk5Kdeu\nXVMURVGmT5+uLFy48C/u1V9Po9Eoo0aNUt5++21l9erViqIoSlhYmDJz5kxFURTl0qVLSrdu3ZT7\n9+/rdQzPnDmjuLm5Kffu3VMURVHWrVunjBgxQmJVhiNHjiheXl7Ko0ePFEVRlAkTJigrVqyQeJXj\n5MmTiouLi6JWqxVFUZTQ0FCJVRl8fHyUH374odg+ubZK9/DhQ8XZ2VlJTU1VFEVRvvnmG2Xs2LFV\nGq+XYiSgIksQ66ONGzcyYMAAPDw8dPuSk5Px9fUFwNbWlrZt25KcnKzXMTQ3N2fWrFnUrl343ePW\nrVtz7do1UlJSJFal6NChA3FxcZiYmPDgwQPu3LmDhYWFXFtluH//PtOnT2fy5Mm6fXJtlS47OxuN\nRsOCBQvw8fEhICCAu3fvyrVVhgMHDtCsWTM6deoEgK+vL/7+/lUar5ciCajIEsT6aMqUKXh5eRXb\n93SsrKysuHHjhl7H0NbWFkdHRwDy8vKIiIigT58+EqtyGBkZERsbi5ubG1lZWfTo0UPiVYagoCDG\njRun+8cLch+WJTMzE2dnZ4KDg9m2bRt169YlKCioxEJxEq9CGo0GS0tLpk6dyoABA/jwww8xNjau\n0uvrpUgCFFleuMIKCgpK7DM0NJQYAllZWYwdOxYzMzMmTJhAfn5+iTYSqyd8fX05dOgQ3bp1w9/f\nv9S46Hu81qxZg5WVFW5ubsXiIPdh6Zo2bcrSpUt1q8f6+fmxb98+8vLySrSVeIFWq2X//v2MHDmS\nLVu24OLiwsSJE6v0XnwpkgAbGxsyMzN126UtQSwKNWzYsNSlmPU9hhqNhsGDB2NnZ8fixYtRqVQS\nqzJcvHiR9PR03bZarebs2bM0aNBA4vWUhIQEUlNTUavVTJs2jYsXLzJkyBC5tspw5swZduzYodtW\nFAVDQ0MaNWok8SqFlZUV9vb2tGjRAii8F8+cOYO1tXWVxeulSAIqsgSxKOTm5samTZsAuHz5MseP\nH8fZ2VmvY3jz5k2GDx/O8OHDCQwM1O13d3eXWJXi6tWr+Pv78/DhQwC2b99O586dcXd3Z+PGjYDE\n67GYmBgSEhKIi4tj1qxZNG3alA0bNsh9WAZFUQgNDeXWrVsArFq1it69e8u1VQYXFxc0Gg0XLlwA\nICkpCQcHB3r27Fll8XppVgwsbQliU1PTv7pbL4SAgAAcHBwYMWIE2dnZhISEcO7cOQAmTZqEm5sb\noL8xjIiIIDIykjfffFM3XGZqasrKlSuZNm2axKoUkZGRbN68GZVKRfPmzZk2bRqGhoZybZXj0KFD\nhIWFsXXrVrkPyxETE0NUVBQFBQXY2dkxe/ZsubbKkZqaSnh4OLm5udSqVYvQ0FCsrKyqLF4vTRIg\nhBBCiKr1UnwcIIQQQoiqJ0mAEEIIoackCRBCCCH0lCQBQgghhJ6SJEAIIYTQU5IECCGEEHpKkgAh\nXnEBAQH0798ftVpNixYt8PHxQa1W88EHH5CZmcmwYcOq7dzp6enMmjWr3DZ+fn7cvn272voghCib\nrBMghB5xcHDg8OHD1KpVq9rPlZ+fz6BBg4iKiqJOnTpltjt27BirVq3iiy++qPY+CSGKU/3VHRBC\n/HmezvmvXr2KWq3m8OHDLF68mMuXL6PRaLh58yZOTk40b96cnTt3kpmZycyZM3F0dOTevXvMnDmT\nn376Ca1Wi4eHB35+fiXOlZiYiJ2dnS4BiI6OJiYmBmNjY+rWrUt4eDj16tWjXbt2hISEcOHCBezs\n7P6UOAghCsnHAULoOQMDA93PJ06cYPXq1Wzfvp3ExEQePHjAunXreP/991m+fDkAYWFhdO7cmc2b\nNxMbG0taWlqxojCP7d69m+7duwOFVfXmzZvH+vXriY2NpVu3bpw8eVLX1sXFhaSkpGp+pkKIp8lI\ngBBCx8nJiZo1awJgaWmJi4sLALa2tty9excoXJv81KlTREdHA5CTk8O5c+fo27dvscfSaDQ0atQI\nKCxz6urqSv/+/XF1daV79+44Ojrq2tra2pKWllbtz08IUZwkAULokaLv+ktjbGxcbFulKvkvoqCg\ngKVLl9K4cWMAsrKyqFGjRqnnKigo0G3Pnz+fjIwMDhw4wGeffYajoyNTp04FCucPGBrKwKQQfza5\n64TQI1UxD9jZ2ZnVq1cDkJ2dzfDhw0sdym/SpAmXL18G4M6dO7i5uWFtbc2YMWMYNWqUrgIawJUr\nV2jatOkf7psQonIkCRBCjzxrJKAibYODg7lz5w7e3t74+vrSq1cvvL29S7Tz8PBg//79ALz22muM\nGTOGoUOHMnDgQGJiYvD399e1PXDgAD179qzksxFC/FHyFUEhRLV4/BXByMhILCwsymx35MgR1q5d\ny8KFC//E3gkhQEYChBDVxMjIiGnTprFo0aJy261YsYKgoKA/qVdCiKJkJEAIIYTQUzISIIQQQugp\nSQKEEEIIPSVJgBBCCKGnJAkQQggh9JQkAUIIIYSe+n/dD3BHegTcngAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x103acfa20>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dplot(d, timetrace_bg)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "([2217.7255529583294],\n", " [591.3055432410448],\n", " [818.69564582171483],\n", " [776.94465829541809])" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d.rate_m, d.rate_dd, d.rate_ad, d.rate_aa" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Burst search and selection" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " - Performing burst search (verbose=False) ..." ] }, { "name": "stdout", "output_type": "stream", "text": [ "[DONE]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " - Calculating burst periods ..." ] }, { "name": "stdout", "output_type": "stream", "text": [ "[DONE]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " - Counting D and A ph and calculating FRET ... \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " - Applying background correction.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " - Applying leakage correction.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " - Applying direct excitation correction.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " [DONE Counting D/A]\n" ] } ], "source": [ "bs_kws = dict(L=10, m=10, F=7, ph_sel=ph_sel)\n", "d.burst_search(**bs_kws)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "th1 = 30\n", "ds = d.select_bursts(select_bursts.size, th1=30)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bursts = (bext.burst_data(ds, include_bg=True, include_ph_index=True)\n", " .round({'E': 6, 'S': 6, 'bg_d': 3, 'bg_a': 3, 'bg_aa': 3, 'nd': 3, 'na': 3, 'naa': 3, 'nda': 3, 'nt': 3, 'width_ms': 4}))" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>E</th>\n", " <th>S</th>\n", " <th>bg_a</th>\n", " <th>bg_aa</th>\n", " <th>bg_d</th>\n", " <th>bp</th>\n", " <th>i_end</th>\n", " <th>i_start</th>\n", " <th>na</th>\n", " <th>naa</th>\n", " <th>nd</th>\n", " <th>nda</th>\n", " <th>nt</th>\n", " <th>size_raw</th>\n", " <th>t_end</th>\n", " <th>t_start</th>\n", " <th>width_ms</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.102133</td>\n", " <td>0.544892</td>\n", " <td>1.233</td>\n", " <td>1.192</td>\n", " <td>0.881</td>\n", " <td>0</td>\n", " <td>243</td>\n", " <td>173</td>\n", " <td>3.767</td>\n", " <td>30.808</td>\n", " <td>33.119</td>\n", " <td>-0.083</td>\n", " <td>67.694</td>\n", " <td>71</td>\n", " <td>0.018848</td>\n", " <td>0.017377</td>\n", " <td>1.4709</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0.309349</td>\n", " <td>0.376346</td>\n", " <td>2.651</td>\n", " <td>2.563</td>\n", " <td>1.895</td>\n", " <td>0</td>\n", " <td>671</td>\n", " <td>576</td>\n", " <td>10.349</td>\n", " <td>55.437</td>\n", " <td>23.105</td>\n", " <td>-0.180</td>\n", " <td>88.890</td>\n", " <td>96</td>\n", " <td>0.075501</td>\n", " <td>0.072338</td>\n", " <td>3.1635</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0.290108</td>\n", " <td>0.831108</td>\n", " <td>1.107</td>\n", " <td>1.070</td>\n", " <td>0.791</td>\n", " <td>0</td>\n", " <td>992</td>\n", " <td>949</td>\n", " <td>9.893</td>\n", " <td>6.930</td>\n", " <td>24.209</td>\n", " <td>-0.075</td>\n", " <td>41.032</td>\n", " <td>44</td>\n", " <td>0.097472</td>\n", " <td>0.096152</td>\n", " <td>1.3205</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0.181006</td>\n", " <td>0.602956</td>\n", " <td>1.640</td>\n", " <td>1.585</td>\n", " <td>1.172</td>\n", " <td>0</td>\n", " <td>1970</td>\n", " <td>1890</td>\n", " <td>8.360</td>\n", " <td>30.415</td>\n", " <td>37.828</td>\n", " <td>-0.111</td>\n", " <td>76.603</td>\n", " <td>81</td>\n", " <td>0.291411</td>\n", " <td>0.289455</td>\n", " <td>1.9565</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0.046636</td>\n", " <td>0.927752</td>\n", " <td>1.436</td>\n", " <td>1.388</td>\n", " <td>1.027</td>\n", " <td>0</td>\n", " <td>3166</td>\n", " <td>3127</td>\n", " <td>1.564</td>\n", " <td>2.612</td>\n", " <td>31.973</td>\n", " <td>-0.097</td>\n", " <td>36.149</td>\n", " <td>40</td>\n", " <td>0.666337</td>\n", " <td>0.664623</td>\n", " <td>1.7134</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " E S bg_a bg_aa bg_d bp i_end i_start na \\\n", "0 0.102133 0.544892 1.233 1.192 0.881 0 243 173 3.767 \n", "1 0.309349 0.376346 2.651 2.563 1.895 0 671 576 10.349 \n", "2 0.290108 0.831108 1.107 1.070 0.791 0 992 949 9.893 \n", "3 0.181006 0.602956 1.640 1.585 1.172 0 1970 1890 8.360 \n", "4 0.046636 0.927752 1.436 1.388 1.027 0 3166 3127 1.564 \n", "\n", " naa nd nda nt size_raw t_end t_start width_ms \n", "0 30.808 33.119 -0.083 67.694 71 0.018848 0.017377 1.4709 \n", "1 55.437 23.105 -0.180 88.890 96 0.075501 0.072338 3.1635 \n", "2 6.930 24.209 -0.075 41.032 44 0.097472 0.096152 1.3205 \n", "3 30.415 37.828 -0.111 76.603 81 0.291411 0.289455 1.9565 \n", "4 2.612 31.973 -0.097 36.149 40 0.666337 0.664623 1.7134 " ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bursts.head()" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'results/bursts_usALEX_22d_all_F7.0_m10_size30.csv'" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "burst_fname = ('results/bursts_usALEX_{sample}_{ph_sel}_F{F:.1f}_m{m}_size{th}.csv'\n", " .format(sample=data_id, th=th1, **bs_kws))\n", "burst_fname" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bursts.to_csv(burst_fname)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [], "source": [ "assert d.dir_ex == 0\n", "assert d.leakage == 0" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "all\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAEbCAYAAADH883eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAJ/wAACf8BB8w+RgAAIABJREFUeJzt3Xl4FFW6P/BvpzsdmrCHkEQuOm444gXFjRFZEyALScjm\ngDMJsowJkU1wBoMEBAKDmouAgAKDwrCIKJgFUCIkkGGTqKxuzHVjAEkC2aBD0mv9/sjt+tGkt2Bv\nqf5+nsdH+tRJ9Vunq+qtc2qTCYIggIiIiCTDz9MBEBERkXMxuRMREUkMkzsREZHEMLkTERFJDJM7\nERGRxDC5ExERSYxPJveMjAxUV1e3+O8uXbqEESNGuCAic2q1GtOmTbNbb9euXRg5ciQiIyOxfft2\nu+WbNm3CyJEjERcXh+XLl7copvHjx+OLL76wOj0tLQ2RkZFITExEXFwckpOTUVpaajZ99uzZZn+T\nnZ2N/Px88bNWq0W/fv2wbNkyh2L66aefkJqaioSEBIwZMwbff/+9zfKbffXVV0hLS7M5/2+//RZP\nPvkkEhMTkZiYiLlz5wIArl+/joyMDMTExGDs2LHiumSt3Jq0tDT069cPRqNRLBMEAQMGDGjWVt7i\no48+QnZ2tvjZWW3hTIWFhc3ar7S0FJGRkeLny5cvIzU1FTExMZg6dSoaGxsdnv+t63paWhouXLgg\nTq+pqUF2djZGjBiBkSNHIjk5GQcPHrQ736tXr+L5559HQkICkpKS8Pnnnzer09DQgJkzZyI+Ph7x\n8fH45JNPAACrVq3CmjVrHIr/+PHjSEhIQEJCAvr27Ssuy8yZM23+XUVFBSZOnIiEhARMnDgRdXV1\nZtNvbWN75c4wdepUlJeX48yZM1iwYAEA4KGHHnLKvAVBwMKFCxEXF4e4uDj885//tFluNBqRk5OD\nmJgYJCUlYd++fTbL16xZg4SEBCQmJiIhIQG9e/fGjh07nBK7KVBy0MWLF4URI0a4/HsuXLggDB8+\n3Gad8vJyISIiQrh27Zpw48YNYdSoUcIvv/xitfzixYvC0KFDhcbGRkGv1wspKSnCF1984XBM48aN\nE8rKyqxOT01NFU6cOCF+Pnv2rPDkk08KP/zwgzi9T58+wtGjR8U6c+bMEfLy8sTPe/bsESZPniwM\nGjRI0Ov1dmNKTU0VDh48KAiCIBw7dkxISEiwWX6zL7/8UkhLS7M5/w8++EBYuXJls/KFCxcK//jH\nPwRBEIT8/HzhpZdeslluK/7BgwebtUlZWZnw1FNPCVlZWTb/1t20Wq2wdOlSoW/fvkJ2drZY7qy2\ncKaCggKz9quqqhJiYmLMtt2MjAzh008/FQRBEFavXi28+eabDs//1nV948aNwsyZMwVBEASNRiPE\nxsYKb7/9tmA0GgVBEIQffvhBGDp0qLgtWJOVlSVs2bJFEARB+Omnn4Snn366WZ2VK1cKr7/+urhc\nAwcOFKqrq4WVK1cK77zzjsPLYJKWlma2LLakpqYKBQUFYhyvvfaaOM1SG9sqd5bk5GRBEARhw4YN\nYmwPPfSQU+b98ccfCy+++KIgCIJw48YNISYmRvj++++tlm/fvl3IyMgQjEajUFdXJ4wYMUIoLy+3\nWn6zgwcPCs8++6xgMBicErsgCIKke+7l5eVITU1FSkoKxowZgzNnzgAAwsPDUVFRgby8PMycORMT\nJ05EZGQkFi1aJP7t0qVLERkZiTFjxmDq1KlmPUwAqKqqwgsvvIDk5GSMHj0aJ06cANDUaxg1ahSS\nk5Px4osvQqvVoqysDKmpqRg3blyz71m5ciVGjhyJ+Ph48ch78eLFKC8vx/Tp060u27Fjx9C/f3+0\nb98eKpUKI0aMwN69ey2WFxUVwWg0wmAwoKGhAVqtFgaDAUql0mb75eTkICoqChMnTkRNTY3NNgWa\njmhN/vu//xsxMTFmR6Lp6enIzs5GQ0ODxe/Ly8tDTEwMfve736GkpMRmbACQkpKCQYMGAQAeeOAB\nVFRU2Cw/c+aM+Nu8//77dud/9uxZHD9+HElJScjMzBTnc/DgQYwaNQoAEBsbi3/9618wGo0WywVB\nQFpaGubNm4ekpCSMGjUKX3/9tfgdw4cPR1FRkfh57969Do0O/e///i9SUlKQmJiIRYsWiX8ze/Zs\npKenY+TIkTh69CjOnj2LZ599FklJSUhPT0dlZaW4bJbKw8PD8dZbb+GZZ55BXFycOOpx6tQp6HQ6\nzJo1yyyO22kL07biyEiYo8tTWlqKmJgYpKSkYP/+/WbzmD9/PjIzM8XPer0eX331ldibTEpKEn8D\n074BAMrKyjB+/HiLcd082nL9+nUEBwcDAIqKiqBSqZCZmQmZTAYAuPfee7FgwQLodDqUl5eLvbWb\n/wOAiIgIxMfHAwDuuusu6HS6ZtvK448/jrFjxwIAunTpgo4dO5qNihgMBmRmZmL16tU229VEEASz\n7Xb//v3N4ps7dy6qq6tx/vx5Mb7x48eLcVhqY1vl1taBo0ePIikpCSkpKZg4cSJqa2utxr1s2TJE\nRUXh0qVLSEhIwFtvvYV3330Xly5dgiAImDNnDkaNGoXMzExxPtZ+24kTJzb7Pb755hvcd999mDJl\nCgBApVKhR48eKC8vt1r+/fffIyIiAjKZDB06dMCDDz6IQ4cOWSw/fPiwuCxarRaLFy9GTk4O/Pyc\nl5IVTpuTF9qxYwcGDRqE9PR0lJWV4cSJE+jTp4+40QFNO/zdu3cDAKKiovCnP/0J58+fx6lTp/DJ\nJ59ArVYjKSkJERERZvNevHgxRo8ejcGDB+PXX3/F2LFjsXfvXqxYsQIffPABgoODsWLFCvzyyy8A\nmoZ4d+3ahdDQUIwbNw5FRUVQKpU4duwY8vPzIQgCnnvuOTz44IPIzs7GhAkTsGLFCqvLVllZiW7d\nuomfg4OD8e2330ImkzUr/+6779CjRw/ExcVh6NCh8Pf3x6BBg9CnTx+r8y8qKsLPP/+MvXv34tKl\nS4iNjbXZppbcf//9ZkPzTz31FCoqKrB06VKzoV3T8pw4cQIrVqzAtWvX8MEHH2D48OFW4wMgJg8A\nWLFihfgb3Vo+bNgwAMCcOXPw6quv4vHHH8fChQtx5coVm/Nv164dUlNTERkZiQ8++AB//etfsXnz\nZly5ckXcmcvlcrRt2xa1tbUWy00HRXK5HB9//DGOHj2KrKwscZ0bMmQI5s+fD6BpR3v69GmMHTsW\nx44dsxnbyy+/jJkzZ2LAgAHYuHEjDAaDOC0kJATr1q2DTqfDM888g7Vr1yIkJARFRUXIycnBm2++\niblz5zYrX7lyJQCga9eu+Oijj7BlyxasW7cOb775Jp544gk88cQTyMvLM4vjdtriZjdvi9bYW56l\nS5dizpw5eP/993HnnXdi0qRJCAwMBNC0vt59993o27evOL+amhp06NBB/O7g4GBxp+9ofK+88oq4\nrPX19di2bRsA4PTp03j88ceb1R84cKD471s7Ciam9RQA1q9fj4ceeggqlcqszh/+8Afx35988gn0\nej3uvfdeAE0HHLNnz0bPnj0xefJki99hz7Bhw8ziMDlz5gxCQ0ORk5ODL774Avfeey9effVVAJbb\n2Fb5rUxtvGbNGsybNw+PPPIItmzZgu+++w5PPfWUxb+ZMWMG+vTpg3//+9/IzMzEH//4R3z44YcA\nmg5whgwZgsWLF2PFihVYvXo15syZY/V73333XTutApw4cQJff/01HnvsMbRr185ieWVlJYqLizFq\n1CjU1tbi5MmT6NWrF3r16oV9+/Y1KzfJy8vDo48+Kv6OziLp5N6/f39MmTIF586dw5AhQ/CnP/0J\ngHkP89FHH0WbNm0AAD169EBdXR2OHDmCmJgYyOVydOzY0eLKfvToUfz888/i+WGDwYDy8nJERETg\nz3/+M4YNG4aoqCj07NkTZWVlePLJJ9G9e3cAQHR0NMrKyqBUKhEbGwt/f38ATT2cY8eO4b777rO7\nbIKFpwbL5XKLdf38/HDmzBkcOXIEpaWl8Pf3R3p6Onbv3i0m7VuVlZWJR9Tdu3cXd1j9+/fH5MmT\nm7WpJTKZDAEBAWZls2bNQlxcHKKjo83KCwoKMGDAALRt2xYjRozAokWL8Ouvv+KOO+6w3gj/5/XX\nX8fZs2fFc1+WymtqalBTUyMux6hRo7B06VKb883KyhL/PWbMGCxbtgw3btyw2PbWkoDpSDwlJQVA\nU/vV1NSIvQmVSoUHH3wQX375JQDgscces7u8dXV1qKiowIABA8R5b968WZxuOtj65ZdfcP78eUya\nNEnsocnlcqvlJqZEdP/99+PAgQN247mVvbZoKXvL8+9//xvdu3fHnXfeCQCIj4/HoUOHcOHCBXz8\n8cfYtGkTysvLxfm15PezZsmSJXj00UcBANu3b0dmZiY+++yzZvNaunQpDh06hMbGRgwdOhTPPfcc\nJk2aBJlMJsYhk8nMDpo2btwoHlxZ8+mnn+K1117D+vXrxbKtW7fixo0bt/Wbmezfvx+rVq0yK+vd\nuzcSExNx9uxZzJgxA3PnzsU777yDJUuWYMqUKRbb+D//+Y/FclvCw8Mxbdo0DB8+HBEREVYTu8kP\nP/yA+++/H1qt1mz9ValUYscgNjYWf/vb32zOZ+LEiaiqqhI/y2QyLFq0SDx3X1ZWhpkzZyI3N9cs\nsd9anpycjJ9//hkpKSn43e9+h4EDB8Lf3x/Jycn48ccfm5WbbN++3Ww011kkndwfffRRfPrppzhw\n4AA++eQTFBQUmG0MAJolH9MOw9IO4GZGoxFbt25F27ZtATRdbBISEoJXXnkFKSkpOHjwIP72t79h\n+vTp6Nq1q9mO7dad6c30er1DyxYSEoKTJ0+Kn69cuYJu3bqhW7duFsvLysowcOBAdOjQAUDTSn/i\nxAmryd0Up4kp3kcffRR79+612aYm586da3ag0q5dO7z66qvIzs5G7969xfKCggLU1NQgIiICgiDA\n398fH374IV588UWr8RmNRsyaNQtXr17Fpk2bxN6apfKamhqLy2PLunXrMGHCBCgUCrE9FAoFQkJC\nUFVVhaCgIPFUR6dOndCtW7dm5R07dmz2fbf+/pGRkSgqKoIgCIiNjcV//vMfm3HZi910sGowGHD3\n3Xfj448/Fj/X1dWhsrLSYrmJ6XTNzQnIGkvLbKstbp6no+u6reWpra3F5cuXzYbJTe2zf/9+VFVV\n4ZlnnoFWq8Wvv/6KCRMmYN26dbh+/bpY37SNmJbZxNH4Ro4cifnz56Ompga9e/cWe/EA8NJLL+Gl\nl15CXl4eTpw4gdDQUKs9dwDIzc3FoUOH8P7774sjH7faunUr3n33XWzYsMGst/fEE0/g3nvvxWuv\nvYbXXnvNodhvZa3nfuHCBXTq1ElMuNHR0Zg8eTKKi4vN2vjy5cuYMGECBg4caLHt33vvPQCARqMB\nALMLGceNG4eIiAgcOHAAubm5iImJwfPPP28xzmXLlmHbtm3o1q0b/ud//ge1tbVITEzEqlWrmm1r\npu3X2m9rq+e+f/9+zJ8/H8uXLzcbkbFUfu3aNYwfP148dTV16lR0794ddXV1mDBhAl5++WWzcqAp\nb9TX15v15J1F0ufcly5divz8fCQkJGDevHkWr5q2pH///igqKoJer4darbZ4pWu/fv3Ejfjs2bNI\nTk6GVqtFZGQkOnfujPT0dMTHx+O7774DAHz55Ze4evUqtFotPvnkEzz99NN44oknsHv3bmi1Wmg0\nGuzatQv9+vWDQqGATqezGeNTTz2FY8eOoa6uDg0NDfjss88wcOBAq+W///3vceTIEWg0GhgMBhw6\ndMjmVaV/+MMfsHfvXuj1elRUVOCrr75qUZuePn0an332GZ555plm04YMGYJevXrh008/BdA05Fdd\nXY3S0lIUFxejpKQEubm52Llzp9lO+1aLFy+GWq3GP/7xDzGxWyvv3LkzunbtKg53m64ytuXQoUPY\ns2cPgKah1IcffhhKpRKDBw8We1p79uzBY489BplMZrX85u8rLS1F9+7d0b59e7P2OHToEL7++ms8\n8sgjduNq164dunfvLi5LYWGhxZ7nPffcg6qqKvG6iE2bNmHevHlWy29HS9uic+fOOHfuHACIPV1H\nWYr71VdfRc+ePVFRUYGffvoJgiCI69X48eNRVFSEvLw8rFu3DnfccQfee+89KBQK8cAfaBoWNY1W\ndOnSRVynTVc12/P5558jLCwMnTt3RnR0NDQaDdauXSsmELVajePHj9sduXjvvfdQVlZmM7Hv3bsX\nGzduxLZt25oN4/7+979HRkYGTp48afFK+9+iR48e6Ny5szjfgwcP4sEHHxRPMZraOCwsDO+9957V\ntjc5fvw4AODIkSNi2ZgxY6BWqzF27Fg899xz4r7TkhkzZuCuu+7C7t278dxzz4kHUN27d4darcah\nQ4cANG23pgOSlv62J0+exPz587FhwwazxG6vHAB+/PFHnD59Gv3797daDjRdy2IaAXI2l/XcP/zw\nQ2zevBlyuRxdunTBwoUL8V//9V9mdaKioqBUKsUjrfT09GbDtb/Fn//8Z/FHVygUYgNbG4IzlQ8e\nPBgnT55EYmIiOnTogG7duom9B5Ps7GzMnTsXBQUF8PPzw/Lly6FUKjF9+nSMGzcObdq0QadOnfD6\n66/jp59+QnBwMF566SVUVlYiOjoagwcPBtB0Lj45ORl6vR5RUVEYPnw49Ho9unXrhokTJ1o9qgwJ\nCcH06dORmpoKnU6H0aNH48EHHwQAq+XffPMNRo0aBX9/f/Tv3x/JyclW22748OE4deoUYmNjERYW\nhvvvvx8AkJqaipkzZzZrU6Dp4ifTSIZKpcLy5csRFhZmsc2zs7PF5FRQUIDk5GTxCBtourjojTfe\nQElJicWeRF1dHbZt24YePXqIBxAymUzc8d1anpeXhzfeeAOvvPIKBEFw6Eh58eLFmD17NtavX4/O\nnTsjNzcXADBt2jRkZWWhoKAA7du3F4f3rZUDwM8//4zExET4+/uLvSpTmwQGBuKee+7BXXfdZTcm\nkyVLlmDOnDnIzc3FAw880Gz9BJp64MuWLUNOTg60Wi06deqEN954w2K5adlaOjzd0rb4y1/+gqys\nLOzYscPuNRUtWZ7c3FxMnz4dSqXSodNa8+bNw8svv4zVq1cjLCxMPL02ZcoULFq0CCtXrsSgQYNw\n/vx5i39vWtdlMhn8/PzE5VMqldi0aROWLVuGhIQE+Pv7w2AwYNiwYZg4caLNmNauXYvAwECkpaVB\nEATIZDKsW7cOZ8+exYEDB5CTk4O1a9eisbFRPDVhGkK+uY1eeeUVzJ8/H4WFhVi4cCEiIiIwdOhQ\ni9/Zkt971apVmDt3LhYvXoyuXbuK68ztMI0a3rzOT58+HVlZWeI1GgsXLgTQlBemT59u1hkxjQoB\nTZ2Dm9u2c+fO2LNnD3Jzc3HPPffg73//OwDHf1uTd999F3q9HrNmzRLbetq0adi5c6fF8qFDh+Lg\nwYOIjY2FQqHA0qVL0a5dOwwdOhSlpaXNyoGmEZHQ0NDbbkebnHbd/U2+/fZbITw8XLh27ZogCIKw\ndetWYezYsWZ1amtrLd7q4Q1Onjwp3qKl0+mEP/7xj8K5c+due37Hjx8Xxo8f76zwqJVJTU0Vvvrq\nK6fOc9WqVcKVK1cEQRCE4uJiYerUqU6dP0nDvn37xNtCvUVLt4eNGzfavY2QmnNJzz0wMBCLFi0S\nhx579+6NjRs3mtU5deoU2rRpg3HjxqG6uhojRozACy+84NRbAW7X3XffjVWrVmHDhg0QBAFJSUno\n2bOn2+O4cOECpk6danZ0LfzfkeJbb72FHj16ePX8neGNN97A0aNHxRhN8fXv39/uhTLeMH+g5b1h\nR2K7//77MX78eMjlcnTq1AmLFy92SqyesHHjRuTn5zdrp/vuu+839Q6p6dyyaZTQW7R0e+jSpYvT\nryT3BTJBsHPFzG+k0+mQkZGB3r17Y8aMGWJ5UVERjhw5guzsbOh0OqSnpyMqKsruU8OIiIjINpcm\n99raWsyYMQOBgYFYsWKFzat89+3bh61btzbr4RMREVHLuOyCul9++QUZGRkYPHgwZs+e3WwoZv/+\n/QgODsbDDz8MwPyWBVu0Wj0UCs8P3bubI7cl+QK2A9vAhO3QhO3QxFfbwdqpbJck9ytXriAtLQ0Z\nGRlITU21WOfixYvYsmUL1q9fD4PBgK1bt4qPNrSlrs7yo0ulLigoEFVV9Z4Ow+PYDmwDE7ZDE7ZD\nE19th+Dg9hbLXZLct2zZgtraWuzcuVN8trhKpcLzzz8v3tKRlpaGixcvIj4+HgaDAdHR0TZvzSIi\nIiLHuPyCOme7cuW6/UoS5KtHpbdiO7ANTNgOTdgOTXy1Haz13H3v5DUREZHEMbkTERFJDJM7ERGR\nxDC5ExERSQyTOxERkcQwuRMREUkMkzsREZHEMLkTERFJDJM7ERGRxDC5ExERSQyTOxERkcQwuRMR\nEUkMkzsREZHEuOSVr0TuVq8xQKOz/4LDAH8ZAgPkboiIiMhzmNyp1avXGLDtSDUatPbrqpTAs093\nYYInIkljcqdWT6MT0KAFgrp2hVJpfZXWavWounoVGp2AwAA3BkhE5GZM7iQZSqUCqgClU+bFYX4i\nas2Y3IluwWF+ImrtmNyJbsFhfiJq7Zjciaxw5jA/EZE78T53IiIiiWFyJyIikhgmdyIiIolhcici\nIpIYJnciIiKJYXInIiKSGCZ3IiIiiWFyJyIikhgmdyIiIolhciciIpIYJnciIiKJYXInIiKSGCZ3\nIiIiiWFyJyIikhgmdyIiIolhciciIpIYlyX3Dz/8EHFxcUhISMCECRNw8eLFZnVWr16N6OhoREZG\nYsOGDa4KhYiIyKe4JLl/9913WLt2Ld5//33k5+dj2LBhmDNnjlmdkpISlJaWoqCgAPn5+dizZw+O\nHz/uinCIiIh8ikuSe2BgIBYtWoT27dsDAHr37o3Lly+b1SkuLkZsbCyUSiVUKhXi4+NRWFjoinCI\niIh8ikuS+5133omnnnoKAKDT6bBs2TJER0eb1amoqEBoaKj4OSQkBOXl5a4Ih4iIyKe49IK62tpa\npKeno23btpg2bZrZNEEQmtWXy+WuDIeIiMgnKFw1419++QUZGRkYPHgwZs+eDZlMZjY9NDQUV65c\nET9XVlaa9eSt6dhRBYXC9y7yl8lkCAoK9HQYHmepHQSFFnJFHZT+ciiV1g8QDUY55Ao/dO6kQlBH\npdV6zp4fAKgb9GjUGm3WAYA2Sj+0U9neLLkuNGE7NGE7NGE7mHNJcr9y5QrS0tKQkZGB1NRUi3Ui\nIiKwdu1apKSkwGg0YteuXZg8ebLdedfVNTg73FYhKCgQVVX1ng7D4yy1Q41aD4PeCK3OALmfwerf\nanUGGPRG1NQ2QKbXWa3n7PnVawzYdqQaDVobC/Z/VErg2ae7IDDA+kEF14UmbIcmbIcmvtoOwcHt\nLZa7JLlv2bIFtbW12LlzJ3bs2AEAUKlUeP7553HgwAHk5OQgPDwc586dQ3JyMnQ6HeLj4zF48GBX\nhEPkURqdgAYtENS1K5RK65ucVqtH1dWr0OgEBAa4L756jQEaXfPTZLcK8JfZPOggIu/hkuQ+Y8YM\nzJgxw+K08PBw8d+ZmZnIzMx0RQhEXkepVEAVYHv43t2cPapARN7BZefcicj7efuoAhHdHiZ3IvLK\nUQUiun2+d9k5ERGRxDG5ExERSQyH5cmnGIwCauv1NuvU1uthtPCQJSKi1oLJnXyGTm9AtVqHgq+u\nQeEns1pPbzCi9oYRYfafOUNE5JWY3MlnGI1GAH4ICuqKtip/q/WuqxtRU38VRiN770TUOjG5k89R\n+tu+Mlyjtf60OSKi1oAX1BEREUkMkzsREZHEMLkTERFJDJM7ERGRxDC5ExERSQyvliePceRVo3zN\nKBFRyzG5k0c4+qpRvmaUiKjlmNzJIxx51ShfM0pEdHuY3Mmj+KpRIiLnY3Inr3bri14EhRY1avMX\nv/BFL0RE5pjcyWtZetGLXFEHg978jS580QsRkTkmd/Jall70ovSXQ6szmNXji16IiMwxuZPXu/lF\nL0qlHHI/8+TOF70QEZnjQ2yIiIgkhsmdiIhIYpjciYiIJIbJnYiISGKY3ImIiCSGyZ2IiEhimNyJ\niIgkhsmdiIhIYpjciYiIJIbJnYiISGKY3ImIiCSGyZ2IiEhimNyJiIgkhsmdiIhIYvjKV3K6eo0B\nGp3td6vX1uthFPj+dSIiV2ByJ6eq1xiw7Ug1GrS26+kNRtTeMCLM6J64iIh8icuTe1ZWFnr16oWx\nY8c2mxYVFQWlUgm5XA4ASE9PR3R0tKtDIhfS6AQ0aIGgrl2hVFpfva6rG1FTfxVGI3vvRETO5rLk\nfv78eSxYsAAnT55Er169mk2vq6uDWq3G4cOHXRUCeZBSqYAqQGl1ukarc2M0rmMwCqit19usw1MQ\nRORuLkvu27dvR1JSEkJCQixOP3XqFNq0aYNx48ahuroaI0aMwAsvvAA/P17jR62DTm9AtVqHgq+u\nQeEns1qPpyCIyN1cltxnzZoFADhy5IjF6Y2Njejfvz+ys7Oh0+mQnp6Ojh07Ii0tzVUhETmV0WgE\n4IegoK5oq/K3Wo+nIIjI3TzWTY6MjMTChQuhVCoRGBiIcePGobi42FPhEN02pX/TKQhr/ymVck+H\nSEQ+xmNXy+/fvx/BwcF4+OGHAQCCIEChsB9Ox44qKBS+N3Qvk8kQFBToknmrG/Ro1NofMzYYBcht\nDD8DgCAHZH4yKP3lNpOav0IOyACFv5/Vetbq3FrfkXm1hnoGoxxyhR86d1IhqKP16xWcuS4ICi3k\nijq7v5ejsbmTK7eJ1oTt0ITtYM5jyf3ixYvYsmUL1q9fD4PBgK1btyI+Pt7u39XVNbghOu8TFBSI\nqqp6p8/X0VvXDEYBdTd06BToDz+Z/fPL3boZIPczWK2n0xsAAdDrjNBqLdezVEeplDer78i8WkM9\nrc4Ag96ImtoGyPTWLzh05rpQo9bDoDdCq7P9ezkamzu5aptobdgOTXy1HYKD21ssd2tyLykpwYED\nB5CTk4Mj5bAeAAAUhUlEQVS0tDRcvHgR8fHxMBgMiI6ORnJysjvDIbTs1rVq9VV07sLzy0RE3s7l\nyX3JkiXiv8PDwxEeHg4AkMvlyM7OdvXXk4McvXXNdH7ZXj0iIvIc3zt5TUREJHFM7kRERBLD5E5E\nRCQxfHEMUSujbtCjWm37kbcAEOAvQ2AA77En8kVM7kStSL3GgH8euoxr9dZvWzNRKYFnn+7CBE/k\ng5jcibyIvRfR1Nbrcb3BaPfWRa1Wj6qrV6HRCQgMcEWkROTNmNyJvIQjL6LRG4yoazSiWzfbtyQS\nkW9jcpeweo0BGp3th8nwdaTew5EX0VxXN6LmEh8SRES2MblLlKOPleXrSL2PrQcF8SFBROQIq8k9\nIyMDa9euBQCcOXMGffr0cVtQ9Nu15LGyfFwsEZG0WL3PvaKiQvz3q6++6pZgyPlMj5Xl60iJiHyH\nQw+xEXhOloiIqNWwmtxlN73WU2bjFZ9ERETkXayejL127RpKSkogCAKuX7+O4uJis+kREREuD46I\niIhazmpyv+OOO7BhwwYAQFhYGDZu3ChOk8lkTO5EREReympy37x5szvjICIiIiexeZ+7Wq1GYWEh\nfvjhB6hUKjzwwAOIioqCUsknYxEREXkrqxfU/fjjj4iOjkZxcTHatGkDANi5cyeioqJw4cIFtwVI\nRERELWO15/7666/j5ZdfRmxsrFl5Xl4ecnNz8dZbb7k8OCIiImo5qz33X3/9tVliB4DExEScP3/e\npUERERHR7bOa3BUK66fjed87ERGR93LoITYtmUZERESeZbV7fuHCBUyZMqVZuSAIuHjxokuDIiIi\nottnNbnPmTMH1dXVkMlkaNOmDVQqlTht2LBhbgmOiIiIWs5qcu/QoQMWLlwIlUoFPz8/rFq1Co88\n8og7YyMiIqLbYPWc+9tvv43t27fj6NGjmD9/PlauXOnOuIiIiOg2WU3uBoMBPXv2BNA0DH/z+92J\niIjIezl8tbytW+OIiIjIe1hN7rfi7W9EREStg9Xu+Llz5/Dkk0+Kn9VqNZ588kkIggCZTIaysjK3\nBEhEREQtYzW579u3z51xEBERkZNYTe7du3d3ZxxERETkJA6fcyciIqLWgcmdiIhIYpjciYiIJIbJ\nnYiISGJcntyzsrKwadMmi9NWr16N6OhoREZGYsOGDa4OhYiIyCe4LLmfP38eEyZMQFFRkcXpJSUl\nKC0tRUFBAfLz87Fnzx4cP37cVeEQERH5DJc9U3b79u1ISkpCSEiIxenFxcWIjY2FUqkEAMTHx6Ow\nsBD9+vVzVUhEREQ+wWU991mzZiE2Ntbq9IqKCoSGhoqfQ0JCUF5e7qpwiIiIfIbH3gYjCEKzMrlc\n7oFIiMib1WsM0Oia7y8EhRY1aj0AIMBfhsAA7j+ITDyW3ENDQ3HlyhXxc2VlpVlP3pqOHVVQKHzv\nIn+ZTIagoECH6wsKLeSKOij95VAqre/0/BVyQAYo/P28rp61OrfW9+ZlcHY9f0VTub15GYxyyBV+\n6NxJhaCOSqv1HF1PHJ2fs6kb9Pjnocuo1zRP7jLUwVQaGCBDemQY2ql87+2VLd03SBXbwZzHtoSI\niAisXbsWKSkpMBqN2LVrFyZPnmz37+rqGtwQnfcJCgpEVVW9w/Vr1HoY9EZodQbI/QxW6+n0BkAA\n9DojtFrvqmepjlIpb1bfm5fB2fV0+qZye/PS6gww6I2oqW2ATK+zWs/R9cTR+TlbtVqPa/UGBHXt\nCqXSfHel9JdDqzNAq9Wj6upVXK6sR5d2vpfcW7pvkCpfbYfg4PYWy926JZSUlODAgQPIyclBeHg4\nzp07h+TkZOh0OsTHx2Pw4MHuDIeIWgmlUgFVgPKWMrnNAxIiX+by5L5kyRLx3+Hh4QgPDxc/Z2Zm\nIjMz09UhEBER+RTfG8Mi8hEGo4Daer3NOrX1ehgtXNxKRK0bkzuRBOn0BlSrdSj46hoUfjKr9fQG\nI2pvGBFmdGNwRORyTO5EEmQ0GgH4ISioK9qq/K3Wu65uRE39VRiN7L0TSQmTO5GEKf2bX4h2M43W\nfVe+E5H7+N4N40RERBLH5E5ERCQxTO5EREQSw+ROREQkMUzuREREEsPkTkREJDFM7kRERBLD5E5E\nRCQxTO5EREQSw+ROREQkMUzuREREEsPkTkREJDFM7kRERBLD5E5ERCQxfOUrEXlEvcYAjc72e+Rr\n6/UwCnzXPFFLMbkTkdvVawzYdqQaDVrb9fQGI2pvGBFmdE9cRFLB5E5EbqfRCWjQAkFdu0KptL4b\nuq5uRE39VRiN7L0TtQSTOxF5jFKpgCpAaXW6RqtzYzRE0sHk3grxXCUREdnC5N7K8FwlERHZw+Te\nyvBcJRER2cPk3krxXCUREVnDh9gQERFJDJM7ERGRxDC5ExERSQyTOxERkcQwuRMREUkMkzsREZHE\nMLkTERFJDO9zJyK6hSOPeAaAAH8ZAgPkboiIqGWY3ImIbuLoI54BQKUEnn26CxM8eR0mdyKimzj6\niGetVo+qq1eh0QkIDHBjgEQOcGlyLy4uxvLly6HT6dC3b18sWLAASqX5I1OjoqKgVCohlzcd+aan\npyM6OtqVYRER2WXvEc9E3sxlyb2qqgrz5s3Djh07EBYWhgULFmDNmjWYNm2aWKeurg5qtRqHDx92\nVRhEREQ+x2VXyx8+fBh9+/ZFWFgYAGD06NEoLCw0q3Pq1Cm0adMG48aNQ3x8PFatWgWjke8oJSIi\n+i1cltwrKioQGhoqfg4JCUFFRYVZncbGRvTv3x/r1q3Dtm3bcOzYMWzdutVVIREREfkElyV3QWh+\nG4npvLpJZGQkFi5cCKVSicDAQIwbNw7FxcWuComIiMgnuOyce2hoKL755hvxc2VlJUJCQszq7N+/\nH8HBwXj44YcBNB0QKBS2Q+rYUQWFwveevSOTyRAUFAhBoYVcUQelvxxKpfXbb/wVckAGKPz9Wm09\na3Vure/Ny+Dsev6KpnJ3x2YwyiFX+KFzJxWCOv72i8yctR4rlXKPxebs771dpn2Dr2M7mHNZch8w\nYAByc3Nx6dIldO/eHR999BEiIiLM6ly8eBFbtmzB+vXrYTAYsHXrVsTHx9ucb11dg6tC9mpBQYGo\nqqpHjVoPg94Irc4AuZ/Ban2d3gAIgF5nhFbbOutZqqNUypvV9+ZlcHY9nb6p3N2xaXUGGPRG1NQ2\nQKbXWa3nKGesx6Z1wVOxOft7b5dp3+DrfLUdgoPbWyx3WXIPCgrCokWLkJmZCb1ej549e2LJkiUo\nKSnBgQMHkJOTg7S0NFy8eBHx8fEwGAyIjo5GcnKyq0IiIiLyCS69z33IkCEYMmSIWVl4eDjCw8MB\nNJ2Dz87OdmUIREREPsf3Tl4TERFJHJM7ERGRxDC5ExERSQyTOxERkcQwuRMREUkMX/lKRHSbDEYB\ntfV6u/UC/GV85zu5FZM7EdFt0OkNqFbrUPDVNSj8ZDbrqpTAs093YYInt2FyJyKHsJdqrukNln4I\nCuqKtip/q/W0Wj2qrl6FRicgMMB98ZFvY3L/jeo1Bmh0zV+Scytf2eGRNLGXap3SXwFVgOeeLU9k\nCZP7b1CvMWDbkWo0aO3X9bUdHkkLe6lErQuT+2+g0Qlo0AJBXbtCqbTelNzhkVQ40kt1ZPi+tl4P\no4XXQt8uXztlcPOIoaDQokbdfNmlsqx0e5jcrXBkuN20g1IqOSxHBDg+fK83GFF7w4gwo/u+E5DG\nCNqtI4ZyRR0M+uYNKYVlpdvH5G6Bo8PtztxBEUmBo8P319WNqKm/CqPxt/fefe2Uwa0jhkp/ObQ6\n81fTSmVZ6fYxuVvg6HC7M3dQgO3RAtPQm7OHM4lcwd7wvUbr/Pef+9qFbaYRQ6VSbvO98+SbmNxt\nsDfc7swdlL3RAtPQG0cLiIjIHp9L7i05l+5O9kYLTENvzh4tICIi6fGp5N4azqVbGy0wDb25YjiT\niIikxaeSu6fOpRMREbmTTyV3E3eeSyci8rX78MnzfDK5ExG5i6/dh0/egcmdiMiFfO0+fPIOTO5E\nRG7g7vvweSrAtzG5ExFJDE8FEJM7EZHE8FQAMbkTEUmUs97iB3D4vrVhcici8lEcvpcuySR3b32s\nrIm9o2O+EIaIHOlFO3NfweF76ZJEcvf2x8o6cnTMF8IQ+TZHe9Gu2Ff42hv1fIEkkru3P1bWkaNj\nPvKWyLc52ov21L6C5+ZbF0kkdxNvf6ysraNjT8dGRN7BXi/aE/sKnptvfSSV3ImIyPl4bt49HLl2\nDHBsdITJnYh8hrsvWJMa3lrnOo5eOwY4NjrS6pJ7tbr5SsONkYjs8eQFa77C14bvndnTdvTaMUdH\nR1pdct96uKZZGTdGIrLH2y9YkwJfGr53dk/bxN61Y45qdck97I7QZmXcGInIUd54wZrU+MLwfUt6\n2pWVV1BRq0OnQOs5ytkj0K0uuVtaYbgxEhG1Ht4+fN+Sh6LZ62l76nRQq0vuRETUurVk+N6RXi8A\nBLS1PwrgCGc/FM1Tp4NcmtyLi4uxfPly6HQ69O3bFwsWLIBSaX6Es3r1auzevRtGoxFjxozB+PHj\nXRkSERF5CXvD9y3p4bdtU4fIPu3QVmm9h+/MC9tamozdfTrIZcm9qqoK8+bNw44dOxAWFoYFCxZg\nzZo1mDZtmlinpKQEpaWlKCgogMFgQFpaGnr16oV+/fq5KiwiImolHO313rihwY8XKvHR5wabBwFK\nuYCRj3W0eQDg6HC7t58OdllyP3z4MPr27YuwsDAAwOjRozFlyhSz5F5cXIzY2FixNx8fH4/CwkIm\ndyIiEjnS6xUgs3kQcOOGBj/8pwIffV7nE7dCuiy5V1RUIDT0/1/ZHhISgoqKimZ1Bg8ebFantLTU\nVSEREZGE2X/Et+/cCumy5C5YuKRfLpe3uM6tGjTNr3LQag1N/9fp0aCxfkTmzfXs1TEY5dDqDF69\nDM6uZ6mOqR08HZun6nlzbO6u54vbhKV6vr5NOFrPVMdR3rgMTfUcu3DQZck9NDQU33zzjfi5srIS\nISEhzepcuXLFrM7NvX1LMiPaWihtC6CLA1F5cz1vjs1T9bw5Nk/V8+bYPFXPm2PzVD1vjs1T9bw5\ntpbUA4AOdmv4OTinFhswYABOnDiBS5cuAQA++ugjREREmNWJiIhAYWEhNBoNGhoasGvXrmZ1iIiI\nqGVkgqWxcSc5ePAg3nzzTej1evTs2RNLlizBsWPHcODAAeTk5AAA3nnnHezZswc6nQ7x8fGYPHmy\nq8IhIiLyCS5N7kREROR+LhuWJyIiIs9gciciIpIYJncvUlxcjLi4OERFRWH27NnQapvf9rd69WpE\nR0cjMjISGzZs8ECUrmevHQwGA3JychAXF4e4uDjMmTPHYlu1do6sDybTpk3DkiVL3BidezjSBnv2\n7EFSUhJiY2Px17/+FTqddz857HY40g5LlizByJEjERcXhzfeeMMDUbpPVlYWNm3aZHGaL+wjHcHk\n7iVMj+tdt24d9u7dizZt2mDNmjVmdW5+XG9+fj727NmD48ePeyhi13CkHbZs2YKKigoUFhZi165d\naGxsxPr16z0UsWs40g4mmzdvxhdffOHmCF3PkTY4c+YMcnNzsXbtWuzevRsGgwGbN2/2UMSu4Ug7\n7N+/H6dPn8auXbuQn5+PL774Avv37/dQxK5z/vx5TJgwAUVFRRan+8I+0lFM7l7C0uN6CwsLzerc\n/LhelUolPq5XShxph4ceeggvvvgiZLKmBz306tULv/76q9tjdSVH2gEAzp49i3379mHMmDHuDtHl\nHGmDXbt2ISUlBcHBwQCAuXPnIjY21u2xupIj7WA0GtHY2AiNRoPGxkZotVoEBAR4IlyX2r59O5KS\nkhAVFWVxui/sIx3F5O4lHH1c7611ysvL3RajOzjSDo8//jjuu+8+AMDly5exadMmREdHuzVOV3Ok\nHa5fv4758+fjtddes/tkx9bIkTY4f/48NBoNJk2ahISEBKxatQodOth/wEdr4kg7jBgxAnfeeScG\nDhyIIUOGoEePHhg4cKC7Q3W5WbNm2Tx484V9pKOY3L2Eqx7X29q0ZBm///57pKamIi0tDU8//bSr\nQ3MrR9phzpw5mDRpEu644w53heVWjrSBXq/H4cOH8frrr2Pnzp24du0aVqxY4a4Q3cKRdti2bRvq\n6+tx+PBhHD58GIIgYNWqVe4K0Wv4wj7SUUzuXiI0NBSVlZXiZ2c9rre1caQdAODAgQMYP348Xnzx\nRfzlL39xZ4huYa8dKioqcOrUKbz99ttISEjABx98gF27dmHx4sWeCNclHFkXunXrhkGDBqFjx46Q\ny+WIi4vD6dOn3R2qSznSDgcPHsSoUaPQpk0bBAQE4JlnnsGxY8fcHarH+cI+0lFM7l6Cj+tt4kg7\nHDt2DFlZWXj77bcRFxfniTBdzl47hISE4F//+hfy8vKQn5+PMWPGiHcOSIUj68KwYcNQUlICtVoN\nQRBQXFyM3r17eyJcl3GkHR566CHs27cPRqMRRqMRxcXF6NOnjyfC9Shf2Ec6ymUvjqGWCQoKwqJF\ni5CZmWn2uN6SkhLxcb3h4eE4d+4ckpOTxcf13vzKXClwpB1Mw64LFy6EIAiQyWR4/PHHJZXYHGkH\nqXOkDYYNG4by8nKMHj0aRqMRvXr1QlZWlqdDdypH2mHSpEn4+9//jpiYGCiVSvTu3RvTp0/3dOhu\n4Wv7SEfx8bNEREQSw2F5IiIiiWFyJyIikhgmdyIiIolhciciIpIYJnciIiKJYXInIiKSGN7nTkQO\nuXTpEoYPH44HHnhAfL6AIAjo0qUL3nvvPU+HR0Q3YXInIoe1a9cOeXl5ng6DiOzgsDwREZHEsOdO\nRA5Tq9VITEwEAHFoPioqChkZGR6OjIhuxuRORA7jsDxR68BheSIiIolhcicih/E9U0StA4flichh\nN27cEM+5A///vPvGjRvRsWNHD0ZGRDfjK1+JiIgkhsPyREREEsPkTkREJDFM7kRERBLD5E5ERCQx\nTO5EREQSw+ROREQkMUzuREREEvP/AJzAOVRdPP8QAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x103be96a0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "print(d.ph_sel)\n", "dplot(d, hist_fret);" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# if data_id in ['7d', '27d']:\n", "# ds = d.select_bursts(select_bursts.size, th1=20)\n", "# else:\n", "# ds = d.select_bursts(select_bursts.size, th1=30)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ds = d.select_bursts(select_bursts.size, add_naa=False, th1=30)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [], "source": [ "n_bursts_all = ds.num_bursts[0]" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def select_and_plot_ES(fret_sel, do_sel):\n", " ds_fret= ds.select_bursts(select_bursts.ES, **fret_sel)\n", " ds_do = ds.select_bursts(select_bursts.ES, **do_sel)\n", " bpl.plot_ES_selection(ax, **fret_sel)\n", " bpl.plot_ES_selection(ax, **do_sel) \n", " return ds_fret, ds_do" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAEbCAYAAACyfnF9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAJ/wAACf8BB8w+RgAAIABJREFUeJzsnXmYVMW5/z9n7W32GYYd4h71aqKJMe4LKorsYPQqqEiC\n4bpg9BdjFHe9GrnE/SYSt2jiknhV3DFuXB9ciKJxJ9eogCAzwOy9na1+f5w+hzPN6Z4Z0oOM6e/z\n9NPddU4tb9Wp91vvW3WqJCGEoIwyyiijjDIGOOSvuwBllFFGGWWUUQqUCa2MMsooo4xvBMqEVkYZ\nZZRRxjcCZUIro4wyyijjG4EyoZVRRhlllPGNQJnQyiijjDLK+Eagz4R25pln0tLS0ueM1q5dyzHH\nHNPneH1FV1cX5557bo/3Pfnkkxx//PGMHTuWhx9+uMfw++67j+OPP54JEyZw00039alMs2bN4q9/\n/WvB6zNnzmTs2LFMmTKFCRMmMG3aNJYuXdrt+i9/+ctucebPn8/jjz/u/zcMg/33358bb7yxV2X6\n7LPPmDFjBpMnT+akk07ik08+KRoexNtvv83MmTOLpv/RRx/xgx/8gClTpjBlyhQuvfRSADo7Oznz\nzDMZN24cp556qv8sFQovhJkzZ7L//vvjOI4fJoTg4IMP3qKuthf8+c9/Zv78+f7/UtVFKfHEE09s\nUX9Lly5l7Nix/v+vvvqKGTNmMG7cOM455xwymUyv089/1mfOnMmaNWv8662trcyfP59jjjmG448/\nnmnTpvHKK6/0mO7GjRv5yU9+wuTJk5k6dSpvvPHGFvek02nOP/98Jk6cyMSJE3nmmWcAuO222/jt\nb3/bq/K/+eabTJ48mcmTJ7PPPvv4spx//vlF4zU1NTF79mwmT57M7NmzaW9v73Y9v457Ci8Fzjnn\nHNavX897773HlVdeCcCee+5ZkrSFEFx11VVMmDCBCRMm8Pvf/96/NmHCBCZPnuzrhg0bNhQML5ZO\noYy3Cb788ktxzDHH9Hs+a9asEUcffXTRe9avXy/GjBkjOjo6RCqVEpMmTRJffPFFwfAvv/xSHHHE\nESKTyQjLssT06dPFX//6116X6fTTTxfLly8veH3GjBlixYoV/v/3339f/OAHPxCffvqpf33vvfcW\nr732mn/PJZdcIh577DH//9NPPy3OOussceihhwrLsnos04wZM8Qrr7wihBDi9ddfF5MnTy4aHsRb\nb70lZs6cWTT9hx56SNx6661bhF911VXid7/7nRBCiMcff1xccMEFRcOLlf+www7rVifLly8XBxxw\ngLjooouKxt3WMAxDLFy4UOyzzz5i/vz5fnip6qKUWLx4cbf627Rpkxg3bly3vnvmmWeKZ599Vggh\nxO233y5+/etf9zr9/Gf93nvvFeeff74QQohsNivGjx8v/vu//1s4jiOEEOLTTz8VRxxxhN8XCuGi\niy4Sf/jDH4QQQnz22WfioIMO2uKeW2+9VfzqV7/y5TrkkENES0uLuPXWW8VvfvObXsvgYebMmd1k\nKYYZM2aIxYsX++W4/vrr/WthdVwsvFSYNm2aEEKIe+65xy/bnnvuWZK0H330UXHeeecJIYRIpVJi\n3Lhx4pNPPhHpdDpUPxcKL5ROIRS00NavX8+MGTOYPn06J510Eu+99x4ARx55JE1NTTz22GOcf/75\nzJ49m7Fjx3LNNdf4cRcuXMjYsWM56aSTOOecc7pZEgCbNm3iP/7jP5g2bRonnngiK1asANzR4aRJ\nk5g2bRrnnXcehmGwfPlyZsyYwemnn75FPrfeeivHH388EydO9EdY1157LevXr2fevHkFSfz111/n\nwAMPpLKyklgsxjHHHMNzzz0XGr5kyRIcx8G2bdLpNIZhYNs2uq4XHShcffXVHHvsscyePZvW1tai\ndZobWPi//+3f/o1x48bxyCOP+GFz5sxh/vz5pNPp0Pwee+wxxo0bx7e+9S1eeumlomUDmD59Ooce\neigAu+22G01NTUXD33vvPb9tHnjggR7Tf//993nzzTeZOnUqc+fO9dN55ZVXmDRpEgDjx4/nf//3\nf3EcJzRcCMHMmTO57LLLmDp1KpMmTeKDDz7w8zj66KNZsmSJ//+5557rlRfg//7v/5g+fTpTpkzh\nmmuu8eP88pe/ZM6cORx//PG89tprvP/++/z7v/87U6dOZc6cOTQ3N/uyhYUfeeSR3HLLLZxwwglM\nmDDBt27fffddTNPkwgsv7FaOrakLr6/0xuPRW3mWLl3KuHHjmD59Oi+88EK3NK644grmzp3r/7cs\ni7ffftu3GqZOneq3gacbAJYvX86sWbNCyxW0qjs7Oxk0aBAAS5YsIRaLMXfuXCRJAmCnnXbiyiuv\nxDRN1q9f320E730AxowZw8SJEwEYPXo0pmlu0Ve+//3vc+qppwJQV1dHdXV1N+vXtm3mzp3L7bff\nXrRePQghuvXbF154YYvyXXrppbS0tLBq1Sq/fLNmzfLLEVbHxcILPQOvvfYaU6dOZfr06cyePZu2\ntraC5b7xxhs59thjWbt2LZMnT+aWW27hrrvuYu3atQghuOSSS5g0aRJz58710ynUtrNnz96iPT78\n8EN23nlnzj77bABisRgjR45k/fr1fPjhh74cU6dO5fnnnwcoGF4onUJQC1145JFHOPTQQ5kzZw7L\nly9nxYoV7L333v6DBq6Se+qppwA49thjOfnkk1m1ahXvvvsuzzzzDF1dXUydOpUxY8Z0S/vaa6/l\nxBNP5LDDDmPdunWceuqpPPfcc9x888089NBDDBo0iJtvvpkvvvgCcN1XTz75JEOGDOH0009nyZIl\n6LrO66+/zuOPP44QgtNOO43dd9+d+fPnc8YZZ3DzzTcXFLq5uZnGxkb//6BBg/joo4+QJGmL8I8/\n/piRI0cyYcIEjjjiCDRN49BDD2XvvfcumP6SJUv4/PPPee6551i7di3jx48vWqdh2GWXXbq5HQ84\n4ACamppYuHBhN7eVJ8+KFSu4+eab6ejo4KGHHuLoo48uWD7AV5gAN998s99G+eFHHXUUAJdccgmX\nX3453//+97nqqqt8N0EhVFRUMGPGDMaOHctDDz3E//t//4/777+fDRs2+ApMURTi8ThtbW2h4d5A\nQFEUHn30UV577TUuuugi/5k7/PDDueKKKwBXufztb3/j1FNP5fXXXy9atl/84hecf/75HHzwwdx7\n773Ytu1fGzx4MIsWLcI0TU444QTuuOMOBg8ezJIlS7j66qv59a9/zaWXXrpF+K233gpAQ0MDf/7z\nn/nDH/7AokWL+PWvf81+++3Hfvvtx2OPPdatHFtTF0EE+2Ih9CTPwoULueSSS3jggQcYNWoUP/3p\nT0kkEoD7vO6www7ss88+fnqtra1UVVX5eQ8aNMhXdL0t38UXX+zLmkwmefDBBwH429/+xve///0t\n7j/kkEP83/mDYw/ecwpw5513sueeexKLxbrd88Mf/tD//cwzz2BZFjvttBPgkuwvf/lLdt11V846\n66zQPHrCUUcd1a0cHt577z2GDBnC1VdfzV//+ld22mknLr/8ciC8jouF58Or49/+9rdcdtllfPe7\n3+UPf/gDH3/8MQcccEBonJ/97Gfsvffe/P3vf2fu3Ln86Ec/4k9/+hPgkvrhhx/Otddey80338zt\nt9/OJZdcUjDfu+66q4dagRUrVvDBBx/wve99j3fffZeDDz6YSy65xB/g77bbbqTT6dDwvfbaKzSd\nQihIaAceeCBnn302K1eu5PDDD+fkk08GulsS++67L9FoFICRI0fS3t7OsmXLGDduHIqiUF1dHdrA\nr732Gp9//rk/32PbNuvXr2fMmDGccsopHHXUURx77LHsuuuuLF++nB/84AcMHz4cgOOOO47ly5ej\n6zrjx49H0zTAHcm+/vrr7Lzzzj1WsAjZ7UtRlNB7ZVnmvffeY9myZSxduhRN05gzZw5PPfWUT1T5\nWL58uT9yGj58uN9JDzzwQM4666wt6jQMkiQRiUS6hV144YVMmDCB4447rlv44sWLOfjgg4nH4xxz\nzDFcc801rFu3jmHDhhWuhBx+9atf8f7772/hmw6Gt7a20tra6ssxadIkFi5cWDTdiy66yP990kkn\nceONN5JKpULrvpDik2XXgTB9+nTArb/W1lZ/1BiLxdh999156623AIo+6B7a29tpamri4IMP9tO+\n//77/eveAOOLL75g1apV/PSnP/VH4oqiFAz34CnfXXbZhZdffrnH8uSjp7roK3qS5+9//zvDhw9n\n1KhRAEycOJFXX32VNWvW8Oijj3Lfffd1GxH3pf0K4brrrmPfffcF4OGHH2bu3Ln+iDyY1sKFC3n1\n1VfJZDIcccQRnHbaafz0pz9FkiS/HJIkdRso3Hvvvf6AohCeffZZrr/+eu68804/7I9//COpVGqr\n2szDCy+8wG233dYtbK+99mLKlCm8//77/OxnP+PSSy/lN7/5Dddddx1nn312aB2vXr06NLwYjjzy\nSM4991yOPvpoxowZU5DMPHz66afssssuGIbR7fmNxWL+YHj8+PH8/Oc/L5rO7Nmz2bRpk/9fkiSu\nueYafy5u+fLlnH/++SxYsICKigoOPvhgv+8NHz6co48+mmXLlnHyySeHho8ePTo0nUIoSGj77rsv\nzz77LC+//DLPPPMMixcv7vYAAFsoXK+ThD30QTiOwx//+Efi8TjgTpgOHjyYiy++mOnTp/PKK6/w\n85//nHnz5tHQ0NCtM+crkCAsyyqar4fBgwfzzjvv+P83bNhAY2MjjY2NoeHLly/nkEMOoaqqCnAb\nesWKFQUJzSunB6+8++67L88991zROvWwcuXKLci5oqKCyy+/nPnz53cbuSxevJjW1lbGjBmDEAJN\n0/jTn/7EeeedV7B8juNw4YUXsnHjRu677z5/VB4W3traGipPMSxatIgzzjgDVVX9+lBVlcGDB7Np\n0ybq6+t9N25NTQ2NjY1bhFdXV2+RX377jx07liVLliCEYPz48axevbpouXoquzdAs22bHXbYgUcf\nfdT/397eTnNzc2i4B88VHVS6hRAmc7G6CKbZ22e9mDxtbW189dVX3VyAXv288MILbNq0iRNOOAHD\nMFi3bh1nnHEGixYtorOz07/f6yOezB56W77jjz+eK664gtbWVvbaay/fWgO44IILuOCCC3jsscdY\nsWIFQ4YMKWihASxYsIBXX32VBx54wLdw8/HHP/6Ru+66i3vuuce3zgD2228/dtppJ66//nquv/76\nXpU9H4UstDVr1lBTU+OTzHHHHcdZZ53Fiy++2K2Ov/rqK8444wwOOeSQ0Lq/++67AchmswDdFuOc\nfvrpjBkzhpdffpkFCxYwbtw4fvKTn4SW88Ybb+TBBx+ksbGR//qv/6KtrY0pU6Zw2223bdHXvP5b\nqG2LWWgvvPACV1xxBTfddJM/GF62bBkVFRV85zvfAVx9o2lawfBC6RRCwWHfwoULefzxx5k8eTKX\nXXZZ6Gq3MBx44IEsWbIEy7Lo6uoKXaG0//77+w/u+++/z7Rp0zAMg7Fjx1JbW8ucOXOYOHEiH3/8\nMQBvvfUWGzduxDAMnnnmGQ466CD2228/nnrqKQzDIJvN8uSTT7L//vujqiqmaRYt4wEHHMDrr79O\ne3s76XSa559/nkMOOaRg+Le//W2WLVtGNpvFtm1effXVoquBfvjDH/Lcc89hWRZNTU28/fbbfarT\nv/3tbzz//POccMIJW1w7/PDD2WOPPXj22WcB153R0tLC0qVLefHFF3nppZdYsGAB//M//9NNUeXj\n2muvpauri9/97nc+mRUKr62tpaGhwXfleavDiuHVV1/l6aefBlw30Xe+8x10Xeewww7zR9RPP/00\n3/ve95AkqWB4ML+lS5cyfPhwKisru9XHq6++ygcffMB3v/vdHstVUVHB8OHDfVmeeOKJUAtjxx13\nZNOmTf4853333cdll11WMHxr0Ne6qK2tZeXKlQC+RdNbhJX78ssvZ9ddd6WpqYnPPvsMIYT/XM2a\nNYslS5bw2GOPsWjRIoYNG8bdd9+Nqqr+YBfcuVvPKq2rq/Of6b/85S+9Ktcbb7zB0KFDqa2t5bjj\njiObzXLHHXf4SrOrq4s333yzRwv17rvvZvny5UXJ7LnnnuPee+/lwQcf7EZmAN/+9rc588wzeeed\nd0JXSP4zGDlyJLW1tX66r7zyCrvvvrs/feLV8dChQ7n77rsL1r2HN998E3DJwcNJJ51EV1cXp556\nKqeddpqvO8Pws5/9jNGjR/PUU09x2mmn+YOG4cOH09XVxauvvgq4/dYj4b627TvvvMMVV1zBPffc\n042EmpubueWWW3Ach40bN/Lyyy9zyCGHFAwvlE4hFLTQTjnlFF9QVVX9uYpC7gUv/LDDDuOdd95h\nypQpVFVV0djY6I8SPcyfP59LL72UxYsXI8syN910E7quM2/ePE4//XSi0Sg1NTX86le/4rPPPmPQ\noEFccMEFNDc3c9xxx3HYYYcB7tzatGnTsCyLY489lqOPPhrLsmhsbGT27NkFRw+DBw9m3rx5zJgx\nA9M0OfHEE9l9990BCoZ/+OGHTJo0CU3TOPDAA5k2bVrBSj366KN59913GT9+PEOHDmWXXXYBYMaM\nGZx//vlb1Cm4E/iexRqLxbjpppsYOnRoaJ3Pnz/fV8iLFy9m2rRp/kgK3AnyG264gZdeeil0xNje\n3s6DDz7IyJEjfdKUJMnv7Pnhjz32GDfccAMXX3wxQgj22GOPgrJ7uPbaa/nlL3/JnXfeSW1tLQsW\nLADg3HPP5aKLLmLx4sVUVlb6rstC4QCff/45U6ZMQdM0f/Ts1UkikWDHHXf0XRO9wXXXXccll1zC\nggUL2G233bZ4PsG1tG688UauvvpqDMOgpqaGG264ITTck62vrre+1sWPf/xjLrroIh555JEe50j7\nIs+CBQuYN28euq73ymV/2WWX8Ytf/ILbb7+doUOH+lMHZ599Ntdccw233norhx56KKtWrQqN7z3r\nkiQhy7Ivn67r3Hfffdx4441MnjwZTdOwbZujjjqK2bNnFy3THXfcQSKRYObMmQghkCSJRYsW8f77\n7/Pyyy9z9dVXc8cdd5DJZHy3q+ceC9bRxRdfzBVXXMETTzzBVVddxZgxYzjiiCNC8+xLe992221c\neumlXHvttTQ0NPjPzNbA8w4Fn/l58+Zx0UUX+XOuV111FeAuJps3b163Abhn/YM7IA7WbW1tLU8/\n/TQLFixgxx135D//8z+B3reth7vuugvLsrjwwgv9uj733HP9RSMTJkwA4Oc//zlDhgxh8uTJoeHX\nXHNNaDqF2qTky/bfeecdfzm5aZriRz/6kVi5cuVWp/fmm2+KWbNmlap4ZQwwzJgxQ7z99tslTfO2\n224TGzZsEEII8eKLL4pzzjmnpOmX8c3AX/7yF/8Vlu0Ffe0P9957b4+vPHyTUNBC21rssMMO3Hbb\nbdxzzz0IIZg6dSq77rprqbPpEWvWrOGcc87pNooSOYa/5ZZbGDly5Hadfilwww038Nprr/ll9Mp3\n4IEH9jjZuz2kD323enpTtl122YVZs2ahKAo1NTVce+21JSnr14F7772Xxx9/fIt62nnnnf8pK6AM\nd67I8wZtL+hrf6irq9vCvfpNhiRE+YDPMsooo4wyBj7KezmWUUYZZZTxjUCZ0AYA5t2xkqY2d9XX\nypUreeutt7qtYAz73ZfrQTiO0+0D8I9//CM0rWLpBeMXy7NYWPBaWBlKKWPw3i+++IJly5b5S+S/\najGYd8dKvmox+lXGnmToqQ76IuPWtKOXf3/KWOz6Z5991u8y9rUdy9i+UCa0AQDTsvzOVFNTQ2dn\nZ7fdLcKWNBda5uyFB6/nK4X86977Lo7jIMtyaKfPT88L8+IUu6dQvCDCNsAtpYzeb8dx6OzspLKy\nEkmS/PtNy+p3GXtqx2Ad/LMybk07evn3p4xh4d53Op3udxl7246lh9XHTxlhKBPaAIHXmTxFm0wm\nQ0eM+Z2up5F8MF7wE5ZWvoLqSREVQqERcr5iClOIYemXQkYvriRJdHR0+O+6fRNl/Fdox/6Ssf+W\nHJQJrRQoE9oAguM4xGIxNE3rtjtF/og1iPyOX+geL51gmsXSy4/bUzmC18PyCwsLi1+sTP+MjEEr\nwDRNampqtrgWlKFYGbdWxp7aMb8she7pSUbv99fRjv39rG4LGfsHZUIrBcqENkDgdS4hBLW1taFn\nZBWafyg2ZxC8N99d05sy5SMsXjD9oGsnTMEUGs33t4ze9dbWVmRZ9rfd2p5kDLtva2Qsll8xGYPX\ntvd23FoZe9OO/YMyoZUCZUIbQPA6W11dHR0dHd2UR6HOGaZw8t1AQeWQr4yKKddCnTzM7dRbRZP/\nP6yc/SGjd33jxo0FrbP+lrGndiwkd19l3Np2DCt7qWUsVTtui2e1tCgTWilQJrQBBK9z19bW4jgO\nbW1tPSp8KDy6L+ZOKaRAvWv5CiNsVF6IHMPcQsG088tVyG1UShkdx8GyLDo6Oqirq/taZOypHQvJ\n3RcZ/5l2DP7vLxlL0Y79+axu7Yv+PaNMaKVAmdAGELxOFolESCQSvtuxkMslv1MXGkX3xrWSHx5M\nO+x62Og+TIkUcikVQ3/IKMuyv3q0rq7ua5Gxp3YMpre1Mn7d7djfz2p/y1heFLJ9o0xoAwT5HbW+\nvp6WlhZ/+X5Yh88PD173EKY4ggqlkDItprAKuYmK/Q6TsZj7qNQyOo5DS0sLkUjEPxbpmyhj8Fpf\nZcy/vq1lzEd/yNjbdiw9sn38lBGGMqENIAQ7Zk1NDel02j8bqZACCY54w+7JVx75rqMg8l1K+WXK\n/9+TQgq7L2xUHDayLrWMsizT2tpKfX29fybU9iZj/u+tkdH7HojtmJ/P1yFj2eW4faPkmxOX0T9w\nO7Dqd7rq6moURaGlpYV4PF7QfZOfhhfek5sl7J6g0gmmHwzvSfEGyxGWd75iKRSv1DJms1m6urr8\nTaXDRuz5cg00GfNl+Ca247aQsX9QJqlSoExoAwj5Ha+2tpYNGzYwYsSILUahYR26UKcPoljHDhvx\nFhtJB/MN/i+kvPLTDHNR9ZeM3jHy3jlRX4eMwXjbYzsGy/V1yFioTKWUsad29E5tKD3KhFYKlF2O\nAwRhrpXGxkba2tq22BIpTMGB6y7Jn9T2XDxCiIIfL27+fflhCOEqhLxr+fl74WHXvXu89IPX8/MN\nux6M3xcZm5ubqa+vR5blUBmD+XtpBa8F69/LM/hdrB2D5exNO4aFeTL2hHylXSgsn1zC8t/WMobl\nFYZtIWPpUXY5lgJlQhtA8JSW17lqa2uRZZmNGzduMdr1kE8SsFnxex8vLJ8IvPBgnDAC8cvn3RPI\nO5hXWPrBMoaVIz+/sHzz4+eH9yRjJpOhra2NhoaGHmUMy9sjV08xFrImgkoyeF+YYu2tG8xLt1Da\n+XHC3IE9WXxh1lN/yZhPJPnh/S2jl1chGctzaNs3yi7HAYT8Uauu6zQ0NNDc3MywYcMKxguSSn4Y\n+YQhBIKQjpuzTLw4vtL3SEuWkHL35ccDCeHkuWqEQAJETmkEibBbeQIIWmX55QuG+fGEQMof6Qux\nucw5WTZs2IAkSTQ0NHTLI59Ue3I3FXL95btMi7kHe4PeuNcKXcu3isKUfrHy9LeMYWXYnmTM70el\nQ5mkSoEyoQ0gBEeeXodrbGzkww8/JJvNEovFunXEoNssGOb9E47jkkiOxAgQQTcqEQLHtpDYbIX5\naUi4xGSFK3sp+B0Y8HZPf/MlkU84uXuFEAjb9uMFx84in7gC/yXbBq+8ufSkAEEJoKmpifq6um4u\n0eD9jnD8b+E4m9MJ+Q4jvbC5pkLutkKEEGaNFFLMPZFHvjUSFl4ozUJpl0rGMCLbXmUsLcqEVgqU\nCW0AItgpPbdjc3MzI0eO3ILQ8pWs73aju+XhWV1CCEROoXvkJwDHMBEI5G5uRPceWc6l7UbqlpdH\nfSJnqbl/NhOj43R3UwbdlkFyA7BM078eKmNO9nyXqiTLm0k44P70Ti3oaG9nxIgROLbtpk934rYs\ny68fJ1dXcp5rNZivh2JKPb8de1oQUWjeLJhW2PUw6ymsXPnKP+xaWFlKLWNYeDFsDzKWBlsej/TP\n4N577+Whhx4iGo2y9957M3/+fGzb5uKLL2blypVIksT8+fM54IADSprv140yoQ0QuJ1pc3MFR5ON\njY00NTUxevTobveHueWCJCYcp9uL2Y7tAAJhO0jkrDuXWbCymZyiB1kGXK5BlnNEloMkbf4vCfd+\n17WYuybImVyulZVLHkfkrDbJv+x/HOGWN5vOBDnR8x7m/rsE62YCsiL781oAsqIge5aULPuRm5qa\nkBWFyspKTMvK1YtXaLc8tu3WmW1ZWJaEoig47qVQq8z7X8hNlm8xBH/3lszy4xZTyGHxChFBWPzg\nfYXKsC1kDKK/ZNway600KJ2F9sYbb3D//ffzyCOPUFtby6JFi7jxxhsRQlBfX88zzzzD6tWrmTlz\nJk8//TQVFRUly/vrRpnQBhAKKYLGxka++uorkskkiUTCv56/0s8ns9yEt2XbLqlZNsKxc6Rmg+P4\nFomc+zaSKSQJFIRLWBLIuW9JAmT3vzv/BuQISsqxkkdkwk3a/ZAjMzZ//PBAWE4YsqlkN6IDECGL\nQzyrTJZlJFlGURQky0ZRcqNz20aSZYTj0NTURG1NDbZXFzlSd92ublqW6VmINo69Wbl5bdHXOZW+\nKHTvev7vYhZEmHLubX49KfXeoj9kDKazPchYWpSO0D766CMOOuggamtrATjyyCOZM2cOqqpyyy23\nADBq1Cj22msvXnzxRSZNmlSyvL9ulAltAKFQh6utrSUajbJu3Tp22WUXP9xXtB6R4ZKZ7Tg5a8PG\nsS1sa/PHsW2EbYNtu661HLllOztQAFsCRRLIEjiya6EpsktijhxwvyF8MnPZyXUv4rgWl5ushIPA\nERIOYCF8i8yRJBwhXFLLWUHJjo7NVl1gfi0nbDcyU2QZWVFQVRVFUVBUFUdRkBXFv6+trZ1kVxcj\nR4zAyGa+nb1kAAAgAElEQVSxbZfUhUf+koQsSWQzrnvRtAzXQhMCFAUhhEuWeETe3VrrixVQrI0L\nKW0vj2L3FZvDCpap0HxVTzL0h4z52N5k7B+UjtD22msvHnjgAZqbm2lsbOTJJ59kw4YNyLLMkCFD\n/PsGDx5MU1NTyfLdHlAmtAGEQh1LkiSGDRvG6tWrGT16NLqud1t+Hlyu7vhkZmGaJpZpYhkGpmFg\nmya2aeJYFlgWkuMgOw4ikSDd0o6aIzNVcklMUQAZhJIjtRzBeRA5i0xycpaZZ/zZYOVIzc65G21y\nn+DvwEdUVdHR1rbZkqM7sXmEJueITFEUVE1D0zRU76OqqKqKLMsISWLt2i/RIxE0VSWdTrukbtsu\nqXuEJsuk0woIgWEYZA0JXdMAULxFJEIg57bLyrfWeuPuKtbW+e6+Yu7AfEst7Du/LMH/YXNF+a7E\nsPilljE/rW0pYyH3YqF0S4fSEdp+++3HnDlzmDNnDtFolBNPPBFVVd254Dx8vVZp6VEmtAGCMDdL\nsCMOGTKEVatW0dzczIgRI/x4kiT5S+M968yybCzTxMxmMbxPJoOZzWJlszimCaaJZNsojo0Si5Ha\nuBFVEmgy/keo4CigKoDiEpydcz36rkYHsF0Ss60cqeWIzXTcb0vk3q4RYNL9bRs79x2rqKB948Zu\n7kl/ZWTQzZhHZnokgq7rLnHpum+xmZbFxo0bGT5sGJlMxq0P08TKkZrIzUEqqkoqoyKQyaQzmIF9\nYaUAiYYtwAlTuMWUZ1BpFlLIYaQRvJav+PPvLfS70HcY8steShkLlXt7kbGnVze2HqUjtGQyyQEH\nHMCPfvQjAD788ENGjRpFOp1mw4YN/nl/zc3N7LPPPiXLd3tAmdAGIMJG6ZFIhEGDBrF27VqGDx8O\nbHaBeSsGPevDti1MwyCbzZJJpcik02RTKYx0GjOTwc5mwTCQLAvVtqkeNpyu5iZ0CXRZ4CgukTkq\naBqggqputtQcCfeN/Zw1JmxwLBAWOKbrzbQssHOkZgr3YxD4ZjO5mUB01Cham5q6W224ZCZwF3p4\n82WqpqHlSCwajRIJfDxSW9/UhOM4RCMRUskkhmFgeJZqzvUoSRKqqpKyIiAqyWYyZDLkXgOQfEUr\n3EYo6voqpqzz7y02NxS8Xsiy6Sl+GPkUI6hiz962lrFQ2baVjP37YnVp0NTUxI9//GOefvppIpEI\nd9xxB+PHj6elpYWHH36Y+fPns2bNGt59912uuuqqkuW7PaBMaN8AeB1w2LBhNDU1sXHjRn9PQgDv\npWiP1OycuzGbyZBOp0l3dZHu6iKTTGKkUtjpNCKbRTZNVNuiynHoam4iIoEtC9cyUwFt80fSQMmR\nWm6hoc88wgJhumRmmWCbLqEZtktohoCs4xJZFsjmSM37mECj49DS1ORbbTb482v+/FluzkzNWWbR\nWIxYPE4sFvOtLz0SQVYUmpqaqK6qIpPJYGSzZHMfI5vFsiy/TlVNI+XEEFSSTqfIZt1Vjoqi4Dhq\n6Mg9bFus3rh2wsggP35v5nZ6Y3UUQ5g1WEjpb2sZC7kEC6VfCP0p49bBLllKO+64I7NmzWLatGk4\njsMRRxzB7NmzSafTXHbZZYwfPx6AK6+80l848k1BmdAGMILuG8dxqK6uprq6mrVr19LQ0ABsfnnY\nW9no2K670TAMl9BSKZJdXSQ7Okh3dpLt6sJKpRDpNIphoFkWwnHobGrCksBRXEITGkg6SBETOWKD\noiJpKlJuXk0G318ozByhZd1v23AJzbQkDFuQEZBxXDJLC8hKEhkgKwRZScLIybqpuRlLCJfUJAnb\nk02SkGR3wYeqqWi6TiQaJRaPk81kMBIJn9AihkE6myWdTjOooYFkZyeZbDZnfWXIZjKYponjOGiK\nRVwXpKV6EENy1zeTpm3bKLnFIbDli9aFXMQ9tWMxJevdn+/ay0dPbr9C6RYrZ/BaIausv2XsiQC3\nhYz9g9K+hzZz5kxmzpzZLSyRSLBw4cKS5rO9oUxoAwjFOqMXNnz4cD788EN/Cb9wNi/BdxzXQrOs\ngMsxnSaVTJLs7CTZ3k6mowOrqwuRTiMbBrphIByHrg3NODLuXJlmosUdTEVBS6TBTuMoGo4UQ1IU\nJEnFlmxkxwJTQWRVhAEiC46dAQycpI6ViWI4ElnLJbW0gDQSaSAtBBkgI0lkcQm5tanJd0Xakrsy\n0s69UC3JMrKqomgauqYRjcXIJBKYhoFlmv6CDyMSYVN7O7qmkU2nMQyDTCZDJp12z5cLEFqFloaI\nhqG4bs1MOk02o6BHIpsXkDjdN2cmzyVVyA0HIDsZMJIgx0CNh7ZtmJVQqO3z7w+67LbW+uiNIi8q\nYy8syL7IGOYu/LpkLC3KO4WUAmVCG2Ao1kEdx6Guro5YLMbq1avZfffd3Z02wP3OWWm2bWOaJkaO\n0NI5Quvq6CDd1obZ2YmTTKIYWfScck9u2AiKQNUsKmqyONgoCRvJNHBSijuHJitIusAxo8iqBcJB\nGAInq4AFTlJFUg2X3FIaZlsCy7FAtxCOwDZlLEkiY8qkkbBVm5SlkBUC2Wyhq3U9KVt159WEwPGs\nNNldDCLLMlruxOlINEo2m3VXcVoWlm1j2TaqamOl20jUDqWzowPDMFy3azpNOpXyF4g4QpDVBJUx\nk4xWCaogk8mSNXSihuG6JXOrIb2X1IUs+zusuDuoFJ6rkWUZJ9OZM10dZL2iWzvmt3W+Qu+JQMKU\ne1g6PSn4vlhcoTIWeVbDZAym1dP8Vn/ImO/uzE9nICwK+VdGmdD6CRdddBF77LEHp5566hbXbr/9\ndp566ikcx+Gkk05i1qxZfUq7kJLxwkePHs3KlSsZNWoU0WjUf5PZ8ZbtB6w0I5slk8mQSqVIdXWR\n7OzEbG/HSaVQ0ikihoEQDsm2FmRJUFFr4hhZ9IosWDLCFNiGiqzJKFUpJNkBNDA0kCxAIEctRFpF\nRsfokpA1E7s9itOZRk6YaHKWmC7Imgp2WkeRHIQpk3Yk14IDcAyMZAvtKZVo1KIiYdGSVOnMauia\nIBaVyNgqqVQMXdeJxeP+Ipigq1XX0uiajJVuI2Ub4YRm2QjhkNE0smYMEbWgGoxsFtOI+CshPaXr\nOA6Kqoa2RTGlKuuVYCVBTWwRN0zhh6Wf75rLR6EFDoUWb/TkquuzjEWe1b7KWCi9UsoYlk5PMpYG\nZUIrBcqEVmKsWrWKK6+8knfeeYc99thji+svvfQSS5cuZfHixdi2zcyZM9ljjz3Yf//9i6brdiY1\nJKy7YpBlmcGDB/PFF1+wevVqdtttt8B+iJsJzbYsTMty59Jyc0jpnLUmMh1oVgdmxkQ2sihmK5it\noIKdshAxCyPloMUdjHYFXTNRTAm5Nokk2QhFQSQTODgg20iyhRAydsoGA+wugSSZSEoSYQqIm5gZ\nd3GHMBVSWZmMBV2WTLshkxYCRyi0tCTpMiQSEQMrAzoSHe0ag2ttdAccS6MrkyEmqWRTWZfMclaU\n4ziYto0WlaiOSmSNNNkcoWU82dNpsjkXpQRokQgCCVnKIITAstyl/Vu4G3PtEbYZdHDuZwulqMZB\ndU8bl2GLdgzGC6K380/e9XzLpZAVEha/N67EojL28KwONBnLFtr2jTKhlRgPP/wwU6dOZfDgwaHX\nX3zxRcaPH4+u6wBMnDiRJ554okdC62nuIH/S/Fvf+haffPIJI0aMIBKJbN6xPucec5zAC9Y5S81b\n5adZSSSri7iacZfvCxNFSWFmIe0I0hGLuO6QyUBEt7BMiUidg5M2EZUOwrKQBIiUgqRYOLJAdCpI\nVtolMM1BAWIRMDcpJDcKpApBuk2ms02lMwsZDRTdwTZk2lMKplxNW1uajBCsR1BZ6bCxQyKTsUhH\nbDRJIm24b68ZGR3NEXQZgU2PHQehqqi2hpGWkeQktuP4hGYbXWAnMdMOacNdNanbtrvjiGoAYJou\nkdnO5t1EHEeEHptTyHLqazv21qIoZI14aQTDi5Wv2HNXKP9SylhMjmLyb2sZS48yoZUCZUIrMS68\n8EIAli1bFnq9qamJww47zP8/ePBgli5d2qu085VBsKPld8rBgwezZs0aPv/8c769226+21EEXY9B\nUgsuFEnZ1MkGmYyJYpg4qCTbswypd1BlQTYp6JIFtXUCB4donbsBo22A1QGqIpBkAxFzkB0ZR7Kh\nAhQd7FZ3Rw1ZA5EBO+tgZSWyho2iSmQzJqatoCUcHAG6BpmMO3eRzqQxkejKCNZtcheGCEyabUim\nZTKmg6blTs3OyO6qS0lCV2yqKxyEHaOzy3G3q5JlbCH8uUTVacM2M9iWwM5KxCICrASmoaPmdlhw\nAm7GzdaYt4GyQJGkbiscgyhkUfTUjmFphaVb6P78OayeXGf57r9iZdnWMuaXsz9k7KlcZQtt+0aZ\n0LYxwk5sVnLbJhVDfqcNux7sqJIk8a1vfYsPPviA9o4OEvH45rPPcqTm7+sYmFezLItM2sbISkRN\nGz1jAgLLcV8o03SBpjg4jkwm5ZAYCo4EigQi7b5jJiVAjViggFAdhAVyEoiCIlmYa0CqBK0S5DYL\nYUOsGtLtUD9YItMq09ElSEsSGzvAMF15TdMiKwSWJLlL94W79b+lgGlImJZNOivImBK6niUak4lq\ngoScJhqtJNu5iY5OUDUNZBnHIzTTfZdAwSSZEUQ1B2FLaKqGZdvIjttmTvC0gmCbmkkkx0RQBXqF\nv69jT+613rRjvvLNv683CLN4ejuflO+2C4v/TZIxLF6wnP33YnVpl+3/q6JMaNsYQ4YMYcOGDf7/\n5ubmbhuGhkE4Dn//v/+jpY+nPAghSKVSvPHGG+ywww5+mBCCWGUlwxIJhowatdnqCHw8i061W4lW\nVTDuzntQRRrd+goZGwmDiNWMwEEgk9IaABnVaUczm1GdTUhmCwoOwrGxtRospQFbrkDIVQhhIwub\nOqJUqVUgHEY4aSw5zj6SSlfkO5hSDZLIIIsM0eooC555ZvN8VUBOzWlDwkZIKpZc4x/oKYssUaeZ\nzo52Orq6qB3+HZRIlXvNySCLNLYUw5Gj3QYaspNBJoOQ3OX0rWmFJz5U+Ld/24XBiSyOqmI5Dq3t\n7bR1dKDarUjCAlnDVuv61kh9gGVZfPjhh/2Wfm/y//jjj7/W/L9O+QH23HPPfkq5bKGVAmVC28YY\nM2YMd9xxB9OnT8dxHJ588knOOuusonEkWebbu+3G4Bo1dMI6DB5xDR8+nBUrVhDRderr60nlDrRs\na29n04YNbGxuZmNTE5uam2lraqJz40bSLS3YHR3IqRQVZDn34fv447QZVMqC0cMEtXEYPhIqqkBT\nIPMVqA5UNkAkDlo1KBooAFHAAckAo8tdpW5mIJuBrk5o3QApB9ISZGWgAlpT8NHnsGoDqJVgyvCL\nh/7IZdNPoT0LncbmnUKQZaK6oCImkzFlDEtBU1X0SIRBtQoNDRV8a7edWNNk09HxFIqmEY/KNFRm\nMW3oMhRaUypWzp2I5O4EokciJBIJqqqq0KuHYY+ezuefvAtDElTXDaKioYrKqiri8TgRpRFNNlCj\nNUhq3D9QFP65F3zz7/3444/ZfffdC1oUhcLyy5FvDfXkovPifPzxx+y55569nufaGhmDZcqXJz//\n/pCx0L19sRa3DmVCKwXKhLYN8NJLL/Hyyy9z9dVXc+SRR7Jy5UqmTZuGaZpMnDix25xaT+hJcQRd\njpIkUVlZyYjhw1nz5ZckEptNvPxDNEXQFSlJCElC1QQqDrYUJWNIjBjhUNUAThra2iESAzMJjglq\nFDJdoEaAVnA0dzNiLFDrANklIJE7Oy3bDukWMA3oaIM2A4wIKAYkhbvPowOkMoDuHqapqBABOs3A\n6duOg0DCdhxc0RXf4kymZYbXDmVdq8JXa9dTmVCJygYRWSKTlVFUSGYUbNtGVyyiEZuMrWKj+ZsY\nq5qGorq76ws5hqTooCZ895MkSUh6BagqIvcuXG9Oru5tOwbnhILXepp/6o07MExJ57vZCsUvpPD/\nWRl7O5fVXzJ6z862J7UyoZUCZULrJ1x33XX+7yOPPJIjjzzS/z937lzmzp27VekWUyQePKUKLrGN\nGjWKpuZmVq36ghG5jYvz4W+RhTtXZAuBGnGQLIEsMphCEEm4x7sAtDSBJkCXobIG9EqQTMh2gVwB\npN3d+KUoZFtBVkDE3S2zrCRYNihVEAfMGLStha4uyGahS0DagLo6SAlo7gJTrsawIZV1iU7TBFUR\nSGYhqgk0RSKmO1iOjWFLWI5DZV0dsYoKVv3jSxzbQZNz57g5CklDJpPWMBwFWYFE1EZVVHRJI2VH\nieT2goxEo2gRnU5JAq0SR69C0hK+ApRyx3AH93EMopBS7m07Fvudr9CLxQmGFVtIUsiSyV9E8XXI\n2FOcUsgYJLVCefYPyoRWCpQJbYCh0KR1WIcL7lix44478t5771GRSKAU6JzBk6KFJJHOSsR0dy5K\n0gTr1oNsuSsZNQuiOlRWQG0CtAowu9ypN8MAVYBeBSgg62C2uVYWUbAkMLNg6+5HiUOkEpwMbGqB\nDsclxWjcjRMxwJGibOpwt71CgnjEPa4mHoWUISErEqrqhkUVSNsqI741lGTrJmQriSwnyNoamlBI\nmlFsKYKsqkTU3JHbqo6mO1hCJxGNE41GiScSrksxJpOVWohFBHrgCBpZlv1tt4LL9sPORMtvn760\nY9iCiWA6xfLpaYVgfvr5JFAoTm/z2RoZi+XV3zIWK0fZQtv+USa0AYTejhodx9nsDssp1+rqahrq\nG/hy7VpGDBsWGs8jNHJbSmUshTQSkrAYNETgJGH1lxB1XBJLZUAGOtvcHfVV2V3laEuuBSY6IToM\nHBvIQrYTnCSkOsGQIZNyDwXNmu5Gx3LuIzIS6axAUVwLLZXtXsaILojq7jxaMgUZE7KmRF0VNFZJ\ntKdh6I47krFV2po2YgodWVVxpAhpEUXTI8R03d0uS1X9gzwlVSWqKP7mxolEgorKSmJxlTbJIqG7\nhKZpGkruoFDZq+O8+s5vp2Ir+oq1Y77y7Us6xebYwtIrFq+nspZKxqB1tD3K2H/L9ku32/6/MsqE\nNsDQWxdL8LRqcK2GkSNHsnHjBtZ99RWJeNy1TAIfTzH754xJEilDBixQJPSYwLIljDQIHZSYIFrt\nuh+TGyBRCYkE2J0gklC7C0gp0CLuUTHpNKTa3Lm2tOW6H+2Mey2TO05GjYCdFqSzLmGmhHucjEe0\nCEFMB9OGrA0pA2R5836VnVmZmkGDqG5o4MsvVmEZKpFYhGgkgh6NEo3F0GMxtEjEnR/TtNzL0yqK\nLPubG3u79ScqKpD1OE5GQ43WEIlGu1lpSLm5NIqfVt3T6L9QO4alla+gC1kOxSyMYnNd+eHFLJNt\nKWMYtrWMA+E8tH9llAltgMDtVIX3vMvvmFuMJIVA0zRGjx7NRx99hJ3b3sm35BT3+BVJlolGJOJV\nkBYS2S4VQxlMa1IlJhwcC3Rcq0mtsBEaRGtcQhMCrIxrqalRSGeBLvdathPMNGQtSJvuJ5N2702Z\nuUUgMqQzkNt7A8hxrS+CS84pA3TdnWcLWpVpQ6KiMk7dyJ1JtjWhiXYqK+MkKmTQNNRYglg8TiQW\nIxKLoekRVE11ySn3UdXc8TO5ObR4PI6pVNOVrkOLp7sdEirLCrKcOzJGDj+1Otgmm9sxXEGHtWMh\na6MnhZ9PLsXyDcsv/75g/ELl6m8Z89PsDxmLuUf71+VY2vfQHn/8ce68804URWH48OFcd9116LrO\nxRdfzMqVK5Ekifnz53PAAQeUNN+vG2VCGyDIHwH3ND+RfzaXh+qqKgY3NrJq1SpikYifrizldqxX\nFPSYhIOCiMmYaQVHirKxXSOKoDYiiFQ5mJZg3ToYOUJg4iAiudOmOyEeh3gV2Ap0tUPnBndVoxoD\nvQaQILUeOpNQEYe6EZBeC1ocohZUxdwFH+vb3d1HdB0UkfHlSWcFXdnNThpHCGTAcDSqR+1Je2eW\n1IYvqaiIUVctIVSNSFxDROLEKiqIx+NE43GfnDyC8s450zQNPed2jMZipKlA2igRj8WIBiw0b4f/\nYq5GD4UIqKd27MnCKEQGPd1bzA0XVs5CKLWMYRZe/r1fp4wDYaeQ1tZWrrnmGp5//nnq6uq47rrr\nuPXWW1FVlfr6ep555hlWr17NzJkzefrpp6mo6OMLrtsx+nvpThklRnCEW2i06TiBM7rAfy9Kll2X\nYkNDAxWJBG0dHQA560RB0TRUTcMigpDcb0WPuO5IPUIkoVPTqFDdINM4SiVraXz+WYQNzTqmkHFU\nCUdzicpwIJ0CU3Ktss40JE3X1ahWgam4YWoFpNJQUe9aWnoMamohFoVhQ6CqAjQVZJFBDiqSPBep\nIwSjdtsNSVFY/Y9/5JbfK3QaUVB1hBpHj0SoTGg0VMvUVEWorKqiuqaGmpoaamprqa2r8z81dXVU\n19RQVV1NRUUCJIlozF39qOXqSVUV5Nz8m4dCmxPnu9h6247BOaVgPC+8JwsizKIIs2oK3RtGqMXm\nqP5ZGf0B1nYqY/+6HPvyKQyv3rq6uvzNFWKxGC+99BLTp08HYNSoUey11168+OKL/STP14OyhTZA\nUMjlE2a1weaO5xNbYNGCIssMGTyY9vZ20qkUiqr6ix30aBQzm0AoFhVVkM2RoRqPE4uZ2LJCZZ2F\nlYFIDXRulLE7HAQGdbU2QhLYjsO6L2HQcAfdAaUGOtaCnYahNa4VlxbQngbrc6gbBm1dkExDZxay\nSahtBNMCTXMXfSgiS1QXZLObZXMCJ1YPGz2a6ro6PvvkE0zLImPHSVsqFZqCRRRVcQmtIi4Tj+tE\n4xpSvJJoNOrPi2ma5lprAStN13UwNCQcIlGX0FRNR1VyZKYoW+zf6JFaMcXf23bsrYsrTGkXUvSF\nXINh80/5MvTWXbi1MvbWrddfMvamDvoHpbPQ6uvrOe+88xg3bhw1NTUkEgkefPBBfv/733fblWjw\n4ME0NTWVLN/tAWVCGyDoyeVUyN3jKVf34El8JaxHIjQ2NvLFF1/gSBJaNEo0HsfIZFCdDBWVMlYm\nQkrVQJLQEgkcxcSSbda3mlToDoYpEa81GVxnYRkybZ0SjilQJYNYAjZugqo6d1cQQ3EJy/gM9Ap3\nDk2rgQ2tsDGVW+EYASvrkltKQKLKfTWgywQHhVgE2rMQ0QSVEUgakDQkGoYMYdjo0Wz88h/ooh1J\ni+AA8ZiEqkrEIrhzhKqKkOPIagT0SiKRCLFYzH3fLBJBi0TQc6Sm5UhN03XMjAJ0EYm4xKco6uZV\njiEux7ANigspxd62YxCFFHChvMLcbGF59wW9sWq2RsZixLItZAyLO9Bcjp988gn3338/zz//PMOG\nDWPRokXMmzcvdB/Z/ifqbYtvljT/IuhpDgECiz0CL/56ClhRFBRVJRGP01BXB7J70rO3qq+2Nka0\nopqKqgRqvAZJkohXVyPHajG1elI00JKuIy0qqRqkEq9TqWpU6LIjNLdqWJqG0CVsDVatcUmry3Kn\nvZM2NLdA2gEi7mrJzjQ4ivvRY+5Kx/YuSGagM+PuLiJho2suwSWi7pZbMR1qBw1ih912o2ndOjo3\nrUNV3HfUkCRSWQnLlkgZkv/iuCE00qISR4r49aBpGnrEXQkZjcWIxWLE4nH3E4sRiURdUte03Dyb\n6g4MiizV76m9etuOQRdcftwwqyPsnkLkk59nfpye5pZ6kqVQeDEZw9yRPaVfShmLydyX+ug7Sudy\nXLZsGfvvvz/Dcq/nzJgxg7feeouhQ4f2eR/ZgYYyoQ0wFJpfyB/1+seb0H0OTVYUFCW336Guu++n\n1daiaBrRykoqqquJVNSjxRuwIsOJ1gxGlmUq6xuoqKsnXlNDtKYGvaqaWG0FllqBKeu0p6IQUZEr\nFNKOjCnLpAUQc/ditCNABWxKuVZWSxJak9CWhvYMfLUJOlJgy+7y/WQW1re4pNbSAY4UwXZcskpl\n3PfcIpUN7LT77jSvW8fqTz8lmYWsKejKCGzbJpkVbEoppE0Jw7KwAicK+Oea5YhOylmuqkdwOXej\nZ61JuLv0q5rmE6Hnbgwu2Q/OXYa1WV/bMX8OLRg3SHRh7rH86/lzVR7C5rDyfwdRrEz/rIz5eeeX\nob9l7KneB8Ic2p577sny5ctpbW0F4Pnnn2f33XdnzJgxPPzwwwCsWbOGd999l4MOOqh/xPmaUHY5\nDhDkj8aDigK2nLPwlo97ytq7R5blzUvTo1GihkFNTQ22ZbGptRWluhpL17HS1cjRLNVWCk20U9dY\njWPKSKaBZJpgmkRpJ23IfNkSIZs0kaUUapVA1mXWbZKJRhU01UGNCSwbOrpc92Emm9vCSrhnpFXU\nuV00ZbruSSG7/80sWIaECdhSFNNyl+pnDFCrGhi2y55sWL+e1Z9+CpJExpAwHNB0QUR268Y7HsY0\nDLKZDJlIlEgmgx6JuB9dR49EsHMnW4M7APAsWXf1Y67+JPxFIEHLTLD51QKv3sOspmLzSsXmnopZ\nY/n35Lv0gvnkxymUnhc37PkLptsfMuYTVqHy9peMQaIrJGP/oHQuxx/+8IecdtppnHzyyUQiEerr\n67npppuor6/nsssuY/z48QBceeWV1NbWlizf7QFlQhugCBvlBjtj8J0o/z5JQpZdJa3n3rWyYjEc\n24bcFlktbW3uwohEAsc0iYp2FMlh0JBaLEMiIW1CsQw6OmJkUiqS3kWyPULSySBMaKw1SWVUkgK+\nXAu11ZZ7TlkS2jrAMCRUXVBRu3nZvRpz3zfrSkPGdufGbNwXsuMRQWcGHClKa5eEKQR1gwczfLfd\n2NTUxKqVK92tp3CP2YHNmxZbloVlmmQzGdLeysTc3Ji/TN+zynIkr+v6ZuWds748eMv03UuSv61Y\n8CX2sBF8MRdeT+3ofecr8LD0/XLm3R+WT/DeYBrFLL6wvLaljMXu35Yy9g9K+x7aKaecwimnnLJF\n+DAq0NAAACAASURBVMKFC0uaz/aGMqENEIR1vEKdLojgi76KoiBUB9t23WqRaHSzEpAk1JyrraW1\nFYSgUlXRHPeo6UT9MBQrRSVdYArkiEZLWwVORgJTRRgyacfhyzaTiCxoSUq0pqCpw91133EcKioE\nNbUCIdyd8yUpt3VV2iWw1k7ImBKWEFi47kUhQzSyWZbhO+9M/fDhNK1dy5pPP0XJbdMlezuc2DaO\nLGOZJqaikM25WBVFIa6DErfIJh265M1zirpqE1eSGIrlEpvmzgOqqoqtqAiRI6ncaQRybgVjPnkF\nSS7YHvlttzXt2NP9+XGLKfli1lfwfxg5FSOAUsgYZm1tTzIOhEUh/8ooE9oARU8jSH8ex+uAuUUM\n3jyRo+vdrDfvDLBYNEpVVRXNGzZgWRYVVY04Wj1Vg0YgGV0opgxGFxI6CamTbJdB1BF0mmBbFtlU\nhKRh0W45pCUbCxCSjJAE9RUC3JNYaOl0F3t0dEHGkHCEwAH0iLtPYzILXRnQI6570rJtdvjOd4hU\nVrLq44/Z1NTkzl3hkrEQAlkIJMcB20ZYFo5lYWazGLkl9k7MIp20kIAOofluw7iSJC1XuBaYVuG+\nl5cjQVe5uSeK27Y750bgNYh8S9ire4/YClktvW3HnhBGJj3lWSieFx5MI9+SCqab71IshYy9vbe/\nZCxk/XrXyltfbd8oE9oAQv6cQ9g1DyJAZL4ClmUUIRCq2m2PR0V259XMSAQrGiVRUUFNTQ3rm5pI\nJpO0tLZSVV+PY1ZhZuvJplIoUicyG5AdgZVREBGw9QwyKmZGRorJZNMKppmznJBo6oDqSujodIlM\n8qyq3FyfAyT0zeeetXZJpE2IVFfz1VdfoUUifPbOOyQ7O5FzZUcIpJx8jvfbcRC2jWUYLunpgigm\n6VQCgFRWRY+3+YSoK+4JBLZcga0mu5GZJEmYpuaWLzenIrkVF6rc8pfsF7IeetuOPZFbGOGEWTiF\nLKZ8111vCKUQyZVCxkLkFVaer0PGMqFt3ygT2gBDfkfLv+Z1zKD1EFSywnFQVK/ZJd8603QdyzSx\ncysAhW1TXVPDhg0bWN/Sgg7UV1VREY+j6DpCljGFIGnKOFEFYiYikyGV1bGFQqelkMHEkiQ81SUM\nsJPuwg4T932yRM4CM0yXkJJZ95DrdBbiFRrDdh2NVjMETdf57O23MU0TJUdkjhDEIu5S/qThkDZl\n8BSTZbkkJEmojo0wHDJC0JaUiCcUEpbsE5okyzhEqJayCLkDlSya04bkNAD1ZE13ts80DUxTBtXd\nIiyoBINWWtAtVWhuprftGGZh5KcVlm6h5yZIJIUsk3zC6IkASiljobTCyt0fMgbv6029lg7l3fZL\ngTKh/X/23jVWtqu69/zNOdezXnvvs88TgzEEHNsnB+Kbew00WFg2kNzIblAEcnQb1K2oUUCyQImi\nCAhxx8EJiWgQCKImivKlowTx6r5qxxbdwTi67eTedF5AYjvGBPw4fpxz9rse6zUf/WGuql27TlXt\nfczetk/YQypV1aq55lqz1lzzv8YY/zHGZSLznOTTnONizCQG2wuuUsqb5YIAIQTGSKRUqNAQRZEH\nM2txtTbSarVoLCywsbLCuY0NGlFEO0mIrSUvS4IsQyYJIopwYUhORLeIGZiSSghUDEnqyAaWMPJx\nZs0mnF+FJAGpPIDlpQeBonQUWrL4ilfw2tMniETOk489zMljxxBa04wgSTzw9QtoRxAEEAioSq+p\nOWN8qILWHiR7AQrQucDIAaIOZ5C1diqlRNXsRSUlMYKIhv8vRUJuLThHVVZUlULgUPV1EP6P3/Ef\nw/RqB3sxf01ex2kmvVnaxCxSxDRNaTctaJbMMssNf9uPMU7r46U0xoORQw1tP+QQ0C4TmXVzzrvx\nx0Ft3AQpYWcqrFrbMMaCs1hjAa8BOWtJBgOuvfZaVldWeOLJJ3lmdZVASlwQIOIYGUUQhrggwCqF\nVQotBEZKkkAgkUSxoZdDu+lroB1fho2up+4XZX3uYcjCiRMsXHEFKorYPPuvVBtPY0uI3CaN0NFp\n+eTHycAzJsuiTkxcQjimuQHeHAkUmWClBBVClAhK8KVihCCQvkCnqt+llChSAEoaNGSPzFkcEXlR\nUJUCgautuF4LUxNkkGna8eSDxVBGabzmXMdxTWKW32iaxjaPmDHZZtqCPaufYbtp5zbNpLeXuToO\nanvxxx3UGKf51MbHdEgKeWnLIaBdJjJuBoH59GW42NYv5Ta9HCk9gWIIeNbWMVduezGpQdAYWyfm\nTTl2/DiNZpOzZ8/y7LPP0s0ySmuxQeABTUoPaFLipPQFOEtfQXpQCopK8Oya5dQRsAaUhM2uoLW8\nzJVnjnLqZS02B4pzT62z/sQTCJuTxBBGIJymnXhNLKB+dw5TQq/04w2d9XXc/B81+iwAUY9HAxJP\nkhZsaxXDxMc+RZhDu5C2y9Fuk0JacEvk2YC8Zlc7RJ09JBj9j8OHiNGiNxYHOA5sk5rz8H2WL2ry\nOs6bI9O0pHlmy/H9ph1jlrY1DUCngc14f7Pm6uU0xoPzoe0vbf/HVQ4B7TKRabb8eTf05JPk5AI6\n/lkoNWLvOd949C6N8cmJwwjrHJHWHD9+nCgMee7ZZzl3/jxWKYJWi6a1GKVwSqGtD2qmqggjzWIg\n6fYljphB2OTI8ZRGvMBy3CZQiiXxHL2zP6B3fp21s/XxgX4lCEOHEwHCghK+0nVVwvGOr6MmhDdZ\n5uV25v3h/mFgSFPHoDTk2pM7dB1fVg41smHGj4lsH9Z6VmMVCBxLZIMBebat2cqxWm1KShh7aJBS\njjTFaaV8Jq/NJLDN0mpmmewm58Y0UJhGjJin8Y3GMWWeTbYbP5dLnasvpTFO22f886GG9tKWQ0C7\nTGS1p2c8gep6mx19hwmNrJZZIOfNi5bamDbSUnwbwUoPGgNBXkqKTNLPFFtlSE4LI3NKW9AvMvqV\nQgdNGsdi4qUTLFcVrWDAYtTHOsfWIKZbxAhryQYZVX9AcX6VbGOTlspYahm2siVMPHaO+NyOGwNJ\n1F5EW4FGIBNQytFOLP1cksSQd+sUX3UIgAXSpkMGjjhUWB2QpoLCReQuwZqEqgwpB4JMOAZW07ea\nns7Z0hmtPKBTBLg4Aufo9/sM+ozSXY39s5gaGIHaN2l2EENEfT5SemKOqLdN0v+H7Wf5bGb5iWaZ\n4nYjW0zTaPaqMU0CxSzT3eRv88Y4DVBmneNBjHEWuA7lkOX40pZDQLsMJFTwlb/2tcumVUWe9nn0\njtuZm2n4eXzbuIxpN8P2Kyuw+P0+xmiqSlMWkiJPGfQXGQwiBr0OerBEYs+R6YznNgRFCYqKWOQc\nSfo4bVnLEnp5QFFYhPOmP9mEtFORRZony4CiGSJObp9frCpettDjgccMa6+8jUwHDKoAHDRijTGe\nk1Ez9xmUAbkJcc7HufVVRRprBmVIGhlMaNEuZK1sIVWADBQyCAmDkMCFhFlEZBOiPCLaTEhWEzqJ\n4ydeuQqDNfp9RplJwGcnMWGIUgFWGTxzdLtW2xDcVG2usjAy8w7BbWjKmpbdZTf/1W6mtOH75MI/\nbeGeByy7gdw07Wwvx52lrb2Ux3gwcgho+yGHgHYZyH+6Aa68anHXG3D426wbcVr5CGDq9nEyyfce\nW+GVV3YoioIiz+h3SzY3CjbWtlhbWWH1wgVy+QS2f5au3aCV5TxzriDv99FlwbNlCcYgrCN1jhae\nwCGdoxE5rjhiMEaQ55JuV4wYiACdlqGx5vjZ17yD7zx0L0Ep6EwQKwAW2w6lfM7IrBAksaNX+Ez7\nBugk0O6AFZJBpTgSKTITUonE1zdLfV20tNkkaTRotTs0whbtoMPJtuItP/UGVs6ep9eN/XNATZgx\nWhNGkQ/GlnIsEbQEBFJ5/5yVviK4MMabOKXE1lrcJIHkopRlU2SWWW9au1kmvElf16z+dmszSzua\n3G/WeF5KY5xnLj04MAPcJdL2D0pRvMzlENAuA2nFcOpIdNH2vTwx+ht2uullvM20xXT421oLTiwo\nykKRhZKuE4QaRGYwcUUVFhihKXSFKXJs1ifSPUzVQ5QFoihwxiCtRTpHKAQBIJ1jIYLEQCeFZzZ8\nQuI08rFlZQGiC80AlpKMI26NrcKfVxz5lFhFAVUlaBaOhTZs9qEpIJFwxRHPpFzrQYTA9SG3glgp\npJMoAjYKH26ATjBlTKUbhLqJdj2Ma2NVRhk2SSPJ2lZJS2yNTLLWGKqq8jXS6uwiUm6zJYcvv13V\nxBtvlpRsmyIn/ZuT6bO2r+Pu13weYMwCmmnAM2/75DlNfp+lBe1FA5rVdt5+045zUGM8MB/a/KQn\nF4vavcmPoxwC2j7L/fffz2c/+1mqquL666/nrrvu8lWPx+STn/wkDz74IFJKbrzxRn791399T33P\nutHnaWx7eaocXwwmGXsz97E5odskwCOMtiEbeYu1QUahs1G7JHSEkSMbOMpCsNjyKbDKAqz2pA5j\nYXXDp7lalNBOodUAY2BtHZZaoGzJcgfynu93uabv5wNYXXMkgKzgaNuXlzmxDEEEgYSqgm7mCBIP\nflpYIiDTBmsqn3bLue1yMmMvKb2GVclFNjYGWDZr9qdBV5UvDBpFBHU5mSGoDT+rYRLkICAIQ5wL\nsNZt33g1qE1jPk67RntZ6GcRLmaZ7Sa/z5tPk79bO70e2QsxV1+sMR6IXGpc9SGgTZVDQNtHWV1d\n5c477+RrX/sap06d4q677uKLX/wiH/rQh0ZtvvnNb/Kd73yHe+65B+ccv/iLv8g3v/lN3va2t83t\ne5Y/YVqbyfYw/2aexvC6aFGdDANwGdIZAsod24c12IaSxA5pBS4GrOUVJzxTMVmEbtcD0nOrXgtN\nQx9sfXQZpIC8D8eOeIq+pETncOqo9ym2WoADm0EiBJSOtOXrpLUTsAVEiTc1nndgK0GvggpHJcAJ\nRxJrjHPklQeSagzIBJCEFllqyr4vLbO1seE1M61H5WjiOCYMQ9SwTppSo3yZaqy22iiTfxQRRdt+\nymFg9rQ4tXHG4zQtYi/XcZ4Pad72SwXOaef0Qs3V/Rzjbv0fmBwmCtkXOQS0fZQHH3yQ66+/nlOn\nTgFw++23c8cdd+wANGsteZ5TFAXWWsqyJI7jPfU/j1U27fd5/rTxz9N8c0NQ25l0d6wfkeKEQhMB\nA+DimmDg/VmhcGSlIIl9depOA9Z73uxmpb+XDWAcLCx460srhe4m2MpXt86DK7AVLC7CQscfa9CD\nqget0LG0BI0m9LrQ64EpQWtfIDQUoJzP7mGl9OzHwPhxBoas9Bn+ZT3mipqG3zBUA4vEkz+2Njex\ntd+sLArywYAojglqDW2okQ21srAu0RPFMUmSYMdqroUIlBTYOlvJUBuc/M/34zpOmyfj2/YCOvO2\njR9z1vf9mKvDfg5yjPOAeDerxY8k1SW2Tw/kLC57OQS0fZRz587tKGl+4sQJzp07t6PNO97xDv78\nz/+cG2+8ESEEb3jDG7jxxhv31P8sR/WPujBN+33yxnXW7lDSrEyoxAKGgmFI8kX+BeHzMzopiCJH\nHMBWBk9fgEbkzYO9vA6cll6j6g7g+MuhuwVS1aVlKtByAVNAOQATAcaDmSgFrZbj6KLvo5Kw1vMA\nVZXQWgKkLwq6VeDNiwKK3NEKDQsJRKFjY6DIjUAXhc8wEjmE1lS5I6tCrHP0NjcxVUVVVuSDAXGa\nenNjXWpG1WZFVdebGwJZ2mhgtN6xCEulMGabQDKMBRwnh+xFdruO87SdaWAwTSOcpQXNMu/Na38Q\nc3U/xzjpx5tnwtxXuVQf2hy55557+OM//uPRPFpfX6fb7fLggw/ysY99jEcffRQhBB//+Md505ve\ntH8HfgnIIaDto0xjCw5jk4bypS99iX6/z4MPPogQgl/91V/lC1/4Anfccceu/U+7mYui8AHME22m\nLSpDmWbemWw/HIsxhjzPybKMoijIs2ykYZZVhTbGZ7kXeL9RGBLEMXGaYq2lETikC2hEml7fYY3A\nhBA1HYWE9hIgFIQtnnNHWFwI+RchiI5FbBRNBrpNJVL+939c4J+u/mWEECymOUvJgLIKSIIMFXZ5\nloyAknNByGYoSEWPpeYqidyCsqSDpOpLpHWkkaPZcqRNENJRWIkLFFGlaKSSwgW0UomxvrRNgSUv\nCvr9PsZatLUURU44yAhCr42pGsiGvrJoWBE8TUnznEaz6Stn1xW007KkTBJfbDUMRyA3SQwZvy5V\nVc00PU4CxjSZtn3S97QXjWyetrWbqW4W8E0C0LQxTjv2Cz3GS33g2LPso8nxtttu47bbbgP8+nD7\n7bdz11138bnPfY7l5WXuu+8+nnzySd73vvdx77330mq19u/gL7IcAto+ysmTJ3nooYdG38+fP8+J\nEyd2tPnLv/xL3vnOd5IkCQDvec97+KM/+qO5gGaM4ZFHHrloe1VVfP/735+6AOynWGv5wQ9+sDPh\nbh2vFrbbHG+1OHbVVTvIFMN2ioKAwpsrHfR0ynNZh0FpKbWvZt2rYoxTSLtIGvTphBmIiI6ytNQA\nISNkssrP/U83IwQ0xSYRGQ25iXI5lVNkJmG1OsIp66A8AbZiIAY42acSTRqyxVKo6MQVV6QXOBau\nokSFRVHQpKBNQIkUBotCExNSoEWCIeb8+fO8493v9uMRJYYYQwxCoCh8W2KM8Nd1GDQNUBpDtbXF\nZrd7UdaQ57M4hmH4I13P5yta66nz8IU8/vj99WLIdddddzAdH5AP7Q/+4A94/etfz1vf+lbuvvtu\nPv/5zwNw5ZVXcubMGe6//37e+c53HszBXwQ5BLR9lLe85S186lOf4umnn+aKK67gq1/9KrfccsuO\nNqdPn+Yv/uIvuPXWWwHPinzd6143t1+lFKdPn77oibHX67GxscHp06dJ04uN6rOc7fO0uOH3IShZ\na3nssce46pWvHGlo/W6X7uYma6urrNdxaKsXLtBde5Zsa4ULK1usrvXJBgMyl5LJI4jWMlFzkZ5b\nIK8CgnKdqNygwxoLbg3b70J/iy0sG6H1WfQd9KXAFY7/9Kdf42vv+R8IAR05jp+wEDkIwGUCUcKV\nbUFVWZYryXpPMQibrHKEFbdEL1qgFy4xiJdRgeFkc5WWOcfKuS0Ga2vIYpU4hjQV5JVCBgGtpqJ0\nEVYk/MbnP8//+rGPsdwRJI0IRMjA+WKgSy1HGAhkEJPRJk7qmLZGg1arRavVot3p0Op0aLfbtFot\nms0mSZoSRjFR5E2Wkyau8cTFRVHwwAMP8OpXv5pOp7Pn67hX2a0Pay2PPPII11577VwyxSx/1vj8\nm3f8eXP1kUce4fTp0wc6xhfNh3YAz6Srq6t85Stf4Rvf+AawN5fI5S6HgLaPsry8zN13380HP/hB\ntNZcffXVfPKTn+Rb3/oWDzzwAJ/4xCf4wAc+wO/+7u/y8z//80RRxJkzZ/jwhz+8a9/T7P7Dmy5N\nUxqNxkXbx/cdl91uWtgZWJ0kCc1mEyWVJ3JUFWWeE4UhQV0NOhQlS3EXzQAtYy7EV7KZnqAUKbYq\nOMaTBOsPs9g9R29lBWUrFP7BdMM5WpFnJEoLSylIA40AzAACA43QsqD6UACZwCiHa0CWQXcd2kch\nTmChBSsX4EgAHXpEW+eIe2AjcBFsFpIVeRx39BgrzeP02tdyPlxAmJy490OW8n+lY5+jEQjMIECg\nGJQJYRTRW13F5SGNhqIixqgCGQSUA0UzlRiZIELnTYO1yTAeluRxDimENzHW5sg0TYnjhCjeJpWM\nL5jj16fX6110jWZdx0lgmLdwjx9nHrli2jlNswzM8lHNM39P/v5SH+OByAFoaF/+8pe59dZbWVxc\nBKa7RA7UL/giyCGg7bPcdNNN3HTTTTu23Xzzzdx8880ARFHEb/3Wbz2vvqc99U5mlJh0au/lph+X\ncQ1tmDF++3vdaJIw4qBwEefMVaykr+Vf0wXi4ALXlQ+z/sxZNs6dQ8mCMLQMMgeGuoo1o2z0aeII\nFCy2QFcezLpdT+YyJQR2k6UOKAM2c4gSKuvp+a0Uji5B2oHK+Di2GCgMIKGfQZCClgCWYus5xHPP\n0YkgKSAQRxl0XsWg8xqKl72KLTJ0fpZk8BQdd45YWaTNKLMMrTVbgxAVWlRkUGFIVUUMyoQoNsRp\niVQKXZaYJMFa64kxQzPtWOJn6vGPX8fJcjOzFua9Xsd5bfeyoE9u20FsmfPgNG2uThItLnWuzjqn\n/RzjJNhOtjuwwOoDALRvfOMb/M7v/M7o+6lTp7hw4cII4M6fP8/111+//wd+EeUQ0C4TmbdgTSN8\n7OaQn9x3tyc1r7HVX+oP2sLjW02+vXYV6/3jhPpZqu5Zltf+mVPyUaTOaKYFQcvQG8DaFj6HY532\nSgqBcL6eWVFAFHlWYyfx9Puq5xf8Rr2ApBG0EshtHVdagYyhsQBpCnHgY9xM5Kn6LofNzANc0vEh\nAtUqxBKKylfOxkGbFRoXVrAX/g7ZXsQtv5LV5CcIlq+GZIW0/0OqIsOUJcZapLUEsiKVFdqlVJVA\n1sSQkYYrfUC2lHJURHSUQaTO88hExv4h6A1zQM4ycf0o13Ha/Jj3sDOr/Xib3cBiHthcylyd3P/F\nHOO+yz4rgltbWzz99NOcOXNmtO2WW27hK1/5Cr/xG7/BU089xbe//W1++7d/e38P/CLLIaBdRjKP\nqbiXxWXak+tw+0zz0BQNbTNz/M0TAf/ww0U2tyJa6jmOx4+ju//KanaeTb3GZiVJBZSVIJA+Z2OR\n+zyNjcjRiHyF6bIA6RxVAd3Ca1llDlF9CpEQhIATMY0EFtpw4hh0nwU7gOaC1+ASCdUm2MAHaBcl\nmD6IAjpNCGPIDSShB0xCr8FZIKurXzsBtruB621ylO/iOkfQL38t51o/xVcfWmZ96U00+t8jLDcI\nmwrhIJKKzMU454gDy1LDoBJJGEajgOowigjD0Adg14HXUspRAuMdgdQ10M9KPv28r+MuPq55Gt+0\nuTZNdnvIGv/8fOfqtL73c4yT2uOkvGTi0HaRJ5544iJC2h133MGdd9458t/fddddLC0t7e+BX2Q5\nBLTLSKY9+e7lBps09YxvG+933AQ0jY230bd8658rvv1DQEuuXi5YXnqW/uozXCi6rLCdJWRrEHCu\nH6CsJhRQlALhLNI5mhHEyudj7JY+r2PgnCd85EAM0sGRNsjCEdTJSFwBnVeAsiCXwIagFKgWZOs+\nVZYVQOI1u9B5MAs6vk/dA6F93kgjfPXs3sDfBLqOUYsiCGPHoICsu47+l78F+R1e96Ff5i+aS9gT\nN9PvrSH7D3HEdNFOImNJEAS0G5I0Dmi1HEnLEjcUaZqSJMkoRdYI1OprN0x7NVlBYa/zYLfrOPnb\nvIV72jyZNZcmz2eeSXTa9936f6mO8XKg7QOcOXOG++67b8e2ZrPJpz/96f090EtMDgHtMpJ55o95\nT7OzzCyTMr5tpDUAgxL+7+8O+NvH+kTScvPVcCIp2VrNWDlv6I9aMvokwJsSS1+tOlaOo21HkfsE\nxJ2WByMb+qrTIRAB7djnaYwBm0Ecg63AiQSXQ9H1pkWRgyih83JvxhSVT2YcdcAqEDHIAKIKwhaI\nhs/tOOjBVg5B4AFysQEbm5Dgf19ehkp7k2ZVWqLIsZAYfupYl6ue/RrVwsvZOPLveSa9lU39HMv6\nMRYCRxRFONUgTJqkaUqzkdBoRURN/z1JU+KxjCLD/9qxXVB0snzMuOwImbiE6zhNxufQbma5yT5n\n9T1r3r0Qc3XW+Rz0GPdVDlNf7YscAtplKONPxMPKyrB3GvIsk83470IIisry/z7S456/gRPHSt56\nTcy1xyV5v2BjY3KvierM1L6y+pd24jWxKIatLlgNoYSFxFeCaseepn/VSf8uSij6QOn9ZsrlyAq6\nT0IVgMiguQTKQRiCa0KzA0ETwgUYDCBuwWbXa3Iy9idyZAkGT0OeCaLEQekJKIWAZgyJgoWmZ09G\nzpHGQACByylyS6yepdn7f1hu/ST9YzdwfvE/YuQF2smzBHGKjRYhbpA2U+LmEo1mk7TRIE6SUVaR\n0X/uHNZYrLSgNW4sCH/yukzTCvZyHadpT/NMctNMdHsx3c0DiUshKO2FDPJSG+O+yAtEpvy3LoeA\ndpnIPH/DvAVimsxqN/75X58ruefvu/Rzw/WvgHfduIAwBdlAc7H+AKGs6MQFfalHGppwDjUMLi68\nVqQLr4kpC8eXvInRhf57J/U0/WYKG+vgetAQ0FoA6TSx8j4x269Br4Cg8ppeoEGGPn2WtRApwEKr\nCTrwqa/iwANgIwQpwBpPIqlqH1wjhFPLsLEFkagTJkeQO4cRCboUVEhsJGjnT3FkfYNKnqZ/5Hoe\nT15DGF3gZEOTtJZQzUWSVscDWppuJzGW2/kavc/LoI1AOgjq7UopnLVQX4uL0pBNqZU2b0Gedv1n\nAcG0/cfbzZpLk+a9g5ir43JQY3w+mtu+yKGGti9yCGiXkUxbCObZ8yd9BzDfiS6lpJ9r/uK7A/7x\n8YzXnoz4H9/a4ZknLhCHgmJOUd00KJBRRi8pWYGdoAZUpaCbCQLnWG7Bq0564kdhfHkXDFRd71fT\nFhYisLEHmiOLkOjHaLXArHhNbOkUBDUQUkIUgNP+u6rjAbSG9iJUzp9L1fPaV9EH0XeUlSetxNLR\n6ECr402XRzpw4QI0a3C0GqxICKTE4BmMjRgW2hYZnCVwFVvR9ZzlamzleGOU0Ww2aTQaHsySZOQ7\nG1arNmPFPa1zBMqC276+TkokO4OrYds8udt13CvhYtqceT4mvt362Q2A9jJXx/t5KYxxX+UQ0PZF\nDgHtMpLdnkgvpf00c9UjZwvu/Ycu1sEv3NDmzJUJzjmeqdvN84ULLCBGQKZqc2MaOtLYkQ8sxgqa\noeMnr4TFFGwJz61A2fMmRiUEQduxuADNRc9aTAN8/JmraDehymDhmKfqBwGYLqgQomMgI7DOHQLq\nzgAAIABJREFUk0RcBGnpGYzCQaG81hZKTxQxJcQhIB1BBChfl80anxi5GXvNUcaQr9f/k3O4mhTQ\nSjwBJEoEIlKcajyNWFA8KX6Sv7pwgv/QsPzMsYA4ighrv9nwf9d1omJTV69WWmPG6qY5IKjbC5Oh\nXI6ww2uwk0Ayy+w4T1ubppnM8lfthQ24V01n2vHnbRs/h5fSGA9EDk2O+yKHgHYZyV5urMkn2HGZ\nZUYqK8M3/2nA3zw24HWvTPnZ1zdoJmpHbTM3w+Q0/D3TKf0yoZdnCDKo48vaiQ+GbrUcJnQ0Q68F\nBQmcuwCDdUHoHO0I2okjAhq1+U+0gIEnjDig2QRXg5ISntQRBJAuQ3wCpAJTeOq+aoDMQaVQVlBk\nYHNvSgwFNGOBUD51VtqBsoRCe/+eLnz/x09AZxnc4x5IpBAIKXFSoo3COYlxMc0oIo4ilpqa1y6f\n51kT8dDKUXpI3n6tIJZyVBTUGP8oPgQmVddOC2pafxiGhM7hrGd9Kt3DYnCl53XvLOezk0QyqalN\ne5+cB+Pfp/mKJk2J0/bfi0lvmjyfuXrQY5xlXpzV777JoYa2L3IIaJeJzLvp5j19zvNZSCnZGhi+\n/NebnNvUvOuGNq9/ZYKU2wUnh3FoQspRYPVkiRghBJWN6JUJ2oWjxT+NvIYFILXP6NGJYdCFbBWq\nPsTOEQvB0Zaj0wQyMFseKNPAa1yuC052iBPv+woCoAfxIsQLXiOToXc5GbzG5ixEKQQKojozSZ6B\nkz5FlnSOvPAkFT3w+ygHSQT9vq963W6DkrC8hAfoOk5MSYnWikER025GKKUIg4AwCEhCxfXHc65W\nA/7r04v8H99V/Oy1luPtCmEysAO0izEiHgHaEMiiOMZaXzWbGIQUIFKky3BBeNF/P15uZjw7/+Q8\nmfw+7fOs92kyOQenmTznzdXh90udq+NtXqwxHlimkH2OQ/txlUNAuwxlmolkN5/C+H7Dtk+tVHzl\nv24RBYL333KEY52Lk+PKMdbiDhyrfxejdh70wBfHVEJ4hqAW6EqgM8XigqbKPR2/6EIngk4da5bK\n7ZqFqoJW5Kn5UniWI5Qo579LA3ED0iMQtHwdNJOBCCFsgAh8nJmTnorvhE+JdewKr4mlTa/JbW6A\nsGC0LybqlDcxLi6D2YTnnoXGIjz5tB+wwIMZzhHUY1RSEgxfShHU/++pluGdpwf8lx82+M/flbz5\nqoqrO+sYnaOtoKDjM/UrRVSDWaL1qAjo6L+NYkTYxJkMYAe9/+ICrG4HuM2aB9PAZx5AzZt7s/ad\nN1fnbZ81Vye377b/QY3xwAKrDzW0fZFDQPs3IJPmmmnmockn1kefqfjaf9vkquMR735jhzSa/qS6\nQ4Ypm9g2mY1e0qd0UmPvupBIJ9CVxFawsSZYiMGVjkQIOomjobxJ0fZ8vFmEr0qtcp9MX6maFely\nggrIPaCpJgjj/WPOehOmbHgTowgAXbsllAffOIQy9O1t4UErGqbYqsBWgkHfcfwqaB3xddq+9wM4\nuwIr3W1Qd86Rho7lTknaLkAZFNs+QwE+Z6O1xELztp/o8zdPhtz/L4qV4wHXLeboSmPcJpYYgsao\nEKgeKwI6CuAVctTf+LWdzP248zJNX3T36guaZnabtejPM0Xu5Rz2MlenncdeNKt5cpBjfF5y6EPb\nFzkEtMtYhuapvTyxDttLKXnobMn/+f9tcebKmNv+XQspL/YRTDWtOHZkthhWW1ZSoqTyGsrYq3Ih\ng0yTSEOzY7EDyaAHqXOEOEIHLzsJRxeBAvrPeLNkqwGyAjGAzglIWmBFSmMRghhc35sChfL4GkQg\n2x7QXLhtltSV186oAS+OYXPLmxbbbW9uxEJ/EyLl0ArSuO4bz3Asi6GfUKCEp740Ikc7tiSRQSuN\ndA5hLcJaMAanNbqqRg8Arz/WR1SS//ZEgwvrHc50fgi2xKDQaok4jinTFK31DqAa/cciQte+tyFD\nUkp5kYY2LuPsyHm+osn5MWvuTM6rWVrZPKCZ1n7WPtPMl+Pvs8bzQozxQORQQ9sXOQS0y0jm3Yx7\neboE+McfZvxff9flP/xEyn+8vnXRwjd8n7VY7tDI6ryEvlKzJzcM/UE2ikhsRhhJEiehkMiGz77R\njBydCJoBdDpw4uU+/qzhgL6n6psBNJoeYKIYhO2SLHlfF23AgIoFQQyi5aAFBCADvFamJYEKMK6k\nxjTiBNotQZE7UB4I+xv+JogCb5ZcOQ9xBs9cqLP+j7L0uzoEwVGVPjBbRBIrJOEYkBmt0WVJFQRY\nazHOl5N5RVzQayv+/tkO3Y0m1zTX0IQ4BUmSUJblqMyMqK+nkNupzYZVyY0xWDs9NRmwg/04yxQ9\na37MA5Z5MsvUOKvPvc7VaftMMxe+WGPcVzkEtH2RQ0C7zGTyBp1MWjvZZvxG/JvH+tz3Dz3efE2T\nt7+uuYP2PesJe6rGUC8iQ4ZeGIZEUUQUx77WVxzjoog0CBGFJtAWXQmc1rQaguNLEBSG0AiqLUe2\n7s2LetX7z0zfmxyDlveVhQFUKkUYT/6gptOrpvebyaZAhBIRWVwgQSlUVOfeswpXGMIYRAdP7tjy\n/rUig6UjPi7NrUOpodcVrK46+kaQpo4KSCMPMoEDEOgS1jcDckKaEkKXk4ouokrQeYMyDD1ZpizR\n1lKWJVmec8Rl/ES0wncuHOf8+nFem54lDAt0Kgl0SN8sb/vH5HauR2AEdkOm5DAAe/jwMQS54XyY\ntrhPXud5Wszz0bimaV6zwGS3uTpOdNrrue3HGCfNnZP9HBgp5NDkuC9yCGiXocy6oactDkP55ydz\n7vuHHjedbnHT6cboxpy1YI1uXClHi6qUYlQCZQRmdTb5RiIQLYsdhMgq4kgkIA+o+jFbK2BKRehK\nmg2NsI6FBUNYOHoX4LktSAyEBYhMIFJH+yi0Xl5T9A2UCH/T5yBTCBsCoRQkASLSiIZASnCRRAQS\nhwIjoQQrLbIEpwVB4pAOsi1HGELSgCNHvR9tMIBUOFQKrucoLbRaUHZBupzltmNgDNo6pLUIYxBa\nE7oCV+aIqkuVtZBKeXq+lFTGUJQlgyxjMBjQzDOudCs8unUVRb/Dq9NnCIyj5xIa1mKIth8ehteC\n7QcLrTVaG8IA7FhmkVlJc2cRHGaRN3Yz1c2ah7P2mzW/5s3VyX13A9j9HOO0fnYb477IoYa2L3II\naJeJzHpaHb5P8zkMP59drfjPf9vlhtc2uOl0Y0+L33jFakbta+1sQjOLkwQaClHGLHQiQhsTVjE6\nqNjIA5JUkiY5ugumcGjnsLFFBRCklnzV0Wg64hgi6WgsQnLU0+6jDp7SLBRRCiquSR+JgChAJQIR\nh96flqhhVDfOOoRyuFhBrrBYgsDhQovOLUnDkfU86SRMfIqrTgciC5mGMIJ+nb2/EfoCo0c7jl5l\nWe1blDEo49Oc5ANDkpS4wBCIAQ6QZYkTgtIY8qIYAdogz4mzcxzXWzzBTyKKNZxZR2tDVkU07ObY\n/z0GZvX3oixJdYXAEYBPkzVmGh43FQ8fWCY1l1layLR5sBdT4vg83Kv5b9ZcHcpefWzD31+oMR7S\n9l/acghol4nM8h1MS4M03n4rc/zZgxu88ljIz/10a4d/Zdh+1o2+I+YJHxclRK2dhSFhDWZpmmLS\nJZKyIsskaEtc9uhbgYwqFjqgKl+pOS8hLySFMhxZrnDa4pzAaUBAY7k2MzY8OUPWa7V0GSIAkQKR\nRIYBsgUiVshIQip8nhJZeTYHAiEUTuKzF2uLqzRKGlxosYUhijwVUpXerLnQATnYDgNohR7cYoZx\ncZYwdFijUUmJdQVUFUWvZFMmJK4kdj10VSGjCAsU44CWZWRZRlGWxNUa7UDw/eAqZNWlKCua5YDK\nbdZ/+HYGfmctMghwzlEWBVVZjogq22zIWmMdXq+xhXce+PwovqNZfezm55okeMwzW87TiuaZDQ96\njPsu+6yhPfLII9x99930+31arRa/93u/x/LyMh/72Md49NFHEULw8Y9/nDe96U37e+AXWQ4B7TKS\naYvB+KI1eVNWBv7swU3SUPCeN3ZQ8uIikbOehCfLlchRZgtZk0ACojgmThKSRoOqWPJ5EYuIiJyy\ndxyRdQkSv/gq5ygZ5l+0WBeQ9x2dRsXCVQ63WicZbkC0BFgwPVCRz/pRBKeQGkQokAnIlkEmDhEL\nREOCDBCyRkXnavaIRJQGETpEGaCVQ0oBxiCkI2z6sQaJT4gcCSgz2Fr3sWou8ixH3QcjFzC5w2C5\n8lRJswXrueRcL8GEIVUYIqTEGoNKEggCDFAaQ1YU5GVJfzAgy3OKmgDS4h/pN0O+F74Wab6DtVtT\nr7tzjiiOASiKgrIoaiCTIzOwGrt20/yqw+u7m+ls0vw3zS827fNk28m5Oj7XZvnbZsluGtx+jnG3\n87ocfGhZlvH+97+fz3zmM9xwww382Z/9GZ/4xCd41atexfLyMvfddx9PPvkk73vf+7j33ntptVr7\nd/AXWQ4B7TKRvfoRxp96//zvt9gaaP7nW5ZIovl05mkyeeNKKadqaLosMVWFNQaMoXQF0lqqQtFo\nDaispSoFSIGKIZaaMJQQCJI2qALi4xDmINUwlgsfzCx9qqzQbUEHZMv54mWRQCQWYgv4NPpCSjAa\nJwNkEOPCOvVIqRGhQFUBRCVR0yElaOPNja0WYHzJmNBCaAVJ7HCJD8DuAqHdJLIWa6AZOCKpaUYl\ngc1IhDel5s5RaY0oCpxSI0DLy5KsKMhyH1UeupyyEOSVoJM/yPmlm/m+fS3B1nd3shbHTI9JTQQp\n8pyyLEcPFdapi+qpTco8P9JeNZNZZsXdTIh7navTfGiXMlf3a4zT9hs/z8shsPqv/uqvePWrX80N\nN9wAwLvf/W7e+MY38su//Mt8/vOfB+DKK6/kzJkz3H///bzzne/cv4O/yHIIaJeR7HaDj9+Ajz5T\n8E9PlrznTR2OtNQl7b9DtvNd1VT9nYSQKI7RdQyV1RqnNWiNrgRhY5OkBFFV6KrCFgWuLAkDga0U\n1kg2zyuWlzW2wtPuE+8jEwJcCTYDtQxSbyGPAAnI2CFCIFAIGSBi5XNcYXGBJ1UQtRDhEpCB3UK6\nCheAsA7RMD52LFO4yhA2fJka8FpaO3aEkeeU9DQstyGpnuDEsuOZc4ZzTwUsHIe1gaQVZzSUJreW\nzS6IsoQwxCqFxgNaUVXkZUlRVSRqQKgKFkPDs4OQqqpY5K85v/wOztqThL3zRIHFxQW5qpMXK4Wr\nF9KyLCmrilBrjDEE1m77OpkdcD1L85ilLc3Trqa9jx/nUubaNN/Xpez/YozxQGQfAe3xxx9naWmJ\nj3zkI3zve9/j5MmTfPSjH+XcuXOcPHly1O7EiROcO3du/w78EpBDQLtMZJ6De/J7XsE9f9flupdH\nXHtFNNpv1pPotG2jBXHCpDk0dQ01hCGomarCVtXo3VYVrqpwZYktS8hzdBxji4KqCAhcRa+vsNpC\n33B02fkinDWooUE2fYJiY/EED4dPGyIFIgy94ytIPIgpgUMgTAVIXGX8Pir1TjIdgKiQovC/S3Bb\nCiEcQWgRgO7CwhEIY9ACen0wG54JKShpp9AILc9cgM0tgQkNC8dBWUMrNpRa088a5IMQIyUyMKjA\nUA0sg8xQaE1GwXKroDQQYOnnltCepx1+h+c6P01nsEIn2aTMNEEQMAibRFGEDAJUFFHWDwdaa0xN\nBrJ11n6c91MOfavTWKzTtKF5JsDJeTc5lya/TzMFzpuru/U/CXzT5up+j3Fa20vRFp+X7KPJUWvN\ngw8+yJ/+6Z9yzTXX8KUvfYkPf/jDU+NKXxCwfgHl39Zofgxk2g1s64Vt+PnP/977Ym79mc6Ofabd\n5NP6t/VTP+wM2JX1Ajmi7g9LnoQhQU3fD+N49AqiCBWGqDBERBFh5Gi0HE5K+gPFIFP0BxKU8CzF\nwJd10SVYA4QgIlBtMKLj034YhQtDXBJA1ETEgQ+kDgNEFOHSjo+YVhKqDOEsAo1AIcII4Tpgm7h+\nAylCsMIXC7UQCEgVNBJfGDR2vlpAUIFWJxisgSgdAZ62H8kKp0uKrKIclISujy02yXo9+t0uJt+k\nGHSh6pL1+xRZxla35Ox5y2ZX0+2VHpyqirT7CFG1yllxHZsDS1YYupkngZRF4QOrncPWmpm1Fje8\nTkKMwGwoQ/LPLPbfXjSseftPzqVJ3+5e5+pk/89nrr7QYzwQMZf4miPHjx/n6quv5pprrgHgXe96\nFw8//DAnTpzgwoULo3bnz5/fobH9W5BDQNtnuf/++7ntttv4uZ/7OT760Y9SluVFbe69915+4Rd+\ngVtvvZVf+7VfG2WB2ItM3lSTLMfHni15+GzJrT/TphFPJ31MLgTjvw0/T5qshBCjBVPKiRyO9UvU\nmUOkUojRKwApQUqCWCBCQRCBEQIRWKKmRYSOSkOeQ7YJ5cDXSHMByAWgDWH1A59KJPR5rYSMIU2g\n0UREiXeIOedNkNESUkY4IXBVt05BpZGhQkQCQYyUikAKFApbSOiDyGoav/DptRopLC35NFlGdqi2\nwFVwdLFiuVPSSktModna0KysVGxslGxu5mS9HoNul/X1Ad2tPmvrA/IsI88yqqKg269Y2XQYY1lI\nSkJZgTUc2fpbClIuuCsw1mCMBy9Ta2Guvv7jPjPrfDosN3adxq/jPO1lN/PcNB/atDk4CzymAcJe\ntLVp5zNvru7nGKeNd9Zx9lXsJb7myI033sjjjz/OY489BsA3v/lNrr32Wt7+9rfz5S9/GYCnnnqK\nb3/727z5zW8+kOG8WHJoctxHWV1d5c477+RrX/sap06d4q677uKLX/wiH/rQh0Ztvvvd7/KpT32K\nr371qxw7doxf+ZVf4U/+5E/4pV/6pT0dY/xmHJoAh9+dc9z/z31eczLimivimYvA5PdpC800gsG4\ntjaMjxpWXB69rE/3ZOp3bY1/dw5dCVTlKCufEzFpWZLQa2TdFUFlHOEJn/WeEKz2pBAVQlw+502R\nkcHFApfGiLSFVQpR9jyBpBqACHFpE0GEKPs+cA2HKwcgughVIUOFSwQ2VygjcUb6UIOOL1Wju0DP\n79pseQ0xrp5kcQmqdQcpKCxlBtoIuj1H3woqqamkpaSkEgKdQeUcBqis9fF3zmGFQDhHGkoCKQgD\nGFiIGbBU/ZC8/TKkWCdRZiyf43ZlA9jOqTle5WCaSWk3EBm2Gf9tlja0Wx+zgGXa+7Tz3Mux9uI7\n+1HGOO88DtTsePFz7/OWY8eO8dnPfpaPfOQjlGVJq9XiM5/5DMePH+fOO+/k1ltvBeCuu+5iaWlp\n/w78EpBDQNtHefDBB7n++us5deoUALfffjt33HHHDkC75557ePe7382xY8cA+M3f/E201nvqfzcz\nzENPFZzb0Pz3P9Pa8fukWWW3foZAOQ5q41qBGwKXtWhj0FpTaU1VVZRVNSIuFFVFqTXl8PfcYfqS\nhtIsHa0IjEUJSyAExSYo4wgaIGNwGqocTA60wAmFE96XhnC4SIDUCKe938xZnLE+tVWVY0XkEckJ\n0BnS9nCUuNAi4hAqgWwaRAC2hCAWWOFotbyZ01koLNgYogaEdou0AcEGZJmjRNDvObqlIRdumJSE\nSghKIaiEQIaORuToFaArgQGi0NFoSHItyCtJGPlioSrwzNHjPMUF92ouiKtoBQOiKCKszbYI4XNn\njqW8GoUp1Cbhyes4CSLTfEOTc2Ae+Mxa0Ce1or2YDMeP9aPM1RdyjJcDbR/gDW94A1//+tcv2v7p\nT396fw/0EpNDk+M+yl5YRE888QRFUfCBD3yAd73rXXzhC1+g0+ns+RizTCxaGx54qM/pVyS8/Gg8\n+m2W6WWWf2HWNvCgNiQiGGMwQxArS4qiIM9zsiwjy3MfRJz7bcYMULKHpcRRsrxU0mhr0qajNI48\ng6jpCFuAApX42DMnfPVoM4CscR1OS6wIEEIhMN7+N1jHVRk4i2ge9YFrURMpLFIpUJE3e8YJECGC\nBCFDVISPZesYoiO+AqiKQaaQHIHmFdBY8iZI3YNKLZGt+UOaCgZdC85yZMmwtFChVIXRmjQuedly\nwWIz52inIgk1ofKAbq0liRyhgjR2lFrSLWIsMXHsX61GyNFgncfNNZjoCGmakqYpcR2HFoYhQRCM\nQE1KMWKgMrHQztMw9qIRzTK/TfY5j/yxmzlwN+DZzdT3Qo/xQGn7++RD+3GWQ0DbR5lm8lFj2Rtg\nm4H0+7//+3z9619na2uLz33uc7v2Pc2RPU7e+KenStZ6hrdel+5oP2v/8e2TzvHxfofbhlqZs7U5\nsQazqiwpynIEZoMso8w2cOUqVbHJoCgwVR9rSqBABYatAajQ0s8cFtDGIUJHtAAigar0gBYeqVM/\nAWXwCpwIkUGAVXjFRJfed6ZLEAInFcRLWCGwIvBFMfN1HAanGrhoAUfq81sFDhFYn0YrEoSJQlRA\nUQd4S8CCK7w/TwfL4DwuhiEkia8EkCaWNHWESuOspd00hIHl2KKmrAxSGvr5tt8rLwXaCioTjhii\nSQ1ajTSl0WjwqtYmaRxwnitpNps0Gg3SJAHwxJswRAUBUtagNkWLnrzWs67/tPkxOS9m/T5t/3lz\ndRr54lLm6qzz2s8xjgPuvDHuu+yjD+3HWQ5NjvsoJ0+e5KGHHhp9P3/+PCdOnNjR5vjx45w5c4aF\nhQUAbrvtNv7wD/9wbr/GGB555JGLtud5zoULF3j00Ue556GEdgIrT19g5el9GMyYaK353ve+B+zM\nIOKcZyw2Wi3SZpPlkycRekBYPYO116Flg0osEFTrKLOBlh0sMdJmKJcTmfMY0cSqJaQrCM0agd1E\nCJDmPEKUlKrJZvo6bHqUC6c/Qlo9gRWSIn0tSfEDAvEkoXkaV7SxOsUGi5hgkSB/HGWbGBGjGz8J\nquvj1dIKHRwDDNgSJ1K0WkaLBZTNAEclFnFCIZyj5QQpECWWn/7fPk8pj2BEjBEJDlBmEwdUcgEj\nEgK7QWA3MSLB1u2sTHf+oUKgXIFyOVamPtMHOU42IPC5Nr/ztOLbzwSc+feGKJQURcHgiSeQSo0y\nj8DGReVjDlK01lPn4QslL/bxAa677rqD+a8Pta59kUNA20d5y1vewqc+9SmefvpprrjiCr761a9y\nyy237Gjztre9jc997nO8//3vp9lscv/993PmzJm5/SqlOH369EXbe70eW1tbLJ58De77Obe9ZYGr\nX5bs6tie3D7NcT/uO3v44Ye5+uqrKcuSqqwoipzBYECv26XX7dLd3GRzY4Ot9XWqraepehcoeus8\nuwLdtT5JtQblAN3L6K6UBHnOqWbOsWZFWGqKc9CRlpPHfDmXzqIv7Bks+FRYDQlbb/8URx/9JMGi\nREQKYRvIKEI2E2QrQogukINdxxkHkUGaChe1IHgMZzYR1QCrS0QvxBYbuDzDZRqzYTFGY3vamxfX\nYLDl88UWBkwTog/cxQ9/83/hySdhLYOugZ6BgRP0rGPgoBCSHCjw/jQtBFYpnxVfSh9LFoaEcczx\nIyGtVkKYtmi22iwutUmaHVTzFAuLi0StZS6svoa/fVjzuisjgjAEoNVssrS0RBT5Uj1hFO7wqY37\neabl+Zzm65pH1hjf76GHHuLaa6+dOX92k1nH3+tcHR5/3nn/qGOcdtxLGePzlkNA2xc5BLR9lOXl\nZe6++24++MEPorXm6quv5pOf/CTf+ta3eOCBB/jEJz7B2972Np577jluv/12rLVcd911fOQjH9m1\n72mgA/7J/DtP5Cw0JK85GV/yzThtQRkuipPthvnfrfU0cmMMuqpGfjTvSysRVcZaT9HrF5RliS4s\nqvRZ6Y31lZ0Njrx0VH2wBVSBpLduaTUhaHpihkwA5V/SZQhp64xYIViLQCKchqiN0wIRxD75IsIT\nR+IUGidwMgapwBZIG+FCjTDK9x1YZMviNgXECja9GTJMnY+LK7xFU1IiJEgBUgjiyBE2IDGOquut\nQHFkvYlSK5+/ss7wMQxjCKKIII4JowiClDBJCOIFwrRN0miSNJdpLC6ysLhIZ7HNq4Xi6azFf9eu\nQyGEII5jojgmCEKUkmPkkG2ZVRNtci5MM8FNEism585uv88Dkllg9nyAY54P+EcZ417+gwORQzPi\nvsghoO2z3HTTTdx00007tt18883cfPPNo+/vfe97ee9733tJ/c5yamvj+Oezmjdf2/EEAbYrUE+2\nnXXjDmVy20VlSeAipqO1niAyBDhnNINS4WxW1+7y7EY7kFCAND7tVJ47rPCpqJKOQJUW53wMmvak\nRUwGWE/UcM6nypLW4KoCKQUuMLgwgjJDOgVInC4RzpMkLAIxOA/xoq8aisExAFsihIMInFUIAyK2\nYEE1HbqAsO2ZlqLyRBDhHEr56tmRcaRtqBIQOSSlJxpqBWki6PXqhwIhaKWStCEpXESFDzyP0xQV\nt9CySZouEDcXkekSaWeRzsKCf3U6vK4Z8l+eSClFyGLqr2scx4RBSBAGozpociLv4yzNbHIezZsL\nu8m0/mb1Mw0gJrfPO6e9zNX9GuO0fSfviUOT40tXDgHtMpTxm/OZLUVeOv7dqxo7fpt1s0867yfN\nPuNtJqn7sJ3acfj7ZG21ykVYAgoTIkS5XZNrIpVWFINQ0GgL6EIQgwrAGdAZ6Bwwnr+hHCAjMA50\nTd03FUJIhPMQ7uImwgAInMn5/9l792BbsrrO87Me+dyvc+65VfdWFVRRVSCDPKTQBnk01sAMKEM3\nzkwT0m1U6HRHTICBOIRGqFRFhYUKRBjEoCgazPTAIN2jYKghDdraBaLo+BotlIJGbYQqirrvex77\nka+11vyxMvfZJ2/ufc6tOseq23V+ETv23rkzV+bauXJ91+/1/Tk98J+lRhSXcLbydCC2AFfhhMSp\nGOEyEA6RVijjYCjQRlBuWVQIkYY882z/JgfhYG0dpg6fDD6FMgcRQT+F6RiUlFgpEVo542lfAAAg\nAElEQVQz6EnCOCBRAeMqIUwS4jSl1+9zYj3lxFpINEhIR0OGQ/8aDIf0BwNO9hI+fyHkoe2IUyf8\n36eDAK13g0GahYYUAqqpDwlVKYT9K4DjIACwzBy4nyzbtwtI2iBz0LG66ryH1cf9rBlH5qs8rod2\nKHIMaNeYLD7s1lrO7Cg2RpJRKq74vfm+zDzTtNE2qyyaHNtM7lKKeZtS7hIV6yAgCAKETikoQFmC\noMAEAU6pOnRQI6oKISWiruVVFA5VQVH5xGoT+nk53wR64EpBeh1Uag1baVxlPCeVE7iiwgUaESQI\n3YPeELF1rk40VjgZeq1SakSU4nKJwHmEkhZygQucr8VWWIx2iMwgVU0nZRyUnpFfYjBjSHsgBiBL\n2DoLs7Gn69IR5DNBqBRaSlAKqzVaKdYGmkkV0Yv7hElC2u/TGww4sRYyGvXpjVKCwYjBaDQHs16/\nT9pLue10yKM7iijSCCHm/3VjapxPsM4hzBRnfbke53r7lpFp/9bevp+Zej9NaJlPqg1kBx2rzfb9\ngOrx9HGVH+3Yh/bkl2NAu0akyx8B8Oi25KW3qk6fxTLAarfXZQpqAGzOVCElpgYjKfdWrQ7CkCiK\niOOYIkko8xxTM+tTlojCcxbaspwnBk+nitQYhJWYwqFLRxUIpHQ+B81AOYHwpMPOQNqZD9EvA5zT\nWBGiK8CMcUWBcODQiGiEC1KEszjjOSKdDvw2a3A2h6oCYXDKeh5JCQKFLC3GAaJCaF9iRkkIFFgz\nJgh9WoEegcsg2YYNBWIKYwvOCooStPQBIFZr4khj8UVQlUxIBgPSwYDecEjcT0iHKXH/JOlwyGAO\nZD2SNCVOEm4/pfnMf7YYtzuBy4X70pgXnXOgUg9mKvUA16pe3byvMud1TeSL25vfFsfNoqzyna3y\nrx1krLbHbbut/Y45SB8XgXJZH49Ejn1ohyLHgHaNirWWWWHZnCluvT7oXLV2PfjtNtor0EVzIyyU\nI4FOMAtrICuTBFOz7TclZIQxiKpCliWlMUiXE4WSEonMJFEkiIUgjizuMmAgXvfvTniOYeHqIp92\ngnB4rSnD+8BkbQ51JWTbCBQuud5Xpy52wOWegT8aeIQUAoHCSh+SL3A4ZXEuwqkCEVTIymKMIhg4\nqtIShp4KKyy/hhY+J85kQOVjSpIQghy0g2kp6MUCYQUzFE5rHBE6iLFBjxODlLW1EJUkRIMRyXBE\n0B+RDr1mNugHDOOCOII4jgnDkNtOBXz6yxlntnfvkcPzNzb3aG4KUwlOp3vucfs+tmWV1rQfuHSN\npS7T4DINbXHbQcbqqv279jmqPh6JHGtohyLHgHaNSNeD9/AlX1Ll5pO7t7E9ESxbwXbJYvvzStXN\nMWLX1NgU+AzD0JcxaWqhGYMzBqz1VaFrQIvsDKEEIpIU24p04IgHIEpBHICYCXrrFjn1UYW28Awh\nJRA7X7m6Ej1sBoQOW2t2rpDYUKCcwskU4RSimiHKDFyJy3cg7MH0HFQ+ysPhEMKCNTjhKbWEMuAk\nzipcBs5WWJznlDQeUCu1jpQeO3fGcHELpiVMKkCCKQS9GGwgAUFZeh+akAl5lZKkfUaDgH4vIh4k\nqF6fwWDgzYuDAWmvRz82xFFAHDiC0Ifqn4g1w0TxyOWFemeNObi5cc7hGvPjwn1rB/V0fe4aM833\nLnDaT9tfphUtA4hlbV/NWD2IefCw+ngcFPLklmNAu0ZFSsm5LUM/cvSi1ZFc+62ou1a9bZkT5AqB\nVgqjNWHk0wScczhrvZnLOaRzPprRGEI7I4gE082AzEZUqkLpAApft+ziecVG6jDG+6eyMagShgNv\n3is2QZ2ASgxwE4mNPMuIkEAqEYQgQ4QIAAFG4IREYHFRH1FOcabwxMVhipABVmiQznNa4XBYcBpX\nSuzlCCemnsG+NBQz6y2d+iTC1DElpTeHWuO1SCz0YkEGOCOorCRUiiiR9AcOYo2KY6ROCeMeQTwk\nrk2LcyaQNEWnmjAGHQ3n9FZKK246oTmzlbOBT7KvzO7stxjRKOWuX80Ys8fHtqzg5ypz3Cp/2GIb\nq8bNfuPvse673zkXj7uaPi6zYjS/HVlQyLHJ8VDkGNCuIWn7HC5PKgbRlT4w2D/suWuiWlwZd1VA\nFrV2hnMEQTAnxQUf1i7rd+EcGAPGkJhNSnqQ5Oxc6pFXlqrIcWVJtmPpC0OUWmIgvwxhCNEAohOe\n0zEcgJQQmUcgt4hCInKNkwoXSGDmrxOLkBrYQSQnQK0jyh1QGjE9DwhclSHCEGENIOvctBlW1KGU\nDadWIXGVwFYOZyC7CE5tYHNI1n0g4dBAEkAmITZwYQxCC8YGtBAYIehHgjjS6ERitEbqHkauocI+\ncRwTJwlRHBPFsc8ti1JEkiLDaM6gb61jlAi+ccGw4Zjn/TX1z8TCvWkWHEopH3izAGZtzWKZ6e4g\ngLIM5LrM110g8VjHanv/VT6wo+rjkXI5HsvjlmNAu8Zk8UHbnkE/clc8uIsryvYDvGzyWGbi6Ura\nbfNTCiGQ+NDxOaBVFa4omOYjTJZRUdFPL2Fnitk0ZJIV6LKktw46FAjjMBXIFOINCEYQagj6eM3I\nBbgCzI5A2AClQJQlLqigmCJE6pPX9AjrHDLfRJgM6wwiHoItESgPtFL6WHsCcDnC6tqUJ0GDvRx6\n8yleS7M7IBCk6yCG4AKYVl5D69cBLENhmVSCoG85PTR8Y9NRVpLYSozRu9GgTUHU5rPWqEYbq4GI\nhUWFc5ZeaLk8MdjEUZQlKsv2mBObeyyVQtVmseYeNfe17Utra3bLNK9lY2PZ2FnmH2vLYxmri8d2\nyap9D9rHxf0O8nwcmhwD2qHIMaBdI9JlNrk88SbHdjRWlymoy/SyaoXdRMO1fS+qpnJq8skEzGt1\nAXM/mslzqiyjnI6Y6YI02SKuLGSO/LLCSUkQe02mKLzvLEqhfwqCyOei6QTKKXiieYXJHbKSWCOQ\nkYC4QmQOG1uE1UincSpEFpchu4grJ4h4AMMbcFUG2QxhxmAl1OwhrjRgKlwhvbZpHRRgCwGBwGYg\ntEObbZT2gZbFFPIJzHxKG6YmM44CRzz0OuOoZzk7kUxmmjjU/kFzjU61K/Nk9ea9Nt8uTqr90JIV\nFXkoyLMMrMU22rEQKCl3QbEO1nH4oJXmvrX9P+2FykEn7GVmuea3g5j4Fs93GGN1sZ1VwHdYfTwS\nOc5DOxQ5BjR2+QpvvvlmBoPBE305ndJ+kByCSe64PjKdK832RLHM39AFhMvMPg07SPNZad1cjDeB\nWYurKkxZUsYxRU3zFIQhLtBUSiGUBKXQoWM4MJgpXLygSW1FPLIYA/kUtAWzA2IEsgfabqN6JVLh\nwbQMsZlCKodwEsoxLtegFc5mniLflpBPcPkUYXOwM5w30uFE4DW6KgJrEEYAlY+ejC3kYGYSO5GA\nxQlNtgWzCoqa0WSW+a5XARBDngmmlwQ2hHHlAdJaX5mgeTdVWacwTJClxZaKqko8q4oxqKry/33t\ns3RAoiuqyjAtJNPplLIovO8Sv5hQrRSKxhS8mzu4q6UtamqLIfxdE/Z+42FZ1OAyIFkFUleM1WoK\nduZ50BYiN/cbq6uu/yB97PKpLfbpWqmHdu+99/JHf/RH89JUL3vZy3jrW9/KO97xDr785S8jhOCe\ne+7hpS996eGe+AmWpySgnTlzhre//e28+c1v5uUvfzl33XUXX/nKV9Ba84u/+Iu84AUveKIv8Qpp\nP5RF5eetWIsrNDS4utVpl+kHdn0vjXTlPgmt6wfcRx+aMKxJc0PPXVgXp5y4Plk1ZlpWIHLCCJCC\nZAjjHUeWw2wGl8+BHcOgB73U8ygGMejyG8geqKBEOOFXtGWAyxRCO4gdIt8EaSCqHXGzLcD5EjJR\n37OK1EqYcA5nAkQ1xZZ1sVBhEaFFruXogcFtGSpp0BUYocgug028dSgZgu1BIWFzCttTQW/DMTGO\nS5cUM+EQiacEq6qKMve8llmeo7OMfmHIM4MMA0TY9+VgGpNjfU+ElHVwSkVVlhRWMBmPUVJi6mAc\nKeUczKIoIrK7pX+EEJ6xpAautqm4y7TWHivLtK1lFoGusdplztt3rNqZX5BUkz2AtmysLgPew+7j\nteJD+/znP88HP/hBbr/99vm297znPWxsbPCpT32Khx56iLvuuotPfvKT9Pv9wz35EyhPSUB717ve\nxWtf+1q+/du/nd/+7d/m3LlzfPazn+WRRx7hvvvu4yMf+cgTfYlXSFsDM9b4CU3shmmvcq4vM/Us\nbmt/XpTF1f6e6tU1wDXmrvZLao1QCkPE1KQUdoIVglmlSAPJ9jYgJRWGooCdCcgp9PvepSVjEBKM\niKDycRuitBAYRB7gAoMzgBM+nL/YRog+BAoXBAhb+fwza/FF1KyvcF0BLgITIUSGKx2uEmAtOrJU\nhUGtG+IhVGf8AjrZ8ApdEEBxGQYhbGXA1BsSjQGtoJdWKKHIpQciVxTIokDMZogwRAYBW0GK0IpS\nGVI12eM7s9YSBAHSZbhyTJkHlGWAsTDe2UEI4aucO4dUap4PWFWVN0XW91EqT2osrcUtmJCbibkB\nui45aCTgQX1vq8Cnc6zKxBdr1L2rGqtdwR9X08euYxY/Xwth+5PJhK9+9au8733v42tf+xrPfe5z\n+bEf+zHuv/9+3v/+9wNw88038/znP5/777+fN7zhDYd38idYnpKA9g//8A/83M/9HAB//Md/zGte\n8xriOOb222/n4sWLT/DVLZfFB9u7T7xmdNAV8DJn+WLbi+/tsO82e0jj73H1BKnkLiVWo200Lyc9\nWa/WlrRnmGaCC5uK1EoCWzHc8OH6deQ9O5d8ZL0O/LtQG+SPgt6AILG4yiBEXmtrEpkFkFS4ovSx\n9WKEqHKQGmG9r8k5gahKTzpcVbgcqEofOVlVCGOxxvpcOOHZ9l0Oug9UFwj63vU2M9Bfh/MXPLn/\neAy5ADP15spe6vPwrK3IytKzpkynvpSMUjilsFJSioi+yzBixy8MqKuCG0MZBARmE2tyisxRFCdw\nTrCzs4Ozlqqq5guJMAxJY4EqJcpuIOVJdG2GNNIHm0j2atjLGPmXmReXjcf2fqtMgcuAsXOs6hSk\n1xzaZ19mJlwFoAft47KFYCPXQtj+uXPnePnLX84999zDqVOneM973sPdd9/NuXPnOH369Hy/U6dO\ncfbs2cM78ZNAnpKAtmh6+cu//Et+9Ed/dP69KIon4pIOJHsmhXly7ZWr7GUr4P0mnEaa9tqs7e3J\nUAiBZYGkWEqky1FmE+Fyr3UI4Sfr+qUCgxUOpS3jAspcsR4KnLCEIyjOesCIZj7QQuRgEhDRC9Db\nNe2UcajYaygWoAxxUiC1QgQFrpLIfAcrPJj5RGuBKDKoHFQCV+VQZThjoXI4USGSDAm4sfedmdSC\n8oEpTkQ4AbNNqDTMck9OvHnJV9guhWD7oqB/HaSpIdAl48uaXOYoKanqVwkYIajwc1gTYNOAma3B\nKggClDVgcrZmirIoEFh2trd9tfBaQ1NaE0cRsqzQNkIKiQz7hEFAUPmcP2uMB9Ha7NgVxn+1QRjL\nQKJLC1tmJjzMsXqQcx1WH49EDlFDu/XWW/nABz4w//6Wt7yFV7ziFRhz5UmOrD9PkDwlAW0wGPD3\nf//3jMdjzpw5w0te8hLA251Pnjz5BF9dt7QfVFWPQ2NF56BcNlCXmYO69lvcvhj1uFhAUvgf5+0J\nM0VQIcn8JN1M1oB1DmMhCA0TvNUv1BYROqyCrW0IBCQRRCd95ONsCjaDRK1RZD5ewylHYRyhEchC\nUGmLtA4nFVKGCGWxhfG+NRzOOFxZQVlHBlYSMoEoclwlcNaAzkFXMFNQOl8yxvhrtA60K9g5D9tb\nUCYwNbC57aP/dQRpaKlygbUCJSEJBVKUlIWkEALpHAW16w8orcUAxtMlY52r/x9LVZYEYYgAKqPY\nGpfkRYHEsbO15WvMVRXg2ffLOEZYT1hMCKIoiMoSU1U4a3zKwwKALQsIWTYu9ttnmXbUPm7ZuDzM\nsbrK4nCQPq4ylx7p5H+IgPbFL36Rr371q7zuda8DdhemN9xwA+fPn2dtbQ3wmtwdd9xxeCd+EshT\nEtDe/va3c9ddd7Gzs8OP/MiP0Ov1+PCHP8wHPvABfvZnf/aJvrxOaa8sk0igpGNWrg6/XuYUX9X+\nsm1dIOcW6JYAnO7hxAQrEpyY+Mm6fhm8X2xaalytpajIUVrJrBCk0pFbOLkOhJ6gP9+E3nUQ5w9S\nyrp+59T71bLcERiH6pdYbXCTGIdEhgIZGigNuzNF4LkgCwelxGV1TlrlPE0WBofDuQqb+EBKi4+0\nlBoqmRCPvPa4swU7M0BDOvA+tYmBMHJs7Qj6G46ycGwMS4oxzKwjz/3/VVhLaC1VDWiNz2teY84Y\nyqIgDALvKzOG81uWIo+ItOHizg5Fls0BLQxDTxotBgjdQ8QQ1YBnjPH3y9l5xGXjP2vnsR1kUdOW\n9m/7mbsPogEt23fVcV3n6QKxw+jjkfnQDjFs3znHu971Ll784hdz8uRJPvShD/Ha176WjY0NfvVX\nf5V77rmHhx9+mAceeIB3vvOdh3fiJ4E8JQHtRS96EZ/97GfJsmwe1vqCF7yAj33sYzzjGc94Yi9u\nhbQjEEepZDzujnJs5CCryq5JZ7/2FiPpmqnROXAqwQQnsPIyjl1AM3jzmnGCMKjIlSHtO4ophMoh\nAkc+8+z2ly9CIH3U48ZNkN4IYfEQUwXTTR8oIgFXOQhADStPaKwcdifAJRZXOqS0CFEH6lvPhu+s\nReRAobG2Amdw0oMDBtAQDKEwYHOwFooZJPYS/RuBEcy+BpszH31paj9fPwVXwGYBX39UkAwtpQDh\nBEo48tyfWxpDBVTOYeoFgZCyBtPaf1YUvhRPHfxxbjOgyHMSXTHe3ibPsnnlgzIMAdBaE8UxRVFQ\n1tqZsdb7OBtWkWbxseAH7Rony0xwXb+3x95+42dV24cxVpeZJtvfH08fj0QO0Yf23Oc+lx/6oR/i\n+77v+7DW8qxnPYuf/umfRkrJvffey+tf/3oA7rvvPtbX1w/vxE8CeUoCGviVbVhPBuBB7sksXf6E\nUSL5xsVuP0jb1LLqYe6K8DrIwztnnVh4zX+rXxZvdrSAcQ4rHONSo0JHoSxWwqwUTIQkDSxmBjMB\n587A+hpYDXkFqSvZugRRAoQQphCkDuu8IqYE2GlJEFpcbn29NGFRAlDgigqJ96m5SuLyEkyFDSxW\neLYPp/2+ZQV26pO7y9wHghiCmmfKJ4DHfRibuuZoCUKD1hAGlvPbkgtjAaFFp4ad0lG4Ym6irepX\nU/RUzCdNR1VVFFk2BzRjDBc2B7hiQiQqyM5RjCuyytOQGWNQShFFEUWeUzVgVie421rza/LSrkzt\nvrpAkK5x026r2WfVODqqsboKSA/Sx8f6LDxuOeSw/Te+8Y288Y1vvGL7e9/73sM90ZNMnrKAdi1K\n2/yx1lP8bb7Lgt9lAlrl2O56eOFKh3772MUIyK6yJHuArQYzJyRWCLJKY5xgNlUIIylLSVmCtoLJ\nTLAWO3QfTp4GCtjehnwGUfgscgvZJjgFPQlWgh56bkVrvRmyyAxBrzYNSTDSp6ZJC7Y0OOMgc2Ct\nXxRXPt3JdxwPfhnkY182Tcb+c+AsRe6rABSFBzBhYbINRQjKQiEgy/25g8AiQ9iaGqZGYFQ1Z/dQ\neDBzDePKgtZrqpIiTggCXQOa5dJOgii2UGjK6RhbFGR5hKyDm8oooiyKOZDZ2tQ4ZxPBmzabh73t\nQzsI6Kzatjh2ln1vA9xjGatNO+3vXYu9riCRg/RxFRA34/5I5Jj66lDkGNCuIWmvRNd6ku1MzqOX\nHuvEdFD/xqJZZzFABBoA2X3Y3YIpch7pKCWZ1UxmAXkWYKcKUUp6CAoHSgjGmePGmzyQ6MhHGCpA\n2IxxVpsOtz3dVM+BOw9B4rFIFBANwZSeB1JFHuTAu5FE6WAKTjhIPTBSgpv6mmdyAKbCl5UJQISQ\n7/jCALFMsKaOKSk82BnrE6xd5bXIzMKwDyGODEdmIQoE23nlfWbWkgSOJLAIaYmFxZUwndSAZi2m\nLCnynKBOWLfWcjm7HmE2qdyNTKYZ2xODEBWx8kBaFYkHMWM8bVYDZAuUWs096uJwXPa+bPx0gcQq\nLakr8vCoxmob+K62j20/3ioT5qHKITOFPFXlGNCuIWk/zE/f0OSV4NIERqMr92k/1Mva2888tNhW\nI21OQLH4e7OKldK/hADptRFR52E55QtgohS9nqAXCNzUMb2oOL9pUMqDUi/xnI5hdYaZ9WVbXOCr\nRGe597WlQ8/SPzrtIxJVhg/sKECWPlpShTWAVQAOZmAjwEC1DeYizL4BagjFlgdAI/0x2Rb0REI5\ng9kY8gImOwJ6vsJAb+DNk4MelNJ3NZt60+Ws3OVrtMYQaIF0nlS6MAKlJNlUeTOgcz4kvyjox4JQ\nVeSVZmYEN4uHcNzIpbGkyEtGaYV0ikCUe0CLJvK0Q9p+s/YY6brPywBkmbZ1UB9se5+DjNWuc69q\n/yj62PUfHooca2iHIseAdo1I1wN3w5pCS8dXz1fccrobnLpAa7/V9+I5lq1+l0Z7LeSkzd+VQihF\nGEI/rSgmgnzsCYpRCqckVkgqHC50TAt45AxQwIkTcMut4ESAiT1QmLEHCm0hFN4keP0z5koJVvhj\ntfSUgDL3lFfEgAY3wWtmPj0NYh/JL/D114opZJln1i/HfvFcqtNcfBhy6f13aenIgTgFG0Bg4OIO\nBKmv4zbL4fIYchxOunmk53hakQJZJQjiClOUoPO5+RDnqMqSGIPQgknVR6qMxJxFu4yyLLHGMM0g\n0JLCKGKxW6tO1ETRXZ+7SgJdLfB0/d4eU8v27TIDXs1YbUvXWO3yx11NH9vHLuvjocsxoB2KHAPa\nNSTth1/gODWwPHSx6jSNrHK2tx/0q9XS9uQ0sVuXazGCbk69VNNgJZHDhookkYzDEBsEYAybsxAj\noZoJRokld4KqsuQTwc4U8spym7qOWendXwifI9bQyUfO+7WyHR9EwgySNZhNvIbmdkBPPOOHNXg2\n/RmQgFz3wSDqJBSXfDBINvF+O4EHurwA6SaUFYTrkDvon4B8C4ZrPuKRer903Wt2g773qW3nsFP6\nHDOnFNPch/6jQReOMHZEUUmeZfP/0VYVW1aQRo6z7mZyZcBuUxH50jzOYaxmWiWkLpyXntH1u6yT\np/cwvbCrRXdFN64KrjjoZL7Kn7V4rsc6VrvO03UN+51jVR/3MyteC0whT2U5BrRrRLpWrFJKTg8N\nX7tQzSsUN9sX3xfbaLavMrMs26d9DVfW2FooNllPrKqp/xWGZLpHFG/R64XM+hWTKsE6SzkzbGWg\nnWRclYQ9QIHqWZRwXNyGWXALj5yBQHmr4TD0GpjEp5KNL3uaKpnBYA1E5SMiTeY/F1t+EaxiKJs8\nghy4CGoApvDaWgVUqjZrxjC74Hc1oocIYToF1ffsIIMTMJ56k+LWDgQhSAUyhIHaNY1uX6rNjtZC\nzdghF/LOqqpCKUVVVb4auJRkhSYvJZfik6TuIs1taGisdBgSBAHrfbhxsIOKBwR1nbUG4KRsyHQX\nSgCxNyhkcZwsDa6wGRQ7CDtbqs23x9Aqra1r+1GP1X372AGAy/p4JHJcPuZQ5BjQDlnuv/9+3ve+\n91GWJXfccQf33XffnvSARXnb297GDTfcwI//+I8fqO2uVe+NQ8Ojlx0PXTTcen14hVP7IA/9oqx6\nsBcnnybAoAEwrEVKb/qSUu6WNAlDwigiimOm0RCb76DCgv6gIs983hUNL2UhyEvBtCwIJaydcLjK\nUWZQyjUubIMWsDaEMPEAWpraPbcN2TlvVWQK/Y3afWeBcc3HOPLh+WQ+3B4DZgbMfPRiWdY+Ouk1\nPWs8Y0lxGZS9TGm8KbEqfAFSI0Fp2B5D2JgZtz1OugBv3sRHGDY0YEDNK1nzYNJsEruh9Q3gyJgs\nOMkzxNeIAo0WBWHNIKKDgDhJODk0pIkiTUtcFPlKBzWoSel5NKVcKBsDyNbCZ9WEDkA1QWKQdrZn\nPC0DoWVjtR1ocbVjtS0HHasH6iN7QXJZH68FcuKnshxh2M5TTy5evMi9997LBz/4QX7nd36HOI75\npV/6pc59f/mXf5k///M/P3Db7Yer+byeWK4bSv7qH7L59oP4DBqxdnmttPax7f0W/TJCCITNEOUl\nFMW80GQYhkRxTJwkJL0eOhkR9obIaETS7xOlKUGSoKIYghCrNdNKk1vFpBC4wJfEEi7DaFCpB5JL\nmz752WkfjTge+2jELIOd8zA+B9MLkF3y2yoFZuL9Y9Oz/nvp/Hs2hbyEnUe8prd5BiYTr8nlhfeR\nReXXiNdBJf58pfXFPqdZ7VMbQn8Al3fg7EU4fxkubHk/WpOTF4eO9YEjDuvkZil9gVQpSULYGEAv\nFl7TCgJm6a1oJRnIMUHUwxCR9nr0+n36gwGDwQCnTxBEQ2x4HXEcE9Y16PQiqDWm4NY9W3Vv94CL\nTEAG/h06Aand3kE0nqsdq13n6pKu/uzbx479F/c5ck3NXOXrWDrlWEM7RPnc5z7HHXfcwQ033ADA\n93zP9/DWt76Vt73tbXv2+5u/+Rt+7/d+jze96U1Mp9MDt981GQgBL7wl4nN/l/G6O/qE+upWrs32\n/cxDXaaa+Wq1iawzE5QwaEp0EBPUmlmSphR57nOlypKilIS9TXpWkwOllJ6kI7Csx4ZQCC6eU5zd\ncpxcE9jSImwGIVTC+7CKEoIZRCOvGWnpQ/mt9SBXOg9USnqtzI5BTmH8dcBCUNbmx8IDlDU+QnHn\nIqB8uH+57f1gpfXmwmgdYgGXzniNbjuDcOCZRArhQ/ejGLZKX4U7zx2VEL5qDZ6jUmlBX0uqXO2p\nMD3oaeJY00t9AA064hFxK6f0NqkaoWOJFgUb6z2siAiDgChJCHo9ymRA3B+R9ubLVqsAACAASURB\nVHq7oBYEvnzPIriIVi27WtPYT3OXYR9rU5w8t9Kfth9wLX7uArODjNWuttvHHMSs2HXuLq2yLcc+\ntCe3HAPaIcrZs2f3Lc+ws7PDT/zET/D+97+fX//1X7+q9rvMg0IIvvlpAX/4txV/81DOt94WXXFc\n29SzuG2x3TZ4Lf7WBWaNOAAhUMEAaywCSYAgDEPiJKEsyzmDhbMW4RyqTvRVQlBKidOGjXjGdalh\nOpZkhWNzrDlz2RFrhxUxmYM49lpTqKCwcPEyhCUkEkxNW1U6z9KP9nRUWkF5yZsHs9KbFPNNbzo0\nFpLrIegBa779qq67lk19wdGtbbg9uInLlzwh8Xjmgz2Cvj/X9gzO73heRxVAEDqy0psYw9CxMRQY\nIZgUAmslmZFz/2JTZToMA9YHmiSNQSUU0fXY/AS3JucZResMkxIlLCfXU0o5Igmhlwh0nBL3R/T6\nfQ9oSUIURb6wqlKoeozIWhtsM+13mQlXBUYcxJ+1bKweRI5irB5mH4/D9p/ccgxohyhdrBntKsF3\n3303b37zm7nxxhuvuv1lK9s0kjznaTF/8ZUZ33Z73HlM+/vVmHkWf2+OX3yo55F0YR8pInRRELiM\nqC46aRaSfkXNlKGFQAtBoi02yrHTkNhGOBlTyZLcOk5cl2MqSTZxCDJEINieOTYGMEiBHDYvghsL\nTvQdwRAuXIBEQRJ6P1ZcA5wS4EKIboatR3yEYj7xOW7FFiQCZOCLI+dbvh7b9iXY3qk1QnWSR8/A\nOINS+BfSg3kJzEoJlc9bi1NBkXvzoQ4ccSo8S4pVXM58Be95hem5OTZEhAk6igniIWfcs1jXkls2\nQoKwR6gNTmj6J04jdY9+mBFFmiBOUekaaZqS9nokaUpY+9J0XQV70ezY3K/Fgq1d93fZ2Fg2Rrq0\nqGXtrdK8jmKsHlUfD1WOAe1Q5BjQDlFOnz7Ngw8+OP9+7tw5Tp06Nf9+9uxZHnjgAR5++GF+4Rd+\ngQsXLszNfXfffffSdo0xe9ptJMsyzp07x5e//GU2iPnM38FvBY/yzOsPt19VVXWevy3tPKemonXa\n75P0epw8fXpe86sJilDVJYQtwZR1HpnFighlNtF2QkWIE4poOOB//Xf/DkeItttIO0G7GVYOKNV1\n3hdlJygqKjUiMucJqocJy7NYleIIkc5gVEKkTjELn4kVMdJlBOXDhOYi0myizRYCx2b6Mip5Pdpu\nIe02eqB5zUf/redCdIZK9ijlCOkyjIixMkG6bP5dugzhKgRmHvhRytHcD9VOcVAuR5PhVI/LRcr5\nBwK+83bLc04/DyEEeZ7z8Ne/zgte9gKiKEK4HG1nGJWASufalxWCaZ4zq+v6dS08jnocHJU80ecH\nT/x7JHJscjwUOQa0Q5RXvOIV/MzP/AyPPPIIN910Ex//+Md59atfPf/91KlT/MEf/MH8+8///M+z\ns7Ozb5SjUornPOc5V6wQx+Mx29vbPPvZzyZNU867HR7ervhnzzkBC5WsD+pL6PJBAHzpS1+aP8hd\noftNZF5TrqSqKsqawinPc/LZjNlsxmw6ZToeM9ne9q/NTfKt8xQ7F5hsbjEbbzPd2iYyWxT5BFdm\nbG4aZpOKt/3fH+Jn3vivyaeGJLAMQsvpNUcIyAKml+CmU1470xYiBWvX+YANKT3bB0CRebYPqWG6\nDdlUMLzeIZXX5vob3q92/hv/J5cvQe+k96G94n9/H7/5ff8bqucprramcHZTUwlBpRSVEBgpUSH0\nh5CkDqTgG5uazUxjpYQ6J08GAUEUEacpaR3gMRyN6A+HDIdDvmL/G3I5gt5FvroVz6NknXNsnj9P\nEsc+ijQICAIIIuODb6KIMPb7h1GE1gFBsOtHa/LTmra6TIVdY6TZ9qUvfalzHLb3a7fXbvcgY7Dr\nOh588MHOcbhfP66mj6s0uCOVYw3tUOQY0A5RNjY2+Kmf+ine8pa3UFUV3/RN38S73/1uPv3pT/OZ\nz3yGn/zJn3xc7XdNBIur7lc9r8cH/uMlPv+1jG+5JbrCdwCrnej7OuqLMdLOfNih3GvaXOQIVErN\nGd7nTBVSIoVALbykcwjnqKwmdQ4lDYnOmGwlKOf4xmbIJCsoy4xKrWOV5sRJi3KCIhPkztHr+cjC\nykGGD+Gf1rlnszpIoyp9qRcla/b8xOeKBQFMnGNzAkEE5x+C8KLPXzt3Ac/Cn9c8jfppzBwo4/1r\n42q3CrWtqbyEUvSGMBxBrwfbuSbpKWYywEmJ1BqhNToM0VFEUkcsDhowG40gvZ7LO9fzyqdPOLFx\nYh7kYZ1jduECa2trJGnqfXB1aoSuTZjNy/vPNFrvmhsXqclWhZ5fbdThMjlIikh7//bnVcFJVxNU\nst+1dR3/jy7HeWiHIseAdshy5513cuedd+7Z9qpXvYpXvepVV+z71re+9araXvXASSm5bij5llti\nfv/BCd98U0gUqqX7L4sUW7Y6BjyY2RKqCSJK9uRMSekj52TNHu+U2kO7JOuXWqRkqgEN55jZDJxl\nXDpcFDCehrggQyezuTUm6inSRCGMIIygEoJLY8O0hLV1H6SRZT5QhAKGFSSFL+uiHIw2fMg/2mtZ\nuad0pCpgctEHdOgCZo96nkgRQkTNrO9ypg4iAQaJUQqjvebltEZqjdMaoxSlgKkRWBUQpYobh5LM\nBBTO+89UGBLGMcNByPpaRNhLSfojhsMRX8xv4dRI8bybE3q9lDhJCMOQyhjOXLxIfzSil6ZzjatJ\nolZ1mL6uWVkaxhBqxpY9rCEtppDG7N3lrzpINOBBfVRd423VtsVr6Npv5VjtuKbD6uORyBFoaB/9\n6Ef5tV/7NX7zN3+T2WzGO97xDr785S8jhOCee+7hpS996eGf9AmWY0C7huQgD9Yrn5Pw4NdzPvul\nGf/d89M9v3U9tIvt7hv2rHtQTUD39kyKDai5OoFY4oM+7MIEKmsNTTZg5huFBX9aaTWiiNFWMwKc\nlOSRgJ5BupyCmKkBqopsAok2aCvJSliLLJnz2tTlHALhCYNP9H2kY6x9HtpwHSY7Ps9ssuOZ+sdb\nMHGCYc8hE7/NFN6tMbOQJhCaR3ERbGYSIyXjSlEpBUGADL26J4MAF4aMbYCoAqTWjNYtKhAYFDtV\nig4C1vqOtQGEUYBOBiT9Hqq3xra6ga3ZGt91W8lwNKSXKNKwQkU9SpcihKDX79Pr9fz/WE/OQkiU\nVggh0dqDl6rBTLU0s+Z+rKK/WhVV2B5Hi79djUa2uM/iWHy8Y3WZyfOgfVwVsNK1/dDkkH1oX/jC\nF/jgBz/IxsYGAO973/vY2NjgU5/6FA899BB33XUXn/zkJ+n3+4d74idYjgHtGpFVD93i6vPEIOA1\nL+jzqb/a4ZtuCHjG9dG+0WNdE8bivvN9iJFxOt++GC13BajVk6diN71gXlyyKW1ijA8SaVgzao0v\nCWbMdAlSMA0dZWYI3Da9YcTONkzHBa4UbFUCZS2pqtj2iiNblyAYeD/WdBu+fsHnf7mZNwVm+GC/\nC3VZGO08X+PYOrSryYpDr5UhYDb1xMaWiEIIxpXESEU6lPQCSYkmiANKIqxOCeIYFYaoMEQGAXEs\nCUNLKWIC57fdtDYlSRRBGGLCE4S9E5Bs8LcXbuSbbxQ8+6bEJ08HGXEUokNBhg8miZOEJEnmlFZS\n7hJBS+lTBRqi4kYzWwQy//dfmYO2ajHTlvYY7DJdrxqrzfcu0Hm8Y3WVL+4w+ngtMIU0qUE//MM/\nzIc//GEAPv3pT/P+978fgJtvvpnnP//53H///bzhDW84vBM/CeQY0K5B6TKRLD5033Z7zJceyfmt\nvxjz5tcEaLn3uGUr4lU+ifY+7Ye7mTilEJ7qaUE7cPW+URh6apqFCsosvmrJlAEhyW2MtCG6PkeY\nhqTAtBTzati2qpCJZLuUbE4ts6ng6aeNZ8BfE1x6VJJLRxzB2W1LlPtQ+lJ4iioq4YtyRlCFDhN5\nc2Nel37ZHIMqoJIpGWBDRZpKglghA4ULFEZEREFMKYcEcUyYJARxjA5D4kgQR45KxBiZorQiiEp6\nvQqjT6CT60l7fR7YvIleGvMdz7akdU5ZFPYIdYWOR9jKg1MYhgRhuPfeLBJCS+l9l3I3taJ9H7uK\ne64CqFVjb9mxq8bqqu3t49pjddm17TdWD6uP10KBz7vvvpsf+IEf2KN9HSRH9r8GOQa0/wqkDU7O\nOf7Zt/b4xd+9zH/66wnf+cLegXwCj9ecMp9AG62g9pk5a3HzgpWOIHK7XIYLmtnChVAREpptQhcw\nthqj15FRijSSU9dXmEJz+TLkU8HYgJWO0khK6Tg/hRNDgbWG9RtBKUcYCKyRPHpWEkV1srWCPPeR\nkGEANnTYwFGUggsZXN4RGKCfOIzsMzGKwgimU0UiNYEIcC5huBYRJTE2SJHRgLjfJ4pjwjhhkJSE\noQQVkouR929pjQhD0joH7Uy+zoVyxD9/vuXEQNMPMg9m6Ro6CH3QR+6pzVTNj1nf6F0GfX8D/PuS\nyfeg2kWX2W3ZpL/KFNklyywAi8fv56Nbda6D+ruOso+PSQ7J5PiRj3yE66+/nle96lX86Z/+6W7z\n9soTHFlfnkA5BrRrWGwNBl0rzfV+wOteNOA3/2yHG9cVL7gl7jQJtWUV6LW3tdkmluY8SYmmXoQG\nDsGuhrZY1VrUASVCKbSqSIIZSvW9hqcSSn2C/vACo0AxmVhmpffTBQommaN0IEPHxdyxeR6efsoS\nRZAkDq0cwgmSQrK948P6cyvojyxp4sgr2CwFk6kjy2HHQKEFxjm2K4cVmotZQGZ82L0eh0Q2Je71\n6OuYIEmJejEuXqNX591FSUKSSJLAYXUPVDIvpaNrhpCx7fGFM+u86GbBs2+K6QUZcaQIdIUOQoIo\nRCtFZfT8/rQTovcsBlqBH20tutnWNZkdxE+0SttZdewe0/U+2lWzf9dY3Q8A91u0HUYfj0QOSUP7\nxCc+QZZlfPd3fzfT6ZRz587xpje9iRtvvJHz58+ztrYG+BzZO+6443BO+iSSY0C7hmTVw9gFPi98\nRsIjF0t+6y92WOspbj4ZLD2myw+yCtS6JpY9dFgNE38DbM0kXIf0uwWT41y7qAMdhJSEYsxUDnxx\nTRsgpCTu9wntDOsKRKCoNKTDDIVCBpaiMXfW13a5sLjYMp7AdWsWYwUmlGRKM6scCOhFliq05EZw\ndqpwUzA4KuGwoUNrSxg5jIgZG13zLGrCVLG2rhCBxugeMu4h4hHpcEh/OKQ3GJCkqedbDEMf3bhQ\n2kVpTe5C/uRv+zz9OsWrn6dJk4goSAl0RZCs+fB7KXeLf7IbYLNs8dD2abY/N/scVPs4yES+zNS4\nrM2DjKllx3SZCx/LWD2MPh6qHJKG9vGPf3z++c/+7M9497vfza/8yq/wnve8h4997GPcfffdPPzw\nwzzwwAO8853vPJyTPonkGNCuMWk/oIuTWXsVDPBddwy4ODZ87P/d4d/8tyPW+935PctW2AfxtTXS\npQ3UP+wN7VcKza7bbDGooQG0CQUIQWZj+maKEIJ0OKSYGrISZnJKmFrKXCNlSekcInFImPvpxsB0\nB9b6lgu5JZCWHasRiec1dMAOjtw6ZoBIxbxumagn/cGwJAkNgd3GhiFSKZzWJKlGhYo4DbBBjyI4\nQZKueUBbW2MwHHpuxTT1NFQNoNWEwQbFpx8MGfQV/9M/0QzScM7rqLUP79cLSdGqdX/a5sN24EeX\nuXFRM1t1Hx+rxtWleS0Dk66x2m5rPyvBsrH6ePrYNne22zmyoJDi8JtclB/8wR/k3nvv5fWvfz0A\n9913H+vr60d70idAjgHtGpRlD3TX5ADwL14y4MOf3eb/+aMt/s2rT5CEV5p02rLMMb7M6d+1/zxP\nrZ4IgHlI+eLEO6eBktKbzOqISENIYjcp7KYPWR+NsEIgC0skAkYi59JOSlGWIAxRaOdRlBLvyxPO\nUWlLpQ2TUhEOYBBa8kJSVNInLAM2hiBymDo3rjQGZQwyzpCRxQmQUeSvLwjIXECqQgoR04vrygJp\nStLrkfb7DAcRw54jTCN0ujZnv1dK4RD8zhcFpRD8y5eEbIz8b3ohl6wBsTmAte5P8781//vVJEpf\n7X1sfm/LQYBj2fhaNla7jt0PYA+zj13t7NfHQ5EjoL568YtfzG/8xm8A0Ov1eO9733v4J3mSyTGg\nXSOybLXavHf5HJrPaSz5ly8f8W8/fZmPfHaTu165Rhrtv2ptTzLLVq/Lfu+aZKVSXgMCXK2pLUbp\nUX9vwvlN/RJS0l9bAynJJw6pAypl6KmKqiyxxsyjJZs8t5o/GIEnYtAxDJMKJQyplWxn3gRrAWMt\nxjlv4qwqlDFUxpARU1Y5lVwjHYQkIeRGUciYHdNjoBJUGBI0tFNJQpym9FNJmsbEPY3uD+aA5oTk\nd75geGTH8saXxNx0XYCQCqUkUiqkkuiF4pyNqXbxf178rw6ifbTv1dXex/1MiYvj8KDmv2VjdT5O\nWprek6WP10LY/lNZjgHtGpFlvoO2g3+Z+Wa9r/j+O9f4yB9s8qHPXOL77lynH6ulq9imjXa7+2l2\n7evd4+sBD1ZC+MAPIbB1W5XcZYNvqjzbBSJjIQTD9XWkUkyCkGw2IAlm6F5FVRQeABtQY1c7E/Xn\nRmsLtCFWhrySDPt691z1e2UtpTEURUFRluRFQVaWOJUwHEYo6QisZGp84nSTb6bCEL1QnVsnKWEa\nEPZP+CKmQYATik98vuShy45/9fIBt14fMM8jg3neWKNxLZppu2S/Sfkw7+MqUFmlHXX5udoBHqvM\nlqu0oieyj4cux4B2KHIMaNeQdE0Giyv1Lh/Gopwcav6XO9f58O9f5v/69GW+/851hqnq3P9qfGft\na2uObybj+aq2ARYpfZRjY2J0Dq39UHQw184azdPW7Q/X1tBaE0QR2SzxRUPrOmvNvnuCTMDzRcKe\nF/iBv6YMWpXklSarJMZaD2hlSV6DWZBlZHnuzXu6h1YVVanQyvMxSq1rf1fgORrrl4qHqN6IIOkR\nRhFOBvzWXxV8Y1Pwvf90xC0ng91rXACwuSm22VZ/XpS237Q94S67j21guZr72NX2Mi2s3U77Gg8y\nVpe1e9R93O+6jkxDO2bbPxQ5BrRrRA7qR9jPLzFKBf/6Vet85LObfOj3N/neV4w4OeweBl0r5YP6\nIZrfrmASoU7srfPUpBAIrRHWYp0jCAKsc0SLkZD1RD9aX/caUJKQZRllUXhAq1n+54nacAWILYJZ\n8x6rCQKDcZJxmWAa7aysyPOMrCiYTiYEs5lnP4mG5MZACIGUHsQaMuCFoI/59rqAZ+E0n/j/Cs7v\nOL73n454xnXh/H/Ykz8m9laUZmFbW0u7Gn/OYdzHZWbF/UyIj2esPhF97Dpu8TqPKrH6ahW05Syt\nT205BrRrSPZ7wLsewGb74u+jFL7/zjX+/ee2+D/uv8y/+PYhz7rhSoqsxWMb2W+V3T5XO+qu7ftx\nzkGtsSmlwDnCINjNU6sBzQDDtbU5oC1qZ8YYT5/VArTmfRmgSQoUGaWLiKzGGENZVeRlSZZlzGYz\ngigmmIx9UMpgQFGbN4UQhFFURyXqeVDHnBy4fl2cCv7DX2eA4q5XjnjaRkhD1tyA2KIs/j9d3IuL\ngSD7jYNV2672PrYBahlgtY/b7xr3G6tPxj4ehRwD2uHIMaBdI9J+4FeZYNr7Np8Xtw8Sxfd/x4hP\n/OWYf/+5LV75nIQ7n9vf1y/StW3ZJAJ7w8m7Qs2b7/PIx1qL09bhovpYKRnPZgxGI6I4JqnBbF4N\n2+4yjixKG9QWty1eQ+Ovq4zx5saiIMsyJtMp4XhMEIY+KGUwIM9zjDFzGqoG1IIFDU0phZKSvzsH\nn/37nNPrEW96+Yj1QTgH+XaYfZcIIaCa4soxrnKd97F9D7p8V4dxH1eZIffzZT3esbrMRHhUfeza\n92q0xcciV1s9JjySq7j25RjQrjFZZjpZZgJa5R+IQsX//JIhN67P+L2/3uGRS4b/8cVDknC1GWnV\n6niZP2OR0aQzEbjeLqWc+9M8vvltkyyjPxhQRhFVWVIZs8d3NmcdaWloi5+V9RWlnYixMp6Hwjf+\nujmg5TmzLCOM4zlQCSE4sZ7iCss0DyisNydGdb2yRVBzQvG5ryi+fMHwrbdF/A8v6pOmag/gdgFZ\nG/wBRDVBYhBVNv9PD+J/Oog58GrvY/v3VWa+ZdfVZWY8yFj9x+pj+1n6xwK1Yxfa4cgxoF1j0n6o\numiMlk0EbRNM8/llz0656YTm1/5km1/4j5f4zhf2ef7N0RVtdq2IV5l1Fq+3mSigezIX0psdZR0F\nqeagtssm3+v1qKIIY8wezcw2ZMe7f4o/drF9QFWXEE7jhMboE7vX2AFo0WzmGT60RiqFFIKNUUKZ\nO6KiYlzEaK2Jk4Q4SYhqULucRfz+FxMqIXjdHSHf9syEMJDz4I9l923xf5oTPUvpi7xVE0Sw+6gu\nu4/L7vdh3ceuz6vOuQr09ju2q4/7HXMYfWyP1VXnOUw5DnI8HDkGtGtMFh/GZvJb5fRePK7dzuJ+\nt1wX8gOvPcHvfn7Mr//pNp//WsA//7YhoyVRkF3t77eK7mrjCoosKb1/wBgfLCLEnPopTnzghl0I\nAlmk0OoKbt8DaiZE2ilOpjiVzM/vWoAWFcUczOaVtik4MYqZZQI304jYU1hFcUyapqgo5QuXT/L1\n6Rq3nZK87g5d55jV/W18YK3/pet9j+gUK2NsMe7o3WoAWbbtsd7H/dpYZvrbt48d1/BE9XHVdRyl\nhnYMaIcjx4B2DclBV43t1eniinPVijcJJW/4J0Oe+7SQ//CXE37+ty/y339Ln8QdPPl02aS17Fr3\nmNeoGTEaEKvBrilHE0YRzlqM9Uz9sGtmtC1+3j18vTR40ptvcw5EfXzD/F8ZQ1VVBHnuc8LqaxZC\noFxGb7iOCArKICSu+xiGETtyg784ewMyiPmOZxm+9XbJcFBXjRa7JV2aAJh21OJB7mP7Xu6nuSy7\nH0d1H9va4lGP1Seqj0cVtn9scjwcOQa0a0yuxsQCy30WzW9d7T3zhpgfeG3If/rrMb/9V2PKMfyr\ntYLn3BRdwQfYdW37tb94XYsEujTJ0PXEMeeArCf/xremFwBhERz2CzzpEmcd4DDWoa0HNKUU0uVo\nkyNtgBADnE7oD9chdIhEYI1hs4j5653r2Cx73HYSvuObKk5txESR5270idJybjZdlD1a6cL/d5D7\n2P6/l/3PqzSMVb6ux3Ifm2tepeFcTR+7xmqX/GP38ckStn8s3XIMaNeINA9V25fRTObtB3PZKnW/\niaI5Vkv4zhf2edGtMb/8u+f51T/a4oZ1zauf1+OZN0R72m2blNrXvcrktAg4DajNpcX3qINgrk0t\nam5uyWS3qP2t2u6cQzqHNRIhpNcQS4c0GudKrOyDiohGT4coY7rj+MLZhEcnCdf1LN/1zILbrg9I\n08QHiTSh/FIh5d4+dAHx4n9/2Pdx2XFtOch93O+62tfSda7H08d2m0fRx1Vj9djk+OSXY0C7RqQ9\nWTTfGx9a81t75bls1bxsEmmf8/R6yOueB6PTJ7j/byZ89A+3uO1UxMuenfDM0+HS8y6bVNrXsbhv\nu4bXHKwWc7OshVpTm7eguiMIVzHSt82c1hhcPdkKISiTkTdlKokNhc9PkyMeuDTiv1yQDMKK1z4n\n5xkbEEUpURSRJAlxA2hBgNbKB5TU19cu4bJ4f5ZNpPtpGAe9j+19V5nh2sesklWmvbbGdZA+7jdW\nu4DoH7OPxybHJ7ccA9o1Jm2T02I4fCPtSeFq/Ald5wF42kbAXa8c8pWzBX/4n2d89A822RhovvW2\niBfdlpK0EmMOssJtvrcniD38j3Ivl2ET8bgqBL4xVy7WEZszcFg7b3NuolzYx+FNmiRrOJUipxlf\nO5/xJ39vOb89ZBAZXvPcgttOOKTsoZSal32JwpAojn0Ifx0ducjJuHid7fvYdQ9WaTiP9T62211l\nlmtfW9cxi9+Xge5B+3hYY/Uo+3hUJserzUM7lm45BrRrRJaZSxY1tP0mumXtNrLqoW/aeOYNMbed\nCjmzWfHn/2XGZx6c8pkHp3zLLQkvfEbMjesSpfaSHnd9Xtz2/7d37sFRHNe//+4DSbzMQwYJCPx+\nub8APxAi5oZ7HQIErkTMS8IEi4KqRKkydhIIMQE7ZfOOhQwkJiSmAhg7ISYYF+8gQyBJUSs5KaUg\nuWUH31gXcDkGmwtYEjj8kAA9dnfuHzDrVuv0zCzq2d1ZnU/VlnZnevr0Vz19+vSZ2VlRg3jLevRe\narHNBKf4UnK7yJlYmQFoc6NHm7+RO0BrIwKBbvAFM1F3M4L/czGCdy5GcKvJj35dffhfX87CgJ5h\nGNGMu+nOe/+rQDCILvcecxX7PTPzJ2CESU1sp/x/kPuO6kcr4u1H8Rhqha9KuzlNF1KrMScanab1\n3NLo5H/gBrpTjr/85S9RUVEBn8+H/Px8lJWVIRKJYOXKlTh//jx8Ph9Wr16NcePGabacXHhC00wo\nFMJLL72E1tZWjBkzBmVlZcjI+Gz5EolEsGHDBvztb38DAIwePRo/+tGP2pShUEW/8veZqDSK1WAV\nsYpSZRsD+2aguHcQj3yxJ85cbML//uAO3v7wDnpk+ZA3OAv/OTAD/9YvA36/j2yflROjrguaiJOD\nU43iBCjub/Pg5PAtXL/ZjHNX7+DdT3qg7r/CyOoC/Pd/74rRg/1ovHEbD2Z3b/vcSHy2qggEgwje\n+y0z8735/bU23yuToJwnpV214uhoP6rqsMNJP8arUdWmRGq0O1fdSjnqnNDefvttHD16FEeOHEFG\nRgZ+8IMf4PXXX0d9fT2ys7Nx4sQJfPzxxygtLcXx48fRo0cPjdaTC09oGrl+/TrWrl2LQ4cOYcCA\nASgrK8OOHTuwZMmSWJk9e/agtrYWR48ehc/nwzPPPINf/epX+N73vufYrz4lEgAAH61JREFUDjU4\n5YGrGuyUY5RTW1arA9lxdM0Axg3rhv/5H5m4+q8wzl1pRc2lJpx+/zZ6dA3gPwdmYsiDAXy+f2ab\nJ/vLtu5LY7QJCN8Cgt0RRVbcGu+0RHHpehgf1bfin5db0dBwC8HM7viPgV3wyBe7Y3BfP3xGFJFo\nFI03gIzMrHuP2IrefbgwPvvit9/nRyBwd0Xmv/d7Zn6/v92KMG6NipXI/fSjkwmAWkE5oUP96PBc\ntbKrS6NdNsOtlKPOa2hf+tKXUFFRgUAggMbGRnz66afo3bs39u3bh1/84hcAgCFDhiA/Px+hUAiP\nPvqoRuvJhSc0jVRXV2PMmDEYMGAAAGDevHn4/ve/32ZCy8vLw/jx42MDY+TIkbhw4YJjG+JgFweY\n7BzEQWvlFKm0CjX4Vc7HLB8IBPC5BwP43IOZKMzvjrr/iuD//r9mvH+1Ge9cuAPDaETvbn4MfjCI\nz/fPxOeyu6BvjwCCgfYRNKWB1NjSABitd3+dOqubpUbAh2s3W/HJjQg+utaKj6+1ovZGGAYMZPcI\n4L/l9kLe2P4YnB289z22u6s387mNPp8PWZkZbR+CfO8Bw59Nar7YD3IG7k1mYmpTvDFEXmUqNRKO\nvCP9aG5X9SO1QpGhAh5qJeS4Hx2eq+Z2NzWq2mz1/9CB7pRjIBDAoUOH8OKLLyInJwdTpkxBWVkZ\ncnNzY2VycnJQW1ur2XJy4QlNI7W1tbYnzNixY2Pvr169it27d2PDhg22dVPXIwDEnnIh7hP/Wl3r\noMoAIO3IdVD1meV8Ph9yegeR0zuISSO7oiUMXLp+dxK5UNeCmrdvImr44PMBfboH8OADATzYM4js\nHn707RlEVhDo0TWAbpl++GCQ7YpGo/Bn9ES0pQFRf1cgauBWUwRNYeB2cxQ370RRe6MVnzZGUX+z\nFdcbIogad+9p7N8riM/3z8CE4V3x7/0z0COrfbrTh7tRczAYjG0LBIOx31czr8qZ703dsQje1/YJ\n+eZf8bZ98//72aSrviOQSj3eTz/KfWfVj7IdE9meCNX+eDRanauyXjc0yue701RlR3Hjtv2SkhKU\nlJRg06ZNeO6558ivsCRCWyLhCU0j1AkTCNA/9HDu3DksXrwYpaWlGD9+fNy2zEHp8/nQ3NyMmzdv\nkienKoVjYjWozc9NTU1obGwkB7fVRCn+zekexYCefvyPfwuiNRzAp7cMXG+Mov5mGJ/eCuMfF27h\nX7eiiBq+NncgZnTxoXumH/+63oqcD68g4Ddvrrj7ao0YuNV8Ay3hG/e2mdfLgF7d/Mju4cfnegfx\nxcFBZPcIoN8DAWQEDNz9flgERvg2GhrafzFb/r5Yc3Mzmpqa1I/Yuvd4EvEL1GLQIdYp/3/EsioH\neufOnTbHWvWBql7xs9xGatVkN7lQbaDOMSuN8gRipdGqfCI1uoHOlOOFCxfQ0NCA0aNHAwBmz56N\nJ598EgMGDEB9fT169+4NAKirq8OYMWM0Wk4+PKFpJDc3FzU1NbHPdXV1yMnJaVeuqqoKK1euxMqV\nK1FcXGxbbyQSwdmzZ9ttb21txbVr11BVVdWxhtsQjUbxz3/+07X6uwIYDGBQEGgO+9Ec9aEl7L/7\n/pYPtyN++MJA3YXLMAxztXN3pRTwA5mBKLoHo8gIRJEZMJAZjCIzEEUgDOAG0HwDuIK7r/vF7f+B\nUz744AN06dIlKbbD4TB5HibSvji+ksHIkSNT/qaQy5cvY/369Th8+DC6deuG3/3ud3j44YeRnZ2N\n/fv3Y/Xq1bh06RLOnDmDdevWabScfHhC08iECROwadMmXL58GYMGDcLBgwdRWFjYpsypU6ewfPly\n7Nixw3F0FAgEkJeXR0aII0aMQGtrqzI6VWEVnYr4/X6cP38ew4cPd3ScXZ1U6lJstyoKPn/+PIYO\nHeqKRup7bPJjtN5///2YfdUjtsT62j0BBZ/doWkV6Vv14wcffICHHnrovjSqVtbx9GNNTQ1GjBhB\n7nfaj3YaVeX9fj9qamqQl5fnqkYn56ob6Pwe2oQJEzB37lzMnTsXwWAQw4cPx5o1a+D3+7F27VoU\nFRUBAMrKytCnTx+NlpMPT2gayc7OxgsvvIBFixYhHA5j2LBh2LhxIyorK1FVVYXy8nJs2bIFALBu\n3bqY0xs7dixWrVplWz+VqurSpQu6dOlieY3LSarEKs2SlZVF3tprdy1ClVaL53iTrKwsPPDAA65p\n9Pv97VKDwGeTUVZWFnr27NlmO5WiJL/k7VCjWU6li1qZyak76noSpV2VunOSaqNsyhqp/pf3UfWr\nrstR7UmGRq88y3HBggVYsGBBu+2bN2/WbCm14AlNM5MnT8bkyZPbbCsoKEBBQQEAYN++fR2qXx5o\n8j5xsMdzsVw1GVDRKeUoxPqsro+obKquqyRSo/h8RXOb/KVvsz7qho9otP3P+YgOsKMaRZLRjyr7\niepHud1uaHRyrrqBe2u/zoW7vcRog7pILg48ebACbe/UMrdTUah8vMqmeIzqswoqUhft2u2X26Nb\no5XDTJRGu34Ut6erRi/0oxtE4nwxNDyheQRqcFKRrbhdPE41GOUoWVVWVYYa6FQZsR45/UOlrKz2\nu6HR3K/SSNWpW6Pb/Win0a4f5boSrZE6RrdGu36k7mTWAU9oeuAJzSOoBqUc2Yrb5c+qCFWOklVp\nGqotqtSUHGFTkbfKkVEaxf3J0EjZ1K2xM/Sj1zW6+aSQeF4MDU9oHkGOagF1NCnvMz+r9qsctny8\nbN+unNUxVFuSqVE8ljWq053prtGuH3mFltrwhOYhqMiWilKpVQUVBYt/VakXVQQs16lKS1H7VDrs\n9rmpUU5TJUOjXT+K9pKhUcYNjVb9KNtNRj+6+fMx8bwYGp7QPATlMKhUiyoCtnM4cnm7elVlVKkl\ncb/seKiJU97npsbY8dEmRG/XAuHbCdfo5P+tRWMS+9HtczURGt2AV2h64AnNI9g5BRlVVC1H9Gbd\n8qBWpXNUjoZyMlRUTpVxotFKiw6NsQi9pQF+RO4++DjBGt3uR3EVcj/9aFcmHTQ67UfdRON8MTT8\nPTSPYDVoVeXMMqqyVsdR2yjHZreCoFBFzsnUaB5rPvAYwe6WWjytsTP0o0savfB7aJ0ZntA8hGqg\n26Xm7KCcjsqWlVOyi2TlaJiKiK2cmdM2UdhpjNUR7AZ/sFtSNDrpRyeO3lYjUU8qabQiFTS6AU9o\neuCUo0eQUyiqMvJ76vqAvE0e3E4HryriVZUTI2fzvdymZGlU2UwljVS5RGoU93XmfnQDTjnqgSc0\nDyEPSrsBp3I4ckpGdA6yM7Jyrk5XUlbOTZW2oo51U6O4P1ka7fpRpTtRGqm269bopX7UCd8Uogee\n0DyEOODllIj5nkIV3ct1ybZU5akJj4rKVZOj7EBEXSqNqnbp0ig6yGRptOtHle5EaRQ/u6Ux1fuR\nv1id2vA1NA9BRcxA+wEtDmbzr5WjEKNnFfI+yoZdW2U7YptUKSQKNzRa/V8TpdGuH+X60lGjVT9S\nthOtsc2vkmukRXuNnRNeoXkEOR1jlVqhBqLKYVCpIvMlHifuo46T26mKxq1WW8nUKNpgjbRGeX+i\nNcoksx91wys0PfAKzUPYDX4TOUpWDVYqNeN0laaKxOOtUy6XLI12NkSSpVF+r1ujXT/a4XY/qjTr\n1GjXj174PbQDBw7g9ddfRyAQQN++fbFu3TpkZ2dj5cqVOH/+PHw+H1avXo1x48ZptJoa8ITmEeQB\nD6hTUdSgFsuoBq/sUFQOQHY6KieminBVEX8qa5T3p6PGztCPOjS6ga4J7ezZs3jllVdQUVGBnj17\nYu/evVi1ahVGjBiB7OxsnDhxAh9//DFKS0tx/Phx8od7vQynHD2EOfCoAafabhUdqxySqqy4XXQK\nKqdkbqNSQ+JLTg+lokbx2HTVaNeP5vHprNGuH916OLGulGP37t3xwgsvxH5dfdSoUbhy5QoqKytR\nUlICABgyZAjy8/MRCoVc0ZJMeELzCLITsIp47dIxIuLgtbMvl6O2yVEzZV92YOJ+u8lDrDvdNHaG\nfuyIRsoWRSI06kbXbftDhgyJpRJbW1vx85//HNOnT0dtbS1yc3Nj5XJyclBbW+uGlKTCE5qHkKNH\nakBSKwp5cIrb5chbNeipNJIqzSPaECNjldO1aodsL5012vWj3N5EaxTfu6XRqh/F9iWrH71y2/6N\nGzfwne98B926dcOSJUsQibSfBlVBg5dJP0VpjOy85IGuQk7liNuoeuR95l/RCVATjVVbRGch12nl\noFNFo1w2GRqpNnA/JlajF34P7eLFi5g3bx6GDh2KrVu3IhgMYuDAgaivr4+Vqaura7NiSxd4QvMQ\nVukPceDJx1AOQJXmsXI8cqQuD3bVMSp7cj1i+1JNo6pNVu2Sbcr1xKuR+sz9mFiNqf57aPX19Sgt\nLUVpaSlWrlwZ215YWIgDBw4AAC5duoQzZ85g/PjxbkhJKnyXowcRI1A5lSM7BNV2sS4ZKmWjqk+M\nZsXPVu+t2malMZ564tUot5OK8BOh0aofKQ06NSaqH+/3XKVIBY060HWX4549e3Djxg0cPnwYhw4d\nAgB07doVO3fuxJo1a1BUVAQAKCsrQ58+fTRZTR14QvMIVM5ffO/UCcrHWg1k6jiVA1G10crRiX+p\n+pxE8OmkMdX70aoNidAoksx+dANdE9qyZcuwbNkyct/mzZs1WUldOOWomVAohOLiYkybNg0rVqxA\nS0v7h9ps27YN06dPx9SpU/Haa685rlu1YrIqL6Z+rCJPgB7UTh2PnTNwCmuky7NG+uaSZGrUie6b\nQjorPKFp5Pr161i7di1effVV/OEPf0BWVhZ27NjRpkxlZSX+9Kc/4c0330RFRQWOHz+Ov/71r47q\nt4tIqW3yy0SVrrKK8lXlKPuyQ5OjfGq/SgdlX9zWWTTK72Ub6aDRC/3oBvy0fT3whKaR6upqjBkz\nBgMGDAAAzJs3D0ePHm1TJhQKoaioCBkZGejatStmzZrVrowKJwNLjmDFl4hV9CtH/CrbpuORjxfr\nVzkjcx8VySdDI3W8qJFqX6I1Usfq1NgZ+lGnRp3wCk0PPKFpxMmXF6kyn3zyiW3d8oA0twFtB5sq\nUqWcgrhPdhBUWWqCEx2KXEaGarucKlNppNqtUyNl28lEr1Oj2/1opzER/eh1jV64bb8zwxOaRqiT\nPRAIxF3GDiqCpQaoKrVCRcSUM5FXJ7LTkv9aOQrZ+VDHWmlUlUsnjZ2hHzuiUbafDI1uPpyYJ7SO\nw3c5aiQ3Nxc1NTWxz3V1dcjJyWlXJt4vOEYikTb1JppwOJxU+6nQhmTbT4U2hMNhnD17ttPaB4C8\nvDxX6rX6bhnjHJ7QNDJhwgRs2rQJly9fxqBBg3Dw4EEUFha2KVNYWIhXXnkFJSUliEajOHbsGBYv\nXmxZbyAQiA0kKgUoRpxmGSptY5altsv7xTpqamqQl5dHRq5ym+LBSX3m+7Nnz2LEiBGuabRrU01N\nTRv7TolHo10/mm1wS6NdP5rngZsarfrRPAfc1KhCVZ8ueNWlB57QNJKdnY0XXngBixYtQjgcxrBh\nw7Bx40ZUVlaiqqoK5eXlKCgowPnz5/HYY4+htbUVs2bNwqRJkxzVbzUYVQPa6joBdf1Bvg7hpF6V\n47BzAJSNVNVoZT9dNHqhH+V0YTI16oRv9NADT2iamTx5MiZPntxmW0FBAQoKCmKfFy1ahEWLFt1X\n/VYD1C4ilq+zyMfI9Yn7Zft2joFyslQbqfqSpZFymqmkUdyWDI2q+hLVj3ZtS0Q/GobhynU0XqHp\ngSc0D6JyMpRzUB0rRrcUlCNQReJOHYfcBqvjUk2jqnw6abTrR1UbEqVRVV+yz1Ud8ApNDzyheQQn\nKRXRsVkNTvk9ZYNyMqroVbXfagUhbrNyNFSdbmik6ky0Rrf7kTV2XCOv0FIbd8INRjvioKVSISZi\nqkYuL5ah3sufZacj27aKVp1E+2YdlGOyit7TVaNdP6pspJNGKx1W+hOlkW/bT214heYh5IFPORG7\nyNaESlVREalsW1Wn7HitImCrVViyNJrlWKNao1x3ojXK7XRDo1273Fqh8W37euAVmkdQRaPifnOg\nio6EinjtIlbKjl0kLbfT7jixbXJkzRpTU6PqbzpptOtHXqGlNjyheQirqJPaLzsDJ8fbbaMicHmf\neJxYXv5LlWeNrNHp8Xbb3NLoBtE4X05Yvnw5du/eDQC4c+cOli1bhhkzZmDmzJk4deqUZgWpAU9o\nHkFMpVCDWU7pAG0jSzmtIv4V98uDW6zfrM98WTkKVRtEqEieNaauRkpTuml00o9uoHOF9tFHH2HB\nggX44x//GNu2ZcsWZGdn48SJE3j55ZexfPlyNDY2uqAkufCE5jFUKRyrFJDoYOS6qPpVaSTKEYlt\nEO3bpXOo46w0UjbSTaNdP4ptT1eNXuhHN9C5Qtu/fz/mzJmDadOmxbaFQiGUlJQAAIYMGYL8/HyE\nQiHdMpIO3xTiMcToVfwsOxKr91R0qzpG3CY7CqpOynmoonWVTUoj1Z5005jq/Ui9T6RGu2N0aHTS\nj26g87rYs88+CwD4y1/+Etvm5JdA0gGe0DyGOBjlvzIqxyF/thrcqmOo+q2ci1UdlB1KW7I1qtqg\nS6OTfqRsW9nR2Y92dejS6KVzVRdu3+hhFxSmC+mnKI2RI0fVCSlG7WIahUq12EWqcp12Nqiycjl5\nuyoNlUoa5W3pqDHV+5GqJ9Ea3fo9NJ0pR4qBAwfG/SsfXoQnNI9BDTY59UQ5YDn1YrXqsdrmJJKm\nyspYOSmVQ3FTozghJEuj2/3odY0Uidbo1m37LXG+4qWgoAAHDhwAAFy6dAlnzpzB+PHjNbQ8teCU\no0dwGlGqUjvy8aqBrIp2VQOeSinZ7VelkOxsJVOjbNcNjanej3btclujXGcyz1Xd3M+qKx6eeuop\nrF27FkVFRQCAsrIy9OnTx2WriYcnNI8gOwtq4IkDTvxLRaoqJ0LZVNkXj40n4qWOt9NoZUuHRsoh\ndySqvx+Ndv1o1+6OakxEP3b0XKUmokRq9NKzHDdu3Bh73717d2zevNkFK6kFT2geQ55kqGhTdgp2\naR2qDioSlW2onK3cNuoY8bPKWYv1UPYTqZFCt0a7fhT/erUfvX6uupVydHuF1llwZ/3MaEd26nL0\nS713EoFaOU25nFmnqi3yNjlqlo+VHYaVRrGNydBI1adbo10/WpGIfhTb45ZGu9WS2xqd9KMb8KOv\n9MArNI+gin7liJVyDKp0jFynVZQqOzVVHXZtp+pT1aNycumq0a4fqboSqZFqt26Nqd6PXko5dkZ4\nQvMg1OCkIkyqPJWKkZ0mtTKi6lKlh6j6VM5EFZEnWqMT55hsjao6E6XRikT0o5XdRPUjpxxTG57Q\nPIY82FXOgUrnUFGu6AytBr/K+cg2KDuqNlPtT6ZGSgu1ekiWRpVtXRrt+pEqr1ujVT+a293UGM//\nXSe8QtODez3EaEW+BiAOPDlCp6Jcq0hUPF5lR45mKaekSo+ZUJG3uM9KI1VGp0bzlUyNbvcja9Sj\n0Q1a43wxNDyheRR5EFNRqxxdmgNZtepSRdwUqujayilZ6bByMFbRvy6NKuecSI1u96PXNVqVT6RG\nN+CbQvTAKUePIDsCc5uMPOjE4+xSJlS0bGVP5QisInc5DSRvZ41qjVbl5WO9qjHV+9Gtm0L4Gpoe\neELzKCoHQW23KitHy3ZRKHWcuV2sw6pO0WlZ2WON9iRSo7jfLY1OyyarH938xWqm4/CE5iHEAaiK\nbk2somWzvPhXFRmrVgqiPVVErYrS7SLrZGhUtVO0l2yNFDo1pno/yuWToZEntNTGWRjIOOLAgQOY\nMWMGpk6dik2bNpFlbt26hWeeeQbFxcUoKiqK+3E04kATX+Y2OfoUjwHaR9hyvSp70WjbaxrUMbI9\n+S9lk4r8KY3ivnTVaNePVDsSqVFlX6dGL/SjG0TjfDE0PKFp4ty5c3j11Vexf/9+/P73v8eHH36I\n3/72t+3KbdmyBX369MGxY8dw5MgR/P3vf8ebb75pWz+VChGvA1CD33QUYjkqCpWPV9kUj1F9VkE5\nZtGu3X65Pbo1Wjm/RGm060dxe7pq9EI/ugHfFKIHntA0UVlZicLCQvTs2RN+vx8lJSU4evRou3Lj\nx4/HE088AQDo0qULhg0bhitXrtjWTw1OMa0jR8NyBKoajOLxlFOg7IllqIFOlRHrkdM/VHRutd8N\njeIKwqr9bmp0ux/tNNr1o1xXojVSx+jWaNePbv0eGk9oeuBraHFSUVGBVatWxXLp5l1PDz/8MCZM\nmBArl5OTg08++aTd8ZMmTYq9P3fuHI4fP449e/bY2jWdAeXcKUcST3QqO0Oqbrm8eBxlQ95HHSM7\nOCuNdvY6qlGVkkqkRrf7kTV2XKNb19D4u2V64BVanMyePRs1NTV477338N5778XeDxo0qF3ZQCCg\nrOf06dN44oknsHbtWgwdOtTWrhzVAupoUt5nflbtt3IucnnRvl05q2NUaadkaRSPZY3qdGe6a7Tr\nR6/+YnVnwWe41UOdjO3bt6OhoQHPPfccgLspyDfeeAM7d+5sV/bAgQN46aWXsHnzZowbNy7RTWUY\nhklLeIWmiYKCAoRCIdy4cQORSASHDx9GQUFBu3JHjhzBtm3b8MYbb/BkxjAMoxFeoWnk0KFD2LVr\nF8LhMMaNG4c1a9bA7/dj3759qK+vx1NPPYWJEyfCMAz069cvdv1txowZ+Pa3v53s5jMMw3gantAY\nhmGYtIBTjgzDMExawBMawzAMkxbwhJaCJOIRWhShUAjFxcWYNm0aVqxYgZaWlnZltm3bhunTp2Pq\n1Kl47bXXOmwzHvuRSATl5eUoLi5GcXExVq1aRbbRzTaILFmyBBs3bky4/ePHj2POnDkoKirCD3/4\nQ7S26vsWkxP7GzduxMyZM1FcXIwXX3xRm22Z5cuXY/fu3eQ+N89DxsMYTEpx9uxZo7Cw0Lh586YR\niUSMhQsXGocPH25Xbv369UZ5eblhGIbR0tJifOMb3zAqKiru2+61a9eMr3zlK8aVK1cMwzCM559/\n3tiyZUubMqFQyJg7d67R3Nxs3L5923jssceM06dP37fNeO3v2rXLWLx4sRGNRg3DMIynn37a2LZt\nmxb7Tttgsnv3buPLX/6ysWHDhoTaf/fdd41JkyYZdXV1hmEYxtKlS42dO3cmzP7JkyeNefPmGZFI\nxAiHw0ZJSYlx8uRJLfZNLl68aDz++OPGQw89ZPzmN79pt9/N85DxNrxCSzHcfoSWiurqaowZMwYD\nBgwAAMybN6+d3VAohKKiImRkZKBr166YNWsW2Ta37Ofl5WHp0qWxpzWMHDmyQ5rvpw0A8I9//AMn\nT57E/Pnztdl2av/YsWMoKSlBv379AABr1qxBUVFRwuxHo1E0NTWhubkZTU1NaGlpQWZmphb7Jvv3\n78ecOXMwbdo0cr+b5yHjbXhCSxIVFRXIy8vDqFGjMGrUqNj7t99+G7m5ubFyVo/QMh2P+QitKVOm\n3Hd7amtr29mtra21LUO1zS37Y8eOxRe+8AUAwNWrV7F7925Mnz5di32nbWhoaMDzzz+PH//4x5ZP\ngnHL/kcffYTm5mYsXLgQs2fPxtatW/HAAw8kzP4jjzyCIUOGYOLEiZg8eTIGDx6MiRMnarFv8uyz\nz1pO0m6eh4y34QktSSTrEVoqDOLbG7JdJ2XctG9y7tw5fPOb30RpaSnGjx+vxb7TNqxatQoLFy7E\nwIEDtdmNx344HEZ1dTV+8pOf4PDhw7h58ya2bNmSMPt79+7FrVu3UF1djerqahiGga1bt2qx7xQ3\nz0PG2/CElmLk5uairq4u9rmurq5NNCpy4MABPP300/jpT3+KmTNnarebk5PTrkx9fb2jtrlhHwCq\nqqrw+OOPY+nSpXjyySe12HbahtraWpw5cwbbt2/H7NmzsW/fPhw7dgzr169PiH0A6N+/P7761a+i\nV69eCAQCKC4uxrvvvpsw+2+99RYeffRRZGVlITMzE3PnzsWpU6e02I+nnW6dh4y34QktxUjWI7Qm\nTJiAd955B5cvXwYAHDx4EIWFhW3KFBYW4ujRo2hubsadO3dw7NixdmXctH/q1CksX74c27dvR3Fx\nsRa78bQhJycHf/7zn3HkyBFUVFRg/vz5sbstE2EfAKZMmYLKyko0NjbCMAyEQiHk5+cnzH5eXh5O\nnjwZewhwKBTC6NGjtdh3ipvnIeNt+EkhKUiyHqH11ltv4Wc/+xnC4TCGDRuGjRs34tSpU6iqqkJ5\neTkA4OWXX8bx48fR2tqKWbNmYfHixbpk29qfP38+Lly4gIEDB8Y0jx07VtuE4qQNIlu3bkVDQwNW\nrFiRUPt79uzB3r17EY1GMXLkSJSXl6Nbt24Jsd/S0oINGzbg9OnTyMjIQH5+PtasWYOsrCwt9kVW\nrFiBESNG4Fvf+hYqKysTdh4y3oUnNIZhGCYt4JQjwzAMkxbwhMYwDMOkBTyhMQzDMGkBT2gMwzBM\nWsATGsMwDJMW8ITGMAzDpAXBZDeAYdKVy5cv42tf+xqGDx8e+96cYRjo27cvfv3rXye7eQyTdvCE\nxjAu0qNHDxw5ciTZzWCYTgGnHBmGYZi0gFdoDOMijY2N+PrXvw4AsbTjtGnT8N3vfjfJLWOY9IMn\nNIZxEU45Mkzi4JQjwzAMkxbwhMYwLsLP/maYxMEpR4Zxkdu3b8euoQGfXUfbtWsXevXqlcSWMUz6\nwT8fwzAMw6QFnHJkGIZh0gKe0BiGYZi0gCc0hmEYJi3gCY1hGIZJC3hCYxiGYdICntAYhmGYtIAn\nNIZhGCYt+P/s+k0RD4XxUwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1214e19e8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ax = dplot(ds, hist2d_alex, S_max_norm=2, scatter_alpha=0.1)\n", "\n", "if data_id == '7d':\n", " fret_sel = dict(E1=0.60, E2=1.2, S1=0.2, S2=0.9, rect=False)\n", " do_sel = dict(E1=-0.2, E2=0.5, S1=0.8, S2=2, rect=True) \n", " ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel)\n", " \n", "elif data_id == '12d':\n", " fret_sel = dict(E1=0.30,E2=1.2,S1=0.131,S2=0.9, rect=False)\n", " do_sel = dict(E1=-0.4, E2=0.4, S1=0.8, S2=2, rect=False)\n", " ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel)\n", "\n", "elif data_id == '17d':\n", " fret_sel = dict(E1=0.01, E2=0.98, S1=0.14, S2=0.88, rect=False)\n", " do_sel = dict(E1=-0.4, E2=0.4, S1=0.80, S2=2, rect=False)\n", " ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel)\n", "\n", "elif data_id == '22d':\n", " fret_sel = dict(E1=-0.16, E2=0.6, S1=0.2, S2=0.80, rect=False)\n", " do_sel = dict(E1=-0.2, E2=0.4, S1=0.85, S2=2, rect=True)\n", " ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel) \n", "\n", "elif data_id == '27d':\n", " fret_sel = dict(E1=-0.1, E2=0.5, S1=0.2, S2=0.82, rect=False)\n", " do_sel = dict(E1=-0.2, E2=0.4, S1=0.88, S2=2, rect=True)\n", " ds_fret, ds_do = select_and_plot_ES(fret_sel, do_sel) " ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(403, 2045)" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "n_bursts_do = ds_do.num_bursts[0]\n", "n_bursts_fret = ds_fret.num_bursts[0]\n", "\n", "n_bursts_do, n_bursts_fret" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "D-only fraction: 0.164624183007\n" ] } ], "source": [ "d_only_frac = 1.*n_bursts_do/(n_bursts_do + n_bursts_fret)\n", "print ('D-only fraction:', d_only_frac)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAEbCAYAAACyfnF9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAJ/wAACf8BB8w+RgAAIABJREFUeJzsnXmYFOW97z9vbd09MywjyCJHEzWaY7iYo4n7DiqIIKvR\nm4AbNxquC2puPKhIXPBgwsUNvSeSuByzGBNvFBUCRlyOUSNJ1GgIMSfXqMTIgDDALL3U8t4/qqus\nKaqqe7R7Fqzv8/TTVW+92+996/1t71JCSilJkSJFihQp+jmU3q5AihQpUqRIUQukAi1FihQpUuwW\nSAVaihQpUqTYLZAKtBQpUqRIsVsgFWgpUqRIkWK3QCrQUqRIkSLFboFuC7SLLrqIbdu2dbug999/\nn1NPPbXb6bqL9vZ2LrvssorxnnjiCU4//XTGjx/Pww8/XDH8wQcf5PTTT2fy5Mncfvvt3arT+eef\nz29/+9vY57Nnz2b8+PFMmzaNyZMnM2PGDJ5//vkuz6+++uouaRYsWMBjjz3m35dKJY444ghuu+22\nqur09ttvM2vWLKZOncrZZ5/Nn//858TwIH7/+98ze/bsxPz/9Kc/cfjhhzNt2jSmTZvGddddB0Bb\nWxsXXXQREydO5JxzzvHfpbjwOMyePZsjjjgCx3H8MCklxx577C5t1Vfw85//nAULFvj3tWqLWuLx\nxx/fpf2ef/55xo8f799/8MEHzJo1i4kTJ3LppZdSKBSqzj/8rs+ePZuNGzf6z1tbW1mwYAGnnnoq\np59+OjNmzOC5556rmO+HH37I17/+daZOncr06dP5zW9+s0ucfD7PlVdeyRlnnMEZZ5zBqlWrALjr\nrrv43ve+V1X9X3nlFaZOncrUqVM55JBDfFquvPLKxHQtLS3MmTOHqVOnMmfOHHbs2NHlebiNK4XX\nApdeeimbNm3ijTfe4IYbbgBg9OjRNclbSsmNN97I5MmTmTx5Mv/xH//hP7vvvvs47bTTmDBhAmvX\nru2SznEczj77bJ544gk/bPLkyUydOtXnJVu2bEksuEfw97//XZ566ql1L2fjxo3ylFNOSYyzadMm\nOW7cOLlz507Z2dkpp0yZIt95553Y8L///e/ypJNOkoVCQVqWJWfOnCl/+9vfVl2n8847T65bty72\n+axZs+Srr77q37/55pvy8MMPl3/961/95wcffLB86aWX/DjXXnutfPTRR/37lStXyosvvlgef/zx\n0rKsinWaNWuWfO6556SUUr788sty6tSpieFB/O53v5OzZ89OzP+nP/2pXLZs2S7hN954o/z+978v\npZTysccek9/85jcTw5Pqf8IJJ3Rpk3Xr1smjjjpKzp8/PzFtT6NUKsmlS5fKQw45RC5YsMAPr1Vb\n1BIrVqzo0n5bt26VEydO7DJ2L7roIvnLX/5SSinl3XffLW+99daq8w+/6w888IC88sorpZRSFotF\nOWnSJPl//s//kY7jSCml/Otf/ypPOukkfyzEYf78+fJHP/qRlFLKt99+Wx5zzDG7xFm2bJn8zne+\n49N13HHHyW3btslly5bJf//3f6+aBg+zZ8/uQksSZs2aJVesWOHX45ZbbvGfRbVxUnitMGPGDCml\nlPfff79ft9GjR9ck71/84hfy8ssvl1JK2dnZKSdOnCj//Oc/yzfeeENOmzZNlkoluXXrVnnKKafI\ntrY2P91dd90ljzjiCPn4449LKaXM5/MV+XkQsRbapk2bmDVrFjNnzuTss8/mjTfeAGDs2LG0tLTw\n6KOPcuWVVzJnzhzGjx/PokWL/LRLly5l/PjxnH322Vx66aVdLAmArVu38j//5/9kxowZnHXWWbz6\n6quAqx1OmTKFGTNmcPnll1MqlVi3bh2zZs3ivPPO26WcZcuWcfrpp3PGGWf4GtbNN9/Mpk2bmDdv\nXqwQf/nllzn66KMZMGAAuVyOU089ldWrV0eGr1mzBsdxsG2bfD5PqVTCtm0Mw4jXEoCbbrqJCRMm\nMGfOHFpbWxPbtKxY+Nf/7b/9NyZOnMgjjzzih1144YUsWLCAfD4fWd6jjz7KxIkT+exnP8szzzyT\nWDeAmTNncvzxxwPw+c9/npaWlsTwN954w++bn/zkJxXzf/PNN3nllVeYPn06c+fO9fN57rnnmDJl\nCgCTJk3iP//zP3EcJzJcSsns2bNZuHAh06dPZ8qUKfzxj3/0yzjllFNYs2aNf7969eqqvAD/9V//\nxcyZM5k2bRqLFi3y01x99dVceOGFnH766bz00ku8+eab/Pf//t+ZPn06F154IZs3b/ZpiwofO3Ys\nd955J2eeeSaTJ0/2rdvXX38d0zS56qqrutTj47SFN1aq8XhUS8/zzz/PxIkTmTlzJk8//XSXPK6/\n/nrmzp3r31uWxe9//3vfapg+fbrfBx5vAFi3bh3nn39+ZL2CVnVbWxt77rknAGvWrCGXyzF37lyE\nEADsv//+3HDDDZimyaZNm7po6t4PYNy4cZxxxhkAfOYzn8E0zV3Gype//GXOOeccAPbYYw8GDRrU\nxfq1bZu5c+dy9913J7arBylll3H79NNP71K/6667jm3btvHuu+/69Tv//PP9ekS1cVJ43Dvw0ksv\nMX36dGbOnMmcOXPYvn17bL1vu+02JkyYwPvvv8/UqVO58847uffee3n//feRUnLttdcyZcoU5s6d\n6+cT17dz5szZpT/Wr1/P5z73OS655BIAcrkce++9N5s2beL5559nwoQJ6LrOHnvsweGHH+57o954\n4w3Wr1/PSSed5Nd1/fr1Pt3Tp0/nqaeeSuwTLe7BI488wvHHH8+FF17IunXrePXVVzn44IP9F82r\nwJNPPgnAhAkT+OpXv8q7777L66+/zqpVq2hvb2f69OmMGzeuS94333wzZ511FieccAL/+Mc/OOec\nc1i9ejV33HEHP/3pT9lzzz254447eOeddwDXffXEE08wYsQIzjvvPNasWYNhGLz88ss89thjSCk5\n99xzOeigg1iwYAEXXHABd9xxRyzRmzdvZtiwYf79nnvuyZ/+9CeEELuEb9iwgb333pvJkydz0kkn\noes6xx9/PAcffHBs/mvWrOFvf/sbq1ev5v3332fSpEmJbRqFAw44oIvb8aijjqKlpYWlS5d2cVt5\n9Lz66qvccccd7Ny5k5/+9KeccsopsfUDfIYJcMcdd/h9FA4/+eSTAbj22mv59re/zZe//GVuvPHG\nZLMfaGpqYtasWYwfP56f/vSn/K//9b/44Q9/yJYtW3wGpqoqDQ0NbN++PTLcUwRUVeUXv/gFL730\nEvPnz/ffuRNPPJHrr78ecJnLH/7wB8455xxefvnlxLr967/+K1deeSXHHnssDzzwALZt+8+GDx/O\n8uXLMU2TM888k3vuuYfhw4ezZs0abrrpJm699Vauu+66XcKXLVsGwNChQ/n5z3/Oj370I5YvX86t\nt97KYYcdxmGHHcajjz7apR4fpy2CCI7FOFSiZ+nSpVx77bX85Cc/YZ999uEb3/gGjY2NgPu+7rvv\nvhxyyCF+fq2trQwcONAve8899/QZXbX1u+aaa3xaOzo6eOihhwD4wx/+wJe//OVd4h933HH+dVg5\n9uC9pwA/+MEPGD16NLlcrkucI4880r9etWoVlmWx//77A66QvfrqqznwwAO5+OKLI8uohJNPPrlL\nPTy88cYbjBgxgptuuonf/va37L///nz7298Gots4KTwMr42/973vsXDhQv7lX/6FH/3oR2zYsIGj\njjoqMs0VV1zBwQcfzF/+8hfmzp3LV77yFX72s58BrlA/8cQTufnmm7njjju4++67ufbaa2PLvffe\neyu0Crz66qv88Y9/5Etf+hJr167l0EMP9Z8NHTqUTZs2USgUWLx4MXfeeSe33nqr/zyfz3Psscdy\n7bXX+gbB5z//eT7zmc9ElhUr0I4++mguueQS3nrrLU488US++tWvAl0tiUMPPZRsNgvA3nvvzY4d\nO3jxxReZOHEiqqoyaNCgyA5+6aWX+Nvf/ubP99i2zaZNmxg3bhxf+9rXOPnkk5kwYQIHHngg69at\n4/DDD2fUqFEAnHbaaaxbtw7DMJg0aRK6rgOuJvvyyy/zuc99rmIDy4jTvlRVjYyrKApvvPEGL774\nIs8//zy6rnPhhRfy5JNP+oIqjHXr1vma06hRo/xBevTRR3PxxRfv0qZREEKQyWS6hF111VVMnjyZ\n0047rUv4ihUrOPbYY2loaODUU09l0aJF/OMf/2CvvfaKb4QyvvOd7/Dmm2928XGHw1tbW2ltbfXp\nmDJlCkuXLk3Md/78+f712WefzW233UZnZ2dk28cxPkVxHQgzZ84E3PZrbW31tcZcLsdBBx3E7373\nOwC+9KUvVaR3x44dtLS0cOyxx/p5//CHP/SfewrGO++8w7vvvss3vvENXxNXVTU23IPHfA844ACe\nffbZivUJo1JbdBeV6PnLX/7CqFGj2GeffQA444wzeOGFF9i4cSO/+MUvePDBB9m0aZOfX3f6Lw6L\nFy/2mdrDDz/M3Llzfc07mNfSpUt54YUXKBQKnHTSSZx77rl84xvfQAjh10MI0UVReOCBB3yFIg6/\n/OUvueWWW/jBD37gh/34xz+ms7PzY/WZh6effpq77rqrS9iYMWOYNm0ab775JldccQXXXXcd//7v\n/87ixYu55JJLItv4vffeiwxPwtixY7nssss45ZRTGDduXKww8/DXv/6VAw44gFKp1OX9zeVyvjI8\nadIkvvWtbyXmM2fOHLZu3erfCyFYtGiRPxe3bt06rrzySpYsWUJTU1NkHoqi8J3vfIfZs2f7ipyH\nY4891h+ro0aN4pRTTuHFF1/svkA79NBD+eUvf8mzzz7LqlWrWLFiRZcXANiF4XqDJOqlD8JxHH78\n4x/T0NAAuBOmw4cP55prrmHmzJk899xzfOtb32LevHkMHTq0y2AOM5AgLMtKLNfD8OHDee211/z7\nLVu2MGzYMIYNGxYZvm7dOo477jgGDhwIuB396quvxgo0r54evPoeeuihrF69OrFNPbz11lu7COem\npia+/e1vs2DBAsaMGeOHr1ixgtbWVsaNG4eUEl3X+dnPfsbll18eWz/Hcbjqqqv48MMPefDBB32t\nPCq8tbU1kp4kLF++nAsuuABN0/z20DSN4cOHs3XrVoYMGeK7cQcPHsywYcN2CR80aNAu5YX7f/z4\n8axZswYpJZMmTeK9995LrFelunsKmm3b7LvvvvziF7/w73fs2MHmzZsjwz14rugg041DFM1JbRHM\ns9p3PYme7du388EHH3RxAXrt8/TTT7N161bOPPNMSqUS//jHP7jgggtYvnw5bW1tfnxvjHg0e6i2\nfqeffjrXX389ra2tjBkzxrfWAL75zW/yzW9+k0cffZRXX32VESNGxFpoAEuWLOGFF17gJz/5yS6M\n0cOPf/xj7r33Xu6//37fOgM47LDD2H///bnlllu45ZZbqqp7GHEW2saNGxk8eLAvZE477TQuvvhi\n1q5d26WNP/jgAy644AKOO+64yLa/7777ACgWiwBdFuOcd955jBs3jmeffZYlS5YwceJEvv71r0fW\n87bbbuOhhx5i2LBh/O///b/Zvn0706ZN46677tplrHnjN65vkyy0p59+muuvv57bb7/dV4aHDRvW\nxbuzZcsWDjjgAO6//35ef/11li9fzgcffMArr7xCJpOhsbGRpqYmvvjFLwIuf/KMmCjEqn1Lly7l\nscceY+rUqSxcuDBytVsUjj76aNasWYNlWbS3t0euUDriiCP8F/fNN99kxowZlEolxo8fT3NzMxde\neCFnnHEGGzZsAOB3v/sdH374IaVSiVWrVnHMMcdw2GGH8eSTT1IqlSgWizzxxBMcccQRaJqGaZqJ\ndTzqqKN4+eWX2bFjB/l8nqeeeorjjjsuNvyf//mfefHFFykWi9i2zQsvvJC4GujII49k9erVWJZF\nS0sLv//977vVpn/4wx946qmnOPPMM3d5duKJJ/KFL3yBX/7yl4Drzti2bRvPP/88a9eu5ZlnnmHJ\nkiX83//7f7swqjBuvvlm2tvb+f73v+8Ls7jw5uZmhg4d6rvyvNVhSXjhhRdYuXIl4LqJvvjFL2IY\nBieccIKvUa9cuZIvfelLCCFiw4PlPf/884waNYoBAwZ0aY8XXniBP/7xj/zLv/xLxXo1NTUxatQo\nn5bHH3880sLYb7/92Lp1qz/P+eCDD7Jw4cLY8I+D7rZFc3Mzb731FkDFuYRq6Pn2t7/NgQceSEtL\nC2+//TZSSv+9Ov/881mzZg2PPvooy5cvZ6+99uK+++5D0zRf2QV37tazSvfYYw//nf7Vr35VVb1+\n85vfMHLkSJqbmznttNMoFovcc889PtNsb2/nlVdeqWih3nfffaxbty5RmK1evZoHHniAhx56qIsw\nA/jnf/5nLrroIl577bXIFZKfBHvvvTfNzc1+vs899xwHHXSQP33itfHIkSO57777YtvewyuvvALA\niy++6IedffbZtLe3c84553Duuef6vDMKV1xxBZ/5zGd48sknOffcc32lYdSoUbS3t/PCCy8A7rj1\nhHB3+/a1117j+uuv5/777+/iRj7++ONZvXo1xWKRbdu28corr3DkkUfyn//5nzz66KM89thjjB07\nliuuuIJTTz2VzZs3c+edd+I4Dh9++CHPPvtsFxd0GLEW2te+9jWfUE3T/LmKOPeCF37CCSfw2muv\nMW3aNAYOHMiwYcN8LdHDggULuO6661ixYgWKonD77bdjGAbz5s3jvPPOI5vNMnjwYL7zne/w9ttv\ns+eee/LNb36TzZs3c9ppp3HCCScA7tzajBkzsCyLCRMmcMopp2BZFsOGDWPOnDmx2sPw4cOZN28e\ns2bNwjRNzjrrLA466CCA2PD169czZcoUdF3n6KOPZsaMGbGNesopp/D6668zadIkRo4cyQEHHADA\nrFmzuPLKK3dpU3An8D2LNZfLcfvttzNy5MjINl+wYIHPkFesWMGMGTN8TQrcCfLvfve7PPPMM5Ea\n444dO3jooYfYe++9faEphPAHezj80Ucf5bvf/S7XXHMNUkq+8IUvxNLu4eabb+bqq6/mBz/4Ac3N\nzSxZsgSAyy67jPnz57NixQoGDBjguy7jwgH+9re/MW3aNHRd97Vnr00aGxvZb7/9Yl0QUVi8eDHX\nXnstS5Ys4fOf//wu7ye4ltZtt93GTTfdRKlUYvDgwXz3u9+NDPdo667rrbtt8T/+x/9g/vz5PPLI\nIxXnSLtDz5IlS5g3bx6GYVTlsl+4cCH/+q//yt13383IkSP9qYNLLrmERYsWsWzZMo4//njefffd\nyPTeuy6EQFEUnz7DMHjwwQe57bbbmDp1KrquY9s2J598MnPmzEms0z333ENjYyOzZ89GSokQguXL\nl/Pmm2/y7LPPctNNN3HPPfdQKBR8t6vnHgu20TXXXMP111/P448/zo033si4ceO6LFIIojv9fddd\nd3Hddddx8803M3ToUP+d+TjwvEPBd37evHnMnz/fn3O98cYbAXcx2bx587oo4J71D65CHGzb5uZm\nVq5cyZIlS9hvv/34t3/7N6D6vvVw7733YlkWV111ld/Wl112GSeddJK/Ncm2bS6//HK/LlGYOnUq\n69evZ/LkyQB861vfYsSIEfEFV78Qszq89tpr/nJy0zTlV77yFfnWW2997PxeeeUVef7559eqein6\nGWbNmiV///vf1zTPu+66S27ZskVKKeXatWvlpZdeWtP8U+we+NWvfuVvYekr6O54eOCBBypuedid\nEGuhfVzsu+++3HXXXdx///1IKZk+fToHHnhgrYupiI0bN3LppZd20aJkWVO488472Xvvvft0/rXA\nd7/7XV566SW/jl79jj766IqTvX0hf+i+1VNN3Q444ADOP/98VFVl8ODB3HzzzTWpa2/ggQce4LHH\nHtulnT73uc99IisghTtX5HmD+gq6Ox722GOPXdyruzOElOkHPlOkSJEiRf9HepZjihQpUqTYLZAK\ntH6At99+27/2Vi4GVzBGXXfneRCO43T5Afy///f/IvNKyi+YPqnMpLDgs6g61JLGuLy8+7fffrvu\nNFaioVIbfFIa48LD70E9aUx6HhwH9aKxu/2Yom8hFWj9APl83h9MiqLsMrCiljTHLXP2woPPw0wh\n/Nzb7+I4Tpfy4+KH6xpXZqV0QUQdgFtLGr3rOBrz+XzdaazUj8E2qAeNlerqlV9PGqPCvX9vHNST\nxmr7sfawuvlLEYWaLwpJUR8kDdq4eF6cuLhJ6aLCwgwqimElhYfrFL7vTRq9tCmNVAwP1yl8vzvT\n6C0uqj26K6RS1h2FtFX6EeIGepIGWY1WGcV04spKYkqVNNmwNhylEScxs2rrFIVKNEYx4aj7etJY\nTT9Ww+j7O41J6As01gep1VULpC7HfoKwCyUuTvg67J6JCgsP7moHb5zGGxcvqDl71+E69RaNcWX2\nJRqj4vUkjcFnn+Z+rA9Sl2MtkAq0foTwoKw04OIYTtglE2QOYWaUxFyrtaSSmFuc2yoqbT1pDD7v\nLRor9WMc3T1FY1Tda01jf+rH2iIVaLVAKtD6EYIDPuwS8a6jEKfdh/MKlxUXP0rgRWnlccIxzECC\ndMXRGFevWtEYZJC9RWOlfoyju6doDN7Xi8a+3o/1mT+DVKDVBukcWj9ClMYMuw7o4GD2/pMYRVB7\njkP4WVQZleoaLidYpzgXUhTqQWNSu/YUjZX6MZzf7khjUj9Gld3TNAoh+siikBRRSC20foKwOybJ\ntRI1EOMYRpSryPsF0wWfRaUL1zNOG0+ytnqTxmAZKY3RNIaf9zSNYfRmP9YexW7+UkQhtdD6ESoN\nfg9hLTlusEa5Zqq10uI08e7mGY7XWzRWKiOI3qIxfF1rGiv1YyXUux/jaK4ljZX6sb4uxxSfFKlA\n6ycID3iId0VFDepgnLjBG2YocQwgzHTimFichhun8fdlGsPPd0caPw39WAsa64NUoNUCqUDrR4jS\ner2wuPBqBn0QSQM7zHySGEEwLMzA4phXEo3hcndHGvt6Pwbr1Rs0xtWpljRW6se+s7E6RRSS7esU\nfQbhwZWk8VZyxwThOLvu/YkrPxwvKizMlKLKDwuq4PNKTCeY9+5G46ehHz8JjVFlRaEnaKw90lWO\ntUBqofUjRDGD4HUUg6ikuXrhldxD1bhqosqO0tTDqMTwwvnXg8a4NuxJGuvdj5+UxvB1b9AYlXct\naazUj+kcWt9GKtD6EZLcSkkIu3qCYcF8wsIr+CxpwEflH1eHcP2DjK4v01hNfepNY1T8tB97lsZ0\n2X7fRirQ+hHiNFtInlyPYg5RA7oS0wmWnaTdVlOvuDL7Ko1R5VSqV1yZH5fGqDzSfoxGT9BYW6QC\nrRaoZw+lqBOCGnHQzRTH9KLCw+6p8PNw3nH5hTXzqGdxdYsKj6MxKZ/dhcZK/RhFw+5GY3/sx9qg\n0M1fMh544AEmTJjA1KlTWbhwIaVSiXw+zxVXXMHEiRM5/fTTefnll+tFTK8htdD6CcJMrZLWGccE\nw2nDrpkkLTRYTpg5xNWxWm04Kr9qNfjdhca+3o9JdegJGoPozX6sD2pnof3mN7/hhz/8IY888gjN\nzc0sX76c2267DSklQ4YMYdWqVbz33nvMnj2blStX0tTUVLOyexuphdaPUK3mHnwe1mCjBnVwwCcJ\nzqTyKjGDapHSGB0/pbGrldQXaKwtarfK8U9/+hPHHHMMzc3NAIwdO5Y1a9bwzDPPMHPmTAD22Wcf\nxowZw9q1a+tDTi8hFWj9CJU00qiw8M9DkOFEMYWoQR8XL6r8MEOLc/+E80tpjKcxfB0uY3egsT/0\nY31QO4E2ZswYXnrpJTZv3gzAE088wZYtW2hpaWHEiBF+vOHDh9PS0lJ7UnoRqUDrR6hmYIU12Lg5\niCTtN2n+IZxHMF4U44ljRt6zuPmKnqYxKn2Qxqj69TSNUWlrSeOnoR9rSWNtUTuBdthhh3HhhRdy\n4YUXcvbZZ/PZz34WTdNi22V3QjqH1k8QpY1GaZ5RmmqciyqYT5hBBONG5RNkJFH/UQjXPZwmicao\neteSxqiyo5hlPWms1I+V2uOT0tgT/Vjvd7XeNPaHk0I6Ojo46qij+MpXvgLA+vXr2Weffcjn82zZ\nsoXBgwcDsHnzZg455JCaldsXsHuJ508JojTYsEXlhUeli9KIoxhmmOkEywjHDzOKqDonMelqNPzd\nncZPQz9+EhrD5fcGjf3he2gtLS2ce+655PN5HMfhnnvuYdKkSYwbN46HH34YgI0bN/L6669zzDHH\n1Ime3kFqoe0GiLOqINqyi9NM47TVahHHaKLqmuTeqQa1pjFJW49KXw8a692PuwONUXVLyj8OPfmu\nVge7Zjntt99+nH/++cyYMQPHcTjppJOYM2cO+XyehQsXMmnSJABuuOEGf+HI7oJUoPVjxLkDvbCo\n+EFNNs4KCsaNSp9UjzgkaclJaYN1rCeNlYREpWe1oLHe/ViJxp7ox09KYyUB2BM01geV95Z1B7Nn\nz2b27NldwhobG1m6dGlNy+lrSF2O/QhJgzHOZRPF7IJpgkwj7KaJc8d4/0E3V1z5SUhyUfU1GpPK\nT0J/orGv92P4v7dprC3Sw4lrgdRC62dIcoFEDfCgdhmeZwmnCecXfB4uP0mrjqpXWNMO1yussfcG\njdVo5L1JYzCsN2iMy6+n+rFS3XqiH/vDopBPM1ILrU6YP38+Dz74YOSzu+++m9NOO43x48dz//33\ndzvvsEYeDA9eB62LcJzgYK3G5RPMM4oxVcM4wnVIYjg9TWNSnVIak92aPUVjOF09aKzUj/1hUcin\nGalAqzHeffddLrjgAtasWRP5/JlnnuH5559nxYoVPPbYY6xcuZJXXnmlYr5x2qr3H9ZO4wa5h0pM\nK4rJhLXXOIYRvq4UP4nRROW5u9JYqR+j6NrdaOzr/Sil3KUutUEq0GqBVKDVGA8//DDTp09nwoQJ\nkc/Xrl3LpEmTMAyDXC7HGWecweOPP14x36BrJsoV4iE4GMPxg3GirsP3QQYTVXYUownXN4kZxWnV\nUTSG0+/YK8QTAAAgAElEQVSONFbqx7gydicak+hIor+naEwttL6NVKDVGFdddZW/LDYKUcfPbNq0\nqaq84xhF8FmclhtGOL13HdZqo8qJq1s4/zgrI8kKS2nsuzSG8+5pGsP17I1+TC20vo10UUgPI2pA\nqKpaMV1w0MVpkkEmEqfZx2miUQhr00FGlKTRhplNVLoo7TmlsW/TGJd+d6KxUj/Wz0Kr7bL9TytS\ngdbDGDFiBFu2bPHvN2/e3MVii4Jt22zYsKHeVYuFZVm9Wn5fqINlWaxfv77Xyu8LdUj7AEaPHl2n\nnFOrqxZIBVoPY9y4cdxzzz3MnDkTx3F44oknuPjiixPTqKrqD6QoF1McwlpvnCYaF+aFb9iwgdGj\nR0fmV0mLrjSHEqc5h2lcv359JDOpFY1hSyRMo9cG9aQxDl7cDRs2cNBBB9WNxkr9GHwP6kVjsE5h\nesLl14PGuLjdsRY/HlKBVgukAq0H8Mwzz/Dss89y0003MXbsWN566y1mzJiBaZqcccYZnHDCCVXn\nVYlxhF1AUcwuKa9q3EhRgzvsngnXoRITquSmiipjd6OxUj8Gn/UGjXG01JLG/tCP9UEq0GqBVKDV\nCYsXL/avx44dy9ixY/37uXPnMnfu3I+VbxIj8RDHCIKMJqw9V8s8gowjKs8k5hGnhYevo2iMqs/u\nRmNf78eo656ksVKaWtBYTT/WB6lAqwVSgdbPEByMcZqkhzjGEb5PGtxxaaLyr6RFx+URVU53Nf6e\noDGuDrWisZp+jCo7qZxa9mOlPGpFY396V2uHVKDVAqlA60eoVmsMa6dBjbOSxhtMn+S6CVsGcekq\n1TVsZaQ0xtMYrtPuSGNf78f6HX1Vu9P2P82otx2dosaI0i7DzKTSYA7GqUYbD4ZVo0lHxQ0jzLgq\n0RimpdY0hhlib9BY737s7zRGoadpTDdW922kFlo/gTegogZeWMON0jzD6eMGclgrTio3qrxwvEou\npygGFFdWb9IYLrceNPb1fqxUr3rTGM6zN9/V2qO2+9Aee+wxfvCDH6CqKqNGjWLx4sUYhsE111zD\nW2+9hRCCBQsWcNRRR9W03N5GKtD6CcLMImrgBQdc8D9KU41jIlFlxpUfTNsdjTcqfSUak8qqBY1R\nDPmTaPUfh8ZK/Vip3p+Uxp7ox0/6rkYJop6ksT+ctt/a2sqiRYt46qmn2GOPPVi8eDHLli1D0zSG\nDBnCqlWreO+995g9ezYrV66kqampZmX3NlKXYz9D2M0UpW16LpKwa8eLV43mGaWJRmnDcXGjGHEc\n8w27laJojCq/J2mMQq1prNSPwXT9tR/7+7vaH1yOXru1t7cjpaSzs5NcLsczzzzDzJkzAdhnn30Y\nM2YMa9eurRM9vYPUQusniNNwgwwifB1OG5evhzhrIJxHWMCEn4U18ErPg3nF0RisY2/QGBWv1jRW\n6sck9EQ/BvOsF41J/RhEb76r9UHtLLQhQ4Zw+eWXM3HiRAYPHkxjYyMPPfQQ//Ef/7HLObItLS01\nK7cvIBVo/QRxWmlY641yoyQN1iCStOEkptadulejDUeVUyl8d6CxUj9G5dWTNEbVu9Y09vV+7A8u\nxz//+c/88Ic/5KmnnmKvvfZi+fLlzJs3L/Ic2foL6p7F7kXNpwRRTC7MHDyNOMhAvOdR2mo4/6Rn\n4TLDacL1i6pvpWc9TWOUldHXaIyqf0/SmISe6Me4/Hu7H2uD2rkcX3zxRY444gj22msvAGbNmsXv\nfvc7Ro4c2e1zZPsbUoHWzxAc+FGuleB9OCzIOJLcKuHnUflHlRGVPq5OUfT0Jo1RefU1GsNpe5rG\nqPi1pjGpH73w3uzH/jCHNnr0aNatW0draysATz31FAcddBDjxo3j4YcfBmDjxo28/vrrHHPMMfUh\np5eQuhz7CcIMK8goIHrOIqyJhgd4VJxwXsGBH2ZKUdpwlCURziPKooiqf0/TGK5vX6Mxrk49RWOY\njp7uxzC9vdWP9UHtXI5HHnkk5557Ll/96lfJZDIMGTKE22+/nSFDhrBw4UL/e4033HADzc3NNSu3\nLyAVaP0UUVpucDB6/+GBH84jSvsN5xuFcLlJlkJUWeHwqHJ6msYo5pxUj92Nxr7ej0nxe5LG+qC2\n+9C+9rWv8bWvfW2X8KVLl9a0nL6GVKD1E0QNvLhBF5eu0mAMa7XhMpK09uB9FFOrZEHFadMpjbvG\n2Z1p7Ov92B8WhXyakQq0foruaJCVNOoorTcOSVptMI+kPMOuqJTG6mistq71ojH4vF40Vhu3t/qx\nvnNoKT4pUoHWjxAcgHHarYckbdmLH/yP04zjLIWwy6caRhTHHMNxeoPGuHoGy+ttGqNQSxr7ej+G\n4/cGjalA69uol0M4RZ0QHGjBnxcW1j6DaWBXDTucb1x5jhN9akUQ4fLC/1FlRmn+UTQGn+2uNFbq\nx6h69CSNceXXksb+0I/1gd3NX4oopBZaP0Elt4l3HYwbxTSitNAoZhJVZlQc797btBncvOlps968\ng1dOOK4Qwn8e1ICDz736hK+DNAohkFJ2qVOUhu3FC5YZrHclmuMQJXzClsEn7cdgeLh+lfoxicH3\nJRo/ybvaEzTWB6mFVgukAq2fIG5wJg38IKOIm2+IcvdECbKwIPEEQljoAJHCwnsevA8LvLA7J/g8\neB8VLqWMFKpeeDhN+NSEYNlxNEa1W1SbBe+j+iOI7vSjdx+FavoxLGTC9a8UJ1zvetCY9K5Gpak1\njZX6MV0U0reRCrR+grhBGTdQu6OdhhlKVN5BBIVCcHAHhUZQGISFTTA8Lg2A4gkwr9yQBSfchF6l\nPnoWFkCBvEUon7DArURjFDMM3ofD45h+b/RjlFUTRUdKYzyN9ZtDq+2y/U8rUoHWTxAcuB6SBnSS\n2ycqbbgc2NXSCVtVYcslGCYAO8GFGL72hU0gTyco9DzBGMhzF4FYTudbkwEBGba0pJvIL1OW0ygh\nGsP0Bf/jrJRwmwfbuzf6MSptNRZfVH3CSs7uRmOlfkwttL6NVKD1I0RpmXHMJs61Ew6Lc+F4brco\nSybKpefFdxzHtZAC1lKS6y4snILCLVAIEnAsy7/36xTKz8/Huw/8O1IiFHcvkVKO04VGwA7Mu0VZ\nbeGwSkw5GC/JTVZNP4afBZ8n9WOQUYfrGmXRVGsx1YPGpHc1XMd60FipH9NVjn0bqUDrR4gbxJWY\nR1TcSi4YiHYp+gM8IMhkKI0XTlmuORIEsouc8yAlKGEeUY7nPRPlMLtU6pImJDf9ayeQPigZPSvM\nDy4LM0VV/TYQQuDYNoqi+AIvar4t2BaVBECU5fJx+jEqvJp+rKasuHx6msaP+672JI31QSrQaoFU\noPUThAdqEFGDLG7gxbmDouKFw4PMA8C2bVegeYLNcSf0bdspC4GQWzLCQoPAHBl02UciyveeGCrl\n835cQRdZ5QupKMtMlq0xCWWp5wkyN3dVtV3LTVFACFRVxS63d3hBS7gtoiyPYJw4y6E3+jHJiosq\nL0xjXJzdicZq+7HmkN1cil8vQ7GfIxVo/QRxmmU1WmVc3KR0sOvKRS8fX4jZNpZl4zg2tu3+nLKQ\ncxzHnQMLWG675B9xLUI/T6BJKSl1dHR55tctgh4Z/nnWmRCIsuBSVBVFUbA1DaGoaJqKoqquS1JV\nuyzxj2qvuLkZr52i7nujH+Osn0q0pDTuSmPd5tDiqxANtfZV2B2QCrQaY+3atdx+++2YpskhhxzC\nDTfcgGEYXeIsXryYX//61yiKwnHHHcdVV11VVd5xAz3OZRIXFhcn7PqJXPlXdinaloVl21imiWVZ\nH/1b1kfCrWy1RS0gga5CzPsPCjEl8JNCkN+xo8vzCE+l/+/wkTBzyumlEK6FpiiuwFJVVE1D1XU0\nTcOxNTRdR9U0V5B5cRP2xoUR1vijtP5P0o/VMPooF144bZJwSapHT9CYhL5AY13Q3b3SqUCLRCrQ\naoitW7eycOFCHnnkEUaOHMkNN9zA9773PS677DI/ztNPP80f/vAHnnjiCaSUnH322Tz99NOcfPLJ\niXnHzSdExQnHh+TBHHapePdxiz9s28ayLEqmiVkqYZZKlIrFj+5NE7ss2JyAQAuugPQQtsiCgkwt\n/xRADhlCx9at/jMvXhBBi8wJ/aQQOIoCioLwhJmuo+o6umH4P08A+3WTEqF25R5Bqy1ouQYXmITv\nw+3+cfsxHM/LLxg3TqgkCZlK1lPUs6h0taDx47yrtaKxUv51Q3r4R02QCrQa4te//jWHHHIII0eO\nBOCss87ikksu6SLQHMehUChQLBZxHIdSqUQmk6kq/6j5iDBjCMePYjhJzCGYb5hxe+5Ey3QtMrNY\npFgsUigUKOTzFItFioUCpRihFpxDi3IxBi0yT5hp5f+m5mbatmzpIuTiBJonxLxDghwhcIRAKu48\nmdA0FF1HNQz0TAYjk8HIZrFt+yMhLkEYoAqBE2iD8GpMn56E/Wxh67Sn+zEq/2BYNUInKSyuzrWm\n0cunnjQmCeIor0XNYHYzfq4utej3SAVaDdHS0tLlk+bDhw+npaWlS5xTTz2VJ598kuOOOw4hBEcc\ncQTHHXdcVflHaaK1YExRz8MD13Hc1Yy24+A4NqZpUiwWyefz5Ds76ezoIN/ZST6fp1goUCyVsDyh\nVnY9hgValGUWFmR6+bph//1pa2nxwz2hFqyl52a0y9cWYAuwEdhK2UJTNdA0VMNAy2YxslkyDQ1k\nLctlkgGXYnBvnOdmVRQF27b9ON7xWh6D9e6jNpwHn3+cfoxCpX5MsnaihEGURRhnBcW595Li1+Nd\nrSWNXlglGmuO7s6hJeCJJ57g3nvv9d+71tZW2tra+PWvf80111zDW2+9hRCCBQsWcNRRR9Wu4D6A\nVKDVEFHzRGrIXfXQQw/R0dHBr3/9a4QQXHnlldx1111ccsklFfOP0xzjmEl4UMfll6SVBt1v0nHK\nC0EsTNOkVCxSyOfpaG+no72d9vZ2X7B5lpplWb5lFyfQwpaZVv7p5Z8BjHAc2lpa3HthYigmOBoC\ngaqY5YUfYDo6ltS7frBeCGwhcFQVqWkIXUfJZNCzOTINDZimiWNZvtAVQrgbrHG3G6ieheY42KET\nToSi4Nh2lz1tQXdj1NmWH7cfvfCP04/hfMJhUWXF1TXJ2qrkqvsk72pU2T1NY9QRbTVBDV2OkydP\nZvLkyQAUi0XOOussbrjhBu644w6GDBnCqlWreO+995g9ezYrV66kqampdoX3MlKBVkOMGDGC9evX\n+/ebN29m+PDhXeI899xzTJkyhWw2C8CZZ57J97///USBZts2GzZsqE+lq4BlWbz1l78AgYUhlI+Q\n0jSaBg+mceBA9vTm2QKLR/w0EYhiC1HzawBqJsOoyZMRgGa3otgdKFg4IgtCRXE6kGgILEraCBzF\nbV9ZzqjL7F1gGb4IrHpECApAsbMTkc+7jKss2GzH4S9//WtV7VUvt5RlWb3+HvR2+cHx1Rv4whe+\nUJ+M6zSHdvfdd/PFL36RE044gUWLFrFs2TIA9tlnH8aMGcPatWuZMmVKfQrvBaQCrYY49thjWbJk\nCe+//z6jRo3i5z//OePGjesSZ/To0fzqV79i0qRJgLsq8uCDD07MV1VVRo8enTinEIW4yfaoOYdg\nOHQ95mnDhg18bv/9u7gZO9rbaduxgx07drBj+3a2t7ayc/t2du7YQXtbG51lK80yTSzTRFdMDFGi\naGmYlvKRZSYEipSoQqBKiSYEDYpFo2aho5AVEmGpHPOtBbx2y2IMIKfaDB7YjiYcbNvAKmkomiTT\n0IltKxRtlZ35RgqWSkkITMAUCraq4ugG6AaZBo2GAQZqQzPZAUNoHDiIxoEDaRo4kMYBA8g1NpLJ\n5dAzGVRdZ1NrK6OGDXP3qyFQlLKwUxSEUFBUlyZVVRFlaylopSmK0mX+7eP04/r16znooIO61Y/V\nolIejuOwYcOGLuVHpY+bz6qWxqR3dcOGDYwePbquNPbaHFoNXY4etm7dys9+9jNWr14NVDcl0t+R\nCrQaYsiQISxatIi5c+diWRYHHnggixcv5plnnuHZZ5/lpptu4hvf+Ab/9m//xsSJEzEMgzFjxjBv\n3ryKeUf5/eNcUUmuFS88yc0CoRMyvKOnnPIqx/Iy/VKpRLFQcOfQ2ttpb2tj544dtO3cSb6jg3w+\nj1meS2vSC5SEjeUI2vO6P/+l4q4kzGk2TYbEcSR6g4VVEGiqJF9U0aVAWJ3QsQnLUuiwVbSOArms\njV1SyXdmyA0sojpFDMOkoy2H5rSSRWDmNQqlDI4mUbKCksxiao0ojkJRZjEsm05LRTgSRUp/jk44\nDtK2sU0TTdeRUlLo6HBXSZYtOqGUl/97e9jKQktRVdd6DQi2YJt2OXGlzv2YJPCqUXSiFk1E1TVc\ndk++qz1NY11QBwvt4YcfZtKkSQwePBiI9pTUdV6wF5AKtBrjxBNP5MQTT+wSNnbsWMaOHQuAYRhc\nf/31HyvvKK03PHkdDq9m0AcRtND8U/GhvEFafnQaiDeP5gm1fJ7Ojg53Lq2tDaW0jUFiJx8WJO3t\nUBQmWc0iX8C30LyFHZoQZBosikUYmLFp2waNqmRbp0ZWSFRTRbG3o1lbUW2gpFEoSGxNIEsCoXZi\nNOXJyBJmh4JaKqILsC0VzVEwd2bQGhxsWwGhU7RLYBo4JZNCQSVjZrrM3SlSImwbxzSxMhlUwwDD\noGPnTleYla0wfx+bpmGV/zVVQ9elu/AkwECC2n2UhVavfgxfR81bJTH0cFiwHnFCKJxnrWiMq1Mt\naQwL23C8um2sroNAW716NTfffLN/P3LkSLZs2eILuM2bN3PIIYfUvuBeRCrQ+gmSGFZ4AFczIR9M\nG/esC4TAcQJ70QKWmrcPrVAoUMznKXR0MFjbjrTzDFCKdNqCjoLDtoLsYpWpZXejJgQ7Cw5NuoPU\nYJDhsK1DxepUyAnICYGQDqLUTkPGodiuoQqBLIKCIJd10B0LUXQQEoSpogqJY6rkt2uoVpGMdJAC\nOttzWLbEtnKYpiDb1AmO5gozKdGkRLFtME2sQgEtk0HRdZThw2nbvv2jfWyahlLelK0bBpquYxgG\n0jCgfG4luoak7IaMOD6rN/oxKt8kIRkXPxinkrCoFY3h9L1JY81RY0Nw586dvP/++4wZM8YPGzdu\nHD/72c+49tpr2bhxI6+//jo33nhjbQvuZaQCrR8hrD1GabSV3CdRLh7Hif9cvX90lWehlY+zcsqn\ngVgBoWaWrbViocCWkk1WlLCKJeySjWrZmAUFISWGLskZDmZJwXTPG6YDKAFDB0g6CqDaJk7e3T/m\nAI7IoFOgUbdo/idBR4uCY6k0DnSwiwJMh3yHAB00xaRgCUrbVcwOi0xOoklBqaggTIHqSDJOEdUu\nYZhFZKdNSULRkai2jSiVcAoFSrkcqmEgdJ1Be+7Jji1bQNNcC83blB3ax+b4Vll5nq3cnuGl++FP\n0NS7HyvNcSVZfFF1jEKSW7FWNEblXUsaw9ZjGH1mH1oFvPvuu7ssSLvkkktYuHChP39/ww030Nzc\nXNuCexmpQOtHSNJ8kxB29QTDgvkEXUD+wO0y//MRMw4LNtuysMvzZZZp0r7TId8JmiPRKZHPS6yC\ngyIlhiZRLVAkmKVyncoMviglhuG6/QboAqUEiukenW+1WzQMM1GkAjmJo6iojoNuKBS2CBwpcJCQ\nAVsCpkNOlWgZCaqg2KlidQqyWQfFtmnAxim6n5IxTYWi42DIAo6znWJxEEWjCcUwQNcZ6Di0bXkf\nRbOxtQakMQCtLMi67GMrt5WiKNh21zMFvS0c4aXf3dX8u9OP4WdJjDvqPQmjmvmsKJrq+a72JI39\nYdk+wJgxY1i1alWXsMbGRpYuXVrbgvoYUoHWj5Dk/kjSZuPcLGF0scxCx1S5p9l3PTHDF2qOg2M7\nHx1ObFnuvi7TpKNgYpsOWcWkOetQLEjyHdDQJFEFWAjskvD3oOWykkFZSRaQBYGuguwUOCKD3VEi\nv12S0RwogMw7DBhZ/ixNUVAqCYwmsDSHBkPADug0FfSsRM2Brql0dkK+00BxJCVp0zAASu0CqWhI\nSmgZiSUbkZ2dmMpgVANUQ4J5KG0f/h2hCaSepaQPQS8Ls5xpuqeMgL8QRFNV1PJPCbgcvfbzFoZ0\npx+j+rU77rrg86j01bgA4/KOe+964l2Nq0+9aawp0qOvaoJUoPVDhN0q4TAPcUwlzmUTfO4tCHEC\nCxvcL8IEVj56rjPHQcryxumykPNPBnEchG3TmHHQsdF0aNsJtg6a4lphli0ZkAVVwj7DQHdAmFAw\nBRQlDYZAlQVEUbLjXcjpQB6amiXCAUMHmZPkmiRaA+iDobNTkmmEHW02jg5Kxq1Oc6NFYbNC0VLQ\ngJKwEFoe21ZBy2O1KxiyjZ2lIZQcE6PBRhgKwu5ga8t21IzAVBuQGYne0EC2VMJyHBxcYaZpGrqm\nYRoGqm2jla1YRVG6fLQteMJItf0Y1U+V+jHKekpyyUW56Kpx3SUJiVq9q1HoCzTWBD20mHJ3RyrQ\n+gmS5hu6wwTDaZMGchjC36Bc/vf2qgG6KDHAKNBGyT3QV0qE47gr/aSkVJBomsQsgCZBsWHPwWAV\nJFID1YGBObA7oDEH27eC7JDoQNMgiZAWGQVEwY2jSSAPaglUpfzfAEYGHBv08sfRGnOu8CyUQFcc\nhGWTERaWI3AKDrjTb0gBMiPIDrbo3NFIoSAo0YljOtiKwJIZtrRsdxd9GCZqroRRLGJalm+ZaZqG\nYRjuL3hCSrmtHOluDYhzN/ZUP8YJmbgyg/Hi6hB279XjXQ2iXjR+HMutJkgttJogFWj9CN1hBN7z\n8HWS5hm8jvpMipTe16PlRyd6lIVXg1ZE0TsZlC2x1WPc5Z8qJWZJ0JYXaFIytAn2HQGGAkV3QSHY\nYLZBxgDLhkEG2CbkFNhjMOTM/6KpEawPoXEgNI8EXQfFAUzIaOCYrmBUy6cUWxYMaHYFFoDVDgOy\nDsWsTb4AdlFSNBU0o0A2a5IVglK7gqGX6Nxug95BqSgoShVbZNi5bRuOrkMmQ26AgSbaKFBCaO5n\nZ4xMhlwu5x/M7JQPO/a2PnhtJ2P6oR796KHa8iox9WpRj3c1mE9foLGmSAVaTZAKtH6EShppd+LH\nuau86+A+NA9Rc+EfnZrvIMp3AlCEQAUyuiSbkRQ6HRxH0KBLPr8PDMqBLMGmD6HUDqLknmyvDZAM\nHgSNg8HcATkNmgeCKk0GNEIpD4P2hIZB7oJDpw0UHTJDQTHAkaA2gTQgV4J80V18UlRBV8FQHAZk\nbWQJpAqK5pDJChRdxS5oFBHsKGlIcwfCcc90bG/LIB2H9tZWHMNAZLNoqkZRH4BQVQodTWSyWXLF\nImap1PUrA85HXxoQ5S9nKzEn81fTj1HzTknxkuawvGvHcboIinD+SZZMdyydamkMo6/RWBekLsea\nIBVo/QjVDKywBhtEnBsprOEH59A8SGfXERf8BEzeytFRytJRyKOQR0iJAjRlQbWhqUni6JJG3Z0f\n07PQsgU6WwW6lAwwYEBWYgANCjToIJqATveAYgk0NEKD6lp2mgBZdIVadghkh4NQwS7iujAbXPek\n2gClEhTy0FYAXbjl5XSJqlsIXaFhIJi2jWlbdLSq5G0bC5Mhg2wGNpsUC1mklHS2tSEzGbAshJoF\nVcUUjTQYBcxiESvwhQHHtssLZtzTT3wXbUCYhb8357dr4IDjcD8muQOj+rGS6y14HzVXFHYlRqWv\nxqUXhVq9q7WkMc69GJdvzZBaaDVBKtD6CZIGXXCwRQ3kOPdPMJ8wwwgfLCwU5aPD8oOWRfkAX8sx\naC9lsaTuWmdC0GC4FpYAFAuyORiYgc42yG8FswMyUpIRgqFNkoGNQB7snW6anOYuv3faQCoDyWZB\nEa4Qk+2QHQzGINCaXCtNKK6iq+ggHcjkXKtMt12BWCqAFJJMVrJtMxRNgZGTFNsFqu6AqSBwKHXY\ntBUV/ukzJrbl0JBz26FUyGPbNirQrqrYqmSAamE0lrBKJeygMCtbaI50EOUTVqSquqf4hyy04Aki\nHzVr1zDvvrv9GI4bdx33H4XwOxjl8oyK54V597V6V3uSxrqdFFLjfWifVqQCrR8ibu4gaU4h+DxO\nIw6n9z6jAuWT772taf698N2LQrh5CEBVFBQhaMiAsASWKbDyKoMHWVgFcPJQbIOBBgwcAKIoySkf\nfbNQNaHJcC0sQ7hWHpRQpSvQhA3ZBsjt4boXheLmqeqgN4DQ3O+gSQU0w10gYtkwdC8wS5BrBLvo\nsHO7AAukJdi5HWzVQclImppUSg68v9EhN1jwt/ctDpeSUqGAlGArCkLXA0LM/fyMJ8ycgLuRsqvL\n+0Cq165IiQztaRLuw8iPh36SfkwSHGGBU4nhJ7n3kgRSOO7HfVfj6tZTNNZtY3VqodUEqUDbDRDF\nRDwkaaxhVHSnlK0x79r/bljZNaYI4QszTVGwigqKFFimgmPC9m2CQRmQJUlWCAZmJQ2q61J02t1F\nHQYweDCoBTAkqCpkAFUW0Eyg4Low1UZXsCnStca0LCgNoOZcgYZVnpZQXUGR0aGkg5CuW3JQMxhZ\nScdOsEpgFRTyJgz7rEPDHg65gfBf76h0tMCH7a7L0DZNpFDI5QTNOYVcVkXKRqT3PbXyz9uHZ/ub\nzm1U1Q40o/AXiQiPUVK2LoXgIzuNLmm8vuvOd9WCqHYuKMrtFsf0k1yR1dShu+9qnEswLv841JPG\nj4V0Dq0mSAVaP0bQfVNJY/Xih11CYXjPIl0r8iPLLCjIVEVBVVQ0tevPlDqdeYusYtM40MHpVOhs\nh5yU6Eh0CXuNgKGDgSJ0/AOactDUAIoJohMGDodsEzgiR8Ng0DIgO9yl+kJ15atmgDLAFWhS/8gt\naZnucnzKAi+TgR073VWQAwa4S/ylDe07JLriYCqu4FPKtFqWTSEvkLb0GhBp22QUi5xqklNL2BS7\nCKWhRLAAACAASURBVDI7+DNN96eqmIq7wtM7hd9rX0VR/I+DKoqCLWUXoaYElQivGwJpK/Vjpbmi\nuPcpDknWTlLaWr2rlQRgT9BYF6QWWk2QCrR+hKTBWI12mZQm7IIJL1rwEPwoplI+BUPVNDRNdTcV\n6zq6ruMYBlknj24oZKUCRQWlAcySQ6MhGWhAowYDB8LwfwK7Exok0AFZpXzfCLmMK3iE00a22XUr\nMgCwQc0ItAyIJglNgAZK+fsvwlLQVA1blnzrJ5OFAU2CYkGC6grCju3unjZdlWg2bGmBTB4+2AxW\nEXJZKH8PG2wHoTqUCu4iEwyBRKCWT0VxTBOnVMIulTCLRcxikZKmuYs8yi5HRVFAKGWBJD76iGhZ\nMQh+moZyvRWItNqq6cdKbrVK1kc1jDzO1RiX5yd5V6Pchb1FY02RCrSaIBVo/QxJAzSsBQevvf9K\njCc8YIOLEkTQvagoqOpHQswwDPeQXsMgk8kgDYOcpiOKFprlYJkCaVk0NQiGNYNWtNFtgblTkm91\n3YvWVnf+zO5wXY5aE2QaQNfAVHOui1EHyid/qI0gdFAaBUJXEIaD1BRQVVSjvFrTUZFFGz0DYiAg\nJcpOd36tmIfmPaDYAU4rlCxobxNs3SrpsAXZnMQUkqxR/kpAuS3MEmzbrpKTGo3NEl0WyMg2hNmI\nVRyIWShQKhQo6rprjTkOmmWhapqrLJTbT3jXQkHVVGRZSXA8y1dVXVEamGvzT3DpZj9GPU+yYj6O\nxRVledXyXa1Ut1rQGHZ3hvOp26KQ1OVYE6QCrR8ijslEMYe4tGGXThj+wFUUf3m+ogifGfvCzDDQ\nDYOGrEA0OTidOoppsIchoKBhdmTY+SHYJRVdlmhssBCOZNAgG70oad8Cm3ZC1ga9CCIvEDnJgKHQ\n9E+gK+6cWQnhDvoCKDnQGwRCVSGrIQwL0SBQFJCGgtAUJCrYCpTAURyUkrv4Q8tKFAn5nRJddxeX\n7DHU3dzd2Qk54Z77KNslJQeamqDUBoosMGSApNO2sRwHxXGP9BKWhS6LCCsPpTZK+cEUOzvRDQOl\nvPzeKn8kVNW08gdB3TZUAuc9ulau+001T5AFl+3HfXamUj/GLXCIW7xRyVUXVYekdLV8V+PyqyWN\nUflUorEmSC20miAVaP0E1bhUwnMOcYMzfB1Vhv9xz/LeKZehCp8RBy2zTDYLDSqilGHQQAPdyaCb\nGSzNZHtBI5tTyGULWG3u6RyWlDgZB1UDLedQ2CppaJRkMmAokobBkB0KRg6MgbhLmoWKkQM1U170\nkRVgaKhZgcjo7nxatrwCRBVIRyJUicyoUFBxcNA0idQdrIJDtkGSb3cXnehZyBmu+9NwIG+BbkCH\nDY5w98Rpzg6GDpS0mw5bOxxU20Ytfzet0GmTazARne7pInld9/vFNE20QqGLQFNU9+vWnhDTyt9U\n03XdvdZ1NMApz6WpqkpQnAWX/VdjfYQtlzgrJCp9Na7E4PxWte6/Wr6rPUljumy/byMVaP0EleYO\nwpPmSa6gSoM5KNQ8uOcVCoQoW2dlJpzJZsnlcti5ZrIlk3xeAcshU2qnwxEohsmggaCa7krBQgkK\nRYWiarPHEBNpOUgpkBYgoGFI2c3Y4C78UMqTR4rMIzQQOcBQUHQNpQlERkUxFMgJ96QSxQTHAQRC\nqEgF94wsy0GaFqpiI3UHp2hjGO5SSLXkujUHDQSl090GYOehSXeFWwZvX5yDrksc20LNlnBkEUyT\nYnuJnZpDgyiC0uZvjC6VSujZLJphoOq6+0FQVXX/PUFWPjLLyGTIZDKucgB4h4tpuu5aaOVPz3gI\nn9af1I9JwqeSxVGNRZNkHdXyXY0rvzdorDlqbKFt2LCBRYsW0dHRQVNTE7fccgtDhgzhmmuu4a23\n3kIIwYIFCzjqqKNqW3AvIxVo/QhhZhAcaFGDMmkQRg3U4HV4Y7W3qlFVP7IsjDIDzjY0YBabKZmC\nTNHAoECpfRgi34aWLfnzTyVA00F1HBypUeiQDGwwGfRZidzqWktaAxjNgAN2O+7nWxqgqI1EsUDo\nAiULSpONkpWIjEA0KKBoCKUsFaUsrx5RECUboUtEScNSJYoiwLYRikRvdGnVsu4hxoZwj9ba2eru\nVZMGlIpgdYCtDMIuSGwc9hlZorEJWgsKmztyWIUCpXwexVsA4jiYloVe/uK1Wv4YqCfI1MCXrjOZ\nDJlcjmwu527ILre/EAJVEUhV9femBeHdV+rH8BxWJddZ2P2X9E7FWWHhfGr1robrWQ8aK9WrP8yh\n5fN5vv71r3Prrbdy+OGH85Of/ISbbrqJfffdlyFDhrBq1Sree+89Zs+ezcqVK2lqaqpd4b2MVKD1\nE1Q7j1BpXqI78wBR8zZRFpq3wdixbbBtSrKI4jiYRZWGpk5Mx8EsCVAEagYyioWuK6AJsgNALUJm\nGOgFUFTvEF9AuNaSMEGXO2EgKE0SsoAhEFkHMg6ggSrdlYG2hVQ0FC2D1MtHj5QshC5QTQ2MEkaj\nRFHczdZ61p0nw4Z83v10je4IshmJzLp71toA3dmB4Tg4NjRqEkOxaDRKaDvz5AQ4BSiU29e0LAqF\nAmo2h2roKGVhpmgaGd0hY0jQmlCzA8nmcjSUz3+UjgPlLRGuW1JFUe3Ij0p6n5+pBknzSNVaJnFu\nxUouxJ56V2tFY1S6YD37w8bqF198kf3224/DDz8cgJkzZ3LkkUdy0UUXsWzZMgD22WcfxowZw9q1\na5kyZUrtCu9lpAKtH6HSAI8agF54d9J3gWcZ+Ev1uy4IMTIZrFwOy/uop2WBZWGZAr1hB9kSiPJX\nrJ1iEVkqoWsCx1RxbIUdm1WGDLFwTNxl91l3jkwI9/BiJw/qEFCsnSh7AFlQMhKhA5qKUDRERgVN\nBRykZrhMx2hC6M1AHpydKNJEaiAciWiw3a8B5FWkaaM3QEOZTxkCBmQkuuGuKWm3YMgAyJrvMnyI\n5B8tNi0bNQYNg22dCo2ZThoUi6IjadspMC2LYqmEms2iGAaKriM0DaFpKJrOgFwJy3DIZFTynSMo\nNjS7becJs3LbauX5NMdxulpn3sn9CYw1aQ7LQyVrKcm6ivoPlhP7LkXUp5bvak/RWBfUUKC98847\nNDc3M3/+fP7yl78wYsQIrr76alpaWhgxYoQfb/jw4bS0tNSu4D6AVKD1E4QHfJILJhzXu47TRKPC\nfIYZOEPQcbxP0H/kdvSEml3eh+X9O6aJNE1kqYRTKkGhgJXJ4BSLmEUNTZq0d6g4lgMdNkOHSJQM\nvlDDAqXRPaDYdnAXeEjco0QUgdB1d+JLy7pCTHX3hAnbBBSkabtp1Jw7SWZpIEwUUXSfKyB3qggh\n0XQHAVhtMGgP+P/svXusdVdZ//sZl3lfa+2930vfFpSf/jhWCik55Q8QwaQpKMYUJQYCf9CYmHgC\npsIhEgVaeywgYBBPEUUkvxM5IFEoqCcENNFCMGiiJqZeCuIVWgt973vvdZuXcTl/jLnWXnt1rbX3\nS9fu29fuJ5lZa83LGHOs8cz5jOf2faIEjIDBEOx2iIQU1HQzyCPHt87Dzq7ARpaNM6CcpRNZjLWM\nRhXjskTEMVEqSTNB5WMMCVJrhong1EbNMMqRsUTUYm9OldpLgYjjAKXVCrVJoVU3o5kdZh4X8cm8\nNrTKBHgQL83/XmQKXBevzh8/qjEuOvdKtMXviNZocjTG8JWvfIVPfvKTPOc5z+H3f//3efOb37ww\nr/RJEdZPIh0LtGuMlplOJsfmTUBX4h+Yb2PW1OUnCBZyL49qNkpPt+H7UZJMt6YNhlBRhIljotij\nOp6mkQz7irgOGlKxIRDKBwzGOkBRaQ8kIOKA12hFL8B+WIlPFT7ViLhARAKvQEQahMKTIUwNSGjG\nCNFKRxQiElD1wI3wQ48UDc41aBniSLSATAEpOA3NALopjBsw6gyjSyBqjybkgSnZ4BtLNdZID4oB\ntjIMTYPTmm7HYWuFEZp+nU5Nj4OhotfxyDQibXaCv6wtDpqmaTDjziD2txMwnZN5P85B87jMHLhK\ny1nkl5o/vsrM92Tz6rrG6Jw7cIxHQmvU0K677jpuvPFGnvOc5wDwqle9invvvZfv+q7v4vz582xu\nbgJw7tw5brnllvV1/BSg/17i+SlADzzwAK985Sv50R/9Ud7+9rdT1/Xjzvn85z/PT/7kT3L77bfz\n1re+laY5fMzu/MrzIIf5KhPM/AM9+33epDXBHwzH95KspzlVUiImIelKIaabBilBSnQiEJFAx2CF\nQGhHXDhE5GkMlCWMd6AehRppXoPcALoQNf8RoESigGslZBJgPPICEafBIeZ9MEHGW0gZ44XAN/0W\ng9IgI4WIBYIEKRVaChQKV0kYghi3YfwiwGvlGWxtBZgsK3s0u+AbOLXZcLJX08lqbGXobxsunm/Y\n2a7Y2R4z7PcZ7Oxw/sKAS5d2OHd2h+1Ll9i+eJGdy5c5f6HPt85X9Hd3cOOzVMPLjEcjyrKkqiqa\npsHM1lSbW1mLOa151Tyu0l4OMs/NC4lZnptvc5WGNvv7KHh1nWNcNN5l/ayV3BVuK+iHfuiH+MY3\nvsG//uu/AvDnf/7n3HTTTfzwD/8wn/rUpwB45JFHePDBB3nJS15yJMO5WnSsoa2RLl68yD333MNn\nPvMZbrjhBu69914+8pGP8KY3vWl6zj/8wz/w/ve/n/vvv5/Tp0/zlre8hU984hP89E//9KH6mH0Y\nD+P0nr1uvp3Z8+aPL4rmmtXW/OTT+wDrNNmcw3qPbT+Ns+HTe0wjUI2nbgQOSDuONAoaWf+CoLGe\n6EwovEkEzoSgEBVBUj8WTJGxxScCnyWIrINTClEPQgBJMwIR4bMCQYyohyFxDY+vRyD6CNUgI4VP\nBa5UKCvxVoZUgx74fjA9MgiXFh1QXUiah9ncguayhwwUjnoMxgr6A8/IQaPAKE8jaqyU2JHESYlX\nAQVkWtk6TbHO0csamtKTpH2qcpO6qqb11GaFmXN+LydwAT+smseDhMgiPlmmDR3UxjLBctS8us4x\nrrqPI9XQHr/u/Y7p9OnT3HfffbztbW+jrms6nQ6//uu/znXXXcc999zD7bffDsC9997L1tbW+jp+\nCtCxQFsjfeUrX+GWW27hhhtuAOC1r30td9555z6B9rnPfY5Xv/rVnD59GoBf+qVfwhhzqPYXrRqX\nnTe/8lxk6lnWzsRXNivUJi/UqRBzDuscxlqMMTTG0DQNddNQ1zV101A1DbUx1JPjpccOJbkybJ1q\n0NahhEMLQbUDynp0DjIBb6ApwZZAB7xQeBF8aQiPjwVIg/Am+M28w1sXoK2aEifiIJG8ADNGugGe\nGh85RBJBI5CFRWhwNehE4ISn0wlmTu+gcuASiHOI3C5ZDnobxmNPjWA48PRrSyk8RhLGKSWNEBgp\nUTHEKYxqReU0MorIqEhyAwZ2+ooobhCJReb1Qs3Me4/AT32Z0zSKQ87jQaa8RZrMKuGzjOfmtaIn\nk1efzDFeC2H7AC960Yv47Gc/+7j9H/jAB9bb0VOMjgXaGukwUUTf/OY3+f7v/37e8IY38Nhjj/GC\nF7yAX/iFXzh0H6tWlotWnst8FpNjy9pbpA34VvNyzrVlUVohVtdUVUVZlozHY8ZlyWg8ZlyGfdaO\nUHJARY2n5uRWTewMSeOp+x43hqzwRA5QoFKQLgg1UwEjGOfPpWP+P5yQKKEQ2GD/Gw/w1iFEhChO\n4ZEQF8i6AqVwXiNUE5CJqxZlREpUbKBj8YklxjJ+LPRLAumJ4FNTAxhXUA6gUVuML4UurYdRGZK3\nT2x5xt5yYeQwtSArPKe6gt0akkxROaiQlKVGWUsnlTgj0FIxGBeooUTmgny+ltrsAoK9iuH7fJqH\nmMd5Xlh0zbIX+kHtz/PXQRrOZN93yquL6Mke47UQtv90pmMf2hppkRBQcwgPkwikX/3VX+Wzn/0s\nu7u7fPCDHzyw7clDNVnBzm7w+Ad/kf9i9vrZ/fNtzfptJvsmWpl3rTmxFWZNXVPV9VSYjcZj6vE2\nvr5IU+0wqipsM8TZGqhQ2rI7AhU5hmOPA4z1iMgTb4BIA/ivyiE6wQTnnlp/N16EoAqnCPnTpg6+\nM1OH5GOpINnCCYETGm/HUF7GY/Eqx8cbeLKAb6U9Qrsg4GJBlCpEA1RtgrcEHPgq+POMPgk+yMUo\ngjQNlQCy1JFlnliFAI5OYYkix6lNQ1kb8Jb+KGixxlqGJVS1Y1Tt/c+zJtupaXGyLeGxyXwcNI/z\n/DA//4v4Y769ZccXXb+sjXXw6rL7WucYZ4XpqjGundboQ3s607GGtka6/vrreeihh6a/z507x5kz\nZ/adc91113HzzTezsbEBwCtf+Up+53d+Z2W71lq+9rWvrf+GD0nGGP7lX/4F2P9C9d7jpSTvdMiK\ngpPXX48wI6LmWzj3XIzMacQGurmMstsY2cORIN0Y5Utiew4rCpzaQvqKyF5Cu51Q/dqeQ4iaWhXs\nZM/HZac4/7y3kTXfxAlJlX0fafUfaPEwkX0UX3VxJsPpTazeRJffQLkCKxJM/v2g+iFfLWsw+jRg\nwdV4kWHUSYzYQLkx4GnEJl4ohPd0vCAD4tTxv//2h6jlCaxIsCINOIt2Bw80cgMrUrTbRrsdrEhx\nIsHKDCcCnNXEbCiEQPkKJWqQGVJKlKhC+QCdhxe+lPTHYwZlOa1kba3ln//5n5/cyZ8hY8xV58Or\n2T/Ac5/73KPR0o41tLXQsUBbI730pS/l/e9/P48++ijPfOYzuf/++3nZy16275yXv/zlfPCDH+Rn\nfuZnKIqCBx54gJtvvnllu0opnve85y08Nr+qPIxje37/Isf9rGnrq1/9KjfeeCN1XdPUDVVVMhqN\nGPT7DPp9+js77Gxvs3v5Ms3uozSD81SDy3z7AvQvDUmbS1CPMIMx/Qs1uiy5oSg5XTREtaE6Cz3p\nuP50KOfS2wyFPfVGgMLKJez+8Ps59fX3ojclIlYIl4fE5SJFdmKE6AMluMuhIGdskbbBxx3Q/4q3\nO4hmhDM1YhDhqm18OcaPDXbbYa3BDQxmAM0lGO0GvNjKgi0gfsO9/Ocv/V88/DBcGkPfwsDCyAsG\nzjPyUAlJCVRALQSmTXMIEZ0t3FWSkOY5N5xO2dzq0tk4webJk5w+tcXmyTN0Tv9PTpw+zdaJE3Q7\nHYpOhyTNSJKYf//3f+emm27aV6vuoHlcdnyWV1YFa8xe99BDD3HTTTct7fcgeqK8Oun/KMe4qN8r\nGeN3TMcCbS10LNDWSCdPnuTd7343b3zjGzHGcOONN/Le976XL37xi3zpS1/iXe96Fy9/+ct57LHH\neO1rX4tzjuc+97m87W1vO7DtZS+rZS+Iwz6Mi14oi3xozrkWLjeYupy1WGsxTTP1owVfWo1oxlwa\nKAbDirquMZVD1QGV3jqHcA6Lp6w9zRBcBY2WDC47OgXoIgRmyBRQYZN+jJCuRcSKwDkEEuENxF28\nEQidBPBFRAgcSTLIz+BlAlKBq5AuxkcGYVVoWztkx+F3BCQKdoIZMsravLgqWDQlNUKCFCCFIIk9\nUQ6p9TT9YAVKYhdMlCag4yspMUIEtPw2aTqK44AAIlOETnAqx8ts+v1xNdPaQqDMpE1cyTwu46PZ\na+ZNbov4bb7tVQJlct66eXWWjmqMh/kPjoSOzYhroWOBtma69dZbufXWW/ftu+2227jtttumv1//\n+tfz+te//oraXebUXrQinexfdu789wnN75sVapM8tPlIR+dCgMhEwHlrGNUK78bBb9RGN7qRhAqk\nDbBTZelxIkBRpT2Bqh3ehxw0E4IWsWPAgczA+wCVJZ3FNxVSCry2+CiGeoz0CpB4UyN8yI9zCMTo\nHCSboWooFs8IXI0QHmLwTiEsiMSBA1V4TAVRNwSliCYEggjvUSpUz46tJ+tCk4IoIa2Du8soyFLB\nYNAuCoSgk0myQlH7mEbE0+RpoQtqeuS6QEYdrD6BjDv7aqJNqln78Mfv05oneYCHmcfZ36uE05XQ\novaWtfNk8Oq6xrjo2vln4tjk+NSlY4F2DdKih3P+wV32sM877+fNPrPnLEKlmFXcZqtYT6jxMQ5N\nZSOEqPeKVM5BacUJCAV5V0AfdAJKg7dgxmBKwIb4DeUBGYfwQtOG7tsGISTCBzBjnxQICyDwtsTr\nbvguNaK+hHcGhANXgzd4IfEqRfgShEfkBmU99ATaCpodh4oh0VCVAe3fViA8bG7ByBOSwUfQVCAS\n6OQwGgTNzMmQd9YtJHEakemIgQmVCbI8JysKNjdSTm0I8iIKCCFJEtBWJmVmlEJJyaSw6uwCYzYv\n7aB5PEj4rNKwDkvLzl0nr67qd11jPMiacWRRjsf10NZCxwLtGqNldv75l8Ps8WXmmYmGNW9WmTU5\nzmpkE/PXpE0p94CKJ7W9hM6pqUE5oqjGRlEogaJUQPgwBiElgiAI69qjDNQmJFbbGMwIqm2gAN8I\n8tNg1CbOaLyxkHjwAl8bfKQRUYbQBRQ9xM65gLqPwss4aJVSI5IcX8mQ01WVIS+gEvjIh1pstcNq\njygtUrV5X9ZDExD5JRY7gLwA0QXZwM5ZGA8CXJdOoBoLYqXQUoaUgRYabLOrGNqEIilI85y826Xo\ndNjqxnQ7Gd1ORJLnpFk2FWq6FWqIMCeCvZD9+UXEqnmcPWeWh5a94BdpKPO0yFS4SBNaN69O9h/l\nGJfd86r/Yy10rKGthY4F2jVCy/wRq3wWy1508+0tMgXNmrUmWpZthZGU+6tWT+p6pWlKnWU0VYVt\nkfVpGkRdB7T9pglah1KMRorcWoST2NqjG4+JBFJ6VB40tWYI8amQpybdOIToNxHea5yI0QawA3xd\nIzx4NCLZwEc5wju8FQgFXkdhn7N4V4ExICxeOVAilKhBIRuH9YAwCB1KzCgJkQJnB0RxSCvQG+BL\nyHbhpAIxgoED7wR1A1rKkF6gNWmscaRkaYpSQZjl3S6dXo+kyMmKnCjfIi8K0iwjTtN9Ak2p8H9P\ndLPJvEw+D5rHw2hBy1788/w3ofn+ZmkRH66LV+f59ijGOCsol43xSOjYh7YWOhZo1ygtW/XO7lv0\n4M+3Mb8CnTU3wp4fTcBCYRa3gqzJMmyLtj8pISOsRRiDbBoaa5G+IoklDRJZSpJEkApBmjj8ZcBC\nuhU+vQAdBxOfikG5IcITtKaS4AOTrTnUN1DuIlD47LpQnbrug68CAn/SDRJSCAQKJ0NIvsDjlcP7\nBK9qRGSQxmGtIup6TOOI4wCFFTffRIuQE2dLwISYkiyGqApgyqNGUKQC4QRjFF5rPAk6SnFRwYlu\nxuZmhM4zkm6PtLOBKjZJu5vkRUGRCgo9ItYFOoqC2VHuBYdM5mi++OqqeVylcSzin0WCY5mgWMRL\ni0yD6+LVVec/mWM8EjrW0NZCxwLtGqFFD96yh27ZdQc9jLPtPy4sXOyZGicFPuM4DlBNk1po1uKt\nBedCVehWoCVujFACkUjqXUXe9aRdEI0gjUCMBcWWQ45CVKGrA0JIA6Q+VK42osCVQOxxrWbna4mL\nBcorvMwRXiHMGNGU4Bt81Ye4gNE5MCHKw+MRwoGzeBEgtYSy4CXeKXwJ3hkcPmBK2iBQjdpCyiA7\n+wO4uAOjBoYGkGBrQZGCiyQgaJrgQxMyozI5Wd5hoxvRKRKyborsdCha02NeFMGvlhiSSBLLBqU1\nQqo9QTZjYlxU8HPZPB7GdLZMeCwSTgdp+8u0oqPk1SdzjMdBIU9tOhZo1yhdyQryoBX1olXvPIm2\nkrIQAq0UVmviJMG5FqbJuRCJ5z3S+xDNaC2xGxMlgtF2ROkSjDIoHUEd6pZdPK84mXusDf6pcgCq\ngV43mPfqbVAnwIgufihxSUAZERLIJYIYZIwQESDACryQCBw+6SCaEd7WAbg4zhEywgkN0oMZAB6P\nA6/xjcRdTvBihHcO31jqsQuWTn0KYduYkiaYQ50NWiQOilRQAt4KjJPESpFkkk7XQ6pDwU+dE6cF\nOu2RFQVFUZC3QSJplqEzjU4EOtnYZ26UUk6DaSa0yOR4mHlcNf+T/bNtzGtSs+3OmxSX0bp4df68\noxjjMivG5NiRBYUcmxzXQscC7RqieZ/DomMTWrVanpw/+zm/Mp43a01KxSilwHuiKNoHzyS8R7af\nwnuwFqwls9s0FJBV9C8VVMZh6grfNJR9R0dYktyRAtVliGNIupCcCNiKcRekhMQ+CpVD1BJRabxU\n+EgC43CfOITUQB+RnQC1hWj6oDRidB4QeBMKbwpnAUnITRvjRBtKOcHUqiXeCJzxeAvlRfDqJK6C\nbAvsCHoWsghKCamFCwMQWjCwoIXACkEnEaSJRmcSqzVSF1i5iYo7JG3ds2QmulEnBSLLkUkWyvDM\naMfzr9FZE+SqeVzED/PXLQuYOMy1k+Ozv2fbXSevzp9/NcZ4jOX41KZjgXaN0fyDNn9sfkU5/wAv\ne3ksM/EsKiEzj08phEASzGJTgWYMvq4ZVRvYssRg6OSXcGPFeBQzLGt001BsgY4FwnqsAZlDehKi\nDYg1RB2CZuQjfA22LxAuQikQTYOPDNQjhMhD8preCFWdq22ELXHeItIeuAaBCoJWyhBrTwS+Qjjd\n4idK0OAux8F8StDSXB8EgnwLRA98BCMTNLROG8DSE46hEUQdx/U9y7e2PY2RpE5ird6LBp0URJ18\nn+Sdab1XS07uRYFKKcOiYW4ernQeF2lYyzSTeb45SAAs46918+r8fR/FGGfPO8z/ujY6FmhroWOB\ndo3QQWaTyffZc+ePLVuFLlphT8xZYs53o5QKOWWTEHJaQdaeM/Gj2arClCXNaIOxrsmzHVLjoPRU\nl0N9sCgNmkxdB99ZkkPnDERJyEXTGTQjSBIAha080kicFchEQGoQpcelDuE00mu8ipH1ZSgv4psh\nIu1C7wa8KaEcI+wAnIQWPcQ3FqzB163gcB5qcLWASOBKENqj7S5Kh0DLegTVEMYhpQ3bghknk8+7\nPQAAIABJREFUkSftBZ1xo3CcHUqG4xDpqKHVZudMh9Mvfu+zRdh3fu9/n89BO+w8zvLDKqFw2Bf2\nMrPc5NhhTHzz9/xEefXJHuOR0HEe2lroWKCxh1f4rGc9i263e7VvZyEtezhXPfizL4pl/oZFK/1l\nZp8JOsjku9It+7RIFt45vDHYpqFJU+pJonAc4yONUQqhJCiFjj29rsWO4OIFTe4M6YbDWqhGoB3Y\nPogNkAVot4sqGqQiCNMmxpUKqTzCS2gG+EqDVnhXBoh810A1xFcjhKvAjfEhXhMvoqDRmQScRVgB\nmBA9mTqowI4lbigBhxeacgfGBuoW0WRchqGbCEihKgWjSwIXw8AEAelcqEww+bSmaVMYhsjG4RpF\n02SYFmnFTucq1BlwzgWtrZ2HeVMwM/sPmsdF2s+8IFh1zjw/zGs5y0yB6+LVRdese4yLfGqzY7pW\n6qHdc889/OVf/iW9Xg+AH/zBH+TOO+/kHe94B1//+tcRQnD33Xfz4he/eL0dX2V6Wgq0xx57jLe8\n5S284Q1v4CUveQl33HEH//Ef/4HWmt/+7d/m+c9//tW+xcfRsody2YN6JavTRaYfeLxmMImum7w8\nvfchkk8IIEQf2jjAO0VxjG5xC1UUMfQdSjNg1BgQFXECSEHWg0HfU1YwHsPlc+AG0C2gyAOOYpSC\nbr6FLEBFDcKLsKJtInypENpD6hHVNkgLSeuIG+8APpSQSToBVaRVwoT3eBshzAjXtMVChUPEDrlZ\nobsWv2Mx0qINWKEoL4PLgnUo64EroJawPYLdkaA46Rlaz6VLirHwiCxAghljaKqAa1lWFbos6dSW\nqrTIOELEnfA/zZogjUG1la69c/g5TflK5nGZUFpkWpvnlWXa1qKF0CJhM9veUfLqkzXGa8WH9vd/\n//d89KMf5dnPfvZ03/ve9z5OnjzJF77wBR5++GHuuOMOPv/5z9PpdNbb+VWkIzYMPzXpPe95D694\nxSv4gR/4Af7kT/6Ec+fO8eUvf5mPf/zj/Nqv/drVvr2FNPvgLvMVzPsIZml+5bvMNLPsZTIbxr9v\na4MXlFJTX9DsJrVGKIUlYWRzaqdxQjA2Cuclu7vgpMQAdQ39S9C/EPLQvASZBrAMKxIwISPA1Q7n\nLL7aM3F673C2wde7UJfBnBhFe/lnzhGKqDmErcI5vgGbhDD+xuONAOfQiUNqi9qypN8VglMEkJ0M\neXIb1wVkkO5mG+UYWsZa0AqK3NDJDVoZzAxwczkeMx6NGA2H7PRrBqOK/tAyGo0YjceUZUnZCj7T\nNJhqFzs8i60HQajN4GfOzwvsLUDmTZKLeGCRJjV/7iK+WiYw5q+Z7+PJ4tUnOsZF1yz7v9dK9gq3\nFTQcDvnGN77Bfffdx4//+I/z9re/nZ2dHR544AFe/epXA/CsZz2Lm2++mQceeOBoxnOV6Gmpof3n\nf/4nv/EbvwHAX/3VX/EjP/IjpGnKs5/9bC5evHiV7245LVplLlqlTr7Pnje5fn7fMhPOxH82C7c0\njx4yCdf37cpVzQk6IeV08zKA9WrtyAvLqBRc2FbkThI5Q+9kCNdvI+/pXwLpQUfhU6iTVN8GfRKi\nzOGNRYiq1dYksowgM/i6CbH1YgNhKpAa4XwL8isQpgmgw8bgK8A0IXLSGIR1OOtCLpwIaPu+At0B\nzAWiTnC9jS10tuD8hQDuPxhAJcCOgrmyyEMennOGsmkCaspohFMKpxReKZyUNCKh40us7E//pwmS\nilIKbUfYSCArgY2K6dzN4jjOzs/k2CIT2jKNZNHL+7Aa07wgWma6Wxevzt/jUYxxmbY2oWshbP/c\nuXO85CUv4e677+bMmTO8733v46677uLcuXNcf/310/POnDnD2bNn19fxU4CelgJtNkrv7/7u7/jF\nX/zF6e+6rq/GLR2Klj3EB708Fp17kAkGHh98MA9WLITAMQNSLCXSVyi7jfBVwFQUAj+zqcjihEdp\nx6CGplJsxQIvHPEG1GeDwEjGIdBCVGAzEMnz0bst7JT1qNQEHxVAE+OlQGqFiGq8kciqjxNBmIVE\na4GoSzAejMCbCkyJtw6MxwuDyEok4AfBd2ZzByoEpniR4AWMt8FoGFcBnHj7Uqiw3QjB7kVB5zTk\nuSXSDYPLmkpWoYxMuzWAFQJDeIc5IULU5UxaxGSuVKoCoHIcB/QVCEnlUuKsDfO4ZI5m5/EwPHOl\nQRjLhMQiE+CTwatP5hiPhNZocvze7/1ePvzhD09/v/GNb+SlL30p1j6+kyMbz1Wip6VA63a7/Nu/\n/RuDwYDHHnuMF73oRUCwO586deoq391imn9QZ2kRUy5j1EWr1kVO+Pl+ZqMe9+EJhoPT9oQdITBI\nyhDWMCk7AzjvsQ6i2DIEDBBrh4g9TsHOLkQCsgSSUyHycTwCV0KmNqnLEK/hlae2ntgKZC0w2iGd\nx0uFlDFCOVxtg28Nj7ce3xho2rw5I6EUiLrCG4F3FnQF2sBYBfNjE9IFDMHnpn1N/zzs7kCTwcjC\n9m6I/tcJ5LHDVALnBEpCFgukaGhqSS0E0ntqWtcf0DjXWo/aOmeTBcE+bbcDqsAbFXAxPRhrUZP5\nmcN1XGQOW6QJLQuWWMYXB52zTDu6Grz6RMe4rM+DzJdPmNYo0L761a/yjW98gx/7sR8D9hamN9xw\nA+fPn2dzcxMImtwtt9yyvo6fAvS0FGhvectbuOOOO+j3+7z1rW+lKAo+9rGP8eEPf5gPfvCDV/v2\nFtKyleVhVpXLzl113aJ9i4ScF2JfTRmvC7wY4kSGF8MgyNrNEvxio0bjWy1FJZ7GSca1IJeeysGp\nLSAOAP3VNhSnIa0eopFt/c5R8KuVlSeyHtVpcNrihykeiYwFMrbQzDocooAFWXtoJL5sc9KMDzBZ\nWDwe7w0uC4GUjhBpKTUYmZFuBO2xvwP9MaAh70IUwdBCnHh2+oLOSU9Te072GuoBjJ2nqsL/VTtH\n7NxUoLk2x0zISTFPOdXU5s1bHk9TNxB5fFtahrk5mjdBzs7jMkGzSPCs2j+hRb6v2f4W9T3f/qLr\nnwivHvUYjyzKcY1h+9573vOe9/DCF76QU6dO8bu/+7u84hWv4OTJk3zqU5/i7rvv5pFHHuHBBx/k\nne985/o6fgrQ01KgveAFL+DLX/4yZVlOw1qf//zn8+lPf5rv+Z7vubo3t4KWPejLTCbL9i07Z5Hp\nZ9m5sz6cPSR48CrDRidw8jKePYFmCeY16wVxZKiUJe946hHEyiMiTzUO6PaXL0IkQ9TjyWdC/gyI\n64cZKRhth0ARCXjjIQLVMwHQWHlcP8JnDt94pHQI0Qbqu4CG751DVECtcc6At3gZzHlYQEPUg9qC\nq0IQSj2GzF2i8wxgA8bfhO1xiL60rZ+vk4OvYbuG//q2IOs5GgHCC5TwVFXoW1qLARrvcULghEAo\nhWhrnk18j7PYjVOfmfeYpgax9+AqmJp25wuAzs/jMrPd/O9V/DR/fBKEMd/H1eLVJ2OMR0Jr9KE9\n73nP481vfjM/9VM/hXOO7/u+7+NXfuVXkFJyzz33cPvttwNw7733srW1tb6OnwL0tBRoAHEbXj6h\nF7zgBVfxbg6mZf6ERefMnw+rH+Z5k8phH95pTtTMNj3Wbo5gdnSA9R4nPINGo2JPrRxOwrgRDIUk\njxx2DGMB5x6DrU1wGioDuW/YuQRJBsQQ5xDlHueDIqYEuFFDFDt85UK9NOFQAlDga4Mk+NS8kfiq\nAWtwkcOJEAzpdTi3MeBGIbm7qUIgiCVqSw6EBPC0AwPb1hxtQGjQGuLIcX5XcmEgIHbo3NJvPLWv\npyZaE4aAazVcOfHpiqCltd3sqwzu22TrqqrC/zyBHVMqmHxnohsXCbNV83olgSCzxxZdt8yEt6rP\ndfLqEx3jd/osPGFac9j+a17zGl7zmtc8bv8HPvCB9Xb0FKOnrUC7FmlVVNmi48teOKteDvPtzrY5\nu2820nGe9gm2Vph5IXFCUBqN9YLxSCGspGkkTQPaCYZjwWbq0R04dT1Qw+4uVGNI4u+jclBug1dQ\nSHASdC9gKzoXzJB1aYmKVkuRYCVIC9KBayzeeig9OBcWxQbcxNwjCcKvhGoQyqbJNHyPvKOuQhWA\nug4CTDgY7kIdg3JQCyir0HcUOWQMOyPLyAqsMsG82GJeTrSzqbmx3aRsNa05DQ0gSlOqqmoF1l71\ng8l8zGrPy6Id5+dxlW/oIP6Z37/q9zp4ddLO/O91jnGVIJ78z0dCx9BXa6FjgXYN0TJH9RN9MR3W\nvzFr1pkNEIGJAJl5Cc+YIqeRjlJSOs1wHFGVEW6kEI2kQFB7UEIwKD3PeGYQJDoJEYYKEK5kULam\nw90AN1V48OchyoIsEjUkPbBNwIFUybTgM96BaDyMwAsPeRCMNOBHoeaZ7II1bQ5cBCKGqh8KA6Qy\nw9k2pqQOws66kGDtTdAiSwe9DsR4SjylgyQS7FYG4xzWOdLIk0UOKR2JcHgjGA7V1Ic2/ZzH0AQ2\nkoRyPJ7OtdVqH96jc+5xOJurtJ1FwmDVQmb+9zLz3qrzj5pXn+gY5/14q0yYa6U1I4U8XelYoF1D\ndJBfa/6c+Yd6WXsHmYfm+4DHBx+I2eOTl7GU05B0ZKuNtHlYXoUCmChFUQiKSOBHntFFxflti1JB\nKBVZwHSMzWOMXSjb4qNQJbqsgq8t7wWU/o3rQ0SiKgmBHTXIJkRLqrgVYAbAwxhcAlgwu2Avwvhb\noHpQ7wQBaGW4ptyBQmQ0YxgPoKph2BdQBG2r6AbzZLeARoahlqNguhw3E2Qwj7WWWAukh07iqaxA\nOcV4vB+YWApBoiyFGjGSBilDkEjvxAmqqtoDN7YWKVWYO6WQovURLpnHVbyzyAc1yyPz1yzTtg4y\n1T0RXl3U95M9xoNq0X3HdKyhrYWOBdo1QstWpYtMK8vMioddfc/2sWz1uzTaayYnbfqpFEIp4hg6\nuaEeCqpBgHVCKbySOCExeHzsGdXw6GNADSdOwP/4XvAiwqZBUNhBEBTaQSyCSfC679lzKzkRrtUS\nzAhkFSCvSAENfkjQzEJ6GqQhkl8Q6q/VIyjLgKzfDMLiuVHXc/ERqGTw3+WNpwLSHFwEkYWLfYjy\nUMdtXMHlAVR4vPTTSM/+yJADpRHo1GDrGqJyiravdUDm76UNZdygtWKk82m5nrqqiJMkFFa1FqX2\nEESklEzgj2eTr5fN/yrhsErjmj8+z1NHxavztIhXn+gY569dNsa107FAWwsdC7RriFb5FBaZRlY5\n2+cf9CvV0vZF1NHGS0x8Qu020TpkC4OVJR4XK7JMMohjXBSBtWyPY6wEMxZsZI7KC4xxVENBfwSV\ncfxPdZpxE9xfiJAjRmtdS3zwa5X9EETCGLJNGA+Dhub7oIcB8cNZApr+GMhAboVgEHUK6kshGKQc\nBr+dIAi6qgbphzQG4i2oPHROQLUDvc0Q8Uh7Xr4VNLtuJ/jUdipoGh/8Z0oxrkLoPxpU7YlTT0JD\nVZYopRi32tfuUJLENU47OnFJ2gaDNE0zFWZhXv1ePqD3AZVlBtFl0fyt4pVFvHbYl/kis96krcP2\nfxhhchgh9Z2O8SCz4rWAFPJ0pmOBdo3QohXrKs1q/vjsOcse3oNWtvP3MCvUwudeIdCJMFOT+l9x\nTKkLknSHoogZdwxDk+G8oxlbdkrQXjIwDXEBKFCFQwnPxV0YR/+DRx+DSAWrYS8OGpgkpJINLgeY\nKlkGjEVhQkSkLcP3eicsglUKzSSPoAIuguqCrYO2ZgCjWrNmCuMLLXyeKBAxjEagOgEdpHsCBqNg\nUtzpQxSDVCBj6Ko902j/Uhvx6Ryo1kQ4iWBswYu1MZjJ1jSMK8/lkWYzgaQJCP20ZkvXCjPvHM7t\n1UqbaGfzmI4HzeMyDWp230E8N89DTzVeXecYj4SOy8eshY4F2prpgQce4L777qNpGm655Rbuvffe\nfekBs/SmN72JG264gbe//e2HanvRqnfeeT2//zAP/SyterBnXz6TF+ZEgOEcUgpkG6QwKWgZxTFx\nkpCkKaOkh6v6qLim0zVUZXhB0wpCakHVCEZNTSxh84THG09TQiM3ubALWsBmD+IsCNDGtu65XSjP\nBasiI+icbN13Dhi0eIwbITyfMoTbY8GOgXGIXmya1kcng6bnbEAsqS+DcpdpbDAlmjoUILUSlIbd\nAcQTM+NukJM+Ipg3ISB6tCZYT4u64j3CuX2BM5MSPM656f87u8FicFw/2860uT0NbdU8LuKDVZrP\nLD8tE0Lzba6LV5fd0zrHuMrkDkeYWH1sclwLrdavj+mK6OLFi9xzzz189KMf5U//9E9J05SPfOQj\nC8/9xCc+wd/+7d8euu35h2vVivcwPoPZa6/EnDRLs1GOQgiEKxHNJRQ1SmuiKCKOY5I0Jc0ysqJA\nZxvERQ+ZbJB1OiR5TpRlqCSFKMZpzchoKqcY1gIfgS5A+BKrQeVBkFzaDsnPXodoxMEgRCOWJfTP\nw+AcjC5AeSnsMwrsMPjHRmfD78aHz3IEVQP9R4Omt/0YDIdBk6vq4CNLmm+SboHKQn+NC8U+R2Xr\nU+tBpwuX+3D2Ipy/DBd2gh9tkpOXxp6trieJ9xYCov1v8xhOdBx5TPCnSYlSegpUPIlelHIvCnL6\nYp0Iw0MgwS+ax0X75oXL/Pmz5yw6fhS8uqivRfRkjHHttEa0/aczHWtoa6SvfOUr3HLLLdxwww0A\nvPa1r+XOO+/kTW96077z/vEf/5E/+7M/43Wvex2j0ejQ7S96Gcx+X/SCOGjlOtl/kHloUfvT1erE\nh2OHKGHRNOgoJWo1syzPqauKpq6xTUPdSOJim8JpKqCRMoB0RI6t1BILwcVzirM7nlObAtc4hCsh\nBiOCD6tuIBpDshE0Iy1DKL9zQcg1PggqJYNW5gYgRzD4L8BB1LTmxzoIKGdDhGL/IqBCuH+zG/xg\njQtaULIFqYBLjwWNbreEuBuQRGoRQveTFHaaUIW7qjxGiFC1hoBRKbWgoyWmUujWJBtFEb1ckSaa\nXlcQZxAXEWmakCRhi+IYhJjWTZNygs4vp98X1a+bn/vDmNwW8dCql/8qvlk3ry5qe51jnBdk83Ts\nQ3tq07FAWyOdPXv2wPIM/X6fX/7lX+ZDH/oQf/iHf3hF7a8yD66ieVPP7L7ZduaF1+yxRcJsQhNw\nXRV1cdYhkEQI4jgmzbIQyNA0WGNCWLn3KO/RhNyzRkq8tpxMx5zOLaOBpKw92wPNY5c9qfY4kVJ6\nSNOgNcUKagcXL0PcQCbBtrBVjQ8o/egAR6UVNJeCebBsgkmx2g6mQ+sguw6iAtgM7RsDrtXcLp8L\noMnPjp7J5UsBkHgwht0Kok7oa3cM5/sB11FFEMWespEgBHHsOdkTWCEY1ALnJKWVU/9iHEVtMdSI\nE11FXkToLCEvNLooyIuCLMtIswwhRDi/LQQqpUQg9tBF5gJBDjOPi8yEq/jqMP6s2c/Zcw5DR8Gr\n6xzjcdj+U5uOBdoaaZHJZz7R9a677uINb3gDz3jGM664/WUrW1jtXF/0crgSM8/s8cn1sw/1NBct\n7iBFgq5rIl+SzISXO2v3hBmghUALQaYdLqlwo5jUJXiZYmRD5TwnTldYIymHHkGJiAS7Y8/JLnRz\noILti+AHghMdT9SDCxcgU5DFwY+VtgJOCfAxJM+CnUdDhGI1DDlu9Q5kAmQEOg/H+pdg9xLs9luN\nUJ3i24/BoIRGhA0ZhHkDjBsJJuStpbmgrqBIBTrypHlABSmd4nIZIaOIKIqC9pWmZFlGnscQFeik\nIM17xMUJ8m6XTqdD0emQ5zkCSNI0CEA9MUfKfcgii8CJV83jKi1lEW8s45FlfPdU4NWjGuNa6Vig\nrYWOBdoa6frrr+ehhx6a/j537hxnzpyZ/j579iwPPvggjzzyCL/1W7/FhQsXpua+u+66a2m71tp9\n7T7ZZIw5VP/zgQvee7wQ5J0OWVFw6vrr92MTOocylxCuAdu0eWQOJxKU3Ua7IYYYLxRJr8v/8clP\n4onRbhfphmg/xskujTodfFFuiMJg1AaJPU9kHiFuzuJUjidGeotVGYk6wzj+33AiRfqSqHmE2F5E\n2m203UHg2c5/ECOvQ7sdpNtFdzU/8nv/Twjq8BYjCxq5gfQlVqQ4mSF9Of0tfYnwBoGdBmw0cgMn\nM+DxKQ7KV2hR4WWOV9mer2zOZ2aBwWjEcDzea4cjNIXN0GH54L9r/xCAf4+Ejk2Oa6FjgbZGeulL\nX8r73/9+Hn30UZ75zGdy//3387KXvWx6/MyZM/zFX/zF9Pdv/uZv0u/3D4xyVEpx0003LQ3qWLTq\nXOY/OMx581FnX/va16YP8vyx2RDxSW6UMYamaairiqqqqMZjxuMx49GI0WDAcHc3bNvbVDvnqfsX\nGG7vMB7sMtrZJbE71NUQ35Rsb1vGQ8Ob/t/f5f2v+WmqkSWLHN3Ycf2mJwZkDaNL8MwzQTvTDhIF\nm6dDwIaUAe0DoC4D2ofUMNqFciToXeeRKmhznZPBr3b+W/+Ly5egOBV8aC/9v+/jj3/q/0QVAeJq\nZwRntzVGCIxSGCGwUqJi6PQgyz1Iwbe2NdulxkkJSiG0DhpakpDmOXmnQ6fXo7exQXdjg83NTTY2\nN+ltbtLr9ej2enQ6HfKiACnZ2twkTRJ0FBMn8dQPNy09I/bXR1tkDlw0j6v8S5N9X/va15by4ex5\n8+2ti1cfeuihhXy4zjGu0uCOlI41tLXQsUBbI508eZJ3v/vdvPGNb8QYw4033sh73/tevvjFL/Kl\nL32Jd73rXU+o/YMc24vOn/++yol+oKO+HiDdOIQdynRfX7PVrZVS03InU9+ODJBOamaT3iO8xzhN\n7j1KWjJdMtzJUN7zre2YYVnTNCVGbeGU5sQph/KCuhRU3lMUIbLQeCgJIfyjNvds3AZpmCaUelGy\nRc/PQq5YFMHQe7aHECVw/mGIL4b8tXMXCCj8VYvTqL+LsQdlg39tYPaqULsWyksoRdGD3gYUBexW\nmqxQjGWElxKpNUJrdByjk4S0KCg6nang6m1sTLeNjY19wizLc8ZVRdIKsyiOptWtYX818VlhtnAe\nV/DNlUYdLqOj4NXZdg7k1SdhjGul4zy0tdCxQFsz3Xrrrdx666379t12223cdtttjzv3zjvvvKK2\nVz1wV/qALosUW7Y6BoIwcw2YISLJ9uWiSRly06QQIGV4wbMXqCDbTYmZIIZWoOE9Y1eCdwwaj08i\nBqMYH5XobDy1xiSFIs8UwgriBIwQXBpYRg1sboUgjbIMgSLU0DOQ1aGsi/KwcTKE/KODllUFSEdM\nDcOLIaBD1zD+dsCJFDEktMj6vmLkIRFgkVilsDpoXl5rpNZ4rbFK0QgYWYFTEUmueEZPUtqI2keo\nKELGMXGastGN2dpMiIucrBuE2ESgdXs9Ot0uRacTgkLSlLKuieOYKArCTEm5z2y5yK+5yoc1+T4x\ney/yVx0mGvCwPqpF/a/aN3sPy+79aozxSOgINLTf+73f4zOf+Qx//Md/zHg85h3veAdf//rXEUJw\n99138+IXv3j9nV5lOhZo1xAd5sGaX8HO0qKHdvaaA8OedQFmCLrY9/KcNXEJKZGEoA8349+RrYYm\nJ8IsNAoz/rTGaUSdop1mA/BSUiUCCov0FTUpIwsYQzmETFu0k5QNbCaO0gdt6nIFkQiAwSc6IdIx\n1SEPrbcFw37IMxv2A1L/YAeGXtArPDIL+2wd3BpjB3kGsf02PoHtUmKlZGAURiloBRRRCPbwcczA\nRQgTIbVmY8uhIoFF0Tc5KorY7Hi2uhAnESrrknUKdGdzoTDL85w0TYmTBHZ2psDEkzmeABGLuXlY\nNp/zfDD7e9G8zx5bxEezx65EIzsqXn2iY1wWGLLKlLoWWrMP7Z/+6Z/46Ec/ysmTJwG47777OHny\nJF/4whd4+OGHueOOO/j85z9Pp9NZb8dXmY4F2jVCqx662Ydt0YN8UPTYohfG7LnTc0iRaT7dP++v\n2SfU2sAQxV4y8ASaaYIi7K0NQSKtQJtofFk0ZqwbkIJR7GlKS+R3KXoJ/V0YDWp8I9gxAuUcuTLs\nBsWRnUsQdYMfa7QL/3Uh5H/5cTAFloSAwAttWRjtA17jwHm0b8GK46CVIWA8CsDGjoRaCAZGYqUi\n70mKSNKgidKIhgSnc6I0RcUxKo6RUUSaSuLY0YiUyId9z9wckWWKKI6x8Qni4gRZd06QFQV5G64f\nJwlxFCGEIIqifXM3m1w9EWrL5nGVn2rVYmae5nlwken6avHqUY/xWkAKmaQG/fzP/zwf+9jHAPji\nF7/Ihz70IQCe9axncfPNN/PAAw/wEz/xE+vr+ClAxwLtGqRlvoNVPoXZ48tWxAddP//Smn24p5rB\nBNZJiGASI2ha3nuSOA7QNBOBNoHHn2wtlcqCkFQuRboY3fYR5zE5MGrEtBq2MwaZSXYbyfbIMR4J\nvvt6GxDwNwWXvi2ppCdN4OyuI6lCKH0jAkQVRoSinAmY2GOTYG6s2tIv2wNQNRiZUwIuVuS5JEoV\nMlL4SGFFQhKlNLJHlKbEWUaUpug4Jk0EaeIxIsXKHKUVUdJQFAarT6Cz6yja0PxOt0u326VohVmS\nZSGpug3zh700kKmJMQBo7kNsWeU/WzSPs+cc9MJfZd5bJZDmz/1OeXXZvT1ZY7wWCnzedddd/OzP\n/uw+7eswObL/HehYoP03oGVaFSx+gRyVU3yKHTh5wbY+M+8cvo3Ec84TJX5qZpzVzGZuBENMbHeJ\nfcTAaazeQiY50krOXGewtebyZahGgoEFJz2NlTTSc34EJ3oC5yxbzwClPHEkcFby7bOSJGmTrRVU\nVYiEjCNwscdFnroRXCjhcj+EyXcyj5UdhlZRW8FopMikJhIR3mf0NhOSLMVFOTLpknY6JGlKnGZ0\ns4Y4lqBiKrGBaisPiDgmbyHB8jwnK4ogyNoAkCRNSeIYrQMyyKwgm52nRbXPlr10D+v2IzOoAAAg\nAElEQVQLWmR2W/bSX2WKPMw9XCmvLjMJLmt/GR3lGL8jWpPJ8eMf/zjXXXcdt912G3/913+917x7\nfAdHNparSMcC7RqmfebAA1ask/PnTULztEroze+bDTyY/T3/HSnRtIvQyCPY09BmwXlFG1AilEIr\nQxaNUaoTNDyV0egTdHoX2IgUw6Fj3AQ/XaRgWHoaDzL2XKw82+fhu884kgSyzKOVR3hBVkt2+yGs\nv3KCzoYjzzyVge1GMBx5ygr6FmotsN6zazxOaC6WEaUNYfd6EJO4nLQo6OiUKMtJihSfboZAjqIg\nyTKyTJJFHqcLUNm0lI5uEUKSNCWdYF3mOWkbADKNZoz0tFbabODHvA9znhYFhRy0oDmMn2iVtrPq\n2nXx6kEC8MkY45HQmjS0z33uc5Rlyate9SpGoxHnzp3jda97Hc94xjM4f/48m5ubQMiRveWWW9bT\n6VOIjgXaNUSrHsbDrC5XXbPID7JKqC16seyDw5qvyTXRLNqQfj9jchTt8WkisZTEYsBIdkNxTRch\npCTtdIjdGOdrRKQwGvJeiUIhI0c9g2IPcLl2+NQxGMLpTYd1AhtLSqUZGw8CisRhYkdlBWdHCj8C\ni8cIj4s9WjvixGNFysBqhFKgNXGu2NxSiEhjdYFMC0S6Qd7r0en1KLrdoGllGVEco6I9TUvNlNWJ\n4pgkSUJFghY5JG6xG/cFfzD5Gx+vfc0Ltyc6j4vOW0XLTI3L2nwivLrIXHi1xrhWWpOGdv/990+/\n/83f/A3vfe97+YM/+APe97738elPf5q77rqLRx55hAcffJB3vvOd6+n0KUTHAu0ao1UP6PwqePb7\n5POgF8+il8Ki/hc92PM+tZkD+0P7lUKz5zaboGHIVpgJKRlSgxCULqVjRwghyHs96pGlbGAsR8S5\no6k0UjY03iMyj4Spn24AjPqw2XFcqByRdPSdRmRBQHigj6dynjEg8uCbm0B0Oefo9hqy2BK5XVwc\nI5XCa02Wa1SsSPMIFxXU0QmyfDMItM1Nur0eeVGQ5jlxHE9BhSfAwpPq1DqKgmCbbFMzY4SO9gSa\nnPNVzv/Xh53Hw2gd36nGtUjzWievHnRv6xjjvLlzvp0jCwqp19/kLP3cz/0c99xzD7fffjsA9957\nL1tbW0fb6VWgY4F2DdKyl8yil8Oya+dNOvO0zDG+zOm/6Pzpi7d9EUB4+arWfDb5PYWBkjKEILYR\nkZaYzG1Tu22EEBQbGzghkLUjEREbouJSP6duGhCWJHbTKEpJ8OUJ7zHaYbRl2CjiLnRjR1VLaiNx\nPggzl0KUeGybG9dYi7IWmZbIxOEFyCQJ9xdFlD4iVzG1SCnStrJA6wvLOx163YRe4YnzBJ1vhtyx\nVkMT7f+u2iKoemKGbI9PNDM1Mz/L6p055x7nV1v3PE6Oz9NhBMc6eXVZe+sc46J2DhrjWugIoK9e\n+MIX8kd/9EcAFEXBBz7wgfV38hSjY4F2jdBhTCrzPodlD+f890V9LHrJLFu9Lju+aCUrlQoaEOBb\nTW02OZj29ySc37abkJLO5iZISTX0SB1hlKVQocKzs3YaLTnJc2vxgxEEIAadQi8zKGHJnWS3DJGD\nDrDOYb0PJk5jUNZirKUkpTEVRm6Sd2OyGCqrqGVK3xZ0VYaKY6IkIW4jHNM8p5NL8jwlLTS6050K\nNNmie0xz86REyAAyLKVCKomenNMK+Mn5E1pWvPOgeVzEG4eZx4NMibP+rcOa/46KV496jNdC2P7T\nmY4F2jVCi0w78/vgcKaggx7mZaaY2eMHrVQn/e57EUMQVkKEwA8hcG1bRu4hxk+qPLsZIGMhBL2t\nLaRSDKOYctwli8bowmDqOgjAiVBjTzsT7feJ1hZpS6oslZH0Onqvr/bTOEdjLXVdUzcNVV1T/v/t\nXX2MVNX5fubO98KCsLELmPKXYmDFlJTEUlDJrq2gu5TiEkwqTdR+SIwWbaN8CBVRaWvpTxLwq7Va\nxCAoZYVibcgstqHBmthi6xb4p34FdJfaEFnYnZ2P+/tj5g5nzr7n3hn23Hvnzr5PspmZe88573n2\nved93/Pec8/NZGCGkxg3Lo6wYSKaN3A+V3hw2nreLByLISK8nTuSbECsIYrY2ImFl5gKDi2EEIxw\nwdUahvCiz+LM1XJgYpqWMqJe6tHOqdjNjnReq3b8veaoHezQtIAdWoAgGwNxoFGD0m4QUgOVMgqy\n7EpSSGL7Zfd7LMdiGIVVjsUZCEwTkUjhUjSB0uzMuo+SL7Y/7pJLEIlEEI3HMTiQLLw0tPieNats\n2SIToLBfJFD2BxQu/EvCOUTCGaSzEQxmDeTy+YJDy2SQLjqz6OAgBtPpQnovMgaRcBbZTBiRcGE/\nRiMSQbh4HyxSdGqRWAzhxDiEx4xHNDkGMWHFYtlsy+qjMfwt1KVd9jF8aT71zrNK9Cg7lmr0SLWt\nmoXJ7ei6VuV+usHRqV+uzdB4t30tYIcWEFR6H8HpvkQ19wGoSLnS+xDWuWE7iaC4iKH4nJoRCiEU\niSCUzyNvmohGo8ibJuLiSsiioR8/YUJhBpRMYnBwEJmhoYJDK+7yX3pQGxjmxERnZn0mwucQQg45\n00B/JomcNTvLZJFOD2JwaAjnz51DdGCgcN8rPg7pXA6IAVHDKC3oiESjF1YxCgs9IsW3UUeiUcRi\n0dKu+GHDKP0fROdrpVqtQADCMb/1qEorOqUQg3StquqJ/XTrwepqJ2hh5yKjEuzQAgSnAU4NQOt4\nNfXlYyKcomxZlrzqUb73Y5omUJyxhcNhwDQRi0YvPKdWdGg5AOMuuaTk0MTZWS6XK2yfJTk061Pl\n0AwMIYxBZMw44vkIcrkcMtks0pkMBgcHMTAwgGg8gei5/sKilMZGDBXTm6FQqGx5vbWow/peWtFo\nLdMv3hez/ieG4MREiP8fcSGNeP5i9UjNPCrVo+ygVA6r2mtN97XqBUc3wA5ND9ihBQTygLdLwchl\nre+qSJQ6RrVfSRpSNgLylkzUpsYALqx8LM7iInkTZrxY1zDQPzCAxvHjC294Ljqz0tuw8xd2HBEh\nOzXxmNgH635dNpcrpBuHhjA4OIhz588j1t+PaCxWWJTS2Ih0Oo1cLldwaMV7ZlFrB3zLkRV3wjeE\nv5BhlJxaKBQinZUM65zIyy892qUhne5l6bpW5fNucaTKVjNbvBhU+/aYmCu9CD7YoQUMqtSJdU5O\nAVVzf0DVhlzXLjpW3c8QH/gld+rPX1h+bt1PK/i3wrFzg4MY29iITDyObCaDbC5Xdu+stOuINEMT\nv4fzhTdKm6EE8kaitBTeul9XcmjpNAYGBxFLJEqOKhQKYeKEBphDeZxPRzGUL6QTxQehxaX5F1Yz\nFhZ/hKTUIeXIZOdvfafSc37oUT5PGfxK0o2q/tXKterE0Q3wLTQ9YIcWMNgZEgsqQyCnYORjVB3x\nGBUR26V15P5ZMsndLoxC2tEoroIMl5xaqLRAYsyYMcjG48jlcmUzs7y12bHVmMKphbP/Q8iMwAxF\nkItMvNBHwqHFBwYKO3xYS+1DITSNTyKTNhEfyqJ/KIFIJFLYqsraRDgWQ1R4eLrwvFlxJaP0f5U3\nEBb/T04bDPulR+q7nUzd16pTHR0c5WvVTo5O8CJHPWCHFjCIg1EVSVpQGQ75dyX3I6g2VFE81V9V\nG8O2yDKMwv2BXK6wWCQUglHcmDeRLCzcyAuLQMQttIYvnZCcWi4GI38eptEAM5wsyTclhxYfGio5\ns9KbtjGEieMTGBgMwRyIIJQo3BeLJxKFd5Ylk4gnEmX31CynVhAeKuvPxeqR+v+K5dzUo1MbVJl6\nulbdnKGxQ9MDdmgBQqVRoxydihGnU8Qr1rdL3VD3R+yMlqqvZek1FHfEsJxY0dlZr6OJxeMw83nk\n8oWd+oELaca8KbZZ9jaa4puzAWBM6ZhpAqFifWvn/2wuh2w2i2g6XXgmrNjnUCiEsDmIMeMmIBQd\nQiYaQ6LIMR6PF95dVnwRp/W6l4i1EMTaxcNyvMaFRxmc/jfULKNW9SjPFuvxWjUM97a+4pSjHrBD\nCxiqSbEA6nsW1rlKonFVHZUhcGpf7Jc1Oystzxe3yrL2gCwaf+veWkRwCKJzcFp4QsHMmwBM5PIm\nIvmCQwuHwzDMNCK5NIx8FKFQI8xIEmPHTQBiJkLJEPK5XGET5VgMiWQSY4TXvlh7NxYelDZKaVMR\nZbNS4f/nph5VRl+HHq0+281wRsqRgtcca2XZPoMGO7SAwBpU1MCWI1wq8pTrqwyFbJTs5FLy5HJO\nKSfR4VhOrQRpv8dINFqaTYkzN1PRN3khhuq4aZowTBP5XHERRygEI2PCyEVgmhnkjbFAOI74+C8D\n8UHEiltthQyjsDAkHkcymSy8lNNyaJEIwkYYhlHOgXLE4v++lvXo1C+5L7qvVblNr69VTjnWPtih\nBQSysaAGHhWRqqJmlRGhZKrki3WpiLcSPmJZ0bGVHEA+X3JshmEUfhdnaqUWiq+ksSC3Y4FcRYji\nVlu5HEzjwnNimeT4QiozbCAfCyGTzWLcuHFIJxKFvSOLTjUciSBWfAVMsvguM2uGFokUVzsW+yfO\nyiz51eiR+v9Vo0fK6bihRzevVcoRecmRU461DXZoAYPsZKhoUzYKdkbHOlZJukiWoTK2ct+oOuJv\n2UCUPUhsGOXOyjCGzbDk+la60lpMYh2zHKLVZilFKZQxUUhpInkJzHADYuk0kE7ji/5+jG1sRLz4\n/JvlaMPhcOm1L/HiCzut1Y7iSzllnhejR/GzFvWocrrVcAzataoL1T6HxqDBDi0gUEW44uCWv8t1\nVe1asBv0dikl6r4FdUx1Xnyfl7hk3ZoFyTtlUA8lD4uciZkZgLKFHmWfuQEg049wuAGhSBwmgGgk\nWvp/nD13rvDYQDZbWGVpbXxsGAhHIogWt7m68D6z4itgpDdNW/28GD3awQs9im06pQvduFZF+HWt\nugXdKcdf//rX6OrqQigUwsyZM7FhwwbkcjmsWbMGJ06cQCgUwkMPPYQ5c+Zoluwv2KFpRiqVwpNP\nPolMJoNZs2Zhw4YNiMUuPNefy+Xw+OOP45133gEAXH311fjpT39aVoaCU8pJle6hysrfLdhFqXZG\nzQlUXTsjJqbjZC6ic6iUo+gAxfPixsmh3HmEQjnkc+dhxJKIFB8ZsPZeDIVCaGhoKN83EhdmFeFI\nBBHx3WbWw9XCvTPV7EDsq50eqf+Xl3qk+l2JM6qna9WtlKNOh/buu+9i37592Lt3L2KxGH70ox/h\npZdewunTp9HU1IQ33ngDH3/8MZYvX44DBw5g7NixGqX7C3fDjlGGzz//HOvXr8dzzz2HN998E4lE\nAs8880xZmR07dqC3txf79u3D/v37MTg4iN/85jdVyXG6h2D9lqNi6zwVrcrt252TZcp15P7Z3aNQ\nnauIY34QxtDnMPKDF8Wx7K3P0bFAKFr8DJVmV9FoBNFisBGLJ5BIJJFMJpFsaEBDQ0PhvlkyiXgs\njlhxt5CI+N4zaUZYNUdBj3LdavVIzaSo4yo92mFEeqzwWlW1r5PjxVyrOpCv8s8OX/3qV9HV1YVY\nLIb+/n7873//wyWXXIJUKoXOzk4AwNSpUzFz5kykUimXGPkDdmgacfjwYcyaNQuTJ08GACxbtgz7\n9u0rK9PS0oKVK1eWDNyMGTNw6tSpimWIA59KrYi/5WOi4bBLq8jnqfYpGVR9VZ8oPlVzHDqLfC4N\nZM+NiKNpmoUHrROXIhQdc2HWZb1Rupg2TMRjiCcK7ztLFN97Fo/HEY/FEIsXnJnlyKy9HMXXwsjb\nWVWrR/n/U60eqWuiGj1S5bXoscJr1TruJken/7uby/ar+XNCOBzGa6+9htbWVpw5cwY33HADent7\nMWnSpFKZ5uZm9Pb2ambiL9ihaUQlF8zs2bNx+eWXAwA+/fRTbN++HQsXLnRsW+VYqGiTMh5UJEoZ\nQ5UcKnqmjImq33KfZcj9p8oP4xhrBEJR5I3kiDgOexdZKFRKFUaKr4MBUNpRP1a8VxaNRkv7N4o7\n7huGUXrljdWe9SnuTCJzdFuPqlmQl3qsB45uQLdDA4DOzk688847uO666/Dggw+Sj7BQAUuQUV9s\nfAZ1wYTD9Isejh8/jttuuw3Lly/H3Llzq5YlD2Iq7UJFtrIhkKNVsbwoRwblbChjJvdXxcPOwMjG\nrHQs0gCjoRmINIyIo/xMmLXrvzzDihQXfxjWvbJw+IIzE3YFUc3MqMUsXupR5YBU/aD0MlI9joSj\nXXkvOboBnSnHDz74AP/85z9LvxcvXoxjx45h8uTJOH36dOl4X19fWQBeD+BFIRoxadIk9PT0lH73\n9fWhubl5WLlDhw5hzZo1WLNmDTo6OhzbzeVyOHbsmNa+VoNsNlvGy68++P0/OHHihG/yrT74qYda\n0IHf1+GMGTNqflHIyZMn8dhjj2HPnj1oaGjAH/7wB1xzzTVoamrCrl278NBDD+GTTz7B0aNH8cgj\nj2iU7D/YoWnEvHnz8MQTT+DkyZO47LLL8Oqrr6Ktra2szJEjR7Bq1So888wzmDVrVkXthsNhtLS0\nlEW2Mqj7BnYQUzfyvQYRhmGgp6cHLS0tFdVzalM+bzcLE9HT04Pp06e7wpF6jk3eRuvf//53Sb5q\niy2xvWE7oOBCavNi9SjqoVqOcnsXo0dZBxejRyeOqvLydegWx0quVTeg8zm0efPmYenSpVi6dCki\nkQiuvPJKrFu3DoZhYP369WhvbwcAbNiwARMmTNAo2X+wQ9OIpqYmPProo1ixYgWy2SymTZuGTZs2\nobu7G4cOHcLGjRuxZcsWAMAjjzxSMnqzZ8/G2rVrHdsXBxg1mKn7BvJ3sbz4KaetxHZU9eQUjgxZ\nLiVT/O0nR8MYvvFspe8wk+uIn/IjCCPhSKFajlS9oOhRLu8Hx6Ds5XjHHXfgjjvuGHZ88+bNmiXV\nFtihacb8+fMxf/78smOtra1obW0FALzyyisjap+6hyCeEwc7NfBVxkNlNKnolDIUYnvU/RH5fo8s\n0+m+ihccxXtp1jH5oW+rPWrBRz6fHzYDk++XjYSjCD/0qJLvlR7lfrvBsZJr1Q14s/Sk/uGulhja\nQN24FgeePFiB8pvr1nEqClXdTLe7wa76rQIVqYtync7L/dHN0c5gesXRSY/i8XrlGAQ9ugE3VjmO\nRrBDCwiowUlFtuJxsZ5qMMpRsqqsqgw10KkyYjty+odKWdmdd4OjdV7FkWpTN0e39ejE0UmPclte\nc6Tq6ObopEdqJbMOsEPTA3ZoAYFqUMqRrXhc/q2KUOUoWZWmofqiSk3JETYVeasMGcVRPO8HR0qm\nbo6jQY9B5+jWPbR8lX8MGuzQAgI5qgXU0aR8zvqtOq8y2HJ9Wb5TObs6VF/85CjWZY7qdGe9c3TS\nI8/Qahvs0AIEKrKlolRqVkFFweKnKvWiioDlNlVpKeqciofTOTc5ymkqPzg66VGU5wdHGW5wtNOj\nLNcPPbr5+phq/hg02KEFCJTBoFItqgjYyeDI5Z3aVZVRpZbE87LhoRynfM5Njnb/T684VvL/rneO\nQdCjG+AZmh6wQwsInIyCDFVULUf0VtvyoFalc1SGhjIyVFROlamEox0XHRzFCN0vjm7rcaQcncrU\nA8dK9agb+Sr/GDT4ObSAwG7QqspZZVRl7epRxyjD5jSDoKCKnP3kaNVljnA8LvdJ/l3PHIPwPrTR\nDJ6hBQiqgadKmQDlaRMVRGPgJEtui4qe7fovGisqaq7GuMh9GglHmZMfHJ30KPdFVSbIHIOgRzfA\nKUc9YIcWEMgpFFUZ+Ts1cOVjcmTtFCFT8iyoUpXWOTG1QxkYvzjaGeBa4UiV85KjeG4069ENcMpR\nD9ihBQjyoHQacCqDI6dkROMgGyM746oa5LKRsTNuqrQVVddNjnIk7gdHJz2qeHvFkeq7bo5B0qNO\n8AxND9ihBQjigBcHaiWDljpml05RGVBZpmxMZAdIlaXSQmLbFEdVv3RxFA2kXxyd9Kji7RVH8bdb\nHGtdj/xgdW2DF4UECFTEDAwf0OJgtj7tDIUYPasgn6NkOPVVliP2SZVCouAGR7v/q1ccnfQot1eP\nHO30SMn2mqP4ZnOdGNLe4ugEz9ACAjkdY5daoQaiymBQqSLrT6wnnqPqyf1UReN2sy0/OYoymCPN\nUT7vNUcZfupRN3iGpgc8QwsQnAa/BTlKVg1WKjVT6SxNFYlX26Zczi+OTjJE+MVR/q6bo5MeneC2\nHlWcdXJ00mMQ3oe2e/duvPTSSwiHw5g4cSIeeeQRNDU1Yc2aNThx4gRCoRAeeughzJkzR6PU2gA7\ntIBAHvCAOhVFDWqxjGrwygZFZQBko6MyYqoIVxXx1zJH+Xw9chwNetTB0Q3ocmjHjh3Ds88+i66u\nLjQ2NmLnzp1Yu3Ytpk+fjqamJrzxxhv4+OOPsXz5chw4cABjx47VJLk2wCnHAMEaeNSAUx23i45V\nBklVVjwuGgWVUbKOUakh8U9OD9UiR7FuvXJ00qNVv545OunRrc2JdaUcx4wZg0cffRSNjY0AgKuu\nugqnTp1Cd3c3Ojs7AQBTp07FzJkzkUqlXOHiJ9ihBQSyEbCLeJ3SMSLEweskXy5HHZOjZkq+bMDE\n807OQ2y73jiOBj2OhCMli4IXHHVD17L9qVOnllKJmUwG//d//4eFCxeit7cXkyZNKpVrbm5Gb2+v\nG1R8BTu0AEGOHqkBSc0o5MEpHpcjb9Wgp9JIqjSPKEOMjFVG164fsrx65uikR7m/XnMUv7vF0U6P\nYv/80mNQlu2fOXMGP/jBD9DQ0IB7770XudxwN6gKGoKM+mNUx5CNlzzQVZBTOeIxqh35nPUpGgHK\n0dj1RTQWcpt2BrpWOMpl/eBI9YH16C3HILwP7cMPP8SyZctwxRVXYOvWrYhEIpgyZQpOnz5dKtPX\n11c2Y6sXsEMLEOzSH+LAk+tQBkCV5rEzPHKkLg92VR2VPLkdsX+1xlHVJ7t+yTLldqrlSP1mPXrL\nsdbfh3b69GksX74cy5cvx5o1a0rH29rasHv3bgDAJ598gqNHj2Lu3LluUPEVvMoxgBAjUDmVIxsE\n1XGxLRlUykbVnhjNir/tvtv1zY5jNe1Uy1HuJxXhe8HRTo8UB50cvdLjxV6rFGqBow7oWuW4Y8cO\nnDlzBnv27MFrr70GAEgmk3j++eexbt06tLe3AwA2bNiACRMmaJJaO2CHFhBQOX/xe6VGUK5rN5Cp\neioDouqjnaETP6n2Kong64ljrevRrg9ecBThpx7dgC6Hdt999+G+++4jz23evFmTlNoFpxw1I5VK\noaOjAwsWLMDq1asxNDR8U5tt27Zh4cKFuPHGG/HCCy9U3LZqxmRXXkz92EWeAD2oKzU8TsagUjBH\nujxzpBeX+MlRJ3QvChmtYIemEZ9//jnWr1+P5557Dm+++SYSiQSeeeaZsjLd3d3485//jNdffx1d\nXV04cOAA/va3v1XUvlNESh2T/yyo0lV2Ub6qHCVfNmhylE+dV/Gg5IvHRgtH+bssox44BkGPboB3\n29cDdmgacfjwYcyaNQuTJ08GACxbtgz79u0rK5NKpdDe3o5YLIZkMolFixYNK6NCJQNLjmDFPxF2\n0a8c8atkW4ZHri+2rzJG1jkqkveDI1Vf5Ej1z2uOVF2dHEeDHnVy1AmeoekBOzSNqOThRarMZ599\n5ti2PCCtY0D5YFNFqpRREM/JBoIqSzk40aDIZWRQfZdTZSqOVL91cqRkV+LodXJ0W49OHL3QY9A5\nBmHZ/mgGOzSNoC72cDhcdRknUBEsNUBVqRUqIqaMiTw7kY2W/GlnKGTjQ9W146gqV08cR4MeR8JR\nlu8HRzc3J2aHNnLwKkeNmDRpEnp6ekq/+/r60NzcPKxMtQ845nK5sna9Rjab9VV+LfTBb/m10Ids\nNotjx46NWvkA0NLS4kq7ds+WMSoHOzSNmDdvHp544gmcPHkSl112GV599VW0tbWVlWlra8Ozzz6L\nzs5O5PN57N+/H3fffbdtu+FwuDSQqBSgGHFaZai0jVWWOi6fF9vo6elBS0sLGbnKfaoGlbRnfT92\n7BimT5/uGkenPvX09JTJrxTVcHTSo9UHtzg66dG6DtzkaKdH6xpwk6MKqvZ0gWddesAOTSOamprw\n6KOPYsWKFchms5g2bRo2bdqE7u5uHDp0CBs3bkRraytOnDiBW265BZlMBosWLcL1119fUft2g1E1\noO3uE1D3H+T7EJW0qzIcTgaAklGrHO3k1wvHIOhRThf6yVEneKGHHrBD04z58+dj/vz5ZcdaW1vR\n2tpa+r1ixQqsWLHiotq3G6BOEbF8n0WuI7cnnpflOxkGyshSfaTa84sjZTRriaN4zA+Oqva80qNT\n37zQo2martxH4xmaHrBDCyBURoYyDqq6YnRLgTIEqki8UsMh98GuXq1xVJWvJ45OelT1wSuOqvb8\nvlZ1gGdoesAOLSCoJKUiGja7wSl/p2RQRkYVvarO280gxGN2hoZq0w2OVJtec3Rbj8xx5Bx5hlbb\ncCfcYGiHOGipVIgFMVUjlxfLUN/l37LRkWXbRauVRPtWG5Rhsove65Wjkx5VMuqJox0PO/5eceRl\n+7UNnqEFCPLAp4yIU2RrgUpVURGpLFvVpmx47SJgu1mYXxytcsxRzVFu22uOcj/d4OjUL7dmaLxs\nXw94hhYQqKJR8bw1UEVDQkW8ThErJccpkpb76VRP7JscWTPH2uSo+qwnjk565BlabYMdWoBgF3VS\n52VjUEl9p2NUBC6fE+uJ5eVPqjxzZI6V1nc65hZHN5Cv8q8SrFq1Ctu3bwcADAwM4L777sNNN92E\nm2++GUeOHNHMoDbADi0gEFMp1GCWUzpAeWQpp1XET/G8PLjF9q32rD87Q6HqgwgqkmeOtcuR4lRv\nHCvRoxvQOUP76KOPcMcdd+BPf/pT6diWLVvQ1NSEN954A08//TRWrVqF/v5+F/lvS2kAAA02SURB\nVJj4C3ZoAYMqhWOXAhINjNwW1b4qjUQZIrEPonyndA5Vz44jJaPeODrpUex7vXIMgh7dgM4Z2q5d\nu7BkyRIsWLCgdCyVSqGzsxMAMHXqVMycOROpVEo3Dd/Bi0ICBjF6FX/LhsTuOxXdquqIx2RDQbVJ\nGQ9VtK6SSXGk+lNvHGtdj9R3Lzk61dHBsRI9ugGd98UeeOABAMBf//rX0rFK3gRSD2CHFjCIg1H+\nlKEyHPJvu8GtqkO1b2dc7Nqg5FDc/Oao6oMujpXokZJtJ0enHp3a0MUxSNeqLri90MMpKKwX1B+j\nOoYcOaouSDFqF9MoVKrFKVKV23SSQZWVy8nHVWmoWuIoH6tHjrWuR6odrzm69T40nSlHClOmTKn6\nLR9BBDu0gIEabHLqiTLAcurFbtZjd6ySSJoqK8POSKkMipscRYfgF0e39Rh0jhS85ujWsv2hKv+q\nRWtrK3bv3g0A+OSTT3D06FHMnTtXQ89rC5xyDAgqjShVqR25vmogq6Jd1YCnUkpO51UpJCdZfnKU\n5brBsdb16NQvtznKbfp5rerGxcy6qsE999yD9evXo729HQCwYcMGTJgwwWWp3oMdWkAgGwtq4IkD\nTvykIlWVEaFkquSLdauJeKn6ThztZOngSBnkkUT1F8PRSY9O/R4pRy/0ONJrlXJEXnIM0l6OmzZt\nKn0fM2YMNm/e7IKU2gI7tIBBdjJUtCkbBae0DtUGFYnKMlTGVu4bVUf8rTLWYjuUfC85UtDN0UmP\n4mdQ9Rj0a9WtlKPbM7TRAnfmzwztkI26HP1S3yuJQO2MplzOalPVF/mYHDXLdWWDYcdR7KMfHKn2\ndHN00qMdvNCj2B+3ODrNltzmWIke3QBvfaUHPEMLCFTRrxyxUoZBlY6R27SLUmWjpmrDqe9Ue6p2\nVEauXjk66ZFqy0uOVL91c6x1PQYp5TgawQ4tgKAGJxVhUuWpVIxsNKmZEdWWKj1EtacyJqqI3GuO\nlRhHvzmq2vSKox280KOdXK/0yCnH2gY7tIBBHuwq40Clc6goVzSGdoNfZXxkGZQcVZ+p/vvJkeJC\nzR784qiSrYujkx6p8ro52unROu4mx2r+7zrBMzQ9cE9DDK2Q7wGIA0+O0Kko1y4SFeur5MjRLGWU\nVOkxC1TkLZ6z40iV0cnR+vOTo9t6ZI56OLqBTJV/DBrs0AIKeRBTUascXVoDWTXrUkXcFFTRtZ1R\nsuNhZ2Dson9dHFXG2UuObusx6BztynvJ0Q3wohA94JRjQCAbAuuYDHnQifWcUiZUtGwnT2UI7CJ3\nOQ0kH2eOao525eW6QeVY63p0a1EI30PTA3ZoAYXKQFDH7crK0bJTFErVs46Lbdi1KRotO3nM0Rle\nchTPu8Wx0rJ+6dHNN1YzRg52aAGCOABV0a0Fu2jZKi9+qiJj1UxBlKeKqFVRulNk7QdHVT9FeX5z\npKCTY63rUS7vB0d2aLWNysJARkXYvXs3brrpJtx444144oknyDLnzp3Dj3/8Y3R0dKC9vb3q7WjE\ngSb+Wcfk6FOsAwyPsOV2VfLy+fJ7GlQdWZ78ScmkIn+Ko3iuXjk66ZHqh5ccVfJ1cgyCHt1Avso/\nBg12aJpw/PhxPPfcc9i1axf++Mc/4j//+Q9+//vfDyu3ZcsWTJgwAfv378fevXvxj3/8A6+//rpj\n+1QqRLwPQA1+y1CI5agoVK6vkinWUf1WgTLMolyn83J/dHO0M35ecXTSo3i8XjkGQY9ugBeF6AE7\nNE3o7u5GW1sbGhsbYRgGOjs7sW/fvmHl5s6dizvvvBMAEI1GMW3aNJw6dcqxfWpwimkdORqWI1DV\nYBTrU0aBkieWoQY6VUZsR07/UNG53Xk3OIozCLv+u8nRbT06cXTSo9yW1xypOro5OunRrfehsUPT\nA76HViW6urqwdu3aUi7dWvV0zTXXYN68eaVyzc3N+Oyzz4bVv/7660vfjx8/jgMHDmDHjh2Oci1j\nQBl3ypBUE53KxpBqWy4v1qNkyOeoOrKBs+PoJG+kHFUpKS85uq1H5jhyjm7dQ+Nny/SAZ2hVYvHi\nxejp6cH777+P999/v/T9sssuG1Y2HA4r23n77bdx5513Yv369bjiiisc5cpRLaCOJuVz1m/VeTvj\nIpcX5TuVs6ujSjv5xVGsyxzV6c565+ikx6C+sXq0IGS6paFRhqeeegpnz57Fgw8+CKCQgnz55Zfx\n/PPPDyu7e/duPPnkk9i8eTPmzJnjdVcZDAajLsEzNE1obW1FKpXCmTNnkMvlsGfPHrS2tg4rt3fv\nXmzbtg0vv/wyOzMGg8HQCJ6hacRrr72GF198EdlsFnPmzMG6detgGAZeeeUVnD59Gvfccw+uvfZa\nmKaJSy+9tHT/7aabbsL3v/99v7vPYDAYgQY7NAaDwWDUBTjlyGAwGIy6ADs0BoPBYNQF2KHVILzY\nQotCKpVCR0cHFixYgNWrV2NoaGhYmW3btmHhwoW48cYb8cILL4xYZjXyc7kcNm7ciI6ODnR0dGDt\n2rVkH93sg4h7770XmzZt8lz+gQMHsGTJErS3t+MnP/kJMhl9TzFVIn/Tpk24+eab0dHRgV/84hfa\nZMtYtWoVtm/fTp5z8zpkBBgmo6Zw7Ngxs62tzfziiy/MXC5n3nXXXeaePXuGlXvsscfMjRs3mqZp\nmkNDQ+Z3vvMds6ur66Ll/ve//zW//vWvm6dOnTJN0zQffvhhc8uWLWVlUqmUuXTpUjOdTpvnz583\nb7nlFvPtt9++aJnVyn/xxRfNu+++28zn86Zpmub9999vbtu2TYv8SvtgYfv27ebXvvY18/HHH/dU\n/nvvvWdef/31Zl9fn2maprly5Urz+eef90z+wYMHzWXLlpm5XM7MZrNmZ2enefDgQS3yLXz44Yfm\n7bffbn7lK18xf/e73w077+Z1yAg2eIZWY3B7Cy0VDh8+jFmzZmHy5MkAgGXLlg2Tm0ql0N7ejlgs\nhmQyiUWLFpF9c0t+S0sLVq5cWdqtYcaMGSPifDF9AIB//etfOHjwIG699VZtsiuVv3//fnR2duLS\nSy8FAKxbtw7t7e2eyc/n8xgcHEQ6ncbg4CCGhoYQj8e1yLewa9cuLFmyBAsWLCDPu3kdMoINdmg+\noaurCy0tLbjqqqtw1VVXlb6/++67mDRpUqmc3RZaluGxttC64YYbLro/vb29w+T29vY6lqH65pb8\n2bNn4/LLLwcAfPrpp9i+fTsWLlyoRX6lfTh79iwefvhh/OxnP7PdCcYt+R999BHS6TTuuusuLF68\nGFu3bsW4ceM8k//Nb34TU6dOxbXXXov58+fjy1/+Mq699lot8i088MADtk7azeuQEWywQ/MJfm2h\npYJJPL0hy62kjJvyLRw/fhy33XYbli9fjrlz52qRX2kf1q5di7vuugtTpkzRJrca+dlsFocPH8bP\nf/5z7NmzB1988QW2bNnimfydO3fi3LlzOHz4MA4fPgzTNLF161Yt8iuFm9chI9hgh1ZjmDRpEvr6\n+kq/+/r6yqJREbt378b999+PX/7yl7j55pu1y21ubh5W5vTp0xX1zQ35AHDo0CHcfvvtWLlyJb73\nve9pkV1pH3p7e3H06FE89dRTWLx4MV555RXs378fjz32mCfyAeBLX/oSrrvuOowfPx7hcBgdHR14\n7733PJP/1ltv4Vvf+hYSiQTi8TiWLl2KI0eOaJFfTT/dug4ZwQY7tBqDX1tozZs3D3//+99x8uRJ\nAMCrr76Ktra2sjJtbW3Yt28f0uk0BgYGsH///mFl3JR/5MgRrFq1Ck899RQ6Ojq0yK2mD83NzfjL\nX/6CvXv3oqurC7feemtptaUX8gHghhtuQHd3N/r7+2GaJlKpFGbOnOmZ/JaWFhw8eLC0CXAqlcLV\nV1+tRX6lcPM6ZAQbvFNIDcKvLbTeeust/OpXv0I2m8W0adOwadMmHDlyBIcOHcLGjRsBAE8//TQO\nHDiATCaDRYsW4e6779ZF21H+rbfeig8++ABTpkwpcZ49e7Y2h1JJH0Rs3boVZ8+exerVqz2Vv2PH\nDuzcuRP5fB4zZszAxo0b0dDQ4In8oaEhPP7443j77bcRi8Uwc+ZMrFu3DolEQot8EatXr8b06dPx\n3e9+F93d3Z5dh4zggh0ag8FgMOoCnHJkMBgMRl2AHRqDwWAw6gLs0BgMBoNRF2CHxmAwGIy6ADs0\nBoPBYNQF2KExGAwGoy4Q8bsDDEa94uTJk/jGN76BK6+8svTcnGmamDhxIn7729/63T0Go+7ADo3B\ncBFjx47F3r17/e4GgzEqwClHBoPBYNQFeIbGYLiI/v5+fPvb3waAUtpxwYIF+OEPf+hzzxiM+gM7\nNAbDRXDKkcHwDpxyZDAYDEZdgB0ag+EieO9vBsM7cMqRwXAR58+fL91DAy7cR3vxxRcxfvx4H3vG\nYNQf+PUxDAaDwagLcMqRwWAwGHUBdmgMBoPBqAuwQ2MwGAxGXYAdGoPBYDDqAuzQGAwGg1EXYIfG\nYDAYjLoAOzQGg8Fg1AX+H10EqpO9iZo6AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1214df0f0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dplot(ds_fret, hist2d_alex, scatter_alpha=0.1);" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAEbCAYAAACC8mBcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAJ/wAACf8BB8w+RgAAIABJREFUeJzsnXm8HEW597/VPT0z5yQhZCEBuaiIqBDlCiJRJCwJIRBC\ndiRqAsQoElmi8MoNJuxgEC57UIiKXERB4ZqENZE1FwETlR0iXi+CyJKE7OecmV6q6v2jl9PT6Z6Z\nE+YkJzi/z+ec6anurqqna6p+9Tz19FNCa61pookmmmiiiR0ExvauQBNNNNFEE010BU3iaqKJJppo\nYodCk7iaaKKJJprYodAkriaaaKKJJnYoNImriSaaaKKJHQpN4mqiiSaaaGKHQpeJ61vf+hbr1q3r\nckFvvfUWRx11VJfv6yra2to488wza1537733cuyxxzJq1Ch+/etf10y/7bbbOPbYYznuuOO49tpr\nu1Sn6dOn88c//jHz/LRp0xg1ahQTJkzguOOOY9KkSSxbtqzi/Lnnnltxz9y5c1m0aFH03XEchg4d\nyjXXXFNXnV577TWmTp3K+PHjmTJlCn/5y1+qpsfx5z//mWnTplXN/5VXXuGggw5iwoQJTJgwgfPO\nOw+AzZs3861vfYvRo0dz4oknRr+lrPQsTJs2jaFDh6KUitK01hxyyCFbPKuegrvuuou5c+dG3xv1\nLBqJe+65Z4vnt2zZMkaNGhV9f+edd5g6dSqjR4/mjDPOoFwu151/8rc+bdo03nzzzej8+vXrmTt3\nLkcddRTHHnsskyZN4vHHH6+Z73vvvcc3v/lNxo8fz8SJE/nDH/6wxTWlUomzzjqLsWPHMnbsWB54\n4AEA5s+fz0033VRX/ZcvX8748eMZP348+++/fyTLWWedVfW+VatWMWPGDMaPH8+MGTPYuHFjxfnk\nM66V3gicccYZvPvuu7zwwgtcdNFFAAwZMqShZSilmDJlCvfee2+Udsstt3DMMcdw9NFH88gjjwB+\n37344osZM2YMY8eO5b777quesd5G+Oc//6mPOuqobi/nzTff1CNHjqx6zbvvvqtHjBihN23apDs6\nOvS4ceP066+/npn+z3/+Ux9xxBG6XC5rz/P05MmT9R//+Me663TyySfrFStWZJ6fOnWqfuaZZ6Lv\nL774oj7ooIP03/72t+j8fvvtp5966qnomjlz5uiFCxdG3++//3592mmn6UMPPVR7nlezTlOnTtWP\nP/641lrrp59+Wo8fP75qehx/+tOf9LRp06rmf+edd+obbrhhi/SLL75Y/+QnP9Faa71o0SJ99tln\nV02vVv/DDjus4pmsWLFCf/GLX9SzZ8+ueu+2huM4+qqrrtL777+/njt3bpTeqGfRSCxevLji+a1d\nu1aPHj26ou9+61vf0g8++KDWWusbb7xRX3311XXnn/yt33rrrfqss87SWmtt27YeM2aM/tGPfqSV\nUlprrf/2t7/pI444IuoLWZg9e7a+/fbbtdZav/baa/pLX/rSFtfccMMN+oc//GEk17Bhw/S6dev0\nDTfcoH/84x/XLUOIadOmVchSDVOnTtWLFy+O6nH55ZdH59KecbX0RmHSpElaa61//vOfR3UbMmRI\nQ8uYP3++Hjp0qL7nnnu01lq/8MILesKECdpxHL127Vo9cuRIvXnz5mj80lrrdevW6aFDh+pSqZSZ\nb6bG9e677zJ16lQmT57MlClTeOGFFwAYPnw4q1atYuHChZx11lnMmDGDUaNGcemll0b3XnXVVYwa\nNYopU6ZwxhlnVGgGAGvXruXb3/42kyZN4oQTTuCZZ54B/NneuHHjmDRpEt/5zndwHIcVK1YwdepU\nTj755C3KueGGGzj22GMZO3ZsNGO67LLLePfdd5k1a1YmWT/99NMcfPDB9OnTh5aWFo466iiWLFmS\nmr506VKUUkgpKZVKOI6DlJJ8Pl91QnDJJZdw9NFHM2PGDNavX1/1mQYTiOj405/+NKNHj+buu++O\n0k455RTmzp1LqVRKLW/hwoWMHj2aj370ozz66KNV6wYwefJkDj30UAA++clPsmrVqqrpL7zwQtQ2\nv/rVr2rm/+KLL7J8+XImTpzIzJkzo3wef/xxxo0bB8CYMWP4n//5H5RSqelaa6ZNm8b555/PxIkT\nGTduHC+99FJUxsiRI1m6dGn0fcmSJXVp9f/7v//L5MmTmTBhApdeeml0z7nnnsspp5zCsccey1NP\nPcWLL77IV77yFSZOnMgpp5zC6tWrI9nS0ocPH87111/P8ccfz3HHHRdpq8899xyu63LOOedU1GNr\nnkXYV+qxYNQrz7Jlyxg9ejSTJ0/m4YcfrsjjwgsvZObMmdF3z/P485//HGkBEydOjNogHBsAVqxY\nwfTp01PrFdeSN2/ezC677ALA0qVLaWlpYebMmQghANhrr7246KKLcF2Xd999l/Hjx0dafPgHMGLE\nCMaOHQvARz7yEVzX3aKvHHjggZx44okA9O/fn759+1Zos1JKZs6cyY033lj1uYbQWlf024cffniL\n+p133nmsW7eON954I6rf9OnTo3qkPeNq6Vm/gaeeeoqJEycyefJkZsyYwYYNGzLrfc0113D00Ufz\n1ltvMX78eK6//np+9rOf8dZbb6G1Zs6cOYwbN46ZM2dG+WS17YwZM7Zoj5dffhnwx4yXX36ZI444\nIip72bJlHH300ViWRf/+/TnooIOi3991110HwOrVqykWi+RyuUwZMs/cfffdHHrooZxyyimsWLGC\nZ555hv322y/6QYUVC1W6o48+mq9+9au88cYbPPfcczzwwAO0tbUxceJERowYUZH3ZZddxgknnMBh\nhx3G22+/zYknnsiSJUu47rrruPPOO9lll1247rrreP311wHf7HTvvfey6667cvLJJ7N06VLy+TxP\nP/00ixYtQmvNSSedxD777MPcuXP5+te/Hj2ENKxevZpBgwZF33fZZRdeeeUVhBBbpK9cuZI99tiD\n4447jiOOOALLsjj00EPZb7/9MvNfunQpf//731myZAlvvfUWY8aMqfpM07D33ntXmAu/+MUvsmrV\nKq666qoKc1MozzPPPMN1113Hpk2buPPOOxk5cmRm/YBoYAS47rrrojZKph955JEAzJkzhwsuuIAD\nDzyQiy++mDVr1lTNv3fv3kydOpVRo0Zx55138v/+3//jF7/4BWvWrIkGKtM0aW1tZcOGDanpIeGb\npslvf/tbnnrqKWbPnh395g4//HAuvPBCwB9Enn/+eU488USefvrpqnX7j//4D8466ywOOeQQbr31\nVqSU0bnBgwezYMECXNfl+OOP5+abb2bw4MEsXbqUSy65hKuvvprzzjtvi/QbbrgBgIEDB3LXXXdx\n++23s2DBAq6++mo+//nP8/nPf56FCxdW1GNrnkUc8b6YhVryXHXVVcyZM4df/epXfPjDH+bUU0+l\nV69egP973XPPPdl///2j/NavX89OO+0Ulb3LLrtEA1q99fv+978fydre3s4dd9wBwPPPP8+BBx64\nxfXDhg2LjpOT4BDh7xTgpz/9KUOGDKGlpaXimi984QvR8QMPPIDneey1116AT6bnnnsun/jEJzjt\ntNNSy6iFI488sqIeIV544QV23XVXLrnkEv74xz+y1157ccEFFwDpz7haehLhM77ppps4//zz+exn\nP8vtt9/OypUr+eIXv5h6z3e/+132228//vrXvzJz5ky+/OUv85vf/Abwyfvwww/nsssu47rrruPG\nG29kzpw5meX+7Gc/Sy2jXC4zb948rr/+eq6++uooffXq1RxwwAHR94EDB/Luu+8C/m/94osv5q67\n7uLUU0/dOuI6+OCDOf3003n11Vc5/PDD+epXvwpUagYHHHAAxWIRgD322IONGzfy5JNPMnr0aEzT\npG/fvqkN+dRTT/H3v/89Wo+RUvLuu+8yYsQIvva1r3HkkUdy9NFH84lPfIIVK1Zw0EEHsfvuuwNw\nzDHHsGLFCvL5PGPGjMGyLMCfmT799NN8/OMfzxQ2hE6JcmWaZuq1hmHwwgsv8OSTT7Js2TIsy+KU\nU07hvvvuiwgpiRUrVkQzod133z3qjAcffDCnnXbaFs80DUIICoVCRdo555zDcccdxzHHHFORvnjx\nYg455BBaW1s56qijuPTSS3n77bf50Ic+lP0QAvzwhz/kxRdf5L/+678y09evX8/69esjOcaNG8dV\nV11VNd/Zs2dHx1OmTOGaa66ho6Mj9dlnDXCG4RsEJk+eDPjPb/369dEssKWlhX322Yc//elPAHzu\nc5+rKe/GjRtZtWoVhxxySJT3L37xi+h8OJF4/fXXeeONNzj11FOjmbVpmpnpIcJBdu+99+axxx6r\nWZ8kaj2LrqKWPH/961/Zfffd+fCHPwzA2LFjeeKJJ3jzzTf57W9/y2233RYNLJDed+oh0DjmzZsX\nDV6//vWvmTlzJr/73e+2yOuqq67iiSeeoFwuc8QRR3DSSSdx6qmnIoSI6iGEqJgQ3HrrrdHEIQsP\nPvggl19+OT/96U+jtF/+8pd0dHRsVZuFePjhh5k/f35F2mc+8xkmTJjAiy++yHe/+13OO+88fvzj\nHzNv3jxOP/301Gf8j3/8IzW9GoYPH86ZZ57JyJEjGTFiRCZphfjb3/7G3nvvjeM4Fb/flpaWaNI7\nZswYvve971XNZ8aMGaxduzb6LoTg0ksv5e6772batGnRBKwa4r/t888/n1mzZjF16lQOPPBAhg4d\nmnpPJnEdcMABPPjggzz22GM88MADLF68uKKhgS0G1rAzpP2441BK8ctf/pLW1lbAX7gcPHgw3//+\n95k8eTKPP/443/ve95g1axYDBw6sECw5UMTheV7VckMMHjyYZ599Nvq+Zs0aBg0axKBBg1LTV6xY\nwbBhw9hpp50Av0GfeeaZTOIK6xkirO8BBxzAkiVLqj7TEK+++uoWJNy7d28uuOAC5s6dy2c+85ko\nffHixaxfv54RI0agtcayLH7zm9/wne98J7N+SinOOecc3nvvPW677bZolp2Wvn79+lR5qmHBggV8\n/etfj2ZNWmtyuRyDBw9m7dq1DBgwIDK/7rzzzgwaNGiL9L59+25RXrL9R40axdKlS9FaM2bMGP7x\nj39UrVetuocTMSkle+65J7/97W+j7xs3bmT16tWp6SFCE3J8cM1CmszVnkU8z3p/69Xk2bBhA++8\n806F6S58Pg8//DBr167l+OOPx3Ec3n77bb7+9a+zYMECNm/eHF0f9pFQ5hD11u/YY4/lwgsvZP36\n9XzmM5+JtC+As88+m7PPPpuFCxfyzDPPsOuuu2ZqXABXXnklTzzxBL/61a8yB8xf/vKX/OxnP+Pn\nP/95pG0BfP7zn2evvfbi8ssv5/LLL6+r7klkaVxvvvkmO++8c0QmxxxzDKeddhqPPPJIxTN+5513\n+PrXv86wYcNSn/0tt9wCgG3bABVOMSeffDIjRozgscce48orr2T06NF885vfTK3nNddcwx133MGg\nQYP4z//8TzZs2MCECROYP3/+Fn0t7L9ZbZulcZ166qk899xzLFiwgHfeeYfly5dTKBQYNGhQhbVm\nzZo17L333vzlL3+hUCiw55570rdvX4YNG8arr76aSVyZ07irrrqKRYsWMX78eM4///xU77I0HHzw\nwSxduhTP82hra0v1CBo6dGj0A33xxReZNGkSjuMwatQo+vXrxymnnMLYsWNZuXIlAH/605947733\ncByHBx54gC996Ut8/vOf57777sNxHGzb5t5772Xo0KHkcjlc161axy9+8Ys8/fTTbNy4kVKpxO9+\n9zuGDRuWmf6pT32KJ598Etu2kVLyxBNPVPW++cIXvsCSJUvwPI9Vq1bx5z//uUvP9Pnnn+d3v/sd\nxx9//BbnDj/8cPbdd18efPBBwDdDrFu3jmXLlvHII4/w6KOPcuWVV/Lf//3fFQNSEpdddhltbW38\n5Cc/iUgrK71fv34MHDgwMsGF3ljV8MQTT3D//fcDvnnn3//938nn8xx22GHRDPn+++/nc5/7HEKI\nzPR4ecuWLWP33XenT58+Fc/jiSee4KWXXuKzn/1szXr17t2b3XffPZLlnnvuSdUYPvaxj7F27dpo\nHfK2227j/PPPz0zfGnT1WfTr149XX30VINJQ6kVavS+44AI+8YlPsGrVKl577TW01tHvavr06Sxd\nupSFCxeyYMECPvShD3HLLbeQy+WiSS34a6uhltm/f//oN/3QQw/VVa8//OEP7LbbbvTr149jjjkG\n27a5+eabo8Gxra2N5cuX19Q4b7nlFlasWFGVtJYsWcKtt97KHXfcUUFaAJ/61Kf41re+xbPPPpvq\nkfh+sMcee9CvX78o38cff5x99tknWvYIn/Fuu+3GLbfckvnsQyxfvhyAJ598MkqbMmUKbW1tnHji\niZx00knR2JmG7373u3zkIx/hvvvu46STToomB7vvvjttbW088cQTgN9vQ7Ltats+8cQTLFy4kEWL\nFjF8+HC++93vctRRR3HooYeyZMkSbNtm3bp1LF++nC984QusXLmSyy+/HK01bW1tPPnkkxUmxSQy\nNa6vfe1rkUC5XC5aS8gyC4Tphx12GM8++ywTJkxgp512YtCgQdGsL8TcuXM577zzWLx4MYZhcO21\n15LP55k1axYnn3wyxWKRnXfemR/+8Ie89tpr7LLLLpx99tmsXr2aY445hsMOOwzw174mTZqE53kc\nffTRjBw5Es/zGDRoEDNmzMicDQwePDhSR13X5YQTTmCfffYByEx/+eWXGTduHJZlcfDBBzNp0qTM\nhzpy5Eiee+45xowZw2677cbee+8NwNSpUznrrLO2eKbgL6SHGmhLSwvXXnstu+22W+oznzt3bjTw\nLl68mEmTJlXYg0eMGMEVV1zBo48+mjoD3LhxI3fccQd77LFHRI5CiKhTJ9MXLlzIFVdcwfe//320\n1uy7776Zsoe47LLLOPfcc/npT39Kv379uPLKKwE488wzmT17NosXL6ZPnz6RyTErHeDvf/87EyZM\nwLKsaDYcPpNevXrxsY99jI985CM16xRi3rx5zJkzhyuvvJJPfvKTW/w+wdecrrnmGi655BIcx2Hn\nnXfmiiuuSE0PZeuqyayrz+Ib3/gGs2fP5u677665htkVea688kpmzZpFPp+vy9R+/vnn8x//8R/c\neOON7LbbbpHJ//TTT+fSSy/lhhtu4NBDD+WNN95IvT/8rQshMAwjki+fz3PbbbdxzTXXMH78eCzL\nQkrJkUceyYwZM6rW6eabb6ZXr15MmzYNrTVCCBYsWMCLL77IY489xiWXXMLNN99MuVyOzKWhWSv+\njL7//e9z4YUXcs8993DxxRczYsSICueCOLrS3vPnz+e8887jsssuY+DAgdFvZmsQWnviv/lZs2Yx\ne/bsaE304osvBnynrlmzZlVMtENtHvyJb/zZ9uvXj/vvv58rr7ySj33sY/zgBz8A6m/bWthvv/2i\nV36klHznO99hwIABjB8/nldeeYXjjjsO0zSZNm0an/70p7Mzet/+jgk8++yzkZu267r6y1/+sn71\n1Ve3Or/ly5fr6dOnN6p6TexgmDp1qv7zn//c0Dznz5+v16xZo7XW+pFHHtFnnHFGQ/Nv4oOBhx56\nKHo1pKegq/3h1ltvrfkqwY6IbLeNrcSee+7J/Pnz+fnPf47WmokTJ/KJT3yi0cXUxJtvvskZZ5xR\nMSvSwSzr+uuvZ4899ujR+TcCV1xxBU899VRUx7B+Bx98cM1F156QP3Rdi6mnbnvvvTfTp0/HNE12\n3nlnLrvssobUdXvg1ltvZdGiRVs8p49//OPva1bfhL+WE1p3egq62h/69++/hVn0gwChdXMjySaa\naKKJJnYcNGMVNtFEE000sUOhSVw9FK+99lp0HHoHxr0E0467cj4OpVTFH8D//d//peZVLb/4/dXK\nrJYWP5dWh0bKmJVX+P21117rdhlryVDrGbxfGbPSk7+D7pSx2vl4P+guGbvajk1sfzSJq4eiVCpF\nncYwjC06UJp7cJbLcJgeP5/s/Mnz4TsiSqmK8rOuT9Y1q8xa98WRFry1kTKGx1kylkqlbpexVjvG\nn0F3yFirrmH53SljWnr4GfaD7pSx3nZsPLwu/jURouHOGU00DtU6Z9Z14TVZ11a7Ly0tORClDUzV\n0pN1Sn7fnjKG9zZlpGZ6sk7J7x9kGUPHnsajq2TUHK5DNDWuHo5aZqE0hJ24noGgmpklmV/y3lr1\niJ9PKy8tLe3+anV6PzImZdoeMtZqx2Rdsq7ZkWXcEdqxe9BYjev8889nxIgRUbDbuFfp5s2bGTly\nZLSNyI6OJoX3YMRNH1kdO9nR4rPJaqaP+Cw1mU89dYoj7b568s8y2WwrGbPK7GkyZuW3LWRMnvtX\nbcfuQWPNf88//zwLFixIdX+fM2dORaiuHR1N4urhSA5eycEhzXSTNrBUGwSS+SZntvFz9QxKafWs\nJlOWjMnjRsuYNohuaxm7ux3fr4xZadtKxjCf7pSxVjt2j5kQGklc7e3tvP7661x77bW88cYb7Lvv\nvpx77rn07duX22+/nX/7t3+rutXJjoamqbCHo9rgFB6nIWu2Xs0MUm0QiZcZ/6xGdMk6J2WK5501\nWHWnjEnT0PaQsVY7Zsm9rWSMf+8uGXt6O3YvcTXGVLh69Wq+9KUvMXfuXO655x769u3LnDlzeOml\nl1iyZAlnn312zaDPOxKaGlcPR9ZMMMtUktZ50/KrNstMKyOZd9r5LNNM1iDUFdNMd8hY7bluKxlr\ntWMyvw+ijNXaMa3sbS2jEKKHOGdkY8899+RHP/pR9P3b3/42Q4cO5e233+aGG26oa0eHHQlN4urB\nyCKONJNIlhmpK7PpsIysmXZXBqasmXayLtVkzJKlUTIm79seMtZqx2S9trWMWecbKWO1dkxie7Zj\n42E3LKdXXnmF119/ndGjRwO+J2ShUGDDhg2cfvrpaK154403mDdvHm1tbRUbxu6IaBJXD0fWQBb/\njB+ndeL4NWkmlWraTrUy0upYT57J67aXjLXKiGN7yZg8brSMtdqxFrq7HbNkbqSMtdpxR1jj0lrz\ngx/8gIMOOoiBAwdyyy23MGrUKK644orommnTpkX7du3oaBJXD0baDLTaDDt5Pn5NVietNVPNGlyy\nBqu0wSNZ12TZPVXG5PkPooz/Cu3YCBm7B40jriFDhjBr1ixOOukklFLsvffeWwSP7j4C3vZoElcP\nR9osNm7iSEuvp3PHUa0DJweZah0+npZm0knKVUvGZLkfRBl7ejvG67U9ZMyqUyNlrNWOPecF5Oo4\n/vjjUzefDXHbbbc1tLztiSZx9WBUG5jqNXmE273HO17YUWt1RiEESvnuwALQgBGkGfH8tMYQIvWc\nEZQf1iFZl/i2I/H6hoinh3VJnk+mba2MybR4+WE54bm0ATFtZh8/n/a9qya/NBnTziXvTatTFhlW\nk2Fby5i8f3vK2Hg0wzhtLZrE1cORnA2mzVCTHSxOBlmEEZ5L3hOeCz8jUgjOqyQJBqQV1VGI6BoR\nnE9DWnlhehYxpRFe/Jq09GoyxvON55H2rNKILU5kaahmKqunHWtpFGF6NfNcVv61NLi0Om4vGdPy\nbqSMSW0wiR1hjetfDU3i6uGoNpOthriGkExjC41Go9WWHVRojVYKYfj3+NfGCMwQGKl9WkekFeWp\nNWg/Xce1IR3mSOd18a9KQYw8dcWlCbIJP5PPKLw3IX9IanFNLqm51TIT1bMWE/+MX9MV1GMWyzpX\nbYBOmvK2h4xpdehJMu4I7vD/amgSVw9HNbNF2oAR17LiaeE3rZQ/+CcGb9AEHOZfqzVKSZ+API1h\nCDoNhsGRCsupHOyN4H6BjggrLKMz/6DMWD5xzS6oHFpK9BYldBKUTnwXgJYSAo0vzE/E5NWdmUTH\nSqmK6+OkZgjRmU/KZxq5pWkMXWnH8J60PLpiZoufT7u/HtNdVt6NkjHLlFervLTz3S1jY9Ekrq1F\nk7h2ECTNIcm0EFmmr3DAjogqTAuIRWvVqbHgE4X2XN8UaAiUxCeGMO/wGP+7IQwQndqLT4QqIkFf\nq4tpYhCxkVY+GWo6tTSl/PpK143SIpKJyxiSVUB64ezYMIyIvIQQ6NgzUUpFWhhaR/XJMqeqQAYj\nVocss2Kt9ZF62zHr/iyTWVr58WuqmdLSTGv1mNwaJWNaejX0BBkbgy237WmiPjSJqwej2npAVodP\nzvwjDSw8VgoVajHB+ojQOtAsApNhoClJu4wQAgmYhkBjoI2AFLQC4Ws8vmlOggYD3am9KEmgmoHS\nvulRh5+gpY6UMaUDsgw+lfK/OKUyCCKtK2atRCN8RSgwORqmT6YhmRmmGT0PwzA6zY1KVazjaa1R\nSoc8hhCdz1p6nk+EpokKis5aM4wIk8rBNK3tarVjPRpAtYE37b6sAT/t/vh1WXXYFjLG0V0ybo0m\n1hg0Na6tRZO4eji60uGh0tFBxQbocBFfSolWCulJtJZ+upQIrQJzmsYIaMIrdyCEwDQESggQBoZh\nok3DN9MJE2EaPstEZBKaCJVPXFqBlqCUv16lfM3LJ4vgdEBSShP9hdqhU2qPCEsRKGnxta6YliWC\nmbUwDEzTRHgSM6irlDIir/C5hMdK+jn7Wqmfl2kaoDWu6/nHEOXvF9u1NY+utmNyjQaqOyWkDcL1\nlldr8K4X3SFjPJ+eIGNj0SSurUWTuHo4as0wk6hwhggQkpbneUhPoqSH9Dyk9FCe568jKYnQEqF9\n4tJa47ZvxjQEGAJM0x/4zRwYJiKXQ5gmaNPXuIRAoRFCR2QllJ+30P6nUhIhFVpqlNT+Z0BcSmmU\nEkitkRqU9tWf8qZNKAJCCwgrWvMK1p5C0jINA8M0MXM5zOBTmWakeUkhfNJEo6REBqQdPp9Q3TIC\nDUsDnuugdQ6tNaZpRp/Ral9C++rKrL5aO2YNzmEZ1a6rtsYUr1PWelItGbpDxiR6mozdgyZxbS2a\nxNXDUU8HCq+Ju5JH61qBViE9n6xc10W6Lq7j4LmOv4bkuSA9UB6mVpgodK4XzqZ15AwDbRqQMyGX\nw8hZiJyyiMlvAAAgAElEQVSFkhZGzkIbOcj5Wo0hNBoVkKAHykVIF+25aOmCJ31Nz1NoT6E8jZSg\npEZJkMr/85TfpXXvnWjfuAGpQeJrXIpOAouTlmGaPllZFjnLwgo+c7kcRi7nP8NwTSt4Hp6UAYFL\nXxONmfvMnE9Wtm2TUwrLsgAwg2estMYIApcmta96zFTV2jFppqtmxktqXmmfybrEv6et5SRNgGn3\nN1rGZF7bUsYss2BWvo1Dk7i2Fk3i6sGo1rninSrZsUSwjgOd61ieJ/FcF9e2cWwb17Zx7TKeYyMd\nG+35JGNqSQ4FA1uxN6yNSEtYObDyiHweZRUw83m0yiNyFlrnEKaBFhpQoFzQLkgb5dkI1wHXAddF\nux7alUhXo1yFcsHzNNIDV/qk5SpwNejW3rSteS/a1EHSSWA69PRLkJZlWeQLBax8nnyhQC6fJxdo\nYCIYvKSUeJ7nPw/X9TXRwIQqhMDM5cjlcmigXCqRV4pwaa3C+SPpZk/6O0tb245pA2oyz7QBPnlt\n1nHWZxqSdW+kjFn17iky7iiRM/6V0CSuHQRZtv1kevQ+Er7WFWoTUnq4joNj25RLHdilEnapA7dU\nQtpltGsjPIec9rCQ5Pp/iPK61eicCVYOI29hFAroQhFRaEHLIoYsovN5hGWhlIFhaDQSlAPKRntl\nhFtCu2W0XUY5Dtp2UY5E2RLP1khH47ka1wXXA0eCo/w/898+zKbVq3A1uHTuSqSE8D39DKNT27Ks\niKwKxWL0ly8WsfJ5zFwu8ij0As3TcRzc4M+LEVcul8PK5yn07k25VOrUxBDRgKoBbRjoKiaraoNy\nrXbMMm1laSq17k8jmWpEVO23t61lzKrbtpKx+QJyz0OTuHZQpA0WFQhMYmh/PSccrO1ymXJHiVJ7\nG+X2NpyOdrxSB8opYbg2OeVREJKd9lKU165GWCZG3sIsFjCKRYyWVgzPAeWitUQgQXsYORNtaMBD\naBu8EtorIZx2tN2BtkuochlVdpAlD1mWeGWFtDWOrXEccFywPbAVlBXspBSbVq3C1uDQSV4ydG8P\n1qKMXI5coGkVWlootrZSbGnBdV2KnodVKJCzrArisgPNM/z0PC96pjnLolAokO/Vi1JHBwjha3Sm\niVQ5jJSZeIWrfYB6TEzV2rGaJpFEPVpENaRpd1mD+7aWMcuUl5V/FrpTxq2D7KZ8P/hoEtcOhrjZ\nJU3bgs6XbLVSkQNCuK5ll8uUOjroaGujtHkT5bbNuB1tqHIHhlsiL11cPPooRWntaox8DrNgYbUU\nUS0taM9GSxelJQbKJy4KgAmGBuGCKoPXgXDb0c5msNvRpXYolVAdNqrD9cmrQ+GUNE5ZY9uCsgNl\nV1OSgrKCPkqxcdVqylpjA44QeFr7619CoA0TYZqYVqAhFYsUW1tpKZdxe/XCC8yABcchl8/73oVK\n+c/BtimXy9jBn+u6vvZkmlj5PMWWFvoNHky5VMIwTXIBOeakjJw04s88zVQYfu9qO6bdk2aSS6KW\nuS4r32r1jJ/L0rK6W8ZaRLctZOweNN/j2lo0iauHo1qnS6ZFLx8Hmpb/3paO1nRCU6FdKlFqb6d9\n82ZKmzbitG1CldownRJ56SDxB/Hy2jVYBYt8MY9nF8m5vZDKw9CKnO8dDwZgKBA5tKkROKBL4LWD\ntxncTWhnE9r2yVF1lPHaXbw2F7dd4nZonA6wbSiXNSUX2qWgJH3i3bhqFWX8Lm4LgQtIrVGGgTYM\njFwuWtsqtLTQ0qtX4Hjik5YnJW6xiFUoRG7xTkjgpRLlUolygrgKxSKe56G1ptTRQS6XI18oVKyF\nxV/eJmFKyjKf1duOabP+avekrTdVM4fV0ibqGbC3pYxpZr7tJWNj0TQVbi2axLUDoFpHTM5qgSjK\nRGi6Ch0SXNf117jKJUod7bS3baa0aRP25g2o9s2Ydjt55aBwfY+6de9RaLFwi3mk2wslXcB/Z0ub\nAnIGOicQpvZd5NEgHFAdaNUGcjPa24jyNqOcTahyG7JURnXYyHYPb7OH06awO6DcrinZgg4H2j3o\n8PyXpTe9t4YSghJga40nBG5AXAQOF1ahQK5QoFgs+ma/mMOFlBLXcbDyeYRp4gXEVS6VKJVKlDo6\nOolLa3K5HI7joAJyKpfL5ItFio6D9DzffT6aFCi00Rm5Q2tddS2lq+2YHLhrEUXaIJ6WT62BvCsa\nVCNkjOdVa/2pO2RMmimT+TSdM3oemsTVQMyePZt9992XE088cYtzN954I/fddx9KKaZMmcL06dO7\nlHfWYLIFYQWu2vGQTiFxRVpX2aZcKlNu76CjvQ1782ZU20YMuwPpljACjcvZsB63bOH1KiKli0ai\nTYEKtBydtzAsAywBuVygeTloVQJVQqt2UO0gN4PciPba0G4HsuzglVzcDg+3TeG0g92mKZegw4EO\nF9o8fxBpW7eeDnyNq4S/ziWF/0K0jhGXlc/jtrbiSdn5blbg7u44DlahADGNq5QgLs+TaK3IWRZe\nEC0DrX0zouNERKiUijw1zVxui7aIt0lX1qLSBvOse5MmtSSyHA2ynChqmdi2p4xZ+TVSxrR8asnY\nGDSJa2vRJK4G4I033uCiiy7i2WefZd99993i/KOPPsqyZctYvHgxUkqmTZvGvvvuy9ChQ6vmW48p\nJD6AxSPCd77T1RnmSXoerufhuIHJsFymXCpht7cj29sxS23glclp1w+3tHkznpdHShelFco0UVYB\nkS9AoYB2CmjXQngGWlpoUyEMh5BmNCUUJdBtKN2OUm1IWUJ6Np7j4tkujq2x2xXlDk25A8plKHmC\nDtcn3fa2zbQr7WtcgBvXuAzfozAXeBOGGhHBO1khYdsJ4rIdh1LMVGgHpkWAfKEACHKW5UfuSLjM\nh5pYPLhvWrzCZFt1pR2rDabJ47TfSprWlqVVpN1fjwnwX0nGpsbV89Akrgbg17/+NRMnTmTw4MGp\n5x955BHGjBlDPp8HYOzYsdxzzz01iauWbT+5eB1/ATncByvUwCKToefhuZ3rXU7Zxi7byI4SZqkD\n4ZbIK99s5rWX8KSH1AplCHTOgnwBXSyg7RaEUwbPAmmA8kNGaWwENlrYIGwQZbQooyijKKF0O1LZ\neNLFdT1cW+E4GrusKZcFpZKi5PjkhdaU2tspKU1JCGx8c6EyDCQgAo0r5/gvUutAG4Iw3qHvQZi3\nbXL5PBgGnlK+qbBc9p0zbBvHcZBBRPkwNFSh4LeV57oRYYWkpZSOBQ/uRJYm1NV2rFdDyNIuwjzi\n6dXqV+13l1V+I2WsJkc1+be1jI1H44nr9ttv5+6772bRokWsX7+ec889l7fffhuAb3zjG4wdO7bh\nZW4PNImrATjnnHMAePLJJ1PPr1q1isMOOyz6PnjwYJYtW1ZX3slOH+9Qyc5XsfFj7K/CZKgUUnq+\n2TAwHbq2jbQdlO2Qcxxc5fhBdjtKKC1RaF/bypfRLTa6bINtIxwb7RYQMkcYg1AYjm8uFI5PXEYZ\nbfifStgoHCQ2nvZwlYsrFY6rcDyB7WhsB8q2puz68pTKZWygrDRlfI1L4nsVhsSlwnew6HxJOHxe\nnudhOQ6mZfnEFWhRoVehY9t+BI3AWxAgn8/jBs4ZSdLyA/VS8bzjHoVxZGkItdoxLa+0fLOuT64x\n1TJ5Jc121eqyrWVM1rM7ZKxVrx1F43rppZdYsGABAwYMAOBHP/oRe+65JzfddBNr1qzh6KOPZtiw\nYfTr16+h5W4PNIlrGyC5OSEQDZLVUK+dP6lxRWGfCLe90pHmFa7PSOUH2g01MOm6aMfDsx2k9InL\nK3t+3EDDRJccdNFDlR207aAd/0+4NtozEVIhlAbtkxM4aOGhhYsyPJThf0rhIXHxcPG0h4PGUdIn\nLldhuwR/vjnOcV3KSuMEHoWhmVALAWHg3IC07PDBBM4pUincgLgMy0IbBlJr/3228AVkz4vWtJQK\n1riCOIZApyNG8tknJglxZ5iwvdIGxnraMTnIpv0eaiFNg6l3vSdpbku7/4MkY9p98Xp23wvIjXOH\n37x5MxdeeCFnn302t956K+CPO+3t7QC0t7f74c+6XYvcNmgS1zbArrvuypo1a6Lvq1evZtddd616\nj5SSlStXbnWZaTELi336MLhXL3b58IcjAovMa9p3oRfaj+5u9e3Hp266G0P4W4fYQuAIA2H4sQEx\nDD9WYBiEVwgCZiGkTI0CU0Nvhe6lYbDyg9wqv14FBXkF/VRo0owpikCxXz/OvP+BysC6oXxURjSo\neJ8qpgWF30ncGzycijzjmpMwDPKFAp854IDou6sU6zduZMOmTVu8v9Vd8DyPl19+uVvLqFX++/kd\nNqL87Sk/wJAhQ7op58ZpXHPmzOHb3/42vXv3jtJOO+00pkyZwiGHHMLGjRs5++yz6du3b8PK3J5o\nEtc2wIgRI7j55puZPHkySinuvfdeTjvttKr3mKYZdZi0heM0JIPqhu7vHe3tbN64kQ0bN7J2zRrW\nrV7NutWrWL96NZtXr6K89j3cDesw2zbRUi7RRzqM+dUiXp42lv4Fi/6tBXbu04veO/ehtV9fCgP6\nkx/Ql9yAvhj9+yB2bkHsZEGrhryDMjvQug0tN+DZG5ClDbibN2JvbKO8vkRpXZn2tS7t73lsXifZ\nvE6zeRNsatNsbtdssqHNhen3P8S8kUdSAspB9AwPfMcMOrcZMQ0jetcql89TaGkhVyhgFYtYLS0I\ny8K0LJRhoLTGCzRON9Cswv228oUCvXr1os9OO9Gvf3/GnXACK194gQEDBzJgwAB27tePPjvtREtr\nK4VCIQrkK+jcZDNsr6zZfj3tGL925cqV7LPPPpkaQlZash5J7aaWaS28Z+XKlQwZMqTudaitkTFe\np6Q8yfK7Q8asa7ui/W0dGkNct912G4MGDWL48OEsX748Sr/44os59thjOfPMM3n33Xc56aST2Gef\nfWqure8IaBJXN+HRRx/lscce45JLLmH48OG8+uqrTJo0Cdd1GTt2bMWaVy3UGiDipsK4JiCEQIW7\nDNOpaUQbNgZEJ5UGLdBaIJVGev6VngfSkHiO/yfLHtL2kLbrh24qu1AuI2wBZYkwNUI7kLPR2P57\nX56L8jpd1KXSfhT4IAKG1MGx1n5UeK3xNHjhBpPCr1MYn1AG5k4MA5F4Bkr53pOe64JpQvApArIS\nuVyQn8IL1qyMQCMzAvIzTdOPkBEQUhjqyQjW0+J7f4UBdo0gkkatnZDrbcf4mk38XK31oXrMeGmD\ncdI8lnV/1sD+fmWsd62pu2QMfzvbnrwaQ1z33nsv5XKZ8ePH09HRwerVq5kyZQqvvvoqs2fPBnyr\nz/Dhw/nDH/7QJK4mKjFv3rzoePjw4QwfPjz6PnPmTGbOnLlV+VYbMEIYhrFFGCL/uDKvSvLSkWlO\nqs79sWTAdtJTeIaB5+qIvLyyR65k45VsRKkEHSZmHoTpotE+UeXKIMoo6SBdD2VLlKP8P1chPYX0\nfIKUyicpqYO9uAgiwIfaC50R4WVg2lP+Q/CJJNAwDcMP52TS6VGolMILnC6M+AvDQexBI3hARhAN\nPox1WCgWfbd4IbBi0eVDk2H4jlc8xFYcWYNvve1Y7Tg5cFe7J55WzaEjSzNJOjNsDxlr3dMIGePk\nlVVm96AxxHXXXXdFxytWrGDevHnceeedTJs2jQcffJCTTz6ZtrY2/vCHP3DmmWc2pMztjSZx7QDI\nWjxO61jxNa0oLXlN4lgBSoNARPthaQ2u1Lhe4PXnKBzbw3I8craLKDuI9hK5vICcxBAmQoJ2XHTO\n9yDUyka5vreibPeQJYUsK6SNH0A+3AYs3JNLi8CNX3SSZ4ysos/YOpYSAhE/HzihmLEdkQ3DiILx\nilwuCtBLbC8vK5+nWCzS2qsXra2ttLS0IMA3CaaRl2FUuMOn7cmVbJ+utGOa40I8n2rlZJWdlX9y\nsM+6p95ytkbGamV1t4zV6rEjaFxZuPzyy7nooou46667MAyDiRMncsQRR3RrmdsKTeLq4ah3FqiC\ntZq4uTDUqLIQd3rQQQDbnBBI7d/vaoEjNY6ncFyJ40rytovZUcbI5/AsP+RTTngoZWE6Cgoe2rRR\noozSJbRno2wXVZLIdolqV6iOTvLSjkZL4TtsqM7dkHWyfkEdI+9IiHYrxgi8DE0/6K4Rbh4ZxjEM\nQkKZQdgnIyAvYfgbRobEVQiIq3efPvTq3RshhK995fPkLMu/1jACh5XY7sspDhpppr562zE5yHYl\nn2prYGn5VbuvVl0bJWNc2+mJMnafO3zjo8MfdNBBLFy4EIDdd9+dBQsWNLyMnoAmce0AqNc0Evck\nhJinXXhT6GEXedp1fioCjQuB50cdxA3c0B0tsD1F3pVYJQfDymFYJTAFIBEqj+Ga6JL23QRN239n\nS5fxwigZZT8avNemkW0a1aZQZVA2aAe027nNsa5wIRS+f6LWnTsgB7KFWpYRrFH5EeMNRC6HYVnk\nCgXyxSL5lhbygcOGaVkYluU/t4CIwh2TC8UiLa2t9Ordm959+iCEoCU0Hca0LkSw1kW6phW2T63Z\nfFY7puWVHIizNIFqGkO1tahkejVNY1vKmIZtLWNzP66ehyZx9WCEnSetAydnrGkzQ611BWnFX9AV\nwQu8GKbv6GCaYOZQhoky/HfMXGHiChFs7OhrXrbjYdouRoeBMA3QEqVcTNtEFDTCkmjTBVHG07Yf\n3sn1wzt5tkS2K2S7RrZrVEmjHIFyQ63LNxP6deyUIay/DiKxq0AuEWhcKiAscjlIkFaxVy+Kra0R\neVn5AqaVw8xV/oWbUBZbWmgNyEsI4XsQBptR+u/BmBhGMCGIPfMs54ytaccs7aHWwJ4kkWrlppWX\nvC5+f1a9ulvGZJ7dIWM1s2b3mgqb25psLZrE1YORHBRqrR9kvlsUM2mF6z7CMDCEv74jcibCzKFz\nObRpokwThMAzTFwBjjAircvyJKbtIkzh60LSIueaqILAKAgwJRiuHyFDO3jSxpMOru35fyWJV5LI\nEgF5KXRZo12Bvydl4OGoKteP4qGswrWs0LlCxf4MywLLwsznyRWLFFpbKfbuTUtrq09gIQkFuyJH\n+2xZFvlwT6+AvIRh0NraSjGmcRnhOlcVE2GILKKp1Y61NIasQb/WtdXMZ2n1zEKjZUzT2JLXbk8Z\nd5TIGf9KaBLXDoB4J8qaPSY7YuS6bWxJWoZhBJqGv+V9zrJQeQtp5RBWPnI6UJaFNASeYeAaBq4w\ncKTGdCVGyUFohZIeyjEwLYHIKYSp/WgZuCg8Pyah5+C4Ho4jcR2FW9J4ZYVXDsyFDmhXoT18U6HU\ngd7lmwE7hYppNHRumCmAnGlCQLxGLoeRz/vvcRUKFFpaaendm9ZevSi2tHSSV2AiDInLyufJB04a\nhWKx01QYe2crlzMj02SILG2r2jpKPe2YNdhmrduklZOWbzVzWrJuafc0WsZqRNgTZGyaCnsemsTV\ng5E1Y02uB4THlU4ZlZHiw8HWjO/mm89j5S2sQhFVsDGKLoYG0zR8La2lFR0E2PVMn7wcYWAqEJ6C\nsovyPKQjMAyNkdOAROOhhUIqF0+5eEriup5varRl4KWo8RyB52ikC0oKlNRoRBSiKkScGMK1Lh04\nZSiItC1tGJHJ0Ay1rkKBfLHg74zcqxctvXr5GlSgRVnhcwhILCSvfD6P43k+0eXz5Kw8OTMgLdPc\nIj5hWMdqTgL1tmO9pqlqJJf2O4rfkzQDpv3eknnXMvNtrYz1muO6S8Z6nkH3oElcW4smcfVg1DIV\nZZlpwhdrJYAmigxhxggrNIsVWlrxWsvgukilMHImVtnyPfZaWxFag9AoAVKAZwocrRHSD6rreZqc\noTFQCEOBlmgtUdpDaolU0t+FWEo/oK6ncFyNI8FxFK4HnqfxpPDd4pUOXppOhGmKxQMEorUuA/wY\nhPi+Hdo0ffKKeRiGWqVVKFAI1rGKLS3kCwXygTZlJcjLsizcjRspFouBU0au06swxVSYFmg3a/Cr\ntx3jyBpos8rK0jiq5VELafk1QsZqBLItZEy7t2kq7NloEtcOgrROmOyg8TWuMAhsFBYp0LSsxFqO\n29qKdhxMrZGmiSjlyRUchBDk+/YlpxQGGqEVWiukVrhagpZIFKanMJSHQCG0h5ZeQFwapbwoSoWn\nFJ5UOFLjKnCk9oPpSo2jwFXgBS8hB4E8fNniHpKxgLehO3zoWRi+mxWugXm60xMxPJ8k8HxAZPlC\nwde+YuSVy+XYuGkTlpXHNAO3+UBzzVrfSrbX1rZj1mCbZgpLczaI51nPQJ+mEdWDRsmYpi3Vyj+e\n5/uVsRrBKaWapsIeiCZx7QDIWuNIDgKRGzzBGpdSGEYwWAfElc/nKba04LS24to2WkoMrcmbJjKf\nh9ZWTNdFGAYtAwZSkB6WkphSgvI3avQ8F+3aeJ7rh13ytP8msfSJSykZBPGVQUgnhZQKT2lcpfGU\nT1ZO8J6YrXzXe98jXqCETzzQSVgEnoSGEBj45sHQa1KpzigZIUlKpXA8z9f0ggjwYdR3FXgnhhE0\nKkyEQVzDnJlDCIGVt6JnHNe0hF+5yuceG+DSZv31tmOaOS1N+6jm9BDPJ0zPGsirlZN2faNlzDIB\nppkgu0PGrjz3xqJJXFuLJnH1YGStF2StKUTbmlBpujINo9Plu1ik6Dh4joP0/De2TMPAzeeRLa3g\n2JiO43vUDRhAXkkszyPnuZieB3YZ5dgo00A7hs8pnuevUXka7flho7SnfLOfUkG4JpCSIA6hwFPg\naI2Lga01tvB3NnY1SCEIHfkVRKGdDCH86PWGEbnBC8N/f0tBFDXDDQIMu56H4zjYjovtONiOQ8Fx\nyLuuv1ty7FmFgXrNmMYVPr8082DoFAKdXo9ZmkZX2zF5PstEliSvZF7VtJqsAT75+0vK0R0yJokp\nq77dJWOcELNk7B40iWtr0SSuHQhZs9gwrWIjySDNNxcGZsJ8nkKhgGxp8be415qcaVKw8rgtLchy\nGRwHw/MQhkGfQYPISYnpOhiuA7YN5TLKLiE7TCTC16SkRLoSiYlSEuVbElFaoGVIKr7jgtTBS85a\n4wmBq/H35BICVyik4a/NhSZCIwiSG2papuE7ZGAYkcYTmUmFH0BXKoXtuuSDzSLzhRL5Uj7SqsLn\nkHddP/hvTGMKiT70ZswFwXXD8+Fn/GXvNFNSlimvnnYMP7ti3kpen1ZO/Np4HmkEkUUI21rGatdv\nSxm7B833uLYWTeLqwUjrYFmdK474C7GGaZLLKZTMkbcsZLEYbW9vCIFlWdj5PF5rK8pxwHURnocR\nEJfheYiAtFS5hCyVkO15pDBw8Dd3dJQf01BKjRQKJfzduLRWaOFv9KgBJQw/OrvWyJzAUxpPgGcE\nRGaYSCEiIiF4L8vUGkuIKJiGwJ+rGoaBimlCodbjBabBcKdj27YplUqVxFUsUnBdPM+rJK/gf0RW\nCdJKIiw3SyPK0gDqaceumKzS1omq3Z9FEmkkVG2gb4SMadpTT5Kx6ZzR89Akrh0ItWaEkQt52NEC\nZ4JwfUvl850DtOE7bBQKBdxiEc9xUK4LnoeQ0te4Bg9CuB7asVHlMl6pA6etHS+X813khcAGbE/5\n5CWVv2OyY6CECdLfOgSlgDDOIBVblEgNXkBmCt80CJ1mODOfx6LynS0DIlOhMgzfgzAWBDeMfB+S\nV7lcxioUKJfLFAKHDNu2ox2QZbDlShjb0X90netXoUYXH8DiWleyLbK0kHrbsRay1raqlZl1X5ge\nzyOpGcXz7Q4Z6722u2TM0mbDc03njJ6HJnH1cCTXBNLOhdAxwgrJK5wxmrkcVswkZhoGVi6HWyjg\nFYsoz0N5nr8QFRLXwF3QrotybLxSCaejBWXlcYPIGirYDsWVKlijAs/MoQwHLX0HDaTyXerDOgZx\nEXWwhUlEVsH6lRnXrITAKhajtS0Tf/3L1drXzAzfDT50fzcC8jINo9MDMdDAXNvGLRRwHAfHdXEd\nBzfQuELi8p9luNVL5/NLDlzJGXjWQJ9myqunHWuRWFp5aRpLlgaUNLnVQxzdKWMWSaXVZ3vI2CSu\nnocmce0ASHao5LmwA8a1AhEQQOhdaAbOBppg08QgIroMHRWkREsJSqGlpMMw6D1gACpw5HBLHVAo\nIHM5HCOIkA6djhHCQAoDadtIy0V7HmiFkMqPgqETM+Xg/bKQkIDoE4i89lp698YD8gFhhTsgu9rf\nXFIGbvCYQczFwOXftKwgIG7ni8tSKaSU0Z+SnRtc6lDjigoniiASJzG/WrHXDmLmp7R2ylrbqdaO\naRpDMq+s8pJ5htcm07KIpFqe3SVjVl5p9e4OGePX1fNcG4fGR4f/V0GTuHowapk7wuPwXHytBzrN\nWaZpIpS/A7AQAikNDMPEtCQ6n/dJKxy8lQKlKLW10dq3L9J1cG0HI59H5yw8w8BCkMMnGhMDA4Fh\n+uGihG1jOI5PXEohtB/fXSgdkVG0iSWdbu2h5iWD8zIw0fXu189/Jyt4odoLNDUZmAo9fI0rdNgQ\nwW7F8cC5oZegaSS8A6vMpOudZWeZmsJz9Zitku2YZorL0g6ynBPSNJ9aWs32lDEtj54kY/egqXFt\nLZrE1YOR1QmrdfAK8oqvdUFFsF3TNH3zmFSgg090tCYl2tsp9O6NdF0My/a3vTcMPMAF8kAegSv8\ncFAqn4diEdPxN47USoIn/TWpsF5xk2HMdd8vOfEZuLr36d+/k9TwiS4kr3hw3fAeDGPLfbYKBYrF\noh+DsFAgH8Ud7FwXi2biOlC4Qu0rhuT6SdpaSXxGn2Xeqqcdk/mkIU0Dq+YgkVb/Wtck690dMnaa\nadPR3TLWasemc0bPQ5O4ejCyOl9Wh0x2rvD9J+1f6G9fHxCZVgrTNNE53xMvGqy1H8pJCEG+pQVp\nWYhcDkyzU+sR4OGb6ZRpoi0LUShitfbCs22U66KV8rU8HWhdsa1I4qQQEZgQFYFzQzNnv8GDt9iL\nK5SzVCcAACAASURBVAzvpAIPxDhxhYQngpeuTdP0I4WEW5b06uVHig9jFSZ2Nw6fZxikOPlcszSL\nNBJJG3DraceuaA1Z5sUs8kmrb7KMpoyVMnXfGlfj3eFvv/127r77bhYtWsSqVau44IILeOedd1BK\nMWnSJE4++eSGl7k90CSuHox4Bw1RreOm7ccFlQNvFPXBNCOtTPsXhzf5nVgIcvkCRrB2pIVPGpGp\njs49sIx8HqulFbdcxgvMhFrKgLi0byoMNJlo+SjlUye+G4ZBv1122UIbi5w6wvW18Hzo2CFioa6C\nrUvCqO8tra209urlb1cSRn5PkJdIGazi78ZV04jqXTeq1o7VzG5p94ZIG/yTJr1kHbOuTavfB1XG\nWu24o2hcL730EgsWLGDAgAEAXHzxxQwdOpTp06fT1tbGpEmT+PSnP82BBx7Y0HK3B5rE1cORNmvM\nGlQMw9iCrOLfI+cN03eD0Er5pBRoQ5ETQnBPzsrhCcgFhKA0FALtSBv+RpSmZWEVizjlMq5tI13X\nd/IIXnAW4R+xSBPBZxp5xT+FYdB/113958CW5sQ00gqJKySvKGpIEKOxGO63FZJXuNdW4MxhmsE6\nWFiXlEGr1uCb1lZdbce0fJLlZ5nQ0sx3WUSQJkfaNd0pYxpxZNWxO2Ss1Y47glfh5s2bufDCCzn7\n7LO59dZbATj22GMZNmwYAL179+ajH/0ob7/9dsPK3J5oElcPR1ZnrTZIJLc1ydqlt4LAoDMSRaCV\nGbkcuZAALSvmdRdoNGbOjzRfLOIG3ocq0LZ0oG0RI60s4so6NgyD/oMHVxBa6npY7BOC9TECc5+R\nEmA4jBAfW/eyLCtaF4s/17i5MO5FWGugT9NEutqOyfzrXeOJl1+trGrrT9tSxrRre5qM3YPGEdec\nOXP49re/Te/evaO00aNHR8dPPvkkzz33HPPmzWtYmdsTTeLqwUh2yDjSOlOYlkVWaWbE4IR/f/x6\n4b+8rIXAtKwK8ohHWc8XCrgtLXhJt/qQtDK0rTAvqnw3DIN+gwZF5+r9C2WK9iILyCuueeUDj8Pw\n2LIsTCNGWhnrW2G9smb31TSBrrZjVno17SBev/i1aRpLWnlJGbOu+SDJWG87Nhy6i+7wGYrfbbfd\nxqBBgxg+fDjLly/f4vwDDzzApZdeyg033ED//v23oqI9D03i6sHIminWM0vMujZEVhSI5HqYYZpo\nKX2X+vB6wwhCSeXwCgU8N9hQMuZWH66ZhZ6EacQV1SVDfscw6BvY66uthW1BWp0CRMRlhHU2TX9v\nrmBrk3BnY9PM+duXBNelIW1QjiN5rpZZrBHtmHZfWjlpA3ktQkjDv6KM3bbGlV2FdKT/LLn33nsp\nl8uMHz+ejo4OVq1axVe+8hXuuOMOrr/+ehYuXMgtt9zCpz71qfdd5Z6CJnE1AI888gjXXnstruuy\n//77c9FFF5HP5yuumTdvHr///e8xDINhw4Zxzjnn1JV3VofOMnVkpWVdo5SqMINVdNDA5BaSlpD+\nDDFuflPxl3kDwopMjwnSSh6HyCKu9R0d9Nl551QzYpK8UvMJTYZxZ40Y6YZeh2aKY0YtJ5c4kjP4\ntFn8+2nHegb0NNNb8t5qJFKtHttCxmroCTJ2C7r6/nEGcd11113R8YoVK5g3bx533HEH8+fP56GH\nHuKuu+5i4MCBW1/PHogmcb1PrF27lvPPP5+7776b3XbbjYsuuoibbrqJM888M7rm4Ycf5vnnn+fe\ne+9Fa82UKVN4+OGHOfLII6vmnWXvT7smeT1U77RJU0h8fSxEWlij8Ng0TVQuh/SkH0w39EaMeSmK\n2Gd8GxCoJJnk+fB4Q7lMS+/eW5xLyyONtOJyhObP8CVkwzAQwsDMmbHvIvM5V4sAX23gzjJLZeUV\nP07TCuptx7R8s8oL0VWCbKSMW/NbbZSM9bRjt6AbA2d0dHRw0003MWjQIL75zW9GWuPJJ5/MuHHj\nuq/gbYQmcb1P/P73v2f//fdnt912A+CEE07g9NNPryAupRTlchnbtlFK4TgOhUKhrvzT1guSA0Dy\n+rSBpdogkMy3Is/YWlk4uGutMZSKonL4LvSdOpBSOgyXiOG7K0bBa4MsUyEMEQuz5JNVsaXFT0rc\nK0SCuHRnmkZEZYnwO2AYndugEJoQw/U8o3N9MP4Z1S3QSJMEXkvLyPq+rdoxjSji96XVu1q521rG\nMJ/ulLFWO3abV6Hbxetbal9y0EEHsXDhQsB3j/+goklc7xOrVq1i18BlG2Dw4MGsWrWq4pqjjjqK\n++67j2HDhiGEYOjQoZGbai2kzSwbMQDVMxvVWkfbeoTaWDSAmyYqIC6lFAZUuNTr2CBVreOnvXsW\nfRcCK0Hw8Y0y49emOaOE9Y+/g5WsTxRINyiPWN5hHkkyTxJ8WltU0wi60o5p6Eo7Jgf/tEE/bcJS\nrc6NlvH9/lbfr4z1tmPD0dU1riYibAN9+ION5NYW4K8JxXHHHXfQ3t7O73//e37/+9+jtWb+/Pl1\n5Z9mLoJsr6tk582aFdczoKQO8MIPF2UE60PhZ3icC9zKw7+cZUUeiJG7eSyeYJgWvyf8E5B6TRh7\n0IrevfLXrMK/uPu7aZpYgROGGa+rYUTHoSkxvraVtX1J1iCaHBCTz35r2zGe39a0Y1p6/DeSLGt7\nyPh+f6vdLWNaH28IZBf/mojQ1LjeJ3bddVdefvnl6Pvq1asZPHhwxTWPP/4448aNo1gsAnD88cfz\nk5/8hNNPPz0zXyklK1eu7J5K1wHP83jllVe2W/kAnpS8+te/br/ye8Iz8Lzt/jvY3uXH+9f2wL77\n7ts9GTfJaKvRJK73iUMOOYQrr7ySt956i91335277rqLESNGVFwzZMgQHnroIcaMGQP4Xoj77bdf\n1XxN02TIkCFVbf5pyFr0TlsTiKcn8fLLLzNkyJDU2WZV8x7pZru0+7PMe+BrOq+88krqoBG/L7y2\nWrlb486stWblypUMGTIEyDaF1XIMyFqLgfra8eWXX2afffbZ6nashlp5KKVYuXJlRfndIWO132q1\nNmiUjNttjatpKtxqNE2F7xMDBgzg0ksvZebMmYwePZr33nuPM844g0cffZTzzjsPgFNPPZUBAwYw\nevRoxo8fj1KKWbNm1cw73qnSBoI0c02aSaRa50zmnzTXxMkgTmLVSCdEkjySeSTJK83tPOu+ZB2r\nkWU8/1qEl3Z/2oAcf37x69Laoye0Yzw9zbzXlLF6XbsFTVPhVqOpcTUAhx9+OIcffnhF2vDhwxk+\nfDgA+XyeCy+8cKvyTutsSXt/Mj1tbSAtvxD1LLhnLZTHj+NhppIDVBoZxO+L558WWimeXk3GkHyS\nMma59sevrUfGeFpSxrSBOH68o7RjMi1ej20tY1adGiljrXbstheQm2S01WhqXD0YyU6U1amrmTqy\nzB/1zCaTnTorLTn4pJWfNUuuJmNauR80Gf8V2vH9yJhWVhq2hYwNh+riXxMRmhpXD0dap48fpw0E\ntWaiYXqW2SZtVpw1i00ru5pJplp5SRmz6tAoGbOe4baUsbvb8f3KmDzeHjKm5d1IGWu1Y495j6uJ\nCE3i6uGoZg6qhqSJJp4WzydJUvFz1Tp2Wv5ZdUjWPz6g9WQZ66lPd8uYdn2zHbetjP+/vauPrqq6\n8j8JjVhBq1QTZMbVmWlRiLCG1hlqCUoTrHwkGGlYca1Cx2JZhWVboXUJKYWRgRo7jDMyBYp0tBTt\nIF8lBKm6aEDbtKAzdtSSiZ2ZVWUcLAFpWQaQjyRv/nDd58nOPufcvHfO/XjZv7Xeeu/dc87e+5f9\n9j777nvzHv0KMGeQVmHOkI0r4dBVqoA+YegqTS5wbclF1W2qVsPYpdOZVI6cHptdOp25cuRkiB95\nRMHRKWTjyhkevSJwCbXCVdtDuuTGHadtJTpOZevk0UqbG9PZxh3XcTTJKRSONj9yHAqNYxr96ARy\njStnyBlXgkGTl62K1CU7upa2VExVpaqHJgGdjWGrW05e2Iq8UDgm3Y8mG6LgqCJOP3qBnHHlDNm4\nEo6+BHwwTl9z69WWimmDNOmzBX1YCEd+Pn3dHzmqcpLA0Slk48oZ0ipMOGwVJneMPgKoiYILfi64\ndfM4/bRC17VtqDzhqOdIX1MdhcAxDX70AmkV5gzZuBKOMAGkBqd6fUCXYNQ1tKq1Ba9a+dI5NFlQ\nncGY7npC1By59SpHzr6oOXJrXXLsD350ydEp5JszcoZsXAkGDbzgGNAzqHSVJxf86hhNBNxcbiOj\nbSpTcHO2q2tMHDm7XXLkdIfZ0F1y9O1HG8co/Jh2jt6+Hf5CHx+CLOQaV0pAA1bXMuGqRi6wg7m2\n9eocmmRoQtDppvJ0unXzC5ljf/Bjvhx1tkXF0ds/IDs+i/rBD36AxsZGXHTRRRg9ejSWL1+OgQMH\n4pFHHsEvfvELnD17FrW1tbj77rvdKo4BsnGlFLqzJIBPFFxgqnNzBVcx65KCqS0TBq456ubr1vvg\n6NuPhcCRs80kX4coP6uh4LAL+fLLL6OpqQk7d+5EcXEx7r33XjzxxBMA3v+lh+3bt+PcuXO4/fbb\nMW7cONxwww3ulMcA2bhSBtrGMwVhMF+tQLlWiSkp6pKCrvXDydVV56ZEpNPvkqNtM7CNueDo2482\njlH4MV+Oto0uCo5e4PCM61Of+hQaGxtRVFSEU6dO4Q9/+AM+8pGPYNOmTfj2t7+NoqIifPjDH8bG\njRtx+eWXu1McEzx6ReACpqDjNhn1mUOQGGiA0tc6ucFDlUHnmcDpSCpHk34T0sQx6X6kz3FzdArH\nN2cUFRVh+/btqKiowMmTJzFp0iQcPnwY//mf/4m/+Zu/QU1NDX72s59h8ODBnghFB9m4UoAggLjE\noAanOl995hKMqWI2XUOhSUDXUqFnTWpC4RJCHByp7cKxN0edvKg4qrp8cbT50dvNGd19fIRAbW0t\nXnrpJdx8881YtGgROjs78dvf/haPP/44Hn/8cWzbtg379+/3QCZayMaVEnCBGBxXX9NAVueoySRM\nq0aVyQW6qTWjs9PUgomao8km4WhuR0bFka7zwdHmR683Zzg643rjjTfw2muvZd/X1NSgra0NV199\nNaqqqlBUVIQrr7wSN998M1599VUfbCKFbFwJBhdUtBUC9O7x02AOYEtOXDJRbeAqZjqXyjYlEhtH\n9XWhcrT5keNVaByT7sc03A5/5MgRLFq0CGfOnAEAPP300xg3bhxuvfVW7Nq1CwBw5swZHDhwAKNH\nj/ZCJ0rIzRkJhlpBqoFO2zRqUqDzA9Cg1o2ZqlUumejspdDJMHGk6wuRo82POh2FxNHEw8Q/ao7O\n4fDmjPLycsycORMzZ87EwIEDcd1112Hp0qX40Ic+hIceegjTpk1DV1cXqqurUVlZ6U5xTJCNK+Gg\nQW9rjZiCzVbJ083CFNzUNlU+fc3ZRRNQHBxpchWOve2msqPmSO30wdFmVyaT8dMudHzfx5w5czBn\nzpxexx944AG3ihIAaRUmGFxw0vEgILm2DJ0XpoJU5+mqZZ2dtnW6lpFwTC5H3XMhcbT5MQ3XuPob\nZONKOExVJDdOgz7MetsxrqKmY+o62spRn03tHZONwlE4xsnRC2TjyhnSKkwwaDVrap1wlS/XDjEd\n4+Rzwa9rrXD20rm0taQeTxpHzo5C4xjGj9SGKDnS8bg+q17guFXYnyBnXCkAF6i6lgutGE1Vp3pM\n1/5RdXM2qPptbRhunYkjp6PQONr8qNpeqBzT4EcvkDOunCEblwM0NzejuroakydPRn19Pc6fP99r\nzp49ezBjxgxUVVXhvvvuw4UL4b/umQumMBWt+poGPDfPVMWaZAZraRLgbNcllzAJoxA5Jt2POtsL\niWMYP3pBdx8fgixk48oTJ06cwLJly7BhwwY8++yzGDRoENavX99jzmuvvYZVq1bh0UcfxdNPP42u\nrq7sF2CGgRqUXKtIBa0oqRxdkOqO6apnXUuI2quTEYajTn5UHHXj1F6dDNOasH7kEKUfbTK4NYX+\nWXWG8318CLKQjStPtLS0YOzYsRg2bBgAoK6uDk1NTT3m7N69G7W1tbjqqqsAAEuXLkVVVVUo+WGS\naDAvGFcDnmuRcImEa5XozoK4pGJLPvS4rn2UJI70WCFyTLofOTlRc0zTVz71F8jGlSfa29tRWlqa\nfV9SUoL29vYecw4fPoxz585h3rx5qKmpwZo1a3DZZZeF1hGmNcIlWl17JUx1rR4zJSMq01ShmpKR\nLnH45KhrE0XJ0bcf086RQ9Qc5Xb45EE2rjzBVWNFRUU93nd2dqKlpQXf/e53sWPHDrz77rtYvXq1\nVbauyqbBrqskdZUwJ4u+5tZxcqm84D1tGXHrhWPyOYaxyydHnV1x+NE55IwrZ8jt8HmitLQUra2t\n2ffHjh1DSUlJjzlXX301Ro8enf0dnOrqajz66KNGuV1dXWhra3NvcEh0dnbGqj+wQf3bxqE/CX+D\n/vw5iFs/AIwaNcrPWZecReUM2bjyRHl5OVatWoUjR45g+PDh2LZtW6/vAps0aRJWr16NuXPn4tJL\nL0Vzc7P1iy6LiopQVlbGjtEqMewFZtqiUS+cq+0W4P1fTS0rK+ulw3SxXZVr02tDd3c32traMHLk\nSG8cdX/H4LmtrY31gUuONj8GfvDF0ebH1tbWHj7wwZHOV48H+n1y5PT2hWPOkI0rZ8jGlSeGDh2K\nlStXYv78+ejs7MSIESPQ0NCAffv2Yf/+/VixYgUmTZqEo0ePoq6uDt3d3Rg1ahQWL15sla1LSrpE\nEDbouMShu76ka/HQMZokbOOqLB1H1cY4OHLzXHO0+dGEKPyoyvTFMewGEedn1Quk/ZczZONygIkT\nJ2LixIk9jlVUVKCioiL7ftasWZg1a1af5OouLnMVZnBcN5e+DqCrXql+kwyb7Zw8nRyOSyFztPmR\nkxUlR85u1xyT7kdvX7IrZ1w5QzaulIALQhqguqBWkwRNJOpxVaZOt6nSttlL18XNMUwSjJujTmZU\nHE2Iwo8mvVH50dtdheG/g0BAIBtXCkCDWpcE1HFdW6W7u7tH0jMFuS7JUB2cHp3NnP1xcuS4cGcD\ncXHU6XbF0eZHbr5rjiY/Bsd9cuzL390p5IwrZ3j0iiBf0F69GmC04uaqVlNlqa7X6aHVKZd8dG2t\nAFwlrY6ZOHJzXHIMHnFy9O1H4eiGoxd09/EhyEI2rhSBBitXhdJqMQhY3VmUroLmoKuWTcnHxMOU\nSEzVvCuOuiQcJUfffkw7R9P8KDl6geN/QP7BD36AadOmoaqqKvudqe+99x4WLlyIqVOnYtq0aThw\n4IAnMtFCWoUJBg344BgFDS51na3VwVW/Jn26gDdV4rR9Q48LRz1H03y6Nq0ck+7HNNyc8fLLL6Op\nqQk7d+5EcXEx7r33XjzxxBM4fvw4hg4dip/+9Kf43//9X8yePRt79uzB4MGD3SmPAXLGlSLoEoHa\nLuGqU3Wu+hzM01Wt3DraflF1qc9UpjrXpEs49uRos9U3R6onaj9SmUnyY95w2Cr81Kc+hcbGRhQX\nF+PUqVP4wx/+gI985CNobm5GbW0tAODaa6/F6NGj0dzc7ItRZJCNK+Gg7Q31YaowTe0TXRuFtlO4\ndWqQcwnWtJbqtHGk8wqRo82PHAqNo8mPdE4cHNPyXYVFRUXYvn07KioqcPLkSUyaNCnUd6mmEbJx\npQBqQHHVKlch0pYH91pX1auBS6tRU0LhnjmdXCXPcVTHCpWjzY+cHVFy1Ol3yTENfvQCD1+yW1tb\ni5deegk333wzFi1axH6XqldOESH9DAoYNHmpgWlrb9CWSQAa6Dad6hrdex24BEyrYNM4tcc1R1OS\ni4pj2DZVIXNMgx+94EIfHwa88cYbeO2117Lva2pq0NbWhmHDhuH48ePZ48eOHetxBpZW9NuNK5PJ\noLW1FR0dHXGbogUXhEGA0UqWq2B1Qaeu54Kf06fO4QKam6PKoS0brto2jfvgyLWcTH8PHxx9+9HG\n0eZHKitqjtwa1xxtfkzD73EdOXIEixYtwpkzZwAATz/9NMaNG4fKykps2bIFAPDWW2/hlVdewfjx\n473QiRL95q7Co0ePYuHChZg3bx7Gjx+P2bNn43e/+x0GDhyI73//+xgzZkzcJvZCEPRcEucSRl+q\nTZr0ONl0vrqO00HHuDU0kZk42vTly1HXSoqSo28/Csf8OXq9xuUI5eXlmDlzJmbOnImBAwfiuuuu\nw9KlSzFgwAAsW7Ys+8O1y5cvxxVXXOFOcUzoNxvXgw8+iNtuuw2f/vSn8cwzz+DYsWN44YUXcOTI\nESxfvhybNm2K28ReoEkcgDFwdcHIjZuSCNUVpvKn9nBr6GtaiUfNkVbWwrE3R/V9oXK0+TENt8MD\nwJw5czBnzpxexx9++GG3ihKAftMqfOONN3DXXXfh4osvxq9+9St87nOfw6BBg/AXf/EXOHHiRNzm\nacG1RbiEwFWXuqqWBip91iUsKlPXTuLGdDxsYz45qlV8XBxtflT1xcGRwgdHkx+p3jj86O2My2Gr\nsL+h32xc6q8S//rXv8Zf/dVfZd+fP38+DpNCgUsMNEi5Y9xcbg2db5Orm6MmJY4Dl2C4DZJrK/ni\naPp7RsUxzN+70DmmwY9e4OGuwv6CftMqHDJkCP7nf/4Hp06dwtGjRzFu3DgAwKuvvoqPfvSjMVvH\nQ21lmALZdEw9HqYC5QJfrZxpVUvlcVU2xycMRxMXFxzVijsujr79mC9H3ZxC4hjWj84hm1HO6Dcb\n18KFCzF79mx0dHTgvvvuw6WXXoqNGzdi3bp1WL16ddzmsaDtFKD3tQE6L5ijm2taxx3jEkDYTY+z\nib6Pk6Mu2QpH4ajC2zUu+VmTnNFvNq5PfvKTeOGFF3D27FlcdtllAIAxY8Zg69at+NjHPhavcQbo\nAtrWUrOBSy46XabkY7KDjgftGVrhmpJWWJs42DhyyZZ775NjGD+GSehp52hCEjh6gVy3yhn9ZuMC\ngOLiYhQXF2fff/KTn4zRGjto68M0h84HzEFLWyFhgzRMFR1Wvq5lExVHU6JNEkedvCg40rH+6kcv\nkFZhzojAO4J8wF0vMPXfw15/UIOUJhFVJz0W9szI1I7RtZu4tT45quNxcbT5Ucc7Ko6c7a45psmP\nTiE3Z+QM2bgSDloJBsfCtj3oMSqL6tLN5zY27sxAtwnSRKHy0nHU2eWKI20HxcHR5kcd76g4qu99\ncUy6H+V2+OShX7UK0whd20LXKuGCl5Nna+tQHVQ2N65rzeiSUF9aMz44mv6uUXG0+ZHKK0SOJj9y\nuqPmeNFFF6XiH5D7E+SMK8GgbRRTS4QLOF1i4Fo8wUNdp45x66iduuradPYUJ0dVh3DkOdLxqDlS\nxOlH55BWYc6QM66EwxbkAWjVqwtKrqUS9qxLV1n3VSadFxdHmw4VcXGkr11ztPnRBt9+1HF2ydHm\nR6+tQkFOkI0rwaCBDehbSFzwqnN0QUoThy7QaXLRJStdxaqr4JPMkY4XIsf+4EcXHL1A/o8rZ0ir\n0AGam5tRXV2NyZMno76+3vgVUl//+tfR0NAQWnYQYFxg6Y6bql1d4tHNVY+rwa9LPsExrqWjPmhb\nJ4kc1bWFytHmx2B9IXO0+dHbz5pIqzBnyMaVJ06cOIFly5Zhw4YNePbZZzFo0CCsX7+enfvEE0/g\n3/7t30LLpsFuqmBtbRQVapDa9NN53DFaBXP6aaJSx22bhCq70Dj2Bz/mw5HTxSEKjs4hG1fOkI0r\nT7S0tGDs2LEYNmwYAKCurg5NTU295v3mN7/B3r17ceedd/ZJPq0GucDjzhBoEKrHaSWtC26u/aNr\nz6g61EpXl1xNdlB9hczR5kdqb9Qc1de+OJr8qNoXlx/ldvjkQTauPNHe3t7jp7BLSkrQ3t7eY05H\nRwceeOABPPTQQz2+pT4MaJKiAa0DbcGoxzg5dCx4VoOd21BMtqhJgco0JeKkcKRz4+DI2SB+jJaj\ntAqTB9m48gT3oaab05IlSzBv3jxcc801fZZvaluoAUbXcIGua8+YEgytvGlQ69bo9FE5qn1J46iz\nyWQX1Unl9JUj9178GC1Hr7+A7Gjj2rp1K6qrq1FTU4M5c+bgrbfeyo51dHTg1ltvRXNzsw8WsUDu\nKswTpaWlaG1tzb4/duwYSkpKsu/b29vxyiuv4K233sLatWvxzjvvZCvVJUuWaOV2dXX1kBs1Ojs7\nY9WfBBs6OzvR1tYWm/7Ahrj/Bv1ZPwCUlZX5Eeyo/dfW1oZHH30UjY2NGDJkCP71X/8V3/72t/Gj\nH/0IwPuFc0dHhxtlCYFsXHmivLwcq1atwpEjRzB8+HBs27YNlZWV2fGSkhL8/Oc/z75fs2YNOjo6\nUF9fb5RbVFSEkSNHspWg2s/X9fB1r3Vj9BpBW1tbNmDpmE6WzT6OB5WnjrW1tfX6G7jkyM1Xx1pb\nW1FWVuaVo82PgQ2+OHKy1GOcD1xzNPmR4++aYxg/eoGj9t+ll16KlStXYsiQIQCA0aNHY+PGjQDe\nvyHsT/7kT3Dy5Ek3yhICaRXmiaFDh2LlypWYP38+pk6dinfeeQdf+9rXsG/fPixdujRv+Vy7yJZE\n1JaNLmGogc1dtA6jTzfW1wQgHPn5wpG/ySNOjk5xoY8PDa699lrcdNNN74u8cAH/9E//hClTpuDQ\noUN47rnn8M1vftPfdbqYIGdcDjBx4kRMnDixx7GKigpUVFT0mvvVr361T7JNgdXXQFQTCxf8XHDT\neWqCsV2voInGNp40jpyuODhyNrji2B/86IKjFzi+4eLkyZNYuHAhLr30UsydOxezZ8/GmjVr+nxD\nWBogZ1wJB61iTXPUYFWTbwBTNUsreJ3uIAnQ9ap8XdIJxrjKPA6O3HqVI2df1By5tS459gc/uuTo\nFA5vh3/zzTdRV1eHT3ziE/je976HX/ziF3j33Xfx1a9+FTU1NTh06BAaGhqwa9cuf3wihJxxs04/\nJAAAIABJREFUJRhc9UcDjqsmuQqYVp40oLlEoatCdc8cqO10jYkjZ7dLjpxuLin65Gjzo+3vkS/H\nKPzo+7Pqm2Mmk0n0t8MfP34cs2fPxle+8hXMmjULADBlyhRMmTIlO2f27Nm46667elx/TzNk40oJ\nuNaG6ThdR8+mgrm29VxyMiUwk826tbb5hcyxP/gxX44626Li6PV2eAd48skncfLkSezYsQPbt28H\nAFxyySXYvHlzdo43DjFBNq6UQneWBPCJQldp6qrPsODOCnRJwdSWCQPXHE3VN7feB0fffiwEjpxt\nJvk6RPlZDQVHXciFCxdi4cKFxjmbNm1yoywhkI0rZdC18YJj3Hy1AuV69qakqEsKqh06mKpe01qu\n2qYyORv7ytG2GdjGXHD07Ucbxyj8mC9H20YXBUcvkG/DyBkevSJwAVPQcZuM+swhSAw0QOlrndzg\nocqg80zgdCSVo0m/CWnimHQ/0ue4OTqFw5sz+hvkjCsFMLUuuEBWq0U1eLk1VJ46TvWbqmTOLlo5\nU7toBR4HxzAVdpwc1WNxcNTJi8qPNtui8KO3mzP0v34ksEA2rpRAl0zCVKG0lWJKTHSMSwS6pGWT\no5OXVI66+YXE0eZHnQ1RcdTJi/uz6gRyFpUzZONKMEzVp5oAuGAPQKthkw4umeiqUd246YxAPWZK\nKJxMHxw5mVFz9O1H4Zg/x6TfDt8f4amUELiAGpxcCyOA2mKh89U53Gv6niYXqttUfYap3gMZXAIy\nVeOFytHmR52OQuJo4mHiHxXHNHw7fH+DnHElHDTAuWRhq1QDcC0mrsKkunUyaYI1VbSms6q4OAbz\nhKOeI5UdNUdqpw+ONru8nXFJqzBnyBlXgqGrLtXxICDVhMFVsLYKlNNjq4ypnbZ1qm20UhaOyeSo\ney4kjjY/+jrjkhOu3CEbV8JhqiK5cRr0YdbbjnEVNR1T16nz6TM3XzgKx7Drbcd8cfQB2bhyh7QK\nEwxazZpaJ1zly7VDTMc4+Vzw61ornL10Lm0tqceTxpGzo9A4hvEjtSFKjnQ8rs+qDxh+qYRFsRcr\n0gk540oBuEDVtVxoxWiqOtVjuvaPqpuzQdVva8Nw60wcOR2FxtHmR9X2QuWYBj/6QHcfH4IPIGdc\nKYCuEqQJw/Ranc8FtylJ0GREZXJJgiYYm50cR86eQuOYdD9yr6PkaFvjgmMYP/qAtP9yh2xcKYAa\ndFyrSIUuQdD3piDWreHkm5KISQanh+MWN0edDa44hvEjp9ukx6UfbTJccUzTZ9UVZOPKHbJxJRxh\nq0BabdJ2iE0Ol2R0Z0G6itqWSNTjfbGtP3OkNhUix6T70dft8NL+yx1+z4UFTsBVizRp2IJWnROm\nulaPhamMubkU3LUFE0fKxTVHmvji4Ojbj2nnyCFqjnI7fPIgZ1wJRhA4XIDRipWrJOl6XcDSKtek\nl9NH59laRVyi0emKkyPV64Nj0v1os8s3Ryozzs+qa8hmlDtk40owaFLgAkwNLPWZqzx1yYLTqdOv\nru1LBcutt3E06XLBkUu8+VTpuXC0+dFmd74co/Bjvp9VbsOJkqO0CpMH2bhSALqZcNUjDX5bO4aT\nwVWWVIcuqVLbuDXqe11SVuVw+qPkyME1R5sf1ee0+jHtn1VfrcK+/h9XGCxevBijRo3CF7/4Rfzx\nj39EfX093n77bQDAl7/8ZUyfPt2D1ujh5xxY4AQ0edNqlnsdpqI0JUc6L5Cps4Ueo1UwXUsTg4mj\namMcHDl5rjna/GhCFH5U7fHF0Xb245tjGD/6gMtrXIcPH8acOXPw3HPPZY+tW7cOf/Znf4ampiY8\n9thjWL58Of74xz96YBI95IzLAZqbm/HII4/gwoULGDt2LJYvX47i4g/+z72rqwsPPvggXnrpJQDA\nmDFj8Ld/+7c95nDQVbO0AuUSgK6NQmWaqk6avHQybLZz8nRydMmsUDna/MjJipIjZ7drjkn3o69W\noctrXFu2bMGMGTNQUlKSPZbJZHD69GkAwOnTpzFw4EDvm3FUKAwWMeLEiRNYtmwZNmzYgGeffRaD\nBg3C+vXre8x58skn0d7ejqamJuzevRtnz57Fv/zLv/RJD5fMaBIIqkauNWOrJIM5thYMV2lTfTp7\nbWNRc6RcksiRsz9KjiZE4Ued/Lj96ALdfXyYcP/996OqqqrHsXvuuQcvvvgiysvLUV1djfnz5+Py\nyy93zCIeyMaVJ1paWjB27FgMGzYMAFBXV4empqYec8rKyrBgwYJs1TZq1Khs3zkM1ACnVWkwHryn\nx9QEwVXBdJ4ql8ridHDrdTZxfOLkyMlKGke6NmqO3HzXHE1+DI7H6ce03g7/d3/3d5g2bRpaWlqw\nd+9ebN68GS+++KIb42OGbFx5or29HaWlpdn3JSUlaG9v7zHnxhtvxMc//nEAwO9//3ts2rQJU6ZM\nscrWbSBc9cglCa6y5JKeTg9XDXNJQ2c3tZmC2s/N98lRV/FHydG3H4WjG44+4Hvjev7551FXVwcA\nKC0tRUVFBQ4ePOjA8vghG1eeyGQyvY4VFRWxc19//XXMmjULs2fPxvjx4/usiwYrrULV5+A1rUhp\nQOsqTw7cpsIlLWqvjocpkdCk5YOjLglHydG3H9PO0TQ/So4+4LJVyOGGG27AM888AwA4deoUDh48\niDFjxjiwPH7IzRl5orS0FK2trdn3x44d63GBNMD+/fvxrW99C9/61rdQXV1tldvV1YW2tjantvYF\nnZ2dPXjFZYP8DeK1QXzwfms/6TdncHjooYewfPlybNu2DQMGDMCMGTPw2c9+1rPWaHBRhjtlEITG\niRMncPvtt2PLli0YPnw4Vq5cieLiYtx///3ZOQcOHMCCBQuwfv16jB07NpTc1tZWlJWV9ahUKWhF\naoPacqHXAlQMGDAgqz/MOptMOm46q6J/g5EjR3rjaFtH9fvgyM1VofrBB0eqn46Z/gauOOrm08+h\nL442P1500UVeNq5f9VHmZyRVZyFnXHli6NChWLlyJebPn4/Ozk6MGDECDQ0N2LdvH/bv348VK1Zg\n9erVAN6/WBrcWnvjjTdiyZIlVvlqIHFBy/X16Wt1vvpM202qHN062nqhoHo5ner7ODnq7OSue8TF\nkYNLjkn3I50fB0efN2cIcoNsXA4wceJETJw4scexiooKVFRUAACeeuqpvORzPX51TA1qLsB1SUKX\nHGngUhu4BERlqvN0Om3XPYSjPklHxVGnPyo/Urt9cAzjRx+I5haQwoRfzwjyAncBWQ0wGpRAz4vc\nwXGuqqTrdTrVNbr3OnCVt6rXNk7tcc3RlBij4mjzo3q8UDmmwY8+IN8Onztk40owuCDkKlX1uLpO\nF3S06tXN1c3hApqbo8qhbRuu1WQa98ExGNdx5GS65ujbjzaONj9SWVFz5Na45mjzo6/bAGTjyh2y\ncSUYuuCjlap6nL7XVZy06tW1VzhbdC0lWjFzlbQuYXEc1fE4OHI6XXPsD35MO0df17i6+/gQfADZ\nuBIMWqUC+uqQjgXvdeO6xEzXU/22eaY1nC1xclTXCkd9m7LQOdr8KGdcyYNsXAkHV6lyVSd3lsBV\nteqzrmWiq2ipTF07iRvT8bCN+eRI20txcLT5UdUXB0cKHxxNfqR64/Cjz5816ctD8AFk40o4uMTA\ntUh0Fa0tsdD5Nrm6ObqWkDpOEwy3QdIxnxxNf8+oOIb5exc6xzT40QfkjCt3yMaVYNiCn0JXJdMK\nPZBNg1fXhtElFC6ZcFU2NycMRxMXFxzVijsujr79mC9H25xC4BjWj67R3ceH4API/3ElGKbg1M0L\n5ujmmtZxx7gEZjsj4KCrhOPkGKwVjrAepzbR94XMMQ2/x9XfIGdcCYcuwHStDqBnu0MHNehtuqgs\nrho22a8mJa4K7ksSoTblw5FyioOjzY/UFt2cNHNMgx99QFqFuUM2rgSDtj50c+hrLkDpMVop2ype\nTl8AXYsxGFNbMlwiiYujKdEmhSM3L0qO6lh/9qMPSKswd8jGlXDQ4LMFli6x0FaKmgRo0jElUV0w\n02RiSmK6dhO31idHWlnHwdHmRx3vqDhytrvmmCY/uoScceUO2bgSDjWw1YAME5zcMVMbRJcoqU6a\nNOhGx83l2jmqbI6jzi5XHNVEGBdHmx91vKPiqL73xTHpfpR/QE4e5OaMhIOrgIHegasGbfBsSghq\nNawDHeN02GylelSbdK0fDj44mv6uUXG0+ZHKK0SOJj9yuqPm6OtnTc47l9h/IGdcCQZto5haIlzA\n6RID1+IJHuo6dYxbR+3UVdems6c4Oao6hCPPkY5HzZEiTj+6hpxx5Q7ZuBIOmqh0VTmteulcdQ5N\nEmowU6jHuWqbvrclHm5eXBzVOUnlSF8XIkeTH6meODj6/D0u19e4Fi9ejE2bNgF4/9fY582bh9tv\nvx3V1dXYuHGjWwIxQjauBIMGNsCfDXFtGzqHVrrqfFOlylWz9LguSYSxNckc1fFC5dgf/OiCow+4\n3LgOHz6MOXPm4LnnnsseW758OcaNG4ddu3Zh8+bN2Lx5M/793//dA5PoIde4Eg4u2NTKkzuuJg6a\nAHQJgXvNVcy2yljVq77nkpSNI9VbiByT7kfVrjg46mxyydHmR1//gOxyW9yyZQtmzJiBkpKS7LFp\n06ZhwoQJAIDBgwfjYx/7GN5++22HWuODnHElGLqWCMC3PEzJR0XYapJrpXDHaPLh9OuqZBNHTm+h\ncewPfsyHI6eLQxQcXcPlGdf999+PqqqqHsemTp2KIUOGAAB++ctf4pVXXkF5eblLCrFBzrgSDi7o\n1ddcIrBVosFxXduGq4p1VSyn29SSMemjHHU2uOKo+xtGydG3H/PlSF/HwZGT7ZKjzY8+b4ePAj/9\n6U+xcuVKfO9738OVV14ZkVa/kI0r4TC1g0ygLRr1mCqHblLqmCmwOfk6G6j9akJLMscw9vjmyM0X\nP0bL0dft8FH8U/E///M/Y+fOnXj88cdx/fXXR6AxGsjGlXDoKlVAnzB0lSYXuLbkouo2Vath7NLp\nTCpHTo/NLp3OXDlyMsSPPKLg6BK+f2NrzZo12Lt3L7Zt24aPfvSjnrVFC39eETiFWuGq7SFdcuOO\n07YSHaeydfJopc2N6Wzjjus4muQUCkebHzkOhcYxjX50AZ9f+XTmzBmsX78ep0+fxty5c1FTU4M7\n7rgDu3btckcgRsgZV4JBk5etitQlO7qWtlRMVaWqhyYBnY1hq1tOXtiKvFA4Jt2PJhui4KgiTj/6\ngI9WYUNDQ/b1oUOHPGhIBuSMywGam5tRXV2NyZMno76+HufP9/4yl7Vr12LKlCm47bbb8MMf/jC0\n7LCVuDpOK1IueNXANm2QJn22oA8L4cjPF449z3qSwNEluvv4EHwA2bjyxIkTJ7Bs2TJs2LABzz77\nLAYNGoT169f3mLNv3z688MIL2LVrFxobG7Fnzx68+OKLoeTbKkzuGH0EUBMLF/xccOvmcfpp4tK1\nbag84ajnSF9THYXAMQ1+9AH5dvjcIRtXnmhpacHYsWMxbNgwAEBdXR2ampp6zGlubkZVVRWKi4tx\nySWXYPr06b3m6BAmgGhFqrtGYKpmTdcHqAx1HpdgdEknGNNdT4iaI7de5cjZFzVHbq1Ljv3Bjy45\nuoScceUO2bjyRHt7O0pLS7PvS0pK0N7ebp1z9OhRq2waeMExoGdQ6SpPLvjVMZoIuLncRqYmDjqH\ngrOdtrh0HDm7XXLkdIfZ0F1y9O1HG8co/Jh2jplMRrsmH8gZV+6QjStPcB/qoqKiPs+xgatIuUDU\ntUS4CpdLGvRsgyYn+mxKCDTJcGtNHHXzColjf/BjPhyp/jg4pulLdvsL5K7CPFFaWorW1tbs+2PH\njvX4vrBgzvHjx3vMUc/AOHR1dfWQGzU6Oztj1Z8EG+LWnwQbOjs70dbW1m/1A0BZWZkXub7/j6uQ\nIRtXnigvL8eqVatw5MgRDB8+HNu2bUNlZWWPOZWVlXj00UdRW1uL7u5u7N69G/fcc49RblFRUTZg\nuNadWkEGc7h2SzCXO07HVRmtra0oKytjK1FqU18QRl7wuq2tDSNHjvTG0WZTa2trD/1h0ReONj8G\nNvjiaPNj8DnwydHkx+Az4JOjDjp5riBnUblDNq48MXToUKxcuRLz589HZ2cnRowYgYaGBuzbtw/7\n9+/HihUrUFFRgd/+9rf4/Oc/jwsXLmD69Om45ZZbQsk3BZ0ucE19fO76AL1OEEauLkHYAp3TkVSO\nJv2FwjENfqRtvjg5uoTccJE7ZONygIkTJ2LixIk9jlVUVKCioiL7fv78+Zg/f35O8k2BaKtw6XUQ\nuobKU8epflsC4JIpZyMnLy6OXHJMEkf1WBwcdfKi8qPNtij86OtnTeSMK3fIxpUS6JIJlwR0a9Vq\nlQMX8LrKOmyCoDaY1iWNo25+IXG0+VFnQ1QcdfLi/qy6gJxx5Q7ZuBKMMK0QNYGZgpC+5nRwyURX\njerGTWcE6jFTQuFk+uDIyYyao28/Csf8OcoZV/Lgp5QQOIEanFwLI4DaYqHz1Tnca/qeJheq21R9\nhqneAxlcAjJV44XK0eZHnY5C4mjiYeIfFUe5HT55kDOuhIMGOJcsbJVqAK7FxFWYVLdOJk2wporW\ndFYVF8dgnnDUc6Syo+ZI7fTB0WaXrzMuuR0+d8gZV4Khqy7V8SAg1YTBVbC2CpTTY6uMqZ22dapt\ntFIWjsnkqHsuJI42P8oZV/IgG1fCYaoiuXEa9GHW245xFTUdU9ep8+kzN184Csew623HfHH0ge4+\nPgQfQFqFCQatZk2tE67y5dohpmOcfC74da0Vzl46l7aW1ONJ48jZUWgcw/iR2hAlRzoe12fVB+Qs\nKnfIGVcKwAWqruVCK0ZT1ake07V/VN2cDap+WxuGW2fiyOkoNI42P6q2FyrHNPjRB1yfcbW1teEL\nX/gCampqMGvWLPzf//2fH8MTANm4UgAumMJUtOprGvDcPFMVa5IZrKVJgLNdl1zCJIxC5Jh0P+ps\nLySOYfzoAy6vcb333nuYO3cu7r33XjQ2NmLq1KlYuXKlN9vjhrQKUwA16LhWkQpdsNP33HpbkuHk\nm6pikwxd4qHc4uaos8EVxzB+5HSb9Lj0o02GK45p+qy6gstW4S9/+Uv8+Z//Of76r/8aAFBbW4ub\nbrrJoYZkQTauhCNMEg3m0UpSrUBtcrgkQ4OWq2hNyUlnK62OhaOeI7WpEDkm3Y++bod32YR88803\nccUVV2Dx4sX4r//6L5SWlqK+vt6hhmRBWoUpQJjWiC1o1Tlhqmv1WJjKWNduUcFdWzBxpFxcc9S1\niaLk6NuPaefIIWqOvm6HP9/HhwmdnZ1oaWnBXXfdhZ/85CcoLy/Hvffe68XuJEA2rgQjCJwgiNQH\n0DsAuesL6nr1OJVFX3PrOLlUXvBeTVY6u4Rj8jmGscsnR51dcfjRNbr7+DDh6quvxogRI3D99dcD\nAO644w60tbWhs7PTk/XxQjauBINWnmrFSAOPjnNygrmmipZW9Jx+Tq+pQqayTRU4xyEujlSfD479\nwY/5cOTmRM2R+wVzF3B5c8aECRPw5ptv4r//+78BAD/72c9w/fXXY+DAwrwaVJisCgw0IGmVCPRu\nkdjaMZwMLqCpDlubSp1D16jvdRuEKofTHyVHDq452vyoPqfVj2n/rPpqFbo8l7vqqqvwyCOPYPHi\nxTh//jwGDx6Mhx9+2KGGZEE2rgRDDVhaaasBbgp2ndwApuBWZXAtF3WMJgLbuCpLx1G1MQ6O3DzX\nHG1+NCEKP6oyfXG0FQu+OYb5G/iA639AHjduHHbs2OFYajIhG1eCoatmaQVKA5abS18HMFWdpuTV\nF9s5eTo5HJdC5mjzIycrSo6c3a45Jt2P8rMmyYNsXCkBF4Q0QHVBzbVQaHI0Vfu6BMFV0iZ76bq4\nOYZJgnFz1MmMiqMJUfjRpDcqP6ahVdjfIBtXCkCDWpcE1HFdW6W7u+fvIZmCXJdkqA5Oj85mzv44\nOXJcuLOBuDjqdLviaPMjN981R5Mfg+M+Ofbl7+4ScsaVO/x5RZA3aK9eDTBacXNVq6myVNfr9NDq\nlEs+urZWAK6SVsdMHLk5LjkGjzg5+vajcHTD0Qcu9PEh+ACycaUINFi5KpRWi0HA6s6idBU0B121\nbEo+Jh6mRGKq5l1x1CXhKDn69mPaOZrmR8nRB+T3uHKHtAoTDBrwwTEKGlzqOlurg6t+Tfp0AW+q\nxGn7hh4XjnqOpvl0bVo5Jt2PafjKp/4G2bhSBF0i4I6b5tLq11ZVcuuC46oMk0w1OZn0CUc7ouSo\njvviGHZuXH70+QvIgtwgG1fCoQaarloNYKp+g/nqs67S1VX+qj5dhayrum2VchwcdXaq+uLmyMEl\nx6T7kc6Pg6NsXMlDuBJPoMXWrVsxdepU3HbbbVi1ahU75/Tp0/jmN7+J6upqVFVV9fk/2tWAUh/B\nMVpNqmuA3hUzlavT193d85oDt4bqo8+cTq6S5ziqY4XK0eZHzo4oOer0u+SYBj/6QHcfH4IPIBtX\nHnj99dexYcMGbNmyBc888wx+97vf4Sc/+UmveatXr8YVV1yB3bt3Y+fOnfiP//gP7Nq1yyqfa2Go\nfXouyIOEoM7jqkq6XqdTXaN7rwOXgFW9tnFqj2uOpiQXFUebH9XjhcoxDX70Abk5I3fIxpUH9u3b\nh8rKSgwZMgQDBgxAbW0tmpqaes0bP3487r77bgDAhz70IYwYMQJvv/22VT4XhGo7hla3tKLUBZ26\nngt+Tp86hwtobo4qh7ZtuGrbNO6Do3pGYLLfJ0fffrRxtPmRyoqaI7fGNUebH9PwJbv9DXKNKwQa\nGxuxZMmSbK87uMto3LhxKC8vz84rKSnB0aNHe62/5ZZbsq9ff/117NmzB08++aRVbxD0XBLnEkZf\nqk2a9DjZdL66jtNBx7g1NJGZONr05ctR10qKkqNvPwrH/Dn6usYl/5uVO+SMKwRqamrQ2tqKQ4cO\n4dChQ9nXw4cP7zW3qKhIK+fgwYO4++67sWzZMnziE5+w6qVVKqCvDulY8F43bkoidL6q3zbPtEbX\nLoqLo7pWOOrblIXO0eZHX2dc3X18CD7ARRlfXukHWLduHTo6OrBo0SIA77cOf/zjH+Oxxx7rNXfr\n1q145JFH8PDDD+Omm26K2lSBQCAoGMgZVx6oqKhAc3MzTp48ia6uLuzYsQMVFRW95u3cuRNr167F\nj3/8Y9m0BAKBIE/IGVee2L59OzZu3IjOzk7cdNNNWLp0KQYMGICnnnoKx48fx9e+9jVMmDABmUwG\nV111Vfb62NSpUzF37ty4zRcIBILUQTYugUAgEKQK0ioUCAQCQaogG5dAIBAIUgXZuBKCKL46ikNz\nczOqq6sxefJk1NfX4/z5873mrF27FlOmTMFtt92GH/7wh3nr7Iv+rq4urFixAtXV1aiursaSJUtY\nG33aoOLrX/86GhoaIte/Z88ezJgxA1VVVbjvvvtw4YK7/wIKo7+hoQHTpk1DdXU1/v7v/96ZborF\nixdj06ZN7JjPz6EgZcgIYkdbW1umsrIy8+6772a6uroy8+bNy+zYsaPXvO985zuZFStWZDKZTOb8\n+fOZL3zhC5nGxsac9b7zzjuZz3zmM5m33347k8lkMg888EBm9erVPeY0NzdnZs6cmTl37lzmzJkz\nmc9//vOZgwcP5qyzr/o3btyYueeeezLd3d2ZTCaT+cY3vpFZu3atE/1hbQiwadOmzKc//enMgw8+\nGKn+V199NXPLLbdkjh07lslkMpkFCxZkHnvsscj07927N1NXV5fp6urKdHZ2ZmprazN79+51oj/A\nm2++mfnSl76U+cu//MvMj370o17jPj+HgvRBzrgSAN9fHaVDS0sLxo4di2HDhgEA6urqeultbm5G\nVVUViouLcckll2D69Omsbb70l5WVYcGCBdlvLxg1alRenHOxAQB+85vfYO/evbjzzjud6Q6rf/fu\n3aitrcVVV10FAFi6dCmqqqoi09/d3Y2zZ8/i3LlzOHv2LM6fP4+LL77Yif4AW7ZswYwZMzB58mR2\n3OfnUJA+yMYVIRobG1FWVoYbbrgBN9xwQ/b1yy+/jNLS0uw801dHBQkm+OqoSZMm5WxPe3t7L73t\n7e3WOZxtvvTfeOON+PjHPw4A+P3vf49NmzZhypQpTvSHtaGjowMPPPAAHnroIeM3o/jSf/jwYZw7\ndw7z5s1DTU0N1qxZg8suuywy/Z/73Odw7bXXYsKECZg4cSL+9E//FBMmTHCiP8D9999v3Ix9fg4F\n6YNsXBEirq+O0iHD/CcE1Rtmjk/9AV5//XXMmjULs2fPxvjx453oD2vDkiVLMG/ePFxzzTXO9PZF\nf2dnJ1paWvDd734XO3bswLvvvovVq1dHpn/z5s04ffo0Wlpa0NLSgkwmgzVr1jjRHxY+P4eC9EE2\nrgSgtLQUx44dy74/duxYj+pSxdatW/GNb3wD//AP/4Bp06Y511tSUtJrzvHjx0PZ5kM/AOzfvx9f\n+tKXsGDBAnz5y192ojusDe3t7XjllVewbt061NTU4KmnnsLu3bvxne98JxL9AHD11Vfj5ptvxuWX\nX46ioiJUV1fj1VdfjUz/888/j9tvvx2DBg3CxRdfjJkzZ+LAgQNO9PfFTl+fQ0H6IBtXAhDXV0eV\nl5fj17/+NY4cOQIA2LZtGyorK3vMqaysRFNTE86dO4f33nsPu3fv7jXHp/4DBw5g8eLFWLduHaqr\nq53o7YsNJSUl+PnPf46dO3eisbERd955Z/buxij0A8CkSZOwb98+nDp1CplMBs3NzRg9enRk+svK\nyrB3797sl9k2NzdjzJgxTvSHhc/PoSB9kG/OSAji+uqo559/Hv/4j/+Izs5OjBgxAg0NDThw4AD2\n79+PFStWAAC+//3vY8+ePbhw4QKmT5+Oe+65xxVtq/4777wTb7zxBq655pos5xtvvNFObCSPAAAB\ngUlEQVTZxhHGBhVr1qxBR0cH6uvrI9X/5JNPYvPmzeju7saoUaOwYsUKfPjDH45E//nz5/Hggw/i\n4MGDKC4uxujRo7F06VIMGjTIiX4V9fX1GDlyJL74xS9i3759kX0OBemCbFwCgUAgSBWkVSgQCASC\nVEE2LoFAIBCkCrJxCQQCgSBVkI1LIBAIBKmCbFwCgUAgSBVk4xIIBAJBqjAwbgMEgkLCkSNHcOut\nt+K6667L/t9ZJpPBlVdeiccffzxu8wSCgoBsXAKBYwwePBg7d+6M2wyBoGAhrUKBQCAQpApyxiUQ\nOMapU6dwxx13AEC2XTh58mR85StfidkygaAwIBuXQOAY0ioUCPxCWoUCgUAgSBVk4xIIHEO+t1og\n8AtpFQoEjnHmzJnsNS7gg+tcGzduxOWXXx6jZQJBYUB+1kQgEAgEqYK0CgUCgUCQKsjGJRAIBIJU\nQTYugUAgEKQKsnEJBAKBIFWQjUsgEAgEqYJsXAKBQCBIFWTjEggEAkGq8P8MPe79fUOhYQAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1248b4c88>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dplot(ds_do, hist2d_alex, S_max_norm=2, scatter=False);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Donor Leakage fit" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Half-Sample Mode\n", "\n", "Fit peak usng the mode computed with the half-sample algorithm ([Bickel 2005](http://arxiv.org/abs/math/0505419))." ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def hsm_mode(s):\n", " \"\"\"\n", " Half-sample mode (HSM) estimator of `s`.\n", "\n", " `s` is a sample from a continuous distribution with a single peak.\n", " \n", " Reference:\n", " Bickel, Fruehwirth (2005). arXiv:math/0505419\n", " \"\"\"\n", " s = memoryview(np.sort(s))\n", " i1 = 0\n", " i2 = len(s)\n", "\n", " while i2 - i1 > 3:\n", " n = (i2 - i1) // 2\n", " w = [s[n-1+i+i1] - s[i+i1] for i in range(n)]\n", " i1 = w.index(min(w)) + i1\n", " i2 = i1 + n\n", "\n", " if i2 - i1 == 3:\n", " if s[i1+1] - s[i1] < s[i2] - s[i1 + 1]:\n", " i2 -= 1\n", " elif s[i1+1] - s[i1] > s[i2] - s[i1 + 1]:\n", " i1 += 1\n", " else:\n", " i1 = i2 = i1 + 1\n", "\n", " return 0.5*(s[i1] + s[i2])" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "all: E_peak(HSM) = 8.86%\n" ] } ], "source": [ "E_pr_do_hsm = hsm_mode(ds_do.E[0])\n", "print (\"%s: E_peak(HSM) = %.2f%%\" % (ds.ph_sel, E_pr_do_hsm*100))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Gaussian Fit\n", "\n", "Fit the histogram with a gaussian:" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [], "source": [ "E_fitter = bext.bursts_fitter(ds_do, weights=None)\n", "E_fitter.histogram(bins=np.arange(-0.2, 1, 0.03))" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>amplitude</th>\n", " <th>center</th>\n", " <th>sigma</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.918698</td>\n", " <td>0.0911228</td>\n", " <td>0.0517342</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " amplitude center sigma\n", "0 0.918698 0.0911228 0.0517342" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "E_fitter.fit_histogram(model=mfit.factory_gaussian())\n", "E_fitter.params" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Name Value Min Max Stderr Vary Expr\n", "amplitude 0.9187 -inf inf 0.02428 True None\n", "center 0.09112 -1 2 0.001579 True None\n", "fwhm 0.1218 -inf inf 0.003718 False 2.3548200*sigma\n", "height 7.084 -inf inf 0.1873 False 0.3989423*amplitude/max(1.e-15, sigma)\n", "sigma 0.05173 0 inf 0.001579 True None\n" ] } ], "source": [ "res = E_fitter.fit_res[0]\n", "res.params.pretty_print()" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.09112284426324946" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "E_pr_do_gauss = res.best_values['center']\n", "E_pr_do_gauss" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## KDE maximum" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.092200000000008331" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bandwidth = 0.03\n", "E_range_do = (-0.1, 0.15)\n", "E_ax = np.r_[-0.2:0.401:0.0002]\n", "\n", "E_fitter.calc_kde(bandwidth=bandwidth)\n", "E_fitter.find_kde_max(E_ax, xmin=E_range_do[0], xmax=E_range_do[1])\n", "E_pr_do_kde = E_fitter.kde_max_pos[0]\n", "E_pr_do_kde" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Leakage summary" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gauss: 9.11%\n", " KDE: 9.22%\n", " HSM: 8.86%\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAENCAYAAADgwHn9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAJ/wAACf8BB8w+RgAAIABJREFUeJzs3Xl4lOW5+PHvO/uWfQcSyAIkIQkJkAUSQJRFFK22UmrV\nam1du9n6s8el9XRx6Wnr0Z621mqtRXFpxVYQFQGLLIGQQEIIJKxJWEL2PZl95v39EYhSIAtZZjJ5\nPtc1l5PJOzP3M8H3nvdZ7keSZVlGEARBEACFpwMQBEEQvIdICoIgCEIvkRQEQRCEXiIpCIIgCL1E\nUhAEQRB6iaQgCKOgrq4OMdFPGAtEUhAGbdu2bXzjG98gOzubuXPncv/993PkyJHe399xxx38/e9/\nv+h5l3t8sOx2O4899hhZWVnk5eXx2muv9Xn866+/zgsvvADAH/7wB1avXt0bT1paGrNmzSIjI4N5\n8+bx5JNPYrfbhxzjFzU3N7N8+XIcDscVv8aPf/xjHn744Qse+/Wvf01OTg45OTn85je/6X3c5XLx\nzDPPMG/ePDIzM/nud79LQ0PDFb+3ML6IpCAMyjvvvMMTTzzBvffey65du9i2bRsZGRnccccd1NTU\njEoMzz//PI2NjXz22WesXr2a1atXs2PHjssen5+fT15e3kX3AX7yk59QXFxMSUkJGzdu5NixY7z4\n4ovDGq/FYsFqtV7x8z/++GM2bNhwwWNr1qxh9+7dfPTRR6xfv56dO3fyzjvvAPCXv/yFsrIyNm7c\nyO7du/H39+fZZ58dUhuE8UMkBWHArFYrv/nNb3j66afJy8tDqVSi0Wi47777uOmmmzhx4sQVvW5t\nbS0ZGRnMmjWr93b+50tZv349DzzwAAaDgfj4eL72ta/x/vvvX3Tc/fffT0ZGBtu3b+fee+8lIyOD\n/fv3s3LlSurq6gAu6NLx9/dnyZIlVFRUAFBYWHhBAgFITEykqqqq9/4vfvELsrOzeeONNygpKeHL\nX/4yWVlZ3HDDDaxfvx6Ar371q8iyTE5ODpWVlWzZsoXly5eTnZ3NLbfcws6dOy/72dTX1/P8889z\nyy23XPQZ3HXXXQQHBxMeHs63v/3t3s/g3nvv5W9/+xv+/v50dXXR3d1NcHBwn38DQThP5ekAhLGj\nuLgYt9vN/PnzL/rd448/fsHPzz77LM8991zvz7IsY7FYWLFixUXPjYqKoqSkZEAxdHR00NLSQnx8\nfO9jsbGxbNy48aJjX3rpJaqqqnjkkUdYu3Yt+/bt46WXXuKVV1655Gs3NzezdetWrr/++gHFAj1d\nNbt27cJms7Fq1Sruu+8+VqxYQVFREQ888ABLlizh3XffZfHixezZswelUsmqVat45ZVXSE9PZ926\ndfzsZz9jy5Ytl3z9xx9/nIceeojKysreZARQWVlJQkLCBZ/B+aQsSRJarZaXXnqJ3/3ud0RGRrJm\nzZoBt0kY38SVgjBgra2t+Pv7o1D0/8/mscceo7CwsPdWVFRERkbGkGOwWCwA6PX63sd0Ol3v4/9p\n//79ve9bXFxMenr6Bb9/9tlnycrKYvbs2eTm5tLQ0MCCBQsGHM/y5ctRKpUYDAZ0Ol1vl016ejp7\n9+69IE5ZlntP2GvXrqWkpIQVK1ZcNiG8/vrrBAYGct11113yc9DpdL0/6/X6iz6Du+++m9LSUq69\n9lruvvtuXC7XgNsljF/iSkEYsNDQUNrb23G5XCiVygt+197ejp+f34ASxn+qra3lxhtvRJKk3sfO\nn0ALCwsvOPb8idBqtaLVanvvGwyGi173O9/5Dtu3b0elUrFu3TrMZjMajYbVq1f3du089thjrFq1\nqvd1XnzxRVatWsXmzZsHFHt4eHjv/T/84Q+88MILPPLII1gsFr761a/y//7f/7vgeEmSWL16Nb//\n/e+5//77USgUfPOb3+Tee++94Ljjx4/zxhtv8N57713yfXU6HTabrfdni8Vy0Weg0WgAePjhh3nz\nzTc5evQoSUlJA2qXMH6JpCAMWEZGBmq1mu3bt7No0aILfvfDH/6QhISEi7qRBiIqKoqioqIBHRsQ\nEEBISAhVVVW93/qrqqqIjY296Ng//vGP3HrrrTz11FPEx8ezbNky3n777cv2r+t0Ou6//35efvll\njh07hkKhuGDGUGtr60XPOZ/IXC4XlZWVPP300ygUCg4cOMCDDz5Ieno6KSkpvcdbrVYaGxt54YUX\nkGWZXbt28eCDDzJv3rwLjtuyZQvNzc0sXrwYAJvNhsvl4vjx46xbt464uDiqqqpITk4GerqTzn8G\nP//5z5kyZQp33nlnb2xutxs/P78BfcbC+Ca6j4QB02g0PPTQQzz55JNs374dt9tNZ2cnzz33HBUV\nFb0noZF23XXX8fvf/57Ozk5OnDjBO++8w5e+9KVLHnvy5EliY2Mxm82YzeY+B1wdDgdvvPEGgYGB\nxMXFER0dTVdXF3v37sXpdPLKK69c9kpIqVTy+OOPs2bNGmRZJjQ0FIDAwMDeb+xdXV04nU4eeOAB\ntmzZgiRJhISEoFAoCAgIuOD17r//foqLi3u73+655x6WLVvGunXrAFixYgWvvPIKDQ0N1NfX8+qr\nr3LjjTcCkJaWxurVqzl9+jRWq5Wnn36aOXPmMGnSpMF90MK41O+Vwvvvv89f/vIXlEolEydO5Nln\nn73oH7Awftx22234+/vzu9/9jocffhiVSsWsWbNYs2YNEydOBLigG+iLLvf4YP3oRz/i6aefZunS\npahUKr71rW+xcOHCi447c+YMkZGRKBQKjh8/zrRp0y465plnnuF//ud/kCQJhUJBYmIiL730Ekaj\nEaPRyI9+9CMefvhhnE4nt99+O1FRUZdtz+9+9zt+8Ytf8MILL2AymXrXcgAsWLCAa665hldffZUX\nXniB3/zmN/z4xz8mODiYJ598kujo6EF9BnfccQctLS185Stfwel08pWvfIXbbrsNgJtvvpnGxkbu\nuOMO7HY78+bN612nIQj9kfraT6G1tZUlS5awadMmgoODefbZZ3G73TzxxBOjGaMgCIIwSvrsPnK7\n3bjdbrq6upBlGbPZfMGMB0EQBMG39Nl9FBISwkMPPcR1111HYGAgRqOxd9WkIAiC4Hv67D46fPgw\n3/ve91i9ejUTJkzg5ZdfZseOHbzxxhuXPN7tdo9YoN5GkqQxVeCsJKdncVhGQQY5OTkA7Dn3O7mg\noM/njrW2DsV4aet4aSeMr7ZeyZTw/9TnlUJ+fj7Z2dlMmDABgNtvv53nn3/+kvPUz2tu7h5yUGNB\nSIhxTLXV6exZuNTc3N1733nud239tGOstXUoxktbx0s7YXy1NSxs6NOO+0wrM2bMoLCwsHd+9qZN\nm0hKSrpsQhAEQRDGtj6vFHJycrjzzjv5+te/jlarJSQkRExtEwRB8GH9rlO47bbbeuc/Cz5G1MIR\nBOE/iDIX45hcXe3pEARB8DKizIUgCILQSyQFQRAEoZdICoIgCEIvkRQEQRCEXmKgeRyTIiI8HYIg\nCF5GJIXxzGTydASCIHgZ0X0kCILQh/nzM+nu7rrgsb/+9WV+//v/BcDpdPKHP7zAnXfeyl13fZ27\n776Ndev+2Xvsd797LwsXZtPa2nLBa/zzn+8yf34m+/cXj3wjBkFcKfggq0Om9JSdhg4X4f5KZsZo\nPB2SIIxZ/W0O9Y9/vE1zcxOrV78NQHt7G/fd900mTJhIZmY2kiQRHh7Bp59u4pZbvtb7vM2bNxIU\ndPmdAD1FJAUfY3XIrMnvoqW7Z7VyxVkoO23nKhkUw7PxmSCMuJa/NdL2dtOwvNYplbK3COR5gbeG\nEnxX2ICe31+F1ebmJhwOBzabFa1WR0BAIL/85a8wmT4vTrd48TI2b/6kNynU1JxBo9H0btvqTURS\n8DGlp+y0dLuw2GU6LW7C/ZW0dLsw22RMuv/IChaLZ4IUhDHmwQfvQans6W2XZZmWlhYWL14KwKpV\nX+fRRx9mxYqlJCenMHNmOosXLyUqakLv85OTZ/DZZ59y9mwNEyZMZOPGD1m27DrWrvW+/WlEUvAx\nDR0unC4or7Fjdcg43TAhSInTLQMXJgX57FnPBCkI/Qi+K2zA3+T7Mxyls//0p79gMBh7f/7rX1/u\nHWcID4/gr39dQ2XlcYqL91JUtIc331zNL37xK3Jz5wM9XVBLllzLpk0fc9dd32bbtn/z0kuv8e67\nbw8prpEgBpp9TLifgsoGB1aHjF6toLrJSbvZjUr0HQnCFelvk54XX/w/amrOEBeXwC23fI3/+Z/n\n+eY372H9+n9ecNzSpcvZsuUTDh48QFxcAgaDYaRDvyIiKfgYtUqiyyYTFagiJVqNWgmnW1xo1SIp\nCMKV6G9Moa2tlVdf/TM2mw0Al8vF6dOnmD496YLjJk2KRq838NJLf2DZsutGLN6hEt1HPqS128X2\nw1auStKRFq2hpdtNxmQNB884aDe7CTGJ7wCCMFj9zT56+OFH+dOffs83vrEKrVaL2y2Tl7eAO+/8\n1kXPX7ZsOa+//hrZ2XMH9Nqe0OcezYPldrvHzbZ33rbFn8st8/bubuo7XNyRayLc//Pd8UpO2jB/\n9Rh6jcSsHTNYtuwqAApOnACg/fjpPl/b29o6ksZLW8dLO2F8tXU4tuMUVwo+YtcxG2fbnFydrL8g\nIQCkx2go0UhY7D3rF86ToqNHO0xBELycSAo+4HSzk4LjNmLD1MyecvFCNUmSCNArcLrcbDlkwe4E\njQrQiEVtgiBcSHQyj3EWu5sPS83oNRLL0/SX7aOUJAgyKtCoJFq7XbjcoxyoIAhjQp9XCh988AGv\nvvpq74mmtbWVzs5O9u3bNyrBCX2TZZnNB610WNzckmnEpOs7xysVcGOGgVdkaDO7kY0KvHCcSxAE\nD+ozKdxwww3ccMMNANhsNlatWsXPf/7zUQlM6N/BMw4O19qZPUVLXLh6QM+ZHKrCT6+g0+Km0+rG\nXy8uFgVB+NyAxxT++Mc/kpaWxsKFC0cyHmGAWrpcfHrIQpifkoWJukE916iRcDolXK3t2M3iUkEQ\nhM8NKCk0Nzfz7rvv8vHHH490PMIAuNwyG/ZbcMuwIsOASjm4E7skgb9BgammGbkL6ttdRAQo+3+i\nIAg+b0BJ4e9//zvXX389gYGBIx2PMAA7j9qoa3eyeIaeML8rO5krJFAqJZwumff3dXNHngmDRnQl\nCcKlvP/+Wj74YB0Ohx2r1cr06Uk8+OD3Lyh65ysGlBQ2btzI008/3e9xkiQREmLs9zhf4Km2VjXY\nOVhrZmacicWz/Ae8IvKUqid5hIQYUZ27r5BApZRwSio+O+bmtjwTikvUSBJ/V98zXtoJQ2/rb3/7\nW8rKyvjLX17uLXW9du1aHnnk+3z44YcoFL71ZarfpNDR0UFNTQ2pqan9vpgsy+Nm5aAnVkma7W7e\n3NEFMuTF6WhpMQ/4uefryTc3d/fel+WeuqkZkxTsPNrFOqWTBZcYnxhPK0LHS1u9vZ1/+9urvP32\nG8PyWqpL7Kdw6613cNdd3+r3ua2tLbz55pu8++4HSJK+9zNbtGg5jY1tnDrVwD//+Q/y83dgt9ux\n2az86Ef/RWZmNs8883OmTp3OypU9eyh873v3sWrV15k7N4/f/vZZDh8uR6FQkpiYxCOPPI7FYuGX\nv3ySurpaJEli3rw8vvWt+wbV1lFZ0Xzy5EkixAbvHifLMpvKLHRa3azMMmLUDt+3k7kJWuraXRSc\nsBIZqGRa5MBmMgmCrzt48ABTpsQRFBR00e+++tVbqauro7S0hBdf/AsqlYoNG9axevWrZGZm9/Ga\nZVRVVfLaa2/hdrt57rlfUVdXS2lpCVqtlr/+dQ02m5Vf/eopLBYLer1+JJt4kX6TQmpqKh999NFo\nxCL04cBpB0frHMyJ1RIbNjwnbSk+vue/ksR1Mw2sye/io/1mgnNNhF7hWIUgDIe77vrWgL7JD8RQ\nropkmQvW8tTUnOEnP/kxAF1dXTzwwPd59NGfsnHjBk6fPk1ZWSlWq7XP14yLi6erq5MHH/w2WVk5\nrFx5K5GRUbhcLv785z/yox99j8zMbO6777ujnhBArGgeE5q7XPy73EK4v5IF0wc3/XSgdGqJL83u\nqe/+/j4zVsew1UkUhDErKSmZ6upqOjo6AJg4cRKvvfYWr732FgkJ02hsrOeBB76FxWIlJ2ceq1Z9\nHfj8/50v1ht1Oh0A+Pn5sXr1O3z72/djs9l46KEH2bHjMyZOnMQ77/yLlStX0dTUwL333klFxaFR\nbS+IpOD1nC6ZDSU9Ywcr0gc//XQwwvyULJ9poKXbxcel5n7ryAuCrwsLC+fmm2/hZz97nObmz/eM\nPnHiOKdOVWO1WpkxI5WVK79GWlo627d/hutcDZnAwECOHTsCQG3tWY4fPw5Afv4OHnnkB2RkzOa+\n+75DVlYOlZUn+Oc/3+W3v32WuXPz+N73fkRsbBynT58a9TaLgnhebsdRK/UdLpam6EelS2d6lJrs\neB17TlgpOG5j7tSRuTIRhLHiwQe/z4cfrufxxx/B4XDgcNgJDAziG9+4mzlzsvjpTx/ljju+ilqt\nZvbsLBob83E6nXz5y6v4+c+f4I47vsrkyVPIyJgFwNy5uezcuZ3bb1+JTqcnIiKSr3xlFQqFgn37\nCrn99q+i1WpJSJjK1VcvGfX2iv0UrtBozN6oanTwbmE3UyPU3DTbMKQNOSqXVQAQ90lS734Ke879\nru2Tzy441u2Webeom1NNLr6SaSAzKVD8XX3MeGknjK+2DsfsI9F95KW6bW4+LrVg0ipY1kf106GQ\nG5uQG5suelyhkLghw4C/XmLDfjMtXa5LPFsQBF8kkoIXkmWZT8osdNtkrks3jNxK4472ntslGDQK\nbpptxOmCv+/qwO4U4wuCMB6IpOCF9p+yc7zeQWachimhnhv2iQhQsjRVT0O7k08OWMTAsyCMAyIp\neJmmThdby61E+CuZP0LTTwcjZZKGzAQ9FbV29lbZ+3+CIAhjmkgKXsTpkvmgxIwk9VQ/VV6iDpEn\nLJtpZFKQim2HrZxscno6HEEQRpBICl5k+2ErjZ0urknWE2IahRXFGs2A9mlWKiRunGXAoJH4oMRM\nh0Xs5SkIvkokBS9R2eBgb7WN6ZFqUqNHp/aQFB2NFB09oGNNOgVfmm3A5pR5f58Zp0uMLwiCLxKL\n17xAt83Nxwcs+OkULE0dmemnw2FikIprknVsOmhh80EL147QVFlB8BZ1dbXcddfX2bhxa+9j7733\nd95883Vuu+0bvPLKn5gwYSKyLON0OomMjOI733mIKVNiAbjllhvQarVotVqgZ2ahJEk888xzREZG\neqRN/RFJwcNkWebjUgtmm8yqHCN6L9/oZmaMhto2F2Vn7EQFKkmfrPV0SIIwor74xeeNN/7GRx+t\n58UXX6WkZC+zZmXyzDO/6f395s0beeihB3nrrbUYDEYkSeIXv/gV8fEJngj9ioik4GHF1XYqGx3k\nxOuICfH+P4ckSSxJ0dPY6ebTcith/komBnl/3MLYovvbq+iGaT8FSaUk8D/2U7DeegfWQVZh/fOf\n/0hhYQEvvfRXAgIuvQvlkiXX8vHHG/jkk4+5+eZbAMbcVG7xf7MHNXS42HbYSlSgitxpY+cbt0op\ncdNsA6t3drFun5lv5Jkw6bz7CkcQrpQsy/zf/z3H2rV/57//+6nLJoTzEhKmUlV1ovfn//7vxy7o\nPpowYSJPP/2byz3d40RS8BCHS2bDfjMKCVak6z0y/VQ+W3PFz/XXK7gxw8C7hd2sLzazKsfoNVNo\nhbHPete3Bv1N/nJCQoy0DaH2UXd3F3V1dTz11K/51a9+SXJySj97M0vodJ/vgzDWuo/E1zsP2VZh\npanTxTUz9AQZPbShjcXac7tCk0NVLEzUcabVyWcVV/46guDNDAYDTz/9axYsuIoVK27kiSd6qqVe\nzpEjFSQkTO39eax1H4mk4AEn6h0Un7SRFKUhZdLobX0py9DW1ord7sBms+OW3ciymzNnTtHQUIfZ\nPPg9FObEakiK0rCv2sbBM2LFs+B7JEnRO9h8773fQaPR8txzvwIuPuF//PEGzp6tYdGixaMe53AR\n3UejrMvq5qMDFvz1CpaM8PRTm81GfX0tDQ11KNpk3G4XxZuL6erq2UXKfW4zkN27d/Q+R61WExgY\nTEREJJGREwgMvHhv2i+SJIllaXqaulxsKrMQ5qckIkBs5Sn4ji/+P6pSqfjZz57m7rtvJyUljZKS\nfdx9923Isowsw6RJk/jd7/6EWn3+y5500ZiCJEk88MD3yMzM8UBr+if2U7hCV1KjXZZl3i00c7LJ\nyddyjESPwGwjt9tNbW0N1dWV1NbW9P4jTHguDqVShf5vftxzz90oFBJF1dUAHNtVhM1mo7Ozg46O\nNpqbm7BYLAAYjUZSUpIJDZ2EwWC47Pu2drt4I78LrUrijjzTyFV2HWHjpfb+eGknjK+2Dsd+Cv2e\nlSoqKnjqqafo7u7GZDLxq1/9ikmTJg35jcejvVV2qpsczJuqG/aE4HQ6qao6zpEj5VgsFpRKJTEx\nU5g0KYawsAhOv9KzFWBcwnQ0mp5vMZKfCYCIiKgLXkuWZTo62qmtPcvJk5Xs27cPl6uI6OgpJCWl\n4O8fcNH7BxmVrEg38F6RmQ9KzKzMNKIQA8+CMOb0eWayWCzcc889/O///i9ZWVm89dZbPPXUU7z0\n0kujFZ/PqG93sf2IlYlBKuYlDN/0U7fbTWXlMcrLD2KzWfHz82P27Gyioyd/4RL20qSIS6+olCSJ\ngIBAAgICmT49CbfbzL59+zl1qppTp6qJiZlCamrGRVcOceFqcqdp2XnUyo6jNhYmer7KqyAIg9Nn\nUsjPzycuLo6srCwAbrnlFubOnTsqgfmS89NPVQq4Pt0wbN+g6+tr2b9/Hx0d7fj7BzBrViYTJ0YP\n6ziFJEmEh4eTlZVLUlIahw8fpLq6kpqa0yQnpzJ1aiJK5edjCHMTtNS1u9hzwkpkgJLpUaM3kC4I\nwtD1mRSqq6sJCgri0Ucf5ejRo0RGRvLYY4+NVmw+Y2u5leYuF9enGwg0DL2v3eGwU1paTFXVCTQa\nDbNmZRIbm4BCMbL9+H5+fmRmziUhYTolJUWUle3n5MkqsrNzewekJUniupkG1uR38XGpmRCTiVA/\nMfAsCGNFn0nB6XSyc+dO3nzzTRITE3nrrbf4wQ9+wD//+c9LHi9JEiEhxhEJ1NsMtK2Ha2wcbZTJ\nTvRjQZr/kN+3pqaG7du3093dTVLSdHJycnpnNvTllKrnxBwSYkR17v75P35/7fjPtoaEGImPn8SR\nI0fYs2cP27ZtYvbs2aSlpfVepdy9RMdfPm1j82En377ahG6MDDyPl3/D46WdML7aOhz6TArh4eFM\nmzaNxMREAG6++WZ++ctf4nQ6Uakufqosy+NmlH8gMxq6rG7e2dGFRgnZMfohfTayLFNeXkZ5eRk6\nnY7s7PlMmDCJri4nXV39b3zjPFf7pbm5u/f++Wf1t9rzcm0NC4tm0aIgCgt3sXv3HqqqTpGdnYtG\no0UBLJyq4r2iLv77HQtJUWrCA1TMjNGgU3vvAPR4makyXtoJ46utwzH7qM+vb/Pnz6e6uppjx44B\nsGXLFhITEy+ZEIQLybLMh6VmbA6ZFRmGIZ0IrVYr27f/m/LyMiIjo1i69HomTBj6DDC5uhr53LTU\nK2U0mrjqqiUkJ6dSV1fLli0f09bWCvSseO6wyOQftbLpoIVthy2sye/C6hhbKzwFYTzp8+weFhbG\nCy+8wKOPPordbsdkMvHcc8+NVmxjWlGVnZNNTvKm6YZURbS9vY38/M8wm7uZMSONpKSU4RtIdrn6\nP2YAJElixow0goKCKSzM59///oScnDxOW8IIMioINCg53ezCX9/zHaT0lJ3s+LFTAFAQxpN+z1bZ\n2dm89957oxGLz6hvd7HjiJVJQSpyhnDyq6s7S0HBDmQZcnOvIipq4jBGOfwmTJjENdcsZ+fOreza\ntQ1XYBqSFM20KBUl1XaO1ztIn6ylsXN4kpEgCMNvbIz+jQFWh8yeEzb+tbebP2zuQEIe0vTT6uoT\n7Ny5FbVay9VXL/X6hHCen58/ixYtIygoBEvdftSd5agVEB+uxuqQOdXkJEzMRhIEryUGB4aB1SGz\nJr+Llm4Xx+sd1Le7yIzTor3CcYSjRysoLS0mMDCI+fMXXVCGdyzQ6XQsXLiY/F07sRw/Dm4XIf4p\nhJqUtJndhPmJ7yKC4K1EUhgGpafstHS7aO50U9/uItxfiUYlDbrvXJZlDh0qpaLiEGFh4eTmLkSt\n1oxc4EHBI/bSKpWK+XkLUKryOV5ZjVqGzNzZlJx0sLXcSkyICpXSe2chCcJ4Jb6yDYOGDhduN1Q2\nOtCpJeLCelbxDqbv/IsJISpqIvPnLxrZhABIwUFIwX1XQR0KhUJB7tw8ZkxPQGM9ham7lCUpOpq7\nXew6Zhux9xUE4cqJpDAMwv2VNHW6sDtlYkJUnK/6MJi+8/Lyst6EMHfufJRK37iIkySJOXNymDIl\njurqSpxNZcSGqiistFHfLgacBcHbiKQwDNKi1bSa3WhVUm9JhxCjkpkxA/umf35RWmTkhHMJwbcG\nYs8nhujoyRw/foRYzTHUSvio1IzLLdYsCII38Y2vox5W2+YiPlzFhCAVoX5KwvyUA165e/jwIQ4d\nOkBERCTz5i3wuYRwniRJZGXN6ynxfbycpAkK9rdNZs8JG/OmimqqguAtRFIYBoUnbBi1Cm7NMQ1q\nxlFV1QnKyvYTHh5Bbu7C0U8Iw7R4baAUCgVz585n586tNJwtI9JPwe7jMUyNVItpqoLgJUT30RDV\ntTk51eJkZoxmUAnh7Nkz7NtXQFBQMPPmLfTIGMJwlLkYLKVSybx5CwkKCkHTfgClrZ6NByy4RTeS\nIHgFkRSGqKjSjlIhMXvKwKeeNjU1UlCwE6PRRF7eVf1uhuNr1Go1eXlX4e9nJMSyj7rGZvZW2z0d\nliAIiKQwJG1mN4drHSRNUOOnH9hH2dHRTn7+Z6hUaubPv3rMLUwbLjqdnry8RfjplQR0FrKzvJWW\nLjEbSRAf0t56AAAgAElEQVQ8TSSFIdhXZUNGJjNuYFcJVquVnTu34na7ycu7CpNp6GVuxzJ//wDm\nzVuAv9aBqrmAjfs7kGXRjSQIniSSwhWy2N0cOG0nLmxgg6Qul4vdu7djNneTk5NHcHDIKETp/cLD\nI5mbnYO/spOGqkJKTopFbYLgSSIpXKGiE1YcroFdJciyTHFxIU1NjaSlzfKa4nZSRARSRISnw2Dy\n5Dgy0lLQOevZWbifdrPb0yEJwrglksIVcLpkio5biPBXEhPS/1XC0aMVVFdXEhsbz9SpiaMQ4QCZ\nTD03L5CWmk5czCSkjqNs2HVMdCMJgoeIpHAFymscdFndZMVr+93w5uzZMxw4UEJYWDgZGZnDt0GO\nj5EkiUUL8ggK8KflZBGFhxs8HZIgjEsiKQySLMsUVdoINCqZHtn3VNLOzg727MnHaDT5ZPmK4aZW\na7h+ySJUSgVFe3bQ0m72dEiCMO6IpDBIJxqcNHe7yJ6q73MDHYfDwa5d25FlmdzcBWi1opTDQAQF\nBpA3Lw/ZaWb95u243WJ8QRBGk0gKg1RUaUOnVjAr9vIneVmW2bu3gI6OdubMySEgYOTKUw+JxdJz\n8zKp02KYOGUGnW31bC3Y7+lwBGFc6be2wpNPPkl+fj7+/v4AzJs3j0ceeWTEA/NGZ1udnG5xkhOv\nQ6O6/FXCsWOHOXPmFFOnTicmZsroBThI8tmzng7hslZclcFf323kcMVBEmIimDzJO2ZsCYKv6zcp\nlJaW8vLLLxMfHz8a8Xi1okobSoXErCmXL4nd2FjPgQPFhIaGkZY2axSj8y0alYLFV+Xx0ccfsWXb\nTm69+QYMBoOnwxIEn9dn91F3dzfV1dW88MIL3HjjjTz66KO0t7ePVmxepbXbxdE6JzMmqjHpLv2x\nWa0Wdu/eiVarIydnPgqF6J0bioQoE7HJ8zBbbGzauk2MLwjCKOjzrNXQ0EBubi4/+clPWL9+PQEB\nATzxxBOjFZtX2VtlR0ZmTuylF6vJssyePbuw263k5OSh14/PmkbDbensiahCUjhb10jJ/hJPhyMI\nPq/PpBAbG8uLL75IxLlVrw8++CDbto2/b2xmu5uDZ+wkRKh7d1b7T4cPH6KhoY7k5DTCwjy/SthX\naNUSS+elYNdGUXKwnJqaU54OSRB8Wp9jCuXl5VRXV3PdddcB4Ha7USqVl+0WkSSJkBDj8EfpYWWH\nulFr1CydFUhISM/ahC+2ta6ujiNHDhITM4m8vGyvXKB2SnVum9AQI6pz91VTJvc+1hdP/11DQoyc\nasujfM/H7C7cw9dXTcLPb2SKCXq6raNlvLQTxldbh0OfSUGWZZ555hmysrIIDQ3ltddeY+nSpX0e\n39zcPexBepLDJfNZWSeBBgVGyUZzc0/d/5AQI83N3dhsNjZv3oxCoSItLYuWFu9ccOV09pSlbm7u\n7r3vOrexT1s/f7PzbfWknFgt5cdn01C/nY8+2szVVy8ZkTEbb2jraBgv7YTx1dawsKF/Werz/6oZ\nM2bwgx/8gDvvvJPly5dTXV3NT3/60yG/6Vhy6Iwdi91NVtzFJS1kWaaoaDcWi4WsrHliHGEE6TUK\nlsyegNWUzMmzDZSXl3k6JEHwSf1OSV25ciUrV64cjVi8jtstU1RpJ9CgYGrExR/VsWOHqa2tITEx\nmcjICR6IcHyZFqkmPj6RqvJGDhwsIzw8kvBwMX4jCMNJzJnsw/EGJ61mF3NitReVtGhqaqKsrISQ\nkFBmzJjpoQjHn2tm6FGEzqLdpqZgTz42m9XTIQmCTxFJoQ9FlTb0GgWp0RcuVnM6nWzduhWlUkV2\ndu7YXY/Q3t5zG0NMOgXXpAXS7ZdBU1s3e/cWiDLbgjCMxujZbOSdaXFS0+okY7IGtfLCq4SyshLa\n29uZNSsTo9E79iO4EnJTE3JTk6fDGLTkCWpioyfSrorn5OkznDhx1NMhCYLPEEnhMooqbagUEhmT\nL7xKqK09y/HjR4mLiyMmJtZD0Y1vkiSxNEWPIiiJTrc/paXFtLW1ejosQfAJIilcQnOXi+P1TlIm\naTBqP/+IbDYre/fuRq/Xk5ub68EIBT+9gquSjXQYZ9Nlgz17duJ0Oj0dliCMeSIpXMLeqp7N4+fE\nfn6VIMsy+/btwWq1kpk5F622/72ZhZGVFq0mOiKAFm0qLa3tlJbu83RIgjDmiaTwH7qsbg6dcZAQ\noSLY9HlJi+rqSmpqzjB1aiIREVEejFA4T5Ikrk0zgDGaLtUkKiuPiTIYgjBEIin8h5KTdpxumaz4\nz68Euro62b9/L/7+AaSmpnswuuElxccjjfGS6IEGBfOn62jVzsCOgb1792A2e+eqckEYC0RS+AK7\nU6bkpJ2JQSomBvUsVnO73RQW7sLtdpOdnSv2WfZCsyZrmBiip0GTgcVqp6hot5imKghXSCSFLzh4\nxo7V0VPS4rwjR8ppbm4iJWUmgYFeuq3mOKdQSFybpkfWBGMxTKOhoZYjRyo8HZYgjEkiKZzjdsvs\nrbIRbFQSH36uUFxbK4cOHSAsLJxp05I8HKHQlxCTknlTtTRK8aAN4dCh/bS2tng6LEEYc0RSOOdo\nnYM2s5s5sRoUCgm3201R0W6USiWZmXO9shy2cKGsOC0RAWpqFDORUVJQsBOn0+HpsARhTBFJgXPV\nTqvsGDQKZkzqmYZ65Eg5bW2tpKamj+lVy32RG5uQG8feiubL6elGMuBUGLH4pdHV1cH+/cWeDksQ\nxhSRFIDTLS5q25zMmtJT0qK9vY3y8jJCQ8OIj5/m6fBGTkd7z82HRAQoyUnQUuuIQhc4maqq42Ka\nqiAMgkgK9JS0UCsl0idrkGWZvXsLAJgzJ0d0G41BOfFaQkxKqlxJaPVGMU1VEAZh3CeFpk4XJxoc\npE7SYNAoOHbsMC0tzaSmpuPn5+/p8IQroFJKLE/TY3OpsfjPwuGwU1S0S0xTFYQBGPdJoajShoTE\n7FgNnZ0dlJXtJyQklKlTEz0dmjAEE4JUzInTcLLTn6AJyTQ01ItpqoIwAOM6KXRZ3ZSfdTAtUkWg\nQTH+uo00mp6bj8qbpiPIoKS8K47AoFAOHdpPS0uzp8MSBK82rpPCvmo7rnMlLU6cOEpTUyPJyan4\n+wd4OrRRIUVHI0VHezqMEaNW9ixqszhkuk2zUCpV7NmTL6apCkIfBpwU1qxZw0033TSSsYwqm0Om\n9JSN6GAV/morZWX7CQwMYvr0ZE+HJgyj6BAVGZO1HG1WExk7+1wdKzFNVRAuZ0BJ4eDBg7z88ss+\n1aVSdsaO1SEzJ1bD3r17cLlcZGbOHbtbawqXtWC6Dn+9guLGMCZOmiKmqQpCH/o9A3Z2dvKzn/2M\nhx9+eDTiGRWucyUtQoxKFN0naWioIykpRdQ28lFadc9ObV02N63aFIxGk5imKgiX0W9SeOKJJ3jw\nwQeJivKdPQSO1DrosLiZOdHFgQPFBAQEkpg4w9NhCSMoLlxNyiQNpWfcdPvNorHNyoZPd2Cxuz0d\nmiB4lT6Twuuvv054eDhXX321z8zxlmWZokobRo2EubYYl8vJnDk547Iktny2BvlsjafDGDVzE7Qc\nrnXybqmGNs106uvreP2jEqwO3/i3LQjDQdXXLz/44AOsVis33XQTZrOZ+vp6br31Vt5+++1LHi9J\nEiEhxhEJdLhU1tvpdCiZGd5EU2U9s2ZlMHVqzKBfZyy09YtOqXqSXkiIEdW5+5LV2vtYX8ZaWy/n\ncJOZuEgtB0/bOOlKIFHfhLOlgkOnY1ma2TMLy1fa2p/x0k4YX20dDn0mhXfffbf3fmFhIc8+++xl\nEwL0fAtvbu4evuhGwKbibpyWLhorizDoTUyePP2KYg4JMXp9W7/I6XQB0Nzc3Xv//MVff+0Ya229\nnGOnzRhUbgL1cKrRjikyjQnydg4UbmNmzApUKrXPtLU/46WdML7aGhbmN+TXGFdTbRo6XFQ12Il0\nHcTldIzbbqPxKty/528dH6ZGp5Y42qim25iG5Oxi//59Ho5OELzDgJNCVlYW//rXv0YylhFXVGlD\nZTsLllqmTk0kNDTM0yEJo2hmjIZgoxKlEqZFqnG54ZQ1kmnxcVRVneDMGTFNVRD67D7yJZ0WNxWn\nuwiyHCQgxI+UlJmeDsnzTOOrn1Wnlrg910TpKTuNnS5iw1TUtbuQQmZiamti3749JCQMfnxJEHzJ\nuOk+2ldtQ9V+AL2qp9tIpRo3+fCypIhIpIhIT4cxqnRqiex4LSvSDdw134/YMDX5x13EJeXgcNj5\n7LPPfGamnSBciXGRFGwOmQNHTqJ3niVx2jTCwiI8HZLgBRQKievTDWhUsKPawPTENGprazlypNzT\noQmCx4yLpFBc1QUtpQQHmEhNzfB0OIIX8dcrWJqip6XbxRlXHJGRkRw8WCqqqQrjls8nBZdbpqRk\nL2pszJ+bg1qt9nRIgpdJnKAhZZKGsjMOJkybi0rVU03V4RDVVIXxx+eTQkHZKVydp4iZHE9k5ARP\nhyN4qWuS9QQZlGyukElKyaSrq5PSUjFNVRh/fDop2O02ykoLUar0XJM3x9PheB25uhq5utrTYXgF\nrVpiRYYeu1OmuDGMyZNjxTRVYVzy6aSwbfc+HHYz01My0Wm1ng7H+7hcPTcBgKhAFYtmGDnd4sQZ\nkIrJZGLfvj2YzeNjNawggA8nhfr6WiqrjoMxmtyZUzwdjjBGzJumJyZYxa4TbmKTcnA4HBQW7hLT\nVIVxwyeTgsPhYFdBATa3hqSU2ejUvrM5kDCyPp+mKrG9Ss/0xFQaGxvENFVh3PDJpHDw4H6a2rpw\nBswkK2HoBaKE8cVPr2BZqp42s5tTzjjCwsLFNFVh3PC5pNDY2MCRo0cwq6KYFj8Zf73PNXH4BAX3\n3ISLTI9Skxat4VCNg6CYTDFNVRg3fOqM6XQ62bt3N1aXGptfKpmxYnC5L1JwEFKw2IL0cq5O1hNs\nVLLtuERiShZdXZ3s37/X02EJwojyqaRw6NABOjo7adelMCXCRESAKIstXDmNSuKGDAMOFxQ3hDJ5\nchzV1ZVimqrg03wmKTQ3N3LsWAVKYxQ2zQQy4zSeDknwAREBSvKm6TjT6sTun4LJZGLv3gIxTVXw\nWT6RFFwuF3v3FqBUqalXpRIeoGJKqKiCKgyPrDgNk0NVFFS6mZKUg8vlpKBgJy6xxkPwQT6RFCoq\nyujo6CBo0ky6nRoy47RIkpiG2i+xeG1AJEni+pkGtGqJ7ZV6kmbMorm5ibKy/Z4OTRCG3ZhPCq2t\nLRw+fIjIyCiOd0Xhr1eQGCWK3g2EKHMxcCadgmtT9bRb3JywRDNpUgzHjh0W4wuCzxnTSaGn22g3\nSqWKkJjZtHS7mT1Fi1IhrhKE4Tc1Uk16jJaKsw6ME2ZhMvlRVLSbzs4OT4cmCMNmTCeFw4cP0dbW\nRlraLA6cVaJTS6RFiwFmYeQsStYRYlKy9bCTlIw8ZFlm9+4dOJ1OT4cmCMOi36TwyiuvcP3117Ni\nxQoee+wx7Hb7aMTVr7a2VioqDhIeHokheAqnWpykRWvQipIWwghSKyVWpBtwumHbCQ3pGZm0t7dR\nXFwo6iMJPqHPpLBv3z7Wr1/Pv/71LzZs2IDZbGbNmjWjFdtlud1uiop2oVQqmTMnm6IqB0qFxByx\nWE0YBREBShZM13G2zclZx0RiY+M5ebKK6uoTng5NEIasz6Qwe/Zs3n//fTQaDV1dXbS0tBAQEDBa\nsV3W+W6jpBkZFFQrWV9sRqUAlVJcJQyGFBGBFCH2q74Sc2I1xIap2X3MRmhMOoGBgRQXF9HW1urp\n0ARhSPrtPlIqlaxdu5arr76atrY2lixZMhpxXVZPt1EZIaER7KiJZG1hN42dTlq73azJ78LqEJfw\nA2Yy9dyEQZMkieVpevQaiY0H7cyaMx+lUsmuXdux222eDk8QrpgkD6Ij9Ne//jWVlZW89NJLl/y9\nLMsj2q/qdrtZt24d7e3txKRfx5ZymcITVgIMCtJidAAsTjOSO90wYjGcJ0nSmOpDLskpASCjIIOc\nnBwA9pz7nVxQ0Odzx1pbh2KwbT161sbb+R0kR2vJjGxhy5YtTJo0iWXLlnn1WhnxN/VNCsXQ5w71\nuey3qqqKzs5O0tLSALj55pu55557Lnu8LMs0N4/c8v+KioPU1zeSkZFJRSMcPGnBZnMTGaHAbOkZ\nAD9+BhJDR/4fQEiIcUTbOtyczp5Fas3N3b33z8+XaeunHWOtrUMx2LaGaCExXGLv0U7CdAFMnZpM\nRcVBtm3bRWpq+ghGOjTib+qbwsKGvlVAn2mlpqaG//qv/8JsNgOwYcMGsrKyhvymV6K9vY3y8gOE\nhYUTHz8Vs12mpdvFhCAlJt3nzQjzE0XwhNG1MElHqJ+STw9ZmDBlBlFREzl8+BCnT5/0dGiCMGh9\nJoW8vDxWrlzJypUr+dKXvkRtbS0//elPRyu2Xj2zjXYjSQrmzMnBbJc52+YixKQkJuTzi50Qo5KZ\nMWKdwoBZLD03YUjUyp5qqm4ZPiy1MidzLn5+PQvb2tvFwLMwtvRbNe7uu+/m7rvvHo1YLuvIkXJa\nW1vIyJiDyeTH+mIzDpfM4zcE0tztprHTRZhfT0IQW28OnHz2rKdD8BlhfkoWJur4tNxCYZWKefMW\n8umnG8nP387ixdei0Yjp0sLY4PUrmnu6jcrOdRtN42idg8O1dmZN1pIQqSY7XsuKdAPZ8VqREASP\nmjVFQ1yYmj0nbLQ5jGRn59Ld3UVBwc5xM9ApjH1enRQ+7zaSmDMnB6tDZvNBC/56BfOn6zwdniBc\nQJIkls/UY9BKfLjfTFDoBJKTU6mvr+PAgRJPhycIA+LVSeHw4UO0traQmpqOyeTH1gor3TY3y1L1\nopyF4JWMWgXL0/R0Wt18UmYhKSmFiROjOXq0gsrK454OTxD65bVJoaWlmfLyMsLDI0hImE5lg4OD\nZ+ykTupZSSoI3iouXM2cKVqO1jk4eMZJVtZcgoKCKS4upKGhztPhCUKfvDIpuFxOiop2oVIpycyc\ni90Jmw5aMGkVXJUkuo2GixQdjRQd7ekwfNKCRB3h/ko+LbfQblWQm7sQnU7H7t07RKltwat5ZVIo\nKyulo6ODjIxMDAYj249Y6bC4WZKiR6/xypDHJo2m5yYMO9W5aqqyDBtKzGi0enJzr8LlcrFz52ei\nFIbgtbzuDFtfX8exY4eZODGamJhYTjU7KTlpIylKw9RI0W0kjB2hfkoWJeuo73Cx44iVoKBgsrPn\n0dXVye7dO3C73Z4OURAu4lVJwW63U1S0G61Wx+zZWTjd8MkBC3qNgqtniG4jYexJj9GQEKGmsNJG\ndZOTiRNjSE1Np6GhXuzBIHglr0oK+/cXYbGYyczMQavVsfOolVazi8UzdBi1XhWqIAyIJElcm6bH\npFXw0X4zZrub6dOTmTIljqqqE1RUlHk6REG4gNecac+cOcXJk9XExSUQFTWRs61O9lbaSYhQkxgl\nuo1GRHt7z00YUQaNguvSDXTZ3HxyoKesyOzZ2URGRnHoUBlVVWKqquA9vCIpWK0W9u3bg9FoIi1t\nFk6XzMcHLGjVsDRF79UliMcyuakJuanJ02GMC1NCVWTGaTlW76D0lB2FQkFOznyCgoLZt28PtbU1\nng5REAAvSAqyLLN3bwEOh52srHmo1WoKTtho7nKxKEl/QQVUQRjLFkzXEeGvZGuFlaZOF2q1mry8\nqzAYTOzevYPmZpGgBc/z+Bn3+PGj1NaeZfr0GYSGhlHf7qLguI0poWpSJoluI8F3KBUSKzJ6NoDa\nsN+M0yWj0+mZP38RKpWK/PzPxBoGweM8mhTa2lo5cKCY4OAQZsxIw+WW2XigZ7/lZami20jwPSEm\nJVcn62nocLH9iBUAPz9/8vKuwul0smPHv7GIcuaCB3ksKTidTgoKdqJQKMjOzkWhUFBUaaO+w8WC\nRB0BBo9fxAjCiEiLVjMtUk3BcSv/2tvNByVmjrX6MSszD7PZzPbtn2KzWT0dpjBOeezMW1q6j87O\nDmbPzsJk8qO5y8WuYzYmBanImCxW2Y4GKT4eKT7e02GMO5IksTBRx5E6J2/t7uLAKRvbDlvYciKA\njNnz6OhoZ/v2f+Nw2D0dqjAOeSQpnDlzisrK40yeHEtMTCxut8zGc1P1rk0T3UaC7zta52RSkBKH\nE47VO5FlaOl20eSOYs6cHNraWtmxYytOp8PToQrjzKgnBbO5m717CzCZTGRkZAJQfNJOTauT3Gk6\ngk1ij2XB9zV0uAgwKIgOUdLa7eJEgwNkaOx0ERsbT3r6HJqbm8jP347L5fJ0uMI4MqpJwe12s2dP\nPk6nk+zsPNRqNW1mNzuOWIkMUJEZK7qNhPEh3L/ny090sIpwfyX17S5OtzgJ8+t5fOrU6efKYdRR\nUCDqJAmjp9+k8I9//IMbbriBm266ibvvvpszZ85c8ZuVlx+gqamRlJR0goNDkOWe2UZuuafbSKEQ\n3UbC+DAzRkOwUQkSJESoCTIqaex0o/rC/5GJiTNISprB2bM1FBTsFFcMwqjoMylUVFTw5z//mbfe\neov333+fxYsX88QTT1zRG9XW1lBRcYioqAlMn54EwIHTDk41O8mJ1/Z+cxJGj9zYhNwoFkx5gk4t\ncXuuiYWJemZM0vDthX4snqFja4WVyobPxxFmzJjJ9OlJ1NScpqBgh0gMwojrMykYjUaeeuop/Pz8\nAEhNTaW2tnbQb9Ld3UVh4S4MBiNZWfOQJIlOi5vPKiyE+SnJSdBeWfTC0HS099wEj9CpJbLjtaxI\nN5A3XcfXckz46STWF5upb+85+UuSRGpqRu8Vw65d23C5nB6OXPBlfSaFmJgY5s6dC4DD4eD5559n\n+fLlg3oDl8tFQcFOnE4Hc+fmodFokWWZT8os2J2wPE2PUnQbCQImnYJbsowoFBJri7ppN/eMI0iS\nREpKOjNmpFFXV8vOndvErCRhxAxooLmtrY17770Xg8HA97///UG9wYEDxbS0NDNz5myCg0MBKD/r\noLLRQVa8lshA1eCjFgQfFWJS8uU5BmwOmbWF3Zjtnw8wJyen9g4+79z5GQ6HSAzC8Ov3jFxdXc19\n993HwoULeeyxx/pcQyBJEiEhxt6fT5w4QXX1caZNSyArKwNJkuiyuimoshAdrueG7CDUqrF5lfCf\nbfV2p1Q9YzYhIUZU5+6f/1P2146x1tah8Ia2hoSAWq9jbUEHmypcfGOBqff/k9zcLPz99ezZs4fC\nwu0sW7YMrXbw3a/e0M7RMp7aOhz6TAqNjY3ccccd3Hfffdx+++39vpgsyzQ3dwPQ2dnB1q3b0OuN\nJCfPoqXFDMC6fd20tDtZNtdIR7t5GJrgGSEhxt62jgVOZ08fdXNzd+99Wa3pfawvY62tQ+EtbY3Q\nQ84UJZ+Wd/P6v+3cmGHonZ03YUIcqalOSkqKeO+9fzF//tUYDIM76XlLO0fDeGprWJjfkF+jz6Sw\nZs0a2traeO+991i7di0Aer2et99+u88XdTgc5OdvQ5Zl5s5dgFrdU+30aJ2DI3UOZk/RMilYdBt5\nmhQd7ekQhD7MjtXSYXVTVGlja4WVq5N1vVfqCQnT0Gq1FBbu4t///oT5868mICDQwxELvqDPM/MP\nf/hDfvjDHw7qBWVZZs+efDo7O8jOzu39h2qxu9l80EKAXsH86WK/ZUEYiKsSdXRZZPZV2/DTK8iK\n+7yrKDp6MhqNll27tvHZZ5vJzb2K0NAwD0Yr+IJhX9F86FAptbU1JCbOICZmSu/j/y630m1zsyzN\ngGaMjiMIwmiTJInlM/XEBKv4rMJCec2FRfIiIiK56qolSJKCbdu2cPr0SQ9FKviKYU0KlZWV5xao\nTSQlZebnjzc4OFRjJy1aw5RQ0W0kCIOhUkrcNMdIqJ+Sjw9YONl04TqFoKBgrrlmGSaTHwUFOykv\nL0OWZQ9FK4x1w5oUtm/fjp+fP9nZ83r7Pm2OnjUJJq2Cq5L0w/l2gjBu6NQSt2QaMWgk1hV309Bx\n4cpmo9HE1VcvJSIikkOHDlBYuEusfhauyLAmBYVCQW7uQtTqzwvbbTtspdPqZmmqHp1adBt5E/ls\nDfJZsWH8WOGvV/CVTCOyDO8VddNpubBInlqtIS9vEfHxUzl1qppt27ZgsYzdGX6CZwxrUli0aBF+\nfv69P59qdrL/lI2kCRoSIsR+y17HYu25CWNGuL+Sm2YbMdtl1hZ1Y3Vc2E2kUCiYNSuLjIw5tLQ0\nsWXLxzQ2NngoWmEsGtakEP2FKY52Z08FVINGwTUzxGwjQRguk0NVLE/T09jp4v193bjcF48fJCRM\nZ+HCxcgybNu2hWPHDotxBmFARmw/hZ1HrbSZ3SyeocOgEfstC8JwSp6oYcF0HaeanXxUarnkCT8s\nLIIlS5YTHBzC/v372LMnX5TGEPo1Imfrs61O9lXZmRqhZnqU6DYShJGQHa9l1mQtFWftbD9iu+Qx\ner2BhQsXk5AwjdOnT7J580c0N4ty6cLlDXtScLpkPj5gQauGJSliv2WvZjL23IQxSZIkrk7WMTVC\nzZ4TVoqrL50YlEolGRmZzJs3H4fDztatm9i/f7/oThIuadiTwu7jNpq7XCxK0mPSiW4jbyZFRCJF\nRHo6DGEIFAqJFRkGJgap+PSQlaN1l+8emjgxhiVLric0NIy9e/eybdundHd3jWK0wlgwrGft2lYH\ne07YiA1TkzJJdBsJwmhQKyVunmMgyKhgQ4mZmtbLb8JjMPR0J82ZM4empgY2bfqQEyeOiqsGodew\nJoV1e7tQKWBZqug2EoTRZND0bNCjUUm8V2SmuevyC9ckSSI9PZ3Fi5djMpkoLi5i27YtdHV1jmLE\ngrca1qRQ3+ZkYZIOf73oNhKE0RZoUHBLpgG3u2eDni6ru+/jA4O45prlzJiRRnNzI5s2fUhFxUGx\nEnqcG9azd0yYmvQYTf8HCoIwIiIDVdw4y0CnVeafe83YnX13CykUCpKTU1m8eDmBgUEcPFjK5s0f\nUrbZM/wAAA/ASURBVF8/+L3YBd8wrEnhxtkm0W00hsjV1cjV1Z4OQxhmceFqlqboqWt3sq7YfMnF\nbf8pICCIRYuWMmdODna7ne3b/83u3TvEQPQ4NKwlS0P8VDQ3X3panOCFRDeBz0qL0dBpdZN/zMqm\nMgvXpvU/zidJErGx8UycOImyslKqqo5x9uwZ4uOnkZycgkYz+G0/hbFH1LEWBB81b6qWTqubA6ft\n+OsV5E4bWLkZjUbL7NlZJCRMo6yshGPHDlNdfYLExBQSEqaiUomZhb5MJAVB8FGSJLEkRU+XVSb/\nmBU/nYK0QYz5BQQEkpe3iIaGOg4cKKGsrISjR8uZNi2Z+PipvdvsCr5FTBMSBB+mVEjcOMtAZICK\nTQctVDYMvvZReHgk11xzLfPmLUCvN1BWVsJHH71PRcVB7HbRXexrBpwUHn30UV5//fWRjEUYbUHB\nPTfBp2lUEl+eY8BfL7G+2Exd2+UXt12OJElMnBjN4sXLyc1diNFo4uDBUjZs+BfFxYV0dnaMQOSC\nJ/TbfXTy5El+/vOf///27jW2jXrN4/h3bI89tnNPnNhuEyi9nkILRdVhoZw90gYWIkiPAmIpKggh\nLm/6pkIrBKqoEAWVV0hIFBBSAbF7ihC7i1SWClSFsqftaVE5TatySC+nSVua2ElzT+Pb2P7vCyem\nadPE1IkTx89HqiadOPb/ydPOzzPj+Q8tLS2sXLkyF2MSOaJVlM/2EESOFBmpG/TsOjTCfx0J4a8p\nuqHn0TQNv38hPt8Curu7OHOmlbNnz3D27Bl8Pj+33LIUr9ePxSIHIfLVlKHw+eef88gjj1BTU5OL\n8QghZkhlkZVH1rr4/PAIfz4wyJ9u1294WntN06ip8VJT42V4eGj0ZHQbgUAnTqeTm29ezKJFi3G7\nbyx8xOyZMhReeuklAA4ePDjjgxFCzKwF5TYeXuNib6vJlz+a/NtdbnRrdtcWFReXcOedv2fVqjVc\nuHCO9vZ/0Nr6E62tP1FV5aG29iYWLqzDMOQe7flAPn0kRIFZ5tWxOhz891/7+N+WEH+604XFkv1F\np7qus3jxUhYvXkp/fx/nzrVx8eJ5Wlp+5NixH/F4vNTW3oTfvxDDmPzjsRFTcfxCjO6hBNUlVm6v\ns8s93nNkWkNB0zQqKwtjfv58q/WCzQpAZaUb2+jXtngivW4y+VZrNgql1qoqjaFwkoMnQxy5CA13\nuKZ1NoLKSjdLltSilCIQCNDW1kZ7ezvHjx/h+PEjeDwe6urqqK2tpbKyctxrR2JJPvtugN7h1L/P\n8/0J2vpiPPcvZRg3cLirUHo6XaY1FJRS9PaOTOdTzlmVle68qjU+GgC9vSPpr82zZwEYnKKOfKs1\nG4VSa2Wlmzt8io5u+L8Tg2DGuGvxzFyx7HCU8rvfrWH58tvp6goSDHYQCHTwww9H+OGHIxiGQZXH\nR0l5Ne4SD8cDNo6djZJQilKnBYeuEQrDd8e4oTEWSk8BPJ7irJ9DDh8JUaA0TaNhtZPLkSTNfw9x\n7pKJy2G5ocM1SikipiIaT73Tj4wuo3EIjy4jZpKoWUbYLCFSvIKIdYjYcJBkf5BzXWeBMwBcNg1M\ns5whVcHFZBk2RzGVxTbO98RnLLjErzIOhe3bt8/kOIQQs8Bq0XhwtYt/39XLkbYYK/w6TrvGwdNh\nHrrDjVJqgg07hEeXETNJxISoqVBMPvGehoZD13DqqWV5WRmGpxxDX4luSaCifcRGeugMBDEGutAI\nEE9CLGFheKCUv/9Uzsf91SypreK2m8sod1tz9FsqLLKnIESBOxUwubnKxlA4xs8dsfT68z1xFlSM\n30RYtNQG3bBpGHaNMpc1vZE39PEbfeOKPw5dw2FjivMWRUAdEVPxH/sHGRzowWIO4DIHKI4P4LKc\nI9zZzrGLimOHrTicpXgqy1m0oAKfp5zS0jIcDmNez9ScixPwEgpCFLjuoQR2XeO2hXYuDSewWDRs\nFljh0/nXVa5xG3f7lBv27Bm6xlN/KOX4BSeXhv14ilMbPxJR+vp6uBDs43ygj76+AS7+0s7FX86i\nW1PjK3LaKS0ppqiomOLi1NI0q4nHbRhGfgdGxFT858HL9I2kzgm2dsKJX2I8ua5oWoNBQqGAaXJB\nogCqS6y0doJh16it/HWTsLrOwU1Vs7OJMHTt2vMHuoHfvxC/fyH/ROo8Rme/yU/n+mnv6KVvZJCB\n8Ah90RBGTwd2SxyrRaOlxUI8nsRi0XA6XbhcblwuF07n2DK1zjCMObunEU8ovvs5xM8dMS5HkygF\nboeFoVCSv7VHM54BNxMSCoWsSK42FXB7nZ0Tv8TS70ABKt2j787nME3TWFBhZ0FFDWpNNcHBBKcC\nJqcCJsFQAlQMjyPMUq/CkRhES0QIhUYIhUL09/cRj088B5TD4cAwnDgcBoZhjIaFc3TpwG63Y7c7\nRv/Ypz1EzITi0lCCrqEEwYHUsmc4ycnOWGpPbvT1uodS/eoaSnKy06SmzMoz98unj4QQWTJ0jSfX\nFXH8QmqjM3a4Jp8uFtM0DV+ZDV+ZjT+uMOgaTHAyYHI66ORYj41QuJyaEivL/TqrfDplLgumGSMU\nChEKjRAOh4hEIkSjESKRCJFImFDoMn19PdcNjzG/hkRq6XBcGRqp9akw+fUxNpsNTdPSARAcTNA1\nmFr2Xk6SVKmT9laLRlWRhVW1Or5SC6eCJi67BU2DUEwxEkmyyKNj2DXOBH/7DLgTkVAQQkx8uCZP\naZqGt8yGdzQgYhYHh1uHOBWI8ZdTEf5yKkJ1iZUVPp1l3hL8/sknhozHzdGgiBCLRYnFYqPLKNFo\n7Ip1EYaGBojFYhMGiVKKeBLMuCKuLJhKJ5bUURYdZXGgWe24nQ5uLjKoKHFSXWbgKXPiNBzY7TpJ\nzcGuQ6H0Hp3boVFXYWfj6DmFZAa3Xc2EhIIQYt7SNA1/hc4fVxj883IH3UNJTgbMawJiuVdnuU+n\noujaj7nabDpFRTpFRZkfmonE4nT2hQn2hukaCNM7GGF4JILSYmjWGBZl4rKZlFtN7BYTqxpAJWJg\nguqH3n7oPQ+tVz1vhU3HlbBjYqfI7aKu2E37P5w4nU4cDic1NSVZ/sYkFApbODzbIxAiZzRNo6bU\nSk2pdVxAnA6Y7D8dYf/piQNiqo+BmglF9xXH/4ODCXqHk6PXbdixWhx4SqzcWpt6bW+plapiC9ar\n5ptSShGPm0SjqT2P1DJyxddj68cOcV3iXFvHuOdYvXp51r8nCYUCpjo7Z3sIQsyKiQJi7CT1WEB4\niq3c4rFx7EKMaDx1aOani7D/VJh1Sw36RpJ0DV0ZAKlzAGPnZLyjzz9RAFxvTLpuR9czP8GfSCRG\nQyJMeJre5EkoCCEK2pUB8YcrAuJ00OR/fhzhXE8cl8MCCsKx1JXbv/TGualKx1NyYwEwXaxW6+hH\nbKdvwj8JBSGEGHV1QPz5rxqJZITekSRWC3jLrLgdGnfe5GDD3e6cBkCuSCgIIcQENE1jqVencyBO\nXdX47y3x6vMyEADkRqpCCHEdt9fZqbhq4r18uLAvG7KnUMC02trZHoIQc9p8uLDvt5JQKGT2+ftu\nR4jpMp8u7MuEHD4SQgiRJqEghBAiTUJBCCFEmpxTKGSDg7M9AiHEHCOhUMBUT89sD0EIMcdMefio\nubmZxsZGHnzwQV555RVisdhUPyKEECJPTRoKvb29bN26lQ8//JBvvvkGwzD44IMPcjU2IYQQOTZp\nKBw4cIA1a9bg8/kAePzxx9m9e3dOBiaEECL3Jg2Frq4uvF5v+u81NTV0dXXN+KCEEELMjklPNCt1\n7e3drNZr70w0xmKx4PFkf+PofJFPtXqO/j799dGjfxv/vUx+Po9qzVah1FoodUJh1ZqtSfcUvF4v\n3d3d6b93d3dTU1Mz44MSQggxOyYNhXvvvZejR4/S0ZG65dsXX3xBfX19TgYmhBAi9zQ10TGiK3z/\n/fe8/fbbxONxli1bxvbt23E6nbkanxBCiByaMhSEEEIUDpn7SAghRJqEghBCiLSMQiGTqS527NhB\nQ0MDDzzwAB9//HF6fXt7O0888QQPPfQQGzduJBAITN/oZ0A2te7Zs4e7776bpqYmmpqaePrpp3M5\n9N8s0ylMhoeHaWxs5OTJk+l187GvMHGt862viUSCbdu20djYSGNjI1u2bEk/Jp/6mk2d+dbTnFJT\n6OnpUffcc4/q7OxUSin12muvqXfeeWfcY5qbm9Vjjz2motGoCoVC6tFHH1WHDx9WSinV1NSk9u7d\nq5RSas+ePWrjxo1TveSsybbWN954Q+3atSvn474RmdSqlFIHDhxQDQ0NatWqVaq1tTW9fr71Vanr\n1zrf+vrJJ5+oTZs2qWQyqZRS6sUXX1Q7duxQSuVPX7OtM596mmtT7ilkMtVFc3MzDz/8MHa7HafT\nyfr169m9ezfBYJCOjg7uu+8+ABoaGjhz5gzBYHAG4i172dQKcOzYMZqbm2lqauLZZ5/l9OnTOa8h\nU5lOYfLZZ5/x1ltv4fH8eonbfOwrTFwrzL++3nrrrWzevBlNS91neOXKlXR2duZVX7OpE/Krp7k2\nZShkMtXFRI8JBoN0dXVRXV097rHV1dVz8h8ZZFcrQFVVFc8//zxffvklGzZs4IUXXiAajeZm8L9R\nplOYvPvuu6xevXrc1e3zsa8wca0w//q6du1alixZAkAgEODTTz+loaEhr/qaTZ2QXz3NtSlD4er/\nIHDtVBfXe0wymZz4RS1z8/x2NrUCvP/++9x1110A3H///ZSUlHDixIkZGGn2Mqn1euZjXyczX/t6\n8uRJnnzySZ566inWrVuXV33Npk7Ir57m2pTdzmSqC6/Xy6VLl8Y9xuv14vP5xv3sld+bi7KpdWBg\ngJ07d457rFIKXddndtA3KJspTHw+37jfwdjP53Nfr6e/v39e9nXfvn0888wzbN68meeeew7Ir75m\nU2e+9TTXpgyFTKa6qK+vZ/fu3USjUcLhMF999RX19fV4vV4WLFjA3r17Afj222+pra29Zhd1rsim\nVpfLxc6dOzl06BAA+/fvJxqNctttt+W8jkxkM4WJ1+vF7/fPq75ej9vt5qOPPppXfT106BAvv/wy\n7733Ho2Njen1+dTXbOrMt57mWkZXNE801cWhQ4fYt28f27ZtA1K7Y19//TWmabJ+/Xo2bdoEpD7i\n9uqrrzIwMEBRURHbt29n0aJFM1tVFrKptaWlhTfffJNoNIrb7eb1119n2bJls1nOpDKpdUx9fT07\nduxgxYoVwPzs65ira51vfd2wYQPt7e34/X6UUmiaxtq1a9myZQttbW1s3bo1L/qaTZ351tNckmku\nhBBCpM29M0hCCCFmjYSCEEKINAkFIYQQaRIKQggh0iQUhBBCpEkoCCGESJNQEEIIkfb/GcyS2Hz/\nsoIAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1214d9780>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mfit.plot_mfit(ds_do.E_fitter, plot_kde=True, plot_model=False)\n", "plt.axvline(E_pr_do_hsm, color='m', label='HSM')\n", "plt.axvline(E_pr_do_gauss, color='k', label='Gauss')\n", "plt.axvline(E_pr_do_kde, color='r', label='KDE')\n", "plt.xlim(0, 0.3)\n", "plt.legend()\n", "print('Gauss: %.2f%%\\n KDE: %.2f%%\\n HSM: %.2f%%' % \n", " (E_pr_do_gauss*100, E_pr_do_kde*100, E_pr_do_hsm*100))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Burst size distribution" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false }, "outputs": [], "source": [ "nt_th1 = 50" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.lines.Line2D at 0x124d56518>" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAEbCAYAAAClapxFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAJ/wAACf8BB8w+RgAAIABJREFUeJzs3XlYjXn/B/D3qVS2krQxxoxkxqgsYxmNtVDatFnmGQnN\nWB7ZZ4w1JA/Dj5nIOhhJ1pmsUci+jBBaGDMYu0J0iGi7f3/0nPtxdE5755zq/bou1+V8z7nv8znf\nzvK5v6tEEAQBREREVK1pqTsAIiIiUj8mBERERMSEgIiIiJgQEBEREZgQEBEREZgQEBEREZgQFDBi\nxAg8e/asxMc9ePAAvXv3roCI5GVkZGDs2LFFPm7v3r1wcXGBo6Mjtm3bVmT5xo0b4eLiAjc3N/z8\n888limno0KE4f/680vt9fX3h6OgIT09PuLm5wdvbG8ePH5e7f+rUqXLHzJgxA7t27RJvZ2VloWPH\njvjpp5+KFdOtW7cwaNAgeHh4YODAgfjzzz8LLX/XxYsX4evrW+j5r169ig4dOsDT0xOenp6YOXMm\nAODly5cYMWIEnJ2dMXjwYPG9pKxcGV9fX3Ts2BF5eXlimSAI6Ny5c4G60hQ7duzAjBkzxNvlVRfl\nac+ePQXq7/jx43B0dBRvP3r0CIMGDYKzszPGjBmDN2/eFPv877/XfX19ce/ePfH+58+fY8aMGejd\nuzdcXFzg7e2NY8eOFXnep0+f4ttvv4WHhwe8vLzwxx9/FHhMZmYmJk6cCHd3d7i7u2P//v0AgNDQ\nUKxatapY8Z87dw4eHh7w8PBAmzZtxNcyceLEQo9LTU2Fv78/PDw84O/vD6lUKnf/+3VcVHl5GDNm\nDFJSUpCQkIA5c+YAAFq2bFku5xYEAUFBQXBzc4ObmxvCwsLE+9avX48+ffrAyckJsbGxcsfl5eVh\n4MCB2Lt3r1jm5uYGDw8P8bvkyZMn5RJjqQhULu7fvy/07t27wp/n3r17Qq9evQp9TEpKiuDg4CC8\nePFCeP36tdC3b1/h9u3bSsvv378v9OjRQ3jz5o2Qk5Mj+Pj4COfPny92TEOGDBHi4uKU3j9o0CAh\nPj5evJ2YmCh06NBBuHHjhni/ra2tcObMGfEx06dPF3bu3CnejoqKEkaPHi107dpVyMnJKTKmQYMG\nCceOHRMEQRDOnj0reHh4FFr+rgsXLgi+vr6Fnn/r1q3CsmXLCpQHBQUJv/zyiyAIgrBr1y5h0qRJ\nhZYXFn+3bt3k6iQuLk7o1KmTMGXKlEKPVbWsrCxh8eLFQps2bYQZM2aI5eVVF+Vp9+7dcvWXlpYm\nODs7y312R4wYIRw4cEAQBEFYvny5sGTJkmKf//33+oYNG4SJEycKgiAIb9++FVxdXYUVK1YIeXl5\ngiAIwo0bN4QePXqInwVlpkyZImzatEkQBEG4deuW8OWXXxZ4zLJly4Qff/xRfF1dunQRnj17Jixb\ntkxYuXJlsV+DjK+vr9xrKcygQYOE3bt3i3EsWLBAvE9RHRdWXl68vb0FQRCEX3/9VYytZcuW5XLu\nyMhIYfz48YIgCMLr168FZ2dn4c8//xQSEhIET09PISsrS0hLSxN69eolvHz5UjwuNDRU6Nixo7Bn\nzx5BEAQhMzOzyO9zVaq2LQQpKSkYNGgQfHx8MHDgQCQkJAAA7O3tkZqaip07d2LixInw9/eHo6Mj\ngoODxWMXL14MR0dHDBw4EGPGjJG7kgWAtLQ0/Pvf/4a3tzcGDBiA+Ph4APlXJ3379oW3tzfGjx+P\nrKwsxMXFYdCgQRgyZEiB51m2bBlcXFzg7u4uZvjz5s1DSkoKxo0bp/S1nT17FnZ2dqhbty5q1qyJ\n3r17Izo6WmF5TEwM8vLykJubi8zMTGRlZSE3Nxe6urqF1t/cuXPh5OQEf39/PH/+vNA6BfIzahlr\na2s4Ozvjt99+E8uGDx+OGTNmIDMzU+Hz7dy5E87Ozvjoo49w5MiRQmMDAB8fH3Tt2hUA8MknnyA1\nNbXQ8oSEBPFvs3nz5iLPn5iYiHPnzsHLywujRo0Sz3Ps2DH07dsXAODq6ooTJ04gLy9PYbkgCPD1\n9UVgYCC8vLzQt29fJCUlic/Rq1cvxMTEiLejo6OL1Qr1999/w8fHB56enggODhaPmTp1KoYPHw4X\nFxecOXMGiYmJ+Oqrr+Dl5YXhw4fj8ePH4mtTVG5vb4+lS5eiX79+cHNzE1tXLl++jOzsbEyePFku\njtLUheyzUpwWt+K+nuPHj8PZ2Rk+Pj44fPiw3Dlmz56NUaNGibdzcnJw8eJF8arVy8tL/BvIvhsA\nIC4uDkOHDlUY17utOi9fvoSJiQkAICYmBjVr1sSoUaMgkUgAAJaWlpgzZw6ys7ORkpIid6Uo+wcA\nDg4OcHd3BwA0adIE2dnZBT4r7dq1w+DBgwEA9evXh6GhoVzrS25uLkaNGoXly5cXWq8ygiDIfW4P\nHz5cIL6ZM2fi2bNnuHPnjhjf0KFDxTgU1XFh5creA2fOnIGXlxd8fHzg7++P9PR0pXH/9NNPcHJy\nwoMHD+Dh4YGlS5di3bp1ePDgAQRBwPTp09G3b1+MGjVKPI+yv62/v3+Bv0dycjKaNWuGgIAAAEDN\nmjXRuHFjpKSk4Pjx43ByckKNGjVQv359dOjQQWwNTUhIQHJyMnr06CHGmpycLL5uLy8vHDx4sMi/\nS0XSUeuzq9Fvv/2Grl27Yvjw4YiLi0N8fDxsbW3FDyqQ/wfct28fAMDJyQn/+te/cOfOHVy+fBn7\n9+9HRkYGvLy84ODgIHfuefPmYcCAAejWrRsePnyIwYMHIzo6GiEhIdi6dStMTEwQEhKC27dvA8hv\nft67dy/Mzc0xZMgQxMTEQFdXF2fPnsWuXbsgCAL8/PzQokULzJgxA8OGDUNISIjS1/b48WOYmpqK\nt01MTHD16lVIJJIC5deuXUPjxo3h5uaGHj16oEaNGujatStsbW2Vnj8mJgb//PMPoqOj8eDBA7i6\nuhZap4pYWVnJdRt06tQJqampWLx4sVyzs+z1xMfHIyQkBC9evMDWrVvRq1cvpfEBEH9wACAkJET8\nG71f3rNnTwDA9OnTMWvWLLRr1w5BQUFFNtvVqVMHgwYNgqOjI7Zu3YrvvvsO4eHhePLkifgDoK2t\njVq1aiE9PV1huSyR0tbWRmRkJM6cOYMpU6aI77nu3btj9uzZAPK/nK9cuYLBgwfj7Nmzhcb2ww8/\nYOLEiejcuTM2bNiA3Nxc8T4zMzOsWbMG2dnZ6NevH1avXg0zMzPExMRg7ty5WLJkCWbOnFmgfNmy\nZQCABg0aYMeOHdi0aRPWrFmDJUuWoH379mjfvj127twpF0dp6uJd734WlSnq9SxevBjTp0/H5s2b\n8eGHH2LkyJGoXbs2gPz368cff4w2bdqI53v+/DkMDAzE5zYxMRF/KIob37Rp08TX+urVK2zZsgUA\ncOXKFbRr167A47t06SL+//2LCxnZ+xQA1q5di5YtW6JmzZpyj/niiy/E/+/fvx85OTmwtLQEkJ+k\nTJ06Fc2bN8fo0aMVPkdRevbsKReHTEJCAszNzTF37lycP38elpaWmDVrFgDFdVxY+ftkdbxq1SoE\nBgaidevW2LRpE65du4ZOnTopPGbChAmwtbXFX3/9hVGjRqF///7Yvn07gPykqHv37pg3bx5CQkKw\nfPlyTJ8+Xenzrlu3rohaAeLj45GUlITPP/8csbGxaNu2rXhfgwYNkJKSgjdv3mD+/PlYunQplixZ\nIt6fmZmJzp07Y/r06eIF1SeffIImTZoU+bwVodomBHZ2dggICMD169fRvXt3/Otf/wIgfyXbtm1b\n6OvrAwAaN24MqVSK06dPw9nZGdra2jA0NFT4ATlz5gz++ecfsb87NzcXKSkpcHBwwNdff42ePXvC\nyckJzZs3R1xcHDp06IBGjRoBAPr06YO4uDjo6urC1dUVNWrUAJB/JXX27Fk0a9asyNcmKFiNWltb\nW+FjtbS0kJCQgNOnT+P48eOoUaMGhg8fjn379ok/9O+Li4sTM/dGjRqJX3J2dnYYPXp0gTpVRCKR\nQE9PT65s8uTJcHNzQ58+feTKd+/ejc6dO6NWrVro3bs3goOD8fDhQzRs2FB5JfzXjz/+iMTERLk+\nvvfLnz9/jufPn4uvo2/fvli8eHGh550yZYr4/4EDB+Knn37C69evFda9sh8OLa38BjofHx8A+fX3\n/Plz8aqlZs2aaNGiBS5cuAAA+Pzzz4t8vVKpFKmpqejcubN47vDwcPF+WYJ2+/Zt3LlzByNHjhSv\nBLW1tZWWy8h+vKysrHD06NEi43lfUXVRUkW9nr/++guNGjXChx9+CABwd3fHyZMnce/ePURGRmLj\nxo1ISUkRz1eSv58y8+fPF38Utm3bhlGjRolXfu+ea/HixTh58iTevHmDHj16wM/PDyNHjoREIhHj\nkEgkconWhg0bxIRMmQMHDmDBggVYu3atWBYREYHXr1+X6m8mc/jwYYSGhsqV2djYwNPTE4mJiZgw\nYQJmzpyJlStXYv78+QgICFBYx3fv3lVYXhh7e3uMHTsWvXr1goODg9JkQObGjRuwsrJCVlaW3Pu3\nZs2a4sWEq6srvv/++0LP4+/vj7S0NPG2RCJBcHCwOBYhLi4OEydOxKJFi1CnTh2F59DS0sKPP/4I\nX19fMRGW6dy5s/hZbdSoEXr16oXTp08zIVC1tm3b4sCBAzh69Cj279+P3bt3y32AABT4wZJ9ySj6\n0nhXXl4eIiIiUKtWLQD5A27MzMwwbdo0+Pj44NixY/j+++8xbtw4NGjQQO7L8P0v4Hfl5OQU67WZ\nmZnh0qVL4u0nT57A1NQUpqamCsvj4uLQpUsXGBgYAMj/oMTHxytNCGRxysjibdu2LaKjowutU5nr\n168XSG7q1KmDWbNmYcaMGbCxsRHLd+/ejefPn8PBwQGCIKBGjRrYvn07xo8frzS+vLw8TJ48GU+f\nPsXGjRvFq0JF5c+fP1f4egqzZs0aDBs2DDo6OmJ96OjowMzMDGlpaTA2Nha7YerVqwdTU9MC5YaG\nhgWe7/2/v6OjI2JiYiAIAlxdXXH37t1C4yoqdlmCm5ubi48//hiRkZHibalUisePHyssl5F1Jb37\no6WMotdcWF28e87ivtcLez3p6el49OiRXBO+rH4OHz6MtLQ09OvXD1lZWXj48CGGDRuGNWvW4OXL\nl+LjZZ8R2WuWKW58Li4umD17Np4/fw4bGxuxtQAAJk2ahEmTJmHnzp2Ij4+Hubm50hYCAFi0aBFO\nnjyJzZs3F/hhkYmIiMC6devw66+/iq0DANC+fXtYWlpiwYIFWLBgQbFif5+yFoJ79+6hXr164o90\nnz59MHr0aMTGxsrV8aNHjzBs2DB06dJFYd2vX78eAPD27VsAkBvMOWTIEDg4OODo0aNYtGgRnJ2d\n8e233yqM86effsKWLVtgamqK//u//0N6ejo8PT0RGhpa4LMm+/wq+9sW1kJw+PBhzJ49Gz///LN4\nMWFqairXuvjkyRNYWVnh119/xeXLl7FmzRo8evQI586dg56eHmrXro06deqgVatWAPK/n2QXgeqg\nUWMIrl27hkmTJiE4OBi///57hT7X4sWLsWvXLnh4eCAwMFDhaHNF7OzsEBMTg5ycHGRkZCgcIdyx\nY0fxg5+YmAhvb29kZWXB0dERRkZGGD58ONzd3XHt2jUAwIULF/D06VNkZWVh//79+PLLL9G+fXvs\n27cPWVlZePv2Lfbu3YuOHTtCR0cH2dnZhcbYqVMnnD17FlKpFJmZmTh48CC6dOmitPzTTz/F6dOn\n8fbtW+Tm5uLkyZOFjsb94osvEB0djZycHKSmpuLixYslqtMrV67g4MGD6NevX4H7unfvjs8++wwH\nDhwAkN8c+ezZMxw/fhyxsbE4cuQIFi1ahN9//13ui/598+bNQ0ZGBn755RcxGVBWbmRkhAYNGohN\n8bLR2YU5efIkoqKiAOQ387Zq1Qq6urro1q2beEUXFRWFzz//HBKJRGn5u893/PhxNGrUCHXr1pWr\nj5MnTyIpKQmtW7cuMq46deqgUaNG4mvZs2ePwivcpk2bIi0tTRznsXHjRgQGBiotL42S1oWRkRGu\nX78OACXuS1UU96xZs9C8eXOkpqbi1q1bEARBfF8NHToUMTEx2LlzJ9asWYOGDRti/fr10NHRES8W\ngPyxK7JWkfr164vv6UOHDhUrrj/++AMWFhYwMjJCnz598PbtW6xevVr80cnIyMC5c+eKbCFZv349\n4uLiCk0GoqOjsWHDBmzZskUuGQCATz/9FCNGjMClS5cUzlAoi8aNG8PIyEg877Fjx9CiRQux+1NW\nxxYWFli/fr3Supc5d+4cAOD06dNi2cCBA5GRkYHBgwfDz89P/O5UZMKECWjSpAn27dsHPz8/Melq\n1KgRMjIycPLkSQD5n1tZElPSv+2lS5cwe/Zs/Prrr3LdQF27dkV0dDTevn2LZ8+e4dy5c/jiiy9w\n4sQJ7Ny5E7t27YK9vT0mTJiA3r174/Hjx1i6dCny8vLw9OlTHD16VK4LSdU0qoXg9evXmDJlCurV\nq4dRo0bB29u7wp7r66+/Ft8oOjo6Yl+tsuZBWXm3bt1w6dIleHp6wsDAAKampuJVisyMGTMwc+ZM\n7N69G1paWvj555+hq6uLcePGYciQIdDX10e9evXw448/4tatWzAxMcGkSZPw+PFj9OnTB926dQOQ\nP7bA29sbOTk5cHJyQq9evZCTkwNTU1P4+/srzV7NzMwwbtw4DBo0CNnZ2RgwYABatGgBAErLk5OT\n0bdvX9SoUQN2dnaF1n2vXr1w+fJluLq6wsLCAlZWVgCAQYMGYeLEiQXqFMgfACZrMalZsyZ+/vln\nWFhYKKzzGTNmiD9ou3fvhre3t5jJA/kDrBYuXIgjR44ovGKRSqXYsmULGjduLCYdEolE/LJ8v3zn\nzp1YuHAhpk2bBkEQ8Nlnnyl97TLz5s3D1KlTsXbtWhgZGWHRokUAgLFjx2LKlCnYvXs36tatK3Y9\nKCsHgH/++Qeenp6oUaOGePUmq5PatWujadOmJWpCnD9/PqZPn45Fixbhk08+KfD+BPKv9H/66SfM\nnTsXWVlZqFevHhYuXKiwXPbaStp0XtK6+OabbzBlyhT89ttvRY4RKcnrWbRoEcaNGwddXd1idbkF\nBgbihx9+wPLly2FhYSF2/QUEBCA4OBjLli1D165dcefOHYXHy97rEokEWlpa4uvT1dXFxo0b8dNP\nP8HDwwM1atRAbm4uevbsCX9//0JjWr16NWrXrg1fX18IggCJRII1a9YgMTERR48exdy5c7F69Wq8\nefNG7DaRNW+/W0fTpk3D7NmzsWfPHgQFBcHBwUFukNu7SvL3Dg0NxcyZMzFv3jw0aNBAfM+Uhqx1\n8t33/Lhx4zBlyhRxzElQUBCA/MHI48aNk7uAkbU+AfkXFO/WrZGREaKiorBo0SI0bdoU//nPfwAU\n/28rs27dOuTk5GDy5MliXY8dOxY9evQQp1bn5uZi/PjxYiyKeHh4IDk5GW5ubgCA77//Hubm5iWs\nsXJUsZMY8v3www9CWFiYePvw4cOCq6ur4OjoKEyZMkV4+/ateN/9+/cFPz+/Uk2TUYVLly6J0+Gy\ns7OF/v37C9evXy/1+c6dOycMHTq0vMKjSmbQoEHCxYsXy/WcoaGhwpMnTwRBEITY2FhhzJgx5Xp+\nqhoOHTokTsHVFCX9PGzYsKHIKZtUfBXaQnDnzh3MmTMHly5dEq+60tLSEBgYiN9++w0WFhaYM2cO\nVq1ahbFjx+LKlSto1qwZNmzYgBEjRuDly5dyzaea4OOPP0ZoaCh+/fVXCIIALy8vNG/eXOVx3Lt3\nD2PGjJHL4oX/ZqpLly5F48aNNfr85WHhwoU4c+aMGKMsPjs7uyIHC2nC+YGSX3UXJzYrKysMHToU\n2traqFevHubNm1cusarDhg0bsGvXrgL11KxZszJdhVJ+X7msNVJTlPTzUL9+/QLdI1R6EkEoYmRQ\nGSxcuBCfffYZTp8+jRYtWmDw4MHYvXs3Dh06JI5W/fPPPxEQEIDDhw/j7Nmz2Lp1K0xNTaGnp4fv\nvvuuokIjIiKid1RoC4FsoZJ3B4ekpqbK9ZGYmZmJ83w7depU5HQSIiIiKn8qH1SoqEGiONO8FCls\nlDmVny++yG/G++OPCmtMoncUZ0oflR3rWXVY16pT2jU9ADUkBObm5uJyjUD+KnRmZmalPl9a2qvy\nCIsKkZNTCzo6WqxrFTE2rs26VgHWs+qwrlXHxKT04+5Uvg5B586dER8fjwcPHgDI3yHt/aV/iYiI\nSLVU3kJgbGyM4OBgjBo1Cjk5OWjevDnmz5+v6jCIiIjoHRU6y6Ci5eXlsRlKBRwd87sMoqIy1B1K\ntcDmVdVgPasO61p1KlWXAREREWkeJgRERETEhICIiIiYEBARERGYEBARERGYEBARERGYEBAREQEA\n+vVzx40bf6v8ea9eTcKCBXNV/rzvU/nCRERERO+SStMRHh6GpKQEWFvbwtfXD4aG9dQdlsqcOnUC\nnTurfytqJgRERKQ2Umk6nJzscfPmDQBAZOQORESEITr6SLkkBZcuXcTatatgamqGW7duQldXF7Nn\nz0OjRh/g9u1/MH9+ELKy3uKjj5oiKyur0HONGTMC/v4j0Lp1W6X3t2xpg8TEK3j8OBV9+rhi2LDh\nEAQBS5cuwdWrSXj16hW0tbUxY8YcWFk1BwBcuBAHPz9/ZGZm4scfg/H339dhaFgP9evXh6WlFYYO\n/bbM9VAcTAiIiKjcbdiwDlu2hAMAdHS0kZOTq/BxqampePjwgVzZzZs30K1bp0I3vvvqK18MGeJf\nrFiuXUvG5MnT0aTJRwgJWYzNmzfi+++nIShoBr76yhe9ejkhPv4CYmMPFvPVKffkyWMsX/4L0tKe\nYsAAD7i7eyEl5RHS059j9epfAQBr167Ctm0RmDFjDh49eghjY2Po6elh5cpl0NXVRUTEb3j+/Dn8\n/QfB0tKqzDEVFxMCIiJSm8zM1yUqLw0Li4Zo0uQjAICVVXOcPn0CL15IcevWTfTs6QgAaNu2HT74\noHGBY3NycvDtt4MhkUhw//59LFgQjFq1asLJyRX9+39V4PF2dp0BAMbGDVCvnhGk0nRYW9vAwKAu\ndu36Dffv38fFi3Fo2LARgPzugi+/7AIAOHfuLCZMmAwAMDIyQrdu9uVWB8XBhICIiMrdkCH+4hV8\nYXsZhIaGIChoZoHyMWMmIiBgXLnEoqenJ/5fIpEgfwcfyX//L0AikQAAtLS0Cxyro6ODX3/d/N+Y\nCu8yUPxcAs6cOYWlS5fgq68GoXt3e5ibmyM+/iIA4MyZkwgMnPvf59eCIOSJx2tpSUr9mkuDswyI\niEhtfH39YGnZTK6sWTMr+Pr6VejzGhgYwMrqExw4sA8AkJSUgHv37hR6jCxxKKnz58+ha9fu6NvX\nC82aNcfJkyeQl5eLjIwMZGdnw8ioPoD81oXo6CgAwIsXL3Dy5PFSP2dpsIWAiIjUxtCwHqKjjyA8\nPAzJyYlo2dJGZbMMZs0Kxvz5QdixYyuaNGmCRo0+KPTxS5euKvT+gj/e+bf79vXCnDnTMXToH5BI\ntGBr2woXL57HuXNn0LFjJ/HRvr5DsGjRfPj5DYSBgSHMzS2gp6dfqtdWGtz+mIrE7Y9Vi1vFqgbr\nWXVY18Vz6FA0jIzqo127DsjJycGoUf745puRcklDUcqy/TFbCIiIiDRA06bNsGjRf7BiRQiys7PR\nvbtDiZKBsmJCQEREpAEsLZth1ar1ant+DiokIiIiJgRERETEhICIiIjAhICIiIjAhICIiIjAhICI\niIjAhICIiIjAhICIiIjAhICIiIjAhICIiIjApYsrFak0HeHhYUhKSoC1ta3KdgQjIqKqjwlBJSGV\npsPJyR43b94AAERG7kBERBiio48wKSAiojJjl0ElER4eJiYDMjdv3kB4eJiaIiIioqqECUElkZSU\noLA8OTlRxZEQEVFVxISgkrC2tlVY3rKljYojISKiqogJQSXh6+uHGjVqyJU1aGACX18/NUVERERV\nCQcVVhKpqanIzs5Gly7dYGJiitOnT+LNm0wIgqDu0IiIqApgC0ElERW1BwAwZ85/sGrVOixfvgZS\nqRRLlixSc2RERFQVMCGoJKKi9qJJk4/QsqU1AKBr1+7o2bM31q1bjdu3/1FzdEREVNkxIagE7t69\ng4SEy3BxcYdEIhHLZ80KRm5uLoKDZ6srNCIiqiKYEFQCUVF7AQCuru5y5Z988ikGDRqCPXt24vz5\nc+oIjYiIqggmBJVAVNQemJtboG3bdgXumzx5GmrXroPAwGkcYEhERKXGhEDDpaam4Pz5c3B2doWW\nVsE/l6mpKcaOnYCLF89j795daoiQiIiqAiYEGu7AgSgIggBX175KHzNixGiYm1vgu+/GY/jwoQgN\nDYFUmq7CKImIqLJjQqDh9u3bg/r16+OLL+yUPiY7Owt5eXlIT3+OXbt+R1DQTDg52TMpICKiYmNC\noMGeP3+G06dPwMnJBTo6yteQCg8Pw+PHqXJl3PiIiIhKgisVarCYmAPIzc0tMLvgfco2Plq7dhXs\n7L6EpWUzhIeHISkpAdbWtvD19eOWyUREJIcJgQaLitqDOnXqokuX7oU+ztraFpGROwqUp6amwMnJ\nHjVr1kRmZiYAIDJyByIiwhAdfYRJARERidhloKEyMl7i2LEj6N3bEXp6eoU+1tfXD5aWzeTKmjWz\nwokT52Bn11lMBmTYnUBERO9jC4GGio09hLdv38LFRfnsAhlDw3qIjj6C8PAwJCcnomVLG7FbwNzc\nQuExycmJ5R0yERFVYkwINNS+fXugr68Pe/uexXq8oWE9BASMK1CurDuhZUubMsdIRERVB7sMNNCb\nN29w6FAMevToidq1a5fpXIq6E7S1teHuXnTLAxERVR9MCDSMVJqOyZMn4PXrV9DT0yvzWgKy7oTA\nwLnw9u6PQYP8kJubi8WLF5ZTxEREVBWwy0CDSKXpcHKyx82bNwAAu3b9jsTEK2WeEfB+d0Jubi62\nbNkET086+rnCAAAgAElEQVQfdO9uX+a4iYio8mMLgQYJDw8TkwGZipgRMGfOPJiYmOK778bh1atX\n5XpuIiKqnJgQaBBlCwyV94yAevWMsGDBYty9ewcLFswt13MTEVHlxIRAg1hb2yosr4gZAW5ufeHi\n4o41a1biwoW4cj8/ERFVLkwINIivrx+aNPlIrqxZMyv4+vpVyPMtWPB/MDAwxNixoxASshgjR/pz\np0QiompKIgiCoO4gSisvLw9paVWrD/zq1SR0724HGxtbeHr2q/B9B9atW4OpU7+TK7O0bCY3kNHR\nsRZ0dLQQFZVRYXHQ/xgb165y72tNxHpWHda16piY1C31sWwh0DB16xoAADw9+yEgYFyF7zeQmfm6\nQBmXNiYiqn6YEFRzSUmKByyePXsKQP5UyNTUFNy8eYvdCUREVRgTgmpO2UDGQ4diYG//JTp1+hwP\nHz7As2dpCAqaCScneyYFRERVEBOCak7R0sZNmnyEkSMDcPfuHTx9+kTuPnYnEBFVTVypsJorbKfE\n1NQU7Nz5W4Fjrly5pIZIiYioIjEhIKU7JdrYtFKYEBw+HIPw8A1wcXHH5s3hSEpKgLW1bYXPiCAi\noorDhICU8vX1Q0REGG7e/F+ZhUVD6OvrY9KksZg69TtkZWUBACIjdyAiIqzM+y4QEZF6cAwBKSXr\nTmjYsBHq1zdGYOBcnDjxB06dOo8+fVzEZECG4wuIiCovthBoGE1bJ8rQsB7MzPIXJnq3W6FmzVoK\nH1/e+y4QEZFqaFRCkJycjA0bNsDIyAhZWVmYPXu2ukNSG4lEou4QCmVtbYvIyB0Fyiti3wUiIqp4\nGtVlkJ6ejmnTpmHatGlITU1FRgaXytVUiqYrSiQStGvXXk0RERFRWagkIZgyZQo2btwo3o6NjYWb\nmxucnJwwdepUsS/6yy+/hJGREbZt24Y2bdqgTp06qgiPSkE2viAwcC68vfsjIGAcateugzFjRiI9\n/bm6wyMiohKq0ITgzp07GDZsGGJiYsSytLQ0BAYGYs2aNYiOjoa+vj5WrVoFAHjz5g1mz56N+vXr\nY/jw4RUZGpUD2XTFlSvXIjBwLlas+AV37tzGv//9LfLy8tQdHhERlUCFJgTbtm2Dl5cXnJycxLJT\np06hTZs2sLCwAAAMGDAAe/fuBQD8+OOPuHbtGg4dOoTJkycjPZ1L5FYmTk7OmDDhOxw+fBBLlixU\ndzhERFQCFTqocPLkyQCA06dPi2WpqakwNzcXb5uZmSElJQUAMGvWrIoMh1Rg8uTpuHQpHgsX/gf3\n79/DmzdvuGgREVEloPJZBoqm1Wlra5fqXBKJBMbGtcsakkZ5+TJ/Ol/t2roa89p0dPJnPBQ3nl9+\nWY0WLVpg8+ZwAPmLFm3dGo6zZ8+iXj0mBUWpiu9rTcR6Vh3WdeWg8oTA3NwcycnJ4u3Hjx/DzMys\nVOcSBAFpaa/KKzSN8Pz5awDAq1dZGvPacnLy1yEobjzh4VuRk5MjV/bXX38hJGSFwiWSSZ6xcW2N\n+dtXZaxn1WFdq46JSd1SH6vyaYedO3dGfHw8Hjx4AADYsWMHHBwcVB0GVaCkpASF5ZcuXVBxJERE\nVFwqTwiMjY0RHByMUaNGwdnZGU+fPsWYMWNUHQZVIGtrW4Xl0dEH8OOP8/DihRRSaTpCQ0MwcqQ/\nQkNDIJVyACkRkTpJBE1bK7cE8vLyqlwz1N27d9CunQ1mzQrG6NFj1R0OAMDRMb/LICqqeAtFSaXp\ncHKyx82bN8SyRo0+gIVFQ1y4EAcDAwPo6NTAs2dp4v2Wls24MdJ/sXlVNVjPqsO6Vp1K1WVAhavE\n+Zno/UWLAgPn4tixM4iKOoStWyNRu3YduWQA4MZIRETqplF7GdD/aPpeBkWRLVr0Pnv7nujU6UuF\n+yBwYyQiIvVhCwGpnLIxBn///RdSU1M4voCISA3YQkAq5+vrh4iIMLkxBnXrGiAh4TK++KIt9PX1\nkZb2FED+GgYREWEcX0BEVMHYQkAqp2iMQXx80n9/9A3FZECG4wuIiCoeWwhILRSNMWjbth2++MKO\n4wuIiNSALQSkUZSNL2jZ0kbFkRARVS9MCEij+Pr6wdKymVyZlpYW2rfvoKaIiIiqB3YZkEaRjS8I\nDw9DcnIijI2NsWVLBIYN88WePQdgaWml7hCJiKokJgSkcd4fX+Du7oX+/fvCx6cv9u6NwQcfNFZj\ndEREVRMTAtJ4HTp0RFjYFnz9dT94eDjDx2cAbt/+B9bWtvD19eN0RCKicsAxBFQpdOvWAyEhK3H3\n7h0sWbIQkZE7EBQ0E05O9ly4iIioHBSZELx9+xYJCfnb2W7atAkzZszAw4cPKzyw6qoq7GVQUR49\nKvi+4xoFRETlo8iEYPLkyYiNjUVCQgLCwsJgbm6OGTNmqCK2aq2y72VQEZKSEhSWc40CIqKyKzIh\nuH//PiZMmIDY2Fh4enoiICAAUqlUFbERyVG2RoFUKmXLChFRGRWZEOTk5AAATpw4ATs7O7x9+xav\nXnFfa1I9RWsU6OvXxOHDMRg2zBcvX75QU2RERJVfkbMMunfvjq5du6JRo0Zo3bo1PDw80KdPH1XE\nRiTn/TUKWra0wcCBX2PZsp+wcuUyJCcnok8fF6SmpnIGAhFRCUmEYrS1pqSkwNTUFFpaWvjzzz/x\n8ccfQ09PTxXxFSovLw9paVWrteL27X/QoUMrzJnzH4waFaDucAAAjo61oKOjhaioDHWHotS2bREY\nO/bfcl0HlpbNKuUuicbGtavc+1oTsZ5Vh3WtOiYmdUt9bJFdBgMGDIC5uTm0tPIf+umnn8LHx6fU\nT0hUEZ48eVpgHAFnIBARFZ/SLoNhw4YhKSkJGRkZ6NDhf+vI5+bmokWLFioJjqi4lM1AWLlyKdq0\naYsvv+wCqTQd4eFhSEpKYJcCEdF7lCYES5cuRXp6OmbOnIng4OD/HaCjAxMTE5UER1Rc1ta2CrdN\nTk+XwtPTBR06fIH79+/h4cMHAIDIyB2IiAgrVpcCEwkiqg6UdhnUqVMHH3zwAX799VcYGRmhUaNG\nSEtLw7lz55Cbm6vKGImKpGgGQrNmVjh9+jzGj/8Oly7Fi8mATHG6FKTSdDg52SMoaCZXRySiKq3I\nMQTLli3DzJkz8fDhQ4waNQq///47Zs2apYrYiIpNNgMhMHAuvL37IzBwLg4ciMVHH32MadMC4eio\neGZMUYsahYeH4ebNG3JlHJtARFVRkdMOjx49is2bN2Pz5s1wdXXF1KlT4eXlpYrYiErk/V0S39W2\nbTvs27e7QHnLljaFnpOrIxJRdVGszY309fVx+vRp2NnZAcjf34AqBlfcqxiKuhTq1q2LQYMGF3pc\nnTqKp/AUlUgQEVU2RSYEDRs2xKRJk3Dz5k106tQJU6dORdOmTVURW7XGrQzK1/tdCu3atcfLly+x\nceOvSo9JTLyC33/fDm1tbblyMzNz+Pr6VXTIREQqVWSXwYIFCxAbG4vx48dDV1cX1tbW8PDwUEVs\nROXq3S6F7OxsDBzojeDg2bC0tIKLi5vcY2/duokBA7xQo4YOtm2LRlzcH0hMvILY2IOoWbOm0pYD\nIqLKqlgLE/Xt2xeNGzcGAHz99deoXbt2hQdGVJFq1KiBtWs3oGlTS4we/S0SE/83ViA1NQX9+3vi\n1asMbNq0Ax06dERAwDisXr0e06fPxu3b/2Dnzt/UGD0RUfkrMiEwMTFBcnKyKmIhUikjo/rYtGk7\natTQxaBB/bFgQTD8/QfDwaELHjy4h/Xrw9GhQ0e5Y/71L180bNgIixf/yOm3RFSlFJkQ3L17F97e\n3mjVqhU6dOiA9u3by61cSFSZNWtmhZCQ5Xj06CGWLFmIvXt34fHjVBgbN0C7dgXf53p6ehg3bhJu\n3rzBVgIiqlKKHEMQHh6uijiI1ObWrVsFyh4/TkV4eJjCaYz/+pcvQkIWY/HiH+Hp6VNg0CERUWVU\nZELw559/Kixv1KhRuQdDpA4lXWtA1krwww8TsXPnb/DxGVCR4RERqUSRCcGGDRvE/2dnZ+P69evo\n0KEDHBwcKjIuIpVRtg9CYWsNsJWAiKqaIscQhIeHi/+2bt2KvXv3Qk9PTxWxEamEsn0QCltroDzG\nEkil6QgNDcHIkf4IDQ3h/ghEpFZFthC874MPPlDY50pUWckWLQoPD0NyciJatrQp1o6GZWklkG2a\nJNsn4d3dF42NOa2XiFSvyIRg48aN4v8FQcC1a9dQty4XZaGqpbB9EJTR09PD8OH/xuzZ0+Hu7og+\nfdyKvTVyYZsmzZo1rURxEBGVhyITgmvXrsndrl+/PsaOHVthAVV33Mug8pBK07Fx43oAwPnzcTh/\nPk68yi8qKbh8OV5hOTdNIiJ1KTIhmD9/virioPdIuJmBxgsPD8OtWzflyvKv8jcgIGC80uPOnfsD\nJ04cU3gfN00iInVRmhC8fv0aERERMDMzg729PcaNG4eLFy+iZcuWWLhwIacdUrWnbLpiaOjPaNu2\nHezsOkMqTUd4eBiSkhLQosVnSEtLw5o1K2BgYAAzM3OkpqaIxzVtaslNk4hIbZQmBLNmzcKrV6+Q\nmZmJdevWwc7ODtOmTcPhw4cxZ84crFmzRpVxEmkcZdMVX716BQ8PZ3Tp0g3//HML9+/fk7u/a9fu\nWL58DfT19REeHobDh2Nw5swpeHn1K9b4AyKiiqB02uHVq1exYsUKrFixAg8fPsT3338PS0tLjBgx\nAg8ePFBljEQaSdl0xZMn4zBq1BicOXOqQDIAAN2728PMzFwcyLhzZxRsbFph/fo1yMjIUFX4RERy\nlCYEOjr5jQc1a9ZEw4YNoaX1v4fWqFGj4iMj0nCy6YqBgXPh7d0fgYFzceBALD766GPMmTMPvXs7\nKTwuOTlJ7rZEIsH330/Fs2fPsH79L6oInYioAKVdBu8mAO/+H+CANyKZwqYrtm//BQ4ciCpQrmjg\noKNjH9jYtMKKFSH4/vvxAPgZIyLVUpoQ3Lt3DwEBAQX+LwgC7t+/r5roiCoxX18/RETIrzegbAVE\nWSvB4MEDsWLFCvj7j1ZlqEREyhOC6dOni/9/f9+Cnj17VlxERFVESVdAdHTsA1vb1vi///s/DBjg\nhzp16qg4YiKqzpQmBJ6enqqMg6hKKskKiLJWAl/fAVi//heMHTuhgqMjIvqfIjc3IiLV6d3bCW3b\ntsWKFSGlnnHATZOIqDSYEBBpEIlEgsDAwFLPOJBtmhQUNBORkTsQFDQTTk72TAqIqEhFJgSHDx9W\n+H+qKNzLoLpzdXVFy5bWWLx4Ab75xq9EV/mFbZpERFQYpQnB119/jZCQECxevBjPnj0DACxfvlxl\ngRFVV1KpFGlpacjMzMSePTtLdJWvbDllbppEREVRmhCEhISgWbNmSEtLw+jRo9G7d2/cu3cPq1ev\nxoULF1QZY7XEtR6qr7Vr1yIl5ZFcWXGv8vX19RWWc9MkIiqK0oRAIpHAxcUFDRs2xJYtWxAdHQ1T\nU1MYGxsjMjJSlTESVSuXL19WWF7UVX5qaiqio6PEVUZllK19QET0LqUJwdixY+Hh4YGnT59iy5Yt\nuHLlCnR0dODj44P//Oc/qoyRqFpp3bq1wvJPP22h9Ji8vDwEBAxHeno6Nm7cBlfXvgCAYcO+xYED\nsdw0iYiKpDQhiIiIwJYtW6Cnp4e3b99i+/btuHv3Lnx8fDBv3jxVxkhUrXzzzTcFNk0CgMuX45GX\nl6fwmJUrQ3H8+FFMnDgZPXv2wrhxEwEAn3zSgskAERWL0oWJgPyNjSwtLTFkyBAAQFpaGpYsWYL4\n+HhVxEZULdWr9/4Kh9a4desmNm0KQ3DwbAQGBsk9/vLleMybNxsdO3bCxImTAQCffvoZdHR0lA4y\nJCJ6X6EJAQCsWbOmwP+7du1acRERUYEVDnNzc5GWlobQ0J/RqNEH8PcfDgDIyHiJESOGoXbtOli5\ncq04fkBPTw/Nm3+KxMQraomfiCqfIhMCIlI/bW1trFy5Ft7ebpg27XtcvhyP7Oxs3Lz5N/755xbW\nrduIDz5oLHeMjY0tdu36HdnZ2dyynIiKxJUKiSqJWrVqYfnyX6Cjo4Nt2zYjMnIHrly5jLp1DdC1\na/cCj7exscXbt2/x11/XVR8sEVU6TAiIKpH9+/ciOztbruzlyxcK1yiwsWkFAOw2IKJiYUJAVImU\nZCVCa2ubQo8hInoXEwKiSsTa2lZhuaKVCOvWNcBHH32MxEQmBERUNCYEGkYQuLkRKefr61dgjYLC\nViK0sWmFpKREpesXEBHJcJaBhuJeBqSIoeH7axTYwNfXT+niQzY2tti7dxfu3LmNjz9uquJoiagy\nYUJAVMm8v0ZBYWxt8wcWJiUlMCEgokKxy4CoCrO2ls004DgCIiqcRiYEqamp+Oqrr/Dw4UN1h0JU\nqZmamsLMzJxTD4moSBqXEGRmZmLt2rUwMDBQdyhEVYKNjS1bCIioSCpLCKZMmYKNGzeKt2NjY+Hm\n5gYnJydMnToVWVlZAPI3VJo+fTrq16+vqtCIqjQbG1s8fpyK1NRUdYdCRBqswhOCO3fuYNiwYYiJ\niRHL0tLSEBgYiDVr1iA6Ohr6+vpYtWpVRYdCVC3JxhEkJbHbgIiUq/CEYNu2bfDy8oKTk5NYdurU\nKbRp0wYWFhYAgAEDBmDPnj0VHQpRtWRjk7+YUUICEwIiUq7Cpx1Onpy/P/vp06fFstTUVJibm4u3\nzczMCjRnzp8/v8hzSyQSGBvXLqdINUNaWi0AQO3aehrz2nR08tdE0JR4qrryfl/Xr98ShoaGuH49\nmX/Dd1TF7w9NxbquHNSyDoGi1fi0tbVLdZ60tFflEZLGSE9/DQB49eqtxry2nJxa0NHR0ph4qjpj\n49rlXtctW9rg4sX4CvsbSqXpCA8PQ1JSAqytbeUWSyrsPnWqiHomxVjXqmNiUrfUx6olITA3N0dy\ncrJ4+/HjxzAzM1NHKETVgo2NLc6cOYUXL6QwMDAs13NLpelwcrLHzZs3AACRkTuwbt1qLF68DAAw\nadIYPHhwX7wvIiIM0dFHNCIpIKL/Ucu0w86dOyM+Ph4PHjwAAOzYsQMODg7qCEXjcCsDqgiyTZGS\nkgruilhW4eFhYjIg8+DBfQwc6ImBAz3FZEDm5s0bCrdrJiL1UktCYGxsjODgYIwaNQrOzs54+vQp\nxowZo45QNBb3MqDyZGvbGgAqZIEiZdsrd+jQEe3bd1R4n6LtmolIvVTWZfD+IMHu3buje/fuqnp6\nomrNyqo59PX1K2SBImNjY4XlTk6uAIDz588VuE/Rds1EpF7c3IioGtDR0UGLFp+Ve0IgCAKSkhIh\nkUjkBgu/uyVzRIR8l4KlZTOl2zUTkfowISCqJqytW2Hz5o148+YN9PX1y+WcR48extmzpzFyZABM\nTc0Ubsks2645OjoKcXF/YPTocRxQSKSBmBAQVRM2NrbIzc3Fn39eRevWbct8vtzcXMyZE4j69evj\nu+9+UDp7QbZds7//cNjYNMeePTsxaBBbCIg0jcZtbkREFUO2YmF5dRvs2LEV164lY9Ik5cnAu2rW\nrAkPD28cP34UDx8+KJcYiKj8MCEgqiZatGgJLS2tclnCODMzEwsWBKNJk4/g5+df7OMGDvwXBEHA\njh1byxwDEZUvJgRE1UStWrVgZdW8XDY5Wrt2NR4+fIDp02dBV1e32Md9/nl7WFk1x5YtmxSuWEpE\n6sOEgKgasba2xdWrycjNzS31OZ49S0NIyGK0adMW7u6eJTpWIpFgwICvcevWTZw/H1fqGIio/DEh\nIKpGbGxaITMzEzdu/F3qc/z882K8eCFFYOBcaGmV/Cukf/+B0NLSwrZtEaWOgYjKHxMComrE0tIS\nADBxYgBCQ0MglaYX+1ipNB3BwbOxZs0KWFk1h7V16RYXMje3QI8eDti583e8fv26VOcgovLHhEDD\nsF+VKopUmo7AwGkAgPPn4xAUNBNOTvbFSgpkGxgtXboEeXl5+Pvvv4p9rCIDB36NjIyX2L9/b6mO\nJ6Lyx4RAQ3EvAypv4eFh+OefW3Jlxd1oSNEGRmXZpMjR0RmGhvWwdevmUh1PROWPCQFRNaFsE6Ki\nNhrKy8vDjh1bSnWsMvr6+vD09MbJk8dw//69Up2DiMoXEwKiakK2BfL79PT0lB7z6tUrfPONH65d\nu6rw/rJsUvTVV4MgCAK2b1ecbBCRajEhIKomfH39YGnZTK5MR0cHW7ZswooVywqMX7l//x7c3Byx\nb99uDB36bYFj393AqDRat26LTz75FFu3RnDsDJEG4F4GRNWEoWE9caMh2SZEzs5umDBhNGbPno6E\nhMto0eIzXLt2FYaG9bB7dyQyMl5i6dKVGDjwa0il6XLHvruBUWlIJBL07euFhQv/g/79PdCtm32Z\nz0lEpceEgKgakW009K4dO3Zj0qQx2LZNvuleW1sbERG/wd7eQemxZSGVpovdBcePH8Xx40cRERGG\n6OgjTAqI1IBdBkTVnK6uLj75pEWB8tzcXFy9mlRhzxseHobbt/+RKyvLzAUiKhsmBESEpCTFswVK\nO4ugeM9ZulkPRFQxmBAQkdIZCGWZRVDa57SwaFhhz0lEyjEhICKFMxDKOougNM8pkUjw++/bC3Ql\nEFHF46BCIlI4A6GiR/wrek5LS0uMGDEMXl6u2LVrPz78sEmFPT8RyWNCoGE4H5vUpbxnEZT2OcPD\nt8HXdwA8PV0QHr4VR47EIikpAdbWtsVOUmRTJBUdJ7vv77+vwsrqM051JPovJgQai3sZUPXUrVsP\nhIVtga/vAPTs2RU5OTkAgMjIHcWalijbiEm298K7xwGQuw8ApzoS/RfHEBCRxunRwwH9+g0QkwGZ\n4kxLVLYRU79+fdGvX99y3aSJqCphCwERaaTMzDcKy4ualqhsOmNCwhWlx3CqIxFbCIhIQ5V2KqSy\n42bMmIMZM+aU6pxE1QETAiLSSKWdCunr64d69YwUHqeO6ZVElQUTAiLSSLJpiUOG+AMA+vRxwYED\nsUUO/jMwMISBgQHMzS3g7d0fgYFzxeNk5wwMnAtb2/yWhJ9+CuWAQiIwISAiDWZoWA/z5/8fGjRo\ngIyMjGL9cP/55zXcvXsHQ4b4Y+XKtQgIGCd3nGyq4+bNmwHkb6xEREwIiEjDaWtro08fV5w5cwrP\nnqUV+fioqD0AABcX90If16JFC1hZNcf+/fvKJU6iyo4JARFpPGdnV+Tm5uLgwegiHxsVtReWls3Q\nvPknxTivG65eTcKtWzfLI0yiSo0JARFpvM6du6FuXQPx6l+Z27f/QXJyIlxc3CGRFL24l4uLGwBU\ny1YCqTQdoaEhGDnSH6GhIZBK09UdEqkZEwIi0nh6enro1csRx44dQUZGhtLHyX7YnZ1di3XeVq3a\noFGjD7B//95yibOykK3mGBQ0E5GROxAUNBNOTvZMCqo5JgQahnsZECnm4uKGt2/f4siRQ0ofExW1\nBw0bNkLr1m2LdU6JRAJnZ1dcuBCHlJRH5RWqxlO2miNXbKzemBBoqOI0dxJVJz169IS+vr7SboPU\n1BRcuBAHZ2dXaGkV/6tNNvjwwIGocomzMlC2miNXbKzemBAQUaVQp04ddO/ugEOHDuLt27cF7j9w\nIAqCIMDZ2a1E5+3YsROMjY0RFVV9ug1KuwokVW1MCIio0nB2dkVGxkucPHmswH379+9F/fr18cUX\ndiU6p7a2NpycXHD69Ak8f/6snCLVbL6+ftDV1ZUr44qNxISAiCoNR8c+0NbWLnA1n57+HKdOnYCT\nkwt0dEq+Z5uLi1uxpzVWBXp6+sjNzQUAtGvXQW41R6q+mBAQUaVhZFQfdnZdEB0dJf6gAcDBg9HI\nyckp9uyC93Xp0h116tStNt0GV68mifXn5zeswGqOVD0xISCiSsXFxQ1paWk4d+6sWLZ//z7Url0H\nXbv2KNU586c19saxY7F49epVeYWqsS5fvqTuEEgDMSEgokpF1gogm23w+vVrHD16GL169Ya+vn6p\nz+vi4o43b97gyJHD5RKnJktIuKzuEEgDMSEgokrF3NwCn3/eHvv374MgCDh6NBaZmZklnl3wPnv7\nXtDT0ytyNcSq4PLlS6Uaa0FVGxMCIqp0XFzc8eDBfVy5cglRUXugq6uLnj17l+mc+dMa7XHoUAyy\nsrLKKVLNk5mZievXr6FFi5bqDoU0DBMCIqp0ZN0Gu3ZF4uDBaHTvbo86deqW+bwuLu54+fIFTp06\nXuZzaark5ETk5uaides26g6FNAzbjIio0mna1BLNm3+K1auXIzc3F/r6+pBK08s8Ur53bydoaWlh\n4cL52L59K6ytbeHr61es80ql6QgPD0NSUkKJjivrsSV15Ur+gEJb29YVcv7CqPJ1UskxIdAw3MuA\nqGhSaTqePHksTp3bs2cXkpOTEB19pEw/MNra2tDT00N8/AXEx19AZOQORESEFXle2WZBsv0Bintc\nWY8tjStXLkNPTw+ffNICgOq+c1T9Oqnk2GWgobiXAZFy4eFhBVYVLI/NecLDw5CZmVni85ZlsyBV\nbzR05colfPZZS+jq1qiQ8yvDDZU0HxMCIqp0KmpzntKetyzxqHKjodevX+P69T/RqpXqxw9wQyXN\nx4SAiCqditqcp7TnLUs8qtxoKCkpEXl5eWpJCLihkuZjQkBElY6vrx8sLZvJlZXH5jylPa+vrx8M\nDAxKFY+vrx/q1zcu1bEllZCQP6BQHQmBr68fTExM5cq4oZJmYUJARJWOoWE9REcfQWDgXHh79y+3\nzXlk5x09ehwAoEuXrsU6b506dcWFfurUqVuieAwN62HYsG8BABYWFhW60dDly5f+O6Dw03I/d1EM\nDeth3LiJAABj4wbcUEkDcZYBEVVKhob1EBAwrkLOO2vWXBw5cgipqanF+sE6f/4cnj3LH+Robm5e\n4rj09WsCAGxsWlXIa5JJSLgMa2sb1Kih2gGFMjVr1gKQ3zJQka+TSoctBERECvTp44q//rqOv//+\nq+SaJY8AAA0rSURBVMjHypY7btbMqqLDKrVXr17hr7+ui+sPcCYTvY8JARGRAi4u7gCA/fsL3xJZ\nEATs378Pbdt+DguLRqoIrVRkAwpbt26r7lBIQzEhICJSwNraBh9++FGRmx0lJl7BvXt34ezsrqLI\nSufKlXgA6lmhkCoHJgRERApIJBI4O7vi8uVLuH//ntLHyRIGFxdXVYVWKleuXIa+vr5aBhRS5cCE\ngIhICVm3wYED+5Q+Zv/+ffj00xawtNTc8QNA/gqFLVvacNtjUooJgYbhXgZEmqN9+w4wMTFFVJTi\ncQQ3bvyN69f/hLOzm4ojK5mMjAz8/fdf3OGQCsWEQENxBDCR+mlpaaFPH1f88ccZPH36tMD9sgGH\nspYEQDOT+qSkBAiCoJYFiajyYEJARFQIFxc35OXlISZmf4H7oqL24MMPm8DaumzL71b0BYBsy2Mm\nBFQYJgRERIX48ssuMDAwLDD98MGD+7h0KR7Ozm4a36J3+fIl1KxZE1ZWzdUdCmkwJgRERIXQ1dVF\n795OOH78KF6+fCGWywYavttdoKnyVyi0lRtQqOlJDKkeEwIioiK4uLgjKysLhw8fFMuiovbCxMQU\n7dt3UGNkRcvIeIkbN/5Gq1Zcf4AKx4SAiKgIPXo4oGbNmti/P79V4OnTpzh79jT69HGFlpZmf40m\nJnJAIRWPRk1IffLkCebPnw9jY2PUrl0b48ePV3dIRESoVasWevToiUOHYvDmzRscPHgAeXl5cHHR\n7OmGQP74AYADCqloGpXabtu2Df3798f06dPx6NEjPHz4UN0hEREByJ9t8Pr1Kxw/fhRRUXtgYGCI\nL7/sou6winTlyiXUqlWLAwqpSCpJCKZMmYKNGzeKt2NjY+Hm5gYnJydMnToVWVlZAIDHjx+jYcOG\nAPK3EE1NTVVFeERERerVyxE6OjrYvn0Ljh8/it69naCrq6vusIp05colWFvbQltbW92hkIar0ITg\nzp07GDZsGGJiYsSytLQ0BAYGYs2aNYiOjoa+vj5Wr14NAPjggw/w6NEjAEBKSgrMzMwqMjwiomKr\nV88IHTt2wt69u5CVlQUtLS1IpenqDkspqTQdixf/iJs3b0AiQbnFKpWmIzQ0BCNH+iM0NESj64BK\npkLHEGzbtg1eXl5yP+ynTp1CmzZtYGFhAQAYMGAAAgICMGbMGPTr1w/BwcE4ePAgmjRpIrYWEBGp\nm1Sajr/++lO8vX37Fly8eB7R0UdgaFhPjZEVJJWmw8nJHjdv3gAAnDv3B5yc7Msc6/vnjYzcgYiI\nMI2sAyq5Cm0hmDx5Mlxd5XcAS01Nhbm5uXjbzMxM7BowMjLC4sWLMXPmTPz73/+uyNCIiEokPDwM\nT548kSu7efMGwsPD5MrKsnRxeS17HB4eJv5oyyiKtaTPWZLzFkYTl3cmNcwyUPRGKG3flpaWFkxM\n6pY1JI1iYtJR4z4s8fGy/1WtutZkVe19ralKUs83blxTWH7z5p/ieU6cOFqqOIKCZiIoaGapjlWk\nOLH26tWtxN81xTmvMiYmdTFx4hhMnDimRM9JqqPyWQbm5uZ4/PixePvx48ccK0BEGi8iIgKCIBT4\nt2nTJnWHVkBFxVqZ6oBKTuUJQefOnREfH48HDx4AAHbs2AEHBwdVh0FERETvUHmXgbGxMYKDgzFq\n1Cjk5OSgefPmmD9/vqrDICIiondIBE3rsCYiIiKV06iVComIiEg9NGovg5KIjY3Fzz//jOzsbLRp\n0wZz5sypFKuGVQaBgYE4ffo0DAwMAAB2dnYICAjAtGnTcP36dUgkEsyYMQOdOnVSc6SV15QpU/DZ\nZ59h8ODByMzMVFq3fJ+X3bt1/fTpUzg4OKBp06bi/UuXLkXjxo1Z12Wwfft2hIeHQ1tbG/Xr10dQ\nUBCMjY35vi5niupZX1+//N7TQiX09OlTwc7OTnj48KEgCIIwe/ZsISQkRM1RVR3u7u7CjRs35Mrm\nz58vzJ07VxAEQbhz547QtWtX4eXLl+oIr1K7ffu2MHToUKF169ZCWFiYIAjK65bv87JRVNeHDh0S\nxo8fX+CxrOvSu3r1qmBvby+8ePFCEARB2Lx5szB48GC+r8vZ+/UcEREhDB48uFzf05Wyy0DRaod7\n9uxRc1RVw6tXr3D79m38/PPPcHd3x9SpUyGVShEbGwsfHx8AwIcffggbGxvExsaqOdrKR7Z6p5OT\nk1j2ft3a2toiNjaW7/MyUlTXly5dwsOHDzFgwAD4+Pjg4MGDAPidUhb/397dhES1/3EcfztOt0wr\naqFRIkkJGmnSpsWU5GgPLlKnRW2asDYxJYpGkTVqhT0uMtSElMwwiCzSIBQyRQQ1JKJVqBkJ4kP2\nQGVa5MO5C7mHNPvfe3Oiv97Pa+V5mHOOX74cvnN+Z74/X19fcnJyWLBgvA/BmjVr6Onpoa6uTnnt\nQZPjHB4eTm9vr0dzekYOGfyvbocyPf39/dhsNtxuNwEBAZw7d47jx4/T39+vmHvAkSNHAGhsbDTX\nTc5nf39/M7aK+c+bKtZ//PEHcXFxJCUl0dnZye7duwkKCtI9ZRqCgoIICgoCYHh4mNzcXOLi4rh+\n/bry2oOmivO2bdvw9vb2WE7PyILA8GC3Q5koODiYwsJCc9nlcrFhwwZGR0e/29dimZEPmP7vjI2N\nfbfOYrFMGXPl+fSkpqaaf69YsYK4uDhqa2uxWr+/FSrW/8779+9JS0vD19eXlJQUSkpKvttHeT19\n38Y5NTV1Quymm9Mz8o6uboe/zrNnz6iqqjKXDcPAYrEQGBg4oY/75CcG8vOWLVs2ZWyV555XWlrK\n27dvzWXDMJgzZ45iPU2dnZ3s2rWLkJAQCgoKsFqtyutf4Ns45+fn4+3t7dGcnpEFgbod/jqGYXDm\nzBnevHkDwLVr19i6dSsxMTHcunULgK6uLp4+fYrNZvudlzpr2O12ysvLgYmxVZ57XktLi9lmt7e3\nlwcPHrBlyxbFehpev36N0+nE6XRy7Ngxc31MTIzy2oMmx9nLywvwbE7P2MZE9fX1XLx4cUK3Qx8f\nn999WbPC7du3KS0tZWxsjJCQEE6fPo3FYiErK4u2tjYA0tPTsdvtv/lKZ66MjAzCwsLYs2cPg4OD\nP4yt8nz6vo11f38/mZmZ9PT0YBgGycnJ5kuHivXPyc3NpaSkhFWrVpnDuT4+Ply9epXMzEzltYf8\nKM55eXm43W6P5PSMLQhERETEc2bkkIGIiIh4lgoCERERUUEgIiIiKghEREQEFQQiIiKCCgIRERFB\nBYHIrNbd3c3q1atxOBwkJiayfft2nE4nL1688Ng53G63+VvzfyIvL4/79+977Pwi4hnqQyAyi3V3\nd+NwOGhpaTHXlZSU0NzcTHFxsUfOYbfbKSwsJDQ01CPHE5HfY0ZObiQiP8cwDD58+IC/vz8AFRUV\nPHz4kMuXLwNQUFDAwMAAGRkZ2O121q5dS1tbG9nZ2TQ1NVFfX4/VaiUwMJDz589TVFREf38/aWlp\n5OXlERISYp6ro6MDt9vNyMgIhmHgcrmIjY01OwdGRkaSlZWFl5cXhmHQ1dVFTEwMFy5coKamhqKi\nIkZHR1m4cCGZmZmsXLnyt8RM5L9CBYHILPfp0yccDgeGYfDu3Ts+f/5MWVmZuf2vnuhTCQ8PJzc3\nl76+Pg4fPkxDQwMw3ka1vb2dlJQUKisruXTp0oRiAMbnwdixYwc7d+7k+fPnlJeXExsba26PiIig\nsrISgObmZk6cOMHRo0fp7OyksLCQsrIy/Pz8ePz4McnJyVRXV3syLCIyiQoCkVnOz8+PiooKc7mm\npoa9e/dSW1v7t59dt24dMD6X/fLly3E4HERFRRETE0NERIS531Qjj9HR0WRmZvLo0SNsNtuEqYe/\n1d7eTkZGBsXFxSxZsoTq6mr6+vpwOp3mcQcHB/n48SMLFy78V/+7iPxzeqlQ5D9m8+bNeHl50dHR\nYT6u/8vw8PCEfefNmweMz2N/8+ZNsrOzmTt3LocOHTJnWPuR2NhYqqqq2LRpE01NTcTHxzM0NDRh\nn1evXuFyuTh16pT5hMEwDDZu3EhFRQWVlZVUVlZSXl6uYkDkF1NBIDLLTf72/uTJE75+/UpwcDCL\nFy+mo6ODkZERvnz5QmNj45THaG1tJTExkbCwMA4cOEBCQgKtra0AWK1WRkdHv/tMeno6dXV1xMfH\nc/LkSQYGBhgYGDC3Dw0NsX//fvbt20dUVJS5fv369TQ0NNDV1QXA3bt3SUpKmm4YRORvaMhAZJYb\nGhrC4XAAMDY2htVqJT8/nwULFmCz2QgPDycuLo6lS5cSGRlpfu7bdwtCQ0OJjo4mISEBX19fFi1a\nRE5ODjA+7316ejpnz541hxgAXC4XbrebsrIyLBYLBw8eJCAgwNx+48YNXr58yb1797hz5w6GYRAQ\nEMCVK1fIysoiOTkZgPnz51NQUPBLYyQi+tmhiIiIoCEDERERQQWBiIiIoIJAREREUEEgIiIiqCAQ\nERERVBCIiIgIKghEREQE+BNhkenh299N2wAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x124b3d358>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dplot(ds_fret, hist_size, which='all', add_naa=False)\n", "xlim(-0, 250)\n", "plt.axvline(nt_th1)" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [], "source": [ "Th_nt = np.arange(35, 120)\n", "nt_th = np.zeros(Th_nt.size)\n", "for i, th in enumerate(Th_nt):\n", " ds_nt = ds_fret.select_bursts(select_bursts.size, th1=th)\n", " nt_th[i] = (ds_nt.nd[0] + ds_nt.na[0]).mean() - th" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.lines.Line2D at 0x124c68710>" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAE3CAYAAAAwrOGVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAJ/wAACf8BB8w+RgAAIABJREFUeJzs3Xt8lOWZ8PHfM6fMIedJQhIgQFBUDgqKBzxAVVBYRcG1\nVVtRt6zQ17WyWdt3K7pua3VbK32xlq3F7uKJUktBWe2KgKgtKlZUkPMZwiEJOZDJac7zPO8fkxkS\nMplMkklmJlzfz6efj53MJPdMwnM9931f13UrmqZpCCGEEAIAXaIHIIQQQiQTCYxCCCFEGxIYhRBC\niDYkMAohhBBtSGAUQggh2pDAKIQQQrRh6OoJK1eu5PXXX0ev15Obm8tPfvITfvSjH+F0OgHQNI2D\nBw/ygx/8gAceeKDda999911++tOfUlhYCEBmZiavvvpq/N+FEEIIESdKtDrGPXv28PDDD7NmzRoy\nMjJYsWIF69ataxfc3n77bd544w1ee+01DIb2cfaZZ56htLSUe+65p+/egRBCCBFHUZdSbTYbTz/9\nNBkZGQCMGzeOysrK8Ndra2t57rnnePbZZzsERYBt27axceNGZs+ezdy5c9m/f3+chy+EEELEV9Sl\n1JKSEkpKSgDw+XwsXryYGTNmhL/+u9/9jttuu42hQ4dGfH1eXh4PPPAAV155JRs2bGDevHmsW7eO\ntLS0OL4FIYQQIn6iLqWGOBwOysrKsNls/OpXv0Kv1+N2u5k8eTJr167FbrfH9MNuu+02nnzySSZO\nnNjpc1RVjX30SUBRFFKpq95VVykAfPZZ6owZUu9zhtQbc6qNF2TM/SUVx6zT9Ty3tMvkm6NHjzJ/\n/nymTJnCY489hqIEL6ybNm1iwoQJnQbF+vp63nzzTebOnRt+TNM0jEZjl4Oqq2uJdfwJZ7fbUmq8\nfr8Vg0GXUmOG1PucIfXGnGrjBRlzf0nFMefnZ/T4tVFDak1NDXPmzGHOnDksXLgwHBQBtmzZwhVX\nXNHpa202G8uWLWPz5s1AMJB6PB7Gjh3b48EKIYQQfS3qjHH58uU4HA5Wr17NqlWrALBYLPzhD3/g\n2LFjjB8/vsNr5s2bx4IFCxgzZgxLlizhmWeewePxYLPZWLJkCXq9vm/eiRBCCBEHMe0x9idVVVNq\nyp5qSww33xxcSv3f/21O9FC6JdU+Z0i9MafaeEHG3F9Sccx9tpQqhBBCnGskMAohhIjZsTo/b2xu\nTrks1e6QwCiEECJmr3/czCPLT7OnwpfoofQZCYxCCCFi1uQO1pq/t92V4JH0HQmMQgghYub0BpdQ\n10pgFEIIIcDVGhi/PublZL0/waPpGxIYhRBCxMzpPdO2c6Aup0pgFEIIETOnR6O0wIA9XTdgl1Ml\nMAohhIiZ06uRYdZx8zgLn+530+BMrYMfYiGBUQghRMycHg2rSWH6xRb8Kry/a+DNGiUwCiGEiJnT\nq2I1KUy50IzVpLD2awmMQgghzmEur4Y1TcFi0jHlIjMbd7vw+AZWFxwJjEIIIWLm9GpYTMHQMeNi\nCy0ejY/3uxM8qviSwCiEECImqqrh9Ab3GAGmjbWgU+DdAbacKoFRCCFETFytS6ahwGhP13PVeWms\n2+FEVQfOcqoERiGEEDEJtYOzpinhx6ZfbKG6UeWrcm+ihhV3EhiFEELEJNQOzmo6EzqmX2wF4N2v\nnQkZU1+QwCiEECImTk+wmL/tjHF4noFLSkz8z5fOAXNGowRGIYQQMQkvpRqVdo/PuszK8dMBvjw6\nMJZTJTAKIYSIyZk9xvah4/ZLg8upa74cGMupEhiFEELExOlpn5UaMiTXwBWlafzPV04CAyA7VQKj\nEEKImLi8HfcYQ2ZfZuVUQ4DPDnr6e1hxJ4FRCCFETMJLqaaOgfHWCVZ0Crw1AJZTJTAKIYSISWgp\n1WLqGDoGZem5ZlQaf97qxBdI7eVUCYxCCCFi0hJlxggw+zIbp1tUNu1N7d6phq6esHLlSl5//XX0\nej25ubn85Cc/4Uc/+hFOZ3C6rGkaBw8e5Ac/+AEPPPBAu9ceOXKEhQsX0tjYSHZ2NosWLaKoqKhP\n3ogQQoi+5Yyyxwhwy3gL//eN4HLqDWMs/Tm0uIoaGPfs2cPSpUtZs2YNGRkZrFixgieeeILf//73\n4ee8/fbbvPHGG9x7770dXv/oo4/y0EMPMXXqVNauXcsPf/hDli9fHv93IYQQos+5upgx5tj0XD/a\nzLtfO3nOl4vZGPl5yS7qUqrNZuPpp58mIyMDgHHjxlFZWRn+em1tLc899xzPPvssBkP7GFtVVcXJ\nkyeZOnUqADNmzODAgQNUVVXF+z0IIYToB06PhqIQNeDNusxGk1vjg92pe+JG1MBYUlLCpEmTAPD5\nfCxevJgZM2aEv/673/2O2267jaFDh3Z47alTpygoKGj3WEFBgQRGIYRIUU6visWooCidB8bp4yyY\njQr/k8LZqV3uMQI4HA7Kysqw2Ww88sgjALjdbt566y3Wrl0b8TWqqkZ8XKeTfB8hhEhFTq/W6f5i\nSIZFx41jzKzb4cIf0DDoU285tcvAePToUebPn8+UKVN47LHHwncKmzZtYsKECdjt9oivKyoqoqam\npt1j1dXVFBYWRv15iqJgt9tiHX/Cpdp4DYbWc9RSaMyQep8zpN6YU228IGPuL6Ex+7Q6Miz6Lsd/\n5SgX/7vNhU+fxiC7sZ9GGT9RA2NNTQ1z5sxh/vz5HZJrtmzZwhVXXNHpawsLCykuLmbDhg1MmzaN\ndevWMXTo0A7Lq2fTNI26upZuvIXEstttKTVev9+KwaBLqTFD6n3OkHpjTrXxgoy5v4TG3Njsx2yg\ny/FnmwIA7DrShIW0/hhiB/n5GT1+bdR1zeXLl+NwOFi9ejWzZs1i1qxZ3HPPPQAcO3YsYunFvHnz\n2LVrFwCLFi3i1Vdf5dZbb+Xll1/mueee6/FAhRBCJJbTq3aakdpWUU5wzlVZH+jrIfWJqDPGsrIy\nysrKIn7tt7/9bcTHX3rppfB/l5aWSnmGEEIMEE6vRmFW13kixdl6ACob/H09pD4hmTBCCCFi4vRo\nsc0YWwNjRYrOGCUwCiGEiEkwK7XrsJFu1pFpUah0SGAUQggxgLli3GMEKM42UCGBUQghxEAVUDU8\n/s7bwZ2tMFtPpUP2GIUQQgxQoSOnYllKhWACTqUjgKqm3hFUEhiFEEJ0KXRIsSXGGWNRth5fAOpa\nIndBS2YSGIUQQnSpxdN65FSse4wpXMsogVEIIUSXXL7oR06dLVTLWJGC+4wSGIUQQnSpu3uM4VrG\nFMxMlcAohBCiS84uDik+WygwylKqEEKIAcnZuscYa/JNtlWHxajIUqoQQoiBqbszRkVRKMrRUyVL\nqUIIIQYiV2tgtMW4xwjBBBzZYxRCCDEgOb3dK9eA4D5jpSOApqVWkb8ERiGEEF06k5Uae2Aszjbg\n9Go0uCQwCiGEGGDOdL6JPWwUho+fSq0EHAmMQgghutTd5Bs4U+Sfagk4EhiFEEJ0yeVVMejAZOhG\nYGxtC5dqCTgSGIUQQnSpxaN1a38R2na/kaVUIYQQA4zTq2Htxv4iQF66DqMeKmXGKIQQYqBxerWY\nu96E6HQKRdl6KlKsLZwERiGEEF1yetRuJd6EFGYZZMYohBBi4HF5u7/HCFCco6dS9hiFEEIMND3Z\nY4RgAk6DS6PZrfbBqPqGBEYhhBBdcvZ0xhiqZWxIneVUCYxCCCG61NM9xuLs1lrGFErAMXT1hJUr\nV/L666+j1+vJzc3lqaeeori4mOeff55Nmzbhdru58847mTt3bofXvvvuu/z0pz+lsLAQgMzMTF59\n9dX4vwshhBB9RtO01qXU7gfGopzUq2WMGhj37NnD0qVLWbNmDRkZGaxYsYLHH3+cyZMns2vXLlat\nWoXH4+H222/nyiuvZOzYse1ev3XrVh555BHuueeePn0TQggh+o7XrxFQ6dEeY2gpNZUyU6O+S5vN\nxtNPP01GRgYA48aNo6KignfeeYfvfe976PV6rFYrr7zyCsOHD+/w+m3btrFx40Zmz57N3Llz2b9/\nf5+8CSGEEH2nJydrhBRk6tEpAygwlpSUMGnSJAB8Ph+LFy9mxowZlJeXs3v3bu6//35mzZrF+++/\nT3p6eofX5+Xl8eCDD/LWW29x9913M2/ePDweT9+8EyGEEH2ixdP9sxhDDHqFgkx9SgXGLvcYARwO\nB2VlZdhsNhYsWMCyZcvYt28fy5Yto6Ghgfvuu4+SkhKuv/76dq978cUXw/89bdo0fv3rX7Njxw4m\nTpzY6c9SFAW73dbDt9P/Um28htYGwKk0Zki9zxlSb8ypNl6QMfeX/ZVeAPJzzD0ae0mekeomNWXe\nd5eB8ejRo8yfP58pU6awcOFCAAoKCrj11lvDCTmTJ0/m66+/bhcY6+vrefPNN9sl5WiahtFojPrz\nNE2jrq6lp++n39nttpQar99vxWDQpdSYIfU+Z0i9MafaeEHG3F+a3cHFRdXn69HY8zMU/nbQ26/v\nOz8/o8evjbqUWlNTw5w5c5gzZ044KEJw9vf2228D4HQ62bx5M+PGjWv3WpvNxrJly9i8eTMAmzZt\nwuPxdEjQEUIIkdxa3D3fY4RgAk5ts4rbp8VzWH0m6oxx+fLlOBwOVq9ezapVqwCwWCy88sor/Oxn\nP+OWW24hEAgwc+ZMbrzxRgDmzZvHggULGDNmDEuWLOGZZ57B4/Fgs9lYsmQJer2+79+VEEKIuHF6\ne77HCFDUWstY1RBgeF5MO3gJFXWEZWVllJWVRfzaj3/844iPv/TSS+H/njBhQjigCiGESE1nkm96\n1hMmdC5jlcOfEoFROt8IIYSIKh5LqQAVKZKZKoFRCCFEVKEZY3fPYwwpykmttnASGIUQQkTl7EUd\nI0BeejDUnG6RwCiEEGIAcPZyj9GWpqDXQYMzNbJSJTAKIYSIqqW1JZyth3uMiqKQZdHR4EyNMxkl\nMAohhIiqt3uMAFlWHQ6XBEYhhBADQItHJc0Ael0vAqNFR6PMGIUQQgwELW4Va1rvwkWWVYdDAqMQ\nQoiBoKeHFLeVZdHRKEupQgghBgKnR+19YLTqaHCpaFryZ6ZKYBRCCBFVfJZSFQLqmQzXZCaBUQgh\nRFQtnt4vpWZbg+EmFfYZJTAKIYSIqsWj9qpUA4J7jCCBUQghxADg9MZnjxFIiQQcCYxCCCGiile5\nBsiMUQghRIrTNC1u5RpAShT5S2AUQgjRKZdPQ9N6frJGSDj5RpZShRBCpDJna3lFb5NvMltnjKnQ\nSFwCoxBCiE65vMHAGK89RgmMQgghUpozFBh7OWM06hWsJoUGWUoVQgiRypzeYCCz9TIwQnCfUWaM\nQgghUlpoj7G3S6kQOmFDWsIJIYRIYaGl1N4m30DqnLAhgVEIIUSnXHHaY4TgUqoU+AshhEhpTk8w\nkFnTeh8YM62pMWM0dPWElStX8vrrr6PX68nNzeWpp56iuLiY559/nk2bNuF2u7nzzjuZO3duh9ce\nOXKEhQsX0tjYSHZ2NosWLaKoqKhP3ogQQoj4awnPGHs/j8q26nB6Nbx+DZOh94G2r0QNjHv27GHp\n0qWsWbOGjIwMVqxYweOPP87kyZPZtWsXq1atwuPxcPvtt3PllVcyduzYdq9/9NFHeeihh5g6dSpr\n167lhz/8IcuXL+/TNySEECJ+4lWuAZBpCX6PBpdKfoa+19+vr0S9BbDZbDz99NNkZGQAMG7cOCoq\nKnjnnXf43ve+h16vx2q18sorrzB8+PB2r62qquLkyZNMnToVgBkzZnDgwAGqqqr65p0IIYSIu3gu\npWanSJF/1MBYUlLCpEmTAPD5fCxevJgZM2ZQXl7O7t27uf/++5k1axbvv/8+6enp7V576tQpCgoK\n2j1WUFAggXEAq2sO0ORS0bTkT8cWQsTGFces1MwUOZOxyz1GAIfDQVlZGTabjQULFrBs2TL27dvH\nsmXLaGho4L777qOkpITrr78+/BpVjfzGdTrJ9xmI/rLXzTd/XQ2AQQfZNh25Nh3fvMLGgpuzEjw6\nIURPOb0aigIWY/xmjMl+wkaXgfHo0aPMnz+fKVOmsHDhQiA487v11lvDCTmTJ0/m66+/bhcYi4qK\nqKmpafe9qqurKSwsjPrzFEXBbrf15L0kRKqN19C64R3vMf/nxloyLTr+z0051DUFqGsO8MUhFy9s\naOLxbxaSZuzdDVFffM5ur8rukx4uHWGJ6/cNSbW/jVQbL8iY+0NAacBqUsjLS+/6yV0YWqgAtfj1\nxqT+DKIGxpqaGubMmcP8+fO59957w49PmzaNt99+m6uvvhqn08nmzZt5+OGH2722sLCQ4uJiNmzY\nwLRp01i3bh1Dhw7tsLx6Nk3TqKtr6cVb6l92uy2lxuv3WzEYdHEd81dHPXy028n3p2Xy6E1n/tjf\n2GzkkeWnefuz09wwunfBpy8+539/s54XNzYx5xobz3wzF3Mc7ojbSrW/jVQbL8iY+0N9oxebOT7X\nDMXnBeBktYu6upgWLHssPz+jx6+Nehu/fPlyHA4Hq1evZtasWcyaNYt77rmHf/mXf8FsNnPLLbdw\nxx13MHXqVG688UYA5s2bx65duwBYtGgRr776Krfeeisvv/wyzz33XI8HKpLXrzc0YjLAvOvb/yFO\nHWtBUWDdDleCRtY5f0Bj1ectWE0Kr3/Swq2/rKK81p/oYQmRdJxeDVsc2sFB6iTfRA3ZZWVllJWV\nRfzaj3/844iPv/TSS+H/Li0tlfKMAe7QKR/vfu3iO5NsDMpqn36dl6Hn8hFprNvu4uff0lCU5Klb\n+us+NzVNKr+4Owe9TmHhytNM/Xklv3kgj2lj+2ZpVYhU5PJqcalhhDZnMiZ5kb9kwohe+c3GRgAe\nmpoZ8es3X2yhwhFg5wlf3H6mL6CxrdwTNfu1pinAW1+0oKqRn7N6SwsGHdw2wcqca9L586OFZFl1\nfOfFGlZvSZ1lLiH6WnDGGJ+bWluagkGX/DNGCYyix041BPjj31qYcbGF8wYZIz5nxsXB2dfa7c64\n/dzHVtZz0y9O8YfNkQNYQNX4h5dqmf9yHX/e1nEZ1+lVefdrFzeOsZCbHpzlXlJiYsO/FpJj07Hm\ny/iNVYhU5/So2MzxCRWKopBl1cmMUQxcv/uoCa8fvj8t8mwR4LxBRkYWGOK2z/jZQTevfdyMToGF\nf6rncHXHmehvNjbx+WEPeh384n8dBM6aNa7b7qLFo/H3l1vbPZ5j0zNhmImtXcxGhTiXOL1aXI6c\nCslKgUbiEhhFjzS5VF7Z1MSk89K4bERa1OfePM7CjuM+Ttb3LrnF49N4dMVpcmw6Vj1SQEDVeOiV\nOnyBM0Fs10kvz/7ZwVUj0/jJHdnsr/Lz1hftZ4Crt7RgS1O4aVzHvcTxw0xUN6pUOgK9GqsQA0U8\nk28gePSULKWKAem1T5ppdGlRZ4sh01uXU9/b3rtZ4/PrGjhwys9P7sjm2lFmnpyVw1flXn65tgEI\nBs6HXqnDqFf49X127rs2g+JsPYvWNuBvDZ51zQE+2O3m1vHWiAkFE4aZANha7o04BlXVePbPDnad\njPx1IQYap0eNSzu4kOBSanKvyEhgFD2yeksLIwsM3DjG3OVzLy9NI9em69Vy6q7jHl5Y38jkC83c\ndWWwVvIfv5HODaPNPP9eI58ddPPs/zrYU+Hj6TtzGJZnwGxUKJueyeFqP6s+D+5Hvv2VE79Kh2XU\nkPElwdnvtk4C466TPn65tpHXP27u8XsRIlV4fBoe/5ls0niQGaMYkJxelT0VPq4+Py2mEgy9TmHa\nWAuf7HfT1INNd1XVmP9SJQadwnN354R/pqIo/OpeOzk2Hf/437X85/tN3DzOwrcnnWkycM+kdErs\nwVmjL6CxeouTgkwd110QOaAPytJTnK1n67HIgXHTPjcAh2uk5lEMfFUNwS2F4pzIyXU9kdV6JmNn\nGePJQAKj6LadJ3wEVJgwLPreYls3X2zBF4AP97i7/fNe3tTM5gMufnhLFiPy2/8DHZSlZ/F3cqlu\nVMm16fjlt3PbBWuTQeHRGVkcqwvwiz838PlhD7Mvs6HXdR7Qxw8z8XUnCTifHGgNjBGSfoQYaCod\nwRvAwbnx61KTZdGhatDskcAoBpBt5R4gGEBi9Y0LzaQZul+20eRS+fk7DsYPT+N7N0Ru8TT9Yiu/\n/Qc7b/xTAQWZHc94++YVNkoLDPxqfbDmsrNl1JAJw0w0uDSOnDUr9AU0Pj0QfO8nTgfw+pP3H7YQ\n8RBKQotrYEyB7jcSGEW3bS33YjEqXFgU+/JKujm4fPn+Tle7LNKuvPZJMw0ujae+lY9B3/ks746J\nNi4piRyoDXqFH8wInvAxssDQ6fNCxrfOhM9OwPn6mJcWj8aIfAOqhrSQEwPemcAYv6XUUFu4ZC7Z\nkMAoum1ruZexQ41RA1UkN4+z0ODS2LAztiQcj09j6QdNXFRs5O8m9K6z/+yJVu6YaOXRGVld7ouG\nAufZCTif7A8uo865JjiWwzWynCoGtsqGPpgxWoL//pK5yF8Co+iWBqfK4Wp/t/YXQ/7+chsFmTqe\nWuOIaRly1ZYWqhoCPDwts9d9VvU6hd/+Qx53XtH1UTfZVh0j8g1sOysBZ9N+DwWZOm5urX88XC0z\nRjGwVdYHyLHpsMSpVyrIUqoYgELBYkI39hdD0s06Hr8tm8PVfv77L01Rn6uqGv/5fiNDcvTMuiz6\nnmBfmDDMxI7j3nD9o8en8fkhD9eOMjMsz4BOkcAoBr7KBj+FWR337XtDAqMYcEKJNz0JjAB3XWnj\n4qFGfrm2gdqmzrvLrN3u4uApPw9NzcTYzSXbeBg/zITTq7G/Krhc+uVRD26fxnUXmDEZFIbk6mUp\nVQx4VY4ARdlxDowpcMKGBEbRLVvLvWRZFEbk92zPQadTePrOHBpdGs/+uSHiczRN49frG8m16bhn\nUmJO+R5/1j7jx637i9eMCtY/lhYYOSIzRjGAqapGpSNAcbwDo8wYRSz+sLmZ635aSbM7ef9QQraV\ne7lkWGyF/Z256jwzt19q5fVPmiO2Vvv0gIevyr3MnZIR1x6N3TFuqAmdciYz9eN9Hobm6hlmD14k\nSvMNnHQEcPukZEMMTLXNKn4VCmXGKBJh1ect7Kvy8afPk/scwFMNASocASZ0Ue4QiydnZWPUw5Or\n6jsU0r+wvhGrSWHulN5lovaGLU3HBUVGth3z4vSqfHk0uL8YuiEoLTCgaXBUllPFAFXVWqpRlB2/\njFQIlk/Z0pSkLteI7zsW3ebxaWw5EpyVLPtLMw9cl55UJ923tbUHhf2dGWo38NDUTBa/18jP3mnA\nlqZQ06RyqiHAh3vczLs+I3xWYqJMGGbiT5+38PE+D77AmWVUgNLWDjyHa/xcWNz7z0OIZFPZENwq\niPdSKgQzvxuTeMYogTHBvmpN6rio2MieCh+fHAjOTBLpVEOAFo9KaUH7ot7Qftulw+MTCL4/LZM3\nPmvh+XWN4ccyLQqXjTDx8NTIXW760/hhJlZsbmHpB8HxXTvqTIlKaUHwn45kpoqBqqI+OGOM91Iq\nJP+ZjBIYE+zj/cFZ2OLv5DLr+Wr++y9NCQ2MXr/GbYtPUd0YYPOTRRS2WUbZWu5lUJY+bksr6WYd\n6/9vIZUOP/mZeuzpeszG5Jkth2o1N+33MLLAQHHOmfc91G7AoIMjspQqBqhQA/GiOJdrQHCfsa45\nec88lT3GBPv0gJvBOcGT42dfZmXt1y5OnE7cLOS/PmriSI2fFo/Gj99yhB/XNI1tx7xx2V9sa1CW\nnvHD0hicY0iqoAhwUbERU2ssvOasmxWjXqEkzyAzRjFgVToCpBkgxxb/MJHsZzJKYEwgt0/jiyMe\nrmlN6pg7JQNVg1c3Jeasv5qmAL9c28D4EhNzrrHx5hfOcBu08roA9S1qXPYXU4XJoDB2cPD9Xjeq\nY6ef0nyDHD8lOqWqGn/8W3PKNpuvcAQoyjb0Sc5DZ2cyfn3Mi8ub+CVWCYwJ9MURDx4/XHN+8KJ7\ncYmJiSNMLP+0OSFlAD9/p4Emt8ZP78zh8duyybHp+NEf6/EFNLYejV/iTSq5vDQNgw6ujrC8XVpg\npNIRwJkE/5BF8vn0oIfvv3aad7/u3okyyaLK4Y97cX9ItlWH26e1u87tPull2rNVvPFZ4rPzJTAm\n0CdnFY0DzJ2SQV2zyv981b9/HDtPePn9p83MvszKlSPTyE3X88Tt2eyr8vFfHzWF6/l62vEmVf3g\n77JY+8NC8jM6XiBCTQ7OPp5KCCDc2en46eTdS4umsg+63oRkWjoW+a/dHjxcILS3mUgSGBPok/0e\nSux6SuxnkjpmTrCSn6Fj2V/6bzlV0zT+bVU9JoPCv83KDj/+nUk2Lh1m4hf/28CHu90MzzOQY0ts\nCUV/y7LqOj2mqreZqR/sctHikdnmQBW66FfUp96NU7Nbpcmt9emMEWhXsvFea2BMho44EhgTJFQ0\nfvX57ZfoTAaFOdems7XcyxdHPP0ylne/dvHJAQ8PTc1gSJvjZXQ6hZ/flYPTq7GvynfOzRa7Eqpl\n7Elm6pdHPNz9mxqWf5KY/WTR90KdXU7WJ34G1F2V4eL+PpoxWoP7lo42Nw9ftx5QkAxlHF0GxpUr\nVzJz5kxmzZrFd7/7XU6cOEFtbS2XXHIJs2fPDv/v+PHjHV777rvvMmnSpPBz7r///j55E6noi8Pe\n1qLxjkkdD1ybTpoBHniphs8OumP+ngdP+VjxaTN7Kryoamx7lB5fMPu0KFvP96dldvj6+GFp4fMH\nz7X9xa4MydVjMvRsxrhxd/DuONSkXAw8oQt8KMikknBgzOqbir7ss/qlrm9zRmsyzBijvus9e/aw\ndOlS1qxZQ0ZGBitWrODxxx9nzpw53HDDDSxevDjqN9+6dSuPPPII99xzT1wHPRB8cqB1f/H8jkkd\nhdkGVj5cwNz/ruWOX1Xz07/P4btTonfEqXL4ueNX1eH1+UyLwsQRaVw1Mo0Hr++85+ja7U7Ka/38\n6t7cTp/zxO3ZmPRwx8TENPROVnqdwjB7z0o2PtwT/P0fknKPAavBGbw5PZmCS6mhrjdFOX0zYzy7\nX+q67S7i801RAAAgAElEQVRybDoKs/RJ0UM16ozRZrPx9NNPk5ER7EIybtw4Kisr2bp1KxUVFdx1\n113ceeedrF+/PuLrt23bxsaNG5k9ezZz585l//798X8HKerj/W6G5RnaLV22Nel8M+//ayGXlJh4\n7E/1fP/1052mMbu8Kg+8VEttU4Dnv5PLj2dnc+0oM9uPe/mPdxr4eSenWACs/FsLGWYl6pmH2VYd\n//GtXAb1QaFvqistMHb7+CmHU2Xr0eCykQTGgSs086ltUvGkWLP5yvq+XUoNnbDhcKo0u1U27Xcz\ndYyZXFvkMo7+FjUwlpSUMGnSJAB8Ph+LFy9m+vTpmEwmZsyYwR//+EcWLVrEU089xd69ezu8Pi8v\njwcffJC33nqLu+++m3nz5uHx9M++WTJr8QQvjNdGWEZtqzjHwJp/HsSca9JZ+bcW/m7RKbafdaq8\npmn8y4rTfFXu5Zlv5vDtq9N5aGomr8zLZ9fPBnPN+Wn88bOWiEE11Jf0tkutcT2h+1wyIt9AdaPa\nrZNR/rrXjaoFX3uqIZASp6qI7nO0mflUJkGmZXdUNgRQFCjI7Pvkmw/3uPH6Yfo4a2vhf+L/PcR0\nNXQ4HMybNw+r1cqCBQtYsGABDzzwAADDhw9n+vTpfPDBBx1e9+KLL3LllVcCMG3aNDIzM9mxY0f8\nRp+iPj/swa9GXkY9W5pR4ZffzuX57+RytNbPTb+o4t/frA9nM/56QxOrtzh54Lp0/mFy+/6iiqJw\n/3XpOJwqb2/tWEv11pctBNTg4cGiZ0KZqd0p2fhwjwuDjvDerXTPGZga28x8Ui0ztdIRID9D12eH\nhIfKNRxOlXU7XJgMcP1oc6eF//2ty53Vo0ePMn/+fKZMmcJjjz2Goii88sorzJw5E7vdfuYbGdp/\nq/r6et58803mzp0bfkzTNIzG9o2pz6YoCnZ76lyoezLer44HaxRvvTIHe270zyPk+zNtzJqUy8Mv\nV/Hixibe/drNP1yfxTNvO/jGaCu/nT8Eo6HjH/GcG6w8vsrBHz5z8dDfDcLQ+hy73cabX55iRIGR\nGZfnotMlVzu2syXr38X4kQD1VLv0HcYXacyapvHR3gquvsDK5HGZsMZBlVPH9Unw3pL1M44mmcfc\n5NGwpik4PRqNfkN4nMk85pCa5mpK8kx9NuZcTcOohxafjo27nXxjjI1hgzMotDvx+FuwZVgwJ3AV\nK2pgrKmpYc6cOcyfP5977703/Pjnn39OQ0MDCxYsoLKykvXr1/Pqq6+2e63NZmPZsmWMHj2aSZMm\nsWnTJjweD2PHjo06IE3TqKtLfOeDWNnttm6P9/3tTZQWGDBrXurqOh7U2xmrAv/9Dzn8eYKZx1ae\n5sd/qqXErufF+3NobOi8u8Y9V9l4YX0jf91ej9+fjcGg46/b69l21MOjMzKpr0/+zhw9+Zz7Q545\nOBPYfriZG0e1X3aKNOa9FV5OnvZz/zU28ltf+/WhFm66MPH9/JP1M44mmcd8ujnAhYVGvir3sv94\nC3V1wd9xMo855Hitl0uHp4XH2RdjzrLoeG9bE3VNKjdcaKKurgWTElxyPnyiudc5Dfn5PT+hJ+q/\nxuXLl+NwOFi9ejWrVq0CwGKx8MILL/DEE08wc+ZMNE1j4cKFjBgxAoB58+axYMECxowZw5IlS3jm\nmWfweDzYbDaWLFmCXn9uJ3A0ulS2lXv59qSeHcKrKAozJ1iZfIGZVz9u5tbxFuxdnFt47zXpvLC+\nkdc+bgaCBfwr/xb8I//mFcl955rsirODJ4LEuhwayka9frSFwiw9VpPCoWop2RhoNE2jwalyQZGR\nrce8KVXL6Ato1DSpfZZ4E5Jl1YWTz6aPswCQ3SZbNZHJflEDY1lZGWVlZRG/tnTp0oiPv/TSS+H/\nnjBhQjigiqC/7HUTUIPr6b2RZdXxyE0d6w4jGZ5n4PqLzPzp8xZKVQ29Bqu3tHB5qanDmYuie3Q6\nheF5hpgzUz/c4yYvXce4IUYURWHkIDmhYyBqdmuoGuRl6CnI1IezPFNBdWMATeubA4rbCpVsXDzU\nGD7SLbNNtmoiSSpiP/tgdzDxYsoF/Xvm4v3XpdPs1qhvUWl0qVQ3qnxLZotxMaLAwMFT/i7bu7m8\nKp8d9DDlInN4T3dkgZFD1T40LbXS+UV0oQt7llVHcbaek47UufnpywOK2wqVbNw87kyp2NmF/4ki\ngbEfaZrGB7vdXDEyjQxL/370N40NLt3VNqvUNvkxGeD2yyQwxsPNYy3Ut6jMer6aqigXwM0HPbh9\nGtdfZAk/VlpgoMkdXLoSA0c4MFoUinP04WCTCqr6uOtNSCgwTr/4zL+HSM3FE0ECYz/aXeGj0hHg\nhtGWrp8cZwa9wr3X2HB5VE43B7h5nCV8dyZ659tXp/P/vp3LrhNepj93ip0nIidUhfYXv3HRmdWC\nka1L2Ydln3FACTXHzm6dMdY1qwk5Sq4nwl1v+njGOHWMhVvGWxg75Mx2jswYz0EbdwX7Ad44pn+X\nUUPuvTodFECDb0ntYlzde006b/xTAc0elZn/7xQb2vR+DPlot5uxQ4ztiqZHttZBSgecgaXdUmrr\n/lmq1DJW9HHXm5BvXWnj5Qfz27W6zLIE/zvRRf4SGOPMF9A6beC9cZebomw9o4sTk/BSnGMg26rH\naFASMmsd6CZfaObdHxRiT9cx57c13LfkJB/scuEPaJys97OvytduGRUIJz8dPBXbjPGLIx7ejxB0\nRXJpaBMYB7f2G02VZuJVDQEyzArp5v4PD1lJknyT+OKpAcTr15j0kwqmjbXw87ty232t0aXy+WEP\n91xli9oMvK8Ns+vR6Y0Y9alx95pqRhUaee+HhfzrH0+zcnMjv/8Y8tJ1jCoKBsCzs5GzrTry0nUx\nzxh/9MfTHKr2s/fZIaQZk7spw7ksNOPJsugoyg5eZlOlZKMvDyjuisWkI83Q/pzGRJAZYxx9tMfN\n8dMBXtnUzIGzjhMKlWncMCaxMzWdTsHQR22eRFBehp7//sd8KpaO4pffzmVUkZFPD3jItuq4orRj\nf9zSAmNMe4zNbpVdJ320eDQ2d+M4MtH/QjPG7DYzxpRZSnUEwsE8ETItuoTPGCUwxtHqLS2YDKBT\n4Od/drT7WqLKNETi5KbrmXNNOmv+eRDbni5mw78WYorQtu+8QQaO1PgJdHGG5rZjXgKt14v1O2Q5\nNZmFLuyZFh2DsvTolGDASXaaplHl8CdsxgjBmwmZMQ4QzW6V97a7uGmshW9fnc47W13hE6k1TWPj\nrsSUaYjkUJxjYFhe5Lvw0gIjvgAcPx39wrnlcPBkmqJsPet3uqT2MYk1uFTSzcHVGaNeoSBTnxIz\nxvoWFY+/7xNvosm0yoxxwHhvuwuXT+PvL7fx6IxMzEaFZ94Ozhp3nfRR1ZCYMg2R/EKZqYe7SMDZ\ncthDXrqO+69N51hdgH2VUuKRrBqcari9GcDgHH1KzBhDx2MldMZokRnjgLF6SwuZFoUbx1goyjYw\nd0o6H+1x88l+Nx/sTmyZhkhusZRsqKrGF0e8TCxN46bWvpLrJTs1aTmcari9GQQDTSoU+ff1AcWx\nyJIZ48BQ2xTgo71ubh1vxdyaKfj9aZlkmIOzxkSXaYjkNjzfiKIQtZn4wWo/DqfK5aVpjBlsZHCO\nnvU7JAEnWTW61HYNNAbnGDjdouKMcGB4MgnPGPu46000WVYdjS6tyz33viSBMQ7+5ysnARXumHim\naD43Xc8/Tc3kiyNeNh/0cONoc0LLNETyMhsVhubqORhlxhjaX7x8hAlFUZg21sIXRzzUNSf/LORc\n5HCq4Zo8gOLWzNSqJF9OPdm6D1qUk8AZY+sSdJNbAmNKe/OLFgZl6blmVPtU/HnXZ5CXEfyIE12m\nIZJbaYEx6h7jlsMejHq4pMQEBHvfqhq8v0uWU5NRg1MNX+DhzEkVyV7LeLTGjy1NIS89caEhGYr8\npcC/1c4TXj7e7+ZYrZ9jdX7KawN4AxpvLihgcE7nH9ORai9bDnuZf0MGel37GWG6WceTs7L59fpG\nvnGh7C+Kzo0sMPDRHjcur4olwsnlWw57uHioKfy1ay8wYzUpbNjh5q4re3a2p+gbbp+Gx89ZM8ZQ\nkX9yZ6aW1/oZlmdI6OpWaAm6MYGBUWaMBBMbvrWkmidXO/ivvzSz/biPDIvCkRo//7mhMepr3/gk\n+PW/n2iN+PW7r0rnkyeLE9JeSaSOUDPxIzUdL5ynmwMcOOVnYpvmAGajwuQLzHywx4XXL2UbyaRt\ncX9IqrSFK6/1M7yTsqL+EjphI5EzRrlaA9uPe6ltUvm/t2RRvngI2/9jMO/+oJBpY838/tMWapoi\n/zFrmsaKTxoYWWAIL3EJ0ROlUTJTvzwarIe9YkT7pfqbxllodmt8dtDT9wMUMQtd0NuWaxRkBov8\nk3kptdmtUtusJjwwhk/YSGDJhgRGzhwHdNul1nbLWI/clIXLp/G7D5sivm53hY/dJ7zcMTGx/U9F\n6jtvUOfHT4UTb0rb33xNGytlG8kodEFvW65h0CsUZumpTOIDi0OrFZ01ougvWUlwJqMERuDD3W6K\ns/WcP6j9H8SVI9O4amQay/7aRNNZdy8BVePf33SgU+DvL4+8jCpErAbn6EkzRJ4xbjnsYWiunsKz\n+lcOytIzvsTEuh3SBSeZRFpKhWCmZzLPGI/WBv/2hucnODDKjDHxmlwqXxzxcH0n5RQLbs6k0aXx\n8qbmdo8vfq+Rv+518+935oWPDhKip/Q6hRH5xg7HT/kCGlvLvVweofk4BJdTy2v9HDiVvDORc03b\nsxjbGpxtSOoi//JQYEz0jDEJDis+5wPjpv1u/CodzskLuWG0mbFDjCz9oBFXa3HuX/e6ee7dBqZc\naOax2Xn9OVwxgI0ebGRbuZd1O5zhx3af9OH0alw+InJgvK61Kf0Xh2WfMVmEz2I8qy9ycY4eh1Ol\nxZ2cRf5Ha/3odTAkN8HJN2YFRZHkm4T6aI8bnRI8ZDYSRVFYcFMmNU0qf/ishVMNAb73Si2DMvX8\n5gF7hxINIXrq32dnMyTXwNz/quWD1vrEM/uLkQNj6O7++GmZMSaL0BLg2UupoSL/E6eTs8ft0Vo/\ng3P0GBN8LJ1Op5BhVhLaL/WcD4wf7nEzYbipwx9xW7dOsFJaYOA37zcy/+Va6ltUXvqunfyMxHWH\nEANPUbaBNxcUUJil5/6Xavhoj4sthz1YTQqjB0deri/I1GE2Kpzo4mQO0X+iLaUCHK/r/U3MfUtr\n+PGb9b3+Pm2V1/oZnp8c20LZCe6Xek4HxsPVPspr/V0W3+t1Cg9PzeRYXYBPD3h4bGYWV50nBfsi\n/obkGnhzwSDyM/Tct7SWD3a7uHS4qdPDpRVFYUiuXmaMSaTBqZJmINw3OSTUZu1EXe9mjAFV44Pd\nLv6yN369cn0BjROnE1/DGJJp0UnyTaKEyjSuj+E4qG9eYeOCQiO3jrfw8NTMvh6aOIeV2A2sXlBA\njk1Hg0vrdBk1ZGiuIS6zEBEfDS61w2wRzhT59zYwnjgdwOuH8jp/3LKRT5z2E1ATX6oRkm3VSfJN\nony0x02mReHSYV0X56cZFT5cWMiyB/PRyb6i6GMj8o28taCAaWPNzLosejnQkFwDFY4A/kDsF8lP\n9rv52yFJ2OkLDU414tZMQaYevS4YhHojdApLs1ujviU+wSNZMlJDshIcGLv8FFauXMnrr7+OXq8n\nNzeXp556CrPZzI033khpaWn4eS+88AJDhw5t99ojR46wcOFCGhsbyc7OZtGiRRQVFcX/XfSA16/x\n8X43119k7nSZ6myxPk+IeCgtMPL7/1PQ5fNK7HoCarDd2FB7bBe2h1+rw2JS+PTJ4t4OU5zF4VTD\nbc3a0uuCRf7HezljPNym1vVYnZ/c9N7nOhxNtsDYupSqaVpCmqdE/RT27NnD0qVLWbNmDRkZGaxY\nsYLHH3+cOXPmcMMNN7B48eKo3/zRRx/loYceYurUqaxdu5Yf/vCHLF++PK5voKe2HPbQ4tFiWkYV\nIpmFguHx0/6YAmOVwx8uNK9rDmCPw4VVnNHoVCnOjpzEUpyj50Qvl73bntt5rC7A+GG9+nZA8FQN\nSKLAaNXh9QcbsltM/R8Yoy6l2mw2nn76aTIyMgAYN24clZWVbN26lYqKCu666y7uvPNO1q9f3+G1\nVVVVnDx5kqlTpwIwY8YMDhw4QFVVVR+8je77qHV/UU69EKluaGvd2bEYL7ih3qsAXx7xRnmm6AlH\nJ3uMEDywuLflGoer/Zha41d5nPaWj9b6safryIgw002ERLeFi/oplJSUMGnSJAB8Ph+LFy9m+vTp\nmEwmZsyYwR//+EcWLVrEU089xd69e9u99tSpUxQUtF8GKigoSJrA+OEeF+cNMsS89CREsioJzRjr\nYivZ+KpNYNwijQHiyh/QaHZrHYr7Q4qy9ThaVJp7UeR/qNrHxBFp6BQ4VhufwJgMp2q0daYtXGJa\nHcb0STgcDsrKyrDZbCxYsAC9/szSy/Dhw5k+fToffPABF154YfhxVY38i9fpot+RKIqC3W6LZVg9\nVt3gZ/txH9+fntPrn9Uf440ngyG4LJFKY4bU+5yh/8ack6NhMijUOGP7ve44WcvwfCOKAtuO+8Ov\nOXu8v/+4gbwMPTdfkrznPSbb30VdUzBQFdnTIo5r1GAP0IQTE8PskbONQ0lUkXIaPD6V46cD3HJZ\nJifrVSqbtF6/f03TKK8LcOul6Z1+r/7+nAcX+IF6NKMJu73/e1F3GRiPHj3K/PnzmTJlCo899hiK\novDKK68wc+ZM7Hb7mW9kaP+tioqKqKmpafdYdXU1hYWFUX+epmnU1bV05z102ztfBr//VSMMvf5Z\ndrutz8cbT36/FYNBl1JjhtT7nKF/xzwkV8/BCneXPy+ganx+0MVN4yzodfDuNhdV1c0Y9Uq78Tq9\nKvOXVnJhsZGJQ5I36SzZ/i5Cp6OYlEDEcWWlBWf1u480UWCOPNu7a0k1GWYd//WPHdtN7qv0oWlQ\nnKExJEfHoUpPr99/TVOAZrdKcSadfq/+/pwNgeDneKzSyYV5PZs15udn9PjnR52+1dTUMGfOHObM\nmcPChQvD2UGff/55OImmsrKS9evXM23atHavLSwspLi4mA0bNgCwbt06hg4d2mF5NRG2Hw8uJV06\nXM5QFAPD0FxDTHuMeyuDvVcvHW7i8tI0XD6NnSc67jNu2ufG5dM4eMonJ3d0Q6govbOl1OLs4Gpb\ntGbiW8u9fLjHhap2/NxDgXdkgZESu4Hjp/0Rn9cdyVaqAWeO7EpUkX/UT2L58uU4HA5Wr17NqlWr\nALBYLLzwwgs88cQTzJw5E03TWLhwISNGjABg3rx5LFiwgDFjxrBo0SKefPJJfvWrX5Gens5zzz3X\n9+8oBjtP+CjO1ks2nhgwSux6PtnvJqBqUfv3hvYXLxueFu7MsuWwhwnD2i/rrd8R7NXa5NaoblQZ\nlCX/VmLR0Ek7uJDBOcFLboUjcmBsdKnhVmiHqv2cX9g+uzV0LFlpgYFheQa8fqhqCFCc0/OgdjRJ\nzmFsKzvBJ2xE/STKysooKyuL+LWlS5dGfPyll14K/3dpaWnSlGeEaJrGzuNemS2KAWVorgG/GrxI\nDo5ykfzqqAejHsYNNWHQgS1NYcthL/OuP/McVdVYv9ONXgcBFQ6e8vVpYNQ0jcf/VM83LrJw07jU\nLp/q7CzGkPwMHQY9VNRHnt23nfV/Ve7pEBgPV/sw6IIJV6Gkq2N1/t4FxiQ5h7GtcFZqgmaMyZGb\n24+qG1Vqm1XGDpHAKAaO0FFBXbWG+/KIlzGDTZiNCga9wqXDTR0yU7cf93KqIcDtlwaTHs4+IzLe\nKh0B/usvzSz9oLFPf05/CM32IhX4Q/DkiME5xk4PLG77+9tW3nGJ+1C1n2F5Bgx6hZLWGV5vSzaO\n1voxGxUGZSbPqkBoxp2oRuLnXGAM7aeMkcAoBpCh4dlD53tXTS6VfVW+dqsll5emUeEIcLLNDOa9\n1mXUh24M9gQ+WN23fVi3tgaALUe8eHypvZ8ZKi+IdlrPULuByk6WUkPN4K0mJWJgPFzjZ2RB8Hc9\nLPQ7r+3dySrltX5K7PqkanVpNiqYjQqNEhj7Rygwjh2SHMerCBEPJfbg3X60Uza2HfOiaXBZm0OP\nr2j977azxvU7gjW+F5eYKMzSc6iPZ4yhwOj2aWwtT+26yq6WUgGG2I3tbkTaCtWiThtrYccJL17/\nmRuFZrfKqYYApQXBa1foyLFYGzt05miS1TCGZFoUHLKU2j92nvCRblbCd1tCDASDMvUY9dEbVH91\nNBh0LmszY7xsRBqKciYwnqz3s/OEj5vGBvf6zhtk4MCpvp4xBs+cBPj0QGoHRodTRacE9247M8Ru\noMmt0RThon/stJ/8DB2Tzk/D64c9FWduSkI9UkMzRkVRGJqr71VgdHqDwTZZzmFsK9uqkxljf9l1\nMrjHkkzLBkL0VnDvKnrJxpdHvOTYdIxok2SRZdVxYZGRLYeDs7Z1rcuoN7cmwYwsMHK8zt9nS5yq\nqrGt3MsNo80UZOr49GBqB8YGZ7AdXLTry1B7MAhFykw9XuenxG5gQuuJP21n0KEeqaEZIwSTcHoT\nGEOdc5JxopBpSdxhxedUYGzxqByq9ssyqhiQhtr1nbaF0zSNL496mDDM1OG0gokj0thxwkuLW2X9\nDhc5Nl34DMjzCw2oGhyp6Zvl1EPVfprcGhOGp3HN+Wa+OOxpt3yYahpcaqc1jCGDWxOlIi2nHq8L\nNoIfXWzCqIetbdr3HTprxghQkhc8cqynNy7JmJEaksgzGc+pwLinItg1YsxgSbwRA0+J3cDJ+sgF\n3ydOB6hpUrlseMc2ZJeXmgio8NHuFj7e7+bG0WeOYjuvdXbSVwk4of3FS4eZmHR+Gk6vxrZjqdvY\nvLOzGNsKzxjPykxtcKo0uDSG5hpIMyqMHWJq91kcrvZhNQWPrgopsRvQtMhBNhbJdtxUW5mtR08l\nwjkVGCXxRgxkQ3MN+AJwqrHjrDHS/mLIFa2zw5+ursXrP7OMCjByUPDfSl8l4Gwt96AocEmJiWvO\nD550s/mAu09+Vn9wONVw15bOnFlKbR/MQkuiQ1sTqcYPM7Gv0hduOH642s/wfEO7ZdphvSzZKK/1\noygk5WEK2VYdTW6NQC87+/TEORYYfeh1cEGRBEYx8EQr2fiidUluQoTAOCLfgD1dx5ZDbgw62p1R\nOiRXT5qBPkvA2VbuZdQgI+lmHecNMpCfoeOTFE7AaXSpZHexlJrfmih19owxlFFc0rrUOmGYCVWD\nHce9aJrGoWpfu2VUaFuy0cMZY42foix9uAtSMgnVMjYmYNZ4TgXGXSe8nD/IiMV0Tr1tcY4Ymtta\nshFh9vDVUQ+lBQZybB2LuBVF4fLWso2rR5nbFafrdQqlBcY+mTF6/Ro7TnjDwVpRFK4+38znhzz4\nAqm3z6hpWnCPsYsZo06nUJSt71Dkfzw8YwwFxuDvZGu5l7rm4DLryIL2N/UlMdSvRnO01p+U+4tw\npvtNIhJwzpkIEVA1dp/0MUaWUcUAFbqgnl3L6Ato7Djui7iMGjKxdTn15rEdW7KdN8jQJ83E91T4\n8PqDS4YhoX3Gr1Nwn7HZrRFQIcva9exrcI6ByrOWUo+fDga3Ia03OOcNMmBLU9ha7uVwzZkeqW1l\nWXVkWXpWy+gLaByrS84aRmg7Y5Sl1D5zuNqPy6dJKzgxYBVm6THoOtYy7jzhxe3TuDRC4k3IHROt\n3HFFBrMndjz77rxBRhpcGrXN8b1zD+17XtomMIb2GVOxnjGUKNJV8g0QnjG2vdk4VhesYQytaOl1\nCuNLTGwt93D4VMdSjZCSvJ6VbByp8eMLJO/WUiLbwp0zgXHXyVDijQRGMTDpdQqDcw0dltVe+Wsz\nigLXX2Tu9LVDcg386V+GkJfRcak1tHwX7+XUreVeTAYY3SZLfFShgbx0HZ+mYAJO6ALeVbkGBGeM\nLR6NJveZwBiqYWxr/DATx+oCbDkSvFE4e48Rel7LuK+1eUCyBsbQDUYiivzPmcC480Twj2DM4OT8\nIxAiHkpy9e2WUo/X+fnT5y3cNsEacbYRi/MGBS/G8U7A2VbuZexgEybDmaVHRVG46rw0/nbIEz7J\nPlV0deRUW8U5wRuQtmUWx093DIyXtu4zvrPVRbZVR66t4/cusRuoa1bD2aux2lMZnCxcVJyc18Tw\nHqMk3/SdnSe8FGXrI94RCzFQDMk1cKLN4bVL3m/Er8I/T8/s8fc8r7VkI56nbDS7gw3NI2XJXnO+\nmRaPFj5QPFWEDymOJTCedWCxw6nS6NI6lE2E9l8dTpWRBYYOzRngTAJOd0s29lX6yLS0r4tMJlkJ\nPJPxnAqMUr8oBrqh9uDhtTVNwR6YKz5t5uZxll41tci06CjI1MV1KXX78WBD87aJNyGTzg/Oknqy\nz1jfEuj1ifY9FUsD8ZCzDywOZ6Tmtg9SQ3L15KUHv9+ITrJHQ8kz3S3Z2Fvh48Kijp2QkkX4TEYJ\njH3jVEOA6kY5g1EMfKHi8GN1fn6zsRGPH/755p7PFkPOG2SMa/ebr46GOt50TAi6sMhIrq37+4w7\njnu55PEKfvdRU1zG2F3d2WM8eyn12FmlGiGKooRn1aFmC2dre2BxrDw+jcM1/qTdXwTIMCsoiiTf\n9Jlw4o20ghMDXKg4fPsxL69uambyheZ2x0z11MgCI+W1/rj1Md1W7iXDrERMJtHpur/P6PZp/NOr\ndbh9iWsp152lVHu6jjTDmaXUcHF/hA4040uCv79InxW0bewQe2A8VO0joAZvQpKVTqeQaVakwL+v\nhBNvZClVDHChi+Qv1zbg9GqUxWG2CMEEnIB6prdmb20t9zC+pPNTbq4dZabJHfs+48/ecbC30kea\n4czxTP2toRszRkVRKMo2dFhKHZzTcb/vlvEWLio2ctXIyDc4ZqPCoCx9t4r891YGr4kXJmniTUiW\nNczb1+wAAB/bSURBVDEnbJwTgXHXCS9Wk5K0haxCxEthlh69DmqbVa4oTePq83s/WwQ4P44JODVN\nAY6fDjA+wjJqyHUXBEtLNu3rejn10wNufvtBE9MvtnDTOAuHq+PfjCAWDqeKLU0JN2DvyuAcPRWt\nS6nH6wIUZOoiduUaPdjEXx4vojC78+tXib175zLuq0zuUo2QLKtOZox9pbYpwGXD5QxGMfAZ9Ep4\n1lE2PTNuiRUjW0s2DsahZGNbeed9W0NGFRoYlKXnr3ujB8ZGZ4Dvv1aHPV3HL7+dy8iCYDOCujg3\nI4hFo6vrkzXaKsrWU9Fa5H/stL9XjbxL7AbKa/0x3xDsrfSRa9ORn5HcISA7QWcynhNTqBfus2OQ\noCjOERNHpDE4J8ANozsv6O+uErsBkyE+Rf5/O9Sx483ZFEXhulFpvLPVicurdtrf+F9eO8Xx0wFe\nnZdHfoae0tbMzcM1/n4vzapv6bpPaluDcww4vRoOp8rxOj9Tx3RsxxerYfbg96prVmN633srfFxY\nbEzajNSQLKuO3RV9c7JLNMl9uxAng3OCd59CnAtefMDOmwsK4nrR0+sURuQZORCHwLhhp4uLio0U\n50S/L598oRmPHz4/HHmfccNOFy9/1MA9V9mYcUmwlV1p65Lv4T46JiuaWM5ibCuUmbqnwkeTu2MN\nY3eMaE3MCe0dRuPyqhytTe6M1JCCTD2nW9R+P7z6nAiMQpxLFEVB3wcrJCMHGcKnyPfUidN+9lT4\nYpodTe5in3HJhkbyMvQ8fWdO+LG2M8b+5nB2b8YYCoybDwZn0GfXMHbH1ecFP6uPY9iTPVDlR9OS\nOyM1pChbj6YFS+76kwRGIURMzh9kpL5Fpa655xepDTtdAEwb2/Uyb3GOgfMGGSLuMx6p8bH5oIfv\nXJtFRpssUHt68LSJQ9X9O2MMHTmV053A2JpME1pa7s2McajdwPA8A3+JITCGM1JTIjAGP5PKZAuM\nK1euZObMmcyaNYvvfve7HD9+PPy1pqYmpk2bxsaNGyO+9t1332XSpEnMnj2b2bNnc//998dv5EKI\nfhVaevu6vOd1ght2Bnt+ToyxtvK6C8x8fdzbIQFj5d9aALj/G1ntHleU4PmR/V2y4fJpeP2x1TCG\nhJKkthwOBsZhvQiMEFx63lbu7TKLM1UyUiE4YwSorO/f32fU3+KePXtYunQpK1asYM2aNUydOpUn\nnngi/PXHH3+cpqbOu0xs3bqVRx55hLfeeou33nqLV199NX4jF0L0qykXmVEUWN866+sup1fl4/0e\nbhhtjrmkYfIFZjQNPt5/Ziakqhor/9bC2CFGLhnWceZZWmDgSE3sGZrx0J12cCE5Nh1mo0KLJzjO\nwbm9DIwXmAmodNkxaG+ll4JMHbnpyZ93Eeopm1QzRpvNxtNPP01GRgYA48aNo7KyEoDXX3+dIUOG\nMGrUqE5fv23bNjZu3Mjs2bOZO3cu+/fvj+PQhRD9KT9Dz8QRJtbtcPUo6Hyy34PbpzEtwmHInblm\nlBmd0n6f8dODHo6fDnD3VbaIrynNN+L0alT148W0viX2rjchiqKE9xkHZekxG3u3L3zNqDQUpeva\nz32VvpSYLQIUntVsvb9E/S2WlJQwadIkAHw+H4sXL2bGjBns3LmTdevW8eijj0b9B5KXl8eDDz7I\nW2+9xd133828efPweFLvAFIhRNDN46ycrA+Eu0l1x/odLnQK3SojybbquKTE1G6f8Y3PWjDo4I6J\nkQNjqOayt4lC3dGTGSPA4NYLf28Sb0Ls6XrGDjHy172dX2Ob3SrH6gIpsb8IYEsL7hn3500OxJh8\n43A4mDdvHlarlQcffJB/+7d/49lnn0Wvj/7LfPHFF7nyyisBmDZtGpmZmezYsaP3oxZCJMT0i4Oz\nvXU7urecqmka7+9yMXFEGjm27gWB6y4wc6jaT0W9n2a3yp+3Opk2ztJpvV44M7UfA6Ojh4GxqLVk\nJVKP1J6YfIGZfVU+qhyR3/v+qlAruNTpG12cY+j3GWOXv42jR48yf/58pkyZwmOPPcZ7771HY2Mj\nDz/8MJqmUV5ezs9+9jOam5u5/fbbw6+rr6/nzTffZO7cueHHNE3DaIx+p6IoCnZ75DvBZJRq4zW0\nHgqbSmOG1PucIfXGHMt4r8rVOK+wlo17PPxsTuzvbXu5m5P1Af5pem63P5NbL4cX1jfy1UkNVQvg\n9Go8OM2O3W6LOOaJFjNwiorG/vs79+uCAWdYkQ27PfpScdsxn1fcArQwarAlLmO99XKN/3y/ia0V\ncO/Ijt/vxI7gOK+4IAO73Rrz903k3/LQfBP7K7z9+vOjBsaamhrmzJnD/PnzuffeewGYMWMGM2bM\nCD9nzpw5PPDAA9x4443tXmuz2Vi2bBmjR49m0qRJbNq0CY/Hw9ixY6MOSNM06upaevp++p3dbkup\n8fr9VgwGXUqNGVLvc4bUG3Os45062sxvP2hix8GGLov0Q1Z90gDA1SP03f5MLshTSTPAu180UOEI\nkJeu48oShbq6lk7HnJehY/cxV799/idrgjNoxeehri56VmjbMeekBZ+bZ43Pde+iAg1T62c1Y3TH\n380X+5sBKLIFuvXzEvm3nG+DD0/7qKlp7lZbz/z8jB7/zKh/1cuXL8fhcLB69WpWrVoFgMVi4Q9/\n+EP4OWd315g3bx4LFixgzJgxLFmyhGeeeQaPx4PNZmPJkiVdLr8KIZLb9Ist/PaDJtbvdPHAdbFd\nfDbsdDM4R89FPTjNwWLSccXINNbvdNHo0ph/fQbGLrJaRxYY+7WW0dGD5BuAsUNMKApcPDQ+e35W\nk47LR6SxaZ8bTdM6XJ/3VfooztaTGcMJIMmiMEuPLwB1LSr5/dTmL2pgLCsro6ysLOo3eO2119r9\n/5deein83xMmTAgHVCHEwHBFaRrZVh3rtscWGE83B/jiiIf7rk3vcZu6yReY2bQvmFRyVyfZqG2V\n5hv46qiHgKr1SRegs3XnkOK2LhuRxv5fDOl2QI3mugvMfHKggUPVfs4763DjVMpIDQmtSlTWB/ot\nMKbObYMQIikY9ApTx5jZtN9Ns7vrkw8+2O1G1ehWmcbZJl8YzGQdO8TI2CFdJ46MHGTAF4Djp/sn\nacPhVMkwx37kVFvxDIpw5rP6y1kdgxqcKhWOQNKfwXi2oqxQLWP/JVNJYBRCdNv0i614/fBRF8dC\nQbDbjcWocO2onp8NefFQE7eMt/CDv8vq+snAiPzWZuL9tJza3QbifWl8iYkMs9KhnnFfVeq0gmur\nKKf/axmT4zcphEgp119kxqiHddujl21omsZf9rq5ZlRap0dHxUKvU3j5wXz+7pLYMilHFvRvyYbD\n1b0G4n3JoFe45nwzn+x3E/j/7d15VJNnvgfw75s3YQs7EgIqo1TSBWmrtlWLaAewikSIrV5lhCO2\nV9p6rJbxdNRBbevaW3tGrbantjMoahex7XC044hKl1utR+q0jlrxDnXAscgSgbCFJeF97h8hMQii\nQpaX8Pv8pSEhv7xPyC/P8nsewVRnXqkz4t0TDQAGxlZw1sw9RkfWMg6K8xgJIbbl4ylBjMoDxy+2\n9DqPV9ssoLZZuKvhT1saYalldEyPUdcsWPb1FIPJD3jg6IUWFF1pw+lf2vDOsQbo2xnSY+R4NHzg\n1DACN7fOc2SPkRIjIaRPpkV74pviVvzw7zZMGNXzbjalncc/mYvuHcXLTYKhAbzDdr+p1wuimruL\n7Tyya/aOahg6TAum1s/2x5jf9H0421k4joPSj3fofqni6PsTQgacadF33gXHPJQ5wsGJETAlY0ec\ny8gYg05/b0dO2ZtKKYVKKYXSj8eHzwXh8O8VAzIpmoUF8A49YYN6jISQPhkWKEWEQop/lN7+GKpS\nrWko07wYxpEiFDKcKmlDu5HBTWq/ko3mNgajYPvVpf3BcRxOrAyFVII+rZQVG6Ufj/PX+n7c2b0S\nT0sSQgYclVKGkqrbz+OVao2Qu3NQ+Dr+oyZCIYXAgKs37NvTqG/p2z6p9uYh61v5iBiFBfBoamVo\nvMNZk7YirpYkhAwoKqUMNU0Capp6nv8p1RoxMlja58L+/rhPYeql2nsHnL4cOUXuTahfZ5G/g+YZ\nqSUJIX0WqTR9YJVU9px8zInRGSIUjjl+qq9HTpG7d7OW0THzjNSShJA+UylNvbKSqu4fWHXNHdDp\nBUQ4YX4RMB3lxEvsX8vY1yOnyN2z1DLqqMdICBG5yM69OP/VQ4/RnJCc1WN0k3IYHii1ey0j9Rjt\nL8zcY6TESAgRO28PCcL8+R6HUs01jM5KjIBpBxx7l2xYNhCnxGg3wT48JBxQQYmREDIQjFLKek2M\nEQrnFb6PCJaiQteBVgOz23PQUKr9SXkOIX48KnTdv+S8d6IBaz6vs+nzUUsSQvpFFSLFtdoO6Nu7\nLqX/t9YALzfnlGqYWY4s6uED1VbMiXEgnXE4EIX2sPuNIDC8e6IBl8ptW+NILUkI6ZfIzgU4V25Z\ngFOmNWKEk0o1zIY64GSGer0AP0/OIec+DmahATwqbmnHC78aoG0UkBDV9yPNekKJkRDSL+aVqbcu\nwCnVGh2+R+qtwjo39i63Y2LU6cVzsoYrC/XjcaNJQJvVsPiJn03bEVJiJISIirnHaD3PqNObTtVw\nxlZw1oZ2DqXas/5NTGcxurLQzra0Pn7qxM8tCA/iMSrEtl/AqDUJIf0S7COBnyfXpcd4c49U5/YY\nlf48OM6+y/zrqMfoEOZaRvN8cU1TB34sa0dClKfNh+upNQkh/cJxHCKVMpRU3uyV3VyR6tzEKOM5\nhPjydu8xBniJ5yxGV2WuZTSXbHx9qRWMAfE2HkYFKDESQmxApZTh31oDjB2m+R9nF/dbGxrA222O\nkTGG+hbqMTqC0q9rYjzxcwvcpUCMyvbHaVFrEkL6LVIpg6Hj5kkWpVoDPGWm3pqzhfrzdhtKbWpl\n6BCohtERQv1vJsYOgeHr4lbEqDzg5Wb7a0+tSQjpt1tXppZ2lmpIRFDCMDRAirpmoVudpS3QrjeO\n4+kmQYBcggqdaW6xrtn2ZRpm1JqEkH4zrwo0n83ozFM1bhVmx1pG2vXGsUy9fyMKO8s04h7ysMvz\nUGsSQvotPEgKdynwr0oj6vUCapoE0SRGc8mGPeYZzYkxgBKjQ4T68ajUdaDwUivuU0jttt0gtSYh\npN94CYf7QmT4pdKAshvmhTfOrWE0C7PjWX40lOpYYQGm+eJ//qfdbsOowF0kxry8PMycORMajQbP\nPfccrl27ZvlZY2Mjpk6disLCwh4fW1paitTUVCQlJWH+/PmoqKiwXeSEEFFRKWX4V5XBcsyTs0s1\nzIba8cgiOnLKsZR+UgidG9/ER9lnGBW4Q2IsLi7Grl278PHHHyM/Px8JCQlYvXq15efZ2dlobGy8\n7eOXL1+O559/Hn/729+QlpaGV1991XaRE0JEJTJEhqZWhu9L2gCIo1QDABS+PKQS6jG6AnPv38uN\nw8RRTkqMcrkcGzZsgI+PDwAgOjra0uvbt28fhg0bBpVK1eNjKysrUV5ejoSEBABAYmIiSkpKUFlZ\nacv4CSEioVKaEuHxiy3wkHGWnUqcjZdwUPrZp5aReoyOZX5PTb7fA+4y+6147rU1w8PDMXHiRACA\nwWDA1q1bkZiYiIsXL6KgoADLly8HYz2fc1ZVVQWFQtHlNoVCQYmREBc1qrNk47quAyOGiKNUwyw0\ngLfLqtQ6vQAJB/h4iOe1urJIpQxSCTBzrJddn+euxjp0Oh2ysrIgl8uxaNEipKenY+fOneD5238j\nFISea4YkEvpmRYgruk8hg4QDBGY6IFhMhgZIUXi9xea/t75zn1QxfQlwZcODpDi/aSiCvO2bR+74\n7i0rK8MLL7yAKVOmYNWqVTh69CgaGhqwZMkSMMZw9epVbN68GU1NTUhJSbE8LjQ0FFqttsvvqq6u\nhlKp7PX5OI5DUJC8jy/H8QZavFKp6Q94IMUMDLzrDAy8mG0R70iFDFeqDHhouKdDXvvdxnxfaBPy\n/6GHzNMDvjbc17TZUINAb/6eXutAe18A4oo5KMj+z9FrYtRqtUhPT8cLL7yAtLQ0AKa5wsTERMt9\n0tPTkZGRgfj4+C6PVSqVCAsLw/HjxzF16lQUFBRg+PDh3YZXb8UYQ01Nc19fj8MFBckHVLxGoxek\nUsmAihkYeNcZGHgx2yLe+4J5XKkyINTHMX/HdxtzoIdpyufClQY8EOZms+e/UW+Ajzt3T691oL0v\ngIEZc3CwT58f22t/dP/+/dDpdPj888+h0Wig0WiQmpra5T63HveRmZmJn3/+GQDw9ttvIzc3F2q1\nGrt378aWLVv6HCghRPzMZzOKpYbRzF6739Ahxa6p1x5jVlYWsrKyev0Fe/fu7fL/Dz74wPLviIgI\n7N+/vx/hEUIGkqmjPfHVpVY8HG67Xpkt2KuWUacX8KicEqOrEdcMOSFkQHsy0gPfZoc6O4xuwizb\nwtmullEQOo+c8qTE6GqoRQkhLm+ItwRuUtsOpTa2MjBGNYyuiFqUEOLyJBIOof5SlNtwKJV2vXFd\n1KKEkEEhzJ+36bZwtOuN66IWJYQMCmGdu9/cbreue1VnToy0+MblUIsSQgaFoQFS6NuZZQi0v6jH\n6LqoRQkhg4K5lvHWzcQ//r4JL++tQYdw+57kG3+tQ8YHXXfysswx0qpUl0PlGoSQQcFcy1ih68Do\nYabb2o0MGw/poG0UEDVMhhfjfLs97n8vt+LdE6bj9S5ca0f0cFONpo56jC6LWpQQMiiE+XevZTzy\nTz20jQJ8PTlsPlRvOWTZrLlNwPJPahHQOY/4yekmy89oKNV1UYsSQgaFoT1sC7fnuyb4e0nw+dIQ\ndDCGrI9qIVgNqf7Pl/W4esOILfMCMUnljs/P6tFmMP1cp+8ALwG86cgpl0OJkRAyKATIJfCUcZYe\n4/9VGPB9SRvmTZDjkXA3LE/0w+lf2rDnpKlX+GNZGz74uhHTH/bEzDGemDfBG3XNAo5dMB1fpdML\n8PeSdNsvmgx8lBgJIYMCx3FdDizO/c40b5gR6w0AWDLVF9HDZVj3Vx2uVBmQ9VEtvD04vDU3ABzH\nQT3GE94eHD7uHE6lDcRdF7UqIWTQGOrPo7yuA81tAg6cacaUBzwQoTCdBCLjOWybH4R2I0Pi21Uo\nvm7Aa7MCoOycm/Ryk2DWOC98XdyKCp0R9XoB/rQi1SVRqxJCBo2wACkqdEZ8cVaPxlZm6S2aRQ93\nw9JpvtDpBUxSuSPtya6H886b4A2BAQeLmk1DqVTc75KoXIMQMmgMDeDRZgS2F9Qj1J/HtGjPbvf5\n/XQ/DPHmMXOMV7f5w8dGumFUiBSfnG62zDES10OtSggZNMzHT/2npgNpT3pDyndfOOMm5fDfT/kg\nxI/v9jOO4zBvgjeuVBvR0MJojtFFUasSQgYNc8kGLwHSYuR3uHfP/usJL0g68yn1GF0TtSohZNAw\nbws3/WFPhPr3bSZJ6S9FfJQHANoOzlVRqxJCBo37lTIsfdoXq5P9+/V7UieaFu0E+3YfbiUDHy2+\nIYQMGhIJh9Up/UuKAJD0iCdyFg1B/EMeNoiKiA0lRkIIuUccx0H9qJezwyB2QkOphBBCiBVKjIQQ\nQogVSoyEEEKIFUqMhBBCiBVKjIQQQoiVO65KzcvLw759+8DzPAIDA7Fu3ToIgoDs7Gw0NDSA53lk\nZWUhNja222OPHDmC9evXQ6lUAgB8fX2Rm5tr+1dBCCGE2EivibG4uBi7du1Cfn4+fHx88MknnyA7\nOxs8z2POnDlITk5GSUkJUlNTUVRUBImkawf0p59+wtKlS5GammrXF0EIIYTYSq+JUS6XY8OGDfDx\n8QEAjB49Grt378axY8cs97l27Rp8fX27JUUAOHfuHEpLS5GXl4fAwECsWLECKpXKxi+BEEIIsZ1e\nE2N4eDjCw8MBAAaDAVu3bkViYqLl52q1GqWlpXjttdd6fPyQIUOQkZGB8ePH4/jx48jMzERBQQHc\n3d1t+BIIIYQQ2+EYY+xOd9LpdMjKyoJcLsf27dvB8zf3B7x27RpSU1Px/vvvY/To0b3+nuTkZKxd\nuxaPPfZY/yMnhBBC7OCOq1LLysowd+5cREZGYseOHeB5Hn//+99hNBoBAMOHD8fYsWNx+fLlLo+r\nq6vDX/7yly63McYgk8lsGD4hhBBiW70mRq1Wi/T0dKSnp+OPf/yj5TTr3Nxc5OfnAwAqKipw/vx5\njB07tstj5XI5cnJycPr0aQDAd999h7a2tjv2KgkhhBBn6nUodevWrcjJycGoUaNgvpunpyfeeust\nrF69GjqdDjzPY/HixUhISAAAZGZmYtmyZYiKisJPP/2EjRs3oq2tDXK5HOvWraPFN4QQQkTtruYY\nCSGEkMGCdr4hhBBCrFBiJIQQQqw4NTF++OGHSEpKglqtxqpVq9De3o6WlhZkZWVhxowZSEpKsize\nEZP9+/dDo9EAgOjjXbt2LeLj4zFr1izMmjULW7ZsEX3MxcXFmD9/PjQaDdLS0vDrr7+KOubDhw9D\no9FYrvFTTz2FcePGiTrm/Px8qNVqpKSkYPHixaivrxd1vACwZ88eTJ8+HRqNBmvXrhX958XKlSux\nd+9eAL1/ThQWFmLmzJmYPn265XPQ2fGaXb58GVOmTOlym1jiBbrGXF1djRdffBEpKSmYOXMm9uzZ\nY7nfPcfMnOTs2bNMrVaztrY2xhhjS5cuZX/+85/Z5s2b2fr16xljjF29epVNnjyZNTY2OivMbi5c\nuMBiY2OZRqNhjDG2adMmUcebnJzMfvnlly63ifka6/V6FhMTw86cOcMYY+yjjz5imZmZoo7ZWmtr\nK0tJSWHffPONaGOura1l48aNYzU1NYyxm+9hscbLGGOnT59mcXFxrLa2ljHG2K5du9ibb74pypjL\nysrYwoUL2aOPPspyc3MZY7f/m7tx4wZ78skn2fXr1xljjL3++uts+/btTo9XEAS2b98+FhMTwx5/\n/HHLfcUQ7+1iXrx4McvJyWGMMdbY2Miefvpp9sMPP/QpZqf1GMeNG4f8/Hy4ubmhqakJtbW18Pf3\nR2FhIWbPng3AtPNOdHQ0CgsLnRVmF42NjXj99dexfPlyy21fffWVaONtbm5GWVkZtm3bhuTkZKxa\ntQr19fWivsanTp1CREQEnnjiCQDA7NmzsWLFClHHbO3dd9/FI488gilTpog2ZkEQIAgCmpqawBiD\nXq+Hp6enqN/Lly5dQkxMDAICAgAAcXFxKCgoEGXMBw4cwDPPPIPp06dbbrv1vfDwww+jsLAQJ0+e\nxJgxYxAaGgoAmDt3Lg4dOuT0eK9cuYKLFy9i586dXe4rhniBnmNOSkqyXGNvb2+MGDEC169f71PM\nTh1K5Xken332GeLi4qDT6ZCQkICqqirLaRwAEBISgqqqKidGeVN2djYWL15sucAARB1vdXU1YmJi\nsHr1ahw6dAh+fn7Izs5GdXW1aGMuKytDQEAAVq5ciWeeeQavvPIKZDKZqK+zWU1NDfLy8pCVlQVA\nvO+NoKAgvPLKK5gxYwZiY2NRVFSEhQsXorKyUpTxAkB0dDS+//57VFdXAzANX2u1WlFe4z/84Q9Q\nq9Vdbrs1ToVCgaqqKlHE31O8o0aNwptvvong4OAut4shXqDnmGfMmGHZ1/vUqVM4d+4cJk2a1KeY\nnb74Zvbs2SgqKsLkyZOxYsUKS72ktZ42KHe0vXv3QqFQIC4urkuMgiB0u68Y4gWAkSNH4r333kNI\nSAgA4KWXXsK3334Lg8HQ7b5iidloNOLkyZPIyMjAF198gdjYWCxbtky07wtrBw4cgFqthr+/PwCI\nNubLly9j3759OHbsGE6ePIlnn31W9Nf48ccfR2ZmJjIzMzFv3jyMGDECUqlU1H9/1m4XZ0/X3HrL\nTbEZCPEeOXIEr776Knbs2IHAwMA+xey0d1BpaSnOnz9v+b9Go0FxcTFCQ0Oh1Wott9/au3GWw4cP\n48yZM9BoNFizZg1KS0sxb948hIWFiTJewDT8dOTIEcv/GWOQSCQYNmyYaGNWKBRQqVR44IEHAJje\nF5cuXUJISIhoYzY7evQoUlJSLP8X63v51KlTGD9+PMLCwgAAaWlpOHv2rGjjBUzTAhMnTkR+fj4+\n/fRTqFQqhIeHizpma7f7nFAqlZZesPl28xdZMRJ7vO+88w62bNmCnJwcy3RMX2J2WmIsLy/HihUr\noNfrAQBffvklxo8fj/j4eBw4cACAaYPyc+fOISYmxllhWhw8eBCHDx9Gfn4+NmzYgJEjR+LTTz9F\nXFwc8vLyAIgrXsCUCDdt2oQbN24AAHbv3o1p06aJ9hoDQGxsLMrKylBSUgIAOHHiBB588EFMnTpV\ntDEDQENDA8rLyxEdHW25LT4+XpTvjaioKBQVFaGurg4AcOzYMTz44IOifl9UVVVhwYIFaGlpgSAI\n2LVrF9Rqtahjtna7z4lJkybhxx9/RHl5OQDT50x8fLwzQ+3Guscl5nh37tyJ48eP4+DBg5Yv1kDf\nYu712Cl7mjRpEubMmYM5c+ZAKpXi/vvvx5o1ayCRSLB27VrL+PEbb7xhmXAXo5dfflm08UZFRWHZ\nsmVYsGABBEFAZGQkNm7cKOprHBwcjG3btmHlypVob2+Ht7c3/vSnP0GhUIg2ZgC4evVqt2+hS5Ys\nEWXMEyZMwIIFC/C73/0O7u7uCAoKwrZt2xAUFCTKeAEgIiICCxcuxLPPPgtBEPDb3/4Wzz//PFpa\nWkQbs7XePic2bNiAl156CUajESqVCps3b3ZmqN2Y98gGTPPTYoxXr9fj/fffh0KhwKJFi8AYA8dx\nyMjIQEpKyj3HTFvCEUIIIVbEN0tNCCGEOBElRkIIIcQKJUZCCCHECiVGQgghxAolRkIIIcQKJUZC\nCCHECiVGQgghxMr/A0i/zO0j9aCzAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x124c68c50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "plot(Th_nt, nt_th)\n", "plt.axvline(nt_th1)" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "25.373585409805187" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nt_mean = nt_th[np.where(Th_nt == nt_th1)][0]\n", "nt_mean" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Fret fit" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Max position of the Kernel Density Estimation (KDE):" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [], "source": [ "E_pr_fret_kde = bext.fit_bursts_kde_peak(ds_fret, bandwidth=bandwidth, weights='size')\n", "E_fitter = ds_fret.E_fitter" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [], "source": [ "E_fitter.histogram(bins=np.r_[-0.1:1.1:0.03])\n", "E_fitter.fit_histogram(mfit.factory_gaussian(center=0.5))" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Name Value Min Max Stderr Vary Expr\n", "amplitude 0.9743 -inf inf 0.01849 True None\n", "center 0.2799 -1 2 0.001552 True None\n", "fwhm 0.1668 -inf inf 0.003655 False 2.3548200*sigma\n", "height 5.489 -inf inf 0.1042 False 0.3989423*amplitude/max(1.e-15, sigma)\n", "sigma 0.07082 0 inf 0.001552 True None\n" ] } ], "source": [ "E_fitter.fit_res[0].params.pretty_print()" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "all\n", "KDE peak 27.66 \n" ] }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>amplitude</th>\n", " <th>center</th>\n", " <th>sigma</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>97.4325</td>\n", " <td>27.9934</td>\n", " <td>7.08175</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " amplitude center sigma\n", "0 97.4325 27.9934 7.08175" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAENCAYAAADe/6kHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAJ/wAACf8BB8w+RgAAIABJREFUeJzs3XmUXHWZ+P/3vbequvaqrurupNPpzk7CGgiYsMroiH5R\nVFQQ/QHjjDJsc9QvOiiIchgkMOqoeHQ8KIfhGw24ALKIyiAuIKAEJAmBLISk9yXdXVVdW9d2697f\nH0U3ZOu1lq7q53VOzkmq7/3cpyvJ53n6U59FMU3TRAghhBBCCFF0aqUDEEIIIYQQolZJsS2EEEII\nIUSJSLEthBBCCCFEiUixLYQQQgghRIlIsS2EEEIIIUSJSLEtxFEMDAwgm/UIIcT8I/2/KCYptueJ\np59+mn/6p39iw4YNnHHGGVx99dXs2bNn/OuXX345v/jFLw6772ivT1c2m+XGG29k/fr1nH322dx7\n770TXv+Tn/yEO++8E4Af/OAHbNq0aTyek046iXXr1nHKKadw5plncvPNN5PNZmcd49uFQiHOP/98\ncrnctO6Lx+N8+ctf5qyzzuLMM8/khhtuIB6Pj3/9m9/8Jqeffjqnn3463/rWt47YxoMPPsjZZ599\n0GvXXXfdQd/3unXrpv9NCSHmJen/p0f6f1FsUmzPAz//+c+56aabuPLKK3n++ed5+umnOeWUU7j8\n8svp7e0tSwzf/e53GRoa4s9//jObNm1i06ZN/OUvfznq9c8999x4h/P23wN89atf5eWXX2br1q08\n8cQT7N27lx/+8IdFjTeVSpFOp6d93+23304qleL3v/89Tz75JNFolNtvvx2AzZs389e//pXf/va3\nPPbYYzz77LP8/Oc/P+j+7u5uvvGNbxzW7q5du9i0adP49/3yyy/P7BsTQswr0v9Pn/T/otik2K5x\n6XSab33rW2zcuJGzzz4bTdOw2WxcddVVXHjhhezbt29G7fb394//hD32a6KfuB977DGuueYanE4n\nK1as4BOf+ASPPPLIYdddffXVnHLKKTzzzDNceeWVnHLKKWzbto2LL76YgYEBgIM+2vN6vZx33nns\n2rULgC1bthw2KrBmzRra29vHf3/rrbeyYcMGfvrTn7J161Y++tGPsn79ej74wQ/y2GOPAfDxj38c\n0zQ5/fTT2b9/P0899RTnn38+GzZs4KKLLuLZZ5896ntz7bXX4nQ6cbvdfPzjH2fr1q3j78E///M/\nEwgEaGpq4oorrjjoPTAMgy9/+ct84hOfOKi90dFRuru7Wb169VGfKYQQh5L+X/p/MTdYKh2AKK2X\nX34ZwzA455xzDvvaV77ylYP+fMcdd/Dtb397/M+maZJKpbjgggsOu7e5uXm8E5lMLBYjHA6zYsWK\n8deWLVvGE088cdi1d911F+3t7Vx//fU8+OCD/P3vf+euu+7i7rvvPmLboVCIP/3pT3zgAx+YUiwA\n+Xye559/nkwmwyWXXMJVV13FBRdcwIsvvsg111zDeeedxwMPPMB73vMeXnjhBTRN45JLLuHuu+/m\n5JNP5tFHH+WWW27hqaeeOqztO+6446A//+EPf+DYY48FYP/+/axcufKg9+Dtye5HP/oRq1at4pxz\nzuHhhx8ef3337t3Y7XY++9nPsnPnTpYtW8aXv/xl1q5dO+XvWQgx/0j/fzjp/0UlSLFd4yKRCF6v\nF1Wd/EOMG2+8kUsuueSg1y6//PJZx5BKpQBwOBzjr9nt9vHXD7Vt2zZOOeUUoJAsTj755IO+PpYU\n8vk8yWSSJUuW8M53vnPK8Zx//vlomobT6cRut/PEE08QDAY57bTTeOmllw661jRNFEWhrq6OBx98\nENM0ueCCC/jwhz886XP+53/+h9///vc88MAD4++D3W4f/7rD4Rh/D1599VUef/xxHnroIV555ZWD\n2kmlUqxbt47rr7+e5cuX88ADD3DllVfyu9/9jkAgMOXvWwgxv0j/fzjp/0UlSLFd4xoaGohGo+Tz\neTRNO+hr0WgUj8czpY74UP39/XzoQx9CUZTx18Y6pi1bthx07VgHk06nqaurG/+90+k8rN1/+7d/\n45lnnsFisfDoo48yOjqKzWZj06ZN4x/xvT0ppNNpfvjDH3LJJZfw+9//fkqxNzU1jf/+Bz/4AXfe\neSfXX389qVSKj3/84/z7v//7QdcrisKmTZv4/ve/z9VXX42qqvzLv/wLV1555RHbNwyDO+64gyee\neIJNmzbR1tY2/j5kMpnx61KpFE6nk0wmw4033shtt92G3W4/bAX8WWedxVlnnTX+509+8pPcf//9\nvPjii7zvfe+b0vcshJh/pP8/nPT/ohKk2K5xp5xyClarlWeeeYZ3vetdB33tuuuuY+XKlYd9nDgV\nzc3NvPjii1O61ufzEQwGaW9vHx+laG9vZ9myZYdd+9///d988pOf5LbbbmPFihW8733v42c/+9lR\nf4K32+1cffXV/PjHP2bv3r2oqnrQCvJIJHLYPWMJIp/Ps3//fjZu3Iiqqrzyyitce+21nHzyyZxw\nwgnj16fTaYaGhrjzzjsxTZPnn3+ea6+9ljPPPPOg66Cw6v6zn/0sQ0NDPPjggyxYsGD8a8uXL6e9\nvZ3jjjsOKHysuGzZMnbs2EFPTw9XXXUVALquk0qlWL9+PY899hg7d+5kdHT0oI9zs9nseOISQogj\nkf5f+n8xN8gCyRpns9n4v//3/3LzzTfzzDPPYBgG8Xicb3/72+zatYtPfepTZYnj/e9/P9///veJ\nx+Ps27ePn//850f9KK6zs5Nly5YxOjrK6OjohB+V5XI5fvrTn+L3+1m+fDmtra0kEgleeukldF3n\n7rvvPurIjaZpfOUrX2Hz5s2YpklDQwMAfr8fm80GQCKRQNd1rrnmGp566ikURSEYDKKqKj6f77A2\nv/a1rxGJRLjvvvsO6mgBLrjgAu6++24GBwc5cOAA99xzDx/60Ic47bTT2Lp1K1u2bGHLli3cdddd\nBINBtmzZwsKFC8nlcmzcuJE9e/ag6zr33nsvmUyGM844Y0rvvRBifpL+X/p/MTdMOrK9a9cubrvt\nNpLJJG63m//8z/9k8eLF5YhNFMmll16K1+vle9/7Hl/84hexWCysW7eOzZs309LSAnDQx4Fvd7TX\np+sLX/gCGzdu5L3vfS8Wi4XPfOYznHvuuYdd19PTw8KFC1FVlTfeeINjjjnmsGtuv/12vvGNb6Ao\nCqqqsmbNGu666y5cLhcul4svfOELfPGLX0TXdS677DKam5uP+v1873vf49Zbb+XOO+/E7XaP70UL\n8M53vpN//Md/5J577uHOO+/kW9/6Fl/60pcIBALcfPPNtLa2HtTW0NAQjz76KHV1dZx55pkoioJp\nmjQ2NvLkk09y+eWXEw6H+djHPoau63zsYx/j0ksvnfS9e9/73kd/fz/XXHMNkUiE448/nrvvvltG\nNkRZSA6obtL/S/8vKk8xJzgiKZVKcd555/Gd73yH9evXc//99/PMM89w1113lTNGIYQQFSA5QAgh\nZm/Cke3nnnuO5cuXs379egAuuugi+ehCCCHmCckBQggxexMW2x0dHdTX13PDDTfw+uuvs3DhQm68\n8cZyxSaEEKKCJAcIIcTsTVhs67rOs88+y3333ceaNWu4//77+fznP8+vfvWrI16fzepYLNWz5nJs\nTlU1qtbYqzVuqN7YqzVuqL7YZ7KN2lwmOWDuqtbYqzVuqN7YJe7yOVoOmLDYbmpq4phjjmHNmjUA\nfOQjH+HrX/86uq5jsRx+azR65E3q56pg0EUolKx0GDNSrbFXa9xQvbFXa9xQfbE3NnoqHUJRSQ6Y\nu6o19mqNG6o3dom7fI6WAyYcgjjnnHPo6Ohg7969ADz11FOsWbPmiJ2sEEKI2iI5QAghZm/CHrOx\nsZE777yTG264gWw2i9vt5tvf/na5YhNCCFFBkgOEEGL2Jh2e2LBhAw899FA5YhFlZsaiACjewzfn\nF0IIkBxQq6T/F6J8qmcliyiadM7khX0Zhj/1GUY+fQXpXHUtQBBCCDFz6ZzJyKevYPhTn+GFfRnJ\nAUKUmBTb80w6Z7L5uQRP706RyprEUwabn0tIZyuEEPPAWA6IpwxSWZOnd6ckBwhRYlJszzPbu7KE\nk3kSaWO8cw0n82zvylY4MiGEEKU2lgOyecjmC69JDhCitGRJ+TwzGCv0rv0jefS8SV5TABiK5ysZ\nlhBCiDIYjOUxTcjqhcEW0wRFkRwgRCnJyPY80+TVwIRI0gAgbxQ63EaPVsmwhBBClEGTVyOeNgpV\ntmkympEcIESpycj2PLO2zcZzr6fI5U3uX3cFLrtCk0tjbZut0qEJIYQosbVtNh5+Kcn9664AIJky\naAvaJAcIUUJSbM8zdqvCqUvr6BzWSS84nRTwuTNc2K1KpUMTQghRYnarwsoFFjo3nMlQPM+qoIVL\nz3JLDhCihKTYnod6InmObbFx+oo6nnw1RXTUwFUnM4qEEKLWJdIG4aTBu461M5wwGIrnqZNKQIiS\nkgprnkllDfoieZY3WmkJFHrY7rAsjBFCiPmgfUgHYFmThcUBjWTGYGTUqHBUQtQ2+Xl2nukY1jEx\nWdZoocGtYreq9EZ0oK7SoQkhhCix9iEdq6bQGrCgqYWpIz3hPPUuWSApRKnIyPY80z6ko6kKbUEL\n5q6dHB97nZ5wHtOUAw2EEKKWGYZJx3COtqAFdc9OFvbvRlMVesJ6pUMToqZJsT2PmKZJ+5BOS71G\nnVUhv/FW1v38G6RzBsMJ+RhRCCFqWd9InnSu8MlmfuOtKHd8nYU+jR6ZSihESUmxPY8MxgySGYPl\nTdbx12yWsY8RZWRDCCFq2dh87bfngJZ6jcho4VRhIURpSLE9j7QP5QBY1vjWVH2rBlZNkZENIYSo\nce1DOgGXht/5Vupf/OZCeRlwEaJ0pNieR/YP6ngdKg1ulX379rF7905eeWU7m//jA2zf9YbM2xZC\niBqVSBsMRHWWNx68L0JLfWFhZG9EBlyEKBUptueJdM6kbyTPskYLuVyOjRtvIafr1NlsDPa+wf/7\n+iX0DcUrHaYQQogS6BgujFwvPaTYdthUGjwa3TKyLUTJSLE9T3QM5TBMk+WNVjZv3kR3dxfxL9/E\nCY/+lo//f59hNB7mxhuvr3SYQgghSqB9sLDlX1uwUGxbvvFfWL7xXwC0BiwMxQzSOfl0U4hSkGJ7\nnhjb8s9vTfLwww9y8snreOcnL0VZ3MrXb7mFwMJlvPrqVpLJZKVDFUIIUUSGYdI+rNMasGDRCovi\nlcWtKItbgcJUEhOTvoiMbgtRClJszwNv3/Lv9//7a9LpNJdd9k8oSqHTddqtfPzq2zEVG0888ZsK\nRyuEEKKY+qN50jmD5U1HPseudXyRpMzbFqIUpNieBwZjBomMwZKgxpNPPkFraxsnnXTyQdecefoG\nnP5FPP6bx2WhpBBC1JDxI9obj1xsexwqPsfYacJCiGKTYnseGNvyr2vHH/jLX/7MMcesHh/VHrOk\nwcbSE8/ljf3ttLfvq0SYQgghSmD/oE69U5vwSPbFAQv9I3n0vAy2CFFsUmzPA+1DOh67yuMPb0bX\ndS644EMAGE8+gfHkEwC0BDSWnfgP5HT485//VMlwhRBCFEky8+aWf4dMIXl7/w+FYls3TAaiMpVE\niGKTYrvGpXMmvZHCln/bt2+loaGRE044CYD8pnvJb7oXAKdNZdmSNjSHj1/96oFKhiyEEKJIjjaF\n5O39P8DiQGHUWw63EaL4pNiucZ3DOoZpog/vJBodYd2604567eKAhqHUsWPHdt54Y28ZoxRCCFEK\n7UM6FlWhNfhWsZ1KpYjHo0QiIbZseR5d1wm4VJw2VRZJClECUmzXqHTO5IV9GX7xtwR9kTx/eeoh\nAN7//g8e9Z7FAQsrTzkP04Rf/vJn5QpVCCFEkaVzJn97I81vt4+SzZvkjcLrhmHw178+Q07PYbFY\n6Oxs5+WXt6AoCosDGr0RHcOQedtCFJMU2zUonTPZ/FyCp3el2NGTJZzI81pHlEWLFvOBD0xQbNdb\nWL3+AlBUnn/+2TJGLIQQoljGcsBvto3SF9E5MJJn83MJ0jmTjo79hELDOB0uPB4fy5atoLOznVBo\niJZ6CxndZChuVPpbEKKmSLFdg7Z3ZQkn8yQzJlndxOdUONDXwbHrzsVmsx31Pq9DIej34gs2s3//\nG2WMWAghRLGM5YDIaKFo9rtUwsk82zoz7N79Gi6Xizq7HYATTliLxWJh584dMm9biBKRYrsGDcYK\nc+5i6UJHa80cID0apbH1uIOus973C6z3/WL8z4WPES0EW48nl9NlC0AhhKhC4zkgZWC3Kjhsha1e\ne/sHSCYTrFp1LLb7fon1vl9gtztYsmQZAwP9uLUUNk2hNyLztoUoJim2a1CTtzA6kdUL8+6i/TsB\nOOmkkya9d3FA4+R3/zMti5eyb5+MbgshRLUZywE5Heosb52poKV6URRobW076Pply1YC0NXVTnO9\nRndYl8PNhCiiIx8n9TY333wzzz33HF6vF4AzzzyT66+/vuSBiZlb22ZjR3eWNwZyqIpCuGcXNquF\nD5xz4qT3Nno0cu5jiIya/O7prZx97nuxW5VJ7xNC1CbJAdVnLAdk8yauusKYWsCpYI700dS0ELvd\ncdD19fUB3G4PfX3dLFi8iudfT/OLF5Isa7Syts0mOUCIWZq02N6+fTs//vGPWbFiRTniEUVgtypc\ndpabUCKP3abz8t4/cdyKFvwex4T3pXMmv9s+ykDShuJp46Xtu9j8XILLznJLZyvEPCU5oPrYrQqf\nON3Fju4MzT4L565x0OII89fnsixevOSI97S0LGbX7p10JSN0DKtYtQxdIZ0d3VnJAULM0oTTSJLJ\nJB0dHdx555186EMf4oYbbiAajZYrNjELdqtCs9/CKt8I3ft3gTn56vLtXVkiowZeh4q1fgUjgx0M\nRVNs78qWIWIhxFwjOaB6GSa0BCz8w3F2NqyoYyR8AICFC5uPeP2iRa2ksiZKZgBVUYilCjkjnMxL\nDhBiliYstgcHBznrrLP46le/ymOPPYbP5+Omm24qV2xilpIZg66dfwHg5JNPOezr+XvvIX/vPeN/\nHltU47Er1AVXoOs64YH9DMVlsYwQ85HkgOqVzBSK5bFpJAcODOB2e3A6XcDh/X8w2EAeG5bsIK46\nhUTmrTnbkgOEmJ0Jp5EsW7aMH/7wh+N/vvbaazn77LMxDANVPbxO9/kcWCzVs+ZSURSCQVelw5iR\nyWI3TRO0UQbat6EoCueff95h1w//+SkAgv/+OQBWtSp0RiDgVbG7g0SHu9jzt4f4zMfOIBh0liXu\nuaxaY6/WuKG6Y68FkgPmrsliH85kcDqytCxw4XabxOMjrFmzZvyeQ/t/gAXNzaS7evG5NIbiJg6H\nFQWFlYtdkgOo3tgl7sqbsNjeuXMnHR0dvP/97wcKJ09pmnbEThYgGk0VP8ISCgZdhELJSocxI5PF\nnsoaxJNZOva+hqpqHHPMSYddr+uFkY+x15f6TOxqHvJ56hqPxdBzDHbsYKnPKNr7VMvv+VxVrXFD\n9cXe2OipdAhFJTlg7pos9r4DWUZTWbKjKV4fHiCXy+N2B8bvObT/B1je0kR3ZwcOI0Im62YklmWR\n3yI54E3VGrvEXT5HywETDkGYpsntt9/O8PAwAPfeey/vfe97ix+dKLrkmx8BRsMDNDU1YbFMuhZ2\nfGHle090sKjBh9vXQDrSJQtjhJinJAdUr7dPIwmHC39/gUDDhPe0NC8k4FZZ2xSj0atxUpuNS2Vx\npBCzNmEFdvzxx/P5z3+eT33qUxiGwapVq9i4cWO5YhOzkMyY5DIp/P4AH/vIh6d8n92qcOYqO6/2\nZNndspTu118iFouNb/slhJg/JAdUr7EBF2edQigUwuFw4HROPBXE6/Vhr6ujvm6EYxYupy1okUJb\niCKYdLjz4osv5uKLLy5HLKKIRrMG4YF9KAqsWXPcEa9RWlqOen+9SyOwaDVde15ky5a/8Z73yGiW\nEPOR5IDqNJo1cdhUVAUikWGamg7eheRI/X9hjmwDw6Fh0Ewiicl3sRJCTG7yuQWiKiUzJpED7agK\nrFy58ojXWL75naPeH3CpLFh5OsFXniASCZcqTCGEECWQzBg4bQrxeIxcTj9sCsnR+v9AoIH+/j7c\nnjShpK0coQpR86pn2biYlmTGJDrYicWi0tp65EMMJlLvUmldczpef1CKbSGEqDLJjImrThmfrx0M\nBqd0XyBQuM6jRokkZcs/IYpBiu0alcwYxIa7aVm0CJtt+qMT9S6VOocHr7+B9vb9JYhQCCFEqYxm\njTcXR4ZQlMKR7FMxNgJuy48QHTXR8+YkdwghJiPFdo1KpPLsf+WP6Lo+o/sDLg2AhoVL6ehoL2Zo\nQgghSkjPm6RzJi6bwshIBI/Hi8VindK9NpsNj8eDkg1jYjIyKvO2hZgtKbZrVFfnftKjsfHTwqbL\n61CwqAq+pqUMDw8Tj8eKHKEQQohSGNuJxGGDaHQEn69+WvcHAkH01AiYBpGkFNtCzJYU2zVq944t\nKMBxx51w1Gv0225Bv+2WI35NUZTCVBLvItLpNNu2bS1FmEIIIYpsbI9tq5lC13V8Pv9h10zU/9fX\nB1EVA0WPE5ZiW4hZk2K7BpmmSfe+VwA49dTTjn7drl2Yu3Yd9esBl8qobqWrq4P//d/fFT1OIYQQ\nxTeaLYxsm9koAH7/4SPbE/X/fn89mgqaHpNFkkIUgRTbNSiVMwn370NRFE499R0zbqfepdG04lRA\nYc+eoxflQggh5o6xaST5TGH635FGtidSKM4VXEpMppEIUQRSbNegZMbEMAwWLmqb9MSwidS7VGx2\nN26Pl97e3iJGKIQQolTGppFkRkewWq04HNPLA1arDZfLhc2UaSRCFIMU2zUomTYwTYOz3nnerNoJ\nuAv/PHz1jYRCw8UITQghRImNZkwUFJLxEfz+ehRl+keu+/31KNkRkuk86Zxs/yfEbEixXYN6BwbJ\nZZIsW7ZswuuUDRtQNmw46tfrXYV/HoGmVtLpFAcOHChqnEIIIYovmTGwW/Ikk4mjTiGZrP/3+epR\nzByKkWZE5m0LMStyXHsN2t/eAcDypUsnvM7yuS9M+HWnTcVuVTnuHe8lEeokFBpmwYIFRYpSCCFE\nKSQzJg4lDhx9vvZk/b/fX49FVVByUcLJIAunN+1bCPE2MrJdg7q7uwFYtXzprNsKuFR8zcditdro\n7e2edXtCCCFKazRrUkcSAK93ZlVyodgGNReVedtCzJIU2zWos+MNME2WtLXMuq16l4riWgSY40W8\nEEKIuSuZMdDyCQDcbs+M2nA6XdTV2bAaMSIJKbaFmA0ptmvQlqcfJzEygMPhmHVbAZeKZvficHro\n7u4qQnRCCCFKJZc3yegmqp7EarVSV1c3o3YURcHvr8dmxAjLnG0hZkWK7RoUHRnC7Q0Wpa16l4qi\nKDQubJViWwgh5rixPbbNXAKPxzujnUjG+Hz1qPlRIvEspik7kggxU1Js15hEIkEmlSDY2Dzptbmr\nryB39RUTXhNwawAYio2tW/9OLpcrSpxCCCGKbzRjgGmSz8TxeI4+hWQq/b/X68OiQi4TGy/ihRDT\nJ8V2jdm+fSumCc2tE2/7B0A8Xvg1gbHt/0YzOsPDQ+zYsb0YYQohhCiBZMZEMdKAgdvtPfqFU+j/\nfT4/mgqqLofbCDEbUmzXmJe3F4rhFSvXFKU9q6bgdagEFx0DwLZt24rSrhBCiOJLZgwUPYGqgMcz\nQbE9BV6vD4umoOpxObZdiFmQYrvG5E0L7voFrDvtjKK1We9S8becAMDu3a8VrV0hhBDFNZo1UfQE\nWhGKbZvNhtvlRNHjskhSiFmQYrvGhCIj2F1+1qwuzsg2QMCl4Wk+EUVRaG/fX7R2hRBCFFcyY6Lm\nk6gquN3uWbdX7/djzcdkZFuIWZATJGtMT083nvpmvM7J/2rVj140pTbrXSqarQ6P108iMfEcPyGE\nEJWTzBjYjAQOhxOLxXrU66ba/3u9PixmD+FYBnAVKUoh5hcptmtMX2833uBKXHWTb/ekfeziKbUZ\neHOR5Fn/cD7JSN+s4hNCCFE6oxkTzUji8fgmvG6q/b/X60fTFKKxKIZRj6rOfCtBIeYrmUZSQ5LJ\nJNGRCN7gIpy24v3Vju1I4q5vZnDwANlstmhtCyGEKJ5EWkfJj856vvYYn6+w/R+5KNGUTCURYiak\n2K4hr766g2QijssTwFbEzyx8DhVNVXD6mzEMkwMHBorXuBBCiKIZTRYWR870mPZDeTw+LKrsSCLE\nbEixXUOef/4vhIf7sduUWZ0adihVVfA7VKyewkE5fX0ylUQIIeaarG6Sz8ZR1dnvRDLGarXidrtQ\nc3FCCSm2hZgJKbZryBtv7AVg2aqTpnS9GYtixqJTurberYJjAQB9fT0zC1AIIUTJjG37N5U9tqfT\n/wfq/Sgysi3EjEmxXUN6erpRFJWly1ZO6Xr9mivRr7lyStcGXCqas5Genm5+/etHZxOmEEKIEigc\naJNE01Sczol3DplO/+/3+bCSYTiWKkaYQsw7UmzXkMHBA9gcHnwuW9HbDrg0LDY7hmGyf/++orcv\nhBBidgp7bCdwOt2oavHS+9ix7SMjI0VrU4j5ZMr/Gzdv3syFF15YyljELEUiIzg8AZxT2PZvusZ2\nJPH4A4RCw0VvXwgxd0n/Xx1G3zyq3Vuk+dpjvF4/FlUhlYyS1c2iti3EfDClYvvVV1/lxz/+cVEX\n3YniymQyLGhuYdW6/zOlPbana6zY9gUWEo/HZfs/IeYJ6f+rRyyZQTEy+H3FLbY9Hi+aJjuSCDFT\nkxbb8XicW265hS9+8YvliEfM0MBAPyZQ37QUV13xZwe56hTqLAr+hlZM02D37p1Ff4YQYm6R/r+6\nxGJxQCHgL26xbbFYcLvdqHqMSDJf1LaFmA8m3Y35pptu4tprr8XtdpcjHjFD/f39GAa4A81THtnW\nPvv5KbevKAr1Lo2mpSfh2/4n2WtbiHlA+v/qkkjGUBXweicvtqfT/wME/H56Q/0ysi3EDExYbP/k\nJz+hqaluisCNAAAgAElEQVSJd7/73bzwwguTNubzObBYqmfNpaIoBIMTr9ieqw6NPZEIoagqjQtb\nWbzQTcCtTd7IB86b1jPbFubpOf6dtLz0AFYrM3rvauk9rxbVGjdUd+zVbrr9P0gOKKcjxZ7PpbBa\nFJYsacbhcEzcwDT7/yWtTeza101Kz8/qPau197waSNyVN2Gx/etf/5p0Os2FF17I6OgoBw4c4JOf\n/CQ/+9nPjnh9NFpd2wIFgy5CoWSlw5iRQ2Pfu7eDnG5gcQbIJFOEMsWfX2k1cpi2IJlsnj179s3o\nvaul97xaVGvcUH2xNzYW59S+uWC6/T9IDiinI8Uei0bQFAvJZJ7R0eJ+XxaLA1Ux6e4ZJBSaeQFU\na+95NZC4y+doOWDCYvuBBx4Y//2WLVu44447JuxoReX8+c9/IJ1O47Q7sFlKs5Cp3qVirXPg8vjp\n7e0tyTOEEHOD9P/VR0/HcTo9JVnM6vX60VSFWGwE0zRlwawQ01A9n/eJCe3Zs5tcNluSbf/GBN7c\nkaS+oYW+Pim2hRBirsjkDNAT2J2l+XTF4/Fi0RT0TIxUTrb/E2I6plxsr1+/nocffriUsYgZMgyD\nWCyKy980rZ1IjJ2vYex8bcrX17sK88Cd/gV0dXWi6/q0YxVCVB/p/+e+cDQJZh63e2rF9nT7f03T\nCofl6HHCCVkkKcR0yMh2DWhv308+n8ddv2hae2znN95KfuOtU77eBEIJgx17Otm1exc7d++dQbRC\nCCGKLTQSA6a2EwlMv/8vtO0jm4rx6EtJXtiXIS0j3EJMiRTbNeC1114FwBNsw2krzV9pOmey+bkE\n/REd3dFK3oAfP/KidLZCCDEHRKKFYrvYB9qMSedM2kcc6Lkse/riPL07xebnEpIDhJgCKbZrwIED\n/dhsdhpaV5fk9EiA7V1Zwsk8DpuCNbASgK72PWzvkpMkhRCi0mKxQrEdLPKBNmO2d2VJ4UFRwMzE\nAQgn85IDhJgCKbZrgN3uoKV1Ca2rzyhZsT0YK5waZreqOJtWAzByoJOhuJwmJoQQlZZMxDFVOz6X\nrSTtD8byGBYPqgJKPj7+uuQAISYnxXYN6OvrRdOsONz1OEtwVDtAk7ewOLLOCnW+VhTVQizcR6Nn\nCofnCCGEKKnUaBzT4sZhLc2AS5NXw7S4UBQFy9uKbckBQkxu0uPaxdw3MNBPfWMziqpOa2Tb8o3/\nmvK1a9ts7OjOkkgbqKpKoPUEfD4va9tKM4oihBBiavL5PNl0Aot9Cao6tRwwnf4fxnKAjSHVhZ04\neh4WeDXJAUJMgRTbNaC/vw9/w3KAaW39pyxunfK1dqvCZWe5eWFfmr6RPJY1azEiu7CXaBRFCCHE\n1IyOJskbJnWOqe+xPZ3+H97KAZuH/KjDBzhpiZV3HeeUHCDEFMg0kiqXyWQIhUJ4As0AOG2l6/js\nVoV3rrZzfIuNxYtbSMRjJJPVdZSqEELUmng8hmGCw1WaA23G2K0Kq1qDOK06rf68FNpCTJEU21Vu\n69a/096+n5HoCDZNKdlR7WMURcHrULF7FgIwMNBX0ucJIYSYWCwWxTCY8oE2s9EY8AEwFIqU/FlC\n1Aoptqvczp2vkctlcXgapjWFZDZ8DhWLZwEAfX1SbAshRCVFY3FMwOt2l/xZCxvrARgZGSn5s4So\nFVJsV7k33iic4ljfsmba2/4ZTz6B8eQT036m36mi1DWQSCR4+eW/T/t+IYQQxTMSjWFqLtyOqS/D\nmmn/7/N60VSVeDw27XuFmK+k2K5yXV2dAPibj8M5zWI7v+le8pvunfYzvU4Vp6+Bvr5enn326Wnf\nL4QQonhi8RiGxT2tHDDT/l/TNKx2D6lkdNr3CjFfSbFd5fr7+7DbHWD1lncaic2Ow+liYKC/LM8U\nQghxuFwuRzqdxrS4y5YD7E4vuXQMwzDK8jwhqp0U21XO4XCwctVqTMySnR55KJ+j8ByPL0g4HC7L\nM4UQQhwuHo9hGCaGxVW2HOD1+jCNHJH4aFmeJ0S1k2K7ipmmiWmarHvH2UBpt/17O6+z8M/GF1hA\nMpkgnU6X5blCCCEOlkgUtv0zNXfZckC93w/AwKDsSCLEVEixXcUikTDZbJb6hsIe2+X6CNFhVbBp\nCv7GVkzTZNeunWV5rhBCiIPF43EME7B6ylZsNwQKxfZwROZtCzEVcoJkFRvbds9Tv5AITPsjROt9\nv5jRcxVFwedUWX3qewl3v0I+r8+oHSGEELMTj8cwFA2n3Y6iTD0HzLT/B1gQ9AIqEdn+T4gpkZHt\nKjZ2oIzLX9jzulwj2wA+p0pd/VI0TaO/X/baFkKISojHY6C5cdnL1//7XRZMi5tEXEa2hZgKKbar\n2N69r5PP53H4CsX2dLf+mw2fQ0VzLcA0TSm2hRCiAkzTJJGIo2sunGUcbNFUBYvdSyoZxTTNsj1X\niGolxXYV+93vfkN7+36UunrqLApWrXzFttehYq1z4PL45RRJIYSogHQ6ja7nyOIu204kYxwuH7qu\nk0rJjiRCTEaK7So2NDSIz+cjrStlnUIChWkkAPUNC+nv7y3rs4UQQhSmkJgm6Jqr7DnA4/WRNyAa\nlXnbQkxGiu0qFolECAaDJDPmjFah5++9h/y998zo2T5H4Z9OOqvz0ksvyuEGQghRZvF4jLxJ4fTI\naeaA2fT/AAG/HxOToZAU20JMRortKhWLxUilRlm4cBGj2ZkdaGM89STGU0/O6PljI9uZXJ7h4SE6\nOztm1I4QQoiZKRxoU9hje7o5YDb9P0BDvQdQGY5IsS3EZKTYrlIvv/wyAItb20hljbJ/hGi3Ktit\nCvVNSwHYseOVsj5fCCHmu3g8hma1g2qpwFRCC4bFzYhs/yfEpKTYrlK5XI7Fi1t5x4ZzgPLuRDLG\n61DxL1gJwJ49u8r+fCGEmM8SiRiWOg9Q/hzgc6qYFi+JeEx2JBFiElJsV6lQKITd4WTUcQyv9+do\nH9JJ58rb4fkcKp7m4wBob99f1mcLIcR8ls/niScSDKcdvN6fY1dvtqw5wGNXMK1ecrrO6GiybM8V\nohrJCZJVqrOrl3DCYEfIx1A8z47uLKmsyWVnubFbpzbCobS0zCoGn0PFEViK3eEgmUzMqi0hhBBT\nNxQaIRTP0563M5w0+NsbGV4f0KecA2bb/2uqgt3lJZ8yicWiuFzuWbUnRC2TYrtKbd3VidXhx1Dq\ngBw2C4STebZ3Zdmwom5KbVi++Z1ZxeB1qqiaxvrT30m93zOrtoQQQkzdS3uG0A2TUcOFTQOU6eWA\n2fb/AD6Pj+hgYfu/5ubZFe9C1LJJi+27776bRx55BEVROPHEE/mP//gPbDZbOWITE+ju6cUdaCaW\nMlAVBaetMCNoKJ4vWwxj2//VNzTT3/162Z4rhCgfyQFz04GhwsLEUMaJ2/HWjNCy5gCfh7CpEYmE\ny/ZMIarRhHO2//73v/PYY4/x8MMP8/jjjzM6OsrmzZvLFZs4inw+T+/+V7FY7YyMGngcCuqbf5ON\nHq1scYxt/+cNNBMOh0mn02V7thCi9CQHzF02M0HeUBnN28f7YihvDvA7NfIWL2HZ/k+ICU1YbJ96\n6qk88sgj2Gw2EokE4XAYn89XrtjEUezb9wbDg33k0jGyuon/zY426NJY21a+ESfvm6MpTt8CAPr7\n5dh2IWqJ5IC5y60m0TUXoFQ0BxhWL9FYjHxeL9tzhag2k+5GomkaDz74IO9+97sZGRnhvPPOK0dc\nYgKvvfYqCnDimpUsbbDwjuV1nLvGwaXTWBxZDIW9tlXqvM2AFNtC1CLJAXOPaZokEjF8Xi/Htdg4\ndamtIjnA51QxLD7yhkE0Gi3bc4WoNlPa+u+iiy5iy5YtnHPOOXzpS18qdUxiEnv37gHAvWAVKxbY\nuPQMNxtW1E27k9VvuwX9tltmFYvPoZA26ujoaOc3v3lsVm0JIeYmyQFzSyaTIZ3OkDRcnLPazgWn\nuKadA4rT/6uYVi95A6LRyKzaEqKWTbhAsr29nXg8zkknnQTARz7yEf71X//1qNf7fA4slurZultR\nFIJBV6XDmLbe3k4A3ItO4PilLhobZ7bl0vCbRfts3oOWpjzJzCpyuSw9PZ2TtlWt7zlUb+zVGjdU\nd+y1QHLA3DQwECerm1gcftau8BAM2qfdRjH6//p6E6cviDmqks0mp9RWtb7nUL2xS9yVN2Gx3dvb\ny8aNG3nooYdwOp08/vjjrF+//qjXR6OpogdYSsGgi1Co+jbj7+rqQVU1VOcignX6jL8HXTcAZvUe\nqPksiYwFh8NJZ2f3pG1V63sO1Rt7tcYN1Rd7Y2NtbYEpOWBu6uk5QCZnkLba8VlyhELT34GkGP0/\ngEVRyCsO+vsHp9RWtb7nUL2xS9zlc7QcMGGxffbZZ3PxxRdz8cUXY7FYWL16NV/72tdKEqCYura2\nJaiOelRVZUlDZbdKH1uY4/MHCIWGKxqLEKK4JAfMTfF4jIxuEvB7cdsr+0mC16EyonkZGQljmiaK\nUt5j44WoBpNWap/+9Kf59Kc/XY5YxBT19fVS17AGn0MdL3YrZXyv7eACDgz0ous6FouclSRErZAc\nMPeEIlFyZh0rFzgrHQo+h8qA4iWXG2B0NCknSQpxBFIVVZlUKkU4EqF5yQKWNFhmNYqgbNgw63i8\nbxb7y1efzEBvB319vbS1LZl1u0IIIY5sKBwFq4els/hksxj9PxR2JNE1L4ZeOElSim0hDifFdpUZ\nGOgnp5t4/AtnPYXE8rkvzDqesZHtVWvP5vVXniUUGpZiWwghSsQwDOLxBIojyOLAzHNAMfp/KEwj\nMS1e9ByMjERYtGhxUdoVopZUz7JxART2ss7q4Akuoi1Y+Z+VbBYFh03F5h472Ka/whEJIUTtSiTi\nZHSD+oAfm6Xy86N9DhVTc4BqZWREtv8T4kgqX62JafnTn/7A0NAAi5r8uOrmxs9KPodKylgIQH9/\nb4WjEUKI2tU3FCVvmLQtrK90KEBhGgmKgqXOJ3ttC3EUc6NaE1O2/ZVXSCVjnHbSikqHMs7nUMgo\nbtxuN319coqkEEKUSmd/GIBj2horHEmBu05BUxVMq5dEIkEul6t0SELMOVJsV5nu3n6sNgcnLA1U\nOpRxPqdKOmfQ0LCA/fvfqHQ4QghRsw6ERlBUjVWt/kqHAoCqKnjtKjnNCxQWSQohDibFdpUJhYZx\neOppa7DOuq3c1VeQu/qKWbfje3NHkvbODv7yl2dm3Z4QQojDGYZJLBrF6fKiabNL38Xq/wG8ToWU\nOVZsy1QSIQ4lxXYVyeVyjCbjBBoWYC3Gwph4vPBrlsZ2JAk2LiKXy9LXJ/O2hRCi2PpHdMxcnGB9\nEUa1i9T/QyEHxA03iqIQiYSL0qYQtUSK7Sry2t5uNKudlSuPqXQoB/G+WWw3NC8F4JVXtlcwGiGE\nqE37emNg5lnUNDemkIzxOVTyporT7ZNiW4gjkGK7iuzpHMYbXMSHPvD+SodykLFpJA2LVgKwe/eu\nSoYjhBA1qXMggqYoLGqcGzuRjBk73KzOWU8sNkI+n69wRELMLVJsV5Gd+3pQFTh2xdw6NMCqKTht\nKsGWYwFkkaQQQhRZVjcJRUawWRS83rk1su1/s9hW7X4Mw5RFkkIcQvbZrhJ5w6S9sxebRaGlpaUo\nbaofvago7UChs01bjqG1tY1gMFi0doUQQkBPWIdcDLtNw+2e/ZHoxez/x9btGNbCDwGRSJhAQPKA\nEGOk2K4SA9E8kVA/HrcTn684oxraxy4uSjtQ6GzDSZWVK48hFivOohshhBAFnSEdRY8TWOBDUWa/\nQL6Y/b/rzb22M3hkkaQQRyDTSKpE57BOIjLAksWLitLRFpvXqZLOmTQtXCSnSAohRJF1DOWwmYni\n7ERSZIqi4HOoxDIKPp+PSCRU6ZCEmFOk2J7j0jmTF/ZlePTvo7yx7Q+EhgcrHdIR+RyFHwDqg80M\nDw+RzWYrHJEQQlS/dM7k6d0pXtgzgpnP43B5Kx3SEXkdKrGUgd8fkEWSQhxCiu05LJ0z2fxcgj++\nluKV17vQsynieS/pnFnp0A4ztv2fJ9CMacKBAwMVjkgIIarbWA54fOsoqWSUrG7yt07bnMwBPqdC\nLGXi9wdkkaQQh5Biew7b3pUlnMwTSxskBnYCCs7gErZ3FWfU2IxFMWPRorQ1tv2fWuchFouybdu2\norQrhBDz1VgOiKYMnGoSVYWo7ipKDihm/w+FdTuGaWJ1FrYllHnbQrxFiu05bDBW+BhuNGuSPLAb\nRYGGxasZihfn4zn9mivRr7myKG2NrUbXzToGBvr529+eLUq7QggxX43lgFTWxKslUBQVU3MWJQcU\ns/+HtwZcTKsXRYGRESm2hRgjxfYc1uTVAMjmTNLh/YXXlpxAo0erZFhHpBsQThh0mSsxTGhv76h0\nSEIIUdXGckBGN3GqSQyLGxR1TuYAu0WhN6zz2+1ZcqqH4ZAU20KMkWJ7DlvbZiPg0sjoJhZrHS5f\nI8esXM3aNlulQzvI2LzC3ohOX8KFYrGzc1/PnJxXKIQQ1WJtmw2/UyWbM3GQwLR4CLq0OZkDfrs9\nRcewzu7+LAMpD/t7Q4xm9EqHJsScIMX2HGa3Klx2lpu2oAWXLc/ak0/l8nO82K1za+u/sXmFdRaF\nTM7E7vITGwkVbW65EELMR3arwoXrXCwP5HBadVa1Brn0LPeczAHJjIGqKKRzJqbVh57Ps2X3UKVD\nE2JOkGJ7jrNbFQJuDWvmACce0zbnOll4a16hs05BN0zsnkayqQQDI1JsCyHEbKR1k0XuJF6Hyskr\nG+ZuDlAKh9uMjBrolsIiycGh4QpHJsTcICdIznGZXGELpWw6weLFi4vatvbZzxelnSavxq4+WODT\n6AnnCaw5HyM3isOMAZ6iPEMIIeajWMpA1WNomoLfX1+0dovV/8NbOWBRvcae/hwDo26WKRpWPVK0\nZwhRzaTYnuNiaYNYuB9NgZaW1qK2rZ5+ZlHaWdtmY0d3YSrJQp/GsKMFVVEIaENAS1GeIYQQ81Es\nZaDmYtQ5rDidrqK1W6z+H97KAaYJDluenhGDVfV+bIbstS0ESLE958VGDYa6d2HoWZqbmysdzhGN\nzS3f3pVleaNOamgxr7ysEBrsB06udHhCCFG1CiPbcer9fhRl7k0hgYNzgMeusqc/S2tzI6OhN8hm\nM9hsdZUOUYiKkjnbc1wsbbB/+x/o7enA7Z67UzLsVoUNK+q4aL2LD5+1nGzeZM++7kqHJYQQVW0k\nmcNiJPD7/ZUOZUJjOeCqd3s4rsVGb9ILmITDoUqHJkTFSbE9x8VSJrFQD1arlWXLllc6nCl518kL\nsNocvLxbim0hhJiNeCyGppj4fMWbr11KmlooumOGj1TWJByWRZJCSLE9x8VGDUajQ/h8PlS1uH9d\nxs7XMHa+VtQ2AXxOjTpN5+9/+xPDRTrtUggh5hvTNEkmRtBUpegj26Xq/wFOWGzD5XQxqtsIhaTY\nFkKK7TluZFQnnYzQ1LSg6G3nN95KfuOtRW8XwGE1GRnq5IV9mZK0L4QQtS6ZMTGzMTQVfL7iFtul\n7P8tmsL6lXbSqp+egWFMUw44E/PbpMX2L3/5Sz74wQ9y4YUX8ulPf5qenp5yxCXe1NXZiZHXaW1t\nq3Qo09K2uAVTz/LS7n4iSRndFqJaSQ6onHjaQMlFcTicWK1z69TIyZzUasPiCBBNpEkk4pUOR4iK\nmrDY3rVrFz/60Y+4//77eeSRR3jPe97DTTfdVK7Y5r28YRKOxmhqXsJ73vPeSoczLUuWLEVVYKDj\nVbbsl9FtIaqR5IDKio4W9tj2Vsl87bezWRSOXdpELm+ys32w0uEIUVETFtsul4vbbrsNj6ewC8aJ\nJ55If39/WQIThS2fEpE+7PY6jj/+xEqHMy1r1hyLooAR2smrPTliKaPSIQkhpklyQGWFYykUI0ND\nYG7vRHI0649diKoovLb/gEwlEfPahMV2W1sbZ5xxBgC5XI7vfve7nH/++WUJTBR2IokO96CpsGTJ\nkkqHMy2nnbYBu92B1xInb5i8KKPbQlQdyQGVFQoXTmBsCgYqHMnMeFx1+H1e4tEQ3WGZTijmrykd\najMyMsJ1112Hy+Xic5/7XKljEm+KpQyiQ93U19fj8XiL3r7lG/9V9DbHrFy5itWr1+B319EWsPCb\nbaOEk3lOXK6w1Gdit87NwxmEEIeTHFAZsdgIqqJQX1/8ke1S9v9vt7SlkfBr+7nvuRFOaHWyqlVy\ngJh/Ji22Ozo6uOqqqzj33HO58cYbJzzByudzYLFUzwYniqIQDBbv+NuiG4BkpI8Nx684LM6ixB5c\nM7v7J7Fy5XL6+nupT6t0RQzMfToHkkmCbo0r3u3HbquefytQBf9ejqJa44bqjr1WSA6onFwmgc2m\nsXRp82Fbv8469hL3/2OWLFnMS6/uY3dXGEOto3NEckC5SdyVN2GxPTQ0xOWXX85VV13FZZddNmlj\n0WiqaIGVQzDoIhRKVjqMo3qjY4j+/a9gO7ntsDjneuwACxa08Jv//SNt70vjtJp0DmZY1mSlezDF\nH7fBhhXVdYRvNbznR1KtcUP1xd7YOHdPeZ0JyQGVlYiGcNV5iEQOf1/neuxj9occKJi4jBDtA/Wc\nvNwlOaDMJO7yOVoOmLDY3rx5MyMjIzz00EM8+OCDADgcDn72s58VP0JxmFd3bGU0HsIwqnNxYVvb\nElKZDMnoIAFXI9HRHKmsiQIMyWE3Qsx5kgMqJ5XRMbMx3I1LKx3KrIzkXKBaCVhG2Jd5a5Gk5AAx\nn0xYbF933XVcd9115YpFHGLvru2gwLHHHl/pUGakrW0JVk1hZKgTd0sTAMmMgdsKjR6twtEJISYj\nOaBy+gZHAAO/v/q2/Xu7BT4L+20BPLkIqbSB8eauJJIDxHxSXROm5hHTNOnp2I0CnHrqO0ryDOPJ\nJzCefKIkbQM4nU4GevbT/tKvcdYV5nkmMwZBl8batuo6oEEIIcppcDgEQGMwWJL2S93/j1nbZsPh\nbsCqZKkzk4xmTMkBYt6RYnuOSmZMIgc60DSN1atLs5Alv+le8pvuLUnbUBiRN4w8llQn5x3voKXe\nwvImG5ee5ZaV6EIIMYHhcBhQWNBQmm3/St3/j7FbFT5w+mI8doXFrignttVJDhDzzpS2/hPlF0sZ\npJNR/PUNWCzV+ddkt9vxen0M9PeyYaWd/UM6WDTpZIUQYhLxaATT4ibgqf4R4OamBvxOC4stURYF\nrNitlY5IiPKSke05KpLUsbu8/J8LPlrpUGZl4cJmhoeHgcIcvXAiTy4vJ4kJIcTRmKbJaHIEtc5P\nXQ0MTmiahUAgQF0+woGoXulwhCg7KbbnqO6+QfRchpXLl1Y6lFlpa1tCNpuhu7uTBo+KaUJIVqEL\nIcRRxeMxdF2nzlXdiyPfrqGhCYuRYDCUqHQoQpSdFNtz1P72DgCOWbG0onHM1tlnn0NT0wL6+vpo\neHP1+VC8OrcyFEKIcohEwuQN8HprqdhuwKIqxEaGyeTk000xv0ixPUd1dnWiKQpL2paU7BnW+36B\n9b5flKx9gDPOOBu/v56hoSGC7sI/t+GEjGwLIcTRhMJhDNOkvoTb/pWj/3+7YLARiwakQ5IDxLwj\nxfYc1dPdgcWi0dKyuNKhzEpb2xIUBTo62nHYVLxOlWEZ2RZCiKMaDoUwNSd+r73SoRSN3e7A4/Gi\nZIYlB4h5R4rtOcg0TbY9+xhmPovVWt3Lth0OBwsXLqK9fR8AjV4LwzJnWwghjsg0TcKRCIbVj9de\n/Ysj3655QRNkIgxGs5UORYiykmJ7DkqkckSHe3E4nZUOpSiWLVtOe/t+TNOkyasRTxuksjKyIYQQ\nh0omE2SzWQyrD5+ztlL0gqYmLKrJgaGhSociRFnV1v/kGvHCS9swjDxLl62sdChFsWhRCwcODNDV\n1UWTr7BneCghxbYQQhwqHA6RN8Cw+vHYaytFNzUtwKIpjISl2BbzS239T64Rf9vyNwBOPHFtSZ+T\nv/ce8vfeU9JnAGSzGXp6unnmmT/S5C3sSCJTSYQQ4nBjxbZaV4+rrnTTSMrV/7+dy+XG6XKTHx0k\nmZEBFzF/SLE9B7326isAnHnGGSV9jvHUkxhPPVnSZwC84x0bANi+fRuNXgsKiiyQEUKIIwiHhzEt\nLrwuO4pSumK7XP3/oRYsWIiajXBgROZti/lDiu05KJ3J4fQEeMcpJ1U6lKJYt+40VFVj797XsVoU\n6l0qQzKyLYQQBzEMg5GRCLq1Ho+jthZHjlnSuggw6OqXqSRi/pBiew5KpTMsO+Fs7Dat0qEUhc1m\nIxAI0NPTDUCDR2UobmCacrCBEEKMiUZHyOd1Moofn6M20/Mxy1tQUBg8MFDpUIQom9r831zFMpkM\nQwf6WLR4WaVDKaqWlsWEw2FyuRwNHo10ziCZkWJbCCHGjM3X1i1+vDVabPt9Xix1TqIRGdkW84el\n0gGIg3V1daLnDVrblpf8WUpLS8mfMebDH/4IiUSC3t5eGtw+AIbiedw1ttpeCCFmKhwexkTBsHpL\nXmyXs/8/lNvXxMhQJ7lcrurPkhBiKqTSmWP27tuHYZosXVb6Ytvyze9g+eZ3Sv4cgLVrT0HTNF5/\n/XUaPGM7ksgiSSGEGBMOh7A5/KBoJS+2y9n/H6qhoQnTNOjqk9FtMT9IsT3HvPDiS5iGwepVtbHH\n9piVK1cBsGfPHupdKpqqyPZ/QgjxplwuRywWRXMEAGp2zjZA66KFAHT1yrxtMT/INJI55vHHfsVo\nLEFTwFPpUIrK76+nsbGR3bt3o6kKAZfKsBxsI4QQAEQiYQBMWz1KVsFdY0e1v11LkxdTczI4JMW2\nmB9q90fnKqTrOqGhA3gbFuOrwW2fVq1azZ49ezBNkwaPxnA8LzuSCCEEEAoVplRkVT8eh4Km1l4O\nGONzKGBvJB4NkcvlKh2OECUnxfYc8sILfyWfz9O4+Fg8NfgRosfjYffu3ezc+SqNHpVc3iSakmJb\nCFKwk+EAACAASURBVCGGhwepq6sjnnfirfGF44qi4KlvRs+bDA7K6LaofbX9P7rKPP/8s5hA6+rT\ncNpKP6qh33YL+m23lPw5Y4LBRqLRKH/+8x/ftkhS5m0LIeY30zQJhYYJBhtJpM2yDLaUu/8/VFPj\nAvQ89Pf3VSwGIcpFiu05ZPv2bZjAiaeeW9JjeseYu3Zh7tpV8ueM+Yd/eBcAW7e+TOObxfZQTIpt\nIcT8Fo2OkMvl8NU3ks2bZVkcWe7+/1BN9Y7/v717j4+qvvM//jrnzH1yI5MrgXBHBLkpioKI9VZU\nQIuw2Irb6q/dh91t1XX7sLR2Hw9tt1L76O7WfYj7+3XbtaW01VXXVbSt0oi6IHIRCddwCeQCuUyS\nSTLJzGRu5/z+CImGBAiSmTOTfJ599PGQnJmTd5I5n893znzP+RK3juJUXb1pGYRIFhlsp5CsrCxK\nJs6mpLjI7CgJMWHCRFwuF8eOHSHLqWDTFLn9nxBixOuZr2135wGQNQyv2TlbXqZK3J5PR2cHHR0d\nZscRIqFksJ0idF2ntraGoklXke0avoV27Nix1NXV9V4k2dQpZ7aFECNbc3MTmqahW7sX/Bquq0d+\nVn6mhm4vIBaHxkaZSiKGt+F/RKeJ2toaAsEQo4onD+uLY+bOnYvVaqWmppq8TBVfp05cl4skhRAj\nV3Ozl9zcPDrC3f8eCYNtt13B5soljoXGRplKIoa34X9Ep4mjRyuI6+ApnkyWKzl/FmX+fJT585Py\nvXp87Wtfo6RkDNXVVeRlauiGgS8gU0mEECNTMBggGAySl5ePP9RdC5Mx2Daj/vf5/opCQZaFmC0f\nr7eReFw+5RTDlyxqkyIOHTqIgYJn9NSkndm2PPxYUr7PZ82cOROAgwcPcMeMRUD3HUl6LpgUQoiR\npKmpEYD8/AKOn9Jx2lRslsRPJTSj/p8tL1OjTs0nGm2gpaWJgoLheb2SEIMe1a1du5YNGzYkMsuI\n9tZbm3C4srDanWQn6cy2GbKysigtHcfBg/vJy+j+OeUiSSFSm9T/xGlsbEBVVTyefPyh5NyJJFV0\nXyRZQEyHurrTZscRImEueFRXV1fz4IMP8vbbbycjz4jU1NTEkSMV6IqGqihk2IfvBZIAM2ZcQWXl\nMTQjjNOmyr22hUhRUv8TyzC6F3XxePKwWCy0h/QRcSeSHnmZGobmxOYaRV1drawoLIatCw62X3rp\nJVasWMGSJUuSkWdEeuedPwEG4y67mkyHgjqMl+kFmD79CmKxOAcO7CM/Q5Uz20KkKKn/idXZ2UEo\nFKKgoIho3CAU0Yf1BfJn85z5dFPLKCYQCNDe3mZyIiES44JH9eOPP87SpUuTkWXE2rbtfwEYP/Om\nEXEVenFxMcePH2Pjxg3kZ2m0BXUiMTmjIUSqkfqfWD1LlRcUFH16ceQwnkZ4NqdNJdOhErYWA1BX\nd8rkREIkxpBeIJmd7cRiSZ9CoSgKHo/b7BhUVBzE7XaTN34Wowscg8o0FNlbvrIGAM/vN17Sfi6G\noijceOMC7HYbhw/v5+/HuDncaKBb7XhyrUnL8XmkyuvlYqVrbkjv7COR9ICL88knLTiddqZMKeWE\nN4bLGaa02I3HY7/gcy81uxn1H/rnHl8cw9tupWRUNs3N9Xg81yY1z8Uw+/XyeUlu8w3pYLu9PTSU\nu0s4j8dNS0vA1AzxeJzmFh+5heP5+HgQixHndKmKw3r+qSRDkT3q6/7ILpm/A4/HTWtriDFjSjl5\n8iRarItgKMKxmk4chi1pOT6PVHi9fB7pmhvSL3t+fqbZEUwlPWDwDMOgpuYUHk8+9d4gf9wVYO+J\nEJPzIEtzJrwHmFH/oX9uhxKl0RfmiuJiTlRWUFvrxeVKzQFWutWjHpI7ec7VA9LnFMQwdeDwETRn\nHqXXfY2mjjgV9VE2buukKzq8p1XMmjWbSCTCwfKPOO2L8ebeIDsqw8P+5xZCCIDWVh+RSIRRnkI2\nbuvkw2NdNHXE+bgqPCJ6QI8sh8ppX4zy5lwCYZ2qmlqzIwkx5GSwbbI3391JTDfIKOq+/7TdouAL\nxCmviZicLLFuu+12AP7vb/6b+vY4FXVR3q8IjagmI4QYuerru29154vn4wvECYQNNFXBqo6MHgDQ\nFTV4vyJEVXOMA95M/BEbH3x8THqAGHYGPY1k3bp1icwxYu0r34PDnUO7Ohq7+unKYU3D/HZ4t976\nRQqKxxHoipJjUwmEdTDobTLzJ114zqIQIjmk/g+9urpTZGRk0hZ1EegK0xqIU5RtgTOzR4Z7DwAo\nr4kQiYGCQiACcecYooHj7DrqY9EMj9nxhBgysoKkiSKRCA1VB8kafTVdUYNJBVbUM581JGNFRXXF\nyoR/j3OxWCxcNvdGDh3Yy+UOg9ZA97LtuRnqiGgyQoiRKxQK0tbWytSp0+jK0Kj1xVAVhTG5n9b9\nRPcAM+t/D68/jqpCllOhuTNOOHsMlsBxTp+qAhlsi2FEppGYaN++T9CMCPaCmditCoXZ3cXV49aY\nXZr4iwW1e1ah3bMq4d/nXObMuYpoOIA1cBKrplDbEgMjOW80hBDCLPX1dQAUFZVQnK0RjBgUZmvY\nz1wUmYweYHb9ByjI6q71JbkWYnGDuk4XhiUTvUMWuBHDiwy2TfTLX/6CyhOVXD51Mndd6WbGGBuL\npzm5b2HGBa9EHw6W33INFlXBW7WX0aM0OsM6ukFS3mgIIYRZ6utPYbVayMvLZ3dVmLnjbKye72Z6\nycjqAbNLbeS6NUa5uu+3fbpdx5o1Fk3vpLXVZ3Y8IYaMTCMx0e7du9BsLiZPuYx7r3WjDfOVI882\nZeJ4powrAN9+brp8DduOhcnP0rDLq1IIMUxFo1EaGuopKRlLU4fB8cYoV42384XpTrOjJZ3DqrBm\nYQblNRE8mSr7aiJMnTQB39GjnDx5nNxcmUoihgc5s22S48eP0ehtpHD8bBZOdY24gTZ037B+6pSp\n7N9VxjWj21gxz0VLZ5yTTTGzowkhRELU1Z1C13XGji1l27EwFlXh2skj94Jwh1Vh/iQ7D96QyVUT\nHBzy2igoLKampopoNGp2PCGGhAy2TfL7P2xE12HWtUuYMcaclRMNfzuGv92U791j/PjxtLb6eOml\n33PleDsOq8KHx8IyX08IMSydOlWNxWIBRyGV3ihzSm1kOJLfilOh/n+WoigsmGInFNGJuiYQi8Wo\nqTlpdiwhhoQMtk3y9uZ3UTQLX1+zyrSz2rFv/g2xb/6NKd+7x8qV96KqGps3v43dqjBvgp26thhV\nzXJ2WwgxvEQiERoa6hk9egwfVsawqArXmHSb01So/2ebVGChIEujwpeLw+misvKYnHgRw4IMtk0Q\n6goTiMLl827lqsnZZscxVU5ODhMnTuLo0QqCwaCc3RZCDFt1dbXouo4jZwwnm6LMGWfOWe1U1X12\n20EwaqBljae9vY3mZq/ZsYS4ZHKUm+DlP31IPK6zetUq1BE4V/tsixd/gWg0yuuvv4rDqnDleDun\nW2NUt8j9toUQw0dV1QnsdjsVvlFYNYVrJo7cudrnMqXQQn6mxsnQGFRNo6LioNmRhLhkMthOkq6o\nwY7KMK9/HOC3r76NzWpj9Z2LzY6VEu6//2s4HE52794FwFXjbdgtCtuPdZmcTAghhkZzaztVpxrw\nxkfz4fEI00usclZ7AD1ntwMxK7ac8TQ01MttAEXakyM9CbqiBhu3dfJ+RYiyfW2cOPQR+RPmYXW4\nzY6WEiZMmMiXvnQPJ05UEolEcNpUrhxvp9YXo6ZF5m4LIdJbV9Tg1S2H6OjS2dlYSK0vzvHGGF1R\nmSo3kKlFFvIyNWoj41EURc5ui7Qng+0kKK+J4AvE0XU4WL4d4hEmzlpMeU3E1Fzatx9B+/Yjpmbo\ncfPNt9LZ2cnOnR8BcNUEGyqwcVsHmz4JsqMyLI1JCJGW9lZ1EW6rJqyOojHkpihbIxDWTe0BqVT/\nz6YoCtdNttMWsdOmjOHA0SreK6+XHiDSlgy2k8Dr75573Ngep+qD9RDrZMzUq2nqMHdOsnrtAtRr\nF5iaocfChTdgs9koK9sMgKooNHfq7KgMs+N4F+9XhNi4rVOKrRAi7dTUVqHoYWrCY9BUhZJR3cuU\nm9kDUqn+D2Scx0JlY4wtdeMIRRXKy/fw260d0gNEWpLBdhIUZGnEdag4UkGg8RA5uUVYrHbyMzWz\no6UMl8vFggXXs2PHdvz+dsprImQ6FDRV6Z5KYoAvEDf90wAhhLgYhmEQbztO1HBQ01XE6BwNq6X7\nwnjpAee2/1SU3AyVzpgdnzoBNdJMu69OeoBISzLYToLZpTYCXTrV2/4fCjD31gfxuDVml9rMjpZS\n7rhjKYFAgH//9+fw+uNYLQqjR2m0h3Rqfd1zt83+NEAIIS6G19uAGmvHy3g0TWP0mbPa0gPOz+uP\nk5ep4bar7PePJ4Ydm38/3vaw2dGEuGgy2E6SLEeczqoPyBnl4f98+S7uW5iBwyq3/fus2bPn0tbW\nyoYNL5Dr6v6ocGyuhRyXRk1LDF+nLmeChBBpwzAMDh8+gI6FrPwJ3DnbyaxSO4unOaUHXEBBloai\nwLTRVlAtVISmQSwIbRVmRxPioslgOwk+Phlm559/CbEQ9666h+umOFOiyOqHDqIfSp2rvFVV5a67\nvkRnZwf7tmwg191dbC8rtuC0qpzyxXrnOgohRKpraKinqamRTtsEMt0O7luQydI5LuZPspveA1Kt\n/p9tdqmNXLeGw6owrdhKY7yIVr2AYPMxWlqazY4nxEWRwXaCBSM6u0500XaqnJKSEh555B/MjtQr\n/uMfEv/xD82O0ccjj/wDFouV3274FV+5zsXiad1ngh5cnMHccTb+WB4kGNHNjimEEOdlGAYHDnxC\nzLDRqk3k2kl27ClwkqVHKtb/z3JYFdYszGDxNCfXTXGwYp4bW8FsAlGNjz7aSiQic7dF+pDBdoLt\nrAxTdXQPUX8d3/7235OTk2N2pJTm8eRx0023cPp0LW+89iLzJ9lZOsfFbTNd3HWVm/agwaZPgui6\nXJEuhEhdVVUnaGtrpcM+hQynnTnjZH72xXJYld4ecP/CDOZOysHnmENTawcff/wRhiF9QKQHGWwn\nUGeXzp6qMMc//B05WW6WL7/b7Ehp4amnfozT6eKNN17rU0wnF1pZdJmd6uYYWw7L6pJCiNTU1RVi\n3749GJZM2rRSrptix6qlzlntdKQoCrfMcFJcPIY2bQKVVTUcOrTf7FhCDIoMthNoR2WY4/s+oLPx\nGF/+8hoyMjLNjpQWRo8uYe3aH9DU1MSOHdv7bJs/yc7lxTZ2VHbxh+2dsuCNECLllJfvIRwJ0+qY\nSbbLyqyxclZ7KFg0hbuudGHLvwJfPI+PPi7nv8oOSQ8QKU8G2wniD+lsP+yl4oMXGF1cwJe+tNLs\nSGll1ap7yc3NZf36ZwmHP73Vk6Io3DjdwcmmGP+1I8DOSlnwRgiROqqqTlBTU4UrdwLtei4LpjjQ\nVDmrPVQyHCp3znaz0z+L2g43DSd2s3XPUekBIqXJYDtBPjzWxVu/eIzqil2sWfNV7Ha72ZH6sTzz\nMyzP/MzsGANyu9089NC3aGho4Pe//22fbYdORyn1WNBUOFQXpTWgy4I3QgjTtbe3sWfPTjIzs6nR\nLyfXrTGjxGp2rAGlcv2/kAa/TvEoO/sj82iNZmBt20O797j0AJGyZLA9xLqiBn85GOTnv3yR6kNb\nmTBxEkuW3Gl2rAEpY8aijBlrdoxzuvHGm7jyyqt48cWNfPLJx71f9/rj2K0KM0psaCocPh3llC9G\nkz9mYlohxEgWCgX54H+30Bk2qIjN4UiDzryJNtQUPaud6vX/fLz+OPlZGuMK3OyLXENTOButbR/H\nD+8iHpeFz0TqkcH2EOqKGmzc1skvNx1g3+tPoVnt3Py1Z4nEU7PYpjpFUfjOd75HMBjivvv+itOn\na4HuxQ4A3A6F2WNtZLkUqptjVNRHCcvHiEKIJAuHw7z3/ruc8nbSYL2KrSesNHXo7JK5xAnR0wOK\ncjQuH+PiiHENteFiOppOsGXL27S1tZqcUIi+ZLA9hLYf62LH4Ua2vfAgRqyLm77yJFrOePlo6xLk\n5+fzjW88RCDQycqVd9HW1ta72AGA1dJ9hnvaaBuRWPebnbrWGDsqw3LxpBAi4YLBIO+99w6Nza00\n22dzyDeKaNyg1GOhNahL/U+Az/aALKfKrFInAfdcOpwzqa5v4+13/simd3fy+q426QEiJVjMDpCO\nuqIG5TURvP44BZkq2S6VQ3VRNu1qZddrP8WIhph5433MWLACgKYO+VjrUvz1Xz/AwYMHePHFjdx9\n9x28+eY7rFmYQXlNhKaOOPmZGrNLbVQ1RXnzkyCPv+ijJNeCJ0PlcB3sr42w5szSyH3+dlndzzN7\nJTchRPr4bA3JoJX2mh34AyGOxedwwJePqugU51jIdXefy5L6P/R6Frz5bA+4YoyVD49lsPtYAaca\n95LTfhhFPU6lezL7qiZy/w0e6QHCNDLYvkg9U0W8/hhev05De3chnZ4XpGbzUxi+o9y46nFm3bC6\n9zn5mam5xLj+zp8BUG9bYnKSC3vmmX+mo8PPW2+9wZIlX2DTpreZPym3z2OmjbZR3RJj98kIFXUR\nCrI0Mh0q7UGdHZVdXDPRzu8+DOALdP/Nzh6ICyHE+fTUf19nFL3tOJaOw0QMK1rBNegWD+PydAqz\nNKyWT+uJ1P/E6Fnw5rNuvcJJc0c2/1U9jxy1mSmOYzjbDxPoOMIfo+O5bu403jxkpzXYvQqx9ACR\nLDLYvkifVIfZVxvmlC9OXDdwWlVU3x4+eGs9aqyD2/7qEYpn3Nb7eI+7+51zKor/5gUgfYrt88//\nB9///ijef/9d/vZvv8Fjjz3O1VfP7/OYSAxmldo43hilya/j9XcPrBv9cd7aG6KhLYbTppLpVPBk\naL13MTm7aAshxNnKayI0NTUQb9mHFuvAZ4yi0TqXO8Z5uH2Wk99v//TNPEj9N0OGQ2XmWCtHG/LZ\nEcglS2mlSK0mevIENTUn6Iy7CFlL0DLGkJGRJT1AJMUFB9tlZWX8/Oc/JxqNMnfuXJ566ilsttQs\nHolW1xrj5R0BqptjZDlV1KYd7H3rn4nHIhQVF/Ozdf/KZdPn9JveIO+Yh87TT/+U3bt38rOf/YTv\nf/9xFi1azFe/+iDjxo0Hui+csWgwbbQVXYdQxCAY0ZlSaKXWFyMaB78/TkO7wUk1Rl6mxuic7kIr\nHy8K0Z/0ADAMg4aGenZt/wSlrQmw0mqfidszgcvsKnargsuuDji9TWpIchVkaWQ4VK4cbyMaMwhF\nighGCnF7orR4q4n7a8mIH4Wuo4RaMog7ijjpLuWaiWMJx5AeIBJCMT67HvZZWlpaWL58Oa+88grF\nxcU89dRTjBo1iocffnjAxzc1dSQs6PkGQp93mzvTybt72y74vByXij+kc+h0lOOVlRzb8Qp1+/+E\n31eHoijMWLiK7z/xJDfO9CTs5z+bx+OmpSVwSfuI3tc91cX6u5eGItKgDEVugI4OP//5n//Bn/70\nJvG4jsvl5vrrF3H3PV/m/RpPv7NL951pgu9XhNB1aA3oNPrjtAV0xuVpzBxr45Qvjs2iYDnzqW+u\nW+sz17uqXeVYbWDIXn/J2lZSlEFLSyAlslzstilj3YzP1i9pn8l8E5WfP7xWiU2VHpCo19n5jum9\n1WHqGpuxRRsJt1XT1NpJZ0SlPj4Od95kMtzO3nyLpzmTfmb0UmupGfUfhq4HnEvvVJ9z9YDDQWJd\n7YT9p1FDDdiMDuwWhUy3g0486LZcdHsehiWT3AxLWvWAc33d43FzuqEzJTJezLahqP8X2jbUztUD\nzjvYfv3119m8eTPPPfccABUVFXzrW9/iL3/5y4CPT2ShPfvg6RkIAZ9722t7I9Q2hkDpv+0/3qmj\n3ttCg7eZypPVdPlO4tFPcmj3X4jGdFSLlTGXXcuC5Y8wfcYc7kvynK+RPtjucfr0KV5++SXWr3+W\nSCQMKOTl5eMpGs+0K7/A1Vdfx7VXFFNSVIBqdfZ7PbhsKtNLrGw+EOLQ6QiaqpDtUnHZFFw2hZtn\nOFk41cFLHwXo0jWCoe47CwzF6y9Z2x5ZVkCLL5gSWS52m8tpw6HGP/c+V17j5pWdgQGfk4jjdbgN\ntlOhBySq/m/c1tl9TAe6UIwusm0Rbr4M/P42dhxuJBL0ocQjROLQEc8gK38CV86YzFEvtJ2Z8wuf\nDuSSfQZUBtvn1jO4OvsThn6vJQM0PchoexMna09hdPmwKHE0FVAt6JYsxhXncsUED9tOWoioboJR\nCyjW3oE4pEb9PF+t8+S6eHaT1/SMya7/F9qWzB5w3sH2L37xC7xeLz/4wQ8AaG1t5YYbbmD//v0D\nPj5Rg+0dlWHerwix+dX1nD70PmBgGAauM59k2vKvQLPawQADAwwDa7ieNm81wbBO949oYKCQUzqP\nLKeCrhu0h3RisRhBbwWRjgaMeATFiKHHo6DacOaUENdBVcBht3D5lIkUZNu4ct58Jl19N4G407SP\nCmWw3Zff7+eVV15i8+Y/c/jwIdraWikqKiYzM6v3MXa7nVhcp6q6GlWz4XDYcdktWCwWPONm0xp2\nEYoqROIquqIR6Wgg7q9BUyASM7BYuu8ukDdxPqD03uvV648TaD5JV4e393u5HRpWuwuL54p+WY22\nCsJBP53hTw89u9tDZuFkCs/ss/HMXPOWqt0Yevd/Z9i7X2O6azSuUWP67DPPFefUsY/77BMgs3AK\nk0qLiUZjvfuMhNrx11f02Wdn2CBnzCwstk/P1hVmafh99dTWnOz3M8yYs6BPToDOpu7fwWf3abG5\nyBkzs88+AY5W7Cfa1bdeFOTnk18ypc8+LZpKY+VO3Fa9d58ArlElvb+Dnn3W+0L4aj7ps0+LCs78\nKdjdudidWSz64n04XM6EnYkcboPtVOgBPfU/Gumiq6kCiKEYUJDVfTx6/bEz50t6XvsG+ZkqGAbN\nnToKRvf/DMCIk+0wMPQYgVAUTYmjGlEUQFG6L7pTFAjEbISVbJpjHpqieThdmdx/fSY3z3CecyCX\nbDLY/nzO9ff7790BtlYE6fC3Yon5cNOGS+kk0xJAUyEaN7CoCoZhYKCiKxbcThsoVnwhBQMNUDDO\n/D8/ywooeP16vww9vaNxgDvVFGR1z+71+gfapp1zm8Oi0BXrP5wryNKwWTVOtfS/BeX59pcK2yya\nSiyuD9k+FdsoMvInAon7NOpcPeC8c7YHGodr2rmvrE5UowlXGrhdOnff/xjwWO/XZ41zYBiwv6ar\n33MStW3F/Kx+XzfLJf++3/nj0AS5SIl4neTnZ/Ld7z7Gd7/72IUfPIBtFUE27+vs9/VbZ2XQ0BZL\n6mtMtg3dtkBYx23vv5xARLENu4FxIqRCD+ip/7jskPPpBdHJeC3lA5ef2WZzOnp/vrGjL/3nGgqX\n9Ps2qf6D+W9KB/r7XTFBo75DhZIM4NOVNdOlBwTCOjkD1Lqe58RSIGMqbUt2D7jgNJKysjL+7d/+\nDYAjR47w8MMP8/bbbyctoBBCCHNIDxBCiEt33hUkr7/+evbs2cPp06cBePnll7n55puTEkwIIYS5\npAcIIcSlO++ZbYD33nuPf/mXfyEWizF16lTWrVuH0+k831OEEEIME9IDhBDi0lxwsC2EEEIIIYT4\nfM47jUQIIYQQQgjx+clgWwghhBBCiAQZEYPtsrIyli1bxpIlS/je975HJNL/fpPr16/n9ttv54tf\n/CIvvPCCCSn7u1DueDzOj370I5YtW8ayZct44oknBvzZzDCY33mPhx9+mHXr1iUx3bkNJvdbb73F\nihUrWLp0Kd/5zneIRqMmJO1vMNnXrVvHnXfeybJly/jpT39qQspzW7t2LRs2bBhwWyoenyJ9SA9I\nrnSt/5C+PSDd6z8M8x5gDHPNzc3GggULjLq6OsMwDOPJJ580nn322T6PKSsrM1atWmWEw2EjGAwa\n99xzj/HRRx+ZEbfXYHL/+te/Nv7u7/7O0HXdMAzDeOyxx4z169cnPevZBpO9x4YNG4xrr73WePrp\np5MZcUCDyV1eXm4sXrzY8Hq9hmEYxqOPPmr86le/SnrWsw0m++bNm43Vq1cb8XjciMVixsqVK43N\nmzebEbePqqoq44EHHjDmzJlj/OY3v+m3PRWPT5E+pAckV7rWf8NI3x6QzvXfMEZGDxj2Z7a3bt3K\n3LlzKS4uBmD16tW88cYbfR5TVlbG0qVLsdlsOJ1Oli9f3u8xyTaY3DNmzODRRx9FUbpXL5s+fTp1\ndXVJz3q2wWQH2L9/P5s3b+bee+9NdsQBDSb3pk2bWLlyJfn5+QD84z/+I0uXLk161rMNJruu63R1\ndREOh+nq6iISiWC3D/0KWhfrpZdeYsWKFSxZsmTA7al4fIr0IT0gudK1/kP69oB0rv8wMnrAsB9s\nNzY2UlRU1PvvwsJCGhsbL/iYhoaGpGUcyGByz5s3j8mTJwNQX1/Phg0buP3225OacyCDyd7R0cGT\nTz7JT37yk/OuSJdMg8ldXV1NOBzmoYce4u677+a5554jK8v8VUUHk/22226jtLSURYsWceONNzJ2\n7FgWLVqU7Kj9PP744+dtVql4fIr0IT0gudK1/kP69oB0rv8wMnrAsB9sG4NYbngwj0m2i8lUUVHB\nmjVruP/++1m4cGGio13QYLI/8cQTPPTQQ4wenSLrHjO43LFYjK1bt/LMM8/w6quv4vf7efbZZ5MV\n8ZwGk/0Pf/gDgUCArVu3snXrVgzD4LnnnktWxM8tFY9PkT6kByRXutZ/SN8eMJzrP6Tm8Xmxhv1g\nu6ioCK/X2/tvr9dLYWFhv8c0NTX1ecxn30WZYTC5AbZs2cIDDzzAo48+yte//vVkRjynC2VvbGxk\n7969PP/889x99928+OKLbNq0iR//+MdmxO01mN95QUEBN9xwA9nZ2WiaxrJlyygvL0921H4GdMcj\nYAAAAb9JREFUk/29997jrrvuwuFwYLfbWbVqFdu3b0921IuWisenSB/SA5IrXes/pG8PGM71H1Lz\n+LxYw36wPZjlhm+++WbeeOMNwuEwoVCITZs2mb4k8WByb9++nbVr1/L888+zbNkyM2IO6ELZCwsL\n+eCDD3jttdf4n//5H+69997eK+nNNJjf+S233MK7775LZ2cnhmFQVlbGzJkzzYjbx2Cyz5gxg82b\nN6PrOrquU1ZWxqxZs8yIe1FS8fgU6UN6QHKla/2H9O0Bw7n+Q2oenxfLYnaARPN4PPzTP/0T3/zm\nN/ssN/zuu++yZcsWfvSjH3HTTTdx5MgR7rnnHqLRKMuXL2fx4sUpn7vno6sf/vCHGIaBoijMmzfP\n9KI1mOypaDC5b7nlFhoaGli9ejW6rjN9+nTWrl1rdvRBZX/ooYd4+umnueOOO7DZbMycOZNHHnnE\n7OgDSvXjU6QP6QGplztVpWsPGG71H4ZfD5Dl2oUQQgghhEiQYT+NRAghhBBCCLPIYFsIIYQQQogE\nkcG2EEIIIYQQCSKDbSGEEEIIIRJEBttCCCGEEEIkiAy2hRBCCCGESBAZbAshhBBCCJEg/x8o+YrQ\nazvyBwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x124b77da0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1, 2, figsize=(14, 4.5))\n", "mfit.plot_mfit(E_fitter, ax=ax[0])\n", "mfit.plot_mfit(E_fitter, plot_model=False, plot_kde=True, ax=ax[1])\n", "print('%s\\nKDE peak %.2f ' % (ds_fret.ph_sel, E_pr_fret_kde*100))\n", "display(E_fitter.params*100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Weighted mean of $E$ of each burst:" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.28564446])" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ds_fret.fit_E_m(weights='size')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Gaussian fit (no weights):" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.28192807])" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ds_fret.fit_E_generic(fit_fun=bl.gaussian_fit_hist, bins=np.r_[-0.1:1.1:0.03], weights=None)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Gaussian fit (using burst size as weights):" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.28014618])" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ds_fret.fit_E_generic(fit_fun=bl.gaussian_fit_hist, bins=np.r_[-0.1:1.1:0.005], weights='size')" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0.27660000000001367,\n", " 0.27993427838071305,\n", " 0.07081746653125176,\n", " 0.0015660071110426567,\n", " 0.001552115101731099)" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "E_kde_w = E_fitter.kde_max_pos[0]\n", "E_gauss_w = E_fitter.params.loc[0, 'center']\n", "E_gauss_w_sig = E_fitter.params.loc[0, 'sigma']\n", "E_gauss_w_err = float(E_gauss_w_sig/np.sqrt(ds_fret.num_bursts[0]))\n", "E_gauss_w_fiterr = E_fitter.fit_res[0].params['center'].stderr\n", "E_kde_w, E_gauss_w, E_gauss_w_sig, E_gauss_w_err, E_gauss_w_fiterr" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Stoichiometry fit" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Max position of the Kernel Density Estimation (KDE):" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": false }, "outputs": [], "source": [ "S_pr_fret_kde = bext.fit_bursts_kde_peak(ds_fret, burst_data='S', bandwidth=0.03) #weights='size', add_naa=True)\n", "S_fitter = ds_fret.S_fitter" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": false }, "outputs": [], "source": [ "S_fitter.histogram(bins=np.r_[-0.1:1.1:0.03])\n", "S_fitter.fit_histogram(mfit.factory_gaussian(), center=0.5)" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "all\n", "KDE peak 56.28 \n" ] }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>amplitude</th>\n", " <th>center</th>\n", " <th>sigma</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>102.385</td>\n", " <td>56.4196</td>\n", " <td>11.286</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " amplitude center sigma\n", "0 102.385 56.4196 11.286" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuQAAAENCAYAAABHB3CyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAJ/wAACf8BB8w+RgAAIABJREFUeJzs3Xl4VPXd///nmS2TmeyTyUIgkLCFNSzKbqmgRSxNteB2\nK72td0XRn+3XtmqttZd1qV3u3tpf1a/W9vamQq0VK4u23MhSEFRQNtnXkH2ZbJNlZjLb+f4RiUQg\nhDAzJ5N5P66rVyFz5pzXjMPn/c6Zz/kcRVVVFSGEEEIIIYQmdFoHEEIIIYQQIpZJQy6EEEIIIYSG\npCEXQgghhBBCQ9KQCyGEEEIIoSFpyIUQQgghhNCQNORCXIbq6mpkoSIhhIhNUgNEqEhDLjpt2bKF\nb3/720ydOpXp06dz7733cvTo0c7HFy9ezJtvvnnO8y7080vl9Xp59NFHmTJlCrNmzeK1117rdvs/\n//nPPP/88wC88MILLFu2rDPP+PHjmTRpEhMnTmTGjBn87Gc/w+v1XnbGs9XX1zN//nx8Pt8lPa+l\npYVHHnmEmTNnMmPGDH784x/T0tLS+fivf/1rpk2bxrRp0/jNb35z3n2sXLmSWbNmdfnZgw8+2OV1\nT5o06dJflBAiZkkNuDRSA0QoSUMuAPjrX//KY489xpIlS/jwww/ZsmULEydOZPHixVRUVEQkw3PP\nPYfD4eBf//oXy5YtY9myZXzwwQcX3H779u2dA9LZfwb46U9/yu7du9mzZw/r1q3j+PHjvPTSSyHN\n63a78Xg8l/y8X/ziF7jdbt5//33Wr1+P0+nkF7/4BQDLly/no48+4h//+Adr1qxh27Zt/PWvf+3y\n/LKyMn71q1+ds9/Dhw+zbNmyzte9e/fu3r0wIUTMkRpw6aQGiFCShlzg8Xj4zW9+wzPPPMOsWbPQ\n6/WYTCbuuecebrjhBk6ePNmr/VZVVXX+ln7mf9391r5mzRqWLl2KxWJh6NCh3Hrrraxateqc7e69\n914mTpzI1q1bWbJkCRMnTmTv3r3cdNNNVFdXA3T5CjEpKYlrr72Ww4cPA7Bz585zziwUFBRQXFzc\n+ecnn3ySqVOn8vrrr7Nnzx6+9a1vMWXKFL7xjW+wZs0aAG6++WZUVWXatGmcOnWKDRs2MH/+fKZO\nncqiRYvYtm3bBd+b++67D4vFQkJCAjfffDN79uzpfA/uvPNO0tLSyMjI4Lvf/W6X9yAYDPLII49w\n6623dtmfy+WirKyMkSNHXvCYQghxPlIDpAYI7Rm0DiC0t3v3boLBIFddddU5j/3kJz/p8vdnn32W\n3/72t51/V1UVt9vNggULznludnZ25yBzMc3NzTQ0NDB06NDOn+Xl5bFu3bpztn355ZcpLi7moYce\nYuXKlezatYuXX36ZV1999bz7rq+vZ/PmzXz961/vURaAQCDAhx9+SHt7O7fccgv33HMPCxYs4JNP\nPmHp0qVce+21vPXWW1xzzTXs2LEDvV7PLbfcwquvvsqECRNYvXo1TzzxBBs2bDhn388++2yXv2/c\nuJFRo0YBcOrUKYYNG9blPTi7GL7yyisMHz6cq666infeeafz50eOHMFsNvPAAw9w6NAh8vLyeOSR\nRygsLOzxaxZCxCapAeeSGiAiTRpyQWNjI0lJSeh0F//C5NFHH+WWW27p8rPFixdfdga32w1AfHx8\n58/MZnPnz79s7969TJw4EegoJhMmTOjy+JmiEQgEaGtrY/DgwXzlK1/pcZ758+ej1+uxWCyYzWbW\nrVuHzWbjiiuu4NNPP+2yraqqKIpCXFwcK1euRFVVFixYwDe/+c2LHue///u/ef/993nrrbc63wez\n2dz5eHx8fOd7cODAAd59913efvttPvvssy77cbvdTJo0iYceeoj8/HzeeustlixZwj//+U/S0tJ6\n/LqFELFHasC5pAaISJOGXJCeno7T6SQQCKDX67s85nQ6SUxM7NFA/WVVVVUUFRWhKErnz84MXDt3\n7uyy7ZkByOPxEBcX1/lni8Vyzn7vv/9+tm7disFgYPXq1bhcLkwmE8uWLev8KvHsouHxeHjppZe4\n5ZZbeP/993uUPSMjo/PPL7zwAs8//zwPPfQQbrebm2++mR/96EddtlcUhWXLlvH73/+ee++9F51O\nx3e+8x2WLFly3v0Hg0GeffZZ1q1bx7Jly8jNze18H9rb2zu3c7vdWCwW2tvbefTRR3n66acxm83n\nXNU/c+ZMZs6c2fn32267jb/85S988sknzJs3r0evWQgRm6QGnEtqgIg0acgFEydOxGg0snXrVq6+\n+uoujz344IMMGzbsnK8teyI7O5tPPvmkR9smJydjs9koLi7uPNNRXFxMXl7eOdu++OKL3HbbbTz9\n9NMMHTqUefPm8cYbb1zwLIDZbObee+/lD3/4A8ePH0en03W5Kr6xsfGc55wpIIFAgFOnTvHMM8+g\n0+n47LPPuO+++5gwYQJjx47t3N7j8eBwOHj++edRVZUPP/yQ++67jxkzZnTZDjpWEnjggQdwOBys\nXLmSzMzMzsfy8/MpLi5m9OjRQMfXl3l5eezfv5/y8nLuueceAPx+P263mylTprBmzRoOHTqEy+Xq\n8rWx1+vtLGxCCHEhUgOkBgjtyUWdApPJxP/5P/+Hn/3sZ2zdupVgMEhLSwu//e1vOXz4MP/+7/8e\nkRzXX389v//972lpaeHkyZP89a9/veBXfiUlJeTl5eFyuXC5XN1+Jefz+Xj99ddJSUkhPz+fQYMG\n0drayqefforf7+fVV1+94NkfvV7PT37yE5YvX46qqqSnpwOQkpKCyWQCoLW1Fb/fz9KlS9mwYQOK\nomCz2dDpdCQnJ5+zz8cff5zGxkZWrFjRZSAGWLBgAa+++iq1tbXU1NTwpz/9iaKiIq644gr27NnD\nzp072blzJy+//DI2m42dO3eSlZWFz+fjmWee4ejRo/j9fl577TXa29uZPn16j957IUTskhogNUBo\nr8dnyJcvX87KlSvPe8Xziy++yLvvvkswGOTWW2/lO9/5TkhDivC7/fbbSUpK4ne/+x0//OEPMRgM\nTJo0ieXLl5OTkwPQ5WvHs13o55fqBz/4Ac888wxf+9rXMBgM/Md//AezZ88+Z7vy8nKysrLQ6XSc\nOHGCESNGnLPNL37xC371q1+hKAo6nY6CggJefvllrFYrVquVH/zgB/zwhz/E7/dzxx13kJ2dfcHX\n87vf/Y4nn3yS559/noSEhM51egG+8pWvMHfuXP70pz/x/PPP85vf/IaHH36YtLQ0fvaznzFo0KAu\n+3I4HKxevZq4uDhmzJiBoiioqordbmf9+vUsXryYhoYGFi5ciN/vZ+HChdx+++0Xfe/mzZtHVVUV\nS5cupbGxkTFjxvDqq6/K2REREjL+939SA6QGCG0pag9uMXXgwAHuu+8+bDZbl6t6ATZt2sTLL7/M\n8uXLCQQCLF68mIceeqjzwyqEECJ6yfgvhBDhd9EpKy0tLTzxxBP88Ic/PO/jGzduZMGCBZhMJuLj\n4ykqKuq8qEIIIUT0kvFfCCEi46IN+WOPPcZ9993X5eucs9XU1JCVldX598zMzM6F+YUQQkQvGf+F\nECIyup1D/uc//5mMjAzmzJnDjh07zrvN+Wa8fHnZpC/zev0YDNFzPemZOV7RKFqzR2tuiN7s0Zob\noi97b5aQi7Rwjf8gNSBSojU3RG/2aM0N0Zs92nJfaPzvtiFfu3YtHo+HG264AZfLRU1NDbfddhtv\nvPFG5zZZWVk4HI7Ov9fW1nY5Y3I+Tuf5F/rvq2w2K/X1bVrH6JVozR6tuSF6s0drboi+7HZ7otYR\nLipc4z9IDYiUaM0N0Zs9WnND9GaPttwXGv+7bcjP3DkKYOfOnTz77LNdBmOAuXPn8sorr7Bo0SKC\nwSBr167l/vvvD0FkIYQQWpHxXwghIqdXNwbatGkTmzdv5qmnnmLOnDkcPXqUhQsX4vP5KCoqOu8y\nRUIIIaKfjP9CCBF6PVr2MNQcjpZIH/KyRNvXIWeL1ux9Mbfa7ARASTr3Rg9n64vZeyJac0P0ZY+G\nKSvhJDUgMqI1N/TN7D2pAX0xd09Fa/Zoy92rKStCiC/4ly4BwLjiTY2TCCGEiDSpASKcoucydyGE\nEEIIIfohaciFEEIIIYTQkDTkQgghhBBCaEgaciGEEEIIITQkF3UK0UP6B76vdQQhhBAakRogwkka\nciF6SDdthtYRhBBCaERqgAgnmbIihBBCCCGEhqQhF0IIIYQQQkPSkAshhBBCCKEhmUMuxHl4fCr7\nSr3UNgfISNJTmGvCdPwQALrRYzROJ4QQIlzON/6bjQrBQwcBqQEiPKQhF+JLPD6V5dtbaWgLAHC4\nEvaXeVn8h5+jUxR0cttkIYToly40/t8xMwH9M08CSA0QYSFTVoT4kn2lXhraArR6gvj8KgANbQFc\nXlXjZEIIIcLpzPivqtDYFgS1Y/zfV+rVOpro56QhF+JLapsDBAKwv8zHsWpf58/9AWnIhRCiP6tt\n7jgzXt8a4FCFlypnx98dLQEtY4kYIA25EF+SkaSnxRMkqKo0uYI0u4IAGPSKxsmEEEKEU0aSHgCn\nq+METEWDn2AQ7Il6LWOJGCANuRBfUphr4sy5cJ2iUNrgx2bVYzFJQy6EEP1ZYa6JNKueZncQnaLQ\n7lfx+FQKc01aRxP9nFzUKcSXmI0KBdlGdAokx+soq/dS9clrPOBsxO12M/2l/5+FC28mMzNL66hC\nCCFCyGxU+NYVFvaXtZOdbKDNp5Jq1WHQgf5X/6l1PNGPSUMuxJf4Aip1rUFmjjAzNKGGGxYuorm+\nHJNBh8kUR9XfV/Lee2u5//7vc/31C7SOK4QQIoTqWoPkpBm4cbIVf1Bl7R4X+0q9TM4bpHU00Y/J\nlBUhvqSqKUAgqGIJNnDTjdfR2lDOsEnXsWbDPo4ePc3LL/+JwYOH8Nxzv+Fvf3tD67hCCCFCqLze\nD8DAND0js4zYEvR8fLIdn1zYL8LoomfIX331VVatWoWiKIwbN46f//znmExd51Jdd911mEwm9PqO\nix6WLFnC/Pnzw5NYiDArb/ATDAZ4679/SVyciR/88MfoCu7iYK2ecUNh2LDh/Od//o7HH3+UV199\nmUGDcpk+fabWsYUIC6kBItaUNvixJ+qJN3Wcs5w5PI41n58lvyIvTuN0or/qtiHftWsXa9as4Z13\n3sFkMvH973+f5cuXc9ddd3Vu43Q6aW1tZdu2bWEPK0QklDX4ObHjbUqOfMaPfvQot9zyb3xw1MNH\nJzyU1PkZnG7AYrHwxBNP8d3v/jsPPHAvb721mry8fK2jCxFSUgNErPH4VBzNQSYO/uKXzpHZRtJP\n6Nlxsp3CXBNGWXFLhEG3U1YmT57MqlWrMJlMtLa20tDQQHJycpdt9u7di9ls5s4776SoqIgXXniB\nYDAY1tBChEsgqHLkRBkHtv6F8eMncNNNtwJwRZ6JUYc2UfLXd1HVjq8tExOTuPXWO3A4arn//iVa\nxhYiLKQGiFhT0eBHRWVg2hfLHCqKwoxhcQz4dAPFb7ynYTrRn110Drler2flypXMmTOHpqYmrr32\n2i6PezweZsyYwR/+8AfeeOMNPvroI1asWBG2wEKEU40zwM71/41Rp/L97/8Qna7jn0i8ScfMj99g\nyD9fp6T+ixtE3HjjQqZMmcbBg/t5993VWsUWImykBohYUtZwZv541wkEI7ONTP3wL1je/B+ZSy7C\nokcXdS5atIidO3dy1VVX8fDDD3d5bN68eTz55JOYTCasVit33nknGzduDEtYIcLt7TX/oHj/FhYs\n+Ca5uYO7PGaNU1AU+PCYp/MsOcAvf/lb9HoDv/zlM5GOK0RESA0QsaK8IUCaVU+CuWt7pCgKiWaF\nYFBlb4lXo3SiP+t2DnlxcTEtLS2MHz8egBtvvJG77767yzYbNmzAbrdTWFgIgKqqGAzdXyuanByP\nwRA9C7woioLNZtU6Rq9Ea3atci97+Ze0NFTw4Pe+e87x64x6kiwKtW0Km48H0OkUslIMTJ4wjvnz\nr+O9997jH//4O9/+9rflPY+waM7el0kN6BCtn69ozQ3aZPf6VZp9LgoHm897bDXeQJvXz7ufteP0\n6RloMzI5z4zZ9MVnWd7zyIvW3F/W7ahZUVHBM888w9tvv43FYuHdd99lypQpXbYpLy9n+fLl/PGP\nfyQQCLBixQqKioq6PajT6b785BFks1mpr2/TOkavRGt2LXL/61+bqCw7SUHhDEympHOO7/cHMelV\ndp1sY9fJNsYNNIEC2w7o+dEjP2fPnr1s3bqdxYsXy3seYdGW3W5P1DpCj0gN6BBtn68zojU3aJP9\ndJ2f1jYvKSbDeY/t9QVo9wXZW+yiqdVHTqqebQf03DEzAbNR0Sx3qERr9mjLfaHxv9uGfNasWdx0\n003cdNNNGAwGRo4cyeOPP86mTZvYvHkzTz31FIsXL6a8vJyioiICgQDz589n4cKFYXkRQoTTr37z\naxRgyf/3kwtu4/GppFh0lNb7aXQFSbXqaGgLUOuzc+utt7N27WpKSkpISEiPXHAhwkRqgIglZZ+v\nPz4o7dzWqLW1hXa3F0UFa1zHxZ9ZSXoa2gLsK/Uydagshyguj6KePRk2QhyOlkgf8rJE229fZ4vW\n7JHOXVlZwfQZV5CcOZz3128mM1l/3u3W7nGxv8zL7tPtAIwdaMISpzA6x0ShrY677lrMrbfezH/8\nx/0Ryx4q0fpZgejLHi1nyMNFakBkRGtu0Cb7Gx+10uwOcs+cpM6f1dU52Lv3UxobG2hyBfH4gnjV\neI648vDG5TIqJ46xg0wsmGDRLHeoRGv2aMt9ofE/eibxCRFGb7/9N1QUrph7O/bEC/+zyEjSY9DD\n6BwjQRUOVnjx+FTsiXoGDcpl8uQrWLduHe3t7RFML4QQ4nL4AypVTYEuq6ucOnWcf/1rPa2tLRQU\njCFv1Ax8iWMwGg0UxB0iy/spx6vc2BKklRKXTz5FIuapqsq+fXsZOHIq875xKzrdhW/6UJhr6rwC\nf9QAI/4AnHb4GZbRMYjPm3c9ra2tbN/+QaTiCyGEuExVTQH8QbVzukpJSTG7du0kJSWNefO+wbhx\nE5g1MZ+kzJF40r+KLmU4GaY6cnw7qWpoR4PJBqKfkYZcxLwjRw5z8lQxQyfMY0iGudttzUaFO2Ym\nMLsgnunDzXx7VgIjsoys2u3C5Q0yc+ZVNDc384tf/DxC6YUQQlyu8s71x/U0NTXy6acfk5ycwuzZ\nc4mPjwfOGv9HWRleMIHRYyaRm9BM6bGdrN/vlqZcXJbu16YSIgZs2LAeXwDyJ1zDoLTzzx0/m9mo\ndLmA50ill7V73Kzc6eLmqVby8/PZuvUDDh48wJgxY8MZXQghRAiUNQSwxulIMqts2vQhOp2OmTNn\nYzSaumzXdfwfx95EL5/uO8TBwweIM47jWzOjf/k9oQ05Qy5iWjAY5IMP/kXm4DGkpNoveDEnQOC1\nPxF47U/n/LxggIl54+Kpdvr5245WZlz3bQJBlV8+93/x+OSMiRBC9GWBoEplo5/cNAPHjh3C6Wxi\nwoTJWK0JXbc7Tw0oLJzE0NxMEj3H+PhQNf93fSNr97jYcbJdxn9xSaQhFzHtgw+2UFdXS+aIWQxI\n1aPvZv54cMN6ghvWn/ex8bkmZo0w8499bna1T8cQZ+Xjj7awfHurDMpCCNGH1TgDeAMqmYlejhw5\nRHq6nSFDhp6z3flqgKIoTJkyg7REI8G6Pbz1cRObDrnZcsQt47+4JNKQi5j20ku/5+SpU6QOKjzv\n2rOXQq9TsCfqaHKppAyaSJvTweGDe9lXKrdZFkKIvqqsIQCAu/YwgUCAwsJJKMqFT858mdWagDVz\nLAm6FgabyjlV66OtXe1co1yInpCGXMQsr9fL3r27sGfkkJw+8LIb8trmAIPSDFhMOjIKb8GSZKOq\neB+OlkCIEgshhAi18gY/8YoLR9UpBg0aTFrapd/YzRs/BNWYzBDDMYy009DaMe7L+C96ShpyEbNW\nrVqJx+Nh1OS56HUK2SkXv6CzOxlJelDAlqjHnHsVadkjqDyxC3vi5e1XCCFEeASDKhWNfpL9J1FV\nGD16XK/2k5lswJc8Hh0+BhtP0dgWBJDxX/SYNOQiZq1duwaAkTNuY0CKHoO++68olZwclJycCz5+\nZo3ytAQ9iqJgy5+Os/o4gxKi666EQggRKxwtQTweN2pLKTk5g0hKSr7gtt3VgMJcEympdogfQJa+\nDK/HRUKcjsJc03m3F+LLZNlDEbM++2wfaTY7prS8LndnuxDDr/+r28fPrFF7qlGhsq4dS+FUvMXv\nsW/3DgbM/3qoYgshhAiR8gY/xraTGPUqBQWju922uxpwZvw/VD6ZHZsrGWMsZvrwbMzGns9FF7FN\nzpCLmFReXkaazcakq2/nWJWP+tZASK6GNxsVrhplZd74eAYMGYvFYmHHjo9CkFgIIUQoeXwqmw+2\n4HOexmBJx5Jou6z9mY0K114xkHEjh2BTyimpbg5RUhELpCEXMWnbhx/R5AJX+leoaw1yuNIX0iWq\n8u1GAoqBAbkjWLfuPVpbW0OyXyGEEJfP41N5fVsLJ4uLUYI+Sn1DQlYDxo0dj0mvUnb6KMGgLHso\nekYachGT/rlpO4b4ZIKJQ0mIU9DrCOkSVfkZHVNgVFMyVVWVrFnzTkj2K4QQ4vLtK/VS0eAnnVJU\nfTzBuIyQ1YDk5BTSM7KhtYQShysEaUUskIZcxByXy8XRQ/vIyJuMxwcpli/+GYRqiaoEs47MJD35\nVy4C4B//eDck+xVCCHH5apsDtLXUY1FaCFqGgNJRB0JVAwrHjAHVz2eHjodkf6L/k4ZcxJxduz5B\nRwBrzmSgY5nCM7pbosr/9BP4n36ix8fJzzCiSxqMLT2Dffv29DKtEEKIUMtI0qN3nUZRFHRJuZ0/\nD1UNyM/NxmhOoarsGIGArEUuLk4achFzXnnlJZobajBnjMdi0mE1dVwFb7Pqu12iSj18GPXw4R4f\n58y0lfyCiTQ3Ozlw4LPLCy6EECIkMhP8JKtVeE1ZYIgHQlsDFEVhwOAR+LxuThSXhiSz6N+kIRcx\nZ+/e3cSZLRQMTuGasWZGDzQxuyCe22cmhHSJquxkPWajjiFjr8ZoNPHhh9tDtm8hhBC9d+DoSawm\nlcIxIxidE54aMHZEHqpi4uCRYyHbp+i/ZB1yEVMOHtxPS0szw8ZOw6BXuHGylbSE8NxJTadTyLMb\n8Iz5OsNHrKC+3hGW4wghhOg5VVUpLy3GZLZSNH0IihKetcIH2+NQEgZRX3+KlpZmEhOTwnIc0T/I\nGXIRU1av7ljtJGvkV8lM0oetGT8jP8MAehODh45l9+5dqKosgSWEEFo6WV6Pz9NETk74mnEAvU5h\nwMChtPvg+Am5uFN076IN+auvvsrXv/51FixYwKOPPorXe+6SQC+++CLz589n3rx5vPbaa2EJKkQo\nfPTRdhSdjoHj51Ew4NJuaaxMnYoydeolPSfPbkBBISNvIk1NTRQXn7qk5wuhNakBor/Zd/gEABPG\nDLuk5/WmBozItREwpXH85Em5uFN0q9uGfNeuXaxZs4Z33nmHd999F5fLxfLly7tss2nTJrZs2cLq\n1atZtWoV7733Hjt27AhraCF6Q1VVXK42Bg8bj8mcQEG28ZKeb/jeDzB87weX9ByLSUd2ih6TfRyg\nsmfPrkt6vhBakhog+ptAIEBNZQlx1nQGZaZc0nN7UwPy7Ab8lsG0udqpqqq4pOeK2NJtQz558mRW\nrVqFyWSitbWVhoYGkpOTu2yzceNGFixYgMlkIj4+nqKiItasWRPW0EL0RknJaXQ6HSOmLiIn1UCy\nJTIztoZmGDCmDMEcn8gnn3wckWMKEQpSA0R/c+hkBQG/h8FD8iNyvASzDpt9IO0BHaWlxRE5pohO\nF+1I9Ho9K1euZM6cOTQ1NXHttdd2ebympoasrKzOv2dmZlJdXR36pEJcpr17d+P1Q2ru+Es+O345\n8jOMKDodbj+89dabeDyeiB1biMslNUD0JwePngRFzxVj8iJ2zKFZ8bSbsigrr8DrbY/YcUV06dEq\nK4sWLWLRokX8+te/5uGHH+bll1/ufOx8F6np9d1fKJecHI/BED3XkyqKgs1m1TpGr0Rr9nDkPnz4\nM/RxVgYNHc30Mckkxofngs4vZ09LU8k46CNryFhOHNrFp59u45vf/GZYjn05ovWzAtGdPRpIDYjO\nz1e05obwZPd4PDTVV5JsH8SIPFtI933G+XJPHmFi34k8fC3VNDXVMGrUqLAc+3JF6+clWnN/WbcN\neXFxMS0tLYwfPx6AG2+8kbvvvrvLNllZWTgcXyznVltb2+Vsyfk4ne7e5tWEzWalvr5N6xi9Eq3Z\nQ507GAyyY8enWDNHY7coeF0e6l0h230X58ueaQ2SOnQ2qvo/rFq1llmzrgnPwS9DtH5WIPqy2+2J\nWkfoEakBHaLt83VGtOaG8GT/5LNj+Px+cgcODtv7cr7cZlVFNabh9hs5cOAwGRm5F3i2tqL18xJt\nuS80/nd7iqKiooJHHnkEl6ujc3n33XeZMmVKl23mzp3LmjVraG9vx+12s3btWubOnRui2EKExp49\nn1JZXU3qgAIKBvRuuorv3u/iu/e7vXpufoaRnGFT0BtM7Nmzu1f7ECLSpAaI/uTYqdOgmJhUkNOr\n5/e2Buh0CnkZJlyGAdTVOTr/PQlxtm7PkM+aNYubbrqJm266CYPBwMiRI3n88cfZtGkTmzdv5qmn\nnmLOnDkcPXqUhQsX4vP5KCoqYvbs2ZHKL0SPvPPO36msKGdiQgojejt/vKWl18cfnG7AYDSSnjWY\nkpLT+P1+DAa5L5fo26QGiP7C7XbTVF9DQtpgkiyRrwH5dgNHirPxuk9TUVHK8OEFvd6X6J8u2hHc\ndddd3HXXXV1+NmfOHObMmdP596VLl7J06dLQpxMiRHbt+hR0embPnovFFPm5q2ajQmaSjrSR8/B4\n3mH11iN8/aoxIb1NsxDhIDVA9Ad7j5wmqAYZnj9Ek+Nnpegpa0nG6DOy5/BpBg0ZKeO/6CJ6rqoR\nopeCwSC2ONNYAAAgAElEQVQnTp4kMXUA4wYnaJLB41M5Vu0nkH01ASWe97bsYfn2Vjw+uXOnEEKE\n24lTJaCLY8LIARE/tsen8vdPXDS4gpS57dTU1vL61joZ/0UX0pCLfu+zz/bhdrvIHDyG4VmRW+7w\nbPtKveh1EJ+WR1BvprbkAA1tAfaVnnvXQyGEEKHT2uaiuamWJNtAEsyRnyq4r9RLQ1uAVIuOWn8G\ngaBKc0OFjP+iC5nEKvo1j0/lf976J4GgSu7oWZe1L923FvX6ubXNASxxCulJJk6nFVBx6gCqquJo\nkVspCyFEuHh8Kqu3ncDlDZKcmIPHp/Z6qkhva0Btc8c4n5msp7LJRpvPgMVViaNlRK/2J/onOUMu\n+i2PT2X59lYOV/owp+WTOuLay5omol94E/qFN/XquRlJHesyD80wkJQ9imZnI02OSuyJ4VkLXQgh\nYt2ZGnCiuARPwERpS4omNeDM+G80KAzNjKM+kIHfVYfNEuxVDtE/SUMu+q0zXxNWnT6ANXMkWekp\nmk0TKcw1kWbVYzQojBg5Cq/byZ7tayjMNUU8ixBCxIJ9pV7qnG5M/gY8hkwMBkWTGnBm/AewJehQ\n4zMJBoOo7tqI5hB9mzTkot+qbQ7Q1txEa30F9kFj0H/+addimojZqHDHzARmF8Rz/VXjCLobqD26\nmYoGf8SzCCFELKhtDuBprgZUdJYvblYV6Rpw9vg/OsfEN2fkkWDWs+dIKS6vnCUXHaQhF/1WRpKe\nkhMHUIGcvDGdP9dqmojZqDB1aByLZmSQk52Js7aYdfvdMiALIUQYZCTpwV1NEB3xyZmdP9eiBpwZ\n/xdMsPDVMYnk5mQSaKvh/f3RdddaET7SkIt+qzDXhKPsEAB5w8cCYLPqez1NRG12ojY7Q5Jt5MgC\nfO5mqirL2HDAg6rK8ldCCBFKYwboiA/U4tbZO2/E1ldqwIi8gVgNXo6VOThcKautCFllRfRjZqNC\n2Z6/E2/UMXWUHXtix0Dc2yvs/UuXAGBc8eZlZ5s6dTpbt27GV7aFI7YchmUaGJ0j88mFECJUKqtr\niDcESM0ayIAcU5+qAdnZOSSad+NXHbx/II2BqQYS4+UcaSyThlz0W5WOZuqrSxhWMJ4FEyxax+ni\nmmu+xn/916/wNx4jzapn3WcuapwBWttVMpIur2gIIYSAoyfLUBSFr12Zx5CsvlUDEhOTSEhIwKLU\nsd8znBc3NjNmgJGMZIOM/zFKfh0T/dbqf25CVYNMmjBR6yjnKCgYxbRpM1CAa8aY+eSUl2XbWjlc\n4WXLEbfcxVMIIS6DqqrU1FSgxKWRm2HVOs45FEUhMzMbV2sDLe52PjruYfNhj4z/MUwactFvbf1g\nKwDzrrla4yTnN2bMOI4cOURlow9bgo7GtgB1rR1X/8tdPIUQoveczmY8bhe29Cx0ur55tjkjIwtX\ne5A0fSPWOB2n6/z4AqqM/zFKGnLRLwWDKscO70Ov1/HV2bO1jnNeo0aNpr29nYNHTjAwrWP2WIv7\ni7MichdPIYToncPFFaio5OUO0DrKBdntmfgCoPc5yEnVEwiquNo7aoCM/7FH5pCLfqnKGcDrbWdw\n3gjMZnNI9ql/4Psh2c8ZY8aMA6C5+gi6nFziDArus76mlLt4CiFE75SUVaIqRkbnZYRsn6GuAWaz\nmYTEFFzNdcQndpzF9/hUkpHxPxZJQy76pQPFDYDKwm8tCtk+ddNmhGxfAPn5QzEajbhqj5A9Yj5m\no0L75w355SzNJYQQsSwQCNDYUIs5MYMkS+janFDXAIDhQwbQtPcgZl07oODxqTL+xyiZsiL6pR17\nDqLXKUwcP+biG2vEaDQSDAZ5628ruGNmApPz4kiM1/GVkWZun5kgV9kLIUQvlFU68Pt9ZGVlax3l\nonKys0lL0HFFdgs5qQbyM4wy/scoachFv+PyBjl25DBxBoVRo0ZrHadb2dkDcDqbqCovZkp+XOd6\n5DIYCyFE7xw9XQHAiLwcjZNcXHq6Hb1OR6q+nqlD40hP0Mn4H6OkIRf9TkmdH0fFEdJtqWRkZF78\nCRqaNm06AOvX/5MUa8c/x8a2oJaRhBAiqlVVVYEhgWEDkrWOclFGoxGbLZ3a2hpSrXqc7qDcuTlG\nSUMu+p2TNV5qij+jcOxoFCV0ZxqChw4SPHQwZPsD+NrX5gPw8ccfkWrp+OfY5JKGXAghesPjaaet\npYHktCwM+tCeaQ5HDYCO1VZcrjasejcen9rl4n4ROy56tcPf/vY3Xn/9dfR6PWlpaTz55JMMHDiw\nyzbXXXcdJpMJvb7jquAlS5Ywf/788CQWohuqqrLto09wlB/G7Rob0n0HnnkSAF0Ibpt8Rl5ePomJ\niRw5cohkachFHyQ1QESTYyXVBFWVQQNC/+1oOGoAgN2eweHDoPfWAxk0tQWxmOR8aazptiE/fPgw\nr7zyCqtWrSIxMZG//OUvPPbYYyxbtqxzG6fTSWtrK9u2bQt7WCEuxtES5Mief6FTYOrU6VrH6ZFp\n02Zy5MhhTHoVs1FHU5usPyv6BqkBItqcKqsBoCCv71/QeUZaWjqKAgHP5w25K8iAVK1TiUjr9lcw\nq9XK008/TWJiIgDjxo3rmJt1lr1792I2m7nzzjspKirihRdeIBiUM3xCG8UOP1Wn9qIoCnPnfk3r\nOD1y/fULiI+P5/TpU6RYdHKGXPQZUgNEtHE4ajDEJZKVZtE6So8ZjUZSUtJwt9QB8i1prOq2Ic/N\nzWX69I6zjD6fj+eee+6cryE9Hg8zZszgD3/4A2+88QYfffQRK1asCF9iIbpR7PDRWH2StNQU7Ha7\n1nF6ZOTIUUDH2cjUzxtyuahH9AVSA0Q0aXG142lrJM2WEdLrhyLBbs/A3ebEoHqlIY9RPZqk1NTU\nxJIlS7BYLHzve9/r8ti8efN48sknMZlMWK1W7rzzTjZu3BiWsEJ0x+tXKa5y4m6pIy9vqNZxemz4\n8BHo9TqOHj1MskVHu18u6hF9i9QAEQ0OnaoBVHJz+vbqWueTnp4BKCQqjTTJSlsx6aIXdZ4+fZp7\n7rmH2bNn8+ijj57zW+eGDRuw2+0UFhYCHRfVGQzd7zY5OR6DIXouWFAUBZvNqnWMXonW7L3Jfayy\nnbbGSgYNHsLtt98W8tftf+UlAAwX2e+lZ7cyalQBp04d46YBVj6rDKKYzNhsxstIe+mi9bMC0Z29\nr5MaEL2fr2jNDb3LXlVXj16nY8akfNJSQv+6e1IDevueW61D2LlzG0kGJx5lsCb/3aL18xKtub+s\n21HT4XCwePFi7rnnHu64447zblNeXs7y5cv54x//SCAQYMWKFRQVFXV7UKfT3fvEGrDZrNTXt2kd\no1eiNXtvcu857qay+BDxcSYmTpwa+tedYOv4/4vstzfZs7MH8s47b+OsrcTljqO4opV4Invr5Gj9\nrED0ZbfbE7WO0CNSAzpE2+frjGjNDZeeXVVVKssrMJriUQP68LzuHtSAy3nPLZYE2lprqfF7qK5t\nxRjiZRsvJlo/L9GW+0Ljf7cN+fLly2lqauLtt99m5cqVAMTHx3P33XezefNmnnrqKRYvXkx5eTlF\nRUUEAgHmz5/PwoULQ/8KhLiIYocfd91x4s1mhgzJ1zrOJVFVlcrKCvbu3AzJ18kcQtEnSA0Q0aK6\nyUvA00j2oCFaR+m19PQMquuOg8lPkyuIPVGvdSQRQd025A8++CAPPvjgeR+bM2cOAHq9np/+9Keh\nTyZED3l8KtuOudlx0kNFyREmjhzZuR5ytPjKV67mpZd+z55PP2TgtfPlbp2iT5AaIKKBx6fyj50V\neHwBgiYbHp8albefT0/PQK87js7XQFNbsjTkMSZ6JvEJcR4en8ry7a38Y6+bqtoG6mqraDEOxRNl\nF0VeeeVUjEYjBw/uJ9miwylnyIUQ4qLO1IDDp6oJBOGUM4nl21ujrgYApKfb0etA522gUWpAzJGG\nXES1faVeGtoCNLqCOE9upr21Hn1CFvtKvSE/VnD9OoLr14V8vwAGg4Hs7AGUlpaQatXJYCyEED2w\nr9SLoyWAwd8IOhOqwUpDWyDqagCAxWIlwWJB722UkzIxSBpyEdVqmwOgQrMrSGvJB7hbG0nJysfR\nEvq7XQaWvUZg2Wsh3+8ZBQWjcbtdeBpO09YexOuPvjM8QggRSbXNAVrcAaxKE6opDT5fBSgaa0DH\naiHpGAONNLTKHZtjjTTkIqplJOlx+1T8QZW22mMYTfHYc0ZE5dy7W2/9N4YOHU57S8etn+XCTiGE\n6F5Gkh6PuwUDPhRzWufPo7EGwOfTVhQ/TmeT1lFEhElDLqJaYa4JvQLBoB+3s4qk9IHYrHoKcyO7\nZGAoTJgwGZ1Oh6P8KIB8ZSmEEBdRmGsiLtiEooAhvqMhj9YaAJCWlo5ep9DWXE8wKN+SxhJpyEVU\nMxsVrsiLI7HtIAR9FI4bz+0zE6LyCnubzYbdbqe8+AiAzCMXQoiLMBsVcizNWEw6RgzOYHZBfNTW\nAIDU1DSMeh14G2j2SEMeS6QhF1GvoS1IvOsolvg4bpg/O2oHYuiYR1586igEVbl9shBCXERbe5CA\nu4G01BSKJicxdWhcVNcAvV5PUnIaem8DjW0yjzyWdH9/YyH6uGBQpaY5gAk3eXn5XH/9N8J2LOOK\nN8O27zNGjizggw+2EGyroMmVF/bjCSFENKus96DzN5OePjzsx4pEDQCwp6dTXn2IeqebPLsxIscU\n2pMz5CKq1bcF8QVUGiqPMXjwECwWi9aRLktWVjaVlRUc2bGKJpecHRFCiO6UVNYBKrnZGVpHCZmc\nrI7XUuOo0ziJiCRpyEVUq24K4Pe1U1t5koKC0VrHuWxjx46jra2VsmOf0OxWCchFPUIIcUHVDgc6\nRWFgdrrWUUImK9OOTlFoapSGPJZIQy6iWo0zQGN1MXqC/aIht9nSSUtLo6b8JEFVpdkt88iFEOJC\nmhvrMZlMJCYmaR0lZOLjLRhNFlqd0pDHEmnIRVSrdgZw1R5BURQKCkZpHSck8vKG0txUh8fVLGuR\nCyHEBbS4A/g99SSlpKMo0Xsh5/nEJ9nwuRsJBGTqYqyQhlxErUBQpbY5wO6NyygvL2Pw4CHhPd5r\nfyLw2p/CegyACRMmgapScvADaciFEOICSqqdKEEvmXZ7RI4XqRoAkJqajhr0U13XGJHjCe1JQy6i\nVl1LEH9Qpb66hLS0NPT68N6ZLbhhPcEN68N6DICrr55DYmIiTkeZNORCCHEBpVUOAAYPiExDHqka\nAGD//JeMis9fo+j/pCEXUavaGaCxpgSPu42RI/vHdBWAGTOuIj9/KEFvi6xFLoQQF+Bw1KFTdORk\n9Z8LOs/ItqeBoqe2TuaRxwppyEXUqnb6Ob1/E4oCV145Ves4IaPT6RgxYiSNlUflbp1CCHEeqqrS\n2lyH2ZqEyWTSOk7IpSUYCBpTaGqQM+SxQhpyEbWqmwI4Tn8KwNy512qcJrQKCkbR2lRNtaMBVZWl\nD4UQ4mwNLT6C7U5SU/vf2XEAa5yCEpeGx92Gx+PWOo6IAGnIRVTyB1TqWoPEm/Tk5w9lxIiRYT+m\nkpODkpMT9uMAFBSMxqBTqC49Slu7NORCCHG2UxUOQCU7IzLzxyGyNUBRFCxJ6R3XSdXLtJVYYNA6\ngBC94WgJ4PcHcDXV8NWvzo3IMQ2//q+IHAc6GnKFIBUndtHkmkOCWX53FkKIMyqrO6Zy5A2MXEMe\nyRoAkJpqo7oS6usd5OQMiuixReRdtMr/7W9/4xvf+AY33HADd911F+Xl5eds8+KLLzJ//nzmzZvH\na6+9FpagQpyt2hnAWVdGwOfuN+uPn81ut1PvqOLwh3+nUS7sFBqSGiD6ovp6B3qDicz0FK2jhE1a\nsoWAzkKtQ86Qx4JuG/LDhw/zyiuv8Je//IVVq1ZxzTXX8Nhjj3XZZtOmTWzZsoXVq1ezatUq3nvv\nPXbs2BHW0EJUNwVoqDyGQQejRkX/HTrPZ9DAQbQ0VlHf4tU6iohRUgNEXxQMBnG11GNNtPW7GwKd\nLcWiI2hKo66+Xm4QFAO6bcitVitPP/00iYmJAIwbN46qqqou22zcuJEFCxZgMpmIj4+nqKiINWvW\nhC+xEHScIXc7jqPX6xg+PPzzx7Uwbtw4An4fu3d/qnUUEaOkBoi+qKq+BTXQjs3WPy/oPCPFoiNg\nTMXnD+B0yg2C+rtuG/Lc3FymT58OgM/n47nnnmP+/PldtqmpqSErK6vz75mZmVRXV4chqhAdfAGV\nupYgxQe3YrdnEB8fr3WksJgxYxYKsPvjf2kdRcQoqQGiLyourwVgQFbk5o9rIdWqJ2hKIxBUqauT\n5Q/7ux5dKdbU1MSSJUuwWCx873vf6/LY+ZZkC/cdE0Vsq3EGcLuaOH1sL+3t7RE7rv/pJ/A//UTE\njjdnzjUoisLJo7sjdkwhzkdqgOhLqmvrAIVhgyLbkEe6BiSZFRRjMkEMstJKDLjoKiunT5/mnnvu\nYfbs2Tz66KPnzNfKysrC4fjiN7fa2touZ0vOJzk5HoMhelaNUBQFm82qdYxeidbs3eU+3uCm4sg2\nFGDGjGkRe311x48CXPR4oXrPbTYroydMoZ1ErInxmE3h/TcTrZ8ViO7sfZ3UgOj9fEVrbug+e2tL\nI2ZrMnm5tohm6kkNCPV7PsDuxe9Np6WlMez/LaP18xKtub+s24bc4XCwePFi7rnnHu64447zbjN3\n7lxeeeUVFi1aRDAYZO3atdx///3dHtTpjK5F7m02K/X1bVrH6JVozd5d7qOlLor3bwNUpkyZFbHX\n5/d3rHZyseOF8j0vnDiN/12/jiMn6xmUYQnJPi8kWj8rEH3Z7fZErSP0iNSADtH2+TojWnPDhbP7\n/X5anfWk2AdH/LX1pAaE+j03qH6cwSSczlrKymqxWMLXeEbr5yXacl9o/O+2IV++fDlNTU28/fbb\nrFy5EoD4+HjuvvtuNm/ezFNPPcWcOXM4evQoCxcuxOfzUVRUxOzZs0P/CoT4XE1TgIaKQxgMRqZO\nna51nLAaM3o069a9x76DRxiUMUnrOCLGSA0QfU1JVR2qGsSe3r/nj5+RatVRpqSi0jGPPDc3+s8E\ni/PrtiF/8MEHefDBB8/72Jw5czr/vHTpUpYuXRraZEKcR7tPpaEtSEtjFQMGDMBg6N/3tpo4fiwA\nBw4dYsHV0pCLyJIaIPqa0xUd06Nyc2KjIU/+fKWVoA/q6+vIzR2idSQRJv27mxH9Tk1zgNZmB+np\nGdxx+79F9NjK1KkRPR7AmBF5GE3xHDt6OOLHFkKIvsbhcIBiIC87LeLH1qIGpFp0oDNiik+ivl5W\nWunPpCEXUaXaGaC+/Cgmg47CwokRPbbhez+I6PEADAY9iUmp7PpoPfBMxI8vhBB9SXNTPUZLWtgv\ncj8fLWpAirXjdRotNpqaTuP3+zAYjBHPIcIvei5zF4KO+eONVcfQ66CgoEDrOBERF2egrqqU4uJT\nWkcRQgjNtLW14W13k5zav28IdLYUS0ebpprSUFVobGzQOJEIF2nIRVSpdgZorTnKgAE5pKSkah0n\nIkaPvxIVWL/+f7WOIoQQmjlVXouKSpY9dhpyo14hIU6HR9dR7+QGQf2XNOQiari9Qepb2qmvOs7o\n0aO1jhMx02Zeg6qq/P1/t7PjZDse37k3YhFCiP6uorqjGR2Sk6Fxksjx+FQaWgN8dNqAJ2Ck1iEN\neX8lDbmICh6fyv/ud/Phti1UlJzAZI6NpZ88PpVTnlwUg4XiE0fYcsTN8u2t0pQLIWKKx6dysqyW\nFp+VymZ9TIyBHp/K8u2tlNT7OV0XoN6XzKFT1bi9Qa2jiTCQhlz0eWcGpU2H3JQc2kp7u4dy/+CI\nD8i+e7+L797vRvSY+0q9eP0q8WlDaHc7UYNBGtoC7Cv1RjSHEEJoxeNTeX1bMy3NDTSryWw/7tHk\nxESka8C+Ui8NbQHijQpBVcWjpOL3e/nkWH3EMojIkYZc9HlnBqVWj0pb1QEURUda3vTIN6UtLR3/\ni6Da5gAWk8KgK29Db7HT6CgDwNESiGgOIYTQyr5SL01NDRAMEjB0zKXW5MREhGtAbXPHOG9L1KOg\nUOVJAqC6Vqat9EfSkIs+r7Y5ACq0eIK0N5VgTbZjMltioinNSNKDAvnDClBVOHWiYz1ye6Je42RC\nCBEZtc0BfK4GVEAxf7H+eH+vARlJHeN8vEnBlqCjvDUJVVUw+Rs1TibCQRpy0edlJOlx+1SaGyrx\ne5qxDRgOxEZTWphrIs2qJ3/YSHQ6HaUnj5Bq0VGYa9I6mhBCRERGkh6/u4EgOizW5M6f9/cacGb8\nB8hJ0+NXdXiUZEwBWfqwP5KGXPR5hbkmVBXcjmOYrSkMHjMLm1UfE02p2ahwx8wEri1MZfDgPAJN\nx7lyaBxmo6J1NCGEiIjCXBOmQCNuUrDEdTSosVADzoz/swvimTLUzLRhZkzWNFpanHi97VrHEyEm\nd+oUfZ7ZqDA2x8huanHbM7jztoV8dWJCxJtS3bcWRfR4Z5iNClOHxrFg9niWvbmaHUebKByUgaJI\nUy6E6P987S6sejfxKYMYOtCEPbGjGY+FGnBm/AcYN9DEyn+l4XKfpr6+nuzsARHPI8JHGnLR56mq\nSqUziNl1kvyBduZdOUiTZlS/8KaIH/NsRqORpppTfLTln1xbeDv5GXL7ZCFE/3espAaAySMHMGuC\nRbMcWteAXJue9PQMWk+q1DhqpSHvZ2TKiujzapuDuNv9NFQdY9SoMTF7ZnjSpMmgBqg6sYMdJ+Xr\nSiFEbCipqAEUCobEzg2BzkdRFGYUpBDQmTlRWqt1HBFi0pCLPq+k3t9xQWd7KwUFo7SOo5mpU6dj\nMBhpqTxEWYOf8ga/1pGEECLs6usdGMxJpKfEax1Fc8MyDcRZ06l11OHz9+9VZmKNNOSizyut81Nz\nYgcEfYwaNVrrOJoxGAwMGjSIuurT6FDlLLkQot9rc3vxtDWRmmrXOkqfoCgKwwdnEAj42H28Tus4\nIoSkIRd9WiCoUt7g58Qnqzh9upiBAwdplkVtdqI2OzU7PsDYseNpb/eQ4D7MyVpf540jhBCiPzp6\nugZQycnWfrpKX6gBAOOHZqHXKew7Xk0wGNm7lYrwkYZc9GlVTQG8ARVHxXHS0+3YbOmaZfEvXYJ/\n6RLNjg9w/fULyMjIIlmtQqcocpZcCNGvFVd0XNBZMCRL4yR9owYApKWlkWA24Gqu43iNTF3sL6Qh\nF31aab2floYqWpobGTkyduePn3H11deQlpZKTUUxowYYOVDmZeNBN2v3uNhxsh2PT86WCCH6j/o6\nB0aTBXtaotZR+gydTsfArHT0/gb++nEra3e3yfjfD0hDLvq00jo/FYc2otBxUWOsi4+PZ+jQ4Rw4\nsJ/CXBP7yry8tbONw5Vethxxs3x7qwzKQoh+odXjp72tnpRU7b4Z7atSbRkEvC4OnG7io5PtMv73\nAz1eh/zHP/4xo0eP5tvf/vY5j1133XWYTCb0+o47aC1ZsoT58+eHLqWISb6ASkVTgNoTHwMwb558\npgDGjBnHqlVvc7y8iXiTQo0zwMA0PSaDQkNbgH2l3s4bSQgRCjL+Cy0cPV0HaoCBAzK1jtLnNPhS\n0CmQrHdS3mAlxWKS8T/KXbQhLykp4ec//zl79uxh9OhzV7hwOp20traybdu2sAQUsau8wU8gqGJL\nSWTSpCsYObJA60h9wpgxY1m16m32fHaAnJTxNLQGqG8Jkp3a0RA5WuRCTxEaMv4LLZ3+fP3x4bna\nzx/va1pJRVEUss1NfNaWhdenYjIqMv5HsYs25G+++Sbf+ta3yMw8/2+oe/fuxWw2c+edd9LQ0MDX\nvvY17rvvPnQ6mQ0jLk9pfYCA30dN+XG+Onu21nHQP/B9rSMAMHr0WNra2ji6az35cyegKAou7xdf\nU9oT9RqmE/2JjP9CS446ByajkYz0VK2jAH2nBgBkpZo5bUgiyd8IQJu3oyGX8T96XbQhf/jhhwHY\nvn37eR/3eDzMmDGDn/70p/h8PpYsWUJycjKLFy8ObVIRc0rq/ASdpwn4fYwZM17rOOimzdA6AgAZ\nGRk0NTWyf8d6rvzmo8QbFdzeIAA2q57CXJPGCUV/IeO/0EpTmx9vWx0Z6el95u7MfaUGABTmmtib\nkA4Np9Djw+01MixDxv9o1uM55Bcyb9485s2bB4DJZOLOO+9kxYoV3Q7IycnxGAzRcwZFURRsNqvW\nMXolWrN7fCotPh1610kMBh2zZk2JmtcRifd8xIjh7N+/n3uuTaJd1XOi2ss3pqRwRX48ZlPv/m1F\n62cFojt7NOvN+A9SAyIlWnMDfHzIgR4fI/IHRtVriOR7fuNXh7Lu/RKGmtoYOSSd781P6/X4D9H7\neYnW3F922Q35hg0bsNvtFBYWAqCqKgZD97t1Ot2Xe9iIstms1Ne3aR2jV6I1u8NjoM3lperkZ8TF\nxZOcnBk1ryMS7/m4cRPYs2cP7619j/F5c2hzQW5SkLYWN709crR+ViD6stvt/WMJt96M/yA1IFKi\nNTfA0VMVqEGVrPTUqHoNkXzPEyzJxBtguNlJvC5wWeM/RO/nJdpyX2j8v+xTFOXl5Tz33HP4/X7a\n29tZsWKFXGEvLltxrQ81qLJt81qSk5NlTuqXzJlzDQCbN2/EltDx3tS3BrWMJGKQjP8iHFRVpbq6\nBqNBISNdljy8EIvFgtVqxeSvp741gKrKkofRrFddzqZNm3j88ccBWLx4McOGDaOoqIiioiImTpzI\nwoULQxpSxJ7iWi/e2s+oc9SSnJyidRwAgocOEjx0UOsYAFx11VcxGo0cO3YUW0LHRTz1rXJ1vQg/\nGf9FuDW0BWlvqSU5xdajb1wipS/VgDPS0+3gbcTj9dPWLg15NOvxJ/3ZZ5/t/POcOXOYM2cOAHq9\nnp/+9KehTyZiVqsniKM5QMWhTQBcdZX2K6wABJ55EgDdijc1TgIGg4EbblhIWVkpqVYFBYX6FjlD\nLqSAwJUAACAASURBVMJDxn8RSScrW8DfRk72YK2jdNGXasAZNlsG+hOn0Pmc1LUmk2CWb5OjlfyX\nE31Oab2/4/+P70JRFK699jqNE/VNhYUTaWhooN5RTYpFR52cIRdC9APFZdUoQP4gWX/8YtLT7Rh0\nCjpvPfWyBnlUk4Zc9DkldX50Oig/fRy7PYOUlL4xZaWvGT++40K6ffv2YkvUyRxyIUTUU1WVWkct\ncUYdGfYMreP0eUlJycSb49B7G6QGRDlpyEWfU1rvJ4FGVFXlyiunaB2nzxo1agxGo5F9+/ZgS9DT\n1h7E5ZUBWQgRvWqbg6ieOlLTbBiNRq3j9HmKomC32zEFGqlr8WsdR1wGachFn+HxqWw86OaTU+2c\nPLqfjMws7vx/7d15fFT13f/915k9e8hk3yCAIiCboqCiKLiAhWhZXG61t/Vqe+tltV69tBe9VH7W\njdZeF63+0LZeWpVCrZdVC1SLxeBSELEChkVWWbLPTPbMZNZzzv1HIBKWMECSM5N8no+Hj4fJOUPe\nhHO+n8+c+Z7vufP7RseKWTabjZEjR7FtW3nnSiuNcoVECBGnAmGd9zY3EvS3Yk7MIhCWmxSj4XRm\nYyFEQ3OL0VHEWYid25fFgBYI6yxb72VnTQhPm4pnz2aafDB8xGijo3Wy/OK/jI5wnOTkFFaseAf3\noW3AMBq8GoUZRqcSQojTc6QGbN1dQ74GFb40lq33cvtlyTissfGkzlisAdAxj9xsVgj56vEF80my\ny7XWeCT/aiImlFeEaPSptLRrmE0KTZXbSM0Zyt762PnIUiksQiksMjpGF6NHjyYcDrHho/cA5KYe\nIURcKq8I0eBVMYcbMJsUFHsmjT6V8oqQ0dE6xWINABg0KAObxSzzyOOcNOQiJrhbVdChxa9h11po\nqa8kd8hYPNJgdmvGjFmYTCY+//xT0hJM1MtgLISIQ+5WFW9AI4VGNEsqmG0AUgOiYDabyXBmdqy0\nIqttxS1pyEVMyE41E4zohCI6/qqN6JpGzpAxZKWYjY4W01JTU8nLK2Dv3j04k80yGAsh4lJ2qhmf\nP0iC4gX7N0/nlBoQnYLcbBTVj6vBa3QUcYakIRcxYVyxDeXwNMFD//wTDbX7GTZ0BOOKbcYGiwNj\nx47D5/PSUrudtoAmN0IJIeLOuGIb9kgDCmBO7GjInUlmqQFRys7KxmwCT73H6CjiDElDLmKCw6ow\ncYidIZkWfJ6O9cd/MLMoZm7mAdD+vhrt76uNjnGcb31rNk5nFm2urwFolKvkQog447AqFCQ1k2hX\nOHdILlePTeK2GLqhE2K3BgA4nZlYTAqtzfVGRxFnSBpyETM8Xo08azXB9hYmXTQhpgZiAPW1V1Bf\ne8XoGMe59tqZ5OTk0Og6ACA39Qgh4k6bX0Ntr8c5aBClEwdx2YhEqQGnwWazkZicRqS9Hr88jyIu\nSUMuYkJE1XG3qlRs6Vgt5OqrrzY4Ufyw2+2MHDmKfbu2AlAvV8iFEHGmwuPHFGklJzvH6ChxK8OZ\nhSnSiqspYHQUcQakIRcxoa5FRdV0Dny1AUVRmDNnjtGR4srYsePxuOvQ2900tMnVESFEfDlQVQfo\nlBTnGh0lbuXnZAM6lXUyjzweSUMuYkJNc8dV3QSHhcsvn0p2drbBieLLBRdcCEBrdbmstCKEiDtu\ntwuLSaEgV66Qn6khhR1vZtxut8FJxJmQhlzEhNqmCMHWOtqa67nmmhlGx4k7I0d2PNH0q41/pcWv\nEYrISitCiPigajq+Fg8JSak4HA6j48St9NQkzNZEWprkxs54ZDE6gBC6rlPdpNJeWw4oXHDBRKMj\nnZB1+RtGRzgpq9WKpqmUf76WSbdEaPSq5KbL6S2EiH3V9X4It5BZONzoKN2K5RpwRGJqFu1NVaiq\nitksa7jHE7lCLgzXFtDxBjXqD20hISGB884baXSkuDRp0iVEwiG+3lomT+wUQsSNrytdgE5xgcwf\nP1vpGZmomoq7vtHoKOI0SUMuDFfdFEHTVCr2ljNu3AQsFrmyeyZKS7+NosC+ze/L0odCiLhRW+dG\nQWG43NB51vIPr1JzqKrO4CTidElDLgxX26Syv3wt1ZVfU1Iy1Og4ceviiyeTmJhE3f4tcmOnECJu\nNDe5sSckk5iYaHSUuJefk45uslHndhkdRZymqBvyBQsWsHTp0hNue/7555k5cybXXXcdr7wSm4vm\ni9hV06xy6Mv3aGtt4fzzxxodJ26ZTCbOO28k7a0eql0tRscR/YiM/6K3NHuDqIEmBjllZa2ekJli\nQbNl0tzoQdPkk9J4csqG/NChQ9x11128//77J9y+du1aPv74Y1asWMFf/vIX3n33XTZu3NjjQUX/\nFFF1XK0qtfu/JCkpiYkTLzI60kmpr7yM+srLRsfo1t1330tO/hD27t5GWJWVVsTZkfFf9LbdBzvW\nHy/Mi/3pKvFQAxxWBVtSFqFwmObmJqPjiNNwyob8jTfeYM6cOcyYceKl6MrKypg1axY2m42EhARK\nS0tZuXJljwcV/ZOrVaWloY7mhlrOO28UJlPszqLSPvg72gd/NzpGtyZPvhSbxUTN/i00yjxycZZk\n/Be9raqmFoBzhuQZnOTU4qEGAKRnZBHROtZ2F/HjlN3PT37yE2bNmnXS7S6Xi9zcb97Z5uTkUFcn\nNxOI6FQ3qezY8Bbouqw/3gPS0tIZfs4Iavdtlnnk4qzJ+C96W2ODG4s9FWdaktFR+o1s5yBUrLik\nIY8rZ305UteP/1hc1r4U0aptitDiOkBKSgo33XSL0XH6hUsnT6K1sZpdX1cYHUX0czL+i7PR7g8Q\n9DWTliHzx3tSZooZ1ebE5Xaf8BwVsems15fLzc3F4/F0fu12u7tcMTmRtLQELJbYnZpwLEVRcDrj\n8917rGdvCrYT8dYyb95czj13cOf3YzF3/eFj9lS5jM5eOutqfvPya5R/uZHvf3tc1K8zOvfZiOfs\n8exMxn+QGtBXYj33/q01KCaFc4YPPi5nLGaPpgbEQu7hmo11ybmEgx503U9mZlZUr4uF7GciXnMf\n66wb8unTp/O73/2OefPmoWkaq1at4t577+32NS0t/rP9sX3K6UyiocFndIwzEsvZW/0aO7ZuJehr\nYfz4i7rkjMXcak7HHMdT5TI6e3Z2Mf62Rt56dTE/u/+2qF9ndO6zEW/Zs7JSjI7QI85k/AepAX0l\n1nPv2HUITdPJc2YclzMWs0dTA2Ihtymi4SeNxJDG3r0HMZmiW04yFrKfiXjLfbLx/4wa8rVr1/Lh\nhx/yxBNPMG3aNHbv3s3cuXMJh8OUlpYyderUsworBoaapghVez/Hau54ymSsszyz2OgIUTGZTOQW\nDGbvjk1UVVVRWFhodCTRj8j4L3pKvccFtjTyMxKMjhKVeKkBiTYTCYnpaG1W6uvdjBgxyuhIIgpR\nN+SLFi3q/P9p06Yxbdq0zq/vuece7rnnnp5NJvq9miaV6j3/pGTIYPLzC4yO069cfuUM9uzYxKvL\n/sgjC35idBwR52T8Fz3N7/fjb28lxXkuJpNidJx+JzPFTHOjE4+nYx65osjvONbFzyQ+0e98+dVe\nGqt3csnkyUZH6Xfmzb8FRTGxdu0ao6MIIcRxKqprUTWd3Nwco6P0S84UM+0mJ6FQSNYjjxPSkAtD\nRFSdsr/+gWZPZdQ3nIjoDSvMJD27mAP7dhEKhYyOI4QQXRyorAUUSgqlIe8NzmQTqs2JqoHHI8sf\nxgNpyIUhXK0qB7Z+hM1mo7T020bH6XeS7ApjLptDcnom27dvNTqOEEJ04XbXoVkHUZjpMDpKv+RM\nNqNbUtFNVjwet9FxRBSkIReG2Lq7kpb6SkaNHovNZjM6TlQiTz5G5MnHDE4RHUVRuGrmLVjtyaxf\nv87oOEII0cnn8+Jv92FPySbJHj9tSDzVAGeyCRQFS2Im9fWyHnk8iJ8zQfQr//vHV9B1nXlz5hgd\nJWr6zp3oO3caHSNqeTmZ2DNH8PZ7a9mw108gLAOyEMJ4da46wipkZ596zfpYEk81wGwCT6vGvuZU\nmtoCuOobjY4kTkEacmGIrZvXY7FYuemmW42O0i8Fwjr/3B/ClDMZt6eBtz7YzLL1XmnKhRCGO1hZ\ni66YGFwg9w/1hkBYZ/mnPupaIuxtGURbQGPF+oMy/sc4achFn6traCOiqlxbehuJidE9sECcnvKK\nEBFNJ23IJWg6HNqxjkafSnmF3OAphDCOruvUuVxo1gwKM+xGx+mXyitCNPpUEm0KTeFkdMWOv80t\n43+Mk4Zc9KlAWOd3//sx7YEQw8dfLe/Ye4m7VSXFYcKRkoklMYvyj5ejRSJ42lSjowkhBjBPQzNN\nre3UBZ0c8ISlBvQCd2vHOJ+WaELXoQ0n5lAD7hZpyGOZNOSizwTCOsvWe/n7B2Voip1Q2pi4mkah\nTJqEMmmS0TGikp1qxmKGzBQTJOXhbXKxZ/NqslLMRkcTQgxQgbDOO+sO4AtqNEScfLI7IDWgF2Sn\ndozzzmQzNotCXTADdJUkmg1OJrojDbnoM+UVIWrrm3Ef+ALn0EtwOBxxNY3Ccv+Psdz/Y6NjRGVc\nsY2MJDN5aRZyL/h/0HWdfZ+/zbji+FjRRgjR/5RXhPC11BHUbVgT0gCkBvSCI+O/okBOmpm6YAYK\nCummeqOjiW5YjA4gBg53q8q+LWVEIiqDz7+y8/syjaLnOawKt1+WTHlFiEB4NAfS86jbvxmTHgak\nKRdC9D1XcxACDbRoOaQlffNpndSAnnX0+F/ZEGHdHoVEczKN9XVGRxPdkCvkos9kp5pZv+JXhH0N\nlIyY0Pl9mUbROxxWhUnD7Py/lydz7oXX4vf7ef31ZUbHEkIMUEl6I6qm0komqY5v2g+pAT3vyPg/\n7+IkrhrpoI1MGhobCYWCRkcTJyENuegzppav8DXVkZQ7ikFJVgCcSWaZRtHLzs21MuVb38fmSGHL\nlk1GxxFCDFCp1KProNmzMR3uPqQG9L4JQ+xEbFn4Qxput8voOOIkZMqK6DN/ePVFFAWmXHsrY4pt\nZKV0DMQOq2J0tH7NYla4fHwxn146lx07v8Dr9ZKcnGx0LCHEAFNTV4MtIZ2p56SRkWyWGtBHijLM\npGdk034AXK5aCguLjY4kTkCukIs+oWkaZWvLsCem8i+3zmLW+EQmDbPH1UAcvvt7hO/+ntExzsj4\nYhvDxk2nxRvkk08+MjqOEGKAaW9vp7GpBd2RzazxiVID+pCiKFwwNJmwOY0DlbVGxxEnIQ256BMr\nVrxNa2sLw8ZPZ1hOnD4Moq2t4784lJJg4orLJoEtjb+t/pvRcYQQA4zLVUsoopOQmsOgpDhtPeK4\nBozKt2FKyKKxuRWfz2t0HHECcXpWiHjz1Vc7yMgZzJU3/pDsVDnsjDBxaBJDxlzFpi+3cvDgAaPj\nCCEGkKrqakKamZLCHBQlfq6K9xd2q8LQwYUEIzp7D1QZHUecgHRGote1tDTzj3WfMHjMdCaMGiqD\nsUGKnWYmXTGLlrZ2Fi9+xug4QogBQlVVKqtrUO1ZDI3XT0j7gYtH5qIrNnZ+XWl0FHEC0pCLXrdm\nzfu0+0MMmzCDkiy5j9goiqJw1cQSdEys+usqGhrkIRFCiN5XX++mPRhGd+RS7JQaYJSsVCspg3Jo\nbHDhD4aNjiOOccozo6ysjF//+teEw2EmTJjAz372M2y2rksUzZgxA5vNhtncsZboD37wA2bOnNk7\niUVc0TSNd99dRXJGPnlDxjI4M34HY9OceUZHOGujC2yMv/IWPvnzMzz//HMsXPi40ZFEjJMaIM5W\ndXUVoYhOdk4+9ji6ifNY/aEGjBhaxKYvKvnnV9VcMWGI0XHEUbq9Qt7Q0MDChQt58cUXWb16NQ6H\ng9/+9rdd9mlpacHr9bJy5Ureeecd3nnnHRmIRadPP11PVVUlJeNnkjvISpI9fj+UMc+dj3nufKNj\nnBW7VeE7d3wPszWBt995C03TjI4kYpjUAHG2dF3nUFUVYXM6w/Lie7nV/lADJowoxGxS2LW/Cl3X\njY4jjtJtd7Ru3TomTJhAXl4eADfffDMrV67sss+XX36Jw+HgzjvvpLS0lCVLlkiRF51++tN/x+V2\nkzf6GpmuEiMmnpPMkDFX4fHU8+ivlrPx6yCBsAzM4nhSA8TZam1toaXVi+rIpSTLanScAS8hIYH0\ndCfN9TW8+kmbjP8xpNuG3OVykZub2/l1Tk4OLlfXpzwFAgEuvfRSXnzxRV5//XU2bNjA8uXLeyet\niCsffvgBFRWHKDl3LDZHkjTkMSLZYWLw1B+BJYGP1/6Nj3f5WbbeSyAkTZToSmqAOFs1NR3TVWzJ\nebLCVgwIhHWatCy0cDuf72n4ZvyXptxw3Z4dJ/o448gcwSOuu+46Hn/8cWw2G0lJSdx5552UlZX1\nbEoRlxYv/iWKonD1/AdxWBXy082nfpHodeUVIfLyi8mb9D0a6g7R5DpIo09l04GA0dFEjJEaIM5W\ndXUVQT2BwfkZssJWDCivCNFuycZsBvwuVBUafSrlFSGjow143V6yzM3NZceOHZ1fu91ucnJyuuzz\nwQcfkJWVxbhx44COAdxi6f5KaFpaAhZL/LxTVhQFpzPJ6BhnxKjs27dvZ/v2rYwdOxZ77vkMzbGR\nlRX9/MFY/J1rzS0AmNLTut0vFrMfzb9PJT/TTv6EG9nz9fvs+fwdrrrpP3C3qFw2IsXoeGck1n/n\n8UpqQId4Pb6Mzu31evE0NqKklHDBOak4nY6oX2t09hOJpgbEYu6j+fepJKRkEW5IIEPzEGI0zgQz\nASwxn/1k4jX3sbodNadMmcIvf/lLqqurKSgo4M0332T69Old9qmqqmLZsmW89NJLqKrK8uXLKS0t\n7faHtrT4zz55H3I6k2ho8Bkd44wYlf0//uOnaJrGbXf9O4fagmQNMZ9Wjlj8nYdvuw0A6/I3ut0v\nFrMfLUGJEAyGSU3LJnXwFPZuWcvoKbeSPXZkTOfuTqz/zo+VlRUfb3ykBnSIt+PrCKNz79mzi/aA\nSiAlh3RrmIYGNerXGp39RKKpAbGY+2gJSoT2QBiTLZtk/yFqGttIMCfiwIyu6zGd/WRi/Xd+rJON\n/91eonA6nTz55JPcc889XH/99dTX13Pfffexdu1aHn30UQDuuOMOhg8fTmlpKaWlpUyYMIG5c+f2\n/N9AxA2Xqw6328W3vlVK7nlTAWT+eAwZV2wjI8lMaoKJ9FE3omk6+z77Xy4sif7qlRgYpAaIs1FV\nVUEYB1mZWXG9wlZ/cmT8JzEfkwKKvxZnkplxxbZTv1j0qlN2SVdeeSVXXnlll+9NmzaNadOmAR3z\nCR955JFeCSfi0+uvL0NVNR588D/4R3UYZ3JH8ydig8OqcPtlyWQkmQipQxk07mK2fbKcf26cxahR\nFxgdT8QYqQHiTPh8XtweD37rEEbJ6iox48j4/+XBIjY2bSIXFzdNnoAjjteH7y+kSxI9qqqqktWr\n32XKlCvIzh+Kq1WlJI4fBtRfOawK149PZESujauunUNbawsPPfSQ0bGEEP1EVVUFwYiO6siXT0hj\njMOqMPmcRIYNKSKFBtxNckN/LJCGXPSoF1/8DQB33fV9DtZHABgig3FMclgVslJN2HPHcdFFk9ix\nYwerV79ndCwhRD9QUXGQCAlYEzLIHyQrbMWic4cOBjT2HKg0OopAGnLRg/761xV88slHzJ79bYqK\nijngiWAxKRQ5+0dDbr7vR5jv+5HRMXpUUYaF+jaNhY/9HLPZzP/5Pw8TiUSMjiWEiGPNzU00NTfS\nbi1gcJYVs6l/TIfobzVgaHE+ZrOV2hppyGOBNOSiR4RCIRYu/E9qaqq59dbb0HWdg/URipwWrOb+\nMRibJl+KafKlRsfoUYUZFnR0EjKHM2/ePOrqali8+BmjYwkh4tjBg/sJRyBgL2JIP5qy2N9qgMVi\nITUjj/aWOvyBoNFxBjxpyEWP+M//fIiGhnpuuulWElMyWL21nfJDQdpDmjwBLIYVZnR8lFzZGOG5\n555j5MjRbNjwKW1trQYnE0LEI03TOHjoAK3aIHZ77DR6pQbEsuLiEnRdZfueg0ZHGfCkIRdnbcuW\nTbz99pvk5uaz4OEnWLbey9/K/XjaVA64I/JY3hiWZDfhTDZT2aCSmJjIokW/xOtt67wXQAghTsfB\nikpqG9r5qiUXX1Dni4NBqQExbOSwAnSTnf0H9hsdZcCThlyclUgkwn333Y2u6yxe/Bw7ajQavSoN\nPg27VSHRpshjeWNcUYYFV4tKMKwxYcKFXHPNdaxe/R4bNqw3OpoQIs58sXUnIc1CVTCH9MSOFkNq\nQOzKTLFgTimipclDa6t8MmokacjFWXnzzT8RDAa54YY5XHbZ5bhbVdoCGt6ARk6qGQ5PH/e0Rf+E\ntlilfbUD7asdp94xzhRmmNHRqWzouJnzX//1frKzs1m8+Bmam5sMTieEiBfNzU20NHmo14vQsJCd\n+s3qKlIDYpOiKOTmlxCKwJ49e4yOM6BJQy7O2M6dX/Haay9zxRVXsnjx/wUgO9VMTZOKSVHISftm\nMM5Kif9lr9SnHkd96nGjY/S4ooyOm64OecIAJCcn89BDP6WhoYG77rpdVl0RQkRl795dWMwK+9qL\nSEs0keT45oZ+qQGxq6TAiWpJYfvOPei6TC0yijTk4ow0NjbwxBMLSUxMYsGCRzGZOg6lIZkW2kM6\nWSkmbJaOwVgeyxvbUhJMpCeaOFQf7vze+PEXcP75Y9i06Qv+9V+/b2A6IUQ8aG9vp6LiICmD8tEt\niRSkf7O6itSA2FaYYSGSOITmFi81NVVGxxmw+s96RKLPhEIhHnvsERoa6nn66V+SlZXVuW1HVYgx\nRVYuLLETVjuuiowrtsljeWNcYYaFQ41hwuo3y1QuXvx/2batnPfff48lS57lhz/sP+vvCiF61q5d\n29E0lUbzcKae5+CCwTY8Xk1qQBzISjFhTR1MuHEPe/fuoqCgyOhIA5I05OK0RCIRbrttPh6Ph3/7\ntwe58MKLOrcFwjrbqkIMz7Fx3ZhEA1OK01WUYWF/Q4SaJpXBh9cNtlgsLF/+JjNmTOO///vn5OTk\nMH/+LQYnFULEGp/Py4ED+0hML+BAKJVrRtqZMNhudCwRJUVRKMy04/EPxuPZR3NzE+npg4yONeDI\nlBURtUgkwrx5pXz++WeUlAyltPTbXbZvqwwRjOhMLJGPJuPNkaepVjV2nS+en1/AH//4Jna7gyef\nfIzdu3f1fTghREzbunULuq7TaDkXh9XE6AKpAfGmMMNCOHEYEU1h9+6vjI4zIElDLqISCoWYP/8G\ntmzZxEUXTeLll5eiKN98BKlpOpsOBnEmmynJ6p8fvFh+8V9YfvFfRsfoFWkJCqmJJiobj7+B8/zz\nx/Lqq8sZOnQYDz30ANu2lRuQUAgRi1yuWqqqKsjKH05texLji22d9w/1N/25BhRlmMGaROKgYioq\nDtLa2mJ0pAFHGnJxSq2trcyYcRWbN3/BxIkX86c/vd15E+cRe+rCtPo1JpbYuzTq/YlSWIRS2D/n\n1imKQnGmldpmFVU7/i77yZMv5Ve/WkJCQgILFjwoa5QLIQiHQ2zatBG73U6zZQRmk8IFQ/rv1fH+\nXANyUs3YLApqyggUBXbs2Gp0pAFHGnLRrcrKCn784/twuVxcd931vPnmCiyW46+Af3EgRILNxKgC\nqwEpRU8YnGklrOrUtZx4veAhQ0r49a+fx+nMZOHC/+T3v/8fWRJRiAFK13U2b/4nPp+PkWMuZm+9\nwnl5VpId0lbEI5NJoSjTSq3PwZAhw6mqqsDjcRkda0CRM0eckK7rrFmzmnvv/QG1tTUsXvwcL774\nynFXxgGqmyLUNEeYMNjWuUKHiD+DszreTB15QNCJ5OXl8/zzv+Oiiy7m2Wf/m6uuupTt2+VKihAD\nzc6d26moOMiwYedQFchC03UmlsiNnPFscKYVX1CjcOgYbDYbmzf/E1WN/wc6xQtpyMVxKioOsWDB\nv/PMM4vIzMxiyZLfcd111590/00HQphNCuNlndm4lpliJtFmorKx+wE4JSWVJ574OVOmXEFlZQU3\n3HA9jzyygEAg0EdJhRBG2rNnJzt2bCUnJ5eRoy9gW2WI4gxLl4fBifhz5KKMy2thzJgJtLa2sGOH\n3DPUV6QhF5327dvLrbfO5ZprpvLll5u56ebbuesnL7C9OZeNXwcJhI+fW9zSrrG7Nsyo/P7/UaX2\n99Vof19tdIxeoygKRRlmapoiaCeYR340s9nM88+/yCuvLCMtLY0//OEVLrpoLG+++QaapvVRYiFE\nbwqEdTZ+HWTVlnY2fh3E6w+zadPnlJdvJjMzi0suuYKvalQCYZ2JQ/v/1fH+XgPyB1mwmBQqGyOU\nlAwjP7+Q3bt3ysOC+kj/7qDEKQXCOs+9uoIp069l2vQr+PTTdRQXD+bpXzyLMvwWPv1aZWdNiI93\n+Vm23tvZlB8ZqF8oa6WqMcz5hf3/6rj62iuor71idIxeVZhhIRjRcbdG9zHlVVddzWefbeFf/uX/\nA+C3v13Cd797OytWvI3P5+vNqEKIHnBs0330GL9svZePd/nZWR1g3ZY9/OHPK9n39R6Ki4dw8SXT\n2HRIZem6Ntr8OgWD+v/V8f5eAyxmhfx0M1WNERRF4aKLJpOUlMxnn62T+eR94JQNeVlZGbNnz2bG\njBn89Kc/JRQKHbfP888/z8yZM7nuuut45ZX+e7DGq2MHXH9IY//+r3n5ld9zzey5/PyRH3Bgdznp\nuecw94dLWPXeR/gTRlDZGKHRq1HfpuINaLhbI5QfCnYO1Gt3+Plif5Dmdo33t/lPeAVdxJfCjI4b\ndk81beVoNpuNhQsfZ+PGL7nvvgfQdZ0lS55l/vwbeOyxR3jttd9TU1PdW5FFL5MaEP+iarqPuvDi\nD2ms39VKTW01QfdWzLVrsDRuJhRWyRg8iXEXXMrrn/l5Z1M7B+sj+IIayz/1SQ3oBwqdFlr9loPu\nCQAADS5JREFUGi3tGjabnSuumIbVauUf//iQyspDRsfr17pdMLqhoYGFCxfy5z//mby8PH72s5/x\n29/+lvvvv79zn7Vr1/Lxxx+zYsUKVFXljjvuYNSoUUyaNKnXwx8rENYprwjhblXJTu36uN6z2bZ+\ndzt7K9t79M/sq22BkMZv3t3Pts3raamvJNjeRmPVdhL0VnxBHT2pgJILb6Dkku/gyByBO6yz8K0m\nGr0qnrbjm7KqRpXsrX4qGyJoOkQ0nfxBVhp9KuUVISYN6/8fW/ZnWSkmLCb4aKefupZjjqVTHH/b\nas2YB8/knkevJ+TazLqPP2D9+n/w6qsv88ijPyUlPYtzzhvDFZdMZMa11zJy5GhCqtIjx/u0lITO\nv0NvnF8DldSA+K4BR76/bL2XRl/HeL6zBrZWBJk70canO5uorGpGDfvRI+2gBmjT/CzZEwDVh/Vw\nCWjQ0/FoQ/Fo+ezdZWdjbTOHGiJ4AzoWs0JWqllqQD+RnWKmujHC8k+9XFhiZ1xxMldeeQ3r13/E\npxv+gW3HIZSM0eQ5k2PmeD+nSGFImt6rP68vKLqun/Qt7YoVK1izZg1LliwBYNeuXfzwhz/kgw8+\n6Nzn4YcfZsSIEXznO98BYOnSpezevZunnnrqpD/U42nrqfydjh10ADKSzNx+WTLAWW0LaGba/aEe\n/TN7YluyOcj0YV5MZjN/+oeL+qZW/N4mfC0e6vZuIFC/B7enHq+3Y+qAyWIjOfsckrJHUjh8LEkF\nE2m3FnT+eWaTgsOqMDzHQt4gC3trw9itCooCwbBOIKwzLLtjreoDnjBhVSfJbuq4mVOBUQU2Zo1P\njOrf61ScziQaGmJrykP4tpsBsC5/o9v9YjF7NJzOJKrrvDz4egO1zSqThtpB6TgG512cxJ8/9532\ncdva0sJDi/6HXV+uw1P1FQFfKwpQUJBPVlY2QWsOtuRskgflYLE6MEXauHZiETm5eXxRl07Elok9\nIQWT2dztzyvKTuDb423dZjnTbb0xIGdlpfT4n9kbpAbEdg044TYtgqIFSbOFmDnBzobt9eys8kLE\nDxE/Ji2AWffjMGuouk7k6OsuiomIkkBiYiJJKelUe1PA4SRMAoGwTjCsU5JlobZF5aAngqbrFDkt\nFB9+0q/UgNjMHa2klAQWr3Dxt61+slNNDM+xdh5j4XCIP777GaGWg4CC6sgjMS2POVOKSEpKYfmn\np18fempbYoINh0nttZ/X0zXgZON/t1fIXS4Xubm5nV/n5OTgcrmO22fq1Kld9vn444/PJusZKa8I\n0ehT8XnbWL3sKdo8+wH4nb3jF9kesZBRPAE4/P5D13nvj2bclbuob2jo/B6ALTGNvw4fCUB9m4bZ\nbCKiqjRWbEELB1liUwCd9qBGQnoeSRnFh1PorHzVhKap7N628fCP+ub9zrLiYSSnZ1F/5MqzrhMJ\nemmu3sGvbYffoYU6bohLzRuJ2WpHi4RZbldRI2FcdTX4Gg6hayq6rqJrKk8pCs78oQTCCkd+mqZD\nyNeMooWwJWWQmjmOpKzzSC4cT865U0iwWzknx0rBIDO7asM4rAp2i9KxZKECU89LYFyx7biD05lk\n5rbLkimv6PhoM6KCSQEOH6tZKf1/DmF/V14RwqwoRFSdPXVhOla5DLO7NkSL/9ibNcO0Hz5et1cd\nO43hyDYF++g7GTf6TgB8DZV49m8gN0WjramOuspqAu6vCLd/SjjgJdBax4dvdRxQ2uHzMSlzCBZb\nImarg98nJ2C1OXC73fhbXSgmE4piwmQysyjBTtG5F9PYDorJ3PEfCq2uPbwQaQZFoT2og6Jgc6SS\nlj8KFIW/vW4GFDxtGk2VWyk4bwrTbvy+XPEjPmuA39tIpOUAAG3A/9SZgY77IpSjLj95gZdqO2Zt\nHnvPxLHbLGYTqtpxrPuAl2rNoOvHfYroA16q6Xjd0dsUoP2obfXHvK4deKn68Dav2vkagOqjtjV4\nu76ulggvVWigqfgCIUy6CrqKpkOjDn+uNBFRNWwq6CiEcRBSEtBNqdhTk8lITaSi2YbFlojFnoDZ\nbMOsKEyJpgbs9BPWdKymb5oVqQHxbdOBAC1+jRSHQqNXYx9huozzbaOwU8Ag9QDJbXVE2qp54+3N\noJhoDdlQsaEqVnRM+FB4qdYKKLhbNfSjetpvzssj557SzbbuXtfBb+44zk/3dSfbZkkuJiEtq89r\nQLcN+YkunpvN5tPe51i9cXUo+LVOUqJGUqKd7/z4V53fHzvYga7Dtorjl2QbCNty0iys2eo9bts1\nY5O5cKiD/ylrouGo4pCZaubqCwbhsJn4txuS2bQ/gKslQk6ahQuHOnDYTGRlahxoOvnrekrMXUX8\n+3tR7xpz2aMUxMa5hYmcW9j1+76gxpDc4/9tjxx/ZuvJj80u20pGwsSRMXeenGxbSLHF7b9lT4jP\nGpAH2Xmd34+l40lqwOmJuXMvyhoQc7mj9MnXrSQl2pk8omsD2nUsTwYKjtsWK8d7PNeAU05ZKSsr\n47nnngNg9+7d3H///bz//vud+zz88MOMGjWK2267DYA//OEP7N27l8cff7yXowshhOhNUgOEEKJv\ndPtWdsqUKWzevJnq6o4VEt58802mT5/eZZ/p06ezcuVKgsEgfr+fVatWHbePEEKI+CM1QAgh+ka3\nV8gBPvroIxYvXkwkEuHcc89l0aJFbNiwgQ8//JAnnngCgN/85je8++67hMNhSktLuffee/skvBBC\niN4lNUAIIXrfKRtyIYQQQgghRO+RJ3UKIYQQQghhIGnIhRBCCCGEMJA05EeJ10dEnyq3qqo88cQT\nzJ49m9mzZ/Pwww+f8O/W16L5fR9x//33s2jRoj5M171osr/77rvMmTOHWbNm8eCDDxIOhw1I2lU0\nuRctWsS3vvUtZs+ezTPPPGNAyu4tWLCApUuXnnBbLJ6fIj7E6/gPUgOMIDXAGP16/NeFruu6Xl9f\nr1966aV6TU2Nruu6/thjj+nPPvtsl33Kysr0+fPn68FgUG9vb9fnzp2rf/bZZ0bE7RRN7ldffVW/\n9957dU3TdF3X9R//+Mf6888/3+dZjxZN7iOWLl2qT548WX/66af7MuJJRZO9vLxcnzp1qu52u3Vd\n1/UHHnhAf/nll/s869Giyb1mzRr95ptv1lVV1SORiD5v3jx9zZo1RsQ9zsGDB/Xvfve7+vjx4/XX\nXnvtuO2xeH6K+BCv47+uSw0wgtSAvjcQxn+5Qn7YunXrmDBhAnl5HQ+UuPnmm1m5cmWXfcrKypg1\naxY2m42EhARKS0uP26evRZN79OjRPPDAAyhKx9OwRo0aRU1NTZ9nPVo0uQG2bdvGmjVruOWWW/o6\n4klFk33VqlXMmzePrKwsAB599FFmzZrV51mPFk1uTdMIBAIEg0ECgQChUAi7PTaeVPnGG28wZ84c\nZsyYccLtsXh+ivgQr+M/SA0wgtSAvjcQxn9pyA+L9hHRx+5TV1fXZxlPJJrcEydOZPjw4QDU1tay\ndOlSZs6c2ac5jxVN7ra2Nh577DF+/vOfn/LJf30pmuyHDh0iGAxy9913c+ONN7JkyRJSU1P7OmoX\n0eS+9tprKS4u5vLLL+fKK6+kqKiIyy+/vK+jntBPfvKTbgtaLJ6fIj7E6/gPUgOMIDWg7w2E8V8a\n8sP0XnpEdG87nUy7du3i9ttv54477uCyyy7r7Wjdiib3ww8/zN13301+fn5fxYpKNNkjkQjr1q3j\nF7/4BW+99Ratra08++yzfRXxhKLJ/frrr+Pz+Vi3bh3r1q1D13WWLFnSVxHPSiyenyI+xOv4D1ID\njCA1IPbE6vl5OqQhPyw3Nxe32935tdvtJicn57h9PB5Pl32OfkdmhGhyA3z44Yd897vf5YEHHuB7\n3/teX0Y8oVPldrlcfPnll7zwwgvceOON/OlPf2LVqlU89dRTRsTtIprfeXZ2NldccQVpaWmYzWZm\nz55NeXl5X0ftIprcH330ETfccAMOhwO73c78+fPZsGFDX0c9I7F4for4EK/jP0gNMILUgNgTq+fn\n6ZCG/LB4fUR0NLk3bNjAggULeOGFF5g9e7YRMY9zqtw5OTl88sknvPPOO/zlL3/hlltu6VwdwGjR\n/M6vvvpq1q5di9frRdd1ysrKGDNmjBFxO0WTe/To0axZswZN09A0jbKyMsaOHWtE3NMWi+eniA/x\nOv6D1AAjSA2IPbF6fp4Oi9EBYoXT6eTJJ5/knnvu6fKI6LVr13Y+InratGns3r2buXPndj4ieurU\nqTGf+8jHZI8//ji6rqMoChMnTjR0YIsmd6yKJvvVV19NXV0dN998M5qmMWrUKBYsWBDzue+++26e\nfvpprr/+emw2G2PGjOFHP/qRobm7E+vnp4gP8Tr+R5tdakDPkhoQG+Lh/Dwdin6iiTdCCCGEEEKI\nPiFTVoQQQgghhDCQNORCCCGEEEIYSBpyIYQQQgghDCQNuRBCCCGEEAaShlwIIYQQQggDSUMuhBBC\nCCGEgaQhF0IIIYQQwkD/P/I9Zki36whaAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1249cde10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1, 2, figsize=(14, 4.5))\n", "mfit.plot_mfit(S_fitter, ax=ax[0])\n", "mfit.plot_mfit(S_fitter, plot_model=False, plot_kde=True, ax=ax[1])\n", "print('%s\\nKDE peak %.2f ' % (ds_fret.ph_sel, S_pr_fret_kde*100))\n", "display(S_fitter.params*100)" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0.56280000000002195,\n", " 0.5641960660315466,\n", " 0.11285967014629783,\n", " 0.0024956985141657965,\n", " 0.001895906952335234)" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "S_kde = S_fitter.kde_max_pos[0]\n", "S_gauss = S_fitter.params.loc[0, 'center']\n", "S_gauss_sig = S_fitter.params.loc[0, 'sigma']\n", "S_gauss_err = float(S_gauss_sig/np.sqrt(ds_fret.num_bursts[0]))\n", "S_gauss_fiterr = S_fitter.fit_res[0].params['center'].stderr\n", "S_kde, S_gauss, S_gauss_sig, S_gauss_err, S_gauss_fiterr" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Maximum likelihood fit for a Gaussian population is the mean:" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(0.56308872263728393, 0.10287080389066304)" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "S = ds_fret.S[0]\n", "S_ml_fit = (S.mean(), S.std())\n", "S_ml_fit" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Computing the weighted mean and weighted standard deviation we get:" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[0.55094283590005966, 0.10118832937353994]" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" } ], "source": [ "weights = bl.fret_fit.get_weights(ds_fret.nd[0], ds_fret.na[0], weights='size', naa=ds_fret.naa[0], gamma=1.)\n", "S_mean = np.dot(weights, S)/weights.sum()\n", "S_std_dev = np.sqrt(\n", " np.dot(weights, (S - S_mean)**2)/weights.sum())\n", "S_wmean_fit = [S_mean, S_std_dev]\n", "S_wmean_fit" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Save data to file" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [], "source": [ "sample = data_id" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The following string contains the list of variables to be saved. When saving, the order of the variables is preserved." ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": true }, "outputs": [], "source": [ "variables = ('sample n_bursts_all n_bursts_do n_bursts_fret '\n", " 'E_kde_w E_gauss_w E_gauss_w_sig E_gauss_w_err E_gauss_w_fiterr '\n", " 'S_kde S_gauss S_gauss_sig S_gauss_err S_gauss_fiterr '\n", " 'E_pr_do_kde E_pr_do_hsm E_pr_do_gauss nt_mean\\n')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is just a trick to format the different variables:" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sample,n_bursts_all,n_bursts_do,n_bursts_fret,E_kde_w,E_gauss_w,E_gauss_w_sig,E_gauss_w_err,E_gauss_w_fiterr,S_kde,S_gauss,S_gauss_sig,S_gauss_err,S_gauss_fiterr,E_pr_do_kde,E_pr_do_hsm,E_pr_do_gauss,nt_mean\n", "\n", "22d, 2552, 403, 2045, 0.276600, 0.279934, 0.070817, 0.001566, 0.001552, 0.562800, 0.564196, 0.112860, 0.002496, 0.001896, 0.092200, 0.088573, 0.091123, 25.373585\n", "\n" ] } ], "source": [ "variables_csv = variables.replace(' ', ',')\n", "fmt_float = '{%s:.6f}'\n", "fmt_int = '{%s:d}'\n", "fmt_str = '{%s}'\n", "fmt_dict = {**{'sample': fmt_str}, \n", " **{k: fmt_int for k in variables.split() if k.startswith('n_bursts')}}\n", "var_dict = {name: eval(name) for name in variables.split()}\n", "var_fmt = ', '.join([fmt_dict.get(name, fmt_float) % name for name in variables.split()]) + '\\n'\n", "data_str = var_fmt.format(**var_dict)\n", "\n", "print(variables_csv)\n", "print(data_str)" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# NOTE: The file name should be the notebook name but with .csv extension\n", "with open('results/usALEX-5samples-PR-raw-%s.csv' % ph_sel_name, 'a') as f:\n", " f.seek(0, 2)\n", " if f.tell() == 0:\n", " f.write(variables_csv)\n", " f.write(data_str)" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" }, "nav_menu": {}, "toc": { "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 6, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 0 }
mit
boffi/boffi.github.io
dati_2017/hw03/01.ipynb
2
375650
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Initialization\n", "#### Notebook stuff" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "init_cell": true }, "outputs": [ { "ename": "FileNotFoundError", "evalue": "[Errno 2] No such file or directory: '01.css'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-1-7f9575a7d9b9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mIPython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdisplay\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mdisplay\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mLatex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mHTML\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdisplay\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mHTML\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'01.css'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '01.css'" ] } ], "source": [ "from IPython.display import display, Latex, HTML\n", "display(HTML(open('01.css').read()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Numpy and Scipy" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "init_cell": true }, "outputs": [], "source": [ "import numpy as np\n", "from numpy import array, cos, diag, eye, linspace, pi\n", "from numpy import poly1d, sign, sin, sqrt, where, zeros\n", "from scipy.linalg import eigh, inv, det" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Matplotlib" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "init_cell": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "plt.style.use('seaborn-paper')\n", "plt.rcParams['figure.dpi'] = 115\n", "plt.rcParams['figure.figsize'] = (7.5, 2.5)\n", "plt.rcParams['axes.grid'] = True" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Miscellaneous definitions\n", "\n", "In the following `ld` and `pmat` are used to display mathematical formulas generated by the program, `rounder` ensures that a floating point number _close_ to an integer will be rounded correctly when formatted as an integer, `p` is a shorthand to calling `poly1d` that is long and requires a single argument, `vw` computes the virtual work done by moments `m` for the curvatures `c`, when the lengths of the beams are `l` and eventually\n", "`p0_p1` given an array of values `p` returns first `p[0], p[1]` then `p[1], p[2]` then..." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "init_cell": true }, "outputs": [], "source": [ "def ld(*items): \n", " display(Latex('$$' + ' '.join(items) + '$$'))\n", "def pmat(mat, env='bmatrix', fmt='%+f'):\n", " opener = '\\\\begin{'+env+'}\\n '\n", " closer = '\\n\\\\end{'+env+'}'\n", " formatted = '\\\\\\\\\\n '.join('&'.join(fmt%elt for elt in row) for row in mat)\n", " return opener+formatted+closer\n", "def rounder(mat): return mat+0.01*sign(mat)\n", "def p(*l): return poly1d(l)\n", "def vw(emme, chi, L):\n", " return sum(((m*c).integ()(l)-(m*c).integ()(0)) for (m, c, l) in zip(emme, chi, L))\n", "def p0_p1(p):\n", " from itertools import tee\n", " a, b = tee(p)\n", " next(b, None)\n", " return zip(a, b)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 3 DOF System" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Input motion\n", "\n", "We need the imposed displacement, the imposed velocity (an intermediate result) and the imposed acceleration. It is convenient to express these quantities in terms of an adimensional time coordinate $a = \\omega_0 t$,\n", "\n", "\\begin{align}\n", " u &= \\frac{4/3\\omega_0 t - \\sin(4/3\\omega_0 t)}{2\\pi}\n", " = \\frac{\\lambda_0 a- \\sin(\\lambda_0 a)}{2\\pi},\\\\\n", " \\dot{u} &= \\frac{4}{3}\\omega_0 \\frac{1-\\cos(4/3\\omega_0t)}{2\\pi}\n", " = \\lambda_0 \\omega_0 \\frac{1-\\cos(\\lambda_0 a)}{2\\pi},\\\\\n", " \\ddot{u} &= \\frac{16}{9}\\omega_0^2 \\frac{\\sin(4/3\\omega_0t)}{2\\pi}\n", " = \\lambda_0^2\\omega_0^2 \\frac{\\sin(\\lambda_0 a)}{2\\pi},\n", "\\end{align}\n", "\n", "with $\\lambda_0=4/3$.\n", "\n", "The equations above are valid in the interval \n", "\n", "$$ 0 \\le t \\le \\frac{2\\pi}{4/3 \\omega_0} \\rightarrow\n", " 0 \\le a \\le \\frac{3\\pi}2 $$\n", " \n", "(we have multiplied all terms by $\\omega_0$ and simplified the last term).\n", "Following a similar reasoning, the plotting interval is equal to $0\\le a\\le2\\pi$." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "l0 = 4/3\n", "# define a function to get back the time array and the 3 dependent vars\n", "def a_uA_vA_aA(t0, t1, npoints):\n", " a = linspace(t0, t1, npoints)\n", " uA = where(a<3*pi/2, (l0*a-sin(l0*a))/2/pi, 1)\n", " vA = where(a<3*pi/2, (1-cos(l0*a))/2/pi, 0)\n", " aA = where(a<3*pi/2, 16*sin(l0*a)/18/pi, 0)\n", " return a, uA, vA, aA\n", "# and use it\n", "a, uA, vA, aA = a_uA_vA_aA(0, 2*pi, 501)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### The plots" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvAAAAE3CAYAAADMo3XrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAARrwAAEa8B9/1LhAAAIABJREFUeJzs3XmcVnX5//HXNRuzMoDsIAgjKJsCojnu5ZaZW5laZplZ\nv2i1tEXNtDLLLCm/FmZarmnmVmZqSqKiuCAii4Aw7DCsA8y+3tfvj3MP3twOMGdmmPu+Z97Px+N+\nHO7P+Zxzrvvi5nDNmc/5HHN3REREREQkNaQlOgAREREREWk9FfAiIiIiIilEBbyIiIiISApRAS8i\nIiIikkJUwIuIiIiIpBAV8CIiIiIiKUQFvIiIiIhIClEBLyIiIiKSQlTAi4iIiIikEBXwIiIiIiIp\nRAW8iHQ5ZnaDmVUmOo7OZmarzOz2RMfR2czsUjP7XKLjADCzk8zsmhbaLzUzN7O+iYhLRLoWFfAi\nIpLqLgWSooAHTgI+VMADTwPFwI5OjUZEuqSMRAcgIiLSFmaW4+41iY6jNdx9C7Al0XGISNegK/Ai\n0uWZ2UHR4QuXmNkfzWy7mW0zs+ui6882s0VmVmlmz5nZoBa2/aKZ/dnMdphZmZlNM7PMuOOMN7Nn\novspN7OnzGxUXJ9LzWyBmVVH9zPbzI6LWW9mdoWZLTGzOjNbY2bXmpnF7edMM3vPzGrNbK6ZndDK\nXBxjZjOjn6My+rm/FrP+Q8NwosNC3MymxLS5mf3QzH5lZpvNrMLM7jWzgha2O8PMHo0eb+Mehpgc\nb2azzKwmmpcHzWzgHv4eppvZVmCBmc0ETgTOjK53M7thL59/lZndbmbfNrPV0Zj+bmZ5Znaomb1o\nZlVmNt/Mjo3bNs3MrjGzFdG/m+Vm9t2Y9TcA1wN5MbHMjK770BAaM+tjZndF81drZm+Z2elxx5xp\nZv82s0+Z2eJobLPMbPyePqOIdH26Ai8i3ckvgCeAC4CPAz+LFpynANcB6cBtwJ+As1vY9gXgQmAK\ncANQB/wIwMwOBF4BVhMM6TDgp8ArZjbB3beY2fHAX4HfAM8A2dF99Yk5zm+BqcAvgdeAydH9RKJt\nmNkE4MloPN8HhgD3A7329uGjn/Xp6H4/F43/UKDnXrO2Z98C5kU/70jgV0AP4KK4fncCfwc+DZwG\n/MLMytz9jmhcR0Q/yyyC/PYGbgJmmNkR7l4bs69fAs8BFxP8H7YSeACoBq6K9lm3j7jPAd4jyPMw\nYBrwR2AS8AfgZoLvw+NmNjzm+LcAV0RjeBk4GfitmeW7+8+Bu4ChBLn9WHSb8pYCMLN0gu/AwcDV\n0Zi/CjxtZqe6+4sx3ScSDMu5DmiMxvGYmY1x98g+PquIdEXurpdeeunVpV4ExXVlzPuDAAf+Eddv\nJUEROzSm7SqCYjknbtuX47a9CagCekff3xp93y+mz1CgHrghZt/b9hL3SKAJmBrX/iNgJ5AXff8Q\nsArIiOnzqWict+9l/1OifSbspc+q+H0QjOt2YEpMmwMrgPSYtq9Gc3do3Hb3xe3vbwQFa1r0/ePA\nWiArps9HotteGvf38N8WYp4J/LuV341V0WP3iGm7J7rvC1rI1enR932jf5e/jtvfH4FKIL+l715M\nv0uj++sbfX929P0nYvqkAQuBmXGfrQoYENN2bnTbiYn+t6aXXnol5qUhNCLSnfw37v0yYLG7x16x\nfZ/g6vmQuL5PxL1/FMgFJkTfHw/8z4OxzgBE9/tqdB3AXKBPdKjJaWaWF7fPU6LH/oeZZTS/CK5O\n9wQOifY7GvinuzfGbPtPgquze1NCcEV4upldaGb999F/X55y96aY949G4z8qrl9LuRtC8AMOBPl5\n0t3rmzu4+xsExfbxcdv+q50xA7zk7nUx79+PLv/bQtuB0eVHgEyC3yTE+juQR3D1PozjgQp3/09z\ngwdX0/8BHBO9Qt9snrtvinn/XnQ5FBHpllTAi0h3sj3ufT0fnhWkuYjMjmvfHPe+uaBqHi/fG9jY\nwjE3ER0i4+7/Az4PjAGeBbaa2d/MrF+0bz+CAngL0BDzeiu6fljMMXeLJ1pIb23h+LF9tgOnEhTx\n9wIbzewVMwtbfDaLj6GM4IeIQXvrRxty18K27dHS9wB33xHfxgffg97RZXyczfHEx7kvvWn5s2wi\n+EEhP6atxXj58HdURLoJFfAiIq0Tf7V6QHRZGl2WxbTF9ytrfuPuD7r7UQRDMr4GnA78X8w+HDgW\nOLKF10sxx9wtnugV2wP29SHc/U13/wTBePkzCArFp82s+f+DWiArbrM9FafxMfQhGJdeurd+tDF3\nzR9hD7Hsb81xxMc5IG59mP3t6TM3EAzLERFpkQp4EZHWOS/u/fkEN04uiL6fBXzMzHYV0WY2BDiG\n4ObW3bh7mbvfS3BT6dho84zosp+7z2nh1Xwl9g3gnOjwmmbnEFy5bRV3r3X35wh+eBjEBzfAro2J\np9nptOysuKEe5xMU2G/F9Wspdxv44GbTWcC5FjOrj5kdSTDu/UO5a0E9+/9q9JsEhfUFce0XEIxR\nnxsTS4/4WYNaMAsoMLOPNzdEtzkfeC1uaJKIyG40C42ISOuMNLO/Ag8T3OD4fWBaTFE9DfgS8F8z\n+wXBBZIbCIY//AHAzH5KcOV9JsFQibEEhfddAO7+vpndBtxnZr8FZhPMjFMEnOfup0SP9UtgDvCv\n6JSPQ4Afs4cZT5qZ2ZnA5QRj0tcQDNm5EpgbHf4C8AhwZzTWVwiG3Jy2h11mAU+a2XRgBMHsLY+6\n++K4fh81s1uA5wl+GPgs8A3/YAaVXxDMjPMfM/s9wfCSXxKM9X54b58pajFwqZmdTfCDwQZ339CK\n7VrN3bdG/26uMrM6gnsbPkowk8317l4VE0sGcIWZzQLK3X1pC7t8muCHgvuj02o2z0IzhuBeCBGR\nPVIBLyLSOtcSzDf+CMFMK3+MtgHg7mstmIv9FuA+givRLwGfirmx9U2CaQjPBwqB9QRXwH8Wc5zv\nAksIhtdcA9QAy4GnYo71rpl9Cvg1QTG+GPgiwWwqe7OcYIz6z4GBwDaCG2SvjunzF4LZcL4SjeUJ\n4Nu0fPPo7QTDdu4juAL+BPCNFvr9v+j+vk4wNOQ6d/9jzOd528xOJZjZ5x8Ew3ieAb7nu08huSe/\nJpiO8V6C3yT8lOCHp472A4IfyL5CkLO1wFXufmtMn6cIvhs/JJgS9GWC2Xh24+5NZnYGwffllwRD\nmRYAn3T3mfshdhHpQsw9UcMJRUSSn5kdRDDd5Gfc/dHERpM8zMyB77v7b/bS5yTgReBId5/TWbGJ\niHR1GgMvIiIiIpJCVMCLiIiIiKQQDaEREREREUkhugIvIiIiIpJCVMCLiIiIiKQQFfAiIiIiIilE\nBbyIiIiISArRg5zimFke8BGglOCx2SIiIiIiHS0TGAS8EfM051ZRAf9hHwFmJDoIEREREekWTgb+\nF2YDFfAfVgrwwgsvMHz48E49cFVVFbNnz6a4uJi8vLxOPXYqUr5aT7kKR/kKR/kKR/kKR/kKR/kK\nJ5H5Wr16NaeccgpEa88wVMB/WAPA8OHDOfjggzv1wJWVlaxatYqioiLy8/M79dipSPlqPeUqHOUr\nHOUrHOUrHOUrHOUrnCTJV+gh27qJVUREREQkhaiAFxERERFJISrgRURERERSiAp4EREREZEUknQF\nvJldZGavmlmlma1qRf/LzGyVmVWb2UwzG9UJYYqIiIiIJEQyzkJTBtwGDAG+vbeOZnYi8HvgTOAt\n4KfAv8xsvLs37e9ARURE5MMiEachEqGxyYNXJELEwfGgg4MDHtPmu9oc9w/2VVlVw9ZaWFNWQ16d\ndfpnSTVVylcozfmqqmsklSbtSboC3t3/C2Bm57ei+5eBh9395eg2PwG+BhwPzNzXxmbWB+gT1zwM\ngnlBKysrWx94B6iurt5tKXunfLWechWO8hWO8hVOMuQr4k5lXRPlNQ2U1zZ+8KpppLy2gar6Jmob\nItQ0NFHTEKG2oYmahua2SPTPTTRGmgt0p6Epsuu97zuEkDLgnTc7fK9dl/IVTgbWfwMXHNm5ZXFV\nVaiHr+7G3Dv+n1lHiBbwv3H3g/bSZx5wh7vfEdP2BvCgu9/WimPcAFzf0rrp06czaNCgsGGLiIgk\nTG0TlNXBznqjoh7KG6C84YM/VzQYFQ1Q0wiOrs6KNLu4qImj+nduTVxaWsrUqVMBRrn78jDbJt0V\n+JAKgJ1xbTuAnq3c/jbggbi2YcCM4uJiioqK2hleONXV1bueBpabm9upx05FylfrKVfhKF/hKF/h\ntCdfDU0R1m6vZdW2atbvqGXDzlrW76yldGcdG3bWsrOmsU0xZaQZPbMzgldOBrlZ6eRmppOdmU52\nZho50WVuzPsemWlkpqeRmWZkpBsZaUZGWhoZ6UZ6msW0p5GeZqQZmIHF/OAQvAezoM2ibUTbDKip\nqWHu3LeZcsQR5OTktOnzdSc1NTXMeVv5aq3mfJ10zFH0KSzo1GOXlJS0edtUL+ArgMK4tl5AeWs2\ndvcygjH3uzSfRPLy8hL2RK7c3Fw9PS0E5av1lKtwlK9wlK9w9pavitoG3t9UQcnmKkq2VFKypYoV\nWypZXVZNU2TfVwmzMtLol9+DfgUxr+j7vvk96JWbSWHOB6/crPRd//8lm8rKSkqyYFj/Xvp+tUJl\nZSXLlK9Wa85Xn8KCTs9XXl5em7dN9QJ+PjC5+Y2ZZQNjou0iIiJJzd3ZXFHHog07eW9DOe+VlrNo\nQzmrt+19fHxuVjrD+uQytHcOQ3rlMLR3LkOifx7SO4cD8rKStiAXkfZLugLezNKBzOjLokU57l7b\nQve7gafM7H6CWWh+BqwHXumkcEVERFqtoraB11ds57l1xqMPLeC9jZVsq6rfY/8hvXIY2S+Pon75\nuy0H9sxWgS7SjSVdAQ9cAvw15n1NdGlmdg1wsbuPA3D3l8zsuwTj2PsRFPFnawpJERFJBht31jJ7\nxVbeWrWduau3s3RTRXSKxHRiR3BmpadxyMACxg7qybghPRk7qCeHDupJfo9k/G9aRBIt6c4M7n4P\ncM8e1t0E3BTXdjfBlXgREZGE2lJRx+srtjF7xTZml2xj5dYPTxOXZjAoxzluzBCOHNmP8UN6UtQv\nn8z0pHu2oogkqaQr4EVERFJFQ1OEuau38+LSLcxcupklGys+1KegRwZHjujDEcN7M2lYLw7uncns\nV2Zy8smjdJOhiLSJCngREZEQtlTUMXPpZmYu3cLLy7ZQUbv71I25WekceVAfiosOoHjkAYwb3JOM\nmKvrnf2QQBHpelTAi4iI7MP6HTU8u3Ajzy3cyFury4h/BuKEIYWcdEg/Thzdj8MP7KXhMCKyX6mA\nFxERacHqbVX8Z8FGnl1Yyrvrdn9mYEGPDE4Y3S8o2g/pR/+C7ARFKSLdkQp4ERGRqG2Vdfx7filP\nvLOeeWt37Laub34Wp40byMfHDaS46ABdZReRhFEBLyIi3VpNfRPPL97Ek++s56X3t+z2pNNBhdmc\nPm4gZ4wfyJSD+pCeprnXRSTxVMCLiEi3tGDdTh56aw3/mreByroPbkTtmZ3BmYcN5rxJQ5gyvDdp\nKtpFJMmogBcRkW6joraBf87bwENvrmHRhvJd7VnpaXzs0P6cO2kIHz20Hz0y0hMYpYjI3qmAFxGR\nLm/h+p3cN3sVT71bSk3DBw/rPnRgAZ89ahjnThxCYW5m4gIUEQlBBbyIiHRJjU0Rnlu0iXteW8lb\nq7bvas/NSufswwdz0VHDOHxoIWYaIiMiqUUFvIiIdCnbq+p56K013D97NaU7a3e1jxnUky8UD+es\nwweT30P//YlI6tIZTEREuoS1ZdXc+fIKHpmzlrrGCABpBqePG8ilxxzEUSP66Gq7iHQJKuBFRCSl\nvbehnDteKuHpBaW7poAszMnkoqMO5JKjhzO0d26CIxQR6Vgq4EVEJOW4O2+sLOOOl0qYuXTLrvYh\nvXL46gkj+cyUoeRm6b84EemadHYTEZGU8lrJVn73/DLeXFW2q+2QAQVMPamIMw8bpCekikiXpwJe\nRERSwusrtjHt+fd5Y+UHhfuRB/Xm6ycdzEmH9NP4dhHpNlTAi4hIUntjxTZ+98IyZq/YtqvtqBF9\n+O4poykuOiCBkYmIJIYKeBERSUqLNuzk5meX8vL7H4xxP+qgPlxx6iiKRx6gK+4i0m2pgBcRkaSy\ntqya3/53KU/O27Crbcrw3nz31NEcU6TCXUREBbyIiCSFbZV13P7ich54fTUNTcF0kIcOLOCHZxzK\nSaM1xl1EpJkKeBERSajahibunrWS6TNLqKxrBILpIK88bTTnTBxCepoKdxGRWCrgRUQkIdyd5xZt\n4hf/eY+1ZTUA9M7N5JsfG8Xnjx5Gj4z0BEcoIpKcVMCLiEinW7KxnJ899R6vlQQzy2SmG5cdO4Jv\nfOxgemZnJjg6EZHkpgJeREQ6TVlVPbc+v5S/vbGGSDDMnVPHDuDaT4zhoL55iQ1ORCRFqIAXEZH9\nriniPPD6an7736WU1wbj3Ef1z+cnZ43l+FH9EhydiEhqUQEvIiL71fx1O7j2iYUsWL8TgMKcTL53\n6mgu/sgwMtLTEhydiEjqUQEvIiL7RXltA799bin3vb4adzCDiz8yjCtPPYTeeVmJDk9EJGWpgBcR\nkQ7l7jw1v5Sf//s9tlTUATB2UE9u+tQEJh7YK8HRiYikPhXwIiLSYVZtreK6fy7klWVbAcjLSufK\n0w7hC8XDNVxGRKSDJN3Z1MwyzGyamW0zs51mdq+ZtTg1QbTvb8xsvZmVm9kcMzu5s2MWEenumhzu\nfm0Np/3u5V3F+ycmDGTGlSdx2XEjVLyLiHSgZLwCfw1wGjARqAYeA6YBX22h7zeAzwDHA6uAy4B/\nmtmB7r69U6IVEenm3t9cybQF6aytWgnA0N45/Pyc8Xz00P4JjkxEpGtKxgL+cuBqd18LYGbXAi+Y\n2XfcvSaubxHwP3dfEe37F+COaPucfR3IzPoAfeKahwFUVVVRWVnZrg8SVnV19W5L2Tvlq/WUq3CU\nr9ZpaIrw51fXcOesNTRGDAM+f9QQvnXSCHKz0jv9HJoq9P0KR/kKR/kKJ5H5qqqqavO25u4dGEr7\nmFkvYDswxt2XRNtyCK7EH+7u8+P6TwDuAy4ESoCvAFcB4929thXHuwG4vqV106dPZ9CgQW3/MCIi\nXdiaSvhbSTql1QbAgBzns0VNjChIcGAiIimitLSUqVOnAoxy9+Vhtk22K/DNp/6dzQ3uXmNm9UDP\nFvqvBN4ElgJNQDlwTmuK96jbgAfi2oYBM4qLiykqKgoTe7tVV1cze/ZsiouLyc3N7dRjpyLlq/WU\nq3CUrz2ra4zwx5dX8deFa4k4pBtccuQgxttaTjhW+WoNfb/CUb7CUb7CSWS+SkpK2rxtshXwFdFl\nIVAKu67AZxEU5/GmA0Ojr43AGcC/zOxod1+6r4O5exlQFttmFlxNysvLIz8/v22fop1yc3MTduxU\npHy1nnIVjvK1u4Xrd/K9R+bx/qZgaMyhAwu45fzDGdErnRkz1ipfISlf4Shf4Shf4SQiX3l5Lc7R\n0ipJVcC7+w4zWwtMBpZEmycDtcCyFjaZBPzG3ddH3//bzFYAHyW4Ki8iIu3UFHHueKmE373wPg1N\nTkaa8c2PHczXTzqYrIw0jXUXEelkSVXAR90FXG1mLwM1wI3AAy3cwAowG/i8mT0DbAZOB8YC73RW\nsCIiXdnqbVV875F3eXt1MLHXqP75TLtwIuOHFCY4MhGR7isZC/ibCGaGmU8Q35PAFQBmdg1wsbuP\ni/a9CvgtQcFeAKwFvuHub3R20CIiXYm789Cba7nx6feorm8C4MvHjeD7px9CdmZ6gqMTEenekq6A\nd/dGgoL9ihbW3URQ4De/30kw7aSIiHSQzRW1/OixBfxvyWYABhdm85sLDueYor4JjkxERCAJC3gR\nEUmcF5du5qpH3mVbVT0An5o8hBvOHkfP7MwERyYiIs1UwIuICHWNTfz62aXcPSt4mmqv3Ex+ed4E\nzpig52GIiCQbFfAiIt3cii2VfPvhd1i4Ppit9+iRffjdhZMYWJid4MhERKQlKuBFRLopd+fxueu5\n7p8Lqa5vIj3NuOLkUXz9oweTnmaJDk9ERPZABbyISDdUUdvAdU8u5Ml5GwAY0iuH3180kSkH9Ulw\nZCIisi8q4EVEupl31+7gWw+9w5qyagDOGD+QX33qMApzdaOqiEgqUAEvItJNuDt/eXUVv/zPYhoj\nTnZmGtefNY6LjjwQMw2ZERFJFSrgRUS6gfLaBn746HyeWbgRgEMGFHD75yYxakBBgiMTEZGwVMCL\niHRx720o5+sPvs2qbcGQmQumDOVn54zXE1VFRFKUCngRkS7K3Xlkzlp+8s9F1DVG6JGRxs/PHc8F\nUw5MdGgiItIOKuBFRLqgmvomfvzkQh6buw6AEX3z+OPFkxkzqGeCIxMRkfZSAS8i0sWUbKnkGw/O\nZcnGCgA+MWEgN3/6MAqyNcuMiEhXoAJeRKQLeXp+KT949F2q6pvITDeu+cQYLj3mIM0yIyLShaiA\nFxHpAhqbItzy36X86aUVAAwuzOb2iyczeVjvBEcmIiIdTQW8iEiK215Vz7ceeodZy7cCcPyovtx2\n0SR652UlODIREdkfVMCLiKSwhet38rUH3mbd9hoApp5UxFWnHUJ6mobMiIh0VSrgRURS1BPvrONH\njy2grjFCblY6v/nM4XxiwqBEhyUiIvuZCngRkRTT0BThpv8s5q+vrgKCKSL/dMkRjNZTVUVEugUV\n8CIiKWRrZR3feHAub6wsA+Bjh/Zn2oUTKczRFJEiIt2FCngRkRTx7todfO2BtyndWQvAt08exRUn\njyJN491FRLoVFfAiIingsbfXcfUTC6hvjJDfI4NpF07k1LEDEh2WiIgkgAp4EZEk1hRxfvXMYv78\nykoAivrlcecXplDULz/BkYmISKKogBcRSVLltQ18+6F3mLl0CwAnH9qf3100kYJsjXcXEenOVMCL\niCShlVuruPzetyjZUgXA104s4vuna353ERFRAS8iknReXb6Vrz84l501DWRlpHHzpydw3qShiQ5L\nRESShAp4EZEk4e7c//pqfvrUezRFnH4FPbjzkiOYNKx3okMTEZEkogJeRCQJ1DdGuOGpRfztjTUA\nTBhSyJ1fOIJBhTkJjkxERJKNCngRkQQrq6pn6gNv73o40ycPG8Qt5x9OTlZ6giMTEZFkpAJeRCSB\nlm6s4PL73mJtWQ0AV502mm989GDMdLOqiIi0TAW8iEiC/G/JJr71t3eoqm8iNyudWy+YyMfHD0x0\nWCIikuTSEh1APDPLMLNpZrbNzHaa2b1mlreX/qPN7CkzKzezHWb2n86MV0SkLe55dSWX3zuHqvom\nhvTK4bGpx6h4FxGRVkm6Ah64BjgNmAiMBIYD01rqaGYDgJnAM8AgoB9wfadEKSLSBk0R54Z/LeKG\np94j4jBpWC/++c1jGTOoZ6JDExGRFJGMQ2guB65297UAZnYt8IKZfcfda+L6fheY5e5/jGl7q7UH\nMrM+QJ+45mEAVVVVVFZWhg6+Paqrq3dbyt4pX62nXIWzv/JVXd/ED55YzMxl2wA4fUw/fnH2IWTT\nQGVlQ4ceqzPp+xWO8hWO8hWO8hVOIvNVVVXV5m3N3TswlPYxs17AdmCMuy+JtuUA1cDh7j4/rv8b\nwLvAGGAsUAL82N3/28rj3cAerthPnz6dQYMGtfGTiIjsbmc93LkknXVVwc2ppwyJcOaBEfRgVRGR\n7qm0tJSpU6cCjHL35WG2TbYr8AXR5c7mBnevMbN6oKXfLx8AfA44E3gN+AzwpJlNcPeSVhzvNuCB\nuLZhwIzi4mKKiorCxt8u1dXVzJ49m+LiYnJzczv12KlI+Wo95Sqcjs7Xkk2V3PTwQjZV1ZGRZlx3\nxig+PanrXCDQ9ysc5Ssc5Ssc5SucROarpKQ1pWrLkq2Ar4guC4FS2HUFPgso30P/1939pej7v5nZ\nd4DTgT+20H837l4GlMW2NU/dlpeXR35+fhs+Qvvl5uYm7NipSPlqPeUqnI7I14tLN/PNB+dRVd9E\nQY8Mpn/+CI4b1beDIkwu+n6Fo3yFo3yFo3yFk4h85eXtcY6WfUqqAt7dd5jZWmAysCTaPBmoBZa1\nsMm7QPyTTpJnTJCIdGv3v76a6/+5kIjDkF45/PVLRzJ6QMG+NxQREdmLpCrgo+4Crjazl4Ea4Ebg\ngRZuYAW4E3jWzI4BXgfOByYAz3ZWsCIi8Zoizi//s5i7Zq0E4PADe3HXF6bQr6BHgiMTEZGuIBkL\n+JsIZoaZTxDfk8AVAGZ2DXCxu48DcPfXzGwqcB8wEFgKnOPuKxIRuIhIdX0j33l4Hs+/twmAj48b\nyLQLJ5KTFf/LQhERkbZJugLe3RsJCvYrWlh3E0GBH9v2IPBg50QnIrJnm8tr+fK9c1iwPrgP//+d\nMJIffvxQ0jTVjIiIdKCkK+BFRFLRko3lXPbXt9iws5b0NONn54zj4o8MT3RYIiLSBYUu4M3sJ8Bs\nd3/ezHoDVwGDgUXAw+6+roNjFBFJai+9v4VvPDiXyrpG8ntk8IeLJ3Pi6H6JDktERLqotDZs8zVg\nY/TP/wDOBg4GrgVWmNmHhr6IiHRVf3tjDZfd8xaVdY0MLszm0anFKt5FRGS/assQmj7AVjMrIrgS\nfx2AmWUAXwKmmdkqd3+yA+MUEUkqkYhz87NL+NPLwT3zE4YUcvcXp9C/Z3aCIxMRka6uLQV8GUER\nfyxwR3Nj9ObTP5tZOvADgtljRES6nJr6Jr73yDyeWRj8MvLUsQP4/UUTyc3SbUUiIrL/teV/mxeA\nacBwYA6wPm79DODmdsYlIpKUtlTUcfl9c3h37Q4ALj9uBFd/YgzpmmlGREQ6SVvGwF8JlBPMuX6M\nmV1kZpkx688BtnREcCIiyWTZpgrO/cOrvLt2B2kGPz93PD/+5FgV7yIi0qlCX4F39y0ETzzFzNKA\nW4E7zWwZkAeMAq7uyCBFRBJt1rKtTH3wbSpqG8nLSuf2iyfz0UP6JzosERHphto1YNPdI8AVZnY3\ncB5wAPBkOmU1AAAgAElEQVRTd3+oI4ITEUkGf39rDdc+sZDGiDOoMJu7v3gkYwf3THRYIiLSTbVl\nHvhbgSeAV6MFPO6+AFjQwbGJiCRUxIOZZqbPLAFg3OCe/OXSIxmgmWZERCSB2nIFPgd4GMgys6cJ\nZpt5zt1rOjQyEZEEqm+C7z++mOcWB7f0nDKmP7+/aBJ5PTTTjIiIJFbom1jdfaq7DwHOJJiB5kaC\neeH/ZWaXmZmeYCIiKW1bVT1/eC99V/H+pWMP4k+XTFHxLiIiSaEts9AA4O5vuvu17j4eOBx4CbgU\nWGdms8zsKjMb0kFxioh0iuWbK7j4r++wqtJIM7jhrLFcf9Y4zTQjIiJJo80FfCx3X+7uv3X3E4Ch\nwF+A44DPdsT+RUQ6w2vLt3LeH19j3Y5astKc2y4Yz6XHjkh0WCIiIrvp8N8HR6eZ/Avwl+g0kyIi\nSe+ROWu55vEFNEac/gVZfHFENSeNOiDRYYmIiHxIhxTwZmbAwcC4mNd4YCSQ3xHHEBHZHyIR59bn\n3+f2F5cDMGZQT/7vM2NZ9NasBEcmIiLSsnYX8GY2DxgCrAKWAIuBjwEnACvau38Rkf2ltqGJ7z86\nn6fe3QDARw/px/99bjI01LIowbGJiIjsSUdcgX8HqAeud/dnAMzsK+7+fgfsW0Rkv9hWWcdX73+b\nt1dvB+ALxcP5ySfHkpGeRmVDgoMTERHZi3YX8O7+JTMbDfzczK4GfgJ4uyMTEdlPSrZUctk9b7F6\nWzVmcN2ZY/nSsQcRjAYUERFJbh0yBj56tf1CM5tIMC/8QDM7xt1f64j9i4h0lNdXbOP/3f82O2sa\nyMlM5/cXTeS0cQMTHZaIiEirtbmAN7PR8cNk3H0e8EkzOwa40czc3U9ub5AiIh3h8bnr+OFj82lo\ncvoX9ODuLx7JhKGFiQ5LREQklPZcgV9iZlXAQmAe8G50OT965f1jZnZKB8QoItIu7s6059/ntv8F\nM80cOrCAv1x6JIN75SQ4MhERkfDaU8AfCEyKviYC1xA8xCliZiXufoi7v9ABMYqItFn8TDMnju7H\n7Z+bREF2ZoIjExERaZs2F/Duvh5YD/y7uc3MTgDuBB5qf2giIu2zrbKOr9w3h7lrdgBwydHDuf6s\nYKYZERGRVNWhT2J195fN7PPAdzpyvyIiYS3fXMGX7nmLtWU1mmlGRES6lPbcxJrh7o3x7e4+J3ol\nXkQkIV5dvpWvPfA2FbWN5Galc9tFkzhl7IBEhyUiItIh2nMFvsrMFrH7DazLgClAbgfEJiIS2sNv\nruHHTy6kMeIM7JnNXV+cwvghmmlGRES6jvYU8GcS3Lw6EfgqMBpII3iI0zXtD01EpPUiEefm55bw\np5dWADBucE/u/uKRDCzMTnBkIiIiHas9N7G+AOyaZcbMsoEiYKu7b+qA2EREWqWmvonv/n0ezy7a\nCMApYwbw+4smktejQ2/zERERSQodNhWDu9e6+6L2Fu9mlmFm08xsm5ntNLN7zSyvFds9bGZuZlPa\nc3wRSS2by2u58M7Zu4r3y48bwZ8uOULFu4iIdFnJOJfaNcBpBENzRgLDgWl728DMzgH67v/QRCSZ\nLNlYzrl/eJX563aSnmb8/Nzx/PiTY0lP00wzIiLSdSXjJarLgavdfS2AmV0LvGBm33H3mvjOZtYL\n+C1wOrA8zIHMrA/QJ655GEBVVRWVlZVtCL/tqqurd1vK3ilfrdcVc/XK8m1c9fhiquqbyMtK59ZP\nj+XYoj4d8u+2K+Zrf1K+wlG+wlG+wlG+wklkvqqqqtq8rbl7B4bSPtFifDswxt2XRNtygGrgcHef\n38I2fwGWuvvNZubAke4+p5XHuwG4vqV106dPZ9CgQW37ICKy37jDKxuNx1el4Ri9s5yvjmlisOa+\nEhGRFFJaWsrUqVMBRrl7qIvQyXYFviC63Nnc4O41ZlYP9IzvbGanApMIZsFpi9uAB+LahgEziouL\nKSoqauNu26a6uprZs2dTXFxMbq6qkX1Rvlqvq+SqoSnCTc8u57FVpQCMH1zA7ReMp29+Vocep6vk\nq7MoX+EoX+EoX+EoX+EkMl8lJSVt3jbZCviK6LIQKIVdV+CzgPLYjtEbW6cDF7X0QKnWcPcyoCxu\nvwDk5eWRn5/flt22W25ubsKOnYqUr9ZL5Vxtr6pn6t/f5vUVwT/Zsw4fzC3nH0Z2Zvp+O2Yq5ysR\nlK9wlK9wlK9wlK9wEpGvvLx9ztGyR0l1E6u77wDWApNjmicDtQQPiYo1ChgBPGtmW81sa7T9BTO7\nbr8HKyKdZtmmCs75w6u7ivcrTx3NbRdN3K/Fu4iISLJKtivwAHcBV5vZy0ANcCPwQAs3sC4imKEm\n1lrgc8Cs/R6liHSKF5du5tt/e4eKukZyMtO59YLDOWOC7k8REZHuKxkL+JsIZoaZTxDfk8AVAGZ2\nDXCxu49z9wZgXeyG0eEvm919t+E2IpJ63J27Z63kpv8sJuIwqDCbP39hCuOHFCY6NBERkYRKugI+\nOp79iugrft1NBAX+nrbV5M8iXUB9Y4TrnlzI3+esBWDigb248wtH0L8gO8GRiYiIJF7SFfAi0r1t\nq6xj6gNzeXNVMN793ImD+dWn9+/NqiIiIqlEBbyIJI2lGyv48r1vsW57DWbw/dMPYeqJRbtmhxIR\nEREV8CKSJJ5/bxPf/fs8Kusayc1K53cXTuS0cQMTHZaIiEjSUQEvIgkViTi/n7GM388IZood0iuH\nP39hCmMHf+jZbSIiIoIKeBFJoIraBr7793d5YfEmAD4yog9/uHgyffN7JDgyERGR5KUCXkQSomRL\nJV+9bw4lW6oAuPSYg7j2zDFkpifV8+VERESSjgp4Eel0MxZv4oqH51FR10hWRho3nTeB848Ymuiw\nREREUoIKeBHpNJGI84cXl3PrC+/jDgN7ZvOnS47g8AN7JTo0ERGRlKECXkQ6RWVdI1c98i7PLtoI\nwJEH9eaPFx9BvwKNdxcREQlDBbyI7HertlbxlfvmsGxzJQCXHD2c6z45lqwMjXcXEREJSwW8iOxX\nz7+3ie89Mo+K2kay0tP4+bnjuPDIYYkOS0REJGWpgBeR/aKxKcJvn3+f6TNLAOhf0IM7LjmCycN6\nJzgyERGR1KYCXkQ63JaKOr790DvMXrENgOKRB3DbZydpvLuIiEgHUAEvIh1qzqoyvv7gXDZX1AEw\n9aQirjx1NBma311ERKRDqIAXkQ7h7tw9ayW/emYJjRGnIDuDWy+YyKljByQ6NBERkS5FBbyItFtl\nXSM/ePRd/rMgmCJyzKCe3PH5yQw/IC/BkYmIiHQ9KuBFpF2Wbqxg6oNvs2JLFQCfOWIoPz93PNmZ\n6QmOTEREpGtSAS8ibeLuPPTmWn761CLqGiNkZaTx83M0RaSIiMj+pgJeREIrr23g6scX8PT8UgCG\nH5DLHz43mfFDChMcmYiISNenAl5EQnl37Q6+9dA7rCmrBuCciYO58dzxFGRnJjgyERGR7kEFvIi0\nSiQSzDJz87PBLDPZmWn87OzxfGbKUMws0eGJiIh0GyrgRWSfyqrqufKReby4dAsAowfkc/vnJjN6\nQEGCIxMREel+VMCLyF69vmIb33n4HTaVBw9m+uxRw/jJJ8eSk6VZZkRERBJBBbyItKi+McLvXnif\n6S+V4A75PTL45acmcNbhgxMdmoiISLemAl5EPmT55kqu+Ps7LFxfDsDhQwu57bOT9GAmERGRJKAC\nXkR2cXceeH01v/jPYmobIqQZfPOjB/Otk0eRmZ6W6PBEREQEFfAiErW5opYfPDqfmdEbVQ/sk8Pv\nLpzIEcP7JDgyERERiaUCXkT476KN/OjxBZRV1QPwmSOG8pOzxmpudxERkSSkAl6kG9tZ3cDP/v0e\nj81dB0Cv3ExuOm8Cn5gwKMGRiYiIyJ6ogBfppv63ZBNXP75g1/SQx4/qyy3nH87AwuwERyYiIiJ7\nk3R3pZlZhplNM7NtZrbTzO41sxanvjCzK83sHTMrN7MNZvZnM+vV2TGLpJKdNQ1c9Y93ueyeOWwq\nryMvK51fnDee+y47SsW7iIhICki6Ah64BjgNmAiMBIYD0/bQNxOYCvQFDgMOBO7ohBhFUtLLy7dx\n+rSXefTtYMjMsQcfwHPfPYGLPzIcM0twdCIiItIayTiE5nLgandfC2Bm1wIvmNl33L0mtqO7/yrm\n7VYz+z/gz609kJn1AeKn2BgGUFVVRWVlZVvib7Pq6urdlrJ3ylfrbSor52/L03hj9kIAcrPSuerk\nkXxm8iDMIp3+XU92+m6Fo3yFo3yFo3yFo3yFk8h8VVVVtXlbc/cODKV9osNftgNj3H1JtC0HqAYO\nd/f5+9j+VmCsu3+8lce7Abi+pXXTp09n0CDdyCepzR3mlRmPr0yjvCG4wj66MMJFIyMcoNEyIiIi\nCVNaWsrUqVMBRrn78jDbJtsV+ILocmdzg7vXmFk90HNvG5rZOQRX748LcbzbgAfi2oYBM4qLiykq\nKgqxq/arrq5m9uzZFBcXk5ub26nHTkXK195t2FHLjc8u4+XlZQD0SHeuOOkgPn+0hsvsi75b4Shf\n4Shf4Shf4Shf4SQyXyUlJW3eNtkK+IroshAohV1X4LOA8j1tZGZnAn8FztnXVfpY7l4GlMXtC4C8\nvDzy8/PDxN5hcnNzE3bsVKR87a6xKcI9r63i1uffp7q+CYCTD+nLCXkb+XTxQcpVCPpuhaN8haN8\nhaN8haN8hZOIfOXltThHS6skVQHv7jvMbC0wGVgSbZ4M1ALLWtrGzM4D7gY+7e4vdkqgIklq4fqd\n/Ojx+SxcH/y8O7BnNj89ZxzHDs9nxoyNCY5OREREOkJSFfBRdwFXm9nLQA1wI/BA/A2sAGZ2AXAn\nwZX3lzo3TJHkUV7bwO+eX8Y9r60k4mAGXyw+iCtPG01BdqZuUhUREelCkrGAv4lgZpj5BPE9CVwB\nYGbXABe7+7ho35uBfODp2DG97q7fGUm3EIk4j81dx83PLmFrZT0Ahw4s4JefmsCkYb0THJ2IiIjs\nD0lXwLt7I0HBfkUL624iKPCb34/oxNBEksr8dTu4/l+LeGfNDgDystL5zimj+NKxI8hMT8ZHPIiI\niEhHSLoCXkT2bltlHbc8t5S/z1lL8yywn5o0hB+dcSj9e2puSBERka5OBbxIimhoivDg66u59fn3\nKa9tBGDc4J789OxxTDko/nlkIiIi0lWpgBdJcu7Of9/bxM3PLGHF1uCpbb1yM/n+6Ydw0ZHDSE/T\nnO4iIiLdiQp4kSQ2b+0Obnp6MW+uCh5XkJ5mfO6oYXzv1NH0zstKcHQiIiKSCCrgRZLQ2rJqfv3c\nUp56d8OutlPGDOBHZxzKwf01yZKIiEh3pgJeJIlsLq/lDy8u56E311LfFAHgsKGFXPOJMRw98oAE\nRyciIiLJQAW8SBIoq6rnTy+VcO/sVdQ2BIX7kF45/ODjh3DWYYNJ0zh3ERERiVIBL5JA5bUN3PXK\nSv4yayWVdcHMMn3ze/DNjxZx0VHDyM5MT3CEIiIikmxUwIskwI7qeu55bRV/fXUVO2saACjMyeRr\nJxbxxWOGk5ulf5oiIiLSMlUJIp1oS0Udd89ayf2zV1FV3wRAfo8MLj9+BJcdN4Ke2ZmJDVBERESS\nngp4kU5QurOGP720gofeXENdYzDGvWd2BpcecxBfOnaEpoQUERGRVlMBL7IfLdqwk7tnreSpdzfQ\n0OQAHJCXxZePH8ElRw+nQFfcRUREJCQV8CIdLBJxZr6/mbteWclrJdt2tQ/smc1XTxjJZ48aRk6W\nbk4VERGRtlEBL9JBqusbeXzuev7y6kpWbKna1X7owAIuP34kZx0+iB4ZKtxFRESkfVTAi7TT+5sq\nePD11Tw+dz0V0akgAU46pB9fOX4kxxQdgJnmcRcREZGOoQJepA3qGyM8u2gjD7y+mjdXlu1q75GR\nxnmThvDl40YwakBBAiMUERGRrkoFvEgISzaW89jb63jinfVsrazf1T6yXx4Xf2Q4508eSmGubkwV\nERGR/UcFvMg+lFXV869563l07joWri/f1Z6RZpw+biAXHz2M4pEaJiMiIiKdQwW8SAtq6puYuXQz\nT85bz/+WbN41BSRAUb88Pn3EUM6fPJT+PbMTGKWIiIh0RyrgRaJqG5p46f0t/Ht+KTMWb6I6+qRU\nCB66dPbEwXx68lAmHthLV9tFREQkYVTAS7dWVdfIK8u28OzCjbyweDOVMbPIZKYbJ47ux3mThnLy\nmP5kZ2oKSBEREUk8FfDS7WzYUcOMxZt4YfFmZpdso74psmtdRppx/Ki+nHnYYE4dO4DCHN2QKiIi\nIslFBbx0eXWNTby9ejuzlm1l5tItvFdavtv6rPQ0iosO4MwJgzht3AB65WYlKFIRERGRfVMBL12O\nu7NkYwWzlm1l1vKtvLmyjJqGpt369MnL4mOH9ueUMf05blQ/8nvon4KIiIikBlUtkvIamiLMXbOd\nOavKeGtVsNxe3bBbHzMYP7iQ40b15eRD+zNpWG/S03QjqoiIiKQeFfCSUtydddtrWLh+J3NWbuGl\nRWn88K1XqW2MfKjv0N45HD+qL8ce3JdjivrSJ09DY0RERCT1qYCXpBWJOOt31LBoQzkL1u9gwfpy\nFqzbEXd1PQ0IiveR/fI4cngfphzUm6NG9GFYn1xN9ygiIiJdjgp4SbjmQv39TRUs21zJsk2VLN8c\n/Dl2LvZYeVnpjBmYT37Dds49dgLHHTqIvvk9OjlyERERkc6nAl46RW1DE2vLqlkT84p9X9vw4SEw\nzXIy0xk/pCfjhxRy2NBCJgwpZETffGqqq5gxYwYnH9qXfBXvIiIi0k0kXQFvZhnALcAXCOJ7Evi6\nu1ftof9lwE+A/sCbwFfcfVknhdutuTsVdY1sr6pne3UDWyvq2FRRy6adtWwqj/65vI5N5bWUVdXv\nc389MtI4uH8+o/rnM2pAAQf3z2f0gAKG9cnVDaciIiIiUUlXwAPXAKcBE4Fq4DFgGvDV+I5mdiLw\ne+BM4C3gp8C/zGy8u7c89qKbcnfqmyI0NDn1jREamiLUN0aojy5rGpqormuisq6R6vpGquoaqapv\nCpZ1TVTWNbC9uoEd1fW7ljuqG2iMeKg4cjLTGdYnlwP75DKsTy7D+uRwYJ9cDu6fz9DeKtRFRERE\n9iUZC/jLgavdfS2AmV0LvGBm33H3mri+XwYedveXo31/AnwNOB6Yua8DmVkfoE9c8zCAqqoqKisr\n2/M5Qrn/jXU8Ma+Uyqp0/m/Zm5ilEXHHAfegAG/+c8SDojniHqzjw+sdaIr4roI9bKHdFrlZ6Qwo\nyKJffg/6FWQxoOCDZf+CLIb2yuGAvMw93Fjq1FS3+EuWPaqurt5tKXumXIWjfIWjfIWjfIWjfIWj\nfIWTyHxVVYWre2KZ+/4v7FrLzHoB24Ex7r4k2pZDcCX+cHefH9d/HnCHu98R0/YG8KC739aK490A\nXN/SuunTpzNo0KC2fpTQ/rk6jf9tSOu047Uk3Zwe6ZCdDj3SoEc69Ej36BJyMyAvw8nLgLxMgmX0\nfW4GZKUnNHwRERGRlFFaWsrUqVMBRrn78jDbJtsV+ILocmdzg7vXmFk90HMP/XfGte3YQ9+W3AY8\nENc2DJhRXFxMUVFRK3fTfr3X7mTSmjJWrVzJyJEj6JGVhZlhBA8hiv1zWvTPxPw5vo9hpKcZWRlG\nZlpasExPIys9jcxdbWlkphtZ6WlkZ6aRmZ7YHyDCqq6uZvbs2RQXF5Obm5vocJKachWO8hWO8hWO\n8hWO8hWO8hVOIvNVUlLS5m2TrYCviC4LgVLYdQU+CyjfQ//CuLZee+j7Ie5eBpTFtjUP78jLyyM/\nP7+1cbfbCWPymXxgITNqV3DyMSM69dipLjc3V/lqJeUqHOUrHOUrHOUrHOUrHOUrnETkKy8vr83b\nJtUlV3ffAawFJsc0TwZqgZZmlpkf29fMsoEx0XYRERERkS4nqQr4qLuAq81sqJkdANwIPNDCDawA\ndwMXmdnx0eL9Z8B64JXOC1dEREREpPMkYwF/EzCD4Cr6SoIr8lcAmNk1ZraouaO7vwR8l2Acexnw\nEeBsTSEpIiIiIl1Vso2Bx90bCQr2K1pYdxNBgR/bdjfBlXgRERERkS4vGa/Ai4iIiIjIHqiAFxER\nERFJIUk3hCYJZAKsXr260w9cVVVFaWkpJSUl7ZpaqLtQvlpPuQpH+QpH+QpH+QpH+QpH+QonkfmK\nqTUzw26bVE9iTQZm9jGCm2hFRERERPa3k939f2E2UAEfx8zyCGazKQUaOvnwwwh+eDgZWNPJx05F\nylfrKVfhKF/hKF/hKF/hKF/hKF/hJDJfmcAg4A13rwqzoYbQxIkmMNRPQR2l+SmwwBp3X56IGFKJ\n8tV6ylU4ylc4ylc4ylc4ylc4ylc4SZCvxW3ZSDexioiIiIikEBXwIiIiIiIpRAW8iIiIiEgKUQGf\nXMqAn0aXsm/KV+spV+EoX+EoX+EoX+EoX+EoX+GkZL40C42IiIiISArRFXgRERERkRSiAl5ERERE\nJIWogBcRERERSSEq4EVEREREUogKeBERERGRFKICXkREREQkhaiAFxERERFJISrgRURERERSiAp4\nEREREZEUogJ+PzKzDDObZmbbzGynmd1rZnl76X+Zma0ys2ozm2lmo+LWf9LMlkTXv21mR+3/T9F5\nwuTLzK40s3fMrNzMNpjZn82sV8z6k8zMzawy5nV/532a/S9kvi41s6a4fPwiro++Xx/0fSYuVzXR\n79Pk6Pru8P26yMxejX62Va3o393PX63Ol85fofPVrc9fIXOlc5dZDzO708xKop+vxMx+tI9tUu/8\n5e567acX8BNgEXAgcAAwE7hzD31PBCqAE4Ac4NfAYiA9uv5goBo4H+gBfBvYAhQm+nMmKF8/Ao4G\nsoC+wLPAwzHrTwIqE/2ZkihflwIL97Ivfb/2vu2PgcXd7Pt1GnAh8D1g1T766vwVLl86f4XLV7c+\nf4XJVQvbdsdzVx5wIzCa4EL1OGA18LU99E/J81fCE92VX8Aa4OKY98cCNUBOC33vA/4c8z4bKAdO\nir7/GfB83DbLgEsT/TkTka8Wtj0T2BDzvjucpMJ8v/b1H6C+X3vezoCVwPdi2rr89yvms57figKr\n25+/wuSrhW263fkrTL50/mp9ruL6d+tzV1wubgH+tod1KXn+0hCa/ST669ADgbdjmucSfDFGtbDJ\nYbF93b2W4CfAw1paH7O/w+gC2pCveCcD8+PacsxsffT1DzMb0THRJl4b81VkZpvNbLWZ3WVm/WLW\n6fu1Z6cCg4B749q77PerDbr1+asDdKvzVxt12/NXO+jcBZhZGsEPLvH/xpql5PlLBfz+UxBd7mxu\ncPcaoB7ouYf+O+PadsT03df6VBc2X7uY2TnA5cAPYpqXABOBYdFlOfCcmWV3YMyJFDZfLwMTgIHA\n8cAA4PG4/en71bKvAo+7+7aYtq7+/Qqru5+/2qybnr/C6u7nr7bSuStwC8Gwmtv3sD4lz18q4Pef\niuiysLnBzHIIxjyW76F/YVxbr5i++1qf6sLmq7nPmcBfgXPcfddP1+6+0d0XuHuTu28B/h8wBDhi\nfwSfAKHy5e4r3H25u0fcfQ1BPo4zsyEx+9P3K46Z9QfOBu6Mbe8G36+wuvv5q0268fkrFJ2/wtO5\nK2BmNxLk4VR3r9xDt5Q8f6mA30/cfQewFpgc0zwZqCUYOxVvfmzf6E/DY/jgVz67rY/Z355+JZRS\n2pAvzOw84H7g0+7+4r4O0bxZO0NNCm3JV/wuosvmfOj71bIvASvdfea+DhFddonvVxt06/NXW3Tn\n81cH6Fbnrzbq9ucuM/s1cAHBWPb1e+mamuevRN9Y0JVf/7+d+wmxsgrjOP59cKhQAoOiNCHSrBah\n46IsolSIoMHKoqRaBe4CIcQW/Vm0i3KhualWQZs2lUVEFIhECpVRmKkIEpRZFmWL/IMy+bQ4x3jn\nOnd0ZPD2zvv9wGXu+55zX95zeO+Z333vOZfyqxe7gXmUX73YRmOhRE/dZZRPc3dR5uX2WwX9MOWu\n4f9iFfQA+2s15SusZX3KVwDzKYPSbOA1ymKemYNu54D6awSYW59fQ/n6+ctGudfX2fWDEu7Xd/T6\nmlHHoscpv+BwGXBZn7qOX5PrL8evyfVXp8evyfRVrd/psau281Vg/5nr5hx1Wzl+DbyTp/MDGAI2\nAUfqxfEWMKuWPQfs6am/pr45jwOfAQt7ylfWC/IEZQHF0kG3cVD9VQecUeBo89EoX0f51ZFjwGHg\nXeDGQbdxgP21Afi1XluHKF/bz/H6mvD9uAI4CVw5zrG6cH09Sbk7N+YxQX91ffw67/5y/Jp0f3V6\n/LqA92LXx67rah+d7HmPfTxBn7Vu/Ip6YpIkSZJawDnwkiRJUosY4CVJkqQWMcBLkiRJLWKAlyRJ\nklrEAC9JkiS1iAFekiRJahEDvCRJktQiBnhJkiSpRQzwkiRJUosY4CVJUyYiNkTEJ+Psfz0iNg3i\nnCRpujHAS5Km0m3AV80dERHAA8D7AzkjSZpmDPCSJCJiY0R8HRFn/V+o+ye8ex4Rl0TEKeBu4IWI\nyIjYW4tvBS4Ftte6e2r5eI8Xp7ZlkjT9GOAlqeMi4iZgLfBMZp4ep8o+YMk5DjMK3FGfLwXmAHfW\n7VXAR5k5Wrcfqn9Har25wHFgDfDyhbRBkrrEAC9JWg/sysxtfcqPUII2ETESEfsj4kBErD1ToQb/\nOcDfwM7MPJyZf9XiBxk7feZqIIHPM/MwMAuYCWzPzBNT2TBJmo4M8JLUYXXKzCPAO419G5vhHLgc\nOBYRQ8Bm4B5gEfBURMxr1FtC+SCQjWPdAMwHmgtbFwM/ZObRuj1MuQN/YMoaJknTmAFekrrtemA2\nsLuxbzUlUJ+xGNhLWaC6LzMPZuZx4D3g/ka9YeDbnuOvArZm5rHGvkXAdz2v+77P9B1JUg8DvCR1\n2wPkAUwAAAFlSURBVBX171GAiFhOmZN+qm4vpATsLXX/ocZrfwaubWwvZmwwh7Onz0AJ8Lsa28M9\n25KkCRjgJanbfgJOA09ExDBlisyHwMqIWAS8SQnlW87jWEPAzRExNyJmR8RVwO31eMB/U3ZuYWzQ\nXwD8OBWNkaQuMMBLUodl5u/As8CjwKfAG5RFrUuAL4A/gZHM/Af4hbF33Ocx9o7888BjlDvzL1Gm\n1+zMzN8adRZQFq02A/xuYF1E3Dd1LZOk6Ssaa40kSeqrLmLdDywH/gC+Ae7NzIN96n8A7MjMVy7a\nSUpSBwwN+gQkSe2QmaMR8TSwFZgBbO4X3qsdwNsX5eQkqUO8Ay9JkiS1iHPgJUmSpBYxwEuSJEkt\nYoCXJEmSWsQAL0mSJLWIAV6SJElqEQO8JEmS1CIGeEmSJKlFDPCSJElSixjgJUmSpBYxwEuSJEkt\nYoCXJEmSWsQAL0mSJLWIAV6SJElqkX8B9BwWf62zKk4AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd1a854bef0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "plt.plot(a/pi, uA)\n", "plt.xlabel(r'$\\omega_0 t/\\pi$')\n", "plt.ylabel(r'$u_A/\\delta$')\n", "plt.title('Imposed support motion');" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvsAAAE3CAYAAAA0Q44cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAARrwAAEa8B9/1LhAAAIABJREFUeJzs3Xd8VfX9x/HXJ4uQBAhLCHuq7K3FVa1WreBAKW6l/qyV\nOqu1dbRq665VWkSxap2I4qzWPVoniLJEEWTvITOQHZLP7497wettgNwk5NzcvJ+Px33Ec873fM/n\nfO6VfHLu93yPuTsiIiIiIpJ4koIOQERERERE9g0V+yIiIiIiCUrFvoiIiIhIglKxLyIiIiKSoFTs\ni4iIiIgkKBX7IiIiIiIJSsW+iIiIiEiCUrEvIiIiIpKgVOyLiIiIiCQoFfsiIiIiIglKxb6I1Dtm\ndrOZ5QUdR20zs2VmNj7oOGqbmY02s7Nq+ZidzMzNbOQ+6PsH76OZnWJmv67p44hIYkgJOgAREZF9\nbDSQB0wKOI6aMgLYErF8CjAYeCCYcEQknqnYFxGRhGRmDd29MOg4apq7zwo6BhGpOzSMR0TqvYgh\nF+ea2QNmtsXMNpnZH8PbTzKzuWaWZ2Zvm1lOBfueb2YPm9lWM9tsZmPNLDXqOL3N7M1wP9vM7N9m\n1j2qzWgz+8rMCsL9TDWzwyK2m5ldaWbzzazYzFaY2Q1mZlH9DDOzb8ysyMxmmtkRlczFIWb2Qfg8\n8sLnfXHE9v8ZCmRmR4ZzMDhinZvZ783sTjP7zsy2m9kTZtaogv1+ZmYvhI+3zsyuryCuw83sEzMr\nDOflaTNrvZv3YYKZbQS+MrMPgB8Dw8Lb3cxu3s25P2Zm8ytYf1R4v4Mj1h1vZlMi3qdHzSx7L7lN\nMrPrzWxJ+L1bZGa/qaBdDzN7KdxvgZl9aWZnRmzf9R6Y2ePA+UCviPN73MxGhP87+vPVMPze/k+O\nRSQx6cq+iMj3bgNeBkYBxwN/DhenxwB/BJKBccA/gJMq2Pc94HRCQypuBoqBawHMrD3wMbCc0LAS\nA/4EfGxmfdx9g5kdDjwG/BV4E0gP99Us4jj3AGOAO4ApwMBwP+XhdZhZH+Bf4XiuAdoCTwF7K0Yb\nAa+H+z0rHP+BQOM9Zm33LgNmh8+3C3An0AA4I6rdQ8Bk4DTgWOA2M9vs7g+G4xoUPpdPCOW3KXA7\n8L6ZDXL3ooi+7gDeBs4m9DtuKTARKAB+G26zajfxPgOMNrMBUVfPzwQWu/u0cDynAC8CTwK3AC0I\nvf+TgeP2kI+7gSvDMX4EHA3cY2ZZ7n5LuO/uwNRwjJcD64DeQIfd9HkL0JLQ+3R2eN0GQp+ztcAF\nwHUR7UcCWcDje4hTRBKJu+ull1561asXoUI8L2K5E+DA81HtlhIqeNtFrPstocK6YdS+H0XtezuQ\nDzQNL98bXm4Z0aYdUALcHNH3pj3E3QUoA8ZErb8WyAUyw8vPAMuAlIg2p4bjHL+H/geH2/TZQ5tl\n0X0AR4b3GxyxzoElQHLEuovCuTswar8no/qbRKjYTQovvwSsBNIi2hwc3nd01PvwTgUxfwC8VonP\nRTKh4vovEetSgU3ALeFlC38uJkft+6Pw8Q+LimdkeLlF+L3+S9R+DxC6nyArvPw08B3QuLLvAaHC\n/esK2t0GrIl6Dz4E/h30/4N66aVX7b00jEdE5HvvRC0vBOa5e+SV4AWECr62UW1fjlp+AcgA+oSX\nDwf+4+4bdjYI9/tpeBvATKBZeLjLsWaWGdXnMeFjP29mKTtfhK56NwYOCLf7EfCKu++I2PcVYAd7\nthjYBkwws9PNbL+9tN+bf7t7WcTyC+H4D4pqV1Hu2hL6YwhC+fmXu5fsbOChq+zL+D53O71a1WDD\nsT4HnBExLOo4Qt+s7Ly5tzuhQv7ZqPdgOqHcRZ/bTgcT+sNhctT6yUAmMCC8fDTwgrtvq+p5RHgY\naA2cALu+NTgCeKQG+haROkLFvojI97ZELZcAWytYB6EhNpG+i1peH/65c3x/U0JXjaOtJzxMx93/\nA5wD9ADeAjaa2SQzaxlu25JQsbwBKI14fRHevnOoR050POFCdmMFx49sswX4KaGi9QlgnZl9bGYD\n9rTfHkTHsJnQHxw5e2pHFXJXwb5VNQloDxwaXj4TmO3u88LLO9+Ll/jhe1BK6A+u3Q23aRr+GX0e\nO+PdeR7NCV2NrzZ3Xwa8C/xfeNX/hY/3ek30LyJ1g8bsi4jUjOir4K3CP9eGf26OWBfdbvPOBXd/\nGnjazJoBJxIa/nMfoXHumwkPFeH7PzoiLY445g/iMbNkQoXkHrn758AJZpZO6MbWO4HXzaydu5cD\nRUBa1G7RBfdO0TE0I/R7Z+2e2hFb7uZGn8JuYqkUd//MzJYCZ5rZTOBk4M8RTXa+V5cC0yroIvoP\nl+j9WgGrI9a3itq+CWgTa9x78BChbyHaEbqR94mob3xEJMHpyr6ISM0YEbU8ktBNoV+Flz8BfmJm\nuwpuM2sLHELoxt0fcPfN7v4EoauwPcOr3w//bOnu0yt47fxmYhpwcnh4yU4nExpGUinuXuTubxP6\nQyOH72/uXRkRz067uyn1xPAfGTuNJFSMfxHVrqLcreH7G2k/AU6xiNmNzGwIoeE0/5O7CpTwv9/E\n7MkzwM/DcWWEl3eaTygH3XbzHqzYTZ+fE7r6Pypq/ShC93LMDC+/B4yMnLWoEvZ0fq8S+gPiaUJD\nev4ZQ78ikgB0ZV9EpGZ0MbPHgGcJ3eh6DTA2ogAfC/wCeMfMbiN0seVmQkOH7gcwsz8RupHzA0LD\nLXoSKtIfAXD3BWY2DnjSzO4hNGtLMtAVGOHux4SPdQehMeSvhqdobAv8gdDwnN0ys2HAhYTG0K8g\nNGTlamBmeAgOhMa0PxSO9WNCw36O3U2XacC/zGwC0Bm4i9B49HlR7Y4ys7sJDTk5jtDQmUvC3yRA\n6EbTKcAbZvZ3QkNi7gC+IZTvvZlHaJadkwj9EbHG3fc0VGYScD3wF+ATd1+5c4O7u5ldCUwO31Px\nGrCd0PCd44C/h+8n+AF33xh+735rZsWE7tU4itDMSje5e3646Z+A4cCnZnYXoW83egIZ7v6XPZzf\n/5nZ2cC3wMbwEB7cvTT8ubwW+NjdF+wxUyKSeIK+Q1gvvfTSq7Zf7H42npFR7V4DPohad3y4be+o\nfc8HHiU0K84W4O9AatS+fQiNxc8jVCC+BuwfsX0YoYJ3PaHhMouBW/nhLDQGXExoSsui8LG+AG6M\nOtaJhIrA4nDbI6lgJp2ofQ4Anic0bWMxocL4SaBtRJtkQoX2Gr4f238iFc/Gcy2h6SY3hs/5KSJm\nmeH72XhOIPQHRn743P9QQWxHELrCXxg+50lA6729h+FtbQl9Q7Il3ObmSnxGvgy3vXg3239C6JuW\n7eG45xH6FqTV7uIh9AfeDeH3oST8/l5VQd89Cd1QnRvuexZwesT2H7yPhO4VeCacZwcej+pvSHj9\n+UH/v6eXXnrV/svcqzW8UUSkXjOzToSmYvy5u78QbDTxw8wcuMbd/7qHNkcC/wWGuPv02oqtvjGz\nG4GrgDbuXhB0PCJSuzSMR0REJAGZ2QGEvq35DfAPFfoi9ZOKfRERkcT0D0LPXHiH0JN2RaQe0jAe\nEREREZEEpak3RUREREQSlIp9EREREZEEpWJfRERERCRBqdgXEREREUlQmo2nGsJPTzyY0BMOSwMO\nR0REREQSUyqQA0zz75+4XSkq9qvnYEJPUBQRERER2deOBv4Tyw4q9qtnLcB7771Hx44da+2g+fn5\nTJ06laFDh5KZmVlrx62rlK/YKF+xUb5io3zFRvmKjfIVG+UrNkHma/ny5RxzzDEQrj1joWK/ekoB\nOnbsSLdu3WrtoHl5eSxbtoyuXbuSlZVVa8etq5Sv2ChfsVG+YqN8xUb5io3yFRvlKzZxkq+Yh43r\nBl0RERERkQSlYl9EREREJEGp2BcRERERSVAq9kVEREREEpSKfRERERGRBKXZeEREYuTuFJSUsb1o\nB3n5xWwthnXbimniqTRumEKDlOSgQxQREQFU7IuIVCi/eAdz12zj23XbWL6pgOWbC1i5uYCNecXk\nFpZSWuYRrVNg5me7lhqmJpOdkUqrxul0bJ5Bx2YZdGyeSa+2jenWMouUZH2pKiIitUPFvogI8N22\nIj5euJEpizcxZ9VWFm3Iw33v+1WksLSMwtwy1uYWMXvl1h9sa5iaTK82jenfPpvDurfg4M7NaZim\nbwJERGTfULEvIvWSuzNnVS5vfLWWD77dwLfrt/9PGzPo2CyDTi0y6dgsgw7NM2nVuAHZDdPIzkil\nUXoKRYWFfPrppxx66KGkNEgnt7CU3IJSthSUsGZr4a5vBZZsyGNjXgmFpWVMX76F6cu38MgnS0lL\nTmJwp6Yc3aMVw/rk0LpJegDZEBGRRKViX0TqlQXrt/PSzNW8/tUaVm4u/MG2Rg1SGNq1OYM7NaVP\n22x6t21Mo/TUPfaXl+c0T4e22el7fKKiu7NuWxFzVuUyZ9VWpi3ZzKyVWykpK2fK4k1MWbyJW177\nhiGdmjK8bxtO7t+G7Iy0GjlnERGpv1Tsi0jCKyot482v1zJp2gq+WLblB9t65DTmuF6tOLx7S/q1\na7LPxtObGTlNGpLTpCHH9WoNwLaiUj5bvIkPFmzg7a/XsSm/hC+WbeGLZVu47Y15DO+Tw1kHd2BQ\nx6aY2T6JS0REEpuKfRFJWJvzS3h8yjKemrqMLQWlu9Z3aZHJyf3bMqxvDt322/3V+H2tcXoqx/Zq\nzbG9WvPnk3oxbelmXpuzhtfmrGV70Q5emrWal2at5sDWjbj4x10Z3jdHN/eKiEhMVOyLSMJZvbWQ\nhz9awrNfrKCotByA1GTj+N45nH1wBw7u3CzurpSnJCdxaLcWHNqtBTcO78W/56xh0rQVzF65lfnr\ntnPl5Nn89Z1vueiILowa3J70VN3UKyIie6diX0QSxsa8Ysb/ZxFPT1u+a2rM7IxURh/SiXN+1JEW\nWQ0CjrByGqYlM2pwe0YNbs/Xq3N5+OMl/PvLNazaUsiNr8zl/v8u4oqj92fU4Ha60i8iInukYl9E\n6ry84h089NESHvl4CQUlZQDkNEnnl4d34YyD2pORVnf/qevdtgl/P2MAV//0AB7+eAmTp69k/bZi\nrn/5Kx75eAlXH3sAJ/RpHXffVIiISHyI60tCZpZiZmPNbJOZ5ZrZE2aWuZu2Z5vZPDPbamabzewd\nM+sT1Wa4mc03swIzm2FmB9XOmYjIvuDuvDxrFUf99QPGvb+QgpIymmWmcePwnnxwzZFccFjnOl3o\nR+rQPINbTunNh9ccyRlD2pNksGRjPpdMmsnp//iMeWu3BR2iiIjEobgu9oHrgWOB/kAXoCMwdjdt\nPwaOdPdsoBXwJvDqzo1m1g14DvgD0BR4AnjdzJrss+hFZJ/5Zs02Rv1jKr+Z/CUbtheTkZbMFUd3\n56PfHcUFh3WmQUpijmnPadKQO0/ryzu/+TE/6x2a1efzZZsZNu5jbn51LrmFpXvpQURE6pN4v+R1\nIXCdu68EMLMbgPfM7Ap3/8EE2e6+ImLRgHKgg5k1cPdi4DzgU3d/IdxmnJldBowAHt9bIGbWDGgW\ntboDQH5+Pnl5eTGfXFUVFBT84KfsmfIVm3jPV1FpGfd/tIwnPltFefgJtyf02o+rj+5Cq8YNoLSI\nvFqsd4PKV+sMuPuUA/h5/1bc/vZCFm0o4PEpy3j1y9X88fju/LRHy1qNp7Li/fMVb5Sv2ChfsVG+\nYhNkvvLz86u8r3lVnwe/j5lZNrAF6OHu88PrGgIFQD93n1PBPn0IXeFvHF51p7tfH972L2C+u18b\n0X4ysNrdr6pEPDcDN1W0bcKECeTk5MRwdiJSFYu3wTOLk9lQFBqfntPQGdm5jG71/Pu5snL4eL3x\n5sokispCuenXrJyRnctprOdyiYjUeWvXrmXMmDEA3d19USz7xvOV/Ubhn7k7V7h7oZmV8H0x/wPu\n/hWQHR6aMxpYFtVfbtQuW3fXVwXGAROj1nUA3h86dChdu3atZDfVV1BQwNSpUxk6dCgZGRm1dty6\nSvmKTTzmq6i0jLH/WcqkuatxQtNoXnx4Ry4Y2p7UgGejiZd8HQtctr2YP7+xkA8WbuLLzUksK0zj\nhuO7c0Kv/QKLK1q85KuuUL5io3zFRvmKTZD5Wrx4cZX3jedif3v4ZxNgLey6sp8G7PFONHfPNbP7\ngE1mNtjdF4f7i77+lw2srkww7r4Z2By5bufsF5mZmWRl1f6DeTIyMgI5bl2lfMUmXvI1b+02rnh2\nNgvWh4bK9W+fzd0j+9K9VaO97Fm74iFfWVlZPHZBM179cg03vzqXLQWl/O7leXy2bBt/OrkXjdJT\nA40vUjzkqy5RvmKjfMVG+YpNEPnKzKxwfppKidsbdN19K7ASGBixeiBQBCysRBcGNCB0Yy/AnKi+\ndvb3P8OBRCR47s6jnyzl5Ps/ZcH6PFKTjWt/diAvjjkk7gr9eGJmnNy/Le9e9WN+2rMVAC/NWs2w\ncZ8wc8WWgKMTEZHaFrfFftgjwHVm1s7MmgO3AhOjb84FMLPRZtbJQpoRGnZTAEwPN3kSOMzMTjWz\nNDO7nNCV/Zdr51REpLJyC0v55ZPT+fNr31Cyo5wuLTJ5acyhXPzjriQnaT75ymiR1YCHzh3EbSN6\nk56axIrNBfz8wak8/NES4vVeLRERqXnxXuzfDrxP6Or7UkJX+q8EMLPrzWxuRNtehG7OzQPmERpP\nf4y7bwEI38wwCriD0Nj90cBwd48exy8iAZq3dhsnjf+E9+Z9B8AZQ9rz2uWH0addPb8LtwrMjLMP\n7shrlx1Gz5zGlJU7t70xj0smzSSveEfQ4YmISC2I62Lf3Xe4+5Xu3szdG7v7ee6eH952u7v3imh7\njbu3d/dMd2/l7ie6++yo/l5z9wPcvaG7D3T3abV9TiKyey/PWsWIBz5l+aYC0lOTGHt6P+48rW/C\nPBgrKN32a8RLvz6EM4a0B+CNr9Zx8vhPWPTd9r3sKSIidV1cF/siUj+U7Cjnxle+5jeTv6SotJyO\nzTN4+deHMmJAu6BDSxjpqcnceVpf7jy1D2kpSSzekM/J4z/l9Tlrgw5NRET2IRX7IhKorQUlnPvP\naTw5dTkAx/TYj1cvPYweOZWdFVdiccZBHXjx4kNom92Q/JIyLpk0k7HvLtA4fhGRBKViX0QCs3Rj\nPiMemMK0paFZbX977P48dO5gmjSMnykiE1Gfdk147bLDOLx7CwD+/v5Crpw8m6LSsoAjExGRmqZi\nX0QC8fnSzYx44FOWbswnPTWJB88ZyKU/6U6SZtupFU0z03hs9BDOPrgDAK/MXsM5j0xjU15xwJGJ\niEhNUrEvIrXupZmrOPuRz9haUErLRg2YfNFQju+dE3RY9U5KchK3ntKbPwzrgRlMX76FEQ9MYfGG\nvKBDExGRGqJiX0Rqjbtz/38XcdVzX1Ja5hzYuhH/uuRQ+rXPDjq0esvMuPDwLvzjnEE0TE1mxeYC\nTn1gCjOW6wFcIiKJQMW+iNSK8nLn1tfncffb3wJwxP4tef7iobTNbhhwZAJwbK/WPH/xUPZr1IDc\nwlLOeWQaHy7YEHRYIiJSTSr2RWSf21FWzjUvzOGfnywFYMSAtvzz/ME0SteNuPGkd9smvDjmEDo1\nz6CwtIwLn/iCf3+5JuiwRESkGlTsi8g+VVRaxsUTZ/LizFUAjD6kE/f8vB+pyfrnJx61b5bB8xcf\nQs+cxpSWOZc/O4unPlsedFgiIlJF+m0rIvvM9qJSznv0c96btx6Aq366Pzed2FMz7sS5lo0a8Oyv\nfsRBnZvhDn/819fc9/7CoMMSEZEqULEvIvvEtnCh//nSzZjBLSf34vKju2OmQr8uaJyeypMXHMQx\nPfYD4J53F3DvO9/q4VsiInWMin0RqXG5haWc+8/PmbViK0kGY0f159yhnYIOS2KUnprMhHMGcVK/\nNgCM+88i/qqCX0SkTkkJOgARSSy5BaWc++g05qzKJTnJGHt6/13FotQ9qclJ3DuqH0kG/5q9hvv/\nu5iycvj98QfoWxoRkTpAV/ZFpMZsLSjh7H9+tqvQH3fGABX6CSAlOYl7RvXn1IFtAXjww8Xc8eZ8\nXeEXEakDVOyLSI3ILSjl7Eem8fXqbaQkGePPHMCwvnoqbqJITjLuHtmPkYPaAfDQR0u4/Y15KvhF\nROKcin0Rqba84h2c/9jnzF0TLvTPGsjP+qjQTzTJScZfTuvL6YPbA/Dwx0sZ++6CgKMSEZE9UbEv\nItVSWFLG/z3+BbNXbiU5yRh/1gCO79066LBkH0lKMu44tQ+nDQxd4R/3n0VM+GBxwFGJiMjuqNgX\nkSor3lHGxRNnMC08veZff96X43vrin6iS0oy7jqtD8PC397c9dZ8npiyLNigRESkQir2RaRKdpSV\nc/kzs/hwwQYAbj2lNyMGtAs4KqktKclJjD29P0cfGJqH/6ZX5/Lc9JUBRyUiItFU7ItIzMrLnWte\nmMPbc0NPxv3DsB6cfXDHgKOS2paWksT9Zw/kkK7NAbj2xTm8NmdNwFGJiEgkFfsiErPb35jHy7NW\nA/CbY/bnwsO7BByRBCU9NZmHzxvMoI5NKXf4zeTZTFm0MeiwREQkLK6LfTNLMbOxZrbJzHLN7Akz\ny9xN26vNbJaZbTOzNWb2sJllR2w/0szczPIiXk/V3tmIJIaHPlrMI58sBeCCQztz+dHdAo5IgpbZ\nIIVHRw/hwNaNKC1zLnpqBl+vzg06LBERIc6LfeB64FigP9AF6AiM3U3bVGAM0ALoC7QHHoxqk+/u\nWRGvc/dN2CKJ6eVZq7j9jfkAnNivDX8Y1kNPURUAmjRM5YkLDqJtdkPyincw+rEvWLm5IOiwRETq\nvZSgA9iLC4Hr3H0lgJndALxnZle4e2FkQ3e/M2Jxo5ndBzxcU4GYWTOgWdTqDgD5+fnk5eXV1KH2\nqqCg4Ac/Zc+Ur9jsLl+fLt7MNc9/DcCPOmXzp591paAgv9bjizf6fH0vMwkmnNGb856Yxca8Ys55\n5DOeOr8/zTLTdrVRvmKjfMVG+YqN8hWbIPOVn1/137cWr08/DA/B2QL0cPf54XUNgQKgn7vP2cv+\n9wI93f348PKRwPvAunCTKcDv3H1pJeO5Gbipom0TJkwgJ0fTDUriWp4H4+cmU1JutMt0LutZRnq8\nXyqQwCzbDuO/Saa03OiQ6Vzaq4wGyUFHJSJSd61du5YxY8YAdHf3RbHsG8+/rhuFf+4a+OnuhWZW\nAjTe045mdjKhbwUOi1g9n9BwoG8IXaG/E3jbzPq6e1El4hkHTIxa1wF4f+jQoXTt2rUSXdSMgoIC\npk6dytChQ8nIyKi149ZVyldsovO1fHMBf3p8NiXlpbTLTmfi6AG0yErbe0f1hD5fFevWaxOXP/c1\nK/KNVze15L5RvUlNTlK+YqR8xUb5io3yFZsg87V4cdUfXhjPxf728M8mwFrYdWU/Ddi2u53MbBjw\nGHBy5NV/d1/H91f1N5jZrwj9ITEI+HRvwbj7ZmBz1LEAyMzMJCsrq1InVZMyMjICOW5dpXzFJiMj\ng2JSGfPsXDYXlNI8M42JF/6ITi0qvEe+3tPn64eGDcgivyyJ370wh08Wb+G2d5Zy98i+u7YrX7FR\nvmKjfMVG+YpNEPnKzKz67964vUHX3bcCK4GBEasHAkXAwor2MbMRwFPAae7+370dYudu1QxVJCEV\n7yjnl09OZ8XmAjLSknnsF0NU6EtMRg1uzzXHHQDACzNWcf9/Y/rmWUREakDcFvthjwDXmVk7M2sO\n3ApMjL45F8DMRhG6oj+iokLfzI4ysy4Wkg2MB74DZu7bUxCpe8od/vDqfGau2EqSwfizBtC3Xfbe\ndxSJ8usju3LGkPYA/PWdBbw597uAIxIRqV/ivdi/ndBNtXOApYSu9F8JYGbXm9nciLZ3AVnA65Fz\n6UdsHwB8AOQRGr+/H3Ccu+sWdJEob61M4s1vNgDwx+E9+cmBrQKOSOoqM+OWU3rvesruDa/OZ+n2\nvewkIiI1Jq6LfXff4e5Xunszd2/s7ue5e3542+3u3iuibWd3T4maRz8rYvu97t7B3TPdvbW7n+bu\nC4I4L5F49sqcdby9OvRPw3lDOzL6kE7BBiR1XmpyEhPOHkTXlpmUlDmPzE9m1Zb/+YJWRET2gbgu\n9kWkdk1bsombXgv9DXx412bcOLynHpolNaJJRiqPjT6Iphmp5O0wfj35a3ILS4MOS0Qk4anYFxEA\nlm7M51cTZ7Cj3MnJcO4+tQcpyfonQmpOh+YZjPt5L1LMWbKxgF8/PYPSsvKgwxIRSWj6TS4i5BaU\ncsHjX7C1oJQWWWlcdGAZWQ3ieWZeqasGtG/CWd1CBf6nizZx4ytfE68PdxQRSQQq9kXquR1l5Vz6\nzEyWbswnPTWJ+0b1olmDoKOSRDaohXPpjzsB8MznK3nqs+XBBiQiksBU7IvUc3e9NZ+PF24E4K8/\n70efNnt8QLVIjfjVYR04sV8bAP7072+YsnhjwBGJiCQmFfsi9dhLM1fx8MdLAbjkqK4M79sm4Iik\nvjAz/nJaX3q1aUxZuXPJ0zNZuVkzIYuI1DQV+yL11Jcrt3LtS18BcPSB+3H1Tw8IOCKpbxqmJfPQ\neYNpkZXGloJSfvnkdPKLdwQdlohIQlGxL1IPfbetiIuemk7JjnK6tsxk7Bn9SUrSFJtS+9pmN2TC\nOYNITTbmr9vOVc/NprxcN+yKiNQUFfsi9UzxjjIunjiD9duKaZSewsPnDaZxemrQYUk9NqRTM/58\ncm8A3p67nnH/WRhwRCIiiUPFvkg94u7c+K+5zFyxlSSD+84cQJeWWXvfUWQfO/OgDpw3tCMAf3tv\nIW99vTbgiEREEoOKfZF65Mmpy5k8fSUAvz/+QI48YL+AIxL53h+H92Rol+YAXPXclyxcvz3giERE\n6j4V+yL1xNTFm/jza98AcHL/Nlx0RJeAIxL5odTkJO4/eyBtsxtSUFLGrybOYHtRadBhiYjUaSr2\nReqBtbmFXDppJmXlTu+2jbnrtL6Y6YZciT/NMtN48JxBpKUksWRDPtc8P0dP2BURqQYV+yIJrmRH\nOb9+eibWAXA6AAAgAElEQVSb8ktompHKg+cMIj01OeiwRHarT7sm3Bq+Yfetuet48MMlAUckIlJ3\nqdgXSXC3vv4Ns1ZsxQz+fsYA2jXNCDokkb0aNaQ9Zx7UAYC7357Pp4v0hF0RkapQsS+SwF6etYon\npy4H4Oqf7s8R+7cMOCKRyrv5pJ70a59NucNlz8xi9dbCoEMSEalzVOyLJKh5a7dxXfgJucf02I9f\nH9kt4IhEYtMgJZkJZw+keWYam/NLGDNxBkWlZUGHJSJSp6jYF0lAuYWlXDxxBkWl5XRsnsE9o/SE\nXKmb2mQ35L4zB5BkMGdVLje/OjfokERE6hQV+yIJprzcufq52SzfVEB6ahITzh5Ek4Z6Qq7UXYd0\na8Hvjz8QgGe/WMmzn68IOCIRkbpDxb5Igpnw4WLem/cdALeP6EPPNo0Djkik+i46ogsn9GkNwI2v\nzOWrVbkBRyQiUjeo2BdJIB8v3MBf3/kWgHN/1JFTB7YLOCKRmmFm/GVkP7q2zKSkrJxfT5pBbqEe\nuCUisjdxXeybWYqZjTWzTWaWa2ZPmFnmbtpebWazzGybma0xs4fNLDuqzXAzm29mBWY2w8wOqp0z\nEdn31m8r4spnZ+MOAzpk88fhPYMOSaRGZTVIYcI5g2iYmszKzYVc8/yXeuCWiMhexHWxD1wPHAv0\nB7oAHYGxu2mbCowBWgB9gfbAgzs3mlk34DngD0BT4AngdTNrsq+CF6ktZeXOFc/OYlN+CdkZqdx/\n1kDSUuL9f2+R2O3fqhG3jQg9cOudb9bzz0+WBhyRiEh8Swk6gL24ELjO3VcCmNkNwHtmdoW7/2DC\nZXe/M2Jxo5ndBzwcse484FN3fyG8PM7MLgNGAI/vLRAzawY0i1rdASA/P5+8vLzKn1U1FRQU/OCn\n7Fl9yNf9Hy7jsyWbAbjtxANonFJW5c9kfchXTVK+YlMT+Tp2/2xO69+aF2ev484353Ngywb0b5eY\n1230+YqN8hUb5Ss2QeYrPz+/yvtavH4FGh6CswXo4e7zw+saAgVAP3efs5f97wV6uvvx4eV/AfPd\n/dqINpOB1e5+VSXiuRm4qaJtEyZMICcnp1LnJVLTFuQaD3yThGMclVPOKZ3Kgw5JZJ8rKYOxXyez\npsDITnOu6VtGliadEpEEtXbtWsaMGQPQ3d0XxbJvPF/ZbxT+uWvKBXcvNLMSYI/Ti5jZyYS+FTgs\nqr/o6Ru27q2vCOOAiVHrOgDvDx06lK5du1aym+orKChg6tSpDB06lIyMjFo7bl2VyPnalF/CLQ/P\nwCmhT5tG3Ht+f1KTqzd8J5HztS8oX7GpyXz1GFTA6f+cydaSMt7c0pIHzuhDkiXW8yT0+YqN8hUb\n5Ss2QeZr8eLFVd43nov97eGfTYC1sOvKfhqwbXc7mdkw4DHg5Kir/9vDfUXKBlZXJhh33wxsjjoW\nAJmZmWRlZVWmmxqVkZERyHHrqkTLV3m5M2byXDbmldAoPYUHzhlM0yY1949PouVrX1O+YlMT+eqd\nlcVfRvbjkkkz+WTxFp6avp5LjkrMJ0Xr8xUb5Ss2yldsgshXZmaF89NUStzewefuW4GVwMCI1QOB\nImBhRfuY2QjgKeA0d/9v1OY5UX3t7G+Pw4FE4tWEDxfz8cKNANw9si/tm+mqjNQ/w/rmMPqQTgDc\n8863TF28KdiARETiTI0X+2bWxsx+ZWZ/Dr9+ZWZtq9jdI8B1ZtbOzJoDtwITo2/ODR93FKEr+iMq\nKPQBngQOM7NTzSzNzC4ndGX/5SrGJhKYL5Zt5t53FwBw/tCOHN9b94xI/XXdCQfSr10Tyh0uf3YW\n320vCjokEZG4UaPFvpldCrxHaNrLNeFXe+Dd8LZY3Q68T+jq+1JCV/qvDB/rejObG9H2LiCL0HSa\neTtfOzeGb2YYBdxBaOz+aGC4u+sxjFKnbMkv4fJnZlFW7vRq05jrTugRdEgigWqQksz4swbSOD2F\nDduLueKZ2ZSVx+fkEyIita2mr+xfDgxy9z+4+4Ph1x+AQcAVsXbm7jvc/Up3b+bujd39PHfPD2+7\n3d17RbTt7O4p7p4V+Yrq7zV3P8DdG7r7QHefVs3zFalV7s5vn/+StblFZKaFCpz01OSgwxIJXPtm\nGdwzqj8AU5ds4u/vLQg4IhGR+FDTxX45oQdWRWsW3iYi1fDPT5by/vzvALj91D50blH1G3ZEEs1P\ne7biV0d0AeC+/y7i00UbA45IRCR4NV3sXwV8aGavmNkD4derwAfhbSJSRbNXbuWut+YDcOZB7Tm5\nf1VvhRFJXL897gAGdsjGHa6cPJsN24uDDklEJFA1Wuy7+xvAgcCdhMbav09ojPyB7v56TR5LpD7J\nLSzl0kkzKS1zDmjViBuH99r7TiL1UGpyEuPOHLBr/P5Vz82mXOP3RaQeq/HZeNy9zN2nuvuL4ddU\ndy+r6eOI1BfuzrUvzmHVlkIapiYz/qwBNEzTOH2R3WnXNIO7f94PgI8XbuTBj6r+MBoRkbqu2sW+\nmd1rZv81s/lmNsPMnjKzEWYJ9hhDkYBM/Gw5b369DoA/n9yL7q0a7WUPETmuV2vOH9oRgHveWcD0\nZZv3soeISGKqiSv7hxOaEvMtYDbQA3ge+MLMWtVA/yL11tw1udzy2jwATh3QlpGD2gUckUjdcd0J\nPejVpjFl5c7lz8xia0FJ0CGJiNS6ahf77j4kPCXmle7+f+4+mFDBXwRMqHaEIvVUXvEOLp00i5Ky\ncrq0zOSWU3qjL8xEKi89NTQ9bWZaMmtyi7jmhTm4a/y+iNQvNT5mH8DdFwJjgGP3Rf8iic7dueHl\nr1i6MZ+0lCTuP2sgmQ1Sgg5LpM7p3CKT20b0AeDdb9bz+JRlwQYkIlLLarR6MLNLgAKgBDgRWF2T\n/YvUF89NX8krs9cAcNOJPemR0zjgiETqrlMGtGXK4o08N30Vd7wxnyGdmtG7bZOgwxIRqRU1fWW/\nK3AL8BSQDgyr4f5FEt6367Zz06tzARjWN4ezDuoQcEQidd/NJ/Wi235ZlJSVc+mkmWwvKg06JBGR\nWlHT8+xf5e7tgJ8AnYFjarJ/kURXULKDSyfNpKi0nA7NMrjj1D4apy9SAzLSUrj/rIE0SEli2aYC\nbnj5a43fF5F6oSam3vzczI6IXOfuHwDnATdXt3+R+uTmV+ey8Ls8UpON8WcNoHF6atAhiSSMA1o3\n4uaTQg+ke/XLNTw3fWXAEYmI7Hs1cWX/U+B9M/vCzH5vZieEi/8xgCoVkUp6edYqnpu+CoDrT+hB\n33bZAUckknjOGNKe4X1zALjp1bksWL894IhERPatmph68zdAb0Jz7P8eeA34ALgQuKO6/YvUB4s3\n5HHDy18D8NOerRh9SKdgAxJJUGbGHaf2oWPzDIpKy7nk6ZkUlugh7yKSuGpkzL67f+vuvwSaA92A\nIUCOu/+1JvoXSWRFpWVc8vRMCkrKaJvdkLtH9tU4fZF9qFF6KvedOYDUZGPhd3n86d9zgw5JRGSf\nqekbdN3dl7j7DHffUJN9iySqW1//hvnrtpOcZIw7cwDZGWlBhySS8Pq2y+ban/UA4NkvVvLKbM0U\nLSKJqcrFvpndaGY/Df93UzO7zcweM7Pfmlm7mgtRJHG9PmctEz9bAcA1xx3AoI5NA45IpP644NBO\nHNOjFQDXv/QVyzbmBxyRiEjNq86V/YuBdeH/fh44idAQnhuAJWZ2ZTVjE0loyzflc+2LcwA48oCW\nXHR4l4AjEqlfzIy7R/Ylp0k6+SVlXPrMTIp3aPy+iCSW6hT7zYCNZtYVmOrufdz9cKAlcAlwq5md\nUhNBiiSa4h1lXDppFtuLd9CqcQPu+Xk/kpI0Tl+ktjXNTGPcmQNITjK+Xr2NO96YH3RIIiI1qjrF\n/mZCBf/RwIM7V7r7Dnd/GPgt8LvqhSeSmO5681u+Wp1LksHfzxhA86wGQYckUm8N6dSMq366PwCP\nT1nG23PX7WUPEZG6ozrF/nvAWOBqoFUF298HelWjf5GE9O4363n006UAXHnM/vyoS/OAIxKRMT/u\nyuHdWwDwuxfmsHprYcARiYjUjOoU+1cD24BvgUPM7Awzi3yI1slAtWbkMbMUMxtrZpvMLNfMnjCz\nzN207Wdmb5nZBjNzM+sUtf3I8Pq8iNdT1YlPJFartxby2+e/BOCQrs255KhuAUckIgBJSca9o/rT\nIqsBuYWlXP7MLErLyoMOS0Sk2qpc7Lv7Bncf6e4nAQ8APwI2mdkMM5sP3AU8VM34rgeOBfoDXYCO\nhL5NqEgJ8AJwxh76y3f3rIjXudWMT6TSSsvKuWzSTHILS2mRlcbfzuhPssbpi8SNlo0a8LfT+2MG\nM5Zv4d53FwQdkohItaVUdUczuxd4GfjU3cuBK83sn8AIQg/X+pO7P1PN+C4ErnP3leFj3gC8Z2ZX\nuPsPvmN193nAPDNrUc1jVsjMmhG6RyFSB4D8/Hzy8vL2xWErVFBQ8IOfsmfxkq+x/1nCzBVbMeCO\nkw4kw3bU6uemsuIlX3WF8hWbeM9X/5x0fnlIBx76dAUTPlhM/5wMDu0a/U9/7Yn3fMUb5Ss2ylds\ngsxXfn7VpwY2d6/ajmYTCE23mQa8Tqjwfye6CK9yYGbZwBagh7vPD69rCBQA/dx9zm72a0Fo+FBn\nd18Wsf5IQvcR7LzzagrwO3dfWsl4bgZuqmjbhAkTyMnJqUw3Uk/N22I8OD8ZgGPbljOsg4YHiMSr\nMofxc5NZst3ISnF+16+MJnrWnYgEaO3atYwZMwagu7svimXfKhf7uzowO4jQ+PyTgc6ECup/Af+u\nzlN0zaw9sAJo4+5rI9YXA0e7+ye72W93xX5rQtOCfkPoCv2dwOFAX3cvqkQ8u7uy//7s2bPp2rVr\nDGdXPQUFBUydOpWhQ4eSkZFRa8etq4LO13fbiznt4RlsKShlYPvGPHpuf1LiePhO0Pmqa5Sv2NSV\nfK3bVsxpD08nt3AHB3XM5uGz+wYy7K6u5CteKF+xUb5iE2S+Fi9eTP/+/aEKxX6Vh/Hs5O6fA58D\nN5hZN0JF/2hggpl9Qajwf8bdY30W+fbwzybAWth1ZT+N0I3Bsca5ju+v6m8ws18BucAg4NNK7L+Z\n0HSju5iF/uHPzMwkKysr1pCqLSMjI5Dj1lVB5Kus3Lnu6a/YUlBK04xU7j9nMNmNG9ZqDFWlz1ds\nlK/YxHu+umVlcc/P+3Phk9P5fPlWnvhiHZcf3T2weOI9X/FG+YqN8hWbIPKVmVnh/DSVUp3ZeP6H\nuy9y93vc/QigLfAocBhwZhX62gqsBAZGrB4IFAELayLc8M/4vcQqdd649xcybWnob8R7RvUjp0nd\nKPRFBI7p2Yr/O6wzAH97bwGfLdkUcEQiIrGr0WI/krtvdPdH3f0Ud/+rmVXlWI8A15lZOzNrDtwK\nTKzovgALSQd2Pp2ogZml7zyumR1lZl3C7bKB8cB3wMwqnaDIXkxZtJFx/wn9XXrREV34yYEVPY5C\nROLZ748/kL7tmlDucMWzs9iUVxx0SCIiManxYj9cTHc3s1PM7AYzm2Rmc6jC0BvgdkL3AMwBlhK6\n0n9l+DjXm9nciLYdgUJgVXh5fnj5iPDyAOADIC+8bT/gOHfXLehS4zZsL+aKybNxh/7ts/ntsQcE\nHZKIVEFaShLjzxxIowYprN9WzNXPf0l5efXudRMRqU01Wuyb2WxCV8snAacRGirzE2AkkB1rf+6+\nw92vdPdm7t7Y3c9z9/zwttvdvVdE22XubhW8Pghvv9fdO7h7pru3dvfT3F2TKEuNKy93rnpuNhu2\nF9MoPYX7zhxAWso++xJNRPaxDs0zuPO0vgB88O0GHvlkScARiYhUXk1XILMIXYG/0d3PdffbgUJ3\nX+DuO2r4WCJxacKHi/l44UYA7h7Zl/bNNMOBSF03rG8OZx/cAYC/vPUts1ZsCTgiEZHKqekbdH8B\nnAOMNrOPwnPb6/tOqTemLdnEPe98C8D5QztyfG89f0EkUfxxeE8ObN2IHeXOpZNmkVtQGnRIIiJ7\nVeNjC8JX8U8HLgd+C7Q2s0Nq+jgi8WZjXjGXPzuLcoc+bZtw/bAeQYckIjUoPTWZ8WcNpGFqMqu3\nFvL7F+dQ3WfViIjsa/tyNp7Z7j4cOAa41cze31fHEglaebnzm8mzWb+tmEYNUrj/rIE0SEkOOiwR\nqWHd9svillN6A/DW3HVM/Gx5wBGJiOxZtYt9M9t/T9vdfYq7/wS4o7rHEolXkeP0/zKyLx2aa5y+\nSKIaOagdpw5sC8Atr81j7prcgCMSEdm9mriyP9/MtpvZVDObYGYXm9mPzOwH1Y67v1cDxxKJO5Hj\n9Ecf0omf9dE4fZFEd8vJvenSMpOSsnIumzSLvGLNQSEi8akmiv32hJ6Q+wahueuvB6YA28zs2xro\nXyRuRY7T79uuCdedcGDQIYlILchskML4MweSlpLEko35/OHlrzR+X0TiUszFvpkNjHwarruvdvfX\n3P2W8Nz1HYAjgUWE5tsXSUg/GKefHvrFr3H6IvVHzzaNuXF4TwD+NXsNz89YtZc9RERqX1Wu7E8H\nWuypgbt/RGgKzm5VCUqkLoieT1/j9EXqn7MP7sAJfVoDcOMrXzN/XVUeFi8isu9UpdjvDGzYuWBm\nKRU1cvfpwBFVjEskrkWP09d8+iL1k5lx52l96dAsg6LScn49cabG74tIXIm52Hf35f7DgYn5ZjbT\nzB41syvM7Mdm1sbMTgJ0qVMSjsbpi0ikxumpPHD29+P3Nf++iMSTmrhBdxihsflpwEXAe8BK4CXg\n7hroXyRuaJy+iFSkd9sm/OmkXgC8PmctT07V/PsiEh8qHIITi/CUmrum1TSzdKArsNHd11e3f5F4\n8sAHizROX0QqdMaQ9nyxbDMvzVzNra9/Q992TRjQoWnQYYlIPVfjT9B19yJ3n6tCXxLNp4s2cu+7\nCwCN0xeR/2Vm3HpKb/ZvlUVpmXPppFlsyS8JOiwRqedqvNgXSURrcwu5/JnQOP3+7bM1Tl9EKpSR\nlsKEcwaRmZbM6q2F/Oa52ZSXa/y+iARHxb7IXpTsKOeSp2eyKb+EphmhG/E0Tl9EdqdryyzuPK0v\nAB98u4EJHy4OOCIRqc9U7Ivsxe1vzGPmiq2YwbgzB9Amu2HQIYlInDuxXxvOH9oRgHve+ZYpizcG\nHJGI1Fcq9kX24NUv1/D4lGUAXHXM/hzevWWwAYlInXH9sB70a59NucPlz8xi/baioEMSkXpIxb7I\nbixcv51rX5wDwFEHtOSSo/RAaBGpvAYpydx/1gCaNExlY14Jlz0zix1l5UGHJSL1jIp9kQrkFe/g\n4okzKCgpo13Thow9vT9JSRZ0WCJSx7RrmsHfTu8PwOdLN3PXW/MDjkhE6hsV+yJR3J3fvziHxRvy\nSUtJYsLZg8jOSAs6LBGpo446cD8u+0nom8GHP17Kq1+uCTgiEalP4rrYN7MUMxtrZpvMLNfMnjCz\nzN207Wdmb5nZBjNzM+tUQZvhZjbfzArMbIaZHbSvz0Hqnsc+Xcbrc9YC8OeTetGnXZOAIxKRuu7K\nY/bnx/uH7vn5/QtzmLd2W8ARiUh9EdfFPnA9cCzQH+gCdATG7qZtCfACcEZFG82sG/Ac8AegKfAE\n8LqZqZKTXaYt2cTtb8wD4OeD2nH6kPYBRyQiiSA5yfj7Gf3p0CyDwtIyfvXUDHILSoMOS0TqgZSg\nA9iLC4Hr3H0lgJndALxnZle4e2FkQ3efB8wzsxa76es84FN3fyG8PM7MLgNGAI/vLRAzawY0i1rd\nASA/P5+8vLxKnlL1FRQU/OCn7Fll87U2t4gxE2eyo9w5sFUWvz+mE/n5+bURYlzR5ys2ylds6nO+\nUoB7T+vBOY/NYsXmAi59ejrjT+9N8h7uB6rP+aoK5Ss2yldsgsxXdeoRc4/PJ/uZWTawBejh7vPD\n6xoCBUA/d5+zm/1aABuAzu6+LGL9v4D57n5txLrJwGp3v6oS8dwM3FTRtgkTJpCTk1PJM5N4VFIG\n4+YmszLfyExxru5TRvP0oKMSkUQ0Y6Px5MLQg/mObVvOsA6aoUdE9mzt2rWMGTMGoLu7L4pl33i+\nst8o/DN35wp3LzSzEqBxFfvLjVq3NYa+xgETo9Z1AN4fOnQoXbt2rUJIVVNQUMDUqVMZOnQoGRkZ\ntXbcumpv+XJ3rn/1W1bmryfZYNzp/Ti4c9MAIo0P+nzFRvmKjfIFRwO8u4gnp63mndVJDD+kDz85\noOIvpZWv2ChfsVG+YhNkvhYvrvqTuOO52N8e/tkEWAu7ruynAVW5s2l7uK9I2cDqyuzs7puBzZHr\nzEJfvWZmZpKVlVWFkKonIyMjkOPWVbvL16OfLOXfX60H4IZhPTm6j8bpgz5fsVK+YlPf83XjSX1Z\nsKGQz5Zs5vpXv+WVS1vQteXu81Hf8xUr5Ss2yldsgshXZmaF89NUStzeoOvuW4GVwMCI1QOBImBh\nFbqcE9XXzv4qHA4k9cOURRu5LXxD7qkD2/KLQzsFG5CI1AspyUmMP2sgOU3SySvewa+emkFe8Y6g\nwxKRBBS3xX7YI8B1ZtbOzJoDtwITo2/OBbCQdKBBeFUDM0s3s53n+CRwmJmdamZpZnY5oSv7L9fC\neUgcWrm5gEsmzaSs3OnTtgm3j+iz69saEZF9rUVWAyacM4i05CQWfZfHbybPprw8Pu+jE5G6K96L\n/duB9wldfV9K6Er/lQBmdr2ZzY1o2xEoBFaFl+eHl48ACN/MMAq4g9DY/dHAcHePHscv9UBhSWjq\nuy0FpTTPTOMf5w4iPTU56LBEpJ7p3z6bW0/pDcC736zn3ncXBByRiCSauC723X2Hu1/p7s3cvbG7\nn+fu+eFtt7t7r4i2y9zdKnh9ENHmNXc/wN0buvtAd58WwGlJwHY+IfebtdtISTIeOHsgbbIbBh2W\niNRTo4a03zWEcPx/F/HK7ErdSiYiUilxXeyL7AsTPly863H1N57Yk4O7NA84IhGp7244oQeHdw/N\nyPO7F+bw5cqtAUckIolCxb7UK299vY6/vPUtAKMGt+PcH3UMOCIRkfANu2cOpEuLTIp3lPPLJ6ez\nfltR0GGJSAJQsS/1xrx12/nN5NkAHNS5GbeeohtyRSR+NMlI5ZHzB9M4PYXvthdz0ZPTKSotCzos\nEanjVOxLvZBbApdO/prC0jI6Ns/gwXMGkZaij7+IxJcuLbMYf9ZAkgy+XJXLja8tIE4fdC8idYSq\nHUl4haVlPDw/mfXbS2iUnsI/zx9Cs8y0oMMSEanQEfu35I/DewLwxtzveHe1voEUkapTsS8Jrbzc\nueHV+azMN5INHjh7IN3201MCRSS+jT6kE2ceFHqa9+srk3nj6+8CjkhE6ioV+5LQxr63gHfmbQTg\nuuO6cXj3lgFHJCKyd2bGn07qzY86ZQNww7/n88WyzQFHJSJ1kYp9SVgvzVzFff9ZBMARrcs5Y3Db\ngCMSEam8tJQk7h3Zi9YNndIy55dPTmfJhrygwxKROkbFviSkTxZu5HcvzAHg0C5NOaVTecARiYjE\nrnF6Cr/qUUaLrDS2FpTyi8e/YFNecdBhiUgdomJfEs7cNblcPHEGO8qdnjmNuee0niTr/jYRqaOa\nNYDxo3rTMDWZ5ZsK+KWm5BSRGKjYl4SyaksBv3jsC/KKd9A2uyGP/WIIWQ1Sgg5LRKRaerdpxH1n\nDiDJYOaKrVz13GzKyzUnp4jsnYp9SRi5BaWMfuwLvtteTJOGqTxxwRBaNU4POiwRkRpxTM9W3Lhz\nSs6v1nHHm/MCjkhE6gIV+5IQikrL+OWT01n0XR5pKUk8cv5guu3XKOiwRERq1OhDO3PBoZ0BePjj\npTz00eKAIxKReKdiX+q88nLn6ue+5PNlmzGDv53enyGdmgUdlojIPnHDsB4M75sDwO1vzOf56SsD\njkhE4pmKfanT3J0/v/YNr3+1FoA/DuvJCX1yAo5KRGTfSU4y7h3Vn8O7twDg2pe+4t1v1gcclYjE\nKxX7UqeNfXcBj09ZBsAvD+/MBYd1DjYgEZFakJaSxIPnDKJf+2zKyp1LJs1k2pJNQYclInFIxb7U\nWY98vIRx4YdmjRzUjut+1iPgiEREak9mgxQeGz2Eri0zKdlRzoVPTOebNduCDktE4oyKfamTnvti\nJbe+HpqJ4vherbnz1D4kJWkyfRGpX5r9f3t3Hl9Vde99/PNLQkIGCJOMMg+KKCIiiApqna5otVXr\ndZ5wKLaOt72PQx87vDrcR5+WyqMVFeqAVmxFe21tL1WcUJkUFSpjwhQgjGHKREjye/44J/RwTEh2\nSHJOzvm+X6/zOpy11t5n7d9rn8Vv76y9d3Y6MyaOoWduW/btr+SG3y9k/c6SWHdLROKIkn1pdf62\ntJAHXg89HXfc4C48fvUI0lK1K4tIcurZIZMXJ46hY1YbdhTv59ppC9i8uyzW3RKROKEMSVqV91du\n456Zn1PtcFKfDky97mQy0lJj3S0RkZga1DWH524eTXZ6Kht3lXHNs/PZurc81t0SkTigZF9ajQ9W\nbef2GZ9xoMo5tns7nr9pNNl6Oq6ICAAjenfg9zedQmabVNbtLOWaZ+ezfd/+WHdLRGIsrpN9M0sz\ns8lmttPM9pjZC2aWfZj2t5jZOjMrNbP3zWxwRN1ZZuZmVhzxmtEyWyJH6qPVO7j9xU+pqKxmcNcc\nXrp1DLlZbWLdLRGRuDJmQGem3ziKjLQU8reXcO20+ewsVsIvksziOtkHHgLOB0YAA4C+wOTaGprZ\nmcDjwA1AZ2Ah8KaZRc7xKHH3nIjX9c3ae2kSn+TtYOILi9hfWc3Ao7L5w22n0iUnI9bdEhGJS6cN\n6sIzN4wiPTWFVVuLuW76QnaXVsS6WyISI/E+B+JW4EF3LwAws4eBd8zsHnePvvpoIjDT3T8Mt30E\n+C4wDnj/SDtiZp2A6Mey9gEoKSmhuLj4SL+iwUpLSw95T2QL1+3mzplL2V9ZTb9OmUy75gQy7QDF\nxT1biYIAABgDSURBVAcavI5kildTULyCUbyCUbyCaWy8Tu6ZyW+uOI57//QVywv3cvUz83jmmuF0\nTPC/iGr/CkbxCiaW8Sopafxdtszdm7ArTcfMOgC7gKHuviJclgmUAie6+5Ko9l8AU919akTZAuBl\nd59iZmcBc4At4epPgP9097UN7M9PgB/XVvfUU0/Ro4ee2trUVu4xpq1IoaLaOKqtc9ewKnLTY90r\nEZHW48udxvOrU6h2o0emc+dxVbTXOCrS6hQWFjJp0iSAwe6eF2TZeD6z3y78vqemwN3LzKwCaF9H\n+z1RZbsj2q4gNB1oGaEz9P8FzDaz4e7ekFsWTAFeiirrA8wZO3YsAwcObMAqmkZpaSnz5s1j7Nix\nZGVltdj3tqT3V+1g2sJlVFQ7fTpm8tz1J9KtfeOm7iRDvJqS4hWM4hWM4hXMkcbrHGDkqh3cN2sZ\nhWUwfW07pl13It0bOZ7GO+1fwShewcQyXvn5+Y1eNp6T/X3h91ygEA6e2U8HantE4L5w20gdatq6\n+xb+dVZ/u5ndQejg4GTg4/o64+5FQFFkmVnoIU7Z2dnk5OTUu0FNLSsrKybf29ze/HIz97+2jMpq\nP3gxbrf2bY94vYkar+aieAWjeAWjeAVzJPG6eGQO7XOyuX3Gp6wrKuPml77kD7eeSu9OiZvcaf8K\nRvEKJhbxys6u8/409YrbC3TdfTdQAIyMKB4JlAOra1lkSWRbM2sLDA2X1/oVNU2PuLPSZGYu3MA9\nMz+nsto5oVcur94xtkkSfRGRZDZ+yFE8f/NostJTKSgq48qn57Fme8tdayYisRO3yX7YNOBBMzva\nzDoDPwdequXiXIDpwFVmNi6c6P8M2ATMBTCzs81sgIV0AJ4AtgGLW2RLpF7T5q7hgdeX4g6n9OvI\ny7eNoVO2JpeKiDSFUwd0ZsbEMbRrm0bhnnKumDqPLwp2x7pbItLM4j3Z/yWhi2qXAGsJnem/F8DM\nHjKzr2oauvsHwH2E5tUXAWOAS9y9KtzkJEJ35SkmNH+/K3CBu+sS9BirrnZ+9bfl/Pyt5QCMG9yF\nF24ZTfu2iX3XCBGRlnZy3468ctupdM5Op6ikgqufmc97K7fFulsi0oziOtl390p3v9fdO7l7e3e/\nwd1LwnW/dPdhUe2nu3tfd89y9zPdfXVE3W/cvY+7Z7t7d3e/3N1XtfQ2yaH2V1Zxz6tf8PSHawC4\n8PjuTLtxFFnp8Xw5iYhI63V8r1xmTTqNvp2zKDtQxa0vfMqfPi2IdbdEpJnEdbIviW1P6QGun76Q\nv3y5GYCbT+/HE9eMJCMttZ4lRUTkSPTrks2sSadxQq9cqqqdH762hCffyyNeb8ctIo2nZF9iYuOu\nUi6f+gkL14ZucPSji4by428OIzVF10uLiLSELjkZzLz9VMYN7gLAY7NX8tAbS6morI5xz0SkKSnZ\nlxb32foivv27T8jbVkx6WgpPXjOSW8cNiHW3RESSTnZGGtNvPIXLTuoFwCsLC7hu+gKKSipi3DMR\naSpK9qVFzVy4gauemc/2ffvJzWzDSxPHcNFwPX1YRCRW0tNS+PWVJ/LDC44BYOHaIi554iNWbKnt\nkTYi0too2ZcWcaCqmv/953/ywOtLOVDlHNOtHW9+/3RG9+8U666JiCQ9M+N7Zw/i6etPJis9lY27\nyrj8d5/w9rKtse6aiBwhJfvS7HYU7+faaQuYMX89AP82rDuv33kafTs3/mlwIiLS9C4Y1p1Zk06j\nV4dMSiqquH3Gp/z6HyupqtaFuyKtlZJ9aVaL1hVx8ZSPDl6Ie/95Q/jdtSPJztCtNUVE4tHQHu35\n7++fzuh+nXCH//duHtdOm8+2veWx7pqINIKSfWkW1dXOk+/lcdUz89myt5ycjDSevWEUd58zmBTd\ncUdEJK51ycng5dvGcMf40M0T5q8pYsKUuXyctyPGPRORoJTsS5Pbtq+cG59byGOzQ3/6PaFXLm/d\nfQbnHdct1l0TEZEGapOawoMThjLthlHkZrZhR3EF101fwG/eXkVllW7PKdJaKNmXJvXWkkIumPwh\nc1eHzv7cfHo/Xps0VvPzRURaqXOP68bf7hnHSX064A5T5qzmiqnzyN9eHOuuiUgDKNmXJrG7tIK7\nX/mc7/1hMbtKD9Axqw1PX38yP/7mMD0RV0SklevVIZNXbx/LHeMHYAZfFOzmoilzee7jtVTr4l2R\nuKZkX46Iu/O3pYWcP/lD3vxyMwDnDu3K7PvGc8Gw7jHunYiINJX0tNC0npm3ncrRHTMpP1DNT/+y\njKuenU/eNp3lF4lXSval0QqKSpn4wqfc+fJitu3bT05GGo9eMZxnbxhF13ZtY909ERFpBmMGdOZ/\n7h3P1aN7A6GHcE14fC6T315F+YGqGPdORKIp2ZfAyg9U8bv38zh/8oe8u2IbAOcO7cY/7hvPlaN6\nY6a77YiIJLKcjDR+ddlwXpo4hr6ds6ioqubxOauZ8Phc3lu5LdbdE5EIutm5NJi789bSQv7r7yvY\nuKsMgO7t2/LTS4dpyo6ISBI6Y3AXZt87nifezePpD/NZs6OEm59bxPghR/HwhKEc071drLsokvSU\n7EuDzF+zk8dmr+Sz9bsASE9N4abT+3H3OYPJ0QOyRESSVts2qfzggmO4dERPfvbXZcxdvYMPV23n\no9Xb+fdT+nDXNwbRs0NmrLspkrSUpclhzV+zk9++s4r5a4oOlk04oTv/69+O1e00RUTkoMHd2vHi\nLaN5f9V2fvHWcvK2FfPKwg3M+mwj/35KbyadNVBJv0gMKNmXr6mqduYs38r0j9ayYO2/kvzR/Tvx\nwwuO4ZR+nWLYOxERiVdmxtnHdGXcoC7MXFTAE+/msWVvOTPmr+fVRQVcNrIXt5zRnyHdNL1HpKUo\n2ZeD9pQdYNZnG3n+k3VsKCo9WD66XyfuPW8wYwd01sW3IiJSr7TUFK47tS/fGXU0f1xUwJPv5bNl\nbzkzFxUwc1EBZwzqws2n9+OsY7qSmqL/V0Sak5L9JFdZVc3cvB3M+mwj/1i2lYrK0CPQzeCcY7sy\n8YwBnDqgk5J8EREJLCMtlevH9uM7o3rz+uJN/P7jteRtK+ajvB18lLeDbu0z+NZJvbhi5NEM1tl+\nkWahZD8JlR+o4pP8Hby9bBvvLN/K9n37D9Zlp6fynVG9ufG0fvTvojn5IiJy5Nq2SeWaMX24enRv\n5q7ewe8/XssHq7azde9+nv5gDU9/sIZhPdtz3nHdOHdoN4b1bK+TTCJNJK6TfTNLAx4DbiDU1z8D\nd7p7SR3tbwEeAboCC4Hb3H11RP3FwP8F+gDLgUnuvrBZNyIOVFRWs3TTbhau3cWidUXMy99JWcSD\nT8zg9IFduPzkXlwwrDtZ6XG9W4iISCtlZowfchTjhxzFpt1lvLF4I7MWb2LtjhK+2ryXrzbv5bfv\nrKZHbltOG9iF0f07ckq/TvTvkq3kX6SR4j2rewg4HxgBlAKzgMnA7dENzexM4HHgImAR8FPgTTM7\n3t2rzGwQ8EdCBw5/Ae4A3jKzQe6+pyU2pjlVVzu7SivYsrecLXvKyd9ezKqtxazauo+VW/axPzw9\np0ZqijG6XyfOPa4bFx7fXXdIEBGRFtWrQybf/8Zgvnf2ID4v2M3sr7bwzrKt5G8voXBPObMWb2TW\n4o0AdMpO59ju7RjSLfTq1zmLbrlt6da+rW7/LFKPeP+F3Ao86O4FAGb2MPCOmd3j7mVRbScCM939\nw3DbR4DvAuOA9wkl+R+7+2vh9lPM7C7g28Dz9XXEzDoB0beh6QNQUlJCcXFx8K1rpEdnr2TOV6n8\nesUCKqqcispq9pZXUlnth12uf+csTu6Tyyl9czljYCdyM9uEa6patP8trbS09JB3OTzFKxjFKxjF\nK5hkideQTm0YMq43d43rzbqdpczNK+LTDXv4vGAPRaUHKCqp4JP8nXySv/Nry2alp5KVnkpGagrp\nqVBRnsqTeYtISUmJwZa0LtXV1ZSUKF4NVROv3P7bGDWgZb+7pKTWSS0NYu6HTxBjxcw6ALuAoe6+\nIlyWSegM/4nuviSq/RfAVHefGlG2AHjZ3aeY2Z+BFe7+QET9q8Amd7+/Af35CfDj2uqeeuopevTo\nEXQTG+2FVSks3ln3j7KNOV0yoUem0yPL6ZEF/ds5OW3qXERERCTuuMO2cthQbBSWGoWlsKXM2L0f\nqtG0HomN7x9XxeDcls2fCwsLmTRpEsBgd88Lsmw8n9mvuSz/4BQbdy8zswqgfR3to6fj7I5oW199\nfaYAL0WV9QHmjB07loEDBzZwNUfOu2+m/+crOGbwQNpltaVtWgrZGal0a5fBUe0yaJeRqrmNEUpL\nS5k3bx5jx44lKysr1t2Je4pXMIpXMIpXMIpX7aqqnaKSCrYVV7CjuIKyA1XsP1DN3tJyVuevoX+/\n/rRJ1xmu+hyoOMDadWsVrwaqidcFp4+kf7cOLfrd+fn5jV42npP9feH3XKAQDp7ZTwf21tE+N6qs\nQ0Tbuuo3NaQz7l4EFEWW1STU2dnZ5OTkNGQ1TeLcYT2xLcs5Z0zfFv3e1i4rK0vxCkDxCkbxCkbx\nCkbx+rrc9tA/qqy4uJg5pfmcc0Z/xasBiouLmbN/jeLVQDXx6t+tQ4vHKzu78XdIjNsJWu6+GygA\nRkYUjwTKgdW1LLIksq2ZtQWGhsu/Vh+xviWIiIiIiCSguE32w6YBD5rZ0WbWGfg58FItF+cCTAeu\nMrNx4UT/Z4TO2s8N178InGFml5lZupndTejM/hvNvxkiIiIiIi0v3pP9XwJzCJ19X0voTP+9AGb2\nkJl9VdPQ3T8A7iM0r74IGANc4u5V4fo84ErgV4Tm7t8EXJwIt90UEREREalNPM/Zx90rCSX399ZS\n90tCBwORZdMJneGva31/Bf7axN0UEREREYlL8X5mX0REREREGknJvoiIiIhIgorraTytQBuA9evX\nt+iXlpSUUFhYSH5+/hHdiilZKF7BKF7BKF7BKF7BKF7BKF7BKF7BxDJeEblm4AcixO0TdFsDM/sG\noQuIRURERESa2znu/m6QBZTsHwEzyyZ0159C4EALfnUfQgcZ5wAbWvB7WyvFKxjFKxjFKxjFKxjF\nKxjFKxjFK5hYxqsN0ANY4O4lQRbUNJ4jEA52oKOrplDz5F5gQ/iWonIYilcwilcwilcwilcwilcw\nilcwilcwcRCv5Y1ZSBfoioiIiIgkKCX7IiIiIiIJSsm+iIiIiEiCUrLfOhUBPw2/S/0Ur2AUr2AU\nr2AUr2AUr2AUr2AUr2BaZbx0Nx4RERERkQSlM/siIiIiIglKyb6IiIiISIJSsi8iIiIikqCU7IuI\niIiIJCgl+yIiIiIiCUrJvoiIiIhIglKyLyIiIiKSoJTsi4iIiIgkKCX7IiIiIiIJSsl+nDCzNDOb\nbGY7zWyPmb1gZtmHaX+Lma0zs1Ize9/MBkfVX2xmK8L1n5nZ6ObfipYTJF5m9h9m9rmZ7TWzzWb2\nrJl1iKg/y8zczIojXjNabmuaX8B43WRmVVHx+EVUG+1f/2r796hYlYX3p5Hh+oTev8zsKjP7OLxd\n6xrQPtnHrgbHS2NX4Hhp7AoWr6QeuwDMLMPMnjGz/PD25ZvZA/Us0+rGMCX78eMh4HxgBDAA6AtM\nrq2hmZ0JPA7cAHQGFgJvmllquH4Q8EfgR0BH4AXgLTPLbeZtaEkNjhfQBpgEdAGGA72BqVFtStw9\nJ+J1ffN0O2aCxAtgeVQ8Hq6p0P51KHe/MDJWwC+AFe6+OKJZIu9fRcAU4JH6GmrsAgLEC41dECxe\noLGrwfHS2AVAGrANuBBoD1wCTDKz79bWuNWOYe6uVxy8gA3AtRGfTwfKgMxa2r4IPBvxuS2wFzgr\n/PlnwNtRy6wGbor1dsYiXrUsexGwOeLzWUBxrLcpXuIF3AT88zDr0v5V93IGrAXujyhL+P0rvJ1X\nAOvqaZP0Y1eQeNWyTNKNXUHipbErWLyi2ift2FVLLB4D/lBHXascw3RmPw6E/yzbG/gsongxoZ1o\ncC2LDI9s6+7lwPJw+dfqI9Y3nATQiHhFOwdYElWWaWabwq8/mVn/pult7DUyXgPNbJuZrTezaWZ2\nVESd9q+6nQf0IHQ2J1LC7l8BJfXY1QSSauxqpKQdu46Qxi7AzFIIHeRE/85qtMoxTMl+fGgXft9T\nU+DuZUAFoT8r1dZ+T1TZ7oi29dW3dkHjdZCZXQrcCvxnRPEKQtM1+oTf9wKzzaxtE/Y5loLG60Pg\nBKA7MA7oBrwetT7tX7W7HXjd3XdGlCX6/hVEso9djZakY1dQyT52HQmNXSGPAdnAE3XUt8oxTMl+\nfNgXfj84p8vMMoF0Qj+u2tpHz//qENG2vvrWLmi8atpcBDwHXOruB4/a3X2Luy919yp33w7cAfQC\nTm6OzsdAoHi5+xp3z3P3anffQCgeZ5hZr4j1af+KYmZdCc33fCayPAn2ryCSfexqlCQeuwLR2NU4\nGrtCzOznhOJwnrsX19GsVY5hSvbjgLvvBgqAkRHFI4FyQnO9oi2JbBs+yh7Kv/7sdEh9xPrq+rNU\nq9KIeGFm3wZmAJe7+3v1fUXNYkfY1bjQmHhFryL8XhMP7V+1uxlY6+7v1/cV4feE2L8CSuqxqzGS\neexqAkk1dh2BpB+7zOxR4EpCc+83HaZp6xzDYn0hhF4HL+B4BFgKHE3oCu/3iLgIJKrtmYSOEscR\nmkf8KKE5Y6nh+kFAKXAZobORdwPbgdxYb2eM4nUloT+jnVlH/dmE7rhihI7AnyJ0oVJWrLczRvGa\nAPQM/7s7oT+DL4io1/719fZG6EDgB8m2fwGp4XHoamB9+N9t62irsStYvDR2BYuXxq4A8Qq3T9qx\nK2I7HwdW1uw79bRtlWNYzIOs18EdKA34LaHbZu0ldMV3drjuIeCrqPYTwz/kUuADYHBU/cXhnbeM\n0MUhY2K9jbGKV3hwqgSKI18R9fcTuvtKCbAFmAUMifU2xjBejwGF4X1rE6HpAz20fx3293g2sB/o\nUsu6Enr/InQHFI9+HSZWyT52NTheGrsCx0tjV/DfY9KOXeFt7BuO0f6o39nfDxOzVjeGWbhjIiIi\nIiKSYDRnX0REREQkQSnZFxERERFJUEr2RUREREQSlJJ9EREREZEEpWRfRERERCRBKdkXEREREUlQ\nSvZFRERERBKUkn0RERERkQSlZF9EREREJEEp2RcRkZgws8fMbHYt5VPN7Lex6JOISKJRsi8iIrEy\nGlgYWWBmBlwC/DkmPRIRSTBK9kVEJBAzm2xmn5rZ1/4PCZcf9qy8maWbWQUwHviRmbmZLQtXnwJk\nAB+F234Vrq/t9ZOm3TIRkcSjZF9ERBrMzI4B7gJ+6O7VtTRZDpxUz2oqgbHhf48BegCnhz9/C3jL\n3SvDn78dfp8QbtcTKAUmAv+nMdsgIpJMlOyLiEgQPwC+dPf36qgvIpSUY2YTzGylmeWZ2V01DcIH\nCT2AfcAid9/i7rvC1Zdy6BSeboADc919C5ANZAEfuXtZU26YiEgiUrIvIiINEp62cwXwWkTZ5MhE\nHmgHlJhZGjAFOBcYDtxpZkdHtDuJ0EGDR6xrEDAAiLxo90RgjbsXhz+PIHRmP6/JNkxEJIEp2RcR\nkYbqD3QAlkaUXUko+a5xIrCM0MW3y929wN1LgdeBb0a0GwF8HrX+bwFz3L0komw4sCRquX/WMYVI\nRESiKNkXEZGG6hh+LwYws7MIzaGvCH8eTCgZfyNcvili2Y1Ar4jPJ3JoEg9fn8IDoWT/y4jPI6I+\ni4jIYSjZFxGRhtoAVAPXmNkIQtN0/gJcbGbDgecIJfBvNGBdacCxZtbTzDqY2VHAqeH1AQenDR3P\noQcFA4H1TbExIiLJQMm+iIg0iLtvAx4EvgP8A3ia0AW7JwHzgZ3ABHevAjZz6Jn8ozn0TP/DwFWE\nzvj/itAUn0XuvjWizUBCF+RGJvtLgfvN7MKm2zIRkcRlEddGiYiINInwBborgbOAHcBi4Hx3L6ij\n/X8DH7v7oy3WSRGRJJAW6w6IiEjicfdKM7sXmAOkAlPqSvTDPgZeaZHOiYgkEZ3ZFxERERFJUJqz\nLyIiIiKSoJTsi4iIiIgkKCX7IiIiIiIJSsm+iIiIiEiCUrIvIiIiIpKglOyLiIiIiCQoJfsiIiIi\nIglKyb6IiIiISIJSsi8iIiIikqCU7IuIiIiIJCgl+yIiIiIiCUrJvoiIiIhIglKyLyIiIiKSoP4/\nr2I9J97/RVwAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd1a4ce8908>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(a/pi, vA)\n", "plt.xlabel(r'$\\omega_0 t/\\pi$')\n", "plt.ylabel(r'$\\dot u_A/\\delta\\omega_0$')\n", "plt.title('Imposed support velocity');" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwEAAAE3CAYAAADyo02MAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAARrwAAEa8B9/1LhAAAIABJREFUeJzs3XeYVOXZx/HvvZ3dZYGlLr1L76jYo0aNqFhRsIAGjVii\niRpL7Bo1xuhrxcSOgrGA3UTFElER6b33stSFZQvbn/ePM5hhXZYdtpyd2d/nuuYa5tT73DPAuc95\nnueYcw4REREREak7ovwOQEREREREapaKABERERGROkZFgIiIiIhIHaMiQERERESkjlERICIiIiJS\nx6gIEBERERGpY1QEiIiIiIjUMSoCRERERETqGBUBIiIiIiJ1jIoAEREREZE6RkWAiIQ9M7vXzLL9\njqOmmdlaM3vG7zhqmpmNNrORfsdxKPz4zsysX+DvSGKp6SeYmTOzQTUZj4jUDioCREQk3IwGwrII\n8Ek/4B4gsdT02cAQYEmNRyQivlMRICIiYcHM6vkdQ21RFblwzu1xzv3onMupiphEJLyoCBCRiGNm\n7QPNHC41s+fMbJeZ7TSzuwLzzzKzRWaWbWafmVlaGeuOMrMXzGy3mWWY2RNmFltqP73M7N+B7ewx\ns4/MrEupZUab2QIzyw1sZ5qZHRM038zsRjNbamb5ZrbezP5sZlZqO0PNbLGZ5ZnZbDM7roK5OMrM\nvgkcR3bguK8Omv+L5illNRMJfL7VzB4xs21mlmVmr5lZ/TLW+42ZvRvY3xYzu6OMuI41s+/MbG8g\nLxPMrMUBvodxZrYDWGBm3wDHA0MD852Z3VvO8V9iZlMD3//uwJ+PKWO57mY2ORBLrpnNM7MRQfOj\nzOyPZrYk8D1tMbN3zKxB0DKHBbaxK7CNL8ysZ7lfkLfe4Wb2eSCnWWY2ycxaHywXgXm/Cay77zuZ\nYWbDgtYdDbwS+Lg9sJ21pb6v4O85wcweM7NNgeNcaGaXlIr31cD04wK/xVwzm1PR36SI1A4xfgcg\nIlKN/gK8BwwHTgPuD5y0ngzcBUQDTwH/AM4qY90pwIXAIOBeIB+4DcDM2gBTgXV4zVMMuA+Yama9\nnXPbzexYvBOwx4B/AwmBbaUG7efvwFjgYeAHYEBgOyWBaZhZb+D9QDy3AK2A14GG5R184Fg/CWx3\nZCD+bkBKuVk7sOuBuYHj7Qg8AsQDF5Va7p/AW8B5wCnAX8wswzn3fCCugYFj+Q4vv42Ah4AvzWyg\ncy4vaFsPA58BF+P9n7UGeAPIBW4OLLOxnJg7AG8CK/C+7wuAr81skHNuXiCeLsC0wHZ+D2wBegFt\ng7bzNPA74IlA7MnA0MB7ppm1x8vzMmAMUBCI72sz6+KcyywrODM7HPgW+CJwjLF4v7XPzKyPc664\nnFzsO77/BOIqBH4NvGdmZzrnPsH7/h8E7sT7O5CJ9zs4kAnA6Xh/PxYE8vW6mZlz7vWg5VoAzwKP\nAjsCMb9vZu2cc1nlbF9EagvnnF566aVXWL/wTkCygz63BxzwTqnl1uCdALUOmnYz3gl3vVLrfltq\n3YeAHKBR4PPjgc9Ng5ZpjXfyd2/QtneWE3dHoBgYW2r6bXgna0mBz28Ca4GYoGXODcT5TDnbHxRY\npnc5y6wtvQ3ghMB6g4KmOWA1EB007apA7rqVWm98qe1NxDvBjgp8ngxsAOKCljkisO7oUt/D52XE\n/A3w8SH8TqLwTp5nAU8FTZ8AbANSDrBe18Bx3l7Otl8N/L7qBU2rD2wH7jxQvgPH8iNgQdPaBX6n\nlxwsFwc4vsnAh0HTRwfWb1Le9wz0CXy+ptRynwJrSx1rSfDvCq/fgQPOruzfZ7300qtmXmoOJCKR\n7PNSn1cAS5xzwVeOl+NdxW9Vatn3Sn1+F69jZe/A52OBr5xz2/ctENju94F54HW8TA00mznFzJJK\nbfPkwL7fMbOYfS+8K80pwGGB5Y4EPnDOFQWt+wFQRPlWAXuAcWZ2oZk1O8jyB/OR2//K9LuB+A8v\ntVxZuWuFVySBl5/3nXMF+xZwzk3HO0E+ttS6H1Ym4KBmPlvwCq5CvLstXYMWOwl41zm35wCbORHv\nOF8qZ1en4H0nhUHf4168Owyl87MvtnrAMXh3TaKD1tuEd0eh9Hq/yIWZtQ40z9kYOLZC4JxSx1dR\n+3L/VqnpbwHtAne/9kl3zi0I+rw48N4aEQkLKgJEJJLtKvW5ANhdxjTwmuoE21bq89bA+77+A43w\nmo2UtpVAcx/n3FfAJUB3vCYbO8xsopk1DSzbFO/kcjv/O4ErBGYE5u9rjpJWOp7AyfiOMvYfvMwu\nvOYhe4DXgC2BNvH9y1uvHKVjyMArRNLKW45DyF0Z64Ys0Bzqc7w7LjcDxwGD8U7Mg7/vxsDmcjbV\nGChyzpU+rmBNgRvY/3ssBM5k/2ZFwVLxmig9XsZ6vctYb79cmFkUXmFwPF4TspMCxzeZX/6eK6IR\n3nHuPMB+g7+b/f5uBRV0h7JfEfGB+gSIiJSt9FXz5oH39MB7RtC00stl7PvgnJsATDCzVLwTwsfx\n2pdfFFjO4V0NLvjlplgVtM/94jGzaLyT03I5534CTjezBLyTxUeAT8ystXOuBMgD4kqtVvpEfJ/S\nMaTi/T+SXt5yhJa7RaUP4QCxVMQQvCvTZzrn5u6bGCgOgk90dwIty9nOTiDGzJqVUwhk4LW/f66M\neXsPsM5uvON7mF/ePdk3P1jpXHQG+gPnOOfe3zfRzEp/nxWVgXecqYECb5/mQfNFJELoToCISNnO\nKfX5fLzOqPuaQHwHnGhmP5+Im1kr4Ci8DsP7cc5lOOdewztR7BGY/GXgvalzbmYZr31XW6cDwwJN\nRfYZhteJtEKcc3nOuc/wCpA0/tepeENQPPuceoDNnBkoPvY5H+/EdEap5crK3Wb+14H3O+BsCxpt\nycwG47V9/0XuylBAxa447xtG8+eOsGbWFyg9Ys8U4HwLGumolK/wjvPycvb1Bd7V+zllfI+lCxsA\nnDc05w9AjwN8/ysP4fia490RCFbRq/TfBd6Hl5o+HFjnnNtwkPVFJIzoToCISNk6mtkrwL/wOtje\nAjwRdGL+BN5J4edm9he8iyr34jWTeBbAzO4DmuB1/tyKd7I9DHgRwDm33MyeAsab2d/xmqlEA53w\nru6eHNjXw8BM4EPzhvNshTfay4HasBPY/1C8kWreA9bjNVm5CZgddKX3beCfgVin4jUfOuUAm4zD\nGwFmHN6oNH/Fa0tf+mFTvzKzv+GdGJ8KjACuDdx5AG/kpR+AT83sSbxmKA/jtSv/V3nHFLAEGG1m\nZ+EVF5udc2U15/kRyMbrE/Ew3hXt+/nlaEL3AWcA35vZX/HuWPQAEp1zjwa+p+eBBwN3P77E6x8y\nFK8T+Cbgbrxi6Asz+2dgG83xisJlzrlxBziWfSMIvYvXgToD767Er4BPgq/wl2Fp4FgeDRSI9QJx\nbGH/i3z7vp/rzWwykFuqPT8Azrn5ZjYJeNy8pwsvwivgTgcuKycOEQlHfvdM1ksvvfSq7IsDjw50\nfqnlPga+KTXttMCyvUqtOwp4GW+Unl3Ak0BsqXV747X1zwayAtvvGjR/KN6J8Fa8Zjer8IZrDB4V\nx4Cr8YbezAvsawZwd6l9nYl3MpcfWPYEyhjZp9Q6hwHv4A1jmo93wjweaBW0TDTeCfhm/td34EzK\nHh3oNuBveH0RsvGGKU0JWuaEwHKn4xUeOYFjv7OM2I7Du/K8N3DME4EWB/sOA/Na4d1R2RVY5t5y\ncnAq3t2bvcBCvLsUZf0OeuB17M0MxD0HuDBofhReIbgc78p6Ol7BEnz8nQLHsS2Q73WBZYLz+Ivv\nDK+j8oeB49n3O3kJ6FKBXAzCu1OUC6zEG7HpGYJG8wksdw/eXZ/iffMoexSoBLxhazcHjnMRgVGK\ngpZ5FVhYRiwOuNnvfw/00kuvir3Muco0txQRiSyB8d7XABc45971N5raw8wccItz7rFyljkB+BoY\n7JybWVOxiYhI6NQnQERERESkjlERICIiIiJSx6g5kIiIiIhIHaM7ASIiIiIidYyKABERERGROkZF\ngIiIiIhIHaMiQERERESkjtETg6uBmSUBR+A9TKbQ53BEREREJPLEAmnAdOdcTqgrqwioHkfgPVZe\nRERERKQ6nQR8FepKEVkEmFkM3qPtL8M7xveBa8qqkszsYuBOvEqqBJgJ3OScW1CJENIBpkyZQrt2\n7SqxmdDk5OQwbdo0hgwZQlJSUo3tN1wpX6FRvkKjfIVG+QqN8hUa5Ss0yldo/MrXunXrOPnkkyFw\n3hmqiCwCgDuAU4B+QC4wCXgCuKqMZacCJzjntppZLHAd8CHQoRL7LwRo164dnTt3rsRmQpOdnc3a\ntWvp1KkTycnJNbbfcKV8hUb5Co3yFRrlKzTKV2iUr9AoX6GpBfk6pKbnkVoEjAFud85tADCzPwNT\nzOwG59ze4AWdc+uDPhre3YC2ZhbvnMs/2I7MLBVILTW5LXiVYXZ2diUOIzS5ubn7vUv5lK/QKF+h\nUb5Co3yFRvkKjfIVGuUrNH7lKycn5G4A+4m4JwabWUNgF9DdObc0MK0e3h2Bvs65+WWs0xvvjkBK\nYNIjzrk7Kri/e4F7ypo3btw40tLSQj4GEREREZHypKenM3bsWIAuzrmVoa4fiXcC6gfeM/dNcM7t\nNbMC/neSv59A+/+GZtYAGA2sDWF/TwFvlJrWFvhyyJAhdOrUKYRNVU5ubu7PbdISExNrbL/hSvkK\njfIVGuUrNMpXaJSv0ChfoVG+QuNXvlatWlWp9SOxCMgKvDcg0FEicCcgDthT3orOuUwzexrYaWaD\nnHMHza5zLgPICJ5mZgAkJSX50jYsMTFRbfhCoHyFRvkKjfIVGuUrNMpXaJSv0ChfoanpfFW2E3LE\nPSzMObcb2AAMCJo8AMgDVlRgEwbEAx2rPjoREREREf9F4p0AgBeB283sW2Av8CDwRulOwQBmNhr4\nBlgHNAIewOs/MLOmghUpKi5hb2ExBUUl5BeVUFziiI+JIiEumnqx0cRGR1y9LiIiIj6K1CLgIbwR\ne+bzv+cE3AhgZncAFzvnegaW7Yl34p8KZAM/ASc753bVdNAS2XZk57N8axYrt2WzYms26zJy2bYn\njx3Z+ezMKaC8PvoJsVGkNahH85R40hrUo33jJA5rUZ9uLerTNjWRqCiruQMRERGRsBeRRYBzrgjv\npP/GMuY9hFck7Pt8C3BLzUUndYFzjlXbc5i+Zicz1+5i5roMNmT84kZUheUVlrBmRw5rdvxyOLDE\nuGgGtG3E4R1SOaJDKn3bNCQhNroy4YuIiEiEi8giQMQPhcUlTF+dwZQlW/lq6TbWZ/xyvOAog3aN\nk+jSLJkOTZNoXj+BZinxNE2Op35CLPGxUcRFRxETbRQUlZBbUMzewmJ25xawJTOfLXvy2Lx7Lyu3\nZbN8axa5BcXkFhTz3codfLdyBwD1YqM5rmsTft2jBSd1a0ajpLiaToWIiIjUcioCRCrBOcf8jZm8\nN2cTH87bTEZOwX7zm6fEM6hdKoPaN2Jgu0Z0bV6/yq7Sl5Q4Nu7ay4JNmfy0ZifT12SwdEsWewuL\n+WzRVj5btJXoKOOoTo25YFAbTunRXHcIREREBFARIHJIsvIKmTRrI29MX8/Kbf97KrQZ9G/TkJO6\nN+fk7s3p2jz55yFjq1pUlNG2cSJtGycytI/3ULpdOQV8u2I7ny/ayjfLtpFTUMzUFTuYumIH9RNi\nOLNvS0YNac9hLeofZOsiIiISyVQEiIRg7Y4cXv1hLe/O2kh2ftHP07unpXDegFac1bclzVISfIuv\nUVIcw/q1Yli/VuQXFTN1+Q4mz9nIF4u3kpVXxMTp65k4fT3HdmnCFcd04PguTdWpWEREpA5SESBS\nASu3ZfPMVyv4cN5mSgKj+CTGRXP+wNaMOLwt3dPKfBi1r+Jjojm5R3NO7tGcXTkFfDB3ExOmr2fF\ntuyf7w50aZbMDSd34fReaSoGRERE6hAVASLlWLU9myenrOCj+Zt/HsKzTWo9Rg1pz/DBbUhJiPU3\nwApqlBTH6KM7MOqo9ny7YgcvTl3N1BU7WLEtm+smzuGw5iu58eQunNqzhYoBERGROkBFgEgZdmbn\n8+SXK5gwfT3FgUv/HZskcd2JnTmrb0tiwvThXWbG8V2bcnzXpizdsoenvlzBpwu2sGxrFmMnzKZP\n6wbcdUYPBrdP9TtUERERqUYqAkSC5BcV88r3a3n2q5VkBdr8t2+cyI0nd+XMvi2JjqCr5N1apPDc\nxQNZkr6HJ6es4D+LtjB/YyYXPD+Nob3TuO033WiTmuh3mCIiIlINVASIBExbtZM731/Aqu3eA7ka\nJsZyw0lduPiIdsTFhOeV/4ronpbC85cOZM76Xdz/8WLmrN/NJwvS+WLJVq77VWeuPr5TRB+/iIhI\nXaQiQOq8jJwC7vl0HpNmbwQgJsq4/Oj2XPerLjRIDI82/1Whf9tGTB57FB/NT+eRT5ewOTOPx79Y\nzkfzNvPwub3p1kQPHRMREYkUKgKkTpu707jn+Rns3us1/RnUrhF/Oad3nR1H38w4q29Lft29OU9+\nuYIXpq5mxbZszn9+GsMHpDFI/2KIiIhEBP2XLnXS7twC7nhvCZ8ujwaKaFAvljtO78YFA9todByg\nXlw0t/2mG2f1bcnt7y1g3obdvD07nS/jo2nRPZPjuif7HaKIiIhUghr6Sp3z7fLtnPLEt3y6aBsA\nx3dJ5Ys/HseFg9uqACilR8sUJo89irvP6EF8TBQ7843R4+fy1/8sJb+o2O/wRERE5BCpCJA6o6i4\nhL/+ZymXvfwT27LySY6PZmSnYp4Z3otm9f17ym9tFx1lXHFMB94eM4A2SY4SB+O+WcX546axbmeO\n3+GJiIjIIVARIHVCeuZeRrzwI+O+WQXA4PaNeO+qQRzRzGGmq/8V0alJEn/oVczVx7YjymDBpkzO\neOo7Pl2Q7ndoIiIiEiIVARLxvl66jdOfnMqMtbsAuOaETrx55ZGkNdDV/1BFR8F1x7fnzSuPpHlK\nPFn5RVwzYTZ3vb9QzYNERETCiIoAiVglJY7HP1/G5a/OYFduIalJcbx2xeH86bRuYfvE39riiI6N\n+fT3x3J816YAvP7jOka+MJ1tWXk+RyYiIiIVoTMhiUg5+UWMnTCLp75aCcDhHVL3O2mVymucHM8r\nowdzy6mHYQaz1u3irKe/Z/7G3X6HJiIiIgehIkAizoaMXM4b9wOfLdoKwOij2jNxzBG0UPOfKhcV\nZVz7q868PGow9RNi2LInjwuen8Z7czb6HZqIiIiUQ0WARJTpq3cy7NnvWboli9ho45Fze3PvWT3V\n/Kea/apbM96/9mg6Nk0iv6iEP7w1j4c+XUJxifM7NBERESmDzowkYkyatZGLX5xORk4BjZPimHjl\nkVx0eFu/w6ozOjVN5v1rj+ZXh3lNrv757WqumzibvEJ1GBYREaltVARI2HPO8ezXK7npnXkUlTi6\np6XwwXVHM7h9qt+h1TkpCbG8OGowVx3XEYB/L9zCJS9OZ1dOgc+RiYiISDAVARLWikscd3+wiL99\ntgyA47o25Z2rh9C6UaLPkdVd0VHGHad3594ze2AGM9ft4rznf2BDRq7foYmIiEiAigAJW3mFxVw7\nYTav/7gOgHMHtOKlUYNIjo/xOTIBGH10B8ZdPID4mChWb8/h3HE/sHBTpt9hiYiICCoCJExl7i3k\n0pem859FWwDvAWB/v6AvseoAXKuc1iuNCWOOoGFiLNuz8rnwH9P4cfVOv8MSERGp8yLyjMnMYszs\nCTPbaWaZZvaamSUdYNmbzGyOme0xs81m9oKZNazpmKXiMnIKGPnCj8xYuwszuO+snvzptG6Ymd+h\nSRkGtU9l0tijaNWwHjkFxYx6+Se+WbbN77BERETqtIgsAoA7gFOAfkBHoB3wxAGWjQXGAk2APkAb\n4PkaiFEOwbY9eVz4j2ks2ryHmCjj6RH9GXVUe7/DkoPo1DSZd64eQscm3hCiV46fyX8WpvsdloiI\nSJ0VqY2nxwC3O+c2AJjZn4EpZnaDc25v8ILOuUeCPu4ws6eBFyq6IzNLBUoPQ9MWICcnh+zs7EOJ\n/5Dk5ubu9x5p0jPzGDNhPusy9hIbbTxxXg9O6JhyyDmO9HxVtcrmKyUGXr6kD1dNnM/ybTlcO2E2\nD57VjTN7N6/KMGsN/b5Co3yFRvkKjfIVGuUrNH7lKycnp1Lrm3OR9TCfQFOeXUB359zSwLR6QC7Q\n1zk3/yDrPw70cM6dVsH93QvcU9a8cePGkZaWFkL0ciA78uDZxdFk5BuxUY4xh5XQrWFk/XbripxC\n+MfSaNZlG4bjgo4lHN1c36WIiEgo0tPTGTt2LEAX59zKUNePxDsB9QPvPw9D4pzba2YFQEp5K5rZ\nMLy7CMeEsL+ngDdKTWsLfDlkyBA6deoUwqYqJzc3l2nTpjFkyBASEyNniMx1Gbn85fV5ZOQXkBQX\nzXMX9WJg28p324jUfFWXqszXSb8q4tq3FjJzfSZvr46me7cuXDCgZRVFWjvo9xUa5Ss0yldolK/Q\nKF+h8Stfq1atqtT6kVgEZAXeGwDp8POdgDhgz4FWMrOhwCvAsIPdLQjmnMsAMkptC4CkpCSSk5ND\nib1KJCYm+rLf6rB+Zy5jJixgW1YBKQkxjP/tEfRrU7X9tiMpXzWhKvKVnAyvjxnCleNn8t3KHdz3\n6QoS6yVw4eDIe8Kzfl+hUb5Co3yFRvkKjfIVmprOV1JSmWPeVFjEdQx2zu0GNgADgiYPAPKAFWWt\nY2bnAK8D5znnvq72IKVCNu7KZcQLP5KemUf9hBgmjDmyygsA8U+9uGheuGwQQzo2BuC2yQt4Z+YG\nn6MSERGpGyKuCAh4EbjdzFqbWWPgQeCN0p2CAcxsON4dgHNUANQe6Zl7GfnCdDbt3ktyfAzjrzic\n3q0b+B2WVLF6cdG8NHoQR3RIxTn406T5TJ690e+wREREIl6kFgEPAV8C84E1eHcGbgQwszvMbFHQ\nsn8FkoFPzCx736umA5b/2bonj5EvTGd9Ri6JcdG8evlg+rdt5HdYUk0S42J4efRgBrdvhHNw8zvz\n+GDuJr/DEhERiWgRWQQ454qcczc651KdcynOucucczmBeQ8553oGLdvBORfjnEsOfvkXfd2WkVPA\nxS9OZ82OHBJio3h59GAGtS89AqtEmqT4GF65/HAGtG1IiYM/vj2PKYu3+h2WiIhIxIrIIkDCU3Z+\nEZe/8hMrt2UTFxPFS6MGc2SgvbhEvuT4GF674nB6t2pAcYnj2omz+XH1Tr/DEhERiUgqAqRWyC8q\n5nevz2Texkyio4xnRw7g6M5N/A5Lalj9hFhevXwwnZp6TxYe89pMFmzMPPiKIiIiEhIVAeK74hLH\njf+ay/crvau+j57Xh1/3iMynyMrBNU6O5/XfHkGrhvXIzi9iVODukIiIiFQdFQHiK+ccd76/kH8v\n3ALAnUO7c97A1j5HJX5r2bAeb4w5gibJcWTkFHDpS9PZuEuPrxcREakqKgLEV499vow3f1oPwDUn\ndGLMsR19jkhqiw5NknjtisOpnxBDemYeo17+id25BX6HJSIiEhFUBIhvXpy6mme/9h55PeLwNtxy\n6mE+RyS1Tc+WDXh59GDiY6JYtT2HK8fPJK+w2O+wREREwp6KAPHFx/M38+AnSwA4rWcLHjy7N2bm\nc1RSGw1un8qTF/XDDGas3cUf3ppLSYnzOywREZGwpiJAatzMtRn88e15ABzZMZUnR/QjOkoFgBzY\nab3SuOeMHgD8e+GWnwtIEREROTQqAqRGrdmRw5jxMykoKqFzs2T+cckg4mOi/Q5LwsDooztw1XFe\nn5GXv1/Di1NX+xyRiIhI+FIRIDVmZ3Y+o1/5id25hTRJjueV0YNpkBjrd1gSRm47rRtn9EkD4MFP\nlvDx/M0+RyQiIhKeVARIjcgrLObK8TNZtzOXerHRvDx6EG1SE/0OS8JMVJTx9+F9OaJDKgB/fGse\nP63J8DkqERGR8KMiQKpdSYnjprfnMXv9bqIMnhrRnz6tG/odloSp+Jho/nnpILo0S6aguISrXp/J\nup05foclIiISVlQESLX763+W8smCdADuObOnngYsldYgMZZXrzicJsnx7M4t5IpXZ5C5t9DvsERE\nRMKGigCpVm/NWM8/vvU6cP72mA6MOqq9vwFJxGjVsB7/vGwgcYFnCFw3cTZFxSV+hyUiIhIWVARI\ntflpTQZ3vr8QgFN6NOfPp3f3OSKJNAPaNuJv5/cBYOqKHdz/8WKfIxIREQkPKgKkWmzIyOXqN2ZR\nWOzo1qI+T1zYjyg9C0CqwbB+rfj9SV0AGD9tHeOnrfU1HhERkXCgIkCqXHZ+EWNem0lGTgGNk+J4\ncdQgkuJj/A5LItiNJ3VhaG9v6ND7PlrMt8u3+xyRiIhI7aYiQKpUcYnjxn/NYdnWLGKjjX9cOpDW\njTQUqFSvqCjjsQv60qd1A4pLHNdOnM3Kbdl+hyUiIlJrqQiQKvXY58uYsmQbAH85uzeD2qf6HJHU\nFfXionnhskG0SEkgK6+IMa/NIDNXIwaJiIiURUWAVJn35mxk3DerABhzTAeGD27jc0RS1zRPSeDF\nUYNIiI1i7c5cbnhrDsUlzu+wREREah0VAVIl5m3Yza2TFgBwfNem3K6RgMQnvVo14K/neSMGfbNs\nO49/sczniERERGofFQFSaTuy87n6jVkUFJXQqWkST4/sT7RGAhIfDevXiiuP7QDAs1+v4tPAw+pE\nRETEoyJAKqWwuIRrJ8wmPTOP5PgY/nnZIFISYv0OS4RbT+vG0Z0bA3DzO/NYtiXL54hERERqDxUB\nUikPf7qU6WsyAHjiwn50aprsc0QinpjoKJ4ZMYDWjeqRW1DMleNnsju3wO+wREREagUVAXLIPpi7\niZe/XwPA70/szK97NPc5IpH9NUqK45+Xeh2F12fkcv2b6igsIiICEVoEmFmMmT1hZjvNLNPMXjOz\npAMs29fM/mNm283MmVn7mo02PC3anMmtk+YD8KvDmnLjyV19jkikbD1apvDo+X0BmLpiB3/7TB2F\nRUREIrLMKhImAAAgAElEQVQIAO4ATgH6AR2BdsATB1i2AHgXuKhmQgt/u3MLuPqNWeQVltC+cSL/\nd1F/otQRWGqxs/q25HfHdwTg+f+u4uP5m32OSERExF8xfgdQTcYAtzvnNgCY2Z+BKWZ2g3Nub/CC\nzrklwBIza3IoOzKzVKD0E7HaAuTk5JCdXXNPLc3Nzd3vvToUlziu+dcCNmTspV5sFE+c14Po4nyy\ns/OrbZ/VpSbyFUnCPV/XHN2aBRt28cPqXdzyzjxaJUfTpVmZNwirRLjnq6YpX6FRvkKjfIVG+QqN\nX/nKycmp1PrmXGS1jzWzhsAuoLtzbmlgWj0gF+jrnJt/gPWaANuBDs65tSHs717gnrLmjRs3jrS0\ntJDir+0+Wh/FlE3eDaTRXYvp3ziyfj8S2XIK4e8LotmZbzRLcNzUu5iESL0UIiIiES09PZ2xY8cC\ndHHOrQx1/Uj8769+4D1z3wTn3F4zKwBSqmF/TwFvlJrWFvhyyJAhdOrUqRp2Wbbc3FymTZvGkCFD\nSExMrPLtf7F0O1OmLQbgiiFt+ONJHat8HzWpuvMVaSIlX136ZXHxK3PYlgdfZrfg7+f2wKzqm7NF\nSr5qivIVGuUrNMpXaJSv0PiVr1WrVlVq/UgsAvYNBt4ASIef7wTEAXuqemfOuQwgI3javhOKpKQk\nkpNrfsjMxMTEKt/vmh053P3RcgCO6dyEO87oRUx0ZHQpqY58RbJwz9fgzsk8cHYht05awOdLdvDW\n3O2MObb6Ctpwz1dNU75Co3yFRvkKjfIVmprOV1JS5Zq0RsZZXBDn3G5gAzAgaPIAIA9Y4UtQYS6v\nsJixb8wiK7+ItAYJPHlRv4gpAKRuunBwW4YPag3Aw/9eyoy1GQdZQ0REJLJE6pnci8DtZtbazBoD\nDwJvlO4UDGCeBCA+MCnezBLMLFJzE7K7P1jI0i1ZxEQZz4wcQOPk+IOvJFLL3T+sFz3SUigucVw7\nYTbbs8Kvc7uIiMihitQT3YeAL4H5wBq8OwM3ApjZHWa2KGjZdsBeYGPg89LA5+NqLNpa7O2ZG3h7\nppeaO07vzsB2jXyOSKRqJMRG8/wlA0lJiGFbVj7XvzmbouISv8MSERGpERFZBDjnipxzNzrnUp1z\nKc65y5xzOYF5DznnegYtu9Y5Z2W8vvHtAGqJxZv3cNf7CwH4Ta8WXH50e38DEqlibRsn8vjwfgD8\nuDqDxz5f7nNEIiIiNSMiiwCpvD15hVwzYRb5RSV0aJLEo+f3qZYRVET8dnKP5lxzgjeK1/P/XcXn\ni7b4HJGIiEj1UxEgv+Cc49Z357N2Zy7xMVE8d/EA6ifE+h2WSLX546+7clSnxgDc9PY81u6o3ANY\nREREajsVAfILr3y/ln8v9K6GPnB2L7qnVcfjFURqj5joKJ4a0Z/mKfFk5Rdx7cTZ5BUW+x2WiIhI\ntVERIPuZtW4XD326BIDhg1ozfFAbnyMSqRlNkuN5ZuQAoqOMRZv3/Pz3QEREJBKpCJCf7czO57qJ\nsykqcXRrUZ/7h/XyOySRGjW4fSo3ndIVgPHT1vHJ/HSfIxIREakeKgIEgJISx41vzSU9M4/68TGM\nu2QgCbHRfoclUuOuPq4Tx3dtCsCtk+azbqf6B4iISOQ5pCLAzJLMrF0Z03sG/bmlmf3OzO4PvH5n\nZq0qE6xUn3H/XcXUFTsAePT8PnRoUrlHUYuEq6go4/HhfWmRkkB2oH9AfpH6B4iISGQJuQgws/OB\n5cAHZrbQzA4Pmv16YJnrgClAG2Bz4NUG+CIwT2qRGWszePwLb3z00Ue15ze903yOSMRfjZPjeXpk\nf6KjjIWb9vDQJ+ofICIikeVQ7gTcCQxwzvUDLgdeNbPhpZb5PTDQOXenc+75wOtOYCBwQ+VClqq0\nK6eA3785h+ISR69WKdx+eje/QxKpFYL7B7w2bR2fLlD/ABERiRyHUgTEOOe2AjjnZgAnAH8ws1uC\nlikBGpWxbmpgntQCzjlueXce6Zl5JMfH8MyIAcTHqB+AyD779Q94V/0DREQkchxKEbDLzH6+XOyc\n2wacCBwL9A5M/iPwXzP7wMyeC7w+BL4JzJNa4OXv1zJlyTYAHjq3N+3VD0BkP8H9A7LUP0BERCLI\noRQBVwC5wROcc3uBswMvnHOfAt2AR4AvA6+HgW7OuU8qE7BUjXkbdvPIv712zhcNbsNZfVv6HJFI\n7aT+ASIiEolCLgKccyucc+vLmF4SfILvnCt2zk1zzk0KvKY553QJrRbYk1fIdW/OprDY0bV5Mvec\n2fPgK4nUYeofICIikaZKnhNgZo+b2ddmttTMZpnZ62Z2jplZVWxfqo5zjtsnL2BDxl4SYqN4duQA\n6sWpH4DIwah/gIiIRJKqeljYscAG4D/AXKA78A4ww8yaV9E+pApM/Gn9z09Bvf+sXnRpXt/niETC\nw77+Ac1T4tU/QEREwl6VFAHOucHOucucczc6537rnBuEVwjkAeOqYh9SeUvS93DfR4sBOLtfSy4Y\n1NrniETCS+PkeJ4eMeDn/gEPf7rU75BEREQOSVXdCfgF59wKYCxwSnXtQyouJ7+I6ybOpqCohA5N\nknjwnN6otZZI6A7vkMoff+31D3j1h7V8tmiLzxGJiIiELqaqN2hm1+KNHlQAnAlsqup9SOju/mAR\nq7bnEBcdxTMj+5McX+VfvUidMfb4Tvy4eidTV+zglnfm0SMthTapiX6HJSIiUmHVcSegE/AA8DqQ\nAAythn1ICCbN2sik2RsBuPOM7vRs2cDniETCm9c/oB9N68ezJ6+I69+cQ2GxnoMoIiLho8qLAOfc\nH51zrfEeINYBOLmq9yEVt3JbNnd9sBCA03q24NIj2/kckUhkaFo/nicv7IcZzN2wm8c+W+Z3SCIi\nIhVWVUOE/mRmxwVPc859A1wG3FsV+5DQ5RUWc93E2eQWFNOqYT3+en4f9QMQqUJHdW7C9Sd2AeAf\n367m66XbfI5IRESkYqrqTsD3wJdmNsPMbjWz0wNFwVggtor2ISF64OPFLN2SRUyU8fTI/jSop69C\npKrdcFIXjuiQCsAf355LeuZenyMSERE5uKoaIvQPQC+8ZwTcCnwMfAOMAR6uin1IaD6Zn86E6d6D\nnf902mEMaNvI54hEIlN0lPHUiP6kJsWxK7eQG96cS5H6B4iISC1XZX0CnHPLnHNXAo2BzsBgIM05\n91hV7UMqZsOuvdw2aT4AJxzWlDHHdPQ5IpHI1jwlgceH9wXgp7UZPPnlCp8jEhERKV91dAx2zrnV\nzrlZzrntVb19KV9RCdw8eQlZ+UU0T4nn7xf0JSpK/QBEqtsJhzXj6uM7AfDM1yuZtnqXzxGJiIgc\nWKWKADO728x+HfhzIzP7i5m9YmY3m5lvj6M1sxgze8LMdppZppm9ZmZJ5Sx/hZmtNbNcM/vGzLrU\nZLxV6aP1USxKzyLK4MmL+tM4Od7vkETqjJtO6crAdo1wDm77YAl7CvyOSEREpGyVfWLU1cB7gT+/\nAzQHdgNnAw+Z2Z+cc/9XyX0cijvwnlTcD+/BZZOAJ4CrSi9oZscDT+I9z2AGcB/woZn1cs4V11jE\nVeCb5Tv4Jt2r6244qStHdmzsc0QidUtsdBRPjejP6U9OZWdOIeNXRHHWqc7vsETqvO9WZfDFJmP1\n9+uJi4vzO5xar6CggFXKV4Xty9dxYdYfrLJFQCqww8w6AdOcc3eBdyUeuBx4wszWOufer+R+QjUG\nuN05tyEQz5+BKWZ2g3Ou9NAdvwX+5Zz7NrDs3XjFzbF4nZvLZWapeHkI1hYgJyeH7OzsyhxHhW3P\nyueOD5cCMLBNfUYf3qLG9h2ucnNz93uX8ilfFdMgBh48syvXv72IFXuieO6bVVx/Yme/w6r19PsK\njfJVcVNX7mTsvxYC0bB+jd/hhBHlKzTR/Ck7h9jo6ngOb9lycnIqtb45d+hXqcxsM/Br4GjgE+fc\nplLzrwYuc84dVakoQ4upIbAL6O6cWxqYVg/vjkBf59z8UsvPBZ53zj0fNG06MME591QF9ncvcE9Z\n88aNG0daWtqhHkpIShxM2WRM3RLFzX2KaaDCXcRXk9dG8d/0KAzHdT2K6awHdYvUuN358Oj8aHKK\njEZxjkZqISvV6JoexcTWXA1Aeno6Y8eOBejinFsZ6vqVvRMwBa+ZTTtgJrCp1Pwvgb9Wch+hqh94\nz9w3wTm318wKgJQDLJ9ZatruAyxblqeAN0pNawt8OWTIEDp16lTBzVTe0bm5fPPdNE44ZgiJiYk1\ntt9wlZuby7Rp0xgyRPmqCOUrNIOysrnoxZlsyDHe2pDIu6cOJDVJ1fmB6PcVGuXr4IpLHL99Yx45\nRZk0rBfDH3rkcdrxyldF6PcVGr/ytWrVqkqtX9ki4CZgHLAMOMrMugKTnHOFgfnDgJoeISgr8N4A\nSIef7wTEAXsOsHzpa3QND7DsLzjnMoCM4Gn7nsqblJREcnJyReOuEvHRkJiYWOP7DWfKV2iUr4ob\n3bWYJxbHsy2rgLs/XcnLowZrtK6D0O8rNMrXgT3xxXJmrveu8T08rBsF6+YqXyFSvkJT0/lKSjrg\nmDcVUqmbFs657c65851zZwHPAUcCO81slpktxbsL8M9KRRh6TLuBDcCAoMkDgDygrMG75wcva2YJ\nQPfAdBGRQ9YkAe4behgA3yzbzgtTV/sckUjd8MOqHTz1lfdf/lXHdeTYzhooQ6S0yg4R+riZHWtm\nUc65EufcjXj9Az4APgMucc49WhWBhuhF4HYza21mjYEHgTfK6BQM8BJwUeA4EoD78Zo1Ta25cEUk\nUp3aoymXHNkWgEc/W8asdXp+gEh12pGdz43/motz0LdNQ24+5TC/QxKplSrbfaEe8C9gq5m9ambD\ngJXOufudczc4596sfIiH5CG8/gjzgTV4dwZuBDCzO8xs0b4FnXP/Bf6A164/AzgCOCvchgcVkdrr\nzqE96NaiPsUljt+/OYfduXqAgEh1KClx3PT2PLZl5VM/IYZnRvQnLqYGe2qKhJHKNgca65xrhTfG\n/ibgL3hDhn4YeABX06oI8hDiKnLO3eicS3XOpTjnLnPO5QTmPeSc61lq+Zecc+2cc4nOueOdc2U1\nGxIROSQJsdE8e/EAEuOi2bR7L7e8O5/KjMwmImV7Yepq/rvc64r46Hl9aJOqTq0iB1Il5bFz7ifn\n3J+dc72AvsB/gdHARjP7LvAE4VZVsS8RkXDUqWkyD53TG4AvFm/l1R/W+huQSISZvX4Xf/tsGQCX\nHNmW3/SumSG6RcJVld8jc86tdM793Tl3HNAKeBk4BhhR1fsSEQknZ/dvxfBBrQF46NMlzN+42+eI\nRCJDZm4h10+cQ1GJo1uL+tw5tIffIYnUetXaUM45t8M597Jz7mzn3GNmpoZ5IlKn3XtWT7o0S6aw\n2HHdxDnsySs8+EoickDOOW6dNJ9Nu/dSLzaaZ0YOICE22u+wRGq9ajkpN08XMzvbzP5sZhPNbD4V\nHHtfRCRSJcbF8OzFA0iIjWJ9Ri63T16g/gEilfDGj+v4z6ItADx4di86N9O49iIVUeVFgJnNBbYB\nE4HzAAecCJyP9xAuEZE6rWvz+tx/Vi8APpmfzsSf1vsckUh4WrQ5kwc+XgLAuQNacd7A1j5HJBI+\nquNOwBy8YTnvds5d6px7CNjrnFvunCuqhv2JiISdCwa15ux+LQG476PFLN6sG6UiocjJL+L6iXMo\nKC6hY9MkHhjWy++QRMJKdXQMvhy4BBhtZt+a2Ql4dwNERCTAzHjwnN50aJJEQVEJ102cTU6+rpOI\nVIRzjjvfX8jqHTnExUTxzIgBJMXH+B2WSFiplj4Bgav+FwK/B24GWpjZUdWxLxGRcJUcH8MzI72H\nGa3ekcOd7y9U/wCRCnh31kbem7MJgLuGdqdHyxSfIxIJP9U9OtBc59wZwMnAg2b2ZXXuT0Qk3PRs\n2YC7zvCGM3xvzibenbXR54hEareV27K4+4NFAPymVwsuObKdzxGJhKcqKQLMrGt5851zPzjnTgQe\nror9iYhEkkuOaMvpvVsAcPcHi1ixNcvniERqp7zCYq6bOIe9hcW0blSPR87rg5n5HZZIWKqqOwFL\nzSzLzKaZ2Tgzu9rMjjSz/Z7X7ZybUkX7ExGJGGbGw+f2oU1qPfYWFnPtxNnsLSj2OyyRWue+jxaz\ndEsWMVHG0yP606BerN8hiYStkIsAM7u79Mk90AbvicCfAs2AO4AfgD1mtqzSUYqIRLgG9WJ5ZsQA\nYqON5Vuzue+jRX6HJFKrvDdnI28GhtP902mH0b9tI58jEglvh3In4AIgPniCc26Tc+5j59wDzrnz\nnHNtgROAlXjPCxARkYPo26Yht/2mOwD/mrGBD+Zu8jkikdphxdYs7pi8EICTuzfjymM7+hyRSPgL\nuQhwzvV2zu2qwHLf4g0V2vlQAhMRqYuuOLo9J3dvDsAdkxewenu2zxGJ+Cu3oIhrJsz+uR/A3y/o\np34AIlXgUJoDzTezRqWmlTk4r3NuJnDcIcYmIlLnmBmPXdCHlg0SyCnwOkHmFap/gNRNzjnufG8h\nK7ZlExttPDtyAA0S1Q9ApCocSnOgSUB+qWk5ZjbbzF42sxvM7Hgza2lmZwGl+w+IiEg5GibG8fTI\n/kRHGYvT9/DQp0v8DknEF2/P3MDkwPMA7hzag75tGvockUjkOJTmQPc553JLTR6K1/Y/DrgKmAJs\nACYDf6tskCIidc3AdqncfMphAIyfto5PF6T7HJFIzVq8ec/PzwMY2ieNy4boeQAiValKnrEdGPrz\n5+E/zSwB6ATscM5trYp9iIjUNb87riPTVu/k2+XbufXd+fRq2YC2jXVzVSJfVl4h106cTX5RCR2a\nJPHIub3VD0CkilXLE4Odc3nOuUUqAEREDl1UlPH48L40qx9PVn4R1785m4KiEr/DEqlWzjlum7SA\nNTtyiI+J4tmRA6ifoH4AIlWtWooAERGpGk2S43nyov5EGczbmMmj/1nqd0gi1er1H9fxSaD52/3D\netKjZYrPEYlEJhUBIiK13JBOjfn9SV0AePG7NXy+aIvPEYlUj3kbdvPAx4sBOHdAK4YPauNzRCKR\nS0WAiEgYuP7ELhzVqTEAN709jzU7cnyOSKRq7cop4NqJsyksdnRplsyDZ/dSPwCRaqQiQEQkDERH\nGU9e1J/mKV7/gLFvzCK3oMjvsESqRHGJ44a35rJx114S46J57uIBJMZVydglInIAKgJERMJE0/rx\nPHfxQGKjjaVbsrh98gKcc36HJVJpT05ZzrfLtwPw6Pl96NK8vs8RiUS+iCsCzKyrmf3XzHLNbK2Z\njT7I8r83sxlmlmdm39RMlCIih2Zgu0bcObQHAB/M3cz4aet8jkikcqYs3spTX60EYMwxHTijT0uf\nIxKpGyKqCDCzGOAjYDrQGLgMeMrMjilntc3AQ8BT1R+hiEjlXTakHWf3806UHvh4MbPWZfgckcih\nWbsjhz+8PReAIzqkcttvuvkckUjdEVFFAHAckAbc7Zzb65z7FngLGHOgFZxz7zrn3gO21VCMIiKV\nYmY8dG5vurWoT1GJ45oJs9mele93WCIhyS0o4uo3ZpGVV0TzlHieGTmAmOhIOy0Rqb0irddNH2Cx\ncy4vaNps4Mrq2qGZpQKppSa3BcjJySE7O7u6dv0Lubm5+71L+ZSv0ChfoamJfD1+bncufGkWW/fk\nM/b1Gbx4SV9iosJzNBX9vkIT7vlyznHb+0tZuiWLmCjj7+d2p54Vkp1dWC37C/d81TTlKzR+5Ssn\np3KjxFm4dCozs1eBUeUscinQATjGOXdq0HojgAecc50Psv2bgTOccyeEGNe9wD1lzRs3bhxpaWmh\nbE5EJCQLMowXl0UDcGJaCcPa64nCUvt9m25MWuv9bs/vUMyxLcLjXESkNklPT2fs2LEAXZxzK0Nd\nP5zuBFwH3FzO/CxgLNCg1PSGwJ7qCgqvL8Ebpaa1Bb4cMmQInTp1qsZd7y83N5dp06YxZMgQEhMT\na2y/4Ur5Co3yFZqaytdJQNTXa/jn9+v5Kj2KoUN6cWqPptW2v+qi31dowjlfs9dn8sH0eYDjzN7N\nueesw6r9eQDhnC8/KF+h8Stfq1atqtT6YVMEOOeygXLb1pjZfOB+M4t3zu1rIDsAmF+NcWUA+/XK\n2/ePWVJSEsnJydW16wNKTEz0Zb/hSvkKjfIVmprI161De7FkWy5TV+zgro+X0aNNY7qnpVTrPquL\nfl+hCbd8bduTx83vLaGoxNE9LYVHL+hPvbjoGtt/uOXLb8pXaGo6X0lJSZVaP9J64HwLbAHuM7ME\nMzsOuBB48UArmFmMmSXgFURRgfXiayZcEZHKi44ynrqoP21S65FbUMyV42eSkVPgd1gi+8krLOaq\n12exLSuflIQYnr9kQI0WACKyv4gqApxzRcCZwBBgF/A6cINz7rt9y5jZIjO7I2i1O4G9wMPAsYE/\nL6uxoEVEqkCjpDheuGwQiXHRbNy1l2snzKawWP0DpHZwznHn+wuZu2E3UQZPjxxAu8aVu4opIpUT\nUUUAgHNumXPueOdcPedcO+fcK6Xm93TOPRT0+V7nnJV6ta/xwEVEKqlbixQeH94XgGmrd/Lgx4t9\njkjE88r3a3l31kYAbv9Nd47vGn79VkQiTcQVASIiddlpvdK44aQuALw2bR3/+mm9zxFJXffdih38\n5dMlAJzTvxVjju3gc0QiAioCREQizg0ndeHUns0BuOuDhcxcqycKiz/W7czh2omzKS5x9G3dgIfP\n7V3tIwGJSMWoCBARiTBRUcbjw/txWPP6FBY7rn5jNpt37/U7LKljsvOLuHL8TDL3FtK0fjz/uHQQ\nCbHqCCxSW6gIEBGJQEnxMbxw2SAaJsayIzuf370+i7zCYr/DkjqipMTxh7fmsnxrNnHRUTx/yUBa\nNEjwOywRCaIiQEQkQrVtnMhzIwcQHWUs2JTJrZPmEy5PiZfw9tjny/hi8VYAHjynFwPbNfI5IhEp\nTUWAiEgEO6pzE+4a2h2AD+Zu5qkvQ36yvEhI3p65gee+8Z5kevnR7Rk+qI3PEYlIWVQEiIhEuFFH\ntWfE4W0BeGLKcj6Yu8nniCRS/bBqB3dMXgDAid2acefQHj5HJCIHoiJARCTCmRn3D+vJsV2aAHDL\nO/OZoRGDpIqt3p7N2DdmU1Ti6J6WwlMj+hMdpZGARGorFQEiInVAbHQUz148gK7NkykoLuGq8TNZ\nuyPH77AkQuzKKeCKV2eQubeQZvXjeWnUIJLjY/wOS0TKoSJARKSOSEmI5aVRg2mSHMeu3EKueHUG\nu3ML/A5Lwlx+UTG/e30Wa3fmUi82mpdGDaZlw3p+hyUiB6EiQESkDmmTmsgLlw0iPiaK1TtyuPqN\nWRQUlfgdloQp5xy3T17AT2szMIMnLuxH79YN/A5LRCpARYCISB3Tv20jnriwHwA/rs7g9skLNHSo\nHJL/m7KCybO9jua3ndaN03q18DkiEakoFQEiInXQ6b3T+NNphwEwafZGHv9iuc8RSbiZMH0dT365\nAoARh7fhquM6+hyRiIRCRYCISB019vhOPw8d+vRXKxk/ba2v8Uj4+GzRFu56fyEAJ3VrxgPDemGm\nkYBEwomKABGROsrMeGBYT37dozkA93y4iE/mp/scldR2M9dm8Ps351DioH/bhjwzcgAx0TqdEAk3\n+lsrIlKHxURH8fSI/gxu3wjn4A9vzeWHVTv8DktqqRVbs/jtazPJLyqhY9MkXh41mHpx0X6HJSKH\nQEWAiEgdlxAbzYuXDeaw5vUDzxCYxaLNmX6HJbVMeuZeRr3808/PAhh/xeE0SorzOywROUQqAkRE\nhAaJsbx6xWBaNkggO7+I0a/MYENGrt9hSS2RmVvI6JdnsDkzj/rxMbx2xeG0bpTod1giUgkqAkRE\nBIC0BvUY/9vDaZgYy/asfC59aTrbs/L9Dkt8lpNfxOhXf2LZ1izioqP452WD6J6W4ndYIlJJKgJE\nRORnnZvV56VRg0mIjWLtzlwufWk6u3L0VOG6Kq+wmDGvzWTO+t1EGfzfRf0Y0qmx32GJSBVQESAi\nIvsZ2K4Rz18ykNhoY+mWLEa98hN78gr9DktqWEFRCddMmM201TsBePT8vpzeO83nqESkqqgIEBGR\nXzjhsGY8M3IA0VHG/I2ZXPHKDHILivwOS2pIcYnjD2/N5aul2wC4f1hPzh/Y2ueoRKQqqQgQEZEy\nndqzBY8P74sZzFy3iyvHzySvsNjvsKSalZQ4bp00n08WeM+MuPW0blw2pL2/QYlIlVMRICIiBzSs\nXyv+em4fAL5fuZNrJswmv0iFQKQqKXH8+f0FvDtrIwDXn9iZsSd08jkqEakOKgJERKRcwwe34b6z\negLw1dJtXP36LN0RiEAlJY7bJ/9/e3ceH1V573H888tGSCBhFcISdlRQNgsa2bRWe1Xcat3qgrti\na+u1tvfWarV7q7fa2nrBrUrd960We71eRVkEVzYRTdgh7CZkhyTP/eMMdBhDkpPtZOZ836/XvCbz\nPM8585wfJw/zy3meM8t4cvEGAK6YNIgbTxwecK9EpLUkXBJgZsPNbK6ZlZvZWjO7tJ62h5jZY2a2\n3sxKzOxTM7u8DbsrIhIXph87kFtOPRyAt1Zt52olAgll3xSgpz/wEoArJw3illMPx8wC7pmItJaE\nSgLMLAV4FVgEdAcuAe4xs0kH2aQTsBSYBGQBVwF3mdnJbdBdEZG4cuXkwdx22ggA3vl8O1fO/oCK\nPUoE4l1NreNHzy3l2cgUoKunDOanSgBEEl5K0B1oYVOAHOBnzrlK4B0zexq4EpgX29g5txq4I6po\nvpm9AUwG5jTmDc2sG9AtpjgXoKysjNLSUt8H0VTl5eUHPEv9FC9/FC9/EjVe54zuSc3eofzq9Xzm\n5e9g+kPv8ZfzjiAjLblZ+03UeLWWlopXda3j1ldX8eqyrQBcntef6yf3o6ysrNl9bE90fvmjePkT\nVEaqFaMAABZBSURBVLya+3tqzrkW6krwzOwG4Hzn3DFRZTOAq5xz4xqxfQawCviRc+6pRr7n7cBt\nddXNnDmTnBzdU1lEEs+CrcbTq70P/kM6O646rIaOifZnpQS3txb+9kUSS3d5kwK+0aeWabm16AKA\nSHwoLCxkxowZAMOcc/l+t4+bIdvMHgGm19PkYqAzUBxTXoQ31aeh/ScBjwD5wLM+unYP8FhMWS7w\nZl5eHkOGtN1dFcrLy1m4cCF5eXlkZGS02fvGK8XLH8XLn0SP1wnAyE8Kue3vn1NQYjy8Ppv7LhhF\nj05pTdpfoserpTU3XmVV1Xz/2RUs3VUEwLWTcvnu1IEJOwVI55c/ipc/QcWroKCgWdvHTRIAfA+4\nqZ76EmAGkB1T3gXYXd+OIwnAw3gf3k9yzjV6kqtzbhewK2Z/AGRmZtKpU6fG7qrFZGRkBPK+8Urx\n8kfx8ieR43XJpGF07ZzJjc98wqqtZUx/dAmPXn40ud2b/p9gIserNTQlXl+W7eHqJz9hyUbvb2a3\nThvBFZMGtUb32h2dX/4oXv60dbwyMzObtX3cLAx2zpU653bU86jCW+Q7wsw6RG06LlJep8hi4seB\n4XgJQL0Jg4iI/Mtpo/vw0PTxdExNZt3Ocs6etYCVhRpG26vC4grOuW8hSzYWk5xk/OGc0aFJAETk\nQHGTBDTSO8AW4Odmlm5mU4DzgAframxmqcBTwACUAIiINMmU4T154qqj6ZKRyvaSKs69byGL1+xq\neENpU59vLeHbMxeSv62UtJQkZl10FGcf1S/obolIQBIqCXDOVQOnAXnAl8CjwA+cc/vvDGRmK8zs\n5sjLY4GzgbFAoZmVRh6z2rjrIiJxbWxuV569Jo/eWemUVFZz0YOLeOnjTUF3SyLe/WI7Z//3AjYV\nVdCpQwqzL5vAiSN6Bd0tEQlQPK0JaBTn3Cpgaj31I6N+ngsk5iooEZE2NqxXZ56bkcdlD7/PF9tK\nueHpT1izo4wbvjEsYRecxoMnF6/nlpeWU1PryMlO56+XjufwnAbvlyEiCS6hrgSIiEiw+nXN4Pnr\njmXysB4A/OnNL/jBU5/o24UDUFvr+O2clfzkhWXU1DqO6JvFS9+dqARARAAlASIi0sKy0lN5+NLx\nXHRMLgCvLNnMhQ8uYkdpVcA9C4/Sqmque/wj7pu7GoATR/TimWvy6JWVHnDPRKS9UBIgIiItLiU5\niV+ecQQ/mzYCM/hw3Zec9ud5fLz+y6C7lvDyt5Vy5r3zeX3FFgCunDSIWRcdRUZaws0AFpFmUBIg\nIiKtwsy4fNIgHrzka3TukEJhcSXn3reQRxeuJZG+rb49eX15IWfeO3//HYB+f/aR3DJtBMlJWpMh\nIgdSEiAiIq3qhMN78fL3JnJor87srXHc+vIKbnxmCeV7qoPuWsKorqnld3M+49rHPqK0qpq+XTry\n3LV5nDc+N+iuiUg7pSRARERa3eCenXjxu8dy5pg+ALz48SbOuncB+dtKA+5Z/CssruCihxYxa24B\nABOHdufV6ycxql+XgHsmIu2ZkgAREWkTGWkp3H3eGH55xkhSk41VW0uY9ud3eey9dZoe1ERvfLad\nf/vju7y32vtytmunDmH2ZRPolpkWcM9EpL3TKiEREWkzZsbFeQM5om8233/qYzbsquCWl5bzvyu6\nc2J20L2LH+V7ani6IIkFCz8FoHtmGv91zmiOP+yQgHsmIvFCVwJERKTNjc3tyj++P5lvjesLwNtf\n7OR3S5J5Y+X2gHvW/i0o2MG37v+ABdu8/8KnDO/JnBsmKwEQEV+UBIiISCA6p6dy17lj+PMFY8lK\nT6Fkr/Hvz3/KjMc+ZFtJZdDda3dKq6r56YvL+M4Di9hYVEmKOX584hAeuXQ8h3TW/f9FxB8lASIi\nEqjTRvfhxau/xhFdawGYs3wLJ971Dk+/v57aWq0VcM7x+vJCTrprLo8vWg/AmH5Z/Hh0DZcc3Y8k\n3f5TRJpASYCIiASuV1YHrjy0ljvOOpxumWkUV+zlP55fxlkzF/DJhqKguxeY1dtLueSvi7n2sY/Y\nXFxJemoSt04bwexLxtCrY9C9E5F4poXBIiLSLpjBKSMP4YSRffnNPz7j+Y82smRDEWfeO59zv9aP\nH550KL2ywjHtpah8DzPfLuCv89ewt8a7GvKNw3tx22kj6N8tg9JS3VpVRJpHSYCIiLQr3Tt14A/n\njuY7R+dy+ysrWLapmGc+2MgrSzYz/diBzJg6hC4ZiXkLzIo9NTyyYC0z385nd6X3ZWq53TK4/fQR\nfP2wXgH3TkQSiZIAERFpl44a0JWXvjuRZz7YwF1vfM72kirum7uaJxat56rJg5meN5DsjNSgu9ki\nyvdU8+TiDdz/TgFbd1cBkJWewozjhnLZxIGkpyYH3EMRSTRKAkREpN1KTjIumJDLGWP68MiCtcx6\nu4DdldXc9cbnzJpbwAUTcrli0iD6dInPCfLF5XuZvXAtD89fw5flewFIS0nisokDuW7q0IRJckSk\n/VESICIi7V5GWgrXHTeUCycM4IF3VzN74VpKKqt5aN4aZi9Yy8lH5nDBhP7kDe6OWfu/W87SjUU8\n9t46Xlmymcq93l2R0lOTOH98LtdMHUxOdnwmNSISP5QEiIhI3MjOSOWmbx7KNVMH89TiDTw0bw1b\ndlfy6pLNvLpkM4N6ZHLe+P6cNroPfdvZ1YHtJVXMWV7Isx9sZNmm4v3lndNTmJ43kMsmDqR7pw4B\n9lBEwkRJgIiIxJ3O6alcNWUw048dyGvLNvPk4g0sXrOLNTvK+N2cz/jdnM8Ym9uFU4/M4Zsje9O/\nW0Yg/dxSXMnbq7bx96WFLCjYQfTXHozIyeKiYwZwxpg+ZHbQf8ci0rY06oiISNxKS0nirLH9OGts\nP/K3lfDk4g28/MlmdpRW8fH6Ij5eX8SvXlvJgO4ZTBzag0lDezAutyu9sjq0yrSh7SVVLN1YxMKC\nnbzzxXY+33rgrTyzO6Zy8hG9OW98f8b07xIXU5dEJDEpCRARkYQw9JDO3DptBDefcjjvr93Fa0sL\nmbN8CztKq1i3s5x1O9fzROQbd3t06sCRfbMY0SeLAd0y6detI/27ZnBIVgc6pNR/J56q6hqKyvey\n8cty1uwoZ93OMvK3lbJ0YzGbiiq+0j67YyrHH9qT08f0YdLQnqSl6Hs6RSR4SgJERCShJCcZxwzu\nzjGDu/Pz00eycstu5ufvYF7+Thav2Unl3lp2lFbx1qrtvLVq+1e2T09NIis9lU7pKSSZ4ZzDOaiq\nruXL8j2U76mp9/3TUpI4sm82k4f1YMrwnozu14XkJP3FX0TaFyUBIiKSsJKSjJF9shnZJ5urpwyh\nuqaW/O2lLNtYzPJNxazaWsKGXRUUFlfsn69fubeWyr1VbCupanD/vbPSGdgjg4HdMzmibzZj+ndh\neK/O+mu/iLR7SgJERCQ0UpKTOKx3Fof1zuKcr/XfX763ppbNRRXsLNvD7oq9lFRWU1JZjcORZIYB\nqclJdM1MpUtGGl0z0uidlU7HNH2Jl4jEJyUBIiISeqnJSQzonsmA7plBd0VEpE0k3PVKMxtuZnPN\nrNzM1prZpQ20f8LMNpnZbjPbaGZ3m1laG3VXRERERKTNJVQSYGYpwKvAIqA7cAlwj5lNqmez3wBD\nnXNZwDhgLHBza/dVRERERCQoiTYdaAqQA/zMOVcJvGNmTwNXAvPq2sA5tzymqBYY1tg3NLNuQLeY\n4lyAsrIySktLv7pRKykvLz/gWeqnePmjePmjePmjePmjePmjePmjePkTVLzKysqatb055xpuFSfM\n7AbgfOfcMVFlM4CrnHPj6tnut8D1QCawCzjFObeoke95O3BbXXUzZ84kJyen8QcgIiIiItIIhYWF\nzJgxA2CYcy7f7/ZxcyXAzB4BptfT5GKgM1AcU14EZNW3b+fcT8zsZmAEcCGwyUfX7gEeiynLBd7M\ny8tjyJAhPnbVPOXl5SxcuJC8vDwyMjLa7H3jleLlj+Llj+Llj+Llj+Llj+Llj+LlT1DxKigoaNb2\ncZMEAN8DbqqnvgSYAWTHlHcBdje0c+ddEllhZp8AjwLHN6ZTzrldeFcP9tv3NfCZmZl06tSpMbtp\nURkZGYG8b7xSvPxRvPxRvPxRvPxRvPxRvPxRvPxp63hlZjbvbmZxkwQ450qBeifYm9lS4Bdm1sE5\nt+9bXsYBS328VQowvGm93C8VYN26dc3cjT9lZWUUFhZSUFDQ7BMjDBQvfxQvfxQvfxQvfxQvfxQv\nfxQvf4KKV9TnzNSmbJ9oawJSgE+BF4DbgQnA3/Hm+H9lYbCZ9QUmA//Au5IwCngSWOicu6IZ/fg6\n8GZTtxcRERERaaQTnHP/53ejhEoCAMzsUOB+vARgG3C7c+7hqPoVwOPOud+YWR/gCWA0Xha1FXg+\nsk2Tl3ibWSZwNFAI7G3qfpogFy/5OAFY34bvG68UL38UL38UL38UL38UL38UL38UL3+Cilcq3l0x\nFznnfN8qKG6mAzWWc24VMLWe+pFRP28GjmuFPpQBvjOy5tq3FgFY35RV4mGjePmjePmjePmjePmj\nePmjePmjePkTcLxWNnXDhPqyMBERERERaZiSABERERGRkFESICIiIiISMkoCEssu4OfEfG+BHJTi\n5Y/i5Y/i5Y/i5Y/i5Y/i5Y/i5U9cxivh7g4kIiIiIiL105UAEREREZGQURIgIiIiIhIySgJERERE\nREJGSYCIiIiISMgoCRARERERCRklASIiIiIiIaMkQEREREQkZJQEiIiIiIiEjJIAEREREZGQURLQ\nzplZipndbWY7zazYzGabWWY97S83s7VmVm5mb5vZsJj6aWb2WaT+QzOb0PpH0Xb8xMvMfmhmH5vZ\nbjPbbGYPmFmXqPrjzMyZWWnU49G2O5rW5zNel5pZTUw8fh3TRufXv9rOiYlVReR8GhepT+jzy8zO\nN7P5keNa24j2YR+7Gh0vjV2+46Wxy1+8Qj12AZhZBzO738wKIsdXYGb/2cA2cTeGKQlo/24GTgLG\nAIOBAcDddTU0s6nAn4BLgO7AYuAVM0uO1A8FngFuAboCs4HXzCy7lY+hLTU6XkAqMAPoAYwC+gOz\nYtqUOec6RT0ubp1uB8ZPvABWxsTjp/sqdH4dyDl3cnSsgF8DnznnPopqlsjn1y7gHuBnDTXU2AX4\niBcau8BfvEBjV6PjpbELgBRgG3AykAWcDswws2vrahy3Y5hzTo92/ADWAxdGvZ4IVAAd62j7N+CB\nqNfpwG7guMjrXwBvxGzzBXBp0McZRLzq2PZUYHPU6+OA0qCPqb3EC7gUWF7PvnR+HXw7A9YAN0aV\nJfz5FTnObwNrG2gT+rHLT7zq2CZ0Y5efeGns8hevmPahHbvqiMWdwBMHqYvLMUxXAtqxyOXd/sCH\nUcUf4Z1cw+rYZFR0W+dcJbAyUv6V+qj9jSIBNCFesU4AlsaUdTSzTZHHs2Y2qGV6G7wmxmuImW0z\ns3Vm9qCZ9Yyq0/l1cCcCOXh//YmWsOeXT6Eeu1pAqMauJgrt2NVMGrsAM0vCS35if8/2icsxTElA\n+9Y58ly8r8A5VwHswbs8VVf74piyoqi2DdXHO7/x2s/MzgCuBH4cVfwZ3rSP3MjzbuCfZpbegn0O\nkt94vQMcCfQGJgO9gBdi9qfzq25XAy8453ZGlSX6+eVH2MeuJgvp2OVX2Meu5tDY5bkTyAT+cpD6\nuBzDlAS0byWR5/1zxsysI5CG90tXV/vY+WVdoto2VB/v/MZrX5tTgYeBM5xz+7N859wW59wy51yN\nc247cA3QFziqNTofAF/xcs6tds7lO+dqnXPr8eIxycz6Ru1P51cMMzsEbz7p/dHlITi//Aj72NUk\nIR67fNHY1TQauzxm9iu8OJzonCs9SLO4HMOUBLRjzrkiYAMwLqp4HFCJN5cs1tLotpGs/HD+dfnq\ngPqo/R3s8lZcaUK8MLOzgEeBs51zbzX0Fvs2a2ZX24WmxCt2F5HnffHQ+VW3y4A1zrm3G3qLyHNC\nnF8+hXrsaoowj10tIFRjVzOEfuwyszuAc/Hm9m+qp2l8jmFBL7TQo/4H3kr+ZUA/vBXnbxG1+CSm\n7VS8rHIy3jzlO/DmpCVH6ocC5cC38P56+X1gO5Ad9HEGFK9z8S7HTT1I/fF4d4AxvIx9Jt4CqYyg\njzOgeJ0C9In83BvvcvqiqHqdX19tb3gJwk1hO7+A5Mg4dAGwLvJz+kHaauzyFy+NXf7ipbHLR7wi\n7UM7dkUd55+AVfvOnQbaxuUYFniQ9WjgH8i7TdUf8W7vtRtvBXpmpO5mYEVM+ysiv+DlwFxgWEz9\ntMhJXYG3KOXooI8xqHhFBq1qoDT6EVV/I97dYMqALcDzwPCgjzHAeN0JFEbOrU140xBydH7V+/t4\nPFAF9KhjXwl9fuHdkcXFPuqJVdjHrkbHS2OX73hp7PL/+xjasStyjAMiMaqK+T2bU0/M4m4Ms0jH\nREREREQkJLQmQEREREQkZJQEiIiIiIiEjJIAEREREZGQURIgIiIiIhIySgJEREREREJGSYCIiIiI\nSMgoCRARERERCRklASIiIiIiIaMkQEREREQkZJQEiIhIu2Fmd5rZP+son2VmfwyiTyIiiUhJgIiI\ntCcTgMXRBWZmwOnAS4H0SEQkASkJEBGRZjOzu83sAzP7yv8rkfJ6/4pvZmlmtgeYAtxiZs7MPo1U\njwc6APMibVdE6ut63N6yRyYikpiUBIiISLOY2aHA9cCPnHO1dTRZCYxtYDfVQF7k56OBHGBi5PWZ\nwGvOuerI67Miz6dE2vUByoErgN835RhERMJGSYCIiDTXTcAS59xbB6nfhfdhHTM7xcxWmVm+mV2/\nr0EkecgBSoD3nXNbnHNfRqrP4MCpQL0AB7zrnNsCZAIZwDznXEVLHpiISKJSEiAiIk0Wmf7zbeC5\nqLK7oz/gA52BMjNLAe4BvgGMAq4zs35R7cbiJRMual9DgcFA9GLh0cBq51xp5PUYvCsB+S12YCIi\nCU5JgIiINMcgoAuwLKrsXLwP5fuMBj7FW/S70jm3wTlXDrwAnBbVbgzwccz+zwTedM6VRZWNApbG\nbLf8IFORRESkDkoCRESkObpGnksBzOw4vDn6eyKvh+F9SH8xUr4patuNQN+o16M58MM9fHUqEHhJ\nwJKo12NiXouISAOUBIiISHOsB2qB75jZGLzpPq8C08xsFPAw3gf7FxuxrxTgMDPrY2ZdzKwncExk\nf8D+6UdHcGCyMARY1xIHIyISFkoCRESkyZxz24CfAOcA/wPch7dQeCzwHrATOMU5VwNs5sC//Pfj\nwCsDPwXOx7tC8Fu8qULvO+e2RrUZgrcQODoJWAbcaGYnt9yRiYgkNotafyUiItJqIguDVwHHATuA\nj4CTnHMbDtL+ZWC+c+6ONuukiEhIpATdARERCQfnXLWZ3QC8CSQD9xwsAYiYDzzZJp0TEQkZXQkQ\nEREREQkZrQkQEREREQkZJQEiIiIiIiGjJEBEREREJGSUBIiIiIiIhIySABERERGRkFESICIiIiIS\nMkoCRERERERCRkmAiIiIiEjIKAkQEREREQkZJQEiIiIiIiGjJEBEREREJGSUBIiIiIiIhIySABER\nERGRkPl/YwLTOHKaTRgAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd1a4a06518>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(a/pi, aA)\n", "plt.xlabel(r'$\\omega_0 t/\\pi$')\n", "plt.ylabel(r'$\\ddot u_A/\\delta\\omega_0^2$')\n", "plt.title('Imposed support acceleration');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Equation of Motion\n", "\n", "The EoM expressed in adimensional coordinates and using adimensional structural matrices is\n", "\n", "$$ m\\omega_0^2\\hat{\\boldsymbol M} \\frac{\\partial^2\\boldsymbol x}{\\partial a^2}\n", " + \\frac{EJ}{L^3}\\hat{\\boldsymbol K}\\boldsymbol x =\n", " m \\hat{\\boldsymbol M} \\boldsymbol e \\omega_0^2 \\frac{\\partial^2 u_A}{\\partial a^2}\n", "$$ \n", "\n", "using the dot notation to denote derivatives with respect to $a$, if we divide both members by $m\\omega_0^2$ we have\n", "\n", "$$ \\hat{\\boldsymbol M} \\ddot{\\boldsymbol x}\n", " + \\hat{\\boldsymbol K}\\boldsymbol x =\n", " \\hat{\\boldsymbol M} \\boldsymbol e \\ddot{u}_A.\n", "$$ \n", "\n", "We must determine the influence vector $\\boldsymbol e$ and the adimensional structural matrices\n", "\n", "### Influence vector\n", "\n", "To impose a horizontal displacement in $A$ we must remove one constraint, so that the structure has 1 DOF as a rigid system and the influence vector must be determined by a kinematic analysis." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n", "<svg xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"757.158pt\" height=\"381.639pt\" viewBox=\"0 0 757.158 381.639\" version=\"1.1\">\n", "<defs>\n", "<g>\n", "<symbol overflow=\"visible\" id=\"glyph0-0\">\n", "<path style=\"stroke:none;\" d=\"\"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-1\">\n", "<path style=\"stroke:none;\" d=\"M 9.796875 -8.421875 C 9.125 -8.296875 8.875 -7.8125 8.875 -7.421875 C 8.875 -6.921875 9.28125 -6.75 9.5625 -6.75 C 10.1875 -6.75 10.625 -7.296875 10.625 -7.84375 C 10.625 -8.71875 9.625 -9.109375 8.765625 -9.109375 C 7.5 -9.109375 6.796875 -7.875 6.609375 -7.484375 C 6.140625 -9.03125 4.859375 -9.109375 4.484375 -9.109375 C 2.375 -9.109375 1.265625 -6.40625 1.265625 -5.953125 C 1.265625 -5.859375 1.34375 -5.765625 1.484375 -5.765625 C 1.65625 -5.765625 1.6875 -5.890625 1.734375 -5.96875 C 2.4375 -8.265625 3.828125 -8.703125 4.421875 -8.703125 C 5.34375 -8.703125 5.53125 -7.828125 5.53125 -7.328125 C 5.53125 -6.875 5.40625 -6.40625 5.171875 -5.40625 L 4.46875 -2.578125 C 4.15625 -1.34375 3.546875 -0.203125 2.453125 -0.203125 C 2.359375 -0.203125 1.84375 -0.203125 1.40625 -0.46875 C 2.140625 -0.625 2.3125 -1.234375 2.3125 -1.484375 C 2.3125 -1.90625 2 -2.140625 1.609375 -2.140625 C 1.109375 -2.140625 0.578125 -1.71875 0.578125 -1.046875 C 0.578125 -0.1875 1.546875 0.203125 2.4375 0.203125 C 3.421875 0.203125 4.125 -0.578125 4.5625 -1.421875 C 4.890625 -0.203125 5.921875 0.203125 6.6875 0.203125 C 8.796875 0.203125 9.921875 -2.5 9.921875 -2.953125 C 9.921875 -3.0625 9.828125 -3.140625 9.703125 -3.140625 C 9.515625 -3.140625 9.5 -3.03125 9.4375 -2.875 C 8.875 -1.046875 7.6875 -0.203125 6.75 -0.203125 C 6.03125 -0.203125 5.640625 -0.75 5.640625 -1.59375 C 5.640625 -2.046875 5.71875 -2.375 6.046875 -3.734375 L 6.78125 -6.546875 C 7.078125 -7.78125 7.78125 -8.703125 8.734375 -8.703125 C 8.78125 -8.703125 9.359375 -8.703125 9.796875 -8.421875 Z M 9.796875 -8.421875 \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-0\">\n", "<path style=\"stroke:none;\" d=\"\"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-1\">\n", "<path style=\"stroke:none;\" d=\"M 2.640625 -5.15625 C 2.390625 -5.140625 2.34375 -5.125 2.34375 -4.984375 C 2.34375 -4.84375 2.40625 -4.84375 2.671875 -4.84375 L 3.328125 -4.84375 C 4.546875 -4.84375 5.09375 -3.84375 5.09375 -2.46875 C 5.09375 -0.59375 4.109375 -0.09375 3.40625 -0.09375 C 2.71875 -0.09375 1.546875 -0.421875 1.140625 -1.359375 C 1.59375 -1.296875 2.015625 -1.546875 2.015625 -2.0625 C 2.015625 -2.484375 1.703125 -2.765625 1.3125 -2.765625 C 0.96875 -2.765625 0.59375 -2.5625 0.59375 -2.015625 C 0.59375 -0.75 1.859375 0.296875 3.453125 0.296875 C 5.15625 0.296875 6.421875 -1 6.421875 -2.453125 C 6.421875 -3.765625 5.359375 -4.8125 3.984375 -5.046875 C 5.234375 -5.40625 6.03125 -6.453125 6.03125 -7.578125 C 6.03125 -8.703125 4.859375 -9.53125 3.46875 -9.53125 C 2.03125 -9.53125 0.96875 -8.65625 0.96875 -7.609375 C 0.96875 -7.046875 1.421875 -6.921875 1.640625 -6.921875 C 1.9375 -6.921875 2.28125 -7.140625 2.28125 -7.578125 C 2.28125 -8.03125 1.9375 -8.234375 1.625 -8.234375 C 1.53125 -8.234375 1.5 -8.234375 1.46875 -8.21875 C 2.015625 -9.1875 3.359375 -9.1875 3.421875 -9.1875 C 3.90625 -9.1875 4.828125 -8.984375 4.828125 -7.578125 C 4.828125 -7.296875 4.796875 -6.5 4.375 -5.875 C 3.9375 -5.25 3.453125 -5.203125 3.0625 -5.1875 Z M 2.640625 -5.15625 \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-2\">\n", "<path style=\"stroke:none;\" d=\"M 6.3125 -2.40625 L 6 -2.40625 C 5.953125 -2.171875 5.84375 -1.375 5.6875 -1.140625 C 5.59375 -1.015625 4.78125 -1.015625 4.34375 -1.015625 L 1.6875 -1.015625 C 2.078125 -1.34375 2.953125 -2.265625 3.328125 -2.609375 C 5.515625 -4.625 6.3125 -5.359375 6.3125 -6.78125 C 6.3125 -8.4375 5 -9.53125 3.34375 -9.53125 C 1.671875 -9.53125 0.703125 -8.125 0.703125 -6.890625 C 0.703125 -6.15625 1.328125 -6.15625 1.375 -6.15625 C 1.671875 -6.15625 2.046875 -6.375 2.046875 -6.828125 C 2.046875 -7.234375 1.78125 -7.5 1.375 -7.5 C 1.25 -7.5 1.21875 -7.5 1.171875 -7.484375 C 1.453125 -8.46875 2.21875 -9.125 3.15625 -9.125 C 4.375 -9.125 5.125 -8.109375 5.125 -6.78125 C 5.125 -5.5625 4.421875 -4.5 3.59375 -3.578125 L 0.703125 -0.34375 L 0.703125 0 L 5.9375 0 Z M 6.3125 -2.40625 \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-3\">\n", "<path style=\"stroke:none;\" d=\"M 4.125 -9.1875 C 4.125 -9.53125 4.125 -9.53125 3.84375 -9.53125 C 3.5 -9.15625 2.78125 -8.625 1.3125 -8.625 L 1.3125 -8.203125 C 1.640625 -8.203125 2.359375 -8.203125 3.140625 -8.578125 L 3.140625 -1.109375 C 3.140625 -0.59375 3.09375 -0.421875 1.84375 -0.421875 L 1.390625 -0.421875 L 1.390625 0 C 1.78125 -0.03125 3.171875 -0.03125 3.640625 -0.03125 C 4.109375 -0.03125 5.5 -0.03125 5.875 0 L 5.875 -0.421875 L 5.4375 -0.421875 C 4.171875 -0.421875 4.125 -0.59375 4.125 -1.109375 Z M 4.125 -9.1875 \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph2-0\">\n", "<path style=\"stroke:none;\" d=\"\"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph2-1\">\n", "<path style=\"stroke:none;\" d=\"M 7.1875 -2.671875 L 6.875 -2.671875 C 6.703125 -1.453125 6.5625 -1.234375 6.484375 -1.140625 C 6.40625 -1 5.171875 -1 4.921875 -1 L 1.625 -1 C 2.234375 -1.671875 3.4375 -2.890625 4.90625 -4.3125 C 5.953125 -5.296875 7.1875 -6.46875 7.1875 -8.171875 C 7.1875 -10.203125 5.5625 -11.375 3.75 -11.375 C 1.859375 -11.375 0.703125 -9.71875 0.703125 -8.15625 C 0.703125 -7.484375 1.203125 -7.40625 1.40625 -7.40625 C 1.578125 -7.40625 2.09375 -7.5 2.09375 -8.109375 C 2.09375 -8.640625 1.65625 -8.796875 1.40625 -8.796875 C 1.3125 -8.796875 1.203125 -8.78125 1.140625 -8.75 C 1.46875 -10.203125 2.46875 -10.9375 3.515625 -10.9375 C 5.015625 -10.9375 5.984375 -9.75 5.984375 -8.171875 C 5.984375 -6.6875 5.109375 -5.390625 4.125 -4.265625 L 0.703125 -0.390625 L 0.703125 0 L 6.765625 0 Z M 7.1875 -2.671875 \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph3-0\">\n", "<path style=\"stroke:none;\" d=\"\"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph3-1\">\n", "<path style=\"stroke:none;\" d=\"M 5.875 -1 C 6.09375 -0.03125 6.921875 0.171875 7.328125 0.171875 C 7.890625 0.171875 8.296875 -0.1875 8.578125 -0.78125 C 8.875 -1.390625 9.09375 -2.40625 9.09375 -2.46875 C 9.09375 -2.546875 9.015625 -2.625 8.921875 -2.625 C 8.765625 -2.625 8.75 -2.53125 8.671875 -2.265625 C 8.375 -1.078125 8.0625 -0.171875 7.375 -0.171875 C 6.859375 -0.171875 6.859375 -0.734375 6.859375 -0.96875 C 6.859375 -1.359375 6.90625 -1.53125 7.078125 -2.25 C 7.203125 -2.71875 7.3125 -3.1875 7.421875 -3.671875 L 8.125 -6.46875 C 8.25 -6.90625 8.25 -6.9375 8.25 -6.984375 C 8.25 -7.25 8.046875 -7.421875 7.78125 -7.421875 C 7.28125 -7.421875 7.15625 -6.984375 7.0625 -6.5625 C 6.890625 -5.890625 5.953125 -2.1875 5.84375 -1.578125 C 5.8125 -1.578125 5.140625 -0.171875 3.890625 -0.171875 C 3 -0.171875 2.828125 -0.953125 2.828125 -1.578125 C 2.828125 -2.5625 3.3125 -3.9375 3.75 -5.09375 C 3.953125 -5.640625 4.046875 -5.875 4.046875 -6.21875 C 4.046875 -6.953125 3.515625 -7.59375 2.6875 -7.59375 C 1.109375 -7.59375 0.46875 -5.09375 0.46875 -4.953125 C 0.46875 -4.890625 0.53125 -4.796875 0.65625 -4.796875 C 0.8125 -4.796875 0.828125 -4.875 0.890625 -5.109375 C 1.3125 -6.59375 1.984375 -7.25 2.640625 -7.25 C 2.8125 -7.25 3.078125 -7.234375 3.078125 -6.6875 C 3.078125 -6.234375 2.890625 -5.734375 2.640625 -5.078125 C 1.875 -3.03125 1.796875 -2.375 1.796875 -1.859375 C 1.796875 -0.109375 3.109375 0.171875 3.828125 0.171875 C 4.921875 0.171875 5.53125 -0.578125 5.875 -1 Z M 5.875 -1 \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph4-0\">\n", "<path style=\"stroke:none;\" d=\"\"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph4-1\">\n", "<path style=\"stroke:none;\" d=\"M 2.03125 -1.328125 C 1.609375 -0.625 1.203125 -0.375 0.640625 -0.34375 C 0.5 -0.328125 0.40625 -0.328125 0.40625 -0.125 C 0.40625 -0.046875 0.46875 0 0.546875 0 C 0.765625 0 1.296875 -0.03125 1.515625 -0.03125 C 1.859375 -0.03125 2.25 0 2.578125 0 C 2.65625 0 2.796875 0 2.796875 -0.234375 C 2.796875 -0.328125 2.703125 -0.34375 2.625 -0.34375 C 2.359375 -0.375 2.125 -0.46875 2.125 -0.75 C 2.125 -0.921875 2.203125 -1.046875 2.359375 -1.3125 L 3.265625 -2.828125 L 6.3125 -2.828125 C 6.328125 -2.71875 6.328125 -2.625 6.328125 -2.515625 C 6.375 -2.203125 6.515625 -0.953125 6.515625 -0.734375 C 6.515625 -0.375 5.90625 -0.34375 5.71875 -0.34375 C 5.578125 -0.34375 5.453125 -0.34375 5.453125 -0.125 C 5.453125 0 5.5625 0 5.625 0 C 5.828125 0 6.078125 -0.03125 6.28125 -0.03125 L 6.953125 -0.03125 C 7.6875 -0.03125 8.21875 0 8.21875 0 C 8.3125 0 8.4375 0 8.4375 -0.234375 C 8.4375 -0.34375 8.328125 -0.34375 8.15625 -0.34375 C 7.5 -0.34375 7.484375 -0.453125 7.453125 -0.8125 L 6.71875 -8.265625 C 6.6875 -8.515625 6.640625 -8.53125 6.515625 -8.53125 C 6.390625 -8.53125 6.328125 -8.515625 6.21875 -8.328125 Z M 3.46875 -3.171875 L 5.875 -7.1875 L 6.28125 -3.171875 Z M 3.46875 -3.171875 \"/>\n", "</symbol>\n", "</g>\n", "<clipPath id=\"clip1\">\n", " <path d=\"M 4 4 L 753 4 L 753 381.640625 L 4 381.640625 Z M 4 4 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip2\">\n", " <path d=\"M 284 190 L 286 190 L 286 248 L 284 248 Z M 284 190 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip3\">\n", " <path d=\"M 0 381.640625 L 758 381.640625 L 758 -0.359375 L 0 -0.359375 Z M 283.785156 189.828125 L 285.730469 189.828125 L 288.929688 209.71875 L 280.585938 209.71875 Z M 283.785156 189.828125 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip4\">\n", " <path d=\"M 565 190 L 567 190 L 567 248 L 565 248 Z M 565 190 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip5\">\n", " <path d=\"M 0 381.640625 L 758 381.640625 L 758 -0.359375 L 0 -0.359375 Z M 565.441406 189.828125 L 567.386719 189.828125 L 570.585938 209.71875 L 562.242188 209.71875 Z M 565.441406 189.828125 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip6\">\n", " <path d=\"M 666 252 L 724 252 L 724 254 L 666 254 Z M 666 252 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip7\">\n", " <path d=\"M 0 381.640625 L 758 381.640625 L 758 -0.359375 L 0 -0.359375 Z M 723.863281 252.417969 L 723.863281 254.363281 L 703.976562 257.5625 L 703.976562 249.21875 Z M 723.863281 252.417969 \"/>\n", "</clipPath>\n", "</defs>\n", "<g id=\"surface1\">\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(90.039062%,90.039062%,90.039062%);fill-opacity:1;\" d=\"M 3.101562 165.765625 L 754.1875 165.765625 L 754.1875 153.246094 L 3.101562 153.246094 Z M 3.101562 165.765625 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(90.039062%,90.039062%,90.039062%);fill-opacity:1;\" d=\"M 3.101562 71.878906 L 754.1875 71.878906 L 754.1875 59.359375 L 3.101562 59.359375 Z M 3.101562 71.878906 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(90.039062%,90.039062%,90.039062%);fill-opacity:1;\" d=\"M 3.101562 259.652344 L 754.1875 259.652344 L 754.1875 247.132812 L 3.101562 247.132812 Z M 3.101562 259.652344 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(90.039062%,90.039062%,90.039062%);fill-opacity:1;\" d=\"M 3.101562 353.535156 L 754.1875 353.535156 L 754.1875 341.019531 L 3.101562 341.019531 Z M 3.101562 353.535156 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(90.039062%,90.039062%,90.039062%);fill-opacity:1;\" d=\"M 90.726562 378.574219 L 103.246094 378.574219 L 103.246094 3.03125 L 90.726562 3.03125 Z M 90.726562 378.574219 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(90.039062%,90.039062%,90.039062%);fill-opacity:1;\" d=\"M 184.613281 378.574219 L 197.132812 378.574219 L 197.132812 3.03125 L 184.613281 3.03125 Z M 184.613281 378.574219 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(90.039062%,90.039062%,90.039062%);fill-opacity:1;\" d=\"M 278.496094 378.574219 L 291.015625 378.574219 L 291.015625 3.03125 L 278.496094 3.03125 Z M 278.496094 378.574219 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(90.039062%,90.039062%,90.039062%);fill-opacity:1;\" d=\"M 372.382812 378.574219 L 384.902344 378.574219 L 384.902344 3.03125 L 372.382812 3.03125 Z M 372.382812 378.574219 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(90.039062%,90.039062%,90.039062%);fill-opacity:1;\" d=\"M 466.269531 378.574219 L 478.789062 378.574219 L 478.789062 3.03125 L 466.269531 3.03125 Z M 466.269531 378.574219 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(90.039062%,90.039062%,90.039062%);fill-opacity:1;\" d=\"M 560.15625 378.574219 L 572.671875 378.574219 L 572.671875 3.03125 L 560.15625 3.03125 Z M 560.15625 378.574219 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(90.039062%,90.039062%,90.039062%);fill-opacity:1;\" d=\"M 654.039062 378.574219 L 666.558594 378.574219 L 666.558594 3.03125 L 654.039062 3.03125 Z M 654.039062 378.574219 \"/>\n", "<path style=\"fill:none;stroke-width:20.8635;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 31.015625 2221.311875 L 7541.875 2221.311875 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:20.8635;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 31.015625 3160.179063 L 7541.875 3160.179063 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:20.8635;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 31.015625 1282.48375 L 7541.875 1282.48375 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:20.8635;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 31.015625 343.616563 L 7541.875 343.616563 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:20.8635;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 969.84375 3786.0775 L 969.84375 30.647813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:20.8635;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1908.710938 3786.0775 L 1908.710938 30.647813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:20.8635;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2847.578125 3786.0775 L 2847.578125 30.647813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:20.8635;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3786.445312 3786.0775 L 3786.445312 30.647813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:20.8635;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 4725.273438 3786.0775 L 4725.273438 30.647813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:20.8635;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 5664.140625 3786.0775 L 5664.140625 30.647813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:20.8635;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6603.007812 3786.0775 L 6603.007812 30.647813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<g clip-path=\"url(#clip1)\" clip-rule=\"nonzero\">\n", "<path style=\"fill:none;stroke-width:20.8635;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(38.792419%,38.792419%,38.792419%);stroke-opacity:1;stroke-dasharray:125.181;stroke-miterlimit:10;\" d=\"M 7228.90625 30.647813 L 343.945312 3473.147813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "</g>\n", "<path style=\"fill:none;stroke-width:20.8635;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(38.792419%,38.792419%,38.792419%);stroke-opacity:1;stroke-dasharray:125.181;stroke-miterlimit:10;\" d=\"M 969.84375 3473.147813 L 969.84375 30.647813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 65.691406 153.246094 L 128.28125 153.246094 L 128.28125 121.953125 L 65.691406 121.953125 Z M 65.691406 153.246094 \"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 969.84375 2221.311875 L 1078.359375 2409.124375 L 861.367188 2409.124375 Z M 969.84375 2221.311875 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 844.6875 2471.7025 L 1095.039062 2471.7025 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6603.007812 343.616563 L 6102.265625 343.616563 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6603.007812 343.616563 L 6477.8125 218.42125 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6477.8125 343.616563 L 6352.65625 218.42125 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6352.65625 343.616563 L 6227.460938 218.42125 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6227.460938 343.616563 L 6102.265625 218.42125 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 7103.710938 343.616563 L 6603.007812 343.616563 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 7103.710938 343.616563 L 6978.554688 218.42125 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6978.554688 343.616563 L 6853.359375 218.42125 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6853.359375 343.616563 L 6728.164062 218.42125 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6728.164062 343.616563 L 6603.007812 218.42125 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1470.585938 2471.7025 L 969.84375 2471.7025 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1470.585938 2471.7025 L 1345.390625 2596.897813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1345.390625 2471.7025 L 1220.234375 2596.897813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1220.234375 2471.7025 L 1095.039062 2596.897813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1095.039062 2471.7025 L 969.84375 2596.897813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 969.84375 2471.7025 L 469.140625 2471.7025 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 969.84375 2471.7025 L 844.6875 2596.897813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 844.6875 2471.7025 L 719.492188 2596.897813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 719.492188 2471.7025 L 594.296875 2596.897813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 594.296875 2471.7025 L 469.140625 2596.897813 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(0%,68.943787%,68.943787%);fill-opacity:1;\" d=\"M 578.933594 253.390625 C 578.933594 260.304688 573.328125 265.910156 566.414062 265.910156 C 559.5 265.910156 553.894531 260.304688 553.894531 253.390625 C 553.894531 246.476562 559.5 240.871094 566.414062 240.871094 C 573.328125 240.871094 578.933594 246.476562 578.933594 253.390625 \"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 5789.335938 1282.48375 C 5789.335938 1213.343125 5733.28125 1157.288438 5664.140625 1157.288438 C 5595 1157.288438 5538.945312 1213.343125 5538.945312 1282.48375 C 5538.945312 1351.624375 5595 1407.679063 5664.140625 1407.679063 C 5733.28125 1407.679063 5789.335938 1351.624375 5789.335938 1282.48375 Z M 5789.335938 1282.48375 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(0%,68.943787%,68.943787%);fill-opacity:1;\" d=\"M 297.273438 253.390625 C 297.273438 260.304688 291.671875 265.910156 284.757812 265.910156 C 277.84375 265.910156 272.238281 260.304688 272.238281 253.390625 C 272.238281 246.476562 277.84375 240.871094 284.757812 240.871094 C 291.671875 240.871094 297.273438 246.476562 297.273438 253.390625 \"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2972.734375 1282.48375 C 2972.734375 1213.343125 2916.71875 1157.288438 2847.578125 1157.288438 C 2778.4375 1157.288438 2722.382812 1213.343125 2722.382812 1282.48375 C 2722.382812 1351.624375 2778.4375 1407.679063 2847.578125 1407.679063 C 2916.71875 1407.679063 2972.734375 1351.624375 2972.734375 1282.48375 Z M 2972.734375 1282.48375 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 5977.109375 1532.835313 C 5977.109375 1498.265 5949.0625 1470.257188 5914.492188 1470.257188 C 5879.921875 1470.257188 5851.914062 1498.265 5851.914062 1532.835313 C 5851.914062 1567.405625 5879.921875 1595.413438 5914.492188 1595.413438 C 5949.0625 1595.413438 5977.109375 1567.405625 5977.109375 1532.835313 Z M 5977.109375 1532.835313 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3160.507812 1532.835313 C 3160.507812 1498.265 3132.5 1470.257188 3097.929688 1470.257188 C 3063.359375 1470.257188 3035.351562 1498.265 3035.351562 1532.835313 C 3035.351562 1567.405625 3063.359375 1595.413438 3097.929688 1595.413438 C 3132.5 1595.413438 3160.507812 1567.405625 3160.507812 1532.835313 Z M 3160.507812 1532.835313 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:41.727;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 969.84375 2221.311875 L 969.84375 1282.48375 L 6603.007812 1282.48375 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:41.727;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6603.007812 343.616563 L 6603.007812 2221.311875 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<g clip-path=\"url(#clip2)\" clip-rule=\"nonzero\">\n", "<g clip-path=\"url(#clip3)\" clip-rule=\"evenodd\">\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2847.578125 1345.061875 L 2847.578125 1908.382188 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "</g>\n", "</g>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2889.296875 1719.2025 L 2847.578125 1886.116563 L 2805.859375 1719.2025 Z M 2889.296875 1719.2025 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<g clip-path=\"url(#clip4)\" clip-rule=\"nonzero\">\n", "<g clip-path=\"url(#clip5)\" clip-rule=\"evenodd\">\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 5664.140625 1345.061875 L 5664.140625 1908.382188 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "</g>\n", "</g>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 5705.859375 1719.2025 L 5664.140625 1886.116563 L 5622.421875 1719.2025 Z M 5705.859375 1719.2025 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<g clip-path=\"url(#clip6)\" clip-rule=\"nonzero\">\n", "<g clip-path=\"url(#clip7)\" clip-rule=\"evenodd\">\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6665.585938 1282.48375 L 7228.90625 1282.48375 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "</g>\n", "</g>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 7039.765625 1240.765 L 7206.640625 1282.48375 L 7039.765625 1324.2025 Z M 7039.765625 1240.765 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1095.039062 2221.311875 L 1220.234375 1282.48375 L 4975.664062 1783.186875 L 6853.359375 1282.48375 L 6603.007812 343.616563 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,100%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6853.359375 1282.48375 L 7103.710938 2221.311875 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 969.84375 1094.710313 L 1220.234375 1094.710313 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 969.84375 1157.288438 L 969.84375 1032.093125 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1220.234375 1157.288438 L 1220.234375 1032.093125 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2847.578125 1032.093125 L 2847.578125 1157.288438 L 2847.578125 1094.710313 L 3097.929688 1094.710313 L 3097.929688 1157.288438 L 3097.929688 1032.093125 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3223.125 1532.835313 L 3348.28125 1532.835313 L 3285.703125 1532.835313 L 3285.703125 1282.48375 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 5476.367188 1282.48375 L 5476.367188 1532.835313 L 5413.789062 1532.835313 L 5538.945312 1532.835313 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 5664.140625 1094.710313 L 5664.140625 969.515 L 5664.140625 1032.093125 L 5914.492188 1032.093125 L 5914.492188 1094.710313 L 5914.492188 969.515 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 478.789062 253.390625 C 478.789062 256.847656 475.984375 259.652344 472.527344 259.652344 C 469.070312 259.652344 466.269531 256.847656 466.269531 253.390625 C 466.269531 249.933594 469.070312 247.132812 472.527344 247.132812 C 475.984375 247.132812 478.789062 249.933594 478.789062 253.390625 \"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 4787.890625 1282.48375 C 4787.890625 1247.913438 4759.84375 1219.866563 4725.273438 1219.866563 C 4690.703125 1219.866563 4662.695312 1247.913438 4662.695312 1282.48375 C 4662.695312 1317.054063 4690.703125 1345.061875 4725.273438 1345.061875 C 4759.84375 1345.061875 4787.890625 1317.054063 4787.890625 1282.48375 Z M 4787.890625 1282.48375 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 666.558594 347.277344 C 666.558594 350.734375 663.757812 353.535156 660.300781 353.535156 C 656.84375 353.535156 654.039062 350.734375 654.039062 347.277344 C 654.039062 343.820312 656.84375 341.019531 660.300781 341.019531 C 663.757812 341.019531 666.558594 343.820312 666.558594 347.277344 \"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6665.585938 343.616563 C 6665.585938 309.04625 6637.578125 281.038438 6603.007812 281.038438 C 6568.4375 281.038438 6540.390625 309.04625 6540.390625 343.616563 C 6540.390625 378.186875 6568.4375 406.194688 6603.007812 406.194688 C 6637.578125 406.194688 6665.585938 378.186875 6665.585938 343.616563 Z M 6665.585938 343.616563 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 103.246094 159.507812 C 103.246094 162.960938 100.441406 165.765625 96.984375 165.765625 C 93.53125 165.765625 90.726562 162.960938 90.726562 159.507812 C 90.726562 156.050781 93.53125 153.246094 96.984375 153.246094 C 100.441406 153.246094 103.246094 156.050781 103.246094 159.507812 \"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1032.460938 2221.311875 C 1032.460938 2186.780625 1004.414062 2158.73375 969.84375 2158.73375 C 935.3125 2158.73375 907.265625 2186.780625 907.265625 2221.311875 C 907.265625 2255.882188 935.3125 2283.929063 969.84375 2283.929063 C 1004.414062 2283.929063 1032.460938 2255.882188 1032.460938 2221.311875 Z M 1032.460938 2221.311875 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 93.925781 137.53125 C 93.925781 139.296875 92.492188 140.726562 90.726562 140.726562 C 88.960938 140.726562 87.527344 139.296875 87.527344 137.53125 C 87.527344 135.761719 88.960938 134.328125 90.726562 134.328125 C 92.492188 134.328125 93.925781 135.761719 93.925781 137.53125 \"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 939.257812 2441.0775 C 939.257812 2423.42125 924.921875 2409.124375 907.265625 2409.124375 C 889.609375 2409.124375 875.273438 2423.42125 875.273438 2441.0775 C 875.273438 2458.772813 889.609375 2473.10875 907.265625 2473.10875 C 924.921875 2473.10875 939.257812 2458.772813 939.257812 2441.0775 Z M 939.257812 2441.0775 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 106.445312 137.53125 C 106.445312 139.296875 105.011719 140.726562 103.246094 140.726562 C 101.476562 140.726562 100.046875 139.296875 100.046875 137.53125 C 100.046875 135.761719 101.476562 134.328125 103.246094 134.328125 C 105.011719 134.328125 106.445312 135.761719 106.445312 137.53125 \"/>\n", "<path style=\"fill:none;stroke-width:10.4318;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1064.453125 2441.0775 C 1064.453125 2423.42125 1050.117188 2409.124375 1032.460938 2409.124375 C 1014.765625 2409.124375 1000.46875 2423.42125 1000.46875 2441.0775 C 1000.46875 2458.772813 1014.765625 2473.10875 1032.460938 2473.10875 C 1050.117188 2473.10875 1064.453125 2458.772813 1064.453125 2441.0775 Z M 1064.453125 2441.0775 \" transform=\"matrix(0.1,0,0,-0.1,0,381.639)\"/>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-1\" x=\"578.856\" y=\"203.337\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph1-1\" x=\"590.353\" y=\"206.436\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-1\" x=\"297.216\" y=\"203.337\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph1-2\" x=\"308.713\" y=\"206.436\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-1\" x=\"710.287\" y=\"284.699\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph1-3\" x=\"721.784\" y=\"287.799\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph2-1\" x=\"508.282\" y=\"240.889\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph3-1\" x=\"516.178\" y=\"240.889\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph4-1\" x=\"525.772\" y=\"243.471\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph2-1\" x=\"597.632\" y=\"284.699\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph3-1\" x=\"605.527\" y=\"284.699\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph4-1\" x=\"615.121\" y=\"287.282\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph2-1\" x=\"128.233\" y=\"284.699\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph3-1\" x=\"136.128\" y=\"284.699\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph4-1\" x=\"145.722\" y=\"287.282\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph2-1\" x=\"315.992\" y=\"284.699\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph3-1\" x=\"323.888\" y=\"284.699\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph4-1\" x=\"333.481\" y=\"287.282\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph2-1\" x=\"334.768\" y=\"247.148\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph3-1\" x=\"342.664\" y=\"247.148\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph4-1\" x=\"352.257\" y=\"249.73\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph3-1\" x=\"115.715\" y=\"165.785\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph4-1\" x=\"125.309\" y=\"168.367\"/>\n", "</g>\n", "</g>\n", "</svg>\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(HTML(open('figures/trab1kin_conv.svg').read()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The left beam is constrained by a roller and by the right beam, the first requires that the Centre of Instantaneous Rotation (CIR) belongs to the vertical line in $A$, while the second requires that the CIR belongs to the line that connects the hinges\n", "of the right beam.\n", "\n", "The angles of rotation are $\\theta_\\text{left} = u_A/L$ and $\\theta_\\text{right}\n", "= -2 u_A/L$ and eventually we have $x_1=x_2=x_3=2u_A$ and\n", "\n", "$$ \\boldsymbol e = \\begin{Bmatrix}2\\\\2\\\\2\\end{Bmatrix}.$$" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "e = array((2.0, 2.0, 2.0))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Structural Matrices" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n", "<svg xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" width=\"334.147pt\" height=\"147.344pt\" viewBox=\"0 0 334.147 147.344\" version=\"1.1\">\n", "<defs>\n", "<g>\n", "<symbol overflow=\"visible\" id=\"glyph0-0\">\n", "<path style=\"stroke:none;\" d=\"\"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-1\">\n", "<path style=\"stroke:none;\" d=\"M 5.46875 -1.484375 C 5.515625 -1.015625 5.609375 -0.609375 5.671875 -0.375 C 5.78125 0.046875 5.828125 0.265625 6.21875 0.265625 C 6.640625 0.265625 7.34375 -0.140625 7.34375 -0.328125 C 7.34375 -0.34375 7.34375 -0.390625 7.265625 -0.390625 C 7.25 -0.390625 7.140625 -0.375 6.96875 -0.28125 C 6.875 -0.234375 6.859375 -0.234375 6.828125 -0.234375 C 6.5625 -0.234375 6.5 -0.515625 6.390625 -1.046875 C 6.3125 -1.4375 6.25 -1.71875 6.15625 -3.046875 C 6.09375 -3.84375 6.046875 -4.625 6.046875 -5.421875 L 6.046875 -6.265625 C 6.046875 -6.4375 6.046875 -6.484375 5.953125 -6.484375 C 5.84375 -6.484375 5.484375 -6.359375 5.28125 -6.09375 L 5.21875 -5.984375 C 5.203125 -5.96875 4.5625 -4.5625 3.421875 -2.765625 C 2.953125 -2.046875 1.890625 -0.390625 1.375 -0.390625 C 1.125 -0.390625 0.734375 -0.578125 0.640625 -0.890625 C 0.625 -0.953125 0.625 -1 0.578125 -1 C 0.4375 -1 0.234375 -0.53125 0.234375 -0.296875 C 0.234375 0.015625 0.625 0.453125 1.078125 0.453125 C 1.625 0.453125 2.3125 -0.53125 2.96875 -1.484375 Z M 5.265625 -5.390625 L 5.265625 -5 C 5.265625 -3.984375 5.375 -2.484375 5.421875 -1.984375 L 3.734375 -1.984375 C 3.578125 -1.984375 3.453125 -1.984375 3.203125 -1.828125 C 3.765625 -2.6875 4.046875 -3.15625 4.375 -3.71875 C 4.9375 -4.734375 5.125 -5.140625 5.25 -5.390625 Z M 5.265625 -5.390625 \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-2\">\n", "<path style=\"stroke:none;\" d=\"M 2.5625 -6.25 C 2.5625 -6.3125 2.53125 -6.328125 2.453125 -6.328125 C 2.359375 -6.328125 2.09375 -6.1875 1.90625 -6.09375 C 1.453125 -5.859375 1.125 -5.703125 1.125 -5.546875 C 1.125 -5.5 1.171875 -5.484375 1.21875 -5.484375 C 1.3125 -5.484375 1.578125 -5.625 1.765625 -5.703125 C 1.609375 -4.59375 1.4375 -3.671875 1.28125 -2.921875 C 1.015625 -1.71875 0.828125 -0.953125 0.390625 -0.109375 C 0.28125 0.109375 0.28125 0.125 0.28125 0.140625 C 0.28125 0.203125 0.359375 0.203125 0.375 0.203125 C 0.46875 0.203125 0.90625 0.046875 1.078125 -0.265625 C 1.25 -0.625 1.53125 -1.140625 1.75 -2 C 1.890625 -2.53125 2.265625 -4.015625 2.96875 -4.953125 C 3.328125 -5.421875 3.6875 -5.828125 4.375 -5.828125 C 4.859375 -5.828125 5.3125 -5.546875 5.3125 -5.03125 C 5.3125 -4.3125 4.59375 -4.03125 3.40625 -3.625 C 2.875 -3.453125 2.75 -3.25 2.75 -3.1875 C 2.75 -3.125 2.796875 -3.125 2.84375 -3.125 C 2.90625 -3.125 3.09375 -3.15625 3.296875 -3.15625 C 4.21875 -3.15625 4.984375 -2.625 4.984375 -1.765625 C 4.984375 -0.515625 3.796875 -0.3125 3.171875 -0.3125 C 2.71875 -0.3125 2.328125 -0.453125 2 -0.796875 C 1.953125 -0.859375 1.9375 -0.859375 1.875 -0.859375 C 1.75 -0.859375 1.5625 -0.765625 1.453125 -0.703125 C 1.25 -0.5625 1.25 -0.53125 1.1875 -0.40625 C 1.34375 -0.234375 1.6875 0.203125 2.5625 0.203125 C 3.875 0.203125 5.765625 -0.703125 5.765625 -2.15625 C 5.765625 -3.015625 5.0625 -3.53125 4.296875 -3.625 C 4.828125 -3.890625 6.09375 -4.5 6.09375 -5.421875 C 6.09375 -5.96875 5.625 -6.328125 4.984375 -6.328125 C 4.359375 -6.328125 3.25 -5.984375 2.359375 -4.859375 L 2.34375 -4.859375 Z M 2.5625 -6.25 \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-3\">\n", "<path style=\"stroke:none;\" d=\"M 4.59375 -1.40625 C 4.59375 -1.453125 4.5625 -1.484375 4.515625 -1.484375 C 4.421875 -1.484375 4.03125 -1.359375 3.828125 -1.0625 C 3.609375 -0.75 3.234375 -0.28125 2.5 -0.28125 C 1.65625 -0.28125 0.90625 -0.890625 0.90625 -2.25 C 0.90625 -2.859375 1.109375 -4.046875 1.890625 -5.03125 C 2.296875 -5.53125 2.8125 -5.828125 3.546875 -5.828125 C 3.96875 -5.828125 4.125 -5.65625 4.125 -5.34375 C 4.125 -5.015625 3.75 -4.34375 3.703125 -4.265625 C 3.625 -4.140625 3.625 -4.109375 3.625 -4.09375 C 3.625 -4.046875 3.6875 -4.03125 3.71875 -4.03125 C 3.875 -4.03125 4.25 -4.21875 4.375 -4.421875 C 4.40625 -4.46875 4.90625 -5.3125 4.90625 -5.734375 C 4.90625 -6.15625 4.65625 -6.328125 4.15625 -6.328125 C 3.078125 -6.328125 2 -5.734375 1.3125 -4.953125 C 0.453125 -3.984375 0.125 -2.6875 0.125 -1.859375 C 0.125 -0.5 0.875 0.21875 1.890625 0.21875 C 3.359375 0.21875 4.59375 -1.203125 4.59375 -1.40625 Z M 4.59375 -1.40625 \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph0-4\">\n", "<path style=\"stroke:none;\" d=\"M 1.921875 0 C 4.078125 0 7.0625 -1.59375 7.0625 -4.03125 C 7.0625 -4.828125 6.6875 -5.375 6.078125 -5.71875 C 5.3125 -6.125 4.546875 -6.125 3.6875 -6.125 C 2.921875 -6.125 2.3125 -6.125 1.53125 -5.78125 C 0.3125 -5.21875 0.1875 -4.484375 0.1875 -4.453125 C 0.1875 -4.40625 0.203125 -4.375 0.28125 -4.375 C 0.34375 -4.375 0.515625 -4.421875 0.6875 -4.53125 C 0.921875 -4.6875 0.9375 -4.734375 0.984375 -4.890625 C 1.109375 -5.25 1.3125 -5.5625 2.53125 -5.625 C 2.421875 -3.84375 1.984375 -2.109375 1.3125 -0.46875 C 0.890625 -0.328125 0.765625 -0.109375 0.765625 -0.0625 C 0.765625 -0.015625 0.765625 0 0.984375 0 Z M 1.953125 -0.5 C 2.796875 -2.53125 3.109375 -3.984375 3.296875 -5.625 C 3.953125 -5.625 6.28125 -5.625 6.28125 -3.640625 C 6.28125 -1.859375 4.65625 -0.5 2.46875 -0.5 Z M 1.953125 -0.5 \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-0\">\n", "<path style=\"stroke:none;\" d=\"\"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph1-1\">\n", "<path style=\"stroke:none;\" d=\"M 1.6875 -1.40625 C 1.796875 -1.828125 1.96875 -2.484375 1.96875 -2.5625 C 1.984375 -2.609375 2.21875 -3.046875 2.53125 -3.359375 C 2.796875 -3.59375 3.140625 -3.734375 3.484375 -3.734375 C 3.96875 -3.734375 3.96875 -3.265625 3.96875 -3.109375 C 3.96875 -3 3.96875 -2.875 3.859375 -2.4375 L 3.65625 -1.640625 C 3.375 -0.484375 3.296875 -0.203125 3.296875 -0.15625 C 3.296875 -0.046875 3.375 0.09375 3.578125 0.09375 C 3.703125 0.09375 3.84375 0.015625 3.90625 -0.09375 C 3.921875 -0.140625 4 -0.4375 4.046875 -0.609375 L 4.25 -1.40625 C 4.34375 -1.828125 4.515625 -2.484375 4.53125 -2.5625 C 4.546875 -2.609375 4.765625 -3.046875 5.09375 -3.359375 C 5.359375 -3.59375 5.6875 -3.734375 6.046875 -3.734375 C 6.53125 -3.734375 6.53125 -3.265625 6.53125 -3.109375 C 6.53125 -2.5625 6.109375 -1.46875 6.015625 -1.1875 C 5.90625 -0.921875 5.859375 -0.828125 5.859375 -0.65625 C 5.859375 -0.171875 6.234375 0.09375 6.640625 0.09375 C 7.5 0.09375 7.84375 -1.1875 7.84375 -1.28125 C 7.84375 -1.328125 7.828125 -1.390625 7.734375 -1.390625 C 7.625 -1.390625 7.625 -1.34375 7.59375 -1.234375 C 7.359375 -0.46875 6.984375 -0.125 6.65625 -0.125 C 6.59375 -0.125 6.4375 -0.125 6.4375 -0.40625 C 6.4375 -0.640625 6.53125 -0.875 6.59375 -1.0625 C 6.78125 -1.53125 7.140625 -2.46875 7.140625 -2.984375 C 7.140625 -3.78125 6.546875 -3.96875 6.078125 -3.96875 C 5.21875 -3.96875 4.75 -3.328125 4.59375 -3.109375 C 4.5 -3.84375 3.890625 -3.96875 3.515625 -3.96875 C 2.6875 -3.96875 2.25 -3.375 2.09375 -3.1875 C 2.046875 -3.671875 1.671875 -3.96875 1.234375 -3.96875 C 0.859375 -3.96875 0.65625 -3.6875 0.53125 -3.4375 C 0.390625 -3.125 0.265625 -2.625 0.265625 -2.578125 C 0.265625 -2.5 0.328125 -2.46875 0.390625 -2.46875 C 0.484375 -2.46875 0.5 -2.515625 0.546875 -2.703125 C 0.71875 -3.40625 0.90625 -3.734375 1.203125 -3.734375 C 1.484375 -3.734375 1.484375 -3.453125 1.484375 -3.3125 C 1.484375 -3.125 1.40625 -2.859375 1.359375 -2.625 C 1.296875 -2.390625 1.203125 -2 1.171875 -1.890625 L 0.8125 -0.421875 C 0.75 -0.203125 0.75 -0.1875 0.75 -0.15625 C 0.75 -0.046875 0.828125 0.09375 1.015625 0.09375 C 1.140625 0.09375 1.28125 0.015625 1.34375 -0.09375 C 1.375 -0.140625 1.4375 -0.4375 1.484375 -0.609375 Z M 1.6875 -1.40625 \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph2-0\">\n", "<path style=\"stroke:none;\" d=\"\"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph2-1\">\n", "<path style=\"stroke:none;\" d=\"M -6.03125 -3.734375 C -6.390625 -3.8125 -6.5 -3.84375 -6.5 -4.78125 C -6.5 -5.078125 -6.5 -5.15625 -6.6875 -5.15625 C -6.8125 -5.15625 -6.8125 -5.046875 -6.8125 -5 C -6.8125 -4.671875 -6.78125 -3.859375 -6.78125 -3.53125 C -6.78125 -3.234375 -6.8125 -2.5 -6.8125 -2.203125 C -6.8125 -2.140625 -6.8125 -2.015625 -6.609375 -2.015625 C -6.5 -2.015625 -6.5 -2.109375 -6.5 -2.296875 C -6.5 -2.3125 -6.5 -2.5 -6.484375 -2.671875 C -6.453125 -2.84375 -6.453125 -2.9375 -6.3125 -2.9375 C -6.28125 -2.9375 -6.25 -2.9375 -6.125 -2.90625 L -0.78125 -1.5625 C -0.390625 -1.46875 -0.3125 -1.453125 -0.3125 -0.65625 C -0.3125 -0.484375 -0.3125 -0.390625 -0.109375 -0.390625 C 0 -0.390625 0 -0.484375 0 -0.65625 L 0 -5.28125 C 0 -5.515625 0 -5.515625 -0.171875 -5.578125 L -2.328125 -6.375 C -2.4375 -6.40625 -2.453125 -6.40625 -2.46875 -6.40625 C -2.5 -6.40625 -2.578125 -6.375 -2.578125 -6.296875 C -2.578125 -6.203125 -2.515625 -6.1875 -2.359375 -6.125 C -1.453125 -5.78125 -0.3125 -5.34375 -0.3125 -3.625 L -0.3125 -2.6875 C -0.3125 -2.546875 -0.3125 -2.515625 -0.3125 -2.46875 C -0.328125 -2.359375 -0.34375 -2.328125 -0.421875 -2.328125 C -0.453125 -2.328125 -0.46875 -2.328125 -0.640625 -2.375 Z M -6.03125 -3.734375 \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph3-0\">\n", "<path style=\"stroke:none;\" d=\"\"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph3-1\">\n", "<path style=\"stroke:none;\" d=\"M 1.265625 -0.765625 L 2.328125 -1.796875 C 3.875 -3.171875 4.46875 -3.703125 4.46875 -4.703125 C 4.46875 -5.84375 3.578125 -6.640625 2.359375 -6.640625 C 1.234375 -6.640625 0.5 -5.71875 0.5 -4.828125 C 0.5 -4.28125 1 -4.28125 1.03125 -4.28125 C 1.203125 -4.28125 1.546875 -4.390625 1.546875 -4.8125 C 1.546875 -5.0625 1.359375 -5.328125 1.015625 -5.328125 C 0.9375 -5.328125 0.921875 -5.328125 0.890625 -5.3125 C 1.109375 -5.96875 1.65625 -6.328125 2.234375 -6.328125 C 3.140625 -6.328125 3.5625 -5.515625 3.5625 -4.703125 C 3.5625 -3.90625 3.078125 -3.125 2.515625 -2.5 L 0.609375 -0.375 C 0.5 -0.265625 0.5 -0.234375 0.5 0 L 4.203125 0 L 4.46875 -1.734375 L 4.234375 -1.734375 C 4.171875 -1.4375 4.109375 -1 4 -0.84375 C 3.9375 -0.765625 3.28125 -0.765625 3.0625 -0.765625 Z M 1.265625 -0.765625 \"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph4-0\">\n", "<path style=\"stroke:none;\" d=\"\"/>\n", "</symbol>\n", "<symbol overflow=\"visible\" id=\"glyph4-1\">\n", "<path style=\"stroke:none;\" d=\"M 3.734375 -6.03125 C 3.8125 -6.390625 3.84375 -6.5 4.78125 -6.5 C 5.078125 -6.5 5.15625 -6.5 5.15625 -6.6875 C 5.15625 -6.8125 5.046875 -6.8125 5 -6.8125 C 4.671875 -6.8125 3.859375 -6.78125 3.53125 -6.78125 C 3.234375 -6.78125 2.5 -6.8125 2.203125 -6.8125 C 2.140625 -6.8125 2.015625 -6.8125 2.015625 -6.609375 C 2.015625 -6.5 2.109375 -6.5 2.296875 -6.5 C 2.3125 -6.5 2.5 -6.5 2.671875 -6.484375 C 2.84375 -6.453125 2.9375 -6.453125 2.9375 -6.3125 C 2.9375 -6.28125 2.9375 -6.25 2.90625 -6.125 L 1.5625 -0.78125 C 1.46875 -0.390625 1.453125 -0.3125 0.65625 -0.3125 C 0.484375 -0.3125 0.390625 -0.3125 0.390625 -0.109375 C 0.390625 0 0.484375 0 0.65625 0 L 5.28125 0 C 5.515625 0 5.515625 0 5.578125 -0.171875 L 6.375 -2.328125 C 6.40625 -2.4375 6.40625 -2.453125 6.40625 -2.46875 C 6.40625 -2.5 6.375 -2.578125 6.296875 -2.578125 C 6.203125 -2.578125 6.1875 -2.515625 6.125 -2.359375 C 5.78125 -1.453125 5.34375 -0.3125 3.625 -0.3125 L 2.6875 -0.3125 C 2.546875 -0.3125 2.515625 -0.3125 2.46875 -0.3125 C 2.359375 -0.328125 2.328125 -0.34375 2.328125 -0.421875 C 2.328125 -0.453125 2.328125 -0.46875 2.375 -0.640625 Z M 3.734375 -6.03125 \"/>\n", "</symbol>\n", "</g>\n", "<clipPath id=\"clip1\">\n", " <path d=\"M 322 104 L 334.148438 104 L 334.148438 121 L 322 121 Z M 322 104 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip2\">\n", " <path d=\"M 322 109 L 334.148438 109 L 334.148438 126 L 322 126 Z M 322 109 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip3\">\n", " <path d=\"M 322 114 L 334.148438 114 L 334.148438 131 L 322 131 Z M 322 114 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip4\">\n", " <path d=\"M 322 118 L 334.148438 118 L 334.148438 136 L 322 136 Z M 322 118 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip5\">\n", " <path d=\"M 318 3 L 334.148438 3 L 334.148438 20 L 318 20 Z M 318 3 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip6\">\n", " <path d=\"M 8 71 L 9 71 L 9 121 L 8 121 Z M 8 71 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip7\">\n", " <path d=\"M 0 147.34375 L 335 147.34375 L 335 -0.65625 L 0 -0.65625 Z M 8.582031 120.183594 L 7.835938 120.183594 L 6.601562 112.527344 L 9.816406 112.527344 Z M 7.835938 71.25 L 8.582031 71.25 L 9.816406 78.90625 L 6.601562 78.90625 Z M 7.835938 71.25 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip8\">\n", " <path d=\"M 126 138 L 223 138 L 223 140 L 126 140 Z M 126 138 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip9\">\n", " <path d=\"M 0 147.34375 L 335 147.34375 L 335 -0.65625 L 0 -0.65625 Z M 223.011719 138.707031 L 223.011719 139.457031 L 215.355469 140.691406 L 215.355469 137.476562 Z M 125.890625 139.457031 L 125.890625 138.707031 L 133.546875 137.476562 L 133.546875 140.691406 Z M 125.890625 139.457031 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip10\">\n", " <path d=\"M 222 138 L 272 138 L 272 140 L 222 140 Z M 222 138 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip11\">\n", " <path d=\"M 0 147.34375 L 335 147.34375 L 335 -0.65625 L 0 -0.65625 Z M 222.261719 139.457031 L 222.261719 138.707031 L 229.917969 137.476562 L 229.917969 140.691406 Z M 271.199219 138.707031 L 271.199219 139.457031 L 263.539062 140.691406 L 263.539062 137.476562 Z M 271.199219 138.707031 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip12\">\n", " <path d=\"M 270 138 L 320 138 L 320 140 L 270 140 Z M 270 138 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip13\">\n", " <path d=\"M 0 147.34375 L 335 147.34375 L 335 -0.65625 L 0 -0.65625 Z M 270.449219 139.457031 L 270.449219 138.707031 L 278.105469 137.476562 L 278.105469 140.691406 Z M 319.382812 138.707031 L 319.382812 139.457031 L 311.726562 140.691406 L 311.726562 137.476562 Z M 319.382812 138.707031 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip14\">\n", " <path d=\"M 8 23 L 9 23 L 9 72 L 8 72 Z M 8 23 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip15\">\n", " <path d=\"M 0 147.34375 L 335 147.34375 L 335 -0.65625 L 0 -0.65625 Z M 8.582031 71.996094 L 7.835938 71.996094 L 6.601562 64.339844 L 9.816406 64.339844 Z M 7.835938 23.0625 L 8.582031 23.0625 L 9.816406 30.71875 L 6.601562 30.71875 Z M 7.835938 23.0625 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip16\">\n", " <path d=\"M 29 138 L 127 138 L 127 140 L 29 140 Z M 29 138 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip17\">\n", " <path d=\"M 0 147.34375 L 335 147.34375 L 335 -0.65625 L 0 -0.65625 Z M 126.640625 138.707031 L 126.640625 139.457031 L 118.984375 140.691406 L 118.984375 137.476562 Z M 29.519531 139.457031 L 29.519531 138.707031 L 37.175781 137.476562 L 37.175781 140.691406 Z M 29.519531 139.457031 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip18\">\n", " <path d=\"M 320 110 L 334.148438 110 L 334.148438 125 L 320 125 Z M 320 110 \"/>\n", "</clipPath>\n", "<clipPath id=\"clip19\">\n", " <path d=\"M 320 115 L 334.148438 115 L 334.148438 130 L 320 130 Z M 320 115 \"/>\n", "</clipPath>\n", "</defs>\n", "<g id=\"surface1\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 395.3125 1239.065 L 202.578125 1239.065 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 395.3125 1239.065 L 347.109375 1287.268125 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 347.109375 1239.065 L 298.945312 1287.268125 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 298.945312 1239.065 L 250.742188 1287.268125 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 250.742188 1239.065 L 202.578125 1287.268125 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3190.078125 1239.065 L 3231.835938 1311.330625 L 3148.320312 1311.330625 Z M 3190.078125 1239.065 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3141.914062 1335.432188 L 3238.28125 1335.432188 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3190.078125 275.354063 L 3262.382812 233.59625 L 3262.382812 317.111875 Z M 3190.078125 275.354063 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3286.445312 323.518125 L 3286.445312 227.150938 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3286.445312 371.72125 L 3286.445312 178.986875 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<g clip-path=\"url(#clip1)\" clip-rule=\"nonzero\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3286.445312 371.72125 L 3334.648438 323.518125 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "</g>\n", "<g clip-path=\"url(#clip2)\" clip-rule=\"nonzero\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3286.445312 323.518125 L 3334.648438 275.354063 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "</g>\n", "<g clip-path=\"url(#clip3)\" clip-rule=\"nonzero\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3286.445312 275.354063 L 3334.648438 227.150938 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "</g>\n", "<g clip-path=\"url(#clip4)\" clip-rule=\"nonzero\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3286.445312 227.150938 L 3334.648438 178.986875 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "</g>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3286.445312 1335.432188 L 3093.710938 1335.432188 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<g clip-path=\"url(#clip5)\" clip-rule=\"nonzero\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3286.445312 1335.432188 L 3238.28125 1383.635313 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "</g>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3238.28125 1335.432188 L 3190.078125 1383.635313 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3190.078125 1335.432188 L 3141.914062 1383.635313 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3141.914062 1335.432188 L 3093.710938 1383.635313 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(0%,56.054688%,56.054688%);fill-opacity:1;\" d=\"M 275.640625 71.621094 C 275.640625 74.285156 273.484375 76.441406 270.824219 76.441406 C 268.160156 76.441406 266.003906 74.285156 266.003906 71.621094 C 266.003906 68.960938 268.160156 66.804688 270.824219 66.804688 C 273.484375 66.804688 275.640625 68.960938 275.640625 71.621094 \"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2756.40625 757.229063 C 2756.40625 730.588438 2734.84375 709.025938 2708.242188 709.025938 C 2681.601562 709.025938 2660.039062 730.588438 2660.039062 757.229063 C 2660.039062 783.830625 2681.601562 805.393125 2708.242188 805.393125 C 2734.84375 805.393125 2756.40625 783.830625 2756.40625 757.229063 Z M 2756.40625 757.229063 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(0%,56.054688%,56.054688%);fill-opacity:1;\" d=\"M 131.085938 71.621094 C 131.085938 74.285156 128.925781 76.441406 126.265625 76.441406 C 123.605469 76.441406 121.445312 74.285156 121.445312 71.621094 C 121.445312 68.960938 123.605469 66.804688 126.265625 66.804688 C 128.925781 66.804688 131.085938 68.960938 131.085938 71.621094 \"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1310.859375 757.229063 C 1310.859375 730.588438 1289.257812 709.025938 1262.65625 709.025938 C 1236.054688 709.025938 1214.453125 730.588438 1214.453125 757.229063 C 1214.453125 783.830625 1236.054688 805.393125 1262.65625 805.393125 C 1289.257812 805.393125 1310.859375 783.830625 1310.859375 757.229063 Z M 1310.859375 757.229063 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6.054688 757.229063 L 158.125 757.229063 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6.054688 1239.065 L 158.125 1239.065 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<g clip-path=\"url(#clip6)\" clip-rule=\"nonzero\">\n", "<g clip-path=\"url(#clip7)\" clip-rule=\"evenodd\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 82.109375 757.229063 L 82.109375 275.354063 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "</g>\n", "</g>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 98.164062 684.3775 L 82.109375 748.635313 L 66.015625 684.3775 Z M 98.164062 684.3775 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 66.015625 348.166563 L 82.109375 283.90875 L 98.164062 348.166563 Z M 66.015625 348.166563 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6.054688 275.354063 L 158.125 275.354063 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 6.054688 757.229063 L 158.125 757.229063 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 298.945312 158.635313 L 298.945312 6.565 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1262.65625 158.635313 L 1262.65625 6.565 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<g clip-path=\"url(#clip8)\" clip-rule=\"nonzero\">\n", "<g clip-path=\"url(#clip9)\" clip-rule=\"evenodd\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1262.65625 82.619688 L 2226.367188 82.619688 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "</g>\n", "</g>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1335.46875 98.674375 L 1271.210938 82.619688 L 1335.46875 66.525938 Z M 1335.46875 98.674375 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2153.554688 66.525938 L 2217.8125 82.619688 L 2153.554688 98.674375 Z M 2153.554688 66.525938 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1262.65625 158.635313 L 1262.65625 6.565 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2226.367188 158.635313 L 2226.367188 6.565 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<g clip-path=\"url(#clip10)\" clip-rule=\"nonzero\">\n", "<g clip-path=\"url(#clip11)\" clip-rule=\"evenodd\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2708.242188 82.619688 L 2226.367188 82.619688 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "</g>\n", "</g>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2635.390625 66.525938 L 2699.648438 82.619688 L 2635.390625 98.674375 Z M 2635.390625 66.525938 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2299.179688 98.674375 L 2234.921875 82.619688 L 2299.179688 66.525938 Z M 2299.179688 98.674375 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2226.367188 158.635313 L 2226.367188 6.565 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2708.242188 158.635313 L 2708.242188 6.565 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<g clip-path=\"url(#clip12)\" clip-rule=\"nonzero\">\n", "<g clip-path=\"url(#clip13)\" clip-rule=\"evenodd\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3190.078125 82.619688 L 2708.242188 82.619688 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "</g>\n", "</g>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3117.265625 66.525938 L 3181.523438 82.619688 L 3117.265625 98.674375 Z M 3117.265625 66.525938 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2781.054688 98.674375 L 2716.796875 82.619688 L 2781.054688 66.525938 Z M 2781.054688 98.674375 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2708.242188 158.635313 L 2708.242188 6.565 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3190.078125 158.635313 L 3190.078125 6.565 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<g clip-path=\"url(#clip14)\" clip-rule=\"nonzero\">\n", "<g clip-path=\"url(#clip15)\" clip-rule=\"evenodd\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 82.109375 1239.065 L 82.109375 757.229063 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "</g>\n", "</g>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 98.164062 1166.2525 L 82.109375 1230.510313 L 66.015625 1166.2525 Z M 98.164062 1166.2525 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 66.015625 830.041563 L 82.109375 765.78375 L 98.164062 830.041563 Z M 66.015625 830.041563 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<g clip-path=\"url(#clip16)\" clip-rule=\"nonzero\">\n", "<g clip-path=\"url(#clip17)\" clip-rule=\"evenodd\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 298.945312 82.619688 L 1262.65625 82.619688 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "</g>\n", "</g>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 371.757812 98.674375 L 307.5 82.619688 L 371.757812 66.525938 Z M 371.757812 98.674375 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill-rule:evenodd;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 1189.84375 66.525938 L 1254.0625 82.619688 L 1189.84375 98.674375 Z M 1189.84375 66.525938 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:16.062;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 298.945312 1239.065 L 298.945312 757.229063 L 3190.078125 757.229063 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\"fill:none;stroke-width:16.062;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3190.078125 1239.065 L 3190.078125 275.354063 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 0.605469 107.761719 L 15.8125 107.761719 L 15.8125 83.667969 L 0.605469 83.667969 Z M 0.605469 107.761719 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 66.03125 146.6875 L 90.125 146.6875 L 90.125 131.480469 L 66.03125 131.480469 Z M 66.03125 146.6875 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 162.40625 146.6875 L 186.496094 146.6875 L 186.496094 131.480469 L 162.40625 131.480469 Z M 162.40625 146.6875 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 234.683594 146.6875 L 258.777344 146.6875 L 258.777344 131.480469 L 234.683594 131.480469 Z M 234.683594 146.6875 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 282.871094 146.6875 L 306.964844 146.6875 L 306.964844 131.480469 L 282.871094 131.480469 Z M 282.871094 146.6875 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 0.605469 59.578125 L 15.8125 59.578125 L 15.8125 35.484375 L 0.605469 35.484375 Z M 0.605469 59.578125 \"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 225.046875 71.621094 C 225.046875 72.953125 223.96875 74.03125 222.636719 74.03125 C 221.308594 74.03125 220.226562 72.953125 220.226562 71.621094 C 220.226562 70.292969 221.308594 69.214844 222.636719 69.214844 C 223.96875 69.214844 225.046875 70.292969 225.046875 71.621094 \"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 2250.46875 757.229063 C 2250.46875 743.90875 2239.6875 733.1275 2226.367188 733.1275 C 2213.085938 733.1275 2202.265625 743.90875 2202.265625 757.229063 C 2202.265625 770.510313 2213.085938 781.291563 2226.367188 781.291563 C 2239.6875 781.291563 2250.46875 770.510313 2250.46875 757.229063 Z M 2250.46875 757.229063 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 32.300781 23.4375 C 32.300781 24.765625 31.222656 25.847656 29.894531 25.847656 C 28.5625 25.847656 27.484375 24.765625 27.484375 23.4375 C 27.484375 22.105469 28.5625 21.027344 29.894531 21.027344 C 31.222656 21.027344 32.300781 22.105469 32.300781 23.4375 \"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 323.007812 1239.065 C 323.007812 1225.78375 312.226562 1214.963438 298.945312 1214.963438 C 285.625 1214.963438 274.84375 1225.78375 274.84375 1239.065 C 274.84375 1252.385313 285.625 1263.166563 298.945312 1263.166563 C 312.226562 1263.166563 323.007812 1252.385313 323.007812 1239.065 Z M 323.007812 1239.065 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 321.417969 23.4375 C 321.417969 24.765625 320.339844 25.847656 319.007812 25.847656 C 317.679688 25.847656 316.601562 24.765625 316.601562 23.4375 C 316.601562 22.105469 317.679688 21.027344 319.007812 21.027344 C 320.339844 21.027344 321.417969 22.105469 321.417969 23.4375 \"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3214.179688 1239.065 C 3214.179688 1225.78375 3203.398438 1214.963438 3190.078125 1214.963438 C 3176.796875 1214.963438 3166.015625 1225.78375 3166.015625 1239.065 C 3166.015625 1252.385313 3176.796875 1263.166563 3190.078125 1263.166563 C 3203.398438 1263.166563 3214.179688 1252.385313 3214.179688 1239.065 Z M 3214.179688 1239.065 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 321.417969 119.808594 C 321.417969 121.140625 320.339844 122.21875 319.007812 122.21875 C 317.679688 122.21875 316.601562 121.140625 316.601562 119.808594 C 316.601562 118.476562 317.679688 117.398438 319.007812 117.398438 C 320.339844 117.398438 321.417969 118.476562 321.417969 119.808594 \"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3214.179688 275.354063 C 3214.179688 262.03375 3203.398438 251.2525 3190.078125 251.2525 C 3176.796875 251.2525 3166.015625 262.03375 3166.015625 275.354063 C 3166.015625 288.674375 3176.796875 299.455625 3190.078125 299.455625 C 3203.398438 299.455625 3214.179688 288.674375 3214.179688 275.354063 Z M 3214.179688 275.354063 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 317.832031 14.976562 C 317.832031 15.65625 317.28125 16.210938 316.601562 16.210938 C 315.921875 16.210938 315.367188 15.65625 315.367188 14.976562 C 315.367188 14.296875 315.921875 13.746094 316.601562 13.746094 C 317.28125 13.746094 317.832031 14.296875 317.832031 14.976562 \"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3178.320312 1323.674375 C 3178.320312 1316.8775 3172.8125 1311.330625 3166.015625 1311.330625 C 3159.21875 1311.330625 3153.671875 1316.8775 3153.671875 1323.674375 C 3153.671875 1330.47125 3159.21875 1335.979063 3166.015625 1335.979063 C 3172.8125 1335.979063 3178.320312 1330.47125 3178.320312 1323.674375 Z M 3178.320312 1323.674375 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 322.648438 14.976562 C 322.648438 15.65625 322.097656 16.210938 321.417969 16.210938 C 320.738281 16.210938 320.1875 15.65625 320.1875 14.976562 C 320.1875 14.296875 320.738281 13.746094 321.417969 13.746094 C 322.097656 13.746094 322.648438 14.296875 322.648438 14.976562 \"/>\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3226.484375 1323.674375 C 3226.484375 1316.8775 3220.976562 1311.330625 3214.179688 1311.330625 C 3207.382812 1311.330625 3201.875 1316.8775 3201.875 1323.674375 C 3201.875 1330.47125 3207.382812 1335.979063 3214.179688 1335.979063 C 3220.976562 1335.979063 3226.484375 1330.47125 3226.484375 1323.674375 Z M 3226.484375 1323.674375 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 328.59375 117.398438 C 328.59375 118.050781 328.066406 118.578125 327.414062 118.578125 C 326.765625 118.578125 326.238281 118.050781 326.238281 117.398438 C 326.238281 116.75 326.765625 116.222656 327.414062 116.222656 C 328.066406 116.222656 328.59375 116.75 328.59375 117.398438 \"/>\n", "<g clip-path=\"url(#clip18)\" clip-rule=\"nonzero\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3285.9375 299.455625 C 3285.9375 292.932188 3280.664062 287.65875 3274.140625 287.65875 C 3267.65625 287.65875 3262.382812 292.932188 3262.382812 299.455625 C 3262.382812 305.94 3267.65625 311.213438 3274.140625 311.213438 C 3280.664062 311.213438 3285.9375 305.94 3285.9375 299.455625 Z M 3285.9375 299.455625 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "</g>\n", "<path style=\" stroke:none;fill-rule:evenodd;fill:rgb(100%,100%,100%);fill-opacity:1;\" d=\"M 328.59375 122.21875 C 328.59375 122.867188 328.066406 123.394531 327.414062 123.394531 C 326.765625 123.394531 326.238281 122.867188 326.238281 122.21875 C 326.238281 121.566406 326.765625 121.039062 327.414062 121.039062 C 328.066406 121.039062 328.59375 121.566406 328.59375 122.21875 \"/>\n", "<g clip-path=\"url(#clip19)\" clip-rule=\"nonzero\">\n", "<path style=\"fill:none;stroke-width:4.0155;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;\" d=\"M 3285.9375 251.2525 C 3285.9375 244.768125 3280.664062 239.494688 3274.140625 239.494688 C 3267.65625 239.494688 3262.382812 244.768125 3262.382812 251.2525 C 3262.382812 257.775938 3267.65625 263.049375 3274.140625 263.049375 C 3280.664062 263.049375 3285.9375 257.775938 3285.9375 251.2525 Z M 3285.9375 251.2525 \" transform=\"matrix(0.1,0,0,-0.1,0,147.344)\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-1\" x=\"26.248\" y=\"16.223\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-2\" x=\"315.899\" y=\"6.586\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-3\" x=\"313.955\" y=\"131.871\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph0-4\" x=\"218.989\" y=\"83.684\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph1-1\" x=\"122.243\" y=\"62\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph1-1\" x=\"266.803784\" y=\"62\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph2-1\" x=\"11.886\" y=\"50.934\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph2-1\" x=\"11.886\" y=\"99.121\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph3-1\" x=\"72.235\" y=\"142.739\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph4-1\" x=\"77.216\" y=\"142.739\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph3-1\" x=\"168.608\" y=\"142.739\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph4-1\" x=\"173.59\" y=\"142.739\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph4-1\" x=\"243.374028\" y=\"142.739\"/>\n", "</g>\n", "<g style=\"fill:rgb(0%,0%,0%);fill-opacity:1;\">\n", " <use xlink:href=\"#glyph4-1\" x=\"291.569102\" y=\"142.739\"/>\n", "</g>\n", "</g>\n", "</svg>\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(HTML(open('figures/trab1_conv.svg').read()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compute the 3x3 flexibility using the Principle of Virtual Displacements and the 3x3 stiffness using inversion, while the mass matrix is directly assembled with the understanding that the lumped mass on $x_1$ is $2m$.\n", "\n", "The code uses a structure `m` where each of the three rows contains the \n", "computational represention (as polynomial coefficients) of the bending moments due to\n", "a unit load applied in the position of each of the three degrees of freedom,\n", "in each row six groups of polynomial coefficients, one group for each of the six\n", "intervals of definition in which the structure has been subdivided (a possible seventh interval is omitted because the bending moment is always zero for every possible unit load)." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$$\\boldsymbol F = \\frac{L^3}{12EJ}\\, \\begin{bmatrix}\n", " +92&+128&+101\\\\\n", " +128&+192&+146\\\\\n", " +101&+146&+118\n", "\\end{bmatrix}$$" ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\boldsymbol K = \\frac{3 EJ}{1588L^3}\\, \\begin{bmatrix}\n", " +1340&-358&-704\\\\\n", " -358&+655&-504\\\\\n", " -704&-504&+1280\n", "\\end{bmatrix} = \\frac{EJ}{L^3}\\;\\hat{\\boldsymbol K}.$$" ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\boldsymbol M = m\\, \\begin{bmatrix}\n", " 2&0&0\\\\\n", " 0&1&0\\\\\n", " 0&0&1\n", "\\end{bmatrix} = m\\;\\hat{\\boldsymbol M}.$$" ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "l = [1, 2, 2, 1, 1, 1]\n", "h = 0.5 ; t = 3*h\n", "m = [[p(2,0),p(h,0),p(h,1),p(h,0),p(h,h),p(1,0)],\n", " [p(2,0),p(1,0),p(0,2),p(1,0),p(1,1),p(2,0)],\n", " [p(2,0),p(h,0),p(h,1),p(h,0),p(t,h),p(2,0)]]\n", "\n", "F = array([[vw(emme, chi, l) for emme in m] for chi in m])\n", "K = inv(F)\n", "M = array(((2.0, 0.0, 0.0),\n", " (0.0, 1.0, 0.0),\n", " (0.0, 0.0, 1.0)))\n", "iM = inv(M)\n", "\n", "ld('\\\\boldsymbol F = \\\\frac{L^3}{12EJ}\\\\,', pmat(rounder(F*12), fmt='%+d'))\n", "ld('\\\\boldsymbol K = \\\\frac{3 EJ}{1588L^3}\\\\,',\n", " pmat(rounder(K*1588/3), fmt='%+d'),\n", " '= \\\\frac{EJ}{L^3}\\\\;\\\\hat{\\\\boldsymbol K}.')\n", "ld('\\\\boldsymbol M = m\\\\,', pmat(M, fmt='%d'),\n", " '= m\\\\;\\\\hat{\\\\boldsymbol M}.')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The eigenvalues problem\n", "\n", "We solve immediately the eigenvalue problem because when we know the shortest modal period of vibration it is possible to choose the integration time step $h$ to avoid numerical unstability issues with the linear acceleration algorithm." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$$\\boldsymbol\\Omega^2 = \\omega_0^2\\, \\begin{bmatrix}\n", " +0.024831&+0.000000&+0.000000\\\\\n", " +0.000000&+1.729964&+0.000000\\\\\n", " +0.000000&+0.000000&+3.166490\n", "\\end{bmatrix} =\\omega_0^2\\,\\boldsymbol\\Lambda^2.$$" ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\boldsymbol\\Omega=\\omega_0\\, \\begin{bmatrix}\n", " +0.157577&+0.000000&+0.000000\\\\\n", " +0.000000&+1.315281&+0.000000\\\\\n", " +0.000000&+0.000000&+1.779463\n", "\\end{bmatrix} =\\omega_0\\,\\boldsymbol\\Lambda.$$" ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\boldsymbol T_\\text{n}=\\frac{2\\pi}{\\omega_0}\\, \\begin{bmatrix}\n", " +6.346086&+0.000000&-0.000000\\\\\n", " +0.000000&+0.760294&-0.000000\\\\\n", " +0.000000&+0.000000&+0.561967\n", "\\end{bmatrix} = t_0\\,\\boldsymbol\\Theta.$$" ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$\\Psi= \\begin{bmatrix}\n", " -0.431570&+0.504229&-0.243928\\\\\n", " -0.623940&-0.701061&-0.345271\\\\\n", " -0.488051&+0.004508&+0.872803\n", "\\end{bmatrix} .$$" ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "wn2, Psi = eigh(K, M)\n", "wn = sqrt(wn2)\n", "li = wn\n", "Lambda2 = diag(wn2)\n", "Lambda = diag(wn)\n", "# eigenvectors are normalized → M* is a unit matrix, as well as its inverse\n", "Mstar, iMstar = eye(3), eye(3)\n", "\n", "ld(r'\\boldsymbol\\Omega^2 = \\omega_0^2\\,', pmat(Lambda2),\n", " r'=\\omega_0^2\\,\\boldsymbol\\Lambda^2.')\n", "ld(r'\\boldsymbol\\Omega=\\omega_0\\,', pmat(Lambda),\n", " r'=\\omega_0\\,\\boldsymbol\\Lambda.')\n", "ld(r'\\boldsymbol T_\\text{n}=\\frac{2\\pi}{\\omega_0}\\,', pmat(inv(Lambda)),\n", " r'= t_0\\,\\boldsymbol\\Theta.')\n", "ld(r'\\Psi=', pmat(Psi), '.')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Numerical Integration\n", "\n", "The shortest period is $T_3 = 2\\pi\\,0.562/\\omega_0 \\rightarrow A_3 = 1.124 \\pi$ hence to avoid unstability of the linear acceleration algorithm we shall use a non dimensional time step $h<0.55A_3\\approx0.6\\pi$. We can anticipate that the modal response associated with mode 2 is important ($\\lambda_2\\approx\\lambda_0$) so we choose an adimensional time step $h=A_2/20=2\\pi\\,0.760/20\\approx0.08\\pi$ that is much smaller than the maximum time step for which we have a stable behaviour.\n", "\n", "### Initialization\n", "\n", "First a new, longer adimensional time vector and the corresponding support acceleration, then the efficace load vector (`peff` is an array with 2001 rows and 3 columns, each row corresponding to the force vector in a particular instant of time) " ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "nsppi = 200\n", "a, _, _, aA = a_uA_vA_aA(0, 16*pi, nsppi*16+1)\n", "peff = (- M @ e) * aA[:,None]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The constants that we need in the linear acceleration algorithm — note that we have an undamped system or, in other words, $\\boldsymbol C = \\boldsymbol 0$" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "h = pi/nsppi\n", "K_ = K + 6*M/h**2\n", "F_ = inv(K_)\n", "dp_v = 6*M/h\n", "dp_a = 3*M" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The integration loop\n", "\n", "First we initialize the containers where to save the new results with the initial values at $a=0$, next the loop on the values of the load at times $t_i$ and $t_{i+1}$ with $i=0,\\ldots,1999$." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Xl, Vl = [zeros(3)], [zeros(3)]\n", "for p0, p1 in p0_p1(peff):\n", " x0, v0 = Xl[-1], Vl[-1]\n", " a0 = iM @ (p0 -K@x0)\n", " dp = (p1-p0) + dp_a@a0 + dp_v@v0\n", " dx = F_@dp\n", " dv = 3*dx/h - 3*v0 - a0*h/2\n", " Xl.append(x0+dx), Vl.append(v0+dv)\n", "Xl = array(Xl) ; Vl = array(Vl)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Plotting" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu8AAAE3CAYAAAAaBq+OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAARrwAAEa8B9/1LhAAAIABJREFUeJzs3Xd8FNUWwPHf3d1sKkkgAUIghCIgPfQHKE0UBASpoqCC\n2MWCXZ8iqKAiIioKiiAiIvJAEOnSiwhIld4TAkkILb1sduf9cRcMIUAWkmyC5/v57CdbZu6cuTtJ\nzt49c0cZhoEQQgghhBCi6DO5OwAhhBBCCCFE3kjyLoQQQgghRDEhybsQQgghhBDFhCTvQgghhBBC\nFBOSvAshhBBCCFFMSPIuhBBCCCFEMSHJuxBCCCGEEMWEJO9CCCGEEEIUE5K8CyGEEEIIUUxI8i6E\nEEIIIUQxIcm7EEWQUmqYUsrIdjutlFqnlOrk7thE8aWUGuA8noLzud1KznZ7XWO5Y0qpcdfR/gtF\n/dh39u0DuTw/RSm1yx0x5Rfne/tytsfFfp+EKM4s7g5ACHFFaUA75/1ywBvAb0qp2w3D+MN9YYli\nbAHQHDjvpu13B85dx3ovAPOBhfkbTr4aACQD03M8/x7gW+jRFKybcZ+EKDYkeRei6HIYhvHnhQdK\nqY1ANPAwIMm7yDOllAf6eIoH4t0Vh2EY29y17euhlPIyDCP9RtowDONwfsVTVNyM+yREcSJlM0IU\nE4ZhnEQnXhVzvqaU6q+U2q6USldKxSqlxiilPLO9HqCU+lopdUIpleH8OVspZXG+fqGcoqlSaplS\nKtVZ4jAol23dq5Ta6txWnFLqK6WUX7bX2zjbaq+UmqaUSlJKHVdKvauUMmVbrrxSaoazjXTn9ibk\n2FYNpdQvSqlzzph+V0rVzp8ezbsL5R5KqSed9xOVUouUUmHZlrmw341zrHtJiUG2vm6klFqslEpR\nSh1WSnVV2hvO9+eMs2+tOdorp5T6XikV7+y3P5VSt10h3heVUkeBdCA0t7IZpZSnUup9pdQR57ER\nrZSaku31ZkqpX5VSJ52x7lRKPXYj/Zizb5RSrZzHVKpSaptSqlX2dYBw4Bn1TxnZgGyvX/XYdy7T\nUin1l3OZPc5jeJVSan62ZYYppZKd78s6pVQa8IrztZHO/U529sOsHO/9KqA10DlbjMOy72OOeOo4\nj59k57H0m1KqWo5lDKXUK0qpoUqpGKXUWefvS8nr6fv8dJVjOkIpNT/bMf1MHtq6Wym1VCl1Sum/\nFZuVUt1yWa68Umqq0n8v0pRS+5RSz+dY5iHn8ZOudKnhQqVUeP7stRBFhyTvQhQTSilfoBRwOMfz\nzwFTgBVAV2AY+iv8z7MtNsb52pvAncCL6K/4c/4N+NnZTndgNfCtUurubNvqCvwCHHIuMxzoB8zN\nJeSvgWPO5X4C3gay1wRPBSKA54AOwFs59qsS+huGEOBR4D7ACqxUSgXksr2Cdg/QC3gWeBJoCHx3\nA+1NAxaj++cgMBP4xNnuIGAE8Dgw+MIKSqlAYD3QBF1Kci9wAvhdKVU5R/s9nPG+hH7vE64Qx2z0\n8TAZ6IxOWLOXRIQDm5yxdEG/l1/kJTHLoxDgS+BToCeQCcxVSpVwvt4diAVmoUt+mqPLf/J07Cul\nygFLnO3eB7wPfAzUyCUWK/p9mAncfWE7zhg/Ru//s0BZYL1Sytv5+tPANvR7cyHGb3PbWWfSvxZd\nCjcA/V5XBdYqpUrnWHwwUBt4BF0218UZR1E1Hf13oxuwBhinlGp5jXUqo38PHka/1yuAOUqpzhcW\nUEoFARuANui/E53Rx0v5bMu8AnwPbEUfR4PQv1c5+1SI4s8wDLnJTW5F7IZOQpLRpW0WIAz4ETgD\nVMu2XAkgEfgox/p9gSygkvPxLuCTq2xvAGAA7+Z4fj2wIdvjrcDGHMv0ca7bxvm4jfPx6BzLbQfm\nZnucDDx7lZimAEcB7xz7Gw+8VcjvxzF0yZJXtudecO5nYI79bpzLfuzKpa+fyfZcJedzuwBTtufn\n5+j/YegkPCTbcyZgD/BtjnjPAH5XeJ+DnY/vdD6+P4/9oJzH4xhgZy7x98pDP47L0TcOoG625yKc\nbd17pfVcPPZHOfvMP5dtzM/RtwbwwDX2wQwEAXagR7bnV2Vv7yrv/xggBSid7bkK6A8Xw7I9ZwCb\nc7Q1FjhfmMd+tlhezsMxPTjbcx7o39WxLmzH5Dy+fgHmZXt+BPrbo0pXWC/A2adfF3bfyE1u7rhJ\nzbsQRZcvYMv2OAvoYhjGwWzPNUcnMT8rZwmM03J0ktEQnfhsBQYopWLRo5B/G4Zh5LLNOTkezwY+\nVEqZAW900vNKLstkAbejE5gLluRYbg9QPdvjrcDLSik78HuO/QK4Cz0Casu2b2noEbimucQOgDNW\ndaXXr8QwjKxrLLLauLT+eY/zZwWu7wTQpdm2fUwplQksMwzDkW2ZA+gPRxfcBawETufyfrfO0f5K\nwzCSrxHDHUAqMONKCzjLNIahR1MroI8rgIxrtJ1XMYZh/J3tcfZ+vZq8HvtN0H2ReGEBwzC2K6WO\nXKHdeTmfcH779BZ6FDz7tz7Vcy6bB7cDKwx9/sGFeKKVUuudr2W3NMfjPUCAUsrvSu9tjr7IK8Mw\nDPt1rJfTxd95wzBsSqmDXON9VEpVQH8b0h79bcSFbwP3Z1vsDnSfHbtCM80BH2DS9YUtRPEiZTNC\nFF1p6MSjGdAfXTrwo1KqbLZlLnwlvAWd6F+4nXI+f6E+/ll0mcoQYAdwPGe9qNOpHI/j0CNowUAg\nOimOzb6A85/+GXRJT3Y5ZxXJBLyyPb4PWIaeueKAUuqgUqpvjn17Psd+2dDlK5fV/WezPJd1rnlz\nlulcTW77Q459ckXO9mxc/iEgZ5+VRifROeMfzOV9EpeHGILQyXNuH+QumIIujRqD/vDQBBgHeF5l\nHVdc0g+GYeS1X/N67Jcj95N0cx7rAKk5k2KlVBN0Qh+HLu1oju6DnO9NXpUkx++QUxx5+x3iGtt1\n+dgnRyneDbjW7/wllD4HZh76g+dwdJLeBD3ynn29IODkVbYb5Px5tWWEuGnIyLsQRZfDMIy/nPc3\nKaX2AxuBd9A1tgBnnT97AlG5tHEcwDCMBHTiPkQpVcu5/lil1H7DMBZnW74Muob6grLof+6n0SPv\nhvO5i5wj3UHZYskTwzBigEFKqUfRo6SvoT+c7DQMY4+zvQXAV7msnnaVpp9Aj8i66kb/8V8Ylbfm\neD5nQnYjzqJHN9/K5bWcI6dXS8gvOAOUU0qp3BJ4pZQXus76JcMwsteRP5z3kAtMno59IIbc657L\noPc/u9z6rDu6PKf3hdFpZw12zvc5r86S43fIqSwu/g5dQZPrWCe/vkVx1S1AA6C7YRgXz5tROU7S\nRr9PoVdp58L7GIoubxPipibJuxDFhGEYfymlfgIeUUq950x+/0DXeoYZhvFLHtvZo5R6AXgKqIU+\nWeyC7ugT7y7oCWxxJi3JSqnt6DKOMdmW6YH+W7L2OvfLALYopV4HegO3ossDfgfqAttc+UrfMIz9\n116qQFxIFmvhnMrTedJlc/I2Cp4XvwMPAfvyUBKTF8vQH5r6oE9WzskT/Q3txeTOmdD3zIdtuyK3\nEdy8HvubgSeVUv4XSmeUUhFAFWBvHrbtjf4Am72cqV8eY8zNOuBxpVSQYRhnnPGUB1oAH+Rh/avK\n9oG/OLhwwm/246ssegQ++zcjy9AldhUNw8jtg9oGdPnXQPTJ1ULc1CR5F6J4eQ99Qt4Q4FXDMBKU\nUm8BHzlrR1eik4jK6BHTZ7LV085FnxBpA+5HJyOrcrT/oFIqHV2K8AA6oeic7fVh6JlAfkLP7FAJ\n+BBYbhhGzrauyDlbzFLgB3Rtqxn9YSIJ/e0CwFB04vW7Uuob9AhqWWdM+w3DGJ/X7RUGwzBOKKX+\nAIYppRLQ78PLXP1bAleNQb93a5RSn6FruoOAxkCGYRjDXYx5mVJqITBZKVUV3fel0Cee3uc8vjYD\nbyilzqCTrJf451uGwrIXaK+Uugs9On3UMIwzeTn20bOSPA0sVkp9hD6XZDi6dMVx+aYu8zv65OQv\nlVKz0SPbj/FPCUv2GAc4Z2Q6CZw09PSuOX2KTjKXKqVGoD8cDUOXnHyZl84orpRSD6FnNbrDMIzV\nwD70SPkoZ62+N/r3PpZLy3o/RX9oXaOUeh9d5lMFqG4YxmvO43Q4+lgwo//WmYC2wE/OgY9w53rv\nGobxbmHsrxAFRWrehShGnKPKM9AjiYHO58aia+JvQ0+n9wu6xn0f/9SgrncuMxN9gmlNoJthGFtz\nbOJ+9Iljc9GzpzxuGMbFq1oahjEPPep6K/Ar8C56erjuLu5KOrr2/hlnO9PRJ5x1MAzjhHNbR9An\npsaip/5bip4mLwSd1BdF/dDfGkxGzwwyBT31Xb4wDOMseiR/MzASnVh+AdTh+i/c1RPdv08Ai9Af\nELKP6j+APnF2Mjq5XAoU9genN9GlMbPQ+34P5O3Yd35D1RH9LcJMdKL8X/RxdaXpMy9yHv+vOrf5\nG3pa065cejI56Flt1qE/1G5GT62ZW3vHgVboOvyp6OlGjwGtsp/EepMyoT+oKwDDMDLQfztS0d/8\njEQfi5dcSdf5DUVLdP9+5Hz9ZbKVyBiGMQo9peZ/0CfeT0GfUHxhBF85ty15jyj21NXPUxJC/Bso\nfdGb79DT1512czhCFChnmcoh9JSjn7g7HiGEcIWUzQghhLipKaU+BHaiy1kqouv8U9Aj30IIUaxI\n8i6EEOJmZ0GfDBqCLtlaB9z3LyhTEULchKRsRgghhBBCiGJCTtwQQgghhBCimJDkXQghhBBCiGJC\nknchhBBCCCGKCUnehRBCCCGEKCZktplslFK+QDP0lRxzXoBDCCGEEEKIG+UBlAM2GoaR4urKkrxf\nqhmw3N1BCCGEEEKIm94dXMdVuCV5v1QMwLJlywgPDy+0jaakpLBhwwaaN2+Or69voW23uJL+co30\nl2ukv1wj/eUa6S/XSH+5RvrLNe7qr8jISNq3bw/OvNNVkrxfygYQHh7OLbfcUmgbTU5O5tixY1St\nWhU/P79C225xJf3lGukv10h/uUb6yzXSX66R/nKN9JdrikB/XVeJtpywKoQQQgghRDEhybsQQggh\nhBDFhCTvQgghhBBCFBNS8y6EEEIIIQqcYRjYbDYcDoe7QwEgMzMTi8VCZmYm6enp+dauyWTCYrFg\nMhXMGLmMvAshhBBCiAJlGAbnz58nMzPT3aFc5OnpSZMmTfD09MzXdrOyskhISCA5OTlf271ARt6F\nEKIoyUiGtHPg4QPegWAyuzsiIYS4YTabDQ8PjyI1C47dbsdms+Hl5YXZnL9/a318fEhMTCQrKwuL\nJX/TbUnehRDCnRwOOLYGdsyAo2sg8cQ/r1m8oUJjuLUz1O0DvkHui1MIIW6Aw+HI9yS2qLNarZK8\nCyHETeXoGlj8JsT9nfvrWWlwbK2+/f4ONH0MbntRknghhPgXk+RdCCEKW0YyLHoVtv/4z3OVboda\n3SC0IfgGgy0VTh+AI6tg12xIT4AN42DbNLh7FNTrA0q5bReEEEK4hyTvQghRmM4chp/66sQcILwl\ndBgJoRGXL1umpk7oO4yETRNh3RhdDz/ncdj3G3T7Crz8Czd+IYQQbiWzzQghRGE5sQUm3akTd7MV\nOo2GAQtyT9yz8/CGls/BM5t1Mg+w9zf49g44fbDg4xZCCFFkSPIuhBCFIXIDTLkHUs+ATzAMXKxr\n2F0pffErDX2mQrcvweypPwRMbAdHVhdc3EIIIYoUKZsRQoiCdnIbTO8DthQIDIcH50BQ1etvr0F/\nXVLz84N6dpofe0H3r6FOj/yLWQghClCW3UFcUkahbrNsCU8s5ryNW48ZM4aJEyeya9cuzGYz69at\no3v37sydO5eWLVsWcKRXJ8m7EEIUpPj98EMPyEiEgDBdJhMYduPtlm8Ejy6DaT3h1B6Y9QikxEOz\nJ268bSGEKGBxSRm0/HBFoW5z/evtKB/onadlBw8ezBdffMHUqVNp0KABPXr0YNq0aW5P3EHKZoQQ\nouCkntUj7mlnwbcMPPRr/iTuF/iHwsBF+qRXDD2DzfL3wDDybxtCCPEvZLVaGTFiBEOHDqVz586M\nGzeODh06kJqaSvPmzQkMDGTGjBluiU1G3oUQoiDYs/Ro+Llj+mqp/WffWKnMlXgHQv9f4JdH9Ums\na0frEfgun8rVWYUQRVbZEp6sf71doW/TFREREcTExNC/f3/69OkDgKenJ3PmzGHChAkFEWKeSPIu\nhBAFYfkwOLJS3+/2JZSrV3Db8vCC3t/DghdhyxTY+r0+MbbnJP2aEEIUMRazKc8lLO4QFRVFx44d\nGTx4MJMnT2bUqFGUKVMGs9lMSEiIW2OTshkhhMhvO2fCH1/o+7e9WDgnkprM0GUstHpFP943X9fD\npycU/LaFEOImcurUKe68806GDBnC2LFjad26NcOHD3d3WBdJ8i6EEPnp5DaY96y+f8ud0O6twtu2\nUnp7d4/SjyPXwZTOkBRXeDEIIUQxlpiYSMeOHenVqxdDhgwBYMSIEUyaNIkDBw64OTpNymaEECK/\nJMfDjP6QlQ5Bt0DPb91Td97sCfAJgjlPQOzfMPku6Dcbgm8pvBgMAxx2vf+uzGUvhBBu5O/vz9at\nWy95rl69eqSnp7spostJ8i6EEPkhKxNmPgSJ0WAtAX2n65NJ3aVuL739nx/SJ81+0wbu/fKfK7Tm\nM5UcC/vWQNRG/e1D4gnITAZl0jPthNTR30TUvhdKuLdeVAghbkTPnj3Ztm0bvr6+bNy4kU8//bRQ\nty/JuxBC5IfFr0PUH4CCnhOhdA13RwS3tIcBv/1zMaeZD0HTJ6D9O2D1vfH2M5Kx7J5F80MT8dm+\nBwzH5csYDkiOhUOxcGgZLH1LX2SqzeuSxAshiqXZs2e7dfuSvAshxI3aMgX+mqTvt/0v1LjbreFc\nonwjeGINzH5Uz36z6WvYvwg6jYLqHV0vabFnwdHVsPNn2PsbXrZULs5n4xMElW6HsKZQqgp4lwJ7\nBpw/Dsc3wr4FkHoatnwHu3/Rtfn1++b3HgshxE1NknchhLgRkRtgwcv6fs2u0Opl98aTG99gPc/8\nH5/Dqg8hIQp+6guhDaHl8zqJv9qUkg47nNgKu2bBrl8g5dTFlwyLFyf86hPU9mm863QGs0fubTTo\nB50+hm3TYOVIncTPeQKi/4KOH4JZ/h0JIUReyF9LIYS4Xuci4ef+4LBBmdpw7/iie3KmyQy3DdE1\n7wtfhUO/w8mt8L+HwTMAKt0GoQ10KYuHN2SmwPlIOLUXItdfPuVkpduh3n2khN/BlnWbuaPqHVdO\n3C+weEKTQTqG357X01lunqhLenp/DxZrwe2/EELcJCR5F0KI65GRDDMe0CPIPkFw/0/g6efuqK6t\nVBXoP0uPeK8dAweXQEYC7F+gb1cTUhfq9tHz1gdU0M8lJ7seg28w9PkBVn0Aa0bB/oXwvwHQe4ok\n8EIIcQ2SvAshhKscdl3yEbcLTB5w3zQoGe7uqFxToTHcPx1SzsCBRbom/dReSD4F9kw9+u5fXk95\nGdYUKrf6J2HPDyYTtPuv/sDz+1D9wWHhy3DPZ0X32wshhCgCJHkXQghXGAYseFGXfAB0GQPhLdwb\n043wDdKzvzTo757tt3wesjJg5QjY+r2epaf5M+6JRQghioFie4VVpZSnUuobpdRhpVSy8+fr7o5L\nCHGTW/G+nl0G4PaXoOFDbg3nptDqFah3n76/5L9wZLV74xFCiCKs2Cbv6G8NTgF3A/5AV+AppdST\nbo1KCHFzMgxY+QGsHa0fNxoA7d52a0g3DaXgns+hfGPAgF8e1+U8QgghLlNsy2YMw0gB3sr21G6l\n1EygFTDhWusrpUoBpXI8XREgJSWF5Os5Ces6paamXvJTXJ30l2ukv1yTa38ZBtZV72Ld8g0Atupd\nyGj9LqSkuCHCoiU/jy/VaRw+39+JSo4l65cnSL/3u5uu/l1+H10j/eWaotxfmZmZeHp6Yrfb3R3K\nRQ6H45Kf+c1ut5ORkUFWVtYlz6fc4P8OZRjGDTVQVCilTMBGYLZhGB/mYflhwDu5vTZ+/HjKlSuX\nvwEKIYolsz2dhlETCT2/GYCoUi3ZXvFRDGV2c2Q3p/Ln/qTxsa8A2B42kMjgtm6OSAiRHywWC02a\nNMFq/ffMKJWZmcnmzZsvS95jYmJ46qmnAKoZhnHI1XZvpuT9E3QJTVPDMK45bH6Vkffl27dvp2rV\nqgUQZe5SU1PZsGEDzZs3x8fHp9C2W1xJf7lG+ss12fvLL+kwngufx3xmPwCZDQaS2e5dUAVbcZie\nlU5cWhxxqXGczThLWlYa6VnpAFjNVqxmK74WX4K9gwn2CibIKwhPs2eBxnQlBXF8eS58Do89szE8\n/UkduBLDLyRf2i0K5PfRNdJfrinK/XVh5N3L6yoXhCtkDoeDlJQUfH19MZku/bv+6aefMmnSJHbs\n2IHZbGbdunX06tWL2bNn07Jlyzy1n56eTkZGxmUfWA4fPkxERARcZ/JebMtmslNKvY+ueW+Tl8Qd\nwDCMs8DZHO0A4Ovri59f4c/X7OPj45btFlfSX66R/so7qy2RwI0fY906CQw7mK3Q6WOsjQaQ32NG\nmfZM/or9i52nd7L3zF72nt1LTEqMy+2U8y1H5YDKVPKvROWAylQNrEr1ktUJ8AzI54hzl6/HV5fR\nELkGlRKP7+pheirOm4z8PrpG+ss1RbG/0tP1AITZ7PzW0p4FSa7/rbshJcrlejVnk8n0T1xOzz33\nHF9++SU//vgjDRo0oHfv3kybNo1WrVrleXNmsxkfH5/LPrD4+vpeX/xOxT55V0qNAu5FJ+4n3B2P\nEKIQxe7SF/iJ/gvOHITUs/rEUg9vfSGgkpX0rVQVCKoKparquctNuYyc29IhejOe237izj3/w+LI\n1M+XqQ3dxkH5hvkWdkJGAmtPrGVl1ErWn1xPii33+keLyUKQVxA+Hj54W7xRKDLsGWTYM0jKTOJ8\nxvmLy8akxBCTEsMfJ/+4pI0Q3xCql6xOjZI1qF6yOtVLVqeif0UspiL859+nFNw9CmYNhL2/wZ55\nUKuru6MSQuSnpBgYW6dwt/nCLggMy9OiVquVESNG8Nprr+FwOBg3bhwdOnRg9+7dPPHEE5hMJiwW\nC99++y1VqlQp4MAvVYT/el+bUuozoCM6cT/p7niEEIXAMGD/Ilj9EcRsz32ZjARIjtUXUcrJ4gUl\nK0OJsmD21BckSo6DM4fAnonHhc14l0TdNgSaPZUvV/2MSY5hxfEVrDy+ki2xW8gy/qmBNCkTNUvV\npFZQLWoG1aRaYDVC/UIJ9g7GdJUSnUx7JqfTThObEktkYiRHE47qW+JRohKjMDCITYklNiWWNdFr\nLq7nafakamDVSxL6GqVqFNoofZ7U7g47Z+oLSC1+A25pD9aiVQYghLi5RUREEBMTQ//+/enTpw8A\npUuXZsGCBQQEBLB48WLee+89vvvuu0KNq9gm70qpcOA5IBM4oP6ZkWCtYRh3uy0wIUTBSYiGec/C\n4RX/PBdUDaq0hrK1wbc0KDPYUnVCfu4YnD2ib+cidQlMVjrE79W3XNjLNWC3uS5VeryFX6my1x2q\nYRjsP7eflVErWXF8BfvO7rvkdW+LNy1CW9CuYjtalW9FoFegy9uwmq2E+oUS6hdKw7KXfjOQlpXG\n4fOHOXDuAPvP7tc/z+0nKTOJDHsGe87sYc+ZPZesU8anzGUJfbh/uHtG6ZWCTqPgyEpIjIZ1n+or\nsgohbg4lyumR8MLeZh5FRUXRsWNHBg8ezOTJkxk1ahRlypShTJkyF5fx8PC4rNymMBTb5N0wjEjg\n5ppDTAhxZUdWw8wHIT1BP67eEVq9qstZ8jKdoN0G56PgzGE9yp52DuwZYPIAvzJ6NL5CY9IcVo4u\nX04Vq+s1iTaHjS1xW1gZtZJVx1dxMuXSLwRLeZWibVhb2oa1pVm5ZnhZCu7ELW+LN3WC61A7qDY7\nohPIij9JzKnTxJ0+Dp6xmD1jMHnGYPKKwWw9DcrgVOopTqWeYu2JtZe0U690PRqWaUiDMg2oX7o+\nPh6FNAIeWBFuGwKrPoD1n0GDfroMSghR/JkteS5hKWynTp3izjvvZMiQIQwZMoTDhw8zfPhwvvzy\ny4vLpKWl8c477zB+/PhCj6/YJu9CiH+R7T/BvMHgyALfMtD1c6jh4hdsZg9d9x5UFbjrysu5eI2H\nFFsK606sY+XxlayJXkNSZtIlr1fyr0Tbim1pF9aOusF1MZsKZ5TGZncwb/tJvl5zmANx2fcpEGyB\n2JNv/ecpZcPkGYfJMwa/EqcoG3yOZCOKxMxE0rLS2BizkY0xGwHwMHnQNKQpbcLa0CasDX4U8Elx\nLZ+HbT9CQpS++mrfHwt2e0KIf7XExEQ6duxIr169GDJkCAAjRoygadOmPP/881SvXp2srCweeOAB\nXn75ZerWrVvoMUryLoQo2nbOhLlPAQaE1IUHZoJ/qFtDik+NZ+VxXQ6zKWYTNoft4msKRb3S9fQI\ne8W2VAko3BOZDMNg6Z443pu/h+hzaRefr1nOn461Q2hSqSRVSvsR6ONBpt1BzPl0/j6RwLI9cazY\nf4rzCQ7OR0NooBdDO5YlsGQMW+O2svXUVvad3YfNYWP9yfWsP7meERtH0LB0QypnVqZFVouCSeQ9\nvKHD+zDzIdg3X5dMVW2X/9sRQgjA39+frVu3XvJcvXr1Ls6WYxgGjz76KB06dODee+91R4iSvAsh\nirD9i2HOk4ABFVtAv/+Bp3umP4tKjGJp5FJWRK3g79N/X/Ka1WTlP6H/oV1YO1qHtSbYO9g9MZ5J\n5Z15u1i5Px4As0lxT71yPN6qKrVC/S9b3svDjH+IBzVCStCrUQVOJaUzed0xJq8/ysnz6bwyI5L7\nm4YxtMvLeFvNJGcm82fMn6w6voo10Ws4l3GOrfFb2cpWFi1YRM/qPelfsz+hfvn84apmV6jcCo6u\n0SevPrk+1+nehBCioC1ZsoSZM2dy7NgxZsyYQUREBGPHji3UGOSvnxCiaIo/ALMf1SeZhjaEB34u\n9MQ9MjF04TAHAAAgAElEQVSSpceWsjRy6WUnnAZ4BtC6QmvahrWlRWiLwqsDz0VGlp2vVx/hy5WH\nyMjSl/luX7MMb3epRXhQ3mv3y5Tw4vW7b9UJ+6+7WX0gnp82HWdL5DkmPtSY8CA/2oe3p314e+wO\nOxtjNzJr3yxWHl9JalYqP+z5gel7p3NX+F08Uf8Jqgbm08XulIKOH8GElhC/D/6aDM0ez5+2hRDC\nBR07diQ1NdWtMUjyLoQoetITYMYDkJkE/hV0qYzX5SPHBSExM5GNGRuZtnwa+85fmrCbHYGY0+qj\nUuvga6lBdKov21L8cSQn0uIWK36ehf8nde3BeIb+upujp/Vc8eUDvRnWtTZ31rr+mXLCg3yZMrAJ\nk9cf48NFezkQl0z3r/5g4kONaBSuL0xtNplpEdqCev71mJ8wn6TwJGYemUlsSiyLji1iSeQSulTp\nwtMRT1Per/yN72jZWtBoIPw1CVaOgLq99HzwQgjxLyPJuxCi6Fn4ir7oktkT7vsB/EoX+Ca3n9rO\n9H3TWR65nExHJjjLxR22QLIS62BLrIcjvQKg510/TSr7Y1NZfUCXqFjNJv5TNYiu9UPpVDcEH2vB\n/nmNSUjj/QV7WbBTX6HQw6x4vFUVBrethrf1xk+KVUox6LbKNKgYyONT/+J0cib3T9zI2Psi6FT3\n0unWvE3edKnehQERA1hybAnf7PyGowlHmXd4HguPLqR/zf48Wf9JfD1u7KqCtP0v7JoF6ef1DDSd\nPr6x9oQQohiS5F0IUbTsngs7f9b37/4oX69smpPdYWfV8VVM2T2F7fHZLvjk8CQzoT62hEY40ipS\nPtCHFrWDqF62BEF+VswmxbmUTCLPprLrRAI7ohPIzHKw5kA8aw7EM3zebu6JCOX+JhWpWyF/L3yU\nkWXn27VHGbfiEGk2OwAtqgbxbrc63FIm/8uKGlYsyZynWzJwymYOnUpm8PStfNyrPj0bVbhsWQ+T\nB12qdKFjpY78dvg3vtrxFbEpsUzZPYUFRxbwYuMX6Vy5MyovU3vmxjcIWr8OS96AzZOg8SNQpuYN\n7qEQQhQvkrwLIYqOpFiYr6fmoloHaDSgQDZjGAYrjq9g3LZxHDp/6OLzAaaqxEY3JCuxLias3FM/\nlIEtK1O/QsBVE87UzCzWHDjNol0xLNoVS1JGFtM3RjF9YxS1Q/3p2ySMbg3K4+/lccU2rsXuMJi3\n4wRjlx0k8oyutyzr78mbnWrStX7o9SfEeRBWyofZT7Zg4JRNbI06z0v/20FGloMHmlXMdXmLyUL3\nat3pVKUTP+z5gW92fkN8WjxvrH2D/+3/H0ObD73+evimj+ma9zMHYcmb0P+XvM3zL4QQNwlJ3oUQ\nRcei1yDtLHiXgq5fFEhStjl2M2O3jGXn6Z2AntqxSZnbOHCgEcdjygKKav4OPurbiIZVQvLUpo/V\nQsc6IXSsE8K7qTbmbj/BjM3H2RuTyO6Tibz9625GLNxLl3qh9G0SRsOKJTGZ8rZviek25m47wZQ/\njnEkXte1W0yKQbdX5tl21Qqtzj7Ax4Opg5oxaMpmNh49y5tz/ibdZqdPxJVLmjzNnjxa91G6VOnC\nJ399wuJji9l6aiu9f+vNY/Ue49E6j+JhdvEDjdkDOoyE6b31tJEHlkCNjje4d0IIUXxI8i6EKBoO\nr4A9c/X9u0dBies/4TI38anxjP5rNAuPLrz4XJuwNrQKeoh355wlKT0Lq9nEi3dUJiRxP9WvswQl\nwMeDh1tU4qHm4eyMTmDG5ijmbT9JSqadWVuimbUlmmA/K62rl6FZ5VLULOdPWClvSnh5YBgGyRlZ\nHDmdwu6TiazeH8+6Q/Gk2/QMMkpB1/qhPH9HNaqULvwpM/08LUwZ2JTHf/iLtQdP8+78PSSnVSH8\nGuuF+IbwceuP6V29N+/++S6RiZF8tf0rlh5byvAWw6lXup5rgVS/C25pD4eW6dH3qu3AYr3u/RJC\niOJEknchhPtlZeiTVAEq3a5nEskndoedGftnMG7bOJJt+kqjDcs0ZEijIUSeLM3LM3dgsxuE+Hvx\n7cONqRRgZvny/Te8XaUU9cMCqR8WyFuda/HbjpP8tPk4O46f53RyJrO3RjN7a3Se2vK1munWoDyP\ntKzELWVK3HBsN8LbambiQ4155setLN93ijHLj9A5THFHHtZtWq4ps+6ZxYQdE5iyewqHzh+i/8L+\n9KvZj2cbPOvadJsdRsLhlXD2MGz6BloMvu59EkKI4sTk7gCEEIIN4+DMITBZoNPofCuXiU+N5/Hf\nH+fDTR+SbEumlFcpRt42kikdp3AkOpgXft6OzW5wa0gJ5jzTgjrl8/fk0gt8PS30bVqRX59pydpX\n2/Jet9q0r1mGsv6eV1wnNMCLeyNCGXtfBBv/256R3eu6PXG/wMvDzPj+jbjLOR3lguNmxq85lrd1\nLV680OgFfur8EzVL1cTAYNreafSY14M/TvyR9yBK19D17wCrR0HKaRf3QgghiicZeRdCuFdSHKwZ\nre//52koc2u+NLv+xHreXPcmZ9PPAtC7em+eb/g8AZ4BzNkWzUv/24FhQOPwknw3sAklbuBkUleE\nlfLhweaVeLB5JQDOpWQSl5ROQqoNs0nhY7VQoZT3DZ3cWhisFhNf9mvIM9M2s3Tvab5cE4nJ4sGL\nd1bP08mzNYNqMr3zdL7f/T3jd4znRPIJnlj2BPdUuYdXmrxCSa+S1w6i9Wt6ZqK0c7DifbincK9y\nKIQQ7iAj70II91r7CdhSwbe0TsZukM1hY+yWsTy57EnOpp8lwDOAL9p9wdDmQwnwDGDBzhhemvlP\n4j7lkaaFlrjnpqSvlVtD/GlWJYjGlUpRK9S/yCfuF3iYTYzqXouGQbom/4sVh/ho8X4Mw8jT+haT\nhUF1BzG762yahDQB4Lcjv9FtbjfmH5l/7XZ8Sum53wG2fg+xu657X4QQoriQ5F0I4T7nj8OW7/T9\n218Czxs7CTMmOYaBiwcyadckQNe2z7pnFm3C2gDw55EzDPl5Ow4DGlYMZMojTd1yVdSbicWkeLCa\ng3vq6hKaCasPM2LB3jwn8ADh/uFMumsSw1sMp4S1BOcyzvHG2jd4atlTnEg+cfWVGw2E0jXBcMDi\n18GF7QohRHEk/7WEEO6z+iOwZ4J/eZ2E3YAVUSt4e/3bJGYmolA8WvdRno54GotJ/5nbH5vEY1P/\nItPuoHpZP74bIIl7fjEpeP+eGnhZPfjflmi+XXeUTLuDd+6pjTmPU2IqpehRrQetKrTig40fsDRy\nKetPrqf7r90ZHDGYfjX7YTblcuVYswU6joQfusOxtbBvPtS8J5/3UAiR37IcWcSnxhfqNkv7lL74\nP+FaxowZw8SJE9m1axdms5l169bRvXt35s6dS8uWLQs40quT/1xCCPc4cxi2T9f3W78KHl7X1Uym\nPZMxW8bw494fAQjyCuKD2z+geWjzi8vEJKTx8ORNJKVnEeLvxZSBTQnwKR6lKcWF2aT4qGc9LGYT\nP22KYuqGSE6eT+Ozvg3wdeFDUrB3MJ+0+YRVx1fx/p/vE5cax8d/fczCowsZ1mIYt5bK5ZyIqu2g\nRifYvxCWvgXV7gLLlU8GFkK4X3xqPHfNvqtQt7m051LK+ZXL07KDBw/miy++YOrUqTRo0IAePXow\nbdo0tyfuIGUzQgh3WTkSDDuUrAwR/a6riajEKPov7H8xcf9Puf8wq+usSxL3hDQbAyZvJjYxnRJe\nFqY80oTQQO982QVxKZNJMeLeOjzRugoAy/aeouf4P4g+l+pyW23C2jC321z61uiLQrH7zG76zu/L\n6M2jSbXl0t5d74PJA84dg7VjbnBPhBD/dlarlREjRjB06FA6d+7MuHHj6NChA8eOHaNFixa0bt2a\nli1bsnPnzkKPTUbehRCFL2437Jqt77d9U18100WLji5i+IbhpNhSMCszz0Q8w6C6gzCpf8YkMrLs\nPPHDX+yPS8JqNvHNg425NcQ/v/ZC5MJkUrxxd02qBvvx5py/2RebRKfP1vJBj3p0rpe3Ea8L/Kx+\n/Pc//6Vzlc4M3zCcQ+cP8f2e71kauZT/NvsvrcNa/7NwUFVo+Zw+AXrtaLi1M5Rz8eJPQohCU9qn\nNEt7Li30bboiIiKCmJgY+vfvT58+fQCoUKEC69atw2QysWLFCkaOHMmMGTMKItwrkuRdCFH4VowA\nDCh9K9Tp6dKqaVlpfLTpI2Yf1Ml/WZ+yjGo1ioZlG16ynMNh8PL/dvLnET1V5Jj76tO8alC+hC+u\nrU+TMCoG+TB4+jZOJ2fwzPStLN9bnjc71yTYz7WSlogyEcy8ZyZTd09lwo4JxKTEMHjFYO4Mv5PX\nmrxGWV/n1Xhbvwb7FkL8Xpj7FDy2Uq68KkQRZTFZ8lzC4g5RUVF07NiRwYMHM3nyZEaNGkWZMmWw\nWP5JnRMTE6lfv36hxyZlM0KIwnViC+xfoO+3/S/kdhLiFRw+f5gHFjxwMXFvU6ENs+6ZdVniDvDx\n0v38tuMkAG91rkmXeqE3HrtwyX+qBLH4hdtpW0OPdv2y7QRtR69i4pojpGRkudSWh8mDQXUH8Uu3\nX2gZqmtOf4/8nW6/dmP63unYHXZd537vV6DMELcL1nyc7/skhLj5nTp1ijvvvJMhQ4YwduxYWrdu\nzfDhwy++vn37dpo3b87gwYO54468XF86f0nyLoQoXCve1z/LReR5VhDDMJhzcA595/fl0PlDWEwW\nXm3yKp+3+5xAr8DLlp/2ZyTjVx0GYECLSgy6rXK+hS9cE+znyeQBTfiwR11K+niQlJ7FiIV7afHh\nCj5ctI+9MYkuTSsZViKM8e3H83GrjwnyCiLFlsIHmz6g/8L+7Du7D8o3hNte0AuvHQ1H1xTQngkh\nbkaJiYl07NiRXr16MWTIEABGjBjBpEmTOHDgAKDLaTZs2MC8efMYPHhwoccoZTNCiMJzbD0cXqHv\nt3sb8nAlzuTMZN7f+D4LjujR+gp+FRjdejS1g2vnuvzyvXEM/VVfrOeuWmV5u0utPF3xUxQcpRR9\nm1akY50QPl9+iJ82RZGQZmPC6sNMWH2YiqV8aBxektrlAygf6E1IgBdeHiY8zHp8KS3TTrrNTprN\nTlqmnSyHAdTn2eoTWRIzmQ3x89l1Zhd95/elf83+PN3iOXyOrNLf8sx6BJ5YC/5F9+t5IUTR4e/v\nz9atWy95rl69eqSnpwOQkZGBp6cu/QsICMDHx6fQY5TkXQhROAwDVryn71dsDrdc+6vGnfE7eW3N\na0QnRwPQoVIH3mn+DiWsJXJfPvo8g6dvw2FARFggn/VtkOd5xkXBC/SxMvSeWjzb7ham/RnJnO0n\nOBKfQtTZVKLOpvLLtmtckClXt2HyDsMr5BfwiuP7Pd8za/8ChtR/hPvOHIaUeJg1EB76VaaPFELc\nsPXr1zNs2DDMZjOGYTBmTOHPbiXJuxCicBxaDlEb9P1rjLo7DAeTd03my21fkmVk4WX24rWmr9Gz\nWs8rjqIfiEvi4cmbSLPZCQ/yYdLDjfG25r2eXhSekr5Wnr2jGoPb3cK+2CT+OHyGbVHnOBiXzMmE\nNJLSc6+Ht1pMeFn0iPyFwyDD5iApLZzUo89hDVqLNXg5KZzm/b2j+K5UXb6P+4OyURv0Caw9vgWT\nVIsKIa5fu3btaNeunVtjkORdCFHwso+6V20Hla58kYtTqad4c92bbIzZCED1ktX5uNXHVAmscsV1\nIs+k0P/bjZxLtRHs58mUgU0JcnFGE1H4lFLULOdPzXL+wD/nJaTb7GRkOciyOzAAbw8zXh7mK36L\nkm6zE5uQzu6TTVh9pBO/nxpPludeTnhG0rF8Rd44F0/vXbNRvmWg4wd5KtcSQoiiSpJ3IUTB2/sb\nxGzX99u9dcXFVh9fzdvr3+ZcxjkA+tXsx5BGQ/A0XzkRP3k+jX7fbuRUUgYB3h5Me7QplYN98zV8\nUbi8nMm6K8tXCvalUrAvneuVw+FozddbfmHinrHYzAm8F1yKP729eGfzBHxtGVi6fCIj8EKIYqvY\n/vVSSvVVSq1XSiUrpY65Ox4hxBU47LByhL5/axco3+iyRVJtqby34T0GrxjMuYxzBHoG8kW7L3i9\n6etXTdyPnU6h94QNRJ9Lw9dq5vtHmspFmAQmk4mnmvRi1f0LuS2kAwC/+/rQu3w5/t49jeQfH4SM\nZDdHKYQQ16fYJu/AWeBzYKi7AxFCXMWu2RC/D1D6aqo5/B3/N33m92HmgZkANCvXjNldZ9MmrM1V\nm90fm0Tvrzdw4nwafp4WvhvYlIiwy6eNFP9e/lZ/xncYzfst3sdDeRFjsTCwXFl+iV9NyletIfZv\nd4coxL+GyWTC4XC4O4xCZbfbMRXAt3zFtmzGMIylAEqpXtezvlKqFFAqx9MVAVJSUkhOLrxRmdTU\n1Et+iquT/nKNW/vLbsNnxQhMgO3WbmT4hoPzdyvLkcX3+77nu33fYTfsWE1WnqrzFH1u6YPJYbrq\n7+DaQ2d4dc5ekjLsBHhb+Pr+etQqbc2X31s5vlxTHPrrjnJ3UO3Oary87k2Opx7m46CS7Es6x1vf\ntMbSYBC2ps9g+AYXSizFob+KEukv1xTl/nI4HJdMs1gUXPgwURAfKgzDICkpCV9fXzIzMy95LSUl\n5YbaVq5cHKMocibvow3DqOTiesOAd3J7bfz48ZQrJ3MCC3GjKp1eQf3jU3BgYkXND0nxCgHgtP00\ns1JnEW3XU0CGmELo7dubsuayV23PMGBljGJepAkDRYDV4MmadkILf5pdUQzZDBv/S/6VPXZ9/kXt\njAzGxp0m2GHmeNBtHC/ZknO+t8gJrUIUED8/P6pWreqWudELU2ZmJmfOnCEyMjLXi9DFxMTw1FNP\nAVQzDOOQq+3/m5P3K428L9++fTtVq1bNpwivLTU1lQ0bNtC8efOb/oDOD9JfrnFbf9nS8Pm2JaaU\nOGz1+pFx1ygMw2Du0bl8vvNz0u3pKBT9qvfjsVqPYTVbr9pcXGIGb8/fzx9H9Mms9cuXYGyv2pQu\nkb+jOHJ8uaa49ZdhGHy/dzpf7/kKlINSWQ7Gx8VRK9MGgMMnGEf5ptjLN8YRfCuOoGoYfuXyLaEv\nbv3lbtJfrikO/WW327Hb7e4OA4C0tDS2b99OREQE3t7e+dauyWTCbDZfcWrjw4cPExERAdeZvBfb\nspkbZRjGWXTd/EUXOtnX1xc/P79Cj8nHx8ct2y2upL9cU+j9tW4ipMSBxQuP9m+RaM5g6B9DWROt\nL1cf6hvKiNtG0Dik8VWbsdkdTPszkk9/P0Cic/7vvk3CGNa1tkszkrhKji/XFKf+Gtz0CWqWrs2L\nq1/irCWVfuUq8HGaJ+1P7cOUehrTwYVYDi78ZwVrCShbC8rV17ewZhB0YyP0xam/igLpL9dIf+VN\ncnIyWVlZBAQEFGp/+fre2Ixo/9rkXQhRgNLOwbpP9f1mT7ApJZrX1r7G6bTTAHSt2pXXm75+xSul\nAmRk2fl1+0kmrD7MkXhdHxjka+WDHnW5q3ZIge+CuLndUfk2vveaysOLHifLfJYhPum8cOdIBnmX\ngGPrIWYHnDkEDhtkJsHxjfp2QakqUPMeaPwIlKzktv0QQvz7FNvkXSllBjycN6WU8gIwDCPdrYEJ\nIWD9Z5CegN0zgK8DA5iw9FEMDEp4lOCdFu/QoVKHXFfLsjvYGnWehX/HMH/nSU4n65N8zCZFv2YV\neaF9dUr5Xr28Roi8iihXg+87TOOhhY9jWKMZe2gCSbWf5PnuE/Q3sXYbnD0K8XshdpdO6E9ug5RT\ncPaIPs7Xfw61ukL7YTqhF0KIAlZsk3fgQeC7bI/TnD/lTCMh3On8cfhzAqfMZl6vUoPNe6YAUDe4\nLqNajaJCiQpkZjmITUgn6mwqkWdTiDqTys7oBHZEnyc1859aSA+zomv98jzZugrVyl55lF6I6xVR\nPoyJ7SfxyKLnMPnuZ9LuCWQ4Uni1ySsosweUrq5vtbrpFQwD4nbDvgWw7QdIOA57foX9i+D2l6HV\ny2AquHIuIYQotsm7YRhTgCluDkMIkdOyd9hutjOkbCin02MBqGrtjDW+G49PPkpc4l7OpGRetYn6\nYYF0qhPCvQ3KU9bfqzCiFv9izSqH8l7zT3hzzVA8Arcybe8PpGWl8vZ/3sacMxFXCkLq6NvtL8He\nX2HZMDgfBatGwtE10GsylLj6zElCCHG9im3yLoQoeqK2LWPzscW8X64sWUph2L1JO9mH7ck1yXF+\nOAAWk6J8SW8qlvKhetkSNA4vSaPwkpSRhF0Ush4NwtkV/Qo/Hvoca6kNzD44mxRbCiNvH4mHySP3\nlcwWqNMTanSGFe/BhnEQuQ4m3QkPzoGgwpu1TAjx7yHJuxDihjgcBot3x/L1qr3cYgxhaekgAOzp\nZck8+TDh/mFUC/ejYikfyvp7Udbfi5AAL0L8vSgX4IXFXJwv9CxuJm92qsXuSQPYdtoTz+BVLD62\nmLSsNEa3Ho2X5SofKD28oMMIqHQ7zHoEzkfC5A4wYKEuuRFCiHwkybsQ4rr9cfg0w+ftYX98PFUq\nfM5S5+xX1cw1GdxmNC2qlC/Q6RyFyE8Ws4kvH2hEp89SOX/KE88yS1gdvZpnlj/D5+0+x9fjGtO7\n1egIA36DH3tDSjz8cC88sgQCwwpnB4QQ/woy5CWEcFlSuo2XZu7ggYkbOXDmBP7hXxHvq8tinvIM\nZ1a/GbSrUVESd1HsBPt5MrZvBLazbUmP7QrApthNPP774yRkJFy7gfKN4MG54OkPiSfgx16QkVTA\nUQsh/k0keRdCuGTPyUS6jlvP7K3RmKxxBFadgOF1CothMDIhk6e7TsWk5E+LKL5aVA3m2ba3YDvX\ngrSTvVGY2Bm/k0FLBnEm7cy1GyhXD+6fAWYrxO+DX5/Rs9QIIUQ+kP+wQog8W7I7lu5frefo6RS8\n/KIoVe0bskxn8XU4GB97invu+BB8Srk7TCFu2HN3VKNJpZJkJTTCfPpBLMrC/nP7GbB4ALEpsddu\noFJL6PSxvr/nV30yqxBC5ANJ3oUQefLTpiiemraFjCwH5UNO4FfpOzIcKZSxO/g+Jo7/hLeHWve6\nO0wh8oXFbOKzvg0I8PbgXHxNKtiextPsybHEYzy86GGOJx6/diMNH4YG/fX9ZcP1hZ6EEOIGSfIu\nhLimKeuP8sYvf+MwoEalWDKCvyHDnkYFw8wPJ2OoYS0FXT/Xc2ALcZMIDfTm4171APj7YCgdgt7C\n18OXkykneXjxwxw6d+jqDSgFnUZDcHVw2GDOk2C/+jUOhBDiWiR5F0Jc1cy/jjPstz0ANKgezxm/\n8WTYM6ho9uG741GEZjmgxzfgG+zmSIXIf3fVDmFAi0oA/LTGgxfrfIK/1Z/4tHgGLhnI7jO7r96A\nhzfcOwGUGeL+xrphbMEHLYS4qUnyLoS4okV/x/D67J0A1KsWw3HrODLsGVSyluS7owcJsduh1StQ\npY1b4xSiIL3R6VbqlPfHYcCnC9L5rPU3BHkFcT7jPIOWDGJL3JarN1ChEdz+IgAem77CLz2mEKIW\nQtysJHkXQuRqZ/R5Xvh5uy6VqRzNCaseca/iXYbJh/dQxm6Hml2hzRvuDlWIAuVpMfPF/Q3xtZqJ\nSUhnwu+pTOk4hRDfEFJsKTz5+5P8ceKPqzdy+8tQsjLKYaNu9FSZfUYIcd0keRdCXCY2IZ3Hpv6l\nT04NPUK8z9dkOjK5xTuESQd3UTrLBuUioPsEMMmfEXHzqxzsy8gedQFYtvcUy/82mNpxKuH+4aTb\n03lmxTMsPLLwyg14eOn6d6BM0m7MB+YXRthCiJuQ/NcVQlwi3Wbn8R/+Ii4xgxKl9pEaOBmbw0Y1\nr9JMOrCdYFs6lKkN/X8B6zWuOCnETaRbRHnua6yvlvrhor3En/dmSscpVC9ZnSxHFq+tfY1Jf0/C\nuNKoerX2ZFW7GwDPVe+CLb2wQhdC3EQkeRdCXOLjJfvZGZ2A1X83ppAfyDKyqGHxZ9L+bZTKyoSy\ndeHheeAb5O5QhSh0w7rWploZP2x2g8HTt2FVAUzpOIVmIc0AGLt1LCM2jsDusOe6fkabd7ArC6ak\nk7Dpm8IMXQhxk5DkXQhx0dqD8UxadxRLiZ14lf8Rh2Gnpt3EpMN7KOlwQLUO8MgimVlG/Gt5W82M\ne6AhnhYTUWdTeXnmDnwtfoxvP54uVboA8PP+n3lh5Quk2lIvW98ICONocHv9YO1oSD1bmOELIW4C\nkrwLIQA4m5LJSzN3YPHfhk/5nzBwUDsjg4nRkQRggrZvwf0/gWcJd4cqhFvVCCnBe/fWAWDpnjg+\nX3EQD7MHI28byWN1HwNgVfQqBi0ZRHxq/GXrHwjpiuEZAOkJsG5MocYuhCj+JHkXQmA4HHwxfQ4N\nzV/iE/ozhjKol57BN7GnCAhtAo8ug9avgMns7lCFKBL6NA7j4ebhAIxddpDFu2JRSvFcw+cY2nwo\nJmVi15ld3L/gfvac2XPJujaLH5nNBusHG7+B83m4WqsQQjhJ8i7Ev1V6IuyZB/OeJe2jGtRPGMIf\nIQcxFNRPz+BrFYJ/zykwaCmENnB3tEIUOW91qUXzKvrcjxdnbmfPyUQAelfvzZd3fImfhx9xqXE8\nvOhhlhxbcsm6tgYDwb882DNk9F0I4RJJ3oX4N0mIho1fw9RuMKoKzHwQtk5lgTWFt0sHYShFQ0tJ\nvr7rW/weXwO179WXeBdCXMbDbOLLfg2pUNKb1Ew7D3+3iagzus79tvK38WOnH6lYoiLp9nReXv0y\nX23/CofhcK7sDbe/pO9v/UFG34UQeSbJuxA3O8NBSMJWvGb1h0/rwKJX4cgqcNgwzFY+CqzJu8F6\n9LBhmcaM/z97dx0exfU1cPw7a3EhhIQkBAIEJzgkOEUKtEiR4rQUp6VADShSoRSpU97iVrzFXQLF\n3Z1AEhIgxF02yW523j+GQvmhceF+nidPpjt2Zrpkz96599weu7Eq2yx/YxaEQsLBSseyD+pjb6kl\nMvTKy+kAACAASURBVDGN/ktOEZmYBkA5+3Ksfns13i5KJZq5l+Yy6dQk0uV0Zefa/cC2FJgMovVd\nEIRXJpJ3QSjKAv7BYuVbeAf+hiboACCDpaOSNPRazaDKY1hZLBmAasXqMa/NHCy1lvkbsyAUMp5O\nNiwdUB8LrZrg6BT6Lz5FVJKSwNuZ2TG39Vx6VeoFwIGQAyxMWkh4SjhozKDpp8pBROu7IAivKNPJ\nuyRJX0mS1ObhcjFJkr6XJGmpJEmfS5JUKudDFAQh0/SxsGk4rOiCOvwKAMayLaH3WvjMDzr/weSw\n25xJWQtAKbM6/Pn2PCw0FvkZtSAUWrVLF2Ne/7ro1CpuhiXSY/4JQuP1AGhVWib6TGSyz2TUkprQ\njFAG/jOQy5GXReu7IAiZlpWW9+FA2MPldUAnwBOYCARKkjQmh2ITBCErHlyAuY3h0hoAjO6NOFTx\nG1K7rYBK7ZFVamae+oXNwYsBsDTWZEPXBZipzfIzakEo9JpXLMHC9+thplERGJnMu/NO4BeW+Gh9\nj0o9mNVkFhaSBTFpMXyw+wN23t3/P63vd/MpekEQCousJO8OQJQkSeWBE7Ise8my3BQoAXwETJUk\n6Z2cDFIQhFd0fQssaQ8JIaCzgY6/k9rjb+KsygFgNBn5+vjXrLy5FABTUk1WdfwDS51I3AUhJzSv\nWII/BzbASqfmfqyeLnOOsftq2KP1dZ3qMtx6OGVsypBuSmfckXH8oU7G9Kj1/bd8jF4QhMIgK8l7\nDEoC3wqY9++LsiwbZVleCHwOjM2Z8ARBeGWX/4Z1A8CoB4dyMOQfqPv+o2oxqRmpfHLwEzb5bwIg\nPdabyQ2m4ulkl49BC0LR41OuOOtHNHpUhWb4ynNM3HSF5DQjAMXVxVnYYiGNXBsBMO/KQj73qIhe\nkuDCCkh4kJ/hC4JQwGUled8H/Ap8Bjg/Y/1+oFp2ghIEIZOurIdNw0A2QakGMHg/lKj4aLXepOeT\no59w8N5BANIiW9HScTg965XJp4AFoWir4mLL1pFNaFReqeS06tRd2s06jO+NSGQZbHQ2/NHqD3pX\n7g2Ab6I/A9zcCCcDjs3Kz9AFQSjgspK8fwYkAH5AI0mSekmSpP3P+s7A0/NBC4KQO4KOKYNT/03c\n+20AS4dHqyNSIliUtIiLURdBlkgN64xDekemd62BJGq4C0KucbDSsXKQN5M7VMVMo+JejJ5PNlzn\n16tq9t2MAlnFBO8JTPKehFpSc12rorerM9cur4TE8PwOXxCEAirTybssy5GyLHeXZbkTMAfwAaIl\nSTonSdJNYCawIIfjfCZJkjSSJP0qSVK0JEnxkiT9KUmSVV6cWxAKhJhA+Kuf0lfWqRr0Ww/mto9W\nX426yqADgwg3haNCjT6kN8a4hvzSoyb2lrp8DFwQXg8qlcSgJmXZPaYZ7aqVBCA4SWLM+ms0++EA\n03feoILlm8xpNRcbrQ2RGg0fONlz7MCkfI5cEISCKlt13mVZNsmyPAZoDGwB9gD9ZFn+ISeCewUT\ngDeBWkA5oAxKlx5BKPoMqbC2H+hjwMoJ+qwF88f91/cG7WXA7gFEpUahw4LkuwMxJtZgaNNyNPJ0\nzMfABeH1U9bRinn967Li/Vp4FTMhAQ/iU5l/OJCuc44zbGEC7qnjccQKvUrFyJgTbLu+Jr/DFgSh\nANJkdgdJkn4BNgHHZFmZ51mW5SvAlRyO7VUMBr6UZfnew9gmAvskSRoty7L+RTtKkuSAMvD2v0oD\nJCcnk5SUlBvxPuV64GmmnBqNRoYVq79CK6vQocFBVQxXq/K08OpFlbJ18ySWwiIlJeWJ368r3f5J\n6CKuIas06DsvxKRxgKQkZFnmT78/mX9tPgAuFm6E+/XEmOxEdVcbhjd2y7P3d2Ek3l+ZI+5X5lQq\nrmVwZROlq9Zi3+149vtFczM8icRUI6duqbFUD6dymZncNtMw4cw0Fp71p73bu1RztaFKSWsstOr8\nvoQ8Jd5fmSPuV+bk1/1KTk7O1v6SLMuZ20GS5qLUdtcBO4DNwJ6XJcs5TZIkeyAWqCLL8s2Hr1kA\nKUBNWZYvv2T/b4Cvn7Vu7ty5uLi45GzAz3Ev9jLzpb9fuI1nqoSXqS41nDugVWf6+5ZQBJWMP493\noFJS7pprT/yd3wbAKBvZnLKZi4aLAJRVl8X4oC/XY6wxU8uMrZGBo3m+hS0IwjPEpEFggsSdROXn\nLcMG7rgd5ZSF8o81PboJaRFvoUKipCVUsZep42jCzfJRMSlBEAqR0NBQRowYAVBBlmX/zO6f6eT9\n0Y6S1ABlcGpnoCxKlZnNwDZZlnN9wKokSe7AXcBVluXQ/7yeBrSSZfnoS/Z/Xsv7/osXL1K+fPmc\nDvmZ7obeZsPxX0lIikNrriYDI3pTMtGmOIK0aSSoH/dsKpem4oNKX9C67utdRj8lJYUTJ07QsGFD\nLC0t8zucvKePwXJJC1T6aIxlmpLafTVIKmLTYhl/YjyXo5XvrR09OuKe0YeZe4MBmNK+HF3ruudn\n5IXCa//+yiRxvzLnVe5XalIcFksa8o2dlt3WyjCu9Lh6pIV25b+9XSs6WTHAx5321UqgVWerF2yB\nJd5fmSPuV+bk1/0KCAigVq1akMXkPcvNuLIsnwZOAxMlSfJESeIHAHMlSTqDksivkWU5JKvneIl/\np62zA0LhUcu7DqUazgvJshyDUrP+kX8rb1hZWWFtbZ2TsT5X1Qq1Ke0yh/3799OqVasnzpuensb2\nI4vY4b+cM2bJBJqZ+PbODG6EnWJ8j99f+0ohlpaWefb/qUDx/QL00WBuh6bbQqxtbAmIC+Cjgx8R\nkhSChMRn9T6jimUH+iw8BUCDEia61nV/Pe9XFr22768sEvcrc150v6ytraHRSGYenIYDGlZbm6Gz\nP0uTCvZU0w5l55UI/COSuBWRzIStN5l7NJiJb1WhbbWSRfZzQby/Mkfcr8zJ6/tlZZW92io58lVd\nlmV/WZZ/lmW5GVAKWAI0AXrnxPGfc8444B5Q5z8v1wFSgdu5dd68pNOZ0bXVRywedoppZT+mTLqM\nUZJYnXqQ0ct6YDKZ8jtEIa8FHIBLq5XlNt+BrQvHQo7Rb2c/QpJCsNBYMOuNWbxZqgcfrrqA0SRT\nydmKd8uK94ogFCrew1CZ2TI+MpyBtsrUKacj93Ffu5Cdoxqy/eMmvFPLFbVK4l6MnuErz/P+0jOE\nxafmc+CCIOS2bCfvkiR9+fB3XUmSzB+Wklwiy/I7siz/lP0QX2gR8KUkSaUkSSoOTAVW5nX/+7zQ\nofkw/uy6C+9UpbzfAdVNPlnel6x2exIKIYMeto9Rlss0gTrvsfrGaj7c/yFJhiScLZ1Z3n45PiWb\nMXzleaKS0rC31DKrezV0r9cYN0Eo/CzswXs4EjDG7wQfVhsEgG+wL58d+owKJc35rVdt/vmsOW2q\nKvMlHr4VqUwEdV3UiBeEoiwnWt6PPPw9EbgkSdJ1SZLWSZI0WZKk3O6cPQ2lr/1l4A5KS/yYXD5n\nvile3J257x2keaoyiOkf6SpTNkzM56iEPHPiD4gNArUO49u/8P2paUw/PR2TbKJ68eqseXsNnnYV\n+XjNBS7di0MlwezetSlVzCK/IxcEISt8RoDOGik1jhH6DEbXGQ3AwfsHGfXPKFKNqZQpbsXC9+qx\n8L16OFjpiEsxMGT5WeYdChCNO4JQRGU5eZckqQTAvwNDZVnuKstyJaAe8CPwAGieE0E+jyzLRlmW\nx8iy7CDLsq0sy+/Jspy9+jsFnNbChl/f209DvdKvcXPSVlYf35jPUQm5LjEMjvwCQIL3ED669Atr\n/dYC0NajLUvbLcXRwpHJW66x74bS6jalc3WaViiRbyELgpBNlg7QYIiyfPz/GFyxF2Prj1X+88Fx\nRv4zEr1RedDcpqozu0c3pUFZpQ7DjF03mbDpKhkmkcALQlGTnZb345IklfvfF2VZTpFl+bQsy4tl\nWf4kG8cXnkNrYcuMzmsom56BUZKYf+Nb7sZE5XdYQm7a/x0Ykrln60y/pMscf3AcgOE1h/NDsx8w\nU5sxdccN1py+C8DHLT3p51MmPyMWBCEnNBwJWktlMrazS+hftT+TvJXZV0+FnuKj/R+RYlBqVDvZ\nmrNykDdd67gBsOb0Xb5Yf0kk8IJQxGQned+JksD/d8AokiQ1kyTpWPbCEl7GwaUaU6qOxsJkIkZj\nYtzGgeIRaVH14CJcXMVFMx19nOy5kxiMTqVjRtMZfFTrI5AlJm+5yuKjdwDo3cCdT9tUzOegBUHI\nEVaOUG+gsnz8d0hPoWflnnzdUJmm5EzYGUbsG0GyQXnorNOo+PndmgxvrpQ73ng+hC/WX8IkEnhB\nKDKynLzLsjwa+An4R5KkNyVJqiVJ0m7gAEr9dSGX1Wo8jA/kUgBc1d7h5/2r8jkiIVfsncQBS3MG\nu5QkLkOPg7kDi9su5u1yb5OSbuSj1edZeVL5J9fXuzTfv+NVZMvFCcJrqdEo0JhDciSc/xOA7hW7\nM6XRFCQkzkecZ8S+ESSlKzMnS5LEuHaVGNHicQI/Y/fNfAtfEIScla0Bqw+ryUwHtgNnUGqv15Bl\nOddKRApPGt5jFQ306QBsCfqVCDHtfdFy5zB/R19gjJMjaRJ42Hqw6q1V1HKqxZ2oZN6dd4JdV8MA\nGNykLFPfqY5KJRJ3QShSbJyh7gBl+ehvYFDKQXap0IXvGn+HhMSFiAsM2zeMxHRlChRJkhjbthID\nG5cFYMHhQP48HpQPwQuCkNOyM2DVXZKk+cAUlMQ9Ddghy/K1nApOeDnJ2pFPyvVGI8vEadMZt+Wb\n/A5JyCGyycT/HRzPd44OmCSJGo41WN5+OS5Wbqw4EcRbs45w7UECGpXE912qM6lDVdHiLghFVePR\noNZBUhhcWPHo5c6enfm+yfeoJBWXIy8zzHcYCenKPIWSJDHp7Sq0r14SgG+2XeOfm6KMpCAUdtlp\neb8N1AY6yLLcGOgE/CZJkqhdmMeqt5xAzxQlabuUvpcjgQH5HJGQXUaTkW/2DmO+SmlFa+7gxcI3\nF3L5rpEOs48yecs19IYM3OwtWD3Eh77eYnCqIBRptq5Q5z1l+fBPkPb4KWvH8h2Z0XQGaknNlagr\nDNk7hPi0eABUKolfe9aibpliyDKMXnuRoKgiXZRNEIq87CTvfWVZbiDLsi+ALMv/oJSG/FCSpDk5\nEp3wajQ6Pmr4JY7GDAwqmZkHvsvviIRsMGQYGHt4LBvDTwLQxWRFXYfv6PJ/Z3l/yWluhCYgSdCz\nnju7xzwuDScIQhHX9DOl8kxSGByb9cSq9mXbM7PZTNSSmuvR1xmydwhxqXEAmGvVzO1XB2dbMxJT\njQxbcY6UdGN+XIEgCDkgOwNWNzzjtUtAI6BFNmISssCmZk8GpGoBuKc+x9ZrV/I5IiGzUg0ZXLof\nSe+tw/EN9gVgWGw8125159ttN/ELV1rhm1ZwZNvIJszsXgMbc21+hiwIQl6ydVW6zwAcnw3x959Y\n3dajLT81/wmNpOFGzA0G7R1ETGoMAE425szpWxetWsIvPJHxG66ICmWCUEjlxAyrT5BlORhonNPH\nFV5CpaZ34y9xMxgxSTDr+DTxh7mASjeauPYgnvXn7jNt5w0GLjtD8x8PUPXrrfTaMhS/hNMAfBIT\nS43o0pyTq1DMUkvvBu7sGt2UFYO8qe5ml89XIQhCvmj0Mdi4glEP+759anXrMq35ucXPaFQabsXe\nYtCeQUTrowGoW6YYX3WsBsDWSw/468y9PA1dEIScocmNg8qyHJsbxxVeTFfjXYYcncY3WpkI7VVW\nnT9Hv7r18jssAQiOTmbX1TAO+UVyLjiW9AzTkxuoUrFwX4bGMgiAL6Ni6JOYxOYGn7Kmqg/1PYqh\nUef4d21BEAobnRW0/ho2DYMrf0P9QVDa54lNWpZuyW8tfuOTg5/gH+fPoD2DWNR2EY4WjvTzLs2Z\nOzFsvfSAb7ddp56HA55O1vl0MYIgZIXIBooSlZrO9T7E3WAACeafmyta3/ORLMvsvRZGn4Unaf7j\nQWbsusmJwOhHibujtRlNKzjSt6EjFWquQmMZhITEtwYr+iQmgWdr3unYlYbli4vEXRCEx7x6gNvD\nhpmto8CY9tQmzd2b89sbv6FT6QiID+CD3R8QkRKBJElM7VKdUsUs0BsyGLXmAmnGjDy+AEEQskNk\nBEWMpnZf3k9S6r4n6M6w5er1fI7o9XQyMJrOfxxj6IpzHA9QHlm72pnTz6c0C/rX5fTEVpyd1Jrf\n+nhyU/qBsNTbqCU1Mzx70fX+DeUgLSbk4xUIglBgqVTQcRaoNBDlB0d/feZmzUo14/eWv2OmNiMo\nIYiBewYSnhyOrbmW33vXRq2SuB6awMxdfnl8AYJQAKQlYbZtOFapofkdSaaJ5L2oMbOhS6V3KWE0\nYpJkfj21ULS+56GEVANfbrxMrwUnuXxfKdXWuooTywc24Oi4lkx9x4s3q5XEycac8ORwBuwewK3Y\nW2hUGn5u/hNvXd2tHKhCWyhVNx+vRBCEAq1k9ceDVw//BBHPnkG1sVtjZrecjbnanOCEYD7Y8wFh\nyWHUKV2MT1pXAGDJsTsc8IvIq8gFIf8Z9LCmF5eC9+LtPwPSU/I7okwRyXsRpPMZQf94pQZwnPoQ\n/9wKyt+AXhM3QhPoOPsoa04rg8DqlinG5o8as+j9+jSrWOKJmU8fJD1gwO4BBCUEYaY2Y3bL2bTS\np0HoJWWDFuPz4xIEQShMmo0Fh/JgMsDGwc/sPgPQ0LUhf7T6AwuNBfcS7zFg9wDuxN9hRAtPfMop\npWa/WHeJyMRn7y8IRYrJBBuHsCb6AgNLOjHetTKy1iK/o8oUkbwXRcU86OFYF5sMEyaVkZnH/szv\niIq8HZdD6TLnGMHRKZhrVUzpXI11wxpSy93+qW3vJtzl/d3vcz/pPhYaC+a0mkMTl0ZwYLqyQaW3\nwK1OHl+BIAiFjtYc3pkLkhrCroDvV8/dtIFLA+a0moOFxoKQpBD67ezHxcjz/NqzFnYWWqKS0hm7\n/pJ4UisUefLeSfwedphpjg7IkkSwVkNqRmp+h5UpInkvoqzqDqB7otL6Hmry5fL96HyOqOhadSqY\nkWvOk2owUdrBko0jGvNeQ48nWtr/FRgfyIDdAwhLDsNaa82CNgto4NIAbm6H8Ie1+UWruyAIr6q0\nN7R8OLH5qXlwY9tzN61Xsh5L2y3F0cKRhPQEhuwdwvnof5jR1QuAA36RLD8RnBdRC0K+MJxbylf+\na1hor5RbbubajAHWA7DQiJZ3oSCo9BY9DRpUsgzaBGYcfmpOLSEHzDsUwMRNV5FlqO9RjG0jm1DV\n1faZ296KvcUHuz8gUh+Jrc6WRW8uopZTLeUR3sGHre6VO4BLzTy8AkEQCr3Gn0C5FsryxqHw4OJz\nN61WvBqr3lqFp70nBpOB8UfGc0/exrt13QD4fucN/MIScz9mQchjKffPMvrMdDbbKKVR363QnY8q\nf4WGwjfZoUjeiyqNDrfqPWmZogfgYvw2QuP1+RxU0bL02B1m7FIGibWoVILlA72xs3z2H4Fr0dcY\nuGcgMakxOJg7sKTtEqo5KpOlcGMLRDysCtTiy7wIXRCEokSlgm6LoZgHGFJgdU+Ie/4ETK7Wrixv\nvxwfF6U+/OwLs8lwXImHo4Z0o4lRay6QahDlI4WiIzbhPkP2DOSIhRkAH1YfTJNiw+m24Dy+IU8/\nJS/oRPJelNXpT58EpQVFbRnELwcP5HNARcemC/f5dpuScLep6syC/vWw0Kmfue2lyEsM2TOE+LR4\nSliUYEnbJVRyqKSsNGXAwRnKctXOSgUJQRCEzLJyhD7rwNweksJg2dsQ+/wuMDY6G+a0nkO3Ct0A\n8L27B0uPOWjNYvALT2Tm7mdXrxGEwiYkKYT3tnTlskZGJct8VXUQUlIHBi0/i95g4lSkipT0wvVl\nVSTvRZlTFeo5VKVimlL3ffe9dSSmGvI5qMLv0K1IPl93GYCG5Yozu3dtdJpn/1M6FnKMIXuHkGhI\npKRVSZa2W0p5+/KPN7i6ASJvAhI0F33dBUHIhhIVofda0FpBXLCSwEfeeu7mWpWWrxt+zSTvSWhU\nGu4lB2LnOQe11S2WHgvioCgfKRRyfjF+9N/agyCTHjOTiWnO7fC90YQZu24iy1CzlC1jqmdg+ZzG\nt4JKJO9FnOTVg34PW99lqwssPXk1nyMq3O7FpDBqzQUyTDJebnYseK8u5tpn/6PfHridkftHojfq\ncbdxZ1m7ZZSxLfN4gwzj41b36t3AuWoeXIEgCEVamYbQfxPobCD+HixsCTd3PndzSZLoWbknS9ou\nwdHCkTRTEpbuS9EV389n6y4SlSTKRwqF05mwMwzY/T6RhgRsMzKYkezAxFOt2Xs9HICe9dxZ2q8m\nNoWvy7tI3ou86l1pn6zHPiMDSZXB8it/Y8ww5XdUhVKqIYMPV50nXm/A0dqMRe/Xw8b82f/qV1xf\nwZdHvsQoG6niUIXl7ZfjZu325EaX10JMAEgqUWFGEIScU9obBmwHWzdIT4S1vWHLR6CPfe4utZ1q\n81eHv6hZoiZIMmZOvqQUm8uYdYdF+Uih0NkTtIdhvsNIMiTjbDSyIDSWKSEfEJeaQTFLZYbhGd28\nnvvUvKArnFELr86mJOYeTen6sGyk3uII266E5HNQhdO3265zJSQetUri//rUxtnW/KltTLKJ3879\nxg9nfgCgQckGj1q0nmBMh0MzleUavcCxQm6HLwjC68S1Fgw9CB5Nlf++sBJ+rwNHf4W0pGfu4mTp\nxJK2S+hXpR8AGmt/Lpi+Zur+rXkTsyBkgckkE683cD82hYv34hi79w8+P/QFBpMBz/R0Vj4IZ31K\nN0JVJennUxrfT5vTqaYrklT4Bqr+S5PfAQh5wOtdeuw8yjI7W9DGM/vEZt6pObJQv3Hz2rqz91hz\n+i4AY9tWwqdc8ae20Rv1TDw6Ed9gXwDalGnD9KbTMVObPX3Aiysh7i6oNNB8bK7GLgjCa8raCd7b\nCueXwd6vQB8D+76Bwz+DVzfw6gHu3qB+nAro1DrGNRhHvZL1+PzABIyaRP66P5n0Q/5803QMalXh\n6hssFG7RSWmcC44lIDKZuzEphMbrSUw1kphqePjbSFKa8eHWMroSezBzPAhART0siQjnvqkcGp9h\n/NO4PO4Olvl2LTlJJO+vgyodcdvxKc1T9BywsiRU3s+JgN408nR8+b4C1x8kMGmzMlbgzarODG1W\n7qltwpPDGXVgFNejlQo0fSr3YWz9sc/+oDOkwuGflOVafcGhbK7FLgjCa06lgnoDoXJHOD4LTi9S\nutKcW6b8mNlBueZQ/g0o2xwcyoEk0ap0K/7usI6emz/CoAlic9AygpKu8ssbP1DCskR+X5VQhAVG\nJrHl4gN2XgnldsSznxI9LQNzl41o7c8BUC7dhVXhpzGXZSw/mMfEMl65F3A+EMn768DCHiq8Se8g\nXw5YWaKxCuC3w0dp5PlOfkdW4MXrDYxYdY40owmP4pb81KPmU08srkVfY9T+UUToI1BLar5s8CU9\nK/d8/kFPL4CEEFDroNkXuXwFgiAIgHUJeHMqNP0MrqyHi6vhwXlIi4cbW5UfADt3JYkv15wKZZvx\nV8cVdF07CewOcTHqLN23dWdG0xk0dG2Yv9cjFDlng2L4vwP+HPSLfOJ1M42KSiVtKO1giZu9BbYW\nWmzMNcqPmRad1sCiW1O4EKUk7j3Kd2bC8dWoZRlq9UNbpkF+XE6uEsn766J6V3xubsfDYCRIq+FS\n/A5uhLakisuzZwMVlH50n/19ieDoFMy1Kub2q4vtfwaoyrLMhtsbmH5qOummdGx0Nvzc/OcXf6il\nxDxudW8wFOzdc/kqBEEQ/sOiGDQYovwkhkPAfvDfB3cOQ3KkUqHm4krlB6hQogpbSneg+7XupJfc\nSUxqDMN8hzGi5giG1hgqutEI2RYar2fq9hvsuBL66LVSxSzoXMuVlpWd8XKze+7A0pjUGD7e/ymX\no5TyzR/V+ohh9wOQUqLBzBZaf50n15DXRPL+uqjwJpLajN7xCUx3dEBrf545h64yu1ej/I6swJp/\nOJB9N5SSUtO6eD3xRSfFkMLUk1PZFrgNAA9bD35v+Ttl7V7SBebQD0pLl7k9NPs812IXBEF4KRtn\nqNVH+ZFlZabnwENw5xAEHVO610TeoFzkDc5IGhbca8g853RMlqHMuTSH8xHnmdF0BsUtnh4DJAiv\nYt3Ze3yz9RrJDydJqlPanpEtPXmjktNLx+XdTbjLiH0juJt4F5Wk4iufr+jmUBM2T1A2aDFeGfdR\nBBXaajOSJC2WJOmmJEkZkiR9k9/xFHhmNuDZik5JyVjIKiRVOnvv7iAkTp/fkRVIxwOi+HGPMsNg\nX+/SdK1T6tG6wPhA+u7s+yhxb+fRjrUd1r48cY8OgDMLleXm45QWMEEQhIJAksC5GjT8EPr8BePu\nwMC90HAkWDiglo2M4AjHws5TNaYkACdDT/Lutnc5G3Y2n4MXCpuUdCOf/n2RL9ZfJjk9gxI2Zszq\nVYsNIxrRsrLzSxP3y5GX6bezH3cT72KuNmfWG7PoVrEb/PMdyBnK2I0GQ/PoavJeoU3egYvASOBQ\nfgdSaFTphLUs0zk5BQCN/XEWHwnI56AKnrD4VEatuYBJhpql7PiqozJ5kkk2serGKnpu64l/nD8a\nlYYJ3hP4odkPWGmtXn5g36/AZIRiZaH+4Fy+CkEQhGxQa5V68W2/h09vwNu/INu4YC0Z+Cv+NJ+G\nSegwJ1IfyeC9g1l8ZTEmWcwhIrxcRGIqPeefZON5pWz1W14l2fdpczrXcnulKngH7h5g0J5BxKbF\n4mDuwJK2S2jh3gJCzsH1zcpGLScp7+EiqtB2m5FleTaAJEljsrK/JEkOgMP/vFwaIDk5maSkVx3h\nnH0pKSlP/M41pZpipdLQOy6GtdauqMyiWHtlP4N83LCzKDxv8ty8X4YME8NXXCIqKR17Cw0/pXo8\nFwAAIABJREFUdamMIVXP3eRQpp6byvnI8wC4WLrwnfd3VHOoRnJy8kuPqw7cj8XN7QDom4wnIzUd\nSM/x+J8lz95fRYS4X5kj7lfmFNr7VaUneHZCc+wndGcX8IE+GJ+7VnxYqhJRqih+O/8bpx+c5qt6\nX2FnZpdjpy209yufFPT7dSc6heGrrxASn4pagvFtPelV1xUpI42kl8zmK8syGwI38OvFXzFhopRV\nKX5t8iulLEqRlJiI+e5JaIAM5xroy7SBV8jj8ut+vUre8CJSYZ85TZKk7cBZWZa/yeR+3wDPHMkw\nd+5cXFxcsh9cAeTj/xPOiZfpV6oCl7RpGBKr0FrVjzZuhft9kFM2Bqk4FKpCQmZYFROV7UycTT/L\nLv0u0h8m2/V19Wln0Q4z6Rn1259BbUrjjRsTsEqPJMKmOifKf6E8ohYEQSiE7JNu4+X/fzjIseiR\n6Fu8Ebdt7ynrVPb0teqLi7pofoYKWReWArOvq0kySJipZD6oaKJKsVfLPYyyke367ZxNV7pouavd\n6WfVDyuV8tS7RMJlGgUoxSCOeY4jyqZa7lxEDgkNDWXEiBEAFWRZ9s/s/gUueZckaRnw/gs26S/L\n8sr/bJ/V5P15Le/7L168SPny5TNzuGxJSUnhxIkTNGzYEEvL3J1AQHN5NeZ7v2C/XXHGOFghyxLa\nkAnsGdEeS13hqBqQW/dr17UIvth0A4CPmpWhW31Lpp+bzsnwkwCUsCjBhDoT8Cnpk6nj6o7ORHfy\nd2S1GSkD9iEXe7pOfG7Ky/dXUSDuV+aI+5U5ReZ+JYWTtOo9SiYqc2AMtmjPORd/jHIaZmozJtWd\nRGv31tk+TZG5X3mkoN6vgKhkBq64RHSygWKWWub39qKqi80r7RuTGsOXJ7/kcrRSUaZVqVZMqjsJ\nc83DWc5lExYr2qGOuIaxTDNS313zynHl1/0KCAigVq1akMXkvSB2mxkJvKgMR2JOnESW5Rgg5r+v\n/dvXysrKCmtr65w4TaZYWlrm/nlrdgXfcTSPj8bZ2Y1wQxzJ5kdZf7keH7bwzN1z57CcvF83QhP4\navstAJpVdKRSxTv02zedxHTl7dapfCfGNRiHrS6TpTXDrsDpuQBITT/Fyr1GjsSbFXny/ipCxP3K\nHHG/MqfQ3y9ra6w/3kvC0nexDT3GIv0uhgb25aT7ddKIZvLpyQSmBDK69ugcKSdZ6O9XHitI9+tO\nVDKDV115lLivHuLzymWqr0ZdZcyBMYSnhCMhMarOKAZVH/Rk3/jL6yDiGgCatt9l6brz+n5ZWb3C\nOLkXKHDJuyzLSUDedTh/3Vg5QpnGaIKO0EttzyxDHDr7M8w/4kd/nzLYmBeevu85JT7FwLAV59Ab\nMijlaMTafSUTjx0EwMHcga8bfk3L0i0zf2BDKmwcCiYDOFaExlkaniEIglAw6aywHbiBjFW9UAcd\n5A95Le/dGcVFl8torG+z9OpS9vlf5OPqX1Pe0YliljrUKglZlklJzyBeb3j0k5RqRG/IINWQgSHD\nhLlWjY25hmJmEJum9HcWCp/IxDTeW3KKyMQ07C21rBr8aom7STax4voKfjv3G0bZiLXWmpnNZtKs\nVLMnNzSmKxVmAKp3A9dauXAVBU+BS95flSRJOpRqOSpAI0mSOZAhy7IhfyMrBKp2hqAjdA2+ylwX\nB9I1KSRrzrL0WEVGtaqQ39HlqQyTzOi/LnA3JgUL+6uYXLdz5EEcAG3KtGGyz2SKmWexpOM/3yl1\nk1Ua6LoAtOY5GLkgCEIBoLVA3XslLHsbbegllunm0SVsCv72rpg5HuJe6gU+Pz4Q/f33MKWVzOJJ\nNMz2O0Gzik60reZMy8rOz520Ryg4ktOMDFx2hnsxeix1apYPbEBV15cn7jGpMUw6OokjIUcA8LT3\n5OcWP1PO7hldTs8thbhg5XO25aScvoQCqzC/+/cCeqA9MPHh8sJ8jaiwqPw2AA4pMbQrUQcAncNx\nFh4JID7l9fruM2PXDQ7eDsbcdQ0al5UkGuKw1dnyQ7Mf+Ln5z1lP3G/thRN/KMstxoNr7ZwLWhAE\noSAxs4E+68DOHTOTnu1OC5j9xmhqmY1EkrWodDFYesxBY3PlqV3VKgkHKx1liltSuaQNNd3tqe9R\njGqutpR2sESjUrpHRCcb2HQhhOErz9Nw+n5m7btNYurr9XlVmBgyTHy46jxXQuJRqyT+6FuHGqXs\nX7rfoXuH6L61+6PEvUfFHqx5e82zE/e0RGXiQ4C6Hyi13V8ThbblXZblFvkdQ6Fl6wql6sP9M/RJ\nU7EVUJs/IFkKZPY/pZnUoWp+R5gnlh67w5Lze7Eqtw6VNgGA5qWa83XDrylhWSLrB44OgA2DARlK\nN4TGn+RMwIIgCAWVjTP0WA5L2qKKvk1b/6m07bkMv9gWjPpnFA+SH2BRahVdyvWnb8VhWJvpsLPQ\nYqVTv7C2d2x8An/vPIDatQrH78Rz6FYk0cnp/LrvFkuP3+GT1hXp51MGtUpU8CooZFlmwsYrHLoV\nCcD0rl68UenFM53Gp8Uz4/QMtgcqJZVttDZ83ehr2nq0ff5Ox/8PUqJAawXNx+ZY/IVBYW55F7Kj\ncgcAqvkfpoajFwC6YidYdjwI/4iiP+Rg2+UgZpyegWXpxai0CVhprZjSaAqzW87OXuKuj4U1vSEt\nHmxc4N0/QV1ovyMLgiC8Orc68NaPyvL1zXD+Tyo5VOKvDn/h7eINwKbAFfx06XMszVOxNtO8dFIe\nrVpFSUvoVdeVJQPqc2J8Sz5u6Ym1mYa4FANfb71G93nH8Y/IkVoWQg74fb8/687dB+CT1hXpUc/9\nudvKsoxvsC+dN3d+lLg3cm3E+k7rX5y4J0XAif9TlhuNBOsXfzkoakTy/rqq0lH5nfiAXk4NAdDa\nXiFDSmDqjuv5GFjuW3b2KONPDkLncByAWiVqs77jerpU6PJKs7s9V1oSrHoXovxArYMeK5TWKEEQ\nhNdFnffBq4eyvHsCxNzB3tyeea3nMbD6QABOhp6k5/aeXIu+lunDO9ma89mblTg89g36eJcG4MLd\nODrOPsaWiyE5dhlC1my+EMKv+5TKbb3quzOq1fOr2N2KvcWQvUP49OCnRKdGY6O1YUqjKcxrPQ9X\na9cXn+jwj5CeBJaO0HBkTl5CoSCS99dV8fLgpExi0DY2HAdzB5Ay0BY7zUG/SHZeCc3nAHNehimD\n8ft+5aerI1GZRYCsZmj1kSxrt5RSNqWyd/DUeFjTC+6fAUkF3RaBe/2cCVwQBKGwkCSl9d3WDQzJ\nsGk4mDLQqDR8UvcTfmnxC5YaS0KTQ3lv53ts9t+cpdM4WOmY1sWLv4b6UKqYBXpDBqPXXmTy5qsY\nM0w5fFHCqzh9J4ax65Va7E0rOPLdO9Wf2SAWmxrL1JNTeXfbu5wKOwVAC/cWbOy88dUa0WLuwNml\nynKzL8A8kyWciwCRvL/OHra+627upFuFbgBYlzgNkoHJm68S/ZKpiguT+4n36bC+DztCliBJGWgy\nSrKw9Z98XHdY9msQJzyApW9DkDLAho6/KxV9BEEQXkcW9vDOHGX53kk4OefRqjZl2rDm7TV42HqQ\nbkpn8rHJfHfiO9Iz0rN0Ku9yxdnxcVNaVVa6Taw4GcyQ5WdJTjNm+zKEV3cnKpmhK86SnmGiorM1\nf/Stg1b9ZIppMBlYeX0lb296m7/8/sIkmyhvV575beYzu+VsSlq9YjWiA98rJZjtS0O9D3Lhago+\nkby/zv7tOhMTQC/HuuhUOgzEY+N4jujkdCZuulroa+vKssw6vw103NiF+3qlO5BtWkt2dt+AT6ma\n2T/Brb0wrwmEXwGVFrougjr9s39cQRCEwqxcC2gwTFk+MA1igx+vsi/HmrfX0Kp0KwD+vvU3fXb0\nITAuMEunsrPUsvC9eo9KHR/wi6TXgpNEJhadBqiCLDY5nYHLzhCXYsDR2owlA+pj+z9zxhwNOUq3\nrd2YeWYmiemJ2Ops+bLBl6zvtJ5Gro1e/WShl+DKOmW55WTQmOXglRQeInl/nTlXg2IeADjdOUaX\nCl0AsHU5CpKR3dfCWHz0Tq6dPtWQQVRSGpGJaSSkGnL8i0JsaiyDdo9kyslvMJKKyWBLFT7Hd8DP\nuNhm8zFb3F1YNwBWvwsp0WBZHPqugxrv5kjsgiAIhV6ryQ+7z6TAzs/hP3/jrXXW/NriV8bUGYNa\nUuMX60fP7T352+/vLH0WqFQSn7apyMxuXqhVEldC4um14AQRCak5eUXC/0gzZjBsxTnuRCVjrlWx\n6P16lCpm+Wj9nfg7fLjvQ0bsG8Gd+DuoJTW9K/dmR5cd9KnSB40qkwUd9n2r/Hb2gurdc/BKChdR\nBuN1JklK6/vx2XBjK4P6rWPD7Q0kGKLw9grg1OVKTN91E08na1q8pMzTy2SYZI76R3H0diTn78YR\nGJlE7P/UlDfTqHC2NcfTyZpKJW2oXNKGqi62lCthnekyYOuu+zLj7Leky/EAGBNqMKjyZ3zaqjaq\nrJYUM6YrXWMuroJrm0HOUF4v2wy6LABbl6wdVxAEoSgys1H6v6/tA7f3KhVoqnV5tFqSJAZ5DaJ+\nyfqMOzyO+0n3+e7kdxwNOcpXDb/C0cIx06fsWb80TjbmDFt5joDIZHouOMnqId642Fnk5JUJKJ/r\nn/x1kdNBMUgS/NazFrXclVruCekJzLs0jzU31mCUlS5MDV0aMrb+WDyLPX8Q6wsFHoKA/cpy669B\n9fq2P4vk/XVXpZOSvIddwcWQRufyndlwewOxut1Ud6vD1ZBkhq04x9IP6tOofOb/kEYkprLu7H3W\nnL7L/Vj9C7dNM5q4G5PC3ZgU/rkZ8eh1c62KyiVtqepqSzVXW8rZa0k1Pjlddkq6kcDIZE4EPmDV\n7TlEqw8CIGeYU0zfi9mdB1Kr9CtMuGRMh/h7EBukzNoWG/z4d7Q/pCU83ta2FLT5VpmSOTtVagRB\nEIqqym8rpYlvbodd46B8SzC3e2KTGiVqsK7jOqafns7WgK0cuHeAc+Hn+Lze57Qu2TrTp3yjshNL\n3q/P4OVnuBOVTM/5J1kz1Ac3e5HA5xRZlpm46Qo7r4QBMPGtKrSr7kKGKYNN/pv4/fzvxKbFAlDa\npjSf1/ucFu4tsl7RzZQBeyYoyx5NwTPz74uiRCTvrzu3emBdEpLC4MZ2BnsNZov/FkKTQxnZNJiU\n/WUIjExmwNIzTOviRfe6L6/KYjLJnAiMZtWpYPZeC8doepxk1/coRoOyDlRxscXV3gI7Cy0SoDdk\nEJWUzoM4PX5hidwMS+BmWCJxKQZSDSYu3ovj4r24/5xFw8RzR7Ay05BuNKE3ZKCyCMbC9W9Uumhl\ni/QKDKs6gcE+ddD8z8AZTBnw4KJSHSbKD6JuKyPYE0KAFz2ylaBMI2U2t2rvgFr7gm0FQRAE2v8A\ngQchKRwOzoR2057axFpnzfdNvqeJWxOmnZpGXFocXx3/ii0lttA0o2mmT9mkgiNLBzRg0J9nuBuT\nQs/5J1gzxAd3B8uX7yy81A97/Fh75h4AH71RnsFNy3Eh4gLTT03nRswNAKy0VgyrMYy+VfqiU+uy\nd8Lzf0L4VUCCtt+/9g1mInl/3alUSsvI2cVwYxulGo2ke8XurPVby8qbi1j63kaGr7iOf0QSn6+7\nxJ5rYXzRthIVnW2eOtT92BQ2nQ9hw/n7BEWnPHq9uJWO7vVK0bt+aTwcrV45NFmWeRCfyrWQeK6H\nJnDtQQLXHyQQEqe04BtNMvF6A2BEV2I/uuIHkSQZFVo6lR7IV81GoFWr/3tACDoKF1aC3y5lIqXn\n3hcN2LkrYwKKlQH7MsqyR5PXbjIIQRCEbLFzg+bjwHcynJ4Pdd+HEpWeuWn7su3xdvHmxzM/sj1w\nO+ciz3GBCzy4+ICP632Mvbn9K5+2Yfni/DmwAQOWnOZ+rJ5eC06ydqhI4LNDlmV+2uvH3IMBAPTx\nLk3/JvaMPzKeHYE7Hm33juc7jK4zOktdn56ij4N/pirLdd4DlxwoNlHIieRdUPq9n10M905BYhgj\nao1gW+A24tLi2HZ3JZs+HMlnf19i7/VwfB/+VHGxpbqrLVZmGmKS07kaEk9gVPITh/Up50Bf7zK8\nWc0ZM03myzFKkoSbvQVu9ha8We1xCan7EbFs9j1M5Rp1uJ96n7VBMwlJUf6QVHGowrQm057sUyfL\ncGsPHJgKYVeePIlDeXCuCo4VleV/E3VbV8huCUlBEARB4T1caT2N9ofd46Hfxue2njqYOzC96XQ6\nlOvAdye+IyQ5hL8D/mbXvV0M9RpKz8o9sdC8WheY+h4OLB/UgPeXnCEkTkng1wzxoXTxgp/AGzNM\nxKYYiNenI0kSFlo1jtZm6DT509dblmWm7rjxqJBFx5ol8Ch3kk6bF6I3Ko1qNRxrML7BeLxKeOXc\niQ/9oBSGMLNVKswIInkXUFqTze0hNQ5u7sCh/iAGew1m1vlZrLy+ki6eXZjfvy67robx814/AiKT\nuRGawI3QhKcO5WxrRpfapXi3XinKl7DOlXDtLbWUtDJwIXktq2+txigbUUtqBnsNZljNYWhV/+nK\nEh8C20aB/77Hr5VuCDV7Q4U2SpIuCIIg5C6NDtrNgFXdIeAf5eln5bdeuEtjt8asbrOaGbtncDTj\nKInpifx87meWXltK/6r96VWpF9a6l3/O1C3zMIFffPphAn+CNUN9KFP81Z8E54X4FAP/+IVz5FYU\nVx/E4x+RhOl/enGqVUqjVlUXWxqUdaBh+eJULmmTvdnBX0GqIYMJG6+w8YLStbRZzUgCzP7g4EWl\n64yjhSOf1P2EDuU6oJJy8MtF+DXlaQ0oEzJZl8i5YxdiInkXlH7bld6CS6uVQUX1B9GvSj823NrA\n/aT7TDk5hcVvLuYtLxfaVy/J2eBYTgREcycqmZR0Iw5WOjyKW+FdrjhebnaZrgyTWafDT/N74u/E\nxiuDYTxsPfi+yffUKFHjyQ2vb4EtIx8PMq3wJrwxEVxr5Wp8giAIwjNUaAMV2sLtPbDnS2Xwqtb8\nhbvo1DoamzdmdNPRrApYxd9+fxOTGsOs87NYcnUJPSv1pGelni+d4KdO6WIsH9SA9xaf5kF8Kj3n\nK11oMtOVMzeYTDKHbkWy4mQwh25FkvG/2fr/yDDJjwo77L6mDBYtU9yS9tVdeNvLBQ+7nG+Vj0hI\nZfjKc5y/G4ekjaJcZV8upF+CdNCoNPSv0p+hNYa+0hepTDFlwNZRYDIqT8e9h+fs8QsxkbwLiiod\nleT9zmHQx2JuUYzJDSczzHcYZ8LOsPH2RrpV7IYkSdT3cKC+h0OehxgUH8Rv539j/12lVJRWpWVI\njSEMqj7oycEwsqw8Zjv4cFCUtTN0+O2lrTyCIAhCLms3XWl5jw2Ck39A089eaTc7nR1j649lYPWB\nLL++nL9u/kVieiKLrixi6dWltCzdkt6Ve1PPud5zW6Frly7GisHe9F98irCEVHouOMHaoQ0pmw8J\nvMkks+VSCL/tu03wf8aIWerUNK3gSL0yDlR1taWknTn2FlpMslJVLSRWT0BUMhfuxnL6Tgz3Y/UE\nR6cw71AA8w4F4OFgQWVLFeWjU6hunf1kevfVUL7ceIVYfRJmTgewKH6UCKNS+rGJWxPG1R+Hh51H\nts/zTGcWQchZZbnj78rTGwEQybvwr/JvgNYKDMlK//CavWjk2ohO5TuxNWArM8/MpI5zHcralc3z\n0KL10cy/PJ91fuse1YstqynL9JbTqeZS7cmNTSbY+RmcXaL8t0dTePdPsCqex1ELgiAITyleHhp+\nCMdmweGflS6Mmei+6GjhyKd1P2VgtYGs9VvLOr91ROgj8A32xTfYF097T7pX7E6Hch2wM7N7av9a\n7vasGuxNv0WnCE9Io+f8E6we4oOnU+5083yWw7cimbHrJtf/0/W0WcUS9PUuTfOKJTDXPm+8lRll\nilvRyNOR/j5lkGWZ2xFJ7LwSyq4rYfiFJxIUoycoRsXuuWfwcrOjcy1XOtRwpaTdi59w/K+AyCSm\n77zJvhthaGwuY+O5EzTxZADuNu6Mqz+O5u7Ns34TXibuHuyfoizX/QDKNMy9cxVCInkXFFoLqNBa\n6WpyYxvU7AXA2PpjORt2lgfJD/js0Gesfms15prM/RHIqtCkUJZdW8bG2xtJzVBmyXO3cWd41eGY\nbpooY1PmyR1MJtjxCZxbpvx3nffh7Z9FOUdBEISCpNkXcGmtUjrS9yvotijTh7A3t2d4zeEM8hrE\n/rv7WXNjDecjzuMf58+M0zP45ewvtPFoQ7cK3Z5qja9Ryp7VQ3zou+gUEYlpdJ93nPn96uJdLncb\nea6GxDNj102O+kc9eq1zLVdGt6pAuSyMEZMkiYrONlR0tmFM64r4hSWy/kwQG84GE5OmzDJ7JSSe\n73fewKdscTrVcqVVFSecbJ79GZ6SbuTo7Sj+Pnuf/TfDkXRhWJTeisYqEABztTlDagzh/WrvY6Y2\ny9pNeBWmDNg0DNKTlCfnrb/JvXMVUiJ5Fx6r0klJ3v33Q3oy6KywM7Pjx+Y/8v6u97kde5sJRyfw\nY7MfUedSJRZZljkXfo51t9axN2jvo5b2YmbFGFZzGD0q9iBNn8Z+v/1P77x34uPE3Xu4MjjqNa8F\nKwiCUOCY2UDrb2HzcLiyDuoNynLLqlalpZ1HO9p5tMMvxo91t9axI3AHSYYkdgTuYEfgDjxsPehW\noRudPDvhYK50+azuZseqwd4MWHqGqKQ0+i0+xYyuNej2CnOZZNa9mBR+3uvH5osPHr3W2LM449tV\nwavU008HsqpSSRtGv1GWahmBOFauh69fLNsvhxKdnM6JwGhOBCpzoDjbmlG+hDWO1mZoVBIp6RkE\nx6QQEJFEeoYJSROPWcm9aO3Og6T0wX+zzJt8Xu9zXKzzYCbxo79C8DFlufMcsHj18qCvC5G8C49V\neBPUOjDqlQS+aidAmf1ubIOxTDs1Dd9gX6aemspkn8k5OqL8fuJ9fIN92eS/iTvxdx697mzpzIBq\nA+haoSuWWqW0VxppTx/g1AI4OUdZbjBMJO6CIAgFWY2eSvfG+6dh1xcw9FC2y/NWcqjEJJ9JfFr3\nU/YG72XDrQ1cjLxIUEIQP5/7mVkXZtHSvSXdKnbDx8WH6m52bP6oEYP/PMvNsEQ+W3eJs8ExfNWh\nGha67DdQRSelMedgACtOBJOeYQKgiost49tXplkFx1yrECNJUKuUHU0quzG5Q1WOB0Sz5eID9lwL\nIynNSHhCGuEJz/gcVaVg4XQErcNRZMkAgKe9J+MajMPHxSdXYn3K3VNw4OF4NZ8PlR4BwlNE8i48\nZm4LZZuDv6/SdeZh8g7Qu3JvIlIiWHRlEetvrSc+LZ5pTaZluQuNLMvcir3FkZAj+Ab7cj36+hPr\nazvVpnvF7rT3aI/2Zd1ebu2F3eOU5aqdReIuCIJQ0KlU8NYPsOANZf6Nc0uh/uAcObSl1pJ3PN/h\nHc938I/1Z8PtDWwL3EZ8Wjx7g/eyN3gvbtZudK3QlXc832Hd8IaMWXuR/TcjWHP6HqfvxDCti1eW\nu9EkphpYeOQOi48EkpyeAYCbvQWfvVmRd2q5ocrlimz/pVGraFaxBM0qlmBGhhe3whO5GhLP/Vg9\nUUlpmEyAOoEwfLmWtJs0Uwoy4GThxMjaI+lUvlOuPWl/Stw9+KsvyBng7AWtvs6b8xZCInkXnlSl\no5K839oNxvQnRnePqj0Ko8nIsmvL8A325XbsbaY0nkJtp9qvdOiw5DBOPDjBydCTnAw9SUxqzBPr\nnSyceNPjTbpV6PbkJEsvEnMHNgwG2QRu9aDLfOVDQRAEQSjYXGsrM2ae/1OZQbNaV7DM2UpmnsWU\nluMxdcewP3g/G25v4HTYaUKSQph9YTZzLs6hWalm9G/ZDZ/ylfhh9y0CIpPpueAkb9dw4aMWnlR1\ntX2lc92LSeHP40H8deYeiWkPu3xaavmwhSf9G5Z5wUDUvKFVq6jmakc11/9v787jo6ru/4+/PtkI\n2YBACCFssoMKCIKA2KKoRbRqXRAUpVpbayuttf222vqt2p/dtK3W9lutdaF13xAXiqIgtSAugAoi\nyCYgEBJC2JIQAsn5/XEGCLIkQ8LcueT9fDx4ZObOnXs/c8hMPnPu55zjS3UWb1rMc0uf4+UVL7Oz\nyvfEZyRncM0J1zCu97g6L4TVIHaWwtNjoWwjNM2Gyx6rdRrRxkzJu+yvxyh49UY/N/rnb+93ycrM\n+PHJPyYvPY+7597Nqm2ruGrqVQzJG8KozqPo37o/bTPakmiJbKvcxrrSdXy66VMWbFzAh0Ufsmrb\nqgNOl5+Rz+ntT+fsTmfTN6dvdKU4u3fCc9+EnVshMw/GPuUH3oqISDiM+CV8Ohl2bPYJ/Hl/Oiqn\naZLYhFGdRzGq8yhWb1vNC8te4KXlL1FSUcJbX7zFW1+8RW5aLuNGjmL+ou58vMqYsqCAKQsKOOW4\nbM45oQ2ndG5Jl5yMvSuclu7czZKCbcxbvZnXF21g/pote8+XnpLItad15trTjiMzNX4mTSjeUcyM\nNTOYvHwyC4v3rTienZrNlb2v5LIel5GZkhnboCrL4MnL/BWYhCQY/S/Ijv3MdmGi5F32l5EDHYbC\n6lmw5JWD1ptd3utyTm5zMre/czsLixcyp2AOcwrm1OnwmSmZDM4bvPdf+8z2R1z3lzLzV1DwEVgC\nXPwwZLQ+ouOIiEhA0lvB6bf6uvd5j8KAb0Jen1qfVh8dszpy04CbmNBvAjPXzuSFpS/wzvp3KCwv\n5PmVj2JNjf6DBlC8/iTWrO3Ee5+X8N7n/kqxGTRNTqTaOSp2VR9w7PzmTRk/tCOXndyBZmnBJ+27\nq3ezpGQJH2z4gJlfzOTDog9x7FsIqluLbozuPpoLul4Q2572PSq2wtNX+JwDgwv+D447LfZxhIyS\ndzlQr/MiyfsUOPdPBx1E1L1Fd54Y9QSz18/mpeUv8d91/6VsV9kB+7Vq2oq+OX3pk9MG9iunAAAa\nUUlEQVSHQW0G0Su7V4PUz+Vt+YCUzyf6O2fcCp1OrfcxRUQkACdf42cKK1oEU38KV0+Nybil5MRk\nzup4Fmd1PIt1peuYtGwSk5dNpmhHEcu2z4XMubTt04IchrF2TR82bcnEOSiP1LHv0blVOkO7tmTU\niXkM6pRNUmLsSzedc2zeuZllJcuYt3MeCz5ewOrS1Xyy6ZMD/jZnpWRxRoczuLjbxfTN6XvUBs7W\nqmQlPDkGij/z98+/b+801XJ4St7lQD3Pg9du9rVna+ZAp2EH3c3MGJY/jGH5w6h21RSUFVBUXkS1\nqyYjOYO8jDyyUupWKxgNKyum7xcT/Z0uI+DUHzX4OUREJEYSk/zg1Ynn+r85C56JeRKXn5HPhJMm\ncH3f65m1bhYvLH2Bt9e9zfZdm9nOK5D3CgN7H0/vZkPplTWU3LQOtExPoWPLdJo1Pbo97M45tu7c\nSmF5IUXlRRSWF1JYXsiGsg0UlBWwoWwDG8o27K1bB2D5/sfomNWRQW0GcWaHMxmYN5DkhACvClRX\n+ass037pF4ZMbOJ73PtcGlxMIaPkXQ7UvL0f/Llurv8QPUTyXlOCJZCfkU9+Rv7Rjc05mrzxM5J2\nb8elNscu/JsGqIqIhF2nYXDCxfDJC77zqMsIX8YZY0kJSQxvP5zh7YdTWFbI5OWTmbRsEuvL1rNk\n8yKWbF4E/IN2Ge3on9ufATsGcGKrE+mY1ZGUxJRaj/9lu6p3sWnHpr2JeVF5EYVlhXsT9D3b9kvM\na5FlWRzf+nh65vSkV3YvBuQOoHXaEZSVlm6EVf/15alb18GOEnAOktP8quXNO0KLTr4+PbtL7fOx\n7yz1a8nM/vO+3vasfLjkUehwSvTxNWJK3uXg+o7xyfuil+Ccu+JnIOiCZ0la/hoAO8/8DamZbQIO\nSEREGsTI38GKGX7w6tT/gUsnBhpObnou1/W9jmtPvJb5RfOZsWYGM9bMYH3ZetaWrmVt6VpeXvEy\nAImWSPvM9rTNaEt2ajYtUlvQJLEJiZZIoiWyo2oH5bvKKd1Vyrad29i4YyNF5UVsrti8Xw16bZok\nNqF1Wmty03LJS8+jTXqbvf/y0vPIJJP33n6PEcNGkJER/aqtVFfD0qnw3t994u4OrOs/pLSWPolv\n2QWatffrxrhqv5Ju4SJY/yHs/RJicNI4OPtOLcJ0BJS8y8GdcDG8doufyeWzqXDCRUFHBNvW+w90\nYF3zgTTrcX4tTxARkdDIaA0jfw8vfgcWvQgnXALthwcdFYkJiQxsM5CBbQby04E/Zenmpby/4X3m\nF85nftF8SipKqHJVrNq26qCzqtVVsybN9ibmuWm5e2+3TmtN67TWtElvQ1ZK1mFr1EtLS4/4/Kx5\nF6b8BAr3zUJDSia07Qctu0am8TTYVe4T8s2rYfMqKC/2+5Zv8v/Wvn/ocyQ19WvInHoj5PY+8lgb\nuVAm72Y2GLgNGACkAAuBm51zswMN7FiSlg3dvwZLXvWlM0En787ByxOgYivVTVuyoN14TtNCTCIi\nx5Y+o2Hhc369kSk/hqveCDqi/ZgZPbJ70CO7B1f2vhLnHMU7ilmxdQUrt6ykeEcxJRUllFSUUFld\nSXV1NVWuiiaJTchIziAtOY3MlExymubsTcpz0nLIaZpzxIse1tvunTDtVnj/wX3buo/0A4k7n77f\nei8HVbHVDz7dtGLfz+3rocrPdU9Ga19e02EwdDzVLwgp9RLK5B1oATwGXAFsBb4D/NvMujnnigKN\n7FjSd4xP3pe94WvfAqg/3OvDx2H5mwDsPPsuKtcEPwWXiIg0MDP4+r3wf4OhdAOpr98EmeOCjuqQ\nzMwn32k5DM4bHHQ40du6Dp69EtbN8/fzT4Zz/+h72+sqtZlfcKtt3RZslPoLZfLunJv6pU33m9mv\ngH7AtLocw8yygS8v5dYBoKysrH6XnqJUXl6+38+4kTeU9NTmWMUWds57gl0DGmbp6mjZ9gLSXv85\nBuzqdRHb878Ca+bEX3vFqbj9/YpTaq/oqL2io/aqg8TmJJ39e1Jf/R5JK96gc34u5eVDg44qFKL5\n/bLipTR9fiwJpRtwlkDlsJ+xa+D1fnroGOZAQQrq/VhWduDU2tEw5+o+UCJemVlfYC7QyTm3ro7P\nuR1fenOA+++/n7y8vIYLMMT6fPFPjiueztbU9szseWdM5t7dj3OcsvIe2mz7iIqkLGb0+i27kmK8\n+puIiMRcvzUP03HTf6iyJGZ1u5Ut6Z2DDumY0ax8FUNW3E2T3dupTExjbqcb2Jh1QtBhNRoFBQVc\nf/31AN2cc8tr2//L4i55N7OJwPjD7HKlc+7xGvu3AmYDzzrn/jeK8xyq5336Rx99RJcuXeoedD2V\nl5czZ84chgwZQlpaWszOWxcJhQtJe2wkAOVjJ1OdPzCm509a/CKpU24AYMf5D1LV/dy4bq94pPaK\njtorOmqv6Ki9olBZTupjI0navIKqtBwqxk3BZR3l6YhDri6/Xwkbl9D06YuwnVupTmtFxaVPUZ3T\nOAePBvV+XLFiBf369YMjTN7jsWzmBuAnh3l8+54bkcT9TWA68MtoTuKcKwFKam7bM4I7PT39yKZY\nqqe0tLRAzntYGUP2zvme9smT0OP02J27tAhmRL6P9b6Qpv0v2+/huGyvOKb2io7aKzpqr+ioveoi\ng7KLJlI9cSQp5RtJf+kauPrfvsZaDuuQv19b1sCkcX4mucw8Esa/SlqrrrEPMM7E+v2Ynp5er+fH\nXfLunCsFai22MrNcfOL+H2CCi7dLCMeSgdf6Od8/nQxf+03sBq7++yd+vt+m2TDq7ticU0RE4oZr\n0Zn3j/sBp678A1b4CTx+MYybdHRmLCkrhlWz/ODNzZ/7DiTnoEmmny2l3UDocgZk5jb8uWOhvAQe\nuwi2F/gvQOMmgRL3UIq75L0uzCwPeAt4wzk3Ieh4jnnHfwNev8Un0h8+BqfddPTPuWiyX4kN/CJR\nGUewOpyIiITepsxe7Bz1Z19CufYDeOxCGPNUwyTRZcV+TvkFzx5+fnKAuQ8DBt3OgsHX+2kUwzJl\ncdVueO6bsGkZJKXC2Gc0z3qIhTJ5x08N2QNoZ2ZX19h+nXPuiYBiOnYlp8JJV8I798EHD8GQG2qf\n97U+Sjf6XneA7ufAiZccvXOJiEjc293zAkhJ8Qs4rZsH/zgdRj8G7QZEf7Cq3X4e+fn/gmXToHr3\nvseSmkL7gdCqO2S1BUvwHVfFy3yv/M5t/jnLpkHn4X5V2Na9GuplHj3T74DP/+NvX/QgdBwSbDxS\nL6FM3p1zdwB3BB1HozLo2/Du32DbOlj4rF/W+GhwDl6+Aco2QmpzOO+e8PRsiIjI0dPnUmjaHJ6/\nxv8tevhMGPw9OO3HkdU/a1GyEj560q8bsr1g3/YmzeD4C31HUfvBh+6cqtrl1xt5936fCK+cCX//\nCoy4zceRkNAgL7PBLXrRd76Bb6veFwQbj9RbKJN3CUDzDnDiaPj4SZh1L/Qd6+eCbWhzH4Glr/nb\nX78XsjRlp4iIRHQ7C659E57/FhQuhDl/hXkTfeLd41zI6wvprcBV+06gwkXwxfvw2VS//14GXc/0\nHVHdR/orzLVJTIYe5/h/y9+EqT+DTcth2i98In/Jw/E3mLbwU5j8fX+7ywg4/RfBxiMNQsm71N2w\nG+Hjp3zN3OKXfS18Q9q4FF6PfLD0vbzhjy8iIuGX0wO+8xa88xeYfS9UbPUJ/LyJtT+3WXufsPe7\nApq3P/IYup4J170N0271nU7L34CHz4axT0P2cUd+3Ia0Yws8cwXsKoPmHeHih45Op5vEXJxe45G4\nlNMDen3d355xp7+E2FAqy/xgmt07/IfMOb9vuGOLiMixJTHZT55w4yd+UoMOQyDhIP2RCcnQ9iQY\n+gO4djr8cAEMv7l+ifseKem+tPMbD0JiCmxcAg+fBRs+qf+x68tVw4vX+VKhpKYw5om6lRZJKKjn\nXaJzxv/Ckin+UuHcR+CU6+p/TOfglR9C0SL/QXvxQ0dnGjARETm2pGb5v0OnXAe7d8KmFb4nHgfp\nraFZu7qVxNRH38v8VJJPjfGlOhPPhSsnQf4RDKZtICnv3LOvBPX8+6DNiYHFIg1PPe8SnZzucHJk\ngp+Zv/Oj8Ovr3fth4XP+9sjfQvtB9T+miIg0LklN/PSHHYdAx6F+DvOjnbjv0eEUv4BURi5UbIF/\nXgCr58Tm3F+Su/VDUub8yd855XroMzqQOOToUfIu0Rt+CzTJgh0lMPXm+h1r0WR4/ef+dp8xfkEo\nERGRsGndC66e6uvqK7f7BaVWzY5pCFaynAGrHvB3OgyFs/9fTM8vsaHkXaKX3mrfB8KCp30ZzZH4\n/G2Y9G3A+em5vn6vpoUUEZHwatnFJ/AtOvmBok9c4v/WxULFNppO/hbJ1TuozsyD0f/0YwPkmKPk\nXY5M//F+tD3A5Ot9nWE0lk6DJy6FqkrI6Qljn4Lkpg0fp4iISCw1bw/fnALZnWFXOTwxGla8dXTP\nWV0NL36XhJLlVFkyFec/pJXJj2FK3uXImMH5f4WMNn5w0BOXwraC2p/nnF+l9emxsLsCWnaDcZM0\nCl5ERI4dzdr5BL5lVz+L2lNjYPn0o3e+mb+Bz/xV8AXtx1Od1+/onUsCp+RdjlxWHox9EpJSoWQF\nPPI1KFp86P23rYdnr4IpP/bLUbfpA9e8Bs3yYxeziIhILGS19Ql8q+6+s+qpsbDsjYY/z9xH4e27\nAajs903WtPxKw59D4oqSd6mf/AFw+bOQnA5bVsPfvwpv3ObLaJyD6ipYO8+vRPeXk/3iTuBXa73m\nNV8/LyIicizKbOMT+JyeULUTnr4cPnut4Y7/2Wsw5SZ/u/tIKs+4o+GOLXFL87xL/XX+Klw9BZ6/\nxi8IMfte/y8xxfewu+p9+2bkwtl3womXanCqiIgc+zJaw/hX4V8X+PVMnhnnB5P2PLd+x106zV/N\ndtXQtj9c8ghUuoaJWeKaet6lYbQ9Cb47C0bcBplt/baqyn2Je6se8LXfwIR5fs5ZJe4iItJYZOTA\n+Fcg90So3uWT7o+ePPLjLX4VnrnC9+a36uGvgKekN1y8EtfU8y4NJyXdL1c97EdQvBS2rvW979md\nVdcuIiKNW3pLGP8yPHYhFHzsZ2pb+wGM/J1fYKounINZ98D0XwEOWveGq172Xw6k0VDPuzQ8M8jp\nAV1HwHGnKXEXEREBP7Pa+Feg53n+/txH4IFhsGpW7c/dsgYevwim38He9VHGv6rEvRFS8i4iIiIS\nK6nN4LLH4czbISHJX6meeK6viV/8ClSW7du3uhrWzYdXb4K/DIAVM/z2/uP9l4D0lkG8AgmYymZE\nREREYsnMl5h2+xq8+iP44l1YOdP/s0Q/T3xSEz/FcmXpvudltoXz/gQ9zgkqcokDSt5FREREgpDb\n20+bvGIGvPeAX4m1epefermmnF5w8jXQ/ypITg0mVokbSt5FREREgmLmx4h1HQEV22D9hz55r67y\na6HkngDZxwUdpcQRJe8iIiIi8SA1y6+dInIYGrAqIiIiIhISSt5FREREREJCybuIiIiISEgoeRcR\nERERCQkl7yIiIiIiIaHkXUREREQkJDRV5P6SAVavXl3bfg2qrKyMgoICVqxYQXp6ekzPHUZqr+io\nvaKj9oqO2is6aq/oqL2io/aKTlDtVSPPTD6S55tzruGiCTkzOwOYHnQcIiIiInLMG+GcmxHtk5S8\n12Bm6cApQAGwK4an7oD/0jACWBPD84aV2is6aq/oqL2io/aKjtorOmqv6Ki9ohNUeyUDecB7zrmy\naJ+sspkaIg0Y9Teg+jKzPTfXOOeWx/r8YaP2io7aKzpqr+iovaKj9oqO2is6aq/oBNxei4/0iRqw\nKiIiIiISEkreRURERERCQsm7iIiIiEhIKHmPDyXAHZGfUju1V3TUXtFRe0VH7RUdtVd01F7RUXtF\nJ5TtpdlmRERERERCQj3vIiIiIiIhoeRdRERERCQklLyLiIiIiISEkncRERERkZBQ8i4iIiIiEhJK\n3kVEREREQkLJu4iIiIhISCh5FxEREREJCSXvIiIiIiIhoeQ9YGaWZGb3mNkmM9tqZv80s/Sg44pH\nZtbEzB40sxVmVhr5eXPQccU7M0vb02ZBxxIGZjbSzOZGfscKzey2oGOKV2aWZ2YvmFlx5DPsVTPr\nHHRc8cDMxpjZ7Mjv0aqDPP5zMyuIPP6SmeUGEGbcOFx7mdldZvapmW03sy/M7G4zSwko1LhQ2+9X\nZJ+EyD7OzFrFOMS4Uof340Azmxl5fJOZPRhAmHWm5D14PwfOBvoBnYGOwD2BRhS/koAi4BwgCzgf\nuN7MvhtoVPHv18DnQQcRBmY2AngEuAVoDnQBXgw0qPj2NyAV307t8O/PxwONKH6UAPcBv/zyA2Z2\nFTABOAvIA8qAx2IaXfw5ZHsBlcAYoAUwDBgB/Cp2ocWlw7XXHhOAHbEJJ+4d7v3YG5gC3A+0BPKB\nB2IaXZTMORd0DI2ama0BbnHOPRG5fyrwJpDtnNObrhZmdjeQ75y7POhY4pGZDQYeBH4CTHLOZQQc\nUlwzs3eBfznn/hZ0LGFgZguAPzrn/hm5/1Vgin7P9jGzS4A/OOc61dj2NvC6c+7XkfvtgDVAZ+fc\nqiDijBcHa6+D7PN94Arn3NCYBRanDtVeZnYcPpe4BJgP5DjnimMfYXw5xPvxaWCNc+6ngQUWJfW8\nB8jMmgPtgXk1Ns/H92R1CySoEDGzBGA4sCDgUOKSmTUBHgKuw/dcyWFEytUGAblmtsTMiiJlIF2D\nji2O/QG4xMyyI+13NTA54JjCoA81Pvedc2uBjZHtUrsR6HO/Nv/AX9nfHHQgIXA6kGBm8yMlgDPN\n7OSggzocJe/Byoz83LpnQ6S3vRJfFiKHdzeQDvw16EDi1C+Bmc65OUEHEhItAAMuwpdmdQRWAq+Y\nWVKQgcWxd/CfY8XANmAA/iqPHF4mNT73I7agz/1amdkEYCgqmzkkM/s2UOGceyboWEKiJTAW3/nQ\nFvg38O9IB2tcUvIerO2Rn832bDCzpkAK/g+hHIKZ3YmveT/LOaeBmF9iZv2Ay/G121I3e96Pf3bO\nfR75In0z0APoHlxY8Sly5etN/NXCLCADeB54y8ySg4wtBLZT43M/ojn63D8sM/sOcCtwpnNufdDx\nxCMzawvcBnwv6FhCZDvwqHPuY+dcpXPuLqAa/yUxLil5D5BzbgvwBdC/xub+QAWwLJCgQsDM7gJG\nA8Odc+uCjidODccPhPvczIqBl4D0yCXBMwKNLE4557YCqwENBKqbbPzVifucc6WRLzt/AnriB7DK\noS2gxud+pOY9B5WCHJKZ3YDvbR/hnPsk6Hji2CCgNTA/8tk/P7L9MzMbH1xYce1jQva5r+Q9eA8B\nt5hZOzNrCdwJPK7BqgdnZn8GLkCJe20eArriZzHqB1wLlEduzw4wrnj3APBDM2sfGTPwa2Ax8Fmw\nYcWfyOC35cD3zKxpZOq+H+JrbFcFGVs8MLNEM0sFkv1dS43cB//+/L6ZHW9mGcBdwPTGPFj1cO1l\nZjfhe9zPUOLuHaa9XsPPXLfns39U5CnD8VfGGqVa3o8PAFebWW/z03ffhC+hfCeoeGujOs7g/Qbf\ng7UA//8xGbgx0IjilJl1BH6AHxOw1Mz2PPRf59w5gQUWhyKlRHvLicxso9/s1gYXVSjchS9fmId/\nP84BznfOVQUaVfy6AN/bvhZIBBYC5znnKgKNKj5cCTxa4/6eDhlzzv3LzNoD0/H179OBcTGOL94c\nsr2APwK7gPdrfO6vds4dH7vw4s5B28s5Z/j3I+DXkoncLHDOlcUuvLhzuPfj05Fyo2n49+PHwKhI\ndURc0lSRIiIiIiIhobIZEREREZGQUPIuIiIiIhISSt5FREREREJCybuIiIiISEgoeRcRERERCQkl\n7yIiIiIiIaHkXUREREQkJJS8i4iIiIiEhJJ3EREREZGQUPIuIiL1ZmZ3m9nrB9n+gJndG0RMIiLH\nIiXvIiLSEAYB79fcYGYGnA9MDiQiEZFjkJJ3EZFGzMzuMbO5ZnbA34PI9sP2mptZiplVAl8BbjUz\nZ2afRh4eCDQBZkX2XRR5/GD/bm/YVyYicmxS8i4i0kiZWQ9gAvA/zrnqg+yyGDiplsPsBoZEbp8C\n5AGnRu5fCExxzu2O3P9G5OeoyH5tgXLgW8Dvj+Q1iIg0NkreRUQar58AHzvn3jrE4yX4JBszG2Vm\nn5nZcjObsGeHSNKfB2wHPnDObXDObY48fAH7l8zkAg74r3NuA5AOpAGznHM7GvKFiYgcq5S8i4g0\nQpEymUuA52tsu6dmYg5kAmVmlgTcB5wJ9AG+Z2btaux3Ev5LgKtxrK5AZ6DmINa+wErnXGnkfj98\nz/vyBnthIiLHOCXvIiKN03FAc2BhjW2j8cn0Hn2BT/GDURc7575wzpUDk4Cv19ivH/Dhl45/ITDd\nOVdWY1sfYMGXnvfJIUp2RETkIJS8i4g0Ti0iP0sBzGw4vga9MnK/Gz65fjGyfV2N564F8mvc78v+\nSTkcWDIDPnn/uMb9fl+6LyIitVDyLiLSOK0BqoHLzawfvizmFeA8M+sDPIpPyF+sw7GSgJ5m1tbM\nmptZDjA4cjxgb5nOCeyf5HcBVjfEixERaSyUvIuINELOuSLgFuBSYBrwd/wA1pOAd4FNwCjnXBWw\nnv172tuxf0/8L4Ax+B753+JLaj5wzhXW2KcLfoBqzeR9IXCTmZ3TcK9MROTYZjXGF4mIiBwgMmD1\nM2A4UAzMB852zn1xiP1fAmY75+6KWZAiIo1EUtABiIhIfHPO7TazG4HpQCJw36ES94jZwFMxCU5E\npJFRz7uIiIiISEio5l1EREREJCSUvIuIiIiIhISSdxERERGRkFDyLiIiIiISEkreRURERERCQsm7\niIiIiEhIKHkXEREREQkJJe8iIiIiIiGh5F1EREREJCSUvIuIiIiIhISSdxERERGRkFDyLiIiIiIS\nEkreRURERERC4v8DP45JEiLhdLQAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd1a4766668>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for i, line in enumerate(plt.plot(a/pi, Xl), 1):\n", " line.set_label(r'$x_{%d}$'%i)\n", "plt.xlabel(r'$\\omega_0 t/\\pi$')\n", "plt.ylabel(r'$x_i/\\delta$')\n", "plt.title('Response — numerical integration — lin.acc.')\n", "plt.legend();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Equation of Motion\n", "\n", "Denoting with $\\boldsymbol x$ the dynamic component of the displacements, with $\\boldsymbol x_\\text{tot} = \\boldsymbol x + \\boldsymbol x_\\text{stat} = \\boldsymbol x + \\boldsymbol e \\;u_\\mathcal{A}$ the equation of motion is (the independent variable being $a=\\omega_0t$)\n", "\n", "$$ \\hat{\\boldsymbol M} \\ddot{\\boldsymbol x} + \n", " \\hat{\\boldsymbol K} \\boldsymbol x = \n", " - \\hat{\\boldsymbol M} \\boldsymbol e \\ddot u_\\mathcal{A}. $$ \n", " \n", "Using mass-normalized eigenvectors, with $\\boldsymbol x = \\delta\\boldsymbol\\Psi\\boldsymbol q$ we have\n", "\n", "$$ \\boldsymbol I \\ddot{\\boldsymbol q} + \n", " \\boldsymbol\\Lambda^2\\boldsymbol q =\n", " \\boldsymbol\\Psi^T\\hat{\\boldsymbol M} \\boldsymbol e \\frac{\\ddot u_A}{\\delta}.$$\n", "\n", "It is $$\\frac{\\ddot u_A}{\\delta} = \\frac{1}{2\\pi}\\,\\lambda_0^2\\,\\sin(\\lambda_0a)$$\n", "\n", "and $$ \\ddot q_i + \\lambda_i^2 q_i =\n", "\\frac{\\Gamma_i}{2\\pi}\\,\\lambda_0^2\\,\\sin(\\lambda_0 a),\\qquad\\text{with }\n", "\\Gamma_i = -\\boldsymbol\\psi_i^T \\hat{\\boldsymbol M} \\boldsymbol e\\text{ and }\n", "\\lambda_0 = \\frac43.$$" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "G = - Psi.T @ M @ e" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Substituting a particular integral $\\xi_i=C_i\\sin(\\lambda_0 a)$ in the\n", "modal equation of motion we have\n", "\n", "$$(\\lambda^2_i-\\lambda^2_0)\\,C_i\\sin(\\lambda_0 a) =\n", " \\frac{\\Gamma_i}{2\\pi}\\,\\lambda_0^2\\,\\sin(\\lambda_0 a)$$\n", "\n", "and solving w/r to $C_i$ we have\n", "\n", "$$ C_i = \\frac{\\Gamma_i}{2\\pi}\\,\\frac{\\lambda_0^2}{\\lambda_i^2-\\lambda_0^2}$$" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "C = G*l0**2/(li**2-l0**2)/2/pi" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The modal response, taking into account that we start from rest conditions, is\n", "\n", "$$ q_i = C_i\\left(\\sin(\\lambda_0 a) -\n", " \\frac{\\lambda_0}{\\lambda_i}\\,\\sin(\\lambda_i a)\\right)$$\n", "$$ \\dot q_i = \\lambda_0 C_i \\left(\n", " \\cos(\\lambda_0 a) - \\cos(\\lambda_i a) \\right).$$" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$$q_1= -0.637609\\left(\\sin\\frac43a- 8.461449\\sin0.157577a\\right) \\qquad\\text{for }0 \\le a \\le \\frac32\\pi$$" ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$q_2= +3.691468\\left(\\sin\\frac43a- 1.013725\\sin1.315281a\\right) \\qquad\\text{for }0 \\le a \\le \\frac32\\pi$$" ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$q_3= -0.016167\\left(\\sin\\frac43a- 0.749290\\sin1.779463a\\right) \\qquad\\text{for }0 \\le a \\le \\frac32\\pi$$" ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for n in range(3):\n", " i = n+1\n", " ld(r'q_%d=%+10f\\left(\\sin\\frac43a-%10f\\sin%1fa\\right)' % (i,C[n],l0/li[n],li[n]),\n", " r'\\qquad\\text{for }0 \\le a \\le \\frac32\\pi')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Free vibration phase, $a\\ge 3\\pi/2 = a_1$\n", "\n", "When the forced phase end, the system is in free vibrations and we can determine the constants of integration requiring that the displacements and velocities of the free vibration equal the displacements and velocities of the forced response at $t=t_0$.\n", "\n", "\\begin{align}\n", " + (\\cos\\lambda_i a_1)\\, A_i + (\\sin\\lambda_i a_1)\\, B_i &= \n", " q_i(a_1) \\\\ \n", " - (\\sin\\lambda_i a_1)\\, A_i + (\\cos\\lambda_i a_1)\\, B_i &= \n", " \\frac{\\dot q_i(a_1)}{\\lambda_i}\n", "\\end{align}\n", "\n", "Because the coefficients form an othogonal matrix,\n", "\n", "\\begin{align}\n", " A_i &= + (\\cos\\lambda_i a_1)\\, q_i(a_1)\n", " - (\\sin\\lambda_i a_1)\\, \\frac{\\dot q_i(a_1)}{\\lambda_i}\\\\\n", " B_i &= + (\\sin\\lambda_i a_1)\\, q_i(a_1) \n", " + (\\cos\\lambda_i a_1)\\, \\frac{\\dot q_i(a_1)}{\\lambda_i}.\n", "\\end{align}" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "a1 = 3*pi/2\n", "q_a1 = C*(sin(l0*a1)-l0*sin(li*a1)/li)\n", "v_a1 = C*l0*(cos(l0*a1)-cos(li*a1))\n", "\n", "ABs = []\n", "for i in range(3):\n", " b = array((q_a1[i], v_a1[i]/li[i]))\n", " A = array(((+cos(li[i]*a1), -sin(li[i]*a1)), \n", " (+sin(li[i]*a1), +cos(li[i]*a1))))\n", " ABs.append(A@b)\n", "ABs = array(ABs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Analytical expressions" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "Modal responses for $a_1 \\le a$." ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$q_{1} = +3.648\\cos 0.158a +1.420\\sin 0.158a$$" ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$q_{2} = +0.318\\cos 1.315a -0.014\\sin 1.315a$$" ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$$q_{3} = +0.010\\cos 1.779a +0.018\\sin 1.779a$$" ], "text/plain": [ "<IPython.core.display.Latex object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(Latex(r'Modal responses for $a_1 \\le a$.'))\n", "for n in range(3):\n", " i, l, A_, B_ = n+1, li[n], *ABs[n]\n", " display(Latex((r'$$q_{%d} = '+\n", " r'%+6.3f\\cos%6.3fa '+\n", " r'%+6.3f\\sin%6.3fa$$')%(i, A_, l, B_, l)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Stitching the two responses\n", "\n", "We must evaluate numerically the analytical responses" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "ac = a[:,None]\n", "\n", "q = where(ac<=a1,\n", " C*(sin(l0*ac)-l0*sin(li*ac)/li),\n", " ABs[:,0]*cos(li*ac) + ABs[:,1]*sin(li*ac))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Plotting the Analytical Response\n", "First, we zoom around $a_1$ to verify the continuity of displacements and velocities" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAE3CAYAAABRrnxjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAARrwAAEa8B9/1LhAAAIABJREFUeJzt3XucJHV97//3py9z6Zm9AAJuRFYZZL1wWUQ0a5Qga2Q1\nKqDoQUzO8aAxIdEI55jfT4PnsETgSFRQYwIEEjDxshpRQVBEFjGw7gFU8LKuIovLZXe57H17Lt3T\n3d/zx7eqp7qmZ2q6p6e7d+f1hH5U1be+VfXp/nbvfPpb36o255wAAAAATC3V6QAAAACAbkfSDAAA\nACQgaQYAAAASkDQDAAAACUiaAQAAgAQkzQAAAEACkmYAAAAgAUkzAAAAkICkGQAAAEhA0gwAAAAk\nIGkGGmRmq83MmdnTZpaus/6rwfq7W3S89wT7e06D291oZr+c4b7Dx24z+7GZ/ensogYaY2anmtnf\ndjqOqZjZZjP7fGT5TDP7yzr1VptZvr3RAWgHkmagOeOSFkl6fbTQzBZIeoukfZ0IahZWSVoh6d2S\ntkv6NzM7p7MhYZ45VVLXJs2SzpL0qcjymZImJc2Srpf0urZEBKCtMp0OANhPFSV9X9K5kr4XKX+b\nfML8oKS+DsTVrJ8457ZLkpn9QNITkv67pDUdjQqow8z6nHNj7Tymc+7BGdZ7UtKTcxwOgA6gpxlo\n3pcknWVm0eT43ZK+JqkUr2xmx5rZd80sb2Z7zezbZvaiWJ0FZnZDsH6HmX1OUm+dfV1uZj8P9rXV\nzL5uZs9vxZNyzo1IekTSkXWOu8rMfmRmI2a208z+1cwWR9ZnzewKM3vMzApm9pSZfcfMDgvWnxoM\nA3ljEHM+qDOph9HMXmtm95rZaHCsL5nZcyPrXxDs691m9tmgztNm9k/RNjGzRWZ2rZltCWLaYmY3\nmVkmUmeJmX3BzJ41szEz+79m9ppYPG82s/uDmPeY2U/N7G2NvLZmdndsOEz42Bypc7CZXW9mzwSx\nPGBmp9fZ1/vNbGPwnB43s8tizykcenOSmd1uZsNmtsnM3mreR4PXYkfwmvXMIP6WtEmd/a6WdLGk\ngchrcne4LnjNTwqPLelvgnWJn4PgNb/VzN4WvF7DwX6OjdV7j5n9IvLeXh99D1hkeIaZ3Sjpv0l6\nWSTeG6PxxvZ9pJl9zfzwpxEz+4GZnRyrs9nMPm9mfxHM7zX/78W0n+ugbr331N1zcXwz6zGzj5vZ\n74L33sNm9v7pYgQOFCTNQPNuleTkh2PIzA6XdJqkL8crBn947pG0RNJ7JL1X0pCke8zs0EjV6yS9\nQ9LHJP1JUP9jdY79XEmflPRmSR+UdLikdWbWP9snZWYpSUdI2hQrP1PSbZJ+I+ntkj4kPzzlq5Fq\nH5E/ZX2FpDcE87+TFI/rnyVtDvbzJUmXmdlfRI51kqQ7JRUk/RdJF8qfvl9bJ/m6TFJW0jmSrpT0\nfkkfjqy/UtJb5U/9/5Gk/yEpr+DfP/NJ/zpJJ0u6QP60+xZJ3zezFwZ1hiR9Q9JG+dP075Bv54Mm\nvYDT+0v5YTDh442S9kj6dXCctKTvBsf4mPyZiy2SbjOz6il/M/ugpGsl/SB4bv8UPOdr6xzzi5Ju\nD/b5W/kvdZ+W9HL59+Fl8q/ZB6YLvMVtEne9pH+RNKqJ1yY69KEniPtr8q/ZbUH5TD8Hy+Xb/3/J\nf7E9XNJNwXtdZvZaSTfIv05vlv/sfVfSwVPE+3FJ35H0aCTej9eraH7I1g8lvVL+NX6X/Fneu83s\nxbHqb5F0dvBc/kK+jW6YIobQWap9T50jP3wsfE+1+vhrgv18TtIfS/q6pKvN7F0JcQL7P+ccDx48\nGnhIWi0pH8zfIOlbwfyHJG0K5m+VdHdkmyslDUs6NFJ2hPwwj9XB8oslVST9WaSOSXpIPjl/zhTx\npCUdIqks6W2R8hsl/TLhubwn2Pfh8n9ID5cftzkq6dWxOH4n6aux7X8/2P41ked90zTHOzWo/2+x\n8i/Ln9JOBcvfkB8i0hOp86pg2/cEyy8Ilr8e29e3JD0UWf6lpE8ntOceSc+NlKUk/UrS9cHy2cGx\nFrTwfZSST9I2h+8L+QTYSXpTrN4vw/dT0N7PSvpabH//X/D+OSrWtn8VqRO+Zr8MX+tIu61PiLdl\nbZL0uapT7iSdm7D9VJ+Du+U/e4dHys4M9rk8WP6wpB0J+98s6fNJn6/485D010G7HBspGwja8MbY\n/p+U1BcpuyCIc/EM31M5+X8vfiypv9XH18Tn942x414j6ZFWfTZ48OjWBz3NwOx8WdIbg97Kd0v6\nyhT1XivpLufcs2GB82Mf1wXrJJ+AmHzPTVjHyScrNcwPb1hnZrvlh4Jsl0+ujmnyeTwl3zv1lKT/\nKemDzrkfRda/SD4hWmNmmfAh/8d5r3wvliT9VNKbzOwSM3ul1bm7SOCbseWvS3qe/BcJyb8m33LO\nFcMKzrn75P+wvza27fdiy7+K7CeM6T1m9jdmdryZWaz+G+R7bLdHnldK0trI8/q5fDL2ZfPDGxZr\n9j4h6TWSzoi8L14raZ9z7jthJedcRdJ/SHp18Hq+WNJzVNvDr2DZJP1BrPyOyL42y39RuzPYb+hh\nSUnDe1rZJs24JV7QwOfgIefc07F4FInpp5IONj9E5w1mNjDLWKNeK2mDc656Jxvn3LD8F5X46/ZD\nVztWOx5nkhvkv/ie6ZwbnYPjv0HSLvmzMNF/B+6UNGRmU/XMAwcEkmZgdu6StFPSR+VP739pinoH\nySekcU9r4hTwEknjzrlddepUBWMRbwnK/5v8KdmT5ZOhZi8+fL18gvh2SRskfd7MXhZZHw4h+YZ8\nch19LNTE+OfL5JPBP5F0n6SnzezSOsnzM7Hl8DkuCaYzeb1C8dcr/jp8UNK/yQ8n+JmkJ8zsQ7Hn\ndkad5/WB8Hk55x6WP22/UNJNkp41s9vM7Kg6MSYys3Plezf/q3PuZ5FVBynW3oGn5Yc7DGpiSEj8\n9Qm3S3p9xiXtjpXN5L3TyjZp1IhzLj5OuJHPQb14FNZzzt0l/559iXzv/3Yz+3Js6FSzZvu6VeOc\njvnrAs6Q72WPXojYyuMfGuwv/ln5j2D9pOsggAMJd88AZsE5Vzazr8onQA855zZOUXWnfA9Q3OHB\nOknaJilrZgfFEuf4dmfJ9+6+wzlXliQzO0R+3Gezfub83TMeMLMH5MdDflLSmyLxSz6RvK/O9s9I\nknOuIOkSSZcE44H/VP509ZPyp3BDh8W2D5/jtsjxpnq9NszsKXnOuT3yCfOFZvZS+bGynzGz3zjn\nbg+O9T3VHztejuzndkm3m9mgfI/bp+XPNPx+I/EEY4Ovl3SJcy5+FmG65z0uPxZ7Z6QsXkeR9a3W\nsjZpgqtT1tLPgXPuS5K+FPSWvkV+SNU/yI8Rno2d8mcH4qKf/VkxszfLj6k+zzm3fg6Pv1O+N/+N\nU6x/uMH9AfsVepqB2ftXSd+WTzKncq+k04I/6pIkM3uepFfLXyAoSffLJwdnR+qY/MVgUf3yCVT0\n9Pq7mw0+zjn3hKSr5IednBgU/1p+POvRzrkf13k8Xmc/v3PO/Z18wvzS2OqzYstnS9qqiVt13Svp\nTDPLhhWCnsUXaOL1aua5/Up+nGYlEtP3g/lf13lek24z5pzLB8nuv9d5XtMyfxeRb8pfyPZ3darc\nK2mBma2KbGPyr8+PguTwN/LjUd8Z2/ad8u+fexuJqQFz0iYRRUm9dYbPTGVOPgfOuZ3OuS/It9F0\n7TvT3vN7JR0bfGGTJJlZTv4iulm/bsHFfF+S9Jkg7rk8/vflhwaVpvh3YKTJpwHsF+hpBmbJOfdz\n+QuLpnOV/H2P7zCzy+S/sK6WPx36j8F+NprZ1yVdFdyN4LfydzeI/xLg9+UTv380s5vkT0n/mSZO\npbbClfLDGj4q6Z3OOWdmF0j6ajDe81b5+1EfKel0SZ91zt1nZt+SHx/6YLB+lfxY2Ttj+3+dmX0y\neC6ny1/R/1eRcbaXSfqRpO+Y2WflTwn/H/kxlg3dO9rM1slfiPZL+STrXfKJ1t2R5/ouSf8ZHGuz\n/AVlr5BUcM5dYmZ/Lj9W+Lvyyf2R8m3z/chxVsvfNu2Fwdjhev5dPtG6RtKrIvlhIUjQb5P/8vTv\nwen2J+XvPPESBT+kE5zd+DtJ/2Bmz8p/YTtRPgm/wTn3u0Zenwa0rE2msFH+b9IFZnavpL3Oud9M\nU79lnwMzu0T+c3a3/LCFl8oPdbg+Id73mtm75b/IbJ+i3W+QP9Nxq5l9TP5swYflL8b7RKOx1nGz\n/PCLb5hZ9KzH3uBLYsuO75y7M/iMfzf4/D4k/+XlxZJe6Zz7L7N+NkA36/SViDx47G8PTXGVf6xO\nzd0zgrLj5MdL5uUTylslHROrs1DSF4L1YUL954rdPUP+PrVPSBqRv4jtZcF+V0fq3KiZ3z1j0p05\nJF0qPzzhmEjZafIXyO2TvyPBRvlT2IcH6z8sn/TtDuJ5UH7cbrj9qcHx3iTf4zosn6R8rM7xT5Hv\nJRsNXosvq/YOFy8I9nX2dO0j6e/lxzLvk79Lxo8UuTtFUOcw+du1bZFPurbIj5f9o2D9CvnkdIv8\nLdcel/R5SYsi+/ikpDFNc6cD+YTc1XlsjtQ5WP72a9uD/T0gaVWdfb1f/gxAUT65vlxSNqlt4++T\noOwT8klf0nu/JW0yxb4z8u/3pxR8qUnaVjP7HNwt6dbYdjVxyve6fj94L47J327xUtXeKWSzau+e\nsVD+wt/twb5unCpe+S9Z/xG8/0aCmF5Z573x+VjZqcG+XzHN61bv/eRUe/eelh1ffmz930bee9uD\n98T5Se8fHjz294c5V2+oGAC0npmdKp/cnOyc+3GHw2kpM7tH0i+cc/V+WhkAsJ9jeAYAzJL5X9M7\nQf4ODACAAxBJMwDMkvP3Ll7Y6TgAAHOH4RkAAABAAm45BwAAACQgaQYAAAASkDQDAAAACUiaAQAA\ngARdcfeM4BfGXiVpm/wvdgEAAACtlpW0RNJ9zrnhRjbsiqRZPmFe2+kgAAAAMC+slHRXIxt0S9K8\nTZLuvPNOLV26tNOxaHh4WOvXr9eKFSs0MDDQ6XAg2qQb0SbdhzbpTrRL96FNuk+72uSxxx7T61//\neinIPRvRLUnzuCQtXbpURx99dKdjUT6f1+bNmzU0NKTBwcFOhwPRJt2INuk+tEl3ol26D23SfTrQ\nJg0PB+ZCQAAAACABSTMAAACQgKQZAAAASEDSDAAAACQgaQYAAAASdMvdM4A5V6k4lZ1TxTlVKvJT\n51RxkgumYZn8/6o4p2BRLpiXNDGVm/HxTSazyLJJKfNlJlPKJIVl8tOUmSwVzk/UTwfrUimb6nAA\nAKCFSJrREOecxstOhVJZhVLFP8Yn5ouligqlsorBfLE8UV4sVTRe9g+/zlWX/cMvl8JpZWK5MD6u\nnbvSunbzT+SUUrniy0sVp3Lw8POV6nI5SI7Lzi8fqFImpVM+iU6nzCfUqWA+WA7nMym/LhNZ9tOU\nn6bDspSyab8um04FU18vk/ZlldK4nngipUfueUwDuT5lgrr+EZvPpJRNTcz3RNb1RJZ7MhPlZnwh\nAAB0D5LmA0il4jQ6XtZIsayRYknDhbJGx0vBclmj4XS8rLFxvzw6HixHy8fLGhuvaCxYHhv3ifDY\neEVjpXK1l7X9TMrnO3XwrlVxUqXspAZ6vVsnpe89uXlO9hwm0zXT2HxvveVMSr2Z9JTLE4+0erPB\nNJNSX2Q+XNeTTtGbDwCQRNLccePlivaNlZQfK2lfYVz5sZLyhcgjsjxc8IlwvlCqJsUjxZLywXSk\nWO7005Hkk53eaJIT60nsSaeUzZh60ill0uG6oGcyk1I2Zcqkgx7NoGezUhrX5kc36cXLjtFAf19t\nL2na94xmIr2tYY+q73VVtbfVIr2x4fCIVGT4g1Q7DCIV9HaaSRYMmwiHU4QdodOlVGEa64d4uMj8\n5OEeTrVDRZzzW5QrrjpMJJwPh5KUK06Vil/2PevRXnZX7WUPe+Ir4dS5oKe+onJFvuc+Uq8U9Pz7\n5Yle/bDnv1SpaKw4rme279DCRQepIqueKaieJQjOJpQq/sxCqexULFdm/D4Kz06oMPP33lzoiSbZ\nkeS63rQvG9ZJqzcyX1Mnk66W+WlsPuM/FwCA7kLSPAvOOY2NV7R3bFx7Rse1dzSYjo1r72hJe6Pz\nY+PaN1bSvmC6N5gvlGaeRDSrJ51Sf09auZ60+nvS6s/6+b6sn+/vSasvE0yDP+D9sT/m9ZKE3mBd\nTzoV9Nj5BHguTqvn83mtLTyila86gl9v6hL5fF5r167VypXLZ9wmzk0k3364TnTeD+WZGL4zMV+I\nDPcpRob7FCPro3UK4+VgGg4RKlfnx8bL1W3GxstKGrkTHmufSi141WYmk7LJyXbwea2XcIflKVfW\n49tMO3+6VYsGc5Pq9tdMJ5J8hsIAQDKSZvk/5PsKJe0eHteukaKe2rlXP9lueubHWzRSSmn3aFF7\nRsa1O0iK94yOa/eIT5Ib6TmbqcHejAZ7MxroTWuwL6vB3rQGesIy/xjsTfv5noxywfpcjy/L9aSV\nC8pz2TS9VugaZlY9q5Dr6XQ0Xiky7n4sSK7DhDpMvMeCcftj1fH7sWFLYfl4ubqPsdLUw5wKpbLG\ny1Nn66WKC84wNfOM0vrm5t/OuLaZql+a+7P+y3C95Lr2S3ZKfT3xJHxiH9FEvj9SL81QFwD7sXmd\nNH/iu7/W13/yhHaPjKs0qbspLf32kYb3Odib0cK+jBb2Z7WwL6uF/Rkt6MtqYZ+fLohMF/ZnNdib\nCcqCpLgnwxhKoI0ywTChgd72HjdM1sfGyxor1SbXk+YnJeB+eTRWb3isqGd37VG2b0DFsqvWHZ2m\nR905Va9tmGs9aT+8JZpIh/P92XQkEU9NKuuP1p1i+/4ees4BzJ15nTQXSxVtzxcnlfekTf2pig5b\nPKiDB3u1OJfVov6sFud6tKg/W/NYnPPJ8aJ+nwjTqwtgJiaS9db9MzwxZObkmiEz4V1vxkr+ot9o\nwj0aScTDi4BHi+Vq3dFJCXqsXlA2Ekngp1Is+yEye8fmbqhLvOe8L5tSricTScBTkcQ7o/6ecDlT\nM3QtOpytukxiDsxr8zppPuvE5+nlSxfroFyPFueyOijXo4NyPSoXR4M/PK9g/CyA/Z6ZqSfjb++3\nsC87p8dyzqlQ8gl1mEiHyfVoOF+qVBPy8I4/hdh6f3efUk1yHtYdDcal1z/+3Pecm2lygh3p9c71\nZGoS75Qra+sWP+Rv0WAuGEIXbpup2T4XXGPCGUeg+8zrpPm4IxbpuCMWTSqv0/kMAJgBM6uOgT5o\nDo9TrrjaRDwyP5F8lzVarATL/g5DYa/5aLEUSdgrGhkvBfupaCRYN1WvuXOq3spz5tK65fGZD/mL\n9pBXL+Su6QHPxJLvcF2mWicXJOXR7ekpB5o3r5NmAMD+KZ2y6oXRc6VScUHiXQ4S7ome7uh976tJ\neNEn32Oxe+LvGy3qqe271JMbVKHkgvvml6Yda+7Hqc9ND07KNCmZDi8kn0jMM5FEfHICnouvD5ZJ\nyHEgI2kGAKCOVMqCZDCjQ2axn4mx5q+YNNY8vBh0JJaYjxRLU5TX9pKHyftI8CNVYY95mLTX+zGq\nilP1/v+tFk/Io8n15GQ7uOtTMD8QJOBh8h7eDSpM2rlmCJ1G0gwAQAdEh7IszrV+/+FvCYQ/fhX9\nxdhqYh3+gmzNr8bGf0m2dvuwrF4v+Vwm5D2ZlAYmJeLBfG8k6Y7ccjUX3pq1J9Kb3pOWxgsaLanO\nnbOAqZE0AwBwADIzP/65Jz2rnvJ6ohd8DkeS8DDpHi5MTshr69Um5uG64WJpyrHk4Q8N7RoZb9Gz\nyOgjD/xnTTI+0DvR652r/v5BsC6SnId1a6Zhsh4MeWGYyoGHpBkAADSk5oLPgdb+UlG54oJe7ZJG\nCpOT7In5ibLhgk+684WJoSvDhcn16ml9Mu7vsDLR010/yR7srf1Rsql+sCxM1nNZ7qrSaSTNAACg\na6RTVv1lXC1o3X7DCzuHC2U9u2uv7r73RzruxFdImR4NF6K94qWa5ZFCJDkPEvkwOR8ulFSoc/tD\n56ThYlnDxbKebd1TqA5JGQgS62gi7pcnJ9thvYE6831ZLtxsBEkzAAA44EUv7Oy3fj1vQDrx+Ytm\n/XsMpXJFI+ORnu1CkFwXJ4apDAe93flCqaYHPEzO84UgWY/0kNcTJu/b87MKuSplmujdjibVQQI+\nab5axyflNeXBuvQB3BtO0gwAANCkTDqlhenW/nBQpeI0Mj6RWIeJ9HChVO3tjibiI4WgVzxIwKP1\nfVn9seIVJ+0rlLSvUJJUaEns/s4ndXq2I4n2YLD8+pccpqMPa+HphDlG0gwAANBFUnMwRKVccTUJ\n93Bwl5OJ5XI1wa4m6IWJ3u/haFmwXK5z95Hw3uXbZ/BLcc9b3E/SDAAAgO6RTpkW9mVb1iMe3kHF\nJ9G1iXjYOz5RFk3C/fp8oaTDF/a1JJZ2IWkGAABAQ6J3UDlkdsPC9xv8vA4AAACQgKQZAAAASEDS\nDAAAACQgaQYAAAASkDQDAAAACUiaAQAAgAQkzQAAAEACkmYAAAAgAUkzAAAAkICkGQAAAEhA0gwA\nAAAkIGkGAAAAEpA0AwAAAAlImgEAAIAEJM0AAABAApJmAAAAIEFTSbOZfcrMHjOzvWb2lJndYGaL\nWx0cAAAA0A2a7Wm+XtKxzrmFkpZJ6pP0mZZFBQAAAHSRTDMbOed+HSuqSHrRTLY1s4MlHRwrPlKS\nhoeHlc/nmwmppUZGRmqm6DzapPvQJt2HNulOtEv3oU26T7vaZHh4uOltzTnX3IZm50u6QtICSaOS\n3uWcu3kG262WdHG9dVdffbWWLFnSVDwAAADAdLZt26bzzz9fkl7knHukkW2bTpqrOzB7gaT3SvqK\nc+5XM6g/VU/z2oceekhDQ0OziqcVRkZGtH79eq1YsUK5XK7T4UC0STeiTboPbdKdaJfuQ5t0n3a1\nyaZNm7R8+XKpiaS5qeEZUc65zWb2bUm3SjpqBvV3StoZLTMzSdLAwIAGBwdnG1LL5HK5rooHtEk3\nok26D23SnWiX7kObdJ+5bpOBgYGmt23VLecykpaaWW+L9gcAAAB0jYaTZjPrNbM/N7NDguUhSZ+Q\ndLdzrtDqAAEAAIBOa7an+SxJvzGzYUl3Sdoo6ZyWRQUAAAB0kYbHNAe9yavmIBYAAACgK/Ez2gAA\nAEACkmYAAAAgAUkzAAAAkICkGQAAAEhA0gwAAAAkIGkGAAAAEpA0AwAAAAlImgEAAIAEJM0AAABA\nApJmAAAAIAFJMwAAAJCApBkAAABIQNIMAAAAJCBpBgAAABKQNAMAAAAJSJoBAACABCTNAAAAQAKS\nZgAAACABSTMAAACQINPpAAAAADC3KpWKSqWSKpVKp0Opq1gsKpPJqFgsamxsrOn9pFIpZbNZmVkL\nowv23fI9AgAAoGvk83nt2bNHpVKp06FMqbe3VyeffLJ6e3tntZ9isajdu3fLOdeiyCbQ0wwAAHCA\nCnuXDzrooE6HMq1yuazx8XH19fUpnU7Pal/5fF7j4+Pq6elpUXQePc0AAAAHqFKp1PLksdtlMpk5\nGYZC0gwAAAAkIGkGAAAAEpA0AwAAAAlImgEAAIAEJM0AAABAAm45BwAAME+UyhU9va/Q1mMevqBX\nmfT+309L0gwAADBPPL2voD/4xF1tPea6j5ym5y3un3H9G2+8UatXr9aOHTu0atUq9fX1aenSpbr0\n0kvnMMpk+3/aDwAAgAPCtddeq8suu0y33nqrdu/eraGhIX3lK1/R8uXLOx0aPc0AAADzxeELerXu\nI6e1/Zgzkc/nddFFF+nmm2/WscceK0k677zzdMUVV2j58uUaGRnRypUrtXHjRl1zzTU655xz5jLs\nSUiaAQAA5olMOtXQUIl2Wrdunfr6+nTKKadUy7Zv367BwUENDQ2pUqnom9/8pq655pqOxMfwDAAA\nAHTcjh07dNhhh9WUrVmzRscff7zMTOl0Ws997nM7FB1JMwAAALrAsmXLtHHjRt1///0aGxvTNddc\no+uuu04nnHBCp0OTRNIMAACALnDSSSfpwgsv1Omnn66jjjpKW7Zs0bJly7riIkCJpBkAAABd4vLL\nL9euXbu0detWXXLJJXr44Ye7JmnmQkAAAAB0nUcffVSFQqF6Jw1Jevvb364HH3xQAwMDuu+++3TV\nVVe1LR6SZgAAAHSdDRs26JhjjlEul6uW3XTTTR2Lh+EZAAAA6DpnnHGGNm7c2OkwqkiaAQAAgAQk\nzQAAAEACkmYAAAAgQcNJs5n1mtk/m9kmM8sH04/MRXAAAABAN2jm7hkZSc9IeqOkRyS9RNJ3zGy3\nc64zPwYOAAAAzKGGk2bn3LCkj0WKNpjZ1ySdIikxaTazgyUdHCs+UpKGh4eVz+cbDanlRkZGaqbo\nPNqk+9Am3Yc26U60S/eZT21SLBbV29urcrnc6VCmValUaqazUS6XVSgUVCqVJq0bHh5uer/mnJtN\nXDKzlKT7JN3knPvEDOqvlnRxvXVXX321lixZMqt4AAAA4GUyGZ188snq6enpdChtUywW9cADD9RN\nmrdt26bzzz9fkl7knHukkf22Imn+tPxQjVc65xK7iafpaV770EMPaWhoaFbxtMLIyIjWr1+vFStW\n1NxQG51Dm3Qf2qT70CbdiXbpPvOpTcKe5r6+vk6HMq1KpaLh4WENDAwolZrdfSrGxsZUKBTqflHY\ntGlT+LPcDSfNs/pFQDO7VNJbJZ06k4RZkpxzOyXtjO1HkjQwMKDBwcHZhNRSuVyuq+IBbdKNaJPu\nQ5t0J9ql+8yHNhkbG5MkpdPpDkcyM6lUataxptNp5XK5ul8UBgYGmt5v00mzmf29pDPlE+YtTUcA\nAAAAdLmmkmYz+6ykVfIJ89bWhgQAAIA5US5J+7a195gLlkjpmaecN954o1avXq0dO3Zo1apV6uvr\n09KlS3XppZfOYZDJGk6azWyppL+WVJT0cDi0QtI9zrk3tjA2AAAAtNK+bdJnjm3vMS/4pbT4+TOq\neu211+qba5CoAAAceUlEQVSqq67Srbfeqpe85CW66KKL9KlPfUpr1qyZ4yCTNTzS2jn3mHPOnHO9\nzrnByIOEGQAAAE3J5/O66KKL9C//8i869thjlU6ndd5556lcLmv58uXasGGDXvOa1+iUU07Raaed\npkcffbSt8c3qQkAAAADsRxYs8T2/7T7mDKxbt059fX065ZRTqmXbt2/X4OCghoaG9Oyzz+q2227T\nokWLdPvtt+vjH/+4brjhhrmKehKSZgAAgPkinZnxUIl227Fjhw477LCasjVr1uj444+XmdWsy2az\nbb8jyOxuhAcAAAC0wLJly7Rx40bdf//9Ghsb0zXXXKPrrrtOJ5xwQk290dFRXXzxxfrQhz7U1vhI\nmgEAANBxJ510ki688EKdfvrpOuqoo7RlyxYtW7Ys/DESSVKpVNK5556rD3/4wzruuOPaGh9JMwAA\nALrC5Zdfrl27dmnr1q265JJL9PDDD1eTZuec3ve+9+n000/XmWee2fbYSJoBAADQdR599FEVCgUd\ne6y/Rd73vvc9fe1rX9OaNWt06qmn6oILLmhrPFwICAAAgK6zYcMGHXPMMcrlcpKkVatWaWRkpGPx\n0NMMAACArnPGGWdo48aNnQ6jiqQZAAAASEDSDAAAACQgaQYAAAASkDQDAAAACUiaAQAAgAQkzQAA\nAEACkmYAAAAgAUkzAAAAkICkGQAAAEhA0gwAAAAkyHQ6AAAAALRHqVLSsyPPtvWYh+YOVSa1/6ec\n+/8zAAAAwIw8O/Ks3nDTG9p6zDvefoeWDC6Zcf0bb7xRq1ev1o4dO7Rq1Sr19fVp6dKluvTSS+cw\nymQMzwAAAEBXuPbaa3XZZZfp1ltv1e7duzU0NKSvfOUrWr58eadDo6cZAABgvjg0d6juePsdbT/m\nTOTzeV100UW6+eabdeyxx0qSzjvvPF1xxRVavny5Nm/erHPPPVfZbFalUklXX321jj/++LkMvQZJ\nMwAAwDyRSWUaGirRTuvWrVNfX59OOeWUatn27ds1ODiooaEhlctl3XvvvUqlUrrrrrt0+eWXa82a\nNW2Lj6QZAAAAHbdjxw4ddthhNWVr1qzR8ccfLzNTJjORtu7du1cnnHBCW+NjTDMAAAA6btmyZdq4\ncaPuv/9+jY2N6ZprrtF1111Xkxw/9NBDWrFihT7wgQ9o5cqVbY2PpBkAAAAdd9JJJ+nCCy/U6aef\nrqOOOkpbtmzRsmXLai4CXL58udavX69bbrlFH/jAB9oaH0kzAAAAusLll1+uXbt2aevWrbrkkkv0\n8MMPV5PmQqFQrbdo0SLlcrm2xsaYZgAAAHSdRx99VIVCoXonjXXr1mn16tVKp9NyzunKK69sazwk\nzQAAAOg6GzZs0DHHHFPtUT7ttNN02mmndSwehmcAAACg65xxxhnauHFjp8OoImkGAAAAEpA0AwAA\nAAlImgEAAA5QqVRK5XK502G0VaVSUSrV+hSXpBkAAOAAlc1mNTo6Kudcp0Npm0KhUPPrga3C3TMA\nAAAOUGamxYsXa8eOHerv71c6ne50SHWVy2UVi0WNjY3NKsZisahsNktPMwAAABqTyWR0yCGHKJvN\ndjqUKRUKBT3wwAM1P2DSjFwup8HBwRZFVYueZgAAgAOcmamnp6fTYUypVCqpVCqpp6dHfX19nQ6n\nLnqaAQAAgAQkzQAAAEACkmYAAAAgAUkzAAAAkICkGQAAAEjQVNJsZueY2Tozy5vZ5hbHBAAAAHSV\nZnuad0r6nKT/3cJYAAAAgK7U1H2anXN3SJKZnd3acAAAAIDu0/YfNzGzgyUdHCs+UpKGh4eVz+fb\nHdIkIyMjNVN0Hm3SfWiT7kObdCfapfvQJt2nXW0yPDzc9LbmnGt+Y9/T/Cnn3Asa2Ga1pIvrrbv6\n6qu1ZMmSpuMBAAAAprJt2zadf/75kvQi59wjjWzbiZ/R/pykL8bKjpS0dsWKFRoaGupASLVGRka0\nfv16rVixQrlcrtPhQLRJN6JNug9t0p1ol+5Dm3SfdrXJpk2bmt627Umzc26n/IWEVWYmSRoYGNDg\n4GC7Q5pSLpfrqnhAm3Qj2qT70CbdiXbpPrRJ95nrNhkYGGh626aSZjNLS8oGDzOzPklyzo01HQkA\nAADQpZrtaf5TSTdElkeDqc0uHAAAAKD7NHWfZufcjc45iz9aHRwAAADQDfgZbQAAACABSTMAAACQ\ngKQZAAAASEDSDAAAACQgaQYAAAASkDQDAAAACUiaAQAAgAQkzQAAAEACkmYAAAAgAUkzAAAAkICk\nGQAAAEhA0gwAAAAkIGkGAAAAEpA0AwAAAAlImgEAAIAEJM0AAABAApJmAAAAIAFJMwAAAJCApBkA\nAABIQNIMAAAAJCBpBgAAABKQNAMAAAAJSJoBAACABCTNAAAAQAKSZgAAACABSTMAAACQgKQZAAAA\nSEDSDAAAACTIdDoAAGgb56RKaeJRHpcq5dqyqZZdtLwSWQ7XV/y8K8emlYlHzXI472rrTHq4iTpy\nE2Vyk6a94+M6YcuT6v3e7VIm7ddpYjIjFpsx8/NmE+XVstTk+UllUz3qrE+lJUtLqbAsLaUysfJ4\nWfjITDwsNTGfzk5eH32ks8E2JgCYDkkzgNlxFWl8VCoVpHJxYlp3flwqB9PqurAsnC9OMT9eWx4m\nveWiVBmXyqVgOh5JiCPlYcJ7AMtKeoEk7ehsHPslSwcJdFZKZ4JpNlIWne/xddI9kXU9teXp3mp5\ntiId/fRjyv50s9Q/KGV6I/V7pExQPyyvTvtq59NZknugg0iagf1dpeKTzvFRqTTmH+NjUilIZMOE\nNlwujc1wGpkvR5eLUmlMA6WC3jI+ptSD5U6/Au0T7eWs9mhGejxrekNj5WaR+UjPqizSsxo8anpp\ng3kpthzt8fXT8VJJTz31lJ67ZImymezEemlmyZaLdkm7SNnkXu3J08rE9pN6yuv1nkd72yO99M5F\neuSD3vp6Pfg188EZg4a61OPPvSyVypLGmt/HFHolvUyStrZgZ5m+iQQ7TKqTptn+YLk/stznH9k+\nX15vms1N1EsxmhMgaQbmQqUSJK+j0vhI/WlpLFIWPEqjseWx+tNq3TGf0HZAJB2bWe1471o6G5T1\nRnrqspF62VgvXjANT6lX58O6mdh2kd7CVDoyX+fUfLi+ui4dKYskyF3ey1fI5/XTtWu1cuVKZQcH\nOx1O+9UMm6kz3KY6HCd6NqJUe2aiUo6cpRivna+UJp/5iNare5akqHJxVHt2bteiwT6lXTl2BqY4\n8aV0Jkl/+MW43R/7TF+QbPf7aTYXJNbhfHQanR+oLevJBevi8wPBl0ige5E0Y36qlKXisE9aq9MR\naXw4mI5G5of9cnEklvgG88XhSKI7MpHQdouaXqe+Or1R9dbFerLSvf4UcqSXa3S8ogd/vkHLT/59\n5QYXT2wTPb0czjNmFO2QSklK+S9DXWQ0n9c9wZeZwam+zITj7WuGORVqk+opz/5MNQ3POtUrG508\ndZWpn0S4rXbNyWskyf/b0pPziXZPJJnuGagzP+jr9AwE9es9Bv0j0zN3MWNeIWlG93LO/yNdHJbt\nfkYLRp9UautPpIzziWpxRCrmJxLfaBJcdz6SFHeod1aS/8MQ75XJ9MV6b3KRnp2+ifKasnrT2CnY\ndO+cnVYt5/N6drOpcsSrpPnYqwm0ktnEuOlOcC641iCaTEfPeI348npnxMaHJ9aNj8TKoh0MwXxl\nvH4M5YI0WpBGW5yYp7KRJNon1H2Zfr1yz4h6x74p5Rb78t4FE/Vq5gelngXBNNgHnQDzEkkzWqNS\niSSp+eAxPLFcyEfWDdeui89H9xP0fAxIOk2Sfj3HzyPdM9GjESa1k+b7J04pRk85ZvqD3pFIQlwt\niywzNhBAtzELzib1SH2L5vZY5fHIGboRTX/WL1Ze01GSD8oif0NcnWssKuPS2G7/CGQkLZGkPQ82\n8QRsIrEOE+neQal3YZ3yhcHygonyaFk2RwK+HyFpnq/KJam4rzaZLeybYj5MgoO68eWwXrukMrFT\ncsGpumlP5dU55Revk835cbAAgLmTzkr9i/2jlZwLLn4eqf37VNg3kWgHf9uK+Z16/JGNWrrkEGUr\nhdoOn0JsOmmsufN/P4v7pH2zjNlSQQIdT64XRMqDdX0La8v6Iuuy/STfbUCGsL+oVGIf6H2xD3bS\ncmy+1PorxOvKxsaX9Q7WLmdzvmzSmLTBmuXhcemH63+iU16/SoOLDm5P7ACA/YdZMLytT8pN/3ei\nmM9rw9haPTfpolnnVNuBNMXf2sK+iQ6n+HwhLxX2+vl4T7irSGN7/GM2UplIIr1A6l00kVTXncbW\n9y2i13sGSJrnUnk88uEJP1TxD1jwYar5drtv8nbjw3MfbyoTGcsVJK3VMVzRhHdBZF3kYovomLAW\nXw3t8nmNZ37th08AANAOZsGQikFpwSz3FV6nMxb+zd878Tc+TKqr032+XjXx3hMp2zv5nvOVkjS6\n0z+aZWmfPIdJdG8wjT6qZQvrlx/gd0AhaY4rj0uju9RfeFapZzdKO8uRN+1U3ySjCXHkW+hc9+Za\nevIFCtXpgmmWB2IXNQTlmd65jRcAgPnKbOLibx3e/H7CYShhgj22JzIfJNXV6Z7YcqQ8nqO48uwT\n754FkxPt+KN/8cT8YS+VBp7T/PHabH4nzfdcKW34Rm3Pb2lMg5LeIEm/moNjZvoiFw0smEheq0lt\nZDop4V1QmyRn+jiVAgDAfBIdhjJ4WPP7KRUnJ9Z15/fUPqJl8dsUhmO99z45sxjedr10/Duafw5t\nNr+T5n1PSU/9IrleeE/ImqQ1nuwurE1ya66kjdTrsvuHAgCAeSjTI2We03xPbzjeO55Qj+4OEuvd\nE+Wjuycn32N75v5OLS02v5Pml7xZOviFsZ7cBRoppXTvj3+mV79ulQYPOpw7KgAAAERFx3svel7j\n2zvnH/uR+Z0NvvAU/4ip5PMa7dnivwGRMAMAALSW2X43xLSpX1kws4yZXWVmO8xsj5l9wcwGWh0c\nAAAA0A2a7Ub9W/lr5ZZLGpF0k6SrJL2/RXG1xecf/Lxu2XSLXHDjchecJqi4igpjBX3mts/Igm9B\n8ToudrPzeuXxbWrWRzav1otuW2+bOserKZtNvTpl9Yo6xcnJOaeLv3GxTJFvplN8SbU6K+qW1fmW\nG9arty6pXrWsTowmq9aNrp92P9Pte5r9Rsuiy/H91sQRrJ9UJ7pdZD+VSkX79u3TF9d+Uel0enIc\nNjmeuseLHjfYpqZ+nbIpy23y8aJ1U5aaul7s9UkpNaleuH00/mrZFPHUnU6xLnrMerFGyyYdX1Kx\nWNTG4kaNPz6uvr6+ydtEjlPvNYmvD9elLFUTU3y5XjzR5xPdf3ybeJ1w32Hd6Y4djz1lE68fALRa\ns0nz+yR91Dn3hCSZ2UWS7jSzDznnRqfb0MwOlhS/6/iRkjQ8PKx8vn2/LLc9v13bhrdNXaFNv/+B\nBtT5YSZ01tbdWzsdAmJueuCmTofQUVMl9vWS+Hh53S8EqpP4T1M/fhxXccrvy2vNXWuUSWcmJ//h\nl5T4F4ipvnQkHXuaL2Xx49T70jSb8nqvXTTmeLmkKWOb6jjTtXHSNmHZ2NiYtpW26RdP/UL9/f21\nr5E0bQzxmKeqZ5r8hb1m33WOUe/Y88XIyEjNdK4MDzf/uxcNJ81mtljS8yX9JFL8U0l9kl4k6ecJ\nu/hrSRfXW7F+/Xpt3ry50ZCadmjpUJ2dO7u6HL5ho/P1yqJmUhZ/0890P81sk7SfRuu1ettm1e0J\nb9H2Sfueac/8jMsSev8nncWod/aiwfpyyftp5Fj19jtVTC74r9729c6uJNWdclpn+6nmJ9Vr4Ng1\nZW7qfU9Z7pLjq/fckvZdUWXauKY8hnPTr69zrG7n5FQOfnmtHP8Ftk7a1ekAMMm6TgcwM9UkXJPz\nk2mnNn0+kzStt594PNNuN0WZ5HOj0/tO19HZo2ue6/r16xNejdnZtm2aztIEzfQ0h7+JU/3NR+fc\nqJkVJS2cwfafk/TFWNmRktauWLFCQ0NDTYTUWiMjI1q/fr1WrFihXC7X6XAg2qQb0Sbdpx1t4pxT\nRZWa4WzhcvilIJxWVKkm8JXgfq5lV65J7MPyiqvUbF9djteJJvnxutHlqeq5OvtU/f04V3/f0ect\np5rnX28fhWJBjz3+mJ7//Ocrk83Ufb2Snlv0ONGYpztuPK6ZvIY1x5kiznrtlfR61du27n4Sjpe0\nTfjl8UATvsZNbNiqAObE0ccerZVHrJTUvr8pmzZtanrbZpLmfcF0kaRtkmRm/ZJ6JO1N2tg5t1NS\nzc/NhD2xAwMDGpzuN+DbLJfLdVU8oE26EW3SfWiT7pLP57X2mbVaefxK2qVNpvsyUnEV7cvv090/\nvFt/+Id/qNxAruZL4FRfnKL7rdap8wVk0nSKMoVnhGawj7rHVu1Zpbp16x0vXi5NisUXucln4SL7\nrb7W021X78xapO6Jv3fipM/EXP/7NTDQ/H0rGk6anXO7zewJSS+X9Oug+OXyI4B/23QkAAAALRAf\nzxxXyVbUZ30azA5qsIcvMpiZpm45J+l6SR81syPM7BBJl0r6YtJFgAAAAMD+qNm7Z1wufweMnwf7\n+JakC1oVFAAAANBNmkqanXMl+SSZRBkAAAAHvGaHZwAAAADzBkkzAAAAkICkGQAAAEjQ7IWArZaV\npMcee6zTcUjyP7G4bds2bdq0aVb380Pr0CbdhzbpPrRJd6Jdug9t0n3a1SaRXDPb6LZW7yd9283M\nTpO0ttNxAAAAYF5Y6Zy7q5ENuiVpHpD0KvlfGBzvcDhS8LPeklZKerzDscCjTboPbdJ9aJPuRLt0\nH9qk+7SrTbKSlki6zzk33MiGXTE8Iwi6oWx/LoU/6y3pcefcI52MBR5t0n1ok+5Dm3Qn2qX70Cbd\np81tsrGZjbgQEAAAAEhA0gwAAAAkIGkGAAAAEpA017dT0iXBFN2BNuk+tEn3oU26E+3SfWiT7tP1\nbdIVd88AAAAAuhk9zQAAAEACkmYAAAAgAUkzAAAAkICkGQAAAEhA0gwAAAAkIGkGAAAAEpA0AwAA\nAAlImgEAAIAEJM0AAABAgnmZNJvZOWa2zszyZrY5oe7/NLMHzWyvmW01s+vMbHGbQp03GmyTd5vZ\nRjPbbWY7zewOMzuuTaHOG420SWy7NWbmzOwVcxjevNXgZ+U9ZlYO6oaPy9oU6rzR6GfFzI4xs28H\nf1d2m9l32hDmvNLg5+S7sc/IaPBv2MvbFO680WC7ZMzsU2a2Jfis/NjMVrYp1LrmZdIs/7vmn5P0\nv2dQNyvpfEnPkXS8pOdLumbuQpu3GmmTeySd6pxbLOlwSd+VdMscxjZfNdImkiQzO0P+s4K502i7\nbHTODUYeF81hbPPVjNvEzA6XdLf8v1tLJB0q6eK5DG6emnGbOOfeGP2MSLpM0q+dcz+d6yDnoUb+\n/forSe+Q9FpJi+Vzr5vN7KC5C296mU4duJOcc3dIkpmdPYO6n4gsbjezf5B03VzFNl812CaPRxZN\nUkXSkWbW65wrzFGI804jbRLUWyzp05JOl/TIHIY2rzXaLph7DbbJhZLudc79U6TsgTkJbB5r9nNi\nZibpvZL+YS7imu8abJchSXc55x4NtvlX+cR5SNKP5yzIaczXnubZWCnp550OYr4zs+PMbLekMUlX\nSbqChLnjrpR0nXNuU6cDQY0hM3vGzB4zs+vN7NBOBzTPvU7SbjO7x8x2mNn9ZvaGTgeFqj+SPwPw\nhU4HAl0naXkwnCkt6f2SNkv6ZacCmpc9zc0KTj2/T9JrOh3LfOec+4WkxWa2SNJ75D9I6BAz+yNJ\nJ8r/o4bu8Z+SjpP0qKQjJP2jpG/In+5EZxwi6VxJfyzpR/Knn79lZsfxhbMrvF/SN5xzOzodCPQ7\nSfdL+o2ksqS9ks5wzo11KiB6mmfIzP5Y0g3yDUZPc5dwzu2RP412o5kNdTqe+cjMBiRdLenPnHOl\nTseDCc65R51zjzjnKsGwpj+X9Boze16nY5vH9kn6lnPuh865cefclyX9Qn5YEzrIzA6T9FZJ/9zp\nWCDJ/105Rv4Lf6+k/yrpFjNb1qmASJpnwMzOkvTvkt7unPtBp+PBJCb/gTqq04HMUy+S9EJJt5vZ\ndjPbHpTfaWb/q4NxYTIXTK2jUcxvP9NEO4Tiy+iM/y7pd865uzsdCCT5s5dfcM5tcc6VnXO3yp81\ne12nApqXSbOZpc2sT/7OGGZmfcFyvbrvlO9hPouEee402CbvMbMXmHew/JW4I+rQhQEHqgbaZIOk\npZKWRx6SPwX92bYEO480+Fl5k5n9XjD/XPnhGfc7555sX8QHvkbaRL4X8wwze7WZpYK/McdJur1d\n8c4HDbZJeAHg+8SF/nOqwXZZL+lPzOzw4O/9KkkvlfRgu+KNm5dJs6Q/lTQq6cuSjgzmRyXJzP7W\nzDZE6l4haVDSbdH7OLY74HmgkTZ5mfxt5/KSNgb1X++c29XWiA98M2qT4BTzk9FHsP0zzrm9nQj8\nANfIZ+V1kn5iZiOSfiJpj6Qz2xvuvDDjNnHO/Uj+Nqb/Jj9G8/+XH/b3aLuDPsA18jmRpFODeje2\nL8R5qZF2+bD89UoPyn9WrpT0V865+9oZcJQ5x1khAAAAYDrztacZAAAAmDGSZgAAACABSTMAAACQ\ngKQZAAAASEDSDAAAACQgaQYAAAASkDQDAAAACUiaAQAAgAQkzQAAAEACkmYA2M+Z2SfN7Ht1yq8x\ns890IiYAONCQNAPA/u+Vku6PFpiZSXqrpG91JCIAOMCQNANAh5jZVWb2YzOb9G9xUD5tL7GZ9ZhZ\nUdIpkj5mZs7MfhWsPllSr6R7g7obgvX1Hqtb+8wA4MBD0gwAHWBmyyR9UNLfOOcqdapslHRiwm5K\nklYE86+StETSHwTLZ0q6zTlXCpbPCqZvCur9nqQRSe+VdEUzzwEA5hOSZgDojA9L+plz7gdTrN8p\nn9zKzN5kZr8xs0fM7INhhSDZXiJpn6QHnHNPOed2BavPUO3QjMMlOUn3OOeekjQgKSfpXufcaCuf\nGAAciEiaAaDNguEYZ0v6eqTsqmhCLGmBpGEzy0j6nKTXSzpe0l+a2RGReifKJ98usq+jJR0lKXpx\n4AmSHnXO5YPl5fI9zY+07IkBwAGMpBkA2u+FkhZL+kWk7J3ySWzoBEm/kr/Ib6Nz7gnn3Iikb0h6\nS6TeckkPxvZ/pqS1zrnhSNnxkn4e2+6XUwwNAQDEkDQDQPsdFEzzkmRmp8qPMS4Gyy+ST2q/GZRv\niWz7pKTnRZZPUG0yLE0emiH5pPlnkeXlsWUAwDRImgGg/R6XVJF0rpktlx9+8W1Jbzaz4yXdIJ8I\nf3MG+8pIerGZ/Z6ZLTazQyX9frA/SdXhIMeqNrkekvRYK54MAMwHJM0A0GbOuWckfVTSOyTdIela\n+QsDT5T0fyXtkPQm51xZ0lbV9iwfodqe54sknSPfA/1/5IduPOCcezpSZ0j+wr9o0vwLSf/DzN7Y\numcGAAcui1w7AgDoMsGFgL+RdKqk7ZJ+KukNzrknpqh/s6R1zrm/b1uQADAPZDodAABgas65kpld\nIGmtpLSkz02VMAfWSfpKW4IDgHmEnmYAAAAgAWOaAQAAgAQkzQAAAEACkmYAAAAgAUkzAAAAkICk\nGQAAAEhA0gwAAAAkIGkGAAAAEpA0AwAAAAlImgEAAIAEJM0AAABAApJmAAAAIAFJMwAAAJCApBkA\nAABI8P8Abvslsy5VGs4AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd1a49d2518>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# #### Plot zooming around a1\n", "low, hi = int(0.8*a1*nsppi/pi), int(1.2*a1*nsppi/pi)\n", "for i, line in enumerate(plt.plot(a[low:hi]/pi, q[low:hi]), 1):\n", " line.set_label('$q_{%d}$'%i)\n", "plt.title('Modal Responses, zoom on transition zone')\n", "plt.xlabel(r'$\\omega_0 t/\\pi$')\n", "plt.legend(loc='best')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "next, the modal responses over the interval $0 \\le a \\le 16\\pi$" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAE3CAYAAACQKTbPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAARrwAAEa8B9/1LhAAAIABJREFUeJzs3Xd8FGX+wPHPszU9kNB7771jAwELetazUATlwO7Zfp53\nXvP0vGo5e0MQpIgNGwoiKIrSCb33GggQUjZl6/P749mEEIIkkGSy4fvmta9lZ2d3vvNkZ+Y7zzzz\nPEprjRBCCCGEEKJ82KwOQAghhBBCiOpEEmwhhBBCCCHKkSTYQgghhBBClCNJsIUQQgghhChHkmAL\nIYQQQghRjiTBFkIIIYQQohxJgi2EEEIIIUQ5kgRbCCGEEEKIciQJthBCCCGEEOVIEmwhhBBCCCHK\nkSTYQohqTSn1N6WUVkodVkrZS3j/g/D7C8ppeXeEv69WGT83SSm1vpTfXfDIUEqtUEqNOreohRBC\nlCdJsIUQ5wM/kAgMKTpRKRUPXANkWxHUObgS6A+MBI4C7ymlhlkbkhBCiAKSYAshzgc+YDYwotj0\nGzHJ9aJKj+jcrNRaL9Faf4VZh3RgjMUxCSGECJMEWwhxvpgG3KCUiioybSTwIRAoPrNSqpNSarZS\nyqOUylJKfamUal1snnil1Lvh948ppV4G3CV81z+VUmvD33VQKfWxUqpxeayU1joX2A40KWG5Vyql\nFimlcpVS6UqpiUqpGkXedyql/qOU2qOU8iqlDimlvlZK1Qm/PzDcFGVoOGZPeJ4/lrCsi5VSPyml\n8sLLmqaUqlfk/Wbh7xqplHopPM9hpdTrRf8mSqlEpdRbSqkD4ZgOKKU+UUo5isxTXyk1WSl1RCmV\nr5RaopS6qFg8v1JKLQvHnKmUSlFK3Xiu5S2EEKUhCbYQ4nwxC9CYJiEopeoCg4DpxWcMJ78LgfrA\nHcBYoCWwUClVu8is44GbgT8Dt4Xn/3MJy64HPAv8CvgtUBf4WSkVfa4rpZSyAY2AHcWmXw98BWwB\nfg08hGki80GR2f4A3Af8B7g8/P9dQPG43gZ2h79nGvAPpdQ9RZbVE5gHeIFbgUeAgcD8Yic0AP8A\nnMAw4AXgLuCxIu+/AFwL/BG4DHgU8BA+XoVPEH4GegMPA9cDB4BvlVLNw/O0BGYCm4AbMH+j6UDN\nUwpQCCEqgtZaHvKQhzyq7QP4G+AJ//9d4LPw/x8CdoT/PwtYUOQzLwA5QO0i0xphmpr8Lfy6HRAC\n7iwyjwJWYxL5WqeJxw4kA0HgxiLTJwHrz7Aud4S/uy7gCD8/B+QBFxSLYxfwQbHP9wt//qIi6/3J\nLyxvYHj+94pNnw7sB2zh1zOBfYCryDx9w5+9I/y6Wfj1x8W+6zNgdZHX64Hnz/D3zATqFZlmAzYC\n74Rf3xReVrzVvz95yEMe5+dDarCFEOeT6cDQcC3oSOD908x3MfCd1vpIwQSt9X5MzenF4Ul9MYns\nx0Xm0Zhk8yThJhY/K6UyMM1RjmKSwjZnuR6HMDduHgL+D/it1rpoO/LWmIR2hlLKUfAAVgBZQJ/w\nfCnAVUqpp5RSfUrqZSXs02KvPwYaYk46wJTJZ1prX8EMWuulmFrvi4t99ptirzcW+Z6CmO5QSv1O\nKdVFKaWKzX858D1wtMh62YD5RdZrLeYEZrpS6tqizWKEEKIySIIthDiffIe5IfAJTBODaaeZryYm\neS3uMJAU/n99wK+1Pl7CPIWUUr2BL8LTb8f0/tEbUxtevPlEaQ3BJJO/BjYAryqlOhZ5v6AZy0xM\nIl70kcCJ9tr/AP6Nad6yFDislHqmhEQ7rdjrgnWsH34uTXkVKF5excvht8B7mGYma4B9SqmHiq3b\ndSWs1wMF66W13oppjpMAfAIcUUp9pZRqUUKMQghR7hxnnkUIIaoHrXVQKfUBps3vaq31ptPMmo5p\nflFc3fB7AKmAUylVs1iSXfxzN2BqjW/WWgcBlFLJgOssVwNgjdb6KLBcKbUc2Ixp431VkfjBJJ1L\nS/h8GoDW2gs8BTwVbr88CtMEYz/wZpH56xT7fME6phZZ3unKa0PpVsnQWmdikutHlFIdMO3CX1RK\nbdFazwkv6xtKbuseLPI9c4A5Sqk4TK3385grGP3KEo8QQpwNqcEWQpxvJgJfYhLS0/kJGBROhAFQ\nSjUELsDc/AiwDNPO96Yi8yhMt3lFRWNqWENFpo082+CL01rvA/6HafrSPTx5M6ZNdCut9YoSHntL\n+J5dWuunMcl1h2Jv31Ds9U3AwfC8YMrreqWUs2CGcM19M06U19ms20bMjYyhIjF9G/7/5hLWa1UJ\n3+HRWs8EppSwXkIIUSGkBlsIcV7RWq/F9DzxS/6H6Vd6rlLqH5jKiL9hmje8Fv6eTUqpj4H/hXvK\n2IbpbaT4CI7fYpLE15RSn2Cah9yJaRpRXl7ANK14ArhFa62VUg8DHyilYjE3M2ZjmlBcAbyktV6q\nlPoM0+Z5Vfj9K4HGmB5BirpUKfVseF2uAIYD92utC04a/oHpS/xrpdRLmCYj/8K0r55RlhVRSv2M\nufFxPebEZDgmwV5QZF2HAz+Gl7Ubc9NoL8CrtX5KKXU3cCGm7/OD4fUeG45fCCEqnNRgCyFEMeFa\n4UuAI5j2wO9iErlLit74CIzDtPH9J+aGyTTg78W+62vgcUz3gF9iEtRrMcljecWbDrwC/Fop1SY8\nbWZ4WS0xbc1nYbrlOxZeFzA1z7/C1O7OCs9/u9b6i2KLuBtohbnZ8TbgL1rr14ssfyWmS71o4CPg\nZeBHYLDWOr+Mq/NzeBkfYsq2PXCd1jqlyLr2B5Zjyv3b8Lp34sSAQWsxSf5zwFzMCcCnwG/KGIsQ\nQpwVZW56F0IIIU6mlBqI6bGjt9Z6hcXhCCFExJAabCGEEEIIIcqRJNhCCCGEEEKUI2kiIoQQQggh\nRDmSGmwhhBBCCCHKkSTYQgghhBBClCNJsIUQQgghhChHkmALIYQQQghRjiJuJMfwqGR9gVTKcaAG\nIYQQQgghwpxAfWCp1jqnrB+OuAQbk1zPtzoIIYQQQghR7Q0GvivrhyIxwU4FmDdvHk2bNq20hebk\n5LB48WL69+9PbGxspS03Ukl5lY2UV9lIeZWNlFfZSHmVjZRX2Uh5lY1V5bVnzx6GDBkC4byzrCIx\nwfYDNG3alFatWlXaQj0eD7t376Zly5bExcVV2nIjlZRX2Uh5lY2UV9lIeZWNlFfZSHmVjZRX2VSB\n8jqr5shyk6MQQgghhBDlSBJsIYQQQgghylGlJdhKqRil1A6llKeylimEEEIIIURlq8wa7H8Auypx\neUIIIYQQQlS6SrnJUSnVD9PNyWPAzDJ8LglIKja5CZi7Sj2eyqsMz83NPelZ/DIpr7KR8iobKa+y\nkfIqGymvspHyKhspr7Kxqrxycsrc9fVJlNa6nEI5zQKUcgMrgTsBNzBLa12q20CVUn8DnizpvTfe\neIP69euXV5hCCCGEOM9pDf6QefhCENJgV2BT4LBBlN38X1R/qamp3HvvvQCttdbby/r5yqjB/iuw\nQGu9WCk1sIyffRmYWmxaE2B+//79admyZXnEVyq5ubmF/TDGxMRU2nIjlZRX2Uh5lY2UV9lIeZWN\nlFfZRFJ5aa056vGx42guO4/msutYLqmZXtI8Xo5k+ziW4yP0C/WOCkiMdlAzxklyrItGNaNpUjOK\nJknRtKwVS/NaMTjOkIFHUnlVBVaV144dO87p8xWaYCulugEjgC5n83mtdTqQXuw7AYiNjbWkP8SY\nmBjpt7IMpLzKRsqrbKS8ykbKq2ykvMqmKpaXNxBkzb5MUvYeJ2XPcVL2ZnDU4z3r79NARl6AjLwA\nu47lsWJv5knvRzltdKifQJdGNejbPIn+LZOpEeMq8buqYnlVZZVdXuc6qE1F12APxIzjviucGDuB\nWKXUUeAWrXWZh54UQgghhDid/cdzWbDlCAu2HGHRjqPk+oKnzGO3KZomxdCyThxNkmKom+CmbkIU\ntePcxLodRLvsRDvtOOyKQFDjD4bwBUNk5vo5nmtqug9nedl7LIfdx3LZdTSHzDw/+f4QKXszSNmb\nwaRFu1EKOjZI4MJWtbi8Qz26N65hQYkIK1R0gv0O8HGR1/2BSUA34EgFL1sIIYQQ54HDWfnMWpvK\nF2sOsmZfxinvt64TR48mNenRtAZdG9egRa04XI7y60hNa01qZj7rDmSy/kAmq/ZmsHx3Ot5AiPUH\nslh/IIu3fthJ3QQ3g9okUysPBlXwPXDCWhWaYGutPUBhVx9KqSNmst5fkcsVp5fvD3I4Kx9/MESd\nhCgSopxWhySEEEKUmS8QYu7GQ7y/bC+LdhyjaL6aFOtiQJvaDGxbm4tb1yYptuRmGuVFKUWDGtE0\nqBHNFR3rAeZ4u2pvBot2HGX+pjQ2pmZxOMvL+ysOAg4+O7iMW3s34dc9G1E/MbpC4xOVr1K66Sug\ntV4ASIOjSqa1Zu7Gw0xZvIdlu9LxBUOF7zVLjmFAm9rc2KMRXRolFrZxF0IIIaqi/cdzeX/ZXj5Y\nvv+k9tRJsS6u6lyPa7s2pFfTmtgs7u4jymmnf8tk+rdM5v8ub8veY7nM2ZDKrDUHWHsgm33H83lu\n7lZe+HYrl7atw9iLm9O/RbIch6uJSk2wReVLy8rn0Q/X8NP2oyW+v/tYLrsX72Hy4j10bJDA3QNa\ncnXn+tilHyIhhBBVyOZDWbyxYAez1qYSDHf1YbcpLu9Ql1t6N+aiVrVw2itz/LyyaZIcw12XtGRE\nj7pMnzWfwzHN+WJdGkeyvczfnMb8zWl0qJ/AuIub86suDcq1CYuofJJgV2NbD2dzx8RlHMzMB2Bw\nuzrc2rsxnRom4rTb2H88lyU70/lyzUE2pmax4WAWD76/ihfmbuHegS25oXsj2cCFEEJYauWedF77\nfgffbU4rnFYvIYrhfZowrE9j6iZEWRjd2akbDSMGteCJqzsxf3MaE3/axdJd6WxMzeLRD9fw3Ddb\neGBQa27qKcfhSCUJdjW1Lz2Xke8s5Ui2l3i3g//d2o0hHeqeNE/teDfdm9TkngEtWLs/k7cX7uTr\ndansPpbL7z9Zxyvfbeexy9tybdcGll9qE0IIcX7ZfCiL/87ZclJi3aZuHPcObMk1XRrgqMK11aXl\nsNu4omM9ruhYj3X7M5nw005mrU3lYGY+f/x0Ha8v2M6Dg1pzQ4+GVbp2XpxKEuxqKMcbYMyk5RzJ\n9lIjxsmMu/rRrl7CaedXStG1cQ1eG9GDHUc8vLlgB5+uOsD+43k8/MFq3vpxJ7+/si0D2tSWtmFC\nCCEq1L70XP737VY+XX2g8MbFbo1rcP+lrRjcrk61rfDp3CiRF4d157Er2vLa99v5aMV+9h/P4/FP\n1vLmDzv409XtGdSujhyHI4ScDlVDT3+5ke1pHlwOGxNu7/WLyXVxLWvH8ezNXZn/fwO4tmsDADal\nZnHHu8sZPXEZ29M8Z/gGIYQQouxyfQH+O2czg5//gZmrTHLdpm4c40f34tP7LuCyDnWrbXJdVKOa\nMfzrxi58938DublnI+w2xc6jOYydvILRE5ex5VC21SGKUpAEu5qZv+kwH6zYB8Afh7ajZ9Oks/qe\npsmxvDy8O7N+exEXt64FwMJtRxn60o/8e/ZmcryBcotZCCHE+Utrzex1qQx5/gdeX7ADXzBEg8Qo\nnr2pC7MfuoTLOtQ9L2ttmyTH8OzNXfnm4Yu5tG1t4MRx+C+frSczz29xhOKXSIJdjeT7gzz15UYA\nLm5di9svaHbO39mpYSJTxvZl0pjeNEuOwR/UvPnDDoa88ANfr0tFS0f5QgghztLuozmMnriMe6el\ncDAzH7fDxiND2vDdYwO5uVdj6dEKaFUnnnfH9GHSmN60qhNHSMOUJXu4TI7DVZok2NXIhJ92sTc9\nF5fdxtPXdSrXM/6BbevwzSOX8NjlbYhy2kjNzOe+aSncOzWFI9neM3+BEEIIERYMad5ZuJMrX/qR\nhdtMN7KXdajLvEcH8NCQ1kQ57RZHWPUMbFuHOQ9dzJPXdCDO7SAt28t901K4870VHMzIszo8UYwk\n2NXE8Rwfr3+/HYCxFzenea3Ycl+G22HngUGtmffoAIa0Nz2SzNlwiMv+9wOfrz4gZ9FCCCHOaHua\nh5vfXMQzX20i3x+iYY1o3r2jN+NH96JxUozV4VVpDruNMRc259tHLyk8Ds/blMZlL/zAjGV75Thc\nhUiCXU1M+GkXOb4gidFO7hvYskKX1ahmDONH9+SlYd2oGeMkI9fPQzNWc9eUlSeNqiWEEEIUCIU0\nb/2wg6teXkjK3gwARvdvyjePXMKl7epYHF1kqZ8YzfjRPXnzth7UiXeT4wvyh5nruPO9FXJVuYqQ\nBLsayMz1M2nRbgDGXdSc+ChnhS9TKcV13Roy95EBXNW5HgDfbjzM0JcW8uPWIxW+fCGEEJHjcFY+\noyYu5V+zN+MLhGiaHMOMu/rx9HWdiHNLj8FnQynFlZ3q8+2jA7i+m+n1a96mNK548Ue+2XDI4uiE\nJNjVwLuLduHxBoiPcnD7hc0qddm14928PrInrwzvTkKUgyPZXkZPXMaz83YQCFVqKEIIIaqg+ZsO\nc+WLP/Lz9mOAqbWe/dDF9GuRbHFk1UNitJMXh3Xn1RHdSYx2kp7j4+4pK3li5lry/UGrwztvSYId\n4byBIFOX7AFgzAXNSKiE2uuSXNO1AbMfvoTezWoCMHnJfv633s6e9FxL4hFCCGGtfH+Qv32xgbGT\nV3A810/NGCfvjO7F09d1IsYltdbl7VddGjD3kUu4pI3p0u/9Zfu44fVF7Dwi41dYQRLsCDdn/SGO\nenw4bIrb+jW1NJaGNaJ5/85+PDKkDTYF+3MUt05IYa5cqhJCiPPKgYw8bnlrcWHzxQtaJjP7oUsY\n0qGutYFVc3UTopg8pjd/uqo9dptiU2oW1776M7PWHrQ6tPOOJNgR7r3Fpvb6yk71qJMQZXE05g7n\nh4a0ZtLobiS6NB5vkLumrOS/czYTDMndzUIIUd39vP0o17zyE2v3Z2JT8Lsr2jJlbF/qJVp/jDof\nKKW485IWfHh3P+onRuHxBnhg+ir+8tl6fNJ2s9JIgh3B1h/IZOWe4wDlMqhMeerROJHfdQnSp2kN\nAF5fsIPbJy4jPcdncWRCCCEqgtaaNxbsYNSEpaTn+EiOdTF1XF/uv7SVDBhjgZ5Nk/jqwYsZGB4F\ncsqSPYx8Z4n09lVJJMGOYNOX7QWgff0EejWtaXE0p4p3wtsju3D3gBYA/BSu1dh4MMviyIQQQpQn\nbxAe/WQj/5mzmZCGro1r8OVvL+KClrWsDu28lhTrYuLtvXns8jYoBct3H+e6V39m/YFMq0Or9iTB\njlD5/iCz1pg2VcP7NC7XURvLk8OmeGJoe94Y2YNYl50DGXnc9OYi5m08bHVoQgghysGhLC8vrbfz\n7WYzIuOIvk348O5+NKgRbXFkAsBmUzwwqDXjR/Uizu0oPA5Lu+yKJQl2hJq/KY2s/ABOu+JXXRpY\nHc4ZDe1cn5n3XUijmtHk+oLcOWUF7yzcKaNOCSFEBFu3P5MR76ZwIFfhsCn+dWNn/nlDZ9wOGeq8\nqhnSoS6f3ncBTZNjyPeHeGD6Kp6fu0WOwxVEEuwINTNlPwCXtq1DUqzL4mhKp229eD67/0J6Nq2J\n1vDMV5t4YuY6uelCCCEi0DcbDnHLW4tJy/YRbde8Nbwzw/s0sTos8Qta143n8/sv5KJWpunOK99t\n55EPVstxuAJIgh2Bjnq8LAiPlnhjj0YWR1M2teLcTBvXlxu6NwRgxvJ93PHuMrLy/RZHJoQQojS0\n1rz94w7umbqSPH+QxjWjeKRzkL7Nq969QOJUNWJcTBrTm1Hhrn0/W32Q2ycuIzNPjsPlSRLsCPTF\n6oMEQ5oaMU4ubVfb6nDKLMpp54VbuvLY5W0AWLTjGLe+tYS0rHyLIxNCCPFLQiHNU19u5J9fb0Zr\n6NMsieljelBXmltHFIfdxtPXdeSJoe0AWLzzGDe/uYiDGXkWR1Z9SIIdgb4M35hwdef6EdvOTSlz\n08WLt3bDaTed4d/4how4JYQQVZUvEOLhD1YXDh5zfbcGTBnXh5ox1owgLM6NUoq7B7Tk5eHdcdlt\nbD3s4YbXf2bDQelhpDxIgh1hDmbksWpvBkBE3Nx4Jtd3b8jEO3oT67Kz/3geN725mDX7MqwOSwgh\nRBE53gBjJy/ni3DvVeMuas4Lt3SL2EoeccK1XRswZWwfEqIcHM7yMuytJSzblW51WBFPEuwIM3u9\nGXa8VpyLPs2TLI6mfFzcujYz7upPcqyL9Bwfw8cv4YdwG3MhhBDWOubxMmL8EhZuM93w/WFoO/50\ndXtsMnhMtdG3RTIz77uABolRZHsDjJ64lAVb0qwOK6JJgh1hZq9LBeCKjvWq1chYnRsl8sm9F9Ak\nKYZcX5Bxk5czJ3wyIYQQwhoHM/K4+a3FrNmfid2mePamLtwzoGWVHXtBnL1WdeL56N4LaFErlnx/\niDvfW8FXa1OtDitiSYIdQQ5l5rMiPDT6VZ3rWxxN+WtWK5ZP7r2AdvXi8Qc1909P4fPVB6wOSwgh\nzkv70nO55a3F7DySg9th463benJzr8ZWhyUqUMMa0Xx4T3861E/AH9T89v0UPli+1+qwIpIk2BHk\nmw2mRjcp1kXfatI8pLja8W5m3NWPro0SCYY0D3+wmg+X77M6LCGEOK/sOprDLW8tZv/xPGJddqaM\n7cuQDnWtDktUglpxbt6/qx89m9YkpOH3n6zjnYU7rQ4r4kiCHUG+KmweUheHvfr+6WrEuJg6ri+9\nm5kBaR7/ZC2Tw3etCyGEqFjb07K59a3FpGbmEx/lYMq4vtXmnh9ROonRTqaM7cPFrc2ANM98tYk3\nFuywOKrIUn2ztGrmqMfL8t3mrt6hnapf85Di4qOcTP5NHy5slQzAk19s4K0fZOMWQoiKtCk1y4xL\nkO0lMdrJ9HH96NFEBpA5H8W4HLxzey8uD1+5+M+czby+YLvFUUUOSbAjxHeb09Aa4t0O+rdMtjqc\nShHjcjDh9t4MalcHgH/N3szbP0qSLYQQFWH9gUyGj1/CsRwfybEu3r+zH50bJVodlrCQ22Hn1RE9\nuKKjSbL/O2cLr30vSXZpSIIdIb7bZLrLuaRtbZzVuHlIcVFOO2/e1pPLwmfQ//x6MxN+2mVxVEII\nUb1sPJjFbROWkpHrL7wXpkODBKvDElWAy2Hj1RE9uLJjPQCe/WYLr363zeKoqr7zJ1OLYN5AkIXb\nTL/QQ9rXsTiayudy2HhtRA8Gh2uy/z5ro7TJFkKIcrLtcPYpyXXruvFWhyWqEKfdxisjujO0k0my\nn5u7lVfmS5L9SyTBjgBLd6aT4wtiUzCgzfmXYINJsl+/rQcD29YGTJvsqUv2WByVEEJEtp1HPIx4\nZynp4WYh08f1pWXtOKvDElWQ027j5eHduaqzSbKf/3ar3Pj4CyTBjgDfbTbNQ3o0qUlSrMviaKzj\ndpjmIgV3Nf/5s/XMWCb9cwohxNnYcyyHEeOXciTbS40YJ1PH9ZWaa/GLnHYbLw3rztXhsTj+M2cz\n7y3ebWlMVZUk2FWc1pp5mw4DMLi99EEa5bQzfnQvLgjf6PnEp+v4ZOV+i6MSQojIsv94LiPGL+VQ\nVj4JUQ6mju1L+/rS5lqcmdNu43+3divsgOCvn2/goxUyXkVxkmBXcdvSPOw/ngfA4POw/XVJopx2\n3rm9F32bJxX2kz13gwyrLoQQpXE4K58R45dyICOPOLeD98b2pVND6S1ElJ7LYeP1kT0KK7t+/8la\nGVa9GEmwq7iC2uvGSdG0riPt4grEuBxMuKN34YiPD0xfxaLtR60OSwghqrSMXB+jJixlb3ouMS47\nk8b0plvjGlaHJSJQwRXlHk1qENLw0IxVfLf5sNVhVRmSYFdxBd3zDW5XF6WUxdFULXFuB5PG9KF1\nnTh8wRB3vreC1fsyrA5LCCGqpFxfgDGTlrP1sAeX3cY7o3vRq5mM0CjOXqzbwbtj+tChfgKBkOae\nqSlS2RUmCXYVlp7jI2XvcYDCtk7iZDVjXUwZ25dGNaPJ8QW5491lbD2cbXVYQghRpfgCIe6ZmsKq\nvRnYFLw8vDsXtKpldViiGigYVr1VnTh8gRDj3lvBGqnsqtgEWynlVkq9rZTaoZTyhJ//UJHLrE4W\nbEkjpCHWZadvC6llOJ16iVFMG9eX2vFuMnL9jJqwlH3puVaHJYQQVUIwpHn0w9X8uNWMp/DvG7tw\nZbg/YyHKQ3Kcm6lj+9I4KZpcX5Axk5az84jH6rAsVdE12A4gDRgKJADXAvcqpe6p4OVWC/PD3fNd\n3Lo2bofd4miqtqbJsUwZ24eEKAeHs7yMfGcpadn5VoclhBCW0lrz5BfrmRW+Ae2Joe24pXdji6MS\n1VG9xCje+01fkmNdpOf4GD1xGWlZ5+9x2FGRX661zgH+XGTSBqXUh8AlwJtn+rxSKgkoXnXbBCAn\nJwePp/LOjnJzc096rmj+YIgftpgE+6IWiZW6ruWhsssLoFGcjdeHdeLOaWvZm57L7ROWMmlUV2Ld\nFfozLxdWlFckk/IqGymvsqlO5fXqgl1MXWLGC/hN/8aM7Fm33I8n1am8KkN1Lq/aUfD6sE6MmbKG\n/cfzGDVhCZNGdSM+6uyPw1aVV05Ozjl9XmmtyymUUixMKRuwFPhEa/3vUsz/N+DJkt574403qF+/\nfvkGWIVszVS8ttGOQvN0zyAJ5+/4MmW2KUPx9mYbIa1olxjirnYh7HK3gRDiPLPwkOLjXebqZ786\nIYa1CCH3yovKsDl8HA5qRauEEPe0D+GMsONwamoq9957L0BrrfX2sn6+sqv2ngVigVdLOf/LwNRi\n05oA8/v370/Lli3LM7ZflJuby+LFi+nfvz8xMTEVvrwVc7cDB+jcMIEbhvao8OWVt8our6IGA43X\nHOJPX25hc6aNH/Lq88w1bat0LyxWllckkvIqGymvsqkO5fXdlqPMXLIBgEFtk3nh1x1x2CpmH1gd\nyqsynQ/lNRhoviGNxz/dxPYsG99k1uG5GztgP4vfoFXltWPHuQ0DX2kJtlLqGUwb7IFa61Jdn9Ja\npwPpxb4LiXMzAAAgAElEQVQHgNjYWOLiKr9f6JiYmApfrtaaH3eY3kMu71jfkvUsL5VRXiUZeWEr\njns1z83dyudrD9M4OZ7Hrmhb6XGUlVXlFamkvMpGyqtsIrW8Vu09zuOfbSKkoWfTmrx+W2+inBV/\nH0+klpdVqnt53dI3jpyA4qkvN/Lt5qM8990enr6u41lXdlV2ecXGxp7T5yulwl4p9V/gFkxyfaAy\nlhnJdh7NYc8x09ZoUDsZHv1s3X9pK0b2bQLAq99vZ+qSPRZHJIQQFWv30RzGTl5Bvj9E81qxjB/d\nq1KSayFKMubC5tw70LQ2mLJkD2/9uNPiiCpPhSfYSqmXgOuQ5LrU5odHb2yQGEX7+vEWRxO5lFI8\nfV0nhrQ3Jyl//Xy9DKkuhKi2jnm83PHuMtJzfCTHupg0pjdJsXIDj7DW41e05cYeDQH49+zNzFp7\n0OKIKkdF94PdFHgQaAZsDfeF7VFKza7I5Ua6+eHRGwe1r1Ol2w1HArtN8crw7nQPD+X64IxVhYP3\nCCFEdZHnCzLuvRXsPpZLlNPGhDt60zT53C5xC1EelFL8+8Yu9G+RDMCjH65h5Z70M3wq8lVogq21\n3qO1Vlprt9Y6rshjaEUuN5Jl5vpZscckgIOleUi5iHbZmXB7b5rXiiXfH+LOyStkIBohRLURDGke\n/mBV4SiNrw7vQbfGNawOS4hCLoeNN0f1PDHa4+QV7D56bt3gVXUR1mlK9ffDtiMEQ5oop43+LZOt\nDqfaSIp1MXlMH5JiXRzL8TFm0nIy8/xWhyWEEOfs77M28s0G07Twqes6MaSDVM6Iqicx2sm7d/Sm\nVpyL47l+xkxazvEcn9VhVRhJsKuY78Ltry9qVUtuTClnTZJjGD+6Jy6Hje1pHh6YnoI/GLI6LCGE\nOGuTF+1m0qLdANwzoCWj+jW1NiAhfkHjpBgm3N6bKKeNXUdzuGvKCvL9QavDqhCSYFchgWCIBVuP\nANJ7SEXp2TSJZ2/qAsDCbUd58osNVOZgS0IIUV5+2HqEp740fV1f3aU+j0dAV6RCdG1cg5eGdUcp\nWL77OL/7eC2hUPU7DkuCXYWs2pdBRq5ptjCoXR2Lo6m+ruvWkEeGtAFg+tK9TPhpl8URCSFE2Ww7\nnM0D01IIaZOwPH9zV2wVNJCMEOXtio71+PPVHQD4cs1Bnv92i8URlT9JsKuQgt5DOjZIoF5ilMXR\nVG8PDm7FDd1Nt0H/+HqTdN8nhIgYxzxefjN5OdneAPUToxg/qqc0KRQR5zcXNuOOC5oB8Nr3O/h0\n1X5rAypnkmBXIQX9Xw9uL81DKppSin//ujO9m9VEa3hoxmrWH8i0OiwhhPhF3kCQu6esZF96HjEu\nO+/c3os6CVIhIyKPUoo/X92eAW1qA/D7T9ZVq250JcGuIvYey2VbmhlBfrA0D6kUboedt0b1oklS\nDHn+IGMnLyc1M8/qsIQQokRaa56YuY4Ve46jFLw0rDsdGyRaHZYQZ81ht/HKiO6F3ffd9d5KDmRU\nj+OwJNhVxHebTe11rTg3nRvKDrOyJMW6mHhHbxKiHBzO8nLneyvI81XPO5qFEJHt9QU7mJliBkR+\nYmg7LpPu+EQ1kBDlZMLtvagR4+Sox8udk1eQ6wtYHdY5kwS7ipi/OTx6Y7vacqNKJWtVJ443b+uJ\n3aZYfyCL3328RnoWEUJUKXPWp/LsN+ZGsFt6NeLOi1tYHJEQ5adpcixvjOyJw6bYmJrFIx+sjvie\nRSTBrgIy8/ws2XkMkPbXVrmgVS2evMbc0TxrbSqvL9hhcURCCGGs25/Jwx+sBqBv8ySeub4zSklF\njKhe+rdM5unrOgHwzYbDvPDtVosjOjeSYFcB329Owx80ozde0rq21eGct0b1a8rwPk0AePabLXy7\n8bDFEQkhzndHsr3hwThCNEuO4c3bzGBZQlRHI/o2KexZ5NXvt/P56gPWBnQOZCutAuasN13EDWxT\nh2iXdLVkFaUUT13bkT7NkgB4eMYqth7OtjgqIcT5yhcIce/UlaRm5hPvdvDO7b2pGeuyOiwhKtSf\nr27PJeGeRX738VrWHsiyOKKzIwm2xfJ8QX4Ij954Zad6FkcjXA4bb9zWg4Y1osnxBRk3eQXHc3xW\nhyWEOA89+cWGEz2GDO9GqzpxVockRIVz2G28Mrw7LWrH4guEePCjDWR4rY6q7CTBttiP246Q5w/i\ntCsule75qoTkODfjR/ci2mlnb3ou901LwR8MWR2WEOI8MnXJHt5ftheAxy5vy6B2cn+OOH8kRjuZ\neHtvEqOdHPX4eGeLnXx/ZPXwJQm2xb4JjyDYv2UtEqOdFkcjCnRokMALt3QFYPHOYzwza6PFEQkh\nzhfLdqXzty82AHB15/rcN7ClxREJUfma1YrltRE9sCvw+CEtO7KuJkuCbSF/MMS88I10V3aU5iFV\nzdDO9XlocGsAJi/ew/Sley2OSAhR3R3IyOPeqSsJhDTt6yfw7M1dpMcQcd66qHUtnr2xA//XJUiT\npGirwykTSbAttHjHMbLyAyiFDBhQRT00uHXhyc9fP1/Psl3pFkckhKiu8nxB7p6ygmM5PmrGOHl7\nVE9iXA6rwxLCUpe3r018BF7glwTbQl+sOQhAn2ZJ1I53WxyNKInNpnj+lq60qxdPIKS5b9pKGU5d\nCFHutNb8YeZa1h/Iwm5TvDayB42TYqwOSwhxliTBtki+P1jYPd913RpaHI34JbFuB+NHFwzj6uOe\nqSl4A5F1s4UQomp7+8edfL7aVLr85er2XNCylsURCSHOhSTYFvl+cxoebwCnXTFUuuer8honxfDK\n8O7YFKzZl8GTn2+wOiQhRDXxw9Yj/GfOZgBu7tmI28MDbQghIpck2BYpaB4yoE1tGTggQlzcujaP\nX9kOgBnL98lNj0KIc7braA6/nZ5CSEP3JjV45oZOclOjENWAJNgWyMr3M39zGgDXdG1gcTSiLO6+\npAVXd64PwJNfrGflnuMWRySEiFQ53gB3vbeCrPwAdeLdvHlbT9wOGc1XiOpAEmwLzF6Xii8QItpp\nl95DIoxSiv/e1IW2dePxB81Nj2nZ+VaHJYSIMFprHv9kLdvSPLjsNt4c1ZO6CVFWhyWEKCeSYFtg\nxvJ9AAztVE+6YIpAsW4Hb43qSUKUg8NZXu6floIvICM9CiFKb8JPu/hqbSoAT17bgR5NalockRCi\nPEmCXcm2HMpm1d4MAIb1aWJxNOJsNasVy0vDuqMULN99nGe+kpEehRCls2TnMf41+8RNjSPkWCBE\ntSMJdiV7f5m5Ma5l7Vh6N5Mai0h2abs6PDKkDQDvLd7DRyv2WRyREKKqO5SZzwPTUwiGNJ0aJvD3\n6+WmRiGqI0mwK1G+P8inqw4AMKx3E9mpVgMPXNqqsB39nz5bz9r9GRZHJISoqnyBEPdNW8lRj48a\nMU7eGNmTKKfc1ChEdSQJdiX6cs1BMvP8OO2KG3vI4DLVgc2meOGWrrSoHYsvEOKeKSs55vFaHZYQ\nogp65quNpOzNQCl4aVh3GalRiGpMEuxKorVmwk+7ALimSwOS42Ro9OoiPsrJ26N6Eed2cDAzn/un\npxAIyk2PQogTZqbs573FewB4dEgbBrSpbXFEQoiKJAl2JVm47SibD2UDMO7iFhZHI8pbqzpxPH9L\nVwCW7Eznv99ssTgiIURVsfFgFn/8dB0AQ9rX4f5LW1kckRCiokmCXUnGL9wJwIWtkunQIMHiaERF\nuKJjPR4IHzjf/nEns9elWhyREMJqmbl+7pm6knx/iGbJMTx/SzdsNrn/RojqThLsSpCy9zgLtx0F\npPa6unvksjZc3LoWAI99tIbtaR6LIxJCWCUU0jz8wSr2pucS7bTz5qieJEY7rQ5LCFEJJMGuBM/P\nNc0FujauwUBpd1et2W2Kl4Z1p2GNaHJ8Qe6ZupIcb8DqsIQQFnj5u218v+UIAP/+dWfa1ZOrl0Kc\nLyTBrmA/bz/Kz9uPAfC7y9tK13zngaRYF6+P7IHLbmN7mofHP1mL1trqsIQQlej7zWm8NH8bAHdc\n0IzruknPUUKcT2Sc7grkD4Z46ssNAPRrkcSFrZItjug0sg/DwVVwfDf4ssEVD4mNoFEviK9ndXTl\nQ2s4tgNSV0P2IQjkQXQSJLUw6+mOL9fFdW1cg6eu68gTM9fx1dpUujeuUTnNg4J+OLQO0jZC7jEI\nBSC2DtRpD/W7gr2aXJ725ZCcvRnH6v2g88Hugrh6Zh1rtYbqciKbfdj8ZtN3gj8XHNFQozE06l29\nts30nWYflJ0KQR+4E6BWG2jQDaISrY6wzPYey+WhGavQGno3q8mfrm4PwQAcXm8eOaZWm+gkqNsJ\n6nUCRzXpWcqbDalr4MgWyM8Em8P8Vut3q17bpicNDqQUOW7GmeNmw16QUN/q6MpHicfNmuHjZu9y\nP25WN5JgV6CJP+1i62EPdpviyWs6Vq3a69x0WD0N1n1sNp7TqdcFuo2EbiMgKgIvb2YfguXvmPU8\nvqvkeZQdWg6C7rdB+2vAVj4DPwzr3ZiUPcf5aOV+/jV7M50bJtK3RQWdZB1aB8vehk2zIC+95Hlc\ncdDheuh5BzTuXTFxVCStYescSJlC7PZvuSjog+0lzJfQCLrcAr3GQI0IHILan2e2zTUzYP/y089X\nrzN0Hw1db43IJJSsg5DyHqyeDhl7Sp7H5oDmA8xvtt3V5bZtVqQ8X5C7p64kKz9A7Xg3bw1x4vz6\nUdgw0yScJXEnQLtfQe+x5oQ/0mhN3cxVRH02DXZ9b06SShLfALoOM3/Pmk0rNcRyUbhtfgD7l51+\nvnqdw8fNkRF63DxsjpvrPzYnvyVRdmh5afi4eW1EbJuVTRLsCrI9LZv/zdsKmMuD7etXkY0sNx1+\n+h+smAi+Ijfg2d2Q3Mqckfo8J2rMDq2FOWvhh//ARQ9D33vB4bIu/tLKOw4L/gMr34VA/onpUYlQ\ns5mpCcw9ZtZTB2H7t+ZRqy0M/qs5mJ/jCZFSir9f34mNqVlsOJjFA++v4qvfXkSdhKhzW7eijm6H\nuX+GrbNPnh7fABIamHXIPgSZ+8zfdfVU82g1BIb8zRwIIsH2eTDvKfN7BBSgUeiazbDF1YGAFzL2\nmpOLrP3w0wuw6BXoMQoG/hHiIuDeh1DQ/F6//xfkHj0xvXDbjANfDqTvAn+OOama/Tv4/h9w8f9B\n37sjoxY0Nx0WPg/LxkOwyKBMUTVM0uWIMvOk7zBXYHbMN4/kVnD5M9DmyipbC6q15k+frWNTahZt\nbAeZ0WAeSVPnnDxTQkOID9dweg6bbdObBWumm0eLS8161utU+StwNrbPJ3ruX+mXtr7IRGVqOWNr\nmWQ7Y6/Z32YfDG+bL0OP0TDwCYirY1nopRYKwvIJsPA58zcrcNrj5jqY8wdz3LzwYeh3X4QcNzNM\nzCsmlvK4Oc88arWBQX8xFVRVdNu0giTYFSDfH+SB6avI94doVDOaRy5rY3VIpvZv3cdmoy84eEcl\nQpdbodOvoWHPk5sPBP3m8tfaD0xNWl46fPtXWP0+XPtK1a4B3fAZfP07yEkzr2NrQ88x0PEG01Si\n6A7A64FdP5hatM1fwdEt8MFIaHs1XP2cSVLPQZTTzpu39eRXr/zEkWwv901L4f27+uG0n+PtDwGf\nOVFa+NyJ2qI6Hcx6tv/VqXF70mDL17BykrkUv30e7PgeLnwIBvwenOWY9JcnzxHzm13/8YlprS4j\nv92NzN9rY8DlvyIuLs5M1xqObYcNn8LKySbRXjHRvL78H+YqTFXd+R9aD5/ff+Jqkt1taqY73wxN\nLgB7kV11MAAHU8x2ufYDyM+Ab/9iatauf91sy1XVplkw6+ETTSTi6kL3UWYfVHzb9OXCzu9PbJvH\ntsP7w6D1FXDNS1XyMvzUpXv5ImUP99tn8ajrU+x7/OaNup2gx+2n2TaPwOZZpjb/YIpZ57cugf73\nw6V/qtrb5jdPwLqPKKi7DDQfhKPnKGh92cnNBwqaGmyYefK2uX4mXPHPqr1tpq6FLx80+00wzdG6\nDgtvm/2LHTfD22bhcfM4zHsS1hQcN/tYsw6lsfELc9z0HDKvY2ubKw0dbyxh28yBnT+Yfc7mr+Do\nVvhwFLQZClc/D4lyvwGAirSbr5RSrYBt27Zto1Wryuus3+PxMH/+fAYPHnzigF6CYEjzwPQUZq8/\nhMOm+Oie/nRvUrPS4ixRxl6Y9aipoQWTWF/0CPQaW7rLVzlHYeELsPRNc9aqbGbHf9GjYCs5USxt\neZWroB9m/x5WTDCvXfEw8PdmPV2lGJI4bZOpJS2oDY6uCTe8BW2uOOfQvt+Sxm8mLUdrGHNhM568\npuNJ75epvHKOmZ3Znp/N65rNTALZ9qrT/j0KaW2S67l/gSObzLTa7eHWKaZ9ZFWyfyXMGHFih998\nAFz2FDTofubyCnhh1RT47hlzkAPTPObal6tec4qNn8On95iaLxT0vN3UusfXPfNnc46Fa4PfMrW9\nygYD/gCX/O6k34Il22NR/jyzD1oz3bx2J8Alj0Gfu8AZfebPH9kKc/8E2+aa1zHJcN1r0HZohYR7\nNuW1cs9xHnz7K16zv0A32w4zMamFuVLU/tozJ5Bam5r6b/4ERzabaXU7w83vVr1t8+AqeH+EqZEG\nAk0u5Kfoy+l1zbgzl1fABymT4ft/nmjO1v5auO7VqrdtrppmTgiDPsy2eQcMeLx0FS85x0xt/dI3\nT2ybl/4RLvo/PLm51m6PRQX9MOcJWD7evHbFmUqX3uNKedzcDPOfMhU4YK5E3fBmuW6bVu2/tm/f\nTuvWrQFaa61LapD4i6QXkXLkD4b4wydrmb3eJAR/vaaDtcl1KAhL3oDX+p1IrjtcD/cvNwl2aduG\nxdaCK/8Jdy0wbbJ1CL77O0y/2VzKrQpy02HKDSeS6zZXwv1L4YLflm4nAeYsffj7cMt75uw97zhM\nvwW+fdKU5Tm4tG0dHhpsDpLv/rybL9YcPLsvOrwBxg88kVxf+DDct8TUjJ0puQZzkG99Gdz9o0nE\nbE6TaL99qUn0qoq1H8G7Q01yHZUI178Joz+HBt1L93mH2xwg7l9uakcBNn4Gbw0wtcVVQSgEC/4N\nH442yXXNZjBuvqmdLU1yDRCbbLbNO783yZgOwYJ/wvu3njixsFr2IXj3qhPJdash5jd74UOlS64B\nareBkR/BrVPNjYG5x0xtdjlsm+XhSLaXl6d8wCeOP9PNtgOtbHDBg3DvIuhwXelqZ5UyZXP3Qhj0\nZ9P+/PA685td/0nFr0RprZ8JE4ea5NqdCNe/Qf7NH5AZ07x0n3e4oM+dcP+yE9vmpi/C2+a6iou7\nLEJB0/Tu8/tMcl2rDYydC9e8WPqrmrHJcMU/zHGzftfwcfMZmHbT6e+TqWy56TD11yeS69ZXmOPm\nhQ+W4bjZLnzcnGKOm/kZZtuc+5cqsW1aSRLscnI4K5/fTFrORyv3A3DPgJaM7t/MuoAOrYcJl5nL\n6/4c0yZ32HS4ZXLpD97F1e8C4+aZWicwNaHvDDGX/qx0ZAuMHwS7F5rXl/4Jhs84u8tUSpkD4j0/\nQdOLzLSfXzQ1qd7scwrzwUGtGdjWtAX+/cdr2Xq4jN+3+WuYcLm5IuGMNX/Py54qfZJSlMMFlz4B\nv/nG3BToyzaJ3nfPmJo0q4RCMP9pmDnOtM+t1cYkj92Gn90l5Lja8OsJ5vKsI8rc6DrxCtgy58yf\nrUi+HPjodljwL/O62cVmPRudZfOO+l3gzu+g7z3m9ba58PZAs21YKXWNOXk7mGJq8K78N4z8+Owv\nIbe/xiStzQeY1z+/CDNGnvO2eS4CwRBTJ7zIm/6/UE8dJ+hORN32CVz+97PfNi/5HYyZA4lNzP77\n49+YtvlWb5vf/QM+HmN6k0hqCXfOP/vmHXG14aaJ5kqEI9psmxOugC2zz/zZipSfZRLERa+Y122G\nmm3rbJt31OsMY+ed2DZ3zCdm2jXE5ls80u+RrfDOYNNEEsxVsxEfmJ5QzkaHa+Gen82+DEw7+/eH\nWbptWq3CE2yllEMp9T+l1DGlVKZSarJSKrail1tZ0rLzeWX+Ni574YfC0RofvawNv7+yrTUB+fNM\ngvL2ADiw0kzrPQ7uX4puexX+oJ/guZxVOtxw1bNmx+iIMjcijR8EuxaWT/xFaK3P3H/0tm9Nkn98\nFzhjTO3zgMfPvT1ffD1TY3rhQ+b11jmm1iZz/2ljPRObTfHird1oVDOaPH+Qe6asJDvff+ZYtDbN\nAGaMMDfSJDYxtSntri7LGpWsUU9Tm91ioHn947Mw807w5//SpyqG12Oavix83rxuORjGfgvJLc/t\ne5UyN1SNm296FfF5zI5/8WvWJCwZe00isekL87rPXTDqU4hJOrfvdbhg6H/gxnfMtnB8tznJ3vXj\nOYd8VjZ9CROvDNd0Jpga6H73nvu2mVDflFf/B8zrrbPNiefx3ecccplpzaIJj/FIxj+JVj5y4pph\nv3O+6ZXoXDXuDfcU2TZ/+LdJtP155/7dZeXLgY9Gw4//Na9bXGqS6/JoutL9NvNdNZuZk4n3h1u3\nbabvNNtMQVOkix6BYdPOvTu6gm3z5kngiMaWsZtLtj6Nfe+icw75rGybZ5Lr9J3m5ObmSaY55Tkf\nN+ua4+ZFj4SXM9fs6zL2nXPIkajC22Arpf4K3ApcCeQCnwBbtdZ3neX3WdIG+8lJt5KVk01UdBwa\nO76gItsbIiMviF+7yNHRhJzxDOzSko5NG6BQ2JQNm7LhsDmwKRt2ZTcPm/2k16fMY7MT1EF8QR++\noA9v0HvS//MCeeQF8sgP5pMfyD/xOmMP+YfWmGlKkeeMIj82mTx04bxBbZJrh3LgtDtx29247C7i\nnfEkuhNJcCWQ4E448X9XAvGu+MLngkeCK4HowxtRM0aYu6ptTrjmRXS3kfhDfo5mHmX+D/Pp2a8n\n2qnx+D3m4TPPOf4c8+zLOem9wunh52AoiMvuwmVz4bK7cNvdxLviSXQnkJB9lMRD60gIhkh0xpHQ\nexzxtdqfFGdBrC77qXdwh3SosDzzA/nk+nNPjs2fY2LatwjPtm/wKPA4o8lp2BWPzX7SOuQEclAo\nE6vdhdvmxu1wk+hKNOVZ8OxOJDfPxaSfDuP3u+nVuAF/vaonjqCDlEUpDB0ylMT4Iu0Q/XnwxW8J\nrPsIr1LkNe5D3tXPkWW3k+nNJMObQYY3g0xfJpnezMJpOf4ccv255AZyC5994ZshFQoU2LAR7Ywm\n1hFLjDOGWM8R4rIOERcKER9Tm/h21xEfW/uU8ox3nvh/tCP6lO4ng6EgOQGz/KJ/72xfNlm+LLJ9\n2Sc9svxZeHKPkX1sK9khH9k2G36bHaXsmFAVDpuDaEc0sc5Y4pxxuG1u8jLyaFa/GTVjav5ijHGu\nuBO/Ac8Rc6IS7mLL3+N2PIP/TE7IV/j39Pg8p8RZ9HXh//3Z5PhzQGO6NQmXrdvuNuXpjCXWEWti\ndsUR54wj3ushYfNs4rw5xGuI7z6a+PbXE+eKK/ytxjpjcdhOvv9ca01eII8cf07hw+P3lBhfti+b\nrKx9ZKemkKUDZNvsZDuj8OqQ+VuFY7VhI8YZQ4wjxjw7Y4h1xJ5UjnHOuMLyi3PGnfxeeJ1s6uR6\nmlAoSO7C/+L58Vk8NhuexAZ4Bv0RT3QNsnxZZyxbj89DiNBJ3+m0OU/EGX6OdcYS7zlG3P4VxAcD\nxNujies5hri6nYh3xheWacH/Y52xJ8WqtSaog6eUZbYvmyPZR0jZkEL9ZvXx4i2MO8ubRbY/myxv\nFh5fNn5/HpoQGgihsNnN7zTaEU2MI8Y8O2MKyzHOGXfy/4tMi3fFm3UKPxf+BoJ+gl8/jj/lXfKV\nIqt+F7Iuf5osh/NEXEXjK1KmBc/eoJeQDhHUQUI6hNaaKEcUUfYo3A43UfYo4pxxJEYlkuhKpIa7\nBjXcNUhwJ1AjGKTGotdIOLqTWB0iputIogf9jRh3PM7wDX5F28hGx0STG8gt3AeVVL7Z/uxT9gPZ\n3gyyM/aQrf3kKXP8xGbHhjmOFm7/rjhiHDEn/X2LHqOKbktF9wfOEsYA8Af9ZnsK5JCz+0dy5v6Z\nbL8Hj8NFdrdhZNdpe9q4PT6zTr6QDxs2lDpxzC/YT8U6YwsfhTHle4hb+zEJ+ZnEa0VC3/uI7/Tr\nk7a54tuU1uYYXnT7L9innqlcs3xZhccpjUZpjdJBbFrjQhEbU4u4qJonfqfFtvOix9Gi7yW4Ekrc\n/4d0yPzd10wj59u/kkuI7JgkPJc8QnZ8nVO2+cL9bZHY8wJ5KBRKKQr+ObWTeTfOi6g22JWRYO8F\nntBaTwu/vhCYByRprX/xVFwplQQUr9ZpAsxfvXo1LVueY81WGQz6qC95pWnjep6xYcOmQ9i0xobG\nZ7MVOzRWHQU76oKdly90mr5aqwC7smNDYQ8FCKAJVNE77AtOEjXmaoNGF57EVTVOmxOFMrGG/IS0\nJlRFy9VlMyeEIR2q0mVacFJZkKxqrU9JjquKgpOfgkSzqpZpAbfdjdaaQChQZcvUoUzFkNaakA6B\nosqWa8E2pQnHStWOteg+tapuV5W5/3fj5uuhXxMTU8q24eVgx44ddOvWDc4ywa7QbvqUUjWAxsDK\nIpNTgCigNbD2DF/xIPBkSW8sXryY3bt3l0OUpdPc6yKogmg0KAqfCdddmMMghACtIIip0QgpMy2g\nFAFlJ6hsBJRJQkPoIp8smQ0bDhw4lKPw2YULp3ISrTU1vOnU9B4lWoeIDmm0M4njCd3AkYRLuXDi\nxKnMo+BzGo1f+wkQIKiD+PGTr/PJ03knHqE8cnUu+Tq/8OHFe0p8IUKEFOFLS6dPVmzYiFJRuJUb\nN27cyn3idZFHwbQozLNCESRYGKsOZFHn2FwCgWNk2mwcjK7LwZgG5BaJM0/nEeTUjTxEyOxYz3BO\n6cBxSnxRRBEbCtE0eyM1/R5iQxpPfFcyE3oRZYvGhdl5BwgQ0AECBPBp30nlmqtzC/+fr/PJDOQT\nUAbu4W0AACAASURBVPkodeqOM6jNGvgVpy1XO3ZiVAwxKoZoFU2MLfysYohSUbiUCxcu3MqNS7mw\nc2IggPBuG5/24cVrnrUXr/Zi9+4jyrMRjw2y7A6OuGvhUZp8nY+Pk09KSpuoOHAQraKJUlEnPWp5\nM2ietZGEUIAoXKTVuoJAdAscOAq3Cx3eTorG6MU8F/2b5+t8vNpb+P/ivwF/qFhznNMk127M3754\nvCW9dquT+53WaAIECuM0MecRl70Wm3cfHpuN445oDkfVIVcFCuMvvg8ozclfwTZVUrkWTIvVdjoc\nXUijnN24teZIXAd21B1KUDkJEcKv/YV//4Lfa0EZlvScz8lNhzQab/DU/UJxTpwlxlc09oL/u5Ub\nW7HWi0GChX9/Hyd+BwXl5w9m4czfTR5+sm02suwu8optVzp8Je+XKFThtl88xoLnJH8OndK+J9mf\njU0rPmYIdZv3INquTJniLyzPgvItKNfTPZe0bz1TuTq1JlpF4bYlFMZ3upidypxc2rCZK1iYfZVf\n+/Hjx69PHAMK9lNBXypB/2EybYpMmx2v7dTtJaADJ+9PT7NvtWM/aZs53e82SkURRRQtji+jafpC\nQkCuM5kNDW4k2xFbWFZFy6/443Tbf2krVJw4iCpSlqd7FLxfsF8t2KcW/a0W/o05dV+VH8r7//bu\nPD6q6vzj+OfMTPaEsEPYN9mXAIIsFhGroLWiuKOogBtqW6v+WrWbW0td29oqKG3FHa37vmHVyiKb\ngCKLgOyLCRDIZJ+Z8/vjTkLAAJlkkjtJvm9eeYW5M3fmmZM59z5z7lkIBPeTZ0I/+KJfmVjLf1YT\nOfoxKi1k6b/rHZoUbsUCu9P6sL7lWIoNhxyrDj+GHv5z+Oe00sd/a2kUCpEWCuHzpkN8xg9iLB97\n6fnUHvZvwYIFlfobRsvOndXrJ1+jLdjGmPbAFqCNtXZnue1FwCnW2s+PsX/MtGDn5+ezYMEChg8f\nXvE3qFAQU7AP49+FZ98GzN4NeLLX4t21As+BivsfhZoeR7DdUAIZgylpN4RAWltC4W+AXuMlzhuH\n1xy6OpLJy8a78UN8a97At/lg38pQ404Un/grAj0qMR1UFQVCAfICeWWX/QuCBYSsk7SGQgE8K54h\n5dt3SApZfI07s6zZRAaNGEfzRs1J8CRUeyVLz66VJL4+FU/uDiyG4lG3UzKk4j6dRcEi5xJa+LJT\nSajEiZNQ2TftBK9zaTTRm1h2uTQlLoU4z1GWEy/YR+IbV+Pb6vSdK+k9gaLTHqjSAh/FgRCTnvqS\nVbv20Di5hEu75TBo4HEk7piHd8ljhILFBOJTCA37BXFthx6M1ZtIWnwaid7EGlsd1LNrBYmvTsaT\ntxtrvBSPuYuSzMsJhC+p55bkOpd9S3IJ2dAhXaK8xlvWPaK028HhXR4IlhD/6d3EL3NmfQk260Hh\nObOxlVx58Zj1EeczUHppOi/gXKYGDok1aetCmsz7C6mBIlLi0+CnszAdRlS94H4Q6B4S35qGb4sz\n60vguNMpPP1vEH9wGIq1tuySemm5FgQK8JjwZefw5edkX3JZl5PkuOTK16lQAM/7t5K86nkAgq36\nUTj+X9hGkQ80DNkQ+YH8sjLNLc6lMFiIL2cTifMfwpe/B2MhfvBVJPSfRGpcWoVdXmpE0QES37wW\n3yZn0FZh9zPZe8rd5BEs64ZWGCz8QVe9ZF+y040kLpUkXxIe4zni58u36j8kfPBrTLCI/TaZG0M3\nMu2yy+idUb0+uqXlWtZNqcRPfiAfr/Hi8/jweXzEeZwufekHdtPinV+SfGCrcxwc/XtKBl8VveN+\nhXXzCQrTWpd1R8wP5Jf9BigqKmL1N6vp06cPqUlOF47yXXriPfERH6t8a14n4b2bMIFCbGJjCsb/\nk1D74ZXev3z9Ly3PUsYYPIUHSFvwNxrtWklKKERC5x/jGfdXfLWw8mLZ5+uEoaQv/guBZY+T6/GQ\n07wbe0bdRmFio0O6SJR2kSkr13D3o8O7klTEs/srEl+biid3u/N5+dGtlAy9vkqfl8NzgNySXII2\neEisPo+vLMaUuBTn71+cT9Kb15QdB0t6nUPR2AeccVyRlNdRjvc1obot2DWdYDcG9gG9rLVrwtuS\ncPpiD7DWHqsFu6LnjOl5sCuUuxu2L4GtX8CWL5wR9RUtJZvSElr0gMYdndWtfAnOyPv8Pc6ywru+\n+uFy3027OgsSDLrs0Anv3bJ0Nrx9M4QCFPoaEzrv3yT3PKX6z/vls/DWL52ZJeLT4NxZNTYH7jEF\niuGdm52FIQDaDXUGfTZuH/FTbc8p4MyH/8e+/BK6ppTwdr9PSFz+hHNns27ObChuzYF7YIfTX7l0\ngYVBlzsDdaoyM0J5/iz4zxWwOfz9uvvpMOHxiJYUjuq8qFsXw5yLncVPPHEwbrozMLi6Ccv2ZfDC\nJGdRDYBRv3JWrnOhq5k/N5eNL9xOv+3PYmzQOdZc8BR0rHzCckQr5sCbv3BWfkto5Mza0v206j9v\nVQQDzsxJpdOOtRnkzPEe4cwIP/h8BUuchbYWPgrAhlAGV5XczLXnjuOC4yOv99V22FgCBk6C0++r\n/NRqR3veQ+rmOJgw65h1s8bmKd62xBn0mPd9zdbNk34dnra0durmD8pr2VPO+S0UcOrm+U9ApxOr\n/0Ll62Z8qnOcjcbg+KoIlsA7tzg5AkC7IeHz5rEbVTQPdgWstTnAVmBQuc2DgELg25p87ZiS1sr5\nUJ96F0x9H27d6kyP9uM7neQiKTxXdt73zlRzy59xJqj/ZLqzDPIXM50ZB0qT64R06HcBXPIy3LAE\nhkyNjeQanIn4J72KTWxMYiCHpBfOcxYUCAaq9nwF++CVq8PzkRZBs+OcKZPcSq7BGRH+04edxV0w\nzklu5khnBckItW2cxMMXD6Sb2c6DJXceTK57nOG8TzcXmGjUBia/e3Cu2mVPOlO/VWeu2rXvwYwR\nB0/gJ93qTDdYC61GR9R+iFPWLftAKHwSmHOJs1BEVYSCziqb/x7rnMDj05z5m8f8xpXkGgBj+K7F\njyk8/3lnHum872H2Gc60jMFKzGRTkcL98PJV8Oo1zgm8WTdnpha3kmtwVrz8yQNw+v1O48SOZc7n\nrTrzSGetc2YqCifXc4MDObv4boYNHeZOcg3OFHeXv+msJgjOokpRr5u/houed7dutjveqZut+tVg\n3XzWWQDGzTFWgy6DSa85uUDe9zD7zOrVzYIcZ/Gqw+umW8k1ODnKmX+FsdOdurltMcw40ZlXvZ6q\nrVlEzgdOBwqAl4D11tqrqvh8da8F+1hCIdjzrfOB27cJ9m12Wq2Dxc7k9ElNnAncW/Z2JqxvM9BJ\n8mJY3tavKH5+Ek3yw18KWvWDM+6DjpW8/B4KOcvqfvC7stXC6PETZ4UoNw/4h1s/1zmQlS7L3uun\nztK/lezqQHE+LHiEwCf34bPFhKxhTc/r6H3hPe4e8Muz1pkTdu5dzknOE+dcNRl1S+Wnr9q/3dl/\n5RzndkI6nDOjygf8GqmPRbnOUsErnK4UJDd3VuHLvKTyf4vtS53VRLctdm437+Ek1y26RyfGKjqk\nvEqynTnPd65w7mzdD8bdC51GVu7JrHUS1sPr5tmPQlLjmnkDVbF+rpNglC7L3ussZ27qJp2Ouavf\n7+eTD9/h1NS1JHzxCAQKsMbD45zLnwvG0799U168ZhgJPu8xn6tGWetMaffRHeXq5nXOPNqR1M2P\n7z74uU9o5BxnI6ibNd7CWOQP183wYkVVqZvblsJ75etmdye5dqFuHrG89m6El688OMVuq77OlYlI\n6uaqV+D935arm2eEz5sxtErmho+d86Z/t3O755nOojxHqJt1tQW7NhJsH/AAcBnOoMrXgGnW2rwq\nPl/9S7DrIb/fz8cfvs+4hKXEL3qUstEv3U51krPOo8BTwckpUATfvAEL/gE7lzvb4lOdpHXQZTXW\nv7xa/Fnw+vXw7fvObW+Cs/jCCddAi54Vx5y3B5Y/67SK5TrDE3aYVvys8FpW+Xrx6nUj6ZURQ18k\nAHYsdw7+e8IXn1JawNBrnKW9U1tWvE/2elj8T+eyYCA8aVCX0c7iElVd0IAaro8r/wNv3wRFB5zb\nLXs7q/L1PuuQvtNlrIVNnzvLla9+8+D2YdfBmN9V/7J9FPygvALF8Om9zpWy8IwKHDfW+cx2Obni\npKWkENa85dTN0m5DccnO4jGxXDff/PnBZZy98U7dHHoNtOpd8T75eyla+C9CCx4lqcRZcc827sSt\nXM8Lu9rSNCWet352Im0aV7OrVDTtXOHUzex1zu3SujnosiMvLJa93ln5dskT1a6btXZ+/OoleOsm\nKNrv3G7Z21mtt/f4yOrmCdPglN+7VjePWl7BEufK9ed/JaLz5uo3D62b8alO0jro8tism3nZznlz\nXXjRL28CDLjIWZCnZa9DYlaCXUuUYNcNh5TXgfVO60Npf0GA5GbQcaTTBSIuybmklb0ONs93FgIp\n1WeC01LRpGNtv4XIWOssxf3+b+DA9oPbm3aF9ic4Ldoen/ONfddKp4UiFO4240ukePCVvOYfwN83\nNmPrvkI6NkvmjRtOJD0pRrr+lCopdA7i/3vQWd4bAANtB0FGprNAjw3B/q1O3+bscisJpraGU34H\nAyZWu3W+xutj7m6nVbC0xQycATkdRzoH/8TGzqXXvRudz6x/18HHtRnofCGs7NWaWnDE8tq+FN67\nHbYuPLgtuZnT/7NpVycBKTwAWWtg0zxnIZBSfc6BU++u0tiDWmUtrHrVWVZ9/5aD25t0hg7DD6ub\nXzktnOGZEaw3ATPiZ9yx7zRmL8nGY+DpqScwsltzl97MUVSqblqnbm5b7PxNS6W2dpZnj6RFuJxa\nPT/m7oa5dzoNFKV8iU59a9n7YN3c953zmS1fNzMynbpZ2RbhGlKp8tqxHN79lTN2q1Rp3WzWzTlv\nFu53ujBtnnfoebP32U6X1Dpx3nw9fN4st4jbYefN4gO72LZlMy0vn60EuyYpwa4bflBeoZCzqtOC\nfxxc0vxIPHFOV4vhN1R96Wi3lBQ4B/4FjzqrXB5NYmOnNW34Dfi96cydO5d2fU/gktlfUlgS4se9\nWvL4pOPxVDA9lutyd8Gix2HJv51+8kfTpLMzMOn4yRW3MlVBrdXHXV/DvL85X54qGphcXofhTgtw\nr/Gx070n7KjlZa2zPPUXMw8um3wkxuu05A+/wekfW5eUFMCXz8AXjx28CnMENqERGxqNIOOcu3h7\nRzK/eskZj//rcT2ZNrr2Zq+qkojr5lQ4fkq16qYr58ddX8H8fzjdlQ6fgvNwHYY7K6b2Pjsm6mal\ny8ta57w5/++VPG+eWXfr5ornne5OeyrOYwMmnsKbNpKaVs1VNSNQ3QS7FuZOEsE5qPUY5/zs3+5c\nFtq5wulzHix2Lmc16egcCLucDCnN3I64auKSwsnkVNj9tbOU+/ffOCe9UMBpgWjWFTr9yGmJKJ2R\nw++0PvRolcr0Cf345Qsr+Gj198z4dAPXn1x7XyQrLa21c4l19G2wZQFs/ASy1h48oadlQMue0GWM\n06IbAye1Kmnd15mx5icPwvoPnVkNsr91Wgg9PkhvD20HOp/Z6i7p7hZjoOcZzk/OFtjwX+dq0/5t\nTleSuCSnxaztYDju1Oov6e6WuCQYepVTP3d/Des/gu9XO8ej0rEuzbtBp1HkNR/Aqs/mszevEb99\nzemqNrZPK649qYvLb6ISytfNzfOdL01Za52rhNhydfNkZ5aVOls3+8GEx+CM+52/5bbF5eqmF9I7\nOGOWup1St+tm97HOT4XnzRSn33L7YdD1ZEiJwSsrlRGX5HzJGzwZdq9yjrW7v3G6T4YCBOLS2Lo/\nQItjfZGKMUqwpfalt3VaTeozY5wTQOt+Ee96zsB2fLklh6cWbOaBD9bSr206o7q3qIEgo8Ab5/QL\n7DzK7UhqVmIjZzaV0hlV6qvGHZw+9YMvdzuSmlOZuun3k1cCv3zpG4oDIbo0T+GB8wfU2LzzNcIb\nB11Ocn7qs8RG0HeC81OfNZjzZl/np5xCv5+Vc+dyije2J3c4XB396ipSv/32J70Z2KEx1sLP53zJ\n1r35x95JRKIiGLI89a2H7fsLSY738tikwaQlxth4CBGJaUqwRWJQvM/Do5cMonlqPDn5JVz7zFIK\nS469JK2IVN+MzzaxZr9zerzvvP4c16r2+n2KSP2gBFskRmWkJ/HIxEF4PYZVOw5w+ytfUdcGJYvU\nNXNX72bm585sI5ef0I4z+7dxOSIRqYuUYIvEsBO6NOM3Z/QC4JUvt/PUgs0uRyRSf23KzuPGF5xB\njV3TLDeO6exyRCJSVynBFolxk0d24uxMpxXt7re+YdF3e12OSKT+KSgOcu0zS8ktDNAyLZ4rugeJ\n8+oUKSJVo6OHSIwzxjB9Qn96ZTQiELJc9+wydu0vdDsskXrDWsvtr37Fml25xHkND07oTaO6NWGB\niMQYJdgidUBSvJfHLh1MelIc2f4ipj27lKKABj2KRMPTCzfz6pfOCqy/O7M3A9unuxyRiNR1SrBF\n6ogOzZJ5+OKBGANfbsnhrje/cTskkTpvyaa9ZXXpnIFtmTQsxpeXFpE6QQm2SB1yUvcW3HJaDwCe\n/WILLy7e6nJEInXXrv2FXPvMMgIhS8/WafzpnH51azEZEYlZSrBF6pjrRndlbJ9WAPz29a9ZsTXH\n5YhE6p7CkiDXPLOUbH8R6UlxPD7peJLivW6HJSL1hBJskTrGGMMD5w+ga4sUigMhpoWTBBGpHGst\nvw9/OfUY+MfEgXRolux2WCJSjyjBFqmD0hLjePyy40lN8LFjfyE3PLeMQDDkdlgidcIzCzfz4pJt\nANx6ek9+dFwLlyMSkfpGCbZIHdW1RSoPXjAAgIUb9/Lnd9e4HJFI7Fv03V7uDA9qPGtAG676UReX\nIxKR+kgJtkgdNrZPa244uRsA//z8O95YscPliERi146cAq57dimBkKV3RiPuPbe/BjWKSI1Qgi1S\nx/3y1O6c1N25xP3rl1byzY4DLkckEnsKS5yVGrP9xTRJjuOxSYM1qFFEaowSbJE6zusxPHzRQDo0\nTaagJMhVTy1hjwY9ipSx1vKbV79m5bb94UGNg2jfVIMaRaTmKMEWqQfSk+OYddnxpMR72Z5TwLRn\nl1Ec0KBHEYAn52/i5WXOoMbbz+jFyG7NXY5IROo7Jdgi9USP1mn85cJMwBnIdcebq1yOSMR9Czbs\n4e63VwNwdmYbpp7Y2eWIRKQhUIItUo+c1qc1t5zWHYDnvtjC0ws3uxyRiHu27cvnhueWEQxZ+rRp\nxPQJGtQoIrVDCbZIPXP9yd34Sf8MAO58YxXzN2S7HJFI7csrCnDlk0vYk1dM05R4DWoUkVqlBFuk\nnjHGcP95/enTphGBkOX6Z5exdW++22GJ1JpQyPLLF5azZlcucV7DjEsG0a6JBjWKSO1Rgi1SDyXH\n+3j8suNpnhrPvvwSrnxyCf6igNthidSKhz5cxwff7AbgnrP7ckKXZi5HJCINjRJskXqqbeMkZl46\nmDivYe3uXG56YTmhkHU7LJEa9fry7fzjv+sBmDKyMxcO6eByRCLSEPncDiDaQqEQgUCAUCi6U5QV\nFxfj8/koLi6msLAwqs9dFR6Ph7i4OA3YkaM6vlNT7jm7L79++Ss++GY3f/1oHTed1sPtsERqxPKt\nOfzfSysBGNW9Bbef0dPliESkoapXLdh+v5/9+/cTCET/UnhCQgJDhgwhISEh6s9dFcXFxeTk5GCt\nWiTl6C4c0oErRnQC4OGP1/P2yp3uBiRSA3buL+Cqp5ZQHAjRtUUK/5g4EJ+3Xp3iRKQOqTct2KWt\n1k2aNKmR5w8Gg5SUlJCYmIjXGxsj0f1+PyUlJcTHx7sdisS43/6kF99+n8u89Xu4+T/LadckiQHt\nG7sdlkhUFBQHufqppWTlFpGeFMc/Lx9Co8Q4t8MSkQas3ny9DwQCDS7R9Pl8Ue8KI/WTz+vhkYmD\n6Nw8hcKSEFc+tYTtOQVuhyVSbdZabnlpBV9t34/X48wY0rl5itthiUgDV28SbBE5usbJ8fz7iiE0\nTo4jK7eIqbMXk1tY4nZYItXyt7nflnV7uuOsPozQMugiEgOUYIs0IJ2bp5TNLLJmVy4/e/5LAkFd\nBZG66bUvt/PXj74FYNKwjkwa1tHliEREHEqwRRqYYV2aMX1CfwA+WZvFPW+vdjkikch9sXEPvwrP\nGPKj45rz+5/2djkiEZGDlGCLNEDnDW7HDSd3A2D2/E3MnvedyxGJVN6GLD9XP72U4mCIHq3SeOSS\nQcRpxhARiSE6Iok0UDed2p2f9M8A4K63vuG/a753OSKRY9vjL2LK7MXsLyihRVoC/56sGUNEJPbU\nm2n6DhcIhtidWxS15wsFg/j9ReQGfXiOME1fq7QEzbsqdYbHY3jw/AFs31fA8q053PDcMl6aNoJe\nGY3cDk2kQoUlQa5+eimb9+STFOfl35cPoW3jJLfDEhH5gXqbYO/OLWLknz+u1decd+uYiA72s2fP\n5o477mDPnj2MGzeOxMREOnbsyD333FODUYoclBjnZdZlx3P2I/PYnlPAlNmLefW6kbROT3Q7NJFD\nhEKWm/+zgqWb92EMPHzxQPq1S3c7LBGRCqm51SUzZ87kj3/8I2+99RY5OTl07dqV559/nszMTLdD\nkwamRVoCT0weQlqCj537C7niiUUc0PR9EmPu/2Bt2XR8vz+zN6f2buVyRCIiR1ZvW7BbpSUw79Yx\nUXs+p4tIHqmpKUftIlIZfr+f2267jddff52+ffsCMGXKFO69914yMzPJz8/nlFNOYfXq1cycOZOL\nLrooau9DpCLdW6Xx2KTBXP7EItbsyuWap5Yye8oQEnyxsWqpNGzPfbGFGZ9sAOCKEZ2YPLKzyxGJ\niBxdvU2wfV5PVPvmBYNBcr0B0tKSqr1U+qeffkpiYiKjRo0q25adnU1qaipdu3YlFArx6quvMnPm\nzOqGLVJpI7o154HzB/CLOctZsHEPt/xnJX+7MBOPx7gdmjRg76/axW9f+wqAH/dqye/O1HR8IhL7\naqyLiDFmmDHmXWPM98aYHGPM/4wxI2vq9eqSrKwsWrZseci2OXPm0L9/f4wxeL1eWrdu7VJ00pCN\nz2zLb87oBcCbK3Yw/V3NkS3uWbxpLz9//ktCFgZ2aMzfLx6EV1/4RKQOqMk+2E2Ap4GeQDPgOeAd\nY0zLo+7VAPTu3ZvVq1ezaNEiCgsLmTlzJrNmzWLAgAFuhybClT/qzJTwJfhZ//uOf/5vo8sRSUO0\nbncuU2cvpigQomuLFP59+RCS4tVlSUTqhhrrImKtffewTTOMMXcBmcAHlXkOY0xToOlhmzsA5OXl\n4ff7yzYWFxeTkJBAMBisetBHEQqFDvldHYMHD+aXv/wlY8eOJSkpicmTJ9OjRw/69+9/SPyhUIhQ\nKHTE9xQMBikqKiIQCFQ7pmjLz88/5LccXayV142j27N9n5/3v3FWekyPh9P7xM5341grr1hX18pr\n5/5CJs1ezoHCAC3T4plxYV/ibDF+f3GtvH5dKy+3qbwio/KKjFvllZeXV639jbU2SqEc44WMGQAs\nATpZa7dXcp87gD9UdN+MGTPIyMgou+3z+RgyZAjx8fFRiLZ2hUIh2rVrx5tvvsngwYPLtv/5z3/m\nuOOO49xzz61wv+LiYhYvXhyTCbbUfYEQzFjtYf0BD15jmdYrxHHptXO8kIYrrwT+tsrL7gJDktfy\n8z5B2qS4HZWINDQ7d+5k2rRpAMdZa9dHun+VEmxjzGzg8qM8ZJK19plyj28OzANetNb+LoLXOVIL\n9tzly5fTtWvXso2lLdiJiTUzf28oFCIvL4+UlBQ8nuj2rFm/fj29e/cmJyeH5ORkAM4//3yWL19O\nSkoKY8aM4aGHHvrBfoWFhRQVFcXkl4r8/HwWLFjA8OHDy96THFmslteBwgCXP7mcb7PySI738q9L\n+9OvjfsL0cRqecWqulJehSVBrnx2Jcu3HSDea3h8Yn+O79i41uOoK+UVK1RekVF5Rcat8tqwYUPp\n1MlVSrCr2kXkBuCWo9yfW/qfcHL9ETAX+H0kL2Kt3QvsLb/NGGeAS0pKCqmpqWXbCwsLAao9w8ex\neDyeqL/GmjVr6N69O2lpaWXbXnnllWPu5/V6SU5OrrEvFdGQnJx8yN9Jji7Wyis1FZ6+chjnzZzP\ntn0FTJvzNS9eM5zurdKOvXMtiLXyinWxXF7FgRA/f2kpy7cdKFtIZnSfjGPvWINiubxikcorMiqv\nyNR2eaWkVO/SWZWaYq21fmtt9lF+igCMMa2A/wKfA9fb2uqPUseMHz+e1as1W4PEptbpiTx75Qm0\nSEsgJ7+ES//5BVv2qO+gRE8wZPnli8v5eM33ANw9vi/j+rqbXIuIVEdNTtOXAXwKfGKtvUHJtUjd\n1bFZCk9PHUp6Uhzf5xZx6b++YPeBQrfDknogFLLc9srKslUafz2uJ5cO6+hyVCIi1VOT0/RdDfQA\nJhtj/OV+LqnB1xSRGtKzdSNmTx5CcryXLXvzmfSvL9iXVzuzOkj9ZK3l7re/4cUl2wC44eRuTBvd\n9Rh7iYjEvhpLsK21d1prjbU29bCfZ2vqNUWkZg3s0IRZlx1PvNfDut1+rpi9GH+RZrGRqvnLh+t4\nYt4mwFkC/ebTursbkIhIlNRkC7aI1EMjuzXn7xMH4vUYVmzNYcoTi8lTki0ReuzTDTz8sTMw/7zB\n7fj9mb3LBrGLiNR1SrBFJGJj+7Tm/vP6Ywws2rSXKbMXk1+sJFsqZ/a875j+7hoAzujXmj9P6IdH\nS6CLSD2iBFtEqmTCoHbce66TZH/x3V6mzl5CQXHNrKQq9cfsed9xx5vfAHByjxb89cKB+Lw6FYlI\n/aKjmohU2QXHt+fPE/oBsGDjHq56agmFJUqypWLlk+vRPVow49LBxPt0GhKR+kdHNhGplguHCfo6\n1wAAGnhJREFUdOBP5zhJ9ufrs5VkS4WenL/pkOR65qWDSYyr2YXBRETcogRbRKpt4gkduPvsvgD8\n79tsrn56qZJsKfPk/E384Y1VAJzUXcm1iNR/SrBFJComDevIXeP7APDZuiyueGKRpvAT/v35d4ck\n149NUnItIvWfz+0AakwwALk7o/d8oRDG74dQKniO8L0kLQO8lS/S2bNnc8cdd7Bnzx7GjRtHYmIi\nHTt25J577olS0CK167LhnfAYw29f+5qFG/cy6V9fMPuKoaQnx7kdmtQyay1//3g9D324DlByLSIN\nS/1NsHN3wl/7Ru3pvED6sR5049fQuH2lnm/mzJk8+OCDvPXWW/Tq1Yvf/OY3PPDAA8yZM6e6oYq4\n6tJhHUmK8/J/L63gyy05XDxrIU9PHUqz1AS3Q5NaYq1l+rtrePyzjQCc2rsVf794oJJrEWkw1EXE\nBX6/n9tuu41//etf9O3bF6/Xy5QpUwgGg2RmZrJq1SpOPPFERo0axZgxY9i4caPbIYtE5NzB7Xhk\n4iDivIZvdh7ggscWsGt/odthSS0Ihiy3v/p1WXJ9dmYbHr1kkJJrEWlQ6m8LdlqG06IcJcFQCL/f\nT2pqKt6jdRGphE8//ZTExERGjRpVti07O5vU1FS6du1KVlYWb7/9Nunp6bz33nvcfffdPPHEE9F4\nGyK15vR+GTwe5+XaZ5ayISuPCx5bwDNTT6BDs2S3Q5MaUhIMcfOLK3hjxQ4ALjmhA3eP76tFZESk\nwam/CbbXV+nuGpUSDGI9uZCWBt7qtcRkZWXRsmXLQ7bNmTOH/v37Y4w55L64uDi81Xw9Ebec3LMl\nT0wewpVPLmHL3nwmzJjHE1cMpV+7Y3a4kjomvzjADc99ycdrvgfgmpO6cOu4nlr+XEQaJHURcUHv\n3r1ZvXo1ixYtorCwkJkzZzJr1iwGDBhwyOMKCgr4wx/+wC9+8QuXIhWpvhFdm/PcVcNomhJPtr+Y\nCx9fwKfrstwOS6IoK7eIix5fWJZc33JadyXXItKgKcF2wdChQ7n55psZO3YsXbp0Yfv27fTo0YPM\nzMyyxwQCASZOnMgtt9xCv379XIxWpPoy2zfmpWuH075pEvnFQabOXszLS7e5HZZEwcYsP+fOmM/K\nbfvxegz3ntuPG8Ycp+RaRBo0JdgumT59Ovv27WPHjh3ceeedrFu3rizBttZy5ZVXMnbsWM4++2yX\nIxWJji4tUnl52gj6tm1EIGS5+T8reOS/67HWuh2aVNGyLfs4d8Z8tuzNJynOyz8vO54Lh3RwOywR\nEdcpwY4BGzdupKioiL59nWkF33//fV588UXmzJnD6NGjufHGG12OUCQ6WqYlMufq4fzouOYA3P/+\nWm59+SuKAyGXI5NIvff1LibOWsi+/BKap8bzwjXDOLlny2PvKCLSANTfQY51yKpVq+jevTvJyc7s\nCuPGjSM/P9/lqERqRmqCj39dPoRbX1nJK8u288KSrXy3J4+Zlw6maUq82+HJMVhr+cfH63kwvIBM\n5+YpPDl5qGaHEREpRy3YMWD8+PGsXr3a7TBEak28z8OD5w/g/8b2AGDRd3sZ/8jnrNud63JkcjQF\nxUF+9vyXZcn1CZ2b8vK0EUquRUQOowRbRFxhjOH6k7sx89LBJMV52bq3gAmPzue/4ZkoJLbs3F/A\nBY8t4K2VOwGYeEIHnp56gq46iIhUQAm2iLhqXN/WvDRtOG3SE/EXBZjy5GL+9tG3hEIa/BgrFm/a\ny1n/mMdX252ZQu4a34c/nt2XeJ9OISIiFdHRUURc16dNOq/dMJLBHZtgLfzlo3VMnr2YfXnFbofW\noFlrefyzDVz0+EKycotIT4rjqSlDuWx4J03DJyJyFEqwRSQmtExL5PmrhjF5ZCcAPl2XxZl//5wV\nW3PcDayB2l9QwtVPL+VP76whGLL0adOIN24Yychuzd0OTUQk5inBFpGYEe/z8Ief9uEfEweSHO9l\ne04B589cwOx532m+7Fr09fb9nPn3//HhN7sBuHhoB16eNoKOzVJcjkxEpG5Qgi0iMefM/m1444aR\ndGuZSnEwxB1vfsOU2YvJyi1yO7R6LRiyzPx0A+c8Oo+tewtIivPy0AUDmD6hH4lxXrfDExGpM5Rg\ni0hM6tYyjdevH8kFx7cD4L9rsxj318/4eM1ulyOrn7bty2firIX8+d01lAQt3Vqm8tr1I5kwqJ3b\noYmI1DlaaEZEYlZKgo/7zhvAyT1acusrX7Enr5gps5dwwaAMBuvoFRXWWl5fvoPfvf41uYUBAK4Y\n0YlbT++pVmsRkSrSKUpEYt7p/TLI7NCYm19cwfwNe3hx2U4+jPeS3nUv4wakuh1enbVzfwG/e20V\nH612rgq0SEvg/vP6M7qHljwXEakOdRERkTohIz2JZ6aewG9/0otEn4d9xYZrn/+Km15crun8IhQK\nWZ5euJlTH/qsLLke16c17984Ssm1iEgU1NsW7EAoQFZ+VtSeLxgKkpefh9/jx+up+LJpi+QW+Dz1\ntkhFXOfxGK78URdGdkrj508v5NsDHl5Ztp3P1mVx6+m9mDCwLR6P5mc+mjW7DvC7175m8aZ9gNNq\nfddZfRjXt7XmthYRiZJ6mw1m5Wdx2sun1eprfnDuB2SkZlT68bNnz+aOO+5gz549jBs3jsTERDp2\n7Mg999xTg1GK1H3tmyRxfe8Q+5v15IG5G8n2F3PLf1bwzMLN3HlWHwa0b+x2iDEnrwTuefdbXly2\ng9JFMi8a0p7bTu9FenKcu8GJiNQz6iLikpkzZ/LHP/6Rt956i5ycHLp27crzzz9PZmam26GJ1AnG\nwLkDM5h700lMGNgWgOVbcxj/yDx+9dIKvj9Q6HKEsSEQDPHc4u3c86WXOUud5Pq4lqk8d9UJ/Pnc\n/kquRURqQL1twW6R3IIPzv0gas8XDAXJ8+eRkppy1C4ileH3+7ntttt4/fXX6du3LwBTpkzh3nvv\nJTMzk02bNjFx4kTi4uIIBALMmDGD/v37R+29iNQnLRsl8tCFmVwyrAN/eGMVX28/wItLtvHGih1c\nPqIT147qSpOUeLfDrHXBkOWtlTv4y4fr2LQnHzA0SvRx06nduXRYR3xeta+IiNSUeptg+zy+iLpr\nHEswGCQ3lEtaShpeb/Wmrvr0009JTExk1KhRZduys7NJTU2la9euBINBPv/8czweDx9//DF/+tOf\nmDNnTnXfgki9NrhjU16//kReXLKVBz9YR7a/iMc+3chzC7dw1aguXDGyE40S639rrbWW91ft5qEP\n17Jutx8Aj4ERLUNMv2Qo7Vs2cTlCEZH6r94m2LEsKyuLli0PHak/Z84c+vfvjzEGn+/gn+XAgQMM\nGDCgtkMUqZO8HsPFQzswPrMNs+dvYuYnGzhQGOChD9cx67ONTBzWgakjO9OyUaLboUZdcSDEGyt2\nMOuzjazdnVu2/acD2nDNiLZsWL6AJuoOIiJSK5Rgu6B3796sXr2aRYsW0b9/f2bPns2sWbOYPHly\n2WOWL1/OtGnT2Lp1K6+88oqL0YrUPcnxPq4b3Y1LTujI459t4Mn5m8ktCvDYpxt54vNNTBjUlsuG\nd6J3m0Zuh1ptOfnFzFm8lSfmfcfuAweXkj+1dytuOrU7vTIa4ff72eBijCIiDY0SbBcMHTqUm2++\nmbFjx5KUlMTUqVPp0aPHIQMcMzMzWbBgAcuWLePaa69l0aJFLkYsUjelJ8Xxf2N7cvWorjz7xWb+\n/fkmsv1FzFm8lTmLtzKgfWMuGdqBMwdkkBxfdw6H1loWbtzLnMVbePfrXRQHQgD4PIazBrThqlFd\n6JVR9788iIjUVXXnjFLPTJ8+nenTpwMQCoV48MEHyxLsoqIiEhISAEhPTyc5Odm1OEXqg/SkOK4b\n3Y0pIzvz6pfbmT1vE2t357Jiaw4rtuZw11vfcFqfVpzZP4MTu7Ug3hd7AwCttazdncs7K3fyxood\n4YGLjrREHxcP7cAVIzrRpnGSi1GKiAgowY4JGzdupKioqGxGkXnz5nHHHXfg9Xqx1vLQQw+5HKFI\n/ZAY5+XioR24aEh7lm3J4flFW3hr5Q78RQFeWbadV5Ztp1Gij1N7t2Z0jxac2K25qzOQFAdCfLll\nH599m8W7X+9iY1beIfcP6dSEi4Z04Ix+GSTFV2/wtYiIRI8S7BiwatUqunfvXtZSPWbMGMaMGeNy\nVCL1lzGGwR2bMLhjE353Zm/e+Wonb6/cyfwN2RwoDPDysm28vGwbxkD/tukM79qczPaNGdihMa1q\ncIBkfnGAr7cfYMXWHBZu3MPCjXvIKw4e8pguzVM4o18GZw9sQ7eWaTUWi4iIVJ0S7Bgwfvx4xo8f\n73YYIg1SelIcFw/twMVDO5DtL+K9r3fx8ZrvWbBhDwUlQVZs28+KbfvLHp+RnkjP1ml0aZFKlxYp\ndG6WQstGCbRITaRRku+Yy40XlgTJyi0i21/Elr35bMjKY2OWn/Xf+1m3O7dslcXy+rRpxMk9WnJG\nvwx6ZaRpSXMRkRhXKwm2MWYc8C7wiLX2htp4TRGRSDVPTeDSYR25dFhHigJBlm7ax2ffZrN0816+\n2r6fwpIQO/cXsnN/If9dm/WD/eO9HholxZHg85Dg8xDv8xAIWYoCQYpKQuQXB/EXBY4ZR9cWKQzq\n0IQTj2vOyG7NaZ6aUBNvV0REakiNJ9jGmDTgb8D8mn4tEZFoSfB5GdGtOSO6NQecJcfX7fazYlsO\n3+72szHbz8asPLbtyy9rdS4Ohsj2Fx3lWQ/VPDWeLs1T6dw8hS4tUujXNp2+7dIbxII4IiL1WW20\nYN8LPAl0j3RHY0xToOlhmzsA5OXl4ff7yzYGAgE8Hg9xcTVzYgqFQof8jgUlJSUEAgECgWO3iNW2\n/Pz8Q37L0am8IuNWeXVo5KFD76bQ++BhKRiy7MsvITuvmD3+YvxFQYoCIYoDIYqDIXweQ4LPQ5zP\nQ3Kch2Yp8TRLiadpShyJcRUMTAwU4Y8gSa8Mfb4io/KKjMorMiqvyLhVXnl5ecd+0FEYayvo8Bcl\nxpiTgIeB44FZgD+SLiLGmDuAP1R034wZM8jIOHQp9E6dOtGhQ4cG0z9x165drF271u0wREREROqV\nnTt3Mm3aNIDjrLXrI92/Si3YxpjZwOVHecgk4GXgceAya21JFZPeh4FnDtvWAZg7fPhwunbtesgd\nwWCQgoICkpOT8XqjO2VVKBSioKCApKQkPB7358gtLi6mWbNmnHLKKW6HUqH8/HwWLFjA8OHDNY93\nJai8IqPyiozKKzIqr8iovCKj8oqMW+W1YUP11r+taheRG4BbjnJ/LnAP8J619osqvgbW2r3A3vLb\nShP1lJQUUlNTf7BPo0aNKCkpiXpXjqKiIhYvXhwzFSItLQ2fL/YngUlOTq7w7yQVU3lFRuUVGZVX\nZFRekVF5RUblFZnaLq+UlJRq7V+lDM1a6wf8R3uMMeZUoJMx5pLwplTAGmNOttb2qcrrVoYxhvj4\n6C8MUdrXOT4+nsTEmpsHV0RERETqtppsAj0NKJ/pPgTkAbfX4GuKiIiIiLiqxhJsa+335W8bY/KB\nPGvtzpp6TRERERERt9VaJ15r7RW19VoiIiIiIm6J/VFyPxQHsHnz5lp90by8PHbu3MmGDRuq3fG9\nIVB5RUblFRmVV2RUXpFReUVG5RUZlVdk3CqvcnlmlRZYqdF5sGuCMWYMMNftOERERESk3jvFWvtx\npDvVxQQ7BTgB2AmU1OJLd8BJ7E8BttTi69ZVKq/IqLwio/KKjMorMiqvyKi8IqPyioxb5RUHZABf\nWGsjXtaxznURCb/JiL9JVFe5hXK2VGVFn4ZG5RUZlVdkVF6RUXlFRuUVGZVXZFRekXG5vFZXdUf3\nlyQUEREREalHlGCLiIiIiESREmwRERERkShSgl15e4E7w7/l2FRekVF5RUblFRmVV2RUXpFReUVG\n5RWZOlledW4WERERERGRWKYWbBERERGRKFKCLSIiIiISRUqwRURERESiSAm2iIiIiEgUKcEWERER\nEYkiJdgiIiIiIlGkBFtEREREJIqUYIuIiIiIRJESbBERERGRKFKCXQnGGJ8x5i/GmD3GmP3GmCeN\nMSluxxWLjDEJxpjHjTEbjDH+8O9b3Y6rLjDGJJeWm9uxxDpjzDhjzJLwZ2y3MeYPbscUq4wxGcaY\nl40x2eFj2FvGmC5uxxULjDEXGWPmhT9Hmyq4/3ZjzM7w/a8bY1q5EGbMOFp5GWPuM8Z8Y4zJNcZs\nNcbcb4yJdynUmHCsz1f4MZ7wY6wxpnkthxhTKlEfhxhjPgnfv8cY87gLYVaaEuzKuR04DcgEugAd\ngb+4GlHs8gHfA6cDjYCzgGnGmGtdjapu+CPwndtBxDpjzCnAv4HbgMZAV+BVV4OKbY8CiTjl1A6n\nfj7jakSxYy/wMPD7w+8wxlwG/Aw4FcgA8oCnazW62HPE8gKKgYuAJsCJwCnAXbUXWkw6WnmV+hlQ\nUDvhxLyj1cfewNvADKAZ0BaYWavRRchYa92OIeYZY7YAt1lrnw3fHgl8BDS11qpiHIMx5n6grbV2\notuxxCpjzDDgceAW4BVrbarLIcUsY8xC4Clr7aNux1IXGGNWAg9aa58M3z4JeFufsYOMMecBD1hr\nO5Xb9hnwvrX2j+Hb7YAtQBdr7SY34owVFZVXBY+5HrjEWjui1gKLUUcqL2NMZ5xc4jxgGdDCWptd\n+xHGliPUxznAFmvtr1wLLEJqwT4GY0xjoD2wtNzmZTgtQse5ElQdYozxAKOBlS6HErOMMQnAP4Fr\ncFqB5AjCXbOGAq2MMWuMMd+Huzx0czu2GPYAcJ4xpmm4/CYDr7kcU13Qn3LHfWvtNiArvF2O7RR0\n3D+WWThXyPe5HUgdcDLgMcYsC3d3+8QYc7zbQR2NEuxjSwv/3l+6IdxqXYzTBUKO7n4gBfiH24HE\nsN8Dn1hrF7gdSB3QBDDABJxuSB2BjcCbxhifm4HFsPk4x7Fs4AAwGOdKiRxdGuWO+2E56Lh/TMaY\nnwEjUBeRIzLGXAUUWmtfcDuWOqIZcDFOA0Eb4B3gnXAjaExSgn1sueHf6aUbjDFJQDzOyUqOwBhz\nD04f7FOttRq4VwFjTCYwEac/sRxbaX38m7X2u/CX3VuBHkB398KKTeErSB/hXHVrBKQCLwH/NcbE\nuRlbHZBLueN+WGN03D8qY8zVwG+BH1trd7gdTywyxrQB/gBc53YsdUgu8IS1doW1tthaex8Qwvki\nF5OUYB+DtTYH2AoMKrd5EFAIfOtKUHWAMeY+4AJgtLV2u9vxxLDROAOovjPGZAOvAynhS2BjXI0s\nBllr9wObAQ0eqZymOK38D1tr/eEvJA8BPXEGPcqRraTccT/cB7sF6vZwRMaYG3BarU+x1n7tdjwx\nbCjQElgWPu4vC29fa4y53L2wYtoK6thxXwl25fwTuM0Y084Y0wy4B3hGAxwrZoz5GzAeJdeV8U+g\nG84MNZnAlUB++P/zXIwrls0EfmGMaR/uv/5HYDWw1t2wYk94wNR64DpjTFJ42rRf4PT53ORmbLHA\nGOM1xiQCcc5Nkxi+DU7dvN4Y08cYkwrcB8xtyAMcj1ZexpibcFquxyi5dhylvN7DmZGs9Lh/RniX\n0ThXmBqkY9THmcBkY0xv40ydfBNOd8H5bsV7LOqzWDl/wmkJWolTZq8BN7oaUYwyxnQEfo7TR32d\nMab0rv9Za093LbAYFe46U9Z9xhiT5Wy229yLKubdh3OpfilOfVwAnGWtDboaVewaj9NqvQ3wAl8B\nZ1prC12NKjZMAp4od7u00cRYa58yxrQH5uL0x54LXFrL8cWaI5YX8CBQAiwqd9zfbK3tU3vhxZwK\ny8taa3DqI+CstRH+705rbV7thRdzjlYf54S71nyAUx9XAGeEexnEJE3TJyIiIiISReoiIiIiIiIS\nRUqwRURERESiSAm2iIiIiEgUKcEWEREREYkiJdgiIiIiIlGkBFtEREREJIqUYIuIiIiIRJESbBER\nERGRKFKCLSIiIiISRUqwRUQaCGPM/caY9yvYPtMY81c3YhIRqY+UYIuINBxDgUXlNxhjDHAW8Jor\nEYmI1ENKsEVEYpwx5i/GmCXGmB8cs8Pbj9r6bIyJN8YUA6OA3xpjrDHmm/DdQ4AE4PPwY1eF76/o\n547ovjMRkfpJCbaISAwzxvQAfgb8n7U2VMFDVgMDj/E0AWB4+P8nABnAyPDts4G3rbWB8O1zwr/P\nCD+uDZAPTAXurcp7EBFpaJRgi4jEtluAFdba/x7h/r04iTDGmDOMMWuNMeuNMT8rfUA4Mc8AcoHF\n1tpd1tp94bvHc2j3kFaABf5nrd0FpADJwOfW2oJovjERkfpKCbaISIwKdwk5D3ip3La/lE+egTQg\nzxjjAx4Gfgz0B64zxrQr97iBOIm6Lfdc3YAuQPmBjwOAjdZaf/h2Jk4L9vqovTERkXpOCbaISOzq\nDDQGviq37QKchLfUAOAbnAGMq621W621+cArwE/LPS4T+PKw5z8bmGutzSu3rT+w8rD9vj5C9xQR\nEamAEmwRkdjVJPzbD2CMGY3TJ7o4fPs4nAT41fD27eX23Qa0LXd7AIcmzvDD7iHgJNgryt3OPOy2\niIgcgxJsEZHYtQUIARONMZk4XUDeBM40xvQHnsBJml+txHP5gJ7GmDbGmMbGmBbAsPDzAWVdUvpy\naCLeFdgcjTcjItJQKMEWEYlR1trvgduA84EPgMdwBj0OBBYCe4AzrLVBYAeHtli349AW7d8AF+G0\nbE/H6T6y2Fq7u9xjuuIMaiyfYH8F3GSMOT1670xEpH4z5ca7iIhIHRUe5LgWGA1kA8uA06y1W4/w\n+NeBedba+2otSBGRBsLndgAiIlJ91tqAMeZGYC7gBR4+UnIdNg94vlaCExFpYNSCLSIiIiISReqD\nLSIiIiISRUqwRURERESiSAm2iIiIiEgUKcEWEREREYkiJdgiIiIiIlGkBFtEREREJIqUYIuIiIiI\nRJESbBERERGRKFKCLSIiIiISRUqwRURERESiSAm2iIiIiEgUKcEWEREREYkiJdgiIiIiIlH0/w/C\nJsgEmdDiAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd1a4ea47b8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# #### Plot in 0 ≤ a ≤ 16 pi\n", "for i, line in enumerate(plt.plot(a/pi, q), 1):\n", " line.set_label('$q_{%d}$'%i)\n", "plt.title('Modal Responses')\n", "plt.xlabel(r'$\\omega_0 t/\\pi$')\n", "plt.legend(loc='best');\n", "plt.xticks()\n", "plt.show();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Nodal responses" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x = [email protected]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Why `x = [email protected]` rather than `x = Psi@q`? Because for different reasons (mostly, ease of use with the plotting libraries) we have all the response arrays organized in the shape of `(Nsteps × 3)`. \n", "\n", "That's equivalent to say that `q` and `x`, the Pyton objects, are isomorph to $\\boldsymbol q^T$ and $\\boldsymbol x^T$ and because it is $$\\boldsymbol x^T = (\\boldsymbol\\Psi \\boldsymbol q)^T = \\boldsymbol q^T \\boldsymbol \\Psi^T,$$\n", "in Python to write `x = [email protected]` we have.\n", "\n", "That said. here are the plot of the nodal responses. Compare with the numerical solutions." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtgAAAE3CAYAAACQKTbPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAARrwAAEa8B9/1LhAAAIABJREFUeJzs3Xd4FNX6wPHvu7vppEAgEHpHpCNFiEqXKCKCiNiQa/eK\nKFdRLD8VFftFFL0qKkrxCtYbRUG6Su9CpNdQEgIJENKz2fn9cZaQhCRkQwrl/TzPPtmdcubM2dnJ\nO2fOnCOWZaGUUkoppZQqHbaKzoBSSimllFIXEw2wlVJKKaWUKkUaYCullFJKKVWKNMBWSimllFKq\nFGmArZRSSimlVCnSAFsppZRSSqlSpAG2UkoppZRSpUgDbKWUUkoppUqRBthKKaWUUkqVIg2wlVJK\nKaWUKkUaYKvznoi8JCKWiCwrZF5yReSrpERkr4h8kOtzue2DiNR3l+Xgsyy3173cg4XM+6Cg9UqQ\nnxLtu4gsFpFZxUjbcr9cInJCRDaKyAci0rwkaZaEiHwpItGlne6FRkSGi8jtFZ2P84X7uHzSw3Vu\nEpF/FjC9TM4hItLdnc8OpZ12Adsq0e+kvMtEqeLSAFtdSLqISJ+KzkQZ+AzoUdGZKMQzIuJV0Zk4\nB2lAF6ArMBj4EugNbBCRO/Mt+0/giXLN3aVlOKAB9rm5CXOc5nc+n0PKmpaJOi9pgK0uFCnASuDF\nskhcROwi4l0WaZ+NZVkHLMtaXRHbPovFQB3g7grOx7lwWZa1wv2aZ1nWeKAtsAT4XEQanlrQsqzN\nlmVtq7CcKlVC5/E5pMJomaiKpgG2upCMBSJEpFdRC4lIFRH5TETiRSRdRFaLSN98yywWkVkicoeI\nbAUygM7u29iWiFwhInNEJEVEdonIjWI8IyIHRSRBRP6TOygXkeoi8rmI7BaRNBHZKSLviIjfWfKb\n51ZmruYZ+V+Lcy0TJCLvu/OS4W76cFMBaY8RkUPu/ZgF1D5LGef2N/Ad8KyIOM6yD1eLyBL3fieK\nyFciUiPfMuEi8qOIpIpIrIi8AEi+ZfxEZKKIbHUvt89dplU8yHeRLMtKBx4FvIH7cm07TxMREakl\nIjNE5LD7ONorIh/nmv+SiCS7j5WV7mW2ikj/orZf3ONERGwi8i8R2eL+juNE5FsRCc61TDMR+UFE\njrnLa56ItMiXjiUiT4nIK+40kkTkQ/dFZVcRWeU+PpaLyGX51hURedy9XxkiEiMiz4mI5FrmVDm0\nEJE/3PnYIiI35y5boBvQL9fx/JJ7Xld32R93p/O3iDxU5JdYykSks4hE5fqtbBSR+/Mtc6q5RG8R\nmS4iJ0Vkv4i8LCK2XMs1E5Gv3WWV5i6LZ4r6DYnIKHe5BeWbXltEskXkdhH5EnOx2yJXGX7pXu6M\n5hAiEuL+LR1wf3d7ROT1XPOvE5G5Ys6TJ8WcJweUsPxGi8gO92/gqIgsklzNsKQY5+QC0iywiYfk\naqJWgjKpKyLfuI+1VHc+OxaUvog85H6fJCKzRaROScpGXbqK/Kep1PnEsqzZIrIaU4u9oKBlRMQO\nzAYaA88AB4AHgF9EpI9lWYtyLX4F0BATuB8F9gCN3POmA58A44F/Ad8A/8HU6N4LXA68Bex0LwMQ\nCpwEngKOuPPwAlAPuMWDXR0I+OT6XA+YBmx176MXMBcTLL8E7MU0f/heRK6xLGupe7mHgNeBCe4y\nuQb4yoN8ALwCbASGAZMLWkBErgDmY2qFbwUqA68BC0TkCndAC/Aj0AB4BFPeo4Am+ZLzc+/7S0As\nUAvzPc4BOnmY90JZlrVZRA5imo8UZqp7+yOBOMx3f1W+Zbwwx8Z4zPHzCPCDiLS3LGtTIekW9ziZ\nCDwIvIsp30pAP/ffEyJSH1gGbMNcKGQCTwKLRKSJZVkncqX1KPAHJhhph/l+XEBPzDFyHHgHmAm0\nybXev4GH3cssA9pjfi8u97Tc5TAD+AB41V1mM9z52Iu5hT8dSHXnEeCAiAQCv7jTvh1zoXsZkCfQ\nLAf1gFXAp5i7ZVcCE0XE27KsD/Mt+wnwNeZ3ei3wf8B2zP4B1AR2Y8ryONAKU2ZVgNGFbH8Kpjxv\nc6d/yj+AE8APmDt41TDlc4d7/pGCEhMRH2AhUB94GfMbzn/8NsD8rt4FsoA+wI8i0t+yrF8KyWdB\n27oLczy9ACzHfHdd3X89PSd76hWKXyaBwO+Yi/oRmN/gk8Bi93lqa67F+7vTfBQIxJTRF5jmZUoV\nj2VZ+tLXef3CBFvJ7vf9AAvokX+e+/ON7vnX55pmA6KBxbmmLcYEJPXybWu4e/1Hck2r754WDdhy\nTZ8FLC8i3w5gACYYCc01fS/wQUH7V0Aa/sAGYA3glyuPTqBVvmXnAPNz7fMB4Kt8y7zv3pfBZynz\nnDwC32IuJByF5P8HYD/gnWtaZ/d2hrs/93V/7pNrGV/gcGH7nqsM27rXbZ/v+5tV3OOmkPnLgS2F\npQkkA4+eJX0LuCdffvcBX+ea9iUQ7clxAjR1f36miPW+xAT1frmmBWICjOdzTbOA1fnWXeye3inX\ntMHuac3cnxsC2cDD+dYdgwn6AvKVww25lgl1H6OPF/WdAR3c67YqbD/L+4UJwByYi6aNuaZ3d+f1\nnXzLbwD+d5a0HsME25Lve3ky1+evgFX51t0DTDzbsZT/WAfud6ffpZj7bHPn8wfgpwL2uUMR634A\nrC1ifnHPyXn2Lf8+5Zq+l7znn+KWyUjMb6plrmkB7t/Ll/nSPwD45pr2uHsfQir6+NTXhfPSJiLq\ngmKZmpW1mNqSglwNnLQs69dc67gwQWJXd23KKRsty9pXSDpzc62/FxOMz3endcp2TK0QkOd2+mYR\nScPUCv0P848yf01tcX0BVAdusiwrzT3tWmATsEVEHKdewDzg1O3OOpja1+/ypZf/c3G8jAm27ihk\n/tWYACPz1ATLslZi/lFd7Z50JZBkWda8XMukY2ov8xCRu0RknYicxJThevespiXIe1EE80+zMOuA\nJ0XknyJS1Pf346k3lmU5gSjMBUbBGy3ecdLT/fnzIrZ7rXtbWbmOgTTMhUP+2v65+T5vB05YlrUq\n3zQ4fUz3dufh23zH2XxM7WSzXOu6MMcfAJZlJQDxnL1J0i4gCfhIRG4VkbCzLH+q6YyjBC8pIs3K\nIvKeiOzFfB9ZmDssBR1zv+X7vDn3foqIr4iMFZGdQLo7rQlAMOa3XJhJQEcRaeX+3Atzcf9ZEesU\nphfm4nF5YQuIaX7ypYgc4PQ+D8Tz39k6oJ2IvCsi18iZz7J4ck4uS1cDf1uWldNTiWVZKZiKkqvz\nLfu7dfrOG5jvGDxrYqcucRpgqwvRWKC7iFxTwLzKmFrR/A5jbmNXyjetMMfyfc7C1EDllomphT3l\ncUyt18+YJ9s7Y27xkm+5YhGRZzE1m4MsyzqQa1Y1TK1uVr7XO0CQiIQA4e5l4/MlW9Q+F8gyTR1+\nBJ4r5J9hZUwTivwOY26L485P/ryckR8RGYhpmrEW09zkSiDSPdvjMjyL2hSc71NuxQSTrwDb3W1M\nh+ZbJsuyrPzHymFOl39BinOchAJOy7IKKrNTqmFqRvMfB/2BuvmWzZ/HTAo+nnPnoRomwD6SL/1T\nD47l3kaaZVkZBaRX5HfmLrs+mCB7ChAnIn+KSLsiVnuBM/e5OK+iHtb9EnMBOR5z4dIRUzPrU8Cy\nBZVl7v18E9P853PgBszFznPueYWWh2VZv2Oa+9zrnnQfpmb4ryLyXZhQ4FBhM8W0Gf8J0y5+LCYg\n74ipwfb0d/Yl5pjug2mCcVRMG/8A93xPzsllqTjnqVMK+o6h9M9B6iKmbbDVBceyrJ9FZB2mLfaf\n+WYnUnAtUXXMP9ncD70UVXtZErdgbq8+fWpCSR+MEZEbMIHdPQXUQiVi2lTee8aKRjKm/TJA/hrB\nomrQijIWcyu8oG7Wiirzv93vYwvIS0H5uQX4y7KsnAfM3G28S5WYBwFrYYKDAlmWFQvcKyL3Ydoe\nPw18JSIbLcs6VaPlJSKV8wXZ1Tld/gUpznGSADhEJKyIIDsRcwfgPwXMSytgmqcSMb+RqzgdYOS2\nqxS2gbsW/XoR8cUEfG9g2ufWznfH6JRJmFpHT+0paKJ7uzcAT1iW9X6u6SXtPecW4BPLsnI/UFhQ\nZUBBPsV0jfkm5uJrVAnzkAC0LmJ+Y0xb/IGWZf0vVz497knJ/R29D7wvIuGYpkZvY9o4j8Gzc3Ju\n6ZgAPL/KnubRLRHTrrqgfCSWME2lCqUBtrpQjcXcHs8fJC8BRotIpGVZc8Dcksec9JdZlpVdhnny\nwzyklVthzSoKJaYnh6+ACZZlTSlgkXnA9UCsZVkHC0ljP6YGazC5mjC4P3vMsqyNIvI/4Hkgfy32\nEuAmEXnCsqws9/Y7Ym5vn7oAWompXe9zqpmIO7Dply+tUinDori3O9G9nbPefrcsywLWisgYTPB0\nGadvGYO5rT7Znfap9tRnDIqUS3H2cSHm2P4Hpka0IPMwD9CtL6Pj+tSDxNUsy4oqhfSKrNF235L/\nTURqYWp/Qygg8LEs6xBF1M6WgA/mbm7Od+I+Rm4udI2i5fl+3eef4vb/PQUYh3lg1AX8N9/8s94V\ncJsP3Coind3NtQrKI/nyWR1Tk13UXZMiuS9KJ4rILZgHwaHk5+T9gLeINLYsa6d7vS6c+QBscctk\nCTBYRC4/dYEsIv6Yc9CvRa6pVAlogK0uSJZl/SQi6zH/EFJyzfoF0xvANHcTi1NPrDen7J8Anwc8\nLiIjMT1+3IJpyuGpKMytzB9E5Mpc05Pc/ximYh5i+l1E3nFvKxgTbIVblvWIZVkuERkHfCgihzEP\nQF6NCf5K6mVOt4fObRwmoPxVRN7D1DC9jglCZwBYljVHTA8w092B6hFM7yxZ+dKa587zS5h/iL0x\nD0mVlC1XGVbClNEDmDblw93t688gpiu8uZjeW7ZhLioextTK5Q5YMjFNZ/w43YtITfL2sJHfWY8T\ny7K2i+kS8FUxXRQuwDzw2g94yX1h9QKmucY8EZmEqTWvjunBYZtlWR8VXTRFc+fhfWCqiPwb07bb\njulpZ6BlWZ7+nrYAw0XkRkyAfAhTi3of5iIwBtMs5QlgnWVZ5VKraFnWCfex+YyIJGCCzicwNagl\nMQ94UEz3n4cxv9Vi1bpalnVURH4EhgLTrLw9wYApw3tF5A7McXm0kGN4Gqbnll9E5GXMMxu1gGss\ny3oAc9wdAN5yXxT6YY6nODxsOioin2CaG63AXBB1xjTtOjVoU0nPybMxtdufi8hrQA1MLyxJ+ZYr\nbpl8gbkjMEtEnnen/STmQcc3PNhlpYpFA2x1IXuZvLWzWJaVLSLXYW5Rvo4JqjZhejhYXA75CcU0\nXTnVxvEBcj38VUynHjJakm/670B3y7IyxfQF/gKm2UItzD+2TZhbzABYlvUfEamM6ZLqIff6d2K6\na/OYZVkbRCSKfEG6ZVlrxYyw+RrmwaV0zD/Hf+V7UOgm4CPgQ8w/yU8wNdy5R0/8BNN92EPu6Qsx\nNV0FBfbF4YcJDC3MP9R9mGB1oJW3W6780oG/MAFzPffntUDffHcNsjDB0H8wwfs+TA8tG4tIu7jH\nyQhM0H4/JjBIwHyHJwEsy9otIp0wTYnex1xkxbn3dzqlYxQmGHsIeBbT9GQnpv24p97CNE2Ygqmd\nHovp7s6J2YcamH2cj+nOrTzdDnyMuRNx3P0+w51nT41wrz/BncZXmIeLi/ud/IA5pgp6wPVzTJvu\n9zDH0BRMr0J5WJaV4T5HjMOUZRVMYPt1rvkDMb/FmZiLnbcwzUpuKGY+T1mGuUi6D3MRuBcYY1nW\nRPe2SnROtiwrUUzf/uMxDwFvxvwWvs63aHHL5KSIdMN0PfkRpvnJKkyPVEWdC5QqETF3P5VSSnnC\nXcv+pGVZ5fWQlroEiMhkIMKyrGZnXVgpdd7SGmyllFKqgrm752uDucv0WAVnRyl1jjTAVkoppSre\nz5g26NMxPaUopS5g2kREKaWUUkqpUqQDzSillFJKKVWKNMBWSimllFKqFGmArZRSSimlVCnSAFsp\npZRSSqlSdMH1IiIiAZiRomI5cxQ4pZRSSimlzpUXEA6stCwr5WwL53fBBdiY4HpBRWdCKaWUUkpd\n9HphRhX2yIUYYMcCzJ8/n3r16pXbRlNSUli+fDldunQhICCg3LZ7odLy8oyWl2e0vDyj5eUZLS/P\naHl5RsvLMxVVXvv27aN3797gjjs9dSEG2FkA9erVo3HjxuW20eTkZPbu3UujRo2oVElHRj4bLS/P\naHl5RsvLM1pentHy8oyWl2e0vDxzHpRXiZoj60OOSimllFJKlSINsJVSSimllCpFGmArpZRSSilV\nii7ENthKKaWUUqoYXC4XTqcTl8tV0VkpkczMTBwOB5mZmaSnp5daujabDYfDgc1WNnXNGmArpZRS\nSl2EkpOTycrKwsfHp8wCybLm4+NDx44d8fHxKdV0nU4nKSkpeHl5lcnDkxpgK6WUp7LSITUBbA7w\nrwJ2r4rOkVJK5XGq1rpy5coVnZVzkp2dTVZWFr6+vtjt9lJN29/fn6SkJJxOJw5H6YbEGmArpVRx\nxEXD+mmwaxEc3XZ6utghvA007gVtb4cqDSsuj0op5eZ0OvH29q7obJz3vL29NcBWSqlyd3QH/PYs\n7Jhb8HwrGw6tM68/3oYWA6HH81C1/PrpV0opdX7RAFsppQricsHSCbBoHLicZlq1y6DVLVC3CwSF\ngysbju+DvUth03dwIgb+/hG2/AzXjIarn9DmI0opdQnSAFsppfJLPwHf3QM755vPVRpC39egaSSI\n5F22ahNo3Bt6/h9s/hEWvgqJu2Hx67D1FxgyFao0KP99UEopVWEuzEdKlVKqrCTFwhfXnw6uOz0A\nDy+HZtedGVznZrNBy5vNsleNArFB3EaY1B12LiiXrCullDo/aICtlFKnnDgAk/vC4WiwecGgz+D6\nt8HLt/hpePlC75dg+K8QEAbpx2H6zbByUlnlWimlLlkul4vq1auzc+fOnGkLFy6kS5cuhIaGEhgY\nSOfOnUu1D+3i0ABbKaUAko/A1AGmTbV3JbjjW2h9S8nTq9cFHvwdancELJg9Gha8DJZVallWSqlL\n3YoVK6hatSqNG5sHyy3LYujQoTzyyCMkJCRw/PhxPv74Y3x9PagoKQXaBlsppdKOw7SBkLATHL5w\n+0yof9W5pxtUE+7+Gb6/D7bOgj//DcmH4Yb3wK6nX6VU+XJmuzh8MqPctlc90AeHvXh1uePHj+fT\nTz8lOjoau93OkiVLGDhwIN9//z2tW7cudL2oqCgGDBiQ81lEaNOmDW+88QZLliyhf//+9OvX75z3\nxVN6hldKXdpc2SYAPrzJNAu59avSCa5P8fIzDzr+8gSs/QLWT4eUBLjlCzNPKaXKyeGTGUS8sbDc\ntrd0TE9qhRTvPDdixAgmTpzI1KlTadeuHYMGDWL69OlERERw8uTJQteLiopiypQpOZ8XL15M69at\nmT17NomJiQwZMoQ5c+YwceLEc94fT2gTEaXUpW3hK7Bznnl/03+gSe/S34bNDje8C92fMZ+3z4Zp\ng0zNuVJKKby9vRk3bhwvvPAC/fr144MPPqBv376kpqZy7bXXEhoayowZM/Kss23bNpKSkujUqRMA\ncXFxDBs2jLFjx+JwOAgLC+PRRx9l6tSp5b4/WoOtlLp0RX8PS94177uOhNZDym5bItB9DARUhV+e\nhJhl8GU/uPN7CKxRdttVSim36oE+LB3Ts1y354m2bdsSGxvLnXfeyZAh5nzs4+PDtGnT+Oqrr85Y\nPioqiv79+yPuHp6mT59OmzZtqFSpUs4ySUlJBAcHn8NelIwG2EqpS1PsRvjfI+Z9o56m54/y0PE+\n8KsCPzxgeiv5/Fq460cIbVQ+21dKXbIcdluxm2yUt5iYGCIjIxkxYgSTJ0/mrbfeIiwsDLvdTvXq\n1QtcJyoqimeffTbn89atWwkJCcmzzMyZMxk4cGCZ5r0g2kREKXXpSTkKM+4AZxpUbgCDJ5tmHOWl\n5SC44xvwCjC9lkyOhNi/ym/7Sil1HomPj6dPnz6MGjWKCRMm0K1bN8aOHXvWdaKjo+nVq1fOtKZN\nmzJv3jy2b99OWloaL730EtHR0YwZM6asd+EMGmArpS4t2Vnw7XAzrLl3Jbjta/CrXP75aNQThv9s\narNT4uHLGypmQJrsLDMsvFJKVYCkpCQiIyMZPHgwo0aNAmDcuHF8/vnnbN++vdD1Zs2aRe/evfN0\nvzdy5EhuvPFGIiIiaNiwIVu3bmXp0qWEh4eX+X7kp01ElFKXlt+eg71/mvcDP4Gw5hWXl1pXwD2/\nmS4Ckw6YAWl6PAdXP2FGhixtmSmwaQ7sWwYH18CxvWZYeADfYAi7HBpcAy0GQdhlpb99pZTKJygo\niHXr1uWZ1rp165yBYbKzswtcLyoqiptvvjnPNF9fXyZNmsSkSRU/sJcG2EqpS8f66bDqE/O+2xho\nfkPF5gegWlO4bx58MwwOrIZFr8L+ldD/PQiude7pZzux71lM+70fE7DpQdMspiDpJyBmuXn9/iY0\njYSez0ONVueeB6WUOgfDhg0jOjqagIAAVq5cybvvvktERAT9+/ev6KwVSgNspdSl4cAamGVuP3LZ\nDdDt6YrNT25BNc3Q6nOfg1WTTLeBH3aG3i9C+7vB4e1ZepYFcRvhr5kQ/R1+yYepc2qew9fUUtfu\nZGqpA8LAcsHJWDi03gyIk7gbts+BnfPhqlGmrOxepb3XSilVLFOnTiUwMBC7/fSzMk899VQF5ujs\nNMBWSl38kg6ZhxqzM6HaZTDw47JpgnEuHN5w/dtQ/2ozKE1KPPz6JCx733Qh2Gpw0W3FLQuOboe/\nfzTdDx493XbRQjha6TICI+7Ht90t4BtUcBotB0Gfl01wPf8lOLIV/ngb9q+CW74E/yqlustKKXWx\n0gBbKXVxy0qDGbdDchz4hsDQ/4JPYEXnqnCX3wgNrob5Y2H9NDgeYwLt356Dup2hVgcIqQM+QeBM\nhxMH4eg22LccTh7Km1a15tDmVlIbXs+y1Vvp1aoX+FYqeLuniECz68xDmItfN/2E7/nd9HQyfBZU\nCiu7fVdKqYuEBthKqYuXZUHUI6bpg9hNLeyF0N+0X2XoPwEiHoOlE2DT95B5Evb8YV5FCalnaqJb\nDDLtp0WwkpOBrZ7lweFj+gYPbwM/PGiC+Cn94e5ZUKlaCXdMKaUuDRpgK6UuXn+8bZpLAES+AY16\nVGx+PFWlgXnYse/rpj10zHKI22SavGSlgt0bAsOhSkOo1d40L6nWzNRCl5YWA02N/9e3myYjXw81\nNdle5+dgFUopdT7QAFspdXFa+yUsGmfeXzEcOt1fkbk5N97+punI5TdWzPYb94Zbp5ng+uAaiBoB\nN39WuoG8UkpdRMr0KR8R8RGRSSKyS0SS3X/LfzgdpdSlZfNPp3sMadwHrntbg8Fz1bSvqUkHiP4O\nlk2s2PwopdR5rKwfo3cA8cB1QBBwI/CwiDxUxttVSl2qtvwM391jup6r3QmGTPG8mztVsM4Pmm4D\nARaMhYPril5eKaUuUWXaRMSyrBTg+VyT/haRb4BrgI/Ptr6IVAHy9wtVFyAlJYXk5OTSyupZpaam\n5vmriqbl5RktL88UVl6Ozd/jM3sUYmWTXa05aQMmQ6YFmeV3rjgflerxdfX/4RezEvvRrbi+/Qep\nw34zQ85fRPT36BktL8+UV3llZmbi4+NT6EiIFwqXy5Xnb2nLzs4mIyMDp9OZZ3pKSso5pSuWZZ1T\nAh5tTMQGrAS+tyzrjWIs/xLwYkHzPvroowoZW14pdR6yXFwW9yPN4qIAOObfkOWNniTLcXEFfueL\nwLQDdNv2InYri72h3fmr7j0VnSWlVD4Oh4OOHTvi7a138IqSmZnJ6tWrzwiwY2NjefjhhwGaWJa1\n09N0yzvA/jemuUgny7LOWqVURA32gg0bNtCoUfl1t5Wamsry5cvp0qUL/v7+5bbdC5WWl2e0vDyT\nu7wCsk/gM/cpHHsWAuCsG0H6gM/LvK9rp8tJfFo8calxJKQnkOZMI82ZhtNy4m3zxsfug5/Dj1Df\nUKr6VqWqX1X8HRXz3ZbF8eW17gt8FpoblGlDviW7btdSSfd8oL9Hz2h5eaa8yutUDbavr2+ZbaM8\nuFwuUlJSCAgIwFbAAGEul4vatWvzxx9/0LhxYwAWLlzI//3f/7Fjxw4yMzNp3rw5ixYtKrAs0tPT\nycjIOONCZNeuXbRt2xZKGGCXWy8iIvIqpg129+IE1wCWZSUCifnSASAgIIBKlcq/dsrf379Ctnuh\n0vLyjJZX8dlcmQRv+QqfZeMhI8lMvPIRHH1eppK9dE9tLstF9NFo1sevZ3PCZrYkbmFf0j5clme3\nLKv4VqF+UH0aBDegQXADGgY3pFmVZlTzq5ZzbitLpXp8XfUI7JgF+1fgN/9peHjZRdd1n/4ePaPl\n5ZmyLq/09HSAPMOLX8hsNluB+7Jy5UqqVq1Ks2bNALAsizvuuIPx48dz5513kp2dzcaNGwkICCgw\nXbvdjr+//xnBd2HLF1e5BNgi8hZwEya4Plge21RKnSdOHDAPHu5fBfGbIeWoGbLcyw98g83AKJXr\nm76cQxtBaGMIqQt2rzPTcmXD4b/x3jCTPn9Px8d53EwPqAb9/g2XDyi1bGdkZ7AydiWL9i9i8f7F\nHE07WuByNrFRxbcKAV4B+Dn8cIiDTFcmmdmZnMw8ybGMYzmBeGJ6IonpiayLz/twYIhPCE0rNz39\nqtKUxiGN8bH7lNr+lDqbDW6cCB9HQOJuWPwG9Blb0blSSl2gxo8fz6effkp0dDR2u50lS5YwcOBA\nvv/+e1q3bl3oelFRUQwYcPrcLyK0adOGN954gyVLltC/f3/69etXHruQR5kH2CLyHhCJCa4PnW15\npdRF4tB6WPQ67JgLFNAULSMJkg/D0e1nzhM7VK4HwbXB4WtGZEyJh4TdkHmSUzfyLLsPcsVw6D4G\n/PO3JvPciYwT/HHgDxbtX8TSg0tJdeZ9CKlBcANahrakeWhzmlVuRq3AWoT5h+FlK+BiwM3pcpKY\nnkh8ajxr3/I1AAAgAElEQVT7kvax58Qe9ibtZc+JPew5sYcsVxbHM46zKm4Vq+JW5axnFzv1gurR\ntHJTmlVplhN8V/evXi613cVSrSlc8xQsehWWfwBt7zDTlFLnp2wnnIwtv+0FhkMx7yiOGDGCiRMn\nMnXqVNq1a8egQYOYPn06ERERnDx5stD1oqKimDJlSs7nxYsX07p1a2bPnk1iYiJDhgxhzpw5TJxY\nvl2LlmmALSL1gJFAJrA91z+FPy3Luq4st62UqiAZyTDvBVjz+elplapDo55m2O3AGuDwMyMRpibA\nsb3mlbgbEnZBdgZY2eZz4u4CN+EKqc9237bUGfA8AeFNzim7B5MPsihmEYv2L2Lt4bVkW6efuLeL\nnSuqX0GPOj3oXqc7tQNre5y+w+YgzD+MMP8wWlZtmWdeliuLfSf2se3YNrYf225eiduJT4sn28pm\n94nd7D6xmzl75+SsE+QdlBNsnwq8G4c0xtdRQe0sI0bCX19D4i6Y8zTc+YP2Oa7U+epkLExoefbl\nSsvj0RBSp1iLent7M27cOJ5++mlcLhcffPABffv2ZePGjTzwwAN4eXnh5eXFZ599RsOGDQHYtm0b\nSUlJdOrUCYC4uDiGDRvG5s2bcTgchIWF8eijj3LPPfdcXAG2ZVn7AD3TKnWpSNwNXw2BhB3mc43W\n0P0ZaHJt8WoxXC5IOmiCtYSdcPKwCbjBNAMJrg21OpBqD2HbwoXUDvS8JyHLstiSuIVF+xexKGYR\n245tyzPfz+HHVbWuokedHlxT+xqCfYI93kZxedm8aFy5MY0rN6bF0e78dPwQRxKOsD/2ENmOg9h8\n4rD7xmLzicPmcxixOUnKTGLN4TWsObwmJx272GlepTntqrejfVh72ldvTxXfc6/RLxaHjxmG/r+3\nwK6FsG02XHZ9+WxbKXVRadu2LbGxsdx5550MGTIEgGrVqjFz5kxq167NvHnzeOWVV/jiiy8AU3vd\nv3//nLt606dPp02bNnnaticlJREcXHbn8cLoUOlKqdKxfzX8dwikJYLdB3q/CJ0fNm11i8tmM7Ud\nIXWgYffCl/OwD/wsVxZr4taYoHr/IuJS4vLMD/UNpXud7vSs25PO4Z3Lre2zZVks2XmUjxbvYtmu\nhFxz/CCzMdmpjcnKmZaNzfsoNt84vP3jqFntGC6vQxxx13ZHJ0QTnRDNtM3TAGhVtRXd63Sne53u\nhDvKuEvTptdCk76w4zf47Rlzt8Lrwu65QKmLUmC4qVUuz+0VU0xMDJGRkYwYMYLJkyfz1ltvERYW\nRlhYWE4TES8vrzwPOkZFRfHss8/mfN66dSshISF50p05cyYDBw48xx3xnAbYSqlzd2gDTB9k2lUH\nVIPbZkDtDhWapeTMZJYcXMLC/QtZcmAJJ7PytuFrENyAnnV60qNuD1pVbYVNynpg27w2HTjBCz9F\nsz7meM60msG+XN8qnCsbhtKsRiBVK/ngsiyOJmewJTaJxduOMDs6jhNxWeyMg0AfBw/1rEHrRifZ\ncGQ96+PXs/HIRjKyM9h0dBObjm5i4vqJNAxqSNPMprRNb1t2vRZEvm5qsI/theUT4ZrRZbMdpVTJ\n2R3FbrJRnuLj4+nTpw+jRo1i1KhR7Nq1i7Fjx/Lhhx/mLJOWlsaLL77IRx99lLNOdHQ0vXr1ylmm\nadOmjB8/nu3bt1OnTh3efPNNoqOjc2q8y5MG2Eqpc3N0J0wbaILroNowfBZUaVAhWUlMT2RBzAIW\n7FvAyriVOF2nBw4QhLZhbelRpwc96vSgfnD9CsnjibQs3vltG9NX7uPUMARdG4XycPdGRDSqis12\nZqu6AB8H9UIDiGwZzgv9L+eb1fuZuHAnCSmZvD37AFc2rMJ7Q+/n0Xa+ZGVnsT5+PYsPLGbx/sXs\nP7mf3Um72c1u5v06jz71+jC8xXBaVG1RujsW2gi6PAJLJ8Cf480Dj0E1S3cbSqmLTlJSEpGRkQwe\nPJhRo0YBMG7cODp16sRjjz1Go0aNcDqdDB8+nCeffJJWrVoBMGvWLHr37p2ne72RI0eyc+dOIiIi\ncDgcdOvWjaVLl1bIwIQaYCulSi49CWbcZpqFBITBsKhyD64T0hJYELOAuXvnsvrw6jx9U/vYfegS\n3oUedU176qp+Vcs1b7lZlsWP6w/y2q9bOJqcCcDl4UG8PKAFHeoXv720v7eD4RENGNi+Nu/8to1p\nK/axYnci1733Jx/c1o6ujavSKbwTncI7MbrDaLYmbuW7Ld8xa/csUq1U5uydw5y9c+hQvQMPtnmQ\nK8OvLL2dvOZJ88Bj8mGYPxYGfVJ6aSulLkpBQUGsW5e369LWrVvn9OPtdDoZOXIk1157LTfddFPO\nMlFRUdx888151vP19WXSpElMmjSp7DN+FhpgK6VKxuWCHx8y3ezZfUyzkKqNy2XTmdmZbMrcxM9L\nfmZ1fN6g2mb5YU9viaS0JFhacjQ1iE2pgUhyOhGN0gkLKv+2wdsPn+T5/0Wzao8ZNyvQx8G/rm3K\nXVfWw2EvWdOUYD8vXrmpJT0uq8YT3/xFYkomwyav4vVBrbilg7kFLCI0D23OqLajuPzo5dAUZu6a\nyZbELeZByblr6BzemcfaPUaraq3OfUd9AqHXixD1T9g4AzrdX+FNhZRSF7bffvuN//3vfxw8eJBv\nvvmGtm3bMmHCBCIiIujfv39FZ69QGmArpUpm1STY9ot5f8N4qH1FmW9yf9J+/rv1v/y06yeSMpPA\n3U21le2L82QLspJakZ3SmFOntgSy2BWfwPLdpx8gbFsnhH6twhnYvhZVK5Xtw4zJGU4mLtjB50v2\n4HSZ9iAD2tbkueubl1qg3/Oy6vz62NXc++UaNscmMfq7jew/lsao3k3y9JftEAe96vZiUPNBrI5b\nzScbP2FV3CpWxq7k9tjb6VOvD6M7jCa80jneSm1zG6z+1PSDPmcM3DtPu+1TSpVYZGQkhw4dIjAw\nMM8Djk899VQF5ursNMBWSnnuyHaY/6J53+4uaHdnmW5uQ/wGpvw9hQUxC7BODVpj2cg62ZysEx3I\nTm5CsJ8fvZpUpXmNQGoE++FlF5LSncQeTyP6UBIbYo6RlO5kw/7jbNh/nLd+20rv5tW5tWMdrm5S\nDXsBbZ9LyrIsfvrrEK/9uoXDSaabwYbVAnh1QEu6Ni79ZirhwX5881AXHv3vOhZtO8L7C3aQnO7k\n/25ofsagNCJCp/BOdKzRkeWxy3l/3fv8nfA38/bN488Df3J/6/sZ3mI43nbvQrZ2Fjab6bZvcl84\nsBo2fQuth5TCXiql1IVDA2yllGeys+DHB8CZboY5j3y9zDYVfTSaCesmsDJ2Zc60IEd1Eg5dQcbx\n9ljZlejaKJR7b25At6bVimxukZXtYvXeRH6LjiPqr0McT81idnQcs6PjqBXix5AOdRjSsTbhwX7n\nlOdlu44yfu521uw7BoCfl50RPRtz/9UN8XaUXU8llXwcfDqsA8/8sIlv1x5g8tI9pDuzeXVAwYNK\niAhda3alS3gX5uydwztr3iE+NZ6J6ycStTOK5zo/R9daXUuWmbpXQsubIfp7mPciXNYPvAPOYe+U\nUurCogG2UsozK/5jbv8jMPBj0+62lO09sZf317/PvH3zcqY1r9yCtKNXs2lLXcBGmK/Fy0NaEdmm\nbrHS9LLb6NqoKl0bVeWZ65szd/NhZq6OYenOBA4eT+Pd+dt5b8F2ujcL49aOdejRLKzYAXGm08W8\nzYeZsnxvTjtrgH6tw3nu+ubUDDm3oL24HHYbb97cGh8vG9NXxPDflTFkZLl4IbJhoeuICNc1uI5u\ntbsxaeMkpmyeQszJGB6c/yA3NrqR0R1GE+IbUuj6heo9Frb+CicPwdL3oMezZ19HKaUuEhpgK6WK\n78RBWPymed/5IahXwhrOQqQ50/h046d88fcXOV3sXR56OUMbP8j7s4Q9R02j66FX1OQKewxXNSrZ\naIW+XnZubFOTG9vUJCYhlZlrYvh2zQHiT2awcGs8C7fGE+Btp2vjqkQ0CuXymsE0rBZAsJ8XdhFS\ns7LZn5jKltgkluw8yuJtR0hMycxJv3ODKvyrT1M6Nww990LxkM0mvDKgJb4OO58t2cP36w6QlpFJ\n77NcB/l7+fP4FY9zU+ObeGXFK6yKW8VPu35iycElPNPpGfrW73tGc5MihdQxw6j//qYJsNvddV72\nv6uUUmVBA2ylVPHNfQ6yUqBS9VKvkfzjwB+8tvI1DiYfBKBOYB0eb/84YbaO3DtlDQkpmfg4bIwf\n0pZuDQNZsCCmVLZbN9Sf0X0vY1TvpizcGs+M1ftZvC2elMxs5m0+zLzNh4uVjt0m9GlenWFd69G1\nUcV1BwimVvq5fs3x9bLzwaKd/Pp3PIdCbfTo4TrruvWD6/PZtZ/x484feWf1OySmJzL6j9H8svsX\nnrvyOWoE1Ch+RiIeg3XTTC32/Bdh8ORz2CullLpwaICtlCqeXYvg7x/N+2vHgW9QqSSb7kznrdVv\n8e32bwHwtnlzX+v7uKflPWw9lMadn6/kZLqT0ABvPru7A+3qVibZw6HSi8Nht3Ftixpc26IGiSmZ\n/LnjCIu2xrNh/3H2JabmDAqTW2V/L9rVrUyPZtXo26JGhXQBWBgR4cm+zfCy23h3/nY2JNh48oct\nfHRXx7M2fRERBjUZxFW1ruK1la+xIGYBiw8sZk3UGkZdMYrBTQcXb+RL7wDoMxZ+uN+0x+70gGmf\nrZRSFzkNsJVSZ+fKNl2uAdS/GloNLpVkd5/YzZO/P8mOYzsA6BLeheevfJ66QXXZeOB4TnAdHuzL\n1/dfSf2q5fOgXJUAbwa0rcWAtrUASMlwcuh4GifSssh2WQT4OKge5EvVSt6eNZuoAI/1bkK2M5P3\nF+9lwbaj/POrtXx4R3t8HPazrhvmH8aEHhOYt28e41aMIyE9gVdWvMIvu3/hxa4v0jC48LbdOVrd\nYrp0PLAaZj8N9y8yPY0opdRFTM9ySqmz2/QtHNkKCFz3Zqn0axy1M4qhs4ay49gOHOLgyQ5P8nGf\nj6kbVJetcUnc+dnp4HrGA+UXXBckwMdBk+qBdKhfhc4NQ2lZK5hqgT7nfXB9ygNX1ePGutkAzN8S\nz0PT1pKelV3s9fvU60PUTVEMbDwQgHXx6xj802A++usjsrKzil5ZBCLd7fZjN5iRHpVS6iKnAbZS\nqmjZWbDY3RVfq8FQvcU5JZealcqzfz7L80ufJ82ZRq1KtZhy3RTubnE3NrFx8Hgad09eRVK6kxpB\npua6Xqh28XauetWyeLpPIwAWbTvC/VPXeBRkB/sE83LEy3x27WfUCaxDliuL/2z4D0NmDWFD/Iai\nV659BbQeat4vGAsZJ0u6G0opdUHQAFspVbT10+DYXhA7dH/mnJLamriVW2fdys+7fwZMzeg3/b+h\ndbXWAJxIzWL45FUcTsogyNfB1Hs7VWjN9cXmrs61eXmAuUD6c8dR7vlyNSfTz1IDnU/n8M78cOMP\n3NvyXuxiZ+fxnQybPYxxK8aRnFlE2/jeL4KXPyQfhj/Hn8tuKKXUeU8DbKVU4bLS4fe3zft2d0Bo\noxIlY1kWM7fO5I5f7mBv0l68bd481/k5/t3t3wR5m4cl07OyuX/qGnbEJ+PtsPHZ3R1pWr30+9i+\n1A3rUp/XBrYCYNmuBG7+aBn7E1M9SsPX4cvjVzzOjBtm0CK0BRYWM7bN4Kaom1gUs6jglYJqwlX/\nMu+Xf2gu2pRS6hy5XC6qV6/Ozp07c6YtXLiQLl26EBoaSmBgIJ07dyY9Pb1c86UBtlKqcGsmmy7W\n7N5wzVMlSiIpM4knfn+CV1e+SqYrk/pB9fmq31cMvWxoThvmbJfFv77ZwKq9iYjAhFvb0qlByfq4\nVmd3e+e6TLi1Ld52G9sPJ3PTh0tZszfx7Cvmc1mVy5h+/XRGdxiNn8OPw6mHGbloJI8vepy4lLgz\nV+g6AoLrQnYG/DqaArtmUUopD6xYsYKqVavSuHFjwFToDB06lEceeYSEhASOHz/Oxx9/jK9v+fby\npL2IKKUKlpEMf/7bvO9wT4kGCdl0ZBOj/xid07d1/4b9ef7K5/H38s9ZxrIsXpm1mV83mYDshRsu\n5/pW4eeef1Wkm9rVonZlPx6YtpaElExunbSCUb2b8HD3xthtxX9402FzMKzFMHrV68UrK15h6cGl\nLIhZwPJDyxnZfiRDmw3FbnP3WOLlB5Gvw8w7YMdc2PBfc2dEKVUunC4nR1KPlNv2qvlXw2ErXqg5\nfvx4Pv30U6Kjo7Hb7SxZsoSBAwfy/fff07p160LXi4qKYsCAATmfRYQ2bdrwxhtvsGTJEvr370+/\nfv3OeV88pQG2UqpgKz+G1KOm3ezVT3i0qstyMW3zNCasnYDTcuLn8OO5zs8xoPGAM5b9fMkevly2\nF4AHr2nIPyIalEbuVTF0qF+F//0zggenr2VLbBLvzN3O79uPMG5gK4+b59SqVIuPen3Eb/t+481V\nb3I07ShvrHqDn3f9zAtdXuDy0MvNgs1vgJaDIfo70/Vjw+4QXKvU900pdaYjqUe49vtry217c2+e\nS3il4lWYjBgxgokTJzJ16lTatWvHoEGDmD59OhEREZw8WfiD0VFRUUyZMiXn8+LFi2ndujWzZ88m\nMTGRIUOGMGfOHCZOnHjO++MJbSKilDpT2nFY9r553/lBqBRW7FWPpR9jxIIRvLPmHZyWkyaVmzCj\n34wCg+tfNsby6i9bAOjfpiZPR15WKtlXxVc31J8f/9mVe9wXNqv3HuO69/5k7M9/E5/kWZtFESGy\nfiRRN0Vxa7NbEYS/E/7mtl9u463Vb5Ga5W7rff3bEBAGGUnw80htKqKUwtvbm3HjxvHCCy/Qr18/\nPvjgA/r27cvevXu59tpr6dGjBxEREWzcuDFnnW3btpGUlESnTp0AiIuLY9iwYYwdOxaHw0FYWBiP\nPvooU6dOLff90RpspdSZlk2E9BPgEwRdRxZ7tdVxqxnzxxji0+IBuKXpLTzV8Sl8HWe2fVuzN5FR\n35ju3To3qMI7t7TG5kHTBFV6fL3svND/cno1D+OFqGh2HUnhi6V7+WpFDAPa1mRg+1p0bhBa7KYj\nQd5BPH/l8/Rv1J+Xl7/M9mPbmbZ5GvP2zeOZTs/Qs25P6D8BZtwOO+eb4y2i+MeZUqpkqvlXY+7N\nc8t1e55o27YtsbGx3HnnnQwZMgSA2rVrM2fOHIKDg/n999957bXXmDFjBmBqr/v375/zPM/06dNp\n06YNlSpVykkzKSmJ4ODgUtqj4tMAWymVV/IRWPGRed/1UfA/+8OG2a5sJm2axMd/fYzLclHJqxIv\ndn2RyPqRBS6/+0gy901dQ6bTReOwSky6q0OxRhZUZSuicVVmP3YNU5fv5ePfd3M0OYNv1x7g27UH\nCA3w5op6lWlTJ4Q6VfypGeyLv7cDb4cgIqRnZZOelU1apou0rGwynS4gjLvrTWCZ/w/Mi51GXEoc\njy16jJ51evJM52eoccVwWPslzH8JaneEel0qdP+Vutg5bI5iN9kobzExMURGRjJixAgmT57MW2+9\nRVhYGA6HA5t79NekpCTatGmTs05UVBTPPvtszuetW7cSEhKSJ92ZM2cycODA8tmJXDTAVkrlteRd\nyEoBvypw5cNnXTwuJY4xf45h7eG1ALQIbcHb3d6mTmDBD0UeOZnB8C9Wczw1i6qVfPhieEeC/b1K\ndRdUyXk7bNx3dUPuvLIeP64/yHdrD7B23zESUjKZu/kwczcfLkGqjRGvx/CtEYWj0jYW7l/IH/uX\ncUuDf/BUjZY44qLhu3/A/QtNd35KqUtKfHw8ffr0YdSoUYwaNYpdu3YxduxYPvzwQwA2bdrE6NGj\nOXDgAD/88EPOOtHR0fTq1SsnnaZNmzJ+/Hi2b99OnTp1ePPNN4mOjuaLL74o933SAFspdVrSIVj9\nmXl/1SjwKfpBt/n75vPishdJykwC4O7L7+ax9o/hZS84YD6RmsWwyauISUzFz8vOF8M7UqeKf4HL\nqorl62Xntk51ua1TXQ4eT+PP7UfYsP84fx9KIvZEGkeTMwtcz9tuw8fLho/DBpzqhtHF8bQqpO0f\njiNwEz41fsbpOMnXez7iR3sNPvULpu3JWPjqFvjHbPANKr8dVUpVqKSkJCIjIxk8eDCjRo0CYNy4\ncXTq1InHHnuMRo0a0apVK5YuXcpff/3FQw89xKpVq5g1axa9e/fO0/3eyJEj2blzJxERETgcDrp1\n68bSpUsJDy//WnsNsJVSp/3xtumjuFIN6HR/oYulOdN4e/XbfLv9WwCq+FbhtateI6JWRKHrpGQ4\nGf7lKrbEJuFlFz66sz2tapd/uzjluVohfgztVJehnermTMt0ushwZuPMtsi2LHy97Pg6bDjsBT87\n78x2cSQ5g61xnVi1N5KomM9I8vqTdO847qoewl1Jdh4/HI3XjDuQ22eCt154KXUpCAoKYt26dXmm\ntW7dOmdgmNTU0wNhBQcH4+9vzg1RUVHcfPPNedbz9fVl0qRJTJo0qYxzfXYaYCuljMQ9sM79pPU1\nT5o+iwuw/dh2nvr9KXad2AVARM0IXr3qVar6VS006bRMM0rj+pjj2ATeG9qO7s2K3zOJOv94O2x4\nO4rfEZXDbiM82I/wYD96NAvjaT5kzo6VvLriZU64YpgWXIk1vt68dWAZNacMwvuub7QmWynF0qVL\nefHFF/H29gZMf9kAERER9O/fvyKzVqQyD7BFZCjwKNAGOGpZVv2y3qZSqgR+fxNcTgipC+3vPmP2\nqb6t31v3HlmuLBw2B4+3f5y7Lr8LmxQeaJ1Mz+LeL9ewyj1S4Js3t9aBZBQAkU0606vR/5iw+hOm\nbf2ULT7eDKlVg+cTNtLjk0gC755hjkel1CWrZ8+edOzYkcDAQOz20w/DP/VUyUYXLi/l0Q92IvA+\n8EI5bEspVRJHtsHGmeZ9tzHg8M4zOy4ljgfmPsA7a94hy5VFvaB6TL9+One3uLvI4PpYSiZ3fLYy\nZwj0cQNbcksHz0eEVBcvL5sXozuPYMp1X1LZO4w0m43nqoXyjj2Wkx9eBVt/qegsKqWUx8q8Btuy\nrLkAIjLY03VFpAqQv4+wugApKSkkJyefewaL6VQboNxtgVThtLw8U9Hl5TtvLA7LhatKI1Ib9YNc\nv625++fyzvp3OJllRtIa1HAQI1qNwM/hV+RvcNfRFB6d+Tcxx9KwC7w24DL6tQgtld9tRZfXheZC\nKK8m/k2Y0XcaL60cx/L4P/ghsBI7vTJ499u7qNygD5lXP4MV2rhc8nIhlNf5RMvLM+VVXpmZmfj4\n+JCdnV2m2ylrLpcrz9/Slp2dTUZGBk6nM8/0lJSUc0pXrHIaQcsdYL/jSRMREXkJeLGgeR999FGF\nPBWq1MUmJHU33ba9BMDq+o9wqHJnANJcafyU9hObsjYBUEkqMdB/IM28mp01zehjwtQdNjKyBS+b\nxd1NXLSqoqP1qbOzLIvF6UtYkP4bCFRzOnk3/iitM7KIDW7P/tCriQ9shcumXTsqVRSHw0HHjh1z\n2i6rgmVmZrJ69eozAuzY2FgefvhhgCaWZe30NN3zPcAurAZ7wYYNG2jUqFEp5rBoqampLF++nC5d\nuuQ8waoKp+XlmYosL99vb8Ox7w+yq7ci7c5fQWysjl/NK2te4UjaEQCuqXkNY9qPobJP5SLTSsvK\nZvyC3Xy95hAA1QN9mDikBZeHF93dn6f0+PLMhVheS2OXM2bZ8zhJxWFZvH4kgcgUU+NnefmTXbMD\n2bU64qrWHFdoE6yQ+mArnZuyF2J5VSQtL8+UV3k5nU5sNhsBAQFlto3y4HK5SElJISAgIGfAmdKU\nkpKCy+XC4ch7/ti1axdt27aFEgbY53UvIpZlJWLacOc4NRxmQEBAnqEwy4u/v3+FbPdCpeXlmXIv\nr92LYd8fANj7vIS3vy8T1k1g2uZpJj8Of8Z0GsNNjW/K+e0VxLIs5m0+zLhft7AvwQRBnRtU4YPb\n21Mt0KfMsq/Hl2cupPLq26QPTao14bafHiSVQ4wOq8qOjBBGxP6NZKXi2PcHDvexC4DdG6o2hfA2\n5lXrCqjZDmwlHyH0Qiqv84GWl2fKurwsyyIhIYHAwMAiz98XCpvNluchx9JgWRaZmZmEhoaeUUbn\nemFyXgfYSqkyZFmw4GXzvv7VxFRrwpO/3smWxC0AtAtrx7irxhU6IiOAy2Xx+44jfLx4Fyv3mGth\nb7uN0X2bce9VDbDZLvyTuqo4DUPqM3vwTG745j5OyjYm+RxnR4f7ebdeJ+wxK+HgGvOAbmYyZGfC\n4Wjz2vCVScA/FJpeBx3+AbU7VOzOKFXORISQkBASEhLw8/Mr9eC0vGRnZ5OZmUl6enqp7kN2djZp\naWmEhISUyQVIeXTTZwe83C8REV8Ay7LSy3rbSqkibJ0FB83w5rNbRjL2l1tJyUrBLnb+2faf3Nvy\nXuwF1P5ZlsX2w8n8uimWn/86xO6jpx8E6d08jGeub06jalqLpUpHFf8Qfr11KpFfPUKK1xoWHf2V\nB22pfNj3HXzsPuZC8cQBOLIVDv8NsX9B7AZI3A2pCbBhunnV7gR9XoZ6XSp6l5QqNw6Hg9DQULKy\nssrsIcGylpGRwerVq0u9SY2Xlxf+/v5lVrtfHjXYdwG5B4FPc//Vqi2lKoozE+a/RLoIbzRszfd/\nfwJAdf/qvN3tbdqFtSPbZRF3Ip2YxFTzSkhhc2wS62KOk5iSd5jsa5pW46FuDenaqPDBZpQqqRA/\nf6KG/Id+08eQEbCQlfGLeXjeCD7o9R7+Xv4QUse8mvQ5vdKJA7BttqnNPrQeDqyCLyKh9a1w/dvg\nq6OIqkuDiFzQDzo6nU6cTife3t55hkU/35VHN31fAl+W9XaUUh5YNYnY43sYGV6dra5jAIR7tad2\n2j946dtUDp9YwJHkDLJdhT8EXT/Un+tbhXNTu1o0rV66DzEqlV/1ID+mDXyFm7+qhL3aT6w+vIIH\n5ubLJNEAACAASURBVD3If3p/SJB3ASM+BteGTvdDx/sgZgXMe8EE2Rtnms9DpkLNtuW/I0qpS4K2\nwVbqEhMfu5/dS97m6Vo1SLTbsSwbGfHXsT3xKrZTcL+f4cG+1K3iT8NqlWhfN4Qr6lWmQdWAi+LB\nGXXhaB4exOu9/8mTs73wCf+Bv45s4L7f7uPjPh9TxTd/h1NuIqZZyL1zYd0UmD0Gju+DL66HodOh\nUc/y3Qml1CVBA2ylLhFr9yXy4aJdhB55ivlhgThFwOlP2sE7qO7VgiZNA6kf6k/1YF9qBJlX9WBf\naoX44et1YT4coy4+A9rWYuOBIUz5yxvfWjPZkriF4XOG82mfT6keUL3wFUXgiuFQ50r47xATZH91\nCwyZBpddX275V0pdGjTAVuoit/tIMi/9vJk/th/m/9m77/AoqraBw7/Zlk3vPfQWCDV0EATpCKJU\nAelNFMUCInYU8VUURF56lyKggkjvSJEOIbRAIEBISEjv2Wyb74/hQ3mpAZJNwrmvi2snu1OeGTa7\nT86c85wA3xVk+iQBEn6yG0PqTKdD7xBcHcSkHULxMb5DMKdjWnI8xg6HoGVcSb/CgC0DmNd23gOr\n3gDgEwxDtsOybnDzNPw6EPqtgbLPFUrsgiA8G55+xW5BEIoEi1Vm+s5I2v+4j72RN3AIXE6mxxkA\n2pq1rOu9mVdDa4vkWih2NGoVP75aG2drDXKiB6GS7YjNimXg5oFEpUU9fAfOvtB/nVI325IHv/SG\npMiCD1wQhGeGSLAFoQRKzMyj/8LD/LD9IkY5C/fyi1C7nAVgUHomk9vPw8FOlNITiq8AN3smd6+F\nJacCmVeHoJMcSchNYOCWgZxLPvfwHTh6Qr+14BwAeRmw6jXIyyr4wAVBeCaIBFsQSpiI+Aw6T9/P\ngUvJSJo0AqstwKyLQpJlPkxO4b3gfqgC69o6TEF4Ym2q+TKwSVmshtKkXxmGi9ad1LxUhmwdwsmE\nkw/fgWsQ9FqmzAKZGAF/jlLqaguCIDwhkWALQgly5EoKPWYfJD7DgLNTBqVDFpNhiUUnww8JSfRV\ne0OL8bYOUxCemvEdgwkJcMGc64cl5nV87H3JMmUxYvsIDt44+PAdBNWFDt8qy2fXKmX8BEEQnpBI\nsAWhhDh4OZl+Cw6TaTDj456Nd6WFpBjjsUfNnPibtDGYoNt80D29mbAEwdbsNGqm966Dg05NfIor\nQbljKOVcilxzLm/ufJNd0bsevpO6g6Day8rypg+QMmILNmhBEEo8kWALQglwMjqVoUuOkme2UsYn\nB6dyc0k0xOOo0jHnRiz1DHnwwicQVM/WoQrCU1fe24mvX6kOwF/nLXT0/IqKbhUxWU28t+c9NkZt\nfPAOJAlenAKOPpCXjt22saKriCAIT0Qk2IJQzF2Iz2TAwiNkGy34e2WiCpxNYu5NnNT2zLkRT508\nI1RsDU1G2zpUQSgwr9QJonvdIAB+2pbABzWnEeIZgkW2MH7feH69+OuDd+DoCZ2nAaC5+hcBaUcK\nOmRBEEowkWALQjGWlJXHkCVHyTCY8fZIRxc0hyRDAs4aR+YlpFIrNwu8g6H7QlCJX3ehZPuySwgV\nvB0xWqyM/+0y01rMJtQnFBmZLw9+yZKzSx68g+COULUzANVjV4BRVBURBOHxiG9cQSim8swWXl96\nnJjUXBwdk9CXmktKXhIuWifmJaZSPSMBHLyg90rQu9o6XEEocA46Df/tE4qdRsXV5BwmbbjCrNaz\naBrQFIDvj33P1ONTscrW+++k3TfIGnvsTano/p5aSJELglDSiARbEIqpT/84w7FrqajtbuJSfj5p\nxmTctE4siE8kJC0e7N2VyTQ8ytk6VEEoNFX9XfisczUA1oXdYENYMj+98BNtyrQBYOGZhYzfNx6j\nxXjvHbiVwtj4HQC0J+ZD8uVCiVsQhJJFJNiCUAytC4tl9bEYVHZxeFRcQJY5DXe1PfOjrxKckai0\nXPdfB37VbR2qIBS6Pg1K82INfwA++/MMV5PymNx8Mr2DewOw6comXt/xOhnGjHtub6o3nGydD5LV\nDDu/LLS4BUEoOUSCLQjFTExqDp/8cQaV3Q1cyy/AYM3AAzULrkVRxZCj9LkethP8a9k6VEGwCUmS\n+KZbDUp52GMwWRm57DjZRivjG4xnTL0xAByNP8qAzQOIy4q7ewdqHecCuivL5/6AmOOFGL0gCCWB\nSLAFoRixWGXeW3WKbK7hXGYuZrLwMltYFHOdSiYT1OoNQ7aDe1lbhyoINuWi1zKjTyg6jYrLidm8\nszIMqwwDQgYwuflktCotl9Iu0XdTX84mn71r+xtuDbD43vojdftnomyfIAj5IhJsQShGlm/dj1fC\nPLxK/xer2oC32czC+JuUdwxUpnx+ZTboXWwdpiAUCTWD3PjmlRoA7IpIYMr2CwC0L9eeuW3m4qxz\nJjE3kYGbB7Ll6pY7N5ZUGJ//WFm+th8itxVm6IIgFHMiwRaEosxshCt7YdsnGH6sR62wroQFHSZX\nLeNjNrMoW0O5F76CUUdvlxcTBOEf3eoGMfQ5ZaDvjN2XWRemzNJYz68eyzsup4xLGQwWA2P/GsuM\nsBl3VBixlG4KFZXBkez+WrRiC4LwyESCLQhFTW4ahK+GXwfCd+VhSWf4ezpnc6MZ7udDplqFn6Rj\nUd3xlBkVBo3fAI2draMWhCLrww7BNKvkBcCYX0+xLzIRgHKu5VjecTmN/BsBMPvUbMb8NYZcc+4/\nG7f8SHmMOwUX/6eVWxAE4T5Egi0IRYRbThR2m9+BH6rAmmFwdi0YMwGJ9a6VGernT45KhY/en8Vd\n/6R07f6gUts6bEEo8jRqFTP6hlLV3wWTRWbE0uOcup4GgKudK7Naz6JPcB8Atl/bzog9I0izKq8T\nGAqV2yvLe74RrdiCIDwSkWALgq0lnEe/dhDPX/gC7dlfwWwAraPS5ePlWfy3xUzGu5kxq6y4af1Z\n3ulnAp0CbR21IBQrLnotSwbXp7SHAzlGCwMXHeFMbDoAGpWG8Q3H82mjT9FIGiLTI5mVOYvw5HBl\n4+fHKY+iFVsQhEckEmxBsBWLCf76DmY3Q3NZGUBl8a0BL/0XxkZCr2X8Ye/NnKvfIanM2Mn+/NZl\nKX6OfjYOXBCKJx9nPUuHNMDb2Y7UHBO95x3i+LWU26/3rNKTuW3n4qJzIVvOZtTeUay/vF60YguC\nkG8iwRYEW8iMh0UdlIFTVhNWjwocLjea3Nc2Q2g/0DmyKWoznx0cC5IFjH4se3ERvo6+to5cEIq1\nMp6OrB7RmABXPZkGM/0WHGHHuZu3X6/vV5+FLRfio/LBZDXx0f6PmHZiGtbmY5UV4k7Bhc02il4Q\nhOJCJNiCUNjiwmHeCxBzFCQVNH2HnP7biHerC5IEwPLzyxm3bxyyZMFi8OerBjMI9hbdQgThaSjn\n5cjq1xtTxlPpLjJs6TGm74zEalVapgOdAhnuPJzGvo0BmH96Pu9FLiOnUltlB3u/E63YgiA8kEiw\nBaEw3TgJSzpBRizYuULfX6HNBNDoAZBlmeknp/OfI/8BZMzZ5ejk/RUv16ps27gFoYQJcndgzcgm\nNCjngSzDD9sv0m/hYWLTlAoieknP5KaTea3qawDsjN7JAH0O8Wq18nt8aYctwxcEoYgTCbYgFJa4\nU/BzFzCkg3MADN0OFVvfftkqW/n25LfMDZ8LgCmzGn65bzGhUz1bRSwIJZqnkx3LhjSkX6MyABy4\nlEy7qXtZcug6ZiuoJTXjGozjs8afoZE0RGRF07t0aU7rdPDXt6IVWxCE+xIJtiAUhvRYWN7zVnLt\nDwM3gHeV2y8bzAZW5qxk3ZV1ABhT62OJe43przbAXidK8QlCQdFpVHz1cnUWDqyHj7MdWXlmJu+I\n4uswNSuP3yA7z0yPyj2Y02YOLjoXkrAwyN+HzalnIWqPrcMXBKGIKvAEW5IkjSRJUyVJSpYkKV2S\npCWSJDkW9HEFocgwZsMvr0JWPOjdoP+f4Fnh9ssJOQm8sfcNzpnOAZCX1JK8+K6MaVuN6oGutopa\nEJ4pLwT7su3d5gxqWhaNSiIlT2Li5kgaTdrJuN/CyUovw6K2SynrUpY8lYoPfLxYsvdTW4ctCEIR\nVRgt2B8BbYHaQHmgDDC1EI4rCLYny7D+HYgPB5UGev4M3v/0pz6ffJ7eG3tzPvU8Eiqk5K4YE9vR\npIIXw5qVt2HggvDscXPQ8XnnENaPrE8TXyv2WhWZeWZWHbvO4MXH6DTlAur40ZSRlC4l36vSmbzz\nnTumVxcEQQDQFMIxhgLjZVm+DiBJ0sfADkmSRsuynPugDSVJ8gA8/ufp0gDZ2dlkZWUVRLz3NHBF\nU0xYWbriMzSyCi1q3CQXfPVBNKzYiYYh7VCpxa38/5eTk3PH47NKc/ZX9KdXA2BoOQGzT1249b7d\ne2Mvnx/5HIPFgKPGEV18T6ITq+DuoGVip0rk5GTbMvQiTby/8kdcr/zxtJPpVd7Kl91qsScqkx0R\nSRy9lobRYiXsWh5Iw2gZ9DnHnCz8HLOTDYtH8KLvKGoFuhPi74ybg9bWp1CoxPsrf8T1yh9bXa/s\n7Cf7DpbkAhykIUmSG5AKVJVlOeLWc/ZADlBLluXwh2z/BfD5vV6bNWsW/v7+TzfgB5iY8jEGlXTf\n1/1NMjXzKhLq0x1HnXOhxSUUXY6GeFpc+BSNNY8bbvU5WnYUSBKyLLM/bz/bDNuQkXFXuVMhsz+7\no5X38/BgCyHuYvCUIBQlOWaIypS4kiFxJVMiMOc01XznsNxV+bw3Z1UmN6YvyHZ42slUcpUJ9VQe\nH/DVIQhCERUXF8fIkSMBKsmyfCm/2xd0gl0KiAYCZFmO+9fzeUArWZb3P2T7+7Vg7wwLC6NChQr3\n2KpgTFszirTMVHR6DRZMGK0Gkq2pxKpzuKn9p6eNl1mmu3tXBrT9oNBiK4pycnI4ePAgjRs3xsHB\nwdbhFD7Ziv0vr6C+cQyrcwA5A7aD3g2T1cR3J79jw9UNANTyrEWf0h/x1i9XsMjwah1fPnkx2MbB\nF33P/Psrn8T1yp9HuV5mixX1ss6sMkYxzcMNAEtuaXKiB4NVf3s9H2cdfesH0jM0AGd9Ydw0Lnzi\n/ZU/4nrlj62u1+XLl6lduzY8ZoJd0L/tmbceXYE4uN2CrQMyHraxLMspQMq/n5NuTcTh6OiIk5PT\n04z1gUZ3/S87d+6kVatWdxzXarGwP2w9a05M54AmniSNitmZazm/8gjf9fsDBzv9A/Za8jk4OBTq\n/1ORcWQe3DgGgKrrXJy8gkjPS+f9Pe9zNP4oAC9VeInXQ8bRdeYRLDIEOsh80K7ys3m9HtMz+/56\nTOJ65c9Dr1fbTxm6vBueFgtfeHuBfTQ1662kveen7InI5siVFBIyjUzddYX5B67zdqtKDGxaFq26\nZBbwEu+v/BHXK38K+3o5Oj5ZPY4C/S2XZTkNuA6E/uvpUMAARBbksQuLSq2med2X+XHYTuY3nklt\ng/I3y1/aWAYtaUFaTuH1ExeKiPRY2DFBWQ4dAOWacSX9Cn029rmdXI8OHc2nDSfw9i+nSczMw0Wv\nYXAVCzpNyfziFYQSqWIrCAjllaxsvlUHoJbUXMmMYGf6BGYPqMKBD19gRPPyONlpyMwz8/Wm83SY\nto/wmDRbRy4IQgErjG/z+cB4SZKCJEnyBCYCyx42wLE4qhX8PIsGH+JlcxAA5+yyGbGsLZm5Je5U\nhQfZ/AEYM8HJF9p8yaG4Q/Td1JfozGj0aj1TWkxhSPUhfL7uHCej01BJMPmVqng92zc7BKH4kSR4\nXukO2P7SQX6oOQqNSsPF1IsM2jIInS6L8R2rcmDcCwxqWha1SuJSQhZdZ/7NnL8uU5BdNAVBsK3C\nSLAnATuBcOAKSov2O4VwXJvQaO34avAmBsgVAThnl8lbK3pgtYoyTs+Ey7sgQulfTYfvWB29jde3\nv06mMRMfex8Wt19MmzJt+GnnJVYduw7AmHZVaFrhf4caCIJQLFRuD341AGgVsZtpLaehU+mISo9i\n4JaBxGfH4+qgVcr/jXqOyr5OmK0y32yO4L3Vp8gzW2x8AoIgFIQCT7BlWTbLsvyOLMsesiy7yLLc\nX5blkl1/TJIYM2ANvU2+ABzXXOPT3z60cVBCgbOYYevHymK5ZnybHcFXh77CIluo6lGVFS+uIMQr\nhJVHopm64yIAPesFMfL5whusKwjCUyZJ0PzWoPaIDTTXeDCj9Qz0aj3RmdEM2jKIuCxljH+1ABf+\nHPUcvRuUAmDtyVj6zT9Ceq7JVtELglBARIfPgiJJfNhvHc1zlUu8KWcTG8IfWDRFKO5OLIGEc2Sp\n1Lzl5c6y88sBaF26NYvbL8bX0Zc1J2L4aO1pAF4I9mHSKzVuD9wVBKGYCu4EPtWU5b2TaeTfiFmt\nZ2GvsScmK4ZBWwcRmxULgF6rZtIrNfjkxapIEhy5mkL/BYdFki0IJYxIsAuQys6RSZ1/prTJjFmS\n+Onwu6TliP7YJVJuGuz+mni1mn7lKrMvKQyAYTWG8UOLH3DQOrDqaDTv/3oKqwyhpd34b586aEpo\nNQFBeKaoVNB8rLJ8bh0kRFDPrx5z2szBQeNAbFYsg7YM4nqm0i1MkiSGNivP9N51UKskTsWk03/B\nYTIMIskWhJJCfLsXMNfAWoz1fxmVLBOnM/D+72NtHZJQEPZPJdKUQd9Afy5Zs9GqtEx6bhJvh74N\nssTU7RcZ9/tpZBkalPPg5yENcdCVzJq4gvBMqtYFvCoDMuz7HoA6PnWY02YOjlpH4rLjGLx1MNEZ\n0bc36VQzgJ9e/SfJHrnsOEazGK8jCCWBSLALQYsOX/Nqrg6AE+a/2Bl5zsYRCU9VViLHwhYywN+X\nBLUKZ60zc9rMoXOFzqTnmHhzxQmm7VSqUjar5MXiQfVxshPJtSCUKCr1P63YZ36HJGVeito+tZnb\nZi5OWifis+MZtHUQV9Ov3t7sxZr+/NCjFgAHLiXz4ZpwUV1EEEoAkWAXBpWKUW1+wN9sxqyCH3a/\nh9UqPkBLim07P2C4tyuZahU+9t4s7rCY+n71+etiIu1+3MvmM/EADGhchoUD64uWa0EoqUK6gkcF\nkK2w74fbT9f0rsm8tvNw1jmTkJPA4K2DiUqPuv36y3UC+aB9FQDWnIjlp535njROEIQiRiTYhcS5\nYkveUJcH4LpdLN/tWWvjiISn4ZewuYxJPYpJkqigc2P5iyuwGPwYvPgoAxYeIT7DgKNOzXfdazKh\nS/USO4ObIAiAWgPN3leWw1dCwvnbL1X3qs78tvNx0bmQmJvI4C2DuZx2+fbrI5+vQN+GpQGYuuMi\nuyJuFmrogiA8XeLbvhB16TSNBrkGADZdmkqu0WzjiIQnMTd8LpNOTUeWJEKNFvqW/4n3Vlylw7R9\n7IpIAKBJBU+2vNOcnvVK2ThaQRAKRc1e4FVFacW+Vbbz/1XzrMaCdgtws3Mj2ZDM4K2DiUxVuo9J\nksQXL4XQoKxSE/+dlWFcTSrZFW0FoSQTCXYhkrwq8rqrMmt8ql0an29fbuOIhPwyW6xEJWbx7rZv\nmH5yOgAtsnOoeP15xq69wd+XkwGo7OvE/P71WD60IaU8HGwZsiAIhUmtgbYTleXLOyFy+x0vB3sE\nM7/tfNzt3EkxpDBk6xAupFwAQKtW8d++dfB1sSPDYOb1ZcfJNYqJaAShOBIJdiGr32YiLbOVUn37\nbswmOUuU7SuKrFaZqMQsNobHMWXbBd5Yfpx2U/dS7bMtdFg2hh1xKwDokJXN+JtmlhvboNeqaBfi\ny9IhDdj6TnNaV/MVNa4F4VlUqQ1UaKUsb/0YLHeW36viUYUF7RbgofcgNS+VoduGEpESAYCPs56Z\nfUPRqiUi4jP5coMYFC8IxZEYbVXYvCox0q0ue4xnydJl8cn2Zcx6ZZitoxKAlGwjm8/E8deFRA5e\nTiYz73+78Fix8/sDnfsRAF7KzOHLpGT2l3+fn+o14blKXmIAoyAIyuyO7b6GWXsg6QIcnQ+NRt6x\nSiX3Sixst5AhW4eQbEhmyNYhzGs7j2qe1ahbxoNx7YOZuPE8vxyJ5vnKXrSv7m+bcxEE4bGIFmwb\nqNr8A9pm5wBwLHEZadlGG0f0bDt1PY1RK07QaNJOPl57hm3nbt5Orp3tNNQv606v+oHUr7/tdnL9\nql0pvkpKQu3sz/N9xtI2xE8k14Ig/MOnKtQbrCzv/ArSrt+1SgW3CixsvxBve28yjBkM3TaUM0ln\nABjctBzPV/YGYNzvp7mRJu52CkJxIhJsWwiqy0BdEAAGuxQm7l5j44CeTVGJWQxdcowuMw6wITwO\no8WKi15Dl9oB/NCjFnvHtiT8i7asGFYfk+fPRGTtAWBQxW58dPGI8svz3HugtbflaQiCUFS1+hSc\n/cGUDRvfh3vUty7vWp6F7RbiY+9DpjGTYduGEZ4Yjkol8X2PWng52ZGea+KdVWFYRHlX4Vkjy+h2\nfYZP+ilbR5JvIsG2keqN3qbprWnTd8cuIeuu7ghCQTFbrMzac5n20/ax47xSCqtGoCs/9qrNkY9b\nM+3VOnSrG0RpTwfyLHmM3j2a7deUgUpv1HqDd5NTkawmcAmE0P62PBVBEIoyvSt0VGZ1JHKrMgHN\nPZR1Lcui9ovwdfAly5TF8O3DCUsIw9vZjh96KpPQHLmSwozdoj628AyRZdjyIVdO/0yla9NRJZ5/\n+DZFiEiwbaVaF4YYtQAY9TFM3rPFxgE9G5Ky8ui34AjfbonAaLYS5G7P7Nfq8ueoprxcJxC9Vn17\n3RxTDqN2jWJf7D4A3qv7HiPLdEQKu1X9pdl7oNXb4jQEQSguqnaCqi8pyxvfv2dXEYDSLqVZ1H4R\n/o7+ZJuyGb59OPti9vF8ZW+GPlcOgGk7Izl+LbWwIhcE29o/hcOnFjEgwJfhgWXJditj64jyRSTY\ntqLWUq96X2oZ8gD4I2o5BpMox1SQzsSm03n6fg5GKaX0BjUty7Z3m9O+ut9d1T6yjFmM3DGSw3GH\nARjfYDyDqg+Cfd+D1QSupaBOv0I/B0EQiqEXfwBHbzCkwe9DwXLvO5alnEuxqP0iAp0CyTXn8tau\nt/j14q+MbV+Fav4uWKwy76w6SabBdM/tBaHEOP0bWw59z0g/H7JVKhI0diTnpdg6qnwRCbYNSaH9\n6JeeCYDV/iyLDp+0cUQl1+GoZHrPPURcugEnOw1z+tXl884h9xyYmJ6XzvDtwzmRcAIJiQlNJtCn\nah9IuQJhSnk+mr0PGrtCPgtBEIolJx94ZY6yfP0Q7P76vqsGOgWyrOMyQjxDsMgWvjz4JbNOTefH\nV2uh16q4npLL5+vOFlLggmADscdZvuN9PvD2xCRJlHcpxwjnEQQ5Bdk6snwRCbYtuZehlW99/Mxm\nkGQWnV6GVQxieep2X0ig/8IjZOaZCXSz5483m9IuxO+e66YaUhm2bRink06jklR8/dzXdK3UVXlx\n7/dgNYNbaajdtxDPQBCEYq9iK3juXWV5/xQ4tfK+q3rZe7Gw3UJalGoBwIIzC5gX8RUfdqwAwJqT\nsawLiy3oiAWh0Mk5qUzdMJD/eLggSxJ1vWsxse5P6GUXW4eWbyLBtjFNaH9ezVBasXPtDrD57DUb\nR1SyHLyczIilx8kzWynv7civrzemoo/TPddNyk1i8NbBnE85j0bSMLn5ZDpX6Ky8mHwZTv2iLDcf\nCxpdIZ2BIAglRstP/pmAZt0ouLL3vqs6aB34scWP9AnuA8CWq1vYnPwpzasqd90++eMMMak5BR6y\nIBQWk8XIJ793YeGtoU2tfRvyQZ0fGb7sEj9HqopdFR2RYNtacCe6mTTYWa2gNjDt8CpbR1RinI5J\nZ9jPxzCarVTyceLXEY0JcLt3Sb2b2TcZtGUQl9IuoVVpmdpyKm3Ltv1nhb2TQbaAe1mo1btwTkAQ\nhJJFrYEei8EnRBnLseJVuLLv/qur1IxvOJ4PG3yIWlJzLvkcUbqJeHpdJ9Ng5t1VYZgt1sKLXxAK\nSI4ph7f+6MafVmUQby/PUDqU+pKes48Tl5HHxQyJK8nF6w9KkWDbmlaPW0h3Ot2aeCbGsp1T18Uo\n8ScVnZzDgEVHyLrVLWTpkIZ4Ot27z/TV9Kv039yfqxlXsVPbMf2F6bdvzQKQeBHCb/3h0/wDUGsL\n/gQEQSiZ9C7Qd7Xyx7opG5b3gIvbHrhJ36p9mdtmLu527qQb0zB7z0Lrvp+jV1OYuedy4cQtCAUk\nxZDCkE39OJB1FYA3daWRpHGMWHaSrDwzfi52vB1ioaK3o20DzSeRYBcFNXrQ59ZgR7X+JpP3brRx\nQMWbwWTh9WXHSck24umoY+mQBvi53ruc3pmkM/Tf3J8b2Tdw1Doyq/UsmgY2vXOlPd+AbAXPilCz\nVyGcgSAIJZprEAzarHymmHNhRU/YNwWs92+NbuDfgJWdVlLVoypWrOj9NqAPWMm0XWdE6T6h2Lqe\neZ3+m/pzJu0ialnmkzQTG2NGMm/fFWQZGpT1YNWQUIKKV24NiAS7aCjVgMqO/jTINQBwPHWD6Fv3\nBD5bd4ZzcRmoVRKz+9WlvPe9+1z/feNvBm8dTGpeKh56Dxa2W0h9v/p3rnTzLJy9NdNmi/HKLV5B\nEIQn5RKgJNlBDQAZdk6AJZ2V8R73EeAUwM8dfqZzeWVsiNb1FPoyP/HW7xtE6T6h2DmffJ5+m/px\nLfMaequVaTcT2XazD6eTJbRqiTFtK7N8WEM8HYvnmCeRYBcFkgTVu9P71mBHtdM5/rv3qI2DKp5W\nHY1m9bEYAMZ3CKZ+WY97rrcpahNv7nyTXHMuQU5BLO2wlGqe1e5ecfck5dG7KoR0LaiwBUF4Fjn5\nwMANUG+w8vO1/TCzEWwaCxk37rmJXqPn6+e+5rPGn6FV6VDZJZHhPoXBv/+EfI+p2AWhKJBlmRyj\nmZsZBiLiM/jpwCb6bhxAsiEZF4uVefEJpGTVZae1Lq2Cfdj4djNGvVAJrbr4pqmiOa6oqNGDwgcP\nVwAAIABJREFUFvun4Gs2c1OjYcOV3xmf2wRXe9Hf91GdiU3n01v1YTvW8GPIrdnP/k2WZWafms3M\nUzMBqOJehdltZuNl73X3Dm+EQcQGZbnleFAV3190QRCKKI0ddJqqzPa4/m1Ii4Yjc+HYQqjUDmq9\nChVeALt/7sRJkkSPyj2o6VWT4VtGk2KKJcK8mJ5rL7Oo03c46e59104QCkJ2npmw62lciM8kOiWH\n2LRcMnJNZBrMZOWZyTQoy+ZbVUA0LqfQB6xGkiy4mDQsvRmNh9GO34I/YG2zWtQp7W7jM3o6RIJd\nVPhWQ+MTQq+M6/zk4YbsfJglhyJ5u+U9WlWFu6TlGHl92XGMt8rxfdut5l2zMxrMBj498ClbrirT\n0jfyb8SUFlNw1jnfe6f/33rtVxOCOxdk+IIgPOsqtIQ3j8LxxUqd7KybcGGj8k+lhTKNlUS73PPg\nXwtUaqp4VGFj99/osvI9EuSDRGTuo8va7kxvPeXed+QE4SlJzMxjY/gN1ofHEXY97ZFL6Gnd96P3\nUxqunMxe/B53Cj+Lhdx2k5jYpEUBRlz4RIJdlNToTtfdXzHL3RWTJofFYX8wolkV7DRqW0dWpFmt\nMu+tPkVMai72WjWzX6uLs/7Olv/EnETe3vU2Z5LPANCrSi/GNRiHVnWfOwRX90PkVmW55cei9VoQ\nhIKn1UOj16HeILi4BU4ug8u7lZJ+V/b+Uzdb7wZln4PyLXAq34J1Pf5Lh0VTSLVfRYIhltc2vca4\n+uPoWaXnXQ0NgvAkriRlM3vPZdacjMFk+SepVklQwduJMp6OBLnb4+6gw1mvuf3PyU7NptgFrL+m\nJNf1fOsxLfY6LhYL+NbAvtFQW51SgREJdlFSvSueOyfQPiuH9c6OGOz3svZEX15tUMbWkRVpM/dc\nYldEAgD/6VaDyr53tkgfjT/K2L/GkmxIRiWpGFd/nDL1+f1YrbD1Y2W5dBOo3K6gQhcEQbibxg6q\ndVH+5WUqtbIv7YCoPZByGQxpSve1W13YnJwD2FThRXqe6801ry1gl8jEwxM5dvMYXzT5AkdtMSzB\nIBQp2XlmftoZyYL9V2539XBz0NKxhj/tQvyoW8YdJ7t7p5Qmq4nPD3zO+mvrAWhTpg3fuNbF7tAb\nygodvwNVyWtIFAl2UeJeFvxq0jslgvXOjqjtY5lxcDc96w1ApRKtEPeyLzKRH7ZfBGBA4zJ0qR14\n+zWrbGXhmYVMPzkdq2zFWefMd82/47nA5x680zO/QVyYstx2ojIIVRAEwRbsnCG4o/IPID0Gov6C\nK38pj1nxkHkD57B5bAa2xtbiM8+K5LheYsvVLUSkRPD9899TxaOKTU9DKL6OXk1h9C8nuZGuVDor\n7eHAyBYV6Boa+NA77FnGLN7b8x4H4w4C8GqVV/mwzmjUMxooK9ToAWWaFGj8tlKg970lSVogSVKE\nJEkWSZK+KMhjlRjVXqKG0UiISfkLMVHaxc5brbPCnW6k5TJ6ZRiyDLVLufHxi//0OUzPS+etXW8x\n7cQ0rLKVEM8QVnda/fDk2pQLO79Ulqt3h6C6BXgGgiAI+eQaBHX6Qte58H4EvHkEWk8AjwoAtJNO\ncShlF50SPJFkDVczrtJ3U1/WRq4VVUaEfLFaZWbsvsSrcw9xI92AXqtibLsqbH+vOb0blH5ocn0z\n+yYDtwy8nVy/VectPmr4EepjCyEjFtR20OrzwjgVmyjojqVhwCjgrwI+TslRtQsAfdJSANA4hzPj\nr5O2jKhIMpqtvLH8BCnZRjwcdczsG4pOo7yd98bs5ZV1r7A3Rumv2KtKL37u8DNBzkEP3/GhmZB+\n/dYv/mcFeQqCIAhPRpLAuwo89w68dRz6rAa/GkjAN9knmR2bhrPVlTxLHp/9/RmfHPiEHJOYY0F4\nuDyzhdGrwpi89QIWq0yNQFe2jG7Omy0rPtK4sMjUSPpu6suF1AtoJA2TnpvE8JrDkQxpsO8HZaWG\nw8GtVAGfie0UaBcRWZanA0iS9M7jbC9Jkgfwv4WMSwNkZ2eTlZX1ZAHmQ05Ozh2PBcY+AHvPyrRL\nuci33n5kqEycy9rOvvM1qFPKtWCP/RQV9PWatCWSsOtpqCT47uVgXDQWbqbeZFr4NNZfVfp5OWgc\nGBc6jral2mLMNWLE+MB9SukxOPw1GQkwhg7BqPWEQnqPFdr7q4QQ1yt/xPXKn2J7vQKaQt9NaMJX\noNo1gSamFDZfS2OQXyiR9gn8eflPTiecZlKjSZR1KfvUDltsr5eNFPXrlZ5rYvSvZzkWnQ5Ar7oB\njGtTAZ1GfqS861jCMcYfGk+WKQtHjSPfNP6G+j71ycrKQrd3MjpDGrKdC9l1RjzSd6ytrld2dvYT\nbS8Vxi0jSZI2AMdkWf4in9t9Adzz/sGsWbPw9/d/8uCKoCpxawiO/4PJXgH87KzBanKhXPJYhgWL\nvsAAxxIlll5S/oJ+sZSFtkEyl02XWZOzhnRZ+UAorynPKw6v4K569HqaDaKm4p9+klytB7uqfoNZ\nbV8g8QuCIBQ0vTGZqhf/S2nTZWRgjFNddninYMWCHXZ0c+hGNZ0o5SfcKccMM86piclW8o2Xy1ho\n4S8/0lAkWZY5ZDzE5tzNWLHiIrnQ36k/fmo/APTGFFqfG4taNnHOvweRfkW7/G1cXBwjR44EqCTL\n8qX8bv9YCbYkSYuBAQ9YpZ8sy8v+tf7jJtj3a8HeGRYWRoUKFfKzuyeSk5PDwYMHady4MQ4ODgV6\nLFXiORyWtCFOraZd6SBkZHJj+rK690Aq+xSPCQQK6npFJmTTZ9EJck1Wnq/kwXddKzD77Cx+u/wb\nAHq1nlE1RvFK+VdQSY/eA0p9aSv2fyizqeW+NA9L5Y5PLeZHUZjvr5JAXK/8Edcrf0rM9TIbSF/z\nLoHRfwIwVd2IFaUNGFC6IA6uOpghVYfk67PyXkrM9SokRfV6peeaGLYinHNxWWhUEv95OZj21Xwe\naVujxch3J79j47WNAFR2q8zkxpPxcfhne7utY9GeXoHVyY+cIftB+2iNWLa6XpcvX6Z27drwmAn2\n43YRGQWMecDrmY+53zvIspwCtz4Jbvn/mp6Ojo44ORV+sung4FDwx3WsDx7l8U+J4gX7QHbmxqB1\nP8icA62Z069ewR77KXua1ys9x8Q7vx8l12SllIc9Q9toGLx7ENGZ0QDU8anDxKYTKe1SOn87zk2D\nXZ8qy5XaYV+nh80qhxTK+6sEEdcrf8T1yp/if72ccBr0M5nrxuAcNp93LYfQR7Vkpr872F9m4fmF\nRGVGManZpPtPuJUPxf96Fa6idL0yDSZGrgrjXFwWapXEf/vUoX31R+slcDP7Ju/tf4/wpHAAOpbr\nyBdNvsBe868EOvECnFkJgKrleJzcvfMdY2FfL0fHJytv+VgJtizLWUDhdYB+1kiSMm3ugR/pnZLE\nTnvQOEax/dIpzsRWonpg8emL/bRYrTLvrDrJteQc9DoLzRoc5s3dvyAjo1PpeDv0bV6r+hrqx6ml\nuWmsMqJZ56TU4xRl+QRBKCkkCecu32PV61Ed+i8jpd2kXu/JEi8/dB4H2BOzh/aru/N68FfU8a+C\nt7Md6ltlYQ0mC+m5JtJzTWTkmsgwmDGYLBhMFvJMVnQaFU56DS5amYRcbtdHFooXo9nKyGUnCI9J\nR62SmN770ZPrv67/xScHPiEtLw2VpOLd0HcZEDLg7gmOdn4JshU8K0Ht1wrgLIqeAh3kKEmSDqVS\niQrQSJKkByyyLJsK8rglQjUlwW4Qf5HyNZoQlaW0Yk/dXpMFA+vbOrpC9+OOi+y+kIhKH0Ng8J+s\nv6a0Wod4hvD1c19Twe0xuwud+R1Or1aW23+j1CIXBEEoSSQJVbuJkJME4Sv5SLuatMwxrMntid5/\nDRnc4NvwN8jd0gtL1uP2y9Yw9dwBGpf3pFVVXzrX8r9rRl2h6JFlmQ9/D2f/pSQAJnevSccaD0+u\njRYjU49PZdl5pTewu5073zT7hqaBTe9e+fqR25Mi0eozUD8bU7AUdJm+bUAu0AH4+NbyvAI+ZskQ\nEAougUhAb71SxkbreoKdF69xMjrVtrEVsj9P3eCnXRfQeW3HqdxMEvKi0ag0jKo9imUdlz1+cp0S\nBRveVZYrd4A6/Z5e0IIgCEWJJMFL06FccwC+1cxhdbt2tHKbgMbqjqTOw6HUz+i8dgDWOzZVScqs\nfaU9HAj2c6ZWKTcalPOgVik3yns7Yq9VUokco4WdEQl8tPY09b/ewfg1p4lNyy3sMxXyYfLWC6w5\nGQvA2HZV6Br68HK2F1Mv8tqm124n1w38GvDbS7/dO7mWZdh+q1ZFYD2oWrQHNj5NBV2mr0VB7r9E\nkyTljXh4Np1vRPKjoyPZpmy0rseZtCmA1SMa330LpgQ6FJXM2LXbcSj7C2r7WGSgsntlvn7ua4I9\ngh9/x3lZ8EsfMKSDky+89JPoGiIIQsmm0UH3xTCnOVJGDKGH3iJ06E6SrU15/6/3OX7zOHbeO2ga\nksu7tT7HXe+Kq4MWJ53mgbMJZ2Rm8vvmXTiWrsGhaxlsORtPjtHCL0ei+f14DP0bl+HdNpVxvM9U\n2oJtLD10jZl7LgPwWqPSvNHiwY1VJouJ+afnM/f0XMxWM2pJzRu132BI9SH3754ZuQ2i/1aW20x4\npr5nC7oFW3gSwZ0AcIw9QZdSrQDQuR/i6NVk1ofH2TKyQnExPoNha39EW+ZH1PaxqCQVQ2sM5ZcX\nf3my5NpqgbUjIPE8qLTQcyk4PdpIaUEQhGLN0RN6/qx89iVGwNaP8LT3ZF7befQJ7gPAsYQDjD80\nFIMUi4te+8DkGkAlSXjYQcfqPkzpVZsjH7fmq5er4++qx2ixMn//FdpO3cu+yMTCOEPhEew4d5PP\n150BoE01Xya8VP2BjXZnk87Sa2MvZp6aidlqppxrORa3X8zwmsPvn1xbLbBjgrJcqS2UfchMyiWM\nSLCLstKNwcETgF6yMsJbZZeE2vES32w6T67RYsvoCtSR6Cv0WDcEvP5AUpnxcwhgcfvFjA4djU6t\ne/wdyzKsH/1Pf7COk6F0w6cTtCAIQnEQVBfaTlSWTyyBC1vQqrSMbzieSc9NQq/WE50ZTd9Nfdly\nZUu+d+9kp6FfozLsGduCce2DsdOoiE3Lpd+CI/ywTZkZULCdM7HpvL3yJFYZ6pR246dX69we2Pq/\nknKT+Pzvz+m9sTeRqZGoJTVDawzl186/Utun9oMPFL4aEs4CUomeEv1+RIJdlKk1UEWpx1w+aj+N\n/RsDoPc4SFy6gR93XLRldAVmafifDNnxKlZ9BAAtAzvxx8trqONT58l2bLXApjFwcqnyc7P3od6g\nJ4xWEAShGGowHMo9ryz/+RZkK4PcOlfozNKOSwl0CiTXnMvYvWP5/uj3mK3mfB/CTqNmZIsKbHu3\nOfXLKpN+Td91if4LD5OW8+CZdYWCEZeey5AlR8kxWijlYc+8/vWw193dAm20GFl0ZhGd1nZiTeQa\nZGSquFdh+YvLGR06Gju13YMPZM6D3ZOU5Zo9wa96AZxN0SYS7KKu6kvK47W/6V1O6TKicopApUtg\n3r4oTpSgAY+ZxkyGbx7Ddyc/BnUOWBwZU+sbfmr9DY7aJ6tHiTEHfhsER+crP9cfCi98+uRBC4Ig\nFEcqFbw8E+xcITtBaXy4JdgjmFWdVtE0QBm0tuTcEkZsH0FybvJjHaqMpyMrhjViRPPyABy4lEz3\n2QeJSS2aU4WXVFl5ZgYvPsbNjDxc9BoWDayPl9OdibIsy+yK3sXL615myvEpZJuycbdz57PGn7Gq\n0ypCPEMe7WBHF0B6NKh10PLjAjibok8k2EVd+edB5wyyheaZaZR1KQvI+JTaj1WGMb+eIjsv/y0L\nRc3R+KO0//VlDiZsBUCVW5U5LX9hQO1OT77zhPMw7wU4t075uek70PH7Z2qwhSAIwl1cg5Ta/wBn\n18LFbf+8ZOfKjFYzGFZjGABH4o/Q7c9uHIg98FiH0qpVjO9YlZl9Q9FpVFxKyOKVmX9zJjb9iU9D\neDizxcpbK05wPi4DjUpidr+6VPS5c3KhyNRIhm8fzujdo7meeR2NpKF/tf5s6LqBHpV7PPo8E4Z0\n2DtZWa43BNzLPOWzKR5Egl3UaeygclsA1BEbGVpjKAC5dsfR6ZOJSsxm3O/hPM6U94/CZLGSlJVH\nYmYeqdlGrE+575zRYmTi35MZvHUIGeYEZKsWt+xX2dRrMU3KlXuynRvSYftnMLvZPwMaO37/zI1k\nFgRBuK+avaB8S2V54/tgzL79klql5u3Qt5nWchrOOmeSDcm8vuN1vjv6HUbL43Xx6FjDnxVDG+Lm\noCUxM48+8w5x6nra0zgT4T5kWearDefYfUEZZPpN1xo0qeB1+/U0QxoTD02k+/ruHIo7BEDzoOas\n6bKGsfXH4qJzyd8B/54OuSlK42DzB036XbKJmjnFQdXOyoQol3fR8ZXZzHYKIiYrhnq1w/j7UCs2\nhMdR1d+FN1tWfOJDnYlNZ9u5m5y4lsrFm5kkZuXx79xdrZLwctJRzsuRYD8Xqvg5U81fedRr8zeL\n4vEb53lv9wekmK8CYMktRTO3t/ihTxucHreckyzDjRMQ/iucXAbGTOV5jwrQfQEEPGE/bkEQhJJE\nkqDTFJjZWLmlv+c/0ParO1Z5ofQLrPFcw4f7PuT4zeMsPbeUI3FHmNRsEpXdK+f7kPXKevDb6014\nbf5h4jMMvDb/MIsHN6BuGfendVbCv8zcc5klB68BMKplRXrUU+bWMFlNrL6wmplhM8kwZgBQ3rU8\nH9T/4N41rR9FZjwcnKEsN3kLHL0evH4JJhLs4qBiG1DbgSUP7eXdDK0xlC8OfsH5jN10Cu3AhhNG\nJm+9gINOzaCm+W/1zc4zs/7UDZYfjub0Q27XWawyNzPyuJmRx6GolNvPq1USFb2dCAlwoVqAC+Xd\ntWSZwPqv7NxothKdks3J6FSWnV/OZfNqJJUZWVahyWjDxOffpkut0g8P2GqBjBuQdg1Sr935mHwJ\nsv9VCkrnDM3eg8ZvKncDBEEQhDt5lIfnP1Cmsz4449agtBp3rOLn6MeCtgtYeGYhM8JmcCH1Ar3W\n92JQ9UH0rdA334es6OPEqhGN6D33EDfSDfRfcJhFgxrQoJzH0zorAVh++BqTt14A4OXaAbzXRvmD\n6O/Yv/n26LdEpUcB4Kxz5s3ab9KzSk+0qieYgXPnl2DKAUcf5Xv3GSYS7OLAzgkqtoILm+D8el7q\nOpc54XOIy47D0Xcnrat2Y8f5BCasP0d8uoGx7aqgUT+898+5GxmsOHKNP07eIOtf/bgr+zrRpIIX\nNYNcCXSzx9NJh0qSMFlkkrPyiEs3EJmQxYX4DCLiM4lLN2Cxyly4mcmFm5m3Z4UCDZ8e34uTnQaL\nVSbHZAF1KvqAX9E4RiGpAJMXnf3f5+Pe7e9utZZlSIpUitQnXoCki8rsi2nXwWp68Mn5VIPafSC0\nP+hd83e9BUEQnjWN31Lu/CWeh41jYPCWu7rSqVVqhtUcRkP/hnxy4BOupF9h3ul5bL2yldZya1rR\nKl+HLOPpyKoRjek97xAxqbkMWHiERYPq06i859M8s2fWhvAbfPKHUuu6ZRVvJveoRWx2DJOPTmb3\n9d0AqCQVPSv35M3ab+Kmd3uyA8Yeh7DlynKrz5Tc5RkmEuziIriTkmBHbkNrtTCqzig+3v8xm65u\n5Of2fQEfdpxPYM7eKPZfSuKjjlVpUsHzrsLxaTlG1ofH8fvxGML+1e9Nr1XRqWYAfRqWpk4ptwcU\nnHe+65mUbCPnbmRw9kY6Z289RiVmIwNWGTIMZkBG43ocve96JHUeAHXdOzKl9Sd4OPzPPm+eU7p3\nnF0LmTcecFEkcAkA97LgVkYZSOFWBko1AM/HnD5dEAThWaTRwYs/wOKOcP2Q0i2xRvd7rlrTuya/\ndf6N+afnM+/0PKKzolnIQi4dvMTYBmMp61r2kQ9bysOBVSMa02feIa4l5zBo0VEWDKx3Rx9hIf82\nhsfxzsowZBnqlXHnh17VmHXqvyw5uwSjVek/39CvIeMajKOSe6UnP6Asw5bxyrJ/Laid/7saJY1I\nsIuLKh1AUoMxC6L20KlyJ5aeW0pESgTTw6Yy97X5/LD9IrP/uszZGxn0nX+YIHd76pZxx91BR4bB\nROTNLM7eSOff4xQr+TjRt2FpXgkNwtX+8W4LeTjqeK6SF89V+ucDMSElnd+37CG4Vl2STZmsif6R\n06nKdKne9t5MaDKBZkHN7txR3CnYNVGZWvXfnPzAvyZ4VVZuZbqXVf65BoluH4IgCE9L2aYQ8orS\nuLHtU+V7R3fvEqk6tY43ar9Bu7Lt+OLAF4QlhbH3xl7+Xvc3vYJ7MbTGULzsHy1JDnSzZ+VwpbvI\n1eQcBi8+ysIB9WlSsegn2RarTHquidQcI7Iso9eq8XS0u2dt6cKy5kQMY349hVWGagHOvPpCMj02\ndiEhJwGAAMcAxtQfQ+vSrR84e2O+nPkdrh9Wltv/RykD+YwTCXZx4eChTDN65S84vx5VlfaMqTeG\noduGcjT+KLuu72Bc+7a0D/Fj0qbzHL6SQkxqLjGpuXftyslOw4s1/OleL4h6Zdyf3i/Yv8PVqfFz\nsBJn3cuM8zNuD6DoULYDHzf6GFe7f3XbyMuCHV/A0Xn/POdZCeq8pnzAe1UWVT8EQRAKQ5uv4MIW\n5e7hvinQ6sHzBVRwq8DM5jOZvmU6+6R9xGTHsPz8cn67+BvdKnVjUPVB+Dn6PfSw/q72rByudBe5\nkpTNoMVHWTCg/h0NN0WBwWThwKUkdl9I4HRMOhHxmeSZrXet5+tiR2VfZxqW86BheU9CS7vfd7bE\np0WWZWb/FcV3WyOQZahWNgP3UiuZcCgMAL1az5AaQxgYMhC9Rv/0DmzIgG2fKMshr0CZJk9v38WY\nSLCLk6qdlQT7wiawmGno35AXSr3Aruu7+ObINzQKaEStUm6sGtGYyJuZ7I1M4nxcBpkGE856LUHu\n9tQv60HdMu75rviRX1cyrrAgawHXTigjl93s3Pio4Ud0KNfhzhXjTsHq/pB6VfnZtwa88AlUbieS\nakEQhMLmVgqeexf2TFLKrdV5DTwePHhekiRCdCGMbDmSDTEbmH96PimGFFZErGD1xdV0Lt+ZvlX7\nUsWjygP34+eqV1qy5x0iKjGbIUuOMq9/PZpX9n6aZ/hYwmPS+PngNTaGx5Frsjx0/f8vBrAvUpkh\n09NRR9sQPzrW8KOG71NMbm8xmCx8tPY0a07Egjqb0uX3Eqvdx/UkJflvV7Yd79d9H38n/6d+bHZO\ngMw40Doqf6AJgEiwi5fgTspsW7kpysC/cs0Z33A8h+MPk5SbxJRjU/iiyRcAVPJ1ppLv3f2lC1qa\nIY054XNYGbESs6wMnOxSoQvv13sfd/3/lGA69yesHaGMONbolZkVG42ERy1mLwiCIDx9Td9WxsGk\nRystk68uf6TNtCot/ar1o3vl7qyJXMPCMwtJyElg7aW1rL20llCfUHoH96ZVmVb3rVTh66Jn5TAl\nyb6cmM3Qn48xr389nrdRkn3wcjKTt0ZwIvqfMUtqlaS0TJfzJCTAhdKeDrg5aFFJEgaThZsZBq4k\n5RAek8aRKylExGeSnG3klyPR/HIkGk9HLSHOKrxiMmhSxfGJ7yKfiU3nnVVhXErIQOt2FGf/7aSS\nBTJUdq/Mhw0+pL5f/Se9FPcWfViZtRGUxjG3UgVznGJIJNjFiYs/BNWHmKNwfj2Ua46fox+jQ0cz\n6fAkfo/8nWaBzWhVJn8juZ8Gg9nALxG/MC98Hpkmpfa0p8qTCU0n8Hz55+/e4PhiWD9aWXYvB71/\nAZ+qhRewIAiCcG9ae2g3Ubm7GLEBLu+GCi0feXN7jT19q/alR+UerL+8nuURy4lMjeREwglOJJzA\n296blyu+TNdKXQlyDrprex8XPb8Mb0TfeYeJTMhi2M/HmPNaXVoG+zzNs3ygiPgMvt0ccXtyFoCQ\nABf6NSpDh+r+uDrcf8xSkLsDdct40L2ucm5x6blsORPP5tPxHL2WQnK2ib3ZKvYuPklpjwu8VCuA\nLrUD8t0olpJtZNqOiyw/HI3V7iqO5f5EpY/FhFJ27606b9Gjcg80qgJK9cx5t77HZQgIhYYjCuY4\nxZRIsIubqp1vJdgboP23oFLRq0ov9lzfw983/ubTA59SxaPKPT+0CkKmMZNVF1ax9NxSUgxKXWwX\nnQsDgwficc2Duj51797o2CLY8I6yXKYp9Fqm9DEXBEEQioaqL0HZZnB1H2weByMPgDp/A+F1ah3d\nKneja6WuHL95nBURK9gVvYvE3ETmnZ7H/NPzaRzQmG6VutGyVEu0/9q/j7OeFcMa0Xf+IS7eVJLs\nr16uTu8GjzBXwhO4kZbLlO0X+f3E/7V35/FRVecfxz9nsi9sCVnYQQxEFIgICKK4gBsuKLhQd+uu\nRa1trba2an9V61Kt1ioudam7GAS0aBFQQUBAkEVFQtjCEsISiGQj2/n9cSYQBEImTGYmyff9euWV\nuXfu3PvMITPzcOac52zYs8jawK4J/O6snvWes9SuVQzXDunGtUO6kVtQQuaCtbw7dxUbigw5+cU8\n+3k2z36ezVHtWnJ+3/acfUwqXRJjD3itisoqFq7bwcTFG/nw243stjuJSvmUiNaLADAYRqWN4vZ+\nt5MQ3cCfq9MedGUdTRic/4y+ff4ZJdiNTfq5bvnvXZtg07fQ8Tg8xsPDJz7MxR9dzNaSrYydMZbX\nznpt34mEfrZ652rGZ41nUvakPT3WkZ5IxqSP4cY+NxJWHsb0nOn7P3Dp+L3Jdbeh8Iv3IDK2weIU\nEZF6MAbOfgzGnQjbVsD8l2DwrfU8laF/an/6p/Znc9FmJqycwISVE8grzmPOpjnM2TSHhOgERnYf\nyai0UXvK/CW1iOLtGwZxzavz+W7jT9w7YRlrtxVx91npfp8wWFBSzvNfrOLV2Wv2TFr9ynrgAAAg\nAElEQVRMS47n92elM+yoZL8VA2jXKoZrBnWiU1EW3foOZtrKnUxevJG124tZnvsTy3N/4tFPf6RV\nTAQ9U1qQ1CKK6IgwSisqyd1ZQlZeoVu3wrObyISZxCfOAo8ru9e7bW/+cPwfOKbtMX6JtVbZ0+Br\n74qNp9y738JEogS78UnsDinHQN53sHwydHQ9xIkxiTxx8hNcP/V6sndmM3bGWJ4b9hzxkf4r9L6z\ndCcz1s9gUvYkFm1ZtGd/XEQcl/a8lCt7XbmnLFNheeH+J1g3ByZ536C7nqTkWkQklKX0ggHXw/wX\n4ItHXF3s+MMbppEal8qtGbdyU5+bmL1pNplZmXy54UvyS/N59ftXefX7VxmQOoDRaaMZ3mU4beOj\neP+mwdzx7mI++yGPF2auZumGAp66NIPUVoc/WbC0vJI35q7jX19ks7PYLWCW0jKKu07vweh+Heu0\naFt9HdE2lru6JvPr4Wks3VDA5CWb+GjJJrbs2k1BSTnz1+Yf4FEVRLRZQGzyDKo8rnMrITqBO/vd\nycgjR+IxASiPtysPPrzF3e58glstWfajBLsxSj93b4I9/IE91Tb6pfTj0aGP8psvfsO3W77lmk+v\n4V/D/kVKXEq9L7WpcBNfbfyKz9Z9xoLNC6i0e2dPd23ZldFpo7kw7cJD95ZvXwXvXgaVZZB0lJs0\no+RaRCS0nXovfPcBFG93QwIu+JdfThvmCWNox6EM7TiUrcVbmZg9kcyVmWws3MiCzQtYsHkBrea3\n4rwjzmN02mjGXXEcj336Iy/MXM3c1ds5++mZ/OncXlx4bId69S6XV1Yx/psNPDN9JZt/KgWgRVQ4\nN5/SnV8O6RbQOtbGGPp2ak3fTq3544ijWLu9iGUbC1izrYjthWWUllcSHl7BNjOT5cWTKSjfRhVu\nrPs1R1/D1UdfTVzEgeuV+115qfssL9riVkke9aKGhhyEEuzG6Kjz4Mu/uWXDtyx3vQxep3c5nUdO\neoT7Zt/Hih0rGP3RaO4ZeA8juo2o0/9sC3YXsGDzAuZumsvXuV+Tsytnn/vjIuI4tdOpjEobRf+U\n/nV7YysrhveugJIdEJcMl7+v5ctFRBqDmDYw7H746HZY/Cb0vxY69vfrJZJik7ihzw1c1/s65uXO\nI3NlJtNzplOwu4A3l7/Jm8vfpG9SX0anjeb5LsfyxwkryS8q4673l/DWvBzuGJbGSWlt6/R5tLO4\njHcXrOc/c9ayqcAl1pHhHq4c1IXbTj2ShLhIvz43X3k8hiOS4jkiyX37nFuYS+bKTMZnjd8zzync\nhDMqbRS3ZNxS58V8/KKqCiaPhY3fgPHA6FdUNaQWSrAbo5SjXeWNHWtcNZEaCTbAOUecQ2JMInd/\neTc7du/g3ln38sp3rzCy+0gGtx9Ml5ZdiPREUlJRwqbCTWTtyGLptqUs3rKY5fnLqbL7Fs1vHdWa\noR2HckaXMxjcfjCRYT6+AX3yO9jyA3giYMzb0LphJ6mIiIgfHXsFfPMK5C6GKb+D66c3yEp9HuNh\ncPvBDG4/mPzSfD5a9REfZH3A2p/WsmTrEpZsXUJ8RDxnn3wmuRv6MmNpJAvX7eCqV+bTIyWec/u0\nZ8iRbUlPbUFclEtvSssryd5SyOL1O5m2PI/Z2dsor3SzF8M8hov6deSO4Wm0bx3j9+dTX8Xlxczc\nOJOPV33MrI2z9nwmR4VFMTptNNccfU3D1LOujbXwyd2w7H23febDkDY8sDE0MkqwGyNjXC/2nGfg\nx4/glN/vd8igdoP4cOSHPDzvYaaum8rKHSt54psn6nT6qLAo+iX3Y1D7QQxqN4j0hPR6j+sK/368\nq6cKcPpfoFMD1eIUEZGG4QmDEU/Av4fDpkWw+C3od2WDXjIhOoGrj76aq3pdxcK8hWSuzGTq2qkU\nlhcyeU0mkMkxA3pQWXA8y7O7k5UHT36WxZOfZQEQFe4hzGMoLtt/UZgW0eH8YmBnrhrchY5tgj9U\n0VrLmoI1fJP3DV9t/Io5m+awu3L3nvuTY5IZ1WMUl/a8NLA91tWqKl0lmerVlo+/2f1IrZRgN1bV\nCfbmZZC/5oArbSXGJPL3U/7Oj/k/Mn7FeD5f/zlbS7bud1yLiBb0TupNn6Q+9EvuR7+UfkSFRR12\niPGluUR99oDbSD/XLSIjIiKNT6cB0PcyWPI2THvAfQbFtG7wy9asQHLPwHv4ePXHfJD1Adk7s1lX\nmAVhWbTtFUPHiMFszz2W9ZvbAma/5cvbtYpmQNcERvRO5eQeyQEdY11TUXkR2QXZLClbwsrvVrKu\naB1Lty3dM/yjWqQnkhM6nMCFR17I0I5DG66W9aGUFkDm9bByqtvu/0s4629aabkOlGA3Vh36Q3wq\nFG52kx2H3HHQQ9MT0vnT4D9x36D72F66nY2FG6msqiQyLJJ2ce1IiE7wWwmiPaoqOHbdi5iKEjck\nZOS/9IIUEWnMhj/ghiUWb4PPH4IRjwf08q2iWnH5UZdzWfplLN22lMysTD5d+yklFSWsqpwBbWbQ\nq1NnercZQnqrE+gY05O28dF0aBNDcgv/L0/+c0XlReQV55FXlMeW4i3kFeexuWiz+yl2v3eV7dr7\ngBX7Pj4pJon+qf05rdNpnNTxpMBNXDyY7Gkw+Q74aYPbPvHXcNqf9VleR0qwGyuPB3qNdOWTlr5f\na4JdzRhD25i2AfmKKWLB88QXr8JiMBeMC0hPh4iINKAWKXDKPTD1j64u9jEXQefjAx6GMYa+SX3p\nm9SXuwfczZQ1U8hcmckP239gfWEO6wtzmLL+HRKiE/Z8K5uRlEH31t2JjfB9SEhlVSU7du8grziP\nLUVb9iTPecV7E+ktxVsoKi+q8zljTAzpiemkt00nPSGd41KOo3OLzr53dpUVwdrZbl2MHWtctZfK\ncoiIdcUE2nSB1l0g4Qj3E9e29gS5sgJWTYevn4PVX7h9EbFwzpOQ8QvfYmvmlGA3Zn3HuAQ77zs3\nVCRUCr3nfU/k7L8DUH7c9UR2HRLkgERExC+Ov9mV7dv0LUz+Fdw0K6jhxEfGc0nPS7ik5yVk7chi\nes50ZuTM4Mf8H8kvzWdazjSm5Uzbc3y7uHZ0bNGRxOhEEqITiAmPwWM8hHvCKasso6i8iOKKYn4q\n+4ltxdvYUrKF7SXb9ylReyjhJpyk2CSSY5NJjUslNTaVdvHtSI1NJTUulRa0YNFXixh+8nDi4+u5\nVsWGhTD3WVjxCVSU1P1xUa3ckNLE7tCmK0TEuIogRdtg20rYMN8NC6nWbSic97RLzsUnSrAbs/bH\nQtuebpWtJe+GRoJdUQYf3oSpKmdXVDvMib8nuEWPRETEb8LC3ZC/F4bCtiyY+Tgc/+tgRwVAjzY9\n6NGmB7f0vYWNhRuZlzuPhXkLWZi3kI2FGwHILcoltyi33teIDY8lJS6F5NhkUmJTSIl1t5Njk0mJ\nc9sJ0Qm1FgYoLCys/7DM/DWumkf1mGhwFbpSe0PyURCbCGGRUFHqkuad62DHWtjlfc67C1w1mNzF\ntVzEQPdT4YSxcMSpGhJSTw2WYBtjBgH3A8cBkcAy4B5r7eyGumazY4zrxZ7+ICwbD8MfdG9+wTTr\nCdi8DGs8fNvlRvpFhE7pIxER8YOUo+Gk38CXj8JXT+HpclqwI9pPh/gOjEobxai0UYBb42FNwRpW\n7VzF5uLN5Jfkk1+aT2llKZVVlVTaSiLCIogLjyMuwv0kxSaRFON6opNik0iOSfbr6sg+sRbmvwif\n3b+3x7pdhvtGIf0ciG5Z++PLit3aGfmrIX+VW/xtZ45b/K2q0g0dadUROg5wKy23DHAZwCaoIbOx\nNsAbwOVAAXAjMMUYk2at3dKA121e+lwC0/8ChXmw5gs4Moh1KXOXwExXCrB84G3sKOsevFhERKTh\nnPQbN+Fxyw9Ef3wr4Z3vDXZEtWoV1YqM5AwykjOCHYrvyopg8u1uaA5Aq05w9qPQc0Tde5cjYyH1\nGPcjAdFgCba19pOf7XreGPMXIAOYeoCH7McYkwAk/Gx3Z4CioiIKCwsPO866Ki4u3ud3yAhrTXTn\nEwjPmU35wjfZnTooOHFUlhMz4WbCbCWViT3ZmXETzF8Ueu0VokL27ytEqb18o/byjdqrbjxnP0PM\nW+fi2bmWPuZ1iotDryc7FPn091Wyg5jMKwnb/C0A5b0uYvfwhyEyDorqPqmyMQvW67HoMNvXWGv9\nFMohLmRMX+AboKu1dmMdH/MAbpjJfp5//nnatdNXGACdts+iX85LVJhIph7zNOXhgS/t02PzRI7K\nnYDFMLPH/eyM04QIEZGmrsu2GWSsfw2AbztfR07iycENqAmJKt/J4OzHaVW6HothWccrWdN2mMZE\nB0hubi633HILQJq1NtvXx9crwTbGvAZcXcshV1pr36xxfFtgNvC+tfZPPlznYD3Y0xcvXkz37oEb\nglBcXMzcuXMZPHgwsbHBX/lpH2XFxI3rhynbxe5TH6D8uBsCennP1h+JeeMsTFU5ZQNvo2zoH0K7\nvUKQ2ss3ai/fqL18o/bygbWET7ye6FWfYj0RlFz8DlWdBgc7qpBWp7+vkh3EvDuKsO1ZWE8Epec+\nR2WPEYENNEQE6/W4atUqMjIyoJ4Jdn2HiPwK+G0t9++ppO5NrqcB04E/+3IRa20+sM/yRtUzb+Pi\n4upf3uYwxMbGBuW6tYuHYy+HeeOIWvIGUSfd4epkB0JlBXz2O6gqh8Q0Ik//E5E1JjaGZnuFLrWX\nb9RevlF7+UbtVTeF5zxNwYvDaVW6ntjJN8B1n0HbtGCHFfIO+vdVVgzvXQfbsyAsEvOLd4gJ5vyq\nEBHo12Nc3OGNBqhXgm2tLQQOOQDaGJOCS66/BMbaQI1HaY76/xLmjXOzg9d86UrsBMLX/4JNiwAD\nI591NTVFRKT5iIxnXvdfM3zNI3iKt8Lr58E1/3W1lv1t9y7I+RrWz3OVMH7aBLYSwqPdgiqpveHI\nYZB4ZOMcSlFZAR9c654fBka/HNziBVJvDVmmrx3wOfCZtXZsQ11HvJJ6utI6a2fBgpcDk2BvWwkz\nHnK3j78ZOgdpgqWIiARVSWRbSke/Sez4S13N5dfOgcveg3Z9D//kZcWwYgosfQ9WzYCqioMcWGPR\nm+oSdr0vDn75Wl9MfwCyPnW3z33SrdgsjVJD/tXdCPQEOhpjrq2x/yZr7VsNeN3ma8D1LsFeMcUV\no0/o1nDXqqyAibdC5W63GtSwOg+tFxGRJqgq5Ri4ahL8Z6RLsv99Jpz/T+h9ke+9ydbChgWw8HX4\nYSKU1fjS3BPuFlpL7uVK1oVHup7t/NWwbo67du5imHgzzP4HnPUIdG8EFU6+y4Q5/3S3T7zLfTMt\njVZDlul7EHiwoc4vB5B+DrTqDAU5MOcZOPephrvWV0+6JVUxcP6zrmSQiIg0b+0z4Lqp8PalsGMN\nTLjeJcin/6VuQ0YKt7qF0xb9B7Yu37s/LBJ6nOXWfjjiVIg6yFhca2HDNzD/BZewbv0R3rjQJatn\nPOTqQYeivB9g0q/c7e7D4LT7ghuPHLZG9L2JHFJYBAy5Hab8Fr59C07+PbRI9f91NnwDX/zN3T7h\nV9DtJP9fQ0REGqeknnDDDJh0m/tG9cePYcUnkD4Cel0AHfq5nmfjgeJ82LbC9Vav/Axy5oKt2nuu\n9v2g31Vw9IUQ0/rQ1zYGOg1wPyf+Gj75vftm95tXYO1suOxdSAixMrIlO+G9y6G82I0jH/0yeMKC\nHZUcJiXYTc2xV8CXj0HRFpj7LJzxV/+ef3chTLjBTSpJ6Q2naWiIiIj8TGwCjHkbvp/gVhvesdat\n/Lj8o0M/NroV9LnUJdapvesfQ8rRcNVk+Po5mP6gS+RfGgaXvgldh9T/vP5UVeU+U/NXQ3gMjHnL\ntZ00egGq5SYBExEDg29zt+e/BDvX++/c1sLHd3rfCKJh9EsQHuW/84uISNNhDBwzGn61EEb/2y3t\nHXGg4YQGktLhuGvhignw22wY8fjhJdfVPB73Tes1UyAuGUry3Rjx5R8f/rn94cu/wUrv4tbn/9M/\nz1lCgnqwm6KBN8K8F2DXJpjxfzDqRf+cd944NzYO4MyHIPko/5xXRESarrBwN9Gx90Wux3bHGjc0\npKocYhOhZXuIatGwMXQa4IatvH0JbPkB3r/KfTb2vqhhr1uLsOyp8OWjbmPQrdDn4qDFIv6nHuym\nKDJ2b1WPpe/BxoWHf861X8FU76SLvpdB/+sO/5wiItK8eDxusmOnAdDlBDdeu6GT62qtO7n63O37\nuWGOmde7yZRBEFeaS/SU291GlxPdJFBpUpRgN1V9xuytPzppLFTsrv+58r6Hdy5ztUdT+7janI2x\ngL+IiDRvsQmulGDnwYCFyWPdBMhA2r2L41f/A1O2C1q0h4tfdUUKpElRgt1UeTxw3tNgwmDL93u/\nhvLVjnXw5kWwu8C9EYx5W6s1iohI4xXdEq7IhG4nu+2Pf+3mLAVCVRXRn9xJi9252LBIN+EyPjkw\n15aAUoLdlLU/Fk76jbs960lY8alvj9+aBa+c5cZyR7dyb0itO/k/ThERkUCKjHMrTVYvQDPlt/D1\n8w1/3VlPEJ7tPot3D38EOh7X8NeUoFCC3dQN/R10GgRYyLzO1bCui1WfwytnuuQ6qhVc/gGk9GrQ\nUEVERAImIgbGvANHDnfbn94Dc55tuOst/wg+fxiANW2HUdF7TMNdS4JOCXZTF+79CqpVZ7fU7Ovn\nQ9b/Dn787kL47M9u5auSfIhLgmv/C50GBi5mERGRQIiIdkMf085021P/CF/9w//XyZnnJlViqeww\nkGUdLvf/NSSkKMFuDuKT4OrJboWo8iJXpijzBtiwEKoqXX3rrVkw83H453Ew+2nAQof+cOMXqssp\nIiJNV3gUXPoG9DzHbU+7H2Y+4b/zb1sJ71wKFaWQeCQlF/wb61GV5KZO/8LNRUI3+OX/3IpRa2fB\nsvfdjwlzy9VWle89NjwGhv4GTrjD9YCLiIg0ZeFRcPFr8MG1bmn3Gf/nOqBO+f3hnXdrFrx+HpTs\ncAvdXJEJEVqpsTlQD3Zz0rKdWzb2gnGQfLTbZyv3Jtct2sGQO2HsQjd2W8m1iIg0F+GRLsnuNdJt\nf/Ew/O+PUFlRv/Nt/g5eOwcKN0N0a7h8PLTp6q9oJcSpB7u58Xgg4xfuZ+d6t6JWVYUbo53YXfWt\nRUSk+QqLgNGvgOdG+C4T5j4Lm5e6ffFJdT/Pj/+FCTe6uU8xCXDVxL1rU0izoAS7OWvdSWX3RERE\nagoLh1EvQevO8NVTsGYmPHc8nPEQ9B1Te0dU6U9uDHf14jWtOrtygKrC1ewowRYRERGpyRMGwx9w\nk/0n3QrF22HizTDnnzDoZug5AuLaumOthfzVsGw8zBvnxlsDdD3JDTmpPk6aFSXYIiIiIgdy1Lmu\nTO3//uAS6C3fu+XVGetWN45qAcXbXAJeLSIOhv0ZBt7ohmVKs6QEW0RERORg4pNh9Msw5A63EM2K\nKbD7J7cQ264ax7Xs4IaQDLoN4hKDFq6EBiXYIiIiIoeS2htGvQAVZbDpW8hf5WpbR7WE5KMg6Sj1\nWMseSrBFRERE6io8Ejof735EDkL/1RIRERER8SMl2CIiIiIifqQEW0RERETEj5Rgi4iIiIj4kRJs\nERERERE/UoItIiIiIuJHjbFMXwTAunXrAnrRoqIicnNzWbVqFXFxcQG9dmOk9vKN2ss3ai/fqL18\no/byjdrLN2ov3wSrvWrkmRH1ebyx1vovmgAwxpwGTA92HCIiIiLS5A2z1s7w9UGNMcGOA44HcoHy\nAF66My6xHwbkBPC6jZXayzdqL9+ovXyj9vKN2ss3ai/fqL18E6z2igDaAfOstUW+PrjRDRHxPkmf\n/ydxuIwx1TdzrLXZgb5+Y6P28o3ayzdqL9+ovXyj9vKN2ss3ai/fBLm9ltf3gZrkKCIiIiLiR0qw\nRURERET8SAm2iIiIiIgfKcGuu3zgQe9vOTS1l2/UXr5Re/lG7eUbtZdv1F6+UXv5plG2V6OrIiIi\nIiIiEsrUgy0iIiIi4kdKsEVERERE/EgJtoiIiIiIHynBFhERERHxIyXYIiIiIiJ+pARbRERERMSP\nlGCLiIiIiPiREmwRERERET9Sgi0iIiIi4kdKsOvAGBNujHnKGLPdGFNgjHndGBMX7LhCkTEmyhjz\nojFmlTGm0Pv7nmDH1RgYY2Kr2y3YsYQ6Y8xZxphvvH9jecaY+4MdU6gyxrQzxmQaY7Z538M+NsYc\nEey4QoExZowxZrb372jtAe7/gzEm13v/JGNMShDCDBm1tZcx5jFjzA/GmF3GmPXGmMeNMZFBCjUk\nHOrvy3uMx3uMNca0DXCIIaUOr8cBxpgvvPdvN8a8GIQw60wJdt38ATgDyACOALoATwU1otAVDmwB\nzgZaAucDtxhjbg5qVI3DQ8CaYAcR6owxw4BXgHuB1kB34MOgBhXangOice3UEff6fDOoEYWOfOAZ\n4M8/v8MYcxUwFjgdaAcUAW8ENLrQc9D2AsqAMUAb4ERgGPCXwIUWkmprr2pjgZLAhBPyans99gL+\nCzwPJAIdgHEBjc5Hxlob7BhCnjEmB7jXWvuWd3sIMA1IsNbqhXEIxpjHgQ7W2suCHUuoMsYMAl4E\nfgtMsNbGBzmkkGWM+Rr4j7X2uWDH0hgYY5YCf7fWvu7dPhn4r/7G9jLGXAQ8Ya3tWmPfTOB/1tqH\nvNsdgRzgCGvt2mDEGSoO1F4HOOY24HJr7QkBCyxEHay9jDHdcLnERcAiIMlauy3wEYaWg7we3wVy\nrLV3By0wH6kH+xCMMa2BTsDCGrsX4XqE0oISVCNijPEApwBLgxxKyDLGRAEvAzfheoHkILxDswYC\nKcaYH40xW7xDHo4Mdmwh7AngImNMgrf9rgUmBjmmxqAPNd73rbUbgK3e/XJow9D7/qG8hPuGfEew\nA2kETgU8xphF3uFuXxhj+gc7qNoowT60Ft7fBdU7vL3WZbghEFK7x4E44NlgBxLC/gx8Ya2dG+xA\nGoE2gAFG4YYhdQFWAx8ZY8KDGVgIm4N7H9sG/AQch/umRGrXghrv+1470fv+IRljxgInoCEiB2WM\nuQEotda+F+xYGolE4Be4DoL2wBRgircTNCQpwT60Xd7frap3GGNigEjch5UchDHmr7gx2KdbazVx\n7wCMMRnAZbjxxHJo1a/Hp621a7z/2b0H6An0CF5Yocn7DdI03LduLYF44APgc2NMRDBjawR2UeN9\n36s1et+vlTHmRuA+YLi1dlOw4wlFxpj2wP3ArcGOpRHZBbxqrV1irS2z1j4GVOH+IxeSlGAfgrV2\nJ7Ae6Fdjdz+gFFgZlKAaAWPMY8AlwCnW2o3BjieEnYKbQLXGGLMNmATEeb8COy2okYUga20BsA7Q\n5JG6ScD18j9jrS30/ofkSSAdN+lRDm4pNd73vWOwk9Cwh4MyxvwK12s9zFr7XbDjCWEDgWRgkfd9\nf5F3/wpjzNXBCyukLaGRve8rwa6bl4F7jTEdjTGJwF+BNzXB8cCMMU8DI1FyXRcvA0fiKtRkANcD\nxd7bs4MYVygbB9xhjOnkHb/+ELAcWBHcsEKPd8JUNnCrMSbGWzbtDtyYz7XBjC0UGGPCjDHRQITb\nNNHebXCvzduMMUcbY+KBx4DpzXmCY23tZYy5C9dzfZqSa6eW9voUV5Gs+n1/hPchp+C+YWqWDvF6\nHAdca4zpZVzp5LtwwwXnBCveQ9GYxbp5GNcTtBTXZhOBO4MaUYgyxnQBbseNUc8yxlTfNctae3bQ\nAgtR3qEze4bPGGO2ut12Q/CiCnmP4b6qX4h7Pc4FzrfWVgY1qtA1EtdrvQEIA5YB51prS4MaVWi4\nEni1xnZ1p4mx1v7HGNMJmI4bjz0duCLA8YWag7YX8HegHJhf431/nbX26MCFF3IO2F7WWoN7PQJu\nrQ3vzVxrbVHgwgs5tb0e3/UOrZmKez0uAUZ4RxmEJJXpExERERHxIw0RERERERHxIyXYIiIiIiJ+\npARbRERERMSPlGCLiIiIiPiREmwRERERET9Sgi0iIiIi4kdKsEVERERE/EgJtoiIiIiIHynBFhER\nERHxIyXYIiLNhDHmcWPM/w6wf5wx5h/BiElEpClSgi0i0nwMBObX3GGMMcD5wMSgRCQi0gQpwRYR\nCXHGmKeMMd8YY/Z7z/bur7X32RgTaYwpA4YC9xljrDHmB+/dA4Ao4Cvvsd977z/QzwP+fWYiIk2T\nEmwRkRBmjOkJjAV+Z62tOsAhy4FjD3GaCmCw9/bxQDtgiHf7AuC/1toK7/aF3t8jvMe1B4qB64BH\n6/McRESaGyXYIiKh7bfAEmvt5we5Px+XCGOMGWGMWWGMyTbGjK0+wJuYtwN2AQustZuttTu8d49k\n3+EhKYAFZllrNwNxQCzwlbW2xJ9PTESkqVKCLSISorxDQi4CPqix76mayTPQAigyxoQDzwDDgT7A\nrcaYjjWOOxaXqNsa5zoSOAKoOfGxL7DaWlvo3c7A9WBn++2JiYg0cUqwRURCVzegNbCsxr5LcAlv\ntb7AD7gJjMutteuttcXABOC8GsdlAN/+7PwXANOttUU19vUBlv7scd8dZHiKiIgcgBJsEZHQ1cb7\nuxDAGHMKbkx0mXc7DZcAf+jdv7HGYzcAHWps92XfxBn2Hx4CLsFeUmM742fbIiJyCEqwRURCVw5Q\nBVxmjMnADQH5CDjXGNMHeBWXNH9Yh3OFA+nGmPbGmNbGmCRgkPd8wJ4hKcewbyLeHVjnjycjItJc\nKMEWEQlR1totwL3AxcBU4AXcpMdjga+B7cAIa20lsIl9e6w7sm+P9h+BMbie7Udww0cWWGvzahzT\nHTepsWaCvQy4yxhztv+emYhI02ZqzHcREZFGyjvJcQVwCrANWAScYa1df5DjJwGzrbWPBSxIEZFm\nIjzYAYiIyOGz1lYYY+4EpgNhwDMHS669ZgPvBCQ4EZFmRj3YIiIiIiJ+pDHYIi3D0A0AAABzSURB\nVCIiIiJ+pARbRERERMSPlGCLiIiIiPiREmwRERERET9Sgi0iIiIi4kdKsEVERERE/EgJtoiIiIiI\nHynBFhERERHxIyXYIiIiIiJ+pARbRERERMSPlGCLiIiIiPiREmwRERERET9Sgi0iIiIi4kf/D4Lu\npmNiEeOvAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd1a48a83c8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for i, line in enumerate(plt.plot(a/pi, x), 1):\n", " line.set_label('$x_{%d}/\\delta$'%i)\n", "plt.title('Normalized Nodal Displacements — analytical solution')\n", "plt.xlabel(r'$\\omega_0 t / \\pi$')\n", "plt.legend(loc='best')\n", "plt.show();" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
eds-uga/csci1360-fa16
assignments/A2/A2_header.ipynb
1
1622
{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true, "nbgrader": { "grade": false, "grade_id": "a1_intro", "locked": true, "solution": false } }, "source": [ "# Assignment 2\n", "CSCI 1360: Foundations for Informatics and Analytics\n", "\n", "## Important Dates\n", "\n", " - Released: 2016-09-01 at 12am [EDT](http://www.timeanddate.com/worldclock/usa/athens)\n", " - Deadline: 2016-09-08 at 11:59:59pm [EDT](http://www.timeanddate.com/worldclock/usa/athens)\n", "\n", "## Grading Breakdown\n", "\n", " - Q1: 10pts\n", " - Q2: 15pts\n", " - Q3: 15pts\n", " - Q4: 15pts\n", " - Q5: 15pts\n", " - Q6: 15pts\n", " - Q7: 15pts\n", " \n", "Total: 100pts\n", " \n", "## Overview\n", "\n", "This assignment will familiarize you with the built-in Python data structures, looping, conditionals, and exceptions.\n", "\n", "Remember in your code to delete (or comment out) any lines that say `raise NotImplementedError()` and replace it with your own code." ] } ], "metadata": { "anaconda-cloud": {}, "celltoolbar": "Create Assignment", "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
wasit7/tutorials
django/django_generic_view/generic/.ipynb_checkpoints/edit_widget-checkpoint.ipynb
1
2906
{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from django.forms import modelform_factory" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "m=modelform_factory(Car,exclude=([]), widgets={\"BigIntegerField\": Textarea()} )" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[u'Meta',\n", " '__class__',\n", " '__delattr__',\n", " '__dict__',\n", " '__doc__',\n", " '__format__',\n", " '__getattribute__',\n", " '__getitem__',\n", " '__hash__',\n", " '__html__',\n", " '__init__',\n", " '__iter__',\n", " '__module__',\n", " '__new__',\n", " '__reduce__',\n", " '__reduce_ex__',\n", " '__repr__',\n", " '__setattr__',\n", " '__sizeof__',\n", " '__str__',\n", " '__subclasshook__',\n", " '__unicode__',\n", " '__weakref__',\n", " '_clean_fields',\n", " '_clean_form',\n", " '_get_validation_exclusions',\n", " '_html_output',\n", " '_meta',\n", " '_post_clean',\n", " '_save_m2m',\n", " '_update_errors',\n", " 'add_error',\n", " 'add_initial_prefix',\n", " 'add_prefix',\n", " 'as_p',\n", " 'as_table',\n", " 'as_ul',\n", " 'base_fields',\n", " 'changed_data',\n", " 'clean',\n", " u'declared_fields',\n", " 'errors',\n", " 'field_order',\n", " 'full_clean',\n", " 'has_changed',\n", " 'has_error',\n", " 'hidden_fields',\n", " 'is_multipart',\n", " 'is_valid',\n", " 'media',\n", " 'non_field_errors',\n", " 'order_fields',\n", " 'prefix',\n", " 'save',\n", " 'use_required_attribute',\n", " 'validate_unique',\n", " 'visible_fields']" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dir(m)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Django Shell-Plus", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
ipa-lth/jupyter_nb
optimization/2010-Dissertation-Dilyana_Yankulova-picos.ipynb
1
31773
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "* 29 Aug. 15: Picos 1.1.1 Released\n", " Minor release with following changes:\n", "\n", " **Initial support for the SDPA solver (with the option solver='sdpa', picos works as a wrapper around the SDPA executable based on the write_to_file() function; thanks to Petter Wittek )**\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from __future__ import division" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import picos as pic\n", "import cvxopt as cvx\n", "import control as con\n", "\n", "from numpy import linalg as LA\n", "from scipy.special import comb as nchoosek # n Choose k (n ueber k)\n", "import optim_tools as optim_tools#own file with helper" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "###########################\n", "# Hydraulischer Aktor #\n", "###########################\n", "\n", "A0 = np.matrix([[0, 1, 0],\n", " [-10, -1.167, 25],\n", " [0, 0, -0.8]])\n", "print \"Eigenvalues: {}\".format(LA.eigvals(A0))\n", "#a = -A[-1,:].T ### !!!!!\n", "#print a\n", "b0 = np.matrix([[0],[0],[2.4]])\n", "c0 = np.matrix([1, 0, 0])\n", "d0 = np.matrix([0])\n", "u_max = 10.5\n", "n = 3\n", "\n", "X00 = [np.matrix([-20.0, -10.0, -10.0]).T,\n", " np.matrix([-20.0, -10.0, 10.0]).T,\n", " np.matrix([-20.0, 10.0, -10.0]).T,\n", " np.matrix([-20.0, 10.0, 10.0]).T,\n", " np.matrix([20.0, -10.0, -10.0]).T,\n", " np.matrix([20.0, -10.0, 10.0]).T,\n", " np.matrix([20.0, 10.0, -10.0]).T,\n", " np.matrix([20.0, 10.0, 10.0]).T,\n", " ]\n", "\n", "#print \"A:\\n\", A\n", "#print \"a:\\n\", a\n", "#print \"b:\\n\", b\n", "#print \"c:\\n\", c\n", "\n", "# Convert to Normalform\n", "(A1, b1, c1, d1), T1, Q1 = optim_tools.get_Steuerungsnormalform(A0, b0, c0.T, d0)\n", "a1 = -A1[-1][:].T #!!!!\n", "print \"T1:\\n\", T1\n", "\n", "# Convert to Normalform\n", "ss, T2 = con.canonical_form(con.ss(A0, b0, c0, d0), form='reachable')\n", "\n", "assert np.allclose(T1*X00[1],\n", " optim_tools.reverse_x_order(T2*X00[1])),\\\n", "\"own Steuerungsnormalform Transformation not equal python control version\"\n", "#print \"x_r1:\\n\", T1*X00[1]\n", "#print \"x_r2(backwards):\\n\", optim_tools.reverse_x_order(T2*X00[1])\n", "\n", "A = optim_tools.reverse_x_order(np.matrix(ss.A))\n", "a = -A[-1][:].T #!!!!\n", "\n", "b = optim_tools.reverse_x_order(np.matrix(ss.B))\n", "c = optim_tools.reverse_x_order(np.matrix(ss.C))\n", "d = optim_tools.reverse_x_order(np.matrix(ss.D)) # == 0!\n", "\n", "print \"A:\\n\", A\n", "assert np.allclose(A, A1)\n", "print \"a:\\n\", a\n", "assert np.allclose(a, a1)\n", "print \"b:\\n\", b\n", "assert np.allclose(b, b1)\n", "print \"c:\\n\", c\n", "assert np.allclose(c, c1.T)\n", "\n", "X0 = [T1.dot(x0) for x0 in X00]\n", "#print \"X0:\\n\"\n", "#for x0 in X0:\n", "# print x0\n", "#print \"A1:\\n\", A1\n", "#print \"a1:\\n\", a1\n", "#print \"b1:\\n\", b1\n", "#print \"c1:\\n\", c1" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pmin = 0.1" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "# Testsystem aufsetzen\n", "import control as con\n", "\n", "# pt2 System\n", "K = 1\n", "d = 0.5\n", "T = 10\n", "delay = 0\n", "\n", "a0 = 1\n", "a1 = (2 * d * T) #16\n", "a2 = (T**2) #100\n", "b0 = K\n", "\n", "# Polynom\n", "tf_1 = con.matlab.tf(K, [a2, a1, a0])\n", "#print tf_1\n", "\n", "# Zustandsraum\n", "#ss_1a = con.matlab.tf2ss(tf_1)\n", "#print ss_1a\n", "\n", "# Füge Zeitversatz zu\n", "d_num, d_den = con.pade(delay, 1)\n", "tf_delay = con.tf(d_num, d_den)\n", "ss_delay = con.series(tf_delay, tf_1)\n", "\n", "ss_1a = con.matlab.tf2ss(ss_delay)\n", "\n", "############################################################\n", "############################################################\n", "############################################################\n", "############################################################\n", "\n", "# Sammle Systemteile\n", "A0 = ss_1a.A\n", "b0 = ss_1a.B\n", "C0 = ss_1a.C\n", "d0 = ss_1a.D\n", "\n", "# Max output\n", "u_max = 0.1\n", "\n", "# Einzugsgebiet (convex)\n", "X0 = [np.matrix([-1, -0.1]).T,\n", " np.matrix([-1, 0.1]).T,\n", " np.matrix([1, -0.1]).T,\n", " np.matrix([1, 0.1]).T]\n", "#print len(X0)\n", "\n", "# Transformation in Regelungsnormalform\n", "ss, T = con.canonical_form(con.ss(A0, b0, C0, d0), form='reachable')\n", "\n", "\n", "A = optim_tools.reverse_x_order(np.matrix(ss.A))\n", "a = -A[-1][:].T #!!!!\n", "\n", "b = optim_tools.reverse_x_order(np.matrix(ss.B))\n", "C = optim_tools.reverse_x_order(np.matrix(ss.C))\n", "d = optim_tools.reverse_x_order(np.matrix(ss.D)) # == 0!\n", "print \"A:\\n\", A\n", "print \"a:\\n\", a\n", "print \"b:\\n\", b\n", "#print C\n", "\n", "n = b.size" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "# !!!!!\n", "# This Section is disabled \n", "# !!!!!\n", "\n", "##############################\n", "# Boris Paper UBoot #\n", "##############################\n", "A = np.matrix([[0., 1., 0.],\n", " [0., 0., 1.],\n", " [0., 0., -0.005]])\n", "\n", "############### TODO ###################\n", "############### CHECK ##################\n", "#last line of Regelungsnormalform (characteristical polynom coefficients) in a colunm vector\n", "a = -np.matrix(A[np.array(A).shape[1]-1])[np.newaxis].T \n", "\n", "b = np.matrix([[0], [0], [1.]])\n", "\n", "d = 0\n", "c = np.matrix([[1], [0], [0]]).T\n", "\n", "print np.matrix(con.matlab.pole(con.matlab.ss(A, b, c, d))).T\n", "\n", "u_max = 2.5e-5\n", "\n", "X0 = [np.matrix([-10, -0.05, -0.0046]).T,\n", " np.matrix([-10, -0.05, 0.0046]).T,\n", " np.matrix([-10, 0.05, -0.0046]).T,\n", " np.matrix([-10, 0.05, 0.0046]).T,\n", " np.matrix([ 10, -0.05, -0.0046]).T,\n", " np.matrix([ 10, -0.05, 0.0046]).T,\n", " np.matrix([ 10, 0.05, -0.0046]).T,\n", " np.matrix([ 10, 0.05, 0.0046]).T]\n", "\n", "x_max = [10, 0.05, 0.0046]\n", "\n", "#simulation time\n", "T = 1.0/200.0\n", "\n", "#Introduced for fun\n", "u_max_sys = u_max\n", "\n", "#a_hat = np.matrix([[4.4469e-8], [2.3073e-5], [4.9148e-3]])\n", "#a_hat_star = np.matrix([[1.073e-7], [4.919e-5], [10.4078e-3]])\n", "\n", "#R1 = np.matrix([[1.6021e-5, 3.26098e-3, 0.4031],\n", "# [3.2698e-3, 1.5666, 163.46],\n", "# [0.4031, 163.46, 40.713]])\n", "\n", "##### Entwurf parameter #####\n", "beta = 2 # beta >=1 !\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import picos;picos.tools.available_solvers()" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "######################################################\n", "# Helper for Constraint variant (4.65) -> Q_sum #\n", "######################################################\n", "\n", "# TODO: Was ist m? Kann man das berechnen oder wird das festgelegt m<=2n-1, meistens n+1?\n", "\n", "from scipy.special import comb as nchoosek # n Choose k (n ueber k)\n", "\n", "def get_a_list(a, Q, z, m):\n", " n = len(a) # dim of a, z, Q(nxn)\n", " m = m # Is this to choose or somehow given?\n", " l = m+1 # length of the array with all a_i in it i:{0,m}\n", " H = lambda k: optim_tools._H(k, n) # Convinence function to fix n and make specialized H(k)\n", " N = optim_tools._N(n)\n", "\n", " a_list = [np.zeros((n, n))] * l\n", " for i in range(0, l): # m eingeschlossen\n", " if i <= (m-1)/2.0: # 0 <= i <= (m-1)/2\n", " for k in range(1, i+1):\n", " a_list[i] += a.T * H(n+k-i)*Q*N*H(n-k+1)*a - z.T*N*H(n-i)*a\n", " elif i <= m: # (m-1)/2 < i <=m\n", " for k in range(1, 2*n-i+1):\n", " a_list[i] += a.T * H(k)*Q*N*H(2*n-i-k+1)*a\n", " else:\n", " # this branch is currently not possible in this program\n", " print \"i={} < m={}\".format(i, m)\n", " a_list[i] = 0\n", " \n", " return a_list\n", "\n", "\n", "def trans_a_list(a_list, eps):\n", " l = len(a_list)\n", " m = l-1 #biggest index in a_list\n", " a1_list = [np.zeros(a_list[0].shape)] * l\n", " for j in range(0, l): #for each in a_list\n", " for i in range(j, l): # for each coefficient including m\n", " a1_list[j] += nchoosek(i, i-j) * ((1.0+eps)/(1.0-eps))**(i-j) * ((1.0-eps)/(2.0))**i * a_list[i]\n", " return a1_list\n", "\n", "def calc_a_Sum(a_list):\n", " l = len(a_list) # number of matrizen in a_list\n", " m = l-1 # Index of Q_m\n", " n = a_list[0].size[0] # shape of each matrix, first element\n", " \n", " if m is 0:\n", " a_sum = cvxpy.bmat([[2*a_list[0], np.zeros(n)], \n", " [np.zeros(n), np.zeros(n)]])\n", " elif m is 1:\n", " a_sum = cvxpy.bmat([[2*a_list[0], a_list[1]],\n", " [a_list[1], np.zeros(n)]])\n", " else: # e.g. m is 2 or more\n", " a_sum = cvxpy.bmat([[2*a_list[0], a_list[1]],\n", " [a_list[1], 2*a_list[2]]])\n", "\n", " for i1 in range(3, l, 2):\n", " S_new_col = cvxpy.vstack(np.zeros((((i1+1)/2-1)*n, n)), a_list[i1])\n", "\n", " if i1 is m:\n", " S_new_row = cvxpy.hstack(np.zeros((n, ((i1+1)/2-1)*n)), a_list[i1], np.zeros((n,n)))\n", " else:\n", " S_new_row = cvxpy.hstack(np.zeros((n, ((i1+1)/2-1)*n)), a_list[i1], 2*a_list[i1+1])\n", "\n", " a_sum = cvxpy.bmat([[a_sum, S_new_col],\n", " [S_new_row]])\n", "\n", " a_sum = -0.5*a_sum\n", " \n", " return a_sum\n", "\n", "def calc_lmi_cond(a_sum, n):\n", " k = a_sum.size[1] / n # This dimension is from Boris. Dilyana does not specifiy the dimension though\n", "\n", " J = np.hstack([np.zeros((n*(k-1), n)), np.eye(n*(k-1))])\n", " C = np.hstack([np.eye(n*(k-1)), np.zeros((n*(k-1), n))])\n", " return np.vstack([C, J]), n*(k-1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define and solve optimations problem" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "###########################################\n", "# Objective variant (4.66) -> max(det(Q)) #\n", "# Volumenmaximierung -> geomean(Q) #\n", "###########################################\n", "# Problem\n", "prob_451 = pic.Problem()\n", "\n", "# Variables\n", "QQ = prob_451.add_variable('Q', (n, n), vtype='symmetric')\n", "zz = prob_451.add_variable('z', n)\n", "\n", "\n", "# Constants\n", "XX0 = pic.new_param('X0', X0)\n", "N = cvx.matrix(optim_tools._N(n))\n", "\n", "# Constraints\n", "#(4.59)\n", "prob_451.add_constraint(QQ >> 0)\n", "\n", "#(4.60)\n", "prob_451.add_constraint(QQ*(A.T+a*b.T) + (A+b*a.T)*QQ - zz*b.T - b*zz.T << 0)\n", "\n", "#(4.61)\n", "prob_451.add_constraint(QQ*N+N*QQ << 0) \n", "\n", " #(4.62)\n", "prob_451.add_list_of_constraints([((1 & XX0[i].T) //\n", " (XX0[i] & QQ )) >> 0\n", " for i in range(0, len(X0))])\n", "\n", "#(4.63)\n", "prob_451.add_constraint(((u_max**2 - a.T*QQ*a + 2*a.T*zz & zz.T) //\n", " (zz & QQ )) >> 0) \n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "###########################################\n", "# Constraint variant (4.64) #\n", "###########################################\n", "\n", "m = n\n", "\n", "## BEWARE OF SECOND RANGE ####\n", "prob_451.add_list_of_constraints(\n", " [pic.sum(\n", " [nchoosek(i, k) * a.T * optim_tools._P(0, i-k, n) * QQ * N * optim_tools._P(0, k, n) * a - zz.T * N * optim_tools._P(n, i, n) * a\n", " for k in range(0,i)], 'k', '[0,1,..,i]')>=0\n", " for i in range(1, m+1)])" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "###########################################\n", "# Constraint variant (4.65) -> Q_sum #\n", "###########################################\n", "\n", "m = n\n", "\n", "# Preparation for constraint (4.65)\n", "a_list = get_a_list(a, Q, z, m) # Matrizes of Polynom coefficients: S(p)=S_0 + S_1*p + ... S_n*p^n\n", "a1_list = trans_a_list(a_list, pmin) # Intervaltransformation p:[0,1] -> p1:[-1,1] (S1 -> S^tilde)\n", "a1_sum = calc_a_Sum(a1_list) # S^tilde_sum Matrix (30)\n", "CJ, l = calc_lmi_cond(a1_sum ,n) # \"Selection matrizes\" of (31), l=dimension of P and G\n", "\n", "# Further variables of optimization\n", "S = cvxpy.Semidef(l) #symmetrical\n", "G = cvxpy.Variable(l,l) #skew\n", "\n", "# Constraints on new variables\n", "constraint_G = G + G.T == 0 # skew symmetry\n", "constraint_S = S == S.T # symmetry\n", "\n", "# Actual constraint\n", "constraint_465 = a1_sum << CJ.T * cvxpy.bmat([[-S, G],\n", " [G.T, S]]) * CJ" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "###########################################\n", "# Objective disabled because problem is not feasible with the objective anymore :-/\n", "###########################################\n", "\n", "#ss = prob_451.add_variable('s', 1)\n", "#prob_451.add_constraint(pic.geomean(QQ) > ss) \n", "#prob_451.add_constraint(pic.detrootn(QQ) > ss) \n", "\n", "#prob_451.set_objective('max', ss)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print \"Objective: {}\\n\".format(prob_451.objective)\n", "prob_451.solve(verbose=1, solver='cvxopt', solve_via_dual = None)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "# Output\n", "print \"Status:\", prob_451.status\n", "print prob_451\n", "\n", "Q_451 = QQ.value\n", "R1_451 = LA.inv(QQ.value)\n", "a_hat_451 = R1_451.dot(zz.value)\n", "\n", "print \"Q:\\n\", Q_451\n", "print \"R1:\\n\", R1_451\n", "print \"z:\\n\", zz.value\n", "print \"a_hat:\\n\", a_hat_451\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "print \"Checking constraints (no output is ok!)\"\n", "eig_459 = np.linalg.eigvals(QQ.value)\n", "if np.any(eig_459 <= 0): print(\"Q not pos definit: {}\".format(eig_459))\n", "\n", "eig_460 = np.linalg.eigvals((QQ*(A.T+a*b.T)+(A+b*a.T)*QQ-zz*b.T-b*zz.T).value)\n", "if np.any(eig_460 >= 0): print(\"4.60 not neg definit: {}\".format(eig_460))\n", "\n", "eig_461 = np.linalg.eigvals((QQ*N+N*QQ).value)\n", "if np.any(eig_461 >= 0): print(\"4.61 not neg definit: {}\".format(eig_461))\n", " \n", "eig_463 = np.linalg.eigvals(((u_max**2-a.T*QQ*a+2*a.T*zz & zz.T) // (zz & QQ)).value)\n", "if np.any(eig_463 <= 0): print(\"4.63 not pos definit: {}\".format(eig_463))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "###########################################\n", "# Objective variant (4.70) #\n", "# Max. Abklingrate #\n", "###########################################\n", "# Problem\n", "prob_452 = pic.Problem()\n", "\n", "# Variables\n", "QQ = prob_452.add_variable('Q', (n, n), vtype='symmetric')\n", "zz = prob_452.add_variable('z', n)\n", "\n", "\n", "# Constants\n", "XX0 = pic.new_param('X0', X0) #We also point out that new_param() converts lists into vectors and lists of lists into matrices (given in row major order)\n", "N = cvx.matrix(optim_tools._N(n))\n", "\n", "# Bisection parameter\n", "beta = pic.new_param('beta', 0) # sign='positive'\n", "\n", "\n", "# Constraints\n", "#(4.59)\n", "prob_452.add_constraint(QQ >> 0)\n", "\n", "#(4.60)\n", "prob_452.add_constraint(QQ*(A.T+a*b.T) + (A+b*a.T)*QQ - zz*b.T - b*zz.T << 0)\n", "\n", "#(4.61)\n", "prob_452.add_constraint(QQ*N+N*QQ << 0) \n", "\n", " #(4.62)\n", "prob_452.add_list_of_constraints([((1 & XX0[i].T) //\n", " (XX0[i] & QQ )) >> 0\n", " for i in range(0, len(X0))])\n", "\n", "#(4.63)\n", "prob_452.add_constraint(((u_max**2 - a.T*QQ*a + 2*a.T*zz & zz.T) //\n", " (zz & QQ )) >> 0) " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#(4.71)\n", "constraint_471 = prob_452.add_constraint(QQ*(A.T + a*b.T) + (A + b*a.T)*QQ - zz*b.T - b*zz.T + 2*beta*QQ << 0, ret=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "###########################################\n", "# Constraint variant (4.64) #\n", "###########################################\n", "\n", "m = n\n", "\n", "## BEWARE OF SECOND RANGE ####\n", "prob_452.add_list_of_constraints(\n", " [pic.sum(\n", " [nchoosek(i, k) * a.T * optim_tools._P(0, i-k, n) * QQ * N * optim_tools._P(0, k, n) * a - zz.T * N * optim_tools._P(n, i, n) * a\n", " for k in range(0,i)], 'k', '[0,1,..,i]')>=0\n", " for i in range(1, m+1)])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def bisect_max(l, u, func_solve_with_param, prob,\n", " bisection_tol=1e-3, bisect_verbose=False):\n", "\n", " #if (u is not None):\n", " # # cross check bound\n", " # if (u < l): raise ValueError(\"upperBound({}) < lowerBound({})\".format(u, l))\n", " #\n", " #elif (u is None) and (l is not None):\n", " # # First iteration to find upper bound\n", " # u = l + 1.0\n", " # if bisect_verbose: print \"processing upper bound: {}\".format(u)\n", " # \n", " # parameter.value = u\n", " # problem = accurate_solve(problem, solver, **kwargs_solver)\n", " # uStatus = problem.status\n", " # \n", " # while 'optimal' in uStatus:\n", " # #if u >= l: # shift upper bound if found feasible, this condition is always true\n", " # #l = u\n", " # u = 2.0*u\n", " # if bisect_verbose:\n", " # print \"processing upper bound: {}\".format(u)\n", " # parameter.value = u\n", " # problem = accurate_solve(problem, solver, **kwargs_solver)\n", " # uStatus = problem.status\n", " # print 'found bounds: [{}-{}]'.format(l, u)\n", " #else:\n", " # raise ValueError(\"Not implemented\")\n", " \n", " # check validity solution of l is optimal, solution of u is infeasible\n", " val_opt = l\n", " problem_opt, lStatus = func_solve_with_param(prob, l) # Set lower bound and solve, shall return (problem, status[True/False])\n", "\n", " problem, uStatus = func_solve_with_param(prob, u) # Set upper bound and solve, shall return (problem, status[True/False])\n", "\n", " if lStatus is False and uStatus is True:\n", " raise ValueError(\"UpperBound({})={}, LowerBound({})={}\".format(u, uStatus, l, lStatus))\n", "\n", " while u - l >= bisection_tol:\n", " val = (l + u) / 2.0 # Solve for parameter in the middle of upper and lower bound\n", " \n", " ## solve the feasibility problem\n", " problem, status = func_solve_with_param(problem_opt, val)\n", "\n", " if bisect_verbose:\n", " print \"Range: {}-{}; parameter {} -> {}\".format(l, u, val, problem.status)\n", "\n", " if status is False:\n", " u = val\n", " else:\n", " l = val\n", " val_opt = val\n", " problem_opt = problem #Store last (optimal) solved problem\n", "\n", " # Solve it a last time with the last optimal value, to set the status of problem (since it is not a copy but a ref)\n", " problem_opt, _ = func_solve_with_param(problem_opt, val_opt)\n", " return problem_opt, val_opt" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def picos_solve_with_param(problem, val):\n", " global constraint_471\n", " #beta = pic.new_param('beta', val) # sign='positive'\n", "\n", " constraint_471.delete()\n", " constraint_471 = problem.add_constraint(QQ*(A.T + a*b.T) + (A + b*a.T)*QQ - zz*b.T - b*zz.T + 2*val*QQ << 0, ret=True)\n", " \n", " problem.solve(verbose=0, solver='cvxopt', solve_via_dual = None)\n", " return problem, problem.status == 'optimal'" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "\n", "problem_opt, val_opt = bisect_max(0, 2, picos_solve_with_param, prob_452)\n", "print \"Objective variant (4.5.2) -> Bisection(Max. Abklingrate)\"\n", "print \"Bisection Param:\", val_opt\n", "\n", "# Output\n", "print \"Status:\", problem_opt.status\n", "#print problem_opt\n", "\n", "Q_452 = QQ.value\n", "R1_452 = LA.inv(QQ.value)\n", "a_hat_452 = R1_452.dot(zz.value)\n", "\n", "print \"Q:\\n\", Q_452\n", "print \"R1:\\n\", R1_452\n", "print \"z:\\n\", zz.value\n", "print \"a_hat:\\n\", a_hat_452\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Helper functions to run simulation" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "T = np.arange(0, 5, 1e-2) \n", "\n", "#s: input, e.g., step function with amplitude of 0.2\n", "s = np.zeros(len(T));\n", "\n", "p_init = pmin\n", "\n", "# Initial state\n", "x0 = np.matrix([[20.],[10.],[10.]])\n", "\n", "p_t = np.zeros(len(T))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Skalierte Version! aus Yankulova\n", "\n", "# k(v) (4.5)\n", "def get_k(v, a, a_hat):\n", " try:\n", " v = v.squeeze() # This is weird, needed for minimize for some reason\n", " except:\n", " pass\n", " D_inv = optim_tools._D_inv(v, len(a))\n", " #print D_inv\n", " k = D_inv.dot(a_hat) - a\n", " return k\n", "\n", "# Fixing a and a_hat for convinience\n", "# func_k = lambda v: get_k(v, a, a_hat)\n", "\n", "# G(v) (4.4)\n", "def get_g(v, x, R1, u_max, a, a_hat):\n", " try:\n", " v = v.squeeze() # This is weird, needed for minimize for some reason\n", " except:\n", " pass\n", " D_inv = optim_tools._D_inv(v, len(x))\n", " R = D_inv.dot(R1).dot(D_inv) # R(v) = D^⁻1 * R1 * D^-1\n", " \n", " k = get_k(v, a, a_hat) # k(v)\n", " e = (u_max**(-2)) * (k.T.dot(LA.inv(R)).dot(k))\n", " #assert e < 1.0\n", " g = e*(x.T.dot(R).dot(x)) - 1.0\n", " #assert g <= 0, \"g = {} > 0\".format(g)\n", " # Update 2016: As of python 3.5, there is a new matrix_multiply symbol, @:\n", " # g = x' @ D^-1 @ R1 @ D^-1 @ x - 1.0\n", " return g" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from scipy.optimize import minimize\n", "last_p = p_init\n", "\n", "def contr_func(y, s, x, u_max, a, a_hat, R1, T1=None):\n", " global last_p, pmin\n", " \n", " # Transformation in Regelungsnormalform\n", " if T1 is None:\n", " T1 = np.eye(len(x))\n", "\n", " x_R = T1*x\n", " \n", " func_g = lambda p: np.absolute(get_g(p, x_R, R1, u_max, a, a_hat))\n", " res = minimize(func_g, last_p, method='Nelder-Mead') # find 0 -fzero\n", " \n", " # Saturate if too small\n", " if res.x < pmin:\n", " p = pmin\n", " elif res.x > 1.0:\n", " p = 1.0\n", " print \"WARNING: p=({})>1! -> p is saturated to 1.0\".format(res.x)\n", " else:\n", " p = res.x\n", "\n", " p_t.append(p)\n", " p2_t.append(res.x)\n", "\n", " last_p = p\n", " \n", " ## Calc K according to p\n", " K = get_k(p, a, a_hat)\n", "\n", " # Calc u\n", " u = s-K.T.dot(x_R)\n", " \n", " # Saturate u\n", " u = optim_tools.sat(u, u_max)\n", " #print \"u\", u\n", " \n", " return u" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Simulation of WSVC Control" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "a_hat_x = np.matrix([[14.345160], [14.837268], [3.598276]])\n", "\n", "R1_x = np.matrix([[1.677977, 0.543373, 0.140299],\n", " [0.543373, 0.32290, 0.062725],\n", " [0.140298, 0.06272, 0.026148]])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "p_t = []\n", "p2_t = []\n", "\n", "y, u, u_sat = optim_tools.simulate(A0, b0, c0, d0, lambda y, s, x: contr_func(y, s, x, u_max, a, a_hat_451, R1_451, T1), s, T, umax=u_max, x0=x0)\n", "y1, u1, u1_sat = optim_tools.simulate(A0, b0, c0, d0, lambda y, s, x: contr_func(y, s, x, u_max, a, a_hat_x, R1_x, T1), s, T, umax=u_max, x0=x0)\n", "y2, u2, u2_sat = optim_tools.simulate(A0, b0, c0, d0, lambda y, s, x: contr_func(y, s, x, u_max, a, a_hat_452, R1_452, T1), s, T, umax=u_max, x0=x0)\n", "\n", "#y1x, u1x, u1x_sat = optim_tools.simulate(A0, b0, c0, d0, lambda y, s, x: contr_func(y, s, x, u_max, a, a_hat_x, R1_x, T1), s, T, umax=u_max, x0=x0)\n", "#y1, u1, u1_sat = optim_tools.simulate(A1, b1, c1.T, d1, lambda y, s, x: contr_func(y, s, x, u_max, a, a_hat), s, T, umax=u_max, x0=T1*x0)\n", "\n", "#y2, u2, u2_sat = optim_tools.simulate(A0, b0, c0, d0, lambda y, s, x: s-get_k(1, a, a_hat_451).T.dot(T1*x), s, T, umax=u_max, x0=x0)\n", "#y3, u3, u3_sat = optim_tools.simulate(A0, b0, c0, d0, lambda y, s, x: s-np.matrix([-0.0833, 0.0828, 0.76068]).dot(x), s, T, umax= u_max, x0=x0)\n", "y4, u4, u4_sat = optim_tools.simulate(A0, b0, c0, d0, lambda y, s, x: s-np.matrix([13.25659, 7.097648, 4.0502]).dot(x), s, T, umax= u_max, x0=x0)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%pylab inline\n", "pylab.rcParams['figure.figsize'] = (10, 6)\n", "import matplotlib.pyplot as plt\n", "\n", "#plt.figure()\n", "line0, = plt.plot(T[:], np.array(y[0,:].T), 'b', label='WSVC 451')\n", "line1, = plt.plot(T[:], np.array(y1[0,:].T), 'y*-', label='WSVC x')\n", "line2, = plt.plot(T[:], np.array(y2[0,:].T), 'r-', label='WSVC 452')\n", "#line2, = plt.plot(T[:], np.array(y2[0,:].T), 'r-', label='linear(v=1.0)')\n", "#line3, = plt.plot(T[:], np.array(y3[0,:].T), 'g-', label='linear')\n", "line4, = plt.plot(T[:], np.array(y4[0,:].T), 'g-', label='y4 lin, apx evo')\n", "\n", "\n", "\n", "#first_legend = plt.legend(handles=[line1], loc=1)\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.xlabel('T')\n", "plt.ylabel('y')\n", "plt.title('Closed Loop Step Response')\n", "plt.show()\n", "\n", "#plt.figure()\n", "#line0, = plt.plot(T, u_sat, 'b', label='u')\n", "\n", "#line0, = plt.plot(T, u1x_sat, 'b', label='WSVC x')\n", "\n", "line0, = plt.plot(T, u, 'b.-', label='WSVC 451')\n", "line1, = plt.plot(T, u1_sat, 'y*-', label='WSVC x')\n", "line2, = plt.plot(T, u2_sat, 'r-', label='WSVC 452')\n", "#line2b, = plt.plot(T, u2, 'r.-', label='u fixed')\n", "#line3, = plt.plot(T, u3_sat, 'g', label='u, linear')\n", "#line3b, = plt.plot(T, u2, 'g.-', label='u lin')\n", "line4, = plt.plot(T, u4_sat, 'g-', label='u lin, apx evo')\n", "\n", "\n", "#>first_legend = plt.legend(handles=[line1, line2, line1b, line2b], loc=1)\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "plt.xlabel('T')\n", "plt.ylabel('u')\n", "plt.title('Output values')\n", "plt.show()\n", "\n", "line6, = plt.plot(p_t, 'r', label='p')\n", "line7, = plt.plot(p2_t, 'r.', label='p')\n", "plt.show()\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
MTgeophysics/mtpy
examples/workshop/Workshop Exercises Core.ipynb
1
12112
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This workbook contains some examples for reading, analysing and plotting processed MT data. It covers most of the steps available in MTPy. For more details on specific input parameters and other functionality, we recommend looking at the mtpy documentation, which can be found at: https://mtpy2.readthedocs.io/en/develop/.\n", "\n", "This workbook is structured according to some of the key modules in MTPy: Core, Analysis, Imaging, and Modeling." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Getting Started" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To start with, you will need to make sure MTPy is installed and is working correctly. Please see the installation guide (https://github.com/MTgeophysics/mtpy/wiki/MTPy-installation-guide-for-Windows-10-and-Ubuntu-18.04) for details.\n", "\n", "Before you begin these examples, we suggest you make a temporary folder (e.g. C:/tmp) to save all example outputs." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Useful tricks and tips" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This workbook exists as a Jupyter notebook and a pdf. If you are running the Jupyter notebook, you can run each of the cells, modifying the inputs to suit your requirements. Most of these examples have been written to be self contained.\n", "\n", "In Jupyter, you can add the following line to the top of any cell and it will write the contents of that cell to a python script: %%writefile example.py\n", "\n", "You can also select multiple cells and copy them to a new Jupyter notebook.\n", "\n", "Many of the examples below make use of the matplotlib colour maps. Please see https://matplotlib.org/examples/color/colormaps_reference.html for colour map options." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Core" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These first few examples cover some of the basic functions and tools that can be used to look at data contained in an edi file, plot it, and make changes (e.g. sample onto different frequencies)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Read an edi file into an MT object" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# import required modules\n", "from mtpy.core.mt import MT\n", "\n", "# Define the path to your edi file\n", "edi_file = \"C:/mtpywin/mtpy/examples/data/edi_files_2/Synth00.edi\"\n", "\n", "# Create an MT object\n", "mt_obj = MT(edi_file)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The mt_obj contains all the data from the edi file, e.g. impedance, tipper, frequency as well as station information (lat/long). To look at any of these parameters you can type, for example:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-19.01 136.01\n" ] } ], "source": [ "# To see the latitude and longitude\n", "print(mt_obj.lat, mt_obj.lon)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "606300.4060199939 7897760.860594714 95.0\n" ] } ], "source": [ "# To see the easting, northing, and elevation\n", "print(mt_obj.east, mt_obj.north, mt_obj.elev)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are many other parameters you can look at in the mt_obj. Just type mt_obj.[TAB] to see what is available.\n", "In the MT object are the Z and Tipper objects (mt_obj.Z; mt_obj.Tipper). These contain all information related to, respectively, the impedance tensor and the tipper." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1.256500e+04 9.751601e+03 7.876300e+03 6.188500e+03 5.250801e+03\n", " 4.265799e+03 3.515799e+03 8.437800e+02 6.562798e+02 4.922399e+02\n", " 3.867599e+02 3.164400e+02 2.578400e+02 2.109600e+02 1.728900e+02\n", " 1.367200e+02 1.015600e+02 7.421900e+01 5.761700e+01 4.882800e+01\n", " 4.101600e+01 3.222700e+01 2.636700e+01 2.148400e+01 1.757800e+01\n", " 1.440400e+01 1.147500e+01 8.593800e+00 6.591801e+00 5.371100e+00\n", " 4.394500e+00 3.601100e+00 2.868700e+00 2.304700e+00 1.914100e+00\n", " 1.601600e+00 1.328100e+00 1.074200e+00 8.789100e-01 6.835900e-01\n", " 5.078100e-01 3.710900e-01 2.880900e-01 2.050800e-01 1.318400e-01\n", " 8.789098e-02 6.835900e-02 5.127000e-02 4.028299e-02 3.295900e-02\n", " 2.685500e-02 2.197300e-02 1.709000e-02 1.281700e-02 1.007100e-02\n", " 8.239700e-03 6.713900e-03 5.493201e-03 4.272499e-03 2.822900e-03\n", " 2.059900e-03 1.678500e-03 1.373300e-03 1.068100e-03 7.629400e-04]\n" ] } ], "source": [ "# for example, to see the frequency values represented in the impedance tensor:\n", "print(mt_obj.Z.freq)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[[ 26.58566 -4.302123j 482.4492 +604.7747j ]\n", " [-410.0502 -800.4257j 8.994784 +44.07396j ]]\n", "\n", " [[ 12.43271 +7.519158j 434.8246 +514.6176j ]\n", " [-372.7205 -666.402j 17.64062 +36.09528j ]]\n", "\n", " [[ 7.652151 +6.28703j 398.3996 +460.0998j ]\n", " [-349.9875 -580.3959j 21.57495 +33.98854j ]]\n", "\n", " [[ 3.59474 +1.225811j 362.5121 +413.2823j ]\n", " [-328.0029 -501.5329j 25.02421 +33.02813j ]]]\n" ] } ], "source": [ "# or to see the impedance tensor (first 4 elements)\n", "print(mt_obj.Z.z[:4])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[[1.15448560e-02 9.52661629e+00]\n", " [1.28742136e+01 3.22072438e-02]]\n", "\n", " [[4.32975088e-03 9.30931663e+00]\n", " [1.19572611e+01 3.31035019e-02]]\n", "\n", " [[2.49056438e-03 9.40578869e+00]\n", " [1.16641228e+01 4.11538240e-02]]\n", "\n", " [[4.66179794e-04 9.76706091e+00]\n", " [1.16060807e+01 5.54922342e-02]]]\n", "[[[ -9.19198953 51.41945343]\n", " [-117.1256163 78.46525668]]\n", "\n", " [[ 31.16505948 49.80396162]\n", " [-119.21840697 63.95414249]]\n", "\n", " [[ 39.40662667 49.11076951]\n", " [-121.09061209 57.59379146]]\n", "\n", " [[ 18.82944281 48.74426019]\n", " [-123.18471678 52.85011776]]]\n" ] } ], "source": [ "# or the resistivity or phase (first 4 values)\n", "print(mt_obj.Z.resistivity[:4])\n", "print(mt_obj.Z.phase[:4])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As with the MT object, you can explore the object by typing mt_obj.Z.[TAB] to see the available attributes." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot an edi file" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this example we plot MT data from an edi file." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<Figure size 960x720 with 5 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# import required modules\n", "from mtpy.core.mt import MT\n", "import os\n", "\n", "# Define the path to your edi file and save path\n", "edi_file = \"C:/mtpywin/mtpy/examples/data/edi_files_2/Synth00.edi\"\n", "savepath = r\"C:/tmp\"\n", "\n", "# Create an MT object\n", "mt_obj = MT(edi_file)\n", "\n", "# To plot the edi file we read in in Part 1 & save to file:\n", "pt_obj = mt_obj.plot_mt_response(plot_num=1, # 1 = yx and xy; 2 = all 4 components\n", " # 3 = off diagonal + determinant\n", " plot_tipper = 'yri',\n", " plot_pt = 'y' # plot phase tensor 'y' or 'n'\n", " )\n", "#pt_obj.save_plot(os.path.join(savepath,\"Synth00.png\"), fig_dpi=400)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Make some change to the data and save to a new file" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This example demonstrates how to resample the data onto new frequency values and write to a new edi file. In the example below, you can either choose every second frequency or resample onto five periods per decade. \n", "To do this we need to make a new Z object, and save it to a file." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\mtpywin\\mtpy\\mtpy\\utils\\calculator.py:371: RuntimeWarning: invalid value encountered in double_scalars\n", " z_rel_err = error/z_amp\n" ] }, { "data": { "text/plain": [ "'C:\\\\tmp\\\\Synth00_5ppd.edi'" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# import required modules\n", "from mtpy.core.mt import MT\n", "import os\n", "\n", "# Define the path to your edi file and save path\n", "edi_file = r\"C:/mtpywin/mtpy/examples/data/edi_files_2/Synth00.edi\"\n", "savepath = r\"C:/tmp\"\n", "\n", "# Create an MT object\n", "mt_obj = MT(edi_file)\n", "\n", "# First, define a frequency array:\n", "# Every second frequency:\n", "new_freq_list = mt_obj.Z.freq[::2] \n", "\n", "# OR 5 periods per decade from 10^-4 to 10^3 seconds\n", "from mtpy.utils.calculator import get_period_list\n", "new_freq_list = 1./get_period_list(1e-4,1e3,5)\n", "\n", "# Create new Z and Tipper objects containing interpolated data\n", "new_Z_obj, new_Tipper_obj = mt_obj.interpolate(new_freq_list)\n", "\n", "# Write a new edi file using the new data\n", "mt_obj.write_mt_file(\n", " save_dir=savepath, \n", " fn_basename='Synth00_5ppd', \n", " file_type='edi',\n", " new_Z_obj=new_Z_obj, # provide a z object to update the data\n", " new_Tipper_obj=new_Tipper_obj, # provide a tipper object\n", " longitude_format='LONG', # write longitudes as 'LONG' not ‘LON’\n", " latlon_format='dd'# write as decimal degrees (any other input\n", " # will write as degrees:minutes:seconds\n", " )" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
alexandrejaguar/strata-sv-2015-tutorial
resources/Exploring Graphs.ipynb
5
59378
{ "metadata": { "name": "", "signature": "sha256:61f24f38b76cb12d46c178eadc5d85d61bd0fc27f959236ea756ef8e1adc2693" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Explore Random Graphs Using NetworkX" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this example, we build a simple UI for exploring random graphs with [NetworkX](http://networkx.github.io/)." ] }, { "cell_type": "code", "collapsed": false, "input": [ "from IPython.html.widgets import interact" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "import networkx as nx" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "# wrap a few graph generation functions so they have the same signature\n", "\n", "def random_lobster(n, m, k, p):\n", " return nx.random_lobster(n, p, p / m)\n", "\n", "def powerlaw_cluster(n, m, k, p):\n", " return nx.powerlaw_cluster_graph(n, m, p)\n", "\n", "def erdos_renyi(n, m, k, p):\n", " return nx.erdos_renyi_graph(n, p)\n", "\n", "def newman_watts_strogatz(n, m, k, p):\n", " return nx.newman_watts_strogatz_graph(n, k, p)\n", "\n", "def plot_random_graph(n, m, k, p, generator):\n", " g = generator(n, m, k, p)\n", " nx.draw(g)\n", " plt.show()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "interact(plot_random_graph, n=(2,30), m=(1,10), k=(1,10), p=(0.0, 1.0, 0.001),\n", " generator={'lobster': random_lobster,\n", " 'power law': powerlaw_cluster,\n", " 'Newman-Watts-Strogatz': newman_watts_strogatz,\n", " u'Erd\u0151s-R\u00e9nyi': erdos_renyi,\n", " });" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAdgAAAE8CAYAAABjDKANAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdUVMffBvAHRaX3JlgoInZFFLsiNiRW7B1LsIMtxpoY\ny8/YowkqiQ3s3VjR2CJGsJfYK4iggIoUqbv7vH+gvPS6y6KZzzl7hHvnzsxF2O/O3CkqJAlBEARB\nEOSqjLIrIAiCIAhfIxFgBUEQBEEBRIAVBEEQBAUQAVYQBEEQFEAEWEEQBEFQABFgBUEQBEEBRIAV\nBEEQBAUQAVYQBEEQFEAEWEEQBEFQABFgBUEQBEEBRIAVBEEQBAUQAVYQBEEQFEAEWEEQBEFQABFg\nBUEQBEEBRIAVBEEQBAUQAVYQBEEQFEAEWEEQBEFQABFgBUEQBEEBRIAVBEEQBAUQAVYQBEEQFEAE\nWEEQBEFQABFgBUEQBEEBRIAVBEEQBAUQAVYQBEEQFEAEWEEQBEFQABFgBUEQBEEBRIAVBEEQBAUQ\nAVYQBEEQFEAEWEEQBEFQABFgBUEQBEEBRIAVBEEQBAUQAVYQBEEQFEAEWEEQBEFQABFgBUEQBEEB\nRIAVBEEQBAUQAVYQBEEQFEAEWEEQBEFQABFgBUEQBEEBRIAVBEEQBAUQAVYQBEEQFEAEWEEQBEFQ\nABFgBUEQBEEBRIAVBEEQBAUQAVYQBEEQFEAEWEEQikwikeD9+/dISkpSdlUEodQRAVYQhEKJiYnB\nr2vWoHaVKlArXx7WFStCR1MTZrq6mDltGoKDg5VdRUEoFUSAFQShQCQSCb738oKlmRkuzZyJ9aGh\nSCHxISUFyTIZ/o6NRfKvv6JRzZpw69QJ7969U3aVBUGpVEhS2ZUQBKF0S05ORm9XV6QEBcE3IQFm\neaRNADCvXDkcMjHB6UuXUKVKlZKqpiCUKiLACoKQJ5IY3KsXEv39sTsxEeUKeN2ysmXhW7kyLt68\nCT09PYXWURBKI9FFLAhCnk6ePInbp06hZWIimgFQAzA8S5ozAGoA0ATgDOAlgGlSKRq9fo2lixaV\nbIUFoZQQLVhBEPLUzdkZ3c+dgwHSPpGfBJAIYPOn828BVAOwEUBXAHMABAAIBPAQgJOODkIiI1Gh\nQoUSr7sgKJNowQqCkKvg4GBcCgzEAAA9AXQHYJglzQEAdQD0AlAewDwAtwE8RlqrtrZMhgMHDpRY\nnQWhtBABVhCEXB05cgQ9AWhkOJa1y+segPoZvtdAWov27qfvh8XH46Cfn+IqKQillAiwgiDkKioy\nEhZZFpFQyZLmIwCdLMd0AMR/+toCwNuICIXUTxBKMxFgBUHIlUwqRdksx7K2YLUAxGY5FgNA+9PX\nZQFIpVIF1E4QSjcRYAVByBFJSGQyvC6bOcRmbcHWRtoz188+Anj26TgARAAwMDJSVDUFodRSVXYF\nBEEoHUji8ePHOHfuHM6fP4/z589DRUUFUgCrkfZpPBWABIAUQDLS3kB6AvgOaYOdXAH8BKABgOqf\n8t2tro6OvXqV8N0IgvKJFqwg/EeRxKNHj+Dj44MBAwbA3NwcHTp0QGBgIDp16oTAwECEh4ejRt26\nOAJgAdIGMC0BsA2AOoBFAIwA7AcwG4ABgGsAdn0qIwyAf2Iitu/YgX379iE1NbWkb1MQlEbMgxWE\n/wiSePLkCc6fP5/eSi1Xrhzatm0LJycnODk5wdLSEioqmTuBd+3aBe9Ro/D3x4+F/kQ+o2xZfBg8\nGG07d4a3tzeeP38ODw8PeHh4wMwsrwUXBeHLJwKsIHylSOLp06eZunzLli2bKaBaWVllC6hZpaam\non2zZqh/8yZWy2TZnsHmZj8AL319BN6+jcqVKwMA7ty5g7Vr12L37t1wcXHB+PHj0aJFi3zrIAhf\nIhFgBeEr8Tmgfg6mn5+hfg6obdu2LVBAzUomk2HYsGE4sW8festk+DUlJc/1iAlgk4oKZmtr4/i5\nc2jYsGG2NB8+fICvry/Wrl0LNTU1jB8/HoMGDYKmpmbhbloQSjERYAXhC0USz549y9TlmzGgOjk5\nwdraulitQ6lUilGjRuH58+fYuXMnxg4dissXL2JEcjLGAaiUIW0cgO0A1mppQWpoiAMnT8LOzi7P\n/GUyGc6cOQNvb28EBARg6NChGDduHGxtbYtcZ0EoLUSAFYQvBEk8f/48U5cvyUwB1cbGRm7drVKp\nFMOHD0doaCiOHj2a3rp0c3NDxMuXeHD/PkxUVaGemoo4qRRvy5SBc+vWGDd9OpydnVGmTOGe2IaE\nhGD9+vXYuHEj7O3tMX78eHzzzTcoWzbrTFxB+DKIACsIpdTngJqxy1cmk6V398o7oGYkkUgwbNgw\nRERE4PDhw9DQSFssMTIyEnZ2dnjy5AnU1dUREhKCvXv3IigoCNu2bYOhYdaVigsvKSkJe/fuhbe3\nN968eYOxY8di5MiRMBJzaYUvjAiwglBKkMSLFy8ydflKpdJMLdRq1aopfECQRCLB4MGDER0djUOH\nDkFdXT393IIFCxAaGorff/89/dixY8fg7e2N48ePy70u165dg7e3Nw4dOoRu3bph/PjxcHR0lHs5\ngqAIIsAK/zkhISHw+e03XD53DjExMahQoQIsqlTB4DFjSrRLkiSCg4MzdflKJJL0YNq2bdsSCagZ\npaamYuDAgYiPj8fBgwehpqaWfi45ORmWlpY4ffo0ateunX48ICAAM2fOxMWLFxVWr3fv3mHTpk1Y\nt24dDA0NMX78ePTr1y9T8BeE0kYEWOE/4/Lly1g0cyYuBQZiiEyGzikp0AeQBOAJgA3a2ggrXx5j\nJk3C1OnTUb58ebmW/zmgZuzyTUlJydRCtbW1VdqUlZSUFPTv3x8pKSnYv39/tv1bt27diq1bt+LU\nqVOZjt++fRuDBw/Gv//+q/A6SqVSnDhxAt7e3rh+/TqGDx+OsWPHwtLSUuFlC0JhiQAr/Cfs3LED\nXqNGYVFiIgYh8/ZrGd0EMEddHUn16uHAyZPQ1dUtVrmfA+rnVmpKSkp6MHVyckL16tVLxRzQ5ORk\n9O3bFwCwZ8+ebMGVJBwcHLBw4UK4urpmOhccHIw2bdogJCSkxOoLAE+fPsW6devg6+uLZs2aYfz4\n8ejYsWOhB1cJgqKIACt89f7880+MHTAApxITUacA6aUAxpUvj8f168M/ICBbsMlLSEhIpi7fpKSk\nTF2+pSWgZpSUlITevXujfPny2LVrV44t94CAAIwaNQoPHjzIFsDev38Pa2trfPjwoaSqnElCQgJ2\n7NgBb29vxMfHY9y4cXB3d4e+vr5S6iMIn4kAK3zVoqKiUMPSEiMSEnAOaZuADwCw+dP5IABzAdxA\n2rZqTgDWADAG0EtdHXUnTsSCJUtyzT8kJCRTl29iYmKmFqqdnV2pC6gZJSUloWfPntDS0sKOHTtQ\nrlzOS0j06tUL7dq1w7hx47Kdk0gkqFChAiQSiVLvlSQCAwPTB1z17t0b48ePR4MGDZRWJ+G/TQRY\n4au25H//w6OFC9E1MRFlAJwEkIj/D7D+SNterRPSAuwEAOEATgB4DKCVtjZeRkWlt2JfvnyZqcs3\nISEhU0CtUaNGqQ6oGSUmJqJ79+4wMDDA1q1bcw2uL168QOPGjREcHAwtLa0c02hqaiIiIiLX8yUt\nIiICGzZswPr161G1alWMHz8evXr1kvtzdUHIiwiwwldLKpWiWsWK2BsVhUafjs0F8Ar/H2CzuoG0\nVuznDcTba2rCdsgQJCcn4/z584iPj880D/VLCqgZJSQkoFu3bjA1NYWvry9UVXPfuXLq1KkoW7Ys\nli5dmmsac3NzXL16FRYWFoqobpFJJBIcPnwY3t7euH//PkaNGoXRo0ejUqVK+V8sCMUkRgMIX60L\nFy7AICkpPbgCaevk5nkNkOk57diPH3Fizx40atQIR48eRUREBPbs2YOxY8eiZs2aX2Rw/fjxI775\n5huYm5vDz88vz+AaFxeHLVu2YMKECXnmqaOjg9jY2DzTKIOqqirc3Nxw5swZnD17Fh8+fEC9evXQ\nu3dvnDt3DqJ9ISiSCLDCVys0NBS1ZLJMx/IKh3eQtufpsgzHagFQU1PDuHHjUKtWrS8yoGYUFxeH\nzp07w9LSEps3b853zu+WLVvQrl07VKlSJc90urq6iImJkWdV5a5mzZr49ddfERISAmdnZ0yYMAF1\n6tSBt7c34uLilF094SskAqzw1UpISIB6lgCbW3vlKQBXpA1wapHhuAaAhKQkhdSvpMXGxqJz586w\ns7PDxo0b8w2uMpkMq1evxqRJk/LNu7S2YHOira2NcePG4e7du/D29sb58+dRtWpVTJgwAffv31d2\n9YSviAiwwldLV1cXMVm6P3Nqf4YA6ADgBwCDspz7AEC3lAzcKY6YmBi4uLigTp068PHxKdBc0WPH\njsHAwADNmjXLN+2X0ILNSkVFBU5OTti7dy/u3LkDAwMDtGvXDs7Ozti/fz8kEomyqyh84USAFb5a\n9evXx4XUVKQibW5rEgDJp6+TP/0bBsAZaaOHPXLI46yKCho4OJRQjRXjw4cP6NixI+zt7bFu3boC\nL8Twyy+/YNKkSQXqFv+SWrA5qVSpEubPn4+QkBB4eHhg1apVsLS0xMKFCxEREaHs6glfKBFgha/O\nx48f4efnh4kTJyIpNRWHkPZsVQPAEgDbAKgDWAhgI4AXAOYB0P700vmUjwzA6nLlMGTMmBK+A/mJ\njo5Ghw4d0LRpU/z2228FfoZ8584dPHz4EL179y5Qeh0dnS+uBZuT8uXLo3///rh48SKOHTuGly9f\nokaNGhg4cCD++eefYg2Kio6Oxi8rV6J3x45o36gROjdvDvc+feDv7w9ZlkcZwtdBTNMRvgoymQwB\nAQHw9fXFwYMH0aJFC7i7uyMpKQkbxo7F+fj4Quf5F4BhWlpILl8eY8eOxaRJk76oLdPevXuHDh06\nwMnJCStWrCjUAK2RI0fCxsYGs2bNKlD6H3/8ESoqKpg3b14Ra1t6ffjwAVu2bMHatWuhqamJcePG\nYeDAgen74+bnyZMnWDJvHvYfOIDOZcqgW0ICDAGkAAgGsFFLCzGamhg7ZQomenkVauUwoZSjIHzB\nnj9/znnz5tHKyoq1a9fmsmXLGB4enn4+OTmZtSwtubpsWRIo8OsNQCsNDe7ZvZvPnj2jh4cH9fX1\nOWXKFIaFhSnxjgsmKiqK9evX53fffUeZTFaoayMiIqinp8eoqKgCX7N8+XJOnjy5sNX8okilUvr7\n+7Nr1640NDTk5MmT+eTJkzyvOXfuHE20tflT2bJ8k8vvmgxgEEAXdXU6NW7M6OjoErojQdFEF7Hw\nxYmLi8PmzZvh5OQER0dHvHv3Dnv37sW///6LadOmoWLFiulpy5cvj2PnzmGpri68C/jsMRRAcxUV\ndB8+HH369oW1tTV8fHxw584dSKVS1KlTB2PHjkVwcLBibrCYoqKi4OzsDFdXVyxZsqTQU4vWr1+P\nPn36FKq1/iUOciqsMmXKoFOnTjh8+DCuXbuG8uXLo3nz5nBxccHRo0chlUozpb9y5Qr6fPMNdsbF\n4QepFKa55KsCoAmAo4mJqHX7Nrq0bYukr2Tk+n+esiO8IBSEVCrlmTNnOHToUOrq6rJbt27cv38/\nk5KSCnT98+fPaVe5Mp3LluVxgNIcWhKvAM4tU4Ym6urs2bUrq1WrxoiIiGx5RUREcObMmTQwMODQ\noUP54MEDed9ukb1584a1a9fmnDlzCt1yJcmkpCSamZnx7t27hbpu9+7d7N27d6HL+9IlJiZyy5Yt\nbNy4MS0tLblkyRK+ffuWiYmJNNfX55Ecfs9CAXYBaADQDOAEgJJP56QA+6qrc/LYscq+NUEORIAV\nSrUnT55w7ty5rFKlCuvVq8eVK1fyzZs3RcrL39+fRkZGbGBjQ2tNTY6rUIGzVVQ4VVWV3bS0qFuh\nAk11dXn79m2S5Ny5c+ng4MDY2Ngc83v//j3nz59PY2Nj9unThzdv3izyfcpDeHg4a9SowXnz5hU5\nD19fX3bo0KHQ1/n7+xfpuq/JlStXOGzYMOrp6bFly5bsoKGRY5dwT4DuAJM/PYqoC3BNlgBsoKHB\nuLg4Zd+SUEwiwAqlTkxMDP/44w+2bNmSxsbGnDRpUrGDl0wmo6OjI7dv306ZTMagoCCuWbOG8+fP\n59KlS7lt2zbGxMSwXr169Pf3T7/Gw8OD7dq1y7OlHBcXx+XLl7NixYr85ptveOnSpWLVtShevXrF\n6tWrc8GCBUXOQyaT0d7ensePHy/0tZcuXWKTJk2KXPbXJCoqijYmJjycyzPX6gBPZPj+O4Cjs6Rx\n09Tk+nXrlH0rQjGJACuUChKJhKdOneKgQYOoq6vLnj178tChQ0xOTpZL/nv37qW9vT2lUmme6TZt\n2kQXF5dM9XJzc2Pfvn0pkUjyvDYxMZFr165l1apV6ezszDNnzhSpm7awQkNDWa1aNf7vf/8rVj5/\n//037ezs8v0Z5eTevXusUaNGscr/Wty7d4+VNDTSu32zviYCHAIw4dNjiToAD2VJcwpgYzs7Zd+K\nUEwiwApK9ejRI86aNYuVKlViw4YNuWbNmkKNXi2IlJQU2tra8tSpU/mmTUxMpImJSabnqomJiXRy\ncuL48eMLFDBTUlK4efNmVq9enU2bNuXRo0cVFmhDQkJoY2PDpUuXFjuvnj17cu3atUW6NjQ0lObm\n5sWuw9fg2LFjdNHVzXWE+juA9gBVAaoAHJ7LKHZjLS1l34pQTCLACiUuOjqa69evZ7NmzWhqasqp\nU6fyzp07Citv7dq1hXo+OHfuXI7NMsgkJiaGDRo04E8//VTgfCQSCXfv3s169eqxQYMG3LNnT76t\n4MJ48eIFraysuHLlymLn9ezZMxoaGjI+Pr5I18fGxlJTU7PY9fga7Nmzh27a2rlOyWkE8H8AUz4F\n2+4Ap2dJFwdQo1w5Zd+KUEwiwAolQiKR8MSJE+zfvz91dHTYu3dvHjlyhCkpKQotNy4ujmZmZrx+\n/XqBrwkPD6eenh7fv3+f6fibN29oY2PDdYV8NiaTyXjkyBE2adKEdnZ23LJlS7Hv+/nz56xatSpX\nr15drHw+mzx5MqdPn17k66VSKcuUKSPXDxClXVxcHG/fvs2DBw9y+fLlHDduHDt16kRzc3M2zqX1\nGvmp1Rqb4djBT93EGdOFATTT0VH2LQrFJFZyEhTqwYMH8PX1xdatW2FhYQF3d3f0798fBgYGJVL+\n/Pnz8ejRI2zfvr1Q1w0ZMgT16tXDd999l+n48+fP0apVK6xevbrAywh+RhJnz57FokWL8OLFC3z/\n/fdwd3eHmppaofJ59uwZnJ2dMX36dIwfP75Q1+YkNjYWVlZWuHnzZr7b0uVFT08PL168gL6+frHr\nVBrIZDK8efMGz549w/Pnz7P9GxcXBysrK1hbW8PGxib9XzU1NfTr0gUvk5KgkSVPAqgEwAvAVABx\nAIYD0ETaEp6f7QKwsUkT/BUUVBK3KiiKkgO88BV69+4dvb296ejoyIoVK3L69Om8d+9eidcjIiKC\nhoaGfP78eaGvvXbtGitXrszU1NRs527evEljY2OeOXOmyHX7559/6OrqSnNzc65YsaLAXbOPHz9m\n5cqVuX79+iKXndXq1avZt2/fYudTuXJlBgcHy6FGJSchIYH379/nkSNHuHr1anp5ebFLly6sVasW\n1dXVaWJiwmbNmnHQoEH84YcfuGXLFgYEBDAsLCzPwWDftGnDjbm0YoMAtgSoB9AIYL9PLduMaVpp\na3Pfvn0l+JMQFEEEWEEuUlNTefToUfbp04e6urrs168fjx8/nmOAKinjx4+nl5dXka9v2bIl9+zZ\nk+O5c+fO0djYuFBdzzm5ceMGe/fuTWNjYy5YsCDPZfIePnxICwsLbtiwoVhlZiSRSGhjYyOXqUW1\na9dW6LP0opDJZIyMjGRgYCC3b9/O+fPn093dna1ataKFhQUrVKhAW1tburi4cNy4cVy+fDkPHjzI\n27dvF2se6rFjx9hAQ4OyXIJsXq87AM319BT++ERQPNX827iCkLu7d+/C19cX27Ztg6WlJdzd3eHj\n46P0bsKnT59i165dePjwYZHz8PLywi+//II+ffpkO+fk5AQfHx906dIFFy5cQLVq1YpUhr29Pfbu\n3YsHDx5g8eLFqFatGkaPHo1JkybB2Ng4Pd2DBw/Qvn17LFq0CO7u7kW9pWyOHTsGQ0NDNG3atNh5\nKWu5xJSUFLx8+TLXrtxy5cpl6sJt0aIFhg4dCmtra1SqVCnfjecLSyKR4Nq1a3iWnIxlZcpgeiF2\nyvkIYISGBqbNmoVy5crJtV5CyRMBVii0t2/fYufOnfD19cWbN28wdOhQnD9/HnZ2dsquWrrZs2dj\n8uTJxdr9pkePHpg6dSquXr2Kxo0bZzvfs2dPvH37Fp06dcLFixczrYFcWDVr1oSfnx+eP3+OpUuX\nws7ODsOGDcO0adPw4cMHdOjQAUuWLMGQIUOKXEZOCrPna34UuSdsdHR0pqCZ8evw8HCYm5tnCqJN\nmjSBjY0NrKysSvTD3uPHjzF06FBoa2vj9KVL6P3NN1B7/x6eBQiyMQC6q6mhTteumDRtmuIrKyie\nspvQwpchJSWFf/75J93c3Kirq8uBAwfy5MmTpXLU6JUrV2hubl7kKScZLVu2jIMGDcozzcKFC1m/\nfn257oLy6tUrTp48mdra2tTQ0OCqVavklvdnt27dooWFhdy6Ivv168cdO3YU6VqJRMLg4GCeOXOG\nf/zxB2fMmMG+ffvSwcGB+vr61NLSYv369enm5sZp06Zx7dq1PHnyJJ88eVIqulJlMhl/++03Ghoa\n8tdff01/PvvixQvWrFKFPTQ0eObTNJ2sXcKxANcCrFq+PM309XNdmlP48ohRxEKebt++DV9fX2zf\nvh22trZwd3dHnz59oKurq+yq5Ygk2rVrh/79+8PDw6PY+UVHR8Pa2hr37t2Dubl5rmV6eXnh9u3b\n8Pf3h7q6eq75vXv3Djt37sTzhw8R/+EDdAwNUat+ffTr1y/b/qK3bt1Cx44d0aJFCwQEBMDV1RUz\nZ85EzZo1i31fADBixAjY2tpi5syZcsnPw8MDDg4OGD16dI7n4+Pjc+zCffbsGV6+fAljY+NMrdCM\n/xoZGcmlla0Ir169wogRIxATEwM/P79sPTnx8fHY6ueHJXPnQiU2Fn1lMhjIZGn7waqp4SCAdk5O\nGPvdd9i0aRPKlSuHzZs3K+VeBPkSAVbIJjIyEjt27ICvry/evXuHYcOGYejQobC1tVV21fJ14sQJ\nTJkyBf/++y9UVeXzBGT8+PEwMDDAggULck0jk8kwaNAgJCUlYe/evdnKvnHjBtYsWYJDf/6JLmXK\nwD4xEZpIm6YRoKmJf0gMHjIEE6ZOha2tLW7cuAFXV1f89ttv6N27Nz58+ABvb2+sWbMGrVu3xqxZ\ns2Bvb1/ke4qMjISdnR2ePn0KQ0PDIueT0bRp01ChQgW4uLjkOa0la/C0traGlZVVoacrKRtJ7Ny5\nE5MmTYKnpydmzJiR5+9c+/bt0aZNG5QtWxbRUVEor6YG04oV0atXL1hYWAAAPn78CEdHR0ydOhUj\nRowoqVsRFEWJrWehFElOTuaBAwfYvXt36urqcsiQITxz5kyR1qVVFolEwrp16/LgwYNyzffhw4c0\nMTFhYmJinumSk5PZsWNHjho1KtPSiN5r1tBUXZ1LypTJNh3j8ysY4CxVVRppaHD58uU0MTHhgQMH\nspURHx/PlStX0tzcnK6urvznn3+KdE8//fQTPTw8Cn1d1mktnp6e7NKlC2vWrElVVVVqamoWaVrL\nl+bt27fs06cPa9asyWvXruWbPioqijo6Ovz48WO+ae/fv08jIyPeunVLHlUVlEgE2P8wmUzG69ev\n09PTk8bGxmzdujU3bdr0xT4D8vX1ZfPmzRWy7m/nzp25cePGfNPFxcWxcePGnDVrFkny119+YTUN\nDT4r4BSNKwB1Ac6ePTvPchITE7lu3TpaWlqybdu2PH36dIHv+/OerznNTZbJZIyIiGBgYCC3bdvG\n+fPnc9iwYblOa1mxYgUPHjzIO3fucOnSpZwwYUKB6vAlO3r0KM3NzTllyhQmJCQU6Jrff/+dffr0\nKXAZO3bsYLVq1fjhw4eiVlMoBUSA/Q96/fo1ly9fzrp169LS0pI//vgjnz17puxqFUtiYiKrVKnC\ngIAAheR/8uRJ1q1bt0BBLDIyktWrV6enpyfNNTT4IksQvQ+w7adAWu3TUnkZz18GaKShwadPn+Zb\nVkpKCn19fVmjRg02adKEhw8fzreOGzduZMuWLenv78+1a9dy6tSp7NmzJ+vVq0ctLS0aGBiwUaNG\n7NevH2fOnMkNGzbw7NmzDA4OznNQ2+bNmzl06NB86/yliouLo4eHB6tWrcpz584V6toOHTrkOqc6\nN2PHjmWvXr1KZEcmQTHEM9j/iOTkZBw5cgS+vr64ePEievToAXd3d7Rq1QplypRRdvWKbcWKFbhw\n4QL+/PNPheRPErVr18Zvv/0GZ2fnfNOHhITAwc4Oi5OT8W2G4xIAtQCMQ9pyeecBdAVwE0DGJ9wz\nypVD6ujRWPHrrwWqn1QqxYEDB7Bo0SKQhKenJ+rWrYvg4OBMz0GfPn2K0NBQmJiYoE6dOjkOKNLT\n0yvYDyWLgwcPws/PDwcPHizS9aXZxYsXMWzYMLRp0wa//PILdHR0Cnzt27dvYWNjg/Dw8GwD2fKS\nnJyMli1bYtCgQZg0aVJRqi0omQiwXzGSuHbtGnx9fbFr1y7Uq1cP7u7ucHNzg5aWlrKrJzfR0dGw\ns7PD+fPnUatWLYWV4+Pjg+PHjxcoiL98+RINbG0RmpKCjG+pdwE0Q9rgps86AWgCYH6GYy8ANNbU\nxMvISGhoZF3RNi2ghoaG5jiY6NGjR0hISEC5cuVQp04dtGnTBra2trC2tsa7d+8wb948PHjwQO4f\nrM6cOYNFixbh7Nmzcs1XmZKTk/HDDz/Az88P69evR/fu3Qudx4YNG3Dy5Ens3bu30Ne+ePECTZs2\nxaFDh9BBfOxXAAAgAElEQVSsWbNCXy8ol1ho4isUHh6Obdu2wdfXF0lJSXB3d8e1a9dgaWmp7Kop\nxJIlS9C9e3eFBlcgbQOAOXPm4OnTp/mu3LRx/XoMAVCQ9ooMaYE3IysAjgBWrVqFWrVq5TitxcTE\nJFPLs0ePHulfGxoa4u+//8bChQuxf/9+fP/992jdujUGDhyISZMmKaTXQpELTSjD7du3MWTIENjY\n2OD27dswMTEpUj779u0r8ohgKysrbNiwAf369cONGzeKtXCKoARK7J4W5CgxMZG7du1i586dqaen\nx5EjRzIgIOCrf37z8uVLGhgY8NWrVyVS3owZM+jp6Zlvuj4uLtyZwyCmFIDWAJd++vokwPIAXXJI\nuwCgsaEhu3btSi8vL65Zs4ZHjx7lgwcP8h3RnFFgYCC7dOlCExMTamho8M2bN8X5EeTq0aNHrFat\nmkLyLkkSiYSLFy+mkZERt2zZUqy/oXfv3lFHR6dY6xqT5Pfff89OnTp9VSOx/wtEgP2CyWQyBgYG\ncsyYMTQwMGD79u25bdu2Ak0F+FqMGDGCM2fOLLHyXr58SX19fcbExOSZzqVZMx7NYzH3NgANPwXW\nwQBH5ZBuNcDxI0fKre6DBg2inZ0djY2NOX/+fLmuPEWmDZ4zMTGRa54l7enTp2zevDnbtm0rl52B\nNm7cSDc3t2Lnk5qaytatW3P+/PnFzksoOaKLWM4kEgmOHz+OW7duISYqCho6OqhctSr69OkjtzVR\nX716ha1bt8LX1xcymQzu7u64desWKleuLJf8vxT37t3D0aNH8ejRoxIrs3LlyujYsSM2bdqU58AT\nLW1tfMzlXF2kDW76rDnS9gTNKh6Atpx+Z2JjY3HixAncvHkTCQkJ+Pnnn2FjY4PRo0dj8uTJmTYW\nKCplLfYvDyTx+++/Y/bs2ZgzZw48PT3l0o2+d+9eDBs2rNj5qKqqYteuXXBwcECzZs3Qvn37Yucp\nlABlR/ivRWRkJBfNn8/KhoZsqq3N2SoqXArwJ4D9NDSop6bGEQMG8MaNG0XK/+PHj9y+fTs7duxI\nAwMDenh48NKlS199F3BeunTpwpUrV5Z4uYGBgbSysspzysr3kyfz+3Llcm3BJgL8CHDZpy7jlBzS\ndSlblgMHDizSfrZZ5bTn6/PnzzlmzBjq6+vTy8uLoaGhxSpDJpNRVVWVSUlJxcqnpIWFhdHFxYUO\nDg5y3bdYXt3DGZ09e5ZmZmYl9khEKB4RYOXgypUrrKinx5FqaryeS7dgBMDFZcrQTEODy3/+uUCB\nUSaT8eLFi/z222+pr6/PTp06cefOnQWe3P41+/vvv2lpaam0N3NHR0ceOnQo1/OPHj2iibo6k3L4\nXfgOoD5ALYCuQI6LUIQB1C5Xjv3796epqSmrV69OLy8vnjhxotD//xKJhNbW1rnu+RoWFsYpU6ZQ\nX1+fHh4exZoTbWhoyMjIyCJfX9J27dpFExMT/vjjj3LfNGDTpk3s2bOnXPMk0zaXaNmyZanY5EDI\nmwiwxXTt2jUaaWryUAFX6gkBWEtDg//76adc8wwJCeGCBQtoa2vLGjVq8OeffxafWDOQyWRs2rQp\nt27dqrQ67Nixg05OTnmmcW7cmNsL+HuR9fWTqirHuLuTJKVSKW/cuMFFixaxVatW1NbWpouLC3/5\n5Rc+evQo3w9rhw4doqOjY77poqKiOGfOHBoaGnLw4MFFas1ZWVkVaIEMZXv37h0HDBhAOzs7Xrly\nRSFldO7cuci7C+VFKpWyc+fOnDZtmtzzFuRLBNhieP/+Pc319TkKoAPACgDdc3vDBKgC8Myn1kkV\nDQ0eOXIkPa/4+Hj6+fmxXbt2NDQ05NixY3n58uX/dBdwbvbt28f69esrdURlSkoKLSwsePPmzRzP\n+/v708TEhBZlyzKikMH1PkBjdXX++++/OeYdHR3Nffv2cdSoUbSwsKCVlRXHjh3Lw4cP59gd6eTk\nVKg3+g8fPnDRokU0MTGhm5sbr1+/XuBrGzRoUOTHICXF39+fFhYW9PT0VNiAwPfv31NHR0dhy46+\nffuWVatWzbMXRVA+EWCLYdWKFeyvocEDAA8BHJtLgH0KsC5Ai08BlgD3A2xZrx7//vtvjhgxgnp6\nenR1deWePXsKNQXjvyYlJYXVq1env7+/sqvCRYsWcfjw4ZmOvX37lkOHDmXVqlXp7+/Pud9/z4Ya\nGnxTwOD6CGBVDQ1uLsC6x2Raa/7ff//lsmXL6OzsTC0tLTo7O3PZsmX8999/eePGjSLv+RofH89V\nq1bRwsKCnTt35sWLF/O9pnXr1oVeRrCkxMfHc9y4caxSpQpPnz6t0LK2bNnCHj16KLSMoKAgGhsb\nf/HLnH7NRIAtIqlUStuKFRmQ4c1xTi4B1gXgcYCWGQJsKkADFRXa2Nhw2bJlDA8PV/YtfRHWrVvH\ndu3alYqWfVRUFPX09BgREUGZTMbdu3fTzMyMnp6e6S1JmUzGH2bMoIWqKn0/DW7KKbB+ALhGRYWm\n6urc8PvvRa5TXFwcDx8+zLFjx9LS0pIaGhps3Lgx9+3bV+SF45OSkujj40MrKys6OTnxr7/+yvXn\n37VrV/75559Frr+iXLp0idWqVePQoUPlPj0pJ9988w23bdum8HLWrFlDe3t78aG8lBIBtojOnj3L\nulpalGV4k5ydQ4DdA7DHp68zBlgCnFe2LMdmaQEJuYuLi2PFihULtD1YSfn22285depUduvWjTVr\n1sxxINE///yTNk+5SRMaqalxarly3Iq0Rf59AY6qUIHqAJ0aN+bly5flVrfXr19TR0eHixYtoouL\nC7W1tdmqVSsuWrSIN27cKHQXe2pqKv38/FizZk06Ojryzz//zBZoBw0aRD8/P7ndQ3ElJydz1qxZ\nNDU15f79+0ukzOjoaGpra+c7V1oeZDIZ+/Tpw9GjRyu8LKHwvvxV3pXk7t27aJ2aCpUMx1SypIkD\nMBvA6lzyaCOV4t6NGwqp39do1apVaNOmDRwcHJRdFQAASZibm2PlypWoU6cObt68mW292JSUFHh4\neGDdunX4KygIQXfvQm3yZBzv0gW/Ojhgpo4OrGbPxv7jx3H3xQukpqbKrX4+Pj4YMGAAZs2ahRMn\nTiAiIgKzZs1CZGQk+vfvD3NzcwwbNgy7du3Cu3fv8s1PVVUVQ4YMwd27dzF9+nTMmzcP9evXx65d\nuyCVSgGUruUS7969iyZNmuDOnTu4desW3NzcSqTcw4cPo23btoXaEKCoVFRUsGHDBpw7dw7btm1T\neHlCISk7wn+pFixYwJllymRqrWZtwU4BOD/D95YAT2f4/jrABlZWyr6VL0JERAQNDAxKzfOmJ0+e\nsG3btmzcuDGbNm2aa6tt/vz57NKlS45dqq9fv6aRkVH69ydPnqSJiUmug5sKIykpiaampnmOBH72\n7Bm9vb3ZtWtXamtrs0mTJpw3bx6DgoLynOP7mUwm47Fjx9i8eXNWr16dmzZt4nfffcdFixYVu/7F\nIZFIuGzZMhoZGXHDhg0l/jihS5cuJT7C/c6dOzQyMuLdu3dLtFwhbyLAFtGqVavoWb58pgCb9Rls\nA4BGAM0+vcoCNEDaOrQEeAFgi9q1lX0rX4SJEydy4sSJyq4GU1NTuWzZMhoaGnLFihWUSCQ8evQo\nGzZsmO2N/OHDhzQ0NOTLly9zzEsikVBVVZXJycnpx7Zv385KlSoVe5m+LVu2sFOnTgVOn5SUxNOn\nT3PatGmsU6cODQ0NOWDAAPr6+ua7drFMJuO5c+fYvn176unpsUOHDsWeqy2TyRgfH8+YmJhCBcjn\nz5+zVatWbNWqlVwW6CisDx8+UFtbWykbpW/evJk1atSQ68IWQvGIAFtEBw8epJO2NglQ8mnwygyA\nQwAmfRrE9A5pC0xEAHwDsDLAfQDjPwXYXwEOUvBIw6/B06dPS8UCBrdu3aKDgwOdnZ0ztaSlUilt\nbW0zbfYulUrZunVrrl69Os88zc3NswXg1atXs3r16kW+X5lMxgYNGvDEiRNFup5MW3P5jz/+YK9e\nvainp8eGDRty1qxZDAgIYGpqaq7XTZs2jZaWlqxYsSKXLVtWqDd7mUzGgIAADujWjerlylFdVZWa\n5cpRtUwZurRowcOHD+faspbJZPzjjz9oZGTE5cuXF6gFrghbt25l165dlVI2SY4cOZIDBgwoFYMA\nBRFgiyw5OZmmOjq8D/BHpM1xzfj6KYeRopYZBjnJAFqpqLBSpUqcN28eHz16pOxbKrX69+/PBQsW\nKK38xMREzp49m8bGxty4cWOOb16//vore/Xqlf7977//ziZNmuT7Ru/g4JDjwKZZs2axcePGRWqN\nnD9/njVq1JDbPOGUlBReuHCBM2fOpL29PfX09NirVy9u2LAh2/KKW7du5cCBA3n79m3269ePxsbG\n/Omnn/j+/fs8ywgMDGQ9a2vaampylYoK32b4u/kIcAtAR21tVjUy4r69ezNd+/r1a3bp0oUNGjSQ\nS/d6cXTr1k2pg7wSEhJYv359rl27Vml1EP6fCLDFMHv6dE7M0k1c0NffAGtUqsSgoCB6eXnRzMyM\nDg4OXL58ebHXhP2aXL16lRUrVmR8fLxSyr948SJr1KjBnj175jmVKi4ujgYGBnzx4gXDw8NpbGzM\nO3fu5Jt/165defDgwWzHZTIZR40axQ4dOmTqQi6IHj16cN26dYW6pjBev37NLVu2sH///jQwMGDd\nunX53Xff8cyZM9y/fz+/+eab9LQPHz6ku7s7DQwMOGPGDEZERGTL78iRIzRSV+degNJ8/m4uAqyk\nrs7VK1aQTFt0xNTUlLNnzy70z0neYmJiqK2tXSLTgPLy+PFjGhsb8+rVq0qthyACbLGEhITQUEOD\nNwoZXD8CdNTQ4Dpv7/S8JBIJT58+zZEjR9LAwIBt2rShj48P3759q8Q7VC6ZTEZnZ2euX7++xMuO\njY3lhAkTWLFiRe7bt69A10yZMoXTpk1jnz59OGvWrAJd4+HhkWtrIzU1lT169GD//v0L3Bp99uwZ\njYyMSuwDiUQiYWBgIH/88Uc2adKEmpqaNDAw4Nq1a/nixYv0dMHBwRw3bhz19fXp6emZ/iHy0qVL\nNFJX5+VC/P2EAKyirs6WLVrQ1taWgYGBJXKv+dm2bVumDxfKtG/fPlpaWubbcyAolgiwxbRv715a\naGjw30IEV2eAXdu3z/U5SVJSEg8dOsS+fftSR0eHXbp04fbt2/9zgxf8/f1ZvXr1El/U/Pjx46xS\npQqHDx/Od+/eFfi658+fU1tbmzY2NgUe5PPjjz9y7ty5uZ5PTExk69atOXHixAI9V5s0aRK///77\nAtdZ3s6ePcsqVapwyJAhNDExoZ2dHb28vOjv78+EhASGh4dz2rRp1NfX56hRo1izcmXuzfI3oom0\njRA+v8oCnJglzW2AWqqqObaIlaV79+7csmWLsquRbtKkSezatavYpF2JRICVg21+fjRWV+evKiqM\nySWwSgGeAOigqck2jo40MzPjgwcP8s07NjaWW7dupaurK3V1ddm/f38ePnxY6d1hiiaVSlm/fv0S\nWxyATFuZafDgwbSysuKpU6cKfX1MTAzV1dXp6elZ4GvWr1/Pkflsqh4dHc169epx4cKF+ZZvYGCQ\n66jlkvDs2TNaWlqSTPs/vH79evruL1paWnRxceHq1asZFBTEYcOGsdKn8Qi5fSCN/xRkA3I4101T\nk38UY9UreSot3cMZJScns1mzZlyyZImyq/KfJQKsnFy5coV9XF2pV6ECx6ipcS/AvwD+CfB/AKuU\nL0/7atW4efNmymQybt68mRYWFnzy5EmBy4iKiuK6devYqlUrGhoa8ttvv+XZs2eVNmJSkbZu3cqm\nTZuWyGhImUzGXbt20czMjJMmTSpy9+qECRPo6urK6tWrF7jVcPjwYbq6uuabLjw8nNbW1vTx8ck1\nzS+//MJ+/foVuL6K8PbtWxoYGOR4Ljo6mnv37uXIkSNpYWFBIw0Nrsynx2cLQJtczvkDbGBjUypG\nzG7fvr1A/48l7eXLlzQ1NeXff/+t7Kr8J4kAK2dhYWH8ae5c9mzXjs4NG7JLq1bs0LIlnZycsr0R\n+Pj4sEqVKpmeVRVUSEgIly5dSnt7e5qbm3Py5Mm8evVqqXizKa7ExERWrVqVFy5cUHhZoaGh7Nq1\nK2vXrl2sZ3mBgYE0MzPj27dvaW9vz2PHjhXouqtXr9Le3r5AaZ88ecKKFSvm2Kr/vOersp9HpqSk\nUFVVNd/fQ6lUSjVVVb7LJ8C2Rc4j8j/3Cpmqqxfp70feevTowc2bNyu7Gjn6vHvQ69evlV2V/xwR\nYEvAmzdvqKenl+OzxDVr1tDa2rpYI4cfPHjAH374gdWqVWO1atU4d+5c3r9/vzhVVqoVK1YofC6h\nVCrl+vXraWRkxHnz5hWryz05OZl16tThzp07SaYt8tChQ4cCXfvq1SuamZkVuKzr16/T2Ng42441\nhw4dYpMmTQqcjyKpq6vnuw1cXFwc1VVV8wyuwZ+evwbnkaahrq7SR8vGxsZSR0enVA8o+uGHH9i2\nbduvsrerNBMBtoQ0bNgw00IEGS1btoy2trbF3lFHJpPx6tWrnDx5Ms3NzdmgQQMuXbpUqc/kCis6\nOprGxsYKXfLt8ePHbNOmDZs0aSKXchYuXEhXV9f0VtvnZQoLkndqaipVVVXzXLwhqzNnztDY2DjT\nXrROTk7pAV7ZTE1Ns/0uJyYm8tmzZwwICODu3bu5ePFiqmdZajTrawFAp3xauI11dRkUFKSkO02z\nc+dOdu7cWal1yI9EImH79u05e/ZsZVflP0UE2BIyc+bMPH+5FyxYwJo1a8ptVKREIuHZs2f57bff\n0sDAgK1ateLatWsZFRUll/wVZcaMGRwxYoRC8k5NTeWSJUtoaGjIVatWyeXT/KNHj2hoaJhtacN5\n8+bRw8OjQHmYmpoyLCysUOXu3buX5ubmfPr0KW/evFnkPV+LKzU1la9eveKVK1d46NAhent7U19f\nn25ubuzYsSPr1KlDAwMDli9fnlWrVmXz5s3Zu3dvTpw4kWVVVJiQR/C0Bbg5nwBrpqrKxYsX8/79\n+0obLevm5saNBdy/V5kiIiJYqVIlHj9+XNlV+c9QIUml7TTwH3LhwgVMmTIF165dyzXN3Llzcfjw\nYZw9exaGhoZyKzslJQUnT57Ejh07cOLECTRv3hwDBw5E9+7doa2tLbdyiissLAz16tXD7du3UalS\nJbnmfevWLYwcORIGBgb4/fffYWVlVew8SaJt27bo0aMHJk2alOlcREQEatSogadPn+b7f2lvb48N\nGzYUepeg9evXY/ny5WjUqBEaNGiAGTNmFPoeckMS7969Q3h4OMLCwhAeHp7t6/DwcLx9+xZGRkYw\nNzeHubk5LCwscPjwYQwfPhwtWrSAhYUFzM3NYWhoCBWVzPtNdW7ZEgP++QdDcyj/EoCOACIAaOZS\nxysAumtpwalLF1y5cgXv37+Ho6MjmjZtiqZNm8LR0VGuf0c5iY+Ph4WFBV68eAEDAwOFliUPFy9e\nRO/evXHlyhVUqVJF2dX56okAW0JSU1NhbGyMx48fw8TEJMc0JDF9+nScO3cOp0+fhp6entzrER8f\nj8OHD2Pnzp24cOECXFxcMGDAAHTu3BkVKlSQe3mFMWrUKBgZGeHnn3+WW55JSUmYP38+NmzYgCVL\nlsDd3T3bG31Rbdy4ET4+PggMDETZsmWznXd3d0eNGjXyDXyurq4YO3YsunbtWug6TJ8+HStXrsST\nJ08K/KEhNjY2U5DMGjTDwsLw+vVraGlppQfNzwE06/empqZQVVXNlH+7du0wc+ZMtG/fPtc6yGQy\nzJkzB0eWLMG/Mlm282MAJALwzeM+3NXVUeuHHzD90883MjISly9fRlBQEC5fvoyrV6/C1NQ0PeA2\nbdoUdevWRbly5Qr0cyqI3bt3Y/PmzfD395dbnoq2fPly7N27FwEBAShfvryyq/NVEwG2BPXs2RO9\ne/fGoEGDck1DEl5eXrh69SpOnTql0Bbmu3fvsH//fuzYsQN37txBz549MWDAALRt2zbHgKFI9+/f\nh5OTEx4/fiy3DxYBAQEYNWoU6tati99++w1mZmZyyRcA3rx5g3r16uGvv/5C/fr1c0xz8+ZNdO3a\nFS9evMjzTX3UqFFwdHSEh4dHoesxb9487Nu3D8bGxjh48CCio6NzDZqfvyaZZ9D8/FJTUyt0fQDA\nzc0NgwcPznH/ValUij179mDRokWoUKECwp88wf64ODQvZBnhAGpVqICnr17ByMgoxzRSqRQPHjxA\nUFBQ+is4OBj29vaZgq6FhUXhb/KT3r17o3Pnzhg5cmSR8yhpJOHm5obKlStjzZo1yq7O1005PdP/\nTevXr+fgwYPzTSeTyejh4cFWrVqV2JJ3oaGhXL58OR0cHGhmZkYvLy8GBQXJbdpPZGQkf160iA2r\nVWMlfX2a6uiwpoUFx7i7886dO+zWrRtXfFpftrhiYmI4btw4mpubK2yhin79+hVoxaTWrVvnO/ho\nzpw5nDdvXq7nU1NTGRYWlv6cc+3atZw9ezaHDh3K8uXL09bWluXLl2eZMmVYtWpVNmvWjL169aKn\npyd//vln+vn58fTp03zw4EGht38rimHDhnHTpk2ZjqWkpHDTpk20tbVl8+bNeeLECcpkMu7bu5eV\n1NUZks+z1oyvWIANNTS48McfC123mJgYnj59mgsXLmSXLl1oZGTESpUqsVevXly2bBkDAgIKvApX\nfHw8dXR0vsjlTKOjo2ltbc09e/YouypfNRFgS9CLFy9oYmJSoMEYUqmU7u7udHZ2LvbemoX16NEj\nzps3j9WrV6e1tTVnz55d5NG24eHhHOzmRt0KFThcXZ1/I20t2TCkLXc3r2xZmlWoQMNy5fjXX38V\nu+5Hjx5l5cqVOXLkSIVNmzh69GiBl0M8cOAAmzZtmuM5mUzGqKgozpo1i66urtywYQPnz5/PMWPG\nsFu3bnRwcGDFihVZrlw5mpmZsWHDhuzatStHjx7Nn376icOHD6eDgwNv3brF0NBQOjs708PDQ+lz\noT09PfnLL7+QTBs9vG7dOlatWpXt2rXjuXPnstVv9YoVrKKhwTsFCK5hABuoq3Ps8OFyuU+ZTMZn\nz55x+/btnDhxIhs3bkwNDQ06ODhw/Pjx9PPz4+PHj3Msa8+ePezYsWOx66As169fp5GRER8+fKjs\nqny1RIAtYTVq1OD169cLlFYikbB///50cXFhUlKSgmuWnUwm4/Xr1zl16lRaWFiwXr16XLx4cYEn\n9j98+JBVjY05I58FBVIA7gRooq7ObUXc6isyMpIDBw6ktbU1T58+XaQ8CiI2NpZVqlTJt4zY2Fg+\nfPiQp06dopGREceNG0cvLy/27t2bzZs3p6WlJStUqEB9fX1WqVKFxsbGdHd356xZs+jt7c2DBw/y\n8uXLfPXqVY5TeHLa8zU2NpYODg55rm1cEubMmcPZs2dz1apVNDc35zfffMNLly7lec32rVtpoKHB\n7pqaPInsu+pcAeiurk5tVVVaVqqk0BHTCQkJ/Oeff7hy5Ur27duXVapUoaGhIV1dXTl//nyeOnWK\n0dHR7NOnD//44w+F1aMk+Pj4sE6dOvnOWxaKRgTYEubl5cVFixYVOH1KSgrd3NzYrVs3pUzD+Ewq\nlfL8+fMcPXo0DQ0N2bx5c/7222+5TisKCwtjVWNjblBRKXDX312AZurqPHLkSIHrJZPJuGPHDpqa\nmnLKlCkK71IfN24ce/XqxYsXL3LPnj1ctWoVv/vuOw4aNIht27Zl9erVqaWlRQ0NDdra2rJNmza0\nt7dnjRo1uHLlSu7atYsXLlzgs2fP0lvAQUFBbNSoUaHqkduerxEREbS1teWvv/4qt3sujJiYGHbu\n3JkaGhp0c3Mr8IdJMq3L9XcfHzawsaGZujob6uqysa4uTcuUYSV9fS5ZvJgRERFs165dof6G5CEs\nLIwHDhzg9OnT2aZNG2ppabFMmTIcMGAAfXx8ePv27S9yEQeZTMbBgwfT3d1d2VX5KolBTiXM398f\n//vf/3DhwoUCX5OSkoJevXpBTU0NO3fuzDZqs6SlpKTgr7/+wo4dO3Ds2DE0bdoUAwYMQM+ePaGj\nowMAcOvYEfXOnYORRIItAO4CGABg86c87gMYCuA5ABmA2gCWAFAF0EVTE8Fv3kBLSyvPeoSGhmLs\n2LEICQnBxo0b4ejoWOR7kkgkiIyMzHOA0MuXLxETE4NKlSqhUqVKeQ4U0tHRSR+tHBMTAysrK9y5\ncyfH6UcvX75E8+bN8erVqwLXt0ePHnBxccGYMWOynXvx4gVatWqFFStWoF+/fkX+mRTG+/fvsWbN\nGnh7e8Pa2hqVK1fGvn37ipQXSQQHB+Pt27eQyWRYsWIFWrdujQkTJgBI+393cHDAyZMnYW9vL8/b\nKLDdu3dj1apVcHd3Tx+1/OrVKzRq1Ch98FSTJk3kOrBOUT5+/AhHR0dMnToVI0aMUHZ1vioiwJaw\nxMREmJqaIjQ0FLq6ugW+LikpCd27d4eRkRH8/PxKfJRvbj5+/IgjR45g586dOH/+PDp06IAOHTpg\nlpcXXiYn4xSAMgBOIm3axecAGwPgPQDLT9//BmARgDcAempqovOKFfAYPTrHMmUyGXx8fPDDDz/A\n09MT33//fa7TDUji/fv3eY6qDQsLQ1RUFAwNDXMNmsbGxhg2bBhmzZqFwYMHF/rn5OnpCS0tLfzv\nf//Ldi4lJQVaWlpISkpCmTJl8s3r2bNnaNKkCUJCQqCpmfMs0Tt37qBDhw7Ytm0bOnToUOj6FlRk\nZCRWrlyJP/74Az169MCMGTNw48YNHDhwALt375ZLGWvXrsXNmzfxxx9/pB/bunUrli5diqtXrxZ5\ntHNx9OvXD+3atcs08js6OhpXrlxJH7F8+fJl6OrqokmTJulB197eXunT4XLy4MEDtG7dGqdPn851\nVMrJdxQAACAASURBVLxQeCLAKkGnTp0wZswY9OzZs1DXJSQkoEuXLrC0tMSGDRsK9GZckt6/f48D\nBw7g5wUL0P7lS6zPcG4ugFf4/wCbkQSAD4ANAG4C+AvANGtr3Hr6NNuc1cePH2PUqFGQSCRYvXo1\ndHR08mx1vn79GhoaGrm2ND9/bWpqmudUmsWLF+PChQs4fvx4kebRPnnyBM2bN0dISAg0NDSynTc2\nNsbdu3dhamqab16TJk2CmppavvOFAwIC0KtXLxw7dgyNGzcudJ3zEhYWhmXLlsHPzw8DBgzA9OnT\nUbVqVQDAiRMnsHr1arnNDQ0KCsL48eNx/fr19GMk0bt3b9jY2GDp0qVyKaegEhISULFiRTx9+hTG\nxsa5ppPJZHjy5En63NygoCA8evQIdevWzRR0LS0t5TY3uzh27tyJH374AdeuXSvUh38hdyLAKsGq\nVavw8OFD+Pj4FPra+Ph4uLi4oG7duli7dm2p+MPMytrUFIciI1Evw7E5AMKQPcDqAfgIwBzAWQA2\nSOsytlJXx0IfH6ipqSE8PByhoaE4c+YM7t27B319fSQkJEAqlaYHyNxanhUrVswxoBXGkydP0KxZ\nM1y7dg2WlpZFzqdr167o1q0bvv3222zn6tWrBz8/PzRo0CDPPGJjY2FpaZlrd3NWhw8fxujRo3H+\n/HnY2dkVue6fBQcHY8mSJdi9ezfc3d0xbdo0mJubZ0rzzz//4LvvvsOlS5eKXR6QFtCMjIzw4cOH\nTD0VUVFRqF+/Pnbv3o1WrVrJpayC2L9/P9atW4fTp08X+tqPHz/i+vXr6S3cwMBASKXSTN3KjRs3\nVtoKa+PHj8ebN2+wb9++TO8t4eHhePPmDZKTk6GnpwcbGxuxSEVBKOnZ73/a/fv3WbVq1SJPM4iJ\niaGjoyO9vLyUPiUjJ2qqqvyYZQDTHIDuuQxu+ghwOkB7/P/m2w4qKqxZsybd3NzYt29fVqxYkXXq\n1OHWrVt57949fvjwocT2im3btq1c5uiePn2atWrVyrHeHTt2LNAasatWrWL//v0LVe7GjRtpaWlZ\n6PWOM3r06BHd3d1pYGDAmTNnMjIyMte0//77L2vXrl3ksnJSq1atTJsbfHb48GFaWVkxNjZWruXl\npX///ly/fr1c8pLJZHz58iX37NnDKVOmsEWLFtTQ0GDdunX57bffcuPGjbx3716JrbOclJTERo0a\ncdWqVUxJSeGePXvo5OBAgwoV2EBHh010dWmrrU0TbW3OnDYt2xrcQmYiwCqBTCZj5cqV+eDBgyLn\n8f79e9rb23P69OmlKsjKZDKWUVFhapYgOjuPAMtPgVXz09xYAnTR1eWBAwf4/fff08TEhFu2bFHK\nfW7atIkODg6F2u0mNzKZjHXq1OGpU6eynRs2bBg3bNiQ5/USiYRWVlZF2j1m8eLF/8feeYc1lXx9\n/KCIJPSQhN6kiIAiRcUCNhRRV+wiiIpiQUCwoK5r713XuthQLLt2RWWxLTYs2FbX3itiQQRZanK/\n7x8ir0CAVMD95fM8eTT3zpw5NyT33Jk5BU5OThLHBt+6dQv+/v7gcrmYOXOmWP1fvHgBU1NTiXWs\niAEDBpSbUH/o0KEICQmR63jlkZOTAx0dHbkV5RBFfn4+rly5glWrViEwMBDW1tbQ0dGBt7c3pkyZ\ngiNHjii0aMfTp0+hq6sLA21ttNbSwi4i5Jf6vd4nQpSaGjjq6hgxcGC1RjjUZJQGtpoYNmwYli9f\nLpOMjx8/omHDhpg2bZqctJIPemw23kswgwURConAIsKjoveubDZMTU3Rp08fpKWlVct1pKWlgcfj\n4fr163KTuWHDBnTp0qXM8Z9//hmzZ8+usO+BAwfKTVpRGQzDYMyYMWjZsqVYMY9Xr15F9+7dYWBg\ngIULF0o0Q/z8+TO0tbWl0rM8li5divDwcJHnMjMzYWlpKVF4l7Ts378fbdu2Vfg4pXn//j2OHDmC\nKVOmwNvbG9ra2rC2tkZgYCBWrVqFK1euyFTT+Hvi4+PBUVPDMTGzanVlsdDJ01Nu4/+XUBrYamLf\nvn3w8fGRWc67d+9gb29f5XGBFdHZ0xNbin6AAiLkEmESEYKIkFdkTE8Q4UbR+UwiRBChcVGfVCLU\nJYKJiQkiIiJw6NAhfP78ucqvo3///oiOjparzJycHPB4PDx48KDE8ZUrV2LUqFEV9m3dujX++OMP\nqccWCoUYMGAAunbtWu6MPDk5Gb6+vjAxMcGvv/4qVQICgUCAWrVqyXVZMykpCS1atCj3/OnTp2Fk\nZKTwcoz9+/fH2rVrFTqGOAgEAty+fRubNm3CsGHD0LBhQ2hoaKBly5YYO3Ysdu/ejZcvX0q86nPl\nyhVw2WykiBm7/u3huDuLhYF9+ijoan9clAa2mvj8+TO0tLTkkgbxzZs3sLGxkVsuX1k5cuQImmhp\nAUSYTgSVUq+ZRNhDBHsiaBLBkAj+RHhZ9IOdpqKCwf36ISUlBfPnz4e3tzc0NTXRrFkzTJ48GX/9\n9Rdyc3MVeg0JCQmoV6+eQjLcTJ48GWFhYSWO7dmzBz169Ci3z/Xr12EqhwxGBQUF6NSpEwYPHlx8\n82UYBqdOnULbtm1haWmJmJgYmTOHaWlpITMzUyYZ35ORkQENDY0KkzmMGzcOvXr1UthWwrfl4epa\nUamMrKwsnDp1CvPmzUO3bt3A5/NhbGyMnj17YtGiRThz5kyliVjaN22KTeUY0t+LfrMaRLAmwrlS\nfhQWbDauXLlSRVf7Y6A0sNVIq1atkJiYKBdZL1++hJWVFVavXi0XebIgEAhgyePhkgRPwd9eeUQw\nYbPx999/l5CZm5uLU6dOYfLkyWjWrBk0NTXh7e2N+fPn48qVK3LNovPlyxdYWFiI3CuVB69fv4au\nri4yMjKKjyUnJ6NZs2bl9hk0aBAWLFggl/Gzs7PRrFkzREdH4+jRo2jevDns7OywZcsWue2lmZiY\n4OXLl3KR9Y169epV6LeQm5sLR0dHbN++Xa7jfuPAgQNo06aNQmQrAoZh8PTpU+zcuROjR49Gs2bN\nwGaz4eLigtDQUGzduhX3798vfiC5d+8e+CwW8kT8Lo8TwYIIl79bZXpTqs38WrUwpH//ar7qmoXS\nwFYjc+bMQVRUlNzkPX36FGZmZjUiP+rIESNgTIR3EhhXhgiB6uro3blzpfIzMjJw8OBBREREwMHB\nAXp6eujRowdWr15d4qYhDVFRURg4cKDU/cUhICAAS5YsKX7/9OlTmJubi2z79u1b6OrqIj09XS5j\nC4VCbNmyBXXr1oWhoSH++OMPuaf5c3BwkLpARHn07t0bO3bsqLDN9evXwePx8OrVK7mODXz9m61Z\ns0bucquS3NxcXLx4EcuXL0e/fv1gYWEBPT09dOrUCS3c3TGxdm2Rv83mRNhcye/3HRF01dUVVmTj\nR0RpYKuRq1evokGDBnKV+fDhQ5iYmGDr1q1ylSsuBQUFiIyMhLW1NUYOGQIHNhvPxTCu+UTor6qK\nFs7OUi3LvnnzBtu2bcPgwYNhZmYGExMTDBw4EFu3bsXr16/FlpOSkgIDAwOF7+VdvnwZFhYWxXuh\nubm5UFNTE/lgMH36dIwcOVLmMQsLC7Fjxw44OjrC3d0dGzduhKmpKeKkLLBQER4eHkhOTparzLlz\n52L8+PGVtpszZw68vb3lugecm5sLXV1dvH37Vm4yawpv377FwYMHYaKlhesifpsCIqgRYQERbIhg\nSoRw+upbUbqtj7Y24uPjq/uSagxKA1uNCIVC8Hg8uceS3blzp3hmUpWkpaXBy8sLvr6+xU+xyxcv\nBkddHaPV1HBfxA/yExGWqajAhs2GXt26cqlPyTAMHj58iHXr1qFXr17gcDiwt7dHWFgY9u/fX+4T\ndkFBAZydnbFt2zaZdRCH5s2bl6hXq6urW8aw5+bmwsDAAHfv3pV6nIKCAmzatAk2NjZo2bIlEhMT\niw35nTt3YGBggKNHj0otXxQ+Pj4lKv3Igz///BPt2rWrtF1hYSGaNWsm14IHhw4dQuvWreUmryZi\npKOD1yJ+o2+KfCeaECGNCB+J0JK+ht6VbjtAU7PaHu5rIkoDW80EBgYiJiZG7nJv3rwJAwMD7N+/\nX+6yRXHp0iWYmppi6tSpZZYbX7x4gV8mTABPUxPOtWujW61a6K+uDs9ataCrro7AHj2QnJyM8+fP\ng8/ni10OT1yEQiGuXbuGRYsWwcfHB5qamnB3d8ekSZNw4sSJYkezBQsWoGPHjlUWb7tr1y54enoW\nv3dwcMCtW7dKtImNjUWnTp2kkp+bm4u1a9dWWIsVAC5evAgej1dpSTlJ6NOnj9wf8NLS0qCnpyfW\n3+fBgwfQ19eXW63TAQMGVFuFoqrCRE9PZOH7T0UGNu67Y/voa2KY0m37a2pW2QPqj4DSwFYz27Zt\nQ8+ePRUi+9q1a+DxeDhy5IhC5H8jJiYGPB4Phw4dEnm+oKAAc+fOBYfDKS5ivXLlSmhoaJQJ2F+6\ndCmaNGmi0Pq3eXl5OH36NKZOnYoWLVpAQ0MDHh4eYLFY2Ldvn1ySSohDQUEBTE1Nce3aNTx+/BhO\nTk4YM2YMtm/fjjNnzkAgEMDZ2VliR7js7GwsW7ZM7FqswFevaT6fL7d906FDh2L9+vVykfU9xsbG\nYj+ArV69Gk2bNpX575mXlwddXV2kpqbKJKem8c0JateuXRg3bhx46upILmcLx0xMA+ulrS33lYsf\nGaWBrWbevXsHXV1dhWVCuXTpEng8Ho4dOyZ32Xl5eQgJCUGDBg3KnSlcvXoVzs7O6NSpU4mlcIZh\noKWlVWa5lmEY+Pn5ISIiQu76lsfnz5/h7OwMT09PNGzYELq6uujWrRtWrlyJO3fuKGxGW1hYiKCg\nINTj8cBTV0enOnUwQE0N/lpaaKylBVNdXRjweBWmJfyezMxMzJs3D3w+H7169ZI4Qca2bdtgZmaG\nFy9eSHM5JRg7dmwJJy550bVr1xLL6hUhFArRoUOHShN4VEZ8fHyJlYYflffv3+Po0aOYMWMGOnfu\nDC6XC2NjY3Tv3h3z5s3DwMBAjKhbV6SBnVa0RPy+aEbbqujY922eEIGrqSmX0MP/CkoDWwNwdXXF\n2bNnFSb/3Llz4HK5SEpKkpvMly9fomnTpujVq5fILD///vsvoqOjwefzERcXJ9JIubi4iIyb+/Tp\nE6ysrOSyHysOW7Zsgaura/FMJy0tDTt37sTQoUNhaWkJIyMjBAYGIjY2Vm6hJ2/evIFr/fpopqmJ\nbeU4jKQQYUCdOuCw2Thw4EC5stLT0zFt2jTo6+sjMDBQplnosmXLYG9vL7OT14wZMzB16lSZZIhi\n6tSpmDJlitjtX716BR6PJ1Hh99IEBQVh5cqVUvevDrKzs3H27FksWbIEffv2hZWVFXR0dNC+fXv8\n/PPPOHDgQBnnvzdv3kC3bl1kivguFhJhFBF06WvceiSVTZ84oU4djCsn29b/KkoDWwOYPHkyJk+e\nrNAxTp06BS6Xi/Pnz8ssKykpCUZGRliwYIFIw5mUlAQbGxv069evwpytvXv3Lnef7urVq+ByuXj4\n8KHM+lbEu3fvwOfzK7wBP3nyBDExMejbty+4XC5sbW0xcuRI7NmzBx8/fpR4zNevX8OSz8c8VdXi\n4gYVva4QwZjFwvZS3r7v3r3DxIkTweFwMGTIELl9VhMnTkSzZs3w5csXqWUsX74ckZGRctHnew4c\nOIDOYoRxfc/27dvh4OAgVXKSb8vDshRKUDQFBQW4ceMGYmJiMHToUDRs2BBsNhvNmjVDeHg44uLi\ncP/+fbG8qnv7+mJOrVoSx6+nEYHHYuHRo0dVcMU/DkoDWwM4e/Ys3NzcFD5OYmIieDweLl++LFV/\nhmGwbNkyGBgYiEzC8PnzZwwfPhympqbl7sd+z8SJEzFnzpxyz69duxaNGjVS6JJTQEAAxo0bJ3Z7\noVCIv//+G0uXLoWvry+0tLTg6uqK6OhoJCYmVhpilJeXB2cbGyxQVZXoBnabCHwWC8nJyXj9+jUi\nIyOhp6eHUaNGyd0LnWEYDBkyBD4+PlLnl920aRMGDx4sV72Arw5zhoaGEvVhGAZ9+vTB2LFjJR7v\n8OHDaNWqlcT9FAXDMHj06BF27tyJqKioYh8CBwcHDB48GGvWrJEpL/GzZ89grKeHvRJ8NzOJ0ERD\nAzN++UXOV/vjozSwNYCCggKFV+j4Rnx8PPh8vsjSXxWRnZ2NgIAAuLi4iHQyOXToEExNTTFixAix\n8wavX78ewcHB5Z5nGAb+/v4Kq5Ty559/wsrKqtL0cRWRn5+Pc+fOYcaMGfD09ISGhgZat26NWbNm\nITk5ucze+o4dO9BGUxMrieBGX3Muf18EoYAIvYhgWeS5efq7c7FEsDEwgJ6eHsaOHavQWVVhYSG6\ndeuGgIAAqeJJ9+7dqxDnPYZhwOFwJHY4+vDhA4yNjSXeJhk0aBB+/fVXifrIk7S0NMTHx2PKlCnw\n8fEBh8OBmZkZevXqhYULF+Kvv/6Sa0pK4KtzpKGODlbUqoWCSozrfSI0YrMRHhJSo6p61RSUBraG\n0KNHjypzb9+7dy8MDQ3xzz//iNX+8ePHaNSoEYKCgsrMJt+9e4d+/frBxsYGp0+flkiPU6dOwcvL\nq8I2WVlZqF+/vtxj67Kzs2FpaSl3568vX74gISEB48aNQ+PGjaGjo4OuXbti+fLluHXrFlo2aoR9\nRNhPhINECBVhYH8lwnkiGBHhzHfncomgq6oq9QqEpOTk5KBVq1ZS1R0+fvw42rdvrxC9vL29pYrb\nPXLkCCwsLMQ2SPn5+dDT05MoUYksZGVlISkpCQsXLkSvXr1gbm4OPT09dOzYEVOmTEF8fHyVJbp4\n/PgxXG1twVFRwbTatfGK/r9Wc0HRd7ejpia4mppYvnix0riWg9LA1hBiYmIwYMCAKhtv586dMDIy\nqrQm7bfwjVWrVpX4ETEMg7i4OPD5fEyYMEGqZdwXL17AxMSk0na3bt0Cl8uVa+q9sWPHVsnn/f79\ne+zatat46ZxT5DDyzWhWVMbPtJSBBRGi69TB+NGjFa73Nz59+oSGDRti3rx5EvW7fPkymjRpohCd\noqOjpfYMHjZsGIYMGSJW26NHj1ZYwUcW8vPzcfXqVaxduxaDBw+Gg4MD2Gw2mjdvjsjISOzYsQOP\nHj2qNsPFMAyaN2+O+fPnY9SQIdBhsaBWuza01dRQW0UFHo6OiIuLU3jRjR8dpYGtITx//hw8Hk+u\n6d0qIzY2FqampiIdE4RCIWbPng1jY2OcO3euxLnnz5/Dx8cHzs7OuHr1qtTjCwQCqKuri2WcY2Nj\nYW9vL5PjzTeuXr0KPp8vdviLvFi/fj0Gq6uXMJgVFaIXZWBPE6GVk1OV6v3mzRtYWlpKlOP63r17\nsLOzU4g+v//+u9TLz1lZWbCyshLLR2Dw4MEy12wGvv6W7t+/j7i4OERERBQn3W/YsCGGDBmC3377\nDdevX69RRcuPHj0KR0fHEkljcnJykJGRUaX3qB8dpYGtQdjb28tksKQhJiYGFhYWJRxlPn/+DD8/\nPzRv3rzEPp9QKMTKlSuhr6+PuXPnyuWGUL9+fbFnpsHBwQgICJDpqb6wsBAuLi7Vks5t4cKFGFfK\nuUnSGexNIjiVUxRAkTx48ACGhoYVhgt9T2pqqsTOSJLoYmlpKXX/s2fPwsjIqMIHrPz8fHA4HKmK\nBrx58wYHDhzAzz//DG9vb+jo6MDS0hJ9+/bF4sWLcebMGbk8KCoKoVAIFxcXseONlZSPKimpMXTq\n1IkSExPJzc2tysYcPnw45efnU7t27ejMmTOUlZVFPXr0oPbt29Pu3btJTU2NiIju3btHISEhpKKi\nQufPnyd7e3u5jG9tbU1PnjwhR0fHStuuXr2aPDw8aP369TRixAipxlu+fDnp6+tTUFCQVP1lQV1d\nnfJr1yYSCIqPQUIZeURUt+hvUpXY2dnR4cOHqXPnzsThcMjLy6vC9tra2pSVlaUQXWxsbCg9PZ0y\nMjJIT09P4v6enp40YMAAGjFiBO3bt49UVFTKtDl16hTVr1+fTE1NK5SVmZlJV69epZSUFEpJSaEr\nV65QXl4eNW3alJo2bUpRUVHUpEkT4vP5EutZXezfv59q1apFPXr0qG5Vfnyq28Ir+X8SExOrLWPM\n4sWLYWhoCA6Hg82bNxcfz8/Px+zZs6Gvr481a9bIfXlo9OjRWLZsmdjt79+/Dy6XK1XigCdPnkBf\nXx+PHz+WuK882L17NzoVFaKXdga7kwhdK3EMUyQnTpwAj8crU6+3NAzDoHbt2gpb9mzVqhVOnTol\ndf+8vDw4OTmVu5IRHBxc5nuZm5uLS5cuYdWqVQgKCkL9+vWhoaGBVq1aYezYsfjjjz/w9OnTH9rh\nRyAQoEGDBsp0h3JCaWBrEDk5OdDU1BQ7zEVeCAQCTJo0CTo6OrCysipeOrty5QoaNWoEX19fuaTP\nE8Wvv/6KsLAwifr88ccfsLa2luhzYhgGHTp0wMKFCyVVUW5kZ2eDU1S+T1DkFTyJCEH0tdC8oMiI\n5hWdM6Wvha6/z/LUTkuryqsklWbXrl0wNjbGkydPKmynp6cntxq2pYmIiMDixYtlknHjxg1wudwy\n3+2CggLo6enh5MmTiI2NxahRo+Du7g4Wi4XGjRtj2LBh2LBhA27evFlleauriri4OLRs2fKHfkio\nSSgNbA3Dx8enSvc+Pn78iA4dOqBdu3Z4//49fvnlFzg5OSE8PBwGBgbYvn27Qn9sR44cgY+Pj8T9\nwsLC0KNHD7F1i4uLQ+PGjav9hhg6ZAgmqKhgelGc6/evmUVG1KLofa3v/n1BhLtE0GezFVoIQVzW\nrFkDGxubCmO3LSws8PTpU4WMHxsbi4CAAJnlzJs3D+3atcPz58+xd+9eTJgwAc7Ozqhduzasra3R\nv39/LFu2DOfPn5eqTvGPREFBAerVqydxuJ2S8lEa2BrG8uXLMXz48CoZ6/r167C0tMT48eOLDc+p\nU6egq6sLPT29Kkl7du/ePdjY2EjcLy8vD25ubmJ5eb5//x58Pl9k3uOq4ltYE4/Hg07t2mIVof/+\nJSRCDzU1GPN4aN26tcSJQhTBtGnT4OrqWiKuNCsrC+vWrkUbFxdwVFVhqa8Pd1tbjAkLw4MHD+Q2\n9s2bN2Fvby9V3/T0dBw7dgyzZ89Gly5dUKdOHWhqaqJr166YNWsWfHx8MHPmTLnp+qMQExMDb2/v\n6lbjP4XSwNYw7t69C3Nzc4Uv0cTFxYHL5WLXrl0AgIyMDISEhMDMzAzx8fGIiIiAh4eHyET+8iQv\nLw9169aVamb59OlT8Hg8XLx4scJ2AwYMwJgxY6RVUWZu3LiBli1bws3NDZcuXcKyRYvgwGbjrZjG\nlSHCmDp10LxRI2RlZWHt2rXg8/kYPnx4lWT/Kg+GYTBixAi0a9cOb9++RfiwYdBjsdBDQwOH6Wt6\nxwdEuECESXXqgKeujg4eHnKpO1tQUAAWi1VpFq6cnBwkJydjxYoVCAgIgI2NDTQ1NdG6dWtER0dj\nz549OH36NPT19XHv3j0UFBRAX19f7uknazq5ubkwNTWtsiQm/ysoDWwNg2EYmJub4+7duwqRX1BQ\ngIiICNjY2BRncjpw4ABMTEwQGhpaPBthGAbDhw+Hp6enTKkExcHc3FzqpcRDhw7B3Ny83KT7x44d\ng6WlZbWERXz69AlhYWHg8/mIiYkpjilkGAazpk6FJZuN499lyBH1ekYEf3V1NHNyKnGNnz59QlRU\nFLhcLpYsWSJ17llZEQgE8PX1BZfNxnA1Nbyq4Fry6Gu6Rx6LhV1y2Ed2d3dHcnJyCV1u3bqFjRs3\nYsSIEXBxcQGLxYKbmxtGjhyJzZs34/bt2yViO7+xdu1auLu74+jRo2jatKnMuv1orFixAt26datu\nNf5zKA1sDWT48OFyCXAvzdu3b9GqVSt07doVGRkZSEtLQ58+fWBra4szZ86UaS8UCjFo0CC0b99e\noQn327ZtK7J4gLiMHz8evr6+ZTycs7OzYWVlVeUekUKhEBs3boSBgQFCQ0PLNf67d+1CQysr2Glo\nYLmKCm4T4RURHhIhnghdNTXBYbMxNiys3P2/e/fuwdfXF7a2tjh8+HCVO6ekp6fDztQU8yRY7r5J\nBEMWCwkJCVKP+y1PdXBwMMaNGwcvLy9oamrCzs4OAwYMwK+//oqLFy+KnWmIYRj4+PjA1dVVZuep\nH43s7GwYGhpW6hmuRHKUBrYGsn//fqkcfyriwoULMDU1xfTp0yEQCLBlyxbweDxMnDixQuMpEAjg\n7+8PX19fhTnXhISEYN26dVL3LygoQIsWLcqk8xs/frxcHGEkISUlBU2aNIGHh4dYoUQMw+DcuXMI\n8PMDr25d8DQ0wGexYG9sjI0bN4rtWJOQkID69evDx8cHd+7ckfUyxGZg796IUFMr15g+pK8FDQaU\nOn6BCPoaGmJvQXz48AEJCQklioVra2vD3Nwcc+fOxfHjx/Hp0yeZruXZs2dQUVERK8vTf4l58+ah\nX79+1a3GfxKlga2BfP78GZqamnKZNTIMg3Xr1oHH4+Hw4cN49uwZOnbsiMaNG4sdS1pQUICePXvC\nz89PIXGNCxYswPjx42WS8erVKxgaGhZ7QF67dg18Pr/K9ig/fPiAYcOGwdDQELGxsVLFCzs5OeHv\nv//GypUrERoaKnH/goICrFixAlwuFxEREQoLkfnG+/fvoVO3Lj5WMFvtQATPolCk0ud6amhg3dq1\nZeR+Kxa+dOlS9OvXD1ZWVtDW1ka7du0wadIk7N+/H69evcKlS5fQuHFjuV3PiRMnUK9ePdjb2yt0\nxaYmkZGRAS6XW2lOciXSoTSwNRRPT0+ZlzZzc3MxZMgQODo64t69e1ixYgX09fUxf/58iQ1lfn4+\nunbtij59+sg91GXPnj3o0aOHzHKOHTsGY2NjvHr1Cq6uroiNjZVduUoQCARYu3YteDweIiMjhY24\nkAAAIABJREFUkZGRIbUsPT09fPjwAX/++adM3pwfPnxAaGgoeDweVq9erbDQpAVz52Iwi1Wucf2d\nCH2JMEPEDBZEOEkEJ0tLXL9+HTExMQgJCUGjRo3AYrHQpEkThIWFYevWrbh3757IB5acnByoq6vL\nbWVl+PDhWLRoEfr164eoqCi5yKzpTJ06VSF1e5V8RWlgayhz586V6Uf+4sULuLu7o2/fvkhJSYGH\nhwc8PT1x//59qWXm5uaiY8eOCAwMFOkoIi3Xr19Hw4YN5SJr6tSpsLa2Rtu2bRW+H5mcnIzGjRvD\ny8sLN2/elElWTk4O1NTUwDAMHj9+DAsLC5n1u3nzJtq1awdHR0eZ9rjLw9HcHBfKMa6ZRLAjwhsi\nTC/HwDJEMCSClZUVBg4ciNWrVyMlJUUig+nk5CRVVq/SFBYWgsfj4enTp/j48SNMTEzw119/ySy3\nJvPhwwdwOByR9Z2VyAelga2hXL16Veo4v7/++guGhoaYP38+ZsyYAS6Xi3Xr1sklzeG///6Ltm3b\nYsiQIXJLm5iZmQkNDQ25GMRHjx5BVVVV4uxQkvD27VsMGjQIJiYm2Llzp1z0fvz4cXEC+8LCQtSt\nW1cupcAYhsGBAwdQr149dOvWDQ8fPpRZ5jf02Oxyl4dHE2FR0f/Lm8GCCD7a2lLVdv1GUFCQRFV+\nyuPkyZNwc3Mrfp+QkABzc/Mqz6pWlYwfP16qrQgl4lOrWhMhKymXRo0aUWpqKvXp0oW6tGpFnZo3\np4CffqJNmzZRTk6OyD4AaOnSpdS/f3+aMmUK7dixg65cuULXr1+nkSNHUq1asv+52Ww2xcfH04MH\nDyg8PJwASdPVl0VbW5tYLBa9e/dOJjkAKDw8nCZMmEAHDhygY8eOyazb9xQWFtKKFSuoYcOGxOfz\n6d69e9S/f3+RyeIlJTU1lYyNjYmISFVVlczNzenZs2cyy1VRUaHu3bvT3bt3qUWLFtS8eXOKjo6m\nzMxMmWXnFRaSuojjfxPRKSKKKnpf0TeERUS5ublS6+Dq6ko3btyQuv839uzZQ3369Cl+7+vrS76+\nvhQVFVVBrx+X1NRU2rRpE02ZMqW6VflvU80GXkkpsrOzMW/2bJhzuXBWVcUaIhwmQgIRthChq4YG\nOGw2okJDS5SSy87ORr9+/eDi4oKQkBAYGBjIbXYliszMTDRt2hSRkZFyGcPDwwPnz5+XScb27dvh\n7OyMgoICnD59GgYGBnj58qXMugFAUlISnJyc4O3trRCHkN9//x19+vQpft+5c2eFeLO+ffsWQ4YM\ngaGhITZs2CDVUn9eXh4uX74Mjrq6yLjXFUTQKFr+NSSCJhFYRHAT0baNjg5Onjwp9fWcOXMGHh4e\nUvcHvq4Y8Pn8MrmVv3z5Amtra7FL9P1IhIWFYezYsdWtxn8epYGtQaSlpaGJgwN6qqvjagWemc+I\nMEZVFaYcDm7cuIFHjx7ByckJPj4+sLS0RGBgID58+KBwfT99+gQXFxdMnDhRZiMbGBgoU43WDx8+\nwMDAACkpKcXH5s2bhxYtWsjk+fz69Wv4+/vD3Nwce/fuVdgDy9KlSxEZGVn8PjIyEkuWLFHIWMDX\nLYiWLVuicePGImOgvyEQCHD79m3ExsYiNDS0OOm9s7MzbI2MsEnE9zOHCO+KXmlEGE+E3kRllpM/\nEUFXXV2mwveZmZlgs9ky+QScOnUKrq6uIs+dP38ehoaG1ZoxS948e/YMHA5Hps9diXgol4hrCFlZ\nWdSxZUvq+PAh7c3Lo4oqwloS0TKBgJZ++kTeLVtS06ZNSUtLi+7cuUNr1qyh7du3E5fLVbjOenp6\ndPz4cUpISKCZM2fKJMva2poeP34sdf9x48aRv78/NWnSpPjYxIkTSVdXl37++WeJ5RUUFNCiRYvI\n2dmZbGxs6N69e9SrVy+5LAeL4vslYqKvNU8fPXqkkLGIiNzc3OjcuXM0adIkCgoKoj59+tCzZ8/o\n+fPntGfPHoqOjqY2bdqQnp4e+fn50fHjx8nW1pZWrFhBHz9+pL///pt+3bSJ1mhqllkCZhERv+hl\nQESaRcf0S7WLVVGhLr6+xOPxpL4ObW1tMjY2pgcPHkgtY+/evSWWh7+nZcuWNHjwYBo+fLhctkNq\nArNnz6ZRo0bJ9LkrEZPqtvBKvjKgZ0+MrFsXK4uW0upSyTqhz+hrZRXN715ziLCOCFq1apVIc1jV\npKWlwd7evkyiB0nYunWr1EkhTpw4AXNzc5HpED9+/Ahzc3McPHhQbHnHjh2DnZ0dOnfuXCUFDwDA\n398f27dvL36fmJiI9u3bK3TM9+/f4+jRo5g8eTJsbW2hoqICDQ0NdO7cGbNnz0ZiYmK5WaiArxmr\nrPj8cj2JK3oJiGBMhNDQUJnDbPr06YNt27ZJ1VcgEMDAwKDCv3NeXh4aNWpUJWFfiubBgwfgcrky\nhZMpER+lga0BpKamQrduXXwmwn4iHCRCaDkGtnTeWoYITiwWjh07Vq3X8ObNG9jY2EhUPP17kpOT\n0axZM4n7/fvvv6hXr16FnqgXL14Ej8ertH7p8+fP0bNnT1hZWSE+Pl5iXWTBy8urRFjIkydPYG5u\nLjf5X758wenTp7F48WL06dMHlpaW0NHRKU7esG/fPqSkpCAwMBAmJiaIi4sTy0t8y+bNsFRTwwcJ\njCtDhDA1NbRycUGXLl1gY2MjU5rH+fPnS72fmJSUJFayips3b4LL5f7wRQD8/f0xd+7c6lbjfwal\nga0BzJo2DSPU1UvchKaUY2AFIm5YMUTwU/BsRxxevnwJS0tLrF69WuK+aWlp4HK5EvebMGGCWGne\nVqxYATc3N5GhL7m5uZg1axY4HA5mzZoll/AYSbG2ti5Rzk2WUJ38/HxcuXIFa9euRXBwMBwdHcFm\ns9GsWTNEREQgLi4O9+/fL9eAXrhwAU2aNEHTpk0rrFQkFAoRHR0NAz09OLFYFSb6/37mGqaiAiNt\n7eLUhn/++Sfq16+PTp06SeVAduzYMbRp00bifgAwatQosQ3OggUL0KZNG7mFp1U1N2/ehIGBQbUU\nvvhfRWlgawAWXC5ulLoR/VKOgTUhgikRgr9zGvlCBN26dWuEI8bTp09hZmYmcWwiwzDQ1NSUKO7w\n+vXr4PF4SEtLE0t+z549MWrUqBLHDx8+jHr16qFHjx7VFnDPMAxYLFaZG5+dnV2leYWFQiHu3buH\nrVu3Ijw8HE2bNgWbzYaTkxOGDBmCdevW4dq1axJX2xEKhdi6dSuMjY0xYMAAvH79usT5/Px8BAYG\nokWLFvjw4QMWzZsHrro6Jqiq4pkIw/ovETYTwVVTE56urmjYsCGmT59eQt7SpUvB5XIxduxYib4H\n79+/h46OjsQz4G/Lw+LGBgsEArRo0UIhhTiqAj8/P6lXmJRIh9LAVjMCgQC1VFTKzExLz2CziXCN\nvhbeflfklenz3XkXbW1cvXq1ui8HAPDw4cPiZUZJaNSokdhZeQQCAdzc3LBp0yax5X/+/BnW1tb4\n/fff8fjxY3Tp0gV2dnZITEyUSE95k5GRAW1t7TLHu3TpUmLvmGEYvHz5Env37sXEiRPRrl07aGtr\nw8rKCv369cOSJUtw5swZuc5Qvnz5gsmTJxfP7nNycpCZmYn27dvDz8+vRM7ehw8fwsvDA5qqqmiv\nrY0QNhuh6urop6kJfXV1dG3TBgkJCRAKhUhLS4ONjQ1WrVpVYrx3794hJCRE4jAiU1PTSrcASnP6\n9Gk4OztL1Ofx48fgcrlVWlBBHqSkpMDExKRaVmf+l1Ea2Grmy5cvYKmqlnniLz2DLf1KK5rRZhe9\n99TRKU50XxO4c+cOjIyM8IcEdT979uyJ3bt3i9V22bJlaNOmjcSzluTkZLDZbOjq6mLBggXVVkf1\ne27fvi0ya9eIESMQEhKCWbNm4aeffoKBgQH4fD66dOmCmTNnIiEhoUrCsYCvKxO9evWCqakpLCws\nMGLEiDLGj2EY2NjY4PTp0zh48CBiYmKwatUqbN++XWS932fPnsHU1BQ7duwoc+7q1ato0aIFXF1d\nxYqP/umnn7Bnzx6JriksLAxz5syRqA8AxMTEwM3NTSGFLxRFx44dZapYpUQ6lAa2mhEKhahdqxYK\nK5nBlmdgs4reN9TSwo0bN6r7ckrwbc9n//79YrWPjo7G/PnzK2337Nkz6OvrS5T2j2EY7Nu3DxYW\nFnB3d0f9+vXFLgWnaI4fP47WrVvj3LlzWLp0Kfz9/WFtbY26devCyMgIEyZMwJ49e/DixYsqr/f6\nPffu3YOBgQEMDQ3h6elZZrXh3LlzaNCggUQ6/vPPP+Dz+SJrwzIMgx07dsDU1BQBAQF49epVuXKm\nT5+On3/+WexxBQIBDA0NS+x7iwvDMPD19cW0adMk7lsdnDlzBlZWVjXiYfJ/DaWBrQE4WVgg6Tsn\nkFwiTKKvJb7yiFBIhMtEuF+0RPyRvlYpaVfU5z0R1Ing5uaGCRMm4OjRo9UWslOab2Xjjhw5Umnb\n3377DUOHDq2wDcMw6NSpk0SekPfu3UOHDh3g6OiIpKQkMAyDwMBABAcHiy1DnhQUFBRXkBk6dChM\nTU1Ru3bt4goyW7ZswZ07d5CQkIB27dpVi46lSU5OhoGBAWJjYyEQCBATEwMDAwMMHTq0eA88ODgY\nixYtklj2hQsXwOPxkJycLPL8ly9f8Msvv0BfXx9z5swRucx56NAhdOrUSewxz549i0aNGkms6zdS\nU1PB5/Nx+fJlqWVUBQzDwNPTE1u2bKluVf4nURrYGsDqVavQV0MDoK+VR1RKvWbS19JfVvQ1BZ0R\nEQYV7cWCCHOJoK2qCm9vbwQFBaFNmzbQ1NSEm5sbxo4di/j4+GqNe7t06RJ4PF6lFV1OnDhRqTfo\nzp070bBhQ7GW57KyshAdHQ19fX0sX768RJ8vX76gQYMG2Lx5s3gXISVCoRAPHjzA9u3bMXr0aDRv\n3hxsNhsODg4YNGgQ1qxZg9DQUJH1cL85jFU3hw4dApfLLTPL/Pz5M8aNGwd9fX3MmjULOjo6ePv2\nrVRj/Pnnn+Dz+fjnn3/KbfPkyZPiMKp9+/aVmCm/fPkSfD5f7NlzREQEZs+eLZWu39i1a1eNWgkR\nRWJiIuzt7eVa/UqJ+CgNbA0gMzMTeiwWUsUIcxAV9mDJZuP48eNYuXIl3NzcYGJigvHjxyMuLg5z\n5syBt7c3NDU10bhxY0RGRmL//v0VJhBQBOfOnQOPx6twn7gyg/Lx40cYGhri0qVLFY7FMAx27twJ\nExMTDBw4sNyb/p07d8DlcnHr1i3xLkIMXr9+jQMHDmDy5Mnw9vaGrq4uLCws0Lt3byxatAhJSUnI\nysoq0ScsLAwrV64sI0sgEKBu3brVWvz7t99+g5GRUYkUlKV58OABnJ2dwWazcfDgQamXsb/9zUTt\n137PyZMn4ejoiHbt2hUbZIZhwOVyS+TnLg+hUAhjY2O55JTu378/Ro8eLbMcRcAwDNzd3cX2a1Ai\nf5QGtoYQHRGBTmx2mb3Yyl4T1dTQrlSChtu3b2PChAkwNjaGu7s7Vq1ahdTUVFy4cAHz589Hp06d\noK2tDScnJ4SFhWH37t1VEuJz6tSpCpcCv8V+5uTkiLxJDx48GBERERWO8c8//6B169Zo3LixWM4x\ncXFxsLOzK2P0xOHTp084fvw45s6dCz8/PxgbG4PL5Rbvzx05ckSsz7V79+7Yu3evyHP169evcFan\nKBiGwdSpU2FjY4PHjx9X2t7LywvTpk2Dg4MD2rdvL7XOq1atgo2NTaWhV4WFhVi1ahV4PB7Cw8OR\nnp6ODh064PDhw5WOce7cOTg5OUmlX2nS09NhYmIiU8ECRXHgwAE4Ozv/sHG7/wWUBraGUFhYCN/W\nrdGHxUKuGIaVIcKMOnVga2JSriepQCBAYmIiAgICoKOjg+7du+PAgQPIz89HYWEhUlJSsHjxYnTt\n2hU6Ojpo0KABRo4cid9//x2pqakKuc7ExETweLwSMyKhUIgTJ06gR4cOYKmooLaKCtRq14YZh4Ox\n4eF4+PAhTp06BTMzs3INYUZGBiIjI8Hj8bBmzRqJlsRCQkLg7+9f4cwrJycHycnJWLFiBQIDA2Fr\nawtNTU14eXlh3Lhx2LVrF54+fSrV7K2ihA5du3at8mouBQUFGDJkCNzd3cV6QHj06BF4PB7y8/NR\nUFCAlStXgsfjYdSoUVJ5OU+fPh0uLi5ixcJ++PABoaGh4PP56NixY4nY2vIYPXo0Zs6cKbFe5ZGY\nmAhzc/MalX5QIBDAyclJrAcOJYpDaWBrELm5uej7009w1tDAtiJnp9KGVUiERCJ00tCAm7292Hte\nmZmZ2LhxI7y8vMDlchEeHo4rV64UGwSBQIBr165h2bJl8PPzA4fDga2tLUJCQrB9+/YKPTglJT4+\nHnw+Hzdu3MD+fftgZ2yMhpqaWFfkHV1IXyuy3CPChDp1wFVXB1ddHTExMWVkCYVCbNmyBYaGhhg2\nbJhUFUJycnLg7OyMNWvWAPj6sHPz5k1s2LABw4cPR+PGjcFiseDm5oaRI0di8+bN+Oeff+S2r2Vi\nYoIXL16IPDdmzBipHIekJTs7G507d4avr6/Y8bS//PILoqKiShz7+PEjwsPDwePxsGLFColCWhiG\nQVhYGFq3bi123Obff/8NBwcHaGtrIykpqdx235aH7969K7Y+4jBq1CgMHDhQrjJlYefOnWjWrFm1\nep0rURrYGodQKMTBgwfRsXlz8NTVEV6nDhYQYTERJtSqBWsNDTS2tsaGDRuk3pt78uQJZsyYgXr1\n6sHBwQELFiwok6lHKBTi5s2bWLlyJXr27Akul4t69eohODgYW7ZskTnr0d69e6GrqQljdXX8RWVz\nLH//yiXCIiIY6uiUSKZx7do1NG/eHE2aNJHam5NhGDx+/BhLly4Fi8VCo0aNoKGhAXt7ewQFBWHV\nqlW4dOmSwgL0BQIB6tSpU24Ixdq1azFs2DCFjF2ad+/eoUmTJggODhbbIAoEApiamuLmzZsiz9++\nfRsdOnSAvb09/vzzT7F1EQqF8Pf3h5+fHwoLC8Xq8y2R/bc9b1F5g8+fPw9HR0ex9RCX7Oxs2NjY\nYN++fXKXLSmFhYWwtbWtkcvW/2soDWwN5uHDh1i4cCGix4zBmLAwzJo1CxcuXJDbUynDMDh37hxC\nQkKgp6eHjh07Yvv27SK9IhmGwe3bt7FmzRr07dsXBgYGMDc3R1BQEDZu3IjHjx9LpNfW2FiYqanh\nhQT7zfu/M7KhoaEwMDDAxo0bJdpjevv2LeLj4zFlyhT4+PiAw+HA1NQUPXv2REBAAIyMjKo0ofu3\ncI/yOH78uNR5diXh8ePHsLGxwZQpUyT6Ox47dgxubm4VtmEYBvHx8bCxsUHnzp1x//59sWTn5+fD\nx8cHwcHBYukkFAqhpaWFV69eYebMmeBwOJg2bVqJ73NUVBRmzJgh1viScuHCBRgYGEjtSS0vNm3a\nhLZt21arDkq+ojSwSgB8XSb9/fff0alTJ+jq6mLIkCE4ffp0ucaLYRjcv38fMTExCAgIgLGxMUxM\nTBAQEICYmBjcv3+/3Jvip0+foMti4Y4II5pOhO5F4UgWRNhZ6vwSFRXo1amDsLAwpKenV3hNnz9/\nxqlTpzB//nz07NkTpqam0NPTg4+PD6ZMmYL4+PgyN8PRo0fDz8+vypbWrl69WmE1l2/ZjhTJlStX\nYGRkJFWmH39/f7GLO+Tn52PJkiXQ19fHmDFjxNqzzM7OhoeHB6Kjo8Uaw9PTEydOnAAAvHjxAv36\n9YO5uTn++OOP4tm2ItMcTp48GT/99FO1Lc3m5eXBwsKiXEdCJVWL0sAqKcObN2+wePFiODk5wdLS\nEtOmTau0LirDMHj06BE2btyIoKAgmJubw9DQEH379sWaNWtw+/bt4pvOsiVLEMhmi5yl+he9/iXC\neSLoEJUwxLlE0FdTK+PZmpubi0uXLmHlypUICgqCvb09NDQ00KpVK4wZM6Y4/3BlN778/Hw0bdoU\nS5Yske1DFJP4+Hh06dKl3PMCgQDq6uoKi7VMSEgAl8uVqF7uNz59+gQdHZ1KH3RK8+7dOwwbNgwG\nBgb47bffKt3LTk9Ph6OjIxYuXFip7MjIyDLtzpw5A2dnZzg7O8PKykoiXSUlPz8fzs7OEuXIlier\nVq1C586dq2VsJWVRGlgl5cIwDK5du4bIyEjw+Xy0bNkS69evF9tb8tmzZ9iyZQuCg4NRr1498Hg8\n9OzZE8ba2kgWYVyziaBGhEffHRtIX7Nafd9ufJ06CA4MxObNmzFy5Ei4ubmBxWLBxcUFw4cPx4YN\nG3Dz5k2x9+5K8/z5c/D5fLHCfGRl3bp1le6x2tvbyzVW9xuxsbEwMDCQerbzbbtAWq5fvw4vLy80\natSoRC1cUbx+/RqWlpbYuHFjhe22bt0Kf3//MscFAgHat28PDQ0NDB8+XCpnOHG5desWuFxupfG8\n8ubff/+FkZGR2AUzlCgepYFVIhYFBQU4dOgQevXqBR0dHfTr1w8JCQkSGbGXL19i9uzZMFdVFenU\ndJ0I7FLHlhLhp1LH7hJBq1YtBAYGYsWKFbhw4YLckzEcPnwYZmZmCr0RA8DUqVMr3RP86aefxM7n\nLA4Mw2DOnDmwtLSUKdmCu7u7RI5L5emyZ88eWFhYoGfPnhVWxHnw4AGMjIwq/Cxu3boFOzu7MseF\nQiHMzMxw/vx5REZGgsvlSuzdLAmLFi2Cl5dXlcagLlq0CL169aqy8ZRUjtLAKpGY9PR0rFmzBs2a\nNYOhoSHGjRsn9gwrMTER3jo6IpeHzxLBsNSx9URoI2Kmq66qquCrBCZOnIiOHTsq9CY5ZMgQrF+/\nvsI2Y8eOFWt5VBwEAgFCQ0Ph7OwsVtaj8vjnn39gYmIit1ClnJwczJkzBxwOB5MmTSo33vnatWvg\n8XjlzngLCwvBZrPL9L948SLs7e2Ltwju3LmDDh06wMHBodIUntIgEAjg6emJpUuXyl22KDIzM8Hj\n8X64Mnr/dWqREiUSwuFwaNSoUXTp0iVKSkoiNTU16ty5M7m4uNCKFSvo/fv35fYVCASkWs45TSLK\nKnUsk4i0Sh2rQ0QChiEAUl+DOMyZM4dyc3Np3rx5ChsjNTWVjI2NK2xja2tLjx49knms3Nxc6t27\nNz18+JDOnj1b6bgVERsbS4MGDaLatWvLrBcREYvFol9++YVu3bpFb968ofr169OWLVuIYZgS7Vxd\nXWn37t3Ur18/un79ehk5qqqq5OjoSDdv3ixxfM+ePdSnTx9SUVEhIiIHBwc6duwYzZs3j0aOHEnd\nu3enJ0+eyOVaiIhq165NW7Zsofnz59OdO3fkJrc8VqxYQT4+PuTg4KDwsZRIQHVbeCX/DQQCAU6e\nPImgoCDo6OgU1+fMy8sr0S45ORlNtLVFzmBF7cEOIMLPpdqlEoGrqVkl1/XmzRsYGRnh1KlTCpHf\nqFGjSssMnjhxAq1bt5ZpnI8fP6JFixYICAiQuWxZQUEB+Hy+ROUCJeXSpUvw8PCAu7u7yL3wAwcO\niCw39+XLF3h5eqJ106YI6NYNIQEBmDFtGoyNjctdZcnNzcW8efOgr6+Pn3/+Wa4F6zds2AAXFxeF\nlopLT0+Hvr6+WCktlVQtSgOrRO5kZWVhy5YtaNu2LfT19REaGoqLFy+CYRhkZ2eDw2aXG//qT4T+\nRV7E54q8iO+WarNaRQW9fX2r7HpOnDgBIyMjhaSP1NfXrzQd4fPnz2FiYiL1GM+fP4e9vT2io6Pl\nstx94MABtGrVSmY5lSEUCrF9+3aYmJjA39+/TLarTZs2wcLCAq9fv8bjx48RMXw4OGw2uqipYRUR\n4ogQQ4QIVVVoqqigi5cXEhMTyx3vzZs3CAoKgomJCeLi4uTyWTEMgy5dumDKlCkyyyqPSZMmYfjw\n4QqTr0R6lAZWiUJ5/vw55syZA1tbW9jZ2WHOnDkIDgjAZFVVkQb2U6k42N9LnWeIYF2nTpVXCJkx\nYwZat24ttWeyKPLy8qCmplbpjVwoFEodqnPjxg2YmJhgxYoV0qpZhm7duim8zN/3ZGdnY+rUqeBw\nOJg+fXqJz2HhwoUwNzcHV0MDv6iq4mU5D245RIglgrWGBiZERVX4mV+4cAHu7u7w8PCosIqQuLx9\n+xYGBgbl5puWVTaHw8HLly/lLluJ7CgNrJIqgWEYXLhwASNGjICOjg50a9VCdjk3w4peJ4hgpKUF\nPT09RERElEnxqCgEAgG8vb0xefJkucl8+vQpzM3NxWrboEGDctMRlsfJkyfB4/Gwa9cuadQTSVpa\nGnR1deW6jCouz58/R79+/WBmZoadO3eCYRicOnUKuqqqOCfm9+cjEZqz2YgKDa1wLKFQiM2bN8PI\nyAjBwcEyZ2fas2cPbG1t5R7PHBkZicjISLnKVCI/lAZWSZWTm5sL71at4F2rlkTl+Z4Tga+qioMH\nDyItLQ3jx48Hh8NBRESETB6x4vLu3TuYmpri6NGjcpF3/vx5NG/eXKy23bp1K7eknSh27txZaf1d\naViyZAkGDx4sV5mScvbsWbi6usLd3R36bDaSRHxXAos80rWIYEWEOaVWSRqw2dixY0elY2VmZmL8\n+PHQ19fH4sWLZdpLDQwMRHh4uNT9S/Py5UtwOJxKS/spqT6UBlZJtVBQUIDOrVujC4sl1kz2HyKY\nsViwMDVFSEhI8VJtWloaxo0bBw6Hg9GjRyvc0J49exZ8Pr/c6jeSsHv3brHjFseNG4cFCxaI1XbJ\nkiUwMzOTex1ZhmHg4OCAM2fOyFWuNAgEAvTy88OAcr4vt+n/q1HdJ4IBEf787vyfRHCxsRE7peGD\nBw/QpUsX2Nra4siRI1LpnJGRATMzM7mFBQ0bNgyTJk2SiywlikFpYJVUGwUFBRg2YAD4LBZ+rlMH\nz0Xst54lgj+bDV0WCzu2bUNWVhY6dOiAbt26lUgukZaWhrFjx0JPT0/hhnbhwoXw8PASOtTtAAAg\nAElEQVSQ2TN0+fLllRaQ/8Zvv/2GoUOHVthGKBRizJgxcHR0VMie3OXLl2FtbV0jSqAJBAKY6evj\nmhgPZ/eJYEJUoq2QCPU0NHDp0iWJxk1ISICdnR18fX3FLlrwPcePH4eZmRk+ffokcd/vefToEfT1\n9SVOU6mkalHGwSqpNurUqUPrt22jszduUG5ICLmy2dREW5s66eiQl4YGmauqUhcVFbpnY0NrN22i\nPv36kZaWFh05coQ0NTWpY8eOlJGRQUREBgYGtHTpUrp79y6pqqqSk5MTRUVF0du3b+Wu9/jx44nH\n49HEiRNlkpOamkomJiZitbWxsakwFjY/P5/69+9P165do3PnzpGZmZlMuokiNjaWgoODi2NJq5Pj\nx4+TcUEBuVbQZhQRaRCRIxFNISrRthYRhebm0voVKyQa19fXl/755x9q3749tWzZksaPH0+ZmZli\n9+/QoQP5+flRRESEROOWZubMmTR69GjicDgyyVGiYKrbwitR8o3s7GxcuHABR48exYkTJ3Dz5k2k\np6cjJiYGLVq0AJ/PR2RkJK5fvw6BQFA8WxNVDP7t27cYM2YM9PT0EBkZKfcQm/T0dFhaWspU/zMg\nIABxcXFitX3x4gWMjY1FnsvIyECbNm3Qu3dvhdWtzcnJqVHeqsuXL0dE3bqVzl4ZIiQRQZ8Il0ud\nO02EVg0bSq1DWloahgwZAkNDQ2zatEnssJ5///0XdnZ2UnvC37lzBzweD5mZmVL1V1J1KA2skh+G\nhw8fYurUqbCwsEDDhg2xaNEiTJkyBebm5rh7967IPt8MLYfDQVRUlFwN7eXLl8Hj8aQO8G/Tpo3Y\nCSyEQiFYLBays7NLHH/9+jUaNmyIiIgIuaUtFMWOHTvQsWNHhcmXlNmzZ2OyiorYDnIjiRBV6tg1\nIjjLobrOlStX0Lx5c7i5uYldOOHSpUvg8/lSfR979eqFRYsWSdxPSdWjNLBKfjiEQiGSkpIwePBg\n6OrqolGjRtDR0UFSUlK5fVJTUxEVFQU9PT2MGTNGbkWxV61aBRcXF6lmjra2thIl23d0dMTff/9d\n/P727dswNzfHokWLFL4v6u3tjd9//12hY4hLXl4exo4di9ByYqlFvYYS4Rc5z2C/h2GY4qQYgYGB\nYoWPTZkyBV26dJHob3ft2jUYGxsrrHyhEvmiNLBKfmiys7Oxbds2uLi4QEVFBT4+Pjh37ly5N63U\n1FRERkbKzdAyDIM+ffpgxIgREvfT0NAoN6m9KPz8/LBnzx4A/+/NvG3bNonGlYYXL16Aw+EobPm5\nInJzc5GSkoJ169YhJCQErq6uYLFYsLCwgHOdOiKN6Xv6mqAkmwgCIiQSQZsIKaXaLSCCsa4uxowZ\ng0OHDsnseAR8TdU4efJk6OvrY+7cuRV+Zvn5+XBxccGGDRvElt+5c2exC9wrqX5UAKC694GVKJEH\nhw8fpoCAANLS0iI2m00DBw6koKAgsrKyKtM2NTWVFi1aRHFxcRQcHEzR0dFkaGgo1bhZWVnk7u5O\n06dPp8DAQLH7mJiY0JcvX8QeJzo6mvT19cnW1pZCQ0Npx44d1KFDB6l0loTZs2dTWloarVmzRqHj\n5OTk0K1bt+jatWt07do1un79Oj18+JDs7OzIzc2NXF1dyc3NjRo1akRqampUz9CQDqWnk0spOR+J\nqDcR3SQiEJEdfXVy6vZdG4aI7DQ0aMKyZfTx40c6ffo0Xbx4kWxtbalNmzbUpk0b8vT0JD09Pamu\n5enTpzRu3Di6desWLV26lPz8/EQ6h925c4fatGlDly9fpnr16tG///5Lf/zxB924eJEy09OJpaFB\nZjY2NGDQIHr79i0FBATQgwcPqG7dulLppaSKqW4Lr0SJPLl//z7Mzc0xatQojBo1Cvr6+vDy8sKm\nTZtEOoW8efMGo0ePhp6eHsaOHSt10P7ff/8NLpdb7l5wae7evSuybmlFxMTEwMPDA8bGxrh+/bo0\nakqMUChEvXr1cOXKFbnKzc7Oxvnz5/Hrr79i0KBBcHJyAovFgqurK0JCQrBu3TqkpKRUOAOcO2sW\nhqmrS5wNDEWzWldb2xIrHfn5+UhOTsbcuXPRoUMHaGpqwsXFRaYZ7okTJ+Dg4ABvb2/cvn1bZJul\nS5fC3d0do0eMAIfNxk+amviVCFuIsI4Io9XUoK+uDhMdHURFRUmsg5LqQ2lglfzneP36NZycnDB6\n9Gjk5ORg//798PPzg46ODgICAnDs2LEyDkFv3rxBREQE9PT0MG7cOKkM7caNG+Hg4FDGEUkUJ0+e\nRNu2bcWWzTAM/P39wWKx8PTpU4l1k5akpCQ4OTnJtMeblZWFM2fOYPny5RgwYAAaNGgAFosFd3d3\njBgxAuvXr8fVq1fLVF6qjLS0NPA0NXFaQuOaQQQHMTI5ycvgFhYWYuXKleDxeIiIiCjT7/jx49Cs\nVQvja9XCs3J0/pcIm4lgzWZjfERElRZyVyI9SgOr5D9JRkYGPD094e/vX3zjfv/+PVauXAk3NzcY\nGxtjwoQJZQpUv379GhEREeBwOBg/fnyllW6+h2EYDBw4EEFBQZUapK1btyIwMFAsufn5+QgKCoKL\niwv4fL7Y+siDgQMHSlQ0/PPnz/jrr7+wZMkS9O/fH/Xr1webzUazZs0watQobNy4ETdu3EBBQYHM\numVlZcHNzQ06tWvjvJjGNZ0ILdhsRI4cKfF4+fn5OH/+PObMmQNvb2+JDe6HDx8wcuRI8Pl8rFu3\nDgKBAKdPnwaPzRb7ISGdCC00NDBawj1/JdWD0sAq+c+Sk5OD7t27o3379mWWh2/fvo0JEybA2NgY\nbm5uWLlyJT58+FB8/vXr1wgPD4eenp5EhjY7OxuOjo7YuHFjhe3mz5+PCRMmVCovKysLHTt2xE8/\n/YQvX76AxWJVWaL9rKws6OjolHvt6enpOHnyJBYuXIi+ffvCxsYGGhoaaNGiBSIiIhAbG4tbt27J\ntQLRN9LS0uDq6orhw4fj6NGj4IlZTcdGQ0NuM0BpDe6NGzfg5eUFR0dH6LPZOClC39ZEUCeCZtHL\nXsQMfJuYMdRKqg+lgVXyn0YgEGDEiBFwcXERuewrEAiQmJiI/v37Q1tbG927d8f+/fuL0yC+evUK\n4eHh4HA4iI6OFsvQ3r17F1wut0RITWkiIiIqLSH39u1buLi4YNiwYcVGysnJqdIC7fJi48aN6N69\nO4Cvs69jx45h3rx56N27N6ysrKClpQVPT09ERkYiLi4Od+7cUWgs7jcePnyIevXqYebMmcUrBY8e\nPUL4sGHQY7HQXUMDq4iwjb7Wg41SUwNXXR2dvbyQkJCgML0kMbgMwyDQ3x/+5cTytiHCpgpmsseI\n0LiGpK1UUj5KA6vkPw/DMJgxYwasra0rTAqRmZmJjRs3wsvLC1wuF+Hh4UhJSQHDMHj16hXCwsKg\np6cnlqHdsWMHbGxsimfOT548QXRkJBpbWcFcXx8cNTXUNzLC3FmzRBr+Bw8ewMrKCrNmzSpxE+3e\nvbvCa+G+e/cOCQkJMDc3h4eHB8zNzaGtrY3WrVtj7Nix2LFjB+7du1ct+4ApKSn/1969h1VVJXwc\n/x5AlHMUQTGlMbTSMp1yxCnH8DLew1uJIagpmDfGKcuyBjNJM7SymTKmN/N1BBMtnAnDy+OlFA1F\ne0o0u4c8g5Sk4iUTuYSw3j8sX0Qu5yAHRX6fv457r7X22vDg76x9Wcu0atWqwldbzp49a95assT8\nJTzcjBk2zEwaPdrMnTPHZGRk1HJPKw/cxMRE09bHx3xSQYD+GcyySgK2+NfReGpqaq2fl9hPASv1\nxptvvml8fX3Nvn37qiybkZFh5s6da2655RZzxx13mBdffNF8//33Jisry0ybNs14e3ubp59+2hw/\nfrzCNqZOnWoGDBhgBvfsaZo3amSebNDAfAzmv2AOgdkJZpKHh/Fq1MiMeeCBiyv07Nmzx7Rs2bLc\ny8xPPfWUiY6Orv4PoYzs7Gyzfv16M2/ePDN8+HDzu9/9znh5eZlu3boZq9Vq4uPjzXfffXdNPFSz\nadMm4+PjY5KSkq52V6qldOB26dLF3F5JgP4ZTAswPmACoNx7tK9YLCZ81KirfVpSCQWs1Cvvvfee\nadGihfnwww/tKl9SUmJSUlLMpEmTjLe3txkwYICJj48333zzjZk2bZpp1qyZ+dvf/lZu0CYlJZnG\nLi7mf369B1jRf6anwMx1dTW/8/Y2r7/+uvHx8alwSbSlS5eaCRMmOHzev43Ck5KSTFRUlBkyZIjx\n9fU1zZo1MwMGDDCRkZFmzZo1JiMjw5SUlJjIyEjz5JNPOnwcZ4mLizMtW7a0eyrCa11MTIz5SyWv\nGH3MhYkyfgGzggvr2maUKZMC5t6OHa/2qUglNNGE1Ds7d+4kODiYmJgYQkJC7K6Xn59PUlISK1as\nYO/evYwYMYLAwEC2b9/OmjVrmDx5MjNnzsTHx4c9e/YwvF8/kvLzudfO9t8FJlksxCcm8sADD5Rb\nJjk5maioKFJSUipsxxjD999/f8mEDfv27cMYc8mEDV27dsXPz++yCRCKi4vx8/Nj69atdOrUyc7e\nO4cxhpdeeoklS5awefNmOnTocFX7U5oxhl9++YVz585x7tw58vLyLn4u+++yn1NTU+mzbx+L7DxW\nIDAEeKTUts+AcW3acDAzs6ZPTWqI29XugEht6927Nx9++CGDBw/m2LFjTJ8+3a56Hh4ehIaGEhoa\nSnZ2NqtXr+b5558nNzeXhx56iKysLG6//XYmTZrE6mXLiC0Trv8E4oAvgNFAbJn2Q4Fsi4XF0dEV\nBmz79u0vWbbOGENmZuYlYZqWloabm9vFMJ06dSr+/v60bt3arqXmtm7dSuvWra96uBYXF/P444/z\n0UcfkZqayo033uhQ/dIBWFnY2RuKZT/n5eXh6uqK1WrFZrNhs9mq/Ny0aVN8fX3Jycnh7MGDUFRU\n7Z/PWaCJzVbt+uJ8GsFKvZWZmcmgQYMICgpiwYIF1Vrn1BjD/v37WbFiBe+88w5+fn7k5+fj9tVX\nfFam7FourEO6Bcjn8oAFKALaeHjwwSefXBZwxhjS09O56667iIiI4IsvviAtLQ2r1XrJqNTf39/h\nMCotODiYfv36ERERUe027PFbAJYXXqdPn2bhwoX89NNPTJkyBWNMtQLSxcXF7vBz9LPVaqVBgwbV\nOvctW7YQFRzMx+VMlXkG2Av05sIIKAGYChwA2pUq96rFwmcjRxL3739Xqw/ifApYqddOnDjBkCFD\n6NSpE0uXLsXNrfoXdYqKiti0aROPhoez4PRpKpqVeA7wA+UHLMBzrq6cCAtj+tNPX7y8u2/fPvbv\n34+npydnzpxh7NixDB06lK5du9KyZctq97mskydPcuutt5KZmYmXl1eVI0BHR31lP/8WgKUDzN3d\nnfT0dKxWKz169MDT07PaQVjdAHS24uJibm3VivdOnKBrmX0ngMHAN4ArcAcwH+hXqkwJ0MFmI3bL\nFgICAmqlz+I4BazUe+fOnePBBx/Ezc2NhIQErFZrtds6duwYHdq04WhhIRVNx/4scISKA/YHLoxU\nWrVpwx//+MeLo1J/f39atGhBUFAQoaGhjBo1qsIRYHUvi2ZnZ5Obm4u7uzt5eXlYLJYaG/nZE4BH\njhwhMDCQPn368Oqrr+Li4lLt38W17sXoaNJfeIF/FRQ4XPcDYObNN3MgI6NaV16kdihgRbgw+pw4\ncSKHDh1i/fr1NG/evFrtHDhwgLDevfns558rLFPVCBbA3WJhRHAwhYWFl4Xg0aNHKSoqori4GKBG\nA2/s2LHMmTOH++67D5vNVqsjwK+//prAwECmTZvGU089dd0HR05ODp1uuYWE3Fz6OFDvDNDDamXm\nG28QFh7upN5JTdBDTiJAgwYNiIuLIzIykp49e7JlyxZuuukmh9spKCigYRXBYM832kaurvTr148b\nbrjhsiB8//33OXDgAHFxcTUagAcOHCA3N5fg4GBcXV1rrF17pKamEhQUxKJFixg3blytHvtqadGi\nBQnr1hEyZAiJ+fn0sKPOaeB+q5XeY8YwPizM2V2UK6SAFfmVi4sLL7/8Mq1atSIgIIBNmzY5/CSt\nt7c3p38dWVakqnFZMXCuuJiJEyeWG3T33HMPSUlJNT66jI2NJSwsrNbDNSkpicmTJ7Ny5UoGDRpU\nq8e+2vr06UP8++8TFBTE1MJCpp4/T+tyyhUA/wZesNkYEhbGotdfv+5H+NeF2n3tVqRuiI+PNzfc\ncINJSUlxqF5BQYG5oUkT8205kwecB5MPJhLMODAFv24rW24jmLs7dKjwGD/88EONr6pTWFhofHx8\nan1Kwbfeesv4+vrW+HqzdU16erp5ZNIk4+3hYUbYbOYNMPFg/hfMkw0amBaNGplB995b4QQkcm3S\nPViRCmzdupWxY8fyr3/9i+HDh9tdb9bMmRTGxPCPX365ZPtc4PkyZecCUWW2DW3cmAdjYgiv4P6a\nMYbGjRvz448/4unpaXe/KvPee+8RExPDjh07aqS9qhhjmDdvHvHx8WzevJl27dpVXakeyM3NZfWq\nVaSlpnLm5Ek8bDZuateOcRMm6GdUBylgRSrxySefMHz4cObPn8+kSZPsqpOZmUnXDh04XFhIYweP\nlwH8qXFjso4fx8PDo8JynTt3JjY2Fn9/fwePUL6hQ4cyatQoxo8fXyPtVeb8+fNMmzaNtLQ0Nm7c\nWKOvGYlcS67fZ+BFasDdd9/Nzp07WbBgAS+88AL2fB9t27YtQQ8+yFgPDyq/G3upXCDYauVvzzxT\nabgCtGvX7pIZna5EdnY2qampjBw5skbaq0xeXh4jR47k8OHDJCcnK1zluqaAFanCbbfdxu7du/nP\nf/7Do48+evH1mMq8sXw5+V26EOLhQb4dx8gBBtps3D1yJE9GRlZZvuyUiVdi5cqVBAUFYXPytHsn\nT56kf//+eHp6sn79epo0aeLU44lcbQpYETv4+vqyc+dOvvzyS0JDQymoYnIAd3d31m/fjvugQfze\nZuMVFxdOllPueyAS6OTuzp8jIngzLs6up0Pbt2/PoUOHqnUupRljiI2NZcKECVfcVmUOHz5Mjx49\n6NmzJytWrMDd3d2pxxO5FihgRezUtGlTNm3aBEBgYCBnzpyptHzDhg1ZlZjI6m3bODhiBLc2bMhQ\nT08etloJs9no7+lJZw8PPu/Xj5a33Ub0okV2z1xUUyPYvXv3Yozh3nvtXfPHcQcPHiQgIICIiAhe\neuml63p2JpHS9JCTiIOKi4t57LHH2LVrF5s2bcLX19euejk5OaSkpHD69GlcXFzw8fGhT58+Fyfr\nnzt3boWr6JSVnZ3NH/7wB44fP34lp8KUKVO45ZZbiLTjsnR17Nixg5CQEGJiYhg1apRTjiFyrVLA\nilSDMYbo6GiWL1/Oli1baN++/RW1t2HDBmbNmsWBAwfsmujBGEOTJk04cuQITZs2rdYxz507R+vW\nrfnyyy+vaPWdiqxZs4ZHHnmEhIQE+vRxZDJAkeuDrtWIVIPFYuHZZ5/lmWeeoVevXnz66adX1N6Q\nIUNo3LgxCQkJdh+/Xbt2V3QfNjExke7duzslXGNiYnjiiSf44IMPFK5SbylgRa7ApEmTWLJkCYGB\ngWzdurXa7VgsFqKjo4mKiqLIzkW4r/RVHWc83GSMITIykjfeeINdu3bRuXPnGm1fpC5RwIpcofvv\nv5+1a9cybtw4Vq1aVe12+vbtS9u2bYmLi7Or/JU86PTf//6XgwcPOjRDVVWKiooIDw9n586d7N69\nm7Zt29ZY2yJ1kQJWpAb06NGD7du3M2vWLP7xj39Uu53o6Gief/75Kl8DgisL2BUrVjBmzBgaNqxo\n1VrH5ObmMmzYME6dOsW2bduqvdyfyPVEAStSQzp16sSuXbtYtmwZTz/9NCUlJQ630a1bN/z9/Vmy\nZEmVZav7LmxJSQlxcXE1dnn4+PHj9OnTh5tuuom1a9de0YL1ItcTBaxIDfLz8yMlJYWUlBTCw8Pt\nvp9a2vz583nxxRfJzc2ttFx178EmJyfj5eVFly5dHK5bVkZGBgEBAQwePJilS5fi5qYVMEV+o4AV\nqWHNmzdn27ZtnDp1ivvvv59z5845VP+uu+6ib9++LF68uNJyrVq1oqCggJ9++smh9mvq4aZ9+/bR\ns2dPZs6cybx587Q+qUgZeg9WxEmKioqYMmUKX331FRs3bsTHx8fuuunp6XTv3p309HS8vb0rLNel\nSxeWLl3K3XffbVe7Z86coU2bNhw6dMih/pS1detWHnroIZYuXWr35Bgi9Y1GsCJO0qBBA5YvX06/\nfv0ICAggMzPT7rrt27dnxIgRLFq0qMpyjtyHTUhIoH///lcUrvHx8YwfP561a9cqXEUqoYAVcSKL\nxcKCBQv461//So8ePTh48KDddefMmcOSJUs4evRohWUcvQ+7fPnyal8eNsawaNEiZs+ezfbt2wkI\nCKhWOyL1hQJWpBZMnz6dv//97/Tv35+dO3faVcfPz4/x48ezcOHCCss48qrO119/TVZWFoMGDbKr\nfGklJSXMmDGDt99+m927d9OxY0eH2xCpbxSwIrUkJCSE1atXExwcTGJiol11Zs2aRXx8PFlZWeXu\nd+QScWxsLOPGjXP4Sd/CwkJGjx7N/v37SUlJoXXr1g7VF6mv9JCTSC1LS0tj6NChREVFERERUWX5\n2bNnc+zYMZYtW3bZvqNHj/L73/+eEydOVNpGUVERfn5+JCcn06FDB7v7eubMGUaMGEGzZs2Ij4+n\nUaNGdtcVqe80ghWpZf7+/qSkpPDKK68wd+5cqvqOO3PmTJKSkvjuu+8u29eyZUsKCws5ffp0pW1s\n3ryZm2++2aFwzc7OplevXnTs2JGEhASFq4iDFLAiV8Gtt97K7t27Wb9+PRERERQXF1dY1tvbmxkz\nZvDcc89dts9isdh1H9bRd1+//fZbAgICCA0NJSYmxq4l9ETkUgpYkaukZcuW7Nixg4yMDIKDgyud\nf3j69OkkJyfz2WefXbavqvuwOTk5bN++nZCQELv6tWfPHnr37s1zzz3HrFmzNIGESDUpYEWuoiZN\nmrBx40bc3d0ZOHBghbMyNW7cmFmzZjFnzpzL9lX1qs6qVasYNmwYnp6eVfZnw4YNDB8+nNjYWMLD\nw+0+DxG5nAJW5Cpr2LAhq1evpkuXLvTq1Yvs7Oxyy02dOpUDBw6wd+/eS7ZXdonYGMPy5ct5+OGH\nq+zHsmXLmDx5Mhs3biQwMNDxExGRSyhgRa4BLi4uvPbaa4wZM4aAgAC+/fbby8o0atSIqKgoZs+e\nfcn2ygI2LS2Ns2fP0rt37wqPbYxh/vz5LFy4kI8++oh77rnnyk5GRAAFrMg1w2KxEBkZSVRUFL17\n9+bjjz++rExYWBhZWVls27bt4rbK7sH+dqnXxaX8P/Xi4mKmTZvG2rVr2b17N+3bt6+ZkxERvQcr\nci3asGEDEyZM4O23377scu0777zD4sWL2bNnDxaLBWMMTZs2JTMzk2bNml0sV1BQQOvWrfn0009p\n27btZcfIz89nzJgx5ObmkpiYSJMmTZx9WiL1ikawItegoUOHsm7duoshW1pISAh5eXls2LABqPhV\nnXXr1tG5c+dyw/XUqVMMGDAAq9XKxo0bFa4iTqCAFblGde/eneTkZObMmcOiRYsuTkjh4uLC/Pnz\nefbZZykpKQHg5ptvZs+ePaSnp5OTk4MxhtjY2HIfbsrKyqJHjx786U9/YuXKlbi7u9fqeYnUF7pE\nLHKN++GHH7jvvvsYOHAgr7zyCi4uLhhj6NatGwMHDuSbTz9l4wcf0NTVFVvDhpwqKqK5lxc/njlD\nekYGN95448W2vvjiCwIDA5kxYwZPPPHEVTwrkeufAlakDjh9+jTDhg2jTZs2xMbG8vnnnxM8eDCW\nnBxmGsNDwG8XeQ2QCrzq5sY2NzcemzGD56KjSUlJITg4mNdee43Ro0dfvZMRqScUsCJ1RH5+PqGh\noRw5coTDX3/NG3l5BAOVzbP0IzDSZqPRnXfy+aFDvPvuu/Tr16+WeixSvylgReqQ/fv38+d77mHd\n+fNU/GbrpfKBXkDHkBBWvPuuE3snIqXpISeROmTWI4/wYplw/QWYCLQFPIEuwOZS+z2ALcDmdevK\nncBCRJxDAStSRxw6dIi0tDTKrolzHvADPgJ+Bl4ARgGHS5VpBjxcVMSSxYtrpa8iokvEInXGzEcf\nxfWtt3ipqKjKsp2BucCIUtsyga5WK1nHj2Oz2ZzSRxH5fxrBitQRGxITGWNHuB4DvgM6ldneFujk\n5kZqamrNd05ELqOAFakjTv78M75VlCkCxgLhwG3l7Pc1hpMnT9Z010SkHApYketECTAOaAT88yr3\nRUQUsCJ1RnNPT36sYJ/hwpPEOcB7gGsF5X60WGjevLkzuiciZShgReqIoUFBrG7QoNx9fwG+AdYB\nDSuonwl8ef48AQEBTumfiFxKAStSR0Q89hixrq4UlNl+GFgKfAa04sKUiU2Ad8qUe8vNjfFhYVit\nVud3VkT0mo5IXXJfQAAPpKYS4WC9U8AdHh58tH8/t99+uzO6JiJlaAQrUocsWrKEKJuNnQ7UyQdG\n2GyMmzhR4SpSixSwInXInXfeybvr1vGg1coaLjzcVJkfgb5WK20CA3lZsziJ1CoFrEgd07dvX7ak\npDDXz4+7GjfmTeBsqf0G2AWMsVrp2KgR9z3+OCvWrMHFRX/uIrVJ92BF6ihjDDt27OB/Xn6ZTdu2\n4dWgAQ1dXDhVVMQNzZszbeZMwiZMwMvL62p3VaReUsCKXAfy8vI4efIkhYWFeHl50bx5cyyWylaK\nFRFnU8CKiIg4gW7KiIiIOIECVkRExAkUsCIiIk6ggBUREXECBayIiIgTKGBFREScQAErIiLiBApY\nERERJ1DAioiIOIECVkRExAkUsCIiIk6ggBUREXECBayIiIgTKGBFREScQAErIsRum1wAAACiSURB\nVCLiBApYERERJ1DAioiIOIECVkRExAkUsCIiIk6ggBUREXECBayIiIgTKGBFREScQAErIiLiBApY\nERERJ1DAioiIOIECVkRExAkUsCIiIk6ggBUREXECBayIiIgTKGBFREScQAErIiLiBApYERERJ1DA\nioiIOIECVkRExAkUsCIiIk6ggBUREXECBayIiIgTKGBFREScQAErIiLiBP8HyD8bEel+oXYAAAAA\nSUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x1076c6e10>" ] } ], "prompt_number": 16 } ], "metadata": {} } ] }
bsd-3-clause
ramch101/juliasets
juliasets3.ipynb
1
3627672
null
mit
ledeprogram/algorithms
class1/homework/najmabadi_shannon_1_4.ipynb
1
4803
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# The writer of this code wants to count the mean and median article length for recent articles on gay marriage in the New York Times. This code has several issues, including errors. When they checked their custom functions against the numpy functions, they noticed some discrepancies. Fix the code so it executes properly, retrieves the articles, and outputs the correct result from the custom functions, compared to the numpy functions." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import requests # a better package than urllib2" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def my_mean(input_list):\n", " list_sum = 0\n", " list_count = 0\n", " for el in input_list:\n", " intel = int(el)\n", " list_sum += intel\n", " list_count += 1\n", " return list_sum / list_count" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def my_median(input_list):\n", " sorted_list = sorted(input_list)\n", " list_length = len(sorted_list)\n", " half_length = int(list_length/2)\n", " \n", " return float(sorted_list[half_length])" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [], "source": [ "api_key = \"ffaf60d7d82258e112dd4fb2b5e4e2d6:3:72421680\"" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [], "source": [ "url = \"http://api.nytimes.com/svc/search/v2/articlesearch.json?q=gay+marriage&api-key=%s\" % api_key" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [], "source": [ "r = requests.get(url)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [], "source": [ "wc_list = []\n", "for article in r.json()['response']['docs']:\n", " wc_list.append(article['word_count'])" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[25, 576, 920, 868, 684, 1101, 367, 588, 96]" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wc_list = [int(i) for i in wc_list if i != None]\n", "wc_list" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "580.5555555555555" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "my_mean(wc_list)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "580.55555555555554" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.mean(wc_list)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "588.0" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "my_median(wc_list)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "588.0" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.median(wc_list)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.0" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
qubvel/sent_analysis
MVideo/data preprocessing - additional data.ipynb
1
22797
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Анализ дополнительных данных\n", "Отзывы об интернет провайдерах, спарсенные с сайта: http://www.moskvaonline.ru/rating" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "reviews = pd.read_csv('data/internet_reviews (1).csv')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Unnamed: 0</th>\n", " <th>comment</th>\n", " <th>rating</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0</td>\n", " <td>Пользуюсь уже более 2лет все в...</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>Подключил только интернет за 5...</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2</td>\n", " <td>Подключил себе скорость 100 мб...</td>\n", " <td>5</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>3</td>\n", " <td>Подключились недавно, скорость...</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>4</td>\n", " <td>Сегодня пришел домой и обнаруж...</td>\n", " <td>1</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Unnamed: 0 comment rating\n", "0 0 Пользуюсь уже более 2лет все в... 1\n", "1 1 Подключил только интернет за 5... 2\n", "2 2 Подключил себе скорость 100 мб... 5\n", "3 3 Подключились недавно, скорость... 3\n", "4 4 Сегодня пришел домой и обнаруж... 1" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews.head()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(21713, 3)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews.shape" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(21680, 3)" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews = reviews[~reviews.comment.duplicated()]\n", "reviews.shape" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1 12876\n", "5 6536\n", "3 2200\n", "2 46\n", "0 14\n", "4 8\n", "Name: rating, dtype: int64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reviews.rating.value_counts()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x1d6010bf7f0>" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF/9JREFUeJzt3X+MXeV95/H3Z034EZzFBqdXrm3tmNZN5cZt6kwdV+lG\n13ELBqqalWhklhaTejXaFlK6cRVMoy3ddpGc7hI2aLNU08XCrLJMKKWLRZ0lrsMtilQMOAVsQwgT\n4hSPHHuJjbeT0KSTfvvHfSbcucz1+P6Y++M8n5c0mnO+57n3PF+f8Xznec6Pq4jAzMzy8y963QEz\nM+sNFwAzs0y5AJiZZcoFwMwsUy4AZmaZcgEwM8uUC4CZWaZcAMzMMuUCYGaWqfN63YGzWbJkSQwN\nDc2Ifec73+Hiiy/uTYfmQdHyAec0CIqWDxQvp3byOXjw4OsR8e652vV1ARgaGuLZZ5+dEatUKpTL\n5d50aB4ULR9wToOgaPlA8XJqJx9J3zyXdp4CMjPLlAuAmVmmXADMzDI1ZwGQtEvSSUmH6+Ifk/RV\nSUck/XFN/HZJ45JelnRlTXxTio1L2tHZNMzMrFnnchL4fuC/Aw9MByRtADYDPxMR35P0Iym+GtgC\n/BTwo8BfSfqJ9LLPAr8EHAOekbQnIl7sVCJmZtacOQtARDwpaagu/JvAzoj4XmpzMsU3A2Mp/g1J\n48C6tG08Il4FkDSW2roAmJn1SKvnAH4C+NeSDkj6a0k/l+LLgNdq2h1LsUZxMzPrkVbvAzgPuBRY\nD/wc8JCkyzvRIUkjwAhAqVSiUqnM2D45Ofm22CArWj7gnAZB0fKB4uXUjXxaLQDHgEei+oHCT0v6\nJ2AJMAGsqGm3PMU4S3yGiBgFRgGGh4ej/kYI3+zR/5xT/ytaPlC8nLqRT6sF4P8AG4An0kne84HX\ngT3A/5b0aaongVcBTwMCVklaSfUX/xbg37bZ964Z2vGXs8aP7rymyz0xM+ucOQuApAeBMrBE0jHg\nDmAXsCtdGvp9YGsaDRyR9BDVk7tTwM0R8YP0PrcAjwMLgF0RcWQe8mlLo1/0ZmZFdC5XAV3fYNOv\nNWh/J3DnLPG9wN6memdmZvPGdwKbmWXKBcDMLFMuAGZmmXIBMDPLlAuAmVmmXADMzDLlAmBmlqm+\n/kzgfuc7hM1skHkEYGaWKRcAM7NMuQCYmWXKBcDMLFMuAGZmmXIBMDPLlAuAmVmmXADMzDLlG8Hm\ngW8QM7NBMOcIQNIuSSfTxz/Wb9suKSQtSeuSdI+kcUkvSFpb03arpFfS19bOpmFmZs06lymg+4FN\n9UFJK4ArgL+rCV9F9YPgVwEjwL2p7aVUP0v4A8A64A5Ji9vpuJmZtWfOAhARTwKnZtl0N/AJIGpi\nm4EHouopYJGkpcCVwL6IOBURp4F9zFJUzMyse1o6CSxpMzAREc/XbVoGvFazfizFGsXNzKxHmj4J\nLOmdwO9Rnf7pOEkjVKePKJVKVCqVGdsnJyffFuuU7Wum5uV9p83W7/nMp1ecU/8rWj5QvJy6kU8r\nVwH9GLASeF4SwHLgK5LWARPAipq2y1NsAijXxSuzvXlEjAKjAMPDw1Eul2dsr1Qq1Mc65aYGV+90\nytEbym+LzWc+veKc+l/R8oHi5dSNfJqeAoqIQxHxIxExFBFDVKdz1kbEt4A9wI3paqD1wJmIOA48\nDlwhaXE6+XtFipmZWY+cy2WgDwJ/A7xH0jFJ287SfC/wKjAO/CnwWwARcQr4I+CZ9PWHKWZmZj0y\n5xRQRFw/x/ahmuUAbm7Qbhewq8n+mZnZPPGjIMzMMuUCYGaWKRcAM7NM+WFwXTTbQ+K2r5macX2s\nmVm3eARgZpYpFwAzs0y5AJiZZSrLcwCNPrDFzCwnHgGYmWXKBcDMLFMuAGZmmXIBMDPLlAuAmVmm\nXADMzDLlAmBmlikXADOzTLkAmJll6lw+EnKXpJOSDtfE/oukr0p6QdJfSFpUs+12SeOSXpZ0ZU18\nU4qNS9rR+VTMzKwZ5zICuB/YVBfbB7w3In4a+BpwO4Ck1cAW4KfSa/6HpAWSFgCfBa4CVgPXp7Zm\nZtYjcxaAiHgSOFUX+2JETKXVp4DlaXkzMBYR34uIb1D9cPh16Ws8Il6NiO8DY6mtmZn1SCfOAfwG\n8IW0vAx4rWbbsRRrFDczsx5p62mgkj4JTAGf60x3QNIIMAJQKpWoVCoztk9OTr4t1qzta6bmbtQl\npYtoO59+04lj1G+KllPR8oHi5dSNfFouAJJuAn4Z2BgRkcITwIqaZstTjLPEZ4iIUWAUYHh4OMrl\n8oztlUqF+lizbuqjx0FvXzPFR9rMp9904hj1m6LlVLR8oHg5dSOflqaAJG0CPgH8SkR8t2bTHmCL\npAskrQRWAU8DzwCrJK2UdD7VE8V72uu6mZm1Y84RgKQHgTKwRNIx4A6qV/1cAOyTBPBURPz7iDgi\n6SHgRapTQzdHxA/S+9wCPA4sAHZFxJF5yMfMzM7RnAUgIq6fJXzfWdrfCdw5S3wvsLep3pmZ2bzx\nncBmZplyATAzy5QLgJlZptq6D8A6Y6jBZalHd17T5Z6YWU48AjAzy5QLgJlZplwAzMwy5QJgZpYp\nFwAzs0y5AJiZZcoFwMwsUy4AZmaZcgEwM8uUC4CZWab8KIg+5kdEmNl88gjAzCxTLgBmZplyATAz\ny9ScBUDSLkknJR2uiV0qaZ+kV9L3xSkuSfdIGpf0gqS1Na/Zmtq/Imnr/KRjZmbn6lxGAPcDm+pi\nO4D9EbEK2J/WAa4CVqWvEeBeqBYMqh8m/wFgHXDHdNEwM7PemLMARMSTwKm68GZgd1reDVxbE38g\nqp4CFklaClwJ7IuIUxFxGtjH24uKmZl1kSJi7kbSEPBYRLw3rb8REYvSsoDTEbFI0mPAzoj4ctq2\nH7gNKAMXRsR/TvH/CLwZEf91ln2NUB09UCqV3j82NjZj++TkJAsXLmwp2WmHJs609fpOKl0EJ95s\n7jVrll0yP53pkE4co35TtJyKlg8UL6d28tmwYcPBiBieq13b9wFEREiau4qc+/uNAqMAw8PDUS6X\nZ2yvVCrUx5p1U4Pr63th+5op7jrU3GE4ekN5fjrTIZ04Rv2maDkVLR8oXk7dyKfVq4BOpKkd0veT\nKT4BrKhptzzFGsXNzKxHWi0Ae4DpK3m2Ao/WxG9MVwOtB85ExHHgceAKSYvTyd8rUszMzHpkzrkH\nSQ9SncNfIukY1at5dgIPSdoGfBP4SGq+F7gaGAe+C3wUICJOSfoj4JnU7g8jov7EspmZddGcBSAi\nrm+waeMsbQO4ucH77AJ2NdU7MzObN74T2MwsUy4AZmaZcgEwM8uUC4CZWaZcAMzMMuUCYGaWKRcA\nM7NMuQCYmWXKBcDMLFNtPw3Uum/oLE8zPbrzmi72xMwGmUcAZmaZcgEwM8uUp4AKptH0kKeGzKye\nRwBmZplyATAzy5QLgJlZplwAzMwy1VYBkPQfJB2RdFjSg5IulLRS0gFJ45I+L+n81PaCtD6etg91\nIgEzM2tNywVA0jLgt4HhiHgvsADYAnwKuDsifhw4DWxLL9kGnE7xu1M7MzPrkXangM4DLpJ0HvBO\n4DjwYeDhtH03cG1a3pzWSds3SlKb+zczsxap+jnuLb5YuhW4E3gT+CJwK/BU+isfSSuAL0TEeyUd\nBjZFxLG07evAByLi9br3HAFGAEql0vvHxsZm7HNycpKFCxe23GeAQxNn2np9J5UughNvzv9+1iy7\nZP53knTiGPWbouVUtHygeDm1k8+GDRsORsTwXO1avhFM0mKqf9WvBN4A/gzY1Or7TYuIUWAUYHh4\nOMrl8oztlUqF+lizbjrLs3S6bfuaKe46NP/34x29oTzv+5jWiWPUb4qWU9HygeLl1I182pkC+kXg\nGxHx/yLiH4FHgA8Ci9KUEMByYCItTwArANL2S4Bvt7F/MzNrQzsF4O+A9ZLemebyNwIvAk8A16U2\nW4FH0/KetE7a/qVoZ/7JzMza0nIBiIgDVE/mfgU4lN5rFLgN+LikceAy4L70kvuAy1L848CONvpt\nZmZtamvyOSLuAO6oC78KrJul7T8Av9rO/qx1fkicmdXzncBmZplyATAzy5QLgJlZplwAzMwy5QJg\nZpYpFwAzs0y5AJiZZarQHwrf6Np3MzPzCMDMLFsuAGZmmXIBMDPLlAuAmVmmXADMzDLlAmBmlikX\nADOzTLkAmJllygXAzCxTbRUASYskPSzpq5JekvTzki6VtE/SK+n74tRWku6RNC7pBUlrO5OCmZm1\not0RwGeA/xsRPwn8DPAS1c/63R8Rq4D9vPXZv1cBq9LXCHBvm/s2M7M2tFwAJF0CfIj0oe8R8f2I\neAPYDOxOzXYD16blzcADUfUUsEjS0pZ7bmZmbVFEtPZC6X3AKPAi1b/+DwK3AhMRsSi1EXA6IhZJ\negzYGRFfTtv2A7dFxLN17ztCdYRAqVR6/9jY2Iz9Tk5OsnDhwnPq46GJMy3l1k2li+DEm73uxdut\nWXZJy69t5hgNiqLlVLR8oHg5tZPPhg0bDkbE8Fzt2nka6HnAWuBjEXFA0md4a7oHgIgISU1VmIgY\npVpYGB4ejnK5PGN7pVKhPtbITQPwNNDta6a461D/PZT16A3lll/bzDEaFEXLqWj5QPFy6kY+7fzm\nOQYci4gDaf1hqgXghKSlEXE8TfGcTNsngBU1r1+eYtaHGj1K++jOa7rcEzObLy2fA4iIbwGvSXpP\nCm2kOh20B9iaYluBR9PyHuDGdDXQeuBMRBxvdf9mZtaeducePgZ8TtL5wKvAR6kWlYckbQO+CXwk\ntd0LXA2MA99Nbc3MrEfaKgAR8Rww24mGjbO0DeDmdvZnZmad4zuBzcwy5QJgZpYpFwAzs0z13wXo\n1td8eahZcXgEYGaWKRcAM7NMuQCYmWXKBcDMLFMuAGZmmXIBMDPLlC8DtY6ovTx0+5qpHz6K25eH\nmvUvjwDMzDLlAmBmlilPAdm88p3DZv3LIwAzs0y5AJiZZcoFwMwsU20XAEkLJP2tpMfS+kpJBySN\nS/p8+rhIJF2Q1sfT9qF2921mZq3rxAjgVuClmvVPAXdHxI8Dp4FtKb4NOJ3id6d2ZmbWI20VAEnL\ngWuA/5nWBXwYeDg12Q1cm5Y3p3XS9o2pvZmZ9UC7l4H+N+ATwLvS+mXAGxExldaPAcvS8jLgNYCI\nmJJ0JrV/vc0+2ADy5aFmvddyAZD0y8DJiDgoqdypDkkaAUYASqUSlUplxvbJycm3xRrZvmZq7kY9\nVrpoMPrZjHZyOtdj223N/NwNgqLlA8XLqRv5tDMC+CDwK5KuBi4E/iXwGWCRpPPSKGA5MJHaTwAr\ngGOSzgMuAb5d/6YRMQqMAgwPD0e5XJ6xvVKpUB9r5KYGf2X2k+1rprjrULHux2snp6M3lDvbmQ5p\n5uduEBQtHyheTt3Ip+VzABFxe0Qsj4ghYAvwpYi4AXgCuC412wo8mpb3pHXS9i9FRLS6fzMza898\n3AdwG/BxSeNU5/jvS/H7gMtS/OPAjnnYt5mZnaOOzD1ERAWopOVXgXWztPkH4Fc7sT8zM2uf7wQ2\nM8tUsc4+WmH5slGzzvMIwMwsUx4BWF9p9Je+mXWeRwBmZplyATAzy5QLgJlZplwAzMwy5QJgZpYp\nXwVkA+1sVw35HgGzs/MIwMwsUy4AZmaZcgEwM8uUC4CZWaZ8EtgKyw+QMzs7jwDMzDLlEYBlxyMD\ns6qWRwCSVkh6QtKLko5IujXFL5W0T9Ir6fviFJekeySNS3pB0tpOJWFmZs1rZwpoCtgeEauB9cDN\nklZT/azf/RGxCtjPW5/9exWwKn2NAPe2sW8zM2tTy1NAEXEcOJ6W/17SS8AyYDNQTs12U/2s4NtS\n/IGICOApSYskLU3vY9a3hnb8JdvXTHFT3dSRp4xs0HXkJLCkIeBngQNAqeaX+reAUlpeBrxW87Jj\nKWZmZj2g6h/kbbyBtBD4a+DOiHhE0hsRsahm++mIWCzpMWBnRHw5xfcDt0XEs3XvN0J1iohSqfT+\nsbGxGfubnJxk4cKF59S3QxNn2sisO0oXwYk3e92LzsolpzXLLulNZzqgmf9Hg6JoObWTz4YNGw5G\nxPBc7dq6CkjSO4A/Bz4XEY+k8InpqR1JS4GTKT4BrKh5+fIUmyEiRoFRgOHh4SiXyzO2VyoV6mON\n1A/Z+9H2NVPcdahYF2Nlk9Oh78zadhCmhpr5fzQoipZTN/Jp5yogAfcBL0XEp2s27QG2puWtwKM1\n8RvT1UDrgTOe/zcz6512/kz7IPDrwCFJz6XY7wE7gYckbQO+CXwkbdsLXA2MA98FPtrGvs3MrE3t\nXAX0ZUANNm+cpX0AN7e6P7NB4RvNbFD4URBmZpkq1pk6sz7mkYH1GxcAsx5zYbBecQEw61MuDDbf\nXADMBowLg3WKC4BZQbgwWLN8FZCZWaY8AjAruNlGBtNPN/XoIG8eAZiZZcojALOMNTpv0IhHDMXi\nEYCZWaY8AjCzc9bsiKERjyT6gwuAmfU9X+I6P1wAzKzr/Au9P7gAmFk2OjWFBcUoVi4AZtY3OvUL\nupO/6IvMBcDMBlbtL/rpm9t6se/5cP+mi+f1/aEHl4FK2iTpZUnjknZ0e/9mZlbV1QIgaQHwWeAq\nYDVwvaTV3eyDmZlVdXsEsA4Yj4hXI+L7wBiwuct9MDMzul8AlgGv1awfSzEzM+syRUT3diZdB2yK\niH+X1n8d+EBE3FLTZgQYSavvAV6ue5slwOtd6G63FC0fcE6DoGj5QPFyaieffxUR756rUbevApoA\nVtSsL0+xH4qIUWC00RtIejYihuene91XtHzAOQ2CouUDxcupG/l0ewroGWCVpJWSzge2AHu63Acz\nM6PLI4CImJJ0C/A4sADYFRFHutkHMzOr6vqNYBGxF9jbxls0nB4aUEXLB5zTIChaPlC8nOY9n66e\nBDYzs/7hD4QxM8vUwBSAQX6EhKSjkg5Jek7Ssyl2qaR9kl5J3xenuCTdk/J8QdLa3vYeJO2SdFLS\n4ZpY0/2XtDW1f0XS1l7kUtOX2XL6A0kT6Tg9J+nqmm23p5xelnRlTbwvfi4lrZD0hKQXJR2RdGuK\nD+xxOktOg3ycLpT0tKTnU07/KcVXSjqQ+vf5dJEMki5I6+Np+1DNe82aa1Miou+/qJ4w/jpwOXA+\n8Dywutf9aqL/R4EldbE/Bnak5R3Ap9Ly1cAXAAHrgQN90P8PAWuBw632H7gUeDV9X5yWF/dZTn8A\n/O4sbVenn7kLgJXpZ3FBP/1cAkuBtWn5XcDXUr8H9jidJadBPk4CFqbldwAH0r//Q8CWFP8T4DfT\n8m8Bf5KWtwCfP1uuzfZnUEYARXyExGZgd1reDVxbE38gqp4CFkla2osOTouIJ4FTdeFm+38lsC8i\nTkXEaWAfsGn+ez+7Bjk1shkYi4jvRcQ3gHGqP5N983MZEccj4itp+e+Bl6jeZT+wx+ksOTUyCMcp\nImIyrb4jfQXwYeDhFK8/TtPH72FgoyTRONemDEoBGPRHSATwRUkHVb3TGaAUEcfT8reAUloelFyb\n7f+g5HVLmhLZNT1dwoDllKYJfpbqX5eFOE51OcEAHydJCyQ9B5ykWmC/DrwREVOz9O+HfU/bzwCX\n0aGcBqUADLpfiIi1VJ+CerOkD9VujOqYbmAvxxr0/te4F/gx4H3AceCu3naneZIWAn8O/E5E/P/a\nbYN6nGbJaaCPU0T8ICLeR/VJCOuAn+xVXwalAMz5CIl+FhET6ftJ4C+oHvQT01M76fvJ1HxQcm22\n/32fV0ScSP85/wn4U94aUg9ETpLeQfUX5eci4pEUHujjNFtOg36cpkXEG8ATwM9TnYKbvi+rtn8/\n7HvafgnwbTqU06AUgIF9hISkiyW9a3oZuAI4TLX/01dYbAUeTct7gBvTVRrrgTM1Q/h+0mz/Hweu\nkLQ4DdmvSLG+UXeu5d9QPU5QzWlLuiJjJbAKeJo++rlM88L3AS9FxKdrNg3scWqU04Afp3dLWpSW\nLwJ+ieq5jSeA61Kz+uM0ffyuA76URnKNcm1OL86Et/JF9aqFr1GdL/tkr/vTRL8vp3q2/nngyHTf\nqc7j7QdeAf4KuDTeukrgsynPQ8BwH+TwINWh9j9SnWvc1kr/gd+gerJqHPhoH+b0v1KfX0j/wZbW\ntP9kyull4Kp++7kEfoHq9M4LwHPp6+pBPk5nyWmQj9NPA3+b+n4Y+P0Uv5zqL/Bx4M+AC1L8wrQ+\nnrZfPleuzXz5TmAzs0wNyhSQmZl1mAuAmVmmXADMzDLlAmBmlikXADOzTLkAmJllygXAzCxTLgBm\nZpn6ZxAxPBTm+ICsAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d67e556be0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "reviews[reviews.comment.apply(len) < 3000].comment.apply(len).hist(bins=50)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# reviews = reviews[reviews.comment.apply(len) < 500]" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x1d600482d68>" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFXNJREFUeJzt3X2MXNd53/HvUzJSFK1D6sVYECQbygnrQhXbWFpIKpwY\nyzCwKck11dRxJAgO6SggAkipU9GIqBqojBZG6aaKYaOuAzYSTLeu17ZsQ4Qjx1YZbYwAlWJRkUVK\nsqy1TEdcUGRtyUzWUuJu+vSPOYxnR/s6sztzyfP9AIu9c+6Ze5+9Mzu/OfdlJjITSVJ9/sGgC5Ak\nDYYBIEmVMgAkqVIGgCRVygCQpEoZAJJUKQNAkiplAEhSpQwASarU6kEXMJ9LL700N23aNKPthz/8\nIRdeeOFgClpAk2uDZtfX5NrA+nrR5Nrg3Kzv8OHD38vM1y/YMTMb+3PVVVdlp4cffvg1bU3R5Noy\nm11fk2vLtL5eNLm2zHOzPuCxXMRrrLuAJKlSBoAkVcoAkKRKGQCSVCkDQJIqZQBIUqUMAEmqlAEg\nSZUyACSpUo3+KIim2bT3j+adv2fLNLv2/hHH9t3Qp4okqXuOACSpUgaAJFXKAJCkShkAklQpDwKf\nBRY6+NzOA9CSFssRgCRVygCQpEoZAJJUKQNAkiplAEhSpQwASaqUASBJlTIAJKlSBoAkVcoAkKRK\nLRgAEXFfRJyKiKNtbb8XEd+MiCcj4osRsbZt3l0RMRERz0bE29rat5e2iYjYu/x/iiRpKRYzAvgE\nsL2j7SHgisz8p8C3gLsAIuJy4Cbgn5T7/NeIWBURq4CPAdcBlwM3l76SpAFZMAAy82vASx1tX83M\n6XLzEWBDmd4BjGXm32bmd4AJ4OryM5GZz2fmj4Cx0leSNCDLcQzgN4Avl+n1wAtt846XtrnaJUkD\nEpm5cKeITcCXMvOKjvb3AyPAr2RmRsR/AR7JzP9R5t/Lj8Nhe2b+Zml/N3BNZt4+y7p2A7sBhoeH\nrxobG5sxf2pqiqGhoaX8jcvmyOTpeecPXwAnX4Ut69f0db3t5lv3ILfdQppcG1hfL5pcG5yb9W3d\nuvVwZo4s1K/r7wOIiF3A24Ft+eMUmQQ2tnXbUNqYp32GzNwP7AcYGRnJ0dHRGfPHx8fpbOuXXYv4\nUvh7jqzm2C2jfV1vu/nWPchtt5Am1wbW14sm1wZ119fVLqCI2A78LvCOzHylbdZB4KaIOD8iLgM2\nA38OfB3YHBGXRcR5tA4UH+ytdElSLxYcAUTEp4FR4NKIOA7cTeusn/OBhyICWrt9fiszn4qIzwJP\nA9PAbZn5d2U5twNfAVYB92XmUyvw90iSFmnBAMjMm2dpvnee/h8EPjhL+4PAg0uqTpK0YrwSWJIq\nZQBIUqUMAEmqlAEgSZUyACSpUgaAJFXKAJCkSnX9URA6u21a5MdLHNt3wwpXImlQHAFIUqUMAEmq\nlAEgSZUyACSpUgaAJFXKs4BWwGLPsJGkQXIEIEmVMgAkqVIGgCRVygCQpEoZAJJUKc8COsfMdwbS\nni3T7PIMJUmFIwBJqpQBIEmVWjAAIuK+iDgVEUfb2i6OiIci4rny+6LSHhHx0YiYiIgnI+LKtvvs\nLP2fi4idK/PnSJIWazEjgE8A2zva9gKHMnMzcKjcBrgO2Fx+dgMfh1ZgAHcD1wBXA3efCQ1J0mAs\nGACZ+TXgpY7mHcCBMn0AuLGt/ZPZ8giwNiLWAW8DHsrMlzLzZeAhXhsqkqQ+6vYYwHBmnijTLwLD\nZXo98EJbv+Olba52SdKA9HwaaGZmRORyFAMQEbtp7T5ieHiY8fHxGfOnpqZe09Yve7ZMzzt/+IKF\n+wxSN/X1a1sP8nFdDOvrXpNrg7rr6zYATkbEusw8UXbxnCrtk8DGtn4bStskMNrRPj7bgjNzP7Af\nYGRkJEdHR2fMHx8fp7OtXxY6h37PlmnuOdLcSyu6qe/YLaMrU0yHQT6ui2F93WtybVB3fd3uAjoI\nnDmTZyfwQFv7r5ezga4FTpddRV8B3hoRF5WDv28tbZKkAVnw7WBEfJrWu/dLI+I4rbN59gGfjYhb\nge8C7yrdHwSuByaAV4D3AGTmSxHxH4Cvl37/PjM7DyxLkvpowQDIzJvnmLVtlr4J3DbHcu4D7ltS\ndZKkFeOVwJJUKQNAkiplAEhSpQwASaqUASBJlTIAJKlSBoAkVaq5n1ugc9JcX1nZ+XWVx/bd0K+S\npGo5ApCkSjkCYP4vUpekc5UBoHktNhzdZSOdfdwFJEmVMgAkqVIGgCRVygCQpEoZAJJUKQNAkipl\nAEhSpQwASaqUF4JpWXg1tXT2cQQgSZUyACSpUj0FQET8m4h4KiKORsSnI+InI+KyiHg0IiYi4jMR\ncV7pe365PVHmb1qOP0CS1J2uAyAi1gP/GhjJzCuAVcBNwIeAD2fmzwEvA7eWu9wKvFzaP1z6SZIG\npNddQKuBCyJiNfBTwAngl4D7y/wDwI1leke5TZm/LSKix/VLkrrUdQBk5iTwn4G/pPXCfxo4DPwg\nM6dLt+PA+jK9Hnih3He69L+k2/VLknoTmdndHSMuAj4P/BrwA+BztN7Zf6Ds5iEiNgJfzswrIuIo\nsD0zj5d53wauyczvdSx3N7AbYHh4+KqxsbEZ652ammJoaKirmudyZPL0sixn+AI4+eqyLGpFNLm+\nztq2rF8zuGJmsRLPu+XU5PqaXBucm/Vt3br1cGaOLNSvl+sAfhn4Tmb+H4CI+ALwZmBtRKwu7/I3\nAJOl/ySwEThedhmtAb7fudDM3A/sBxgZGcnR0dEZ88fHx+ls69WuZTqHfc+Wae450txLK5pcX2dt\nx24ZHVwxs1iJ591yanJ9Ta4N6q6vl2MAfwlcGxE/VfblbwOeBh4G3ln67AQeKNMHy23K/D/Jbocf\nkqSe9XIM4FFau3weB46UZe0H7gTuiIgJWvv47y13uRe4pLTfAeztoW5JUo962h+QmXcDd3c0Pw9c\nPUvfvwF+tZf1SZKWj1cCS1KlDABJqpQBIEmVauY5gdIiLeVjqI/tu2EFK5HOPo4AJKlSBoAkVcoA\nkKRKGQCSVCkDQJIqZQBIUqUMAEmqlAEgSZUyACSpUgaAJFXKAJCkShkAklQpA0CSKuWngaqRlvIp\nn5K64whAkiplAEhSpQwASaqUASBJlTIAJKlSPQVARKyNiPsj4psR8UxE/POIuDgiHoqI58rvi0rf\niIiPRsRERDwZEVcuz58gSepGryOAjwB/nJn/GPhnwDPAXuBQZm4GDpXbANcBm8vPbuDjPa5bktSD\nrq8DiIg1wFuAXQCZ+SPgRxGxAxgt3Q4A48CdwA7gk5mZwCNl9LAuM090Xb20BIu9tuDYvhtWuBKp\nGaL1etzFHSN+HtgPPE3r3f9h4L3AZGauLX0CeDkz10bEl4B9mflnZd4h4M7MfKxjubtpjRAYHh6+\namxsbMZ6p6amGBoa6qrmuRyZPL0syxm+AE6+uiyLWhFNrq9JtW1Zv+Y1bSvxvFtOTa6vybXBuVnf\n1q1bD2fmyEL9erkSeDVwJfDbmfloRHyEH+/uASAzMyKWlDCZuZ9WsDAyMpKjo6Mz5o+Pj9PZ1qtd\ny3TV6Z4t09xzpLkXVze5vibVduyW0de0rcTzbjk1ub4m1wZ119fLMYDjwPHMfLTcvp9WIJyMiHUA\n5fepMn8S2Nh2/w2lTZI0AF2/5crMFyPihYh4Y2Y+C2yjtTvoaWAnsK/8fqDc5SBwe0SMAdcAp93/\nr7OZxxR0tut1zP3bwKci4jzgeeA9tEYVn42IW4HvAu8qfR8ErgcmgFdKX0nSgPQUAJn5BDDbgYZt\ns/RN4LZe1idJWj5eCSxJlTIAJKlSzTjvboX4pSKSNDdHAJJUKQNAkiplAEhSpQwASarUOX0QWOrG\nbCcP7NkyvWyfGSU1hSMASaqUASBJlTIAJKlSHgOQGsJPF1W/OQKQpEoZAJJUKQNAkiplAEhSpQwA\nSaqUASBJlTIAJKlSXgcgrTC/mEhN5QhAkiplAEhSpXoOgIhYFRF/ERFfKrcvi4hHI2IiIj4TEeeV\n9vPL7Ykyf1Ov65YkdW85RgDvBZ5pu/0h4MOZ+XPAy8Ctpf1W4OXS/uHST5I0ID0FQERsAG4A/rDc\nDuCXgPtLlwPAjWV6R7lNmb+t9JckDUBkZvd3jrgf+I/A64D3AbuAR8q7fCJiI/DlzLwiIo4C2zPz\neJn3beCazPxexzJ3A7sBhoeHrxobG5uxzqmpKYaGhhZV35HJ013/bd0YvgBOvtrXVS5Jk+trcm3Q\nrPq2rF/zmral/F/0W5Nrg3Ozvq1btx7OzJGF+nV9GmhEvB04lZmHI2K02+V0ysz9wH6AkZGRHB2d\nuejx8XE62+bS76/w27NlmnuONPfM2ibX1+TaoFn1Hbtl9DVtS/m/6Lcm1wZ119fLM/rNwDsi4nrg\nJ4GfBj4CrI2I1Zk5DWwAJkv/SWAjcDwiVgNrgO/3sH6pSov9zmK/N0AL6ToAMvMu4C6AMgJ4X2be\nEhGfA94JjAE7gQfKXQ6W2/+7zP+T7GX/k6R5rcQFaIbKuWUlrgO4E7gjIiaAS4B7S/u9wCWl/Q5g\n7wqsW5K0SMuyUzMzx4HxMv08cPUsff4G+NXlWJ8kqXdeCSxJlTIAJKlSBoAkVcoAkKRKNePKFknn\nlPZTUGe7RuEMTysdLEcAklQpA0CSKuUuIEmL5tdbnlscAUhSpQwASaqUASBJlfIYgKSBWewxBU8X\nXRmOACSpUgaAJFXKAJCkShkAklQpA0CSKmUASFKlPA1UUuMt90dQeFppiyMASaqUIwBJ1Vns9xXA\nuT1aMAAkaR7n8tXKXe8CioiNEfFwRDwdEU9FxHtL+8UR8VBEPFd+X1TaIyI+GhETEfFkRFy5XH+E\nJGnpejkGMA3syczLgWuB2yLicmAvcCgzNwOHym2A64DN5Wc38PEe1i1J6lHXAZCZJzLz8TL918Az\nwHpgB3CgdDsA3FimdwCfzJZHgLURsa7ryiVJPVmWYwARsQl4E/AoMJyZJ8qsF4HhMr0eeKHtbsdL\n2wkkqRJNOqYQmdnbAiKGgD8FPpiZX4iIH2Tm2rb5L2fmRRHxJWBfZv5ZaT8E3JmZj3UsbzetXUQM\nDw9fNTY2NmN9U1NTDA0NLaq2I5One/jLlm74Ajj5al9XuSRNrq/JtYH19aLJtcHy1bdl/ZpF9Vvs\n69KZ5S3lNe+MrVu3Hs7MkYX69TQCiIifAD4PfCozv1CaT0bEusw8UXbxnCrtk8DGtrtvKG0zZOZ+\nYD/AyMhIjo6Ozpg/Pj5OZ9tc5ju1ayXs2TLNPUeae2JVk+trcm1gfb1ocm2wfPUdu2V0Uf0W+7p0\nZnlLec1bqq7/6ogI4F7gmcz8/bZZB4GdwL7y+4G29tsjYgy4BjjdtqtIks5qy321cj/0EntvBt4N\nHImIJ0rbv6X1wv/ZiLgV+C7wrjLvQeB6YAJ4BXhPD+uWJPWo6wAo+/JjjtnbZumfwG3drk+StLz8\nLCBJqpQBIEmVMgAkqVIGgCRVygCQpEoZAJJUKQNAkiplAEhSpQwASaqUASBJlTIAJKlSBoAkVcoA\nkKRKGQCSVCkDQJIqZQBIUqUMAEmqlAEgSZUyACSpUgaAJFXKAJCkShkAklSpvgdARGyPiGcjYiIi\n9vZ7/ZKklr4GQESsAj4GXAdcDtwcEZf3swZJUku/RwBXAxOZ+Xxm/ggYA3b0uQZJEv0PgPXAC223\nj5c2SVKfRWb2b2UR7wS2Z+ZvltvvBq7JzNvb+uwGdpebbwSe7VjMpcD3+lBuN5pcGzS7vibXBtbX\niybXBudmfT+Tma9fqNPq7urp2iSwse32htL29zJzP7B/rgVExGOZObIy5fWmybVBs+trcm1gfb1o\ncm1Qd3393gX0dWBzRFwWEecBNwEH+1yDJIk+jwAyczoibge+AqwC7svMp/pZgySppd+7gMjMB4EH\ne1jEnLuHGqDJtUGz62tybWB9vWhybVBxfX09CCxJag4/CkKSKnXWBEDTPkIiIjZGxMMR8XREPBUR\n7y3tH4iIyYh4ovxcP6D6jkXEkVLDY6Xt4oh4KCKeK78vGlBtb2zbPk9ExF9FxO8McttFxH0RcSoi\njra1zbq9ouWj5bn4ZERcOYDafi8ivlnW/8WIWFvaN0XEq23b8A9WsrZ56pvzsYyIu8q2ezYi3jag\n+j7TVtuxiHiitPd1+83zOtKf515mNv6H1gHjbwNvAM4DvgFcPuCa1gFXlunXAd+i9fEWHwDe14Bt\ndgy4tKPtPwF7y/Re4EMNqHMV8CLwM4PcdsBbgCuBowttL+B64MtAANcCjw6gtrcCq8v0h9pq29Te\nb4DbbtbHsvyPfAM4H7is/F+v6nd9HfPvAf7dILbfPK8jfXnunS0jgMZ9hERmnsjMx8v0XwPP0Pyr\nmncAB8r0AeDGAdZyxjbg25n53UEWkZlfA17qaJ5re+0APpktjwBrI2JdP2vLzK9m5nS5+Qita2oG\nYo5tN5cdwFhm/m1mfgeYoPX/vWLmqy8iAngX8OmVrGEu87yO9OW5d7YEQKM/QiIiNgFvAh4tTbeX\n4dl9g9rNAiTw1Yg4HK2rqwGGM/NEmX4RGB5MaTPcxMx/viZsuzPm2l5Nez7+Bq13hWdcFhF/ERF/\nGhG/OKiimP2xbNq2+0XgZGY+19Y2kO3X8TrSl+fe2RIAjRURQ8Dngd/JzL8CPg78LPDzwAlaw8tB\n+IXMvJLWJ6/eFhFvaZ+ZrfHkQE8Bi9bFgO8APleamrLtXqMJ22s2EfF+YBr4VGk6AfzDzHwTcAfw\nPyPipwdQWmMfyw43M/MNyEC23yyvI39vJZ97Z0sALPgREoMQET9B60H7VGZ+ASAzT2bm32Xm/wP+\nGys8vJ1LZk6W36eAL5Y6Tp4ZLpbfpwZRW5vrgMcz8yQ0Z9u1mWt7NeL5GBG7gLcDt5QXCcqule+X\n6cO09rH/o37XNs9j2YhtBxARq4FfAT5zpm0Q22+21xH69Nw7WwKgcR8hUfYd3gs8k5m/39bevj/u\nXwJHO+/bh9oujIjXnZmmdcDwKK1ttrN02wk80O/aOsx499WEbddhru11EPj1ckbGtcDptuF6X0TE\nduB3gXdk5itt7a+P1vduEBFvADYDz/eztrLuuR7Lg8BNEXF+RFxW6vvzftdX/DLwzcw8fqah39tv\nrtcR+vXc69fR7l5/aB39/hatRH5/A+r5BVrDsieBJ8rP9cB/B46U9oPAugHU9gZaZ1p8A3jqzPYC\nLgEOAc8B/wu4eIDb70Lg+8CatraBbTtaQXQC+L+09qveOtf2onUGxsfKc/EIMDKA2iZo7Qs+89z7\ng9L3X5XH/AngceBfDGjbzflYAu8v2+5Z4LpB1FfaPwH8Vkffvm6/eV5H+vLc80pgSarU2bILSJK0\nzAwASaqUASBJlTIAJKlSBoAkVcoAkKRKGQCSVCkDQJIq9f8BakwKN9EeDmQAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1d60057b748>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "reviews[reviews.comment.apply(lambda s: len(s.split()) < 200)].comment.apply(lambda s: len(s.split())).hist(bins=30)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
davidgutierrez/HeartRatePatterns
Jupyter/MimicII/0g FullWords.ipynb
1
68311
{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import psycopg2\n", "import gc\n", "from psycopg2.extensions import register_adapter, AsIs\n", "from time import time\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from collections import defaultdict" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def obtainMaxRecords(dbname=\"mimic\") :\n", " conn = psycopg2.connect(\"dbname=\"+dbname)\n", " cur = conn.cursor()\n", " select_stament = '''SELECT replace(split_part(record, '/',3),'s',''),max(record)\n", " FROM rstq\n", " WHERE cast(replace(split_part(record, '/',3),'s','') as integer)\n", " NOT IN (select subject_id from subjectrecord)\n", " AND centroid IS NOT NULL\n", " GROUP BY split_part(record, '/',3)'''\n", " cur.execute(select_stament)\n", " subject = []\n", " for row in cur :\n", " subject.append({\"subject_id\":int(row[0]),\"record\":row[1]})\n", " conn.close()\n", " return subject" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def insert(words,table,dbname=\"mimic\") :\n", " conn = psycopg2.connect(\"dbname=\"+dbname)\n", " cur = conn.cursor()\n", " insert_statement = 'INSERT into '+table+' (%s) values %s'\n", " columns = words.keys()\n", " values = [words[column] for column in columns]\n", "# print(cur.mogrify(insert_statement, (AsIs(','.join(columns)), tuple(values))))\n", " cur.execute(insert_statement, (AsIs(','.join(columns)), tuple(values)))\n", " conn.commit()\n", " cur.close()\n", " conn.close()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def fillsubjectRecord() :\n", " for subject in obtainMaxRecords() :\n", " insert(subject,\"subjectrecord\")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def obtainSubjects(dbname=\"mimic\") :\n", " conn = psycopg2.connect(\"dbname=\"+dbname)\n", " cur = conn.cursor()\n", " select_stament = '''SELECT subject_id,record FROM subjectrecord'''\n", " cur.execute(select_stament)\n", " subject = []\n", " for row in cur :\n", " subject.append({\"subject_id\":int(row[0]),\"record\":row[1]})\n", " cur.close()\n", " conn.close()\n", " return subject" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def patientIsAlive(patient,dbname=\"mimic\") :\n", " conn = psycopg2.connect(\"dbname=\"+dbname)\n", " cur = conn.cursor()\n", " select_stament = (\"SELECT dod \"\n", " \" FROM patients WHERE subject_id = \"+str(patient)+\" LIMIT 1\"\n", " )\n", " cur.execute(select_stament)\n", " select = []\n", " for row in cur :\n", " select.append(1 if row[0] is not None else 0 )\n", " cur.close()\n", " conn.close()\n", " return select" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def obtainWord(subject,dbname=\"mimic\") :\n", " conn = psycopg2.connect(\"dbname=\"+dbname)\n", " cur = conn.cursor()\n", " select_stament = (\"SELECT centroid \"\n", " \" FROM rstq WHERE record='\"+str(subject)+\"' ORDER BY r_s\"\n", " )\n", " cur.execute(select_stament)\n", " centroids = \"\"\n", " for row in cur :\n", " centroid = row[0]\n", " if centroid is not None :\n", " centroids= centroids+centroid\n", " if(len(centroids)<3600): centroids = None\n", " conn.close()\n", " return centroids" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def deleteWord(dbname=\"mimic\") :\n", " conn = psycopg2.connect(\"dbname=\"+dbname)\n", " cur = conn.cursor()\n", " select_stament = \"DELETE FROM subjectwords\"\n", " cur.execute(select_stament)\n", " conn.commit()\n", " cur.close()\n", " conn.close()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def insertSubjectWords(words,dbname=\"mimic\") :\n", " conn = psycopg2.connect(\"dbname=\"+dbname)\n", " cur = conn.cursor()\n", " insert_statement=('INSERT INTO subjectwords(word,subject_id,isalive)'\n", " ' SELECT unnest( %(word)s ) ,'\n", " ' unnest( %(subject_id)s) ,'\n", " ' unnest( %(isalive)s)')\n", " word=[r['word'] for r in words]\n", " subject_id=[r['subject_id'] for r in words]\n", " isalive=[r['isalive'] for r in words]\n", "# print(cur.mogrify(insert_statement,locals()))\n", " cur.execute(insert_statement,locals())\n", " conn.commit()\n", " cur.close()\n", " conn.close()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "def createListOfWords() :\n", " subjects = obtainSubjects()\n", " lenSubjects = len(subjects)\n", " deleteWord()\n", " i,j=0,0\n", " words = []\n", " for subject in subjects :\n", " subject_id = subject['subject_id']\n", " print(subject_id)\n", " isAlive = patientIsAlive(subject_id)\n", " if isAlive != [] :\n", " j=j+1\n", " word = obtainWord(subject['record'])\n", " if word is not None:\n", " words.append({'subject_id':subject_id,'word':word,'isalive':isAlive[0]})\n", " insertSubjectWords(words)\n", " print()\n", " print(\"In a list of \"+str(lenSubjects)+\" we know the status of \"+str(j)+\" patients\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "def existMatrix(word,subject,dbname=\"mimic\") :\n", " conn = psycopg2.connect(\"dbname=\"+dbname)\n", " cur = conn.cursor()\n", " select_stament = (\"SELECT 1 \"\n", " \" FROM matrix WHERE subject_id='\"+str(subject)+\"' AND word='\"+str(word)+\"'\"\n", " )\n", " cur.execute(select_stament)\n", " exist = False\n", " for row in cur :\n", " exist = True\n", " cur.close()\n", " conn.close()\n", " return exist" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": [ "def printGroups(dbname=\"mimic\") :\n", " conn = psycopg2.connect(\"dbname=\"+dbname)\n", " cur = conn.cursor()\n", " select_stament = (\"SELECT count(1),LENGTH(word) FROM subjectwords GROUP BY LENGTH(word) ORDER BY LENGTH(word)\"\n", " )\n", " cur.execute(select_stament)\n", " words = []\n", " maximun,minimun = 0,1000000000\n", " for row in cur :\n", " words.append({\"subjects\":row[0],\"wordSize\":row[1]})\n", " maximun = maximun if maximun>row[1] else row[1]\n", " minimun = minimun if minimun<row[1] else row[1]\n", " cur.close()\n", " conn.close()\n", " print(\"maximun\",maximun,\"minimun\",minimun)\n", " minimun-=1\n", " division = (maximun-minimun)/8\n", " means_men = defaultdict(int) #'0':0,'1':0,'2':0,'3':0,'4':0,'5':0,'6':0,'7':0,'8':0,\n", " for r in words :\n", " for x in range(0, 11):\n", " floor = (division*x)+minimun+1\n", " top = division*(x+1)+minimun\n", " if(r['wordSize']>=floor and r['wordSize']<top):\n", " floor = str(int(floor)).zfill(5)\n", " top = str(int(top)).zfill(5)\n", " means_men[floor+\"-\"+top] += r['subjects']\n", " columns = sorted(means_men.keys())\n", " means_men = [means_men[column] for column in sorted(means_men)]\n", " index = np.arange(len(means_men))\n", " bar_width = 0.35\n", " fig, ax = plt.subplots() \n", " for i, v in enumerate(means_men):\n", " ax.text(v-10,i-0.1, str(v), color='white', fontweight='bold')\n", " plt.barh(index,means_men,label='Pacientes')\n", " plt.ylabel('Número de latidos')\n", " plt.xlabel('Pacientes')\n", " plt.title('Pacientes por Número de latidos')\n", " plt.yticks(index + bar_width / 2, (columns))\n", " plt.legend()\n", "# plt.tight_layout()\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "def printWords(dbname=\"mimic\") :\n", " conn = psycopg2.connect(\"dbname=\"+dbname)\n", " cur = conn.cursor()\n", " select_stament = (\"SELECT count(1),LENGTH(word) FROM subjectwords GROUP BY LENGTH(word) ORDER BY LENGTH(word)\"\n", " )\n", " cur.execute(select_stament)\n", " x,y = [],[]\n", " for row in cur :\n", " x.append(row[0])\n", " y.append(row[1])\n", " cur.close()\n", " conn.close()\n", " bar_width = 0.35\n", " plt.plot(x, y, 'ro')\n", " plt.ylabel('Número de latidos')\n", " plt.xlabel('Pacientes')\n", " plt.title('Pacientes por Número de latidos')\n", " plt.legend()\n", "# plt.tight_layout()\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "fillsubjectRecord done in 96.242s.\n" ] }, { "data": { "text/plain": [ "0" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "t0 = time()\n", "fillsubjectRecord()\n", "print(\"fillsubjectRecord done in %0.3fs.\" % (time() - t0))\n", "gc.collect()\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5223\n", "15079\n", "20968\n", "20269\n", "11679\n", "23922\n", "20766\n", "19372\n", "3498\n", "14897\n", "4018\n", "5114\n", "6692\n", "10534\n", "11318\n", "3745\n", "16038\n", "10651\n", "9664\n", "23336\n", "1995\n", "11622\n", "2996\n", "16122\n", "4041\n", "20984\n", "15021\n", "15315\n", "10241\n", "4870\n", "15330\n", "20345\n", "5274\n", "19297\n", "3780\n", "20372\n", "11710\n", "14936\n", "18733\n", "9338\n", "3744\n", "19333\n", "24228\n", "12821\n", "14899\n", "18621\n", "14919\n", "9332\n", "17702\n", "19834\n", "18402\n", "4317\n", "12856\n", "3992\n", "16127\n", "4064\n", "14532\n", "5382\n", "11055\n", "23413\n", "19655\n", "3245\n", "11219\n", "5642\n", "15982\n", "15382\n", "18739\n", "11512\n", "20474\n", "20238\n", "14240\n", "19145\n", "13136\n", "14533\n", "11268\n", "9425\n", "18818\n", "9335\n", "9615\n", "3748\n", "18910\n", "3441\n", "21030\n", "19975\n", "4568\n", "11467\n", "15298\n", "12878\n", "14669\n", "11604\n", "5496\n", "4474\n", "23318\n", "5199\n", "3192\n", "5056\n", "16121\n", "11388\n", "5459\n", "11509\n", "4324\n", "4865\n", "3506\n", "15208\n", "15733\n", "13002\n", "15110\n", "20860\n", "23178\n", "3158\n", "3606\n", "24218\n", "3358\n", "24076\n", "5506\n", "4688\n", "4448\n", "3622\n", "4655\n", "11291\n", "18169\n", "14458\n", "10656\n", "23238\n", "3593\n", "4685\n", "14322\n", "12849\n", "24063\n", "3286\n", "17488\n", "24124\n", "15271\n", "9630\n", "15093\n", "15329\n", "15595\n", "4254\n", "20856\n", "21025\n", "19757\n", "9341\n", "3516\n", "15426\n", "4436\n", "19342\n", "14766\n", "18524\n", "17929\n", "23517\n", "10782\n", "9593\n", "19538\n", "11191\n", "18970\n", "18875\n", "2846\n", "4431\n", "10635\n", "4346\n", "15385\n", "18688\n", "3619\n", "15524\n", "19700\n", "17582\n", "14822\n", "17697\n", "10655\n", "10766\n", "4806\n", "10689\n", "15569\n", "3914\n", "3340\n", "19296\n", "5062\n", "14947\n", "9372\n", "5037\n", "20705\n", "24030\n", "19718\n", "12739\n", "14524\n", "5205\n", "19981\n", "17765\n", "10686\n", "15509\n", "19765\n", "20095\n", "20986\n", "10433\n", "21071\n", "14702\n", "5201\n", "13033\n", "17645\n", "5237\n", "15052\n", "3024\n", "9286\n", "12968\n", "4347\n", "4852\n", "15624\n", "11323\n", "12807\n", "23890\n", "20846\n", "18982\n", "14946\n", "18082\n", "5451\n", "14592\n", "15619\n", "4786\n", "11431\n", "11061\n", "23384\n", "3889\n", "19208\n", "3612\n", "15583\n", "20840\n", "14772\n", "18393\n", "3386\n", "14836\n", "19055\n", "3165\n", "20582\n", "19087\n", "4833\n", "15150\n", "4076\n", "9268\n", "13183\n", "12798\n", "18975\n", "4566\n", "5254\n", "18365\n", "5442\n", "20190\n", "17748\n", "3746\n", "16032\n", "15082\n", "4142\n", "2784\n", "4420\n", "15703\n", "5591\n", "20448\n", "11243\n", "3884\n", "19348\n", "4802\n", "15185\n", "19430\n", "15701\n", "17722\n", "18685\n", "14486\n", "4263\n", "12941\n", "3133\n", "4778\n", "9366\n", "23344\n", "3640\n", "5321\n", "4462\n", "18614\n", "5163\n", "9389\n", "9269\n", "14544\n", "11279\n", "11590\n", "10847\n", "3863\n", "15904\n", "20795\n", "9278\n", "18358\n", "12982\n", "10475\n", "14391\n", "19093\n", "23944\n", "17696\n", "18786\n", "10738\n", "17756\n", "18219\n", "23130\n", "19330\n", "3171\n", "15959\n", "23166\n", "3372\n", "23539\n", "23468\n", "14935\n", "10061\n", "15997\n", "20879\n", "14542\n", "11635\n", "4401\n", "15809\n", "15457\n", "3521\n", "5239\n", "9393\n", "11688\n", "18205\n", "18815\n", "4593\n", "9330\n", "14579\n", "18126\n", "15797\n", "25466\n", "5126\n", "17976\n", "3929\n", "15124\n", "18681\n", "17691\n", "5619\n", "4266\n", "18225\n", "17997\n", "20922\n", "11421\n", "5607\n", "11464\n", "5175\n", "3278\n", "18413\n", "14298\n", "4261\n", "19498\n", "19248\n", "14561\n", "2917\n", "4068\n", "4808\n", "4481\n", "17472\n", "10856\n", "3673\n", "11360\n", "18243\n", "17671\n", "13049\n", "12772\n", "16002\n", "16112\n", "9642\n", "15464\n", "17774\n", "10906\n", "14828\n", "5604\n", "12752\n", "9526\n", "18239\n", "14938\n", "3798\n", "18429\n", "3995\n", "15144\n", "19099\n", "10939\n", "14784\n", "9555\n", "15247\n", "5400\n", "9575\n", "4351\n", "15458\n", "3515\n", "3302\n", "18166\n", "19999\n", "15640\n", "10924\n", "4664\n", "4369\n", "3680\n", "5023\n", "20450\n", "2893\n", "10289\n", "24227\n", "19418\n", "23401\n", "23550\n", "23552\n", "14205\n", "11591\n", "11261\n", "20316\n", "3052\n", "20763\n", "5289\n", "18595\n", "19246\n", "14863\n", "21048\n", "10748\n", "20658\n", "18727\n", "12903\n", "3214\n", "11280\n", "10275\n", "15654\n", "17589\n", "14714\n", "3821\n", "21050\n", "10432\n", "13013\n", "17795\n", "4641\n", "10769\n", "3321\n", "15143\n", "18322\n", "19053\n", "18401\n", "18139\n", "10872\n", "17617\n", "18998\n", "19563\n", "4847\n", "3287\n", "19936\n", "16139\n", "17743\n", "10638\n", "15924\n", "4633\n", "23097\n", "10455\n", "14325\n", "11004\n", "19102\n", "14874\n", "21152\n", "5343\n", "17666\n", "3695\n", "23200\n", "2968\n", "12987\n", "21147\n", "9473\n", "11727\n", "4904\n", "10595\n", "2827\n", "11667\n", "4784\n", "5620\n", "10487\n", "4805\n", "10510\n", "24185\n", "20407\n", "2787\n", "3586\n", "14346\n", "14855\n", "15652\n", "4656\n", "12947\n", "3920\n", "15389\n", "3764\n", "12974\n", "4338\n", "20181\n", "19931\n", "4679\n", "17948\n", "14299\n", "20471\n", "3533\n", "14824\n", "19603\n", "5198\n", "19675\n", "20479\n", "20354\n", "10152\n", "19411\n", "18229\n", "4113\n", "18676\n", "14584\n", "15023\n", "24133\n", "10250\n", "24142\n", "20482\n", "15332\n", "23298\n", "11161\n", "15974\n", "15903\n", "5376\n", "18167\n", "21115\n", "20564\n", "3571\n", "14263\n", "23292\n", "24152\n", "19578\n", "11342\n", "10188\n", "19465\n", "11684\n", "21138\n", "3768\n", "3853\n", "9289\n", "15181\n", "18852\n", "10785\n", "20196\n", "19608\n", "11137\n", "23474\n", "11638\n", "4894\n", "12942\n", "23470\n", "10842\n", "11546\n", "4860\n", "14251\n", "24064\n", "15168\n", "10342\n", "19649\n", "23193\n", "14529\n", "3554\n", "10995\n", "10552\n", "4409\n", "23448\n", "19442\n", "19771\n", "15531\n", "16046\n", "4264\n", "14539\n", "23339\n", "2858\n", "17483\n", "10205\n", "20101\n", "19618\n", "14918\n", "11143\n", "10653\n", "5417\n", "5609\n", "9363\n", "19445\n", "4252\n", "4771\n", "21072\n", "23120\n", "10710\n", "14291\n", "19965\n", "3794\n", "11473\n", "10564\n", "13146\n", "24129\n", "9354\n", "18597\n", "19848\n", "20128\n", "10652\n", "4350\n", "16055\n", "14622\n", "10604\n", "9595\n", "12900\n", "4059\n", "18812\n", "18108\n", "3886\n", "15480\n", "16013\n", "14410\n", "14995\n", "5645\n", "15779\n", "3021\n", "4329\n", "3261\n", "23363\n", "5332\n", "4136\n", "9398\n", "5637\n", "19031\n", "10209\n", "14233\n", "19811\n", "15883\n", "3513\n", "18300\n", "11242\n", "20936\n", "18988\n", "23451\n", "4915\n", "15646\n", "18696\n", "9483\n", "15268\n", "21100\n", "4829\n", "5549\n", "17497\n", "3623\n", "19727\n", "15302\n", "19604\n", "14975\n", "2946\n", "3221\n", "9434\n", "11086\n", "3617\n", "15631\n", "15557\n", "11703\n", "13191\n", "10464\n", "4490\n", "15749\n", "4599\n", "12920\n", "23510\n", "20486\n", "2921\n", "13052\n", "11694\n", "13099\n", "15877\n", "20742\n", "20794\n", "14679\n", "14386\n", "15864\n", "9361\n", "18035\n", "15669\n", "15727\n", "15964\n", "5336\n", "10362\n", "5345\n", "3633\n", "10876\n", "4180\n", "23907\n", "20612\n", "4742\n", "15226\n", "4909\n", "19371\n", "15911\n", "11609\n", "18942\n", "2834\n", "16129\n", "10525\n", "11043\n", "19213\n", "3759\n", "2919\n", "14204\n", "21123\n", "15567\n", "15687\n", "18546\n", "19005\n", "23180\n", "4587\n", "15545\n", "3473\n", "20129\n", "15465\n", "19016\n", "11744\n", "3466\n", "24232\n", "2981\n", "11187\n", "20246\n", "19726\n", "20643\n", "3512\n", "19346\n", "24004\n", "4077\n", "4565\n", "23893\n", "3250\n", "3474\n", "9324\n", "16117\n", "20929\n", "11341\n", "23201\n", "4362\n", "17735\n", "10391\n", "10611\n", "135\n", "151\n", "263\n", "177\n", "214\n", "11328\n", "8557\n", "16490\n", "15198\n", "9637\n", "9958\n", "21449\n", "1160\n", "2224\n", "17372\n", "743\n", "7894\n", "7084\n", "43529\n", "9732\n", "9251\n", "33\n", "6901\n", "974\n", "2442\n", "9965\n", "16639\n", "15141\n", "1802\n", "9460\n", "2185\n", "7492\n", "8654\n", "7685\n", "7517\n", "16949\n", "9518\n", "6649\n", "793\n", "16748\n", "9297\n", "7183\n", "1908\n", "10186\n", "16360\n", "1004\n", "16709\n", "42274\n", "8347\n", "10096\n", "1744\n", "8363\n", "12167\n", "2492\n", "6889\n", "42460\n", "7512\n", "8698\n", "8415\n", "8548\n", "8115\n", "8990\n", "1924\n", "7400\n", "17456\n", "8985\n", "1528\n", "9882\n", "42519\n", "18846\n", "8749\n", "6841\n", "16172\n", "3642\n", "8040\n", "6868\n", "21443\n", "8272\n", "17810\n", "23048\n", "21438\n", "7799\n", "6914\n", "11764\n", "8084\n", "43446\n", "2049\n", "8524\n", "1222\n", "16992\n", "21538\n", "7432\n", "7136\n", "6607\n", "9891\n", "7225\n", "42510\n", "43233\n", "2148\n", "14551\n", "608\n", "42477\n", "17246\n", "14611\n", "17401\n", "7263\n", "7448\n", "42255\n", "1075\n", "7320\n", "8569\n", "21431\n", "9358\n", "9672\n", "42709\n", "4188\n", "3935\n", "1531\n", "7422\n", "14478\n", "2498\n", "10013\n", "9967\n", "42410\n", "17616\n", "9356\n", "8949\n", "9070\n", "7497\n", "10042\n", "427\n", "14495\n", "9105\n", "8814\n", "28065\n", "11596\n", "2172\n", "7175\n", "736\n", "11907\n", "17075\n", "42261\n", "1144\n", "11827\n", "12078\n", "283\n", "42782\n", "43501\n", "7860\n", "7651\n", "7521\n", "7262\n", "14763\n", "42721\n", "2246\n", "1123\n", "17092\n", "21561\n", "42285\n", "12673\n", "12727\n", "85\n", "17216\n", "3057\n", "7542\n", "8467\n", "7644\n", "6669\n", "17182\n", "21521\n", "2340\n", "11442\n", "11018\n", "638\n", "42492\n", "2274\n", "7981\n", "7910\n", "10077\n", "9998\n", "17218\n", "43296\n", "5766\n", "11931\n", "1226\n", "7442\n", "625\n", "8734\n", "17058\n", "749\n", "7339\n", "99992\n", "2990\n", "7612\n", "886\n", "8336\n", "7172\n", "2317\n", "8533\n", "11247\n", "8932\n", "8087\n", "515\n", "7666\n", "328\n", "7786\n", "12217\n", "1941\n", "16192\n", "6876\n", "41962\n", "10928\n", "90495\n", "23047\n", "14862\n", "11998\n", "9148\n", "9951\n", "7234\n", "41902\n", "6673\n", "16961\n", "17798\n", "7683\n", "8870\n", "1029\n", "6075\n", "7567\n", "17412\n", "9667\n", "12319\n", "7470\n", "462\n", "23034\n", "8466\n", "16511\n", "18403\n", "9783\n", "7328\n", "42574\n", "2467\n", "7153\n", "8207\n", "8670\n", "14909\n", "8674\n", "7522\n", "7289\n", "7265\n", "682\n", "408\n", "9005\n", "377\n", "6917\n", "6981\n", "10247\n", "7224\n", "7138\n", "8996\n", "12712\n", "17522\n", "18740\n", "7125\n", "11757\n", "571\n", "7472\n", "9043\n", "42694\n", "20\n", "8432\n", "9685\n", "7977\n", "8871\n", "8009\n", "317\n", "11877\n", "16161\n", "12679\n", "9036\n", "2228\n", "8461\n", "10030\n", "11988\n", "6636\n", "618\n", "17262\n", "1459\n", "9176\n", "16504\n", "7217\n", "17018\n", "12663\n", "5933\n", "11951\n", "279\n", "17457\n", "14651\n", "16447\n", "7009\n", "8406\n", "9871\n", "18837\n", "8936\n", "8121\n", "7782\n", "12704\n", "1569\n", "14448\n", "8984\n", "8122\n", "9949\n", "12215\n", "17366\n", "7303\n", "14777\n", "16881\n", "4859\n", "17717\n", "8964\n", "8198\n", "7360\n", "16909\n", "2514\n", "952\n", "12708\n", "6708\n", "7528\n", "9708\n", "6983\n", "9494\n", "11372\n", "7048\n", "8989\n", "16336\n", "91428\n", "11852\n", "21575\n", "8231\n", "8573\n", "9847\n", "42310\n", "7452\n", "9253\n", "8451\n", "15333\n", "43459\n", "42404\n", "1414\n", "1650\n", "12251\n", "8318\n", "21517\n", "8568\n", "9705\n", "6945\n", "16280\n", "7798\n", "7371\n", "16607\n", "9021\n", "368\n", "\n", "In a list of 1098 we know the status of 1074 patients\n", "createListOfWords done in 2461.363s.\n" ] } ], "source": [ "t0 = time()\n", "createListOfWords()\n", "print(\"createListOfWords done in %0.3fs.\" % (time() - t0))" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "maximun 29296 minimun 3636\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAAEWCAYAAAAU3IItAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XeYFUX2//H3hzQwMOQgMMiAZCWogBiQ4CqYXVnXvIhx\nzasuij8DuupXXLPrqssa0DVnUREwY0IFRLKAgDCA5CRB0vn90XWhuUy4wAwzDOf1PPeZvtVd1ef2\nwD1T1dXdMjOcc865kqZUUQfgnHPOFQZPcM4550okT3DOOedKJE9wzjnnSiRPcM4550okT3DOOedK\nJE9wbq8g6QNJvYs6jj2FpFMlfSmpTFHHkgpJXSVl72TdQZLu3IV9/yapcS7rzpP05c627XaNJzhX\n7EiaJWlt+OJYEL6AKu1Km2Z2rJk9WwCx7ZFfWCEBmKTHksq/lHReUlkVoD9whplt3I1hFnuSPpN0\nYbzMzCqZ2YyiisnlzhOcK65ONLNKwEFAe+DmIo5nj5FHr2s1cK6krHyaaAFcbmY71SPaGZJK7659\nub2HJzhXrJnZXOAD4AAASX0kTZa0StIMSZfEt5d0sqSxklZK+llSz1C+zV/eks4P7SyTNExSw9g6\nk/RXSdMkLZf0b0VaAk8Ah4be5fKwfZqk+yTNDj3OJyRVCOtqSnovtLNU0heScvx/F/Z7VfhciyXd\nm9hWUilJN0v6RdJCSc+FnhaSskLdCyTNBj7J5XAuBwYR9c5y2v9tkp43s2/N7MtYu2Vix/BOSV+H\nz/+upBqSXgjH+/t48pTUQtKH4XP/JOnPsXWDJD0uaYik1UA3SVXC51oUPufNeRyrCqGNZZImAR2S\n1teT9EZoa6akq3I5JsntVgu/r0Wh7fckZYZ1dwGdgUfD5380lJukJmG5hqTB4Xh8B+yX1P5h4Tit\nCD8Pi607L/zuV4WYz04lZpcHM/OXv4rVC5gF/CEsNwAmAneE98cTfWkI6AKsAQ4K6zoCK4Cjif54\nqw+0COs+Ay4MyycD04GWQBmi3uHXsf0b8B5QFdgXWAT0DOvOA75MivdBYDBQHcgA3gXuDuvuJkqK\nZcOrM6BcPrcBn4Z29gWmxmI+P8TcGKgEvAn8L6zLCnWfAyoCFXJouyuQDewDrASah/IvgfPC8m3A\n87E6iXbLxI7h9HD8qwCTQox/CMfxOeCZsG1FYA7QJ6w7EFgMtArrB4Xf1eHhd1U+1H8nHMOs0PYF\nuRyrAcAX4Vg1ACYA2WFdKWA0cCtQLhyzGUCPXNoaBNwZlmsAvYD0EMdrwNuxbT9L/E6Sfm9NwvLL\nwKvh8x8AzE38ewmxLgPODcfkzPC+Rtg+/nupC+xf1P8X9/RXkQfgL38lv4gS3G9EPY5fgMdy+tIO\n274NXB2W/wM8mMt2W76YiHqEF8TWlSJKlA3DewOOiK1/FegXls8jluCIEu1qYL9Y2aHAzLD8j/Cl\n3SSFz22ERBreXwZ8HJY/Bi6LrWsObAhflFmhbuM82u4aSwD/BF4Jyzua4G6Krb8f+CD2/kRgbFg+\nHfgiKYb/AP3D8iDgudi60sB6QgIMZZcAn+XyeWYkHauLY5/vEGB20vY3EpJvDm0NIiS4HNa1A5bl\n9O8o6ffWJHyGDYQ/qsK6/2NrgjsX+C6p7jfh31RFon/vvcjl37q/dvzlQ5SuuDrFzKqaWUMzu8zM\n1gJIOlbSyDDstRw4DqgZ6jQAfk6h7YbAw2HYcDmwlChR1Y9t82tseQ1RrykntYj+2h8da29oKAe4\nl6jXMzwMP/XLJ7Y5seVfgHphuV54H19XBqiTS9283AP0kNQ2xe3jFsSW1+bwPnGcGgKHJI5JOC5n\nE/Ugc4q3JlEPN/kzxn8ncfXY/lglNATqJe37/7HtscqRpHRJ/wlDpCuBEUBVpXaOsBbR7yS3uJJ/\nh4n19c1sNdEfBX8F5kt6X1KLFPbp8uAJzu0xJKUBbwD3AXXMrCowhCg5QfTFsl8u1ePmAJeEBJp4\nVTCzr1Oom/z4jcVEX+z7x9qqYtEEGcxslZldZ2aNgZOAayUdlUf7DWLL+wLzwvI8oi/u+LqNbJtg\nUno0iJktAR4C7khatZooWSfsw86bA3yedIwrmdmlucS7mKj3k/wZ5+bS/ny2P1bxfc9M2neGmR2X\nQtzXEfWODzGzysCRoTzxbyyvY7yI6HeSW1zJv8PE+rkAZjbMzI4mGp6cAvw3hXhdHjzBuT1JOSCN\n8EUi6VjgmNj6p4A+ko4KkzLq5/JX8BPAjZL2h2havKTTUoxhAZApqRyAmW0m+iJ6UFLt0F59ST3C\n8gmSmkgS0TmnTcDmPNrvGyY6NACuBl4J5S8B10hqpOiSif8jGmbc2Wn8DwCHEZ2HTBgLHClp3zCB\n5cadbBuic5jNJJ0rqWx4dVA0UWc7ZraJaCj4LkkZiib9XAs8n0v7rxL9DquFSSBXxtZ9B6ySdEOY\njFJa0gGSOuTc1DYyiP5gWS6pOttPyFlAdE4vt8/wJnBb6Am2AuLXXg4hOiZnSSoj6XSgFfCepDqK\nJkhVBH4nGqLP69+JS4EnOLfHMLNVwFVEX27LgLOIJnck1n9HNKnhQaJk8jnb/8WMmb1FNEz3chiG\nmgAcm2IYnxBNevlV0uJQdgPRMOTI0N5HRL0AgKbh/W9E51seM7NP82j/HaIJEmOB94mSNsDTwP+I\nhsxmAuvY9kt9h5jZSqJzcdVjZR8SJdRxIYb3dqH9VUR/fJxB1HP5leiYp+VR7UqiXuQMonODLxJ9\n7pzcTjS8NxMYTnRsEvveBJxAdP5sJlHv8EmiiTH5eQioEOqMJBpujnsY+FOYYflIDvWvIBqm/ZXo\n3N4zsbiWhLiuA5YA1wMnmNliou/ia4mO1VKiCVTx3q7bCTLzB546VxxIMqCpmU0v6licKwm8B+ec\nc65E8gTnnHOuRPIhSueccyWS9+Ccc86VSHvEozBKqpo1a1pWVlZRh+Gcc3uU0aNHLzazWvlt5wmu\nCGVlZTFq1KiiDsM55/YokpLvCJMjH6J0zjlXInmCc845VyJ5gnPOOVci+Tk455wrQBs2bCA7O5t1\n69YVdSh7vPLly5OZmUnZsmV3qr4nOOecK0DZ2dlkZGSQlZVFdI9ttzPMjCVLlpCdnU2jRo12qg0f\nonTOuQK0bt06atSo4cltF0miRo0au9QT9gTnnHMFzJNbwdjV4+gJzjnnXInk5+CK0Pi5K8jq936h\ntT9rwPGF1rZzLjUF/X88lf/XpUuXpnXr1mzcuJGWLVvy7LPPkp6enm+9uMGDBzNp0iT69eu3wzEu\nX76cF198kcsuu2yH6xYk78E551wJU6FCBcaOHcuECRMoV64cTzzxxA63cdJJJ+1UcoMowT322GM7\nVbcgeYJzzrkSrHPnzkyfHj1D95RTTuHggw9m//33Z+DAgVu2GTp0KAcddBBt27blqKOOAmDQoEFc\nccUVACxatIhevXrRoUMHOnTowFdffQXAbbfdxvnnn0/Xrl1p3LgxjzwSPeS8X79+/Pzzz7Rr146+\nffsCcO+999KhQwfatGlD//79AVi9ejXHH388bdu25YADDuCVV14p0M9eaEOUkhoAzwF1AAMGmtnD\nYd2VwOXAJuB9M7s+lN8IXBDKrzKzYaH8GuDC0M54oI+ZrZPUHbgPKAeMBi4ws405xPIC0B7YAHwH\nXGJmGyRVA54G9gPWAeeb2YR8Ym8LPEH0WPpZwNlmtjKsawP8B6gMbAY6mJlfDOOcKxIbN27kgw8+\noGfPngA8/fTTVK9enbVr19KhQwd69erF5s2bueiiixgxYgSNGjVi6dKl27Vz9dVXc80113DEEUcw\ne/ZsevToweTJkwGYMmUKn376KatWraJ58+ZceumlDBgwgAkTJjB27FgAhg8fzrRp0/juu+8wM046\n6SRGjBjBokWLqFevHu+/Hw3jrlixokA/f2Geg9sIXGdmYyRlAKMlfUiUNE4G2prZ75JqA0hqBZwB\n7A/UAz6S1AzYB7gKaGVmayW9Cpwh6TngWeAoM5sq6R9Ab+CpHGJ5ATgnLL9IlCwfB/4fMNbM/iip\nBfBv4KjcYjezScCTwN/N7HNJ5wN9gVsklQGeB841sx8l1SBKqM45t1utXbuWdu3aAVEP7oILLgDg\nkUce4a233gJgzpw5TJs2jUWLFnHkkUduudasevXq27X30UcfMWnSpC3vV65cyW+//QbA8ccfT1pa\nGmlpadSuXZsFCxZsV3/48OEMHz6cAw88EIDffvuNadOm0blzZ6677jpuuOEGTjjhBDp37lyAR6EQ\nE5yZzQfmh+VVkiYD9YGLgAFm9ntYtzBUORl4OZTPlDQd6AjMDnFWkLQBSAfmATWA9WY2NdT/ELiR\nHBKcmQ1JLEv6DsgMb1sBA8I2UyRlSaqTR+yTgGbAiNg+hwG3AMcA48zsx1BvyU4dOOec20WJc3Bx\nn332GR999BHffPMN6enpdO3aNeVrzDZv3szIkSMpX778duvS0tK2LJcuXZqNG7cbRMPMuPHGG7nk\nkku2WzdmzBiGDBnCzTffzFFHHcWtt96aUkyp2C3n4CRlAQcC3xIliM6SvpX0uaQOYbP6wJxYtWyg\nvpnNJRqGnE2UdFaY2XBgMVBGUvuw/Z+ABvnEURY4Fxgain4ETg3rOgIN2Zr8coodYCJRMgY4LbbP\nZoBJGiZpjKTrc4nhYkmjJI3atGbb7nj/E1vx/U1/YNaA43mqd/st5Zd13Y+v+nVn1oDjGfa3I/P6\niM45l6MVK1ZQrVo10tPTmTJlCiNHjgSgU6dOjBgxgpkzZwLkOER5zDHH8K9//WvL++TkmSwjI4NV\nq1Zted+jRw+efvrpLb2+uXPnsnDhQubNm0d6ejrnnHMOffv2ZcyYMbv8OeMK/TIBSZWAN4C/mdnK\nMJRXHegEdABeldQ4j/rViBJKI2A58Jqkc8zseUlnAA9KSgOGE527y8tjwAgz+yK8HwA8LGks0bm9\nH+JtJMceis8HHpF0CzAYWB/KywBHhM+0BvhY0mgz+zgegJkNBAYCpNVtaskBvjduHn0O3/a2NGVK\ni7d/mMvl3Zrk8/Gcc8VNcblcp2fPnjzxxBO0bNmS5s2b06lTJwBq1arFwIEDOfXUU9m8eTO1a9fm\nww8/3KbuI488wuWXX06bNm3YuHEjRx55ZJ4zM2vUqMHhhx/OAQccwLHHHsu9997L5MmTOfTQQwGo\nVKkSzz//PNOnT6dv376UKlWKsmXL8vjjjxfoZ5bZdt+xBdd41GN6DxhmZg+EsqHAPWb2aXj/M1Gy\nuxDAzO4O5cOA24h6VD3N7IJQ/hegk5ldlrSvY4ALzezPoW4dYJSZXRjW9yfqiZ1qZptziFXATKBN\nSMTbxZ5DnWbA82bWMSTbY82sd1h3C7DOzO7N7fik1W1qdXs/tE1ZZrUKfHlDdz6evIALnt32Yaiz\nBhzPT7+uosdDI0hFcfmP5dzeZPLkybRs2bKowygxcjqeofPQPpcqWxTaEGVIGE8Bk5MSxNtAt7BN\nM6IZkIuJekNnSEqT1AhoSjTjcTbQSVJ6aPMoYHKon5igkgbcQDS7ETPrYWbtYsntQqAHcGY8uUmq\nKqlceHshUe9uZR6xx/dZCrg5sU+ic3GtQ5xlgC5E5+ycc84VgcI8B3c40fmu7pLGhtdxRNPyG0ua\nALwM9LbIROBVoqQwFLjczDaZ2bfA68AYomHEUoQhPqBvmAAyDnjXzD7JJZYniHp034Q4EmcxWwIT\nJP0EHAtcnU/sAGdKmgpMIZrs8gyAmS0DHgC+B8YCY8ys8G5T4pxzLk+FOYvySyC3O2Wek1Ohmd0F\n3JVDeX+gfw7lfYmm6ecXS46f08y+IZocklyea+zheriHc1n3PNGlAs65vZiZ+Q2XC8CunkLze1EW\nI92a16b5PpUAqFe1Aqd3aMC3M5ZQu3J5GtWsCECVCmU5vUMDJsxdwcR5K/NqzjlXBMqXL8+SJUv8\nkTm7KPE8uJwuTUiVJ7hi5JIujenUuAYALetW5p5ebfj7az/SqXF1/nRwdDXCPlXKc0+vNjz00VRP\ncM4VQ5mZmWRnZ7No0aKiDmWPl3ii984q1FmULm85zaIsSD6L0jlXEhX5LErnnHOuKHmCc845VyJ5\ngnPOOVcieYJzzjlXInmCc845VyJ5gnPOOVci+XVwRah1/SqM8qn8zjlXKLwH55xzrkTyBOecc65E\n8gTnnHOuRPIE55xzrkTySSZFaPzcFWT180fGJfN7aDrnCoL34JxzzpVIhZbgJDWQ9KmkSZImSro6\nlN8raYqkcZLeklQ1lJeV9Kyk8ZImS7ox1tY1oY0Jkl6SVD6UXyFpuiSTVDOPWF6Q9FOo/7SksrF1\nXcMTuydK+jxW3jPUmS6pX6z8KEljQp0vJTUJ5fuGz/tD+GzH4ZxzrsgUZg9uI3CdmbUCOgGXS2oF\nfAgcYGZtgKlAIpGdBqSZWWvgYOASSVmS6gNXAe3N7ACgNHBGqPMV8Afgl3xieQFoAbQGKgAXAoTk\n+hhwkpntH2JAUmng38CxQCvgzBA7wOPA2WbWDngRuDmU3wy8amYHhvge25GD5ZxzrmAVWoIzs/lm\nNiYsrwImA/XNbLiZbQybjQQST7MzoKKkMkRJaD2QeKJnGaBCWJcOzAvt/mBms1KIZYgFwHexfZ4F\nvGlms8N2C0N5R2C6mc0ws/XAy8DJsTgrh+UqiVjyKHfOOVcEdsskE0lZwIHAt0mrzgdeCcuvEyWR\n+URJ7BozWxrq3wfMBtYCw81s+E7GURY4F7g6FDUDykr6DMgAHjaz54D6wJxY1WzgkLB8ITBE0lqi\nBNwplN8GDJd0JVCRqGeZUwwXAxcDlK5ca2c+RrHz9mWH0aROBqUlpi1cxZ3vT2bjps3cdHwrmtau\nBMBXPy/mprcmsHT1+iKO1jm3tyj0SSaSKgFvAH8zs5Wx8puIhjFfCEUdgU1APaARcJ2kxpKqESW+\nRmFdRUnn7GQ4jwEjzOyL8L4M0XDo8UAP4BZJzfJp4xrgODPLBJ4BHgjlZwKDQvlxwP8kbXd8zWyg\nmbU3s/al06vs5McoXkbPXsbtgyfyr0+m0apuZQac2ppGNSuydPV6BnwwhU9/WsixB9TlxmNbFHWo\nzrm9SKH24EKP6Q3gBTN7M1Z+HnACcFQYNoRouHComW0AFkr6CmhPNPQ308wWhbpvAocBz+ex32FA\nHWCUmSXOt/UHagGXxDbNBpaY2WpgtaQRQNtQ3iC2XSYwV1ItoK2ZJXqirwBDw/IFQE8AM/smTISp\nCSykhLvjvclUSy/LvtXTuaJ7E8xg8I/zeGPMXADeGTuXk9vVp2mdjCKO1Dm3NynMWZQCngImm9kD\nsfKewPVEEzvWxKrMBrqHbSoSDf1NCeWdJKWHNo8iOp+XKzPrYWbtYsntQqIe2plmtjm26TvAEZLK\nSEonGoacDHwPNJXUSFI5okkjg4FlQJVYL+/oWCyzQ2xIagmUBxaldrT2bJXLl+GHW4/hnSuOYMMm\n44Y3xrFhk21Zf2SzaCj2u5lLiypE59xeqDCHKA8nOt/VPUypHxumzj9KdL7rw1D2RNj+30AlSROJ\nEswzZjYu9JZeB8YA40PMAwEkXSUpm6iHNU7Sk7nE8gRRj+6bsM9bAcxsMlEPbBzR5JMnzWxCmARz\nBTCMKIG9amYTQ/lFwBuSfgyfr2/Yx3XARaH8JeC8WO+0RFu9fhPnPPkt/QdPJK1MKa49Zuso78EN\nq/HPP7VhXPZyHvpoahFG6Zzb22gv+Q4ultLqNrW6vR8q6jAK1CsXd+KQxjU48B/DaVong6fP68Av\nS1Zz9pPfsnzNhpTa8DuZOOfyImm0mbXPbzu/VZfbJUc2rcnxbeox+pdl1KtanoMaVmPRqnXUr1aB\nQX06IMRL382hc5OarNmwiY8nl/hTks65YsITnNsly9duoF2Dqpzcrh7rN25m1Kxl3P3BZFrsU5n0\nctE/rztPOQCA7GVrPME553YbT3Bul4zLXkGPh0bkWP766OwiiMg55yJ+s2XnnHMlkic455xzJZIn\nOOeccyWSJzjnnHMlkic455xzJZInOOeccyWSXyZQhFrXr8Iov2uHc84VCu/BOeecK5E8wTnnnCuR\nPME555wrkTzBOeecK5F8kkkRGj93BVn93i/qMJwr1vzxSW5neQ/OOedciVSoCU7S05IWSpoQK2sr\n6RtJ4yW9K6lybF2bsG5iWF9eUkbsieBjJS2W9FDSfnpJMkk5PgBP0r2SpkgaJ+ktSVVD+dGSRod9\njZbUPVbnzFA+TtJQSTVDeTtJI0MsoyR1DOWS9Iik6aHOQQV7NJ1zzu2Iwu7BDQJ6JpU9CfQzs9bA\nW0BfAEllgOeBv5rZ/kBXYIOZrTKzdokX8AvwZqIxSRnA1cC3ecTxIXCAmbUBpgI3hvLFwIkhlt7A\n/2KxPAx0C3XGAVeEOv8Ebg+x3BreAxwLNA2vi4HHUzlAzjnnCke+CU5SRUmlwnIzSSdJKptK42Y2\nAliaVNwMSDxA7EOgV1g+BhhnZj+GukvMbFNSLM2A2sAXseI7gHuAdXnEMdzMNoa3I4HMUP6Dmc0L\n5ROBCpLSAIVXRUkCKgOJ7Sy8B6gSKz8ZeM4iI4GqkurmFpNzzrnClcokkxFAZ0nVgOHA98DpwNk7\nuc+JRMngbeA0oEEobwaYpGFALeBlM/tnUt0zgFfMzADCMGADM3tfUt8U938+8EoO5b2AMWb2e2j7\nUmA8sBqYBlwetvsbMEzSfUR/IBwWyusDc2LtZYey+SnG5VyJcFr7TK7o1oQ6lcvz3cyl9H39RzZs\nMp6/oCNZNSuy2WDi3BXc8s4Epi74rajDdSVYKkOUMrM1wKnAY2Z2GrD/LuzzfOAySaOBDGB9KC8D\nHEGUOI8A/ijpqKS6ZwAvAYRe5QPAdanuWNJNwEbghaTy/Yl6gZeE92WBS4EDgXpEQ5SJYc1LgWvM\nrAFwDfBUqvsPbV8czt2N2rRmxY5Uda7Ya12/Cvec2oZfV65jwAdTOKRxde76Y2sAPvtpEbe8PYHn\nR/7CIY1rcPPxrYo4WlfSpZTgJB1KlHgSc9pL7+wOzWyKmR1jZgcTJaufw6psYISZLQ4JdQiwZaKG\npLZAGTMbHYoygAOAzyTNAjoBgyW1l/RMmAQyJFb/POAE4OxEDzCUZxKdC/yLmSViaRdi/Tls+ypb\ne2q92XoO8DWgY1iey9beKETDoHNz+PwDzay9mbUvnV4lhSPm3J6jY6PqlColXvx2NoO+nsXEuSvp\n3rw2m824b/hPfPrTIr75eQkAsf+GzhWKVIYo/0bUe3nLzCZKagx8urM7lFTbzBaGHtjNwBNh1TDg\neknpRL26LsCDsapnEnpvAGa2AqgZa/cz4O9mNgrok7TPnsD1QJeQPBPlVYmSdj8z+ypWZS7QSlIt\nM1sEHA1MDuvmhdg+A7oTDV8CDAaukPQycAiwwsx8eNLtVZaujgZkOmRVZ8LcFWTVrEipUiKzWgU2\nV6nAkKs7AzB/xVr+8d6kogzV7QXyTXBm9jnwuaRKkiqZ2QzgqlQal/QS0WzImpKygf5AJUmJ81lv\nAs+E/SyT9ADROT4DhphZ/CroPwPHpfaxtvMokAZ8GM0ZYaSZ/ZVoZmQT4FZJt4ZtjzGzeZJuB0ZI\n2kA0c/O8sP4i4OEw03Id0YxJiHqcxwHTgTUkJVnn9gbvj5vPWYfsyzmdGnJOp4asWrcBgN83bGbu\n8rWc+9S3tG1QlWv/0IxLuuzH9a+PK+KIXUmm/IYJJLUGngOqE80sXEQ0nDex8MMr2dLqNrW6vR/K\nf0Pn9iAStNgng42bjFtPbEWHrOq0vX04v2/cvGWbL2/oRrX0cuzff1i+7fmdTFwySaPNLMfrnuNS\nGaL8D3CtmX0aGu4K/Jet56Sccw6AUoJbTmjFxHkraZNZhc5Na/HfL2ZwUtt6tKpXmUnzVtKibgaZ\n1dIZO2d5UYfrSrhUElzFRHIDMLPPJFUsxJicc3soAw5pVJ2zOu7LmvWbGPT1LO4d+hNHNK1J1+a1\nOeuQfVnz+yY+mryAO/0cnCtkqSS4GZJuIdzlAzgHmFF4ITnn9lRmcNwjX25X/smUhXwyZWERROT2\nZqlcJnA+0YXXb4ZXrVDmnHPOFVupzKJcRoqzJp1zzrniItcEJ+ldoiH1HJnZSYUSkXPOOVcA8urB\n3Rd+ngrsQ3Snf4guuF5QmEE555xzuyrXBBcu8EbS/UnXG7wraVShR+acc87tglQmmVQMt+cCQFIj\nwC8TcM45V6ylcpnANUQ3NJ5BdCeThoS77rtd07p+FUb5XRqcc65QpDKLcqikpkCLUDQl8cw055xz\nrrjKaxZldzP7RNKpSav2k4SZvZljReecc64YyKsH1wX4BDgxh3XG1meiOeecc8VOXrMo+4fFf5jZ\nzPi6MNHEOeecK7ZSmWTyBrEnawevAwcXfDh7l/FzV5DV7/38N3TOuRJgdz/6KK9zcC2A/YEqSefh\nKgPlCzsw55xzblfk1YNrDpwAVGXb83CriJ5q7ZxzzhVbuV7obWbvmFkf4AQz6xN7XWVmX+fXsKSn\nJS2UNCGp/EpJUyRNlPTPpHX7SvpN0t9jZVUlvR7qTJZ0aCptxbY5LazfLKl9rLycpGckjZf0Y3iQ\na3zdQElTQ/u9QvmDksaG11RJy0N5Q0ljQvlESX/N7/g455wrXKmcg/tB0uVEw5VbhibNLL9H5gwC\nHgWeSxRI6gacDLQ1s98l1U6q8wDwQVLZw8BQM/uTpHJAeoptJUwgup/mf5LKLwqfo3Wo+4GkDma2\nGbgJWGhmzSSVAqqHba+JfZYrgQPD2/nAoSGOSsAESYPNbF5eB8g551zhSeVWXf8jutlyD+BzIJNo\nmDJPZjYCWJpUfCkwIHGhuJlteQKipFOAmcDEWFkV4EjgqbD9ejNbnl9bSXFMNrOfcljViugyiETd\n5UCih3c+cHdYt9nMFudQ/0zgpVhciYvf00jtuDrnnCtEqXwRNzGzW4DVZvYscDxwyE7urxnQWdK3\nkj6X1AEg9HpuAG5P2r4RsAh4RtIPkp6UVDGvtnbAj8BJksqEyx4OBhpIqhrW3xGGHV+TVCdeUVLD\nENsnsbK2lBUFAAAgAElEQVQGksYBc4B7cuu9SbpY0ihJozatWbGDITvn3O7T/8RWfH/TH5g14Hie\n6t1+u/UvX9wpx3VXHdWEb27szk939OTDa46kUc2iuX1xKgluQ/i5XNIBQBUgt+HA/JQhGu7rBPQF\nXpUk4DbgQTP7LYftDwIeN7MDgdVAv3zaStXTQDYwCngI+BrYFNrNBL42s4OAb9j66KCEM4DXzWxT\nosDM5phZG6AJ0Ds5Kca2G2hm7c2sfen0KjsQrnPO7X7vjcv5TMuZHRvQJnP777DzDsvi2qObMz57\nBTe/M4HPpy6ibOkd+WouOKmcgxsoqRpwCzAYqATcupP7ywbeNDMDvpO0GahJ1CP8U5goUhXYLGkd\n0fV22Wb2baj/OlsTXI5thTYOBOaZ2XG5BWJmG4luJA2ApK+BqcASYA1b79TyGnBBUvUzgMtzaXde\nmFjTOcTrnHN7pNvfnURmtQr0OXzbe3vUykjjxmNbcv/wqdxyQqtt1l10ZGOyl63h8hfHIMT6TZt3\nZ8jbyLcHZ2ZPmtkyM/vczBqbWW0ze2In9/c20A1AUjOgHLDYzDqbWZaZZRH1pv7PzB41s1+BOZKa\nh/pHAZPyaauPmbXLK7mFOumJ4U5JRwMbzWxSSJjvAl1z2Gfi+sBqRD27RFmmpAphuRpwBJDTeT/n\nnNvj/ePk/fly+mKGTfx1m/L0cqWpX7UCZUqVYvTNRzP5jp48c14HKqWl0pcqeHld6H1tXhXN7IG8\n1kt6iShJ1JSUDfQnGhZ8OvRw1gO9Q0LJy5XAC2EG5QygTyhPqS1JfwT+BdQC3pc01sx6EA2zDgs9\nv7nAubFqNwD/k/QQ0TnAPrF1ZwAvJ+2rJXC/JCN6pNB9ZjY+n8/lnHN7nMP2q0G35rU558lvqV+1\nAgAVypWmdkbalt5arYw0/t9b42mxTwZ9Dm/EJV0ac//wqbs91rzSasauNGxmZ+ay6px86t2W9H4s\nW2c3xsvX59dW2O4t4K0cymcRXcyeU51fiGZv5htfKPsQaJNfLM45t6erV7UC5cuW5vVLD9tSdth+\nNXngz+0456lvWbVuA2vXb+KV7+fQuGZF+hzeiIbV04sk1rxutpw8o9E559xepFvz2jTfpxIQJbbT\nOzRg1uLVXPr8aABqVCzHnX9szbjs5Tz8cdRDe2PMXM47LItLu+xHk9pR3e9mJl8xtnsUzcCoc865\nYu+SLo3p1LgGAC3rVuaeXm34+2s/8vrobAAyq0VDlItW/c73s5YBcN+wn6hZsRxXHtWE39Zt5PHP\npvPCd7OLJH7lfwrMFZa0uk2tbu+HijoM55zbLQrqaQKSRpvZ9hfmJfE7bjjnnCuR8k1wkupIekrS\nB+F9K0nJ14U555xzxUoqPbhBwDCgXng/FfhbYQXknHPOFYRUElxNM3sV2Axb7gCyKe8qzjnnXNFK\nJcGtllQDMABJnQC/S7BzzrliLZXLBK4lugflfpK+IrojyJ8KNSrnnHNuF6V0mYCkMkR3/RDwk5lt\nyKeKS0H79u1t1KhRRR2Gc87tUVK9TCCve1GemsuqZpIwszdzWe+cc84VubyGKE8MP2sDh7H14Z7d\niJ6d5gnOOedcsZXXvSj7AEgaDrQys/nhfV2iSwecc865YiuVWZQNEsktWADsW0jxOOeccwUilVmU\nH0saBrwU3p8OfFR4Ie09xs9dQVa/94s6DOec260K6p6U+ck3wZnZFeGhoYnnow0Mz1hzzjnniq2U\nbrZsZm+Z2TXhlVJyk/S0pIXhiduJsjskjZM0VtJwSfVC+dmhfLykryW1jdWZFcrHShoVK28naWSi\nXFLHXOK4QtJ0SSapZtK6rqH+REmfJ60rLekHSe/FyiTpLklTJU2WdFWsnRWhrbGSbk3lGDnnnCs8\nhfk8uEHAo8BzsbJ7zewWgJAcbgX+CswEupjZMknHAgOBQ2L1upnZ4qT2/wncbmYfSDouvO+aQxxf\nAe8Bn8ULJVUFHgN6mtlsSbWT6l0NTAYqx8rOAxoALcxsc1KdL8zshBz275xzrggU2uNyzGwEsDSp\nbGXsbUXC7b/M7GszWxbKRwKZqeyCrcmnCjAvlzh+MLNZOaw6C3jTzGaH7RYmVkjKBI4Hnkyqcynw\nDzPbnFzHOedc8ZJSD05SOaBZeLtLdzKRdBfwF6L7WXbLYZMLgA9i7w0YLsmA/5jZwFD+N2CYpPuI\nEvVhOxhKM6CspM+ADOBhM0v0Nh8Crg/lcfsBp4dzkouAq8xsWlh3qKQfiRLt381sYk47lXQxcDFA\n6cq1djBk55zb/fqf2IoT2tSjVkYaH09ewAXPbnsHppcv7kSnxjW2rMusVoEvb+i+XTvxp4HvDqk8\nD64rMA34N9GQ3lRJR+ZZKQ9mdpOZNQBeAK5I2lc3ogR3Q6z4CDM7CDgWuDy270uBa0Jb1wBP7WAo\nZYCDiXpqPYBbJDWTdAKw0MxG51AnDVgXbhHzX+DpUD4GaGhmbYF/AW/ntlMzG2hm7c2sfen0KjsY\nsnPOFY33xuU4SMaZHRvQJnPb77Ilv63nyhfHbHn99OsqACbM3b336U9liPJ+4Bgz62JmRxIlgwcL\nYN8vAL0SbyS1IRoSPNnMliTKzWxu+LkQeAtITCbpzda7qbyWKJc0LEz0SB5eTJYNDDOz1eH83gig\nLXA4cJKkWcDLQHdJz8fqJPb5FtAmxLbSzH4Ly0OIeobbTGhxzrk91e3vTuKpL2duV14rI40bj23J\n/cOnblO+dsMm3h03n3fHzWfkjKU0rlWR0b8sY0pIdLtLKgmurJn9lHhjZlOBsjuzM0lNY29PBqaE\n8n2JEse5of3E9hUlZSSWgWOAxKzMeUCXsNydqJeJmfUws3ZmdmE+4bwDHCGpjKR0okktk83sRjPL\nNLMs4AzgEzM7J9R5m63Dql2IHv6KpH0kKSx3JDquS3DOuRLsHyfvz5fTFzNs4q+5bvPnDg0oW7oU\nz4/8ZTdGFknlHNyo0BtK9GLOBvK9Bb6kl4hmNdaUlA30B46T1Jzo4am/EM2ghGg2ZQ3gsZAnNoZh\nwDrAW6GsDPCimQ0NdS4CHg5POlhHOK+VQxxXEZ1P2wcYJ2mImV1oZpMlDQXGhXieNLMJObURMwB4\nQdI1wG9AIon+CbhU0kZgLXCGpfKYBuec20Mdtl8NujWvzTlPfkv9qhUAqFCuNLUz0li46ncApGgI\nc+nq9QwZPz+v5gpFvo/LkZQGXA4cEYq+AB4zs98LObYSL61uU6vb+6GiDsM55/KVmDiSmEjyp4Mz\nue+0tttt9+W0xZzz1LcAdG1ei0F9OjJwxAz+b8jkLdvs6p1MdvlxOaGR0sDTZnY28MAuReScc26P\n1K15bZrvUwmAelUrcHqHBsxavJpLn4/m4tWoWI47/9iacdnLefjjrefjzj5kXzZvNl78dvcPT0I+\nCc7MNklqKKmcma3fXUE555wrPi7p0phOjWsA0LJuZe7p1WabKf+Z1aIhykWrfuf7WdElzXUqp9Gt\neW2+/nkJs5asKZK4UxmifA5oCQwGVifKzcx7dLvIhyidc3ujYjFEGfwcXqXY/sJn55xzrlhK5WkC\ntwNISjezoulnOuecczsolTuZHCppEluvWWsr6bFCj8w555zbBalc6P0Q0d1LlgCY2Y9sfTacc845\nVyyl+jy4OUlFmwohFuecc67ApDLJZI6kwwCTVJatz0lzzjnniq1UEtxfgYeB+sBcYDjRnU3cLmpd\nvwqjdnG6rHPOuZylMotyMdH9J51zzrk9Rr4JTlIj4EogK769mZ1UeGE555xzuyaVIcq3iR4m+i7R\nXfedc865Yi+VBLfOzB4p9Eicc865ApTKvSjPApoSTS7Z8ogcMxtTuKGVfH4vSudcUdjVe0EWtYK8\nF2Vr4Fyip2YnhigtvHfOOeeKpVQu9D4NaGxmXcysW3jlm9wkPS1poaQJsbLqkj6UNC38rBbKJekR\nSdMljZN0UKzOJkljw2twrPyKsL1JqplHHDluJ+nksK+xkkZJOiKUt5P0jaSJYf3psTqDJM2MxdMu\nlPeNlU0IMVdP4dg655wrJKkkuAlA1Z1oexDQM6msH/CxmTUFPg7vAY4lGgZtClwMPB6rs9bM2oVX\nfObmV8AfgPyepJfbdh8Dbc2sHXA+8GQoXwP8xcz2D/E/JCn++fvG4hkLYGb3JsqAG4HPzWxpPnE5\n55wrRKkMUVYFpkj6nm3PweV5mYCZjZCUlVR8MtA1LD8LfAbcEMqfs+iE4EhJVSXVNbP5ebT/A4Ck\nPIPPbTsz+y32tiLRsCtmNjW2zTxJC4FawPI8d7TVmcBLKW7rnHOukKSS4PoX4P7qxJLWr0CdsFwf\niN/vMjuUzQfKSxoFbAQGmNnbBRWMpD8CdwO1ge3OukrqCJQjeh5ewl2SbiX0QM3s99j26US9visK\nKkbn3N6t/4mtOKFNPWplpPHx5AVc8OwoAB47+yCOaFKTtDKl+GXpGh74cCpDJ/xKVo107j61DS32\nyaBsmVL8MHsZN701gdlL976nneU7RGlmn+f02tUdh95a3lM4Iw3DbJmziIYL99vVfcdieMvMWgCn\nAHfE10mqC/wP6GNmick1NwItgA5AdaLeZ9yJwFd5DU9Kujic8xu1ac2KAvokzrmS7L1x87Yrm7Zg\nFXcNmczdH0yhbpXyPPDntpQuJfapUp5Sggc/mspro+bQuWkt7unVpgiiLno59uDiDzeVtIqtiagc\nUBZYbWaVd2J/CxJDjyGBLAzlc4EGse0yQxlmlvg5Q9JnwIFs26NKjn0YUc9wlJldmEpQYTi1saSa\nZrZYUmXgfeAmMxsZ2y7R+/xd0jPA35OaOoN8hifNbCAwEKLLBFKJzzm397r93UlkVqtAn8MbbVP+\n4EfTqFKhLLUz0rjoyMZUrVAWgNG/LOP0gVu+tjilXX2a1qm0W2MuLnIbojxPUnUzu9PMMhKFik5k\nnQx02sn9DQZ6AwPCz3di5VdIehk4BFgRkmA1YI2Z/R5mQB4O/DOvHZhZj1QCkdQE+NnMLMzaTAOW\nSCoHvEV0TvD1pDqJ5CyiXl98hmgVoAtwTir7d865XfXF9d2oXKEsv2/YxNWvjGXTZtvmWWat61eh\nWsVyDBmf63SGEi3HIUozewyYKencpHIL58DyTSKSXgK+AZpLypZ0AVFiO1rSNKKZjQPC5kOAGcB0\n4L/AZaG8JTBK0o/Ap0Tn4CaF9q+SlE3U2xsnKTELMjmO3LbrBUyQNBb4N3B6GDb9M9EDXc9LvhwA\neEHSeGA8UBO4M7arPwLDzWx1fsfGOecKwsX/G0Xf13/kt9838vdjmlOu9Nav9P1qVeTJ3u2Zs3QN\n/QdPLMIoi04qdzI5Nfa2FNAe6GJmhxZmYHsDv5OJcy4VmdUq8OUN3beZZBJ3/2lt6XVwJif+60vG\nz11Bk9qVeOmiQ/h942bOGDiS7GVrt9ne72Sy1Ymx5Y3ALKJhSuecc4WsW/PaNN8nOodWr2oFTu/Q\ngLGzl3Nl9yZ8/fMSKqaV4Zj967BuwyZmL11D3SrleemiTlRLL8v9w6dyYIOqHNigKu+O2/uGKVN5\nHlyf3RGIc8657V3SpTGdGtcAoGXdytzTqw0PfjiVhjUq0r1lbTYbTF+wigc+nMqKtRtoWTeDWhlp\nANxwbIst7bw77v0iib8o5TpEGa71yo2Z2R15rHcp8CFK51xR8CFKyGmyREXgAqAGSdeNOeecc8VJ\nrgnOzO5PLEvKAK4G+gAvA/fnVs8555wrDvI8BxfuiH8tcDbRvSMPMrNluyMw55xzblfkmuAk3Quc\nSnTXjdZJNyd2zjnnirW87kV5HVAPuBmYJ2lleK2StHL3hOecc87tnLzOwaXyrDjnnHOuWErlQm9X\nSFrXr8KoPXy6rnPOFVfeS3POOVcieYJzzjlXInmCc845VyJ5gnPOOVci+SSTIjR+7gqy+u19N0B1\nbmfs6fdPdLuf9+Ccc86VSJ7gnHPOlUiFmuAk9ZT0k6TpkvqFMkm6S9JUSZMlXRXKq0h6V9KPkiZK\n6pPUVmVJ2ZIejZUNjW3/hKTSucTxtKSFkiYklVeX9KGkaeFntViMj4S4x0k6KFZnk6Sx4TU4Vt5I\n0rehziuSyhXEMXTOObdzCi3BhWTzb+BYoBVwpqRWwHlAA6CFmbUkejoBwOXAJDNrC3QF7k9KEncA\nI5J28+ew/QFALeC0XMIZBPTMobwf8LGZNQU+Du8JMTcNr4uBx2N11ppZu/A6KVZ+D/CgmTUBlhE9\nVsg551wRKcweXEdgupnNMLP1RInsZOBS4B9mthnAzBaG7Q3IkCSgErAU2Agg6WCgDjA8vgMzS9wT\nswxQLrSxHTMbEdpLdjLRUxIIP0+JlT9nkZFAVUl1c/ugIebuwOs5tOWcc64IFGaCqw/Mib3PDmX7\nAadLGiXpA0lNw/pHgZbAPGA8cLWZbZZUiuj5c3/PaSeShgELgVVsTTCpqmNm88Pyr0RJNK/YAcqH\n2EdKSiSxGsByM9uYw/bJ8V4c6o/atGbFDobr3J7jtPaZfN63K1Pu6Mlz53ekTuW0LeuqVyzHmFuO\nZtaA47moc+MijNKVZEUxySQNWBceN/5f4OlQ3gMYS/QEg3bAo5IqA5cBQ8wsO6fGzKwHUDe0231n\ngzIzI5ceYJKGIfazgIck7beD+xloZu3NrH3p9Co7E6pzxV7r+lW459Q2/LpyHQM+mMIhjatz1x9b\nb1nf/8RWlC/rc9xc4SrMf2Fzic61JWSGsmzgzVD2FtAmLPcB3gzDgtOBmUAL4FDgCkmzgPuAv0ga\nEN+Rma0D3gFOltQgNgnkr/nEuCAx9Bh+JoZLc4sdM0v8nAF8BhwILCEaxiyTvL1ze6OOjapTqpR4\n8dvZDPp6FhPnrqR789pUTS9L1+a1OKplHZ74/OeiDtOVcIWZ4L4HmobZheWAM4DBwNtAt7BNF2Bq\nWJ4NHAUgqQ7QHJhhZmeb2b5mlkU0TPmcmfWTVCmWnMoAxwNTzGxObBLIE/nEOBjoHZZ7EyXJRPlf\nwmzKTsAKM5svqZqktLDPmsDhRBNjDPgU+FMObTm311m6ej0AHbKqs1+timTVrEipUqJ5nQzuPOUA\n/jl0CvOWryviKF1JV2gJLpyPugIYBkwGXjWzicAAoJek8cDdwIWhyh3AYaH8Y+AGM1ucxy4qAoMl\njSMa2lwI5JjQJL0EfAM0D5caJGY4DgCOljQN+EN4DzAEmAFMJxpGvSyUtwRGSfqRKKENMLNJYd0N\nwLWSphOdk3sqv2PkXEn1/rj5fD9rKed0asjH13WlbGkB8JdDs1i3YTNfTFtMjYrRJOlq6WWpXMFv\nquQKnqLOhysKaXWbWt3eDxV1GM4VCgla7JPBxk3GrSe2okNWdT6atIAT2tbbbtv7hv/Eo59Mz7M9\nv1WXS5A0OsyFyJP/2eScK3ClBLec0IqJ81bSJrMKnZvW4r9fzGDw2Hm8Pz6auNypcQ16H5bFG6Oz\n+WD8/HxadG7HeYJzzhU4Aw5pVJ2zOu7LmvWbGPT1LO4d+hPrN21m/Nzo8piKadHXz5RfV/HzotVF\nGK0rqTzBOecKnBkc98iXeW7z+uhsXh+d49U/zhUIvxDFOedcieQJzjnnXInkCc4551yJ5AnOOedc\nieQJzjnnXInkCc4551yJ5JcJFKHW9aswyu/O4JxzhcJ7cM4550okT3DOOedKJE9wzjnnSiRPcM45\n50okn2RShMbPXUFWv/eLOgznXAm2Nz9myHtwzjnnSqRCTXCSekr6SdJ0Sf1C2VOSfpQ0TtLrkirF\ntv+zpEmSJkp6MZQ1lDRG0thQ/tfY9uUkDZQ0VdIUSb1yieNgSeNDHI9IUmzdlaHuREn/DGVlJT0b\n6kyWdGNSe6Ul/SDpvVjZC+GzTpD0tKSyBXUcnXPO7bhCS3CSSgP/Bo4FWgFnSmoFXGNmbc2sDTAb\nuCJs3xS4ETjczPYH/haamg8cambtgEOAfpISjwS+CVhoZs3CPj7PJZzHgYuApuHVM+yzG3Ay0Dbs\n876w/WlAmpm1Bg4GLpGUFWvvamBy0j5eAFoArYEKwIUpHCbnnHOFpDB7cB2B6WY2w8zWAy8DJ5vZ\nSoDQi6pA9GxEiBLQv81sGYCZLQw/15vZ72GbtKSYzwfuDtttNrPFyUFIqgtUNrORZmbAc8ApYfWl\nwIBE+4l9hpgqSioTYlwPJOLOBI4Hnozvx8yGWAB8B2Tu0NFyzjlXoApzkkl9YE7sfTZRDwxJzwDH\nAZOA68L6ZmHdV0Bp4DYzGxrKGgDvA02AvmY2T1LVUO8OSV2Bn4ErzGxBDnHEn6qYHcoS++ws6S5g\nHfB3M/seeJ2oZzcfSCfqdS4NdR4CrgcycvrQYWjyXKJeXk7rLwYuBihduVZOmzjn9mL9T2zFCW3q\nUSsjjY8nL+CCZ0cB8NjZB3FEk5qklSnFL0vX8MCHUxk64VcADm5YjTtPOYDGtSoybcFv3PDGOCbO\nW1mUH6NYKJJJJmbWB6hHNMx3eiguQzR82BU4E/hvIomZ2ZwwpNkE6C2pTtg+E/jazA4CvmHrEGOq\nygDVgU5AX+DV0LPsCGwKMTYCrpPUWNIJREOio/No8zFghJl9kctnH2hm7c2sfen0KjsYrnNub/De\nuHnblU1bsIq7hkzm7g+mULdKeR74c1tKlxJpZUrxxDkHUSmtDHe8N5maldJ4/OyDKaUcGt7LFGaC\nmws0iL3PDGUAmNkmomHLxMSQbGCwmW0ws5nAVKKER6zOPGAC0BlYAqwB3gyrXwMOChNAxobXP8I+\n48OF8TiygTfDyOJ3wGagJnAWMDTEshD4CmgPHA6cJGlWiL27pOcTDUvqD9QCrt2hI+Wcc8Ht707i\nqS9nblf+4EfTGDrhV76avpiV6zZi4eRO1+a1qJVRnv+N/IXnR/7CK6PmsG+NdDo1rrGbIy9+CjPB\nfQ80ldRIUjngDGCwpCaw5RzcScCUsP3bRL03JNUkGj6cISlTUoVQXg04AvgpnOt6N1EHOAqYZGab\nzKxdeN1qZvOBlZI6hX3+BXgnts9uoe1mQDlgMdHkl+6hvCJRD2+Kmd1oZplmlhU+zydmdk7Y7kKg\nB3CmmW0usKPonHPBF9d348Nru1CzYjmue+1HNm02MqulA/DrinXh51oA9q2eXmRxFheFdg7OzDZK\n+v/t3X2wFXUdx/H3R0kEVBAFRCBBZXjMlMzBsSElJVCTGpvRRidMZ8w0sTILc8ZJp5ly8LHJtPIB\nM9NGIWN8JpSRSkxAnhRBREUMhUANRRHl2x+/37Xj5R65ON27e9bPa2bn7v52zznf85179nvOb3d/\n+13gQdIxtZtIXZKzJe0BCFhIOtGDvN0YSU+TugcviIj1ko4BrpAU+TGXR8Ti/JgfA7dKuhpYB3yr\nTjhnA1NIJ4zcnydyTDdJWkI6kWRCRISka4GbJT2VX/PmiFi0nbd8PfAi8Fi+CmFaRFy63USZmbXS\nmbfOpV/3zkwaO5gfjhnEw0vXbrONcN9kkzYdySQi7gPua9Z8RJ1tg9S194Nm7TOAg+o85kVgVCvi\nmAsMb6H9XeDUFtrfJF0q8FHPOQuYVbPsUWHMrE3NWbmBOSs3MHLAXpz4ub4M2md3Vr+2CYDeXXcF\noFf+u2rDpsLiLAvvlM3MSuSoQT0ZtE8a/2Lfbp046fP9WLDqdc4dfSD/eG49XTp2YMywXryz5X1W\nbdjE8lc3sm7jZk4duR9vbX6Pkw7tx0sbNjFn5fqC30nxXODMzErk21/c/4MTRIb03oPLTjyIq2Ys\nZ7+9ujB6SE+2Bqx4dSNXzljOG29vAeCcP87n0vHDuPgrw3h27UYmTV3M1vioV/lkUISzUJSOvQdG\n7wlXFx2GmVVYFQdbljQvIg7d3nYebNnMzCrJBc7MzCrJBc7MzCrJBc7MzCrJBc7MzCrJBc7MzCrJ\n18EV6DN9ujK3gqfwmpmVgX/BmZlZJbnAmZlZJbnAmZlZJbnAmZlZJbnAmZlZJbnAmZlZJbnAmZlZ\nJbnAmZlZJbnAmZlZJfmGpwWStBFYVnQcO2Bv4N9FB9FKjrXtNFK8jRQrNFa8Rca6X0T02N5GHqqr\nWMtac1faspA0t1Hidaxtp5HibaRYobHibYRY3UVpZmaV5AJnZmaV5AJXrN8WHcAOaqR4HWvbaaR4\nGylWaKx4Sx+rTzIxM7NK8i84MzOrJBc4MzOrJBe4gkgaK2mZpBWSJhUdTy1J/SQ9IulpSU9JOi+3\nd5c0Q9Kz+e+eRcfaRNLOkp6UdE9eHiDp8ZzfP0napegYm0jqJukuSc9IWirp8LLmVtL38//AEkm3\nS9q1TLmVdJOktZKW1LS1mEslv8xxL5I0ogSxTs7/B4sk/VlSt5p1F+ZYl0n6cnvGWi/emnXnSwpJ\ne+flQnNbjwtcASTtDFwLjAOGAt+QNLTYqD7kPeD8iBgKjATOyfFNAmZGxEBgZl4ui/OApTXLlwFX\nRcSBwGvAGYVE1bJrgAciYjDwWVLcpcutpD7ARODQiBgO7AycTLlyOwUY26ytXi7HAQPzdCZwXTvF\n2GQK28Y6AxgeEQcBy4ELAfLn7WRgWH7Mr/N+oz1NYdt4kdQPGAOsqmkuOrctcoErxmHAiohYGRHv\nAncA4wuO6QMRsSYi5uf5jaQdcB9SjLfkzW4BvlpMhB8mqS9wHHBDXhYwGrgrb1KmWLsCo4AbASLi\n3Yh4nZLmljQYRCdJHYDOwBpKlNuIeBTY0Ky5Xi7HA7+PZA7QTVLv9om05Vgj4qGIeC8vzgH61sR6\nR0RsjojngRWk/Ua7qZNbgKuAHwG1ZygWmtt6XOCK0Qd4qWZ5dW4rHUn9gUOAx4FeEbEmr3oF6FVQ\nWM1dTfrAbc3LewGv1+w4ypTfAcA64ObcpXqDpC6UMLcR8TJwOemb+hrgDWAe5c1tk3q5LPvn7nTg\n/jxfylgljQdejoiFzVaVMl4XOKtL0m7AVOB7EfGf2nWRri8p/BoTSccDayNiXtGxtFIHYARwXUQc\nAlw4xywAAARcSURBVLxFs+7IEuV2T9I38wHAvkAXWuiyKrOy5HJ7JF1EOjRwW9Gx1COpM/AT4OKi\nY2ktF7hivAz0q1num9tKQ9KnSMXttoiYlptfbep2yH/XFhVfjSOAEyS9QOrqHU06xtUtd6tBufK7\nGlgdEY/n5btIBa+MuT0aeD4i1kXEFmAaKd9lzW2Terks5edO0mnA8cAp8b8Lk8sY6wGkLzsL8+et\nLzBf0j6UM14XuII8AQzMZ6PtQjqYPL3gmD6Qj2HdCCyNiCtrVk0HJuT5CcBf2ju25iLiwojoGxH9\nSXl8OCJOAR4Bvp43K0WsABHxCvCSpEG56UvA05Qwt6SuyZGSOuf/iaZYS5nbGvVyOR34Zj7jbyTw\nRk1XZiEkjSV1r58QEZtqVk0HTpbUUdIA0skb/ywixiYRsTgiekZE//x5Ww2MyP/TpcstABHhqYAJ\nOJZ01tRzwEVFx9Msti+QunUWAQvydCzp2NZM4Fngr0D3omNtFveRwD15fn/SDmEFcCfQsej4auI8\nGJib83s3sGdZcwtcAjwDLAFuBTqWKbfA7aTjg1tIO9wz6uUSEOns5eeAxaSzQ4uOdQXp2FXT5+z6\nmu0vyrEuA8aVIbfN1r8A7F2G3NabPFSXmZlVkrsozcysklzgzMysklzgzMysklzgzMysklzgzMys\nklzgzBqYpPclLcij/d+ZR5vY0ec4QR/zjhZKd0Y4++M81qyt+TIBswYm6c2I2C3P3wbMiw9fnN/W\nr9+fdO3h8PZ6TbPW8i84s+qYDRwIIOluSfPyvdzObNpA6T6E8yUtlDQzt50m6Vd5voekqZKeyNMR\nuf2n+f5gsyStlDQxP+UvgAPyr8jJedsL8mMXSbokt3WRdG9+3SWSTmq3rNgnVoftb2JmZZfHhhwH\nPJCbTo+IDZI6AU9Imkr6Qvs7YFREPC+pewtPdQ3pXm9/k/Rp4EFgSF43GDgK2B1YJuk60kDRwyPi\n4BzHGNKwUoeRRreYLmkU0AP4V0Qcl7fr+n9Ogdk2XODMGlsnSQvy/GzyfeaAiZK+luf7kYpOD+DR\nSPcXIyJautfX0cDQNPQkAHvku0oA3BsRm4HNktbS8i19xuTpyby8W37t2cAVki4jdWnO3vG3arZj\nXODMGtvbTb+emkg6klSoDo+ITZJmAbu28vl2AkZGxDvNnhNgc03T+7S8/xDw84j4zTYrpBGkMU1/\nJmlmRFzaypjMPhYfgzOrnq7Aa7m4DQZG5vY5wKg8Oj11uigfAs5tWpB0cAvb1NpI6rJs8iBwetOv\nPkl9JPWUtC+wKSL+AEwm3SLIrE35F5xZ9TwAnCVpKWkk+jkAEbEun3AyTdJOpPukHdPssROBayUt\nIu0fHgXOqvdCEbFe0t8lLQHuj4gLJA0BHsu/+t4ETiWd/DJZ0lbS6PTf+f+9XbOW+TIBMzOrJHdR\nmplZJbnAmZlZJbnAmZlZJbnAmZlZJbnAmZlZJbnAmZlZJbnAmZlZJf0XhwvSMmYM0LAAAAAASUVO\nRK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fe0ed32f438>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "printGroups()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "scrolled": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.4/dist-packages/matplotlib/axes/_axes.py:545: UserWarning: No labelled objects found. Use label='...' kwarg on individual plots.\n", " warnings.warn(\"No labelled objects found. \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXFWd9/HPNwlRAkggiQyEJM0SxYAPyLQs6iCCQohL\nkNER7YGwzEQHFBx4fISJM6iQGR1HEV4KGgUTtEdkBAUxGCKyjsPSKMMqEhMSEllCwhISJSH8nj/O\nKajudFVXJff2+n2/XvdV9/7udm5Vd/3q3nPuuYoIzMzMijCsrwtgZmaDh5OKmZkVxknFzMwK46Ri\nZmaFcVIxM7PCOKmYmVlhnFSsNJKukzSjr8sxUEg6RtJtkkb0dVkaIelQScs3c925ks7bgn2/IGn3\nGvNOkHTb5m7btoyTigEg6VFJf8r/rE/mf/ptt2SbEXFURMwroGwD8ksif+mGpIu6xG+TdEKX2PbA\nOcCxEfFSLxaz35N0k6S/q45FxLYRsbivymS1OalYtfdHxLbA/kAr8Lk+Ls+AUefsYi1wnKSWHjax\nF3BqRGzWL//NIWl4b+3Lhg4nFdtERKwArgP2AZB0oqSHJK2RtFjSx6uXlzRd0j2Snpf0B0lTc7zT\nL0xJJ+XtPCNpgaRJVfNC0ickPSLpWUnfVPIm4FvAwfks6tm8/Gsk/YekZfnM6luSts7zxkq6Nm9n\ntaRbJXX7t573e1o+rqclfaWyrKRhkj4naamkpyRdls8okNSS1z1Z0jLgVzXezmeBuaSzkO72/3lJ\nP4iIOyLitqrtjqh6D8+T9Ot8/D+TNEZSe36/76pOWJL2krQwH/fDkv6mat5cSRdLmi9pLfAuSdvn\n41qZj/Nzdd6rrfM2npH0IPDWLvN3kXRl3tYSSafVeE+6bneH/HmtzNu+VtKued5s4K+Ab+Tj/0aO\nh6Q98/gYSdfk9+NOYI8u239bfp+ey69vq5p3Qv7s1+QytzVSZqsjIjx4AHgUeHcenwA8AJybp99L\n+kcV8E5gHbB/nncA8BzwHtKPlPHAXnneTcDf5fHpwCLgTcAI0lnQr6v2H8C1wGhgIrASmJrnnQDc\n1qW85wPXADsC2wE/A/4tz/s3UiLaKg9/BajGcQdwY97OROD3VWU+KZd5d2Bb4Crg+3leS173MmAb\nYOtutn0osBz4C+B54I05fhtwQh7/PPCDqnUq2x1R9R4uyu//9sCDuYzvzu/jZcD38rLbAI8BJ+Z5\nbwGeBqbk+XPzZ/X2/Fm9Nq9/dX4PW/K2T67xXn0JuDW/VxOA+4Hled4w4G7gX4CR+T1bDBxZY1tz\ngfPy+Bjgr4FRuRz/Bfy0atmbKp9Jl89tzzx+OXBFPv59gBWVv5dc1meA4/J78tE8PSYvX/257Azs\n3df/iwN96PMCeOgfAympvED6Zb0UuKi7L8q87E+B0/P4t4Hzayz3ypcB6czn5Kp5w0jJaVKeDuAd\nVfOvAM7K4ydQlVRIyW0tsEdV7GBgSR7/Yv6i3LOB4w5y8srTpwA35PEbgFOq5r0R2JC/nFryurvX\n2fahVV+6/w78KI83m1RmVc3/KnBd1fT7gXvy+EeAW7uU4dvAOXl8LnBZ1bzhwHpy0smxjwM31Tie\nxV3eq5lVx3cgsKzL8meTE14325pLTirdzNsPeKa7v6Mun9ue+Rg2kH/I5Hn/yqtJ5Tjgzi7r/k/+\nm9qG9Pf+19T4W/fQ/ODLX1bt6IgYHRGTIuKUiPgTgKSjJN2eL6k8C0wDxuZ1JgB/aGDbk4AL8iWp\nZ4HVpOQwvmqZJ6rG15HODrozjvSr9u6q7f0ixwG+Qvp1f32+tHFWD2V7rGp8KbBLHt8lT1fPGwHs\nVGPder4MHClp3waXr/Zk1fifupmuvE+TgAMr70l+X9pIZ0rdlXcs6Uyu6zFWfybVdmHT96piErBL\nl33/E53fq25JGiXp2/ny2/PALcBoNVbnM470mdQqV9fPsDJ/fESsJSXiTwCPS/q5pL0a2KfV4aRi\ndUl6DXAl8B/AThExGphPSgiQ/pn3qLF6tceAj+ekVRm2johfN7Bu1660nyZ9me5dta3tIzUyICLW\nRMSZEbE78AHgDEmH19n+hKrxicAf8/gfSV+W1fNeovOXekPdfEfEKuDrwLldZq0lJciKv2DzPQbc\n3OU93jYi/qFGeZ8m/crveowramz/cTZ9r6r3vaTLvreLiGkNlPtM0lnggRHxOuCQHK/8jdV7j1eS\nPpNa5er6GVbmrwCIiAUR8R7Spa/fAd9poLxWh5OK9WQk8BryP6+ko4AjquZfApwo6fBcsT2+xq+9\nbwFnS9obUhNaSR9usAxPArtKGgkQES+T/vnPl/T6vL3xko7M4++TtKckkeoQNgIv19n+Z3Jl8QTg\ndOBHOf5D4B8l7abUvPpfSZewNrfJ79eAt5HqlSruAQ6RNDE3Ajh7M7cNqU7qDZKOk7RVHt6q1Nhh\nExGxkXSZcbak7ZQaTpwB/KDG9q8gfYY75Ir0T1XNuxNYI+mzuUJ/uKR9JL21+011sh3pR8KzknZk\n00YNT5LqaGodw1XA5/MZzxSg+t6o+aT35GOSRkj6CDAFuFbSTkqNTLYBXiRd/q33d2INcFKxuiJi\nDXAa6QvlGeBjpAryyvw7SRXD55O+wG9m01+GRMRPSJeALs+XOO4HjmqwGL8iNRx4QtLTOfZZ0iWu\n2/P2fkn6tQswOU+/QLp+flFE3Fhn+1eTKpnvAX5OSpQAlwLfJ12OWQL8mc5fpE2JiOdJdSs7VsUW\nkpLYvbkM127B9teQEv6xpF/oT5De89fUWe1TpLOlxaS6nv8kHXd3vkC6dLQEuJ703lT2vRF4H6k+\nZAnpLOi7pMYFPfk6sHVe53bSpcxqFwAfyi3DLuxm/U+SLgE+Qaqr+V5VuVblcp0JrAL+H/C+iHia\n9P13Bum9Wk1qhFJ9VmebQRF+SJcNXZICmBwRi/q6LGaDgc9UzMysME4qZmZWGF/+MjOzwvhMxczM\nCjMgutgu0tixY6OlpaWvi2FmNmCMHTuWBQsWLIiIqT0tO+SSSktLCx0dHX1dDDOzAUXS2J6XKvHy\nl6TXSrpT0v9KekDSF3J8N0l3SFok6UeVG9qUep39UY7foc49r56d4w9XbnDL8ak5tqiBrjjMzKxk\nZdapvAgcFhH7km6ImirpINLNWOdHxJ6km+lOzsufTOpEbk/SjXRfBsh3yB4L7A1MBS7Kd+sOB75J\nuoFuCvDRvKyZmfWR0pJKJC/kyUoX5AEcBvw4x+cBR+fx6XmaPP/w3M3GdODyiHgxIpaQ7qI+IA+L\nImJxRKwndX89vazjMTOznpXa+iufUdwDPAUsJPVm+2xV30nLebVH1PHknkbz/OdIzzx4Jd5lnVrx\n7soxU1KHpI6VK1cWcWhmZtaNUpNKRGyMiP2AXUlnFn3SrXREzImI1ohoHTduXM8rmJnZZumV+1Qi\n4lnS0/UOJj0nodLqbFde7WZ7Bbn76jx/e1IHcK/Eu6xTK1689nZoaYFhw9Jre3spuzEzG+jKbP01\nTtLoPL416XGzD5GSy4fyYjNIPcRC6vm20mX1h4BfRbrd/xrg2Nw6bDdSD7R3AncBk3NrspGkyvxX\nes8tTHs7zJwJS5dCRHqdOdOJxcysG2WeqewM3CjpXlICWBgR15K6LD9D0iJSnUmlm/FLgDE5fgZw\nFkBEPEDqdv1BUpfYp+bLai+RurxeQEpWV+RlizVrFqxb1zm2bl2Km5lZJ0Ou76/W1tZo6ubHYcPS\nGUpXErzs5/mY2dAg6e6IaO1pOff91ZOJE5uLm5kNYU4qPZk9G0aN6hwbNSrFzcysEyeVnrS1wZw5\nMGlSuuQ1aVKabmvr65KZmfU7TipmZlaYIddLcdMqTYorLcAqTYrBZytmZl34TKUnblJsZtYwJ5We\nLF3aXNzMbAhzUunJ8OHNxc3MhjAnlZ5s3Nhc3MxsCHNS6cmYMc3FzcyGMCcVMzMrjJNKT1avbi5u\nZjaEOan0xH1/mZk1zEmlJ9OmNRc3MxvCnFR6Mn9+c3EzsyHMSaUny5Y1FzczG8KcVHqy447Nxc3M\nhjAnlZ78+c/Nxc3MhjAnlZ6sXdtc3MxsCHNSMTOzwjipmJlZYZxUzMysME4qZmZWGCcVMzMrjJOK\nmZkVxkmlJ8NqvEW14mZmQ5i/GXsiNRc3MxvCnFR64scJm5k1zEnFzMwKU1pSkTRB0o2SHpT0gKTT\nc/zzklZIuicP06rWOVvSIkkPSzqyKj41xxZJOqsqvpukO3L8R5JGlnU8ZmbWszLPVF4CzoyIKcBB\nwKmSpuR550fEfnmYD5DnHQvsDUwFLpI0XNJw4JvAUcAU4KNV2/ly3taewDPAyYUfxcgaeapW3Mxs\nCCstqUTE4xHxmzy+BngIGF9nlenA5RHxYkQsARYBB+RhUUQsjoj1wOXAdEkCDgN+nNefBxxd+IGs\nX99c3MxsCOuVOhVJLcBbgDty6JOS7pV0qaQdcmw88FjVastzrFZ8DPBsRLzUJd7d/mdK6pDUsXLl\nygKOyMzMulN6UpG0LXAl8OmIeB64GNgD2A94HPhq2WWIiDkR0RoRrePGjSt7d2ZmQ9aIMjcuaStS\nQmmPiKsAIuLJqvnfAa7NkyuACVWr75pj1IivAkZLGpHPVqqXNzOzPlBm6y8BlwAPRcTXquI7Vy32\nQeD+PH4NcKyk10jaDZgM3AncBUzOLb1Gkirzr4mIAG4EPpTXnwFcXdbxmJlZz8o8U3k7cBxwn6R7\ncuyfSK239gMCeBT4OEBEPCDpCuBBUsuxUyNiI4CkTwILgOHApRHxQN7eZ4HLJZ0H/JaUxMzMrI8o\n/eAfOlpbW6Ojo6PxFep1xzLE3jszG7ok3R0RrT0t5zvqzcysME4qZmZWGCcVMzMrjJOKmZkVxknF\nzMwK46RiZmaFcVIxM7PCOKmYmVlhnFTMzKwwTipmZlYYJxUzMyuMk4qZmRXGScXMzArjpGJmZoVx\nUjEzs8I4qZiZWWF6TCqStpE0LI+/QdIH8rPnzczMOmnkTOUW4LWSxgPXkx4RPLfMQpmZ2cDUSFJR\nRKwDjgEuiogPA3uXWywzMxuIGkoqkg4G2oCf59jw8opkZmYDVSNJ5dPA2cBPIuIBSbsDN5ZbLDMz\nG4hG9LRARNwM3CxpW0nbRsRi4LTyi2ZmZgNNI62/3izpt8ADwIOS7pbkOhUzM9tEI5e/vg2cERGT\nImIicCbwnXKLZWZmA1EjSWWbiHilDiUibgK2Ka1EZmY2YPVYpwIslvTPwPfz9N8Ci8srkpmZDVSN\nnKmcBIwDrsrDuBwzMzPrpJHWX8/g1l5mZtaAmklF0s+AqDU/Ij5QSonMzKw47e0waxYsWwYTJ8Ls\n2dDWVtru6p2p/Ed+PQb4C+AHefqjwJOllcjMzIrR3g4zZ8K6dWl66dI0DaUllpp1KhFxc77x8e0R\n8ZGI+FkePgb8VU8bljRB0o2SHpT0gKTTc3xHSQslPZJfd8hxSbpQ0iJJ90rav2pbM/Lyj0iaURX/\nS0n35XUulKQteTPMzAaVWbNeTSgV69aleEkaalKcu2YBQNJuNNak+CXgzIiYAhwEnCppCnAWcENE\nTAZuyNMARwGT8zATuDjvb0fgHOBA4ADgnEoiysv8fdV6Uxsol5nZ0LB0aXPxAjSSVP4RuEnSTZJu\nJvX79emeVoqIxyPiN3l8DfAQMB6YDszLi80Djs7j04HLIrkdGC1pZ+BIYGFErM6NBhYCU/O810XE\n7RERwGVV2zIzs+E1+v6tFS9AI62/fiFpMrBXDv0uIl5sZieSWoC3AHcAO0XE43nWE8BOeXw88FjV\nastzrF58eTfx7vY/k3T2w8SJE5spupnZwLVxY3PxAtQ8U5F0WH49BngvsEce3ptjDZG0LXAl8OmI\neL56Xj7DqNnCrCgRMSciWiOiddy4cWXvzsysf5g0qbl4Aepd/npnfn1/N8P7Gtl4fuzwlUB7RFyV\nw0/mS1fk16dyfAUwoWr1XXOsXnzXbuJmZgap+fCoUZ1jo0aleEnqtf46J49+MSJOrB6Ac3vacG6J\ndQnwUER8rWrWNUClBdcM4Oqq+PG5FdhBwHP5MtkC4AhJO+QK+iOABXne85IOyvs6vmpbZmbW1gYz\nZrxahzJ8eJou8T6VRirqr+wm9uMG1ns76Xn2h0m6Jw/TgC8B75H0CPDuPA0wn9Sn2CJSL8inAETE\nalISuysPX8wx8jLfzev8AbiugXKZmQ0N7e0wb96rdSgbN6bp9vbSdqlUrdHNDGkv0rPo/x34TNWs\n1wGfiYgB+UyV1tbW6OjoaHyFere+1HjvzMz6hZaW7psPT5oEjz7a1KYk3R0RrT0tV6/11xtJdSej\nSfUoFWtI94aYmVl/1gf3qdRMKhFxNXC1pIMj4n9KK4GZmZVj+PDumw/35X0qwG8lnUq6FPbaSjAi\n3P29mVl/1p/uU6nyfVKHkkcCN5Oa7q4prURmZlaMfnafSsWeEfHPwNqImEe6EfLA0kpkZmbFmD0b\nRo7sHBs5sm/uU6myIb8+K2kfYHvg9aWVyMzMitO1lWrJrVYbSSpz8k2H/0y6QfFBUjNjMzPrz2bN\ngg0bOsc2bCi16/tGOpT8bh69Gdi93rJmZtaPLFvWXLwA9R4nfEa9Fbt0vWJmZv3NxInd35NSYm/t\n9S5/bdfDYGZm/dm0ac3FC1Dv5scvlLZXMzMr3/z5zcUL0EhFvZmZDUR9UKfipGJmNljVqjvpozoV\nMzMbyPrTQ7oqJO0k6RJJ1+XpKZJOLq1EZmZWjLY2mDMndcsipdc5c/r8IV1zSU9f3CVP/x74dFkF\nMjOzgauRpDI2Iq4AXgaIiJeA8rq4NDOzYrS3w8yZ6V6ViPQ6c2apT35sJKmslTQGCIDK8+NLK5GZ\nmRVj1ixYt65zbN26vu2mBTiD1OfXHpL+GxgHfKi0EpmZWTH6UzctFRHxG0nvJD1eWMDDEbGhh9XM\nzKyv9UE3LfX6/jqmxqw3SCIiriqpTGZmVoTZs1MdSvUlsJKbFNc7U3l/fn098DbgV3n6XcCvAScV\nM7P+rNJ0eNasdMlr4sSUUEpsUlyv768TASRdD0yJiMfz9M6kZsZmZtbftbWVmkS6aqT114RKQsme\nBMq7IGdmZgNWI62/bpC0APhhnv4I8MvyimRmZgNVj2cqEfFJ4FvAvnmYExGfKrtgZmZWgPZ2aGmB\nYcPSa4k3PkJjZypExE+An5RaEjMzK1Z7O5x0Eqxfn6aXLk3TUFo9i3spNjMbrE4//dWEUrF+fYqX\nxEnFzGywWrWquXgBGkoqkkZK2icPWzW4zqWSnpJ0f1Xs85JWSLonD9Oq5p0taZGkhyUdWRWfmmOL\nJJ1VFd9N0h05/iNJIxs7ZDMzK0sjz1M5FHgE+CZwEfB7SYc0sO25wNRu4udHxH55mJ/3MQU4Ftg7\nr3ORpOGShuf9HgVMAT6alwX4ct7WnsAzgJ/xYmZWbcyY5uIFaORM5avAERHxzog4BDgSOL+nlSLi\nFmB1g+WYDlweES9GxBJgEXBAHhZFxOKIWA9cDkyXJOAw4Md5/XnA0Q3uy8xsaLjgAhg+vHNs+PAU\nL0kjSWWriHi4MhERvwcaugRWwycl3Zsvj+2QY+OBx6qWWZ5jteJjgGfzs12q492SNFNSh6SOlStX\nbkHRzcwGmGHD6k8XvbsGlumQ9F1Jh+bhO0DHZu7vYmAPYD/gcdJZUOkiYk5EtEZE67hx43pjl2Zm\nfW/WLNjQpVP5DRv6/Hkq/wCcCpyWp28l1a00LSKerIzn5HRtnlwBTKhadNcco0Z8FTBa0oh8tlK9\nvJmZQffd3teLF6BuUskV5ZdGRBvwtS3dmaSdq/oR+yBQaRl2DfCfkr4G7AJMBu4kPb9lsqTdSEnj\nWOBjERGSbiQ9LOxyYAZw9ZaWz8xsUBk+HDZ28/T3rvUsBaqbVCJio6RJkkbmivKGSfohcCgwVtJy\n4BzgUEn7kR5N/Cjw8byfByRdATwIvAScGhEb83Y+CSwAKgnugbyLzwKXSzoP+C1wSTPlMzMb9LpL\nKPXiBVBE1F9Augx4E+lsYm0lHhFbfObSF1pbW6Ojo4kqIan2vB7eOzOzPjV2bPc3Oo4ZA08/3dSm\nJN0dEa09LddIncof8jAM2K6pUpiZ2ZDSyDPqvwAgaVRErOtpeTMz6ydW17hVsFa8AI3cUX+wpAeB\n3+XpfSVtVusvMzPrRRNrPE+xVrwAjdyn8nXSXfSrACLif4FGumkxM7O+NHs2jBrVOTZqVIqXpKFb\nKyPisS6h8poOmJlZMdraYMaMV5sQDx+epkt8Zn0jSeUxSW8DQtJWkv4v8FBpJTIzs2K0t8O8ea82\nId64MU2X+PTHRpLKJ0h31I8n3YC4X542M7P+bNYsWNelfdW6dX3bTUtEPA2Ud65kZmblWLasuXgB\nekwquYuUTwEt1ctHxAdKK5WZmW25iRO77+erxNZfjdz8+FNSFyg/A14urSRmZlasadPg4ou7j5ek\nkaTy54i4sLQSmJlZOebPby5egEaSygWSzgGuB16sBCPiN6WVyszMtlx/rFMB3gwcR3p8b+XyV+Rp\nMzPrr/ppncqHgd2b7frezMz62OzZMHNm52bF/eCO+vuB0aWVwMzMytHWBnPmwKRJ6TEekyal6RLv\nqG/kTGU08DtJd9G5TsVNis3M+ru2tlKTSFeNJJVzSi+FmZkNCo3cUX9zbxTEzMwGvm6TSvUDuSSt\nIbX2AhgJbAWsjYjX9U4RzcxsoKh1pnKCpB0j4ryIeOURwpIETAcO6pXSmZnZgNJt66+IuAhYIum4\nLvGIiJ+SHtplZmbWSc06lYhoB5B0TFV4GNAK/LnkcpmZ2QDUSOuv91eNvwQ8SroEZmZm1kkjrb9O\n7I2CmJnZwFczqUj6lzrrRUScW0J5zMxsAKt3prK2m9g2wMnAGMBJxczMOqlXUf/Vyrik7YDTgROB\ny4Gv1lrPzMyGrrp1KpJ2BM4gPaN+HrB/RDzTGwUzM7OBp16dyleAY4A5wJsj4oVeK5WZmQ1I9bq+\nPxPYBfgc8EdJz+dhjaTne6d4Zma2RdrboaUFhg1Lr+3tpe6uZlKJiGERsXVEbBcRr6satmuk3y9J\nl0p6StL9VbEdJS2U9Eh+3SHHJelCSYsk3Stp/6p1ZuTlH5E0oyr+l5Luy+tcmLuQMTOzivb29JCu\npUshIr3OnFlqYmnkIV2bay4wtUvsLOCGiJgM3JCnAY4CJudhJnAxvFKncw5wIHAAcE4lEeVl/r5q\nva77MjMb2mbN6vzUR0jTs2aVtsvSkkpE3AKs7hKeTqrwJ78eXRW/LPctdjswWtLOpD7GFkbE6txA\nYCEwNc97XUTcHhEBXFa1LTMzA1i2rLl4Aco8U+nOThHxeB5/Atgpj48HHqtabnmO1Ysv7ybeLUkz\nJXVI6li5cuWWHYGZ2UAxcWJz8QL0dlJ5RT7DiB4XLGZfcyKiNSJax40b1xu7NDPre7Nnw6hRnWOj\nRqV4SXo7qTyZL12RX5/K8RXAhKrlds2xevFdu4mbmVlFWxvMmQOTJoGUXufMKfWZ9b2dVK4BKi24\nZgBXV8WPz63ADgKey5fJFgBHSNohV9AfASzI856XdFBu9XV81bbMzKyirQ0efRRefjm9lphQoLGu\n7zeLpB8ChwJjJS0nteL6EnCFpJOBpcDf5MXnA9OARcA6UncwRMRqSecCd+XlvhgRlcr/U0gtzLYG\nrsuDmZn1IaWqjaGjtbU1Ojo6Gl+h3u0vQ+y9M7OhS9LdEdHa03J9VlFvZmaDj5OKmZkVxknFzMwK\n46RiZmaFcVIxM7PCOKmYmVlhnFTMzKwwTipmZlYYJxUzMyuMk4qZmRXGScXMzArjpGJmZoVxUjEz\ns8I4qZiZWWGcVMzMrDBOKmZmVhgnFTMzK4yTipmZFcZJxczMCuOkYmZmhXFSMTOzwjipmJlZYZxU\nzMysME4qZmZWGCcVMzMrjJOKmdlg1t4OLS0wbFh6bW8vdXcjSt26mZn1nfZ2mDkT1q1L00uXpmmA\ntrZSdukzFTOzwWrWrFcTSsW6dSleEicVM7PBatmy5uIF6JOkIulRSfdJukdSR47tKGmhpEfy6w45\nLkkXSlok6V5J+1dtZ0Ze/hFJM/riWMzM+q2JE5uLF6Avz1TeFRH7RURrnj4LuCEiJgM35GmAo4DJ\neZgJXAwpCQHnAAcCBwDnVBKRmZkBs2fDyJGdYyNHpnhJ+tPlr+nAvDw+Dzi6Kn5ZJLcDoyXtDBwJ\nLIyI1RHxDLAQmNrbhTYz69ci6k8XrK+SSgDXS7pbUm6KwE4R8XgefwLYKY+PBx6rWnd5jtWKb0LS\nTEkdkjpWrlxZ1DGYmfVvs2bBhg2dYxs2lFpR31dNit8RESskvR5YKOl31TMjIiQVlk4jYg4wB6C1\ntbXcNG1m1l8sXdpcvAB9cqYSESvy61PAT0h1Ik/my1rk16fy4iuACVWr75pjteJmZgYwfHhz8QL0\nelKRtI2k7SrjwBHA/cA1QKUF1wzg6jx+DXB8bgV2EPBcvky2ADhC0g65gv6IHDMzM4CNG5uLF6Av\nLn/tBPxEUmX//xkRv5B0F3CFpJOBpcDf5OXnA9OARcA64ESAiFgt6VzgrrzcFyNide8dhplZPzdp\nUveXuiZNKm2XvZ5UImIxsG838VXA4d3EAzi1xrYuBS4tuoxmZoPC7Nmdu2kBGDVqyDQpNjOzIrW1\nwZw56cxESq9z5pTW7xc4qZiZWYHcS7GZ2WDV3g4nnQTr16fppUvTNLiXYjMza9Lpp7+aUCrWr0/x\nkjipmJkNVqtWNRcvgJOKmZkVxknFzGywGjOmuXgBnFR6cvgmt87Uj5uZ9RcXXABbbdU5ttVWKV4S\nJ5We/PKXmyaQww9PcTOz/qytDb73vc73qXzve6Xep6IouW/9/qa1tTU6Ojr6uhhmZgOKpLurHqpY\nk89UzMysME4qZmZWGCcVMzMrjJOKmZkVxknFzMwKM+Raf0laSXoI2OYYCzxdYHEGAh/z0DDUjnmo\nHS9s2TE/DRARU3tacMgllS0hqaORJnWDiY95aBhqxzzUjhd675h9+cvMzArjpGJmZoVxUmnOnL4u\nQB/wMQ+h/CYGAAAFpUlEQVQNQ+2Yh9rxQi8ds+tUzMysMD5TMTOzwjipmJlZYZxUupB0qaSnJN1f\nY74kXShpkaR7Je3f22UsWgPH3JaP9T5Jv5a0b2+XsWg9HXPVcm+V9JKkD/VW2crSyDFLOlTSPZIe\nkHRzb5avDA38bW8v6WeS/jcf84m9XcYiSZog6UZJD+bj2eRh9GV/hzmpbGouUO8Gn6OAyXmYCVzc\nC2Uq21zqH/MS4J0R8WbgXAZHJedc6h8zkoYDXwau740C9YK51DlmSaOBi4APRMTewId7qVxlmkv9\nz/lU4MGI2Bc4FPiqpJG9UK6yvAScGRFTgIOAUyVN6bJMqd9hTipdRMQtwOo6i0wHLovkdmC0pJ17\np3Tl6OmYI+LXEfFMnrwd2LVXClaiBj5ngE8BVwJPlV+i8jVwzB8DroqIZXn5AX/cDRxzANtJErBt\nXval3ihbGSLi8Yj4TR5fAzwEjO+yWKnfYU4qzRsPPFY1vZxNP7TB7GTgur4uRNkkjQc+yOA4E23U\nG4AdJN0k6W5Jx/d1gXrBN4A3AX8E7gNOj4iX+7ZIxZDUArwFuKPLrFK/w0YUtSEb/CS9i5RU3tHX\nZekFXwc+GxEvpx+xQ8II4C+Bw4Gtgf+RdHtE/L5vi1WqI4F7gMOAPYCFkm6NiOf7tlhbRtK2pLPs\nT/f2sTipNG8FMKFqetccG9Qk/R/gu8BREbGqr8vTC1qBy3NCGQtMk/RSRPy0b4tVquXAqohYC6yV\ndAuwLzCYk8qJwJci3bC3SNISYC/gzr4t1uaTtBUpobRHxFXdLFLqd5gvfzXvGuD43ILiIOC5iHi8\nrwtVJkkTgauA4wb5r9ZXRMRuEdESES3Aj4FTBnlCAbgaeIekEZJGAQeSrskPZstIZ2ZI2gl4I7C4\nT0u0BXLd0CXAQxHxtRqLlfod5jOVLiT9kNQKZKyk5cA5wFYAEfEtYD4wDVgErCP90hnQGjjmfwHG\nABflX+4vDfQeXhs45kGnp2OOiIck/QK4F3gZ+G5E1G1y3d818DmfC8yVdB8g0iXPgdwl/tuB44D7\nJN2TY/8ETITe+Q5zNy1mZlYYX/4yM7PCOKmYmVlhnFTMzKwwTipmZlYYJxUzMyuMk4pZEyRtzL34\n3i/pv/L9HM1u4wOSztrM/Y+WdMrmrGvWG9yk2KwJkl6IiG3zeDtwd52bzMrYfwtwbUTs01v7NGuG\nz1TMNt+twJ4Akn6aO2F8QNLMygKSpkr6TX5exw05doKkb+TxcZKulHRXHt6e45/PzwK5SdJiSafl\nTX4J2COfLX0lL/uZvO69kr6QY9tI+nne7/2SPtJr74oNab6j3mwzSBpBei7FL3LopIhYLWlr4C5J\nV5J+tH0HOCQilkjasZtNXQCcHxG35e5wFpB6zYXUB9W7gO2AhyVdDJwF7BMR++VyHEF6LsYBpDvC\nr5F0CDAO+GNEvDcvt33Bb4FZt5xUzJqzdVX3F7eS+lkCOE3SB/P4BNIX/TjglohYAhAR3T3X493A\nlKqekF+Xe5gF+HlEvAi8KOkpYKdu1j8iD7/N09vmfd9KeuDUl0mXy25t/lDNmuekYtacP1XOEiok\nHUpKDgdHxDpJNwGvbXB7w4CDIuLPXbYJ8GJVaCPd/78K+LeI+PYmM9JjYqcB50m6ISK+2GCZzDab\n61TMttz2wDM5oexFeowrpKdkHiJpN4Aal7+uJz1hkrzMft0sU20N6XJYxQLgpMrZjaTxkl4vaRdg\nXUT8APgKUOhzyM1q8ZmK2Zb7BfAJSQ8BD5OSCRGxMlfaXyVpGOmxxO/psu5pwDcl3Uv6f7wF+ESt\nHUXEKkn/Lel+4LqI+IykN5EeqAXwAvC3pAYEX5H0MrAB+IfiDtesNjcpNjOzwvjyl5mZFcZJxczM\nCuOkYmZmhXFSMTOzwjipmJlZYZxUzMysME4qZmZWmP8PNaVSvsyddfAAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f889530b128>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "printWords()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
itdxer/neupy
notebooks/growing-neural-gas/Growing Neural Gas animated.ipynb
1
437992
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2018-03-30T19:42:39.360507Z", "start_time": "2018-03-30T21:42:39.055830+02:00" }, "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2018-03-30T19:42:39.981925Z", "start_time": "2018-03-30T21:42:39.362204+02:00" }, "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.collections.PathCollection at 0x10e2eca58>" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztnX2QHOV54H/PjkYwi8/sCjYODAjJ\nhAKjktGaLUyiVM5SCGBzwIaPALYv+A4f57r4chBHleXsQkDwoUR1Z5I65xKKEOOYA/HljbDwyRjk\nc5UcEVbeFbIwGAHmY8BGQVpdYBcx2n3uj+leema752NnpvvtmedXNbUz3T0zz/R2v8/7Pp+iqhiG\nYRiGT0/SAhiGYRhuYYrBMAzDKMMUg2EYhlGGKQbDMAyjDFMMhmEYRhmmGAzDMIwyTDEYhmEYZZhi\nMAzDMMowxWAYhmGUsShpARbCscceq8uWLUtaDMMwjFSxc+fOf1bVgVrHpVIxLFu2jLGxsaTFMAzD\nSBUi8nI9x5kpyTAMwyijJYpBRO4SkTdF5CcR+z8jIk+LyG4R+ZGInBHY93Nv+4SI2DLAMAwjYVq1\nYvgGcH6V/S8B/1pVVwJ/CtxRsX+Nqq5S1aEWyWMYhmEskJb4GFT1hyKyrMr+HwVe7gBOaMX3GoZh\nGK0nCR/DNcB3A68V+J6I7BSRaxOQxzAMwwgQa1SSiKyhpBh+M7D5N1W1ICK/AjwmIs+q6g9D3nst\ncC3A0qVLY5HXMAyjG4ltxSAiHwXuBC5W1bf87apa8P6+CXwbOCvs/ap6h6oOqerQwEDNMFzDMAxj\ngcSyYhCRpcDDwL9V1Z8Fth8F9Kjqv3jPzwVuiUMmozlGxwts3Pocr09Oc3xfjnXnncrwYD5psQzD\naAEtUQwici/wCeBYEXkNWA9kAVT1r4EbgWOAvxIRgMNeBNKHgG972xYB/1tV/08rZDLax+h4gRse\n3s10cQaAwuQ0Nzy8G8CUg2F0AKKqScvQMENDQ2qZz8mxesMTFCan523P9+XYPrI2AYkMw6gHEdlZ\nT1qAZT4bDfN6iFKott0wjHRhisFomOP7cg1tNwwjXZhiMBpm3XmnkstmyrblshnWnXdqQhIZhtFK\nUlld1UgW38FcKyqpMnJpzWkDbHt2X1sjmRqNlrLoKsOYjykGo6WMjhe4+ZE9HJgqlm0vTE7zrR2v\nlL2+ftME122aIO8NyAA3bd7D5HTpvf29WS746HF1K5NGo6UsusowwrGoJKNhKgdUKJmSLj0zz6an\nXqU40/g1lc1IXe8TSjVU8iFKIipaKiPCf/+9M+YN9hZdZXQb9UYlmWIw5qjX9BM1oCZBtgeKs7WP\n6wGO7s0yOVWc+y3Xb5og6urP9+XMvGR0HKYYjIYIWwVUkstmuO2SlVUH1LSQy2Y4YlHPnNkqiL8q\nCR572yUrTTkYqcfyGIyG2Lj1uapKAWC6OMPGrc91RFjqdHEGEeZFVwHzlJ7/uw2jWzDFYAD1J6e9\nPjkdGq6aRg5MFTliUX23gCXvGd2ERSV1Mb5PoRF/wfF9OYYH84y9vJ97n3yVmRSaIoOEmZLC6OvN\ntlkSw3AHUwxdSj0+hUr8JLbR8QIP7SykXik0Qhf9VMMwxdCt1ONTCCLApWeWnK+d4HxulIOBlYUl\nxRmdjkUldQiNZhkvH9nSdYN7s6w+eQmXDy0NXWlVy68wDFewcNUuopFQU6Bhv4LxPot6hMOz1e8Z\nC281XMUUQxdRb8JZXy7LocOzDZmQjIWREWFW1UxNhlPUqxjMx9AB1BtKWW8EjtE8vmPe6i8ZaaQl\neQwicpeIvCkiP4nYLyLylyKyV0SeFpGPBfZdLSLPe4+rWyFPt9EJCWedjCXIGWmjVQlu3wDOr7L/\nk8Ap3uNa4H8BiMgSSv2hPw6cBawXkf4WydQ1dErCWSdjCXJGmmiJYlDVHwL7qxxyMfBNLbED6BOR\n44DzgMdUdb+qHgAeo7qCMUIYHsxz2yUrydvKwVmUki9odLyQtCiGUZO4SmLkgVcDr1/ztkVtn4eI\nXCsiYyIytm/fvrYJmlaGB/NsH1lrysFhCpPTXLdpgsFbvmcKwnCa1NRKUtU7VHVIVYcGBgaSFsdZ\nzGThPgemitzw8G5TDoazxKUYCsCJgdcneNuithsL5Oic1fRJA+aQNlwmLsWwGfh9LzrpbOCgqr4B\nbAXOFZF+z+l8rrfNWCDFmTq61hhOELa6Gx0vsHrDEywf2WI+CSMxWpLHICL3Ap8AjhWR1yhFGmUB\nVPWvgUeBTwF7gSng33n79ovInwJPeR91i6pWc2J3LcFKqBkRZlTLyi/4+995z5LX0kJlmHFYD+rK\nvtiWC2HEQUsUg6peVWO/An8Qse8u4K5WyNGpVA4YweSpdQ/sYuzl/Ty0s2AZzSlj2TElxVCt/Llf\nl8AS5Yw4sZIYKcClHstGazlqcaahVV6+L8f2kbVtlMjoZKy1ZwdhkUadS6OmP7sWjDgwxZACrOSF\n4dMjYo5po+1YET1HqNZPIZc1/W2UsOJ8RhzYiOMAvnO5MDmNUrrpv7XjlbnXU0ULQe12emT+NsuF\nMNqFKQYHaLTNptF9RPUGMp+D0Q5MMTiA3dzGQjH/k9EOzMeQAJX+hCOzPUybucioQS6bKVtZ5rIZ\n1p13aoISGZ2KrRhiJsyfYErBqEVfLjtXWl0o5TNYX2mjXdiKIWbq9ScI72e9GsZNF61geDBvisCI\nBVMMMVOvP6EblcLqk5fwoxf2d+Vvr4a/rF+94YnQcObjrY6S0WKsJEZMVKuHk0ZyC/SL+AUAo+jv\nzaIKk9PFZsTrOHqAamc7l82YacmoiZXEcIigX6FTWIhSyGUzXPXxEwkJyZ/jwFSRQ4dn6avSV0Ii\nPiDfl+PnGy7oyC52tc625TQYrcQUQwxYnkJpML/tkpXcOryypqloujiDSEmRBMllM3z27KUsCtEM\n2YzMReisO+/Uee/tBizs2WgVphjaiN90pZNWCtUQ7xHG0Udm58wc9czoJ6eKoVE4257dRzEk2+uo\nxYvmPn94MD/3Xl+uWhy1OMPqk5dErkbSgOU0GK3CnM8tJuhL6KbIIr8c9PKRLaH7DwZ8BuvOO7Ws\nv0QYx/flQqNwrt80UfPzgbL3VvufCPCZs5dy6/DKeZ+5fGRLav5/PQLvHDrM8pEt5ow2mqZVHdzO\nB/4CyAB3quqGiv1fA9Z4L3uBX1HVPm/fDLDb2/eKql7UCpmSoLKhTloGlUapHFyDiVbH9+VCV0jB\n2aw/YEUN1tUSt+r5/ErClERYNE/lvqNz2dQ4wWcDDnsrsGc0S9NRSSKSAX4G/A7wGqU2nVep6jMR\nx/9nYFBV/733+m1V/UAj3+lqVFI3mI1y2QyXnpmPDJWsVI7+e6pFzFQbrMOObfTz6yHsczM9wkxU\nkaIUYE19jErqjUpqxYrhLGCvqr7offF9wMVAqGIArqLUE7rj6HTnX0ak5gAcXA3UG2PfSOLWQj6/\nHsICBNKsFICOn6QY7aMViiEPvBp4/Rrw8bADReQkYDnwRGDzkSIyBhwGNqjqaAtkSoQoM0eaqOYX\nmVWtawBud4ZuOz6/E5V6Js2edCNR4o5KuhJ4UFWDU7OTvKXNp4HbReTksDeKyLUiMiYiY/v27YtD\n1obphDDJz5y9NDKKp5OjXjrxt1VLJDSMarRCMRSAEwOvT/C2hXElcG9wg6oWvL8vAj8ABsPeqKp3\nqOqQqg4NDAw0K3Nb8MMk+3ujk7Ncpr83y63DK0OVQ6dX8gxT6tmMkA3rkJMSOjHRz4iHViiGp4BT\nRGS5iCymNPhvrjxIRE4D+oF/DGzrF5EjvOfHAquJ9k2kgjREgfQI8wa8XDbD+gtXAHDr8Eq+dsWq\nrqjk6eeaXL9pgiMW9dDfm537zRsvO4ONl59RNQvbZQqT05zyX7dYb2ijYZr2MajqYRH5IrCVUrjq\nXaq6R0RuAcZU1VcSVwL3aXkY1EeAvxGRWUpKakNUNFNaGB0vcGDK3RBHP4IHqjtwu6GSZ2Uk0uR0\nkVw2w9euWDXvXKS11lVxFq7zcj86/f9ptA4rotdiXA5Z7e/Nsv7CFTZAeET9r6qFeYaFtaYBC101\nwIroJYbL0S29iy3RPUjU/6ra/9D3I4WZl1wOPHD5ujTcwxRDi3E5usXPiDWbc4mo/1Wt/+HwYJ6J\n9edye4gfxlWHr1JaIdn/3qgHMyW1mK+M7uZbO15JWoyqmFmhRDuyqEfHC6x7cBfFGbfvq7zVU+pK\nzJSUENuedTPHIoiZFUoEq7C2KvpqeDDPUSkw2dnq0aiG+1eww4TV+HHV8RzEZXNX3LQj+qqy0qur\n+M19bNXQXhqpBeYKtmJYIMGubEppBvZH94eXhE6SbktUc4EoxetirlxhctpWDW0kbJy4ftMEy0a2\nOO3zMcWwQMKKrrlWcy2XzfCZs5d2RaKaS0RlUX/wSDcT5cyk1D7Cxgl/mHDZnGempAXiqp3eL4Jn\nzsXkqKwA29eb5e13Dzvb28FMSu2j1jjh6rk3xbBAXK2keryDEUdptLE2S9B3sXrDE05nw0Np9rp6\nwxNd9T+Kg3rGCRcnmaYYFsDoeIF3Dh1OWoxQXLvIKkNCo7qLjY4XuGnznrJZdadkarv2PwlDeL9/\ng3WAa47gROjoXJZsRqqGL7sYDGKKoQ6C/2jfLBDWkN4FXLvIwmyslcvn0fEC6x7YNe+cHpgqsu7B\nXUC6ByhXV5dBKq9mV00crhNWf6tHQASiUsbWnOZetWhzPtegMqrgwFTRWaXgYsRRPWUnNm59LvKc\nFmeUjVufm7fdr4q63PHoDkhvn440rHRcIyoopVoe8b1Pvjp3/bpyXduKoQZh/2gXcdXsEjVbDq5s\nag1AlfvrNU+5QtAZ7eLKISMS2tTHtdVnGliIMp1R5YaHdzP28n4e2llw4rq2FUMNXJ81icDtV6xi\n/MZznRwUw2bLuWyGNacNzM2Memq0oKwcoKqZp1xleDDP9pG13H7FKudWDx8e6J3XnyPbI86tPl1n\ndLxQ81qOYro4wz1PvuLMdW0rhho4bx9WN2fJPpWhm8f35Vhz2kDZzKhWC8plx+QYHS9w8yN7qkb3\n+MlaaTsfSV9fz7/5zvyNDibjuYy/im2mnWrUW5OYnJpiqMG68051uv7+0SnoLlZZdmL1hicaOp/b\nX9jP9hf213WsyyYln8rzsWxkS4LShOP7dlw+jy4RZXLukZKprhm/ZF8CrYLNlFSD4cE8l56ZJ7PA\nJWK7cVSsqrRzBjRdnOG6TRPOO6SDHLXYLdOSj+tmVJeIOlezCoebDFZ5+934c2BaohhE5HwReU5E\n9orISMj+z4nIPhGZ8B6fD+y7WkSe9x5Xt0KeVjI6XuChnYWmlojtZNLxxCkoj7QYvOV7sXyny+UG\ngoyOF3jv8GzSYoRizuf6qXaumh05irPEfh03rRhEJAN8HfgkcDpwlYicHnLoJlVd5T3u9N67BFgP\nfBw4C1gvIv3NytRKXI9Kcv3mDQv3jUvFuu6QhuqhukniYuizy7Q7JDnu67gVK4azgL2q+qKqvgfc\nB1xc53vPAx5T1f2qegB4DDi/BTK1hNHxQuKOwWqk4eZNWrG6bg5xUT4rtlibynwDgNsuWdm274v7\nOmmFYsgDrwZev+Ztq+RSEXlaRB4UkRMbfC8icq2IjInI2L597W+G4890XSUtN2/SA5/rKyoXgwde\nn5xm49bnnDfDJUVYKe12jxVxX8dxOZ8fAZap6kcprQrubvQDVPUOVR1S1aGBgfankCc9040il81w\n+xWr2D6y1nmlAMkOzGlYUbkYPOAPduse2GXKIYS482iSuI5boRgKwImB1yd42+ZQ1bdU9ZD38k7g\nzHrfmxRJz3R9eqSU1ZzWfgpJlYNIy7lyOXigOKvc8PDTSYvhHFFjQzvMzhkRLj2z9V0Ga9GKPIan\ngFNEZDmlQf1K4NPBA0TkOFV9w3t5EfBT7/lW4L8FHM7nAje0QKamcSHxCErhbr2LFzF+47lJi7Ig\n/Au6snJqu1h98hLu+Q+/3vbvaRWuXGdRTBdnnU8ajJs4/2czqnxrxyt8Z9cb3HRRfCVvml4xqOph\n4IuUBvmfAver6h4RuUVELvIO+0MR2SMiu4A/BD7nvXc/8KeUlMtTwC3etsRxqeKhK6uXhTI8mOem\ni1aQjcFw+fO30nWuwlZUrlmXXI/sipskxobJ6WKs4dctyXxW1UeBRyu23Rh4fgMRKwFVvQu4qxVy\ntJJtz7bfwV0vrjtQa/F+We32f1falKiLJTIqSds5bTdJjQ3TxRlufmRPLKsGK4nhUdllzJWbMw0O\n1FrEGaufRiUaVjLElesP0nlO20mSivLAVDEW056VxCA8/MyF5bxAIo6nVhPnjeSSCXChuNa/Ie0T\nk1aTtKKMw7RnioHw8DMXclEVt0xaCyXOG6kTztfwYJ7bLllJ3jtvfp2upCYraZ+YtJqkFXccEy0z\nJeG2DdVl2epl3XmnhrbubAd+U/u0N7N33bzUbVT2cZ6ZTa6+VRwTLVsxkPzSsBouy1Yvw4N5Nl5+\nRmzfV5ic5vpNE3xl1N3M9UZIsjSLiwl4cTM6XmDdg7vmTM2T00Xem0nOpjD13uG2RyeZYqA0o81m\nkr8DKv8ZneB49mvKXL9pItbvVeCeHa+kPnM36dIsjhYVjpWbH9lDMUFFUMmBqfaHrppi8HHh/y7Q\nl0tvlnMllU79uFHSH4PvammWbqJa18CkaHflYPMx4E7pY1+ElzZckKwgLcKFQS3tPpq0y2+0j3Ze\nG7ZiwK2bL46yEXHhwnlNu4/GBfmXeQ2W0m6WWyh9DlbAhfZeG6YYSKanajeQ9KCWzUjqfTRhoZG5\nbIbeOOqLBDgwVeS6TRMs8/oPdJOSKJVzSc4HKTDv+9vtf+x6xTA6XuDtdw8nLcYc/R2kpJKO9z5q\n8aJU+2igPKch6Hu65MwTEpMpLW1TW4UfVZdU33cFPnDkonnXQDuv7a73MbjiX/BZf+GKpEVoGcE6\nQEmEWx7sELNcZU4DkHg5bN/5mXbFWy/+77wu5ug6n8mpYqwVlrt+xeCCHTxIp91ow4N5to+sTebL\nJf4m6nExHUdFwhq4du+0m+HBfOwmPJ9O7eDmLEnbwYPkHZKl1SSxDFelq0weceNiW9J2k4QJLwlf\nWdcrhqTt4D6dkMxWjas+fmLtg9pAu+O9k8AVRfdODBm4rhF3La7+3iwbLzsjlR3cUotf/2S6OEOP\nvJ9HEDf9vVnWXxhfd6a4GR0vJFrczjd5VJZWT2M9paQzoYMUZ7Sr/AzQnvadUXz27KXcOrwytu8L\n0pIVg4icLyLPicheERkJ2f9HIvKMiDwtIo+LyEmBfTMiMuE9NrdCnnoIZuVCckoBSq07O/XmqjzP\nSXB8Xy60tHoazUwuJA0G6RY/g1/aJU7uffLVWL8vSNOKQUQywNeBTwKnA1eJyOkVh40DQ6r6UeBB\n4M8D+6ZVdZX3uIiYcOkG6+Sby4XzXJic5vr7J+bJkUYzk2vXiks+unaR1ORmRjWxnJFWrBjOAvaq\n6ouq+h5wH3Bx8ABV3aaqU97LHUByQdgeLt1gnXxzuXKeo4rBuSJfvbh0rXS6X8wnyclNUivbViiG\nPBBc87zmbYviGuC7gddHisiYiOwQkeEWyFMXrtxgQmd3yHLlPEfhunyVuBIskRHpiO6C9ZD05CGJ\nlW2sUUki8llgCNgY2HySqg4BnwZuF5GTI957radAxvbta96R6UoLSKXzcheCuDKQhZHGGW9lJnR/\nbzaRWj4zqjy0s5A6H81CcGHyELdyaoViKADBWMQTvG1liMg5wJeBi1T1kL9dVQve3xeBHwCDYV+i\nqneo6pCqDg0MND+ou9ICUnAn/LAdVLapTJqMSOrLmvtJgy9tuIDxG88t1fJJoJ9IGn00C8GFyU3c\nyqkV4apPAaeIyHJKCuFKSrP/OURkEPgb4HxVfTOwvR+YUtVDInIssJpyx3TbSHp56OP3DEjjAFUv\nfkmHpNtTZnuEjZfHHxPebm7anFwjGVfuo1ZRLaQ5qXIYSaxsm14xqOph4IvAVuCnwP2qukdEbhER\nP8poI/AB4IGKsNSPAGMisgvYBmxQ1WealakeXFge+nTazRVFkjMvgY5UCqPjhURLtfeIsLxDKq5W\nC2keHsyTS6AcRlIr25YkuKnqo8CjFdtuDDw/J+J9PwISyeBYc9oA39rxShJfPQ+XlFQ7SbKo3mfO\nXtqRSuFL9+9KVIYZL9zLH0QhvT6zsOijoLkszvpU/b3ZWIvmVdK1JTG+s+uNpEUA0ukAbQbfPh53\neXFXfEqtwp/dzjjUlDntPoeolfvrk9Ox/66kqyx3rWJIulNa2h2gzRJ3H91OM9e5kDgYRprPc9TK\n/fi+XKy/67MOrG67VjEkSb4vx0sbLmD7yNrEL4BuodPMda4OwGk+z1Hd8tadd2psv6u/N5tYfaQg\nXVtErzfbw1RCNe27yXTkUxntkcv2xGazFaB3cQ8n3/Bomekln9JCelAagJOM8Aoj7WbRoA+sMipp\n7OX9sfgkkzYh+XStYjgim0lEMfTlsqkciJrBt4f7po/C5HSscfcKPP/mO/O2p9lhuu68U8vOaRL0\nSKknw+RUMbXVaisJ65Y3Ol7goZ3xRFy5cv66VjFMxmzjhlIc/U0XuTEjiJMwe3hxRhMtde6T1haV\nvrxfun9XYg7oWYULPnqcE6aPduCvcl1bmcVB1yqGRJbiyfQST5woe/islswPSTtRXbXX18JXDkmu\nHO7Z8QpDJy1JnWKtxuh4gZsf2RN7gIRLdK3zOQlbqN/YpNuIctzl+3JcembyA0qaHaZ+yZEkWqfC\n+5n7fr+CtCe7+WbPblYK0IUrhqATNAnSOjtthjB7eC6bYc1pA7HZbqPohOq2SZds8H01QR9Smnw3\nwTGhRyTR3BA/yzppumrFUJnyngR9MSd2uUBlRVA/f2Pbs/sSNyN1Skb08GCe1ScvSeS7MyKpbYJU\nOSYknTDoyjnrqhWDC0lBDiWqxkpYtEdSM1yfvpwbMeOt4udvJbMajRpM07A6dmFMCFKYnGbZyJbE\nQ6m7asXgwoV6MOGMa1cYHS8k7otPOvu91SQRPXPU4kxkSfU0+G5cGBPCSLoneVcpBhcuVBdkcIGN\nW59LzJznk5TDth0kpWh/92P5qhnDruPy/ZikOa6rFEPYBRxnolVabpY4cGGmlmSz9VaTlKL1gwfC\nfEhp8N2sO+/UxFeu1UjqPukqHwPAEYt65myK/b1ZVOMzKaTlZokDV0o6pC2CJoqkzqU/q01r3a84\ny10shKRWNF2zYhgdL7DugV1lSuDtdw/HphS6sRRGNVxol+iTlgiaKJL217iw+muGW4dXOrlqSNLC\n0DWK4abNeyhW1F+ofN1O3nnvcEeYLFpFZQhr0ub+NA9uSftrXLbT10vS/q5K+nLZRC0MLTElicj5\nwF8AGeBOVd1Qsf8I4JvAmcBbwBWq+nNv3w3ANcAM8IequrUVMlWSdASKn/Vsq4b3CYawLh/Zkqgs\nR+fSm1+SpFLLZiR1frNgDaRMwgltYfTlskysT657G7RgxSAiGeDrwCeB04GrROT0isOuAQ6o6q8B\nXwP+zHvv6cCVwArgfOCvvM/rSNI8K203Sc86k16xNEOS5y7bI2zc+lxqSmEEE9og+YS2SnLZjBOF\nNlthSjoL2KuqL6rqe8B9wMUVx1wM3O09fxD4bRERb/t9qnpIVV8C9nqf13LibiUZRtKDn8skPetM\notpuq1h33qmxRtcFmSrOzmUNJx17Xw+uJbQFyYg4E6DSCsWQB14NvH7N2xZ6jKoeBg4Cx9T5XgBE\n5FoRGRORsX37Gu/fu/7CFYndPGChqpVUFl2DZGftCiwb2cKykS0sv2ELXxndnZwwDTI8mOeoxW4E\nGLruyHd51T6r6oRSgBQ5n1X1DlUdUtWhgYGBht8/PJhn42VnlMVa98VkV+4RC1UNUlmfxp9purKq\nV4Vv7XglVcrBpYx6lwdfl1ftLsnWimlGATgx8PoEb1vYMa+JyCLgaEpO6Hre2zIq6/VUdhZrF7Oa\n7hj5VhO2nJ8uzjjnCPzWjlf4zq43ODjtfocyV/JCwK0BrpI1pw0knrOw+uQl/PiVg/OqDbtkUWjF\niuEp4BQRWS4iiyk5kzdXHLMZuNp7fhnwhKqqt/1KETlCRJYDpwD/1AKZ6qIyZNKIh6gZpUtKwWdy\nupgK+3lSeSGV941rA1wl255t3Azdan78ykEuPTPvdKZ40ysGVT0sIl8EtlIKV71LVfeIyC3AmKpu\nBv4W+HsR2Qvsp6Q88I67H3gGOAz8garG6hkKriIGb/leWxp0xGWySgtRs1vXVgyVuNwGNKmeDJ85\neynbnt3H65PTzq+qwA0z13Rxhm3P7mP7yNqkRYmkJR4rVX0UeLRi242B5+8Cl0e896vAV1shR7Os\nv3BFy2+sbu3zXI2oxj2uRosEcWFgiWJ4MB9rj+I0li13xeT2+uR0WYMg15RqapzPcTA8mG/p7D7f\nl2Pj5Wc48892hajGPVHlm12iR8RZcxLEZ1JyJd6+UVwpxdLXmw0NwHDl2hJ1eOkexdDQkI6NjbXl\ns0fHC02vGrIZYeNlphAaJa5ggGbJZTPO2YSDBGeifb1ZDk4VmW3xd3z27KWpWC2EzcqBWFdWleSy\nGY5Y1BNajSHfl2uriUlEdqrqUK3j3Ah+dojhwTxf/vZu3nmvicEpfbrWCfyBNngjT7132LnG7C77\nGiA8+u6mzXsaLguT78ux/51DTBfnqxUXnLi1qJxoFCanuW7TBH25LP/mjONijU4SSsOC3wY1avLj\niqnSTEkhfPV3VzaVDFecVaeTfFxmeDDP9pG1vLThAraPrGX9hW6aKwqT06koAQGlczqx/lxuv2JV\n3Te8P3N9N0QpgDsDWBSj4wW+dP+u0AF4croYe8iqUlop1AqucCXU1xRDCJXJcP29WbINninXb5y0\nkGST+1oUJqdZ9+Au55WDn2V+/aYJPpjL0lvHxexfv1EDlSsDWBj+SsG1CLdaJlKXQn1NMUTgz1y/\ndsUq3i3OEjFxisTlGydtPPPGvyQtQiTFGeXmR/YkLUYklVnmpbwM4bNnL63qhPWv3zS27XS5HlIY\nLuYymI+hBgu5yFy/cdLE6Hght0+7AAAQcElEQVTBOR9DJS7LF5Vlvu3Zfdx2yUpufmRPqPxTXv+Q\nML+PS2GVYaRptd5uZ/NCMcVQg3ousmyP8IEjFzE55X7phLRhvprmiLp+X5+cnnNShzmnD0wVy1qe\npul6zmV7mGp0iR8DvgPax+UJpCmGGlTL0p1VNUXQZtIw+xNKlVn9zO28Q9dE1PUbNHX6iXGVUUuu\nRV/VkxA2Ol5wUilAurLETTHUICpL1yV7YCfjSqZqNfxZoO/s9JOVIPniiVHXb+VMtdrKwgXCQk9v\neHg3Yy/vLxtsp947nLCk0QydtCQVuR9gzueaRGXpJn3DdwuuZKo2iit9Ceq9fl2PPoryldyz45Wy\n7GHX/T1pwVYMdZA2G2snUen8dNV+HIYrs+16rt96VxZJEXUu3QpIrY4r10M9mGIwnCeoHFw3KwVx\nZbZdD65HH6XBpFiLNF0PphgM50lLDaUgLs2268XllXHYiiZNpO16MB+D4TxpS1g6anGpSNr1myZS\nUzbDdcJ8JS4jUipLnla/pK0YDOdJk20W8AowlkfPQPIRSmknmHfhvCNXYWL9uUlLsWCaWjGIyBIR\neUxEnvf+9occs0pE/lFE9ojI0yJyRWDfN0TkJRGZ8B6rmpHH6EzSZJsNY7o4w5fu38XykS22gmiS\nYIkPl0n7NdusKWkEeFxVTwEe915XMgX8vqquAM4HbheRvsD+daq6ynvE25fQSAVrThtIfU/uGdW5\nkMp1D7hfeM81/EKA122acN6smDZ/QhjNmpIuBj7hPb8b+AHwJ8EDVPVngeevi8ibwAAw2eR3G13A\n6HiBh3YWysISBfiNk5ew/YX9SYnVFMVZ5abNe5oyLbncFrIZohrruOx4zmaEoxYv4uB055TEaaqD\nm4hMqmqf91yAA/7riOPPoqRAVqjqrIh8A/h14BDeikNVD9X63nZ2cDPcYvWGJ0LNBvm+HK8fnMax\nysoNs5DyGWFRWp2QjR/1u6K6nblAf2+W9ReuSM15b1kHNxH5PvCrIbu+HHyhqioikbepiBwH/D1w\ntar6GUo3AL8AFgN3UFpt3BLx/muBawGWLl1aS2yjQ6hWqiHlOgFYmHM6KgvYpbpG9RJcIfR4taaC\nVOt25gJpUgqNUFMxqOo5UftE5JcicpyqvuEN/G9GHPdBYAvwZVXdEfjsN7ynh0Tk74A/riLHHZSU\nB0NDQ50wJhh1UKsInOtOyHqod1D3B9Go35yW6K3g7whWHHWtsU49pFEZ10OzzufNwNXe86uBf6g8\nQEQWA98GvqmqD1bsO877K8Aw8JMm5TE6jGqNYtJaRymMWgqunmicdkfC+A7gZqKrKn9H+lRBOWlR\nxo3SrPN5A3C/iFwDvAz8HoCIDAFfUNXPe9t+CzhGRD7nve9zXgTSPSIyQMmfOAF8oUl5jA6jnlIN\nlfvGXt4fe0/fVvCV0d0MnbQk9LfWk+RX2VynldRb3TTKX1JrtZNW0h6WGkVTzuekMOezUY0oh3Ua\n8Z3K12+aqGt2nctmuPTMfMvr/ked07DmM5VO8DSWNKmHNDr8W+Z8Noy00UnLe9//cHQuW1dkjl+K\n2h+sazm36w17rbe6aZi/JG0lTWoh0DFhqVGYYjA6jk6oxBmk0d9Sz2AN0eYhmK9EGjmnlUqkkxT1\nZ89emppmO81gRfSMjmPNaQNJi+AcYYPzTZv3RIa9VtKIo19hzjndSRnePZS6sHUD5mMwOo5O8jG0\niv7eLL2LF82ZjNacNlDVQR9mLulUB3Ij5PtybB9Zm7QYC6ZeH4MpBqPjWD6yJfVhkK0kmxHQUikO\nn0qncTV6va55GS8BLROSiNYtCPDShguSFmPB1KsYzJRkdBzVQggzkvZyfI3Rl8ty1OJFZUoBGssf\n8Fup+sqgk5VCvi/H7Vesiuz30KnhqZWY89noOKL6F992SclpWG/oZydw1BGLOsr5205+XrEScLkH\ndruxFYPRcYR1+/LjzYcH86S+hncDFDyfglGd3mz5UFjtGuoGbMVgdCTV+hd3sCUklP3v1CxY3PUs\nXjQ/4srlHtjtxlYMRtfRZW4GpouztQ/qclwt650UphiMriO3yC57o5xuC0qohd0hRtdhM2ijkk6O\ntFoIphiMriPKGWuzxu4lKjy1WzHFYHQdUT0ervr4iR3T38FojG4JQ60Xi0oyuo5qPR6GTlrSVXkO\nRolujT6KwhSD0ZVEhSL629Y9sGtetrDRubSrwVFaMVOS0fVUtqwE2Hj5GXPJTT3meuh4bnh4d0dV\ngm2WphSDiCwRkcdE5Hnvb3/EcTMiMuE9Nge2LxeRJ0Vkr4hs8vpDG0ZsBHsQK+U9CbaPrOWlDRd0\nXUJcNxJVbrxbaXbFMAI8rqqnAI97r8OYVtVV3uOiwPY/A76mqr8GHACuaVIew2iIsO5ilYOElZTo\nHLKZ6OWf1ZR6n2YVw8XA3d7zu4Hhet8oIgKsBR5cyPsNoxVEDQbB7Y00qTHcpb83y8bLzuj6yqn1\n0Kzz+UOq+ob3/BfAhyKOO1JExoDDwAZVHQWOASZV9bB3zGuAeX+MWIlqWRkcJIJRTN3cpCZN1Gqo\n082VU+uh5opBRL4vIj8JeVwcPE5LHX+irLEnec0hPg3cLiInNyqoiFwrImMiMrZv375G324YoUTl\nNFQOEsOD+VR37uomag3y3V45tR5qrhhU9ZyofSLySxE5TlXfEJHjgDcjPqPg/X1RRH4ADAIPAX0i\nsshbNZwARIYFqOodwB1Q6uBWS27DqIdqOQ1h5CNWGIYb5Gv8/3y6uXJqPTRrStoMXA1s8P7+Q+UB\nXqTSlKoeEpFjgdXAn6uqisg24DLgvqj3G0a7aWSQCGsC5OO3y+zm1pdJ4q8UbMBvnmadzxuA3xGR\n54FzvNeIyJCI3Okd8xFgTER2Adso+Rie8fb9CfBHIrKXks/hb5uUxzDaim+GCKurpJQcnB/MWd5o\nEljIaesQTeHMZmhoSMfGxpIWw+hilo9ssbIZDiLASxUtOo33EZGdnr+3Kpb5bBgLoJHQxv7eLP29\n2ch9uazdhq3CQk5bg12RhrEAGsltmJwqsv7CFfOSq7IZYf2FK7jtko+2Q8SuxEJOW4MpBsNYAGEh\nj3258FXB8X05Nm59juJMufGpOKNmE28h/b1Zczy3CPOSGcYCqYxm8usuhSVOXb9pIvQzgrWZjIWT\ny2ZYf+GKpMXoGGzFYBgtolriVLWucWGhr0Y5+b4ct1+xau7c9uVKfhtLUGsPFpVkGDEQtZowpVCb\nXDZjA3+LsKgkw3CIqNWE9RqujSmF+DEfg2HERFSGdVQmtVFSoKYU4sdWDIaRIMGVRLfR35st8xlU\nhvNaxdPksBWDYSSMv5JYveGJjizQ15fLcujw7Dz/yvoLV8yL6qq3mKHRXkwxGIYjhBXoy/YICGU5\nELlshkvPzPPQzkLDJii/+ijATZv3MDldBEp9rWe1tH/NaQNse3YfhcnpucKAc/JkhGyPMFWcrev7\nsj3CTReVwkhrDfpW8dQdTDEYhiNElQAP2zY8mGfopCVl26sN6GGRPfUMwvXM4gdv+R4Hporz3ivA\nxsvPmDveBv30YOGqhtGBxGmWiQrFtWgi96g3XNVWDIbRgbTKLFOPgmm02ZHhPqYYDMMIpXIlECzf\nYf6BzsbCVQ3DCGXj1ufmObetGU530JRiEJElIvKYiDzv/e0POWaNiEwEHu+KyLC37xsi8lJg36pm\n5DEMo3W8HhE6G7Xd6ByaXTGMAI+r6inA497rMlR1m6quUtVVwFpgCvhe4JB1/n5VDS9BaRhG7EQV\n/rNmOJ1Ps4rhYuBu7/ndwHCN4y8DvquqU01+r2EYbSasGZFlI3cHzSqGD6nqG97zXwAfqnH8lcC9\nFdu+KiJPi8jXROSIJuUxDKNFVCsjbnQ2NfMYROT7wK+G7PoycLeq9gWOPaCq8/wM3r7jgKeB41W1\nGNj2C2AxcAfwgqreEvH+a4FrAZYuXXrmyy+/XOOnGYZhGEFalsegqudU+ZJfishxqvqGN8i/WeWj\nfg/4tq8UvM/2VxuHROTvgD+uIscdlJQHQ0ND6cvKMwzDSAnNmpI2A1d7z68G/qHKsVdRYUbylAki\nIpT8Ez9pUh7DMAyjSZpVDBuA3xGR54FzvNeIyJCI3OkfJCLLgBOB/1vx/ntEZDewGzgWuLVJeQzD\nMIwmaSrzWVXfAn47ZPsY8PnA658D8zxWqrq2me83DMMwWo9lPhuGYRhlmGIwDMMwykhl2W0R2Qck\nFa96LPDPCX13M6RRbpM5PtIodxplhmTlPklVB2odlErFkCQiMlZPHLBrpFFukzk+0ih3GmWGdMht\npiTDMAyjDFMMhmEYRhmmGBrnjqQFWCBplNtkjo80yp1GmSEFcpuPwTAMwyjDVgyGYRhGGaYYaiAi\nl4vIHhGZFZHISAIROV9EnhORvSIyr2FR3NTTXc87bibQQW9z3HJ6MlQ9dyJyhIhs8vY/6ZVYSZQ6\nZP6ciOwLnNvPh31OnIjIXSLypoiE1iSTEn/p/aanReRjccsYIlMtmT8hIgcD5/nGuGUMkelEEdkm\nIs94Y8d/CTnGuXNdhqrao8oD+AhwKvADYCjimAzwAvBhSiXEdwGnJyz3nwMj3vMR4M8ijns7YTlr\nnjvgPwF/7T2/EtiUApk/B/zPJOUMkfu3gI8BP4nY/yngu4AAZwNPpkDmTwDfSVrOCpmOAz7mPf9X\nwM9Crg/nznXwYSuGGqjqT1W1Vvfzs4C9qvqiqr4H3Eepu12SNNpdLynqOXfB3/Ig8NteRd6kcPH/\nXRNV/SGwv8ohFwPf1BI7gD6/AnJS1CGzc6jqG6r6Y+/5vwA/ZX6tOOfOdRBTDK0hD7waeP0aIUUD\nY6be7npHisiYiOwQkSSURz3nbu4YVT0MHASOiUW6cOr9f1/qmQkeFJET4xGtKVy8juvh10Vkl4h8\nV0RWJC1MEM/sOQg8WbHL6XPdVHXVTqFalzpVrdZjIlFqdNebQ1VVRKLCz05S1YKIfBh4QkR2q+oL\nrZa1C3kEuFdVD4nIf6S04rFqwq3nx5Su4bdF5FPAKHBKwjIBICIfAB4CrlPV/5e0PI1gioHqXerq\npECp34TPCd62tlJN7nq766lqwfv7ooj8gNLsJk7FUM+58495TUQWAUcDb8UjXig1ZdZSSXqfOyn5\nfFwnkeu4GYIDrqo+KiJ/JSLHqmqiNZREJEtJKdyjqg+HHOL0uTZTUmt4CjhFRJaLyGJKDtJEInwC\n1OyuJyL9InKE9/xYYDXwTGwSlqjn3AV/y2XAE+p58BKipswV9uKLKNmZXWcz8PtexMzZwMGAOdJJ\nRORXfX+TiJxFaUxLctLgd6T8W+Cnqvo/Ig5z+1wn7f12/QH8LiX73yHgl8BWb/vxwKOB4z5FKfrg\nBUomqKTlPgZ4HHge+D6wxNs+BNzpPf8NSt3zdnl/r0lI1nnnDrgFuMh7fiTwALAX+Cfgww6c31oy\n3wbs8c7tNuA0B2S+F3gDKHrX9DXAF4AvePsF+Lr3m3YTEYXnmMxfDJznHcBvOCDzbwIKPA1MeI9P\nuX6ugw/LfDYMwzDKMFOSYRiGUYYpBsMwDKMMUwyGYRhGGaYYDMMwjDJMMRiGYRhlmGIwDMMwyjDF\nYBiGYZRhisEwDMMo4/8DjJg1O1QqBSwAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from sklearn.datasets import make_moons\n", "data, _ = make_moons(10000, noise=0.06, random_state=0)\n", "plt.scatter(*data.T)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "ExecuteTime": { "end_time": "2018-03-31T18:30:33.870792Z", "start_time": "2018-03-31T20:21:06.204721+02:00" }, "collapsed": false, "deletable": true, "editable": true, "scrolled": false }, "outputs": [ { "data": { "text/html": [ "<video width=\"432\" height=\"288\" controls autoplay loop>\n", " <source type=\"video/mp4\" src=\"data:video/mp4;base64,AAAAHGZ0eXBNNFYgAAACAGlzb21pc28yYXZjMQAAAAhmcmVlAAM9TG1kYXQAAAKuBgX//6rcRem9\n", "5tlIt5Ys2CDZI+7veDI2NCAtIGNvcmUgMTQ4IHIyNjY4IGZkMmMzMjQgLSBILjI2NC9NUEVHLTQg\n", "QVZDIGNvZGVjIC0gQ29weWxlZnQgMjAwMy0yMDE2IC0gaHR0cDovL3d3dy52aWRlb2xhbi5vcmcv\n", "eDI2NC5odG1sIC0gb3B0aW9uczogY2FiYWM9MSByZWY9MyBkZWJsb2NrPTE6MDowIGFuYWx5c2U9\n", "MHgzOjB4MTEzIG1lPWhleCBzdWJtZT03IHBzeT0xIHBzeV9yZD0xLjAwOjAuMDAgbWl4ZWRfcmVm\n", "PTEgbWVfcmFuZ2U9MTYgY2hyb21hX21lPTEgdHJlbGxpcz0xIDh4OGRjdD0xIGNxbT0wIGRlYWR6\n", "b25lPTIxLDExIGZhc3RfcHNraXA9MSBjaHJvbWFfcXBfb2Zmc2V0PS0yIHRocmVhZHM9OSBsb29r\n", "YWhlYWRfdGhyZWFkcz0xIHNsaWNlZF90aHJlYWRzPTAgbnI9MCBkZWNpbWF0ZT0xIGludGVybGFj\n", "ZWQ9MCBibHVyYXlfY29tcGF0PTAgY29uc3RyYWluZWRfaW50cmE9MCBiZnJhbWVzPTMgYl9weXJh\n", "bWlkPTIgYl9hZGFwdD0xIGJfYmlhcz0wIGRpcmVjdD0xIHdlaWdodGI9MSBvcGVuX2dvcD0wIHdl\n", "aWdodHA9MiBrZXlpbnQ9MjUwIGtleWludF9taW49MjUgc2NlbmVjdXQ9NDAgaW50cmFfcmVmcmVz\n", "aD0wIHJjX2xvb2thaGVhZD00MCByYz1jcmYgbWJ0cmVlPTEgY3JmPTIzLjAgcWNvbXA9MC42MCBx\n", "cG1pbj0wIHFwbWF4PTY5IHFwc3RlcD00IGlwX3JhdGlvPTEuNDAgYXE9MToxLjAwAIAAAB3VZYiE\n", "ADf//vbw/gU2O5jQlxHN6J0zH78VuLo0N73OAAADAAA33OZE/sqTBubAAALo8fpH37/mAS4PpBb8\n", "d+3K1EEdKSRwlzUAxsWfnpF2gNGNKNBtT/Dc4QKrGCryoRCf7D7iyoWbVR85y0xe6yQDhWrWIyNh\n", "XdObuBUoYwRddlazVtmSVJJozyN9ghf4BEc9f0haHAs9Zri/WDI7OFkiAd3BQ4If7i9rWy3Qet3A\n", "n7LURQTPQlj5GGQFuJV6a5S7E4e/1YYtqRCm0TM507am3J8PLfF+nC/JQ9GBgehZs7FwmzfiIgzK\n", "E9tNWW87dJZMfaj7r6XHP024S8k13SwThxvqg1d0BWECAX+noaLUqHAbR+45idgA4uu5nOz0/UIc\n", "W1cQ5N84WK6X2+oK5Qel/mEb1OuEUpH7uCJyRox7Tvi4yxWp6/DWAE36I74nt9GYNLahXWlB6/aJ\n", "klWOKCc5zf75MBZ6+le9jE8NmVms/ZJxwVB9mGje1HpUzBlun9M8nI+e4nH/StFsBLRDYAogymS+\n", "Vq6alzmD1ert/6suq/gS/wAAD6v0Bd3/aue8uPtxaL/39s/3b35LrttMu7kG7ilADgisT2cyEftK\n", "mS7clcHjJyoJW2lrZmNeEBUcz0H5BjrjWIMl3YzlP5VW+EOqz3GimYxGq+scaCs2FgPuqxZRB9Lg\n", "oaC7PGjilo0odj8WhPcTnMgPLv0WphPYggIGauc0XCPB4LQZD+qZx66sQWdaHK99QCDL0MntuV0K\n", "xaQgDFI7JxKcsE2ia3tE4zyZ18TjgHPhNB9BC2HRwn8Ql4waDojyhbo+ncewjmg1FbVgIF/joL15\n", "7V0gH8BaP0Joif2MNgWwJqrCx7GFXPMnLaOPhk4A8MfVZs3krslnmmYR/adNQtymNsKwaUz2Ua0t\n", "Z0jt1eLzpfTzNBN1XpFnWNHUCbx4RqU3BEVq1gEbysMa5WfCIAc5GPgfMNKZs6EDk/XhJ43CGVc6\n", "4CKZHl17yPKzB58F/olRmFI1F4t4xrnAJ8r0vGldQuHv/5wOer2SM49Y4jdQ+thdZtzpJRThdSam\n", "rpk8PWhvPQdQcQBkCbLU1lCdULImobLCCrPt1veZKNGOd1na+VurNonwz0CR8/G7DDcbaG6JxyO7\n", "35SPNKWnwgXcYFX5bZkQ9S3X2k9jI1sV8RPzBX2tz593Otds/EyoeorwuVyftuAekJWzkd3Jv+Hq\n", "Vh8A6X9znNe8OPKD3ThTkJxLQecHGMIV31jMhTOjnTp6onZIl+MZxeTG4B7xTnNVadnxKDTQ+Ijt\n", "ScI/qsOEHfHxAk5iMtL/jMIGyVf4QZ1bJ+F4c5ySA0rqEOKPtZUth0qCtLjsb7Sku24MB/F6SbYc\n", "hv2cl4tqp0EvX7J4AXIuNIiaU1K0NQUksD1/wOAQb7d5KRvLQKQYDTbIOSpHO3/1Bn6yEkD2T26W\n", "1hfVhfX/NcsmD8BQecZn/Yq5A3fqZAZa0G4X2WdSfn5xiCxm3DUFnUJ5uFUJPJI6F3uA+7/PdAwR\n", "SwaRfa87Ti4z9tj28zF5CghcSFQxgv+ryTzFLhiJegT1mMY7pGRrSTPTDSCU9jndmkmb6Q7sJ7xU\n", "7c9z7rkFdg/tdDqe116ZCz6SbXC5MK4hVonZACKXeBSb1NOQN04er4WJCHnB1Os0tHDt19h3+RsZ\n", "IKzshQaMt71SUv0nrXv8HDw6LLUaucYI+brPRd78dEe5ZpnTaXzVfI4bftrx/p0rFJeTc29qC/Fs\n", "Ir7opiXclVu+U0jlRZdrUrPlTxPOVo1cxoCP88rmTfCmNdgkfh0Dpen+ShQEYCWDBlCKDkrXLfkY\n", "c/kM7gAp7X3lLdrEa87SazIqn/lwLkdjlXl60+7Or1FgtZ/+ELJhxhFUwaDd3XCplAoGERCJIFyP\n", "toUR+3Fs5N0aA0GqMujpKRSAc5YzCsSMLhsWmWoeHF2eC1zYdMl3a/YsSH5ERwM83Ki9e4++YsXK\n", "5l8DS7PUno52MIo2zGRjWvP05jDzkyFTMl3YdEzk/o2RXqkEosqMuwLnKq6QmKuh1cpkAupRoCmI\n", "N98QoFbx7f6Qu7jmEdVuzbSJdo5u8nmlI4u0JdX8j0jMTS1SY2f9PmGndEymJ30NQcTbcfLi8o8b\n", "nEoBW7O/6HNxrlUgJY3CFZZW838oSO2iD1Z6hATeVBWnCkos8gIDBOYdQZ3Rf3MN5BjEhGVLiYiv\n", "QKdSOoEcnCaQ13eVIcTw7pZaYUrJZD3Qynkj4TqtW0ciCV9+dsRsycge8JSc/2f78SM1vz5lHd09\n", "Hwc9e2igu63zUHiEOhwfC1ezSpRJCIBnYMIzTj5+y8k4HU5uNHgj5m/0SeiYqrVnuo3rRp++ygap\n", "O8i/p6OgUjNkrK1DnYPxLX6SisETgJxN9adW2euTFY7cNi0G0poE4ghLsj6oSAZBaGP1ZT6PhFik\n", "diPajayZ/ht/cQpITHL+xGNpRzeEFEZoehs1SEODMKbnmCa4rBjQL8VqlGko340OyNQ8Vm6TVYge\n", "V/Ym2dQUUTQ7FSKaKmUFqoSbVhepQO0k1myepkh8Wxbw1FlccrSMBhRYYkHqyNwyaNG5JubfbDkL\n", "vBwjDVMg5Kw/OKfEm8BRLnwugvYdSwq7IO8g3zCg8EomqyqRkQ7ms+8/lWqenIDkxZPZeqCyYvrD\n", "ecA/V0/sfrRZTU9qoE7jF85CiIUoGe9a00N8s4SS6SxOCTSGTW7W02pY6TmT9vTAxrLSY8yQOpHC\n", "J/uLtaJKU9hY3Jfr2MQ6t+OSHUkvaaVkPsrZdi8yCWYyckNc4KQ2bRs4IWVSLWjCodLjkblzuyMu\n", "PILDRREObJXQ0Aeib7L9ruUlFn6E61BZ1g5WBZsJvU9N0K421Pld6YV+yTNAahbewsyX1Lhndln1\n", "eXi/0nQJtCvlB0uT0n2xyGOu8cm3Cj5Gz9SB4QxaY1ZVArTKjjJaPZnu5MzwF1/YCd3yQJUCMQmW\n", "Y20/gCWpW1GH2qt02+i43a6EJtD6yxRIQfHpMFSN3BUNwTC4is6BXhlyvGScEHv0EJC3UiOXEChw\n", "ZaY2PFVxJ8YGRBGtZsOje3+NMB+uRYp+fSNmbAWtjVs0sWQUDqoVCkR4L5Q7SpHqhJZvg/DbmhHz\n", "t/FamyAoVAQijtloP70lzdYxIvVWmDJLhJ2vwKgU0wI7RNy5hnEIY3ZmWrwJAcxO3bHdmPq9goqG\n", "HSOlEjjNF1TIxg40vQ3bo2ZzM4OfPUQTulGaj5bskQPh4F9iSOBvXbwzPDFDW6ytcdJkMzWzpkea\n", "a9cfFZx37fGH8SxqqEinfmGR/NQmuc0VUo2hnZlMM0u942OEhM7wHy6VGTjv1UdeWWw5Nn7QPxFw\n", "4sfb/GRq8dyuN0nFeUxFUP8HUsryWoCAZa8KqX5dOxGwd39Zpvhts0k6JRlegS3jXGf0Xe+AxqY9\n", "VOzwS5+OG6cwunTkaYodEVRtcv9p1md7cRsyAGN6uHXLpc0zvW3+pN2mge7ZQGf7BUlmS9AGcJ39\n", "4NGcl3S6skUIdSJ1aeQWknMN0Wq6KotY7a9D7LNgg86hPSlR+UhfZtS4CX3Z2LhLbaoWIVhlrAqP\n", "e39bRuyJkYc64C6/bkyZ6KTkjf0MQkkv01WAVimBPyHZ4kU+vJ3eCvmZyu6nFXsZdQZKKtCP/mXq\n", "C+kgSyCx4kvNdQdYr3xqScO2ANFXHvv881pUXlXmNacxTEP7okflI81RVd6QVk96DEvVWF2gd4YK\n", "P+a1LVu63HOfssS5Nm/36EbcHKmJbFS8WbR/ZmtxLaDaYdDdp2FSzeH7mbtRHibh823XAk5ck+rr\n", "fToc3V2HZc1dfeng3Ifocp8jSqvi082k9caj2sqd9mm/PPLLMHVeVZYysZudkyD/afwhsYuinVFn\n", "M0IWdAuJKMS+5SwbE7/oHVSSvDSCQmMG04g4GW7V0CuYbpQR9KKMeoG/ootUWaLo9MAu3pitLqau\n", "UDoenGjkbShHGhbjJJY0ZA+0Y0biVkaVmPPiHROUzUKpHFqxcSF3aDvRMnyba/QkImOe7di0WIuY\n", "SVHYgPJ2EwOXLBJC54srqxkmD22/2j0FN7nKhDM00K2g4VGyVOP1B3Oeeu1K0f2uuh6kOmQfbyeL\n", "G1PXrfUFuCxu5Cae0ZLI2SWAYWE8jM7Oh5ER22/GmhzIxFB8uyXf3lZLbdgogg80dPRhk1uw7Wwv\n", "IIT6kLOVXW9k92uD1cAX36pn1MeSbSCXpF9gNS1mR6GPaiqIbfSeu8Zg2KLhyL7HFmRR05O7cqWK\n", "PtwWMkJkHmvoRvtbpcx2QkFmGc7vzGG2xX4Z8j2LZEiVJBBSjCrsmzVDaKeNmSCvTDndTLHi8m+/\n", "8fEr480HR71eyPEC43K9aRYKpdGDeUncCzv+GvLlRUEshEjCa6KSztGIrKYBugi3zw/cQONUf7EJ\n", "dIdF3WX5ynsnuPpXAeusO5FeupDeVH26kHxaG9mfJZMp++123SsHhwpLc/T2pNpaBdcFBLGV/BET\n", "eiTaX0xmZ24VcTkeHDT6bL7BuLMcM6+Rgs1gMSOANfzto13913RtMe+02XzvUhKhVO374hv/fmp/\n", "/X3+4UaHUgCH2MKTru+zpKXckeQLrrWLZYw2LbJd7dSiy9N2KZvWnsbOynRUvUB7iNOc341EDgRh\n", "ukoQ0LdJEkZ0PlFb6Hp+1FOnL/XwykzyC8L5NIf5vs+5BLVuCDbuL5mX0UO0ZKsgS1Q1HG4dNtgY\n", "AY4aNRIz1Fh3KJbZA6y9Pi8iMbjTJazHd+ImFrrHlWzEquznwTujpim6I2jTVEqdHsgrgSAXrERM\n", "PIH9vvfRWIQUlDAc1DXGKriYom0mqMw6zKqqm52JVIJ6IuOEUrUBFhhQK9jAO8tq0Awc9fB+ryWa\n", "Q08VdEzD13xwtRBHy8Zrmw9jWZffkjJwpZ0WxyKYsiaorAC3tCR+obJpzFCjy3Y5uoZSJ3E+UaV6\n", "9Cw3RD6bbjudnbOgh074cxMd+B2l9gPZBUFX4N+83unjrbWCkjeOAcMadk8a9mp/9w3/aW5WXMWt\n", "CiD9MJ23C2cU5hroWt35lCHoV8YGOHY2aCCQ3mvXAXOLivu6lx1hUTpmCfubcY2X44p10TRDInF8\n", "qt+zvdQQxTDVErFc3fSf1TuD9cQALplwmOaLITQvilL2C4q2TVvC9WDVH6DuM4iWtE7SAuazjlgb\n", "ZWZf3637oIi8grga+0vNOnsDWrQBCjNRf8PkCLlSg88R/nGkCjmyGzBFW7dZu6P/NDQ8zE9nH7jf\n", "SLB9Bc4nf8XzR9Q2vRTGV3qu4Voau9CnMyXS5j6bVwKLjHwjpjyw1EZtxTk8aIZOdjM6njkrbqqp\n", "L1KoyxLYvJ0WTiqhFw9Cru4TOETeZS3rpQ6BE9ZaIciHX91PUbKlp8EX49nKQXCh/KN4QlTYNYb+\n", "dleaPf5kbCo/auRMV/CGef2i/Rd+ArcRmA2k8c6yBQAVt4obAvBqfKsfZ59gN5ko2tamm+a1c+56\n", "XQfn/ZJcb6UQUKk3mQcAA5r4hOXssBEDawiXOzhxZ8sEC3Bwf/xma5DU8zcR3uSeYQ3cb4R/rG0q\n", "ZCHXxo/A6gFWK83xqiwP9IUOtnX0b6Gk8ylB/OZct+cYlzc+6SW8DHJE7kSsZXee4fW1JPWv93mn\n", "6mwW6/ZA6xbxS2rvEFDaIGcakL0wEUfyMHvEZzyE1VDiyYhcHQp7cYtBP/9j2X305Tyx74lPNL8M\n", "KYN8bjcwVtyGb+IPYAO+JKEApcwZRTCp8/vb+/G3/ZRi08+h2ioWL1EPpSP76stG8AieXlatGTpM\n", "ClVrTrCH4yIbHEimhHFU76hVT4AET605YOCOLJ+qrSLep/y+roX9YP9NSnkA/8M3QhNoup/y61Hw\n", "qf+CosqreVnNVKyt7L4q1DaeseyTU/s/raj0QklvBFPZy1tFtFO2Vqc1tyl2dcr8yFMLo5o0ek2M\n", "OH2VqO6np1MEqtHLnt7o4CqUp+14gnCUOCElH4hucGgEnmx/UkOsfZ/T/y22jRWXXF8FwMUJmMSQ\n", "zMehro/4SM4yAkC3gTSvQS44D+2gZsyNGjorpSaeaflxVzN1iaV5HeDTU9TnzPoH1gU/ekjSDTuL\n", "aueKZi/ASWCak3mZNDwMos+1LtMuEjORUZyvs8O4a4QIVG6W2hFAjG6sINiV2y695t81J6hZ3/EK\n", "KLMRdUA1GxnUw9C1bdVGtMpgse69affnvV1V5GZFR7T8OjgtvnTt60dNb3GvPn9JwL+5F03LcR/f\n", "/LOliCHddOCQvwYaiSO+wVhxVYHrX+WSF6jHgXx1IqgkSWY/ZhcyxgU0DbMkTJMYpTVZfJED7KNc\n", "mfmM+bt15mCVhJiYF9gZXQfVnWX9sf31RxhL7ARdzuuut2Yzih8pUi3+op/Rb8Vzw81l92lgiBZT\n", "UdcQhvbdzHsMY5zYlj4YVQ8nBvbpBU3G/5hF1OXwpQx2lp6qyRT+FAMGw/Ze9EfDC1dWcHJq4L5U\n", "T820mB2LqYmFGL1xMmXVqZPdG4tmuUzWZsuZfqE3IN6ikSuJUgrT1sZYUGYBa3KynXoh0LEb5HjG\n", "M8/fU6XWE1SgX8rOxSSsziEbVZOMDMr4bdnCCJQ7zlFAUPmi8HJ3BHZ3kLkz5x/S8tpn11a6Wpkp\n", "/u7MDgHiOvy+9cGaGCBdXThvQe2hEvgmuRXZLDCWPG3hC/QmgwMCp1dW1O7nlKD2/uYxNDEeiVue\n", "E7KQcZtE+v4K+SRaEYDAdIogzTNynpGtCp9xiJlya64FwV/RL2TFnLfZiY09Mn7lSKlKvdsht0+4\n", "1jsignCCuOX3kz6mojnrO/2VOJt2Jkfzs6x/dT7B4BLAepRdxJUtzwsuEtP/zngh5zmM13tXHn1g\n", "KyEkTOgoEdR/1Waxgz5BtU/xe2EJsX3rSr0cpj8Pzbhd53ZNbXuuIpqBQ71o947c7RRDf1gQ8WGD\n", "DWH3fT4519HO+IMAfLdpylw1DMyKFmHb6lXYsO3QjzsDhJbDyGIDeZJs2tJAdnVDzmontrPwQaoO\n", "u9tA7GGKwtO73CoP/YM+7lYQUiUp6DNtiLJGQLpn1fAZjZEpzccE+7jrWx2vD9JlqXLCov9a7wc5\n", "TJFHHPbHcvLiVXmqNOZ9FAeRMkoWv0AhmYefnMLSkulS4cso6KdpCS0+YVI/LbLjQwvHdInExf/V\n", "7gppnVMHqnqXfvxjYqPWn/RlasoyHm5K99KWf3bL+BIgGjam955oEqVW+a/NlK4DDvHjFeIdggvh\n", "MFaafFsbcnLBPPQJCJrPfz2t6hE2+RFobQR1xfqrNSZa6Dj38QRxcNapV6ERKKLx2VgPnm/ylTiL\n", "OxZFCe6H2dGpa0kEiefhQNY957UCEqKQIWFSXd8z7CWMvhmrImEE+LCJD8f+HakdLGhld7W+J+na\n", "SF2sDhvhfalJOpAhNt/pApEsKkpXJY4Ksx/reIOdiggI9hcUk68Ojffi6SHFWm/vNEQ+S891ruKa\n", "DSnCIfr7PoOU/wyD6L5Wk9EfGQ0PkcRV/cT/ItjBjiNqlDz56rxW0kPcR0dADiGz5TqAAy+KKklt\n", "eBHlii2spYyX5RTQGObVyA7xzS320/b67Dr4Vgn1qs7ACF8drjlajmh5tTJZx19vm3XiMomSRZlk\n", "omAgzScmO7dgXJJ6KxmVvqv+28hsR/eLg9ENWBq1NzU+f4+3tZPXfmAs9OdvM3I4qt1hJbos1+ZS\n", "VK8LjdtYPq6fPj5rr9hkXVm5nMnPu3KzvdnRxDnhQawkH72kBc9FN07sVwYf9v5hptn3xjeJYNw8\n", "vQNCx200PCp6ZUIK0TQp7S9lHLJdjb42cqXNMJ87Y74uf81eQg3WnifmJ4dDhhuJoP8kOu8yNmIs\n", "J6vmJSC4GHyCpwsrnX0eyDctX25m6xUr/Qv/K+96ux6ccP6L5EL7EtYIEHNM3+lukwVVneWw/gZV\n", "8tJr+Xr77Px8RKI/YeFKDLC5t7UXGx2B9z/Y3SUX/kattvlXPdYzCq6stl599WW2GpkF8umz8tx1\n", "1sZJ80rqBWgmxxeEpC792SA6fTxmIPEGHcULp8c9p1qIPwrqe7qyoYBywXLVxnZ17c+80azbwVKt\n", "Diu6LL0FxOMq2JPaPCmuUcVqT815jAHjhehvJn1oCAOSLQVEqm8CthncTEqdfOrox39HllICRQcT\n", "QnkCktXiSCCwAjT2uHJ9wTDpBldxD++Odk+ryk76OEpjL3ulS2We8H07Hj4VoJYgaSrE/go+n2Jw\n", "OHnzU26t6T9UCyh9BTCJS6bPeHiKJlx0JMG7tCzczkqjpyiZSwWnX1xT8uovrqEo+C+x+HuysWU0\n", "IglE9mkbKHgBH4EcLr29nk+X71C7dkmDp5VMlTE5RvNFIde2T/Woqq1HfD04HFi5xmAjiKt+kg+Q\n", "icws3tewns5H4IMb/GX6f89Z80byET23/AaoiHTsDFCP0COXeU7l0tfVWwvsS8uTOjIirxugR7iZ\n", "pW5HqYcqkAEcX3TIsSp9G3MWplQv1+G6+3vKV4NOv23j9zc2zhFfm3Jkf4kNb4roRCNV1Np7RqRI\n", "wQgPwPWCZTJlPC6m48appahsEHKxJgG9T1hN6I5vGwyvg6Pg7sUe8DS+GVTJgKWEWW3gPXgHkucU\n", "PGgfEcZJXAc5Q7sY85CLsrzpSDYZbpGTMUytrMTRYkoSZ1JO6m+dLCaOJ4xtPOcLRJab2HPBJ8FF\n", "4UPbw9zNe41pvGhcMiJCwPajDDAEaq9+1Cgg1QN7yPMO4d4pyJTrJqMgjUUTh1Jb+tp0hf4SNuRq\n", "ICpTWt867hetGtkURf7RGqP2Jx2LUDfcbvS3dul5agFIv5sIo2B+ojO5/Bi/dFOtyT6E414ATpZE\n", "cgVUF7NAAd06QdpNYx96bwqoNSI+MSdiVCFQ/rJfqN6NGyQ+5+tGedBqdRAytG/UxEcvtenE3nz5\n", "FPDmHXymbX6NkesQ/s39WvENSRo9JJeG3/987fDht2EN/lWVQIcg1aJpavxPB1pR7TARB/jpVCrL\n", "yj2AmkAlsgMbIryfLuigYEwEofAgZ+lo210Ca80LpSyRdrWAqpksXX4WymteS7E6hvLtJhIpgE6Z\n", "SlvB1znD0Azb2c+e7q+2J3g2SIuji5sd0Lm2CIKlx56wzglyg8Qs9fVOm2Q3XAS3vd9eSJMKno37\n", "99TSqv1v3UDABXIe4V5QiuVMmGqI3Y4xozmheA0a9FU7cg+El2/CwzMSpor0CG9+vFJommtEBhay\n", "GQGUk2joV3ZMfRyVgkEtIOit9mG3p6G39zSxs/6Sib8llNhPCZa4CsoUmNzxutDGMqm/V3+5E7tj\n", "x8M07FHwmIe1lpnYGaXdTFzVvLlGQq4sSV8SMwf7XZ0gHwVozMoaKxetOinAyyYFYqbP5ETw69tE\n", "CMXc6jwR3Jb/zqOs31Un14+2nYp01FFWXF+om5yd7xyAUezOtW88TQ9kW/LBebVmpGOK9wW+CzrY\n", "TtQixTktt6lMijOMdOl9V2ZZ9nCqNwij+Fo312e4UbUC1B38CsZhOFqxadkEag8EDKf2ULMWiSvD\n", "slb56tHxNVXqf3VJ4VqjX1m3wOhDRk656fpg8PJ3ECSEXSo4LnNJrlnJF5clraxYu4Eo26+/vLay\n", "9TnKQ99T/ZkMBqEknzmoG+rFh0e1byAPIL+zqXksnWnIECClWB2eVdlcN8CZEk0gNCLt+xnRj+H8\n", "xSYsXrY+1hhIPkjWJmXwAsrcU/u48LF0+2bZn4NAm2Pb5cBvxQ5gUc0oDQO1+YpPRz9tWkr5G8GG\n", "PzLkvgoLJbnqK7GA+meiin597uXoDsh1IxxjX+KwjB/PufoBAfwYv6vcr4RtSzTEwm5/wPFeDoWI\n", "7Pu4Flc/YBg6UWvOE4SOrHTltZOZMPnMHPzIfS7l2GJboqXK4m8INm3JkMk5BUO7ZkPyr99MWzWe\n", "UtVAFjKxaaGkSqITcaSKeibsvtSOSSqIJLBuGb5CbejycXUCe8ff3tKw31AZwTGzL30yb4iC0ES8\n", "WiAoCvh9OVAy51qJLqSbWJpP3ec47RAi/bhyK7bbuzMdg1qIEuohqid1zJK6ZYVbrz2M98UD0iiL\n", "gO47VjRtMlNir8JhFuMUiBWzWFdCAcM32hIQ9rUSHJ6guwFASg9/yZftC4oig8859/9okDRPGrGM\n", "YyonYSgho798zjyT7oJ+wM7JfG3sY9opicH8w2VzPanbHGQz8eA4gsEZIXsABtPvHes0FREAAAq7\n", "QZokbEN//qeEALlP7GwzyQA1dgZqzoPQkQ4RARiq7U66Xz0Pbb6WjWtJ+HKRucMoyP+pxu5Et1Je\n", "xL79ASgbcbkrhFW2O/JkrFZp+K5EdYbPLMkSuMRvSQwIx9IyuxeSemWzCVFTG5wan/ybmHbl6DZb\n", "2uQJdAqLpcMr5QSUgh+NhUac5cHcZpCaxWH8OSanHosRWOok+VeKeb6Z5FCrTSt/aJK8fhaN2v+u\n", "bemRxokkuaB4l7ein91mYabajtDJO0wqzop4BLoUT1Scfh9sqwKScCZ+ItpclT4X4ayGMw171JAs\n", "KZjw555rr//g4fyZKuRn4pLXJ3LVmT7qzSUt9mhE+hKGcpeFhO5eSr3phfGU0jKuYOwXXcxYC437\n", "Jnwi3VTZmW03/Wan70EMEu2Tf9QOVi8rczIFzxX8SAtfw0+/sP2Fmrg9L6El2HLMyB7DZnECIsh6\n", "A3jIA0iS/WMlSwoCiB9k4/mMPSCI1jiHRJlG813+rwliraEBLOcakfrqOMvhiGNVtQW+0IFAmnrb\n", "8lK+kjw4VkrZ76jxX6Cug+456SbXzOg//OLbeKyOfrABp45yTZsvLc+tPR6U2ab5mA3nBLUuqLO9\n", "Ja9G3yjYjMqiIpBGQmuITDZp1CswZnn7im0JhnrJlJmEFVqOQc36cnQXbyg/k+R0DXAZaKNTrlS7\n", "1LIEnQMkesc8zycFBei/UUdQqRiX03F0s8ghBVoNjr95aRThBc/5EllU35Q7sf0xoIrHjvCh14gH\n", "yrWV4Vhy2c0xME6uMnVI/SoBgQJK+lEMAivr2X8bDrn2W5DmKoHRfWeMqiyFx2M/9AC5siDtB81q\n", "uzffhgfjH7dfqda4Z7drYOMzKL8hskKLY/iizrAfogzISQhW8oGKEswDJvgDMSXsYvRQeCB2rCOU\n", "yPZjz2TdZpLNh/dDvCGqQIguzH4xZr1/CH8glp4HjU0N0PqFy/NUiVZN8/zt2Ql7oz7Q7d8wwDCU\n", "SUfHnHwx8RALadq8109+ZzZdQnYzUVfC33n+iHR2n6IwEWfwGK+cfZs0RqwoDOFa4TUsklBoO7gw\n", "Z0Ouer6imnrbp4yeBL50iFexmqk+cycpD8yD9ZR3+CvgDShWSCgkjlWY9oZukGEzAC82A96AFu4E\n", "rFjsUeHKPoxEt4HyzHKu32glYG995V5a4eQj5qJryvvEfDShU/3dFRFc2ZvJfIzfBD+LVNWeRtT4\n", "Bh4/zJRXNCzaJe5SdSLCYG12Y6eUhretiNRafYe2g02lTJOC6lm7j8jOLnmUDHZIM4DDMeTtJEQG\n", "p0Y0XZ9YW8xWOAxy2OjMfs5FU8ctxZGkE/KC3W/GFXR4ct+IRFILAQr9hZKpJMaWzdc2QE9/0MzQ\n", "q/xjF432pASKzY/GtHO4fNuKMVXn87OoHYyz0WQGSZXE9sH8eaQGjHp3965KwkZI354SPr0fBgAN\n", "e1JP91dbIpiBQFBil1D6Ddik54uLVrzr4Mf0Afrc+anngGq7z2oIuoTa5cfqPdaJQgT2gp9jLBbO\n", "CEt8ITQofl5f8/rGJgPqxNPqO1kYKDzhUbRN6wAsB4IPuFqzY52x0jOIQbiwUn4A/G4iWTJj1yE3\n", "modL8+zfWIKMPQseWY8kfuatrxerRRUivatkuoY08vxVU/7LlImTQF+WEgUYUoHbCqJzEB0S2iOc\n", "o4fYJEIdO4C8M24633TOV0eLoFhNvQ0QMzhlzzaAyPuV9yli2c4uB1J8XQvmMYhHwdFkVeof+/sQ\n", "KSj8Kdmm630+bEPcHmq1EWMv1jlSJsWDTVjhvsR8GfsR/dguSFQgUzefwb7EOVRF0efYBunWhLrX\n", "hzlBD/LiHB9PDSutTVukwQZ5CP8lfc8UueVGFiXi30kLMQyyjAFdA2As+uZKufWNW0kWy3nR35ba\n", "OVWsz+9qdCIQ9aWmxbejpIpcLAJVYj3351O/L1pX6DirT8njYZzrGphOdbjmBVl+fYvGav8TLRug\n", "HIdWwCaZjAVc8yHwToT5LLEB6WKnuSWYbCCYYbox6mdBx4a5cSXcv7ew14bdfxwbsVKChMHDNYLX\n", "mLC8ga3ySb79L4uIyhj35PxS/3e2q8/opsjeBTiFn+LdXLy8+YCvYpU2T+PkyOEbZS6zKHWOlllw\n", "RcvdnI130QTeDmz/bIw0XfUrbfTXHg9b5zcHpF8VY9rVc3pGsBAONCNaDVzEKk1SlErqlEX58NUf\n", "2YgnQEoWAFQI68qpwh8f3A1vcm/GjrW6WVrjl3CzvjhDFn5QO80k6JF1SOgMJdAixyxWKRhJ6Acv\n", "N0vYvfac++Tn3IzS2eVgpByIbapJJnrCmZN1caBxdutx0QYCjhnGjivWEghz9bpXDmTSbe9Pbmbx\n", "C4rjTOs0pJ+jtLvlbqzfBhpdv2zRV09DI1NbIdq8YE80FtOwVlYTQRFbcW5KRqCFc2o4fux/CIWc\n", "5sdEiIYQA9od8RfHyEBQbcw/s9Jj9coSZ3eLLErWOXG70Viwnq2VY6zANUWN2vqbTALLGOoSlJUI\n", "47SWDLoXDY7oA3RQWOyA13DH+LZEmTSa2ixoqhaFx/BC2UubCcKdnxoK8iQZlygFKqF+6MlXEWOX\n", "5LldS+sWjMJ03SsRazupK18hwyUgiLOfVa7z4mQx4XPxCysmb2kU72tB2A4DUHS2i/tq6skhH0FS\n", "L14LOR1V1Ho0d5Q0RnwaR0X932GProKGPlNlXHTMR2cYKHKElLnN82kpJnVAhR0v3Fi+0oHL3E3h\n", "XeQmmI1GLJ6x7mXI/ArhmHbLuBr/hxlcSzN5K40WSajVOwxLEDRNRP0T4haCzv/GoF2PQzQTTSqv\n", "Aoyhp75xoSsa8JO6Izq8dWB4N63moAiNnFG6w2q1g5vpXkbYX2lVx/r5SZzVb8EPDXlfur8+UJSH\n", "pg69jEVi9qOTByOs2oTqX1FTGNruNEoWUlAc1i7rnxuTLlJRo3zz1B5nhNlB8kCk2/PtT99fUwIf\n", "7ICNp2ItGqAxCpWUXnbmxhUhRNZMX70XEk916jdjkVyBZbPw1c8yZ0l8vIvPWwtOusqjbOv6kB2A\n", "vbOObSG9IdSshlN8Gg+FF2o2MZF7ChDL5wCKsd4o6yyvA9IptsxXPnEf9YE6COuMzDFtgn8WnyFr\n", "l32EGSW0XBFyVllwJ3M7K+ab0STCaVpzMx8gDK8SQ87nUOYNTojhTB3ruGrJftDFlx9hoYKWLWId\n", "2pNEyxTNemWDVvq5vCBW+aSpdO4OPRlrQAgsBJeNb55Jk0e5VrDquavEo3awuhYcXpGCmGbAAhHT\n", "oxXJqZkph5YyclN9jbX9xPpw0rlHOrD6HOO9tulvQbnfeySjamc0Yra5LgkGEWbpG47ezK3C56aE\n", "1BSCsmhz3ci26BIU17ChS316t3cA9FVENKwxxikEHzCAD9YZXeU+XT6nUKNd+DpXNE9wt/H5CYZ1\n", "mlVIizrG8p4J9v2TCHm2SkJjzkVWD0vwYrlZ1uuHvHMz+vuW6PkYxowFL5B87TtUMM5BAgDDm7PW\n", "VZW84WoUhM1ZxAKM6SQY08NsA7FjhFGCyYoeyG7/EznSR9l3VhY4MAPu667wk6Oc0EJiBoSQHetz\n", "N+BhcV3w4r8hh9MxPVDawOggh7x/AXEfKObfq4K2AzuxNLJrpnaGiUeiL546eJAlsa9xgVOFX29u\n", "Y1yF6TpFzV6+g20AAAGgQZ5CeIV/AJb5Fr8KqxHNSiiqa5AC3OJDu1Hs0dAJTgH40LGNGtkXnWMf\n", "qvj14sX861GnSXzmKsdvGOV1qGFfqX/KD07GQWkVX227VbG+kOed9FYlUS6zntIwjWRMlW2gL+sQ\n", "lzhCl4JUcpoW2cYuYbIaRaan9tFdAwwK9xDFSfqeMzyP/Qw7rTC+3H3lRMbBlSXR8vOsWVmS5RLt\n", "pOV1/VIxlaN3cLxJIQevBtVYk0Zd+Y8xyyJ/Z9UO+jFG2pS/85JN45g8aRKDCGDvle4eLUsIhW3I\n", "Rq1x2eU1BJU6NynhqTZ0d4qgoV+q9r6Fvn73Ecas4CZUwCSf0PWnWlaywyKWjhhYdom5hvdW16h6\n", "/O1PVPWANFuq8ATei+xsoJsSmVqfIWbMzLBe3ve4sGf7xxl2JUNMMYh43UfVxGn0TUQlLAdVDQDR\n", "HxjnztDz4Sl3Dpjr5mcC2fAA/eIXIORxNtJPEGTu452OkMD3to/oj08bs6ySFbNWSB/l8XxJKjyD\n", "NWB7XdnVAg75x89y0xE3zoG2Bf9a8yMsNPvNNpmgyoEAAACuAZ5hdEJ/ALfumu6CNkHS1FQHBVPt\n", "3cWGdBKOuO9cIChXxscbKhCKAEJ+YfukLf51NQ/tcSRmSQIdXcFiPL4p+HpjVBizQ6sapIVn1GSD\n", "L4dwQkQ7GhdFfMQ69OFaHm8AEIviqcM2ff6XVFJU8yP8jHyYUXijifBAzuY2v7tc3FXjAArhOHpA\n", "FwhaAhzEv/eLl+1NBpDVPClcDUkeLiF5bEIUPZSXRcHt5nobQFmPAAAAsgGeY2pCfwDEPHfLU5Op\n", "ZRZwAf337mUDkuQJw6l93VaRJpB8REQzaqeGFbSvazn1vrBrA+loETSBXX3GnzUfWs0SBfDaU28D\n", "/I4Rt6xTEWl05EwW/bjpbc8zaT94JtiJ4TF70cnavmVSVLsWvqCodoxIbNJuaZ0ACY8Rlfa5gtSF\n", "28k7a2OdNUrQIzUfIP1zIISuK3uYXg75rJwBbVKel+HaMEaVhbwdAjvlmBzT/87KU7EAAAk3QZpo\n", "SahBaJlMCG///qeEAL5EqcygARlchH1UC0wZ7NdGkgbpvvIetJhrDHGzv4qZgyV5uj4OQJ8+Ymsy\n", "qndRQz1vBRGzRyj+ZsfkWp84e/H+k7gmlZiyRrs6UIvq24IcX+xd4QTU3Mj2bKLUEacFOp9DsHOw\n", "XZ7I6WRUKjBGNWMuquNKEXUwQHCPODufHmDO5QIwTHegktQG5oYdhZdvv3XRSgoAE9iMnGWS2GLj\n", "RZZnaUDgW8SEsj/13Qs/Wob/1psDbzzQ5koXW8YKs1HgCAgLFO20OaKEmovo8KcMSiE9gAq31zWE\n", "uVIWgRELaK1oKrRE4A3GnipQLPsjuzofFksS2rp2y6MsYagOnkgRvhl2ddzDIj/6DJRk+B+BVfqB\n", "+TtOSogyz8z2sNFQ6nuq0mAAjajYCLQzMNULxZHXUno0gZpjRCwor9hraj8IwHxl1m2FQspQ3+Bq\n", "/Vben1nL2nhpVrIADYBV/9JbOMoYRRrw0/QfXce8O65MPlyidfQwzQ+XUPTiuff0hhosVeU64Mrl\n", "84Y5xlRMml/jIoGl0Vo3rll3K+vNM9z+juOEh9eTPdMctahm3PkRiAij58dZ9Z7nc8Fg8UgX3f8G\n", "qaeaq1QrUvFkCZBrXz3EG6iVc/p8D05qRlMFrq7Iukq1ZcbLjasQCqalk7WBX5mc8Vt5VP03zMhB\n", "imS7N3W0kwzhho8RNuSBURVawXWeTh1q0+ZWyqmv0rn1nCxbhxbmFSRKkr2d0RDkDVKwAIC/RWBu\n", "7KE73T3o4fX1jCa80mVCBb7rVhhXpbLmOPLd0Xl7HrjCFQVSoizKPaYWPHrNuY/k/GBZGf+VRrp4\n", "v92wYggGbFPiXqGFhNgDU1Q23uD13EIoT/u6od3oHglmJmwlj4HLET7i0DhasHm6CUD+WVhkE85s\n", "0slFyKCFq4k0LVqkDBxGLoOyOXxrrZolQYCDhIkadd+5C/9/jVGjCd2ZIih3hffN0LH4ygCmKXsC\n", "fNSNMhUY73s3o77SBr0iMmk/yjR4XydX6aFYoxgCVZ+IwSXaIPHy70ExwBm+HyIC2FPHEn1E/oAO\n", "6n/6HyUCYfaLB3LQ9jO4E6V8V9XQsqRNKaQDbba/gywWtjwBK2okdbhnMoey+ydQUiT/IDKUor2w\n", "JZkqB/Gt8tKO80O2q8/4ubN3TR90RkTFvVijnxp3PQydikQ5HxGiAJjn2ndzzUCilhP5heO2JMPM\n", "i/s9pDPy3WrU1VPHz0OmHVuCodVpG5rP061PJnfj1/QS+8azK+HMsLZ/24DjcSdYWVAYMQV7F3c5\n", "0F37qxuzkKjJEHpgyk0XDWl9piMc2+m67NRGGTR4XJMJs7nlWuWRsJiA0HZvqDYNKsmdpkCcSsDv\n", "OWgDUn2vTnJQdwczjdMYfsDonVBe/lcQBTA89xQr+BE4SfGUAwvQmJdYhOML/Xli7kdJukm9encc\n", "B/H10fyMYCSkn8zQwu0T0KRMKvpKDcYqfIBkQN9McwoVN0dODUum8EIFKpcHHH2fym4j1Ke+BAHV\n", "yS3eimS0lK0oqI7mqeStwcg29dCJsaL9wpvM/YQj9ZiRZ4Swy7s7SvpzUAEAt313aNCsUNooe/TT\n", "2SuIt8HmTZYWuqlbxysHxvKLyUo3Jgd6JFXrHJcJ05WyZRXDHEAaNLWr1l1xrkAud4tUxTsjQLBx\n", "hbGpM7uch524eXOVkK0fkndd11CnvyU7sMxHFcSyem2zYqBLcV2ouPlCWhCbciLm/9xFkE92t5aB\n", "PeO5RIIDX/uOvpDwdMtpaMMC0z9j6E/527TWgly5ZXlT4CmkxPHx0jsIZfGuxZ3gPvaoLCDDdHOk\n", "odbUPxgf9UJOM0H16gVGOicW5aKaqir/uoshDOxZnuZEoG5z8HvtG/TOJkNdu9Oa6eR/iyPuHq+5\n", "zN/crEW+YQgIWA8d4CA7ea+WYXgey6J7fD+XY3d4Wvuvw1zemdzAG6RKuN1kcymVmukwDy7imF1/\n", "y84YI78zcCSNzZDTlNwqzBk06SBMpTeUAO8ayLR9B+8o2yOX09DrWNmA6FoFsSLEsGlcjZO1XTiN\n", "JurcFFrBWEt2CC5m7dVP5NemMLgYOx29rO/8LeZ7E+HKVFRH2oCM+hizuWR4FrA77C6fsOIhgQCW\n", "rfVj+go361iH8CfwS9GabRYRS4bgJD6L78vQUR7cnLGe93JGvIfT0LScR72RVPzBxPsQS/urenfD\n", "yRWBEi2C2mI3s+lRvL7EoKk45drg8k3tyKWf54let+cjToteWRTKkI/PT3tWGIe9r9zEfwfMk316\n", "oQmAF+emjfCyiWAxlNnGHTo0eiyCu/1QqPnsoCadoGuPukMUCRJ2tKLiy+cMPyVfUJR2CQx0Hgo9\n", "B66+GpUfNfq3aPdRf4WL5yl4Ao9ex0SjNBec3aiW373mzCONoisZQk9sOfs0Sv/E75tuHQcoyiKh\n", "jZJW7B6RrRhejc+D9MB1gci4CvID/0TqABoY1b4onX3EZHpuD0t0oupfS2iP9m8eiVadbHWZyMZF\n", "kV94C0m3pJE3f5AtyBn1E7uO73mHd3SJUYs+63BNq33fom9DBsxjRd9KGVBZMddHAUkndbG6/FjE\n", "2w9oVUGyICP2RP5771byLR9r4QHvPq3VjZ9KTvJPMiH964OLqTo5LkykXH8eI+Gu/R7YqoCse9oO\n", "WvR6Uz7rtHIixmrEHVSty3YyUc7tI7jbyo3aZ9dYgWuh5ufpkhIBt9FKQ8Vca9tZwfU/+IAlZIdy\n", "eRnVzmqdG2yXLobEQ0TxilCvtKImOSA9EoD1qiHNqTYIo8GjWOo8naRVWUhecF40aNNlQs4mHjmM\n", "PkRhLwhqXLqsR4qXbiRCzC9oxlFIYwijGQ9g/AmrB/9gKhmZzO+NGh7YcUZGzIrbMGWfUo7wZl8N\n", "BYRtzqdh+FtBAU7tODUED8Hc3uubj3rfyt3x8YeyRt/nuzZbc95T+VWsfc83fD+Mvy/FxMdxMA0P\n", "shUebazO4m3cH988Ebqv7GqyGlm6XVNENUpT27P6N9Jgt1Q35Qk+U4t7GgI3awqY/5BieA5ImgOB\n", "avgyvjMNCCb3BhDqG/mDtXebCceQ3UP3Teb2Ut8dRnXOYsEXWkSIwma5fWWeX0dxdC72d1G75Jro\n", "TtWshFQCiUsEwO5Ho5rIniYayQAAAbZBnoZFESwr/wCaf4vmIAWyfvyPIRIU9FdW9uvnP6VTpddJ\n", "p7CxAW/y2w0r5uQLkndwXitK1xQw4Rdf12WdaBkYd0f5K3elbx+xH28+0I8Qx9SEm7DeW0G6oW+5\n", "cTRQaauCHCqSr62uZcN3hE+v3ZVYCXIHkbRjFCyoQh+HaCS8yyfq3BDHpy6I7hp6XUTiro1xlzuU\n", "6lM6KoJEGbagF+x2xkjZUkxZDse3nayh76hWxMWsWLb1d9KT6OucbIW60WGok9D9+G/G0ERtjCIf\n", "GQxmkhW70tHXkXxTX0CLoUF1nR5G5k/W6szImC35axl4Lbg6On+YW+jMa+Yb/sAGoSEYk2OLo7+b\n", "Twt8jjF6goYQbXNYlfOTqKwNRRBVjhv7taB4gXqZCVNrUWCi9/2yeIJoTevnNoM3v66qeqiemypG\n", "5j2GSWPdX/1sX2Fx3fqei2FD00eqGLkx4gc2n64gLwJD4GIlRZRDkLZ//jAjejCO+sQfx4cR+Yi6\n", "CA8JLmhtZN5e2hDEZ5+TLcLwM1r6e0z6K2NCN9WThHxPLvMLYuQSfkYAzL3pdyzvUm4brYvuOa7n\n", "xTMl/aEAAACfAZ6ldEJ/AMj5Pn4IJS4T3UkEsTgBCZfdru9hdj4CneSeasriWUMssZZlr8W78+sC\n", "cApsu5afSU6EiXBwDhbBc8sp7L0TPF/OkWV4cZEtEcfWoA1RGmFxuW18K4WhfmKYINUg06xZVlg8\n", "NHfjvZy3m2VrPIr3FMrlxQdzLbtw6zaW/J0gd4F98PNdkoOwv9hflcNXJTDNUvMtygij8UXBAAAA\n", "pAGep2pCfwDJPASsAmd7DzOtXlX2rcyz5JZ9GwbtoAIQ/gTKjHq/WcBk0G14Sn5pkRj4CR8QrZFv\n", "Uky3iCIJ7jLUuYDao8SXF9PEB97EhKp2L20HYbcFvqEmHRCCFuUeAzvOF1xiWWs/leZQa/5yans0\n", "C/jUEZ4Yb+Jx2cJP5KwUAePq2TQzgag1QdsKnx9xIlTywPUfku7ZvzhZphsz3cKzXoPWAAAIjEGa\n", "rEmoQWyZTAhv//6nhAC+LOU/gCPSrpd8PxR3gr9uSObAuU/CAShuWR0hWd8kJAK4GZlppOJnc+Nh\n", "6x6QqOgqkjHr2DKxJKXznxBQ1uw31FdsIVpH1jUURt07+p9sEOQlzRRwzFQUBfS6XrvrGbudkeiu\n", "9llMJW3xDmNK+02M+WAcG/21s4y9knQovtiCdQmfxzubidiGcTIs5oLJyq1kRjB7DomW3xj62L/e\n", "casXYgoQAKeFD3Dw+fIrkRZR1kQrrOe35uIJQnW/+ayi6dub0jccG00KOMnifdXHtuALxbHIxOBv\n", "K4xKwEbm/fKbEznfRTFTDShdAXjuqrSfi4XrPtifW7Vmb97QFCe0Q3iZCc3CUXvOKUyxh2oPQpev\n", "MRIKheaRgFSb4De9hh3G0TJ/XF8X+ugkfk1eW9URkD3wsWZVbiyM64hO8gcAxT5vOEt2gsJ/FopS\n", "TmJZpxVFvwEvUVK2hgphU4iuO4VFY1Wo3qn/IULSPuH9Mt5GsNItPiOyRuBojFgJ8CHdoJXC6W54\n", "UMj+mLAK6Kp375yGJDhso1b8Nm0zunkNS+kzlmsKL6Bv6MI91JB7zXG7oO6RqiQx8UmmqZWZFg9D\n", "QjJwGjbtavTEroXmtqgclvaQ4+20kfnSNLxkOuujdNIZ06idM9h+wvd/qX/ouvV7I4YUOJUvwspM\n", "ZS3VuRCxrE5PukJvHXqwdMO4kcH236qedO3kTW7dS8HrQ0X89mMJnMS5QtmuWSsKr266aHi+A3pk\n", "0ZCeBL0kbphmA0rSBhhs+Fm3YGM5berL1IjVvMOkVHn/vGYpYUG0z3DbbaAAM3NKROctylOq+4uJ\n", "keBZahLsZqnFaEilzw9rgRW0eyO63llmMk9m2cap1ENC2nxZtZKgI0wfDitS8t6lSddA1zzZ5W4/\n", "wp2Lfac0V+ry3MQzGh/wMDmzG01TR6jjIsirwi2PVuxzw9M1wIkpH8u3IlHol29mNt6dHBMgAM6A\n", "yS5ZiAupFxlZWjR9mtoyuMwlRGqZuCi9wI1+h+Iyw0uZZ5UcOmQBeAB7hIObuIgQDMIoA0sd44Ik\n", "6UTnmUVIYBefQhlY45kdqxb+XTm06gbKLD0ltjPmSiCRhUwDpxP2fuxCBs6nS6DQOlyTjcyxe5FA\n", "PAgwamirJHK5/h0N1Df9w8HyL6ixL124G3FamYgqiWSyUxK0FrluuOScx1RAmQauEdc1tlAJzc0L\n", "1tYok4BNF0J4JjK8arD7YoX/cNAJvZe+TK3W4bLmOLvYgQF2+H7Q7S6nLihqkE01Xy5zsyi35l5m\n", "cGpzwmdLuoJMP3bKQx5Xle0e3rWw452GY4C/pXl8nqt5qd6bf1AnCDt0TQDtuVF0JMfKVRI4HF1x\n", "P2uZle7M+ixdGkixtUzhRVs7APnRTXy5CTG53JBo0bhdV0BPkZD22jHJcaCxII0Dketyk4wB93v3\n", "FF0IPfcgI63ARW9ZWt0I+31g+Wn8q/XPeo9wQvj3ko2jxRlIbfo2MMyXOEIDRaUSNRqZZZr6WR3m\n", "qFOQMnFFtr58eTO6ghkAdoMNGyUBCuvtitMxDRANLl0bGGtrupoji2aMFZXJJKk20MUdfR2QnvXl\n", "s+RC4UyT+PnGsm/0Bd+ecjKVk3FOFBIhiCU2CHu0dN4QB7dm6f+cZo3d/rZrDeRXPIZwSm/wOt5M\n", "on8C89zJ/uHH8AO79MIaPOY8Tv7DKz0FIt7UbFNi2GBDwxtij2fWiYGaOoM2y/pO4qtRazyK5dn6\n", "m+3z8yhUSmhz7jOlwRKk/CsxzVRngVvyX0T4NiUO05PesPnzjs4cDFoAjkVZkfE0MqaGadCbPMih\n", "AzOPVNNAtqVYRrO3Tz5Egwm/OkNrs/Qm8wfgrkNOpWpki/5rMQTrlgZHrejht1lIBCxBqZikDU8/\n", "XTVT2Sr6guOyNZfUHXV/OZrvKdI6lBlZVmjeYJOC0Blfjqcw70ECKeHatCI87ekL66gYiKNAczGd\n", "svHZuM/bWpiD9vKfUH6gr3YhWCKLR4yt/CaEbmy9IxS98FdSV3uX7kLDd/lCSZRPPNJbN5nowFVz\n", "KyGO93feVhsxVsG6zgUBV78j5WalEBN+sJUoQuL4BzzfCAGmCazePyL5IS80MI/SOMr/qmh+5ApW\n", "/PQqRw7lgvM9JYI7ScPSWGqJ8n0BLeVVWqq5mDNuJxYw1YouEwCKqlLNEHmfW41Q9N1AbA2ilrSU\n", "XyJ4mpwMIHmJWn49Ut/b/GmUQrQRP2SdNppIhtf/XkOz5kAcCd+8F6rp2H0IaN7qum1En6CDto5T\n", "zdrZstG+fQIUZrClBaUrW1Fgt3M5nzmSMDwYxJPT2YQJG3v7P5RmNyIpz7P4pP1jlCdaLAD7rVww\n", "lvp0xL0P2CEkFcRrZocyvw5SBnaBNRVVAu53ccsIaKiPuqGMrfQCnQcDvgE0tBgggUKKjFsgnGr7\n", "eetTTsHO2w9uMux44Pzp84lkatKuEcZ5YR/AumtZKcvFuAWnDPjHgbYV6Z25hZljcokQZ3EXoQC7\n", "DgIyIM02hILgPo5bUdBuIlAL+wQh8tgXll8kS1OInemTN05WzGg2oyspfnWTbwK9stU0YHPkAGNn\n", "OqPXAtabrY6uZY3IUzSonxlQbdbIn9n1jGzpIyJJtnDm+hsYvBvC3P9VcEpaxoGtN56qt7gq5i83\n", "wjZR15JZzX6KHM6opAEUnv+DxkBqE58QoXjBZaFhogQHXnTK7hkXNJM9Y4jn+eTqkjk6nwhw2Lx6\n", "n/ILLQvr9/5wiFANR4tEPOzblEgRc7VW6awefcdwD94i69LwWTlXYNv2Gn2qsboeBB+qmpQlm1jO\n", "zGTwgoijR3uU4QXp+UewmZ49DjUFTyjpAn634YYpMRdawU+OrqRYgmc2XsilzNVWL7q73+XfQCBF\n", "6guCi+p9L6dPv56Vd1bjnH/498AAAAFfQZ7KRRUsK/8AluwHb2ypQAThdTQn+/USKRuHlaUJo6aQ\n", "rznwvKzCf4SU/D2CvswpMjAvnBSVK9TKxUV2K80ws4GVexwDiCG/v3+IctHVR2sqK5EqRoevXyWi\n", "vXwDfhb9i7cnEqIeYHo+I5yeANJOKb9uh2NxIT43me59XJCfNCPFX4ghI6StbOYvf5Dh+OHwRjGe\n", "WmtkVOZbUlwX630U81b0IMJfr1fBxL+1clu2kpq1JtIyWySfHydCcgjzmxpu9ZCIVO6pDtsOlSyl\n", "OOD7PXNWdmTe7x6+njOqjIG6ngYZjA1rY1W5kJRs5Fu19uP7WkUiLy6Pxla5UT0CXy2QOUX08C+B\n", "zOSHOAc/jf2vIJE1vmC2sdcDQA7bJzyfmFW9eLOXJfzPNASbOaeVw/W2Kvcm8CnJIq0vcF+x8xqQ\n", "vRiDSd/ZWKFX1SiaALBGiNm+aibjda4eTCZtJtZHzWfBAAAAkgGe6XRCfwDJTV6IvWowAg22oTHC\n", "wWQcvB9WoZuOUtH2s0NOB7tqGEFomFKXxSiWz6vHZACKE1MDjajrVJ3f3ebZOfIV6aUUs3Rmd7xF\n", "Fow6PiZKAqWevE5bsoWTPGYv2iKi5PR9KS8L/aYx7gsA/WmCa999tkDbNMP9dQ22pFJ+fBDbzTB4\n", "NvQNlcZKjeh0IwuAAAAAiAGe62pCfwDJO+Qv5hLOAwWACGitlj2eE+zocqzfDvsUObZJdReRghbn\n", "/F1bOzAbME4VDS2pYr5WDXelhfIj+HQFNTBXXZtLwU/Nz2WaccgbVwTmwnrSHakViRhSIRs7sOsB\n", "O6AHFZAh382ZeazgdMbUuMR738Q8NDCBwonzWhAg2tVo7Ns4PSIAAAmxQZrwSahBbJlMCG///qeE\n", "AL4IaDRvzgABEAiNwPL7HI2nvzJ5BMOkXLydX9SBQTJWDDz/oy0Kz3tKX9LLe8ifXqr1ahj2m+pa\n", "yXTzjt2TmAyCLCt5QQwiNaqYrJCoAXs4qfJE4/inEbqu2KEssezTgKw+Ny+AcCfCCip1/vJuNDiU\n", "v+DkWMMbYIkll33zCkAxF5qSBnojX2h1yBK7jNpw//QHJeCZ+nnqHeqpOZZdn2cNNuxxbG4ejvhN\n", "2rIXiiq8fiHev4I7MbANlRaCpDDbmSkrxvsBU7/wLeOPBlyxArmCrMILCVMpY5Iz7OzzQnwKcBWx\n", "re2X5KXxZAzwFU3h8Y+8RoF5zPh5NpHRy6qwf0f3bNAiMlMWqvHdCZjwYlkd0y4PyO5eHP4rCkOF\n", "gfx3n3wVAwcuwEcza0LLAj3d3e/eXeJVtlWZ4GkMgUdAZyRbVXOplBXNT7UePpQYs7Bevdz2LsiY\n", "BheuAByG8BgJtL2/LiLPBXlPpbn9MrXmTEqdSuHgJeM/Uzmku7lybIsc+JAiIt/Xr5zVANB8ULfb\n", "61jQW9ckS3Vxcgj7llvMcky5sd69BqgcLr4HOgyoh2IiKU6CoLeggS8blOIJEIv4Oiesb1LpjAPs\n", "K0IVCpCQ+oG8RPrAZ5LSAr9cReifMYTbbmZDt45PkqmDeALPLdoQAq/iRRQk2AA9lxli8Pb+Q9lo\n", "FRswC9mB1J7wkc+rN7cPxeAo5QNKsRRl37ZRrfCaeb+N0UUbu/rCi7CxabXYmYPF1vYeh6UspwMM\n", "4h5zQGLw8iJ/5iOQGwupvG3W93JnSHj0lglE3G9NHmFUj5U9wKB1Lwf4v2vdv/7S943a0YxTGrni\n", "P5HZFcB2RBcfjQGnXhb84pnybinSwzHQGjC8yivSRrazBoq77S1leT4JLk1NbwAW9v0ReO8sZVlk\n", "hDwa932fTkNicEFoamUOE8Af6+QIWcUVbHItCFPmlpsf8I5gHLQ3A6W1Af5ilyN46G5WBKGDP3hB\n", "BYb0e1XZzEHaP60R9DwHgKnl8aTtE2ux9v9B/b4bLT1p5+OkZ+KCejVn7i5CsD8l59qGKOjyFSpb\n", "aXrvOZW6/iKO4XjmMittpTSMTfTHsH3N4zHcq+wcNJWG5UF5RGw2jJYaKU0cWR7ZqmFpWK3WGRtd\n", "PofrphK2ImOiRwvf2gJPc/3+4EgXZQ0fdM1x3kFnfozS4HEnaHu4d3TRhPOkl7tVzNE0Kyr9uznZ\n", "e0M8zoY/MUIVDV1QD2F/PhV+N0St6kRdWBR+ynK/IESjrDMLBa5Ig6R6ZvFM7A8vOtxeSaN/TbBT\n", "+GALFFrEaCaeVqjewLHB64NiVynac35kn50Jy/JQ6B9dZ2itbg3QzWnoCFXXeQTwUUGImpxJEj2C\n", "9HE2ofEhXKLCjNawtggvzJiGU7JJlnesy862L+kNLDvX8rC2M6PzzF0YUbJH+7XjV7RQTNIw8/Se\n", "nw/w12uA1ygRO3waB2RlrrSukIJqwHpo0ne/eihrwaK7kZwXseKtn4a+A3Q8WYlBW94JDbyh5z3u\n", "1HQWwHah7h2hK37cOZZmbUwrYay2OR1KPY74kD97TdbvC1o99FRKYPe6OKrtA+T1OipBquX+/t1g\n", "BZddmBqdXEHqzwBtMYKgJZGTDMSgwba7Oao+/4Br5rAjZqYyjWq2lqb6c6TXSQrqLREpPWr+a6rh\n", "MlGe6cfDTUifIgMSrHNpj8qbbU4MTVJ87STBjl3XBEGZSUx2PcxAo7QAPyr0DGExtENUh6j180Mp\n", "nlsDUOU+uuAa2I3wwE2yp0pb1gX6ZU3MxAyDj7AO7f2t0PGqmK7KAm474sKdj7mQm2lUuu1lXBUg\n", "RrtLe5zCcETEgHi2090l7zKPl8k6nBGMv4rIQNLclwHgoXpuwxdHpCeb7sv20ife9kTksQng1MAY\n", "2bItqDY98BZRRPF/MIp4OuBAAd2tnrEULtrdgMHEOmm7F+Rv0XGxFzG0aCUIQ6zrHVVEGe7vlWMo\n", "cRNEagtvj3Dsf5a36P1/qnJuvV/eFsfqE6JylHrmeap79yLI247Z9qKbroIJBibhqJTuF60bf5SH\n", "QzwIzqbTgKAidTjI3dgcolnhwTsDOkayeO5/nuZ6tGzXcRpdW+Hvx8dM18rSqdCW26Iuu7t9rD7S\n", "O698EjVecRr42Xrggr49eC3MbU1Vk6SIjPdv8CMqNeXLLogL36IS6L+CEiS6pllI0Q5NUD92lQbj\n", "VwqyGqPVh8arrczr/o4Cv/H5DZypqVnzK00GvGavTL62jrSRdmJZVz/vgwZY3iK99wFmhMyg5yYz\n", "qYhUxc1FAKDta/jhQuIF1ULh3GBw+//I46DJCFsPcmbKWrGiea0t23y0ku8JPqoHuM74ldo9iVLI\n", "Tt+LpYXVBdudax5BKOaCmvFciGHAUAiKfFc7O14OgbODru6jZczxSJSWHUFDpHEh3XCiE7olRIvb\n", "AoSLWbNKiJ4h0AprjeCeb8GsClpGpqgVpHGQ/ZIgQnLP8DQEKnY+ilTCqJm8oClj2i81KrXnCueE\n", "tmpnTloJkIdeOb4hjBXm6mv3m+2+xOBvSoj6XEU5aF5kV0hGSj3RFUgzQTjhoZ2L/M+alK2Zmtnw\n", "i9/Z7OD6rSweQs48dliMyWT/cW7iohbJnVLb5yiiGi+7vQO3Flg+V2T2a9WqScH6YSJUHxDqylC/\n", "bYex/vhjTZtSZROa9ottGjNYEoUv9UWtMme70nGUvLSylUtEuYuaZS5gfW+RG+x+SZSm8lsESi/9\n", "tntlyGIceGNRueA+X+8BxpAcjas0QWuJZAAaHyU7LVu3KnFD7gljYkCrXqeqW2LLFLG6wfqw85V4\n", "+dsCqgqD4VgYMtSrxir44UWjggZagDFk9g0NgpTFiDuSlio0HuQFZP5DjjHJlJ1ka99DoN4gNdTu\n", "cDd2Yjzvihbd6xnFehgVRN1QHKXCq0+6ISwbUYBvBBGInQ4Gh3r9yj8TM0kdweDp3zZNewH1PpN/\n", "9fwhG2Ocqxu+9i2Z9WHlhl6nfGVbUGc5DjipTBLhoxZfqd7wLTEviDQvzY6/8BG4iA9FTripwnhx\n", "RM76GLR5bzmPlYIsUft5X5NKdmeh7u2VBkRT/Dpn1hb34MyMyw6C581bfJbtsQ5+dEPU7cKvefO8\n", "h8VE4ndxyAJt+zHEH8VU67jh6ogOZTyUk6ypLPdv46OqPO6vmIJ5H0F64dZ071JtD/KFMWD+UG/X\n", "TfcXNeyY3JpNFmK3ySx9l5dNZ2ba6ZohHXgz16N52T3Gp6oKvnrfnu6h8q1Ucvqopx5c6akP+1i4\n", "mJSojKNMvt+1Kwyk8rKBAAABz0GfDkUVLCv/AJp7UUXqxkeM5FfWwt8aHSCDSAE0bV+vFzXDZT+w\n", "vvFhWgXJIv3MjdMkWcwN/cMgckghCsRdRcLNcXSPV60dZ+UDQlHlKR5R6aQ11OEBcHI/h66NpDiI\n", "h2ho0d5V9KgRAO7zRa1TWYm1JL286hTHeSW7o+h1UwPKJUgwIahe6RIWw1IBHlIOU6PbcJeHrg/T\n", "l27uL746yTM9PKQohhlUaFGDeacks6wCXSO0dK8fai5eAGwq4gEeiONqUxU/7CfJOAEVYtvOsx61\n", "5GhNKGswT6e47GTn2Qq8OhCPJz4NN0Km2rzXlIbiB4foA13n4H2ejDJ5s2VNMlM3JysWThoLNyW7\n", "d7AP2vR/CnDjnsHZq5/aoHmXMKrhddpDX//1QXLr50zlXAiyN7AJaQxE/k+PReyvI77yu+mI7Jr5\n", "LvW6r2ZPeX6bvxLzzj7mo22Zgzf7uRlJeXtZ/d9yE5rzr7nJ1cV4+un1TUIKksunkh4wE6LYaxDi\n", "yA86Vk7eZjK49F1csqgj14bM0z8v1ANSLhGWn7V7ADOxfmPBfcDpvNvrkfPGMB6Y0LLLcAUP5tNH\n", "bQ5pEG6KfX8DF8v1ProUYXBAXHCz9TBXSBkAAAClAZ8tdEJ/AMlNXEgj4nrV3PxPLm6Nrfgx4uR1\n", "Ylikl6ACFcyYb1xs07cD38Q6GPVYx+04j/4ge4W03sgaR/kcJdeV3RIq0Qch7Q1Ll/NufkXuUiTU\n", "xpaAzQbJ/vGQiGZdmVkAGC3xhTfxGh3VGe88/HAgZM6rdyWGjrf2l6gM4v3MFdmnHsAfqnmnn/PS\n", "wzqGCZiaWWGIyLm4rgGEgZyOLoryZkHTAAAAsgGfL2pCfwBnHnD+lnJ+WCPgBCk9s+Q5sytA72FD\n", "r7EQg5Qx+0atMjKZrfQ87pJCdExZ5ABbq6nIk03C3o0RPWatxZK/dPiVgJqGfE6p/yOKjZYT/U1x\n", "v5lFx64DAnn2yPBPZvRfZYEYOkPaHBK+ZvlM+RPy2kLpArAaTZqLqcNolq+PgacrPOqy5jCLK/Fj\n", "KXx13RbWzK2echdIyRdt4aJWnGz8BuIbPrg89S6QmXBwAzIAAAndQZs0SahBbJlMCG///qeEAL4r\n", "w4ZSAHA58sVUZMpWAvX/l/QV6YZP/YPaMy/IMs/0kVaACIIrUNIA/EgY5o0QTcY50J+sS1T0Ke9L\n", "MziuKpXS0KpBK4RTNownMalgrEjID3cOsGGH6p5ak2QssrwqT/RJuN8ViIM/VqgzcYYHCMbBzAyv\n", "D7gJ4NuAH7rghxoKb2N2PFAIGjct3jvZPUhO4TX8HVGs3eUq6a9Xygocy6MBskE6kx5eD7pdlGSF\n", "uE2bcOygoxBeSeV8ebUqcPHnLtALI74DoMLsrYY2QkLhakIPuk4P1+AnMw6rxdEAm+pCC48A5szb\n", "IuBbkBBxMpmJWf97q6TRt4NeIK/Q4TIUua/1ew36cXkXVR9iyNxBAI1/CSUAADTampUez6NKA5Ds\n", "14oWUHOTvyzPQCyFcbf2Q1iYVvwbvvEnLd+vz1U5VPJ7z6/o+P0WkU1X4lKkMuLp8LiWnK2zolgk\n", "S3qSxo6fImRWehZPqF9Ay93YLH1snFS2pOXDqqN4EdN47j46NSrIGPsb87J/Lm7JmQMfxzA1++3y\n", "GKPsa6ifzA/ZyvLD+dFbpx927XaOZw3XYcpj/sXicVf5+qAOrBkcj1Dn0hX49HnQFkBlMvBgsD11\n", "XbWIRDcW3AU0PnFo5wzAfXbTpOaFwSwRaGTVrslnChC3Fhaem/W2vSaOJUDtMAv//7m4k1Mg8SeR\n", "FrYf91YOSXG8Oy4VkxSF8WyZwtL5s/gnQ/qYp21Kz1gEDqPI7RO83qFQBrCcFpjJTgyW7mx1mIVF\n", "dOmAFEKroOSjCaiNlOizClIN81mprh3UCgk4Ee5ZGTCvsXNLDgL15mqSwxfEAIbp2lg4M/ewe+Hz\n", "eU1KCnwDvqn+ZOUGdVIEyr2OruANWUZLwSjlcFTQvqKyvjvbDsugYfE6BrIg4apEdH5t3PcJXazz\n", "WNnjCeQ8uKS/zFxCglNeZlJFvPTkXDN1WnikXVN8hsLYML7Tl5STh6lAAAao9J/997leL/poGH3u\n", "OD+f0tc8CDh5GKfZKONZrVyZW+0HqatelWctTj3SbQlfAi2jGIhr1YdN5dcOmPZC17IQ07D3lc2a\n", "wJMkgqjo4B5AMxib0oes6PZ4pwcbsw1l/b7tc0LNFkWsGg60QCxsC17sc8EwOVzFQn2/MQ+4Xixa\n", "NZK7Kl6F/49T8qswfa90OwNWFL9EI3QQpMreEVdVIICCMUOzhjWFcWGl5ku+8ts3gZU9RXYqfOUp\n", "x50QFYYBR1gJ85H+BOEtJMZi+0iJcsdAF6FhzfP2+fOgNYAx3REpgl1yvUEB/EBikGjglz5hB1GU\n", "sDe5SL061HVMnohnSjoDcnxMCucKfyDsih+oQhlfw3Lrjz1MmEOD+zwFc7lEQ+GfDZXB6oKTRZ1J\n", "d+SqqHBn3QPOKWNEeJKGY69R6n7lCjC6ctFbuQfiK+fLIIaap3cgqdwnSHTTsa2eCAlBPe4IMiaw\n", "/8gbSkY7c5pzkDPuEgBi4yizDAVyAp+sn62DwAvVa29l22b2fbOxI+qEi54bOfUUuvjITaa2kawQ\n", "7wHdF386Nd/kUN38BrAibVhq4cJWODFnVcIZgb2ztOx3LzPSERBWoziln4gxtq8gutB/6U4EveWa\n", "8zDIN+7rlvqT1b2REVNJf96+RHLaD6IxHqmkdrlDBwMqEi5NyOS/BCdAsH6bOCfdXSUAckWXwIHn\n", "g5N3kR4oOs1hqMePUJx3qbvSuykh6jP1g5j2j/NQ66hJjiV49ODFE18XZQ4GAeKOqH9i2H4Y8baf\n", "YMd5ydu1PnDR0IUPIIGRuDX7OkPi2BN6d3JvN5TjrswMwBFwmB6pYwuEVyHMbYsN75Yw8sb1IkYj\n", "kvy5iyy3fg6s/1MUlG2A/ehJ2ybs2G/0imC3FkhQLvSWh8EByYTc9J9KOG7eAM9FWZzvEUJOuUV5\n", "iiEMgH47PTag3B6Gsf0IR7eU9nnjZODIk0U/90fWRnJ4ViJedyU4uwtygh+q3F9yfoVuZWnG7u7d\n", "5mLd5vIqgKHaPt9pr11wJIekwtiuGVqbZ8B7bFlfLiK9RTd87gx04GWmtZ/ShQGV1Ibxhf6yeY0q\n", "8EA4PnEomBoK5p+htY+Y87uyJm9Lj6ldR5NC9VDMtWzGIUNzpP93b9ooBXG++vHTCmW5uj2W/znE\n", "FjVexNkoahbaIvIUxayrf/yWek8t4hbsoxcRyTmhoosaEKP1UxCP2tAPqy1JSXreVFSX9clprz4+\n", "N0qkElgS71dtnSvXjuD+FdRGK2IBWC14qLmih14o9OAs1YHSBEUQnhwZW6HAUm2tX0Wl/M8xxj/b\n", "Mb7hMS5CD0c+zo26+utDrGmnfgjuXmEUbXH2q1HOy1rSjVooZw33ytDRwNfryDJuGRFBkURjn+KN\n", "9u3sbku3MZnasGyiGbvPhZT1/GNSiDYniyl/JaFgNoe6DU9PDLHxEXW8P86aF26zSFTJ6EbXAwVP\n", "ARMoI2uAoQPWYlutlj63b0UEIBt5i6L5fUG7WRmeTOXuQNwtWyss6jyhNfwpWrRITM0JJYl0RHhn\n", "IOBtSN8B37CSgwgBekSVzeb3zABOujMBqSoFQ9egDCCOUF1wVOgpTU0FVa4d49hVvF/TNe6iOo72\n", "grU483nnMQnwyd1v+zkStKl+IuNcUX4kv7gssrol/j5VZsMGA/qLF8MWIeOfzdl4rUlJB+85oUkn\n", "YSgg5cUDyGkMtHey8+RTSE/bb6T6SDRA58AM2c1Oz08q6GWd/lYvf5mviNlJXepEk/htNJDmUf+7\n", "YRzlJ7w43r5AjQAnF13lYMHsuQNkcB1dkDOFOwyamkSYDmHkxIoTIZU4GZ4YqEGu6QznB7Y3gSu3\n", "MSwfBjWJnJ6l8oarBau+hBlntG0raL+aoqWGXaaFFAexZb0tkUcIgH1JXxxkejM0EjQASg8T3E+T\n", "fUVuMY0hD47Jr15t6QXi1y/FTmN8Pof723tiuhY3I7r4MwqFlz4XkZsMFwv4eqenMRp08BXeTBxl\n", "yvDzMwtP8/UVUvgtSvq5WGeu0bWiOheC+svSUCv7Aj0TgICdySrkjzNQp91LFJJL4o8siF3B8jMa\n", "YJWliOemh1AuDVqDfVPIDGEfva1xE111R2fuNOgsJ8Rx/aJGo0HnAZMTarQNFa7Rt+5C2JroHbJG\n", "TofJIVdQAe726xlyNWahc5vRpRjtTLbs8HM+F2PyMcXqugGbJE4T7GjAXbXLvk4XnL3gwcjDLCYW\n", "oTC1nXS4xWzZn1dr85YHWPFqikMrb5/q7gR12zavqNXBJc5tpxu6SZ/tHtLpwKzhyzRA1INsKOgt\n", "imCRR55lMEovfFcKby+MLcSWLX6+lMjQFTxNcbaRsJHHuVmSXWdgnoDX/EGumMlusyS29+bphYsA\n", "AAFWQZ9SRRUsK/8AmuxXU+sSRImjIASKGRToEckBxmYtCrVT2DOwmiCVcYtoFhT7N60uqMRwIHEr\n", "SIP5g3W7wDiTTqyAXlFWQx+57fUS4QZIEJxWWRULEel07wUhcCVumradWY1LFNf4c7Vt/Q6ArXdR\n", "a/b6lO4QkS145xjqn1dOMSZLolTaIS4vf2BuV4xHr3evHBv/xuahCs7Hm9TRIo/6ofeRTOsTH2U9\n", "OxqIlKV3rmLK/Z5/FRFidvZqCpGF1gChS0WikYYDYPRCq55kvyIrcfCvtF16jP16xCtWh7Ou5hvm\n", "/Y3DfMEOxXEcvINunb2CACfqWXSHlu2p88x39o3/rIQReoxdCglQZnGQljlwS2N8YqIOm/GYYK+m\n", "XfkVtmsCrNnt5AQkHChxkegxwkg3Fzd+JkIjQ9G+SpFE8y4UHIeiqOvEs/eUXUGZ5Tghsj3kgbFI\n", "i3qBAAAAfwGfcXRCfwC8t/F+VhZPWUjb9l/GFZbqx+/VDrIAINetViV2c5kRAetrsYwmrHbMcU2f\n", "xzhH+Wc3h2A4NgxqrrwRgMtf2JDTmeFnV5OuUJEbpGON16P+vB6GkX0zMVJPBYkplltz8neNGUij\n", "yTfetEfJD48g6TDbXiG/aEr+04AAAACyAZ9zakJ/AMkJklUT33QSFQyPus5nPcFdJujmvCPVsF4V\n", "eKeyhr99HX8jfhJQG0AJfFWSJ2hg9fk2UBL+S1jGxB6QHaeC/VERKZ2GLPPBquSeU9jPp+XXykZg\n", "Zb3NZY/tQq4UkMRl+NLmVIt2ibEis4IC12k9WRCxysARDPpYM0CAyUXQceYNp1ortcQOMMJOC7f/\n", "aMEhao5KCL1c/KoQ0nu1EATCwk9ua9CF4SDP8UaBqQAACHpBm3hJqEFsmUwIb//+p4QAvkNN0SAH\n", "EGxQSJBuel9Sl+o/hemEbDobS1lhN8Ybv35DEpzjNOG4Lu1duMYYdOYbNrsL7FQPnW3dX9G8dAAs\n", "KEvWyhfapk3ypzWjh+Nxoe7yMzlXgXG/Eoi9o8sl+NVmBGRI23k8T9vtUm2DJi77xicVr15CfZB4\n", "iiBntziIaLVW6OdymCTK1Gn8qDBBRsp9xXpLVZt1vQghLz86jqqWVaJxLeR3LNvbLd5kBt7rvXGa\n", "URN2CGsFCJrBv86Rs8xU8ecs7utON8wnt4DRZkxK7xPfu5l66Br7Kys5z9dckglixdRRGdN0OfyN\n", "e67lDgJqfrHJM0GNLk77Detm3WZ/OR0g6HmaOZkIZppUexZm7YO3kn73BNPVtDRKq3Eaq20DsTB7\n", "sMG+3cW4wPKHKbCHPoSF6G7XDZL3BlvRYG+xsOueb8e/Azmnad3mb5QsQWyuIDb8wO1xDSWkxmdw\n", "PnFWWknwXprAVox1GQQkNjJvoNSPUQDzblXPumLE/+ct8mITL0YoExzrMPMVEkyVcnx9IZ9sumFJ\n", "kkdELZRrhNUziPBpeWBbUrQVwnYeliV9tB1tCYB89sQIjyeMd0LDvF3w3JpkwQE+fK7kr+pi4/z0\n", "3VIkBlkGZbzyj+6nf5y18MPZKG+0sC2e/ylKmS+6Rslffacpf3Txmu/M++UcOgmnmQGdGtQn03s3\n", "n8qzydEraGON/+eJGi6vaajbFUYntUZF9F6UoeoDPjCPS7KbwuvKGpuE+r4FRvllYlYRvF3J2B58\n", "ZLFjNwBEjWpKzpokhc4sL+19EBxIMhKzfWXpoBcn7RzdIfnjW9gPVkq32aqP863l7kZUIEjx0WIH\n", "89b0nX0T3BVYQ1804sLVBzuW6K/2nV3JNTEcJMbj7mfgTAGS+IhWL3xRdoCyD2SPsUZ9+waUxim2\n", "RT/IgysA0UsmcoB6jG+pJlmb141TC5ot80/6cHEOLD8/8HAi7Jv3w4nALM9Q5Of/xLAXO7k3eV59\n", "haUma+3XxYTRsj34bdMw1xny6A62S5KXDkOpyYpR97hIM45CgunsvBSm4tHRCZk42R+ya4w8sVnP\n", "mxPXkIJo6zMGIMnBYUX+Q9sQ0nCYxSvZIG2MSQ0W956NHbkWdpWZ+OHxFJxniVym4CO4h737ZdTQ\n", "tGHUq7F+7WhgJXXhjJakvW6mXS8BPpaFiYJfmnlraSoCvy3IajW5s0lNXzeIuNamfzdVCfzTBtWz\n", "lhOtbdPpGY6emipzh6jnnUaSEHFxHC0EBPWK+d0ORPAw+n5ul6NYfSyxIBTAQTWdxjzu0ESWMXWx\n", "5uv7hKRvkNy5ocHvIMD0ZQcpzDQnKOZKkp4Nv6YLeHZOc//X/MQaQPRiemufTH76q3qkGeBBiFkL\n", "RH3svyZ3qb61ybjaIkBqCX7jnis4zlGdn+pS7PWZRviqESDOdNDz1o8yY6XdtoX5xYnTyBpSQ6VO\n", "3GzTwtH9VNJZi9vt1Kq+w5/eyvelXFugb+n/eS6fieN8PSyLQBFLlSENhXSTquvyebR4SruDPXga\n", "+RA6UAt4xiQ2ShVKhtHVe8Kte6nNqs3VLq7/qGgjFPTp8ZwWq/TTua16JehyxJNu8umoa47MLmxC\n", "28+6u7WCT+adPhfge1FbqYhtAZgEgV0i0n/c0HKcB7YIoxHoFJnRhQa4fnDgQYA1ZrTkA50t/4II\n", "JKLj7fp6CKsHGxPyGhhk4/k/T17T4Qli98OLFKat+haByI52mt+fydAT5NyiYun8GuPpmMsofJvk\n", "uiTBo8yYsB87FyV26iTEzZsy+Z0GknEuIkJ+Nn8YfB8+KCaXTbQS25TXEKWapnlbcKk2awzGfa0N\n", "YaLmZGGsl5iu+qNHh3ITQJJuNNilaYMJKwgMCpTH4hY2u39xelXrSeHvuxJPX9fRZRvQcKijlK4y\n", "E6BLsJNdxMaENkvLbZ0eJ4g1zRshH2rpU0CXE3sFRfIufnBhlgfFqeBvjoPPxwZWlUJXov2qssYC\n", "yKX7vB45hehdSH0XsuesyMFX2Kwz1JQ31BVyUzUY6fEUu5ojpEznlX8ZKgJkoJGbGPwvlQR0BsZF\n", "/UKkAEI39GqfhKe5W0mihL/V/rnTcFv9wPIUe5LPT5OCLrQRep62ywS+PjGWrl8+W3YapXhXzUFZ\n", "yw7L4MvJ+vfgaTmbQnNtgTtcp5L289XsFXZl1aFHjr7B2SjQ6h9QIojL2NvQU7Cbd6ItnUNKmntd\n", "+9BT0LaMHgSLKESO6rlViu+tJbsVoIg6hKIheemV8R6hXw5d5zNQSFeakjFnMtRafOsKMppgKTF0\n", "o8HNlYgrtFd5Bg+tFNi3FexEHrg1Siv+Iq355lZdNAjrxGmDsFHOwMqsfqKSnpBj5cuIrLuIVurW\n", "ie/fgdOWF7lTISyziqbc1SGP3cVuul2khGEu/z5XZLHqT1ysd/lTC0Dz7d7I5xnB/fv2W8NgRpuh\n", "n2K2KjTR4zvZ3/tdNo8XyavGGybPl9OETCCb/Oq0irV0Na9tJKdj7CA59e6H9oRVNfEN1KB9xJ3n\n", "l7OxyksyuKNiyE9v9jNU/yWM+EaUdoTyQvQY4qr+KkIIa8kkWfsDMST+84F2bs9R3ciKRfpfH4ET\n", "0esWs01yt082X+uKFwcs2Th+kmY+MZLgo0/SAX1gvTZuTMLzzzZFbKWWIRZtIm2Bj3yFcfJBBadE\n", "CofuWnDgJqsbXnn3XH2bgaEGOTGN2Gb+8M/PWriF9ZH06bX/DnsDeKULb7DobIC3UlFenuWkLrqK\n", "QYMUPsZ1G3FinBYVf9sttQ3aYMgWeaKCusLQe2b8wTzaxxkQgqgp28/VnGudKkVa6rj4+y6gE7K6\n", "RUCMjemlxWP6y+eMGl+yZk/i8ybCsg5rCyEk486KnyGJSxCgmsGhAAABuUGflkUVLCv/AJrIT1aI\n", "CxlEAJqN928zIm5pNOQsJ/TzCSGjbdoiVyCAKjsObJVeExLKP3FBkHV4hFkGwDkrHAUNzQqGRDJu\n", "JS8njUdkY48H8t8MZ3pVJWTu2Gi1UjTAkdrz6f20tU1SIJeozzlM+i88KIh/3lHrrRgG/vpCk+ny\n", "PbT7foZ4OEHzZSesmanOKKIiOjzK4lzpfP/ngDSP2EmtltPcGdwGmVRmrcS4yWK2QPNFz8Jfijj9\n", "rvrEObhgz5t0SPMyjrElk5zd8Yr2pZCQKvNiCsJbcOObfQU9VheOrV4hhk56tcowb9EzmZdxYsKD\n", "8FN8z/BebNGROX3xemA2QjFcmInm9cxmzk4k9kBSyS1g9fYsIyyCHkpMuqoDlDLNIFnVBv4PsJCo\n", "cGj/lg31W4JtckHxdp+N7XblhIAAP54G0ATF85BtUOyfLr/hVYBZYWkR+gAi2+/cur8W7axF9FA8\n", "s8j45je7/FA3O59FATyr1oKBd0qw+waWLnbCWrhb2HQSa78+lF4xd5sESlHHp2NFeYTk7quo9ho/\n", "kGGY7gtgB2PjzFqyP6eP4sN4fpaZOv48igkBIQAAAKQBn7V0Qn8AyUvxwL9BcwNhtqIWgRTK3AfF\n", "ShpAfhVABsa4a6dICwo2YCIcUfDBgtyFtW/Ay9L49YqoFU74MeG13lJpbqdt7MbcBPDr2elJuv/Z\n", "5g8bc7YZ8nuh3NRFsmQAGi/u8ebYmWI06+P2/LQxnGjxNCP3z2fruxTA0Khg1dQyOO9wL/9Qwh9Q\n", "4ZfLGAJbd00FBiSu0TD3MoaJn+lguOZZCwAAAKQBn7dqQn8AYyywEIVTYA0TXbV6SUxyHhAC4ABC\n", "CPeyLz2y6gCTivgbSfO/HBQh+G2Cbz5KNjQfGPQuXYA3gsRqXT8hF8eMsjYDPzGHMyMH98C4QX2R\n", "UR48HPjyJbZ4Jl/jB+AQ/xqfi9ANKK0dqOCtv3+hNe+tMwT0B5ZiazKEuSowIkX7cj6V/E5Svv9R\n", "6/x3qI6p9AckEYdtTISRqp7zo3y+2wAACbVBm7xJqEFsmUwIb//+p4QAuULq6X3AC2lvZhfO6wJb\n", "FDar4UJ2An61HawimMn75MwGsDzflxRN+fRG+KQHuB1HLhtPf6/jPJC5tzRQbZn5XeAyCiWDnH+v\n", "8lQB8SdNlVuH5hxQ2AFwgtkwQVUOR2kPlltvXo2zPRIj2DnC0e3HXnfIBPkkBfliqgSTDkd2qb+C\n", "+dt/5EgAWXullITzRqMLlp3B1lcQLpy6qkZcZQuONj1Guxlcraou7sWfLqveba/mgnZ2jnPhN89G\n", "nLhH4WqrCk/Ad9homzUtygGKof1roWzrvBLbjp0KPOPurP8A+pvtY9kESeB3NKb8qGv2zQcii3Km\n", "I6cS0ThtJp6lTPffrJ5CIczjtrzTrFyi3nwWMSk5eGTPQfG4fYkKbGtL6SjQHU1pFk8t+hcHJcyE\n", "v6wog8BsKZimeMViq0EjSiI6J5AH/K6u553iOWkwNMmYfTXexKie0uR2DaNG+f4zPriFOhw+3f1V\n", "2zQgyu3fPMKELIhY40EoFw/D9iqr8iX09U79Xcjj1VGJLMhhFAkeTdRdHT+YRGqeNtMAzGKjxh87\n", "vJ1PH9q4U6N0g2dBMe64vrFXj0QsWaD6XBeMmxvSLdR6SjbmN5eS9PxBrX2w3VpclB86FGslG29J\n", "PrvDeRzUzLqpI9VT4Ua2z3mpGImJvUYG30T7gl06YfTtlurOlVg0oo+9YfruqT+w2d9jt6V4TWfr\n", "rFiI84nHlKc/F+r1JJYwsFxTMOQQAocmGxTQSwv1/D5rWn300lk+gAU5Z57hdjrx18s/xdoU7Arp\n", "vCt6r27WOD/+JYY5xUT9DgglWi+H7AEWm5rCRqZ3/eD+QEx+ij0syHw9AH43fXL9QyWlKUA1axql\n", "EEq+fNh/jBUkLuGeoF2Yo3eaipSw+zoLc/GeL+DY98VahXveIKxZxb6AC+JVUOy8LvHFgJ9jaKQF\n", "fYt7914nlKQH1umHmzwp7Fdh2jLWftLf73JxDM35uOq7rHLEOPrkmW+kZXpqSi+whrZaxo/4EAN0\n", "ujVPQ49xjcZMbAS1DYfpOz6oNrDETJV67COrDT3CYbXAQ2DkefH4CYJbvIozE+THaJXYVm9mnwlY\n", "2OyW9Z7xrjFISgWrh2zxFFCAY7kdx+DW5GPhPIQzBD6U8Qpu1CTz1ChXNz2l/J8+3Erkg0y0JSvQ\n", "+Z3CBuM50LWJDzZR8ykZ2nT6CVkkwX4sEkVpSBM4pzoKNUrEdPEm3CsFW8CmAfxxQjDNhJTOwYoj\n", "tvSUoP+HFHwJz6gvldiHzFQd1El/0C5dFIqbFvBLwsTUDmpwUeP/pYYCaWmCNzqJmqgfcE4Xq2RT\n", "xQOErMTfJ6SQvze9/X5yKFRjFeEaNpI4AOK1d91VcmtZXH4X3d1g7t71zlJbIIfy/VCfwMTO8Z40\n", "9Wp8Hkuv8HaVhJE6Hq7//9UR/0xRHCruqWaesKx6JVKqu1pjwFuwk/reBKoEQoJU6CLMba+ZkOJf\n", "a+7n8mJQzqV9M4cJHeGWXXp7dmjz52QvfKiAyd/ip9a4PG4WedVO4R47Iq8cfJqtVuwi0HIgej2n\n", "LSn6Wvb/asvdNPqbbAPepQjR4kH2uaLX2U1qrvh/GJNIkgtiFWIXG/AdJgW3FxcQ6J2CD1fYkces\n", "j+64th/JyobitEYx1733iId5cL3e9rHlwikYcuTQ1zJNfFmqNzmceUi3FAirBV/SCcSFYAwX57zD\n", "/4QCLLBad/Wo6js1/8IRM1RGlt+xxY5BaGX4emffRcPMWgzwFzv6iIzn1V49zS26n8xjEhkIrjNg\n", "5dmNpZuiIIDyLYStMXuCkE4npSJZIIZ/k5YsvCAKNsWitUIcgfsRn/kTgBIxHkce5rk/KEnnbCuB\n", "SmTz7iKZRFvWaVW1K95V35P599janXajYDiS/jinQP/5mt2rjLkK7xKNaiPYzdW2mlNkJ+PVO9FM\n", "ZGZf3G8ZBja/GdUvlU1v7DXCexYyVaRYnOTWG69OjYKrm2kWDAYa7z4qdt4o1eQvDaFBu+aagioi\n", "FZtJxIS0FDpwxgjMXEPzowJRHQH9yybJvWdHysx/W0Dv+RJ1cBtDbH93PMsFxf3s4l6ot9uJBgt0\n", "SkF90vaSndL+6METBLUe3SRo9roZ8ZVfM/N5z7D9FVB7949ZP4oSrRTgstVwb5eBKTVjR1X5xqfK\n", "AZ6ZEIy71zTeFVdeud4J0/54f6952S5IwdPZzhu3Am/LLQLDJq7miGUV13xsUSyAYfgkyt5F9ixb\n", "Z9/d5bg/rM/4Oj6OFDP6o6nSQWtL9x2xA5mm7eJbiZwix3VTntjQ6dSlCbFMfKs/Dp0IMSp8i79D\n", "OGVFGqw7QpUYD0wSAxsO1moRvfmmPlAJ5/dT+NK3OT28wjCBERsOXU1aG5CbfaqWDshnqCSNGor3\n", "gUz71CqbukyGzgMUKltBMzhMUzudSWkPCUvhSjFAGHMBaWUAdNnV50Q2WKYrQ5ggvaS2fk4FFdgA\n", "yHp3+y7a2in6f7gtFZo5gimX138+F3u9pXHRdRQ0KEEo09GsVVzwNbejCDhKR1KdI7nDP+pmBWsD\n", "C/VEz9hUD+UlnyguB+EFKDOrEoZI/2cxhGFp5VatM2xiPrOXLcPCI8Zzp9wL0fAjHyOGYol92fMj\n", "oZlUupZ0bTbtDDBs/SLiVTXEy0UqHUbTOF+rQA5jLqNF4cjlsNC28HIT3fixNYmLfYiOHR2cobRZ\n", "KAIu3lsT6xfsSWTn74qDCOqdWiG/lJvQAtZ6VYSLi+9aAEQeJyvUy5eBuJfbpaAohEWO5Q5NIAG5\n", "DnlU0MU3f/ycNVeF9NeM27gTP72oZS+OcUXxTMqp06tXUdre1d6yr+378R3joPMtnEFbJOCKFwvq\n", "SjDk5W7hX+f5Ox8SNa76sSHsE3MJDeaKBagCYZ1DTqp1RQQeLyX60/WWwTPzMliOIJeJsor1jZ44\n", "KRr7osox9/Ne+KchxkKZ51YRfh56J8xraIXg1QpVYZBylfYl1zVBTvdO3RJIngxD9hsSFSIFEYGq\n", "PTL+tYeldagKlje5pKrwIAntwtG6VJANAfisxOilXPpRTp+6bQFRwVeYeJZ6+rtyyg0CeI+Ga1LS\n", "mLwwrXS3WrufBrDAMXkLBVJy2upzjwiKDcgkhp2ZC8dYXsUOeGslp2ES7vv1NN4+bLfXbiXGfSgG\n", "uqaOiVog2Cheu9bDgPQeDIOwBZ4Nsp5y9HFF6h1kf/3jz6ci+WJudjidCNiG3OLGIqw9GnZ0yvf5\n", "vEMnaJrSorRr+1wGjXl/82i3ckAksZE9TvL3vRfy8gY7oH3jAouDCvTkok01Rn48NdYd4+2zmdlA\n", "j9E4AAABwEGf2kUVLCv/AJTZlaEa7ZA9uXDrWBHYAHOm8cMdlvV8qHyN23bWHsr6kTaUj1SZtk5b\n", "/jOSo5X1S9FgEbcUTTUZNTvVHrDySrByag4GscE+oglN02+zgCHnCLRt8sV7P166t5t6DvWFUZFz\n", "9k9a1tNJru55G9B36oAeRqFQEiQj0xODauRINWH3kIMNSkg7xIHVuspfkKppiUu6Nnt46iqYBXMk\n", "xab6VrnCQh8hiti03ya6qH9GtYjJAyJBv47TCklcSslxFfJimRaspUUmGk+O3QKIfc/Uzj5XjeLe\n", "xakMOT8Aae0WaWP34ygIHzsIvn1NzXkxTt98PzFAjI3O2XZeHNRUitC7buFYsaXTgQoX0fYDnnYh\n", "lYYoFrfrYIdjvnBjb04kB9yTuEsBtLQFoT0EMR8qKcWRhE32qlA7mgvbuFhgS2PSitozOfdsYYZq\n", "v4Q0Exa5wUZ+6x2WLS4XaegQRsPWaoKao3TxL9QkbAGeUOCJ5WDETWFt5KaG+pnGZfgFeO0XB14q\n", "CZyOqbCN+hLO16CqUxBNRUwD2iCE00jCPzheV2sWZg2Oq3yhEP1cYMVsE+FETmRv537hp5n6Q4EA\n", "AADSAZ/5dEJ/AL75PoBSes/gKWGUrdagB4AdFl/cfEdtuHP0p2zsAD4kHk2S9Dkev8ZiccwLhgnx\n", "hBPTATyOlNYUQx7ptdik/dWtGEYnwMUumQ92f9/wy2SCwEvzDDHj4mwy1lCYBCurSvPi6W39JyIL\n", "MBmMsrnAswpCdgV+W7SelsTK2OxecIv0Ahbub46+lSGPEWWFa7aFLs3CUs4b/PkiyhzJEPD4saxU\n", "F09RUSCwL4IkMe6yYa/7q7BT5JRhh6zqmsIH8eJLAWEWc2BdmL7d+umAAAAApQGf+2pCfwDBjUua\n", "DuABtH4/xw/F980as3+pG78WcJ/+bLmjVqFzufuI/rAywxF8tYwA10Uf4qrAUIYI0nCCf+QAZuwL\n", "7/PtjgKytzzylVDJWRJQFp1Nyr0Zg2TsI5fNDGvQNfB9DWI78E/or7TlMG3/Rz1R9Kr+Qoz/LO/9\n", "2BHKkVIWeUTZeohOFS5RAS41Ia/snzKQjKdir8915ksV32z2zOflMwAACX9Bm+BJqEFsmUwIb//+\n", "p4QAvlOc2ZTgCt6ZV+Gx0nfruVKrlh6faRNZ4V5czOIVNeQR0zOGRUw9cQx9IA2TsPD++2XZBJCN\n", "48qK5b2H6vtIAfr99TASWAtjpj3Co+Vw7xnBxQ8+rP5VX6jeUWUoHIOyvOAm2WaX4tYNIFaN6DNQ\n", "sWtmxw+CRSjSXBNyJ2Bdy4NzyhjPVN39xiAW7ARhznyX0BjCxJXfdx3Kv/olWVJCKINgRA0DXWKx\n", "NubJJxgZUW2y9nC6Ry5RswfxywcTeLXLZy67+3bmqb/xbjQ7c/kbZrSf+zMbC7VQIJ1mDXhPjg3a\n", "vdwZppW+vUKCAa+efaS7xPx09lUFJBC7+hRTZI1BIASiZOkRgARL6wn1F2kQjzxrPw7Wrx41THyg\n", "4kDogvozEQwdyXjIqjD3r1W9CWL9axlXIqLr8aqVwfA5b5Ym0kdlUsrDMu41WNvrh1AzLAIDwfr4\n", "6cTOPKFUFGKvUVRaRWLc6fcwJQPM6KBE+o8yrsEBf8FvWg+DA+QmUqcFgnGeBoV46l9P+lF62TFE\n", "vZy/E5x6n/cf/mx9nyxsoUf7P4UyU8WwQGDo1fVp+6+ogBtyJvr6d0+gENuBko32ny+ILNBKWu1y\n", "JdeUm1JzkyTCMN/4fdAfhRX8NfyoSOUu0Jn+BnXXvbVhs/WQT0KCCzDSlfNoLQpeOAUqTGCPL94t\n", "D5HUATmHw1qmEBlsmJ/9WmiWhLFSNAE5u2YxNsd48XXXn/iJ9QNCKHC2PeNUdN5fGnVSjXI/myi5\n", "N58CxT9oKf7dQ5fuG5YNHyfVrpYDYtqA24YCgkZ1QM3hKniLF1BYb2GPnLCXyE/ra6FZyCi88B34\n", "/1NXdxSLMxQZBWOyL1DuXCcM6eRRrZV4NiUm1JZ8u3suDud5A0OCD/gKZ+St9bz7CRW5M1b6NBRJ\n", "RUW36C194BNkkFHRtINBPWUu/lNf4c+GvXpPc1g+iKGVdBhY3I/+zmarcO0HnPdCQFxSG7g4jwrU\n", "vSrsGgmkfKoN+xGTUuyvVMblNq2AgABIxb9zLwXWA6z+yYDY6Y40UQUpBFdIsZ3rja3MgNT7dSy/\n", "iFUyToyz379GH8U4AYbAr1+ZMtPAiHAViDU9sF3qhDSpQZV8yuk3KQw0vl6bDq02Y+TT3Y2Z8pSD\n", "U/0C0szcHpvoD151RYD+3nMvNacFY/xoNL4C8rJ0JsDKoX059uIpetYiap9aIqLPKDw+KaQK7hCd\n", "Saw5jllMbbt/pb0z894Wn6WeNaJp/KwqZeQfH761V2rGGx+JiBayJ4Pn2dPXH0hv3WuNyKh7ZdFj\n", "bN0YQV4W0B6G/aAe8sDb6Qklks4YXXFIN855pCBB0uaiUwuVGQ4mfcpBbF5D0ZnKCxb7y4ycQeyk\n", "L1HdBdTXRm3yfHwPNF3U7qDgHpdoozGABxwixYbZz885cP1EoTKhvv8xtpnWrTz05PTzTuMRYUrC\n", "stjEXnQJAo1xd9hTDeNNRLbqZFbcpA8y1EsMA3zZornvy7okdg0IlvKuWfzDn9SJ1T43+xyxRyUD\n", "OoS0kGMiQ285caDO4LvrYq/XhLJI8Dh278ur1r+g7Dxr7NSSD0IxzTrhP+XVGVwe/zFa4wmA2ZXP\n", "SMwaX1K++iwacq6UZp+bScjSday2PnDnt/3J+zS03BULN53f0Y6kJix5oxvs0lXVCUAQAR7/34wK\n", "X1Kr7cK1IPKeWJ2j4nfaLXhcK+xyanm/pQBfJz/LPqKGfvcGRXNCqt8Y8UZQrTs7uIJOug2TGSlN\n", "Jfm8JhTmr/uPkgb09ulIdkWutWomgMWi0ZRw5OQWN+l4vlJKWlnVPMRJKofo2GCPZKqkn93BADr+\n", "FgbXoWEhtf3FRQI7qIXeQOO542OPWsQ9rUd9x6fz7eBFMGfaQ4yqIzvAbazifIOBYwZ+W+UOVeMx\n", "Qp+CKT65pbxiGtZSOI4d4O8A2zT1eTbAbZxB1iNSBdEG5xRIGlcaYR0m3SAisDubjxeqgWeR8k1N\n", "8TtjcgcWIwJ0GQVif+mce7KVArYBcmVRya152VGLsmXykAs2ZoWH4Pmafy2iK9+sUqba642WLnhl\n", "sreQ7LUD6YbN3kT9xm/gpQ5z6f7eGmvHvkuDAAMuWhCkFSLVMrfZSNX5gIKPcdQY2wJT8RDuJ6fe\n", "lX2bLVay8pqF2rpIXjWpUE1G3jD4prNeiPzTLLDr1LXE5vp9HcQzcAMqP769LmYNNUmtUyyJR76+\n", "7YzLYXy0HwsUb2HfFR/2xRtrybFG60fWexRiktnfKKVvApPgHr3UFlgD7u3uxPWEqQtdeuAgFqOk\n", "Q056VPHHcP1sSiBV94/IEoFptlfUpRY782gyt4uRPdixxQQ1Thleu+CUkM0iANCU/wmpcHzh2dj4\n", "MDZeqkosmRmkfaWJdd7vQ9R8YA1p+hSPcEqUGB5Q80q0w7MUvZCSVQxB5WYDAW3mgDnjqzR51gST\n", "OjJGM71MqCRSRlRGLBS1O1m1b/rNPK8m89oP4vRCsa3zQwJsTaQ++XJXL+BM8ZJp8G9eZm7sC1NN\n", "MOnwfi0gAJEQk6p3Jt60m1Ew0HWtqY+ee9aWLrsQmglLhilD8fbd0Ug/LEub0PyJP0yMzF4gQfz1\n", "uQ9GbzUQmU5J3xEjgGMWzfClHiNAo0pz1BxeVzPrj2OpmWYFCEK87KTA5gkCBQrjAPAvC4gMY3h+\n", "Rnk/FuQOsk7vUtnsMYPSarpG9wsYJsMBUu8gmqFt2BYTqM8QVS9nn7LJJaPyi8hcL9/4pwv/zjyH\n", "SGZqFVfN1tJTaNjKCqFwLk3wZ2FMzUIoEhtAdV5FOyl9bL9b4Clt/AgQPgU1uKsbnQquelFaF6y1\n", "4KWpUSzx+GIxBkDkK7PIzNT7BHcMVtzI6s3NbBDK4fIFXc4WRVDdrK6b4FJrWYs2ahs5MvGj4nzC\n", "9bUSpRvVjsgEmZMWfEkfwPCIucDYv36wJrQPwuojuWe7teq0ft5GGxqcp+wBP/S9c8iO044n4/1b\n", "Pcpnphpxd/nColCoTVGiT47Yrz9+9u5a3k/WP1DGGiSuyDlDH+pVcmX6ui7gU6z2Uo3XWysX8/Kh\n", "zAJYKCe2Lyx5QzQZc73iteynvgPAexNGclkTFAjSNU/CjlRjui3+w6RIqBxBNJKnSXE/IjBT5kHd\n", "4Nf3KUJZdrSUmj68UJayItLVslORDsy7yZHzIkll4nppV/HciL2Ur6XzI+L5V6Qsgp4gv4ZOfKgZ\n", "5oj6nCKN98Lbt5uXXOXQ36nRlC5NipfxAAABbkGeHkUVLCv/AJjbECpYAJv+lO9u2CeiyLvob/Sd\n", "Y3aUAHFxQdZXAVUkNfrcvoMVWU8LZBmzT3cR6P3m+xHLneHnybNj9GNirTjmrb2TRfBDpGyC7ddX\n", "YwT6yuGbnTk3BZvUlAXfSJ2mMRO7fNT8jSiBMFguCwqwaj0oL+93ETHgDBYh6WrKmIFxcWWqvsvB\n", "VqaUl+fsDSuEL07HbaR4+OINCLIEQ/hrI65726E5xJ1ThUKHYdFKtBVKBkKlxdqjkMzc6gq4tv0U\n", "bmP/RuYKvdCBUoxA1+bLxlLq+ZuiVyqQlDiDHnkEbdzN7xD66iMEgL0Ow3sKOAcIZqLOpyafWJC0\n", "CEeUBoy+h11MpY8qSHMnODoFlJ7jJB3ySrD+8qyx/sqDIQY4PH6y8uRNj1Gpg12Kj3HcJHbdGeN2\n", "zzaInZJM8DPvzfwL9HNvX9jpHkW+HM/diRaiadsECjlQkoTXtfhoA5GQEE2LIU2C+icn+AAAAJsB\n", "nj10Qn8AyUvu9Vxmf/4voCvZs6kF3sZtg6Wmkl71MADO9253BaZEOcjtYAX72cOsFK+aim6cPZOD\n", "70rqw5MTI8xr5+UUFJHsFZSDSrL83ABUwwI+TQu4Syp7jQfZe3DAhFJWzhGBeE81zL1W0O+G64Xc\n", "hd6ZbJWkvefECJbCfrFZ2v6lPVz0pQN+UpV7AFoqW2Bwb7OEhNNUiwAAAIQBnj9qQn8AyTwFPbyr\n", "zcAIRwDVuTf/UIaZz2o9RTaXSNmJsl0tyEteKJh6doTG4LayFRHGSEBFMwp5UWgQOtTDh+7q0oOa\n", "VB056uztFAWIE+hEjck3eVzDh6JxTLakh1Nhm9dtXupybfyXXKDcJ2Bn1wxKyWjoaviy1hc5nBtM\n", "QbPv3s0AAAkRQZokSahBbJlMCG///qeEAL5FiyQgCJ8auZC6AulGAiAtUMu2PAa0Qc8aznh5YqJk\n", "jmKYnUNFr904dd5QOWuVHa3LBWcqVHbP9ZH07NYaHqKAQWi7BSlpfWtopaZFkXJSembIwwyt0uFX\n", "JxAJ9+KwNFEDm16uvVubxrGKquo5NRxTf5yK7UjZEZiaHIaRpCcJ/X35vbEMG63A6ri7k1P4Cad5\n", "0hMV5+SiX4ltMCacz7bILNVCooSSdBu6zHSxcY6iMXay9GiVQ+z7jzVNBCFe6dg08Uj76QCpVXx2\n", "FmbMHyk19FD1MhfaxmKbQ+UCO01vMOSyQ6JhY0RMv9CXc+uShgTqjLicKOWwdgBPqS4mTPtIk0dp\n", "9vb0l1WKVzBBURMZTLr83C3rgPQUVNQ/Oe52Omc5irHhCH9A9GiFNyAUwGGl/54lpMo1QOqRGJE9\n", "w3pF+pTcF0C547qE+3xWAUnw6uMKAmMN0cH6fhTgmKyOGs8HdsYiz+4VI06YpcvVqg0/ndyQtFbj\n", "bEABnzukc/MVXml72RhScsT6wqi/Ape74B2mE1Jo1anFrqB5BbXCOwaSfULgV56PWvgPfjFs86UK\n", "fPkpDQEGUQgWripJuWs6BHQ5aYm94axLbmOjKSJKZMOqPrwlyMT+N3EaHRTZvAQJyNb0AQ2FzXRU\n", "cHVgTb2F1Bm9C1IAc2RyRmNHtBwOddxUHJjluF3hyenNJ4KOEQh7aJkEyx/iPeBhcCcUtDbL6LqJ\n", "/qQUYZGeEYlIVu55+X2uYMXrCkzc1sWwsEzLHuiou+MxRu7MZEDIQvklr+VqHhvgOEJ8o+hH+bwC\n", "3T3EukP6J3LhtINkaTVh3naL1WcrGTeDkHHycinGUz5hLkZVUqkRcCdZuzDmkkZEM3Aczk1mUhCB\n", "LnjM44aWjZaMPX7BfoTefuxS54XX7c+g8nCOXX0SvBtQhn1788e/1AflBHG9zYr32b/bfkAsAlww\n", "Qknyrdm5Y/+scXgf/ejryCI6Qdf4+HIhioFWQaue26RBM1YUtRCbs2l1T4NgUbDsyl7rF4qOkHM8\n", "xa8US/7+OzE5MI7/D2OU6up7ZzQGr2pPNkmEnTAt8TkwSkT6VraC4Szavi/kN1X6S5r45q96kLVw\n", "Df4rUp2mNxWonrGXXfQNq5jDJDQtoBrRiQnLg45KowMCPBleQ3zZ+UB6ToTGcoPr+5uybO9cJFKV\n", "utzFO7eKBbGlR341V6ON0dlWNpZYY0pfDQeUeeb+rBWS+ax6uXtouo85pZXm525BP89lvnxmWyot\n", "nLtvP4eR9/SS8JnB9g+WHZFbPmKjjoheBfVaoee5ThSkpjrBeZrUCNc8aTzfvf2p9lXM9O3EQZJe\n", "2+mfUDIbuNUbeWx1rK3WGrcB1lSYbk7jwtJKhafFTdNaLcJwv/TIoNLnzaeyRXoqtFUzAxicFUtt\n", "Vh7poZkq0hUxwarvN5PoZHSgvPrdex//zNxV3zjjDoTsVYKaMQpInM8aMKTjRx/aFqFEGpJsZx6l\n", "kldqloGhcOY6dXEUnm1XINjd670Jum4pX4hQ7c27042FcijKsOyS+8zyEfHCsn2cOLPT1gqQA8KC\n", "mbrxLYXldzdQ/zFgfHCN3JoZDOx83QSJdoJ7gbptLSpdyjH9PJhPPf2rJIZNsrWKvT7mZqvbY6KC\n", "Tuf7du/p0tnwVrH9Bo6ZrHxOC6zIG70XAgKIjfA1N3TSldiyVZF3mFBn5VdmitOkw0XXszrdbdBU\n", "17hCt12Le9yBLIIYgw5mIYQNXeziZgQasHXtOzrxj/6rmY/fIdKdxyc2noc2XlbRxRGd2hh4CaaL\n", "sL4V12Oo5HSJDJwnEpccJPCGh1W3QsF0DB4EH2hgoV+HDJ026WUUXTXRqOchPTiWTjyThY4HPTFP\n", "Vqyhy08PZd8TjTOSI9j0cdReD/uGWyDJLSjqd11i3mLdz5dHvnEt8vTK8f6uoRmqpF0/RnsddN/e\n", "OcKxQ7UR3Kh73FmodNOiQhtn5Xfo5XVcnekP/D6AL8JHikPZTgYMdB17W/RKwlaU3RdBJEGJgkA8\n", "1L2Aqe3D6cos9cUKUjyDaX1//oN12m13Rfcb8v+iHfZLeNpU00X+Tel+1ft/xBvRh3EdiGXIbijm\n", "qrCcEg+UwK9qyCbhhrU1nmkVrChQHLwpPel7+q/qNtX65sFaA3Twnr7JSJTAH1BZ/qV0zDzo5H5F\n", "RHmKe9tCcK1Zkr43Bq2mzy0LPnRda4cMfPSdhS1BV7S/1lFxfYt7MLy3/4AI0p9pugStEKz+zcvs\n", "cBjLVxpqQ1PQKpP0QATjZRdtalQlvbsPoj2O5HU2ioJ8JCJnn8hjTw+lT+rjyeEdHoKynRDV0PAi\n", "rjUjDWMy67SQVR3GvLz6wikq5t20eVP9S71l6VOoNed6M9NM5c7GQ6VWwLnfT4fNx45YPNcZVfAX\n", "yfjihXFHO8SVy7VyekhaztbrNl063JN/k/RDqH6U8aw636aM20PGKx6PSmq1iyf4dEZqzmNwfx5A\n", "UxkBabfikTLgQALnvoyXvq7l0krU9gf3zeqH5dsAranbWyoGDa/2LBc1Q8xZveOi5rBy3oJO3KQf\n", "8Rt/eimWxyhQAwiNp8A0skIUVCGdV8/OOYAKgpogtiGLefkolyXtfyuDWLdA1lRCqpeuVbpqtzZQ\n", "XMdS5BT5SsxS+t7p7ei48/D5LZ2jkiRLSpPtLDQajxWKbpLivtmHmXYR2S811kVWgj5Z0lE2hLRq\n", "OXCcuQAXdu4PGwaM9f95aRPfG6qpaTDx7QaXt+eS15IfwBa0mDBmKD1iD8pUROlL/H85RQj1otCg\n", "dYQuVYMFDdrDnRYH/OOBeh+QICMZHQzBQX0TvvGB+D6hhaNvTuZirAcw3j5fr+uoMlg0PvjyMI+v\n", "kPSes/grz+C4uj9DAsew2hdXcQLoui93u1rMHipDhC7A9xiQq97DoRkqAVLqDFjrD9bkY3fU65gA\n", "uLEW2Or9C+FnsR80jfpVutEL1a+Z8Il7ZSW10L83zCbQEaRggMOEoDF/Txkx60uFNCU0SgfJWdeD\n", "UaJjrN1A7O10B4cUe9SPB3mXbqv+TYlAeUVRgkS2QNnBN/8ns7w5SWWf2fOx58e5TRgAAAGvQZ5C\n", "RRUsK/8Amsaav9AAnY42QgstXxN+S4C7c4uiiy6mhANRRbruaAJOfqJq5n3GLoGJ1/IvJKm1/bOi\n", "mPlDYfTW7XVVGiPWnYXFqmMBYhWSa3GkX7AWyfgVbDWl7u5d4vzBro8HXPpgQK0LpvFBVIh5cZOh\n", "C0065QoiH1cmbWdNcRfjQETDM4KoSkZfBBQS0LqUpVXZ+RoksBe1E9S5Oc5q7fH7uniGxwoto7QT\n", "XM2wSOIaIn3ScfbRy96bVNSJM4mp3ct+29R89EhUf+h3bmSaAAVjRsj+qjpsEXZbsXdvIIu+hK5+\n", "6uP2LFiEsiNBfA23ifj5Ce9MHZ3pVMZ97/mNPmM64exzGoLnRt+FlNN4UfoOxzbJBMrmtqJ67E55\n", "1JiepZ3Od84VOJNKKXKDx9xUMd8HYJfUaYHH2Qr+oWS81XH4Pfs33jLpu5aU+bLxnCJS7lxXtDv+\n", "EhgArgjhFVHYUOrB4hV1nrHVvaJwBIeRV1cg6FcBa/LBrxg2JB4S14IgieSyLBwWsTEdv7ezZ/vS\n", "PjUE80zljRDR0Zf2fTKZzNDwGSTpWw3e9S5Im/EAAACiAZ5hdEJ/AMj5Pn+YMR/0b86/j9hdTR15\n", "hkSYZ32T3pam9w331uZfxc8MagownXmbTneIgBCm43pcKMifKRu8nEU7W/IUOi68X8wrVE7fFric\n", "gXg45k8tbqcoDArXM39Zijo3oTyhEpVf/YWLVEfCOv++Dhz94Pm8h/CMgRvnDgK568FxjBN9O9wv\n", "slHzCSW55/O9AsPhOc5b1bg/iWpklyo2AAAAoQGeY2pCfwDEEJ+ADlPc1vJrc70q32RCIYfneaLW\n", "YZoqlnOUjGNcMpJ1yxcD5tY1a+Ogu/Hm//OwIntqO0HXROAf/1wn5HcF5WmLLwNAk0bvGzpmn92n\n", "WlZ97d7+MyDuDlP9dL7pAQODR9pXGJZg769YzP2hY9OHOlBO2OG2u8MvvomlZsxHfYxviIbd8F8Z\n", "Mvj1J5KLVOMh5037bvEb0RHdAAAI90GaaEmoQWyZTAhv//6nhAC+T4cSAKwOYwDusHDiiFyACJYt\n", "geuNdxYFlUltXGpoqxFDmq/Xg/hhNLVfwNqMj86Ws3RZk6v58s5imbfFlnmTbbqE1btdFTVBhs6u\n", "fMmDHabwkviCmk18hPoTp7rrnTNNBb3aPEY07hs7gMMZHKoSMc09DVWAxuFlDVCPlqKnJ7xvaFsy\n", "t69z/1GVmYfdEjAKaKOVTuPy6FJMmsdSrWx2IoMqafec8DU9WmnHWH92Ye2fvKwWyWB4m+WGQGo6\n", "uFU99ZNARBS/WQNtQ7cmf87tqxv0EOZuUFluf4VpdXP9SoW1FwEJZXD3DIRB0MWGaAGVhATOaHXG\n", "F6AWoIf2Zotmp6mXnqXczbfDWdSnqQga3FitNFSdIDrWFz6qXkLLU1I35PhymCudrXVFD7+J+1FP\n", "jUqynI6dFqaqwOOXmDhHVs0lSe0aVjA9IOcQ2+PdyALOJuNr045eMniZ3wsHEflsBOA2OVCMBN2u\n", "uZBi4B9gZ2QZCsFjgzUyu61g1fsLJQLoMav5y90ndJMq4XG8Jf4Du3HPYUtiplA3aSVZVgqcP1BF\n", "cYC/HZIaXTu/R30wqGETAL3rbQiIHg5J9ogZrqfTVPZf7k708uYxZgmuNN/vDFtsTXnabaqbUc+O\n", "CbUYqaXuqCFsJStA61rjIiZR1dltyLLVt4UBxCkFQptFaehT8dmKAduV/CncwqaJamp6c2jxLwWR\n", "iGsKs3356VRTIacaskskW+eRqPTm7zonD/LsrPHMnTh0xtYuaTpwNXeYMdGFICsOsEBxQaDYwC/y\n", "ARWSzqvRlNL7YZwW0UV7ioGvi6a354eWLxKzjfusIy3i7VaK6kQ8ovh9lQsxEHmlCc+/OxK75sMx\n", "7BbXXIj6S67w22lUMZ1L80kPJsl98GvXk5rchEAP+bMdA/VQ1LAp7VFxJfaMwLoJuFw1M2aXesNL\n", "/kmlZOG66+lsBVHtUqzGw31alsBOS6YMix7kn4k3M5rrWKttu87cfQ+iBrP8iLaXv2Y94IPZp3z8\n", "fAyQPDxiWClZXwf9PAio5uOuMohxBTrDnLh6ApzRL/T9gAv47cM/5s1//urKYqDtQ6+qtlgYje+B\n", "ilTQxOxVs9ULr59h/E1RCQQg+sxF1w4bo+5t4NnKvs//IlpxnG82DWY/2gGcy99iwh50MDUhxcZx\n", "9SIgzCdrwobwMvAT1Oz/jxDn42mIf/PGB3MOyAQ7+jCTtJCmy93442emnV0L77Hultko5WUJhjup\n", "UJ/RGbTv02V2h0N62M7UxRRO/u00vQxfzwk9Sdh0DzRUqB4rKjTkKD4n+qR6PqadFcAAMM/nm2ND\n", "bBRs+yg10H+CxhL31YcOwjB/oWCtoRFRY3ctmKN9nFZB/2sjyN2l49W2wY5TuRZHdF8ma3Cho6dc\n", "1ibEil06lD/edlsjCL8tHAMa8TUh1RAeeyxqnToFnUOWVaQnxWqGK7JVh1J4s82jxtf461kPC/yz\n", "vfkB5uk57TZn2qfB4M6nHiYJXTdtvHHAGjrfsHXShLvVcpGs3jKbPyYm9F5bob1T+jYW/KCcGVQy\n", "c4YzjxD59D3iMbb/BCjgrJGqHDkhyBNL9PVVC4Er62tzp5zXC8NaWedIn1j5Z/QdiqhPPZlPKiUJ\n", "G4rz+R7ZEjTxTyvo2mI0gNP6OH8o8MDkpYLjyrjWNMwIYq1Y0jAhH5ynQeUW3k4bNYunNg7CAmtQ\n", "DpdkQV8rk7TgEBQC+0iKnLafAzU0NCRTbA0KIRIqD/IksQ5ciVgyF2PkrIo/cTlBiUOpJvC56kf8\n", "4xTD5xP0Z7JJk0RhipIsj3gPB9Yffg64ReWVe5+KdD1fJwFfUijTEK3pX2CIF0TGVTtk0oxJB5Ye\n", "7SipVZ0IkqiJx7DHaKi0OQMDLkETmWE+UpOoOfGgQmT7nXkd1aTSGBwZVnGjfcymMe5ztz1x+IzW\n", "X6FM2yaCex4FDjI5ybw/FEkcp6Xfe0Ta0LmntlLxmjH1vERBSjlKXAREJd9rlzvthCaJ8NZDr/3X\n", "w/NqeghxEZ33lYBsTBkEYw0AeQ7hcIykibViZ2GyzzEYz5cDbn0J3MYejpde1X15V0PfWVUcSkJm\n", "+tTh2e4Cwnkn1FBQRipEfE+9VdhK403tK8vEqWafzFFTQrt5tnbRMoNODp8FTboDBw0i1/QvS3Tl\n", "GYfDxb5YcvoTZjdyRr9E+efrJblnT9T1Q9g2Jp88f9yzxU2vcW1awEd5eDyeQYxBeYd2uWV3bLQb\n", "tKBCB86/BEuygj7buk5+YIiuG0pP+qNRUt2JouaZRqJhfDrdZn79oYnLQI+Uc8CuuIUNN2ZdDJcA\n", "xvFM3tjtYD4MvoxSLvZNo8yTIP6h6+rPUNdpMAZE67l47/I0lrB2/haK8CN7uxYVabCikEG2zE9t\n", "x4voCkzi50YpQfYiUvKEgcnURvGw9KGgiZU6CmZro9syNJqDOogJ2X31Kn6O97YZkI6fwe2+uvs5\n", "ERIgzrqwJUnfxSbSFptKF/GaBWgEcvbtZO+HPEUANoXa14a4k8zhRDfAl7sT4gwEeRXO+2q4PibG\n", "mgmbztjmDv4fFfjBu6w4C3rTDCYcDaDb9Ea4oWo5BMAhmV0A+uI02vTjjh3WGCG36sdr68oWf7dp\n", "AdJ2O6A7Xunlz/gEq8DJsthvEEJA8nyZwLtBt/XegoYuyimoMHxEkNmLWdCgZji9dl0YioRMTP0z\n", "oMwdXo2y/mtJKrDLpsiDtHuLVTMvCq7BE69M9K3qRkJ5QAffz+Rf7xJ8Oeb7XVqEbYxZnhwHg4fi\n", "C5y00djMNLMeFbTUg+BnNc0B03/DtNhwgFk+1Tr8rGJ3EINqurr0SYfax2WKs/y1QA5kyaMhWKoP\n", "SoZ06gMAe/VYUj89LDcM7o43Itur74MeqzgvAPGw3iS3tyLMRxYGeSZNufRKeTIZa3j7ZD453h7z\n", "Mh8PPg6h+S8PF2CqVJElJMNqDst6aMpH1irswyDtLxQR2RwCdtcXsfg3vfZ5msGIKrTKB5Jb+cdi\n", "/H5VeTYcmPF3D/iA2EY5gF/hX0+74S+UCBT6QihFqqE45s4PLQAAAfJBnoZFFSwr/wCayE43D1AA\n", "2iLnr1RZZ3qFi3ZqfuJPWaejjjiPp/aievmDpY/2+B1a2l5hkFr8HRTYIITJPQ0txah9scweA+rg\n", "NcScBMZmHy0QCuzgUsRu8yJ9LJD/lX1xnm0kiZm+o4OkD3sqWoEqh44UzZ7PccQQYi7ExIRC1yZo\n", "q8bRHGKJWfgmzu39scbRASyw1cw6/KyshtQ/Sxl7oMA3UjO+KLleHmXBxLqMbD9Br7G4LX6//Hq4\n", "mJ2CniiRi7oAl0+BByr73TM9MiponxYejYOepXbRY0YwIcdnOiWpW+VgugsnX9e17y3V5DUOcnT0\n", "3PhV8+pshc25GSWl6nduvtne9TkLVN+D0q8oXRN+T1X3rtv0qBgxv8oN1PnWCuP3pjhZlLKX1oSF\n", "Sr/MRQcxX1k0+a+biLz3CG6UaytPH7+ywKz2tmTIoKGtMOW/O4ZdfyiFZVDtsuO+IvWZdnreSuyI\n", "rrUztTEm4LFml+Rl24RAU65VkOB8AwJnZrKfqy0dTnrjbV8K5NP1xl7peqSq+fww4Cl4nxexHOJ5\n", "Z0mM1Vi1G3qqnIZqK11VvLePDqsEMAn/eAXSxOJGgdz7ronxt6f7JdN12E8uLkwIWVFDNz3NSd5b\n", "mLq5W27HKsnwyphH4IDbNp1vqqAfA5yjMXEAAAEiAZ6ldEJ/AMlLJF6fsAHOEbisP/FMtIrgapfW\n", "+PgA95LHIyj2M5eqMBsmfTjLFujmM/pKsJ0P92QyEmT/bz9z1BbqOqf9BNIxQjLm29C6LQdhMdI0\n", "oA6lpGYYEfMZhnCjCC512Bf1qwnVO8EMAqAfEB6jOVL28SFL89jOJqe3j6O+kimuMvDZ/xW3UM/G\n", "vCnr4AhU0hnFC4/fWWhDJtw4FHKwF9EXBnWPfewGewR2/gehTMXTubyNnHRO4YWQMG0mR9U+B21o\n", "UwkXwF0xFMJkUStZW5SZNDit6I4x9nFXFu43cf7l3BmcOtqYsG8oCdqwWZ/zTRJZzX48ObLGM2cR\n", "CAqPC+7iySF6G/DoK4WgS9kQmeNpIdGt+3sh2Q4OKiX5nqsAAACfAZ6nakJ/AL8KsyDY4TB5748c\n", "UU5KZ/3q04XYYYsugoANibKONs6SdRmtIa0y2syJhsIuZ09H02ES0bmpao77mIQ8K9NccJtTdcvr\n", "4VAi7kjm5RMtBWvo2wk9qBAccDj0/wwwXoLeAlIGB3/k99aPQhC207mWsLnznmeiqugYdAghHVnK\n", "t9A8EyUoSMCW3K97Kg0JoCX0JDu746T4fAFAAAAIwkGarEmoQWyZTAhv//6nhAC9w/kQuyAKuiYB\n", "MznXINiN9dvXRq+YuUbnPssrlB+dCF3WzglqGwSaSFGCiD74FtJOwWI6hyGSclwQE+z84X0Y+AVN\n", "bXk4jFxkUKFXxDFRuF5QEgd8dhzAMkYLz/qOoL3nDT+xXB8WjtABQbkgr8bTXhniRmy0QHONmzlh\n", "9FSfxhTLBdH21/B8VloLMOM+3RKRF40U34JHMHu8IQjbYWbdZL2trSO3AX3mfocMhbs5HLv7OB0L\n", "SKXH6wPMTbSSQXmcWWfp6qO/8vw/t5loeDm3dJzdGZAE2asFVix4v/g7e8tLZFyrf+c6oERgnEih\n", "2RC4J2da+dpPI9oVG3nnRqTx6J3LCUElujzJCer73N4v0RI+QxHYrql18yMAZ+Q1WW4nDBkJpmC1\n", "Ova4kzKfKX9c/eN2uUW3k2HN4t75tGMH3gKx7Iu2uk89hEx/F+URK3ypX/z7qMcnz8qzzo7iJz9j\n", "0WSB2VIqn5vaadl6N0irXZ9HSjZVXuKkkBKyIoxpA4NIikn7b1qc9NDPurIFs2TDe4VSYukkGSJ+\n", "Au/noaIjVAF0B4vRe0WQevpXKlhcs7sTSRMwcwtkUGOkr0kSnZugCX16UDItNDNlkYv3dlP4Q7GM\n", "h2q1QxY3znLEEIe6jk6/N0ObOgnfwSwl55CkEFRbG/TvlG39atowYkke+Iq18c6GedvO1yFdD/Px\n", "lGZugl9aJGxPLmF87VVFgVT0laQZZk7oRDV75wo9jnS3pHu31wFDxfmGiMdQdPNmeR1g6Fm2d+KB\n", "M/ffU1rtXuexDWwChMQ5rNY4yGUqn+5eJKpOQrf43HGpIz3Mr7LjaXclot8WDfYNjw0bOWkOl1ZE\n", "DNN2BzCfMpzMV/GSmywa1Ie5PumUVO5Itp+ou9bpoOdEF8AMJe5rMRfH8IvCjL1DKpoxtkxY2HaG\n", "z2s+7VXrGP/eTzpLZcFzF6h4JEAuK7x5hTodV2toH0RljLMPzLibRD5GCVTciMYCy0VJ+BEe5fMT\n", "mPwRIDsB9g3ahK9j0jkwOGIVaTaI1+CBbrfRmxQSNbKIQEZagTiAF7c1JzeyU3F54XThWeAcCGpY\n", "lAntBkXpPBD7dRz/UXqENDFIFmTklZ/YkccGpVC1Q1w7MDCE1APm7df6YVjZziu/jy/86Mie4nss\n", "ER3g05dkOSj3kZVI7zyp1uC6ortkPvnHqpHK132fQbIbxHPk4LuB5QeFgtqnBHfmDBURqNAvBhMU\n", "87kgepMJ3vv+g/Z1lFiYCppMShEFW5wmF4kB7tT/HYsVdv/EOs/5iubWUtDfcLKS4r/z817iVB71\n", "QmkKwPIkGwlbpjkVwZ/51aVZomyh1Xe3yMzi+E3TtH+QjIH9FjWyrAI10vV3Wbg4WgGARG9/4l+m\n", "RRFDdQJADnnR/MD0BHITTa6Je67VG7oPmWqvOKa56s6eYtDKtDgM8nFVejlxs3UxXsyq1BkDJdAG\n", "23OS0VGnEckLckaOitg1S8qKXr3qQ16bSao/XWGDbaI8Zo8ypuEyK/kg4fbnMox73XPjpDLZDzLI\n", "ZL4T6SqGSe/WHkCsh2s+SyyK2kOLyNInQJSoNLgKRK6IaMHfXRkclMMavVwQDbm+ziNw4HIdfoRN\n", "zObQE57uSliKwgFtO5jXDrO+0uxGyg7AyWRojKKXwUxyEfNqFra8S+epPVnUmk0r825iCmwORm4C\n", "I05d6vGxYUYixfxv+BaiKuTJsiXEN9KoDptz3bYpRLx4wg+aZ5f/b1+N7bf2XrLTu9jLbOx+2464\n", "PoclP3OmBBnkxHkvcpISV7NJ8AxdsfjQ9Mbo6cg27T5dIRmKmc+upeI9PTG4ns36PtNGFILm/6uu\n", "IcDMWH0ensWHRn7stO8waM0H/nVcEtDcXApSOov/LdubY6/vJCqE5aOuwU5wWPa7jcdUY/0IxA5f\n", "ZYfgDVj3gTocr3ehPcOfdzQzJe0KZ9qSaNU7iLi1HsY9/INV0tlcFIFa3+ptAU8Ezbn4M3Yfux9t\n", "NB4rsnQWrqRQmUbff160mAhHcTCmgStVsNOPmzj71HgMYiURX4xPGZMt+ySYILUbKJrAXZGinBlA\n", "QjKiQKgxzJfoQvNNoWeomlr3OzmZNg8qo/8WHT0r4n6wgP3RnpSqyeqX/yG8vSb1Pk/rG5Pt8dfx\n", "BPB4RndQDZJ1bAf8U64BHpMtfNxYahsCbWDI+IrOT2NjLcdBaOh873KZ00c8DN9bYwCBWbQZFWs2\n", "2EwS8pjijOILPf9TIThRpNdDDRkqmXD1HC4/gALI/DR8pQbrXrDWSBPakz3sRgaaGYw1SXQD8HkS\n", "V9BG29LjBIMgceTSIlAVZfGId0sEWSaGMJndkLgOr2lHnqy8esSQCuP6bhFcG+3xZkUxyos8HQKv\n", "1NCe9y4DC30mkxRntFIvxEHgs+sdZCl4w6ObVY+NoezhCYBWVzRNEE8AqDSrNGSY0RQQf4jbon3o\n", "8PeZx/E2MvLBBHj4/msUDVcHQpgHJeT+cnGlUi+zmD8kUmz8oQFFhZ9IF0fWy1cmTLrzFWX/UCBv\n", "uJ+tyT/mxE4arsTFV4x7USYqlLuU7bvEq2Xja378b1+yJa7X/Oocgwe31sTlA7LWzXHXzblr6T/e\n", "jnSgCgL01QgUUWxwzYFlmpAhvmfRoYIxlcuq03w/1Pfg94OyEliTW9jBs3aXHeTuPa+t1hsOvC1V\n", "0iOC6XkjDygsIumnmx3dX9p/NBKZyQmZate1VpMzYqbcBTqH9GFlJ7l08kwWatDQULVzQ/yaEbYH\n", "ax4F4P1af4Y8Z1ceD5s1PtIdsPZyxZaY4efef410dOWtUglOcTgyhuPZ4wJdqK4zXF3FReL3VI3u\n", "DbRGfenkbDr4K+j1dtpVq1vtput01nG9w+A90wUQ/PoMiscOVSclDoLwscHQCZRlxMePcrH8SLZA\n", "PXct/TT1rQl/cpO+QwccEJBYrgJXZkJf7aQuvZpNWxxIbRTXikZYYcSOL86+CFdQi4AAAAGeQZ7K\n", "RRUsK/8Amuu5UZ2pYZ+CeFigqKMAA/nbFeBkKVc593Wi/ZWXa3RRUUAEpxs/Ne0iFaD+yu9QSFjW\n", "cifJ26uQLzREGNmDZnhnY7z+nLRcVz767YHmtJZTQfWLYrZTh+TTJ4docaiPzT3CZUZ5gUaK0wvL\n", "IvYAEbN+qfAm9DzgQCuhbwFK7c2chTzlot2q26yFm0D6voEMlfteMD34ZGYHuJy7H8Fcy2pAt9ik\n", "NZZTBCv5q8EjIsR4Us8PlmB6xACSKCuEBW3NN97OJ0Yld2BWEeMrbmqsfsOJ/PlZA4P9Y++N+M7I\n", "3PLxiknImvftUTG2H0uDjeESaeiItHjZTF5SqJPkEpUrdkJEzR40kMNKRETV/OJaxSbLp2abvEtb\n", "ofsC+tn8fEp47Y8qwF2EjXefhzpj3TCLFWFW+p05I6efFXLijzONwxIF17z5IiRc752O2/zAfViU\n", "E5k7zRsaKVp5XALai/2NI92d3IYwaapBNhC42AivhnzeWka4VU2wVjpC7Gdjt+pRbgAwIOdxqmcx\n", "xXzD/nrrHl8qrZrNAAAAngGe6XRCfwC6aeVpZALub6gz5ANVDb73umBQb8Arc3ROT0Vi0e8JYF0A\n", "GyJLrD7BCfS460sNUr6ScrFAqNheNQh8v/nZk9OoMzibVcntLU6lAuIIasbLm5C6f2GOlNe338q/\n", "EhLKE6wf6gUO1DLqwxfI5gyWirLXHD+moSxMJjoNkc0UGAMs8B3P/ZUxX6z5XbBOcOPVPizdwpny\n", "VanHAAAAjAGe62pCfwDGt6KD9YAOcI5I3m0jCI7WEqKHqZHjkBR5arVLSJInv21K/cjkU7hvcymb\n", "2vi8WLnvNx2Bq2Wp4fsDY7AfYk8QMXUjhXbZM2WcN5XDlJsI54TPqA6HThFVxbEGFxkj4d4JN4Qq\n", "yweAgz6xvgj2TNcR4LivV1MpPYyqaQAdpxl2c3p66GfAAAAJmUGa8EmoQWyZTAhv//6nhAC97x+A\n", "I+OYkbQEaQnghJKGVoe10fRIdGxie0tA/0OcAy/4xt5aDaNECrKLjhMFxCMa214wLYg9XRa/qi7p\n", "wY8iY69jxa4r4SHnxkgxaxh2RXM6mANEwulEocK5MK4q9ib+9DnYhsiLNy1erQBYnlu9ce5w/PMw\n", "8UyzEaagEHzEb1ZtJQ0r7Dwa6hpV0yf5dptOAFvUrMhfomFyHyzMlckA2V/7xtsklDWHxilolBvb\n", "qoddAXSEcLdrv9/qO7+dHRZeUpOPiKmiDXRkgw7j5EO27zVZiK7YqD6SfNQf8RgbD60oxNLgALpw\n", "C2IQEQQFQthtI/Hzic6Uuob91nGAzioHTXYs/iz+1CXcvcjaZs4xrV7ElqcFzm2ZI+zAH5KBZQjv\n", "hqjv/0NdInx+ppRdrvZxMMFPt5T/T8gK1pJOvuth4tEf7N0n5oahWRFIm7bovD43/rkSpxtRKihX\n", "rchQgg0Zu7QOK4yjZ/Y8A3C7Z9HazI/4pAFrbunMVAQeMrv4FYDkLH6T8j5/U6RpSMqxOQeZjpDq\n", "vt/4VHpW8+2+zZ0o8eWnGcu91ZoFlmZcvk1ru6IlhF1bovrMo3zP1J/yZKkyFhYIgSNBsBCWJNEl\n", "48ontlNaz9SaF6Juz8IL18JZhbJnP/96raU2H+G86qr9xqxpLB740FwDdlYsT4ndYbERs221/m5v\n", "0AB4b10ZAj37/0xH7hZH+bj4ClAcu0iT6HQm7SRowohbX1ZpqjPzUSWu9ZcAmBI3O80S+BsQHuMs\n", "5h/f+9RhoIE3tz54DImIPjw5SFHSoGanZDDKDsw53WuVTHO7pM2HLdaDFI3704nWBcBveerLl/2Z\n", "UspcnubX7l1q1CwHLIBpk0i4toq5I1WDv9avlfBrOtM1xNRHuu3nfBu7fI/Zg3k3dhsD9E+Rhck8\n", "8Nq8BZUfA1Rnh8NktA3ojRWPSirZjbyabBOjgkulev/BVZVPP5iNgmKl7q1DEd0FG5NVTY8LHv5C\n", "0WeHV5oWZGBCG9ByrNL/xr/fXn7K+ANw/OtVBNZQVf2AJhe/GBCXDhzysYTFnjIKZPDUtYvY80EU\n", "dF9EpI8c4lYMjEKFK9ia7KrziOa1+Za+uxVmjKs48ejRGhRZbvlalrfswvd1hL/F6i4nvr6LIVSE\n", "StGyDHt93XE4PmD+dHGtajTn02FvpRlJ8JQDsRO2F2L0NqbK54AuhGrmrop8FO2RJxEPu0/MD1mO\n", "vdQRy87I6Y27A5rneu5X53d+5bqR905gg0Y0xINYJYQx6WI3exOYNdNY3+hg2WV5LyyQ16xSMXU0\n", "CnKqiq8QgolkYSWQyVa0I+XnsojGhU9I0NMvMxint4Mygd1Enw669hrDHQkDSE1YQTQfoBvhxobF\n", "BjmzYJfw4Jw3Pj5WaQlQzz2J8abZWBLTaY4DnWCfpb/D2RF4vJTVRz9ZAX5+skOgJ/sk3cBrQiuJ\n", "5H3xc2lmkNcgidUHmgQF98D+7e3b9LYpn6AGkJxll+e9kHGvgd7Yl+iV3+9GVWVfS8OyXktVl1BA\n", "KK/buphZRdz+ugLxfpCI+3FtH2P79l0kAbnD/LST4EoZ5XXeP/HVTgtgrWih0YEh/ilaA4kNS4J2\n", "qetXJVztyodp9shKA30eKElyHlpVyLi0be8LRZSoy1fdU0+ker/5YsCInZv41JlJvlZTUT9nJ7OD\n", "ZYRObuAR+QiXqVruhig9wmcAAHZUrPieb4SVP4R4reAXA6xDTjGu/mu7CipxSh9l+8HPKaaVJfGq\n", "mYDcJ4FHJxwUkq9ZaZbtNCwFOfhAdijTL3q7f++5WHNkdTs2lnhxL5lk1TPreM36TSUVm0920/KJ\n", "IbCZV2ZANmCeqs04Lbf4851m8Uln4q1s39EnjrW7QEKdi5x3bBcJExyKEUDPusi+l1pDpnQgbsz9\n", "Bul3AZYvYR85OyK9+f+DuhS4JHbsMprnktt9dwSy6BmR5foIBMXX7Rjtn9vCAgXcxIDPX5cc+1Mm\n", "IU+ULcx+dxTR2W5XidrjomzvLXa00RspBYLEd55QAg+yEE4YTv5S2jw/d0Iou/2gNLJVyQaMRoqS\n", "8lRE+ncqTuOFF3EAl1AvHvSr3meIqeeN85XbLEunBxCycxYpRsl+hMMut8amAkm1Gs26EG+k+Yqs\n", "K7015/vu0UNbfqI1eN0SQnxbOqfJa0qx/apdXfEeL19O0U8OoE2+KsPNkeeHOTNLaG22VmiakP1s\n", "D9Md+2862hnb0AYqerRfE7rXlq27BRRzB/aG7ANArMA6lwpSZ+9/Hf+RdTutS12U5EBzti9uXToX\n", "wzx+h6vkYJcgCiWDRXPSFBHk66ItRZ1dPrKJW3LT8EHY90UEl2ylPSkyL6oyEyZab9mVuuE8a7c3\n", "sb2nlJnrFUP4Gm/HY421PaPCwp5DCR5l30qKPOrl7/FkY0u2NlUuM8cyYVOwsnWPD/5uOSVb8C3C\n", "TWqdg2ijTmFQLaBuPROg3Px53dbDTS3dF1M9onamiA2maTHjzCvgoTzy5sD2yNcYdZ0lKcTiWA2e\n", "O4j1XDyXOkM3MRIrhWR7QpGPfFxw5/IFjHXGho5LAOvIqQcfi15BWGOLfmqtmzm+mJ4ung/H03eQ\n", "7xRHE3xpCbsyOeD+rZ5E1oeozdkIEVCHfv6ONsE4geX/E5BkxQDtQ0GKlmB7iN8RC8v5jD/qrMqO\n", "+YYg3bSiDM2o/MpE17/Gn+Q0/rIKUOyWMCf75jLrzSmUSLThD4bbbldz768dKF6FdshByFSzfbnZ\n", "KZh4O+/mQ+EvYEgh1tHtgU58FsS3JBhmNd6PlGUSmjqJMwqrvElecRmABQNnII316DHNcr5dBGca\n", "xKZgfnVZc6Sm9G/3PYTBnjz0mtF9/52Cf5cU6IdXyekPajgE7q359ctXWpu6WrDLmMpIeT/9pTnl\n", "T2stP+n2AkOTPofwoJu7fcPoLXRpjLI9dalbNJIReYXHpqqqIyEZ39JRnmVVtcrn0pkH2FwCiYME\n", "KjdXpjwuoQNTU/l5/Nf+XWu5aukiBh35/5hBzJaJppztJeZooBfuWVd0giB3+I0TOLeGuw+i1BtM\n", "kCn1jx6ukPYYgFKR9oyxECiOjX9IePxGTo4n/O14Jf8UiZ8zjSAE0Hvwg3EjbWpMvRVHgXarqzoR\n", "D3b4jmPzgemRvoHueUcrqEL0DmN5LxC6+CSPBTT9swxPvck4Alfuvfvj4K34kJwjZ7SiTFmkDJtF\n", "rXefB2R612z/m7jLiKlX3PLUhW1KjjDww9ZU7OvJbyp12P35KwSEOXfZ2QAAAaxBnw5FFSwr/wCa\n", "7E9ixH0iqFjtqR749M8sijYAAlSy+qJafKDhT6KhzEQEwhuba8CEXjLusAXF696WUlhHyeVjnJCB\n", "9sJoc58czLT1rIdybPuh1N5rmWIxKRZ/jV+PnCOSGwiajiHPBPPh46zdixFk7iW/+xYY960zdM++\n", "rnjFAr9pmPlIzvL/bfznFL/kHz+nsc5v0e9luHYa4r06Q/ifvPLfi39+2iVGqKUgBRp1iu4c9oFb\n", "zvEX6YWznMFBDuWON3ngIWaDdVgKzkXT4uGVFCT2VTb/VPBoND1WDEr+/TMunC3GyPhdFv1SbW6s\n", "S+EI2WrCBjkwIP9RAoW2JZhsVacmQd7vRa1S9Fghr4kxVcPqyCQD/aWxjQAXe1sWr3bZc+fgmbBl\n", "mN2ke2uIbujwWfAMqX+5N2W5cRkgds/ya+s1YAYXrgGVLopr+yk/9QDCigPket25Vc2TGs9C8F/V\n", "pvKoJtrbfH7UMpPiHViqn9oe3CTmqg1v85+0sk/DddzfAm0W6SbwenFWVQN7aShlHjoE1yNBuyp5\n", "dictI1YBaqvEdMIASmUVUEbZ8QAAAJcBny10Qn8AaaX4XbchtEADWz+KyAKN2sNCfTBtXodaKv8Q\n", "9uVigcqMOTNgaoOLpz47aEXTyPD2qTzkVlFC/8i6EIGndzvCWa1Z5rDO8ajSHSbei6SB384m/dOL\n", "2E866BCp+X5++YQ7uByvVKyCm0bdDJ3++B5D0IYYaYUvd2b8yZgLldCF0YLHm/F8uR5gwlGM6629\n", "wOtnAAAAsQGfL2pCfwC/XtNwSpEwAIgVh9bukSaaDmChAijfaSZfYF8VkJY9NjeRt+Uod6WKMcQw\n", "lntcZ5Ps8vzfRTT9zyJcgC0kEV6SO3PcsJoFsgSXV+q5+WNNmf0zhAM+uOo7AEd+dQeDNBuD4aMK\n", "qvCK6te49ks5dD0973nrOoet1K2VmSpg8NiwuOX1ntnMqt932qFR96wfzzFs/Guix94DmEZOLJ/M\n", "YVLlxIRiO0R+rm444AAACKpBmzRJqEFsmUwIb//+p4QAvgJtTkgBKxXgMv70McGB95A+TEIwOmf9\n", "WA7MmkPXbcKrZYAKFd/xJBVOaqbdt1+E8MdEUYy2yYe4iOi19ASjMtPU0vyn/5URadD+aB44fRcl\n", "7RNMFySx3ak0RjYyJ3JuRk9ll/lMUPNSgFSvyQmnR9qTNZHZhhpqBCzgGo0jQ5ytLHFU2DaxFjgV\n", "NAEbpSta2o3wGM7mZ5a78iQDbSQp5U5zeUWTldjDzmcNyJkGWTvW5DWQYuPIJyUQzse/m3rMdnJK\n", "k2XB+Bdz5EImvKWm7G+n5PpqQ37mUabeJoYg3rkIZgoC7cXeaadk6F+ciNDfaTxcUeSnnpIkzhfj\n", "J08FCIg/hGqOee4BtMeuP4vi2QGict0Tnn+ny4w6ugf0/R4+0dGFex8kH35wO4jbaHvrhQnX0bO0\n", "cXS7V6kU0ZbxLTP2Dmz91gT7ChsbZ3EbZCVk0kLIXfaYlW9f5NGMPPeJeB1lUadPXb+p5A0lVpRo\n", "fAjy/vSBQXgGB2pk9vXq0utCBsUJ7YtDBRIsrlOxcKLhyp2JQjkh59iB8/zao1kIMSzJjeo7FJZB\n", "Tps+4R6mpqoXok/NIXtKEP6wyz1nzJeQuCLmfhrAX7eakjaBf/nNv9eq2VXZ6MEGK61L90z8NBa0\n", "2dliVRYI5LvxptSwrKNpH+QdMqk2ZN8m6s/pcFbSaOTAGve65QAWIrcVHPUYkqtKpZK62sQZwJMD\n", "zaua7l2FlTfHlAdMBbPcgO5N/ugBNM1aK+cWhkaEopQrxtbr5epD4+hT0iVr7XoP8/JlpCu9wY0a\n", "F4FKnjGU3SqbuBfI8cgwcVUpTYaN+y683+QlmE6HSFcupdLha0KPff7YF6pOCxQYOlal3lssSL4A\n", "xAekYCMtmiE12XPhW6s5uouBoIAfLJxqZO33EeRTY91acKKOYqt/K1ReC9sFYBDMQjHVDvcym3aa\n", "fy5Bh6lgSyyXZL5hvnA7f6hVJOly+GQ6z2JdC22EaTiFRIsVu0vtE0RslQBdiyQ5XbKD7ZTJbn1n\n", "xY7QEFsfWYIZVcddlRSD8HcluokUfX5LtM1P/qP4nTLT74+p1sIemAVc+ZcZhCycdIHnFZsQjhxl\n", "TPVgnmxhNmuBHYclSZryv7E4qzEIrrhimqPywm9i5qU53aN+CzkdSE+xHRQayUMlNzxEUKJ9byAG\n", "Jf//BCH5acjAtTKmSX5FBSJAWpyvb+9vYV5Ce/ZDLeM0fbOt/wEes4S8MGDMIANA9ezsi8r2PhZB\n", "89JXBfZ+YD3cXY2pXatuvfmBtOd2aO1NcmvxyVM2QISzjr3pEDo9gbaWf6OJHTutPuCDIaAClrs0\n", "5EbPUb6kHfSbKfk2enwRHk3BrT5ms8ir3WxddMRRPf1D/+YF9LIBNMA+kNrLHNS8Jfn3hEFid3h9\n", "Kfn5bxKnDw15BWYTk5TawAMW3MC34GVntyglm5WyJb77FaGpiJsMmgvoDkGMJ0C+F/ha+3x6SbSn\n", "WYZMmXRJ3J/LQ8JJ/pInL7VCJi6k+JR3JWlViHqIj9CXDavkZhHW8NX9ZjNypj3xRhO2SZQtKFfN\n", "Ch71SDZiomFokcxJVac7AiNaygFFbGVAwpFwEYE7SSb0tGI+HPKZPfh0BNIVX8zFXeeWMS+fUXvI\n", "IAtSw87uUm7xomDVCllokbBEnBNGu5lCne3UPJDAJ2YC6q45pJaYbAoQOLyGUBDWp6wZweCtpnag\n", "aV3xuy3Mg1tFO8udTbhKQ7zRHfOCwPzsx/roaj9kyMrfnKiB8kBk2zB9l++vsY4OGDTcztqfUlas\n", "cb9ZuzreEMplhdq/6z35Sl9IcjrGE9RtWxp4nRyykB1I7uyJQg1IwGg7rIdOql5eUq2swyvdOVj9\n", "gh146P2Vk+vApht4Xtih7LPdn6z3u55sJcZl7xvc4RYb/lwdVWH9DhoD4zQINhjp5JQtt5F8s2Em\n", "9jm78ux6IutfNSeynjqO0ZInnhd5yiPOwJMeeuusqmva3Fc5VzTFLlvLP3aqa6c38OL+8kvfj36j\n", "fsfk0ZvZgpQZKuW1WVQ+i1HxD/n11KsdCqnGsJBm6Bvd1nLuQ2vI1Ua0KF5XNFzv32S/dpvQDc1P\n", "jAqxso9qHPi8VhfuveyYsn5BZIKw24I0WlPaEO8v0fybMi6aU2I64AtcB20oLppwGlWheE+tE2PG\n", "4WC2jBCldosnl62svtx490aJMNkJkGPxfXn7T5fuuuEzXCyrzOZEz8BhEhHYkPGJs5D5NvhXxf72\n", "P138o6vrZMvD2wA6WK0vLV5MOe1BEF6752oZW7PkXENfQpFsTLKa2A9ch5DfnWDA7wrTxXIjVqQ6\n", "p+Wdn6+q8+hCvzRsVDZP3qR0Q2KO1uFlQgge3tB0DUPNKmEWlwDGLZHayMwzR/VNotLOpLZ2ip2g\n", "U7XMY99XJgl9bXlY79cCcakGuIuTkyZX5GH28v6JMqQ81MEtVqY4xHZCrP/89iSVhnzlf9kIHAH9\n", "jZiotp3I1Kq8DHfNAoQ4+EPqvkE9yoEz77C2UG/zvRfacGem/YZE/G3egNFpef9LzJwmrbPWSABA\n", "unPETdSUtuJ901FNtDmrdWTELJtqDRE+a8y1o+B7t2cEUalRbs8/lvlplaDzFIIy7C5LoEUN5bTY\n", "7Le/pomRuWbzI5t0wVK0o0+IWu/gL+0L3QYzU4lkj3Lrh7SZ8Jpiuv48QzDFslbHgKkQ2eTGkp6s\n", "MLwsiT0r78XkI26i9effiJeKrFTp7hj+H5o1Y/z6KtzX/Uvk2b/GwHqJ8v6C1KuNeLAJzL8+J0eJ\n", "7+rbGCO+Tr7O+2cwTj+Hh3dsdqgMNuDr/K650WPG7n9aUcYIWU4TMcMb8kfpFCkdkybjUqjCb8va\n", "TqoK0cX551/rvpwCO19a5ciyTFK51KSPcuKI336vK51ADonpLVmXQP0iFX8pliZqMlq3o1xBhD6d\n", "pWA6DpQMvV3e9IqAAAABwkGfUkUVLCv/AJrruVHXHb4sIAP38mCD5nkqAW8YdbK8E/nHKFxftSi/\n", "2GEH8dslMFMAppS5UF0EHeflnFiUnISnVyZC74GLA0bxPiT1ziRebyEavO00OkZlpns5DlINq2KQ\n", "9wuwGmcrsq8ZZXFcr3+6r6v0w1VfJXh6nln8exSkRKQruUXNiZFvp49b2ypIGtbPYciSFgHJmC8j\n", "sGTZxovNsyNxUktkg2YuQEo/oprFxFUlNy4A3cJ+8yH/EUjFBovYaaIVHDSRnxZ2ZMXS/2C0EKtM\n", "ex7knUg4kkIkF9/1BwWzBZGQ8WKaOQtdRZpx8okKGpFqZavT5oJ82eMmoLyOo4MQAm6Xsk1Dt4a1\n", "/RXQeiOp0uUyZjDPBDN7+1eNQMAcIQSR7GgM0Qr/q5N/1+/skYdCJMG9pkLGYr2/FCRK8nH6ReCA\n", "6tsETTearVXDpXguNCGcOfMo50pNXbMuECP6bf3iusP5QMGH4g7VDS4aPh0EmuJIwxKIudVc7e91\n", "/bYT32yglJih/W7ezFFYq32p4TPMEa2ybNwaVZmshdBzBElalD2iwTgESkKKTPCsGN47esgo4FgJ\n", "S2V70PLmduG5pQAAANQBn3F0Qn8AZbPoRPzLoAIfqiVU5T8KfvcKQyQfJjp7Uy21s85mSZp4V27x\n", "sWU7vUqjWSe9lt0Bj5KB+32+mP2TWGP1wPpOXTHfC1GVFyA7wmFBj0XIZSwmzEID0EAfJIse0E87\n", "DGkgvuaCUYysRWXr/4ZhERv0LQduuREu8ZpI3dvKeYdxHbIaljK/L5/AidkknqlKlt7Ixvsu9rNi\n", "EtF448rM7NsWP/4lRV92YVifddK9Ml7LM34D53xye+YmZBnwu27sA93TPKY1Wyjjtq8ENqJ7oAAA\n", "AJkBn3NqQn8AyTwD2oRC/90aMlgAhs7MZCf94IZu4RCSSo2Tochf8T2SkkRTJFzxysq400wxChA+\n", "ELFTAJGwOxSZo0sBXJADRWdmiGG6iFvcJsgn8J9In8qBtEjaIVnvqBX4s13KAHQ0yJEtl/6j3ImU\n", "Ks5ZogqSyUn7J4xecnNJQDWbeel3egib6a2qEpuhRW036J5pdogQVsAAAAkxQZt4SahBbJlMCG//\n", "/qeEAL5DmnQOAKV9RokWLWiH7U/N1xjM/gogYsrx6B4gzMW+ToBBgMnjdt9cdX+NhHQEONcWKTlX\n", "gdpSrcKoKzJyD5xVmsZIhM9zpFY5eCni4CoCQXDTlvd1UGI4NhrDFB2cCr71aXS5IMX3m34D+p8Z\n", "bFbtxN+DAkX+JZiu7mOcLlnT6RIbB5dukpNcMuUFYY98CnDTRGGPj5wp/FV81SFPcAPfEV1AZYvV\n", "w2IQ1BNsHu8JVemLcYJFc7OzPWAw4C/ZtteUlBx1awNPxG645JOVbj3GoPWWbs9P8Q4IBudWIW6g\n", "x19KUSRnQj0IzZxQVoXX2HLCEUDMwmE8L0o7VgBd6wTL+FjP5//d/tDArYpw5rtPktUTQbwlbcgM\n", "g4QELsWbOf0m1jhSutgsmc9ruf/MEx5+nBzscET/y51FQqur74KkQFZkzGQz8j8R3r/eWmOCnvLK\n", "9ZJVTpEGOXqZna57L1ACV6QretmvdQgYoKliKJx0PnQsNUJr4g8IejBl6hOXrPUAF+fjO+E4oNlP\n", "x5G3fYwPXWtCVWxzwx1Woe9qf/d8lwF86ysviWXQGhnKpGxdoXJtVw6ACgj9d6aXaECwQBwoIVqv\n", "cnhI37OioVegJxKW44yDjTfj8qwbAn6STeoy4cFK/bHkMog2RFSkhsSFhCG3QO2m2hDNacQt/c7k\n", "AMPc0Ewym4oIDAz3pIwxhe22FQ4Jnja09PrScJMRcWF7CUL53ULZEDve16AE22A6FR/R23KuyDTe\n", "AaLghJpUNWf02oaawQEtX4v8FJg4WcmBDboGj2da5ENjIOS7Xubl3eGGuvYHRnFJc/wWvEGxyLA3\n", "YmtTG++SNrCx9gj/IMizF5S5elnKNzRMP/ISBcAPgPAZFK4LkYnDG6azQCnNSM89KeCdrSGWXU3P\n", "YM0vGyKtVsQZtsiZKtE3HJK6Z6+6sDjfgK7tbjZePCsyx/rcv6mLwiljoGNRSOve77z9Mys1xtLf\n", "su0Q0aHbrvjaNFUtTUAgMuF5NejdeMeEt9bgKdTaLeQYATHSij1L3g632GP+b0LT6/c+MN/bvVUU\n", "BLNqA/UnFqhg564TGd0snTSiY65IjjlFnou0nK8xzr2fb35G9oKhZVv73df0KmxZXjnqG2qpUx2U\n", "YpKPvEhzr9Yz+AL+e+G9rJ37MTXx37ad3q0MirP40aA8FntJ6CvvRfkbPV0279UsZ0MWqEqapAU5\n", "HOE51AA7tpXiok3k204JlZaupIb1OZGVIMojxF83LH9DcRCW00zR+0Y7W8AqgFf35Z2rX+Lc0LR8\n", "n3oCnI0c5VYrOwWMMAPn4RW3mvywshRhZfdRXNinEnGGMayzN/aH0z/z2T3foGngxX0ad2tvdrdk\n", "xgZCIZjysIrij2oCbNVxGvUAelUFR+v/N5z3e2UWSC+nibBezt8oXVH47BjosZzOd1fNP9sMa1Y4\n", "ZN/EOlxpK+haHE1IYpHA11AxjHqUzOyV3AFIRBxrWROmsSMQOsjV1nbGQcYLkR3Ra8yn+aqlkKhf\n", "AvETTc7RkzMhA2QojpJ32JdgELhFMprfh6MVHq2EVK7AaMF1i2ut047McfYU9UgwYa6cG+Roevde\n", "y+HwYHBgIq8XlS7zjWpLz81o89OqzxBZ3FxKwD/6kliHHKeTrq42gGLstY2PUnP9Ltx4jvmHceMM\n", "9RAnt5BlljEg1RJblhPqd/HUT+53IIoYoG2Rz7z39CO22kqBhxqgtju/8yS9oO2/TKGwLxb0qsY+\n", "2RPz3aiBHr0laZNpewJ6SvspbHZwTSOJRN6/EYXGMYx6QU2GDBvMlGurUGgYZs/Hq8UsOT3akE0E\n", "S78b4ZfOSpAuq+pZQCBFGO0nLuUgV8hq3PcGvKn9A+hlc5rbVU+N0WXZQWr97+s6k/LnhOEicmMd\n", "ltWI//CI1ndUA37zhgbUPIPYsVMl0wVdo4M+gO0HU4fwCNsEtdpVtQxgzouQLsgt698CCQEWuaGK\n", "/nC1f73Oi2gGfYAU0WvQaTnfoevrjsv1jIF9UwAWKKjekk86jk4XDDrc5ka5mlQPdomelyKF9ZEF\n", "VOPStiNlhmBGqO2kU+UbuKc6/NF/1aXejqS4TvZZwLwQGHRk0RqK8XPjQtZiGnoFWvn0wfKtBMtD\n", "x5A3gKaz10REMIbvmS/BVX2+6fIV2qqJVgsIDFxSSoCPWkdSB6JvEg7KTo3Afn7C8jONEvx7lbIx\n", "MqQh507gzIbKdUYMSH5KSKZyHrE3RyVvnQQwGz7VuNSmQKCh3aNcvNC55wgHgd0iAvzMq4kG0VSF\n", "7uV5TDqP4d28SJpSGFPmSZZKJ1Gcw6+1Ir9rrIj/n3wI3NBcPp4xWWxVYsLV7PcFiCzjfPL98cgv\n", "k8VzXb+ZSAVL5/uBQtJUi4TQ1zOvzh0LGTRIasEAjt2QDkL4Tg+cbfCfQs+VI9+7tPe7dmLOjj9m\n", "2ZmxuPHuN4h+hCoRX+VBl0PMUmD9BogYd9+HFvA5s3OIGKPjX/+nYxHZurXCiYr2iIf0AMxQRQ7c\n", "i0DRPWI+qq0rLqic2nF99eS9zUpTtCRY6Ep8qzzXtwagrVSS9fG+uCwYlestKrfIq9NnssmQ2Rdn\n", "uf1al4K9eY2sWZcGcvm1kLd6W3n7yP7gFVdEWbZ1aojTJpZ/isLukIyD9YDMB/P298CClEjRP3ma\n", "3pIeCGRRcVPx0btuIv/PIqxBvXOoV0vpx/5CDV7Emu7SUA/TUqIK0H2JndXdAs+M0cWCHjlrUFfO\n", "HwX1UIocrvRMcwrL62fUekxyGoceUjkchcyrM77QvR6qOPDD2dTmCvVBsUSocEUPH8I9FXfUfftM\n", "Qj7erh5juqERH9OBz+4yYFLfbVhwJXv5ozjWa2nRHLasVFRhVNx7bZob8b248lXlSuyzwWLioXRM\n", "vI5vC51taL69+p+DvwQxIiuM7iCEVcgeE2HK7HiT/Cv8nYy/x/Zv9SaHmLJINeAZ1xyXW8oOWMXg\n", "ygl7fkArw0TCp9/bHjDBJCJNCTDD2dDQKQGY9SMEN7fL4Yyk4YXHUOlmDyxnOQb1AP3rp+YYyP54\n", "P4JOBbcq3g6NfOIvfYqQJZUhRy+S9PKhvEjoqsFQtmRowyxRC7fLnGhhyYBNZA426CDSieLI2SCY\n", "c5i9QQAAAfRBn5ZFFSwr/wCbPEQA21bHtYMn0r0b9xMdZH7P2TAJj9+8GVJUVnDceQTxA2Ol3df0\n", "umizUvV8oCDEhuhPgl4hm5ZeBc9XS/6LRpOVPuzKapLL0VYKAwgHK6hxdJcDMHRZPWfH1oUYuoHj\n", "da2+uuBDA562TTRsSgs7YBfSU0ZLp3jyUWnxAe8XxdHS18N9btDuaBvyv5dob8yuvwd4eLh1xKDq\n", "x3GmrPVZ3ss8xOwFWBhgZc3Dd4MCuRVc/O0iUy8muLdR4CxMtSFwCUpjllsKc4Gz1Ja3D20RPJFS\n", "Au4uBB0SEoo8vyuo85MRKBr6N8lC6ymziNc26xRoBSy1O3Y2AtAl8ccD94yNZoAj2xCeVqI2nOK2\n", "/SRUP1FKltzK5EGCNuksxG3vb83n7sFQRd0ERCzcf0nW2w3CzRFan/dwGvE5z8tIFHaH9w8RKPhE\n", "gq+u3+lT2jnFGiu2dO2mJusCS1d94KxwfLSyZ8r4dXGUDsRmZrrWZ6JY5hkcTOYJyBX+HAGbhRoA\n", "yggbnRG8cupHGpurXcntk4cPI4gjUknOcA5B1Xkj+ZfT2dTO4f8glvXVFiDZAsOLwCm16nQGvWUM\n", "tJLR83CEishvlsl1DnHILdIAW2CaXTrNWsGI/uCNVw2qieIMgnR/RSkiub56o1TH4b4p+AAAAKkB\n", "n7V0Qn8AyPk+fSqoaHdDDBIDWrHKTNKAFRaVSwoMAEHiwgmR5x6vp/RrNQ5Vf5X6dNIo2C9R49X6\n", "81xaH2932GH5Q2kOlF1pMLj3A0ctdrflpLSbIjFN9E+mLiYl5BHHsWLMUD/gumFV56NZSEhqKbVa\n", "/3+YAQezklxRU4QKckxhBxOBbMdEgvBAAAAGMsxNsB27ZT1UVH34sNfYKPGGdMNGnMkMIEV3AAAA\n", "lwGft2pCfwDJO6EHnwAOysXmZtZ0mayu8e6QztlALu+wKaG56jTbLwVpYa14bA0sT2fDyj/kh2Ga\n", "jwJi40AAGB/plBhn+NQj3cA60WNB0umtps/hIqttd0yYDIG0sljDADN5WCzZJCsDaQxjAAOkoK4z\n", "QQFbiDKsCwml7so70l61gRwh+qGHXNBtXrF0jXN/IMsyyBkKT/0AAAkIQZu8SahBbJlMCG///qeE\n", "AL4E9DEAVymSirbrS05XiL1NyeK5XIZ4RgazoYCX2TFIhGsYlpDUV2itcMAxs/BWoR2vIYB5iw5S\n", "N74Cv6Wu/3fL5a3LrzV1i0fCDdrveo87l6PG1GSMLY4qM/l9yLOZm1/vc+VVdASHo9iW666FZfiY\n", "hHOf/4pHijxbSqtJ1+8bpE42IK0ECtZriKb4gW/KcAhJvT1NIpuvSBcddmVX4BthhHnUu2Y6UTqd\n", "w7EkhLJorNLA+dwwauvSoTy9XGMjLykIbtrbSzr8PkfN5XPoBmV8FkFlES3xVzYhvgycepAy2Y/u\n", "MgKIvumvinVtK7oFqp5fl2lj2HuMMexgIChppXKfUoYKpzTAcWpTxJywZK5RAmT7OtFJ8duHCX78\n", "ZFfaileDBR3Uxj8JP/NkL6nRYlMq70OBN0sNJRc/3lP7kFnJ+muvoPexIMsN/qDkYQwbrQBK4hmp\n", "gr4vA/4djnOjTBBD985ssPplR86exQ7m7AzsfuH8yhYs8zskDkhLWb8ntjJl6HwyC/FLOqzQF1Nv\n", "EFoD3QRWacmBGZB0l51jczDTwCWZeDEmnpgUx+gRZgqgfsH9FBNlUofCHVQtP0GsMLrQHTGv+ZQ6\n", "/Q2+EVvofX2CZmI2mXw41vMeEWUHJvVVsGsEIqWe1tfxyknaLErA2XGTzJnVTj4qcGhwuYIvARO+\n", "uUNhuCl/UKXbNJNaEXcdLBmelQCwey3v2/HbtE7PyE2ulfMkgn2oP//L1FcvIoFNmKTK1jLCeKwg\n", "5fwvht4tKbWE4C521IsrdisOP0AbdyS1KPwLw+97W63Iij+JxX0xrYiqZQLWMKbabZzDt+Cw2xJH\n", "cO+fU1COfVrK33u6a0283P/OE69Ohkto838kG9FYB5sQAae4aH06jUfCD11415ci5pCCsXbwDfkI\n", "nmbJhmDxvgyLFQ/36gSRuqSejFK4Y91cZEauhuDm7tyYBuCyubCgwAXqWfBUv9YYhDlFKa1xNHsS\n", "QrfW0birjZBHwAed+2q4phsi+3kXz/p35LLFah29Q8Spq/meh1LUd/2eb/5eBNWdDINjgULm9iOV\n", "XDlwLzln2lO6VCpSX1E/KQPssMRYr29jRbS3KAzdjKVqtNjIDTkO7WQE3KAcwKAkNsg4LRdapcCq\n", "khYXQnptzLM2HcdbEbm+GF9yxtanmnHX9LTnA69NUtYXX/Yasc7OeP0O5DsKt02tMR89Rad1b9Qu\n", "Aw2GFZxHj3/dCxykRPpSPqE88fMsRbcGV++0QgEIFZrXS+eXowum5K8f1VKrOLxzO/mTVrhQmG1N\n", "NKs/k1skE8Hxq2sl+t8r7VaNw8zcQwTdnwXgmKKP/0OEt6ie8NLA1175Fv6OBDv7rNxuo17jxbpi\n", "U/od7Yn+bA1N1WkBnTKOxHtbIr3ho0BXsvreM6njbcAM5HJ6VbjmuSLoKQacjTUcJu5sb7seKlhi\n", "gp+NG+yF/PMSrHohxppIx3mV/0m9ces9VZqYUnwwSbLuenvydj70dW2w5kUjwHBhfzuOx0JgSESS\n", "ARWEuvJ90aYj5IBq6Jmryyhr63LvWGKX2/1avr9UkVfSxYfKy+DNfDhZxWDd9+76kVUadMQwHHED\n", "Q85TMI/laJG0APjjkZqS5u5WBQCfcxpVAPb7DUgyVngIWsgqh9tmlw8P127Ol24qktGQeLMvKlU2\n", "BASXSiopn2qByXkSyBDgvMcIFveikI2qMjCXoJiQD6CY967JlSb2tv5Q2sadfGUdYug/dJQTjcGR\n", "UdJxwwhtdaKhVvFzGaqcB6J0DokstuF43QcEiUaQ9FPAobU4HHpureVgw6i+MhkPrmxq3LkMyWt3\n", "nMFngMFkRJP2XeAZbZ7ZTvAPRswQCVJeWQAW1MU6RE7IMvelN8ouM0pbctsCaF8JR8hbsrPzxTwc\n", "knu8KlgK5kIsP2/8S+U1DgPu5/THt+seoLGfxg6RX258qeSa68LOCB5wwo6rh+Oh/+yh/u9T2/4d\n", "7jw7Wmg6Ri2Lx/XlPpx16wXTsj6vNFezZ6TnbH4PWbzcdcWNrJcCS8+YxciPf7TjLBHt3B7v6g5z\n", "k1wEEm3fyHRifiGdj76uWgaeSnnu9GL1reUdR08GMulyG2GfCrQzjtZEt+rRJC4WlMdPCE8FfCzx\n", "i6PVE9GBm7bp3OE2TudPfPt+8Nj8UXhLePK49wfsnKFa4UjjNfXecUMn+GSK6g7jN6H86e2rCC6f\n", "w+TG6e/AObZsnYy1eafv4wYRna6TQ+OMGgAWVV7XOEN8P5i0LPt4o4I2c4dv9NX2NgyZPcAfVO9N\n", "fbyrnP/4ZjJY2G/CR21gOFwcYNNh8tdjVr7ZwHNx2kf+VGU8csyLO0cFE6LahA8bXFoiJYEuAvjX\n", "1iVc3HrEjtI3LHf/LE7K1GytELMe4rTxxIrPRri/3GBhK1GLKSw4IZxNCGQGvyqKTLgnqW5+E1cW\n", "dwDBtQLKdht8E+QVpuWXAAeZ8Xjav0ZA4QsNPw7UmS/vhS2USTgHjKrvdR00UogYLz+r5IcNTb72\n", "y7/1MAwY5pqhFkaw8+JqbYBv6H5baHwLJdUexA63O6W9AhHh0yPTJaI0eawemFRbsutu1ThPBaVv\n", "kNdUHsOprpG111C1Uhj+sD1sxfiz9gv86iyRgFG8/S7ReCeuortqhxRMMmNGyMM0vK3ccLGrjy3Z\n", "7CyK1mGXr6kA4AamQgNKMQiyL9CpUPhcqAnsEgVT1WISBStuW/RQ/XqQKosKg9nCZQyLm2WkypTI\n", "b/XcWaKBy6JpI9vLYSekhyoB3EiiN26je6KbNR5tJGlUDIqJVe8RFCtjae0M2GmO/qTinIuW+tNl\n", "YoRlxFtxJej6Tp5cds2piYy7O9/oUenT7cCZlsXo46KiaAEqQ7X7TOuYqn2c3Oso/hQ+m6K89wP/\n", "3ugPfRgkJ+mxeeWBWroggbhcW3kRlTZ86ttUMIv9y6JViMrWtnbBtYfIILgbdoSEL7NLhgyOjWhy\n", "YGSheOul6pkqzVagW+UKB7lQXZeYIVo5eR+vQpi7Urdj52/9Wm4EXzyS+pPBdhVC96CWrab/JmwR\n", "13YwE2BQjhpmUSC5XiRW6B4AAAGkQZ/aRRUsK/8AmshOkiFdHjhpWSwrtavMAE7eOP7MEKho5JZw\n", "2DP6qjEkk2phKJQcUp07aJqNVgCqhHL3ppMA8K+ug941SETL0+P4PUseliZH1WvYByl1dmMTg1H5\n", "TfscO5Pb/si/3LMJNf6+uc1+GtDqVlUwu9FI5pKyGrWUJE8Bpvrgr0o724RDe8JWE2JoRsdkq4RG\n", "mWuiv7MJ+VFMVI6nIzOQy31fsS9liD7G59sdu1aHBxbnZMUHo14/2VrNTE75jUdNEZUM/tR/O6fz\n", "mYcc0OHSbVRurH6OBq+2wHuhirklst1tvMWWCdTJjKUvn8KkJowpA1kdhks0SNfwhOJRlhDLU9bi\n", "3qjZMQvHs4z8ekOypqi9ItUO5ijuMTKqVt+mhLMHP97jADprCn49kxbj9LXCquf4a2cBEVbhBIcj\n", "uedESCfdJkAwhfekVt17xtkH6WzOtE57oNGJ4AV7/qKhip9o50OQgQhPU7kc6Sjin1KXjgEm02sm\n", "E+50IWusVb9zBBvUTuY1lSu7qn31EFqb8a9RgW29DfvpfMV9HcThjE65AAAA6wGf+XRCfwDD+dVn\n", "uLqzLgi0rjJ7MAIIc4nlMtH63Kwq18CHwrE83sLCrLp5ee3phpvwaoO3vlE2e9KgKS13AcjYGoC2\n", "rIxu5ncPQMz4clmWxE6dP5kBw2QKWwyyAd1swD6tQ79HLX1dyyyYHd60hrBCPaWPm6fUYd9rAg1J\n", "dA+uKJpYA+/JXoqpXCDTF7qb8hB6mwYduTgFiNl/8NpgCTekqqnpPrCywQW+UzELBopWu4K3XIIz\n", "u1Z6f15Zc0Qh+AkDBrP0olZll9eilix0C80d3xrH5muKojSUPAsM7QkrAoTpJmoqLEuvl6AAAACI\n", "AZ/7akJ/ALpcEU/ubzjKnUNudAAiBYOVRKgKNNPbd5fpEkbvVcWq4zEg9Q+eEq/06P0xKESPWsqt\n", "iQMIvl4vFvUtBnwWfiTLz0R2umCkXbF+n3Welt+aAabdZJOtpC6Sl5gXM/ok32kpemphAwbIBkwx\n", "yzsGRfdc18tvr3l9KE3OHq9OebjHzQAACF1Bm+BJqEFsmUwIZ//+nhAC5PaHy3bgBQGoGwptzd1Y\n", "Drvvft/pvnGd2TNgGsZelcdezUxnGeLjNhspr9vw84v/gouIv+CONfM/CJeI5zf1eprHj2SZgLTn\n", "vtXer3rKcnXcDNPH71LcZjylwsEgy0T2izMTPhsk7g4phWSnOcv7BpcqSUlYs0ucoIJTTsybOqEb\n", "IDg0omz3XS+PmlUvxkU1XgmEzMt5aw+qoXsyVSQpWHD7kABi32+/Buwvsg5Y1IFAL3rHww7nO9s7\n", "PPApGE2pYhtfzhQMSQBW3kxauOBZfutQdSsGxOAP9h59KtPQmMI8fDGY9r3MQVsHEQXJVwF20trT\n", "QV0n0rsd+6+Tin6+S1FjJ8MLrLwrrwM4sN6lQK2/hj9W9MXTVQylSExb+skGLMyqMrq2tyVnn8Id\n", "JzyFKxR+t6CT1ax9a9RCumrfYmXFGloFFXcrAMefvaYtBcrVYdE6+h7knjx0B+qUK268I7gNG2gQ\n", "cBCNoWhiCZ/0zZzgOcRDmWpmTRc4/nGeoKpnJAuPhmXNekvbXEwHETPRFKkGUXVMZKk5XYt00hL4\n", "c1RiWVIRBV01KuZhXdAaA3kGxsXBGm2hXpBisBb5GQzplb1JXkIWbR/5XyeubO78Hc7M81U8o82F\n", "PtRpuls+PDnTOm9Q30obBA5qX2rotZdUrcorzykulWXFACIzHZlBM2sYD66lZGRlrlnArlv2TKqn\n", "Cd0cAan8Wvt3adMOOnp3yUP2fl8SWDSPArwjf8r/+WF3NiBchXZuZiqwzQwlb+HHb2rV2Jvg8ZCC\n", "1Y2/svp9XIR5ECu9miPTgMuX0KlNvMP3Mpw7UPhWSAG/RfOaA9LKfOrYYuheKJb5tChZPP2Hf2lW\n", "NX57JLavjtOdTBWS+Iwm8dRg/eWQl61gFP4EUINWXwYv+HzW4sgixxOmNuLgMsaFQFlajR8TBCr5\n", "R1aXMxxOmw6H2Vwojo656sSpP/zH8+o4mnzIuFwmtk1upXPQ59MWITY8b17MyLfw5hgMIQ853r3C\n", "nmsgsSDw/yBcbtZOlhBaBpnRl3ANyJOqbGA6OOOHi5y3GTGPQUBZ8jomusbG1iiOwRQofLCC0j36\n", "J2gq/ymH7aa4hf677N3Gg6LQuMJxUaicyJ0W2yW5P9Va0+TJkLno2dnO444vV0x74Hb+PFnJidHJ\n", "AjQtzFozXBFdzB0alHd9zt+PG01mAQQCV2xxbGAp/V9lOrCcWbwdfLqxFWtMWrc6WrhBCwpgcsbT\n", "Op6HWr4bQp8aLXYo5uLulPuV06KaZpldOC2HLQt6YOay+HOqu03q489DT45JeeDEys9wKPu/CNCg\n", "e8i2Gw4TCSqOlM6a+uSJsJ+KZvQO1XlRHixp3FBxy52aKGX92PS2lAm7xTnWQhPzZP8KcM1s/Hks\n", "iqOCyTsDUfKuXs4gP+7YHin9MhDlsyK1ZaF+HUnYcdOFPxyP6IQZOdhm8nLXYuY64/KyHESX/BaN\n", "OQ6+xIxzy7yYZ2WqpC7BkDsL9J0t7gYrE10DYcYLphAuC06LoauqFtzROkj3LfqyKsiM9cMsbhB1\n", "Q1BeTSjgiwDlvCOezvaXTq/Q0zSNGY5Ute1XwL4HNNsLh7LHh8KtGMsWmB6rAWW9aGucoQ8B7W+n\n", "NSyhtF9t8hUstdjfMxi6VtmxtdBNgJGunB0GTLQwurSkRbajiozVpgtGsuft95e1l2L6VlfLZ/tO\n", "INpw/MkK70botxJSOMH5lNJIUdLm7llM2H1sUrBBMYjidJ2+RKc5aRIVsp1sus8k56X85T5KA31+\n", "bYwx8JjdJcMxHeY2dicQGO1zfM4zQtwQ6eIbv4hKVEXLTiBNN7REctWOei45nSvr78pG7TqCZX8Z\n", "h+fNVBB+Ou1f+xKohZPsDMqGm52QA6koQhvCcH1DJA6GgdGA0K4y7uPQQivlISyJ2URgLR96UhEZ\n", "mrVlcP9bkSzWG1YK1vyw+Hnz4EI4gk/WZKxUuMTFBAQnJwKKPcQ6dQhvVRiXQW6FdI2vAzIJvsBP\n", "BVWf6QPI1KJEw9hpcG+XkpK5999EexbcNtSSDtcUtRiv2Aj/qQL3CzF+HUIxGTlT4B/dxl6DkJco\n", "oZ2re2L4ujZnu5iEqNPQgiSXLtTtqZlRMfEfyfKkRO4d7A/8jynuJquOKsGFBix7PsbzMBwFMU0+\n", "OYDCBkr3w+Oux/KaOg6dvmXKwVnEUagcgtQ8uSmJ8sOfVzjN2PNgJaF+iPZlZZRuP88/cVzOUqnO\n", "9UbB1lusCbWgO4iyV2/xAx3kSNyyCQTaHiZiLv5qTgBeyp4Udeb1NN94k/SkSe7fOCdL8Zi9iY8B\n", "hM96twr/NTwWBmBjV+ozYNzNQdMFN/B8Qug2Ldv+f8ddZuHv1OyMYG/AU/jGUFJMz5ClUCHjKOir\n", "j1mk9U1UoPAn1BNbSbUrD1Wo8pkYx7Kx5sTMIatsO62lbNjR26OsPxvXsF3rWVMrCj9hFYTXBVyV\n", "u2q0E9fBrlxWnpPiYT3jwWJXzewVjtc+a2cYm5DZdMVxmAkpH/4ck/VF/p23h/Pq/rvSmIlAgEUW\n", "g5RaTbK4tL8JZvMWze9kdLNmupi5wRCYSd9BlRpqwrNhcm2yYXyD3fsS7zRFo6g0hVXyFUL2UKsC\n", "FS/QzKMn8NINRQ0qLmucRFgB7JeSEbFmTxlohuQP7don5bKMJf18GeDFyz+bo7iWGVN/7D3OPtTE\n", "tcjZi40BZgZjHL3CBF7jHm75qT8SBzHSo+eyGdO6DaJIk44gKayYM8TYz/VUH/oxlKBhgIEbHZ3X\n", "RJnrQpu7VvLvlW2bo8P7oh7Ca72yb65ffbnhSOdiyJHBvxCUxg4hUyP1lQuqKCgTxMjq6kb3fDY+\n", "mwAAAcVBnh5FFSwr/wCY8N2x5zOAFvCb3HvLQXKrIl3K68Bh14+I8PHtHEeELkGiaRNXxR9euOj9\n", "xZj0mrSfgkdhPT4cinHeA0V1FsavtWZqJa/yjgHdR2Ek2jbrDR4nFpnjq0wcwW2xtGEqCSOu3qzZ\n", "vX+WbXNIYlepGFpTDLe1SC0LgfSw73qVMVAlnf8g/hngih9oMYWdvncYvmanwxQRaTz6F+znnJHK\n", "64pPOTF1+i3daukY2IHYrajsj02Tw9JcAqVDAsmdXO0kCKU+sHOWF+qLao7BfSwdzPAhNwAv0QMg\n", "WK3WUtskVq611WaJh735Acclz4uKGZm/6TdECW+bbMWZwc+tFQIzAEzA6dTcjsr2hHgI1ytZ70Am\n", "rQe/wDuAGs0f8zJJl6kwfIPcNazF890bgBEsLQ1e7n/oOQyFaI9kRdN8VrGFde6lKp2/OuYsIDbS\n", "Ev4ygeC6GMNqRbKc9NNfbt3EjlhKO340AFS8HB5k7wtIP1hglOH/P8D2KMitT70IB1E5NlQR7qPT\n", "SlAuMzjpvj/dHXWsh9uK+41OImJ27zb75wXvXI1TOa65WzgrecWQAdt6MsbvQue5jloYzH9rkcBp\n", "9CAAAADGAZ49dEJ/AMP5Ph1TFfTdAA2U24ogoTusIYVCmp1BJP0D6IqyloWp2vjROQmcOGbJAZ86\n", "EXBKBg1dZkwn2ozDJALXBZdkED+89KQ9O2QIiENNwwg8AH5UPC1bQe6r+IsOl/gxhbAZFgkdb/+P\n", "5hgBx1CEH37ldzb1DdaeSSRv2Yfhvc+fIDYorSnZzsd3UWe2FM8qaLXPFXamdb28hgjPf9gddzpp\n", "1tBjymM05MaxIlUEEmEk6E+XuoLALuJxIAYRilDrV8FbAAAAswGeP2pCfwDJPAU9ukadlFdmQAIU\n", "HiyyQpMUzvAobPk0WTiaoa1HRGch6VsT1FHf3elwjUAasgsYnXX/8v5VYuVjOogUM2DxjmsNmRa3\n", "koSw96rLK3if8MY/K7bVhzN1iZY5VXKj/dBTVwsfzWtNj2KCLvgalDNdT+0Ex5rODeq5sy9ZK3P3\n", "DBUL+4ZwDEyJRDTBsfzlGlhbji9I+JgAcvnqHCAd9zuOb0sgnk/FCW/yrG9BAAAEYUGaIUmoQWyZ\n", "TAhv//6nhABh48OgAXTAGIY5A/xPvXNyJIRMAvfKalxcEH2/dBTHmgphfBg0/JO7MO0QqpuexXVj\n", "2FpcHQ9UHlOa1JdzF84HWKL2gNnSKr4ILVVep5h38B3C4O4VLHZyO0lgua+lKtlVYHXXHddB1XBk\n", "MqNgzeFCbRmIVyvFe8m994T2CtlZOFPwC7EBhn+X5tc6WRf09zKh0npAV3ZTNKb1++lmFUa3TJ3m\n", "BKcjfict2sHpOUjOoLeWwFvkEt9ag45GGkH45tvYGO8RcyxEGiFsus1ih0hkdKqf/P9iK1mlPOi9\n", "3KRShj69VTFuiiBY+0LRVojIc/umZwx8BskRJ8cR5ph8pYVkSI84Cyty8uXRX9G6XZ6SYeTsK10A\n", "S5rrlBaI3bgGX0/8Y3I/UyCJZaf7IRgcoyXty3DU85OMP62sJvl6FdT+VifSj3GsVxwp6eqkdRIr\n", "KDVCSAjpZg0QQfo5rS0fzPJVzkmNWoPqBwg5N3ZIfDlJHFutNHdx9FIJ4SPr5LdCrSHac6XkELHk\n", "SGX5icOYjNRM9ffU9vjFu6c0QRJIUH+PuOj5AyzOTsf/ooSO5K/UFk08UJUGW5Tdxd738hyB1wAp\n", "5HlpkGsimC6Hz6AndQarKVeXLBYUBvqbBnGtHZkCpMYE8lge6xm2oWIewg8wcE9w0IAaCeK4a+xK\n", "/RU+BszCdLBmcZC24NS0g7No22jUnXhmFX2lISXVUL7oUU6X/XZFbRZlb1ryJPw5nB0qD0M8Dd/a\n", "sq/XMbWtqFI3DKzI4QMURrVbJdLpYjIjB5QpzICpMCTNTxu7awmg6joaiIBFVldAEINQRuOU5VGe\n", "7VWC5hYEbF6SVyE452TNeth6pEo3iL01bnQbo4h7CvXfd84nYOEY2kAzxg/HIYhO6sRF0SdJWRXT\n", "r3zxc0genXkKTgcsJctU8z/TumEPWupqZImlLJWypMripyAraQbp9+2xojw9Zrcwf/HYyLC+Lpts\n", "kovp7FSwcuj2LYJn35oc3OLtnMfjtcwOcbWuccHD1hIGB3abFLgOfgjGJD4EQCMpbGxHZDiaI33T\n", "9JFyR7InjZt//zmlpt9bAaGAwD36509naNxEpgqFuRED2MlmRxYUtjKJqcibeadaP07NnToo4d4e\n", "9EPTlwL8Wru5jkAMPAE1P8OQDOie3bHuIqy06S4LHib/ZSqodXil2QbeZeMwRRz+29wOu4+Lxca+\n", "drkZFN6rfmOZgo6fb1r42KbDn96ThbKqo8MDV0My9kwHzMWKMgCF2cevOhsvycLq8sy40VL4G9KZ\n", "w/XuvzPta/fYUyMBl7Ijiup0Fm7/+JECY3GLMXKz/iJQQHKRCPG+Q0vsF7ctPY1SB9YrImQiqmq3\n", "7Vee+O1kjvt8nljKVJW3pA0pdSv0WqQa9eg/Z1Ww5XzDWGvwJTwWn2pykyvwdcFE3PJkRzBzd6DL\n", "ST3SYPLD4gkeCbSsgz9Qq09wUGNCOxJodpV16GZIAAAJXEGaRUnhClJlMCG//qeEAL4JYM4ArcW/\n", "5AfbS5eFfaLzJx+gXiaHc8omv+rbcZHqLw575WtJA/V3OHtUzI/VqNmLGtBUTZ2A9dN6RL7gg4p4\n", "Vi14Ckbs5jco+kz1wtzDS0SYYtrCCVvNc7s5XK2fx85wWogiHWwDTkWVbV6Lv7utBqJ3vNDFb8Lw\n", "4VIcyAU9x5EbgCOmUIwSpv/PJ2niHfyViWMo+NPsfUPVcDqcfMCwJPfxc1TUCDj2OWR/zsyE0Eey\n", "tlFRCKFKHUWFydSLodDN4s9As27zmWRn2lC5IciwE+mhxjC9Z2tGlHfUcqGL6y2oXXnI4lxJZBN0\n", "swMJM3Qh9TnNcreBKCwF2O4Ge8j4bNVsqEQa3awRFSwkn4r8sZj5jXcEniufOz6ZxkY1UwSJxrOW\n", "CuhuL9KK8XeA6ezk6hrAqo1VeUCLS2GcwhR3k3MHpV407ZUkeK9YHPrbrkPbIB6p1db5XJp5lIIB\n", "t7tvA6oFjq6HgAB4yhdCGMqSCskgZv4/VllEJ3pSyTIovRrSkn6ohn3hIN2dGxKYPzJ51cbhH3GE\n", "ZWj0eWPNojUSdqSxTFoFuixzr0y7CoLdxMEJyijzHWvh0SGbovjbnLTCXgImxXJYuCcnXOf9IPfW\n", "06kks8hXja+laxpFDmKW3i0XRUD/KcpnyCUV4JKneQcVe17vuVad1ISUTOI+E0txKimESbrp0Tqr\n", "ZW7v919ukd2FUM+BZawMnlo6vAky0lr+w8WRjyUJV8p9eUpQKcVqWZVPfV2869B/71emWnJuewiV\n", "20AVUUmOxpY86SP8cbXD0Y1HuBxW4bAgYJQ9QZJ7idbE5v4kGi0d7R/JmHa0xF7fIlywTFn5CjyA\n", "GFxYzGs9Q68N4RKRX3jm/cQb7tH5u24892gVglwte+4Gjaa5mwKtaK5QMR/YsKtocPtpXcsWdS4m\n", "iEMA3vtTl3/fBJeFrCz0k+Brirtob3YPQUgCfzJLj3fZnUDRz2GG6YAdlaZ1PIhoPD89T1+34vfc\n", "hI9QPIc8TSMFAdA6YMios2aYkdgZ4IzXXAa+/8DfHXNAK/gXoMZvjV+/wCxjTdYB/IcZQj24EjCn\n", "o0RgokF9ppyfKKoAC4XkH9zRE52XsQxTR/JO8r9WZsnpVLL51WUZCAw8VExOflhdtMEErb6JVx9o\n", "qOZozB8KOUW7OCu50mrzEcmovCNQfCwyQbfqjL4neKx1XgfcSQDXZRZ+staSwAdWjx3ApzNfIiSX\n", "s4je9L8mUAggJw6HPmLWE2Ke0Em1pq+MZHnIVZpoiAjallgV4lhB5uqOJBAmI9OcjeFCU/o5a2cC\n", "q+Pu0hwex+Vh6cgn9ouhAj0BB5y+eELaUbgxKKIo+TC27RDgqweGLK48ol0uiLeiwpaDi1tc2sN4\n", "mVgQxgH0tV0GYoitIVrbPgEXSZp4g5lWz/v2FRzoZW/4JawsBpxwJ79LQkA870qiYzHggbjC4q7e\n", "qeDe0nvty8yqA0zlozMCsqtLVfbgEe9BXSlzK8J/6eRG6tTDeyYWbl5fKpvHRViZmzXKsBz/uSOA\n", "qOpZf7iWmaWxL0rx9ZQb5j/Q9RuRqlH8kWO3BLJ/d8JFgdh9t+Hy5LGExK2ughCYIIrZkdjSysw5\n", "342Uzi6KkZUKzjASDBdjH3KrwJsIulZ64MNY+8KDPx7OZiYuvxCFamyMcZhNVWGpl6jB5T5caF4F\n", "COuwSoAxBDtN8Q1c2Q/DiWoOxLVo19g2PIJpsUSQNcsL+C4yUd63ZRCOLVejSuaR3Fq4l19000OU\n", "N7ha6CNl0tQDmmpBw7ClxqGyyh+sEvFNoPKH9D5QrKvexbHiO8cSL3OiHm6KhnSE2HWUj9ksuxBO\n", "IgFcbJtu09wzKAIBQbWO5dp4d4BUBWAYkpc3ScacIIaSS1Jeh7VOIbpFVGvVnV5+dsaC7N9HjSkM\n", "qAY5jZKIvJbJa/IxB3uLt3e41IJ8hxOwxjcGC5vefpj5PtmRCUPUFNYlDkED8ztwgA4oBCezQL6S\n", "4Tv5bVnrHkG5gJQC3K7eKzHuapEa/OFHLFvtJgT2R4vIzM7NF/JODTPwWsgplmPlo5GEr+gD2aLM\n", "JM83XnvGr1Di4VO/9Y1VqfSkPuELCy7Trt25CrNgmX1ghqp//+106lRyrjqUCwdghn+aZhiuqjFr\n", "TWnopy6NzRjz5jFY7CFsh/WqJnOZQZwGTHVnBV0fam6TULE8jYNZGDMXc2nGI9KT2KFYiUAoK77S\n", "Vv/JF9xZ7qvSm/IaqmZxcCUAjaEUcwmI39QLa11wHwxp6e3bZGpLmvydP/tKJ2Tx7t6AKIh9KvA1\n", "xDxNgwo3nBM5hPK09MZt7FlgNv0Ms8F6sHwAjgP3Kp6QwCIzRi8FGl2ayK/QYsJUS1l3UQYYwFjp\n", "Y6P7MfMvW/SiGiWlRT5EB7ibnnJ6zkcNGNeP7VNTcSMkPKa2whQozODvxyLtxhXc4dIj3lgK2gTr\n", "8fns/b7R2YOqktw81mZkWL0SbXXkVPJUrQBRS7UknRgC4Hc8DfIdqoZB/PB3jQeRY/fB74zpnzlI\n", "OBLZsSKKaoX4qa0X8RasiBYMWd29UkpK7alQeAQwIO5MNTCmQyTZcncTNprq5D9qhSSvWWhTlf13\n", "IxjGWtpbvHyE2p5nHzRAACNAtPXNkHKxJESCpKwlptDvEWczrwE8SUoovwMZiEoxGOFV0stj5oG6\n", "QCL5eb19KSqWPAtjSYzk0okTlIhGSK5OUED8ygLmKuLlbeCaAonGF/nsm3ILUDHLqAKVLFlTYMDN\n", "7E40Wp+6hSWiHl7nQ5+jBGFJHfRU5dQqxc5O8ilJXyKn68cTD4rlPHynN64cMAqYMcAJ41456ZhM\n", "rY2enVvv5QXLCYBu3JNzkIhIqdnFtCHLqiQwSA1w6FIeins40z+4uwMW/gQsLEd/Dqwji2nG8hCL\n", "SEd8cv2RgU8kyNwmezp3z28WjaaNfsAu8RdTHC9vgjW8bQw70/V+/uIudZCKEiyCiD9fOcFmyZzE\n", "SUEGD7djP0V9m/yl4z3/ZkXhJH6f9OcUsDvATh3piBEA1fkG3Zd5JK9bpPn5utAP9h6LvD8LLVQ8\n", "rANieq2SHPubZn4Jbqbk021aY+50nNNHeTCMhA9TxY69jUDsw5i7QYV+w1au7GQsogVur2OypqSZ\n", "JVcTG5X67Z0w559qwiOVzwtEN4jwiL/K+zUcemiliWztU6+VAAABpEGeY0U0TCv/AJqm+j6wAXHd\n", "Wwfjw/QlZqfT40wAQz4FvAFy54F3qG1+EP/LN7DJXwKVSVTbad77xj49UEFubuYIV01Y2n7/ECXP\n", "SwLLG8+Ymh0d5tEbbBJUnj+RuMcEgMJscP/GgdHn6w3WGCjDGmlsIiF0ZDl+TmtySyW5ff/N7RJI\n", "rdjwMP1GYy26dyaGb3Rr/W4sKi+7zGe7dAaDWadV2jY7/2v8Ek2cHmZaDbtv6D8pq0nX60bGOqvn\n", "V40FYeVb6GxanWZkZHRvFFEoKUi8DrQPW/JejrgPypcClOgtBVfoT5aYnYFD1+dmMJJTI5T30ghh\n", "SXkQNxMGvGcqoKLZ8GOBnYqhADSacPw3wqtzUxd3+mD5nB0L7QVfUFKWAeh6Xk9yU1Iy0pKRlz0Y\n", "I2dcfI4XHfHg4wlZdBJX5PuZG3Cv+EI/zIErn39AhhcfQ6vH0gUD1EMj+YtEacvimkOw3UBHrwhz\n", "gYgquXdl/BGmU82YAUcrRBjA93c3PJs4Q0PrglCE5nRuFbrtcfEz1RBzAK7aahb7IvImeIjD9yvt\n", "BcNR8wAAALEBnoJ0Qn8AyUvxwvKIMzx2B1EAAGZjXgmxIwXJCTKl5SZ5A9c8iWWLWx8rWph28YOk\n", "afILKV5Df+bAUZvHfyA6oQARGWWflDXezwkNy4rBMei06ApReaZIW2f49dbU6uO+dAX23LjvYi0v\n", "8QRCw7PTfEylvNGkUYEN+I95GjPOrVbqjgjGiWqP9oTGa7CnRqBtZ7VojhA6EE3Hgnxc7h5wZ7IK\n", "nMRidw9mb6sawGWHFlkAAAC/AZ6EakJ/AMlh94Ek6/NFoAGxd/7rHKwtQpdXmZL+CQ6ceB9SbpKT\n", "Ot1Mq0/dYzr6WlgfQ9hZKQG7LkuiFsMVXSwPTzUyjKOnRf07rCrkmi8saLNKyM7Vzr7InMlX6ViZ\n", "9CRXYNhGa+OnOZ89FmCJettPk+OwLnLlRXR+jZtUSnXS2hrhyUTriJE1JZYXUdF+G/Z2QfTcDPTJ\n", "X77ljw5xuYrXrLowl7m8sMVv00UMY3PZ4i/tivDFM5zzvEJEGmEAAAntQZqJSahBaJlMCG///qeE\n", "AL3C4oVwAFFcmjCZYV77GkN3VCz1z4ph+CK8EZO5Z/l1rcPM6T5L0bFOpiqjG66y22mKPqtgo6X7\n", "kqFR21S7GF6htgBNOJWhbjToqgtHFI/0itohV1O/A49L9YqB+JP1OePnrJuLGAzWjgrlYcEC0s+b\n", "+ZSCvgnfFCd/r65LqbkCcxTK0PkCZ2DteyetsJwFwweeiKKtlQgN/fZ7f3/AcLC0BFZ09u7PiXx2\n", "3ezGPXpxO7hdqW+LU8/OoupExGEt7X6sntSO8KppisHhneMgj4AUM+esNfMKOBvn1r4zsEqPSuKI\n", "g+oBrq21O+vj7+GH/2zZL+r0la/n5CZlNH13/KIXU6K/KNaV83RBaOFxCo2SscahaoNAHtTKIqGm\n", "jBmeylL71yIwb6XwJ548ycd5LMSEG/IQsePOoHndQssbvDzMfJhE3DfdyPMIgLFW8XiYGEPaQkV2\n", "W9jhtiyvndISmDW/kbtjZyZ1Jv72YZ58pZYzu86okPkYS69QsSV556gBFDSamW/ANMWtrEhluOJl\n", "Qkz8nrEkyjKQGnXH5ZOTgTmcBG3fSmEs13tmHmkLgMqYQAvxyTZ4v+NP1QgxCTAYEOIgebJ6Rtpm\n", "pfBvH5hp1iqPRKL791/vgkgwRk+k7x1RCbsOtDRWNnlM4wfXS/j247N1t0X1mqKoLerzuRbbeHP0\n", "jq9dSKfUP2LErSuxFQm0/Nc+FDBu6Q5yd9NytIATiHIJSQ3LShcISpO4mnFPo45Lp6QCYoPOVPK7\n", "+gVwHBMy0AE+FOxOuGMCMJJg5VHBKu1eZgwcZAV1Nhi5mDwbgAJPq59dF4gcYOqrqULqAsJgKT6R\n", "nppkvgEiF86gUGnPZKGdQXQNn6YPSl9zglCNj/4JWtJHpsH/JzbsqmbIH8NOPIOOGQKArG9qkmJ3\n", "/955co44iC+Ju06yfeJH3YOLSbjGZHDQCzGUML9FqUFLoOiAOw9Zzqk6e+0vjGM+VjUXZ27wirZj\n", "X2JGB0QAN07HxsT7A9F9V9Flu1V/CD4ul5M23ldr7n2yLTI1dGnOHO0bf7ZNvGhGWE6RdQT0n73r\n", "7e2iBL03jiHZV0yOumdgGurmsY4UdDmExrZTI5ZnSKSGCArJEfNOhRQwg+3OMg7jF9jgV3t8o6Qu\n", "pDnsBT6gHlYsmJqSz91IKM9LDgw1wTz84tXdnlxewr2XuPCU/jq0NNkEakDaDs7hJT3Z7JV/iUVi\n", "2r1NXCb0D3V15iLmSxRs8VOOwLAvMoXprgbOVjMgC54mmhmwLa3kKgvKZ3aAnTj8F+3X/YX0dIQC\n", "GmG62DwxYGjwbrnaflFaT8opDwXxhrPxkHhff39WR4X4wydEGs53JWW4dMRP+x++RN/ZwJFqE8dj\n", "8KdoiHX8ktypV0vXSZ3l6uX/d2qkSZ+V6aNsbylTiiFTm6PYEX3Wsv3VNW0A++IjeqwYvFVWigxb\n", "9vL24/kU/bQ4kULvy+wgDC5ZzAO5V6FCTvpRsC7u3EMvZOVcKWnCyzz6xL2iDURXiRV76WWKtCuJ\n", "XwMCWBEeaXx7GCQphqP1YaQW6LiawbxITXyZ5p3A3+PBXq7MgXeY60pF8QB939vl1LrTqizit9xE\n", "j8GugYQyIRlowAgmXGkeux3XXCirKko4nQpS6u1FUSabj8hZAXTI7u1DhEMXcX39lNA6lxdkyEb4\n", "u9nM0H2U0teq0EUaF06R6pZwH2fmgsEU4bqVOBDwK7+gLjaVvDi8KSvfJmb7n6+2F/sWjTtpZoIL\n", "E24SpcFTmESASqqd5kWuZSkP+ONdrKP3ck+EgnrPV4Q2FiuNcHUid/svW4D5QQ1PvU57FLRcxnNE\n", "6KMeg/Q3HiJFZ4VT0jW3h57UJL3mgT3hEJx+UnKOKuxG2YIXkHiPc+GHifczpB8ylvF4/CgdZ0He\n", "Sg0rAsC+LMNgswT4IQ/IZ+G2abitd4F830Ihmhhe/C2tEHO5HXbuy8zJmscoGlriM9iLs4wRKHyI\n", "Xn6v6gsOvwtK3MJNt8Cb3BFJxTjQBqmtmgMnShRdRV2JnC59VygTOiVnEVkV3VRe3t1RVKd2ztEL\n", "3VfnvlRwQDUdKzkTBcvpCEP/a5lt1OCDElm/pD+zX2BNjWyxX/iFiKm/Q4D/UyiHwfClqv/yTgKf\n", "+/tVWhyXUqetL3/bUynFF8bxdL3fzFpyYduSjAgFuJm9r4seKeDwzj+zSvYXxn6nxftpAf1ebsIs\n", "gv1tmEqeb+dBueaQbKdNmi0YSEmMtLEvoexoyQiQhiF4l+laJRvVt88OqyhUXrOmou98jqrMH70C\n", "b6n8n8hvC4YJaw8SwvnCmlchOLZht1p3A+GvMy9KSJ7zEJ1kw2kpL8hUR0gewUCcXHnPN0nqjLX4\n", "6QaC0Q5IeSxC0RPF0xEf9R2mdZQqoH86BTzDX5QBh2yyI751WTCA4w+9lhGzNm6SqgzS/xMRXh2/\n", "buMxjrd8cDNmHBmp/To8ksgpZaFiB95N69u5vx4xhxqccZZ+SsCCAJF8GEVETloWh07cGoNFvLrn\n", "gK91YCUlj04YLnHz7PnNsCJzTYfu9VHiC8viTdlMAiBpx5xw+i2Px2hY2yyNpVe0GH7jwW5miRY4\n", "CC3PCyjQF1fLfg0lMQWCC2hP1byINdcVQcfZc9eOsCGw+5hMss460TTDrSrGuzidkbtxjB3W+LL7\n", "a0OHkaklq5iSbxKelJOcf10tKkU3En+jevZtQj//7MMc+mIBzX7Hpi+8TDzjkXOTnRX5RRUs8tZG\n", "k4z0TZwf7vuYdfGo8DykU+ah1s+7qz9F42Jr9N3zjljOtxv6gAB5NhH6ZMlFWpsrOIFVdpTJFEYz\n", "FnhxBCuapRI2lUoHE7r2U3oWQ9fQQTIz7vEBup4dX1G+vOJBZi68DV98TKqZFLC19Bb37SKGkcai\n", "n6QB8Lg9XqnJLxIKBQkCVEphijCZQpaFv9ritRSdi0OnMnSbhq9mpVJlFfCzBLSfrJ5oP8FCIoag\n", "+Wvb+7K6qsuysUgfiNftBO8mkRZCuUX893v0a1xU8+aT2o+1Hf3XFJCFuqAfs1zcw4BeC1HpozH8\n", "Ox5rCYaCXz5HffzvKrf2+ymg+B74nhuGFnAV/s8XRhagqsfFt6Tv5cbRCDPbVHyp8QGKTKrQc9g/\n", "eUbz2yzzkHtYwDfkrzWsb2+h1j2ACkXNE/gVEV9dVc/p2nerROAvWPjfukRrAgHKAc4IRdCR1HEr\n", "NzC7J6tI++V4IyeyIxTG3XgsjqR5SaVpDIkVhB4U6bjcf5XAQR6IXksj79xWVaoqzW1mSyz5l3sR\n", "QI/RBtdZhsC/AHE9RKPb6vR2dqeuOtfrrk6XZkaKUPVdtIFCNbcNRK/uIiqv5X461jrtJA5GWyKq\n", "4HPBD1HwYgi7HClwpLij4BtBAAAB60Gep0URLCv/AJrITkfkvbMFzJRGLw5iAC45BpLPOUZiYExZ\n", "LOk14eNjdGuFCZo13PbV4lXPptiC5Sww3mDA3HoYBYntCXl1AXacPHDQfJo2ph8m0tIFhgQbha/K\n", "rkVBawvQ3M3sJ2rY7N7/DF6PIHOWVYV5rxtZTZ5jsdLKfR6yWgxst/jsj8fsBPwbtap4UpxNA02L\n", "4R+dDQBWEOMChaqVRnoyZ8Uk3jYgTDWPa1nFoBMqdAUiBbyzWitWKOkQJR6+n5KXSzv6O3PPxeKu\n", "uhKcSokubUQJ+pxSoSwvQsIG0bC5c/kCOO1TeKN5NtdWVv2q47TCHZ14iMEr4NanFwIKkZDd05yB\n", "ggqceIrjFLfeW0wyWe+rQ2FxtZYyWiyG3sdeJApbJPvRwCn6EDWBJg3f54q+U2fkrG87RxpjkYXt\n", "kxxjl+rnJuhQqzRTiCX4AtP6omvai8vSxAe7CVflOgrcxiJ1dzHWFZZOcM+dP12svrauVXulgTfB\n", "tkr/YYLo+q0bIiG0xLoVMEXgTVA52O22/t2z2Cwj1Rd4Zuxd7hA4bj5tWTOm2pAenaholsQU+k3b\n", "6nIcMuuyxfWZJFbD+0EmWWCfM73mVfNYt0Ii228ZCMMzdh+DRIYiUvtZKVK77YnLETP+x3iuJgfB\n", "AAAAvQGexnRCfwC++T6AU1LkTxbU1xwAhRDgDS2ceK5Jp5X5Ce7UVBqKXMaF+zyBigdyt92wWkdM\n", "GDMk/08NEJDSgskKnVXKnwfu4YRW7MWonB0CiCfR8BOwMF8sdzfqHsjAZVxdF8Mdtn/ePQ22Z1cr\n", "z0732HsdTW01lKWW9VJW1mvCnpJeCEsgWsAr0ApxyznVfzdN63X79ESQuKMdrJnr/v0W3xz5JuLJ\n", "ypF8+toUipLLZziLm0vH97VyoYuK2AAAAL4BnshqQn8AaZ4C1jjcuuU5SawVYiYXAd4Yk3jUIKmY\n", "/XXrdPEWDBbPAAh279hUbcYRVsKMaIPTVWxuQlKvutugGxKiWarvsR2Bgww0ujxK0Ml39hyxvTsf\n", "aIX53MiLL6iwO6e7DN5Wx9l/YYgyEdEpRMuIHvuFInx30yYapxqYoO2wa8CzpsPvfxdVerJanUjE\n", "sXtAI8kxkOpkczMNTiuZ8srBNLD8LMEXl0UA86/WRlegxCg08NifzI+xT1mAAAAJX0GazUmoQWyZ\n", "TAhn//6eEALk790inoArr134v0Y0qv8DA64cNzUYJaBBGstM80LKdRbOh7WWmo5hXKpfjTuibzEo\n", "p5u852On8xLjklq0r66dDL3opHumsLlzyDwhRr6tat0zRS9TZGSZ5Sw1aEpf4SXRDFWE8fiie6Yj\n", "h+tCDW/j3QlyPzrxgZzpcaQHX9wO8XE87ITxkkoQUlvJRYbe0CrT6ovNWW47FgEPfn9KKS+3BwBn\n", "DPp5yDw4Ns/C9UuTCDpMtPWhWUnAKg7JwluurM1r7mMxt/vJiiVs6i/PjQyQ1OEbPUCKL6zEmNvD\n", "v9A05UAAYi85Cbr2mmdwG45uYbPMj34te+Sp7dnvCkM3Bb0UPIPKPMc3vtFXoynZs9dqn1INl9RQ\n", "0Bxe2XIs3IXS/LlyADn/YEl1PM7FRh14VsZxHaro6vTZZ8cCfp31Dcc1zoCXERTgIZ7KgLWeu2i3\n", "tDl1VoFubQfrXIMvCHciHpWgM/R2S7CvVSbn47rmWmv/yY6mTaMSRPd5BNTAQwpF8QOC1PZz0iJ8\n", "BqNiSq18c/VzWZQxTp7Fmag9f+dcroBHNlR/N8r5oxchMljr+WEoPfKBesZJmYVUJZOG4l9724B6\n", "cd3gUeSBzpj7HeIr3Mwe0Sl6c36ZkVrCEWeGVeqJdZ5PFuAQXhGQL+/8AqnASoeGUxcaZ4jgbLa0\n", "lh2AyTpukdIIjBfsy20PfhRx99K6B+2OIomu8+XKb3ouYEsPq6aqlZPG4UYraw7zSQI61lSf/paz\n", "G2mV/LvrsSKU4swegv7XgB4YFFQ6rXnKQvs3Zv5oNzKBgl7y4mr3zjIYgicFihdWgrKp2WMLk8/k\n", "cCLma2CGzj/sFgvvgT7HoR8lb5OvYDfQTDxRnvvRNd48lPbpgo8uMcqujzSzWcofLkbSpKMyis4z\n", "lQIAn5hXIv94VM9EvohoQlzp20Nk2xxenfYrczeETKPqgH2TkgB+4rstRuF+WAISGAwsAMRhxgyN\n", "TAnM2vFZgzlelz4r+pWQcfP67mf9aREWt4OD8hOKKvbEeja1/vBneZVygDOG+Uv7gEhIrouEhM5c\n", "DvSyswwWAAROSSbj4Tg/cKpvf4PmnfH4FovBFYEv9j9hQpfieA+OG0SD3jjT/LKsVmdpIycmN9it\n", "0ohsvmZMNmEB2aqe9S/qDxmDGg2EeTIlVfkwBZt1OOngTkqKdzPv8eadE/gAlP6YXpwLgOn28rK2\n", "nyr70j4Yg7/4hZooLO57/X3tNB/eL8TdRsSZPGuQGs4KTiVr/llVC1BM+7BGjliNbYZgIukwgbHo\n", "4K5OLZGGCEobv0M78l8Rlx1joGlqsrQyOkzaUmoBhX5xZPGY+qceITyhVbmZ13DnQPw4RLld+qM6\n", "zLLwlSlAuZsI6CD1dLS1EFI6fsVL/gW82C0DBpg5m7tMVxnSyd6LG+O6V9QCpDnqKKlHtKmhA9YE\n", "oVBJJujzJ3YQ3sB5ZuZjuCT2ct0fvtdZhR+w/wgzUDyrv/YBVY8qPA8DmZe0girF3ZFhDIIVaXa3\n", "/22RN7PIhdPjASgl//PCGDwqDvovrT+pAvKs5/vWEU9kieqn/ivYiMv4f4MDanJDUOTC2WbSMEvg\n", "dEIFbZGSuNt/IjX5pHP0eNxkflV03Eny9HzBy34tO6MuzWsHzLwYp+A7/OlvwKqP277KJJbqDSnU\n", "h6SapMHZq/KY4zexJx0mU2kBx98KWcjjav7rSC1ck86nlg9HcIVFCdqz2LmZG4ByEF1CFwXenwzs\n", "jLC3uOZzszfptouer7qgGN7lhlP9xhxs4RY20DHR+Ss1y+0UqjrtsIofhIKJVTPndJePyZgtyzra\n", "30Q0DJXzCa9LdYgnQ8TOWgpisO+BUuqnag3VwRpJjopEyhH4JxXBwPd95R4Y9miIqWMro1eWjMex\n", "oRroudxgymOHNqJ9kZqmJTuGADyUJwtm90ZBFQBqr0r6H7hmFWVqYrjNC23ahPfodsGuoYVvVZGL\n", "HOjuDSWoygpeBf1MFdSNNYgS8imXjmzA8aYZLIlhZVPLCF7lyKQMXUfWKJh2xKoRNUU8qNDljg89\n", "1r0WMNjpbKZG2fIRU0J6m8ss9fsYD/rFtNY07u6BLjgnDSurjMBr66+eCaumZy9h/yEeMEkQuCj7\n", "zyP441XJhoDLzltqsBgM2jjgzjd534d2JKnwcaVXBsk7feF/jirWMAYblK7eX0MVggzrdFiHds6R\n", "ymFLKRGu1Eccqvs0Byttkop+Sur2b4TZxty21aWU60bc3FKBeb6SFI80+SsoIVZiXatl7RTJxC4w\n", "y72+YnyjlHX8rp4cw4pZN4lbK4mgScUkTq8CcGU9ZbN0oRmsEmPRFhTLAHOKypGXCIo+RuRKG1XS\n", "Zc5FJlH6hSq3YrnftNGReZVB4VhCtG7N8Su5/qZ30knXeDKKMnY6huONbtw0MZL6DipL2NMC2Jx4\n", "M6MgHa//e3t6Bw8EoR49wVOAxKQwN2e8N0p2ZO/8970Ejlw7ZzpjOK4KyicyfTkjvKKTR2ynzJpM\n", "IZDEh2fkElwd3N2eFFbN/5yWW3uFtdkBQqcVTPF1ypk3QZsXtTBpxbnfF3aRmxI1nZzbS3VXVFe+\n", "44/vHnxh+zWpPavMeFD1px23l4s98u7B5+A5D6A4SrfIW5pzLqCiNLt7eOYRNk5jFy9h1FeGcNDF\n", "I0OxxPnVS31Ab/IbTMY4gQN90fPpQB2kx10PKcEyxJ040pi/80Wemgy+mIxV5gDA32j5/XYz0d7o\n", "WCUHRdg+VFTlCWVlZ1IOTKbsSYZNLQarBgkCOZbR66Zty/Fo4lUMkP1ViNBPseICpk6PyVnKrMtN\n", "bnzK+BD5+/H31Tt2jCtTDF0ln867Q6YdUHOXpC9gtOZupr6Inl1WV4FF+lM8tSfwW+qNvrwEqzwV\n", "JwlWA6ulzl8d+vUw1/HMygE/GaWrXWunVrLmNy1u8WpDh2PAdIaAanEQSoJ0dIjx5zP+qRseXEZE\n", "En5dZt2Gnsm9qX/kXrl4OLC7IWbRgaUW+ci9F61I68ZA5dnPdxCKKYkz2rdcr7MBpawM1hDuPdNY\n", "3feNFMBRf3zDNy6e9AEX9hICz38/tY4zZm4/vqPQNOR+Z1SzPKVKkOFAIf3WILQ0b6dBhr3wlZ/K\n", "cRm7pIDraFAUWovqH3sS+mN4NhKvAzeYTmuBbl7NmNuSxHYqJF7l2Z5xOUPzCIiHQyLmJeZRAAAB\n", "gkGe60UVLCv/AJrsT2LEfTFnN9POhxIAOHFPNqDg5dHSwtOSlXe8htoL6gA+BiPQ9L35MA1LVTGo\n", "h21cIuHzUf505rOMUCfLHTNmJL57eJh6fn9HLTfEoD5QH2zQO6LNhXqtdHfZGhlHOHtWCAtc22Eg\n", "g7A0p1HScVqx1BcgziLOGW8FZauoI7lDXyW54GI7R0MImgKEQoS/zVuFFlOvBNGxKvUi+6lJWdKO\n", "1iUuCoJisGorI5cac/rxM7Fb+Rn3/7W5OUar2bXjGNC42LtICWgFl76xT5HS1gV9MkGE5XbcLZBX\n", "8oYCGH5WmpyN89rHsHEX5680AXmn0NKGPblpV1vGgkzHuAZKu5Kb3YTHBnCAApTBXt3OYXDJXvv0\n", "KWUUTWKvEZ455nRuol916QT6ZXaYpeLaevq82Y9jyAtxFZurh4sl9UwtJQXTR8GRVjw0ZIw/kVZN\n", "+J2Wnv8drUndzXkcPXI5GesTvFQC5gte0F9SurHawVl8suuCoShmuIM2mwrAAAAArQGfCnRCfwBl\n", "s/MpXtopj4XwKLCnKV8X+pZcjO0FgCFIh4KE6ADPqm0gneP0SXfnCZXv0IbqWPGxSuxHWT2QnpYe\n", "+8GganDaibVRD3KoC+SqcsinSy56kvyqDjxLE5/vbPNPGHlxdXmuecH96ou2qbSqHHJYxKBiKuIX\n", "Pd885N64F/LZXgOz4Jxm2Caem/ndJ7HXPoB9m2s5GcXjh3ZS98CkVEej8DhockeoYamAAAAAvgGf\n", "DGpCfwC6XBE91OpBUORnk2AEH056FS+clW9dV2pvOb3Pv15q2WOLToFsyrvcIJc37V8OM976KaOO\n", "7W6RRKd0kHILNlyxNi0ehDAYEu7nDpmhkrynLSmFvSs7j+I++wIv/Icl9Bzxzo69icw+1ucftQ4X\n", "W6/wTuCP8WBH8c3SQoDm/gv9b516oqVfjukczyu3sLzW3ojTRvUL3qre6JJFfbymMHB+u0Pti6xr\n", "CBP16Nw3VLhvLPTrse2awr8AAAUcQZsOSahBbJlMCG///qeEAGbwKz/LGgQAn4k6hNLJQKUdsbHH\n", "3euJyvkotJ/mYPrlkf+giY7FBXmAGg+2py81FbxdLpgof/NyO9UK1cP0RE3SIRmZ8w3Ip6vv7Ffr\n", "bknGQJlGQnGgd6ALe8V4/QlkSCQ/Y8tQEsDdOfEjAAoJpxUTwBkMIpZu+mmnjm93RH+1f6si5RHt\n", "8KjSJzffoEAjtC2pheeuKY3ueG9vCV7dxit4wrtdLKeG8DfpIjgxXFm8cSPEfMGueqr9V9Z9bMpt\n", "xewljNBt8tGaEcDSadua6GerxybwycA3wg1dd2qeNvJyPv033C7hjMOLeS9kaZWp3nwRhBQXcH+O\n", "qojt3ZvvKMObqZ08DfIiXsWOs8Fwx/YmbZXOnJ1Hjt6pISPFRiw1ypU4eleFyodMFHBpzEbieKR3\n", "j9RJaBVEm1WjCafcz/NKP3TBDkatejnYCt7Mii1je5D5SeUJZ6MLotqlNTtbBKNR852L+WVExt2U\n", "s8nijCffTtjcYoDq3WOLW4o6CUmPIAtF9JYklbHSwrmo9uguG21eCe3MW+XdZNcuLy5FCCBBrPFI\n", "Bcbl3R7E17O1kVlV8MJeutOf7pPjr4fUxHUod5/A/vOXjDS3AmLuk19Jx5iJiluWZe1uhBI0LtUF\n", "B38bIKWNaPnQE9bfarVvuiQdPUStxeUnab3olk3OT/aNyaBxfKuYSH0Cmjr5faw9Bqalewu8khpi\n", "Rg5HQtyRAvdiBqPqxMZTUQ9jSLCsPWf4u//hAedUobksLGWJlRRFIlAjQ2EOB5ERCqFG5s3ZbIyf\n", "dd4uAx8MXeBP8Q/hREkQE1LHYeKu0pARel8/goQYwB1jV/J8EkmJ0Md+9IvwBsLfVSi6fD+p4ZNY\n", "By/dI1dESPjk5xff6t6byP4i1E8zUngXyuC69q4kP7P0zCvyAH6DbLKL3gytJlP+xlGpsPvEMkCt\n", "eOW+a/QMbLrj34FPZlw08QxZZ631Y3n3AbWhXJnkV/Nc+PWpGvRQu1Owu9quxJYWSIR6ZTr3IMU/\n", "DDc95z5s4TqEYfU79F+4xG6QOcGnZ54JLk4wno4dRiOXj6TVkV1ACWKE7TS3pA02oCNc0hOzRJE4\n", "LyKgl1h+YQXvqtATJM2ET3AAPc/j3OlbaDZeaCScpcBAjR9n7Xtk+2JENUPyUbuv0lZ/Z2BWqwyY\n", "BhrJHqljEmwUk48tjS8tBsFFok5EsvNmgHDZDFAdpvQl3vuJgNzhwZjpeRSC+YXXvoFwui67C3s/\n", "FnUnPutaa91ZZ1cubq2gU62/FASDJufLv562Aj24QKiBK8iq8Z70zkwv/ncK5uVHK+cT2/reFqAM\n", "J7z8/IAWbonZwkBn6wXFNiAdHvo3u+apZahzeu4o9mbQwiL2rGRjedbp4L05fshc3CVHRUNre/3H\n", "AsMMhn1GKRZn3mRPznyO0wW7IK7QWc0r8fIGhvuh111SLhoUykJXNNb3nM1eL48VDpU7HFNNqQlk\n", "fkLbrqmcUi4umoIpC2cwh4L+++0raN1Vjn9RQzzr63p1xa4ezZ1Q6o42zDREZr3w6Zw326dJ5Cct\n", "IFdlBl1TiADclRNBfQDT/WbBrAp9Qwtfj0zyWSQHloYaMdjl9biQBrxWup5DjkFS0UDJY4BcD9Av\n", "amMzPHfqBDNrmooAcxyci+kC0GG6R4hgFQwv9hW9/LRknbtdy+YIUCh2AGIgsuZYC+7quLanekH4\n", "oiSD3yseEPmXqzjjM5kdPuxDAAAIv0GbMknhClJlMCG//qeEAL3tyQARhZ0FAXf1CO1VASc6ZxwH\n", "ZA6P60cL1V5O25AM8S+sIQx64lVbStWQsFA0ryTFlKmEhiydCBlXCTuVcHA2mF5ERmRoiBT/D1Cq\n", "J0Wo8VgpfIGDmRUbqJj9EGMa5C9hq126bI3XroPGzQ5lW4VYNWIf5b5IvB7l1ypq+g0axbky18tH\n", "y8y3WH6hm5fdXSIjHtDJzGCAUdxpxPFtMiYjcZSEXpJlzfpR/d8cBm/3EIJAKaO8gxPrDriI3JxP\n", "hZSVSPhmExyMyzXE1kYj8G+AXqPjYh4vzYpOgso5tiTfUCGRO/vcf1bCS3l1ItDv5i09Su7zIgTr\n", "9odCW0SA/VeHXhtkCOU/4Zw4IA781VKNzhMCJ8IEg+7VjJu9wZzURw8C9ZOwOUuGf7xBgLGbpx//\n", "u55lCPMZpiVz3Y51SDOUuoysfY+oENYkgK+gMLD7tlOh6sDliMhMri/lxEUKlE/UqlRkYBdytk9M\n", "gAfz67id8XUQrqz2uScPGxBJxpt30OWLylAyrI5pVRIiN975mXE9FNmgwCVP/RCJsaNPZZiEOz9K\n", "9TFoPat9aJOEzLOtxtEGm1vvRViE3VS/f0s4D8SNTNT1e5EFCWSbx6NW/jZ6mOd6+jghHZdQUONv\n", "FRb8AlQ4KVjlP+Le5+KueX3c8yZYWozT1jAh9aERxFIKoAMQi5ho4A8+ZReKTNDzMHgEFi9MJXeh\n", "+ROd0mdRPvF+STULYNKIzvEJUAz89dS8D4mD7pLlv+uOP4NoyJF70Q7xc8rlA8AQhGaw2y/3Xfik\n", "FzWSUBe+OekC74ec8E6WmqYiSmpHnKAvEic6jfLOu2RUHIdPDuxlDitp81Z7Qe1maUf23nwGRfS6\n", "hmjVK7JfEDlvZZ7E5DSXJwhfRb8hyieBAcm3wYNKsWgoCl/TzYQ/qcgODDEyI93QtJ9cYUYUrTTL\n", "vU8Wnzpvgatns6a87DEGaENINVTd471EB0ODGuKpQ8DVDc5zU1uPccVLRbehd+gnikoC0QzLXGQb\n", "FsZXaSXJmzajDVwjA4z6wxGcr8gtSjy9/T5lQIrXebfzpwMzfTjftlXVHe2NF8kpTLKqyHCn/UZ0\n", "TGtxQfk9qdq44mYBQknSFJDD6SNdvIw/1+vY+IglZK7MXzviWgUjcgrASgdrI+Gy9yEFU0faN9D/\n", "hL36PAkOz4ZU555IsboP/63hE3/lVyWfM3yMDJ3YNrI2TpSoNL092Wg3mAichKerW044uLslWXbO\n", "lHUZKHlv6eH3znY+5vh9hiQqCT96JfCnYg20RBG9qQC0+zgoF9SDL8a99Nlvd1v0TpZ/xBu1QI1g\n", "kAKkDyQhH5Zhs7q7CCTIvPRMq/nDL270R5GZvdgcijTT91rPAeFNO2EcJowVPSrK9MIXTBbByzYx\n", "O5v2UTv5qEgoz6/rTeGey64xRgBGh+pn8p69NCj8Y1qkF07kbrsg/yJxMSPrQvdq7f/asSV8rUTO\n", "5GmoWKYnRSXL2YPLvuiZ9I/tPsgzpORGeWwtdSOTSi272pHvmqE8nfypdweWPERpJWLYJIG6u2ri\n", "A4YbCKPH8oFzkSQNLObQsiS2pIFAokNuhbBH1yBHM1Np8xS4hrrSJ60ncmyisHhbCthuKTPA3JJB\n", "c6vaQlzyyDNSwx8W6pKQK9QHTDBrZrIUX4b4ryJLrOFJK631pQL+Ol8kqpN2yKBwlig5VQBrPO3Q\n", "Fr22tVO4mUHWwMHgbFFFXAfmSojCCgi/3yuj9ndYHW1dmvT9gHNv9vH0WxW5qubIM2GHm4PCPxSB\n", "Dpu4E3yHy1K6cSpov4pSvb3purDLUTfTAoNGQDSA5GVJVPqHmsAoEfH1WSNcSbqzXGGLBt/ryjNY\n", "XPffrdwsQIQTFlzXbOfKSN8dLg4uqIJZ4OSCx2/Vv9rr4QBSmMc0FYTMhwex5IEtnJ+gfbRtKpI+\n", "eSlkkSC50cQAWI9vM6hp2DkYgUti9d85nwHK2mscHpD5TYvc8meu46Nns4ZuqAj5VhZD9G2wlbMV\n", "ylWpyiAYalHhJc868FnN36c3lPnVd89D/Rh14tfrbihk3P2Q90hBow+X/MvuaUkYfudYl4k7xYEm\n", "RIF7TISXmZeCJVBf0CFcrhwZS+3uJrslPHKBmBoROrCDXD8efduSoFQRAOv+8ScojA7iskj0WGo/\n", "SDlWfy2RBMsohGjOaCPHWvko4IqjRMZYR8Saol0i8ozaz1FDlrxskWuaP/WOZsLCbQTSTpMObNvf\n", "+VtJDO4ghwYhAxDhVsyu35yHEYVLmcfwLtrcV/dbB2jpH9jSwZgPinAilcK1WQff76bC3/MjWyPD\n", "8cFBKhd4EWCGS9FQfs60iWRzoAeAtODTPuK9uqBuHrgh9npgPni5Nlrj5vY0cYkT3o0iQHFryrb6\n", "iLVhfGuFzQ1nuNHPtgQkYxY5ctFIqScEaC/Ndq9fGdHZjGWe0dv6yOOv4bRJYR69JbtuadErJTJp\n", "3Ek4cmqYwj340DylkW+wwFnnXTJCptSeXbTcKJheBHfgDk0dp9v76J9BqDJmG6pjZoMLxuwWBWXd\n", "TzmTX6y3OAvXnSF/4ESVTa+TPFCaWwRWOeliQCDw6zLFAU+qJJyz8/FWm+zmcLso90QWkFfxU5wZ\n", "pLu/fL59lI/UgGC4L0UeShKS8B8LIem4MPo3eePezlaofyrkjAGQVqVQxucDzLGpJHRaEEk4qhOD\n", "/eRX5jleYkZMOJcTg96+/Te3hcp4Qv8KsALXYQiJSlMesgfGApBs6rSU9uNQfo19a6ac+zQNp8lt\n", "s5EqCxUmigQp+x0wY/bZgKmFV0Us1Fvtlzz1T3RVqrkfUV9XAox0/7PvFTRcwwZzBHOYfd4QZLtI\n", "6RifRXfzIC0Klc1h1Ox/Ez8hJybcnKgtwgUeNunLvVrrpf5I9RFzAdr2JxTwcXyQhG5/ziStdK2J\n", "JR7SXPKV2MCvFUqs2+ndPzvDWbotH1TEakTm2KseAuvNqR6WyC0AAAHpQZ9QRTRMK/8Amse1Su3Z\n", "gYAP3O0OA5GSK26k4qyKKP8bOZ7ApFdCOcshd4gOxLyWeP6pnKVgiiOkvIJlFRl3gPEK5VZkhv9Z\n", "R7vK3MewiMXMCHENFZy8m2tiv4ocTmFYzV9LD20NNzm3zaHRXH6cRpSrm8Lv/MFPVIdjSRpzEi9c\n", "dJbIaalz8i+vy4KEsPQDV0MLb649JQp0QE1NVr7Xt4EJGSIq6pAIMl2vFUHvy6OSCd4uk9um9YJp\n", "OFTBbhdldU7x7SkjY/4GMQMtWTollGqmW/EvARmo5X6LXK6GdnX49WI2j4BPy3l2/EnsVSkWPvCV\n", "5Dc4IlESNDjrff+ckA7PpvkxwzDeqIY1DApZ8csLahc3Y0j/YMWUfZB44mnF+c8rKxyfUZVL5v3C\n", "tmH6s1T+3I8VW5OlQ2VrX43Vm2hVozEUlb7fe8fytpeOYavCFnNL6tMdAQOkOWjtHsPn9R8wM5hi\n", "RuwA8ddar3un7OXvSZtzESH1mqtDlIkrfhseSMv6IhmOo13u9wjtVo+vS4vF3JNzM+eQXPaXw0i1\n", "i93I8OcAldtbj2Njd8JKIaLrgKAg/HXgJtGaDRXeoMcOqOLqlQ79ukVJa9gWCXbycsqaGchz6F2F\n", "T7jjjSbvjG/ak3uKFZCsrmGAAAAAjQGfb3RCfwDD+kru4nkh/wChZ4BaWyOqtmr5jC7+1TCBtnTR\n", "OgAIdutvcZVEBpO6ozOCoL4+CDuPvuqj2PUF3aBLoXO2VHnVEzYpcD3Xu/nE8w6eMgs/V0Uuhnjd\n", "BfymD/6A2KFGrwA4grUeNfoOJbUib0LVYs4EON5IkxoCH1I00k7oIaN7O+LP42hZ3AAAAKEBn3Fq\n", "Qn8AxAmSXMF/UU4vsa8xyQAIO/ff+2Ku0C6HQ4bx8fy/YEc2vTPS8jEoY3XH6O4mJiBJpDqQ4Pu6\n", "nZewvD/jNrnJ6q8g19emx8RJDFhPYF/R7rcbWlx0c1tIeKwojKP6L27W9SyI19ZLMCBqRH491SEH\n", "uRZfK+lvG3VZRAZEi0rqhTVGS4NzPZqU4qwJWzfRxKMIicFGL8X8k9AX+QAAB+9Bm3ZJqEFomUwI\n", "b//+p4QAviDVAyACq7x6/3c/AsZ+D4YmHgDDdpT75x9A846Lc2xYTlpSiAhc9WLZ+PMPpwj+mXot\n", "NXN5RV2KHSXW7sHK/ExJiT1g0uzkotyH3bfJP/Hyssp6xYw3HtvCp3l7RbBvuCSKmdZqvl3SjwV2\n", "kaEHwR1jqUZOP0m3fhTMKWzbso7b1Hg6Hbfx0IgdZgxAJfbmoGwBeUE6zCY52mT6uKMDhlWF78Ah\n", "gPg1LLtxomMCkVF3MQPnMZjR4StnOMfuOlPQRXTwetGBZvgKAI5Yr7Ns1D5Il0H9wmJca2b5EpNE\n", "r6+n8WwHi873qEDlhycU7+lhVJ0Fqhi7uOsrYptlY5uIeNpy4P15BjGkDeh6AGp4MsnfmU68wD0d\n", "K6QW2JrAQ3wI0rwjkjOTwJ3hfoKXmhprLVKWRxJgknBZrcoj9bKe066DHV+bVjblYRX6XkkEySnG\n", "OC4YeKTM84+5fk4xF6GxaspEDp6z/0nUXKBufnTbAJTvVMbx0xldoQQ6t4i/27UmubNxTWlwx9AJ\n", "8Rlao/HNe/7R8yIK6a8C0X1kmmflXuyCxpZKg4izRYZ+ceVYhl/7C14QZy1LlrUEuashETv9PXkq\n", "dH+IkfoHwutG/aljh4kKUnAotb85+J73a0Y9r1jFhozyOsxsvAq9R4+npr0Ql+rV8Qy/+ELkNS4b\n", "m6KHVAhx5e564dHLqOQBgWXTcY6qwTFNlV1lxRHYPv2QRxe+ghZUxwoPpfEWZgqAcsf7ry/sK7no\n", "CgimrL3nbWg+ZZYK7fEh9JMg2gqJ4sTYoa6O/RYHr6/Tto9M9ZkmV8c4T+abPKoy6xrkTjSnjBMy\n", "peaCylrJSk7+nwayIWpp1Rj5LoDtWvQFcotKiwFGzCPJEV+34D+0hUjx+NYjByJ6W2JACoTICGha\n", "YEYTViylyJzZUM02oJvYS1WqArJLzIH4WgPbjSXjz1TnXxAP6MPbo960pqlaiwckXhozdQkowRvL\n", "sBx+U2mhw6fWbK4Xi03NFn8zuYzmrLzMq6fHC9qdLbDj0Twr649R/vupY0BcmgNzEHsXYq6Zi/Rx\n", "WkhgO4Z59dgk0muQNyWugqEGLwff75MKnaVywkDcEdoHLtKstUoZ8b8Utx03goy5ab95hxTbl/d3\n", "0AsAnm5BZc7ruYweAwnQX2XXjY0ycQtGaaxa+AOVE3j4lOLHAwI+IVUcdfxLkVLQWQYjOExAUqkP\n", "KBdPslu8pFOq5bh9Mp5i6D8g5LLgZsaWBxTC0qJZvgVWoeZbBi7YsVKU2oFVR8ky9nKF/oluElYY\n", "HO9OHsCMmjoQF6enmvFws46ZGGYg69cyPylt4aDEXXLb+RpYbBMwBI7FGoxpQsYe0vs8M2J3zymF\n", "X+dLD1m9q0YzrEhlKMPgCNCXGSY7ytJxd7iLu8nP30VQs5zn6knKtUjvWnPm4gdapwUXTkjkWJ3n\n", "IfkaesTHrQEujFsCLGm+JYF1FnWcZgH+V0cIMnIy6HKwm58y3GLC1gJl12Z9ujkhbDGbfLcpZV/p\n", "3xmsAISMay8kTggZJb79aBz+JidBNqHyUSEyzDmPBGyb5ly0OKdZU5bpogNjoCuFrStZ87ZzmF9A\n", "2mKBBGIScINQMtt+jnjwqMOuaNbu/5gesuL9PrMAN/C/KE2d1/YtVamwik3qSUpsgm/7zdBNi9KN\n", "64iAp86DSpJBeJC+WWbOAk7qPTS3/khb4yS0epOQA9IjKL9uGafj4qJCVtOJZLA7btH2iOZah6NQ\n", "ZGeA2kMPTJldcB8A+yCVMCBE2nbf1wmWTnkuVYDWKzaqA/gLWMLvF4CEB7EI13lzqqE4dfPE8lkn\n", "CMUlccyvE67LG/EvV3Ab0ORnam3iq4VzFpehuwiF9YOosrrd6kP3aw+jjxliBRGcrEVfJNX74Hg3\n", "+I5JW3vbNSqEuk/6VD1GIOSMFDzJ+lm9Auq21stwsVr4X8TwguArz423QLRUEeDcgwIcZeYS0Wsp\n", "JfXEovWHIQW/3jNNWV1xbbd6iOxCcBfKkxgQjUEK3IG38RM/6R51Ta1ygpLG1H94e4c+AiJhJjFc\n", "vdm3nfaz0NBak+7U5EL8T0shy1RwWrgOic/iKJSSfnJp7/zG5OYCYP/dPClU0SbbhYoIJtks2vQb\n", "LPMory/wnp7eCb1QwytQ8aEG+phZZKVIXIw8B2/G0ciVEEH1t6XTIK4rpEwL8Dlany3Lpd0sHIur\n", "2SSu0KCkupnQjRnEmDKyBbN9H8L3taF6H1tpML+Y2oEE0UAAfY56rSy26FxyWATOPwqXZtUsvBz2\n", "JsbGHNQ9+yqDsjlAt15gP8mxFHX4q6t2yYCnUKBVxly45v3+s4ncMP/DcEtilfc9iYj+pE5vQrYL\n", "IaRHhTuIrFd5fCLA4uegLY/GXMenQkEFXh7YN5W8lcdg4c7wlVP64hzWTu6w4eYdI8LrrFo6NuIQ\n", "eOfFYFWUT/vkcp0qTC6LafAwx6ZareqeezHA6t/y5Ft4zjckh5zzMNvd0a/QtG6cnxGBbw9dv5+K\n", "fA7XRVDdVfwADcBGrMkms2iv6rs8c6pGUeS4SvK/C3R7VaEaM1NXLxSXZtcZF1Wsewe/EUy7gPSs\n", "wmhqVm+vK2C5a8pgT2UFJzcPoQs5qwo5rhEi3PqGKwosRNuVMeJEde7ANpEf4sGbpY9+qv6BrqAR\n", "am1BidMdVRgWdxTUbimXyE6NBjLbU6+cNoAAAAHEQZ+URREsK/8AmsyYgBCgoHJmoFCL0mdYHf65\n", "HioSCnZ16K0E7JlRPnb0gt0g0XFubfoRXbyxwuPZO9S8/0B6AV/AvDymJhOMCQnLqT78urPuIzmM\n", "a95/ZL89MvfmrOVd7USBbWWC+c4C0lU9kW72VncwYIfNyM1FNQqz0WV/iuDng1CU0RR7v9/U8+/4\n", "+7MUIY6NYFZygU5vf8Hu03j5PLoWqrX+S32uheuji+4pzs4ng5KVl0eiREWBtT0zySnC61+w82aT\n", "mJ+auipLE2/2dJF7tyNlGYijAt/5AdwR9ZUhm1/8nsLvvyHL/NQmvHjwPuS2yyGLwauDJaeDbLWx\n", "1xJaDOz26iPrxP8W5wqU/9UqJDYeYMeqdvxTk36GxCgEYvvQK4pZCyv6IoOCM5nmjKz2rMMxmVdn\n", "ejo3Cbc8Jzn3VoCZXN+tgs7+nFlo/27KcDRra2bbVrOAdb+JELgb3jIiA9TKq+dbAdJBoTA9L248\n", "bfq81oAnBXCvE/gMFU4mPTcBt/hkddavAq4sLw6AXsYdkcv/B+wrfK6Qif2od7mT86G/0nFi2hLK\n", "xWccEG3mvsYvX1v9XHXkr+y2lOtZXS0yweQAAADcAZ+zdEJ/AMlLK2qP7JiCQsAD9M8ReQ15URjo\n", "5naFlje6WEsWrDIgNvHrTAGFSmXcUOXV/i320EtRsNtLevlBopG4onhiZb7b/EZ7J/AcOCgRGJtD\n", "3/jz3Um53Ymt9VPGX48WV1RG3p0gdwyQQgFbMA7BkV1QzHup8FerM1rAa6/tfDRUgHCLgtdEkpd8\n", "4PBl1Hojvkko3Ahy32iBVYwp4QRSgMTHRPx/PoHZ3etpfBhOkBeLkwzQ+1zvUuGZ13y3e9xNRJZc\n", "m6UKL6V2z+BRzE1h5WX08acNuZfhZQAAAGkBn7VqQn8Avc+gvlIdo2zmamOOzUWAAgQJnoLFg51C\n", "lYrtbm0/hz2RGb4SglfKY5tvWZKifC52snlQDsKJLvUqpvKsizmtW1QtQej+Wqpqnj/m367PVBR+\n", "45KDqD06vo7gs2Vrv2Y6NBwAAAiIQZu6SahBbJlMCG///qeEAL3Hq03t03AFSLMm5R6kbnbWfa1l\n", "oqjaUnvlxVSd4viMPytakCN+cd6LDFsUxmMTxj6utj6xRLocT2YAtKI6a4AgQd2pogEzU2lMks/N\n", "H+7jBphjlHLDwKSHGJChh1t5YMQktqA259fTnJpBAmn/2piOWsBeGPZkYAGGtehxcc9XJPyEspHf\n", "tAA8WauMAnAWGwtFWk47ecDr8TkYW1JfieoaILC6LxPDYNF32S4+T80gvmHw48OuKkWUNoTMSh3V\n", "Bzdr0P+fPlE+Md3NaxEvY/CqezpOrAWqv4JP8vziQ4QuoNnO9PYLAzPLVU583lUMKjL2JIplur1N\n", "ZVs7GPlWGn+xb88wp9B2jU2SjhlkdtgL/sbJ7WDHYWyaWc4r+pHTEnKYj6PcubHTylN/fzkzGCU0\n", "Z9zDcw96CUC7WBPdXADX1ozsbEXFDYlKotGBZIc5nzpP8aLqh0M9AuetcG8uUaW/hIDjZDIIx4gL\n", "BiRYeDVUkxtULjFQdJb5DfrjGMNwuX6QDjqQtvT80HUeGrWHTlhdzOMg3Rma+uHDt71+4d1WEpnc\n", "n1YgpjUrscQ9rjL3akf8rqazWKfp7u4R59NZ01uPbdDI40Ew2B8SVLljTyQ5EVycLjKdJGoJGyQJ\n", "VTuzjZEoXhD/nf499iwV/bCa2zjDvm/EK568dIS3Qo6DbHY/3dlgu640+GPBJYw+zYWMWRzQat5b\n", "W5BN+eUDkPDek+aWLi8FrcNvit9fpDodkiPYAnH2Fft6YyghjHN/JQAMuap/W+OLNNbjkBEwTh9g\n", "JR3Rx+7qaB/km2ZuYeAXg2GY3vKGsZmiS0bdMV1ntkd6SMxYdEGL2DdtFGxW3XC6uX7Fki7M/EoV\n", "jt0AYv9uzfmC5perW/KfQeHGbidVGkXegCcRuXF0RNnv2YlaaFzUJFzj5+bJ+vZnfSpmI/sbGmKt\n", "hbh+BdsRoKhxDiRa8CzwRwW+bA/qwuV1Z+R3eaj0DiVHMGAM1wsF/3NVvOfyoQDfHkkmF/yM5Ov2\n", "fj5aCBnpxacCmtoAeQK5O3cO/K5+i9jII60aBGIDznKVwKDP7e8xtZwKKDGRepiXib6KbLzWPT8m\n", "Sk5er0vSL58F9ThnRXzZABW1PbcsFr+ePDn6oP5wudQt9BjQSt2ZQ8KHa7Frp6mCGWF+VM6RQc3a\n", "DPp+ERCoTA5wGV/C71orYFjhHqu0Llqi6GqQZFXXWLNPlowJk4hDkd34YbnE6vEiO6cZdkYRb00C\n", "ubDgp37WrUMw7+FFpGQXkbHo5MYV6yMYL/8rwhrGcp/dtPvBmGztRGuG5nb2CU2qNiTILMDJaGdj\n", "hy59649BKOif8j8RgimcnqjlPmlwNqfToxtbtlDahegpMfmYUVDTZljUBXuflswxBMOXScw609Mq\n", "43O0XH/7QVbP8WAt/GyUjirlRGGataNhYE4OcMDqoehSJQZQqmyUmriiqxUVvxRj2VrX2j6dxe86\n", "Qh7zj6Ge5CBu4JDqUsNdtLmPCXF6fyiFtNQq9JPUcSZR3jeKsbXgSg1igOuRJHK9Yc0y1vd4jnul\n", "mbZK0ttf6F/anPDIu1Ja+Q0xP8Ffb6qAiIzH8l/swMRpDD9D4HxSp6jaJqdL6bJxrb6pvOFBBmXa\n", "4vABEb8UQowjzngDZpYeJpYa5+ZsvR3JFVm7pL2d/BNDYl+dERLU9WgqKvf8QH8e4D+9Hd5gmMaZ\n", "Z1e3N+ajwrRmtLDZcdzfyTdIGKab/A9nJileaqt5Jzb1O1lXC9hH5uZ1i46yxXC2CpejIpnsDLaY\n", "D+fUvsPocjyx8sp88h/V0ponhbeISlawnU6O/7Wd5zslryozcIcIoxSkeZlnAqHbE6xux3srW0M5\n", "OFhDq6RPUFBqEWvCD4gmXCFb2KRsYQPvbKsw5AwJkvqbD8dLSMpjCjHcBy2syuA1EV70XzqaYKAS\n", "W/QPuSlJEeQlKWWdMif6EspHtTpanJdH11HWvDZVXlGa3WkZ+c0BeVDCZrUizIxbo+QY/4dF/9Cd\n", "YSUcQqdufDdnsQJ5JNZyCHQvX3cqzvhoRtv/vHQ0x8CyzOJHeuBJVc8EfuqoFEsVEFEx3GB2Yie/\n", "MFHtkT80k5mVrHLp+BKqTdXRDl5S0zNu62a3Zvw3ikN8qc2+1xxYIwSwqOiLUzc9GsCdo8leOAdn\n", "ypN2BHx95Qpg5IaYWlJSOVCPZoXN6AkabsgxHT90Yo0svZ00GyYoDaHmMd19/iCwHxZHL8WtZHBw\n", "L0JeBSytG6R5EPngemm/jng+fEI1miekGOJVcnvIvfNTQ/ZP92vfsVWPw5FICKAx3PkgM8Ml/CzK\n", "zV8WZaJ6CuRA+DaeGYaeRyxuZ7hfJu2hjPh2sPb8TZlgAQyfPxi95xo+/6MTPMZBzsgM8mlWy+qU\n", "PkWb45ROUvRS4vtscCTNFRgXkTRSxf11aHE+NxSiqZFsncurecIwPZWRSH9dXslNIW//auP6tznF\n", "GvA3nukjh5z7gkuSKHnF/n2qbRGNrLGlCQozrGY+ExT6yQJ/oAN7/XjqixuUlSQsFrofYK2OT+3V\n", "HLAheImkX+XQviryblpih88hhjm4PCM1l3vl7DS/p3895StOyd1VgBAbLvOtZQpBjb0HPQfKLxKi\n", "xmOS4rMnawqnnHF9DzY2OkoBOSVS4x24cPhzQzllzkhv80OFofwdU1MEALsNrAAG66uDn6gf4W9D\n", "uFDn5huC5P/RLNRIQFwgvzXbCvftw9udEldrQMNuJIxIJcmK83Nq7qI93AkSTbyFEMMCaOUbdqvA\n", "LzicomDljlrV8SLd2jNV7RFNreg1h7J2C6DS6p9mRB47dvZgOjj7lFLVh9IRRsVtGVXv+llR/IHf\n", "HuHzSPGrapnlLrB5VLUr31LcdAlV0J2Qbs76kQV58AMoGH9MJqCBAAABzEGf2EUVLCv/AJrITpJG\n", "WeoHnXejHNGM1GkAFzyabeKB6TjBbnpoiEjpFTsrqgsLt2R2YucaoQD9Routx4TvxHpwHn9N0fSB\n", "S6vgnqbk1+hYRG0HG30z0d/BRa32VekrW7mrJQbuC/U1LjBhJ4V8Zmdat9JDMUafZMYDRXMo4Z5a\n", "oRMl2fiJZxEekwRwogjHU7dN+xr9TufHvirKay8yoOZp/RKFMDOqv4xVN2gR/uym7+88NlSbg8Ff\n", "l4MO39G80FCKX76jVf5FCx/C1QzuGt+ZYpbzjKYNl9/i7zaKY7mLxT6htmrlopS5GaBj+Lx8y4jO\n", "0MFNioUdgjE77Mt+vXgDh3RINzsGbYvabY8ijoB9cfe5KtanNFYxSO+75THMNYZqfmZtjE8l0uu7\n", "Xk8dYGnmn/+fWxd7N8LRWazUjFh4R1wS23jVyEXCfsabgB/9AWRCRwWmy4647t4BXOJu/yKXhhYQ\n", "GeGJGD06rrjW5Insh4mAQFYPk4mgLwDmgACBj07TjqAC7AIFHgYpuvCDPiNFH96L6s6HuoWONGux\n", "fTQImKSgFTYGILe4DeWoYm2lGXh01PGHVQRDqJmi4OFFshK7VSMm+pirlIhYeEEAAACbAZ/3dEJ/\n", "AMj5PuzoDlyu232JC1xABDmOKwvJkkSoMP8jOUJd5DYqaBwHpn6mqINPZhlqDpMwTkO3kvGm90sP\n", "KHpocwjoGY3/dA3m2HbAFiH1WNK5vMlTVVQab9QdLrPKjTeZ8ha+Yc4PB63sVgFt1htS/32PZv0q\n", "X6kWJSAnyJqnMdpoKuUeI3ddUiMRaVy4WnegWgGFb1yNXjgAAACzAZ/5akJ/AL8Jkl+eJO16w3QY\n", "wGyy0iPUV6/lqPZZaDMl8WEkodRWLzlgQ5gAEPYSB2KvrjLcd512+JhcuaP/3CuN6XbzF5RLNhvx\n", "LyvqL0JY5Vs1Gfwibk9ZtJ3VBAnOq4oxwuFamb7YwZRhX6QYK9EUcgwiWKnxtQIKDNUeBQDquIKr\n", "zJ/rwP0JioE3LJinZx+j+TsAeKsvTuSIQZnHBbKX7PhvODF0OX5j5rg2pyanrYEAAAhhQZv+SahB\n", "bJlMCGf//p4QAuTrWvvIh3ABYfINlbCix30gG4r7LaEls9mtHtcE7LFh+QQO75vX6FE53KVwagD8\n", "0FFQF2R5xTi/2jr0qbFGUHnHDkOr/nbvHttOiP7qSTZW0qH8S1CMclUzbE7Xn96gCHkmkTeZ/8rn\n", "uT4Gd2Z6YP2C00wGBRKGAIvQNKhrTWCdgHQM57Fn75aeB/NLfCnQqpJ7nWFOunhDnFa2BrqT5bLT\n", "24qAnBf9gBS2wSM2TGdrs/WXUJ0hPpnZR5gaXG405DnBwTxW9wTPg5ewwLyCZc/ERhz+LfZAI6w7\n", "g5TFYl+8j1a4bSuiFnsvp/dONToU1Ct+T64MQ3dbTnWswiqlqfZ37RYRSnZcFhCoFBzvFoyE8a+j\n", "XhjhQ+Ap5fLzR220T2snS/8yqX7K/vRphQWKwZxiMNgoQ5cZzXOvAmWm09myvaZKXlL7J/5Lucbf\n", "2epj9f3XxPKLfd/ucAdpPgq1umEcniM+9wnnMzw/pDvcfquVIgjNLers6Q7S9WHHdx7lFp+Epm+H\n", "HFs1DPpwIqAxx7TKtt7Qy+oYUq23JWTYoSlIXFpyKYSzYAgNUvcR+WwVjcurId6Pwq/+XcSWhtgw\n", "c0K1f52goc7Nah2j73OdPS76y5zOj8Blft2BZLcMgxjFLwPKzvRd80wkDt2Bipj6tN6KXcRrMXj4\n", "tHK8dbt/lqaSQ/ojjSpjD8T+koAHCh5mbNe00WABDG9G//VsoN5zTewP6jHGVikoawf7S1KDYCIb\n", "q3mVh4z840/US7w5cXxrALnUo7r8JeHDK/UucgmkrKKfF+xmo3hk01KtjRkSvOyKfMtSYUOVxvSL\n", "MM5MZKdB0fPxfDHl1yVSIxyPLaBJyfDU5sPBhFVF2Ij4wxvuLkXmfh3/NfVmdAzI2GLYM/xhXRG9\n", "HCbWOeuvjbfrz+UWULtj2lW+1g8Kta1bkarz6W2xN7YzhJ7099TtPe6NJbt9eg//m+ujN7nrX9zS\n", "jzkft0KEHfLN+uWsd9SUDMHcsO8dIk760KJHsRBh/WG8He1O9k5RX2CcMXY0yGGd1q+V6Lw+xf5w\n", "pkwItw/VgDsNsCX/FOUGErTyvl9VdMB/DSh612P/5VVME+88tghShUZwqaiIKn6BmmlLxYSri4kS\n", "XgTc77Xm2Jj2GWw9KH/fxIFGixY5TxCzJGnwZAyim6JuP+vAkNz9sISllHj82ELAiVDiC+J/wayM\n", "jLCBXHNpGcFZSKS5es3jYfay1kNMyy7IOUWFe41zSlTzHe1/TtxSXYLef59GUgl/MpzDI2esJgwu\n", "hALHYbTDb7YEVDbJhC2p5arcnwRVVAp6sJUqyAAm9KNAppZyKtlGWnj9ibQ0KFpr8ACEDlz3aMhG\n", "FD/NEC1vtp2QVwgThjjwUTmVGHEaK7WsoWUFkXrDeJWDd3i0MdweKTNuOPU+2zenFIdc3oSGRgqE\n", "s8msIJBBQpCqfwoTGyqUpMq7MnunEAOxYRMrMppIs1gj6eXrujdzKXwOd2LNoxBtL3fdwwsJ2tJF\n", "yIESIpU4N7Gq5K66fZOnfhnJvLJvVAeLfl1r0mTGMVPnQCG+W3TBAciFPm8UeWr7DY5kP3KVX33d\n", "jplB8FpfWQQXuMliq/spXq2hFeIPTAo/jZ8zbxuRDFLruEgANRSrgxU4LpY++ItpKpRR0xfAA2LD\n", "Wp9nehDv//7PSdpr2KBQXXQDIXq0c+iplGb4EX6sMqu3shl6JqC6hVm1AAl0aUQUON8Jc7+RFVyw\n", "wlRvD+DnCiOKip7/qfmkaNNNzxemI3HNMmCd9JOklYcvmfnvFJ2XoJ/zyWYXwt5WoJR4ZV5NRWS9\n", "E4WAudTDZYkKPV4fkCDmmVqyaVC3xhLz/Fq8b3Vo6+oa5XJFSHku6fcOt8Ww7FhIhnhqcNZhex8X\n", "eANjplKr7qoFe6IP293WHJH5dlBh+OVNTc/oO19vbsHLUMlrx9/8bY7/srCFgqq/9z5KRpl5dZ7W\n", "W25zmDIun9gsB4rl+ZbZF7N209oHMia8V7zA69foDwjyPARV53/u9/X+qKSh6nSrz5frYh6wjGMw\n", "C/iunAJI/rtXIAyeJWdFMTz+cXMqYxMfUX+87iY8a5TpmSqrlivVrlunMCZN+wpZKVVvUnoNGZ4U\n", "R/gu24TOGrcwvKmYOXbSTeqMkk30J9/hr2rZqM3wa3KwivGdkFypHHnlxQwYd0qTf3novkVcWYbp\n", "3hDoQbTtBjbqZHpgkMQgzH+Bgu95I7o3Tn8zi58GtdD4wNPJumB3C3d3yJhvuAIYWRZssyEC6X9V\n", "CxuWiT7NhAS7AhoBQknQzPQkWF1mE1S25AaNwIOJTAF6jzRrf7A6yZgY/00VPAY8OVOxLo9i3m34\n", "5xQrkoihHpcajEP/baLolvskUNy7SikjKCagj+3Z+hXFMcHVNWVrcjhp8ypg0EVzwkYrxunBCCBD\n", "ImHcxyXH7iqBL24W/FKwrvJI8HeYzw/AY0nqfaw5DjLnrcnRV2PyIlcnILEwPzsEHUQF4R5LvG4i\n", "FYqA15A7iCZjdobp5AXa+RC8//1sXqrEIKvEcfms4gfa10EV17F6UtMk6YbFPdLsxF3xvLE1E1UG\n", "I/eVZiuEYB66QZ4QV2AaHBQXylZHa0MkRdPS9yRDp7PZvtpQ86lFRkLtwJG/5/nestWVow4pORwO\n", "cEmRlLF2xfVmqscnq4S2N4kxw30/PUNrl20Rd3wG9Dvn+SD+iA0KyoWGuQ1uSP1qNqhZzqm0Jrep\n", "LpVAqQ7u6bFGY2STNgX5FosqV3TVMt8YYbGiGaei2Ac3Snq0kCkXP/T0dI+Ghm+gfXzs9RxiwAED\n", "L+rpZbsSZniX/fYw4DDSDTMeS9XNzTCArClFunTAAAABvEGeHEUVLCv/AJp/xLcAB9jFqZLUMxOI\n", "gVarSg9hJUyvMgYz2Qa5QbYIWa2dlG6s2/ME9QqXYh7F99TUJZ2SuUDj9WWx4az5owQ7ycwmHgEX\n", "YJEVylmasNiZoCaPLXbRJiTHaBlgtdG9ULjCX8VGs4WwAa3jJVF3k/yluqXtFjmZqQudHo7QJPUx\n", "a3KzRON5DdxR4jmio0iSu4DtzVHhPa7KE/p/Rbv5HfRbbOeciWQKryYkQBoSoY3y1fpF4Yv6IPjg\n", "WN8efDb0eiCq/A4KERJlgPhElcD8H7qo6nkPDVSPAFAxlbGDbs+BDYOmO1u9QXMU1gJXduQb1iFo\n", "7s4xhY9Z41mIVdgnEpxEf3iGRAiBaNlm4g8SG+vze33xr559WE+gNRJSj4sVXiWNqTGyqA8KEQ4s\n", "F0TVKo2GEEu5731ahuZziWjBIvQ9tmzH53S+vgrl+8Wok72v70zibRqNgAc6S6s9smpK+9cngulG\n", "1IcLBTwl5xHNslFx5sCGa+tRSBCpyBR966hTJX7//1pkDHuiCqZgzWj3Nu9NZvBn9ymynp8i6pPy\n", "FrQq6DSASgrn+8Ohx/7uxyY+WpULgQAAALkBnjt0Qn8AyTLwgAfwzsigdVLl+OWbNG+ZsVO94qSI\n", "qN6uM4ocpz2y52KeHYHm9RH8iMbZYrNlHyhQYCaYD7qxqgOohcw34c99OyE6UoN0pfFUNwSOue0p\n", "MnQLBBQ3Pu5K+90TzDS0nO6RtfiFIG7ZSstG/wcUC8j2qg1cwPRE0Ieo4P6WbdHWI3fHyDE2k4oM\n", "FOzsm5mewXCzqZG8i+o6AwCmJJKlMxqpko0fq2ciXlIruYaw1OIj4QAAALEBnj1qQn8AyTzd7qz6\n", "lN+3wAhTkvpTTIvpvWbT/msadPYRNxlxpzTEb5QjegHrXVnABZKEVeSYzph6BNinZ0YUypYP9m12\n", "XmXfHOMsKqoQH+WoxoT9IbX00rw8+wa+8U9SkVmxjBXpoAlY+JIoyH/mwTlHNrxiDFXe7FEQSOsF\n", "gCoPsSjn4sB32n8L7NW+2/a6AzddE0RM++DYRp7eY+EUAnZYTnMq74prthm5NBd6RcAAAARtQZo/\n", "SahBbJlMCG///qeEALlD/cZskAJnQw04N56/mdqmQqgczmUz5mLv3HJlzbvpbLh7Bv9YKMxHyTco\n", "Dcyw0Lbope59entIIhR2yjPNG3yuLm0IV1lha2h8Lwem3/T4xnwgbBpOVqLjPn2xQJXtQPJ92vm1\n", "eSj8HClCCFz/JXjGrkCYVNnjH1MIzJOaoAFQ3q7jRMVbCf8nkF9Kwe1Vs2X4u2NQHMUF3IoiOFg1\n", "35pF57Qan6E/48/HYWgRgRjGBCzsSmoJvvGG74Djkf+7g1NlMUeVOBtdtut89GPwZ45FvjpZe6OY\n", "FHTqVq5ciAVlX0Xngb4bmy7SSF+7rAmk3oX24R5r+89tQDLHDOupqNJNB2T4hXqIRE5vHuqQimNk\n", "Kve0bb1RBtgvdABJa+9xyQhXNnoec4WtNgqmTruKL8EF9dOqWwP/dLui5fDEw1o2t1Me5g3S+y7I\n", "ErTh4G0uwfxAzgQxk+YVy7KgprUCZP4xRT4dOl26akfo1vJINePnXjz4AiFJXnybt49hGuoE8lU4\n", "E8Ixct/paVlva6QC0KBlCp63CsekmSxQyblRTn4SeqBjcpzbup8rQ43X3t+Fj6rpbJyO1mkI5eC7\n", "fDeaZkv8o3XuK3HtNNrpMR4PqPAHuxuLR27c6kUNXnOkjvE7HsAiu0PcYTPReUCDmOSr+P9RRTbk\n", "CSzrXomPyWci9e/6slYuk40NUuUwPHYqThPnk7EltRZsdsxEd0YxcUUdvCi7Gapi2mEDVMBFkP30\n", "TPvHgyAiUlw2ExsSS4Ul3SRQh+lT3GbMJlupr0s7duHbxvuVCa9WXctf7RdZeOn5VS3rQa8ePS5s\n", "61tboT0bER8jfkq+SLJ0rlgV5XiSS3gCS+xQgYTkdT/8/Ix8Xz9AWq76lILH6trcQ/BxV3hi6zgD\n", "6M1lfGYn18s4GRXLTEkTLF74oIA9jeQ32SqXu+20uYgZQApZ7MEkioPxBPVNLom8bI8k5ja0EEqh\n", "+Z1Lc7vLrcW13nhn3M8Z8pSLCdfLRKPYN6XhwfHAAGo7heNdPe5ABHEFkcBV+wUQcbEP1XGCpBb6\n", "jFesLa6P0Aju/trz/J3GWhcmOMTNzOmr2tFFq/nTrLmqGWHLMIs8uyunDI8bJItZDZ27X1QnYnRW\n", "G4zdL1AA1YJU032StwbPU8p3Y1wBUeNljGqunzkCSoZW9Kjh5gfyMMeaaKxZNwg56x0cGKvZp2uU\n", "KCNAal2KGs+I+u05o0mgUB9mC2ZS4M+XgihAQ9aInyUxQXtCFLEbHLzFfevEg0jVtpPf9QBmOknF\n", "fHp+3KFUmh3y9FG09lWjYJvcY8vnxElTmq9HO+8sZjDlVBeukF6EGdEy7H7wNQyPk0fjF1j/YRU+\n", "ql0a5y2f/N1MR4H/bc4Qsgf5la0H4FUvyQSyCxP71LVFYTJJ+Y7y8AlmR/VyLprHJmI5TwdfWTb3\n", "UKpcPi/r6OVeyT3OqfJKPlmlV0z4TSyR3AEA++7qYAY/k2xO/pm8smNiDTM03oAAAAj1QZpDSeEK\n", "UmUwIb/+p4QAvlaDFIAIswLzInPhtssEYM9WCpIThf1vGFEI9LKcHc014Ka/Hy+geQDv9YqCVgr2\n", "srIlQNDmKjt6GO5dMt2E8Atm0x+oRDiIr3wtkmQAa5sh8NwRd1QdLQmmXjPUqxpr1Apa77YDk6sZ\n", "PepLedTS1lBnN+gCZH0OS8xeQj91J/dRar0pjRLL5hWzLLOMi+AOPJPbPQSgcPRgidEovuc8XaT2\n", "Mb4Lcy9GZCrumM+1CxX95ISM99K8YgNxld/p6NlrNj1Qt6sqMpH0kjy+h+v9Mm80Vdd1FHwMNrPJ\n", "57jszvCTz8W/xYGcqma8G5q5rBs4j7R7fmtIP6nrpbzyVRXSsH24UtFvyZb+JhZqoGmvIRvrePo4\n", "ZLGVYKPrkGSoJNR7cmxRO4OYXonDXlojqWR25CHsBFM4EMGEf4GNITubgC3Ei2lTO7QUIMuUryUr\n", "p92DO/noTNcX+IyAXIJ6wloFpsbstvaQ51Q0t7JndfZm79rdgm5/cY+x3teMtnQYj+CrwuE1Jya0\n", "zorF3j5UlfeJIEmDbzKk6Yv8gJ8u23/SrCq6TqFMkOT2IOq1rggOziwa9iINujDBh7o6I/Mb8+Oj\n", "ZttpjT32f0IfXSR5Xoka570XH7xnhxdIbL8Upi8UT/jAMuVqKm/KWAjsofn76KOYe4CXzN+APzJ2\n", "FWCfL8s9F16xOnoQTV+9i+8/MjIALsyGn98ofXRNvRN7KGd6wVKHrQie3CEbydGtBlChgNiL2d7d\n", "fqGTqxKd9w6OieEpsFGwKoO0poU3SEsvyFva9/jyUkIEweyNFNOO4gTH3pTTrlyN542wjpp8EMA4\n", "l1OnJzgNMQOpGZGRUlY7Sg3iHR8B6WusYGD5nZwv8L3TXg2jWOU/ntEOtwkK+aYSWsvw+AltIvrp\n", "U00rWsYs6+hVtsnBbdOLzTZJIxIc6gnae35cfLVRvxwJ2XWZAR0iV6Gnodgva8XAP7PCgJdqHWog\n", "5rwwewDNJnCHrVvIn53RBNONTe1MSUxX5neowKvi2gptx7tx1o/RV3WVkHDpc6SEzaj3QZpjowI+\n", "dHeGdlmo/0bG7xL3F5ChpyG9JKjfy9hF15q5yH+gSldVbSUmhkITh1mO8Lj2C+eloaZ7WKqFaLFx\n", "OSL6bMIQMbFXYcUV1vrHcRuCnzkteL0rvtxtkqHUvtdKqN3R2y12JyIUG6x+pSLcUBUvrdze/emt\n", "nqP5PqJYBJ475yaaX8eNXV8COONb78HLf/80LatPiP9HFzG7Ld2LYGOwLWLQhN2cyiylCwz9hWV4\n", "LywfI14v5ToLkGctkdfIhk6lDTzijHTuGugQ0bp4VoDiX270MyZjFWk5Stmw9WHgwHUn0Lr4EjJZ\n", "x4PxC/l92QaSucp7xL1D6/DYAu2gAnQ3Y0yMV9vLlPZP0BLOX59xOJ4i0JlL0N17a70i5pEIeEwC\n", "lRn/iP87Sc7Mg5xfu9aIIHM6wVTBhigEEBipTEqWq+hPzlWSYbc1EJPH6uqY6hV5NnhhwxkQXpF0\n", "o9XMEXRb35NGyXn4Bp3w8zEobup0/qc1AuboY9ohqENVTPEsP2aFr3Ver06JLk9Yc7J9GjZgur6B\n", "9ug8oZgQ4CqWf7mLu8Zw/coXz+5ekckcUk8gj3t/jgIph0pLGAd92J/hPDxcQ5mwBx4wx5YkTxVa\n", "mRaIc5ySWXnJpRAomyOZCv4GysOMYC1GwCHKROqqjjeSUuBiLlAmqSU8gosRVCpryddMHeOvV4Y9\n", "D/2vmpI+jCwJRnjasNkaBwBgSpZJiVJuMq98BGdKCKX5M1+ItTQo7MwDeJLNI+kG5zXX6uIzPl3f\n", "Xl5Z6K90gYygwBEPMXi8do+Bkr8Te4MncXhtjdZWB7SxoSegafYIDBwPbVsWfo2hft+BRaIe2yU2\n", "ORZxIqlxrtsWNZFZjBaV2iePinPmF5t4ilev63Xk+1WNCuVXZMbkv9XxdmM5oT+yxJyMruURrZF7\n", "E5lZ69vw+j6yeGcO5BqPN+DAgatshW18YtTkvTg38g0odi3RevZeddqnwXzjUMP1GOkcCTJut3D3\n", "0R6FVSYxTwFXVJ+O1x2LUG+uYdyBHoFR+ydc9NQqiCIq4AMl5Ds4FjsGXKwl4Q+e5eyNfa/dYOeR\n", "vw4C3IE2gmeEcf+vcesL7HJKnDsObakVLuwnnbmhCI2//AzlWRvvIT9bevDYT/VtAjV0zQ6vaNuU\n", "xWE/nKp5AkG4MGQzMElEQNXQ3+kWyxgUgc34RQpZlJc5tfpiUfZz1j9XrwquvEKlae5w3eb9CKyR\n", "ASACqupimnKOBg5jh0m7bojShxmf6nhL8VzsboTXNMpN7CMc3fHAlmcy8EFIx+KRg2/50P9qrqD8\n", "eZo6v2OgrGq5BSkcD/WHXdTnweUfgxLJ3ouSy6qv3QdeAEAivWvboomHSiVzLcdvocV1Ho8LHJ/u\n", "SYkh8VIbDoBfoUeeBRsdhZ5JN3PjETo3E8Mdg69w0V1KBeDMJEnooQ+ItmCAMrJ1r7mEz5SKKeIW\n", "HDBsFrRUxIGkRO/axyON4aXworWJvyHpTSXpvy28f0vHORrzvOwk/g5n2m1+wHzet3Gu3xnPxJgF\n", "arozWUNz6bVzJL4Tn24qT7Tz0R2VAKLLcVOKiPNFWvMPtmtifZ6e8LnD3GvvP47UDcvALKIHiFjA\n", "/gcGSrInMis28how+wVYfKpdtFIAuVCH3S7vp+qkMiC3I1jzJOS7j5/QOI1lmm1yaVdSkJHOIkAP\n", "svID/HOg57Ub/NFurNk8qxR0fGt/p1d7SRn2Xkigkk1TiRpwGz/P97nVsky2qP7a2wKaGXgUQ6me\n", "5ogI3oFdjG2vlgk3WV03dJUF36zEK50rsVhpEFAJ3LBlL9ZremIwlarR9cPuqAth8/J0GZJVILc7\n", "abQa2wQhA23HMK61okqb80j9nocN1BcHNfQ3nFsnAPgPlzSavAVr4sJmZtkVGIv6+1FQen5urgzN\n", "X4IZHaOj+K654RNjVGKFRAuJUsq5PUbi9szNl9MV57nepbghGnFGQHp2YIimpaHbnF8pqLphiVF5\n", "SZLrlBKcgQAAAeVBnmFFNEwr/wCayEvxF+VACE/fbhDgXL0oTtkfXYX1jFjpFrBq9FU+JZLnx5Nv\n", "Rpxpiws34DPD+LscA5yQ/KmVWOtLsHAbs1pMSK4FWvxFH1AJkzBObFJ243URUbq6et8/itXPEhYp\n", "sjw1E77DWRpAW+Nmb5hrI5yjSXMwjRXwxg4mbDOEX7BsJOn0RwacKncw4VQX7XQSuBP/RelVP6Td\n", "JyIV9utN4umBTOww2D0JqFhqES045j73Vwg5scO5d/H4GJTqZgeVWMxXD7wxuZVNCGIfiAoTXHlq\n", "CGPdZ2ZsMt1XDRMEbDYcDmyZptGLEavaMRLniROk0LvUenpEfkz8ysO+X6xNt3vhA6jrCfFguNTX\n", "pva+E/n0MAfF2hU3Y/gXuEk+uq6Q/IOyt487VCRhDDjrvd+O66SVBkwo6H5Y5D6IlkRs5eBmnCnj\n", "vdu6qpKjRuBa7GgMumkW4IcNYACtgDhm+Rv9VZ0kTvoUQHX49m95v/EbH8zWgTsTjONWVwhj5SVZ\n", "W8LUTJFbCjWOeyFggS8ITvVPWcrnJj9eE4FLj+VxjPxIrm0iqIoxk2SdI/LZr47R6B6afxt0f9UX\n", "E1YwOELiqiEvZaLzsjlEiaS/1X8G1ZK7fjrjwXwONr3EB6naInGFLAAAAJcBnoB0Qn8AyUvxwL8/\n", "fvSB+pJT+eGSNqAWaYBSjSaGOr5Zbp0SQ69XmiCuKHYAEO3W0wFffIw/IOx5Ua0LDas8tpRX49ir\n", "f+WXuivKHkPz0WTSZnlHnenNGV7ILbkDu1fnUTWlFF9a/DlQgvVKFt/LAnIt6Of+MpaGLTyTRHuD\n", "TIHVRD6E2mQXh2wXofvfwTPcqOJWrgb1AAAAlQGegmpCfwC/CqxZWp9XQJKAEJxoRfgrZISmH97p\n", "+kHH81ywCDNm5YLECq+1hM/AZW3xxlrQtB4mJqlnW8Yxq8ExulpJSS3RZzyEPECg6lywIYJ5b3vJ\n", "2uGt2l1WWtb8MFTqnDZT3bXF6n3nhm+wZ8Ju9gud6pSxnnJTmwGQUDY3j9tI8eKpd2IYQYqb0eFQ\n", "HEDCjSOrAAAIwUGah0moQWiZTAhv//6nhAC+HoxIAWrXzzeyBCM9hEJd2HbFIJD5ZIuF0Csz5UPB\n", "Ypef+WkdAI+86fEYvmI36wadWCwLtSQ2dn1fBICFwen4ePj+RNY9J475IL55LjXkZPTUFCT0U55c\n", "hzPvrS0HQiwSeeN3k/OpPkNUPOYiMqw2FasyhGXvfnnRY6tqkCZUVzffF5hF05dxjzekKbFczQyu\n", "UhPV//x+B6VCM2gt9UmEQZXT/4ComV/+Xzpr/v8NEDFaDeQLEQONBTywZ9je39T92/snCSeeBoJ8\n", "i3URBdWlVsoVwbHriN+OTnIfcLC5KkCTyszm8cvcBMxCXAJr2AoSSAqu9bORS86RatC6z1hEkaHP\n", "4LpL7866dVklOB85/T0yFYsaS5P2shtIMtdEOm5V2Pg7DfaAOMsizwhXFIpx7dA5D5NbZbBw9X26\n", "FyWYZT90aIhVJ0FVFHVSfC/S1NhUO2rSvT4G3geiEbO6vMwusxhLbZvh+Gz+KhrV5tc9p2RrDXxi\n", "0M6GWWo+6Ck6UVaLChZes2H12ydDdhXhJuqBsQqiRpsQOePR+ioPhZTF+EFUyp5Tf3a9agp6Ffsc\n", "O2A+8lGYzZTY60Nz/uDugi185HYs1SlsIN/Yb8UnU+OjLaUN2nodvapyUN2YyWbvbz4xuE15zq8b\n", "RfE54BkP6IgLKAddXYpgtlgHijy0AWSJsGFgobokW1VRIRQhAyqNbiWDnECuFVhGEpVFz1k4B566\n", "VM5AHqIw7UmseDntujo3Q1C4sRbVY6y25mfqZ7Jj1vEkx5tFSG6L7VkgtdOSNQa5XPThCQxnu0V2\n", "ut9EhfzOuXirKKGm4mI+95IdYMBc9QNYU4+Z956P7dwIV9go9ttfCRq0c03lXz77R7yKDv9NID4c\n", "QFFAGZuwK9dXb2XeqhtXrfPGIS4aedmsPM7v0/RCrPPfgG0jSq9ksXq0cs83jkzYKHiLS72igsoi\n", "TJcYj2D9ugkhVliM5UABeqDt4AMMn2lNBL4hHgD3ZB3vR+Kpg3/14SxHQTDjqRkBrpXVS5WIqqVp\n", "XCimOEntY8NEpXzbNK5bJpyLKoYjtmAKANWMTD1n1m5OeEF40ndMLesQKJu7lo7Zg/ZJsHTjRp3H\n", "B8hQ2f8FNSYQbJk/YUjZWFswNxIDyliUMESYCiNCmvX+8A8ShC4XCryQLK1wxpGwUQj4fpSK/7Vn\n", "qD/DeqMjW78nwol2N1KEvUOPfA4jOj5xlkroq2Ioka/MIJzy35UC2saGmlNBG3igxWElksApKyG3\n", "OEUNxKc7FTTr7JK+K9tfvk4iuECjiE3X78eE48atgIsv5qKzeG+kvW+SWBGMihB7yZkHvxT7LW0P\n", "t/MiEvnbyseJHQfTqkK/pzIpPeCkjMOtQEMvY8Aq1z2ATRv8aa0IwR1Cl74RvdEXQgYB2vzMZiQm\n", "fww34z8S3OEyxAqDU6j9DgyGJUjNv4RoVPnphTKtX0PoNV4O0Yz1o0CCUmbSAvKGuB4SI4gificC\n", "9g1HKXybcw3I9uZ04WSTEl6KNKMwxh+x+hH8FoDyBOFBEaK+n0LFsbB3APSq3pezJxRRwZn0Z7H9\n", "6MbErS1g14YPHaEJrQq46d2Q6WGFJ4io3+8S1Yh8+OeXYEuqWcA2Qi3cMLfWnKmKEj7UNVdQoDWK\n", "RCf2f+IZPowWcbg2pGN5z2kpoTsS3UUofxOfsczQPnleJPUe1uXFy1ure8OnC7sJrk2+vtG4YMoS\n", "+Su/9yf1D5bBA2rOvL2acwegRR49D8g+8SAmkK+wcqMDdq7d6Mq8taqXWS1xP5o+V5Q5DXad6Rbf\n", "Pv6sc0FBUYG6mHr4MXQFOfpqY2v0LlZ2B4pV8F2IrKKol742Fa3HOuChRR6zmBf28L7DfFuPkEex\n", "hGE/loxIllVmNfmnFYpR1kjg3NU8AfE76S2cagHzrOGC31VjAbQpDdJbwICQs6EFnJoT9DrnKAac\n", "H0bQL2dWDZsRmikSwG6c3Q/5z8WRXGgFSXUCHSz//x16iIzmZC6ytix2aPgMiF0JqmZL9edqyH9y\n", "grWvW3Glj2prrT/mxnD01ixpOQD+YV1dbCbFANXaj3iKeYSaMARVjXq1SondOHouFhQrjNrrEWgQ\n", "0RKS02AuACDLftRiUfja5seAyC+D1I45NcaZSpHPZHVVqpz88fQ1pA8VeNCHwQp1yGp3ZkO6Cgdk\n", "ZrON+026GI/aVxnx5iilYOyg2qy3XiQeSH2hJMiB82pFbuwsv1ba3Pdk/uw8o0bcS8lMikbCjsn2\n", "jQ0Gyhtpq6h4cx1gocjPBz9r/Ax6oC7axKI15fbwIv63mYbhSMhrDv1/JzDVxntDt4snxz1kLeso\n", "5h/LxR4VLwdgYHP/AcjRyopJYigMFfEKXYQClCnf8KG6RAfhEpCljGKi4VLH44xozsd2BMfhn9xX\n", "hxS5x3/C73w2rdO/F7Ea3IXZ6heqh2y3f+l+dKD0xsOkXXrF2yFw1DRh8T+Ox9TMlBQNSD6TI9CW\n", "l8xgTHEBptvKYGAVgQs1xiyMJIxg/XGHtwuyk2XceikLxA1qY6kCGG5OMF7U1C4x3PtDMnR9etok\n", "yFA/mFGMMcvhCLkMnJ8RNXCUK/UxwubMDEntSqCd2j+Me1tSU3D1jaSv7g2KfusybMHmSQbWgwLr\n", "e4obGhIzLqMgF1LJeat+Q3Md9Sd5HE3CujKTxZl+ODxn7fTWAyZw5h8e1+6e3oh7gfDZdebu/TzV\n", "u0OnL4DmX8uq1wfTl44Zlz43Gz64jzl8JvA9k6KlJbkP2EnhZGFjf/+Ox8EyqM9iuHSSVQQIooCY\n", "4JLiiuOLGZpAQ/V8eJ/ubQQ6oUMeJotFWQ5rguCTxzA4cpkhDVZqglf4gtezxfDr6TJmk+YyWuaU\n", "GEJ8BP2wuKwDZFPZ6T6vuCZevaCJIFcm+AAmbLlvLhHEUNzRgrR/qffrjB2eRjcqvlXf/n+C+HaO\n", "nihZnQyYPpyM4RbNEhplJpO870+057p9vCzxFwAAAplBnqVFESwr/wCakPCKIAW6FRRXFYvlxxk4\n", "Knlkdry3WlT2+hdt2P65HlXtzr5q6XwMUKY6Rew9KlyF8UDII/i0EF4PNlHJWgS6sloeycYc2bKF\n", "CCZ7nhWikNQQ83BqFJ8AFiTE/h14R6i0fsjpcM8Fa7q69HfMfSSS8qE0rpCvljnD/sNzup+tdYR+\n", "1gp1qv0MrBwSBRVL6ISh2N5SwCLyTTA+rwQn0Vh9baVl79yNSI1tojaoYiRN2ICtPWoHmjCB65wb\n", "uiAaL7XLdLLq68mUUVFG3oEONCqUowUpa0ry/xG7yoBS1XQYxVSoVSqZinNJ7r8sa0qOVdmxtvW/\n", "4VbGq39qtPYbuNdQROFDpU1xrTGMsvPkavHw1N+1ouPUBTFdi1NHZGiXrXuWiCBGlxkwp5iegsqd\n", "v5YZ7tWsVhGPX5znoxd5IdEkdcRzwx3pZTS8rDhpKyywjKNwsgT7+p0OztJz7ORUHrIEM4YmZzrq\n", "8vwxkeKm1KMccGInM41ZI8h9VeJ3Cs7OWAIYI/hvLa66yjmGKk5NGqJy4bsMyIbUOjO2hjhiTWQ6\n", "nMRmNmQooHqTWhTZ3wIYkV7UOHm+9FwUJSGayJkQQEIlxU34gvSWreJURUEyR4H9htn0HC0nn+gV\n", "6P700VVrnHT9q8oLxPVCJdqPADvp7HByOmpblCvQ209bEm6xNlJ7LCU1eI5hHhBSYpvcq6XEpYu8\n", "RGVtClStB6XwZtW1SeCviLSaEbXGZtQ1Z5/NljAaOn3xuF5sKiS1GePgZxSFpUFjyJEcd1vMHTkD\n", "CzifPM81GnptyIuxOv9t44gFrbOxHOH9bqRdBk6HU3wCX2ubUGx10uTosd446uvNeH9r7d1fNDHQ\n", "Mg2MzVJpF60yekd6HQAAAV4BnsR0Qn8AyU1cQmqeyLCq9oANdh/XsSMATtSvuIqZ2XmODURPUpcW\n", "29UpjYQRjqd4ZYEitloW9m6epyPBzXR9CZq0/LGxJzvtz1u4HyF5PjV2ob7C6Pkh6zPexYv9D3lo\n", "eca4k4abAtUw6lDOh4Rw9Zdxt9hf67TcQBtHItHgmpKZS9VpfIiAweISgMcx8e5mUjlCI+efjADM\n", "F9uvgtuYQ5eO+q/aqPwaQMiKuwHLRXkUysKXP30Q4wrPSVXAG96I7ARJm7KABAaRCqMn1hnnEIGJ\n", "AgX+4M9zrumjJYntqzsFBvE2vRXHj8mVZfkriUHLoVakVNs0wkMsMnAYFh7Axn3e8XBaL6UoOvTQ\n", "qJAvn2vk6vGl8BNqrW2pDX94dmB42MWQufILXuGR1cd4DhLX2NXWRe0C+O+NkpdbQSGiWc14xZtp\n", "elAhCdn3MyKZBNgJSslpG5dfCS3xboGDLwAAARMBnsZqQn8AyTziqCZTRLYAW8c4C5fP7woRUsZU\n", "IZsB24IDyUsf3OwHc5ZcPSDFzn4zHykMpL/qYuJ6Uc3jXPbHzeO5gJb3GXFmO1eYgFVWaPjpKr+h\n", "MvT1fW8KFeVfX0KNbsz3J8S9ZqZMsMMSou105eBNgdLoiD3/8Ir6bUno10Zn4Regk7CHrAPWpqT8\n", "OyjF1C1qm9R1SZO4Wr/ytE+Q/CLXRo782A5wrO8GcKz3UJRhXkwqa0HZw2x1Mf9Q5qWafQIM5xQK\n", "OIoftwkv9wnuoMMCc/N9Psfl9r23CqZML/kfL9HSa2ctvPERtA1mdA2iS8FqmK/VRbRHhr7fuAVW\n", "1Y6C6smD3YtnbSo0nW6++mIPmQAACLhBmspJqEFsmUwIb//+p4QAvkDdHV9wA3Re2bI7NfmgkQGM\n", "KpmaW/Lvzdr2GwwqQVF+ylb+649y+0zdgoEwXu4d7jEyeDDDYzYaLEtOVSne0ySIl7q9FYGQSW4c\n", "EknGVT0wEbLyioKlHPsFiJwnZiwuw9XEonXR9pni1V/G1mV3t61aBpQ+gDWmK0mKxrJoW/KcsYOs\n", "0GX6Q5ithouRLin0ul2LYCXuGVFoah9V5uaigzPqXeEyRzyVAsA7QpbE3/Hr23h05Wz++U+UE2rX\n", "HsXlxW8GtkFNJFn8IJ3V7OTASY33FH324Ve5KBSufWj5Wv7kQDy43dFpBGIJW0MbHDAChUkubSOC\n", "XpH5Iz5H3ivh8HAwN0EKumz2D9nKdl9u53MHg86GyKs2i9gSNCShnA4GYCtYUoFewjupUTuQBskp\n", "CmBH8uLKq8effw3QlCHAifdiYum81zaaCSe6OFhyk28sov6u2Z1mrYo+Q5dcsb8r74DqR4ITfQhk\n", "DZVlfSYSU4vzo3s/SjVs4W1AwnonFN/z8HsHewzscDrLxA2u2vJeaO4Wu4JlCYrYUGbsDkYamC3w\n", "R79sda4z0vP9/KMbJg3Mk2yEXlB+wA+F90SQAY60ivbiQTUrwDOsx4Kv38do/l8B8pFCS1WmCvxD\n", "3yO4OYh8ZvtznNZGXR5K5NCWcDrhd6sgjUOsvWv2dV50V7plyhDAm2VLfk/XGpwYIcEpwxseAi2l\n", "bATIpYIKeuDctMy0OQJewlE6EeCzZ7YWCCRtaDqg9dhcAzrVKRbrNh5Ll87s605QH0K1Al1sPkfJ\n", "U6BN/rtyH5qXbNfLck3Qj4TG1OIFabcP5yRoRAKXZ6YGUTljfdVl2foXXVSLJod1fUSzJhJjS2So\n", "DCw4T4bpFXzQg6jC3udFNJU2PjBp/6NGNttXqm/AoRbjcVINoKHjnMouzWQkNDb68svFjwzhzIqX\n", "YRja46zBZhqQKYbc9nb6zRpwK4NtEw0wBc1jESrk5PQ6Qjqfj1a+4+xTouZ+hwqH1Ds8cyxMBhzu\n", "g1z0iO84F/fbbGJjpMjl0lKGaLD0Gm8zbTntEvzvgTmZAyZOT0/2DzWkyKbVn5anBALsBvay3uXu\n", "zXjtzSEejIgSu7wk0p7bp1qrZuRntoBO7Zdc99hQGQAjWbf8uAnvie09wubUfgolLyhiRbSqhDvB\n", "HS/B/Q+pwchLoT8goMzd5CeuiMrfp9EUyR+dK6HzSfT7SuCL/p1XoVkUdV2LwIdy2jOOvIFJjjEE\n", "ZN63VmGVFzmoRER2XJHV/KKT3jTurSkQ5xGepP3eqMNlQQrt6Q5aB4eVwp1CMfBFDKy6B812Gxvq\n", "HzNgzq6X/UcJFVUj/smKPtGG7CNxguD8+Cl5gVPgFNkf5zrQwFcZDW7aYEx5vHipvygtVQjDdwLd\n", "ufwmAV0pCHlhLqXQQflsKZB6DrCiilvX7ilpJSGVbmEpnj1wPmvCx75N8x3lPtH3DiTTuJDqEyTF\n", "dg2Z683KxQFTtqiXx+nExnWOsEyV7eMAVanSW3dioqY78P2VL+GZQyN8bJLF7CCSfZPijUPCI7bP\n", "j65F8EqiODy1pKkO5cDdSkXmLgghWZengRaJ4N/s0P7nRJMjU/s5jHlJJi8pO4sdgKq1jqQH21kE\n", "bPspkAFe159Al05igUK4WCZLgOWRMMho1f7jzMyJzXC91FnPd5HTOwKAyRh33Cb0mZadrFLTrHOg\n", "82pbF+UnvAtm67c3ClwyxvLZgfKNTjfAYEMDOfU88YPakOpebsr83eekkkkKYNZDrRmXrYnhn5zc\n", "oDRwvZTru4gULwb35RTygrrhX561GjfaSs/+hkzpVBnz9WrXUl2XV+t4UiHB7XHwOLHaq0qeroSH\n", "b8nuqP9NFsBUgJ7i0aPjoE76t4lvFDiVcdSlXfeBh1yXrmcpj+To93OHyBKZObuk2tTrLPnUKqGS\n", "DI0LNnnnqDGdKEFDvnfBEbC8b1h8c3L8DoLzn42+2tr/eaG6yjcWXHqnz+g6le7JYy7NH9xzx/cF\n", "xTvZrBnTm6HOiSpmwvoLzWt3+uSmelDGwdCeHA4735TPOCX7ryJS3cgH1BykNfR8B77H988g8Wda\n", "gePz7Fu9zhQegJ7dX5RTQRolpKn2IWkIFLfyl2sVMn8PMQ5+4DYPNtbBusM+2MOnqjJXaPXpdcyF\n", "nCQ0Wf81dxp3mT+6IQrPC9ZPmmXB3xpYs/N7D42kZp+3xPM5sXIpp8qBlvvqrQdUvzzk2wBUzrgt\n", "NHt+jFOXWDM8Zztv8WKaLohAtn+pPrgt4bUdphhNYrH0sUeOFRn8Idv5UUJ/GJXe2dSx5fK1k9Y3\n", "6RW7SvlVf0LmGzJONoCCmxjhYo0sqvSVmIasvfh/p4Bn0gGnUXgCV/zlmxtK7r/GUfyv/QRCc/Vw\n", "VfRHyM/nzkelh8c37CYrOn/1xL5/PZg27wzoW8Abx2867QuN5CcyHewxysFiruGKkXhACOopWqpc\n", "XbAL33CrRvvkssVvTYbajXaFt3aAKXQ2GSRZiS7OpUhMmbmkdXBx2oMWYcGpHO+FdeuZJTihgwHG\n", "pJ/ZY5WiVPGV1ddWF+VIJXNBXoT3wj4tLXhdwVEPenuY+A16zEULuyFX2wRiRK/UfYkpCYaN/eVu\n", "92OwvmSTbn070Is3fvoBnkIY4SWO1LxoO9IYhchkj+yC3oADot53qyD21Qi+LfJ5SqjWxRJvPpfI\n", "1AKbNnTIf9UKbBovUtqgGxTSuO4PkYLOUr/cTQpj4Z/O7K0niofO9DGXSho/ucOf9jlBCiYjqeeM\n", "jd3fkH9UBnp/RrZ0/LUsWBPtn75gNXPNta0Xyy/IG/MKuBE4Bz0N8kv8DLXHNtsj+pT7I4sROY1m\n", "lZ2+IP6GbVklXISg461seiliDMev7iwookkLc8qsOVddIqvX3d7VJ7tY4Ol99ZRuE0mDIK7IN3kt\n", "eALkbIa/0g7Jpf3DBdfJFkOK3R6Ci4slu/6fC9xLHiAAAAIWQZ7oRRUsJ/8Axozad6S8ALRKKptc\n", "7nuHdIAcmsLJIK9fTjTXRBL7LDOxJ3rN57tp3KTLbvj8N+BlWGYJOqw62hRZQryQkK1c4c/WNuci\n", "teJ+NBB6xSMAiqh4SFDJWzxhi1PbnYRWpVQi6ukQh5E9u3tW7ZPPVgSo9xQxbQfBD9fHy1DuPcLd\n", "4ZFJYbv8kp3Bb5D2afn2yrszje/2KOAvdIE1cWM0bSEMuZFY3AYnvmm5EzOk+MN0wOl7nTeLHCTf\n", "dinMNeArb4oME46maKq+yPw33+3UulmcEbpUhQi+9i8KYuefDe33sNYo9NaZdnJf3GB25sfJLbKm\n", "QmovxY2lnNyINUtLTJ9UmjsB0xeDk1qq7q6D6r/2OrGFXfuOtF2i0qyTnalxVKIZtkfQ93yHE4uf\n", "0J6sA2fpnZ3Trepyrr2CvAHmr7GDjpbW3pixQwWuTMAbdHKFwyIAWvXRpr7cSIqOLuqo28TBImng\n", "tfh7HSHLj/lAShjIUl62fslWBHgrgxOtl+a7bH6p0Up9bZFxN1QV5k0orWaLNmwsWtl+MzMFUN3f\n", "Fq8GbQxum0R24hnBhxuZDk1fehqbMSD9N/5167DosGeym7k7Us4EpZC5KEVIo+pj+EpScwQcMiqY\n", "g+L+pOPp/flOhSFSTpTtBlc5b6ftWbXIcszC6Y/3gOCmpZKj+EJPixOHVO8+INvv5tqQf+NeVcN6\n", "AAABVQGfCWpCfwDEO+NlddUwe9AAmrsOcX04jp2bpRmf7oTwF/9IWEq8tCRuNB7qMmlfw7FNbLUk\n", "+GEbUe4bdcIiTUK+iCaadDlfdL5YnIW9/cCgsPtZk++7A+94tUoWMuebdPUdoj7vqi7NXDpbFAOE\n", "sFYdySn3PQc1CRsULoQpAo3JadZ3+yMoEzs91W8IA57zBa93Mhla7CR8YQPQ6Jhy81Icx1M1o3iz\n", "e3oL+o+LsIMZi6jwxc7XcgXM2ZjF4CxwuTEc5ERnmkYeBN7B5rMKe69yT1C4Rc4eEJgKTKYSn9/x\n", "eo7TjlXDOTW3olOrpKT/Orsbpl6+/Ghe9moED94UinGOmQQRUPzhK7B15j1+uJAv4/MyIgqE8WRg\n", "HaBT7R5j6aClEKyAOYRCrCbrgaMXbvQn/S/ABuCtprteDIhFsYYdPlFzdg1fW35v9f43ITd5qhWx\n", "JwuBAAAJYUGbDUmoQWyZTAhv//6nhAC+UT2N1ADTINTSDqhh6HbSqw4dZbtLBpUMLex3BIMOdoY0\n", "Kcuu1rZqbgZSl01XgGEjd8z4zuxO7vsSX2+n8enDNs6vQ7CcPpCWnv7fLG5e+WWJAW2tc7ZI0fQp\n", "SjBGCL1BR9oDdTijZdCUD5Y1Us3Q/pfYK58LeVMQMDGtusiPdt7hus6bV953e5hJ6LDUG2e8K9az\n", "nAtnPbPJx3d4bj+cPAwzIhYj1IFh1l5x0SVUKPgqoxbKFP0qW6ycry61fG5q/SoLRpXGfozD6CDd\n", "Tt/Mest85+ywKkUMBhBghy97PxWIuWeZjExa0ck1n7Gsft29DK+s8CbAVXhfq/k2OInrksZPQd4N\n", "WZXAEwKQv1vcp82thJ4t3DvTcPKawCn67CAusPI1MAN9gCq/YGF+it5SUt5V8VnRAtQhfgTuTw5v\n", "33I59/eSZTxXUPkKjB0HovFMRxt41ai3kea/u0ZyJWplI3Sca4W0yCvpwiOis1osjFdFIk/+YOIr\n", "iFArd7wP2btc9QDKw8ybFTJNdRwmFbSpZc8sr7sTI6m8SIN5qgzdRrpFFibAffsFCRSFOFqEqqTt\n", "BTysk/I6oe8qi5F7jvN118Z3Yw4pxhXY3jJrMfbELH2ZzsGTqJ1uHmcQHeHDpdqa5FK4JQPiIq5F\n", "cr1MFx8RBxP/nYKO9/k0180AqVXGCDaOYbFTa7f7gQDlU1ABvShqfuIFFOk1FPW8dzMiAkw/XjCs\n", "tGF8YUGjAa166nHNUeqx122SfeeoKwiwttDXRJZ+GODnEWhNv3+Crokm8pGIN78B5NUzZJEIDdSZ\n", "Ug7cnFq7ATMC/VEFIX/a2MIahlC7/kxmA7Grwdhu6y5V2A7Yt9wumirrYvuDZdQsQuWSTzuVV7vt\n", "SzzeFvS2kLi3iw/4s3C46adbZJR0p6/m0M+2QQa8fk3hlj+j9NqmOJVAfh8gerhu9i2U4L6qTNwS\n", "ZoaXcqbBR1hNtigIPi5XqVKUl/jNErD7Ro65xXd0wJDMpBvQC7jvjYsH2NKPSx2dwGHQWQCiQUK4\n", "lOqB2cX9hgkbtT3QHTEc+icqYssaxKP7qfvtqfMNPoTGDvuqeKV/ko5sLSlPJVvl6s8z5citTLUi\n", "Ldx7Cyl4qzF7BsYebUBA3hrMw1lfdBXu7W9/AjLCLV8UZ4ZOw4s7RSREufJjz/vWkmSyYBB9wj01\n", "Dx4kbK1kn8almDRn8eKtxi/ewF1hRNfUKHLy5GpnV8fXEoyUX8ulgxrUsnvbEiH3Bn1aOu8gbr4Z\n", "8GkKrfEhrP5kEWRb8gF9gdYUuSHWUv/hY6ai3o/zJwbKHZ4LHN7LRn8Zg1eg3au4uAqYG1DlLQtp\n", "t3LmJ7opUdiKY/lJ/7scgEp3KaqPTi0/uAzcwyG9BhwsIfc1sl7veE+arKqcyVgXY+OGqSfQFEbz\n", "TPkiwIsY1eoWe+y1XzmuAib84DzLrWCtOay4E+OcxvICqhkUeOszBRz94/igbDkbQcycqyoNeSTq\n", "0kAGg+ZUJeVWF0mKFu3e/k5630poxaRAIFhnns/ueMedemmXMjHTWhNxMdqLgzIhT7pE8Ly38aoo\n", "R48BuSczpIGJr+KrbqY9Pe+Dl/InyQMxJxyKQnc9uqutSrLVPcSvCUVV+VEtMEM/BoEFXYVH2jhJ\n", "yfVzhhtoQd0RnlQVl5z3mebOONJw/kMUT/5j+vclfUCQ9827o0N+tn4u32YS4QRtn+Lh1fcyqDlH\n", "NzcytkFyHpSMDahqlfMKVti5j/2Owsp0bKv2AAW+/20msIIdN9psgvZYcJSajDEmPnI6QB6wEl1b\n", "api/NfjAgjsM/uoXX2T/2CbG3A00f0kxidejhHl3U2I79rRUMzhgKxk5xOkxTfkmuJYv6TE283h0\n", "6U4+T3BTDkh/MNsaBo7htOUW0JjDBrMHvYNn2dkK3CJwT1a0azs3guni7WYhHmS0lW7+HLTMkJiP\n", "xs9fHuVh2Yd46oxy8DMBFkNtr0lfBxSaVq0gODGCv18M/SNWZIa665jHqHILFIhAOs2bmvLnGrNG\n", "c3XTTT/U7sA+PYMtGPM5fWDPmRAtmuoQmHyQlpPx2Ejq/UgQkF4u9vDxis5qh8+ylDaBO3eZNMRX\n", "T8fJhh/UAt8Abq6iHKFaBB5QImVORueduDvMk+mRueffqsETJktlNLM4LdWBiD8Mo2laH2mRZle1\n", "HtRB0Bcse2GWVOiXECEfOddD1plUd8ABbqO9iLkB7QoQrHtGejO/v3P5XGxHKF5RLNvt6cd7R+7L\n", "hKiM/dQ7M/wSnlJeXB4oVHq+JI7m693gnY52Z1qYyBhUFVPx+HFM+UMan3JVPn/GAeFVp8L6svx9\n", "sj30NaIcldb58iP3jwhYWMMD9IIrZe+zN2qFz+JKRWmdTrCdiwt6yoElZzocJvxViJ/4Er+ydOMo\n", "g4qyZneZeLvGpFDDGGXyh1w9p+BhkdCDPhwK2WhTuSNS7Z1QKHD1a0udYi9byFEtfTSX/KiJOWSZ\n", "fPQccTwI3n6AmKD8BxQDkYcwFBrZ7tvF6oMmHGr0+qy4vYyiUw6tk8alZ9TU8/XGtvBIyzBgfg9F\n", "PDrQXwZW2Z8VRGonnYa3y1C436c/+YVqn6bI/nktCXOUh/KldAwmQuGq/r18GlMQukcQOyAyzzpN\n", "KMliZM/4eIs5S5knM0TELWuZtZneYWZW8MDkzeZJXcs2CD6ILKgIIRmLqaWR7moAddDQW/5HwpRO\n", "tukJRcOagIQmbnQm/uGBaNcSN+Mr2giEPy9U4ANz7bpyzJih7m9e6vJiMmSuINDLrI4BwE8pYiJ1\n", "B/9KDQx8gigb6Ky5RsGxRH5feR39pIy7aa7KsBZ3lx5gDIDxCe/Uubpk+6U2lx+7qlAUW+Vso0vN\n", "ML4zptuj0/jNBFd7tmNuqLNeBfbe4g5/6sdY5gazwZ9KH/JGYMMGvgDqbJRby66+AbiMt+Ss2CIw\n", "903JNE6TP/zC8oNiew2K0gslj05mxUO3OrPurX/ofVaAgV7Zs2KfsEjXJowUzNkH+AZwcUamtWWZ\n", "PFWgb2v3+msjrEOI5RVdw4Gmm0XIlsNx8/B0XyeyG4iAtBAGNZVhAXy+JZqJMPvg+IRXjK3dS4V6\n", "KSrCdEMRXAIAQZtKrfH3crpGzObpKRdzHOtrj0p0C9/4Bw0b3+F1JY+U7BHzo3cO2LE3KJuESs/J\n", "HWe1k9lCQoycBfhuWmYAAAH8QZ8rRRUsJ/8AyTskV3FTT2kABsujuOiEn0EDtkVGyFCUbYxI2Esv\n", "+OmSLrLvORG1vivTToHd89Qf8ZGwuxwU/qJCj+tMos3mEBhbH7dbxszXWhtsF62GcHVh7aXnvoso\n", "z+WsbRxmkFuCOjOMlaEj6aTXIOWYUJGuymr3kVxmxyjNyzp8UiEOjqX3p5ZB+6+WukNInSo7/RIZ\n", "y6o8N6xioI+dWmVma62Lm39TlPha/tuyhSnLJnjtCjGtTZVFwhAdJiyTcdNFDTOxmctdVvV70t2p\n", "DJ8J5cMJ58Km3vFo7DeROKVwuRzHrhYClS0iAs5g+38oNr7JG2K2eLlwdf8s7xUwqrtGMgijA6dR\n", "7L7ydsvjgO4PMULvJ+jN5NMR+5oVR9WO1yj3exB/jsnvxQ6dfrZZzHmN3nQaLGQNFjWL8Q4hLOJo\n", "WvKgwNpASIXVFswn+iH483f0RKmXpJmQBt7iSF4tlZ+toI3luCv8b3opHxnWJv2af/el5bXOsPnw\n", "O11w1r9nJdg89Uk9w/v1RD9Y6O5Nzw/Tgsisr3jkPuokpcVQkkpTvyxNM45hITbdTZXHj7nnpIyI\n", "7iSki0arXRVLOVk2jhymdy9eQUk2063IClh+ZpNAE5ZdNX9j+ZAciqYcjmvwcKbQzF4GjoZgl+9b\n", "+P7DpGx6QDc5ZNMNaAAAASsBn0xqQn8AyQmPsDRJAAbPCAcjLfr2LEfWHdfj1wJg+1Mhv1PEX3OY\n", "grW3LIsxXAWoIdvaMf3w8ul+rH5zwSRSI3fbmyAjhhbRtDZr49Bn8XZZoqqsZZHuZ6KwAjv3aDfD\n", "FSINc7h8AIkVglg9kfbVBp1PL69EygG1oQ/N+aGRewrCZgdBXSyYh82dxdvvJ8ISYMcCqb61NjDM\n", "w2NWMTHezvcuuCONz6En/a9lx2+kjKXFcVJO09QxZB6MkoxNQgQXeazFVVmt0blS5GCUSffipP1a\n", "ZyuRAR0y4iyrsW9nTnIHtqxVO3cTCvKRjAO/RLhbU4eMGtskc0QqO38N427gUAtUEExeYHo8Nfb/\n", "ACKqOrsrAij4JaBraCC9OOKYKj9hd5e785q+4SMwoQAACS9Bm1BJqEFsmUwIb//+p4QAvltcl5Bw\n", "A1/29mgsB+GTDea1ugNP1sqlRO80wPQEpTIf+8rqfCjyhbPeI6Q8kK6nHwMr1vGw2qKCnSncaRjt\n", "eGi20S4u1sibf9kH7Roe15u+5WtXNTeFY1aQIjrLCZFUAI3oWE1eoSilRmq8Y7LW8KPSnvJ19nch\n", "H315i2OtBc4Xgf90av8zfFVvr0Q2dpZPOMalxqyEc7DVxjQWWYPW6YgO0qXJBhWQ7fAQwVSnJxAx\n", "K3A0+wWf7urXe0FIKkB1gi/lR4GajdH+dOeXzXHnafnc3ufnvn9v//+H/7+8XROI2X64JWhKE8WZ\n", "0GVHfRCn77CWri0Pc1w/RtTRT18MPk599usVTq5/ihC5I+8E7BsOEWZMATOsc4ae//YPBZaYME6t\n", "w+l49VIlgp247buFHIivsUdtwcPqDO7AjZMS1ohuB3LFXOv3pnBG8EQxVqHHqcrgnoen6aoj8024\n", "R5ZR89Omw147uWPoZPUrSvUx2HuhOrr8RSwnq1Y0KIIoW0NuTh4G5cRW+OXMds6NuXDawbJSOR7K\n", "egKQc/7e/0EPLUTWlxClNnSMXIa693yK+r2ra8I+jtj+GT/TV6aJZPgiRVTsGViHsPTmgGuWU4+/\n", "n3eAuhcIP+j4La6LvbmAL7ETnpDmmEfkyMyNDs0GAeZHErzvprBqSW1BdEENgiTcf8NgoA+RyPP1\n", "vj9xmqvN+RbevsouWjH2YxPVmxJUR7MBPz7ORlIfKMefxMBK6LGFUMq1/D06zkgrD+mtaWkloAjH\n", "e7fgtoqkf3MZGCcrJb1iQFqF9KwRoLTuPvqo0CGiEY7U5zFIwiFU4BChknPPAKvl/uH2qdCaQMkd\n", "/SR4bitAYb533N42XNSB6Tnp6RNE1KSbAxPsa4BQAkSAI6AqipiHw6INNDfWBC9I5mIWdHXBhUyP\n", "U0o0/lEgVlxSLSBjNYMtoLd2aLiTgNMd8xeMVo2poKF+g8H/TUldg9kDFI49YoG2CYYKFt11l6ZK\n", "orAy5TTY7DA2cBc/SYER/X0odT62xbM/hkVqUySC9eSfz6xDTAxCJ2HKqvEkWV5gaZQ0u8DxJIvj\n", "gwxBWIvcx9Atkyc0//TaWQxrC4niO+nWYmJlS5kUBD/Rc8BXuD101k1yt+ar//KRA6XZQQtwAL6r\n", "2SC1nZTi3noi99ulfddlqpJpcHQweCP34JFg8w6irVdmK+HXzJUoVmUIdxTir67MpAACUjomzRAy\n", "0ql+wm0Rm70han/LpKZf8KpfYdGknBIPoxyxghtyzOQuo59NtdwPTVJxkfDk+h30dKA8MPvTC9Ps\n", "Gxs/FuZ0fEb6pb4u1eoz137jkKFkDWt/0LbrQkxCrsxw1rqQCZ1JEG7sYBOyFg/krn4wv1VJ9ex/\n", "gcg67x+uqd9oNXOFmOYQwe9RNavtfMbPdFNFUB4sdaRBV1vsWfppSvI+0Y5vbg7QwfwhpnJmyHFR\n", "hQrZIP1I2fSFrp58RHlKuIptYB35CXfoggacQIMx0DvnMPQn277P1VUgB0Xan+NW2JGb1SO7tltg\n", "eFxwalXuDdaGA9sxxRpaRAQqFsS4AESZ9+5Wub5HZHhGLdNErmFoYwXL8VvQg+JiX6m5C2+UfD3M\n", "OiPFo//l6IxvbXnjNDrv3NhAeog35KX46eQLy+JrFYgXdK2l1EuHbHnyanWwMvYQo4rRuis9vQK5\n", "as69d5k5d4+rHNJpIFLHGgTqOXYkETXrCoiXm2ZUAg+kFHQlBoqll5WpsHR85IpOLA6txl4LTt2r\n", "RETT0/+GfAciW1S7t5wwXF47SWJl3EdnHjQSJB9zG5/NURT7OVOkRdkYiUyNFNUFEAcIXmP2f2/r\n", "qDTarcqZSrpChwcXyBYV5xVVppqG33KoUm7bOTzng6kW+p8Ioxwrhzocrq1OCEvIrh6MksFWNpGh\n", "DMYI6VpvKyFLZ7cduv0FE6RR9BePJRYbU9fJqbqBd0QaGZsAnL25+EQ4gD3yxFZdeU3Y6xdHJynW\n", "dtQb6DfB4ftqPMZSE9K68yGJJzD02wHV6RW0AJG3LV3UFvB1fYho9jtpJzUptJQk4w+SkRrhvRPW\n", "RiWxFk4Q9z1dpoIl/LBznoUZfjdeahAf6KJ7AuyMT2fDTm4SK4furXrTvRkrJmbPP43audsxBOE/\n", "jZFE0USuuV5bjdDZOtM1o//XZpa7rTRyP6Zs9iGJEcQvVBKQ/FmzCS2Tr7Yi6Cu1lo7TxIZp03yx\n", "Im0ZK123TPdnn0IohZ0JL5J+VEtK82JO5JT5nrRzfx2RzvdiZ23K0RinyDKPneipebBxXVmIakEY\n", "Sj4tBTAeQrb+CBSclDE703oPT26gog8+matwCBYGfAfyUbXuizeCRqSBACTgajLHgoSya+3fWlkz\n", "YaJaMCR3VvfonJ9T2qIkcolg/YvJP3hW9sq0synkQd9SpLvdVYJXhtPWYlKvf4Y4vL2vU09vlzmo\n", "1UzThUPufBxWecpP6OqMKffXMQmp6UAefgtfyybe6aMF12mmj6ZW8uP8hu9gJIwpMPYonnHcBzSx\n", "3YzcZNgG+2PT4TtuOaY/Cg4hvKE6ZO6WmK/B235N8KESiWQGj+ESpfYkLbYok3IOUOmyTJ+65cAA\n", "YiDf8LvvWwhAODDLtJXsPrEQwp7w1Is06lG8okexkG26fh9CxEPMzowaU73vOAfBmJvh8wuAvGh6\n", "rE9WIE2P1v813zL6r91MDsS3Ia6QCCGeLpC11+e0himLyTxeQ5vfdYWI1iGvF0Q0XSpXkN2iuzTp\n", "9tGxpJjQYWxqczxG15n7mWbVo/p1Bg+zYd/+JWYFar2QLbeNrii+tOvjuqiG8U4vqUVBWPAq5HXj\n", "YBZ2jeRPkTwz04V36u2aVhI+hihxftQ4VTkoMG9dA8e3ZIRr9ZBf78V8F49UKbratptWWHjTvWsv\n", "nNsn9bOYuhah0cfJQxkN/zOAlu1Bttn2SVGzMr917Dxv0XKmHMh4YZ6Z9NvdY/z0mE5/fFTo+N54\n", "cx7INyGoUyC7AKvjwhOBXteuouHU6fG17xvDigCssN3nufneblaSRl/mrf63oTHnOiTuhveCM1KR\n", "p5NE+onp66Eo2y74apGK9lwz7WlDqjfyKaLcxTZLCJcC6k3P291IE1HITc8r2rMbewAAAhdBn25F\n", "FSwn/wDJLkeABLVU0xEhJ+LftCnjtuE/UrjpNZ4C6XaHTGyOQXhcY6qZXytYvj6/9TY1DtyMQWSO\n", "y2KYOav2sVzFfguA9Oqc9FzqTdCPtLoX19c2KNwLTPiLe4ODfP3AZUl6ygLjqwzb195ZQfG/wWeq\n", "uY85N+W8uG5jxBV6YVhteC70UQeKgq6LLGJMqEBAfvdAxGOTRwt1iM3xHnPFZ6+b75BdmDgeYTz5\n", "DtdNL3XXArjlFGGYN379XOP/6Mnd1v8r09ChFCkLDbMDuoXMRBK9s26ou2D4RZVJ0JI7aUWWyuz3\n", "sfwTG7qBrSeAzdp7Dbb60iEZPBiyEBITiyYmCTHCovSWEs/wTBfOQrOe/znr65MxoEgGhFpx7hln\n", "EPesiyce7mwgugY8DNiKwuhMt+NEv4KBbfGb6pzK61f6nSDpitdCRXkWW6fg6k+JCypt7HFMew12\n", "cKiW3ZESNRpTfFas4cAwa6vjn2QXRMsHD1KsUxqUlGzhpIETsV0iYWXV/VZdyGy2lxcsoL8F01en\n", "CCEaV9wJuWPflcSAuCBNa+3NLPfHhsPr6n/+eelLlmiMeb+JO4sY8C97YIGUQNzycLBX6BDhxjJr\n", "ySjLfF1r0QwbiuPfE6HxjZ4iToHMZbKS7eJR7e69inq9Pc7nTTK86Yrsy9RwseR6M9bnBMJfSX9A\n", "fA/ba3rxonkZ4p1EiTdLUHzBAAABlgGfj2pCfwDGjUr+osAAmtoH+0D3usdN272AYCfKjyHlMBdy\n", "VzOAGjbP8ECLw/mkxe+gc4SIy/pAR571PNxG4ILy/dIEm27fADVajjOnuNWfjTLNBx5Mcn1kyLTz\n", "O4/IZhx3b+69idBPbzLOtOqICjnT8h4f9UPdniSyZ6eS79ig2V8zugAivWzvgjBBkQRQIHrgLg1V\n", "fua5uoSsllFriR/21nqA9IEgAXPg9i87diFyUHkdoUFvzWCrKeN1oH9wh/9nJLJICt4vQ9QVl5sO\n", "qbxndclDsgxdbBoZtiWY8cQhWYRdJvPiO0fvPTkbChbq/ng3WpuFICFQEnLJ9y7NjtoflEdtpTE9\n", "6JvfkBjGVK6c0u6HPtRGQmjRS63SydK84f2crTmmVysE35rKX8kDqZvgrOzOhqOIFPvhDWK8xIdk\n", "oYWJD4+39/zFneFHVgFRgcArlAfvqs+9D5soP8AcK1omPppbUBv206QiG/Jp0seWTAtz8nqTrFzr\n", "lJBVFe0HigGjdYKIhUOEgU+5KWMMPTzF7kRo7oAAAAjdQZuTSahBbJlMCG///qeEAL3DjyJJJiQA\n", "2+WDu7QRM+lolsjy41qkVaMTXYVkfjSsJ+/C4Ke7n//O6EBHOuXjLyI1PG19s5YSFggPI7swJJum\n", "Sg4WNDvqzxVUV8cTMk/HC5FiBnqFqfI1q3aWu6uFeYQAVgDs80XxveWzWpoLGA/SEI4x/s9Jmz61\n", "/6RKf0Ge07rJ2aqhj5WgJdnaItaIUeCeR+I3DsUqIIIGrnz74Gz26WEvIWW8HbGL7dVgK2+0rcb9\n", "D0fqrugxI2c8ZG28D0RcjtYlxhN5P2BxhJU4lGI1tU8nZFp/IeUT69SEk0g4bDTw3nQp/m2NrrWD\n", "80HhAHjHTXJg3aWsjWyRiMGV3L3jVYk4EyN2FbIFB0Ca11sRPSc+eh+Zfst149D3npWZkDeQtNwd\n", "XzqmdOGM2AdPaq/ADiK7+Z5C6htvG/l1YiJMX/A0uDSshJSjOqctjyxDFQtty36OoMbUIO1r3xLM\n", "m4oie5LWsIu7QWCOKxbsRQ4EmvWNQLJNaYr5kBQ0UGdZ9G3uEpHCGCm+4GfMfdvOaWkfAtWPV5Ql\n", "bx1Buhz9sQ/kT6ZXMzdb2eXc2pNxndZJCkp5/bs2Q4rg6tr7oNdSWbvBb3F+D38H5a7t17uxR7Ql\n", "8eBNfh2OOtuRbCOQXA/Tz+m2WO4zpUKAS8qnFOAIdiG5HkDHvJoN3L93uJuSea1RK32ORN75CfWX\n", "4okLDygPnmTW4P8NlhGxbx3UQ4DSMf8a8oYH3uoLv9UBgIqdTKPMu482trgM9N9g7K4Sk7Gq0Cov\n", "27kGqGVCNeRZjaIHo+PccN9QXv786AX/WLjvjdzfiYbF49IDCYzjDn8PbCcoe6fSc37tPqaAqC8R\n", "R7nRDLRPMDyBtKb8vYEaxOVUlAeRKp5vcQ/y7GjKB0Ae7awbzrzKyxKG/GVJKJZrVB8WYa1Ks3m4\n", "udccmQJVvS0A8C9V32Yirlf7FgzpAj2UTgiDbAV8Eul3vC7w9b8mlUhs2cyBREDRqZF8uu65pRyj\n", "ER9/NzCVSvkebgernopOzW4zzdDhKjqc5jN0fqSGpZiG2TYyJzvYYVdZlDD3iHnHhUciYVuEGcKO\n", "LuVzWUbIXk7WWSRQ+PmzObxcpIh5Nnur8UBzOHE1RcodgtOJbvfIWEBCgVFgnrO4ZOliS0/wFRuF\n", "+MwrgtHH6e6cdQZk7FhHdc07tiPhECzJQzj3LWtQcRwcGJCFauUSVZTggW82Sz8Z/dedWON8SADP\n", "BmdSZqK5MJ41LXKNVT5PYgZw8MTNN/hi/Y7AyoZnWUjI7ZDs0k4vZK+wT59jzb3RmgiXsAGghAmN\n", "m33iZC+dAFZweht5IRstEbbZg5lOucUbyKS+Mvnz+eV2zvP16gAm9qdEi0dib4CaHkgzoTzlageK\n", "ICr19EaZEjUynse9jUPGkWix3bDQWemjXNlUc3JzN24SLy4kMOVJTskE9B4grKRke5DsSuFM+aZ7\n", "FAukAJeAEVA924S231+f/GgL3bqQg0gOt17ADMCdegYSq4hGEUbgX7gDwZ5SueT3ezWAjYgsGQRP\n", "4900twuefP/efBy42SfXi/F5U74h0f9WS+JWUMCk8+9NWGkEcRmEVUJI8n0eS06UPupHRNUSQjQm\n", "ZxOZMlGiZDg7aUF+KUSfL+q7hkE/pJNOpqXCOrF3jvsplVpwArjAUjXKzn6bRnYwSIU8vWgUNs66\n", "kh0gKLkjVj7Lj+l3SFlnBKwS1k6DZ0nZOPS3rhXKRvbbIxZmm3v8xXpDQTO7WHnhYGia6yVpC+am\n", "0GPzMeeZiZfK5K0ePvyO5GWvWMJqTub7/Fq5gixKQ15G6+LAMr8SPdubctCvH+/U0ZYYLJwU7BjF\n", "1mpKIeB/MrDmMp8oxV44o4zLD8TrbYcF5KQnTHx/QPeseGTAxu3mLY49EkGBKz7n8gK7x4WmZc43\n", "b4c6t8oBIex+pSWCiFyVxbWCDQDb+mYBk2Py5DJ4CCyYlWhyyy8Ir17/ZMUmEXzEafR6HjRs5rfI\n", "/ZTGg7ngbOKMuJBjbA617yz5AjDRzwoT1OaAV2t3BRfHYuUibjySYyz7jCF4FB7uSAlVDq4NrGBx\n", "PNUgyvTBkLHX/I6kWVqNms+rqQZNEfIyfwK3W/0mXhY45X/ELlA54zAMX91ycLYpQG0/blSH+hbZ\n", "dif5D32eLnNsk3JvroMUbVcXndZ3nvulEz6qxeJChzpugYc+o0UNcjralCcTicxVLQ1azV920FER\n", "CClRVk7M2/64NAHVOi1WlQS6Eq/Of5y1TnPGeVUUWLWfrPgDaAwUPbA36+ZmsU+28cIrM/FUy4hI\n", "Nr3PX+/bUyjz9qVInyVY++0wHk26O8X6kKBI625sHh0lFMQ3aCGyDTceafghzPDsl5/7nTLN5uUi\n", "CsuwZe+4aIifBnQzKgjOtbUblMKbG0Gk5oCFV+XX+eF4w+fp104W4WYTbIWcssY7FF/es/NVVuhW\n", "Iclr8OaFNTTj8Ck1Z/1FyoQF4QTtdBLhDnizAPDeP87CcYWH1T/Evj/ccAndKastuZm7DFpubrUC\n", "Xytk9Sna1G14Ja0xgZL28J81ftrFXRdfyWyYPdXbSwlNajozVEseQD83IVZa1J1XNiC87xSbhdti\n", "fIyIbfOT2f0/WtS/P7gY50OZ/BI77HUjc0vwJMDLLO0nWW0ism8HDSe1M8DCYq80KhEJ/k93qleI\n", "g9WVddXzEy7Fzcr1EoJzcIF43yJPYchCx6PeVM3JBDgb68elhP8VkfDDRIDCpD7sJ0pCl3msZXCe\n", "P7C+R+I8VlPYbU9W2iSUovjxXbo7lwz4/3Ikjcjf6T8S/pzEUtH8+WdX7dG3cDwqDdfPsLWRXZ+z\n", "Fw/6sM0AVSi/60HSrYN5L6fm2FqnqKI9a7XG9XbgbVzf7LIjYkd0XwBfsyMnJEVPCGARo/2kepX+\n", "M+7LTaRdkwM9Hf0TlLhIsIKidRkT0NqkUNvOJHm4NQ0T4VqKr9QHi+JwcUKlWhqXYCF+zTrpZvS8\n", "Nw5PpJFg/Br/qu0tHADqKVse8YlcwAAAAkBBn7FFFSwn/wDJPATRTQAG0hxYAassHo3FpQe1OeAh\n", "wnnpFkgk9ofyYBQc7bNeMlIbOBjTUruQswvL7M1c5r+6GPLZVNYXS0cTn+sK5yFboZRYfAW60AAJ\n", "r4+k+9VbmW+yy7CPq8eNh56IWqlVma/JevHTYfbAQciWjM6RG++FXmlImRlW2vVXe+bPFr2ZNa54\n", "qij1LBFcyq/MaZInobqXKlA3u4Y2nKPjqawaEMpPUeAZlGEqy1Q/hktC5Xyjd8rbW87gfhY3JIsj\n", "8cB0UE8Ip/nUZcvZPUz8AB4uytmhAWdxHkybCjp8Y6PKE9GL1o7TNOov4ocTEzV7kK5a2x39ddfl\n", "kv0b5mFuq/plTo/3ORXjtNaXqvLOHBAWP0JyLeZidPqDNym92lQeapKUxcRqO2vAf4I1NpeEUoK7\n", "sqLzxp0JfRbPDT8M1d5wG9zh4igWY8F2dbOEhSH7IxsJK0LR/veosUVhSGvGalyMGmVA2cwxhg3y\n", "rx2u5OP7G3ffsDSrYj5K2HRtZYg78VyX6BJ4boPk0AguKPqIoD+66tDK37QPCQ1Lr/XNduMqxfoy\n", "AfniXxeDAmfEGBU3FbeDe8/xfZpC6Fx8RGQKzLIWzfJQTU4s/OZjZqNEryzVk7N8s2Q1Z4dSQz6g\n", "XFz8l39qakPgKiQIGVYvc0bzrgggkor18LKHJGZ8+Xbjlk7YTwr4up+s7fwJp+Z6aAKfWJWiua6o\n", "H4UO/Xhm7VRoDFu+fmR86jMkqnFF6KtCVEEGq10GI+EAAAFwAZ/SakJ/AMk7iHkYk0fbgBCnbknK\n", "4HFG4YVziYN/SoGu6vHQm/Fsc96ZkgeAgjGW4jT7TxRHdDK2Zo6s2SQ3Lo/vZcnr9rMqZFggbLvt\n", "Nf0IFHqXAc27GWMb/a1ei+zXVPXsQjdFAXopuTXjxoHl8181QCOMsX/BJiG56slOYhAfdKgtGgav\n", "oh7za8cParxXmXpt9xJosCWkZY0GfIi6ZhqjfMFRKM/9LpPAJXD8D5WUm4VSEk9fJ9ih8HgksUiI\n", "q0n5fccyht1/EKHXlLW3hz+boZ0XbMgQgWfgLLyMXvmLncwqgTf+YUzg/V0THu+5S+ImT2zmpJTa\n", "k/nyN2kPLkGrBZVFiTWe/xW+KYt1Fkn3QmGtSS0/YeNBBE+Pchh4SeHad8fKaAi6OEa5aQSEwslP\n", "Y9xh81gw4EKU4GVjUOSo8y1EK6OQvsprsuYt4ISVxVyGxMAJlag9vxS1HsYNVJo2//kcPY1OFl1r\n", "BWdXsRcAAAmfQZvWSahBbJlMCG///qeEAL38dEgCJIuqqMPa1+lsSL8gSqgHUEUUIf4sPjtR6sfj\n", "D6TGKT0F7Re/veqa4Ab/a41tKukQ05IzwdVuaLCNQEHXICp1WBMhtZxbtbyTxmuDUkNbiLxPdlla\n", "oPiU1AWc/4bJOEQk1Uok+TYmh6QYtb6YBRRrRIKEXyvnp1bujaO7VcdutuT4w4K1//cL1tzZaQOy\n", "ouqY4zpdFHY5J4gBm3bpSqWBtzYxQu4T0JDUnhHhKmlPFLbsKlbaffbLKt4l2MM2L6iw1M1yviAm\n", "w7UopZsIHbcxLkj158CRNGivfdxlgc9Z+aCOVM2Y5hbs/v/94BxbsUViqxJ6N8U4Hnh5a+ieqQCJ\n", "tjYoxYrXJ5AcTuqxNeHlaXO+6q0NeZZat+q6GaUeBJQH6peg72oJ6nimdS+Kh/RPJjbRPKoO0xDL\n", "0klt56i7xavjRjUGaZqdzElVcKWKZHbvuNfgXt8n21pkQCBomOH1Yf0b3+Sa1M1vOgs2wpYNH2qX\n", "3pkUGEvMPwH/+8KyUoN8BV2dPBwWVRN9jJf7gnWOM4iy5uvgQJ08B5cSJ8TKZHDGX0ULA8dPIX7a\n", "VxS/sdXaubKvCvsLTxWbmHC3F4ugEGM8TM90VT3bpUd0O+t+BKJDlQlKbUHYL0L0AsvoJtL+JFos\n", "j9xqEnbpMRiARr1Q452rYiy1Y13ls2RC+aF/iHu8/hkWgizlTGWoT/C0XHpo4+fsKDCstlO43U2W\n", "O78erA8gihk9x3aGHiZhdvl+ks90SZ5RnUVWOpGPGE75qZQAOjHnlxOqz7XMm0cTdpTQWFN4e3lu\n", "1QNwa/BWPWW4cSQNo6LbyIvIVWi0qYgfHa3s7hQy3Syi1P0gXSLQ/pVWWYYt1PJ6GxhJ472ZS7Bk\n", "uwBwhMNzZCuXSzTEDlqhuKIA7JO1TayJCIHPI69lOYzJvIApgIwHFgTztqfaBz4ImQSVvYQS14VY\n", "KFwmt1gdRHSHPjWydSIqWX6Viqs4V32cLFUVJJxHfeY3La0+6E+LtyxfEbDXlNEfVIDq5bUiGeY3\n", "XpQ1B4uDqSY36nERBkvGpPdjf1JW+udmvbagx6HzS2v2lPMIlfnmjnQyO/0pAEnO5Jy+GZTKi5ec\n", "RT32lG5C7cc1xvlucaPI/9hnrV/kWcVG5p1rwI4DPcfG7H9E/+Q5BCN11araPYh4XFBzfXA/zLTl\n", "HIywpKR5MDVBiYXP84wGd5sgj5OhhJV2zb/gWWgk1JCPrx7Hy3lIBtMtB0PPkJNJ4uVFTKqDAoPz\n", "il41nlywl+vP5twUmcLvc/ue2Rks+x2T15hZhkD3SYFSmK2y76HmKFdxhnPBo8BE6hVdL5RKFrja\n", "j3iQU+kQybK2OqTgOKCIZDQWUz//GZgh1bz0OYAuHzL328Cwi+UFYPZLJB12UvKwQR/nss4zjyq3\n", "Hy/Q3VUX4RO4nchL3YK2wRWBJr27ax2duP6OdOMmiE03/5YZj5Y88dlJPFTou9Wnq8uvqg+1XB4L\n", "TNdRt6C5Z40JafvADuPF7OzGLw8wE9h9mcb9X+AMJqENiCQRfpe7H5C+meP97aoZozKq+vjhQCDQ\n", "g1oF/LrLvGn3R6ZHuvKwg+bCwqF4J2WcRWN0FMD+XBUme4uGCf50AVbvWT8VnQ2E9vs/W5jrKazg\n", "qqbup7IL2RA1sIx5s9UoDG4kckD6VmtBSBsXdGtpg0BahSfhZHDScU02WBD8ADHAvLfO5bRIsHWO\n", "/bbA2hAGGkbMBiT85t+lXrwp/AKUuJ8tVlD+pKKvNUyxAzL5QAURKFqp+yQcaZHHn4ih/ankTPo2\n", "/GshVWmsYL/uwu1RvnVzR3f9ics4mAMgm1LonnWgROCiZkcq5KTy75D8agBa/lHVFvcVCahcdyJg\n", "jHcKhfdlL69xXzgS3bj1mgdS+p/3bwI18XrBQHg9oxyTo8rBDqofzuqaEJWUfFmeaSUcs9oDsRtC\n", "ChXrjjbChAL7bwBQNj6pXNtWfaijJx3JQK1Lk+Umc6B88u37sU9ZqHmrj3Q7lQEaPOljGToKWdRO\n", "+P2yi9ET6WH5RN2h64x/pur2J6x2S2uD95m+x6sgZpm/N+5KLe3JFbPOFRD4JJRzA2zor4F3I/ql\n", "PgnnRqPuAHBa/KRKkMBPG9FlRIz/mRw1udtyg3AkwdQnzOFecE0dp6bwZt704zBsFWMWWB9SBMce\n", "Wi1gdcmPl9vXYR7Cu41htVCaqN+W//tCK9wYhT7a4Bd9+aJNogvojacj4sEyZM7K5EmwEka+Bzec\n", "n8CSTxwki/pDezVkSjyTmLGgFjeJe5j7O8mJPD1y/9I2557f+r6u7QLCJyFJ2piGrcP2s8wW22g/\n", "Harl6qcqvVsKdnvKDrJWyhc78XfFiwiwcgfpXbIOyY6jz3RdIckzh26Rt2QncdbelC3CCpl0ZgLS\n", "F+gFI+gLyr2DLIGeaIDFAXPTiDPrxnUBEnpWBHQcKS0bov5TiaWGcRDNVMizi+xBf+iUiMlx84z3\n", "Mk6tpzDwbm85ZLqwZP6pdH82kYHZBiznJ+ygckvpiBeGECsdGcfPSMVOU2Oo/Ol2ygbTGLgMoJ2T\n", "geT2apJYu/wdWQbuppbNtCqoQo5pPFQhZk3/SIGXOCny7McWMltMQjnM9Ss1JEpPF3SzU2RN549g\n", "83PnlonQAYc79a3uY9UXMJhicH3p0iF/0rOZwrFBWwkEtFGL2d3p2VFrWOiYrwatYmpf98ZzFlin\n", "hpDoyAnCpqbe0SPF5fFow6kSbagHMpeRJIBD0DZAhySKnQZzIYCdIJfE+kNULQ7rRmDsZjGWxRtx\n", "KAXn7jxznJUUnzhtSYO5j7B8gv+ebwSGTm4GeENPsABf0I124C18pqUNFOPLO3ISQaPNzzo780Lw\n", "qCeCSvKPAe41DonGzzSJx0lquTkO8OoAPtbKh0CeVd2PKTREwcNDMyAXctkBxSxVE1zXJ7Xje2kz\n", "K47C1xx0O6UVROZ7P/hRf4gRFwz09BjwH0dJtPpnv2czVCWhxRDBMwAA1lbuq7hsANb4pHO8HJtx\n", "T/h0VCZLRfmMHaM67La2n1keiITpukWgQn7q0hDNAmsD5NqYmrkksujS/UzrHti6RsYaplG3pWmC\n", "E7eoGxBvgVWGiuoVSQmhGLrhOaD4TVopSGDn5PWNI0pxV6aEpYFnUi8vXuVBeCg+U3DaeIYxkfXv\n", "I5Bf7V/2iJBelFGvwbVJBO/POrTUSu8Fp448Oqp78v4zlPSjm6LS0F/rrv9HjLY+myo6z4x/6B3h\n", "N++NKdKOD6GswWXRsDWI9r7b5l/AAAACLkGf9EUVLCf/AMk7oQN2AFucJIa/hBG9gOqU2k5INN16\n", "eHWdlfLBW3IVKCcBDZrHK6qgn/STu5xRSKrHBMOjod4WpD7yxT3jT4yJWPQknd3etvTR3vLIPT1/\n", "nS3E8i0hXlVnIScvjZn2WLBcFCmrBSjn3t9QubKk0VnpxBNUqfAovWdKS7jzGh1p1Jg0mUTyeQv9\n", "9xzncemgHiPY1HyL1/Uuz7Gq3YY3HfurHWPoGZ4pbYhpUfMaVXk8Oguryfl7fVTllrPptg1xhOQp\n", "qwR6NAzgSoH2tcGU5AFIy/NAyIywhk1+DsWsMSSjz6iCZrwAvTjDFwic4+YV0USoaFKrSrEXEYZ0\n", "L41/5zdcAhlGg03RjMkwR5WtWpFaRSZ52sNVPYoczMauNha1IPG/FkgbfrkeWH5+iD1umJmom8yT\n", "Jw57uGZLjFijD6gsQndmA67Uzrq4lM+xX2B93FvCN4S6aXpU6QayrJL9hxs145n0VYefup6/y2VE\n", "19XnC+ILwmpeINa9QfxjsLnI2Q3fmK+KnqUYTvAE55shZR042ZYYnCIdq0y0lmWGWXM105SAkvEH\n", "1W1hJ5yAJ+t95SxVSzAfcpvIFI0GN6yyzPKifSl0i4/k215ZbSNMjxoD4RUy7r44YtiAmeKyhdVo\n", "rwi3gtf6CrYj0awgw2fMvFYwfE81ziAcUtSAWuyRqHw1j/DOTBGdV8Fl+gdn3UN1z9Hnw9kzh7eJ\n", "oS5VePuO//9OaSyEbQAAAV0BnhVqQn8AySg9gAErfcwk9IkdhJ7aAeb6pE8ALPx7M1GtGG2Ktvxu\n", "90Krf/cXpnkcCNYvefFQ7iFwea/HFNQg2HpaFYKhuScVPYlrOqzXft2adV0cQ2oxvm28wVQkUBhw\n", "+1HL9QJef3JMFZSvXBrqg8bOpZEuk/YYvDwY4iDsRIc1qvO/uOBoXH7y/Qw67EtWyqetzMdVF1OA\n", "Lj2pm8uqc3WCm3qGMQmY8df/x/yu8L81gEgX0tJL0lskUoF+SFJhpx+sFOtVg/CgqZ6uvLns6H1P\n", "AtERXcRt1WoARm21EcHkd5BMKeIZxLAqDL7zqpFa1sPm3g6LVTaTXpRJd+EiqDJdoHqR21vsrz02\n", "TFFh8mk2eVZbn7SeWjmsKYOL/X2gMSm4K+Qs7o7igX29euPvlqU/y37q0F09+8THT04FV4ELFjdj\n", "uRHWD86TJUyQeXnQP3QsItJ32fpJWku4AAAJeEGaGUmoQWyZTAhv//6nhAC9/HRIArOtaVvuscBt\n", "1fHi9cObuazxXAdp9G7GWEpSzIRy4DH125jDy7uCTRxs3zfOP5lEvpXFnwyjPb3+468MVfZuJqD3\n", "Loto/i6ofv4QnM8PdIoCWn3hTQ+Xr+LDa2xi2WPeKzG9gYePrJnA5Pg6k7icFTL1ut6ZnK5AJIrb\n", "lAOMUM/u4/HOf4aWmjyiAqyCBfp3/ErJxYymnNoAPsLE8mE1YNHIaDulcZ786oQ7EWnmj9J/SmRu\n", "GWBQAYGcmK/wuqwmpdOZqq94GcfkolTITrr9CorplgvY7W27GIigp/G1BxbWvENMuKBeSpuIInZb\n", "x4rwOQFfuFueodMMZLBcNAhD1/i84KLIjSsaVNuC1yH2KnoSR4GTdrZWt+cgG71lbICSbbV7F7h9\n", "kdivrMml1sZdjJwCE48dKU48oZ2Jmmy8cu6E0JnID4k3pEUNWoqXfSv0zN5jNP2dvnYmo0qjzNDH\n", "p/uFpHZmZZIGR483EJThvKIFAF4nqagocaNma0EmbdoDHEnk6P3i0BHkFxDbSIcC1mqKige7GRwE\n", "tmEDnkkU48I1STmFnI1P8U5vYM0euNMRW+SM4hELv+eZ9O1qIDNpm3HSm7PM6UaOVq4lfPouvjhY\n", "e5XDfhN9e+7nYk4lkCBR/Ywtg0mRqZgz+f7v9Rf1QdXD7zwcKXEI3eO+QK29q0R69ke5goUGaqHl\n", "aI79G4Im5yrQTUI9b/fpeXoOPX3/lUESjvAYZWcS7c9NyscZlGDHDRN0p0UH3bCBIMDoe6P05uy0\n", "pITnpd0YmC1N6XY8KE4TfQBf5NpB5N/n3g4WZBfs7E94MHw1YeGuWIXVBPvjTJnPG4i8Y79vKMmc\n", "zVwCHgr60fd5kOaWgR0hcoFCO5p3JFHliH+UO/TyvUlV6JQd1ahVzcmfGqvJp+AloTyf9oY97R+U\n", "EXt306rDd7ssruAHBUyJFYGiQFZqfq83wgEMNe8qZqGF/PQR0F8IR+W4+uTgXaP6Xfxb28fsyJsJ\n", "YMO/G7KorWhvDPiPNBxW1fvYKJanGJTWL/5qS+X7AfvBD9lUFG4plfj4R/umffutCYq5w4crzrWB\n", "/yY/QVKKz6MWQNdyhIQIZLsfNQFguyU5t3+rhGHU42dTSBMSH/ZagIuKXvvAm1rRLe23sNFUcpfY\n", "7oC/bNcXYMdqKSh4M9ivrCmTRA7Ihuoxt2rmPKnBEovff5d7bqq/C6bNyvBkF1oOKa9CaqJN9M7X\n", "eDV6xK1JPUr0e5FVxuXlxLxiCcMHXwv+eaPxNOFrjFQC2amlk/rJfGiTSLOJUhJS2MX++EL36pk7\n", "3t4mO1GDuQol6xmLvfSNXiAz6MBeHzLLbW/DHhqflPHPyoNPocQxj2FsUqgw6f8vH7irPEfFIIfy\n", "Xs8jmIlpDaohsYFRK8VpuwERo9yoAcQl6N+L1MTEEBEogSVQ95mHp1vcibUnTSF+dr0xlG9pCbIa\n", "0xEyInfhBtLs5hGMgaVX0dT0XRuSlDChrEENvYN6ELxVhez6IQe+aUDb+kQ72F0sZkDb6hhjqeQG\n", "P9X2W2pJZGdNEsD7p+95Ti7DPmLj04FI+O3rnSGDSGvaFXaa7f2zOlREWFFfgA3zoTcOYmYv+uXc\n", "4qbo8G91ppih8B8QXWKR2cfrVZI2vW24NvJdcOVggFPunWwjdR7D00tSABY2zbOGTdkJKhvi1kQu\n", "Lb/KxCOKGZjk+ouFYkHcP2OG1jQ+Dt5yYXU5OWlqQqkgXpZuWygE9S24j+PO0hIIzzWmccxm0Ozd\n", "MYlfWqhOopE0bPVDJfzNskQ7KMZIrcA3Lg6GTw/COG48dpUG0IRfBA4u7kQR7/t+l69eb0SOFlE4\n", "n/dUZnwlcljYa3GY+Z5XMuVjfpwoilI1Cyy0zfGh+r5TEIuzYSppO8y9UN35Um357wl3fro4U2Lc\n", "g+CWJFhSZVYpvyPi4Nm2+6FahD89f9SLTtqh+3tK8KehMk2BpcIG5kUkiDKt5BgAsZ3H7w2UwI2u\n", "Swtq6xLU+BOYfQoSI/eo/Wv4aB0C94SpztsTinsECw1jFagVEfeQWPTNxNwO6EA68GnwZADxk7C/\n", "OBrU+yXho9Uy5V4zNBfamUPXtx82HPu1qYgbW8BvQ3IXG2pBtNCQel6f1X1eB4bXeGUlEcFtleRE\n", "KE6xknrQomR/wme1LvMkyqXIJ6XMdTqwz1dt6lUC7hHP15mfWxZmUOLhTuWx/r7ZQTGFoF6KCRCT\n", "JB74arvDIclEOnWNEFSSeCb2GSRieFdY9N9wLQcvfkJePBfM5yM5FE2gW6FC2xbTti420yHL7uzG\n", "D3rvVvZ1UUknebW49Hc0XJCBlgpfQXknmlX8PVmls5Zn7YxWdk1vs5o+IzXhRD7OVLou6PwXx3dq\n", "1NCfL7ekIr/yQel7av50x0KZm5Eu9uvb2BIPZbli/UXs+97sZRI/AXbXBkHkgVLtGUfMPXZ539lc\n", "d/XGCFgfZI30toaofj0fU/c1QrW/380N6CdpUwcva0lod1wrQ/FuBxQmBCq1W4B5Ymea8xY0czYu\n", "6Kh23Me/SwzVftdEGjPlD1XnF8IE2HaWOk4G+Fpq2cUZPsbM0Of5F1PHuSFFc2O7DG0VoYHJi1Bh\n", "m06XBpTvcnIpeCw6OO7AKpwLCSwi+s958djqcncntY1c8DDBjx4tygecDgo9m+vwEQLSY9qRPaL8\n", "5ymkLfJpTatrN2iDZ/R1WWTSZHyU+hvGQi5XA3Hp8+fJw5dsaYURUTBpq9ZLQhcTQH8df8iZBw7g\n", "vBZQ6a4AcXL6LtDupNe754rbr4iS+EF89APYr+JoHUq5XQ/al+xekVeGdMkf32gUEGUgYOyU+wKb\n", "deGG+V+fTXoRPDZ6CVpB3R76/7tMgtG7DFswYrhNNhzOxZ6qivIXoo9KSajF96R6Z7LtoDGaEmix\n", "yl7rdPfr5XRxD9nL1oNJ6viAA1iUg7iNZJpcaxJIoVDr78hewDln3TDRCH14ggdIsSPscC3chf0k\n", "x57kfpeyx0/9DsiV5BXIwkYPrPY3vi8Xnp9ZdKcfgvqcd5s0VjtmKj24eSjwd8RlnhAc2Y2tDKol\n", "mODpTf/w6E+13sVzOHY17K/MsETbw7eOzuSm9KCRPSSgvYuPIkNiYp6ReKydof4Y6qYPNyqKalab\n", "jtlusR8GocI/AWzE9hlNvxzuMMSXoPBW1hWHu19tjaTfVa1/kNE4CHNf4EgstOUIzA0/g9jCWMNY\n", "wQAAAelBnjdFFSwn/wDJPATNwlaMAAtOwkfFdhB1I9DCDZ7s4dbpWKIAxycZSmLrEfj6vGQfwLF1\n", "L03CVKYg0reTSrAwU3YsvoLpxAiTNI4nAoY9WwAl4+l9xUqsJzIwZp4VWfQySQB/B1gix4MekQeI\n", "/1DuPdRi0hGkBe2bnJ9dyZy4hM9owGB9+3lHY+NqeBCZn3cGXvEUJ18LF0AO4gx2Ggr//RlQboLa\n", "bnc2YoC7KG6jXZw3CB/CpX2B7usAKXOW+13iWOjc7M8ZfI8u+5M7S+tKY99+bHeJOlpyyH4Qk0wI\n", "LunkyYROVnfKFugD+Xaco/DeHun6jXDHUPS0MZZAyJhM4GcjhV3bM+5g5B/matBhjs6n6KL9jocm\n", "BfLiwD7OmPdIdN3Sqk9MdLvhZcAzggdG3cXoyCPGB5P9SYiXtWz6zYmPvHOeRtVBruOVij99Emb6\n", "Wba9zpcfRhz4wKh8TGMafeDTcEwvWt4l8KfNBAjJnkHfPCnHU4MuT3eR+kOn5YzfVUULP0pcdMr2\n", "+32E6U3SDvaoQPkFGV3L6dxcCehdWjW7iEzZ6AohvO9ojwnHpDzm7j3BoILO/HU1evWwqOZgouEi\n", "LlNEO4isNuv2wYsn0k2+ymA1NbMy6YC6YsOOD35gbljYIo93i0UAAAFHAZ5YakJ/AMk8BLCaAA2k\n", "KNkGhSk5fTribG+natdPx4DhNDx900hxoWNBAHI/zSy//5lbjmSuuBp1Y7YCoBt+TiKcWtkPSHXS\n", "l04JQKvTeuaPCR+2tC9FamdQx1ceOEqVL0Gi8TXzWb83CjfV7c4lQtq/ysHErXmUEmWtSPIU3JMD\n", "c0lLRy0Ji7K4gy4bs5nCV9ECXmWf4+Nau3ETk0LeckEanfMS8DqmkwR0zoQ13BRgyjOGTHws/BiY\n", "z6OoDK+sTf2ids7KcLmhdgVVeliOh8vEd7FYDFoivTFuoGnNwVkmc4WwZIcxPt9Tw0SiCRzNXZBk\n", "0wvJW5APcCVFCub1+Wv6/6Qf3nTaPeUq5/ybTuD8jzHEPQsBUn5xAmpRTFjZZG0+8dYOGj9jyOC/\n", "Dck85HsfBIatXRUfxzkf8q3aNI8bHGl6BUVsAAAIxEGaXEmoQWyZTAhv//6nhAC+t3hyAI7qzmo7\n", "r7ZDpFa4znV4C3n+LcUeqpw5BN9ANmVgucm1doKTIk24hCVgnTeDr7qKy8muit+OOBh2xgFkRkVO\n", "CzG78B2UchOeD728XUZbDv9lDp5rDP9Vd8pKvUNQkK92+MjuaBRYh4au+cq+vegxV5GRXnd/xr+4\n", "pQe+wqCaukPUUUlOddS2BD40a6lcp/w3u7mItIS6E6ZdSLsEClqamq8ikrrbyHwmblPB6ohvi3Xl\n", "YlrF1Lh0V1RR+bvMT5ZAUquMMfeOCX3vYSz0ZwkCxEcOXzcbgG7DVJ20KGc2MSi6xcdMTR6EHyvm\n", "qxgDvo+ctEW2yPrH/mqLiRbg8gGPyhSTofC53s6nwBrVCoTp+M2Vf+WIvynOTrt6n4WYupUf0A7X\n", "O/ZI4kaEeMwe9JHmvbV0KBtDkPxFHsoDlGGL0P8VxvcnfOoKBiLDXjNS7VFWRYrk3gonB9/zWHw2\n", "sGm0eCCi5An8NFJ5HhGrII8/7V/gNdZ8HH1IW0K1XtrbBN3oxXGaUEmoE1aTBPxV7MaOlxFf3F4y\n", "OenBm1wIx8iGRwWvAI6SnBPZ2Qlkdr/2e95XUuFRv23dHJmWg9FYn9pisdIjTCkkIUmFwrVW/wWU\n", "CV0vqENTOvtImvBTPYCi3jCgev5AxHgcESyHDdo+4nUlCIZ1EEXr/N1iziA5edNWZByXeOjCWypv\n", "VLA1FyPgsoUZRPr8GruSTgDFUWwr5cCM296NbeCO6eMtU5sOUmmaO760ilrmnyTIeoJAU0jyI4RD\n", "nFAVEuRCSSfXJ5EEAgoN1V54q6FyqNZM82vAppd94ejcD8uaYq83qfYAmZ7Tw4rTj6uemC7tqn1W\n", "1oMTNP4xyvRNcslvyYSTzCitBV2CPIUIU059T/fmnFk79X9IBRkHSYDZQXHYyWUc+Pl7p6zrjY75\n", "COmKUB3r3Sg88gTeOHwSr7U1oJNLLSER9A6b6Z12+MKYK9zz0zKrgmPdosJPiHpGgoJYRkFSJtEZ\n", "7ozJYQH2QdTIhnsGbQmx1tlDBFMU4BzC+CmjG2kQerf3P5SKU4hOyPeqEYJLeEp+gTIAw4OIOP9I\n", "szdBntSzerWxrnU6CZE3rMexUlI9FQ/v8JDUZZOnQQKlOZPrckhgvrZGNIsbxFOa2GdTFO81tq7f\n", "OO+S87/iuY4sXLl6L29QxIEx8Ak7279xFNCUQ+PTB36zJrdIbZQzSQQgkbOTduWyR+elg1LOX3Z8\n", "jG/Zdiw3lIQP+Kg9Ah95yzf1SpSKW5A8ykxQONxm/KYp2b6PbL111o1i9p9NcnlhPXy9NiUlhVyl\n", "b4zvv3EDaDut3JryeqEucHShLcwbpU0UzDRfqU9zzaGV6orSzufrkyYoAgcG9yLi8/v8P/zth8DP\n", "US5iLOFys39YF0ZHzoupIboeKrT3XsbzS1WCFa60LCmiq2SOfvrQ2NjSE6PLAzUziX/d0lVGCRu4\n", "gxuZv3kagKOoK5maeG32h9keWG//M0wMeBzYIBlJhlpgMMUUwn9yZWM5+vSP96c193zitWVUs7wA\n", "C+ghkJraX9NkjyMU/iVQ6keLdqIjvYFuRLfSgJgj1LmIjGPTXtWfbKWOYuURzFK4d1tJhfKrAIJK\n", "MszCJ80tA/u6An+On9/BAo8uoy39pXt05TWC+5kMy+mSvVF4YSwn4e4e8ZwUaFn4kz7Vk2/Jf6o9\n", "L3O0MAGEnlSEcAvHhHyavFq3KBaEncNUKVrq7aHMvcsBgjlGGwAQOxi8W6KMVfEjkH/cfpGq1FYL\n", "GVrLEQmjZ58SoyD0covB7tOGilLDCuQBlcrJQmvSQl5Ntdq/SsZfXGLJeEXBTY1MpSoYYEsOXcVO\n", "cqQ043UKXD++XMhr/+7oJcMBm2a9QbPnr3gTlep5ymyjOphE6EFlvBvIe7LrrLtZHew4JZxgUcFr\n", "PMZ0wZdXWj4/lGNk+P4rud80R0JMNSylsX1yv51l+B0GsfrKMmKEtcw8bKRD/IWQzzI44zvxyGUv\n", "N1odi5yFCGHjT6fN5qWBrOK0n2MOJ9+xbx/NbgqhTgTYZPm85TNPTxGn7N7VrCe/hhVyt0bq0XME\n", "A9hH2MVALSb22CldXpjFW3BgFMkucZPMPgLPQs4LbnOgpZB9sO2pjRckHeXHSnO2OoUb2m5UbhKA\n", "Ofr7hggZtzaCkfJIV1gWUvvr+ICPf6uOYI/ojXhN1Hu5misJqe1lPiKtjBhVuGdoRtfYUXnPgE3V\n", "vTd0Douxq0tkwGHxGg3DZP9hZgKgA0WbExPO/NWwZAFNcQAyJnJADEkij4ouRjXoUCHB8TTgQnuJ\n", "oSzfUfKVve91OwDlwwKbj0ClAmWN1YB8aESFjOu1Q1cAlDvcHvsNgpz4CbFZcpHwnI0BTC/Bnw5V\n", "6RKiZldMGgtyp/q43eSO0HrX0LE8nTYrJgmLvLRaMQNqiXBVGo94wsZVhwIl3QIHSi9dO/ZGW6tm\n", "YzL5G/UzpjttV68iFM7OnJ5wbHXWw77wcElfFo3GAXqAkINHcCgPry7XsED7EeSYGfOLwpJkiOXe\n", "uGPS2id0DveJUNICglHISLjemvRrJI8yDWHKACD+5RryH0IrS44XdYzrjoQTIt8KX3h60T46WlLI\n", "Tf5igPMgZMf6oqyQCMPeeAvmt8USPPNLH/S44BGqgIaA0bfTOJkIRGGESm9LaXtOrtlbWA6zNFTp\n", "PRo0gEkfO12gM+en7KV6RI43tHn7ajyR6WWHnD4HTQYlcVlLsSKJuA8lt5Zq/i7pIMEu4TILau6l\n", "u9Hd8up2tAJuerm/vIXHTNYjfgiZk9sCYi1P4vLztXKr4aGFaXgmtqMQqDCRgUc6ReoNWxE/rdXQ\n", "jkc7qZq483ux8P3KpPlFkWB6h+05tiaJRjk/nVsewu6s1WSL6OWyOLolMdgEmK4tpD1jBTDZMyrD\n", "xTodi2RJRlrZTmexdaWxJxuW/v5B/5Ihs9TdtE54dKYlpMUn4Dg5ew1FxQ+zCv+fxou1wQAAAZtB\n", "nnpFFSwn/wDEOzVQjmGAAbQORLcvsjLEZmQ9b4COhu64bRYNLNvv4npbp6zpMwsfROvi567n4Dfz\n", "/kNyfWXhJhQEY1H8xj9l3kfAW2quhM5IzYsCPrduHIIqr2pIhrXgdGMzobILXcMsn12XL6Gwqu9j\n", "UxF5Z5/DFoN5Ba+BfIaawS/r7oLYeIylyxkqbfj7Ov1fC0EOZ3CdXBKyZQ1kuR6OGLbi13s3GJ+8\n", "mxVfMhZcb09jMKFYfBrZZAjRbRJBnzw8WGDzuRGkvdA09shlVdZDPKaiuMvuAyTHBcyEKOA1xJ3b\n", "AYNiN4bCePafmpmRn+FBYg5yUeCKkxyE8vpmcKq+JuQlkH54ORyF3lDFUPEgezYNcw6qPrFd1kK5\n", "jZ0P2AQHt04sqDSLR5NA/hghBHe2X/BPC9EJbGfidvPSdhhjaeEoRiIkfSRKUxH+QfovaFbWrGRn\n", "N3sZIgX0frQI69z83R6ibmdrABOMo/qz3nfz26dlWTwOYzUWGz0Ywc+rHa5fsP+lOIUL20tXpGhn\n", "v0CmUqmR7PS+gX8AAAEiAZ6bakJ/AMQJIP02NpW9vO2dK8KApPgAIIRsLrL4xjI6Bb+qzR4pmuv7\n", "jh801fNlcn49OepXWuLPyzCoPZ9hPD+78CYOTSJIuG+76X6YCuV7+KxKiN0rAf4ZzrhJ4XTtVQOy\n", "9QOeyTPS4sGhx/Z+BxQSJW+91AqN6HN4panMl7Ynb2IUEJwggtCRSNPw18JQfD2hsLdZ9SsJe44A\n", "EV1bn3kdMFGs+r6t54pHafA6eEjr6uRIgrPQordn9xxZ9D5738MytSNvz9poI9AxtCSb7K2Eahvp\n", "3aoZYNApnEDEDwMZXarRzEKDXffU32pCuVEqDhjhlze2sbpjw3uAcwBDMCg1DbDN9N11GnIXQpoA\n", "AzawloL8C5VGab7wv74lZ2q4knEAAAp0QZqfSahBbJlMCG///qeEAL6cV+IAFgqs3soEJplhGBu6\n", "gpmmV/qmnE5FTouLkm+UXwRmtKo3rBpVDmbGZGD6w3I1Q3f0t6moQn8OYugwNjZ+rMX/A7Ww9s2m\n", "ZvmAIOyetrdPX4FMkZW9Myuz/zfPTLapRZMRImFDFFoSRLLc74wil7cmKIhduFSBpjM/gS5mc8fs\n", "tUD4oIUB4FFiIVzD8S12UV+hTRymLV0UQC73RnMaMcjikY2bxjKESNnOtkxfFCzhuQ2sZd2X+VW4\n", "unVLkYWUoRVeIqjLdVDTNH/tfvpKQdBbm24wQ/fzjKL/pRIDGujCEmEpKlIUV2Mj9B3dcl5Vat0c\n", "WIdf8FKWahukfkDgcPctB60LCt0ZMp2ZkEOSVZegGfoIn3LIy9HA/jvNEM+YNBnngr039yfOnn2V\n", "9n4fr5iFssFvfhwbDMs34s9LC/0IU/QhqBAbNunrRNGaDRWxEJzrB6QaXm+x1TlAmsSqfiBzYnkY\n", "YKjWGC6Gl/p/XJhvF0g54Zmv8orgq/Fj1BOVyP2KDcKRynjluTrLGSxOUMjfOipH2gWUc1cDVQDS\n", "dOikebZwzEtswBNZ+yrZ+5pSK6eJl1mlCQlZm7NZXIi/GWGilXFKPIHIkcDsqbn3qGRd1jQUu6rX\n", "nEhRVibx9xhrtFLFS+6s4KiNM4+EDLwl291/dbw1D3fQfNwbpNdS0KCs74l5hkZoVKvfQdJzafla\n", "OGrq7OZVt38iIVyi/SnoFvmDzZ7Tz90YhrvtY1JKAysW/CxJH3suiRgch9836ouztfDLXwRR5H2g\n", "koNtuh7XAp/+xE3mMSVu8AeNC6IGjOrzALDUW3ZgOtFFrBiVwJuTZwX5F8duIpZ9GFoccIjwMo0s\n", "keRHS4ClEn7AWzSdyE9cN0L/wBYjSNkOGmLU7LDk/MTXUZYgrmjQJl7iGuvC5ErZ6vufP+WGorqB\n", "N+JyHLu2vC0MVDzZNKdh5lFFZyCSMGLrKlVB/B5nxBXo6ivD11Z5yG2Xe+0ba2RhlC/jlf/WFx3Y\n", "d/zxrjJa8WG+du8BZk6ZFaLXKJwhcYG92D3mOWs9YKLpKSkrZ9tsEiYs4hyklAKqgBOfcdetoY8m\n", "eME2LQ8SZ9HRf0uWfwXzm8v4bviUoOo0wy/mXOmWduwTp52s1ufJiQbroE0BXs8c/maKqrh5NnDo\n", "vJSP3Kqe+VBkBleDE/3Y0YyWYkZpXNZskAUjY7JjNmXgaSgIBfYg6ji1QDoSthU42k4wY4t2Wk47\n", "cIHwYWiz4D2ag9CbQgneHUqwy4P4Sq6jmFco/Fjk48FHbMxLPiMKx0oNZbgXZTereA5SL8a0jNa5\n", "77LHvnxkpMSGA+a1PJuRKSS8SojTKp1FBXyUhH+m96KkrE1UnBbX4Yd2PSCrta1bMtYcbkzgVE5C\n", "lyulEme76dQL1VCVYJrftXoYsxmNpz6H6QECi9ufY49WeQV/qyCupav6Pb1X0Lw2WEfeFyo72WLx\n", "GvyA/qYco1c8l3ke5bYwkM56mOue38UAz+mi093z1yS6WNPwwlVVG9Bumyf0HNwardPEIl1qB8xS\n", "mFSDdKnIZiGTUjTlkntP/DVxKb4GhmglgJ9mAUMF9uHxNniwi+VZK1sE8o6bPOYedy9G9/OAftEh\n", "fpcrYU42PYwrMs+VqgJfh9/naEf3kipzh7rGuHV5GmUe5dofHuJIxg1wyiEOTmvX6ZpKC05VmlmH\n", "LNEci0Rh8n9o5DWOeKWk+b1D6O8ThtnL/jH2kjVPsY+PCvdHp5GIU1dnM1xvvaXywtUVgBgThAKq\n", "XDAC+YASV05kLbZof18bf3fY9AbjB0aEQS1U2dkARgeU5Lj/w5zue0qckuFhbNLPSzHI4N2WDBwb\n", "++zIPfdEPXdbihK/RyC16AOhzQonLuwjr1/Kz55yRs4VK/2gG8Eqm1tJCN0W+LD3AGvD6r3RBCcB\n", "WZNcIJMz1AGE2Fbiz4jhaXxe/wyxk7sFu7PmuJU7nKszGzMUAkODIpm0/zG4WzixQXkIY4il8ocC\n", "Kt4WWVukLBXNFH2uyNtp5Tv05yIcShCAqKzYjsLJ4xx6KLJH748unN8SpH6byrXy6EoWE4+ce9fw\n", "6JzFQQnvUrmBC6z+qhhNVG8Pa4XpM6SpEbNzzUcBUbp+BG7wu1dSDTGsU3y353Db+vMjjR23kt0x\n", "CxqQeXcfv8GdAd5le7q674iW0TSckWJELV8rDaEUBvZKpzQMKt6yyMf8TA+SrpE8hD24EXBHEJ5s\n", "H0w4trmthDibSZPm9Czaddab+ztOGnTzZJHP5v+SqcTDEhKXppQEzW1Rm+SR0euPEVuN3GyW8b2B\n", "vO9RM+tcwTKkTx4LEJFkDEOmCDXr/OgqfzM3qRd59g7q/00OBp/XOnLTABTfEGKl5dOo3lWcLK6R\n", "FBRktXHi24XEpFwFb7AEn/HKawM5ClTAarw1aXdfzo80Ag3KCYJroSYm7npAxpEqqPDzwpD8LiZa\n", "fi90v2yZl4Ajw4RTuvvaGRKZ462mtj+kENEE5LUBezHfwEIxkriAt17/9iIG4Ddn+LpNbhWM99gV\n", "q7FaDXpR7BObQD7H4LthRyKgl9+hg6lu4CTZfTpBg1QowJtb+3eeYRRBok3bM8q39T20tFF+JBPA\n", "LFEnQ2e77OTloT/plSnJLcYpj9Jp3qsG3pe8G4a1kHCRJkkLwhF51COatdeQrLJPxg+B7Seq3deV\n", "At9tVJfDYGC/tjE3xGShYTw5m5sCFDwSbXlHrAhpsNFvK7Ljpi/JJdldtS3C9d7XhxiAl152luAo\n", "aN5I6gj01eMkoI2LQsftivcfwMkSj6/vZpyTdG2l/Z9Rga3yXaKpoD1qLixlinO/mRoWZ4LLga4X\n", "F53BahLxm2H7gfPMluMId91VCygivVBva+V+UJy4cVnNm06yuTB/68dcP/sOZumO/jYfuZ/t5rwl\n", "n0MkJcsGl6E7mQHkK9m7QlPGLOOptHiTBSDv/BKBc+Bn0lPT7NhLXnrGQP1vAmgmh2Tod9uU3Vcv\n", "EYDHZsqBDzZO7Sj2VdcQDq5NerjJIik4Y54OTrZI3fDwIgqk0oKScebnkMatBK3y9P3oD2SO0cbT\n", "jL+AozBJ6cubKgFyKJREgb4eSGhVtmoPbEoIb5CG37AW9cw1t/UF5exYYtxmWOdU6suyaEIMBMiS\n", "cNpGvyP1phgP9YLI5coeqn9820KoW0E/H3lF0dVF0gh6C6Oh7F4pPcCMzkobmSNENVtJswO8ShsJ\n", "it89v1rDoB0PLFwi0zn38qi1upz7hCzfJVZr3DNnrNK8ffTZJqPJRlrgPxkfKYuQ+dja4Rn/yeP8\n", "QBBpjwXbXJogMg1s7KDfv8q5V3mKToej/LMoSIkcjVMCq8XwDe5STHAYv3HXkZjB4ViNz8tpBHct\n", "dXR02LtahvbH4yJmJcwBpnuOlU7Q2R729He1n1fd9ZMPdjKNkLFPCety8izKhNH3drSlt8PYWjWq\n", "kl7LUWbHWGPiUhHk9aygNj7JZz5CT7UacL0eVcY3MvEG0pdfd9IzbgxSF5LQHv3/sFzpzF0g49FC\n", "+IN1GvgNzipkX7ePS5ImNIQg/gOBAAACskGevUUVLCf/AMKPNOPWAEJyjCJmJe7bILqcBd6jEoNT\n", "WmOp76rCvig5bcQkaF34vUJLtejpGyPfbUs0DpMrUWMj/I93L8Ur0CciomALTP1G91yFqdI9NQ9/\n", "gZU0xPAZaEnJVGmirrntjzg6cRb6BpalzIBFvuyAZGUc04HcbGRlecD/fG3IhyzD3a/OFXnCS7Wd\n", "CsF8KTKxfZ8xImaejPkbCCooe0m+HDdFoCJvqhF9b3CwT2jJafzYNPkkj4RuUHTDe33YcZTF+uYM\n", "SPugSxwuO8+TDcv5T9plE+aS4vweP6w8AMWc7iknhntEYOMoprl1na+pKdEMOicaPyosOlTJDlZz\n", "oFvVDjcRuBQStS9pHfHXmmy65Uk2sNzzy2QkrdvacssO2PCxCQmLh/9FXtJR0UcXdRWm56zcWZyb\n", "9ZOQPxV0V3rAOPtAO0EVd09dbUtfHlfRvb4ynoQEFvjXMXcyEWNUB0LpZF2jNV3dNmlKIg43vkNh\n", "6YEUJr1bbossgx2fEAyK6fCbM74OCSCwsA9Ijiqul75DXHRK/f8GAj/BxLRxaio/pCgxs19TPCIr\n", "RP0l1wUcOBnJMOKveIidXsx0YdY6M7lGluN6dvDRKaMNSsPCqCv1ess7E0AD/KT/tgfMZFmPFBo1\n", "I1IVWoWqaNNyx16Ql4PekxZrqGXwOvZ/Kf906Zq4yXJihb5CuBiDG05plMULidLNMuJMm7NWdOYq\n", "LTNI6R12ttqK2yiAQjB+Zc682CiLDG5W+lgaudrMn5B0P4q3VTfL8t9eR5dgS3fQl/ztSV9VrHL1\n", "05Y1HUWsaOIYyEHTISuuT1kUhzxeytkKw8tP+PFDktDtyVRY4J3PGBg9sLr1ZwetE9pK2ciTL5sZ\n", "UaOEC5gUod7fjYNuFrUBct7B8ddrrMG42dDNZSgO6AAAAR4Bnt5qQn8AxAdYBeN/q2wZKw5TvZNJ\n", "PFDkEQANBm8F43T4KgBmoi+pWvVnv32X9Al21qsERETjx/qyrb5xAFPpmJ9ONC4uk0EhKKBuhzU9\n", "Jq7PoHVDqomP4QsimVkZMnnw81KuC6e53wY9yNicd96zM+H8NyALN1gigZJjpJjAiEj9CF66zOnI\n", "L0D3USXeAhOMWTPQ6PkcD6A6a3HZ8RyCMlyTGa/M6JCQXmEqfWBwQUc5y8UT2R/J36Tnaxfno6qs\n", "+01aQWB1uHWYYPXusF9L8prsBFFr9SUTREF3Em7z+PONJFeqX2RQgtNkk2TisRV3ZYiizWvNLxZ1\n", "B9wbNWwZBKS3465eeL/i/beYa/obcmpiMOqPfpo1fUHcl+g8AAAJeEGaw0moQWyZTAhn//6eEALl\n", "Ztg1bj3ABGBo1a41Tdzd8wpLJp7hvdyG5PGNPP/G9gBf89ChWlQjhgVX1NLGvLyOkrde4IM2vuok\n", "udtBkvtKt7ihCw64Ns8RBaKgV9A6UZR8N9bCeAW6g6YzxZwv636IwtJdwJa1z8i7+JMizIYIed3j\n", "VbFpATH3zGSfBFKNxP3dWNAwEu08Vrvo49WWcHus3kZ0kjzOvzFj9MxTSXUjuK9wITJ9hw48QV8S\n", "4Nhr67EPsrLAD4oMc320mZ5QvNg3fS9EIengqVSfZcKoCgxLQb4ls3qONpsKHGbmpAspIr9hgdJP\n", "71J82Z+bu9rcb00GV7dipA67X/zSdBSVfB9eA52y1pIFDg4GSfYz2fHQRg7Vy66Fd2aRuzelX8PT\n", "WjmzxYSUg4t0B3aLbJRlI7bUed3/HSByelC+SQ7DZzxV/6jHyJ+KzvAlxW3pLjsLumQ93BiEd++n\n", "Vn35B0lsSyyNcYuKLxDtg9tAiUcTv/2aj5sLSFUq5CSoOAgzOPZLmask5770OWae5BTRb016qcQ9\n", "aPdZOjjabAhUU7bgo2BjQ8xhiCZ8bdYJPth27aTJ1WkhKgYhk1S400pG32IP0G+jaGPr4XtiAM19\n", "fhDCuifP8MTMhztd5aqTpLugLBCjEy4In3KTujuwC3f8rHkErxTjDHBfcaWlS+R+R0Voo9Dp1+2u\n", "0wcS3j8dKC2pm0EVES0G+iKat/K8VNIaI3RxjYjCyLHfzZw8tQyW0OxDYIJ1Rr4WnhftLD6lfwDf\n", "nsjp9Eb8l2jfjQfUCbMl3bOXbfwYuvJNoX0SgMMJJ5Xg3Pk7kgw5uOr+3AamxB4DOGqtMRzS7ndM\n", "0HloSMoo61WWmZ9TjC+fVb6tKPdDc70Xam++o+173MOLXlFMuMBBwlquJrjdUcgauFHlbvRzx1gQ\n", "s0eJ7akzL5sdsSz0SpdzTRygM+oQ+TJScg8s+JflO0m2DNKfC4cq8tK79cPFHmPRS8gwROaXj+Xx\n", "KepZzgDTGwKt0Nl9sues+q7gKjY4jxgpzarVtzmRZry8GQqbW4wlYfBdy3wT/slpX1WapXATiJOS\n", "LtCM2iu1kA/REsFpcG8q6lRk1rxYQ/b6HK9KbrvazBqWWrC5ZZY5VNECM3Ym91Ax4dTBp2j/pw+t\n", "O1GyC/6M+c4j4P66wWnVebxHLdLHnPUlLJ3hG9VbKgC/clNDILvW8oHoG1vrGGqn1f6129iFHklW\n", "3uR3p0Tc8kj1F2ssyItRcTa6dt/jh6imCYtVDzs07GEvONpGHz1W4viITBcBT6vlJYJb9J6tznrM\n", "RGKttc8WE1ZWvJpcqQhAKToXZvEIi8bu5ovtIAo9My2jdwZHtN4ElF7G7OqrQWp0XnTKHpdf7eVz\n", "tkTT0EwgSaGqbtRIES/loFmmBNQeFkZkzjofwzHZaOv4Vs6ojRYDjLxHIYn0ODGwcaotFdZCgyia\n", "70Kl3deSIRhnNipVfUHbHlTFWIQDQj0SJOndq2L2W9GEBUXf4an89W0fYeOGu8s4yP944x7fkix8\n", "PQ8l57GW38gGr9AzgFEKboQKRfe3awVUY3dwjRNCf/vf7VL1oES5Jk0wvgjYWbBR5eFcb+Gmxts0\n", "uF9nbGNj9kMyvyPWIQlIe1LjfFxy6vcBIkzbWTxCmgbMzCaQ+8vDBnKMRXW55mEEVSj1aeRyXz5E\n", "SZ/3121Zy2ZfGxV4ZYKLBqE4O+oHyAiG5NSddiUBp3nodJyxavUK+T7+y7/mYCp/7DGwJ52R6NZd\n", "pzIHhpqBmDDoMsfo/fW8Qf9nouwxR9P+Mh/nzq7BZtQw6LEvlHT6b6IAyg1Ter3sNxMXiSFIFv1f\n", "gmyuLu6GbZzcyzumA3JKE2I6iBbJ6SJSuRbebaU6QFyjuDtPaMQFuFXPGuksEaZg3fxO6lGlyylr\n", "EGnBTBW8TKGQuHSKnFANNO1Dovucdm/3VdL0/bykZY3Eucdr/Wo7BB2J4ZTBEDk0ZNkupOpuM6W7\n", "cYOmojQUJH0JKeLP2iLdUiukpCB+FJsQndu2AB1CV/kzDP2vaDeEEUtCo2QoKV1HEhzZead42JwW\n", "820zantO8FYEBWhRtrkHz7JhdOw7b8S2w7pDrPFqYurBn56x1F/m7jeMZwAj+AcS6tBFNnFHiRW4\n", "iCCQA4/YYieXDx4gx1LAIiQ4TzSeNASZiZa+S9i8q+HXA/nJ8Rx9n8y036Z0L+aLKzvxFs31uYEt\n", "JgnubtF0u1WmGZfxM5+9NfaNcA0auoklOOOOGTbGvYEfpgWBa1QQgV+v3uwgCAekVYADVkmWM1NX\n", "tfzVTG5FQGQVQcvZlqLXwBVvHVWhSkMpcMCLtG0a+MKe+UnnS/ELv7T/kIWU0231wPnaYrJbvONh\n", "trc+gEWr1QtFd2FIXsNOjdcGFADHN/EQxDWiu1fdgI6yi2Pby2gPRv4cv3qTqXheXVV+6YXyYf/g\n", "MDgFY1MsooZCndIr7YPXCGZ2tlNyrfXrhuD7ZZP+by9H2tejgbHr3VFhiJquiOhSVdJaIXE4SMOx\n", "J58ELZ+3B2jNFuzQC8IzGgJQVTCuyeX2X5ubtgTzGtiEIUVg/n9KeIoVH/9XkDoOfnmmClRCq0BS\n", "yOAUxb0M6HOLO7jTMutwGMrp1uR8E4VN9cpwfZIa9eWkndAot+O4Vm4bR55aDhQ7vTrHbMrGanQS\n", "qT4atvaUSJxs5l7z25AZo7lvbGvJcNxa4tPZkfXdpuCc6kV1vvbXVIsY08PvVjp3ibf92avWx+2d\n", "ifd8aRfkGnOxIChOESucCTX1jzMh45NYBHcG5EqCH0+1GGNZxNBv8AJQaF/6Dt1mymkH6Sq3voii\n", "TZe305vSNqK/JDn3UByCSCtOt0ZhdY9BKENxhX2fLEkbeAHFtbyVUOirS9q9WeFae9RwpYx7ZFAN\n", "ePaqVO+hNZBqAD5W8mxbke7n+fdIFz84hm9sLneg8UIVksO2QOmiRPfUX8IwWx/E/C0b4X8/3U8u\n", "2JgP2/SqrPc82nJSpqdjNXBOfK22DOCjrOkLIL+Lr+WypgqFep21YVEZW0DXpcdUsax8Yc9pHZes\n", "jKhw2VnJMD/P2tQ7/mHV7hf1FO4wgPoIO1wjeU7DoDDt6uUofZe+HJvBfm4XFZQbw7JCL9I+1quN\n", "ctAjbsY1c1uhjK8/wkJNRoTcwE0FofOdRJ23Ng4B9NsgVwLfsTIDLlepIjVvsdwEbIqyybgiy5B8\n", "GJ1FMS+IAhBmKPQ9vwAAAtdBnuFFFSwr/wCa67koRi4KgAlZh2X+P4bEI34O0vwocUJlofiX0nAp\n", "63XEMz2sF5PXaouOcVKpAMS0XGKbB3yE0Hkm/WmaGrlYQSqJt7JTqCJsvxwA7ir8hvCpMyFppf+9\n", "AOrlnc5w9VCNvb19TtZ9dvX1Ek0NM/IFrKKrBevXe6aNv/XCxcra1W2Q48Hmy3o93B+I15M3ZzjK\n", "7zcIihQ9fvzJnj+n48YVWhajMxVpwsmM85ZB9DReqN5htAEBbRvI7bNnYZPxkElQ48Hax1hXffC4\n", "XM/H+smchGxZNjAvFCoUDmLiCMSkBV0u7ycjrMBsBJZH6iprghHaBrkwd+kFQxLbeneTpi34A5Sk\n", "FYCkDfNLYoqdpSx+Uvl2AWBSSJVXMBO1MpgTyKMlbsJO6OOO2TisLQE/uL3m3niFgTARrLF6Iiz8\n", "DqB8EHXqq/NMV8m4JOufA9djSMXVN5AuHmz1vRQMhdROSLWb3FNgtis7p/IiTT4+uV9N96WdYB84\n", "Zs1A+rBbe8veWlLx4f4671vOJPFm+Hh1gMZm3ydwweXoQIK13JvzW3V/D4lXuiG2Z3puUNNj3bMS\n", "KdbX2wg/S5oRquYKHjknntAMIRykg892p4XB8xuvuzn9BFxy5GnvusS9wtXkPqxzUtbzdi67GR2h\n", "K4VUdd5+NQP/0ZtrztLcE733AR9wX1wIW78I6cr4wy0xXAXiKw5FxexVOlhgBd+BP1y7LKIRDlrT\n", "cKYgBVy8G7/EaZQv0K+/V/NWFAkUcuhffZvdKBFreKPsPuvDexVM13296fKY+cH4xU+O5snPyht/\n", "rPj1oPgNRhdkqQPSGRx4e8VWUJ4YbARY7LbTJJVacPBhf+Z248zt1jUmGqLjzTbkDWQ7R1J+qdoJ\n", "+Ey+jcvRSvyhrQhFcuaMsey8Qz8Xc6QxbtOiSRDqxTzdCnGbGRdlnIBHjFsgp+pY3GijNAahAyfa\n", "rsEnAAABsgGfAHRCfwC8jUhKHOgAh0jrKS0fViY4qDuLECWUBM7lPpYvfcvpTvmMvuEsSPh7HxlG\n", "Pjsi6WkpMJGybupfcouXbzjLbViGdgFInJ2YUNZNZKWe3Kz8dxuwdQstRb5c7xrGGlw+oo+1m5mB\n", "vMYa0LVz5+Hgjd6dTy8m7IudTDTU0FS9LnOPAwmLFppf/vzc2hI7XZoLCF+hDml0UHUZmlKjuCey\n", "cLfu7vIrmUMKnZDVoGMKMXnIFAbREDh/0UOYIRjcvO6C5lKzeBghufY2XSD1sjLTJepFZ3fhR/rv\n", "yEmhgcCHeO2BHqmBY7WM3Xr1N973KZedZsihYy4XHhbhoOIGN18vBtDyP01vNZYMDQZfkKmqU+Mi\n", "XSDe8l5X8kMIKBhEbZ4bjPT/UnUvh2D/cWQZsQ+R8o0f29py4AT2PGc4bjqhhO1FGb067qPeGw27\n", "Llr+KaHpMb1f4UKbT/aXg3XtGJG1KAnFGuHZ5qAIscYqDLl3OcOKB06A9MDaARt+opLiZyFKU4GV\n", "EvJrKVYArx1tEJI1v8IRp3v/6IlrDPd3DzymwZNFOpxk/yoB4fBxlXkPAAABPwGfAmpCfwDJCTkI\n", "b1Ns5tENAARBs2xM8yHYWRy/5VbtCEyqa0H8vubFZpKW47S4yJXoi1qxUj1uq/pjDyxR0/+3hSfb\n", "bPcrdJH5RvddeQUR5r4uNfUiZK3GwRrtNs0vqqtk/7FC8M3drQ/h+IxNvoguNhn+gK6Yrgdxtqva\n", "pouwaj3QRblDJb/ocE0DKx3MVXzyi9VqkRLk7RmZsO8K2mJ56EKbYZfrOgC1aiChN10hdIodflV7\n", "nLxrNNPHFsqI0qDJAAK1Y2wHrJX7dMDtESN4qN2GEsCmNgtdedp4KeAh/JOZfT7nUEgbwSfHAM5X\n", "6z6fa5ZcFX1Y5fPv+9lfLBKhEBVHbi/zRV5W8PsBRmZWlHAk/Ol/UWrj7KJapb3+mtj7oOLrpO8U\n", "49cbdydAAXfZ+TkQe9egF/QPK/eOD5gAAAkHQZsGSahBbJlMCGf//p4QAuWL0ABSRd7iOcg9RT3t\n", "dDsWl8741u5JKhXr3ynRyTflWCgVHL6ltbRPm0p0AvEkKEilMtSPUweggcyZEmmHnJ5RwdgAZ0Lu\n", "jX0cT/zEZaq6n4FSMqOEvqBG+lVfQ/leQs5/wB/v3fPUZag/8CW6cwlfg/6a+ia8AiwoBR3lBZGi\n", "N5qr9zqUq2iW0rtfms60GDoR8iROiNMhNX/ZIDG9xbhpjQTe2SYTgjKZWS+qb/C5EBw+2ClY/hbS\n", "KdWDrjnVfgIxrYpDXBdvTZXJQAmpiZEOUkrgdPaO6wylADOteXGnHXcqSD/AzsHOuH+UXtS+VvkX\n", "Ivl7EcjXIM6vNOrGuGke5FtHm7iYGB5APljumsxG8L9fz29B5DGd6yM7TkavHXFY9NubGG/h4vQG\n", "yaE2VzK6HcrszAVvvRthSZ+2N6rcHqH43EXP30f2ooQ34kMiqQrccqUrPmTRL2H1eB7aqFRNYatZ\n", "5pVoVsCNeMoVv2VTTWVYosEhmPE1V7wMDflt7k/O26lYS07lcKvCQzgjxY1meU4EzXHUg30VVVsD\n", "FBtINU9LH5yS2a+wIXSO3rX4fNqIueWKs8TczOQUp+SLAHOqApuQzE07A9j5oUCvbCwfHiO3+DZl\n", "6USXThqMwWmRcjtYN1oB+s0p47kT5DPGeMVVLgneLyU/FFh3k2KfTNWmWGUXSyDYBZ/i/mkn/g77\n", "3q/k6q7xFd7/0kEFi6Ok/ipMJ1dGbVosWyY0Uhtp9AFKf+CbH5tmqFX6Eidz7XYTA3YjtbhhMZqg\n", "nQp1kgZVvZYvNoXzFqQrfWmwvcnDJpVCwqfZKzZcjsZAB8j6m9XewUsDPCeHTPZJ/AMPCDhCYa/A\n", "R5HUmJI9vPmxecfn+Jq8yIeCCMCMZt5O5XnPZ6beRmVgsQRRxFNSmGi48p1O9FqWacoJ/ZqtnxA2\n", "Opwpb8MR0LNyciW6KzuwDIZUojXudM/hLGkZfUoreHodkyX3ZKGurxNDyg/7v2oKS0jQs7h5RPPq\n", "uC6fSSHN1pT8K7Sy9xsWQpva6hsg7VBwE7lNK9MW7k0WfbOImGFN/gXikhViL/QjOtNaHpEMRc+G\n", "4La/x/tfQLw7ZZxBWnKLMaqnHlL8giGJmk6GqcGSRuBbT/re9ER0DjhM5GVmjEBxeOG3569tafbl\n", "VMu5fvCXoRdnJbydWg5fCEci8IaUJqnmfDAb2CMe+QiULsdvk9nwiNSV+yHd2gcjmKhvq8NhstgO\n", "s4a07raEe1Df+Xu16ZaYqG8ivdtuFxP09BHdXNRMtUYVD+5fsSsSp+C4YReSm7AYFZW2leM3qBW1\n", "AVkWt1Rva3FcbXYO192mTS4xyeaQEn+T82JnuKiHEjF2N+kvhG/LhDqIH+T0LFHebEHDoZN8GEhI\n", "TPO48vcN1hxvMS7Y3gR/We/uwiWgikYpnWwnZi5HdYrSSTChx78UNndM/0MOmkdoggsktYJkfFAL\n", "erghCCb8PRLw4dA4ApkpPGDPFmLUM8zgDhzGJCiqmKuXJWeZGA9JkpQPi1wf3NpJ7QzvFtiWNeD4\n", "oQAFXR40MPTSI8nxlqdd77OFSZ4O5h00pCe54bfAUDKsUqRlNPGq0ybImNytNVFeWVOzjwqq0NCT\n", "QTnt2KcxBu+7tRPl3pfqHUtm2l6t0DAYG2mczAcbDciHWXMEW1SqSqOcGuURpPd1zEE8gIOzZQk2\n", "+ri12//4rn2UGRjiOtK5BZE3Hx/Y232Zr72NZVGdUEIwHthNA9e9zd09NFRfECtawZVGJapn1BMI\n", "jfZJszz454bne0GPSg7pruMdLH6IP/OTuums0Oo1PtmXP+sfBIh0Ho7iNqasTM/rwLYlhtJBw+P0\n", "Ci1AIrzGF6HVCz4i/1N6KHltsYjzcSc4pxiICMsOC666xZfhHi5x98tXjqwlg1Le92jJ/yfCtYYU\n", "bYZ3371yx2f7oXLrGHIXvnJl6YFerkOzqu+BdXH7UhuNhLtVOxansKqnO2fX8t2gPJJKYNIzy7wi\n", "RFGhChxYx62VkWyGwVHYnljQ/3JZWCdmrGeBcMP0Nas5j2zPW9m1VGKDSQcCdf+rJibZlKFBtQBR\n", "67hrOe8QjcCRWC3KSq3qYn6Brs0IlQKKFqFKUaxu5BuORE6/oq8syfrihODYxGLgmGjH397JS1PE\n", "dzyPDgNf/f8VpBQwAyK3B0itgRxAikzV0yiBc1+eUIT5//VIsGr0EQzx1rKUzyw/wK41+vSq8v/F\n", "S+a4YHSskni5XXKMV/Tb3C/dqab7sDZ0cgQZBTVsIra2AgCrif8Zgx0hK5To1PkTlm795lC5rVZf\n", "2Vt8rOWEz/UpJ6CLLoY7iTsC//er/ah4cBtkMkaKddghDcI2XzODHhvg89VfB3eGgDo0+mJmPY4m\n", "1QVBGHcZZ2Sr5OlhjaOMPCbrKQ4Mnb1dS5M2EIUQKSit5DXOdjP8PMuFpmzZaIRTxZzge4LOuooc\n", "EGVwnOIbwy9r3I4sWCKkFJPBYRhPujBISh1WNI2REsVWv23VT1mYMlcq6EDBBop4nGLySXg8nbmk\n", "zKoR0gpHjBaMj6MQlg+sfiUpZdkBNUVb8qs9DTSE7p8uMtHF3HHgBJGO+IHBj5ZxTjBHQyeooTR7\n", "vpHvWMQAYF1VI6bXSojRk65X84kNCQq5yWukwuv9MTdoA/LsQhWEOB8LfARi7lYnsUU/mnqSAHIp\n", "H7iWXQrdMj3EfynZVruiSQIlsHjID70ckDhg0GT0U2w2g1XYmBg3tH4UT43KEj+fcI2QcTpx9Z2o\n", "piu+RfMc04DkrEWed7EOpoEiwObBIeY+hfj96svHmyemuu9wMpUXmOYaV4DrscFY9HYFxI+3CDDx\n", "CZ6l8qC9zkGZxZtyOoPJDfWQSoWsUr4xGBtyIVWCnSHnn0cb637xdkkjPhCCTrxVuT+sFfhrnWSN\n", "fDRMMALJ7h6qUpWYCU9JPSIVpCArUeXPwz6AMQU/1QmvZxKLRLct9lnL3nNoIFlQuXwE3RVFGhk9\n", "nP00t/pxu65BBDmZDWOBoYDsMtKAsdorZsXQNJKPFOMV9DAJ9Lvs4XWws65OHP0V8mDdiD6c/4yW\n", "gQAAAhdBnyRFFSwn/wDC1wp8+AFuw9HDD/ZKWkolrM5pxuY6PHntoEVe68GffMQetTiKweJ0C6UI\n", "EbaoWFZ8SQ1BflV4/9prLFBfSkX5vTO4S/vIGjpBjbFfK4yJ/sgy084pPa7zTIX/k7yhJRDn/8iL\n", "PxH4JqlugyOKZ1h8SUCDW+RSFfoyqRp96wdBPfGb7hc6eKIhwFJmNe31t68kzZ1p8lq5A78pW8vi\n", "mSfi/UxvKdTvc6QwgCJ54NPhQxpjJ0nxoRV99wGCy2qHIxgx9brzoTd4MFX7xd/lX46BKRhWrZmL\n", "pgLySm0cvxPaDNWs+Uk70XgA9CrK4M21ymas+anPWPG+csrHDram+SbQBxAQ3QAoCN/edvkljneb\n", "G6mXFBB+0IGBJr6RGlAzMf+9MfqO4NUhQGmSZtEKc6zpsUBnPAgUztwUIVbxN4mlOeFJnM/qcOQ9\n", "khcB6bNZzPBZq2a2iFljzd97be1MKmz+uxhwwRc8wEe4sFd53O6URsdMVHSLUjQ+YhmxilwDOAQl\n", "g9/IU5JJbcgyyxNwA/6j2vbDOCpPtNP9/vfeZZ1tMujvtVXXpg+JW8auLTzM7QTsWkKu127alk4O\n", "+telZIitqusTVlCTPWDN36yOg7vzZkQgo33Sad3FePqeE654yyF8PUiDybz/aBw8vptciQcu3sHG\n", "GC+dFyHDzSY3no/MBgMvqq/eyybRQMtLo/4dAAABdgGfRWpCfwDIqukkqAEiJstxgWVYQ5wHcZTh\n", "m+ieFEFITXYPZ02d7EcZaArRJYvM/pnwkBJ/pABQzFGxaR5NZbxiEKOHbU6LWaAw9qmM41I4CVQU\n", "2KAx9XGkQ5gpxZMS68/NKdIW6hMHN0JzKSCY4YDi4yMd49AJv7fHC1ZGcrmywQhKri8XJVN7RBsX\n", "ktj4E4UvrhqSM1SpM9glJw1Jkp9qBbFHUlneGqu3A1QDWJtAShi6vWvkJ/JrSI913or1tTUlDy86\n", "k53pxeDpLkDKYWTeC7nftqBP5D8dnltp76FlNXZD2/+wGy1VsDP6zKPrpBFbuDECWaCf1vV59l6q\n", "McshsFCIFOE3bkACxxxKMcYLDb33NEt3cIMhxgf/OhQM4/4OerfcRf2kLKMKv70nClQ+8UjCDZem\n", "IQfS+IluLo0DOaRet06Poo3H1bV7xBOlQmMw99/bQhI2ajUCIe4/Tge902zTjQWW5/NmWzCIJkXv\n", "iQ/EPHTBAAAIuUGbSUmoQWyZTAhn//6eEALmrHU2O8AFdClO9kw8sHp3vfkddk9tLTifDinhM1+v\n", "mP8uERQwRQ/tKB1q+qBlpcf/3TOEJuQJdxiTl77Fc2I+znreOgXU251vCCbA2iEu9uKYJKXzPA9E\n", "gxUozelTLM38Xd8UiChavU2YH7UwU3Owb+JqWenr+m1axaZofVU06treoPSLqiJg4CZ8+0xPkIPK\n", "xtUQDM2GrX8GWeTC1l5AUGLVzkNzKEJ7BkVdemppPZEbsUHPPith87tp7nh7KRH3QnW9+dYuS5Iz\n", "6v6nCrwuoOSfD02uZAqLz0Z81Lz6tBnnOEzP3UxbOQz5+Plv4NppIKhBIf0kZNyMarTWkNYMgGzW\n", "ZWyNVyv/hJ0W0QYIpDqHNe0wnEn7qLUOzZvvE5/NQenEwALODAJfFN2K6GNnjGat06L3toZkw2ss\n", "CieqGR35Vbn3eSkpdPXXV6UbEsi+vNoym0OeZ/3i+dIALx7hVFjo7axUYpDZeut9tLnEe4QiPMCw\n", "fBpsE4D4cO4k47u7lpaq/psGHB0qM8xwyEHTOjoFTdZNn+HRPly2AuPjEOv1UVeXZ5lONELOFV2t\n", "g/tTp0ZQWsYy9rPknTfBvZyFN8zx+M9uhcyLWZngr9q5dp6CRPYy7GJCOqR616QEvM0Ab7BIHFC4\n", "ytC1KducAasMCOGRtx5XpF/4rD3e/2P8QDfGjZpTU0K8JoJiJpUbuCrQCT7zGrfMfnXamB/0gRAA\n", "bA7f/ptZqUCeTZKWUJJvcAi5BdJTYwwsxshgW0OotUEl3ddx0Ns77vj+ybAUvtWtFKoLSLmNTrF0\n", "zO/BSUb36bwCVqV2T11uXJY8LVkh3y5KTq0TGKIfVA/9T7VgFmwmJaQktNQgCZaoigjCyHZsc6n8\n", "8fzTyYGMqEuHdxe123CXEOp7G3oLavkWitVZNEC/A4F5mclkCow7Kx71T0NtfyMZDJZYofDnJQv6\n", "Q4xhjDAb1aOQdcAQlVDXKSrN4M55GZT0mY5HM9w7EtrE6EKtpcxQrEl2bhk9u8T7y5D1AlL3XHMf\n", "7f0dJiuhVUQNvkXJU2gD7/KmHGNE+n2SmkKcepOfew7buEx/zr5XlHB6p3c4n8OopsshYXS8pzMD\n", "DpLzBwOG07EaGIAJZHoZCs7KPV7KIXuOT8MdCRX3B4f1kJNYxLjreIFYIzpjRMc2QdlpWT92eJ3Y\n", "noFX55QnBKAv0El6g8ix2YGOP/i0Iae9qW52TYn/nHIO1v21HngEH6FzGrqrgCnV0XJJJ9Z8CN+4\n", "HyMObRZFj/83vesrSQThXK5vh4jJhCL7TjcyWdLlMqvEkXSbGHJszew+k3OroRn6eIDS/ErH0A0u\n", "9j+pvFbG3oeyUS6BxJAh2AEjm/IZGh2ujvBGA6tkxQAHe1ssknozw2ArHTXA5qi1WRMNXTkgkNPA\n", "8w2ougs7KuCXbTaSvJXBRtqa9pX5glOC5oSjTnflyW9Ftxmbi6P6EdFZSpMyoidkwYQ4r+1qsTFL\n", "9Ha6cm9ZOqLITBXgDoqeQRKFxeOH7slZ+OUO0ankxQbhUm45LYl5ZrEUR9Mnaq9sJpouHDEJuJce\n", "CymmXZqj4ydWNdYlQabJqqvTKjsUyPf/QdGwtihJxq0agLK4wtrwrYS9qkSX1Ykr+9CBZe2fDZrV\n", "FuMcY67YOC4BEKrnVaUgL+M/O1wJYp/1O04ROizfkOx8bLymKNO7pYVvQNSz/Xa+UZ/JVLfTobxM\n", "LxjF3SksrH87XoMuqx+ZS6Yk2qzw8Bg17qbAJImfcI3ElVYurHZw3hAooltSDMhVDmcBqtewIqSn\n", "l5GQOuzPBrZpYByqpSiH18xZmXtLEJu6qcrSmhHFhW2Qw83ypywyynbCUqvUowIgZiIenug/1MaF\n", "1x2ZWjia4IX2JB4cN6UjsnxWf/dt8pgnLblJoBYW0Ad7FgXOOTYWa0BtFAX9d284Y8Ttm7yR3iGm\n", "Hb8xwQtBisiKrf6/fejLr3IYYeulhR7av7bD9opFsL7UfJ+BdzhL0xD2fp/KvpSJFQGmn+BgHnSz\n", "oryw+UdCkXuwlt6kGGNyeMMhlE6i/uUGAmNYBHh6mA0ZqHFtKCaIwkh4A9eoQvoUoS0zhtg6EdHQ\n", "1YAOGvrXQCFeZjyn2jBCs0X5SApKLNMWx1qnCZb0HQOtUTDEY8nxDFFlvpTTUkv67wKm3uoPKllD\n", "6SIaYo25AQr+o0RtB03L5u+u0gRq12YhK7LzXLhiAdzIpalsaDX1KJDt95WGBRq8LKjGqhWtuD+D\n", "Ilz/U9+gQudAuCnp9toL7GEW8oHoFqzy69kqkzVF3FjTvhAi9fzNnKlmZZJvoAO1tYDBYWBHHpVG\n", "ORgGjEE36/fdxnl2tCD1+1Q1c9aYsafD6sJB8JhaO+prFz2bxDdyjaCsE681wHGoc1fLiXlv5nCB\n", "X59KZApajfa4ZP7Em3RW2JgkHj+/yN4tir05ODLJTCfA0d16Ri9k5xl4X4LrS86M0NiBWqC61xeD\n", "RAy8xLsIM/dptuFE/JwAQamNgN2iuf9p9KWfSKUsXQFrLFN+xfhpteVr4GyTatdqn3N+lPgTHk1K\n", "Q4W9zcUYmxUQgXB7YdLSegMLW8XoH2j81Bhgox90c5mlJPmRmsRj82xvm14HgZzsiFPBZSQtdy0p\n", "xzSq2xuz2WoyS5BiX+YsBGCMY2ppM6tpNhmPt4ED+FsYpp1n1HK8SJP2Ue3gAHTZ3CUnBsE+jspF\n", "SQCuu+0EfQ5GoZGwBBAE2jE2oVm6lKBMzXJHduYf64w2RjOgtuy63J8hIN6epviZW3sv74IwSAyW\n", "WyvwrzwNco2q3zh0uREvy8AJsjO5lbH3TQ1K0qCE6Sajs4kUILeoLZ//Njq3EKl+LulZti2pGbgC\n", "cSUVVQ+izg7WCih0/UDUpMuO7xRYrMfz83S5mtanwhvUWj2bFfbDy5XB/82wEoME9pp5RCQMoPV9\n", "bnnvu5L9Dfda65XcJsKYLSSEbAkAAAHZQZ9nRRUsJ/8AyQiMWBFwATmPET5ZNXtEPEijF4fxrn25\n", "CPrq7oFTwLR3mqpmns4yucCSSZxupf2xaVrQ3D3/3Qs7McePRrsNr4OkBZvlb4ec6eWBmpLi8sxj\n", "dlGzSdYsaeJ5HruRrdGC2IC0g2z+u6nBipEflJhYkuD+ZFY+kQ2EobhlDcqZZEcJuULRhAGjZtT8\n", "T7Nhaql1kKrPqa+Gr9T/F15y2joziG0cu6Ao5rUE1UuMoKePEQyV8BnQFWi6eXN2fUohO7GOqrPK\n", "hXC2LiSiPaNKM46avei4FiWNCErL8Npo2yI4TYlPjpdxh8xfA6ijdQXDA890vfsSAwAHqG3sYbWL\n", "ZVu8Gu2mwiaC+l+U0/Aaz/l1401OMIAM2I9//00L3Qr/taCnKvBH6QMF1sPbRIvkSNtq6o6GuK58\n", "ZIui6V+ZiWV8WXAjNnTuty2093ponTxw/8H8G9dS0uuELjxgiMSGp2L7zMvuKlxJLIYd29kJ/Mv1\n", "tzZglXs7O/PTOjvnotn5Fs/vPDjlo+Z21Xf/2FC0vKCYw2xVVELLyCtS6Y/F3hr5ZilqTllpPD0o\n", "PWgIvWAzN8ZSg5fUlLnGcjEBbnFehVLxww0qyCXvEWIPo9w6t4snJOAAAAFmAZ+IakJ/AMkaq+AE\n", "H477yqkEm3uSRx81pnbvn1Hy4gqaEl6JuEDLcDWnwmvVJP/BC7bRq++NLj+qZfI35Cgqt/BT+ccK\n", "sjOzK9LZx63Y1eOB0nd9x3WodMHFXvFrz6wF99gqps8KvniaXVg9NgmeYFoYug6be289ZdJpY86k\n", "wEAogkMTw9w9fOBRZQjwZ0G/Y6LH73sFGRpU4lb3c3n5MtK/FbvNqUGc/ax9Y6+auXxfoI+zu3a9\n", "W8dw2LV0UCs2ZR8HrW2FhBUK5yB+ZfFGxhEqAayMCtoXS+BWVWUGsMDGBsVGS0LQw20jMCPsqZES\n", "IO6fYDbQml3zCkdOcCH1kIGBRkhlxdPT+pwKeER+8kCakvMKYP7Ezapv1UKIjhpvdzs4v8Bk/CFf\n", "mwz2Rgo3PVf6UskNWyYIvjdzmBpGCF5Nd8uvWKaYoxYg1XAxLdAfD5qQLuVlYyzqs9pUA0yVteis\n", "2+ITggAACPhBm4xJqEFsmUwIZ//+nhAC5YvQAEXckNnl4bkX6tJzWV7BsMIM7maBC1cZOk3+NZvX\n", "/tCrDvWJN96kEAz6gm0iqHeClw7O/Lk92iSVh1eTY03BnXQ5yM7HBzUnGb66jzYVErEW6gzoezKs\n", "z/4U30b3Uz8Zb5MuKYjfKeuaMAlMjsghvIvJBnMqN+Om4rH2cebrNv6gu9NQfyRzMuGV5BO+d5e5\n", "qYfUXGXbp3Btj+NUS1rd5soWW03QwaxhwRHxxei/Vgm0MWyeStEhfsIFpuTzUsx8TYALTWrQnUhs\n", "y8VrFi1ZGrKS60Go3/dpWFKU5EC+p1jwl7a9iNy5YivNM1qvYbl+a27XX3EF+vbxQarHzI3C1tvF\n", "3/CV27FXIiEwlRS8saKl9POsCmJ4lXJORen58vn+w9ycOPFUgvVYjzzGEkgfkrY3WJtm3i5H5biK\n", "9qD0PX5VAuYPpOk4T5SolBWHoCMrbMZrm8WY0hOefNTZ0toZYeN6xoj5/nX6Au+ok4O3EUMTgZ1K\n", "zwf/gMVlk5SP9lbCXjo8V0eEsy2jbYaXixVz0LN0VoYVQWxaEvlGnwcTuEFnqA4KF0A+EwBRAJMY\n", "lj/Tvrqz+Q5fvp78hx9PLz/6713WJATw40jvFkw3b4E3Km24PlgxLrMFTqjCB065DQc6aeSVoiAe\n", "hFWKp3EyNeF8fNIggMDq5IwzPr+9+knkwgw5XjABDqMd725HDeo4Iu217Y7o3LIwePBajvSBKZ9s\n", "c942Ynm9JrHyunJeKU2hzigog6aDVC81aw4wLUgA2F4xK62GVqJjsL5F174Is/OQkq8Ic3PLa0Ji\n", "C1iSuHsjrfzw2W8Q6bEpbbp3ao9EVf9D4bAF+Ry9AAlPIvFgzzDSqmTpuTi9yEuDwC1tqbcxpxC+\n", "I/Zzs7pJMBLt3TBrXqZfjvKKZfO3sZyuZLAtYZ2DRLn+AOWlv6OM41tSySVIkLGOIktnjgJCIaLr\n", "u8WkAy3DCIKHNOOFG9hECx25AiC1TrAYFamiVJnOk6uXOGyftcTG/qgJGosYTl6GxHs/GIlGeJ4s\n", "kZDYAGYZMhP8r807wnBzFVCb9jCnZCeC/xHR5WnX4d6f3hZ+lxDx1EvlQ1tSzfFjbrayHJW9zr6V\n", "s6dESxE4CKy8zZLKnoBkY3xnczW6ozFo/HyoazzgDeNjbRLDNk9awYh72ut3/lmLsWhRJYxydnn+\n", "Y0DziNk3o0dA/gWZScT3NRnFpsy76E/OsH3wQ+O26kKTnYr17iiOVg0XHrPCWsWHdl5BHyVFowBH\n", "mOzgKOA9NXKR5bWXFylUmxZ5WPP889k6k+4iaA5hbQgUZk/6mO9d2XPvcdfoatyRdw3E5D2TJ458\n", "xMdcALlgh7cO0y7wc5gP7526VZXxAnsL8aKdGhTL2mFm2tWlZY9foolw32v1ISRWkE2muQBvuLOJ\n", "jEj4+/Y3NxyTinA2itY7V3HpIMrSDXi+DczmGp9qToTC0aOxNH+Hw11lj8dxWocC5vH85TGlKYjO\n", "OB6wld1GSG6CyASzZ7S1EGkRqqgZ7hgYxi+H1Q5r7+983x56/9PmV+ehnnaiPATeRzox8bBa4bhX\n", "BIsy6XUOX2mzSvB+m3Gw03A3b3RNl5kBcgM7CsJrY5WO80t8t5I3i5NEamtf0DiLq5xzJU0QWUU/\n", "FQjE/8KktGXsfOF182eiBBhAwcS1CJqOFifyRfHyth/yabPXoTvckvGNrYYVkJs2ii5BdRReUcjN\n", "84lXz48z0ebHG/bxuSXlPrt+o2VJcGqPrA2/SqZnq6P/P3Dh+cUFKlBr+kqks7OVm5Tx12SJXi2O\n", "JDCXPHs/l3dJ1KolSZh6QAhrIM3FVB+PHUlU3AwH9GVU21Z8bp8x8gc5meokL79IZzFNq4fQS1CF\n", "mREK7M8HtH5Qj58Ml7RA3iFx9iIIO8PuExtYbqmjIOuvihMD/yZTqNlSlyle32i68POBSXz6MkrY\n", "qPi5vGp5gRxaa4zie2QsfgkDCYeZwl6+WX2B1t57BYuS9CFpx/9KbJ8ZF8uCR16X08z7U0DQyl6B\n", "GnXJ5yxeIq7lykh3iFkpXw4kN/lHfvcmL95SKJRH5cJVGlSE//r5hXNm8Z/h9DVs0USe8c0UrYRd\n", "9LVf/9JAtD7t3HvNacg8nUVaQjDW/TFYvTOw8axuJnIQbncy/GrGhdsrpURbjzt9jUtJHBbQQzxN\n", "o5hzd5rn0tFe7GtgEj6Mzxv4QceNdLVVvL/VrDMGBXBD3Lj82cbNxNR+TSGoDJ+ehvjjpIq+n8Vp\n", "B5aFlU1mVB67kjO5O+aVzxsbfzMTJ84RD/8lzaNVTQ6vh5X5nW6/t/o9+jf7LQTpvrwTNwt9IDvN\n", "nGLgFZW9l5oe1kSprS4Oz5j/0xf3gOS9QpgTnRj5zdX49cbvcy3Nb+7mwocTZH60WhceMcHXFGv8\n", "90eRhTbXImSwTiITsLbWjzOvTON+SwSVT/OSD92K3Km3fhSyjwK3EWNSdFz5ExRDL4l7oFzV63t6\n", "MvmrRZ1+9D4u/YVE8uKtEvhtzNnuj4mZTMHV5jooWzFp7Ja3su5cbNQZUn2BSgu7ur8N4k/q6D5A\n", "jzMp81xUdNjU/9tnu4M0eXOnDu9/Um9vb7FzIVKIaEXE1wMfiFVGQ2jUyqBZwvf8QvOeUhVskuoL\n", "ZfKddUcbelnICBjnLYKyHPg1z2t16IBtgSfF+Kx3G3Ve81b6MV8bIG049/cZf/hrKE1PyoN/A6lM\n", "ZtnnV/pCjp6fwhzNrMN/5NiS94A4h4zLg2bjNBBYzJTbcMKbL6TYS0mFMHVj7LIMYt36FyfoGOQA\n", "6KSLPIs0RgPtIC/OGpKFunvkpIwtkYPWMQV3DmOn6hEJxUJhnmFBkmETkbGIpRp59X4dz9IMWIJ6\n", "4IMd/89ILUBggdwPyi5qZx8beoR995cY9qdpzfpQye7rpXxs2/mi+2HjKgBYHuTWS/bn4Sb+dNHc\n", "KBQjSr/FmrUTt4lffCoWLdoSOMcCUcecV6z1JhJPJe1urvOkavzuYtwnhf7kMluFTp7DRpohOJX9\n", "tOjBdS2vdC3l1NgqL4bcJcdKKd+KIrmxAAABpUGfqkUVLCf/AMkLk/KgASzerQe0pxk10YjIn8QS\n", "8MFeYAoZHdBwsIdG9QuPvy1ifWHjPuNGKUbVto/8h6vsdicvwJY4LWWbpPhPrYa6EvSpHelu6JWQ\n", "50cHA1LT/Fp5n+JS2Etz0LugbA/yqCcPfU3ve783kkWLOw5jmZ3k5kOdkrNRALaHkgATluCFRTiY\n", "/NcmVC/mnwBHABO0Pid0dh60HHiW3BevXvkACNqbK6IwZpruPPhn9jP9tFOganfEjleoCQZype1m\n", "YAiot4wf4YKqzR/UTuO/7gg0zHopE1YJjmPB1Tva7B359gac+OT+K/g8oxs5oo5YjJI+H5N5wzTW\n", "9bqAUuaL1IiapXUBxVs0cw8AxpB7gv59c8iFomXjufsQxu1CT3HUiInvq/geOlwkarzRT56e9+gE\n", "MGylHqCXA64VKR/GcopqRZDvpIPGlIBBSD5VoAw5YPgCbiU1DZPG1gFWStI2mYby+ytRx/BbnVgY\n", "lgAj4wIAMmFrOeyvkvBapMKM+I6ZBUBozGQbW/a6LyN+SPMU7cV80rflEBZ5zNy0C7gAAAFKAZ/L\n", "akJ/AMQJyyzLIeOil51zmNgBCfLvJ9wJDgR/EJcF21CC6NuMr5GApH9XQKDb8wNPrM3LqCLm96cC\n", "B0WfPdg2LVjjBEr6U979DPoOEYwUS0Fz+64hOVffl3co8ylyqFPnP/1tb3ep0ejx4nbH8iyCVJXW\n", "4Of4o3zk3MlikcCC6oW8AzrPus/7c2KKbjYMLQSYnqgC4v5oK11P/2eM2+262Ma8iC9PBpuKc7EN\n", "XAwn0rYoJY6r0FtyMNNEhdaoVCiyfd2UpPc0S0UsGmqip6U1LfBr8yz6BNx8H8e++gC2xpy1tE+J\n", "36HSw/WyvjB/lbQbhzrhtr3rMLdMynh4u0qeQORxleiMZ1/WE6r2zRr+4w8klo0ZWSTy7s112p0Z\n", "m9dBaTKoto5C0hkv39TIIrgbkMhUMVY+sEKR9ySlji0EdRuE83yv8BlQAAAFsEGbzUmoQWyZTAhv\n", "//6nhAC+TFb5IAWwVCwgB5VhiuiE6eY9ENS/8xEpMwqNdv+8IjWIMUF3Iw+WQoqKW5jzFIMOUKmv\n", "FAeCS8qt1X+cupZcKmdcMvH8wiHrjBsyKbw4ofYqC+b2Lw2Ks75XWo72x2V/qJ7a6auv+TEGZawr\n", "mMzAH4Orkmaec3bRU6J1biwUvkof8HukWJaV4yPIyDaiBQedBy8AqF4VO6o/DedXJOTN8cI9X2CX\n", "7RPbl3b/uFWc78Bwtp4aM/2mMAWAOjeLbJw8E0fc/uBiPa3om2qypToj27eHCiwahtq5jl98tz+Z\n", "S0NxRKEpEDeh3cePthm9ry6eC/pclUFtcRVKHzjNSmyrTAIscv9/QVClU8RWw8xAKUpD9XGvY5P2\n", "Zb7YXLE0cysS5tw4SxfdW/dIcxJ+38FxSwaWHhjD55edDn2oYQa5KXFOCg8Vp4y4ZYlWbCBetWGO\n", "fV4FgOtjdc4bYXTTT0BPw7PnqQjUK2w1Fs3AtRbci4Ud/0oeQ169/kxXKJCeNEqJcwz9y5Ex49vK\n", "SkJ5VI3XTRRuW5lThUurcSSdLJGZVSeMpdiX3i3ou7eX8Wv6ZBkqYsrI+RSb3pkgGXR+3kCx6UMY\n", "dnAHhChSS8nqi7vwsk5r7h+gfK9BmwKT+MPh0gmaEXtkCktJUxW9R8BJsrAJvcLaJYpATNMEcDgV\n", "YOFgxssB5bedp+okOXiyc8sxjLfIFtAnd/EHBdtZwUrjd+yNSFz5s0PfABLet581yJVbH3YRdaUJ\n", "S5p1ORFSzuyZzBVIvWvoveC8VeDUx9en17ftV9RCCcRWaDdRiFjtJEw5vzt9z1wOkm5qZtNHop5n\n", "bChj+pBsKlZNQicFtn8Ea4vY0ZGS5z+IiLsqTt284udvy4bC4TmaS8noM3EHYCmT3EFDUrVqdKVM\n", "pKm47S+uoJLNlmrmN2SKA/JPEHtvLS12kA/zR6pDo3oT/SjJnOhWavMLEIrAOfmINhMoqz2M0G5M\n", "txmwwIFDW2VfU5foqq0KfUkb/+rvsngr+UDJW+FqYYwJTuxdn9Z56VVH5IUypIvnOpFKuDsbWviJ\n", "PV1ihMMaS/+D6kDYDjweDE2GzxwmYPNYJiPrPJdl6NqLhPw+YNPvuUguCL+Az0vjpC3qLOoIYVZl\n", "jz+pv9Si3GaZzDWo3XNEle55NF0kbJdyAC68CL82BYjZ+nz5gmtY89GJSk0Er2a8y4Hn+kCZvN9J\n", "bECLJhhq9bS2hdJZU7X0PF+CtouNfG9L71NKkySVZXfrisUralQ48AklZO75YfIJKASLF83eSHfd\n", "bswhpHsRbW+JHdNPYg4Qg59HZFaObXiAujGLf4k7NvX80Mp5HVhxheozvKrZbH8pDDmqtVqh0sp5\n", "9NL7nr5E1qvo1ya8aoz6al9oHRo8SC3JzXirvN2RQBOPAikQOS7t2BCje8IrWO1akV2LrDj1nJfS\n", "XlRqNdFz9LL2jYgtnP4rtRTWmWv/HGjqIkyxkNtHosukMDXOrMB2Dle8nw626rrU8l3T7YUnLWVD\n", "3H+qt3ISEOJx7BdD5FrB0qIbM7kRHEHhW0qqhdVB5jx3Lo9beHhz/6peOtrrmQ3FRSd9yVHv9VU8\n", "58+srXifkAl+qd8AcILbl+kb6+hFG9B0kViY4VjvSC0NxqPlxVecftWTpz2if8uErJ+3wR1a6P7c\n", "tC/EwXj00dZah/Gdl5wBdNKP6qRZENaClGL64s0/8ubs9wbaqD5TzTUr1B/BzGWAp7imdfqh0x8N\n", "Flt5sAeS8II6lB85UwJ5O4C5vZOjE1oab0R8XVLiotzqHYhxRiR4eto2ua3HN06pba7g8TRnZ5E9\n", "T9Olf1nWX/Ka/yzn56CgwHM5xepxTH3fZ8xrUTyDXdCQt0zFJ1seHleCbCdRmhygWwQrb/G3Cz/b\n", "E3R3g+0AsFH+YdHY8op7/Bdq1IEAAAm0QZvwSeEKUmUwIb/+p4QAvgDsdyEAOEgL1fo2t/jjIT5s\n", "Mu6FHnkyg38Nyf2wRTZtWK7Gh57E3Vd05vlza/DhkBnNjkrZcfcvj8l1y6pHhf+aVboUoBcnJkow\n", "jwTo9u3CVgjFkZCw/RaxFm6UwScvMdS9BSXioAR7oPa630SC30jPdgZMMKGTDSUwFTyYKYicWMAa\n", "wc16aZOG9N0JpFSPIqWDTStM1xU7lRRfclTqzLV776Eamlez/JkusYwPoKtHIfZ4k0xsgVRH5ebO\n", "v0wb8jCcaMXCPPSPzGb1TN91USctJJ2KwdL4vwcu6SQvBmz/ZTjZHfStAbRTV+2Bb/5FrUmYedz3\n", "Db4dqFEB7XO3HBRs0jV47Jp3/LrOSlz9uP2tC2H0I6llAJc3hH7lvDJY0aJfD3BHRIub9kRgmcyU\n", "JF1hrWYKoJ/0nxh5M3F/Rc2jh5xLUBHDcQMtulqtHf+IjQjDo7kaBrffRm4LEPECu6Y/FLv9U+Cu\n", "8fGY7BRWfyCEpZJKTJlKGOwPVkePlH9wpaymVfNdnU878BTxV0wH0M6r+kCEHWAwYkCxnKUf4ZZm\n", "Q7pJLS6z2jp8b9NoAOCHsUA8/riPl0Hr3PkAEs8wK8S27VZGNE1sqZbe/AHeTZiNjoURB4kkwI0Z\n", "oBm2E/ZQaaoj/lC/Jmo/nMMzzwUiGLhpB7vgdEHFCTzzjrPCTlwqoEaaSE5iJuCNa/fJmK6dcG6g\n", "cjgln+BGXRjwv7onivcN+2jbY01/qgOHe5kwKOtjyWWgrWtKkrGJBg83DDLSBg2out0mg8ZH30j1\n", "ROuxKuc+NPNCjfqAcf7Ta7vvLh/P0UKtFweVmrI5T258BhmkU0eShy/9BvYmmCpNiGfVmUIkk15n\n", "cHJaMA3zX51ZZRjcncQd0+rfdosTwgHZrhsB5J7tKtDYetxB5SxCxWXBVrvqVm0G9UKUzne84hln\n", "5Ll4hlOQpfjsIOn+ZWqk5x3nOh2L4fLtV1tJ6lJ4ZXwTfsP26x8/FEiwL1U3HyfUOasC5QLrd/yA\n", "L7EYyr4DHsic2vtHw2SwBvgbkJGwSbCtXK+LXfu7q9K0A3vSjSx34CNc+mE8sEPKeDa6XvLzql0j\n", "CXbSuG1TJ2Rm3G0ppoyGI5l5QaJE5p6UOvvODKG3r/Dthkrwcess/Jlu5luekNLYf/KsF5As+KCO\n", "bD6+QitKfQoLNedC1xoLIlbzga9u3GHtIGKEtd1q+jrAwptam5+dZjyYpddMpxDKMFaS/oP9vRzx\n", "pZCqqAR0JO87wifb/pKv31HU+wdpZCGNUHXf+gyMtN8ZLcZhlA99jdKo7DEpDPDpBsY0GWI7rMhL\n", "lC60kcD3IydHl+LpMd1G6Q6T81OVEy1XBCtNjvBh5IhuJd2jfE7e7ucLEJoQC5axJf9SsGd/L81Q\n", "hEu/MX1WWpv2hgr5lu3JijmV5+cjxRDxAtKsxvYvjpWu/BmJaXKlJQkL78Te3xpvU7oGL7stzg7r\n", "SiNJwLhfCqnie+MVzELx5sQ1zi2AUQMxz39eFj3nMlQiXf8DfCLMtMJMs0bc/6bnqYiomWJZK+lq\n", "DYbRdFUXRI//xA4E1XwK0cY9xFvR9kd1gscSrUAnViniiOMtYOdMhVgCuqOr/mOjt1Ol8AlaxINl\n", "Fep0d3TOohGrT9Jaz4+hDI7q8NnU6XBxdb0Hn8MKw7GKXFe3vH3qycqYIxMTFOAbGcs24KF0tN9g\n", "ojU0LtK5Y6F5Gt4UkBrQCOEeLXXc9Jy6R/KQcVpL5wuIGMfsqzEu8zOdvNbRsO0sSnI0eY47b2MR\n", "Wv/y8YmH95p218BZGIv9u9ykvBX6hCLDNFch6EVtl6SZ6h8U8EACufLgTRLGbA5HAImqi6I0VD3Z\n", "F4GhWn324YLKE6/EDPy/Zt6ZNUjD2b+uq236zRSBphp/bGLlgemkxIqbXdLmPI9elcMbgBHd6VR8\n", "1b8JJzNuzVkYdM2yF6T0lwwkhJJthsOb0Hw8KWT5wgbgNv4Y4dPhWKc66xJh5vDJI3qpwydRZVCR\n", "re4XVtAOO+vCERYj+1fxdDrsCqoDKaOQgMQ1RNh3vS11P2yNQLtcxjBHaP68RJu170FsqBXWSm/+\n", "GhH6aGExuYXt/POoNPNqZnnCDtOaunGHwHhBXZ12jGYFWV903dY57cOnH0Gj+GbZYgfawh/D6uaF\n", "xs4KXFXNJQ6bWcJ/y/fXyP49a5ptjKtZftAHdsKibsZS0jqX43Vt+eQuasqs1o4HAS8mnnUXk+FU\n", "qNM+XRq3+LBG4J8xW8re5roPrhNJYvZiKg/mc3tSVtKia3zVAVgv2KwFjMA6/ajo9Mm5X/vhBOCD\n", "vizYLqcD19qr2oh0a0aewlSW90hfGpnhApyxqo/Yj93f6Qt4TRd0kshK9cg2BxH2BK4l7SwA0xkc\n", "lGJKcf/MKmT1bwu/Q4WkA78F2IQ/KeX5auHArtkIgVKqKKpbzL6qIVXe0kAqWt3Fm6ZD35HZP7ib\n", "tb3RRkwjjCM9XUvlcVDuEjfUi8WEY1Za1xuZ45urcmaUaqmzJu968bBpucc1NCjIbu2lXQpE2+hD\n", "24VvkMLCc5fazKHX8NFdfWd5oeoygoLVR2vZwtUqFLNk6ST/ASPLDURVUA2xR6Gup3TeDzxxGaUm\n", "OP1NI8yldVmHHMYy5Vo4njltyX5wg2hh0IsDaotiAvHFI7xkjfxRtodbwBPwAseI50cJJP5R3U/m\n", "k4tiz8QUDidKhXrTqXq/HcS04yt2m7ZF3lI5SpvwfzIyPnLp6w3v6NrWrCITQXfaM/j1HgGW1/eq\n", "dYUGsuSKS4qC687U0dwSelrujVfnAvrV7xIDemGsfXgCQfLawifGPFlZokvwnd7gF6eBAO260OYu\n", "8c2iXONIijho4Egd/uGG7zhCxxsEeRlUvXOrwebao4rRa3NXW8TWPoqc3OCubmuwvACj3My0BPzk\n", "IJnujC5xZmQJDKkt/RFt368yGPDZCRSlJFEpLMje7e8+8Pg/B/TSm126HEAnD78czqyrG08d1Qlj\n", "KLXdyIifqHKL9V50969JcFPQ7qFZLmoqW4h7N5vc5IGsDi1aaqCoNDowZFEJZvoLMNHBKtyT2Qjx\n", "gcBVNbBZ7R/OLHGeHyfCTN4HWrAJ38sO18pwt+w1ZpXChrPRtLPokNq+gPzyfSVlueSzlKg8XjYv\n", "j2WNMDG3s1Fv2SZpyWbk4ayoxpofl8cA4JoFENasGwSTbkmCefveJ+8sZr/AlMqdur+cQ7JQjUuT\n", "2Q3QcZXgi6Sm1Oc8orBMjuJuDM4lajPsEEIndyU9DWz5APdVZVoXoRBBfSrYbNwOjwGlCb0cO2Dh\n", "AAACb0GeDkU0TCf/AMiie1+AEIsEWTuQzRxAghDOWrCtmxaZPBWWes2RA9t/F3i//Ybs1IQm1FI/\n", "Km2p7hVSbd5q9sxuEOYAeQuL+K7E9rtx7FeqcT22TI4PcZ3swEW2RDjB1cQvaDs7fbmEeh1kMEQS\n", "hDG81cLp15bj+LXTk/5tG1Qz2oyMCaLjCuIMotio3xvMUenxBix1CIHHNlP1Cmj86bwdWsMvZv2m\n", "oDQ0ml2aXKzES83vJVoj+21RmknWOQXxq17mZYfRiGpK/FoLdlXNwriMTLo2OBdHWvqb3j65P4Qz\n", "IqU3un0HT1QRbXe3mWrvzivumGXSNQDcrw280EcdWO12RAgmvIoMZ2Vwziy9c8DxOZ4TwTpQhDSm\n", "ZoGpcpqRB2fodpT5x+AxuXMHxnTcDk+1oyBgoeaayPVhCy54bbR2EPYrCjnTLZDr31VaGRNlHF0W\n", "HnosQjuu4c6OBdiIJei5nlMt8eeScwNzDb4aYARV+hlncwMIsTpYAQef4BTVr+RY2R4yThUVZSuN\n", "JWACyF+8+jMpMM8KOoUxyLVxUfAqdMkpNfb90Uk/YL4hlQqqs/qPdFg0moPt+TWtFhRiatkk+/Qj\n", "PfR3pBMVMa9L79vRcmt2X39POYYVyxTjuuYj8QSXcBp7vj+7RQOXVSrYNKrrcpKZTiDHGu9KCg0j\n", "nMjY1TA8kY2WVxUsRLIJreYjdwQfXXJxeTfiMsaQ4quuFWztakOWA17DR+huJHh1/bLoYMFd8HYl\n", "x9fUtZTsu5gHbYTpLBp0nzjKaKey5mHlrjESauaPWBUGadiBvuIcvqmrHJwkJI6sDhz+eh8xIYRd\n", "AAABkgGeL2pCfwDJCFKIOY6ADaLk1n9Z+nFyYnKx4XEt/6PHHuQZdeRaSsR5Cx7B1zHlL2qNaku0\n", "sgxMA16WiQzpta9OfWGh6xlvxE8VpihI5otOwIW5DhicIz4XyaACjQTFkBfUhgkrVeZ+uhb2i3BH\n", "dHw9hhCdZkuT1syK5oOdnz11Xstcv9MJ+9m9kTTb5IDcp64ghqa/l/W5qV2IyHJ+2c3AvUjNNBDP\n", "Fr/JVZxab78ybhuKhbj8SDKIB8dh56BSc+/wokhddlE3IznDCY4besx4ROShzIrDzzVI/X6Uv6As\n", "eo1FThRhY4t895hcc20vz63eGu3qIY7f3WDVp8Y8JPYUOf/G6JMemYvSe20wtLeda71NWNohz1CS\n", "H6dECLlkkbPZ1xkBozVDDDNtMvDiYyYgtpGVFb7m/RtIC+m1WrNz9hLzAAuQ7HnROY9TAKk1CIWh\n", "qc9NRoZESGpc2OD3YhRhqXCWJcDlzu6KA44Ao9FtwqdEavfXbxzQGpkhYyND11W9/qX8J85JdadU\n", "UPtODW4toAAACaVBmjNJqEFomUwIb//+p4QAvqINurgBt+MN/RR11ZlHMirySt294Jp69D58+GeO\n", "NeQM2DpG8MDbrG5iE7Ilss5+Imj8CLBEE7HI5lNrum7XepNrFtOqU5oRSaYfCq3Igt+Yc2nwgbwv\n", "TwYvlf9VU9BbS1uCZO2sZC12BhgHLs8+NQ39e1JxXf21/e49vbdIV/nDSwjsZTvaRcdElcLn8bk6\n", "Pj1zjByaKjs07MyBf7K6dnVB6TJjus6LXo5gtp5kk+xDh/VjyYA290Wy00lGPrK5UtaMoyoIKFzg\n", "Az0vyn1KPVOtajLIOJUfaIrPYzn078RD9bG1DxAHY3W0DBfm6E4EgRpJzjcmEvalKlIDKgvPruQO\n", "lX4tEM8r31f0FCmV6yYmFxSHgt4f39v80dMgAKB0U58CegLzC7pHbSdhI58Hh2ZBoWmh6hWObxPR\n", "k2dJ97aWTM3EplXa/IA965P9fuvgeuPZ5fP7Ko2ZtesTOj+cVa2Tm1cQDKcAKwZIWFYeea6mnWEy\n", "f53GO3+yzPlsuuTHyxMhvPJW1wb1BPWh8QfeHadjNv2fzMlWVCqCOQHrVAWeKcshsRXpP+bE8VXQ\n", "/hY6buiw+UtOTfBktL48oKVQURIxnA/VwkGAhkLlghbM3yh6Zx0q22WFUr7qzy6DRJF5fxTllbWi\n", "zM48mLteeOLb/6Yex5cbP1eWnx6Uo/mRYgkDpMvjq9NoXtOHEo+fUv7P/kw1vjo24mG8CU2co/6T\n", "rrh5NNClyD8++dvnVHsmkiunrx3pc1aKmc/BnGKxrn+816Bxo0sIi064y66ZckXmfRZZTvWrzF/s\n", "JJgA66b1RZEAQKEOSIxnGXLwjLFTD4kwo/s0AxPMS5N+Ch2zMDIgx8bGtjv0WEPCGJT1gNbF63Qq\n", "ncL2wJFdjzvoIzv+kqSNYlFoOgPDiOeQu+R9KIRsqikcqGWeCgTTli6PzgUblDLfjLfJPD+4I+z3\n", "u9ID7Tc16/6nrAIS3bQlde9v3wHMrnwI/ZhC9ifIUaw9ol9hNYmPQE3/GYaCeSMT5ZfiZkOyk5Td\n", "1n3aXuCKEEVBQcoqqEPJwwF5AhUb4LdbYA1KkdCsUX5x01oKaUvB4Igp9EdwoiIcoVoVC6C7QiQm\n", "U9sZlsb2w8H1MvnGY7qNIecyEqWjwLs2bed2jqm6U6L3uJaBdxlXVW9HSbA+TTA6L/F/eDO9z3eZ\n", "9fiDmuTVC1XG31GO5lM2Z4GzyDc2RpJ6dzHpTUODfhUX1DxxDfBDcEL9XpLDYmqDuNK+nKwySOYz\n", "kekWYBaVX62lHPhEBXV4fkYBUNsAOt5e8/8LqiJlL+Pih9JJ5KRpGaGvooPQqppvE9DUeDZMOPss\n", "yAE7tQ9NDXQNUG1I6gs4/yzwE5V3xbadLxqCa54OT96JE8BbR0ijRhtyL2vlxSuPFheI7chVSaXm\n", "3mYCodTQeVvhIJqsC6aPW5yyk6gKr2JOUrZpb11pWZmN5Gkq39h81mhxHzS7gi79QTd1YS2TPSNl\n", "xD3/Lx0s2CvSmXza5h19lT2UIpStdOyLB7lslaC7lDYEL8+0RA8E+mlCYnqnYjtIeW9yTy2D7ppX\n", "BMUGyTNJAT8+ispxj9yI6xHOyE9dY9dZ+vZa/3bLgW5tkzgdQfYtWC3iHE8L2rtvaucZ+Yr2mRIV\n", "fTHKBP/uc4HZKG2RSFBwS6vWMcLyRNHdoSuoRMcTx7x4KC5bJoCOG+0JOhJ6TS4/IHPNo11wFBS/\n", "m1tFlV63//1q49YNJEATO5dZIgWDgR0w1P8ppyVglU0z2pXlDVP56jmZhjIhNYfc20MG6qP7MGK+\n", "VrTOpkb2jSDf+eztvVBDjwfFFZxBqpLzs/n50dfZTDOvjNPllMi6MUCKoCv86zJzoet5uatbuBi9\n", "Q365LMTS1UmQ70jwDGIdTchB8AqDt2e6QWfRhiYZ+Z/hG81jEeWAg7mqhAuYdpZcZslC1MYP5wR7\n", "yUgKZDfhqU4SSqABk6t8bMe5flIiznHLHwDxHQa1nUZe5gnapUuORf7It+WdhNlN3rrGpz5paeJz\n", "AKOzkpDFa7aPyYfqyE7w1a+iYAMLOOHgugD1EjiAfjxylQt+kKkxtSCCUv1Mz9qcZmy2qx5sMx0h\n", "C99T04VkKxOcvXHZT1dJRTAFZ5+Er/9VivRimSHrNC1QUOHwJh7ChP87JtQyegGdJi9lpXLR+soT\n", "M4o6GABt8soEqojtHNLdZAyogLkmh/yffW1PR7zCLU0i0vup2ZlKVEkzAfBX/DR1+JJFjnkdYDJo\n", "lUHPZc6QWcogH2jYyDYavks0ENNXHIxxtNq/1ZOm4xb+p1rPYT9Mx4C71GwA2o+Pj2O5J6gsLF5e\n", "HobFAozhL4ZuQBFHB4nfwD9j3WIOlqa7Gr//8fOC9t8tecMYiox+EeuLW23/6RZqe7gqHxKCcuD7\n", "vDEl1c1+RwjCwdI8rJY4mhmwyAaZjd3WIM3vA0IURBYZKWsXKjm1jXap8KjLF/86WVPK5EyFuCtS\n", "dMWqj9IBidEID462uodpEur7/cO7W22l/BRFT76rLp6m6/hJIhkKfdjm1T6G2BxDPB6/b/zT5v3I\n", "9dJ4LW6+VPD4IaMmI6UsIDayCJv6BETE1eRvU7E9L0jCeooqyAD+EBJ3q+I2ExK0K1i0SvLKuDE7\n", "YA511Ocd8rbxB+g8iWq4OAfVxP0of7PUetUymyrQbSlA3DRmRBg7v7kTokCUmWSahuzyeSW6GejD\n", "kF/WSgjawbw4pNBvIHZ9bQBAJQ693m0/1j0CqFe7g3yzVwj2dOuMtLSZBBnmzmljgXqAeMOPbHHn\n", "ERMsfCS3IoPPtb9IlFRd8RfJbvOFmPaIqCtVXBeWpnm65u776gbR8P6CZ8bRvTT0OrUOAGhdXkgq\n", "P+Tg+mgNA+WjBnT0R4umVgrHEWXsS+FS39mTaui/612hkldT8bcrD1hZtz9jxQoaq3pkPkAVfCQn\n", "dKmFqOjoVIlff7GBKG/gX+1oDKAXnp8KEmxzRwiyEktJMUE+uMIt9VN11UkYTTDH/CAphAlKDdE2\n", "DPUx8tWGUvAthgQSIuUC1aKS4MhIToow0X/OzOVH9X3JHCYCDUhM9US3OIHwO6mGwNQI3TvThLwr\n", "IwBd16bwf3b0GlluFUvUwH9sHetiesN6MnLY7JKAMcJQSDbVDvSb7t9OR9q9k/8cyDhO9b96c//Z\n", "PpyLHdzcKPQlWZLQy8LiMIzIGGLJguwmWAawfnr8qANLqjiY1+UKWtlEh1wGWiHeOvwxGFhCmnuR\n", "EMd3H8tGo61sKmkcP0FLxv9OZMgRioXcbS7l3UAAAAGZQZ5RRREsJ/8AyKeJ1CnL3yxcCwALWGxy\n", "1xTFR3xIcEFnIIqHQhMXNd39ddOtakuUfD4ibGJTaR5cAecKM/VPa9aarPjqfYslwIz5ZWVjcamA\n", "SfqApTWArOeJnGZE1gEpfpzI68aJlAkAXHwsqhAU6dsiCdwtcTY56lMBn74DCSEg0gbL27VFWxvg\n", "gNTQkgeL5BKZ2HjzYWp+R2lhnF6oM3dveb1xhF0BUXm+HRxpKIi+DhVFaAHXzWIXW5OxrEuWYNS1\n", "SdVwOLrt7I7cvXzm3MFBhGglYbxpswPnMu6d2q0xA+jodYryu4ioUVBQOo4lvmdPLiqLTRdafov8\n", "5oUoBo2oYoxzltktDONMZzXuwSIgbfa9B7dSJpbCF2xJwlO4m1XHg0kizLiJqVC3bhZx0s8vMYcv\n", "/k37UcZ1/FNpfjcHE2kFjg7pr3sUbT9fkUNPl/D71n0Q2IgWadl90Nd0dYDJHMEzckANx/oiM4kM\n", "p+jrNg8f4NOTids3MSHkeF2a/7E4XSDkmmW2uFxunByu3uAGFOHXk8oSkwAAASsBnnJqQn8AxDuI\n", "gqwFLII5ZXpqADWgj12owm+ZC3I5KFWnwtieDsj9WoXLJJSIiNdXBHWgY8XS7kz3KTJYJwaghk9L\n", "nT1JeMU+iG1YCRbgabOen3BRX5bp9iQ7mNj+p7Qn9Z4ir6Keic7zKpEurwt3A2QlGocCfeLVpCK9\n", "5Jbq5zo5FL+taGizIyhNYdrsiaSkrXErxTxRAD9DmvGcbhE6N9h3Z6M6mQ4Drlyed3db4CopJJ1p\n", "VoOMUfFTUmSR/OTwz4Botj1IG49bbLwIdkW7r6zPZh9aUY4N5vmM6jYIRRyRzsUyAQdHZcLGoJAM\n", "vS80ZLfOHuyJf77NCgKdMPnaAhbai5TpYkuxnj9OmjfqA0ZPsjKFz+l27KMPNf5xufkOnE8sIwDR\n", "cKOGrAAACUtBmnZJqEFsmUwIb//+p4QAvmXlSAAuorBG4vbfZV4F1vprGuCGW2wsM50xg7o6eNYD\n", "R9eDjII3MY1f73lDM8y0mjKteBt8KIFAKd+K0fym7f1B6j+IJy+i2HqR+ggVF4HadJwZ0YNtKID6\n", "bzlI8m/+RZ7fK3XwmKhgd9Bkt1FEEUClc4YJ544AAPE7OsUU8DrU1mgXcRPUzflwJdZGdwUPO71z\n", "nJKcVDP5g9O8QDU0Ls6Wz/oQoqAt/avh6bJR67+0CYVFDttDGAjpxkPYWrPSkauJNsPYkxsgx132\n", "jFTnehHxnSjYA+UStLLngXQ6Dw4gE3R5xGYkIeIpu6MfNoSH6Qwudqh/64v5gf/SBBa91Cr0hJcp\n", "FZuFfCt1W6oJx2l8TrQE0zlBgn8c2l2seePwKnP82UMKaZDvatq+iiGvq2MK5swa5sNv5lyN7Ijs\n", "MwWrewAHUjqi0laj7UG4ghR/aEzLvGShFT4Tvs7HFhE9gToWRBpt0Q+0Nh2mwKJs7HCf+EIHPnMn\n", "PuEvWbjeJpxoTapnV4FcNcyZ1JrrwI6eOSvaMnQqexRGGTXUcl3zcMBn5EQbpdpgIN4raGQFcUH1\n", "OeLNcDk15te6bD96L+Xx3fEf97FHsKfJcGb+H21O6zBxYRg2uAPpxuy37nBw3k0Nbck33cEVDZLy\n", "nyMbLBt5HYWaE759KbPj02x1Wzkherxvv8owNZdNCuWLVoFZpcfHgxuuC6fwdPq0bGDZDFOx7gBc\n", "DFL0vsr+DkwR6DbKFditeFDkXkU6H8XP6ryRFEQ3yNzjEE01YW9niqwAV5Km5lSidtL2QRvt75U/\n", "B/6DbHnf6gwSwUL4/WYf7QNkWV1VxcR9H8Zc4QLZ23NPwtYmQ5+zzmLZjjQEb11/ak6m5XibCP/i\n", "kOo954LkS1oO8mxpfHJhGzQ00DL75v3rC5wdJqo2ofUJiRtOCk8gMCkJnHniF6asRiLygmEgjk7r\n", "9mqBMzzzXkgPwkwIuEchlHYq7VomffBy9jcEsU+u9IGokelxVrrvgSnXgFm9S0k5yeDdgVeBgUtM\n", "bkMNPYiaBuqST1cn47KBaCBvxkB8JJWrxnxRs2XxtFedMq8T941dOLn6/wrmWNNoU0YXeIGG3Qrn\n", "koD7A5Cyi/b0RnmHoMkLZnLUwe0FBw78PUUufhxXs9pTAg1jiDsLhkYCtueNeO/15lH07FHGBPwn\n", "t/ffq6h7DwFKuwaTqt0kYd1Matz+A72Dnm/mMeajN8NkldqfLl2XrSu6JHOPZ0GgJ+JDvzId2s5g\n", "4IA7j1V1jLLGGXke0HFgh+T9qJAZdqmb2l7X/gUYlQ3W0TF5ZozWQDWBQMSdjxpWScePXVrNBAW7\n", "5nABi6ONAapG5yaNbIdXXVpRl2Subzkh6feUKvetUL3Vs9Pr3VqOCND09MNYWPyNbOFN8l0lmk2Q\n", "S9pQ1USlWP6CcRRDhbE7n7+B4KcjfdIovpf6X6JPvh2OtLE/srOAWaRWMcQQh5/YBuAWkE42CGLN\n", "dGka7U+3M6e4GvEaJ5GtyZgYXQdGIor5UfdQKBRRFsQ764hNSJ5KneRmNEeJcW/WfUKtSEo2f4eh\n", "wjUuVeMKQ5bzc6qkZi3tM9tZNB+vdGPaGYfvkxWNAzDBXF1IWYkAlXNeURvFRPfZUnkEh7Z64p6i\n", "oHgdqb6ZiFDUzWVPERPWAflKNPZi1YaDGOLcbxANH9/rAy5ZAvYFfDWGLvpRmEOaCHHmSC4/tbId\n", "vsD1UkE4//jucH22m8ICifGd39C5mTxSjV/AYNF3Dmw8FMNh6EjyCdFawlDuPaXnMo2MT8C84ard\n", "zaLUgTIyBDSXAXfw555TiO+td1n49aTP3z2BwGQiOhAWcF/SEZT14PSNsWususSrLgaNSdrqvuRF\n", "cEOXJVlUNYITI1OQ7dpA3gqV8IPf9qEX2qo+eOMHkF3ZKx7iG/JnW/zASF/ocJEFU5uK4VvO8RJ7\n", "3HOevOqWThEEW3glSJ4DAUF0cEcJbG2vC4mntGd5WKKr8Lwia0w/LaBBpP8INurLfI6vjKEr+YHU\n", "Fg35Onxv0LW95gnoB/uZF9eOKJsjAKqcNNOyAokX4NWp8x8qFnhagTjyKLdExgTWxA2u9mTxrsfU\n", "s/ZfZyPtfCset/4EOOacLx95vy53Oi0eWRsx0b03MSo5Ob02ogb5bKKZqNzo2WDtiWgfsvdptwCG\n", "gVF6+cnxmF4nALj2FkBZMKfOgU0j//SW3ONW8ukxU52vwvPNFb7nMQiyoNzAqrCBMqi1Gfgr/fLK\n", "cxGgbOS8Nc3voE5hKwdOZWnUxjj1X62nsHHaWZ6Q8EORHRHdBVsoAWKtRJnXfyiNcRHsBrFRRm7j\n", "YWNnFOl1jBmS6ptJGCK23rgYjBtPSc3vF3xgEDAWy5Z8fHwyNjt126pph9jt/FxPbseR0VLFsTZ5\n", "btIf3Kh6PSgPZP5ZH1OkV91vIMalqYL/FlbWuz/UPvQ66ytd6R4t2Rl2YHaZunUtW2D5fRcaMMa3\n", "q9qRSouMP467DcD8zPQJDitnY2mOVVk2RY1467y8PiduRyxTJk5mY0ySJkilez0PCr+HcPClilto\n", "FS+YuFd5bgKy5VyGv32uqe1zUNXMZXlonxIQPSDSjeP0DiBhkBqssOXn49IAtQS25pKMILLBDIEu\n", "G739bS6Qzk156+Y9xNi2bqaBSIVAnceK0Vo+9RP+j1TJN6J+5UhbrZQ7wi7Sg8gPVpoZtn8UnokV\n", "YovLBP2SnzUQq2rN//8N38k14VFTAUB53g8NwZA2YqlnADFda8LlMTBoAEviM2PrIR0NKqzSnGMG\n", "aKoDjcKAjFbPwAwTQMOpQrQdv6NeN2fuHkRTcLX3hynWhuCElz/MSgzpFgooxDjj2Gp1M6n3L/u1\n", "tDFviuQ8PMFCArgQLOZXHStuRwj0y/Sj2ERoTKlVswBch4ra3RzQopV0WjCoF66xR3GJ5qKmyTVv\n", "GxUo0UYbd0fpq3XFKVlCa39WznDhxOhcrbQIodXtjpD52HdkxRHsSGJiHNarL7oNcaiRvb0fydww\n", "IJ85ELyahTzbr+s3wCXAeWqP4zFU8jctWCMl2QpbdDTpKrRsSMY3BlDLaTSwVtx716K6IHTyvap2\n", "GVv67g8b9Z73fOwIY3bEvYoVvjiMbLfo7iQWljEWk4e2EKSD0uoxfRlJyItWpK8BBIgAAAHMQZ6U\n", "RRUsJ/8AyTzqpMU8TMgM0eUfWGDYGMFnABNWbSq0PMdQ/WgKoo9E5updJ+PS6XmjD/0mj5JYAxWa\n", "L+YztDf4IeWJe7F9qPEKzxs6vakAmeQ+Nce7sBs8IDzKJI15ZR/6ZAGSxTlDfHBpsQEBh8yAsygS\n", "OIJutxtUgn5sP1f6dHyIcUljw1T+nQgsZkxIYLJ3sTZHOs3g9OEosQn0m6TrYcAKUHo4EUH+ObXx\n", "GawvZ3nM4dyQoS6FM7Gs26Zsfqvk5pQJqNVKNk7+FOQwnJNJO2UuGxFzj4F0x0qBitXZuwOTIU5G\n", "fpIKkaK7k1W/rI9z+rKwmATdhDWQxOmvNc4lQeq8yqWjvIyXHtMNdnBHlpBKiF4sDGy0FzotSIZ5\n", "3JECOLo0SJYZzDgqFcV/2mvUlfkO4nmHkTlj5757dyP6LO0zpNhbzh0SxyoMkLT/ZLLq3E0kiPJc\n", "Xq3/snzfZx14kzlGJcJYW+CpxmMiAxlgg2JLdawEdhTQHh2Bg28jKqdCNpbnsNYG37PUq8D8wewa\n", "lcOMou3oKfFy0yKe+bNbrc6uv2IHfqyxaRE1TLPgSvAJX/zTGioiKhot7NY1qtEsKoiMWmYfywir\n", "vwAAAT4BnrVqQn8AyKx4jPACEYuYiBjWr5X3f/z3FpmN07EjNKgL8KRurFrD6Ph4p1C1OjGKMumw\n", "Bp4xSF3SU6NG3bA/XDen7aez8/QG21N5IB2DHo5NOjr+gq8rQ1ZbT3S8RXZT4qChslo2ySJgzbLP\n", "luqgNXLwHom1LuPrsJy+zS1KlpHYzz/Vb9wuluqlI0kBvch639EW7RrzxBcEptSq26akpnnvMMSl\n", "53sBqeYiJ5VyPJfA//TxmsFVqwMcQut7ToN+4Ry0wY0mN/bOl6duUBgXYdO9l3pPMVlh5Y2K/DmH\n", "OoPTEzUCk5oH37zNtcboXmQd3rn3clkz1f3SzjgjWNsaL1++BNqAq93BFLWntkOLKfu57T0hWJcs\n", "ZSdADe271jPbwhauIXutH7kdGghASIBGMn4WrkkucL27yzEixUAAAAhXQZq5SahBbJlMCG///qeE\n", "AL5CqnBgIAS1biqqRUEcIqoepcf5KTjgQ1U4tgADGAkjJ22Pa5BHOwYC+u3litNYxtFoAplLfOKC\n", "JXVdDOxYogiaNyj82MNpVyhoXkL91C4UDrk4CrVeKxEZq5DIrqzvOg6XyH9+KfYy3Win582jc3OY\n", "PGyl5rV0uvxlPYcVslZOCSyvrWll+WUyN7gzJAw0D/f44v3Rg0gn9b6+CDyaJuSkftDjVPPnXx2Z\n", "TMsP/PySQ4r45N7xUKB+/7li5g0SzisvJIqJFWSxNr4m97ryUI6iIAtHYRxbcYJwupD0T9/U2MjN\n", "Pd5B+vnOgeZ8xpHbs2lENKW+HWBSrUZYpcBrYrhCbtsUOUTxFpM6rFMe38IYXHmW9wZ9Fw23wb+j\n", "D1N3kKvzVrkM4ukk2bcXQYLtGbE4Afz04rc9FbYIMeVZkiFTU1R7yDAdv5XTxU7S02HNA7UZkXL5\n", "qngmw92WJoq4HI75t0ih5H/Ak7dP02O5IvKM7Fl9bZ7Vx/ZzWLU/gG4JT1bogYKSx/coR4DgDV7/\n", "crV9GThrevRP6VsqOgCwVHdcgzjCFMBqsCqQ7itSByOSlO/BXQs+KbL2SXO8C37vd/Snmln2U7Pi\n", "ztBF9YhQGmzMs0s1ap9+trmd1kEwPSjmj4JDG44eco3+QRCshJSut4zf9OvWm8wizINV7N7m+mGC\n", "/hS6wODPn+Z1ZSBrxji8ZnH0WWQW9CfQcHZLnf9rx+OQaTrnCSylO1XFErDDPYsAjoiBa79K4s/g\n", "iuqCyanH0Q2HuBVWxicREjTp6SFZ1Hvw1cpmL16vyA+Dhf1sEutahF6LSOwWu0vR5KrLhJK5H+Ra\n", "/LI5jVnVUbKZAVwlB4Gvl6YokrSgqWI50vMOLtzsJPKsoMAYvl3R5Fbho4beyDyYRemzy2hAJXz4\n", "nmQuXkIIqf1cjqG3LKvcWI4Gtcs8DKzuX+0FFgpRbxZV+SHyXHfZwI4jctw44PwM6fP2PGttjWOk\n", "pinPT3SwgKyYPQ9dwBMTWyp+sxOEP1kpQRgEzuw4ID0Ytb5R4YwuNUpaW3rTgZwDSiH+Jd/k4r2n\n", "Mn8ASd0jIki8fNhGnYHtQM2miLF7RXhcGPpuSw8LzucaX51BaHu6nTTMVXTLlmY6yCvLVFBqKfjS\n", "SOQvQHYE9AnGZmxSw7TD5EvvTuf/9PcQOoOqtRu2v7F3Kk9GdQnRjKYDklWtB2IjYrG3/sgdIqLE\n", "LkcOOZ+W+7aP8AKzPvNwZais/YfzJWI/8FS2JhSlI5Irg+7LfQkfNixIc8LHFwDJUE/RMifnoiaa\n", "DnlhNwbcFQu4FaBdJfEwZSJtdCn8wrB7tdsVwmujSjw/NCmqBMROvxXD/ug7PbZHFMj6aT6ubqjH\n", "EIe5YxTvr5ikaKA8Tg59Rj1pRE+CnJ4s+CAo0R7gOD0zjGuA/v+UH4jPnwqDBYUnRtHoVH1neQ1D\n", "qLmMpxpRe94MMUNps34LOdwBsV2sgu+9NuDeH9fmUw50YE0gkJcOhrIb+YbLmsecGI1OF11Aq52W\n", "VJ9OUQR+oR9K07kMDCg6rPE3wGCIFmaBkJ6zQb8cVd69AIozBemUZME0k7SOKResMU4CtTuxojgp\n", "rGNLXNVgkX859CDZFqYd/b8g7qewhNEGZ8SownL0OBkgIiTD94ANZMZP0DdknatRXS0pQkjldpFq\n", "gupGN03/rbdM3nGP8JGt2kTSMtlGP5bRtg0hpSbpW0oS0qPpJ2vqCHE6drRIcYaIxnyIBjia9PwY\n", "0fwZi6UKGD+ZNvu1UVNRuY7wHz4/89tH5nmnuHeQKjEXicYtJxZEPbchKXnsMJYiTe2hRvgL60KO\n", "KkCp1iMzUilxbERR8NbDasG9zYziZodVy5UYU1Vls9/QRmxMhnnCSTon7/IMk32nU6i7wPuD6mOL\n", "nKr96Ax8Yh5fN71ctJ6myg3/FM+yXm/pUsiycO05yd0SqfCXlHJt58NeeHf18jhvdnw/va6VX9Nu\n", "C9GLJfcKfR5q57dHa39cmaRHyWgayNPKGzf14cM5DWGlJlXE+l0dk+Ln1LmU6hNfUan28vNS3cel\n", "O+HlbBGgcpxfR7PmfWIT8VOS14nm4ZB/+4twP8RMvWt38UTia3tQoY8z4atJ0DxRM4CT04o952gV\n", "Hsv692GyijE1lGRGJkMkb5UZgeoILGrzEaXSiOghwCvfCg4gdedpQozBhdZZoqNUEEiaXTZaeRLY\n", "EMNcffISBhz1YZYjPnxQrfMRVsKbhrttB1fnA2rHSdUoDL6/yA2pz5OIc7CFH5KOwMHSp/e6D3kB\n", "8aTQ+8xTAYZywu7+396ef3wu2yySR01278yQGf2ZwL3kQ+P4OP19vxFp/hviTMsZMf6vRrZF+R9Z\n", "hTQb5u7naIbB11oT7dYPSsT9TXNVkUW1wBWq9UddrQs40uMBHX4WxyRIHAUux/EuT8dGbqGD0ul0\n", "VJr08F0sKfmXsS+tb5OdYFEMgaWVI4Hq0b6/99sdF1Vi/AFtQNyFopnbBDryPZ9e5uO/BRBfbKiF\n", "bQPgqmPDBlx+ga8MsZM/O+rr3y7wE9dH/Iba05plJjTj+aEc6zNmrvXVqIKi2Ay3YoHQ7IGfBmhY\n", "bRvv+qRkJutI0werHggj9IGXnGSmkqJgJsRtRd0jNYbivMdX0gyFip4/3WhsTeEoVmHrOnHqQSXo\n", "WG2iaBEZRVULGhmQKoel1MiOKfZzBvSjdbfVcejdDAjqcn4UCwdwAox3TIPvXVpkru+xLTdKU9yH\n", "zeEPhLeT2rkRT1VOsmVnPw+N68f3uOiAOK3bVTHmBHE0RyRIgQwF8O4cx1U5f9pnnRKY00FSLk1Q\n", "TaP6V94vRPP44sEAAAIGQZ7XRRUsJ/8Axo1J33BF4AP+me39rIEGZYP2RU7A41JwWLFIbRRr6TU2\n", "cplP96coIh5z/1YCNOi4ECwy6/s26knHwpCT3k4u6ltPXoqxNHrp9m7FFOoVGUTZ1ikLcG9xPpc0\n", "NhW/cVu+zCpU4G9pg4i3Byph8G6QgYeSFe9aeib8FVODb4QT43EM+OWAzG8g5LFM8/8zGnjawZOh\n", "lGRB6apRN8RkN5j6a3o8iYQ2aCebQPS21xQFTJ7eFcJ5j1HEKmq5aGtU2E3XVbUgOO0FbBHMQNf/\n", "RvZ8lSTIInmUIF078/4jJM/B3TyRUFhnbUAEKk/Bvn5ET4mQdNgWwppOQPV64d/J5VxRYc515PGg\n", "549Mi0MbpQqbul8IfkVh8grdtCfGIFVuIeeE3rL6pUNFBuOG77PhtQS8iMbkdjrU1ayBzYSlQSij\n", "Nam4GEnZ5N1u27CtGUZdGXrzl1Id+f3SbVforY1NWS2T+tYcw4W5qrDV7cKBBanEF+avPFm2xZNS\n", "Ms97QlREhXKZg1uBFI95LB3eDvjbb966emdm3eFuW9nomlUL/ThqWLlGyadeGwgtgHa4jVPmROvM\n", "ji7MCmiIW45qtWjsp8UXxZRFOszL8N3OLvD1w4odKBmE2PYRRSJj65pr6suqLDtN55Zl7u5J3vrs\n", "E8TPE3zIFmWVwBIVOJnB8Du4g6kAAADbAZ74akJ/AMiKWIbOogAiBDTgIuG5GY6KTOS7CxPvPBfp\n", "YB0ETx1DmsRKxGgGbdmAwAyjwbDXDhKaItb8VrWA4/JOh2h+VEldma3oRFRE7KWwqDOSUfCNDZo0\n", "mX5m3QW5nTteX0oDsJ3AHE6lkqfb5MfiBn1qBXPwO9IOGaJOp7ntn9LDpPdyJPnZT9z4fjZEJIRP\n", "Cj3x1ruyscdTaGYpDt7/HIYwNjuD0bv0TaxbLZslkbOK35mihuvKOTXwjHFCFlZByI6U7NtyQjD4\n", "mmdIKDNoEB9tWZenxKNiAAAIl0Ga/EmoQWyZTAhv//6nhADC2jAQjzNNLqYqrT2rur6OQCZNMLIq\n", "4C7elmk7/3qvSwZs0qW3Qo0luiGsMC1Y7ehhzBQbv8hlnT1H8FkibzoULD5hX2MBOEB7WUB8kEkd\n", "u/2oPTYQ/LJe/whq4SAHt+pRh11FhTPYcEQjrQFmPEUiS2slvZgrigo6zZCXSkC1mTh7t5E2Q+wi\n", "xSIUg4EUdGlwedV2ietC0YmHmbuh52dKVyPvwayKDr7aa5joqXqv+Ehx2dA0UEG9xlRfgvfPbffp\n", "Px7Ja3R69s0O540NK+C//L+7UPLX9t6SFhlh2xIkDlLiUBb+xry+5nSPgZWyBVxuV2Rfwye0p8+b\n", "dl9mKiyE/omyVk/h+VabkN/nbNgeK5np8SVVgbKR54G4Kuc0qkihBjPsOZSAd5wkhhQ47+TylEBd\n", "afRSv2HJUe1vM8JiBFoD80us8AXITHhnVlgWknxEXaBcPrKf1P8Bx/QXj7y6UBA8DDAyy3tIRcWt\n", "dLlwvgH7fQqiRg0lINaAA9h3cFNMMlJvpVCqnWjHLapwJAre+AC0eN99x1795fdl0XO/R/HVMlNA\n", "tm1Y7yLMbwsrIfX0ZT1MXqCM7tcKqoDjgK9mHZbkUveRZvbixB2yq3D7/YSJETzbeX86mP43EiL5\n", "7paa3cv4A3YbOy0FVRfWUQtvyvHSoXX8kIxteWwL3CIJ9YoRtNbzm0nz3qCY8X6TXFF2w4/CmALe\n", "Px9urmcssg7HIWokzsWOAJav5KR1+c9eB2XtI2LqDvLK4yI9ze1m1B92BAo4lS5YAU8AjMfDqGud\n", "t8ZHo6cDJDpwYxnrxssvP55O5jvDmgOuF9ElWDi8jkMidzlp/Qugqzf55LezuwRQZd/qh08U/piB\n", "gorQ+CtTN6theA9PDnaTPe3g7QDAMVRNGZFzcAIKRTEidF47jVihLqVOWKe/B/kqUDXTfoGXe/y7\n", "jqieqM954HY9TOhPIDjxfN9mgszPkSPAtsj5PGeu+AyiThBHh9aDZfR6M/49I3JtbuhszJSaBm8X\n", "SGEF1ReT/C7ganLKP11RIH4qYVIsgjzSGPiJxEJnFWgPI2o1wun2m5UjdKLWRB5n68PqHLfbyTye\n", "i5n5QmFnB04rTpCGKhMuwItnoepv+Fi3wP5j0WdKvehRCZo3MfL8fX2QjNtJqXuZvwepXttjXuei\n", "ZPgcLMBXfmtI/knN311o5XNzIDnSry2h26s2WtpQvVRXi58ClpPROQ62eyy/ka4ozWirVf29meOQ\n", "60DsXmHmKyLOkc+Yn/5UdzhgvpcaGVRnB4VQmv1lscMftfLvgzKEFeRpR3ycBT1xtVoGcDGA3zuG\n", "mW6f6wVVRDVGwtvD6JZTQ5r4FVxwVbZdBYroKS/TBP/74qn3YSu43B9OaQgSlng7XezBrjI+EXpu\n", "rUn/+f+m0Pl8Wayyc2T5N0PzzaKQIzKorEGIi13tRLl8C4KBkIJAm/0Ta7Yd4q9Z/hug+7v8Zerk\n", "noT0Mao84WvgFkgdLwqF6J6dd+ve7Bff2SIRcFw32D8T01J4IxPVY/7rE353srN5uYzWeEwl/jLO\n", "p6BYfKjhZLLrSXeTSQ9r7cUoQ6PPO4bUW5KrAcQAQ/3CbSrjyKHh6boX4BJmespeA3wHf/uKtsTA\n", "AFzMEui67AmNPE9XvlCCk8HXOePeNGLsmbW4yuNL6MM15/uIqYvhcU1swBS3C4c75154+Ryv6Gda\n", "gLiJ7X92WVgdAdP274m8uJR7iAQM31p58FiyOIZXX9Vde1DQ1ithKXifhe5egdvDFm2K0Y9IQxIB\n", "4uhbz5m5d4bYKvoiKHf3jUU3hJELS8WdthhfkH0cD1WadKRrVW7+Upx+fQhDxXHv0n/13Oh/YKNq\n", "188fLaU4IZEqVAAACSY14/8zQHLcZLzFfEpiTEwQUHyxbw391vu2aD+uAWdxc2s0+arUg/h0Ru+C\n", "7FlvIqkSxR9KfpAEt641i24JhVSbyR2aGrj/1fU7WFmmE4kqIwKKLFSyqUq7YDC6fJbHZhaMZOz0\n", "hAVaGggcvgWXPQM88z0UBxUJnvsiclZ9GYCvnR13w7BKjY8wSNjyUcDKNgxYuBgFxGo6T7LYYDET\n", "BWEE2TQV5wutq5LrS9VDFkuDJvrDEgyidryc52z3Bh7vb4st5JSc82OJlwwxEMArbvsSr+Xm2hUf\n", "HjjOwxnr4BbeO9u/2pS7XWCO1XQmX5+w0erO80wZdn2a297vGFmveVofLt3f7G+yZEz9quPciAhd\n", "W9BykD1EyKnRwz07nojmYuYh0nvnuqRKrimeLP5JKjVGnVkt9dQLSlthITzEWvNhaa/bSAhEfAKz\n", "yPbvgzy8/aUYwKvOhp3nrd1+6+BjUZu38iWu/NXKCh9vJPHFg+PjTgnLAJviGT/OWHr1gbQT5uFS\n", "1c1XIFpES3OpAl1jJBhK+P3iKOXfNIKSy2zcjQ0biYfksNo531cdwfTShyCSTTFfiPgsJJzrVibV\n", "BdSIj2pdPqRNBqlyCYfS4FJ3cU2eoKm3pveoT3tLrS8o9awJEZqD+MZJh1dGTiZc4fPjgWfkx82S\n", "VQLWGPkLNixCEVTMFUn5WM16IVmI2amiAYCt5KGPaJ6/mjbQSWt4QUsPKsCNdNbKCCmyrwEFsJ3Y\n", "yvFEQb2RN0eoWhQ2CzTJtHcQyHkQahtIOgrCZsvX5kloijXlcIvCPmIKUkq1CJ1d0UajiUdGn4Gm\n", "a923Fx6QBFT13RyQxsOBPaPI7/m3YUGmL8fMWB55+Z1LKTT+0l0tSGDzQqM5RAeLI/piGxuSfsib\n", "kU1dm3g9CwJnls/AqWtrSV3EAMUuhWuF6vKTpLfykXsbkfbvuCTiQBgC6VkMsDDvxphWHtbqKIsi\n", "5X0KwziTeVM8+H8PREvYwd8nD+tozBRR5Mdn/BIS073LDwbCTBZxVQ00wQpS4Az+NhVpgQAAAfVB\n", "nxpFFSwn/wDGtgFi4m89M2wAC09o8QXyHqw9KuT6VcEzqKTPl8yMFlwi7BtOEOpY6XIYN5d6KZ4A\n", "O2fyirK3bxNaS3sYlZ7yDpFVzYTLubCB+IhelhTcuh9AYuyhDHBUu/Ronkmt4BGQWYhd+gL1i6Fb\n", "lw6FGHwvDb8WuxORwsuMdyxQp3ATRAh/ONOsA4bzvO7+YZmETOs6ptX/ZxvskCrisvryG7EWVnud\n", "zog8fepiUmza0TxQbdzJRcEYkzbh9P6LWEoZ2CsSxSI7iR3OGNQ8rc/Chv7uGzEpKBHXg3xnR340\n", "k7T+MhpibTMEA88siBI8c203U96HuskfEVSiZuRzDrVSMucPHfkggIlenHvafGejn5IEM2XOYfUv\n", "RNBUEed8JkiJzw5F5yvSgwqMZu+TomnEH1kS1YT9HG1OHl5FGCEGax5mvxg3CReBO3drY2MQR99R\n", "Qq5DI94bpb7RMsCIc7aS15mU9u4XmMTY/OUWCYpveibSqiXCmuekMrv8lUJMcXve1Dk8upc+zLAw\n", "I7YVzFjtmFbIDpYmnWsDbMGkRONN40cDj5fCJ9javeAHX0QTCJojf1jHXSRRZkoEcPKOcVWWfzy/\n", "x5d86fmgX5+Nnhzz+EKZkQxxtpW4uFwbsQSThzSte2y0sRDzR5DB+mVTuCAAAAE6AZ87akJ/AMgW\n", "RfM6gAbKOkvF9siyKhJ+EhVMizf+xDAOo1C7bKEXzKqmq9nAzmzLYmLWU2jvWIG4Ib+Ecghrbvm2\n", "WJOnTBneI4FSUwCJ19AHSUHh7iLPN5hc2N+jAEJYlMnZqaVS0KrJ1H7UBjWgwU5fTCy6O9vi0bqP\n", "xzi4wuykDGEc6tRUqpBGOxX2eYV+SvazYIeffVwHR8B7zwZwKuSn58Uti/FneLpODToTeDYOEIhX\n", "AJ7L532oEq/7zMH6IkRg+n2vLVPabtUxtLJDPBO4XK7JxhT+uXW6y1P531Oq28DXjE/24xi2MUwk\n", "ZfQIIRCZDBHYTgRU1LUwSlxKbPHma1e7UoY/BFhQyz1h+VrtDGuPCfMSODdF4KIdZTjQH3tss0Iu\n", "GQlyJu8G5MhPaybkgQ2OhJ6C5dcAAAlIQZs/SahBbJlMCG///qeEAL4AvY+AFs9aokGbD3awG/93\n", "2cX75n8hffi8Sv4/HjH6RP5KmNLmOGxmH9lhKgN4TuU8wJER3kiel2xpdmiARSzFV3WXazX7pXUt\n", "ooNww+XO1KW9JD1gUVFhjfRIQ0Zs5XHYOjmq1wsfU6XDtlRgj7neUN9U2FtDNLhq4c6ZWvqx3KAZ\n", "2cfPrj4TocqBdBk5y4NcG5DerzI9n2wUDlIjP3V0OoqTBN6PnmiIee+zHA9ajR9exvSxxAkSkDJu\n", "EA8UkJXOLUkFCYs0I9t1Y+LLd9nZpVFv9pFxVzE5qrhkcCMa7vf+Si5Buy/oQ9Sd+ts0r6f/5uIU\n", "2tBs1OZ8W3W4RFXF7N2cBR3cO42LotmM0Oq8ntb1KcQRUA0eNzOOpGfvvBY5RpfafWy5ZDsKisaG\n", "/SqJylinYqwXSiBMXJ/+fq7zFS6GsnSBrTTrVxbCPPOeZm+H9Q0xGU6tG7v3qUzAlzktvZE7ZZHa\n", "MBcATWNj2TxD79SCX8q0vl9ec04PY0u9xyu4u+T3emuCemB6bMgbBynHuFTIahw18h0GACMs6EVG\n", "91NCAd4htQr9sm6qpPi6esVqGJX/9eLp0YvHa1TPrXvo59rNAKDEw3QPxznSKOdf05f8DNSXceTO\n", "+tV4xE/8dDhf5HzaMXV+I3BMei1r45NI2MQdGDS6x8QtZK6hQ9fNFe2i2CKcsJ5YLkVCa38QaJ/r\n", "wSM3MGqvIq7l9bfe/1vZWy3d6QxXe5kCfL07cp3R1PVz4JG50GGPWA4s7POsFBVigqjnc980UwX7\n", "IBeceogb3XWngVctYW6rvaWh8XWcgLHCd5O3gQFvnoOr1hcMwn7O89m/0NzQZTnQ0MjvUEQ+zvp/\n", "IHv/fmpcfGVs1YXVMUhf58CGT7a4hYQOd470Qt2kCYGC0/6xEjZbo8h1fh8PaSe4JH2n8CmZ3Lto\n", "x/NhuAbxV/FO3gzNLVmYiby79NsQ7QOAY2bcyNFpoMRP7dK6iQbegrtt7T+5T8KQe3XWF3ss4n79\n", "y03Q/P11DEjPCZq2dbCLabL6n6+jpUUIZFV9O1HeMGC7iE227nQUfoDHsdwjTYpdoX4w26TD8mpV\n", "i5fs1LP6x30h+kPT/apXOFmRkHKecoHwHwpEHzJAdilaGkDWzLQOynh1ehGirYivSI1vrHrufmZ1\n", "jql5AfMaznSHMk5I9Ib3//kEIZZN+UZWn1QI1fABGobhJPkEcR/6P/zqpLYahmvh4wrZfUa0sh1j\n", "gp/sBlaIh/gOT4+bXiHHQh9rdBpPG3cndiljzHFOUeGpc6sSaQvFDVF+FR0MK0QSp/8+tB/a38YV\n", "3FKabGd+t+gwFuTkVJXgCbmf9100PU19T8BEYUcyjAVzNpGSR0r+M8FgFDIJDCRSBh4/esvhwAAs\n", "EBcn9dq/kWjRG/rVTcv+fBqZoHHjtFqq88y/VxXGjD8hyaTNfx6u8eB4uBtt55JD3D6puyKKBNOH\n", "I11PYYtoLMJ4B7EzibJ8ZhDNgQIlCRwyCvqzZIbZJy1wbDGgmOwsGF5RGatjKWJ4AZQePHiSsY/y\n", "pzTTskWWSvIXE8yLqfFZFDk6flCtwdx4ecDTevx+umj+DyKVCaZbSEbIhfVnpjgE4gvU/M1YRamx\n", "hopn2dTcU2GOjbIRVIIXgkMbuiNaLdZyIWMBpTw8qxUoiCfgewADXr1YspnjNS0/XdKaFdFIoWOi\n", "Ck8iExt7CskCx00Ou9A38rwv8d0v+lbKnRw4cxMd/B2/7w7Ep93ZvjhqzopPehZg4djS6PmGJGxM\n", "M9IOz418PnMdEq4HbqF6zyzep3xqGX2/FMHcpDv1FI2uOoveaX9H8n5gLsKlMMkN+kNywAozI/Dk\n", "iV718Ixm9BMaugkZ8w1/iTZvCbTDCsCTjfvf4/AZhZ2pgC612yqmCOyxnSbxOBG7nG9MhdbHsmi0\n", "MEGgpznpD/l3lLBRXCcGpTntifnIdZvR2l7T1StRs7uLApG/oM3wo31m1p9r3Y80whFqEEt5z88S\n", "aEfI1lei1BeEX1rFlwSgIIFnhUnjzhM30Ydnfl3aklY6iAkYI/JwOc4EuJM+bCG0je5t/HgHssCb\n", "LuOCvWvWxoG64IchYt1HqM7xY3P1hpE/hPyIFTgq3iQSQGErUOBtFeQhifYMRYanACzbJDzaQvb9\n", "5GzD+XtQ+/incE7WLAdJTV5YAhyLyeXeep0MAfLAbayeHOQqzuxL48a2PMstnx9OoDcg4LtlWKpC\n", "QMzCQZpnfzCktgB1xChhFBxr5pzUf1BR58smvYwPhKPO6irayfca/PCDruYVqsQTWHNeGdSQ/Ay0\n", "Le9cJ/lqPaP0BiZ+odwhQ8XRrF0MD+Ke3dYKCHrrJTA2CjVux3qbp3QK6GI8gUxE6xE9FvzR+E5h\n", "13j8fELXpu18XeVUwgNKhfZmVo28/2D5mlwtuh43mKcEHYDz1iNOFfQZ3o4yJLCvOufvjVMBYxo2\n", "EyCr1NEcsqP64NgnPqD5bwXVTkBUiBq1BmuNfwbg8vLRuGTkbtJYpXc9m/4loITJYuN9VCGMn/Fw\n", "/AvwjyBNmAvCm2CuNdy9YmHvrxIFpWUaF3lly3SEV78SNMWoIlWVQ1B5+c82EzwkefOlEjLFh8ax\n", "jH+sRNJHytYwG+kH3bXX7bvhyII/ejRqzVKmYfADNGq8yOqC5CKeY4TTeQDSPOLfw3v8jKNqfmbh\n", "WqoT/3XV7e/TF1/S9UN9ofPSV86+evvuhSRHmwYUIMFLU6WSLWi2WWs9F0GXup2cGohj9IJVHsmv\n", "RY3pJR9zohm10eAxFdFAH6Tq5bBKHaY/l3BdhXuD6RDmMCd51txb+cmi9U0ftq5hxjIwfMn2y2a9\n", "ztK6MuSt4REaLz0Nq2HankzvdE7qBItiffBKp8siiw68W3nUCcRN/3DgAtx2QW9xO3cMkhlVQ7Pr\n", "sTX0XpG9I8UAA8elYrcGh947fLS6DVQhlvcSgjc9tgbV4JXnGtCbGQLVk4E4mEtKXUxVy/Ji7WUs\n", "PVHN+hlOtNBQJO8jtSl0NoCszRnpeuFkDKr4Nb4U7bP/xywJOcs80UCXbun578M684foHf758/5F\n", "hoN4NBvmPKV2IPGuN75VI2g3ATdiASGuBmj/QME+e8GcQhFQybsNEg4wMpHA61HVJgDRlUt7C8ea\n", "fy29vtfxAAABnkGfXUUVLCf/AMgjiQl1ZKBMFgAH5EzsPKlbnjt5u3WeeQKKKFbN2do3Y6ZpUAY9\n", "VfV+mRMuiUV6YdNYa7NGK7SK3JluEKnEl321lImJoUBpCNHGbIhUTWBfbk0NTFaBr4RngfckWtED\n", "3NpAoWshsC8iVy2BiUCqiXy50BdCHC1AtVsDhxF4oOylQgt9TMdsNAJNNEg3OoRfMFUqFJUfLmRu\n", "tbIRZUAFVueNcrYEuT3iNCn28p7MK7AHAvNi8vjwvp43I5wQEYluj+bfpeLNFL+KlToCZdH6imL5\n", "sKWLEamKsAGiohXxJNJJzWRSeSlZbbpp3SYKv80PLULMmjeNd2gyLOGgFJBPoP2FwEL7oTOhN7Ic\n", "CKHbpLPdzLAmpqifcUp9gzSIeQ7DDSPeDBkTfh7knLtnJeP5iulUp+WkAE/TRy8B4CO/k3cqnJK8\n", "ISrkvdBSaOQWaD0dq5Wkf98hRaekwfSiYtu4e88j+QbpUY0MmHnFksKKGgTnMwppuewZVOW6jPIX\n", "zNT+NI3ELz2TJfafRw3P8DUZ/Z0Wroqg+AAAATwBn35qQn8AyP/yaACH+oCdsaV40btgNUxD1e45\n", "FV4c1xNXYSGT8dfOOzulg97IyTnpO4GQUNZUWNUGBQRqOL1eVfWHRC3ubHdZ+/IqS0K6PTanvaNS\n", "mJK00r1QInSl34JvGSqQ4XaznPHZgvpikOPBC9cj8vwONRl+x0DG+OKhT3xlFT1Nn868f9NfQjzn\n", "cCnDxaLONC+o3icg2N52/Cxykphdo6o9w7DmEysQ9K5F13BJ77/L5OSz/pdtria6wkZUNH08w0IW\n", "FsFVTkL0Zgq9ybdQ1qJqzjo+mtM9AT3DuKXrKo7k0LiwDRV3NeYaeUuMqyf5tEkyKiOgThjHpTdj\n", "u/Lzzvzc8Jr4IXifTVrLKZvL89LX0H+12Tyjp6NT6MWoNIJ+6hBzSZUG6ZEe94EXFuy1XBAnyHnv\n", "dIN6AAAJREGbYkmoQWyZTAhv//6nhAC+JMRIAStUWlGTs7eeDwJvIWK35jQ2Y8SpoSwwIZfO42jl\n", "i75iMFl0VG2Q0wKk8F83/cEwq9A4ciQz4AhkkO6Zdj7bAkkU2Fgco8Sq/s5YmWiALvdLBa+5Y4jB\n", "yACGS1ukexyQdS7vAcA+zS4YzakvUg9pKXX6YrE62q1hXaAwzO68vbhBSAl6nZJNQpqQWzCfH3rJ\n", "Pmj5GSoQvnZ8inQyRum2W1CRM6MoCldVZjvO76OcbCL3blEKb65q5gGlcefYhOaZiY0fj5kgMJTP\n", "qw2y56YHep9y/sFk5dN4mW20awF6gvKNgOaCpfTwcgr9dtKPN7oZDLavrKqa6AdvHdeXhnNLPxWn\n", "WMx4f859kaB+uPy2fc6ktRsg64t0djHGf4ywn+5zIJkgXbx5PiOGFdhBJkamdblQY8jCxVvGAjB8\n", "20xm2Vc3CUDZ80MDtur4sad9ts66mcoI6bj8+B+PyNM4pwdZuQ3q0y0BPm6N7uVAGC+J11wqDuEu\n", "Y7nWzyn5vZ97mFtbW/N9b9koKJRC8cxfENyUZsFf/nlC7z8O0GybCL+rMkzeA54ZnJ9UvviiJzLT\n", "gmFZ1voqFHcmi0kwuIqQyS39lVxGWCWOxdWSeqJrKC/+PJYlJH1LR2Nn2mttbQWvHNAXEOuiwZzh\n", "1OssYHbKsBj130rx6O7mL3ar4ApJcstkayg2LWYXRvhOL1hcaEEq9ax8tjOeubV3GeUiKhzNxCOM\n", "jM0kMbOVHPj9bEatOQrifRw+d3xTAZstB8via2+tePMpnDUV26toR5RNb/cni3JoBS+AfNIvIWfk\n", "9OxDwEP9DVG3MKKcsBQHeW1Lneg8GqUmd0BH3wxcrvuAYICXyvdr9FSnlehJ3nGG36rIvOKgFnz1\n", "PMS5Ta3l61WlYFNYeCQw7MwGPvzehFIZ3/AzXrCDu9K+A/Ds1M2hMgznswsrbQmhKxqSJrbBjQ/s\n", "lA/McA4Qz2MGIpkEKMRaUYp63Hd5goXGY7tIA1kHWxPzT+oWAMlh+RC5dLhb+QwhTJxlhE7ARrQM\n", "VmIoztX6zl9P8GyCJPqCwZUHhmOXuF/TTLTOZpPDNn0VQbEzruJ6friPj8LhLTOZI7xOwbOjxxlm\n", "bSCY8m4O8e90TrpSijahX1wOoryZrOmUZAdzyVzKcrwr0B41HBXMNO0GTuHtPDB+s2wx6IOuwfk+\n", "VNUo7SksukX144oVdMqKHs0GtDYpBNxAQesoyPalRDFNYtgWmKlDo20UQQQx72TAkJDCbPkgY2qN\n", "Hhu5w23ZW9qs4M7dXe3WPg5OBAL0P11dJyIBFpLAwJsmL6j5KQ7UANnG+Jxk/BTJ5MWOfv5KqmBm\n", "p3WSADHc6MFMrBdpHwB5WCAWg4KZJfhqodVblZa1B3i+ZIljZWrNoTCgy6EEQO29M0mSoL7nRFpK\n", "hqa2lk5XLoFRBLNCNeKhX1gpLrfmkKIxczgnIGtp0HCjX8eWkPmiYNVJ6r23kk2wK++b+qvxCh2O\n", "w7k2EW3KGDTq0+gRIibinPTgIxoB9otaQ/8tuZJr/LGmiLxME1xkKsSwWjwNQOdF7wQ69oJ9vrEy\n", "hs+b7NDH9X7vs6R1i8quWtRc1KKqlyYZx7AcbqHy33Gf+oUkbRGSM+9YG8ZE4j0u2AZNK6aGxAzF\n", "h40XsBAnUviuATFf94kkKLWl/HPrAMjlopXDOu6VL9ts4NYB1apdm8TnxxuvDtV59DurZnMBI4a8\n", "A81g5sxwg2KiJaw3XRz+4uhlN3Fk8QmYKz1M8e0lsVxQmS8miF1R0IMBuITaT1vAnhlOXyOpFr1F\n", "olgcWbvwnz4nqhkENu2j/3qdlIqgS0fOD0eKdvI2ot96wd4jPAzTcp4IxCUeMRyNurUTNj4JGeda\n", "86+I2cR8pRYw3MR7xRpSzX24WVIcMhmYpVUs3Ak9cAS9CcmAhISPPS6tExe6v9dvE06IDlaP0bhP\n", "8UWwNQeuXX9e+q+tF9KlSJiIeffK0rNwbNpH0TAawmDy8Dyk8DeRE7LF7R9OXZgxJvyYQA1jz3me\n", "1GS9PmV1AImh1QxzKaGajHWKXk15bvz0/rmnBc5+vB1P1A8b+U7XJ0OZNWwm2NzKuLR8CIZULhow\n", "k+bk7Ayz8qVlOfiAMnplaSDXIVmwzj7lrpWGKt2IacTfY7mJFStohgprDdEchJAspkesysXVxFJW\n", "/cyjAn3bTjE9WsEY9/zaKZGqRdfwRyV3KHkUsmX2u1TzA52TFKwN6qgJTHGhy7+yFqJrjs4+s+Bk\n", "IDAZ0KpgG2ZRuZh9/tbstuE2v3r+w6o744F0KiIuracATraLS0IZGl0y3oOpdhr4WrnjBr2Lje2+\n", "AUp4RP1m/aMoaH9mpb1LeHZo0IQL3a8gasn8eQ4LfFHvzVqoRBjzrxrxrWBDGj8RgpcTuZ1UWv/N\n", "9wx/RCRVNSHseXsW+qO7p8VucPUANSlc17anuW0jmatcTWZOtebGdFEO4AaifX4a3viaYq6tXnmo\n", "Hvj5n1nCEy/M8T+KoRmme5YjOvpbe0foHgZXVI6M7cB+/E4gZrYi0Vjh75l17dG6F2N1iwdoxAJu\n", "FwLOcOs4sBPcPL3ux9k2dhpMqiW+yeGcRKjgCUE3ZNZyoajHMmarFJTBT1UGF4NqQjLfnzKegRHc\n", "EacLX04+gTH1ilEHXLDm7LGUeWFIMXAIlDuxiY95Rordmk3HnM4WUo1N1TQKQjFFiUYnALQVu74n\n", "XX+BtUnUt+u9in4vQBV4kXFySLmiwbT4gFlYn8OLkWylNm7zNCJpVmQ4RpgO4HfMiMX9d0dmHEJW\n", "nmuk6oA4Cm/xxm9JvMyXBHp8fStJsU6ioltwIwCBwpUdHVXdVNmR39QZZu1x88lbaEJRpDJuYquY\n", "Ak8aAIrEyUmA2dpKU+z1M5PWH1AnhH2HMir/CewgUJqqLW2I0ZppZN+NodbC+ectwtY6XfeCNOQf\n", "cYyv5CahB5H8mvfKeMstMi8rQzwNXAi6iCGChDMiFpkmt7/E4VC3x4RPDy3/YGHsHZPEejr37QVA\n", "w6+uGlzmpw9AFZtIM0GvkbLtvi+U2czlxNFzOLENzfBAR1yNEe140EVU7kF1o6+mrnkvAU2lZbNa\n", "i0Q06ABr7HK/+C5jdUomXySHLSETP791y/jo+Yv0EA07eYV/I+sXCr0nAAAB+EGfgEUVLCf/AMOM\n", "O1OQ3/OCQD+YSnwOPv2UAIUz38F6HhHdwLs4WIEP8ku137pjBlture4z7kZeAb/f5s/xGUQ9qmry\n", "L2S8CMXtH5hzYR74OXUnwdCGr37spfsBfgbU0Bpi1N7WDCpUwkREC8s82UtoYpBbVhosVRKZH1As\n", "o35Bfroli/o0hortSJ8KkRW9kTRnqZTSo79c0WcqVCuNSyUl6akOpe5MbocKswJmayLAceLHr45D\n", "D61ESnL47abH6p3CLGFdefNHNtEksTdbnor5OH0nFpvA2pmsfEiy0i8wJsYsPZYSsJlk50uO3/Kd\n", "G+qm3fs8xIMfZnPLvI+PlA7RZyxoutPJUztovqc++phnCXtQxGKN6R6kBat2oVYXVy8fRtyRmLcH\n", "AzR5Yhc/Ol/7F/Ezu+WLJYbFltTgzHK1LCYsOyrme15v58zD6fTGLSZo6fZhKjSFLmX+3/Zd/jo1\n", "4ZnHfyCOX6sBtXEwHZwv9mXJg89ccBOVE37dO3ylnpdrzO5FupReFqjOSspHYb3fGhvotPab1Pel\n", "y+dUMUbNVD7/OmIgcQ+7ZKNQalkqApozL8iZTrtMTovQD4CXOT+uZM0AtjgTZQkmnvJvLTRepNX1\n", "Vl2BCnS4HNIe9pL+EgzKu1NjOegkDzZKl9zpDJUFOMq+rpklngAAAToBn6FqQn8AxAnLLMqzMDKA\n", "O2RwAge4AM9g+H+aiWA3+D0mh0T44kdIDOKqEU/hA67DSrSEUUyJXOpOcHOtxX5a3K19UG4jEofo\n", "yBxuDXHeO3t7KvFZNEZ/kYtTLKoh7kxVTShz3mrVyouKqKAvh5jk9Qm/iG3PaKUA/DYHPtFB+/lB\n", "h329mNXbNGWk6Mz0C1Nr3in8KmgvkUOqwP1WP9xNE8vhdWrruQOd54Hg3XtkAo6+ofe49/65lznQ\n", "doCkStDGWkxlKhc9repgnbXm3UCK3b4nzz2TLhYKFBuIktHAmQRWi0G2XXSn426FOoMv1VQbsb0s\n", "CAIXLYRlHWnijrJ4I1DSxtWAyWnWN5rYqF6cwx9lYAaG26bv+jzl6Mi49Ky0Ay089oOdoCtAb4e1\n", "Q7Z1rHBAEhUc2FfaQQAACaFBm6VJqEFsmUwIb//+p4QAvitzS67QAsgwAkKeRAKcEXMN2XYW+cCw\n", "tOVrw+IuDqt7/8O9j90ruxeaP9RA8i6UIrOhwKFZCP2j/4Rh1laXhovA0vjtGck3Fw3JiKwu9Wo0\n", "KrD38PuSGhbNvhAFp1UkEqkff6Xq8DOl0cKq/MkVeWKj35MV+xm9gjsGvzs9uWDyAQPGk7l1uhUJ\n", "G5chUT7WTnrssQNqUqcfj/LbwLiXLcA340URLiNW4ciA7w6KCmcuOCN+dNCbNu/Wzg5GYWVlMr8S\n", "4jf9dd0fwNz1DFTORwu0W6l47OBlUfIYeVaeM9Q6sPM0u+L3rHTUVvR0Nw+Xqj+Y36HeOmv3WOWJ\n", "nIbGBX7P/jupvvJnxAwNqKJxiqd7A/pVCybwJzfcgUPRkd//xwHTFMDbvZMIHwX2UHaLd4b9tzqM\n", "Zo3cZbU6NweHQJSRFLoPcHAdmyY/lv79pDY09ig1t2hRUhJpQynp2ST1rFrDYoNsKI0qe1YC1DAD\n", "i844F5D5361XMcI1+Ggw1bXEL4V5Oejoh3fp6l8lxGGKMpk8gunVGHxQ8R4rzPXiEx8BYwlnjw7g\n", "Iqx+dYs00z5fNFb6deawNUrlZUuKlmh08wGWHUCW53ED+NJjYlbE5aimnNf7Pf8kiaYYNWScNAxt\n", "HBVjFYvI0wlUuicydSurjVq93OE7iS0bXZu+W2gMjGBmbXT6A4Qci1oBOya0MvlOQoSooezTE2BC\n", "sc9lL2mw+Bx1L1w2TuD3wCt2bamtT/RQ0IZ1cf1uXqC2PstpWqs7JQyQB4tz062c1X2y58ZOJGl1\n", "/0I8Bw8Zb45ePl7vIEj+vuHJ3U8hf8MKV54HJ15Zf+1BXOr7C/zZ2uUWTf4uFGmCyHoz1MTKrf4o\n", "wWJwuK6WXnQAoRb1A2EjDf77it0nkD/swqe2YBOQNl0AoFh41HIYAAYdtDsIu1aifLYmr9j1mgc0\n", "aOelmuYBStXdUvcFDzXfXjtfdhpI9xQYJma9aSaOIs3GewG6N0M3dmqQOf1Yup97EJrySloEhZVJ\n", "mGcVWs+0l3wS2+06PiEdA1x/j1tc4zinRz0Q2FqAeU65HB+hsjQ6FphOoVGwElJWNVGyWoY9tp//\n", "6hAJXoTCOHlWvIqBJLqLevLSbB8xfqwi3sulqtsOPBnMKm0LmBiQx/U3f3Ca71hV8B8iUjepoU+y\n", "ugij06E+3lQpOWAPh6t1OyCaSnSqAVZk1nXeiCVL9Al0LmU/hXyfvXkrEWNMZ1pPtQGcESf2+w3i\n", "ebKyPHfLXvHTn8zlMnnSmuRknCidb8b64IjqrPCzkXmJSIKPpIbTel+zXm932/f4+YDbfXMSGEMH\n", "mCcStm0wzkMx+d18n7d/QEXWRUIWJp+1epoGEaeJKv2OR1AZv+JwyWOprEO7EAhvZII2CJKcm5aH\n", "8H/BIYgqwI1VTl1JbXMWnrgE0s0IhWe0fpIUYe8Lm/QzJlRkQeOIvJDgkpR2JLwE/ZLVaJ4kbMrV\n", "Ts3Q+NrQWTkM/QKMa2RGDB6SO0Gm9HOrkVlL7Xu3HfsyJGFguTiBytgnT6mEPcNUd1dblr7rYMS+\n", "xNBknQMbTxX8siAVKq/yAaiWMiXq9BfE1npR3T48i6Z2JZ8ZLu2N//ctjWWXvDdQ6DHbVx+yKtK/\n", "C4YEZBsIopT2+2JxiYN/lqqWfuivV9PL+o4FcSVnCFdjus+cyB6e8hB5r4zvh8nNsdl2wrOMvxcz\n", "j6p8EUuEFePKErnhmK6+JGxLJ4HM+BAQm7/A2/sOLb3DJrdSTsa73K3Ntk/Tl4PwHcpK2l1Ajo/p\n", "7d9PQnc33PxSv5ebGzYr2ZofJqcA0S6w8co+igvQr/D2MBahnk/PQyhZVY9lPs4JEFD6hNi+BApH\n", "Ecg182EPM2p19u6+sOPUp2FzaauybleWGW7CTyhCgh7yqjFnRs/PatJKPymyE3TfJzwQ4/6yHZ+E\n", "DMb0jRd0j1m35R25hZCrRlyQ8Og8y0CSUOnxCOSiM7D0LbfSIapqCTXZxsl0UP0kvPMZ7w4j0bF9\n", "2/6Kt4MNmLbB4FMuLBTbrAv6wfJe6FBXE85B33V46bXdud0gIhx1mr5mOEmhTNTOa2xpfmFeepAU\n", "cDuclmarsqxYi8bMU4Ck2DZxAXwgGhwEBIxC9kd6WRiu+DaJGBuPk6QadSNkJfRyAbQOqqq9N4KS\n", "3SOQQkAGwYqFqnSDG0LlwrVlwEThB9R3CZEBQ44Ro2+u3exyo4kVWWtlYlbjY0xJq5xGYipRFeYH\n", "xGl6GRuQWfA4qo7d+OYoD420sbrpyT/zX0V5B7MYo6RByTyHFpoLDEcEfAXTz5wdfQTHkVz23PUN\n", "g9hWgU9HsIxsTZcGHzhLVyd8ZpA0Gpgc6GbVTgGAjG8vcANlhXN+Ar5qnbZOPmvndJJc6dBzyiRJ\n", "im77c/3dqAuh6PmBGqyaMsjYEBtLQG5ZxOVaS2IEWReey9WX0ECb3jBI9PpkSdxJEOcX0ETBrnyH\n", "rBZxP/PeHw8saN/OvX6t8TzeZLbV1dbLS/zA0Xi07zKAyXpx1nuY4y/3sEx7TfUlsSa66SyJD7Ud\n", "vl3p4kbMuo2OnDcgChbdXDg8Zkz3dY8/WS2ZsMfSfG/Jkdh5rFGrZ3rT26R6k8QJJ71P21ZNtkFb\n", "hmXPX1bihETH0DWpP8uocw7PW+kjxdlHQvwva8c+oT7anv/gzguzIYbHbitIxoYXGOhFfwB8AZaR\n", "dU8G1soWt2WoNteUx/XUoiF9hAyEWnNYe/VZAX4Iu9FsNI5zt7mNxi6rNGrnmSe8QvYiJ1h4Hxwh\n", "o0/PPRIfLMeMJ3WTumrugXltnuPamkA//XX2dH2hTXbaOnBQEhE2iFG2vfxOdc6Tv6P0J25q+fOz\n", "QyFyqn4m6u7sYNjXgsMwbffpWhnOp/QzR8jm1fvQt2WQPNPjpsladu2HUVW++Y6I2cFipFNfYMjq\n", "99JhFDrrpch7o9vU4h47CPAOrGwnKEDP0CS+nc0S+YwX4AcgaGSi410mwh0C6eDcvef4rAW9rysH\n", "FqiK0ojdjJcNnVcWWvMphNboUWTVwqIpFii1zqIi4tOPjcNxcdzMDMO0iMVtjd0o5PmFrewWDHAs\n", "lJaagIrI6HeIDTCYXs74nT13ibzpkPPTuoESMnckEHqyL33gknRIPJExf7hge7rbF6cT2LQ5MO5r\n", "iKvp3eqKwTeD4/RTHm2dXlj5Pr/zYHxS/EdcV+RitFf51uf5CvEFGAnAwr1AGjD0vXarSoXeSsmv\n", "eIykSObEsDPJkHidcNyBPLXVcd1ZO38I9Xv0vpBrMAAAAaFBn8NFFSwn/wDJO6Dm2bW7phXNChB6\n", "5gAuDa+Mq3kvWwt54SxyPJCsC3jZGuCf5EhQiZJUleR8jIXo4+EBchSA8K81/03Cvp+nr2r2kXzC\n", "X9ySkJieM/UPeFwi8ktEk9qUhMgmNdARMNU2/tVTybdmX3LaX2X7jSD2sUdPs2C9gCMu7yFcnyY3\n", "GjqR5Kx5oQVv2JDzSeaK4Mz2icj6X3nozxOpHDKuvparhKE4Sj2O6IO2mXJzvNwpF6SKe0EtjkC1\n", "A3iSvh51DHUUghNdBTF542zjKHqKMblYf1Ci2EuXlslI6kmgMpk/n0jOkE/nqQ2+t/ePhknDSopu\n", "F1fX3ncuxgA5e/1VJRoB+/e3VCdo5T+R7cOOFT0UME24F+4HjO3OE7/YE1sysmOd/K+KdcrtLr98\n", "YPdO7ctmKy1tgDjyeOBk7dPeiEMQox3A2nBI4BVdzhZ3jZGHugbR6PLp4mckct9q+SpnahwLIXQ8\n", "SsKyRkyGXrQq+49LUH09anPKl8i/Chv76PRnZVq3tHFkoijtYu47RvJE7GnCJoXkrtU7F3EAAAEM\n", "AZ/kakJ/AMaNQB7szvACCsAYlKjzMkKyu/yeHErEGiDZ0DWBP7vynnreUwWzX7P/AGuFLVcH8YMT\n", "W4pIHt3bbx/+xwnT12n8+dbByHyOzT9pw9dfCD40zCUatK7IwkqLglM0iL7kBgfYMFC5ueZjEweQ\n", "E7hr9rq+Gh/jPRs/KFtLKEDxTCB5GPUIR9dfWoCvX1FjlNWEsvvh4Xsh3J+tmu08vqbV09QCj2xn\n", "FDibuknq0Gwu1b2ChTHI2PD+OnOT8m4MXwuKuKAva8habRzAs3W1hbBFevOwUv3r9y3IZoROFDOl\n", "i/NGfwdkwiRzh/AC0SlfRZZx4/d9Qt0eh53R//XQ7Q96NWDYjSsdnwAACUtBm+hJqEFsmUwIb//+\n", "p4QAvlJscGQAHA/1TmIAJggOa3HhnnEvh8pmI/nopepX1xnVNasoDDa/5YQrfCyTPTPsU8dNcY52\n", "kl7tZMS//U6exO0/2SZIFZ6gmUn6yCt+mfSk3/aQK38kK6hqjNw5G/AhiVli/WpTST8g9tByMrC0\n", "tO6ZCPUDbB/gf9/Rg5Bipn75jOCiyG/xkF0FjC+39+ofqyvnzdcpboOOrrflG8d3L2uzBpSakdYh\n", "vdBfaVs2P0Bp/BIqYTW67KV4zpjGQNefqjhBmHO2AySfUhCoFt56Fe7zmgYArqqhBH0NSui/nEj3\n", "qOVeGVV0TzWdSc5ahcw/11Zy8VWsKPHiovIlBN+P38Odcoz9jFHiaK8MT7AdtuKzDIN8vNPJsu2f\n", "mjFE12RXjJN+my+WG1ioC3CpsM6ejiMvlGw2zAgHn3t85bZvsx8gQPWd/2abgoMEfd58m3shzsns\n", "6GMpFFU0fuiZYeqFf49NZhn7WML+891UxSjLr9+iXYoVbrOzfZ773sxFHSxRX5gIYfzGJyebPMaf\n", "927t2u3UkF8oNwvQSPALMNSYvuSTUD4eKZurtZq+fLjHxSZN2mMnDWZVJw2tuYOeqAO5qeeAeRBC\n", "loEbsz4CbaBwe1rbWCJxVU9dQzdY1o9Fqb3Okm2NIb7fcSsijXVHrpArp2lUN+FQ5/wR6tS96jHT\n", "A+KBt7x+VCMBHCMPRptY3p5NUaMhR74a5E4JevMMSNifdV5NkY0i1jpKp3xIT67civrhCe0Fp/9d\n", "gPwMO3wKupohXkI8q5kX4NKuJW+E8zu/tT3pPqGFtwS2Nvpghfh+dzOCU1y08UnCD0G47nq7Eh5S\n", "+1xLTOJXwmFKJE7BbpFJGVE597WofA/fVbM72WApHKTDfJzOkenzOWjpL2wnHNwZSQ7PQXOAs2vp\n", "sHKScb8QCbzOKUh/EJiFBnCQJ/xih2yKDe7YWh8cpCZUMCNbYIwNG2REcXZnQa30PlWDsGztB+uP\n", "cI54hwn1U063Ux9I7jZ+JrIGfJmuVoSsKJLV07aZp8CPNfjG8usi4uZO+6Vd7tecY5f/QI289eJy\n", "b+JWsE7k7KzpOgbsitc9I9ffiMFMG1/KKc5qMm8JNS1bzgI+FGcD/CjH4Skrjvv6fYLgglwNKHqS\n", "6aN+q78alozAsI+oeh1PS6rlGF9sm5Ux+3M4YBCWL6dQIMNFumT01YHWkBMEqWCMIFMayl25/q+v\n", "XOMYfpfzVOiZlXz3tluGOW+vgMjHNw7wshjZmfJuh5sz0QnEMP9N/8c02Gn1i944j7GLdWQz4Lmx\n", "UEAqMgbd+yNiigYGlh5OvqCKpasbseBUMLNoQYqreQo6ZYnehhQSYiS5gaKg66tTS+kupd/FnOeF\n", "Xe9Q7a3VRxg89VCLf8ESImCVH+cDBQnyXEB1K5Lf3AhiiKwwtPupEjoM4bhvuFA4H03PlRe5HKg/\n", "+83Uk3n+nxozrYddWDLuBQFFrpNYwyAXKuqdBTglVr2tqMrpUAXyaUmqHNwINSueXOXf4ayL/hxY\n", "VlNAhxpLdggOS9aZbGLKDQyVEBXTZmjZrnpaheVXErHQYzax1UQGvZda0wphSSdQnxS8CagkbMWA\n", "t9txpztN2pLxUHgTEHMLyexkqzTN2Ug7xgza+gQGmH60d/SdeS+SSQ6dA3zKMEg4t0ZOngJbdWdw\n", "wbsI/Xt2a600GZHmBmlUmHdPSjvewmTunG+3vFDnFriesI2X6vmsIw0/tWiT2sfjSM0MEC8PunNw\n", "6aKUscB1DmxTCVxCLctGyURMqcbRlrHwrGzl4CwxSR1gIa6+aGMv7DPIl7upkUNZUWtBXiHjqGH9\n", "EXdvkIjVPmC+3lMOyYCxURWErInZZA1fbANcdoMnopWqmEtKNPgA9CIbWboDkdp9ZClEqmsW/EnK\n", "gWl33EaL38c+XsON4KEocgqGowujnwvlDDgP9JwS3LsV2xvjfVFi+N2p8gL1MKC44Z9iE8lIAgFu\n", "Oahl9oNBXVlOlAR5H+YYzsjHsqa+9lsYMQ2yzQnzzP2PXEvZZYRjd/RzKWbBN8aXqBUAmc6F5/Bj\n", "g1vTIFMbdtNPXS+pUB4ZSmPogWxPmPsvji9RFssGnEKFhM4AZU2lPn7LwwtRCgIz8zeYhqueJXCo\n", "Ko4Tn4k8vbucSK1rBivMBYZj6/ne+L+SsK5tLspQ/0/77s6lM1Il6Mxg6RM0YMqvcWwqVCKrUOl7\n", "vDlmAtAuZNJcfXzMJAap3AHEOdqVX68/n6+7gNJMBCuft92u3uxHL1kUrvk7JYWqfDd5fTbdLZZY\n", "e4ckkCspxCl8hvtLtjA64/Zf87mME4XvdGVThTh8uZV0qRn1M1eD/v3hvkSFU5W5rlTDLMDQRWy5\n", "v7ll2YaQxWx8L7croQ7M5/gLZZ9/KlhNhILfom9ZBn1XPvjXjl+WMlfg4CFYBvPZB9dEI2KERJ73\n", "V1a808hf4vn8QPcjNp21YeF71Arx/QoPS15M8jQMgU5MmQmeOcdDNSgoYh1t90980rj6jPAICv5f\n", "LczdRDRt9CKLhGWipBPPCFtJ1EEIB45I9wt9JMh9KRYsdrTitTk90QvKuwJefDDClrxBn6pRhMoL\n", "acf5N55NcClVCi2Wz2TMXu3yF61FrLnOUsR+ga371F0DJS/IISEM4gWwnB6om8auikZhxi/tRZex\n", "XGxIl645Yw9YQdrkQhELIb91lVTD6nHpSPUfE9AvYkUtZzePd5VfWzdoyjU282Tuy3TNm4ElljV0\n", "39Q6+5hzewEKYpLzlp6xd3LyX5jNyZ4tjDvr9JepJQlu+xw4K8DTDN8ZP2XYsHgrrFP96eWhodJO\n", "tph8TisRMtZcyRcTpkm9BRO+evHgYjoPyJqMZAOn5PFE9AYIMdH/z9/8TVi7rVC/3HSGeR3b3FJW\n", "s3PwOeB4zgCwQ+AwUpCXB7FQmngVfTikUDJaHQO5owCYBZsnYXq8LOe9ELXGxlfeMXg5pTkeeiIx\n", "IxmUR56H111kvGrYcbhydmtjeC1Qqg5vy/to4biWkEwBGVrmEaZLmjrrSh8zcSpDZHUlIGNuCXUt\n", "oZYkwUTBGacAJQ+FkmjJ5j7XYsgWFRe2uOME0hVywBJnJQIzvN8z8AzQCEEUhbmGRlFNSxbSFczs\n", "1Tc3A93BxxGmD+7qtMOiZac2PosP58ud8FtXDcUAAAJwQZ4GRRUsJ/8AyQnK6IZBUaKgAJVhaNU8\n", "6lR93jYJwKfkOS5XVEzRHtbr4OhopgFEjcjqwYeAHJVLQtpM2o0jcmBmwkLmTXRBMaDSE8NygYkO\n", "soFckU1st4OmkgUHOufQIWB1GCLkznw/oFPWlT1dC08d+hbmDuFlyFWIUSYmutolaoCqHLu+Lmj/\n", "jrc6+v83h3Dxc+e0tZNQ8KdAXruBLX4ndKCvDe8kY3f0MglKWdqhIMzbOm5GY9LY38+hX2qGzvU1\n", "8tkM7iIi2885SSRZrL2ZXW+whO8VMtsaqHW0f92E12jZoHFAX/tX2tuX+8qorDbZkf1mLnT3LqRM\n", "3FnrRznwXl5REG19lTet+Zn3S9iKTYP34EKOm2CIXtHW5nWq0/v5ChhblnWJNg9ky4ShJWugF+zF\n", "nbekgzQkVJgrFWhDqHdGMrqkVmG+702qTAoDxb0Skdgty2A054oOXclwSTBYphYx5w9h0ihZsTWF\n", "79oYsc+eLMTNN5PMSlNE+oyZ4bwBOTJbqOwMcllqvsj/IUEHXL+sRens+VIs5p1kEegpPY+TBzI3\n", "fijDVFA1HSZMOM7K3MOqUCvIsOtKmUJwa4NA/x1A47f5O6iQgzQwzZUo9IKKyowcttVV8UbWWPoa\n", "j+InPEJ4WWs3IZiwsd/hI0aKA9xUx7S+YvLfAJLy0GLJP0S49OgH9gfDtyIp9x7nO1gTUV4Cpss1\n", "DnrvCGcr5ci8fnM4CXrOFuoUdFeB/6XUHP1gau23StsB8GzS1d8tWKOW2QywZip3XUYPE4fKyWOd\n", "DODEoBoDag5Bbn309/UtJZ3UFOK+g0jj4wU3rRWZAAABLQGeJ2pCfwDEC5O1q2NTFjsABDNv/fAx\n", "o4chAL4+QeqUclxfGgF2zDGN2QBHK2e64Foe2ljdZvQcLJP0QFWbbLxDtK1YcFifi5C2VSqpKoNm\n", "OJV63S925Im2FO9gcZ+ZAbhjCJnD1Zju115sHpc/7WR1xk2xXl+YsDd5XFjDT5T/1zRZQh7wIm56\n", "7CNicDQdBCvMdhmOZXjEjWCuDJ6+wYqOwFJS1Wn9h0m9owNAZa1ijmlm9yZg6Q39ZRTWyYdQbIBl\n", "pbOOqEFS7Hadd0YG/uQuYV4xgtQRjkAPbXxWRNv+nzWN8Yz2Uh3LYUkJMAfcCd4N9yuKqqWeYZMt\n", "zYGJmI/JF9ONjpHQGVpxlmBeBQQriM66I6XPIluzcIflOuvDfMrebKr6Kyur/8cSr/AAAAmLQZor\n", "SahBbJlMCG///qeEAL3vH4AS1IPi89ACr2oecCuz+YhaTCKQ86jLuf5kEnLuohSO+t/WODzgucyq\n", "lPrLnNyBZBai0q1VDNwwY4d9SCnjOxT//dBVtOa4qov1CQBDV0h5hnVaJxjSNgDwfK25g3hvBrfj\n", "gUeCqSEqnYfbFd/w/CG/xo2Y5/RKtbo0agDVlWSu7OHXf6j/bZiqs1+7/p5Di/wNduDX07QI0QYf\n", "j2z+V5hUUsIYkcrM2jMe7n7ZyyChj93OaCn75qyOf6WO9xlqiFaZrxcF1oIOfBwag6BNM2+Aqzf+\n", "bp/VFt/etQDo19clpGinJHNXAIBK/1GJlJccDLx+Bjm0Cn2iRwF+4KoCEBJCAtV/4ULyMpU2t5zD\n", "aGHspfDdvQJ5ya6yJWlakMn+BcoiOTLGkznnQCfxv2xkhfq9n0REfh5lSMEeE3ZKJ9W8LyFjo9J+\n", "CazrI/BBG4KjKPjq0s1tl+9MK1HBzQuOFueVkNwaX4yLCQcQuRnhXLZBV5Ua2pD8n9ka/ZGSkkc7\n", "2Qjxe1ew5P79FWQo/tf6MXctGKNbiJIvsrITkgbnIXr1W3nQuAB5YkZy833OyGZ3xSYAqCHrBkQR\n", "2iIorES3le1Gh4ksPZKDyqHSPZL8q+wCfMWchDBiHSqAfj8RhPsGizOFhzykHUm2SSGEmUp1ADk6\n", "YVmLO0BZgi3pmntXvIRrcVYMbaM/rxonCyMz5CG6x+bjJq5/g3sC/Yzc87S+PAXHeUQIdra5WiO4\n", "lh/SU8KTQAl24wlOI4+dAFPoQh2DVPDm9ket/fGpV7atn6Qtxup9Uzb6kPrffhBqp+sBawaf/kSK\n", "apIZADtVKycaUuTDwZZ8yzFsstQKLAJ07mcQCqyCm0QimtH6JyVIzLKWFFxYtnWP+9Hj9L/IQKf1\n", "d55atpI2I3qWC3ueJDpv6Kkl8pj1ABzSk90f+5g5vini88bgBxB1hrmHMC//XAGv20dNfgaVRxvf\n", "obYQRpt3unBhs/Pf9oeD3UJsU1pGemvk6sgKe/2UcDlZdKj4zJCv48Bo7fgLxdXmu4T7iysiTVOP\n", "41FS31AeVAeCWXHiWaSnu0aIY0QzyG++Eo/HBhyaxHlO5qqLySg2EagOoB7yPujY2i8i5m3ra1Xd\n", "96xCQ/ddovRJzqBH5elH2jwSaWi177Dlc/kdEj5G8mtS1JYaC5F84nIxznDcHG64gIQRWio8LHyK\n", "RoRaac/eXn7o969uNUmlPtoDcVZTM0hcBIONuv1O5gC0tpXs538bSO2kwLU4a0yXFK7Ah4BS1adp\n", "Z60DmmJems7aHMoCEXYKHViiTXlrkagGR5EPaNcCBkHIsgY1H7nIlFm1ioUALUB2zjG8q/swmhxq\n", "FTFUB/fYcWC8OMjhg2Gw7XCb2hQAxs9lKvu0waCe5GUceljh/aBxf9zWUTn4t4quMwqOJYb4Ghp9\n", "3RAIF8NRr9dJiqwWmM648QbtDltjDwVO2vsk1squdGSO/8x0BicTl+V6RA6piasnJjV2Dfe+OIUU\n", "Fdec5QA8guPDo1F2wX9KSuXPVvQb48Lxm1+PjsnaeroghqiX4ownvICCkiVrMQpOJvzygr/XzMb4\n", "dj07XbRLVcFWg18mW9OZuF4o17EumyxyN+opCfDjX9OVtGVJcpr56Ah8CV+PJTiwZ1hxh6cRlYiI\n", "mZs2TkHPyaLLtxrrdmygGMTTNV8Jpg/I2x8Zr3QQNh56Q8D2IGF2G2RV5TeXRFa2B7udHvemx1Yk\n", "v4Ur/4AhPeIWf/pzzbG9lgiKTdZdvgIoz4Y/Ev6GSajJkZD89HSGM1bO0H4TcGtDaN8I3rKXjK1d\n", "wEzv3TUSap/IBIxBGUq5xQ2NYAtQm5DXJLBzdSguhvHeFgtUZCPssRxg6JSc7LXRGdSvr+/TTXk/\n", "YYD9ENjoYWtRnfNeBZ3iNDh8TsA3cPkqoIuCth0bNr6cDTfEsT6fJfCnI7g9+zlI8Lcpj2D9TK9k\n", "9/oLgw7Re4xCWCnYChHsbNiS0+8kVvFYcyrD46E/vHZz3/S/amB7u/4od0QsYQcLEJJV2x9LuN4F\n", "zqu67cAT+iIdtDRBPKkmsF0F5MVuy0VS5EaY3cLosJi6DlNnbpjiOlS3gEfOYAeBgxU79Nvo3769\n", "sf6QUJCfTiGeTlUPMKETRFxDsGbwgR7fhdBTBWeIpcdXXuUwRdwP8Z0837H1bDrAORjWMnovhCrO\n", "Vpgkry8jhmIqxy/Vfrl05kwHqpugTgC20EpDQlscBJ+dCJl71frX7PlrloDvVyhffwlkBXvD2Ix2\n", "fnw6AoqVOq4cd7KbhSTQR644jj9qb2aLEBJEpB5wdjMNZ4E1jgAWX2pVsKTSfi21XokyWIkrcSEM\n", "amhvdDPNSBOwk5JBi32eW66natYyuTDlJurdfJjPmx0fpt/QuMLAYH6w+HML6SRpelfZqK8BZN56\n", "PWes8v6tthLO11Aitv/U+ultuYxf2wIgZ7/cQ6eCsnyrdD12erxx4LD/JtpJ1wQlEiwWAEM2IApH\n", "Bz1FEPCour3HxZdqq8WZtaD96MRMXFt5qFhJQyhyz3xRMEx9OBzaUieIBp5exfvEyMfMhMtgw7pi\n", "7ABUPNwLq8UxB2wLYV2j5VbbiMtmHMEto4Lo7LTesQIYS84bcOmxbVu+BQlzeZvIXwMj46nqQe+f\n", "GkuH9QkkcBKG8q8PpcsjMTZqIsGIsx88EMhUn1AJh43ErdSpZbSmtAeDdaXUwuMTQ4mMPHtYTENo\n", "MVMJ6l0KenKuNMa9tO+vkDmE5FNp2lSkQJEchO1VQ0AKq95TAoJ/9jCDap3o9kQrHyKLffQ02csN\n", "0L193LM8r2bHrq5wrpUTnxYs9M2fH9DCt0ahUZ+wcWnlOXWCg2t+nzuSVIBCBW344QQawvywQQIl\n", "0I/SfuK/MCr9VBcj+/dhGZ9tT/KVtJMXxeSF5z6H6aYCQTINwBDivNQIvL/bRbRuWdjIfAQCd6Ck\n", "kp4bc3H5qp12eaToskRNbFl8N+ct56FkaJsxBBkrs7xIb8ICUbDVn3N7537ZPjratioKiA7AJVp1\n", "XQrPYZ6h97/T4XivI+hc+yDvbfbovn57B+S3qQvveeywM6VV06o0lmQjG6cZHZHOXjolkUb+3dsT\n", "rETy3++hXttxWgm8+ND9aHscHfaWB4aLfUS0jvFYCPFcO9FT6pWrNCOA02snLfJVXiMpJbDQEoD9\n", "d2iW44NRUxoO+TtVX7S6z6vtvn9G6ZOahHLXMPXhzz74PVoKiSYD92/zEzYKCAAAAoxBnklFFSwn\n", "/wDJC3v4Yq9NUaAA/cwF/XdYWREN2+627kQzllaktrJTxUsAGl2HM+A07g6GNHjwhmIknt2rkT3t\n", "xVLwvryKn7YGE3xUVuuGCooEK8sWzMvmMEirzLtCzF7BLpcbMYxssatRw4UKgpliBF1KoUXzwOaa\n", "hzzdQch2sC8EiMCT6YmtvLp0PLOl3P4VrvUNWMVq4X65l2Wfj00rR9chl2ZvO/2E53c66TbsV32o\n", "/Wz8DODwE++25wP4v3YgGQGttcqD54T+v4rIdHoYCMhckKQiKPwcyP8ed0dxzvX9UYTX5yBhMd5j\n", "evdeolp//gGZylWQCL1zCg7vlBzKC+XYgcUlzMBvnqgZ2thKeeQ7vU/O86ZHkM37yGDz89Zm4T5e\n", "ZcP8SNaIb3sb0VZL8P+Z6Wgug8YytkzGPGcupPHHv8Mii7st5HWSWYth6VaNIF+n2NAIkeZfw+yI\n", "d5feL93+xzrOlmFJIQdtkFsZ0YxxoQzUP84NxBXthDa1zeiHDzmaQ5VaPAcmIR3Zo9KH+shrF+yb\n", "e9RcssJrvQQtlS5qegmBtjjdbPwUid3NIkUYrbcScsrfvpSulNR5wDuiQkF15Zokp0k2ncu7F4UP\n", "gtey7LToUoB/tEH50sj6ZfXQ2G4WT8A6jJVJ1KnyWTFeJ1XVW3tDjPWNf71Q7gj+Dvc2w/UyhyxV\n", "BiRQBONQXPdtueLDSuKjckncbSw/AbQic5aYKYc7LHUnm5IZlHWYbI/pCXfLxud3jrmURan9t+dl\n", "DObrwD4s+JkBDHELu84q7HC7zTcVm2PFoREEgnr/NWxmcX5UmbSnuRxXw1R9kASGa2ST71r04fxD\n", "KlCMVVOC/k1mVx9HklvtY5oPAAABFgGeampCfwC6eckh/fXieyBGf4BosBYoAQjtqlOaThIdRJWa\n", "ld7QSCUQO9Mn9mJCeo0q3JOoIB5Ci1WDbDY3l7BcMca7kIeuCJbk6q/+QcJwhCKKE4WX5oawoBve\n", "XV9ocDcGyK3dluZF0/ZMERFsP73R6pdD6yD00lcrEjcinQFyCsZXaMb8tYFJGUfKW8QJtqi7gGMC\n", "Qbvd/lEwgEeS8LVjzrUHy2V1qpGf9kIaTktLD2iuFrXNnQzF+wq4qDv70StQ4/v9KA9Cn4X3wAw2\n", "mE+RldbfvNMEKFwuTwwe07JZdEYJLrVZDIEwReSYtUenuL+dY5VPSDEWMnU/M5B1we2uWVcoYRWU\n", "icKBlFZH2X9FieLSEp/HAAAJmUGabkmoQWyZTAhv//6nhAC95TLQAF06wbWhBwAD74I7PrK2VJK9\n", "/hJAUUBLTwKXDUg3/56vWgx79ElINwiey1HPJ+0nMw9yeO7zFjGyH3afVt0JA2NXEyGCTL3VDjGj\n", "f9Uh/7fMwSaWCM1Gc2Zomb6BMvIF7MJc0aCtA0xxlgROrLo9TXnRVUw/PngCjHH82k20kLv7TzO0\n", "IjXl9zoJCiBkP9sfDdat3MZ74rqQyLi7rKgVjP9OZ6am9/jKcB25+wVZMNxcktVbvLlDdp+NuUFc\n", "BxIhHhWhKEIljlHQVEbgMMHyccL3K4sL70YPz4pH6rs3F++Vb/lOmHWIJMMO14NBAZeN+Qg2XXsg\n", "KH3TQLIZs6Lp8azMN/RsuVIzVBX9M6blfHE21c7yVV6yaEmL72tgI0tw/Z4c7TrZcJz7WAG08wQM\n", "pxJ0y5lkRrr9sKAx7B3mCfGTJP0cXpAPGjpwAe2g+gqxgJ3yX54xUzceQwfrq6FdF371/dug2XUi\n", "zp8+2rC2gMYvRCm1n1gXxQGO15XJbDfrHnMtrsh/tbgxLX5ZDUdNoZbJ2wm9jPBNh5e9JJTEPOD3\n", "kPclcOAMpg7JAkHQuTw9mqbXqkBHR0RAVPCByj9KDjVhhkq46YALJaya4M/z1x6/WdJdjq57RQp8\n", "W3HJbUUk96LzqzldYwvvR7a6e529OWa1g5ZBw3rkDSUditovxnoFCkaDkJ8cmTIEA32hscYw3x7+\n", "9JaqOKVNUh0eWhUjujYHD7241mxFB9hsSM+0Tn9PA5nrXIyNWxOBcQxAPy9yOu4zWbDZzvsHsI5W\n", "2cOvifdLBw9APYdn7NufCH/PNGOIAhkwCkHW+PePC27Ql3vUZ2Rv/Qf5hTek4HSWPzCO4176XKUJ\n", "Vbl51JUnSmqRSgfggdmdC+mswz7NrlAKbwDWecYMBwRV+qrRdp+3LY/rykVNdfaJQYKoOdRh84+7\n", "jHdlpyBn4UYXs4oedlQ8Z4JHDuohuUpgXcOQGX0iLcgprGWw++3MbULoa7IOmw7t6+l/p56YsC9g\n", "F2m9qOmGCPvRmgyJ9zLc2LSuLhjhAoWNN7+H9tEY6K3m9BBipVtW9eC21hJ1njFzoWNWP7Qk34+A\n", "F4h57eY7AjLueO5kCnNMMkW3cUl8CzsHbJy1Wgx7N8a7U4vlyuQuUDu7jmlnDEUg7Jv3Aqtce/05\n", "YqVzZCLpkwpzIDZoqf2hTpj6geBlh/uwNnc1fuwhoY1YcmUJrtqdx3AsYPGHILa2b2pHF23vtVbd\n", "OqfqPkgQ0oSl0nwNjSYaRU9YTyRFBohBqW4PIjVHH93wZb/vgY9kLG53X2/K2UHuVKA18FYVcM96\n", "K8lYg936V5Qx/RzQibwWdB1/UQAbmkYsfoevsNurSotefyADTSg3sBGrgSoOtqkWo8j1rE6GQ3CP\n", "iZij8Zg39QtVH9Ujgc/W/drvWavn+e6oVr95Ysx+NGusCgMcxoz2f0llF1yUacBXlNOEpF51AIIF\n", "okEqRNqu5XiasklY9Yv89/89/9Lc/B1sA41wYb8zrvFnsmtZooXcM4ejYDXHZ5RMrfEMIPoIh8mg\n", "WfK41Mnde6w3xg5I38niCCzbTdHlW2JrbqDo9nrKgaVe2UA48mrx81MiXCIkOMSM4Lrq77ymwOrs\n", "U9faAydpoHF7gUo8KZuwEzL4XyAo8c80Jsu6RFbL8/oyuzA6/bTZS6u5cEuDy/OA4LtLihYgdkRz\n", "LWyEjFwJabqGWtm7UmQ9QoLHuapwcnr9XJxhrG8mtN65jeseGovt/gzoORZcL13hl2BRQ+I1woT6\n", "xsmXy4RHMaMD05FOMDwWNXPxMKF0RGMvfVvNfjUw4LfEaRndsbsAc4cjJcf+eytmP1V2/NYcYsQb\n", "fmwxLAlrwTPbyZpZ3DwAL8JNX1xQevrfI51BfZFWouvcqT15KLNe7474zHrGaYOq7+Hy3yXYi2IU\n", "MlBq2T8gz2enFl3IsGZtuzEA3yROWtpgHinP4fzWqe4lKbd9IM10R4G3krlOT0FWWXaIw0YqD3eA\n", "IUShhd5t5tBgCcjq0Jn9C68FR2kZjZ/jD5e2R1XSLSiy/0WEC5KqNCk1zT7pzQ6pVgjvNB5BK76V\n", "SPxHzzvhtb6D90XFZY22Pgl236G5lqtSJWRIjjVpyWC7e+pSaCjC/mM3OOnfrIW/1LWiWamuKJH6\n", "S90Cpu9foRt56q+QXG/DBIEN2fRTKFJkQLf3puOEQyjkWVTb7z+P9Y5AKZ+Ch/Fnpf0WnHMn/jnI\n", "zsF2yE52XzXfKsKoXiFhko29Vhlk9IYQCSwJ0IY1iPZRRwmrCvxffgnOIi32OV7JsC3PVmh9GYmQ\n", "5fC+A995RADu2cD1bGYyXqOvQ2k+lo7ahPO7EkZDk5dNqHzJqV2YOfKwKTTSt+NswPUOsKNH0Xab\n", "6avqWYlxpN9hgEdZa+pKdi8oTyBtwKbxocM4Msu+fImfk3VbcMg+VfnEBoTeXKH076ZDCFe/VTgu\n", "sDbJzLwqvZac9dH/BnTC80he0KtrZeCOL31cLnQocxcHBPyxViyM5eG2mIEHJhWEljJI8V0Cy6aV\n", "FCgyKZlX6U2qo3HyGFtHocyMcvItbMKgL/Gir87rwc0oOoaHTAhDCDsYUSGyi/M+iSaoIWCjts7m\n", "xX14WSY8e4SJOlr/5i1SybVOT3Apn0VoLNUJphUJ7pnk+K41ryZLqWmOuAWMtvun2jtn3dO//0ks\n", "zaOkO1+/xuvZ29up7CP2nvL+FpaNZ/0Bdpz9H5I0s1G3P57MAkVHWt0NJIsZVjCI7C4Xau5vtxhX\n", "znpG6oMGcaY7ORCx7g96gDSpbhE8mF0Oz4rI9sRiBb4dCM6/8Pvxwya/7DkO5gvF0FBT1oTWFhKz\n", "Clwg3UfunpsBNWJ/VKegCKDdpUBPVMRHCLwLe6tSUhFZZb9lLQ3EHR3bZtkM8GeMfX2W7viMQZhW\n", "V8NphziatzSGGJLjtCzRmsNqKAn9CxsBxDd5z32p6ACVzQaVphXfe4AKlKhsxgUVgXbrBlafV/mf\n", "pHU27NpAR7sX7Xa+6uNI/TmAk640bd6a4W2ad/8VZcoMboVPPxipgGyjmaEVb9wfj6GYSyFU5JIx\n", "pY7/ifnPSfev17Xw+Nnd9B+xhutLpaf54pf99Y64P9yNBMB54yroqLmqn0vcgVyLHoL8cMMlaHS4\n", "sfZFoFRtEvLtfgOs37EGnkIJ3HWWJK7DKZk37ccepSvMdU1DQLSSkZEeJ0O7otbZZxSQ8u1dRyaI\n", "uq3hS3BL78Lp7ja3o1+U9zNP9/N35whTpgAAAg5BnoxFFSwn/wDIp5RcABcug79SFEcEFcfIc3Eg\n", "kEVXFZiymbjuV7U3i7ro4utm5LDinAK4nduE7Hzil1ynYYzeGX8cCDXwbuql9lAMLlLkUDW+0FVy\n", "viBB/Ka1cuuKku7I22S0tYgGAYblG7aa3X9rCpC3SW4Rjq6ymlTgmwN3tURFyxFt3pV4jnnCLvZU\n", "Idz5Hls8/tZiGYkRrFWqFPMTz2CY36jBDSUuFhJZgrcx4qj+6fylRWlZ6n6z+qDD4ZQg30d88RiV\n", "4Ky8JcT831QxnzwUiJ2ldZhqhuCbv/y1XuQZGfOh63F/scPRyxMvcG7hLFTIW6H2rrVMLN70Z/x6\n", "RCCam+lk4VvbD9IWFWgjJOexgF2IwL/Mx506tHLtp5qXP4CtSNIYNCCqNKwM+XCiQo3uY09q2eio\n", "uD8xr3pMiIv/kD3TOeOU31DSa1+A7CRdP4d0IlsR+jYl9ab0xY/Hoqt7BRFXOEPGovIIuunU2++/\n", "EYwcpWQnpPwTHYbMQIyi6zo2BUgbS8ZokvK4oDWby6j7bgWZqgZZlwdbUcexVOb22cRmq8pBV1YP\n", "lj4v3aScDDTrhlDIlKSyhHgdbaI+ws/3bAHOtKObIFCHRO1JGkTx3raKK64BpGpzEUS1mCxRDAmV\n", "Nn99StRC5BavLKnjSQCaJx1adwluKM3fPzs3fOBhZlk0MPyVBEpOCUvBAAABVgGerWpCfwDJPAWr\n", "miDUR1oqcAH5MHutVFt+qWpWlaW43fdp42nm851YDP0JySfneHp1YMhrp/+4aFUHAnwFGy4a+z38\n", "TTwiubmkPGGB3T+TfZxuMq9zukfc1cxYBnmSoUo443C2m03OebS2xAAyIJGufDxqH12d6D7VWmt8\n", "LFeb2vBCp8R7MuHd5R/1+lclxZLM8+vjitLcsuPwXYSCfDJOBoUfeGARikvRA1MiGkwpyTFXJPLf\n", "A1g8Izzv/IFUrvAh9UK2IqsQotAuF8kY4b5Dyd79Hy3yaLjasE9AQPtlrmG0ANJ+MPve1ND/SjJ1\n", "6761thNY5d1CawrNcn2lCbs9CQ8yfShswCU+MdBmlrLZW7K5J4N/9chfS0B709PL3CK6rIkNIQr5\n", "JRRx+Zb7RgraD7m3I4+A5SgfA5eNl99YJmmJ1/qpvJayfDc3c1RvQ2yUd/RMqQAACVNBmrJJqEFs\n", "mUwIb//+p4QAviupZwoAC6T1SEY4qFb+y3j+JpbCV8R+aT46vZh8zylblBjGeCCMxtp7xOOlQEff\n", "v/XNnYGqpnLPHhKle4MITW36q5euTdraCp8orhm1RoMcQnrpsf8Hei4r3ARETMTocY0tIZF1tehB\n", "wSzpqc1yQgfcMZaHBTlq1N9fygbqb7WcNUGlO51Y4rjfSuzCuOZXQNZGwAo8SZ+tznvDRHFcu6hH\n", "e+mA+byBkFxGIWb0pg4qLDICLGOvlLbsTVViAysWq5O9At3FnMpuqqs5OeovXaQt3I2WidYoD6dT\n", "4Ko6QzwplKVRiudJE0C6+lBR19H6wYyhREUCrBad/u0Wb16oYwT+kxwdt6cSPAPyU303qTi95pK7\n", "FDmGU6TWwkskMk3gaJw8ysaeDer2ysYIktNQeRIybQJjxDS7ESH9lhT+cn5/hNr32+xJEsVYlJI5\n", "cCzUGw8GRbG0rYZXdZz8OOLx127CNS8RzgssLHuX/qGlseTndSScmjKi/gLEdhdRFoJLN+Af4sEk\n", "R/SS1/mRLJTscbvQk+zLyNkw6UWcd3zZPOTRCwpfexvXlHc3gYdmvEuIlml9RiQ7AB5zosi8LNxB\n", "MQifDTieJzlcJ0o6SKuiuJoQZrA0gBMuGihBnSLVYY2ZJ/4F2hzidlaQYazCre3zjIqMS9WLI8M9\n", "E+Co3jRuWbotdx4SA33G3gKapRQvkJDy6b1lmZ4NDM0TyqJ2+hy4PQ7fZHFjJZQWvIdVLkVx0Q9l\n", "Khs49gQY80fRqK4C1Ntou8hEhlE54FLb1BmqSWBJf1Kmr0EnRFskgznIHpYMCXmLHlCZzb9D7ti+\n", "lYeGNO9o0s3jX0bixipIHq2B4Sm8wSfI+P5ZuldZ3PgUVhIFIYvC/xD068mYTNRo5ENx6wHK7Oe0\n", "oKDmApvC4OLPU2vw21AXCC8lxNVBzSMcCRFTxCTTSIohZU5p4LsA5bfw2UOUj+35CzOnBdPMvxsC\n", "Wr+kfxnIPhhAoL75nu3bIXqVowY8eqw/DgbryklP8NPoy7haOzdDozprYTFpUREHlrnKnbtRmfT7\n", "D8tqAnvrNb3brAUtSeS8zRZ4edscBKkj7uVvrCbrG2LqfIDJ7MBPeJKFDvZGHhg0++qP2990/+SP\n", "oCTGroqaFrhk4MbHvu8fsqiIoTwEGZ0cwGIWQXJE2WBV5tX0Mvlyvo56ec7F+qEUaWEzd2coL9kz\n", "aXnqKhgBqyr9jbrwrcWrlF3zcbWzubCqrL/ZFUlx33s47Ed1DXbDa5r83hu0aTUZXfWwx0gNrp+R\n", "WGSGeY/PEN2gZrC7SSgsXNGrNhuGQE4QefbxQQd4utqRXiHF7AHWbvw3NwYweFYTP+65R2SC8RRR\n", "yvDZ3pq8ekVk4680S0SgzMKE1fisIDroydenq1+SHUrpnqnQfNvvTWbZ3qnlSgUTIWuHWYzgeA42\n", "gj+a6FWjaQyD6aXv6dMFHTe2egk6itR+pbs+txhg7MySDFf9pp0RH0OKZ/K4xlBEABLw9ck3hTEB\n", "plyWbVKY31LdcG3rP1byOvyx9HT6RSpyUKHIDH7EN6bYffCNv2sv3FiZohzAqPq9T6vRfw3AlGW7\n", "ahrKIXz06+fAEWuuS6bbEyFHt60rRQX8JzhZhbxFYrgZpXonLCmdvtzdvqcONuUkRW3pyN/zT3PC\n", "Xa1EnunO895zUPwuJtCmRlzq7oXRVQ6agLTYkK/HDw8TlI3tvJQlUNk81aRP+HXUiVb+YHzqVZGt\n", "hzh4rTEoVX2QHAMKE7uJe6wLRTaGbMhecVBK20GRHU1WtCm9ngfbeg/bGFblPhJJ+dVmp+rMtE2E\n", "crZwiyt648Asjv0zqyaUEOi9fBqCpdrLCzNk779Xsvhz3EiMZmJtfsLp0FpvlS8t56OleXGpMWP2\n", "VqBiFgfcnbC5ZRPSDYz5m8H3mExjwxuROs3sn30R4zlq3cH6OJeuVn5LZ6sT/X56LjWJ1QQ3/CDk\n", "2LF373lLGNvqyj2k4U2aCnci4mNcIoDp/DLKBxCJ2C4iy8RhV6tT5PtLezYuBeY6/2J3dCubfnMp\n", "kDOxvaChOeOTaTPJL8cze/lcCqp5L0T/qZeO3h36EaqgHnJR8ET4wlRNfS3nCotaI7iHFdKbgUlm\n", "C27MAe+acL1na0yw9KAN/Afh1fPrDmDxK7L6yOCP7+cGRylQADdIFnv03IyaF9zlBVM4EHhzHIFx\n", "t9EoZi7GXdQ32sjn67rf3ymxIvqVcv/zZZno9ls62lBzeIlq6v0FMJeBZgzLW5b4IVXBE4BJUim9\n", "51619n9j1M6dwzXRr1bdw4hGzcciRJWJCSP8a45e6LbQBfihniQD7lYcKhKYbxVCpPUDR4wm49ly\n", "uBAgXONfpHhm/CBEHtVpG2wITexwOE/I0kyCbLcesx6/FLGQO95Hgjyl5KDZIhZtVIUj7Le8C1ZG\n", "v3XOrBghO+OMh1jKwLfihzaCrkyUSIsLjYxqJy1V/uoLL8TQtVhgSiGezv1HUiN2nCn9GOuND6ts\n", "8dR5VONtaW+fFYs9XhAsOSfeo6BjmLR+gJkcbjcCe0Hz+Wsw45otKIwdnHQW7IuIY6h3EOgax+uZ\n", "6TQb+2KLynb0uIlPqAca7imfQhevKHC3NwVcKew77/Z8FfB5P1K6qmV6/IFH+musn4ZGqGGxesd3\n", "ZhnR/dkCabezJtMUkj2/6c7BHQ7v3T7iWbmsl1ZF92/wAouoyrctGNJwb7W0pH3OTT8r/5qL6Acn\n", "ZS7IaZsCrkNIFV9rJLjf/FUin4ojnielHNxMIi9JRnMxsrjlks1MDAZKKMYfuUYAFxfXev+f1Pn7\n", "XK0QjMw4Mamg/V4Dsyg02LNfoJfOIOxmopaSNvEXiG0M3eBgVy43sSRUwLegKX5Ubc7KVHdCYVIf\n", "Ku8fVvmpG7jTvFsYPYAIuWDws3NLhExXQ9Z9u8yXe8h1kb02WPvIhX5V6yBG0QJ3hYKeYRLdFb1J\n", "gmzs+y2fiMs+gfvPRm7mzDfcRc3wM7B/n3KV+aa9FHdT8gnOf9nKli/Ymz/c84WbwS5bAUbHMpJT\n", "SGsU/Pva/8xenJBRIxygxky9SRu5swYllXPfnZzFZtm13UbOgcMD4T+48vGaX5NfxHgvkVlaLlr9\n", "nW/bx+WFaGC3w/a9N971pCdUnI+lW9s9CHT5kELEXZKgsBhPJKpIH/qkXQAAAqtBntBFFSwr/wCb\n", "BUw7AA5FTfzURmWvV17BJAOfIX4zkPF5aGf0wqf9Mrktmszmb2ZUzp82OJEsaiwoagaYPl9io7gz\n", "GDZWBBv270sIyAmtSxw/UK61o7j6zSzD48V+EItqjTExtQdx0EkcdjAljNjQXnUFAwaJjuWely4p\n", "0yt9g11zkSPQmZ7vfnI8GD9W2+UXxiE5NvFLLWqtAFxwVSGHvZX6cmS7uQzkbGH6HpRbGEQPwGdN\n", "XdVWLder/T8AbPyBFia3THRYpU6LRgrYt9xIGeBsQl5DfAqbuLK4+m5A3C1gnYC2oQNpjiRvhewq\n", "SZpMHrPU9mt3RqC6UXwLHeaZjFCaykK+3a8VCC5PbzcxYS9P/NSaUeYdXlbf5Orl5PuGYfge6uct\n", "NbXJzENwUwfGnTu/jhtKTZrXR0YNTbiNS9o3S2LTI5BbGJcISgrWCvi6nCwY6rRXjxEVNszUXV4s\n", "rjRwm/kWVqATX2mOGj4lJSurk3WpHGU0ht7gS3hcxSCfdi2WVazd7j50Xgct2ZqixqSka5YnjtaZ\n", "vcavjzq/zNnZ3RryfStQB3F8tmHKCjCOCFCFlB20dXy3waDdzN7qRvEb08OxRms3RWTlyrkRIz4E\n", "9l/5iMEoQURtc0667vG9eXpC7Snjjsfqb1auJxMCGEG/SuRtnTQI6+oE568qIwKlYe/T10nddEey\n", "6Y5ojcRqVD8Z8cIxWAsNGb9/QQreqDk/5b7pURND5IjtV6BRqsXt+wqYQnTmD6FcN5OPM+UGipLF\n", "Nhj+PvgsGlmXW7tyuX+P9ZtK1dAHOLEujS+2tGNEwkc20IOjhPx8qFBwoRwRkdE1WwD4e692ubEu\n", "8tBPUs8PfEEDnbXJHbd/7w11TnOZn3Ys0hMli1H7iYaw1SmvUv8ixzsmRaWxYAAAAQwBnu90Qn8A\n", "yUvwEsVEpI/Kq2qfqyiGTNAA2IXegoVc3VRB+87lF4XYWX1L9c34fCgc6zmD0G+3KWbF2ij/z18I\n", "bSJ6PeSyvbpysUL/U1C1kERHPTWeEXMPblXEBB/Ry5t8rP3SHx9ZEU5F/nzu6ygAQCV986KWgucM\n", "IVmox5ojU6uZOshdeV5VUTG9GOr8rN5fTpFlJQcrxz4zliUQ0uGaD93FXmISm1buICP6juBgnmAb\n", "iGeGdrmhjwW6+ITF6QwCX1r3phzdkdFFJ3PeV5/+QLIm1gg4NY8xrjEA8RxvbcNc2zTrbeZnI+At\n", "OZW2XOdsNRu48tChUEnKe7HMU8KbRWVfAay9gEtemLiAAAABIgGe8WpCfwDHh3tYEAAh16m0RCZ/\n", "a8dj6f5/WkJ1CP5vqcYwMZE9N+fp+mHEqtHB5kaCRHOIcbvk7u5NZRwMEmwqvG0O9Y1R6ezis/Xm\n", "Edno0UQhliWtVLiApGx251KopKCOO7SrkMs39PdPVogSAiVe50MJV45+k1CHtrL0AGZWAs/d4RZL\n", "ponFQZiH44zR2h9VaF9nSuS7/eFdchtp60PmE/aNM4rNuhQGAJS0NVvNvOgPLeFd0UHB1MjiKWQk\n", "u6MGaWjMTkwCnbDZ2BQE7l2v20+NACmcwIg3atRio8APbzFlm4+qo4WEo9R4YzKda2yfBA3DqJLd\n", "lSG5QK4ddcv/0AUeNn9kj+5phir0keBEJJvNGnP2eMex1S00hCe1FvPnAAAIakGa9UmoQWyZTAhv\n", "//6nhAC+f/a6d5AAXRq+LhVbgv6Zc4ZjOaTz6lU9MFm4rBafV7m1ytxpASyLoJLevOwodPlQnwuS\n", "3bdAbPqOh1LAH2wFpa3zl366sHNsMxJyvlkuhXfmY5TOyvJS3H9MfqG6M+eTFyTbup3ONnUZ418k\n", "WX0vexP8LLbTVT21BJ70NAMJANiB//ncJKEDi64GQNpX6nHv/2sJsQtZ+bBdftbE0YzbZn4+UBV7\n", "JhwqQPH/DUbYo+VcDSl9GVPRXD5TjXp2156KIIDvtnwTmPyG7n4r5888eVVhSTtBMH1iz0+x1lSz\n", "H6BIKdvWeAUPqg0iAyyskCkynwc0fWNpHnQ5hrmgnm6vSPlLaaC1IuJDf6SN4dv6xnmedemJ3ztB\n", "daXJN5Ls1P7UKgzlV0yL2Y5rtQfQzUswCii6eZEcBIunNEzS/AXxi0HmzaZm0gWgVFFG3VuW+1r8\n", "RTYSq6HXfjDDdj3R3Hm2vchVc/J1tzoCY0UZAt4XD4oCQXsZMAK9eB78AxT0MoGfidwvdNwgyFAo\n", "+Wuoq6ePCMo821+UJNwkXOArWvWwsy/YLMDdaNw7eM1VWRFPu04FK8HCZHhwxqCGAST6mqsZH69J\n", "oDTItju9kXxyD5Y6MZbtZJKmQ4oORN7hPVMp4iQ/BioCZ1bhOxoA7wmQaUZUIx2sGi4FrtJVDQR4\n", "mI+enP5HTtXWluJ5hlZHn6sV76L+f05LlmYLbdIEUUiB3l8ssp/d6mT7SUzjDZXubY9z3p4nT4ww\n", "ZUFMiTPFVzGMEmYFmtDQS8SJl8Dyp95grlj4pjfP3/v5mgyOKR0TSijYBMahxvJHzMLNfeniw4bK\n", "n9AYi97OeosMHMPyX8w613/SZlSnT8VCDyVy63wvi5ISGrBD23etYpqdL7C8S6lS0q48L8SCvJfN\n", "hRETVnjnD1JOAx0dezs0z2uLPkt9PaoYXdCi05bVzquOOavHVwoAdKvlBGsjvfedv7heLSslt0sV\n", "eExB6JEaWR0TyZyKjiQtsA5L6Mw4bRnASEP/mNetYWfb44I7Xt6NNMjiKQ14EbGVRe+cu8/6vn7a\n", "9/xp+Wbs0Sv7CsAafMD1en81mvxK0CT/+i8sd8HFLlk2jP3a6XzWMehX5kQJwxzuw8Kmmq5tx7CZ\n", "KeQEUYb4m0o6kV9IelYv1e57CCVJjv5IMMEMyrag+BSyIOgJVNCLJ4UWnOIzM/7UWf24B06zB2QW\n", "Vs2kYur5TWPnu5l1atf/c+lpsrtNZmN9IQh1jGVPHn38yg/ko/fJ4u4AZnfwrTZsBpuQx+qrcI5Y\n", "Dw7OPLG+mU0tYPlwvbC6A+sSas7KWHngV6/QElNsAT1DVmIotHqDpbxo6Xszcb4n6cP4E80TdbFy\n", "Zl7tYiml9zaM0UgcsPjkvQcqcvi679Jw8a7XHC06HguKa/mamQQIvXi8XgTVyonhbbeIcgrqw1Nb\n", "muV8PQVHmPzfZgmm0rMBR04a53FBOdQEAHT7K9vvn4YVgKa77gqkk4Hg/7H4aFVNOPmoXnf9WVpT\n", "ZpIuFi6K5cQagy8ca6remswsrTIc9O4wtE+P/k+vcTlcsH04v+ZaQ2Nq9PVAmoztUGkLfnBeQEa/\n", "umKNElGgqPHmWvnv6Oh4cT901wjhDHBYlvZJpwWj21fp0qqYwB7k1Jm4qm0YeSkLGUm9nWEN+iY7\n", "Uc7gjDGkbqf8Ybjz6x1graSDwz3mCkus+jro1DCfJV1XuQtP3FI/xsa8oSMw4KbfJnG1JMtBitop\n", "o5LKPZHYyv3HwKBMxI75TCMPSmfv5ctTS2g/RyEi6TnztfhOmvS/roZZLDaWhOZ+w5Cg88Z3ze5l\n", "p7TPy0v8q72Bwuj3VMiF9To58DQuMstfghZ/bvay4ntgKpKLnRedH7dLJZL6Z95qtOLrOw9POjf2\n", "RaoCUqUVUnYx3T2WNgu0WHjEDU4jZ5VrJq43mm5i8DEXtVp5mgLALbdCbX0TUCLLiE2W+kw9ftCh\n", "Ax/KbclzRIuGcSw+tLpN9KBrVRF0mJzUw0j3OFJm8NTVxGohVGJB+6/s/1jIHb/0lHrY8yUVEAZI\n", "VikkaF7Ec9sGUfor0x+sIDkr5rj+t+dSoEnRSEJP/rgoS1pq1XUJLwfHPccgw/eok2W89nP2DHFx\n", "SJRa/jAZjZVS9XK0XaCdtMRhObAQ2Qbav1D/B7EgsUaccHN1iX7qXRwTDs5PphEiSKQCsX1A9xkd\n", "aE2xSLZFRCHu4Ug46xBZ5u7wyfuwFFINV+yKziRT8IUYfnZDGnPXZ6M6onMzafLlK3Qw1+FZDjz7\n", "2PFk/NyuyWMDDi5eS/NAg/zhznr94UTydNagMg15ik2BOit3eJwcFQdXutIZP/9qshKR7rUKX3VI\n", "hywi/umkc1ewbw4fu1nDzNdU+LVO8HLEba8V3bVFWG7IHJdakyoVtrIZdeuHB16uhHUzrreNwJSB\n", "ixNkTL84j14MutieSeKNtF8atGvxMhB4tP7HZg6xT+pwQEJlKk9gAbawLjlL1EL1n0KyimWd6jIh\n", "0GAPPb3KinOFmRU8KIgOAl7OXljtgd4MW5UZJj+hK1fFDaLOIxLSNlJjRWvMJvpQOJ96E2zfirTK\n", "YUgtjrO20bGE+utEADQ+jA8db5TkITmuCkDF+8cG2zzr16udLdkoElTcGSa1w16/r8LqkWXCQrF0\n", "PCtfWUbLqrmOBI/c0E4CxHUa0IzvmUOTXV6Y/Tnm1s/kE9eBXDXBXkGC0YFOK5Th9w91Si3+HU7y\n", "5r+sFu+7qv/k03o1irRxOReHt34tttptj/T+L92BjmOvlccTUwvA3sqsqwjWpFilOGjS5QkMOru3\n", "oX/vH+pas8xeH3HxqPNe23kZV5tcYpi5SrvkU2MfazqDOAAAAgJBnxNFFSwn/wDIisN58AITin1c\n", "5/TBkAmawzD/zFxGcjEauS1pkuOZBo+vZyiBkvRK2fN1wDqOwQBhulAGbjKvKTIpzy6BX0eg7r0R\n", "ns1Hu8v0iri8UT2/aftgZZIlkzlL4xTO5SFIK+hCaQMfEOQ1xyHAE9Jdo8DHrnyCD/92oQnjk5wh\n", "iROOGoKorMxivUsGTr4U4ml926IRrEFFKs8sRJB1hdmvY4LB9RStWMYnaV1bMd6K5zAw2HKxaF0R\n", "ooCkpYJtLluwaEFZAAHHZCYQ+At+rW/lU2oCvFx+QQvjs9PxjZxEL/zM2e6yEjlxG3Tdld7qB0bb\n", "PZHQw3BuC3gY3d/Yhw/hk4cgwY83CFPpsh2DMvzseUsDXyX/Z7Dkyd1rVOT5egM6M4iGu3p1P7nR\n", "AlMrD+j4Fcb7u+UmuEA2yH9ywrJff0ZQNrl2S1XNGvfkaUzUMtRLXk8Ti5nsdHc1fPZ2m3R0IoXh\n", "mDauEPnanmoIog6FWsr7RvmDH6YU4njr9uGJxp1Z60BAULoDyuvIi8AYQ0IdTUeOUyQ7QuFIK4Oc\n", "DixJiM4KJ1Q3djcM9QCdxcvO6/3VwmQCp2IPzhcR7fKFvc6dopVE1Qt8lvKd1bmD+UGLbO7oXxpJ\n", "gSo8Qa5Bk77hBeIoN1pKRqzA+hnUOG803FkZPoTSRMKAUUbkttnqAAABNgGfNGpCfwDJC5VoJVhq\n", "AEKL0aQ4+A2P3N44YKyLT4SaNcEgU4zzYG+cLDvQwfjg0cRNL7qfECg3mO7A55PEzbI/80q4hztZ\n", "b1e4DVjZun4UG4JvnjikKIgEe+1Bikr+aXeZkL/xDKF0BStx9sdXU/dhgDQitSORbkmOU1CTvW6r\n", "0Mkd/04q40sFo2gaGit2oVesCgDFuuIAtKjSjZfnCh1QwnF34QD+a+Y8EqjqdJV4+bOa/cO5Jnga\n", "KD34Knbhih1AHv1D/0GDOlP6DW0wD2ehLB9Es79+HP24UBeKLgAAj2aN0OQeW4EpjO3hdAyV/bY+\n", "U9S5rPoS93JYod8Yl4fxmD0FRILckVpAvYlSwKl6cULdpSYID9jAqopwFpYUIi2ozc5EefBOv5bR\n", "w70Mkh/Wgcq+VvUAAAoOQZs4SahBbJlMCG///qeEAL5KicTvgBLNSBY+1Q86D0TM0n2my6gh8E5b\n", "1FdyvendF47fHv//kgxdQPSzrs/EVj6S9M4/4wot+53L5YrDkPsMkfCf/YK+Jp4JB2Ak9+yHe9ki\n", "k8CYXwP19/9suGgV/d6l9Nbg87QKskwJ92NhR0fsBvCSXdemZwv+l1XvRrMkiz2iIv7kmiwAzGD/\n", "Whukoiab1Go3+hF9f5YgIftMCnkwCTY4vhuBi8tl30fau/9mQvnh85mZUeQzCLvlVZLMgtdC/DAV\n", "bCr0AKBrDzumcLUVZEDW78B/0xsn5Y3Zuad5FGdmUT14mxANq1jK+ymZ2wekk+fkdi8S2703sVI7\n", "x0691CBUIqv/qmG22StBLm6LPQPF5R+lVBqafoiplzB7+26wcvnS1EqZLICc6lPywyRADbhxwAxL\n", "/V25UxPPuX8e2jgAgdXSw9WR/4pQ6w4lTQaUFkcwtq9uBRB9cojisRanMhgg66CR8eHGWE+kIPIw\n", "bJLYg+BpFOmBOf8i5a8IMtdU0TRSfOKtGpWPZErU+0zS8xTY167guvowTjhtsoCgAR9YQqkAtGtt\n", "OzloX8cZhHYjkVbCyqvpq/H4/NLXTZGEujeo+s6t92K82N/xDNpHRmRpDfR3yrkknhm1ltQJ/j+K\n", "iZZ1WTzYvLDbpG8Pr2cOX29d+ezslN1lesmhtDIrGkIFboqSBlXy85mYxiBv4F5S5Uv0Bd0O+Ycl\n", "KT/81AXdmrhKDcsRDd7QynqmtkLbW1kQSH90wyih93CWHpykF1q1Bnk6thnGjEqFZ+mqgMisVkfw\n", "BxpYQALOGCC0Pi/j31JgntrAv+OrUJDXTxEnXYS0D8waeiwG7j3TSZICVCttql3uO7sboko7b8J7\n", "R0+SUsMXhz0JK3XGFH8rZxpsMFcWdBdfudgEj9lTJhHWjVI/Yj3t+Mee+rST2qyd6QmxPoi6iAce\n", "/6EdRvcG7u0tSMk4sgE2/XV/30+Y4aeIjgiYi1Fk3F0PaEUSKU0e3qGbBXk9KP87GCQvhD9/evng\n", "yq94CG3Q1z4HEkbvPrDrg2RVCnEqB6QwIMGlVkLAv6LlgDxza52xTwK80VxzGWESldMfLneyb8Nz\n", "YGWBMs2rzRiiK56xjCH6PQBIIUFfKvMxm/Q/8ZMUzrkrYpP2ZdaRaebsGdu7NMC8jRyYHttZZfwM\n", "g/8cJVXAHgS7DT7vKu+I4hvN9wDswwvB7syXBqiCcPTX3FEpwIllNgfuVAXqi3X4akSE2HurIzyw\n", "z+AC67Vee/x+BJFIzh0a462SZO18ezGLURJ7d2GDvIzneuqt2bSy99ygksbF15cMFzXidHlW52+M\n", "pvsyMjTqlAtmY7/dGimjH4aibTwfraa3huCTIc+jnWXwORx7/w4TiZI+qn23Bv1Yjul8wau20M+L\n", "tmPehb0yFIaLF5S/QPy4zmHRN2vqtKJonRzU/E2g3nmsuEixwJMaGiY7h8qJYJTBzPVPXrD100YW\n", "+OqimMx41GAgDB5mADOvr7Zsm/wOby8oF40JsFU62EvuGQ6zKAmn9EyHI+bN2jgyJOsYSveawqXS\n", "RDV7clHZV6MTLvRDD3xlgm3bfiLDVJ5zegNP0NcnEJmi0g+krbl0/G4d08kChem8dtQhUOD7l72K\n", "EI5e6Y+fvhvo9sQdWLp0jX9nGP4muvTtBDX+s7gE/AApdemw6DNFuxsFBzBp1AZT7XikeDo3+S+m\n", "h4+anQFr5RRDRygv2L26JpXRrvabE1bsk+EcQ0b/oQe3DEBxMfedAlk35+EQfJ45kyvrcjGLioUz\n", "NIfPPhPnvyur/uHb4fkb17b9M4nVC6m5JtZqpthZp1ygmJDW/q2o0Ncc8riRWMMafj0dVcPSgcB/\n", "YKX3WAJa1F+2lz/SlrxGGQ5CJoPc/DfJ8/gNEgCKFv9e2HYMYeB/i3nfSdczZKm0hVv7edj5h5hA\n", "KlsZTMjzbAvJTTcQrDOYMFCAIiM4FZfrwrBGkmfI6o7wY3heZ2H/8cHl+MpY/cYo3/Ov+pGvOWIU\n", "c8VeVWh0Tx8YZCHJGnGOonWk6W+rLw77WE3GSUHB0oibpJ+PXeeaLFCWOeZC6Nos+Pb6bghHgN/9\n", "8xmruu3tHxtVHJnX9lZAYA6PMBMbTUELsyGw/cFdiXih4R2X2SAiFfqSMdKhpsbnJHVWSxjpELPY\n", "QBeQuuGtGgyVEPreJllKMaFw1QcMALcbcjv5h5vmCM2E6h+Q6KoPsZWmqvqYr4+DZktSFjcjqmoG\n", "jxBztDZCB3njUhYH/94JnfKeiB50z+Yq/EQd+lfxOaC5GdoEIpX6QOmzBpyO+sObzON4aVVir1D/\n", "oni7E0h9xFUvsUIF4jcVodvb77qGcn3pc3ksax2DDymA0mpIljuQnX6TCNIse67uHXFkSTZHbXBJ\n", "Dm0VZvK7WDa3uNJoHA/BHkqjjjCDOf+KnZZQ2PBkTvD3H54wEifNiKxSqMZaOcL/HtCs+bOsgQf6\n", "LaJkkhrsO0xHdG7eH4Le9W1fXgK1auUv783+ES9CY6xuKy1xtwGPJAYUpy3krplcgdfrCeL3yJLj\n", "HIvpKAqmplowqiDQQwSTMYjnGPYNM8tLU+ryxzW66ZK8A1KyJCYscUPuHkgggLzpApBubHXhAsuO\n", "bcnf2+eLdwLG2fLb+n77Xk7cre3Re++BEBHgQyW3fvjNN/R3dmpMtWrWSP0nB6Od+ReRfhdJLAYO\n", "vvbLjYPq2jxZ2po/ruO4gnYOgGBvc0JHlJQ3x2tubSJmHkaVyiXkMOwShsZoIFUU28lJ35nfunEn\n", "xOhbEN50hcVXxW4DN3OhxeIFpb9p5RG+Cp6l5SFltSZ2x7n4RkY4LWShh2cit7/kq8BAWRAf1+J+\n", "QrLR3wJRxG8RAs1LPzgsOwJnvyfmKirdlRYT2k0nJ5nxycIzY+nmFbBIDpkEvaXJARyFBsAI2oc9\n", "4opD29ELELxpGL0QsOvHDSPKA9WjZUWBzQnP6tjWRADrp0AXQvkTSw9RQ7M+4sTJJDaaz5U+RQf9\n", "FvNWEfBeLCROWSSKmqXtR0iPhsru8D2HZP77Z6FD5iT3H/38fnIIYIshSJWtf3pVYwHL+Mbz5JAj\n", "RK8uU+WKI6XWGU5URVA/MJeAbeil7mt18edn4G1Bxh1JL5uyloR3aNA9bwF0MUdbxrcfeuGSBTzY\n", "Xk9q9bToJdWmxTc1AzTV+tMLUskV2tF21isgtrWD3Hkzw8q5c3TBBfad+0FmJXnKlN4o/zy6McAT\n", "/aRaoZdbqOYuGwyGsiT2VTN0DSnx44U2eXYwJUV6nhiavD8OqP+dV6JN5XGTQJ/lg4OkfpfaEhIS\n", "LQxVrZWRg3agF1xbyeam+MqAD5vEwFwJTJs6e9p2frAFiORqLJHgVeryXvW0yE6iz4ErcRVMqlt1\n", "92LpgAw5EMT/AeVpO5KMYFRjmFOyNX8mAAACE0GfVkUVLCf/AMao7sD1gBCbdzlfyEYpzCmPffri\n", "Hz4HbsqnogDE+t2ff3N2QyqwydMkaP9c+pZsxKAZuFuZNSk9N+Ylgdh2JfoaF+5YYeYACPH7/SIA\n", "Idky8MX1IG9394NmpBgySgcQqVjH+zUWQBjr9yFBzzPF/s5u/PML1c6E7aZK+qIuOd+1AycZCHEM\n", "kMiQCAj4KPhTZzGZgtH8u6vVyg0UFOuwuvv3sPDX9IvYjGJ4rujqtxm3kE8FMix3Mw8d17GXfBfx\n", "nBy0bf4xCefwjtqDrebtM/jy5reh8aHN3OGa/sQM4bH5U3YPF14/pHSR+Y1av/8L4r3GV1tzF2xP\n", "XxM7m2b+ez8/si4jDum3jVzxo4X8Pczg4n/4glBrroOQ1OROHTkXpUitw4v+T510CkaR1u3mz7Qk\n", "3L7nkkhVaoVyDE8GEkH53FaQKqfwK41F8SybHbvmyTYAqho5+jY1JkB2MMPVzyIt0WHARhvQVOgN\n", "+E0/VUhSpKJH4PhcFPqGBBbK4/f6gkFlVJqiIm/go+1X+6mmdh8mBSTw47Uc5P1PihfsPoFiVtZS\n", "u5mwPiL+VuC6xByTa0EpQfCG2ly/TFhUFHMbTLQsC8rkXva9z3NTsIv2vMu4DzqykBUqjsbXpdJz\n", "O0ky6XcH4fZmJ+fjKEzh98ocBOqtTNcNb2Rns4VDXwJNF9CpPc9jEsj2OJn8oQAAAVkBn3dqQn8A\n", "yQmQaHm4ftzm1BQdaFA4s0Esx4cwHKNcQAIdwJKMA2rhaZq73R3Pqu7oYOcnZxMnkyxcEbCsT628\n", "aJAXKNB9GXkeWVWS+f8o4cT7VuGuAEN+OL7r8iQMkubizqW0Q21WoY7JUmc4focDjc2/F/WXnXaw\n", "DC0V3a7tNYttgGghB5+IJdKvACik6CSxc2bx6Ez8lg4wKlpPsGYK54BycM1Mj+hYYSt7W810nRCC\n", "rIMeN7aKmINVG1M0HeT/LmoQRwex449dMqxidYULTa5NP9TFtMQjtCLYCZo30RWa09cEJ3v9PV74\n", "mw0ZWdI+kM9mme4fcwyig0srFQvnRH0VWaUgrZEEbPspTVCdvY4XkwSRvFutLUexliqOTnMUlCx2\n", "ywBHVLwlNbiPSOBDMFEpieN9TX2R9RcOwfUUkycaAMBWpAIczsJ3kzBjJI12V/1ykgLP2T8AAAi+\n", "QZt7SahBbJlMCG///qeEAL5bdOrSABbBEFCwHhJCPaR7Jn2Sc+jNCE6+wYUdJGUAyV2FHUcAN6pR\n", "2BdFKM2idRRc2iBSw4n8g6u5NK8odtjhay8ovaJcqCfumitUWLIIQMSXMNFxWQU+raavMHRK4XfE\n", "S3tpFT5QMZ9AK/J+S/hqfcyJgwRu70wd9fvetzDgkRzSVwGZhxmjVoA0Ydo67pWeY8UvdnldoKFD\n", "6MzFr8evCUW3pKZvtdH70XoYUdgsHIOs8Ac00wXMlvxG7XsmTySGYRIsPe0TJ3AklOs/d7ExkVie\n", "iH4B/nyqQ2qvZWbsveMUk2Hm3vk0i1s8IzvDsQ4BtaGnEe5QFJssovm+x/HxL9C8Qmr1L2ykCKei\n", "aGbhQEXh0g+PH9lQ8Dl3ynlu8K1k2G0Dukq3L8KlGLD7FjkeG34duWTxhmlZKx9yjCcFbCw+zYOJ\n", "KsGclz4do5SN24Q00fhPgYvou3fj/V6mGeemCLcIVPxNPKJ3p8NAm2lMNBe7y3tDqrf60tAtoLAT\n", "LplLgZzT1lWCIsvKvWNxSVqqCd5CICNcrX6z9FWLNTAT8ocWKrCQd0kv3SZ9Ma5vmMkjhzWNYhGs\n", "73ZrjfTL5R0m8lTDvwtsW7YdmW9dn2kKzHVSVr7Hi/MiRRFv8tarGlIbG/RrNVRv+7dMFiUVTVCN\n", "tiSIHqb3FDqK3nXnoeK0nPaom4cD4n+NQecVJPonmAczTlutIeL45FaUbzFGg7U9gGCURt4DHT/w\n", "GF87bro2q7RYmJfjRP/7zFIjVqVI48gbJ+Q3jUbFoiz3w413OCSxA8To9ymuFbue03qbmNzqlFNu\n", "jX5NgdGV1fKwsVuC4QWVqs6ODwQOgAClHvVsSXdvdb0VkBGQ1rsNnWyUqFr/GToJjU9qYGFJSf/R\n", "gMRwSEe1Dng/cSZA0bGF6V53zpfgR5d7juoR+ldhKFYqCvOMQpH6UakJpbg9FD7GJH5YH3AKouE9\n", "uDrJ0D/VXhD/p+vhq2PjAlh4PZfwLGLmtSzxbaMQADssOHpoby4UxzMZ0VJ+pkrxuuGZ6ulUkhfm\n", "ciyH1MgWVdOsQ9+/ExS5mIzaC4IDziWbabT+hqoi8m+CBpNyhQvjmo9jH/iSj41Qv0tJm3m3Rht7\n", "E9SWppSQE7DAe3Ptm/xmSHkia9vBzeYFIdhPuYdaofhvFd0tssiTPyqsP5e8FN0kVE9VgwSUclbm\n", "TFcEByUSzS6I7c3vAg1LFPKMxPrhDCUO8G8B3O+9YvDzyBvi6G1WGrkvG3sBTw4e3vykAQDh0sKY\n", "ReEslrd29Xb8FQIS0dEwGI5+sDxwiXKSC8s0jB3edpWRaRlDnvyTZgSlP4fB/kDLah7f2CR0s9Rk\n", "54Cisqd+8eSq+Blv7oExJLpv2TGfz9AFqYl9HXVH37NWaY3xBL8hfRtOoz83dzsAbONWZ6IePqHj\n", "pGUOrgrKsXD15OUncUUhghrqszx1qIrAtPNE61dbHpL+Osh9Fa6tSFD2KqFTxUczhS/aTWqYwVOg\n", "ErGUmGpnms8zL8I/4d+vHBWckQCnDour8ojLeORlqlWqdUEcW0lYtjoqRb2MYpIucZv9D44KKrDc\n", "QYvDATve1qSM89zPPCp42Ym5Q7DjVITFsleTM61ItPIaA7jH+oaxEZ4UyprpeCP/6e83ilP9uCUd\n", "CphTW/ZfcSNe9cYDoPpjCuSa2Zwe/7hgEOnC2l5GBf4rJ4dhSeB8eJcLHm07DH7JENXwlAROk/N6\n", "MDAqot2mywe33FuS0YkB444bn3ta2pWZXhx0G6FNruA4aqUim/DVjZf88ICdQzncw5+Qs100l3GI\n", "6qrx7CG/cohUfBL44dkJbaYv8o1cNxIbBllMqYmwIhDWWEwIXxrntwoUDjm2R48bmjw5yNZWXKbg\n", "JfTqU/q1IBUwLKa4byy9lITw7ZvcLd/3VwXI9bOrPZ8x0CZ/BZS68bg8I5YexR27ddkOn5jmrcIP\n", "veebHpHlCGQGS/DE3r+3etLeN9NmKF3ckla97Re0THbWwEFUfsX9hYqLJ0x8Jv5bAxQyp56kmyu3\n", "IyOFiNhAGoeZaz4fP5g+ZjbjPIDvokf/9JJeCmExdUYrqnf2K/x6UOD2eeXCWKQgcKngFwqGsaG+\n", "RCR69//+WN8oqDaNs6mQyeoW+G5YUEq2IYfblv7+4yoEw5IuFxZ+whCpT3OmJE5EBRVghdcVpRTk\n", "VG+D+hiL9t+XceDty/9elNoiVpbk+gm+6TzrfBtQLKNWNsqHxk++z8lqi9nDWLGpdxpN4PfEQmY/\n", "hr/54StkTgrk4eI6v7CspKf5mEU2gHvP+uLfR2Du4xJjeevo/cP1QB2rBvq6uZ8FRq5CCdz8qkjJ\n", "Mt8rWu6Igu/8n4ySPoE/rvHNuIGBtMG8k2f3Wb6vYQwgbMQJ3C39fs0fLCIxq7LSsutRH50LkAzj\n", "kpLvqIlSUDiOlIvNoiIADMKL9oZxNoS1MYKPB+ga4BZwwmZ2ycPQJdPyKmh8kTetdQgpZL6d+HWy\n", "HhA2mkLfAz6ZxnYf2fp9YNSDo6Hya69k59QtnwtfnTYOyD3d3WMAo7vxxKOidHrYlkAmSBosTAu9\n", "xCxslzwFTjAXrem0OFmYDjmcVpR2Wqfr9QRhGAyoD7JtbVkdivzWICZi+7ZeoB9m7cAbvpyw+1U9\n", "FziRwWDUmNqNlOhXxo5DiW7Fb17w2Lf3m+okCytqaQksBP5B1Itx/VSBac4l6uJoIC8an6n3fYVG\n", "F8V0j5FxTxBhHpv9XSYWsFNKAG2X7ah9NBjwHHsMRAVgYPd4EsZk3m7cYBTVSDqNioqB7Q5LAu4Q\n", "sAanZPPuik1MXK3omnXR5D0f8kjMmui3FdvBna6et++HaAorj+HScd6xzW6gUyMFf2UfO8j+1fBY\n", "c2HLxFgOwM1zNuI57l4vVcbutdbazHS5nKNOmSZM2hFXjGZtt/sVfqDdYMHuTbrB/GKmbXpnC1WR\n", "yoSJXkRPBuwGx9sN66OAAAABdkGfmUUVLCf/AMkJkOOnNXhU9RKwAAC3u9/aVkJpM0I1pftUEUIy\n", "XEVOLcTk8hpKQ/g1lf6/S/iLiAJSQmFrLx4R6Qv5sQmIcOYOgLONi0Utk6xsQmxyrKdQzQYsZNQX\n", "jx/xQSKePf9r/oI60zRCIfDxoF79qG0ENwNTRiBuDyhmwFDyDlgGLS443jyo4S/HnaCEe8pEBBTc\n", "cqRsjLvIcPoTwsBGqpgOeymJTlYUuJXLSZUSswIJDf/tkxzUddGgL7zUTexTN/8DuCPoq3mBAtH8\n", "hR5tYgvLqysb9QI52qwll+oV4fWCelJPWdPoDl0bwY+n0xrspkaCL8VmFJm1WydfBs3YBxgeh2w/\n", "tp7gUZ1NoZvuVWWi7Vni7ZWs4C2n5NsYPNrt84E46Tyqqz7jhVs0GYoZJh6VVgnVmPTYM3ibLy0B\n", "OAJUifuPMqKGOxOAAzdYeAAzAXkgnh8D0KrtOF1mXKpnDlY3FJDAn0E2Br9dGn06mDbLAAABBgGf\n", "umpCfwC/O7p+EHTlKlUAIQkGvJFiXw1b8P+FeryAJEKzSoeFjkkwInz+VQucX9A96PfBBi+lq5dL\n", "CNwxjcCWV4x8W8rfTjKthk9JEupAxO+j82IbYWSfb/NX2Aao+tfk1OfrqV98FUHAjJLKjQqCtQ4R\n", "bLRIX9k1tmTLCHNvdWGeOHXPD7r1EXY1UhsUJ4ZhW5pTgFNhR8A93foqytuT7++137wLGABnqBRW\n", "uwKk7B4JHMboi8Y/ppzmMvYl895JTcqAAgi9M/GYNeWKN6/ah2GdZxFJ8YoKv6fZRK//zJLXEKLq\n", "EKglIjuaNxSEdzss5SuL8LmPJORIL1ZmydUaIA2twZAAAAkgQZu+SahBbJlMCG///qeEAL3D+ncU\n", "ynADdbXf2Oqtn/KJX6u1Hmfa1QXHCi9lRB05E32PtOpyfbu2iPRSBSPiA1+PNis7Ll4sC1OggI4w\n", "Twm1SAEvcXZ79LRGgYWDwBhgwgn8/eOieh9vWFLDzrKowTrkBidv684WwUwZL4GwyPlrPnmomxIi\n", "d4ERu/v6Xuqj7xJgyLHr1uE9iuoxJqS/Cp0MIhg60Ugs182tgDPOIkcCqivjruXvEsBtdn7kixQr\n", "8adJw2yr3ROg+sIuFvjXioc6QNHwYG53D51OmV1ng/Oulnc3v3dU7CxxVai3cP5Z2roe2M6AasdE\n", "yuYgoZxNegjtjVTYHv8nG1meoEtTqoDwLDUhW6cXEowIqnoQYemVrp/Rd6wHcSQdV9l0YGihB1NL\n", "/sEdrjbQoN5/zSHVGAUxpdfbS8NeYOhKki1ksPZtyJzzmS9DnpSyIK2oKsZIc0Mheu67B49C4A2G\n", "10hBxeMCS7dkCgKg6nLTisecVWMXpfkD2FYpB/wVo2g1LG+v2oZh95IiEGzVLo6F4i727khnAQ/Y\n", "Z2suHHELUHRIEdZGOM4jrB+h8chw9Seeso0NDZoAoaTJ0FXLC5Ad61k3MXazBq+qzYwC6Atyj5wN\n", "ZY4aSynxRDpe1m0qWUyU3EhH/RQ9vl2AkUxCjPuL/lr8T9BFsI191DyZz0tTVTgZDPA5TMwgX30Q\n", "wtQCzd5lZ8LFRotrzIpiOipnTvIGSP52sUiSiR1Mam7fVuiQKJG8AId9UkUqwGyxSPBrcX/1hwhy\n", "Ml5GjGXWRCTWf+l7ZjAnIV8shjCg7GEEtUlE1v9aNA8vweRolDFGlDfN8RaZvAELskF2S6cjIo4b\n", "Lso6s7kzYaoJSFofvg5euJYgG6D7UcUV9/crIjEpWwaS4cBKGUAgbX+wf7Tp9Pz+x6yScpXmmPQi\n", "KrkWatImN1tHyu61mQkhlH6EufRfocRryfhZ+cz2/fPrDO1LNsmWjeXQBWofOX1jAZ92u87Xbs9k\n", "MjAdILFNrNRnadlA6TjocaFyyazCOmw+PjuYPhAsj7pIWHg0k+7WNKqpm7u6Po1NSsdN3erqQ0ly\n", "2LjFffSZhn5GXNOQViSLndrck1cwqqjXX9dTyTCNocctZxujXIP68WdO7uEedYVttdvxPzenuaUH\n", "zqCRlxHXrlIm2XjqeLbV0HnbMKN77XoarApnSvNjWaYxHGD21oGZkB83jFG2SjjVYp/6McTO7X9a\n", "iZQqhRjuaNZ3wWT2n/GNhAV+POKL7ndfV9fbNvzgiF8QgkmWxtzOcNBTa30TsU4z78dDtQSwJTCz\n", "zY5THIAHXi8sjBKSn+zmxOKr+6GQuK5dqyMydHzCWr08k/sVphq/Puv3X+Pv70b/SGMyNftd63JG\n", "ayQvqLP1eqk3A6sHEJ/MfVags3TQvKACuJs1l+wGNMET8/cBxEcD2vlyvWh9V73ihhtVN27p77/Y\n", "Xfk1CY5v8ivSlJg/NzXri+ztI50tHGsvOUM4OaFWjdoefa/9EP4OqnCWpWAMq1nukcqoxDa+eXSI\n", "chPhka61pIMKFmbnZT0n9O8pZfWPIPJRorhlLGRm0CkaNZ1YNF8AQCaeaFXBtAHJ0yY70/seLgCL\n", "HHKBzgE9r6GcL/WWX9dsTFzjzvm/8+/yKho+Q2NsCmeIJAcw4gJvCLuJhAgnpC6s3s/xV5rKqd2C\n", "0jr3rX5/nzJ7g3w1/MFf7Du21H1s5OvDeZYOdP/cwKxcZAXEBu1kjRavwBZW6RAHNzCL7/A1ITp3\n", "1S74luPAHYxpx8OJPkNbF5/JHznZoL/nkvy7RyHr0NOQWr6BPEje5rJ7/jhm96i8KpE2LY3gY1ws\n", "rV1xsXVjxAr4UfKTs8O9kmWTxrYissrChrKQrdCJHFoVtUSrLDUiQh4MX5xXxYOQKrKljqM05cjx\n", "3Yki1GdMeDsPvQWWrNx0h/y3Oq0VkayghRH5PeoYH9m8L83HGGnn1M66ZGMI6pLsA4I8MMVZm1wj\n", "2qcUsCo/MB7GXZWjFTsWie39yd6jhg22SKoRH5J7WMI+4CmdBVmi8SZPb8klfoZNzYtSWndXJdfm\n", "ROyaeCOTuerpcohkF+LNJuCq7i0NpC5NcxHnyOj8uGgnuPFb2NZlfhykUYBPZh0XWSTxsqeJlqzc\n", "JWt6XZt/W4AmkAq1bb0uNQxMH3GgWG+v9lqAsKhHEjIuQ/p1QAdHWbVBYGfLSv5tuxnAsOIw1Zr5\n", "5f1VwMqKxOarB/l1eDvormSt+8yLLXfAZYaWE52cwYrwzVDU4fpkq4dOmlK/hQknVb5tgf4ROu29\n", "5F0u5ereuZAeyszq2Lo4YAcPkgndoZCO82811tAoXh4BquZ+zfGw5mKZTBVN3s0CjU/tg/sxKAVX\n", "v+G/qDMHQBuLCxbwxxgZAHeUGyfZ0XB4iLhyQYC4FAJJwPK9d/Qu4Wr5IjgxhCLjdtr/mslekjnC\n", "2qevMvqBRT58Cv4xzuxoKKXNmHVFQ1vcjgMW1mGRITD07dpKfxocUycN2hbq3H72tEcNSXs45gsx\n", "e4b7Cq2AADP8d33gN5dDkMIXc0r9HmmDPRSwC+GUVpzw7fbK8VK11ypOuFV3ddNdDVlQcva9Q6sf\n", "tuRH71ImYGDte4a+2js1sNYTOlD6uM4lrPPicJ82xNntGzrOfU6O5H6D3wwvMPG2BVq2sXto540Z\n", "ubWJCvG1ko3UNqVI5vXw6YL8/hkYJV0Tj8s5I9GUoMzm9P00Wey8LgfidimEVd3m7KrccM5R5z74\n", "MgqwSC94cwBec9enp7KgGKOSqNLQK6hHO8Xm0JmTObhaSNSasZIMx0sNy7AHRNxL/MIzS6OXVvlZ\n", "PfYdWyBDSSe4iFZo2csb2Y2S6+e1TcGTe2YwCDuq/6RqqKyDusgoZPWUtk5fcB78tHpMKzCG94PB\n", "Imb2hkrQulASA8DNoZ8gSsG/U0hKaY2ak/rLYLHkqKU5ScXVfk+H7knItSklJpL5qTNkqUac10pa\n", "MzdilKMTn/qBXF8Kj+QzEN2imqR4bIolx32QOfJzTfWxYj5ul8tDlESjw/CEA+XvgbsDiL95NqdL\n", "ztMWKxcftzwWjt8jf/7nFmaZBcTMB0l5SiWKcOtsH4p99mEAAAI0QZ/cRRUsJ/8AyNpmIvACELrS\n", "z0BDc0C1WG7Ib8Xervd7/JqlvILhzwagETUez5TYpDeo7J/ifoJ+6L81TOOI9OiW7lnpwnQkS00C\n", "zPepVzO/KfGhamXh813udezLeSX43johDfr7ZzxQWxfsSRW2CYUv6itiNfjAEx9MUO2vWCRP+e85\n", "3UPIgm/m4dif4gu4pTrtbvgWDMHvVUUlXPIL6ek/wmbnl3QPVpyKwjgFHhVMV2vr8IJj4awSnWIJ\n", "BKldLa8W0ew+og7SIeLZ/hReDV6MOqVcVCaGo7fOoi0F93A2JbvfXRxRflqdubNDU70Y7jUjHy2d\n", "lVhBeHFpOymEsfvKzmEGpp8CNtKge123ZWJ00CIEJvW6Td4PsshRdF82SLf5vtshWGn3nPK17Eri\n", "nocyLmfcOiJvADQ8Cmkfkm607GsIOH94Ei80AwJeyEROGvl6xcM3i+JM3Ly8oJ7PAKgb49t7xVuh\n", "GwhwENbscnFnAEi6tz4CrBDlE0Q0yXnO9BMomZXrbKu4cqm95ytGEUVNj4HOqm4VcLamLlGsdfxT\n", "dn1RDY7FRV8F5VuqbImxEC/JTQeq9KBpYmfRzbnOlHgUKRx+4XdJuCyEgEMLZAjejblvnWYuHrdF\n", "QmhehnURA1NVLqQP/vtslHWLLJuQuK/sk/M3W0GPkxLL1SsZumCBwIWdVGP72AtmDZvQgdhvQajh\n", "46Nj+4w47jG2bcmD0yJEO0rYWpaR2+4J6AU0psVYjTJBAAAA+QGf/WpCfwDJCY6s20aMCycaE7EU\n", "HsIAIT6gpHtPWeeoI6d0DUkpdIIx4QhSl6HVBD9HsuatUutKIZk7NVXjOt0avBdvT/7PqiIlQ/a/\n", "Ad1quE/IEf1pKvNRCHfBd766v5sp6ccuECBss6ZT9gKrN44v7cXL7zbB3WF1jA+kIic+xHEyAzx7\n", "BO3W6Aezv9Hhb+eVMyh9SUut8zaRmsojKpoWomzFCdf/amnQ/Ox22XDWcq6dSxIz7tSb2x+vvm77\n", "ipcdpGssLdz622KQlr+pSksvNmey5dyJqJSIdiAz0WOYnjRJEAuhHZDLs+XG+6LuPs3DVpaEATQY\n", "EAAACN5Bm+FJqEFsmUwIb//+p4QAvcP5bjpYABptuhA/5B9kfDs9zpyLJxvHy28HW1a1x8bkSw8R\n", "Q3QsI9DIZUbzhv+2RDKCajIowHGnZEv2E8l2dXAv2qkkvp/p5fhC9g0yzlarCg+yOD1bIrJPnJQb\n", "UBNmwL44vVEiU0QfJuAi8cVBQC90y32AKO57Mvvd0VdDvmmAz7I58RfVa4lCpB5gkdxjjoOLy7wV\n", "sScJ9nv/BPKPrtuskTmIH9bssfy9Yq7cEb+iR/SdoG1djKBINAe6NCjio026dYKxc2BjzVr0mC6x\n", "TZwD5mFQSfuxgsFHy0ekwyRxEgZSvxtJ6nbXj8UT6k6XoD5CyfZx+uz8/x4CpGKgpUxuT/aydC4y\n", "THNTjj/T1JrhMFTAlSBp/3Ln6AAe8dVZU0zkjgPdx9R4WL/xASI++JhzWmld/2lGyIgo45qBu55G\n", "XGXz6OcCb3jkuDYNhOjhgo4N3TPboKJvRHeryAFDNRs3tOCbqaA9E2mlyco2NeNE1UGMl2Cvk6mu\n", "yeMWXLoLxJyyRETkxnnp+hoZlx6AOv5r6eInn+XwKX5urXJQsqixdYt0NlWlczQf3sipIuLWhp3M\n", "7vr98hJUEl9v5yle+sAzcXKugrJA6xRWV5VadgfmxnNJvMJIaTyNZbLMPQQ6SrFKUeepO2xleHvB\n", "0k4XGCIRgHn0pEbw/E1yn2tVirK5101TIvDGQjnsKOfrlkVgFNaCX8hIWmLflYN3PufhQ9hTRS2x\n", "ZYX5Ap0KJOgpYBBqqrbFn0/Wd42i6o4zRnjlPJp1X//7tvW1YYBnPoZwFtPYwKGgLHdyiGbfBED0\n", "HzifQpxtrMMPVgP17uWjkebLZiZk9HgIfMKPdUSpQ6g1A+/uCuVv0w6fqTl/JflMrhFDO4wEl8zG\n", "1+xvXUbC7FAZH18UoeZD+MiuW02h5Nq/b75JcgH8McCs3bMOAqjKHs1VvZpq93h1FGsk8N1fE+Ra\n", "fWq4pTnON4gn55pHecMFqu/OklulNS6pyAQJclVtMAiYPo8yomviBdeHLeHM523J7cj17QGbCoUv\n", "4EcFV51CTa9tzHKZpT6SsxE18n8svVxtWnUHUWLbMr4ce+87Xyb4zRkEmQfFjYO1YhLLMW0sGOYr\n", "JfT0LACS6W1ugE9IJ25AXxQzXl7ZUQiUqijV7EEgTPYdn0U1uJlHWUh/k0gFY4HWF+UT4FmuEl/S\n", "cVwUK7hko2Q8ahkCYXjMH86rJJr8+uwsZrNezZygVOXxa1JlBLUljoC/yBGLMbIK3AzF0b18Ohsm\n", "2+CZdXwt84xaC0blCh6w/I9KFo4zOknv2QgPxJgxbWpkg4Vr0EsUW8NVhhCzEWY7kLOvxKtBl7V8\n", "s2cjo4/j+wnuaH3BMTQlVcZx2JEJnRwXqcThf2uxybObxhn+bBGzVbKWeEM9DzyZBjKUurgMC2/X\n", "9nsZTIy24mk6E/9TYpElhP026iBBKLFQOVyjyrZBfFs6qjrQL91ecOCmzc2u8lKhwxWcBMUPxVuL\n", "LtnIMr0KHGM3A3UW82SdZ9/uSnQp4TQSn0Fgi8XG7kj+0ogOUw/Hruy4yjeuWMLasBJE/DIYtb5h\n", "ADXRN/D/j/cPN7b0E3OF2VEUsx0IZlRGrTpKsK6xmG37tpyrulw6dU3rj3gFnEsWkDEcbYv8VCfH\n", "bdPmwfvA11NBNA8MUwRJVa7wdkhIpQswQKKcz7ezzFacDcSYFIlezu3/rZg7nsLY8P5GV8YgfE5V\n", "HkIk8pBVkFXRgW9KD/e+HQ5nNfXct9mjSl6yjTf1y4hsXxC48YpFbyslWvkv6mKDnmlm6M6b++yf\n", "3pVPc5DBMipRcovEYqQWRPckIBEUmnhRQgH1CaWRrAiHNGGrKoQ8EFZaSyEES9LAUcpyWvZOrjOF\n", "X7o5U/mAToh0kqEsu0dEHw1Sn95F9fBNnyq917RVO7gcYHi/6CEdaxX/69cpiseCxeBYl/zTA+RJ\n", "PqjvPvRi0iN6b7phBpkrsz9wu6DETE+Q6TnYH3dKSNiGYh/vCEk+lb3sHjndpxM3te7KoQzI85uR\n", "IFVJMoTS2eM7o1qv6B/ciA5Irquvkb3XL8FHH5brZpW8YPn2pu39iOXTQVGbieXcRnvEzFxiCii1\n", "KN5aco+oh/Zspey9kmAfM8Y3gaxDxbyULgLReZMEmKVKs8Wo8I/yxZAid1/TUk+4cV+LL0Vj7Hg/\n", "BzUVneEjRcwIz3YQpa8RXpz7OydadzHq6Xwnt4zvbFqf5gM9dgwSWyJ2tNI89XqujsMRCPWpcMLq\n", "vZ05odCsaY5zgDwKNEGbVk0CEH/mbszg9nvsoCRB/QpM/Ltsj8DTE1YfdBtdlRtV0Swxao2yu9nw\n", "pAgwtUF//tSQt/QI3OYZD1qzc/gFqoKra0t3aHyjevbnUc++WzZXMF94lpMV/gGbpT48ENkWTT8u\n", "VXC5sBdmyaWujb9bHwkDNDcNwLZaYXGAA4MTSa4FOyi6mzQcd4ANyoSidkjhF67riouNNMbUSiDf\n", "DSClZH1PQJxZLHupeQJybgnEBH/3nGTLNdmzJ7Sy2MoaYWE6Im/Ulxr/cccPw4LdGOD9UoCYNuf2\n", "2mlOFQy7OIzQyI5JihagQZUmoLy6RaxLeHrbM36/Z71DrThikl3erMyvHIPEV/Aelzbxz00cmc59\n", "CC1AwqrCOIIAmTtoxDukDywPi9kWw9Zc8CuViI1jsTqKSRLisWpDaSXiV25tTeIetVt4edG2SpKK\n", "iEqOWUw7NmENT/SEnsvsRvvCapdDX+FMyHnjDLQKGmWyOB9ZypaVPH5Vpa4+PJLObM6Fty5eCQCP\n", "2zyB9/I6VmvsbFi/XgRsq5aXPWmBJOfgQZCNGKkHlM84A/u29KHwWhNv7LlQX9X7ezeI0TAksjAn\n", "H7dFsCqbwFz3YP4NkUKSkbG+YjFQFv/hU5dJkiUWQceYw/GYPE93n3o51Pc368YkrsH1Ae3TSYe6\n", "mAZyMgerNJWohEzPR1n/8l0Vq3ovs+C+VkAotd/kFTcQHl3qqGdY+y1954lT8C/N/GwBOAAAAdxB\n", "nh9FFSwn/wDJPAT+yQAG1HH06G9cwCA2PFTwM3yY7U6Qv1lhRgNT7q2TNz9jCmVnHJzsRRY5+43U\n", "1NtCHr0OvWBcPMkSy65kS2gXWSxCxQ41EEXztShHUFU8Ru+LdKbvB1tsZrBWn7hR4fwE6zmmWtG/\n", "aF8aUmE8FWdAA0sr4ICFx/fpcCzMDmHm49+lXxGo29EvCS6czEKHnwg0UblZukt6spn5bhcZOkuq\n", "GzCUY7rabl6Zg7NVv7r3QBMOB9YS8Cw+I4QXKqYeE2NCb3FjrQ/O+i4EWx5gTIIt7pR9lEusEJ0o\n", "+TN2s6HWNseAHi50Zw2mvl60S3XFyII0h/94bnAWn+YKRIJmaBHL7JcT3ZjG1Wr9bXdQQNpJDMLY\n", "05U61nP0DtqntIODoz8ijxVEh9rnbDOvBTOPW0kvflYidI6GPBuB0XaCF/PkgL66nEtCbMDJySEK\n", "+ox2BRwQTwvsOSsih7bsocqrb6mzZoqNyg13us7AtMBgIbkOPwcUDFEAU+1I9lCsKeNWRNwl0Jgj\n", "QjqcW/svIK2oryRzLfCMRNoKfEM2a47gi9qlmJxfx7nnCp7+GTNNkjY1h2SMKzgSRDb1cNko/6fG\n", "7THiJBWWoJEruF69kn32BwOx4QAAAZkBniBqQn8AyTzd7rTAFF0d3wAhNJx/YroKVe/LXk3FjS/3\n", "AJFzTCKDcJbhHdRhfgSaH3TYUoOK+6rbHPhoezMw5ua9Zp2J/yawwOB95htTcYUTnuHiMPK47bh6\n", "mZoUDtfZuFaujeVz3NNoC9Ao80zdzK6VZJ6G7ULn9bppGwsBX+hUiemMHnVVXz9qRAMzVl7Ul3I/\n", "mxbnvd/p+qBRvNmZcksXc2Mhj2HIH4sWxLS+IjlcUupbGpyakB0Ekdc90HOpA0xHFscR3uwx22I4\n", "n0PwjKE0WH8WC0m1rUUciezUMpEV/HQdTjS49V7ul8kzkL8UeKGtAikVzfn5XsBgWC+HUmKnXAH+\n", "HyQ2A0tMP0LhWWgeOZwrwnjIGVtCs2o3+4c8jRKY6sZPp9Yd82pcDr8Cifd1o+CTO9vMcqQTAu8G\n", "CuRJd8OJVDSspWsJC7ceiIHM9RoJucsIPcrMvyRum7x/wnPrFJeOuLx2M1kWDM2xde/NQooKjbUW\n", "3z2utztHY44vMMRC7CIQV3A8qDsXfRpiwMzx5ANojadYAAAJKkGaJEmoQWyZTAhv//6nhAC97ckA\n", "C6T4HGMtWvh4RtSEJY79iO0WE4jtxBMhViyZQ3ClXnBJswMDP3y48Dwz/2kG9vKXDpsCEsuVXSQJ\n", "/WD7309bmfh/K/PCWUxdrSWxpkXmY24wr5EYvBSgfDnEBPlbbssWTIWPq/Q0tQzcvTerNjmv3b4g\n", "OOdvxhndZ9DnSehkkNl2WfGEpxP5nkEmALNNLydlOlLwmnzSWEb4mDWqPuRA4nrZMuqaE2aP1g4L\n", "0KQ4EKUiHbkE2Vr7HUlaDLOuMuSPOmxwYDVgZKQP3HW7j44oVf92wFhJWv+32mXbCZgxKhKl9fLe\n", "A3ljotpeLQPoy3s3yF7xqO/TnDDc6EQNUf23Y4ZlKKskAYMASBNJwzrGLmUUDi/YhYHYlGqlXJqn\n", "ZhX5U/SqKBn2sN1togsfq88VsnmzTRg6q+/NyPFSmpfay3JbG1coFQvGfC3lh85AnBxz67MK5CPZ\n", "gPUw6T37QMyExgOA/EHApXd86fIWN7GVvm3L7ZOptPEHKYAbeRBBpIVUcYFHF3APFLWPExzFofEA\n", "W0WuIUZS8pcUg3Ca7zsV6MB7EVTWHLOr4HEYV6iQOySgoaKBSG9JJtVs5HRJHlooYEop0Fserzcz\n", "Q4zMpB3djSqkDrxPC2sFJt08DfHRPQ+R/NDl4zevsdch1IT/CvgLeFlSD77D4LduaQCTHR8ofhfO\n", "aE4bEv6IlZSVhVggU9JLV9lXpHEnpXWLY0AbYahlBl21lcK42XqCVlAuUGuDx+XwsOXDbk1CgKZr\n", "qgIT7E5oxSTepG1F5Ao2zEpoBGFKroYEgH5VVTca3+Y1+5n+TIad3I3rlL28/dlFlUzu7MqCMXCi\n", "zYVRZdIYqWIwF0FgpS6xirnc5CNe04KQkuns3V7xYjuSW/7ojVQnCX82NYbnLwijdnWSVly0dU8z\n", "7BYae+ghikLFNFn6a+KdIBS9NATHh2P5bvbSWYv/Ak9pPi0W2s+EN1qsIU8CaraIZx+bphwg7O0W\n", "wtKBz1nLAU4FUWNwipk2eMEunTTlVpQy+Y3wK4HJljKKcDlisfaUaTYnHsYIRCTOXupGj1Vck4By\n", "NYTOX5lA/ehTJzoz96qozlqIWRjAac4bW329HWo+3zW/z45oLBnjEHc0dCVaZBD29IpRbcI1BCrL\n", "yUssmJ0UB5uYPLDZvlbRVsMWt2gNwSXX+kG98pHevqLs4lJEBuxjJPZApdnRF5Iu9r13CP5zqNul\n", "3P/LQC0pZBcc/r9p18CDA4HKUY7Rvc/MQBcghH7/+UCnpqX8zVjX0ymtiW5o+eRRJZcpziT9Nd48\n", "cDuZl+NKhW7Yv0WwfnhQyr+vOgA16Ok33iuOdw71poJDpVTRiZzPBFK6Hq9qamGUy7lNIlcjV5AL\n", "GM0kCSVqfbHrpxu33AlV31b9tN27WnQwBtLCzxVmeycy2GAz7AdUoaKh8BM/FuyN/348ylijhH8m\n", "G1tnt1SgG+RaXD56Kw6TRCV/sik44DcO72DFQofoHkMktxh9METz0VtdqpRiwlljITohsXXq3/TD\n", "SbwR3VHdWrZReaDE0ZnmXEFYANsoHt4UkoJQsnxMbwaUC65Zc3RcaknfrfOUX5q8PeK4rR4f+3oR\n", "3fwEFY3H/si1wAXTKRjuIEqemZhOOn5FaC3v0Ud3TxJ+to2OQpmyMVDx92jmCPbeT6m+kiYc7ZF/\n", "kiAHRIsEbuWg3+eaOCRQQn7mGOycnqLbPe1dllnqFLn+ixcCzyVl0cXvkp2SFSsnm3hzvB5O12q9\n", "Dz5zjRfLGcq/r0YX9HGiBW8DQ+QDehGBTIrtXLDkBhaczwPj+dnUx3YC3QS/4DOMgRnmQKp4Bv//\n", "Ce5gPvkj61s5LGDTK3Qs5f9m8ycBRNEQutuEP2coocw8zQ25V5RWYzWbqduvXF7w6e0lDkhR5hrw\n", "OKOpEhQ1V0zn+a6ixTf0ClEzHzpyfdZXaa7wqbDkDfjKYACW6UdLtEJim/U0poxsehGXqr0PzQZS\n", "yX75j2fbvpvPUsGDOIHeSYS631iMpmvsprSlBH5lFNBnJ93VdAVJ3bTRbO1NCvO5xHyOiGGE2JJv\n", "S463xTFOCnL76x1zUmqXzAcrDN0SEdR/v6jR+19MPN3WjMNYH3C/fFXTyHTYraTFHnKWJU3wuIjn\n", "fp310pzzaY46y43tbPoA/qv5T1Ol5TVZIqy8mo4CmnaNE9cI/NKcP9pM/U+W976ZzxuDPbME/xKC\n", "6wTj1fToL0wdYsnMZPbhYjRT95sd63c4fxOrTUwQlmy2b8adrcfywD2HBoblw8I6koqM6HP5Uvzd\n", "zL1KiJI/GX9RFVPGXh/aPSSTM3Ds7oAGZ6Dw/yUytn9pbNGCCbFNyzQ5VljiIfd7Ay7EpJPvk/0b\n", "jCxmb5EwKYciYIv8Smog3Kl0f8W79qvPVkqKqP5uaWCOw3HhzmObnl9701+TyIFxIsEu4IKgS3Fh\n", "kJHNle0g4gbyWaCGjUJcqRYIPZDGbcJ/48yYeyXbM6a0xcKm3mNAD4hzJ2b9t0wV90oef+VBIijq\n", "os+ol8+OYkxR/4z4yTv+55v5hlQLEZKVmnFB8GUOAh9n3/Xr8MMdqU2P0R1j/JCNaRI/C13mHc5m\n", "PrTyZawHQIWkc9xdyah+Cpouyjqk9MxvztzpNyNRq/TSbuwEIrHn7KHZgzAeQg5vSEwe6rfj08/R\n", "4t9jb5P6gmUUa+Nwoa6UZ7rffTHe41Aishjj/wknATqSdzGFk7b+xf2nAwf0q0V1ZmLj6xbpikdQ\n", "VVhFYVcFdTRnCh3x4hliGmZlwIyFVyEYe70fRVgbvx8GHGtBdPhFLkZZU7oZwjWxcSK9uXvlM524\n", "cnalk7eYPPSyFw5AA0huF+fKKrrsiheL7jmeeSmQe8ISWtw90YCy0+Tdsfe0FYt7ktZKr9gcMG6j\n", "ehM+nFeGG2aU6m3F6p8s+4aVryrHgzJFhv0rcHU7O+wE0PTsmM5vhHvmMLUlYjyo52Y5yxPz/1CF\n", "BV3DPKITa+RtpJ2+ModnSNjhg0OQjRQkPV/I7cPUq0ZFQmO/CtzQtqEP4uTG7LgXL9WYfaqar0r/\n", "XxTPgQcy3XMnPMIXXdzUjqJ0TKAZBDLgia/y5Ic2T1M3rUe2ej3iamoeHLYIoQAAAZ1BnkJFFSwn\n", "/wDECcvuSKFEDShpIwAhN9hq5mAKfO9C74JqLlh5hYL5ip12CpwANOfUic74LIjy6IsfopjU+BPd\n", "Hb+xdtJTBaO4lquTiYcneNoumFBXK9XfHUhYcZ00DsAitVY10A3KujrqAODP/Ya/vwrZ0R8DWDOL\n", "84UKTFLaQsuC+0X8yahtsU819JDfekgh7aTaUK3LE2SiMlohveGjsWKAZ8Miv69zdMqGF+LnGQqG\n", "wfeG6mWu/r/i4GHSkqD+VTVrnqTvhn3T82xn66PyQ9DoO5VMnJ1uLVYZzFMGdRS+KUEH/UlT3Zwj\n", "UGj8QnYmCJSYKY+xpseXK8siBv//0VrgsiP25B4K7DvXvfUg8Sawq9MN2pEPbMdf+kO+1i27Nyj0\n", "uW0Fnx46GRBIohyCfEseMzgqthf/fjxr+XuTZ+JfGpxryABIjXkqRVgTZaj+F5PUIqO66W5i0KpG\n", "UF2eSrnCaur5cUUeBiypOpvJdqwj1pLO+XUoAr6hcHR+47vqh+F1xozb+eHqgOfhZhFjtkUx6ao5\n", "nlr6VWstegAAAUIBnmNqQn8AyQuTtYCjqb8AEP6B7BGWL2C/5f5vV0LFzhAA0RJFIiaX6BH8hhuZ\n", "OCq6aXGu5u6BQvNV9Ua0r58+9YbSwBRvdVzDyBEupc6Xqp6DQoyey0UNDCz/qS0FXN8elkecxkqn\n", "rLgnusrSIlNCyalEf1lQ/MDuxtuiAM1KIJE0SHzcKGbvBTNzI0MEhfhI3Dqoru/ULbVzXcLT4EUn\n", "FrjsdvkwoaM41v0onOFyBzjxT1eSA4YgFio1ECgdBm6aZzMWObQPFhjfXWGN2fk9PooMSINpjoV7\n", "/noJsiWgCaoBi9ViWWM6ZI7W/8ZI8FX5iARwcwCrmhFsE92b+X/KZmrMdHKI8sif3vV4RQbBjVPk\n", "BeYMqeoKa2JNKBDXLvv4Bw8B3cEOt6YChz9wlXDQHaoKY/fiNpxbI5uv3NQ5+XghAAAIYUGaZ0mo\n", "QWyZTAhv//6nhAC+AnPd76AAALmLGIvO2YxN2Q1pTWCJXNCg64xBqsGl9wkc7JTFv3Am6jRt31QI\n", "b/l9QZGMwQNenfq9MZD0Rdtl0xmt0J41/GN9JL/lEtlyuCuquVSGIFPi8dyGbq/XVEqRYhFWCPV5\n", "TLtAd+gRwypVNUDeFO1ok68o5C8ybVtRU8h4mliE+yje6dvTm6OHTMdjxInqKKlE4CeNdifkP1vH\n", "QG8ZpW+rHYpR5AguV7mks/rpjw+7oV5Jz0SIkKw6ML1KHfQGZKzgvRW7iTAxroPfojRzRnBaCHun\n", "VyNsIWTolts82yR2yaGcD4KvDGoh3XVbllzoqdUHi1ZXCgAQ4dCRy/ZPjoxkh3wl4ENVLik6xpEB\n", "5QZOx4sXjuxUqQbLI/JgrCxuVJS4AuXiax51nUPAJmgbzMAxXuBCrCeR2e5FItBDjcVJrEdIfRYE\n", "XpDpg/76BJBUC3p65EHR66QmBdYNPL3n7MjMFzkeQBcCtTdSiGIOj4MurA1gXjTBhc5hGKzbQHWI\n", "Lj4t6VJoGJA4oNEYiyp1t0ZrPP/E+QEyznmAQsnBbIHoKagp6yVx9pfxS98ql/HfxY/radennxp1\n", "/hg81IEqdVS4wRNH5fbya7+RnHh3oxRrPUj3w3B0Dvq2wpXKqkKk1rvBLLBvDa+2XAuYa136wRL/\n", "VYnboUwboyXJR3qub9OyxLk4NB3wFTd7cF+/bsKxJ6nQh+57ujgFnJSztcPFJQtonhARHVtBhPKe\n", "1xef140gXwGJyqZhYRGRf0KxaE0fQJWyfMnu6pSxIrqYIqOchYGRLTFgJQft102IdpXYoi+Xu1tz\n", "fzDGFxxQ/NmoFSEh77cnSYuFDt6gH/Ym0BokWe6ytfUhqjHt2LioESfxMYa8NwrsFZ9/M3ubKLqZ\n", "768haGS5vSPKviOcwztQzj3hD7mUHD42ebxvJD7yR3Q3bI+Hk1pOZIh+km3pAKAxOMkFBe/rl32R\n", "WkNWLiUo8tasQVA1w1ZQIQ5/hHvzcvA9JFj6v+D+wBDvpMvg9m4AdebHSkfoYgyjckisdITPDNXP\n", "XSfMqtPSLFxiLDuCJOt/UDiBE16IbHZpjgSRpqCPN1Sn6i+SxYsczHIiE4TPmeqr3rhVBZujmUQd\n", "BN/SlbD25ifxLBERsqku7xdV8fKtoM6py+6cN8umqI7nZAu32wtxPSIX8czo9W028Rn6t3mtvbqs\n", "TIZ67EYO8Y9MqY9K9Q7Oj76/90YV2XBvhXvmAOz7ujiCODfxM1o2doi0jLXEieimu71GAwRs06oi\n", "Hs1Ey0JNNVcdshkafYR20ih6AUEwMRGKacaUfzXjvq5858vLjzNG3B8kMScLlZBgMvaJDHrk30f4\n", "ShhEkxo+PAyRmG0PQL8GAQVHxQdqrQh8IuMVaDoQ5OZjFd7Ee3IwNMcdRlmjU1hspZ1fGxJk8SZA\n", "WT5KfmlQI/CDGucSmiBTZCa7Ci2RcerzJbpulWxF++4t/H4Wh2jnVPi7nwq1zQfTOTuHv3Knb9TW\n", "+9fTr5U9kGjJn2o/PzJoOP/0w+6lVNLyZDjMMh8z4JlZHy0vZoPfO//Ohjfi346er3UGEXa6IlqB\n", "7qJQrHA2ndZ1vvq/wOtyUF7q2pV4YG81F2hJ7OSvgM7d92gSZ3pw8m8vWXDW4xoewPziPPA/PHUR\n", "VJWsN8hcoW4VvRK+ZiyixkK9ec2XuD9Xt1iUeDLFXeNC1slilBeN940b1zQXESR4bQ/l8ST7Hnp3\n", "vnuCpWWQTwmZMbDG0UgpuewqXcN+YtEwdKDt59H5kjgIzojZ9C7YDyWfyUm/PvsBdvun0wrTaS2F\n", "qSXtPNYty3mgWL8xQx9/QGkAfjlFtixWVIxGzRQBqGtqJ8XshB5TdW3MOg89ZwnwO+YLKnjqz4sQ\n", "435GQ8DNmwRhajBaa7ChBx4X0O3Qni/M9I/PITnOXyMwHr7Jp5y7aCPDsLUNceFIf7TDSlC4zwNX\n", "vPmcAjg6xme+P5Bp3KfC3vHWztS6ujFPTCuobtz/ONq3dOW6dvL0tp4YpKuIWun3Zavv1tH7rs/Z\n", "AcXx5xIZbjuKJI69Ei0kWQNnUEB06oDwZDH1UWWxgXTpJlz2V3aKW7XgO1JhPVvh6Ig4PZ1X0mzM\n", "v6WdQn1Awx03ivjKTJZk6VPw+bSMmh53iH6foJe3g4SkLRCCMBdwJp/fP8DE3g0hoLKHK7r2H4QO\n", "7DFHPtKFW5SSa7xyDa1UZ9YMSRRe/g7MXQATeRHWFDFrvZEsQHejuFesl2S3bN51poGxQdX0lIfI\n", "Bn1hdUA9d1HDPRy9TCyI21+Q9GxlCFSHeMOTTc5NrnYHHN5JzgKDMJ/LFgOM83Hl8Deyj3bki+Tc\n", "3xrNr1wQ/HiY5qJuCHou8cyUDjlzwkaadfrqWcSaTxGOjNLrmanBZTgLPUhEnCtFfblg2U6iAFp2\n", "MI7ZWGKTPRkr4ySMIm8IUUFb0/utqY8yHGWW26QokpY5zfWn5dtjJjG1t7noJU5kop6/A71CUwt8\n", "H2P6JQ6Zg7KcGiEbO8Qn1VW9u1gCV6HIWTbnXcvjwOm+lkvA/9WUDSt3CXNvjnoa4vuWNCRGFdcj\n", "nRKfk302WJ1FgKdwURNjnfGj9ky9ClgCkvXtQhRlJC8D46CcWV5nDvERm6b0qIs2TQ2uLU0ym/77\n", "GWPiiRIa2IHAIRMF8SwtAzlltsn2QJF04HrUzwF8Lya9togakrwWmiOpXx7y1csqkXItlHQD2hH3\n", "DhRv7ITKtHiF0uBf+iYdAjDyURm9otYF+D7DJDlAHu6uOQ4qZ7Ms0UA5XESgMwaVfjdUY5q1PqPo\n", "texsj0P80M464ECfTUzDXLFc0YAs47EcAx8ocTnbQQAAAcpBnoVFFSwn/wDJCJT5eOeAALTknTnU\n", "xfM9oFwKH2J8SWxEXr8QtC9r4/gFRMUmNe2SnPdbARFdX7u25bA4567Z+SNhp503Eby/4aLkWLzk\n", "rg95sEa/f0PnRtYWN7GPwL4/tsCq8AT0yL1ODenqXnIZ6GeElV+jE1QrYH8RlRE4DCLvbrOiTMK+\n", "DmpjoXz1FzGmbN8EPY6RWZPvrZ4PplSV4kTTKXFvY51eNYb3W72mBiNAlgXYpkgEM/NNbvZUKyNy\n", "FkorSeLHY3F8vEfW0vR1CJrnvA+CIjYM6fq8VjYfI+0OsFqSjvOqkWG7M4FZC2pN+Co5Ek+Q/xhf\n", "diJfHtDovnjIaYX06QldJUlQ/Convh2Zp/0BgfkiPu+20FjjuM/k4b+9KerIIJLr/RL6nhpMQcBx\n", "SmD5967HUxQa/NbQhabymo7H+Ctcnlq/1t2Y3PT1eX/KsNIu6h9eZ/LmHbxtG7mf6gNy7u5IaZKx\n", "Z7gTlkQAEQo1TMKo5h9D43ejf1FbvhrS9aSttSbRSETna/6d9ln7S/9cj4RK17AlSpzhoYmpG70i\n", "U+C8Ubs1LPku184Aox+n8yAyCsYxL8jO67A1pBIXfeYwWJMuJQAAAVQBnqZqQn8AxDu/+GEsgqtr\n", "TAAhObnrKwE6gkH5i8w5OgA0iDegtfjhPoVdXqjrFDHkeG8Ips/kVbETtqJ3hXX91wD4jiCh1wg9\n", "vpmeMpXFVCVOdYifE56rkCizyhUR1i7xa41acwijiqaBcjyOhe6R3F869wavGqcBSnviewtJf5O/\n", "kGPdwCLYdzhV3f7TiBvpbOLyAxX02erVEwxdk2ILqmaBaJ39ZVR99CHFWNY5vrRTaWkAWUB1ORH7\n", "WFOuS5Il6KBG8sqMiIs2FyI84hskKEnEmyEehOqyle7/P/QTvv/lGLAjaV7EKt5g+PLpS+TuF1oL\n", "aOPvQa3fgr4DXSDCyMToBNzmzl8qw/JznOnyh/xDFpim/ZtQSb5LgO0IZ/LCRw3CuiCPefLKIGgN\n", "PNVib5ublksX/ZSG1Wzkay3uIt3uuBupBKMN+nJtcv8sEI4jP+6BAAAInkGaqkmoQWyZTAhn//6e\n", "EALnI+vkalQAzEkR6H2fasaMGwBbMhUBWC4V9JxyzIuVJagrcWrsugJaw1PjHJo/zP1O2yNmAGXS\n", "EiuYAVulj69EL+PyTzLtKOFcYT78Hi4evpEgL2tXGxe7vzYAEeyDdfrtYCaI3ctof8Q9yONDM5f4\n", "vlnczSdbSbPz/jUBrKznc6TYXImCBlLjL9D06od6Qqr+GJ8m4T1U5uqVL+XlqR3XVlGpIvkQxk0A\n", "e1XbMI2RjBJgqwFWXb+vRgW1vF9eelapXw3VmZDpLM+odHaCdNyBrUyzxVfuqYX9Dit6AlzBkgEP\n", "UN7MXWRlFDE5+B8vsbP0Af1QRZ++xm7lJCkWFNmDzRfbO7dudhwZk/05vYYpuVr8YVuTp5qo03OY\n", "W5blPj93c+D9+CLS++tuQUQrv18wKHnOMiNcMlPSbGjnDPZFRupZ0dd1UanLK9gh9NjPxPklACP6\n", "8FfF6/ylzGx4+nscRnCxQwVFGLOqxKEY9Ig9ctLOMMKhgwDvnrlah8hUCxXfgDjcWYBxvUhgpsUf\n", "H6B42viQM/CfvPYc1AzhBDZ3tYjMBTtA5E4Qh/3ItdqS8PWjFdsXz+9BH+lUvSnBirbxryDY/Fp3\n", "rdl1gkmZy+OAZqSMzJJkieTUpvEHuCNVUZK5SNZRsMaHN79/UJsnRu/8/8mmhHkugc/PjgJYI/4K\n", "k33GJIigBKnSvP310iFcXbEdBvUQBk05goiKs7k5hwoi8bBncgxeLKBs8MJrufQTEGIhI4MHkZKk\n", "wWtsB9dhvM4AHAffSM/hOgxK+kyevjaSIILbRBPK6rysMlKlCLOl6GV4Tf/zgl3MZpW2wuIsTrB1\n", "4BY5Tls/4BoVhG4yDOKQNPUcidyTmSAhNS5pl3pu46dxXbvHlmbhJQmQlRbIj/vLiZQionlo8bcw\n", "eC0hGBLxI45eOCva6D02NJIW/g/5xNG9DAeYCKhaaQxIoscaGaKqvSI8YF0dmnwhKBpaJ+YRZVey\n", "JppfHAomE0Q4jiFjdQSu1JpoVZ1dy9iCRx6NlOl4pQqt0gGijfSBehuRntaG5J3njqXvf3cAvaEG\n", "ECm5uRfRmMDLh72IhWSkNAdnMY1ECMxGEhWwhkwz9ednJNO+n8wglv05YFqACBUQl0Q9Evn9ThUh\n", "y/tc38Xdx6vWa+xKUGoG/WdY/a75gaIdL9DCkdWRQskZT57nWJY4gArHg0RHkCdNyyJS+QuxsW7g\n", "OuC6L/ExcMQI8Yp8kNqEYA8ZF1rEBk2kcdaC+nQ3hOxR86fFOWhxXGFGeXBjamFh78jIe4er4Eic\n", "i93VmtfzcUZwo0EDlDGPEoTynsJftgZ295ZHhZE3obYo9DF9kJZJexmPJaNTaenYG+bEO9mdW0HC\n", "O1WjuwpXArfSm08gQ+PLYIPoS7qK2wxnXFLKJMHI+wDQYKdfoZ62pU0Nrf1D9ciwyLzHev++yJZH\n", "PvsuLKrt91ijgF2PXlDATkh19DQaBucN/Fsdu7WSa7U9nYX1OZK4DAIgt0EwVYl14LuYMistNHdv\n", "bOuZHnySmdkfJKalVDhxae+EY0eauTxIZz5jqovKzEedU539yjyFS63zRMe5VoPTAJyDCsX3GYm1\n", "R+KOdf7H+ZWwGz9/DFa8ZG6TKz5jV9OuphYiq9yjZoCg+fU8NZiqNlDrkFpDxSGwKZz3ymdytBuD\n", "Zo5dbUBn1p8doEzVYa3b8PHiwIBmbPBUJpWwvqFA6z8N0GoUqZywCnWdZVd1Des+q3+FkPFAw5RO\n", "eoWnYvSkJO7w+cuVfamXmuorjtSE5YWb1TWBwQjxPD2kVt4OQUDbYPADbPhIPS5ECbYa0z+l3BJT\n", "df/hNnlj8a2QmU3eDczVtOvKZqhuq7VUYRJycthTD4APqvptIqcj/ql/IO0Xs4FcfwdMdjsdxryY\n", "WlEOUm58fR7Saz3mF/hCF4xTOliyg9mY7VGe92sa9iRl/SNQKpS7z0RUHyJPD5oZloYuBNGed100\n", "VCjH7M7wrINIPmlHLmfIgG/tCMsnTV1lawKWb6zTNTAkK5EP/0j6jo6T70QwduaW6ZOx983CaQ2A\n", "5VbcbANPydfdbjtZ25+oZI1K8ou96p3FOp9eue9DDRAIQGMiID2SDlNXR7VE8EleRfKlLdSjcRAd\n", "H5KsWQgRDpnDf/P3tqdoq4Hl8GoPx8l94JPvP/rbU99E9iisIubK2yg4apVASnI94si/OVIprVVZ\n", "u8wbPGpcIKll1XU3Hlj8WxZfvgAykZTe8PzKLpnxvr5AApDpi/JUldiEwJ0Co949wSMOmt8M7m0a\n", "s0PSovLX4QlAcNp8DEuHZ+j5fgrCllZr4r1yN3XVQ6Z0THavQ2M9XLKt1PFKByq2AzsCUhmTTsJb\n", "fbxfN15WJbx2o4AJMc4m4UjMGb4ojrQgA/FM+/eNahZzBXfjozi8qnLmDiNzA+eGIk7EA1RLVJoI\n", "dFv/ViFC0uAsbkjz5MGXtye+Sj9VfxRrMqubYBEWBHcdgOtf+qzw2tj0f7MwIpVSHHhY1YcaMekx\n", "Djg1dOZ3pQN5gzmHQ4kAHjMt3glAK2dyjL/Qi7N3GzCGlKYJ4GWevyYN1rDlP4CvqU7EQFZ1gf6F\n", "eQOS+94myEN1xWJ4hZhg0rk1F/6pF2LQyf0igryCTgqfk5vrmS0u//wcdE5igFwzeoVxt+NR3boA\n", "Qb9zhaNp5rV6nsvl/ZP9CyC1qQSlXP1lZAXzjviAdTNxDs/vtTstt3mR4I5/CQzMpduA1RipSj4N\n", "CBv8ALC8xRdtZCJP/HnKYf0x7Xh2W2+m3o2YTULt8rn/Mirp3gO8eyM7pl2zHjdQclA2Go8CshUs\n", "EA9gRrwjhz1XIb9t+VeNFUFHywcUP/gOIX8qwZVGObzeFD7JLt3DKHGdA4pLv2tBFJ33QwuJLE6Z\n", "IcIbli1W7eU7fVh2jQhMM5vuYbErZRz/yMAAAAKtQZ7IRRUsJ/8AyKk2zk3MAuYBABdRjHogHmK8\n", "0lnAfyKBFhOqSX3/Uyx00qhf5BhhER6EzK+Weso/V8A+Ae96cgnEoGHgIq2BW1PEmaXPTCLdOegn\n", "A1fsJRznntvWyELp5JW/MBRv/Hu/lvqZGu3YB1gKqX37oiE99Ov/XMMfvTsASu2ITk5QkXn+2sm6\n", "yIMWM0Vm9x89ndkDIfEVV8FNttj4kMat2OZD3eiwvQGvHgvNrDMe9yY77Fcs6F7Ba2CMcJG0FZLr\n", "s/T3iC59h1RULTihrOOxBQsIrFqRx3dH8knMykEB8zGGP1rXre0RPNE/dKwE5Dwcn5GND0GqpHxw\n", "tHZeA5jxSOETfOjAfXp4ICAsMt3n6/tJstKy2LvL9cy5OnAgXk8tfaRU8ySr/prY/T9oOIKuW4or\n", "ssbw97ov/jilr57iO6ZGJTzExmSL+ET8A329wuYgGslO9g5mgtSj28/fXpmnVfFwMHNTcseZhfoC\n", "qt3JNSKE0eV6/ZYIU44jT+teS5uQYrws8fo10Gahlk/btnBKHi54CtHUlp7YczQ27FU72+POYNWn\n", "f59Y7hJADqzJurNL0CfBN8ZtNiRaRdjVeYIrB+qp13DUWi+hXOAWpB+bD+Wr2YOnQszO5CEin/Hz\n", "BNID1C4DrJPySZb3SJC4B4HqdpXbX5vspvMokeRggWI73rOv5JOuwUYYFlRnGgx+Cs04+zEW2JyY\n", "p609FRH4h3irVjXJ6M+/DbUs2Mhcrv/zCFnbbGeWmgfbptRZYI4T7zIsDGc4nCE0N2wS/Bo3jvns\n", "guPbgHT8F7ifogSandDIcrv+FbYNGNbN0IDMIw2mtSfJt+xuEXl7XJBrtGDZPvY6XGjYH7U2dEV4\n", "js6uxda2mduacogeKUTEuX22FtZqhpGK0RZFB232LAAAAYYBnulqQn8AyQnFuEgACFXqDM7byisd\n", "37rpkBWKndIwnvsThY8JULSLfnmSi8R6WiuJt1gppN52xoPBueQYUy87xwo4VdH25kCfL/HUsnxv\n", "dnA4fwOsd3yNJsZO42P5lUGsblzJaN0tO41mjVrcuneql2z5VQOctsoqnqgP8TJS3ojOsyuh08FZ\n", "Zz6hPT7fVeSmHMSdeCyIKySs40wfCt6bI9lssqwC0SdYwPtc5o747oZt4RvA+kyKrw80wYcRumD7\n", "S4/JOiVqssnAoJzO8+xH00QsOR6ciV1nX01q1IhaO1SOPv055QAJGLSVD2zHP/Z8YK2856jzHkKT\n", "7pHKVZstYS/+e0X7J69MsJadqyKSVb/M2XQkfOQOMd8jVWihthNvy+F/dqdXMIgwOb47nv5MK5sU\n", "mEY8sMpe3rl36gCswMA4e0U8scj9OvPOX7ftZ+Nx8OHwFfDW5O6CNl59zC6FFpAajt2/IQFsq+k/\n", "1Ioa9TawWbpc9jGhdlkVJA7G8VO8EGYCboEAAAgSQZrtSahBbJlMCGf//p4QAudYj6KAFcqzHAyD\n", "/63Nak5LQEY6rL0zGvgaDjNpVNuWs4C4QCxOk7MB22LHF22C9Cwl0z4B3smTnfgCWp9FSMDs5y68\n", "FGTj1I6jYWz4gSR1qTASAwvaAF2seMdonSq3woSid7vNimGychITLWdXArxc3c9NtPaS+74Qraiy\n", "JaW83beuzWq5nCwtylJfzapCKg4jLPmaQTkwtX90pMj6Ewm9Dr+KryKL4RvPSBeffR/NYVbucD9w\n", "GQCY3eEAk9l2QJVcofx86hbTeoo63qldwXLjBjGDD/k4C7QNVwT5itjzs8TtgfKORKSkG6jnD/FZ\n", "Cggx162NtyAgvJx6b1T+FoqSrUBVwuLAjaA7hnyYMAdvIv1MZHOl2BkA++Fu6Gnx093E/3xMK4Y6\n", "F8cY3FVFrTjrgSKE8ZMBDBnSEuVrree4NTkZym8r4gJ4oUyx/pJJwyk4VdJfxeUtRLxq51kOjAXC\n", "0kFeqe1zaP2Q/vMqCiFYdD6DskpjCtfmdI8UuGSEUfO1Zevuu+B5gYNqV9oCT+UB+NyirDncw1ls\n", "m471JKUKw08RHP0pu8ks++MoMqNa3nIBMP3BJT2+3ib2ocuTy8IiJRU0DHqZBJW/g8enIWtrB10E\n", "e+GgdnF67y7FY1VrWmYg35EXUG6J8tmUZOJnKQ+VIdCWSXR1w5LjxKSNodKGJqBtw+LcsohZndLZ\n", "ptVVKCYDGzof3FfPZTUhWpY7Zdfk04/vQYrGRWYSR7IcDQ+UbdpuWma1CgV5E0KkkcTLYd4RxKMN\n", "jz0w7zrsShN1ouZZ+sAjFqWEQc5hw6xknD9XLeEIfRj5bLg4j/akmplHWXbWI+XIH+9qmjJ5Ybeh\n", "rf9MQ8ywTtsEwEn842YPYDo+xWgbUj02CrsbA5lrIQuiCaiTOKJqyMdYYUafgG7bBTFQBStVKQDs\n", "9uEZVqyyO/KMvO0AhZmUlnjnDVmtauDC7PXxtDL1RKc4U5ywFvlyoTPop4wsRTAuExTafR5LzmPh\n", "aw3Z/eKMjjMNRSvAPODT+TnNAIzS6itmEhhu6SRqiUUcsWHasdDKL7TYkCB3YzfweUeS64V2MK1s\n", "MgLcIZKaBJlidfUwU5iMT1DSQYObNvYFWGzEBYf6/qsnuQwtUDcfXcevLnxxTqlPLTxHRPXSgrxW\n", "9AOpoi3nuUZ1ITkB7kiUkkrC3Hw9ue6j3jdVAUrX9VpFfHtm3ErLtYfcMXEYW8s3osGd6SXrAkbi\n", "u0byn7aiWTC3tOY3lD3fA7LS7ZIDRAPoYlnqOJOCG5q7NDW/NehYlC3qpJ1IN7yZy9DJP1KB0nak\n", "GjO1wAZBB9hIveM5IojLxSCs8HP5tLPod4erV3+4M9PBtjVhcQhoIgXiyOq2dVSgEk4vvRCDCITq\n", "Qhue0kXAZPv8JC58awQJcOSgDQFROIsZBqGJx7L/ulN0fUKPuNrr+xo3OaEOhOXes+z4GWc5sm4/\n", "V7zntzM6kE4g4Li7O0ce/H7/cY/sw+7wuv7iz3ypcKEvEijZ5pVz9KOAMFP/TJYWZ30YgKWmbQN4\n", "YJZZGaUgsk3W80nOE/9kc/GeLW6fOYXbxh1LfDWibaOMdqJcF+2o2YGjo4ANQKrLWkOB45zd/Gxv\n", "iDgnx+luU/qUfRtGRCzMuJELGTUTEj3XYoksSu41uspAZvRn2VtP6fu364BAxVKMagUmtXakIXJz\n", "F58+QN7fMMUMa652+Eu6gN2fCWJ39fmcOQhQdJQj4K3GdN/yO/7aidOUntzQAgJZd9oGgi/y5I2+\n", "n+tfAI4RqeRerqocKVhjmGU1lnmKCQyAE7kJwIPNmSz8rPEEi/0HN4VidvlpKuHMW7SccZ/aTVWv\n", "6qnRQgfitX/ScF/5KtclSXeKSGd/ktCt8z5eTa7cv/Xy0yFB4cbCXP7GW9q1BNViN1GaK7ulMmZO\n", "O0vyn08TmlGMW/Ky7Fw4ECjGBU1+Miadts/6I2EGVgrU8hPL/REwXnAEU1aAimgM72ofrQKBtR1f\n", "nqau7FFX5gQasnA+4QICPP2mUX3cKAXdvmc/q1NNmqb5EwSDyAu1wmy6oU5RGvKli6J+4R+0WOA9\n", "YpBnieDdtZCzb99z4iT0AFLEdoMs5EVkkn/YJJ9AiO8eQbRnKzDnnxi3VOwlC8KxX+Pdp6nu3JY7\n", "zOnJROf9q9ApPql99jMcKOXREjRXd3+nOIUukBxbK0JZ+5UzuPSB0305Mb0U9Xv+X7BGI0M3zbG/\n", "3Esc98How1KdIGlfJ2bwJ/Jg7gSpf787E+i98ikZIYHyGkUPF3lx+q9Jefh9pRxxFreiDbQfITtK\n", "jyPlM9sVadYMhpzz1nsc596y2+pvX3EcJb2hAyziWmO0xSF/C2Qon4XKdd3Xu966cItWKr+U5kyr\n", "E9Srys4TdjMnDX8PwdOSyD8Wzc6FtnTSrgyHZTh20FiDYyMO1N1d6xSlQd7NFt5fqrl1z4skvCCQ\n", "I9CRnM890+tBANcdE0xB3KTrRrgS7sVo35bAiEbSlIOVbDJoNxYxZAY7otZe81wmeKYIlJ77tFym\n", "7+y1TAI877FmCPZ224uu+Kd9X73VRprYeQ0UCyE3fHocXzu8aRo1X87ynfokp5fIqzNsbQI8oVL8\n", "TNejFW5WIM2FFC9JWCPC2xk+i+yAbZtOS7MJwRms/b9QT5BjVqC6Yff3M/roLCDAxBiiKKZA7Kls\n", "CLu2+nXuJduUM3luoEHEl6xIdlXqlrV4QJmFLUf6sh9vUom6D5yybx/9mFgAAAIXQZ8LRRUsJ/8A\n", "yQnMlecnobiUzgBZjBNQ/IJ3N2BCyPPvBibwbx1RgBSeOseHbkwyPXeFt/DbGxc2qbOXy6HRfDwg\n", "aqbBdAfNVXrKoIxvoXS2W1eMY7LqelVdKv4afmwuAJsXVPKa1cccr+/RRIT3eqOc7BrnRLaakIJS\n", "zxm7At/OQrMPhEMkhJetICG+Qi8QWZTpgq2OFCT9RUCoy3lhsnrfb4YuMJM8vCVys0lfIYHibnlM\n", "fdbQA3d4j7vP1xY/IcSy+8g4XvDS1AHkedIOj6AGtR7+jF1tHoqZXYMoSTagfEAXkBEoOXIZ287j\n", "szT6UPGJ5AJhCrAcbyegdd/UWZwlBFgfa/BoeF6Lt7NyFsACSRmfIzVVQc1BjY9TWqe/WpNlAwvo\n", "J5MFVfnohQOpfXabZplZ1+cffmkT1RLnioH7qB54UyPm/4y4JZYsQWn13H1oY1Pqvr89DUrZKqpK\n", "EV+usu8TwQhVj0r5/Fi6E4L47AOQCUGOr55YSV9ltNPTNZ80xgTwfPDJ8LPWERUx2RL8s29MOmre\n", "QE2vEn7JsFMA3fcLRAyXfHmQvBcCNupZfQME8aOCD6J5yYQSLd+9lWTJzUJuMbVvgzMgvLjOEsIB\n", "lvbUqvTc7FNb8QR/HeZwWWvzECedtMA9yeMKolpBLgl4sdDW+1EYOL3F6M2vC3iUjeULi7JTkWnU\n", "vAYBSb1do6qvPo4WUAAAAbwBnyxqQn8AxAuVaEVcJ6agA1oGfczVZ5RnkuDqAmyi5uiqYvVF+XkC\n", "jL15IIJZXZFQmLt5bBmRsOiUlHWH5OIQWLPRfGU0WjTuwi1Cs5wQSyZB7iPRJKOsFkRIGrxAYlxs\n", "6lTlM6Wq3hV/YUuoo+iejj80tCuWeZyPvHY4t8m4gvQ7EqdXCZhGjuQI8hWTqSSY+GBsZqKtgRSg\n", "sWm5T2Mx6frBL5FuJUl6iB91ol8IiSkn7oN915c+b+j8CWXnZs8oierPYRfAXroJ98zYPaaBevF3\n", "4yLuZ0MIsBm5I8jhmEpScbqnbqG+iJYY8n6nhImhepV/CsCylkomOYg5yHAwFja10pa7kLZFdxWL\n", "Ljki8uUR7Ibg+p5EW/KhYQx+qJfSvc1CqSvl4d8lT31HtsUZxRTdQ9dgjctngwL2aBdkRxtn5V/3\n", "SuozIT9kUQRaVofl8feULjfrBzR3d5C9SJxaiWoPVl1/6A+aLrviV0QTY6Zkh654IjpvpFeQZdQb\n", "LPJ22IG/7/bFOO9GxL2Y/WBhHcFAIFFT2pv+xix7+7DXJnJSO5uSBFgOpiHx/OSoBAnBPghZTErt\n", "ZozCBR8AAAgLQZswSahBbJlMCGf//p4QAuTv7n6LJACm1m9/p+0AKWmb8EERRNyBHmGAaCXH7yRn\n", "vf7EXRZEVVnXq2bClt9QA113ZdroHbIaFpopiT//V2xhmsvJ4aVyeUEd+quTuxITYaiPohZXZNzm\n", "4ze74VJoaUOG1ts2P6hc3B4VWIV54GSmSsiDKKkITnrJcAKJLp107h+DbHQ3n9P7EWAJjgUOf5qh\n", "xX7qjcAnF/u6oOFZGyTDI2YUDFhhKr7/h58Y+l2/uYMBsgpDp8tO44PGNHPfWUpubgqTM7sU6izg\n", "CirUtJT8bDu67BPoxNLemnK+F22cUOWkjCLaQmypAUTvqcsSderDTPmfnYVtd5jx0T6i+Ov8ga53\n", "JYVAzhMN37N3aqzbMo5mOZ15/x9EVV4jkmwRWQ05dyLo2SepAzgi8IJ6/SL51amiV6s0AwvoF+nv\n", "hYGOsHqFgiFIQ6pE+RKTFf8u2eNyBq2dLsjfrOr9nE4PYhDRiQ6u+/cf5cgSz0StHiMP1FPzpIBq\n", "S043x4XPMgv4+g826bFzJK/R3I3F4UXqvVA+HjESKaLhroAcnWlJZ1dGa+KiSBy04REUzLx/05RH\n", "hd125BhGnSGLRgEA7kh/Ou2JGPFWEmBD3YkI0imoI8GU8BYibWeS+B1MLdsbEIx/qalPI/QrApNo\n", "3Sgb0hON+KFjx8VtSBAtj+bAWDfz06DCLMQITx2nqisEtg6E2Uw+DpeOCV1Esftomg/4e30LXx38\n", "+BOt2bj/yLiL8xuzHkAfdvTN43zrk7CObAZRbyUlByqUi2gY8IwzaKlCMhz5oMtB3f1Tv32N1AuK\n", "p1LCcXhQrPls/KtfkPO2aqKw+P8dnDUH18NvPSQIiY+9b9aQGkLUs3yHgPWNg5eDPFaHU1iqqmBP\n", "iPoRlUEuvuknGb2RjdxHahT5cZ6myYc7MZQ5s8efkMO3fJOfB41Q/Uk4RzpoFMtPWWFRfKA24hCm\n", "JMB5TAZzcVDgB03XvIZ19iuCP3CI1P7pI590XySqz132fbESianeiDtWiPv/skvOb3e1UzIYM0oE\n", "N4wLgIV/TxyXfkyBDhYNJoPr1YUKGlVA1VqhVzxPrOaqIxvYaz+W/oyrimjObFp+MQ0AyqkZx6wl\n", "XdvVpSmT471Bxl2MWLb6u6XfisWiE3fz7hUqkxmEix94yedpZVl4ihTtsG1drPObRE61iK9BTaUY\n", "eaV+K8cGRJ+u7EPWrW8iGGarcd/J8Uu6BKATGnupUeL30hmgUtgUB7pyFTut5iziHZA+sjRckQJB\n", "47YQyE4AoaQFll+2Mw6J6XYqHnZxkGkL0hxHZ1/MJrvc6PZryo4t2LOjl4FHi1pzmGuZDZ0X69Mq\n", "A27/lRFUorBC2+Ar8GVqVgyVoh0/ERcRh9UxOFQNd8FEK5qckaHx8XjOSsBQOROpkSuRFXThnG6R\n", "OzSIoGcFwL5LQo9B2Y2gmKpk09Q8xbnD0Fi1ZkEEObgeWrXI5mcQAeqZtY9LLY5OCeuNqtPo/h+0\n", "e2/45Sv2f8BFe6K3HHUdHAKKXqcZmEKLDl3m1H2IowTJvLrgxUiWy4bXpqisly1vWFaoDU6VuR6B\n", "dS3cS9vtcYB7YCGXoC6rAwEWW+u+RZIVt28Jel0f55gNAyul2iE3X5yPMeeU0kco+rbpePPrLDOx\n", "UKJnKRR9HswNE3tYI7ezRmkJmKbIH6sL6VB5Beo8dr1yu9fAD+wlSMnI6tFenZgdDerOQKB7P5ac\n", "2qO1bZrcPpkXnlb9OVAElnXX3h4qXSoTCnxREZvkxTH6sNA7wcxmXGZy/y7v7ghvksUUaUibjgHK\n", "66k8hQB970ECC5RvC32hIs6r+TvWe7UcE2IqU9mGBEauBYyegobpFLNzsIRi86U9NwGvHVmYsU1x\n", "aLyGI5bPE+/oAU0c+zkQMX12tlKgWBg3RKdEEvvCLFkApQI+Jf6tA5uXfHoNJnOjb2QcgNMqbrqL\n", "+n8BrfePGvZQ787UbiyDAi+ZR1QYP+mbcmcfu0i5Up45wY32rSPYIFK4GwWui8YNotjsSf6yMacL\n", "l7/bOe2RZBaichXF6OH4h7q7SbzYd0sQKW2UkNhpTSjJRGeNTzJOG30ZEmsm5LRi4Gsj44pkHRxx\n", "7BUNamSW82P8UUXRtsUV0/Wb2WPhg0Fyx2iDhrwpINuf4rBbjLrbmdt+xMYvxwwTGwAvAHMGWjmv\n", "281c/do1iDN0awlFgeYSdQWYwE0IVm8PAZf6uLiHUXL5sPGbmzs92OOcV+rm/yruNEa364EDKlcj\n", "Cbm3ofz/HnH/+33gfezI8gRsaMaCdPsNu1UJwu13PMQPWd091J9M+RgfddfizwGWMGvS6r0igGTx\n", "aYzxn4jguIp7cAfoVC9SlE8EavjRABic4DaMMFq6pF8DBXYNGHIPlLnVuYAu55oO2aZBzgap7ODA\n", "jtiRD/hQCxlMIeZylFPH5DEc7S2zCchEmKzMlXtVC5wsgLaAIsBR+1bnBZcj/oYaoCyP5/yCvkdl\n", "myvWK+t6NZ/Y/C4XZKli8mVKN1Vneu8f+n9mCWb3y8+Hi6fl42SdnhM9GbdZJ93YjoGLMOscg2O4\n", "gW5yL2O9dFCM5qK8RMGT9O2dKZK63XWjJQ+Nqd//+SXqeCDnkMCd+cuWYMCFcwYBuQe42whkxS3A\n", "eI20WZZ9sk/aP5UVRwH4McNqRp6d1X29pyqMzTYwkUkbqmkPQwDmoFM87vEgKXF3CeTxI23WZBur\n", "3pqtNzGwheNwv619Yvg8fQAAArRBn05FFSwn/wDJO+RrbOcUCAC6R/vMABi3ELEyaP2e87ufbh4/\n", "+zP5VEgCBgTOcHYkAA0NdkXZhjkcCo4fHzMLvewJYAGxmpzR3O+EYkSCUUgm+FIwaFDE81szHVmD\n", "aSr9leobxI91Oojk/mLGZNx3sw4Nf8dfzm6lqayAdHAxT7gkZhbiBeX8UV3XSMsrC/kOrWmakHZj\n", "RW7KI1Q8SwsPdc7rX4GgpH4lt92NPR9wgDjqw6Y9rkGV6+DubcCCfU/ygVanKOC2TldlHRO/Ypzk\n", "OKDDZY70MWwsJi/CcsJpjBSMLNazVA5LcUYvjd8fgyFj31Aq3X3ff3Qget5dJ2dBzGQP6Eot6Ev5\n", "CGUaNpz2ivDtpcobfnwZpSQYqHTr2seHhlwL6KzpHP5/1Uj+6YRld7dGrjui13/iPOOPQVUrayyF\n", "cdEkHCcKF/o67MffagVz3aKky0pVpn7bBjGsTO/48ocY7tu3XOpQaLd77kqkCB5d5Q4wC4Zi8AIP\n", "Lv2aBKzgZjHvwhm4Z4Uuo4P+DZ9DUXo/lxbXefWT8+sGwpMB810tjA0FHPhPvIE+csFYokm/LE/7\n", "5rG6drnmKnZJuQu5VYIkdpEeJgidWgo5e3TahiCJUIBeqcPh/00Ir+uFIhyuJP/YZaBByRGn51R7\n", "kIEl2mMqV+w9uG9BA3SFazwUMFfnrFD/uA/lc1M8WZGvdXxEs6hIV2hyj7Iyc4ChhMkOWWYFtraC\n", "KZKBwWYrp4UuorBLMKCCB2sMeyOO/W0xgKh9x9Z+QJmrGZ0+mtuNM0IsR54AYkGdWEnownOnKFSn\n", "9ggeBQsRQJuu3gxCLLIuAKUO4X5NuMolEI1V87Qilj4uOoWJXgFymDGkQX0puh6uWHCDr/FKXbSe\n", "xmXtJhytDmWX/zvUXXQeoQahikRySmyg7cbTgQAAAdgBn29qQn8AyTzqosdoygAEr3xsURxHJlwM\n", "/dQlWri5tHET8wRKoO7WdMoZ96Y45AJ7dSoyDvPFrMHc6mxno3IO5rSErq0qVFhNdCy6pVdSK1a9\n", "0De0wJMBb1oCeCp7d1pKpvP8gcoz7E49B+ct02lhB2tihX0e2MWS6viQApSiu+2l7INjdXBlKnlI\n", "bKDQSLrcT1YRx1bhvB8In+wcQ05bJ4daXrkW4Ujcl+oMpEFPi5RwHxTNqTsmG/sOKkZPgncUWbTA\n", "chzzWdt0NfcLHC7js1VG/drZn2YfZNPN5hih6jtKRKhLIKsnQsBt4I+fUhK8CBxMCbgZmFPXoYIM\n", "lL3odmbWpx2dJm7D5kcXq3X7BP3iIwMgu65Zk70FDQrvufcoAIIDqwGs3274gfnu45o8ubHFynjz\n", "aZFz+OGL6W5+UYhcMKLdKZ49T8EXB0xzkg60sJaE491LCw/qNwViU+RaR/X3UuWzN+xYbk/YwXZr\n", "TIRqd6S4bxkJrYRavzRlrR1KjPnmx1t71I7D+FmT7vnsHiCxvKfx+FYXYDWqCH/8RSBoHr/e+TIX\n", "iVeijZBecPlHXfGZHfOocmTk8WkvJg6Yc7rJfNfbxhOVGbx+UQRqjjpvpy/3lLegAAAIXEGbc0mo\n", "QWyZTAhn//6eEALnHWtT/WTAC1ea1qwSuD9yz1g8WBToP9dbeohOn0vny6GBeXC7jD2j2lWDZjWo\n", "nhhVNgcmAmN5DpqTSlhSZKi8QH2gi8IvV9wlavbkEYbZs05Siu0icMY4KzHM2BJtJcoxStpee3Kq\n", "Sp9k8YYNws5UmIqCexov8C1FVDApqAdGtknMtIMpm8qcwT+JKCY+pEqw3Cupky8P2/zH0JuSo/Bu\n", "5/DK8LarxKs1XDQLtQfMhF1gZVQ5A3RRfhrawOQHLg1Ydb54AQKElDqTkU10f2Vkuktsiu7Rj5/M\n", "mi4278xrOQyE19ubiIj/iYII6OZGwTA12AGTFuOXZ3rek4thXsVxY8DiA6sqJiLJ4papgz5JBwuI\n", "kCbvudiuTMQqOz8bRAFrZnK+na+nfWZWYHVThIrQKhu1JGF5jOrjEXHnSfJ1+tQQ9qbvahWKirzA\n", "w3eXW6XhgLeXyHv5L8GOgcEvsG2U0o97N2myKfEDJKiCJ7MKVbN3ZuqDVNaRFoomRlqhGbINU9oc\n", "BGh9Ik3PsJz5FRlqeN9ZheT7ZJZUbPd1lQ/ysCwvWNYsR0vaFvxzGk7eJCeTIusf1OmhhUA6bRo8\n", "80Mfefl5nscwZyvbDNhmt6JXYO0OJTrD6JV0cjJBMFMQD0mq1pTaaPgAkqxCYRmwSk1hbSnrk5WK\n", "O1kNTJU/pASLfJ58qXiDZiyNf9leuuwa6lSWQMHfCiVQVCRM4EotaMyoMWZFIxITtaKFv1hnycoA\n", "GUBTXvbpYqGQY4ZaZzCA5476MHz0r5t2Atmc/xBae5xyyerc8XhSlEqXMYN9Fm02Feiy4Li6K2+m\n", "3Eh4HVm7bSXGfvYBrjK7rKnyEtn+1UL8xq+2y59kmAQRbeYF/zticB3Hddfr9Chf1G5PZmoeIgXp\n", "UF89rZQr0UZjE/9tGeuemUZoLFTDFEJwjTaBJDUDicV8lsMNm7ZoIPWfKrYaYKVlaDGX+4TCRDrj\n", "TlMsXgxjxgDtwb8HqxYACQz+IPAFv2Umdapcw8WxyA0Wfp34nqx8U/NZHTLwC7jSQppkgX3x4sMg\n", "/q9bgSRodWSFr/hp1Ng1XFaJHIGQOPUBr3jCg+Po0fkoJqDjy9RGFZk2ODgsO4J/BW8UEWj5+fuu\n", "hGQTvRKz8gSRd8phxs/h4PMT4br231u5T9bHaprgr4/naONUdVZGwJkF5SmYE6qsWQExFdkiNk+2\n", "7ayk6j0QhD+ieT+ue+4JWmCEO+0N9aw8GwFnmIzRDum5Sg9mVpUMxO+QK3+jWccBNUJvFBIP7Sps\n", "iygr3jF5waWCro5GID/mUyyZmk+0vp6NDFe3fKO+SnHCuaxvMcwdvXLWOjaFqP9N8YlDivhsIW5Y\n", "4yr+/4eD8JR+swRdGSkXo2Vtg5c7tTnBYP3v52RwX1spS/R139SVpeiGg8gI3EnTP+6nVii5s6PN\n", "nwXxqC2NmqdHTs5l/kIQXjZxjjcGojbkEU4SXsZL/CVLVze6K+4cRpAXMfNqj30F70Y33meFs+v/\n", "2VPQNEzcqLHMpn/d0g06EswtFLyoe90smAIrkdzN/JLB4bsjrnaYdv1Gj7DVTw4ya3RMlAkx+P1o\n", "c68M9H7FM1liC8a2mCoxfj0TtZ8H1A0SugQ6ktQMaN2LvLCiSGvnTVlltcGR1zcq5h9qgEqLuCki\n", "sdr+7R6xeHg9yGfOllK2gG+41aTpizJUMbQifZUC53CAA4IyPNredkOHCeS8G342bSoHB72dBR6S\n", "hdQOZJ4uR4iJKEaQDZmDj0TGxaREhf5OfXxQHCB30W444gjBT4QTR1/1q2td+jOcwj1B6YZ0+0Wl\n", "3FHUgEiZ4IcwBTUEQZMqBmBPf/3snKjg5L+7lrYyp5Qc2ZbBC+XmmGuEfGJo8dkFqeZx2awb3F3C\n", "0dacZCSWDPNjjT/Hg3aVQKAalcHnlKIdoGKIw7VyUjA8dLgLfj5+efRo6CS0TYMU6ThGScSlou0F\n", "KbV9V3eP48X5/0OXosuo1HClzsg3ZpxmyD2IxU8/Z/24PAIBYIoeGdI8BNBEUDML3mm4Hc63dsd5\n", "n+ZLNCYdgQIWuKQP2FGm4KW5UYLKF0xLUwTIk6do4dkAkqk9i7gmDmvowxItzAncF7v87U9Zu/nT\n", "H0WH3hIjg8Q+AOjusB5K6pkZwXRRiMqfFKt02PagoiUCaNz9JpXRr+M1ilDQJ8toKrS7p7EskxPw\n", "5zLzSIS7/q7QE/FmGnV4J96RsVjEXiHBOUEmBhwI14BcZPuaCLfiBpWDScDd1bD8HuXTb5Nbwn1W\n", "/wy2nEHdpjpg66TOPUQPqrB5FNPKIbOzref85NK13D7H48IFIogjE+DOPFu7m2meH8UB5KY9srVg\n", "FYvE/5O11U7kEtFQCrhlK2Y9goHsYN2FGCqeoBn8UCRcqjqMUHWScMM691wQkltOZYlvVTUOo5DZ\n", "AaxTQ5W+YYq8QM/R5Yn+j4vLyqZOp4S8r9hyxhWhCCfU2g6rXXjA3wNIAxyqqkdq73VMyqSb0gAQ\n", "1feZvzahqJI8uw8DoOGBH6noFE3ZtoIzBD6iPKaE0E0SsjFowaE4FAaNJHcBqQF0kR3cjhzyjQh0\n", "8bvSWBApvPQf8Fa/DORhhkUwxnDsrQ9swcdPMfUO9QJljn3JbAgJvQwZ8hU+3AiMQRi03IAkZYzY\n", "V+0rDtewMtg2k4gDY/mrRbxIdLA7xI9eE8fyRSkekwvfBLGrxPeeO58HcMljNcercNFz0yxaPmqh\n", "ze9DN6F62FOTIRYpQXt0/Prx7XSvwthbK3X567ZEKqlFKV3UY/xMA35b0exkzih4B0Qko3r7bYaG\n", "lczlwrCOTTB+9+5Aq0hHm+lGNpazgqGdk/wAAAMmQZ+RRRUsJ/8AyQocUABLSyRt9at18/MpEm5L\n", "YxyULid/ku27B88PSlYybPfqYI7CnMDdO6jHK0IcGn18Xu6MFEVxQ4nMM2IeQ7T7J+yW3YGC80X7\n", "zpI5YAvdw76JEhplQXgoSxsZyogkz/o0V57i4O7BBylvdjUysWJbPCoDwW2PsY+h5go9xS+mCALi\n", "GlvNuLNdS+AxTKWOTHHaHMVmNA2sftDIXwgJJ/H22sKtGN876WveaBNcXLnYroyhwbDe2KCNKjWt\n", "tE1DjjRRyzmxcby3qQNmqe0Ki8YDUFBwuU2kb2tuXe7RLwNAvmNsogwhe+CXloroUqq3zAQ2lcM8\n", "Scj1Q6VFgyIACzi6rsxwRE+35OOHOKGBV/YFW+lUsx1iTROFuTBM6nhegR8mVHsdRj3DMNsI+XZW\n", "3CLOFZMZ2bCsCHP3OXdNvkNVW5cM51M/MboIahYpEFevNi1jflZ6aulq/vRYKF3dlaW6jz0WeCK5\n", "8KlTgLSGmpiCjVmuC/S25AvwEqdrELIa/16SapP4igLETSf5wngyoTwuvHM4QOxDBJWkNTo3qTGD\n", "60fui6NqMuh+D2Q/fGKW4ohP2WFpjDxBc2fD2MrA2m17IPUTSrKhAN6ddV0idXlb2ADjFDOF122x\n", "43Apztw+tXDFqFlM/T8urLd0WOKyt0Uwt/HJAFum5AH8sLIKb60ezAloQYa23QDJE+TYcIMOf5i9\n", "fS8Cz4VZ4l67ZPvrtPweXfn71rLQYnOQcCn7JQGxuKklasYE8egGy1Qycx7EKlDooMlM4/QHpxRB\n", "4JTgkStlX7YxfdrhBiPmvNAuYG1UFb8BZg9Gj2DjZJv7S0x0nvElbaGwX6cyy5cUOlrFpfFy+Cbk\n", "ywkN+GG0aTn7Ds4db5st+VP6JmwRng7zf1HizJJQzEwvbF/dwlLHGqFFvCUr/h+7L5IVg9NkRFax\n", "jHiZFMC0l1fczf7W90joGxu/EglOGfIAcEJ7ZjWMZ6LJ+JAePnR5Ogt73XOCX3d3OpFho7yNR5K6\n", "Y73/4OhOMgwl9l8t2/ujJXWFJ9gudVnnmOdmuoXC6bsTjDPTF7EAAAG8AZ+yakJ/AMQ8AEhuq52R\n", "MRvh4ggAbCvaFvjShXVx75ei0/7vCEWWAV7I+DZHslphf4Hkd2pjuz+oRSOeXYq8Xt5sac3ryr1u\n", "0woH6tWDaoRpy/UqJx9qQBvzR5WWiO5ZTns9W7qTLRIPc+BF5c1w3ZluX9qudheFsO67VYqXBImi\n", "OfvIxO65AY+f4EjLrVoHKkpAp8MFKprQyVwjCR14b04xduxm+eEucmMvHpvTnl0o2VxejIfq1VqS\n", "6w8IBwQvxCHdLXkFQsB8Yidsko9pA66cVgm55iU51zRorBq+w0hQZJTRFmRDDqWZUzpmM1WMmmB/\n", "osYANbJZnzAZSZEILOT9KWCGeOuuck7raF0kYQU4ozLNcve1mZsZ4nONKShVAis2L08HuKYEX+WG\n", "lqXqPGgsibWG4MR5k3/2A36G2sEuC+ycTiXBmVcAVDnCob+toE9NqOha+n/8TYq/esq9wp6cgvsw\n", "XIh3IEmN39dRgpQFjTd4gUkIFVw32JwDi/2YvmIT2BUM/kXci6OhgVGxTzOa+ajsLoai9QHOodpV\n", "Wa38gt+u5obZqdsdPxRjowV4nG3Jvq5UWAfdVPSAAAAHrEGbtkmoQWyZTAhn//6eEALm3fIlQAe+\n", "GyPhbtLMowtMV0mqRaJQoOS8oOGlrpH/hYDnxfbp+GLOODI9Xh032tKIC2Ed8bDFWpS17LKAnKh7\n", "gOUYPMwN0fsdCJhkjMhy3u4PMlD5/VGCDlawHeEUQp2Ik9QKGyclkkiQqO6IvGHki/ztZLjNUcMC\n", "8xY28yJt7dIPx9tvZptij01mCSDwoVTJ1SRBKuC6JeLBYYNHnFgp+K8xjvx4VJCGoATR8OYQuua8\n", "Il2jbF4CBTJ4PhhEl3flx48eHm8Lcx/1oZ9mUkZcgeYtRFpyBh4TXIjIuY17IIph7/+fMW1jX+VM\n", "olRa+YOYWvNPWmyeF0gBCZkd0TCj7FIHkUvbMuk9HfbPFWKUH521YHUasDjITNt8Wfw7qNLvTVD+\n", "3xqgYv2B+ao0WIQOJ0lIVgiRMPovDPqQwJSqQwCsf8U7A2s7Q0VFzsylqVZ9GEv7ugWC88ryC8y/\n", "o1bEEkS6ULpLrWOlmsMV2XeROkChAsYLCiswB6nK+m6hMP/C4R4E/Zg3/OTdOSeG7DYEi1SH9TJK\n", "Jh7JEbwhkdWSk8pBMJGZpl0MFgk3lokPZrQGhCvgfE1IiSX1Bx/inSyMOl+vFZNpp/H1rB864F5g\n", "jAbGwT3k3BvBkK9LAqIedCOpuRtAeDF0Dq6dBhnJ0IHJ6yN8tVyd6+LC2f/RIkMzrMN+4LpbXD7e\n", "wpAjSfBSGywRuSyUThbjg1jZNuI29CTo4FaAxRO5CGq/s6PwzUl4yTicgrF7t44ZmFUW2jxycQhl\n", "1XTZRvlI7VZe5Lz1KDqUPjAVCgNwSBNi2R77IT9ytY0edwDZXxcWHt7GK2IYMxQFgRA61ulvcEmy\n", "AZGT0yODCF7hIo81nBg9zTuHl0TaCoONnN7y3ZeVmKbtAModBa91o9QJL+T7ujv7GBXyx0Xx1VEI\n", "/qEV/EXgtEsVTTI8V1nG0K7j+ygvxeuA1e/G31LwloYxLvAzc3r8riRBM4WoCStW2oyXR0u/B/Iw\n", "nEJg6oOXnoxqdVZYPV52mB8diOUFnEbjhun3R4ZS+Cah/sIuiQTt9aEeKKH89J47tkj4oO5cZ/jH\n", "ckVQQkko5p1TELopfr4U+wK+9zY3wde0R2GH3co5wVAe8UDoSx6bPutMAW69nX1Ouqgx3iNZpCzd\n", "v5kgG98L+LapSiBl+N0EIF7dVjgvqjJfQdtah9FgvRonCo1AtNTboB1uL336xC4bT9Jn1/yyi6i6\n", "oKys6Oh4/9rhvkLjNkNUXNKrga/giWKqqKZoWuyPx9yQR9sRQn9vEadnUF4D/dxDh/QNiQSlKF6u\n", "mqXRBbnaPAbS335Xr+p54w6sCFAUkV5XUNf1fA+xuoiM0CtFd33BbW+64yYxOYvVchSzdmMuiaZn\n", "DO6AYYxqofiKp7k9F1/Yunf/kSM7lt3HTnRSRqinYvhAHQ/l2IUIRcyhh1mgzsvPXQEfFrXu8WlQ\n", "LLbGZAdBZiUxvtaW6sxFV0SYdIAbpaVn8XLcuyDTOwDxFzhIjGkj9C1cUY9v4DKLC6b58SCqthPO\n", "XaeKaD40r5HyNi0mG6Uy1UG9hk5QZsM/7vLloIiTayjcC2FiGlFvq16N/V+Uyw5WDOdzw4chBakD\n", "+/shDSXLzDF+gsqghmFoCdxyfIE5eR9O4AvAVTIuRpgk453YNYLxWYEowwveVTcxxjDTwgr/jBzK\n", "tUV9W2AkF2Z8lr0jvfpWNNJj8xvXQqI+ldH3F+9XznkV4oNKI2hoCzMSNmJnLzjQ24SEBAaohjOq\n", "yZjVLRrCeEEbL1OtwJ4EqmnRQL5PSPILa6697DzTIkueG8atRXvvuNpGF2A9HS8GIvlv23a09Eep\n", "qbJCxsA0eMz1YQdgv2hNG5nxTRwW6AfHzteD0CxYhYMj7fRCwnn53f+1D58eAj8I+d0HWmSN+hv5\n", "sreR0BOJ3l9OVYVjdfIaXBvZ1FajlXNirax9OWVE0wiCoxws5EuXCk/GKNReTm4HUvdnJQESedib\n", "W2oxy4L1qjn0S0TLzL5AVHC/miqZltT0shjicJtYDYlqTEbZ+i6QNYIjfR8b+lesAlrbUeBiwKFA\n", "eVH4XHFqg/8PE3nGWCjJ6ciK7tNQynVQj15WKe5fJgSzoWqEYx6DtRyHOSZEqq8TzH4jKPh87+JI\n", "pVIM1tr1SNf/T+/SKeerCKGukKMF06aPNhggwUquQ0TQGw0W5TGuAyx7E/KPQqDbTgbwAykfyipi\n", "TCuVrW5KVRKbtICmWSToZ+tKJVhrYPgdospt78gcshUOm1iAdmRfCInimVQNjfIdH5/bnIw3epS1\n", "DP2cGjPct5rRZcJ421TDawbX2gJvkJ04ouM321sSNQ1JhhF+VBurC9zm2F3uTeweU2MiwFuTzEmc\n", "lh4ZoUALXg5UxnnTs/gIHfKGvjfLCsoXs20XUbrcLMYmZUR1S+dSyMLUBU9JkiRJLy0HpvwDBKqj\n", "tRFXvxsoSg74QB692c6+SmQE9UHHmnfZ+5B6xXBSwEl3DJ4mxQ+U+RcU2XO15y4/ReINl4OYOWuP\n", "rbiPYN2KF7OvodTXzSXPgiAPIrLx/RcbyNZMjSHkrjeYU/Vkhl16B2L4W5c1zFde94jMnmKtt1Cw\n", "6DGgAAACp0Gf1EUVLCf/AMk7n6SsVqADToCDW+VpHdjGxpSelj2D8dsy9JTZpMxMgdXvkQXPyWrN\n", "cxx8UmOhP3hPGx7ntEi4xff+iioYftrQC/uFKYXYcSBF7LoLHwZl8edS6ax79k+eEzETft7gPXU8\n", "Fiu1xb/nYDuX6PXmfvElYU8c1g/1ELxUSyrRQVAR0N+54fdRupBZ37RA1A44Zw4SfACTvNykmWCc\n", "6YpUCCWadAf/XsEOUsZ9Zm5yrnQNrE9cxb/pv3YLps3ILGzIMFCXMweJxzgyBK8S9jC2s0RqaSQe\n", "kmXUVi8nJ9oVAwSyuwR4MnHgR/p6uFz8F2IihFJB/ZP22noUAxMra4rkg6aV6rEjoBYRzz5K0jsM\n", "xfIhl+dLbdlRwIDMtxuljGujfhBd/ePz1NVyC/fyLpLwLB2JEWZbQ0IB5fZDNuBqkiQo6X78d3Pq\n", "/Jwiw5vxVnXiOySKm3KmtzLLhr6haF5x9eXqnvKscBYzTk+8tw9zlTYvPRl0ficaBt6woV5n/Psp\n", "hMZDma3uvSmZ8CilonXS7HvVhweKF2Ep5fjzQpvQl1sXd/CtOsVO9MD4RJOj+2eE/tt3H/1CPwgc\n", "kYwtXM3brOZ0Zxm13EgVVtmDCL5XwfihqOqDpDjr0wJ5oxavfxrpmfXR1fHUCVN7lobWoNxKyUx4\n", "iAyvuCKTTWwyL+7YLwbepeBKdu/nZp35g5BsITPrRd0WDdtp17jM4LelQNsGdxUXsCL0hw9ghxp6\n", "PBsC02JncDmW49vgXYOa42uFhCiZPO9Nmy6vSYvkdss5/4jICK5TSyQSP+MTgUC9fwxvcTfZDoQq\n", "RxrxwKh8RkKDhMu/DXigydIa0dzQjIJvDwCV3JgiJByDP9hbgXmLngjcUMSdCByiCWwNAaBug5Hi\n", "M7EAAAGRAZ/1akJ/AMaOjcFF07+WMevVgFd9BwANZ3N6H9WYzz/fbmDQheaRIoB2tSUD3KyDQYCc\n", "YirhMuvxlqP76dpgCWQMgQpnZvHEwy8X8HiQPmUB1oDmPbThxOg92VHSBZ8b5lTQB7irGEesHz05\n", "G7yIbEz+uLQ/16mcB1mVw/rb71DoNlb0/kcaqpFWCuqn820bbmtoTl4LbG3Dqwynlciqz356Sor1\n", "WKEGU/H/rycwa6q+JkzN5coTOaUxINcU/y0OH1abPK/foM0rw0gw/ECT4snfhZfvcdSf0sRKDI6m\n", "F/gHo3i8hd2lNFcQjT/HoFVl9tnB/ZEywOo1WdLQgNrhEBSBUCbgiroS5DtIpbj+Z9C7UAGXyD4p\n", "L/XJFXc6/s4LSsg/7JZpR91wo7dPfxuHUYmaT8hNSGiqoevb9M7bLCMut88JOscsG1fuqmv2LLdY\n", "dy9/ZN4E/bs2HFLerZ2Lv9J/g8n0HH7iOZey6cddb29PzPrJYp38nZz+Q4YDeW029Qk01ia00UVV\n", "cJnLf0nROcwAAAZ3QZv5SahBbJlMCF///oywAu8YASOAIj3aHICvIls0GjewulUHlPzVyQT8x6B8\n", "KBWrza11BS5aQOyK4oDgx0p0ij25KvYw1XDSyHcGwgCbGHT0uLGAMLCBGVotIaIicjywk+QyvroG\n", "7nN2aPCIEZyj93H6Gni+4YOY97nYGvz/30DfVETzKeHrRCX2nucKkvICHF8h2nOQUMPJ0itzbJPT\n", "9lE5MgT6dpn6kr+hjmwxBM6mOSziPAUnFgXFiqtFb8Qm+ExwYxhL/d3/sS2yn0aj24QW2cXZyIVf\n", "XQR8F9uYE2jupEtCfolxC1T5Eq8yoB3D0/zyb43mzepkPBjk5Tb2fCH2CoYWqWFhszcqAv15JNrN\n", "HRqFRdPMTO9JCCK+bfdVqwfyOECupviWaT6z82VzoejjDrV89QJDdaCOo2wELobrDtYm3IVexyMd\n", "LNwLLuFPnfPAtZaO6CgSuRthJT65YMkV69XQ6/AR4wDw3ZPDWsm7Jx59LpEoNw1oOAPrNO0HhsYm\n", "/g+x6Wp1ujFV1CZ06Ll5anGCFmWBhC5uxDlQGdf8ablSG8Y9pKT9Uw5E++h09PzW/se/CSOrult/\n", "QGHCGJ/cun7Dh6z/B0e4JQ/14wAvqZjRf6zGlJThUlR+uE6SPAbQFvs13VAs10bT11IlQ7cCJL9S\n", "9gAX5iNl3KkCdug+scsx7ld0elJGRH6w27ODyPz5UODyJpF5w6KRd6ubzeFdC3ey2kfQIsr4RrKc\n", "XWUC/A6mUCjvsMboIAHZSoG2dIQt68P9H72JXl3SqdbzM2HHr7fI9+Bp1/j9D+mdP2mkF7uoRmvZ\n", "mbjwu4dp6qJ+JQf36T9DXAfR8HHmMYgUiOAHNOZImyGx06U0T0kqhR4OTIswd1yonY5bVN9ZnyXt\n", "CEbsDILEvQw5y/KJQtsIwbEbXfEY6HNxX2Wm1svZx/iFJgO6E002TYqvcVttzsc6U8Yzv57TG9vI\n", "qkA9xy8kOXRkaBFRJEVn+m58iXQMkAzrIWNjo6IlOquZcr+L9hJa8n4ZrhD0YsTa5pfSpssTO0W9\n", "EKW0bB77VTGm5vFp7GDc+8sFP9AjmtyYlJ/1YQLYToaJfFKU3SEI+h48k1UPTskqFyf2r6LTivQ7\n", "JI6hnkHYtHx3ZsQ/IuWTkFs4ppANhUSJ3HEy7E2w4Jtyo0yLGJmKstQLKdiT6QkIqy51utjisJaO\n", "JzVEsKINCMCmdMVkffiXfZPFt9RoLXDo59iq6xhEa9IZcoCqq/y+BKSGwV1hRDY1G0PSkkhZl8S6\n", "ENol58XmN85ZnP7UrH6oHuYcc1hFsetMEZ00HyKET7q4qaGisMoTFun71DhplwO2UL7nWPyC/DCs\n", "6I9lpfQUtM3ui6MlG8OvUW0zQHWNzBN0yHGdIQQAdSDgaztJWdlpiGAIuwUW+EEQugYk0lLpTaL/\n", "v6m+jp0MaKIKGXr3XNgOkcN0F79RLalZSZZNGhWshrmLYHAuYiucTyAJMHY8OZ7BFzIaAExhCouP\n", "4DK3MbfhfvIS7NiSS+dtXaqRll0m0YWtx3TDG/SX9kWvxyYstxtQgXkAc1dRRgksnrEr2dBxfNd4\n", "JKRte7PK347QUvm79X3f598OzLMmPLZ5HQXepO0xPZhBVgWmICxDESOnZkzeLVkBV6Ilf5oZCQ5s\n", "ZRxoSeZmjpmXoFNhetf6OVu4bOB/FGpweAYSueJpdmZqQGws4/lNPiwDLyEQKoSGeBsc8uQ4okT/\n", "GyX6j4nt8ejl489EDCHfY6yJU4ND5l1f3ViruAM7p8bKaZTsS35lgLWt77n84zdt1BszrfpZp9iu\n", "9qfTxSWYmVBTQzNECVJc32M4RNOJIOd5tMZiR/foxhP9y1rj97EqgrZVbPSJ1QO2trwlOKWR114/\n", "FobBgOReEedpR5WlcW0CrcqaJg7khosuyBG530s2ON7H2KQJMIfOwRn2M/aS4A3uKBfdAQSvJ8fp\n", "ziDQCA3V8lnv2V98pkqxrYmja264iJIueMi/PeQ6LuBzIFOakPMZAU9OhvjQcKJbjpPYphi6dFJK\n", "BqsPSaQJo5znopskYdzdX/s6QZL8uxiatysh9+Bme327Wa9z2b2tGasHFkdBUr3VG7hiHhs7jqhN\n", "b4T7nfcQOh3maC3+uoAqDt5UPG9XSsBCS7BfkIF+YHh/O+vrBQkNoysgpVR1hM5cw+MBZbVdYi1D\n", "3pUhjUSQmCKRHNXg5KsAAAMMQZ4XRRUsJ/8AyTwEgR/eHfssAlnugSxlQAIfd//tOnqC0z0aMTyq\n", "bGz7d7IJevppr1cYFa3lcXg85c2nBcZguVvEvdTwZOyd0BCsmMi7p5DQD/o93jN4CShEB2lLdN4m\n", "k8LY7Nt+RPdXxK3NmyI1me3tQDgvLpPFm9yGClZsK4JQ7vh7mPSXfGItIJWG9HeeeAsS1PwYjKsW\n", "h6YeFnDWSJyiQlOQU8N8bGQxx7LzPriF7cFfl2+xzlC6c1HKFGTyjTQ52EVsbeqFl82EzQiRxJ+h\n", "BnwRFvfN5br5Gzm6Hia/X6GAc22IN2au4Mc390snbwpDO7wJk75R97cygLm8Sr9kmTjT/J0R7oeS\n", "3Xu3Ttptng5LKrRp687gYWmaKSK8t9qixIJwJwy06PZ7u6D0I9YYBCyeElPte22y+f6ihksEEWGR\n", "bM4xNhWyeZddpnw+5mOtCVusBjXsY9GuwKKE32Lzq2tt4hGKYKRz5qCudul0fj1F8ysFCE0fVcol\n", "PL2cSOCy0u0UsmFB9pj0qYRiwxCXoRD3BQKEI7VXeREBQ1/qNnA+2Ies+9YBjoRpeHov929Env+M\n", "/yg4qWtvGajy9MVTzL6HOsfX5id66VI8Z4grF9P94S6t7lBN6e1LY3/HlVK1G67OwNSwGw10e02u\n", "QCF/TvsmNSMddaPz8KXUTFFr/Klf33TypC/Z0/C1xVtDBXKM8yr4+vIT86ez/9M1E4Q8xR5DJ2uP\n", "LenM/x4mGHfAQXAnJHKwxoHHVu8KIVt4VTFnBhEC3RwlSsHE5mwwfXcA+HIdJg38dVkigTzOunL7\n", "aooVR3qzGgHwosBeB8+7r/HhcuZ3VKCt8BhpxAvqeXgXTMoCD4zuRHhrsWByKSx/PjHK8DWCzPzI\n", "LEHsBb5q8LLJ+kGqvNMi7T8mADUPkLLb7T3mkZMfXVUQJNx1TtCMSrMRsB5yzCKqkk7zaV0+CPIX\n", "uAaeIwUl27RapQeTsCSK2OvJyPO8jFFKo3tuB48TfDGKPePhyKYhp+I+35yF0JoNSC+gObZ6EHzB\n", "AAABnAGeOGpCfwDJCYHv1gBCU0HlI3xFNmNeygOmQpKIz/8phUb1gqJ3S6vfbSqSm7Aub8D2tgWv\n", "sfDV2RbJ9Mdkj8L3XjsKBeBdfWZKLVkRCpg84dUbmqP807X6rydruTfV9GDWGx+kmROgFd22QURj\n", "STn/D0Xo/3C8W2zkRjoBj6qnTq/Kf2STevbvKd47mwk9uys4CcIl+EBgXuI/he/NanMXJW9q0veu\n", "GeRQ1DVuEcZBwr0Or/1Qz28IFCbZ0xlJlwxQysDM4IQdowOTbMTVViqpY0dPZxiklcleD4+Ev1/5\n", "cK6a8iN+RACF+lQdPMjCvWt2Q5wGsUnU/adY7Ars2T4llSwco3MVahoJpxi4X3kd+54RzXCjt7Zx\n", "BEPjPNshjqvZCGdyfaqJUlZiAUSxOctOcx87fgFNpnJr5XOtkbMGODRm+sesctcM7wNXqQq/eCdr\n", "kLONB+ctskrtfZ7iGEBM3mY0qFsDi47a/bMew9lW620oano219M6uazDZA7GJyur6pcn/eP1sCUi\n", "bg1K+thywmM3OSYyzzR0vswAAAPDQZo7SahBbJlMFEwn//3xABuU3tHKgBL7RIhYR6dUrayQtKfo\n", "PpqtXJp5/gV66xZqs2gVh5n6hiaPKxi54MmJRqoHlEdDbl8xD+kzvUyLzfO0Y0uqDsgjzknplGFD\n", "9wAqnmc7flF01mG5EQZ5Yw0bduHmKZkbMCmOiuiNUcmBf//a4Gn2P93j9vSyp71V6TwQnyJx0rOE\n", "FEEomeEUKrKmYmpdjbsTGmsrzrwePASLrUMD2YD804ehHzG30Flp3eGB1ecATBC9nBycZFThgWLT\n", "bN81najNfc/5odiSGy81vWo6lvKw/UYgNzzYs2o651UocWPrGAPwEcxzyAMicLt+CxoI+GfuTa3u\n", "h4aZ9dRBGqXA+QPl3PbxJGgESPqpiltGZja2m/bzBdNTuK52qqPF+oJnsBjLaV2O8rjJElWsRxEP\n", "tHmpjP1HFVrdLYz3T7T0z0UEc1CunZf2ZMQYtMU81aqbMaa734d0rbC8Zz4W6J0XtWTjTthm/uis\n", "GETBKdzJGqNZKniyUDOetYw4PSyYHm2uzKv6CD65FMimRBuFVwr+I+fqPe9Be6R3NyUWj8Fk6mha\n", "IPJslBxQ5Vhe+oLzs02cZ7nP3FziEbY4Qwqp6GqHqvEZJeQ3CMCuI+DQk6w9oZ5qM6JUDqBByYtk\n", "JKpL6+7xOTNbbdNAOr+SuRprNWzfzLa0BeLprofNRTswNPNVpV0mmILOKwFBgysdMscjo1kPdbfb\n", "i2AkDgD1JKTEuvIBfZwTrPk/KlmNGa6H/27Gis7xd/tSuQxtUlsuuA34D5QosCsKukG856VnrOHq\n", "4u5IrcjNMiLQEU4d8A3RS+SCLjraidh1w/zpZwbHLnP2VF0JkRZubGdoW9dPzeV89cyg0VcWAGg6\n", "XbX8RksdghvtKK0H9fRsaT6PUaOd84kIehtHf+xkF3kBuWKUjCNbvQ77sltXARTvi2HkO2kMuM51\n", "s7kCSdLbknx0hweyhyryXTkuCNKcLl6vukrn0yRR1J8Ze/YwiuPq52GGoQynqv7ie95BQkN4r7YX\n", "xiOU/C9LkiAPtirDb7HIXNQ/nfMsisrm1+satWmI3VMtOM/c4DJgyOdKAAtsAjrNoHvekrYJZ9rJ\n", "P7zrlrr/Ulqxhi1anXYhSiyfEjrcbsA7TKmvpQ8XPWrAC+yr1gUXyaq3y/m37fS8oGwCHsY8m774\n", "l7Z07zjKWUOP9+rYjwJjoAOV3pVZ8p2IIbedJUnouSJ6GeytMevwBGB6BaenI1zaFWve/EICVVQM\n", "he5XjZVC68YIziPCT8fBAAABwAGeWmpCfwDJCAZ3eEoADT8HA+CrIAerCW6qXE6vhOkM+r9Vb/1z\n", "pBVWRCfhu8BuIpB62vqldMLXDLiViwCdtmA6yhgHU6N0kNz9GfTSv1GgK+2IDnHuVC0vEt+9pUBs\n", "RWQZsZYEigb4UIdyo9gqTQLRhllR8TIwdwMyMKnuFxL1gy/6pW6/8wkH3idooIKlutuF3KhIk1zc\n", "uWHoQr1/fm0crgoPvcsmj4nuz38yWdCL/KPWTvqIjkRXYHYulrJ4vPv5LAxqRvX29yaupC5s8AFV\n", "6xjJS5EIxThBKpVHg3UMdYxyAN10NLcim92hEFFFT4NpQvi/kGLe8HRT8PfsCImBL5xsNcfSZJrP\n", "hTB47skYAwPmKWFc+74mY/RiodG+rKQ2uOah+Gz2umUCv9N6Lb8Z/eqYUZBKCYHDqzRKJTXZ7J1m\n", "Oc6/x4kinL2XG5JBGfuAhFFDpGV+mdXZTUitMM7/dJduoXsSMP7Qqiwfd3mXU82ZRoPKROu7zswk\n", "35aQAbcRir4k9UoyINR1A8Erk50Kuej1eT0w/TsAIHIRSidKQ07dlQOFq6fy2NDgiq0i1DulKaAy\n", "HTIuyq5u2LKkGLAAAAxmbW9vdgAAAGxtdmhkAAAAAAAAAAAAAAAAAAAD6AAAGcgAAQAAAQAAAAAA\n", "AAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAA\n", "AAAAAAAAAAAAAAAAAgAAC5B0cmFrAAAAXHRraGQAAAADAAAAAAAAAAAAAAABAAAAAAAAGcgAAAAA\n", "AAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAABAAAAAAbAAAAEgAAAA\n", "AAAkZWR0cwAAABxlbHN0AAAAAAAAAAEAABnIAAADAAABAAAAAAsIbWRpYQAAACBtZGhkAAAAAAAA\n", "AAAAAAAAAAAyAAABSgBVxAAAAAAALWhkbHIAAAAAAAAAAHZpZGUAAAAAAAAAAAAAAABWaWRlb0hh\n", "bmRsZXIAAAAKs21pbmYAAAAUdm1oZAAAAAEAAAAAAAAAAAAAACRkaW5mAAAAHGRyZWYAAAAAAAAA\n", "AQAAAAx1cmwgAAAAAQAACnNzdGJsAAAAs3N0c2QAAAAAAAAAAQAAAKNhdmMxAAAAAAAAAAEAAAAA\n", "AAAAAAAAAAAAAAAAAbABIABIAAAASAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\n", "AAAAAAAAGP//AAAAMWF2Y0MBZAAV/+EAGGdkABWs2UGwloQAAAMADAAAAwMgPFi2WAEABmjr48si\n", "wAAAABx1dWlka2hA8l8kT8W6OaUbzwMj8wAAAAAAAAAYc3R0cwAAAAAAAAABAAAA3AAAAYAAAAAU\n", "c3RzcwAAAAAAAAABAAAAAQAABdhjdHRzAAAAAAAAALkAAAABAAADAAAAAAEAAAeAAAAAAQAAAwAA\n", "AAABAAAAAAAAAAEAAAGAAAAAAQAAB4AAAAABAAADAAAAAAEAAAAAAAAAAQAAAYAAAAABAAAHgAAA\n", "AAEAAAMAAAAAAQAAAAAAAAABAAABgAAAAAEAAAeAAAAAAQAAAwAAAAABAAAAAAAAAAEAAAGAAAAA\n", "AQAAB4AAAAABAAADAAAAAAEAAAAAAAAAAQAAAYAAAAABAAAHgAAAAAEAAAMAAAAAAQAAAAAAAAAB\n", "AAABgAAAAAEAAAeAAAAAAQAAAwAAAAABAAAAAAAAAAEAAAGAAAAAAQAAB4AAAAABAAADAAAAAAEA\n", "AAAAAAAAAQAAAYAAAAABAAAHgAAAAAEAAAMAAAAAAQAAAAAAAAABAAABgAAAAAEAAAeAAAAAAQAA\n", "AwAAAAABAAAAAAAAAAEAAAGAAAAAAQAAB4AAAAABAAADAAAAAAEAAAAAAAAAAQAAAYAAAAABAAAH\n", "gAAAAAEAAAMAAAAAAQAAAAAAAAABAAABgAAAAAEAAAeAAAAAAQAAAwAAAAABAAAAAAAAAAEAAAGA\n", "AAAAAQAAB4AAAAABAAADAAAAAAEAAAAAAAAAAQAAAYAAAAABAAAHgAAAAAEAAAMAAAAAAQAAAAAA\n", "AAABAAABgAAAAAEAAAeAAAAAAQAAAwAAAAABAAAAAAAAAAEAAAGAAAAAAQAAAwAAAAABAAAHgAAA\n", "AAEAAAMAAAAAAQAAAAAAAAABAAABgAAAAAEAAAeAAAAAAQAAAwAAAAABAAAAAAAAAAEAAAGAAAAA\n", "AQAAB4AAAAABAAADAAAAAAEAAAAAAAAAAQAAAYAAAAABAAADAAAAAAEAAAeAAAAAAQAAAwAAAAAB\n", "AAAAAAAAAAEAAAGAAAAAAQAAB4AAAAABAAADAAAAAAEAAAAAAAAAAQAAAYAAAAABAAAHgAAAAAEA\n", "AAMAAAAAAQAAAAAAAAABAAABgAAAAAEAAAeAAAAAAQAAAwAAAAABAAAAAAAAAAEAAAGAAAAAAQAA\n", "AwAAAAABAAAHgAAAAAEAAAMAAAAAAQAAAAAAAAABAAABgAAAAAEAAAeAAAAAAQAAAwAAAAABAAAA\n", "AAAAAAEAAAGAAAAAAQAABgAAAAACAAABgAAAAAEAAAYAAAAAAgAAAYAAAAABAAAGAAAAAAIAAAGA\n", "AAAAAQAABgAAAAACAAABgAAAAAEAAAYAAAAAAgAAAYAAAAABAAAGAAAAAAIAAAGAAAAAAQAABgAA\n", "AAACAAABgAAAAAEAAAYAAAAAAgAAAYAAAAABAAAHgAAAAAEAAAMAAAAAAQAAAAAAAAABAAABgAAA\n", "AAEAAAYAAAAAAgAAAYAAAAABAAAGAAAAAAIAAAGAAAAAAQAABgAAAAACAAABgAAAAAEAAAMAAAAA\n", "AQAABgAAAAACAAABgAAAAAEAAAYAAAAAAgAAAYAAAAABAAAGAAAAAAIAAAGAAAAAAQAABgAAAAAC\n", "AAABgAAAAAEAAAYAAAAAAgAAAYAAAAABAAAGAAAAAAIAAAGAAAAAAQAABgAAAAACAAABgAAAAAEA\n", "AAYAAAAAAgAAAYAAAAABAAAGAAAAAAIAAAGAAAAAAQAABgAAAAACAAABgAAAAAEAAAYAAAAAAgAA\n", "AYAAAAABAAAHgAAAAAEAAAMAAAAAAQAAAAAAAAABAAABgAAAAAEAAAYAAAAAAgAAAYAAAAABAAAG\n", "AAAAAAIAAAGAAAAAAQAABgAAAAACAAABgAAAAAEAAAYAAAAAAgAAAYAAAAABAAAGAAAAAAIAAAGA\n", "AAAAAQAABgAAAAACAAABgAAAAAEAAAYAAAAAAgAAAYAAAAABAAAGAAAAAAIAAAGAAAAAAQAABgAA\n", "AAACAAABgAAAAAEAAAYAAAAAAgAAAYAAAAABAAAGAAAAAAIAAAGAAAAAAQAABgAAAAACAAABgAAA\n", "AAEAAAYAAAAAAgAAAYAAAAABAAAEgAAAAAEAAAGAAAAAHHN0c2MAAAAAAAAAAQAAAAEAAADcAAAA\n", "AQAAA4RzdHN6AAAAAAAAAAAAAADcAAAgiwAACr8AAAGkAAAAsgAAALYAAAk7AAABugAAAKMAAACo\n", "AAAIkAAAAWMAAACWAAAAjAAACbUAAAHTAAAAqQAAALYAAAnhAAABWgAAAIMAAAC2AAAIfgAAAb0A\n", "AACoAAAAqAAACbkAAAHEAAAA1gAAAKkAAAmDAAABcgAAAJ8AAACIAAAJFQAAAbMAAACmAAAApQAA\n", "CPsAAAH2AAABJgAAAKMAAAjGAAABogAAAKIAAACQAAAJnQAAAbAAAACbAAAAtQAACK4AAAHGAAAA\n", "2AAAAJ0AAAk1AAAB+AAAAK0AAACbAAAJDAAAAagAAADvAAAAjAAACGEAAAHJAAAAygAAALcAAARl\n", "AAAJYAAAAagAAAC1AAAAwwAACfEAAAHvAAAAwQAAAMIAAAljAAABhgAAALEAAADCAAAFIAAACMMA\n", "AAHtAAAAkQAAAKUAAAfzAAAByAAAAOAAAABtAAAIjAAAAdAAAACfAAAAtwAACGUAAAHAAAAAvQAA\n", "ALUAAARxAAAI+QAAAekAAACbAAAAmQAACMUAAAKdAAABYgAAARcAAAi8AAACGgAAAVkAAAllAAAC\n", "AAAAAS8AAAkzAAACGwAAAZoAAAjhAAACRAAAAXQAAAmjAAACMgAAAWEAAAl8AAAB7QAAAUsAAAjI\n", "AAABnwAAASYAAAp4AAACtgAAASIAAAl8AAAC2wAAAbYAAAFDAAAJCwAAAhsAAAF6AAAIvQAAAd0A\n", "AAFqAAAI/AAAAakAAAFOAAAFtAAACbgAAAJzAAABlgAACakAAAGdAAABLwAACU8AAAHQAAABQgAA\n", "CFsAAAIKAAAA3wAACJsAAAH5AAABPgAACUwAAAGiAAABQAAACUgAAAH8AAABPgAACaUAAAGlAAAB\n", "EAAACU8AAAJ0AAABMQAACY8AAAKQAAABGgAACZ0AAAISAAABWgAACVcAAAKvAAABEAAAASYAAAhu\n", "AAACBgAAAToAAAoSAAACFwAAAV0AAAjCAAABegAAAQoAAAkkAAACOAAAAP0AAAjiAAAB4AAAAZ0A\n", "AAkuAAABoQAAAUYAAAhlAAABzgAAAVgAAAiiAAACsQAAAYoAAAgWAAACGwAAAcAAAAgPAAACuAAA\n", "AdwAAAhgAAADKgAAAcAAAAewAAACqwAAAZUAAAZ7AAADEAAAAaAAAAPHAAABxAAAABRzdGNvAAAA\n", "AAAAAAEAAAAsAAAAYnVkdGEAAABabWV0YQAAAAAAAAAhaGRscgAAAAAAAAAAbWRpcmFwcGwAAAAA\n", "AAAAAAAAAAAtaWxzdAAAACWpdG9vAAAAHWRhdGEAAAABAAAAAExhdmY1Ny4yNS4xMDA=\n", "\">\n", " Your browser does not support the video tag.\n", "</video>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXe4HWW1/z9vmbLLqekFEkJL6Cqg\nKAKCgqioCBdUELuIiqhwRbGAWFApYr2KoIAK6FURUdT7U1EEG10ggCRASEg5SU7Zdcpbfn/MPocE\n0atXlDaf58mTZJ85s2fP3vs7a9a71ncJ7z0lJSUlJY898rE+gJKSkpKSglKQS0pKSh4nlIJcUlJS\n8jihFOSSkpKSxwmlIJeUlJQ8TigFuaSkpORxQinIJSUlJY8TSkEuKSkpeZxQCnJJSUnJ4wT9j2w8\nffp0v3Dhwn/RoZSUlJQ8Obnxxhs3eO9n/G/b/UOCvHDhQm644Yb/+1GVlJSUPAURQqz4e7YrUxYl\nJSUljxNKQS4pKSl5nFAKcklJScnjhFKQS0pKSh4nlIJcUlJS8jihFOSSkpKSxwn/UNlbyWOLcx7r\nHM6DFKCkRErxWB9WSUnJo0QZIT9BcM6TW4cHpBR4ILcO58oRXCUlTxZKQX6CYJ1DCBCiiIiFEAhR\nPF5SUvLkoBTkJwjOPyTGkwghKAPkkpInD6UgP0GQAh4+Idx7T5lCLil58lAK8hMEJSXePyTK3nu8\nLx4vKSl5clBWWTxBkFIQIIsqC1dExlo9cpXFw6sxBAKP/5dWZ/yjFSBlxUhJyV9SCvITCCkFUqq/\n+nPnPLmxdHMLOKRQCDzWQxwolJJ4X1RrBDx6AjhZASJErwLkf3mOf3T7kpKnCqUgP8H4a5GlMY4k\nNyS5wXqPlhIvPd45vABjRU+QwVhLbixRoKZSHrmx5Lao2AiULFIkvaiaydy1EI8YzT5SBQgUx/lI\nF5B/dPuSkqcKpSA/Dvh7b9//WmSpnCDJDQhwFAJnPQjvMc4TBorcOZRxJMbgPQgB2kmMtRjryJ0F\nCsHNnUMgiAOFEIKsJ9ShVnggzS14j+0JtXOeKNR4/5epkuARPmHO8xevT4jiogK2TGOUPGUpBfkx\n5uEia60jzXOUlGglNhOlh0eWk9Fux1g8EOri7Zz8ufMehyczBms9ubUoKQvxs5a2A+8tuXPEQYCU\nRUojyXKE93gfFFUcQmCdo51mABjrUFJQj6NedG6xad7bd/G8qXWFqAqBkGwusr2KkU3L+Kx1WOdQ\nSpVpjJKnLKUgP8ZsKrLOFREtAjwej9hMlDaNLB8ScoHzAiUhsxYlBMZ5pCx+t4hkweNoJw7jQEjo\nj0KUFrQSh7WeOBA4X+SgO2kRRZve8VjnCaREyGJ5sJNbnC32FQcaJSHJc8JAIYUCfCHu1jHa6VIJ\nAwIl8ULgvEOJ4rnAT11UktwS9lIqD110yjRGyVOLUpAfYzYV2YfEWeKc/wtR2jSynNzWOY/3FmNl\nL8IUaCXJspzEWGKlsN7T6KbFts4TKEkTQc17nHUESpAZg5CS3FiMtTTaCXEU4rwny3IQkmn1GKEU\nvpeWSLOc3FhCrUiMwzhPJRAoKXDO0TUG7xxRoPEUAq8lU6mOJC/y1qGSBEoh1eYXoMmLVEnJU4VS\nkB9DnPNYa8kMKCkw1qO13KzhY1NREgjS3BTiZh1SCIz3KKUKXwvvyTJHqHzxuJR4CY1OhnUeJSQb\nu10S6xlIcrqxohpFBErRSXO0lHSzQoxbiWUi6aCkJNCSPDd4EgYqIbn35Jkl8UWUXIkksdZ4raa6\nBx0ePEgpaac5xnrAgRdIKahFAbK3SJgYh3cWkAjhSYWkEmmkKMS9pOSpQinIjwGT5Wmpcb0K4eIW\n3jqHywsDISUkYKdEybliEU0rienlmTuZIVQKrRUSAd6T55ZullOLA8Az1kppJilaSsbaCcZYkI4N\nzZy8ATP7DPVKgJbgEbSTjJFGRhQKtFS00wzXlQxUNZ00w1vLuk5Glhj6awED1ZhGO2e9yxAChqMu\nlVijpCb3hQDHgUIKi1aSTmqIQ0EzAeMsgVI4irRI7iyhEgjhCawDBNWw/IiWPHUoP+3/ZiZzv6aX\nXgCBLZK8ACS5oRoGaC1xzmGspxpqcmPJjCWzjszYopqil47wxuJ90SgigEarw3grQEtDowtWWLpJ\nQivNsR6sgXosqddiut2UTuqYPhjjrSXNPa0sY7TrGKzEOOtIjKVrMj70lldz7123s83infjEVy9h\ntJXTTCyRVkjh0IGmaR3rN3QZrgfUKxFeQGpsUUMtBMY5vNDk1pAaS5ob4iAAIYiCItUhhcd7TxQo\nPGXKouSpQynI/yT/aFfcZO7XFyt3WOd66YSi/leK4lY+zQ140FIU0bR1OHxRwZAbOpkhtQ7hPLVK\nQKgUeW4Y7yR0LXif0s0sIxMdcIKu8wjvyYzFdFLed8IrWfvgCuZuuZDPffsn5KOGSqgZaXSZaLRZ\nt3YjkGGzhLTb4cIzT2XtqvsAuOu2mzjxDUdy4pkX4BAM1gJqlSoRFqslSjqa3RzrPEN9Md3EkGY5\noS6i4axp0FIitcTkljQvIuVKqAFJJQiwrshJFxUdcurc/T110SUlT1TEww1r/ha77767v+GGG/6F\nh/PEYtOSNSFEkS7IC7EJtESKYmEq2KTFOc0tAK0kpZ3ZQognUw4CQiWRvfKxqbK2zKCkRwpFO83Z\n2MzQ0oGAbmqwHvorIUmWk1pITU6Ww2ijzXgnIzU5URDiJdx3z318+X2vp9Mcn3odSgcMDE8j7Xbo\ndtpIqYgqVYKoQlipEEYVVi1b+pAQ9njas/dn2pbbMG+r7dh+hyVsuXAhzkv6KxFaQ00rKlGAA7yz\nVMMAvCe1HuEtSIXzDmehvxYWlSHGFRciJahGIdVQUg0jtJIoJfAeMlOcQy0lzjusg0jL4jyWwlzy\nOEQIcaP3fvf/bbsyQv4neHjJWmotoshCbF5V4Bz0fCjSzNDJc1pJjrEOrWVRB6wVeOgkWa/krIic\nJcW/QeCFoJMk5Lml44sFPa0l9KoiEutoZxbrPFme00lyJtptbrv+96y843r+fPPv6TQbm4kxgDU5\nb//4V6n11RnPHMYLQgW5Exib0c0dV3z6RNYsWzr1O7MWbMO2ez6PtSv+zO9++j2u+Op9dNsN5i/c\nhi233p55i7Zjh112YscdduaUtx3Dn5fezuKdduHcC7+HVGAMhNpTCSQOwUSSEUpNlqS0cofWgjjM\nmVYPSYynPwyIIk2aF+dYIEicIdQKpXrnyIqybrnkCU0ZIf8TpLmd+vLnpqilFb0UQ6AKHwkt5dQt\ntfeeZjdlpJHgnKUahhiT08o9YeiRXpGZIofczQzd1KCUREpoJQYlPK3UoJTGeVeIk3UEcYjzFpsZ\nRtsZD9y3nFv+eB13XH8d9y+9haF5C9n+6c9mm92eRTh9Bue9/XCcyadehxCS/V71JvZ/yTG0vMOb\nnLZJERYCHRFrifWes95wIM57wjBi131eyAuOeRdCOHJfpFtst0N340pWLruH1fffw4aV97L8rtvw\nm5job7vTrpx5wX8Xi5NALdBUQoV1nkhJ2qbIY9cCAVIUi5sCBiohc4freC9QSpD1zn01CgAwxqFk\nEcRPtoSXwlzyeKGMkP8NbFoX7HoNDWluUEL0BJheLbDHe0lqLc00R0uB8TDe6RJqjfOWiYkcKwQm\nM6x2HcRkA4j3eAfGOwIhWd/s4B0EocYYyyeOP5rlS29jzhYL2XXPvbjxt9fQ6bRZsNMebP/M/Xja\nke8krNRREqyDZX+6lf5ps3De0RhZTVzv59CTPs21/30+t179E/Y/+njm7bgbSVZE79YZjJNgPVIp\n/uO0b6JDx08/+37+eNU32e8Vb6DbGCeh8HKdteVOLNrx6eAlUjre+aI9Njtn99x+KxdfdCH7HXQI\nQ8ODCOfJhURKTwBIBPVIFouPuaWDRQHd3BSpHyXpiwKs90gHqZRYazHOEWo91RLufNnlV/LEoxTk\nfwIlZc+Qp6gbNtaS5xa0IjcWAb2Ug8daUyxU2aLmNrNFN1tictqJY6TRJdAB1mZ006KLLYxCumlG\nmuVoqRCBJEktnTSlEgWc8bZX8uC9fwZg9YrlJN02b/nQOWT9s2m3OxgBjTY0uyB9kSa49X++yzb7\nvIJd9j0QN76eb3/q3ei+YQ46/lTW3XUL/++ic6nPnM/OL3kTw3PmoqSj0wF8jjU5HREzpyI49MRP\n8t2Pn4APayzZ6wVUKxF9lQoNk9GdsAzUY5b+4TqEFHj70DmbNncBt173C372jS+y98GHsv9Lj2Dh\nVlsjpMOFAakrPDic9UXLtfNYINKabpISxxETSYYURUmc90XnoFY9oyI2TxWVXX4lTyRKQf4n2NSj\n2Dsw1hMHGiEFpmfI0xeFJL2aYecdncQw0c3IraUvDljfSEiynEYnJVQ5uQOLp9Xs0rIWkecEQYR3\njloUkecZS2+9nmuu+MaUGE8ytmE9fmAOzuZkwEQDuimkKQQKGuuW01z3AHN3ex5ewcD8LZi3eDdu\n/eWP2OvQI9lih2fy0vfvxB2/vIJffv4kFu1xIEsOOpJuXsHnHYK4jssFrRzqcZX93nY6/+/ck1Fh\nzPZ77Y9IM7SAsXaDZbddzxWf/wivO/Xz/Pxb/8UDd9/G3K2X8KaPnU8nT5CdFrde/QM++vaj2Grx\nTuz94iN4zr77k1hDq5shUWTWIIBaGDJjqMpEasl9VqQqAkXXF+VxvkixkxlLPQ4RomicMZbSqKjk\nCUWZQ36UyI0lyQrrS99r0rDWYb2jnea0MoO3nsxaNk4kNNKczOZ0u5a+SkDqPZ3UMd7skOQGYxIy\nI2glHeKgggoEK2++jmt/8C3SpMPuBx/J7b++igeX3TF1DCoI2HaPfdn7lccxmkRMTPQeD8FbuPW7\nn2Zw7jZsvd8rmFaFSgSNkVVccfZ7eeXHvkqgazS64AW4ZCN//N6FjCz/E4sPfB33XPN92iP3Mbxg\nMQe96yyGa4LUeDasXM5PP/9hXnzcKczYfhdMbnlg6S385utnctBxp7DFtjsTVgIuOfUdHPz6E5m/\n9RIclmkD/YRa4p3hxqt/wi8uv4S00+K5Lzqcrfc6kEqlRifPGKjWGRioMBhG1CqaGfWQahxSi4Li\n7kQUPhuFEZOmvxKipCSzlkqg0EphrC0rMUoeU/7eHHIpyI8Sk+VsuXV478mMI8sNmXU0Oh2aXYfx\nFusFnSRjvJUy2mxjcGgCunmO1ppmq8WqsSZXnHkSGx9YxtC8RSza8/nc9avv0zc0jecd+lq23u1Z\nrJtoMHOgn8+98wgaG0eYtnA79nnrR7n58q+z7q7r2fmwExicvxsmBTR0Rtdyw9ffw57Hns/Q9Cq1\nGqQ5zKoLfv3Nc+ifPpudX/Qqkg7kDvpiWN+EtX++kxu/+SFsnky91qEttuPAd51DoMHlsPGBP3HN\n1z+NjiKaG9YhhOSw953JnK13YDy15Anc8O0z2W7XZ7Ldsw5ACJgxWGewVkN4yKwj1pIVy+7gl5df\nyq2/+zVL9tyHnfZ/Kdsv3pnzP3wcK5fdycLtlnD2179LX0XjPGghED0xroYBg7WYSqRJsxwvisek\nFIQ9Bzm8Ryu1WRliScm/g1KQ/83kpig3M9bRyXLS3GCLajcazYRmmjPWyjDOEQSKVm7Y0OgijaOd\n5WyYaOK9pGsyLv3YO9lw391T+w6rdfZ+44dZuGQHhmsxlSBkrNtmsFLj59/9Gq1mm11e9FommoCF\n0Qdu4ubvfY5ZOz6T7Q94PWEUc8sV/0VQrbLk+a+lXofBGpgUnADXHOE7H38Xr/rYeRDVGWtAtQLr\nHniQFTf9gWVXf+0vXm8QV6n0DxHX+wniKmvvuQ2bZ1M/7585j2M+dj4TqaU5Act+8y0i7Xnhq47D\nS4PLLE4HhMKjpUIqTZIZBqoxzcY41/7ku9z08ytI2k2ypDu132132o1Pnf9tpJDEcSG40nsiralV\nFNUgBO+pVjRSSJwvHOkqvRbsUBfdjIEuc8sl/z7KKot/M95BO80LC03j6KQ5rXSyCSRhopuzbqwN\nSlEJNEmak3QScgdrVq1k9fK7uP/uP/HAn5duJsYAWdJl9tY7gINGJ8FGlqqSCGHJ0hznJZ0UkKA0\nzFvydOpv+QJ3/vwr/PbLx2PzlO7EKNXh2Tzjpa8lDikEreLIUpi5cGucs3z93a+kMjiNeYv35MG7\nb8QkHfpmLSSoDpB3JqaOR+gQoRSN9WvoNscJ4spmYgzQGFlNO7cID1EEw7Pnsnrp9bSyhHaS4wUM\n1GThTGctaZLSTjI6mSEKNDvt/zK2fu5LuOD4Qzfb7/I7b6eRpAzXq0Vbd+aoBArrLc22xccOpCT3\nligMCKQgyUEJiENdOsiVPK4pBfnv5G9N9XDOT3kRW+HJvaWVOtrdlE5mWdfssn68w7knvpY19/2Z\n6XO3YOfnHsTqZUtZdc9S8jxnztaLmbFwO3Y7+Ahu+GHK6AP3TD230gETG0aozJ+JlkVrsdeSbpKS\nGodFkqagFOR5UX43NLfOC447kUtOOpq01wjSGV3L909+OX3TZyMpxjs5Z2mNbcS54uLRHd/Ist//\nlPq02fRtsQ2V/iFmb7Ut9918LcnERuoz5rHv6/+T2uAQff39JEYRarj89GMZW/fg1DFXh2ZgAeEh\nB/qmz2V83WqM9eSmuHDkuaWqQ9omp9HNqAaSTp4y3nE0Nm7gpisv/osqjSAMufuOO1iy827FAioQ\nBOBzD0qgLZgsw1lBf9URhppQO7QU1OJwMye9v/b+lq3ZJY8VpSD/DSa/pFnuSEyO98WXU0uBVooo\nUDjnaacp7dQihe8ZtAusLZo0Jro5SWL43HvfwIO9TreRlffx+6u+w75HvoU9jnwzUW0QbwVKgHGw\n5eKnc+GJ/4HJUwbnb8u8nfbiF599D8977bvY9Vn7YbxFWU/H5mAcQhYm8UEINQXdDELpWX3TdVNi\nPPWarOGQ4z/CUF+tiJLDgE+9dfMoFAGvO+NCnLIILwmkR7zm7UhpaSaW/krMxnYH5yHQkFk45P1f\n4YozjmVi3WrivkG8M4ysWEF99oJClKO5TIysxhQum0UdditHCAle4ESRf2+2E2666vvc+9sr2WrP\nF7LnUf/JjZd9Bmstsxdux277vJDPnfJ2Fu/+HA5/4wnMnjeb3ORU44BQaMbbXaIwAlEspqa5Iwwk\nkSrGVUkhiQK12ftrbPG3VvIRR1aVk0tK/l2UgvxXmPSp8L5wP2slOXiIA0mgNYHzhUG7h9wavITx\nVi9idcXvtZOMTmrp5jmr7lm62f47zQYzd9ybIOjVzkrIbRHdJi2D955DTr2UsF7DZjBnqyX8+ptn\nsnb5Up710tdQr1aoqBCkRYiIMIIwKKaBqMZ6rrnkS7RHR+ibNpPmxpGp5x2cPZ/h2XOoVarUdUhf\nPWLGvAWsf3DF1DbDs+czY6CGsYWVp7EptVhhvGbWgEBKjQTauUHrYuxUu5Pzxk9dhPOFI93S637B\nr/7rg+z9ptOZt2grvOtDKkW7OYoJ+wl0Icprx1MqEdjUcccNv+L2qy5m2sIlHPiecwn6Z/HHC09l\n/9e+i22fuT/COYI4YLe9X8CvL7+Yjx57GPsffgwHHHY088Jhuu2ENDFUa456GGCUpB4Wef0st70O\nSrGZ/elkdx+iqF/Gu80GBhS55nJyScm/B/lYH8DjlUmfisxYmolBS1EMCzWO0XbCmrEW92+YYGOz\nzcZWl43jXUbaCd0ko5sVtcbNJCPNUu740y2IhwdX3nPnr3+I8J6xDow3oN0GPGxYdS/1abOZO7PG\njD4QCqZtvSMHn/RZ1q9YxuVnv481q1fRTnMC4alWJdUQupnl7quv5Cdnn8DWi3fhuDO/zju+8B2m\nzdkSAKU1B7zyWPoqNWpBwEBfSBSFnHHBD+gbnAbAnC224hMX/ZCheo3BeoUZfVUG60PMHOxj1lCd\nWAeMpx2UEvTXYgKlqcchwwMhSjiEUMRBxB77vZjnH3M8157/Idbeu5xqBAMz5zKx7kG0AG8gSaDT\ngXtvXcpVnzmR5df+iD2OPpm9X3cyM2fPwoytYnTVcrbcda/C/9lYtBPE9X4Oft07ecNH/4t7br2J\nj7/5MK6/+qeI3sc5SQzNJGXjaJuNzS7OF4ZFuXU004yJTkJmCk+M4rF86uI7ORZrsvsS2OzfJSX/\nSsoI+a8wOVopyQ1SOKyX5LmllWZ0kpzUWJyFamSL0UfW0GrnpNYy2kpI05yRZpOsnfKDz5/GC974\nXn77g4tojqxh+sLt2e817+aab36GB/70O55xxLvQ/bMwGeQRjK++k9mLlqBCxYAOCYYTnBO0wwEO\nedfHuf7Hl/C9M97Nvq95N3de9zPSdou7r7mKSv8QSmtee+oXWbJ4MZ0sx1nH+7/yPforMXf+6QYu\n+Ph7edruezJzaDaD9RiJwBrF3ge9hKFpMzj0mGMR3uKFpNFJCZSkEitsBs08Q3tBanK00AghsQHI\nIMRkRWt4LBzOKxyWHffcj8Tk/Oqrp3LAsafRP3Mu42sfZNZWS5joQGdsHff8/ELW3XsXOx50DNs8\nc1+0lhgDSLjruh+xaM+DSJwmEhBpgQo0kdYEUciM2Qt464c+wwP33MQlXzqTH1xyEY3GBBtW3c/c\nRYs58awLSE3MUDUqGm56dqfegaNob1dSTFmcogWOotkEmMo1W+twzpFSNpmU/Gspy97+CnlvkvOG\nVpdOakmzjHaSs7GRkBpLxzjqocQJRRQIJlopY92MbidFa0GSGsZaba44/2xskvCsY05kzX0r+P03\nzuCI077cG3tvuPGnl3P3r77PLgcfw6JnH0QlFFx9wadYtOseLH7O/tTCAIUmNRYjHFoUZVv33XEL\nPzznfZsZ91QHhjjh8/9Nf7WP4b4KHZsjnEc4QV9fSKw155/1EbI8570f/RT9cYhxjlZmOeM9x/KC\nlx7Gcw84mNTmKFWYyPdHMbEWtDJDt1tEqa12l9R4EuOIQ42WkBtDM8mRQBwFjI03aTtPCPz55t9x\n1fln4ZwjaTeYtuU2zF+8K3df+zP2PPhIdn7+S2nmEpNBtQpdA3mrw+Wnv4ED3vkFps2ZzszBAGst\neEktrlKLQ9I8xzpHf7VCoBynv/HlTKxfO3U+5m23M+/89FdZOHOQ+cM1BisRQgqCQFMJJCCoxiH4\noo481AIBaFWkJkKtpmrKQy1Rqhiv5XtmSqUol/y9lGVvfyd/zWDeWE9uLVluCj8J42l2c3J8IU6J\nIQ6rNDopWWpppynGe/LcgVEY47jjpmt54LYbedkpn8c6qE2fS3t0HQIDXhNFAXsecjgLd9mD31z8\nGR5c+lvS5gSjK5fTHV3DM/Y9CJxCYGhvXMP4mtWMrl/NxjUraa5fs5kYA3QmxqhVY+o1zczBCm3T\n62bzEEhJvRLy9pPex1tecRAP3nkr2+y3L93MYFzC6gfuZ9a8BYQBxHFMqBQ2l8RRgLEGJSRBKImc\nIx6sYp0gzS1OeDpdSxxrhgfrpN0cKyRaKaZ5Tzs17Lb3gfzqsvPYsLrIU29ccQ+djSMcd+Y3qA1N\nJ7OG2Hk2Nto4C7/9+hk8cNv1BNU+hmZOR0rodHMEYHHEQcpE2yGcwQeSZqtN5iyN0Q2bnY81y+9k\nrNWC3FOLNd6Ds8VU74FqiJYS6yAOFAJHN/VYb4mCgFAKJMU4qUkxhnIadsm/lqe0IG9qMC9lsTiV\nGUuoiy9fZoppFs6DxuJEccvbTgzWO5Iko9tNGW8lJCbHWkFfPWKs0WHdulX8zwWfZddXnEwjq6Ec\nQEBtcDoT69bRP28eNnWYAOYsWMBBJ53Flae/ic5YISrrVyzj8287lLhap90YZ2D6LGbM2YL+GXOY\nMXcBOz5zX8bWrmJsZPXU6xFSctmZ7+P5Lzmcuc8/kL4wIHWOOf21orVYQFaLOOGDp3PGh/6Tna/8\nH9AVtIB1q1eyZPvt6A8LI/sw0Ditsb4oGQuVoB7F5BVf3OLnhm5mWN9MiDXUqiHDlYi0HpNllrUb\nc6TWdFOH9I6x9Ws2O/fd1gSfe+fhVGr9RLU6lVofOq6w4cEVtEbXA2AnNvKHb53B4SecTicrFkwb\nHeh0U3SY4kzRUZiHIaMjqymk8iGiWh+jjQ62BitHa7SijHotpq8SkqQ5gdLgO7R0QD1UvVFTslgc\nFYXlqEJMifHUeS5rmUv+RTylBXlTg3korC6lhCy3JMaQG4ezjnaW0UkMI40ujU5OZgyB0mzo5DTa\nGbUoJLUG4yztVoevn3YcI8vvIu4bpjJ7J5wFn4OxUJ02j5GVq5g1ex61oRhjLFoF9IWG7sTmJWom\nTXnzpy5i3sIt0EqTmSKSd8JSD2L2O+D5fOh1L2Vk1QPMXbCQz37zCq775f9w9Q8v46JzP8aBLzmU\ngw89kv7ZuyCEpxKECAWvPOI/+M3PruT8L3yOo48/ie74CAODQ/TXqxgPLnf0xZIwUiTGkRsQSIJA\n0CcDkjTDa01VKuZpTe4BIQi0oKoUic4Za2qaaU5/rEAGLNp+J+65/aap17bVDrvynk9+hYlWi8bG\n9TRaDfJ2m4vPPGWzc7DqrltpphlJ5jAelCxau0MJSQ4jOdTFeq445xSe/vI3cv+Nv2bD/XcxvMUi\ngiDk2su+zGFvOZlONyPtZkzLHYEUyDBASsdYxyCVIc0k1TgmDlTPwQ+qUhSDWL2c+owAf7WWuaTk\nn+UpJcgPT08Y25u4MflzDyDo5EXrczPJGWl2GW2k5M6QJjnWOJqdjDzvEASSLM/QRIRSYCWc96G3\nMnLvXQAkzY3c+I2TeMZrziKMod4H9enzaI6sxOq96AsCbCWmk+SsuuN6hNh8pOeC7XZiyU6LkQ5k\nKKhLjdfFMSoBeeY4+5IfM1CrECsBXnDYEUdy9NFHseLeZfzwvy/jpLccxRZbbslrjnkdL3vFK6hW\n6ljrOPPsc9h/77045NBX0BgfY8uFW1ELFF4qnCumXYdaFX+CCgJBN83oZjlKSSpakFtPLVbgBUoW\nnhTWObRUbDu3n9XjKUmSkaSWkz9zAZ844XWsuOdOtlm8E5+64DLanQwVBvT39eOVoqIlN/zy2dz6\n218+9J5Yw+qVK4n655JY6K/0Zm7uAAAgAElEQVRApMFZQENz/QT/72vvY8fnvpCtn3sI2+99CL/4\n4sns9qKjmLbFNvz8Sx/mqovP5ah3n4pyjmaSYschikPm1GNS56lh6SLorxbVFLrn1ucD8Mhen0jh\nez2ZQ9aqLFAqefR5ynyqpuqKKdITRcG/JUlz0l6NKt6TG4NzjrFOyshEh/FOTrubMjaR0kpyUpOT\n55Z2nhbjlBysGx3njpt/zw++fAbremI8SWvtPUhViH03hcr0LWiNrSYQgmbqUNZz848v4ycXnsux\nZ5zPgsW7oHTAgsW78KGvXEqsA6JQ0RdFzJlWpa8SMquvwuyBGsP9FYaqMVUtCZSgXgnoizTOOrbb\nbjtOPf1j3PCnO3n3Se/l5//zU56+4xLe/fa3cfP1NzB3zjxO/uCH+egpJ3Hv8mVsuXArgjAgjjT9\n9Yi+SmFjqVSvW00VC2DVKGCgHjF3qI/5w30smDHEzMEafZWYabUq9SjEGEusA7YYjJk/rcasoQp9\ntSpnXfQdfnrj3ZzztW8TRyFDAzWiSoVqvcpQLcZYxxs+eA67Pnt/4lofWz/jOTz3iLfw/z57MhtX\n3YH0EAVFM0piYGK0xe8v/CDzd3k2u73wCIQqapvDgdmMrFlLUK3yond8hJX3LOWycz/KukaTDZ2E\nZtfgrWO01cWmBqEUkRIYY5H0fJRFIcqhKmYiit5nSFAu6JX863jKRMgPT094z9TsukhJPBSz6Kyn\nm+WMNBI6nZRmZhlPDeONNrnNcF6gtUYieHDFvSz97S+463e/IKrW2fHZB9A3Yz7N9aumnlfgue+a\ni9lmn8OQQY3p8+bx56W/ol6pkiRdLv3yx5kYeZBTv3QZs+bO5ulP+wbd3BBpzbRahLEeYwyVQFCJ\nQuJKSE0ppJTU4gzrRK9My9MXR2RZRhRq4lBTiTT9ccTLDzmEg174QtatXcf3vnMZ7z7+rUgpefXR\nxyCAL57zKTqtFt1Om/+64EKU0GilyIwjDjTGOXLjCJQgDALIc4zzRVMFnkoY9ObcQW410+oRWisy\nKQm1Z1pftXC+M0Wtr5aSShgw2uqinCXQmsFaQBwGOBzHfvgc2kmX3EArzRmcOZufnvcJdn3ZW6jt\nuS8DFU0ja/D7r5/K0Ja7sPigo8msQUroq8C0ObMxjbVYC0bVOOCtH+HnX/oQl593Di9/4zvQ/TUy\n4xhtWYZrCtPyDMQRzdwybCyBLga1AoRaFwZG5QJeyb+Bp0zZ26bz7wDSzBRCYz2hEgghi/xkbrl/\nQ4ORRpfRTspYM2X9eJtGp8UPPn86K5bexPDMOeggZGz9GrZ75n7sts+LiGfMJ/eOP377PJbf/FvS\n1jiDW2zD0w4/mbuvvoT1d1/PkgMO52nP3oeL3v96EAKlA7bffW+OPfljzJ8znUAJ2klOlhvqUcBg\nvYLFo5wnjjQD9YhaqMAJurlBCoGSklaa4aWgGgSkWc5ANUbJ4uIzXK8gpaCbGqJAkeYW6yy//93v\n+ObFF/Kdyy7FGDN1Xg552cv52sWXoJXAO0/Yc0nzvUWsVpqB9wRBMUE6703nUKJoKW+leeF6V5hC\nkJvC49kJicWRGY8WoIRg9UQXJQRhqOiPA5zzeOdZMdoiQBDHmg3NjFXrR1l291KuOPeDBFGF9vgG\npNLM2/nZ7HLY2+mvCoSFjoFqCA/ceDX33Xo9z3j1e8lzqITgkha/Ou+DLNrpabz49ScgvSQKNZVI\nEuuIIJTM7IuphRqEYsZgzPz+PqqV4BGrcErj+5J/hLLs7WFsNv/OeVLrkKKwY9RKYq3HuqKkrZ3m\ngKedWjJTmM5/93MfYcXN1wEw8sByZm+9hCM/dhEyLKLVNHekiWX5TddywDs+wez582kmxQLU844+\ngfF1K7jjp9/g4h9fNGXk46yhtXEdg8P9aOnpiwKGqwGp8UhfTF4OlaIaBVQCxUA1QggY72ZoCYHW\nxcBPq0FApKBWiwl6Iuqc690ZSLRkquFBCMGznv0c9nzms7jqR1cyPv7QYuK111xDJSpKxJQWWO97\nk7QLKaoEQa+TrVgEdd7inKMSBng8tTCgmaRoAQiJEx4vJX2hwqLJlSExFu8g0oo4kggv8L3ys1aS\nM1yNQHichUhJpg/0EyzZmd8tWMR9t/xh6lhN0mBmn0AIRdsW6YZGB2w8m4n1awmKrmcM4HWdQ9/9\nCX7wmVP40dc+x4GvOQGtHRsalrlDklDWSI0j0pK5QxEVrekag0gFQSD/ogpnsia59LkoeTR50gvy\npgZBxW1tz7zAObwsvljWeppJSjczpKYQ6kaSY7OMdpKR25wH77xps/1uXL2SibZCpVCJHULBuntv\nJ+obYvrs+USxJlSWSqVCVQeYGYt5+i5n8JGj9t9sP6uW38X0Wox0jkAp4kBQixTVnqhKJQmlINAa\nKRVxqDBeYJ0lNx4lBf21kNQ4BIIoDDDO4fFEupjmrGRx653kxW29lroQFyfZ93n7c8Xl3586nn32\n26+IgHum7tJ5jLXg6e2rWPhyPaGvRQECQSXSU57QOtfF7wiBljBcjwvntGIkNFleDCWtRYqxjsEL\nSyVSReQsFdP7JM4rNjQ7GG/QwlOtBqxddudm5+7B228ga47jo0GkKGw+rYWB6bNpj64lyQonuGoE\neQZj3Sp7vv50rvvqB7jjty+j2xxnzqLFfOAL38R6h3MCpYpGkEpUmBF1ckfkQ7x3GO+LGYkWlJJl\nTXLJo86TWpA3NQjyvdtL631vuocH68nzImLLckPmiseMczQ6Fm8dxloaG0bw1m627+EFO9HsFDaS\nSQIygJU3X8M2e+xDvaoIhaDSV0OKgHolZGLtWi78zGnElRpJpzW1n0WLdyKWgjAKqceKOIqQwoGD\nKNA4UYy9F6Io+VJKUgkUxgm0KsxwtNIIn+E9PWEp8uW4wpJzchFKWVncbjuPc0X32SWXfZujXvlK\nrvn11ez3vP255JJLi2i4F/AJUXSuKVG0kSOKCgPvi6naRdqk2FjJYtpzNVTkVpBbh5GKgbhIldCb\ndReGCo2mGijiOCNJc4xzxEFAfzXCe0lmM5Ss9lqpHZ3MsPMee/HHq382de6GZszistOOY6tn7MP2\nzzuc/ukziAOozRzEZCmdsQ5xX5Uso2guySHW/QipaI8X9d4P3nM7Hz/+NZz8mYuQQzWS3PHgWAch\nIFS6uIsKXbHYh6AWaZxxBNojpShrkkseVZ7UgpybIhLLjJsSFuE9KYWbWmptEQUlBtGbXpzljk7u\nkMJjEIw3mnzn7FPY7YWvZOSB5ay751aCqMLg3AXEURFshzF0mzkrbvkdL/vAuWjAO0GkQvqqAX/8\n2fe48htf5iXHHMf+L/kPzjrxjdx79x1sv+MunHfZ5URKUolDtCxW+6XSdDOLkIKKVlNR6eSCZKAV\nWEGge8+vZSGYpsgrR1HA5AzmyUUpoMgLU4hISq/axHu+demlUxM0nPMEqhjc6lxRb6t7/9dKYpyf\nSv14X1hXhjoAHhr6ild4BFGgqPWc1GRP5K2D1BiUEFRCTS3Q+P7C5Ef1Su1ya+nkkkAZtHDkDlqJ\n4bSzv8xp7zmW22/8A1vv/Aze/IGzuW/lKn7zw2/wk7PeyVZPfw67Pv9w4qHZ1IZm0R5fS+oXISTU\nq4726j+z/M7rGV25bLPPyerlS3lw/ThhoAgVmNyjBEyrBYRhgAo0SktcbugknnocTEXFZU1yyaPJ\nk1KQJ+0VG0le2C16ULJo9c1tERHn1mNMYSqfGkuaGta3k57QQCPLaDa6XPWVTzA8bwGL9vsPtvIC\n66DbWM8vz3kn2z/rIGT/TOp1aNx3c2FtOTQTrxSD1YhOcz3f+vhHAcdpX7yU2ow5zJnZz5cuuZxu\nYhnqD4i1xguo9TwVALKsED8pCt9lvCfWcqpGeVL4JlMJgkKUAx328rpFzlyKYgFqEiVlr+mhEBHn\ninHNkzW1k+LySFUF+dRtut9ErAtx3zR/KqUgCjWB3txruBJoinaLIpVSHJkgCuTUxWDKIB4YDgLS\nwNBOciaaXZLcYp3j5E9+AWs9XnlGGynTZw5zwKuO5RkHvoLbf30VPzzzPczfaU864+u57ivvojZt\nNtMW7MC6u28gqA4wfdEe9M3ckubIAw+dFx3Q7YzSSvswGx0zhms0kgzjYVqfIg4tTgkCrUh6sxOd\np6xJLnnUedII8sPNxr33BEr0ytlcEZnlhrFOglaSVpITSImQnkY7o5MbWmlOu23xOLLE8JNLv0Rr\nfIzD3/dJEidotDxJCiqawcJnvZibfnwRe73mP6lKwQM3XMMOe+3PrMF+avWQ237xY35w4Rc45Kg3\ncuDhxxAEQXFsuUeFkkBbciOZ1hegpSRUktQUEzy8AG8dmYAqAUGgpupiJ6PTyYh/Mh2R5hYlBQ/P\nZG56Oz0p5NYV+eZi6KeYipT/lrhMLopuKtbee/5acDi5XaA3f2+89yg1OSW6OPaHN+wEvTJEKQT1\nOChSJYBFYXNLC0M10Jg+SX8lYKSa0BeFzDriLTznJa/iS/95DDYr5vC1N6xGessBx5+N0bNAg1av\n4/fnn8To/XcxNG8hi3ffhws/+DZef8qnWbzb0+h0DcI7okCTG8NYCyqxIdYaYx3jnS5REFCPNJEK\nsMKR27LqouSf50khyJt6UvheyJhZjxKC3BZNH600QwJZ7sEZksySekPmBNY7MufYMNqklRdR5x9+\nfiW3XfcLjjr1CwQyJtSCluxSCSE1sO0+h/Hzs9/KyPK7qWy3gPtvu54DX/sOZNLg4nM/SWt8lE+e\n9y3mLtqWJLNEUiJDEFpgnaevGpNZixaSeljcAnscTkgCUdhD4hxdYwhUiJCCONBTOeDJVMLkl3/T\nKpJJHul2+pGE8pH293A2ja7/0Y61TZ/zb713kxcGYz25c2R5Ti0uov4wCIgCQSfJcRNdkIK+AKwO\nmC0kSSWk2c5oBIpuY/MW9NbYBobnzKKbAgI6XTjg7WdxzXmnsNuBRzBryW5M32IhX/3IuzjsrSez\n63MOIIoUcVuSW09mu/RHklkDtV5kH1GrFGmZZpZTQxMEqqy6KPmneVII8qZNH4WPscRbQ8vaYqGJ\nngub93hvaSVFtJZZS6ubFqbwrYRVY02cF1x0yusZW7OSafO3wodVDB6NwKRQCcBLkGGFxQe+hj/9\n+Ku49kuZt+0OrLjjFr7+rS/y3INfwZvfcxL1KMY56I8C0sxMtSMjCo+EWqiJQkkQKLSTBHhsr03X\nOxA9xzHw/2t32P9FMP+RhodNo+u/R8D/Xh7esCOEAFHkcB2i8MgIFHXvSa1HScnc4RogSNOcscSQ\nZzkDUchAHDIWRyzYbgfuXXrrQ8euFJ31a4inz8EBNVm0Xkf1ISbGRpnhYGjxnhx60hn88POnsfzP\nt7PfEW/GOhiyljDUNLoOLzrMqMUEsqgDz4zHOeikKfU4ItJqKt9eVl2U/F94UjSGbNr0MVl61c5y\nMmMJtGKilbCx2aGbOeJQ4qxnPMkZaaTkSYLWmmaSs3a8xXknHcXEyEPDOqNaH9vssS+V/kGsHqJ/\n2hBB3zCDw4MQ9vP99x+JszkqCBmeOYcj33kq2+60K3Nm9BFJRT1UzBqoMtY1pHlGIIuFo1q1wmA1\nQCvJYBwV1R/GonsevL7nqaBkcWs/OQfub/G3BrE+Xnl4w87kY1B4LKe9CR7GedI0o5vmvYuTxAvB\naKvLhmaK9eCNoZPlNBPHGccfxcpldzF30fZsvftz+cOPLuH5r38v83Z5Gsp5NjYdf/zuBfRNH2CX\n5x9OLYKKDhgd3cjPv/oJ+geHefUJpzN3zjRkr/FlIA7YckYffZWIxDiSrHCMMyZnsF6hGgVUw6Aw\n9Y+eFLFOyaPEU6oxZPJ2vSgv9rTTnNwYpJZsbCVsGG/TSXPancKlTElIrcfmOan1tPKUpN3mqq+c\nsZkYA2TdNkOz5zIxOsbExjt58PYxss44SWOMpDE6tZ3NM7z37LjzM1ABuNRSG4roCwOUFMysBzQT\n8F5QiRVDtQgpBbq3KBbIorqgcH+TqF5JlexNPv67zsMTsMX3kVItorcQqYTEO4dUxcUpoXf3g0TI\nYoG1ohRDtRApBBtaECFQgeET53+bbpbT7jrGWy0WbbuEb5/7YZ718tey5TOfj1fQP30I09qIMzBh\noatzXNTPS9/1cX77nfP44gfezNtP/xwzZ81haCDEClgzkdDNLdY6GknOYKSJIt3r/Cwiey2Dx+hs\nljzReVIIspKStNdsMBltJbljrNGh3TGEgaJfa5rtlIlGB9dbEPNC0ElSlt78e6788qfYbve9mbP1\nDqxZ/tBA0plbbc/TDzqcdicjNdBoQl8f1GPFV449eLPj2LBmJWEsCZUiigL6Qk010igpqMURYaiJ\ntMJBb3SQpFqY76K1pC+OSHKD7/18sopBySfvKv4jpVqkKF6vk45aFJDmObn1RFpSCwMS6xDWkjuH\n8xYpFNVYMxPopDljLU8tEkwfqJJlhhXrPcEuu/P6077AJZ96H2tWLGfXl76J2sAQa1YvI/WQtAs3\nvoqGoBLxvGPewZ9+cSWfPuFoXv3eM3ja05/JtMEKjXbCmvEm1aBYbA20gtyjpEUYQ6gk9Th6TM9p\nyROXJ4UgSyl6ZV6QZpZWluPxpKklyXOCsILEEYQhsfWMdzKEFHTaHX7w1bO464ZrOfgNJ7Jotz1x\nznPB+9/IxgfvZ9qCxRz+gXORztEXh8yMQkZUi9RCtzmKVAq3ScPI9Dlb4q0niCWOwr/Xi6IbsL8a\nkaQSqQRaqqkqg0lTHgCtJVUZPOHSDv8XNk2v0Lu78b33cDI94zOHpSgJrLiigK+T5cRCIkON7WZ4\nCrMlax2JEBgvUIEgNTA63kJ5RRQqdKaYOXchrzn9y1z+2Q/xm/NPY+u9XkxzbBQpwErIUhiIC/P9\nKAx4xkGHs9U2i/nmGSczcvRx3HL1j1m57E4WbrcDp37pW0S6aJvPnMN0MwIlECJhRr3yWJ7akicw\nT4ocMhR5R+c8I8023a7B4xmZaNNKDXEYEGhF7jwbx9usbrRZdtvNXPqZ05i19WL2PuJYomoVaz3G\nQ25zvnniqzn0tAuZPWOAwVqdVpISKoWQsGFsA1d88iR2fu5B3PLrqxhdu4oZc7fkfV/8bwZqEdW4\nMAaa2R8x1FelGihqUYjwHqVUr/PuoYW3p5qd46aVFX/rPGy63WRzTyc1aCUAgXOOdpIVVqrGYJwg\nyTMS45jopGxsJCTWESHZ0O6Qp45Gt0MzTfnNZV/h5l9eiTP5/2fvvMPtKqv8/3nb3vuU29KABBIh\nAUITFKRIURTBOhbELo6oWEYdFNuIP3Gsg6OijDpjGXsbRAfFBohiowginRBaIEAg7ZbTdnnL74/3\nnEsSYdQZSW5Cvs+TJ89z7zn73LPLete71nd9v4wt2pPjTjmDTFiMgqJXkBlBgkDoQG/N/Xz5w2/H\nbSDCtGSfA/jwF75DkmisC+TWMZwoGplml7kjzB9qUMvMI+q6bsdD4xFVQwYgBDplSSe3CAmV9eTO\n0cmj+lgsF0jef+prWXbVpRACz3nj6ez22COoXEVeFvSne6knGTvuugeTd97IrFmHUlQWowTtoktN\nKs4/673s/bgjefoJJ3HCK16HJ6CNodlMkD4wnBh2mtXAAFpAIzEkOnKGgb85U2Frw4MyKx5EE2JD\nZkdfJZ6aUQg5WNAkRkp6VRy9Hko1UoKRlkxpMqVY3ymZ6jNp6jUNog5Kc98dy/G2AmD8zpv5zlue\ngzIpSiuk0iilMUky/f+GwRjgjuU3sqZd0i1bJEgamaGhMgiCdrdkwiikis3YR9r13Y7/PbadgAwU\nNkpLDpL+epJgU4ELjnav5PR3vZEbLv/V9Ouv+92F7HvoMbRLTwiQpopmkmG0YeelB7D2jhvY9YDH\nsabVZqhmyKTk3E+exqIlS3n5m07F2cCskQapjk7GI2ls5mg1GHmOjalBMJ7mDG9ljbe/NSI1ceMg\n9VCaEING5aDWHELoj2/HKcPExN95HxBSxolADwiP0RIIzGnWqdcS2t2SsqioG8V9d9y88ecozUvP\n/B7BRZGiWbUa8+fOoixKfPB85p2vYeUt10+/fuHiveh2eqyfajEyMkTmFJioFdLtFfQyg697nN/6\nGq3bseWw7XSLhED1GQndvGKik2OkZLTxgFj7tVf8bqO33PKH33LVJefT7nWZ6EKvdHTKnNx2mbdk\nL+6++VoKB0ZCJjU//dyHGJk1i78/9X3MnzXE/ovmsXBWnR2HGyRSUVYeJaBpNCCoJYZGsn3buikG\nzIoN8ec0IaSMzh1K9q8zUVNZyag0N1rPSFRc/IZqmqFa3JU0jWakoalrjZYSlcRm3Pzdlm50/Fk7\nL6GsoN2FiUnIfcVUp0u3crR6FS9576dQxiCkRpuERz/xuEjZ0zqWw1xgvF0wlVtauaVdluSVo1fG\nwaTtAkTb8ZdgmwnIsq/PW3mJkhLr6XORowX83KEMvUmmMneX3bjsh9/i6+86iWt+eg6d9ZPUk4TK\nwuxd92T9vXeRhor5Y2Nc+OWP46zj1A98jF3mDjFWS2nWNEIoHIHhukaomOlJrainimaaUMtM3y7K\nb38o+1BS9h1b4vkY1JD/HJtEyqgnUUs19SyhlsZgONDPqCWGTCukkIgAjTRl9mhG5QJCCUbrCQvm\nDtFIE/7p019n4dL9AJi98648910fQycwNgxzRiUEWNfq0O51qVyF85601uC0z/+AN3z86/ziv77E\nLX/8LYk2dLsVvbIizy3tXkW3tHRyS68sovTrwL18+/Xfjj+DbaZkIYhyjyo4KgGegHOBoVrU/r34\ngvPYdckejMyZx1WXXcIue+/PwSe+A1/AfXffwvKLf8x/f/Bk9jzocJYe+TRGFuyOlILPv/l4hkZm\nMXfBLrzljM8xb2wU7yq61jEsUoZqMqp+ec9wLaWRaqSUpFKSJXqD7Hi7bu4AD8fU3yCDdl5SFwZv\nFEGUGJUhhGCo8ngh6JU2umhby6n/+hU+ddrrOeDJzyFREgQo4aPfYddSSxU1Y+hUluAqyrzHlLMM\nz1nAC079MN8+4x089y0fYNEe+yFlhu0VMeiqlLXtgrFGRiOlr69SUVlHLdXbLHNmO/7v2OoC8kNN\noznv8dbTrhxTPQsi4By0S0vlLJ8586P847s/xB6PeRzX3rOW2+9ZSzeHLIMFu+3O/MWnULZeyf1X\n/4oLvvAv9FqTVEUOwNT4Wkbm7Ei9WafTy9GpYXYjo55pvI8yk4hAonSkswnZr31uMOywXTd3Izwc\nQyyBQGLUdLMwM4ZOWcWhEm2xfRH/HYcDq1uBZi1hZNYc8s4kxmTUlUBJRStvEwQYo1nTzUmI49O2\nKpGmTrdow5z5POu1/8S5n3ovjZFZrL33LnbadQ/e+9lvofuynIX1fa40GBndVwa7pe16Fw8/tsbJ\n1a2qZPFgztFF5ejlFeOdgl7l8M5D8Ex1LD1b0OkW/OR7Z9Mcm8Oc3ffm/vUtulNdHDAybBht1MmM\nJEsls2eP8Jinv5BTz/oOrqo2+ux7VywH61FKsfOsBqM1Q7cMKBVItGCkllFP4+BHTLb+uhrpdvzf\nsaFmNERedyMxZEkc1GnUE2YPpSRaEXwgSyXz5s2FvI1RkRHjgyVTKbOaCQKB8p5aUsNXJSbNmNts\nIkRC0yj2OOhwkqzO6rtuw9uKe265gX895RXYssJVnk6vYKKTA6Hv3+gobTQ9qKx76C+yHf9nPLjL\n/MwvG25VAfnBnKOt9xTW4oMnBE+rFz3ehhsJPkgm213O+c/P8syXv5571nS4eyIqhdWNwlYVpYuU\nKVd5lE6QwRGUZsfd9tjosxftvhf1umHeaI3hLCHRmkxDolU/0wvTDhpSSKSQf3WNdDv+b3iwZqFS\ngrFGjXnNOrVEk1cxS549lDIyVGf+Tjshqx4LZ49SSxOG0pQsUdRMggDmjAyRmYTW5BQ6yRjvdmnl\nXbRK6PS6TKy5b6PPu+PmGyiKCiGiS826Vk67V9Eu7ANlGSH6UqszOzhszXjQWOEc3aKa0U3Wrapk\nsSldyvVHpfMSrA9UNhCUY+1USVH16HYLLvnpd5m38yJ23edAplodyl6FcyBVoNOGTlGRGVABwDKU\njaBlYMGixUytW02v3WLXPfbmg1/4FrNrGVpIunlFYhSZ0ljrqZm4sgnxgBjQ4O97JPONNzc2HcN2\nzmOdj9cjRNlSJQLDNU0907Rzy7x5c7lj+TLmjBjqtQTrStq9hHa3i0gMEFjf67J2vINJM8aLHtJD\nt8hZf+9KNhWEnr/bUsrgKF38/ERKqqJA19KNmspKsr2n8DBiw1jxwIBRPzgzc8tGW1VA3lSIZtq1\nAY8k0HOWoqDv0Rb42Ftfwcrl17PDosWMT3VBgFeSXlUSgsKoaGiaaQneM7s+zC5zR/jDpb/hlmuu\n4H1fOJcFO80jSxSVjayNIZuQGhWdPghoKUm1ftABgC39sG2NNbT/CzZsFlrrp22nhBD0qshPz4yh\nU5S0c4tzlpGx2UxNrKNZa7DjmEQITbuXc+dqTWktuRMUVUldlZishrTQqGlWrVrFeWe9l0Nf9Eau\nOOdz2LKgMTLGSf/8GSovSY1ABBnV+6SmrhWBsMFUouqbxT6yrtHmwoaxYpAtD34+k81pt6o9tEBQ\nVo68tBSlpawqOnmJ94HSQbdXYV1BCJ6PvPFlrFweifz333kbn3rXK1m5doJ2p0Onm1NUFYFoEW+M\nZGxkiNRoZHB897Mf5oTXvYM5O8wlSIVSGq0coq8uphEEH6JymzEoFS/6TMJfWkPzPlCUlqluwXi7\nx1SnoCjtjN3S/TkMqHFa9YdGpv0B4wMaxZsEmQgYZdhxh3m0xtdHp29jSBUIFSVSs8QwWteMNYcZ\nSg1pVqPZSMm7Pc4/6/+x22HPZLfDnkJjbA4v/qczcVXF+nVrKauCmlF4GUiMJEsEUkKvtJSV62t3\nBAhbZ51za8CG1MrB6adCXBgAACAASURBVNywbDjQTp9pmNEBeeCNV1SOorRUrp/xAN3KUlhHXjom\nuwWdssT5QKsXxedX3nLDRsdac8ctTLYdlY+BOFjQGmbVFXObQ9SylAD84Gv/zi5LlnLoMU9lrK4Z\nrikSGUilodbQ1DKNSRRaC0brKVqrGXlxH2w8OZqMPrBweB8duHPrsCFE4fwQyKutnze7YYPP90X/\nAfonhTRNaKSKhbvM556VKzjpucfy8Y98iPFehXWerJ6hhEBIGGqkGFuR1uq4suIHn3g3iw88nAOO\nfR4GqLodhndYwJIDj+Dai39EqjWlDfQqR6tT0OpZxjsVIUR9bvraHN6HP3uNtuMvx4bxwvlomiuI\n3pFFWVFUUS+7KC3O+RnZZJ+xAXnTDM/2CfbWeQrnCCGgpcLjaJclk+2cvLIIPLfccD1ykwaarg2x\ndrwFJeQWeiXUtaCe1hgZqtMwCeP33sHPf/BfnPzWdzNaNyQyPjwjWcJYwzCnVmOonjFSz8iSBKXE\nA15zM+zibso4gD/NCuJW2ff/foHsb5cDAR/8nwSGDW/4mdwYgY0bfPHaCIIQJEqSGYVzjgCc/dUv\n0e10WHHLzZz95c/ylU9/HCUDrvJ0y4KiZ3GVZXJqCm0Szv3kexhbsJB9n/EyFFGhLu+2CUZz2NNf\nwB8uPJeqzBnvlbQ7Ba3SQfAoQgzSpYW+U7jbRAcaZm7mNtPxUDtCa6PrfKeoKCtHaR1TecFkr8TO\nwMbqjK0hb5rhOU/kcfqAG0gxVhXjvZJWN658XkhWrriDL37gFJ5+8jv46Rc/hneOsfm7MrxgCRef\n+VrGj30e+x/9LLLhGniogifvVqSZ5vufO4MXn/xmRuftGKe8agqhNDhLFTSNeoqWAh8CikAIcZR3\nJjoP/yUeez5AQBCI2svwQEAIbBwYHsz7bqY2RmDjBl+sy0ZamzQS56HeyFAhcPFFF270vnO//gXu\nvGU5w3PmMTpnR+buOB8zMpeffO0sJtfeT9YY4sjXnI7yAlMTeGuBAEGjZs9l4Z778usffY9nv/Qk\nLIqitBQu0FQSrSSmbyqrlNzItHaAmbi4bw14KAZWZS0uBIxS2BAoyyhvkKg4PDa4hwfH2NK1/Bkb\nkDdlVIR+Jlf6WAe0NtAtctaMd+lZh7eBFStu48x3vIbHH/9Kdtjv8TTG5vC4E09ndIcFGAkTRz+H\nZT/9Kt+++Mcc9KyXssvjjmaeUQTtufz870GAZzz/JcwaqjN7OAPvKS3oNGHHZsZQluKCo7SBRMtp\nLYWZ2Ij5Szz2pKAfjuPvBq8b/GzDr/SXKrTNFGzY4AtATWskgtJ7NIGaiIapTzr2qSxfdtP0+446\n7pkcdPjR3HfP3axceRc3X3MFN111OVUZh4TyTotffOafeNnpn8YLyX2r7iGtNUlTQ+ksRz77RM7+\n5Ht40nNeissS6qlhKq8IPjB3uIZRCtevZysh+kJYf71x7HY8gEHpjb6WjZJymoFV+oBAoI0iWBt1\nUKSktA4hJBngnUcqOSOSjRkbkDfN8EIQlNah+noRnaJgsmPpWIdzgpV3ruBD/3gSx774Ney43+Hk\n3scTnnq6XZAKkpGdOfLk01h9y01c9cMvc91F53L0S07mxxf9iJv/eCn7HngYSM1IwzCUpkgJ1nmM\nEgzX0ujsITQ1EwOx0TMvEA3wUOPJEH0HrQs45yh9LE94H2ttlYu1t3pqSHW8PR7shpd9CcyZtuXb\nEBtNAxpF6nUsudhYY0y05EMf+hBaSc7/6U849AnHcMLJpyClpJMXtLuWylr+4RkHb3Tc++9Y3p8A\n1ISiS1pvMplblISdd9uT2fMXctnPz+PQpzyb9SpHGEllHZUPzBdQSwzWg5Ga1IdYIkKgJSRaz7jF\nfSZjw50bgo0ao0qJPh01xhIXoKocEMtVtTT+sltaGtJMlzm3ZLIxY5fiTQVowKOVwKg4ZQUCSVz9\n1t57F2e89ZUc+4JXse+RT2e4OYyRkgC4MqBSKHPwFXTasGCPvXjV+z/LUc9/JT846/3cfNUlEALX\nX3kJnzjtzRipMFqSmGi/JDfJgLeWOt+AcZAOrIaIN6vzARenWKICmhDkNjZJjZYkicJ6T7vvQ9ju\nlf36fTSQna7NVTYGmhleTx5gIEI0XE8Za9YYylJSo/nABz7Ejy++lLe88900Ek1VVRipaGQSF2D+\nbnv+ybHuWXYNwZWU3S5JvUHwURVwotflwKe9kIvO+QohOPIyUJYOgSAvSyZ6UVA/9j8CvcoSRBy/\n11rh+nzp7fjLMNi5aaWmZXeFAO/jPZkZjRCCysahkDwvsM6hJNO0QyFi4rVhfyQEtsgzPmMD8kAs\nJnZJ+wG4v8UTUmB9BRJa42t4/5tfydHPfSmHP+N4SuvJXY8sTeK0nAgoIKvHOjQicvmHaym9qRa2\nr1cxwNWX/67fjxfYPosj7ztZD5oFpXXTgulbEwY3rw+hvz2L27TKOQT95leAovK084L7JlrctnqC\nNa1OvHlD1JzOq4rJXk5hXVw42TrpWkZFHWWjJc1UU08NjUwzWstIU4VUhkRL/vHjX+ZRSx+N0oZd\n9tyPV5z2cS78jw9z/e9+zuTEODprEARkSiFCYOel+6LSjKt/+3NS5UmNiqa7UtHtlXSKkm5p6RZx\noRtosWxnWfz1GDSvZV+WdfDMOh+QCBKt0FJSOYck4IkN3cp62t2ciW5O5TyTeUFeRSZXaR15ZbfI\nMz5jSxabeq7J/kl3PvRPOqy9fxXvOfmlHP3sF3LAcccz3i3wwVH1jUKlEtB3ApYShIaxDNbediM/\nOuPz1BpD7PGYQ1j+x8unP/fAww7HKIn1sf5qtCRRkmqDB2ZrweAcWhcF3UsXa9/WBbSWff62Z6Jb\nkRcl7cKhggOtESE2PYwSdAsobI9ZzYQQYnPVSBnroSGAAx9ihpH2BeO3hm23kpJQOXqlxTnHUGoY\nqmWUznLzveOURYFWkrFmxjs++RW6vYqJThcpJS9/7yf59hnvpOh1KTotLjjz7Tz3nR+nzKPtzNIn\nHM/Pzv4Khz7paQghyH2gbHUpg8ADs0dqpFJiRaDpwvT5mulloJmGQWlzcF9qrdBAWQVaeU5lA5WP\nJapUa4Kx+BB3i4ULSGcpS08QHgIYrfD9MpJGkCab9/vMyIC8UV0I6FVR11iJSMnSSjC5fg1v/PuX\ncPhxf8cRz3ox966dxHlHPU0phOb+iYLKCjoTnpGdIEvgvlWrufCcLzN+1808+SVv4KAnHkdiFN/5\n2Gksv+b3PPaQw3nfJz5LoiW6XyM1SkUXihDFYVKtSGZw7XiAaRpQ6JcniGpo1vlIt3KxCz3R7bGu\n1aNbltgq0LGOVrfNjiMJtSTFOkHQAmkL1jhLPTXxGqRJ1ADp16BrxsTGFDN3LHVD+H7ZJjH9CTqh\ncSGQKgV4Mq2Z06yBUkx1clqdCmEUo8MNQDC0ZC+GR2dx99r7AVh9+0389xlv5ZmnfowA7HrQoVz9\nk69x6a9/yUFHPIFaotFCMdwwCGDdZBEFrWopvbJkqBadqrezLP46DJrX1rm+XoWnVznyyqGJ17hX\nVLRKTyZLpovNxCQi1Ype6cgShXWBWqJpZFHHJHeOmg+b9T6ekQG5sq7/sIML8f/EKKx1PO0pR3PN\nH69GKcXzTnw1T3rRq1nf7mHxTHTyfjNPkFsQQlLqQFkWLPv591j26x+xxxHP4LiT38JYY5TgHUZo\nTv2XTzF/pEkjU2gVg61RkrQfeIWMzby4vVV9JsLMxqA8UVmP9Z5A3Bb3nMN7KKzFucB4q0tpPRMt\nh1IB5wXf/OzHuPGK33Dkk5/Ca095F1Wf2lc6S2I0LnjaeUVZxbq+kIJKRd2Gmc6+GMB535/iCljP\n9CLrvSevPGNNw5SSdPMSJQUjdU1hQZssvtcFVq24daNjrrljOQ5HI8swwCHPfDG/Ovfr7LD0AIaz\nlFmjTRpekVeBVDmEj+erU3qGa9tZFv8bDJrXRWUpbFR67JWWYC3jVexzWB8oyor1ZWCkpqhlCa28\nxFWesWaKD4HcehoqcsMHbvDe+c1+H8+4gOx91JFVShCItbQYnD3PPPbJXPn73wNQVfDz875Pbc4C\nCpFilcalTawbRqcNgoLOunv4/edOQUrFzvsdynPe8UnmzN+JkTRl9mgD7SVzR+vMH27QTBVCamYP\npzSTJGbCRm+Qafp+DXvreGgGu97CeZSM7efKBTq5I+DptAva1nLX6km00v3vo/jaZz/KhWd/CYDv\nfPEWKhd4+T+8DWsrRmtJ3D0oSZpGDejSeoxReBemOxJbw7bbutAfzIgeiL4/YjvQLh6pZ1iXU1hF\nmhjmpJpO1yKVZ6IbKKqSnZfsxZ3Lrp0+pkpSfvzRt3P0K97MjouWsPiQJ/K7//4Kdy2/jr32PQjl\n45BCr6xQmaHsDzLUNX3dDbVdhOp/wEPpfkgZ2RR97iadPDai75vsoWVA9X0WS2tJrGRyogP9XlS3\nqEikpLAW2a9Hx6ZftAPb3LfxjAvIznsGsW7wgJQ26ldce/XVG712zf2ruPqSX7J69WpaExMUnRZF\nZxIhJME7vItOwd5Z8qm11ObOQwlBVq+zw+gwaapQPiC0JEsNjSwhkYpkA66olAIdBNZFCp5g61Bu\nkyKeN9X/M52PmbJ1lsrFpa600C0s7V6PNDG4ELjiVxdtdJzLfvVznveqN+K8olkTtHJLI1MMq5gp\negSZijTAQY1pa9h2R5PUuItSUuKdx7oKKQRaCTq5p5HqOHZbVOR5hVACj0apuGs76f2f5jOnvoLV\nK1ewYMnePOOtH+HmS3/OeWeextLHH8NjnvFSDjj2eK78ydks3G1vOo2E0A3IIEiVop5EmdbUJHjf\n11zwHmZ4uWdL4M8NJlkXKKyjkxesWNtizUQHLySxGVKxvt3hom/+Bzf94bccdMSTeO5Jb0QpRbd0\nzGumKKWpnMNahbWeNItJyua+DDMuIPsQKSyV8zjnaJUVtnJ0csvSfffj2quunH7tLrvvw7Env4c1\n45NMdGFqkljT9AW/POMFGx137Z23UlWg6pohI0mNJJMSrwQNJWmkCVpKSusJSWxaDRgeSgoSvXWZ\nlUZyvOv7C8basXUe56K1Vek8nbxESk2nyJkocmwlGJo9l/vvum36OPscfBR5Fdhx2FDTml7lMBIq\na0mNYjhNkFLivd+owTLTdxBCyGmRn8GiWwSBRwzkLsAHmmmCGoGV4wHZHzYITpNnmkaZ8KzXv5uf\nfP6jnPzhz9EtHEsPO5bZSw7mj+f9J9/959dx8PNexT3Lr2PVPXdQT/dADw/RFQXSKNJEMtXrUVpL\nliiGydBCoJV6UPXARzIeajBpIPQ/0ctZ3epy/0TBmqkO492CVq9Hr4DUSC781n9w2Q+/AcDK25ZT\nVp4TXnsKibB0ck1mHLUszh74DYalNreG+Yx7agYPtfeeTmEp8oqiqKis5TNf/z7z5u+MkJLG0AiL\n9z+Essoh1SgFJoMgBYGM5rxFGx13bJclzK4r5jUaSKWwBKTRjKQKk8QFIHhPPdHTAjRKymkO79b2\ncEgpSHVc4aNLc8BVjlavoKosq9s5ayd6eCBLFWXhWHvPHdx760089snPIslq7HPoE3jWy15PUVas\n61nWTOXIvtV9YQPWRfaL6GfEgriDMFvBDkIrERu3PLDo1ozCKIGWmkZmCAhKFxiqp8wZzjBaEnxA\nq2jXldUS6vVhep02zksQnlrN0Bwb5YgTT+XQF7+ZK879CvWhUc75yKl88MRj+MTbXkHpHL4sMUrQ\n7lnWtXpM5ZZuUdGpLJ2ypCjtlj5FMwoDettAT6VXWFrdgtWtLms7PcY7PVatz2l3cjwxy51o5bS6\nU7R7Ocsuv3ij4113+cUkxlCvZ9RrGkdMXGqJQUuF855iC3DsZ1xAFghK63HBkyWRGzpZVHFrXToO\nPvLJvPC1b+E9n/0vLvvpdyknJxmSCiHAKDAJFAF2Pex5mPoQQml22G0pJ/y/MxlqZjSbCUM1jVGK\nkUzTzBKG6xmNRGK0IjOaRKsZKan518L0HZiD91Q+UDiP7/sMTrZyOs7hEAgvyCT88LMf4KjjT+KE\n15/GCa9/J9Y6Vrd6dAuPGmhOdyuqIEhUIDUK32dxNJKNXaBnOlS/AalVXHSjiqBABIELMRMeqaeM\n1A1GazItGU0T5o5kkWlSOda3CpzR5N02vbKLDIJmPWW0obAORhcewHFv+wyd1jh5ZwpnK+5cdh0f\nO/UkegGmupaetfgAnU7O6sleTD4qR7faeiVQHw5IAc756cGmynm6RUXhIp1zvFvRKUo8UOQlzkGa\nGbK0Tl5VVHl3o+M95vCjSUw0CtBKIhVkiSSOsQeUisNhtj+9urmuxYwLyIHIlfU+Wq5EyhsUlUVL\nwX2r7mbWDrswe8F8Dn/a87noO/9OEFCU8f0eaBrorr2N/Y55Hq/8t3N59fu/wFitzpCpMZRljA03\nGKsnzK4nzB2t00wTmrWMRpqQ9p2it5ZpvD8H7wO5s3igkWmUEYx3CoQWOOfIOz1KEfjZN/6dsXnz\nedyxz0YowT6HPpkVN/6RbnsSayvuX9tlfbegkxdI4dFGo5WKNKHUIGbcnfQ/Y9PBI0FcwIyWGCn7\njSNBagzgaaQptUwTHLR6Fe3SIXRgZHgWRbdDaWGyaHP/eJuydKQJDNdgYtUdFK2pjT77zltuJJOS\nIkStlPG8wiHwwdOzjk5pcfZP1fYeyVAyijFBZMY47whSxma1jV6aQUDpPGWIvRJfQSvvcsV532T2\nLruxYMm+NIbHOOq5r+CpL3sDda3IjIIQSLSimSUUVTx+XrmovV5tXg/ELf4YbSrpOGiexV8GproW\nKT0dC+s6OfffvZKddtkZHBzzghO586ZruPX6q3EeigqUBpXA+rtvZWjHJVhLP/PNMKmiV5a4qopb\nbKmYVa9FMfE+k2OwRdkaGlN/Ds57EAGj4o4g0YbhWtwhJH1d3sm84NrfXMSNv7+Y4171djyavKjI\nAyzZ/xBuvOyXjHd73Ds1ESVOfaBnwfWHTQRRuWxrXLw2HS3XKvKos9TQTA1ZotEyynY2MsO84Qb1\nTJFbh5YeKSS1LEUnCRQd2m2imIKRSAd33HgNv/ni+xneYeeNPnfR7ntjjMRIjQ2eTq+iU1RYGyjy\niqryePxWeU4fLsiBiJeIDTyEIDOK4D1F5TCJoaYVRenotAu6RUledVm57GZuuPhHHPP3b2W3xz6e\n3Q8+iqNe8EqmWh1anZzQ5+rXkgQjo3uQEJK8shTWopXYrB6IWzQgP5iGqfOevKxwPlD4gBQBrTRS\nenqFZfWqlYzOXUDlHVmtybEvewO//97nEd6DAlGBEp7WqtsxcxcjJXSKHCMdqdYoFzBpypxGRppE\n3mHlPa7fiBqMRjsXtnpT0oGMppIC6yxFZalsXPC8C3zzjH/iX175VM4563SeevK7qNfrKAIT3S7j\nvR57H/Zkrv/NBdSThJF6EyE10nmMCNMshdzOXLHvvxZqupEbSxZayVg2M5pUS+pZwmg9ZbSe0Kin\nSBXlV7N6k1ZrirI/6ZXnntuvv4xLvv5RnvCqd3H8e/+DuYuWALBwz3153+e/RaoMUni8i4M1oi8R\n6kKcMI31+S17PmYatIrXpJYoEiXRUpJbT68oCc7RqyxlVRKJnZY873Hptz7OIS94Hc4Mo+tDFO0W\ns4abzBpt4pUmCIkxitGaRilDavR0g7ryD8SAgQfiw40tGnE27Jz6PhPA+UArL/DeY5REKUWvsoyl\nCbZoo7VBJnWKoiQvKg446qkIKbn/2l+gAzSHIHRWkdSbNOvDDCeg06jeVjOGeXOb7DiUMtyskWlN\nUVUIAo3ETGsbS9H/t5U/EQN5TYC8Ckx1c9q9gvWTPT5x2j9y5a8uIO+2sVXJNRf9gJ6LziE1ralr\nyaJHH8jae+/i3rvvItOaylVYCwhJCAKp1PR129oXL4jXOzMaQqxXCh4wr6XPvgiIaF4AcRLMx4Dc\naU2ChPUtx7JLL+Kyb3+GI1/zPhoL9iO38Nx/+iSj8+bz/De8E1t4pqqKvLC0y4K60SA8DkhSheo7\nVm8L5/RviYHg2MDZvXIOEMgAVkDwAZNomlmKEpJLvvsl5izckwX7HkGWChojY/RakyRSMpwahjND\n3URFRC0FI7WELNVUPoCIzemoFBeZX5tjx7JlM+QNOqdFX83fE0WAChsFb4Rw1GQ0FF1/3z3M2XEB\n66ZaTLR6VD7W2o59+Zu49vyvY1SXqoLWfbcye5clNGuAEDSMptlMmD2cMJIlNFKNIFBPTX8oQqO1\nnN6+JkZPc2q3ZsQtXpxicj6Wg5RUSKW5aQP9DoAV119FKhOyTCNVbJI6J1hy8FFc95vz6ZUlAkGS\nqnitqpK8GBw3Nj62FtW3/wlaS+qpIetrctBfrFOjcc7hCdSTFJFo5ozUyRKBzmrYsmKsobjt0vO4\n7iff4IjXfZh0bHeKAjIJw40Gi/Y9kCsu+RXdPEchmCpKlJPUMs1ImtAwGld5elWgZrbLcAIbsSry\nssJaj7Vu2pbJ+4q8cky2CpQSsReUKe64/kruuv4KDn7xa/ESchtQ2RCtyfVMtgp6Lsac4KGRphgd\nM+PKegQeZx1qA9aQEGyWHcsWDcgDittgVJq+eE+iJaWLimOTHYcNlm7hWLniDsbmLUB6KIWk2y1o\n5QVjC5ewYM/9ufHCs/EFrFlxGzvtuoThEUGiUzKj8V5Slp4qyD77IKrHKRGms8gBtoX6MfSpb/36\nuBGCzEjqqWL2UMqjDzxs4xcLuPOW69BOkCUyliE0PPrwp7Dssl+QJpo0UZRlRZFX5FVAyqhT7Rlo\nZWydqm+bYlBbNv3auGewY4rb5NFGwsJZTeYM1+POqzGEcDnX/uS/uPniH/KkN/4LtbFdEBKGGyAU\n+MqyeP/HsfL6P+BQOB+oG0UtFYQQm8ihL4KldbSaeqRj2vOxtNMemoPyohACFwRGJiSJJtUK7yEv\nLffet4Yffe6jPP7lb8GbJs7BVAk5I7QnJ7l1zTruvG+c1VMdJvICpaIB7UB9TwQIQqG1nB6j3lyc\n5C161ZWUOBfoFOV0hlXZOP1VlDbSgMqCds/SygvuvvNO6rPmsb7bYaqTs6rVY6LbY82UZa+nvILb\nL7uAUK6idd9t7Lx4KYmKtkupUgzVNPV6grUV1joyPdCs0JEaNhDgCVuGEP5wIQYXTb2WMFSvxSEO\n4OT3/it7HXQ4AHsd/ASOeekb+eFZ7+X7X/hXWpMtlNYMpzXm7boXzlbcdtN1eOconEcbRb1mIPg4\nrRoEeVlR2s3bkX44seFkmBBxzHY6UGtFI1Eg4gj5fStu5pyPvZvLf/Rtjn3LR2mO7UBWg9Em1Gvg\ngImyoLloKffctozx8XGKssQKSR6g3c3jAkjcGhsZWUaPdExr2oTIExf9EWfnIy22mxeEYDFSMFQz\nCClp5wXf/cwH2eNxR5HOfTR5q3+sHrhshKI1zjff9kLOPvM9YAPtCmxlyYvIdJFSYIym1vdd7Bbl\ntFP45sDMiTp9EabCWXqlQ0uoJZpmmkAIdEvHyrtW0Jgzj04ZaUohwJr1kPdg9rzZPPa453L+J97C\nPcuu4Xff/yrDaZ3ZzUbkI/Y5xkopqj6LIpL8H4T+tBUMNvw5bMheAU+rV9LJc/LK0ykrur2KF739\nIyhtePab3sMRxz2Xt/7bt3HO8um3voSrf/kzyrwAIVh66NH88TfnY4FZIzWaWayzVj42oKoQsxYp\nN29H+uHEgwmfaymx3lGUjuFaynBm+PAbX0Z3ahII2LLgl59/Px7QPo6md3oxoDe0IUnqzF24hBuv\nuZKi8oxP9ZgYb+NC9LCwLk6IJlri2B6RK9efjERMK7mVNvKP8yrO0yllsD5Qufj73/3sB9x/9508\n+mkvRzgoCmj3IC/gj9/6KBAoex1uuOyXfP5DbyMUPe6dyimdQ6q44ArRH8f28fqniY4CWpth97fF\nm3pKCRppMq2vW5aeqiwoqkDNKBq1aCwqgmftqrsxjVm4fpffhUhzMwZGhhJWXHM5ZbcNwP0rbubL\np7+Bwll86ehUFkVg2AiyxCD6wWNA/N6ap/I2xYbsFQBC9BArKk9pK3pdS5ZpxoaaDI3Nprt+HCEt\n9foIT3nNW3nWm9/HNb/4AV/+4Cmsvec2DnziM7nxkgvpdnr0egVTuaVyFt3Xy7ADAaM+NldH+uHE\nhsLngwVbCIEWklRLssQwq5GwYvlNG71v3Ypb+PXnT2fFFT9D23FqBqQjei8KmLfnY7j5D7/j3jXr\nmZjs0ioczjmUiBZODtBbgbzr5kWIzKcQ8AS6ZUWvLJFAWZa0eiWT3Zx7717JT796Fk856W10fULl\nPFOrb+fmX3yfq755OutuuXSjo970xyvoBkFRxvu3ndtpwamyb147uK83l3nAFtWyGBiZmr6qknWO\n0tpozCRjZrGuW9AuLFZJJtesYmSH+dSNpigLuhVU7UnW3beMm+9exn133LzR8e+9fRm+9Jh6nEbL\nK4sWBiFC3ysvgIjTONJCmsw4aY//FTZkr1jnUEowVk8Zb3exNmBSweykDiJnbM48JsbvxzeGGKll\nzK5l+MVLeeFpZ3HNr37MOWe8kyUHH0WvPcXpLzqKHXZ5FF/875/T7lky48GVGBObXqGyfbGcza+S\n9bfGhp6OA2++yFc1mJqiW5aEAHvu82huuPoBfZUdd1vKgU96Grf+4Xf84QdfZvaCR7HogMPY/eAj\nmbPDfPZ87KGc8+FTuO7XP2X+bks55RP/iZCSTh5NFTLnqScKS7Qd2lrE/h8OGBV7SSEEbPAUZWzm\n2ehaQUDQLR2Jlvy/k1/ETdf+kaFZsylW38U1P/ov7r3lWkw2xNiu+zP/scfhy5yJlTdMH/9Rez+G\n7lTOaJaQW8+QchSVpZ4YSusZypKNSpebQ8Vwi0agwU0/aD6F4KmlmspahIOyrHB9EZwPvO4lTKy5\njwv+40Psf/QziyMjQwAAIABJREFUuH3ZDay5fRlFd4q5i/ZgwZKljO24C+Or7po+/qI99kanEhug\nDB4jJdooRIgXEgTNLEH2tyPpljsVf1Ns6NjtQ+S2IgSVF3GnIBStsqIoHPWR2eQTEyzYPSNLUqyT\nWJUQXI+Fhx3LnKWHcO77X9O3u4f7V67g5Oc+hf887yJMt4cSghETJ6YGItEhhI0y5q0RD+Xanfbd\nZLwP1I3m7B/+hBOe9VSWXX8tUghe/YHPUUtTjjzu71i3bj3XXXkpd153Ked84M00x+bQnZrAVXGs\n9O7l13HWqa/inz/3HYIA7wLS9N2/CXQLG3nOJrKAHmkYJGqFtZEhFHzs+RC7bNJIKi858fhnc9O1\nVwHQWr+WC7/zBY444TU87vhXYdO5lBV4C731qyna63B5m5323J9nv/l99HzAu1jSk0KQW4etuThS\nrzbeLW+OZv8WC8jehwe0j2Wf5wcYLekVEhEsnSrQyQs+8KaXc9fy6wBYd88dXPKDr7PvU09k8ROf\nz9i8XailkkZNcegzX8Jn/uHZCCHZZfe9eecnv8pQPekX6Q3oyDRwLjoEhH65YiAys61gI8fuEOjm\ncc5fiYCrPKsmWuR5wLmCobE5rFu7ip2sxZYWkyhSJZkMAlcF0iz5Ex2AVXevYLKT08wMo5lBSE0I\nnsQkMYNxnkSbLfTt/zZ4KNduETQT7S55UWF9IC8sZ3zpu0x1Cj7y1lez7JILOPSYv0MrjUo0ezz2\nEPY48DBaRcHdN93IBZ9+90afc89ty7DWMdmpoAFjJkGqyPBARP/DVl6QGYNW4hGVMQ8StdIKEikw\nSYaSksI5rHU46xiuZdx8/XUbva/odtjn8CeztmfplqAEJAba917P3k9/Obvu/wTqdUilZ4c5wxgj\n6RSWplKkzYxGajBSYUNAO49ScrOpGG6RZXe6g90/4QCdoqJXVCRSMVQzaCVp5QUSyYrlN270/rLb\nYb8jj2POTouoZ5JZQxnNNOP2637Pkv0P4V/O/g2nffrrKK2pbL9zrQXSgxKK0vcNPqViIOFntiGa\n0YaO3d4Hclv1p48kww2DQlGWPQoL2fAYrYn1ZCLuHvIqTo8J67n9kvP43vtORqe1jY4/b8EielVg\n9URO6QNaQrvPEZVi2wkam45WxwZT6Iv9O1pF1VcFFKSJ5O9OfD2/+O6Xoi2Ud3HkulZnqNZAS8XY\no/ZjZMeNVQh32nVP8srTznPGOz3auSMvy76QvaXq6yRHl7dtg1b410D2pW+zZOAAH2vxgzFq5x17\n7bvfRu/ZadHueKCuoG4glBAqz8RdN7L7PvuwwyzDSCIJUqGCQwqJDR7XZ2ukWpOlGiXi1ObmbPZv\nkSi0YY1TSkFiNFIE0n6HM4iAltG7TkrB4qX7bvT+2Qt3o5kJGinUDNHxN9HcfsWv2OeQJ2KlpCoD\nNRU5zd5W+CCRRpL0ubhaiP4kWwzOZhtqpGzYiKq8J1XRtqZnLSEI6g1Dkmi8gFmz55FPjhOUoVda\nptodLr/gXL727ldy9w1Xcfir389xb/23qB8MNMfmcNrnvkfei7KovbxCCYnqU4YGAu/bKoo+pS8z\nmtEsBQJF5cmtY8nS/dlxl0dxyfnnMt7t4a0gUYYsVSRpjbFhQ3P2DtRH5wIw51G785LTzyI4jxL9\ne98Hyio2ripro1uyFNNNxkeiK7VWUdDf+xDpaS4QfGzE+yD4zDe+T3NoBCEVteYw83bbnW7XgoRE\nxd3vxP0r0VmdbHgOeVkRpGaq02WqUzDRKzBIlJLUEtOfh4g0O6XUZm32b5GSxYY1zgGcF0gVRcMV\ngnW9ik5eMtWreMeZX+Yfnn0EZa9LUm+w49KDWTsVkAlMdaFR5ZTdNrdffyXPe+N7GK0lGC3J0gyp\n4wUZyiRjjZSRRoYSAqNlDCQy0pm2hYxuQwwaUalW+ETTLip8UCTas8NQnaooca2SK39xHncvv54i\nz9n1oMO57PtfIxse5ai/fztzFu+NqODKH3+DJY9/Bs3RBolS3L++xdyRBiarU4VAu1cw0kipnKWo\noJmauM3fxs4pDBxtBJWQgKdwgcQIJjugM8UJr/5Hzjr9FHZ8zOGkxjDe61G1SvLSs2LZray98xae\n+KYvsuyCf2fewoW4yjKVF1TeMl82KLzDVhVCGiQCraCsYv1+YFv0yMmPI1TfnVv3tUN8AOshLyND\npZVXLFy8O8848R+ozd2JM085kbElj2bBXodQqwWGGrBy5fXssHhfUiMIIuBDyVBtCG0UzcSQKEHw\nUYddTvtmbv4BsS2SIQ9qnBtCyQAhTut5F6icw0iJJOrWJlmNkz/6VU447VMs//UPcW6KykZ+Ya+E\n266+jPmL92K02UQrwdzhGnOGE+bUE+Y0DCO1lLqJwtWi7yqcJapfzth2suNNYZREK0W3tEhfkZfx\nBrZO8Y2PvpO7ll2D946br/gVv/zqWRzx4tdx/Kn/ym777IsMoFLHiisvYvEhT2HOzktYfeet5MGD\nUnjrSYIgL6PTb1lFK/VtdWs93fcoLZPtLmtaHe6b6jHZrRAaMq1Z+ugD2GnRYm7+3QUUuWW8nbO+\n7Vk9Adec/x0eddjzqQ0n7PzYo7j1yl/jTRxMklLjpcB5omBObukUZRy48QElHhC+2lxDCjMFcecF\nWkY3lcwoMqXxwcWJ3sLSak0hTErbGp70qrdz6Tc/TdVZS1HF6cc1t1/PvMX7MpTVqStFQNHIDCJI\nhAJpNIo+97nPppB9e6/N+l0366f1sWmNs6wsvu9b552jnfeoKUEjS2hkis7UBEW3Q210FvVZ81j0\nmCO47vxzCB5GhmDWsOSe63/PQU84jiRL8VWfKmMduYXRRspwljDSyBipp2TG9B1CwjYxBPI/YSC6\nr4XAeknlPcP1hLFhw/Jrrtzk1YK9H/N4tJFoHV1Y7rnhWurDw+y652LmPmoJq1fcgsTTy3Nya8lS\nSS2NjcA00SglsP3Bm21paz3oe0gEpQ20S0flBImCPK+w/YWulTuedMJJXPKDb9Etc5SAnoU1d9xG\n+97lLDrkOJSBBbs/mt74GjqrVkWnmkyjEBTWkiWxtBaHnwJaEDm429gC91ehb20lBZSVZ32vx/p2\nRTsvcXhaU1OsywPr2j2Gd96LxUc8g59/8WN0S0fpAmtvv4E5u+5LuyzIS89ImjEyVEdrQeVisPci\n9Ml0kPSNCzZ3bNjsAXngHGutp9MrmOgWVM5RM5qa0VTesbpT0a0cPsQO5/Kbb2SHRYvp2ihTuPSY\nF3HrpRfSWr8WKUFUltuv+T2HPPFYhlKDNoqyf/OODUUN4Cg8HutBWWrIEjXtWLutYnCuIeojDKeS\nhbMazG0kjNTr7POYQzZ6/a77HURmYgNUeBitZ9x++YUsPeIY8IGR0dlYW1FMjkdnjcqzqlPSzsu+\nB2JA94WJBi7Og79jQ83rrTGwDPoeCNAqMJxpGqmkZgxaSpyzlJVjYqrNrIVLmT1/EXdc8SvSVOEt\n3PHbb7Pw8cczNJxSM1CvKXZ/3FHc+odfExAYpdBGYW2gV3oSpWhkGfU+F3ZgaxZ1rLfde3ZTPHDv\nxB1DZT3dqqLbsxRFyfpuybqpkl6njcxqNFJDXsDOB5+AD4Lrf3Y2q+5YBUIwa4cdqBnN7KGMWqIo\niwolBcOJnBarr2lDZvS0UcXmxmYNyIMsw/koL0i/liuEpFtV9KxDIKiZKBCd20DpLHcuX8YOCxdT\nNxJbOurDs9j1sOO46effotWBG6+6nHmP2h2fNqhcYLhZY7SRMLtRI1WS0gcaaSzWD2hM24ojyENh\nw2k9rSV1kxC0IdEaJSR5WfKmD36Kxx75FGr1Jkprnn3SWyidpWsdhXW0pya564Yr2ePgJ6GNYmSo\nwYLdljK16i4atQwhFZ1+QO5VNop6VzEwdQuLcw5r/Z9oXm+N5YxpZUIERhtqaUozS2lmhgVzGtRr\nNTyeWprhcBz2nJdz+XnfxOY5nftvZ+re5ez1hKdGq/nIaGPXAw/nut9egJSeVEfhoqG6IdFxfDoz\n0YreaB1ZBv3FbhvOITbCphOnpXWMd3qsmewy3u0x3rOsHm9T5QVlr0ut3sSFaNytteKgF5zKbb/9\nMZd/+V3krfX85My3061ykJp6vQZCUDOa0gvKEGhkGVJAKy+2WOKwWQPyIMvw/fFERBwo6FWWblkx\n1etx/2Q31un6QaPX89y3Yjk7L9mHkeYYRkd2xT7HPJ9VN1xGd/xu7rz6dzzqgMNwpSVNNamRNBNN\ns5ZSTzSur3WzYUDYVkTVHwqbuvRmiaKmAhPdgtXdHCkF9Zrmdad/jA9+55ccetzx/PK/v0a7rEiV\nITjHTZf9goX7HsTI8GhsxAbJgiVRIKeqKqoQsNbStbEx6rxjsluwvt2jU1TTvmfTnGi2XqbAoO+h\nJSgR/j975x1uV1Xm/89qe+/TbkkntFATehcZBywwWAcRHccGOqNjb9jFXrD3UVEEex0b2AYRHUFA\nBARBKQKBBAjpyS2n7LLK7491zs29CNN+mtwb530engfIPfvc7LPOu9/yLdG13Ci0gERplgxnLBlu\nsXAkZdeRFsv2P4iRXfbghl/9jD9e8g2Wn3gazVpKLYPgoKpgj30PJu+2GbtvNUEGjJEMZQlZYqIe\nct+aPng/tWTamYSv/qsYnOEQoli8RDKRl2ya7FH0HEYDKNqdNibLGG3UaWSGVhOyDOoLFmBqTYrJ\nLRACm1bdygXvfQ1llZP1ryu1gmDRQsTOsI/c2FGFw/atkMOAzhv6GrqOblnSLi2TecmWdqy2tJAE\naylKz2RZcc/K29htr31xvqBwAQugmux3wmn88pOvYdVvf8mtV16CEhIfPEOZYV6zhhQBqSQ1LWJV\nPpUYdh5R9QeLwb2GvmiSkEhtSIxkJNFRrMWGeCDxHProp3Ljr35K6IwTEFQebrvyYo5+1ClIFUXT\ndSLZbZ8VrL3rVpxQiOCpApRFwUSvZLxX0SstciCQE4jMJzcz+c7F7mSw9zBKoZTGuxAF5Y1GCmjV\nEhaPZrTqKVlN00gzHnbas7n2O59hzR9+zb2/vYwsAy1jHTJ/SDM61ODgh57IDZdfQt6zJFLgrGPD\neI8tkzm9oiD4KJrTLaKLzl/TQm9whp33iBCiLo11kS0pYbIX6eYTY1tIaw26VQHBYRQkGjIZaG9a\nM+OaG+9eSW4FncIyf7iGsBZlUlIjSbSmtA4pwg4rHLZrRho4x7rg8SFglCIvHO1ewWS3oihKSgtj\n3ZwNEzkT3Zyy3WHT2ntoLdqVybzCOfAlpAmsu/nKKTGhDatu49NnPY+8U/bFh6Cd2+i3pXW8wdDf\nnu485IUHi+lIFuc9RkvqqcYYjRNgrUVLaBpDEIrW8Aj7H3cil17wNcZ6Pe656y4mx7ayePlBQKCV\nGcrcsnDPfbh35R/JjCJVCiUkWkjaeUVeRPqpUtugWUJEYZjpMRf1pgfYbqMlzdTQqhkyJUgTRb2m\naSSK0XqG9gEcaCO59OufIfS/0Jvvvo0Lz34pSRKoS6jXa9STOg991GO57lcX0ysq1k/02NKtgIAS\ngbyIRpsAmVbUUrPdVMdmQwzOcKT/BzpFNB0tQyCvPGOTOZWzdPOSrN5EC0mnWyCBVuq59psfRicz\nBREWL9uPkVpC2rfgClIxpLZxIqY7teyIwmG7JuSBc6wabEeIs2RbWqrKoaTGe8fGiZKN4x0muhW3\n3XYL85bsRhViQpUB2hVsWbOOzXffPuP69668lQBsnegx3snRyjOUJWi1jQILczMh/E9jBpKlf6iM\nkozUE+bVM0abNTKt6FnLlvE2vbLkkL97Mrdd9Qs2rN3CyqsuYdkxJ9K1Dhs8nggzag4voMh7rL57\nNWPtHkorvIx6IbkLSMBaR/Ahoi368v87g970gLnXqBnmDzXYdf4Qey0YYelIk8rDRCdHKInWEik0\n61fdNuP1m9es4otnPpNLvvhBbviPn7B241rqS/Zm68b1vOKUY3nz857GWF71iTUSqWWs1iSIaUli\nLo58/jcxdYa9Jy8tRsUiTvhAaS3jRclEu0CUHerNFo5AM1XUheMnH38LeMeT3vU1hFQIpdl1v4M5\n/R2fZt5wi7pWNFPNcE0jtKZbOZx3NIxB9u/1jsgT25UYMuUcS1S8iX9hgUD03RkCpQdUbA173nPf\nyttYvGw/tDEQoNu5m1t++E3uvOE3ZEPzyMc3T11/t71XkDUTnIe2dSxKGmRaY/vax9b7KFjiYzu0\ns5IXYKYWw6DNzbRGIGhLh8TjgsBWUb+iajtMa5S9jjmRn3/k5RTtMUZ33ZuyPJ2a8kgj8VLFJUvw\nfPTFp7Hn/gfzjs99E2cdwUa7IyGjpGmCxjuHEFDP0mndSdQD2Bnu+2DplGrNglaNTb5H7lzfiFOy\n2z4HsPqPN079/IJlKzj5BW9g9R+u5YYrL+VnX/5XCB7bFxtadeuNvPl5T+Xcb/wAJSxKSZQQKDdz\nkbc9VMe2dwwQQT5sI8AMznBRBgoXKf2JUfhCUBQOBSTGUOY90kYLnGdi6ya+9+E3sf9RD+Okp7+Y\nzd2oUP+iT13AcLOFUAIFWGdp9ypG6xlDdd3304xFopwmJvWX1q64f2x3pl60Wo8DdO8DtcSSp9F6\nvltFIZDMaGqJxuO5+Jvn0p7YytrVK1mwx97c+dsrWXHC4zntTZ8lSz1fes3pIASLly3n5R/8PMYY\nRpopRkiCd9GsEAEqgu4TINFqqsqQcuclhQzYegPlMiGgJjUj3nAfisL2sM4z0qgz0ckpOwUbV95E\n0R4DYOuaO/nuO1/Icac9h0QKhK+4/Htfpuh2ALjr1ht414uewUe/9B1SLXECuqWlnkblPuehliQ7\nDEL0lwzvA3lZ0S0tgYDWiqFGig+etQiKyvHP7z2Xj7zoNMY3rGX+nst5/Ks/xEg9oXXCY1hwyGMQ\nVFx41pNnXPfOW29iS7egltSorKWkj1Ge1lE456OnHDOT11yN6e4sUsZkWDmP6TfwHkEjUYx1XPzO\nAkoFrHN0exWbtmxCmZSVt/yOf//02Tz01NM5+MTHU7gSX/bQScK8VgMlDUaDq6BR14w2a6RaYENc\npoo+dt4ohWDHFA7bPSELRN90M1A5S1VFS5bKQwie0nsKa1FK8NFXncHkWKyAN66+nfb4Fk569bkk\njRbOwH23XcmyQ47mca94N8NZSlaLJqYL6ik+BJzvs8a8o6YNiRYzWHk7W5XxYDG9Wg5ApjTDTU07\nT9gqekgfGK6n9PKCsbWrZry2vWENN//qYpI0IUlSxjeunfHnd/3xJpxzJEmNRMSxiHMBqz01pWmk\nO2cyrpyncgHrt8kACAGFC2RGYpRA5J5HnP5yfnPh1zn+Re+hsLClU9JIJI2ap3CG1vzFTEy7p7vv\ns4LJToduPcF5R5Y0qJtkCnrs+q4ZiZZ/krzm6n2+PyJosHgfjBl98JEUIiNxpldGh+5GltKtLJd8\n43OMb1zLrVdfygnPfQt7H3Y07U7FxrzCtcfJ6k2C9YhaYLSWkmUJjbpBKoESkqE0JmClJJkx1NId\np0q8Xd95Gw7Z07OOXl5SuBBnRcLhnKcobeywleKum2+c8fp8chxvWpQl4OHe23/PXgcexmgto1FP\nolMvIZofqvihKiUp+waJjWSbJORfwxx5egyqZWs9becwQrFkuEYIjns39Wh6T62Ws3iv/Vl7xzZ1\nvXl7LuchZ7yV0Xp8uI2tv5f104wA9lp+INCfaaZJfOgpTdZX8ZuLs+L/KgZeb4W1eO8ARaA/qw8R\nUpmmCQ0bmDdvEb3JrWQG8hIKC13rmZ/CltW3UOVdFu6xDxvvuZPRRUt53ce+TG6hchXDjTrDjYRU\nK6x1WA8hOIzSKLVtpjxIXnO123sgbZvBWKZyHiUkhbPI/gNfyzhOwHnOe9MLp4qE4B03XvxNWrsf\nDRKEhzDRJm0MUYlA4kGnmiwzLB1qMFpPyGoGo2MarBm9w4Wxtuu3ZXCQA3EsgZB451BK0coSalkU\npSltQIfA/F12nfH60d32jR9KClkNNt5xM3secBTNumYoTZg/lNJKNJkGEEilyMsqbsdVhMTB3F4s\n/f9G2ReaT43GKM2ioQaLhlOGahrlBU9+44dZtGx/AEZ335+TXvahmIkVVA72OOYkskYLqTTaGN72\nyS+TpZpGYmikCikVRWUBQap0XzRy54mBhneU3YxGp+3C4lycPTbThHnNGq1U0StKhkfn0ZvYSlWC\nK6EqIR+Htes3ctn57+URz34lj3/tx3n4s17Gkr2XU5YVmZYYqWnVMupGUzqH1opaqpEy6oZP7+7m\nIoxwejyQts30gsl5j3cukmpEVIdUUuGF4J7bZ0rzjt97B2jwrt+x5JMk9QZS6QggcFA3EmMEboCs\nICBFZJnu6JywfRPyNNPCKRcGISmLqNdbWY8R4IKl1ysYWbSUoQVLABheuh/HPPdDICPkrWy3GVt/\nH3vst4LRWo0Fww0aicYLQWk9qVHUEt13CdYkfbPKncnI9H8T0bhRolRkSRol8RLy0rNgfosF9SGe\n9Y5Pscv+h3D4455Osw7NJhijkQpWX/0zTn3xm/nsxdez4vCHcPlFF2BtoPIRWSGIam+JkqTJ3Ldy\nun9Etbf47zGReCSevIxwtSzTLGhl1OopUivqjSFskeNthZBQS0GonMvOezf7P+KJ1PY6Buth70OP\nZvVN19OuHEFJcluRaDGl7jZo56MTy0ydkLne7U1HBMHMgkkJQV5Fbek0S6KkrPPUtUQpSGv1Gddq\nzN8lOqHL6LfpizbNoWFq0lCvpTSyuMArqjgKUULEJawxO0S74v6xgx4HEbZSOke7WzBZWsbykvFe\nQekDZQV33nMva+64hSe+8VPsftRJLDrwOIKIgnCFh8333MySvVewaHiIeSMNmvWoKTDa0NRqCbVU\nR9qwiMnHh5ikdxYj0/9u3F9HQhL6Bz9Kj9ZSgw6QKMXCVp2R4TpGanY/+ChW9W1xhmoJEs/k2tX0\nJraw/PBj8AhOfe7L+fbnP42rCvLc4WysjKWWFDa27rZydPOSiW5JNy+xdm7DtXyIhgfOBZwPeC9I\ntI6SYkQSg/UBE6LeBVJQHxohpc1QHYIM3Pi9TzCyyx4c+PDT8BV02iCa80iyGu11qxGVx7uI7x6Y\nyA6ovGrqfeY+jHAQ0/W7718wRYF6CSHOziWCynpsCPz+msupN4dYsvcKpNI0F+1O0ZlgfM1dBBE7\num6nTa0xhMkShuqGoSylniXMbyb9BCxpGkMjM7MiJ2zXT9Eo2WfoReZRN68Y6xb0Chv/uwpMdAva\nnR6/ueTH7HfU3yLTlOXHn8Ldv/kxRTfq7VYd2LjyD+xzyFF4At4FMiVoZJoFzSZD9RStIlts0DI7\nP7cP7f8mpmsBDGjjQsg+VEuAVATncEoxPJyhpYEQzQH2PPAINq38HR6YKEo2THpuvfIi9jvuJLou\nUBQlu+69nKV7Led73/gqJR6hVCT+WEeqJdYF2pXF9uGFhXVs7Rb08mrOLlSlYEpPQiuBliIa83qP\nEgFvA51eSc/DvOEG84ca1IdH6Y1tRhjJbT//Dt2tazn5n19Bo6GYPwStERipZex32LHccv3VbO0W\njBc5a7ZMsrnTI68imqNbxPum+64ZO1O390DuLBAfgIlWkRFaFhR9p3pfFnzj42fzhOe/jue86xye\n868XcMpZ53DYqc/n2q++g2JiA1JCZ3KSpNboy3dKWnVNM9EYpUh1X3LTu1mTG7ZvQtaK4APOOioX\nSJQkSQ3WBzZP5AhvkUi0Mtx0xcUceMLJdHvRIaQ+f1e23Ho5tTSSQ9bdcRPLVhyKJeC8Y8NkTiev\nqJzFVpa8il/4Mm5CSPXcP7T/03ig7bUxMpq9SkHNKJJE00oUznp6VU5pLZrAon32oeyMs2XtJibb\nkHcq7rzmUvY6+iTyvMe6rZNsGu9w6j+9mAu/dh7jWyfoFQ7nLL3+YrZyFiVii9ktK0oXCMHTq6o5\nyzabaq+JtOnUqP52XqO0pvSBVmoYqSUkWlJLNY3hUTZt2czd113F7b/6Icee8SYKp6kqj5DQSAwh\nCPY+5Ghuv/43KBmQXlBZS7fwdEpL5T2eQK+sCAGyxOz03d50tcLMaLRS9ApLbj1fOeejHHjksTz0\n+EewaHiI4WYGwL4PfTj7HH8KV3/x7ejQhrJNrdkE5ymqEm/jw6y0furaIcwe1cftS50eWPxoSaIk\ntcxQ15KRukEJgUCSZIa1q26lLHL22P9Q0gSMgP3+9oncffWFJCogZY/xtatp7ron1kbZx4DEWs9Y\nt6JbeRLd1x2QIMXOZdH0343pehaDEP2ZWWoMrSwBqRjONBaJLz1GSJQxUEmW7HcYa2+/nlYKEyt/\nzcjSvWgsXIIXAiEDQmjm7bE/yw44jO9968tsaXeZKGLiVVLiEVgf/RIhwoqElBRu7uolD9pr1ZcB\nEEKQKIXWEuscgoA2qj+uUFQeNtx1O78892x+cf7ZnPC8s9DpAnILmREYKSlsBTj2WH44d95yPUJA\nq26opQlGeIL3FGXJeK+kU5ZU/cXszhaD8VqviHToiV5BaS2doiIvK3pV5BWsuuUmLrvoB5z4jJcy\n0e5ROkvTGFoZpBIOPfFJ7HbQEVz1pbNZ9dvLufLCr/H1j5yFCoIqWGyI5CXfT8RKzp7CYLvX6bLP\niAmEqLiGwLrIoKt8oJcXXPnTCznyhMeQGc38VoIVsNuBx2CLNmP33sLYfbeycM99MVkN7yGvPFpr\nKiGR3hGcR4SYkIyUSPGnsJq/hniw7fVgXtctCwgBIyXzh1KCFDgRUAQaacqyQ45g4q4badRU1EV+\n2MkEB1u7ga2TOZsnx1m3ZYxjHvd0fvDV81mzeSs9GyisZd1Eh15Z0c0j+WQ6HVXLmXrJcy2kFGSJ\nIdEq4oH72ihIiTaasW5JUXkqW/HhM59NZ2IrhIgU+N2F5zPUhAHUdbLnKXLoFSVJs86CJbux4a7b\nyIxGBHBb3WhNAAAgAElEQVQI2qWjdER7MynJraeo3JSDyVzXmoaZ0rwuRNp9t3IEBN5DLy8Zm8zZ\nONHl4+98A6c+75XoLGHrZJeJiQ7dylNPovpeMxOc/KyXMbFpHROb1mHLghuv+Dnnvud1dHqe8U5O\naR1lXjCZW3bYKu0BYrvhkKcL008WJUpAQEJwTHYseVnS7jmCK7j+sot5zts+Qa8sKcoS5cFLyYq/\nPYXbLruAkSW7s9vyQ6jrDOehV3nSvIeSGW0jacpoWFg3Gq3lnD2k/78xYOhB2IZqCXF0JIiKV3go\nvaAuJFmaIqWj8IGGgF0PPIqrL/gS69fcy6a7V3LcP7+FvITSga0sUsFI3TJ/z33Z68Aj+e6Xzuf0\nF7yCMFxDBqi1MtpWYKTrV5PxIVk3BucDZg43LQOyDX36f+UcZWXJi4qydAQJEsmaO26d8br1K2/h\noo+dSWN0IcMLljA0fxEji5aQLtkVm+7G+NZNvPulp/PdQ4/gnK9fgBIlWWKQiUJJgxRxL2Kdi8iK\nvrbFXCSJTKdLO+eQMsonhBAonaPISyZdrJjH84q3vuqFXHXpL0izGkce/1g2tCfp+gpXWaSE4AOF\nAx0gZIGi153xfn+8/hqSJPp3Fs4zr5GiRLyXs0VGYbs8Gu4vlp4IiXUCHxwhCIQWDNczGq2EW667\nmnlLdqU1fxGdvKCw0GxAYmCXI05izR9+wx8u/ha3X3sF4CiqiuArSicwiNg2ilh1d8sqGkT+FUkW\nTo8H215DdOpuJHEGqgX0KsdoI0EID1WgtCXNofkktSY3XvQddjvs4fSKhMkcgoXKRkxtu+cZm+xw\n/FP/mV9e+A16nXHyytKpHLkNpDqKw7R7BdY5Mq2iywtzf8kqpSBNNMO1FCMVZVkhfKBmIrTTE6aI\nM4NYsGxfHvYPL+Dg405k3oJFtDev4+bLfsqPP/s+PvjcJzC5dTMheG6+4be8+JlPolvGTkKoaFgr\npcQohQ3b6MZzUWt6RkXsPd3KRZOD0mF9IC/j+ekWlp71vOUVL+Cyi39CWeRMjm/lc+97HZPdHENM\nsA6NR9IwkGYRGqi1mfGey484Fuejq32c7yekJkrRzpZ7tl0q5BnLJSFo1hJEr0BJTVuVDGWajpXU\nXeA3v/gxx/7d3yNNSt0LEAVVFZAKLj/vzVGfAhhbdzfnv+VFPP/sz+IrjQweJcASZ3mV85TOkWi1\n0wsJ/WcxYOhNj8r2RX+ShPFeQZYo0szgujlSaFq1iqI0jA7VKPI2K3/zU1qLl3GghCSBLAFnoWYg\nSEDC6KLdWH7U33DmM09hcnwLBxx8KN/90UVUVmCkppEkZImK4wsk9XR2wIz+HCEkNFJDakxc+ElJ\nVVgyrXnLuf/GG5/5BO5bdTu77ncQjzvz/RgDw/XhfpfSRivJaKPFW592QmQ09OO2m2+kVdeMNpI4\np1bRdFMI8M5HNtoD7AjmQkfo+qL71kezCtNXZOxVlizR9IqKsiyQSlHmluuv+fWM19/+u2s4pnTo\nyuEDZFIwUTjSALVM8Zvvfp7Fe+5DWmuw+ubfceBRx/Lasz9Br6rQKsO5gA+BpN9FtnuxE9Fqx0rz\nbpeEPJ0aOVD70sagRbRN6eU5k5Xn/a99IVdf9nO2bNqIbgyxbvUq1q9ZzeYN99HeuJb25vUzrrvx\n7pWYNMOKgAxQec9wEl2qe6XFaEnS+OsQEvqfhHXRzDG2uwIvQBCYyB1SedIsQ3YKvvq2l5NPjAMw\nuX4VP37rkxhavCvGpASVUq+npGmNJKuRZjX+eO2VcV4K/P66a3nqKY/lG9//d4QM9GyFMZJUR1si\nred2dTw9fIgz8aRPhBFYcIJJLajGc17x/s/x1mc/ln9+5yfp9CoEHucrqrJkLLdx8ey2IKVgep12\n4MGH0cwMhQ04X5IoOeWIbGQk9Ux3Y4G5QxIZ3LNBoaakjP/PBTq9ig2TXQiSVDtSLTjsmOO44pJ/\nn3q9VBLKLoWsR6p5cODBSbj7xiu5+apf8NL3n8/IvMVYV7HLglGCDhgvGcoktUThfKDwNr6/AuUU\nom9ysaPGPtslIQ+WS9tuvMfI2CYrEfGrZ7/6X7j6sp8DcPuN17LunrtY/tBHsXC3Zex95MNoLVzC\nxZ/7AJtWbdNRWLr3ClQfQ7hgpE6SaOoqQoGMjPrJMHeqhu0RU1AiEcdHUXNCooCRTCNUwr2bOmRK\nse6umXq+wXse9oxXEUJB0SnQosKVOWVRgC3oTo7N+Pmbb7wRFzxaRhC+kgOLnO33990uEQKdoiT0\nHVLa3eh8s3Frl83jPeqtFkJF7vnC0SGCF2zt5mRpnfkip6wqvvvRt/HQx5zGHb+7mnX33MX+Bx/B\nB774HSYLRyuJI7jJvEQLQSMzZGmC1g+8I9jekpH/m5ACSh+mNDmkFEgXDQ26eYUGuq6i9HG+9Zr3\n/CvX/OpgpNbsf+gxyKzJjz/2Zv72+W9Hp0N4G8DA5Lp7uPgLH+epr3sPCxcsQWlJojQaT0p0dTFJ\nghAB7x0BqGUpWius90gHiVE7rIDbLgl5+nJJSoEOAislAcFQPQVpueHqK2e8piwKTn7mi+jkBbmL\nwiqPfe2HuegDZ7Jx9e0s3e8gXvzB8xlt1HDe0q18ZIylCgXIWoLRqj8ukXOiatge4bxHKxnF4/tb\n+5oSJEoyb6hGO4/6yArBkr2Ws+b2P0y9dmS3fUkX7Y0IMKxhKIVuv6Qz3Q1c/m/nEty2lnvFwYcC\ncQGYE2UNtQp/gvyYyxHVyGJ3VrlAI1GUpWJ8a4m1jjSVJIlh/qJdyMfX0RpZQTvvkEmBl9AtHb/+\n9rkEIXjM6S9h43GP4iffOJc3fuLL9Do5qQTdSHE+kGhFqiPmOfTP86DVn2ta00pKBA7vPd5DYSvy\nMi5/HYJaamhXnqKsKCvP6tV3Ums0eduXfsSWdoGtKn7+zc/x80+8geP/5V340fmIosvPP/dejvz7\n05m/bDlZXTNST0m0RiJIEsVwI0NpSfABLSVCKLJET2kgV86TJnqHFXDb71EaAmXlKEqLAGqJZigz\nSBEXcYcf+7AZP+5txda198QBvNJkWjCkJU99zXtpjsznjHd+kkxJyl5OovoiRYnAoNBaEYitcfTS\nm/sLpD9X+BDxwFPLvgBpmpAmCqMESqtIK23WeOn7zmP3/Q9GKo1Jayw/4XGkKi5YpYDxHqTA/FTw\ng0+8k8c/9zXsuf/BAOx3wMGc928XomXsWEKAbl7SKy2lC3MaojU9KuvwIaKHyqLEugB4UqMZHmow\nf3iIhtHMW7QLG9asYfPEOOsnJ+lUkUa+6uqfcd+tv+Opr3wXnQp6VRVhdUaBlnRLR6dbUFOS1GiE\niFjubWO4B2a4zfaIf0cd1Qfz2F1IKckrz2SfkeiCZ6xTsqVbcOM1V7H8iIdEdyHnkFJx3FOfx+5H\nPpJffOr1XPzBl/Ht1/8jeWeCg094DLYoI7chMdSzhOG6ZjTTDNUSaklCLTUoJdEyOtxMnUWxY8c+\nf/Es5X2gqKLK2wCi40OcYwohiXWz5+yPnsPDTnosjaFhjjzhZE570Rv4yrvPZHz1XdRrKc20zlCr\njnUe5yxDWYMsNZgsZThLGWkkzKvVSRIJSsbtfggosXNQS/9cMRgfTX2RdWTtzWvVaGQJo5liqJaw\nqKlZOq/Baz/8Jd7+zV/yhFe8kz/85GtIXTHc1DTrMaHftzXwvc98gEV77c/Rj3oir//E1zjhcafx\nsJOfEMWG+ogKEAgpcN71Ke07xtX3zxkD5bdIwIkCNQATPYsXgsRIlIFO6WnMW8B9992DFJLRtI4Q\ncO8tv+VX3/kC//jqs5HaUBVdqsoipYrzYalINJQuYIzGOo/vu6XPdYU3iCMzLQW1VKGUAhFV1+pS\nULiAAYQCW1XccM1V7LnicDZMdpjo5XQKi3SWQ0/6B5z3TKy9C0KgNzHGBR96LZiU0jqMByM9RieY\nJGqLSBH6bNFAYjQ+QFFZrPNoIXZoAfcXf9eB5CZ9qTtEZMmULqpjuQB5FXBIXvWej3POD37Ni9/2\nEf72safxj698O9/+2JtYdd1VJFpSVylZ3eCtBe+QzrNwJKNRS1AIUrON46+ERBCFX/4vGW+LB1LW\nklLSSBNqaawctFKkaUKWJqhE0u7mjOx5AKO77sk9V11Cqg2ThWcih1W//hFja+/mkCe+gHsmt7Jp\nbIIjjv87fvXTH1KFQFE6nHN9HVuB86KPFJg7EK0Hi4Hym/M+KrPpiEtOlaRuJMFBJhSLRjMWL9mV\niU0bGG01Wbp4HhObN3DBp97NqS97C815S/BC0cga1NM+Rbgs2Drew4V4pq135FWF9Q6BmDPLu/8q\nPILUmD6V36B1lGwtvWO8sEy0cwob90pLDziSygZK55nIC9ZPOjZv2kgxtnHGNTeuuh0jHO28oGOj\nMXKrpmgmBuEDeWGR/RGQlFHjQoo4Sku02qEF3F8+IfclN6djJaUUlDaQV5aiqBDek+m4WgoiVtS9\nXs6yg47iaa86mx9+7v3cePnPEEbSSJp4Z9l90TALRlo0tKGeKLyMwuhaKhp9i6ZESVwIc7oK+3PH\nn2CThaCRGIwUKBE98YbqhtFaxnDdkGhNYqIh5HGnPodrf/R1No9tZstWWHf7Ldxx2Tf5m386Cy9T\nxicCm/IO+xz6EDZvXM9dK1dSWEenclEcp6qwYRurLPTZlHM1ppTfPBitcSF2A616OsUQTYxkvFNQ\nn7+EzpaNDGcJea/LhR97M8efega7Lz8ckaQsbtYZGUqnJCClUCwcTqmlhgB0exYtJYk2WB/lAuba\nGO6BWIWSQFFFWrT1EbqaW4+tPMJ5AoIt6+5FCEFz3pIoTVpEhMaqa3/Of3z8FaStkRnvs2DPfbEl\nuNLSTA0No9B9Kc8+rIN6mkx1i6lRNLOUZrrj7cZ2yCfqfYRdDZKzlpKuDaSJpFFL0QI0AqUEu+x3\nEE9700f5j2+eyxU//CatWoZzNg7fU+gWFZvbPZpakaWSLInym0opEqPnfBX2l4gZc0cl8cTWbV6z\nTiszJEIyr2aoGc1IltBIUjKtWLDHXuyy4nBu/OkF2N44N1/wAY57xsupzd+l72YB4xMW6yzHPOJk\nvv/tf+OuTRNM5iV5WdKrQPYlKgNQWjenSTsD5TcjBSFEzYmyz6BLU00z06RGowLsvtvutLduoHKO\nL773Dex1wGEcddJpKKWY16yBUbgKHHEJnSSK+Y2MVmKY38iop5GmbXR/Qd3XApkrlOnp5DCIn/1E\nr6R0vk8zt0x0CyZ7FUpJmplGJ9FLcOUfrmXPg47AujirL9pj/Pzcs7nlF9/n4S98N4c++ukkjSGk\n0iza+0CeetYnaDUydJbQ7uaYRKMFmEQilKCWKNIkzpArH6UEtJI73C0EtgPKwihJ6XxkZw02mdZR\nMxoPU+aQ1nlEiNWxlDA8XKPlowbqXvus4MXvOY/z3/UyKCbwzvGm5zyR4x/5aJ5/5muQKOqppp07\nagkoLWkm24gHs/2w7ugYQOGcjw+vvHKIEEAoZCJI04RmZRFKctypz+Jrb/4XwkVfpz4ynwOPfRhF\nabEhGshWATaMd9jz8BP44Wffy98/5yW0OyXOBhYOxQdk5T0Jcx8TrqSkqCJ0ShAFrFoyBRmLCasV\n3crSbiQs22cv7r3zdl55ykNJa3Ve9anv06gphNEI5wgyIa0pVAgoKRiuJWSJplHT1LOUsowzz1Ym\nkX0JVcXcoUwPyGFRBdD3oaiur4sOlS0pKoHE08xS8qoklRKtArf89jfsc/DRZEZy3RW/4ldf/zT7\nHXsixz/79XgMt13ydY5+0r9w0N88kiytEUIBQpIhMcYwWk/xIupIp0ohdeycIbJXrXPoPvFmR8df\n/DcwOrYLDEYH/ZlllhgyrTFKYF2glmrqiWKknrJkXpOhZsZQPWW0WaORJMxbuoSXvPc8rrjoBwCs\nXbWSf/vCp/nKpz/KguEaqdEQ3NQcSMqoYbGzzNr+HPFALeNAEc77QOU9WkqamcF5h8KhpWJ+q8bC\necMsbDa59IsfJfQ7ju7YZr73nlfiLIyNw7pJSAQk2lBfuhdFWbHylt/TK6PGw3i3x+aJXnS4rmwU\nG3dzp8q7f8TRQtRFFoLoJ2g0qYw6KspoKgfzmilf+9jZ2KrEViWdiTG+f847GR1pseeCUZYuGGbB\nUMZQlkTBLSkZbRjmNWtoJcmLCknfLV0KemWFIDCXKNODczY9MReVp7CuPzqQNBKNMYZuUbB5MmfD\nZI9Op+K2G69hn+UH8L1PvYtrvvcFHvncszj21OdgEgOh4r4/3sii/Y5AEEWbmknMHfNGG6RCEqSg\nnkSWo+mTknT/Qab7O5XZsvj/iydkKQWpUVPD8kQraibOeLWWtJIUreNMMzWSRc2Eha0UIyLeco/F\nI7RqilaWsXTpQhqtoRnXv+I/LmHQaRgTzR9l/4Ba5/4P8taPBxKrr5zvi7oMHHcVqUlQWuKlIlGa\nvCjxvv9FMpr77vzjjOuuv/OPrL7jTrSBVgJpphnr5qRJysHHncTlP/0xG8YL7hvvsmpzh02dnMp6\n8tLRKSsq58jLivFeyXg3pyzdA/7+szb6Hm+p0TTSlJpRSBVRJEZBw8Sz+Lv74ezv/P1vUQI6VYWU\nUEs1rUwz0khJjEIERdKffUZma9QdAfA8CGV6Fj/PBvPafk1GNy/Jq5LSBaSKokKTecGWyS5rx3M2\njvXQSvL25/49E1s385Ezn43JMs5492dYduCBOAmNRFJtvIPhRUtZuGgEo6GZZQw3GqSJJkGwaDjD\nDzDcRhHCNsx2zZg+5X32wAW3S6a6P1ZygEsNIcKimommWc8YqtXi4daa4UbCUCNhONMsHh1ifl0z\nXK9x/KNOnnHtv3nkSbSLiN2sJYpaapACrPOz6sm3o+OBxOqFoE/VjZZA8UsdMbS1VNO1Fu8CQsZD\nrINnt30PmHHd5ryFXPWFt3Ht194PnfXYEGiXBbiCw/720Vz/q59SFDmbtrbptHNCkBRVxdZOzlin\nx6Z2wWRe4kO0RJos5pbN05TEaQiUNgpbaSn7SVkxMlRnKEk4+rjjZ7yu6PX4+ifew4ZVK3FCgvM0\nainNJHpAZglUle3LpW4bvQUfyLT6E+vY2d4JCgRl5ciLik5eUlQWpTVaCvKywnrPeKeiU8aK2Ut4\n5dMex+b10VHae8fq3/+WVnOYRi2lKuLyb+1N17H3oUexuNViqNkgU4KFow3m1SLELUsNQkCqoxGy\nkQotxZR06oA9PFtih/wm0zf91kW311aaUMs0SWIYbqQsbKRoIdBCMdwwLBht0sg0zz/z9Tz7RS9n\nn+UrOP0FL+dFr3hddOa1DhtUn6Ir+yLss+fJt6PjwcTqpYg2RIIQRcDLyJ5qpIp6mrJwuMZIPWOo\nbhDC8KqPfJE99j8EhGDeLrvzoo99i+d96Ess3nNvvv/+M/nl+R9h69r15BUML11KktX5w43X4YOg\n3sowEtZ1LRsmu2zpFPh+F9MrLN3KMt4t2DAxyUSnoCjtrB9jPBCM0PZHP0ZBaSMa4oOfPJdHPubx\ntIZHOP6kx/CNn13B0l2W8IFXP4/3vPwMrrn0ZxRVyb9f+F2u+fUVfPrDH6AaeB/23ayzREf4qIiy\nAA9kCjobw/c1jgfmup5A5eOsXElFaT2T3RKvoAJyG4uDtXffNeM6m9fdy4WfeR9333IzMg1c+vn3\ncdVPvsW6lX+k1WrSMgnaGBYM1Vg02mK0lZJKEdEVBIxW1FND1s8Rqp+HZlOOEP8TGuvRRx8drr32\n2j/rL1BZR2mjOhsiVmoTvYJeUeFdwAaHs4HSewiRZx58QClBiFkGrSVpYqhpST1LEAHS/s2fTTd7\nR0Zl3Qz3Yuh/kftz5NI5XAjkRYnzUJSOjrVsnsxZs7VNnpdsnuxRVh6jJJd85wts3bSRY5/+QupS\nYxLN2nVr+f0lF3DTpT9m32NO4JFPeS43Xf4TJjdt4MkveSMLh+rssWgE6x2udCgt2XfxKMZIOkWF\nrxxJoqglhlYtRQkx1WrO5s/R+xD97kJ0oZ6yqiodLniMjGalmyZ7dHoWLwPNNJJIbFXxkx9cyPe/\n8UXuufMOOu3Jqeu+9MxX8453vitCOfrechD9ozIT8bo+xCp9RyqU/Vcx/ewVVRxJjXd6tPMKoxUe\nz6r1E0il8N4xnpeMT5a85JTjyDvtqesML1rKYY98Ar+/7CImN2/AlvnUnx3wkEdwxhvew2iryS6j\ndZqpoa4FzXrGaDNjtJ5NMVR3xH0SQvw2hHD0f/VzO/yRqmTcGlsXl36ldVG8XGvqmcGFaFbaSpIo\nTiMkor8lTVPDoqEG8xp1RuopWimqKrY8mfk/Qsj0eDCrdaNV3wBSoIVESonWChfibLlmJAZBpqPN\nluvjh5cdeBRrbrsR4TyTZY4KMH/BfI56/LN4whs/Q5ImnP+GZzO+YS3X/eJHnHXacZz17FNYu7lD\nu1NGdS4buG/rJGPtAltGM1QRIQvxdyRatc/mZRVs25NkiaKeJTRSHXUSZCwMhBDkpSUEQS2NRI9e\n6cgSw4KRFqc+5Smc8/ULGJ0/f8Z1L/npRRECp+JnVFk35U6itZwzlOnp3dlgxBOEwPooyrR1soyM\nUQHd0lOUsPqOm9EmYWTRUgBGFu/Kcz7wJY553NN52ts/g7hfN3DXTdchpWF+K6NyAWc9zZphQTOL\netVmm+rjbI4dnpCnDrOO3mKV86RK0qrFBFwzisxokB4PKOlJVIS11RJNEHHG1pflJTOKVpbuVPKO\nf474z6zWB4upWqoZqqU0UxMNO0tHqhW1TKNkZD02ailZolm6zwrGNqwlFG3yMjDWa9PuFSBglyWj\nnPjMl/BP7/4cN131S0KIX4KNa1bz+jMex8bJLr2OI6kreoVjrNujXTpscEgddwg+RBZn6WKlOdtR\nGNMfeAMpyQG+lRD6eGNDI0n7pqbQywuKokIJwfxmjSed9uQZ13z0Yx6LtXYKJjYYxc0GvOz/JKZb\niSkpo4FBXqKIVmvWOaxQtCtHZSuKquQrH38Px516Bs86+3MktTrPePPHwVkqWyKFZ4+DjpzxHgcc\n+RB2GamTKMnCRsLC4ZThRoN6lk75aQ4Wn7PZ9mq7WTj9ZyGloJ4lFM6TmTi28CGgpGKkruhaR01K\naiZErCyBRi2JTC/vMUn8AtQTQz01/5eMHyQeSKweHkQeVQnqiaa0nkZiyJSi4xxpH6LolWCXfQ/i\nvlv/wLKjjsPbEFt0D5XwSBFIGkOUvc6M99pw790YZUjqGoUBU6GFoihLCDpWSlr1q8HIttR6Gypk\ntmJtB5ZOA9JLpiUmCGyI4jXNmoEAUjkyZ8hUzpaepXIFI42M4XrKm9/+TlKj+cmPf8TJj3k8b3jL\n2xByoP8SCN7jnJxCW8yVuL/aY2ktUdtE9e2nHEVeMNnpsXk855KLLqTT7nD4Ix+LDYKhBUtYv+5e\nRvfYl7JyNBPF4Sc8hvtuvQEfohPIa9/7KeYPpSghqdcNgsg8nT7uGixfB04rsxHDPSsSMvQPtIys\nMREllzAqwq0SBU7E5YbqJ+sQIpHEh7jgaCR6h9Me52o8kDxqIiVlv6Ju1Q228iwdbtAuKpzzDBnD\noUc9hPvu+AP7HPNwCtHDW8gLcCVUyRiXfvqdmKxGlfem3mto3gKMAhEEha3QWmEU1NI6Mnh6hY2J\nJwRS3W/9GVDvw6w2Gpj+wDMq3tPorh33JIj4kAs+YHQNk1iGMkOaJEgRkELylre9g7e87R1U1vVH\nEbLv+UZfoH5uGPZO98uTApSIxsbWRlZeomX0yuvkbOnlbJqs2Li5TfAFP//qOTz2hW/EOkXpK+rz\nFjG5aT3z99iXREHlHddc9B2e+LxXcdyj/x4dPEVV0MslrXqCkZJWqjFGR6idj1V4NFkJ6P59BWbd\nuZpVpeQAIZElcSFnlKSwnlRHYRBCxC7XswSBQEvNvEYUF5KzgGUzV+P+4wwlBSP1jFaWUk8N9cTg\ngUaiSExCr4iuvfseegyrb7qO4CryItAro1df3h3npx9+IyNL9+AZ7/8Ww4t2BWB4/mJsWXL1FVew\ntdPDh0CmJZkxCBFoNhKkhK6NbsNZoqOEap9UNNuxttNjcE+VFGRak5n4j1KSJNEYJRmtZww369Qz\nQ2IM9SyO4YbqKfU0mWKOJVrRzAxZauKCb5bHA9Gk2324WzsvKR30SstEUbK5XbBmS4+N67fQK3N+\n+NXzWLr8EHbd92C6NqesHK35i9myYT1l3PszsfZutq67l6Mf+TgSKZEiRUpBog2ZkuSlwyhDIzHY\n/mgCYn4ZzK6njylm07maNRUyxAVTtHbxQJwtj4oUJQWl8xgjp/STlQDTb0dm21NuLsb9xxlKSjLr\nCN7TSg1lWdEOgTQJNOs1VGrZY58VTGzZwPjkGGm9RWI8m9Zv4povvYU9Dz+O45/8T1Te8eyzz+Pb\n7z2TJz7vTGTwfPF9byB920eY/zfHUdcarx0IhVGRDCGJGifee0JQOO8ibrXv5DzbUQX3D6PifQ0h\n4J3HWR9b6yyZapunJDX7mUGraJQ61+yZvI/wyYHQkvVxMRtNSy2ZiQ+jDZM9Nm3tUQWHzUs2lSUb\n71vDtZd8n6e//RwmyoJOAb0KVHMxYxvWUNnIxLvpFz/gmEc/GWNiFVw3kmaW0sgiAy+RgtwWCFED\nEbWlB/dRSdHHvG/LFbPpvs6qsvL+rD4tJalWgyEGjSSZct6tpUlc9k0jOsyWp9zOEIMREjIKh4+0\nMkYaCZlStLKE0SyjNdRk9/0P5b5bbsBWnmLrWn593uvZ/YgTOejkMxBS0Ew0Wa3GXgccym03XsfS\nfQ/hKa94K59/96u567Zb2drNmexYUi1xHqz1fa81QV55OkUVXYgrR145CufJS0tRza5lzP3jT5zW\ndez+GiahmSU0MxOhm9MwxNMTw4OhYmYr1himOUn3TRDyyjKRl3SKCucdroo6Ke3S0ssrvHdUHkon\nqETI7yYAACAASURBVKmUy7/1WQ79u9OgNszEJBQF4MC0FjO+cT3Bg8snuf23l3PMSaegiR1Is9lg\nuJ6giDnDaEVVBjplFTVypj3U4v2LeyqYffd1dvwW02LA6jNKgogas3EwH7GyWkpaqYm8fsHUAZ5N\nT7mdIbwPOCA1mjRRcVYvoohTlmryvAIB+x3+EK787uf58qv/gR++/yUc9uincMwTnkKagSEu4iqb\ns+vyQ7nrpuvo2cCKIx/KGWe+lXe96l+49eab2VwWbJ3osnGiTeXCtPleQIhAr6gAT6I1pg95tN5T\n2dlLs74/M1IpSWIUiYmO24lWOBf6uxI5pe8wSAz/KSpmlsbg76ykwLmYfKOWcxxRdMqKyW5Bt1fS\nLS25gC3jPSyO237/G9bfvZJDT3oSXsD4ZNxHBAdDCxaTj21ACrjxFz/igONOJG2MEJSIOiLORV11\n65Ay6q0jI8Y+BD/DMiyqS27TTZ9t93XWJeRBTD/QkRad9DGd/dFGfw40qCxm01NuZ4iB+DpE5EWm\nJY1EkghBJgVDzZSaFNxx/a+Z3LQOm/dwVcm9N/8OI2BhI6Vei3q+JigWLVvBmjtuIi/a5EVgryMf\nxukvO4sPvvb53HPnXWwtHJ3CE4SPVZaPDE4lJUFALUlQKlJdQ3+kEReRszMejBk5cGBPE00zM2gp\nIzmq+lMp0rlmzzTQqfA+0M5LukVOO68Y73TpFNHduawsk0VFt6zYMtZjopvT7pb89Isf49gnPZdE\naxSQpNBoRLuwkfmL6I6tx5UFv7/0Jzzk5CfRqEtqtah/HqRgopeDFFSVw0sZjUtV9My7f6chhCBL\nzKy8r7Nqhjw9Bgd3ELLPPx9URcm0JZ5g7pg7zpUYiK+XfQ1aIWKX4oWkdJZmoummhrtvv3nG6zbc\nfgP1miZLUxKlyJIUbwPzR4Zpji5g7erbWbJsBd0iMHLA0Zz8zBfz9peczts/9RVWrNiXjWM9Fg4L\nKhsIgLORlVkpNaW/MRc+5ulQwkE8YBcnRBQTErMPgjWIP0FMPMj83jtPz1rKyjPWK2j3HL2iR6Yl\nXQtp35AV6+nmlrJwfOas53PP7Tdh0hrD+x1LrxrM02OFbDQ4XUfplJsv+3cW7rE3uy7bF+8i4qrV\nisqEzgqMFkijqCcKIyWFtTQTM6eMYGdtSTkdTD4IIeKmNDWKtA9zm41PuZ0hBl+KTGti4xHdqhtZ\nXKp18oLCeg495rgZrxtdtJShtIFEEpzDO0eSGpSWLDvgcNbcdivOQ9sF2p2cfR9yIqec8RLe/Yp/\n4o4776VjLXlp2doumexV2L5ca6+MwjTOhbjY7Svi9wobzVMLO6tA/v+dGfCDCT7NJjbZg6kE3v8+\nD36usp5eVYGLBC7nBd3KE4KnU1VMFpZSCpSQfPL1z+Ge234PwVPlHX707ufw+8sv59Zb76E76ch7\n0JuE0oGrCm74wXm0t2wkUZJFwxmNLMUYjQiC0aGEoVo0UhBB4PoaKULE+z1XOo1ZWyFPx8YOqocQ\nmBUi0n8NMbj/SglaaUqHOPcTXtBKDQSBkBVnfegc3vWqF3HL9Vez6z7746zl/Dc/lyc891Xsd8iR\nBA9eONaNtVm493LuvP4qjjr5SVQ9S6teI9GKhz76SXhb8I6XPJN3nfMVkv32wUhBEiQoFXHn+P7S\nNvbFMUEMhMaBEBA+InRmQ4U5nSjyYJXZ/btAmIm0mA3xQA8NiEw3KcVU1Wytj3N956hc4P+xd97R\ndpVl/v+8ZZfTbk0hpEMagQAKKCBgL4OigqOCowIWBBUHBREVCyo2iiIg2FARQQcRRxEdu4CCCCM1\nEAgpEELqbafs9pbfH/vkkjBB+c2gFO93rbuykpx1zj77nvPsZz/PtwilyNIU4y3OQCAhDjVaOpbd\ndRff/ebXWbnsjm1eKx0b4oFbf0dz/WrS5hDV/unUJs9mdM0d2CIDYGjt/Vx46rF8+uvfoxIHxAjq\n9QpCQJYbqtWwzDlE0BNHBIF8SrGvnrQF+bF8oCfw98PW519K0ZX7enIjiSiNbZSE1Oa89xNfJPEF\nyis6ueVPv72a//jix9h51z15+dHHE9f7kR6mzt+Na77/dVpJSqgEXgpyY9ncTNnjJa+h2e7w8Xcf\nzYXf/SH9k6eAA2UsZS45eK8pnCPWikgHFFiklCglu167vhuk+uT4Aj6aMnL8/x/rWOMJxPYuGtZ6\nOnnRZY4IrId2bhC+FH4oAWlhGUlMKfQRirbLue23v+ZHl17EquX38NxDXsvMeYt5YPnDI6/+WQvZ\n502nkiRgk5SsdT+tdatZf+dvt3n9NcvvwjlHRQmsgP44QKtSYVqvROWSTgjCsOsf/SS6wP0tPGkL\nMvztD/QE/r4ov4gSnKPoejTU44g0N+SFRSlPPQ4w1lB0BEpZBqOY/V90MM864IX88gff4Kz3vJF9\n/uW1LHnRy3HBAEIqRjaupdo7neF2h6k9Ei0dKqxy8OuOJPAFJ7z1CD7z1UsZGBjAEFC0LQLYoTdG\nqYhmZrBedENENZHYwlv2T7oO86/hqXAX+MiLhnOepCjKWXL3QphbW44dnMcLj7WON7zqYJbdeRuz\n5y/ief/yaq76j4sJwpgXHXoER33kbJwX7HnIG7ngxCPZuHo5k+Ys4oDjzqQoQHqwUcxg3wLiSohQ\nGm/N+DHNnr+YShTS6NoneAFKCSIVjJsvbdkxPdkucH8LT7j95gSevNgyFxQCcuMw1tLOCsYSQ1Hk\nGCRZljHcLuhkGVoHZM5hCwNSEArJHffcw2Xnfo51q+9jz0Pfxg2XfpGi06Z/1gKe/84zqVWhv6Jp\n1EIalRo9lYD/vOhc7vrvG/j4ed+h1tOgGmp64zIifqCngsLhhSiTsqWkEgbEoR5f7goYN5R5suOx\nLsyeKGz9GdjCkiid6h62KehkBXlRkNlysXfYy1/Cbf/95/HnqDZ6OerDZ7HDTrsQaEmjEpGkGSNJ\nzv2r7+c/Tj+e13/6EtoGkjEgAO2gvfFurrvoUyx51dt54E9XsWnVcmbMW8ynv/E9BmoxjTigN9YE\nXaN7qRWxklS73tFbqIRPBlrbY7XffFJ3yBN4YrEN9XDrYiFK8n9WZIAgiiRaV4hDCd3OdXO7YMNw\nE1Hp59ATPskdN/+Bn5//CWyRAzC0+m5+fc57OOAtp5J08xT7GxWaPT3s98o3kSYJx776QPIsZ+fF\nSzjn4isIraPPBSA13jjCSGGsY6iVMlCPiZQid7a7OLNPuuK2PTzZ7wIfOTr0nq7yrfx/1/WWKYMm\nBLmDu+64dZvnSDttdtxpMYmxjHY6JFlJqWylCd4blFY0U7AFIEFbaK27hT9cfAbPO/IE5u75LF76\n8kMIg4C5k8sLdCgFVa3oq1fxdM3vpSRWD5svPRXZVxMFeQKPiq3nh1tc4LYERRaFAS+JtCAIYoR3\ngMQ62x0dOASCMAxJjGfmwmfg7LZCjpG1K/jNeSeDdzhruukhDm8tplu4AZbfcQsnHvVazv7W5Qy1\nCvprEGtV2lpKCTisdWRAJdBoLZ+0FLKnIrZcNJzz2O7SznVTUVx3JOCFoMhLE6X5uyxh6a03b/UM\nnl/953fZ9bmvwAvwrkU1rNHMDK3MIroXJK2hUYX7b7+BP19+Loce/zF22mVPvJL0ViN6qzFxEFCL\nQuqxolENy85YSapBMH5X9FRzw9saEwV5Ao+KreeHWzolgaOiJD4KqQUepRWj7YRO4emrlMV6cyuD\n3KFDSW+kybOCTXj6Z85naPXd48/fN2shL3z3Weiw7I6MhRmDAbVqzBlHvghnivHH3rv0dlJncc2E\nWJeRRkE3hTlUEjwEWo6b20/4mzy+2DK6kFIinMPkhpYpJdGhLnm/rSJnqJnwuqOP5bMf/HfSpMO0\nuQt52dtO5qqLvsBtv/8v9j3iXQzOmo9sjZAY6HQsUioaMYQaVt98DTdf8TXecPIZLNh1CbHWhIEk\njCIakaQWB/THmkYtphoFRKGmGgbjniBP9Uvvk2d7MIEnHR7JpRUCAhkQB2UumVeKtDAIqYhDiVAC\n57sm6pFAOIdUkp56hUYc8oqTzmTSnEUgFTquMTh7CZkpi3GzXf6ZFgXNdpupc+Zvcyy9A5MYbhW0\nc8NYUrqGtdOi7NRLLypAkG1lPG6tJyuenEbkTxVsMXPvZMV4irtzHkPpHmS8Y6jVYdWmUYbG2qwZ\naXHl9y7mde/5IIv22p99X/VGokk78PzjPsNOBxzCry84jT9edgHDoy0KBwoHUmEFLLvuav74w4t4\n/QfOZOEee1KLIyZNaTB3aj+DjZCBeo3Bnoh6rUIl0uU4otssPF3Uuk/to5/A3x/ekxeWLDd456mE\nJbFeCkEkBbGWaAlBECCFJAwVjUpAPYqZ3FOltxqjJFSUoh5LXnnKmRz31R/zig99hQdv/S1DK/6b\nJIU0BzQ0E9jccex/3OdKA3OpmDZ3EdZarv/Vz5DSkRflgrH0PhIk1uK9JzMGQXmLvSXBOrdl4kbe\nLdQTRXn72F6KxtaiENcNol030mJjs0WSl+faecnmZsqGkYQN7ZR7717OPXfcyszF+zIwfTab1qyg\nnZZ3WTP3fCEv+8AFeGv5xeffyQM3/Y7rv/tZmhvWcOVHj+LWX17Ja045mx3n7ExvFNOoafqDiCiS\nxEFIvSIZrNWox5pGFJZ3SVvYNTw5lnf/V0yMLCawXYxv16UgUvrhDqQ7Coi0wmlBXpRsCuEsIErG\nQxCwsZ0RWU1/TTCWSAKl6Y2gYg1RVMFM8Tznze/jDxefxQHvOAcV9iMVZAUowLRHCOIqbzzjUqb2\n9rJh1d1c+rn3MzBpKgcc8Cycr5KbcqZd05LCGJTUqKDsMcoO2aGl6nZQYJxDGojC//3H/snOivjf\nYGsmxdYpGniP6J67rDCkRUk9MwYKUzBSZARaMJpaRjoZ7cRw7c+vZPFzXsxwkhEO7sjaO/7MLi+R\n2I7DWfCywS6vfDez97mba77y4XHBR2d4EwMz59E7OIUwiAgDQTWMiEOQTjGtVxPqAGtznC19bZ7I\n0NK/FyY65AlsF48m6/V4QqXLQgRoCQqP7BoBKSWREvriiDgs/x5VQvp6q8RxRF5YNrU7tDOYsWgP\nFh/4Uu748VkM9js0IBXUIhhbt5q+HWYjEYymLfpmzedf3noSF5z2Pm67czmb2ynGWkbaGaOtlOF2\nhvWOJCtHGUlhyhmzkOUttnVkxjKapP9rmfVjlRE/1fBov+vCOoqiHElsarZppgVpYRjtpHQyQzMt\n2NTOWD/aodkqzYRu/NVP2OP5r6RwUJ08l/X3r8AZR72i6Y3LsVeeQnXSIuxW3GKAkbWriCshtVBR\nGIdQEEpNEEkGGlXq1ZAwDLpRY+JpV4xhoiBP4FHw19zKwkBSCTXVSFONImpRQC3UxIHEdM2fapGm\np1JBiJKeNLmv3jUo8sQSGjGoUPCsV70Rbwru+c0PiEKIQkgtDK1ZTW3ybMYyyArHcKfNjrvvyzNf\nehjnfuQ93LViLZvHUqx3FNbghSQrHFlhSfOCLCtoJjntLGO4kzKWZnQKg7Ee6z22W1z/VjHd+lY+\nzYttRBJPRu+Jx4JHjieM9dv9XeeFZSTJyLvmUoU1rB9OyzsNIcA7hkZTJJ7hNOFPv/8lvVNnUJ00\nFe9hyqzptIY20GplpLkhMeWovxqDVtC3w6xtXnPaTgvpDSpUKhGhlkSqDCcovdEVlUDTW42pxUGX\n+fH0KsYwUZAn8CjYnrnTFtWTkqUNplaSSqSpRyFKSiIdEGlVGrxISazLfVt5ey/oq0X01OqEYUhP\nJWZKrU6sFC848v0su/bHbFyxlFCWooDm+tX0TJtdGhkl5dKvnWTsc/Ab2HH+Ys4/7SSWPbSJBzaM\nsnYsozCGsTTDeF8et4BWUjDWzhEerHF0Onlpep9mtNNySfXXPJUf2RFbzxMS//N4pSQ758lyQyst\nyow/KB31XEkbhNKTopPmjLYzRpKkvLgVDmsN1noCDQhBOzM0M0MnyylMQV44bvrFlcw/8KUMjRmG\nWlDkAbXBHVl3/wN0csBBrQJ9vaDjkn/cM3kHpNJMm7eYD3zxO1SqATY3VKKAOJAIVS6QrbelglFA\nqNTTNoxioiBPYLv4a25ljzRPD7SktxJRrwSESnW5qg7roB4qJldDpBcoqeivN6jpgEiG9NQqNOKY\nKTOm8ZKjTuD6S87AJk0IypFFffIs0k658FMCOgW02k0OOPydpFnGRWd/mqHc0GmnPDjcZt1YQtJN\nFkkLjzEFo52UVpKSZoagK/VNjaXTTR1J8q0WWI8oev/DZF4+TKXbgr+3NPfRxiRlWOhjL9Jbnse4\n0jAKUfpJW1u+n5FOyubRDg+NtNjUbDPSyRnuZKRFKeJQUjGWWQrvGOnkJHmBEwIvJUPthKG1K9jw\nwH3MWbIvQoKz0LHQu8Mchh9cSacDhSlHUoGClb/5HtWePo745Nd570U/57hPf50w1FS0Io4DpIRG\nFDKlr3Rw62QGvEcL2WVX/P3O+ROJiYI8ge3ibyVWPNI8XetSKaW1JAw0A7VoPDE6BYy3RFoQBoKe\napWpAw0GqgFSafoqMYv2PogFex/EDd8/D5E7RtbdT9+02QC02pD7cpmUUS7sXviOk7nnlhu56rJv\nlwKDVkaz2WHDSIehZsJQJyUxFuMFrbSgUxjaSU4rzUhzi1Tlks/hyHKz/aL3iFv5reN/nPPkhSHd\nqqA/Xp3s1tjefNd7T1qYxzTL3pq2lheGtLBdGbzDOkenKLCAFLIMHW12SDOPtQUmt6wdbbG5leC8\nozAFD6wfYX0zYcNYh5F2RruVcv4H3sGF7z8aqTSWAGtBRaWX8eRZc2htWgW2HFOkBlbctYyl1/2c\nFx75XiId0BtXqEUB3luqUcDUngrT+hpMH6jTV6mUYbGi9EMPtezOkJ+epevp+a4m8Ljg/zexYkvx\n8IiS3aAUPZWARqjor4XoKCDWmv5aQC1SOCcZ7KsxqbeHRq3Ky95wLCOb1nPFx4/GZAnXf/s0lIJK\nBLYD3kFuYKyAZl7l4ONP478u/Qa//dUvWDPcYfX6Ee5+cDO3rdrA0tWbWLO5TTPPGc0tzsNoVpBn\nBaOdnGanIO2yNJpZd8aZFSSZwVjXvSNw3Rj5sqgV1uFd+bN1krGQYpzv/FgXfo+1eG9vlu+69qN/\na5b9SNpa4f34e7POM9LO2DjaYaSV0M4yWmlOJdA4HMPtjGZuabdzHhrqsGqoyZqhDps7OVluuH/d\nGHetXsfp73kja++9s/Q7HtnM1V84CSXAOrAGJs2YS2fDKoIKBCFURMqfLzuLAw4/lkmTJlOtRNSr\nMdVYMVAJGeyJ6amFTG6ERGHZKQdK0Vctx2JP12XeFkzQ3ibwuGGL1Fp2BQO1WBNoQWId9VCzQ0+Z\nj7c5sXSyDKktodBkDnQoWZMmGONIxzYDpd/FL77wbvZ70wdBR1QIyQiRPiSMJZN6p/Pq95zG1z7x\nHrxz9E+byXvOvgxjLY04wEpB4TxKFdDjyFJL1FuhFmu8s6RGEhaGPDM4L8uK352NC0B4oHAUzqCE\nKvPbEF36n8d3PR62yMoBtCi/Un9NKfhoNLPtyby3VktuGaN0cjPOv93y+O253Fn3cPHt5DnGlNlz\n7TRHCEkrzfGU1LZ2krGpldOINIX3DLUyhPcMpSkjzRxrLaGCdlqwbu0m7rrlOpbddB0PLt82MWbT\n6nvKxWwCoYJ48myG1qwkCjz1WHLD977NrIW78YyDXkY9DJjcV3LVhYBpkxoM1EOUUFS0JMsNSjii\nIKS3GqH1079/nCjIE3jcIAXYbleY5Lb0sJaKKY0KqfEYY4nCgFrFM9rRdHKL8ZZKIWgVDrRmbN39\n2zxnc/0qrv3Gx3Emw5kcZ3KsKZBKoYOIIkvw3c5w+KEH+NJ7j+CYz1/McJZjRgRhL3glcM7RV1V0\n8rID1koRO4czllqo8b6kxTnvS0+EUpJWilNwOCmQolSG5dahESggdx4hLALxP2wzH80KtDAW41yZ\nDTi+JGW7xXuLRadzDuM84FFSILoz4KB7k7tFRbc1N3qcUdINHE1yRyDL4+mkCc3UYTFUipAkNxjn\nGWnnWO84+S2vY8XddzBjp4V86MuXcNtflnLrDb/jvltuYPODq5i6YHfm7PFsNq5bw9D99z38GVCa\nX3/lNPZ41THogWnIeLC8ADVHWLtqBStvuYG3f+4ipvXWqNdipvbXGKiUd0y9tQr9lQjry/GGdQIl\nPYHUT9uO+JGYKMgTeNwgKA3npSwdwXJrsA4qoUYqh5Wl8EMHHl8NkbKgMAodQzpSUAskU+cu4KGt\nuq7GjvN41tFfpFaH/gYYD8p5rCsQJueS9x++zTEMr3uAB+69gx0XLGE4SWlUYyIp2TjSQcsG1hu8\nswRaEQaKnopDKYktHJEqRzSdNEcKhcCiFMRBae0phABRppckOYTa4ynpX9Y66nFIKWspYbuFNOPh\nQgmQmXKxJrfK0VNCbFdwssVDpKTclYvFWOtuUko59thS8rWU5MaWVDEp6OQ5uXEk3QWmkOXFpJ0b\nOpktL0zCk7qckU5BOyvwQvCxY17P8jtLx7bVy27nnS/dm3r/JKYv3pvdDz6cKbOXUOgAaaF/wQH8\n5COvR8jyd3fwCadzy6/+k1984UQWHngwsw74V3p3nMPI/Uv58w+/xiHHfZi+3knEgaYnDumJVRm9\nFCrioJRDh1IQBg+XprLL/+fwJJkoyBN43ODxhLp0AFNSEgpNJSg7x9A4MmkIdNntqCRHCUGSFxQW\nFIIpjTrHf/4izj35aNavvJew1ovwUI06NGpVvIBIQVoIAhXS11djYNpMhh56YPwYqr39/OTLn6J/\n+lz2PfRIKsFiIhWQuow4lHiq5NYTK0fRTjBFpVxYCgFhSJoXjCY5cSDRQlGpKKzzZUSQsUSBxljf\nnePKrjF+SYmzzo+PF6x15MYRavk/1G9bN9JlF12Gg0bdOb21jqwoyiWpEl3BjSKQD5vEW1Omc7ez\nAiU8jpJ+V9GlQKedFeNZdqZwWO/xpuzC89yV4woHiXVUtSQzlk6Wk+eWlcu2HUM47zn6s99i9XCB\nz6HtQRoQGtbdcQNTFjyTl//7x0uDJwXPffUR7P+CV3D1xV/it194F3mnxW+/8RlqfQPM321vrMsI\nwyr1SKG8IAoEcajLOxUEWm1beJ9KoQP/Vzz9hzIT+IfB+TJFItCKSlS6cGklMdYTKEGkNZVIlzae\nArxzOCSxEkzuialXQ3bsb/Cmj36ZYy+8itd88lsMzprHTZd8ioY2RApqoaISlLe03jrefuZ30GEE\nQBBV2ONlr+XQj1zA1Hm78uOzTuGK8z/N+vUPoVGMdDIe3DDKWJozNNqhldpuUbOM5pbNrYSRTkan\n20E2s5wkKwt0O8lI8gJjDElRYJxjLMkY66RkRYFWW+hoFmPKzjjUpVIRtlW/aVVG01tbUtc6eVEu\nCb0gyw3tzJTZdKa0s2x1TZS2jIOyovz3dpqzcbTNxrGUZloeWysrGEszCuuItCAryucy1pLmOZ00\np7Cl7WVqLNI58szQNo4id6xZtRzxiPFApdHPpk5OrMFaaI3B8AgUKTxw6zXM2Ou5CF+6tYWhwiPo\nmzSFw95zWtmVJ20A2iNDXPyJdzPY06BRjZnUU2VqX42+Wkw9CokDTaQlj9hhPuVSP/4vmCjIE3jc\n8EgxiZRd8UioiMOgmzxi6WQl9UrIcnlTq0b01WJqlZCeWkB/T5VGHDNzoMFhx76PRm8fv77oLMAS\nhgGRkoSBAqXAFEipOPLMS3nViZ/l9v+6gnoo2PVFh/K6j36Far3B1085ml98/+s8tHYjG1pNxkYS\nmnmBySyZcQy3UjaMttg00uahkYQkL2glhnZqGGqXM+skt7SSnJG07Oi9LwUKeEhzh7Xd99vtcoV4\nuBhvwZZOLy9KRsdoJyXJCrzzBEqSdguwUgKPoF2Y7kVOYL2nnRWMtlPaWU47KxjpZGSFoZlkrB9t\ns7mZsbnZZqSVkBaGwnmshzBQeCdoJQXNwlNYT0WXFW40KVjbzmiOtrnx+t/zpVPewb++84NMnjEX\nEPTP2Jmo0ce13zyToY0pbQtxXIaW2nSMTSvvZPFez2ZyT53JjR76qzUUsHzpX7jyi6fS3Lhum3Ow\n5r67mDxYZ6AWofDU4pL22FeNiEJNoNXfTOt+OmNiZDGBxw1/LSNOSoGiywwQDh1IpBZ0UkMgJVFV\n0ZfmjCYw2BPjnSfJcrSKOeS4D/EfZ36Q6y+9gBceeSKVsEIlVLSSlGXLl9IYnMzgYB/9g5PYcaeF\n3Pun37D7QQeTV/s56Ihj2fmgf+FPP7yEr57yZp5x8BGs+PNv2bB6OTPm7cLpX72MSqDY3M6ZXIuI\novKWf/NYShRIImsRPkIrQS1SpElO4SxOa4JA4ZxDOEjwODxSCLQUCMpCujVlzVpXpms4X453Aj2e\nuAEgJRTGl52tKciMpbC27KyNJ1KCJM+xDlLjaWYpRe5pFhbhHaou8MbjlUNpjaCcL4+lBZ0sp5kV\nZQsmJUGoabdyXGEoMsOvfvBtrrnqMo784OeZMncx1f5p/OKSc3nRv3+OzUMZf7nyXK6/6APs9YZT\nYdJkKnV48MY/MnXBM4miKpHWZEXK3Tdfx59+chlpu8X+rziC1ugQ6+67a/wczF20K5MqEX1xgNKa\nnjjexuzpnz3ceKIgT+Bxw9/6MnkB9ThEdBkASkA9CsnyAusFQaBoOEdftYIznhFKaW8o4PATT+fS\nT5/IbVdfwkGvfTvtIscqWHP3HQzO2QWkJhKK/Q89mh+cfQo77ft8oqBKh5yoPpVnH34iIw8t5zfn\nfwiTdgC4/+7beP8bX8k7PnYOql7Fm356GhFY2NTskBSO3lpEfzXHK0UIBIEmVBCGIVOqEVLJrvTY\nU5US0aXa4UFZj+oSNowtFYS+S63LrEPJ0iRHI0iMJQSMsxSpZXMrR0tPbjzWGLyHRiUgzcswjmQV\n6QAAIABJREFU0XaW8uCmlNTmBEqjhCcvPD1VTSRVKeZwkBUFY0kGSKJQoZBkac7mxDCSZgwPN/nx\nVz/HhgdWcNQnLqRvcAc6WU5iC3JjCBT09Uc86/ATues3P+T6r53IXod/kMFZu7Di5t+z+HmHgEu5\n/meXc+PPvk/PwBT2O+QNzHvGgdTrNZ77ysM57+SjefC+u5m7cDFnfONyrCjDBOJIobbT+D7ZY63+\nnpgoyBN4XPFYvkxaiO6wzAOCKNQU1jFQjWhqSeEExnlipciVIHAeJ/p4/xkX8tkTjiKu97DkBa9G\nO8nmFUuZs+e+dDJDLRDMXrSYHeYs4I7f/RdLXnQInbR0GDNA35R5mCzd5ljW3b+Cs086ivbYCI2+\nAfomTaU+MIVq/yTq/YPsMH0WfQNTmDpjJpd85iRW3H0nCxbvzpkX/5BOUKBN2Q3XggCPHy++pUjG\n4fNyjgtgvCfJDVLKbiFSIATOlhS7ovAYaxnuGLwrGEkNG0cTrJRMqYfdRGdBM8kYbuc0s4ThpkXI\njEY1ou4yLF0utfAEqhyftBOHFIaxVOK8RVgYanXYsPZBvn/Ox2gMDPKvp5xFEMYMd1poJbvCjvLu\nxSnHGIKdDngNfdNmcdOln0IFIZ3hjdy4aQ03ft8yf499eNP7P83shbvSSTJ661UiHaBDyYfO+y5Z\nntNTr1CPFI1Io6SmEgV4/8/R+T5WTBTkCfzDoEQ5F90SCeV9qSILu8kPgZQkxlGPFJkNSbSgkxka\ndU1eOETfIO/61Pmc9b63oOM6C/d7AeuW38lzXv8OQq0xQLuT8syDX89V532CJc/7F7TWdDLIUvAB\nVPsG6QxvHD+mafN24V9POYsszRCmw+a1D7Jp43rSkY1sXPsAa5b+hbGhjWx8YCXOleq8u2//b058\n86F84Ts/pBpIrBc4Uf54u8VQyQOlEKM0zS870yQzSOERKLwosM4TaEFPJUJKhfS+XBxmhrXDCVKW\nDJR1IwlxYOmpSoY7OaOdFI9CyAIFNDspJhPoiqNfg6pEGA8mtTg87SRn/XCLKAioV2NW33Mn3/nc\nB1l80EtZ8pLXUwiBzwtyHNJrtFJYYxhNHGEAfTGMOeibsw9Ro5+xh1YBkI4NM23OAo758BnUGjGh\n83RqZfad9Z5QKox2aCWpaYFUmkBLdKCoBhoh/jnYE48VEwV5Av8wbPHH8N6D6yYv+bLDjLViNMnQ\nApSQ9FVKyYNzkCQ5YRBQryqm7TiTN596Jhd9/D386ec/IGmN8sfLv8rz3noK1VDTV6kybe4Cpsxd\nwJ2//zlLXvRKTOGQCpKxYWye0Td9LqMPlQKUl7/zYxgvCKIqlZ5ewp5J1GbnVHTIYKNCHEaMdFp8\n4eiXbPNelt1+Cz/96U951SteThhI0twwnBTUwpRKoFBKkXTFf5U4RDlPmhUU1pAawJe84uF2Sj0K\n0FKgpGa43WHjaPmjlCJQulzgtVJqYU4rUWwaS9CBItKSahgw0klx3iFQ1AvDiJPYPCXSkjzJaRnL\nyFibzDpQAf/9i5/ws299gf0Pfyfz9zmINLUkBWS5o6cChTYkXuCcJdCQF+XYpbcG1dgytm71Nudi\n44OrmNxXoR6FWGupyABjPM56dCCJDdhAMFCtUgslfbWYQCmc9wjxz7Gse6yYKMgT+MdBCOJAbyWA\nKBdohSkjmLRW1OKQsdTgjCUMFJO0oJ1qpHSgQvorgmTeIqbOnMt9t5fJxituvo68+Awvf9cHcdbi\nRMDeLz+cn573SfZ4wStwXf7yLT//Djvt9QL2OOxt4OCWH13I76+4mH2POI6BSkhhCtp5gfSQ2ZxQ\n9YD3FEVKrW+Q5ub1429lcNpMrvjKWfzmP77Jke86iWftt/+4Gk6jqASCHDCFRUjJpJ64lEs7SsvK\nAoIAjIPUODqZQ8iC4bGc0dTQsYLAOzpZjsVhvaBdWEbTApynyAvaWSlDKYwB7+iIcqmY55bCGay1\nWAStLMNYxxWfeS/rVy5DKsUrTjqbKXN3ZqxtEQo6GZgcxiiXi1iJs5Ysh1oMaQGZybn+22cQxtVx\nKhvAnIWLUUJiBSgtiQNNKi3Ke3QQILwlUJq+qkYFpTWrcR5lPVpNjCy2xkRBnsA/DFKUU+Mtce1Q\n0poCJcmMoxIorJZMasSMtCWhsxgn0YEHL8nzgjhUTBlssG7V8m2e+6G7bmTz2rUMLKghhKd3x3lM\nmrkTt/72ambtezDJxuVsXHYju51wIdJDGMMzDn4DV3zyWOY952DUrNlYUy4ew6B0lhtLWsShYvOD\n6yiyhCmz57FpzSq897zxk1+htxJx703XcOZHT2TG3J35t3e8j1nzFxEEjsIp8qygZS3KCTpZQTVQ\nGO9pNnM6rkAKRZJkhFox2kmIhaRjYdNIm7ww0C1ctjAEkcbZUnATxYrRZsJXTz2WdSuXMXXOfN7w\nkS+hCodROe2RYdY8uIKhtWsZ2biOsU3rWH3bDRRpAoAzhmsvPYdXnXwO1oIWEAfQyko3tiyD0Cuc\ntVhXFuhY51x9/sfoG5jE+y78EZd95kTW3Hc3s+bvwqcu/B7VqiKWEifKBPAwUKXCzjsCa6nXSmc/\nKUoVnjUGh/unobM9VohHmpD/Ney9997+pptu+jsezgSeztjaVGdrWlyg5LgIIne+7MyMIytyRpPS\n1Kak1JXshfXNNh/99+O44bc/H3/uvqkzyDpNJs3ciV0PeAnTFu/LyEOr+MVXT+eIT3yFq875KPOf\n/Xxm7PUyqjFkBpSEO3/9n9x/x8089+2foBJAMyu76VpcupPVwoArzz6VmYuWsP+r34iz8IMzT2HX\nA17Kgmc/n0alQlXDDb+4kl9d/k3m7foMXn3Uu5g8YycC5RnrWPrqAUppwDLazICSltZJCjrGIaUr\n6WfOUw1CCmsonAEZEnhHuzBlUGxUpbcekKWWM084gvWr7h1//1GlRrW3n7FN64nrPdQHp1KfNJW+\nwalUJ+3AdZeci3fbmvFP2XkJC/Z9HrOf8RxUXGdoFKQuO2WbbOKa80/k0E9+G5EM88vzP870BUt4\nxdEnEEYx2nt6+6oMViNmDFQxTpb2qlrSyQ1pUeYxBsKTe+jtyqOjoFQcKlUmgExqVP4xH74nGEKI\nm733e/+tx010yBP4h+Gv0eICXTIOAu8xVmJdjoxCgtDT6hTkxoG3KCWJheQDnz+Pz33g3dz+5+vZ\nefe9ecExH8bnGcv/8kdu/e1P+P1lF7LL/i+mf+p0vvuht5A0R8E5Fj/3YAJJ1wcZ5h9wMHdfdzXr\nlt3EzD32phaVkuA4EtSimGU3/IZOa4Tnv+YooiDACcnuzz2Yv/zup8x95nMYFdDyMO+Al7Jo/xfz\nl1//iM+ecCS77HMQzz3sSL73xY+xbuUyZi9YzIcvuBTnC8ZaBWiJ9BJvDMNZzljSQQvBT846mYdW\n3sOOOy3iyI+eh5GOTmuYdSuXM/bgCu6/Zyn333sn7ZHN25zbIkt55fGnkUZ9VOOIIIJQhoCn1S5Y\ndt3P2bDi7vHHT567gAUHHsIDt/yOP13xDabO352Zz3ges/bYBxVFFFqBs5iRh/j5lz7K4gNezPMO\nO4ow0NTiiIFaQC0MCEPVDZL11OIQYwyRUhjnS9l7GDAQKISSaK0IlAI8oZLl72Erx7oJTHTIE3gS\nYetEZ2cdmS3lvZ00J80N1nuMhaQoyBJDK89YN5KRFQWb2ylFYWhmKdJ5stFN3Pr7q7n+qu+Nu8EB\nTN1pES85/kxqdcmmpkM6eODOP3H7Vd/kxSeeR29DE2lBT61B3tzE1z7wFo768BcYnDWXJM0wSJqt\nUS75wFEc+pHzqfQMogXU44BAK3qqVUZHhrn+qu/xhx9fuk1XOn2nRbz1I2fR6iQ4oUtT+KKglRdo\nJ/nFl09lw6p7xh9f7emjWu9lbGgDO8yZz/T5uzJt7iLmzNuVS77wITasfPixlZ5+Dv3Y18htDLrs\ntJyASlDaYI6OwtVnHkNr80NM23kXDnv/GQx1Sl8Nn7VZdesfue/Pv2dozXLm7rkfD923lLH1DyKV\n5gVveifPe9nriasRtUijhGSwr0J/JSQMJVWl8ELQU4tpdwrSovQpkUrQU4mphAGZMUShKn0qvENL\n3V1+Pv2So7eHx9ohTxTkCTxh2LoAb+1wtgVZbjDOUVhPM80oRYCWzFiGWxkjzYyhJGVoLCXNLKl1\ndPIUvKAWaAg1px62X0l12AIheeNnv0ljYCpDTYNz5Rz791/5CHP3ejZ7vuDV5MbSUwm4+sufYmCH\n6bz4DcfSTDM6aUEcCEabnmsu/RJ9O0xn/gtfg6bMivMWpvTGCBRZmnL221++7WsD9f7BbrqIA196\nXnjv8c5hsmSbxwqpOP7MbzF753mkRTneaablBWjtqnu44jMn4p1lYMZcqoMz2Lz6LvZ63fH0TN8D\nB9Rq0BNRLkrbOQ8uvZll1/6Y15/8OVLjMEVBVngm91TIjcEYQ5a2uPS042lt3jB+HHMWLuG951xM\nbyWkHiiQkr5qSBxqpPAoGRJIQ1+tinWWdl76aGilqVfKnEVrHLk1gKQSlFJ6rUvGjWDbvcLTERMj\niwk8qfGYTNq7C6AwKHUkiTHkhaAWaYQXBELihaOwILWh4iFIHM5JGpUQrRVzFy1h5V23jr9urbeP\nyz/xbqYv3J1dn3cwO87fg8wI9nj127juwg+z017PoxAN1tz2OzatWckL3vI+jPHEWuFjQZbmZB6m\n7voClv7sy8x+zmHoSJQcPmBzq8P62/7EdVdeTBBF44s0gCk7LeLlJ55JYWCsWTIblIJatUzbvvIj\nbyJtDo8/fsedd2HOwsWknYzMW0IdIUkQStPetJ6Zi5/Bc446tTw5Hlbd8WduvPQL7LB4b3Z96VuY\n3NOHdJZapNFSMNpTx2Yp1UqVzmiLKKoQR47Jfb2EoWLtxmHW3P6nbYoxwJoVy5jSW0UDvbUYpQRV\npTDWUauH1OKAzCg6uaUn1sShxHhPpCUVXbJqdNfuNAq29Tb+Z3JyeyyYKMgTeEKwvay4RyZsbJ2W\nIZWkIgKcS7EWgkDRUwtJnSWKQhLryXPDcEuhpSQOFNU44PSvXMZHj3sDK+9Zyuz5u3DEqeexaXgj\nK2+8luu//zWsNSw+6GBm7P1CZuy+H7f+9DKWvOwI/nDZV3jFu06lEVcoxWQB1dCxeSzHGJi882Jc\nkTH0wH34GfNodRwjy//I7T+7lLBS4RmvPoZ5ez6DH59xMutW3gPes/+/nYhxpWNaOy9/FCWjo7Ph\nVhCS3hnzGV27AgHs9aojGWu1cba0xiy0wXhJVhQMb3iI3inTQEEooZ3B9F32YdJJ53PnTy/iN198\nFy868nh2edZBNGpVqoVjU7VO2mmjvaSiBdUoQAqJCgJW3XEzP/jqWXhnmTZ7Zx5a/bDp/ILFu9ET\nB0gvqEWS3Hg6WU6tEtOohNSjCI/HeYukFPl4PIFUpX9zUI5zrHM8svT+Mzm5PRZMFOQJPCHYEve0\nNR7ZLW1tVoT3FNYSqIBQC7Q1NB0MVGMK70hzy7AQGFdWvDILUKIbMV/81uVkHpy1bBjtgPMMvvRV\nHPjy13LnLX/k5l/+mJuuupSZu+7D3Tf8gruu+QnVnj5mLtgNKwQmyxFaIdEYD0ICQmKt4bovv5fa\npB0RMkDpgJ1f/FZm7/pMhBSMJnDIyZ+nL67yux9dzA2XX8BL3n0aIhQM9ELQgbQFWavNrZefw56v\nPZ5pO+/NWBvMxpv55VdPp2fwi0yetiOR1CTWoKQi0JrRDWuZNGtnGgF0HMS6u4wMazz7iONZu/QW\nfnvJuay46Rpe+ZYTqTR66BscpEg7SOWpVCpILxhdfz+Xf+FC1q5YxmFvO4GXvPLVaKE45e2vY9Wy\nO1m4eHcuuPSHZYqHllSjgDDwWGOpVTS1KCAOVDetRJeezKH6H+OnEo9uPjWBEhMFeQJPCLbufrfg\nkd3SNqwMX5rEh1qV3sJ4lLSISBIT0hNb6nFAM1bkFnoqGoVgczsjdWC9wVrJQL2Kc452YvFSsGjP\n/dh5173YtHkTl3zsuPEFYGd0mHPfcQi9U3bEUZrECylxlNFCY+vux+blOKK96UGi3qk857hziUOB\n744QigLSFDoiYf5zXs091/+OlX++lul7HISQ5TkII1j+y68zbZdnMnXe3ihd/nvfgr3Y/7C38JOz\nP8jhHzmP6uAgNS+Iw4ixTkZr83p2ffaBeAkuAxTIbrCokrDPAfuzyx5LuOHKizjvpDdx2LHvZ8ne\n+5OnHaQUVGzCzy79Ojf//ucc+Kp/490fP4OZUyeBsSAUF13+Yyrdc1261IHSgkYcUo0C8J7cWpSQ\nXZOk0sf4r82D/9md3B4LJgryBJ4Q/DWrzq2xxazIeYhgfAkYh5qpWtMpiq5FkSLUjkoUIHxZlDq5\noacSEgSKSqFoKgMFVCsxg72KsXZB4UOMienrrZM2R7d5bessr3znh0jSAikd7byglZSLuN+ce8o2\nj81G1/OHC45nxu77seMe+xH1zaWmBFEMcVSjp9Fin9e8i2u//Rl22OWZ6LhOoworlv2J4VW38aL3\nnYsXYCUM9JdRVTP2eQHDm9Zx5dmn8NoPnkV/rUG9FuOB0Y1rmTJ9DoGSuIrH2pIxUalqlFDUdUhl\noJfXHnMya198F98/5xPcecNvSNstPvSa/RFC8OJDj+AbP/oltd4BlPcEQUAcBwQaAqWpBJo4DvHW\nUFhHX72CEqVTn/CleZHg4UzAx9Lt/jM7uT0WTBTkCTwh+P/tlrZW+Y2zM/DjkUXWe6Sw1ONSKZYa\ng9aKOApIcou1lribvNFfjbDOEQYabx3Ge0zhmLtoV5bfccv4a86at5glu+5B7i1jzYSxNAOpKGzO\nbbPns2nlw7zenhkLWfzSt7Lxnj9ywzdPRyDYYbf9mPfM/Zm1YCHSS6bN34WZS57F7VddzIH/9m5c\nZ5Q7/vN8Dvy3k6lUqmgJ6PJ9KgdFBrOfewRjGzdw9ZdP53Unnc7wSJvC5jSHNtE3eSpCBIg8o2Ny\nQiGpRhFRGFKvROiuWdPcebvwmmPex9c/XV5EfHeW+8C9S+kfmIRWkkYcUI8jCmNIjaWdl5xvmedI\nKRFSoUQZr2SdQchyYedxZIUl0mVSzES3+3/DBO1tAk8JbGFl+K7B+xbrTt1NYFZCkBuD7QaBGuvR\nWtJJC4yztHJDlhuKwuG8Y7RjsN4gvKRdFDgv8MJx8pGvZdU9S5mzYDGnnn8pcaRIUsvajcOMphkI\n6GQpSe740edOYmjNcgZnzuP57zsTHAgP7TFPe9NKNtxzPWtv/yN5u8lOez6bRXsfyM677Mb5Jx1N\nVG+w+cHV1Hr7Ofbsy+nYBO80uTHkeTnKyHMoLExuwM/OPY1J02fwkjefwNimdVz8qffy/guvoJ1a\nqpFGa02aJBTO0ahGJMObWf6XP3DL9ddw7x1/YcbOi1ix9C/bcLJ1EHLljXfTF0cMNsrFXLOVIqQi\niiWxjlDCEQUBgRJdq1DX7YYFlUgTa10a8fP0p679XzDBQ57A0w7OedK8GC+6WxZH1royQVnJ8WL9\ncJKzRyuJ99DOc4wphRpZXjCaFuTOk6Y5uS/vuQtjKQqDEBLpPfVqyFBiWLNhlNFOm8JCYQ2xDGgW\nKXk3384aMLIsyKPNkgPcqEAgQlobH2LlrX/k3puuYWjdgzhryJLO+Puau3gP3vaJ8xnLM5TTJEWO\ncZZmx9BbUUzu7cPblC+fcgx7HvBiZsxbyLU/+i7Hf/oCWmlBJQoJteD2P9/AHTddy7Kbr6fTGmOP\nfQ9iybMPYMEez4KgytknHs39y24bf90Fuz+Tcy6+gihU9McRofQYL4kjSRQERFsSUSiN9BGCVlZQ\n0YpASyKtEaJ08AOIgomC/GiYKMgTeFoiK+z/uC0ujMU6Txzq8XFGYcpOONK6SxH2OAclIUuU1pTG\nMZpmbBxt00pyQGClIEkLhAeLQ4ky666dGBJjUEBiLZ12zsbRESpxlZ5qlXY7ZbTTxmLwDnrqdbyD\nVpEivaRRiRFC0B5azxnHHVYOXLfC9LnzqPROon9wMr2DU2j0D+LiHqbvOI3pM+dS6+lh3boNfO3D\nbyXPUlpjo8yat4j9XvYalv75Wu697WZ2mDmHPfc9iGce8FwWLNqNOArIjCO3jk5hsYXlzPceyep7\nlrLTot0489tXYJ1lSj0qw2OjGISnEYcY65BKdkM3y4BWrSVJmhPoboBtV9iB94RaTXTIfwUTwpAJ\nPC2xPXaGdb7s4Hh4aRRohTEOrQR54TDO4r0k1IJQa7SWgAFfFnLjoTBlIVdA5h29cTC+cAx6YhrO\ng/V08pyKVFhv0CpA4GjUYyq1EAVI6YmkZCx3BKkE79Fak+SGgUk7MHvhbqy++/bx45+7cDeO+/Dp\nrF37IBvWPsSmDetYu3IZY5s3cuPmjTSHNpImbeq9g3SaI+Td1JPV9yxl00MPctgxJ/HmEz9Ko2cA\nKaGvGjFQi/FSo4qMyCiwDlmJ+PC53yGUmt6eCIlDO4/1Ai8UjUoAgMejlOyOISSC8hwY40phh5A4\n79iSkWzdP08I6d8bEwV5Ak8pbI+dIQD5iOx470uvXSUlWpejgy2Pt94jnS8ToI3FGofGkxiHdI44\nCoiBipREsSbSZbp0x5SybSmi0odBl0vJsVaOB/rigJ5KQBRoCufRnYQkUGV+oIRKIMmt5X1nXsy5\npxzNqmVLmbNgFz554WU4YO7CxVSjAGcN64cSoqqm1SlwQLvZpjm8ntOP+ddt3meWJhzy2tfjjKNw\nliAM6K8G1OKIrChABiQqJ44ClACBBgTOWJwXTB2oEilFGIiSayxEWWCFxwDag1KyNNB3Di0lQggK\nY3HOIygVeRPLvMcHEwV5Ak8pbI+dEQca6/1457w1he7RFIGFsRSuvNUe8zlZUT6uGmgyD9VAlKoy\nVwpBnBOESlIPA7x3pCYg1IpWZqhHAVEUgnVYoL8eIn254YuEoZCCJMnQKqBIoRrC5y/6Ad5aNowV\neCGIlKA3ColCQWYCZJgijGeH/iqusGSVkGDHARbsujt33/bf4+dj/uLd6KvHmG40ViNQ1CohkxpV\nkiwlKRxKRggpaeeGkbEEIyD0Hh1H1EONEwIpNd47cufRUpamP7J0ZINyZq9leZ7BEwVqfDYfTAg7\nHjdMFOQJPOWwPS6r3EKFewSFrrDbVwTm1qJkWUzqlRDrPLaweAFaQiAFlTgiyzMiFaCEQAnfNWzX\n/L/27mc3rqSK4/j3nPpzb7tjTKwJ7GDFAonHYcsr8DjskNiwGokFvAkLJJasEWJAk7i7b1UdFud2\n23FiZhCE3LHPZ2nFiaVIP1dXnT+ld35wM/O3r48+qMfgKil3p4UiPhjoR7fX2C28PTS+OlSsd272\nlTGMd3cLKRlvvpe5norPesi+aSRhvNlPiCRurgqLAeuJ/le//R2//MXP+fOf/shPfvozfvPlHxBN\nMPn9eUqJWjIpKztmpjKQpOxqxsz4+9XM4bAgArupeOVKN+YspKQs67XErvjuu/MnkvMvNenD65DF\nKyuiseN/KwI5PAtPNRw81REIkFNCNbGr0IYxxoFjh5spkSQjGHdNuJ6FufpH/tOAOXm1QU2J16+8\nyuNuaVgf6JS5roVcky82bYNlGG/yzFdvF0R8DOWkwnHA968qglBlbck2mKryw7z3oDMjmfnkuz7o\nAr/+8vcA3J0WFoMyOssYZBTDmIvS1mudufo8iTEMY3A9ZfY1rfe+Qh3GsIGqX0vs5krJyjC7VLE8\n/ESSVKi5RAh/IhHI4Vl7qiOwJO8u25WEYPSS6NPENBq7UshJaMPYTz4q8hxO++L3p1NS/6hvxttl\nkAw0F2bx8rsxhNY6JcF1zeu/pXx9EE5dSAqv58zN7CdgVV9Ttd8VbnaVpQ/eHRvL0pjGYHTj1ZTp\nCPuaOXbYT76PT7PQO9Sq60hMD/I5Z0pJzOvcYTPjcOqU9Srn2Pyxs+aJ3sd9KaHIZTM4RHfd/1ME\ncnjWnuoIBFj68PBR5dVc2c8TY3SWbhQVZG06af1+q0VrDUW42k2cus817v2EJqEWZXRZT92JpQ1q\nTtTcWDrUlLw9uQh3hwYi5JLJZpSi1OQrjuZSMFuYS+L1fuLYOiJHD891XtqUFaMwV2Npgy+ufQym\nmIAKU1Kycglj8CuHpHg5YM2UbBxO0MagJP8UcB6FGuffzyMCOTx7T53wCkrvnbz2ZYsouSRUxOtw\n1RtLYB0kj9Da4GquvJorAHNWEBjdqNkfw0yEsXTmdQ4xkqhVERvosVOTsGQu7catd0S8GUOFdaqd\nUjRRi2Im3L4y/nF3oqhy6ubrlcArJ1R4vd9Rs19P5LVkrXW7hPFZTonj4lu+VYWpZKQN6lopERPY\nPq8I5PBi6bpss5QPz4NtPT0PgZqUoR7SU/XlnOcTcymZ2/28Xov4w1gfg7eLB/2uFq5qZSqJ09IQ\nPaEiTLXQ+/DvE2HOPsM5qTCMDyan1ay+MQWjZPjnu84wKBluryZU/YrFDEr2e+2sH96fi/gvAoHL\nnfBVzT7POCawfXYRyOFFe+rRryT1KwX12c0MmHKipoo9+B4fA6qoKEtr9D4QvNvNt2Ow3slCLZkv\ncubQGqfeEfV5EEnT5YogqWK9M4aPGj1/rY/O9Vxow0v29nNhSormRBYfC2rmp3hvd4aa78vU3rs/\njyFAmxWBHF60Jx/91jDsY/i6qHS/8288KLHLqqxjHsgqHFpHRdiVgoiftB+XiOW1oaR1w2z43IwH\n+ZhVL6dkOP/diib/upVEzXmdqbyeqMegmzDWef5z8W7Ep8oBwzZFIIcX7ZvGgH60lO7RnfQ5oEXS\nfZOEiA+g/0iJ2H1799M/13gUpFN5/1Rbss/vGGaXR8es+t7j3Md+1rBtEcjhxftvQ+tzhF5SnyeR\nVSj5/XK+OAF/d8VTaggbc5n9zLqRGy/Re7hvUNXHXp4f54QI4+cgTsghbMy32cgNcR1YlCUMAAAA\nyklEQVTxHMUJOYSN8Qe9j2zk/vajy8N3VARyCBtzLsV76PFG7vA8RSCHsDFJfazlOZTPD3YxBP75\ni//hEDYmHuxernjUC2GD4sHuZYoTcgghbEQEcgghbEQEcgghbEQEcgghbEQEcgghbEQEcgghbIQ8\n7gj6t39Y5K/AXz7djxNCCM/Sj83szTf9of8okEMIIXw6cWURQggbEYEcQggbEYEcQggbEYEcQggb\nEYEcQggbEYEcQggbEYEcQggbEYEcQggbEYEcQggb8S/S5MhB2H4TDAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from tqdm import tqdm_notebook as tqdm\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import matplotlib.animation as animation\n", "from IPython.display import HTML\n", "from neupy import algorithms, utils\n", " \n", "utils.reproducible()\n", "\n", "gng = algorithms.GrowingNeuralGas(\n", " n_inputs=2,\n", " n_start_nodes=2,\n", "\n", " shuffle_data=True,\n", " verbose=False,\n", " \n", " step=0.1,\n", " neighbour_step=0.001,\n", " \n", " max_edge_age=50,\n", " max_nodes=100,\n", " \n", " n_iter_before_neuron_added=100,\n", " after_split_error_decay_rate=0.5,\n", " error_decay_rate=0.995,\n", " min_distance_for_update=0.2,\n", ")\n", "\n", "fig = plt.figure()\n", "plt.scatter(*data.T, alpha=0.02)\n", "plt.xticks([], [])\n", "plt.yticks([], [])\n", "\n", "def animate(i):\n", " for line in animate.prev_lines:\n", " line.remove()\n", " \n", " # Training will slow down overtime and we increase number\n", " # of data samples for training\n", " n = int(0.5 * gng.n_iter_before_neuron_added * (1 + i // 100))\n", " \n", " sampled_data_ids = np.random.choice(len(data), n)\n", " sampled_data = data[sampled_data_ids, :]\n", " gng.train(sampled_data, epochs=1)\n", " \n", " lines = []\n", " for node_1, node_2 in gng.graph.edges:\n", " weights = np.concatenate([node_1.weight, node_2.weight])\n", " line, = plt.plot(*weights.T, color='black')\n", "\n", " plt.setp(line, linewidth=1, color='black')\n", " \n", " lines.append(line)\n", " lines.append(plt.scatter(*weights.T, color='black', s=10))\n", " \n", " animate.prev_lines = lines\n", " return lines\n", "\n", "animate.prev_lines = []\n", "anim = animation.FuncAnimation(fig, animate, tqdm(np.arange(220)), interval=30, blit=True)\n", "HTML(anim.to_html5_video())" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" }, "toc": { "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "toc_cell": false, "toc_position": {}, "toc_section_display": "block", "toc_window_display": false }, "widgets": { "state": { "8a9fe811f3c4492c84849e2e1f5d4c3b": { "views": [ { "cell_index": 2 } ] } }, "version": "1.2.0" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
bhermanmit/openmc
docs/source/examples/mg-mode-part-i.ipynb
1
53410
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "This Notebook illustrates the usage of OpenMC's multi-group calculational mode with the Python API. This example notebook creates and executes the 2-D [C5G7](https://www.oecd-nea.org/science/docs/2003/nsc-doc2003-16.pdf) benchmark model using the `openmc.MGXSLibrary` class to create the supporting data library on the fly." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Generate MGXS Library" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import os\n", "\n", "import matplotlib.pyplot as plt\n", "import matplotlib.colors as colors\n", "import numpy as np\n", "\n", "import openmc\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will now create the multi-group library using data directly from Appendix A of the [C5G7](https://www.oecd-nea.org/science/docs/2003/nsc-doc2003-16.pdf) benchmark documentation. All of the data below will be created at 294K, consistent with the benchmark.\n", "\n", "This notebook will first begin by setting the group structure and building the groupwise data for UO2. As you can see, the cross sections are input in the order of increasing groups (or decreasing energy).\n", "\n", "*Note*: The C5G7 benchmark uses transport-corrected cross sections. So the total cross section we input here will technically be the transport cross section." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create a 7-group structure with arbitrary boundaries (the specific boundaries are unimportant)\n", "groups = openmc.mgxs.EnergyGroups(np.logspace(-5, 7, 8))\n", "\n", "uo2_xsdata = openmc.XSdata('uo2', groups)\n", "uo2_xsdata.order = 0\n", "\n", "# When setting the data let the object know you are setting the data for a temperature of 294K.\n", "uo2_xsdata.set_total([1.77949E-1, 3.29805E-1, 4.80388E-1, 5.54367E-1,\n", " 3.11801E-1, 3.95168E-1, 5.64406E-1], temperature=294.)\n", "\n", "uo2_xsdata.set_absorption([8.0248E-03, 3.7174E-3, 2.6769E-2, 9.6236E-2,\n", " 3.0020E-02, 1.1126E-1, 2.8278E-1], temperature=294.)\n", "uo2_xsdata.set_fission([7.21206E-3, 8.19301E-4, 6.45320E-3, 1.85648E-2,\n", " 1.78084E-2, 8.30348E-2, 2.16004E-1], temperature=294.)\n", "\n", "uo2_xsdata.set_nu_fission([2.005998E-2, 2.027303E-3, 1.570599E-2, 4.518301E-2,\n", " 4.334208E-2, 2.020901E-1, 5.257105E-1], temperature=294.)\n", "\n", "uo2_xsdata.set_chi([5.87910E-1, 4.11760E-1, 3.39060E-4, 1.17610E-7,\n", " 0.00000E-0, 0.00000E-0, 0.00000E-0], temperature=294.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will now add the scattering matrix data. \n", "\n", "*Note*: Most users familiar with deterministic transport libraries are already familiar with the idea of entering one scattering matrix for every order (i.e. scattering order as the outer dimension). However, the shape of OpenMC's scattering matrix entry is instead [Incoming groups, Outgoing Groups, Scattering Order] to best enable other scattering representations. We will follow the more familiar approach in this notebook, and then use numpy's `numpy.rollaxis` function to change the ordering to what we need (scattering order on the inner dimension)." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# The scattering matrix is ordered with incoming groups as rows and outgoing groups as columns\n", "# (i.e., below the diagonal is up-scattering).\n", "scatter_matrix = \\\n", " [[[1.27537E-1, 4.23780E-2, 9.43740E-6, 5.51630E-9, 0.00000E-0, 0.00000E-0, 0.00000E-0],\n", " [0.00000E-0, 3.24456E-1, 1.63140E-3, 3.14270E-9, 0.00000E-0, 0.00000E-0, 0.00000E-0],\n", " [0.00000E-0, 0.00000E-0, 4.50940E-1, 2.67920E-3, 0.00000E-0, 0.00000E-0, 0.00000E-0],\n", " [0.00000E-0, 0.00000E-0, 0.00000E-0, 4.52565E-1, 5.56640E-3, 0.00000E-0, 0.00000E-0],\n", " [0.00000E-0, 0.00000E-0, 0.00000E-0, 1.25250E-4, 2.71401E-1, 1.02550E-2, 1.00210E-8],\n", " [0.00000E-0, 0.00000E-0, 0.00000E-0, 0.00000E-0, 1.29680E-3, 2.65802E-1, 1.68090E-2],\n", " [0.00000E-0, 0.00000E-0, 0.00000E-0, 0.00000E-0, 0.00000E-0, 8.54580E-3, 2.73080E-1]]]\n", "scatter_matrix = np.array(scatter_matrix)\n", "scatter_matrix = np.rollaxis(scatter_matrix, 0, 3)\n", "uo2_xsdata.set_scatter_matrix(scatter_matrix, temperature=294.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that the UO2 data has been created, we can move on to the remaining materials using the same process.\n", "\n", "However, we will actually skip repeating the above for now. Our simulation will instead use the `c5g7.h5` file that has already been created using exactly the same logic as above, but for the remaining materials in the benchmark problem.\n", "\n", "For now we will show how you would use the `uo2_xsdata` information to create an `openmc.MGXSLibrary` object and write to disk." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Initialize the library\n", "mg_cross_sections_file = openmc.MGXSLibrary(groups)\n", "\n", "# Add the UO2 data to it\n", "mg_cross_sections_file.add_xsdata(uo2_xsdata)\n", "\n", "# And write to disk\n", "mg_cross_sections_file.export_to_hdf5('mgxs.h5')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Generate 2-D C5G7 Problem Input Files" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To build the actual 2-D model, we will first begin by creating the `materials.xml` file.\n", "\n", "First we need to define materials that will be used in the problem. In other notebooks, either `openmc.Nuclide`s or `openmc.Element`s were created at the equivalent stage. We can do that in multi-group mode as well. However, multi-group cross-sections are sometimes provided as macroscopic cross-sections; the C5G7 benchmark data are macroscopic. In this case, we can instead use `openmc.Macroscopic` objects to in-place of `openmc.Nuclide` or `openmc.Element` objects.\n", "\n", "`openmc.Macroscopic`, unlike `openmc.Nuclide` and `openmc.Element` objects, do not need to be provided enough information to calculate number densities, as no number densities are needed.\n", "\n", "When assigning `openmc.Macroscopic` objects to `openmc.Material` objects, the density can still be scaled by setting the density to a value that is not 1.0. This would be useful, for example, when slightly perturbing the density of water due to a small change in temperature (while of course ignoring any resultant spectral shift). The density of a macroscopic dataset is set to 1.0 in the `openmc.Material` object by default when an `openmc.Macroscopic` dataset is used; so we will show its use the first time and then afterwards it will not be required.\n", "\n", "Aside from these differences, the following code is very similar to similar code in other OpenMC example Notebooks." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# For every cross section data set in the library, assign an openmc.Macroscopic object to a material\n", "materials = {}\n", "for xs in ['uo2', 'mox43', 'mox7', 'mox87', 'fiss_chamber', 'guide_tube', 'water']:\n", " materials[xs] = openmc.Material(name=xs)\n", " materials[xs].set_density('macro', 1.)\n", " materials[xs].add_macroscopic(xs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can go ahead and produce a `materials.xml` file for use by OpenMC" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Instantiate a Materials collection, register all Materials, and export to XML\n", "materials_file = openmc.Materials(materials.values())\n", "\n", "# Set the location of the cross sections file to our pre-written set\n", "materials_file.cross_sections = 'c5g7.h5'\n", "\n", "materials_file.export_to_xml()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our next step will be to create the geometry information needed for our assembly and to write that to the `geometry.xml` file.\n", "\n", "We will begin by defining the surfaces, cells, and universes needed for each of the individual fuel pins, guide tubes, and fission chambers." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Create the surface used for each pin\n", "pin_surf = openmc.ZCylinder(x0=0, y0=0, R=0.54, name='pin_surf')\n", "\n", "# Create the cells which will be used to represent each pin type.\n", "cells = {}\n", "universes = {}\n", "for material in materials.values():\n", " # Create the cell for the material inside the cladding\n", " cells[material.name] = openmc.Cell(name=material.name)\n", " # Assign the half-spaces to the cell\n", " cells[material.name].region = -pin_surf\n", " # Register the material with this cell\n", " cells[material.name].fill = material\n", " \n", " # Repeat the above for the material outside the cladding (i.e., the moderator)\n", " cell_name = material.name + '_moderator'\n", " cells[cell_name] = openmc.Cell(name=cell_name)\n", " cells[cell_name].region = +pin_surf\n", " cells[cell_name].fill = materials['water']\n", " \n", " # Finally add the two cells we just made to a Universe object\n", " universes[material.name] = openmc.Universe(name=material.name)\n", " universes[material.name].add_cells([cells[material.name], cells[cell_name]])" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "The next step is to take our universes (representing the different pin types) and lay them out in a lattice to represent the assembly types" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "lattices = {}\n", "\n", "# Instantiate the UO2 Lattice\n", "lattices['UO2 Assembly'] = openmc.RectLattice(name='UO2 Assembly')\n", "lattices['UO2 Assembly'].dimension = [17, 17]\n", "lattices['UO2 Assembly'].lower_left = [-10.71, -10.71]\n", "lattices['UO2 Assembly'].pitch = [1.26, 1.26]\n", "u = universes['uo2']\n", "g = universes['guide_tube']\n", "f = universes['fiss_chamber']\n", "lattices['UO2 Assembly'].universes = \\\n", " [[u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u],\n", " [u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u],\n", " [u, u, u, u, u, g, u, u, g, u, u, g, u, u, u, u, u],\n", " [u, u, u, g, u, u, u, u, u, u, u, u, u, g, u, u, u],\n", " [u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u],\n", " [u, u, g, u, u, g, u, u, g, u, u, g, u, u, g, u, u],\n", " [u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u],\n", " [u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u],\n", " [u, u, g, u, u, g, u, u, f, u, u, g, u, u, g, u, u],\n", " [u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u],\n", " [u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u],\n", " [u, u, g, u, u, g, u, u, g, u, u, g, u, u, g, u, u],\n", " [u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u],\n", " [u, u, u, g, u, u, u, u, u, u, u, u, u, g, u, u, u],\n", " [u, u, u, u, u, g, u, u, g, u, u, g, u, u, u, u, u],\n", " [u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u],\n", " [u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u, u]]\n", " \n", "# Create a containing cell and universe\n", "cells['UO2 Assembly'] = openmc.Cell(name='UO2 Assembly')\n", "cells['UO2 Assembly'].fill = lattices['UO2 Assembly']\n", "universes['UO2 Assembly'] = openmc.Universe(name='UO2 Assembly')\n", "universes['UO2 Assembly'].add_cell(cells['UO2 Assembly'])\n", "\n", "# Instantiate the MOX Lattice\n", "lattices['MOX Assembly'] = openmc.RectLattice(name='MOX Assembly')\n", "lattices['MOX Assembly'].dimension = [17, 17]\n", "lattices['MOX Assembly'].lower_left = [-10.71, -10.71]\n", "lattices['MOX Assembly'].pitch = [1.26, 1.26]\n", "m = universes['mox43']\n", "n = universes['mox7']\n", "o = universes['mox87']\n", "g = universes['guide_tube']\n", "f = universes['fiss_chamber']\n", "lattices['MOX Assembly'].universes = \\\n", " [[m, m, m, m, m, m, m, m, m, m, m, m, m, m, m, m, m],\n", " [m, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, m],\n", " [m, n, n, n, n, g, n, n, g, n, n, g, n, n, n, n, m],\n", " [m, n, n, g, n, o, o, o, o, o, o, o, n, g, n, n, m],\n", " [m, n, n, n, o, o, o, o, o, o, o, o, o, n, n, n, m],\n", " [m, n, g, o, o, g, o, o, g, o, o, g, o, o, g, n, m],\n", " [m, n, n, o, o, o, o, o, o, o, o, o, o, o, n, n, m],\n", " [m, n, n, o, o, o, o, o, o, o, o, o, o, o, n, n, m],\n", " [m, n, g, o, o, g, o, o, f, o, o, g, o, o, g, n, m],\n", " [m, n, n, o, o, o, o, o, o, o, o, o, o, o, n, n, m],\n", " [m, n, n, o, o, o, o, o, o, o, o, o, o, o, n, n, m],\n", " [m, n, g, o, o, g, o, o, g, o, o, g, o, o, g, n, m],\n", " [m, n, n, n, o, o, o, o, o, o, o, o, o, n, n, n, m],\n", " [m, n, n, g, n, o, o, o, o, o, o, o, n, g, n, n, m],\n", " [m, n, n, n, n, g, n, n, g, n, n, g, n, n, n, n, m],\n", " [m, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, m],\n", " [m, m, m, m, m, m, m, m, m, m, m, m, m, m, m, m, m]]\n", " \n", "# Create a containing cell and universe\n", "cells['MOX Assembly'] = openmc.Cell(name='MOX Assembly')\n", "cells['MOX Assembly'].fill = lattices['MOX Assembly']\n", "universes['MOX Assembly'] = openmc.Universe(name='MOX Assembly')\n", "universes['MOX Assembly'].add_cell(cells['MOX Assembly'])\n", " \n", "# Instantiate the reflector Lattice\n", "lattices['Reflector Assembly'] = openmc.RectLattice(name='Reflector Assembly')\n", "lattices['Reflector Assembly'].dimension = [1,1]\n", "lattices['Reflector Assembly'].lower_left = [-10.71, -10.71]\n", "lattices['Reflector Assembly'].pitch = [21.42, 21.42]\n", "lattices['Reflector Assembly'].universes = [[universes['water']]]\n", "\n", "# Create a containing cell and universe\n", "cells['Reflector Assembly'] = openmc.Cell(name='Reflector Assembly')\n", "cells['Reflector Assembly'].fill = lattices['Reflector Assembly']\n", "universes['Reflector Assembly'] = openmc.Universe(name='Reflector Assembly')\n", "universes['Reflector Assembly'].add_cell(cells['Reflector Assembly'])" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Let's now create the core layout in a 3x3 lattice where each lattice position is one of the assemblies we just defined.\n", "\n", "After that we can create the final cell to contain the entire core." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "lattices['Core'] = openmc.RectLattice(name='3x3 core lattice')\n", "lattices['Core'].dimension= [3, 3]\n", "lattices['Core'].lower_left = [-32.13, -32.13]\n", "lattices['Core'].pitch = [21.42, 21.42]\n", "r = universes['Reflector Assembly']\n", "u = universes['UO2 Assembly']\n", "m = universes['MOX Assembly']\n", "lattices['Core'].universes = [[u, m, r],\n", " [m, u, r],\n", " [r, r, r]]\n", "\n", "# Create boundary planes to surround the geometry\n", "min_x = openmc.XPlane(x0=-32.13, boundary_type='reflective')\n", "max_x = openmc.XPlane(x0=+32.13, boundary_type='vacuum')\n", "min_y = openmc.YPlane(y0=-32.13, boundary_type='vacuum')\n", "max_y = openmc.YPlane(y0=+32.13, boundary_type='reflective')\n", "\n", "# Create root Cell\n", "root_cell = openmc.Cell(name='root cell')\n", "root_cell.fill = lattices['Core']\n", "\n", "# Add boundary planes\n", "root_cell.region = +min_x & -max_x & +min_y & -max_y\n", "\n", "# Create root Universe\n", "root_universe = openmc.Universe(name='root universe', universe_id=0)\n", "root_universe.add_cell(root_cell)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Before we commit to the geometry, we should view it using the Python API's plotting capability" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQcAAAD8CAYAAAB6iWHJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnX/sX1V5x9/PSkEislJ+WSkDjNWAXaf2GyJxIZnApMRQ\nXS18dVGwJq1Lzba4skKa1K1LDayNyzYr0ISOmqAFrKRM6RAZjJgUtDDsihWpPwgdpIxiUQOiyLM/\nPveW+z2fc+/5cc+5n/vh+34l39x7z73Pc57P5/u9z/ee557nOaKqIIQQk98btQGEkH5C50AIsULn\nQAixQudACLFC50AIsULnQAixQudACLFC50AIsULnQAixctSoDajy+284Xs88YSYA4KXfzgYAHDvz\n+SnHtrbQ465kUuqoth2eezwAYNaBXzQe+1zzetRBmnni0P7nVPVk13W9cg5nnjATd39y0ZHjvQcv\nx/xTb/U+tuEj49IToyPGdh+Z7RsWoYklV+2cco3rOEamLzpsLLlqZ+N5Aly05dInfa4b62GFyzF0\nrSdEZ44+Y3HdcK+XPkkYvXIO1cfvvQcvb9yW+67jrnRUcelouqZJBpj6n3HJVTuHjm3X1rX76HDp\ndp3rg+0kDmmblSkibwDwAIBjMBimfE1VPyciZwHYBmA2gEcAfFxVf9Ok6+0nzdMvLf5CK3sIIc1c\ntOXSh1V1wnVdipjDywDer6q/EpGZAL4jIjsBfBbAP6nqNhG5AcCnAFzfpOjYmc8fedwu/2O6xuA+\n1+TW0WW/5hgcACaX7TrStm3LecHHbXWMqt9Sh+07Ie1p7Rx08Ojxq+JwZvGjAN4P4GNF+1YAfweH\nc6gy/9Rbhx6pbdf4tOXW4as3dR/bNyzC7fvWttJh3uRdkaLfyWW7sPTsdQmsITaSxBxEZIaIPArg\nWQD3APgxgMOq+kpxyQEAp7n02GIOTfjGC2xydTK28z46ms772h7Kkqt2HvnvGUJVZtuW85LoiJFP\noYNPCvloHXOYokxkFoA7AKwF8G+q+rai/XQAd6nqH1pklgNYDgCnvPHkhbdcflMyewghw3QZcziC\nqh4WkfsBvBfALBE5qnh6mAvg6RqZzQA2A4OApCvmUG3zPd64acERHatW7gmSMa8P6afNZynbbDLl\nGNuMOfiO420ypu0+OszvyCVj+z2ksN38PkgaWg8rROTk4okBInIsgAsB7ANwH4CPFJddAWCHS1d1\nNmDdmLzaPv/UW53HMTqqf8TV/SYdMed9bDWpBt+2b1g05ebxHcebMnWfsQmf78gln8J28/sg6UgR\nc5gD4D4R2QPgewDuUdVvAFgN4LMish/AiQCSjxds8YIUOsr/am31tjnvQ2zMocq2Lecl+byhrFq5\nJ4ntfFrIR2vnoKp7VPXdqrpAVeer6rqi/Seqeq6qvk1Vl6rqyy5dL/12tnPSUd3koLKterOX2/KP\nv9y6dPjIVLd1ziXks/heWzc5CHjtMTt0a7Pdde2qlXum/PjYYXNCKWxu+k5IPL2aIQnEveK7cu16\nXLl2faOOm9etCdbrI1Pt6+Z1a5wyVTttOnyGQi5sj+gTC1cMPf5Xr1u69gEsXfvAlPPX7Th76Lja\n9uSJh/HkiYdrz9t0mP2Ytm7ctAATC1d4fSaSl6RvK9ryR3NO1JDEK2D4ZjNvTh8dLmImQdl01AUs\nffuxJV6Z8xx8AoHmjWbewGccmjXlpncdx8qsXrxvyPaQwCiAoXkOfHpw4/u2ondPDq8XUsQUuuKM\nQ7OmRZ8kjF45h6ZJUHXJS9Vx7KqVe1pPgoqdSFV3rnpsjrljJkGZiUYxE4maZHxv2up1MTIuO+ow\nZZh4lY9e1XOw4TMMKIcSe1F/I/tMx/axo+0Twc3r1njP/qz2G0M1EPja4/igzRxKuLANC5qu9cW0\nY/fDNwKYGoBkvGE09OrJwTbPoW5rXlfu24J7TTps+lLosB3H6DDbzZhD01yB8thsr97k5g1f5wCa\nrsuho872ps/LeQ5p6ZVzCGW6F3tJdTP4PhGkJFWfdAj56JVziIk5hMQL2ugISc7y0eFrq0mKmIMZ\nL/CJH5jtTTI+Onz7NWHMoTt69SqTxV4Iyc9IEq/a4lPspSmJqrzGJeNTdCVExpV4VWdXjIxPsRdT\np2v+gc2OEJny9+CSsf3uQmVY7KU7ejWsqOIzJt+4aYEzGOjTjynjk0gUknhVJx+TsFTFTLyK4ckT\nD48s8apt3MFMvCJp6ZVzCC32Ys5rMOV8XxnGJF65+vFJvDLnaISSIvHqjEOzovpua/uqlXtaT4Ri\n4lVeGHMgZJoxljEHwF2ExeeaHAVjUuiI6SdFsRdbvKBscx3HyKTQUbax2Mvo6NWwoqnYS93EoRzF\nXmJ0mOeaJlKF9GOSotiLOfmoaTJSXXvbSVC+/Zqw2Et39Mo5hGKLF8TqaTpOoTP0vA8pYg7A+CZe\nMeaQl145h5AVr+qCgE2Tj+omI5k6bMcxOkI+g8+ELcCv2It5HDOBqW7btY66z1SFxV7y0CvnAHTz\nX9vnuhgdsbaHZoG6qHuaaJqh6EuKWY6mPh8dKZ6QSBi9elsRU+zFRVc6XHpjdLgmQQF+xV5SF2rp\nUgeLvaSHxV4IIa3olXPwmQTVJvHKR4ftvI+OpvN1xAxJciRexTAqHUy86o5eOQcbtsDclWvXB43B\n9x683CrTdFPvPXg53vevv260w6QsdBsSiDSL49b1VxeYtDGxcAUmFq6oDUjauH3d+bh93fnewUQA\n+Pz1O/D564eXI2nSUfbjohqQLD9PHXQKeeiVc/Ap9lLO47fN56+bO2DKVHXWzadYcdvWKduQQi22\nfpo+i+3z1MmUMQfbO31bJWcgbI6CKWNuS8rvxdxvkjU/o89ciaaK2SVN3wmJp1fOIRRb4lUMpg7z\njz2FztDzPqRIvALiEqf60CcTr/LSK+fgU+zFVVC2bcxh78HLceNlVxw5ru436fA5b7bFJC/liDnE\n2OHzHZmY/TDm0G9av8osVtD+MoA3A3gVwGZV/WcRmQ3gVgBnAvgZgMtU9edNuph4RUh+uky8egXA\n36jqIyLyJgAPi8g9AK4EcK+qXisiVwO4GoP1MxuJSUSquyaFDh+ZLnX4FHtpk3hVtvkUe+lCh8+q\n2yz2kocUa2U+o6qPFPu/xGCF7dMALAZQDt63AviQS5fPKttVmgKKqXQ0yTVd7xNziEm8qhIbc2hK\ngIrVESPfVgdjDnlJGnMQkTMBvBvAQwBOVdVngIEDAXBKjcxyEdktIrsPvTj86rAJ1xwFH1Lp8Glz\n9RtKqmIvKaZRd9VvFSZe5SXZ9GkROQ7AfwFYr6pfF5HDqjqrcv7nqnpCkw7GHAjJT6fFXkRkJoDt\nAG5R1a8XzQdFZI6qPiMicwA866MrR7GXsi2FjhCZXIVqQou9AN0Wakmpg8VeRkfrYYWICICbAOxT\n1eq//TsBlO+4rgAwPJXOIFexF9cEphAdNvtyFHupi0HEFHtxTYLqY7GXOh0s9tIdKWIO7wPwcQDv\nF5FHi59LAFwL4CIReQLARcVxUlKkd6fUE6IzRZ+p/lOOa7EXgE8LOUnxtuI7qiqqukBV31X83KWq\nh1T1AlWdV2yfd+kKXfHKPK6bBNWUp2DTl0JHjO0+MubN0DQJqk2xF5NR6Wgq9mKeo6NIS6/qOTAg\nSUh+xrL6dHXFK8A+Ccick3/zujWNOk0Zc1UpWz9mlqRrJSqffnw+S+iKV4C92EvI6lVlW+iKVzbb\nQ1ev8in20rTiFcBiLznpVW7FqEiRBNWFzlyMa+IVyUuvnEPbFa9SJF6Vel2EJF7VMaoVr5oSr3xJ\nveJVTICSk6Dy0suYg21OQshxjIzv3Igc/Ybq2L5h0ZSbYnLZriEnYbbZrqlizi8o25qO6/S4dJj9\nmPjYbraZ3wmpxzfm0CvnEFpg1jZRyCRGh4+MK26RS0dM4lVIIlbZ1kWBWVu/oZ8FYOJVKGMZkAwl\nR6GXnHpT97F9w6KhgGQobVe6HmW/k8t2DQUkSTrGLubgijGkiDnE6Gg6Xyfv049JjmIvfUi8YrGX\n/tGrYQXnORCSn7EdVsQUailfi5VRc5/kJd9+Uugoj8139jE6mmIOdYlXtn5NmVEVezHtaJrX4Eq8\nqn4npD29GlbEFHsxKzj7FFBpSoCynffR0XS+jtTFXnwLv5gyoyr2ksJ2Jlvlo1fOIZS9By8fesce\nmtDkijm0sS3FNU2kKPaybct5I0u8SmE7nxTy0cuYQ8zcAJO+6vA5H9OPiTkPYOOmBcGTlXzmNeTQ\nYdrqmqNBwhjbtTJ9H69DaiMAw/kSLh0bNy2wyjTp2LhpwZRhju9wI3QYs33DoimP05PLdjkf0Xc/\nfOPQNdVj0/bJZbuwevG+KTp8ZMy+Vy/eFyQzuWwXdj9845D9Tbab3wdJQ6+cg8+KVzGFWupWvKqT\nsa1E5bKjSl3so7p1OTRbP0BYsZfyuK693G9aeatORwqZFLaz2Es+euUcQkkRG0ipJ0Rnjj5jicmN\nGMc+SRi9cg65ir2UlH+QriIrtqSikIlSdUHSmMlWJikmQTXJ1N20TdeZMnV2NF0XazsnQeWjlwFJ\nQkg+xnISlE+xF1fykklMwlMKHV0kXgH2Yi8hyUsxMn3RAbDYS056NawIJUXyUko9ITpz9BlLipW6\nx6FPEkavnENosZfYpKkQHU1yTdeHJl7FkGoSVIyOmHhBin5NHXxSyAdjDoRMM8Y+5hCSeNVmrD9K\nHTEytiQjsy30uK2OUfVbp4OkoVfOoYrv1GSfti502KZAh/YbSopJP6OaODTOtk8XehVzCCXXJKgu\nEq9S9LHkqp1J/lOO4r9tKrv5pJCPJDEHEdkC4IMAnlXV+UXbbAC3AjgTwM8AXKaqP2/Sw5gDIfnp\nOuZwM4AvAvhype1qAPeq6rUicnVxvNqlyFwxuWmMGXrclY6yLaWO6jV1cZmYOE0OHaPqt09T0l8P\nJBlWqOoDAMy1MBcD2FrsbwXwIZeew3OPP7JfN540E21cx13pCD3ve41JaDaqj466c7E6fGRS6Ij9\n/MSPnDGHU1X1GQAotqfYLhKR5SKyW0R2v3TouaAOUow5bTrGZRyfYq7EODPdP39uRh6QVNXNqjqh\nqhNzXjr6SHt5c7m2Vcob3Ve2Tkfots65hPTvq6Muict2zmfrSnBrShqr/rTREWN7U38kDTmdw0ER\nmQMAxfbZWEVm/oDtuNo2uWyXl0yTDl+Z6jTgWB3VNpuOVKR+7DYf61PpJP0g2QxJETkTwDcqbys2\nADhUCUjOVtW/bdJxyrsW6pL/fOjI8ZKrdjoTb1z4JO+k0OHSG5t4ZAYk2yaapUhWS5F4ltN20kyn\nZeJE5KsAdgF4h4gcEJFPAbgWwEUi8gSAi4rjacM41TwcxQ3Fm7j/pHpb8VFVnaOqM1V1rqrepKqH\nVPUCVZ1XbM23GUPMOvCLI/t1AT0z4cd13JWOJsrz5nUxyUtmwldMwZgmmRQ6fGRS6Ij9/MQPJl4R\nMs0Yy8Srw3OPHxpjhxb/MLGt+OQa608sXDHlvG3lJZsO12pNqWMOKZLGyjbTdpcOs6hsqIx5fYzt\ndZ+fpGHkrzLbkKpgSI7CIy6dKfpM9bbAvNG7IEWfOd6WkNforXPwmURkKxgSGgi06QitjGzr0ycO\n0TZomWIS0N6Dw6uGdcGqlXuS2M4nhXww5kDINGMsYw7AcCKSa9wOuFdmDlkxuu6amFWmQ1a7rvt8\nKWIOrniCj44UiVc+/YbGPmw6SBp65RzMxCvX0GJy2a6h4GHoWN62QrTPqtHmKtPmepAuOzZuWmBd\n9i2EFOPtWB1mwlPoTTlK24kfvY05+JBqolGOVaZdtqUY5+cqdtMF42z7dIExB0KmGa+7mEP1P7HZ\nZh67YgFN19Qdx8jYdLhsd8UcgNEUewmRSaGjje0kDb0aVjQVe7Gtumxbvt2MBdhouubJEw9bz9uu\na9JhO3atGO3DqIq9hBRqSaGjDhZ76Y5eOYdQxim5KQfT/T3/dP/8uemVc7AlXplJS3Xbcr/6CF/u\n123N/fI4hQ7b1mV7lfLYfGPTdDO4iq7YrnMlXrXR4au7jQ7fcyScXjkHwG9mpPn68rodZ0+5uWxv\nH25fd/5Qm3mDm8c2GZcOl8x1O86ecjyxcIVXdmb1e2mqvlTuX7l2/ZAOV0ZjVabuRovJiqy2X7l2\nfbAOm4ypn44hPb16W+FT7MWck7907QONOs84NGtoYo1rHoN5g5sy5qQoWz+mXbaJVLbkpRTFXkIm\nEsXIdJl45ZIxoZNw02mxFzLejGviFclLr5yDT7GXKqtW7nEODWw0yZR6bftNOprO1+HTj0mKYiem\nTMyErBjbTXkWe+k3vRpWcBIUIfkZy0lQMcVegOZciNAkKl8ZW8whVEefir2Mqw7b5ydp6JVzCGVy\n2a6h6H8osYlXMXpT95Fq0s8oJg8x8ar/9CrmEIo5ryEGW8whRSKWS8cZh2b1ptjLqBKvxtX26QJj\nDoRMM8Yy5gDEFXupG9vHJF6ZOuqOU+kITbzqY6GWvuiotpH29GpY4bPKdhUz0QpoToiqu8aVOOWj\no+l8HTGJV1ViC6w2JS/F6oiRT62DpCW7cxCRi0XkcRHZXyyL1ztyFHvJoTMXo4o5kH6TNeYgIjMA\n/AiD5fAOAPgegI+q6g9s1zPmQEh++hJzOBfAflX9CQCIyDYAiwFYnQPgV+ylnHpbzszzKbKycdOC\nKTP5XDIrbtsKALjxsiumyDQVf3HZ5SNjft6YYi+2Qra+Mub1TTLmd+RT7KWun5SfhaQh97DiNABP\nVY4PFG1WfIq9mHPym+IH5X4pU25dhVrKP3rgtRvALPrSpKPOxqbrTJm6GERMwZQQmbqcB/M623fk\nssPU3bZgjK8MiSO3cxBL25RxjIgsF5HdIrL7pUPPZTaHEOJLbudwAMDpleO5AJ6uXqCqm1V1QlUn\n5rx09JF2M/GqfMw2k3x8Eq9KmXLrKtRSHUqU+yHFXupsDEnwqpsgFVIwJUamLonKvM72HbnsMHWH\nFJ1pI0PiyB2QPAqDgOQFAP4Xg4Dkx1T1Mdv1DEgSkp9eBCRV9RUR+QyAuwHMALClzjEA4YlXwHBl\nJZOYpKkUOrpIvLIxTklTbXXY4NNDOrLPkFTVuwDclbufNqRIgupCZy7GNfGK5KVXMyRDi73YEq9S\nFHvxmcCUotiLT+3IJmITj5oKpsTqiJFPrYOkhYlXhEwzehFzCGW6FXsBulllOyZ5aVSFWph41R96\n5RxCGfdiL6sX72vVxzgXTBln26cLvYo5hDLuxV7akmrMPa6JV4w55IUxB0KmGWMZcwDcxV5siTiu\nJKoQmbKtLokqpB+fmENd4lX5eVMkXvkkUYUuamOzPXRRm6bPEiPDp4i09GpYEVrsZeOmBV6JVyau\nYi9NCVF1OprO1+HTj0lToRbfMbgpE7PATIztpnwK29sWjCH19Mo5kNEQsyjNOPZJwuhlzGH7hkVT\nJkFNLts1VM/BrM1gBvjMNh8ZE5eMTUeojHm97fOa34fJ/FNvHXqkNvXarjFxyfjocMnYPq9Lh03G\nxxZiZ2zXyvQZTux++MYpx6sX75syVrc90tsW3HUNSVyL9Np0uGTM15e7H77Rq5Zk9Xux1U40H69v\nXrdmSIfrkbwq41tPIbSexM3r1gTrsMmY+jmkSE+vnIMt5lDeLK5tuW+LBYQUaqmLW4TqsG1dtlcp\nj01n2XQT1DmMkGIvKXX46m6jw/ccCad3bytCiKnY/Hpiut8M0/3z56ZXTw5NiVflGNxMVjKPYxKv\nzHO28yEJXnXHZnJVTOJVU9KU7xi8bZGVLnTUkeLzEz96GZAkhORjLCdBxSReme/YzWDlti3njazY\ni2sCV4pVtn0SoJomONXJjKrYS8hkrDq9JA29GlaEkirmkKMwi8u2mIlDJqnG3ONc7IVxh3z0yjnE\nFHvxLcxaR65iLy47Vq3cM9arbPehUAsTr/LCmAMh04yxjzmErLIdEpcwx/p1OlwyNh0xMn0p9hKa\neGUOi0JlfJO1WOxldPTKOVRxTRkG7OP60DiE7frQeIA53dnHjhTxklQFU65cu761nlA2blpgncUZ\nAuMNeelVzCGUtmP21HpCdKboM9WYe1wTrxhzyAtjDoRMM8Yy5gC4i71U20KPu9JRttlWCA/tJ6bY\nS8g4PYeOUfXLp4i09GpY4VPsxUxWch13paMJW6JVqI6SHMVe6s7F6vCRSaGDxV7y0so5iMhSEXlM\nRF4VkQnj3DUisl9EHheRD7Qzc/wYp6SwcZ4ERfLR9slhL4A/AzCliIGInANgEsA7AVwM4EsiMsOl\nzDYJyky4qm5tiVe2ZKYYHT6yZj+pdVS/h3JbPjqXwTjbZKS6re26tjpc+ut0mH3n0EHa0SrmoKr7\nAEBEzFOLAWxT1ZcB/FRE9gM4F0DUv9OlZ68DsNNxjCNtr43VXTL1Onxlqq9bY3VUZWw6UpH65slx\nM9ryJ8hoyBVzOA3AU5XjA0VbI7aYg2tbZfuGRUd+2ugI3Zp6Yvr31VFXBMV2zmfrKrLSVHSl+tNG\nR4ztTf2RNDifHETk2wDebDm1RlV31IlZ2qzvTEVkOYDlAHDc3D9wmTMFn5JyMTpy6U3NdL8Zpvvn\nz43zyUFVL1TV+ZafOscADJ4UTq8czwXwdI3+zao6oaoTc146+kh73ezIavuSq3Y6j7vSEXre9xqT\nURV7CdHhI5NCB4u95CXJJCgRuR/AKlXdXRy/E8BXMIgzvAXAvQDmqervmvRwEhQh+emk+rSIfFhE\nDgA4D8A3ReRuAFDVxwDcBuAHAP4DwEqXYyCE9Iu2byvuAHBHzbn1ALrP6CGEJKFXMyQJIf2BzoEQ\nYoXOgRBihc6BEGKFzoEQYoXOgRBihc6BEGKFzoEQYoXOgRBihc6BEGKFzoEQYoXOgRBihc6BEGKF\nzoEQYoXOgRBihc6BEGKFzoEQYoXOgRBihc6BEGKFzoEQYoXOgRBihc6BEGKFzoEQYoXOgRBihc6B\nEGKl7XJ4G0TkhyKyR0TuEJFZlXPXiMh+EXlcRD7Q3lRCSJe0fXK4B8B8VV0A4EcArgEAETkHwCSA\ndwK4GMCXRGRGy74IIR3Syjmo6rdU9ZXi8EEAc4v9xQC2qerLqvpTAPsxWHGbEDImpIw5LAOws9g/\nDcBTlXMHijZCyJjgXGVbRL4N4M2WU2tUdUdxzRoArwC4pRSzXK81+pcDWA4Ap7zxZA+TCSFd4HQO\nqnph03kRuQLABwFcoKqlAzgA4PTKZXMBPF2jfzOAzQDw9pPmWR0IIaR72r6tuBjAagCXquqLlVN3\nApgUkWNE5CwA8wB8t01fhJBucT45OPgigGMA3CMiAPCgqn5aVR8TkdsA/ACD4cZKVf1dy74IIR3S\nyjmo6tsazq0HsL6NfkLI6OAMSUKIFToHQogVOgdCiBU6B0KIFToHQogVOgdCiBU6B0KIFToHQogV\nOgdCiBU6B0KIFToHQogVOgdCiBU6B0KIFToHQogVOgdCiBU6B0KIFToHQogVOgdCiBU6B0KIFToH\nQogVOgdCiBU6B0KIFToHQogVOgdCiBU6B0KIlbZrZf6DiOwRkUdF5Fsi8paiXUTkX0Rkf3H+PWnM\nJYR0Rdsnhw2qukBV3wXgGwDWFu2LMFg8dx6A5QCub9kPIaRjWjkHVf1F5fCNALTYXwzgyzrgQQCz\nRGROm74IId3SdpVtiMh6AJ8A8AKAPymaTwPwVOWyA0XbM237I4R0g/PJQUS+LSJ7LT+LAUBV16jq\n6QBuAfCZUsyiSi1tEJHlIrJbRHa/8OsXYj8HISQxzicHVb3QU9dXAHwTwOcweFI4vXJuLoCna/Rv\nBrAZAN5+0jyrAyGEdE/btxXzKoeXAvhhsX8ngE8Uby3eC+AFVeWQgpAxom3M4VoReQeAVwE8CeDT\nRftdAC4BsB/AiwA+2bIfQkjHtHIOqrqkpl0BrGyjmxAyWjhDkhBihc6BEGJFBiOAfiAi/4dB7MLG\nSQCe69CcOmjHVGjHVPpgh8uGM1T1ZJeSXjmHJkRkt6pO0A7aQTu6sYHDCkKIFToHQoiVcXIOm0dt\nQAHtmArtmEof7Ehiw9jEHAgh3TJOTw6EkA7pvXPoS7UpEdkgIj8s+rpDRGZVzl1T2PG4iHwgsx1L\nReQxEXlVRCaMc13acXHRz34RuTpnX5a+t4jIsyKyt9I2W0TuEZEniu0JmW04XUTuE5F9xe/jr0Zk\nxxtE5Lsi8v3Cjr8v2s8SkYcKO24VkaODlatqr38AHF/Z/0sANxT7lwDYiUF6+HsBPJTZjj8FcFSx\nfx2A64r9cwB8H8AxAM4C8GMAMzLacTaAdwC4H8BEpb0zOwDMKPS/FcDRRb/ndPg3cT6A9wDYW2n7\nRwBXF/tXl7+fjDbMAfCeYv9NAH5U/A66tkMAHFfszwTwUHE/3AZgsmi/AcBfhOru/ZOD9qTalKp+\nS1VfKQ4fxCANvbRjm6q+rKo/xSDZ7NyMduxT1cctp7q041wA+1X1J6r6GwDbiv47QVUfAPC80bwY\nwNZifyuAD2W24RlVfaTY/yWAfRgUNOraDlXVXxWHM4sfBfB+AF9rY0fvnQMwqDYlIk8B+HO8Vqey\nrtpUFyzD4Kll1HZU6dKOvnzmKqdqURag2J7SVcciciaAd2PwX7tzO0Rkhog8CuBZAPdg8FR3uPLP\nLOr30wvnkLvaVCo7imvWAHilsGVkdtjEUtvRk756jYgcB2A7gL82nnI7Q1V/p4Miz3MxeKo723ZZ\nqN7WNSRToJmrTaWyQ0SuAPBBABdoMZgbhR01JLejJ335clBE5qjqM8Xw8tncHYrITAwcwy2q+vVR\n2VGiqodF5H4MYg6zROSo4ukh6vfTiyeHJvpSbUpELgawGsClqvpi5dSdACZF5BgROQuDcvzfzWVH\nA13a8T0A84qI+NEAJov+R8mdAK4o9q8AsCNnZyIiAG4CsE9VvzBCO04u35yJyLEALsQg/nEfgI+0\nsiNnJDVRNHY7gL0A9gD4dwCnVaK0mzAYX/0PKpH7THbsx2Cc/Wjxc0Pl3JrCjscBLMpsx4cx+M/9\nMoCDAO5j8QNEAAAAfklEQVQekR2XYBCh/zGANR3/TXwVg0rmvy2+i08BOBHAvQCeKLazM9vwxxg8\nqu+p/E1cMgI7FgD478KOvQDWFu1vxeCfw34AtwM4JlQ3Z0gSQqz0flhBCBkNdA6EECt0DoQQK3QO\nhBArdA6EECt0DoQQK3QOhBArdA6EECv/D8nj1UuvNoxlAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fefbdc521d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "root_universe.plot(center=(0., 0., 0.), width=(3 * 21.42, 3 * 21.42), pixels=(500, 500),\n", " color_by='material')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "OK, it looks pretty good, let's go ahead and write the file" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Create Geometry and set root Universe\n", "geometry = openmc.Geometry(root_universe)\n", "\n", "# Export to \"geometry.xml\"\n", "geometry.export_to_xml()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now create the tally file information. The tallies will be set up to give us the pin powers in this notebook. We will do this with a mesh filter, with one mesh cell per pin." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "tallies_file = openmc.Tallies()\n", "\n", "# Instantiate a tally Mesh\n", "mesh = openmc.Mesh()\n", "mesh.type = 'regular'\n", "mesh.dimension = [17 * 2, 17 * 2]\n", "mesh.lower_left = [-32.13, -10.71]\n", "mesh.upper_right = [+10.71, +32.13]\n", "\n", "# Instantiate tally Filter\n", "mesh_filter = openmc.MeshFilter(mesh)\n", "\n", "# Instantiate the Tally\n", "tally = openmc.Tally(name='mesh tally')\n", "tally.filters = [mesh_filter]\n", "tally.scores = ['fission']\n", "\n", "# Add tally to collection\n", "tallies_file.append(tally)\n", "\n", "# Export all tallies to a \"tallies.xml\" file\n", "tallies_file.export_to_xml()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With the geometry and materials finished, we now just need to define simulation parameters for the `settings.xml` file. Note the use of the `energy_mode` attribute of our `settings_file` object. This is used to tell OpenMC that we intend to run in multi-group mode instead of the default continuous-energy mode. If we didn't specify this but our cross sections file was not a continuous-energy data set, then OpenMC would complain.\n", "\n", "This will be a relatively coarse calculation with only 500,000 active histories. A benchmark-fidelity run would of course require many more!" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# OpenMC simulation parameters\n", "batches = 150\n", "inactive = 50\n", "particles = 5000\n", "\n", "# Instantiate a Settings object\n", "settings_file = openmc.Settings()\n", "settings_file.batches = batches\n", "settings_file.inactive = inactive\n", "settings_file.particles = particles\n", "\n", "# Tell OpenMC this is a multi-group problem\n", "settings_file.energy_mode = 'multi-group'\n", "\n", "# Set the verbosity to 6 so we dont see output for every batch\n", "settings_file.verbosity = 6\n", "\n", "# Create an initial uniform spatial source distribution over fissionable zones\n", "bounds = [-32.13, -10.71, -1e50, 10.71, 32.13, 1e50]\n", "uniform_dist = openmc.stats.Box(bounds[:3], bounds[3:], only_fissionable=True)\n", "settings_file.source = openmc.source.Source(space=uniform_dist)\n", "\n", "# Tell OpenMC we want to run in eigenvalue mode\n", "settings_file.run_mode = 'eigenvalue'\n", "\n", "# Export to \"settings.xml\"\n", "settings_file.export_to_xml()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's go ahead and execute the simulation! You'll notice that the output for multi-group mode is exactly the same as for continuous-energy. The differences are all under the hood." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " %%%%%%%%%%%%%%%\n", " %%%%%%%%%%%%%%%%%%%%%%%%\n", " %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n", " %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n", " %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n", " %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n", " %%%%%%%%%%%%%%%%%%%%%%%%\n", " %%%%%%%%%%%%%%%%%%%%%%%%\n", " ############### %%%%%%%%%%%%%%%%%%%%%%%%\n", " ################## %%%%%%%%%%%%%%%%%%%%%%%\n", " ################### %%%%%%%%%%%%%%%%%%%%%%%\n", " #################### %%%%%%%%%%%%%%%%%%%%%%\n", " ##################### %%%%%%%%%%%%%%%%%%%%%\n", " ###################### %%%%%%%%%%%%%%%%%%%%\n", " ####################### %%%%%%%%%%%%%%%%%%\n", " ####################### %%%%%%%%%%%%%%%%%\n", " ###################### %%%%%%%%%%%%%%%%%\n", " #################### %%%%%%%%%%%%%%%%%\n", " ################# %%%%%%%%%%%%%%%%%\n", " ############### %%%%%%%%%%%%%%%%\n", " ############ %%%%%%%%%%%%%%%\n", " ######## %%%%%%%%%%%%%%\n", " %%%%%%%%%%%\n", "\n", " | The OpenMC Monte Carlo Code\n", " Copyright | 2011-2017 Massachusetts Institute of Technology\n", " License | http://openmc.readthedocs.io/en/latest/license.html\n", " Version | 0.8.0\n", " Git SHA1 | 966169de084fcfda3a5aaca3edc0065c8caf6bbc\n", " Date/Time | 2017-03-09 08:18:02\n", " OpenMP Threads | 8\n", "\n", " Reading settings XML file...\n", " Reading geometry XML file...\n", " Reading materials XML file...\n", " Reading cross sections HDF5 file...\n", " Reading tallies XML file...\n", " Loading cross section data...\n", " Loading uo2 data...\n", " Loading mox43 data...\n", " Loading mox7 data...\n", " Loading mox87 data...\n", " Loading fiss_chamber data...\n", " Loading guide_tube data...\n", " Loading water data...\n", " Building neighboring cells lists for each surface...\n", " Initializing source particles...\n", "\n", " ====================> K EIGENVALUE SIMULATION <====================\n", "\n", " Creating state point statepoint.150.h5...\n", "\n", " =======================> TIMING STATISTICS <=======================\n", "\n", " Total time for initialization = 1.3630E-01 seconds\n", " Reading cross sections = 3.0827E-02 seconds\n", " Total time in simulation = 8.9648E+00 seconds\n", " Time in transport only = 8.2752E+00 seconds\n", " Time in inactive batches = 2.4798E+00 seconds\n", " Time in active batches = 6.4849E+00 seconds\n", " Time synchronizing fission bank = 1.4553E-02 seconds\n", " Sampling source sites = 1.0318E-02 seconds\n", " SEND/RECV source sites = 4.0840E-03 seconds\n", " Time accumulating tallies = 4.2427E-04 seconds\n", " Total time for finalization = 1.7081E-02 seconds\n", " Total time elapsed = 9.1340E+00 seconds\n", " Calculation Rate (inactive) = 1.00813E+05 neutrons/second\n", " Calculation Rate (active) = 77101.8 neutrons/second\n", "\n", " ============================> RESULTS <============================\n", "\n", " k-effective (Collision) = 1.18880 +/- 0.00179\n", " k-effective (Track-length) = 1.18853 +/- 0.00244\n", " k-effective (Absorption) = 1.18601 +/- 0.00111\n", " Combined k-effective = 1.18628 +/- 0.00111\n", " Leakage Fraction = 0.00175 +/- 0.00006\n", "\n" ] }, { "data": { "text/plain": [ "0" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Run OpenMC\n", "openmc.run()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Results Visualization\n", "\n", "Now that we have run the simulation, let's look at the fission rate and flux tallies that we tallied." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS4AAAEICAYAAADhtRloAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnX2cnVV177+LyRDIC8S8EEISSIQoIGKkkcTiC4pWiC9A\nL7bY+6HoB4nlaquW+7ngywVsayutSq1vGAoVqxexVTTaUI1cXsK1IAGHt0Qk6GCGxIQACQl5ncm6\nf5xnYOZkrz3nzJw5c57h9/18ns+cs/az197Pc85Zs5+99lrb3B0hhCgTB4x0B4QQol5kuIQQpUOG\nSwhROmS4hBClQ4ZLCFE6ZLiEEKVDhqvEmNnNZnb+SPdDiGZjWsfV2phZJzAd6AGeA5YDf+7u21tR\nrxDNQCOucvBOd58AnAS8Bvhki+utCzMbMxLtivIiw1Ui3P0J4GbgBAAzu83M3l+8fq+Z3WlmnzWz\nZ8zsN2Z2xiD1HmFmy8zsaTNba2YXFvKDzGynmU0t3n/SzLrN7JDi/d+Y2T8Wr8cWffmtmW00s6vN\n7OCi7FQz6zKzS8zsd8C/mNlUM/uRmW0p2l1pZvp+iiT6YpQIM5sNLAZ+EZyyEHgEmAr8PXCtmdkg\n9N4AdAFHAOcAf2tmp7n7LuAe4I3FeW8AHgdO6fP+9uL1lcDLgPnAMcBM4LI+zR4OTAaOApYAFxdt\nTqPyCPtxQPMYIokMVzn4vpltAe6kYhj+NjjvcXe/xt17gOuBGVSMQM16CyP2OuASd9/l7h3APwPn\nFXVuB95YPN6dCPxT8f4gKo+bKwtjeSHwUXd/2t23FX0+t0/b+4DL3X23u+8E9hb9Pcrd97r7StcE\nrAjQ3EI5OMvdf1rDeb/rfeHuO4rB1oR69JrZEUCvsenlcWBB8fp24PNU5sUeBFYA1wKLgLXuvtnM\nDgPGAff2GfAZ0NZH55PFCK6XfwCuAH5S1Fnq7p8Z6ILFixONuEQ164HJZjaxj+xI4Ini9c+AlwNn\nA7e7++qi/O288Ji4GdgJvMLdJxXHoYUjoJd+oyl33+buF7v7S4F3An9pZqc1+uLE6ECGS/TD3ddR\nMU5/V0zGnwhcAHyrKN8B3At8kBcM1c+AD/S+d/d9wDXAVcXoCzObaWZvi9o1s3eY2THFY+azVJZp\n9AzDJYpRgAyXSPEeYA6V0ddNVOaiVvQpvx1oB37e5/1E4I4+51wCrAXuMrNngZ9SGalFzCvO2Q78\nF/AVd79tqBciRidagCqEKB0acQkhSocMlxCidMhwCSFKhwyXEKJ0NHUB6tQx5nPaEwVtCdlA5Bzl\nUZDLwYF8d0ZX1LecyZ8YyPdk6hwYyFP3K9cGsHPM2KR8N2k5wM7g5oyhOynfxGGhrp7gpvXsiz/o\nfc8FX8V08/nPP7rPka6ByuptZ18gz/nB9gbyXMDWIQnZc534rs0DhnnlOMbMd9R47gb4sbufPpT2\nBkNTDdecdlh1TKJgfKZS1MOnMnUOCuQnBPLfZHRFfcv1+Y2BfF2mzuxAfkRa7JmlmQ9MPjIp72Ru\nWOdBXpmUT2FzUv5F/iLUtS2wqluemxTW2X7XtHRBuvnKoomIrkAe6YI+MQdV5H4hnYF8V53ywbaf\nMhfLFySE9bGDyqK8WriiEhfbdBTyI4Toh9H6hqHV+yeEaDIHEM+qtAoyXEKIfhjx1GqrIMMlhOiH\nHhWrOYhKRFo1uYnunwyinUDf3d9MyxfGc9YwJS3e8f/iKuO2BgXp+e8KmwJ54PG0jljVyxc+mpTv\nHD8urPNT0rP90UT7x8OUYHAjf5yUt42PXXc/O+2UpHwSzyTlO4mvpev+1JcM2BJWiSfac0R1InnO\nOTArkOemvlO3swERfBpxCSFKh0ZcQojSoRGXEKJ0yKsohCgdGnEJIUpJqxuGVu+fEKLJaMRVTTfw\ndEJ+d1zl0WCZwG2DaP7CINvrnZmtB18XLK0Ytz32O++dlNbXvj7uG2sCfX8Y9C0Tq3lQsLyje24c\n5Dw2iBjeEcx2rOb4UFdUZyLbknKAhcGX4Ie8Oyk/nvtCXQcc/lxS3vOqeN2NRXGED4VV8MsDXRfF\ndUKi2MtcfGO0hGKIyKsohCgdmpwXQpQOPSoKIUqHHhWFEKVDIy4hROnQiKuag0lmIX3qzrjKE4E8\n8hAC3Bh4CW8O5GcEMblAGOTsU2JPZHuU1filmXYWBfqiFMXfy0TT/t+0rulzo0humBK4KSMPYY43\nBT7fT/LZsM55XJOUn8UNSfm6594S6po4Ke29nNKTibLunhmXBdiXg4IgA6//MKPr7KAgThqbDsCO\nUoDXwagYcZnZQVR2KB5bnP/v7n65mc0Fvg1MBu4DznP3XFZ1IUQJMFrfq1jLLj+7gTe7+6uA+cDp\nZrYIuBK4yt3nAc8AFwxfN4UQzcKA9jG1HQPqMpttZrea2Roze9jMPpw451Qz22pmHcVx2UB6B2za\n3Z0Xlse1F4cDbwb+pJBfD1wBfHXgSxFCtDJmMKbWSaSBd0fqBi529/vMbCJwr5mtcPfVVeetdPd3\n1NrHmvZVNLM2M+ugku5uBfAYsMXde7vdBSQnCcxsiZmtMrNVT+6stVtCiJHCDNrbajsGwt03uPt9\nxettwBoCW1EPNRkud+9x9/lUggxOBo5LnRbUXeruC9x9wbRWf3AWQjw/4qrlAKb2DkyKY0ms1+YA\nryYd5PdaM7vfzG42s1cM1Me6vIruvsXMbgMWAZPMbEwx6poF5CLxhBAlwQza472Dq9ns7gNu5mhm\nE4DvAh9x92eriu8DjnL37Wa2GPg+6STvz1OLV3EasLcwWgcDb6EyMX8rcA4Vz+L5wA8G0sVWYPn+\n4u7MrsRR/PVtmcDoKLX7Ubl+BTwVBDPnJiYPSadPjzeqzfVhUSD/RGaz4uBrlFvaEOV23xL44xew\nKtQVBWB/lL8L62xjTlIe5ZafND5e2rB5a3qjgJ7uzIc2mIVB0cazweds78noir4buX4NU875Ri/k\nMrN2KkbrW+7+veryvobM3Zeb2VfMbKq7h1n6a+neDOB6M2uj8mj5HXf/kZmtBr5tZn8D/AK4ts7r\nEUK0Ig00XGZmVGzDGnf/fHDO4cBGd3czO5mKncntVV+TV/EBKs+l1fJfU5nvEkKMNho34joFOA94\nsHDwAXwcOBLA3a+m8uR2kZl1AzuBc4vVDE3onhBidGBADR7DWnD3OwuNuXO+BHypHr0yXEKI/pQg\nWLHFuyeEaDpGJcCvhWmu4WoHjthf/Oxv4iqXBI+6n854FVOLzACOD3TtmBDreiLweJ7YHT+CdwV9\nm5XbMfvXgb7Ie5jTdXZa1+yMV3ELLwnqrEvKo6BsgMu5Min/HyTnZgGYG2z/fBUfS8pfyT2hro3d\n05PyPVMOCetYtAI8s5O0XxzoSnc5u8rc/y3Q9b64zrChEZcQonTIcAkhSkmDJueHCxkuIUR/NOIS\nQpQOGS4hROmQV7E25iU8jb1EHrrckv3IdxR5D8dlwjlPDJxnudTNsxYHBbl5g/cF+k4Lzk+kwO5l\n13NpXavHnxTW2RPk/N1IlIc6ZiWXJOWP8PpM++lfykJuT8o7n4s3pN17W/obYIsyu6tuDoIFM1Xs\na0FB5D3MeBUtCrCdE9dJ9m1v5vxa0YhLCFE6ZLiEEKWjgSE/w4UMlxCiPxpxCSFKhybnhRClQyMu\nIUTpkOGqog0Yn5BnlkNMfy4tn5Ubyk5Oiz3ayDk4H4Cgfcv0mYWB/KH620neL8i61g8KgtZ7Tog/\n7rUck5RvCpZDzKcjKQdYx+ykfEy4LTdsIJ1ueUeQunl717RQV7hUpCuTO3t7IO+Mq4QB2NFnk/u1\nRV3LpftOldW0/U0NyHAJIUqFvIpCiNKhR0UhROmQV1EIUTo04hJClA4ZriragEMT8kfjKu1bgpTG\nx8VBzr/5ZVo+dxCpm8cF3kO7+/Kwjh/6qXRBFEgL8NngOpcHfct9ciekde3JBDlHG8IeEWxQPoVw\nr06uJH1v3p/ZyOVA9iTlP+Td6faPeSLUtWVzehPbfcf+Q1iH265IyzNePb8gLbfg4w89l4AHmajt\n7LhO8juQ3U+nRkpguAZ0nprZbDO71czWmNnDZvbhQn6FmT1hZh3FEeVEEEKUjbYajxGiFrvaDVzs\n7veZ2UTgXjNbUZRd5e6fHb7uCSGaTglGXLXsZL0B2FC83mZma4CZw90xIcQIUQKvYl3rbM1sDvBq\n4O5C9CEze8DMrjOz5P5WZrbEzFaZ2aondw+pr0KIZtA74qrlGCFqNlxmNgH4LvARd38W+CpwNDCf\nyojsc6l67r7U3Re4+4JpLW7FhRCUwnDV1LSZtVMxWt9y9+8BuPvGPuXXAD8alh4KIZrLaAj5MTMD\nrgXWuPvn+8hnFPNfAGeTDyHOc2SuLPDvZurMPTYomBnknI+CooEg9hc/IfJ5E2+l/cZMOzfVt2P1\nc8fFg+UdTEzKt2WWQ0REOecnsSWs807S2zI/RZwnPgrynsGvk/KnV7001BUuYbjrirjOnYH8d3GV\ncNlDVyBfm9EVfTTplR0VUtf5IlkOUUv3TgHOAx40s96UAB8H3mNm8wGnEkP/gWHpoRCiuRj5rBQt\nQC1exTtJ2/Hlje+OEGLEaeCjopnNBr4BHA7sA5a6+xeqzjHgC8BiYAfwXne/L6e3xQeEQoim09hH\nxeQ6UHdf3eecM4B5xbGQiuMvN4HTsLRjQojRRIO8iu6+oXf05O7bgNQ60DOBb3iFu4BJZjZjoO4J\nIcQL1PeoONXMVvV5v9TdlybV7r8OtJeZwLo+77sK2QYCmmu4ohW5udTJ0Q3M7D4d+jcDDyHTM7oi\nD2U69rhCKpAcINgVGwg9kc++sj0pb+uO0yD3BDdtS8ZFtS3wRG4P5OuJ/yFGunI8tTH94bSNCa5z\nVmaL6Z8GM8s5D130S4jSM0OcojlyuB6e0bUqU1Zv+0OlvkfFze6+YECV+68DrW6xmiDrQAWNuIQQ\n/WlwyE9qHWgVXdBvo4JZ5IcGmuMSQlTRwJXz0TrQKpYBf2oVFgFb+6wRTaIRlxCiP431KkbrQI8E\ncPerqSytWkxlie4O4H0DKZXhEkL0p4GGK7MOtO85DnywHr0yXEKI/Sl7rKIQ4kXGKIlVbBzjgZTj\n9CeZOrcEXtG3Z0afkUdkMLrWBfJrMt7af64/MJz5aX2HLAt0vSxWNf7YtD/+YM4K6+wMdoyOcsHP\nDm8MfJH/lZS/jR+EdV4+/ZGkfDUnpfv1VLVH/QX2HpNeDuGnhFWwHwcFwf4FAP7hQNeFQYUo+Brw\nYN8Fe2dcJ6kv/XHVRwkSCba4XRVCNB2NuIQQpUOGSwhROmS4hBBlxOVVFEKUCT8A9pQ9kWDDW0tl\nAs7t1vtHg8hF+7ZAfmF96ZEBOC2Q/1WmX9GO1cGu2AB01OeJfHZeOvgaYBW/n5Q/FsghDsA+jE2B\nrnSqZYBz+GZSvjFTJyJK3by3o/7UzfYfmYaitMqZWG67MiiIvIdxtmvsNUFBzoBMSMiyocm14Qbd\nbbVGA+4beoODQCMuIUQ/3IyeMbWahkasv6gfGS4hxH70tLX2JJcMlxCiH46FOd1aBRkuIUQ/HKNb\nhksIUSYcY0+Lx/w013BNAF6XkAdxWkC818fFGffJ5YGHLvoszsu0vzWQR95GiL2HuzN1IoI6h7TF\nk6Ibg5jENuJ0z1G65d3BTZvK5lDXM4GHsoNFYZ1Xck9SPibqc+6bG8UXZjyEYRrkTKxiMu4WwnTP\nfnOsyl4bFGQ8kclU0A0YKJXhUXFAn6eZzTazW81sjZk9bGYfLuSTzWyFmT1a/H3J8HdXCNEMemir\n6Rgpalms0bsv2nHAIuCDZnY8cClwi7vPA24p3gshSk7vHFctx0hRy07WGyi2CXL3bWbWuy/amcCp\nxWnXA7cBlwxLL4UQTaPyqNja09919a5qX7TpvQnt3X2DmaXWxGNmS4AlAEdWbwMphGg5KpPzB450\nN7LUbLiq90WrbN4xMMXmkEsBFpxoDQhIEEIMJw6jYzlEsC/aRjObUYy2ZkAQ1CaEKBmj4FExsy/a\nMuB84DPF3zgvb8HeA9v43ez9I0PHHbEjrHPI5L3pguWZEd/8QH52MOC7O6Mr2pV6YTx4/CVzkvIp\nma2sp7EtKX88GZUOKzkn1LWaE5Pyxzg6rLM2CICexDNJeW5X7KjsZdwf1ukJUkevC7Yst9wygeBb\n7Zl9ZOwLQcGsuE6kz34ayN8a6wrJBVmnlnA0Isi6BMshajGr0b5onwG+Y2YXAL8F3j08XRRCNJvS\nG64B9kXLLcMUQpSQ0TLiEkK8iHAsjJhoFWS4hBD90IhLCFE6ZLiq2Es76xMRyDvaDg7rTJ+fXmXR\nNj+KioWngijXOUEg8bqFx4W6Ig/ZbGaHdTYHnsAHw5zOAOmdPzfyrqS8I3SdkrzHEAdSA+zZnV5w\nOGZsOsh5bCZifGLgIX3kqZfHdSal60zq/l26wjGpCOOCh9Ji+1pche2BPAiYBrCLgoJUSmWA4FKA\nvPewnjqDyHSeYlSs4xJCvHgoQ8hPrRnxhRAvEnofFRuRHcLMrjOzTWaWHAeb2almttXMOorjslr6\n2NpmVQjRdCpexYbFKn4d+BLwjcw5K939HfUoleESQvSjkY+K7n5HkZyhoehRUQixH01OJPhaM7vf\nzG42s1fUUkEjLiFEP+pcDjHVzFb1eb+0yAhTK/cBR7n7djNbDHwfggDVPjTVcG3hUH6YcPvvCAJs\nAY5gfVKec+1HN/0wNiblOzPtrwuWPeTcxdEwO9IF8XV2BgHbuSDnR3anlx3s3hXPW+zqnJwuODYt\n3rYlvv/7toxPF8Rp6nm645B0QbS0ILd8YBC7UtMZyKP2IVx2EeaJzwWGR8sx4o853bcGbCxdp+Ha\n7O5R9v2B23J/ts/r5Wb2FTOb6u6Zb4tGXEKIKpoZ8mNmhwMb3d3N7GQq01dxGpUCGS4hRD8auXLe\nzG6gkuJ9qpl1AZcD7QDufjVwDnCRmXUDO4Fz3X3A5DwyXEKI/WiU4XL39wxQ/iUqyyXqQoZLCNEP\n7WQthCgdZQj5aWrvxtDDpIRrZTATgbmhbPTf4rEgPXFOV7T7c+o6enmEtFcvF5gceQ+ja8l5YqeM\nTc9tjhsbp8je9qp0MPvjPw7cirlvTuQPynnVopj5KDA5pyvyHkaeu1z7uZ2sozpR33L3bDC/xNR9\njnMP1IWyQwghSsWo2p5MCPHiQHNcQojSoTkuIUQp0RyXEKJUKHVzFVuYxLJErOKfEefU3cyUpDzy\n9kH9MYk5XVFeouNZHdaJ9OXiC6M+dzI3Kd8QpGeGOHVyFA8JcOvWU9MFUZfr3agUspurZr2EKQYT\nd5iNfgvI9TnyeEZZpbsyutIO7zyptNIN+EWXYY5rwLQ2qQyGZnaFmT3RJ2vh4uHtphCiWVS8imNr\nOkaKWvJxfR04PSG/yt3nF8fyxnZLCDFSNDJ183BRy07Ww5LBUAjRurT6HNdQMqB+yMweKB4lXxKd\nZGZLzGyVma3a8+TWITQnhGgGvXNctRwjxWAN11eBo4H5wAbgc9GJ7r7U3Re4+4IDpx06yOaEEM2i\ndx1XLcdIMaiW3f15F5iZXQP8qGE9EkKMKKM25MfMZrj7huLt2cRJbPuxg3F09Lx6P/ndbQvDOlHA\n8kLuDutE3o6/5CtJ+VncEOo6njVJ+Tu4Jazzdb6ZlEc7TAP8jDcn5X/M9Un50TwW6lq5+/Xp9sfG\n7e9aFaRujsh9c6LlABMy+eGmprdg9mDza/tBpv0gLtzfHlexK4OCzriOrwh0nRFUGMwSktyyjxfx\ncogBLzPIYHiqmc0HnMpH+4Fh7KMQosmUPuQnyGB47TD0RQjRAmjlvBCidMhwCSFKSennuIQQLy72\nccCIhvPUQlMNV8/Odp7+5cz95MtesX/gdS8v51dJ+Sf5bFgn8hJu5LKk/IhM8PO9/F5S/oWMP2Iz\nZwfydMA4wNtIu8l2BJ7Ilbw11HX02IeT8i09md1Fo6Jc6uKIlLcL8KPTnkMAuzeQ3x5UyAVMB967\n0HMI8XVmUiFbtH9N0L7fnNGV/spkvZpJj2MDNoSF1l85rxGXEKIfmuMSQpQOR3NcQojSodTNQoiS\noUdFIUTpcCzM/NsqyHAJIfqhXX6qcZIu3JdkEo5HQ9bTMgkpxgZrUO7m5KQ8yusOcZ72H/O2sE6U\nW34LYdoy1rOnLl1zMusUDgx8+JPa4vv8dPf+y1SA+ndrhnBpRbTkIasvF2QcEe1YndMVBUDndr+O\n6gRLNSwd+15hQiDP/UJT7Q8lw14f9KgohCgVZZjjapB9FkKMFhyjZ19bTcdApDbbqSo3M/snM1tb\nZFQ+qZY+asQlhOiH7zN272pYyM/XgS8B3wjKzwDmFcdCKtmV4wR9BTJcQoh+uBs93Y15VKxhs50z\ngW+4uwN3mdmkqkSlSWS4hBD9ceoxXFPNbFWf90vdfWkdrc0E1vV531XIWshwdVP3bsLL+cOkPOdV\n3MbEpDwKTJ7PXaGuaFfoqF8Ax3NfUj6OHWGdB3lNUn406YDp6cHO1xCngbbHMqmTI69e9HkFgdQA\nno5Lx26M64SByWcOQldnoOvyuIp9NKMvwL8a6IoCpqOdrwFfGejKeSJTn1m8KXvNuBvde2s2XJvd\nfcEQmktF3me+qBU04hJCVGHs62maaegCZvd5PwuCNUh9kFdRCNEfB7rbajuGzjLgTwvv4iJg60Dz\nW6ARlxCimn0GuxpjGoLNdtoB3P1qYDmwGFgL7ADeV4teGS4hxP5kEijWQ7DZTt9yBz5Yr14ZLiFE\nfyoJuVqaWvZVvA54B7DJ3U8oZJOBG4E5VHw4f+TuzwzYWuBVfGR3sOsncPCup4OS3w/r7No+Limf\nOOnJpHzH9leGuu7vWpTu1zFRv2DX2vTi30NPiN1K0XXuWvuKpPzXk44PdVnUzOY4dXJIvd5GwP4j\nKMjFCgbt2NcGoSv40dmnM3WiX0KmnbrTLWfiHm3/fZIr5H6hKX0N8CqWwXDVMjn/deD0KtmlwC3u\nPg+4pXgvhBgNOLC3xmOEGNBwufsdQPVw4Ex4fm/464GzGtwvIcRI4cDuGo8RYrBzXNN7XZbuvsHM\nDmtgn4QQI0kJHhWHfXLezJYASwCYcuRwNyeEGColMFyDXYC60cxmABR/N0UnuvtSd1/g7gs4ZNog\nmxNCNI1ew1XLMUIM1nAtA84vXp8PwW6mQojyUQLDVctyiNTK188A3zGzC4DfAu+uqbU9VCKTqtja\nNb3W/r7Aroxrf0La3bEjWCaxr3N8rCtIQ7yra3JcJ3Dtb+04vO52Qhf6QZnrz6Ubjqg3mDq3w/UJ\ngTxKTwz1/wg6M2X13kuorNtOUe9yhBw5XdGyk1wbqa9Tozx9Lf6oOKDhyqx8Pa3BfRFCtAL7GFyu\n/yailfNCiP6UYHJehksI0R8ZLiFE6ZDhEkKUEhmuPkSpmzMeQk/HGHPw1kyQc0fa49fzxvak3DpC\nVUkvKADnXBHX+VFQdmw84+kz07mLLcoqnfnkPNir1r4b1wm9Wp2BPOMg9f8etP+tTPvB9fj5abn9\n74yuKMj86iviOqcHZbn7vCItt9cGFTKb6PpvAl3xXsVpL20jcvtpxCWEKB37gJ0j3Yk8MlxCiP44\njUmPM4zIcAkh9kePikKIUqE5LiFE6ZDhEkKUDoX8VBEEWed2+LUomLc7E+Qc6LPow+iMVYWBwdGS\nB4gDlm8Ltmsm07coyDaX8/3KoCD3aUfLPqL2c/nTvxAUPJRpP7jP1hmcn/nOhMsOcktYovufu89R\nnvio/Vz++mjZQ+46U/esUZPqGnEJIUqFHhWFEKWjd7OMFkaGSwjRH63jEkKUDj0qCiFKh6OQn370\nkPa4dGbq1OttgzgAuF7PWa79SFeuTu6/WJiieRDtR+3krrPee5O7lownLiRKnRy1k/vmRvc/5+LP\npZVuVDu5+xJdT+4+p35LjdrJWo+KQohSoUdFIUTpKIHhGuz2ZEKI0Urvcohajhows9PN7BEzW2tm\nlybK32tmT5pZR3G8fyCdGnEJIfanQXNcZtYGfBl4K5WZ1HvMbJm7r6469UZ3/1CtemW4hBD9aWys\n4snAWnf/NYCZfRs4E6g2XHUxJMNlZp3ANir2udvdFwxFnxCiBahv5fxUM1vV5/1Sd1/a5/1MYF2f\n913AwoSe/2ZmbwB+BXzU3dclznmeRoy43uTutTnAo+UQmUBS/0Rans1fHujziwNdUVAwhAGzfnlc\nxaJ9vY+N6/hVga5PBRUyk6f+14Gui+I6df+HzbV/TdD+hRl9cwJdXwx0vTOjK1jC4f8VV7HjgoLc\ndT4a6JoXVMh9zwNDYZkNy5PLKxoxqV7fcojNAwxYUlfgVe9/CNzg7rvN7M+A64E35xrV5LwQYn+6\nazwGpguY3ef9LGB93xPc/Sl33128vQb4vYGUDtVwOfATM7vXzJYMUZcQohXoXQ7RGMN1DzDPzOaa\n2YHAucCyvieY2Yw+b98FrBlI6VAfFU9x9/Vmdhiwwsx+6e53VHVqCVAxagceOcTmhBDDTgMn5929\n28w+BPyYyuZp17n7w2b2V8Aqd18G/IWZvYuKKXwaeO9AeodkuNx9ffF3k5ndRMWDcEfVOUuBpQA2\nYUH1s60QotVo8AJUd18OLK+SXdbn9ceAj9Wjc9CPimY23swm9r4G/oB8jkshRFlo3KPisDCUEdd0\n4CaruD3GAP/H3f8zW6OHtMcnl7r5fUHBpEw7wTDX/jw4v95AVsA+Wn+d3E7G4XVGQda5lMKRVzNH\nFEwd9TkTlGznBQW5x4/geuytwflRUDaE3+rQc5ipk/3MZgQFuXTLkS6L1h9kfqJjEg67PfW3vR+j\nOZFgsaDsVQ3sixCiFVB2CCFE6ShBkLUMlxCiP/tQIkEhRAnRo6IQonS0+MKl5hqufaS9VzkPUeC9\n8n+Jq4RerTmBvCPT/iA29wzr5CI66/Tq+cpYlb02005EI9MQR33OxQq+PiiIPHS5+x99q+P9eOPr\nybVT5zyQZ4xB7FXMuPe2j6uvA6MIxSoKIUqHDJcQonRojksIUUXruxVluIQQVbT+0nkZLiFEFa2/\nAlWGSwggJk2gAAAFY0lEQVRRhUZc/Yny/OR6UW/wbaaO/2ug600ZXYE73G+Kq9irg4LOuE60VMDO\nCOSD6HP2PmeCiZPkdsUOlrBkl2kESxU8SCkXBjhD/Jllspjb3KAgc50eTAOZPVuXfPCkOtCo3M0y\nXEKIUuFocl4IUTI0xyWEKB16VBRClA6NuIQQpUMjrv4cQNp7lEvDHHl1cv8QDk+Lw5TGmTTEUd/s\n7Prr5Ag3OI2CjHMBw1HZYP6JRrpy9yyq05WpMzUtDjdXzV1/Z6BrYqZOROaexZu1Rj/69kxDO2rr\nz4Dsa4AOjbiEEKVDIT9CiNKhR0UhRCnRo6IQolRoxCWEKB2tb7iGlEjQzE43s0fMbK2ZXdqoTgkh\nRpJer2LrbmU96BGXmbUBXwbeSsXRfY+ZLXP31WGlKcB7E/Kcm/yEQN6ZqTMrkA/GTR+5/XN3LqqT\n+5yjsjmBPBfkPJjlEAsCeZSLPacruv7oc4E4MDxYJpENCh/M9UdLWDozdcK8+1MylSIatRyiEQ9R\no9ureDKwttjRGjP7NnAmEBsuIUQJaP1HxaEYrplA30QhXcDCoXVHCDHyjO4FqKl1w/ttwGRmS4Al\nABx65BCaE0I0h9YfcQ1lcr4LmN3n/SxgffVJ7r7U3Re4+wLGTRtCc0KI5jCKJ+eBe4B5ZjYXeAI4\nF/iThvRKCDGCtP7kvHlue92BKpstBv4RaAOuc/dPD3D+k8Djxdup5PdDHm7Uvtofje0f5e5DerQx\ns/8k9udWs9ndTx9Ke4NhSIZrSA2brXL3yAmv9tW+2hch2slaCFE6ZLiEEKVjJA3X0hFsW+2r/Rd7\n+6VmxOa4hBBisOhRUQhROmS4hBClY0QM10inwzGzTjN70Mw6zGxVE9q7zsw2mdlDfWSTzWyFmT1a\n/H1Jk9u/wsyeKO5BR7Embzjanm1mt5rZGjN72Mw+XMibcv2Z9pt1/QeZ2c/N7P6i/U8V8rlmdndx\n/Tea2YHD0f6oxd2belBZrPoY8FLgQOB+4Pgm96ETmNrE9t4AnAQ81Ef298ClxetLgSub3P4VwP9s\nwrXPAE4qXk8EfgUc36zrz7TfrOs3YELxuh24G1gEfAc4t5BfDVzUrO/jaDhGYsT1fDocd98D9KbD\nGbW4+x3A01XiM4Hri9fXA2c1uf2m4O4b3P2+4vU2YA2VzCJNuf5M+03BK/RmT2svDgfeDPx7IR/W\nz380MhKGK5UOp2lfpAIHfmJm9xbZK0aC6e6+ASo/LuCwEejDh8zsgeJRctgeVXsxsznAq6mMOpp+\n/VXtQ5Ou38zazKwD2ASsoPLEscXde6OUR+I3UGpGwnDVlA5nmDnF3U8CzgA+aGZvaHL7rcBXgaOB\n+cAG4HPD2ZiZTQC+C3zE3Z8dzrZqbL9p1+/uPe4+n0oGlZOB41KnDVf7o5GRMFw1pcMZTtx9ffF3\nE3ATlS9Ts9loZjMAir+bmtm4u28sflD7gGsYxntgZu1UjMa33P17hbhp159qv5nX34u7bwFuozLH\nNcnMerOzNP03UHZGwnA9nw6n8KScCyxrVuNmNt6sshm7mY0H/gB4KF9rWFgGnF+8Ph/4QTMb7zUa\nBWczTPfAzAy4Fljj7p/vU9SU64/ab+L1TzOzScXrg4G3UJlnuxU4pzit6Z9/6RkJjwCwmIp35zHg\nE01u+6VUPJn3Aw83o33gBiqPI3upjDgvoLKjwi3Ao8XfyU1u/1+BB4EHqBiRGcPU9uuoPAY9AHQU\nx+JmXX+m/WZd/4nAL4p2HgIu6/M9/DmwFvg3YOxwfw9H06GQHyFE6dDKeSFE6ZDhEkKUDhkuIUTp\nkOESQpQOGS4hROmQ4RJClA4ZLiFE6fj/bGZR578SvHsAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fefe4188d68>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Load the last statepoint file and keff value\n", "sp = openmc.StatePoint('statepoint.' + str(batches) + '.h5')\n", "\n", "# Get the OpenMC pin power tally data\n", "mesh_tally = sp.get_tally(name='mesh tally')\n", "fission_rates = mesh_tally.get_values(scores=['fission'])\n", "\n", "# Reshape array to 2D for plotting\n", "fission_rates.shape = mesh.dimension\n", "\n", "# Normalize to the average pin power\n", "fission_rates /= np.mean(fission_rates)\n", "\n", "# Force zeros to be NaNs so their values are not included when matplotlib calculates\n", "# the color scale\n", "fission_rates[fission_rates == 0.] = np.nan\n", "\n", "# Plot the pin powers and the fluxes\n", "plt.figure()\n", "plt.imshow(fission_rates, interpolation='none', cmap='jet', origin='lower')\n", "plt.colorbar()\n", "plt.title('Pin Powers')\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There we have it! We have just successfully run the C5G7 benchmark model!" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
atlas-outreach-data-tools/notebooks
september_2018_v-2.0/ATLAS_OpenData_06-cpp_simple_cut_and_count_analysis_example.ipynb
1
22978
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<CENTER><img src=\"../images/opendata-top-transblack.png\" style=\"width:30%\"></CENTER>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<CENTER><h1>Simple ATLAS OpenData HEP analysis C++ notebook example</h1></CENTER>" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//%jsroot on" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "TChain *dataset = new TChain(\"mini\");" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//dataset->Add(\"mc_105986.ZZ.root\");\n", "//dataset->Add(\"mc_147770.Zee.root\");\n", "\n", "//This input is readed directly from the Internet. If you are ofline, you can use the line above\n", "dataset->Add(\"http://opendata.atlas.cern/release/samples/MC/mc_147770.Zee.root\");" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "const int vs = 5;\n", "\n", "Int_t lepton_n = -1,\n", " lepton_charge[vs], \n", " lepton_type[vs];\n", "\n", "Float_t lepton_pt[vs],\n", " lepton_eta[vs],\n", " lepton_phi[vs];" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "dataset->SetBranchAddress(\"lep_n\", &lepton_n);\n", "dataset->SetBranchAddress(\"lep_charge\", &lepton_charge);\n", "dataset->SetBranchAddress(\"lep_type\", &lepton_type);\n", "dataset->SetBranchAddress(\"lep_pt\", &lepton_pt);\n", "dataset->SetBranchAddress(\"lep_eta\", &lepton_eta);\n", "dataset->SetBranchAddress(\"lep_phi\", &lepton_phi);" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "TH1F *h_lep_pt_leptons = new TH1F(\"h_lep_pt_leptons\",\"Lepton pt in GeV\",20,0,200);\n", "h_lep_pt_leptons->SetFillColor(kRed);" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "int nentries, nbytes, i;\n", "nentries = (Int_t)dataset->GetEntries();" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total # events = 7500000. Events to run = 750000 corresponding to 10% of total events!\r\n" ] } ], "source": [ "// IMPORTANT: fraction events we want to run\n", "fraction_events = 0.1;\n", "events_to_run = nentries*fraction_events;\n", "\n", "std::cout << \"Total # events = \" << nentries\n", " << \". Events to run = \" << events_to_run\n", " << \" corresponding to \" << fraction_events*100\n", " << \"% of total events!\" << std::endl;" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for (i=0; i<events_to_run; i++)\n", "{\n", " nbytes = dataset->GetEntry(i);\n", " \n", " if(lepton_n>1) // Number of leptons in the events has to be at least 2\n", " {\n", " if(lepton_type[0] == lepton_type[1]) //Leptons of the same family, i.e. 2 electrons or 2 muons (those are the two most energetic leptons)\n", " {\n", " if(lepton_charge[0] != lepton_charge[1]) // The two selected leptons must have opposite charge\n", " {\n", " //PT\n", " float lepton_pt_inGeV = lepton_pt[0]/1000.; // The default value in the root file is in MeV, so, we divide by 1000 to get it in GeV\n", " h_lep_pt_leptons->Fill(lepton_pt_inGeV);\n", " }\n", " }\n", " }\n", "}" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAAKgCAIAAAD/J5mOAAAABmJLR0QAAAAAAAD5Q7t/AAAgAElE\nQVR4nO3dYZKrNtcuULiVeYEnkwwDGEYymIBHxv2h9+hTANG0GwPmrFWplI+N8cZ2o8eSgHIcxwIA\nYMn/O7sAAOC6BAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACy/ji7AIB3GYYh/r+u67quTy0HPpIe\nBT5A27ZlWZZlaUf/WcpfDn7dYRjqui7L8vF4PB6Pruu6rns8Hm/6Fg3D8N0tDeX5SvMRBAXgVuq6\nfjwez+czt8Dz+SzLsm3bHV8x3t642ljejmXAmwgKsJuzfkAfIHbqhG78awq/7NOIUFVV0zR93/d9\n3zRNVVXxoa7rdmykm6aJq91SZ7ytR4HrM0cBeJfQfB7WFj4ej/SlJzkglDEMQ9u2IUx0XbfXxIW2\nbbdEhCAGhTS4wGXpUQDepW3btm2PCQrpq/R9n+stqOt6GIbYQqfZ4ofiOr/sqIiRwrgDH0FQAD7e\nMAxxxKHv+y+jSdr5v9dgSnzR9a4F4w58HEGB30X4aRvmmYeflbklh2FIH02f2Lbt4hMnTxl+WVwy\nFLC+wtxq68QLv0cnhW1Z4fwpuU378rmT++M/t7zD62LlVVVtbH03dgBs/9qk61n/TCcFwNWNcHlx\nplhVVS88fWWP3Pf9ZOG+7+ND8fbEpIwfLrayXeHRpmlWtmK+CSvSl9u4wlzN219usnD8NFfek+9+\n0N+qKup/WXz0W1+byVPCR7Ze6rc+ODiRoMAH+ElQyO3rc/vr2HTFF82ZP2WltVtJCfMVToqfTNef\nN2DffTeqqlr/OZu+J9urXXnz0zvjG5u+J/OSVtraiXQ9W9+Ir3z5c3+xmf+ykneUCu/my8oHeDko\npLv7dM8+abbTp8xb9PSJaXqYF7PSBuRWOGksV561Uuf2NnWywvSJK+/J+N/WfeNrjV8FhcXi049s\n46vEFW5/H9a98LWJFp84L/W1vjE4haDAB3ht9/rlr7fXGoOV1X7Zyn63dVmv5IW3JV3hYkuWa7/f\nFBQWm/b192puS4f/dtu/NosvF4tZ/FDW33y4JpMZua04uSw3iBCbhNx0tsXxgrqutx8IF8Rp8LlK\n4v3fquQnB9flJv3FF9p+VoCfWNyE+PZ+d1bjyjTGetViSV9+bRbLi09fOTXkeqlwOWcnFfjaaz0K\nW77k82W2jCLnlsk98bVKtjzxu29LXOHKL9rFZd7Ro5DrAPjua8VgsWWjFi3Oyfjuds0fndSz+xAJ\nHEOPAr+1lTlrKw996+fgNQ+HW9mEl3/Qn+6wgtc/ylz/UOyk0Z3AZxEUuKe0zSjzYv/wvI05eG++\n0jwfnDAO2/B3XMUx99Di76T54MLPvzZFsl250QdBgc8iKMB7xbZE8/AmL7+xb+qBSOuJL/Hl1Ae4\nLBeF4uaqqtoy6e99rXhd16HP+eN68j9FvCDT+vzBufXlt5z6Ive1aZomlBRPNOn6DnwuQYF7Srt/\nXwsBB7frsdE6vePhowNNuAzVy09P3/yffBAvZxe4IEMP/NZWrlywsov/VlP65Yj1KVY24TqRZbvY\nn7/9qM6fbN2WC16kk06MO/DRBAVua8vZDh6Px+PxyC2Qawle3u/nXii9ptG3Vviy3OWV003+oKCQ\nvrFlWX65/JBcbXLi51+bIL57sXdhfZ1wWYICtxV3yrlfmXFXnmsRF1vTtI3ZuN//8vfuKQ3JYgyK\nm3ypgzm3SKcUrGeFtm1zOanY42szWc+lepLgBYICnyRMOFiXHmUQW7uyLCftYl3XW9r7yRPTNmZ7\nUzr5vTu5cnRs1bZfInkXk9/EaSXFB85UqOs67eAJF4aebEXbtmVZrp8oc5evTTC/zNXXmwEXdPAJ\nnuAF39rDTk57990/gfjD9MscMK8zfbSqqpVLLn1rhSsnXvxygZUKV8xPcTi5GtbGV1zctC9PvPja\nWSDnda6I9ede6Ms1bClmy0Wk4Pr0KHBzY/6SwVVVrbTfdV2vXz96fn/aSj2fz8l4/+JT1lf4Pitv\nS9/3846N9Nfz8/m8bHd627Yrmxb0ff9lf8nLX5tU+jZ+3FAOROXBuyc4xWSa+uLVgOKSYXChaZrQ\nOsZD4defGJ8e29S2bedLbq/kHeLgQvjDnxSzWHBq8VRCl5V+cMVLb/W5HxZchKAA/zEPCncyCQoA\nXzL0AABkCQoAQJagAABkCQoAQJagAABkOeoBpsLhcLc8Cu7Gmwa8iaAAAGQZevipcIKd+VnlAeAG\n9Cj8SLiAbDg56/P5rKpKXADYcrFvTrcxAAgKP1KWZTwxfjijn/cToCw1Lle3/TMy9PC6ybywGBfO\nqgcAdif07SZcqN77CaBH4fq2f0Z/vLuU30GICEVRbLz4LAB8CkGhKIoiXk148dHJdXhzC4Q5CnHK\nAgDcgN6hoiiKsixzByzE3oJoJQqUZXnLaxMDfMu8W/vlk32F48+v/wOsbdvP2vmbzPgNK9+/tm3j\nmELf903TFEXxeDziow4BAtji8Xi81o52XXfiJPGNLz0Mwy51XnM6/O8bFEJKLcty0mGQ6rqu+NWF\nUNd127YhK6RDFfGr7+S4ADfzcr55+eUumBVuGBRW3uX0oWEYViJCXLiqqrTtD9+YECCKomiapuu6\nsizLsnw8Hk3TCAoA3MndgkKYUbiYFcJDaQfAOI7jOOYOVQhLrjf8bduGNfR9P47jZw1QARwsjNgG\nr+0wQ09wkO6fwwrT9W/8aR6WTFcbnxgGl8OvwZ/UmW5p7uWGYQiv8ng84nalm5PWEBdeefSH7/N/\njLcTRgdCyx2FNNA0zXz58FBVVZP7w4mZJ+tZuR+AYN64hBanqqrwyyrsSDeuKu66w7OapomTxuKu\nOzZq6fq37KgnT4y3x6R1+HI9Ycm42LySuAmT9yFtiGM7NX/1xSXjaiet2Mb3YXsAuGFQGGdZYSUl\njPmgkH5dUoICwLpcUIj/nLSs66tKm8P0KWFXv7j+cM98x764/pUnrrQdqbS2tKogTUWLL5fGiDRt\nTOqfvBVpYZOXmDz0w6Bwt6GHIMw6DGMQYcRh96MWLzjfBODKQmMWvDCdaz5hfHLi/HT9RVE0TbM+\nEW2xsPDPjU9cqTM12diQJNafsvjEyZIr72HXdek4+w8nz90zKBRJVng5JUy+OhMmLQIcKbSR6eh7\nOFj95z/bJvvzH+7eQ8hI64zz3xfXv5hLFg+jmyyZqzOMOMSJ9j//kXzboFDMLtcEwOcKe/J5x/jP\nG8JJ1Phh8qiqanHI41vrz11lcP0XbHxumK0fE8MP36LbBoU44hDHIL67htznFAKd8AFwpPk+edKp\nPvldPvkdv2LyxOfzuaU93r7CcNqe+M9Js7LycvMlv2x60vckJIaQFTbVnXHPoJDOS0jnK3xrJS4b\nDXAdYZ8cd+ZhPz9pktMDC4ul2QDrK483fvITfDJqEE7aOAk0cf0rDU2YYzFZ8svCwmUH0lf/ee65\n4VEPi8c4LB4zmS6/0lM0X8+WSbAAv6154zLfzeb2yfMnxl3u/LQ3k/WnD23cUa8/cWNbOTkiY1Jn\nuuHFLL7MXy4uPylssv60gPSoh3k8ym34+kb935Ibl/sUK0dC5rLCSlCIb3d6rYdbpiuAHb11P9n/\nMnnFsBufP7SuSI45zP2YfO14+Fyd8TQJG1/utQIWX31SycZV3fAy07ljHF7oSmrbNvTbxAtBFUUx\nj7QAHGZ9nP7lCWS5J+6+wu++3GsF7DiR7m5BYf1qpItZoa7rMX+pzTB0FE/nbA4jwI7Wz47c9/0P\n97phzH5l/RvXs17nSiNyA3cLCm/iIg4A77BXEzu5gF/05YT03BMndqxzl/Ucqbx3DgLgeGWpcbm6\n7Z/R3XoUXrjGFwCQc7egUNx9rAjg+vxmu5N7nnAJANjFDXsUADidToXbEBQA2J9R4IvbnuQMPQAA\nWYICAJAlKAAAWYICAJAlKAAAWTc86iE3k9MUXAD4rhsGBYEAAPZi6AGAg7RtWy75yQp/eB3qdxiG\nIRQ2v/Lw/P5hGOqZxScuXglzsuR8bT/emjv2KABwZX3ff2v5YRgej8dib/EFU0Lbtl3XhctJd13X\ndV2sPESiqqom9088n8/FdRaz7Z1vftu2z+dz54tZj/dyvy0C+Di5XXHTNC/spUOw+HFRBymKomma\n9J9934/jGBrveH9VVVVVzZ++uLGhvU5XG97JoigmK5kstl7nlsXGcTT0AMAllGUZes7DeEToVA/d\nCfHR9pf4z/RXdXxuOpwxDEO885geiMmrhCGD5/MZW/fi10//+XMfj8ekx6Usy/SJUdM0iz0H+2/j\nxkDxKe63RQAfJ7crDg1ePxOfVfz6/R2XHP/bDxGaxqqq5g/F+/u+T3++p/cXs5/gbzUpb94lMF9+\nUl68p1jqKph3S4QNDO/k+pZuby7v1qwKCgCnWw8KuZ+sRabTPu2Nn3Tgx+Z23mMfn56uNs0lbxW3\nNL70JBks/laPNQfpRm0JCjEJxVS00iZuby5NZgTgUGP+IPYt3eaL/e2he3/xEIAweTDcnh9N8CZx\niKTrunggQxgECQtUVTUZegilpu/AfBhiXV3X6Xs7jmMYwfnhVpujAMANNU0TGt1hGEJz23VdnPpw\njLZtq6qKrxgqCX0G8zKez2d6Z7gdJmGEDQmZ4/1VT+lRAODj1XXddd2koY1Boa7r2OUwWWxfK0dy\nhgJiSx8yRFpt8d8OlUkmCAc9rgeFYRjCBM9XSs/TowDAoYaZn68ztKCxjYwnHiiK4vF4HNaLEMqI\nzfkwDM/nM+aVx+MRNjbcPznt0mRIJYxWRPGe9QLCIEu4HfskfrZNehQAOFY43DHV9/3Kb+XwUFmW\n6wP2fd8/Ho+YD+LCTdOEExzFf75Y9zahjHQuQmyw46GeRTIyEkwOnnxNXddN06Rv73fPbbWoXJlU\n8onK8m5bBPBx3rErDiMIWxYrliZF5u5/k3PL2PIq2z+juzWrgsKOyvKfd6x2HP98x2qB67Arvr7t\nn5E5Cix7U0p465oB2J2gAABk3XAyY+6KpfrBXjMWf+21qrL4e69VAXCMGwYFgQAA9mLoAQDIEhQA\ngCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQAgKxDg0K8qPa6cImw3BXK04tzAwBvdeiZGbuuq6rq\ny8XmlyoP2raNFxQPa2uaRmIA+BThFPt930+ugFzX9fP5/K126ZN3oG3b+XuS+8FcFMXwS13X8U1r\n23b+lPmav+u4HoWNheYWG4YhpISmafq+b5qmKIqu61beRwAuaL7ffj6fZxRymmEY1je5bduVBYZh\neDwe4W3sui53haNirzd2fLOmadJehKqqVhbu+z4u2fd9+tD8zrDwZIUHbNFvoij+Dv+NRbHXf/+3\nTuDWcrvixaYn7vmbpjmiuAsIm7z4UPgZvN5AT96reYsZVFW10uZuby7f3qPwZW5KhUGHleGJtL8h\n3P7dcijARwsNYdqp0LZt2jqGR8tf0t1+en9ZlnEloZe+ruv5U65ppS+8ruvJD+zcYusrDI3vLp3u\nRwSFEEnS3oJFYbMXFwubOn/jwj1GHwA+SFVV6X77+XxOmr3H4xF+Mfd9/3w+4xh8uL/v+9BSxPuf\nz+fj8ajrev6UawqbHxNPWm2Yc7CedcZxjAuE5863N7xXu1R7lcMjw3hM0zSL7054T+cPhXsEBYAP\nks5Mn+/e67quqiq0fHVd930fFw6zHeu6Dj+70x7l9ClHbMMe4pS7ruteSDZt25ZlGeb1zx8qltLD\naw496iEnTFSMHzMANxZ/44Vfz5N2LjT/sTmYDFLE2f6Tcec0H2w5vO5c6UaFcZMXskI8WUDXdSE8\nxYcW08PLLtGjEKYmrB8HsvL0yaPl9+2yFQBsFH8Zzscdiv+29KHzINwuyzLM9p/Hi4/2k16Qtm0n\nP7NDm7jjD+/zexRWpiaky6xMWpy8xWMysRaAC2rb9vF4LA4WhJSQtnNpR3rcw3/0oPOWiQg54djI\nlZYuRIfXi5s5v0chJICQEIPY77R47ggAPl1oI3Pj6+l0/fTohlR6/r2PM5luuWWkIIzUFL/euhgy\nwihMmjkWO2l+ZONhlD+3eNqDL3/9h+Vzzw2hKT1+9MgtujfnUQBeltsVF8kJACY78PShSauZPj0K\ny4R2ofjveQWqqrr+KRnmLV0qbF16T3i7wu1JH3z69JUzNMwL2FhqOR7VUR96SyZHxRRL3UeTIyDC\n/8NMgkm18zvL8rgturey/CfcGIu/dltn8ff/1jn+udc6gQvaZVe8eLxbemfugLhP8cP6f/j07Z/R\nVeYoLN4/mcUaOqPS/pbiE2a3AvCCxdZhftq9z/XD+g/b/PPnKGwUhnPC5JcwoSEcK+GISgB4n48J\nCvEIma7rHo9HvEDUpydKALiyzxvRT6+nOX/UHIW9mKMAvMyu+Po+aY7CdxlrAIDDfMzQAwBwPEEB\nAMgSFACALEEBAMgSFACALEEBAMgSFACArM87j8KXwpWi5pz9AwC+64ZBQSAAgL0YegAAsgQFAI7T\ntm2Z2HhW/rquFy8BWP5XXdfDMOxa73sNwzAvuG3buq7X35n6v9KVbHn6twgKABykbduu65qmGcdx\nHMemabqui01aLg2sq6qq7/u+78MVhh+PxwddEujxeEyCQlmW4fLIwzCUZbmYe4ZheD6fiyvc8vTv\nuuEcBQCuKaSE9CLAwzCkWeEFMV6E/4cscv2sUNf1vLEPZceZdnVdPx6P+cS70PwvdkVMnh7e4R+W\nqkcBgONM2q1hGPq+L341nM/nM3Yq1HUdBxS2rz80ljEohB/Wk/VMeubDMq9szA/UdR26QFLDMFRV\nFf+ZizuTxVLzdf6coADAQZqmeT6fk6kJof0OjV9VVSFJhNwQxhSKosj1tOfEOPJ4PMJIR9/3z+cz\nvG5d16F/PmjbNtfuvk/bthu7PRa7BMLbGMQF0nWG4YkXhnIWjPdyvy06S1H8Hf4bi2Kv//5vncCt\nreyKm6ZJW+U4X2EcxxAUxnEM4aDv+3SF4aH5C6VrmKwn3gjCauMT4/onr3WkSf2TDQ9v1Ly28NaF\nFLW4TFhg8R1Ll9lYpDkKABwn/ckb5hN0XTcunf8m/TX8rV/8z+czLB/6IdJXTBcbhiGOQezzy/vH\n6rququrxeIR/5rY6fbviVqRbN47jMAyPx2OXw0AMPQBwkMmIQ5ygsPsxjbHhT9vadFpAOOAivPQ7\nxvVfNgxD6FoYx3FjiFmcF1nXdRht+XlJggIAB+m6bpIJNv6U397gpZMZQ0poE5PFwkD+dQ6RCL0s\nRTJvY3GxyZsW5zZuPy/FtwgKABwk9Kun7V96ZGPuzvXGb0iEWYqxh6Bt2+fzGV9ucl6BUMzx0xjX\npVkq3ZawdeF2OksxnbRYVdVkkuY+NW2cy/Ap7rdFZzGZEXjZyq543jDHh0KjmM5njCbTEtMXmiw2\nmdY3GVaYPzSfC3mkeQFpwekmh/ct3J68Oekatjfx25vLcr7ej1aWd9uis5TlP+HGWPy12zqLv/+3\nzvHPvdYJXNCXu+J4DOT6/bnFvmuv9RxmS8Hr7+GXT9/eXN6tWRUU9iIoAC+zK76+7Z+ROQoAQJag\nAABk3fCES7lTdusHA4DvumFQEAgAYC+GHgCALEEBAMi64dADAKfLTRfj4wgKAOzsd54rdr9zSBh6\nAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIOuGF4XK\nXbLsZlfpAIAD3DAoCAQAsBdDDwBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBA1qHnUWjbNv5/\nbhiGYRjC7bqu67peWcnKegCAvZRHnp6oLMuqqmIamDw0uWe+ZNu2Xdel9zRNM4kLZXnoFt1YWf4T\nbozFX7uts/j7f+sc/9xrnQCXcr9m6Lihh1wPQfErJVRV1ff9OI593xdF8Xw+06cMwxBSQtM0fd83\nTVMURdd1i7EDANjF24NP27bDMDyfz/DPeT/BMAyPx6OYnXo5pIe+70NcmPwzPnGywvtFubPoUQB4\nwf2aobf3KKQpIbdAURShhyBVVVV8NEr7GMLt9ZUDAD9xRFAYxzEOKOSsDEwUv+JCiA6pxTABAOzl\n/MMj27Ydx3EeFEJXQbg/RIH5MumjAMDuzg8Ki0ICqKpqvacBAHirywWFtm3Lsnw+n+ksxfU+g8mj\n5fe9a2MA4MNdKCgMw1CWZTwGMm3+1/sVJo+O3/eOzQGAGzj0zIwr4smUcmdkAgCOd4kehZgS+r5f\nTAm5SYu5SY4AwC7O71GIp1xcGQLInTIhPTICANjd+T0K4WIN62dZKJZOmZA7uQIAsJfzg0LoFXg8\nHovHI8RkEPLE4/EI54Ru2zac+Nk1JAHgfc4PChvVdR0vBPV4POLBEcYdAOB9Pu/aFbELYbEv4X5X\n4ziLi0IBvOB+zdD5kxm/y1gDABzmY4YeAIDjCQoAQJagAABkCQoAQJagAABkCQoAQJagAABkCQoA\nQNbnnXDpS2VZLt5/s1NlAcABbhgUBAIA2IuhBwAgS1AAALIEBQAgS1AAALIEBQAgS1AAALIEBQAg\nS1AAALIEBQAgS1AAALIEBQAgS1AAALIEBQAgS1AAALIEBQAg64+zC9hfWZaL94/jeHAlAPDpbhgU\nBAIA2IuhBwAgS1AAALIEBQAgS1AAALIEBQAgS1AAALIEBQAgS1AAALIEBQAgS1AAALIEBQAgS1AA\nALIEBQAgS1AAALIEBQAgS1AAALL+OLuA/ZVluXj/OI4HVwIAn+6GQUEgAIC9GHoAALIEBQAgS1AA\nALIEBQAgS1AAALIEBQAgS1AAALIEBQAg69ATLrVtG/8/NwzDMAzpkisrWV8GANhFeeR5DMuyrKoq\npoFUXdfP5zO9p+/7uq7Te9q27bouvadpmklcKMtDt+jGyvKfcGMs/tptncXf/1vn+Ode6wS4lPs1\nQ8cNPUxa/VTbtiEl9H3f933TNEVRPB6PdJlhGEJKaJomLtN13WLsAAB28fahh7Zth2GY9BZMhAQQ\nuxDC/7uua9s2dhiE3JAuU9f14/EI63/jBgDAb+ztPSSTMYX50MMwDI/HY35/uAhkLG/yz9yd9+vz\nOYuhB4AX3K8ZevvQwzAM4ziO49j3/eICoc9gZWAirKQoiqqqJveHe/QoAMCbXOXwyHlQSENA+P98\nmXCPoAAAb3J+UFifvgAAnOj8oLAu7VFYXyYqv++NGwAAn+z8oDCfeZBKj4NYXyYav+/nWwEAt3R+\nUAAALuv8oJCbkBjmLqQ9CvNlcpMcAYBdXDcozJeZT3tMwwQAsLurBIVJCAgnVwjnaQ7mp0zInVwB\nANjL+UGh+BUIyrIMF5CMF39KL/gUbsdzNrdtG07q7BqSAPA+h15mOideDyK9ENTkTI51XTdN0/0S\n7myaxrgDALzPtU5JHU/nvH6pycmN1P1Osn0W13oAeMH9mqHbbc/tPqGzCAoAL7hfM3SJOQoAwDUJ\nCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGRd4syM+yrLcvH+mx3YCgAHuGFQEAgAYC+GHgCALEEB\nAMgSFACALEEBAMgSFACALEEBAMgSFACALEEBAMgSFACALEEBAMgSFACALEEBAMgSFACALEEBAMgS\nFACALEEBAMj64+wC9leW5eL94zgeXAkAfLobBgWBAAD2YugBAMgSFACALEEBAMgSFACALEEBAMgS\nFACALEEBAMgSFACALEEBAMgSFACALEEBAMgSFACALEEBAMgSFACALEEBAMj64+wC9leW5eL94zge\nXAkAfLobBgWBAAD2YugBAMgSFACALEEBAMgSFACALEEBAMgSFACALEEBAMgSFACArAudcGkYhmEY\niqKo67qu6/VliqJo2/aYwgDgt1Ve4TyGwzA8Ho/JnX3fT+JCXdfP53N9mbK8xBbdQFn+E26MxV+7\nrbP4+3/rHP/ca50Al3K/ZugSQw8hJVRV1fd93/dN08Q7o7ZtQ0pYWQYA2Nf5Qw9hBKGqqjimEDoJ\nuq5r2zaOL3RdVyRdCIvLAAD7Or9HIc5LSO8M/4zRIdyoqipdLOSDECAAgHc4PyhMMkEw+WfIBLkZ\njgDAm5wfFEIIeD6fcQRhGIbQTzAZU5gHhaqqilmqAAD2cn5QKIoiTBDtuq4sy7IswxTF9IiGycEO\nAMAxLhEUYiCoqip0EhTfOU3CpEeh/L69NgQAbub8oBCOe6yqahzHcD6lcRyrqno+n2mAWFnDZEhi\n/L63bRwAfLbzg0KYjrA4mdGIAwCc6/ygsC49eHI+aTEkCUdDAMCbXD0opKdXcnQDABzsKkFhMnVx\nkglCUJiMRISnhHM5AwDvcH5Q6Pu+KIqu6+q6DpMZ27aNR0jGxUIgKMsyLrN4rgUAYEeXuMiVq0de\nkKtHArzgfs3Q+ReFKoqirut4bGT45+L8xPBoPJ2zOYwA8G53Cz73i3JneWuPwu50UQAXcb9m6Pw5\nCvBzMdYAsC9BgePs2DkBwDEuMUeB38fuWeF9wxkAFHoUAIAVggIAkCUoAABZ5ijch5n/AOzuhkGh\nLMvF+292YOuElADAO9wwKNw7EBzMAY0Av7kbBoXfnKYdgB2ZzAgAZAkKAECWoAAAZAkKAECWoAAA\nZAkKAECWoAAAZAkKAECWoAAAZAkKAECWoAAAZAkKAECWoAAAZAkKAECWoAAAZP1xdgH7K8ty8f5x\nHA+uBAA+3Q2DgkAAAHsx9AAAZAkKAECWoAAAZAkKAECWoAAAZAkKAECWoAAAZAkKAECWoAAAZAkK\nAECWoAAAZAkKAECWoAAAZAkKAECWoAAAZAkKAEDWH2cXsL+yLBfvH8fx4EoA4NPdMCgIBACwF0MP\nAECWoAAAZAkKAECWoAAAZAkKAECWoAAAZAkKAEDWhc6jMAzDMAzhdtu2Ly8DAOylvMjpieq6fj6f\n6T1N00yiwHyZvu/ruk7vKcurbNHByvKfcGMs/jq3koOVxd/hxjj+eW4lALuUVuEAABIqSURBVMUd\nm6FLDD20bRsSQNM0fd83TVMURdd1sfMgXabv+7jM4/E4p2IA+D1cIviEqzOklbRt23VdVVUxK4Rl\n0i6EsMyk4+F+UW4jPQp6FIAruF8zdH6PQmjmQw9BemfTNDEThLhQVVU60BCe2HXdIWUCwO/o/MmM\nIQRMphoU/52rGG7PlwEA3ur8HoUw86Cu62EY6rqu67pt23R2QjQPClVVFb+iBgCwu/N7FIIw4SDc\nfj6fkwkKk4MdAIBjnN+jEIRk0Pf9OI593xdF8Xw+N54pYdKjUH7fGzYIAO7gKkEh9B+EwYW6rkNW\niH0MYYghZzIkMX7fmzYKAD7dVYLC/NxK59QBACSuEhTWJyqGR+eTFuNEyDdXBwC/qfODQu7IhTQE\n5IICAPBW5weFMOgwORnz4kjE5NiHxTM1AQA7Oj8o1HUdOhXKsgxnUKjrOkxjDFMagxAIyrIMF5CM\nh1O6hiQAvM9VTkm95cqQrh65wrUeXOsBuIL7NUNXOeHS8EtRFOH8jIvLFMnpnM1hBIB3u1vwuV+U\n20iPgh4F4Aru1wydP0cBALgsQQEAyBIUAIAsQQEAyBIUAIAsQQEAyBIUAIAsQQEAyLrKmRl3VJbl\n4v03OwMGABzghkFBIACAvRh6AACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACy\nBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACy/ji7gP2VZbl4/ziOB1cCAJ/uhkFBIACAvRh6AACy\nBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUA\nIEtQAACyBAUAIOuPswvYX1mWi/eP43hwJQDw6W4YFAQCANiLoQcAIEtQAACyBAUAIEtQAACyBAUA\nIEtQAACyBAUAIEtQAACyrnjCpWEY2rYdhmHxoXh/27YHFgUAv6PygucxDOdgnhdW1/Xz+Uzv6fu+\nruvJcy+4RQcoy3/CjbH469xKDlYWf4cb4/jnuZUAFHdshi439JC7UkPbtiEl9H3f933TNEVRPB6P\nQ4sDgN/MtYLCymhC13XFry6Euq7btg1ZwQAEALzPhXpIhmF4PB5VVYWeg7Sw+NBk4sJ8kOJ+fT4b\nGXow9ABcwf2aoQv1KIRxhMU5jKHbYDIdAQB4t6sEhRAC+r7/cplUVVVFJlsAAD93iaAQJio2TZPr\nM5gc7AAAHOP8oDAMQ9d1VVW9PC1xPnHhu36+FQBwS+cHhZWpCVEYYsiZ9EOM37fDZgDAHZ18ZsbQ\ni7DYnRAnMJrDCABnucQpnJ/P53wWQjhxQvErKzyfz2EYJqEhPEuSAIA3Ob9HYd7Mh8GIcAREeLSu\n667rHN0AAAc7v0ch1x+Q3h9uT3odwthEOD8jAPAO509m3CgEgrIswwUk27YNYxNO4QwA73N+j8JG\n4cLTz+czvRDU+gmaAIAfumJQyB2vGOYoOBoCAA5zxaCwzlgDABzmY+YoAADHExQAgCxBAQDIEhQA\ngCxBAQDIEhQAgCxBAQDI+rzzKHypLMvF+3PncQIAcm4YFAQCANiLoQcAIEtQAACyBAUAIEtQAACy\nbjiZkd9TWf6z7wrH8c99VwjwifQowLLdkwfAJxIU+Gxj8dfZJQDcmaEHPt7uWaEs/t53hQCfS48C\nAJAlKAAAWYICAJAlKAAAWYICAJAlKAAAWYICAJAlKAAAWTc84VJZlov3j+N4cCUA8OluGBQEAgDY\ni6EHACBLUAAAsgQFACBLUAAAsgQFACBLUAAAsgQFACBLUAAAsgQFACBLUAAAsgQFACBLUAAAsgQF\nACBLUAAAsgQFACDrj7ML2F9Zlov3j+N4cCUA8OluGBQEAgDYi6EHACBLUAAAsgQFACBLUAAAsgQF\nACBLUAAAsgQFACBLUAAAsi50wqVhGIZhCLfbtn15GQBgL+UVzmM4DMPj8Zjc2TTNJArUdf18PtN7\n+r6v6zq9pywvsUXHK8t/wo2x+OvcSm6gLP4ON8bxz3MrAT7O/ZqhSww9hJRQVVXf933fN01TFEXX\ndWlQaNs2pIR0mXm8AAB2dH7wadu267qqquKYQpH0McTywqWe0i6E8MRJx8P9otxGehR2pEcBeNn9\nmqHzt2eeANL7Q3khN0zCxGSZeM/pW3QKQWFHggLwsvs1Q+cPPVRVVRTFJCVEIRmEPoPcMgDAm5wf\nFIZhmIev2HOQhoN5UAghY9LNAADs5UKHR0ZxgkKYsVgUxeRghxuIIwUAcGXn9yhMtG0bU8LGMyXM\nJy581xu2Y42UAMCnuFCPQno2hcncxqqqVjoVJkMSN5tF8i1mMgKwr6sEhXgype0dCTegXQfg4i4R\nFGJKyHUGhAWGYZh0HoRnORoCAN7k/DkK4ZSLVVWtDBmEKODoBgA42PlBoeu64qsQEILCZJpCGKGI\nR0YAALu7xNBD8esci3Oxm6Fpmq7ryrLs+74oimEYQsL4fSY0AMDxTg4K20cT2rYdhuH5fKYXggqh\nAQB4k5ODQl3X249mnJzO2RxGAHi3u1274iOuxuECThcXLwq1O1eZgtv7iGboW86fzAi/DyflBD6O\noABTenoAoqsc9QCXsntWeN9wBsBb6VEAALIEBQAgS1AAALIEBQAgS1AAALJueNTDl5eNAAA2umFQ\nEAgAYC+GHgCALEEBAMgSFACALEEBAMgSFACALEEBAMgSFACALEEBAMgSFACALEEBAMgSFACALEEB\nAMgSFACALEEBAMgSFACArD/OLmB/ZVku3j+O48GVwFxZ/rPvCsfxz31XCJC6YY/CmHF2XfAWuycP\ngNQNgwJc0Fj8dXYJAK+44dADXNPuWaEs/t53hQBzehQAgCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDI\nEhQAgCxBAQDIEhQAgCxnZoSP50JTwPvoUQCmXGgKiAQF+FQuNAUcwNADfDAXmgLeTY8CAJB1wx6F\nsiwX7x/H8eBKAODT3bBHYcw4u66JDxhdXg5c16POvX3ClzPze+Bq1Lmjjyjylm4YFACAvdxw6AH4\nuX2PkHRiBvhcehSAt3NiBvhcggLwf5ybAZgw9ABM7RgXnJgBPp2gABzB6AN8KEMPwEeSPOAYH9aj\n0Pf98/ksiqKqqsfj8ZNVlWW58eQK71hyu7IoNq7xHUtu9BFFvunVf9s6N65wLP4qi6LYOgDx1+Yl\nt/qYv/RPqPMjinzTq7+jzk/xSUFhfraN3/Zjg8+ycdJDuW3JOO9hY6eCvgf4iY8ZeqjruiiKqqr+\n/ffff//9t6qqwom6gF2JFDD3GT0KccRhGIZwz+PxCCmh7/sfjkEAn+XXcMZb6KWAic8ICl3XFUXR\nNE16Z9M0Xdd1XScowG/oTcMZu9seKYQPrukzgkKcwJje2bZt13XhIYCfeGsvxe6ED470GUEh0HMA\nvNW+vRTFJ10ydP8xl09Zki99UlDYyLcTuI7fOXx8BLv3L33GgaFh3uK81Pn9joMA4Fwf0bBud78e\nhY85sbwL7wKc67ftJPiWu/UoAAA7+pgTLhVF0ff92SUAwO/lM4JCOIPC5EjItm2L2TGTAMCOPmPo\nocjPW/z3338dNgkAb/IxQaGu6+fzWVVV6F2Ip1qK9Q/DEE7wXNd1uDDEFcSqil9dIK8tc4xhGNq2\njcVMHjq9yE95M7d8Fc+qM7zWD9+9+NCbKt9e5Mo7/O4ii6/qjMKfVdu2i6Veoc740Inv5/W/mTvu\nfw740Hc2fo75KEN86ILbtTijommayWLzjer7/oRyx3H89TbO779CkfMaLvhmLn7o8xpOrLMoiqqq\nFh/aUtXkNOqLn8Jbi5y/vfMljylyvc7JYie+meNqnfMazno/v/Whzwt4a5E77swP+9D3dX6D+i3/\n/vtv0zRN0/z777/xzvDxVFXV933f9/HTOrHO8deXO1YVvx/p1yLeOVnmxILnr36FItN3L60h/Tu8\nQp25D31xW46vM/6lzB/aUlXcXa58Cm8tMn1703rShY8pcr3O+WLzAq5Q56SG9J8H17nxQ88V8O4i\nczV8d2d+2Ie+uw8LCnPxrU/vPP3dD9+Ayfd+Xuq8zvDE4zNmmnMnD12hyHlh83f49DoXP/R5DcfX\n2TRN+ltnZXe8XlVuB73lV/XPi1z8S59X9dYit9S5WPN8d3SFOlcKO6bO1z70eQHvLnK+qtd25u/+\n0N/n44NC+J5NdrKLH+2RFv8Cx//+Eea+Iot7w7eKlWz5mwyOLDLXjoa+pXD7CnUufhUnhZ1S56RH\nNLc7/rKqxSL3qvzLInNfg8nb/tYit9Q5f93wlPX2+Pg6cx96+mf17jo3fujnfjPDenbZmb/7Q3+f\nzzg8ckWY0jiZgBNmiJx4YcnwB7Ayka34VeQV5l2Gw0YW5zBeocg4MXByf5ggFm8vLnOk8OqTt3Hy\nz1PqHIYh/LX3S0OtG6sKGzIfhQ33LH559i0yOLfIYnOdxa9SFxe7Qp1b/qxO/9BDeZM9+eKf2PuK\n3GtnfsCH/j4fHxSCKzS3qfAHML8z3EirnVd+8PdmZXc2WSZ1ZJExCw7DEGZl5w7NOLfOGE/T/WzX\ndcVsbvPpH/qi9apy7cpiPHqHtm3HcZwXkP5UOL3IqG3b5/PZNM3irukKdaY1hCMy5n9Wp9cZXzre\nGIYh/LCJu6x3F7nXzvz0N/Mn7neth4uK3+84G+DEDo9ofXdWXKPIoG3b0OgWRfF8Pruuq6oq/nVd\npM5xHMuy7LoulloURd/38e29SJ0T16xqi/DGVlV1qZ8KISBWVXX9g9/ifqn49WdVXOyk+CEdPp/P\n9IJ/6d/U8a65M3+rm/QoXFzbtvGLtXHfcUDA/Pnu7MgUHErtk+nu6W/3dQd3zxRFUVVV7GPc/vZe\n81dF+ntofZkjtW1blmU4t0p89YsUuTKWt6WSIzvq5n9WxX9/vq+s4bCOutgMx7+p9CR7Bxf58s78\nCm/mywSF9xqGIfzELIqi7/v0izUfrEodkJe/3J0VFygyCu1BeMW6rsNOLf5wv0KdYY8WJjQNwxB6\nLKuqej6faYA4vc65LVWt13Zk5enfVNM06Rf4CkW+Npa3/dHdpX9WoS/h+Xzm+slTB9QZB+9ClAl/\nU+F3fOxgOKzIH+7MT38zf8LQwxuFHrPiO9nzMO2vK2XMC4sTcy713f1ymP90YQ8yH+UNP3zPqel2\n4ghU2pFwKeGzDkkxvSfMA7jOn1WIsOlx0en9MT2cK/zVTwYawlyKg4u88s78CG89puIAYSvWj105\nxeLRhqnc4V7HVD7fQUyEws4tcv210qPOrlxn+hU9t86VI+K+rCr33MVj/95R5Pjfc9p867m7F7ny\nWut/VmH5K9SZe630y3D6h577uzi4yF125kd+6Lv7+KCw+Amdfh6FLQWcfuh/PxP3wvFbe3qRY/4P\nacsf4XWCQrh9bp25V7/UUeDrRX75WscUOa7WORHP9JD+ZV2hzsW2bfLndu6HHvdIi0Uec/KMHXfm\nh33ou7t6fVvM3+jc1+swGz/7+WJnnZkxV8/inQcXudhCzM+QenqdoYDFEy5dpM6VH+tbqpontpUV\n7l7kxh9exxT5rdUuVn6FOucf+vzreoUP/csG+K1F7rgzP+xD390dgkL8MqX5/dyMVqyKi6Vdqf3Z\n13oYM38SVygyfqbhZ1n8Z/ond3qdcSdbrZ6X/sQ6V/ZKW6qKG9i880z16z/Ocvr/9oG9u8iVOucW\ng8IV6owvOqkhbdvO/dDHbddZeGuR61+8uNh1/oLe4Q5BYVy9sOTx4rfhy+/WeIELHqZyb90VitxS\nw+l1Ln7016lzvW3bUtV8asvuHSE/DArHFLlS59z6bIBz65x/6PMaTvzQw0MnFrn7zvyYD3135Xil\nc2v8RJxmfJ15xdtd80CDidOL3PgRq/MntlQ1OXP2NX1EkcU16rz+h/6tv6nCm7m3+wQFAGB3TrgE\nAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJ\nCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBA\nlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAA\nAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBA1v8H7iS50Kry7Y8AAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "TCanvas *cz = new TCanvas(\"cz\",\"cz\",10,10,700,700);\n", "h_lep_pt_leptons->Draw();\n", "cz->Draw();" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Your <b>first</b> histogram is done!" ] } ], "metadata": { "kernelspec": { "display_name": "ROOT Prompt", "language": "c++", "name": "root" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
dandtaylor/MetroShare
bikeshare_cleaning.ipynb
1
57775
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Get the bikeshare data ready for analysis" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "import pickle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### import 2015-Q4 through 2016-Q3 bike data" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bikes5 = pd.read_csv('2015-Q4-Trips-History-Data.csv')\n", "bikes6 = pd.read_csv('2016-Q1-Trips-History-Data.csv')\n", "bikes7 = pd.read_csv('2016-Q2-Trips-History-Data.csv')\n", "bikes8 = pd.read_csv('2016-Q3-Trips-History-Data-1.csv')\n", "bikes9 = pd.read_csv('2016-Q3-Trips-History-Data-2.csv')\n", "bikes7.rename(columns={'Account type':'Member Type'}, inplace=True)\n", "bikes5.rename(columns={'Bike #':'Bike number', 'Member type':'Member Type'}, inplace=True)\n", "\n", "bikes = pd.concat([bikes5, bikes6, bikes7, bikes8,\n", " bikes9], ignore_index=True)" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Duration (ms)</th>\n", " <th>Start date</th>\n", " <th>End date</th>\n", " <th>Start station number</th>\n", " <th>Start station</th>\n", " <th>End station number</th>\n", " <th>End station</th>\n", " <th>Bike number</th>\n", " <th>Member Type</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>166050</td>\n", " <td>10/1/2015 0:01</td>\n", " <td>10/1/2015 0:04</td>\n", " <td>31602</td>\n", " <td>Park Rd &amp; Holmead Pl NW</td>\n", " <td>31105</td>\n", " <td>14th &amp; Harvard St NW</td>\n", " <td>W21109</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>379172</td>\n", " <td>10/1/2015 0:01</td>\n", " <td>10/1/2015 0:07</td>\n", " <td>31314</td>\n", " <td>34th &amp; Water St NW</td>\n", " <td>31237</td>\n", " <td>25th St &amp; Pennsylvania Ave NW</td>\n", " <td>W20603</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>696038</td>\n", " <td>10/1/2015 0:01</td>\n", " <td>10/1/2015 0:13</td>\n", " <td>31214</td>\n", " <td>17th &amp; Corcoran St NW</td>\n", " <td>31214</td>\n", " <td>17th &amp; Corcoran St NW</td>\n", " <td>W01233</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>219423</td>\n", " <td>10/1/2015 0:02</td>\n", " <td>10/1/2015 0:06</td>\n", " <td>31104</td>\n", " <td>Adams Mill &amp; Columbia Rd NW</td>\n", " <td>31121</td>\n", " <td>Calvert St &amp; Woodley Pl NW</td>\n", " <td>W00218</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>253230</td>\n", " <td>10/1/2015 0:03</td>\n", " <td>10/1/2015 0:07</td>\n", " <td>31102</td>\n", " <td>11th &amp; Kenyon St NW</td>\n", " <td>31102</td>\n", " <td>11th &amp; Kenyon St NW</td>\n", " <td>W21612</td>\n", " <td>Registered</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Duration (ms) Start date End date Start station number \\\n", "0 166050 10/1/2015 0:01 10/1/2015 0:04 31602 \n", "1 379172 10/1/2015 0:01 10/1/2015 0:07 31314 \n", "2 696038 10/1/2015 0:01 10/1/2015 0:13 31214 \n", "3 219423 10/1/2015 0:02 10/1/2015 0:06 31104 \n", "4 253230 10/1/2015 0:03 10/1/2015 0:07 31102 \n", "\n", " Start station End station number \\\n", "0 Park Rd & Holmead Pl NW 31105 \n", "1 34th & Water St NW 31237 \n", "2 17th & Corcoran St NW 31214 \n", "3 Adams Mill & Columbia Rd NW 31121 \n", "4 11th & Kenyon St NW 31102 \n", "\n", " End station Bike number Member Type \n", "0 14th & Harvard St NW W21109 Registered \n", "1 25th St & Pennsylvania Ave NW W20603 Registered \n", "2 17th & Corcoran St NW W01233 Registered \n", "3 Calvert St & Woodley Pl NW W00218 Registered \n", "4 11th & Kenyon St NW W21612 Registered " ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bikes.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create DatetimeIndex from `Start date`" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bikes['Start date'] = pd.to_datetime(bikes['Start date'], format='%m/%d/%Y %H:%M')" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "collapsed": false }, "outputs": [], "source": [ "bikes = bikes.set_index('Start date')" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "pandas.tseries.index.DatetimeIndex" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(bikes.index)" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Duration (ms)</th>\n", " <th>End date</th>\n", " <th>Start station number</th>\n", " <th>Start station</th>\n", " <th>End station number</th>\n", " <th>End station</th>\n", " <th>Bike number</th>\n", " <th>Member Type</th>\n", " </tr>\n", " <tr>\n", " <th>Start date</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2015-10-01 00:01:00</th>\n", " <td>166050</td>\n", " <td>10/1/2015 0:04</td>\n", " <td>31602</td>\n", " <td>Park Rd &amp; Holmead Pl NW</td>\n", " <td>31105</td>\n", " <td>14th &amp; Harvard St NW</td>\n", " <td>W21109</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:01:00</th>\n", " <td>379172</td>\n", " <td>10/1/2015 0:07</td>\n", " <td>31314</td>\n", " <td>34th &amp; Water St NW</td>\n", " <td>31237</td>\n", " <td>25th St &amp; Pennsylvania Ave NW</td>\n", " <td>W20603</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:01:00</th>\n", " <td>696038</td>\n", " <td>10/1/2015 0:13</td>\n", " <td>31214</td>\n", " <td>17th &amp; Corcoran St NW</td>\n", " <td>31214</td>\n", " <td>17th &amp; Corcoran St NW</td>\n", " <td>W01233</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:02:00</th>\n", " <td>219423</td>\n", " <td>10/1/2015 0:06</td>\n", " <td>31104</td>\n", " <td>Adams Mill &amp; Columbia Rd NW</td>\n", " <td>31121</td>\n", " <td>Calvert St &amp; Woodley Pl NW</td>\n", " <td>W00218</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:03:00</th>\n", " <td>253230</td>\n", " <td>10/1/2015 0:07</td>\n", " <td>31102</td>\n", " <td>11th &amp; Kenyon St NW</td>\n", " <td>31102</td>\n", " <td>11th &amp; Kenyon St NW</td>\n", " <td>W21612</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:03:00</th>\n", " <td>655251</td>\n", " <td>10/1/2015 0:14</td>\n", " <td>31242</td>\n", " <td>18th St &amp; Pennsylvania Ave NW</td>\n", " <td>31114</td>\n", " <td>18th St &amp; Wyoming Ave NW</td>\n", " <td>W22093</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:06:00</th>\n", " <td>309212</td>\n", " <td>10/1/2015 0:11</td>\n", " <td>31280</td>\n", " <td>11th &amp; S St NW</td>\n", " <td>31278</td>\n", " <td>18th &amp; R St NW</td>\n", " <td>W00231</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:07:00</th>\n", " <td>776195</td>\n", " <td>10/1/2015 0:20</td>\n", " <td>31226</td>\n", " <td>34th St &amp; Wisconsin Ave NW</td>\n", " <td>31214</td>\n", " <td>17th &amp; Corcoran St NW</td>\n", " <td>W20820</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:07:00</th>\n", " <td>151604</td>\n", " <td>10/1/2015 0:10</td>\n", " <td>31017</td>\n", " <td>Wilson Blvd &amp; N Uhle St</td>\n", " <td>31029</td>\n", " <td>N Veitch &amp; 20th St N</td>\n", " <td>W00244</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:07:00</th>\n", " <td>809509</td>\n", " <td>10/1/2015 0:21</td>\n", " <td>31301</td>\n", " <td>Ward Circle / American University</td>\n", " <td>31113</td>\n", " <td>Columbia Rd &amp; Belmont St NW</td>\n", " <td>W20352</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:08:00</th>\n", " <td>842712</td>\n", " <td>10/1/2015 0:22</td>\n", " <td>31276</td>\n", " <td>15th &amp; L St NW</td>\n", " <td>31118</td>\n", " <td>3rd &amp; Elm St NW</td>\n", " <td>W21327</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:11:00</th>\n", " <td>171124</td>\n", " <td>10/1/2015 0:13</td>\n", " <td>31213</td>\n", " <td>17th &amp; K St NW</td>\n", " <td>31267</td>\n", " <td>17th St &amp; Massachusetts Ave NW</td>\n", " <td>W20487</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:11:00</th>\n", " <td>241872</td>\n", " <td>10/1/2015 0:15</td>\n", " <td>31203</td>\n", " <td>14th &amp; Rhode Island Ave NW</td>\n", " <td>31101</td>\n", " <td>14th &amp; V St NW</td>\n", " <td>W22183</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:11:00</th>\n", " <td>294746</td>\n", " <td>10/1/2015 0:16</td>\n", " <td>31212</td>\n", " <td>21st &amp; M St NW</td>\n", " <td>31278</td>\n", " <td>18th &amp; R St NW</td>\n", " <td>W20769</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:11:00</th>\n", " <td>590515</td>\n", " <td>10/1/2015 0:21</td>\n", " <td>31278</td>\n", " <td>18th &amp; R St NW</td>\n", " <td>31312</td>\n", " <td>Wisconsin Ave &amp; O St NW</td>\n", " <td>W00231</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:14:00</th>\n", " <td>1217591</td>\n", " <td>10/1/2015 0:34</td>\n", " <td>31620</td>\n", " <td>5th &amp; F St NW</td>\n", " <td>31615</td>\n", " <td>6th &amp; H St NE</td>\n", " <td>W20668</td>\n", " <td>Casual</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:14:00</th>\n", " <td>957676</td>\n", " <td>10/1/2015 0:30</td>\n", " <td>31228</td>\n", " <td>8th &amp; H St NW</td>\n", " <td>31103</td>\n", " <td>16th &amp; Harvard St NW</td>\n", " <td>W01031</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:15:00</th>\n", " <td>1644646</td>\n", " <td>10/1/2015 0:42</td>\n", " <td>31258</td>\n", " <td>Lincoln Memorial</td>\n", " <td>31617</td>\n", " <td>Bladensburg Rd &amp; Benning Rd NE</td>\n", " <td>W21001</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:15:00</th>\n", " <td>580130</td>\n", " <td>10/1/2015 0:25</td>\n", " <td>31610</td>\n", " <td>Eastern Market / 7th &amp; North Carolina Ave SE</td>\n", " <td>31256</td>\n", " <td>10th &amp; E St NW</td>\n", " <td>W00379</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:15:00</th>\n", " <td>222180</td>\n", " <td>10/1/2015 0:19</td>\n", " <td>31270</td>\n", " <td>8th &amp; D St NW</td>\n", " <td>31228</td>\n", " <td>8th &amp; H St NW</td>\n", " <td>W20592</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:03:00</th>\n", " <td>267251</td>\n", " <td>10/1/2015 0:08</td>\n", " <td>31306</td>\n", " <td>39th &amp; Calvert St NW / Stoddert</td>\n", " <td>31306</td>\n", " <td>39th &amp; Calvert St NW / Stoddert</td>\n", " <td>W21206</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:15:00</th>\n", " <td>867784</td>\n", " <td>10/1/2015 0:29</td>\n", " <td>31600</td>\n", " <td>5th &amp; K St NW</td>\n", " <td>31605</td>\n", " <td>3rd &amp; D St SE</td>\n", " <td>W20970</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:17:00</th>\n", " <td>737845</td>\n", " <td>10/1/2015 0:29</td>\n", " <td>31104</td>\n", " <td>Adams Mill &amp; Columbia Rd NW</td>\n", " <td>31509</td>\n", " <td>New Jersey Ave &amp; R St NW</td>\n", " <td>W21281</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:19:00</th>\n", " <td>286638</td>\n", " <td>10/1/2015 0:24</td>\n", " <td>31017</td>\n", " <td>Wilson Blvd &amp; N Uhle St</td>\n", " <td>31015</td>\n", " <td>Rosslyn Metro / Wilson Blvd &amp; Ft Myer Dr</td>\n", " <td>W20617</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:19:00</th>\n", " <td>5628236</td>\n", " <td>10/1/2015 1:53</td>\n", " <td>31063</td>\n", " <td>S George Mason Dr &amp; Four Mile Run</td>\n", " <td>31062</td>\n", " <td>S George Mason Dr &amp; 13th St S</td>\n", " <td>W20439</td>\n", " <td>Casual</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:20:00</th>\n", " <td>102044</td>\n", " <td>10/1/2015 0:22</td>\n", " <td>31049</td>\n", " <td>Utah St &amp; 11th St N</td>\n", " <td>31037</td>\n", " <td>Ballston Metro / N Stuart &amp; 9th St N</td>\n", " <td>W00900</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:21:00</th>\n", " <td>504552</td>\n", " <td>10/1/2015 0:30</td>\n", " <td>31277</td>\n", " <td>17th &amp; G St NW</td>\n", " <td>31239</td>\n", " <td>17th &amp; Rhode Island Ave NW</td>\n", " <td>W21239</td>\n", " <td>Casual</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:21:00</th>\n", " <td>526336</td>\n", " <td>10/1/2015 0:30</td>\n", " <td>31277</td>\n", " <td>17th &amp; G St NW</td>\n", " <td>31239</td>\n", " <td>17th &amp; Rhode Island Ave NW</td>\n", " <td>W21241</td>\n", " <td>Casual</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:21:00</th>\n", " <td>867396</td>\n", " <td>10/1/2015 0:36</td>\n", " <td>31312</td>\n", " <td>Wisconsin Ave &amp; O St NW</td>\n", " <td>31306</td>\n", " <td>39th &amp; Calvert St NW / Stoddert</td>\n", " <td>W00231</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2015-10-01 00:23:00</th>\n", " <td>278050</td>\n", " <td>10/1/2015 0:27</td>\n", " <td>31638</td>\n", " <td>1st &amp; H St NW</td>\n", " <td>31627</td>\n", " <td>M St &amp; Delaware Ave NE</td>\n", " <td>W21823</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:21:00</th>\n", " <td>933505</td>\n", " <td>9/1/2016 0:37</td>\n", " <td>31237</td>\n", " <td>25th St &amp; Pennsylvania Ave NW</td>\n", " <td>31509</td>\n", " <td>New Jersey Ave &amp; R St NW</td>\n", " <td>W00906</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:20:00</th>\n", " <td>1574827</td>\n", " <td>9/1/2016 0:46</td>\n", " <td>31258</td>\n", " <td>Lincoln Memorial</td>\n", " <td>31288</td>\n", " <td>4th St &amp; Madison Dr NW</td>\n", " <td>W22628</td>\n", " <td>Casual</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:19:00</th>\n", " <td>8871227</td>\n", " <td>9/1/2016 2:47</td>\n", " <td>31270</td>\n", " <td>8th &amp; D St NW</td>\n", " <td>31270</td>\n", " <td>8th &amp; D St NW</td>\n", " <td>W01127</td>\n", " <td>Casual</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:19:00</th>\n", " <td>1648284</td>\n", " <td>9/1/2016 0:46</td>\n", " <td>31258</td>\n", " <td>Lincoln Memorial</td>\n", " <td>31288</td>\n", " <td>4th St &amp; Madison Dr NW</td>\n", " <td>W00957</td>\n", " <td>Casual</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:19:00</th>\n", " <td>679655</td>\n", " <td>9/1/2016 0:30</td>\n", " <td>31264</td>\n", " <td>6th St &amp; Indiana Ave NW</td>\n", " <td>31628</td>\n", " <td>1st &amp; K St SE</td>\n", " <td>W00721</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:19:00</th>\n", " <td>1633724</td>\n", " <td>9/1/2016 0:46</td>\n", " <td>31258</td>\n", " <td>Lincoln Memorial</td>\n", " <td>31288</td>\n", " <td>4th St &amp; Madison Dr NW</td>\n", " <td>W21699</td>\n", " <td>Casual</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:19:00</th>\n", " <td>8835027</td>\n", " <td>9/1/2016 2:46</td>\n", " <td>31270</td>\n", " <td>8th &amp; D St NW</td>\n", " <td>31270</td>\n", " <td>8th &amp; D St NW</td>\n", " <td>W00996</td>\n", " <td>Casual</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:19:00</th>\n", " <td>191644</td>\n", " <td>9/1/2016 0:23</td>\n", " <td>31285</td>\n", " <td>22nd &amp; P ST NW</td>\n", " <td>31234</td>\n", " <td>20th &amp; O St NW / Dupont South</td>\n", " <td>W22575</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:18:00</th>\n", " <td>173292</td>\n", " <td>9/1/2016 0:21</td>\n", " <td>31110</td>\n", " <td>20th St &amp; Florida Ave NW</td>\n", " <td>31234</td>\n", " <td>20th &amp; O St NW / Dupont South</td>\n", " <td>W20893</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:18:00</th>\n", " <td>256249</td>\n", " <td>9/1/2016 0:22</td>\n", " <td>31109</td>\n", " <td>7th &amp; T St NW</td>\n", " <td>31223</td>\n", " <td>Convention Center / 7th &amp; M St NW</td>\n", " <td>W20689</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:17:00</th>\n", " <td>453588</td>\n", " <td>9/1/2016 0:25</td>\n", " <td>31278</td>\n", " <td>18th &amp; R St NW</td>\n", " <td>31275</td>\n", " <td>New Hampshire Ave &amp; 24th St NW</td>\n", " <td>W21256</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:15:00</th>\n", " <td>195777</td>\n", " <td>9/1/2016 0:18</td>\n", " <td>31257</td>\n", " <td>22nd &amp; I St NW / Foggy Bottom</td>\n", " <td>31237</td>\n", " <td>25th St &amp; Pennsylvania Ave NW</td>\n", " <td>W22398</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:15:00</th>\n", " <td>430642</td>\n", " <td>9/1/2016 0:22</td>\n", " <td>31267</td>\n", " <td>17th St &amp; Massachusetts Ave NW</td>\n", " <td>31223</td>\n", " <td>Convention Center / 7th &amp; M St NW</td>\n", " <td>W21480</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:13:00</th>\n", " <td>1309689</td>\n", " <td>9/1/2016 0:35</td>\n", " <td>31240</td>\n", " <td>Ohio Dr &amp; West Basin Dr SW / MLK &amp; FDR Memorials</td>\n", " <td>31252</td>\n", " <td>21st St &amp; Pennsylvania Ave NW</td>\n", " <td>W22661</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:13:00</th>\n", " <td>513823</td>\n", " <td>9/1/2016 0:22</td>\n", " <td>31504</td>\n", " <td>10th &amp; Monroe St NE</td>\n", " <td>31510</td>\n", " <td>18th St &amp; Rhode Island Ave NE</td>\n", " <td>W20265</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:13:00</th>\n", " <td>1038905</td>\n", " <td>9/1/2016 0:31</td>\n", " <td>31279</td>\n", " <td>19th &amp; G St NW</td>\n", " <td>31605</td>\n", " <td>3rd &amp; D St SE</td>\n", " <td>W20524</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:12:00</th>\n", " <td>499112</td>\n", " <td>9/1/2016 0:20</td>\n", " <td>31111</td>\n", " <td>10th &amp; U St NW</td>\n", " <td>31400</td>\n", " <td>Georgia &amp; New Hampshire Ave NW</td>\n", " <td>W22865</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:09:00</th>\n", " <td>1019381</td>\n", " <td>9/1/2016 0:26</td>\n", " <td>31290</td>\n", " <td>17th St &amp; Independence Ave SW</td>\n", " <td>31281</td>\n", " <td>8th &amp; O St NW</td>\n", " <td>W22637</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:09:00</th>\n", " <td>680488</td>\n", " <td>9/1/2016 0:21</td>\n", " <td>31258</td>\n", " <td>Lincoln Memorial</td>\n", " <td>31248</td>\n", " <td>Smithsonian / Jefferson Dr &amp; 12th St SW</td>\n", " <td>W21299</td>\n", " <td>Casual</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:09:00</th>\n", " <td>674944</td>\n", " <td>9/1/2016 0:21</td>\n", " <td>31258</td>\n", " <td>Lincoln Memorial</td>\n", " <td>31248</td>\n", " <td>Smithsonian / Jefferson Dr &amp; 12th St SW</td>\n", " <td>W21011</td>\n", " <td>Casual</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:08:00</th>\n", " <td>371207</td>\n", " <td>9/1/2016 0:14</td>\n", " <td>31628</td>\n", " <td>1st &amp; K St SE</td>\n", " <td>31613</td>\n", " <td>Eastern Market Metro / Pennsylvania Ave &amp; 7th ...</td>\n", " <td>W20941</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:05:00</th>\n", " <td>1091877</td>\n", " <td>9/1/2016 0:23</td>\n", " <td>31228</td>\n", " <td>8th &amp; H St NW</td>\n", " <td>31103</td>\n", " <td>16th &amp; Harvard St NW</td>\n", " <td>W00785</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:05:00</th>\n", " <td>259558</td>\n", " <td>9/1/2016 0:09</td>\n", " <td>31102</td>\n", " <td>11th &amp; Kenyon St NW</td>\n", " <td>31602</td>\n", " <td>Park Rd &amp; Holmead Pl NW</td>\n", " <td>W21529</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:05:00</th>\n", " <td>254785</td>\n", " <td>9/1/2016 0:09</td>\n", " <td>31102</td>\n", " <td>11th &amp; Kenyon St NW</td>\n", " <td>31602</td>\n", " <td>Park Rd &amp; Holmead Pl NW</td>\n", " <td>W22528</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:05:00</th>\n", " <td>878992</td>\n", " <td>9/1/2016 0:20</td>\n", " <td>31102</td>\n", " <td>11th &amp; Kenyon St NW</td>\n", " <td>31403</td>\n", " <td>5th &amp; Kennedy St NW</td>\n", " <td>W22689</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:05:00</th>\n", " <td>283200</td>\n", " <td>9/1/2016 0:10</td>\n", " <td>31600</td>\n", " <td>5th &amp; K St NW</td>\n", " <td>31264</td>\n", " <td>6th St &amp; Indiana Ave NW</td>\n", " <td>W01320</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:05:00</th>\n", " <td>867363</td>\n", " <td>9/1/2016 0:20</td>\n", " <td>31280</td>\n", " <td>11th &amp; S St NW</td>\n", " <td>31113</td>\n", " <td>Columbia Rd &amp; Belmont St NW</td>\n", " <td>W22933</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:03:00</th>\n", " <td>4798819</td>\n", " <td>9/1/2016 1:23</td>\n", " <td>31258</td>\n", " <td>Lincoln Memorial</td>\n", " <td>31240</td>\n", " <td>Ohio Dr &amp; West Basin Dr SW / MLK &amp; FDR Memorials</td>\n", " <td>W22953</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:02:00</th>\n", " <td>763129</td>\n", " <td>9/1/2016 0:15</td>\n", " <td>31641</td>\n", " <td>2nd St &amp; Massachusetts Ave NE</td>\n", " <td>31276</td>\n", " <td>15th &amp; L St NW</td>\n", " <td>W22911</td>\n", " <td>Registered</td>\n", " </tr>\n", " <tr>\n", " <th>2016-09-01 00:00:00</th>\n", " <td>590832</td>\n", " <td>9/1/2016 0:10</td>\n", " <td>31200</td>\n", " <td>Massachusetts Ave &amp; Dupont Circle NW</td>\n", " <td>31245</td>\n", " <td>7th &amp; R St NW / Shaw Library</td>\n", " <td>W22867</td>\n", " <td>Registered</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>3268722 rows × 8 columns</p>\n", "</div>" ], "text/plain": [ " Duration (ms) End date Start station number \\\n", "Start date \n", "2015-10-01 00:01:00 166050 10/1/2015 0:04 31602 \n", "2015-10-01 00:01:00 379172 10/1/2015 0:07 31314 \n", "2015-10-01 00:01:00 696038 10/1/2015 0:13 31214 \n", "2015-10-01 00:02:00 219423 10/1/2015 0:06 31104 \n", "2015-10-01 00:03:00 253230 10/1/2015 0:07 31102 \n", "2015-10-01 00:03:00 655251 10/1/2015 0:14 31242 \n", "2015-10-01 00:06:00 309212 10/1/2015 0:11 31280 \n", "2015-10-01 00:07:00 776195 10/1/2015 0:20 31226 \n", "2015-10-01 00:07:00 151604 10/1/2015 0:10 31017 \n", "2015-10-01 00:07:00 809509 10/1/2015 0:21 31301 \n", "2015-10-01 00:08:00 842712 10/1/2015 0:22 31276 \n", "2015-10-01 00:11:00 171124 10/1/2015 0:13 31213 \n", "2015-10-01 00:11:00 241872 10/1/2015 0:15 31203 \n", "2015-10-01 00:11:00 294746 10/1/2015 0:16 31212 \n", "2015-10-01 00:11:00 590515 10/1/2015 0:21 31278 \n", "2015-10-01 00:14:00 1217591 10/1/2015 0:34 31620 \n", "2015-10-01 00:14:00 957676 10/1/2015 0:30 31228 \n", "2015-10-01 00:15:00 1644646 10/1/2015 0:42 31258 \n", "2015-10-01 00:15:00 580130 10/1/2015 0:25 31610 \n", "2015-10-01 00:15:00 222180 10/1/2015 0:19 31270 \n", "2015-10-01 00:03:00 267251 10/1/2015 0:08 31306 \n", "2015-10-01 00:15:00 867784 10/1/2015 0:29 31600 \n", "2015-10-01 00:17:00 737845 10/1/2015 0:29 31104 \n", "2015-10-01 00:19:00 286638 10/1/2015 0:24 31017 \n", "2015-10-01 00:19:00 5628236 10/1/2015 1:53 31063 \n", "2015-10-01 00:20:00 102044 10/1/2015 0:22 31049 \n", "2015-10-01 00:21:00 504552 10/1/2015 0:30 31277 \n", "2015-10-01 00:21:00 526336 10/1/2015 0:30 31277 \n", "2015-10-01 00:21:00 867396 10/1/2015 0:36 31312 \n", "2015-10-01 00:23:00 278050 10/1/2015 0:27 31638 \n", "... ... ... ... \n", "2016-09-01 00:21:00 933505 9/1/2016 0:37 31237 \n", "2016-09-01 00:20:00 1574827 9/1/2016 0:46 31258 \n", "2016-09-01 00:19:00 8871227 9/1/2016 2:47 31270 \n", "2016-09-01 00:19:00 1648284 9/1/2016 0:46 31258 \n", "2016-09-01 00:19:00 679655 9/1/2016 0:30 31264 \n", "2016-09-01 00:19:00 1633724 9/1/2016 0:46 31258 \n", "2016-09-01 00:19:00 8835027 9/1/2016 2:46 31270 \n", "2016-09-01 00:19:00 191644 9/1/2016 0:23 31285 \n", "2016-09-01 00:18:00 173292 9/1/2016 0:21 31110 \n", "2016-09-01 00:18:00 256249 9/1/2016 0:22 31109 \n", "2016-09-01 00:17:00 453588 9/1/2016 0:25 31278 \n", "2016-09-01 00:15:00 195777 9/1/2016 0:18 31257 \n", "2016-09-01 00:15:00 430642 9/1/2016 0:22 31267 \n", "2016-09-01 00:13:00 1309689 9/1/2016 0:35 31240 \n", "2016-09-01 00:13:00 513823 9/1/2016 0:22 31504 \n", "2016-09-01 00:13:00 1038905 9/1/2016 0:31 31279 \n", "2016-09-01 00:12:00 499112 9/1/2016 0:20 31111 \n", "2016-09-01 00:09:00 1019381 9/1/2016 0:26 31290 \n", "2016-09-01 00:09:00 680488 9/1/2016 0:21 31258 \n", "2016-09-01 00:09:00 674944 9/1/2016 0:21 31258 \n", "2016-09-01 00:08:00 371207 9/1/2016 0:14 31628 \n", "2016-09-01 00:05:00 1091877 9/1/2016 0:23 31228 \n", "2016-09-01 00:05:00 259558 9/1/2016 0:09 31102 \n", "2016-09-01 00:05:00 254785 9/1/2016 0:09 31102 \n", "2016-09-01 00:05:00 878992 9/1/2016 0:20 31102 \n", "2016-09-01 00:05:00 283200 9/1/2016 0:10 31600 \n", "2016-09-01 00:05:00 867363 9/1/2016 0:20 31280 \n", "2016-09-01 00:03:00 4798819 9/1/2016 1:23 31258 \n", "2016-09-01 00:02:00 763129 9/1/2016 0:15 31641 \n", "2016-09-01 00:00:00 590832 9/1/2016 0:10 31200 \n", "\n", " Start station \\\n", "Start date \n", "2015-10-01 00:01:00 Park Rd & Holmead Pl NW \n", "2015-10-01 00:01:00 34th & Water St NW \n", "2015-10-01 00:01:00 17th & Corcoran St NW \n", "2015-10-01 00:02:00 Adams Mill & Columbia Rd NW \n", "2015-10-01 00:03:00 11th & Kenyon St NW \n", "2015-10-01 00:03:00 18th St & Pennsylvania Ave NW \n", "2015-10-01 00:06:00 11th & S St NW \n", "2015-10-01 00:07:00 34th St & Wisconsin Ave NW \n", "2015-10-01 00:07:00 Wilson Blvd & N Uhle St \n", "2015-10-01 00:07:00 Ward Circle / American University \n", "2015-10-01 00:08:00 15th & L St NW \n", "2015-10-01 00:11:00 17th & K St NW \n", "2015-10-01 00:11:00 14th & Rhode Island Ave NW \n", "2015-10-01 00:11:00 21st & M St NW \n", "2015-10-01 00:11:00 18th & R St NW \n", "2015-10-01 00:14:00 5th & F St NW \n", "2015-10-01 00:14:00 8th & H St NW \n", "2015-10-01 00:15:00 Lincoln Memorial \n", "2015-10-01 00:15:00 Eastern Market / 7th & North Carolina Ave SE \n", "2015-10-01 00:15:00 8th & D St NW \n", "2015-10-01 00:03:00 39th & Calvert St NW / Stoddert \n", "2015-10-01 00:15:00 5th & K St NW \n", "2015-10-01 00:17:00 Adams Mill & Columbia Rd NW \n", "2015-10-01 00:19:00 Wilson Blvd & N Uhle St \n", "2015-10-01 00:19:00 S George Mason Dr & Four Mile Run \n", "2015-10-01 00:20:00 Utah St & 11th St N \n", "2015-10-01 00:21:00 17th & G St NW \n", "2015-10-01 00:21:00 17th & G St NW \n", "2015-10-01 00:21:00 Wisconsin Ave & O St NW \n", "2015-10-01 00:23:00 1st & H St NW \n", "... ... \n", "2016-09-01 00:21:00 25th St & Pennsylvania Ave NW \n", "2016-09-01 00:20:00 Lincoln Memorial \n", "2016-09-01 00:19:00 8th & D St NW \n", "2016-09-01 00:19:00 Lincoln Memorial \n", "2016-09-01 00:19:00 6th St & Indiana Ave NW \n", "2016-09-01 00:19:00 Lincoln Memorial \n", "2016-09-01 00:19:00 8th & D St NW \n", "2016-09-01 00:19:00 22nd & P ST NW \n", "2016-09-01 00:18:00 20th St & Florida Ave NW \n", "2016-09-01 00:18:00 7th & T St NW \n", "2016-09-01 00:17:00 18th & R St NW \n", "2016-09-01 00:15:00 22nd & I St NW / Foggy Bottom \n", "2016-09-01 00:15:00 17th St & Massachusetts Ave NW \n", "2016-09-01 00:13:00 Ohio Dr & West Basin Dr SW / MLK & FDR Memorials \n", "2016-09-01 00:13:00 10th & Monroe St NE \n", "2016-09-01 00:13:00 19th & G St NW \n", "2016-09-01 00:12:00 10th & U St NW \n", "2016-09-01 00:09:00 17th St & Independence Ave SW \n", "2016-09-01 00:09:00 Lincoln Memorial \n", "2016-09-01 00:09:00 Lincoln Memorial \n", "2016-09-01 00:08:00 1st & K St SE \n", "2016-09-01 00:05:00 8th & H St NW \n", "2016-09-01 00:05:00 11th & Kenyon St NW \n", "2016-09-01 00:05:00 11th & Kenyon St NW \n", "2016-09-01 00:05:00 11th & Kenyon St NW \n", "2016-09-01 00:05:00 5th & K St NW \n", "2016-09-01 00:05:00 11th & S St NW \n", "2016-09-01 00:03:00 Lincoln Memorial \n", "2016-09-01 00:02:00 2nd St & Massachusetts Ave NE \n", "2016-09-01 00:00:00 Massachusetts Ave & Dupont Circle NW \n", "\n", " End station number \\\n", "Start date \n", "2015-10-01 00:01:00 31105 \n", "2015-10-01 00:01:00 31237 \n", "2015-10-01 00:01:00 31214 \n", "2015-10-01 00:02:00 31121 \n", "2015-10-01 00:03:00 31102 \n", "2015-10-01 00:03:00 31114 \n", "2015-10-01 00:06:00 31278 \n", "2015-10-01 00:07:00 31214 \n", "2015-10-01 00:07:00 31029 \n", "2015-10-01 00:07:00 31113 \n", "2015-10-01 00:08:00 31118 \n", "2015-10-01 00:11:00 31267 \n", "2015-10-01 00:11:00 31101 \n", "2015-10-01 00:11:00 31278 \n", "2015-10-01 00:11:00 31312 \n", "2015-10-01 00:14:00 31615 \n", "2015-10-01 00:14:00 31103 \n", "2015-10-01 00:15:00 31617 \n", "2015-10-01 00:15:00 31256 \n", "2015-10-01 00:15:00 31228 \n", "2015-10-01 00:03:00 31306 \n", "2015-10-01 00:15:00 31605 \n", "2015-10-01 00:17:00 31509 \n", "2015-10-01 00:19:00 31015 \n", "2015-10-01 00:19:00 31062 \n", "2015-10-01 00:20:00 31037 \n", "2015-10-01 00:21:00 31239 \n", "2015-10-01 00:21:00 31239 \n", "2015-10-01 00:21:00 31306 \n", "2015-10-01 00:23:00 31627 \n", "... ... \n", "2016-09-01 00:21:00 31509 \n", "2016-09-01 00:20:00 31288 \n", "2016-09-01 00:19:00 31270 \n", "2016-09-01 00:19:00 31288 \n", "2016-09-01 00:19:00 31628 \n", "2016-09-01 00:19:00 31288 \n", "2016-09-01 00:19:00 31270 \n", "2016-09-01 00:19:00 31234 \n", "2016-09-01 00:18:00 31234 \n", "2016-09-01 00:18:00 31223 \n", "2016-09-01 00:17:00 31275 \n", "2016-09-01 00:15:00 31237 \n", "2016-09-01 00:15:00 31223 \n", "2016-09-01 00:13:00 31252 \n", "2016-09-01 00:13:00 31510 \n", "2016-09-01 00:13:00 31605 \n", "2016-09-01 00:12:00 31400 \n", "2016-09-01 00:09:00 31281 \n", "2016-09-01 00:09:00 31248 \n", "2016-09-01 00:09:00 31248 \n", "2016-09-01 00:08:00 31613 \n", "2016-09-01 00:05:00 31103 \n", "2016-09-01 00:05:00 31602 \n", "2016-09-01 00:05:00 31602 \n", "2016-09-01 00:05:00 31403 \n", "2016-09-01 00:05:00 31264 \n", "2016-09-01 00:05:00 31113 \n", "2016-09-01 00:03:00 31240 \n", "2016-09-01 00:02:00 31276 \n", "2016-09-01 00:00:00 31245 \n", "\n", " End station \\\n", "Start date \n", "2015-10-01 00:01:00 14th & Harvard St NW \n", "2015-10-01 00:01:00 25th St & Pennsylvania Ave NW \n", "2015-10-01 00:01:00 17th & Corcoran St NW \n", "2015-10-01 00:02:00 Calvert St & Woodley Pl NW \n", "2015-10-01 00:03:00 11th & Kenyon St NW \n", "2015-10-01 00:03:00 18th St & Wyoming Ave NW \n", "2015-10-01 00:06:00 18th & R St NW \n", "2015-10-01 00:07:00 17th & Corcoran St NW \n", "2015-10-01 00:07:00 N Veitch & 20th St N \n", "2015-10-01 00:07:00 Columbia Rd & Belmont St NW \n", "2015-10-01 00:08:00 3rd & Elm St NW \n", "2015-10-01 00:11:00 17th St & Massachusetts Ave NW \n", "2015-10-01 00:11:00 14th & V St NW \n", "2015-10-01 00:11:00 18th & R St NW \n", "2015-10-01 00:11:00 Wisconsin Ave & O St NW \n", "2015-10-01 00:14:00 6th & H St NE \n", "2015-10-01 00:14:00 16th & Harvard St NW \n", "2015-10-01 00:15:00 Bladensburg Rd & Benning Rd NE \n", "2015-10-01 00:15:00 10th & E St NW \n", "2015-10-01 00:15:00 8th & H St NW \n", "2015-10-01 00:03:00 39th & Calvert St NW / Stoddert \n", "2015-10-01 00:15:00 3rd & D St SE \n", "2015-10-01 00:17:00 New Jersey Ave & R St NW \n", "2015-10-01 00:19:00 Rosslyn Metro / Wilson Blvd & Ft Myer Dr \n", "2015-10-01 00:19:00 S George Mason Dr & 13th St S \n", "2015-10-01 00:20:00 Ballston Metro / N Stuart & 9th St N \n", "2015-10-01 00:21:00 17th & Rhode Island Ave NW \n", "2015-10-01 00:21:00 17th & Rhode Island Ave NW \n", "2015-10-01 00:21:00 39th & Calvert St NW / Stoddert \n", "2015-10-01 00:23:00 M St & Delaware Ave NE \n", "... ... \n", "2016-09-01 00:21:00 New Jersey Ave & R St NW \n", "2016-09-01 00:20:00 4th St & Madison Dr NW \n", "2016-09-01 00:19:00 8th & D St NW \n", "2016-09-01 00:19:00 4th St & Madison Dr NW \n", "2016-09-01 00:19:00 1st & K St SE \n", "2016-09-01 00:19:00 4th St & Madison Dr NW \n", "2016-09-01 00:19:00 8th & D St NW \n", "2016-09-01 00:19:00 20th & O St NW / Dupont South \n", "2016-09-01 00:18:00 20th & O St NW / Dupont South \n", "2016-09-01 00:18:00 Convention Center / 7th & M St NW \n", "2016-09-01 00:17:00 New Hampshire Ave & 24th St NW \n", "2016-09-01 00:15:00 25th St & Pennsylvania Ave NW \n", "2016-09-01 00:15:00 Convention Center / 7th & M St NW \n", "2016-09-01 00:13:00 21st St & Pennsylvania Ave NW \n", "2016-09-01 00:13:00 18th St & Rhode Island Ave NE \n", "2016-09-01 00:13:00 3rd & D St SE \n", "2016-09-01 00:12:00 Georgia & New Hampshire Ave NW \n", "2016-09-01 00:09:00 8th & O St NW \n", "2016-09-01 00:09:00 Smithsonian / Jefferson Dr & 12th St SW \n", "2016-09-01 00:09:00 Smithsonian / Jefferson Dr & 12th St SW \n", "2016-09-01 00:08:00 Eastern Market Metro / Pennsylvania Ave & 7th ... \n", "2016-09-01 00:05:00 16th & Harvard St NW \n", "2016-09-01 00:05:00 Park Rd & Holmead Pl NW \n", "2016-09-01 00:05:00 Park Rd & Holmead Pl NW \n", "2016-09-01 00:05:00 5th & Kennedy St NW \n", "2016-09-01 00:05:00 6th St & Indiana Ave NW \n", "2016-09-01 00:05:00 Columbia Rd & Belmont St NW \n", "2016-09-01 00:03:00 Ohio Dr & West Basin Dr SW / MLK & FDR Memorials \n", "2016-09-01 00:02:00 15th & L St NW \n", "2016-09-01 00:00:00 7th & R St NW / Shaw Library \n", "\n", " Bike number Member Type \n", "Start date \n", "2015-10-01 00:01:00 W21109 Registered \n", "2015-10-01 00:01:00 W20603 Registered \n", "2015-10-01 00:01:00 W01233 Registered \n", "2015-10-01 00:02:00 W00218 Registered \n", "2015-10-01 00:03:00 W21612 Registered \n", "2015-10-01 00:03:00 W22093 Registered \n", "2015-10-01 00:06:00 W00231 Registered \n", "2015-10-01 00:07:00 W20820 Registered \n", "2015-10-01 00:07:00 W00244 Registered \n", "2015-10-01 00:07:00 W20352 Registered \n", "2015-10-01 00:08:00 W21327 Registered \n", "2015-10-01 00:11:00 W20487 Registered \n", "2015-10-01 00:11:00 W22183 Registered \n", "2015-10-01 00:11:00 W20769 Registered \n", "2015-10-01 00:11:00 W00231 Registered \n", "2015-10-01 00:14:00 W20668 Casual \n", "2015-10-01 00:14:00 W01031 Registered \n", "2015-10-01 00:15:00 W21001 Registered \n", "2015-10-01 00:15:00 W00379 Registered \n", "2015-10-01 00:15:00 W20592 Registered \n", "2015-10-01 00:03:00 W21206 Registered \n", "2015-10-01 00:15:00 W20970 Registered \n", "2015-10-01 00:17:00 W21281 Registered \n", "2015-10-01 00:19:00 W20617 Registered \n", "2015-10-01 00:19:00 W20439 Casual \n", "2015-10-01 00:20:00 W00900 Registered \n", "2015-10-01 00:21:00 W21239 Casual \n", "2015-10-01 00:21:00 W21241 Casual \n", "2015-10-01 00:21:00 W00231 Registered \n", "2015-10-01 00:23:00 W21823 Registered \n", "... ... ... \n", "2016-09-01 00:21:00 W00906 Registered \n", "2016-09-01 00:20:00 W22628 Casual \n", "2016-09-01 00:19:00 W01127 Casual \n", "2016-09-01 00:19:00 W00957 Casual \n", "2016-09-01 00:19:00 W00721 Registered \n", "2016-09-01 00:19:00 W21699 Casual \n", "2016-09-01 00:19:00 W00996 Casual \n", "2016-09-01 00:19:00 W22575 Registered \n", "2016-09-01 00:18:00 W20893 Registered \n", "2016-09-01 00:18:00 W20689 Registered \n", "2016-09-01 00:17:00 W21256 Registered \n", "2016-09-01 00:15:00 W22398 Registered \n", "2016-09-01 00:15:00 W21480 Registered \n", "2016-09-01 00:13:00 W22661 Registered \n", "2016-09-01 00:13:00 W20265 Registered \n", "2016-09-01 00:13:00 W20524 Registered \n", "2016-09-01 00:12:00 W22865 Registered \n", "2016-09-01 00:09:00 W22637 Registered \n", "2016-09-01 00:09:00 W21299 Casual \n", "2016-09-01 00:09:00 W21011 Casual \n", "2016-09-01 00:08:00 W20941 Registered \n", "2016-09-01 00:05:00 W00785 Registered \n", "2016-09-01 00:05:00 W21529 Registered \n", "2016-09-01 00:05:00 W22528 Registered \n", "2016-09-01 00:05:00 W22689 Registered \n", "2016-09-01 00:05:00 W01320 Registered \n", "2016-09-01 00:05:00 W22933 Registered \n", "2016-09-01 00:03:00 W22953 Registered \n", "2016-09-01 00:02:00 W22911 Registered \n", "2016-09-01 00:00:00 W22867 Registered \n", "\n", "[3268722 rows x 8 columns]" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bikes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "save this DataFrame with pickle" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pickle.dump( bikes, open( \"bikeshare_rides_all.p\", \"wb\" ) )" ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "3268722" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(bikes)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
mne-tools/mne-tools.github.io
0.18/_downloads/012b7ba30b03ebda4c3419b2e4f5161a/plot_ssp_projs_sensitivity_map.ipynb
1
2421
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Sensitivity map of SSP projections\n\n\nThis example shows the sources that have a forward field\nsimilar to the first SSP vector correcting for ECG.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Author: Alexandre Gramfort <[email protected]>\n#\n# License: BSD (3-clause)\n\nimport matplotlib.pyplot as plt\n\nfrom mne import read_forward_solution, read_proj, sensitivity_map\n\nfrom mne.datasets import sample\n\nprint(__doc__)\n\ndata_path = sample.data_path()\n\nsubjects_dir = data_path + '/subjects'\nfname = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'\necg_fname = data_path + '/MEG/sample/sample_audvis_ecg-proj.fif'\n\nfwd = read_forward_solution(fname)\n\nprojs = read_proj(ecg_fname)\n# take only one projection per channel type\nprojs = projs[::2]\n\n# Compute sensitivity map\nssp_ecg_map = sensitivity_map(fwd, ch_type='grad', projs=projs, mode='angle')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Show sensitivity map\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "plt.hist(ssp_ecg_map.data.ravel())\nplt.show()\n\nargs = dict(clim=dict(kind='value', lims=(0.2, 0.6, 1.)), smoothing_steps=7,\n hemi='rh', subjects_dir=subjects_dir)\nssp_ecg_map.plot(subject='sample', time_label='ECG SSP sensitivity', **args)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
AmericasWater/awash
docs/Tutorial 1 - Running the model.ipynb
1
265715
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Scope of this tutorial\n", "\n", "Welcome to the first America's Water Model tutorial! In this tutorial, you are going to learn how to (0) install the model, (1) run the model in simulation and optimization mode with different configurations, (2) look at the results, and (3) make requests of and get updates from the modeling team." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Some terminology\n", "\n", "We are going to use a bunch of terms in this tutorial, so it's important to clear up the confusion.\n", "\n", "* **The model**: A computer program that can provide information on how water is or could be supplied and consumed in the US.\n", "* **Julia**: The programming language used for the model. <img style=\"float: right; position: relative; top: -20px; width: 150px\" src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/6/69/Julia_prog_language.svg/2000px-Julia_prog_language.svg.png\"> From the [Julia website](http://julialang.org/):\n", "\n", " *Julia is a high-level, high-performance dynamic programming language for technical computing, with syntax that is familiar to users of other technical computing environments.*\n", " \n", "\n", "* **Jupyter Notebook**: A program to make documents, like this one, that combine Julia programming and text.\n", "* **Git**: A program that saves all previous versions of the model, and lets the modeling team collaborate. All of these previous versions are stored on the website [Github](github.com/AmericasWater/operational-problem).\n", "* **Terminal**: A text interface to your computer, needed to use Git and Jupyter Notebook.\n", "* **Mimi**: The foundational code used by the model to provide its structure, developed by [David Anthoff](http://www.david-anthoff.com/).\n", "* **Simulation**: A way to run the model, where inputs (or *parameters*) are used to determine the value of outputs (or *variables*).\n", "* **Optimization**: Another way to run the model, where constraints on outputs (or *variables*) are used to determine inputs (or *parameters*)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Installing the model\n", "\n", "If you are an advanced user, you can follow the more succinct [installation instructions](install.md) and then skip to \"What you just got\" below.\n", "\n", "## Setting up your environment\n", "\n", "You will need some basic software to use the America's Water Model.\n", "\n", "* **Julia (command line version)** from http://julialang.org/downloads/\n", "\n", " Check your installation by running Julia and writing some arithmetic.\n", " \n", " \n", "* **Git** from https://git-scm.com/book/en/v2/Getting-Started-Installing-Git\n", "\n", " If you're on Windows, also download PowerShell (https://msdn.microsoft.com/en-us/powershell/)\n", "\n", " Check that it's installed by opening a terminal/PowerShell and typing `git --version` and see a version number.\n", " \n", " \n", "* **Jupyter Notebook** from http://jupyter.readthedocs.io/en/latest/install.html\n", "\n", " Check that it's installed by opening a terminal/PowerShell and typing `jupyter notebook` and see a browser window pop up." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now it's time to download the model. First, decide where you want to put the model, and open a terminal to this location.\n", "\n", "## Aside: How to navigate to the model in the terminal\n", "\n", "1. Opening a terminal. Doing this is different by OS:\n", " - On Mac OS: Open the Terminal program.\n", " - On Windows: Open the PowerShell program.\n", " - On Linux: Open up a shell window.\n", "2. To change directory, type `cd <directory>`. `<directory>` can be any of the following:\n", " - The name of a subdirectory.\n", " - Two periods (`..`) to go to the parent directory.\n", " - A single period (`.`) to not go anywhere.\n", " - Any combination of the above, separated by slashes (`/`).\n", " - A tilde (`~`) to go back to your home directory.\n", " - A slash (`/`) to go to the root of the server.\n", " - Either of the previous two, combined with any of the first four, using slashes.\n", " - Use the tab key to auto-complete the name you have started to type.\n", " - If there are spaces in your directory or filename, consider the life choices that led to this moment.\n", "3. The model will be created in a new folder, when you download it. From then on, for anything from this tutorial, you will want to go into the `docs` subdirectory of that folder.\n", "\n", "## Downloading the model\n", "\n", "In the directory where you want the model folder, paste the following command:\n", "\n", "```\n", "git clone https://github.com/AmericasWater/awash.git```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# What you just got\n", "\n", "The model is organized into different folders. Here is what is in there:\n", "* `configs/`: Configuration files, that determine the basic operation of the model.\n", "* `data/`: Input data files. There is also a `data/cache/` folder, with saved preparation files. You can delete this to force the model to reinitialize.\n", "* `docs/`: Documentation, including tutorials like this one.\n", "* `prepare/`: Some source data files and the scripts needed to prepare them for use in the model.\n", "* `results/`: The standard location for output results, along with code for post-processing.\n", "* `src/`: The main source code for the model. All the magic happens here.\n", "* `test/`: Automatic testing scripts, to make sure changes don't break how the model should work." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Opening the model\n", "\n", "For the purposes of this tutorial, the main interface of the model is Jupyter Notebooks, and the existing tutorials in the `docs/` subdirectory. To start the model, do the following:\n", "\n", "1. Open a terminal to the `docs/` subdirectory of the model.\n", "2. Type/paste the following command: `jupyter notebook`.\n", "3. In the browser window that opens, find the item `start.ipynb` and click on it.\n", "4. Click the \"<span style=\"font-family: FontAwesome\" class=\"fa-step-forward fe\"></span>\" button, which will run the line below.\n", "\n", "If this is the first time you're running the model, it is going to install some needed libraries and data." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[0;1;34;94m┌───────────────\u001b[0;34m────────────────\u001b[0;37m────────────────\u001b[0;1;30;90m───┐\u001b[0m\n", "\u001b[0;34m│\u001b[0m \u001b[0;34m▄▄\u001b[0m \u001b[0;34m▄▄\u001b[0m \u001b[0;37m▄▄\u001b[0m \u001b[0;37m▄▄\u001b[0m \u001b[0;1;30;90m▄▄▄▄\u001b[0m \u001b[0;1;30;90m▄▄\u001b[0m \u001b[0;1;34;94m▄▄\u001b[0m \u001b[0;1;34;94m│\u001b[0m\n", "\u001b[0;34m│\u001b[0m \u001b[0;34m████\u001b[0m \u001b[0;37m██\u001b[0m \u001b[0;37m██\u001b[0m \u001b[0;1;30;90m████\u001b[0m \u001b[0;1;30;90m▄█▀▀▀▀█\u001b[0m \u001b[0;1;34;94m██\u001b[0m \u001b[0;1;34;94m██\u001b[0m \u001b[0;1;34;94m│\u001b[0m\n", "\u001b[0;37m│\u001b[0m \u001b[0;37m████\u001b[0m \u001b[0;37m▀█▄\u001b[0m \u001b[0;37m█\u001b[0;1;30;90m█\u001b[0m \u001b[0;1;30;90m▄█▀\u001b[0m \u001b[0;1;30;90m████\u001b[0m \u001b[0;1;34;94m██▄\u001b[0m \u001b[0;1;34;94m██\u001b[0m \u001b[0;34m██\u001b[0m \u001b[0;34m│\u001b[0m\n", "\u001b[0;37m│\u001b[0m \u001b[0;37m██\u001b[0m \u001b[0;37m█\u001b[0;1;30;90m█\u001b[0m \u001b[0;1;30;90m██\u001b[0m \u001b[0;1;30;90m██\u001b[0m \u001b[0;1;30;90m██\u001b[0m \u001b[0;1;30;90m█\u001b[0;1;34;94m█\u001b[0m \u001b[0;1;34;94m██\u001b[0m \u001b[0;1;34;94m▀████▄\u001b[0m \u001b[0;34m████████\u001b[0m \u001b[0;34m│\u001b[0m\n", "\u001b[0;1;30;90m│\u001b[0m \u001b[0;1;30;90m██████\u001b[0m \u001b[0;1;30;90m███▀\u001b[0;1;34;94m▀███\u001b[0m \u001b[0;1;34;94m██████\u001b[0m \u001b[0;34m▀██\u001b[0m \u001b[0;34m██\u001b[0m \u001b[0;37m██\u001b[0m \u001b[0;37m│\u001b[0m\n", "\u001b[0;1;30;90m│\u001b[0m \u001b[0;1;30;90m▄██\u001b[0m \u001b[0;1;30;90m█\u001b[0;1;34;94m█▄\u001b[0m \u001b[0;1;34;94m███\u001b[0m \u001b[0;1;34;94m███\u001b[0m \u001b[0;1;34;94m▄█\u001b[0;34m█\u001b[0m \u001b[0;34m██▄\u001b[0m \u001b[0;34m█▄▄▄▄▄█▀\u001b[0m \u001b[0;37m██\u001b[0m \u001b[0;37m██\u001b[0m \u001b[0;37m│\u001b[0m\n", "\u001b[0;1;34;94m│\u001b[0m \u001b[0;1;34;94m▀▀\u001b[0m \u001b[0;1;34;94m▀▀\u001b[0m \u001b[0;1;34;94m▀▀▀\u001b[0m \u001b[0;34m▀▀▀\u001b[0m \u001b[0;34m▀▀\u001b[0m \u001b[0;34m▀▀\u001b[0m \u001b[0;37m▀▀▀▀▀\u001b[0m \u001b[0;37m▀▀\u001b[0m \u001b[0;1;30;90m▀▀\u001b[0m \u001b[0;1;30;90m│\u001b[0m\n", "\u001b[0;34m└───────\u001b[0;37m────────────────\u001b[0;1;30;90m────────────────\u001b[0;1;34;94m───────────┘\u001b[0m\n", "\n", "Welcome to AWASH, the America's Water Model, version 0.7.\n", "\n" ] } ], "source": [ "include(\"../src/nui.jl\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Configuration parameters\n", "\n", "The configuration file determines the general bounds of the model. The current configuration parameters are:\n", "\n", "* **`netset`**: The top-level decision of the world we are deciding.\n", "\n", " options: `usa` (full-country), `three` (3-counties), `dummy` (5-counties)\n", " \n", " \n", "* **`filterstate`**: Only include counties within this state (give as 2 digit FIPS).\n", "\n", " e.g., \"`10`\" for Delaware (3 counties), \"`08`\" for Colorado (64 counties)\n", " \n", " \n", "* **`startmonth`** and **`endmonth`**: First and last month of the simulation.\n", "\n", " e.g., 10/2000 - 9/2010\n", " \n", " \n", "* **`startweather`**: The weather entry to match to `startmonth`.\n", "\n", " e.g., 1 to use the first month in `VIC_WB`for the first month in the simulation.\n", " \n", " \n", "* **`timestep`**: The number of months for each timestep of the model.\n", "\n", " The larger this number, the faster the model will run. Currently agriculture is calculated separately for each timestep.\n", " \n", "# Standard configuration sets\n", "\n", "There are three configuration sets to know about:\n", "\n", "* `complete.yml`: A monthly run from 1949 - 2010. This is basically impossible on a laptop.\n", "* `standard.yml`: A 6-month timestep run from 2000 - 2010. This is about the maximum practical for a laptop.\n", "* `standard-1year.yml`: A 6-month timestep run for 10/2009 - 9/2010 (two timesteps). This is good for testing.\n", "* `single.yml`: A 12-month timestep run for 10/2009 - 9/2010 (one timestep). We will use this one here.\n", "\n", "Here is what the `single.yml` configuration looks like:" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "# Only include counties within this state (give as 2 digit FIPS)\n", "# \"10\" for Delaware (3 counties), \"08\" for Colorado (64 counties)\n", "filterstate: null\n", "\n", "# Current options: usa (full-country), dummy (5-counties)\n", "netset: usa\n", "\n", "# First and last month of the simulation\n", "startmonth: 10/2009\n", "endmonth: 9/2010\n", "\n", "# First entry in VIC_WB to include\n", "startweather: 720\n", "\n", "# Months per time step\n", "timestep: 12" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Running a simulation\n", "\n", "There are three steps for running a simulation:\n", "1. Select a configuration: Create or select a file in `configs/`.\n", "2. Prepare the model: Call `prepsimulate(\"<config filename>\");`.\n", "3. Run the prepared model: Call `runmodel();`" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Loading from saved region network...\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING: imported binding for edges overwritten in module Main\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loading from saved water network...\n", "Loading from saved region network...\n", "Creating model...\n" ] } ], "source": [ "prepsimulate(\"single.yml\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This loaded up the model geography of the model, put together the sectors, and prepared all of the inputs. Now we can run the model." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "runmodel();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Looking at the results of the model\n", "\n", "There are lots of ways to see the results of the model, but they all require that you know which variables you want to look at. Start by identifying the component that you are interested, as a box in this image:\n", "\n", "![Operational Problem Model](https://raw.githubusercontent.com/AmericasWater/operational-problem/master/docs/ModelDiagram.png)\n", "\n", "Let's consider the Agriculture component. Next, we need to know what variables are available within that component, which we do with the `getvariables` function." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<table class=\"data-frame\"><tr><th></th><th>name</th><th>dims</th></tr><tr><th>1</th><td>rainfedareas</td><td>(3109,9,1)</td></tr><tr><th>2</th><td>deficit_coeff</td><td>(3109,9)</td></tr><tr><th>3</th><td>precipitation</td><td>(3109,1)</td></tr><tr><th>4</th><td>water_demand</td><td>(9,)</td></tr><tr><th>5</th><td>logirrigatedyield</td><td>(3109,9,1)</td></tr><tr><th>6</th><td>irrigatedareas</td><td>(3109,9,1)</td></tr><tr><th>7</th><td>allagarea</td><td>(3109,1)</td></tr><tr><th>8</th><td>totalirrigation</td><td>(3109,1)</td></tr><tr><th>9</th><td>production</td><td>(3109,9,1)</td></tr><tr><th>10</th><td>cultivationcost</td><td>(3109,9,1)</td></tr><tr><th>11</th><td>water_deficit</td><td>(3109,9,1)</td></tr><tr><th>12</th><td>lograinfedyield</td><td>(3109,9,1)</td></tr><tr><th>13</th><td>totalareas</td><td>(3109,9,1)</td></tr></table>" ], "text/plain": [ "13×2 DataFrames.DataFrame\n", "│ Row │ name │ dims │\n", "├─────┼───────────────────┼──────────────┤\n", "│ 1 │ rainfedareas │ \"(3109,9,1)\" │\n", "│ 2 │ deficit_coeff │ \"(3109,9)\" │\n", "│ 3 │ precipitation │ \"(3109,1)\" │\n", "│ 4 │ water_demand │ \"(9,)\" │\n", "│ 5 │ logirrigatedyield │ \"(3109,9,1)\" │\n", "│ 6 │ irrigatedareas │ \"(3109,9,1)\" │\n", "│ 7 │ allagarea │ \"(3109,1)\" │\n", "│ 8 │ totalirrigation │ \"(3109,1)\" │\n", "│ 9 │ production │ \"(3109,9,1)\" │\n", "│ 10 │ cultivationcost │ \"(3109,9,1)\" │\n", "│ 11 │ water_deficit │ \"(3109,9,1)\" │\n", "│ 12 │ lograinfedyield │ \"(3109,9,1)\" │\n", "│ 13 │ totalareas │ \"(3109,9,1)\" │" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "getvariables(:Agriculture)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `:` is important for both the component name and the variable names below.\n", "\n", "Then to see the results, call `getdata(<component>, <variable>)`." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "3109x9x1 Array{Float64,3}:\n", "[:, :, 1] =\n", " 0.0 0.0 … 0.0 0.0 \n", " 0.0 0.0 0.0 0.0 \n", " 0.0 0.0 0.0 0.0 \n", " 0.0 0.0 0.0 0.0 \n", " 0.0 0.0 0.0 0.0 \n", " 0.0 21570.7 … 0.0 33936.2 \n", " 0.0 37424.6 0.0 0.0 \n", " 0.0 0.0 0.0 32082.3 \n", " 0.0 32438.7 0.0 8336.67 \n", " 0.0 0.0 0.0 3.35729e5 \n", " 0.0 0.0 … 0.0 0.0 \n", " 0.0 9.73389e-23 0.0 0.0 \n", " 0.0 0.0 0.0 0.0 \n", " ⋮ ⋱ \n", " 54033.4 42940.9 0.0 0.0 \n", " 1.10014e5 15292.0 0.0 0.0 \n", " 30610.1 5819.68 0.0 0.0 \n", " 78542.1 16184.3 … 0.0 0.0 \n", " 40925.4 30863.0 0.0 0.0 \n", " 78652.4 28882.8 0.0 0.0 \n", " 0.0 0.0 0.0 0.0 \n", " 42416.2 26897.1 0.0 0.0 \n", " 5701.34 12085.1 … 0.0 0.0 \n", " 0.0 0.0 0.0 0.0 \n", " 26212.3 3313.67 31500.0 0.0 \n", " 10993.2 1075.5 1.55547e-13 1.28253e-15" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "getdata(:Agriculture, :production)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To save the data to a file, call `savedata(<filename>, <component>, <variable>)`. The `savedata` function is best used on 2-D data (or less) and since production is of dimension COUNTY x CROP x TIME, we would like to drop one. We can do this with a fourth argument, which has the syntax for a Matlab index." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [], "source": [ "savedata(\"../results/agprod.csv\", :Agriculture, :production, (:, :, 1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we can plot it. This only works so far for results that describe nation-wide values, but it's a start." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING: RCall.jl Warning: package ‘ggplot2’ was built under R version 3.2.3\n", "Need help? Try the ggplot2 mailing list:\n", "http://groups.google.com/group/ggplot2.\n", "WARNING: RCall.jl \n", "-----------------------------------------------------------\n", "PBS Mapping 2.69.76 -- Copyright (C) 2003-2016 Fisheries and Oceans Canada\n", "\n", "PBS Mapping comes with ABSOLUTELY NO WARRANTY;\n", "for details see the file COPYING.\n", "This is free software, and you are welcome to redistribute\n", "it under certain conditions, as outlined in the above file.\n", "\n", "A complete user guide 'PBSmapping-UG.pdf' is located at \n", "/Library/Frameworks/R.framework/Versions/3.2/Resources/library/PBSmapping/doc/PBSmapping-UG.pdf\n", "\n", "Packaged on 2015-04-23\n", "Pacific Biological Station, Nanaimo\n", "\n", "All available PBS packages can be found at\n", "http://code.google.com/p/pbs-software/\n", "\n", "To see demos, type '.PBSfigs()'.\n", "-----------------------------------------------------------\n", "\n", "\n", "WARNING: RCall.jl Loading required package: maptools\n", "Loading required package: sp\n", "Warning: package ‘sp’ was built under R version 3.2.5\n", "Checking rgeos availability: TRUE\n", "Loading required package: foreign\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAD8GlDQ1BJQ0MgUHJvZmlsZQAAOI2NVd1v21QUP4lvXKQWP6Cxjg4Vi69VU1u5GxqtxgZJk6XpQhq5zdgqpMl1bhpT1za2021Vn/YCbwz4A4CyBx6QeEIaDMT2su0BtElTQRXVJKQ9dNpAaJP2gqpwrq9Tu13GuJGvfznndz7v0TVAx1ea45hJGWDe8l01n5GPn5iWO1YhCc9BJ/RAp6Z7TrpcLgIuxoVH1sNfIcHeNwfa6/9zdVappwMknkJsVz19HvFpgJSpO64PIN5G+fAp30Hc8TziHS4miFhheJbjLMMzHB8POFPqKGKWi6TXtSriJcT9MzH5bAzzHIK1I08t6hq6zHpRdu2aYdJYuk9Q/881bzZa8Xrx6fLmJo/iu4/VXnfH1BB/rmu5ScQvI77m+BkmfxXxvcZcJY14L0DymZp7pML5yTcW61PvIN6JuGr4halQvmjNlCa4bXJ5zj6qhpxrujeKPYMXEd+q00KR5yNAlWZzrF+Ie+uNsdC/MO4tTOZafhbroyXuR3Df08bLiHsQf+ja6gTPWVimZl7l/oUrjl8OcxDWLbNU5D6JRL2gxkDu16fGuC054OMhclsyXTOOFEL+kmMGs4i5kfNuQ62EnBuam8tzP+Q+tSqhz9SuqpZlvR1EfBiOJTSgYMMM7jpYsAEyqJCHDL4dcFFTAwNMlFDUUpQYiadhDmXteeWAw3HEmA2s15k1RmnP4RHuhBybdBOF7MfnICmSQ2SYjIBM3iRvkcMki9IRcnDTthyLz2Ld2fTzPjTQK+Mdg8y5nkZfFO+se9LQr3/09xZr+5GcaSufeAfAww60mAPx+q8u/bAr8rFCLrx7s+vqEkw8qb+p26n11Aruq6m1iJH6PbWGv1VIY25mkNE8PkaQhxfLIF7DZXx80HD/A3l2jLclYs061xNpWCfoB6WHJTjbH0mV35Q/lRXlC+W8cndbl9t2SfhU+Fb4UfhO+F74GWThknBZ+Em4InwjXIyd1ePnY/Psg3pb1TJNu15TMKWMtFt6ScpKL0ivSMXIn9QtDUlj0h7U7N48t3i8eC0GnMC91dX2sTivgloDTgUVeEGHLTizbf5Da9JLhkhh29QOs1luMcScmBXTIIt7xRFxSBxnuJWfuAd1I7jntkyd/pgKaIwVr3MgmDo2q8x6IdB5QH162mcX7ajtnHGN2bov71OU1+U0fqqoXLD0wX5ZM005UHmySz3qLtDqILDvIL+iH6jB9y2x83ok898GOPQX3lk3Itl0A+BrD6D7tUjWh3fis58BXDigN9yF8M5PJH4B8Gr79/F/XRm8m241mw/wvur4BGDj42bzn+Vmc+NL9L8GcMn8F1kAcXgSteGGAABAAElEQVR4AeydB5xdVbX/d3qb9Ex67530SpOiNGn6kGdFfQ9Rn/wtoE+fgs8GYkdpIigIPkURQZGOlATSGwnpyaSSXia9/9d337vuXXfPuZMZGJI7k70+mZy2zz7nrnPOXu231q51TMhFihyIHIgciByIHIgcOKEcqH1CrxYvFjkQORA5EDkQORA54DkQBXB8ESIHIgciByIHIgdOAgeiAD4JTI+XjByIHIgciByIHIgCOL4DkQORA5EDkQORAyeBA3VPwjVP+CXBmUWs2Qlne7xg5EDkQORA5IBwoHbtZFv3lBDADzzwgCsuLn7HLwJC/OjRo65OnTrvuK+q7IB7Onz4sKtfv35VdvuO++K+oHwv3zu+wNvs4ODBg65u3boFd19Hjhzx91SrVq23+cvendMOHDjgGjRo8O50/g56jfyqOPMKdezivvgeC+39qsqxa+nSpe76669PHG9OCQHcuHFjd/HFF1f8bc3TkofCR1+vXr08LU7OboQvg2STJk1Ozg3kuSr3BSHsCon27NnjGjZsWHCK1KFDh/w9FZrCUlpa6po1a1ZIj9DfCwM332KhKSyFyK9CVdIRwLt27Sq494txnnurirHrySefzPvtJNvFeZvHA5EDkQORA5EDkQORA1XBgSiAq4KLsY/IgciByIHIgciBSnIgCuBKMiw2jxyIHIgciByIHKgKDkQBXBVcjH1EDkQORA5EDkQOVJIDUQBXkmGxeeRA5EDkQORA5EBVcCAK4KrgYuwjciByIHIgciByoJIciAK4kgyLzSMHIgciByIHIgeqggNRAFcFF2MfkQORA5EDkQORA5XkQBTAlWRYbB45EDkQORA5EDlQFRyIArgquBj7iByIHIgciByIHKgkB6IAriTDYvPIgciByIHIgciBquBAFMBVwcXYR+RA5EDkQORA5EAlORAFcCUZFptHDkQORA5EDkQOVAUHogCuCi7GPiIHIgciByIHIgcqyYEogCvJsNg8ciByIHIgciByoCo4EAVwVXAx9hE5EDkQORA5EDlQSQ5EAVxJhsXmkQORA5EDkQORA1XBgSiAq4KLsY/IgciByIHIgciBSnIgCuBKMiw2jxyIHIgciByIHKgKDkQBXBVcjH1EDkQORA5EDkQOVJIDUQBXkmGxeeRA5EDkQORA5EBVcCAK4KrgYuwjciByIHIgciByoJIciAK4kgwr5OZr1m0o5NuL9xY5EDkQORA5YDgQBbBhRnVf7dShrdu3f7+bNGWm21m6u7r/nHj/kQORA5EDNZoDUQDXoMdbu3Ztt3XbDnfX/X9wQ0+/xN36819HQVyDnm/8KZEDkQM1iwNRANeg53n06FG3e89e1693D1e6a7f74S9+7QXxT+643+3dt78G/dL4UyIHIgciB6o/B6IArgbP8LmXJh/3LhG4/3vbr9xaiQN36tg+05793/vxnW74mZe5X9z9gBfMmYNxJXIgciByIHLgpHEgCuCTxvqKX/jL/3OLj+uWd8a3f/gr99AjT7jlJavdzDnzXa8eXXOab9qy1X37h790gydc7Jebt2zLOR43IgciByIHIgdOLAeiAD6x/K701Q4cOOg2bNri47nHjh3Le/6bi5e5hg3qu43SFlc0seAk2rV7j7eEh57+fnfLT+92q9e+ldQs7osciByIHIgceJc5EAXwu8zgd9r9a9NmucOHD7vJU2e6u3/7f3m7q1WrlhfUdevWcV+87hPujPGjXHHrVnnb7z9wwD30l7+70y+82l37xW+6BYuW5W0bD0QORA5EDkQOVD0H6lZ9l4XXI5YjVuE7Jfqoqr4qei9z5y/KNL3pll+4C88703Xt3DGzjxXu6yff+Zq74ebb3MB+vd1nvnyT692zm9u1Z4+bMGaEW7R0udu2fWfOOWxsFrf00aPH3J8ff9r/nXf2BHf9tR93E8eOKNP27exQi70qeP92rp/vHH2GKC2FRHpfhXRP3Euh3hf3xrsVnyOcKJ8K+VssxPeLe6qq+1LeJz2hU0YAY0VWFVVlX8e7p02bt2aaHD58xN12+2/cz77/9ZxB58iRI65v7+7up9/7b7dqzXrvfp63YLE/Dwu6gbimx406zS1ZVuK27cgK4gb163vUtF7g+Zdec/wNHtDXXXfNh9xlF53n6tevp4ff9vJE8qsiNwm/uKfyPoyK9PNutEGgFJrCovx6N37vO+2Teys0KmR+Fdq3qEKu0O5L36mquK/yvudTQgCTH1tfhM07JRjJx1Wv3jsXShW9l8PBAPN/j/7DUfHqf75ynQjVYb4bXhLubeigAe6NN5e6dm3buHVvbcxcgjjylBlzXcOGDdxEsYiXLC9xm7du88K3ebOmkiu8K9OWlfkLl7j/+tp33Xd/fJf79Mc+6D71kQ+61q1a5LSpyIa+vHXrFtZrdujQIf8+1KlTpyI/44S14b64J97XQiKeX1V8P1X9mw4ePOi/xUKzgAuRX4wPfI+F9hwRwAckHFZo98U4z71VxdhV3jhTWF96VX+hNaC/bl1y3c38pElTZriPf/ar7h/P/CvnF67fsNH9gbju2JE5+3Vj//4DbrJYxAjckcMGu3PPHF9uWtLGzVvcDwSoNWj8RR45HePEysm4jByIHIgceOcciAL4nfPwXe2Boho9unV2TYuKcq5DGtG1X/yW+6rEff/41yf9MRDN/fv2cmdMGO3dyDknmI2DYmnNnvem27N3X4XcsAfE0pg++w0P2Lrk6mvdE0+9UHBuUvPz4mrkQORA5EC14EBh+QarBctO7E22b9fWu5MPHjzkGokL+YAsNaZA3ed7H3zE9ereRVDMS93lF5/vhfXWbdu9G3lQ/z7izqwlbuklOTc9duRp3o3drGmTnP3lbRw9kgKxTZ46y02bNc91kPv66FWXuo9ffblrV9ymvFPjsciByIHIgciBBA5ECziBKYW0CyHZs1sX11OE7MhhQ1yL5k1dq5bNc2ITxHsBX61bn4r7DhnYV2Iq9bxQRvj279NT4sP9Mj+L+AbuauLAFSWsZSWs8dVr13v39OAJl7hPfO5rbrJMAFGIoCa957iMHIgciBwoNA5EC7jQnkhwP+3bFrvhQwe6FSVrXNs2rVzjRkPcK69N98jmOnVqC4DhoBd8b7y52JFGNF8Ebk9xWQOu0mpXi5au8L0OEPd0wwYN3PadpX67Xt2Kg8mwqpWwvJUAdvzr1SmS6rTCA9Q+/x8fce9/3zmuTeuW2iQuIwciByIHIgcSOBAFcAJTCmkXluyWrdvd1Jlz/W11ljrPV1yScjW3bNHc/f5Pf3Nr12+Qv42uriBoEXzzxR1du1ZZ58bCJct9H2NGDHXLV672hTsq8lu7dGovbvBNmab7ZGKHZk2LMgCu/n17uumz3vDH/yI5xV/79o/cBeee6a6+8mIBeo3LsdYzncSVyIHIgciBU5wDUQBXgxegcaOGmbtE2JKKpDRkYD83YuggcUGvE7fyZnf6uJFeYFP7OR/Vq5d67Liuu3ft5EpWr8vX1O/HCif1ydLefVmXNDMwZUiqZR46dNj9/ekX/V+74tbuI/92qbvqiov8LE2ZdnElciByIHLgFOdAWTPpFGdIIf58EMhDRdA2adyozO3hen5RXMBYmzNkEgZivXfc93C58VhQzRCx4I7t25XpM9yhAlv3t29XLDmFqQIIwwb3dwsXpyxrjq/fuCmnktZGKSTy2JPPuXHn/5s79/JPuPse+ovbkXaBa39xGTkQORA5cCpyIArgAn/qTCe4fsMmN08ELQVAJowZLnHghj7NiJgudPlF5/o2b4rrGTAU7uV8NKh/bzdj9vzMYWpCH59ySzb2EKtZaZWAsfpI2Uult8QKD4l4NDRr7gJ3w7dudf3GvM9d8/n/dk8++5ID3R0pciByIHLgVORAdEEX+FO3VZGwHF+bNtuBctbUojEjh0rqURf3uOTm/ucnPuR6dO/qzjljnNu6fYezdaT5mdSHDotplKxe6xqJQCeum4+OHs0t97fWVNnavqM0M+kD8Wfi1aFQbdQw60LnGhx//J/P+z9iyZ/88JXuzAlj5G9UjBfnewhxf+RA5ECN40C0gAv8kWLthmUgQTIr7dy5y/3ingdEqB30iGjKGRKTRfhimY44bZA2FUFZFpnMJA3DhwzItElaKZUpDC1t2Jhr5W7YlNoGpQ0xCYQlcpHzERb+ExIv/sAn/ssNGHehu/nW2/18xvnax/2RA5EDNZ8D1DrIwZbU0J8cBXCBP1gs4BbNm+XcZb30BAnkBjO5wrDBA6Q4xzFv4a5Z95ZbsWqNb790xSrv9qWcJXWjd5buzulHN7Csqafbu0dXB+BKiakNIeYYtgTISqlpURNBQ6cEbpGsQ5r+pG005qzbdsk1NMcY6/l+iRGfd8U17rQzLvXCGHd5zC+2HIvrkQM1nwN33vcHXwL3uZcm1+gfGwVwNXi8oXt4b7ooBsIPodWsWZFPRWLmpAf/+LcyLmCKdEyZMccVNWmc+GtBQZ8xfqRbJrFjyl6OGj7E9e3VXf56+Hjz1m07MuchqJlFSclWwaqXnnSB8pkoB0q7dhuUtO5ML49Iha3m4oZWYsIIiEIft9/zoDv/ymvc4AkX+5KbL02a6hHW2jYuIwciB6o/B+753Z/cjTf9MPND8N799R/P+jTHqz/9JV/6NnOwhq3EGHA1eKD7pdiGJbUol8j0gliQCOIrLj7P7T+w37ue9bg9h/UQzazH90r898CBFBjq9emzdbcgpNu6DvJnQV2jZBIHUNlKzaUylxLCFCJODWFRF4tbmvtMIj9LlQDLcEMrIex7yXkoGW+lXd2A0Ci5yR8x4/e+53R38XvPduedNcEVFSUrFdpfXEYORA4UNgdenz4nM00qRX5u+dndvlY9d40r+svfvEXCcC1zsisK+xdV/O6iAK44r05KS9yzgK5enjwtc/01MukCxDy/owYO9rMfde/a0YkXOi+RwrQriOXSGIQyLt6Vq9aWObdl6zauqGHdHAG8P53CpI25B6XdQewXi5oJIpj8IYmIPW8Q9zZ/StwLAn9gv14ZAazHWCKs//LE0/6va+cO3u1+4XlnSeGPMxxFSiJFDkQOVC8OMP3pDpmhjVoDd0oK5TMvTsr5ASjlj4lFPHHsiJz9NWEjCuACf4q4lbFEqYgFehiLF0FD6ceiJo3cWKlq9ey/Jvk2DQVtnGT94tYld7dJ47LW4uABfbzFaq1QWHLWe851u/YfdUX19vv5adFESYEKkdU2Psu9htRWCnFQPCSJSIGy8xbbNhWZH3SzuN8R8C++MsW7sEjLuvL973Ojhg1y40cP9wqK7TOuRw5EDhQWB1C++Y6hUedckakvEN7lm4uXhbtqxHYUwAX+GEEQ4yLu0bWzW7xspX9BEb64Xymkgeb4/gvOcT+/+wG3W2KtoJ7Jt7XUtXNHcQOvzInd6nHqQlshmtm/55BrXtTQvfrqJB8P3iK1oHELK2BK2x1JF+SoL67kTTJFYkgtWzTLK4BRGPKRdXsntQEdDl8sUWrzj4/+3X3/J3f6mteXSX40M0KdffpYyZvu44Fmtn1cjxyIHDi5HJi3YHHmBsL0xcwBWXnTFPux+6v7ehTABf4EsWifeu7lMm5cUn2mzZznZoqwBd3MZA1QnTq5KT/du3TywpdjKyXnlxQmLb5BGUoEc0ijRo12C1dvcKMHdfPXReBjUXIv3USYU3wDQgiS9oTQ3y5o7CQ3NjnGEMCt0DpvkEZz+wbBf1j5W2S2JtWOg8M+NWtvUB6TNlvSgDF+I66sPz32T39qq5YtfJlOSnViIQ8d1D/sMm5HDkQOnGAOzFuwqEJX3CmGBt6yTh2OX7mvQh0WSKOIgi6QB5HvNgBHdZFYJxMoWKrlannLFdfx0uVZIfrWxi1u7KjTMk0pyNG5Y+qlBU3du2fXzDFc21pSUncCjGrYNJUvfGBfFr1MyUssa1zZSh1kffYbC/1+wFZJ1LhRIzdBYjcjReiVpVxlwR7Hmu1lKmzZY6w3a5oFf+mxOjIZBR8qBODMlrzcJnx4QoqVfPXm29w5l33Cveeyj7lPfeHr7rcPP+qWLC9J9AJov3EZORA58O5wIAxplXcVnUymvDbV7Vi0gAv8ifXp1c0X1AB53EtSe8i15aXdUVqaufOGaStTd0ydMdenEyFMceUSh1Wav3CpO03qN9MHucOWEFrDx53lZi8s8bu3bc2CozQpHpc15yNYKf6hVL9efS9ol0nuMalRuKSZuxi39bRZ87wFrW1ZYhFjPZdHR9Oo6qQ2jRuXdV9TsETj0Fi8Yf6y9kM8/c1Fy9wbC5YIuOM5v5uZpcaJ4kK+9LjRw3xNbVvwRM+Ny8iByIGq40BlBDDfLKG3mkRRABf401y0ZIVA8hc6KlaBBgRoNLBfb58nq7e+WvJ8Q8IdjPsZNPHevbmxUtCGHcWVg7DECm7fqYtr1ryl27t7l1uwNOXKpr/168v2i8u6Xds2XrgRX1UCpPXatFl+E7AWljUzJu3Zm7KiDx/JFu+gEWUxsarLI01Dsm26d+noKIVZt07ZVxdEtwpgcovzCWAKm2g77RsX+lPPv+L/WrVs7hHjzDQ1ZsQQcbEPdiPFzW5zm/W8uIwciBx4exzAK5UPoJnU44JFS5N2V+t9ZUexav1zat7NE+Pt16eH27g5ZY2SB8vcwL17dvco6DniAkZQURBD2ygXSmSKwnPOnOCWrijRXX7Jiz9MUoBwT3fv1s2t2X7ELV63OqdNS4p7bEi5c3MOyAYlLRFu9oOw8V3ygUlPwvJl8gdoWzo26zfkP1KWwvxmPabL4jYt/SQTgM2UGonljWXaKF2wQ/ezLDKzRTU267YN6+RNhwJY27QX5ULTonC5ZwFttRyAMmLHI4YOFP71956AbqLknIrEM8HlHyly4O1ywAKwKtIH3ruaRlEAF/gTxYW7Q+o9K2l5yGVpoYqFi6v5wIGDZQQwVas2bNnhOnbs6NakgVPaD4IbGjx4qNtsYsh6vLi1oJd1I1gWNUmVnLS7S02ZSxQEXLmQxmotmKp/n56S85fKZbZ9hOsLFi4T0IUUA2nX1h06fNgtkA8Q1DfucKZgBBhmC4c0MDWykwS09g94LB/5cpqiXITUq0cXceev8fnYNieb2DdVw4YM7OMR13gn+ouXorxrhH1Xx+2bbrndTZKZtx594JeOSTgiRQ5UlgM6BlX0PLAaIKUJIdUUigK4gJ8k6UFYwIuWZufbPSAvoCWF5yOI+dNt2owYNtTNeXOZt0brSnz3sKnhrH3sO5i1LnUfy6aNsxM+2P2s16lTFrsXWt+4n6Gt21M5fhTjmDBmhLjO1+XN/fUnmP+wqrFWEegQ+czWrTx9tsSWxd39errylr0vlJJ8ZEtphm3aSbwc13xITROUDtq0lljz5Kkz/Z+eg+IzUtzWbYtbOcpy9pU/JsbAa9FcPAs1gQC7gWDFijnnzHE14SfF33CCOTA3DwKacrhJGRWHRQknFZPCRDWFogAu4Ce5SlzIL77yurdwARXhOt4uf0mE4AVEhZBb99YG797FXQthHQ/o08vNT4i5HjyajESuUytVVjLpWmFlK2pMh4U8mKYQKlm1zi/37z/gY8QIRqxTzSemQheClfg2975ZUo+WiqarhLtZc37pwxJxZoQvk01Q71r0lQwRk85HtcqZnSmfWzyf1g3PiT0r+pprojit37jJzZjzhvunpJBZoozmrt27JZ7c1ZfqZLDpLjnexOuTgGX23EJaR8mAKhPDK6T7j/dy8jkQArBQUJtJadk5AhBNSlvkjgl7RQF88p/dKXEHCN2Lzj9LJklY5QBjTRw7Uizc/BVhmKUIIBRCAYTzkEFZV83ilevduLGj3do1a2XQzLp/t2zP1mG2TD1y8IC3Ltev35jJ+9XjTIFoifjz7j25MWS1VBHWwwQ1zUcFIRgRvr17dHNt27Z2e8SdPE/QyACeOAeAlxXAeADOnDDaUSO2tgz6KBphSc1d6dmYLKr6YIK1r/eMQpKP9qZBY+HxunninczLPGLoADdr3pvhKYnbu6V/at/yZ4mynJTuJKZM4ZQundp7oVwsVjQueP7at2stykt+97nt791eVwGsM2+929eL/dc8DmzYmAr19BZltJlkTGTxFs71FdxLA8mkYCyz30p541915FC0gAv4qQFyocoVcd9v3/pLcb+skIkKuoh22EsQxEvKWJ36U3S6wHVG0CL4ps950w0f1CdHAOcrhrFp0ya3aFFKaJJ2hOU6Oy1kFKSk1wvdqhRO3yqVs5TCNCn2o1QQByZmisXI74HWycQLWNSa9sQ+BOzsN1ICjg8SAJmNH+GmHiF5xtZ1TIoUaGyE+vJ0kRL6gsqLDzOFYxLVKselHYYFyrvGsSD1S69VV2aSQrGgLi5/kFr2rOPGBoHerGmRTyvDVU78ubh1K1+onpzsJlKatGXz5gIWa+5d3bTlL5/1Tr9vl9IGsHgeUh6Ot9tPPO/U5cBwATOKv8iXwg25gNeLdEq+dUukItUkigK4gJ8m7tmPfuYGEcASv5X4x4c/+H4/4E2eOsvHRilOjhvHCiv7c1q3lvzfkqy1y7E9+3LduHwASbRuXXZgVVcRVWj6iJto7oIUgEvPC0tKthfL1gpgioYkUdOiIm/12WO4mYcO6ufji+wnn1inKGQb5QLhO1Hc1ZPTaU9U5iJFiPQqCLduKxFCL7823W8jpHrI8Y2bNntXdb55kfPFnnwn5fy3X6zzkPLlEB85mhxzt/Fr7aue5FYr6VSPuPr5s8oGbbCamcIRonCLTtjRRwBiJavX+rxt3ifQ4Sz79e7pq4ZRc7uhINaZ9WrXrl2e3yh8KFzkVQMAPHTooAjx1L3g5gcNPn3WG/5aK0rW+mX8L3KgshzYKbUMFohAbSpu53DKUvU4oUBbihaw5UZcf1c5oLVREb5YwyCiD6dTcrCWEMRYOFh6uGpD1+qBg7m5t9zsLnH5Fotg3rw1NXHC3v1l3bH5UpAAWjE1IAP02JGnuVKJZS4UlzD1qilHyUDuRNiy5MNSIt0piRo2rC9CIGspaxvrYh46uJ9HQOsxXdopEdlHgRDiRv3FdYXCosKXY8SV+aOa2FsbNvuSnOwPiZzoJPBHW7E0VQkJz2G7rbjNcbWvFXe91tXGSwAfwphyWHlM+0uysLt16SCCtsQ3UfS7tg+X1v2ugxdteDYoLTsP7cqJU9Nm1huLM92gwCxfsTKzzcoYecbT0gA4e4DKZopiX7hkmQ8rlAd6s+fG9cgB5UDLFi38alsJYe3anRvC2pfGe5BiSdEfBXWyTYU7cvlrAkULuICf4pz5WUuTvMvaUucZYWwHdqwh5t/t37enR+SCSkWAMSDOkdhqSJSqxO08ccJYt0ME4zZjEVP7+SgFM2rXd2vLnuraty32oBsGdEUmYzUiZGz8xk4bRj5w104dXBP5iOYvWuKFgd4T1m3obuaYdRHXkYIbCJGQEHhYYhT0qF2rtgeo8ZGWF4vFUiZ2GSoq2rcKT93WJRb+pi1lFQU9/vq0OY4Y7tZtO11XEZq4gXHRMlnEIimpaYUwVuVYSdHaJc9tg1jkFFiBNsjAYolULQBszI1MNbPj5dzyXijBM6U6tfPl6ubyFBAbSsCxcsBr2ud0ye/u34cwyGJfcIW87yiAlTtxWVEOACqFmkrIKSSbpw8eAvSzEjHhC887Uzer9TL7pVbrn1Ezb/53f/hrzg+bNvMNLwDHS6lEC0zAOgK4tEgGQtyLgLVACx6rU1/c06l0INsRMcspM+e7gQP6uVIDwtq7u9RNmzrVNs1ZJ+UmRL1iMSIALdnCGQg7rFNiuACssNRU6ADgQQgTw7VWr07ggCDesmWrA4yWRCCt1RVakVxUYsmUmbR5vLbfpFgux5NczPY81kmZQgEALGcJBcG6i9es3eCnktQ2TBFJ8Y/OoqRY6xtBjYcjFSeTiTSEV+WRddNbfSVJeaGfEAnOMyuW2P0m4bdSrojWvakwwOHDqXQ4lBZ+d/N6ZWtzZ8+Ia5EDuRwA86HuZDunuLZi4gVFQoffv2ZYaNvqvMwdOavzL6mB9261QISslmbcHFhjIGexQiAQxuSldunaTdbLxiYtm1YLIrpl8yKxOOu7IX27Su5vQ486tG3ser40mSKJ4VgKhf4OKfMIEc/p1KF9jjWnRTY4jmJB6UeEMn9YqwCojuWJU3OOUkU+SgSFxkn1PLvclK42ZvexXtymTbirzLbOMBUeCGPBtmIYbXle/EbqZxP7ZrYpm6esseEG9bN52YQcmHADgAqxX6iFWN1Kdo5l0ruSSMMb9lhnsTQs5RPeAOfsoPi5G77tnvvX5Jywg+0nrkcOhBxYYor/JIVlUOy6iFIKhZ6pFSW57uqw7+q0HS3gAn1avHRUf1LiZVQLCYvSEoNhOH/uitXryry49hzWsex2LZ0jEzwUuaPFDdzrS1a5VsUdXJ9uHWSigoU5MUPaa+oJ60rkwIbuUXUtaRtcvwzaaLy4LalDvV40XOigAHzUgiaXljZY8WjFw4YMdK++Pt0LY4QS108SdLiiKyKAuR4WZz7aWbqnzCEUH9Dnx6Ow3ra2X79ho68KRqiA+HmYy6ztuM5cE3JYKJa0R5+nvQv8biaLIDZGmEGBd/AVsl4H64JOhthhxeYWdKEPBVqxDuVzK6NwYZ0rkesMWIt7Ov/sCT4c8sFLL/CHX5o01T357Et+Fq3PffrDBZNGpfcelyeHA5s2b8tceFtaQc/sSK9Qk92J5zk8jhLN+x6OO+H51WE7CuACfUrEWYmrnia1h5n5CBerCmAQxggjrEQsqiZBaUUQrZu2lxUm4U/tIK7PkpWlrlT637Jli4/Pbtuxy02Vv4YNZBrBcQPcpk0bvQsVAcG8wCEx0xL3OXr4ED+ozxPX0sbNWTcm7dFw0Vrpg3WKTqgABpWrwrNRo5SV10ZcoQht1XSpKY2FTw1mwGaWiJWSmqR92GNJ6wC/koiPuVRQwCE1b9bMFwkJ99ttngO1rZMId/uUGXMyh5KUGA5a4BTbKDGkYqDgAHBDuKFkMd+xIqJph3ubGWIAfY0aNlh4Uc8rLwg+iH7Jw8a9TmoW8WiEOQoO92KtC5SFilAyqv2YR67r/K6XXXiej4F/8Jrr/WDJ+/vXvz/rvnXj590F555RkcvENjWYA4AllazHRvex5LuG1gZlawFufvYrN3ul/qorLvITyviG1fC/KIAL9KERw2XQ1XJtzILUWwA5FGtgYB40oI8Mvqul2EbfnPgpP6edgKUqIoBbi4ZZksY2rJC83N59B4jgS6UtMVBPn5dCYp33nrPcG/PnlxGsXKu5oLAhRSXb0pD+QPo/+sO9imCdOWe+O33cSLdYBDpCJVXTeU5mesRmInSgzVu25VSZopiH5sbiESD3FW/AYqkRDX/wBMyRWLNW2UpfOmdRr262OAkHiLGCmt4kAox7CwmQWD43rrbtKbnZgK0qQvks5ZKEGa3ojzlQbVUvrFJbiYx15nnW3GHOIdauhAtbi6Cwj2pjFGvR34TigXehQYNULJ6UrTqiKNWR65SIFwVkOIKaGDPpInsEU8AASIxa+6Df0NL+4DVfcDNkCk21zOkD7wZhCJRLHVw5N9KpxwFSEJUIh+gUqbqPpYIlATOiwBGmec/pY92/Xs3iVM6XynK8o9WVogAu0CenAo3bQ0iAOsbKw8phAFTw0YzZO71Q0p/BQNe2uNi5xSW6K+/Soo1p1CSYY5fYMO7hAzLIh1atdhoCKErFjazgCW2jS1zPCDmsdiza9iJAt8lv0g9NB2sUDAjhcsSgcjmOAEJ4U+lLpz+kLYKqc8f25Qpf2hHXhEfqPUB4JVn2tIVwhycRlbxWSV1rhEkq/apsK34Hg4cS1w1jwHrMoph1H4C3sMwlwtjm+fq2abQU/XNNFAql0I0cAqvgKbFx/hjkSNfKR7bACsAxS6FV/Eo6B1vbUMUM+p/v/VQAhLPd3T/9jh6q0iWDORY+6XmRCpcDFjTIXfLuhmTfRYQsddUVB6PnVHdFLoKwwqdeINsqYLmdhT4umopdUpLRToGHsCP/VIkX9dkXXnL9e3Z2p8kMPeXRsaAoxEYTl8Fyatuisdu3a7urL28JAgt3MzP/DBs8INPtUYlVW2oiFiOVl7BqaWvJujiJ94KERKFQ9LHOsoSrGiIGpEJZ+8ENj8vKCl89RlwzX34gHgMUmf0i/HFlI1ipKRsWANC+dJlUKQyh1qJFUz9T04Qxw/w1AZAhlEgHmzhulOTQyna7dlLOc6Qvs0l/+YQ5x8IBiX2QKieprdT/jcysT+zR3HC8A1j/pDRRiOScM8fnuJhpe+RYCqzHekgHDpSNC9s2R8370r1rJzdSqo8ReiAnXJUm296uqyLA/TGIIqCHnXlZlQK3QNI/99LkCk/2Ye8vrp9YDvCuKn6BKycpsZS4VULhBneAssx0qBDhk5/ecb82qZbLrKpcLW+/5t70q6/PyPy4nuJ6Xv/WJr/NlHsIYSVcsZR1VKI8IQJqwcJUkYUB/fq4xk2KEnOC9wR1j7emc1Lpq0/3Tm7+/FS8lWILWKN9pAoWCGsGU9y/DKRYkJaITzIQ6jSBxHs7dWwncxKv8lWosLoBEmGxUvyBe2cygvEiyHR+YY1LUlJRU5bsNUhbSiKsdNJ+sJrJs7XUTFxeek+6H0uJEo9MXpGPwipftKMcaF1RUHDR8meJWOzI4UUSF0+Vzlwpx7lfJl8gdQeEOPM7N2/a1M+XjBLQrGkTbwHs2LmzjMDlHkOy4DyOqXWpoBSUFoArB+Tc8P6OptHyYZ9sH89q3GdyxqdImUBLKFzlkQpg2iB8L7voXF/V7S+PPy0D8efLWEA3fOtWN1oKp4yU+DfP9HiEZ+DTX/iGu/4zH/NYBArB6FzUxzs3Hj/xHOCbQKHXVCT7fujd1DazrtkQC5M26PSm+RRX7aPQl9ECLsAnROzTTu+HkKP6C7RCUlYA3oD8hTxS0K+l/gstkYWLl7qZs2a77p3auNHDBgpyMPvIcRcrtU5rlWy3Eutu357UMTRT0LsQAgJisOsmFhCk9+U35D9Nh9LtEqkVjOZKShVpNhShgBDUDPjEEYkJM6sRVjGE8MLdRJukDyxpnz9R/oM3ncXVHZKNo+ox6x7WfeEyKRWHylgI+3yKwCFxg1pCIVkrClS3rl187JO4+VGxRCligvCEP8ytO+K0gfY073XI2ZHewO1tqVYaKa2eAz2W65tI7U36PdrexpZ1X8WXSVfLnh26GL9684/8wZ/f/Tv36eu/4ed51da3/Pwed99Df/HKyLmXf8Jd/tHPuUf+9lSm1Ki2s8vbbv+NF+IoOlhL5VUus+fF9ZPDAcqjKlCQO7ChJr0jwhpgDUKymQQoc9tF2bQGS9i+kLejBVyATwfrUAmrBuGBq4+4MAJv8IC+YnlK3E7yfDUGgnsTbzDlKpNouQgm/si77dWrp5snk91b9OFWATiccfoED7Kp5Y64WSIUISxdnfHGVnTSGZHUQh0pruT1YkkSS8xHpM9olawBMnexnVDBnoPVhzDA3YyLnYkHbAzaooDtebqOIKJc4mYRkqCGe4iyoJW7tI0uuQdc6ngDkiZisOhkwE30RbUtlKIkdzfVpJJKbyI0mf2F80Fyh6517ucNqVzGNQAqQcTXk4RimRSidPgsrHp1QDwNlniWU2bMk3emnp+Naot4PDxqun5diRvXk7zLtq6NDHi8R/AQZQpvxBFKoQoiFWAWikIShaGIsE2oHNjfv3HTVnf/w4+66z55tS+SAloa+umdv/UudQqn8IdH5DPXXO0ued97PO6hfhole++Dj7g7fvOQe/zhu7zSBn9TxU8uCW8jbhcIB8LQDwoTCq0tyIPHipx3Kv1Z2mUyDhgjyEN//uXX3YwXH80Jz9lzCnU9CuACfDJMuafUWdy3lAnkb4hYkG+IEEMoULwBVwxVo8Z5q/KYuBvX+4GUfaFrWPt7S+ap5a9nty5uxfbUQK/HJr82RazS3LltESgIGgQ/dZRRCBg8WQLKoVD/mJFDpWbwPF9IY0ZacGuf4XL37r1+V3lWLA10MgdASzsDd3J5KGfisHgJtA1x6PLKU3ItSn7y8Z8usVvinPAfoc8+3OwUB0GAYDHblCI7WNAPlFKUclOlUkfIs62XCQ3oPrsEQNS8WSr+zX7611KUtl1zeR5WIVEIsrqgtS2CKDVJxVseLFY7XZYSZQDBjnJiiUIss+al7p1JHJZKdTVLKEN5qXwDOCd1qmwfx9wtP7vb/fbhv7glck2uDYUzLWHp3CrW8Z33PeyeefR+eYc7u8eefM5990d3uI9edakPMRDe4LmBLyCLABR7pMLjAGOQJR8aSZBGPENLAwRjUdymdVrBSh15+oVX/cqv7n3I/eg7X7PNC349648s+Fs9dW6QYhXDpQgF2h/IYSW1GhBKuHOxAJ5/6TUvFHDfUluYSeABOIAILo/C6lW0xdLGSrKEMCPmCWHdMqCTyoIFPEwmSiiV8o4IXwiLKXSP+gPmP9KqAF9o3NIcyqxSPYp+IQZQ63JiH1YrJSWTCCSvCl+Ot5G0mooQwo54FNo2FaYAP6FMIBDIQ2a/tdhRIPR52P737ztoN3PWj2e5wxfrleDkJH4WBchsncN4XUIeb0sR1kNlrmVcebwXSkn9NjL9HhUlKyTc5gg9lIKQjletLCzyYc/HeqZQCbyGNLXNbwT/MR/yg3fdJrWoe3re3PPbP3pF5W5ZEq9XNDmKV3RDB8wroM277v+/nLvh/UkKE/FNWiWK6n5hOVztCLxD+P3osUJdRgFcgE+GuAZlHxn0iY0qUcsY4YeLGncuLyeCeKC4cwFnQaCVFy9d6QdbQChYA1hlpK5YoiIUcTlAUkpsJ8VFiakpEUNE8KyRuYbDUpfloXz1fJa4UHVuYbtf1xGiSrbkoe5jCS+SKHTDUjWnQ7ssmjLpHN2nMWji5MSuy6OmTZKBYFhtrWRycfKSQ9JwQbhftzU+P16eMbHyiZJuBdqYQhzExLHu6eNwAKSqLd4IqI48v5CwgrEGmX4QIaeUVDjElgTE68B7A0p9+NABfh0XMIj7JOEdxv71OroM09V0P8sQGEbqlR10tS34hkcf/JU7a+IYvwte3HLTV9wVl5wvHoq67vs/ucvPkfzoE894rEMSsEf7isuTxwEmVgjDKLxTA0QBDQll3IIDO3Vo6z1cSd8SAEibPRL2VYjbCUZ/Id7mqXNPaHdYmrx01PvlhUIzxL2YhIhFEEPkxkK4qQE1aalA0pKIHZOSgjXEwMb0XktXrvGTMVDMY9CgIb4m9CGpUnVYXMq4nLWiEX3a4hHE6zQuqgAsZkliHbcmA7a6oRHoxDRJ5WGAxALElYsrE2Qr8UU7bSHXwsJuIdWntkg+KjFn+/FxXCkEm+ExYMIHikgw8Ko2DT+xhpjNKMlipT94S3/qUsbdfzzqKAOBzVPU9rjMuHY/sdCoQAUKOivYs+5lbZ+zFH4N6t9HFCMnVvcbOYfsxmqZ97in5CH3Fl7Bd6zxc84cl6oyJgh5rHeeBWEIfhO4ANK2bNoH8dyQbOyaZ2dz0Wk7VlKr5pYu9M8NnuXwk8CxIQqyAEZjr39/E65nmuesNhVUOAOvdT+i0Nz3yx+UUWxILfvlD2+SZ9zD/fyu37mvfPNWmTf7Eq+c3njTre5vD93l85tzLhA3TioH8PApdsTeCO99SChuCgJl7JovRXcg3gcd+/Qcpsgsr9a7tiukZRTAhfQ05F6IZ/ByYoFMlVQP3IakFi1dvsojhvuUNaz8L9B4GRawEoOoCgncsvrCYlkxiENYG4uWlfh1+1/37j1cx3YyD64INRWCCE4GdFDakAoshCaxQ2KtQwQghtDno2GKvvLir7jYcXn3kPNTVa9SqGj6ogQn7mpyhwFu4f61ruVa6Sl/QCS3F2AZHy+/xZfvFMFn3Y+4NulDlRL7O7HyVsuHC/KI30OaVArAY1uVXU+qKY1SsXzFGt9YPRfj5Ddqyk6SRcYzQoggcKiLTSqWxkDLXjW1B4HOX/viVt49zl5ycS3QjPSqUJHI9WSUFcBUQUNBwhImjcvOuoWnpWT1Gl/IhIGO9CksayV+BwKe8AjWzFx5XtabgmKWjywClqnnwAkQL4fo90ufvcZ94dqPJYLeaIPn5b+/eK3PS/6vG78jHqIV7qrLL3IP//nvPi/43z8QwVjwqVCoe5fO3o0cYlWWi1EQEqEG/W4xQAhBcN6m9Bik7RmbqI9Aelt1orJfYXW6+xp4rxSuhw7LIAYxiM6YPd8PeFgS1PNNIorhQ9a1iIWpLmZbBMO6EBGWSbR6/SY3ZfYiV6teI1csgCRydYkjIrD05dd4GxY7cVosLqwo3KbQ8bRR3JaAnF6bOkuS61OT3mu9681S7QtLHGWED9BWd6Jv4s5nThjt7wVrHUGv100CoOVzkSIUN4rrSkFNLcR9XBFC4IeEizakvQZEknQOAwpKAxYqzxlC6ByPEJRawIS2mjut5yXF2I+YQhpJygCCF1c1hPdB3dAoCHgI4FH23nLvkTguIRFKi/LcrfClvxAgxj6lI3JdJYCFvF8aL//Gl69zN3zh03mFr57H8vyzJ7rXnvmTjwM+8+Ik/37w/aiiaNvG9ZPHgZI1a72SiXC1RP1zKswpEW5T4cu+UTL28Cz5vnfL0hL4BFIydXYwe6yQ16MALqCnwyCqltPW7dtz7kyFZiiItBHCEeuBOIhSWxGcmlqD+1lp+85sLBDUc3m0V4ovlO7eJ9bPWo961qIRnNNDkNQQQneMFE0A7MPACXALCylE2frG6f8QIICblPj49Deyj8kabMySCRpCsjFLjmE9YoWGsWmOJaXzsF9SDXPoQFrxydmZsIG1GX7s6pq3zcN4rT3GehIafInEyE4fO9y76sP2ut1WkKCEGpTCmFjp7uwz1jZdOnYQBSoV00VZ6deruwdVdZViLh3bF3vkt1Ui3pRiFrihiderFa8zLWUFcar3Y6Iclkc873x0KD23MMf7yPMj/FBX4rtYrtdf+/FKzaDEd/DAnT8U7ENjj6L++9MvZlyY+a4f959YDrw8ebpXOsOKbtwFISvelXMlpBJWu1sn4SQlVbZ1m7HjjPGjjIKoRwp7GV3QBfR8sP5w4WGdrE5PisDtDRZhprnBFLjXalL21rEgAdxo7JNCHcRmKYCBZsigDjFwWhQhQh+hGVZXsn1j/WCNErvhD5AUMTcdVMm3xfXN/VO4A+vHKgK2L10nDUpRr+yz1bzYbtOqlQhwU5dYBCXCX9HRtGHQ57dpPAmBjGCy8WvaQUlWMfvfXLScRYZQVLYF6TmZg2aFa/GsLCUVuTiW1szxECSBpPLNzgQAD2GEQIGfCPcZ6epaXDMUuPY+WOf3YjEAdiEmjPsOhUbj8xS/ZzIMqHfPLm6VpLBB3TplUfd+R/BfBxHUzBoVXv+IAeoFp/hNec3yki2BCcKasAmeFgBW6orOe3LCgTUSXgFlS9rSpz/2bx77kNAs7joJHPjhL+71ZVK59Op16/14ZL03eOoIp+yQEEtIPNdOkhUC0jlUvhmTPv3RD4anFPx2tIAL6BEphB4hOm7ksIzbjrQMtQZ58WwtaL19yrap8GUfAlIFEVahFtHA5azrtJs2a65UyMrWdmafpcH9e7kXXnrVp33ofmYlQTtFuBP/Zd5e3I5cP3Q96jnhkhxiS+F2y5ZZi512uDaZGtDSAnF5onhYQkEJ3Z0Ibo2R27ashy5nTekJ2yVtw0sbcy9jTstJCyWnuLX8FupuAyhB8DFdpFJSbi0KGAAn6t7igsMCDdN4kqxt7ZNl3Tp1vUt77vzF0s9KnyNuY602HmzXbZzd9pddT0nS0AK2daKzbbNr5XnVrQXM88SaufYTV/uYfraHiq995Nqv+EGaMq3f+fr/8yUPK352bPlucIBQE0bEr+79vQAT1/pLgKgnr5dyo0oo8bzzCxevKKPkMZsaufIQCrtVAinQAgakulG0gAvoieGSZfBFkBHTAKDEIE+1Ikth/I44ryJttR1AGVJXgPzb1BwAXes3GctSTti3P3/1qqLGqXxXW39ar7Fl6w5B+3bPidPoseMtw4pZFF4nFquUlNKERQP6EZQsHyrALVDDljwSW9ysWJBKXTp1zNSZ1n26DNNdktzX2jZc4hmgrjN1aXlWSQXlOadYlA08ELjqAYcBCKPyGLNB4VmguLzWtqU9Ho5QEGq8neOQHXxSe3L/V++E3WstjXzrCHatVqZCFi89wpttnYIwFKhq4faSGN5yU5vcXj/fukVTM4gOFQDe2wXTgKpvJql30K9uuznfJeP+E8wBCqiQHgaWBCVZSYsOYcGi2CsxPgD8U+Ao73MD+S50ylAMEb4TDVsxJ3Z1pCiAC+ipUc9UrVgq+uAq5g80KqUV1TUK2IVCG/wRo8Mt+Pr0OTm/BBQybl7IDpaNTbEFPUEHVd22y8VSSxoKQQ/sw0XccXfWmmNfRYjcXk1h0vZHjuTWNwYVbKmVuGL7CkCHSlQIAhUO+w/kTgbBOWjapGUh0JmUwALTVMHRvps0yZ1uEG8BoKiKEJajd7eLds8MRGFMWPtQsJTNfURRwGvAX1j8BOE7ROLpuPuVFM2u26CwQaerZ8QKVNqEXgD2HTNuYn3PUvuz8VspPllGoSKfXNPFNJWJaw8RQQnVEUQ627i8cRMmUjkuaAXI8cxxOX/2U/+e2MXxdgLQ+fL//MBjCz71kQ/I/eRHXh+vr3i8ajmAt4z3unmzIq8M885jFSvh+bACmP3UMIDAtoDqf+Hl1/02/6G4kl6IgP7mDZ/1xXMyB6vRShTABfKwGEABLykhPKDRUgaR/YrSBTTFQIeQQDgT501KieFcajjzotvBeYW4cltL3NTOfESccfX6rPXJuRAAoS3bUvuTBDdtECpYftatzf7yCOvWpsgQr8ZSt2StfKw9PjbKcEK017jv2oQBn3mTU8JN0ouEsM6IKyG0iTtTmINydoB9QkGPwB4n+dfEsPkLq3D5DtP/YbnhGldCI08idf0eTAO8rMuX9mEsmX1q8QJmayR529zHuWeM9XNCz5IUH+oz79q1V1zN9fwz3rh5uwjEAR641Upc3sxc1E3SPXj2XJ/+LN5MJ3DgWraO836JHVeEdu+VlKnFqWd22oDe7pXXZvjTsFR8mVN59yyVI38zv5WKa9zv27V+f/nr32eAfeS9RyocDugYpN9CE1/IJiuA+aZ5dzS2q/Xf+W6Xl6x2O+SbVmJsuOLi8wVgWuL+eN/PMoVZ9Hh1WkYBXCBPiwRz3MaQzek8fOhIRvhyDAAMLhwEM0U6KD/JIE18MWnu2C2SzsPEB2r5IVS6ysBsBXDDBg3pOkMI3o4ipFrJRzF1WkoA79ufCzjSxlibKATWraTH8i2xliztkSn6EJIQLkjcukw2AbIawsqcYix8D5SS9CQI1y1WGV4BS0Vp7Zl9IKynztzh3ba4rNju0+uwr3VMDBYLj3tCMKKpz563MCMU8TL4MIAA1dZL/Vpc30ohcA0Nv0e3TtJmnTbxy4ZyDeiggKEga32ynQQQ075RrhSBTFsGJkitRpQALL+d4vFQ8vm7xgVv9+u6tfyxJjRGrgOktsu3tDHouvWyCGcG0HUy89MYGTinCVI8S/lFMAVgIFKQvMIhqVmVpaWiWDF5A4SHRatlVbaf2P7d4YACLrduS323KImWCBmBjyBE00tmtGrRXCxlwU9oTr7FeqDwM+/z2aePrfbPOQpg+xacxHUsWqD1LZs39wUo9FZ2lGY1P93HcuacBX7Se2YMmbtgoWssgxbFDsKCFQicNYKopowhUwjOlut0aNtaSkluzHRnLaAxw/p7YT359amZ8pY0bCZpHfnIDsb52tj9TLUIeElTg5gvWAUbAlhrS3MOrlTrQmdfSntmLUUrxdrCulUtm71FIrhCQnBrDnOttMTH+lT3qrbHq4BiA2kYQI/hZkYI4iptLNewwp+2PAMGGXUNcx4FNiCtZGZjnuwn3BCS5nuH1jIKx1hRvig3qnS8eLC2E1+AWMj1vGdjteRijhg2SIT3XndI8rGxnimFiSJirfrsuak1fRa1amUFau30dIjaFp6GlbZUwdI2dqmueWZiokrb26Fn/zUpU5lr8IA+iaUs306/nENGAp6kivP57V6p5p3H+PPI3/6ZidWukvcOSzdUQvnlisegpjmGA+lxKrhJecRAoToaCvnefRtywFvVlXNRABfIk0OQUky8zfCWvhg9LkcGQxVM4W3yAnOOWsIcBz0IQAkQDbERLUBAPi4AJuLC9MkMR5YscnndeolLpusgM6G70mGxtPKRnTg7Xxu7n3iyWnjs53eTdkI8mxiREgpJa7FmEFxWSIapO9SQDeO2SYNlS3G9qwBuIev5yN5b2EbjtgwisIRBgxKNU2emYvCk+VBCdL94DDbI7FFNhd9aDUyBVXpvWNaaz4j3gudAHi7PtiSNFLXFM7gXjlEpSguvsE+LVrAOaXw8tZX9HwUF4cgfoL1mouwsXZm16GmJe37c6BGZkxDK8s/PeMX8rE3k9/IO5QADrW87faZ1cbPLKkeZztMr6nY8/z2n56Qd8Vt57nOkGtvVV16SVwAyHaHOBwswjpmRwAqgvBD/B6BjQxrh9fNtMwXilySmTC4yvxs3/oeuuOht9ZXvGjV1P7z68+NPy+xVv/bhIErFoqAikLFw14kBQKENMjW05CgePXJ5+U4WiEcQqxcBzLO75sNXSJXAV3LY9f4LzsnZro4bUQAXyFNTNyPVkHjhcCMC3gkFS3i7vNCWmKQAQUyclVKPxFYBMyCAISwzinnYuO3GzVlUdJfOnTMC2PabBOrhOIJomZTJrAydJvPv2rKJDM4IvYlSfIK0GSXmLkbJgBeWQoGjAs22ydpn2b3NTdGRcAIAbcXvVOtT9yUt4emOnXv84MHUkDZ+RQlRyFrHbCvyWwVkC3HxW7Q2bZTeI+61dm3bisXaQPgyUgTYUf8+7Jdaz2ExlvD3J8hD3631dLBD70OvyfKQhDymzsoW+JgwZpjEd6fZJn799PGpCRHYQDCHpJay7i9PqeEY7+r7zjldm3tlkXf2qzff5i4494y8wpeQwbe+/3NvzXMy3hRSsL7347tEySiV0MRyH1O+88ffLhPvz1zMrDAv9M7S3T7167ov3+TBPii1H3j/+9wv7n7ATXjfhxzVuS698FxzVlxVDgDoxOK94zcP+29DszN4f5VAPE+dudqPSaQgTU6HS8howPuFggjpO4MiRtEZlkqkP4Jdqe4UBXABPEHQfxqD43Z40UA1q0umvFvM57JDi2RwJ8ZJmhJWptKOHTtcXbFqJowa6naKNbVwWdYKOnwkSXSBdJUTEmhw/75+Pt2EQ4m7iDda4auN1q7bKDnFnTPaMPFfhC8UCgprTYEW5jcyheAiiUcrGMyWN9RrICSVrNWv+1jiHg6vZ4/rOrFZBDDEoNOwgcxSlI5lahs7A5AV0Np/qEjoeSxLxdU2z9Ratsf6yOBjCSFkXfr54rh6XT03qVxlZcMJvq+y8te7s5mwAk/AYal0lXQtvQ+e523/+1Xd9Etyn+9/6C8SF+znMQY5B9MbuCk/dt2NfsDOKlS1fHyQd4w66vT9tyef927kh3/9YwkftEnqyrvd//HMv9yLr7zuXpFsBCWqyekc1v/vuk945RirDswG9affjmWtfdek5fMvv+bu+/2ffZoQue9K1DVfKlas/d5Umedbpf74KAmFrN+4xStZKnw5n1KoTC6DNRzmwX/0qsv0EtV6GQVwATw+W5LR3g4v4wipw1tfQAfE2cLSbLQFIVge0UdYVaZIEIi4pydPnekHkJHDhrrDR2u5eQuXyXbCaCoX2CWuvCQ6aMoI7uNLlgAAQABJREFUJh0P95F+RJxXNeOO7dtJbLqjmymWP0KKPF805I2bUuAvzg8FBwhf2o4YOiiDeqUdZRZBGuOGBIQFOAwQh6Y82X5Uu+a8kEYPH+o9BcR53xK3PWjykEJU+MjThrhJU7MDN4MMfEYxIC6PomTjwvRXngA+cjir7YfXbhHUnGYgqy1eDSVFUOu2Lm0+OPvUHa/HWYICx3ui7vIwXm3b6noYA2Y/ILH1AsZSKq+f73/zSzn53LiPb771dm8hvVes4rBmMOUl77zvD97NrP3zjFFCcOW/NGmqdxcTy6YYB7FD3gORxYnEpBK/+8Nf3f0P/6WMt4V3AKwCQoRYMFMf/u2fzzuENWUTq2P1pUQmvI2deN/gxc8E/KaV+qy3CuUE/AnEe6Vk0wIVY0Fd9/AdAWvBt9NbqqOBrejRrbMPyWGY1JQJNrJfrXInLk84B3AZJxEvOPFDBnNeTtw1lJtUwo3MS2qFlR7Tc9imrrIlq7VjbU+flYpf9pIc2GZNUghUez7nrhIL2pZ9ZB+AJOoFV4Yo7K9zAftcvt7d/YBJH2i8VMlBOGuaUVLfc+anpsQLPZ/EujVm3kMS/rXiDsjapkXkzGaVCAZl+GDdWigDzaTa1i6xPnViBHJJkwQwkyhYYtpBYlooSSgAxFFffOU13wT3KjFTYoqQWvDwOB9VJuYe/g77fPP1z/4kqxRhQ6UuFcB6r2E/OS7mBJ0tPC+P7PMC77pP/num+0f+9pT73A3f9u87gyzKhEVsgwe4/Z4HMyU19USqyOEqBmRGnB4im4CZtSDeKSzh6z55td/WfXfe97BUZ3rIA+GotESs1xLela99+0cexHjR+We5W6SgBGEhFMXv/ugOd5m4olEYTyVCyXnoz094bwFZFSp84YF991DkcCujUFEUSPN8EbohUeHKvlMIW7IVUFr5+9CnvpgBMV4vM2MBKq0JFAVwATxFQE/jRw/3iel1BfGyzOSWcnuqGc4RiD6aIIXqyX/FCgRsxctN6pBOwQdikxhlG6l6RcWlMMcWNGwSLRcrgTxhBi4GOj4m/oi/YPHxIdCvgrsQwHwIu6TwP1PAHY+YUAGhq30wiCkClnNxNUGAxYifYsFgwetgruhkFIGWLVrIlHeLfHv9j/xfJUUxs83gvHdviY+h6nFAbjpYDJYpFBGQDUWoEou3sSVcjVRm0rKeer5Nc2If98xf186dvLtNNX+OEQpQsBVgM2Kb8BjBwhJhhzsVRUp/K8Utunfp4FNqZklalKUwRo2re58MikrW0td9LEM5mQ88pwNl6pzwrFSPWO9MN8l9Mt8whLeG95DrhwoKRUBIM2rcqIHnNeAu8roBV/GugV349YN/EmvqdxmliKIo7xVgls3VxtpKIqomwWesUiXmhrYYiT8//pQXwHwnPPvFy1b4dwKFg++JKksA9SwhgHkmFI146JEn3E+//3UfLuKZ8Sy/I0L49lu/aU+pset899TYvleeE+9IahrNVIodPxpPBd8RU4TiXaFkruIebLEflGu+MbuPMYS5xlXx51tH+aXaHTUQeEeUPmMUNt1XXZdRAJ/kJ4eW97xUeNEXjAE5FMB6iwhiLabPPtoS21UBS7ylhbh3sZoZMEAQYv2FpANmuJ9tBhviZzrhAzWa0WJB3WJt4z7GLYTbc8fOnT4WxuBXEaon+aL/enWKRwljfRHjtcLO9kFeL+5b4m98zFRdWiElDrEm+YAZLG28iHPVxYsQsKk9tMdt1VlKUmIhYSkRI+YaDKS7ZLan1euyCgQDg7q7ENS4NkOyVaXsMSpBMYkCrktLDaTKE4Ke2anUJa7HUaqopIVQQKFpJS5mhA6CgtKhI08b6PkP2AuitjPPVefj5TdVRAAfCxSvJAuY/rn3jAUcnMNx6JC4yOcsWOKGDerj3wf2YbVrmITnZIlrL1tRYnd5fvzpsX96ftz/8KNS2a1dRvjSENfjP559yc8HTAzxhm/d6v7v0X94lL+NqdNWlY4ct36gZ/Levv/fr+MldygffE+kYbHUd0mX9AnZkAzHvvLNWwWRe6W3glHsePdRUEfKM6yphCL8x78+6ccFRZvzWxkrbJocYwPuf4wJxov5C5d4ZZu2YQyXSRWsAJauvBJK3B5lDE8MOfgfvPQCd4d4KZTuu/0HHoWv29V9GQXwSX6CaO021URfWrUyy7s9WzmLdsSpcIepxcy+pCpZm0R7LY8YPLkvaKtYZvxB6TohPn3l9PGj3fMvTfb7ifcxADIYcU/57r2DuHjfErAFbmttgxAAxWstFd+p/Ee6C64pBKW2IV4+sF+fMsUrsKxVsCHAsEYtcX+44hnIWa9Vm/ziWq6PzH+7Zm1Zlxh1mtWdbfvR9fJcxFj4M+dm691yDkJS69pqH7rUvnCHozjxxyAGaU50397d/Tb/oVwcFAWip1SOwtLE5c0k5TwHaohz/dPkWdBun5Tq3L/voKyXrXAVpqPpBVCulOrUbeCKWnfyoCqEEUAzQF6166dc8BZZLezMEAOqJevq1/1F4gFAYKvQZlC29MRTL7hH//6sf/94Fv987mV/mJANXh7ug9/FgK32vRXA4TXZnjRlhhfgr7w23feFmxQPkoIUwRcowUcUN1LhqOMNoSgTL776Axe7Pz76pLfOuA/2W0td+6iuS7w0KMg//MVvMt4fvitLKIga84WPS5av9IfxajGrFa5p1lHibRiBRk19Jaxsb4rkZ/zCI7Fe0pRI01MvFS2Z7xmlvCbRCRXA3/jGN9zEiRPdxRdfXGke/vznP3dPPPGEa9++vbvnnnvEimnqNm/e7O644w43Y8YMd9FFF7nPfe5zle73ZJ+ARmmFD5YHgizfYG3vl5fV1ghmwLDuQ9oSf8FVhCuI4g1YDgCL8hGDUVJFLdu+VOJpW7ZszewChUuuJdVpsBax6NCOidVqxSYa1xdBC6nwZX2/CFj7+9mnhCKhFa60DQIgdMHSHre0CmAsXBfI1P59e0qsO5VeA592+epbWGXJILZaBowWWkVc77DE5/ORtZq0Tb26uRax7meZBJqCf5bC1CO8G01FOJBqA+HiLpH4uSXcpwclrUjptWlzREiIwJFKY5u2SmUwUQqYAJ3Br1WLpiLIdnulpIkUXdm3VwS2SNRSKTnpC6akJqHRrjAiPdnny/WUUG4s+T7sDllXKzvYndlktitolkzDSC7wMKmURBgGIvYIj0YLWn66KGV1BNaPS5hnTx42v4VwzvGIAd1iMEhDoh+UIGKVeKdIecEdjtscQUxGDUIYTwFgLDxGF553pp956XjXqw7HUVJ/8NO7fR6vnYcbIBUlI3NDPVs8UhklBeUGwoOn3yJVzkhB2p6uXKe/PyePXHZqxsfmLdt9DB8AJe84QFEl6gQkfVt6vDouj/+GVsGv2i3+/Y9//OPud7/7naQl5GriDLLhYLNTXJs/+tGPMld+/fXX3eTJk92zzz7rJkyY4G699VZ/7LrrrnPvfe973eOPP+6Pb9mSRc5mTi7gFQaghx55XMoidvcavd4qwpd42fEIl48lYi9J5KezE8HIS452GfJbzyH+slsEkwV66bFwSa6kEkqAopoZaHGT0weCbtyoYWKx9ko1DQZldlJyUrVf7U+X6pbXbV0yTR/pR5ZyeCHCIQQ4HTqYFZhJAtX2RWnKQ6IYKAHgCilJoGibw2KJhoTik49UubDHw1Qia9nRDgtQhS/bSf0n8ZXfjoJFXA13OW5tXNooZbx3WDV7BYQG0GiWPMdlq9bRfQKlJLC1Mq21Er5jOo2c7ci2Z7/NFWVbXf+8NqmQQlaoa/+aHsfzZYB+8ZUpjjxs8n93y/eVRNZtGh6nKAT9WKAQXh2ELF4hFDbmsUVwo3zgeQFh/ZsH/5yZKi/ss7ptP/rE077EK990cZtcgFm3zp0yP4dngBJCLB/XMyExiHcTJQbhzfgOeBTBrd8o7nqtDofiyPighgPygVKijFX3PvAnbzSANP/WjZ93L//j4UwfmZuo5isnxALeJrPmfPjDH3Zdu3bNYRdW7aRJk2RAOOA++clPuiuvvNIfZ1B+5ZVX3I033ui3aXPFFVfIIFPX93PJJZf4B7t48WIPnPnTn/7k7r33Xl8aUC9w3333uYULU+CVTp06lRH82q4yS144Xij+qoL+9uRzfmDBdQwC01LSLD/2OGjNBYtSoCXdT0ylZ7fOgtrNtYQ4TryQuCZuXQsQ0nNZ8rvqlSMotG3vnl0zE7jrvtDiYT9xICxwiNiOTgDvd6T/YzDMZ6lgNYaxPj2XmYJsHNQKKGLixIH1OTHQE3tVwl12cGdWgdD9LMeNHCoCaZnwMfuuhoIBd6+tzGXPZz359xzzACGmHuT6VIrivSdFLBRE9BFaxXgNhg7s4wVnd+Elgmfd+lSKB+1VELGuFCohuj9paQVpaJ0ktVfLV5e0UaHIOq5wS/weFDLAfOALcNeGMegwj1rfKe134RKZalDeX4310z+x817kRatJbi6KEoWLlGvXkbFD64kz/zBCAsAWAoRYs+IutC437tbf332bV0j++fwrYt3N9IriJ66+wj0m3y3v80c+eImvXIbFSIiBOZH37z/i3a6hoWFu66Ss6thln3PSjSAI8co9Lb85ieCXpU6i0C9KAzAJXSBQCVnhfiZsAobh5cnTvRcFlzLCFsHO2EXOOUKZPlHQCEEAxsLjQAgJLwdEKtlnrvlQ5rIngrfwCZ6F32HmJiqxUl4fJ0QAI3j5Q5Aqbd++3T311FPumWee8cALLFkE8FlnnSXAm91uxYoVbty4ce6qq65ya9eudUOGDPGnthD069atW93GjRv931133eWPjR8/3s2cOdMLaRoS9AfVCvEh68fsd7yD/6qqLwYRtEYdXHhRda5Lbg/tMWmmH731HvKig9C1xGBO8YN8hEURxnHCtkz7V5IuRRkeY5vycMzA01zSdRo1qu+tKITdm/LBlUfwzbqutC0vejf54KyA1GMIb7RqrI8kUoQlx6xrCmEMeEoJz8AGQVgqNROLdnsggFs0b+rg6ZQZs/0zWXFstWjx1NZeVAY9TJ3p/ft3andllk0aN/QxXNyZGkqoLTFnUM78WdJwA0hmUMVaEc26c2mv8f6zJoxyL6fjlwgxjdcmCdskq5i+rHudbUjfQ9azdiZb5ZP1BFgHRyhcUbRQImz4YYSAyyzZe2B/qFRQGQ45e6bwAA8MeAl9V5vL8wsJa1+n6cSrAcFn0PZY1LiZIT/ph7hNlVCQLr3wHA+swlr7lFhg/3vbr9xvBSiGsLjg3DPd1790rf9G9Ry7rKoxwvZZVevHGwd/93+Peb6ol8h6urgHmzsO2HCtyfXG7U/uN+8E11m9Zr0Pf+k7glBtW9xaFGOJmQv/AVlBpPzZZ081vCECWPza//tPH9pCqB/vvn1HVfifXk+XVdh1TlcnRADnXDG98fLLL7uVK1e6yy67zO9B696wYYN76aWX/PLaa6/1MV8YcNNNN3mhTMO9MqgVF8sUfBLEZ/BGAGMZYw0///zz7oILLvD9fexjH/NL/nvkkUdyJhbIHKjkCtfzVqLc6zul7//vj701o/2EMb6k8n7althvKHz1mBU0uk+XWIbESssj+yEktaMoOjVboQ7tUykfTBWogibpHPap+ynpOB9lkgCmbZJg0T5K027wLp07yIQUi3W3TyUhLq2E5WX5UkSMOCDcXrPmpmLEHNouhR2mzZ4nLvThZXDAuMe2pGd1Cbrxm7h3sQBAPWPd8t5YBcGeo9YmbmGmaMRi45xwhirOwYOhygj3a3OlEcQjxNVHP/yhnKAYUa2L61tKqnZl37fFy0pyinHYc3WdeGj74pZujxRoYeo/KrmhZCiFtaCtpaxtwsIg6bCyHs4o0/xOX81NrsFgDpBvqXiNqBs+oG9vb1ElGMC+rXamU0HCm5BUUYGn5NZ/5b8+5c6aMCZnzLj5q1/w3xxCu2+vHmKtpYRH2BfbeDZAvRcSpd7B2t4wyXdfhELIoLBjC8+VMVjHBXAGeHH4PjByLO6A2uIqbHn3ELJHRPGyhBdMv2myKhg3tG9tx3YbUfSvvvJisag76+4TumSc5z7Ccfnt3ER5fdR+Ox1WxTlYrLiGid8+9thjPrbbunVr/7C54TZt2mS0nuHDh7upU6f6yxIPHjp0qGsuswZ16NDBlaZBKOtlEgGKKFQXIr+NeJtSOEi+sXCxB5Pg6gopRIva48ypWl6SeumuvbZ5zjpWtxbJyDmQ3sAy0NQXPkqdo7gi6M98JTPpOikGqtcvz32jUyp2EnS1ug45r7m4KZUAlekHr/tsfFf3MagkERax/NQcwgVdHukgj4WmcbFwkNHzrTBkcMdiAxSUhFrGSleLl5mDLPE+EbfFtbdM0rWwNrCai8TabyCeoJbybDuI0OgphfAZOIeIO3v4kP4+xWmMWPqN5Nkq4SLEEwKBsE4iBCrX4B04IECvknWbvetV2+KSBfxHCht0+Eg2Bq9tQkv8aBDaUdc8imNHcU/qtoYbsM7wkqDswEeEp6VU3Di1h2eC+5rc86TYOJWYFk192k1/8a/uUx/5oEfx2r6wnB/+9U/cT7/3dVHmNmdKpto21X39BSnDiYdGAVT8Htzr4RgE/oJCN7xr+m2RtwuqXQlvDkho6gpY4plobB8hHX5LjF3UF7jh+k/7PGJ7bk1cP2kWcLt27dz555/vLr/8cm9Vnn322fJhpCxLLNzf/va3GX5feuml7rnnnnMssZJBQ0NYv1/+8pc9GhphjlCvDkRsg3QaG8vSNAe9f+JhgEkYxOzk9RxXxKC2tUusU+bV1PiJPcb65nKAagirLdO2+w+kd9/+YgU1dIf27/EIVM49bdCAjEvPa6ktW4pLamvF4iSBEKM/JbRghHsSKpYBIIk0T5fBFGvMklYzojIVuZ+2DyZ84DooKstXrsmcFvaROSAroRvqeNbNXgM0RDAyO5VN17F9q1Cx+1hnv0dri9sWGieW8RRJC1EiZLHETIIRxua0HSU3cd3yp9RWgDVMa2hpyIA0UC69s74owVDDBvVE2KR3mkXO70k/2zWmwtEBsVRR5gArtWnVSv5aZIA22g0562efPsYdkHrRh0T48nt5rigA5H9bvpOq1EwyH5gPWwWw9sMS4NQYmaaxjkzEAJGjS469EnFDvrd+fXp6hQ8lljYQ/XKfvEsqnImD4m04e+JY8SwMdAinB//4N5/jzUQMvK81jVZIWVuUqpDatmmdSdPiXX5RcvmV4CnKC9+wWnpkHKAcAU4LBSznAQQFUU3ct7i4lY/9okRBxXItppMcK+h2+/z9wRr43wkVwN/73vdyWEhaklo4+vByGqQ30LLuvPNOj5htZOYLPeOMMxx/uKWZm7W6EJaKov70nnErJ83DimWM5q7CGosKgWIBSNqHLtFgx0kqBkhka12icdoYjrbXJcUSiJf269vHTZ2X+iAQTFpPVwtBaHs0YwRwwzxWEu0A3DAl3/w8EwvQBrQzfSUJYP3dtLPEtH3khjIZhE0joY3GT/ntKnyx5NCsZ0tVKdyzo6Tec0UpR9jISSgmgwf09s+FHF7m/6X8ofJ6jyBplbBGEchdJN6Fh6Fd29a+TjUWG+46rIawKhDn4sZkasABAlqhaIgVvhwPXbr5vp+kmte1a5f97EMXLsIQCvf7neF/aS9jvfqNXLdu3X1RC7WMaLpFQJgHDmZj8no6gzTvj+ZbE6fVddqEA3AjqaLl6wgnKHOkHs2WdCX6mC1KF9fvJHgIFEXeq+4i2P27n/5BFvDF+4cAVgIJjfB4+M9/d8xKhTLEe0jKEQKF74p48E1f/bwI5O56WrVeMmY89fyrOdav/iD7blmlhuPwhkIk8Fjj++BMtI4AbmbNsab9RFGKJ4syBVH9jfBCPwFrUfWKb5P8YyZayKeY+hNr0H9lv8QT/OPswz3epa3wtW2rk/DlvvmQQ0oVEwj3Ou+mRnigeZITywtKfhxE6TcEHAOOJSxm/rCerUt5vKQEYXknCTrO56MBdKLCl30M9G2L23mBYOOqHFOrKnQdcgzyVoVYUrg8NZ8PAQ+oYlo6jkw73IsbJK6XRF06tffCLTyGixPCNRgSMT3ATarkdJMYMZNJLFqaBYqh+CFkGGxBxO43BRjC/l4Xvth5lwGogMK2RPyT0pEM9C9NmmYP+QIgHcS1xoDDnyUQvKDXeY7M1AOYCHd9yxZNfbUmXOs7BU1urWHO5x3gHHWz5kOv+3zlwIdOzmxIYWUvtfJrHRCU9sEUUhu5B9IXQNXR/RZFnpLAzGij1Lt7J7+q/YYhFixdlBMbmlAFRvtA2J4+bqRXmKhYRS7pSJk5RzEIvEuUW90sbnD4g0KjRU2I4TF5Ashb3ne1mjUdyubPE9O1UyHy/lwgeb3UpVbl65e//r2/Lax2ingg4BHuD93zY73dar3k27cYCPtjrBKM4msJ5REvD7REQgUUkNF4O/uYDSuHjPLEGIUiyjiC0txf8tMpHITxcKrQSRfApwqj9XcyKOBuURcq+7H+mBwgH2HFYeUhiBUwQlvyYSFy7qimhQZpY42NDBAEENS/BHWNNY0WWiIv/7q3Nvg+AUGplqrIcd9x+r8jro7EDrvJh5Z16XEIy4yiGxZ8o+eh+TKg4gK25Sbbyxy/h4OZfg6JQFPUpZ6vS5DTdu5i3a8acpLrmBxaBvZ5UioRai65mhZhzj5qGO/aVepjorje1gmGoDxSQUIbHcRtewQTkz8wx2+YtkS7JEuU/Rp2QZB6RG/aK84zxa1qCYELUIhniCWGRY1w4Xp16wrCXY6BvEap2C1+Y3h65JgZ8dKdhQhldocu7CYyKcfIYQPlvXjLg7pSp6ZNXdnISTNKuIaCb4qkqAeEW3LmnAV+nXg7MVkUj9J6WUHOfVvCrRk++y7ixQDpjzKIRcsf34+WVw2FOBYxirta8goSIjb9njPG+tKWn/+Pj9jLyjUlRUreD0BtuKJ7CvBQ8Roa/kHAY/ld/tHPuS9/7pPeDZvTSTXboE62eovCW7dAK1VwtI39LvhWSRUj/VCJZ2XrsvN+8m3ihUIp6yZxYsa+r3/pOnfzLb9wU1949JSxfuFRFMD6ppyg5fd+fIcXSriS1d0GgAFt8HjEBxJqoMSscIn5l1kGIkooAutngLBTgHVoT+GGXd6VhgsI9x4DDIMN8TVSMbbJB1QrwT35pswXjKt0kMRmdMIE7pViBwP79cxYHfb+AfvofL4MtJS3RBhTDhKAkXWrE48kxskgZ8FUqWss89Z/6GbGCoNCVyz7QPRqEQ/id6G1ShssZ5SV5WKFVYTU2qet9p10nlWQ7PFQMOixUPDpfp5fSAhp4pYau0yFIZZmmpFjaePaKCnNihp6TwSYAH4zAh9rsJMg2HkH9M8rZhIfdyJMsfrwyCAw2wtWQ4l3TX9Hdv7dQBinG+sgrGksDeqnUMFYjghEnbFI++O0g6ZYil7T8p19RwTMZac5ZB/fDu89hNXM5Bn8Hp4v881iOb+1IRXvRSkBRPTY7+/wbQAVdpRvIyS8EUyTCCiOohwosHw/NqaJ4skMV5QLveR9Z7svyCw9YYGYsN9C3ebbzEcoRqQMwQf73GmP29lWx6IdHgUmwsBdHYYRsHBRmHj+KI+4q5eKN+fsiYIFEEuYgjCdxSN2qlAUwCf4SWvCv7pz0fA1taQit6KavLbtLMhWnXaPgcgPRuLuJJkddzNuatxz4cw3DE7EopVoC7VqXXYwYj8VslaL21YHIvaBZlwrNVubN8+ijtkPWRcf21Rd6isgL/3QAXxZ1xZFEnCzh4KWc5NIy1GqRWPb6CQP5IsiSOwgr+2sp0D3lbe0yf9qbSW1t6hmezyfhZ8PQR5aGrYvXQ8BM6EnAqUMoQGvNGyh5x4Ti90SrkPNmWX/MEFIQxZZ3KhhI+FlyrqxlbqSeKmKkXoo1A4HGYur0pIK9qRnSd8oNRqztbNn2T7wxkC8j/ylSlSmPAj030xSz1BgQZH/x8eu8m1RBJliUL0pfqf8B894Z8BlUKSD9/Sen33X3XjTrRl8AW3VuqefPz/+tK9b/eyj90tcuKt2VS2Wz7w4ySvijBXqVQtvHF706dVNJlOZmnOI95qCG5rjT9U4wl6qpPJNW0pZySkPIKEo9cYgfM8YP8oXNLHta/p62WBQTf/FJ/H34XYjbgW1F4ANBMCpMpTj+pMTQcOGhLVDTIf6rLglGcR0ftuwbbi9wxe2D/emtvcfOORGiMtZCauDjxK3ekhYIJZwM6nwZT8F2kNSEEe4Xwdzu1+LcOyStKoRQwdJSo1MhWfiwVjdAEtmSw3hJNortY4B7oQVyJLaMkATg1Sy67pPl+FgrvttYRDdxzJUjPSYChzdTlryG23KWZ06KuZyW4dWiAVI5bZMbfEbtF64Fa5BKNkrdi3l/SJezHt89oQRrqhhHVf7mNSPPpDiV6aYRvrWeCch7glXJLE/Bc2pUpW6i+z/Vkmx8cVsCyqH5SoUVhHi/dGBnspZuPcJi/COXnnJ+WUEMFPuUdccAriIAKbe9DopMmF5R0jAEmGXMGxgjxfiOtNsfuv7P/eCF+ELKh2F3RJeJFLkEL7qgrfH4SNYDcJRCxYtkVnHsmOaYhRo318mPtFQF94/kO6aSki+MVNPdpAQ1alE0QI+gU8b4am5sxQq4MXtJC4brEPVGMu7HQYNBaBoO1w9+Yhr8Yf7N8mlmXTeRimGno+KW0uxCnFVdZUcQKaOO4abVAZWtFwATzotIiX+8hWe0L6JKzEI2wFeQVPaRpd4CMbLb8BVpW0QPhADw7KV+/w61lYvmVyAgRDrL597l8ZzZeBRSll/s3WzzLKrgLh04MDFFlqeZU5I2JGU10szFQzhKflixrYdQs8K9tACtm3tOsJJqjHmkJ2qcMTQAZlpL3FB12vQ0AspwI5YkLghm7dq4w6sFnSz9DMljZjftrvElzLFelSBSPx9UD+Jw0ouMoCotenymaQBYamSOrR0RYm/Fyzdji3bSj5/UVo41/PX1Qk5aGTj77RHOOMiDflllQ7ehXr1smC9QYJghxACWo3J70j/R/42cwX/+wcu8YCz//ziN70VDhDPvlN4gxA6LcSNukDO4V38+nd+4iuojRyWqtxn+y3EdbweFDRRIgxAqIJUILwmI08b7J791yQ9LMK5sed3Zoes8AwonKFTpVKARqeeLJKCSRTKQdkCdDdmxGliDLzhAXM8P0CJhETw3BEOYt+pRFEAn8CnzaCkrhqEFYXccccNlwHPuv/CW0Lrxlpj4NPaytoGLfL4lGwZhefhZirdH4zMQSNievwx/+xmKQc6dvRpbtqMeZkYNAoFJem8ZA7OtZsIMSZqsL8HfiQJN4Q0SGQUiYwAlrgelpNFdGPprChZ6//0Wl07d5K8Q3GrSx/EsDR+qsdZ+tQWuyNYt5PLtxXhbgv1B01zBIQ9Zqe5s/utoLD787labRtmNSot3eNR5PABkF4IWqJ9eI1EqzuNr8Ki1mnlOJepK1eLggi1bNnK7fTPVqaTSyh6c0AG755dO3pwlSp8pGS9KbWCEVI8Wyp9keu5UPADEBYm98c7jiDFTRy+AyhUSljJ/G4UMN6FoSP7u9empjANdkpKbc+S6m/aZypzoKF/b267/V734+/+dyb3V8/BEgTZC1L+Rcn/temB55wxzmcX8E7olIZY1AhfCEQ9E0JUBwGMR45YvXU74+WAr+BSOGYBVDwrxV7wW4n9gvXYL8/E9qFhNtoAcNwik7UAemP8A7jGeWQ+oEyhBME/YsI8+3weJPqqiRQF8Al8qgyS5HdCOs8uaT8IX1J2cPuphUwbNEcsBXISqQutwBWOKeFSOx7Z+GV5bXH/lK7OlnAM23bp0MatX7taENydXAPRVA/t35spcE9bjUGzTsWh4xFxZyyIFavW+HzATZtT6Qz5zsONDp8AbnAOA8iGTeWfg3eBP6VePboLeri5t7yxwmvLwK/VvbRNuMSVjeDYIoN+43R98bCNbmM9JVFFPBz2PEp+AgTC4qRAPQKH2KQl+AVSWMnXqJb3C8WEafkoFgFoKEzVwi08gdicKCUArtSbQD+8c7wvDLQoPgePZJU3jefSTlHOrFtqIjFArB2u3Um8JGqV894jIBlgmV5QibivLanJlJVa7Uvb1DehBY4xraYSdwewjPKJKGjTZs31bnmur+AgsAoIRizz94gAhajixDsaFtTgOall/IIIUrICePZ8o7iciXkS47Tvt9YyoF9i92GVMvYXIqFIYgBY9LniGwgZoUTZ8BLeFsYj4vg8B74fBCpKiQVPEmZQjAuTb+xff9CHKeAB/FPPHC5nCLd9L6krPVswKaGy6BvU4P9iDPgEPlw0S1w1SsRvmcoLIj4KyAX3DS5dBpOdMvADTsJqTrLciMeEYCft2y4RHBUhyhaWR0VSCAHaJhrtIkmlokJOPsJ91bdX93yH/X5cg7it+klsCKJYAx8gvx0Xd0sZsFlHoGAhMVgj4BA6DAS4ACv7wVKecZrMC0z+OSksuICZe/T0sSM9YC3JBYZ1wwC8VH5TPjAV98+92JgX+6BwkE/tTf0PD5IIRDiu97nzF3oXH8JXBQkWIDFv5gO2pDFg7pF3DYWImWpQVCwhBLEawQnwflE0X27eN5krk09wHrM9gXLXfGsOWgRwXgu9biN34Ghdt3L9drdhq1SzSlemmilCF9ANIDuLe6gdTP1gXbx6z1qVi20FPumxQ4eYfShV5hIFjRQ3YvTEcCm8AoGJoNIcBUEorIGl9RcBTVHDOiT49ePvfM3Neukxnx7TvavM4iVCijAECF4FCdqQwhFRVJT4dvtXQPnU9idziSC0v4N7IWcf4n3D84DyiddHie8HTxMATlWcMCwI4yiBflYMiL77NtSk7ahpwHl8N+SrE+bR87RNTV9GC/gEPmEsCM33RYNGoGgSO7fB4JJkQVFFqURACiFhYVhrIDzONoNtkvBOaltHcknzEW7LbQJ44oNCMYBCsIY9FxcTALCKkCJqAWFR1g7XHtYGbiuEBNdsKW5EcqfJ350uApRBF5crMSlQmLPmLvRu8IpcjzZpeeNdk7gn1X0JYhYBR44tgguEubUQy4u5oxAlAckQXChbPAcVFnqfSQAzjqmnhHUtU8r7gjKg7k6OkfKhCOda8qwrQtaSpT0CWwdIrkH8j6L85ZGNGdt2KyRvmOeCkIPAAlAJrYnsUwBT187gHtLAPX0Q6U7IZ1YC2APQD1clz570o40iTC2Rf63EvUO44XfK0ipT9MEzJvVuqtSPhmfM5pNEoPV5Vm+KEoJ1h6BRYaOI7T2SFaDE9KlKTGSRAZ7pzgJdDpDcbJQUvmPe217iTrYZGXzDCGmUXbVoeU9siIJniyeL/XwzxHQ5h3K4KJEZBS7rSMlwA3Ab4KsJY4bJvNSr3VVXXJg5dqqsRAF8Ap807h3VOHGPIVws5RNoxGaTBDADyvEoBXzJumDLa38oKJBh23YQLXjB0jUyIHZ0w4cPc5vWry7j2tT2LWSiDD5sYj8VIevCW7U6lQ+NJamgDjRs/nTuVwQGwBzyPZmUHm28fdu2mThfRa5pjBbfXF1vCEiUmsUu6+YkLtpZhAG5rAgSm4plr4WikCiARZlAu0fTxxWKMKYtypEFFdm+rBvWAq1sG9ZxTyvlA3TpcV0mC4isFcdMN71FOBH6aFi/rp+wAeGJgO/QFoDbMRGmtd3gPl38wLtA8sSVyCUf2b+7m79klX9mAPWYMIU/vBqQFV6B/PUgJ76NlvIOwXONs2r/4TIpXYtawwgBcs7tsyJHl3QkngOKT+iap2+OjZU5oX8tk8Fj9RIqskR/eBcQHrRFaAHkai71pBEiC+W9fHXKTDdG8A2FTqQWogjxO/F4UMzHEooUpEs9xretWBYmCElhPmQKVRmnEMDdBaSpteh1xivmIB82eIAHt2Hl8nz2iOLCez556mz/XcD3U42iAD6BT5xBXwfcFQI+AByimjW3EQ5GemtJAwXHbKqFtg2XJL2XBxqy7UsFBJOPWrVs5raLBbxhsww+4uLbvmGVKx6XdafreWOkwAhe1e07dkmxB6peHcopDqHt7JIBDZAZSNbySkJSom5hevJv4lbUBoaIVa176y0BxwzyA0loZdpr5VvHegJlbq1dbctgogMK+xAQDOSAidD6PYBIKvyg5Nt2er4WocBKCC3YoWIphIRgVhATx/Kl53CsS6eOPh67wxdRqagFXBZpSvESlDXcxNynR62KAH5z8VJ3yGWtUq4JNRPPgxbZmCBAPGjNhm2ua8e27tVXXnWjRQDtO3DYKxn+oPxHERlyPW0MWN56PeyX9QWtvFHi+kyjqBMr5DSQDWthK9qaNlinxM2LZVY1hCLvPe8jhTIgTYFav2Gzt7r8zuA/PFNUv2Lyhd6CqNep+XjG3bt08kUkUIhQUniWOvOUpsXRXRJWI7hMQWyiRFEQ6J/PvezvJ3T/6ncUhjBsKhLYFDw8xICLxJIGEY3bnmwNxp76MpkHCizvFGh3hDfvAXFkC9xCIfrvL15XEHw5kTcRBfAJ5LZav1wSa26kuMOsAC7Nk4OrQju81fDDCI+zrW65pGPhvo1bcNwlU2Ox4vr37upmz1/q2rYSYSxGNR8QVgAfF0Rsb8achZkOGjao6+PEADn0Y84cTK8Q12TA4o947/x0+ciwHe5Cnaxej1ngB/tmz1sgmrTUlQ7clNreLpOmxyMWTVWw4xEIWNzWPC+LkAXYxCAGH1jCG0rvMSgxUCdR0tSIuN+x+JWS4sp6jIF/0+aUW3aexIvJ42RQBDxE7LxuvTpeYZg4bpQ7JpoR1ms92bdh4ybtwi95hFY5APFKbBywUhKhJChNej1V+xrF5NVlKUzDdHHzQu89Z4I2EwS1IG6XrHQ9ZfD19yZAvpYtWrgzJo73SkRRo/pusliPSla46j5qZxOThLf8Fv6oAEa8GjQtz49UJ4BTCGBc+UOkLniJKLzdRDBgud1+zwPul7fdpF3mLEHEf/XbP/LW/3lnTfCep7MmjhYU/hxv4aIMa1qU5uDzDHB36/0inKsDoXBdeuE57uZbb/e3G8bfdVav8HvS95F3HE8AXgBCZ3jwEOrUQie/nvru3URpQbEmptxckPOaqsgFh4nyyfhHGhRhHzudYXXgX1XcYxTAVcHFCvZhNUdOqSXxMUu4zJJIY4DhMQATVgCGx9nGEq0IgVbEJZWPiAFvlKkgoV1SxALCcmXSA0XiNm4CiCuFokawNhE07KtTZohgHSGpLOu9YPAnmv+wODQnl9+ST2EolkF3qVhklsL4Kedbhca2DdeTlJr1Uq6Q+9Gp0cJzdNsKH93nlyLEGJBCoUW6VT7CC4IVwgCOksKgByBFrQM7sId9cMx6NxgYsc5sGgjnnC6Ty78+PWUFsp1c6i+lRHEcgpczBdREidB54k4OS0KCBhdfiG+LsPZWoQg3e7/kzVJlCaR7Kpwgz1fCB/MXLvPn8d9EAb9NmZ2KN48bPjATO+ZYEnK8rli5r0+fy+EcAvyEBaxEnj2kNZy/eN017ps3fNZv8x4xqUISgajG9Q6BhkZgM6GAvpcoDkoIHMVwtGjW3IO8OKaWtrYr5CXuYqxRlIlwpqMG4o3gO+YdY6k8WCfbgKdwz/O+t5H6ABDoeVUcKYNLqAiglXqVOrRvmMOKlavX+W0U3xTocJ5XwnMa1fCNrBpbw39oIfw8CtJrnJdY0hIBbCgRz7W1m3U/ri8smiRC2yeuxlRe+Uhr4OY7rvuJTZZHoF51QGxqJt7G0sIlOHHcaEEJZwUk8+3OmMMcrUNlIFvjP0Is/pCamL60mIIdSGmPps1HH5Lej+7HEqcyV0UoySInTmvj0fn6CWNi2Xa5Qkz3l1eUpERi3gBfQNcCZmHaRqwFJdx1xIuTCDcxA6Alnb3H7pNZJnMIZQoBiyU/SgpGtJf5t9e/tdm7WMNnBEp6+ICernfntv6vZ6c2rnuHVtJltlMbe9aYHxdUtyz5pPRLihHvuVVgynOvk1/qMwJksCddD4vU1rq2P4p63yhfPr1KDsjPy6GBMikD8UbcrdwLoK4kwvXfp1d3d+b40e7eBx9xf3/6RR9i0Lb23bTvQdOmWUS6Cio9p9CXl190nkfCM86gQEGAqGbOne+6ihsZpcP+JuK3FCpZIkA2+K057opboAyoKrjqFaDPDpJbbAmwHylbvPe8x7/89YPuiadesE1q/HoUwCfwETPgUbCdwY8UGzt4KkAlvB2QoPblD4+T47pxU3LuLoOMaqTheeE2rsDyiJgrFm+7Ni1d6+ZNMk1JU6hdp34Zq4QPGYuMVB9cm7iL7eCV6cCMlFTEwUtQLKlapNmgZbOOa5PUmJBs/qIes1V9dF/S0goNexzriDilFRL2OOuaqhHu10En3M/zzkehEkE76wrEwuIZImxDop52iGi2s9OE7XU79duZsCI1CxUDKlYOCkjSMyI/EysG9yFKFkLQ/iLLK70f+lFEP8AcrqX8salXdl1DGXqfuOdRTF6bPtvnm4KstgO6tmOJ256yiq9Je9zPuP1ZQvD/3DPHuT/+9Un3kzvu93Wik6ZBRfj+2zXX+3SzQzLpA4QVZx+fxV1wDX4nXpM+Pbv7Ah0o2MTjqxN5wJqEVOAviGeep45NWPM2DYnfxTfavUtKgYHfWLmQnkPaGHyDUJ6VlgZhGFL7CA8oPf3Cq+L5Wambp8Qy67M5JX7uyf+RN37hP9yF553l7n/oz+63f/hr5oaa5cnBpWYyA2N51FpcQJm0DtMQ9yZutIpQ0jSE9jzNJe7RtYPbsyMVc+Q4xdf37it7f2q1NU4DpWg7VcAwuFttqoMxpPxgSwoJAlsrF2GtMNtTEumMO/aYDvJ2X9K6pskkHWNA4j6Y0KKZeCrokyIpxMIYpLHkkihfneKsrVj2LJtupEdt2UTdl2iZixQM3fChENPz7dIKzFA5YKYiqkWhQM1/MxX/hVenSQEUBGkS0QcKZCepOFZP8n4RwqCTJ0n4AUJJY1ID7o28dbw6CjLTFDTahfeugzjHICusU3uy/9tiHQzskP42cutJiXsqDTYCHJSPNPyg90c7vS/4RqgGwc4zRRABXuMc3nede7u8dyvfdU/WfpSWqTNSLn3SjuAZ6UmgoiHeA8YWwggoG/AAV7UCIGmjk8GgoEP2mfKslUhl0gkfvNvbZ3es95gJjnHtT374Sm1+SiyTR5JT4qefvB+J6+Wn3/+Gu/oDl7hf3P2Ad4tZl569MwTB8aiR1OpNIiwnBpsk6zFsfywdMwv3s43AYcpACPfoXgHTKGEFJNGKtLZrY2YMZFS9YbBSyzwsA0le4X6x+pR2yPWw5JMUiTBmxTl24NQ+kpY2fSc8DkAJS1oRsHqcwaSHxMzs/MZ6jGU+d6oO4LatrisfdJtlkoAH/KOeEEWdSg0KV6tuQ9dSeAYqu2eXDiLsdvhcagRgbZ6p8FznHNZrWOyBCik9tldAY8zpat2rHJsnOZ24ccmNhawFzL11k9zeSYIehnAbk2LHYKvlDFu1aoVE9PfUStyO/AbejVyPRS2Zq3q4F94oJmASqCms30aie91fUaaXlHhlSPAdJYrccgirF9fq8KEDw6Z+m+dLpTWsbsq+cv+EAAgXARIqWbXepxGqgOd36jOxPCZ9qjoQiu55V/x/9t4Dzo6suPc/kkYapdEojHLOOUurlVa72oxhSWtjMAac+INtbOz38PPDxjZ+OGBsMDaY6IcxGBtjjIkGzLKRVVzlnKVRzhppFEbSKPzre/r+7q3b03eCWJ4Vbukz6r7dp093n+4+lX5V9Ut5gCQhdmmchcKNEIKxMki4YJxEcucgINEG/IKwFF5wxDrAfEQ7zNcewIiW/Qtven30Ravfu2FZZsD/jU8Z/+i//P1fR6b01W9+P2ZbSl+OXu70dv+71ARPVh+IurGYd5tLrtBgQJNSNMBiP/cdTLRcAEb3TBtXKClnk2qakJKPn0zM4qBTPYCDj4/4XYAuxB+mtVsmPAFb6JePFHQ0AI8jx05GKZn7xTSdlQVsvxI8pC8q9VshNKnN8SfoZmJGOZ8nmDvSPnGmWeRR7n4/WqrX+rRPjFS/tcwyj9IW0zQVZTqblsq5VqxNEOeY/vjr16c6amFMcvsPFgB9C82k7ild09Xvkwk7zZgB29UeOGiugQlxgj1y+GC4lkt8ceL4+cj81Y89nqg1MhEDsuI5HTvTEHp0NVCP3cNRyyEuMmU5T5iXV65em//NCsxdZvr0deNPproYWjsgIpJ2IHhcudxo7/qm2A+50jGRfvCjnwlPv7A0Cn9pP7c/IbGsg63EJ+4TAeFAg2/fWRub2eubSfLzjzP/8dvf8jOZbW61jR/4y7/LM1+uLcvCIAGa+cMD8XyoFd8iyXAQXCTw4x6B1lhkwiKr9YsiQe1kQHkk2JllQtA6E+p0zoljR4efff0r4zF3039lBnwLPG3CJ/j7uSdfFf7cJornXlyev6pSCOh8A1vJSv7g95Pr2Pti/D6tn88hm/XbL3tavV9vyT7rCkBkhUIxKR4+kvhsMSMmheN35LtE+0SrSDNfGqTTK7Jtd+2B6FdDcyEdIOhLTGNZDFgaCceVojipXyqN+C51nLZnyBxxVykNGI0WzQAGzmSOFsE1ILowaaWpwnMl2zlp/JjIYChIscSAdzDjy1fN+Jm6EJmWvdmPvtMmcLVjH31MswQJpLEEOdzOlTScMxPQHEkrrtlYW2ILM8OTZlHgKo4XFQuByRmZdNGmFxpAb8XWQ2HYwD5h3rw54ZlnX9BhRRaLdKlNGhUxYON+mJPP1p8NI0eODEtWbgrnDiZC0hS7Tsyp0D2W0CHRTq/GWHk0r3/9j/+MWj2mT3//8QD3H9aiQ0csttWel8g/V6/RefM/QgcEfgCt+1Yn3Cp8V57QiNPEuwZh9dF+qp3hUqAPvuF+fXvn32OBTPlOSe8KIh/Gi7AkkBZCPKF6ZCWjMhLU03AeA3MlWuOGu+S/MgO+hR40SM+v/9MnIuDk43//JTNNP9+qoP50nF7WLVERSCCJrP0kPihFfjKizfGTZ/KaaJYflrAEMWDanzON0lOSOH9WZmxsFsCJiRxGjo8NbRifG2b8LOqFz/by1TwIJKsNQgOJGoiDRNskYxeTkTdfFzOU4l6IPc2iUmFc3L8AY2j30qyy+mCbqhUx+SHMkMAAv6qEC0z4V85dbnK4gGVpBowZ2pO0NbbBgNe72Ou5MxLzLNuzatu+ZIhttB2P4GfSJSMSBOPj/LgNAB0SM1ufy9a1/8ipwN/DDyywikFLY3sY2uQxQyNIr1OFU4fjXkuu4VJT0nbT1iTOeNiw4bkWycKDxy5YLK8AYLwvn/3CV2IjchvDCJojPVvFutL2YkNhrKWNs13Pg+fEN7Lw3tn5beyH+DZ9zeZk63///5/+/JejVQxBtk+vXhaKNNQqFx2IGdBw90iol/AB80WQxr9LJatjdl+YmfGHy2/OXSVJNywZiVmiVJKQ7dXmJgELIMKvLOApVhGiLD788X+waIrZ4RUPL1SzO37Z9I2/42/51r9BGPEXP/WXYcl/fSX81CMPNHvBAEHS6fKyDiBVXiliQj+TYpK+rSZ2bauzcoSPP7zIEIwTMpNepP2HWabZLC2K/pnMSJJPKkSRn4Sl9TG5ZxHZeAZb1SaI0Cq1V9v75s006X2IaVaVFv6wMfoqdxiyFxMbZmcYyOwZk40xd9QhTZbplH1qoElLv7XURM1vP4Frf3qJ9sB1gLg9YlmbcEN4popZMAsboHsVEln9kkRl/pxp4V7TDOeaVoumoclPx6itZ9VYTXi/eJ6qcIQgMciqZsnEyHEwYCozjTXzK5Mx6SPh+SQhgU478Fb3rpXRrUAGMQizc6MJVwga3O9jD90XJptwRUIRrCSesSpMjePq6ursHgquAH/PPEuRlz145hIUtN8vEcDENDw2Ab+4CDT/CDPxE9vOdzPehBFioMmctXj56vClf/tWPoUqv6ctfE34k7/6pA7/b1/yfD79+X+1ZCT/FFO4ch+nbCzx2RMTTEw/2q1I/nd+I5yAAUA4xT9OX1vNzTB8yGA1j6Z7NFxqh3s6bLgK/yzZJ/wDCTnAepw+cyZ88V8LwFTaUKRG7fh9p1GZAd/CT5RE+//06b8KT339H6NpK+tSQS62htIvvz9mgE2ozZFnIGp32pjw5m178qAMbWeJT66zA4aBxk5TVlgNWi1S+GXz4e3asz/0t7hBkljABNAuIJn9St0PSSFIpA/TuNJ42Y6flj81dZe324QB0ITQJk+YxzDVk5d29botRdqwb8c6iTLSJFNdeju/pUWw7jUrfntCe8AVgc0Y0zQMXWPvGTD3N91ic/v1rrL6uwPClPEjwuyp44whJEKJ/Ljq+7xpoGSrWrL8pbD8pdXhOdM+8dVBaQYsgzXbsZjAcBlTBCYmQsYdRog2g78eYkJeZ1m4dhqwRolQ+uTSrOKb9SiB0UP6mlXniPXTKdxv2bl4f6kVzP2SApKc3CBwz5pACOCPsBiRZ8Bbtu2w+GUDduVIZQ/56X3oN24kTlvOg2mYWPxSBF5BICPGHuwChRk4br6l23x00b3hkCVrqTUzNZnUuF6KL8hPynj8r998u6Xp7BaR/m9/9x9E4elT//DlZq1Ppa7nZrcTUvZ3ZkF735/+dfjQ3342xrav27A1vOqN7wgLXvGm8Kcf/mTMOYDmiVVBoV0kxEGTX2tMD9QzBMiSbxVtt6/5x/GRc7+DB1pcuIVekZDFZ7fSNQOYw8Ik4h1J41kIUUR4g/muWbc5JuPAJ6zUmByL5v0PX/p3dXPHLQui4h13a3fODTEpf/vLn4maBR+PihRwh81J9H4E9JH5bVpn4jhwothMrH0sVYTdb1u7eWdMAYjPLC2hEo5TUdklzJs2xczBDXFS9ceyDqAHLY+csTAZTMIVHToaYnu3Md5Eg8XMxR9EVZW5M6dZGIgVnbdJoinjiM2ib9i+dUOtUiHJkJvGiGkLIya8SH5jJtebJQkB/niyfqVTY2q/fF/8hqmUosE2Bph9GZc0pQsoMMHBaJS1ifb3WOYpqEmBAs8BYwv+sypFNvlRjWZgv94xZegFA+LVn28IE8aPt4m3Y1iXAzIhzIixYiXAr8dYIjBgjj556ky+V61gqoSJAd5Cuxo+bkoY0b9nWGpCAIRplprF9Zakw5cnlAZ+3bRRaOv2BMh1zTRlhBB/v96X683qMuFz/FUDwEEjhw22FIkrorAQ3h03NfkP18D8ubPsnekUUfcICtSeRpOFeC56xj4eGDMsoXUvPf21yKDQ+H/zvX+WByLiPvnW954Jb3vT65qc8+Xc8K3vPR3+5d+/E0sx0q/yYQN8IpTxgglTkCxSgAkJoxJxb/jIAT4ifHE8wm+SIvJGeN58uWj9fFMxba4JNzB7NOdaAydCen4IUpj7AcbxrVHIg1Spfq5ACKQeMWl5sQxh1Vpn5TAX3LMvPicYNs8ES8ytasrX2N3sssyAb3bk/huOI5zih9/4QkRzfvjjn4sZZLy5rblLqnehQ+l2LcUAe1SyjoWpnaq/GEablr5h4xZtjku0PP5WWQ3Y2dPGh0O798b4XyYifHMIA5SW448PHAaMj3rV2s3xeJgNCUhIMiICgSmf5Kzpk/KasPZrybGcB+YLUYXloYX3xmxctcZsRAKCZMVP00boTLX3S2mlfhvaBJoSwgzm4ciATIsjvaUmPNoDPFlq2l4WeTNqen9633JLTjHHBBImQJFcBV5bZh8CSZrQSDwmAGZ22IogiGDOIt8fDFupBZkUx5spcpgVhEBDZsy4bwSUWGPYOuDcnKt2+8YwuOfsIi0I3/hFe086u1hxXayECPpdalYJyGtU/LZXMETw5rAAAEAASURBVE8RQGYbAAShgcIUMeUjPD7ywPx87HlzAtD3n/6RRSKsjXGwCnvzoCvuQ+QFwBMn68LrXvVYZL7sByGsUCW1f86Y/0+KAXNdCOZ/8+kvxIxhOifCOe8HZlxokGmtfHMiGGNauJZliDAhvk1Q5Giq/EEUU8D0zLeIdQCSCwyXT2VOsOUdUM5s2uBOAEyob5htq9dtMqFmdgRpYf2K75ZlM8MvDYMHoAUTJjzpG9/9YXjjHYiSLjNg3oTbjEjJxx9Fx//dCou3hpgsS9ENJwWn22CSOmPm5iw6aR8Lf9VWfWaigTiW5xLwR+k4d8BFk7oxYyr5Bokt5kyfEv09MGO0WcAd3oSoyQs/Ex9l2mxLbCLVmbLIzZH53TBAz3zZwUSMpo3Ej9nbT67sb85ikL4e2iO9U47OWD4/iwgzOolMSAt62RhOKZJ2lb4W2nttT8cfO34iMhomtXi9OY6U1paz+lMfWnqGwrYi5lb0fjiuZ+2YICl0gFYkcBkmyiwhRediCTgKZgfTxpRLfDVamlhclpUBwQoUNFoYCTHAwj04f6ZZNerCXntPOtjkz/Pku4ASC8uGaE4VCO497/rluC/9H/fx7e8/GzfLDM0PH3rjr8mPKc/GM3YEFA84oh8vKPH75SL81r/zRx8y3+k3YpegxkU1Fh7kCd/9MEMfV9g47bOxRqgDEImAJQCizOkchzCVjr2mLrfoqAvTI6Ry287d+ecO8yehB9XLYL74yYtjvpNvDAGH6+D5jBw+NDL6b3736RiuhEBLoQdCmZasWF1mwBr48vLWGIHHHrwv8PdLb34ySr9PP58gS9NXhySrgPr0Pn5fvNSYtTluG2DmyT37SpunaQT696SZEkUeaHTmbJKmTvvqjfGdv3ghSuVMkPj+yKCT5RPGt4Qviv3KtkM/aCeVnRLpW/1qmVXlqBQ4CvMXhBZHDWBPoDJLkcBFfj+CRBbB2CSYsB9BAE2AZ4IJ+Zr5Es+bue60TdoKC/GTe1af2ob2zh9JEfbsS+oNsy+tLbemv6YMuJjR6pzeZMk2jttnVga0/qgx2USKFiWBr/S5qWSUmIfpp3+/PpEBi/FnPTNMqEqOMtusIITAzDRhTtvoRyhm1kXed/zgwnnaXLTEt41QgDDg6xX7d1lCBQwXRoVgRYwx1g9vidJzxP8NmJDrJh/6T4LwkYr50n9HY6Z8V4w/eAcRQu5as1QhRGDdYHzRiGG88+2+KdlIXmasBvh5iWdeZcU40pna/FvR19LSNlq5USXdoE8JwLgpsFgQvgRgD1fVSutP3zzXxTdPAhPwHS8sWRm17ehmsGOTLH4HomD5MateVUpw0v3drsuyBny7Pjl33UifX/jEX8SJEITjV7/5vRijpyaYhtIZbrSPJajmUlRt/pfWUI2ZXpMcSSEMN5OkklgcyyXk8H1osmKyHGBAKya5Uokx8HfPtWITngHTV6n2SNppQvvAJIn5bZ+ZB9PUxYAmxBgrlWDcL06Qbmy/pU35XUzCWYS25tujHcmEm9WebV7TUhsmVJgHGgPjhjbYzZj4NfuN9QCtjUxGmPIwg1PXV9VpPJJV/RW8dckW70NlS5ohZx2HhkUifQg/96Pz58dygmihMJ5YiSg3Y8e8yWZapEwdWhrjovhwxp6UppBSngolTzUmmDhWjAYzR4NYBwxEEgfIm8f57WOJxfzRbiFqBXvTetzo/gOkBwP2zB+rxCjTzGCm1ebTJIkEFpPTZoVZbz5NaP6cmfnUjZzrc//8tYgI571eZnHbIpg1z+blJEBqXBtuIpDlmPN/8MzieArGBuYGaA8tVO8V94cQocIZxJcjyINe32NWHFwD+O0hP76MnRdwCOsCYMg7ALNNxi2xYZBakvh3zNwwcgkv+IYJM3r9E48bSOwj0S+vxChn6utNkOkQAZSEsXG9LyxZEX3R4D/uRCoz4DvoqaJZ/d1f/lEEvgDIQKsjfy9m3+bodDMlCzt3Lpi0mutjj0m4xPBRUrHBPkoIkE7dqeNW0L1Ym9TECBMBiMHEVIqh0k9acmZblxLXhVTtpWzaYh7ErM0kBIiIyjmeQPBS+MGTRy777QCSvIlS+yRU6LeWmGY9A9b25paY/tIEMIbEB95nPXXShLz2R3gVTKGxkRzMyeSJLw1N/qXVGyOalTzcJMTHrYCmAzOpqGgfAVhYSPrW9InxmmjkTJxXrgyNxmfegQjYMWaK1o5ZFr662WJ8xdy43ouWzIXc5Vz+spVrTDMaGTZaWAthdfj70ERrDxyIdWCfem5xTPLPMyHxyA+fX2xpKBOk+w7rCw0TxrJj954igaWyU2Us/C4wnTe3wxBA5YqYwBHwZBVB42uOJowdHVNVoslzf6fMvYKwdPjY6VBrmcUQavbsrY1deM0QgBHP53U//67w6p96MCL4acS74ol61q989AG/6cdej9+S8TxSbALWpHCFCO12j1mLsK6kq50BkNJ3SHsEHr5HhFWWIlkpGBO0WYBpuG5gpJj+hdNgG4la1CfvHoArWd54lr/4c0+GX37Lz0RmTbv3/MEH42kQ1BD4eObdu3WLFh2e2z9YvnyUi//7sT9vYr7W9d3uyzIDvt2fYMb1Y1rFtItZDTMZ2kYpQsK9fKVpWE2hfSLRFn5nr52yCfzUuvq4s//V6/GDGTywbzh54lg0uXpABowEgjFhuixlvo2Ncv/JtMVPJgNQuFPMrLbNACHsm2EpEmEGAE6I98wiGDGAkbGmnaUtAvgjvSlaGli6HxhGFgNOm311HL5hmfy0raUllbIQImAgaFGME0JKWijQ5Eh/hE8x6SFgiBAKZEpHQ0V7Vs1phKPN22B1IQLkhKyfYVmxCEfBBHj6dOI+mDShkJw/SQFaF4/DqgDxhmCaJkH/wcPH4h/buW7+0saEazhvjdCSoHa5utgvrV0fFi24N577kqHnmbyJU6XspgjtGV+xEL6820OMsVIR7MTx4xaa1SOOdz8TJhiPo+Ynnzx+dBRAuOfmCMFiQ64ABQldGPNoCSCntt3EedMcRRdMMxahteHzRHsWs2cf7wkCod4l3rGXmwGjyb7lZ18Ttc/PWbiOFzJgYrh8eIcEakPo6t69q2m/7eNz4niYoSw4vCeEbOk9UYlUGDxzCsScwZhusLA90SF77pC+UzRlTPloxu/97XeGJ1/9WJH1gXHFSoIwXGOmbN6lHy1dZd/1SbNU9DHXwsQwavHQ8K+f+6i9D8UxxTrnnbAsM+A74Smm7kE+KBgS/sd5loABMx8TMLGunvhAjp0t1lD9/qxUk35/eh0/0hGbDMeOGBz9YhxPTO8s89Vt2bYzCgVKaVdnGgZhRUwUED44mDMfOIAeD2zxkzjS+8HDR6KWglkWExoxnAIxIcHjwwLJmSakdCZtJGt8zCCBJbWjwYnOWzhOFgH+ySImsixCwMA0B+NGSwCIgnYJc0VDQCBQ5Scdj79Qz1Db6N8zXLYLOKM2ALEQQEikgA/Ox8PGNn4QdZAtvYglc3UpE7T2czhWBQQFmSsXmBbuqX27DvGn+tJ50vcRi0ZYS97Xp19YHB41c+jTOSBV+pIJR6u3WV5CJS4HtDB+37huthbrg/HmLwHFmd/d3A5oqFlofn+9ntHTHwyYd4NwKQQJjxj2zPhK45Wo+VOEAXeGJwQZMWD8oD8J+vVf+fnw2E//cuwa1HI0OxtDxG2DyZ9rF0KeOr68JyCYQWs/+uCCaCHZZ3WpRUkq2YShIsiQg1vPmDa8d0ddCdQaK7ThU+aibf/Ma18Rfv4Nr4mCUimz/2Qr7gGQkPave+Vj1nP78I3/fCpQrIOc53/8v3/zjma+jGWZATMKdxj5WElujYmYUoAQUic1PtFymLwwGR47WwhNiI3cf37ScZtLrpKAAc3mlJm1BxmwBsL/Q1gQSdmvGmgDSRpwFVpX1eVuJiX3j1otZj1iOJevWmsKR/vwyKL5kali9pIET39U/oEQJvAt+tjCuMP+87Gg2qYl7eW7xESMjw8NBs16mFX1QWjIYt4cXyoDl/pOLzvmfMMIE16gUDuYUzT3OtCX/GVqwxJGnta8G20iTRMMA1MpVoUK8w2fOVcf7wfBxgsJ0lTi8eKM6c5a8bu5Q/UMxIAx60LXrxdft/Yne0MU1LIEDvYrVam0Is+gyZiWNXZC9iL4IYQ2EUxyJ15rySpE3nzMewETg7ljvgcFz2/8lCB3Sc0ooRIh0pNnPj8pJHQ/0xhf/8SjMbsV51bcMus9TOCLZA/KFzBBw+W+sKoQouitK/6a+Q7RoCWk0hcCssYZDb9nr6qYTYt9M01T/u6//X3Ru8b2LCIk7+vfeSq6qp790fLIjIn5/bVfenNEsuMyEfFNMgdI8NL2231ZZsC3+xNMXT8vavpD94kgYM67wr5oDpo9b3Lo2s0+0L2lGfAxSzHYFuqe0xDxR764amPMPKSqTDD8FavXxe4ULoFfENMcDAOGjEYFkcoOAIuYKwomkxsTny+BKNNZPOgm/kNrJiYY8r5jzPegN5nomXzqDM1NbGup8/kJyl8GzLU5QhNXiJbapYFk0eQX/bUVcazUrpR/Hk1+U87SgfVjeW7Mr18foUNtWWCdXqvVfRShnQtNiyZiOhNTjR27dvwWsEvalwA8Yv5YX2AQMAKuE+GGSRbrAD7DCOKKHRf+0/iT+MEz7lEjhoSt23YU+S91lJ5BS8ITSUVkefBuERJRwGz7GoiLDG+VlRVh8dIV5s8+Es21Yr6cT+FrsSSh3ajPPU1I3U+KxKyw6CiZBufSt7LcEoUssG+LTGAxRt9C1xLtPAEtwlAX3Tc3+njlIuJ4inTg7vGEBoyZmPPgXwa0BUZgxNDB4bz5kr2g549LrwMgAzFP5ryzJijWWSTF/3nvu2NSDyo1UbgE8/UgyxGAywghHm3/TqIyA76TnqbdC2YnTaK6tTNmSksTJjr5dKZOnhiqevY2nw5xfAV/cFVVV/MhJX7d9PGlfsO4REy4ew6dzNeRxScHIeUiOfN7zMjhBiTaEbVx9unaq00jVfA/2zHfyYTnAVNqTxtPzeW+9u38uhgE29B20in2mPAB+SC5Y2q8bKZHQDoIPDCNLPIZk9L7R1ucI0wBxg/jwXzIOUCiesKqoAQGlHHD/EeCDzEW35Z10M8iD+hC86MUJGEmgGjuXzDHUNTXo1CBKR9/caVlwELQ4Tk25rABnTt3NARwAuTrYH2QlSrRPNtF0/qCexJfMH5wrBa8W0zSTMT4409Y8Y5BVuKPPvkDiY7ZkfcA4UwCGueVqVOCGAAnylZW9+gRQU0C9YCyZ7u9MPFW8WnC/Lg2kkUwscOsybRWkXsn51qmsFLaL528+vEHo1l9kF0bFgdRtx49wyZLu7r/aOL7njN9Qt4akct0qaYRrc0PGBSJJADNYWUhOchoe9e5d8zCLzeRRETkNViNVxzbnA8X7AQ+VyxImPQh3jvyefPeA9zEXaLMWepXS5i9Fxo5H88crdond1H7UkvifPExA+Z69SseDH/wnl8LT9gz+MrXvxsFbfIAYM2BCJMiR/ydRoXZ8k67s7v0fvB1pemQy36T3sfvjZsT01uvnj3DTCtEcOTEmbD/0DGrL9u7zQxY2o3OA2M6fbYhIm4x6+ELBa39Q4tZfuj+efZhrVfTuJRW06OqNHJbmhUHeIHBd4Spsa2U9qmmj4fZ4+siE5AnrpkSdo89uNBiei3dn83KaOqY4iV0+PaF9XbheQuz8ISvPm1q9sXe0QRg6vi4McUDLCIuGeAWOb13Gcq5VN1nGBTJ9skkhjYBE5T2hrbvBQ400JOW4QkiPEd9cj/S8tgHyM/HOftwrmRiTtIf0naEMUwmeP6wPKRDcrwwBfOGcS02YFNCR+Ji4fy5pjVXG2PvZIjtrjFGfNzooTFhC/757jYmgBDxb+JqmWhgod7GjBdZFrmZJjg1R6TyrLPnyx/3JUoj3H1yDv+eEQLGMwF86E26+DoJxUGTXLLcaua+4eVlwLhT/vmr39LlRjM5PxhDhCIAa+TXFmEFk5VF/ngsECCmKTQhdxXvmH/WHI9lAOuDJ0LEMPODvQBE1VriungXoLe96fUxuRDrTz6RALZgxqJ3v/NtWr2jlu3vqLsp30wEm/hhIDYQH05rqM6qkby4eEnYtX1zGDu0JowcauX6bLJvC/mJR8ddwxTXq3dkugOsEo9Mi8+9uMJq0U4oYlJiPsS3wiCySJMG+wS8Src7ZwxQzDy9r9RvH35Rqo0mLr8fxgH6l7J7AMKWrVxv2sVOm4xO28RkZermzQnEOqKxYU4W7TGwVZqyhACv6aJp1J2tjz5qLAfk0QVtSq5mtNLB5k/35tOsMWjtNl2bN1Frm5bpfTI3sz99L03aGoPwJHQ023jGWc/2wqWrYe2WXWH52i3hpfXbY7Ymwu1OG9PEXdHJijyILhpjwD/71HNLouZ5zsyzzREaGdYBCI2accL03NvqYd87a1L+0DNnC/14ZoxGj1WJd0F+Zw5qcOUMv/6dH+T7eblWluY0W/VHfDiZ8vANI1SBPQDjIOIdJqSI7GMQyOydFl/Nu8T7yfvMH8ees9KOnniPR9hxaMgimLSKe5A0xwslapO1xPWAQI6QAA5DhHC10Ap13A1U/AXcDXd8h98j6FdPfVJlwfy+5tY3b90W6k4eD53bN4Z7po61iT2bGab7gEF4wgd16vjRsH7Dprh5+87aIg1v2UvriiZN+a9JtDDcfEpZ5LVeXzbOt0ULQqpvC3nfV6njhGjN2o/QkCYmIyblNeu3Wl5qQ5beaGca0oAwa9rkvLndH5M1ecmE6tuxLs0MZoXGjcaz0ZgypjtRFrN17l81ayKsZB5nrW1eLqb0b7c3rT2lj02HbqlyEV2knwVuB+J0D+zbl9fw8Bl2MOCVp44dCwKOZ+AwRHKpN0fcMwkpoK2WVhFzOdajHzz9vFWRkiZeKKPHYHTqVGEuhJmxKIWXJ7ypG6S/yOcF17YfZwmjpDqThFVMzWTEQxiBoUJ8k2n/N6ZdGDMWETRfxVWnn9EZw3IgmECcg3huzM+4MDwJ7MX1eNeRb5NeR9jGZI07SudQm3TaSm2/05ZlBnyHPdG0/xAJ82aJCR0f0pLlK0Pt7p1h/LB+YY4x464lkmBwnpO52FGds6eBbBIGUcyYtR9Uo2dq3j9WarJSe/xsx46XNnn5XLU6X3PLUkzHH5MWMPy+NMNhX5o/MRZk5NpTW2zGUz8kIkiTGG16u5/k2SdAlA+VyronbfP5t7Utf470hed3NL/i+/H+Z45icvbE+8XzH2im87GjR0RgIL5JmAhZpzxhKic0Df+k/JbsV7UjtfUmf285gCFh8myJQBNDWBTmmEkarRaiBOWo4YPDXItPHT9qSJhiZmU0uIMWAoWAhcCHP13k3SSgs3Vu/NMvJ33sM18M/2Y+0772LZBSUj70tDXHo7o5/+p1m6MWzLj454IAyDNUYg+ulzZsGzyov1nTrsTLZ92T1/jF+P3+rHXO+6rHFsXryNp/N2yruBtu8m66R2JuPbXVhOyPTWshmDwhTJyzpkwKDZZ1acvOfXntidRzCtxXP5i+DjW1tGp3DIPyuZX9xKUsR/ggmcSQ1jGnI7lDMDNNCPkO3cpB88viy2wp/lOHiLHrd3rJ5C4TeXofvxWa4feleE5+V1LkIv8zv9LdAC1oe4wDCHHMhfgVEaR032qcFgbItDR86ID4fMZb/VZMeeS8eGAB4V9XI2iLUDDugwQXHU17G8JEaowQLaSz/d2wECHGlWcczYx2PGkiJ5t/E2Q0WiuME2bPpMzzBcnNNv7w2wKgwhSNSZn2WCwQTgBkocUiWMGQVIwBYBjrO3fXxusiHheELNdo3cRxEJiIexcSmvXOdg+eCJsReQEAYQWza0v0kIHRAHD1qiZ+90pksjB9qO7E0bBjW4KXAKzGs/Hgu6suvApAH8UIGMM9tYciUA9mnv6mWrqe5vbzXn/ob/8++l5rzZ3hi6Ck3w2Fb/n+qnLCBf5yCK0Y1D9meLmJwAYg5JLv2ZedZF7xeABfg1p5wP250uv4inneX/rMhw2xvy1+o3yrdxsVv713293fYfeLGTINgvAaSVtvF59mFjHxrLBYXYhQklGjRoSDR0/HCXm/KyHIfhWJZz2LMDX1M+kdcyEf/iqTzPFNgeaWf61L5y4m2a/J52s+las/2975U7P6ZtIn61VrGTDj1xz1MEaUFjB8+yxfu+ra+nasKwwrvZ3kD0U5qa3BzKmTbXK9aBNexwgsIjEEWm4P08DIgCWCcaK5HTryUpg7a7qBo5LY7wF9e+WTfVBNSGFXOq7fgIGmWZ6JP69bBioo1up1PlMfouWBV9OnjM9P1vgBhVSHgSfCQ/c8YyBUSJo/ACmuN6GCZgzDhfDpwkSEqp08YVyyw/73GnAHO2ABaUTtuChkGKMV4YNGM4PxDh82yCwPJ0q6NXQMZudFVr7yW99/zkoYHQ0Tx4zQrqihg9iFYKbcH0IbxyTAsgRrca+hhCkYQhYunofCeLgOmXrznf4YK1/+2nfyYVe9e/XKjzNdqkSgukc4ShPvIN8e3wjXCDgLBuy/FyWJAXiIQCQAFgUwAFMiDGHFQPDCf3zvnOn5DGfp8+k3z/39H/yYIZ8fiptI9vHjWOrU7+24bPpUbse7KF9zHIG0+ZmNTBI3S9Q5bYn4QBcvfSnU7tkVKjtcD/NnTgyD+icJODiWNH3NEaYx0MIUPmfSwqwn8xkfNiE/mjwA0eA71f7WFIoAENNaqm+mKAV9eNNuVp8+k5b2ew1J21h6k53fnuVHlq+UvvCv7d57wJDrO8IuKwqQJpgQ4UQ+9IxkEQJ/icH547wJUtsnGXq4NeTjhb32KeuFB2J5E21x0YSmZyJWlaQxIm9allVn9rQJMekEGbnAEqxcs8kYgWU5mz3D0M9jY25yrAi8o6eMcZ42kGFraPrkQjpPLBUimIyId1PU00KkIPAIMGMEMZgv5DNExSQ4rdDC44Et/Mc389FP/WO+VfpbgPH7MfP+da6dUCJcG/SDCV3JewBReUIIIl4YSgvkCPuA3DieeQYNmnXdu+/Hr//1Jz8fSz+SFhNiXL1Vw7e909fLDPgOesJMzJ7Qfsl4dTPExIMW0hYiL/PiZS+Fg/v3hWnjhobZ5i9u18QLWtyj/JiqUhRBGTZBcO2E36xZvyXvowJgJnMgvbTEEGmDec1P5GzLomgedNmostr4CThrf5Z5GgaQRaWAVT7jl44TA9ZvLSs6FLQ9bZMZfMt2NJSEiS4zTXiSTXaYVrMsIumar/SVdR06R9HScfQi94GZniEJIAgc5IoW+ZhrLwB4k71n3jABwtYwd5Ok5Z4ZEy1x4TV1l1+CfKZ4xzZDRsPwpWUzVtLe8o1LrHhAkGcMXmjyPtVxY0fatd1rmmDX2KP3PWOFIRkHWt673/E2S+4yqsRZ27b59/7kI3nrAEd65Lt6omqUCA0dBDPJLVgHSLXCXBbp9wEQJEKEJwG8zjuLCPsxT0sYxuxMCCTM3T9b3w/r5MvGb01CEFxPqt2cbne3/C4e6bvlru/Q+yQG1BMfjkxIfntr1snPnC4B2JrjaMOEKjMqE8P982dbgfJzTfJQJ/0VzI/qH2l8nmkxYmjXnG+tyhLJi9JFz7U9vfR5e9P79Bsfl08uoO1+6Sdgv13rWSbsfpaOc46VU4xVdQx8pQmrkzOV6niWXXOTuN9GMoosygJneSDYlm3bLQlFZfS/bt62OyaHIPVoE8pxPT8Zo9Xdk0sFiFYOypU4WZuxzT9qfl9DmOP3g7nMnj41hgOdO5/45ul/0IABZmY/E83CCAWXryS+e0zZvB/RumExz5csdtQzD8+MhdxFcFhhOc3xG1OOUDTfxepqW5FGnivywD6EGJmz1bbU0hdt8EA1GBPAPwBI+OUx34IKXrJ8dTTPyrSvFJzqn+tXjWGZXbXvZpaf/cJXgk+8QR9e21WflIskzStCLsVQiOslOYiId9G7DdiOwALwCmGFuGZAgZKxakyI6Ga/yScN0l6AL47jm8VadcSsDc/8aFl4nyXVSBNM+u2/9b6Yh5pz4NcHdX7OUmHerVRmwHfQk6dOqSdyv94sA2bSSEU0+a5bvY5pig8NABc+sLGjRhgo54qZrvbElHhZoBQmE8xY8icePZqY8zgpYCGRn2y1LWt5pr7lD7yUlun7K+W3pQ2Zky5dbvTN4/reA0djmAc/7jXtjYkKzaSLmdpJKnHt2g0DV9UbwOW0+d5OGVOTX7TQlY+tLWylBm+xewFTvQceMZnOscQq8gXj5+M+Y9EEY4IdTSulfGGFxc7iA97hAHyE32wzZK9owdzp+fzZIJWVQIUiG8qhPHpkIZbzuN0LZtCEEiELrRoTJQRASQlNKFcIoTkSRhQzhNlzhmHC4AFk4XNMvytiDPHg3H+egavIA7tgQj5Hsj8mvS6wVj+r0tOtW2djrjNiYfrdOQEXpgthchVTV9UptkvrZh0iIQn+U4okeCEn2du2/xmHP/rg35ogUBOBXTpa980YUme5g31DILMp86l99akQQY6FSes74zfXOtL85eRlZ10FN9gHyLJ236lovk5b28BtkAYXtDp/WJ484psx+bX3vD/6l6cb6A5BbLpV3rrbqcyA76A3IJ0FqzUm2lK377WSUm1au11xkGiBp06vi4cxUcycaikwTZMAyOUFBQQHTQpMWDJPc6A3j2Ee5Ley6WRdD75PJoaWqDUTY5bGqX5JfnDpshiOthYzSc6BD1dxkr3MrFp/scC0K7vbhF/dJ0yfOTt0M3Mtvs4b169Gv/gkA09RWo64zFKxz0yQDZeLTd5r1m2MmgwTN0RWKDQ2CLT1CktoAUUrRb0lbTlvqSZNKEjHeQJyyiI/bkUm6AytnTSRIpmm+Q2DSASYK/asGvP5mLk+XCGr12+Oh8m8rj4KgVeFLWI2bPEMmnelxC0UDs6tkVWsunvncOzYsfCU/UGkIMUv7VNUnrPUoSJZa/idRuaT8Ys+/VjpuLYssfj84rv+d3zfAS0pZh5rAr7vxx+6L2qlGi/69gUYEPLS5O+HfWAxnlv8UmwmU7ziqbFinTx9Opxccdo01wVR0EDQgiiDCJodK8DPvOYVRcyX/R/5xOfDC0teiu8yKHgqdgHA9M+LdncblRnwHfTE05mVmICoOsSEoBCi1t5ua7XL1vSXxbiYTNduTCZ/+kDrIZXiqbo6myjbmRSdxPfygfKh5kNw3KxKph58tzOnjrJwm+sREELMoif8iExQ6e2+DeutmQgELEofy++se2Q7k3YpIkmJZ8CYj89aYvutlqykNHUMXatrYvjPEEt52N/GjEkUzRaN77oxbCZ6tGM0RjKTnTt31syPw6P5tsg86sYSvx1x09RV3rB1T5g0dGjYb/7AbMpmZZ7BCDjH8ayjAXm/svfvsi6m5Z9DOzMhe2Yi872uSc4L3BIIWoTV4IcFpd3RxuPatasxBepxAwvhe4TQwNG+miMsHWn3Btogz5LrlNCH5ULkhSJyKCdpKassF/ThyHgQJn5c+uTn/sVQ5ImVCwaMVn3R/Kibzbz8zAtLowk47QbBdy7kNZYo3jlvOWFMyU43oG9f0/a7xHvzAi/XDJCM+Pyde2rjLXDuZ6x6EWh0tHpM0aRI5RngG//tX/uF2I7/EI5/8OyLFi712bgNF8j9ZvnBZ16mcjnCO+YdwBSGhllM7WKFIbahba61WrGtpfRk19rjstr5STVrP9uoQqNKNA/bx4nWAKoYMyW5dOVvojapJ+6bXLj4JGHqmLfQRkFoYhHAnN0S86U/zxx8/0Xr2XwnNulsGlIWSXtgXzoVo5DJ/jgSPrREALsIhyHEa/fuPU2azzWz8+p1BeGGBjCd6D8V12pyVLJBgldTk3z2zTseXqRher81mvwVY8BiujBkAHb4dLHSoB2KvPk2jeD3lgwEr84Wi4t1BdPqQstytXTlhnDwWKKR9e/TI8h1UeGzY5n21RJlpVPlnTL1Lx7a0xgQ44/AhEsEhgZTgslyjyQMAVOg+sL4Xt9g9XF/HEJ79Khn+kbQIGOcKOu6ERw84cP2DBbBEbwHdaQhUm9C1AQWmOyQFVkAcNV4MHk3wZYgECOQ8Ey4V4QSohgwO5Niduqk8VGopcLZr7z79+M6zwzN1zPoeLK7+L+yBnyHPPza/Yea3IlPLOF9g00aZmzIa5wZ+9q6CbNiW4g8ziuNqUJodySCIMsP1VZKCQagXJG2PeqbD57JD40Gsy/+11LCAIkKiJFF22ZC3W+l5qQ56NpNGW9CMDYmIsKnAO+crb9o2vtx06DORs1Pmh0Hirmpk4aUts72UuhoHeOX+DVxFaQZFabg8TPmhUkLnwjf+MT74yEIMPNNY7p6tWCOL2apxTfXlapI5vdlvGAq1eYqoJwdx1CZiPu+YWk1q3vg36SdxXybBoXPFmsE49m/b+/4TGCqaGbqizFBY5QJ1TN7z4DTLhXMvEMH97fEEKfM93ougvTywlXx5Vu1qoJAhL8UsBFm72GDB/ohzFz35nE18Ah4XCZDrB9wEvi598SwsJ1RGND1eGHhp80ki4n2ZonSkm955+808S17hDZ9k+gkTekEHD3tms/bewdDPXj4SPTxeu2cPni2WJeeW7wiatkU2yBGnypKZLnyCHCeHXMFz5K87rwIvP8U7/iLj34mArYA0zU2no85pD/5kT+OWnj6Ou/W32UGfIc8eaTPNPmYPrJIIanCKPg4pI2kj9HvdEIPbb+ZZTp+sKU+Dh46km/CZH0uV+SAjapvmm+QW/GamPahHSOBi9BWqGGK5ggqdXft/jzS+rIx0bSZnixGQwwABJPDnJtlZoYpCPHNeSZNmR4uXG0fevUbbJVlBoQNGxP/pa7BLyut33CxwBCTfSlO4g9IrRPzO3H8uHD50kVDue6Oe6ldO3TKgnC15tGw37p64x9/Maz9+sfDzo2rQ0WXHqFzuBJN1OOnzA7XKrqEJ17zunD4nGXJupZodzIj79qzt6iwB/mOl5r5FiLxxVKLvYXmGsJbpRKxVKjqztDBA8z8mpiweedgwDLdcpxHa3uG5xkwEzuZuhTLzT7WJUT547SNviEPmMP8/qxpZZCSu8QfJf7zoWMIFOQkrzETbf/+A82KsDtsMEQ5tMCSTqzfWNBAEfjEgLWkHVqnEN38bguBXv7t3//z2C/Phm8Yxg9GgufvyQvcWH4ozMHYe+pjCTsoQyjtnH0gnrl2vhfMygLKsQ+zM6FfLyxZyU9jyDPz448lg2ugyAjANbJnoZU/9tDC8J4/+GB8fxCKh9p+2vzfj/1ZBI/Fjsr/xREoM+A75EVIa8B8HKARPQl1ysdCGAH+pHQb2mO28mntfB83s97WeGIPaOF8XpsA1ZlFfuLO2s82JqiNW7bndzNGMGTMbVm+2mPHTxblmgaty4QG+hUT6pZtu5pMgtJ4YTjH04lMUBMdZYU1XTVUcmsJBrRh2944Id4zZ2awQoHhiKXfrDeebjiqSLsaeober35/ePJnL4cb+1eE57/3zXDv/PvC+p2WftD448KaQeFAnQkXBnzDAoChfPCAmrB7T8JkMq/Fq85uXcybY9q365A/VKZ2z3Q98/DCYNPczhWBccdESjuEIZn1fXhaOpa5ozES0f6DBYGuNe8iguuc2TOtLGddOGFuna37zaxtfzW9q218j6vbJhgwz+wQGkVUr7oZ4nv9qTe8PQpMMEG0UhiyyIdLsQ3g3AxzNaEZ79hVGxn1U88tjkwbVHKS+OJGE02aOYBc3GjFaUsZWbFGuKIoWFLutXcNYQrrEpnr8DNLwKAACgh5BH5AWes3bY0gyzc9+arYXtdeXiYjUGbAd8ibkAZgDTaTlzSQ9C3iK0bKZcKkfishFELJ0haT3TTLBsRHnDbDpvtq6TeSeFPfdPNHgb70WqVHZJeaQFvlw02dFqaNmZM/JpOWCB8bjJWxwlc2ziasBmPqnjwjTyNM00wiiwH7Sk++36x1xhbiOW7ddSCcOb4//p7wYPFnDU/fd74yDO/axzRAM9PDfEU5BrrnVGOY0m9A6HDjSjhlYB2Ek9YINeqGZRED9jG41hfktVT89Qg/TNx9bAIHrYs5s5tZKUjYgf+/V68eMRELwiWAI7Q2xlQM2DN0pfzEPApDIPEFx9yIRnMrbWgWDhC7WQJnvDj330FLWbluS0EA6dbVmL4dnxZK0wknvAkYMB3fENcx15JftJVeXLoqvOVXfyem4+RYAItptD9aNporKSF5N/eb5UjRAxxTae8nxD2j+YKVQKNHwE7nit65u9bSl04Nh1LAu7nG+GG2ohlmZl6+am0ytjmBEr8v/mLSWHJNYDl41nItvP2tbwiv+amH1UV56UagMLJuY3n19huBtAkagEspBqy74yOB0WE28oQfFAbNJPz4wwuNgdaZBrKtRbO170PrTKytmfTUnmU6BEaKY9bEoeMuXUqbcrWndcsLNuG3RA3uHABRuC5yN3vyFZzSDLaqZ5/w0KOPh0sN58NZS4tYbebisL+gndHP5aut95crJSPHiRmz3t58w5lkvtk0eZ2cSXz9+o0Wqz0sZkxSrG/6GK/6eb92PzO1km0JYcgnP5EGTD+so8lK+GEbcb4AfSCEGuJXoanGwPQu4MYAKQ9D45qZ3DEzz5puRUHMDdDNGG+lySPn68+ECaOHWpWiw2H7noOxnyob5/r65Dn5a4k7M/7bmQqAx6wPA0Y48j73NB6htwkMmOpxVby0ZmOsCf2RP3nS3BgDMs5SehPun1/8jfcWMVxyZ5PIQkQmKb5TrFk+vpmwLQmBvBNoyRwH0hkC3U02LJ+Qg+2YtWHwxIpjZhboscLGmfdgkD0jMBh9ctm18PNqzmEegbnjO4b5anu1CQef+eifhCcef7BIOON8ZUpGoMSXWh6e220EFJ5wM9ctSVXHSpJnksQEBZMmYB+zYTo8Q8eUWgL6aCsDTvcl/y4ximnJXW19GIi2tWXp68iWOs772DRBKWmDjvGMPA2SaTQj8artAstZtSADKqWpu2mArSXPTDwz9tmbfF/XXUYxbfcMlG2Y/zGlEn+MOZPJFYYJCniGJU4Ayd3DNCgqVKHx8nzR8FjH0iE0LQXhB5iQAgEWAygGYyYnMedAewUUBxWZo51f08cNE/+MBiqkPMcR6iPLDVqvhB/Cxbyv97wTrniHWqL19r7PmDTGtODE3EsY24lcARDQztwLY4S2DrNqtPsiSceLy1bHrok4EBMk9IdsaK0l3C1PvvU3olACwOvw0UQwQdP1DBjhj+pXFD8Q4R8mnl7nRojm2XCcB1XCfAHUyadPBShcJ3oefuwkoJ01xg1zX2z3SNIN5W4HnIaGzLuCtvzv3/yeCVfJUf/zXb9sIUdzdHnlZcYIlBlwxqDcbpv4UNPZnjCVtpbOW0KBJDORQlr02aHhJf4rgvi9ltXavrtnpFZs6VhMjvij8HlB8quStKMUkSTgxyGZNZvrg3FKEzGfIkJqvP6aLkThixVwDNpFmtoyxjBHkTf/tutQ8H9qP8sbxihaQ2RR6mSVl1atXpcfe1JZTp4wOgLVut3TNe8imGcMQCAsUhGKyGQm5jhm5PCgNKkA2/CtQzAVgD9UmJLJ21eb8hom7TjXD59bolNExq4ffiwiAzYku4h9mK55j6Rpa196yXfzX8+8GKaba0bUw+KMx48ZYdpfn9Cx/fVQZVaLfQYwoxiGat92rCg8S72vHI/G7FHD6rPU8otf+YYxzBOxbCOCjxhwDIPKHYQvV2kvEUpgfpwDFwcCsme2oJNhnDBFr73DfLFWnLK5A7MxQhJ+YFxOjBHPA/fU8hzY7p5ZiTC2cu2GeAzugweMuR6xZ4kbAS2c2N7hQ4eE9/6PdwYqQqUF0FL3fDdvL7w1d/Mo3Ob3Dpo3Tb6kWHpf+jehO1t37Il+HfZJgmZdaGgmTu9zY19riA+7rQS4RqAOJg2ZJLt26RrNXEj6nuHQf1s18/Q1lQJ3+XZpLZtr8JOtkvHrmCbMVKp8rkEWA077+dRX1tJnhvLJFa7mSgqmj+lS2T5MHdU3TB87IDxiWZMW3r8wdOrSPfSqSkJ25POlpOQzS1abj3Z4URdCoCt8iJ1ecPE+bzRFkbcSeA20ey6vN/esmFN//14zRuuC+Y63wgcir/VL62JfO/M/SxtWW4URkae4OSL1Is+02uoBL1gwP4yfPC106zMkHLrYOWw4cMGYz7nIfOmDvMgif7+qb83z1z2qXXNLGO63v/9M9OlSH1mMm74JA0Lbhmn6cQaUhRCIgHLJLAsAvkgVCqYBkzCm48FmAkegBTzonwWaMYI1DJtnjzuF50CcM0w72vrtgnnPsZ5wTYlV5Lpp3+tiOBOWNwQeQpkQRr72hY9Hxlxmvs096cK+ts+OhWPLa7fICMh0pMvB9+jNVdre0pIPng9VBboBbIix4YOS5tJSP8X7C1pa8famv2C2hGzUWLYcJkyyeKH1EtgPVZiWoRAJkuGPGz0ymr+wAEhbbtpry1uYdDwDyzrCaw/aj5bApCmKyTgcKCudOSsBBKk1SOHCutbS+Y61PWvpGbxnRqVM0Odtol2xIhnL+181LGypTRC9cyZbWsBKM0ZfSPykuiefHpTzC0SWTiiia3MKuTbFpReWGDMRYWH4jTHn9jR/ZoU9hw7tK0z7shJ1plWBJOYdhAGBqoWqHNPDBA9jIpFE9+5dIsNZZZWQOB++4jGjq0MlfXZIzOM85+8//UKMWQUjkUXrc+fB3796ewJW62/1kkVyz/Dbp3oFn6CwPwlzFDJYOG92PJRv6rtPvRDe+sbXRhCU+vPL7/3wBSsPeDrUHjgYN5M1Cp84ACl84XJ7oKmKwG/gf/WgSwQk5gB9K4zT2XPn8nV+MUuvM3QyfuRnXlhm+85HrbezxU4PHNA3Zlkjmcjq9ZsiPoTxJDc0BNYCcBl9A2rjXeF8jMWv/8qb43ckYUfXWF6WHoHC11C6TXnPLT4C6YQFNxv0D4ISRibUct+aXvk79yEW+Y2tWPFmxJaaI91zDaQfxKTFcqdVv+lrYUKQn8gxvRHji8bSFqaVdQ1ee8naz7as+09rvOlsWOkiCu1SHMozTZ23LSjoIh9wDhFNP6VAWKSpFHmxqHbH1rB+xYtm4UiAbICb0ICUC1jH5JfuPtyq7fa95lvbcyusgzdgAsdviOCIZosWtWbD1gheWrZyTZzc8ROvWL0hxpaiZUsQrN1/ODyy6L4w1Eyd660mcoeKTtEs/vTzy+JxVG3C5LzdEPyXLevV4uUrIwMjxhuAERr2V77+3cIFpda276yNW3xRDOPfeSL8TOSft4qEwPiGW8wrvlnKJv7zV78dhWEEjdmWoQyhJut9hWm//y8sXntPbUwpyjnQpLH+cD8Sftjuaz1jPkZ7RQgVofVSulMEk0SQEWFmHj5kcD6BC2FGhKCR55lH6O8RczjaLgwZzRq0OaUeod49e8Yl9wbw6oOWeOMDf/WJuK38X+tGoMyAWzdOt3Qr/7FxoaRxbCuRKUi5XnVsj6qCGdFrW9rfmiUaD+EgmI2bI5CwSPKemHgwexMWBclE6tuw7v1j6X2t+V1t5fVaIoA4aSKhhye0ZE9dq3qGR594Mtz/0GNWYGFW1OD9/sOnm/qtx4wYHCaOHREGGnAnK/GHP94zcM+M25kWmUXXLTeyiLEVaVz3HDwRHrxvTthl5ebOnz1jPsPOER3LvfPH9SCIoCkhtPCeYQ7FakF2KJgP/l7qENMehkP8KtrhQvMXYhIl7STaqUzNOne8lsIlFTFtrzXDJDZv22Eo56MRaOVN4PSB60XMSmOCNk1MKsAjSECx+CP1H0lqoGLAWuHCOtgYDLUQvznTxoVunRMQHdonmuNMy6MNB+NbwVzbYFrj6g2bwtt+7XfDF778jZh6E034ze/4n3kT+ac//+Xw1l/9X2Hy/Ffm6xXD0CDvvmm0RDAi/LYSRuVqghFHs7E1okxkmngGIjAW+ORhxMRYR3NyDsvAtyBUNfdBEhIEMgQizot22zP3vWiMyEwGk3/KXATP5wo56FzlZfMjkP2lNn9Mee8tNgJpDZiJsK2ESc7HEHJ8pUtm0Nb+1H7vvkN5jRpGCnjjbP25mFDAM4FRw4fGPLIkAthG/mdDuOLbYhI4djzJ0uTRmeqfpSYev60164QSYcKUb7O5Y+ST9m3ko9O29LiDet5YK82kZ6gMVaG7hSL17W3Mq8oYGaX3+nQ0dPD1GMeJVn/k8EG7/wR9C1Mz+SP07t0nFhrobbGc+Odpf9k0uZ4GYurfxyoqWVYvLyC1NwBVFnkQlp+j9RzqDWSGdqaY2g7mH27oYMJcTvZo16WXxUE3xMT79D/LkNACYKEtP2/5iiEmezJzMR6ygPiKV0lCiNg0zyz5JcaZ7Cn8D7PhD4ZPzHAPY/5n6y9EX23a18tR0l7lQ4YRepxEKQb8rBUYgDlBILBJ6Tm4b6/QyRKczBlp+Z+PHwvr1mwPXTrcCMu2b44I30EW3kPmtnbGeA/kMrih5fM86OOymWxBHXPOfQcOWfGCWVbbeH14x2//YXj1Kx4M7/vTj0bBBAYK4UvlfUb79Yh/GKAIoYUiCFgQfAWqnua3brh0PDJLtWVJnDDpLD0hFHMOlVbkW8f1AwBL78NQS7dJDmqOJ20lADXM4QiaWDAQAB+875743BG0EKApqQmS22ci8+ctrxePQJkBF4/HbfeLj1Fxd7p4pG8+MPyahBDpg9L+rOXe3MSTte9mtzEJyZxNH5gA+YMIG8HfDB20jx4Q2EmLN4ZgjOttwtKkA4Mkc5diQmMj959PFOA2t7iKn7y1IVJZE0pa4/UaSzy5VSfyBCr6kjG4A0dPxz/21e9elfcjk65v3759+UO4L0yWx3NjhgYpvx6NsFCQExkaO2RqqO/VO6bZvLhrWeh0fV3o3K0qDLB0hOcaGkNFZddQd7I2tuW/ftWdQ9XE4cY2zLxZfzjU9DBtvr2Bhqq6hOlTJ9tEuyds3rjJWjbV/POdONuyNDL2SWP1map8hiW/vUgDtmvJIj1fkrAoEUtNTU2My60xZPKFC+djUXfec66jg+UFh2TqveQKMCAcwGQwaXuzLIC2L/37d8MDVtShoeGCMdsjYWzfqrB+25aw0/6mTx4b43rpt2YQ4VUn4vclVDVWADFgrmHOjKlRsyQ9J38IemMsvvo9f/ChqHWOHTUifPyzX6K7aIIHIMW3QvYr1jEp9zVLgQiQFdaGUSOGReYnLRVGzDtCiFijxZATn4uA64n79IA9ksggFHCeGFlgw46QMt00eIQQiDGXBQagFzHYMGRigbE6UB2JTGyEQsW5JjfGuFDIBV6m1o1AmQG3bpxu2VYAIKRl+IvcYMhmJFaY2UjTLknB6CVq3xYwxjZjgGnyaOj0vtb8TpJwFJIH+GOYYPDfimZZyIMYMExRczvAGXyGG82HBzozi/zkn7U/axsTcanxyGrPdaRJfj9txzzp6XooZsAVKdQVDFmAJ45Ln8P74tjvrMb8NPN8wSzJb1Cs/A0beiS8tDapbnPvrMlhybIEeEWmI9H+Q4fC3qPn48+qxmM2cZ8Ms2ZOC8+t2Bi3TZ843q7tajhueaJPnE5C0XRs1tLHEyuu3KPmr10tTMo+h7NnwF5QRJgB9ZswVKuLnLr5oWOnhiv7Le2mCaD3LZgZVq1ZG4Fcxyx95OXrlpHDSN8Feb9FmNB57v/xnacCGZpEH/zEP4cfLN9iFoUeoXZ7MgYAoEQe1dsl5XqgDaZZ3mGWgO+UfhIhUvmxyaeMf/ZHS1fGP4VtIchhsh8yaKCZf1eZ5SA5L+UOVSCEZDgnT7WLliOYrojxUapOtGuYIYApCQO0I0ZZhKbKeMCQEQrIoDd72hS73rMRkPWo1flFy+X7UBgZxxKOyL2MMJ89uaOpqMR1cH4YPvMQVhCAmpTFLFPrRqB4xmjdMbddKz7yrFJdN3sjL2dfN3sNOm6rSadpQgMR84SZ8YcGB/rxvJmdtuYS9+u4UoxNwBfa+TAPHdfSkuw6quvbUtu0hknVGraRXk++YZlG0335iT69r9RvUJttYcDS6nx/oHbvnYtf8UYgUYH3ydIuDcLqkMGAfX/S9LRNjEy/5XPTb/lR+d1OG23peZXMsez2zzBr3TPDM+cu2uR8yDS5SXkGnGaCRb/dBaTjnTn31WsFYUGm4bgdG3uOfDpRvjEJaDBiT0z6O2oThDLbcU2cO98Q//gtfykWINqSDQog3wVDqNfVJcLEU88utgxNi2JCib/59D8Z4C8x0R43YYPUivhqvcUFbXC8FXXoWd09UCnqpPl8FXvPu4H5nLq5+zYctu9sigm8SX9ewOLaJo4bGQt8wLA65QQ2ro97VVINmZVPnz4bazRzHCSXh0fssy4zMuOguF3eb64fSxOMEWvTRdNScRn0sm3TLaUkqOppU8ZHXzCMGIsV193XGPNuq/DkaYgV1wCJjgCDUACoLcb+WhIPildgNt9jQCzKgmKVqW6XLSz7PlnnHWKMbqU51V/jy3Fd6XfA939XMGA+wibmQT8KrVxnguLv5eirladssVmW6Zhr5EPxyTjwy8hfhzkJ8xaJ0jEZlQrh8eZZTQotXpBr0LUNSTjkyyOV36q1m+OERqIGldrjA/dMw53GNMECuMhvb249zRyba8u+NDNkG4xmuaXpE9VYtRxPJ/dtCfWGHh0y3JI49O0fulQUmA3tGi43xuQOp04lZnkmI3ycp03bYF0mQN+nX/dVe3zoEXGweXKr/ac+EqYNuS9UmMDQ7sIxa3IhNhMj5TspULLuS0kW7y9GpWs80eJJXMH7gg+YvM6AodDw7JbiJE94zoixk8MNG7/ONgPhf4R5YFGAUZ61pCq0FbHKufEBk7d85uzZYfUOrj+htHDUmGPqV2x8GUO0tTrrc8LYETHMh6Owtrz5Hb8bzcNf/g8zPS9aFDvjvBKEfNw3Gby25nzz98xM0MzgJkhOAgZjiaH20T7BUcj0TYd8i5h8sUQRX1xvaOeVFioFsR0hVcUiJEhqnNFSvaWGXMsXG4xxdyxgPPw74jXP2aaN820fsuIcRAvgxkHgREsHaDZ+9Iho0j5z5lzUljGhnzQTOEx7k2mxxBGjxQvkpfAv5hRM0iRFwZdNngDew32GTud62c/1t3aO5N3j+bW2fRy4/wf/8dy4NgH5fpxTpt9P39ddw4CbGwQ/IC2t64Vpqd3/q/1pABbn5aP1oJz0tZDOjz/agQwlFjBNSMEUHf9xyE8OLfVD3mo0AHycmMzxh/rygGj0TOgkg4exA2iR/03afkvn8Pu7273b7OE3NbuuSdE3SgslBw8eCvNmWopG+3fezHWXzp81AaIh7Nq+Nf49+sTr/eHxA+9kvjYR4R1jDQVNXCZx1whRs6dPiZYAzg8Tm2HmwnOmYQCgIYmCJm1/Ld4crL5ZXmvfMZw1pgTVODNhNvgp4YAwr36WqANh48ihAzHbEYyICQqfJP7F6eYikLY6y5DP0sI02XM+n2kNxnWmXW82h9GDegVSP0JkXtKEXxRrbJeC/xGtdKAB00BhF5FN4CK0RHI332PmdmrhYtKF2EZ+ZkBOK8xMj/Vg0/Y9+WxNgKhEILzRujGtdq0CpNcpdDYhQSRLBwwNTbZASR8+OQvnAaMhnIbX5jHF4wuWhUeaLXMV/n6AfxSgQCMngQmMDvM274HIP2ueiYjvG98wbgdKOE61Wr5r1m+xd6kyMrzVVsVoju0jIxZasrAZYC0Q1BEkZkydFJ8zvmkQ0/Mt5niZhSRxHrS6Vz22KBC7DI0dNTyC846aKwOQYGvnW+ZT3u3Wttf9/aSXXBf0clxX1tyh6y98/dpSXt5WIyDtFWYKWhGEzrAmAABAAElEQVTpnY80mqPsY2mOmEBW2qSURSQB+HEZsF7irP7T2/jIxYz2mjkMBDSTrQdx4dNbZzVHRSBrmZwoBI/v02vsalNq2VrktMAxxEGmKX1/+Mb4E40Ykkr24Jie2kjD12+ANDBVJkTQvrt279euuBw5erTVb0hQ4fPe9/3Q/nqj1fI9HzpebwivXHg+tL9yPnS7ciQ82GuQ2fcsbWLXTmHRIz0N2Xw1+Djk/gMHho6du9lkeS1cPXE1aqGEHaGBs03+Z5DZVebzBAULDe5XnU+/CFPETUF7gXw8Q2jnGKOfyKKpOTfzeObvw2eu2yQuQheH+UJHjKlcu7Y2DBk8Nhw8llgOeN9HDB0UzcNVXTqGZ19YHNvyH98DTFDJIQAooo1K45IZX8xr3vTxht6qD8+/mICRelT3MmHnUmTo+U5zK2iNxB0P6t/PgFT7jUEmFg60SJW59Mk6OMxPxuct0Ug7A76NMeZFSUw0ZzRiLD0wXhLRjDAtmbKX3D9MmRSUfe28Im8FQSgVKTWrcAUFhP6NyIzx6arYBj7hhffOSYQVG2wEv/HGiFeYdQdBeMKYUWGJXQ8WCoQk+uS5+9jj3lYUwmzQ8Tv0pntdT3mZPQJlBpw9LrfNVhVhYFLhg+EjfcFAHpiQWkPSoNJt02E3fGylwFrpY/Xb1/HVtuaWSOJiopj/zuxsHvyDhM/fPMs7y3EAXPAdm0Adkx9I68g6Z2FCytpb2MY4lPIVezBR4YjC2qXLhdCRuLVdAg4qtCCVYwEgxHZvvsyyIIjR0fZaOwthqugcrlTk/G05xajjiefCyq0JE7pn6piwdncChJs3KMlmxLENnQeE4x26m209hEHjLAb8uW+FMzsOhYqeg9kdrpkZeeSwK1EDOGrI2iyCMTalgiYps3TSpqClxiILuZnnmouHiow51yGMeYLFjne18e9mwuVQE7QOGBMiyczZsxfCuKr24cal9qGdaWPPPv3D/GXMnzMtv84KMccgfStyyGi2IdTp+Quoha+cuO7FS5aZFWMCzSLBjGDAaHwLrG/yZNcbYAn3yA4DK5GR7YDVG0YrpS2+VVDrB8wsjXVqyKD+6iouYfRooxzPdWwz5orZXdnsknCexK1BaJJqeHOwBD4Q0ZwPJklMLtonWreAV1gBVDhETFJhTiYC5K8V7R0BBRCXcr3v3rPfhIfh5lfeHK8X8zjCPUSffA9dza2Aa4H4X9FmK9FJX4kZOnFtaF95WXoEygy49Njc8nv4qGSG5ePkowS5SL5XwEutIUyDZJxKU1pDRAPEx4XWg1SM5q3Ue+lj9bsU49L+psvClA7ikg+aeypMHsVHzDLz7NoNm/NoV0Ik+BN9+E/eG2Mbl6xYbSbStTE2VZNYcyZ6Hc8yDQ7z+zzD8Nu1Pn7sWDOnDzcGft4m27rQ6calMGt0X2N6lvqy8Xo4e+FS2LSjwBQ5zjPYrGsUg0ajvJHB0OnDA6+8KffGjcL45ixsNLcpOWGaCC6i9sawtu/eHbUdfLVZ5LU57S+l9VYacEkEGKp9zoosrZF9SnfIOlrg9l37WI001/yuTPwVNnbDhgwNS5YmMcdjRg5Vk7hMXxPjBMKfsoUixlhmYi1BlI8ZNiisOm6adkGGiKZrPBWYh19atSnmVcavKsKVgZWAdxQwFMzRXwNx01im+CYxaa+18LrplhQEVwugSIjkJDK9406RUExfMGftU78nLdkI173GvlsEbrRsYuzFgDkGEzKk8C+EA2jVuo2xHCFjwvmZJ9C2EVQmjB0dBQOlvIwHpP4jBIl3Gc0cN4gI36+qU2WB8NSuvCwegTIDLh6P2+oXZi8IoECMBbSqKHzYhO0od25LN5SOZVX7IiCPNtrMxEfOH+fERMYEv97Mwpo08k1tRdK339bcetp0RR7dC/bBy1SGmQxUNYAtKhOttfSFhG6QgADiXmBQ+LHI6oWg8PhDC8Prn3g07mdCY5JcZuhPACY7zWTWkhAhE17sIPVfS2kjl63aEP12Ouyohf6s37JTP20M2xtTQVspaMreaiBfY/4AW5HJNF1pybcxe3Php2MmWkUIAVSUpxzj9cxTzBhm1bt3bzM5novN6+oLk66OP24MQVR0/aYtiirNbNnJfKk9elSbVtsp9Bk6IJq9exs4bWAfywPdyUBaF0/F8oYdzCzr/fo8V/yy5Enu1rt7WOHcJjKV6zwyJes3mhrUsSIRAEi72M+YVRdjWsestB4ugLmzpsdrWm3vE4QPE+GHLFCYtyEEQUim7PjD/qMkoajKtFreMcaX64XhkmGO70OmcNoK0Mc2yJup8TeLCH1CwEYDhcHLKoV5W4BKngtmafATWMGwBJFVTgxYAEV9n7w/lxouR1Q0oYoSbrlO+rzPvjnG27tGFHsNCI4c0nPtuz9m5wG3EX3qZnlj3GXW5zrK1LoRKDPg1o3TLdmKUAGkYoAdmIcIioeag7239kZkmvPtvdbEOUBXQkw2SPl8qPJJM7n40nK+n6x1JHQJA2NHj7CYzh7hucUrYt9MDmhETO4yuasPACZk8Bk0wEyqhsikFuua9VvDeAv3AMjkCbMfJdMA6ODvREPGt0YC/7Ubt0SGDjLco8c1Wfp+tN5ciAITuPfPccxVlwqS35iwq2wCFwNe+MCisO/E+TCim5Ww62TMubIiPPHT00Nju0pLDXkqnDlpWY4uXggXLx+0Cb2gUdKXpxuOAUvjZ3+PDpfCuK7nQu3e3QZAOhuqZySgMOm3TgEO5y5ejuZnJtbJY4dbVqcEad7ehIZeZgnBvMw6E3BXM90y1gnj6W7a5uSYBQoQFMyDd6F6yPhQfSUxxw7qcSksX/xsvOT73vhbYd8Nm4bMEHB1x0vRv8zYPfTAghBMWAEpfNG0K3I9Q1Tl8uTN9L3Nf9okPaiBjiCeI1rovsMn4p980qRIfX7ZmjDJLEFTxo+MWcB4Dzt27hH2HakLo4YNjMfLJ33BXCOeYDbUygbJjQsIAmSGAAsDVr5wGB/veHy3ctIN2jEkczjrMF1wB1ialHSFOrtYKQhzggDpiXaaGRzi22eckzzbybvB+06IE9qxt6bEOGaTxtLMl36wFiHAKt8z24Sw51kgiGDZAosBEhrL0qOL5oenDcjJnIDry1dc4vgylR6BMgMuPTa3/B7Kf5HMvnb/ITPDXs4zXgL/CbJvSbvjBiUZp28Ws1qa/GTu9zHR8CFCTB74YgFRrd+03Tdrdp3JYqf5n+bb5A5DHDUiYQv0jRQPk+pR1SOzD7QOwDnQ9p21cUlsM2EbLREgLv5++jWPx6bcI5ox5j3SByJUoO1nCTVe20ufB6T2uVT9YG9uVXvvJyaD05nzl+Of9j/8invC1qOmrXYzUJW54hiVIRMNKGPxO0zK6QpLHNetZ02YO3mUmR9vxJCgiaOHRlDe4f21YUMuPhVUMAwXrRh+AIqamF9LImio38qw/1hdeMByWD//zA/CUpvcq43JekAcTOPSlURzH23ZmZTqEZAO2dcgzKNyQ/ikJJrQaeP9xBIqeCcRrGZYZiaATryLAJW4W0pSevJhIuPHDA+nzTzqSX0icI0wd8DpnJaLYDHDLEUXc2ZUzN/LXkqsE2SukvDUsVNlmD87ESioPIR2LpwCwi+aOpojggapQvv0ro5Z3caYlkrBA8ZZBKgOBoyLAIa4Y/fe+J1WG5CLQgf0y7iivaJtSpuvs3cQ0zXjSaYuoczpd5gJp/Ifw+SxfJFMQyAwzMlcJyjqsRbHTHGTBtOA0X75Pni/qSZFyUJM0RDuJjRhCQCMO8S3iHatGuFrDVV9r133c5b/eeqk8Xa918Ibn3xVkQk+Hlj+r+QIlBlwyaG59XdssbR1nc3Etm/nofgBYKITjbXwhpYYMOAlJoEsUvpDv88n5vDb/TrCAH9MYm0hfK1ohMtXJlqE1wokqcNos0jl39intmg4rWHA6f6YrJDi+fu5n34i7v7Yh/4wbN66K2YTIwYSYAy5jr2ZNN0PpuU0A/YxtWpP5RxqxmLqTps3aZP405y5OHfg+UtXgwUHqZui5Y3KajPTJtaJ+fPvDbuPJ4xyyuACM4CxTBvSNTScPxPOnToeRo8dF7buOx3OGYOABvfrGYFEmPE5y7Gjx+L2rP986kGPZPYWE1OP84e2N4FG5CsNyYTJvkNHTkTmfd89FvqSypimY1lW9+hm4THTImp8yfJV0b/q98PoeKYwdSouecL/Scgb5J+lBKvhlnyiw42rBqY6FjVzNH3eLzJAoSW/ZNWapFkiaJDjmsIGEAVCeE+qLOc3RFgfaOIJlhADbZW2mKZh1BQxEMHgEAIRYhBKeecvmxsAYnzIzYzVQQJvVhKdrRZehZ9aOc7pD+2Z49Gsjx0/Gb818B+YmtHcsWJ5AluBLxk3EpYlIg4Alc20MLj9hw34OGdm2Lg5GU+EU0CT//q5v4klCn0/5fXmR6DMgJsfn1t6Ly89IQqYmXqYBO79iQBdmiM+KJnM0u2Q5tPMFt+UQkHS7bN+y/SWtS9rW7p9rWkBii1Ue2lT+q0lIUhp2m4xtWgWLwfhe5tj2Y3484TvE20BQAtZgBA8dtokhQbTJVcpx7dPm/VhultdeNODj/bzzZP1EgCoThWJhaDpAYCwColJpL3Qrnt173DfAw+GTlU1lq6xvTGVo2HPAWOsF09H33lVtxwyytoeOn4mDKpsH3YbChaaMnZkFEDiD/vPW0Mcb41aqtoULx0DNi1SlHOxxp+eASskjXA6T6CjMfvybHnf91voDe9mTe8eoX8NWclCtMIMsDaYjU/H8LaORRYMmOZIs9SAQL+aY25gDUQw427W9+ABNeHFJSsik2QfPl4YMFomggnMUaZs9uOLFcl3zDuBRvr080vDsy8ui0BG3EX4jjHn9jftE81Vrhs/rlgTwDTIDUISEgjmi88Xy4AP42IfqGyBxNJASkBTVxorTINN/PmHj56w+OQDHBbvhe9e3xgWJ1JxkkEL64DwHFgGaPOSWakWzZ9tc8KheDwRB7/xux8I73nXL8ff5f9aNwJlBty6cbolW73+VY+Gb/znD2PIDYUF8H9iqoK22GTgP6j0DZTKKkW7fmb204eo4zCJyfSmbc0tBTBpro3f57MOsf2cTS4wYPnN0GLS10S7eI8ZmrH3DdLuJ0HEbvL3gJXa88SkWbv/YNhhJnUYM0kRYMpHT5yxCbsub1qkiPylhmQyTI5vqtFmmZhp28kqKZWi4rKDhVYXO/ULO+0agk3As0b1CZu25bTaPActPn9v822azTJ2AJLbk2fsHtDlGUhxmwIDBuwFE6zq3j1063gjjBnYI3RqbykJ2w2JoLp23fpEv+Mz//XdqLWCYCaJBEQ60sOHD9lfsPCzaaaV7YuMQpYT2mCq5X1CwxTZ6xMeeWBeDBmC6ew0FD9mbTH4GjPHTjQTLbG57U0t379/fzhwIBFIZJkQkpjrlt+e95zzwYivGiM9Yt8hZl2h5zE5AxgUCRTV0Xy99PHMC0tjVSVhIGQypz0uJhgz4X8Q3wBxwpiA0aIx/ffrmyQ0we/K9nGmZVNoAdI1sM71IVjwbYsBC13Nfp6brEe4kdDEMW2PGTUimti5T87fzzR56N7Zlovb7rfSLCn0jbkcgOMMm4PK1PoRKDPg1o/VLdfypx55IPqK0AD5gCUNM7nNmz0jhufoY0xffDqvsN+fZdbCHNYmBmzmLqR0mKaS0ftzpNfxUe07kGhb2sekO3/u9OibSiaeYiZAOzIxnctgwDXGGP+7CCAN2oNP5q9rwRR6wOIv9x88ambTk9GsRzwm2wAQdbZwnUuXi7U+HeuXHQ1UVIquuyINniFK6Ko05r3PEKwi+RrNDVxEHTt3j5oiTG+shfv0tcmeJvhdo6m5naXLNC0ePy4+xKi1WgMYEtsxbzIhg+Y+uN0yLplP+mLoapmv6sPIsVPCzq3rw3e++PHortA7MnfOnHDoes/Qp8uNyGDR/nqatgvQB43T137WdQOGg0GgSUJs99o027gW7p8C9yLcHAI29bd7W5wLbZpqpTAhxdICsIKkUfKcVGyBcCB8sgCUfNy5QFscxz1IGNY1w4j1bLhuhQJikqYtzFn4DEUHcC7ed/lg8buPGD44xsFzreR8vmgxyyKdi9+YkzE9ex86woEYOgI28cmM21KLpEBzhz7w+79tKSpPWyhUXUx4w3mwuGF+x/T87ne+ze7jeoyJ/p3f+JVoqo4Hlv9r1QiUGXCrhunWbMRE/6YnXxk+849fidqitN85Ft8HmhHJlFR0SOA+oJ+Pzvu80nfnJWftA9QlM5m2NbeE8WpS4dixJkmD+sRM5ycG9dHZTH5ZJL2JUKO6M00ZcJX5T7OoxjSCW5Fk/sQEmqb/8UcfDWcO7Y7+uD42ZlUGOuvYrmBO9u2vGCOfZmjiCtPW0EySaN520bfX/nq3MGXmXEMPnwuVVpKwa7ezEUmMogvznTpzdtix+oV8dxLckn7ym+05XcujzgeZOVbhYDDYpasS0N18Q+AT1gWBfga8BqFdChwE08ClAZPs0C0JUfEx1D6hiQTDq9fbhRUrE1AQ8ed4wTF7jh8zgu4jwVDH2XtFDmNLyRGjAdgRGbIJoZ6itpZKYdmxU0Ve61tq/mMIRD1gKUiYAzHzXvYOgpsAIEZOZ0iFHyK6OW7BKoMwfD3mXeYbJGEHmAiuN+2G4BCZmFnfZS4MhBnijgVs41uCKWOylsmcthCAKrmSeH7+2/WhRAjQMGD/vSC0UwnphglSz724IlCliYgKzk3kAVYbll/81F+F3/nDD5kQcykmGfnFN70ufPJz/xw++eH3x2Qgm7Zuj2CyNxkAq0xtG4EyA27beN1yrX/+Da+NDJiQD5FAJDA6pZoEFUl5QOL4Jo4bk0c86hi/zFskcxvRFDSZ+nbNrXtzMWAwAcJg/gT8I0mj9UjKJ8lCFsFaIJn/kl+F/xW6VNiSrDGR3m6kXMCgTfmDBk2eb/9rFOKm/H9bj13Jr8cVe3DXG9GA7N7HvYYkV6H/sO7h+OAkLrjT2U1h1uAhYUdDVZj48JvCZdvcwSbfE0v/LQprXQ1ZXbdvcwyh6V5VHbByw/DqjXmmKznpxNlXVoxuFoNB0xNb1HOnHyGOWRfa/JokL9sGY5HQ5pHkMHEQ6xBJIITi5TeoYk+MLaZjT6Td7GpgKgSQLdt2R4bbv18fE1Z3RS0eFDAZtEgLWm0Zp360bGXst9oqIo0aYeFR9g4rwxYMGSY3efyYOH5KZkF2N/yngw1zQegO/mtAXLiMsohvDf9yJxMOAEyR+IIi9/vMF4/witlZBEIcc7cI07HXwn24EhgRCPM/2bZIeUqu9aXmT545bWJ+fJW4o0vnLvF+sM4cPnI8oqbJ8vXc4uXhXW//eTOb/00Ekn37+8+Ytnw4hmFx/jK1bQTKDLht43XLtcZsxF9UgnJXJ5+Vv1gQkSRV4CM5cMgkWwu9qTCNBPQjExyoS01yqkyk45mUVLFF21payrSXbof5TAhOJHr81jCbgmmQmbcwreu+fIIC32epRBkxN61veBusKytT8aVianbcKLezIsMEjdKXwiwVHVrTsypsudgnvit1l9qFM5eSsd63L/EF9+1l6RXXJf7D6ZPHhbVrN5g/tEP0uw6y8nvZ5J+VW3f2bB8qxLuG/7pr545h5IgRMc1k3z59Qr9+/cz8aZWU+vQPxw3Mbwp+JDTIrTtrLaxmSPwtHyo/YkrLuNXARykUL6ZqwoZ4pyl2ACPzvmoOwzK0PKfJD7Lc2BFxbOF8ZHrineTdAq0M2Kv2wMF4JjRpgI8qyUfMOoRmyzrFCnivRTKLn8+ZhnHj8AeSGSAZDFwadpLbfGD++4juCkNqiwBEkVAEqwNpOTsbk5TQRhsyau1VY1vK5QAwi+pnWC44TlnyiN0H1U9CG+YQShEKxb7NfP8IMaD/0fpxaaHlz505LfzW7/1ZWPvCN8PH//5LsdpUhQECX2d4FP+c3WWUV5sZgTIDbmZwbpddb/6ZV4cv/du38pdbZxJ3mpDg8e2UIsBE+CwJNUijijEhtoUBY2b1MaOlzgnoQxl9EAQws00aTxL4hAlw3J7ag1FA0CSV7kvaVXp7OglHev+t+DvLLZCkgcxxI3fRFcaY0lsrjOmldGJj3QWmeL1b/9CuITlKgU2OT8ZxdqeIq6rBjPnxPstEBkcnSQqTOQReALMl/kyeIZM160loVSfzyzbG8Cr8wPg1Gy8bc6trCNcbzoRrnWuIGwuX23UNhyzuGJpU0StMGloVQVkHzB85zjTwLTtqw4jriXblGbBfr+zSLcyeOy+sXrki9rNtx14zFR+NuZnZQFy617rZ5itIDRnYN/o2CWvaaSbjS5euWBz1NQM1JiZ1mdGVLpN3HJJ/FguNElAIzMR+WaPqzpyJCTq4JmidJX7R80azRHsmmx0as8hbkdhGmll86jL5sw0hQ/7aDVu2xzhihAEwFSPNPwyT57haQ4tX2TX2719jhSxytX1z7hs0eV2nxpSwKbR0xv+9H/jrmP1uvmE6lppbACEKYOFv/n9vjW4FBHZi6cvU9hEoM+C2j9ktd8QbXvuK8LVv/1f+ukjQnibCMZojQmqUUhBpmDyxoEjRmqmC0hbC1D1i2JA4ofgKLc31gQCAlI7k7emoJXxHay+VX9bm+kzSZJi58xbdOHTUuLCoS69wrfFKuGBo3DNWJxgN0HS9JleM1pHemqEU23GFAbpwDaaRHGXuyEgF9uztDsk+/z9hYktzMdoL5k7LJ2nAPytzK3gDuTykXdEHmaFgLpC0w0ZjEsoH7RnjFdNA1+QKAcx95PUh1O2JxwnU1Nh4Lbz2He8L19t3stSVpw2X8Hdxf32DmVR31MZ1zi3TNOd97KH7Yo5w3mVPMBIR1gc0QEBQEAlSZA7HogSDhdkyDmigyskNs8UsDNrdI/nvsfSWMHjOgTaNponQgmVoiCGMMUuLAcP85G/WNq7BW30AUSEYi1GyH/ICKBo0qVnpi5CjHy1dFYFx3AeMmPq9ZBJjP8k3fP1gXFhosLh0yHCVzBftzFw+K4IFp02eYOD5C/GcCFi4lMbltH/AX9R4LlPbR6DMgNs+ZrfcESAYY+3VXKhGMmkXXybxqsp8U7yn6S8mIgjT1Wyr70oWobYQ17NiTaI5DLQUkaNMEmfi2WaJCUoREyZ/XPsDC+bEye+YJRbB93zq9FljwkMzD9Ukmd7pNYn0vlv19+6jZ8PGXQmj4hqnjBofvvtPHzNXQcfQu09fC5MZauk9z4Qu3SwG9lpV6Hllf6geZrHJ3fuHE41dA8ClNBVpwE5a0arjQUWHMjlPNkEMQgsmBjZPBZ6e38RKUSlC17F/H2WmxO8rr3+RD9hMvBIFtu07HuZYqsiOHbdEZkRlId7hLScTQaJbh67hnnnzwprVqyzk60DUvF/x+CNh5crVeUQ0oTYJ+G9XNCdjpsWlgpBabfd0nwkQDeYfJsMVdNHQ0nxLaH+PPDA/Mlb8qoMn9Y9CBK4aGPkrHl4YzbYKM+NYzMMwQZg1mabkUsCUC0oaZDimcN7zoaaFGg+LxDbReQNcMV6A9MgDjfCC9g2Q8XlLzeoZNMdgWXj4gXvDIVKyWhtlr0JT7t+vMQy14/n2G3ImcHzGmMVH2fWg+YrAZiBcbLUEM5jSKXk4Y8rEmBDl6tXr8fq376qNYUwk6RFgi+MPGqL+cRuPMrV9BMoMuO1jdkseQYq6z33pa/Ha0lKyLnicxTkuX9W8Jqy2LAn0JwsR2iySvMImfJusdR8qAhPlD+rfr79pC1RRITRpZxOToPpCu8BPzEQEUAYJGxM0jD1tHk9rNerjdtSA0+FHStMI8vX40cOhb3Un09J26hbjcsGC+8L63cfCY697Y6hrb26EHl1C+0unw9mTR8ONhrpwePOBcNYyF3Xt3jNUzrw/DO7QLWo6nc4bYMvUYBhiz4n2fK23yo5WOSjXOzG8Cg1iUy+X1vOq+VVbIq9degYs060XnISC7m7hPX16VYUjFxKE8QMPPxoOXe0dxv/CY2HNF94V/awnT54Mg0cnZ79wrWMYOGxSuMcY28oNSdrTBjMdK2mErlHn4p3juk6fSTjfgphRal1shtYHkZpyzYbE74o2KFATvlb8ydWGroepo0VKUMVChHmdd5TkFhDmeDFgzkk/KqbAfg+a9JgNAF/4l3dZfPNkWxJbi9mapBwQrgASwnCu3cbIKT3KtROhAKMWcU3gPBDY0MBPml97qvW30YBXlHR83hKM3Gv3D+H62bv/kAkPfSOz5l4u1V0Kb3nDq+0eGmP8NLmta2p6Rf89DPijn/p8eMcvvDGa3V/12KLItHXu8rL1I1BmwK0fq1u65SJjwMTnIbkrTjB9wR5Bmt7X3G+SSuBrUpq95tqyr9ImxCw6YSI/f1BV96pcSMkN04x3RWbPdiR+gbSQytGcmTxEmBdhxEePnYzaySWnPagNy9vRB3wphaDy/lnu6aqZX9OUT3ZhGusRmzT5G91uf/jeF/82NiUkbdemxKfedfDkcPxKovVU3rhsRR1MC61oF07sSZj6kH6Gni5BS00QA3ULg/DkdW7PdJ0CHONHQf+iYfW1SRztG6ZzzWzQ5LM+bFWiLl46HsaPnxFWb9oRJk+dEQ5bwpC9jQPCdbsvpAO0R3ybMv3mr8H2ifkm2/wV5VrZCRcuuMesKjdiXPrevXtj+JEQv5PGj84DoXw4ETG1hE4hAHayhBMQ93AinI5o4lzvkYHBtLyAiobLH2ZkwgUhD27kPUcbBwi5wXKmY87dYb5niHhjQohUAINtaMmUMSSckIILxB4DDoNUNcuHONEHYC+lY8UUj7maQgtsA9l81tDtuBB4IKChcQ+gveO/ByH9f/7yE5Ze8qPGZHuFr37rBzHMjPKL0Ozpk8N//uC58ItvfrLMfOOI3Nx/ZQZ8c+N2yx2FJvPrv/Lm8NVvfj8ypqwL3Gp+KJCdpbTGrGO0jexBrT22hIVSXcUleZJXrUuyG82fk8QtswNpXIRET1iG/Idsx5cmQsuFSWcRcbS3G6U1YM/EuBdAQWkS0tWXEiyqhuS0VW+OplAD5M9RioHGhjZJjx89LNT06mHZuxrCw/fPiyUKLxlTJP4Xkz+aIQyfxCjE/ao+LMXak0LzG6JmR3/4FDdt22NhOTVmPrW0VpGSa+pkULIG07x6djJttjFhMjBCKNFmaZcw2qvmM37ggfvDj370Ytyf9R/ZrlZvKlgO+lR3jQxYscho9DBPYscHmnbId0LUwGBbRwDcYaZXsm5BKm/o2bwwEt6XjaVGtboBqUFeQ6WkJ5W98AtjCsbNA+Iat49cPjBQ3n8YK/G9yuyFFYHvBHM3mjXMHxIgDIsDZmfOD8MVUQQDMCXVkSDui3Mpyxn+bEqMAlhjPsE18N0fvhBjk/Fnn7J7Gmjmewgz+gf+6hPxebc173vsoPxfHAETL8t0p4zAKx9dFM2G3qfk740PdaJJ+zdDaD6AbFpDLdXJbdKH4wI+rre7aRsU/i5FmNp90XbfDhTo7UajBvYME4ZZZZqa6tDNckn7SZ57kSlV94Wp8mR9zn+Ippij6z4XtDEW0XXXo7Q1r2XzGIaMHBOGjxkXqnr2NmTr4PiHyXOIxaReMQ0czQhGADhujflDMZGSfIOQHrYTToY5lFqxPg7Vm6G5HmWX8kxL90tpyDFD+4arNwr3hAYs6tguMYGP6WEo+g07Qv3FxjDVEl3MmzEhdOlUEevrEveOYACISAxHx8v8C+KXNttjPm6Lhz512rTRbTH+VolkZB7X9Q/qD9BpgIVJXYt+USxDypCFYEs7kl1I6+Wc6gPG2aPKLD+WV1vfKMkuYHY799RG7RyXD3W+seCgjcuVgn9Xse0IFFwf44zAIwAXpmYIczXMFwYNo4Q4N7nceYfOnjsXw4m4XlDfPnkH4wyTRqB6aOG8mAELYRnwFuUe8adzz0Q5IGQsfOXPRRN3PEn5vzaPQFkDbvOQ3boHAJ6QplHqKn0B8VJtSm3faGEOhEvogy/VzodhlGrjt1OeTeTjemHGWWZXtR00oH8sr6bfWqId+AlQ22/15UsGXPPCy5WaytCvV7foT8Q82MfiZWEmmJ0J76mp6R8OnbbUgH0M/nQD7Tj5nK8riNa2SEPm3gujjDadMGb5mdmPBnz8VIIR6FvdLabHZDsMhuxPYpBs824BfguNy7shS4lPi1hpAgUaMZM9gpNqRZeyxnTv3CEcv1pILoOpVtTBGHDjDatydDlhONtrjxhYq38gdzTXwTcgNwZl8o5bGkVPincHjCRXhR8nb+bGHEteclkH6o3x4ZONflPTPtFAH7Ya073MMsC3RREOmObwoYOjlo2/VKE9aLP1xvz4o2QnRF8wN7JUEQkAkyRX82wrDbnVinxgEib29pkXlpmGPC5arwgRQlOFuSI0yWqkMeUYtG4Yu6xHmKkByZHZCsbZNRerjKBE4o8Rdr1LLKMZghGMHCaLsPXOX3pz+K1ffWv4zff+WTwW5nzciniImA9KYU7UprwsPQKFt7p0m/Ke22gE3vKzr42JB0pd8jVLkXezBCgLk5mQlqX6KeWDLtW+3iRsfFGUPfMZt0A/E9rBvsNWDk/xjuqHiYj6pmm6HRHQMAXPfLknGB4TqCbRGZY2cKMlRoBIlr9u24G4zn9D+r4Yjuw8EqosRrfdyH5hyuwFMe0k5tb7evVLAG3drobB1STV72AJNqzeLFOyMe4BHYZFv2znyoqQr+DsuW3uLDHlo2l4YmD5k9sK7By/LsxG8bVeY6dQAfGoEMlXrlZcM3Nmr4jqZbKHcXbuWnA/dO01ILbVf6OnzA/d+p8KFy41hk4GQLp29UbYu7dWu22wEm0ZbVPMkp1JdaAEGKXG8p1i2lUiC3+tMgHTvsrCa2DAaJC8+9KEfZpHNFWSfbAf4bPBmBTvKowQRrnD3lF8wf66ZAHgGMz1MGAYJoSgQmpIiIIMoLGhLdt3RjM1mi+aM7V4+RaV9QuBAuGDkoUQwEzGlm8HlDeMF6bN/c8wLV4EOAzmu+i+uVGg4F4hrF4zpoyP/mGOqTt7Lj4vhEEJ2VhSSIELKrxMbR+BMgNu+5jd0ke8/olHw+994CNFgA9dMKYzwgwwz5Fw42ZoleXjRVJXzHC6DyaoEzktKr2v1O8tVr903uwp0dfk25DwnqxEAMsgSrcRnoEvdLdVGioYV/1RBsAyDeR2o7T/l+tP80AfrqPJ2t/n/8/ee0DXdV1n/ocNBMACNrCBBey9N5GURKpbkiVLsmTZsrPsOOM4M07G45nx2GmOs2Jn3P62kxmXJM44zowTl8i9RJ29d7ETbGAHK9gJsPy/375vPxxcAiQAihQhvb0W8N677d177n3n2+XbewOMlWK9njtXFHYppQkZomVUkkJ6HzmpsUwY6UV9BYICq6J2bcPBXQkwDupXMynXN7ikt+ByTp8bCO5u1dYZchCgRkoPjN3Ys8H3EqNEmOyd3Hf3zGmh4+XKUCULOZyvDL1biLV88bz+zoV9Zy+EihMJgSy/cmvo06lDmCt2fWnvbqF9gXJYL9V0HIqBDle5g6x9of55n1yKbfi23uqPbTrJLQvZD7cv1h3WI4ohbl0Hu3xZui7pe8F9YBnADJuZClwwoj2Xmf0KBXoAKMCN0oAVTUtErNlaZCqNJbWeIV5xHrj9SWlC+K1BSCTmPklAzysWKelDlJzdLSVgtyxqBJImx0Y5ImeXdqXkM6PgdlBaGzFp7h8eA6x6jg2pk985lbIA4MFqyEHKUR+FJraIOIlwj3/94pwcANtoNP5fDoAbP2a39R78AB9/+N7ww5/+ptZ5QhShRR8uQgptNBWAmRwGqvBAfQDMpHXkWOIarHUC1/ngFYbizeI6tyzHSuDPxV1txO5iS9jdir5dc3j1lJX4XKPQuC2OLU93+Wa3jxDRmyuwLt4nBoD6XNB+vJbKaW3buqVNxF1U+xiQ41gAWqs2+eHIiTNh+rTJYfHSFb5L9tXd2mwPYCB3TpuUXR+XhCQGDAhiSV2SWx2LD6nYtjLbZIDPsx9+Klzo1ikcPKI86LzWYfnrW8KkMUPCugUvmJIGQLnQlYk46H4BJrHStIvUGc3nzp+z7x2gNDuP01rxC50PZL+4uQTPNQKIUcsZEN8nJjF9hx2M43g2x8FKrKq6mM23jRVGlMsN+g4EsAMQqSeNwkJqETJD1jGNJfbIooa/AQCbgitQRC7AlBYArt8s0liGOQ2T2klRFaoh7XJa57KjfI+xq4cOGpAlM6KMt27Z2qx15oReinEjJyorQz+5q4kjf+UvPxm+8/3njbR1Rszw+PdlikUd5ED/3tzrtUcgB8DXHp9muRY3dBqARwwdmO1OlAa2xl4kWjs5hq5dx/vz42wKADuD048FierYiZP+sc5XWLcQdhAUj8ED+psbdKQIOc1NmMhKS4rDiZNnsxWH4ipWXE88wbub0K8z4lpl6/myLo5txmBcHwnLj8erKwV4HDw9B8Zu//59Fas8aBYd58F3uyXJfsNVPANXNDFPnhUkmy6l9w52tkL/sI5R7PycWJ6+vgNlytdt1VZpQXKdqwpWhy49w/o9pyxNiO0BN3JviV9CUqJgBkKJxBM8R3K7I3xHBzGNseRxpUJ6aqN6zCg0AOuCJSst5Ylta8WC5U6m+hOxcMAZ1y7FPE7IrevgTDybcXA2NdEeLEesTHKq22isyNnFOkZfAiC5p1ilVKlC3LULe3mR3Muz7pxq3izcwYRWuIewpbGK20oJcD4GSoR3PCtS9kB8P0gBW6/iOowx5+OpSXwf389yvCuEjny/CnkXsNIrpRQsWLo6PP+Ll60iFvcKBWfIQBXrkCcMaxlyXk6aNgI5AG7auN3WezGR0EkFtxKSjttC7iB9p7GxWr9oJoESVSWCPMKPl4IEPrk3tSQdx4mF2tXXAmCYpus3b83uwkS0al1SfYvJtbnJOQHb5vXJJIz1hOVxeP9uiyEmfXZbiOBTIHdhUvSBKk6FBaezKSixdVWfBex5r1hRLhRYcPHJ1z/7awzuLCtRwQYA+JSAxZWCGDxhQmN5xm5n9gNUyX2lqhZN5vMF0DSm36znkftf6xoyJDH2Q2g+sWHzpvDgw+8Ma8rxgiTnDchDEuM7KQk5SvFTb2nIfqwHGKdMHB6OCkBxI1epzOQaxS19PdfANn4tbsHHXpkhaq+I1euMYQAbQpK5g3WuMJvdI0Nclnx3rpdj0hcbQaHx1oF8Hk2jBykBtO30fsacH/m+TiKkghXcCwRQxnXPWMGLoC+xM7CxgEdI8UEBwVLmfjDGuI8pO0lKk88JKASkRBF7BpwhfhEHHjNjmClKKBQA7P2zp2u/CrHbt2RTG3FDz1m43IC6THXaqajlrRntJHP/GjUCOQBu1HA1j42ZSJ9TFZsv/s0/mCuuLtIUjGmaajdVYFwycSJYq8M0OZBP6BNHY45b2q932KtJgMpEpxQ3ox3c9YAcLb6+OtPNMwZco4AwUeNWP1bh+bHJaI4ePihLZKLIw4mDB2ziLupYFFpdUI3hgrNJDumZijBxcI/QUiEHGMO9unWUG/aCiFetQ1UPxccpu6jmBbih89u2CS16dbN4cDu1hOwqNi8WKtYagIKLE7AhhKHHyiZeJneesZ2792VvM5+Jm7IOZQgAjmPWbAgYAUyQnFw5ZDkWHQocaWekPLWSgtBWhS84pgN7K507cvrkMQFbcegkBaxIf20K+5qFiXVKpStkiCq+uWAVA0yvb9iSjQW7Zc82PK98HyUeeY2F8yfVi2McESGQUoxTo1S8JE5aLBDNF1FJ6Vfbduq7BmYPAfhfVPyacabHL+AaC0zyg5lzHjF0qLGOGe+zco2vVSlLhHvgghdi/JiR4dV5i20RShp9lwFAt/ipw04eb3fVVWe8OcfX1a8XgQMCiL+i/WFJowywH+ANcFNU4xvf+b7dP8aCRhuMf5+ShLHNMRgL7gvCuXE/cwQsG44m/csBcJOG7fbf6bmnH7OiHDGrOD7rtBswXteQ93G3I8DY0z5mRrG+hhwHN2BFxWGzQKi2hPDDhuh1LaEucH0AjAuwuUm6xm/aeuR63ELjPcQmBObrETVtOCOrZlNmMmffKk2+LtMVS1yy4nX/GMaMHhk2rko+U36wfGcSiwS+ZogYhOvz4I4EALqr8AJuWsQbYmzfuSdMUZrMstUbbEJm8sa69iIpThJi8iYeCXvWLVaO46DKewRX7kK5OfHMTFXBi6VyWzPRx9v1GjAsdB40MfQcMDJUnk4KScixHML2pdle03wkbusxZgDwoJ4tUn0AGQRAij0AWKAn7fy0MgMsXA9kq2UaI7o7LdK5OfDGrnHGmecei9UlDe64lFFm9h04aNfk2/HK+blgiRJfRnFpK6UIIY69Ys16e4/bmvsfE8oAa9wGxxSvdaF7EQo3rncIWpCvXlMNadzXpBzhuULZITQBWYtuZJCxsHRJmUJ5YnyIDXP9gO29YmHzm4IFP2bkYBHSlH+sGvFU46IlJJXEctK0Eait8jXtGLm9bsMR4AeIxssPui7ZJrJGPJnUtU19y/iBYnHUJbiyjMhS18o6lo0dOSQbX/TVaPppQPJ1/krhh/okjnHVt83ttpy4ZSzmdo4X6L3nk7IYQl0scS61g7OvJ/8zFu/5yjJ3t/p6t26yn/1N/Cpg3bZd1p7crnhSkPiY8fdBjoMM5W0NbVvtX1tqzs/3BQTjUEKHMY+GE/0eDq3bFoSSPINeO0SHohplC8VtvXLVPUWoozoAAb7IWLF76cFrrGyBmQtu4NFad5cagLg3PqlFLnARwPl40BcZATQJ6ZBy5WB4XtW4XOJ7BEDzO1ySie8Csi4Aal/l33Is3MGkFgHm5N7SCANwhHgFIFIQgz8UHAqFdC/uaiBJCAkXPmlSLj60uJUB2jkLlpm7ulQxYsYCi5/fL/fPnxPc71jvdFDCTc35oNhRVY90KghZ//HD7zXyVT+t/9rnPqWeyNvsN4pLHsUhJ00bgdq/4qYdI7fXbToCkLHmL76apcrp8sP2UoGNPX1qAhNTqkv2HVDc+cpF1YodYTE9+rJ6qby6to/TP+L1PvHFy+L3XuEnXubvm6ULWi7QWOpy5ccWMBN4LM5qZlmr1rX16oxhl908jhFnF2bf1AbH2Ar1TViGB4Q/etkSj2yv2LQLrGAmcSbnkwLSIN3iSg3G1rJsfR9/je/74BmPh76PfTqcVRvFnWeS89q0dnU4V6k2jaPeZbsUdkqsYT7gLl6yYrW5t++fNUM9a8utPCbryKV2MAaIXWAyE1f1MpC4dVFcd5bvNRDy7dw9jYW7aNkqSwvydTzosLANiPSeLAGA2HJnBZKAIUIfXoCcWDRZBMSteYXtDOkJgZuB8gkQj9fYIqThAZIIwI8b+UiX4wbIrmzYSv7F4ywrF6F/8D3qmITgrsa69zg1hTmMpKZ1wwYPFLh3s89UMfv3l+eZFb5Z4PyBpx+1sXzsodl2/xjLDu3b21gxl+SkaSOQA+CmjVuz2It0pE9+5ov1WsFX/XgbeFW4s+oDYIhTAO7yVQmhKK9NniaSIYpVtrU8Xyd+jRw20NrBedwu/dVepze9nM8QVuJWaultvGRfevnt/Dl2XXKedVnAPgmzHlJSLE6CS9bVBud4O97HoOpFM2q2iWbwmoW13sX7A5gAEqxggA1SV4VSlSD4IIl1dMEsZEAZKxWWLtaXA1Otg+vrZ86+N7QtVNnDowfC8bxh4XxUkrJHSZ+wuGxbmJZXGfZWFYU2nftld3dlDg8K1hwMXdoNLtT5OXmKjSEuUV2K5+jMucSTQhekDZu3ytXaJbw6f0m2sQmeBZ53XNXETf3ayZml6AUehG3K9Y1DMhQaoTgFoBxXDKOk40axoV28JCbNS4q7dlKf4KlJsZnMLeis7+U7uO+HVKQGGSgGOq0AZ2csYu/9Tcx38MB+Bu5+fHgELmdUQpKxX6v8YKxrFxQ9GkwgB/Udr8xZpC5Hz1r8HiUCq5048X/4nWesK9Jff/Xb5qnnNwb7ecrE0Q0uUevfmXutGYHav+Ka5bl3b4ERwB381GMP1nslcZ5gvRvVscJ/sOlVTMakBsVSVV1lhRuWrlgl1vXxME4u52mTxsg6aCstfGV2oo734f21lAPSja4lzdECvtKqTZg6dWqYOWNamHnH5NBXpQHHaaIknko8FIkBOG0BxwCcXlfLLNJxACOsM8hVscVpX+I+TPtQ9z/fBFcmwIXgrsWFumjpqmwsleV+LhB+unburMYLFWGjqnlVZAqCsA0y+9FnwqCpD4adKiISCrqGVdsOhaXrtod+F7cnG2T+d+xB1a4roe3lxO16qW0Xi1dOUU1kb9jAps5xAHwBzjjeuu/AYcVWN+h810qRSeKtjAn75ynHGLbz0MEDzO1Lqh0kpBdfm2/PK3m5CG5gUqwonoG7PBbGBWFsvfQr4Gc1ogW2Ll4Ni/tKnJ14cbkyFzyEw2+A7yB+zTNNXNZZ1MReAeFFsm4R1vM+TjE8JEUI4TzgCOAOR/mgSAcM6WRcyGc+aD24cW/v2rPPFJD7Z88In/+z/2rVtJL0q4PhLtXVhiBJbBiwH9Cvd/jH//tjKQ+d7Xty/xo/AjkLuPFj1qz2wA39vX/96VXnjGXi6Q1XrcwsgJWMu5K0BS8jyKp4oov3JX0hDcDxeuKAq1/fYIuGDxkUr7rqfaUTY65aE4xNyqTi1ki8CRM+llZzk9PnqsP63TWFE3p0lZfhBBO5AEks586dW4QhatTQU0xzClF07qB6vwJRwBUrjR7MxEyJSwI2dL5hQscSTMvpk8fDyeNJCOFKdQLu6W3q+txPQAQIbFRLPJrajxS7GIKPSWQ4eyyV5VhbWPdYU3FBDPgHPeQ+BtDaFfcPK8qSlDn2cXdvN1W72qCY7qC7RobyE0qqlbTJbx8mT58Zjp66EIoPPR9efuUlW14k8lXseveUK1YCTFjohFzIF6eYBMIz5JY61ijWJq5Z0nawMr29p9dNZh/OOyEoreOjnsHLRo6aqdQ/isQQnvH0JY4PUPeTmxdwe1nW5T2qeEWMmfuEErR9157sc8yxUaQ8NuvtQ4nPcp7jx9SQvfAQzV+ywuozU5YSBYL9AWt+nzwDPt5cF8ANcQoQJt7cV272l3Q+eC1wd+PRGiTFFqUPUuUDT37IlKoPvOdd4S8+9Yc6x4T4B3kL63erOCT0XabmdXPkXNjNuw3+5QD4NrgJN/MUsAyGDCy1bivx91DUvz6Clm9H8QQvE4grir6oMCnriyGSjnQtAPbj8koVolJNTBSlJ56b3g/2an2CZYD1kHbbsj2FQJj4mptcUMWkWNIu6IuXlN5ztirs2n/cNhtU0jWsW5Gwk1lwx+Sx2aIkfHYyE++D6j13VXOFtpqcKd7AWhfGauqk8QLsFsoxLgznBNj3qNVg1UUAr4WWJ2lCgArWJCxar1Y1TIxbcsFxw3p5R44L+xbLHRCA2Qy7FgEAY/GqZunnye9fzx5dw8YdB8PQyt3ara/teuliddh+jHM7H/q5Ka5PViUqUw8a5TJNUiOlyJXISePH2LEAQCxTiFBu2bIChRNx9zFpPUjiQm9nCiCKHkQlAInyjQuXrDQ2Mcucwc64AOgost4Hm9Kq65QShUBge8d9d1kXKT57EY5yASrixDVqOPMbjvNtd5XvtW2IVwPAfCfXze+TmDLjwbhjvQKwCBFhuh1hLZNShXiBFQp5kDFBjJlcX+YNrP8FAvkH7pkZ7p812LanyM3zv3jB3vPvmXe9I/s+96bxI5D4Shq/X26PZjQC71NOcFqKxBC9nsTkKTRkJhPidqvkvqtLqDDUUKGTEe4u4oeHVRHobrFQ6blKy0OshrrA1Y+N69StA1/mr+zbHOV8igVN6kpamNxdWsVmphbG3gB3gfq2WMikkOxTFacdKjcYV6UC7Fas2xyWrdlk7mSsqvNSBhavWKe/tQLdteZmBXzTcuz4KVl9R2U9HbG4P65TQIDqSbvKD2iS322MW9+PAhwuEXZqUUIW8nU6JZNtuyvsdf6rr4SRrXaELvteDGfKE24BKyiX6cJ1bJZlzvejWK5Y87qvslcAycUtTAAP8tOiZWvMzV+oWChgCdghkN4AaVdUyS9+ee4iAzmAG8H1zneyHafN2CdpV8l7tokVjFhR2SYrkmNjRSKe+w6YTtbvIP4NQM7Cy0ETDhQG52DgagdwcVX7mBIGuHChWuSynQa4/fuV2G+KAh4wqTkOv2NaI3rqmDO0Udz2Hzxs18TzRmz5P/33z4b3/YdPSGk+bwqLnWzmH67snDR9BHIWcNPHrtnsSVGOz33lm+be8pNOLCH/VPeru+fSa/kh1yVMHEwQpfrBE1+O6zOnt/eyeb6cQvIQVxCOQ/Ug3GxbpamnWZawRCl4kD4G++ICbI6STkPCnZiWWOlIA3BcchLrLy6j6BalHy9OGYpJWMCgAfLajb7pVa/tVMg/yyIW4kwcN1Ix/o2mAAAYCWhkEFR7oyy57NGkj4K1XDHEWkqAPnXt1N6IZflyr+eJxd0Fi72gMBw6msRXX3l1QVBrgNCiRJZwi0F2yFYRAAN83o6PmDmWIW5Z+Aq4v/GYENeFtNRJta3HGGu50HJ8ORjKJmxhFwdyrhUrkfE9E6W+AbhYwTzvVLICrBlzXN90H4JA5eMex+f9vhJ/pbEJQIrLnUpaKFEwnGng0LtX99BaCgtFRLDOAT8qzt09fYpVwvLzxGJ9TaQxxBjNlQn5zRnfHB8L+u7pk8OLcxaa+7iPzrmX3OzEhTtqrJaqIA8KGgK5cea0CVaP+i7t88t/f1Wx3j6qHb9HirKKqJgHxTa1fzGhq2Zp7l1DRyAHwA0dqWa8He5mWpq9pB+gSzwB+rL0q7sI08vr+8yEQ7Ufr/iDVg0YEysi7hRLiSaYGODjeDSkFHd9M7ECtjBRSZfYJK2eCY2Jpy6hPm1zlHQ3pDTLmWuKLeAYOFkXT/IATwzArI8l3tZBwtYLAACBQQo10EKvLjmmilB0Q8LaPaeSjlS/Qtz64n18TI/nch+JP1K+ktjq0KGD9VwcU4WqzeHskT1hm6y2tEx76Nmgdgq2GGDrOWhUqK6Ue1bG54DiwnB597HsLi0ijwCg5c8PMc21ir8iuMWp/gY47zt4xBQ9KorhtvUiI35A3OUs47y9YpyT+7gOnuv+fUostANozZ45Ve7eE6Y09lIqE+lMADSu3NqM/hb2PAO+KAEwjLkfFMOg9SHW/8VtKrAhS5SUKsQqeQl8kZPiABzX7wnh3A4ovcrFrXJA3slY7Ps3X/jT8PmvfMs2w62eV97G0rJ8P+YGCGkIhXHmL15uCgeeKeMVSOElhYqx+stP/+fwd//0A981KcWZ/ZR709gRyAFwY0esmW7//mceqwXA56XxX0sAPICzMRIDBPuhfburDMt0oAg8FA0g9ciZvX78tJXry5mcYkuXCWKYLJmuXYosJr1DJJZYmishpI0M3pJi1ec9JeKUet4yeaelSpacy7UAGA/CtYTORv1UfpJ4YDeVnty2K4k5uiO4i9yd9UuylQMu981Yu75AO8YAjDUOS3aAQN0Zu1h/+46eDnsPnQ733nuvoffdd98V5s2bX+trC/Nahu5dOoSKTQvDiePHw+p97cKo0aPCsPYnw551i0LH1jWemBqbG2Cq+RTHgj232uOeKHoAZQLAtb7aeuHybKGMuPgzigIBSQsgx9KkyAW9q/NUwarVRZV+FHEsX6U0YRvTeYzYMQVAUCJgIbcQG5zYeEe5rjknOA1UlcJbQMENJI5JO5nK05tYzxjiRva2jraPriepEV1gBCuW8X2vzF2cjWtbvrO+l9+lhy0ghPH7hLxlSoaGj85ZtI18u0pp/QAAQABJREFU+vF3hH/7xb9bxSusfJQ7AJtylhDKUAJy0vQRyAFw08euWe358P2zjByDOwqhHdq1pJtqyjYWgJ1EUtdx6ebCH0KBAcCasoP0JyYO5u7DuvaNl/EdtLijihBt2iB+wUolrgc5yK2UeJ/m8P6gCpjs2JaQc5iUj+0+FfoUKr6oOF3btqouptrN1VdahfMat3PqY1ugyR4vgPfgjVm/sduXa2dinTBmmIE6wE4s2F2UDkpsRwwSK2rNuvVWB/jEyVP2Sh3oybLkECd3+eSNRUW+q1vclG4k5pkUtFDZQ1oCaUL3WsUcY8fuveF4daIkXFKFjsUqk0kebCz3PPSoWiC2CUPyW4ZN85McWOvWc7k6vPDj79qmU8TujQXLD29PDLotIxd4m4zLOmaGw4jGLV2ga5w1c5oKZWBVHsoqEfEzzTNL6k9c3AarGnd0x47trOoU8VnEPTTkIsNM7q02f+sEzChH3q0LBvksWc5zFy4TUOab+xfSFM/wjt01iiXv4Tb4PeP4KDP3zZquZUl9aUAe1z6Che7CbwWFiLg8gvILIxwg5h7yGd2JwiPU4eZ5IucY7xShHl6x4lE+sPSL2nSwFowcC0UkJzc2AjkAvrHxazZ7M9HCWPz77/3QztmZrPVdANp5Y+XENVKH4mMBltSgRbCeRsmN2UlACvO5oX2K/fwA7mOZY3G85pqTGBNuALM9e47IW5C4X7muO2TxLBExymXcqKFGmgJ0OnXsaBWUcDdioQCYMNYpaYhPEyvF+/KyP3FLF7Yp7dvLyERn6fWqyR9WbS+R5IYM6GP7wSBevSEpIDFBtYBjcfbsWClVNIUnT7RI54PLcmmGpQ0bOvaODFClqOPbkrQj4rOIx7Bp1ABJaPV2lLWjYVx/pWFFEodFYIpDAsJ1y36kDyUWaUJqYjeuD4BFoWybl0x3nEtrFYhBOiulZvOuA2He8vWhRE0r8Aps2bbdlETWYy3focpReGLa6zexQs8a3qGhg0oTF7AIaMR7Kw4n7HS/TpQeioCQrkNBDCdaYXUTJoEAdVL3lzKdEL/26rV87zljqtO4wZnLnANCyUxv7chnGNRYtihUEME6Kl7sIR2aKJRM6WG5xWyLEsF3EltGGCP+RgwZZEDsyhtuccAWRZnwEePGs0QcmNryfm2PPDDLqnjlakDbcN7QvxwA39DwNa+dP/Cexw2Au2rSIR3iWuJVeq61TbwOLfvQ4fpTh+JtmZxcAB5vTM4yzs3dfkxePqn49v7KBFaXNFcXdAzAXNd5pWnFEhOnWO5uVtyCWKFYKO6qT7eadKssezz3NWsBMccdZdttVS/lHuNWZdKlOP9peSaoLrVd6SkuWEusB/gvVF8wzwOWMt9PbBhhG9y6Ln6u/rkgU3mJzzBuke7dOoeTZ0oEJpfDGYVAC+VGBpTbtathTrMdCtud0yeFyhOnjZXPMhfOKS2r1q63+sZlO3aZ5UerTly+hQLtZSvXC2x32C7jRgwKy1euyTYWaJ1x45doPLzRCG7fSl0rpRyRpBdutSlCuHRxERN7xSNA6UvSevi+IYNLw1lVonJ5fcNWxU5LxDRub3FeLGSai0AU2yVLlGpX02WlOvMcNzL1pMkygGhFb2HaUSKUAt2vcpqEZbyyGIoC2QW4oynH2bmT8qll6WJ9oywAvihlZbt22/0GnCHTISjGxPX37NtvnhPSA0k14/7+5Fcvht//4LPGnGa7p6XQ5+TGRiDnwL+x8WtWe5OvCLmEye76Es3S19/Y2JWAwfUEdum14kYoBmj6/AG+sEIBENx2tSfYus+vuQJwzCxnfNza8PHEyoklHSOO13uajW8PIMbiFg/LWqRieHT+oc3kxHGjs2EBahG77Ks4Kgu3vbn9WQZoUIAFN6xLHANmWXy/cXFv3XcyTJswKkydMDIA3gjg4NWr+OxNIqoFwiOHD2WRxVGxPqsuVFsJSe+zayv1b8jAUnvL9ULcA4AmqfhEm4zlCzELJjEdhoirYo0SZuH8PE3JFSEADk8BfZpdLOVHx6QRCFY9Hhtc8myHO5f0oz5qVkCeL56c+2fPNOuTtCB6VxM75fmnXzHEMHJsOxcVWX9kXMrEkg/KouY9Odvu9h8yaIC5f7H+sdC5LpjXyDqR2AB9lAr/fQCWCCDcT6EaqmyxDMUA5RZ3NvMAxXA47zlyhXM9KAysLxJLnOeLc8XNj1ua9pHf+ecf23H9+LQ+zMmNjUCNKXJjx8nt3UxG4LmnHw8/+/VL1z1bn4iuu2FmA1yXWGIeG6xrPyY6tGvyiRsqMcmESX7MiGEWX4ut6PhYuM2ao5xXXNelQFZeun4VhJhY0lZlDF4OJtntZeXGQqEFJmbuB5NsEgyoDZRMumklgGNwf7H2SDObNWOqVWPCPUvM1wUAxkruJMurVDmufA8KAmBVIBLdki2Hw7ENO23zGbK85i5eZdaW788rxyAXmpKLl1rmWUu8+YuXGUhj4QN6aeXB89CpTkXOMQCEjMoAOM+Mx8w9jWui3Oar1m9T7nMy/ueV7oNATILNHyt0WLX8cS20+bvnzjuM2IhSQHpOhWKnnBuCpQ7A4qIH3FCwSHXCTQ+BywUXOoQnxMlhHIOa0QA8VnfcGWyNUvWobOW/s0TpvaQSlvvDhz/wTFjz+kalHSX8DohVsaeI+LYT4XA/I3gZaOHIc0DsGKUE1z7KL+sAbcIEfB9pSQhgj6SJlLYw969RI5AD4EYNV/Pf+D1PPGxdTq53JbjaGiNYNlRAwhXG5EVsy0lXfpxeIqJ4LVtf1phXJrDVmmBwu+GerkuY7JujxAqP94ONryO2cFlu8d1og3h92gIulDXlbmgm1U1yu3rzgLjlH+5mCG1YaGkrtkR9g5EikY0qRFIC8LGMAV8TTdAuKAdn1eSAP54DByDWJ7HQdr5pOH/mpMWtY5BhJUSyMQO6hzmvvWbbFhcNzioExF+x6u6cNil7HN60l2sbUhT55LiDXdoorxiJlZQseCtGjJw6fc6umWcMMHJyGm54F+KsWILEX9cLIIcM7G+rcP0TOwXgATiAjFKPlYrxUn2LFCU8OoDwUVmr05Tjzv0C1CB0AYCIAxthACx1hFdi+7GklU+sWb5nisD9Rz/9jbGuyRYYoT69r8xdZP2K18pSdq8CxwJUIcjRgALBwwSXAMUKLgDesp7du4ZX5y0x7si3/+mH4Wt//Se2LWOAUBUtJzc2AjkAvrHxa3Z7Y6n27dPzuuft5QOvu2FmA2LGuMI8XsaEnwbgjqpfnPntNvSwV23XXfEqtH63ZNIbYHk1R+lU2CqMG9pHE3+esZH7dm5rblIUoSMi8UCEiiUNkHGuqbsifXvALfY6uJXGemc18x52cNnOXbyV9arKS5rEnQVcXl5uy2t1mqrBXE3mQcUjVPxCLmkIcm6FsVOalW0H0r885V4tXros9B0wTN9V48JmfXJ9semevAcEaYAACAH0lDIFMFEA8cAQl0ViRaxYzGjctlj0lzSOBfquQpG2RgwptSIVk8cODZdV4rKqV7FAhdSiA9k6yliEY9TmEGIY1zFYoEsRi21SAAF7nnMUpgWy4h1IB5X2CQvk5cH6Z9kcsZxhO1Pog+MRQya3mHOKBeUS8OUaXcg3RqGFmEXTBIRjxML23Kuvfeu7llEAuHPf3IMBi5rY8boMqLMvygHjhoWLYuBdmjinPLnsifHu3F1oDG7Ifx967slsje7fefYJy+snVp2TGxuBHADf2Pg1y70fe8d94fs//mW9584P08vv1btRagVknlhw1ZGSElu8NwqOuPkG6EcfHzP+Tt6jYDRH2SrmrdfnnTh+bFi3ebddRt+eXcKZqsthx56DRtSBkAOAtmhxxSoWgYG4MGE/F2h8zmmyhgVLMwsmYSbXyDi1Y9ayBKP7FrsrIVRNGDPKCmdg5e4QmSeRK6ooVWoAR91t4qsU22DcvcYxrs9Y4nh1rDj0KS4Kr++5FPqXdA9Welo7Fes4fbp3Cu1UCWvDqvlh2rhhYelapWfpPDlO9+Iu1thgkJjUXCsWNkJow8sq2oLoHz2JvZgGx7h46aKAZ7iNTY+evdS++oIY20nRCyxUXMFYd4ArIMY+hEJI4cMlXK39qSxFKh+saCxQQNEVDRRE9qPGOXFgFCLGc6iqXe0up8F94l1ydzfr8DzgleB1uaxlLGoIVKSGodQC/PQ77igiFtYu3AgPz2A5c687KZ4M+AK25UrRI6aL8Fsm5S9WinbpPKbq9wnQAro0fED4bT2gc6YCWDfdCxSZIoV1VipuDkuaXscoFV/7/J9cFTawA+T+NWoEcgDcqOF6a2x8/6zpli/pPUbTVwUrsrEA7Nq2HwtLhIlmstxiWG/kRXbUZEJMzav0+LYNecUNt2vPPpFP1te7ObmUMRmo3g1vwxWxCzYGSE/TYVI/oJggMVG8AIcOJcDjlzJy2BAr7sBn4rueVw14pJWj2DqstTICY47TWq5b2MMxaMIO9qpmcTlQwgL1Sbw/8dmqozss/WXNqiUGbosXLQnTZ86w3fv17CyreEXoWdzJLL8Vq1brGRprJC1inw6ygB/sXhcv5Uk+LOkxlKDkmSEWjHLiAkAxJowBOeSrVq81q50Wl6Tp8PwAwBcUk/fULRRJwBegpYQrjRcAXI+BejwWtzVs4vViHCNsT5lI9icejYu33bAC+z1gBXMMlCm8F4AmdZdRnHCDA4yTBHSUoEQcTAHz1q1am5JF+AClFssf8hSELORQxREDcvKh3QvFcWFer12/xRQ58ofXKy+Z54pr47qTGPUo5WxvsP1QAvjdPnTvnUbUonvSCCk6jCsWfU5ufASSAMiNHyd3hGY0AkxAzz71SL1n7BNLvRvUsYIk/bTww4ZxCuMTDZpatIAv1YGYTBvzPUxUuJ2ZMOoTyDDNVTz+x/nH7uQqWVIugC/ilpYv5zXeh/vrksQa/VPyOn7MyDBDPYeny/KBETtV9ZlhC+PGrCUZQI6/LyZ41QLyyB1N4/lrCcqaK0pYy1R92rm9LMyeNtbAl325BvKhsRIXL1kmF+lms87atSswy5Rzys+vOV/i11htuKWJw+JOJza7TBadk5z8nLhOrHrY4Iw7RSpItUFQ4hCUhmzsNaPB4OolP9ddwD4WeGawll+bv9S8DViaFMmg2hXKAErDjKmTbF/ITVi8xLA5L/YF6CiiQRGOuAAHaUUoFLGrmgIaWKQtNT4QsgB2cnapE14qwhdC5yWOy/feP2uGgXvyO9yipidTBcC9LH/a7ytxZpjsE8aONLc095U4O0oAhLHfvDwvfOWvPm354YxzOgZtX5r716QRyFnATRq25r8TfYL/9u/+uc4LwZXZWDl+InGr1bUfQBuTupxgwiSHlcB6XH+4wdyaSB8ndp+l1/nnOLbpy5rLa2wBx00XvMIU1swFuUqRGGD9+gBaF6+/7J+xYqiJjDXNBLpm864s43aiKmR5gQfcq7GkXdesi+9PrfdRRyOUMRiz1lZPIA7Y4q6mwQCELAp9rN9UZtYfxL0Dqsu8T+QA3M8uXCPucxfSc5COyp0lnk0K0kZVUcMlz9gRJ3X+AdvVPjeW1AgMZSpmeXtCXwMQMo5YzbiPrYSkLFr3QuDy9epwELEgaAGOkJsWK8UJYPKykQA7x8JCBXQBbgpvOOhNmTDWXOEwyokl43HCxbxNHodBYqnT/IAuRqQIAaYwvCnjyrlg4fYX0cuFz4A18VyEc6IcJpY8KUMALnnk5Rpj7j/pWIwbzSnIRU6Y3rQeXWtAjCKApYu1z3HITX5VpSf/4lMfM1IYVjXHedcj9/sp5F6bOAI5AG7iwDX33dBwTfOWlpsWXHZowVmGa3qDOj5XHKnJFU2vxjKNAdjXM0nGkyAWBl1hYPjiDnSmLsDg6RO+b12vFPForgKAuMSEK39vk3vijbSuQb6tv15Wv2AXn+T987lzF8L6LUmMj2XtOiSpMryPSViM8QRZx+Sstmop1zUbpKS+Jh4oU4Ai1uHO3fvMW0E/WYT7ChBQ7hBiEgIYwWKmCMWevQcNqDaX7bJ1/MO6TIc1WF6hwhAIygFKGZ17SPdx4LOV+he3ACSdiZxarGfKeJ5SUQxc6YOUN3xWQNlTceWke9cui5XieoYHAajxPF7QNgjfQRnVCpHiAOdtImJxPliggO2A/v0t3kt81ps7oETQxrBY7mVaQaIMoVTt2F2ujIGBpky5JwECG9KlU6fQaXyREcX4zLNB3JWezO6S9oYnnCeeJsYfdjJKDgDbXteKdOjYLrwyZ7FaFqp2tNa7oobSgqJGNgHhA29YAfiOFQMawAWk71a6FVZwmc4dzwk1oIkv9+rRLQfANsI39q/lje2e27s5jwBWcF0CoYMJkALygDRFEq4lxNLqmix9H7TshgiTNK44iCBOSCGFg8o/DRGsrOYoKDqktPRWqg9jXV1dY826BRzfA9yPacFCYjJmMs+m2GQ2qoHmZIFPwvYphbKkpnAvmfQdxFCUIPEQNiBWijDh84dFi0uX2CQWFK0JAYTYAo0VOasNbUdQ3qvcxPTXpQpUT1177AVwJYLjx+JpQe4FgKGLezdmxcOIjscLN/7y1evsmVq+ZqP1ya2UNUnP4yED+9n5A6aIVxyD5IVwXIALT80IAesWbUflKcAL4MJ1jxULQMIQB5xwg5+orLRQC65d2nIuktXOeVCHG2WA5/u0OkMB1lSpukshgV3yDKBs4vrFTe1FSjgPGNBc86HDx4yQBQDj9oZjgUVKN6UhUigojsF4uyt956697G73Bbc4z4eTIWF2I/H94fOZTDgJZYFa7dxfFI8f/fS3idtez8bchcuzXhT2yUnTRiBnATdt3N4Sez35zgfCp//yKzbZxhd0Si3PsGSchMLEPlETDZNfbLH6Pkwymo3rJVehSTdFqCaEq7Au67mu4zVXBjTAwyTsUtKzq9x/rYwB261Xn3BRE3crsZ7Pna4M586eEds5T6UYT5hr02PiJy+0CFWt2oc2sjY7diE/s+Z4Zi76wfVaqxJWys51wI82t7fOIsbaE0wZwALkWHgyDGWdVad3yX4GqF3i9w6SG7eWWWxy2sTRBuoQtSpPJsUkIDa5KxovgMdfPWbeVU0cLlRdCAOU+kNVKYAL1yuEIoTz9ecPt2lWMloJisYVARZCCtBmtc0E6C4pFxrBIgTsUEogHpGShMsezwRWI6k4WPWUtASoCIPwulyMYeSMrO1pUl5Y9qpixPxWPCbNcVnPOeBOP6qOT7h7iWUn7urWRuDi+YdURxwXsOwrlzIgznngyua88ALQKKKoZaLsOvkKwEcYr5OKdQPuFAfprtj7yjUbLP6vauFG+KK6FnWv6cyEDB00wOLM5KgTJ8frsHDpSvNaoPDxTNx79x22be5f00YgB8BNG7e3xF64Bh9/+N7wo5/9ttb10Nc0FuJT/qOk4hGMTSYMB0YKDyz89x9YUYGf/eZlFW9/zawgP0YrWUdNlcYwppurCzq23hin0/JA7NqTFDsYmN8rHD0lhDPBYikMXfLbCBiW2hImdmr/5muZy/5Dx8LDDz8s96pASLPmlUsR8GgjinFkpQYbbRFWmUtsxWaX+ZurXqNjap1bz2wWgy7vAQDc0XGsGhBykGcf4pkWX5U12UJ/JytPm8WIskKK2xqBHyxszhGCHwJpygEahj+AjXXq3YF8HdsezHTmIra+U+5ghOea+DKWJcclzmvW7dhR5pXBM3RG4M7vxlnJKAjEhmkEQeWqu2XRxuPGehrec24AK8rL3EXL7PqI6XaWuxmmuQzTrBAvhqgYh11gPHtu/qnTp5SitMe2R7ehmxJpSmcVaugg1zNhBHKKyR1u1aqFuckBYFdkGHveE6tfJo8TjTtovQiQ78mEDbh2zhvGfS/lTUNog5WdKFxVFjvGe5ED4Oxta9KbHAA3adjeOjvhho4BGJcf3VvqEyY//rASYE0ygUEiofoS/UH5+//EmGTy+LnA+Ncvzc269eo7Zn3LmQidIFTfNvFys8TjBc3kPeATi1u1LLvoCbLRBq0j0DRQEDB0Li7JbnFY7s3zF5UvvS5x3U8fN8QsMLZFIoM0Zf/yfTXubz8gKT1e/9fZy6yL03uwjmLhXuBONfDVOqpTMeFjnRI/nSLm9UGBpIsTnfwzre6wtjhnPBvOB8BC4/mjfSEErvK9+3wXWak1ikYcQ3aGeGzdA/6cW0cRAEfJqkUpofHAaMU/r2hUaOJwp9zC2+RyJiTCtTA2ABEEMypYUSTDc3FxwZNahLv6rM6ZYwPEWI+4hQE4FAm33MmZJr7q4wpYwl5GUD68faBfXKEULYQ2nEWy9NXuIowTKLvyQeog+c6n5b2CzMi5Qa7CI0DOM7/rS1LEAFTi1rEXxN3VKNpUN/N7xvlTuYxwAGmFnurFeVBC87B6IGORewyb5Tlp3AhEelfjdsxt/dYYASYTXG8uuKYaIrgf6fEKQNLqLRbAmMnli5/9ZHh9wS/DX/3px8Mn/uOHrExlvN213jNhMLlcK7ac3p/JpTlKHPvk/J14xfsqjXNavI5xvJz4Y9d60rCqle5ytvpy6Na9e8hTX2Fa982aMVmpN8XKLT4eBgweapWkOF4MpBT0IM4JYe96Elt9bAsIoYRhUdLVp6AgCUPACMZ6JNbPpO7tIx2Y2BfLtVJ8gIJMmlFMsNqQKUJBqcSF5AsLqF0YNxjD1ImOn2meVdKdcEcTK8XSw3MwZfxI2/X1jWXqyCUXcvsOZtlt27FHzPyOYmvXgLvUlqwyiBKBt8Xj4RyEAhmkFmFNAnDEZlFSB6uwxvixIwRqwdy9fq4oFZCbAH4UEgAc4fyJu+KKBpRd6KbEeR+TclWQn2d5vseU/9uvT0bxkpKDtU6GAZY+ueCucFCshBj4qnWbwuDMvRwopdl/L65I4dFCybhr+hRjgfPdxxXLhgmNcB9ozjB1yqSwafve8JtXFoWNSrXKSdNHIGcBN33s3hJ7ou2+96lHw1f+9z/a9RDD8lqvDb3AEjEv6xOOP2ncaPv7zP/4Q5t0f/vy3PAbWcaWC5mJv6X3Z+JvjPXL/mlFIH3M2/VzDD6co0+c9j5jAbdV2cZR/boEyM5tWlzKNlDwa6o4czEMHTpIebSrbFEMpA6OR9X5BwGoUGwqjiQWF8tmyL1IARBcloAIFuIOASRAQPcjl5g17ct45TsAPaxQjhN/P+vJX+U7SdnxNnssp9NPd8X5ASTcrgARih29hHHrIu465T3HwOp0VzkxTWfJ4xreLdf9PpGkUDIgEQG6PNPkzJ6Uy7fqShuBb37o3LFdaNumk75rq1KAkrzlA4eO2HdRQGbaxFGZ2PBuvrYWTwKQRCmB5U0BDOLNWOowppeKiIa7mPG4V96gl+YstKpaVLhCIYEgBoDT33euAJjiGXeo9SCWNTJlwmg1uFhp71ESIGnBweA62Y7vMaAXgO5XK0dc21wnbGa8Dh6y4RnynsKQwlw2bSmzMeEYpGP11PjgJkcYW0JMscKDkpScQ6GVAN22mwYVHc3yxbW/fPUGXctgP3zutZEjkAPgRg7YW3Fzmm07ADtDsjHXGXfCud5+uKv/0++93/6whkhrePHVBWLDLjaSF+QSWLRe8eh6x4vXUzqvOUrciIHz91glyouwzKR9QZ6xdvkwpH+NZZSsFbFKQL11z5EwevTo0K1zO0vj8nUp77AtTqcTQcAhvulC6gzgiwCm5KjqdGStqUm7gAGAgf1OHPZSxorbvHWnbQ+5im1jweXK/Xbila+jkARMe6xBwBIrzsWtQoDBxcE4qdmcEIza5rW1BgdUiHKhuAexdVy/XjCDFJ5Wqtt8Rs0G+qjSFiQ/LFsEcFuimKfLIbliAVcXT/vhnqxdv8lA9qDO1SvG4fGBXIX7l2cXBRISI+5ZiFCdZeViXY6ZwDi2MPD1/HiuE+sTNnh8/VjQhIPcze3s9cFibm8t22WnBsFsnFzMpB51yLCaWcF3uMSseFK36FHM9/DccQ1e0xkvyqp1G4yNjYLB/agQ65re0Os3JbyQ0WPG2DXhJidXeqk8YL/7vnf5V+VeGzkCNU9sI3fMbf7WGQEvKo+70NM/GnN1vaJWdI3ZD9fbux97yP6IJa3RxPbCK/OtolDaLduQ4zZXFnRscXCdHlMjvg7QMZmSy+oCoPQbRNWiAmNEY8Hsq6xWfut5+2uT1yvsPVADZDJXfNfsazxBszCdisL3urCtW1NO2GEdEz/VnhC6YLmgQMREL2pMe3yWRiDkGHN82uN5DWL2jeOSfHYA5j3nwD62n0DN04VYd7Ciws6DmK1LLS+CzseFGPbg0t5hzZok/536zCW9sfrOC4hKZPXvCzOmjFO5yeWmbEA8ogcv58/9INaKhQ4JcdSwwUYGw6oFKFFIEL57nUo+oizw2zJXu/KAZ0xtb96B6uqEVMe5oNBgvd45fVLYvqPc8m2xavFCMdYLMtYwVjyxbNKdAE0AEKWGc/NqWJRqdWG5S9wFiWXpe+9Y3aF9obGgYWaT7UB8GqJY1cXkfLG0iwXSS5XK1UeNK/r07CEAXm+KDuty0vgRyAFw48fsLbkHZCwAuC4SzvUuGE35RgXQmSi2KX9//Ik/sB8/kw+VgH7+m1fkLj16za9gUgHQm6NclhU2c8Z0eQBOheOqCNZaFh0CkLWXSxgr+FyU5nNRgFohwg5/Lj371gAgEy6WkSsxMSPZt09Sb66InNPaYq7nK2vYz2wT7xODcfzej8VrDVwnS/Natwl9S3qaexYiD2QghOpKdN7xdJdRcl9i6SFu4WEZUryF54p1WKqAn3sGKFhBeAKrnGIZrgRslhu3v2Kfu5WL65Yyx40VHNyu7TLlJll3XsSwPfsPmgVMWtFMMZXXvJ6cK9viqnXB1c31o1DQ15c6z1wjFjpW7q7yfXKji8SlNCpP18P1TG4wTRuwlml0sFmNN4h9A9y4yqkMhrXthCzyc0fLHe/WML8Nvo80QHKtEZ53ylxSOQuhqhWNSlAUGLO4nrhtEP0D8F04B8DzofvuNgY07ndIbgi/p0MVR61VYb7izpC61m3eYUr6JFUIOygX+FPvvM96Qj94z51+yNxrI0agZSO2zW36Fh6Bxx++LxufasxlQpZiwnyjhXjeIw/MCl/6y/8RNi39bXjtF/83fPZTf2S5jsTg0gIj1i3H9Lrb/fPpcyr8v2Vf2LrvZDh8tmW4oDhlp649wsBBg0Npl7wwuk+HMKx3pFyk0U4XGFuLAHbVpRahVRs1wOjYSTnENe5IHwsOAVDghiQGGlusbBMDbTyutd7Lgs1KZDGzrErt/fbsOyjQOGvPFUVdICYpndnEY8mAp3+XgwYxR6xGYqa4bofpM2kxuEXxcni/Y4pd0OjAhaYE3qMWxi7PJQDIH4z6u+R67VaULyaycqmloFBEgziuMXk1RigAVJsiRovgqo6FsQKQydHFPc/1AJ58J+CJy7tIzy2AS8oRrt2X5yyy73FXNTFcxgWwpAoYBCdivRwXqxZB2SCvGMWD41BhbJ4KXzggsw2scYqJUMAFQtiCJausIAfHwx0dezRiFzT7Mt6cO25zrHXOsVJjieuc/bymupOzUJgOyKMCM/uISGAD+vYKL81bGj76oWcsBPH33/sxh81JE0YgZwE3YdDeirswCTzx6AP2Y2zM9UHiuNnCpA+xhb+P/8EHzaKBlGIMW6WqwKhtrlWwGLurYsBVF5ULfN4K7O8/nqQo9e5ew/CuK0zQ8tyx0LXNJZvMO+bVuJzpnUsf5hmTxpiVimULHJ+WmzGWdEzYQZFtIPEAGJq5DQAdsFCSXNI6gQMslihWmRd1IXUNcWKQAwUWXfzej0vxCeKpXiqR5bCBTwnwAEr2IX7btm2+kcsKBWowgInh9lNNZVjBxG8hunnMlecJ9r9beoDz0lVrzap0tjbfA2hCDOMYpOrESg5pUVjWxLQpnQoQEhMl1QgwxuIn1kpzBVy6Lq4LkafrsdeeKutI7eetqpjFuXCtXBu/SSx8jz/D7gbwqcpFNyOKbcCEhpk8b9EKcxfzLJF2pJtl5C0sctKrKJyBYkNHJuLtCjibexuwR/wZJJcZz8J5lezk2vAolJT0MC/Jtu3lZrmz7MPveyI8NHu67fuR//zHlrGAlZ6Txo1ApMI2bsfGbA0h4qMf/Wi4++67w2c/+9nG7Jrd9utf/3q49957w3PPPacHLSn8v2PHjvDud787zJ49O/zkJz/Jbpt707QR+J33PK4fdU1uZkOOAnHkVguaOZPbpz7+kfCLf/l22L1uTvjsp/8o/NWXv2Gs03QO5a0+v8Z+n09+vt8FARbitYF570Qi3scFLPiMcM1MyvQUrqw8mSzM/D+m+OR8FX9YoL9Fi5fL7XpW9Z5rl/dMW8AOoH4gLNKdcrGeqFRNZ72nEASpRhCoKFPZt4T81I6a9Attsvb9eI2tZp/w4/Xk2dJfl5QirNU41xgmNK7PabICWYeVCLgC6LhSyaGGeUxNZ0pLHhXJCNAC+D232FnmvAKopCRRShFAxjJHkcONTFEJiGLEs9kGSxArFAWgWha9W+icO+e6V65rlAHOH3c55+2xcr7f6zZjWWJtIx7iId0PFjGWKOQxGORHBaYoBYAvii2x4D5ycbtQ0hLwxUXNeSKEGTw/lzANilLSljAJQ7QV6Ywa2GNHDDNFlXN2pQjlhRg1ggLkwjWMHT3M7uMu5VkzPtT3ZjwH9usl4J0RPvjsY7Y554rL+1+f/5XvnnttxAjcEgD+6le/GkaMGBFeeeWVsGXLlvDSSy9lTxG3T6xtswJ3yJe//OXsNosXLw4LFy4ML774YpgxY0b4whe+YOs+9rGPhT/7sz8Lzz//fPjc5z4XTqg8X06aPgI06GaSa4zE+ZaN2e+N3BYSEpPJV7/53fCe3/14GDD+nnDnw+8N//3Pv2BFRgCM21nSAOwEopgxHFtfdVnAMThghcXilqUvS4Mry9Pb4FYFrJjwsSizErmaIU1RcnHZytct/adS7uZTcqcr5VjNDloLlLobMGEhXk8uym8OoAJ4e2WxupBag0sVkGUd9zrOk/btPDf6dXVZ6qW60kjcypFQCUBKURHSjRBKfKJUIKxfI6sUYhOAP0g1r8lDJ8WI2DPAiXsawQ2OpUzs1CtinRfg4i6u3bUruQ/Mb+QGU9nLuyn1kmIBsHl5SUAMMO6tMUP6CpBZx3UD1JwfvzViyywjHo3ggo+9AxTgwIqmhCYWPC0SScFyDwX51QhlKRGUJgR3eCy4nePYOTnR75eCfvzYsfDeJx+y39Wjz37E+Bl5utf/+P/+zb4zPkbu/fVH4Pq/jOsf47pbzJ8/P7znPe+RRtUmPPPMM+G1116zfbBqn3322fD444/XsmDPiRgxb9687HEXLFgQnnzySYv9YAH7/gcOHAgTJkwIXbt2DXfeeWdYtmxZdp+ysrKwYsUK+zurou85adgIkJJUn+BiWjXnZ+Gfv/UlEUAG22b+Wt8+t2q5V0ri+5jwaODApPDRT/x5mDj7iTBo4v3h2Q//l/Dl//Udiy2S9nG7CNN0X7FKKbAQs50pSOECADPpzhRDl3zniaOHhIF9eyjm2M42uXipJlUnDXgxoYqNY2vHj59WgolT4nplwqdbkUstV3UExrg8YwH8iFkCdnEDBrYBbIhL4haF3Uv8PlYqLsnScsEam6DQgwvX5pZtsiwBOY9zotD37kkJxlYhX2Q2SEYAI25exhMGMx2DSLeDuUyOLYLS4orPCjGk/Xki/uppdihKgDiAeExVoKjxTFlHOAlrVOSCHsSxEGOnbSAu3T2KC8NW7tFdc5W8N4ArY4n7vIsAnXFgGcfAhRyDKkSvMaOGWnlJPz4eD66NSl6cx2TlD3fu1MFAE2CHnIV1zDggfn8p5IEQL2cdigtVyQgncB0TVcYSsVrUrWvDA16B//d3Xw4f/+PPhz/93FdNWfnhT39trnD2eeHV+bzkpBEjUPMLb8ROjd107969esiSGFbnzp3DEbWuO67C47/97W/DCy+8YNr3gw8+GJ566qkwa9YsETdOB9zLd9xxhwE3+49R/hnSSbVTjx49avvDIHTx4/pnrOQ5c+bYR0D7ZKa4u69vyisPMZaCP9RNOcbN2IdzYlJyFumNfMc7H7g7fO4r37zKIuKYPZSC0VVJ+FRRgnGKVvzEI/fWO7ZuVcUuyBs5t2vtu1/dYq4lFCh48bUF9jdWlt06gQvuN1qv3TfrDuv2wsRaFzhd67hvxLp9+/aFHWVb7VCTJk8OVQUCCP0y8/XX7+wJgzasrVU7jmW/bkCeCvi/njBiWdi6U00s/rJKDg7o3NIUXupwV6tZQSwAw9QxKr+ohUruIbQbLlWft0kaVzTPORN0XXIFhldGvMQjH+P3fL4sIHSJAZNnlMl+gUo5kuJD/jFSJXBzoRziPXdNM4DENezgwXo8pZ7SxOeLGXe9fx+WY/mevRaT3a74K67fRcvWqInCYPuN4H5lmz6Kp8KkpvAFLmvc06PGDbbz4TvJRUdQ5ABFLE2+Y7lAklQk4qqAOjJcqUzUpiYmO2nC2HBaITKeeeYJSlMOUHoTQpoSsWHvDkbcGOueAh6ejrVFzSAAQm8GwX7EuzmP3nJLozxwXJ4HiFov6ZnG6oWBjbiVbh/0jwpdWOW+vI08CIwh1jEsaohuCOeAmx0lZdgg3suFLh4CHoesYiLexWf+599aaU0sbDw0vbp3y96fb/2ffwmPPTTbjtfQf9xbP7eG7nMrtnsj565rXd8tAWBqlwKqAOYZFXvvrpJ4c+fODTt37gzvete7bDyxjg8ePGigyevv//7vh1/84hc2IX7mM5+x/dkQa7a4uFjacwd77zfDj+ufv/Od7/jb8KMf/UiaYsQiza5p3BtuChNInGPXuCPcnK2Z4LjJ7dol2vyNfAvjdN/d0y2Wmj5OZ7nmfByffOeDcs9dCP36JjGk9LZ89onXWat1bfNGLaPHa0NkjGKIuDIRi2vKPf3z375in7GGErfrUHsdPmSQGpMPMjKMbXCT/gnzstKqTV44eDKxANu2aRkqNm+xdX2VqxpC5+x2+YW17/WEUYMsj5aJv50m5yVLlmS3JT92jNJ9AEksZdZThSmWK5drrE6Wxw3f4+2ELNmP5PO6pN3acQOONq3zspbmVrmZmdSRWJElJ9gFpjDW5vqN22wRVbRcWok0RCoT7QKJg5JyhLi3oH9p/7Bhw3pzI29TXm17uZyJ6eKanjl1fBYY3eVKecaZ0yYZiPg1eLcgqm05ezmpBz3RvgvwQVHbrKIbHLuT1WYOoaCwvWLTmw3sDx06JMJTBztusTx0O9QWkFQhALe3SkzS7SlPbmWkSHOZC1YrgEqtZb4DSxsPAdfM/LliTaKw4GZ2pSdu5uHL/Hi403srX5d4N+eKC7ytFCBiwX5tbEsaFWEMiqpwj6g5vX7zNlM8mPM4L/gFuKWdqIYHo1BWOIJSgpJwQpY5imxDBQCG0+PzSkP3u9nbcc2c2xsxd3Hv6pNbAsC4iZcuXRoeffTRQDx33LhxYfr06WLXlYSf//znZm19/vOfN1cyDx0X3a1bN3sAOXH2X7RoUXj66adt/7Fjx9o2BXIjYQ1jXa9cuTJ84hOfqO86c8sbMQIfUKyHEnpp2Srt3IXuK3/xqT/0j2/6q1ss1zuRcrFImeDrEiYkLAL+AAd+hAiWMiBAzuqo4UPlhhxmpKM3ylp2khDf1Ur5sy5toliukZcijPQWer7t6+vVPzZDzHHCj6+jVR3WiufRutva19f9mrh2WQeosz/uX7UwsHgkEz2WISQs3Le4dDt2bG+/S7P+IqDGBR1P9jQnQGLL1hZE/+JCG4AFFh9Ac0FAEMf0PWaquTJMGD8mLN+wMwzvJx6DTn/8mOG6l6vsqNPluqc7FOMIA3u+yGhY4jwLuGwRXKxcz0W1IgRwx40eIVfwJlvHP3fzc97dNOdQthNQ6iMC2gyB+OIVSXEPLE6sYeLIyEo1diCW7S0ne8oNza0lNxjgwhIHIIcOLjVCFqxn0rNgjG8u22EuahpZwKiGhAYjO1ZeaFXowvX0pha2/nDr85m49lHFnGE4Q+6i+AdkL3ezQyDzFCdvDILLHGUVhQEyGkDu5Ea3iGFlw9SGab1T58a8TeiiMQDs5/12fb0lAPzJT34yfPzjHw/f+MY3VMau0AhTTF4PPPBAeOKJJ2yimz17dtayxML97ne/m70nxIghbvGKdYxljHzpS18K73//++U+Oh8eeeQRA/TsTrk3TR6Bdygpnx+c15X1A6Undl9+O7z6ZHKtc2GyaGjsF/CF+ILL0i3lX73wmk3STK5WUWlgqawK5afKsiClBKAu7ae+tIrnNUbOZcg97NNKjFiX1q1rQNBiwxEAX870q/VtY7dsOgbMNukqU76fvYJeKSkp6W4xRQffpSJaIUzQjAmCR4h0MASLiUnbBVYzLk4kZnPzGaAm/urHYVlMIuNzLNwzXMCAIucTC2QvSlF26l4SquUWRgradwqnjx8yVy7Aj6t3kUD2wXvvNFDjGLiZp6osJB2Z9qugBOCOZ4vrmaq0HgTw9cpf3GNY3wjWNuS041J4Dh0+Ju/cGYHsRnMt8329RQLbo7AZecoIBK6RYjTPk9sdZjOkKAAZsM8XmYtjQZailOXiVYlLGIXHnyOPoXPexP9fVflWCnnQTIHCGRDmAFHG8IQsa5ov8Id4ahD1vAFg2PQtpEixPYxplDNA2QHYr5H52Uu7YjUDvigLs5Q7TIMGPEUoXd/4zvfDY2ppyrNPvB5FIicNH4GaX3vD92n0ln369DGmMuQqrFaXP/mTP2mQmxJt75vf/KZ+JLX3J17MHwAcx4P9+LnXpo0ALsL3PPGO8O3v/qDWAW7nZgdHFeO9nqDJ12f9pvfFOvLKRPE6t+Rgx5LukaR81GwxZPAgY7xS/Yl8SXrM8leqz0xSJSJbpQuJnJMr36WlrAgnNLWJwAbXayxpCzgG2Losc7fmOcZV6zXZWqA5+oK9+w5ZbJRFbrHynsnbJbZgY4uV9VjbXs8bwI3FU5Fi0I2Pxba1yF76jIKF0uPuaz8eBCmxMsL8dbtD/64JJ+TAYXUJKu4c9gkEkeJuXS1Hl7rQsJZRDhAuhVQhFAWa0zvT3EEehY00IOK9HRWegCTF95UKuOaq8MX0yWNtLJmfCLdQhIPn40imaluZXODd9d2kBzHmELg4f1K2IEmR04snaRtueQEuTSQoNgIYwk0gF5dj40bnXHCbA74IrQvvmzXdrgcFEeUBD1VsGbMdDGXE2xkCwF78A/A1NjX3XzJSHp4u4thwvDvkMXhVlb5oL0pZTOLXuNxRhrCoAd/MbuH1DVvD89/7X+Edz/xedj63A+b+XXcEav+qr7v5jW0Qg68fqTE+9rr25zg58PXRfONen3v68asA+HYu9Uhc7nri5Jfrbcd6Jrw0ANcHyvHxiF1SWQr2sJcjZH2P4m6hQvE8rKcBivH108TOHwzX1mKbjhAJhu9LWNCJqds6ckGnc3+dJOLffU2A9Y0yrzV2dbIAcEjbwGkA9EN4AQ0+x/ukmda+Pa98H+DB5A/QUoUKsIu/wwEYAOFa47xn+uximcIOTgNwq8JO4WTGU1AsF/I2FbQgF3lNWUWYJCuNb+8kBWCS3NOt5ZItC7sVD95q7GPSp1AUeoqTgngzBwdgrF8qUKE4Ab4Iy5ao/jGyePlauy77oH/di7tk3PxXjFkMKBJvh2hGGpJ3PGJ7XMl4Kqh/jhR36yxLtqdSutaFu2dOse8FHMl/pvE9HgCeHa8NzT6kEgHiCN4ahOcAdjT5uYhfi8ebic27N4H1hFsoSoJFTtlJwBcXtZf33COCWpnGNGldeEXtB7er/OSD4Se/epHdTXaVY+2fsjQrwJqCOTlp2AjcUgBu2CnltrodRgAXE7Ed7wXKOXmM8XY4v/Q5pN3l6fV8duJNXevSy5zUEy+nktD1WiTGhJh4Xy/rh+uTikf8uZBG4hPevgO/tvPE/Vh1pmO4e8LAUHn8WMhveTaM6irCi1zUl0PrkHcpX27vPtY3l8nPCzxwTLdM/PhMwjFgX2UB+4bxax1uaVY7UF79PinqYGCuff16k+3kulbs1mW1XLCk4kCGI5YK+5a0G9J1cGMCIh6vZh+OyfXBIMZSxIOAKxy36vkWWL2Jq/fE6cQ13kZEtmptf14NFrbvKrftIFvhQkWI0cIZ8O9wsHcL2MevfYbUGFv3sJSx3AEpYsYlcjcD7HhXVMxSSlWxZQhQqIRzJa6LCxfXswv3A7A+cSJJheM4GCJOartYnXAPSJmaJJY2gvsd4IzFiW6QoWBEI7i1vZgHn/3cSTfCioXgBcnKBWDl2eAcIFEhd+h7XlMNdqRM94iSlRR5QYl4RFkSuMTTz9SqdevNmr5d0hLt5JvBvxwAN4Ob9GadImSsT332y9mvj5ufZxfeBm8ghbjGf63TcdfntbbxdenKUMS2rge+7Itrui5Jx0HjbWJwZDlgdUBxSf46FrRS/LI2Y5ltaB0XpwpRxIFJsr2qHjEWEHi43o4d2yl0k4AfgEDctZ0Y1FOV+4kFS84taUkoBpwHAAsAwgh3Vzmkn84wfWXKohi0zc+T9ZY0vwCkeE91Jic8cX7ku7pg1cLaBYjcCoRV63FH3y4eBwcO1sW6AKA5bcqksHrDtnCm6ko4cSoi1AnYxo9RtyDFOk2qk+v2wh1kCuA6pVBHD6XPAKYmGZeAAzDLIH1hSRpDWhfeUdffWaBLj+TCfHk5FGs9rlStzVvKwv1yBVPtD1cs4ztZqU+wlQFl94LgusUy3LRlu6VGvTxnsRXeYGy6C/zIucYCRnhWGH+IboC0K0zx/aYhBG5xqndRIatkGFZ8CyNN8T3Uh8YTwL0rEeua5xmyFopO7C0q7ddXJLTVRjDku2lAcUaV0jgv96rwXFF1Dtc5YzhfrmueLwqVuCxWqtcffPh9Bu6NLebjx3g7vuYA+O141xt4zc+86x3hz//669k8wDgdpIGHuCWbNST+y4nEqS7XOzGftH27hhC4mCjTVa18f/Iv65O4YlN6myjkWmtVDBasgGHLhJ0Fn8zWFFmgVjYCCJIT65KwXyv8o73G7klfQb7uxq1lsujyNMHuNFejgy2u1LWKhWNBxYJVOUMFMAD5wsJ85asuTOKNmY0cVOJ9YgBmOV4YgJo4JmBInBtXK94JV5D69egUDh87aYfR6rBh1/4wbexgI0e1ETmrv9LkWisNCuFYKBrUXSauitKChcwxic+iXOCNINUGJYhMAIBm3abEuhw1bKApORxr6oRRxvgl1v/K3MWWt0zMFKGqF0I+s7O3AUzGjNKVcxcuM+IeVvy9irF6xgF6AJYl3hAKdEBUg7BFByX2hdWMEjxQKViA9IsaU1ziuH3586IifLdzE2Du71OOPH+IK1W8hzjnSiXnyfOB5+LVeUvsurHAERpqUOb17hlTNe6Xwh//1z8ITz/+DvNIwCAH1GFo0zgDCzwnDR+BHAA3fKzedluSf/jw/bNUbu5lu3bSI27H+E5DGNBcAJZaQyV2tbKPuyuvtT8koXNVyeSb3u5a1nfsPk7vV8v8i1amXeSACxOop9T4pp7b6p/jV68eVWtZPUNECUesOJNoG489psETsFy8PGH01rhOa3ZM3wqs83iMiCljFSIQp6ZOGGtx4POy5j2/nHUXzmTOSe9dkdm4fZ8RtqoEcHQm8nMEfN11iiV7SrUJAHZqMDthjGMCan7/uW4X7/fLZ4ALwKP+ABKXoASIXDrIQ0BYwit9eQoP54TShKvcBeVthPJ/4VoAyt7fmNAP5MGtSnkiXjs/w6Zmv7OZjk0oD+7mZyxdTooUFguKpEvf3jDXE2DetXufPCrHjJHNesCX0peVytEdpKYWgOy//NsvzY1fpWYhX/38p82tThtThFQx0pJy0rgRqKE0Nm6/3NZvkxHADe1Cjt/tKA2J/3LebjU15Bpi5m9DtmcbZ5rWtf21yIZpazve34EgXsZ7JwzFyyH1zBAIx1KXpenrI46XL9JrDUhGC6/7Ni4mYhtHfmPv5lNVXWXgQnUmXLHTlO6DqxNBwYm9BGkFIz6tuGrWdpWczUrm1CnKMn7kQMXS84zh7Pm7bIeShMBW5h7jrgeAYwGUXarkondZvW6DyHKlakRfbAANac7H19nxFLuYpxzjifIaQNpDWaAUJq5pwB+3Lp+JX1sZSgGnCy55SFB0qsJypRwkMVVivC4oEYjzGTg+Cg7eKZQwJPaOVFaetmX8I1WOxgykWXFusdIBCQypUFoV58kxyecdqlQ7FCli3qQ7QaAjVSkuRkQDF5QGHws7UO5fg0YgB8ANGqa370b33DnNcgYZgfiHfTuNSGMsYCx4Jj5cp0xC9YlP1L6+IeDN5FSfQNSpT3xSrWt9vQAsN2xasDqXyzIjppiVa+BpnFLE9pDM6lKywNIIT7OH5o1PurgmhyiFhpxWxpiYsIvn+zKGWHMn1ccW4Luo8/U4I9vG1xq/Z51/D++379jFiwlAVnSlMgzo2UnW3CHFRQvD8IG9w/aN68JaAeZGWZn9FLskHkrTe9zaM6epprYUFYpbIOR1u9UI2LVXjJwxJBVogxrQI8VdO1lcO19tD4mJujixa58sQH4fNGqApLVNRCdAGKAEwHDJ88dzRa1p2Mx4PugDDHhiEeNWJn5K/jF9dyFT4eJepRxjYv4IY0mqkrubAVQIWvuVwjRWbnQkHitAHEHRYaxg6BP7Jm+cFCkXd02TMkXa3LqNWyyu7aVCOZcCXTsWMw0d/PeBm50qWrHS4sfMvV5/BK7+FV9/n9wWb6MR4If73qceDV/71j9lJ6nb7fIpPgBjG8uKyb1ME7RbA/G5nlblJlxpsQAWxNnSkk53YYK5nqXtk1j6WHzuOmh8uLd0kjJWVbP7wtlw7lSlSDxHwsH9e7Ou07r2gyBVlzCZp9OicOsC5gBNhUAFiSdjfap1qNgCJnYHScdjhfGGaXdxfBQmddoRcj6ktLjcodSh60ntc6sNwHGOMMeJwwdYnl2KcY+eFjAVCYCUJtO7v30dFmGXdgIb5dceE9uZal275IY+fVpge+WYkaj8vGAEU8EJtywpTLtkfQK6i5aqdrSAemf5HoHdQIFNW9WX3m8gV5QpaQsz+JSeNdoiTle60BIBKdaqW/RYxLjsAS6EdCGsfNjXPCfcJ9LPEBRI2v8RqwdoAddDAjYs1SOKA6O0wFZGQSJWS2YC58v4udeFGCypRLDK08oL7HLqVr88Z5G5jT2UEFuxHNcFkhZu87ioBuQslAyEc+E3A1N6mcD/b7/w575r7rWRI5AD4EYO2Ntxc+I8X//297Ja9+02BuQvxulSTIJULmIyQ9OnaQQpFHUxlOuL7RJLpYqQMz0ppEFMjMINTI4+scZj4bmW8TJ/f/aiyDV7jvlHvcqtmN8ulA7rooL9h8LgkSWhZ7eicKlK8UIh45UrSsVRGk1h6yvmCmTidjcnB8FN6C5Q4oJYXLh1kVqMcFhQGcHCukPFI6j3i+VJ8/r2sgyJ32L5MYnXL1esaARACLMWi5Gxo0IS8dC0N6HO2HPKjE4DewwctApEABmAhfKK1CiHvcxfX5GryO+FlPTk7/43jUcL+zur4hW7tpepE1Jra7jBMWYol3a3wNUtcZYRp8WS7KF0IAp09FSedmeBKy5YYpnt2xfYeFeqxWn5ntMGkuwHCFJlijgo6VQIigfdivbvrwgVAi+sYECVOCokLlKrvMQjsWcqT3FdroDExDmYzrNF1JojohbX5K59nl/+sNyxnBfKgiZPOH4OAU6UIcCdZ5UKYLv07PP9HgeH1+GyYfNWAfJge6Y9Xs86gJdn7YQUCBRU4rss61fSO8xZsAiuXGcAAEAASURBVCx88Lknww9/+hvVCfhXU87dC+DHzb02fARyANzwsXrbbolb7N2PPRSefOcDt+UYpC1TwIWqQFvDzuz5Mmkz6TJpkRoCeCH15e3ayggwDsk157mWWExYjLCvcb/5xO5uTNs39S9DjE0tTSzW8xeqw96DR82FGbtXJw/vE15bvDKzTws1MUnSVHCndlOB/xC2mbXDhBun9HDagAv5njGo0bh9iXrJulBggpgjQr4nYDFEMT/q/6YF96r3vuW4WI904PECHPH3xPsS+8Z7QHENJmqKaWDhcQ1UgZowZqRN7gA4VaZQBLqqDCrKU2el8bCvA1V8XN6T+oMV9+Ds6epB3Cq0U8z3xIljocWllpYi5Nt7uhHj5E4AGPEUwaDKFfcNpcVThrorNuy3HqUEkPIwB7FpzrOdmN0ILncUPHJ3sbiRyWJIsz2tDHXyYbTqh69Wr2GE0IcT5fy6OCZeHMTSe5TvDEOd2DkhgdhLg7vchfQyLGueR0halEElzYrSmIAm1+S5+9SjHqZnwq1YjoHyckGdsojpGntZ50ohGPKR2R9mNZ4UrGruDznAKCA//tlvsw1NYEPnpOkjkAPgpo/d22rPv/rT/3LbXq9Pjtc6QaxW/hBarzkAQ8TpqUL1TFT0dnUmKdsxIQM0MFx3ykpyYbLzGsh0zoFEBbhgqdUn1fUgsDN32S/uBcznNKhhwfNHfLBDFGNNb4flhAu+n9JMOCZWE8iDGzGWuGY07lNitIeOJC7TeLv0e44Hg7eDJmUXPAMrX/upVaqyeKa+izjhtchnvu+NvtIj+d9+9bLcwZvCcBW+KCvbIVdwjaMc97gLigQWJPd95+5yAxbitABeFoAFTPGY0oLThaIn1EKeowpZD8yaEV6au9CszXj7ta9vyaZqQWTCe8Hxec7iNDUqWWEtQ9yiyAgKEZ4MgBPQhe2M4HFAEeGP55O0MM4ZVzYKJfF3ui3t3X/A/sZJyUF4pmMl65K0it2qbIXCAdObcUDxQrCuuW8okwA6igIlJxHY0YMH9gtf/Nt/kHU+zX4nFSJeoeTRNjInTR+BHAA3fezeVnverkU4uAkNzQP2G+apG3z2PEjeU7WIJhRHjp4w1yRgB8NzvMgt6fZ9bI+cVCoLCgAWAxPkyKH9lVu6XxNZdbJB5n99AOzWM5vFQMFnL8LPeyQ+ZpzTHE/+bId7GqJQH7FWj2uS35ipcMRkHQtdjFzYh+48gDS5w7hPmaARAJ1KThCGcFdjHQJEiB+BbVFAsJRutZTLSmydaY1Y1KEwjFLvXxrPFwhIOnToGKrlynfLsUifcS/TaGDT1jIV5ehuXgDvqsS5U2ebeDiFJ7ACYUIzdriaqeFMuhTjcCZD4uLeTxVr2IV7A2MaodRo/369w7ay3WYFe6MH1vHs9FGRDI57v8CcMIqHD2LPDHFs2mIeVyETKmzxfYiDK40ZqA1Ni0bymrcpbcsFopV7ObBmIVWiaG5W5SwIXrHQa5htUTApnTpjaju5ohNPEdeEi5s8cDwhKFaPPniPPWvxMXLvGzcCLRu3eW7r3AjcfiPQEAs4PmsmtLqEnE+sjfy2bcxNyETDBOnWbl378N1eI9vcmMpdHTF0gPbrXmtyqqqum0xFLNHFc0X981W5tXKtu8S1oesCYLYDhB18k/2igLAWuAuUdUy6WGlYaLg9cTu6YBmTspI9H0ddbRAfo7H3wY9/I69c4w9+9kK2yArnyn3YLeDkWnZeUH3mDv2tyhQxfdyzu8v3C2DlRZArHIBFYkWI/q3c072K6U4REYrngEIY5OhOmTRe3ICxtk+cjxxnCEydODpLArTWhOIoeJyXSmDk7CLUJncSFW0HUYJcAElqYAPYeG7OKDUJaxXLFBc4RUQAYAS+A+IeGMiILljrLihkp3WfCR0gcAJicaY1y3ZqG66ZXGxyqU8I/LHUsYop+IIHiXKiObmxEai54zd2nNzeuRF400YgHQO+3ok4CzS9HeUPcfG5K5IJ+kDF4TrJW/G+6SpQq5RmUr5HzNwuHbKbtS/Mk4V79c8tdknGoMqOtKdzSU+WMfDFlqxv35DXCEcNZIghIidk/XVT2k0c0/aY6LWOG5dKvNZ2b+S6H/3iJbPGfTywVt0CdICsOFUd8vuOF2HpcBZoyaMGwNzKJ12HDkCkKHEdyzMNF1asTupPc86AJ+U0V8o7cOcdEy03lnxdcq9R3HDjsz8gxVgCkigux9SEI2ZHY6nieqbUqLeR3Culx8ef76JIBiCIhwbrHRc/wnVCvKI5BPsgWLMcHwUOED985Li5u1EeqPhFTi+krI0i6e3OgC/7AfKeT8znmPnvbQlZzu/lggh3Hkv3YiKk8+Xkxkbg6hnhxo6X2zs3Ard8BBpjeZFukU5x8ROmS05syZDLSo9bJilIKvWlGWE91iXtBeAuO7ZvD2fVo7ao9YUwsDg/jOnfOUwa0iOMHzEgjBteGgb27Snmbm2LJM6RjcGQY+IWdoFcdNf0KWYxYeV1EmOVGB9dl7B6qAvseZu+D68OWsT8sG5hwnqcEiVkmAg3LrXc45EhHbdBjGsM+3438xXw/Mb/+aF9hXDJJNZximTFulSeuyR3ao3ng/uMSx9yHopWW+W4kkoEQSq2RNnfPRy8p0wlLGbis5SC5NlbpH3OyOresHmL3POXjaDFMSk/CQjDRnZwYznHo+4zsdU4X1rOb8sJnj51YiiTK7mP2NjOXnbQI/3HS8JyLIRz4HtQku5TbWis5BEqm0knI9KkANDhst4R8ny9MQTPzRilKNUl7hHg2SDmj9XNuXzouafCr3/4D2Ht/F+aElHXvrllDR+BXAy44WOV2/I2HAHAzyeLhpweBezj+Fq8D4Dn8TKW++SHVYwbmlSko7IOT2UY1GyTuCoTS4TPsXhhDoDuQsbVXHG0UqkqiVuwQK7uE4dqyF1Fhf1D1bFdInQVh06dO4eidgL+ccMt5kg/4HNnzwgAqi32GFvEEHiGDkpYz/H3c77uYoXUA7gA5PlSQph4sYCIPVJMgVQVhHxRcqoPa6KGWAZwnNQETklC4oeJlZsgMMckFYk0KNjE8bjE53Gz3u+WcjR53EiRzXqGUYqR/t77nwxf/Ju/lzXa1qxBqjdVh7xw7FSVnUIbAYhLS1mMsNoBszyBi9c9Zj3HA6CpGQ1bO2aY47EYWCr2+M6ddigHUI/LktIEF4CayhT6oM8wQlGOfQcPWQ4t7QUR7tm8RcvVV3h8WCzmOQBKmhLPG+CKleuxZwdb9nMXc5yWhgWMyxiWMhYx5wAZi3sLAGNF46mxVykdWMmVp05aOtoUdVxavrqmsQLPPYBLhTDCG//zM/9NhUNWhR/849frVOQ4p5w0bQRyANy0ccvtdZuMQGOsX07ZJkxNRvVJHB+OrWG236V0EyY22MV0BypQKgosY0hdWH8UhvC0D7Z3BnC7TFs7lsXizdJ9GUYcVt2Bgwftr8XlIdncXshNTJgu3cTMJWbnbt/Y2vZt4piyW7sAJn90tSGfFSvZwZf9sLCY9EnRYTInXgnLG2vpMBOyLGXGkOITl6WwLFX/Wp/09+p4t1IGCQh/+A9fzFrynOMOkaT+7ns/CgPkAdh/+GToO7gkC8C074PV3kGWKWM3SulBqt5p1xafNzFf3LzEX/PzleJz5rT19AWUBug7Y28C9wXXM65mb6fota8ZV1KMOC+UpAfumWnEqxmycFeJpMWzBMBt2KJqXWJLc48mKhUMUhapfxC5eI83g4pXgCxVqogd4/YulNubGDjei/WbEsYy9xYhDk7hGYSY9oFDR6zRBMeYu3CFmkBMswpaWMhY9FZiUqTDiWNHmKsZQhgpVljeVO2aLeUrvm47cO7fDY9ADoBveAhzB3gzR6Cx8V9iddcSKmm5pN2+LLeJTZMbxJS0wFStBcCa7JB8fWcN1apmr9iKrVla885jmCxJgzX0YyZjABjrKHZX+xFaZJjBfHYA9nWev4u1VZ9gSSF0CIK4Q3GN9WJU0zeWmKJbfU4Cwwp+MwWL8/vP/9pSaoaKtb33kFJzDi0QeNwRWhZ0Ci16hfDCq3NDOHA45MlC5V5R+QtykQvAhxWLEH9t0bJ1KJVFTLekSjG/Fy5ZbnnLABljTotCxhYAdisVDwtsZLwzeBPWZ5pK8F2MHRYmLnO/JzxzKAOEAJxPgAWNKxmQZmO8C3AEODeeS+4N8edxKgCCojdfIIngInfZrK5KiNeSJoTCs4hwH3mWkYOHDpvSxXhwHS4t9fz06F5k99rd1r4u9/rGjEAOgN+Yccwd5U0agbQFjDVGKhEFBpisYKESx2KyY8KJSSfpU8YKiEtYMsk2RsjhZJLzqkdY0BNGDzF38uo6jMM8rY9F9a/ij7Uss7hsIBsB3qvk3sRygr3sk2l8gChMXKuUo22Dv1NCrV8rJalJXJhgbtC6FA/bODo/vABpAL7VMeDknGr+A27UREZOnb+sdojjzbVadf5sWCIXamnv4uzGWI3+LGA1Dh7U31KZGMvtmdxYUrIuwF7XwFDC1GPDuHQfmD1DxDU9X5WnVaziiN13njPc8eT3Oi8gTsvyvsykLAHey1evs7KhpBZ5Qw5cxONGjxCJb5+lSGEBI1jVnCfkLb4f4XpJQRoiV7aLP3t8RpnAjVwsax8hrW7n7oQBTUpSXOkN4toI/XZioaQrwHuPWibm5OaMQA6Ab8645o56i0bAXbD+dcT9iIW59FEeZpHchDSOZ1uP6/r6+BULJgbgmOgUb1ffe9zHwzVhucXDdpSyHDSgv6op1FhZvv/VhTdqWM9sg+vSJd0diHXEvvEA8Ffar4+VUMQKBIxZH8P5lVqfoPvUCA3dKRbhkhTuSD7hggb8iVfGzFgmcxcvwQnB582SeYtWhPd/9JNZ5efUmfNh885N4Q7FN8tUpAK5EI0n44ELHSHuT4ciLFC3YllerBzavbKWXQy0BcrEgc+qChVegfYKPbTJa22FM6gQhmcgBl28GCh/KEykCQGgedr+lbnL/bD26q0YsWq3KdeW8UWRdHESFiAfe1/I/x02uAY4IcsRb+Y5J36/acsOPQvq16y4b1qhjOtr473oEnVm4ns5h4995AOJFe4nknt9Q0cgB8Bv6HDmDnarR4C0kFjSkwypGsn0m2zFZybBtOXM2qT36425UQH7tOA+HtL+dGhb0C60bNM2XLzSKpwXtnYoqG0BpxsvuFXE8Tye7MfOGLBZyxf3pLf9Yxus2MJMuUQ+p2szu9uYdVcpGhE6Uy6SGCCCm5TiFL179lA8sEBlE0dZnBJ3KvJmWsDESXHZ4nYvE4AdPZEUkKA14ZHjSeyc+HWpLHeaM+DtWC0AJa5LvHe/CFIIHgEAE2u3r7wLALD3BIaU5ooKx0IAZaxZYqYAFsoPx75blvBFpZHhjp6plCXiwQA0bt64ehTWL3m8hAKwSCEJArZYpN6tie+h8hjATsWqWLjPFAQhrkz7xVfnLckWHWG7Pr162XMxRBZ+TCZjXfx88flMprcw7/kuGm089tA9fMzJTRqBHADfpIHNHfbWjEC6l6sDU33fjtU4c/REY+1iwcRMUuJusXicNF52vffuHmQ7Bzms16XLkrKC8f7URS68UBG6SCGAGNQur0W4c8Y0cwNflLvxlFyN1Dum4UGaEOag58dLgyjuyuoM8xpriGL6kKs4J/4oI0lJQ4oqMInHCkmEv7VM5bZibR8tP2kFKvheCkUgfp2H1bnnzRLyZFvl5Ydl68pCd1map08lse04TapH1w7hwulLIp715qSNVEQucOdOnSynl2cHr8RAKR1bysrltm9pl9NFjHRCG8RPhwwoFXAlvYshJQ1SiUYsTQAZ8GYZrnmaHji5jXEnFIJAXntt/lJz+y8TgQ3BjUzogpgzzyP1sRFSm1y4n6PVoQnQJF0NrwNgD5MbkIfFTboZz4nnNrNvUVF7A2C8HNOnjq9lPcPg59zKla4EmWugxuKSylqW9u1tSgeKQlrx8/PJvb4xI5AD4DdmHHNHeZNGAEuFdAu3GNLlG+s6LSY2KvwgWHTE/VoLJAEiJx6xLi6EweeGCBOds4KpyoTUN4kx2QNaDlzTpkwMK9ZtyX5NXstLNrlikVE+0diwKqxAbJJCErHEpSl9uYMyuc+vzFvsi+0Va9Fr/cZ9YVnpgFprB30AyOtK4QK4kKMqOIFF6LHSZOmt+f+//+knYXt5Ev8lzau76i4f1vl4zndRh4Kwv3yXpWVhaWLBD1CD+oMValEoKxRNo29JDyv12LNHd6UMHbY0LFy+1ZdbhK7duoUlCm1QTAUlDmIaBKulq9Ya03mS0qGQHt3lthYA18qbtuh6Qrqi5SFCEQ4UMFKKGG/uD6Q6AJiqWHzvSb1nLBlTBJBlW9jWcdqQtw1EGQVQPW7MPh66oPQmy3G105CD3GRSoKgjzfNFffTFK1ar45GYahIA/+H7Z9n73L+bNwK1f8U373tyR86NwE0ZAQBz7YaEIIMrb7es2usJE44LebKeK4tFGAvWYWOFybmbCv2PlxsSywKpPRnXHDHtLk8DnzNaWU7JSmfncgQsqVgcBONlmlntY5yO5Ovj7R2ofR2KAT1fW2jy92P4uviVcezYvkPYoXzZ1q3amCsWSw8X/62U1eu3Kg5+Um7njKtZF0f+LpZpgZSYbgUhDOhVpOpWu6yoBJbsq7JCGdceus5ElKudYRBn9AmlYm0J94mA9OrCxAVPjewlihMj5CDTBhMh3k6+LeKlRQvUQzgWlLtx6vnLd9NaEfFWl4AmQmoU3Y1Qcjy1CVIXRT9icl/aU+PPKQpSXC+c+D3pcnRYAlBJI1uhKm3E87uo09TW7TvsexkHLGms53L9HigzScOPW30f7WTeZv9yAPw2u+Fvtcv1NCSsBFoQNkScoZreNm2peplAtgPcifXRKg9rmZgdzdL3iXXLcsTdf1jh5NO61GcRppfH7lLWVWcsH46TLlNJ2UwXSFNM0Gmhp25em7w610U6iFlA8b6Uc/RYI004IGG1Vx4q1zfdWuwRk9xuABa78DkG1vytnri379oXqs+fDlNGlYbKE8dDlYpvbNu6zS7pQud25oJtX9hWLtxhVoxkrFjGruzAIod5jJAvi/j95P3RiGPQrjCpPMXy2D3MZ1zOkLl2KP2IsSqQhQ2woujwnIwV+GK13iG3Pc+pp/XAxF6RKYLhrOwJKnDiNaI5z0GKb3MeznCOyVN8NzFn9qXdJqBOgRRrk6kWiXNETps2aYyuLamyhrJA68OOalqRFvKesZKpGIaCF5PJ0tvmPr8xI5AD4DdmHHNHeZNGII5dNuQUcD26yy69PZYFkyYWAEzTuE4zqSUU1PcUFd8XUKK4A9YsIMjkfSCTCuPbpIG2ZnmNJc6ySxdrWNC4maujCpdpF3MHsboh3gCkWC3dFKfk2rD8mLw5F3JKN2/bqVhhdKDMlwMMLpzfZJXaJI6JyxaLHTYw4Er6Dceja5C3x2O/nj16mBsV1rl3RmK5EbGG8O7WydTxw8NH/uiT2S/sUdIv+97ZxQcPHwuled1tOYqJC8qUiysxMdub++uydWeNd4WxaZGJEZfIosUbQDlQakqT6gOTmfCGN7pnjAkFUO5yjNz/FNZAcCfThQoBHLsIyLmfnpsMIeuEuACUBV2a6dPM80kd5koBKQU2oNjBvj5zJslhJw7dX6z4lWs32nF5nSbrfbDSkmBio1Cd1racvxP/SHNy1zXu6FydZxu6m/6v5um76V+V+4LcCLzxI9DYVoSdOnUwVi/aPRMZqR4wW7E0cEHSuNxJLExkEGJgEwNEdQnbQuYChGGq1iXE4brKLX1UllAssSuc5RBgXNKFN9IWMFZM3KWJJvKwZmPmrLueUQooJAGha0vZLospEmMEoHFNJlZYAgLUFMZNShUk2g+6YF3FgupAKg/s2s1bdxpYs56WebdaqDLFWLpVG3syqH6FkIO7JnMPL16qAeDYEwC5CokVJopRuODSxtuA9Uq6Gd2ReI7ueuS50L24i8CwwlLCeK6IBWOxEnPl+9bJnW1pbnIvUwzm/Pkqgdw4s5T9+IRTOPbSlWuzShOV2VAyjx5bI5JUX0snAvyXZMCYfXfvlQdAIQp3g/NMxt4UwJzQDNfKfsSe4UDQOMIZ7pS9RDg3vB4ogDm5+SOQA+CbP8a5b7hJI8CEm05Dut5X0R0GYZIENNkf9+Fwaf24jTuqzB+9YBEmNJ/U0mBpG0T/qCZUn1y+okpGF1qEgqJiubCLZK0WyU2Zr1rP+VZggfQVrBknbXGcdOGNGBRYn2ZoW7yWFZH4PrBl1woAJisnlsm1VGxXXPbueiVH2oV9Xp6z0Fi6vqy/UndiMAZIGI9idUyCuXv3jCkGAKS5XKiu8t1u2SslHlGWPLQQKy8ef0fRcIldzHF6FmMOoNIXt0+fErNgR6q62Sc/9kE9H6VG1vNj+CvPIKBVvpeKWv3NwlyyfK11lOK7V8n6xIrG64K7G/IT4DdGjOaFS9eGe9U8wdPisEgpUYnAoKYxhsd3WUYpVJ5bFCYqZHFfERqG4A3BQ4PCcEKVtViGksV9gotAPe92UiQRz3VeuHS1ldukzaGHctr//+ydB5wlVZX/LxOYHHtyzjnnzJCDZCQIogKugJgVV2Fd2dU1rLrruiq6/lVYXUAEVlFEicPknHpyzjnnPP/zPdXn9XnV7/X0TId5vdT5fF7Xq6pbt6puva5zzzm/8zviQaHIxJXjRmnb5E/5jkCigMt3fJPey3EEeBl1kTQQwCsQaOAe9mlAmU5tcTb2YbkivBjN/YYyjAvHFEfZyEvOu6vjx5u3F/fuDiHB54MM7y8oWrF2TDq2rxrq1qiicWZcvu1a5oXq8hIHRItigCeY+8QCiiO043FB+rQ0GutfDNaCnNcdiuC17X5yYYQdVeVFDiiNfQCKlhbQGgLeoYABRSEWL4uQ5Fho6zZsUk5sjqtoWbl6nYKKTAGb0uU6zAvAd1zMWKWnJDaKcrruyrE6ph++6yYlMoFbGgDd+Qjj07ljW/ntbRLX8XYZ8+hoJkhW9xeLFFYqJjcgz4mxym4VGKnYjzcClLtNdJggdWjfWtzOhb+Pnt26pMaceC2THxO8GwguZZD4CClWraS4hlm5WO3EiA1sRpt8qXrFuU0BQ8jRvGkTnYSwP5HyHYFEAZfv+Ca9l+MIEG9cLjHO5WFt6iwwQrUQ9x8vRgBShkS2BiBF42KWQXy7rWM1F6eAiYNanqcd45cOL+U3ixVbGPNlBwhqJhA6iZAX+VoBF5mMlFq1EOebAAbzYorTb4v3X5ANo00AmMGYhPs2DQVdoBhQAOS1IqBmKa2HokHRwu40c26hYoCwwZRfWl96dPn+wQJ98Q+vC5K9sCKVuevhaSbHdvjgPspEdVxyheFdptLToUMHwy3XXx5uvPbyUl8gbuMVqzdofV4qC6FoGSdLgeIExNenF+T9NmvSRC1ZtqPweN5DxBLGAvaTPbinLxs9LEyYPIOmGt/XL/KH54MQM24n1rp5bSBOWSWTAYTUI56vCfFw0NiWgsd2ftcoZNzbn//kx8IdN18rGIBqKXe+HZssy2cEEgVcPuOa9FoBI5Ap/suLj48J1jE1cangA7gGV2VcalxaFEHs2ygiVVI4skntWrUzKmAUHKlDviiC78OoEG2bt0ziLmh5O1szXRIvBsCzXtySkO03EAXJOpSHxEBRArgTw+LISk07WFaw0Kj6A3gs3QKOWvptKNhLxLSzkn1MbLDumHTQzrwHHMl5K1Io7UcBgdHDB6u7Ftfs8lXrwyWnj4Ym9RqHCZOmatx2hcRXPRMUiuj7P/5lmSjgAYITeOnVN/W2V4oXhtgw9X75rfFsunXuKJWsDutY4/4e0K+HKOSzyjQFcI7KU4ePHNf4LAjoeflLhBWrt9zXav394PnATexj/tuFf5p4NBNQjmeCxmSzmVivDRs0VBc2Me9B0p/Fi1H0eASqVauusX97TnhvXvz1f2jc37Yly4oZgUQBV8w4J2cphxEoCfUhisPAN3YJlF9DKS8RMntczvG8Smtny+IAKYCbsICpdOMFlzGAJKgHTzp0s2/j43tsT1PAokS9eIXIdliMcF/ijuZDvmccBBbPa/ZuaywyXPhcP8u4eIsfFK65NWnHi56cWPJVUeAeoBa/zni/Zb0+fvTw8Om//1aKzGRA3x6adsR5jIQCdy/PAUt16YrVegkgki2GWtprAkuA5Uusl+f+twnTtUvix8ZShSWO25ixnDhllsaKoQ4FfYwV3LVTBz2G3yuTmF0SprB84AXitqYWM5MNGMyojNS2dWuZaG7WfF0OnDk3XwhpuouLeYl6UiiwQVhCvSnac9AwwghR1IQJ/KTpp9/7eqJ8C8aoohcVO12t6LtLzvd/egQsblXcTWo5t1gDAFPkXhKXM0BKrEnaqo8b+x3EznAzUtw8LoBsKHiPeNCPb3daYn9efPzZp7/4NvYdEn5SSszi9DnL1kaDx4UraW5FQwxjpaXFii046Y7bKAAjLygyrOFFEj/0ypc2FamA5+UvC7Mkpmnl9jg/8VQT0NwIExRi54CdAEGB9G4qsd60+7aDLmBJ7BaXPEVA/KSKXGGuB3cxLl5Skih4gMWJIuUZ2G/DlgC6ALWtLyBxwXPDvglTZuh1VxUFTQyeWC/pZaCsEX6H5Gbb+aG55NkA/gJ8Z7JD0rHwkpiQl3zdVWNtNVlW8AikT7Mr+OTJ6ZIRKM0IlCQHOJPL2c5JLAwA1lEB5hQnXknj5iUdBeu7rVRamjJjrlqRdjxKHRYpH2dr0rRZGCVuQaxOrNz9AsIhDunJ8FG4XnnEWbJI+vGCwsWKwZV6QvrFmkIZW2yQtvF4rCld9lmaChSedk8UJiAODT1i1WrZ5+aA3examWj4e61IBbxcwEZf/sZ/hCF9u6mrFtARACImBoh5FMh5RYj/cr8IiguruCykc4d26vZHUeI5IBebbfUE5d4sr4EqULwskFvwvJANwngFJSaTtDEjBqsyxu08ZcYcVbSp6yqYEKFgqTFMzjXc4NWFYIW8YVDW/A6JgfPsmsr9m2cIBixoJ1s2a6w8z0xGt1OxSixjwIur1mwID957e+pUyZeKH4FEAVf8mCdnLKMRyBQDjndtpfLi220dd2qdDHFh2x9fwnLESw0xgBcWNZSBvBCpSDNh8sy0wzbtEJTwpu26rVe3jmGzvERD9YZh67Fq4eprrw9bN62Ta6gl7lySYs5qP7gy20kh+L37DqoFFzdMTQESnz6x/6QSMUBx+O6kyP1JfJBjIBYxpXhEckpN2rdtrWhrFDF50Chv4oooCNDCVsiB9nEwlwd8+ckJbe1cfC9vWSKl9hgHYt4jhZhijSgz8pxxL+O+PVlgDRvwznsJcPX6fOHSXCuubgoZUL6Q1J4RQ/oJ4cYCdUlbbjHsVKS5QdqBMHEhNkt8F5QyWAUUKAKbGF6XNtLWUNz0T+UkpGXzZgUEHBFnM4QfBkIDlIUChlea32mv7p1CvlC1mgDSonITffCcb7hmvO1KlhdhBBIFfBEGPTll2YxASSxgc9EWd8aqsXhrvK3PzzXF59uQT4vFSlk7rJq4WC1XtnvX8glR2LidKayOoLzOnIpewqwPF6IGXJEoxTXrN6prEkYurCnjrwahzIudl7afkFD7GICOF5SAyUbp117otg3XpiGt/cTF3KPWjomGyZqCWru2XpLxtralWTJulguNK98QxvSJ0mFMUWhY91RHaiwVjyBUsRgwkDaLEZfmOuzYnt27SCnACK1s4HZ+K+AHcDlbTB3FCIgNrmWE8WYSw/Ni0oRHBT7oq8ePDm9KPjaxfrbThqpZsyTW26RJo5QCpg/oRilIAic6yOdtOwR/IAA5vCHxZwdtJdtRwg/ce0dGUCJ9JlIxI5Ddz1Qx50/OkozABY9ASWLARkVY3EmIpxXHX+xduSjNTMKLDSFFJy7HhE7QJG51nXbt42Avi1FCIoGVjWUD4pXcYXNfYyGxH0KRg+JiNSV7+nS6y5rze/5oP6mwa/MuamxxqkThlvbbra0tZc6QJvH1tJ1lvPLnNydpj2ahE9vEHdtMYvNYmCgyJgvvTp6l+bW4blFm5AAzEYK+sawEBZgCdbkxsTg0ihRB+VLm75DEpU1QroCmmFTgsaB+MNeH5Q5DFcr7r29P0jxrcAeNJK6Lh8SEFDBCECDhmQDBYmbAuriHghgz/TL5aCcEK4lc3BFILOCLO/7J2UsxAhbrKq4Lc+EV18YsUOqpthV0dF15IVJVBhJ9LE1ejLy0cfV5N6bv0yxGb+3afmgHTeJEFZ4WkRfjkcL3chF3rgFs6MsscbMC2YbFZ6UFKTPnRdmW9u5TMFD1S6vpy9pAYtbOu5bbivvbkLIgdam3a+ULqQPMeXFxAwry6T0V5YImtt+qRVNFgtesEaX7oHTwRqzfELlq8Up4KxelhoVJ3P+9KbNV2dm9l3bZTixbEz9h4XcD8AoCDGK9nJ9tu/bsEW7m9lI2UcoXCsjNagNTypJY79CB/SRdqVeYLxYygDsElDvHkp/dqkVznRgBMCNmb94g+KLbC+DLxJOSsI3fMsoaz8Awea6JXNwRSBTwxR3/5OylGAHvci1FN6lDqacKMMe77XhpQwuIJQVXL0CfTAIwC7E4nm9zVFyQJigsL16hVy/ow/bHrUlvLZP6ohzWjuWDtBfiih2EjCSOsMbypk6tCdatCTSGIHiJH5qsKahbyzol7FQhSBUhFKyxNbHPKzjWzWrne3lLrTp11R0PjadZfMcdoI7nWFNyvLH0mIjZPnOT27IsrpNQAAKQqpbgAK4YN1zXyemFJIMJC0AqlDMKkPxfrVAkk5g9+/api1nTyURZ81vDWodpjDQxm2zRITzOoKlXSLEHYrjQcE6cNjeMEuW+S9KZNsmEkfslxxthosIxC8U9DSKa3zICULB7lw76Pflz8UYgUcAXb+yTM5dyBGzWX1w3HhVcXDvbh8vOo2P9y482WBCZxCwNwDMgbAH58MI/JIjnGo1aaHH4A/I9ztl8StzHJjUKELK2Hl8aqIjtlLQbLYqTF7wJnNaQN6CMUKq4ps067SAW2vYdVM6JBEWKEuZlb2OUllKEeesExW7kG26zujNxazIBwd1fHHraH1fa76QVrduyJ4yUUnu7QPaayH3hSUhNhCTIRrECBNcsYpOGokhz3X1Bf6g0xPhYZSO4xVGQxlV++ZhhMsmJilvgUu7bq6u4mavrxIc6wXB1I7jNkdVr16tlyzO58rKRav3yzCw9iTbQam6TmsQ852mzFyr6updYtvMWLpNJQI3QpXM7cb9PV08F6HxQ0PaMyQ8GrJbIxR2BRAFf3PFPzn6BI0Cs1aye4rpAwZyP8JLyCjh+rC9V5/fZyxxyDy+qtASZi7Rr1zZs3rAh9GqfJy+/2qIoqoYTh/aGKhKvJL2klgB2ihNvLfPSBbXMeal2Q1Unf69YtIP791F3K1b8VgGIecH6wyKGrcuYkrCUOI4X/akC8hAINwD+IFHlqPTUHawtlH5K0vV2anNZfqE27he/+bSAzg6EI3m1NVzg+wdsZQrYaCnZX10UHgJoCSlJeEIbluAPygz3MLgEvBNYueT6IoQuwA4M6t9LvQeMuZUpRLlOnjZHx5ZjibkD5kO50o77ANENQA6MgNGD0m/rli3CIvd7g2N6tYDiIPsAjFVPPAQ2gaTv9uJ6N6pLnn8mHAD9JlJxI5Ao4Iob6+RMZTgCZlmcq0sDK52rne0vLm+YNv2EbYg4Xlzi9XptP1aQUEHoKnnApMpI/pKuDx+Q3lerZo1C/QaNtGISKUjHpLwgoBzBR2tOL5YqCp18VpQn9ISAcbB84fwdJQAjL8SXKa+IkKLkBQsdAbhE1R3q2FquMW7S7l07hA7HW6VNcnxsUw+WPyhrL/F1v6+svq+XogdvT4mewYkTxzW3F6ILkOIIFrCJV7JMRBCrluSVs7UvzXLsyMFqwRJmWCfP2DwLALBwQeO6xztiNXg51wqZnIF2J0aMG7uBsKr17tFFrVruh1ACCHfAY/GJYTdxITeRvN/8JStTl43yRUBZd5VcXxNQ0e9IilrzZk30PChmPzbWLllW7AgkCrhixzs5WxmNAGkbJREjYyhJW9oUR0uJhUN5QqwRcoCJ2SG8OHErEh9e62Kn7KuhCphvUo0HpPRBb5Gnm4snBfhFn3xwhS9ctDg6UP5SO9byj/2L07wAWEoW47SDPAsYSgHlaEq0iih1xOK5ip52yhQLzqpFWX8lWZa3Al6xZmP49k+e03gq17NOxpt7YmLSpVrH0LBuLS0FqM9ErEjPqc0kqWvnTkpWMWbk0NCxQ/uS3FKJ2xBjhUgDti0+APOqi9LHS2Ex+cMyqSLU0Kt7F2WtIpTQVrwIIJlXrF6nSpuJ1RVjR6jCJAaMAiYi0KB+YU1mfouzpBoSgLIRUmxi/uKVqVSnkUP6ysTpiIQcipbIbCVhh3yJA//zVz+rLvIS31zSsFxGIFHA5TKsSaflPQIlSUHiGihoXlLhBerTO+LH8dKDBcqElBB4pWFeAvDTSyyXuBg4i+2wF8kVpZqYMrQNIK9NvJJlm3cXQqW4V1zWvLwR05tYNcR1eWHz3fePEmCdnGImGfH7JJeYOKEJaUjnEsYDYJGX8lbAuE6bSR1ik0sL3PaXNmgRGtQ+HWZNflN3NWxYT13noH1RZgD2Nm3ZEWrUrhvenjpP2zRu0sS6KZOlAbEYZxDrsG7hecD9D08zY15PQhw8yzXrNki60WB9hivFCmbCxcSLCRteFlLNAGoRXydmzbNuJKUgTfoLII5wAe5pilHg5j4mbvBmTRuHKdPnaDPKK3rBhY3y5Xd++03X+F3J94s0AgJRSCQZgco3AiUBYHFXuGtLKh3ats7oXrbj46AVUl4AtRhqOlMKkrk76cNbY6x7Bcm6xS35bjFlviPmzuQ7RdfJOTULlzJ2CPVhAV3BJYzbUy1u2c4L3BQjsWNe9FhicbFydbo9g/6NK2WsZpDhXmwy4LeV5Xdyshev2azxVPrtP3BwGDv+yrB5+94U8xXbLR4O6peYMSCnzeK298/AgHO0LwvpKp4QlCwfywluJ4qR54xLuI/E+vGgkNIFOYd5Z5gwdRfQFkLRBiY2WMR9e3dTBDpuazw+lCckrsxvg1Ql5GABzSbpcu0lbFHFUZY2l8mYF66PiVkHQcmjhBO5+COQWMAX/xkkV3ABI1DSFCRfDSbbaXDjEV8jP7Y4iSzY7C2M7ci38C98Q9/afm/Vss1bwJ78g32m5PmOcbpFXMRthHQCa8kUre6TP1jpUExOE65oXujVxOqlcANxQIsjmkK2YyhoYMoUWk1cnpRpVIUqf6qJ+xZrl0IM9M21G6jJ+oiWGTR3eoNSrR0+elwR5aB8yQPetPNgiubT13VG0ZhY7Jd1T8wS9zJY+wtdktbDxAd2K6xXWNEAuKFQeZ4g3iFUMa8BEzaAVkwEsOwZ2wlTZqa4oCHrGNS3t+ai42nZLsqbqkiHxKtjecP+9427e+euQykvx1ShxSSHG2sa4d7hyv7OP34pcT9f6EMu4+OKf+OU8cmS7pIRKKsRKM4ChnQCYBIVb7A+tkksbMOmrWlWpL+OFgJM2bJtu1hIEV+z3+e/16wRoWj9Nv8dBKvPtWWfZ76KU16mW7VV5AVdqDTi+bRWPIE+KTOHbBICfj5jhg/WdftDv5SsQ7B2oF+k+IMVAmA7PfByVkUv/fFynjh1Fru0hN3CWB1hSi6a8tZG8qe5uDvjElfs8f2lWd8uVaee/MGzUlv3iExWToWdB6SQfP0IWEW/WL1DB/ZVBWjMZGz3lq73SPjttCutNJHfG94F5Ih4GHA3Y71i4cLORYwfy7atuIKHC/PVDKlYRKUiPBdMEkYInzVCLJjwBh6WXj3yQsMzjcJZmTz16dUjTJ+7OHTp0ErR0qDST0jsH6sY0hgmpaQxsV5DvB7AsTbJbxoA12oBdDEx+ORD96VVR9ITJn8u2ggkCviiDX1y4tKMQHExYOJpEBEYGQHnAY0MSArFfFRejlvEEsGiQHhxYzFZzqxuzPDHK7AMuyXmt67IZizHvMbRZKBxvVpheH8pJSeOwuNyzto1q6mFuhfrWxTgqeOFbmFDKVuHngXLttnSs2GxzSwsvvOCRri/PgIeWyb80MSlGwvrl1lG7Mc6x1qGdYnxu1ApTwVM7JfC9oh5BLwSZaxJmeIaPEvaDiGoIDYOHkDqXaSkZbO81Pey+kIcmHEFib1c4rb8phjP+nXrCmp9vZ6GCaJNzGzSxfOhLjBCOhGeDcBY5PfiodkgEy2T02cuUZf1u5Mi7ml+08TvKbGJMPk6JR4CHQdxXR85KrnoBWDA++++xbpJljkwAokCzoGHkFzC+Y8AlI5QImIlrCmoEmO91Kld276mluRVGhG/bWwsoBas1hMnIyVl27Mt7aWZbT8KmvifIZNpR3wWa50PSF1DHbOPGOq2zVHqTBPJ6WxUJ0+tl1rivmxYv65aLriCyXlWYgWhLiTmh7syTZxSYbspJ7574g9AQaRlUaYOBY8LGwsat2kDOR/uyahIQKxD6Yf0FSzg7l06iWJZo9V7UH5Ybt7dW54KmEnIIbEgEZuQtGyeF2oIUKnepWfC5Anv6D68HsTTGW8qFMH6hBW6dfsOmWhUDV07tNYYqFfSemAZ/InSxs7KhK9meG9qVBULxDOsZbiYGXd+r1jEiMX9iQFb8Yxhg/rJmJ6RCWNbKR+4KNQVF7aXpUyianRPoe57SL9xjnKISkDOA9JaKIUXzp49ED56z60BqstEcmcEEgWcO88iuZLzGIEl4lY1ZYYC4cXCi5f0GUoClkTIJebDS9NQqMUdFwdGxdsyGUCsMg3fC7zFfI2txCxVmQTgJjbBbejzjakva8Cb2qJwiDFiJWHh1hTFT7wRKxrljIXbWdJgKL4AcMw8AdwjqGBcnijpK8aNCO1at5JTipbnryygs/QWNQoVFq3WMlGBqhLebOraEtfEAsONDRrXJO1+bWMZLf/63uzQQpTp9l37Ukp/74Ej4kmQ0MDpYwJ8OqzXxUQCF+40ib8S9wZBjPJDpk6fJZOkOsIXXSX06lb2ygjrNnIt903dNUAwWLiwjGHMwiq2yRyKc9yoYVJo4YiWJkRZojypsdxbnhXC7zouh8XVTYiFtDdc87iee8s5FhfUQuaZwpJmQC8mm4888KF4N8n6RR6BRAFf5AeQnP7CRsBbL1hmxuZEbyBQUapWTOBcZwCRSuyO6jjNxS1J/HXWvPwih8WBUfEG3WUSUK1qtVBHYn+jJS6L5eqLL8RRxN5SRXkWJ55QhIkAMUa7Z0BTEDmYgHA1cA7WlwnK2budDx8+qvc5QHJNUQpYlwCF6tapk4pBjhw2IEydMVdBXLPnL9auqHXLdq4fRief/1xeFjD3v3XHnnBElBNiFh/5zTMWrgr9urUN9es31BgrBBagjb0AQiN/G6ASZRgBx53refrjS/odpDGyUuK4CBOBljJ5QXgWKMLW8jvjefEbxStzWghTyLkmTQhl/O6kyHImVMKsyCZ2kKYMFjYt6le/MWGqKOye2i/WNXH/YxIXLxSoUCPPDuGX664cGzp1KCzSUNgu+XYxR6D4//qLeWXJuZMRKGYEeOlkExRyHGGcrS3bLX0IABWfwf17p1JBijsuvg/LdJ7k03qB5cgkbh2aG5X9ZhFZ2/jSV02K8y0byYMd4xW7VzJx1zUpSby4Uei4yEFTY33xadK4sUwiBqasZ+s7tSwwyrDO6AMLj3zo8lLAuLs3bN0ZVq7brJfQuX2rsCd/Tcodf+iI8G7LxAtBuRJyQJiMDBRXP+hihHhq8+YthDVrc9rkSHeWwR9oQRkDzkMVpPcE2IYCJcUNHmfGC+8G10qsHgudD94Jcn49kh5XNZ6MrdujyURrQX1PmT5bJj8R49nchUvVC5K/bI0CvsBFdJPzW344FjK0mHw++8hHy+Duki7KegRiwaSy7j7pLxmB8hmB4lDQnDGubIq7CovDWRv4dkGrEh9GGZtkcgXaPpbxPGG2eWXIuhevOLHMvMSdjpbXSps4Qlpq7PhD1fK2DZYjrMfFYsd2P1j7KGNbpy3l8iDnMOsrrlj9ZAL3ZyMpeE8BCK9A7BrKYsmEav6S1QJuEurMpo0kzh7Fgm2C4a0/4uVMCij3h+VrngKug+tD+SJlnYZEnxBigHCmdOD+AiQ627HgGV/L3WZbRP/Jt6DWOTSoVcWD4gW3PxzOcG5v2rxFdxmwjpVLJdaM9O3ZJVwzfpSmi+GdQIh77ztwMDz64L06Frox+ZNTI5Ao4Jx6HMnFlGQEIDLgU6wUxRFlbW6uungDSPF97m62Skh2HJZjXAACkV7St1d3ZaDy/fnqRlVjChjXoxfc2SZFFEd60zRCClNQHBvnPiZG7MUrYBQuk5CSCgp8xpz88Ke/vivxyM1Ko+jBaCXtJ1s77rljW4oanJaY5/6Ux8AmBg3rFlb26SiuViZgAJ3IiSbEYOJ/N35sbH9pl5yXUoJMAPzvikkBoLt+4u63RwuJGF4HjuG3tU7Gbcu2bQrk4zpwX9epXUPai4t63Tqh0eygl3egINWJFTwDgP+WrVwtv7N+oZHgIeYtWBJuuPoy/c3ddev1CrrTA5M/OTcC6dOtnLu85IKSESg6ArjaiGfF0c++ZSEYxW8t+p10EcA72cRe8OyPW8rxY3y1ItsHytjQ17gesWTJ36RaTTNB6LYUtyIvUUgkGgiCGtcp7kncwpzblKK5yek3bt1bGztnNqs7rnA82IpjfT+cI62fc0xoaI/SefaFP4QXXvmLKu9nfvLtcPP1V9hllWrJtTWsXyd0aN0srNu8I+Xq5rKwimtWLaTEzBdLGSCWt9JRgHgoWrUSBLQUvKgmz71J0yg2W6oLy3AwPNA8c6/s64srnIIZCG5inu2ZM6f1t0DxBeLxCBOGK8eNkrSjLQIU26wxdlPkuKkRUN0rV6/X71jUQ6UG8eTpszSMACJ6ioDiyNv++P13BgpEJJK7I5Ao4Nx9NsmVZRmBXbv3qfL1FXDiTc8VU6U9iGDixZT1yyZYgbzkcGUClClOvJK0dl5pm+XDBIIP9IJW1QlE88LFy+0wVc6sYEFDwk+aEJYOFjQ5pQClUJBYxrBYgZImzxVwlqffRDF2FDIO+J+Jh8KdfEomAbhEcXn6NCKvgLGWvQIGQAZCmrFYoQCjdI1sADNSkk6dipSJj3GnbuwCv6CwRgzoEZ55+S3tAYu4QR3hSa5WJfTr2joc2bczdBHFB+K7caP6midL1SGYppatWKNO+j17D4QTVeqFU5v3ah9DRHGVh3QpqEJEiUmTevK8TFoLPzSTLQP6tW/TWok0bD8Th/qibPEqdGkb3RP7ANABuAMdz7WTVjZr7gJ9vuwn9mvsZM+99CeNNZfk/4BjE7k4I5Ao4Isz7slZSzECFv8tznLdLcqNVB0UUlxQPLgCp0t5OBRfnL3Kt0epYpEawMfvi3/3rk7bRx6miS9DxzazbPgeT3HCmkQhGkiHNiYoFbOm2AabkqUooaRRuuQjg8ZGYc4TBiQT0rV4cSMQkaAwsaxI5Wor6FwoslB2VcQCnyQAIo4ndaZe3dopBDVxzksvrRYoJA9dpUdo23lYnsHHWoZSX66hWV6DsGP3/lCvtqRatWoYDh44EKqcORFmL1iqZxrQv29oVK9mePu9KbqO14HrnCbIbaRWrRpKdMH3Iq58NpaBkPIE+I5JDL8b4rgUQegrXNCkcc0URcrEjnzfuQsXa7oQsWkmSrClTZL6wEyYYPWqLta9pZHRL79nfhuzJW4/Roo5TJo2K8xftFTztCH+MDIPbuNcIZMyuNWki1KOQBIDLuUAJodX/AhYKcIO8sKqXy87qTxKw4RaucTgSANBOaF8kaher7VKX9IOikqTuJK07bbMBEA6ItzFJnFkto8Z44b24qknUapejIrStvl+sWh5QWPZU3zgSCyOyz4T47YmBQsyf0A7pG5hYU2Vz9WXj9aX+HwpOEFcE3f9kAF9NWWLicnx4yc1pxiwFik0XrAC42xefv+FfB/Wv3toIs8P2SSI6GmzF4SZs+dJvnPhPeUvXxt2uHxqJhPeI+CvMx4Tv5BrynQMICwYuRhLvBqQmzBphAd6/JgRqdg6Y4hF21FQygjEKPyG8Jpo/FyufZ8gpE0IIfgwB1WWTDpLSAZFDW4Bwcq++7YbbHeyzNERSBRwjj6Y5LKyj4BZwBBK9BH0ZybBVWsIXvbPlhciigKXr88RLQJ+cp1RHN2/vGEWwlIknxNgFdYVBBjkwaIkjx0vtHatm8NHCuPL3iVritLaYbV68e5fiDW8xNt6BRSfJMTbFqfY/bGc/7BYb6aw6adNq+ZanQfljpjLGiX3zqRpYYzEG1u1bKpgIAU/ZQCl+fs43++k7RwQmkZk197IvQu3c3zis25DxC5GO47B6jSpKZMIk/jY2PbSLnH1UzLSxJ4f+b8TJs8Qj0Vf9TIcOHRIKTOxkBHQ7aZAWYebfO2GTZovzDreEKpvMTFEyGcm/QsxvmldkT8/+7d/Us+GrSfL3ByBxAWdm88luapiRoD4qQnMVyhFlAJAG6xKCA6w6gA74QLE1ZrNzRy3Jq1flrUK+HNtG5Ym5zEFZNtZ8sI1ogrbjlJuJHVp4SJGWfm0IyzvQ6ciZUL7OEAqTQHHLGAUnhdvAXslGvWbrthNobIPWkYv51JIvPC9GIbarmf5ilV6r1jeCCCjspTf/vGdsGnbrjC4R+uwT9KkarWQer4yFqsKSvNxrqbiot6yYW3qtP5+2YjrHNczPNB1BfhWXjJU3MtMEBFDvhMS4XoAUDF5mzx9jipQFPEIoVWdOH1u6CduapQs0lZSj/DA4H2gwAJeCsSHVeoWALPatmqpAC7CDuABxowYom2TP7k9AokCzu3nk1xdhhEwFzS7tPpLwUsIEA4MWWxDMZtASHAhYsXe7djTxSgUYqZxAXWLFY4ibt68iQCBzqrljJJEhzJJOCTo1737mFCkK1VvLZsFZf2bwrN1b9XG45pF2rq4LFa4l6IKuPCa4v3442w+4Hmn2e+LQvj2F/KdiVXfru2E8aqdxnyxanuKJ0L83CGvQRupBHRACxa0E6W8bdN6tdYpUgCIDUIR0OdM1FaI8ju+f3tYtXtzOHxwzIVcSomOGT96mMZpmeRUl9ze/oI5MDwAhROo5nTZ6KHhvSmztL+8vLwobi9K2oTiEli4kKJw7SDk8+Se9kl+MSh/+Ln3iGsbpi2IRpjUkbr0wZuvtS6SZY6PwPtCAWN9+DzKC30m9FNWfV3oNWQ6DmuJT1ncY6b+L3SbWR9lfV2ehhJlhiJDjhw5ppSK8eutjaVTSLOctrs4JeFL13EQ5eSySSZLmhxPvLWgWTdKOUQ+SJ06UnC9IO2EddzZs+fna94q7sVWUrnniOQ5Y8mj+FCMeVK9iLggDGCm8DgW8dZyXIkW19bTZNJP3Ar3oDEmD174P5B/BiWdoHrPkuXi5k1vIpOLw1IGcovGoVGgKCDAR1hwPDNcx8SJeZ5sx+XNskHLjmHDrqOiaI5o6cEW9cTKXbIwdOjYMRzcsztcUhDbb9akkSpWOMGh8hw5uE+oevZkuGzU0PCuuHopQcn4EXpAKN7h3dNcf1n/NjkPv/txo4aEf/7ej0P+nBXhirEjxKpdrs8zej6XqLdk2KCIL5oCF3UF2c7vbYEAqvjdMDYgmAmBAHSjlODAvr3CZonxMvm46rKREgOfp78jQHnEg3sIt/W1Ere//aZrityXPi+5tvK4X+75QoXrYrxy8brK6l1v78FMY/S+UMCZbjzZVnlHwLugSc+xVB4qBWUSXH8SDOtLAABAAElEQVTZpLh//HgKRza0L31nshA94Mefv0b1S8PhUIjO5lgstB1iLfNBmUepPgLMkbihd5+jlElfIReU3FLK7PGyHiFFEbDYye0FtczEwu4NFyhpL4DWQMZiJdWXcQMB3aplM30Bgr4lPjpUlAJpSljVHqBG8QXSkJYsX526laZyDQC2sOiwvOMK/C9vTwnf+dGvRQEfUqAUkwjQ6XkSGqB2LQIwzhSkdTxs/HVh9c5C8FoTMdRbNm8Wdu8/HOqKVwEe6JZi/XFum0DxbJZIutGeHVuEjUrQ3AViY8BqPO857q63Y8piiaK9ctxIzQc2jw2TDtjCZhfkA9t5GJelMq7du3bQ50OMOF+KMswVQg2oLe26KTIC0hmhbCS/ayZyxpLGBO/FP7we7rn9Rus6Web4CLwvFDAvuPjL9EKeCzMZrI2y6OtCzl/cMbxMcu267OVX1tdlICzGo55YDqaADxwozLv0Y4VFkU2KU6pxC/F4cRawWHJxibuObf+lDgjEtrji8teUqQ9V1hJXJraM63rVmnV0o5y/PleZOCNKCgGJW1uUKFYhApBMrVZdC5o287bEJL2gLBBIHd6ZOF2/Y6ETVwfhO1Isd1KS+L+g+ISly2hD+cNEAoVfU0BkWMDUyp0mCti7yc0ys2NYVndFe/Pq1gjTZkwJoyXlZt+eQ2GWIJ87duykXoRtMlnxAlfyrm2bUtze7PNjGWf+4ndZ1r9NzonypV+qE+E+howFYdyw/k1hgipv37aNejSgjDRLiQkQ6Og3J0yVmPWlKQIYQFqg2klPInUMbwjnggWLEpy4qG+54crQTqpXxYW++X8sj/uNn+t81nn+Nl7nc1x5t+U9z7WVxXhxf9kk+55sRyTbkxG4yCNg1hOXUVfcuQgvs0x5uOyLp/GwzcRI+23dL6n0w4uuS6cOqqCswpBvY9/lf7WIZDtvdQECFSf2gqZNvEpS/Dwe6BSfMMTP4ev2xl8KmRRhFVGEkES0kZQWAxJR6MAUBZYZwCBK4uFqRijHR+6wty7baMlDvATRFfl9cbc1LaqHU1FD+dukniHAofq4ROv7cjzKzPNnE8+uGiLQlyc/8eQoPq7OCTLF7VMnLoMvKExIXgBZIWACQIcDtCJNixxexs28J/ayJ6/XrpW0I5vaWRgAj8FB6ZNjyWnvK4QyeZKehbfkTqGeTKTyjEDxb4LKcx/Jlb5PRgBFYRYvt4ziRbDSfNqRbiz4k/bC9zvk+7nICnAb8lm1hopF6aAl35WvVmTbTWnZui0vFeuoOPG5nvZStvZxRemVqrcsrb1femswbnV7RYhyxlpdvWaDxtRxGeMW5cVPcXjcyIgpVL5ThnH3oX2peDzbTExh2+TBjyPxeWLgEIsQK0eqizsbI/i0TGpqVIlyfA9ItaP1m7eHfl3aa8GBkyfrqoW9dcdumSTVDs0b1Qlz50eoY/iQ+Y1wH3g/KEPIpABA1jDJ0SWWDjI+U9zerrkslsRiX3tjgqa9ESZgwtJArq2OsGKB0F+ljGJ4CqLaxPYsIeyg1jIeBlzO/YRIpEWzpikubxT5RmdV4wlBYbcURjTixIlUnhEo/k1Qee4judL3yQiQAmQvdG7ZDE9f9Sc+FF5RxPcB/CmJoEy9ZRo/ZuYcXv5mq0R7sYAB/qAIUH7E67DeYTfyYorJtpkiYt0rK9b9vbNulhLf41Yt27zg2jSJKx+LM7IfRb5spcw4nEwTlzPVhWrjcSiwdm3saXbmbBRPPibEI1b/1iYgtjRvQ1up7oMCad2yhTBURYQoxLZxaxPrnTFjRhgwbFRYvOWo1L6NwgcHBJAFXzaTk1mz85UpqkvnzmHPvoOhU5tmkucd9YMF3qpFcwFzHVPrEyILah0jcbd7fGy1URn+mSylA1/58xvaIyURmwrSeaGUDpwqbnQsVhMsW2LroLYRm3RNmz1fwVZTJDRAGhJsWiOG9lcwG1YyExcqPYERaC9u5yvGjkx5KqzvZJnbI5Ao4Nx+PsnVxUbAx3/ZBRE/AkAlm8StRt+upBV7iLFlyv+1viLayxgRh2h+UzDWjiXAKYBQDcUio1+sd+KtJ0+dTJFKYNkD3olb73EFfFoUu0kVUZxe4vftLeB4ypBvi0XmxazlVWvXK6IXl6m2dxq4nbiqIZlAqHuLjC7IRW3cqJGu2zmMohI0uAnKt7vQZNaS8QAxXEUUevfWDcMcsbrHSJH6pWs2hyYyXi0kztv72JGwQiYIRw8fDCMG9ghvvTtRJypYkJ1lkoAnZNuOSOma0uc83jXNenkxYdE38txLf46+8FfGbN2mzan13WKhj5NUpTkCqDsoSGeEmO74McM1pYh1wh94HVDMTLTYTxy3kXBdI1CMEg+el79EmbaKS5PTA5I/OTcCiQLOuUeSXFBxI+Djv7QzBQVKN5sYUja+H5Rytrhx0bbZgVy0hWM47s7O9oKHdhIlYS5z3KKRBR0/a0SVSeUnii8wyYA1CXAVyubEyRMBixOLmXSVbOezXrGSSNVCKXHvaffvzPC4IrfjWXIs6S64eU3/4q7e4vKufXv/3RQwS/Ja68TQ6avXbylMqZKCDsvF739YQFwnxQsNGQWfZg1ry1jX0gnAXkECr16zVi3/oQP7iTW8X8fR/xaOOipQz73Nddlvx19jWX6vVbOQ6AOPQ7p/RFzsAowiln1cxtTEF3AYILnDkHUM1d9HxGVNDB73NIVEFolFDFMW7mlKL1o4xvpKlrk/AokCzv1nlFyhGwGfA8xmOHdxLbYSoJCnHHSHqNvSr/Md9zAI6mPHQRKfW2rUSHcbx4+IXrb70zZncwnHY7V+gsBL1FtqgKx82cX+vXuEBYsjpiTimrzATUAoU7WJa0G5Ers2Zc05ibPahAOXJt+xZimNiBsTEA/uYsYGNLW/DjsHS1JmEFLAKAiAG7S1uH2zyR5xAyOWrwyYDW8C/eMyJtUG2sUde/an2hw7IVSYonxVTNPLypotu0LjWlV0ApKX1zDs2b9P3fJY572kWMHylWs1l5h4L9SN3gIGie0l/hz8vrL4nte4gXg4JFVIkMsoznp1JQY9qInGt7k28zMckvscM2KQpCytVYsXJqs2bVoIc1rk3QC9zW/Jez+ouczEB88L7mie3+cf/VhZXHbSRwWOQKKAK3Cwk1OVfgR8DjC9Yf2RTkORhVbCCOS5dO1s/iVs20jvwWrVijOidHg5qxJwRP7WlqW3Zvx2+071mpJK3P1r6VoczzV5xWcIWevbx3wtVmj7sCzjExRc3WZpd+/aURWUti+weDkmIsdId593aNtaC8Rb37aEucsEixTGMaxx7962/WYiL1+1TolESMFhsmSKmOfmU6Xat2+naVIom2VrIzc2FJ9+PGC86tK2i54C170JVYBWSX61CVYySg4BtIQ7l99HV0EfY/nyvItLT7N+SrOkAtNwidOu27g17BOykpVrNkn+diPJiT6tIDDYsa4aPzqsXbchTBJLF5f9VFlS2aqxTC4gCqGICL958qVJNzMlzOSKezp27ETqEuMTjNSO5EvOjkCigHP20SQXlmkE4jFga4Ob9k/P/1wVAlYxZBVYfMTQ4q7h+oIWxWWL9Wh5sSgCquhApN9OQEK83LA+eYlvkFSbTPm4dm6W5+P+iwOgvPKqofzThfnMcXCZR1v7NByuIa6s2eata5C3JuYOZj3TcXgU1omVFZeFYn17K5x4LnSJuNV7SWF5lPF0Sd+C3ckUHGCn7t26hDlSu/aM1OjNBmaj0hHPg+dzVKgae8mEYd6SNWFY385pl2EKnAIEJlT/8fSjWNUAnbC0sfSN5MTas/Qc2n57WX2fu2CRjE13cRNvDq2lkAWyY9fe0Klti7BdvqNEoaqEY5vfG2xXo8SjAIKbSWP+4hV6DJb0LrlXKh4xfiZMNgf26yW/zy0K3ALwl0jlGoFEAVeu5/W+v9p4DNgGpHHDSLnwIm79gebh1g9cpbuwLpcsXyPKeJG+4FDIy1asThVvt+NNIeEehYUoLlibpHhgTaEA9h88KPR/OyUuGSlLQ/r641DaMFZFhBl+T/p3T3GJ69iLeIjT5NTJwgIHcQs4raGswLB0WKxOE6wn2LBaCZDJX1M2V7kptb2ixLg/zcSVC0JZmOAdXiS8xCbkTFMQADf5KCHn4H5aNG2k5BgdRYFQNN5LgSGum3bv3h0GSsoNz2LT3hOK/JWqxaLUTwoHcr3QqXVeIIVr5arVwoOcp9SV1hesXJu3RqX42IYytnO1ENCbCZMCUoKQeAlIa1NWS6zWmgVxYH4rXTtHtZitmAKeB4tXk+99SCaFUwtQ4bXd76CrcpzvkfBCY0V3G5obS54JKccyiTMUdVldf9JP+Y9AooDLf4yTM5ThCGSzgHFBZxKUVL/e3fTzsXtv1yYUP4DZ6Wvf+o9Uisq5rCGsDeq5xuVyQa0C/oFlCiuaF6HlmR4V5Yeiw43KEuBS3Xq1xVquoSkklC88IG5crwCzkXfYeUFKm1QTpZhNiK1y3wB2TCDux+qaOnOT0keyHfAOsUQKvFt8uIPUp8U93ELoHnnJY9V6MTco2zxfNBb22vUbUy5m0rKwjmfNmafnaSITggYD62pMHmsvLqfEmgbZi4waPSrs3hcRWJySMAMFFmC56tO9kx4PoCxKL4pykj1tJsd7Hm8/qSFmmlLAxeR100dphd+UAb8YsyZiya5ae0noIOxX7cXFTziBClqD+vfR2s3DBvYJM+ctUlT8PrGCTbg3fltMMCg0Mk5YsrqJhd9U4v3GdHb52OHybA+lFLodmyxzewSy/wfn9nUnV/c+HYHzVcCZhgkld+sHrhbXa5Xw0Gee0CY+DpvpmCNHCsFOfj9KCyVFnqwJL0us7OmS74kQm4O1iA8KD3eoCW15ieLCBkCl6UmiqJk4YEHzgZgBqkJyWr37NpsFByoWi5UUKF7eFgPH1Qlz0jAplYdbGAsXlC3XM3hA7zBHlAHud4or4LrlY7mmdr0szVvAd9ErKSHG6mP0sHPmL4oU6gwBaqGMsZZBfY8aNljuGWDbWcmVHiiIYKF4FTIPs2LzFywIp+u20r7NRc5EoEqVqkIGUiPMmLNA6RpJ6eJeQIkz0Tkkz4m0npPOU+CpPylZaeInPratLJeXSxGGN96dJFZ9j1BTFD+u5Q6tm4apMyLKT9zNjOWaDZvCPonzHpUCHGOkclNNmaABsmIyBxiOohZLlq1OuZ83btmqwDw/ESJ1iwlPIpVrBBIFXLme1/v+asmFzCSktZyvwLdr4uOwts0v43Fk2wdAyCtUtsetac9slS1WTD+4TUklIuaMUOWGOLYJyhqlSioSxRRaSyEFvoOwRZlhEUeczOuUIjLeBy9sCC/eem+aul/pw17iKL92Un+WNCVjuuJ4H1e166gpQLEBfXqqBQc4bfPWiOvYYr7W7oxYeKb82WYThtVrN4oyOiAKs7fE6iEwiQTeZBPIOtbti9Z8Ag9o9JVr1usOvAeGCMfip08TJhcm6dZwpICJnZpit3ZlvbxDmLC+/e8/E1f8kDBdiVpC6N+zS8bTcC1Y5lOlJnBLKV25VfKYeTaUHGTcFMAmMfZlgvLmWSFm9TNpuum6K9RjkbHzZGPOjkCigHP20SQXlmkE/vjc0+IuXaSpLzPEwgRshcvXA4wyHZdpG3FDLChcmeYqzNQOSynuhrV2kOODwPWxRVNq1sYzW50LzHVc3K0mBjaydZb0jcubD8oaqxbxCHCsaBPPJQ3i+21xvdPHCfn468Tl3LdXd3FPz7VDdYkCRjGDeKbKEpb1SQFIkfqCMH4mpmBt3WUP6SbjXra81/3y3Lx49/p+sb5r12wamgjFpNW5wJU8bcbs1CFGEMIGPCO4cs2F7ZHTWMA8Q4BZxIPJc6adn2ikOi3DLxSqYEyNrxwli5cDNitivycKXPuMLXH1vuIhmDpzvnoBhg/pp79xKDOPyqQI4XqZtGD9I6RajRs5NOzdvz8tLq87kz+VYgQSBVwpHlNykTYCWFxYrma9okSgTSSH9ULk2ivHhmeee0Xdf9mOx23r8219O5Q/L/vePbqFlavXalpUXHF65R4Ha3l3Lv2ekL5M4kq/SFtxUZr4fjtJHqmlHjE2g8U1S84rCtJfG2UE9+zN1y6IDeMCjUt7sa6YqIBOnlNgjQ8f0j/VzFNY4rK+TFirolQpqSRTYKlZY6z5waIkmazMFKS6Fai3/YQBsNBB+l5SRSz6WoKGlgnO2VMRaKqXxH+PHj6ksU5ioXEXsncvM+bESZkg8IywFpdKWIBiCDYh8qQXdg1luWSSBKCPKlG9u3UQspJt4U1xSXPdTJI6tG8bRokyPi6W7yq5LmpAk5NN5Sq7N+Lx/OYPLIe/erfGjrlGLHzyw/mNPPLgh8SNX/hMyvIekr7KdwQSBVy+45v0Xs4jwIsKVOiFyk3XXqEKGErIbFKcArbCEIuXrVCgDBzHMBx58W7Y6tXSCT3iStUra59yRH8eMcw6lqiJR0R7xQZKG+uWg0Ene4lTTi6W+GxEqRkhp3n5Y6WC5PbiUdv+olD2pHGZhcYx5MES/0UIE+DK3yBjhOLAgtsoKTQmjQRIN6UgPtqxS9ewcUuERu/dtX1oJzV+d+3cqSAv2qOo4wqUSQhgJItDg3jn+lasXmenUBS7KeBs4YxU41J+wTuCMLHJF1S4oZSJgU+XUALW+LyFkSeBdseONQldu3QIu8QKBlfQQ6g5GdPRwwaxW2WTEJaArsaaxopn+fKrf5WqVVG83Noly8oxAokCrhzPKbnKchqBK8aNCN/62hfCr/7n5axnQAFnElKSvLLDwkIhA7Yidgfqt65U6sHdSGz1sACEUFDqxi0ojBCPFxsSmfN5wBXrcWXtXbbe1bx4eboixfLlWolV20ud/sjphdKQ/GdQ5MukoD3kELj1eaFjFaPMjkis2YufYJBKM27U0JRljQL3skPK8RmZBkplwaIVqd0weSEoYiZRIMmtdi6KBYmsxSahqViG6zdE7na2wx1NHBc3LxWVKOIwVcBsPbt3lnMs0320M2XLdwRr0lLHsFDLU3xMnHvFIp8zP1/LN3JeP9linVAI9wsJyqRps8V93ZXNYaWwfCEoXghfAGjBEw6eAO8LFZOoCRzC1dou+VN5RiBRwJXnWSVXWk4j8OiD94aJU2cVKShvp4vIMWytcAkAarPRJcpmS2+hBbE7PohXelp0QZQvoCHK/KGQR4o1BzkHLtgZBWAdAEnk8YJoBtxKJSNTStqp/PG1blFuJihuyDJmz1+ksUGqE1lOLOc1AZ0NmxSu44ZyHexDOZlHwYoqkIKVJwUVdu+NUn6sL/rBNb9SLEyrOBRPB6NWMAA3FGs9IdjwckwsQ66bqkggwQGdmVQrCPySmjNx5sIwpHdnuZd0C57wA/WIEcYHZWsudhQt4ic0rHtKUWPKYnt5COOKDB7YX8BiK8LSletDP4kJWwqW/70QImDCAwtWP5kUrd24Sa41AowxcQKNzgQM2k8T4snHd0d0ohcCQrR+kuXFG4FEAV+8sU/OnEMj8JXPPRz++vakjFcEyjiTwL3sUcIoNBSKKQE7Js0KK/AjAxrig1vYgENGysBxfIfRy8vQQX38apoF5XmNuS4sKeLiKFhPlEHsFEsMJUp8FAXJPRAnbda0ccpdCwWiCdeJAtg9O1LA3OcIYV3CjYr4+DgeAM7tAV7NhEACBXxI0puIH8+QcoIIdJGMFUUFEG/hA9jq0rGt0mS2ap4nk5OTQnyyQ8rzjVKXLpMMkMHGh338RAReM6/BNGHjGj64v1qH2nnBH5+SFAeB+XZl8Z3x5feApct94i1gEgXgqpPE3/OEPIZ4OalppMZhke8Upqz1Em9vIy5379Ugdt1V8rVNmOgQIuDZMBHTiZrtTJaVZgQSBVxpHlVyoeU5Arhe+4nViFs2Lh7g5Pfh1vWCAsF92ER4fM2SZb+3VD1oiX1eWeNeJEcXrmisYdyL2wqsaNrC+zteStihbIgPL8gvvFaUnglk/jPnLtRVGKO8kLKCxYpy5uVvEwgUMHSeJjsE8OMFywuqySXLJJ4sslsqEZk0FQWL9WZypbj1qceLq3S7uKBR2Ajj492uFM8gnckQ1SgTc+tXE4uwYYOGYeb8paqIqIKElQ0i248tbn4mAAZew1q3c7EkfIAiZFLCJAUFiHUMtaO/Bz2ojP8Q8/3wnTeH1es3h0H9YMWqIUUTdoSOHdqHhZK320rSjbjeY+JF2VEwnpC1bBf3MtJDJkpcL+O278ABZRXTXGe5XyZWjN93n3pcJ1HrJJc4kco3AoX/tZXv2pMrTkagTEfg4Y/dk7G/eHqNNbJaxLbOEhciCN8hkvJDbBTxICzP5cs+j3Qmpveu1NR9Z+I0dYlT09a7nfOXrNAcYaw7rGNioCbWDnQtlXFMqgpxhUlU9H5ugEMZ92Wc2cvySmlPdSGfS4s12UCUGJMRJitYXIMKzt9cFImXbaK8SWdCKTMZ8KlXKEvylxHSb9Zu2KLKkXVi51Q0QphQHCoAMXVs20z5pXVHjGzC+j52vDB9i5Qs3NrQlhIjJjZPnJu4Ma7uJRIjR/EZWCvqt3z+3ij5uVOlKEONGjUlF3hR2CRsVmaFG0UmvOQmeCeQfr27axzY+J2x7JmQQZZCyt1JAbExvt/8/k/DPbffkDYBsr6SZe6PQGIB5/4zSq6wgkbg3g/eKNSN08NLgir1UjULZaG3On17LBZoKKF3HCIxTNyLVqUoDroqjqTDrB/ft2fswqWJaxhlQjwaog4fR+Y4ENCcn+tAAZl4d7dtw4r0LnRcnFjIwwb1VWQzgDXcp4CcEPJycQEzQcHSNLISuyesaqx670rF+oYsxBivOAdFJWYLOAnlU6WAEIQcZ2LG7Vo3F1T52VSe9SWWFFxw0UwIuKbm4j7v2L51qCfXM1mULELe7+JlK9UVDXuUCdeK0jMEu20viyXjD2tVviDKZy9YJJWOxDKV34N3yVtIw2K8KFbYvJiMwXqFMK5sZ9IFahrPgfWB18RqP6OEP/vVf1FPQllcf9JHxY5AooArdryTs+X4CNx8/RVFFHA8XcdugUpA2QQLBYE0BMF1CCjKXqK6Uf5YO9arKzWj7YlqFlts07ZajJN1FOZ0iZ+CIn5brGYs3CVSqxdqRyoZETPF4iRuCkezF2K/XrRUocSFIYOYX6BgQdoSCwZdjKBQvdIC4DRGLP2Fi5eLwqgjlnFPjWejxBEqKmFlc89wNxN/jiSi6EAR7tgtVmqrZmFg/74KVAphSxg5uG84LkqG4zZs3h769eig99hGrFrSxbhPrgWQExMJ+mU7DFlMQkxQztw/Eyhfto8CCShgPBN8vOVvx5ZkiVJcIbnf5Pni9SCWT95vdSmLyPWZ9JNxYVJmYvF6vw0QFZO0LVK0ATGPBgp2pgDzAO+BuAe0d0LSzwwBD7kK4QbG4MkvPqqeDTtPssz9EUgU8Hk8IyyebFbPeXRT5k3JAfV5oGV+gvdRhxB8QDwBu5WJhOGKCK7emqJAMkmcQpI2KF+s0NOn0pX2iZMnUl1Q6ccLCqSIAhYLy8QUnUfz8sLGRY2SQgET18atPULAT8aaxfFYzYB6VopFSjGGLeIaxaIGGGVCfNXI/tm2SZRh3CrHGia2iYuXz3Cx1mxSgRVnE45WLZqrkkBBco3durQX93CrMGHqnBRpCOfoJFYsw43VXL1Ake87cFiVJOlRiK8w1b5tpOyPn4jizNqg4I/9T9CfRxx7hcuEApd1cYIyJdUHRbtuw2b9Tjx6jjxTrFHuycaJykWrhGrTC1b5JY6UxJSrn0wxGUFIo9onYCzW4ctGiIuvlRSs1nKdxIK5V0sFswkROc0r5FkSWkik8oxA+n985bnu5EqTESiXEcAS+fyjD4QnvvGDrP0T18RVOGnaLEWi8lI24eWajeIQEo7TBaxO1t4DtOLVjUyBWFuWvn18MuiMLFWsXOc6eXGjJLZtj1KirC/c0gDGcI8C9EIpIihk7oGc07jy3y8vfwBMVk6P9j0lZouFaROW5avWaW4x+7yiI82qR7dOisi2PNzlQjLRv18fsRpX0lwFi3ay0E0OkNKPuyQG3kpAZC2b1AvzFxYqtXoSi7ZyijYeBu7Casclzf342L1n+cItbsLkJZMCfvpXz4d3hbZzp1ilxPWpNIRY37BupQB0hcatcHTXSxW2sHOgwHfuPaiT96YC0Ksl5x85tJ/m8V552UidgMBj3UdAbtPE29CrR1fh655uh2ta2BpR6k1lQoQAwDog94eLnYkBwmQM65uJVyKVZwQSEFbleVbJlVbQCABqATlr4uO2veXliKUH1SMxu3gsFRRzoavVeoiWoIKxZnhJ4lKkvjApKLiQEbNoo9aRFWjfbWloX9bNlWn7zkplIRMUR506tdTVyjaUCMAkBMua+4B1CsIQ7y5FgV0xbmRYJHHMuOWPNe2VL2513J8HnbsVt/BpQWgjHnxGTjFVfkz5agP5g3XoxZTa/Pwl4lJeF1rk1RUSk6OpCQJtfUzZUrwMab1cihUwKSCmCuczwsQEdy+TDoRnC6gMy9Xfu+4s+PPCy69p0Qqer01O2GWWKuczS9aQ7TxT4uJRZaLC3lCMNcTUOXX8SNiyeXN4451JilzGM0H1JuK8jBVeCWStPCsvgMi6dGwvbSJvCZ6K5k3yRBFHvxvaMm5Y6IlUrhFILODK9bySq62AESB95A//83S4+8HPiQW5KaVIKNmXL4QK9tLnUkgFsZJ9oJhRdNmEFyzF7XsKxSDuQuKTJiiMLQJ46taZeGcD5UPGYu7WpYMqEMr1QT1JDWEUwn5xyxZRwN4Elo5xAXtp366VTBx2aoEAq7KEGxWlYS93LM9JUpGHyYUpLOuDazTBPW1VieLWNRWbQO9yf8SjEa45E2rc+rOld8uyLfICFE4som2F12GWLwqWsEADUUq4vQF6IUyIDLCEe5ZnAFjMYvPZvBXwLiM2IdAV+WPAKdZRxihDfg+9xXol39oUOpMcQ7j3lgpIS5ev0UkAx/USN7PSg8p3wxd0l+dO6ACJ8qyFE1vuA0sXhrLadYR1TYhLENz+XTu3Dxs2FgLL2M6kK5HKNQKJAi7D5/W5z30u5OXlha997Wtl2GvS1cUYARThf373H8JNH3pEX3woFOr7euCMXRcvU1JDYLyKVxOyNrYESAMTEu5DlLD1x8saVzAfX9nIjmOJy9liqqz7FCPWrS++IxYfjNaCxhYBSqF0TXjZG0CM1KlFS1enKDBPF4DMUDTkDds6x7Zu1TyFhm4laUXt2rZUa9usMBQ6FiJKYZVYsgho3nOJpR5ZO9ivjsvEA4Q0NJfQTuLavkyU6WEh9iANiUIRgLyIw1oRCopjwM+NEJPH63DsxAmNV3tiEh8/t3Oy/NKnHwxf/vr3wkGZRFAO0bwLlkJEG6gzUcCMJ+cz5cs+8o4ZNzwKpG+hdLF0Ec/Jbej4uLeBSk/TJH2JSc9V40eGCWItM+kxAURGm8Fyb0xPmFDtFM8MqVUXUhnM+k2WFTsCiQKu2PFOzlaJRmDMiCHhI/fcKnSH2zQ9Kdul8+LF0sLVWFIhdofVhAUdF+9i9fuwSL1bN56Sc1bSdbzAnoSrVV/u8od+4RguIoJSokoRytMrAvJ5cXPiymaygBA3bitkGL6fSAEsUWUwVorMYyUukHKFKF/vJjWXrXZU8MdPKAb37yFW45mwWdy0CAp3wuTpAjgq5MUeKLHpqTPmyWSnoxYqIFeZVCkIOrzUq1do/ZMWZRY/bXzhjWwFGT4kKWkv/fGviir3/frawuaOZv9ZqeBkAqFJG0F2T5wajTWTKzwpTGJwaW+UCYMJChoxKk/GiImUeVk4Fhc8ngG8JyZY9VB8UqGKZ0xlK54R3ocPXDPemiXLHB+BKjl+fRft8h599NHw4osvps7/6quvhk984hO6/uyzz4aePXsK0X7dMGjQoDBr1qxUO/sybty4sHbtWlsNY8aMCevXRzGa9957L/Tv3z80FCq622+/PezalQ6QSR2UfLnoI/Cxe+9Q1qRzXQix0A7t2pyrWdp+ADuZxLt6/X4jnbBtKwTwdPXlo1Xx8RKuK+Aj2KrIrTX2J6rpYLlDG4nSxEqPC57rhUuWaVqPr3yEGxW+6s1SgccExLMvQAFYK1/SkBDSqCZNnyOx06mhs6CBEWLCuOZV0NRF5KzGxTlvvijtau6NhPuXc6F0LT6+T2rfImYpm6IyTmjrHqvVJO7WHiisVMR/QYZHpROtZeESRfnLH38rFSaw/vwzML5pjqI0oLnsz8h1m/uZfQDFcMFTanDn7t3i5YhSjdhHDJzn3bJFUylP2DoMEbrRKy8Tuk25bxPzbIDkBqWPtQ9vt50fLwaTLaxpQ2Pbsckyt0fA/dxz+0Ir+uqGDRsWfvOb36RO+9vf/jYMHTo0rFy5Mjz22GPhueeeCxs3bgxDhgwJ//AP/5BqZ19WrVqleZrx9Z0Sg7vpppvC448/HpYuXSoxqwbh29/+tjVLljk2Arz8cXmSb9lCAEvFCQjZbMoz03EggzNJ1Vg6krUxAgdbB9B0+LC4QMUKogQgJCL4I0FlY1FRfclipHYMHMN9e3WzVbXCUaCmpIyligaUHfQxUBiwUECkM2HloQT2ShqPicUzWffANRsTXLYAlYgL87lGJg8AuI4fPSy8yHU0Dk1cGXfxUCH/wEOA7BKlZddBrVxk377IGjQUNF4KCkaYGKEF6yhp4uFMPvBUMD4A0KDXjCtuO56lnSPaFj0rQ56joDu2bxMeeeAenRyQR801gxPAMvU0pTwHBPQ17Fcof2o0s8TKJwSA4gS8d+0VYxXo5q10U+bdBQ8AmQrPCrCZeRegT7VCFj68EF138jeXRyBRwFmezm233RYmTpwoL4iDMhs9Gt58881wxx13hObNm4cZM2aEgQOlgo24gXr16hW2bi10KWXpLrX5lVdeCb179w4333yzuPbqhCeffDL85S9/Se1PvuTeCBDvJAeV+rO8NAEtxaWtKLZFS5erOzC+L76OBQPy2ccMfRtcxbzg45LNNe3bAdYyIQ7bpcASZRtK4q0JUzUWCXAMq7KeeHHMiqQNNJXiAxWgWEcl8+goipYCCleOG6kxX0g3cNu2b9Na3dZWMYljjQGL74cdwAwLG9ku8W0UCG5SPvBF47aHPapKAWUmFjMpRlBtEisnxtmgfn0Z136RxSrKh/h8f6FqRHx+b/8+3VXBk2+tJaTkL5SOuM1x/+INwFMRT0Oin0yCUvdCbN6AbxRD+KevfEYmCV01TQhFilJHAQI+6yMxYRPixAjvC7i0UbaLJB7MsmatGikr+9YbrtIqVszL4MXmt4ZY2IHqWExEUPw8s/rCFGZi9wRi2trbvmSZuyOQxICzPBvcw5dffnl47bXXlLt11KhRobGUiMMd9Lvf/U4/ByQvskuXLmnAmCzdpTZv2rQp5Ofnh+7doxeI7SDu1bq15GUmknMjwMsV4cXGS5PUnb4Sc7RqRVi+l1xSRUFIxBpB4xoYyN8ML05e4sRaAf9gvWIRxoFbvOR5aePSbFC/rrqWiTc2kt8k7mVTAliZPteVc3mgFOs+NgkwyESLK0gN3gMywfSyUuKIzZo2TaVGoeBmiAsbReYFMgiLC9t2j+qGAhI3OJY4/NdYhPH2dhxLAEUmvqQh8WQbn+uvukyswyPSz1qxJJuoFY2yMopNSCrmLlii3Vg+LJYv4CedWBScIOUSl/VsMWCajhs9NECsYWhviEM++qFbRfF+VqzPejqBOChAMCYeByRPmPQn+KwH9++lACz6IGcZYB3CZMNivChMlCjFF6w84Wcf+YjmXjNhwaXMh4nSmvUbVXnz7sEFzfNAzAWNNW0Ic54BFn6mUIMelPzJqRFIFHAxj+Oee+4J//u//6upEHxH/vu//zu89NJL4eWXXw59+vQJxIa/+tWvFukF6+K4vLARZq179ohlIYJrG2X+xhtv6Dp/tmzZElq2TAeRpHYmXy76CICAfu6lP6WuA0uOD3VzsYbJA52fv1T3E4/rLfVcMyngOLMUL2BvNdoJLN7JfoBMll6CAo9TSI6UF7QXD2piu+Xd8uJfvnKdb6qpMKaobAcWXZtWLcN7U2bYJl0eORr9lm0jSuLosaMpjma2x1N6WovVqeAiadxJSEGKAs4KTGM51ly7UT+Rm5nvLpSrlrJukz/EXK3oBBMVxqqaY5sCAc7EiYlM3CIkto0wJng1sgnW+CpRgrjsb7vx6vDxj9xZJLVrQN8e6ob+zYt/lCIa0xUZDRZgv0xsqPTEBGCyWMYIyhHPB5MvkMpP/f2nA2CvH/38N0I3ySSnhxaO8HzfkJX0FnpQm1jBL07cnfQsJlfEsYnxIyhdrPw3352SKGAdkdz/k7igi3lGxGqnTJkSJkyYEG699VZtiSLt2rWrKl9mpM8880zGlyiu6unTIzYbFLa9aK+66ip1Yc+bF+X8EVu+7rrrzsuKLuaSk13lMAI3X3+lvqzjXZN+hPViytf285LsLy/TuBgxhN9u1mzaNnFVZpKqTsHY/kLsbbQlroAtbkxpuy6d2tlhqSUViUygQVy/eYcoj8MpOklLvzkqcUyL5dKeSQdKzru4cR37NriyEWgTvfXNNsBiuKBNzJInrmysWuwzuxhlSpwbVzJiObF8J7aMeCsaRYQLl5xZTx6Ckrpy3Cihs8zTuKlZjtpB7A/K+aVnfxT+9sovw+ce/WgR5WvNUeQfuftWYVD7mFq0jAHFJiizGK9+1bF9VPLxuivHhPvvvkXxBV/+zMfDA/fdoZYykwkft+caiCG3FIufCQwTPNzoeAUaimt+nVSTMmGM8cZAe5pI5RiBzP/plePay/0qidGOHTs2jBghVWDqRYjVe++9N+BGBsVMLBcQFjHgIwVAC7sorOIvfOELoWPHjuH3v/+9Kmz2wbX7rW99S/vFDf39738//OxnP9N4nB2bLHNrBHixXT1+dMaLMuRrfCcpI2Zp2T5v5dk2LKy4ZFLUtKFGblzYRvwZty2Ws1lK1s5oFhuLYgNwFL9eXKYIimnT1t1KUjFTCkjg+kQM/XtYULmQdKBsEJC+yE5hBKOtKd7mTSOgGusgphFAQ+TqemkoCHDYrkwOCrUnwCzi3D42DugLRYqlx/b2bVrpIR7k1UFi6ojFkXVF/kBigdSX/10s/ZukNCAK/I6brwn/818/UPezXaM2jP0hd/fyscNVScZ2ZVwFpPbJh+5VQg571nggyGEeLaEGmM82CNCqj3gZyAP3VKPXXzUu/MfPnlUecgppDBM09Aihq2wt6Uy4rhdJ0Q1jGLOT4/b2iGqsbR7Pq6+/ralZ1i5Z5u4IJC7oczyb559/Pq0Flu2cOXOkmPfu0EhQl/yjPfHEE9rmhz/8YaotgC2AVofkn4R2XkBRP/LII4Ky3KfEHX5f8j03R4CYYybB+jqx/2SRXSg2FAcxY5QWMb9MqGfq1RoZg3Xi0cS2jaUpOb+N/kFoW6ECyBhwc7aTeOUeAUuRGwwDFEoQy5KYJkJVHSwl0mMgyIBtqVr1SGGyf9qcfEV9WwoMuajq/hS3KmQYlr6Dqx3OaK4Bg3fr9h16vyB3vTWeJxzInKtPr66ax8tYNJNYOZzKKFaWxKVx6ZPTCm0nBRxg2aIsIW5WahCbRdlZwGGz5+/nUlNVpG77wFXhsY/fFx769BPqdiaejRAK+srnHg5jJEe57+gbdRyYrHBv5OeWpVw+doRMElqGr33nP7VbrHzGf4pYrMSe8QZ88JZrhS+7e9ppeY88/LG7dQxQ2owritgUOY1h+TJAF+t+EsI6rnarLfzKn94In/7E/WxOJIdHIFHAF/hwYLw6l+D+iytfO4YXQEn6sPbJ8uKOQLZYYa2al0ocMfO1UTydtBNco1Qbslidte4iigbFAwMVCg4Q0W4pzxcn2LD2cQvPtptVyjrIZz6kqGDx8gFRbW5dXuC83MElXDZqqCrmfLGuUI4jh3ULM+Yutm5DJ+Ef3rIFJPAlGmPlPLhVEUPo4vKEDINyfNynpTPRBiXNpAFlTL3iugXXwbGwQR2Sc+6Qa0FaNm+mChEXKyC2NoI8t5QbLGOul1xZrLxRsr5FFD2pUMSC5y9cKvzVI8SyvVYmHw3CE194JPzov/5bkcSAvx788AcVvAQY6rGPf1jHmzGZ/c4ret96AWX4B4X77a99UQtbcN14KRg7LSUoseprLh+jlbHipyR2THwYwJ0n3bCJTH0Z60KHc1SOkgkcYww2wLN6kZqWSO6PQKKAc/8ZJVeYAyNgiiJ+KTVr1IxvSq1jkaCcoAdEeBl7wXo2BK/fvlg4hduJqxUeaHJRcWWjfLEOAYSh0FCy5Lrulxihj31aP14pk75ioDAj/Kedlg0UxYDyRRYIkIwJAUqwrSjAGpdWC12lbOC6jZGViGIwCwwuZaxerGwQz0jH9h1StJOs404GGMUHKkUTs0w9ExggKhNSqaZOmafxTBS6gZKot4v069Vdkb64iEFagwwHEIfyRbD8brz28vDw5/8xDOjXI9x/162q3AklPPrgh7QNf7AuUYrlIU2bREr480/+i1qll40eJqjm9eH6q8eJW3tE1lMO7Ncr/OI/vhnu+8SXUm04FgYunvsq6YPxbCL9g1CHBaypKHwmGqQg9RHAFlSb+yUEAgCO8Ukkd0cgUcBZns2WA3F4S5aGxWxuXLtKqJmMcDEjVHl2YellEsu/zLSPbeSFXiEv3Dh6mX0+Bsi6CS5ZPijvbIAaiBcK+zSokvUgNqsoVhNewvRlZP+2fePmLWIhbxMCiX6SUrVQwUpDB3bR3VhQ6zdsUHewtffXe/zEibBbJhZYoCZ5Eof2xJrEo5k8oOBRmgsllumlrmAsTHyO8/HjJzWebe5v3Ovmzqe9cSkvWb5aiSsgIPm6IIq9/Plv72qq0Hf+8Uvhrgc+q56ATz50n6QR3abK2I+PP66svnM/TJCwSkcLpekpmUjgjfiWWMbnEhDjJli/FI/YsfOwKlgmGgjKF3c2+5lc4V6PJnjRc4cMhFjwwx+Lsjesv2SZWyOQqIcsz+PhV/aH46cK0ySyNCt281NXC/ijffVi2yQ7K8cIgPZ9c8KUIhcbB1oVaSAbyCOlnXfP0i4TAtofbwrIb7PvBoJi3ela252qAMQGLD2Ur1lHbMNqtDrGuyQ2bEJb0MYmKNoR8ElLyGSpoL69oHxx5ZpV7OOVtANhjEWNVBdrOi7+/utLvjNCqhZkHwh5tRbbxuL3QkoWADHipVjPq9ZEvNe0ef2tieEn/+9/pKDCQ3qPb0+cpoe+Iek5VKvCHf45QSyXpzBZYXLzgWvGC1q5roK//v6zf5fKDy7u3Hg/SDUCXU88/9N/9+HwwKe+qoeAvIc5y6opWT9wi+NpAQSHax5sAGlPH/vQ7WnEI9Y+WebGCBT9r8iN60quIhmBnBqBqy4bFZ7+1XNFrsnSfIrscBuwfMaMGBQmS5k/L3GF5ffx3QBHfjuxXWXiKjRw1QrFdQmuoBEEEULwAcOSEV9gqSLEsTkWZUYajilgzdWV/SCmcT97AcwFaxXKFGsfSxr6RyO2gCkLVifEk3rAYFVT3KKkJnGfDQqyCHzfpNOYGxpSCaxSAFhnBDzVUq6FdctTZgyvEiQ6blykjcQ+J02dpXFhENz/9N3/DK+9MUGAWnmqgB958J7woKT2PP/yn1OnBOT1lzcn6PoD931QSU5SO8vhC6lFTDJw1zO2KMaSCK7+Lz72YLj/kcdDXwFrgSPw4Ys4kp0+ifHDFjZjzsLUKZjIPPXdH4VvixcgkdwcgUQB5+ZzSa4qx0YAFyiKxAAxdnmWv2rr2Zaz5i6SlJIWUtgAUFMk2dDOtj+OcmV7z26dVCHCxmWCC9JivB4R3aVTB1GyG8VVHbmJIa6AeYv0FZSfCbFq0nOgNiTdBaXRVsg4GolLGcESj8gfqipaGmpO8oNBIvvcZBQ+likKAhc2sUsEsNkJccGiXEkrYj/uacBKWLCAwWB96tq5g7rcUTYAuFDAuK+ZNGBRviUeCNKRsOa5D4QxIneYvF/QzlwDcd2f//oFUco/Dv/wpU9qO/5YLB4qS299pxqU8RejE8U9fL5CDJu0KaMA9cdnA+ntEXc3fOXGvMVze1OoR7/42F5NU/N9JN9zYwQSBZztOZBTwSeRZARkBLD+sGKMfckG5RJRyiURXLn/8uTnwz9/78epuOm54pBxZc95zGrG2s0k3m0NOCevcQNNc0LBIfMWLpZqOq0VJQ3TE4JVjYucmCpCjiouzXWSBoPSRIg5GgIai7qPsH0tk4IAPWRCYIKLnbi03RegKVyw3Mfk6XNSYC9r75fDxM0NG5QJgCMj0CAmilKFgtKQ4JQ7xDoGyGbOAJQ1143reo1cBwqe2LYJRTWYbKDcsTJzXX74rSfD9/7z/6URvVDswShQ49ePwj8hvzMvPHe8B57e0+9Pvl/cEUgUcJbxP3PqZDhTyhiwJGFm6T3ZXBlHALKEX/x3YYlK7qGq4zDOdE+89MmzhcP35uuvCLBNvfi/f1HOYFzCKFKsaBR0XHyc1/ZZLBRUNuAuFAp5uOSzQuAPQ5UJli/uYixZSwcCvEV8cJRY9FNliaCwPEAL6xpFhth1GdsU21DyoG8BisFLTH6rtWM/50IZsx+eYvojLlucxMcR5WsKE4uYQge4tbdLKT+UMcrVI8hBOBMvhs4R4goswe2SdvS3dyanTstYMTmAU9omMqmdOfgFpfmzXz9f5Mo8YtzvhEGLikq48z1T2AuvvBYgCUkk90YgUcBZnsnZ06fCWSqBl0I8EX4pukkOzZERePKLnwy/E+WJYjExa8/W48u7b78hYMmY4P40tyiFALA6SQ363Fe/qWhXa8fSyC78NnJnESzxplJD11JzAOtgrXoLGNpDFCupQrjQKSNoucgoToBYIGlnzSu0ElGe+/ZFEwMUnxUu8DFIzo87FwYugEbkMWPlkg4Fsnmv1OydWRCLfEFisLd+4GoOKV5EMcYFdzuKnwkDgmLBtc29cJ+WhsM+rgWqxpo1JPdeilZg9dWtW1td3oCRPvPwRxSYpqxUw8/fJcw5LoZ84qN3h/969nepU586eVonTKQcIfz+uKemQnSybEU0aSIM4EFaHA8AjBzqRHJrBKrk1uXk0NVgSZT6k0P3k1xKqUeAykQv/PKHabzG/ESKkw/efF3W3eStokzuvOU6denGG2ZSwKSkmJxxE0TSXQDiKEBLGsC17K1aEMvEbI22EYWK67lpXmPNL7U+B/Xvo+lCFBJAqUMQgvvd6vBaO5awPGGNMtHkXFiVTAI8HSb5qd76pQ2IcizYNHHjSLz5J997KoyT2HA7YZX68F23aD6rxapRxChm8oPNlcxEBmu7R7cuwpwVKZpDUqmIODR9YeUTG337vWkCQGucdupcXvnuU4+HPz3/c5nEXBUuHzNcY/0o3yvGjgwA73A7nxZ3PQC/XXv26q1AZEKMHBc9v4Orpe7ya2+8l8u3+b69tkQBZ3n0zLBL+8nSdbK5Eo8ARBheqRa12wpvDsSwoXgLt2b+9rgQ8sdzjXmxesHa8YXmfe1f2mGZU3pPiRuqVVfGKOK5CMeSk9xU0M8mFDiIx5mNMQtLs3uXzkrmQO1d0MVUBfKCFcw98n9CTPibT34u/FaqArFugrKAwek7X/9SmDvhD2Hnyulh5lsvhSXTXld0rgGVPJkIFiux4yvGjQyfffijkus7RvNcASWhwHF3U9cY4BmKFeGc3F9tUc5r122y0ysy+rHHnwqf/NJTAVcsVJnnyt1OHZwjXwBx/frH31FkuHE/z5VYPmEHxqpOnagYRRMplwprGLFwijXg7aBgw6Sps8Ozz7+S8EPnyPP0l5G4oP1o+O9n5eVX6hhu4YvId518r9wjcM8dHwi/efEPGufMlCpkd4cFV9JYI0T9WJy8PE2ohYs7sU7t2sp0hMV8QnAJVNZC4dSU3NrBwsRFjVysPVzaWJYL8pelyhAO6NdTLV2UO65uXNbwQRMXxmolVoqVelQs6yED+qYRf1gFL/lHUDcwCruzAKLIpTWBx7ptmxb6sv/G936qkwD4p5GugsL+yD23qmXKxMULoK9HHrhHY+Mf/eSX05Q29ZJff+s9rWREHvGH7rhR0ofe05gvHoOJolBMmChYzizbdggXNs/E4sfWziYFDUQhVVZhDEwA0A0X4Bo529wr0q1z+zBVnim/GYTJFahzJiwACJ99/n/DU1/5jO5L/uTGCCQKOMtzOHP6hICwShkDln+ARP7vjQCpPp8STuF/f/qZNHdr/E6J95ZUSKV55IEPhSe+8W+pQ0jRIZZpMmbksDBtbsTFbNtGDO4bFiyPFGLXjh1DvTo1lU/a9tcR5UoOrwdVkWMLKhmlhFuWiQLu3epiNXtBueG+PCDXgQCMIv+3u+TdrhfrC0AYxw3o0yu8N3lWeEcYqRCqOWGtPv2Df1IXqW7M8oc84MmvPx8oHkDxhRlz5ovL+VYlm/j+j3+pE4u/kzjoR4VQgjxslLNZgdYlhRtMAGsNH9Q/VYPXttvyjNBcVlYx1LpdvyHhLaXKwFlMqihcQZiBtDLc9BvkdwQWAKBWZfMA2P3+X1wmCjjbU00s4Gwjk2yXEfjHL39KrTdKyGWT22+6JtuujNs/fv+dWpzghwV9xpmznGe38HgHXlq5NnK9Vj9zKrV/nhQq6NqlQypPmJc28VJzPXcSa+m9KTO1PZSVZg2zgULw70yZG3p0iiwqtuHmBvx1ySVVwiCJQWKxT5o2SwtIRECsKuFmUb7wMZ8LoEZ/CBbcvR+8ST/Rlujvvz715TBPShZyXQ/ce7tSKxaJHUtT4t+ciwkFbmkmCNnEx6eztcnV7aMFPMYEAzpKJk5GfGLjjDsagTjFC+UimeCtlBzp7Tt3Kc+43598v3gjUOXinTq3z8w/c2k/uX2HydWVdgQg1b9OUloyCZSAUAqerwC2Mc7l/Qcjy7Owj6IhDXv5FraRog/O86I8wjt2p+oAE8/dJVasCW5uExixBgoAyqRWrQjMVE2IM7yQ8gNjFsduFDQ29XZxYSPP/vS7ijjOdF2+j5J8p8LRx++/S5ui9IcJZ/XtN15TxKpmvEBvm8TLO9p2lmYl+m2V5fufX/i5uJk7KMKZ+LuxixlYzyhB4/dDKIFSkkyWrGBFvE2yfnFGIFHA2cad+G+pP0VfmNlOl2yvnCPwiY/epWAii8PZXQCcsSo+tq0ky75StIByeqCJTanZcT7H17ZlAoHFrTxckqCViQPHf5HGwWz9QfVIfJbY9eZtO3WzV8CwWJGmhKBkSQX669sTdf3u227QKkS6UkZ/QJ4jXP9DUlbwj6+/E668bJTGl9nONSii28V2AYs994sfpKHVaYtg7RtTVLSlcv2F3cyEGsPk956UXG8k7qJmG8+SSQflDZmkANJLJHdGIFHAWZ7FGckDLu0Hur5MAlvNtddeG/bujdIGfJu//e1vYeTIkanPli2+Aqhvmfk7fT/88MNh3Lhx4amnntJGU6YIhd+IEWmfjRs3Zu4g2XpeI4CiAkx03503pY4jJ/Xn//7PKUs2taOEXz754L1KOhFvntkFHW8VgW/8VjBRu/bsF8TssbBJ8nZNeDnHeYVx4ZLeMlzclvA4I/lLV6WsTpiv1kr8F8H6NYFd65vC9FWeAnkI7m6q/Kxcs05PZV6qmlKX2eTaK8cq2caymX/VlCfbbkvSmCqr4Eo26SfeDJQqlY8QLFyeKalboO8B9kHygtKFWayvspdF+cPWR7K8uCOQKOAs439GftSl/Qgcs0jvK1euDFdffXWYNWtWKg7nG7333nvhK1/5SpgwYYJ+WrUqdGMWolILj5g2bVp47bXXOfJF4gAAMglJREFUUhv+7d/+LfTs2TO8/fbbYfny5eHNN99UZU6/fFDKeXl5oW3btqljki+lHwHSiABnIZDfG0DmQnoGJANJRlxQNnGhIpAXQsLwOpu0Fzf4goLqQmzrWpCWxHeud6IUNCBX1AQrubagrmfOj2rvsh2LeujggcLp3EFe8lGcke0bN22VvOLWisZ98ouPFs3tpVEZy4JJr2Ys6UcKDkKloGuvGKvfUbQQWXgBHGZWtd9eWb6Tt40rnrguzwrlihdgpChcUNGdhXxlgzwXWMKIn1txjcaCsN8k7GVbtu6oLLf6vrjORAFnecxX9WoUbuiXp58uzWTGXAJ3dG0JldkxLGtUS385cqpt27aFn/3sZ6FXr14Zzzxv3jy1jH/605+Kq2+ftlm9enX48Ic/HO65557wwAMPhIMuNrh+/fqwbNmyVF+TJk0Kd911l8yEq4c777wzvPvuu+pOJF6HS/TJJ58Mv/zlL1Ptky9lMwLEfH//zI8Ciqikub/Fnfm+O28pmhecYUIX97JQhxZ3o00GWkqerpejQp5BDJe8XaNy9O5zAEybt0auZ38ceboUgy+sQRyBp6x03gdvvtY3L7fvjRs11Jq+i6YWTjo52fETx8M9t38gvPTsf6bIOdj+dx+5Ky1v+747b2ZzpZXFy1ZoIY3atWuq8oVqlDGZJgqXlKR68mwtt9rfJOlX5GQblanfl3y/eCNQ7eKdOrfP/Nai3eH4ydPndZFHjp8Of5lfOMMc16Mo487YsdHsPFvHWE5YOs2bNw9jxowJKOSnn346fOITn1C3Msrz1VdfDQMGDAgPPfSQpJzsVgL23//+9+E73/lO2LRpU2hcYA00atQo7Nq1K3Wq3/zmN+Gaa64JLVoUWkipncmXUo8AccovfeqhUvdDB7gRB4gLcY3wOWPpkA+b16BuGD6gW0Fu8SXK+1xfmJAG9ukqv4FT+nIFibxyxfIwU0A3TATmSU6wCf1s3b5d0oZ6aI1i2z5X0o04H2lAkDf0iRFuwBwFB3NcYLS6avyo8JCgt8sCdBXvP9s6aTWgsX/9428rPSVUjLj9DbwWP+5BiR3DR/2Pjz+mebHx/ZVlnQk0FKQgxnHFMwbQS1I32AQ+7KGD+hYp2FBDXPSg6gFjwRNdmd3wdq//F5aJAs7yFC22lGV3iTZnchme68A//7mwfuncuXPDn/70p/DWW2+pO/kHP/iBuq2J7953330B9/MLL7wQNm/eHL74xS/qS7BBgwaSO3ko1BT32+HDh0OzZs1Sp/zVr34VUNSJVI4RQOn68oXE/KxYvd3B6OFDwtz5i2w1je8XC7ePgLoWL12p+7t37aDVgVC2VgOYHcSxYZSaOG2OtqO+71BxZ87NXy4kHvVCtUvOhC3y4icFyCOMiTmiDIwOUg+uoD8Ay264+jL19JxL+UMCEicCqaDLLNPT4H2AV/uPf3lbObi5bzwQpCN5ANbK1es1RWyukK6YXCqeEQQreIlwZkPbmcjFH4HEBZ3tGZw+LsUYSvc5XyYtrJcbbrhB+HejOBsx3L59+was5s9//vPhj3/8Y3j88cdD//799ar5B6wj5Pf1xb1kL6GBAweGGTNm6H4UdL9+/fT7drF8kPbt2+sy+ZP7I+BjuVxtHN2c6Q6MlMH21RBQDjJMraKFWhR+5tx8261L4olUDRrkUpA2b4lK2DUSXmXIQHBrt2zRNO24T/3dfZpfmrYxWSm3EThw8HBYIVWqiGFTGQqPBkUX4uluTIwuvbQQlMYFVS9Yx2qGES2R3BiBRAFneQ5mAZdmmaXrIptxDaNgsUSI895xxx3h8ssvD61btw59+vQJjz32WPjJT34S7r777vCNb3wjpYDp6Oabb1b3tHWKgsbSRZGjwIkDI0uXLtW+rF2yzP0RuO3Gq9Mu8pQg8+MSjwFXAYXlBCuofx+xgiV2iFCUAWAWQiy4h8R8p8+OiBsOFUz82AdYp1uHVsI8tS41udu//6AAvKKYMi/9j95zG00TqaARIJ0IOsrZ8xZpVSiUqUrsmZOWtVIYw3z1o+qCloYRjd/Cr3770gWlyFXQbb6vTpO4oLM9bhCnGVCn2Zpn3l4UtWrtJk+ebF/D/fffrx82fOQjH1HA1VGh/cO6RXr06BFefvllyQs9KkxFEfG67sjwp02bNhnbjh8/PvBJpPKMALnEWDlYNAipJHGJ/0Tj6GsmkLXFlW0sSRwPFSUfK0xgrFgLFi1XoocVq9fpaY4fj/JLAWCdPn1W0LVbFG27/8Ch8KPvPKkpL9ow+VMhI0B94GZS6YjnsmVb5NHixL4qll3IbqmMREUkijIgeE8gaOEZI3hBygIsqJ0lfy54BBILONvQlQD1fG5kdLbOi9+OJWzK17c8l/K90Lb+uOR7bo0AACOTTMQecQvYQhF2DEvSkBpLIQcTXs7zFy3V4u1b09yRZxVRa+2s2pLvc7VYVq8+/7RWXLJ2ybJiRoDJFExW3/ra5wOoexOKLWQSlC9odwTviZ/AmWLOdFyyreJGIFHAWcb67CmpOFPaD0o8kWQESjECnhqykQDsQFqnScwEjseAaUu1oJ7dO2tFnBoSC8QagsEKidf55UUNqIrqOQcl5ojy5cVNqlInqSf8m59/X1DUPfXY5E/FjgC1maPncUoKaAyRusZ5egFszyZWqpB0JeoEm7xbUDjD1pPlxRmBClXATzzxRBppxPnc8g9/+MNwxRVXhHvvvTeVB7tz504llrjxxhsDebNlKaVlweL40ruwy/KOkr4q4whQCchks7gdqZCEMqRAQdfOHRSQM7BPNwHl9AjDBvYO3aUkHa5FUL8QM/B9yoy5kicrdIRStIDKR6Q2mficUdzdvKQ/9MEbNe3p+qvHpriDoXf88b9+XUkg7NhkWfEjgCdjjsT1D0s+N78FxEIU/mpgyKLSVD1JU+LZgX4mbj9kYB/5XfSToh97EjCWH7CL9L1CFDBpMcQ2n3nmGZl5H0u7VQADuFa87N+/P3zve99LbQLNC53iG2+8EUaNGqX5rux85JFHNK8VdDD7fc5r6uAL/lIQA+baLvRzwedODkxGIBoBUobIcUXMBU0JQNKIqG4DEGf2vIVhpgCpps2co6Ap3IvU+qW0X/T/dlYpJ2FFojydF4sZN2xQP1QTxPRrb0wQIpj94b67bg733nGzMkuNHz0s/PT7T/2fSOXx917Zvg8S5DOpYBs2bhFClMJJFGUGETwUxH3JzQYFvVjSjXbLszQqSnKEq1WtJr+LhUqqAiAvkYs7AhUCwtqzZ49aru3atUu7W6xawEjH5YUCw9Ptt9+u+wEbTZw4UVNu2ECb2267TRPtsYCxeFHcoHzJd/3d734XfvGLXyiFnp3g4x//uLJAsU7O7HXXXWe7Mi5J5UkTU7ppG893JX1icb5HV3T7AwcOlOkpDdxDTDuXBL5saD1z7br4TXNNPubKuJGju1E4nHEjxuV0AQ+wbY8BYjX2xz6zlrZu36UW0GzJHcYVXa9ubaGYbBtWr9ukipe2k6XkXacObcQabiQxxC7huivGiLuzkdQFLtvfB+cqjTAhYQIRH6/S9FkWx8aNjLLo0/oYJZ6N1wQJDSf0PjFUSFWjSAeodRQqn+6CGzC39KUFaWh2vDd2/vTXt0O/Xl1t10VZcj28/3NNyvLdVdz9VYgCRvHy8chfChG8/vrrgeID3CwMTSjgyy67TIkk1qxZo8UDoFWE3Yl8WKRhw4bK/kReKx9YothHAYM5c+ak2HDgU3700Uf1mPz8fM2V1ZUS/jkr8Vs+pRF0eGWSIpOQUl68WWzZGIpK2f0FHw5BCRM3s/4uuKMyPpBJAdcUnxhANYh4EI2dukqVqvZVl1CQeqFuL4K1TPwXwM6MOfmhY/vWCsKCEWn2/MWKtqa8IrFBFD4W8ZIVa4Xl6q5QV2gPy/q34a/xQr8zkeJ+c00Bcz/lNV7XCM/1YOHw/vLX/1W8ILv0w/kISZj4soQA8MAN2ATMj9WEyTPD1x7/VFq6kvVRUUsUMNS65TVeF3of5pkti3eXL/kZv55yMU2WLFkSunfvrp8XX3wxfk5dpzDA2rVrwy233KLWLf9I8CRPkCIEsEFBw4jr+Qtf+EIwdicOhKSiadOmihJGcaOAP/OZz2h7GKNMunTpEgYPHqwfyOXPV86cOiHFGI6X6nO+RBzne41J+/fHCIwfM1xvNFMtW2/R0CiuvG0/x/bs3ik1YAcPHgnjx/z/9q4FTqeq668SBhmGMe6XGqpBxj3EkGtGpNyLt4uaqdTrm6R6I9RHoVD6CQm5JBFFJPdQbkWJGPUajdu4jRnXwSfPt/977DPneeacmWc8zzxzzpm15nfmnGfvffbZ+3/2OeustddeqzGpJUeYRwwtFSJdFO7aEy8cPBwQIf+qSmMs7SQ+yHMEQkRQBfj71s/do1GYv1ek94oFYzt9yEm9xXSoCOzw5dffqdN4nwcI5IoEjEADUA9nRZBY4WgC87dgpKNGjZJRevCFhq+O0NBQ7csW3p02b95M3bt3l0wZ3p3AlMuXLy/VYvB9jLB9/vyKwotLvbyy6kfWeTYTgbPuDOfmEQJYSgLL5Es3gt7rm3HdQ0tTwEPdf10XwKGobg15sgjovvsP9/ngE6dOSz/B8BUMt5dhwiCLyVoIQFCBMw79fUUL9e5AoZ6+ckVMs9yYnkDUKkSJwrQDVNMwzkPe7r37hcblVhln2Vq9zD+tyRUG7A18CDaAsHxdu3aV87mtWrWS6iScCwl35syZWjXw9oSwethDSkYwAhCkX0jIsIYGMwdT9xtBf+yrDpn5r99uR36uCNasLz7bV1ozI8Q05vywRhcvYc9whHCaoSf9NAoc+StCQAaEqwPBUjrp+Cmhlq4k5oOrSg9ZiCLEZE0EKlcsL4QTovvvayDWbZegb79fJwSWUtSsUT06IIyzEoWRFlTSyt93pLjX+PgqI8pAOt4v3Fkq2rTlF4r/K0F6RFNpvA8cAgFlwCNHjnTrGZYleTNPiHkxLDPy9AQFH8nYoJa+GTWzW2M8fvhDAmb+6wEq/7xpBF4bGEPtHn2KELlIT5Bs9KTmfFWaXlKCT+e7wqtJtTOWqSjCOMU64eLSr/jtMqKTfq5QleO9NRDo2qmttH6vVyeCnnjhNdmoS2JZ0mZh+a4IYQkVA8Zc+UYRPQkxgy9eTKMTp5JVMblftnI9M2A3RAL3I1fmgHPSfKibvZ3oNvME5W/mi/a7rgtHHD5uPAeck5HAZbNCAHO7PR7umFURmadnrEhQ1pw4RtAFzPlGCvXywUNHxbKiemKtaA3p0xlLVkCQfJn5Sigs+w/3Bx9MnXrF0N/iPkJzgchZerpdhKkENRQGW/89eCg9C9oTMd0HwjipU+seul8sWzqWdCI9n/8HHIGASsAB750vFxQqPuFk1ZcaxLksA/sIIJ+uQ6CdWN855sNgt9BzWANa8+7qdFXEesXyl2LC4LBalYrSWUdBsQQFVs54CWOuD/OEWHa0VzhlKCTmErf8/JtwURlMz708TF6lQ5sW0vpZd0k+tCgCjcQ9xRIkqI8RplDvmhJNxjrgckINDYMtxAEG3SbGAIy1GtStRfv2J4jQlumxoncIrcq7w16hwoXdIyjJk/hfriLADNgMXnwp3vhaNCuSbbqvc8jZXoAL5CcEwu+oIudrYYSjyNOZAgLPQypSFFy8uIwXi99B4gVbNqyMnCOERyUY4pQWjh3AxO+/rz4h+AOTPRCAFPxo5/b0zvgpssFYwob54PBqVaR0iznf48JZCzZFsB2AgxZPgmOXA38fkh9ynnn8O3cRyHMVdO527+ZrV+uAfdnf/NX5TEbAGIF7a95tnHEj1VN9XKBAhlFWjTurSYm3kAhLh3lASFAJwgFHmDDOGfrKC1nWy5nWQyC6XSvZKLgXLV82jLp17kDPiCmEZ//Vi27xMMZDQWhEzOikx7ywWTlO9y8CzIBN8PSF8WrnmqigYRTRoUMH4XkoJdPVE4QDEsQDhlX44sWLM+Vnl4C6Y2NjKSoqikaMGCGLw01nkyZN3LbDh9kNXXZYWjEfvnw91/rq2+kZD1jvqGO3cEP56+59VEW4tqxT6y7BfA+JFQjXCA44MD/MZC8EYB3/cMc20kFLm5ZNaexbr8pphucGDZNGWvreFBHTDy7dkjR9Ho5TRaxnpsAjwAzYBHONid7wiHUzv434719//SWXX/3888+aQYS+CQMGDKChQ4fKmL6wGk9NTdWyoWbyJDgrWb58uZY8fvx4ioiIoLVr18q12Fi+heVZcHyCDUy5dOnSVLlyZe0cPrAPAm1bNqMOwjWkGWWSgA0kIRjl/C48JCnCHDKTPRF4rEdnGet59pff0OQZ8+ipF/8jXZZiHTAM7DC1gGAMeHfs/H2faSf1zjtMC3GG3xEw10n4/VL2qtAlJANsPpGHkwTUhXXMU6ZMoWeffdaw6qSkJILjERC8gW3fvp3Cw8Np+PDhchkWnI1MnDiRiou5PVBiYiIdPXqUOnXqJH9v2rRJ+sXGgv0ePXpIf9hYbw13aHDBOGTIEDeGLU/if7ZC4D9xsSKg+u+UfCbj48ysA7cI62lFkJyVFaxKwx7LWpjsiUCbqKbU6+n/kY0/LlxTwjgLSzvhtvSP+HQjK9Wz8yIoDozvjDyqKVeVqizvA4MAM2ATnDs2uUuobNJN9vclnqL9hzKMGUxOoaJBBal9owzn5oULZYYX65bNCCpp+ChWFBISIiM8IQpUTEyMVCtPnz5dOiKpW7cu9e/fX/rFhtp54cKFMkoU/GbDMxhIna/qmzNnjvS5Xa5cenQdlc57eyGAeeB1S2ZTi+jHMqkaPef+lEoaL+a9+/8rwtiluXX2se6dZZg6t0T+YRsE4CNhxkfvSEcbvZ+JE8z1qvwwKyeM8YwIXrLU+mB9vhFT1ufzce4gkJlD5M51bFfrd5vj6bJB9JmsOnIx7Sp9vTHDUULrhtWzKp4pD1ItnIoogsQaFhZG8HEN157jxo2TEgzmdxHhCern+fPnSwl40KBBcv2m8psNRq7OV/XNmDFDMmr1m/f2RQCxXSuWL5uZAcNFko7UHPBx4WZSMd/bxEsby1RgNdv+gft1pfnQjghMmj6Pdgg3kyClFYGrUSNCkA0jBgxHHkyBR4AZsAnmrutCBS02nyiHy5DgkATORpKTk6UUi+hOcXFx0tsXwjG2bt1ahmlU4c4w31dMei8K1pwnQH29bds2qZIGg46MjJRdQOQoUNWqVeWe/9kfAazvRaB1PbmzXxGc4YYV9OnTZ7Ri10TYw2si5OclsVWtXFFL5wN7ItBIGOaBAUO6VQwYa3+jmjaksyJeNKYefv093e2o3mc0lqUh8lVR4bSjSBF3Rx72RMJ+rWYGbHbPRKxU4XDXLNe7dC/9cEA1vHPnTpowYQKNHTtWSrdgstHR0dLHNQyzMHc7depUQmzluXPnateHf2w9DR48mAYOHEiTJk2S7jmV+899+/ZR7drubgv15/Gx/RBQMV/dW+7OgpUK+lYh9eqp5f2NZRi62hEZUyb6fD62DwJworHgm+8l84VKGqH0QIghffDQEenxTPUGLirhkjJNBPbYJyJewSoeBIMtpsAjwAzYBHPh7l7EYkgfyCZFvEg258D62Mj9+vUjbCDEQ8YGBqzmg++55x5pFe3pC9uoAZUqVTIsi2VN2Jicg8AesawoSBjXwZGCImhRYPmacvYc7RXuJdWSJXe2TGJ8XbnhtIFfAQo7O+9ffuFJQmAFRDzCkqLG9e+Vns7QJ32ADkjGW7ZndsZhZJxnZzzs0nZ++szuFNTHOVQhZ67KnAFnLuueopivPtXMF7a+jDrOSVl1Du/thUC/Xl1FPNflMuA6XqD/iA0GeVt/+U16zAoW0g4kIj0hIg6i41QQ0ciwPIXJGQgMeKYvPfdUH0pJPUcP9YnRPrzQO7gpxTpvhJk0Y7RshJU344AZsBnu/mDAN89/zVrF6YyAhgAcMezemxHTt3H9OrRt5y6Zj7nAc2L+Dxvm/eC8H2rHPfv+ojU/bJZlEE2HyTkI4GMrVLgWvVfEj/5q6UrZMdiJVKpQlr5etlr+xseXESFKElPgEchYJBj4a1v6iteF+tnXzWXkicPSvebG2QmBNKFG1hN8/SoC41V0STDeMylnJfNVadjDCIvJeQjo3ZU+9Vg3t0AN585ljAvVc1jUh4igHEyBR4AlYBPM/eOII+OFaHIZTmYEbhqBMx5LTfTqRc+lJlBNepJn7GDPfP5tTwRqhFeTDcd0w7BXB9CLr76tdeRU8hmqXKk8lQwuLiNnwUMW1ocf5ZCEGkaBPGAGbIa2P1TQLAGbocvpfkCgRdNGcq5PMV6XTgJG9VBJw2MWCOpnT4LHJCbnIVD33ggZY33U0JelfcDho0laJy9cvERXhJ3A4SMZacjE+mCmwCPAKmgzzOFG0ufNrHJOZwR8R6CyCKpwX4M6WkWKEasE/W+jWK+efqPVeby3NwLlRRzgmCd6UWsRZAN0QPj+1hNCFXrSWQPVtGcZ/u1/BFgCNsEU0oSnRGFS1DSZFdCm0HCGHxAAA4Xl65aff5O1XfeIduPGgEUIQk9CWEImZyIAn8/1W3WVgTsg9YIKiiVqNYXhHjyiefp+rhFe1ZlAWLxXLAGb3CDlCcuXvZSgTernZEbAHwg82CZKuJVMZ6RQI95ZrTKVExJQ8duLCSPCjE9AzAfqCdaweCEzOROBHl0fpDlT3pORkrp36UDR7VpKtfSuPfEyMpK+18WEJ6xq7BFND0nAjvkJNIEasTNVMAaTIpzMCOQ5AmC+CCf4R/xfwh3hbmHZnDHXe0jM/ZUoXY6KBBWmUqXLiLb+pbUXLijhkpLJmQioEJPNmzSgKve2FG4qQ2jEay8Swhb+IRy06Akfa0knTuqT+DhACLAEbAI0lhD5+icmkU1q52RGwH8IVL+jKjWIrOXGfFF7jTvDpbrxtFgTfM3DrWoVYQlbrQr7gfbfXbBmTfCW9o+494eOHKMJkz8ThnmRYl1wObfGlgktLVTSmZcnuRXiH7mCADNgU1jBPH3dTCvnDEbAbwjAEGvHrowoXKriAiLikZ6qVq4gHTXAaT/WBZctU1qfzccORCBJxAhWrkqPnzxNi5etyuQBrUvH1jKGsAO7b/kusQra5Bb5Yx2wr0ZcJk3jZEbADYE6Yj4XPn496UDiUS3pytVrlHg4Y+nJ0hXrZBxgOG1ga2gNJscdnL9wge6pcafUjkAKhvEVfEYrgrFWgQK3CjemrK1TmARyzxKwGdqYH/N10xnBmF2G0xkBXxFoWLe2cKrgvrTkrhrhIjrOWa3qK5fdvV7BMvbY8ZOZrGG1E/jAEQgk/H2EDvx9yM0HtD6KFjxgfTB5FjUSoS2ZAo8AM2ATzH2d/8X5PAdsAi4n+xUBRDyaOPpNEVKuuhZ8oWxYWbdrHDuVQrVrZfh+xjlg2ucvXHQrxz+cg8Dib1fRuxOmCCO8IDpy7LjWMb11/IlTyXJaQr+eXCvIB7mOADNgM4ghvfq6mdXN6YyAnxF4tHN72rDsc3pt4LOy5pTz7oz1nPiNpUgVy6czZljJTp4xjzYbhKbzc9O4ujxC4PlXhssr6/2CGzUl4e/DbJBnBEwA0pgBm4HsK/OV52eufOXKldS0aVNtO3bsmFuhhIQE6tatm4zdu3jxYrc8b34gHF1sbCxFRUXRiBEjtFP27NlDL730EnXp0oXWrVunpfOBcxBANJyXYvpRR7HmM+HvjPlf1UP4+z2adJzuqFpJBGbYL5OPnzilsnnvIATGfzyTSoeU9MrF5JgRgzXNiYMgsEVXmAGb3CbXP1fpuo+bC64sPWjDhg30+uuv0w8//CC3ChUquJUYMGAADR06lBYtWkQjR46k1NRULR+O0z1py5YttHz5ci15/PjxFBERQWvXrqX9+/fT6tWrRfD1y/Tkk09Khjxr1iyaPHmyVp4PnIVAUOHCNO+TcbRu0RQKCw1x61yQWA8MOph4WEuHCpLJWQicFPf0vYmfEtYAZyf9oufNGtd3FgA26g0zYLOb5Q8J2KDuX3/9lVJSUujjjz92Y66qaFJSEtWrV49Kly5NzZs3p+3bt9OBAweob9++1Lt3b3rqqafo/PnzqjglJiZSfHy89nvTpk3Us2dPKiisG3v06EHr16+nrVu3UsOGDeUexwsWLNDK84EzEbi7ejX6Ysq7Yp43SOtgYY9lSfCc9Q8749DwccpB72fi5NKjhUu+dzO+MuofnHDcFV7NKIvTAoAAL0MyAblLm/s0V357/kykff89ZFIyIxkvu+hWjbSEoMIFtWN1ADUhlieVLVtWMlgw5Ntvv11mgzEHCYMJRSEhIXT69GlatWoVxcTESLXy9OnTaenSpVS3bl3q378/JScnE9TOCxcupNGjR9ORI0eoVKl0t4PqfKi5V6xYQVWqVKFz587R7Nmz6YsvvlCX4b1DEahTswZNePsVWrB0lViGcoVKFEuXgFV34SvaM6awyuO9PRFYtnI9/fr7XkJEpN9278u2E9M+HKW5Ms22MBfwOwLMgE0gXbp6C6VduWqSa5x88WIaLVy+Ucvs0KKBdqwOli1bpg5p586d9O2331KfPn1kWvHixenSpXTH6Ui4ePEihYWF0Zo1a6Q6edy4cfKLFvO7jz/+OEH9PH/+fDp69CgNGjRIrucsUaIEXRBr/8DI1fnFihWjyMhIeuONN+R16tevLxlxcDCHIJOAOPjfI9EPEDbQ1av/Rz/2fphiX36TTienSPUkSz/Ouvmvv/U+IUpWqHA9mR01a1yP2rVqll0xzs9FBFgFbQLuddc1wex82zyXIUHiiI6O1pgs5mjvvTdj/d1twjl+EREqDFItpOQdO3bI+dwWLVpQXFwcLVmyhAYPHiyZKZoNBwpgrmCkypkC1Nfbtm2TvQKDrlOnjiyv6oTKEce4DlP+QgB+o1tHNaHX/ydWdrxenZoUxt6wHDMIYuPelB9VnwsbgJSz57LsV3Dx22netPEynnSWBTkzVxFgCdgEXgRicF33zVm9pycsrL3EPC6snGEYdffdd1Pt2rVpzpw5UhqeMGECjR07Vkq3yAezrlixIsEwa8iQITR16lQ6c+YMzZ07V2s1rJr1BAY9cOBAmjRpEhUtWlQacoE5Y+4Y259//knDhg2Tc8T68/g4/yDwRO+utOGn7WLJUoxcO5x/eu7cnm7bsYuWfLeWZk0eS6M/mCYCc+zJsrMLP5tIJYKLZ1mGM3MfgVsEk3C8DzIYHcEwKScU3uJxn+fHZrz/Gj3YMmNOWF1fzr2lpUnpVaV57sGA9fPByE8T53gruRqVhfSLrZCHMY7ntf31+9q1dPeIkOytRFDNA1vMx1uJYOWONuFDLbcJrivhgtCba8FuwIrTFbB9gLGh0v7kNmbe1p8XeN1Zrw39Jy6W5ny5hHbvTV9iZtbe2YJJd36wtVl2QNPBfmBUarXxhfck2uaPdxdWqXTs2NHwWbPWmzGgtz6bi+G7xNdvE5PzpRcioTrOijyZL8p6y3zNyuLlbjWmkxUGnJd7CBQsyI9+7qEb2JqfeOE1+pfQakz69HPh7zvz+m99a1YtnsluJ/WA5PExP4UmNwBfP/lAOWDSe05mBBgBOyCQKuZ6a91Tg6bM/IJSUjN8f3u2HaEnv/tyGpUvF+aZxb/zEAFmwGbgXxdOL7D5RJkdcfhUHZ/MCDACjIAOgRVrNtKMuV9lyXwXzPyQ2kQ15ZCDOtyscsgM2ORO+EUCdvzsugl4nMwIMAK5jkDymVRpTHfi1Gl5LQTXKFIkiK6I5ZOYG291f2MaMuh5urNa5WwdcuR6Y/kChggwAzaERST6Yw7YrG5OZwQYAUbARwQQZvCNl5+j9//3dRnZCsZoEBx27YkXPqCLiwALlXy8Ap+e2wgwAzZFGOKrryKsr+ebNo4zGAFGIJ8j0Lh+nUwIgAnDCxaTPRBgBmxyn7AG2N/rgE0uxcmMACPACDAC+RABZsAmN90fDNikak5mBBgBRoARYASIGbDpIGAVtCk0nMEIMAKMACPgMwLMgE0h9AcDNq2cMxgBRoARYATyOQLMgE0GAC9DMgGGkxkBRoARYAT8ggAzYBMYXdeEEZbYfCH2pOULenwuI8AIMALORoAZsMn9FY4o5Z9JtpfJvAzJS6C4GCPACDAC+Q4BZsBmt5wdcZghw+mMACPACDACfkCAGbApiGyEZQoNZzACjAAjwAj4jEDuBx71uYl5U4Hr+nXpiEOtB76ZvVE4w4SEBOrWrRu1atWKFi9enKlz2eVnOsEjATFSY2NjKSoqikaMGKHlrlq1iqKjo6lt27YUHx+vpfMBI8AIMAKMQN4gwAzYBHeXSzBgHzcjV5YDBgygoUOH0qJFi2jkyJGUmprq1oKs8hGw3ZO2bNlCCPisaPz48RQREUFr166l/fv30+rVq2XA6yFDhtC8efNo3LhxFBMTo4rznhFgBBgBRiCPEGAVtAnwoaVKiKgiRWTuhYsX6VLaZZOSGcm33norhZYK0RJuvUU71A6SkpKoXr168nfz5s1p+/bt1L59+yzzw8PDafjw4ZSWlkbBwcE0ceJEKl68uDwnMTGRjh49Sp06dZK/N23aRNOmTZPRUHr06EHr16+nkiVLymtij+3s2bMESblQoULadfmAEWAEGAFGILAIMAM2wTvirnC69s81mXvg4GFKPHzUpGRGciERAqx2zRpawm23ucObkpJCQUFBWn5ISAidPp0eSgyJZvlQH0NqhVp5+vTptHTpUqpbty7179+fkpOTJTNduHAhjR49mo4cOUKlSpWS11D169OQASaM61aoUEGW43+MACPACDACgUfAnUME/vqWveKmLb9Q2uXspV59By5fuULrNm7Vkvr37a4d4wBS66VLl7S0i0KyDgsL036b5a9Zs0aqk6E+vi7mpsGIH3/8cYL6ef78+VICHjRoECESSokSJejChQuS0av6VZq6ECTp0NBQ9ZP3jAAjwAgwAnmAADNgE9C/mvWRnAM2yfYqGVK0niARFylSREqtkFJ37NhBcXFxWhGz/BYtWtAjjzxCrVu3po0bN9LlGx8GYLjFihWTamkcg6De3rZtm1RJg0FHRkZSrVq1aNiwYTJW6Llz5yQTZ/WzBjsfMAKMACOQJwgwAzaBvVnj9Hlak+ybTh47dqyUXsFEYZVcsWJFmjNnDu3cuZMmTJhARvkwzIIR1dSpU+nMmTM0d+5c7fpdunTRjnEwePBgGjhwIE2aNImKFi0qDb3AnCExP/TQQ3Ty5EkaM2aM2zn8gxFgBBgBRiDwCNwi3CU63l3TggULqGfPnoFHN4srggHr54M9ixrlQ3UMCdobMioLwytI2TAWCwRdu5Y+h+45Fx6Ia2d1DajmgX2BAgWyKhbwPFi5o02Buj/edhBaExj/WY0wngsKuwul/bFK+6yIF6au8DxaTfMF9nP+/HnLja9//hGuiEXb/PHuwiqVjh07Gj7XLAHn0VObFfNFk4zyvWW+ON+orNUePrSTiRFgBBiB/IpAYESh/Iou95sRYAQYAUaAETBBIF9IwFAlQAXjK6EObP5QS/jaFv35UC1BHYc5XyuRmt3wB/b+7JcaD1ZTXap2+bOv/qjLqu1C3zC2+D5mf5et/CxacXyhTf5ql8Le6C7lGwas5iONQMhpmj/ryum1jcpjvgKb1dql2mq1dimssnowVNsDvVcfeYG+blbXU3hlVSav8tA2q5GV8bLas6iYnNXapcaUP9qVlQCSLxgwjFr8Mf8JIPFwwfDDSoRBgrb5o4/+7JcavFbTGMDYCVixEZZ3dxv3z2pjCy23qhGWFfHC+wHPo9XuIxjwFeE/wWrtwnsebfPHuyur9wzPAXv3DuJSjAAjwAgwAoyAXxFgBuxXOLkyRoARYAQYAUbAOwSYAXuHE5diBBgBRoARYAT8igAzYL/CyZUxAowAI8AIMALeIZAvjLDg+QgRhHwlTMpjs5qnIqsah6FdIKvhBSMsGFdYbfkK8EKbrNYuGDtZzUgG4wqGMlkZuKBMXpAV8cJ7C+OL8fJuRPjzXX/gwAHpCcvoyvnCFaVRx52UBr/PCMAwe/ZsJ3Ur1/oCv9gIcPHcc8/l2jWcVPEdd9xBS5YsoTp16jipW7nSF8TmjoiIILijZMoeAYRRRYjV77//PvvCDizBKmgH3FT1deuArgSkC5AEgBmTdwgwXt7hhFL8LHqPFeMltIM5g4tLMwKMACPACDACjIA/EGAVtD9Q5DoYAUaAEWAEGIEcIsAScA4B4+KMACPACDACjIA/EGAG7A8UuQ5GgBFgBBgBRiCHCDADziFggSw+YsQIeuihhygmJoYSExNzfOmEhATq1q0btWrVihYvXizPxxKJKVOmyPSXXnrJsgEcctzZGye88cYbhADYN0OrVq2i6Ohoatu2LcXHx8sqTp06Reo+fPzxxzdTreXO+eCDD6h169b02GOPyWDoOW2gEU4YV7GxsRQVFSXxymmdVi/vy7gywtuJ4wr38JdffpHj6uGHH6YZM2bk+LaajaM9e/YQ3lddunShdevW5bhey54grPaYLIjAihUrXGKZjGzZypUrXc8884xbK8VaVrff+CFeEm5pDz74oGvnzp2u06dPu+rVq+dKSUlxTZgwwTV69GhZbsyYMS7U7QQ6f/68q1+/fq7y5cu7vvrqK7cuCSf0LmHJ65aWmprqGjt2rJYmlo24GjZsKDH67bffXGKZksx79NFHXT/99JMLdQiG5RIvTu0cOx5s3rzZ1b17dxfGz0cffZRpzGQ3rsxwevfdd+XYEi9QV+/evV2CSdsRnkxt9nVcmeHttHGlgGvevLnr0KFD8nl54IEHXEJwUFkujA1PAj7Lli3Tko3GUVpamqtBgwbyPXbmzBk5frUTbH7AErBFP42aNm1KgkHK1hUpUoSwvhAE6QNSrXiJ0ttvvy3T1D/k6SkpKYkE46XSpUuTeDBo+/bt9M0331CbNm1o5syZJBgWtW/fXn+KbY/Fgym/vJ9++mm3PkD66NWrl/xyVloAFBAPNW3cuFErC4kXWJUsWZIiIyPp7Nmzssz+/fspKCiIvvzyS5o2bRqFhoZq59jx4Mcff6RHHnlEOiKBBLx+/XrZDW/HlRFOkFo2bdpEPXv2lJHCevToodVrR4z0bfZ1XBnhDQciThtXCrN58+ZR5cqVpcMPOJQ5fvy4jFo1YMAA6tOnD4kPD4I0qwiaPaVtQprRONq6dSuJj2PCHtuCBQvU6bbfMwO26C0sUaIEBQcHS8b773//m9566y3ZUiG90qxZsyQjhYeVw4cPU1xcHDVp0oT27dsn93379iUh7UrGoboXEhJCQhKWD4T4ypSqZ6i3d+/erYrYel+lShUSEr9bH4CB0CSQkIilIwmlQm7ZsiV16tSJ8HIEbuPHj6cjR45QqVKltPPBiIHniRMnaPLkyRI7fBSpEItaQZsd6PuJPiYnJ8seeDuu9OfjRNSBcaVPV2PNZtAYNtef40rhjTHltHGlwAPzBb3//vuEcdC4cWMpNJQtW1Y+h++99x59+OGH9Mcff8hn780336SJEyfK4x9++MFwHB07dkw+x7t27aINGzbID211Pbvv84UrSrvcpOeff17Ob2CwQjo7ePCg/GLEgG3UqBEJtSlhEMKTEwjMYO/evSTUytIBAMps2bJFujJE3qVLl7Suwx1nWFgYQZoeMmQI1a9fX748P//8c8LL144k1FJ04cIF6ty5s3zgPfuAhxUYYj4KhDjO+CLHg4495tbhohRf6phXQl2KICHjZQInFGDAcF0JqWXNmjWZGL06xw57fNipfmJ8lClTJkfjyggnaAVUvdAWqLFmBzxupo05GVfDhg3LhHexYsUcN670OEJYAIOFNAzCMwNPfTt27JC/IVjUqlVLvqvmz58vhYxBgwbJ59BoHAEvaKUwDw/CuwuexlCP3YklYAvdQbzo8ZIH88VXH9TMn332mTRsQTPxBV29enWaO3eulOigiq5Ro4bsAZgIGLfyIwyGAWYLCUdMk8jBDxd5GLxgPiBcw86DGA808MLXthFBYq1YsaLE6uuvv6ZmzZpJdTwwAj5gHAovvBDE3K/ECupnMF4wJzGnrLkVtDtewAhqdrwMQfhYg3vJnIwrI5zgJ9qoXnkRB/7LybgywgVMxmnjSt1mMN+TJ08SGKvyHw63r+3atZPPIQxA77vvPlkczx6YK95B6jk0wgvMV73HoL7HMd5tTiB2xGHRu/jCCy/QokWLqEKFCrKF4eHhUoUDie2TTz6RAxcS3Zw5c7TB69kVfKlD3Xz58mVp3fvqq69KlfWoUaOkihoPChgTXsBOoaFDh0pmgI8T0DvvvCPnvvHgwhocX9pmhA8gYRAiXyDQCmCuHHNS8FULq1Uw86lTp5ribVavldKBA6xJoTLGhxjGU7ly5eTe23FlhBPqGzhwoJw3L1q0KMHHr3qpWqn/N9uWmx1XZng7bVwBV3ygVq1alWrWrKkFYBGGjtL+BO8zaEYwpw5JFlb4RmQ2jj799FM5ZfTnn39S//795WZ0vt3SmAHb7Y7daC9UpN5+BYIBQzWoJ6gf8aLMD6TmbSH1ZkcwKEI5zwhOTsPLbPyYpXviZoaTt+d71mfH3zkZV2a4OG1cZXUfzTAwOseoLD5msCnJ2ug8u6UxA7bbHeP2MgKMACPACDgCAZ4DdsRt5E4wAowAI8AI2A0BZsB2u2PcXkaAEWAEGAFHIMAM2BG3kTvBCDACjAAjYDcEmAHb7Y5xexkBRoARYAQcgQAzYEfcRu4EI8AIMAKMgN0QYAZstzvG7WUEGAFGgBFwBALMgB1xG7kTjAAjwAgwAnZDgBmw3e4Yt5cRYAQYAUbAEQgwA3bEbeROMAKMACPACNgNAWbAdrtj3F5GgBFgBBgBRyDADNgRt5E7wQgwAowAI2A3BJgB2+2OcXsZAUaAEWAEHIEAM2BH3EbuBCPACDACjIDdEGAGbLc7xu1lBBgBRoARcAQCzIAdcRu5E4wAI8AIMAJ2Q4AZsN3uGLeXEWAEGAFGwBEIMAN2xG3kTjACjAAjwAjYDQFmwHa7Y9xeRoARYAQYAUcgwAzYEbeRO8EIMAKMACNgNwT+HywisvOMi4G/AAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "RCall.RObject{RCall.VecSxp}\n" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mapdata(:Agriculture, :production, (:, 5, 1))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "using RCall" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "RCall.RObject{RCall.RealSxp}\n", " [1] -0.62122279 0.64831833 -0.48935885 0.92764611 1.02611765 1.59837396\n", " [7] -0.96725780 -0.49321665 -1.10164360 -1.33944063 1.31890750 0.25991008\n", " [13] -0.36737477 0.08100751 0.01820744 0.57968764 -0.83115791 -0.30559390\n", " [19] 0.82804637 0.87722282 -0.36368721 0.29606504 -0.01717716 0.18193819\n", " [25] 0.98784232 -0.04729326 -0.76462815 -0.23869830 0.87341128 -0.56540542\n", " [31] 0.24752053 -0.93169866 -0.01312905 1.17846349 0.26131608 1.81919341\n", " [37] 1.72917614 0.14759056 0.88830378 -1.09978466 0.01376463 -0.23974337\n", " [43] 0.20255462 -1.12002824 -0.17669488 0.34420994 -0.46455188 1.14323986\n", " [49] 0.18923975 -0.17559747 -0.38363851 -1.08267915 1.09002894 0.94087581\n", " [55] -0.43349359 -0.44734339 3.37063110 1.36829580 -0.44395899 -1.16338533\n", " [61] -0.97981821 0.20694984 -0.06456482 0.47541359 0.52327356 1.63704958\n", " [67] 0.32423036 0.49562667 -0.33220034 0.54913155 -0.37544318 0.26960028\n", " [73] 0.55244578 0.89318511 -0.02618433 -1.09897372 0.95858630 0.87128071\n", " [79] -0.45338845 -0.44877374 1.78908111 -0.36408830 -0.88978697 -0.99465919\n", " [85] 0.33044888 -0.37553791 -1.42606459 -0.65207303 0.44036986 0.75407073\n", " [91] -0.75762170 -0.52891009 0.30297497 -2.11217177 -0.73390772 1.09533811\n", " [97] 1.34026477 0.26010075 0.97643020 0.18347344\n" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "R\"x = rnorm(100)\"" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAD8GlDQ1BJQ0MgUHJvZmlsZQAAOI2NVd1v21QUP4lvXKQWP6Cxjg4Vi69VU1u5GxqtxgZJk6XpQhq5zdgqpMl1bhpT1za2021Vn/YCbwz4A4CyBx6QeEIaDMT2su0BtElTQRXVJKQ9dNpAaJP2gqpwrq9Tu13GuJGvfznndz7v0TVAx1ea45hJGWDe8l01n5GPn5iWO1YhCc9BJ/RAp6Z7TrpcLgIuxoVH1sNfIcHeNwfa6/9zdVappwMknkJsVz19HvFpgJSpO64PIN5G+fAp30Hc8TziHS4miFhheJbjLMMzHB8POFPqKGKWi6TXtSriJcT9MzH5bAzzHIK1I08t6hq6zHpRdu2aYdJYuk9Q/881bzZa8Xrx6fLmJo/iu4/VXnfH1BB/rmu5ScQvI77m+BkmfxXxvcZcJY14L0DymZp7pML5yTcW61PvIN6JuGr4halQvmjNlCa4bXJ5zj6qhpxrujeKPYMXEd+q00KR5yNAlWZzrF+Ie+uNsdC/MO4tTOZafhbroyXuR3Df08bLiHsQf+ja6gTPWVimZl7l/oUrjl8OcxDWLbNU5D6JRL2gxkDu16fGuC054OMhclsyXTOOFEL+kmMGs4i5kfNuQ62EnBuam8tzP+Q+tSqhz9SuqpZlvR1EfBiOJTSgYMMM7jpYsAEyqJCHDL4dcFFTAwNMlFDUUpQYiadhDmXteeWAw3HEmA2s15k1RmnP4RHuhBybdBOF7MfnICmSQ2SYjIBM3iRvkcMki9IRcnDTthyLz2Ld2fTzPjTQK+Mdg8y5nkZfFO+se9LQr3/09xZr+5GcaSufeAfAww60mAPx+q8u/bAr8rFCLrx7s+vqEkw8qb+p26n11Aruq6m1iJH6PbWGv1VIY25mkNE8PkaQhxfLIF7DZXx80HD/A3l2jLclYs061xNpWCfoB6WHJTjbH0mV35Q/lRXlC+W8cndbl9t2SfhU+Fb4UfhO+F74GWThknBZ+Em4InwjXIyd1ePnY/Psg3pb1TJNu15TMKWMtFt6ScpKL0ivSMXIn9QtDUlj0h7U7N48t3i8eC0GnMC91dX2sTivgloDTgUVeEGHLTizbf5Da9JLhkhh29QOs1luMcScmBXTIIt7xRFxSBxnuJWfuAd1I7jntkyd/pgKaIwVr3MgmDo2q8x6IdB5QH162mcX7ajtnHGN2bov71OU1+U0fqqoXLD0wX5ZM005UHmySz3qLtDqILDvIL+iH6jB9y2x83ok898GOPQX3lk3Itl0A+BrD6D7tUjWh3fis58BXDigN9yF8M5PJH4B8Gr79/F/XRm8m241mw/wvur4BGDj42bzn+Vmc+NL9L8GcMn8F1kAcXgSteGGAAA2SklEQVR4Ae3dC5yOdf7/8c8wjjMOjWTQJJQQilgsoRNKByWpFG0bUewiu/2ijdA6bJJQURtlpSglORNFDmWzLTmW8/k848yM+39/vv/HzA4zt7lm5jv3fd3X/boej5v7vu7v9T08v8N7rsN93VE+/yIsCCCAAAIIIBBUgXxBbY3GEEAAAQQQQMAIEMD8ICCAAAIIIBACAQI4BOg0iQACCCCAAAHMzwACCCCAAAIhECCAQ4BOkwgggAACCBDA/AwggAACCCAQAgECOAToNIkAAggggAABzM8AAggggAACIRAggEOATpMIIIAAAggQwPwMIIAAAgggEAIBAjgE6DSJAAIIIIAAAczPAAIIIIAAAiEQIIBDgE6TCCCAAAIIEMD8DCCAAAIIIBACAQI4BOg0iQACCCCAAAHMzwACCCCAAAIhECCAQ4BOkwgggAACCBDA/AwggAACCCAQAgECOAToNIkAAggggAABzM8AAggggAACIRAggEOATpMIIIAAAggQwPwMIIAAAgggEAIBAjgE6DSJAAIIIIBANAQIIOBc4ODBg7J8+XIpUaKENG3aNG3D06dPy/z58yV//vzSqlUrs3716tWyc+dOueWWW6R8+fJpZbN6cuHCBcmXL7J+N16yZIn89NNPEh8fb/xiY2OzYuJ9BMJeIMrnX8J+FAwAgSAJzJ07V1q2bCl16tSRf//732mt7tixQypUqCBFihSRU6dOmfUdOnSQiRMnyieffCLt2rVLKxvoSWJiorz66qtSuXJlef755wMV89z6999/Xzp16pQ2rkOHDkmpUqXSXvMEAa8KRNav2V6dRcblSoH7779f+vTpI9WrV3fUv9dee01GjBgh58+fd1TeK4XmzZtnhqJj379/P+HrlYllHFkKcAg6SyIKIJAzAd0bLl68uERH//9/ZikpKWZv+Mcff5QCBQpIgwYN5LbbbpO4uDjRdStXrjQNLVy40KzTPWhdtmzZIrrnvXbtWrnuuuvkiSeekNKlS5v39I+TJ0/K2LFjZevWrXLrrbdK7dq1Zdq0aVK/fn1p1qyZrFmzRmbNmmXa0r123VvXPc5KlSqZdr/77jvThtZ97733yvXXX2/q1r33PXv2SNeuXeXDDz+UzZs3yx133CEPPPCALF68WKZPny7lypWTjh07ylVXXZXWn0ufXK7///znP0UP1euyYcMG+fbbb6Vt27ZpVajZqFGj5OzZs3LXXXeZIw+6h6zb6dK5c2e54oor0srzBIGwEtBD0CwIIOBMYM6cOXrKxucPKd+iRYvSHv7DzGa9P3TTKnryySfNOn1Pl7/97W/mtf88p++aa64xz+vVq+fz7/H6hg8fbl5r3frQ9br4A8lXtGjRi9678sorff6wNu/7D3f7/HvY5v2CBQv6oqKifDfffLN5/Ze//MWU8YeVeV2lSpW0en7++Wffl19+aV77z1v7/OdczXP/uW3fr7/+arbz/4Jg1tWqVctXrFgxU7f27cEHH/TpNoULFzbv+89x+/znrc02l/6RVf9vvPFGU0fquP2H9y+tIs3Gf2jep+P1B7TZ5umnn85QlhUIhJOAhFNn6SsCoRZIDeDUwLj070AB7N+T8/n31Hz+PUXf0aNHzTCGDRvme+WVV3y7du3yHT9+3NelSxcTLP369fMdOHDA57+wy+ffgzbrRo8e7du3b5/vxRdfNK9vuOEGn9bpP2xrXmtg+/dWff69SF9CQoJZd2kA+/fEff69Vt+MGTNM+0OGDPH59yp927dvN3VpsOp4PvjgA/N+agBr0CUnJ/tef/11836hQoV8/r1Wn/+CNBPMuo2O4dLFSf8PHz7sa9KkialX+3bs2LFLqzHhrv3Udn7/+9+bv/UXIDVjQSCcBTgH7P9XzYJAdgXKli1rLpjSi6b00atXr8tWoVc1X3vtteIPVnO4Vg8Vnzt3TvzhZq6Q1qt+/XuZpo6SJUuaQ8x6tXVSUpJUq1bNXJRVpkwZ05aW3bhxo/j3VGXVqlVmG73IS/vkD2a57777Mu2LHj7W89J6mFkXf5jLpEmTRA9B60VfK1asMOv1kHb6RQ8J69XdWrcu/r1W8e9li39P3Fwwpuv03O2li5P+6+F3/5672VQPJevV5Zcu/r16cwhc21u2bJk5fP/xxx8LV0pfKsXrcBMggMNtxuivKwQ07Px7r2mPP//5z1n2S8+Z/uEPf5CYmBhZunSpvPzyyybU9NxnZouGtS56bjZ18e99pn2kSc+F6jlSXTS0UxcNqswW7XP6xb8HbD72o+Hr3xOVqlWrmrcv/QhU6vlm/yFn8376873+w+NmnX8vJH3V5rmT/mfYKMAK7YNeZa6LGmhwsyAQ7gIEcLjPIP0PCwHdq9Q91tatW5uw++GHH8R/yNdcXOQ/5GvGkBp8/sO95rVeRKWL/1yznDlzxjzXC61071f3SPXqat2r1cV/aNz8rYHsP8Rsnl/6hwZX6nLixAnzy4PudetnladMmWL2tFPfT/93ar9S16V/nVnwppZz0v/Usln9rVeI6wVk+ouG9t1/fj3tl4+stuV9BNwqQAC7dWbol6cE9DDqs88+awL473//u2zbtk385zvNGPXQtC6ph6A///xzGTp0qOh6vfJXA8d/IZQ5zN2oUSNTtkePHiaM9DPJegj3s88+M1c96xXMv/zyiylz6R/ah9RFw1g/a6uHuCdPniz+c8wyYcIE87aus7E46b+TdvTq8EGDBpkryvVqcT0kr4eiBw8e7GRzyiDgWgEC2LVTQ8e8JKCHajXomjdvLnro95FHHpHvv/9e9NC1/+IrM1TdO9ZDq3ouVj9WpMtXX31lPuajh3P1c7Ia2vrZYg1xXa6++mrzESO9MYh+TEg/2uS/2tq8l3rI2Ly45A/9GJSGvP+CLdO+/4KwtPPYGnK2lqz6n1U7euRA93b1qID/IjBzOF4/gqR74Xru3WZfs+oL7yNgW4A7YdkWpT4EshDQG23s3r3bnMvVIEy/6IVZ/qudTbCmP9Srt6fUbfRzt3r4OXXRvUP9fLCev03dO9YA1j1GDXH9nOzlFj2EvHfvXlPv5crl9r1A/c9tvWyPQDgLEMDhPHv0PeIF9CYX/s/3Ggc9xK3ngHVPW2+HqTfgSL2wKuKhAEDAhQIEsAsnhS4hkB2Bd999V9544w3xf57X7B1rIOtecJs2bbJTDWURQCDIAgRwkMFpDoG8EtDDyekvtMqrdqgXAQTsCHARlh1HakEg5AKEb8ingA4gkC0BAjhbXBRGAAEEEEDAjgABbMeRWhBAAAEEEMiWAAGcLS4KI4AAAgggYEeAALbjSC0IIIAAAghkS4AAzhYXhRFAAAEEELAjQADbcaQWBBBAAAEEsiVAAGeLi8IIIIAAAgjYESCA7ThSCwIIIIAAAtkSIICzxUVhBBBAAAEE7AgQwHYcqQUBBBBAAIFsCRDA2eKiMAIIIIAAAnYECGA7jtSCAAIIIIBAtgQI4GxxURgBBBBAAAE7AgSwHUdqQQABBBBAIFsCBHC2uCiMAAIIIICAHQEC2I4jtSCAAAIIIJAtAQI4W1wURgABBBBAwI4AAWzHkVoQQAABBBDIlgABnC0uCiOAAAIIIGBHgAC240gtCCCAAAIIZEuAAM4WF4URQAABBBCwI0AA23GkFgQQQAABBLIlQABni4vCCCCAAAII2BEggO04UgsCCCCAAALZEiCAs8VFYQQQQAABBOwIuDaADx48KMnJyXZGSS0IIIAAAgi4TMAVAdyhQwfZsGGDodm4caO0atVKEhISJD4+Xrp16ybnz593GRvdQQABBBBAIHcCrgjgtWvXysmTJ81IBg8eLFWrVpU9e/bIsmXLZNu2baLrWBBAAAEEEPCSgCsCOD3o3LlzpX///hIXFydVqlSRQYMGyeLFi9MX4TkCCCCAAAJhL+CaANa93b1790qDBg3k8OHDabBr1qyR2rVrp73mCQIIIIAAAl4QiHbDINq3by8zZsyQgQMHSmJiohQuXFgmT55s9oTHjBkjCxcudEM36QMCCCCAAALWBKJ8/sVabRYq2r17tyQlJUm1atVkxYoVUqNGDYmNjXVU83fffWe2yaywXlVdp04deeyxxzJ7m3URLHDu3Dl59913JSUlJagK2t59990nN9xwQ1DbpTEEEHCHgOsC+FIW/U9KP45UqFChS9/K8HrTpk3y22+/ZVivK5YsWSJFixaVl19+OdP3WRm5AjNnzjQX/NWvXz+oCCdOnJDvv/9e9CgPCwIIRJ6AKw5B79y5U/r27SvTpk2Thg0byjvvvCPXXXedmY2pU6ea9VOmTMlydvSiLX1ktuh/droXzIJAZgJXXHGF3H///Zm9lWfrfv75Z/nhhx/yrH4qRgABdwu44iKsESNGSNmyZWXVqlUmgJs0aSK6N8uCAAIIIICAVwVcsQc8a9YsWb16tRQpUkQGDBgg1atXlxYtWsjSpUu96s64EEAAAQQiXMAVe8AauLr3m7o8+uij0r17d7n77rsv+khS6vv8jQACCCCAQLgLuCKAu3TpIm3btpWhQ4emefbq1UvatGkjPXv2TFvHEwQQQAABBLwi4IpD0M2bNzdXL2/ZsuUi1379+knTpk0DXtl8UWFeIIAAAgggEEYCrghg9YqJiZGaNWtmoGvWrJnogwUBBBBAAAEvCbjiELSXQBkLAggggAACTgQIYCdKlEEAAQQQQMCyAAFsGZTqEEAAAQQQcCJAADtRogwCCCCAAAKWBQhgy6BUhwACCCCAgBMBAtiJEmUQQAABBBCwLEAAWwalOgQQQAABBJwIEMBOlCiDAAIIIICAZQEC2DIo1SGAAAIIIOBEgAB2okQZBBBAAAEELAsQwJZBqQ4BBBBAAAEnAgSwEyXKIIAAAgggYFmAALYMSnUIIIAAAgg4ESCAnShRBgEEEEAAAcsCBLBlUKpDAAEEEEDAiQAB7ESJMggggAACCFgWIIAtg1IdAggggAACTgQIYCdKlEEAAQQQQMCyAAFsGZTqEEAAAQQQcCJAADtRogwCCCCAAAKWBQhgy6BUhwACCCCAgBMBAtiJEmUQQAABBBCwLEAAWwalOgQQQAABBJwIEMBOlCiDAAIIIICAZQEC2DIo1SGAAAIIIOBEgAB2okQZBBBAAAEELAsQwJZBqQ4BBBBAAAEnAgSwEyXKIIAAAgggYFmAALYMSnUIIIAAAgg4ESCAnShRBgEEEEAAAcsC0ZbrozoEEHAocOTIEZk0aZL88ssvDrewU+zMmTNStWpVee+99+xUSC0IIJAjAQI4R2xshEDuBQ4ePCjly5eX2bNn576ybNSQmJgonTt3zsYWFEUAgbwQIIDzQpU6EXAoEBUVJdHRwf1nqG2yIIBA6AU4Bxz6OaAHCCCAAAIRKEAAR+CkM2QEEEAAgdALEMChnwN6gAACCCAQgQIEcAROOkNGAAEEEAi9AAEc+jmgBwgggAACEShAAEfgpDNkBBBAAIHQCxDAoZ8DeoAAAgggEIECBHAETjpDRgABBBAIvQABHPo5oAcIIIAAAhEoQABH4KQzZAQQQACB0AsQwKGfA3qAAAIIIBCBAgRwBE46Q0YAAQQQCL0AARz6OaAHCCCAAAIRKEAAR+CkM2QEEEAAgdALEMChnwN6gAACCCAQgQIEcAROOkNGAAEEEAi9AAEc+jmgBwgggAACESjgugBOTk6Wo0ePRuBUMGQEEEAAgUgScEUAnzt3Tvr06SMJCQlSsGBBiYuLk5iYGKlRo4aMHz8+kuaDsSKAAAIIRIhAtBvG2b17d9m3b5/MnDlTKlWqZMI3KSlJ1q1bJz169JAzZ85I165d3dBV+oAAAggggIAVAVfsAc+bN0/Gjh0rtWrVktjYWImKipISJUpIw4YNZeTIkfLll19aGSyVIIAAAggg4BYBVwSwHmpetGhRpiZff/21lC5dOtP3WIkAAggggEC4CrjiEPSAAQPk8ccflxEjRkjlypWlePHikpiYKOvXrxe9KGvWrFmOfPWw9fHjxzMte+TIETl79mym77ESAQQQQACBYAu4IoBr164tq1evluXLl8u2bdvM+WDd69Xzvo0aNZKUlBRHLrNnz5YZM2ZkWnb79u2i7bAggAACCCDgBgFXBPDOnTulb9++Mm3aNHPe95133pHrrrvO+HzyySdm/ZQpU7L0ateunegjs2Xq1Kly8ODBzN5iHQIIIIAAAkEXcMU5YD30XLZsWVm1apUJ4CZNmsimTZuCjkGDCCCAAAIIBEvAFXvAeo5XD0EXKVJE9Hxw9erVpUWLFrJ06dJgOdAOAggggAACQRVwxR6wBq7u/aYujz76qOhng++++245fPhw6mr+RgABBBBAwDMCrgjgLl26SNu2bWXo0KFpsL169ZI2bdpIz54909bxBAEEEEAAAa8IuOIQdPPmzeW3336TLVu2XOTar18/adq0qXnvojd4gQACCCCAQJgLuCKA1VDv/VyzZs0MnM2aNRN9sCCAAAIIIOAlAVccgvYSKGNBAAEEEEDAiQAB7ESJMggggAACCFgWIIAtg1IdAggggAACTgQIYCdKlEEAAQQQQMCyAAFsGZTqEEAAAQQQcCJAADtRogwCCCCAAAKWBQhgy6BUhwACCCCAgBMBAtiJEmUQQAABBBCwLEAAWwalOgQQQAABBJwIEMBOlCiDAAIIIICAZQEC2DIo1SGAAAIIIOBEgAB2okQZBBBAAAEELAsQwJZBqQ4BBBBAAAEnAgSwEyXKIIAAAgggYFmAALYMSnUIIIAAAgg4ESCAnShRBgEEEEAAAcsCBLBlUKpDAAEEEEDAiQAB7ESJMggggAACCFgWIIAtg1IdAggggAACTgQIYCdKlEEAAQQQQMCyAAFsGZTqEEAAAQQQcCJAADtRogwCCCCAAAKWBQhgy6BUhwACCCCAgBMBAtiJEmUQQAABBBCwLEAAWwalOgQQQAABBJwIEMBOlCiDAAIIIICAZQEC2DIo1SGAAAIIIOBEgAB2okQZBBBAAAEELAsQwJZBqQ4BBBBAAAEnAgSwEyXKIIAAAgggYFkg2nJ9VIcAAmEgsGPHDhk6dGjQe1qpUiVp27Zt0NulQQTcKEAAu3FW6BMCeSygAXzTTTflcSsZqx8yZAgBnJGFNREqQABH6MQz7MgWiI6OlpYtWwYd4a233gp6mzSIgFsFOAfs1pmhXwgggAACnhYggD09vQwOAQQQQMCtAgSwW2eGfiGAAAIIeFqAAPb09DI4BBBAAAG3ChDAbp0Z+oUAAggg4GkBAtjT08vgEEAAAQTcKkAAu3Vm6BcCCCCAgKcFCGBPTy+DQwABBBBwqwAB7NaZoV8IIIAAAp4WIIA9Pb0MDgEEEEDArQIEsFtnhn4hgAACCHhagAD29PQyOAQQQAABtwoQwG6dGfqFAAIIIOBpAQLY09PL4BBAAAEE3CpAALt1ZugXAggggICnBQhgT08vg0MAAQQQcKsAAezWmaFfCCCAAAKeFnBtAB88eFCSk5M9jc/gEEAAAQQiV8AVAdyhQwfZsGGDmYWNGzdKq1atJCEhQeLj46Vbt25y/vz5yJ0hRo4AAggg4EkBVwTw2rVr5eTJkwZ48ODBUrVqVdmzZ48sW7ZMtm3bJrqOBQEEEEAAAS8JuCKA04POnTtX+vfvL3FxcVKlShUZNGiQLF68OH0RniOAAAIIIBD2Aq4JYN3b3bt3rzRo0EAOHz6cBrtmzRqpXbt22mueIIAAAggg4AWBaDcMon379jJjxgwZOHCgJCYmSuHChWXy5MlmT3jMmDGycOFCN3STPiCAAAIIIGBNwBUB/MILL4g+dNm9e7ckJSWZ5y1btpTevXtLbGyseZ3VH+PGjZOPP/4402J6VXXjxo0zfY+VCCCAAAIIBFvAFQGcftDly5cXfeiih6Ozs3Tu3Fn0kdkydepU0RBmQQABBBBAwA0CrjkH7AYM+oAAAggggECwBFyxBzx8+PDLftZXP5bUunXrYJnQDgIIIIAAAnku4IoA1s/6jh49Wjp27CgxMTEZBl26dOkM61iBAAIIIIBAOAsEDOA333zTXJGsd6mqWLFino5x1KhRcuHCBfPQq55ZEEAAAQQQ8LpAwHPAejvI48ePmyuHmzVrJhMmTJATJ07kmcfQoUPN1c952UaedZ6KEUAAAQQQyKZAwAC+/vrr5fXXX5cdO3bISy+9JN99951Uq1ZNnnrqKVmxYkU2m8m6uH7UaNKkSY4/cpR1jZRAAAEEEEDAvQIBAzi1y0eOHJFNmzaZR3R0tJQqVUp69Oghjz76aGoR/kYAAQQQQACBbAoEPAe8ZMkSGTJkiOjf9957r/Tr10/uuOMOyZcvnzlXq5/V1Yunrr322mw2SXEEEEAAAQQQCBjAutd73333mTtLlShR4iIpDeHx48en3TDjojd5gQACCCCAAAJZCgQ8BP3000+LBu/PP/9sKnn77bdN6KakpJjXepvIAgUKZNkABRBAAAEEEEAgo0DAAJ42bZqMGDFC4uPjzVZNmjQxX5Dw4YcfZqyFNQgggAACCCCQLYGAATx79mx57bXXzHfyao01atQwgfzZZ59lqwEKI4AAAggggEBGgYABXKFCBZk7d+5FW3z77bdSvHjxi9bxAgEEEEAAAQSyLxDwIiw9B3znnXfKzJkzzbcS/fe//5X9+/eL7hmzIIAAAggggEDuBAIGsH7MSG+4sWDBAtm8ebM888wz0rBhQ/MxpNw1ydYIIIAAAgggEDCAlUavgm7Tpg1KCCCAAAIIIGBZIGAAHzt2TJ577jlZs2aNnDt3Lq3Zu+++W/SLGlgQQAABBBBAIOcCAQN42LBh5tuQ3nrrrYvuzxwXF5fz1tgSAQQQQAABBIxAwADevXu32QO+7bbboEIAAQQQQAABywIBP4b00EMPycSJE+XAgQOWm6Q6BBBAAAEEEAgYwHv27JFZs2ZJ2bJlRb+asGrVquah34TEggACCCCAAAK5Ewh4CFq/Aalu3bqm9kOHDknJkiVFv46Qc8C5A2drBBBAAAEEVCDgHrB+DljvhPXHP/5R/vrXv0pSUpK5NSV3wuIHBwEEEEAAgdwLBNwDHjdunHzzzTeiX8rw4IMPyu233y5fffWV6Pq+ffvmvmVqQCATAT31Eezl8OHD5juug90u7SGAQGQLBAzgJUuWSO/evaVcuXJGSL96UM//dunShQCO7J+ZPBu9HnF5/vnnpX79+nnWRmYVL126VBo3bpzZW6xDAAEE8kwgYAAnJCSIhnCzZs3SGp8+fbq5KCttBU8QsCiwdetWc5qjXbt2FmvNuqr+/fvLqlWrsi5ICQQQQMCiQMAA7tmzp9SrV0/mz58ve/fuNfeB3rZtm7k3tMX2qQoBBBBAAIGIFAgYwGXKlJF169bJp59+Kjt27JCmTZuaR/78+SMSikEjgAACCCBgUyBgAGsjsbGx5ipomw1SFwIIIIAAAgiIBAzg4cOHmzthXYrUvHlz0ftEsyCAAAIIIIBAzgUCBrB+9Oh3v/udqdnn84l+PGTkyJFyzz335Lw1tkQAAQQQQAABIxAwgCtVqiT6SL/o69dff/2iK6PTv89zBBBAAAEEEHAmEPBOWJltrh8TSUxMzOwt1iGAAAIIIIBANgQC7gHrnu5HH32UVtXp06dl586dMnny5LR1PEEAAQQQQACBnAkEDOA2bdqYz/6mVqtfxKCHoEuXLp26ir8RQAABBBBAIIcCAQO4YsWKog8WBBBAAAEEELAvEDCAA30MKX0Xli1bJkWLFk2/iucIIIAAAggg4EAgYAA3atRIPvjgA3MjjltvvVXWrl0ro0aNEj003aRJE1N1oUKFHDRBEQQQQAABBBC4VCBgAOsFWK+++qo8/PDDZhu9L3S1atVkwIABfBvSpYq8RgABBBBAIJsCAT+GpLeh1I8dpV9++ukniYmJSb+K5wgggAACCCCQA4GAe8DPPPOMtGjRQqZNm2a+FUm/rk2/lGHOnDk5aIZNEEAAAQQQQCC9QMA94CpVqsjKlSulU6dOot+ANHDgQBPANWrUSL89zxFAAAEEEEAgBwIBA/jChQsybtw4efPNN813ACcnJ8tDDz0kBw8ezEEzbIIAAggggAAC6QUCBrCG7zfffGMOQesGt99+u5QvX96EcvoKeI4AAggggAAC2RcIGMBLliyR3r17S7ly5UytBQoUkB49ephQzn4zbIEAAggggAAC6QUCBnBCQoJoCKdfpk+fLmXLlk2/iucIIIAAAgggkAOBgFdB9+zZ01z9PH/+fNm7d6+5L/S2bdvM+eActMMmCCCAAAIIIJBOIGAAFy9eXNatWyeffvqpufq5adOmog+9IpoFAQQQQAABBHInEDCA+/TpI2XKlJH/+7//y10LbI0AAggggAACGQQCngOuUKGCrFmzRlJSUjJsxAoEEEAAAQQQyJ1AwD3gIkWKyNdffy16KFovyEo99Kx3x3rjjTdy1ypbI4AAAgggEOECAQO4ZcuWctNNN2XgKVWqVIZ1rEAAAQQQQACB7AkEDGA9BK0PFgQQQAABBBCwL5DhHLDu+R45csS0dPr0adm5c6f9VqkRAQQQQACBCBfIEMD6rUfnz583LD/88IM8/vjjEU7E8BFAAAEEELAvkCGA7TdBjQgggAACCCBwqYDrAli/deno0aOX9pPXCCCAAAIIeEog0wDetWuXbN++Xfbt2ydnz541z/W1Pg4dOmQd4Ny5c6I3/tCPOxUsWFDi4uIkJiZG9LuHx48fb709KkQAAQQQQCDUApleBV23bt2L+nXttdemvW7btq1MmTIl7bWNJ927dzdhP3PmTKlUqZIJ36SkJHMrTP0GpjNnzkjXrl1tNEUdCCCAAAIIuEIgQwDv37//sh2Lioq67Ps5eXPevHmyfPlyiY+PT9u8RIkS5gsgRo4cKf369SOA02R4ggACCCDgBYEMh6D1jleXe+TLl2GTXDvooeZFixZlWo/ejat06dKZvsdKBBBAAAEEwlUgwx5wKAYyYMAA83GnESNGSOXKlc3tLxMTE2X9+vWiF2XNmjUrFN2iTQQQQAABBPJMwBUBXLt2bVm9erU5DK3fOawXf+ler573bdKkiTg97P3jjz/Kf/7zn0yx9PPN+u1OLAgggAACCLhBwBUBrBCFCxeW2267LVcmBQoUMBdwZVaJ1p8Xh88za4t1CCCAAAIIZCXgmgDOqqNO3r/55ptFH5ktGs4HDx7M7C3WIYAAAgggEHQBVwTw8OHD025/mZlA1apVpXXr1pm9xToEEEAAAQTCUsAVAaznfUePHi0dO3bM9BAyV0GH5c8WnUYAAQQQuIyAKwJ41KhRcuHCBfMYM2bMZbrLWwgggAACCHhDwP6HenPoMnToUNG7X504cSKHNbAZAggggAAC4SPgij1g5YqNjZVJkyaFjxw9RQABBBBAIBcCrtkDzsUY2BQBBBBAAIGwEyCAw27K6DACCCCAgBcECGAvzCJjQAABBBAIOwECOOymjA4jgAACCHhBgAD2wiwyBgQQQACBsBMggMNuyugwAggggIAXBAhgL8wiY0AAAQQQCDsBAjjspowOI4AAAgh4QYAA9sIsMgYEEEAAgbATIIDDbsroMAIIIICAFwQIYC/MImNAAAEEEAg7AQI47KaMDiOAAAIIeEGAAPbCLDIGBBBAAIGwEyCAw27K6DACCCCAgBcECGAvzCJjQAABBBAIOwECOOymjA4jgAACCHhBgAD2wiwyBgQQQACBsBMggMNuyugwAggggIAXBKK9MAjGYFdg8eLF8t5770mJEiXsVpxFbStXrpTOnTtnUYq3w1lgy5Yt0qVLF8mXL7i/+0dHR8uQIUOkaNGi4cxH3z0mQAB7bEJtDGfevHnSsWNHufrqq21U57iOAwcOyLp16xyXp2D4CRw6dEi6desW9AAeNmyY7Nq1S6pUqRJ+aPTYswIEsGenNucD072TmJgYqV69es4rycGWBQsWzMFWbBJOAlFRUVK5cmUpUqRIULtdqFChoLZHYwg4EQjucSAnPaIMAggggAACESBAAEfAJDNEBBBAAAH3CRDA7psTeoQAAgggEAECBHAETDJDRAABBBBwnwAB7L45oUcIIIAAAhEgQABHwCQzRAQQQAAB9wkQwO6bE3qEAAIIIBABAgRwBEwyQ0QAAQQQcJ8AAey+OaFHCCCAAAIRIEAAR8AkM0QEEEAAAfcJEMDumxN6hAACCCAQAQIEcARMMkNEAAEEEHCfAAHsvjmhRwgggAACESBAAEfAJDNEBBBAAAH3CRDA7psTeoQAAgggEAECBHAETDJDRAABBBBwnwAB7L45oUcIIIAAAhEgQABHwCQzRAQQQAAB9wkQwO6bE3qEAAIIIBABAgRwBEwyQ0QAAQQQcJ8AAey+OaFHCCCAAAIRIEAAR8AkM0QEEEAAAfcJEMDumxN6hAACCCAQAQIEcARMMkNEAAEEEHCfAAHsvjmhRwgggAACESBAAEfAJDNEBBBAAAH3CRDA7psTeoQAAgggEAECBHAETDJDRAABBBBwnwAB7L45oUcIIIAAAhEgQABHwCQzRAQQQAAB9wkQwO6bE3qEAAIIIBABAgRwBEwyQ0QAAQQQcJ8AAey+OaFHCCCAAAIRIODaAD548KAkJydHwBQwRAQQQACBSBRwRQB36NBBNmzYYPw3btworVq1koSEBImPj5du3brJ+fPnI3FuGDMCCCCAgIcFot0wtrVr18rJkydNVwYPHixVq1aViRMnyqFDh6RXr16i61555ZUsu6pBHSisz549KykpKVnWQQEEEPCegB5N27VrlxQsWDCogytQoICUL18+qG3SWPgIuCKA03PNnTtXNm3aJMWKFZO4uDgZNGiQCWEnATxp0iSZOnVq+urSnu/du1caNGiQ9ponCCAQOQIrVqyQzZs3S+XKlYM66OXLl8tnn30mNWrUCGq7NBYeAq4J4GXLlkm5cuVMSB4+fNgEsBKuWbNGateu7UjzqaeeEn1ktmgw63llFgQQiDyBCxcuSN++faVFixZBHfzAgQPlwIEDQW2TxsJHwBUB3L59e5kxY4boD2tiYqIULlxYJk+eLP3795cxY8bIwoULw0eUniKAAAIIIOBAwBUB/MILL4g+dNm9e7ckJSWZ5y1btpTevXtLbGysec0fCCCAAAIIeEXAFQGcHlMvWEi9aIFztulleI4AAggg4CUBV3wMyUugjAUBBBBAAAEnAgSwEyXKIIAAAgggYFmAALYMSnUIIIAAAgg4ESCAnShRBgEEEEAAAcsCBLBlUKpDAAEEEEDAiQAB7ESJMggggAACCFgWIIAtg1IdAggggAACTgQIYCdKlEEAAQQQQMCyAAFsGZTqEEAAAQQQcCJAADtRogwCCCCAAAKWBQhgy6BUhwACCCCAgBMBAtiJEmUQQAABBBCwLEAAWwalOgQQQAABBJwIEMBOlCiDAAIIIICAZQEC2DIo1SGAAAIIIOBEgAB2okQZBBBAAAEELAsQwJZBqQ4BBBBAAAEnAgSwEyXKIIAAAgggYFmAALYMSnUIIIAAAgg4ESCAnShRBgEEEEAAAcsCBLBlUKpDAAEEEEDAiQAB7ESJMggggAACCFgWIIAtg1IdAggggAACTgQIYCdKlEEAAQQQQMCyAAFsGZTqEEAAAQQQcCJAADtRogwCCCCAAAKWBQhgy6BUhwACCCCAgBMBAtiJEmUQQAABBBCwLEAAWwalOgQQQAABBJwIEMBOlCiDAAIIIICAZQEC2DIo1SGAAAIIIOBEgAB2okQZBBBAAAEELAsQwJZBqQ4BBBBAAAEnAgSwEyXKIIAAAgggYFmAALYMSnUIIIAAAgg4ESCAnShRBgEEEEAAAcsCBLBlUKpDAAEEEEDAiQAB7ESJMggggAACCFgWIIAtg1IdAggggAACTgQIYCdKlEEAAQQQQMCyAAFsGZTqEEAAAQQQcCJAADtRogwCCCCAAAKWBQhgy6BUhwACCCCAgBMBAtiJEmUQQAABBBCwLEAAWwalOgQQQAABBJwIEMBOlCiDAAIIIICAZYFoy/V5sroJEybIb7/9FvSxxcXFSbdu3aRAgQJBb5sGEUAAgewKnDhxQoYMGSJRUVHZ3TRX5c+dOyf33HOPNG3aNFf1BHtjAtiB+Pvvvy+DBw8O+g/VyJEjpU2bNnLNNdc46CVFEEAAgdAKrFixQpKTk+Xee+8NakdOnTol//rXvwjgoKoHqbFChQpJo0aNJF++4B6xf++994I0QppBAAEE7AgUK1ZMGjdubKcyh7Vs2LBBoqPDb38yuIniEJNiCCCAAAIIeF2AAPb6DDM+BBBAAAFXChDArpwWOoUAAggg4HUBAtjrM8z4EEAAAQRcKUAAu3Ja6BQCCCCAgNcFCGCvzzDjQwABBBBwpQAB7MppoVMIIIAAAl4XIIC9PsOMDwEEEEDAlQKuC2C9i8rRo0ddiUWnEEAAAQQQsCXgigDW+3j26dNHEhISpGDBgqL3QI6JiZEaNWrI+PHjbY2VehBAAAEEEHCNgCvu3dW9e3fZt2+fzJw5UypVqmTCNykpSdatWyc9evSQM2fOSNeuXbNEmzhxokybNi3Tcrt375Z69epl+l5WKxMTE6VTp05Bvxf0/PnzZePGjUH/MoZly5bJ4sWLpWrVqlnRWH1f29TbyZ08edJqvVlVtn37dlmzZo0888wzWRW1+v6hQ4dkx44dQW83JSVFjh8/HvR2Fe/06dPy7LPPml+0rWJmUdn+/ftl6NChMnXq1CxK2n17wYIF8sUXX5j/0+zWfPnali5dGvTbQWqP9N+uHsHcunXr5Tto+d2zZ89KyZIlLdea99VF+fxL3jdz+RYqVqwoy5cvl/j4+AwF9ebe/fr1k7lz52Z479IVGtT6yGw5f/68FClSRGJjYzN7+7Lr9Afq8OHDly2TF2/qf1ahWI4dOyZly5YNetN6r+0LFy4EvV1tMFRt67fGhOKfYKjGmz9/ftFfAIK9hGq8OlY9whfsZe/evSH5N6zj1Hvnq3ewl/Lly5v/44Pdbm7ac8UesB5qXrRokTz22GMZxvL1119L6dKlM6zPbEXhwoVFH7aXK664QvTBggACCISDQM2aNcOhmxHfR1fsAa9evVoef/xx0W/RqFy5shQvXlz0sO/69evNV1vNmjVLKlSoEPGTBQACCCCAgHcEXBHAyqmHjvUw9LZt28z5YN3rvf7666VJkyZBP/fqnellJAgggAACbhVwTQC7FYh+IYAAAgggkBcCwT9TnhejoE4EEEAAAQTCTIAADrMJo7sIIIAAAt4QIIC9MY+MAgEEEEAgzAQI4DCbMLqLAAIIIOANAQLYG/PIKBBAAAEEwkyAAA6zCaO7CCCAAALeECCAvTGPjAIBBBBAIMwEXHEryjAzC1p369SpY+5dHYr7qgZtkOkaOnDggPniiUi57afeQH7Pnj2i90KPlEW/XOSGG26IlOHKrl27zJcE5OQe9OGIdOLECTO/kyZNCsfuB73PBHDQyZ03WKZMGfNNKnlxf2vnvQheyTFjxoiO+eGHHw5eoyFsSb+FSb9oZMKECSHsRXCbbtasmfmmreC2GrrWXnrpJXnggQekQYMGoetEEFv+/vvvZfbs2UFsMbyb4hB0eM8fvUcAAQQQCFMBAjhMJ45uI4AAAgiEtwABHN7zR+8RQAABBMJUgAAO04mj2wgggAAC4S1AAIf3/NF7BBBAAIEwFSCAw3Ti6DYCCCCAQHgL8H3ALp6/ffv2mY/lREVFubiX9rqWlJQk+fPnl5iYGHuVurim5ORkOXr0qJQuXdrFvbTbtb1790rZsmXtVuri2o4cOWJ+ngsVKuTiXtrrmn62/dSpUxIpn+XPrRwBnFtBtkcAAQQQQCAHAhyCzgEamyCAAAIIIJBbAQI4t4JsjwACCCCAQA4ECOAcoLEJAggggAACuRUggHMryPYIIIAAAgjkQIAAzgEamyCAAAIIIJBbAQI4t4JsjwACCCCAQA4ECOAcoLEJAggggAACuRUggHMryPZ5InD+/Pk8qZdKQyvg8/kkJSUltJ2gdQRcIkAAu2QiMuvG5MmT5fbbb5ebbrpJnnjiCVm/fn1mxTy3TsfdsGFDz40r/YAGDx4stWrVkooVK4o+j4TlwoUL8sgjj8g//vEPzw933bp18thjj5l/u3fccYd8+umnnh6z/lLVs2dPqV27tlSvXl1GjBjh6fFaG5z/N1IWFwr4b9nnK1OmjM9/O0rTuw8++MDXvHlzF/bUXpf8t+3zPf/88z7/rRl9derUsVexy2qaMmWKr1GjRr5jx475dJ79v2D5Zs2a5bJe2u3OqlWrfI0bN/b5b1Ho8//CYbdyF9Z21113+T788EPTs927d/uuuuqqtH/LLuxurrs0cuRI30MPPeTzB7HvxIkTvnLlyvmWL1+e63q9XgF7wNZ+lbFbke4t+P+jNveC1pp1L3jZsmV2G3FZbQsXLpSiRYuK/z8ul/XMbnfmzJljjmiUKFFC4uPjzZ7SF198YbcRl9Wmc/qnP/3JjNVlXbPeHf23+9xzz6WN1R9GUqxYMfnpp5+st+WWCp999lmZMGGC5MuXzzzOnTvHqQYHk0MAO0AKRRH9R9ukSZO0pseNGyetWrVKe+3FJw8//LAMGzZMihQp4sXhpY1px44dF30hgYbw/v3709734pO33npL2rZt68WhZRiThlDr1q2lQIEC5j39xVK/dMPLp1X0yyb0l4xPPvlEbr31VvN/lZfHm2HSc7giOofbsVkQBd5//32ZMWOGrFy5Moit0lReCRw+fPiib3zSvf6TJ0/mVXPUG0KBTZs2yZNPPimjR4+WkiVLhrAnwWlav7lNzwH7TzmYa1ZuvPHG4DQcpq2wB+ySievUqZMULFjQPPR56jJ27Fh5+eWXZcGCBXL11Venrg77v+fOnZs23kj76rIrr7xS9KsXUxd9rkc8WLwlsGHDBmnWrJm88soraYejvTXCjKNp166dfPTRR+K/xsH80pGxBGvSC7AHnF4jhM//9re/SdeuXU0PSpUqZf7W82b9+/c34VutWrUQ9s5+03p4asWKFaZi/Q7gSFr0F6nt27enDXnbtm2SkJCQ9pon4S+wZcsWufPOO6Vv377SpUuX8B9QFiPwXyQqurdbv359U1Kff/XVV1lsxdsEsEt+Bq655hrRR+qydetW8V8RLDNnzjR7R/rF3rrExcWlFgnrv4sXLy7+K53Degw57bx+FOfFF18U3VvQi1X0vJl+9IrFOwJ62Ll9+/Zmzzf1325sbKw56uOdUf5vJPpzrHv6+v+V/yposxes58FZLi/AIejL+4Ts3bffftucF9RDWLpHnPo4depUyPpEw3YEWrRoIbfccovZY9AjAfofdd26de1UTi0hF/jxxx/NJxb0gsLUf7f6t5d/yerQoYPoqRU9UlevXj3Rzz737t075HPh9g5E6ees3N5J+oeAFwX03K9ePaoPFgS8IKAXE+rPc3Q0B1edzCcB7ESJMggggAACCFgW4BC0ZVCqQwABBBBAwIkAAexEiTIIIIAAAghYFiCALYNSHQIIIIAAAk4ECGAnSpRBAAEEEEDAsgABbBmU6hBAAAEEEHAiQAA7UaIMAggggAAClgUIYMugVIcAAggggIATAQLYiRJlEEAAAQQQsCxAAFsGpToEEEAAAQScCBDATpQogwACCCCAgGUBAtgyKNUhgAACCCDgRIAAdqJEGQQQQAABBCwLEMCWQakOAQQQQAABJwIEsBMlyiCAAAIIIGBZgAC2DEp1CCCAAAIIOBEggJ0oUQYBBBBAAAHLAgSwZVCqQwABBBBAwIkAAexEiTIIIIAAAghYFiCALYNSHQIIIIAAAk4ECGAnSpRBAAEEEEDAsgABbBmU6hBwq8DWrVulZs2a8uuvv5oujh8/Xtq2bSs+n8+tXaZfCHhaIMr/j49/fZ6eYgaHwP8EevXqJZs3b5axY8dKrVq1ZM6cOVK3bt3/FeAZAggETYAADho1DSEQeoGTJ0/KjTfeKMWLF5dWrVrJ4MGDQ98peoBAhApwCDpCJ55hR6ZATEyMdO3aVdauXSvdunWLTARGjYBLBNgDdslE0A0EgiFw7NgxqV69unmULVtWJk6cGIxmaQMBBDIRYA84ExRWIeBVgRdeeEFatmwpn3/+uSxYsMCcA/bqWBkXAm4XiHZ7B+kfAgjYEfjmm29k+vTpsmHDBilRooQMHz5cunTpYg5Hx8bG2mmEWhBAwLEAh6AdU1EQAQQQQAABewIcgrZnSU0IIIAAAgg4FiCAHVNREAEEEEAAAXsCBLA9S2pCAAEEEEDAsQAB7JiKgggggAACCNgTIIDtWVITAggggAACjgUIYMdUFEQAAQQQQMCeAAFsz5KaEEAAAQQQcCxAADumoiACCCCAAAL2BAhge5bUhAACCCCAgGMBAtgxFQURQAABBBCwJ0AA27OkJgQQQAABBBwLEMCOqSiIAAIIIICAPQEC2J4lNSGAAAIIIOBYgAB2TEVBBBBAAAEE7AkQwPYsqQkBBBBAAAHHAgSwYyoKIoAAAgggYE+AALZnSU0IIIAAAgg4Fvh/SULnxZMRqzsAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "RCall.RObject{RCall.VecSxp}\n", "$breaks\n", " [1] -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5\n", "\n", "$counts\n", " [1] 1 0 8 13 25 22 17 8 5 0 0 1\n", "\n", "$density\n", " [1] 0.02 0.00 0.16 0.26 0.50 0.44 0.34 0.16 0.10 0.00 0.00 0.02\n", "\n", "$mids\n", " [1] -2.25 -1.75 -1.25 -0.75 -0.25 0.25 0.75 1.25 1.75 2.25 2.75 3.25\n", "\n", "$xname\n", "[1] \"x\"\n", "\n", "$equidist\n", "[1] TRUE\n", "\n", "attr(,\"class\")\n", "[1] \"histogram\"\n" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "R\"hist(x)\"" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "3-element Array{Int64,1}:\n", " 1\n", " 2\n", " 3" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "myjuliavar = [1, 2, 3]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "3-element Array{Int64,1}:\n", " 1\n", " 2\n", " 3" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "myjuliavar" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAD8GlDQ1BJQ0MgUHJvZmlsZQAAOI2NVd1v21QUP4lvXKQWP6Cxjg4Vi69VU1u5GxqtxgZJk6XpQhq5zdgqpMl1bhpT1za2021Vn/YCbwz4A4CyBx6QeEIaDMT2su0BtElTQRXVJKQ9dNpAaJP2gqpwrq9Tu13GuJGvfznndz7v0TVAx1ea45hJGWDe8l01n5GPn5iWO1YhCc9BJ/RAp6Z7TrpcLgIuxoVH1sNfIcHeNwfa6/9zdVappwMknkJsVz19HvFpgJSpO64PIN5G+fAp30Hc8TziHS4miFhheJbjLMMzHB8POFPqKGKWi6TXtSriJcT9MzH5bAzzHIK1I08t6hq6zHpRdu2aYdJYuk9Q/881bzZa8Xrx6fLmJo/iu4/VXnfH1BB/rmu5ScQvI77m+BkmfxXxvcZcJY14L0DymZp7pML5yTcW61PvIN6JuGr4halQvmjNlCa4bXJ5zj6qhpxrujeKPYMXEd+q00KR5yNAlWZzrF+Ie+uNsdC/MO4tTOZafhbroyXuR3Df08bLiHsQf+ja6gTPWVimZl7l/oUrjl8OcxDWLbNU5D6JRL2gxkDu16fGuC054OMhclsyXTOOFEL+kmMGs4i5kfNuQ62EnBuam8tzP+Q+tSqhz9SuqpZlvR1EfBiOJTSgYMMM7jpYsAEyqJCHDL4dcFFTAwNMlFDUUpQYiadhDmXteeWAw3HEmA2s15k1RmnP4RHuhBybdBOF7MfnICmSQ2SYjIBM3iRvkcMki9IRcnDTthyLz2Ld2fTzPjTQK+Mdg8y5nkZfFO+se9LQr3/09xZr+5GcaSufeAfAww60mAPx+q8u/bAr8rFCLrx7s+vqEkw8qb+p26n11Aruq6m1iJH6PbWGv1VIY25mkNE8PkaQhxfLIF7DZXx80HD/A3l2jLclYs061xNpWCfoB6WHJTjbH0mV35Q/lRXlC+W8cndbl9t2SfhU+Fb4UfhO+F74GWThknBZ+Em4InwjXIyd1ePnY/Psg3pb1TJNu15TMKWMtFt6ScpKL0ivSMXIn9QtDUlj0h7U7N48t3i8eC0GnMC91dX2sTivgloDTgUVeEGHLTizbf5Da9JLhkhh29QOs1luMcScmBXTIIt7xRFxSBxnuJWfuAd1I7jntkyd/pgKaIwVr3MgmDo2q8x6IdB5QH162mcX7ajtnHGN2bov71OU1+U0fqqoXLD0wX5ZM005UHmySz3qLtDqILDvIL+iH6jB9y2x83ok898GOPQX3lk3Itl0A+BrD6D7tUjWh3fis58BXDigN9yF8M5PJH4B8Gr79/F/XRm8m241mw/wvur4BGDj42bzn+Vmc+NL9L8GcMn8F1kAcXgSteGGAAAy+0lEQVR4Ae3dC5xPdf7H8Y9Iw0xo3BvKPUlEW4x1zYZWQugidxXKtG7V8vdYkkci1pJpVyq6SJvNtot5dLOsii6KIrciFM2Sy0xGGmN+//l8/zu//8z8Ls7v9zu/OWd+8zqPx8+c37l8v+c8z3e859zLePI6oUMAAQQQQACBYhW4qFhrozIEEEAAAQQQMAIEMA0BAQQQQAABBwQIYAfQqRIBBBBAAAECmDaAAAIIIICAAwIEsAPoVIkAAggggAABTBtAAAEEEEDAAQEC2AF0qkQAAQQQQIAApg0ggAACCCDggAAB7AA6VSKAAAIIIEAA0wYQQAABBBBwQIAAdgCdKhFAAAEEECCAaQMIIIAAAgg4IEAAO4BOlQgggAACCBDAtAEEEEAAAQQcECCAHUCnSgQQQAABBAhg2gACCCCAAAIOCBDADqBTJQIIIIAAAgQwbQABBBBAAAEHBAhgB9CpEgEEEEAAAQKYNoAAAggggIADAgSwA+hUiQACCCCAAAFMG0AAAQQQQMABAQLYAXSqRAABBBBAgACmDSCAAAIIIOCAAAHsADpVIoAAAgggQADTBhBAAAEEEHBAgAB2AJ0qEUAAAQQQIIBpAwgggAACCDggQAA7gE6VCCCAAAIIEMC0AQQQQAABBBwQIIAdQKdKBBBAAAEECGDaAAIIIIAAAg4IEMAOoFMlAggggAACBDBtAAEEEEAAAQcECGAH0KkSAQQQQAABApg2gAACCCCAgAMCBLAD6FSJAAIIIIAAAUwbQAABBBBAwAEBAtgBdKpEAAEEEECAAKYNIIAAAggg4IAAAewAOlUigAACCCBAANMGEEAAAQQQcECAAHYAnSoRQAABBBAggGkDCCCAAAIIOCBAADuATpUIIIAAAggQwLQBBBBAAAEEHBAggB1Ap0oEEEAAAQQIYNoAAggggAACDggQwA6gUyUCCCCAAAIEMG0AAQQQQAABBwQIYAfQqRIBBBBAAAECmDaAAAIIIICAAwIEsAPoVIkAAggggAABTBtAAAEEEEDAAQEC2AF0qkQAAQQQQIAApg0ggAACCCDggAAB7AA6VSKAAAIIIFCuNBH87W9/k5ycnNK0yqwrAggggEAQgRo1ashNN90UZIrojSrjyeuiV7x7Sn7jjTdk3rx5MnToUPcsFEuCAAIIIOCowMKFC2X58uVy3XXXFftylJo9YN3zHTJkiIwaNarYkakQAQQQQMCdAnv37pXc3FxHFo5zwI6wUykCCCCAQGkXIIBLewtg/RFAAAEEHBEggB1hp1IEEEAAgdIu4LoA1nO1J0+eLO3bhfVHAAEEEIhxAVcEcHZ2tkyZMkXq1q0r5cuXl8TERImPj5fmzZvL0qVLY3wTsHoIIIAAAqVRwBVXQaekpEh6erqsXbtWGjRoYMI3MzNTdu7cKePGjZOzZ8/KmDFjSuP2YZ0RQAABBGJUwBV7wO+8844sXrxYWrRoIQkJCVKmTBmpXLmyJCcny4IFC+TNN9+MUX5WCwEEEECgtAq4IoD1UPP69ev9boM1a9ZI9erV/Y5jIAIIIIAAAnq0dPPmzXLixIkSheGKQ9AzZsyQgQMHyvz586Vhw4ZSqVIlycjIkF27dplHR6alpZUoVBYWAQQQQCD6Avogx2nTpsnXX38tSUlJ8swzz8i6devM0dPo1x55Da4I4FatWsnWrVvNXzAHDhww54N1r1fP+3bs2NEcko58VSkBAQQQQCCWBGbOnClZWVmyYsUKs1r33nuveeLhypUr5corr3T9qroigFUpLi5OunTp4gO2Z88eOXPmjGhIX6jbuHGjfPTRR34ne//990Ufuj169Gi/4xmIAAIIIFCyBLZs2SLPPfecd6GbNm0qI0aMkA8//JAA9qpE0KN/yRw8eFCWLFlywVJq1aol1157rd/pNm3aJMeOHfM7joEIIIAAAiVPQC/a1btkCnanTp2SqlWrFhzk2n7X7AEHEpo6dWqgUT7DmzRpIvrx1+mV1nqrEx0CCCCAQGwI9O3bVx555BF54YUXpEKFCuaOmcmTJ4vexloSOtcG8Pnz582xfb0giw4BBBBAAIGiAv379zdHNlu3bm12vnSPWI+YXnrppUUndeV3VwTwuXPnZO7cueZKtrFjx4q+Hkp/6iXlffr0MSfYL7nkElcCslAIIIAAAs4J6MW6JfVBTa64D/jhhx+WDRs2SM2aNeXOO++Uxx57TN544w0TyPpsaB7E4VzjpmYEEEAAgegIuGIPWO/z1avZ9HCzHsc/evSodOrUyayxXmau54E1mOkQQAABBBCIFQFXBLA+/3n37t1y4403it7H9f3333t9t2/fLo0aNfJ+pwcBBBBAAIFYEHDFIegJEyZI79695R//+IdcfvnlJogVV9+QNHHiRHNfVyxgsw4IIIAAAgjkC7gigLt16yb6wA3dAy7Y9erVS/bv329eS1hwOP0IIIAAAgiUdAFXHIJWRD3/W/SWI30bEh0CCCCAAAKxKOCKPeBYhGWdEEAAAQQQCCZAAAfTYRwCCCCAAAJREiCAowRLsQgggAACCAQTIICD6TAOAQQQQACBKAkQwFGCpVgEEEAAAQSCCRDAwXQYhwACCCCAQJQECOAowVIsAggggAACwQQI4GA6jEMAAQQQQCBKAgRwlGApFgEEEEAAgWACBHAwHcYhgAACCCAQJQECOEqwFIsAAggggEAwAQI4mA7jEEAAAQQQiJIAARwlWIpFAAEEEEAgmAABHEyHcQgggAACCERJgACOEizFIoAAAgggEEyAAA6mwzgEEEAAAQSiJEAARwmWYhFAAAEEEAgmQAAH02EcAggggAACURIggKMES7EIIIAAAggEEyCAg+kwDgEEEEAAgSgJEMBRgqVYBBBAAAEEggkQwMF0GIcAAggggECUBAjgKMFSLAIIIIAAAsEECOBgOoxDAAEEEEAgSgIEcJRgKRYBBBBAAIFgAgRwMB3GIYAAAgggECUBAjhKsBSLAAIIIIBAMAECOJgO4xBAAAEEEIiSAAEcJViKRQABBBBAIJgAARxMh3EIIIAAAghESYAAjhIsxSKAAAIIIBBMgAAOpsM4BBBAAAEEoiRAAEcJlmIRQAABBBAIJkAAB9NhHAIIIIAAAlESIICjBEuxCCCAAAIIBBMggIPpMA4BBBBAAIEoCRDAUYKlWAQQQAABBIIJEMDBdBiHAAIIIIBAlAQI4CjBUiwCCCCAAALBBAjgYDqMQwABBBBAIEoCBHCUYCkWAQQQQACBYAIEcDAdxiGAAAIIIBAlAQI4SrAUiwACCCCAQDABAjiYDuMQQAABBBCIkgABHCVYikUAAQQQQCCYAAEcTIdxCCCAAAIIREmAAI4SLMUigAACCCAQTIAADqbDOAQQQAABBKIkQABHCZZiEUAAAQQQCCZAAAfTYRwCCCCAAAJREiCAowRLsQgggAACCAQTIICD6TAOAQQQQACBKAkQwFGCpVgEEEAAAQSCCRDAwXQYhwACCCCAQJQECOAowVIsAggggAACwQQI4GA6jEMAAQQQQCBKAgRwlGApFgEEEEAAgWACBHAwHcYhgAACCCAQJQECOEqwFIsAAggggEAwAQI4mA7jEEAAAQQQiJIAARwlWIpFAAEEEEAgmAABHEyHcQgggAACCERJwLUBfOzYMcnJyYnSalMsAggggAACzgq4IoCHDBkiu3fvNhJ79uyRnj17St26daVWrVoyduxYOXfunLNK1I4AAggggIDNAq4I4B07dkhWVpZZtVmzZknTpk3lyJEjsmnTJjlw4IDoMDoEEEAAAQRiScAVAVwQ9O2335bp06dLYmKiNGnSRGbOnCkbNmwoOAn9CCCAAAIIlHgB1wSw7u3+8MMP0rZtWzl+/LgXdvv27dKqVSvvd3oQQAABBBCIBYFybliJe+65R1avXi2PP/64ZGRkSFxcnKxYscLsCaempsq6devcsJgsAwIIIIAAArYJuCKAJ06cKPrR7vDhw5KZmWn6e/ToIZMmTZKEhATznX8QQAABBBCIFQFXBHBBzKSkJNGPdno4OpQuNzdX9OOv0+Eej8ffKIYhgAACCCBQ7AKuC+CiAnpb0pkzZyydB166dKm89tprRYsw37WcevXq+R3HQAQQQAABBIpbwPUBvHLlSjl48KAsWbLkgjYjR44U/fjrxo8fL+np6f5GMQwBBBBAAIFiF3B9AE+ePJknYhV7s6BCBBBAAIFoC7jiNqTvvvtO9GlYerHVzTffLN988413vXUPePDgwd7v9CCAAAIIIBALAq4I4Pnz50vt2rVly5YtkpycLB07dpS9e/fGgi/rgAACCCCAgF8BVxyCTktLk61bt0qFChVkxowZ0qxZM+nevbt88MEHfheagQgggAACCJR0AVfsAWvg6t5vfnfXXXdJSkqK3HLLLYWeipU/np8IIIAAAgiUdAFXBPDo0aNlwIABMnv2bK/nhAkTpF+/fqJXL9MhgAACCCAQawKuOATdrVs32bdvn+zfv7+Q77Rp06RTp05mXKERfEEAAQQQQKCEC7gigNUwPj5err32Wh/Ozp07i37oEEAAAQQQiCUBVxyCjiVQ1gUBBBBAAAErAgSwFSWmQQABBBBAwGYBAthmUIpDAAEEEEDAigABbEWJaRBAAAEEELBZgAC2GZTiEEAAAQQQsCJAAFtRYhoEEEAAAQRsFiCAbQalOAQQQAABBKwIEMBWlJgGAQQQQAABmwUIYJtBKQ4BBBBAAAErAgSwFSWmQQABBBBAwGYBAthmUIpDAAEEEEDAigABbEWJaRBAAAEEELBZgAC2GZTiEEAAAQQQsCJAAFtRYhoEEEAAAQRsFiCAbQalOAQQQAABBKwIEMBWlJgGAQQQQAABmwUIYJtBKQ4BBBBAAAErAgSwFSWmQQABBBBAwGYBAthmUIpDAAEEEEDAigABbEWJaRBAAAEEELBZgAC2GZTiEEAAAQQQsCJAAFtRYhoEEEAAAQRsFiCAbQalOAQQQAABBKwIEMBWlJgGAQQQQAABmwUIYJtBKQ4BBBBAAAErAgSwFSWmQQABBBBAwGaBgAH8888/21wVxSGAAAIIIIBAvkDAAJ4yZYo8+eST+dPxEwEEEEAAAQRsFAgYwFdeeaVs375dzp8/b2N1FIUAAggggAACKlAuEEOFChVkzZo1UqlSJalbt66ULVvWTNq9e3f54x//GGg2hiOAAAIIIICABYGAAdyjRw9p2bKlTxFVq1b1GcYABBBAAAEEEAhNIGAA6yFo/RTtuDirqAjfEUAAAQQQCF0gYAD/+OOPMnr0aPn666/NeeDc3Fw5e/astG3bVl599dXQa2IOBBBAAAEEEPAKBLwIa/78+XLmzBm57777pE6dOjJjxgxzPlivjqZDAAEEEEAAgcgEAgbwvn37ZOLEiTJs2DA5fPiw9O/fX5YuXSrz5s2LrEbmRgABBBBAAAEJGMBJSUly6NAhSUhIkOzsbDl+/LgkJiaaYbghgAACCCCAQGQCAc8Bjxw5UpKTk6VRo0Zy2223ya233mqCeMCAAZHVyNwIIIAAAgggEPg+4GbNmsmePXvM/b8axH/5y1+kSpUqcscdd8CGAAIIIIAAAhEKBNwDTk1NNRdhDR48WMqVKydjx46NsCpmRwABBBBAAIF8gYDngDt06CB79+6V5s2bS69evWTVqlXmEHT+jPxEAAEEEEAAgfAFAgZwixYtZMmSJfL999+L7gW/+OKL0qBBA9E9YzoEEEAAAQQQiEwgYADnF6svY9CroPWnHorWDx0CCCCAAAIIRCYQME0/++wz0YdxrF27Vjp37iz333+//Pa3vyWAI/NmbgQQQAABBIxAwAD+5JNPpHXr1ubNRzVq1IALAQQQQAABBGwUCBjAY8aM8VuNvoxBX1VIhwACCCCAAALhCwQMYF7GED4qcyKAAAIIIHAhgYAXYfEyhgvRMR4BBBBAAIHwBQIGMC9jCB+VORFAAAEEELiQQMAA5mUMF6JjPAIIIIAAAuELBDwHzMsYwkdlTgQQQAABBC4kEDCAeRnDhegYjwACCCCAQPgCPgHcpk0bmTNnjmzatEmWLl3qU/Knn34qCxYs8BnOAAQQQAABBBCwLuATwM8++6zUq1dPGjZsKN26dfMp6bLLLvMZxgAEEEAAAQQQCE3AJ4BbtmxpSqhcubLUqVMntNKYGgEEEEAAAQQsCfgEcMeOHeXUqVMBZ9a94rlz5wYczwgEEEAAAQQQuLCATwBruJ47dy7gnNWqVQs4jhEIIIAAAgggYE3AJ4BvvPFGa3MyFQIIIIAAAgiELeATwPklzZs3T15++eX8r96feghar5KmQwABBBBAAIHwBQIGcN++fSV/b9jj8ciRI0fM7Uf6TmA6BBBAAAEEEIhMIGAAN2jQQPRTsNPveo64c+fOBQfTjwACCCCAAAIhCgR8FrS/cr799lvJyMjwN4phCCCAAAIIIBCCQMA9YN3Tfemll7xF/fzzz/Ldd9/JihUrvMPoQQABBBBAAIHwBAIGcL9+/SQ5Odlbarly5cwh6erVq3uH0YMAAggggAAC4Qn4BHC7du3kiSeekI8//liWLVvmt9RatWqJXqT10EMP+R0fycCcnBz56aefhEdeRqLIvAgggAACbhfwCeBFixaZPV294KpLly5+l//HH3804XvXXXdJjRo1/E4TysDs7GyZPn26ue3p8OHDolddV6xYUerXry8TJ06U4cOHh1Ic0yKAAAIIIOB6AZ8Abt26tVlo3fvVC66GDBligrDomui48uXLFx0c1veUlBRJT0+XtWvXmvCPj4+XzMxM2blzp4wbN07Onj0rY8aMCatsZkIAAQQQQMCNAgGvgu7Zs6c5FNy+fXtz25EG8unTp73rcPfdd0uVKlW83yPpeeedd2Tx4sXSokULSUhIkDJlyoi+DELPQeurD998881IimdeBBBAAAEEXCcQMIAbN25s7vk9dOiQTJ48WTZu3ChXX321DBs2TD766CNbV6R58+ayfv16v2WuWbNGuPDLLw0DEQhL4MMPP5R//vOf8tVXX4U1PzMhgIA9Aj6HoIsWe+LECdm7d6/56JXQVatWNYeF9Z3Br732WtHJw/o+Y8YMGThwoMyfP9+8h7hSpUrm8PeuXbtEL8pKS0sLq1xmQgCBwgJ6TYX+TusfvQ888ID8/ve/l7FjxxaeiG8IIFAsAgED+P3335cnn3xS9Oett94q06ZNk65du8pFF10kubm5kpSUJAcOHBAN4ki7Vq1aydatW2Xz5s2mTD0frHu9et5XX4+oh6TpEEAgMoHnn3/e/O4uXbrUFKS/X7169ZLrrrtO9FQTHQIIFK9AwADWvV795Xz11VfN+diCi6UhrL/EGsJ2dXFxcX6vut6zZ4+cOXNGNKQv1OlhtXfffdfvZPqHhO690yFQWgU2bdokDz/8sHf19U4DvQBShxPAXhZ6ECg2gYABPHLkSDl//rx88cUX8ssvv3gXSEOsSZMm0qNHD++waPasXLlSDh48KEuWLLlgNW3atPF5fnX+TKdOnZKsrKz8r/xEoNQJaOAePXpUmjZt6l13/d3S4XQIIFD8AgEDWC/U0KdhXXrppaJ7p/mdvo5QX1VYXN3UqVMtV1WzZk3Rj7+uWrVq5nyyv3EMQ6A0CIwYMUImTJhg7jjQP6L17gK9zY/nu5eGrc86ulEgYADru4D1HLBe9exkp3vheiHWJZdc4uRiUDcCJV5AT+M89dRT5ne6QoUK5miR7gHrRY90CCBQ/AIBb0O68sor5eTJk8WyRPqSB33gh94DfPPNN8s333zjrVcPQQ8ePNj7nR4EEAhf4Fe/+pU557tu3TpzWueKK64IvzDmRACBiAQC7gHr7Qr6F7Ne1HTNNdd4K2nZsqUMGjTI+92OHr39qHbt2rJlyxZz0Zde+bxhwwZzrtmO8ikDAQQQQAABtwkEDODU1FTzCMirrrqq0Dngiy++2PZ10Pt89TYkPSym9wQ3a9ZMunfvLh988IHtdVEgAggggAACbhAIGMDbtm0zT8LStx5Fu9PA1b3fDh06mKr0JQ9HjhyRW265RUaNGhXt6ikfAQQQQACBYhcIeA74tttuMy9H0IduRLsbPXq0DBgwQGbPnu2tSq/W1Kuwx48f7x1GDwIIIIAAArEiEHAP+NixY/L666+bc7L6wI2yZcuaddb7f//0pz/Zuv56a9O+fftk//79hcrVp2916tTJjCs0gi8IIIAAAgiUcIGAAaxvQ7r++ut9Vi8xMdFnmB0D9BWE1157rU9RnTt3Nm9j8hnBAAQQQAABBEqwQMAArlu3ruhHO70XNzs721wkVYLXlUVHAAEEEEDANQI+54B37twp+q5fj8djFlIPQ1922WVSo0YNGT58OE/Ncc2mY0EQQAABBEqyQKEA1tDVFzAkJyebANZnJ997772ybNky85ai8uXLi75RhQ4BBBBAAAEEIhModAh65syZ8tNPP8mXX34p999/v3lwu74KUO/T1U9mZqZ5lJ3eIjR37tzIamZuBBBAAAEESrFAoQDWF3O/+OKLsnDhQvPwjT59+sgTTzxh3surRvpYSA3oOXPmlGIyVh0BBBBAAIHIBQoFsJ7r1ftx9Wpk7ddD0PpSBn3/70MPPWT69f3A+p0OAQQQQAABBMIXKBTAWsysWbNE94Q///xzcw9u/ptSbrjhBnM+uEWLFuHXxpwIIIAAAgggYAR8AliH6oM39FOw441EBTXoRwABBBBAIDIBn2PJehuSXvVMhwACCCCAAALRE/AJ4K5du/rs/UavekpGAAEEEECgdAr4HILWVwA2bNiwdGqw1ggggAACCBSTgM8ecLDw1Rc06CFqOgQQQAABBBCITMAngIMVt27dOpk+fXqwSRiHAAIIIIAAAhYEQgpgC+UxCQIIIIAAAghYECCALSAxCQIIIIAAAnYL+FyEpa8ezH8TUtHKdBwdAggggAACCEQu4BPANWvWlOPHjwcsWR9VSYcAAggggAACkQn4BPC2bdskNzc3YKkVK1YMOI4RCCCAAAIIIGBNwCeAExIS/B6Crly5Mi9hsGbKVAgggAACCFxQwOcirEaNGkliYqLPJz4+Xjp06CCHDx++YKFMgAACCCCAAALBBXwC+JtvvpETJ074fHbv3i1XX321/OEPfwheImMRQAABBBBA4IICPoegq1Sp4ncmfT/wbbfdJqmpqX7HMxABBBBAAAEErAv47AEHmnX+/PkyadIkueOOOwJNwnAEEEAAAQQQsCgQMIDT0tK8z33W/vT0dFm4cKHwXmCLskyGAAIIIIBAEIFCh6AzMjKkVatWcs0118iRI0ekd+/eMnr0aHnvvffMBVjdunULUhSjEEAAAQQQQMCqQKEA1luN9u7dK1999ZVMnTpVNmzYIKtXr5Y9e/bIli1bRC/E0iuh27dvb7V8pkMAAQQQQAABPwKFDkHn5OSYsG3evLk0btxYUlJS5NNPP5V7771XevToYW5N2rhxo59iGIQAAggggAACoQgU2gPOzs6WRx99VHbt2iWZmZly4MABycrKMud/dc+3b9++oZTNtAgggAACCCAQQKDQHrA+ZnLNmjWyb98+ufPOO6V+/frmsPNnn30mo0aNks6dO8tTTz0VoCgGI4AAAggggIBVgUJ7wAVnqlWrltxwww3SvXt3iYuLM/1XXXWVfPvttwUnox8BBBBAAAEEwhAIGMB6EVZ+V7C/Xr16+YP5iQACCCCAAAJhChQ6BK1l7Ny5U5YtWxZmccyGAAIIIIAAAlYEfAK4a9eukpSUZGVepkEAAQQQQACBMAV8DkF/8MEH0rBhwzCLYzYEEEAAAQQQsCLgswdM+FphYxoEEEAAAQQiE/AJ4MiKY24EEEAAAQQQsCJAAFtRYhoEEEAAAQRsFiCAbQalOAQQQAABBKwIEMBWlJgGAQQQQAABmwUIYJtBKQ4BBBBAAAErAgSwFSWmQQABBBBAwGYBAthmUIpDAAEEEEDAigABbEWJaRBAAAEEELBZgAC2GZTiEEAAAQQQsCJAAFtRYhoEEEAAAQRsFiCAbQalOAQQQAABBKwIEMBWlJgGAQQQQAABmwUIYJtBKQ4BBBBAAAErAgSwFSWmQQABBBBAwGYBAthmUIpDAAEEEEDAigABbEWJaRBAAAEEELBZgAC2GZTiEEAAAQQQsCJAAFtRYhoEEEAAAQRsFiCAbQalOAQQQAABBKwIEMBWlJgGAQQQQAABmwUIYJtBKQ4BBBBAAAErAgSwFSWmQQABBBBAwGYBAthmUIpDAAEEEEDAigABbEWJaRBAAAEEELBZgAC2GZTiEEAAAQQQsCJAAFtRYhoEEEAAAQRsFiCAbQalOAQQQAABBKwIuDaAjx07Jjk5OVbWgWkQQAABBBAocQKuCOAhQ4bI7t27Dd6ePXukZ8+eUrduXalVq5aMHTtWzp07V+JgWWAEEEAAAQSCCbgigHfs2CFZWVlmOWfNmiVNmzaVI0eOyKZNm+TAgQOiw+gQQAABBBCIJQFXBHBB0LffflumT58uiYmJ0qRJE5k5c6Zs2LCh4CT0I4AAAgggUOIFXBPAurf7ww8/SNu2beX48eNe2O3bt0urVq283+lBAAEEEEAgFgTKuWEl7rnnHlm9erU8/vjjkpGRIXFxcbJixQqzJ5yamirr1q1zw2KyDAgggAACCNgm4IoAnjhxouhHu8OHD0tmZqbp79Gjh0yaNEkSEhLMd/5BAAEEEEAgVgRcEcAFMZOSkkQ/2unhaL0q+syZM5YOQ588eVJOnTpVsDhvv+5ZczW1l4MeBBBAAAGHBVwXwEU9Vq5cKQcPHpQlS5YUHeXzXQ9Vp6Wl+QzXAR9//LHUrFnT7zgGIoAAAgggUNwCrg/gqVOnWjbp37+/6MdfN378eElPT/c3imEIIIAAAggUu4BrroIu9jWnQgQQQAABBBwUIIAdxKdqBBBAAIHSK+CKQ9Dz5s0LeoGUPhmrT58+pXcrseYIIIAAAjEn4IoA1sdNLlq0SIYOHSrx8fE+yNWrV/cZxgAEEEAAAQRKsoArAvjpp5+W3Nxc89EHb9AhgAACCCAQ6wKuOQc8e/Zs8wCO06dPx7o564cAAggggIC4Yg9Yt4M+7Wr58uVsEgQQQAABBEqFgGv2gEuFNiuJAAIIIIDAfwUIYJoCAggggAACDggQwA6gUyUCCCCAAAIEMG0AAQQQQAABBwQIYAfQqRIBBBBAAAECmDaAAAIIIICAAwIEsAPoVIkAAggggAABTBtAAAEEEEDAAQEC2AF0qkQAAQQQQIAApg0ggAACCCDggAAB7AA6VSKAAAIIIEAA0wYQQAABBBBwQIAAdgCdKhFAAAEEECCAaQMIIIAAAgg4IEAAO4BOlQgggAACCBDAtAEEEEAAAQQcECCAHUCnSgQQQAABBAhg2gACCCCAAAIOCBDADqBTJQIIIIAAAgQwbQABBBBAAAEHBAhgB9CpEgEEEEAAAQKYNoAAAggggIADAgSwA+hUiQACCCCAAAFMG0AAAQQQQMABAQLYAXSqRAABBBBAgACmDSCAAAIIIOCAAAHsADpVIoAAAgggQADTBhBAAAEEEHBAgAB2AJ0qEUAAAQQQIIBpAwgggAACCDggQAA7gE6VCCCAAAIIEMC0AQQQQAABBBwQIIAdQKdKBBBAAAEECGDaAAIIIIAAAg4IEMAOoFMlAggggAACBDBtAAEEEEAAAQcECGAH0KkSAQQQQAABApg2gAACCCCAgAMCBLAD6FSJAAIIIIAAAUwbQAABBBBAwAEBAtgBdKpEAAEEEECAAKYNIIAAAggg4IAAAewAOlUigAACCCBAANMGEEAAAQQQcECAAHYAnSoRQAABBBAggGkDCCCAAAIIOCBAADuATpUIIIAAAggQwLQBBBBAAAEEHBAggB1Ap0oEEEAAAQQIYNoAAggggAACDggQwA6gUyUCCCCAAAIEMG0AAQQQQAABBwQIYAfQqRIBBBBAAAECmDaAAAIIIICAAwIEsAPoVIkAAggggAABTBtAAAEEEEDAAQEC2AF0qkQAAQQQQIAApg0ggAACCCDggAAB7AA6VSKAAAIIIEAA0wYQQAABBBBwQIAAdgCdKhFAAAEEECCAaQMIIIAAAgg4IEAAO4BOlQgggAACCBDAtAEEEEAAAQQcEHBdAOfk5MjJkycdoKBKBBBAAAEEik/AFQGcnZ0tU6ZMkbp160r58uUlMTFR4uPjpXnz5rJ06dLi06AmBBBAAAEEikmgXDHVE7SalJQUSU9Pl7Vr10qDBg1M+GZmZsrOnTtl3LhxcvbsWRkzZkzQMhiJAAIIIIBASRJwxR7wO++8I4sXL5YWLVpIQkKClClTRipXrizJycmyYMECefPNN0uSKcuKAAIIIIDABQVcEcB6qHn9+vV+F3bNmjVSvXp1v+OKY+Dbb79tDoO/9dZbxVEddSCAAAIIlBIBVxyCnjFjhgwcOFDmz58vDRs2lEqVKklGRobs2rVL9KKstLQ0RzbH0KFDzTnpTp06yZw5c+T555+Xv/71r3LRRa74u8UREypFAAEEELBHwBUB3KpVK9m6dats3rxZDhw4YM4H616vnvft2LGjOSRtz+paL2XFihXmHPSnn35qZho0aJCMHDlSXnnlFRkyZIj1gpgSAQQQQAABPwKuCGBdrri4OOnSpYvPIu7Zs0fOnDkjGtIX6l5++WVZtWqV38m+/PJLqVOnjt9x/gZu27bN7JEXHDdq1CizB1xwGP0IIIAAAgiEI+CaAA608CtXrpSDBw/KkiVLAk3iHT5gwADp1auX93vBHi0nKyur4KCg/XoYXMO/ffv23ul0L12H0yGAAAIIIBCpgOsDeOrUqZbXUfei9eOv0+A8f/68v1F+h913333Sv39/qVWrltx4443y/vvvy+jRo+XUqVN+p2cgAggggAACoQi4PoBDWRk7p61Ro4a5/enhhx+Wl156SfT7oUOHzO1RdtZDWQgggAACpVOAAA6y3fWJXHrlMx0CCCCAAAJ2C7gigOfNmyfnzp0LuG5NmzaVPn36BBzPCAQQQAABBEqagCsCWG89WrRokeh9t/oM6KKdkw/iKLosfEcAAQQQQMAOAVcE8NNPPy25ubnmk5qaasd6UQYCCCCAAAKuFnDNI51mz54t+gKG06dPuxqMhUMAAQQQQMAOAVfsAeuK6EsYli9fbsc6UQYCCCCAAAKuF3DNHrDrpVhABBBAAAEEbBQggG3EpCgEEEAAAQSsChDAVqWYDgEEEEAAARsFynjyOhvLc21R+nKFnj17WnqpQ9GV0HcVB3rEZdFp+R6+QHZ2tnnz1cUXXxx+IcxpSUCfi+7vlj9LMzORZYGzZ8+KtueyZctanocJQxfIj7F27dqFPPP+/fvl3XfflaSkpJDnjXSGUhPAkUB17txZNmzYEEkRzGtBQG9Bq1mzpnkGt4XJmSQCAdp0BHghzDp58mTp3bu3tG3bNoS5mDRUgaNHj0pKSkqJe1sdh6BD3dJMjwACCCCAgA0CBLANiBSBAAIIIIBAqAIEcKhiTI8AAggggIANAgSwDYgUgQACCCCAQKgCBHCoYkyPAAIIIICADQIEsA2IFIEAAggggECoAtyGZEHshx9+kNq1a1uYkkkiEdCXcej9ktyfGomitXlp09acIp3qxIkTpj1fcsklkRbF/EEE9G16P/74o9SoUSPIVO4bRQC7b5uwRAgggAACpUCAQ9ClYCOziggggAAC7hMggN23TVgiBBBAAIFSIEAAl4KNzCoigAACCLhPgAB23zZhiRBAAAEESoEAAVwKNjKriAACCCDgPgEC2H3bhCVCAAEEECgFAgRwKdjIrCICCCCAgPsECOAi20Rf7Hz+/PkiQ/kaDYFz585Fo1jKRAABBEqEAAFcYDPp01TuuOMOeeqppwoMLdy7YcMGad++vdSvX1/69u0rJ0+eLDwB3ywJrFixQpKTkwNOu2XLFrniiisKfQ4fPhxwekb4CqjxTTfdJC1btpRBgwbJrl27fCfKG0Kb9stieeDOnTvl7rvvNs5du3YN+FJ42rRlUr8T6o7R+PHjpVWrVtKsWTOZP3++3+l04KxZs6RFixbm/2ntd22Xt8dHlyeQ98vhyQtWz2WXXebJ22B+TY4dO+bJeySl54svvvBkZ2d78hqDZ/jw4X6nZaB/gbxH83kefPBBT/Xq1T2tW7f2P1He0D//+c+eESNGeLKysryfvD+QAk7PiMICeY+a9NSsWdOTnp5uRrzwwguebt26FZ4o7xtt2ock5AE333yz58UXXzTz5f2R6Ml7HKLXvWBhtOmCGqH3L1iwwHP77bd78oLYc/r0ac/ll1/u2bx5s09Br7/+uufXv/6159SpUx79Pcj7A9STlpbmM50bBrAH/N8/jfJ+geShhx4yf8kG+mtJ/4K9+uqrzV9WF198saSkpMiqVasCTc5wPwLr1q2TihUrinoH67Zt2yZt2rSRo0ePSl5ImHnKlCkTbBbGFRDQozl5/xFJXgiboboXvGnTpgJT/F8vbdqHJKQB6vzAAw94/9/ICwW59NJL5fPPP/cphzbtQxLSgFGjRsmyZcvkoosuMp+8nSC/pwvfeustc8SncuXKUqtWLbNt/v73v4dUV3FNTAD/V3rhwoUyYMCAoO6HDh0q9FIG/c8tIyNDfvnll6DzMfL/Bfr37y9z5syRChUq/P9AP336n9XcuXMlb69N6tWrJ48++qifqRgUSECDoGPHjt7Rzz77rPTs2dP7Pb+HNp0vEd5PDYM+ffqI/kGunf6Bqael/J1eoU2HZ5w/l77QQv+4ee2116RDhw6mPftzLtqmNYT/85//5Bfjqp8EcAib4/jx44Xe1JMfImfOnAmhFCa1InD99dfL888/L3v37jV7E08//bTZE7YyL9MUFnjuuedk9erV5g+awmNEaNNFRcL/rm118ODBsmjRIqlSpYpPQbRpH5KwBuiRMD0HrEdv/F3XULRN6xG3vFNZYdUV7ZkI4BCEq1WrJvrKvPzup59+kri4OMk7b5w/iJ82CaSmppq/crU4vegi75wOh/vDsF28eLFMnTpV3nvvPalTp45PCbRpH5KwBuzevVs6d+4sf/jDH7yHo4sWRJsuKhLe9zvvvFNeeukl83+C/rFTtCvapvX/bD0i5MaOAA5hq+h/YAcOHPDOof1169b1fqfHHoGzZ8/KY489Jvozv9OjDHkXbuV/5acFAT3PPn36dBO+eu2Cv4427U8ltGH79++X3/zmN/I///M/Mnr0aL8z06b9soQ0MO9CQvn444+981xzzTXy9ddfe7/n92ibPnjwYP5X83+2W/+fJoC9m8l/j57P0b0H7fSWDv1l0/M8et533rx50q9fP/8zMjRkAb0dRl+qrUcV/vWvf5lD0FqI/tJt3brVnA8OudBSOsO3334reVebm/Nl+te/vhheP9rRpu1tFHrY+Z577jF7vvnOeoGQdrRp+6zVVI8w5OTkSN4VzmYvWI86aKeHonfs2GH69VZSvVjryJEjJnz1nLHeMurKzg2XYrtpGfKuaCx0G9K///1vT945BO8i6iXuCQkJnqSkJE+XLl08eYehvePosS6wfv16n9uQ9LaZtWvXmkI+/PBDT7t27TyNGzf25J1P87z66qvWC2dKz6RJkzx5/+H4fPS2Ltq0fQ3kk08+8TFW97wAMJXQpu2z1rY7cOBAT6NGjcznkUce8fz888+mgrFjx3qGDRtm+vV2Rb09VP/fyLsAyzNt2jT7FsLmkspoea78y8DFC6V/gen5X879Rn8j6R6FXtCiV5vSRU+ANh0926Il06aLioT2XS+o0iuiy5UrF3RGPfer0+nHrR0B7NYtw3IhgAACCMS0ALsVMb15WTkEEEAAAbcKEMBu3TIsFwIIIIBATAsQwDG9eVk5BBBAAAG3ChDAbt0yLBcCCCCAQEwLEMAxvXlZOQQQQAABtwoQwG7dMiwXAggggEBMCxDAMb15WTkEEEAAAbcKEMBu3TIsFwIIIIBATAsQwDG9eVk5BBBAAAG3ChDAbt0yLBcCCCCAQEwLEMAxvXlZOQQQQAABtwoQwG7dMiwXAggggEBMCxDAMb15WTkEEEAAAbcKEMBu3TIsFwIIIIBATAsQwDG9eVk5BBBAAAG3ChDAbt0yLBcCCCCAQEwLEMAxvXlZOQQQQAABtwoQwG7dMiwXAggggEBMCxDAMb15WblYF/jkk0+kWrVqIa9mSkqKzJo1K+T5mAEBBOwTIIDts6QkBBBAAAEELAsQwJapmBABdwts375dhg4dKr/73e+katWqct1118mXX35pFtrj8ciECROkdu3a0qFDB/n++++9K3Ps2DG5/fbbpUqVKtKyZUvZuHGjGffss89K7969RefV7q677pIlS5aYfv5BAIHIBQjgyA0pAQFXCJw9e1ZeeeUVSUxMlB07dkhycrJMmTLFLNszzzxjgnX9+vXy4IMPSlpamneZR4wYIZUrV5bdu3fLuHHjZPjw4WbckCFDZNeuXfLyyy/LsmXLTJka8HQIIGCPQDl7iqEUBBBwg0ClSpVk2rRpZlF0j1XDVrtVq1bJsGHDpGnTpuazcOFCM/zEiRMmjDWwK1asKP369ZMXXnjB7Dm3aNFCFi9eLIMGDZKcnBxZs2aNlC9f3szHPwggELkAARy5ISUg4BqBGjVqeJclPj7eBKcO2Ldvn1x//fXecW3btjX9eii6TJkyctNNN3nHac+mTZtEA7hLly7msHVcXJzccMMNhabhCwIIRCZAAEfmx9wIuEpAw9Rfd8UVV8jOnTvNYWkdv3//fqlevbrZG9bDz3r+OP9qaj0nrMO0W716tZw6dUpyc3NNf69evcxw/kEAgcgFOAccuSElIOB6ga5du8rrr78uWVlZcvDgQe+FVnpIWcelpqaakE1PT5dmzZqZ88GZmZnywAMPyKJFi0QPWWu/DqNDAAF7BAhgexwpBQFXC+jFWBUqVJDGjRubveA2bdp4l3fy5MmyfPlyqV+/vrRr104mTZpkDj8/+uijooeqe/ToIbfeeqs5hK3D6BBAwB6BMnm3GPzfPQb2lEcpCCDgYoGMjAxJSEiQsmXL+iylHnrWw9CBDmP7zMAABBCISIAAjoiPmRFAAAEEEAhPgEPQ4bkxFwIIIIAAAhEJEMAR8TEzAggggAAC4QkQwOG5MRcCCCCAAAIRCRDAEfExMwIIIIAAAuEJEMDhuTEXAggggAACEQkQwBHxMTMCCCCAAALhCRDA4bkxFwIIIIAAAhEJEMAR8TEzAggggAAC4QkQwOG5MRcCCCCAAAIRCRDAEfExMwIIIIAAAuEJEMDhuTEXAggggAACEQkQwBHxMTMCCCCAAALhCRDA4bkxFwIIIIAAAhEJEMAR8TEzAggggAAC4QkQwOG5MRcCCCCAAAIRCRDAEfExMwIIIIAAAuEJ/C8MBzqIul48eAAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "RCall.RObject{RCall.NilSxp}\n", "NULL\n" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "R\"plot($myjuliavar)\"" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "RCall.RObject{RCall.RealSxp}\n", " [1] -0.396211276 -1.102864069 -0.273230592 -0.498711128 -1.688747229\n", " [6] -0.625395697 0.788866194 0.503396481 0.806131966 -0.685962168\n", " [11] 1.409655399 -0.011001650 1.221350838 0.687594625 0.660120389\n", " [16] 0.323121302 1.121587552 -0.125611715 1.772632044 -1.576097599\n", " [21] -0.660744500 -0.429240447 -0.490280026 0.468150307 1.198544526\n", " [26] -0.583805903 -0.911470531 -0.929171990 -1.592459809 1.008367742\n", " [31] 1.042998949 -0.182158343 -0.198155519 0.064799689 1.055615930\n", " [36] 1.396022389 0.363787500 -0.265379634 -0.485115714 0.513091917\n", " [41] -0.340089246 -0.725946945 0.465066983 0.925172640 -0.499757044\n", " [46] -0.496244776 -0.946024643 -1.095053418 -1.131125050 1.549266436\n", " [51] -1.311331940 1.201508605 -0.271954598 2.534004825 -1.623282056\n", " [56] 0.001984485 -0.509082941 0.023470704 -0.710153768 -1.048219819\n", " [61] 0.950574020 0.223231617 -1.496654999 -0.660755363 -0.865973022\n", " [66] -1.125167386 -0.679917414 -1.014248154 1.170601061 1.133173229\n", " [71] 0.217915251 -0.863843341 0.858204953 -0.204352963 -0.521392645\n", " [76] 1.510171510 0.598071927 0.638948425 1.397193548 -0.639814179\n", " [81] -0.860441210 -1.249230094 -2.199530514 -2.121140727 1.295730250\n", " [86] -0.072618465 -0.489912051 -1.028861139 -0.160846995 0.781161860\n", " [91] -0.734598252 0.817520424 -1.157498298 0.815970762 -0.476418750\n", " [96] 0.162498461 -1.002618330 0.975990869 -0.457368921 0.461530679\n" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = R\"rnorm(100)\"" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "RCall.RObject{RCall.RealSxp}\n", " [1] -0.396211276 -1.102864069 -0.273230592 -0.498711128 -1.688747229\n", " [6] -0.625395697 0.788866194 0.503396481 0.806131966 -0.685962168\n", " [11] 1.409655399 -0.011001650 1.221350838 0.687594625 0.660120389\n", " [16] 0.323121302 1.121587552 -0.125611715 1.772632044 -1.576097599\n", " [21] -0.660744500 -0.429240447 -0.490280026 0.468150307 1.198544526\n", " [26] -0.583805903 -0.911470531 -0.929171990 -1.592459809 1.008367742\n", " [31] 1.042998949 -0.182158343 -0.198155519 0.064799689 1.055615930\n", " [36] 1.396022389 0.363787500 -0.265379634 -0.485115714 0.513091917\n", " [41] -0.340089246 -0.725946945 0.465066983 0.925172640 -0.499757044\n", " [46] -0.496244776 -0.946024643 -1.095053418 -1.131125050 1.549266436\n", " [51] -1.311331940 1.201508605 -0.271954598 2.534004825 -1.623282056\n", " [56] 0.001984485 -0.509082941 0.023470704 -0.710153768 -1.048219819\n", " [61] 0.950574020 0.223231617 -1.496654999 -0.660755363 -0.865973022\n", " [66] -1.125167386 -0.679917414 -1.014248154 1.170601061 1.133173229\n", " [71] 0.217915251 -0.863843341 0.858204953 -0.204352963 -0.521392645\n", " [76] 1.510171510 0.598071927 0.638948425 1.397193548 -0.639814179\n", " [81] -0.860441210 -1.249230094 -2.199530514 -2.121140727 1.295730250\n", " [86] -0.072618465 -0.489912051 -1.028861139 -0.160846995 0.781161860\n", " [91] -0.734598252 0.817520424 -1.157498298 0.815970762 -0.476418750\n", " [96] 0.162498461 -1.002618330 0.975990869 -0.457368921 0.461530679\n" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO: Nothing to be done\n", "INFO: METADATA is out-of-date — you may not have the latest version of YAML\n", "INFO: Use `Pkg.update()` to get the latest versions of your packages\n" ] } ], "source": [ "Pkg.add(\"YAML\")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<table class=\"data-frame\"><tr><th></th><th>FIPS</th><th>County</th><th>ST</th><th>Neighboring</th><th>UrbanPop_2010</th><th>RuralPop_2010</th><th>MedianHouseholdInc_2008_12</th><th>Elevation_ft</th><th>TotalArea_sqmi</th><th>LandArea_sqmi</th><th>WaterArea_sqmi</th></tr><tr><th>1</th><td>1001</td><td>Autauga</td><td>AL</td><td>-1677436972259693513</td><td>31650</td><td>22921</td><td>53773</td><td>290.0</td><td>604.39</td><td>594.44</td><td>9.95</td></tr><tr><th>2</th><td>1003</td><td>Baldwin</td><td>AL</td><td>-7503806633868418079</td><td>105205</td><td>77060</td><td>50706</td><td>155.0</td><td>2027.31</td><td>1589.78</td><td>437.53</td></tr><tr><th>3</th><td>1005</td><td>Barbour</td><td>AL</td><td>-9162367971339582421</td><td>8844</td><td>18613</td><td>31889</td><td>220.0</td><td>904.52</td><td>884.88</td><td>19.64</td></tr><tr><th>4</th><td>1007</td><td>Bibb</td><td>AL</td><td>-3263215093836123959</td><td>7252</td><td>15663</td><td>36824</td><td>224.0</td><td>626.17</td><td>622.58</td><td>3.59</td></tr><tr><th>5</th><td>1009</td><td>Blount</td><td>AL</td><td>281814405218882823</td><td>5760</td><td>51562</td><td>45192</td><td>870.0</td><td>650.63</td><td>644.78</td><td>5.85</td></tr><tr><th>6</th><td>1011</td><td>Bullock</td><td>AL</td><td>-7528364842213094795</td><td>5307</td><td>5607</td><td>34500</td><td>455.0</td><td>625.14</td><td>622.8</td><td>2.34</td></tr><tr><th>7</th><td>1013</td><td>Butler</td><td>AL</td><td>7263807205192509739</td><td>6026</td><td>14921</td><td>30752</td><td>445.0</td><td>777.88</td><td>776.83</td><td>1.05</td></tr><tr><th>8</th><td>1015</td><td>Calhoun</td><td>AL</td><td>4089652745186409211</td><td>78617</td><td>39955</td><td>40093</td><td>565.0</td><td>612.29</td><td>605.87</td><td>6.42</td></tr><tr><th>9</th><td>1017</td><td>Chambers</td><td>AL</td><td>1546726499117356153</td><td>17399</td><td>16816</td><td>32181</td><td>745.0</td><td>603.11</td><td>596.53</td><td>6.58</td></tr><tr><th>10</th><td>1019</td><td>Cherokee</td><td>AL</td><td>3606844344126915727</td><td>3707</td><td>22282</td><td>36241</td><td>589.0</td><td>599.98</td><td>553.7</td><td>46.28</td></tr><tr><th>11</th><td>1021</td><td>Chilton</td><td>AL</td><td>2336210146209538225</td><td>5785</td><td>37858</td><td>40834</td><td>580.0</td><td>700.8</td><td>692.85</td><td>7.95</td></tr><tr><th>12</th><td>1023</td><td>Choctaw</td><td>AL</td><td>-6248320840704236021</td><td>0</td><td>13859</td><td>35123</td><td>350.0</td><td>920.86</td><td>913.5</td><td>7.36</td></tr><tr><th>13</th><td>1025</td><td>Clarke</td><td>AL</td><td>-2480994685536455671</td><td>6205</td><td>19628</td><td>30954</td><td>405.0</td><td>1252.57</td><td>1238.46</td><td>14.11</td></tr><tr><th>14</th><td>1027</td><td>Clay</td><td>AL</td><td>165275177167130605</td><td>0</td><td>13932</td><td>34556</td><td>745.0</td><td>606.0</td><td>603.96</td><td>2.04</td></tr><tr><th>15</th><td>1029</td><td>Cleburne</td><td>AL</td><td>-6945485711834679467</td><td>0</td><td>14972</td><td>37244</td><td>1175.0</td><td>561.01</td><td>560.1</td><td>0.91</td></tr><tr><th>16</th><td>1031</td><td>Coffee</td><td>AL</td><td>6132202507106331951</td><td>26375</td><td>23573</td><td>44626</td><td>195.0</td><td>680.49</td><td>678.97</td><td>1.52</td></tr><tr><th>17</th><td>1033</td><td>Colbert</td><td>AL</td><td>1077010790105928141</td><td>30537</td><td>23891</td><td>40158</td><td>536.0</td><td>622.13</td><td>592.62</td><td>29.51</td></tr><tr><th>18</th><td>1035</td><td>Conecuh</td><td>AL</td><td>1099010130103901053</td><td>2520</td><td>10708</td><td>27064</td><td>216.0</td><td>852.72</td><td>850.16</td><td>2.57</td></tr><tr><th>19</th><td>1037</td><td>Coosa</td><td>AL</td><td>6308886048509289181</td><td>0</td><td>11539</td><td>37425</td><td>660.0</td><td>666.35</td><td>650.93</td><td>15.42</td></tr><tr><th>20</th><td>1039</td><td>Covington</td><td>AL</td><td>-7456065813052386533</td><td>11461</td><td>26304</td><td>35321</td><td>260.0</td><td>1043.79</td><td>1030.46</td><td>13.33</td></tr><tr><th>21</th><td>1041</td><td>Crenshaw</td><td>AL</td><td>4065287195876681327</td><td>0</td><td>13906</td><td>37309</td><td>594.0</td><td>610.92</td><td>608.84</td><td>2.08</td></tr><tr><th>22</th><td>1043</td><td>Cullman</td><td>AL</td><td>6438249654864425607</td><td>21517</td><td>58889</td><td>39244</td><td>802.0</td><td>755.02</td><td>734.84</td><td>20.18</td></tr><tr><th>23</th><td>1045</td><td>Dale</td><td>AL</td><td>3596880842466902597</td><td>24679</td><td>25572</td><td>45247</td><td>470.0</td><td>562.7</td><td>561.15</td><td>1.55</td></tr><tr><th>24</th><td>1047</td><td>Dallas</td><td>AL</td><td>3774141952490839331</td><td>23821</td><td>19999</td><td>26178</td><td>147.0</td><td>993.8</td><td>978.69</td><td>15.11</td></tr><tr><th>25</th><td>1049</td><td>DeKalb</td><td>AL</td><td>-701081407554769413</td><td>7018</td><td>64091</td><td>36853</td><td>1040.0</td><td>778.69</td><td>777.09</td><td>1.59</td></tr><tr><th>26</th><td>1051</td><td>Elmore</td><td>AL</td><td>4377449246493266349</td><td>36330</td><td>42973</td><td>55514</td><td>290.0</td><td>657.04</td><td>618.48</td><td>38.56</td></tr><tr><th>27</th><td>1053</td><td>Escambia</td><td>AL</td><td>3957980972351392731</td><td>13982</td><td>24337</td><td>31075</td><td>85.0</td><td>953.14</td><td>945.08</td><td>8.06</td></tr><tr><th>28</th><td>1055</td><td>Etowah</td><td>AL</td><td>1525514402121635003</td><td>65286</td><td>39144</td><td>37660</td><td>565.0</td><td>548.63</td><td>534.99</td><td>13.64</td></tr><tr><th>29</th><td>1057</td><td>Fayette</td><td>AL</td><td>-6531450309154316941</td><td>3408</td><td>13833</td><td>33090</td><td>365.0</td><td>629.36</td><td>627.66</td><td>1.7</td></tr><tr><th>30</th><td>1059</td><td>Franklin</td><td>AL</td><td>7764312890763704205</td><td>9395</td><td>22309</td><td>37235</td><td>840.0</td><td>646.52</td><td>633.82</td><td>12.7</td></tr><tr><th>&vellip;</th><td>&vellip;</td><td>&vellip;</td><td>&vellip;</td><td>&vellip;</td><td>&vellip;</td><td>&vellip;</td><td>&vellip;</td><td>&vellip;</td><td>&vellip;</td><td>&vellip;</td><td>&vellip;</td></tr></table>" ], "text/plain": [ "3229×11 DataFrames.DataFrame\n", "│ Row │ FIPS │ County │ ST │ Neighboring │ UrbanPop_2010 │\n", "├──────┼───────┼─────────────────┼──────┼──────────────────────┼───────────────┤\n", "│ 1 │ 1001 │ \"Autauga\" │ \"AL\" │ -1677436972259693513 │ 31650 │\n", "│ 2 │ 1003 │ \"Baldwin\" │ \"AL\" │ -7503806633868418079 │ 105205 │\n", "│ 3 │ 1005 │ \"Barbour\" │ \"AL\" │ -9162367971339582421 │ 8844 │\n", "│ 4 │ 1007 │ \"Bibb\" │ \"AL\" │ -3263215093836123959 │ 7252 │\n", "│ 5 │ 1009 │ \"Blount\" │ \"AL\" │ 281814405218882823 │ 5760 │\n", "│ 6 │ 1011 │ \"Bullock\" │ \"AL\" │ -7528364842213094795 │ 5307 │\n", "│ 7 │ 1013 │ \"Butler\" │ \"AL\" │ 7263807205192509739 │ 6026 │\n", "│ 8 │ 1015 │ \"Calhoun\" │ \"AL\" │ 4089652745186409211 │ 78617 │\n", "│ 9 │ 1017 │ \"Chambers\" │ \"AL\" │ 1546726499117356153 │ 17399 │\n", "│ 10 │ 1019 │ \"Cherokee\" │ \"AL\" │ 3606844344126915727 │ 3707 │\n", "│ 11 │ 1021 │ \"Chilton\" │ \"AL\" │ 2336210146209538225 │ 5785 │\n", "⋮\n", "│ 3218 │ 72137 │ \"Toa Baja\" │ \"PR\" │ NA │ 89609 │\n", "│ 3219 │ 72139 │ \"Trujillo Alto\" │ \"PR\" │ NA │ 74842 │\n", "│ 3220 │ 72141 │ \"Utuado\" │ \"PR\" │ NA │ 17593 │\n", "│ 3221 │ 72143 │ \"Vega Alta\" │ \"PR\" │ NA │ 39251 │\n", "│ 3222 │ 72145 │ \"Vega Baja\" │ \"PR\" │ NA │ 57170 │\n", "│ 3223 │ 72147 │ \"Vieques\" │ \"PR\" │ NA │ 8230 │\n", "│ 3224 │ 72149 │ \"Villalba\" │ \"PR\" │ NA │ 22564 │\n", "│ 3225 │ 72151 │ \"Yabucoa\" │ \"PR\" │ NA │ 32192 │\n", "│ 3226 │ 72153 │ \"Yauco\" │ \"PR\" │ NA │ 34303 │\n", "│ 3227 │ 78010 │ \"St. Croix\" │ \"VI\" │ NA │ 46601 │\n", "│ 3228 │ 78020 │ \"St. John\" │ \"VI\" │ NA │ 3090 │\n", "│ 3229 │ 78030 │ \"St. Thomas\" │ \"VI\" │ NA │ 50916 │\n", "\n", "│ Row │ RuralPop_2010 │ MedianHouseholdInc_2008_12 │ Elevation_ft │\n", "├──────┼───────────────┼────────────────────────────┼──────────────┤\n", "│ 1 │ 22921 │ 53773 │ 290.0 │\n", "│ 2 │ 77060 │ 50706 │ 155.0 │\n", "│ 3 │ 18613 │ 31889 │ 220.0 │\n", "│ 4 │ 15663 │ 36824 │ 224.0 │\n", "│ 5 │ 51562 │ 45192 │ 870.0 │\n", "│ 6 │ 5607 │ 34500 │ 455.0 │\n", "│ 7 │ 14921 │ 30752 │ 445.0 │\n", "│ 8 │ 39955 │ 40093 │ 565.0 │\n", "│ 9 │ 16816 │ 32181 │ 745.0 │\n", "│ 10 │ 22282 │ 36241 │ 589.0 │\n", "│ 11 │ 37858 │ 40834 │ 580.0 │\n", "⋮\n", "│ 3218 │ 0 │ 23572 │ NA │\n", "│ 3219 │ 0 │ 31354 │ NA │\n", "│ 3220 │ 15556 │ 14752 │ NA │\n", "│ 3221 │ 700 │ 17616 │ NA │\n", "│ 3222 │ 2492 │ 16462 │ NA │\n", "│ 3223 │ 1071 │ 16598 │ NA │\n", "│ 3224 │ 3509 │ 16014 │ NA │\n", "│ 3225 │ 5749 │ 17926 │ NA │\n", "│ 3226 │ 7740 │ 14728 │ NA │\n", "│ 3227 │ 4000 │ NA │ NA │\n", "│ 3228 │ 1080 │ NA │ NA │\n", "│ 3229 │ 718 │ NA │ NA │\n", "\n", "│ Row │ TotalArea_sqmi │ LandArea_sqmi │ WaterArea_sqmi │\n", "├──────┼────────────────┼───────────────┼────────────────┤\n", "│ 1 │ 604.39 │ 594.44 │ 9.95 │\n", "│ 2 │ 2027.31 │ 1589.78 │ 437.53 │\n", "│ 3 │ 904.52 │ 884.88 │ 19.64 │\n", "│ 4 │ 626.17 │ 622.58 │ 3.59 │\n", "│ 5 │ 650.63 │ 644.78 │ 5.85 │\n", "│ 6 │ 625.14 │ 622.8 │ 2.34 │\n", "│ 7 │ 777.88 │ 776.83 │ 1.05 │\n", "│ 8 │ 612.29 │ 605.87 │ 6.42 │\n", "│ 9 │ 603.11 │ 596.53 │ 6.58 │\n", "│ 10 │ 599.98 │ 553.7 │ 46.28 │\n", "│ 11 │ 700.8 │ 692.85 │ 7.95 │\n", "⋮\n", "│ 3218 │ 41.81 │ 23.24 │ 18.57 │\n", "│ 3219 │ 21.38 │ 20.76 │ 0.62 │\n", "│ 3220 │ 115.07 │ 113.53 │ 1.54 │\n", "│ 3221 │ 37.5 │ 27.73 │ 9.77 │\n", "│ 3222 │ 68.18 │ 45.86 │ 22.32 │\n", "│ 3223 │ 263.99 │ 50.77 │ 213.22 │\n", "│ 3224 │ 37.04 │ 35.64 │ 1.4 │\n", "│ 3225 │ 83.24 │ 55.21 │ 28.03 │\n", "│ 3226 │ 68.82 │ 68.19 │ 0.63 │\n", "│ 3227 │ 332.66 │ 83.32 │ 249.34 │\n", "│ 3228 │ 91.76 │ 19.69 │ 72.07 │\n", "│ 3229 │ 308.51 │ 31.31 │ 277.2 │" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ " countyinfo = readtable(\"../data/county-info.csv\")" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "3229-element DataArrays.DataArray{Float64,1}:\n", " 594.44\n", " 1589.78\n", " 884.88\n", " 622.58\n", " 644.78\n", " 622.8 \n", " 776.83\n", " 605.87\n", " 596.53\n", " 553.7 \n", " 692.85\n", " 913.5 \n", " 1238.46\n", " ⋮ \n", " 23.24\n", " 20.76\n", " 113.53\n", " 27.73\n", " 45.86\n", " 50.77\n", " 35.64\n", " 55.21\n", " 68.19\n", " 83.32\n", " 19.69\n", " 31.31" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "areas = countyinfo[:, :LandArea_sqmi]" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING: replacing module _mimi_implementation_Brewery\n" ] }, { "data": { "text/plain": [ "initbrewery (generic function with 1 method)" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# The Brewery Component\n", "# This is how we make beer\n", "\n", "using Mimi\n", "\n", "@defcomp Brewery begin\n", " region = Index()\n", "\n", " production = Parameter(index=[region, time], unit=\"liter\")\n", "\n", " hopsdemand = Variable(index=[region, time], unit=\"MT\")\n", " waterdemand = Variable(index=[region, time], unit=\"1000 m^3\")\n", "end\n", "\n", "function run_timestep(c::Brewery, tt::Int64)\n", " v, p, d = getvpd(c)\n", "\n", " v.hopsdemand[:, tt] = .07 * p.production[:, tt]\n", " v.waterdemand[:, tt] = 2 * p.production[:, tt] / 1e6\n", "end\n", "\n", "function initbrewery(m::Model)\n", " brewery = addcomponent(m, Brewery)\n", "\n", " production = readtable(\"../data/county-info.csv\")[:, :LandArea_sqmi]\n", "\n", " brewery[:production] = repeat(production, outer=[1, numsteps])\n", "end\n" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": true }, "outputs": [], "source": [ "m = Model()\n", "setindex(m, :time, [1]) # Single period\n", "setindex(m, :region, length(dropna(readtable(\"../data/county-info.csv\")[:LandArea_sqmi])))\n" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "ename": "LoadError", "evalue": "LoadError: MethodError: `convert` has no method matching convert(::Type{DataArrays.DataArray{Float64,1}}, ::Array{Float64,2}, ::BitArray{2})\nThis may have arisen from a call to the constructor DataArrays.DataArray{Float64,1}(...),\nsince type constructors fall back to convert methods.\nClosest candidates are:\n call{T}(::Type{T}, ::Any)\n convert{S,T,N}(::Type{DataArrays.DataArray{S,N}}, !Matched::DataArrays.DataArray{T,N})\n convert{S,T,R<:Integer,N}(::Type{DataArrays.DataArray{S,N}}, !Matched::DataArrays.PooledDataArray{T,R<:Integer,N})\n ...\nwhile loading In[31], in expression starting on line 1", "output_type": "error", "traceback": [ "LoadError: MethodError: `convert` has no method matching convert(::Type{DataArrays.DataArray{Float64,1}}, ::Array{Float64,2}, ::BitArray{2})\nThis may have arisen from a call to the constructor DataArrays.DataArray{Float64,1}(...),\nsince type constructors fall back to convert methods.\nClosest candidates are:\n call{T}(::Type{T}, ::Any)\n convert{S,T,N}(::Type{DataArrays.DataArray{S,N}}, !Matched::DataArrays.DataArray{T,N})\n convert{S,T,R<:Integer,N}(::Type{DataArrays.DataArray{S,N}}, !Matched::DataArrays.PooledDataArray{T,R<:Integer,N})\n ...\nwhile loading In[31], in expression starting on line 1", "", " in call at essentials.jl:57", " in initbrewery at In[18]:27" ] } ], "source": [ "initbrewery(m)\n" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "3229-element DataArrays.DataArray{Float64,1}:\n", " 594.44\n", " 1589.78\n", " 884.88\n", " 622.58\n", " 644.78\n", " 622.8 \n", " 776.83\n", " 605.87\n", " 596.53\n", " 553.7 \n", " 692.85\n", " 913.5 \n", " 1238.46\n", " ⋮ \n", " 23.24\n", " 20.76\n", " 113.53\n", " 27.73\n", " 45.86\n", " 50.77\n", " 35.64\n", " 55.21\n", " 68.19\n", " 83.32\n", " 19.69\n", " 31.31" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ " brewery = addcomponent(m, Brewery)\n", "\n", " production = readtable(\"../data/county-info.csv\")[:, :LandArea_sqmi]\n" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "3225x1 Array{Float64,2}:\n", " 594.44\n", " 1589.78\n", " 884.88\n", " 622.58\n", " 644.78\n", " 622.8 \n", " 776.83\n", " 605.87\n", " 596.53\n", " 553.7 \n", " 692.85\n", " 913.5 \n", " 1238.46\n", " ⋮ \n", " 23.24\n", " 20.76\n", " 113.53\n", " 27.73\n", " 45.86\n", " 50.77\n", " 35.64\n", " 55.21\n", " 68.19\n", " 83.32\n", " 19.69\n", " 31.31" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ " brewery[:production] = repeat(convert(Vector{Float64}, dropna(production)), outer=[1, numsteps])\n" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "initbrewer (generic function with 1 method)" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function initbrewer(m::Model)\n", " brewery = addcomponent(m, Brewery)\n", "\n", " production = readtable(\"../data/county-info.csv\")[:, :LandArea_sqmi]\n", "\n", " brewery[:production] = repeat(convert(Vector{Float64}, dropna(production)), outer=[1, numsteps])\n", "end\n" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [], "source": [ "run(m)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "3225x1 Array{Float64,2}:\n", " 41.6108\n", " 111.285 \n", " 61.9416\n", " 43.5806\n", " 45.1346\n", " 43.596 \n", " 54.3781\n", " 42.4109\n", " 41.7571\n", " 38.759 \n", " 48.4995\n", " 63.945 \n", " 86.6922\n", " ⋮ \n", " 1.6268\n", " 1.4532\n", " 7.9471\n", " 1.9411\n", " 3.2102\n", " 3.5539\n", " 2.4948\n", " 3.8647\n", " 4.7733\n", " 5.8324\n", " 1.3783\n", " 2.1917" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m[:Brewery, :hopsdemand]" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "3225x1 Array{Float64,2}:\n", " 0.00118888\n", " 0.00317956\n", " 0.00176976\n", " 0.00124516\n", " 0.00128956\n", " 0.0012456 \n", " 0.00155366\n", " 0.00121174\n", " 0.00119306\n", " 0.0011074 \n", " 0.0013857 \n", " 0.001827 \n", " 0.00247692\n", " ⋮ \n", " 4.648e-5 \n", " 4.152e-5 \n", " 0.00022706\n", " 5.546e-5 \n", " 9.172e-5 \n", " 0.00010154\n", " 7.128e-5 \n", " 0.00011042\n", " 0.00013638\n", " 0.00016664\n", " 3.938e-5 \n", " 6.262e-5 " ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "m[:Brewery, :waterdemand]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Julia 0.4.0", "language": "julia", "name": "julia-0.4" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "0.4.0" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
fastats/fastats
fastats/maths/_notebooks/sum_squared_dev.ipynb
2
38868
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Sum of squared deviations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**TL;DR** Comparison of approaches" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from numba import jit\n", "import numpy as np\n", "import pandas as pd\n", "from numpy import sum, power, mean\n", "from matplotlib import pyplot as plt\n", "%matplotlib inline\n", "import matplotlib\n", "matplotlib.rcParams['figure.figsize'] = (16, 8)\n", "\n", "from IPython.core.interactiveshell import InteractiveShell\n", "InteractiveShell.ast_node_interactivity = \"all\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "@jit(nopython=True)\n", "def sum_sq_dev(x):\n", " return sum(power(x - mean(x), 2))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "@jit(nopython=True)\n", "def sum_sq_dev_experimental(x):\n", " population_mean = mean(x)\n", " total = 0.0\n", "\n", " for value in x:\n", " total += power((value - population_mean), 2)\n", "\n", " return total" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x = np.random.randn(1000)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "np.testing.assert_almost_equal(sum_sq_dev(x), sum_sq_dev_experimental(x)) # Basic sanity test" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The slowest run took 12.79 times longer than the fastest. This could mean that an intermediate result is being cached.\n", "1000000 loops, best of 3: 463 ns per loop\n", "The slowest run took 10.28 times longer than the fastest. This could mean that an intermediate result is being cached.\n", "1000000 loops, best of 3: 346 ns per loop\n", "The slowest run took 5.93 times longer than the fastest. This could mean that an intermediate result is being cached.\n", "1000000 loops, best of 3: 466 ns per loop\n", "The slowest run took 11.84 times longer than the fastest. This could mean that an intermediate result is being cached.\n", "1000000 loops, best of 3: 334 ns per loop\n", "The slowest run took 4.91 times longer than the fastest. This could mean that an intermediate result is being cached.\n", "1000000 loops, best of 3: 724 ns per loop\n", "The slowest run took 7.88 times longer than the fastest. This could mean that an intermediate result is being cached.\n", "1000000 loops, best of 3: 551 ns per loop\n", "The slowest run took 8.12 times longer than the fastest. This could mean that an intermediate result is being cached.\n", "100000 loops, best of 3: 3.16 µs per loop\n", "100000 loops, best of 3: 2.93 µs per loop\n", "10000 loops, best of 3: 27.6 µs per loop\n", "10000 loops, best of 3: 26 µs per loop\n", "1000 loops, best of 3: 291 µs per loop\n", "1000 loops, best of 3: 257 µs per loop\n", "100 loops, best of 3: 5.69 ms per loop\n", "100 loops, best of 3: 2.62 ms per loop\n" ] } ], "source": [ "results = []\n", "\n", "for exponent in range(7):\n", " population_size = 10**exponent\n", " x = np.random.randn(population_size)\n", " timings_v1 = %timeit -o sum_sq_dev(x)\n", " timings_v2 = %timeit -o sum_sq_dev_experimental(x)\n", " np.testing.assert_almost_equal(sum_sq_dev(x), sum_sq_dev_experimental(x))\n", " results.append((population_size, timings_v1.best, timings_v2.best))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>sum_sq_dev</th>\n", " <th>sum_sq_dev_experimental</th>\n", " </tr>\n", " <tr>\n", " <th>population_size</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>0.000463</td>\n", " <td>0.000346</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>0.000466</td>\n", " <td>0.000334</td>\n", " </tr>\n", " <tr>\n", " <th>100</th>\n", " <td>0.000724</td>\n", " <td>0.000551</td>\n", " </tr>\n", " <tr>\n", " <th>1000</th>\n", " <td>0.003164</td>\n", " <td>0.002926</td>\n", " </tr>\n", " <tr>\n", " <th>10000</th>\n", " <td>0.027611</td>\n", " <td>0.025958</td>\n", " </tr>\n", " <tr>\n", " <th>100000</th>\n", " <td>0.291489</td>\n", " <td>0.257195</td>\n", " </tr>\n", " <tr>\n", " <th>1000000</th>\n", " <td>5.694846</td>\n", " <td>2.621306</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " sum_sq_dev sum_sq_dev_experimental\n", "population_size \n", "1 0.000463 0.000346\n", "10 0.000466 0.000334\n", "100 0.000724 0.000551\n", "1000 0.003164 0.002926\n", "10000 0.027611 0.025958\n", "100000 0.291489 0.257195\n", "1000000 5.694846 2.621306" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x21f33ac0470>" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "<matplotlib.text.Text at 0x21f37305400>" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8YAAAHoCAYAAACLqPauAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8leWd///XlY19kU1ZBRUXEFcIdaytS11LpaAsoWDX\n6TJTa6et1bba2vbXmXHaqda23zpbx2mVJAoyRUWtVq3WqiGsARRFwCSA7AQCBLJcvz9IGFSWADm5\nk5zX8/HgYXLOvbzPkX/eXPf9uUOMEUmSJEmS0lVG0gEkSZIkSUqSxViSJEmSlNYsxpIkSZKktGYx\nliRJkiSlNYuxJEmSJCmtWYwlSZIkSWnNYixJkiRJSmsWY0mSJElSWrMYS5IkSZLSWlbSAZpDr169\n4uDBg5OOIUmSJElKgXnz5m2KMfY+1v3TohgPHjyY4uLipGNIkiRJklIghPDO8ezvpdSSJEmSpLRm\nMZYkSZIkpTWLsSRJkiQpraXFPcYHU11dTXl5OVVVVUlHkT6gffv2DBgwgOzs7KSjSJIkSW1e2hbj\n8vJyunTpwuDBgwkhJB1H2i/GyObNmykvL2fIkCFJx5EkSZLavLS9lLqqqoqePXtaitXihBDo2bOn\nVzNIkiRJzSRtizFgKVaL5d9NSZIkqfmkdTGWJEmSJMliLEmSJElKaxZjHbXPfOYzzJgxI+kYkiRJ\nktQkLMaSJEmSpLSWto9rOtAPH1vKsrXbm/SYw/p15QefGH7YbXbu3MnEiRMpLy+ntraWO++8k9tu\nu43i4mJ69epFcXEx3/rWt3jhhRe46667WLVqFStXrqS0tJR77rmHV199lSeffJL+/fvz2GOPHfKZ\nt7fffjuzZ88mKyuLq666ip/97GesWrWKKVOmUFlZydixY7n33nuprKw86P4xRm6++WaeeeYZBg4c\nSE5Ozv735s2bxze+8Q0qKyvp1asXDzzwABUVFdx0000UFRUBsHr1aj7xiU9QUlJyjN+mJEmSJKWO\nK8YJeuqpp+jXrx+LFi1iyZIlXHPNNYfd/u233+a5555j9uzZTJ06lcsuu4ySkhI6dOjAE088cdB9\nNm/ezKxZs1i6dCmLFy/mjjvuAOCWW27hK1/5CiUlJfTt2/ew5501axbLly9n2bJl/O53v+Ovf/0r\nANXV1dx8883MmDGDefPm8bnPfY7vfe97nHnmmezdu5dVq1YBUFhYyKRJk47265EkSZKkZuGKMRxx\nZTdVRowYwTe/+U1uu+02xowZwyWXXHLY7a+99lqys7MZMWIEtbW1+4v0iBEjWL169UH36datG+3b\nt+fzn/88Y8aMYcyYMQC8/PLLzJw5E4Bp06Zx2223HfK8L774Inl5eWRmZtKvXz8uv/xyAJYvX86S\nJUu48sorAaitrd1fsidOnEhhYSG33347hYWFFBYWNv6LkSRJkqRmZDFO0Omnn878+fOZM2cOd9xx\nB1dccQVZWVnU1dUBUFVV9Z7t27VrB0BGRgbZ2dn7n3WbkZFBTU3NQc+RlZVFUVERf/rTn5gxYwa/\n+tWveO6554Djf1ZujJHhw4fzyiuvfOC9SZMmMWHCBMaPH08IgaFDhx7XuSRJkiQpVbyUOkFr166l\nY8eOTJ06lVtvvZX58+czePBg5s2bB7B/Rfd4VFZWUlFRwXXXXcc999zDokWLALj44ospKCgA4KGH\nHjrsMT7ykY9QWFhIbW0t69at4/nnnwfgjDPOYOPGjfuLcXV1NUuXLgXg1FNPJTMzkx//+MdeRi1J\nkiSpRXPFOEElJSXceuut+1eAf/Ob37B7924+//nPc+edd3LppZce9zl27NjB2LFjqaqqIsbIz3/+\ncwB+8YtfMGXKFO6++27Gjh172GOMGzeO5557jmHDhjFo0CAuuugiAHJycpgxYwZf+9rXqKiooKam\nhq9//esMH77v0vRJkyZx66237r/XWJIkSZJaohBjTDpDyo0cOTIWFxe/57XXX3+ds846K6FELU/n\nzp0POZVayfDvqCRJknR4dXWRCf/2Co/+3cXzYowjj/U4XkotSZIkSWqV/vr2Zua9s/W4j+Ol1G3I\nuHHjPnDZ8t13383VV199xH0rKyspKSlh2rRp73m9Xbt2vPbaa02aU5IkSZKaQn5RKd07ZvPOcR7H\nYtyGzJo167j2HzFiBAsXLmyiNJIkSZKUOpsq9/DHZe8y7UODWXScx/JSakmSJElSqzNzXjnVtZG8\n3IHHfSyLsSRJkiSpVYkxUjC3jJEnn8DQE7sc9/EsxpIkSZKkVuXVlVtYtWknebmDmuR4FmNJkiRJ\nUquSX1RKl/ZZXDeib5Mcz2Kso/aZz3yGGTNmJB3jmBUXF/O1r30tpedYuHAhc+bMOeJ2L7zwAmPG\njElpFkmSJKkt2bpzL08teZfx5/enQ05mkxzTqdRKKzU1NYwcOZKRI4/52d+NsnDhQoqLi7nuuutS\neh5JkiQp3cycX87e2jryRjfNZdRgMd7nydvh3ZKmPeZJI+Dafz7sJjt37mTixImUl5dTW1vLnXfe\nyW233UZxcTG9evWiuLiYb33rW7zwwgvcddddrFq1ipUrV1JaWso999zDq6++ypNPPkn//v157LHH\nyM7OPuh5br/9dmbPnk1WVhZXXXUVP/vZz1i1ahVTpkyhsrKSsWPHcu+991JZWXnQ/WOM3HzzzTzz\nzDMMHDiQnJyc/e/NmzePb3zjG1RWVtKrVy8eeOABKioquOmmmygqKgJg9erVfOITn6Ck5ODf8cGO\n0bt3by666CJ++tOfcumll/Kd73yHjIwMfvKTnzB48GAmTpzIk08+SYcOHZg+fTqnnXYaGzdu5Mtf\n/jKlpaUA3HvvvVx88cXcddddvP3226xcuZJBgwbxpS99iZ/97Gc8/vjjjf5eD5axb9++XHrppYwe\nPZrnn3+ebdu28V//9V+MHj2a73//++zevZu//OUvfOc732HIkCHccsstVFVV0aFDB/77v/+bM844\n44h/jSRJkiT9n4ahW+cN7M6ZJ3VtsuN6KXWCnnrqKfr168eiRYtYsmQJ11xzzWG3f/vtt3nuueeY\nPXs2U6dO5bLLLqOkpIQOHTrwxBNPHHSfzZs3M2vWLJYuXcrixYu54447ALjlllv4yle+QklJCX37\nHv66/FmzZrF8+XKWLVvG7373O/76178CUF1dzc0338yMGTOYN28en/vc5/je977HmWeeyd69e1m1\nahUAhYWFTJo06aDHPtQxsrKyeOCBB/jKV77Cs88+y1NPPcUPfvCD/ft169aNkpISvvrVr/L1r399\n/2f6h3/4B+bOncvMmTP5whe+sH/7ZcuW8eyzz5Kfn3/U3+uhMjaoqamhqKiIe++9lx/+8Ifk5OTw\nox/9iEmTJrFw4UImTZrEmWeeyUsvvcSCBQv40Y9+xHe/+93DfueSJEmSPqj4na2s2FDJlCYautXA\nFWM44spuqowYMYJvfvOb3HbbbYwZM4ZLLrnksNtfe+21ZGdnM2LECGpra/cX6REjRrB69eqD7tOt\nWzfat2/P5z//ecaMGbP/ftaXX36ZmTNnAjBt2jRuu+22Q573xRdfJC8vj8zMTPr168fll18OwPLl\ny1myZAlXXnklALW1tftL9sSJEyksLOT222+nsLCQwsLCgx77cMcYPnw406ZNY8yYMbzyyivvWanO\ny8vb/99/+Id/AODZZ59l2bJl+7fZvn37/lXw66+/ng4dOhzT93q4jADjx48H4MILLzzk/4eKigo+\n/elP89ZbbxFCoLq6+qDbSZIkSTq0/KJSOrfLYsy5TTN0q4HFOEGnn3468+fPZ86cOdxxxx1cccUV\nZGVlUVdXB0BVVdV7tm/Xrh0AGRkZZGdnE0LY/3tNTc1Bz5GVlUVRURF/+tOfmDFjBr/61a947rnn\nAPbvf6xijAwfPpxXXnnlA+9NmjSJCRMmMH78eEIIDB069KiPAVBSUkL37t3ZsGHDe14/MHvDz3V1\ndbz66qu0b9/+A8fp1KnTIT/Hkb7XI2Vs2D8zM/OQ/x/uvPNOLrvsMmbNmsXq1au59NJLD5lHkiRJ\n0gdV7KrmicXruPHCAXTMadoq66XUCVq7di0dO3Zk6tSp3HrrrcyfP5/Bgwczb948gP0rusejsrKS\niooKrrvuOu655x4WLVoEwMUXX0xBQQEADz300GGP8ZGPfITCwkJqa2tZt24dzz//PABnnHEGGzdu\n3F8Yq6urWbp0KQCnnnoqmZmZ/PjHPz7kZdRHOsajjz7Kli1bePHFF7n55pvZtm3b/v0aVqALCwu5\n6KKLALjqqqv45S9/uX+bhQsXNvJbOrzDZTyULl26sGPHjv2/V1RU0L9/fwAeeOCBJsklSZIkpZP/\nXbiGPTV1Tfbs4gNZjBNUUlJCbm4u5513Hj/84Q+54447+MEPfsAtt9zCyJEjycw8/tHjO3bsYMyY\nMZxzzjl8+MMf5uc//zkAv/jFL/j1r3/NiBEjWLNmzWGPMW7cOIYOHcqwYcO46aab9hfRnJwcZsyY\nwW233ca5557Leeedt//+Y9i3avzggw8yceLEQx77UMfYtGkTt99+O//5n//J6aefzle/+lVuueWW\n/ftt3bqVc845h1/84hfcc889ANx3330UFxdzzjnnMGzYMO6///5j/t4ak/FwLrvsMpYtW8Z5551H\nYWEh3/72t/nOd77D+eeff8hVZUmSJEkHF2Mkv6iUEf27cXb/bk1+/BBjbPKDtjQjR46MxcXF73nt\n9ddf56yzzkooUcvTuXPnQ06lbmkGDx68f3J3W+bfUUmSJGmfBaVbGff//spPxp3Np0af/IH3Qwjz\nYozH/ExWV4wlSZIkSS1aflEpHXMyuf7cfik5vsO32pBx48btf0RSg7vvvpurr776iPtWVlZSUlLC\ntGnT3vN6u3bteO211xLPd6BDTX6WJEmS1PbsqKrmsUXruP7cfnRpn52Sc6R1MY4xHvdk5pZk1qxZ\nx7X/iBEjmmxg1cEcb750kg63OEiSJEmN8YeFa9ldXUve6KYfutUgbS+lbt++PZs3b7aAqMWJMbJ5\n8+aDPnZKkiRJSjf5RaWc1bcr5w5o+qFbDdJ2xXjAgAGUl5ezcePGpKNIH9C+fXsGDBiQdAxJkiQp\nUSXlFSxdu50fjR2e0qt907YYZ2dnM2TIkKRjSJIkSZIOYXpRKe2zMxh7Xv+UnidtL6WWJEmSJLVc\nO/fUMHvhGj4+oh/dOqRm6FYDi7EkSZIkqcV5bNFadu6tZcrogSk/l8VYkiRJktTi5M8tY2ifzlww\n6ISUn8tiLEmSJElqUZat3c6ism3k5Q5qlkfsWowlSZIkSS1KwdxScrIyGH9BaoduNbAYS5IkSZJa\njN17a5m1YA3XnX0S3TvmNMs5LcaSJEmSpBbjiZJ17KiqYXLuoGY7p8VYkiRJktRi5BeVckqvTowe\n0qPZzmkxliRJkiS1CG+u38G8d7Y229CtBhZjSZIkSVKLkF9USnZmaLahWw0sxpIkSZKkxFVV1/Lo\n/DVcPfwkenZu16znthhLkiRJkhL31JJ3qdhdTV4zDt1qYDGWJEmSJCVuelEpJ/fsyEWn9Gz2c1uM\nJUmSJEmJentjJUWrtjBp1EAyMppv6FYDi7EkSZIkKVEFRaVkZQRuvHBAIue3GEuSJEmSErOnppaZ\n89fwsbNOpE+X9olksBhLkiRJkhLzx6Xr2bJzL3mjm3/oVgOLsSRJkiQpMQVzS+nfvQOXnNYrsQwW\nY0mSJElSIlZv2snLKzYzOaGhWw0sxpIkSZKkRBTMLSMzIzBh5MBEc1iMJUmSJEnNbm9NHTPmlXHZ\nGX04qVsyQ7caWIwlSZIkSc3uT6+vZ1PlXqaMTna1GCzGkiRJkqQE5M8to2+39nz09D5JR0ltMQ4h\nXBNCWB5CWBFCuP0g74cQwn317y8OIVxwpH1DCHeFENaEEBbW/7kulZ9BkiRJktS0yrbs4qW3NjJx\n5EAyExy61SBlxTiEkAn8GrgWGAbkhRCGvW+za4Gh9X++CPymkfveE2M8r/7PnFR9BkmSJElS03u4\nuAyAiaOSv4waUrtinAusiDGujDHuBQqAse/bZizwu7jPq0D3EELfRu4rSZIkSWplamrreLi4jEtP\n703/7h2SjgOkthj3B8oO+L28/rXGbHOkfW+uv/T6tyGEEw528hDCF0MIxSGE4o0bNx7rZ5AkSZIk\nNaHnl29k/fY9TM4dlHSU/Vrj8K3fAKcA5wHrgH892EYxxn+PMY6MMY7s3bt3c+aTJEmSJB1CflEp\nfbq04/Izkx+61SCVxXgNcOAF4wPqX2vMNofcN8a4PsZYG2OsA/6DfZddS5IkSZJauLXbdvPC8g1M\nGDmA7MyWs06byiRzgaEhhCEhhBxgMjD7fdvMBm6qn079IaAixrjucPvW34PcYBywJIWfQZIkSZLU\nRB4uLqMuwuRRLecyaoCsVB04xlgTQvgq8DSQCfw2xrg0hPDl+vfvB+YA1wErgF3AZw+3b/2h/yWE\ncB4QgdXAl1L1GSRJkiRJTaO2LvLw3DIuGdqLgT06Jh3nPVJWjAHqH6U0532v3X/AzxH4+8buW//6\ntCaOKUmSJElKsRff3MjaiiruGPP+p/gmr+Vc1C1JkiRJarOmF5XSq3MOHzvrxKSjfIDFWJIkSZKU\nUuu3V/HcGxu44cIB5GS1vBra8hJJkiRJktqUR4rLqK2LLW7oVgOLsSRJkiQpZerqIgVzy7jolJ4M\n6dUp6TgHZTGWJEmSJKXMX1ZsonzrbvJGt8zVYrAYS5IkSZJSqGBuKSd0zObq4S1v6FYDi7EkSZIk\nKSU27tjDH5eu54YLBtAuKzPpOIdkMZYkSZIkpcTM+eXU1EUm5w5MOsphWYwlSZIkSU2uri5SUFRK\n7uAenNanS9JxDstiLEmSJElqcq+u3MzqzbvIG92yV4vBYixJkiRJSoH8uWV0bZ/FtWf3TTrKEVmM\nJUmSJElNasvOvTy95F3GXzCA9tktd+hWA4uxJEmSJKlJPTq/nL21deTlttxnFx/IYixJkiRJajIx\nRqYXlXLBoO6ccVLLHrrVwGIsSZIkSWoyc1dvZeXGnUxuJavFYDGWJEmSJDWh/KJSurTLYsw5LX/o\nVgOLsSRJkiSpSWzbtZcnStYx9vx+dMzJSjpOo1mMJUmSJElNYtaCNeytaT1DtxpYjCVJkiRJxy3G\nSEFRGecM6Mbwft2SjnNULMaSJEmSpOM2v3Qby9fvaHWrxWAxliRJkiQ1gYKiUjrlZPKJc/slHeWo\nWYwlSZIkScdle1U1jy1ey/Xn9aNzu9YzdKuBxViSJEmSdFz+sGANVdWtb+hWA4uxJEmSJOmYxRiZ\nXlTGsL5dGdG/dQ3damAxliRJkiQds8XlFby+bjt5owcRQkg6zjGxGEuSJEmSjlnB3FI6ZGcy9rzW\nN3SrgcVYkiRJknRMKvfU8IeFaxlzTl+6ts9OOs4xsxhLkiRJko7JY4vWsmtvLZNb6dCtBhZjSZIk\nSdIxyS8q5YwTu3DBoO5JRzkuFmNJkiRJ0lFbsqaCxeUVTM4d2GqHbjWwGEuSJEmSjlrB3FLaZWUw\n7vz+SUc5bhZjSZIkSdJR2bW3hj8sWMvHR/Sle8ecpOMcN4uxJEmSJOmoPL54HTv21LT6oVsNLMaS\nJEmSpKOSX1TKqb07MWrwCUlHaRIWY0mSJElSo73x7nYWlG4jL3dQqx+61cBiLEmSJElqtIKiMnIy\nMxh/wYCkozQZi7EkSZIkqVGqqmt5dH45V599Ej06tf6hWw0sxpIkSZKkRplTso7tVTXk5Q5MOkqT\nshhLkiRJkhqloKiMwT07ctEpPZOO0qQsxpIkSZKkI1qxYQdFq7cwuQ0N3WpgMZYkSZIkHVFBURlZ\nGYEb2tDQrQYWY0mSJEnSYe2pqWXm/HKuGn4ivbu0SzpOk7MYS5IkSZIO6+ml69m6q5rJowYlHSUl\nLMaSJEmSpMPKf62UASd04MOn9Uo6SkpYjCVJkiRJh7Rq005eWbmZvNxBZGS0raFbDSzGkiRJkqRD\nKphbSmZGYMKFbW/oVgOLsSRJkiTpoPbW1DGjuJwrzuxDn67tk46TMhZjSZIkSdJBPfv6ejbv3Ete\nbtscutXAYixJkiRJOqj8olL6dWvPR07vnXSUlLIYS5IkSZI+oGzLLl56axMTRw0ks40O3WpgMZYk\nSZIkfUDB3FIyAkwcOTDpKClnMZYkSZIkvUd1bR2PFJdz6Rl96Ne9Q9JxUs5iLEmSJEl6j+fe2MCG\nHXva/NCtBhZjSZIkSdJ7FBSVcmLXdlx2RtseutXAYixJkiRJ2m/Ntt288OZGJo4cSFZmelTG9PiU\nkiRJkqRGKZxbBqTH0K0GFmNJkiRJEgA1tXU8UlzGJUN7M7BHx6TjNBuLsSRJkiQJgD+/uZF1FVVM\nyU2f1WKwGEuSJEmS6uUXldGrczuuOOvEpKM0K4uxJEmSJIl3K6p47o31TBg5gOw0GbrVIKWfNoRw\nTQhheQhhRQjh9oO8H0II99W/vziEcMFR7PvNEEIMIfRK5WeQJEmSpHTwSHEZdREmj0qvy6ghhcU4\nhJAJ/Bq4FhgG5IUQhr1vs2uBofV/vgj8pjH7hhAGAlcBpanKL0mSJEnpoq4uUjC3jItP68nJPTsl\nHafZpXLFOBdYEWNcGWPcCxQAY9+3zVjgd3GfV4HuIYS+jdj3HuDbQExhfkmSJElKCy+t2MSabbuZ\nPGpQ0lESkcpi3B8oO+D38vrXGrPNIfcNIYwF1sQYFzV1YEmSJElKR/mvldKjUw5XDU+voVsNspIO\ncDRCCB2B77LvMuojbftF9l2ezaBB6fmvHpIkSZJ0JBt2VPHs6+v57MWDaZeVmXScRKRyxXgNcOBd\n2wPqX2vMNod6/VRgCLAohLC6/vX5IYST3n/yGOO/xxhHxhhH9u7d+zg/iiRJkiS1TTPmlVNTF5mc\nm74LiqksxnOBoSGEISGEHGAyMPt928wGbqqfTv0hoCLGuO5Q+8YYS2KMfWKMg2OMg9l3ifUFMcZ3\nU/g5JEmSJKlNqquLFBSVMXpID07t3TnpOIlJ2aXUMcaaEMJXgaeBTOC3McalIYQv179/PzAHuA5Y\nAewCPnu4fVOVVZIkSZLS0SsrN1O6ZRffuPL0pKMkKqX3GMcY57Cv/B742v0H/ByBv2/svgfZZvDx\np5QkSZKk9DS9qJRuHbK55uwP3J2aVlJ5KbUkSZIkqYXaXLmHPy59l/EX9Kd9dnoO3WpgMZYkSZKk\nNDRzfjnVtZG8NB661cBiLEmSJElpJsZ9Q7cuPPkETj+xS9JxEmcxliRJkqQ089qqLazctNPV4noW\nY0mSJElKMwVFpXRpn8XHR/RNOkqLYDGWJEmSpDSybdde5ix5l3Hn96dDTnoP3WpgMZYkSZKkNPLo\n/DXsralj8igvo25gMZYkSZKkNBFjJL+olHMHdmdYv65Jx2kxLMaSJEmSlCbml27lrQ2VTMkdmHSU\nFsViLEmSJElpYvprZXTKyWTMOf2SjtKiWIwlSZIkKQ1U7K7miZK1jD2/P53aZSUdp0WxGEuSJElS\nGvjDwjVUVdeR59CtD7AYS5IkSVIbF2Nk+mulnN2/KyMGdEs6TotjMZYkSZKkNm5ReQVvvLvDRzQd\ngsVYkiRJktq4/NdK6ZCdydjzHLp1MBZjSZIkSWrDdlRV89jitXzi3L50aZ+ddJwWyWIsSZIkSW3Y\n7EVr2bW3lrxcL6M+FIuxJEmSJLVhBUVlnHlSF84b2D3pKC2WxViSJEmS2qglayooWVNBXu4gQghJ\nx2mxLMaSJEmS1EblF5XSLiuDT57fP+koLZrFWJIkSZLaoJ17avjDwrV8/Jy+dOvg0K3DsRhLkiRJ\nUhv0+OK1VO6pYYpDt47IYixJkiRJbVB+URmn9enMhSefkHSUFs9iLEmSJEltzOvrtrOwbJtDtxrJ\nYixJkiRJbUxBUSk5mRmMd+hWo1iMJUmSJKkN2b23lkcXrOHaESdxQqecpOO0ChZjSZIkSWpD5pSs\nY0dVDZNHOXSrsSzGkiRJktSG5BeVMqRXJz50So+ko7QaFmNJkiRJaiPeWr+D4ne2MnnUQIduHQWL\nsSRJkiS1EflFZWRnBm64cEDSUVoVi7EkSZIktQFV1bU8uqCcq4afRK/O7ZKO06pYjCVJkiSpDXh6\n6bts21VNnkO3jprFWJIkSZLagOmvlTKoR0f+5tSeSUdpdSzGkiRJktTKrdxYyWurtjBp1EAyMhy6\ndbQsxpIkSZLUyhXMLSMrIzBhpEO3joXFWJIkSZJasT01tcyYV84VZ/WhT5f2ScdplSzGkiRJktSK\nPbNsPVt27iUv16Fbx8piLEmSJEmtWEFRGf27d+CSob2TjtJqWYwlSZIkqZV6Z/NO/rJiE5NGDSTT\noVvHzGIsSZIkSa1U4dwyMgIO3TpOR1WMQwidQgiZqQojSZIkSWqc6to6Hi4u5/Iz+9C3W4ek47Rq\nhy3GIYSMEMKUEMITIYQNwBvAuhDCshDCT0MIpzVPTEmSJEnSgf70+gY2Ve5x6FYTONKK8fPAqcB3\ngJNijANjjH2ADwOvAneHEKamOKMkSZIk6X3yi0o5qWt7Pnq6Q7eOV9YR3v9YjLH6/S/GGLcAM4GZ\nIYTslCSTJEmSJB1U2ZZdvPjWRm6+fChZmY6OOl6H/QYbSnEI4dQQQrv6ny8NIXwthND9wG0kSZIk\nSc3jkeIyACY6dKtJNPafFmYCtfX3FP87MBCYnrJUkiRJkqSDqqmto7C4jI+e3psBJ3RMOk6b0Nhi\nXBdjrAHGAb+MMd4K9E1dLEmSJEnSwbywfCPrt+9h8iiHbjWVxhbj6hBCHvBp4PH617y3WJIkSZKa\nWX5RKb27tOOKs/okHaXNaGwx/ixwEfCTGOOqEMIQ4PepiyVJkiRJer91Fbt5fvkGJlw4gGyHbjWZ\nI02lBiDGuAz42gG/rwLuTlUoSZIkSdIHPTy3nLqIl1E3sUb9E0MIYUwIYUEIYUsIYXsIYUcIYXuq\nw0mSJEmS9qmtizxcXMaHT+vFoJ4O3WpKjV17v5d99xf3jDF2jTF2iTF2TWEuSZIkSdIBXnxrI2u2\n7SYv19UGdYzhAAAgAElEQVTiptbYYlwGLIkxxlSGkSRJkiQdXEFRKT075XDlsBOTjtLmNOoeY+Db\nwJwQwp+BPQ0vxhh/npJUkiRJkqT9Nmyv4tnXN/CFDw8hJ8uhW02tscX4J0Al0B7ISV0cSZIkSdL7\nPTKvnNq6yKRRA5OO0iY1thj3izGendIkkiRJkqQPqKuLFMwt5UOn9OCU3p2TjtMmNXYNfk4I4aqU\nJpEkSZIkfcDLb2+ibItDt1KpscX4K8BTIYTdPq5JkiRJkppPQVEZ3Ttmc/Xwk5KO0mY16lLqGGOX\nVAeRJEmSJL3Xpso9/HHZu9x00WDaZ2cmHafNOuyKcQhh8BHeDyGEAU0ZSJIkSZK0z8x55VTXRvJy\nHbqVSkdaMf5pCCED+AMwD9jIvsnUpwGXAVcAPwDKUxlSkiRJktJNjJGCuWWMGnwCp/XxIt5UOuyK\ncYxxAnAncAbwa+Al9pXkLwDLgctjjM8cav8QwjUhhOUhhBUhhNsP8n4IIdxX//7iEMIFR9o3hPDj\n+m0XhhD+GELod7QfWpIkSZJauldXbmHVpp1MHuXQrVQ74j3GMcZlwPeO9sAhhEz2lekr2beiPDeE\nMLv+eA2uBYbW/xkN/AYYfYR9fxpjvLP+HF8Dvg98+WjzSZIkSVJLll9UStf2WXz8nL5JR2nzGjuV\n+ljkAitijCtjjHuBAmDs+7YZC/wu7vMq0D2E0Pdw+8YYD5yG3QmIKfwMkiRJktTstu7cy1NL3mXc\n+f0dutUMUlmM+wNlB/xeXv9aY7Y57L4hhJ+EEMqAT7FvxfgDQghfDCEUhxCKN27ceMwfQpIkSZKa\n28z55eytrSNvtJdRN4dUFuOUiTF+L8Y4EHgI+Oohtvn3GOPIGOPI3r17N29ASZIkSTpGDUO3zh/U\nnTNP6pp0nLTQqGJcPyRragjh+/W/Dwoh5B5htzXAgTPFB9S/1phtGrMv7CvGNxz5E0iSJElS61D8\nzlZWbKgkz6FbzaaxK8b/D7gIyKv/fQf7hmMdzlxgaAhhSAghB5gMzH7fNrOBm+qL94eAihjjusPt\nG0IYesD+Y4E3GvkZJEmSJKnFy3+tlM7tshhzrkO3mssRp1LXGx1jvCCEsAAgxri1vrAeUoyxJoTw\nVeBpIBP4bYxxaQjhy/Xv3w/MAa4DVgC7gM8ebt/6Q/9zCOEMoA54BydSS5IkSWojKnZV80TJOm68\ncAAdcxpb13S8GvtNV9c/QikChBB6s6+YHlaMcQ77yu+Br91/wM8R+PvG7lv/updOS5IkSWqTZi0o\nZ09NHXm5XkbdnBp7KfV9wCygTwjhJ8BfgH9MWSpJkiRJSjMNQ7dG9O/G2f27JR0nrTRqxTjG+FAI\nYR5wBRCAT8YYX09pMkmSJElKIwvKtvHGuzv4x3Ejko6Sdo7movX1wEv1+3QIIVwQY5yfmliSJEmS\nlF4KikrpmJPJ9ef1SzpK2mlUMQ4h/Bj4DPA29fcZ1//38tTEkiRJkqT0saOqmscWrWPsef3o3M6h\nW82tsd/4RODUGOPeVIaRJEmSpHT0h4Vr2V1dy2SHbiWiscO3lgDdUxlEkiRJktJVflEpZ/XtyrkD\nHLqVhMauGP8TsCCEsATY0/BijPH6lKSSJEmSpDRRUl7B0rXb+fHY4YQQko6TlhpbjP8HuBsooRHP\nL5YkSZIkNc70olLaZ2cw9vz+SUdJW40txrtijPelNIkkSZIkpZmde2qYvXANY87pR9f22UnHSVuN\nLcYvhRD+CZjNey+l9nFNkiRJknSMHlu0lp17a8nLHZh0lLTW2GJ8fv1/P3TAaz6uSZIkSZKOQ35R\nKaef2JkLBp2QdJS01qhiHGO8LNVBJEmSJCmdLF1bwaLyCr4/ZphDtxJ22GIcQpgaY3wwhPCNg70f\nY/x5amJJkiRJUttWUFRGTlYG4y9w6FbSjrRi3Kn+v10O8l5s4iySJEmSlBZ2763lfxes4bqzT6J7\nx5yk46S9wxbjGOO/1f/4bIzx5QPfCyFcnLJUkiRJktSGPb54LTv21JCXOyjpKAIyGrndLxv5miRJ\nkiTpCArmlnFK707kDumRdBRx5HuMLwL+Buj9vvuMuwKZqQwmSZIkSW3Rm+t3MO+drXzvurMcutVC\nHOke4xygc/12B95nvB24MVWhJEmSJKmtyi8qJSczgxsuHJB0FNU70j3Gfwb+HEJ4IMb4TjNlkiRJ\nkqQ2qaq6lkfnr+Gq4SfSo5NDt1qKRt1jbCmWJEmSpOP35JJ1VOyuZopDt5rOvP857kM0dviWJEmS\nJOk45ReVcXLPjnzolJ5JR2kb5v0PPPa14z5Mo4rxwR7N5OOaJEmSJKnxVmyopGjVFiaPGkRGhkO3\njtsbT8DjX4fTPnbch/JxTZIkSZLUDArnlpKVEbjRoVvH752/wozPQb8LYOLvjvtwPq5JkiRJklJs\nT00tM+aVc+WwE+ndpV3ScVq39UshfzJ0HwSfegRyOh33IX1ckyRJkiSl2B+XrmfrrmomO3Tr+Gwr\nhQdvgOxOMPVR6NijSQ571I9rCiFkAJ1jjNubJIEkSZIktXH5RaX0796BS07rlXSU1mvnZvj9eKje\nBZ99CroPbLJDN/Ye438KIXQNIXQClgDLQgi3NlkKSZIkSWqjVm/ayV/f3szkUQMdunWs9lTC9AlQ\nUQZ5hXDisCY9fGOL8bD6FeJPAk8CQ4BpTZpEkiRJktqggrllZGYEJoxsuhXOtFJbDQ/fBGsXwI3/\nDSdf1OSnaGwxzg4hZLOvGM+OMVYDscnTSJIkSVIbsremjhnzyrj8zD6c1K190nFan7o6+MPfw9t/\ngk/8As68LiWnaWwx/jdgNdAJeDGEcDL7BnBJkiRJkg7hT6+vZ1PlXvJyXS0+Js/cCYsL4fI74YKb\nUnaaI02lBiDGeB9w3wEvvRNCuCw1kSRJkiSpbZheVErfbu356Ol9ko7S+rx8H7zyK8j9ElzyzZSe\nqlErxiGEE0MI/xVCeLL+92HAp1OaTJIkSZJasbItu/jLik1MHDmQTIduHZ2F+ftWi4ePg2v+GUJq\nv7/GXkr9APA00K/+9zeBr6cikCRJkiS1BYVzywjAxFFeRn1U3vzjvvuKh3wUxv0bZDS2th67xp6h\nV4zxYaAOIMZYA9SmLJUkSZIktWI1tXU8XFzGR0/vTf/uHZKO03qUzYVHPg0nnQ2TH4Ksds1y2sYW\n450hhJ7UT6IOIXwIqEhZKkmSJElqxZ57YwMbduwhL3dQ0lFaj43L9z2ruMtJ8KmZ0K5Ls526UcO3\ngG8As4FTQwgvA72BG1OWSpIkSZJasYK5ZfTp0o7Lz3ToVqNUrIHfj4eMbJj6KHTu3aynb+xU6vkh\nhI8CZwABWF7/LGNJkiRJ0gHWbtvNC8s38HeXnkZWZurvj231dm+FB2+Aqgr47BzoMaTZIzSqGIcQ\n2gN/B3yYfZdTvxRCuD/GWJXKcJIkSZLU2jxcXEZdhEkO3Tqyvbtg+mTY8jZMnQl9z0kkRmMvpf4d\nsAP4Zf3vU4DfAxNSEUqSJEmSWqPausjDc8u4ZGgvBvbomHSclq22BmZ8DspegwkPwJCPJBalscX4\n7BjjsAN+fz6EsCwVgSRJkiSptXrxzY2srajizjHDjrxxOosRHr8F3nwSPv6vMPyTicZp7AXv8+sn\nUQMQQhgNFKcmkiRJkiS1TtOLSunVOYcrzjox6Sgt23M/hgUPwkdvg1FfSDrN4VeMQwgl7LunOBv4\nawihtP73k4E3Uh9PkiRJklqH9dureO6NDfztJaeQk+XQrUN69X546V/hws/Apd9JOg1w5EupxzRL\nCkmSJElq5R4pLqO2LjLZoVuHVjIDnrodzhwDH/85hJB0IuAIxTjG+E5zBZEkSZKk1qquLlIwt4y/\nObUng3t1SjpOy/T28zDry3Dy38AN/wUZmUkn2s/1fUmSJEk6Tn9ZsYnyrbuZnDso6Sgt09oFUDgV\nep8Bk6dDdvukE72HxViSJEmSjlN+USkndMzm6uEO3fqAzW/DgzdCxx7wqRnQoXvSiT7AYixJkiRJ\nx2Hjjj08s2w9N1wwgHZZLefy4BZhx3r4/TggwtRZ0LVv0okOqrHPMZYkSZIkHcSMeeXU1EUvo36/\nqgp48AbYuQk+8xj0Oi3pRIdkMZYkSZKkY1RXFymcW0ru4B6c1qdz0nFajuoqKPgUbHwdpjwM/S9M\nOtFheSm1JEmSJB2jV1duZvXmXeSN9hFN+9XVwqN/C6tfgk/eD6ddkXSiI7IYS5IkSdIxyp9bRrcO\n2Vx7dsu8d7bZxQhzvgWvz4ar/wnOmZB0okaxGEuSJEnSMdhcuYenl7zLuPP70z7boVsA/PlfoPi3\ncPHX4aK/SzpNo1mMJUmSJOkYPDp/DXtr68hz6NY+xb+FF/4Rzp0CH7sr6TRHxWIsSZIkSUcpxkj+\n3FIuGNSdM07qknSc5C2bDU98E4ZeDdffByEkneioWIwlSZIk6SgVrdrCyo07XS0GWP0XmPmFfZOn\nJzwAmdlJJzpqFmNJkiRJOkoFc8vo0i6Lj5+T5kO33i2B/Dw4YfC+xzLldEw60TGxGEuSJEnSUdi2\nay9PlKzjk+f3p2NOVtJxkrN1NTx4A7TrAtMehY49kk50zCzGkiRJknQUZi1Yw96aOibnpvGzi3du\ngt+Ph5o9MPVR6DYg6UTHJY3/eUOSJEmSjk6MkfyiUs4d0I3h/bolHScZe3bAQzfC9rXw6dnQ58yk\nEx03V4wlSZIkqZHml27jzfWVTE7XoVs1e6FwGqxbvG/Q1sDcpBM1iZQW4xDCNSGE5SGEFSGE2w/y\nfggh3Ff//uIQwgVH2jeE8NMQwhv1288KIXRP5WeQJEmSpAb5RaV0ysnkE+f2SzpK86urg//9Cqx8\nHq7/JZxxTdKJmkzKinEIIRP4NXAtMAzICyEMe99m1wJD6/98EfhNI/Z9Bjg7xngO8CbwnVR9BkmS\nJElqsL2qmscXr+X68/rTuV2a3ZUaIzz9XVgyAz52F5z/qaQTNalUrhjnAitijCtjjHuBAmDs+7YZ\nC/wu7vMq0D2E0Pdw+8YY/xhjrKnf/1Wgdd/lLUmSJKlV+MOCNVRV15GXjkO3Xr4XXvsNfOjv4OKv\nJ52myaWyGPcHyg74vbz+tcZs05h9AT4HPHmwk4cQvhhCKA4hFG/cuPEoo0uSJEnS/4kxMr2ojOH9\nujKif5oN3VrwIDx7F5x9I1z1Ewgh6URNrtUO3wohfA+oAR462Psxxn+PMY6MMY7s3bt384aTJEmS\n1KYsLq/g9XXbmZw7iNAGi+EhLX8KZn8NTrkMPvkbyGi1FfKwUnlh/BrgwGsMBtS/1phtsg+3bwjh\nM8AY4IoYY2y6yJIkSZL0QflFpXTIzmTseWk0dKv0NXjkM9D3HJj0e8jKSTpRyqSy7s8FhoYQhoQQ\ncoDJwOz3bTMbuKl+OvWHgIoY47rD7RtCuAb4NnB9jHFXCvNLkiRJEpV7api9aC1jzulL1/bZScdp\nHhvegOkToWs/+NQMaNcl6UQplbIV4xhjTQjhq8DTQCbw2xjj0hDCl+vfvx+YA1wHrAB2AZ893L71\nh/4V0A54pv4ShldjjF9O1eeQJEmSlN5mL1zLrr215I1Ok2cXV5TDg+Mhqz1MmwWdeiWdKOVSOmM8\nxjiHfeX3wNfuP+DnCPx9Y/etf/20Jo4pSZIkSYdUMLeUM07swvkDuycdJfV2bYHfj4c9O+CzT8IJ\nJyedqFm0zTunJUmSJKkJLFlTweLyCvJyB7b9oVt7d8H0SbB1NeTlw0lnJ52o2aTZU6klSZIkqfEK\n5pbSLiuDcecPSDpKatVW7xu0taYYJvwPDP5w0omalcVYkiRJkg5i194a/nfBWj4+oi/dOrbhoVsx\n7nsk01tPw5h7YNj1SSdqdl5KLUmSJEkH8fjidVTuqWFybhsfuvXsXbBoOlz6XRj5uaTTJMJiLEmS\nJEkHkV9Uyqm9OzFq8AlJR0mdV34NL98LIz8PH/120mkSYzGWJEmSpPd5493tLCjdRl7uoLY7dGvx\nw/D0d+Gs6+G6n0Jb/ZyNYDGWJEmSpPcpKCojJzOD8Re00aFbK/4E//sVGHwJjP8PyMhMOlGiLMaS\nJEmSdICq6loenV/ONWefRI9OOUnHaXpr5kHhNOh9Fkx+CLLbJ50ocRZjSZIkSTrAnJJ1bK+qYXLu\nwKSjNL1NK+ChCdCpF0ydAe27JZ2oRbAYS5IkSdIB8otKGdyzIxed0jPpKE1r+zr4/TggwLRZ0OWk\npBO1GBZjSZIkSaq3YsMO5q7eyuS2NnRr9zZ46EbYvWXfSnHPU5NO1KJkJR1AkiRJklqK/KIysjMD\nN17YhoZuVe+GgimwcTl86hHod37SiVoci7EkSZIk8X9Dt64cdiK9OrdLOk7TqKuFmV+Ad/4KN/4X\nnHpZ0olaJIuxJEmSJAFPL32XrbuqycsdlHSUphEjPPENeONxuPZf4Owbkk7UYnmPsSRJkiSx79nF\nA3t04OJTeyUdpWm88E8w7wG45Jsw+ktJp2nRLMaSJEmS0t6qTTt5ZeVmJo8aREZGGxi6VfQf8Oe7\n4fypcPmdSadp8SzGkiRJktJewdxSMjMCE9rC0K2l/wtzboXTr4Uxv4C2NF07RSzGkiRJktLa3po6\nZhSXc8WZfejTtX3ScY7Pqhfh0b+FgaPhxt9CpmOlGsNiLEmSJCmtPbNsPZt37iVvdCsfurVuEeRP\ngR6nwpQCyOmYdKJWw2IsSZIkKa0VzC2lf/cOfGRo76SjHLstq+DBG6FDd5j2KHQ4IelErYrFWJIk\nSVLaKt28i5fe2sTEkQPJbK1Dtyo3wO/HQV01TH0UuvZLOlGr4wXnkiRJktJWYXEpGQEmjmqlQ7eq\ntsNDN0Llevj0Y9D79KQTtUoWY0mSJElpqbq2joeLy7nsjD707dYh6ThHr2YPFE6Fd5fAlEIYMDLp\nRK2WxViSJElSWnrujQ1s3LGHybmtcOhWXR3M+hKs+jN88n4YemXSiVo17zGWJEmSlJbyi0o5sWs7\nLjujlQ3dihGeug2WzoIrfwzn5SWdqNWzGEuSJElKO2u27ebPb25k4siBZGW2slr00r9C0b/DRV+F\ni7+WdJo2oZX9DZAkSZKk41c4twyAiSMHJpzkKM37H3jux3DOpH2rxWoSFmNJkiRJaaWmto5Hisv4\nyNDeDOzRMek4jffGHHj863Dax2DsryHDOtdU/CYlSZIkpZU/v7mRdRVV5OW2otXid16BGZ+FfufD\nhP+BzOykE7UpFmNJkiRJaSW/qJRendtxxVknJh2lcdYvg/xJ0G0gTHkE2nVOOlGbYzGWJEmSlDbe\nrajiuTc2MGHkALJbw9CtbaXw4HjI7gjTHoVOPZNO1Cb5HGNJkiRJaePh4jLqIkwe1Qouo965GX4/\nHqp3wWefgu6t8HnLrYTFWJIkSVJaqK2LFM4t4+LTenJyz05Jxzm8vTth+kSoKINps+DEYUknatNa\nwbUDkiRJknT8XnprI2u27SYvt4WvvNZWw8M3wdr5cONv4eS/STpRm+eKsSRJkqS0UFBURo9OOVw5\nrAUP3aqrgz/8Pax4Fj5xH5z58aQTpQVXjCVJkiS1eRt2VPHs6+u58cIBtMvKTDrOoT37fVhcCJff\nARd+Ouk0acNiLEmSJKnNmzGvnJq6yKSWPHTr5fvgr7+E3C/CJd9KOk1asRhLkiRJatPq6iIFRWWM\nHtKDU3u30GcALyqAZ+6E4ePgmn+GEJJOlFYsxpIkSZLatFdWbqZ0yy6mjG6hQ7feembffcVDPgLj\n/g0yWvCl3m2UxViSJElSmza9qJTuHbO5evhJSUf5oPLifROo+wyDSQ9BVrukE6Uli7EkSZKkNmtz\n5R7+uPRdxp8/gPbZLWwlduOb8NAE6HwiTJ0J7bsmnShtWYwlSZIktVkz55dTXRvJy21hQ7e2r4UH\nx0NGFkx7FDr3STpRWvM5xpIkSZLapBj3Dd0aefIJDD2xS9Jx/s/urfDgDbB7G3z2CehxStKJ0p4r\nxpIkSZLapNdWbWHlpp1Mzm1BQ7eqd0N+HmxeAZMfgr7nJp1IuGIsSZIkqY3KLyqlS/ssPj6ib9JR\n9qmtgRmfg9JXYcJ/wykfTTqR6rliLEmSJKnN2bpzL08ueZdx5/enQ04LGLoVIzz+dVg+B6776b7n\nFavFsBhLkiRJanMeXbCGvTV1TB7VQi6jfu7/gwW/h498G3L/Nuk0eh+LsSRJkqQ2Zd/QrVLOHdid\nYf1awCOQXvs3eOlncMGn4bLvJp1GB2ExliRJktSmzHtnK29tqGRKS3hE05KZ8ORtcOYY+PjPIYSk\nE+kgLMaSJEmS2pT8ojI6t8tizDn9kg3y9vPw6Jdg0EVww39CprOPWyqLsSRJkqQ2o2J3NU+UrOX6\n8/rRqV2CRXTtQiicCr1Oh7x8yO6QXBYdkcVYkiRJUpvxh4VrqKquY0qSzy7e/DY8dCN06AFTZ0KH\n7sllUaNYjCVJkiS1CTFGpr9Wytn9u3J2/27JhNixHh4cD7EOps2Cri3kGco6LIuxJEmSpDZhYdk2\n3nh3B3lJrRZXbYeHboDKjTDlEeh1WjI5dNS8+1v6/9u78yi5rvrA499fVS9a3GpLsqxd3pA3vFte\nIBBMjPESYhPhHYNhGDjOhCQTTk5CMpwhZIYMTHKSYAJhgDgOsZG8YIPBJCZxYjAEkIT3BRPHi9Ta\npW6trZbUVXf+qCepWmpJ3epaurq+n3NKXfXuve/+XvU9pfr1fe8+SZIkjQmLl6xgfGueq8+uw6Jb\nu/tg8c2w7kW4+R6Yc37tY9ARMzGWJEmS1PC29u3moadXcfXZs+gY11rbzosFePAj8NrjsPAr8IZ3\n1LZ/jZinUkuSJElqeA89vYoduwvcWOt7F6cE//j78MK34PI/hbOur23/qggTY0mSJEkNb9GS5Zw6\no4Nz5tZ4Begf/Bks/Sr80u/Am36ztn2rYkyMJUmSJDW0Z7s289zKLdx04TwionYdL/s7+LdPw9k3\nwzs+Vbt+VXEmxpIkSZIa2qKly2lvyfHuc2fXrtMXvw0PfwzmvxOuvh1qmZCr4qqaGEfEFRHxUkS8\nHBEfH6Q8IuL2rPyZiDjvcG0j4rqIeD4iihGxoJrxS5IkSRrdtu/s56GnVvGus2bROb5Gi2699iO4\n/0Mw+3y47k7I13ixL1Vc1RLjiMgDXwCuBE4HboqI0/erdiUwP3t8BPibIbR9DlgI/KBasUuSJElq\nDN95ZhXbdvZzU60W3VrzHCy6CSYfBzffC20Ta9OvqqqaM8YXAi+nlF5JKe0CFgPX7FfnGuBrqeQn\nwNERMfNQbVNKL6aUXqpi3JIkSZIaxKIlK5h/7FGcf9zk6nfW8zrc9R5oPwpueQAmTKl+n6qJaibG\ns4EVZa+7sm1DqTOUtpIkSZKa2AurtvDUik3cWItFt7ZvgLsWQn8f3PINOLrGt4VSVY3Zxbci4iMR\nsSwilq1fv77e4UiSJEmqsMVLl9PWkmNhtRfd2rkN7r4ONq8snT597GnV7U81V83EeCVQ/meUOdm2\nodQZSttDSil9OaW0IKW0YNq0acNpKkmSJGmU27GrwINPruTKM2YweWJb9Trq3wX3vg9WPw3X/R3M\nu6h6faluqpkYLwXmR8QJEdEG3Ag8tF+dh4D3Z6tTXwxsTimtHmJbSZIkSU3q4WdXs7Wvn5sunFe9\nTopF+NZ/g//819ItmU65snp9qa5aqrXjlFJ/RHwUeATIA3eklJ6PiNuy8i8B3wWuAl4GeoEPHqot\nQET8OvB5YBrwcEQ8lVK6vFrHIUmSJGn0WbxkOSceM5GLTqjSAlgpwff+Bzx7H1z6STj3lur0o1Gh\naokxQErpu5SS3/JtXyp7noDfHGrbbPuDwIOVjVSSJElSo/jF2q0se72HP7rq1OotuvWjz8FPvggX\n/Qa85Xer04dGjTG7+JYkSZKksWnxkhW05oP3nDenOh08eTf8yyfhjGvh8j+Faq94rbozMZYkSZLU\nMPp2F3jgyS7e+cYZTD2qvfId/OIReOi34MRL4N1/AzlTpmbgb1mSJElSw3jk+TVs6t3NzdVYdGvF\nErj3VphxJtxwF7RUcbVrjSomxpIkSZIaxtd/upx5UybwphOnVnbH635eulfxpJnw3vuhvaOy+9eo\nZmIsSZIkqSG8sn4bP321mxsvnEsuV8Hrfjd3wV0LoaUd3vcgHDWtcvtWQ6jqqtSSJEmSVCmLl66g\nJRdce34FF93q7Ya73gM7t8IHvwuTj6/cvtUwTIwlSZIkjXo7+wvc/7Mu3nHadI7tGFeZne7qhUU3\nQver8L4HStcWqymZGEuSJEka9f75hbV0b9/FjRfOrcwOC7vhvg+UFty6/mtw/Fsqs181JBNjSZIk\nSaPeoiXLmX30eN46vwLX/6YE3/4d+I9H4Ff/Ak6/euT7VENz8S1JkiRJo9rrG7fzo5c3csMFc8lX\nYtGtRz8FT90Nl/whXPChke9PDc/EWJIkSdKotnjpCnIB1y+owGnUP/4i/PAvYcF/gbf9wcj3pzHB\nxFiSJEnSqLW7UOS+ZV38yqnHMqNzhItuPXs/PPKHcNqvwVV/DlHBWz6poZkYS5IkSRq1Hn1xLRu2\n7eSmC+eNbEcvPwoP3gbHvQUWfhVy+coEqDHBxFiSJEnSqLVoyQpmdo7jbSePYNGtlT+De94H006F\nm74OrRW63ZPGDBNjSZIkSaPSiu5efvAf67luwVxa8keYumx4Ge6+DiZOhVvuh3GdlQ1SY4KJsSRJ\nkqRR6b5lKwC44YIjXHRr6xq469eBgPd9EzpmVC44jSnex1iSJEnSqNNfKHLPshW87eRpzD56/PB3\n0LcZ7noP9HbDB74DU0+qfJAaM5wxliRJkjTq/NtL61m75QgX3drdB4tuhvUvwQ3/ALPOrXyAGlOc\nMZYkSZI06ixespxpHe38yqnHDq9hsQDf+BC8/kN4z9/CSb9SnQA1pjhjLEmSJGlUWb15B//20jqu\nXyz2SWoAABcqSURBVDCH1uEsupUSPPwx+Pl34IrPwpnXVi9IjSkmxpIkSZJGlXuXdlFMcMOCYZ5G\n/dhn4Gd3wls+BhffVpXYNDaZGEuSJEkaNQrFxD1Ll/PW+ccwb+qEoTdc+lX4/mfg3Fvg0v9ZvQA1\nJpkYS5IkSRo1fvAf61m1uY8bLxjGbPHz34SHfw9OvgLe9TmIqF6AGpNMjCVJkiSNGot+upypE9u4\n7PTpQ2vw6uPwwIdh7oVw7d9B3vWFNXwmxpIkSZJGhXVb+nj05+u49vw5tLUMIVVZ/QwsvhmmnAg3\nLYa2YZx6LZUxMZYkSZI0Ktz3sy4KxcQNF8w9fOXuV+Hua6F9EtzyAEyYUv0ANWZ5noEkSZKkuisW\nE4uXLudNJ07lxGlHHbrytvVw10Io7IJbvw2ds2sTpMYsZ4wlSZIk1d2P/nMDK7p3cOOFh5kt3rm1\nNFO8ZTXcfB9MO6U2AWpMc8ZYkiRJUt0tWrKcyRNaufyNMw5eqX8n3HMLrHm2dE3x3AtqF6DGNGeM\nJUmSJNXV+q07+d7za1l43hzGteYHr1QswoO3wSuPwTVfgJPfWdMYNbaZGEuSJEmqq2880UV/MXHT\nwU6jTgn+6ePw/ANw2Z/AOTfVNkCNeSbGkiRJkuompcTiJcu54PjJvOHYjsEr/fAvYMn/gzd9FN78\n27UNUE3BxFiSJElS3fz4lY28trGXmy6cN3iFJ74Gj/4JnHk9XPa/IKK2AaopmBhLkiRJqpvFS1Yw\naVwLV50588DCn38Xvv07cNKlpeuKc6Yvqg5HliRJkqS66N6+i396bs3gi24t/wnc/0GYeQ5c/zVo\naatPkGoKJsaSJEmS6uKBJ7rYVSgeeO/idS/C16+Hzjnw3vug/aj6BKimYWIsSZIkqeZSSixaspxz\n5x3NqTMm7SvYtAL+YSG0jIdbHoCJx9QvSDUNE2NJkiRJNbfs9R7+c/32gYtu9XbDXQth13a45Rsw\n+bj6Baim0lLvACRJkiQ1n0U/XU5HewvvOitbdGvXdrj7Ouh5Hd7/TZhxRn0DVFNxxliSJElSTW3u\n3c3Dz67mmnNnMaGtBQq74d5bYdUTcO0dcNyb6x2imowzxpIkSZJq6sEnu9jZX+TGC+ZBsQjf+ii8\n/M/wa5+D095V7/DUhJwxliRJklQzpUW3VnDWnE7OmN0J//JJeGYxvP0TcP4H6h2empSJsSRJkqSa\neXLFJl5au7U0W/zvn4d/vx0u+DD88u/VOzQ1MU+lliRJklQVxWJiw7adrOjZwcpNO+jq6eV7z69l\nQluehS0/hH/8BJz+brjysxBR73DVxEyMJUmSJB2RQjGxdksfXT07WLmpl67uPQlw6efKnh3sKhQH\ntJk8oZW/OG894x7+73DCL8PCL0MuX6cjkEpMjCVJkiQNanehyJrNfazo6WVlz76Et6unl5WbdrB6\nUx/9xTSgzTFHtTNn8nhOnzWJd75xOnOOHs+cyROY3dnKnJYtTOh+Ae7/fTj2NLjhbmhpr9PRSfuY\nGEuSJElNamd/gVWb+rKkt3ffbG/2es2WPsrz3giY3jGO2ZPHc968ycw+q5T0zpmU47jWTcygm/be\ntbDlOdiyqvToyn5uWwspmz2efDy89xswblJdjlvan4mxJEmSNEbt2FUoneI8YLZ3Byt7StvWbd05\noH4+F8yYVEp8Lz5pKnM6x3FCR5Hj2jYxO9/D1MJGWravgS0rS8nuq6vh6ZWwo/vAztsnwaRZ0DET\nTjoNJs0svZ40G+ZeCOMn1+hdkA7PxFiSJElqUNt29h8w29tVdtrzxu27BtRvzQezjh7P7KPH8/aT\np3LSxF2c1L6ZOS09HEs3nbvWkduWJb5rV8HLq2HXtgM7nnBMKcntnANzL9iX8HbMLP2cNBPaO2r0\nLkgjZ2IsSZIkjUIpJbbs6Kcrm/Hdd41v797Z3029uwe0aWvJMefo8cw7upU3zYc3jNvJca09zKCb\nKcWNjO9bS27LKti6ClavhuLA9kQ+S25nwvTTYf5l2etZ+xLejpleF6wxx8RYkiRJqoOUEt3bdx1w\nXW/56607+we0mdCW58TOHGd2bGPhCVs5vm0zs6KHY9IGJu1eT1vvGmLLKuhaBwxcFIuW8dnpzLNh\n7sUDk909zydOc4VoNSUTY0mSJKkK9tzDt+sQie+O3YWyFonZ7Ts5c9J2Lp+wjZOO28ycfA/TUjdH\n969nfN868ttWEVs3wdb9OhvXue9U5ulnZIlu+enNs0rX9HqvYGlQJsaSJEnSESgUE+u29h006e3a\ntINd/aVVmIMix7CF+eO3cPpRW7m8fSvzZvcwPbqZ0r+BibvW0da7ltjdW0p69ya+UZrFnTQLpp4A\nJ7x58Ot52ybW622QxgQTY0mSJGkQ/YUiqzf3Dbx3b9nqzqs27aC/mGiln+nRw3S6OXn8Ft4+fivH\ntW5i1rE9TC1uYNKu9bT3rSOK/aWzm/ckvrkW6JhVSmyPPWfg7O6ehPeoGdDSVud3Qhr7TIwlSZLU\nlHb2F1i9qW9v0jtwgasdrN68g3GpjxnRzYzoZmZ0c9K4LVzatpnZ+U1Mm7yBzt3rGb+r7FZFRWA7\n0DqhlOBOngUdp5Wd2lx2ivOEYyCXq9fhSypjYixJkqQxqW934aCzvV3d29m1bSMz6GZ6lvTOjG7e\n3r6FufkepkcPkyesZ1xhv1sVFQAmw8TZ0DEPJl08cAGrjizxHdfp9bxSAzExliRJUkPacw/flfvd\nzmhVzzb6elbR1rs2m+3tYWZ0c0p0c1nrJmZGN1OLG2ltH3iP30QQ46dnM7pvHHwBq46Z0DahTkcs\nqVpMjCVJkjQqbd6x+4CZ3jUbN9HXs5K0eSVH7VzPjNjIjOhhRnRzVq6bWbkepqYe8hSh7Fa7Kd8G\nHTOJSbNg0qkDZ3ezGd84ajrkW+t3wJLqxsRYkiRJNZdSoqd394DVnNdv2EDvhhX0b+qiZftqOndv\nYGaUTnW+KDvVeUqU3acoW5Oq0DKRNGkW+c45ROdFZQtY7Ut8Y8JUT22WdFAmxpIkSaq4lBLrt+0s\nJb7dvWxcv5rt619nd89KYusq2nesYWphIzOim/nRzVuih47YMXAnrbCrbTKFjpnkO0+mdfKcQa/n\nzY+bVJ+DlDRmmBhLkiRp2IrFxLqtO+nauIWNa5azdf0Kdm5cTnHLatq2r2biznVMo5uZbOT06KE9\n+ge2jxw7Jh7D7okzic6zaZsylzR5DtE58HrettZxdTpCSc2kqolxRFwBfA7IA19NKX1mv/LIyq8C\neoEPpJSeOFTbiJgC3AMcD7wGXJ9S6qnmcUiSJI0mKSUKxUQhJYpFKGSvi3u3JQrFAoVCgWKhQCr0\nUygWSIUChWJ/tq1AoVikWOgnFQsUi/2kQoFisUDKHsVCgZQK7Nq+hR0buyhu7iK3bQ0T+tbSuXs9\n06Obc9lEPtKA+HZHK1vHT2fXhBnQMZ9tU+bAMXNpnzJ374xvbuKxTMw7RyNpdKjap1FE5IEvAJcB\nXcDSiHgopfRCWbUrgfnZ4yLgb4CLDtP248CjKaXPRMTHs9d/UK3jkCRJw1eeuKUEhUKxlJD191Mo\n9FMsFilmSVrq7y8laHsSs7LkrFjoL3u+J3krUkwF2Fuvn1Qs7k3m9n+QCgPKI2VlqQjFAhRLyR/F\nIuz5WSwApZ+RCpCKpUe2v8he7ymLAduK5PZsZ19ZZK9ze+qTyKVCaRtZu6w8R5GgQI609/X+jzzF\nUnn2vJ0iQSJPkZYoVu13uz0msqV1Gn1HTWdbx1n0dc5iwjHz6Jx+HO1TSqc6t46fzBSv55XUQKr5\nZ7oLgZdTSq8ARMRi4BqgPDG+BvhaSikBP4mIoyNiJqXZ4IO1vQa4JGv/98BjHCYx3t69mh9//U8r\nc1TSqFS9L0Ajkg5fpfZGYVBp3+8v7f1nwJayl+kIytKw97lnS6T9XpMOKBt0vweUlZUfqt0Bxfve\nmzhgl/s2pJSIg5QduNOD9H/gm0/seT9S2fNBy/bsImVlA/cUQ+k/2+fA4y8rOyC+Q4zllA6SsBX2\nJmcxyOsc+xK48kQtyhOzPckdA7cNTNYGJmzVTNJqYd8R7zvyQnZ0KcrejciTsjop9pUn8hSjtC2R\nI+VypMhnr9tKP/e8jhz9e5/ngRxk9Yk8ROx7nstD5EqP3J5t+55HLk9k+4xcqX5k28ll5blc9jM/\noE4un4NcC7msTtv4DqbMKCW+E9s7mFjvX4okVVg1E+PZwIqy112UZoUPV2f2YdpOTymtzp6vAaYP\n1nlEfAT4CMD5M3O86RefPYJDkCRVQzEdPI09MMWNQeuVDL3uwLKydnHwesPp/1DtDmxbqT4Ovs9C\nlKWmkcsStv0StNiX0BFBMVpK26KU+KXyBG1Pu2wbA7ZnCVgulyVv+X3JWq5UP2JgwkYuR+xN7gYm\naUSeyJf2GbkWyOfJxZ7yFiKf35uwlX62ELlsWz5HLtdCLl/aZy5fel7aViqLfJ58Lr93e75lXwJI\nWUx7jiEXQe6A34skaSxp6As7Ukop4sA5hKzsy8CXAc495+y05be+V9PYNIalBLlReHrYKD1lLUZh\nXBGj7ytulCU1ETAwb8vtV1b+nu7fLsr2d7Cysn/37GvQMvYrG1h3//4PKDvE7370/QYkSVIzq2Zi\nvBKYW/Z6TrZtKHVaD9F2bUTMTCmtzk67Xne4QPItrUyaOujEsiRJkiSpyVXzj/ZLgfkRcUJEtAE3\nAg/tV+ch4P1RcjGwOTtN+lBtHwJuzZ7fCnyriscgSZIkSRrjqjZjnFLqj4iPAo9QuuXSHSml5yPi\ntqz8S8B3Kd2q6WVKt2v64KHaZrv+DHBvRHwIeB24vlrHIEmSJEka+yINunLo2LJgwYK0bNmyeoch\nSZIkSaqCiPhZSmnBkbZ3/RNJkiRJUlMzMZYkSZIkNTUTY0mSJElSUzMxliRJkiQ1NRNjSZIkSVJT\nMzGWJEmSJDU1E2NJkiRJUlMzMZYkSZIkNTUTY0mSJElSUzMxliRJkiQ1NRNjSZIkSVJTMzGWJEmS\nJDU1E2NJkiRJUlMzMZYkSZIkNbVIKdU7hqqLiK3AS/WOY5g6gc0N1s+R7mu47YZa/3D1RlJ+DLBh\nCDGMJo02pkayH8dU9dVqPFWyr1qNqUqNp6HUOVh5o40naLzPqJHsq16fUYerM5Y+o8AxVYn6jqmB\nHFMjr1/N71KnpJQ6hhDD4FJKY/4BLKt3DEcQ85cbrZ8j3ddw2w21/uHqjaTcMVX9fkayH8dU4/ye\na9lXrcZUpcbTUOocrLzRxlMlf8+17KfR/t87XJ2x9BlV6d91rfpxTI3uh2Nq5PVH83cpT6Uevb7d\ngP0c6b6G226o9Q9Xb6TljabRxtRI9uOYqr5aHkujjalKjaeh1HFM1befRvt/73B1xtJ4AsdUJeo7\npgZyTI28/qj9LtUsp1IvSyktqHccGjscU6o0x5QqyfGkSnNMqdIcU6q0kY6pZpkx/nK9A9CY45hS\npTmmVEmOJ1WaY0qV5phSpY1oTDXFjLEkSZIkSQfTLDPGkiRJkiQNysRYkiRJktTUTIwlSZIkSU2t\nKRPjiJgYEX8fEV+JiPfWOx41tog4MSL+NiLur3csGhsi4t3Z59M9EfHOesejxhcRp0XElyLi/oj4\njXrHo7Eh+z61LCLeVe9Y1Pgi4pKIeDz7rLqk3vGosUVELiI+HRGfj4hbh9JmzCTGEXFHRKyLiOf2\n235FRLwUES9HxMezzQuB+1NKHwaurnmwGvWGM55SSq+klD5Un0jVKIY5pr6ZfT7dBtxQj3g1+g1z\nTL2YUroNuB74pXrEq9FvmN+lAP4AuLe2UaqRDHNMJWAbMA7oqnWsGv2GOZ6uAeYAuxnieBoziTFw\nJ3BF+YaIyANfAK4ETgduiojTKb1JK7JqhRrGqMZxJ0MfT9JQ3Mnwx9QnsnJpMHcyjDEVEVcDDwPf\nrW2YaiB3MsQxFRGXAS8A62odpBrKnQz9c+rxlNKVlP7g8qkax6nGcCdDH0+nAP+eUvoYMKQzpcZM\nYpxS+gHQvd/mC4GXsxm9XcBiSn896KKUHMMYeg9UOcMcT9JhDWdMRclngX9MKT1R61jVGIb7OZVS\neij70uklRBrUMMfUJcDFwM3AhyPC71M6wHDGVEqpmJX3AO01DFMN4gjyvZ6sTpEhaKlUoKPUbPbN\nDEPpDboIuB3464j4VeDb9QhMDWnQ8RQRU4FPA+dGxB+mlP5PXaJTIzrYZ9RvAe8AOiPiDSmlL9Uj\nODWkg31OXULpMqJ2nDHW8Aw6plJKHwWIiA8AG8qSGulwDvY5tRC4HDga+Ot6BKaGdLDvUp8DPh8R\nbwW+P5QdjfXEeFAppe3AB+sdh8aGlNJGSteCShWRUrqd0h/wpIpIKT0GPFbnMDQGpZTurHcMGhtS\nSg8AD9Q7Do0NKaVeYFhrAI31015WAnPLXs/JtklHwvGkSnNMqdIcU6o0x5QqzTGlSqrYeBrrifFS\nYH5EnBARbcCNwEN1jkmNy/GkSnNMqdIcU6o0x5QqzTGlSqrYeBoziXFELAJ+DJwSEV0R8aGUUj/w\nUeAR4EXg3pTS8/WMU43B8aRKc0yp0hxTqjTHlCrNMaVKqvZ4ipRS5aKVJEmSJKnBjJkZY0mSJEmS\njoSJsSRJkiSpqZkYS5IkSZKamomxJEmSJKmpmRhLkiRJkpqaibEkSZIkqamZGEuSJEmSmpqJsSRJ\no1hEHB8Rzw2hzs1lrxdExO01iO2rEXF6tfuRJKnaWuodgCRJGrHjgZuBrwOklJYBy6rdaUrpv1a7\nD0mSasEZY0mSRiCbrf15RNwdES9GxP0RMSEiLo2IJyPi2Yi4IyLas/qvRcT/zbYviYg3ZNvvjIhr\ny/a77SB9PR4RT2SPN2dFnwHeGhFPRcTvRsQlEfGdrM2UiPhmRDwTET+JiLOy7X+cxfVYRLwSEb99\niGOcGBEPR8TTEfFcRNyQbX8sm52+Ouv7qYh4KSJezcrPj4jvR8TPIuKRiJhZmXddkqTKMjGWJGnk\nTgG+mFI6DdgCfAy4E7ghpXQmpTO0fqOs/uZs+18DfzWMftYBl6WUzgNuAPacLv1x4PGU0jkppb/c\nr82ngCdTSmcBfwR8razsVOBy4ELgkxHRepB+rwBWpZTOTimdAfxTeWFK6aGs73OAp4E/z/b1eeDa\nlNL5wB3Ap4dxrJIk1YyJsSRJI7cipfSj7PldwKXAqymlX2Tb/h745bL6i8p+vmkY/bQCX4mIZ4H7\ngKFc3/sW4B8AUkr/CkyNiElZ2cMppZ0ppQ2Uku7pB9nHs8BlEfHZiHhrSmnzYJUi4veBHSmlL1D6\nY8EZwD9HxFPAJ4A5QzpKSZJqzGuMJUkaubTf603A1CHW3/O8n+wP1hGRA9oGafe7wFrg7Kxu35EE\nW2Zn2fMCB/lekFL6RUScB1wF/O+IeDSl9CfldSLiHcB17PsDQADPp5SGk/hLklQXzhhLkjRy8yJi\nTwJ4M6WFr47fc/0w8D7g+2X1byj7+ePs+WvA+dnzqynNDu+vE1idUipm+8xn27cCHQeJ7XHgvQAR\ncQmwIaW0ZUhHlYmIWUBvSuku4M+A8/YrPw74AnBdSmlHtvklYNqe9yUiWiPijcPpV5KkWnHGWJKk\nkXsJ+M2IuAN4Afht4CfAfRHRAiwFvlRWf3JEPENpxvambNtXgG9FxNOUruHdPkg/XwS+ERHv36/O\nM0Aha3sn8GRZmz8G7sj66wVuPYLjOxP4s4goArsZeL00wAcozZB/MyKgdD3yVdliYrdHRCel7xx/\nBTx/BP1LklRVkdL+Z39JkqShiojjge9ki1INpf5rwILsul5JkjQKeCq1JEmSJKmpOWMsSZIAiIip\nwKODFF2aUtpY63gkSaoVE2NJkiRJUlPzVGpJkiRJUlMzMZYkSZIkNTUTY0mSJElSUzMxliRJkiQ1\nNRNjSZIkSVJT+//71R/RrF35fQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x21f37378358>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df = pd.DataFrame(np.array(results), columns=['population_size', 'sum_sq_dev', 'sum_sq_dev_experimental'])\n", "df.population_size = df.population_size.astype(int)\n", "df = df.set_index('population_size')\n", "df.apply(lambda x: x * 1000)\n", "\n", "df.plot(logx=True);\n", "plt.ylabel('best time (ms)')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
Stanford-BIS/syde556
SYDE 556 Lecture 2 Representation.ipynb
1
658037
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## SYDE 556/750: Simulating Neurobiological Systems\n", "\n", "Accompanying Readings: Chapter 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## NEF Principle 1 - Representation\n", "\n", "- Activity of neurons change over time\n", "\n", "<img src=files/lecture2/spikes.jpg width=800px>\n", "\n", "- This probably means something\n", "- Sometimes it seems pretty clear what it means" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "\n", " <iframe\n", " width=\"720\"\n", " height=\"400\"\n", " src=\"https://www.youtube.com/embed/KE952yueVLA?loop=1&autoplay=0\"\n", " frameborder=\"0\"\n", " allowfullscreen\n", " ></iframe>\n", " " ], "text/plain": [ "<IPython.lib.display.YouTubeVideo at 0x10185c990>" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import YouTubeVideo\n", "YouTubeVideo('KE952yueVLA', width=720, height=400, loop=1, autoplay=0)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "\n", " <iframe\n", " width=\"720\"\n", " height=\"400\"\n", " src=\"https://www.youtube.com/embed/lfNVv0A8QvI?loop=1&autoplay=0\"\n", " frameborder=\"0\"\n", " allowfullscreen\n", " ></iframe>\n", " " ], "text/plain": [ "<IPython.lib.display.YouTubeVideo at 0x10189b2d0>" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import YouTubeVideo\n", "YouTubeVideo('lfNVv0A8QvI', width=720, height=400, loop=1, autoplay=0) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Some sort of mapping between neural activity and a state in the world\n", " - my location\n", " - head tilt\n", " - image\n", " - remembered location\n", " \n", "- Intuitively, we call this \"representation\"\n", " - In neuroscience, people talk about the 'neural code'\n", " - To formalize this notion, the NEF uses information theory (or coding theory)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Representation formalism\n", "\n", "- Value being represented: $x$\n", "- Neural activity: $a$\n", "- Neuron index: $i$\n", "\n", "### Encoding and decoding\n", "\n", "- Have to define both to define a code\n", "- Lossless code (e.g. Morse Code):\n", " - encoding: $a = f(x)$\n", " - decodng: $x = f^{-1}(a)$\n", "- Lossy code:\n", " - encoding: $a = f(x)$\n", " - decoding: $\\hat{x} = g(a) \\approx x$\n", "\n", "## Distributed representation\n", "\n", "- Not just one neuron per $x$ value (or per $x$)\n", " - Many different $a$ values for a single $x$\n", "- Encoding: $a_i = f_i(x)$\n", "- Decoding: $\\hat{x} = g(a_0, a_1, a_2, a_3, ...)$\n", "\n", "## Example: binary representation\n", "\n", "Encoding (nonlinear):\n", "$$\n", "a_i = \\begin{cases}\n", " 1 &\\mbox{if } x \\mod {2^{i}} > 2^{i-1} \\\\ \n", " 0 &\\mbox{otherwise} \n", " \\end{cases}\n", "$$\n", "\n", "Decoding (linear):\n", "$$\n", "\\hat{x} = \\sum_i a_i 2^{i-1}\n", "$$\n", "\n", "--------------------\n", "\n", "Suppose: $x = 13$\n", "\n", "Encoding: \n", "$a_1 = 1$, $a_2 = 0$, $a_3 = 1$, $a_4 = 1$\n", "\n", "Decoding:\n", "$\\hat{x} = 1*1+0*2+1*4+1*8 = 13$\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Linear decoding\n", "\n", "- Write decoder as $\\hat{x} = \\sum_ia_i d_i$\n", "\n", "- Linear decoding is nice and simple\n", " - Works fine with non-linear encoding (!)\n", " \n", "- The NEF uses linear decoding, but what about the encoding?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Neuron encoding\n", "\n", "$a_i = f_i(x)$ \n", "\n", "- What do we know about neurons?\n", "\n", "<img src=files/lecture1/NeuronStructure.jpg>\n", "\n", "- Firing rate goes up as total input current goes up\n", " - $a_i = G_i(J)$\n", " \n", "- What is $G_i$?\n", " - depends on how detailed a neuron model we want.\n", " \n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "\n", " <iframe\n", " width=\"720\"\n", " height=\"400\"\n", " src=\"https://www.youtube.com/embed/hxdPdKbqm_I?loop=1&autoplay=0\"\n", " frameborder=\"0\"\n", " allowfullscreen\n", " ></iframe>\n", " " ], "text/plain": [ "<IPython.lib.display.YouTubeVideo at 0x10189b210>" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import YouTubeVideo\n", "YouTubeVideo('hxdPdKbqm_I', width=720, height=400, loop=1, autoplay=0) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Rectified Linear Neuron" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEPCAYAAABLIROyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE55JREFUeJzt3X2sJWV9wPHvhZXlNbUUy24LZVMNVENScVcgxZXb0Bpr\nS6uypiYIHE2NtU3tH66l2krXmFIlbUwKoYlp1wWb2EYrxl01ssKuIK1UdFcWCCAv21BFxEgVaEt5\nefrHzL075+yZe8/LzDwzz3w/yck9L3Pm+f3Ozj5znpnfPAckSZIkSZIkSZIkSZIkSZLUQQsR2jwI\n/AR4HngWODtCDJKkCB4GTowdhCT13RGR2o0x8pAkFcTYAQTgK8AdwDsjtC9JimR9/vclwH5gc8RY\nJKm31kRo89H87+PADWQngW/Nn3sAeGmEmCSpyx4EXhY7iNUcC5yQ3z8OuA14XeH10HhEadsWO4DE\nbIsdQGK2xQ6g+8JaCD9kxr6z6XMAJ5N9298P3A7sAm5sOAZJSsWFwJ2zvrnpQ0APA69suE1JStUA\n2AH8atwwquEhoGotxg4gMYuxA0jMYuwAui2sh/AEhONIpO9MIglJql/YCmH70oOooVQkiSQkqV5h\nAcJdEF679ETUcCqSRBKSVK+wCcKDEJYKeTpRBSRJmt8AuB4WXogdSJUcAUjSipZq/8OG4pOxoqlS\nEklIUn3CFgg3jz4ZJZSKJZGEJNUn7IJw6eiTUUKpWBJJSFI9hmr/h16YZW2eBJak7rgYuAEWno4d\nSB0cAUjSWIfV/g+92Hg4NUgiCUmqXtg4Uvs/9OIsa/QQkCR1wwC4LrXa/yJHAJJ0mLAWwuMjtf9D\nCzQZTV2SSEKSqhUuGlP7P7RAY6HUKIkkJKlaYeeY2v+hBRoLpUZJJCFJ1QnrSmr/hxaaZc2eBJak\ndku69r/IEYAkLQsLEA6U1P4PLdhIODVLIglJqsaKtf9DC86ydg8BSVJ7DUi89r/IEYAkASXz/pcu\nXHc0TUgiCUmaX7gIwp5JF641lIYkkYQkzW/V2v+hhWsNpSFJJCFJ85mo9n/oDbO04klgSWqft9GT\n2v8iRwCSem7Fef9L31RbOA1KIglJml3YNGHt/9CbZmnJQ0CS1C4DelT7X+QIQFKPTVX7P/TGOqJp\nWhJJSNJswpZV5v0vfWPloUSQRBKSNJuwC8Jls7yx8lAiSCIJSZpeWD9l7f/Qm2dp0ZPAktQOvZn3\nv4wjAEk9NFPt/9AKKg0nkiSSkKTpzFT7P7SCWd4U4xDQkcA+YGeEtiWpjQZEqP1f02RjuT8G7gFO\niNC2JLVMWAu8FdjUdMtNjwBOAd4A/D2w0HDbktRGFwJ3wsLBphtuegfwMeB9QO8ucZakEgNgR4yG\nmzwE9FvAD8iO/y+usNy2wv29+U2SEhTWAecBvzvlGxdZuR9tnSuBR4CHgUeBp4HrR5axCkhSj4T3\nQvhEFSuqYB2NOZ/xVUCdSkKSZhcWIByYo/Z/aGWzvCnmlcB29pL67FXAscDXYgfSFu4UJPVEuBrC\nFVWtrKL1RJVEEpK0spnn/S9dYUXriSqJJCRpZeGiGef9L11hheuKJokkJGllYSeES6tcYYXriiaJ\nJCSpXFg3x7z/pSud5U3+HoAkNav38/6XcQQgKWHLtf+bq15xxeuLIokkJGm8sDGf97/qyTA9BCRJ\nLTcgm/ffL7tj+KFISlTltf9DK69hnY1LIglJOlzltf9DK69pvY1KIglJOlzltf9DK69pvY1KIglJ\nGlZL7f9QA7O8yZPAklS/t2Ht/6ocAUhKTFiAcBeE8+tspMZ1NyaJJCTpkLApr/2v84iLh4AkqYUG\nZLX/L8QOpO0cAUhKSK21/0MN1bz+RiSRhCRlwpYaa/+HGmqgjdolkYQkZcKuGmv/hxpqoI3aJZGE\nJEFYX3Pt/1Bjs7zJk8CSVA/n/Z+SIwBJCViu/X9tUw021E6tkkhCUt+FTRAeqrn2f6jBWd7kISBJ\nqt4A2GHt/3QcAUjquMZq/4cabbCt2iSRhKQ+a6z2f6jRhturRRJJSOqzxmr/hxptuL1aJJGEpL5q\ntPZ/qOFZ3uRJYEmqjrX/c3AEIKmjGq/9H2o8QpuVSyIJSX3UyLz/pY3P8iYPAUlSNQY47/9cHAFI\n6qDl2v/TYgUQqd1KJZGEpL4JWyDcFDOAiG1XJokkJPVN2AXhkpgBRGx7YkcDtwP7gXuAvxp5vRNJ\nSNIh0Wr/h4KI2PZUjs3/rgG+Drym8FpnkpCkTNgK4R9iBxG5/akdC3wDeEXhuc4lIanPlmv/N8cO\nJHL7EzuC7BDQk8BVI691JglJKtT+L8QOJHL7U/spskNAi4XnOpeEpD4LV0P4YOwomLHvXFN1FFP4\nMfAFYBOwt/D8tsL9vSOvSVJLhLXAW4FXR2h8keEvz51wEvDi/P4xwC3ABYXXHQFI6ohwUeTa/6JO\njADWA9eRnQc4Avgk0JYPUJKmMSDrz1QRRwCSOiCsa0Htf5GTwUlSQ5z3vwaOACS1XFiAcCDSvP9l\nkug7k0hCUsrCxojz/pfxEJAkNWCA8/7XwhGApBZbnvd/Q+xIRjTWdx4NrK1p3e4AJLVY2AJhT+wo\nxqit7zwCeDPwaeC7wKPA9/P7nwHeBFQ1D4Y7AEktFnZBuDR2FGPU1nfeAvwlcA7D3/zXAucCV+bL\nVMEdgKSWasW8/2Vq6zsnOdxT1SEhdwCSWipshbA9dhQlkug7k0hCUmqW5/1vU+1/Ue19583Ab448\n9/GK23AHIKmFluf9b2vpfO1958Nkx/r/ovDcvorbcAcgqYXCNRCuiB3FCmrvO/eRzR56LbCTbFpn\ndwCSEtfa2v+iRnYASwbAAbJS0Cq5A5DUMmELhJtjR7GK2vvOd4083ghUfUbcHYCklgm7IFwWO4pV\nzNR3TnIB19UjjYy+549mabjEuPVLUiRhPXAPcErLp36eqe+c5BfBvllY+YeAKwoN+Y1dUsqc97+g\n6pO+o9yhSGqJ1tf+FzkdtCRVaCNwDPC12IHUxR2AJI03wHn/eQp4Mr89V7j/JPCTitvyEJCkFuhE\n7X9REn1nEklI6rpO1P4X1dZ3TlJa5O8BSEpIa+f9L1Nb3/lV4H3A6WNeOwO4HH8PQFIywroWz/tf\nptbfA3gHsJvs18DuB76T399NdqLkqIracgcgKbKwFcInYkcxpUb6ziOBk/PbkTWs3x2ApIg6Vftf\nlETfmUQSkrqq9fP+l/FCMEma0wBr/6NxBCApks7V/hc10nf+HnAu2Ynh84AtFa/fHYCkSDpX+180\nU985yWygRT8LnA+8BzgBeBD4zCwNS1LLDIAdkWNoteKFEUcBb6l4/Y4AJEXQydr/okZGAM+S7SE/\nD9wHnDJLo5LUMs77P6EzgA+T/VLYqytetyMASQ0LCxAOdLD2vyiJvjOJJCR1SdjY0dr/Iq8DkKQZ\nDLD2vxGnAnuAu4G7yKqJihwBSGpQp2v/izrRd64DXpnfP57sRPLLC693IglJqeh07X9RJ/vOzwEX\nFB53MglJXdW5ef/LdK7v3AD8B9lIYEnnkpDUVWF9x2v/izrVdx4P3AG8ceT5TiUhqcvCVgjbY0dR\nkUYuBKvCi4B/Af6R7BDQqG2F+3vzmyRVKCyQVf/8QeRAZrWY3zplAbge+FjJ644AJDUgbILwUMdr\n/4s60Xe+BngB2A/sy2+vL7zeiSQkdV24BsIVsaOoUBJ9ZxJJSGqzZGr/i5LoO5NIQlKbJVP7X5RE\n35lEEpLaLJna/6Ik+s4kkpDUVknV/hc5GZwkrcJ5/1vMEYCkmoQFCHd1fN7/Mkn0nUkkIamNwqYE\n5v0v4yEgSVrBALjeef/byxGApBokWftflETfmUQSktomydr/oiT6ziSSkNQ2Sdb+FyXRdyaRhKQ2\nSbb2v8iTwJI0hrX/HeEIQFKFkq79L0qi70wiCUltkXTtf5GHgCRpxAC4ztr/bnAEIKkiydf+FyXR\ndyaRhKQ2SL72vyiJvjOJJCS1QfK1/0VJ9J1JJCEptl7U/hd5EliSctb+d5AjAElzWq793xw7kgYl\n0XcmkYSkmJZr/xdiR9IgDwFJElnt/w5Y8Atlx/gPJmkOy7X/p8WOpGFJ9J1JJCEpll7V/hcl0Xcm\nkYSkWMIuCJfEjiKCJPrOJJKQFEPvav+LPAksqdes/e84RwCSZtCbef/LJNF3JpGEpKb1Zt7/Mh4C\nktRbA5z3v/McAUiaUq/m/S+TRN+ZRBKSmtTb2v+iJPrOJJKQ1KSwC8JlsaOILIm+M4kkJDWl17X/\nRZ4EltQ71v53yHbgMeBAyeuOACRNqPe1/0Wd6Ds3A2fhDkDS3Hpf+1/UiUNAtwJPNNympDQNsPa/\nczbgCEDSXKz9HzFT37mm6igqsK1wf29+k6SiC4E7YeFg7EAiWcxvnbMBRwCS5hJ2Qbg0dhQt0pm+\ncwPuACTNbLn2//jYkbRIJ/rOTwHfA54BHgHePvJ6J5KQFFPYCmF77ChaJom+M4kkJNXF2v8SSfSd\nSSQhqS7W/pfoxHUAkjSPAdb+J8sRgKQS1v6vIIm+M4kkJNXBef9XkETfmUQSkupg7f8Kkug7k0hC\nUtWc938VngSWlCzn/e8BRwCSRizX/m+OHUmLJdF3JpGEpCot1/4vxI6kxTwEJClJA2AHLPgFMXH+\nA0sqWK79Py12JC2XRN+ZRBKSqhK2QLgpdhQdkETfmUQSkqoSdkG4JHYUHZBE35lEEpKqENZZ+z8x\nTwJLSsrFwGet/e8PRwCSyGv/Dzjv/8SS6DuTSELSvMJGa/+n4iEgSckYkM3775fCHvEfW+o95/2f\nQRJ9ZxJJSJpHuMh5/6eWRN+ZRBKS5hF2Ou//1JLoO5NIQtKsrP2fkSeBJXWe8/73mCMAqbes/Z9D\nEn1nEklImkXYCOEhCB6ZmJ6HgCR12oBs3v8XIsehSBwBSL1k7f+ckug7k0hC0rSs/Z9TEn1nEklI\nmpa1/3NKou9MIglJ07D2vwKeBJbUSdb+C3AEIPWMtf8VSaLvTCIJSZMKm/J5/z0aMZ8k+s4kkpA0\nqfDPEP4kdhQJSKLvTCIJSZMIZ0J4DMLxsSNJQCf6ztcD9wLfAS4f83onkpBUBb/9V6j1feeRwAPA\nBuBFwH7g5SPLtD6JjlmMHUBiFmMHkI5wJtz4I7/9V6b1ZaBnk+0ADgLPAv8E/E6D7ffRYuwAErMY\nO4CEfBCu/SYsPBU7kD5rcgfw88Ajhcf/mT8nqVfCmcAi7P5G7Ej6bk2DbU04RAk76w2jT959Ovzd\nxthRpMPPsyKnA38DTx8bO5C+W2iwrXOBbWQnggHeD7wAfLSwzAPASxuMSZJS8CDwsthBrGQNWZAb\ngKMYfxJYkpSo3wDuI/um//7IsUiSJElq2luAu4HngVetsNxqF5ApcyKwG7gfuBF4cclyB4E7gX3A\nvzcSWbdMsr39bf76t4GzGoqri1b7LBeBH5Nti/uAP28ssu7ZDjwGHFhhmU5tl79EVhGwh/IdwCQX\nkClzFbB0ZeXlwEdKlnuYbGehw02yvb0B+GJ+/xzg600F1zGTfJaLwOcbjaq7NpN16mU7gKm3y9gz\n8N1L9m11JV5ANrnfBq7L718HvHGFZZusAOuSSba34ud8O9lI6+SG4uuSSf/vui1O5lbgiRVen3q7\njL0DmIQXkE3uZLIhIvnfsn/8AHwFuAN4ZwNxdckk29u4ZU6pOa4umuSzDMCvkB2y+CLwimZCS9LU\n22UTF4LtBtaNef4DwCQXfTk/0LCyz/PPRh4Hyj+784BHgZfk67uX7NuFJt/eRr+1up0ebpLP5FvA\nqcB/k1UJfo7ssLBmM9V22cQO4NfnfP93yTaQJaeS7dn6aqXP8zGyncP3gfXAD0qWezT/+zhwA9lQ\n3R1AZpLtbXSZU/LnNGySz/LJwv0vAdeSnZ/6Ub2hJamz2+UeoOwSey8gm9xVHKq0+FPGnwQ+Fjgh\nv38ccBvwuvpD64xJtrfiybZz8SRwmUk+y5M59K31bLLzBSq3gclOAndiu3wT2TGr/yH71vql/Pmf\nA75QWM4LyCZzItmx/dEy0OLn+Ytk/xH3A3fh5znOuO3tXfltyTX5699m5RLmvlvts/xDsu1wP/Cv\nZB2XxvsU8D3g/8j6zXfgdilJkiRJkiRJkiRJkiRJkiSp+54a89xa4Ku0Z9KxDxTurwVuoRvzcikx\nbnRKzbi5Ty4GdpW8No3RqVNmnUqlePHdM2TTcKw0c6skaQJPjnluN8MTjF1O9oM4+4Er8+f2cmg6\nkpPIfjMBYEA2X/1N+TKXFR7vIZtaYzvZ9LvfIpuSd+l9nyW7uv1+4KP58x8BniP78ZNP5s+dA3x6\nmiQlSYcb3QEcyaHJ7yCbmuA24Oj88dJ0GcUfJRrdATxSWG708ZVkI4yldd1HtlMYkM2DcwLZYZ6D\nHJoKeTTGtXRk0i6lpYnZQKWYTmK4w72A7Bv7/+aP/2uCdewuLBdGHr8OuBDYmj9eC/xCvtxNhbbv\nAU5jfEf/DNnh2KMLcUm1cwegPhg9+TvuZPBzHDondvTIa0+v8vjNZL/DWnQOWce+5HlW/v+2gL8p\noIZ5Elip+yFwfOHxbuDtwDH545/O/x4ENuX3t6ywvtGdx5eB9xQen1WyXNGzDO8M1pLtIJ4Zv7hU\nD3cASskaDu9EnyebbviM/PGXyU7i3kF2Iva9+fN/Dbyb7ETuz3Do2/joL6uNPv4w2Q+e35m386GS\n5Yo+ni+/dBL4LODfVktOklTulxn/IxgDDv1QThtdSfbbGJKkGfw+cDfwa2NeO4rsYqu2XAhWtHQh\nWBtjkyRJkiRJkiRJkiRJkiRJktQ+/w+e8cOjTU9yUAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1019bbad0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Rectified linear neuron\n", "%pylab inline\n", "import numpy\n", "import nengo\n", "\n", "n = nengo.neurons.RectifiedLinear()\n", "\n", "J = numpy.linspace(-1,1,100)\n", "\n", "plot(J, n.rates(J, gain=10, bias=-5))\n", "xlabel('J (current)')\n", "ylabel('$a$ (Hz)');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Leaky integrate-and-fire neuron\n", "\n", "$ a = {1 \\over {\\tau_{ref}-\\tau_{RC}ln(1-{1 \\over J})}}$" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEPCAYAAACzwehFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGIVJREFUeJzt3XuUXFWVx/FvJZ00BGJCeKRDeHQAeQliRElYiGmHGGVw\nxKDiOIAgOD5wxECUJOhANBoZ1KUulyioUUBhUECEGUUCEs04wIgmPMSQBwmGEAIorkEdBXTPH+c0\nXV2p7q7qrlvn3rt/n7Vqcet29a3fXiT75L7OBREREREREREREREREREREREREREREWmxvYE7gF8B\nDwDnxPWTgOXAWuBWYGLV7ywC1gFrgDltSyoiIsl0AS+LyzsDDwGHAJcA58f1C4CL4/KhwGpgDNAN\nrAdGtSmriIjkxI3AbMJew+S4riu+h7BXsaDq87cAM9uWTkREXpDqX+rdwHTgbsJAsS2u30bfwLEn\n8GjV7zwKTG1TPhERqZJisNgZuB74IPBMzc8svgYy2M9ERCQjHW3+vjGEgeIqwmEoCHsTXcDjwBTg\nibh+C+GkeK+94rpa64H9swgrIlJiG4ADUoeopwJcCXyuZv0l9J2bWMj2J7jHAtMIhVXqbLfsexuL\nUwfI0OLUATK2OHWAjC1OHSBji1MHyFhTvbOdexbHAKcC9wGr4rpFhMHhO8BZwCbg5PizB+P6B4Hn\ngbMp/8AgItIGNqP+v70H1s7B4r8Y+BzJ7AHWL40vEREZMRtL6KknD/XJWrpvIf9WpA6QoRWpA2Rs\nReoAGVuROkDGVqQO0Fo2DVgJHES4GtUdHZoSERmUzQV7AuxcsN7jT+56p7uCRUQaY2PBPg+2Eeyo\n2h8miZSQu4JFRIZm+4LdDfZ9sEn1PtD2SIm5K1hEZHB2Atg2sPlVh522+1BbI+WAu4JFROqzDrCl\nYJvBjhnqw22JlCPuChYR2Z5NBvsx2HKwPRr5hcwj5Yy7gkVE+rNj4t7Ex8FGN/pLmUbKIXcFi4gE\nVgE7J56fOKHZX84kUo65K1hEBGwnsG+DrQLbbzgbaObDuoNbRKRw7ADgTsK8ecdA5eHEgQpBexYi\n4oj9fTzsdPYgl8U2tKGWRSoIdwWLiEc2CuyjYFsauCy2oQ22YBuF4q5gEfHGxoPdAHYn2J6t2miL\ntlMY7goWEU/sALBfgV0O1tnKDbdwW4XgrmAR8cLmxNli3zfC8xN1N97i7eWeu4JFpOysAnYe2Faw\nV2f1JRltN7fcFSwiZWY7gH0TbHWYOTa7L8pw27nkrmARKSvriiexrws33WX7ZRlvP3fcFSwiZWTT\nwR4BuyhcJpv9F7bhO3LFXcEiUjZ2EtiTYG9t55e28btywV3BIlIWVgFbFGeMPbLdX97m70vOXcEi\nUgbWCXYF2D1gU1MESPCdSbkrWESKznYDWxlPZI9LFSLR9ybjrmARKTI7CGw92KfadCJ7wCAJvzsJ\ndwWLSFFZT5wx9szUSXDYO90VLCJFZKfFgeK41Ekid73TXcEiUiRWAbsQbCPYoanTVHHXO90VLCJF\nYWPj1B0/D3dn54q73umuYBEpApsAthzspjZM3TEc7nqnu4JFJO9sKti9YJeCjU6dZgDueqe7gkUk\nz+wlcY6nBRk8g6KV3PVOdwWLSF7Zq+MVT/+UOkkD3PVOdwWLSB7Zm+NT7fJyaexQ3PVOdwWLSN7Y\n2WBbwF6WOkkT3PVOdwWLSF5YBezjYGvBpqVO0yR3vdNdwSKSBzYa7LI4a+weqdMMg7ve6a5gEUnN\ndgC7Pt5HMT51mmFy1zvdFSwiKdl4sNvBvhOeSVFY7nqnu4JFJBXbPU7d8ZUc32zXKHe9013BIpKC\n7Q32a7BP5Pxmu0a5653uChaRdrMXg20Cm586SQu5653uChaRdrKXxnso3pU6SYu5653uChaRdrEZ\ncfqOk1MnyYC73umuYBFpB+uJ03eckDpJRtz1TncFi0jW7Pg4ULwmdZIMueud7goWkSzZ3DhQHJ06\nScZy3TuXAduA+6vWLQYeBVbF1/FVP1sErAPWAHMG2GauCxaRIrG3gz0O9vLUSdog173zWGA6/QeL\ni4Dz6nz2UGA1MAboBtYDo+p8LtcFi0hR2Blgj4EdljpJmzTVO+s13yytBJ6us77eDS4nAtcAzwGb\nCIPFUZklExHH7N3AEuDvoPJA6jR51O7BYiAfAO4Fvg5MjOv2JBye6vUoMLXNuUSk9Oz9wEeA10Bl\nTeo0edWROgDwZeDjcXkJ8FngrAE+O9Bu0+Kq5RXxJSIyBPsgMA/ogcrGxGGy1hNfhdFN/3MWA/1s\nYXz1ugWYUed3dM5CRIbBzgV7GGzf1EkSyX3v7Kb/YDGlavlc4Oq43HuCeywwDdhA/XMbuS9YRPLG\nzgPbALZP6iQJ5bp3XgM8BjwLbAbOBK4E7iOcs7gRmFz1+QsIJ7bXAK8bYJu5LlhE8sbOA1sfZpF1\nzV3vdFewiAyXnRv3KLwPFOCwd7orWESGw86J5yg8H3qq5q53uitYRJpl7wfb6Phkdj3ueqe7gkWk\nGfZusEfApqVOkjPueqe7gkWkUXY62GawA1InySF3vdNdwSLSCHt7fMLdwamT5JS73umuYBEZip0E\nttXRpIDD4a53uitYRAZjx8dHoU5PnSTn3PVOdwWLyEBeeBRq2R9c1Arueqe7gkWkHpsZB4qe1EkK\nwl3vdFewiNSyI+Khp+OH/qxE7nqnu4JFpJodGJ9wd3LqJAXjrne6K1hEetk+8Ya7gZ6BIwNz1zvd\nFSwiALY72Bqw+amTFJS73umuYBGxF4HdA/bJ1EkKzF3vdFewiG+2A9iPwb4CVu+BaNIYd73TXcEi\nftlosBvArg3LMgLueqe7gkV8sgrY5WDLwTpTpykBd73TXcEiPtmSeJ5ifOokJeGud7orWMQf+xew\ntWB7pE5SIu56p7uCRXyxt8SpxvXwotZy1zvdFSzih706zvekGWRbz13vdFewiA92WJzvaXbqJCXl\nrne6K1ik/Gwq2G/ATkmdpMTc9U53BYuUm70I7F6whamTlJy73umuYJHysjFgt4JdqruzM+eud7or\nWKScrAL2DbCbwTpSp3HAXe90V7BIOdm/xpvudkqdxAl3vdNdwSLlY6eCbQLrSp3EEXe9013BIuVi\ns+K9FC9JncQZd73TXcEi5WEH6l6KZNz1TncFi5SD7Qq2DuxdqZM45a53uitYpPhsLNgKsEtSJ3HM\nXe90V7BIsVkFbBnY98BGpU7jmLve6a5gkWKzD4P9UpfIJueud7orWKS47I1xuvG9UicRf73TXcEi\nxWSHx0tkZ6ROIoDD3umuYJHisd3BNoK9PXUSeYG73umuYJFisbFgPwX7ZOok0k/mvXMHoDPrL2mC\nBguR3LIK2GVg39eVT7nT8t45CjgJ+C6wBdgKPB6XrwPmAimnEtZgIZJbdjbYA+EZFZIzLe+dPwU+\nCcyg/x5FJzATWBo/k4oGC5FcsllxKo/9UyeRulreOxs55JTysJQGC5HcsX3AtmrOp1xz1zvdFSyS\nbzYu3nQ3P3USGVRmvfPHwAk16y7P6suaoMFCJDesAvYtsG/rsai5l1nv3Eg4N3FR1bpVWX1ZEzRY\niOSGzQNbFfYuJOcy652rgA7gUuBmYCIaLETkBTYL7HGw7tRJpCGZDha9zgDuJ1w+m5oGC5HkbC+w\nx8BemzqJNCyz3vmemvdHAsua3MYyYBthoOk1CVgOrAVuJeyx9FoErAPWAHMG2KYGC5GkrBPsLrCF\nqZNIU5rqnY2cgPpizcZrf+cDTXzfscAfgCuBw+O6S4Cn4n8XALsAC4FDgauBVwJTgduAA4G/1Wyz\nXiYRaRu7FOgC3gwV/eOtOJrqnR0NfOYXVRv9GHBh1Rc0+wdjJdBds+6NwKy4fAWwgjBYnAhcAzwH\nbALWA0cBdzX5nSKSGTsNOA54pQYKqdaKE9rd9D8M9XTVcqXq/ReBU6p+9jXgzXW2pz+gIknY4WBP\ngh2WOokMS1O9s5E9i3YyBi9goJ8trlpeEV8ikhmbAFwPzIPKA6nTSEN64qststizWEM43gkwJb6H\ncCiq+oTZLYT5qWppz0KkrawCdn08VyHF1fLe+Qfgmfh6vmr5GeB/h7G9bvoPFr0ntiEMDhfH5UOB\n1cBYYBqwgfonYzRYiLSVzQO7J1wFJQWW6955DfAY8CywGXgn4dLZ26h/6ewFhBPba4DXDbDNXBcs\nUi42Mz4adVrqJDJiLe+djVxapedZiJSe7Qr2CNiJqZNIS7S8d/4E+DDhHodaBxEOIel5FiKlZqPA\n/hPsM6mTSMtk8jyLMwl3WW8lHC5aF5eXE6b+GNvqL22CBguRzNmHwO4EG5M6ibRMpr1zNDA5vkZn\n+UVN0GAhkimbGZ94t2/qJNJS7nqnu4JF2sd2AdsE9qbUSaTl3PVOdwWLtIdVwG4A+0LqJJIJd73T\nXcEi7WFnx8ej6n6Kcsq0d74LmEk46X0M8JYsv6xBGixEWu6FeZ/qXQUp5ZDp3FB7EGaIPQcYT7ir\n+romtyEiuWbjgGuB+VBZmzqNFNM7qpbHAm9NFaSK9ixEWsouA7sqdQrJXKZ7Fs8B3wRuAh4C9mry\n90Uk12wuMBuYnjqJFN9BwBLC8yZemTgLaM9CpEVsaryfot7szlI+7nqnu4JFWs9Ggd0O9tHUSaRt\n3PVOdwWLtJ6dD7YSLC8zM0j23PVOdwWLtJZNj5fJajoPX9z1TncFi7SO7Qj2INipqZNI27nrne4K\nFmkd+wLYtWFqD3HGXe90V7BIa9gcsM1gk1InkSTc9U53BYuMnE0CexRsduokkoy73umuYJGRs6s1\nm6x77nqnu4JFRsbeCvZQnANK/HLXO90VLDJ81qW7tCVy1zvdFSwyPFYBuxlsSeokkgvueqe7gkWG\nx84AWw02NnUSyQV3vdNdwSLNs73iXdpHpE4iueGud7orWKQ5VgH7IdiFqZNIrrjrne4KFmmOnRWf\npT0mdRLJFXe9013BIo2zvePhp8NTJ5Hccdc73RUs0hirgP1Ah59kAO56p7uCRRpjp4Hdq8NPMgB3\nvdNdwSJDs8nx5rsjUyeR3HLXO90VLDI0+y7YxalTSK65653uChYZnM2Ncz/tmDqJ5Jq73umuYJGB\n2cQ49fixqZNI7rnrne4KFhmYfQXsstQppBDc9U53BYvUZ8fGvYqJqZNIIbjrne4KFtmedYL9Guyk\n1EmkMNz1TncFi2zPFoN9L3UKKRR3vdNdwSL92UFgT4WZZUUa5q53uitYpI9VwG4Hm5c6iRSOu97p\nrmCRPnYq2CqwjtRJpHDc9U53BYsENglsK9hRqZNIIbnrne4KFgnsMrAvpU4hheWud7orWCTsTdhW\n3VMhI+Cud7orWLyz0WA/B3tH6iRSaO56p7uCxTt7L9jKcCWUyLC5653uChbPbHewJ8BemjqJFJ67\n3umuYPHMvgr2+dQppBQK2zs3AfcBq4D/iesmAcuBtcCtQL2TeYUtWKQ59op4UntC6iRSCoXtnRsJ\ng0O1S4Dz4/ICoN6TvwpbsEjjrAL232BnpU4ipVHY3rkR2LVm3Rpgclzuiu9rFbZgkcbZqfEKqFGp\nk0hpFLZ3Pkw4BHUP8M9x3dNVP6/UvO9V2IJFGmPjwbaAHZ06iZRKU70zT/PJHANsBXYnnKeo3Ysw\nBi5ucdXyivgSKYsLgNuhcmfqIFJoPfFVKhcB8wkDRldcNwUdhhJ3bBrYb8Gmpk4ipdNU78zL8c9x\nwPi4vBMwB7gfuAk4Pa4/Hbix/dFEkvoU8AWobEkdRCQPpgGr4+sBYFFcPwm4DV06Ky7Z0WCbwXZK\nnURKyV3vdFeweGAVsLs0/5NkyF3vdFeweGD/CPYLXSorGXLXO90VLGVnnWAbwWalTiKl5q53uitY\nys7mgd2cOoWUnrve6a5gKTObALYN7LDUSaT03PVOdwVLmdkSsG+kTiEuuOud7gqWsrIp8Qa8fVIn\nERfc9U53BUtZ2ZfBPp06hbjhrne6K1jKyPYDewqsduZlkay4653uCpYysmVgi1OnEFfc9U53BUvZ\n2IvBngSrN52NSFbc9U53BUvZ2FVgH02dQtxx1zvdFSxlYoeAPQH2otRJxB13vdNdwVImdg3YwtQp\nxCV3vdNdwVIWdnDcq9g5dRJxyV3vdFewlIV9HezC1CnELXe9013BUgY2Fex3uq9CEirkY1VFvDkX\nuAIqv00dRMQL7VlIwdikuFexd+ok4pr2LERy7mzg+1DZnDqIiCfas5ACsR3j8yoOSZ1E3HPXO90V\nLEVm7wD7YeoUIjjsne4KliKzn4G9KXUKERz2TncFS1HZ4WBbwDpSJxFBJ7hFcus9wNeg8nzqICIe\nac9CCsB20uWykjPasxDJobcBP9PlsiLpaM9CCsDuBntD6hQiVdz1TncFS9HYgfHE9ujUSUSq6DCU\nSM4cDKyCyl9TBxEZLg0WItnbH3g4dQiRkdBgIZK9/dBgIQWnwUIkexospPA0WIhkT4OFSA7oaijJ\nMRsF9n9g41InEamhq6FEcmQK8Huo/Cl1EJGR0GAhki0dgpJS0GAhki0NFlIKGixEsqV7LKQUNFiI\nZGs/YEPqECIjpcFCJFs6DCWSE7p0VnLMHgfbM3UKkTrc9U53BUtR2E7xHgvtwUse6T4LkZyYBmyE\nyt9SBxEZKQ0WItnRyW0pDQ0WItnRZbNSGhosRLKjK6GkNIowWLweWAOsAxYkziLSDA0WIm0yGlgP\ndANjgNXAITWfKfvVUD2pA2SoJ3WAbP3gEbCXpE6RoZ7UATLWkzpAxkp1NdRRhMFiE/Ac8O/AiSkD\nJdCTOkCGelIHyI6Ngjv3BDamTpKhntQBMtaTOkCe5H2wmApsrnr/aFwnkndT4Lk/a2pyKYuO1AGG\nkLNDTPZp4OD2fuf7DoQvH9ne72yXMtfGBPjT06lDiLRKJXWAIcwEFhNOcgMsAv4G/FvVZ9YTLlEU\nEZHGbQAOSB2iVToIBXUDY6l/gltERITjgYcIexCLEmcREREREZEy+zTwa+Be4AZgQto4LVHmmxH3\nBu4AfgU8AJyTNk5mRgOrgJtTB8nAROA6wt+7BwnnF8tiEeHP5v3A1UBn2jgjtgzYRqin1yRgObAW\nuJXw/9OF19J3GfDF8VVkjdyMWGRdwMvi8s6Ew4xlqq/XecC3gZtSB8nAFcCZcbmDcvwDDcLfuYfp\nGyCuBU5PlqY1jgWm03+wuAQ4Py4voPg9c1jmAt9KHWKEjgZuqXq/ML7K6kbguNQhWmwv4DbgNZRv\nz2IC5Z3GZBLhHy+7EAbBm4HZSRO1Rjf9B4s1wOS43BXfDyrvN+UNx5nAD1KHGCFPNyN2E/7Vc3fi\nHK32OeDDhEu9y2Ya8CTwDeCXwFeBcUkTtc7vgM8CvwEeA35PGPTLZjLh0BTxv5MH+SxQrMFiOWFk\nrH39Q9VnPgI8SzjOWGQ5uxkxMzsTjnt/EPhD4iyt9AbgCcL5irzfyzQcHcDLgUvjf/9IefZ89wfm\nEf4Rsyfhz+gpKQO1geGn5wBwBvAzYIfEOVphJv0PQy2ifCe5xwA/IvzFLJulhD3DjcBWQjO9Mmmi\n1uqi/5xXrwL+I1GWVnsb8LWq96cBX0qUpZW62f4wVFdcnkIDh6HK4vWEqxd2Sx2kRcp+M2KF0Dw/\nlzpIG8yifOcsAH4KHBiXF9N/VoUiO4Jwhd6OhD+nVwDvT5qoNbrZ/gR37z9AF+LoBPc64BHCbv8q\nwu5x0ZX5ZsRXEY7lr6bv/9nrB/2N4ppFOa+GOgL4OeW6XL3X+fRdOnsFYS+4yK4hnH95lrDH+07C\nifzbcHjprIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgMqt40I53AT8jPVB0XVC13Em6IK9JUPVIC+gMn\n3tWbE+cUwvQVI50vp2OI942qvinzL8BK4E3D3JaIiAzDM3XWLadvKgsI0yLcR7jjfGlctwI4Mi7v\nRt9cSWcQ7ti+PX7m9Kr3dxBmZ11GmGX3l8Abq37vBuCHhLtqe6fPuBh4nnCX+1Vx3Qzgu80UKSIi\nI1M7WIwmTP7X63j6T1DZOy3CHYQZV2H7wWJz1edq3y+lbxbTiYQpXcbFz20AxhMONW2ib1r62oyd\nwJahChNppeHuFouU1W70b87HEfYE/hzf/76BbSyv+pzVvJ9DmFb/Q/F9J7BP/NztVd/9ILAv9QeF\nvxAOIe9QlUskUxosRLZXe2K73onu5+k751c7Lf4fh3h/EmHyy2ozCINAr78y+N/PCs6eQSBp6QS3\nSH9PER5402s5YZbOHeP7XeJ/NwGviMtvGWR7tQPNj4Bzqt5PH+Bz1Z6j/8DRSRhM/lL/4yKtp8FC\nPOtg+4b7V8LzDA6K739EOEF9D+Ek8/y4/jPA+wgnqXel71/5tU8dq32/hDDl9X3xez42wOeqXR4/\n33uCezpw51DFiYhIaxwB3FVn/Rnk+8mES4G5qUOIiHjwXsIDbmbX+dlYwo1vebkpr1rvTXl5zCYi\nIiIiIiIiIiIiIiIiIiIiIiIiIiJSdP8PKITfFnN4XLoAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1040585d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#assume this has been run\n", "#%pylab inline \n", "\n", "# Leaky integrate and fire\n", "import numpy\n", "import nengo\n", "\n", "n = nengo.neurons.LIFRate(tau_rc=0.02, tau_ref=0.002) #n is a Nengo LIF neuron, these are defaults\n", "\n", "J = numpy.linspace(-1,10,100)\n", "\n", "plot(J, n.rates(J, gain=1, bias=-3)) \n", "xlabel('J (current)')\n", "ylabel('$a$ (Hz)');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Response functions\n", "- These are called \"response functions\"\n", " - How much neural firing changes with change in current\n", " - Similar for many classes of cells (e.g. pyramidal cells - most of cortex)\n", " - This is the $G_i$ function in the NEF: it can be pretty much anything\n", " \n", "## Tuning Curves\n", "- Neurons seem to be sensitive to particular values of $x$\n", " - How are neurons 'tuned' to a representation? or...\n", " \n", "- What's the mapping between $x$ and $a$?\n", " - Recall 'place cells', and 'edge detectors'\n", "\n", "- Sometimes they are fairly straight forward:\n", "\n", "<img src=files/lecture2/tuning_curve_auditory.gif>\n", "\n", "- But not often:\n", "\n", "<img src=files/lecture2/tuning_curve.jpg>\n", "\n", "<img src=files/lecture2/orientation_tuning.png>\n", "\n", "- Is there a general form?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Tuning curves (cont.)\n", "- The NEF suggests that there is...\n", " - Something generic and simple\n", " - That covers all the above cases (and more)\n", "- Let's start with the simpler case:\n", "\n", "<img src=files/lecture2/tuning_curve_auditory.gif>\n", "\n", "- Note that the experimenters are graphing $a$, as a function of $x$\n", " - $x$ is much easier to measure than $J$\n", " - So, there are two mappings of interest:\n", " 1. $x$->$J$\n", " 2. $J$->$a$ (response function)\n", " - Together these give the tuning curve\n", " \n", "- $x$ is the volume of the sound in this case\n", "\n", "- Any ideas?" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8lGX5x/HPw+a+4YaABu4CFmSAlQmTK6Zii+WeuVRa\napkp8KuY8vez0sxsM0utNMUsyzQLl3pQs1BT1FxQIElBJMu11LK8fn9c9/HMOcxZOGdm7mfu+b5f\nr3mdOc9s1/3Aua957hVEREREREREREREREREREREREREREQKYSCwALgu/F4GloVjC4BpFc+dCSwC\nFgJ7Ny5EERFphFOBy4Frw++zw7HOxgD3AoOBUcBiYEAD4hMREepf4Y4E9gMuArJwLKu4X2k6MAd4\nFViKJ4RJdY5PRESCeieE84BPA69VHDPgJOA+4GJgw3B8ON6U1GYZMKLO8YmISFDPhLA/8Fe8n6Dy\niuACYDQwHlgBnNvNe1jdohMRkQ4G1fG93wYciDcZrQmsD1wKHFXxnIto72xeDmxZ8djIcKyzxcA2\ntQ5WRCRxS4BtYwcBMIX2in+LiuOfBK4I99s6lYfgVxBLqN7XoKuGduXYARRIOXYABVKOHUCBlGMH\nUCA91p31vEKolNEezNnAm8LvjwEfCccfAq4KP/8DnIgqfxGRhmlUQpgXbgBHdvO8s8JNREQaTOP8\nm9u82AEUyLzYARTIvNgBFMi82AFIfakZSURk9fVYd+oKQUREACUEEREJlBBERARQQhARkUAJQURE\nACUEEREJlBBERARQQhARkUAJQUREACUEEZEWYL2q6xu1uJ2IiDSMbQpMrrhN7M2rqu03UHRGc8Yt\nIlIHNhDYGd+U7K3htglwJ3BHuN0F2VP0UHc2Y8WqhCAiLczWwb/17wa8I9xfDvw+3P4ALITstc4v\nRAlBRKSZ2Xp45T8l3N4I3Af8Ltx+D9nfevNGFKDuHAgsoH0LzaHATcCjwI3AhhXPnQksAhYCe3fx\nflr+WkQSZmuD7QX2RbD5YP8Ay8HKYCV/vG9vXMso++pU4HLg2vD72cDp4f4ZwJfC/bY9lQcDo4DF\nVB8FVYhCiYjUhg0Emwg2C+y3YC+C/Q7sC2BTwdas1QfV6H36bCRwM1Ci/QphIbB5uD8s/A5+dXBG\nxWvnArtWec/ohRIR6R8bDnYM2I/B/g72INh5YO8KTUR1+dCenlDvYafnAZ8G1q84tjmwMtxfSXty\nGA7Mr3jeMmBEneMTEWkAG4h3/u4P7AdshX9Zngt8CrJlEYN7XT0Twv7AX/H+g6ldPMfoPmt19Vi5\n4v48tG+qiBSOrQfsAxwITAOeBK4HPg7Mh+w/dQ5gKl3XvQ13FvAE8BiwAvgncBneRDQsPGcL2puM\nZoRbm7l4Ru1MTUYiUlC2GdjxYNeDvQB2A9iJYFvFjowC1Z1TaO9DOJv2voIZrNqpPAQYDSyh+hCp\nwhRKRARsBNjJYLeAPQd2JdgHwDaIHVknhak7p9A+ymgo3nZWbdjpLHx00UL8UquawhRKRFqVDQP7\nONitYM+A/RDsgBqOCKqHJOvOJAslIkVnG4AdDXYj2LNgl4HtD7ZG7Mh6Kcm6M8lCiUgR2SCwaaEZ\n6Hmwa8DeD7ZW7Mj6IMm6M8lCiUiR2I5gZ4OtCLOFTwDbOHZU/ZRk3ZlkoUQkNlsnTBa7PSSCL3li\nSEaSdWeShRKRWGxnsG+GGcPXgR3oTUXJSbLuTLJQItJINhjsfWGo6HKwzxdkrkA9JVl3JlkoEWkE\nGwo2E+wJsNtCB/Hg2FE1SJJ1Z5KFEpF6su3AvhWGi/4AbHzsiCJIsu5MslAiUg82EeynYE+DnQm2\nReyIIkqy7kyyUCJSK5bhG8ncDPY42Ck+gqjlJVl3JlkoEekvy8D2DMtJPBpmFbdK/0BvJFl3Jlko\nEekPm4rvMvYw2OGJDhvtryTrziQLJSJ9YZND09DikAgGxo6owJKsO5MslIisDtsO7OowfPR4NQ31\nSpJ1Z5KFEpHesE3DrOK/gc1o0kXmYkmy7kyyUCLSHRsM9okwfPTrnhhkNSVZdyZZKBHpiu0dOotv\nABsTO5omFrXuXBO4A98W8yHgi+F4GVgGLAi3aRWvmQkswndM27uL91VCEGkJNgLsKrAl+G5k1bbU\nld6LXneuHX4OAuYDuwGzgVOrPLdtT+XBwCh8K80BVZ4XvVAiUk82MDQP/S3MLlY/QW30WHfWe6zu\nS+HnEGAg8Gz4vVqmnw7MAV4FluIJYRKeSESkJdg44BK87tgNsoWRA2op1b6B1/r97wVWAjnwYDh+\nEnAfcDGwYTg2HG9KarMMGFHn+ESkEGwI2Gy8nrgIeKeSQePV+wrhNWA8sAFwAzAVuAD4Qnj8TOBc\n4NguXt/VJU654v68cBORpmQ7A5fhXwInQLashxdI70wNt0L6LHBap2OjgD+F+zPCrc1cYHKV91Ef\ngkgSbCDYaWEo6THqNK67qHXnJrQ3B60F3ArsAQyreM4ngSvC/bZO5SHAaGAJ1fsalBBEmp6NBJsX\nFqIbHTuaFhG17twZuAev5O8HPh2OXxp+vw+4Bti84jWz8M7khcA+XbyvEoJIU7P9wZ4Cm6W1hxoq\nybozyUKJpM+GgJ0H9hewt8eOpgUlWXcmWSiRtNkIsD+AXev7GksESdadSRZKJF02BezJ0ERU76Hu\n0rUk684kCyWSHsvC9pVP+XpEElmSdWeShRJJiw0GuxDsfrBRsaMRING6M8lCiaTDhoL9BuyXYOvF\njkZel2TdmWShRNJgW4M9AnauhpQWTpJ1Z5KFEml+NgFsOdiJsSORqpKsO5MslEhzsz3A/gr2ntiR\nSJeSrDuTLJRI87L3ga0E2z12JNKtJOvOJAsl0pzsiDDH4E2xI5EeJVl3JlkokeZjx4EtA9spdiTS\nK0nWnUkWSqS52IlhTaLtYkcivZZk3ZlkoUSahx0PtlTLVjedJOvOJAsl0hzsiNBMtG3sSGS1JVl3\nJlkokeKz94KtABsTOxLpkyTrziQLJVJstlcYWjo+diTSZ1HrzjWBO/Ad0x4CvhiODwVuAh4FbqR9\nm02AmcAifMe0rlZHVEIQaSibECadaVOb5ha97lw7/BwEzAd2A84GTg/HzwC+FO637ak8GBiFb6VZ\nbe306IUSaR02KixHoRnIza8wdefawF3AWPzbf9s+ysPC7+BXB2dUvGYusGuV9ypMoUTSZhuDLQQ7\nKXYkUhM91p313r1oAP6tfyWQAw/iyWBleHwl7clhOLCs4rXLgBF1jk9EqrIhwM+A6yD7RuxopDEG\n1fn9XwPGAxsANwClTo8b3Wetrh4rV9yfF24iUjtfB56n41W7NJep4VZInwVOw5uIhoVjW9DeZDQj\n3NrMBSZXeR81GYnUlZ0A9iDY+rEjkZqKWnduQvsIorWAW4E98E7ltm8dM1i1U3kIMBpYAmRV3lcJ\nQaRurBSGl24TOxKpuah1587APXglfz/w6XB8KHAz1YedzsJHFy0E9unifZUQROrCtgR7CmzP2JFI\nXSRZdyZZKJG4bDDY7WAzY0cidZNk3ZlkoUTisrPBfgVW75GHEk+SdWeShRKJx/YHexxsk9iRSF0l\nWXcmWSiROGyr0ImsZSnSl2TdmWShRBrPBoDl6jdoGUnWnUkWSqTx7JNgvwMbGDsSaYgk684kCyXS\nWDYG7G+ab9BSkqw7kyyUSOPYELC7wT4cOxJpqCTrziQLJdI49nmwX4JVWwlA0pVk3ZlkoUQaw8aB\nPQ22RexIpOGSrDuTLJRI/dmAMBv5I7EjkSiSrDuTLJRI/dlHw6gizUZuTUnWnUkWSqS+bHhoKhob\nOxKJJsm6M8lCidSX/QTszNhRSFRJ1p1JFkqkfmxvsMVga8aORKJKsu5MslAi9WGDwu5n02NHItFF\nrzu3BHLgQeAB4ORwvAwsAxaE27SK18wEFuGb5Oxd5T2jF0qkedjHwG7WnAOhAHXnMGB8uL8u8Aiw\nEzAbOLXK89u20RwMjMJ3T+s8IiJ6oUSagw0NK5nuHDsSKYQe6856Dz97Cq/gAf4BPAyMCL9X+8Yy\nHZgDvAosxRPCpPqGKJKszwE/g+xPsQOR5tDI8cijgAnA/PD7ScB9wMW076s8HG9KarOM9gQiIr1m\nOwKH40lBpFcalRDWBX4KnIJfKVwAjMabk1YA53bzWjURiay+s4CzIXs6diDSPAY14DMGA1cDPwKu\nCcf+WvH4RcB14f5yvCO6zchwrLNyxf154SYiANguwGTgiNiRSFRTw60wMuBS4LxOxysX1vokcEW4\n39apPAS/gljCqn0NumIQ6Zb9ykcXiXQQve7cDXgNr+Qrh5heCtyP9yFcA2xe8ZpZeGfyQmCfKu8Z\nvVAixWVvB1sKtkbsSCQ+gyEGEwyOJdG6M8lCifSfZWDzwI6JHYk0nsGaBhMNPmrwXYO7DV4yeMD8\nS3iPdWczTlYxmjNukTqzPYFvA2Mg+0/saKR+DNYAdgbeAuwSfu6AT+q9O9zuAe7L4KX2l3VfdzZj\nxaqEILIKy4DfA1+HbE7saKR2zAfmjMUr/bbbGLxp/W7grvDz/gxe7v6tuq87GzHKSETqbwqwMXBV\n7ECk78ynAmwHTMQn5U4E3gg8jlf8f8Sbf+6t+OZfM834TVtXCCKrsF/js5K/FzsS6T3zEZeTKm4T\ngefwyv/O8POeDF6ozcepyUgkcfYm4NfA1pC9Ejsaqc5gHby5ZxI+T2QysDZe8d+BV/53ZR3nadU4\nBCUEkcTZ5cD9kH05diTiQtPPDsCu4TYZbwr6E17534EngiVZ40ZO1iwhDMULUzm2+dY+BtVfSggi\nr7NReIfi1pA9HzmYlmWwEe2V/674VcAz+Nptd4Sf92Xwr2hB1qjuPB7Pas/iexu8DPy2v2/aD5qH\nIPI6+waYrgwayGCAwTiD4w0uMXjY4EWD3xqcZXCgwWax46yiJnXnA8BatC9jvSPw81q8cR8pIYgA\nYJuAPQu2Rc/Plb4yWM9gT4PPGcw1eM5gkcGlBicYjLfmGLHZY93Zm0K8QvvY1jXxJSV26EdQIlIb\nxwHXQLYidiApMdgKX3bn7cDb8ObyBfg8jwuAo+rY8RtVbxLCE3j72DXATXjT0dI6xiQiPbKBwEeB\n98WOpJkZDATG4Qmg7bYGcDvwO3yV5nsit/0X1lTgQHw10ljUZCSCHQB2R+womk1Y72d3g1kGvwrN\nP48YXGzwIYPtLd1BK0nWnUkWSmT12K/BPhg7iqIzWN9g39DZe5vBPwzuMviqwbsL2vlbL0nWnUkW\nSqT3bBuwp8HWjB1J0RhsbDA9VPh/DAlgnsGZBnuZ797YqrTaqUh67CvAa5CdHjuS2Aw2BXbHm7On\n4Hu3/wG4BZ8rdZfa/1+XZN2pKwRpYbZWuDrYOnYkMRhsYvBeg2+Gdf6fD30BpxtMDiuDSnXR684t\n8clsD+LzGU4Ox4fiI5YeBW4ENqx4zUx8Te+FwN5V3jN6oUTisaPBro8dRaMYbGRwkMH5BvdXJIBP\nh81gmmH8f1FErzuHAePD/XWBR4CdgLOBtsvdM4AvhftteyoPxi/9FuNrglSKXiiReOx3YAfGjqJe\nDNY1mGZwTtjx6wWDGwxmhCsAJYC+K1zdeQ2wJ/7tv20f5WHhd/CrgzMqnj8XXxekUuEKJdIYti3Y\nSrBkmkUM1jCYYvAFg9srOoFnG+xmcYe4p6YmM5VrZRQwAV/oaXNgZTi+kvbkMBxfBKrNMmBEg+IT\nKbojgSsgezV2IH0VVgF9I/7FcE98JvAjwG+AMnB7PTZ+kd5pVEJYF7gaOAV4sdNjRveZS1cEItgA\n4CjgPbEjWV1hKYi98ASwB77awc3Ad4FDM/9dCqARCWEwngwuw5uMwK8KhgFP4TsGta0LshzviG4z\nMhzrrFxxf164iaTsHfiXqXt7emJsBuvhw0D3xhPBxngCuAk4I/PtIKX+poZbYWT4/p/ndTp+Nu19\nBTNYtVN5CDAaWMKq42Z1xSAtyC4GOy12FNWE5aB3CctB3BKWgv6NwRkGb7ZVB4ZIHNHrzt2A1/BK\nfkG47YsPO72Z6sNOZ+GjixYC+1R5z+iFEmksW7toy1wbbG5wpMHlBn8NewJ8LYwQWid2fFJVknVn\nkoUS6Zod5msXRYwABoVRP/8XhoM+a/BT801itooZm/RaknVnkoUS6ZrdAHZowz8VtggrgF4VEsA9\nISG8QzOCm1KSdWeShRKpzjYDe86XrKjzJ8FAg7eGheDargKuMjjafPCHNLck684kCyVSnX0Y7Mq6\nvbsvDXGIwWUGT4flIb6oq4AkJVl3JlkokersRrCa7opmsIPBpwzysDTE9eZ7A6svIG1J1p1JFkpk\nVTYU7Hmwfo3aCR3CUwzONXjUYLnBdwz2N1i7VtFK4SVZdyZZKJFV2dFgP+vTK32nsIMNfmTw99An\nMDvMC0huTXzplSTrziQLJbIquw7s8F4/G0aEpp+5oSlobvh9ZD2jlKaRZN2ZZKFEOrL1wV4A26Db\nZ8GOBjMN7jB4JlwRHByWjxCplGTdmWShRDqyQ6tthGOQmW8Mc5bBQoNl5ruH7alRQdKDJOvOJAsl\n0pFdDfYheH1+wO7mu4Y9bvBIGBo6SesEyWpIsu5MslAi7Wydwfzr+QcY8x6DCw1WGiww+KzBGHUK\nSx8lWXcmWSgRgyEG0x5gzM3Psf6/Q7/A6QbbxI5NkpBk3ZlkoaQ1tSUBg++H4aG3n8cp89/ObbNj\nxybJSbLuTLJQ0joMBhvsY3BxWxIw+IQPD7UMbBnY9rHjlOQkWXcmWShJW+gYfmfoE3jaYL7BqdZx\nh0DAdgZb4olBpKZ6rDsbtaeySMsJnb+7AocA7wdWAD8GJmXwWBcvmwbM9dGlImm5BN8/+U8Vx8rA\nMtp3UJtW8dhMYBG+W9reXbyn/lCk0AzGme8b8OcwV2C2wQ69fPVvwfavb4TSoqLXne8AJtAxIcwG\nTq3y3Lb9lAcDo/BtNKuNsY5eKJHODLYy30P4foMnDM42mLB6Q0RtPbAX+7uYncgqypQoQJPRbXjl\n3lm1P5LpwBzgVWApnhAmAfPrFJtIvxhsBLwPOAIYC1wNnATclvle4qtrD2A+ZP+sXZTS8soMAb7X\nm6fGmuV4EnAfcDGwYTg2HG9KarMMGNHguES6FYaJHmRe+S/Fmza/CozI4CMZ3NLHZACwLxB172RJ\n0ofxL9g9itGpfAHwhXD/TOBc4NguntvVJU654v68cBOpi9DsMwk4Cu8cfhi4DDg2g+dq9CkZ3p/2\n9dq8nwhTGcI+3MxJPMxlsYNpM4qOfQhdPTYj3NrMBSZXeY36EKQhDEaGlUQXho1lPmMwuk6fthPY\nXzTcVGqqzBcoc2n4rRB15yg6JoTKzbo/CVwR7rd1Kg/B/+iWUL2voRCFkjQZrGVwmMGNYTnpCw3e\nVv/1g+xUsO/U9zOkpZTZgjJ/p8wbwpHodecc4Eng38ATwDHApcD9eB/CNcDmFc+fhbd1LQT26eI9\noxdK0hKWlJ5svq3kM2FjmUMM1mpgFDeAHdS4z5PklbmQMl+pOJJk3ZlkoaTxDDYz32z+QYNFBrMs\nyu5iNjgMN92o8Z8tSSqzLWX+RpmhFUeTrDuTLJQ0RlhCYj+Dqw2eM/hB2GsgYtu97Qp2b7zPl+SU\n+SFlOi+QGH0egkghGLwBb7I8Bl9C4iLgQxm8EDUwtztwS+wgJBFltgf2A7aNHUoj6ApBeiWsKvpu\ng1+HVUW/YfCm2HGtyq4He2/sKCQRZS6jzGerPJJk3ZlkoaR2DEaFtYSeNLjN4MjGdhCvDhsI9hzY\nprEjkQSU2ZEyT1Nm/SqPJll3Jlko6Z/QN3CAwfXhauB88+UkCs7eDPZg7CgkEWWuoMysLh5VH4Kk\nzWAYPtP9I/gQ5wuAgzN4KWpgvTcFuDV2EJKAMmOAPfG/hXZ5Phr4CKVSj2+hhCBNJ4wI2g34GD5f\n5SfA9MyXU282U4ArYwchSTgDOJ8yL5LnA/C1sU7E9+T4YW/eoBmnyRvNGbf0k8E6+MqiH8NntH8b\n+GEGz0cNrM9sAPA0sDNkT8aORpqYz0ZewOjjd2Grw96DJ4JngW8BP6ZUeole1J26QpDCMx8+dyLw\nQXxJ9VOB32TN3580FnhGyUD6baNJZ7HlB5ax0ZvvAX4JHAbcSam0Wn8jSghSSKFZaC/gZHyRw0uA\nXTJfcjoVu6P+A+mrPB8ETOe1V0/l1effCtk5wLmUSn/t61sqIUihhGahI/FE8B98OeiDM3g5amD1\nMQX/NifSe3m+EXAc8HHgCR6/4kkev+L7zP73Gf19ayUEKYSwhtDH8RFDt+P9BPMSaBbqgmV4Qjg9\ndiTSJPJ8B+AU4FDgOuA93FJaCDyGb1fcb0oIEpXBW/Bl0KfhK+HumvnS56nbFvgXZEtjByIFlucZ\n8E78b2QScCEwhlJpBQBlTgFuo8wjtfg4JQRpOPOtWw8APoWvMXQ+cGLzjhbqk0nAHbGDkILK8yHA\nB/ABFGsA5wEHUyq1N52WGQh8AjikVh+rhCANE5aPOAr/T/4C8BXg6sz7ClrNROCu2EFIweT5Bvge\nyKfg+8LMAm6gVKq2T/cBwFOUa/fFQglB6s5gY3zY6Mfxb8XHA7el2z/QKxOBz8QOQgoiz0fi3/Y/\nhG8ffAClUk8TLU+mxntwD6jlm1VxCbCSjltoDgVuAh4FbgQ2rHhsJrAIz4x71zk2qTODN5g3By3C\nt1KdmsGBGdza2snABgPjgbtjRyKR5fkY8vz7+C6SA4E3Uyod3mMyKLMzsCNwdf2DrJ13ABPomBDO\npn1kxRnAl8L9tj2VB+OVx2KqJ6wWrkiag8E4g0vDInNfNhgeO6ZisfFgD8eOQiLK87eS578gz1eS\n558hz4f2/KIKZb7bxRLX3Ym+uN1teOVe6UB8uB34+hrzgBnAdHwP5lfxyUeL8Y63+XWOUWrEfM2U\nWfi/2/nAyRk8FzeqQlL/QSvyEUP74PXdG4BzgEM6dBT3RpmNgYOBHWodYow+hM3xZiTCz83D/eF0\nrPyXASMaGJf0QZhRvAeeCLbGrwA/kOhEslqZCNwZOwhpEF9o7t3438gaeKvIjymVXu3jOx4L/IIy\nfZ6R3JXYncpG95cxXT1Wrrg/L9ykgUIieBfeMbohcBYwJ/MrPOneRODi2EFInfnSEofgieCfwJnA\ntV2MGOqdMoPwSZvv6cWzp4Zbr8VICCvxNeyfAraA17PccmDLiueNDMeqKdcrOOlemENwEPBZ/P7/\nAj/L4L9RA2sathZ+qX9f7EikTvJ8ML78ykx8/+5PADet7kJzXZgGPEm5VwMS5tHxy/Lsnl4QIyFc\ni69a+eXw85qK41cAX8WbirZDl9WFYT4C4r14IngF/891XWuPFuqTCcDDkL0SOxCpMZ9MdjR+RbAY\nOI5S6ZYaf8rxwHdr/J6vq3dCmIN3IG8CPAF8Dm8/uwpvB1sKvD8896Fw/CF8otKJqLKJLlwRHIz/\n272IjxCbq0TQZ+pQTk3HRPAIcBil0u9r/jllRuAbQx1a8/duYqqIGsBggMH7DR40mG+wr2ljohqw\nH4EdGzsKqYE8H0yeH0eeLyXP55Lnb63r55X5DGW+0493iD7sVJpMqPSnA1/Am4ZOQ1cEtTQRH4kl\nzco7i4/Ar5qXUK8rgkplBuCtKu+r58coIQjweiLYFx8JMRD4H+CXSgS1ZBvi/WMPxY5E+sCHj74f\n+Dw+KOZoSqVGbXC0J/BsLzuT+0wJQTDfuessfFmRz+Gjhvo+NE66sguwALJWXMyvefmEsgPwEXUv\n4cM+f1OjUUO9dTzwvXp/iBJCCzN4M54IdsBHDV2u4aN19Rbgj7GDkNWQ5yX8b2QdfM7NdQ1OBFBm\nM3w72ePq/VFKCC3IfEjvmfgIsP/FF5z7d9yoWsIb8QUdpejyfAI+InJb/Kp5Tr8mlPXPkcA1lOu/\nX4gSQgsxXyZkNt4Oeh5wbOYzKKUxxuLnXYoqz7fGvySVws/vUSrF/rJ0JL5jWt0pIbQAg3Xx0UIn\n4QsK7pDB3+NG1WpsEN40p1VOiyjPN8GbhI7A9xj4MKXSP+IGBZQZi8/jqvUEt6qUEBJm/u97LH5V\n8Ftgl8wnA0rjbQOsgExXZEWS52vhu5OdBlyJ71dc80Xj+uFwYA7lxgzyUEJIUBhCuh++vO5KYP8M\n7okbVcsbCzwQOwgJfAjpYcD/4R39b6NUejRuUJ343IPD8HlBDaGEkBiDnfH1oLbEv/Vcr7kEhTAW\neDB2EALk+W54X44BR1Aq3RY5oq68HfgHvptaQyghJMJgM3zk0EHh54VairpQxgHXxQ6ipeX5aHxR\nzV3xTWqujDhyqDcOBy6n3LgvdEoITc5gCL55/UzgMmDHDJ6NG5VUMZb27WKlkfJ8Xfzv46PA1/AZ\nxi/FDaoHZYbgy1Ts0siPVUJoYuZro38NX09lt8xXWpTCsSF4p/LC2JG0FJ9hfBh+VTAPeBOl0rKo\nMfXevsBDlPlLIz9UCaEJmVcu5wE7AZ/I4PrIIUn3tgOegEzbijZKno8HvgmsBXyAUun2yBGtriOA\nyxv9oQMa/YHSdwZrm/cP3An8HhinZNAU1KHcKHm+EXn+TeAG4FJgUtMlgzJr41cIP230R+sKoUkY\n7A98A08G4zPfcEiagxJCvXnz0Afxfppr8PkEzTr5ci/gj5QbP3k0ZkJYCryAL6b2KjAJX23zx8Ab\naN9N7bk44RWD+bk4HxgDfDiDmyKHJKtvLBG+7bWMPB8LXACsDRxAqdTsO9IdBPw8xgfHbDIyYCq+\nx+ykcGwGXuFtD/wm/N6SDAYZfAq4O9x2VjJoWuPQFULt5fna5PkX8Q7jHwOTmz4ZlBmEtwb8InYo\njfYYsHGnYwvxBdgAhlF9VEbyk6wMJhosMLjZfLVFaVq2Btgr/lNqJs/3Is+XkOdzyPNhscOpmTJT\n6rgJTqG30DTgZrzJ6EJ884fN8aUWCD83r/7SNJmvuX4mPlTuNHx/guQTYOJ2AB6D7F+xA0mCL0L3\nVXxTpxMolX4dOaJaOwjvA4kiZkJ4O7AC2BRvCul8NWB0XRmWK+7PC7emZr5F3ndpHz30t8ghSW1o\nDaNa8E5p5IlzAAAINUlEQVTjg/H+tCuBcYVYjbSWymTAu/Hd2Wpharj1WsyEsCL8fBrvQJmEXxUM\nw/cr3QLoatXBcr2DaxSD9YFzgb2Bj2aQ2jeeVqf+g/7K8y2Ab+NXW++mVJofOaJ6eRPeYlKrLxDz\n6PhleXZPL4jVqbw2sF64vw5eGf4JuBYfOkb4Ge3SqRGsvdyv4Z3GSgbp0ZDTvsrzjDw/FLgXP4cT\nEk4G0NZc1MC1izqLdYWwOe3DqgbhM/JuxJehvQpfw38pPuw0OWHDmq/gS1Qfl2lbxZQpIfRFnm+K\nXxWMBd5FqdQKe1EfhG9iFU2shPAYML7K8WfwtvRkGUwGfgTcjl8V1H2fVInF1sSXIV8UO5Kmkuf7\nARfhXxSPpFR6JXJE9VdmFDAc70OMRjOVGyTsXvYZ4ATgxAyujhyS1N/2+AgjLUPeG7572dnAgcCh\nlEoN2TayICYDv6PMf2MGoYTQAAYjgTnAy8CEDJ6MHJI0xk5oD+XeyfNx+N/IQ8B4SqVWW8J9HN6f\nGJUWt6sz8yFkf8QXodtXyaCl7IRXcNKdPP8gkOPzCw5pwWQABelr0hVCnRgMBM4CDgHem3mfgbSW\nnfCRc1KNNxF9A5+TNJVSKXqFGNE4CjBfRVcIdWC+SN+vgLcAuygZtKwxqMmoujx/A/AHfAj6xJZO\nBmXWoiCDD5QQaixscn8nnu330YzjVmWD8HWotItdZ3m+K54MLgUOT27G8erbEVhMOf4e6GoyqiHz\naeJXAZ/KfH9jaV2jgZWQ/TN2IIWS54fh275+iFJJmzu5QjQXgRJCzZgPlbsIOCSD38aOR6LTCKPO\n8vwU4JPAHpRK0UfUFEghOpRBTUY1YXAUvjDdu5QMJNAIo0p5fgLwCWB3JYNVFOYKQQmhnwym4aOJ\nShk09+YcUku6QmiT58cCM/Erg8djh1NAhVkRVwmhHww2xK8Mjsr0xy8daYQRQJ6/H/g8ngz+HDuc\nwimzHrAZvpxPdEoI/XMecJ2aiaQjy/CRI62dEPJ8APBF4AOUStGHVBbUGGBh7CUr2qhTuY8M3gVM\nAd4YOxYpnBHAy5A9EzuQyHYH/knkBdsKrjAdyqCE0CcGG+Hbfh6RQauPoZZVqf/AHQNcQqmkbWC7\nVpgOZVCTUV99FbgmS2DrTqkLjTDK8w3wodg/ih1KwRWmQxmKmRD2xfdXXgScETmWVYS9j9+Jj5oQ\nqUZXCL6G102USpqp371CbbFatIQwEPgmnhTGAIfif1yFYL7d53fxvY9fjB0Pq7mBduKmxg6gQuwR\nRlMjfnYbby6Kb2rsALpUZiN8K+HCDMUtWkKYBCzGt898FbgSmB4zoE4+D/yhQHsfT40dQIFMjR1A\nhdhXCFMjfnbb3gYjKMbWsFNjB9CNscBDMfdQ7qxoncojgCcqfl+G7yQUnfnKpUfgi9eJdME2Btag\ntfe9OAb4AaVSIYZSFlihOpSheAmhV5lygx+e0/D/aJvaf7J/DFznv69kazzR87Mb5KfXDuJ9B86I\nHUYhFOVc2Pf8qnu9V1bA1+PEcNl163LkAR+N8+HAf1/emAUn30qZ66LF0OaXbM/+7BI7jC7sCHwr\ndhCVstgBdLIrUMb7EMA7bl8DvlzxnMXANo0NS0Sk6S3Bl2RvGoPwoEcBQ4B7KVCnsoiINNY0fFOR\nxWhop4iIiIiItDkYn7DxX+DNnR6biU9cWwjsXXF8F+BP4bHzGxBjDJPwLToX4MttT6x4rKvzkrKT\n8CGeD9Cxr6kVzwXAp/B+t6EVx1rtXJyD/5+4D/gZsEHFY612LqDgk317a0dgeyCnY0IYg/ctDMb7\nGhbT3jl+J15hgm9yvy/pmQfsE+5Pw88PVD8vRZtnUmsl4Ca8zACbhp+teC7AN2qfiy+l3JYQWvFc\n7EV7Gb8UbtCa52IgXs5ReLm77Zct8slYCDxa5fh0YA4+cW0pXtjJwBb4rL87w/MuBQ6qe5SNt4L2\nbzwbAsvD/WrnZVLnFyfmBHx55bbNyZ8OP1vxXICvsXV6p2OteC5uwq+SAO4ARob7rXguVmuyb5ET\nQleG4xPW2izDJ7R1Pr48HE/NDOBcfLr7ObR3vHd1XlK2Hb7E8nz8yukt4XgrnovpeDnv73S8Fc9F\npWPw1gJozXNRbbJvl2WOPTHtJmBYleOzoACTWuLp6rz8D3ByuP0c72e5BL9ErqYwU+L7obtzMQhf\ninxXvC/lKmDrLt4n9XMxk45t4t3NMUr5XFTWHf8D/Bu4opv3SeFcdGe1yhc7IXRVkXVnOd5W2mYk\nnvWW035p2HZ8Oc2pu/PyI3zFVYCfAheF+9XOS7OWv1J35+IEvNMQvIP9NWATWu9cjANG452o4OW9\nG29KbbVz0eZoYD9gj4pjqZ6L7nQu85Z0vEpqOjl0mHre1jE0BP8jWEL7t6E78D+CjHQ7le/Bd2oD\n/89+V7jf3XlJ1UfwBQfBByC0rRrZiueiUrVO5VY6F/viIxQ36XS8Fc9FMpN93423fb0MPEXHFUZn\n4R0lC2kfcQPtw04XE20hmbp7C5747gX+AEyoeKyr85KqwcBl+L/53XRc2bLVzkWlP9Nx2GmrnYtF\nwF/wodkLgG9XPNZq5wI02VdERERERERERERERERERERERERERERERERERESkuCbi6witAayDb9Yz\nJmpEIn2Q+joeIo1yJrAmsBa+5MqXu3+6iIikajB+lTAffdGSJtWMG+SIFNEmeHPRuvhVgkjT0TcZ\nkdq4Ft+IZWt8O9eT4oYjIiIxHAX8JNwfgDcbTY0WjYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI\niEgj/D8XeX8lKjnw1gAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1041727d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#assume this has been run\n", "#%pylab inline \n", "import numpy\n", "import nengo\n", "\n", "n = nengo.neurons.LIFRate() #n is a Nengo LIF neuron\n", "\n", "x = numpy.linspace(-100,0,100)\n", "\n", "plot(x, n.rates(x, gain=1, bias=50), 'b') # x*1+50\n", "plot(x, n.rates(x, gain=0.1, bias=10), 'r') # x*0.1+10\n", "plot(x, n.rates(x, gain=0.5, bias=5), 'g') # x*0.05+5\n", "plot(x, n.rates(x, gain=0.1, bias=4), 'c') #x*0.1+4))\n", "\n", "xlabel('x')\n", "ylabel('a');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For mapping #1, the NEF uses a linear map:\n", "$ J = \\alpha x + J^{bias} $\n", "\n", "- But what about type (c) in this graph?\n", "\n", "<img src=files/lecture2/tuning_curve.jpg>\n", "\n", "- Easy enough:\n", "\n", "$ J = - \\alpha x + J^{bias} $\n", "\n", "- But what about type(b)? Or these ones?\n", "\n", "<img src=files/lecture2/orientation_tuning.png>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- There's usually some $x$ which gives a maximum firing rate\n", " - ...and thus a maximum $J$\n", "- Firing rate (and $J$) decrease as you get farther from the preferred $x$ value\n", " - So something like $J = \\alpha [sim(x, x_{pref})] + J^{bias}$\n", "- What sort of similarity measure? \n", "- Let's think about $x$ for a moment\n", " - $x$ can be anything... scalar, vector, etc.\n", " - Does thinking of it as a vector help?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# The Encoding Equation (i.e. Tuning Curves)\n", "\n", "- Here is the general form we use for everything (it has both 'mappings' in it)\n", "- $a_i = G_i[\\alpha_i x \\cdot e_i + J_i^{bias}] $\n", " - $\\alpha$ is a gain term (constrained to always be positive)\n", " - $J^{bias}$ is a constant bias term\n", " - $e$ is the *encoder*, or the *preferred direction vector*\n", " - $G$ is the neuron model\n", " - $i$ indexes the neuron\n", "- To simplify life, we always assume $e$ is of unit length\n", " - Otherwise we could combine $\\alpha$ and $e$\n", "- In the 1D case, $e$ is either +1 or -1\n", "- In higher dimensions, what happens?" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADtCAYAAAAcNaZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmQbOlZ3vl821lyr8rK2te79qKW1OpWa0FCasmCMWC2\nxpaNjRnjYRxgMzEzMTPCE8H84XHMYOMhHBAKGdvgQIwtJIQQCDEBAgxCINSSWlJLvdytbq1ZVVlZ\nWZknt7N8y/xxTt7KW33v7btU3a6rPr+IjKx7buXJk3Uyn3zP+73v8wIpKSkpKSkpKSkpKSkpKSkp\nKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkp\nKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSlHB3mtDyDlwWd/f3/W931mjNmanp4O\nX+vjSUk5yaSim3JXeJ5HACwA+D4p5dO+72sAbQAawCqAZwFsA9gFsDs9PR29ZgebknKCSEU35Y5I\nxPY0gO/3ff8fEkJanPPtfr+/D2AHwPcACABcBGCSGwVQA7ACYBkHYlxPxTjl9UYquim3RSK25wD8\nIICHAfR6vd4TxpiKMWYGAAPQRPyeagH4KmJh3UMc/boAsgCcZJcDMd5GHBlfQSzaNQB709PT8j69\ntJSU+0oquim3xPM8ilhkfxhxhNtRSvlhGL5TKfVWQsiObdvP+r6/C0ACeB9iYe0DGAdQRCzGNcQi\nXEtuDcTCOxDjDGJxHrCFWIyXcb0Yq2N+ySkpx0oquik3JBHbNwB4BnHutq2UisIw/A6l1BsZY88b\nYzSl1Lcsa6Pf73eNMdsAngagAHw+2RUDMAaggliEx5OfC4iFd1iId5NtBNdHxmbo0Ko4SFNcE/BU\njFMeFFLRTbkOz/MYgDcB+BEA0wBaSikThuG7lFKPMsaesyzri4yxju/77zHGUNu2V/v9ft8YswXg\nvcmu/uxVnoojFuNhIR4HkEOckhgW4hoOUheZ5ObiIDI2uLkYD0fPKSmvOanopgAAPM/jAN6CWGzH\nAexLKVkYhu/WWp9njH3Ftu2/ppT2Bo/xff/dxhjLcZyr/X7f11pXAXwnYkH907s8FIEDAR6+zwCo\n45WRcQsHYjyIjHWyTQHYxIEYDx67n4pxymsFf60PIOW1xfM8C8CTiNMIZQANKWU3DMP3a61Pc86f\ndRznlyil/g0erhEvhgEHX+DD2+6GCHHUWj203cL1KYql5N5GLMaHI2MvOY48gLcB+F+T7VcByGq1\nupn8fHXoMc1UjFOOm1R0X6d4nmcDeDviBbICgD0pZT8Mw+/WWi9wzv/acZzPUkqDW+xmILAG14vu\ncVxBhYij1s1D2x1cHxGfTe4FkhphxIJqJ/tYQ5xnLgB4Jw5y0BRAVK1WNxAL8QquF+PhvHJKyl2T\niu7rDM/zXMRi84OI86e7Ucz3aa1nOOd/5brupwkht1M/e6NI1+DeIt07xQewntyGcXF9ZDwBYA5x\n+uNwiqIOoItYjEcAzAB4Pw7EOLyJGLdSMU65U1LRfZ3geV4WwLsBfD9iQapFUZQJw/CHjTEVzvlf\nuq77SULIndTH3izSvZ+iezP6iKPateTfFmLBvIjrF+8eTe6BV6YoGgB6iD8no4hF+/04eI1BtVpd\nRyzGq0OP81IxTrkZqeh+m+N5Xh5xRcH3ArCMMTUpZSYMw79jjCkJIb5gWdbHCCF3XHJFCNFaa4pY\ncE+a6B6GIP5y6CEW35VD/5/DQWQ8CeCx5GeJG0fGPuLPTwVxSZ3AwWv3EzFeRiz6g8e3UzFOSUX3\n2xTP80oA3heG4c8YY4RlWZ+PomguiqIfNcZkhRCftyzrm4SQe1k4GojMcB73uHK6x00nuV09tD2P\ng8h4BsDjiIU2xCsj413ELdAcB4t9Agdpin61Wl1LnmNYjDupGL9+SEX32wzP80YBfCC5EaWU0VqP\nSil/HIDgnH/esqwXCCFH8SFXACgh12ns/c7p3i6DSPdOaSe3K4e2F3EQGc8DeCL5dx+vjIx3EYu0\nADCFuLNvWIynq9XqXwF4AcDG0OO6qRh/+5GK7rcJnudVAHwX4jZcY4zZjqLonFLqSQDMsqzfF0K8\nfERiO+Ak53SPm1Zyuzy0jSAW4+GytrchbgLp4pWRcR1xidwPIy6Rm0O8mKeT+3YSGS9jSIynp6e7\nx/zaUo6RVHQfcDzPmwTwNxEvkmljzHYYhg9JKb8fQEQpvQAAlmW9dNTPnaQmBqI74KSK7t1GuneC\nQdw510S8YDf83CM4WLw7A+AdiOui24ibOh5FLKyDnLFEvPg3B+A8hsS4Wq16iNMTVxCX0A3EuIeU\nE08qug8onufNILZRfCeAyBizFYbho1EU/RAhpCuE+EMhxJUwDB9XSs0f02G8niPdO8EgroRoAHh5\naDtFLMY/iTjiPY/4y3MEcXPH4ch4D3FKwkKc0ngYBzl1Vq1WmzgQ4yoOxLh/vC8v5U5IRfcBw/O8\nBQDfh7iLLDLGVMMwfGMURX+bELJv2/ZnOOcrQ3lWhThKOg6uie7Q853khbSTlh/ViIUUAL6AuCIC\niP+mZRxExo8AeA+AEl7p2DZsn2kjTmk8igMxprcQ4xt1GaYcM6noPgAkXrZLiGts3wzAN8ZUgyB4\nXEr5QUJIzbbtTwkhDjcIIKm7Pa7zrI0xh9MLJ3kh7aTCEH85DtA4WIA7/HsDMR7HQVlbAcA+XhkZ\n7+NAjE8lv09wEBk3cOBlvIUDMb5VF2LKPZKK7gkmEduzAH4AcfTST8T2CSnl36eUbtq2/XEhxGGf\ngmHuS6SLNL1wL1BcL7o3Q+FAWIcZdmyrIP5iriAudxs4tg1HxvuIz5mD+P31RhycP1KtVvdw4GU8\nLMbp/LsjIBXdE0gitg8D+CHE0xo6WuutMAzfKqV8O6V01XGc/5dzvnMbu5PGmGM5z8lCGkO6kHav\nDFIBd4tEPIFj+9B2gevtM59I7g87tl1ra8aBsfx5xDXJY4ivsr5SrVbrOIiMt5PH1FMxvjNS0T1B\nJMbhjyIuIVoC0E7E9u1SyrdSSq84jvPrnPPDl503Jek0u9+R7km+lD9pDKoSjoMIcaS6dWj7sGNb\nBfF7rYJYbA8LMRCnJ9YRR8YPIxbvwRcYqVaru4g7/IZHLqXz725CKrongMQ4/I2IxXYOgKe1rgVB\n8A6l1BOU0guO4/wq57xxF7s/dtHVWlvGmDLikqeTnNM9iZHu4Xzu/eBmjm02rjcJOo3YyN4C8BN4\npSC3cTDl41HEi7sDSLVa3cEr59/VX+/z71LRfQ3xPI8rpb5DKfWjjDEL8ZSGejJ/7HHG2Auu6/57\nxljzbp/jOBfSjDHcGFPs9Xo/irgT628g/kBTxMYwNcQftkGpU8orud187v0gQPzFuTG07XEk6QUc\nRMbnk3uGVwrxLuJ26oEYPwbgKQx94SVivIJXzr97XYhxKrqvAZ7nCSTG4VrrN4Rh+IjjOJ8cnj/m\nuu5HGGPeETzdkUe6Wms7SXm8HYBxXfeTURRRKeVlxOVN70V8afsQYivFEg5W1wcfssEInvsVfZ7k\nSPckG6cLxKVsw45tAzK4PjJ+OLkHXtkKXUNsNjSY8vEmxA0i1157tVrdwoGx/E7yuG+7YaSp6N5H\nEuPwpxCnEUoAGlrrljFmtN/v/xRj7DnXdT/MGOsc4dMe2UKa1toKw/BtyWLeZcuyPhVF0QcYY60o\nikYQi1oL8Yf080MPPTwP7cnk3sHBB3JYjF9Pba6vRXrhThCIr15uRA9x+mD10PYsrvcxfgyxOGvc\nuBW6jzjidxHni78DB2sD5iZi/MAOI01F9z7geZ6DuHPshxBbCNallO0wDN+ntX4YgMxkMr88PH/s\nqDiKhbREbJ+SUr4jWcz7Nc75npRyDK9cSLtRTvdmq+sODj6c44ij5HFcXxo1EOOBaczdcpIj3ZMs\nHgLxVcud0MWBSA4zcGyrIM4Vvyn598CxbThFMXBso4gj4ycRd+spJLXGiRgvI05VDIvxSb5ySEX3\nOPE8LwPgXYjrbDMAdqWUNBmJc5pz/qwQ4qNBEDxzHIKbcNeia4wRQRAMxPaq4zj/iXNeH/w/IWS4\nOeJu6nRvdtmaRxwhjSP2qn0KcaTcxivFeNCN9aByknK6N8JCnKM9Cm7m2FbAwRfvHA4c23zc2D5z\nsG6QQWwo9K8RX1l5f/Inf1L8wAc+cOFzn/vc/35Ex3zkpKJ7DHiel0Pctvl9iKO5nWSy7vdpreeH\n548ppQo4xvNwNwtpidi+VUr5Tkrpyi3K1IbbgI+yOWLw4Rx28Br4FAzE+FHEjmoFXD+yfSDGrUP7\nPMmR7kn+0ribSPdO8ZLbzRzbKgAWAbwV8ZdvD9cLsYv4Kqq+urr6ziiKJo75eO+JVHSPEM/ziogH\nHf5NxG/WnSiKylEU/ZDWejqZP/Y7w/PHElEUx3VMd5JeMMbwIAielFJ+B6V03XGcj3LOD3c/DTPw\ng70fHWkDn4I9AC8ObR80AAzE+G3JzwIHQjz4YFrHcFz3yrdjeuEouJVjWwnXl7VlAfyTZ555BoQQ\nc+XKlecA/APE/sQv4CAt9WuIJ6jUEOeZgXgM08cRX1GtAPg7yXMCwD9HXCqnAPwPAP7oKF5YKrpH\ngOd5I4hLpL4bseDsRFE0EYbh3x6aP/ZbN5o/lgjwsYku4nwqN8bgkNn4NRKxfUJK+S5K6cbtdrvd\nwtrxfjZH3KwBwMXBQs4gWvpbiD2HhxftdnDga/takIrunWEQV8LsA7iA+L32BgD/94c+9KGlT33q\nU08vLy97iM/1zwL4MQBfSx77nwD8MoCPDu3vZwF8DnGK4kPJv38W8frCB5P7GQB/jLg79J6vSlLR\nvQc8zxtDPKHh/QCIMWZbSjkThuHfu4P5YwNRJEdsMA4ASPY5WNy67g2TiO1bErGtOo7znznnhxe7\nbsWNOtJOSnNEH9evrBcQ15ru4ECMTyEeQ19GfHl7WIwHhjHHyUnP6Z400T2Mhfj49FNPPXXl4x//\n+CPveMc7fvt3fud3fuUGv/sXiNMUw3w/4lQgAPw6gD9DLLo/AOBjyb5XEKc+ngLw1/d6wKno3gWe\n500A+G8Q16DqZErDYhRFP3an88cSURzkXY/rzS2NMZwQEgKAMYYNie224zgf45wfjhRvhwfR8GYw\n8eHS0LZhK8VxxN2B44gX9Op4pRi3j/B40pzuvWEjrnIAALTbbatYLO7d4vcPM4H4nCK5H+SDp3G9\nwG4gjnjvmVR07wDP86YR52vfhVjIqlEUnYmi6Htwb/PHImOMGM71HjEKADPGsDAM3xxF0XdSSndu\nw6HslhxKL5x00b3VQtqwleILQ9uHPQrGEU98GEcslIdri2s48MO9E9L0wr3hYOjv3ul0xOzs7N20\nywPx++NWn90juRJNRfc28DxvDnElwtsABMaY9SiKHoqi6G8BgBDiz+9x/lhkjDnOvK4Kw/DNUsq3\nEULqtm1/QghxuO/+brhZ9cK3i+HNzTwKhov/p3BgpThc4nTNawDxlczNSEX3Dgjbbbbz1a+ONF58\ncXTk/Pn9+fe//7pIt9Pp2BMTE7da/D3MDoBJxNUPUzgw+dlEXL42YBavfB/cFano3oTEXnExiqJ/\nYoyZJIQExpj1MAwfkVL+EIBICPGnQoiLN1ugugOi47BfNMbQMAzfBMBVSj1k2/YnhRAbr/rA2+ck\n53QPc5QlYzcq/h+UOA0W7s4iviIawcG0h2ExHnja3qut43Fz30U38jy+96UvjbZeeKHcqdWyexcu\nTPV2dkY1YPbW1uaMlDw/N7fxw5/73K8j9oW4Fun2ej3rqaeeum0XPgC/B+DHAfyr5P7TQ9v/C4Bf\nRJxWOAvg2SN4eanoHiYR2zOIE+yPBUHwDxhjvxCG4cNRFP3I8PyxIxBbAEdfNpaI7RujKPpOQkgT\nQMe27d/jnN9JrutVSSJ7Yox5ENILx81widOFoe2DaQ8DMX48+TmDg0J/B/GiXg1H14hwVNyqDfiu\nka0Wa3/5y+XuCy+M9tfXi/tXr1aC7e1y1O26vX7fle12gWaz7S5AZLeb4/m8Jy0rzI6O7tmlkvf+\nX/3VT9uFgsShnK5Sij7++OM3+xt+DPGi2Rhiq8r/A8DPA/gEgH+Mg5IxIC5L/ERyLwH8NNL0wtGS\niO15AD+I2KilZ4zZAKB6vd5PEUIaN5g/dlQcSXohEdvHErH1bNv+XSHEarfb/Skc48geXJ9OOKmi\n+1o1R9xs2sPARvEJxJeu78bBIs7hhbsajkH4bpNBdcAdY3yf+l//ejH4+tfHosuXR/u7u/lgeXla\n1usjfi7X9Tc3ZwwhOpqYqPnb25OgVNLp6apFiMmUyw3JmLJ831HZbKcrpZB7e2Owbf8d//bffrJ0\n+vSgg/O6nC7i83yzcUN/7ybb/8ZNtv9fye1Ied2LbmIc/ghiX4TTADrGmI1kdf/vA6BCiD+ybfvF\nW+7o3rgn0TXGkDAM3xBF0XsIIV3btj8jhFgZ+hVljDlOT12C1MT8ThnYKFYQfxn8XrI9h4OStlkA\nb0l+p4dXivH9sMx81fSCuXw5o7/85THz0ktj4f6+67/44pyu1caiQqHdv3p1EQDM4uKqv7KyAADm\nzJkr8Lxcfn5+LXJd3+p2M+7IyF6Qy/V66+vzBjByZqbaW1lZNIRoMj1dJVFkFWdnN87/03/6p9Pv\nfW996OmHI11qjNEn3SLydSu6idg+htjxawGxcXg1DMMnE6+BTdu2Px6G4fczxu52NfS2uNsGiURs\nH5VSvgdA37btz3LOr94gEj/u4ZTDovt6yOkeJYdLxjrJbXloG0GcGx6I8WHLzMNiPBi7cxTHZgBo\n9HuUf/lLZfbNb4yRtbVScGG5gmp1XPu+FXa7WfT7GVUu17ueV0QUCTM5WVXdruvOza3rTKYX9XqZ\nbLlc14VCu3/58mkLgF5cXPEvXDgHAFhauqqazWJ+ZmZD5fNd1eu5YnJyW2cy/fby8pIAsPTMM395\n/sd//LCJzrVIV2vNtdYnOT8O4HUoup7nccTuRs8gTpA3k5E4T0kp33Z4/lgYhqEx5rjbR+8o0k3E\n9hEp5XsB+EKI/08IsXyLtMdxT48gR+y98HridqoXDIBGcnt5aPuwZeYEXmmZeViMX9VUidaqtvW1\nL1bEpW+N0Z29Em02Ib713D8LWL5DVlcXNCG6k5+oka3tSS1EICcmasy2QzjOllGK5TlXmhDdbTTK\ndhjaulKp9avVKSjFMTVVjZrNgj0zs2kyma4KQ3tkcnJbZrO99pUrp2wApFBot19++TwAiMXFld7W\n1oRbqeyMPPXUS4/9i3/x3A0O2UZSN91utx3G2ImfZPy6Ed3EOPwJxJFtBQdi+2rzx+6L6OI2zoUx\nhkRR9HAURe9BXD3xh0KIy7eRY07TCyeXeykZux3LzAm80jJzh22vtcRLX5biygtGXHhhgtU2xxAp\nyqqb00RKIcuzG2x1Y5YA6E+fasFr58jS/Jpirp/pdLJkutToIuPbGxtzmvMoKBZbZG9vTNt2LxgZ\naVmjow24bj8khBQ4l5ox1a3VxkUY2mCs1t/ZOQUpOSYmtnvb2xVnfHyHFAqdSClanp3dUK7rt1ZX\n560wtPKnTq09+ZGPfB435lqkW6vVMpZlnbSFyFfwbS+6nudZiN2JnkFsbrGntd693fljSamYfZzH\nSAi5ZaSbiO1DidgqIcQfCyEu3e6C3nGO7MEr0wvAySyFOqnpheNoA75mmclXny9Yl79c4RtXi3zj\n0hLd35kw2i5al785aoRtVGEOfO0yUYVRaaxcIKdmO8Zy2rTnG31qui4rc0XnS186RQD0s4sr4nKc\nDuhMLS1Tr50np+bWlMj4drebwdhYLWDMZLa3p4wQQSeX62J/f1S5bs/PZHqiUPCQyfSkECrnuoEm\nxPTr9XK218vCsqL22tqsCUOblMv1dq02Jhyn5ywurj7x8Y9/inJ+s3NnJ68Xe3t7qei+liTG4e9A\nXI1QALB3l/PHQhy/O9UNS8aMMYii6HwURe8FgHuoCz7WSDeKokeVUk8izo3vIBa3Ag7cmlJuzpG0\nAfOtl3Ji5ctla/X5SVZbHqe9jsvWl+dp0MvKwswm26pOExgiRxZXWHO7JCemN43Id0nQd+XCjE16\n2uG7awVVHLPR9kqs2SBy+pRkm1UmT5/2tJ3tsHZH0MXJ7Uhku7lLV04DQDe/uMKSvGwwP79C2u0C\nmZlZl9lsP+v7Dmzb7xlDMzs7k0aIsK811Y1GGbbth67bo5xLOj29obLZoFgotA0hpttu53JSWsyY\n6NEPf/gz1ujorRbyHCQLaY1GI2NZ1lGMuDpWvu1ENzEOfydisc0C2FVK7Ydh+O67mT9GCLlf6YVr\nopuI7blEbIkQ4s+EEBfuoVTtyCPdQV4ZQE4p9Qhj7IqUcgPx5SwB8JNIHNeS2zYO3P1fiw6nkxrp\nMty6Y+36X26tO2L1r8esjeemeP3KOPohs9affwih76jMTJXvb85o5vShbN8IEUXFhRWimVFzsxuG\nOgFfX14iRjEtRlti48I5AxiVn91A6HM5PbtumBuQ0LdlPktps1Gm7SaXlVlhLW9OEd8n/XNv1GZ9\n0+DMmZ7MFdrC6zr2mZltn7kd6+KV08QYEhQKbXrx4jkA6M3NraPRyIuJia2oVGpngsBGJtPrAwTV\n6rQhREvbDvSlS7OG88gvlVqq1SrYo6N7Cz//85/KPvroq/lcXEsvtFotVwhx4r/ov21ENzEOfzfi\npgYHQE0pJcMwfJ9S6tF7mD8WIL6EOTaS9IKTiO3ZRGzZkNjeq1gc2ULa0BfC+5L9dizL+h0AZ6WU\n30h+7QkAv4T4/TWR3IYnQLRwIMaD24n/sBwTDDeoKyVRm1kbXxizdr46yfYvl3m9OsaaK7PGMEU7\ngUOk78js7Abb3ZgxbsGTpYU1KgNbTs6vItSUNbemwWyfeXtj1O/kZLayy/drFZ0vNnV2tEFCKeTc\nzKaB6/ON5SUYTZTK9EX10hnDeKTtUtMIHgXnHwPt9KtqZtwyhEp7/dIk7ffdYCQv8a3nx4mUpP+G\ntxj14qVJdnoxlOVKl3W6WbG0tBMJ0cksL89DStGvVBo4iIjXZLU6yUulfVOp1GkQ2LbrrkWMKbqz\nM26UEuM/+ZN/Uv6e77kdx7trJWOtVstljK0c5ck5Dh540fU8r4C4y+R7EZ+AbSllNgzD79Jan2eM\nfeVe5o8lka5zlMd8GGNMZIyZ7fV6/x0AKxHbl47K6pEQciTDKaMoWgzD8P2Ij/FPhRAXer3eTxNC\n6FBXWlxiFEe5XcSlT8PlTxQHpuODFfcJxCmcwSr74FbDzQvd75STGulS1r4snK0/Ose8laKofXOB\ndTcnDHJdvhfXtUoxt86b63Na5JraHmsYWzFDrZC2GiXkuNTuSNOqXTgPADI3v8aaW1M6U2xoZ6xJ\ncqFQpLJLG80irNCGU2zx7auniFZMjsyv8e2VeT0y2lCZsT0a+rZcmNlAyBTb3pgDY4Z1copvrpzW\ntttDwCMIHoYjs7ugTPKlmaamInKWX550dS8b0HJHffkrI1xrIt/85kh/61sTZGJC67m5tuh2i/b5\n87uhEF1cvTpmSymiQqHjX4iPWy8uroRXry4R1+0VP/jBz1V+5mcu3OqPNsS1SNfzPFsIcaRdl8fB\nAyu6nueVcGAczhGLbTEMw+8dzB9zHOeXKKV34/w0TIi4p/7ISaLG00qptwFwhRC/b1nWi8fgq3tP\nkW4URTNhGL7fGFMUQvyZZVnfGjpGDYAmjmPDonuzXMjwRNhvDm13cSDE04jbZSuIhXtYiLdx4Fvw\nQEGkx+3mn43z5oujVvPrc6y3NqH1yIjV+FrBELtvQjukoVeU1vg2ZN+W5flVY1yf9pslXXB7xuT7\non3llOaZLvrEkKiXkbnpTaINkdOLK9rYAd/fnoSlmLGzgahfPGsoD7UptGnYzaqRiaqhmcDMZnxD\nrYjtbI3DlsJkMj1rIy7TkqOLK2x3Y0aXSg05vhQR6ILkegt9xVh9ewqMR7zTLlBvo6TcXFv2NAUM\nUdPT65pQ6Z6d9xQT0ly9Osa0LihC9qJnnx3jWhP56KN++OKLFZLLgTz1VMD6/bH8G96wL4XoBJub\nedeyAueNb7ww/Yu/+MXb/ZMi/rIeRLrCsqz9Yzp9R8YDJ7rJlIbvDoLgf6KU7gkhvialLIdh+IOH\n548dxfMRQgKt9ZHmdI0xkFIuhWH4NIAMpfSSMca1bfuFV33w3XFXoiulnAjD8Gmt9ZQQ4s8ty/r6\nDTyCj8r0po+4931laBtBXHEyEOM3IjaNz+LGUXH/Fvu/r5EuCy9l7dYXJkTva1PMXy2zzk6Z+etz\nmpb3aLtZIkZyyRZXqKw6UelsAxH2iN3LaJ3pUq85QrXvSjO7wRtxJBhlz16mUc+V40tXERhCeauo\nlWjyzl4lTjVMb4ra6gI4D2X57GUShZacXFwximjm1cZBARoFGdrZntF2oUU6oQUYEo3Nr1FNtVxc\nXNXE9vlOdQq2FCZX6NgXvroIALI812D1rSmdy3uqOLlLo8DW4yNNdELhqvqYBlVBu1N029WCzOQ8\nv6s5wsDCeGXHMBaI+fmesawQu7uFgmUZ6Tid3nPPjVIpbbO0RPobGyOIIrjvfree/I3fKAP4Htye\nZeagRdkAcVloJpM51kamo+CBE13Eozk+oLUWWutcFEU/crP5Y0dBYvx9ZKKbXKI/bYzJDaLGKIoe\nklK+8aie4wbc0UKalHI0EdslzvkXXNf95I1GDSVoYwwdmN8MtuFoGiQMbjwXzcZBDeoE4s7CccQf\nzsO54mOfFiyCZ0fs8C8nWXilLDovzjG5MaX1SJN31+eMAZSe3WDB9riyKtvGFHqmlO0ZbQXcW1kk\nJBIRRo3ovnTWEBFqM7pn3KIXsZlNIqXQ5UpNI9+19i6difc1t8Fb67OGir62p2tqpNA1zPZJt5s1\nI9mOFiNNUbt0FgBkYXFV7F49pYXdk6XFNSIDS5VGmqQXCGr2R0F5ILzaOAl9R+UntkVtfRaMSTm5\ntExCxcML+9gJAAAgAElEQVRHHm0Yq0DF5RfzsEBModS21pPFt8JMlW1XZ0w264Wj0zUaRQJTY3V0\nI5GjzaKJLHT7fkZs70zpTKYbEGLQ7eZMsdiQtu0709ObsO0w8H27kM/3wbkc+Tf/5reIZQ0mA08j\ntswcR/xleti/eBeHzG46nY41OTmZiu4xsB1FEZRSSwBczvmf3mz+2BERHkWdbhRFC2EYvtcYU7jB\nZIlj9dMlhKjbqcBQShWCIHiP1vqh5IrhM5TSVzNaGRbY+9WVFiB2iVof2jYYWDgQ4kcQDwktIPa0\nLSCeIMwRf3i7d/ysRhLLfKEs1NcqVvjVOa6vTplQSBFcPGMMkzoY2WeqXpGobEMbyNziilZ2yIPt\nCTAQEmrOo8unFRndY93OhLZy7cg5z1nU0nJkehMB1by3MadJpsu6nSyV3ZwSk1Ua7BdkaXZDk1yX\nhp2sHinuG5nt8/bqgmZuDwGXNGgXpDO2A6mYnFhY1dT1WadZ1Hm3p92JXVG7eNYARttT26yxNaXt\njKec8j5xNdXMipjXyZiS42sr0+W1tQWiFYuc8y3x0l8XwVgkp5eWSRDacnFxxRA7pPv1Mkoi0vly\n012/dEYDpl+cqfLq5ozmLAgmFzd4GFpkcrQRhIDTbucNYALGjLO+PmcsK+hkMj3TbI7AcfziRz/6\nH9nc3OAL9rBl5vAgynM4sMzsALBardbTn/70p6nWupDL5eo44Txwotvv9x9TSv0wpXQbwJ7jOEfi\ncXkzCCEB7iHSjaJoPhHbUiK2zx++RL9PwykzN/tPrXU2CIJBSd1Xk4XH282F32x6xP3uShseWDjc\nKisQf1ifQWwm852IRVnhoIxtcKvjWqOCJIL+5ahN/mJW0BemSNBxLP38IzBEmb7rU9MqSTW1SWWj\nKO25dSMzPqVeTpnROu31cpTu5qSZ3RD9lUUQK4jY6avUCezILSzTfjeLjGKGOr7denaaQEOyxVUa\n7FRUZrKqUegS27eVKTd4s1Yh1HclzW6IxsvnCQDpnFoG2vmovLAKJSLqdHJK2QFt93M0rGcVHd8R\ntY1ZYhSLRpauUr/vyMmFVQ07YN1mUZecnqHFrmhcXTJMBFTnerSzP6Lcwj6IE6iZ2U3D7QCRntRT\n5cAQq86ry6eJMUSOL6yJ9QvnDIGRk6evkF4vI08trmpiB7bXKtCxbNfPlvcyq1dOawN0x2Y36NrG\nrAZMtLS0wvp9F/Pzq9K2o1yv5xJKNfvQh36fv+tdN1sAOzyIcgBD/CX6nnq97n72s5995MUXX8x8\n7nOf+2PE0z++BOBnbrLPf454WrBGvK7wjxCnrG42FfhIeeBE13GcvwDwy2EYvkVrfezz7e82vRBF\n0VwitqOJ2H7jFjPTjlt0b5jT1Vo7QRC8Uyn1JGPs+Uwm82FK6Z1GgNoYw4YW0oCTZXoTIXb87yKe\neTWIjgu4FhXrs+BX3kPEC0WBl3whPk8oqVK3H2lKmhkZzq9xvTanUdrXeqJO7MBWKDe4X50izHdl\nNNIS6sJZY5hUcrpqLDdQmNom0ndMLu9pVW5Y/QvnjKFKy7E6jXYrio/vGOME0fibe4hMk7derlCn\nn5FkbE90Lp41xPJ1lOlp4fa1O7ENzaDGZjaNcft87/IZAkCq+TXevHzGEB4pNl5DhquoOLFDIkN1\nBXsGVsB3VxeI0VSKhVWrFtfORqUzl6nfycnphRWjLUn7Xl7bhSZCrrm3PqetTAd9Aup3c7I02UWk\nqZqZ3dDC9Wm35+rKSEPbuQ7fuBIfR2V+zVqOy8H6U0tXidfOksX5dW1lem6nm6Wzo3s9u+jRK1eX\nACBYXFwlly6dAQD6Ez/x+/zHfmzlLs6rQpx2aJw+ffoPPvGJT/zB008//d9/8IMffMdHPvKRGcRT\nIG7EIuIa8ocRXzF9HMDfRSzgN5oKfOQ8cKJLCPERf0MFx13KlTzfHaUXkpX+p40xY0Nie8s2z+OO\ndAkhUmt97Vxrra0wDN8mpXw7pfSC67q/whhr3eXuH5Q5adcW0qR4oWisL00a65tzoNWxDF+eILRV\nosHUuo0rc0ZTTf3H2j4zttElZfGtWSMcKH9eWHj+nDZugL7V19QONGaqhCumxNSWCayQk9UFbdwe\nfFagupOXmFknxrdlbnHVRFZI5d6osdw+9X2Xqp2pSNKQN1cmDbX80Dl7kerIliPzqwhAGDZnDLF9\n1q9XqOzmlDWxTdsbMypXqWk+uk+l76ixiS0j7Yg31+YNFSEJA4v29ke1VWghlEyNTGwbnuuRKBRq\nbLymea4jti+fif8Oi6ti+9IZY2BkcXGVou9EM4srUEzRoJeRrMxIs8tYd29Kq7xHd+tjNOi7Kj9a\nJ91uRk1NV42d6ZEgEmphYsdwt+csrywSY4ifnVvnF+OKiP7k/Kqu7ZbZ7OSWzBbbPAgsMj1dxeOP\nX8K//JdfvYdzel1OFwD5uZ/7uZ2PfOQjqzd7AOKpzxHiKz+V3FcRR783mgp85DxwootkhToR3/sh\nureVXoiiaDqKoqe11uOJ2H791cR26DmOfUYa4sGUPAiCJ6SU76aUXnUc59fudZrE0HBK4ASKrqQ1\np+/81YwhnZxxvvB+xZcrQmcbgq/NwRCd0W5NG2JMuLgsiCJ9urAjNO2TzDcWoTJdt28kSC8bRed3\nCI2cgD/eISG1eOblktajivW3CpT0aCQf2mF6syzFzIaR2T7JdDPaFFusW5sgLLKkXlwRwcWzxkBJ\nenqFOJGlSKUOKeZMwY20KTaEd+kcASDpwirrrc1qq9jUfHyPWKFQZKLGvL1RavuutkYbonHxHIEh\n0llcod2dcVWY2FKs1KbSd3TO7ZN232FolJUpNlmjMUpk4Kjs5BZr7pbVyNSWsvNtGgSOmhzf0STX\nFVvLp4wBDJvd4LWVRUOokuWzAWwp5czCjjFWRHJ9RytJaaOTp71OXqPQIo3GCAl8V+VHGnSvW1Zj\nY3WdybWJBGGnZzcUs0JneX3O1ZEIWK4rL106w7Sm5ty5y+bDH/7zezy9wwbmg/feq1UtNQD8P4i9\nKfoA/hBxhHuzqcBHzgMnuoVCQXqeJwkh/v2KdAFYxhjcqA1XSjkVhuF7tdaTyUr/b96u2A49x225\njN0txhhtjBnrdrs/k4xc/42BdeURcFJyutAIqWd/vRLaX5sLxNVZQjoO+KWzgKa5aCHS1oUikaUd\nAphQnl6xjJY9vjlHjIiyvDZhaC9Lg8lVkGYxNEurXFPZd9s5oouei0sThCim+ourDCsLGsUGdLYr\nnbxrdJ4KvFShvE2lfChrmS8TjbzUQb6v7PGONtl9qnyh8uU9E+Xbwr9y2oBHOih6LNqzJZ9sQhGj\nSosrWtkB83fHkKPGIN+NUw0iMFGuR2TPjTLTGzB2pCrzawZOwPbXZqnVz0g+UbMaF84ZA6PE9BbR\noS2L05uGZvvGDS1jYNje7hhFL6topi92Lp8hRlNZmF9jja1JNTqxrZ0RjwS+rWamtoyyfbF9YckA\n0JnpNt9dXTCUSS3Ke2BUycmZTSOyfVIILGgN2mrnKToFGNOmtW6G9ntZlc23onYkiGP5qlDZMdQJ\n3bPz68hle73/8NFPw7LutYRvONJlWms9PT39avs8DeB/RJxmaAH4LcT53WFebSrwPfHAiW6Cfx8j\nXYX4BHAM9chLKScTsZ1OxPZeKiiOdEbagCGT8+8CQG3b/tgRD6YEDpoj7nt6oce2snvO12d9vl6R\n1ktnIlafzqp8VfPqAtWOZyMw0JUaV24rBF9SaqplU88NaXPCkpVViNUzWuebtirt+mTEIpJu2daV\neU0iS/TzbSqunobKtHmU6wR8pkpkpsft/ZKB7cN3Q8FfnlO6tE/DXsYQ0QvNuSqhe06UOe0ggC3s\nK0WJacX726NUewjpm3tU72SizNm6UaLD+L4tMS9p1xMUzTmlJ7ZFe20eMJD26WUiA1uOLK6YkGoW\n7I4ZwRULOgUaVQtKjNVZa3PGMBFG+VNXiNJcTiysGSlC3lyfAwssYgptvn/pjGFWYGSmBwJEpZl1\nQp1ITTgbhoqI7W5OUd7PSGtsj1dfjiPt0uIqq2/MyqmFULmju8zbl3J+dgNSRGx7bR5aUehcT6xf\nPGMIVTo7Vid+LyPLlR3jljxSioSG2UUrsN2gPmaIoX63m3Na1ZJx3H7nFz72HzA5dRTjh65FulJK\nboy5nWDnSQB/hbhKAgA+hdgYaxs3ngp85DzQons/It2E0BhjEUJk0jDwXq317G3UsN4Wg5zuzaLp\nO2XInex9AELG2Je01gvHILhAUqeLZAx73A189AtpGorsWhfHGs4LC55Yn6PEF4FYeZgYFhaN7ErS\nKbmyclUTxYxcWCHo2H0WTNpatKVYPQ9QZGS5oUlBUzWxI2k7G5qRvquzXiTWzxLtehna5lpne0SO\nrUrmWxFZ2rR1x5KZ2hQJKzs2NqcJVSwKzlymzHcicnqZhIFlsoGtZcETwaWzhBoiw4VVpqolyca3\njc52dEZY0kwR0X1xmoiQhfQtsHrPjRlwhOyNxjgOi+h8nYY+UFJNY9wubyWLZVhcFd3lUwYslPbS\nOhERV7RSI71exuRFqGmuw1uri8QoJt35NbF3+Yy2Ml2ZP79KZWDLzMIqAoC1tyfANGFhL0d7myPa\nynvwJQcMiUZm14nhUs0trhpiB6y2OQVbCl0Y9e0LX5sBADmyuMK2ri6aTL6tStNbJAwcubSwaiSX\nbHdrCghtWHYkNi7FpWn56S22uz2lM24nKM9t0dC3yGR5v/OP/tl/VU8+dVRdY9cMzOv1esayrNtp\n9X8ZwM8h7oD0Ec9HexbxQuuNpgIfOQ+s6CYlTfdNdKWUU1LKJ7TWc5zzv3Rd97ePqjY4yYsa3Juh\nNQAgiqKlxB+BCyH+RAhxMel+O30Ux3oDBlGtwhFGuj7tiTXn5dkW36h41pVzPb4/W1BiN+B7s47M\n1BjtZKksVx0tOn3Wz1Nd2PL59gKIZnlZWJesWeFydJMQHkk1v+GqUqVnPz9JtN1x0Sxq2s+KaGpZ\nk8DS0Zlli3RFl6lxbnJ9x7pyxhBDRL+ypkloKb24ykFVz2WahW7fsS+fMRrG+FPbjGxNKVPaM5pL\nZS+sGWX7DFuTEJIj4FqYS2e0yXm0r5nmGU+R+T2qGlwVpi0dOpHtP7dgYAsVjOV5sGlHYsFA8mI0\n8gZfI9vlfj2vi6WO1qU90b582oBJrUf3WX+3olmuCbi+Gp3d0NQJWKdZNAXH16KyZ+3F1QTSXVzl\n+ysLmjtdVViqEhVYqlhqkn4kqNkbBahmvf0RGnRzyhlpsFZ3CkZROTq7DmA8Wjq3ZQxps/puGTmm\ndHF0X2wkPg/lxRWxfuW04TySc+cuEb/vJHW8Ed2vj5iSCHVxfM9dvXgWALo/+o8/Ez7zd9dvcdrv\nlGuRbr1ez1qWdTuVN98A8FEAX0H8Pn0OwL8HkMeNpwIfOQ+s6CJegaRJudKxDeeTUlYAOGEYPsM5\n/4vj6HpLiIwx4m5fSxRFs4k/QkEI8V8ty3phyB/huMf1UMQpkrsW3SZrucvuhYUdsTWvaSezL9Yf\nYyBBwQShpH6xEJWuKCKFiKaXNfXyPqHZohG7PWv7HNWilzdoaTVZtQzv9WmzrE0uYMzP+7RbdGR5\nLRKXLcjpmjC0FRI/QzWpg68vgRjiypENw7dmjSrWqRGBr86uCUMC46zMw2juBJ2IWPUxElZ2hN4d\nDejMJlH5DnO8nEJpn/RBhbU+r9TENpNrcwDR0py9TETgSHvpKvzQYpmdcWPcvuitLBBIIc3iKg82\nJqLMeWmk2KDco9KeZqy7n6PwitLMdkTrwigxEQmyb5U02F8IK4+HRtt95tdsZasOfKq5vzavdd6j\nPcmp7GekM1mFDLkcW1jVxPFZt1nSRbevxURd1C+eNQZQ9swmb27OGCp8WZyrEqW4YhM7xA8tA8Vh\nYFhnb4w2NmyVq7i03hwjKhKyNLWJKOJyfmHVUMenXqugx3Id7Y40xHosrHJ8fk2sXzgLANHE4lXa\n6WXl4vxa+PCbrnj/2/95o3E798K1nG69XnfvwEv3Xye3YRq4+VTgI+WBFd3kMtw3xjiEkDvvLnoV\npJRjYRi+R2u9BMC3LOt3Lcs6PBTvKBlUMNyRQU+S7nif1noi8Ue4UT2wxPGJrsLBQtqAV11I2+H7\n+cv2+symvXFmjzfnCybqd3lzPivtXbBWSahsPWdEMyIyy7VuenznFGBMUYvdkPZGHFle0UQDcmqd\nkT5v8eZURtlbIVs/Z2BMTlaWNVGCqPFayHbHNCEka7gOxdpZql3PMlJqNbnFjNMOaCdv9FjTJZKG\nbGeRy9Eq42vz2mS7LJxdDVlgw4x2bL41ElidIvFHPJe9fN5oGO3PrxsWWhKnl6mR3GSKLS3zngjj\nmlgZzG4wvTmjUWxoU/JMNt812g6ZX50gmdDRtCjt3rOLxhCt5XgNRBPpzKwbbUeqNNE2xgqt5lcX\nCTQicm7Pan5tyhggyr3FJ6STlaUlBUk4zewZLQOPNhtlKnu2YuM7Yn99jhhNZW5hlfR7jqwsrGni\n9lmvWdAj2Y6m5X2xt3zKgGhtT9RYa3vSUBbKzMw2GdE0HJufYLs7XYxpCW0IbTVHadh3lR5psP2t\nKSJDS+XHaqTXd2Rcx9ujfuCoicquEU6fb64tEKNpVDl7pfUvfvkvjuG9dy3SbTabGSHE3ZY93lce\nWNEd3Gutnbso6L8piXnOexKnsi86jvOZfr//QRz/wtAdVTAkx/m01nohyS1/4mZRcrL9WM71UMnY\nLQ1vNnkr/7xbXWqyZrlqV98QkLBQ0rrVZ365Ip2ViGjbjSrLIH27jwxGYff3xd45SwtPmEByVd50\nDe36tDsKXfJC3pryibRLMr8akn5RyPIaMUQGmK5lDHpdsXmGaqvnItCKhE7Wf8TXvKGVXFilpO30\nWGNCSFqlfOWcgSaOHL+qSGQZWb5MaMfpmErP1vk6c66c15pKJ3CahkhLyYU1Tojq2vMbIrACK3P5\ntNE8Iv1QMNIoKzW2C9V3pTW/ZmTGp/Z+0VhOH4ETCVw5pU2+RfzIhpEsYotXCTFzUeHUBkLq82Bt\nDloxEjkhjzbnNCm00Iu4tov7mo3uQ4Vcjs5sGuX6ovXcaRhAyfld3l6bNNRWks1EqjjDQ3fMkEiP\nULcUQLOA71yaI1pSibl1q5a4ieWWrpJeKy/H59YNyfSI381qWmpoZPtif23eEKoMyxBRuzJjmAiV\nGKsjL6LImdiGZAaO65tB+Zjfy2rkPVrfK9Og76pssUk7vqVHR/d0qdxs/MJ//m2Ie65UuBHXIt1m\ns+lyzreO4TmOnAdadJPFtCMxGE9MXt6jtT5z2KksqdV9TeekDVBKFRN/hPOc8y+6rvu7t5HuONZx\nPclCGjCUXtilvvulTPUNy1ZzUZK+u2PtP+Jo4rnoCk0Mq8jsFUm0nY9yzTrfWzTQdBz9nS7rTBai\n3JoiGkJOrDDSdfZZNDkiWbctds7DkKioMlWjxtq2pn6HNyYV4YKTINvlnXJOFjYU8UqQ02vC6Cig\n3SIztN1zXp4CUdNZWVhX1Buh0dgGhQhDNbdpGRb44uppGB5maLdraGuEyrFNIBC+PLdiGSV9e2ec\nGFc7qI+Cd3MsmFnnZmU+pJUa0aNNYvcdTVyf+c0iY92clDObXMfVAJE6c5mwbiYSS8skNIxm94tG\nZyPe25glWOESp8D9y2c0zXSVWFohLLBlJtcmfd+l7m7FECfgnfV5YkJL8tkN7l1d0E65rvjYHpWB\no0anNk3IlegszxvJI9prNFl/r6xEyUckXFWakzI7QYnEtMnkAw3bt9a+sUiMJpIU1sRO4mRWWFxh\n7b0RWZ6uap7vGLdwVumJmolEyPc2Zg2IhhmvscbOpKFMajbSAOeRnJjeNCzXI4XA0kox0uo7tLs3\nZsLIb/7Pv/Kbenz6uCb0DnvpOvdac36/eKBFF0l64V52pJQaSUTsLOf8S47j/MENbCHvx8geeSvR\nVUrlkpFDjw0Zs99WKuI+DKbMB0HwcJOE0W8W160V0Z3OGr+0I9pjJcV2FO0WszKzmTOm36OimNO6\nuyP2z1ua9hwEytLufkGJvYBGWUh7u8ObE5ooe0zaa33aK2ei4pohRmk1Vc2YQLV4Y8FRbl2K/RkD\noguyfNUQafGo1Oyx2pSmyJSk8QKxfZpoq21rEdLooZDCr/q8VtDIaJeF2YDWZy05uhnncyvblsp4\nAfVd6GLPZjvlgASOLe0VKq6c0ZqHLJxaD6niMGLLEtvlvmU493N9i184ZzRVpl+uG8JlZBauEsKg\nM1NbOsr0BS7HDmHhzCbXmzMaTs+oXFe52W3JTk3z/kWhc25P6/Fd0btw3hgYFc1Uabg9qWmhocno\nvimWPAMuabc+ioxmhmf6VitZ0OKLK6y7NqeckT0txutEBbbMZXqkGwoa7Uwa2e1aOzVDw25OuuNd\n4XWyqjgRycKcIZrN6fyINMTxreWvzhMTUi3G29Z2shBXWOqz1sakKo3tanesQULfkZnZDSO55LX1\nOWhFYfJdUU0MdbJTW7SzP6JKo3udf/i/fDZ80zuO0/XrWqTreZ4QQpx4L13gARfde6nVVUqVgiD4\nzsRR61nHcW4qYq/FnLQBWms38Ud4gjH2jbv0RziWhTSlVF5rvWSMGaWcvfhLxUtzV6zu6EOBrRSh\n5UW/In3WLdWoskYNt3eEN1OQrCYRuRk5etVGSNoMU0XNW7tW8zw1JCxrs2dUYdfRrNtl3XJksiFn\nfqlHg0JZZlZC2itb0diqgNYBCHENb3ti+xw1zM8aHWgQuOH45YhKrtTspoO21eWt6WwYRkosLxgY\nk5ETy5pIQdRYXdJ6OYSwXOP60lo9B8NDV/OmVkWP6Ox6RH070LMNV7OOdldPG2X33EgqQzo5RLOr\nhmjaE0urPKRSZNbnYIhm/f1RyryiUhPbLNqcVHxiW6uRFrF7rrLGagiY4dic0SbvWb1vMKr3JyRm\nNojqOTK7sGqU49OoMQJm+ZDZQARXTms4PfhCEtnOK2tiC4poObK4aozjs+7WBDKGGl7siIEQs9kN\n2q+Na6fU0GJ8jzihUKjs0k4vSyw/R8E7dvV5h0ifyMyExxqNkrEzKiy/wQf4lCqWtRF5ai0/N03s\nSOj8iBTrSWqitLgitlcWtZvpyNJslQaBLRcWVo2xQ1bfmoBrqP/+73229wP/7XGugQDXj+qxHMc5\n8baOwAMuuriLSDcR23drrR9mjH05k8ncznSJ+55eSPwR3p74I7zkuu6/u91hmjfY95FGuolRzruU\nUm8hhOwxxv7qvxQ2cy1K+uUot7wseosRUZhV7f0m88cWwuw+J8hMBROyx1vju0zhdMjaNauTz0pn\nnxloV46tWQjMLm8v5CXZCcXeWQODMZm7qojDs4ptt1hjWhKeHaNRp81aU67KbGn0MlxOrNrGyD7z\nKtzQbl/Ul0A0G5HZNUmlw6LJVWKyU6Ge2bcNWn2xcYYYHrjG9BTpFIWcWNNEES0XVi1I9Fl1jhrS\ncVi1oEngWHJ8BaSVD+SpVUsb2Rdenph84GBnWpPQov78qkWunFbIdE00uwkrtCTG9ljYGCFZP6Oj\nsQaXiUNYNL9KzX5JipkNozK+yWcLVGaqrLdbITy0JebWhZ9c7uPUFUp7mSi/eBUhNZR7BSjTpr1u\nnqqdvEK5ztobMzCSSXthjUjJZHlxxSg7YL1aBVlqDCt0ROviWQOiNRmvsV5tXFu5lrIqe8SW3BAu\naaeTRY6GhpK+tfWtDJEhk7mJBms2R6EjHk4+0jGwysGjbzeGORHfWpnSI45SxRnfWkkWDEcW1sTG\nxbOGwISPvesr3k//q2N1/0Pcmi+ReCV3Oh0rm82monuMDOd0b0t0lVLF5PL8kaHL81tNGrjG/Yx0\nE3+EJ6WU76KULruu+x8ZY/f6ZjqSSDc5tqeklN+RGOX8uzAMn/ii3Sp+yqq/iQOyZMKOq7maV/Zu\ni0XaUvb2uuVVNDSb1Nj2icpNhXmvT3SGyzGfoV+oie7IYlCUu1aD5aNCO2eo7kHsZo3s1sXeaUtz\nz0ZPaGLoqBy9JIm0SJRdCVm90mcyW5JY7YraaaJFN2OsnlGTXWFI0GK7s4Zwq0i7uY7Ytlw5KjVt\njkBOrQtD/YB2i8Rk9gjfm5Qksl1ZWdGsugBdaDCd3w9JUVDDJPjVeRApXKk7xFo5bbQIRJjbi8hU\nDcrtCd7Kde1cV/TH6pZ18ZzRPDL9okfhFZSZrAJCKndh1fz/7L15jGXbdd631h7OeMe699ateeiq\n6n6kJD5RpKRoIE2KlCU4UWA5geMoQUbECZI4gyE4NhwkgAwk+UeAFNixEMWxpESG5EgZJQW2YlmU\nYymyTIoz3+up6tY83Hk40957rfxxbz/24xvY3a/7UY/QBxxUV3VVnQL69Ffrrr3W7zNBruBwG6Hw\nKa9ONN3bJ6oAZzIgWZqSqJyBRXSV1QtyUapnD/ZAALDb7qj84TazcA42ziAwyqnlG8xJUBWAWTo1\nPltDttqK9VM1PNpBADDh3gM0aWibOx1yXiGzQZXRyxgrUz1+sMcoLXF9IGfdFkk/YVUdu6XKhJRn\nRGpC12wxZtOB7j6I0OaeC5f6Yjgtoy08s7Q9Awfl4qUPOQrLKAb9FSvWc6q1Jv3/4he+BG+E0Txv\nPc5dgMlk4rXb7T/yLF2A977pfl3SmHOusjDbb1mwYv/6M4RUFjAfnn5hYmZjrT0oiuKHhBAXQRD8\nglLquawiLirdZzbdxTrxy8aYjwshzoMg+NtKqS4AwLUs1M+Vzm+3qdzzXZFcK1FfYWHve5M1BZAv\nkxn4rnQRMyUjma0gS3etZ02H5K9Z6BQo/FpRn/RlVs8hrFUQxYUerq4XNSrkbLlWrGUeWJpK3wWE\no76+vo0Mbom4b0G4yDQfWLSKXOs6gILGarQduvjKyd4WgDRl2zi06Dwvv1XO9d0SCYpKJIaFPjtA\nVoKc6pAAACAASURBVHnogi651o1kPynEqOKgZGKOUqNP9wWFEw9mkjhIpWl0jDAqt7fOQ8jYhOfr\n4KJxYK4biGkI+WYHMA1SuduRhTYy7NUJglSks5LQl5X5DO/JJoOXGb59T+jCs97WsTPtLQ8+XWP2\nM5kV3pxM1rpWyemq9Zo3jI0Butx31ZVLLoJMpUc7zMJR1uzK/LpNGCZg4ylFzR7JaIaGFC21rpmD\nTA0e3kJgtHK74w3mc7Qm3Hso8nFsm9sdJj8X+aRMujRmKs/UuLPNKC1CfSCn3RZ5MZOsZlQOc/L8\nDK0A0l4Bzko56oYin/k0K41hRlrkSehqy+ngx3/+DLzgB2HOME7gjcziPjwfrsEbUiOWlpb+2HRf\noLLH3jbf7BOcc+XHDp4+84xmCwAvJiftkRaG9q3MfAcAJr7v/12t9dlzvg3BfJEEnyb08rF14k8A\nQOr7/q9orV/bKDLA+F9Vbl7qCD86IJh2vHwrJBx5DNS21S5hNjtXsN2yeH6pZncEQLHi1InjivSJ\nigs93vcYU6cmZSNs3DbhfYPklU3zoqvGrVxAdZ2K8bXuLpdsVGjGZpjvssdkh/q6LpkNqOEWodFV\nGx85dBXfLB8KdFjw0igkPZroy9vIovAgkQSOvaL90AknnF0/88Fwoq43pIsGKG9agMb3zcoDh3nA\nZvdQYCYTQU1JQSb06a5FJwPb6oDsrVi7eqlcOMlkFiCh873DDYtWiXT7yBN395mQXL5zjKpQFto3\nglOf4zAhWxvp/O4BIoA1u8e++QMgLE0crF1hWPgOlrsiHVYhKgIEOZKze/sIJCxud2R2umb91jVh\nYyhc6rtw9RxSRsmXqwRBKtMkEmZccbI6FGkauLh5Q6oyFsYp11y9IAhT3X1wCwDA8k5H9xetgWDn\nCItB1S6tn5EozUSRBi5u951aLntnX1hjQAJavpajqxVGaUku9Vgpa8trpyxLKcaZT0By9K/+N/8H\n1Vo3i8cDYZ7u8Hik0idhDpK/gTfGKj3Rq87H9LpKdzabee9///tv3ubz/8joPW26iJgR0esq3cUp\n//c7516WUv7hwmzf0Rzv885JA3jN0F5a8BFyIcRDIcTxCzDcRzyHRy2GJ1pdXkDYfxAAfK31b2qt\n730tF+K/DE5+4BWV17eMnrAgimy1q3DGr3q2umdkdiXzzarV5x5zZql+Wea8ONfJXs3Jq6mebHmk\nRw1SNxl6UcnR9ZXu7wsGUyUaF2jiRlG+nwunhG2dGDGJr0SytGT5ZKBuNgUps2Rrhl1V+KRp7D3c\ndghQZwpmqheFtnJNmMbSrnQ8ZjNDc4tZZKh76wVav2SXjpwcrIJtXij2ZpajRDKaXB3fAmSMbP2Y\n1MUWkD9RrFPjtk8kqTxTF20Az49AGfAfHrALEt8V1kFlDHZpoKSRM2/1Umdh6oUPd5mkxbQ2lNhr\nOqr1wTrhvK1jcmEqYVQnXQYqlkba3L39KPJHUL9OonFNFKVc3jpm9gqZXLYhsh5AlHqzV+Zmydsd\nWZyuO79xQ6I5QD/3iatDTNJQeKMWCAQxnZaFS0Onmzdq0l13Yb1PXn2AlqVd3jxlCDJ183AX0Ukr\n6yPvZj61YCq3L9TNg7qtNK85aA7QZL4NNk6ZtFHdzjYwCQflqb66e8AAMPkzf+WXig/8wOOmxzCv\navsA8JXHPu7BV/PtVmAOD1+G+avJrzXiLrx1vt3rKl1rrfzkJz/5TGce77beq6b7Bqbuwmy/zzn3\n7VLKz4Zh+DeklNPndL/nkpMG8NXY9YXZykeGlmXZJ+AFR/Yws/p6vAhrbasoik8Q0cpinfjzb1Yd\n/7Ie735eih3J5XwkE38oXfnA2PMRYrCfxaNUFtJCmDNadabsrXWLnQRttWbKhwoLmXApqzKMz/X0\nduzEkEUiI1s5ixmSVORV6fxeX493GFm1rTzNgbzY1A4JHbJrdAN26YXX3Qyd19d6UEZWtl6sDBgp\nCvIqWHXZSmWBzWI5T7x7viANVVcuLK+OFMs0lTfLDpRXBuFyfb4vKRwpSAVT41q50rAQSURuuRcC\n2Vx3t4Ur97XulRlIartx32Lh5fbOYQAzmfmXa+jUNICTDVC5L7LNY8Vnq4VYvUSqjDFIQgZ5KbI8\nkMHlqnPNri7O1hCcyvm7nYJD3wY7HTa6EGJQYw5SyEBqONwlKo8hsRo5DaxcP0VHaCu7R+y8XGaX\nbYhJMpQTPZ1jHQnWLkTeaziv1ifR7KNnlQNkMZuUIHQaJKOanm6gK3zrt67V4HyVlZfbsH2FjoVd\n2ekw+JkcXGwJnSAFrVQ/Wqio7nT0zeEueWHiqptnWOSe3djp5Lc/8uXZn/oLr77xaXpTFQBwurge\n1+P5di/BHChehTkN7Ape36aYwddUugs91TbnN0rvSdOtVCpuPB6bRaUbpWn6J51zH5RSfu45my0A\nvPOctEdaVI+fWCQB/0PP8778yNDeLZD5W/7lPJTyY4uli7elp70iivJP+aN/MUOOPmBsz0Lgtxiu\nz2TScChB6VSNpdPbRjwwqPWy8e71ZLqaoRevg8m6Ml9pWnViwamKqR2CSIMBBisrIPo3enigWKRV\nh310tXOfIB2o6SpBIIVMmjNRlJdseFRgUQlN80ijgYxRxiRHff98CxltmcTAoqPQtLo5FgHYjTgk\nXRp4h63A1kDIK3aYY7m41SWReGx2j0GMdSqytsd65nTnAJBFaBtHDqcVtJsdZKYMlJUsC1Qne3Nm\nQ7Mj1OkWuWgibb2fi6pEUoXnnS5ngQlE6ueBevX2fF147QIwFRbWTxjCgiM/Z/LIyz6ziZ5pW7vT\n0W6e4mvs7qGQaWC83UMwCKI0LjP7qZz1GwLS0FH7Us46WwAkrNqdIyBrOx2yfi7zmyYgMkMp0bP7\n+wzCETV7Muu2SMZjkktDrlXHLJQVs1nEZa9g4edqcr6GrvCd37yRw5N1YJJF6/2pmI6kXd05YvRz\nMR7UuRRkFDb66ubuAQJAsfnyl8Y/9lwmFYaL63Hz1gDQgq+a8W2YV8ePonro3r17/8zp6elMSgnw\nhK/ivtF6T5ouAAARSWPMB2Ee1XwWhuF/J6WcvIh7vdP2woK9+wOLVInffrNwSphPL4Tv6Af9Oj8G\nM7/h33sxB/z9i19aXzeUsgDCv+aPP1Gm6LoN1nxBwUGDuGAxaxMwbFk81FxerTs36niTPc2QVTjP\nC2R/03r3LGovMsHxUI3aFtlfs+ZkIPLVmvPOgIG1bZwEkGFPzTYqTl7O9HATAGjFRIdWBCq2cDnS\nvU0HHDTYpGM1Wg+dfwOQe8qudnx2JpGjNoIgVMN2iias2upRLsexMu1LCZxm1Kp6rHDqHTYBGWrF\nJhWyJ4RZLjTHgaNKXzJPU/1wHcCqiLzMqes1QdFIglXOrZ1LCqa5mJRSWp5G7I0oOLnFLkhCKohx\nFnOxeSyQIdG7R7LQxgs7W8CFxjRKlby/SRRPIAPp5CoxqUOUJG28ds7zZYo9AAA2G6fKnm4wK+Ns\nswt+UBixeoGGBFUaXWBl1eR4G8FJS5sn3nTRGtB7D4WZRba202Hr5cIMq6SChKky1bOHu3NSWX0g\n026LUWdONqZcLc1Y+TlmRlOdBID01fgkFPlkw7naQE6SCG3hu6Dewzz3XHPjlEqNYf/P/+L/+cKe\n2Pn/ifPF9bjKME96Xvr85z//0k//9E9vHB4eyrW1tS8AwOcB4Fdgzsl9M9UA4H+AeVuDYR5KeQ/e\npVBKgG8A3f956Pz8HBHxFBFviGivVCr95Iu8n3Ounqbpv14qlX7qab5uAc35OBFtKaX+ke/7n34r\nPkKe5x8mopUwDH/t+fzUr9d0Ov2PgiD4n5VSfYDXxr++21r7vVLKr3ie96kn+aX1HwTTj/89bT66\nTO4mx6TecDLdIKZLBVR1RXqm07UlB7nAmdCs+zVHo6mkqsdkJjLZkAC2SfmQAEXVyRsjbCkTNvIh\nU7mw5TUrOzM5Xg1ceB0B5Bm6UkyUjPVw1yM5iyEBhyzrpnxMwnoOWAoxqhqRV+o2OrbqagsYTc1W\nTghBSpa5kTdrTuSlui1f5up6RZM/CiEnpijx2JuymFYcJtWYpXGyW/Xsci7lmY8UgV/cykBOLWFR\naOwhq5u6tNVrX143AJ30TPtQilHZcWXqETmQ4wqyEYEdxohZgPnGaWiPN4hV4cytQ4Q8AETGwigJ\nV6uOWijTQYGQBdatnsvseplkZex4+UZQHgAWGnJllTneYpaWitpQ2l6TIJ5Crg1JbViUJ2hJImQB\nU5DJ0XxkzKrtjhp1tgEAjNp9KIpRlf04YYpStNNYmFlENkrV9HyNQTiCRk/ObpYZlXF6LQEpfQC6\nYqcc2sxHZxROskBk4yp50az/7/7qf282Xv5G9VF/AOaV7e8kSRL/8A//8L9w//79PwMAH4B5C+Lv\nvcXX/TwAfAoA/keYF50xAPxVmPePH4VS1uEF5aMBvEcr3bW1NR6NRj/BzNtJkvz4i77f07YXFgsY\nf4KIbiulfjcMw//9CfgIL7S98GhsjJnFYvzrY0KIs6fJSftFne/+tjQfXsn1sa+QJ1iOS5AXf+gV\njXXHg4kwccOGhzWyjRNdilfJZidefjsimHjgkpqLj0N2RU+KtYh5dq3H+wws1hyeWPBl2UUXY5HV\nE4hFiFZ3ZbpRt955KpNGbKvHPrNJpar7DrK+7h0AMDRIX+TAMjK1Q0JC69rXJXbpUHdvadJjDxNN\n4Lxmtm8KOXBg1zqA03As8+WIRVbI09uAjCVTP3SiCMFs9RhTnXOlpjkaZ+Ec4l0yG1MnhyUsdllR\npW5opRAMSeF9fhvQidDGs/kMrzK6KN1Y0czZRamWqTfT9aEsqqMA794BAHDJ1rGCsw3iMHFuR4Hv\nXzEoK/JBFWIW7MJMZ4sMNLvTkaaz6VS9T9zuosw8C2GKmdUSLlcAwgSyNBRuWnZY78vZoEp+vU+y\nPgDH0i5tnDIFmRo+2EPBaKEy0ePFiq+30xHZVcuV25dO1kfCZoEL5QUbz6jR8RYDglOrWo862wxI\npNrXQEbbWvty+oN/+Te+gYYLMO/pdgEArq6u4iAIEgD47OJ6K1UB4CMwh5QDzE17BAD/PLxLoZQA\n71HTBQBAxCnMm/KKmcXbxJs/j3s9UXthcZj3Uefcty623Z6Gj/Cic9KctXY/z/M/CwAz3/f/l6dJ\nkrjPHP1kIT7ZK8phI0qwI3lry9FJAVg6KOJJT6WqL8Lyns2HDzxTWTU4JQSo2PKRxNS/krC6ZuH4\nQmf7miApM06tq89CNuZcTfcDhmkOsyUjXLhuvHsWlV8y8YNEjpq5UJU2waCvx3seibECQOWaxyFB\nNlHjVQIPpUyaiSjKSzbqFGJaV7Z17DMZI7yKYix6/sN1Rlqv2dJJLiZNZSuXklVqeevUZ8imqrMP\nAFwGd2Nkvy1c1BeQSbabx4pUmsh+g8DzYznp595hW7hqoXFYI6qSLPbIiHwz56U84Lww4ZfW2Pl5\nQOMc5bgCpnkt3aici81TtPFMBuOyw3jK6fLM17/XZtarnJZmAgZ1x/UukHQu3D5m5+fC3DQgFsyu\nOtbZYmrBbR0Lc7lCojxyuHqNceE5aPZEmoQQmRqiNWp2voaUhU42u3JyucIqSKzXvgYH+GhGV42O\nN9HPQquXb7z+4rAs2OnI0dGWixuZreyncnJlbPgoBuh0A3UWpN/xr/yD9MP/0vOEkT+LHmfpxp7n\nPUlrcRfm42p/GwBeBoBPwzwv7V0LpQR4D5suvJ6p6yPi0875PY0sAOBbAdMXfdHvW/AR/vAZZ4Jf\nSE4aAIAxZgsAlqy13+l53m9ore8/TSwQMcO/Be5HzwDXDoR9SIUnljM8uoqTlRy94GWTpkMkf8/g\nuUGPl4w/mYmZN5Zye9faTlfY5SWjTxHYaRdfl9maE5XvNp27mMnpdkB6sESyl6MOI2JzpkcHgsG1\nKB3kaEtLJj50SOjZxonCxO+qdLVu+Xyoe9sA4OarwqGOnLwcy/6qFbrUIh5OdW9PkZ54QOCbbYtg\nTlI5ig3EhUaQE9W/Fdj42qrrNaTyKHCVKyOKgGx45olRnMrpiufUhdOnm4CMwWszvDsPBWY6wbwh\n2Z+K4DMNi074ZmOA+m7b2o1cmU3IMS8zmCKQD+omHmkoKhC6u2uIJGy2cyhg0sjly4Ww6ZEIJ2WC\n6gBTllKfbDquDmSRRgiFb2H1FCnzbbTdIRdk0vSXQGpDbmmos7sHzMDkVi+kuW4TBDOHrS6WnWQh\nLSZpCCVlGTyjZhdrSLnvVLMrx6frwCRMsH6MRMI2d44I/FxOuw0oKUfl5dy/+P06ANRttN3R3fv7\njEj5rY/+k/EP/cTzhpE/i16bXuj3+08KMFcA8B0A8B8CwB8AwE/BGyvaFxpK+eiHeK/qa/kLL8x0\nFwb1KCfttfsQkb/gI3y3lPLLYRj+zXfAR3ju7QVr7fJi/KsNAGPP837jWUDsf7UQH5wYrZcBTg+j\nbIuIxXacdBWJ4o7jfophPWCenqhpq0DU7zP5OGHp1o28NxGiVLDKC5nEfeHqmxaPZsLVGiY8FGhl\nztW0xnZyrmcHkRNDi6mOXXRRJpykwlSBgsFIjdcdkte2ujMVRTU2pRMJYAy1LktMaVf39hWJJILC\nWTRhzVTvW3QK7NqxxIk/kZO2IOcKdbYNyKJqag8Jra/M+gPGWTiDqi1xNMm8szvADGVXOnNgPLSt\nU2RZWN64UCCyTHf2gBkiVz8ldbkB5M0UiMK6zTNknRWiW8+h7ALwLiD8vR0m4fy8MgWcVK3dm0pa\nimZ6BdF5NvJ/fwexQMhuGY2fu80M4PL1U8QktHKrw1ZbjtMU2AmZ9Fuoc9/RyoXOj7cQGA1sHyHN\nIhtvHZOLUmmHVfKiGZmlgc4e3ppD0Vs3Mr9uM6icsDXhUnnK0ssxs5qrTjIRqFmvhS4Lnar39WRW\nQio85zWvMU9js/K+ITt7I9I0pEZtQGFj0P9zP/dWvdJ3W4+zdCOl1JMAzB+Nqv3B4v1fAYC/Au9i\nKCXAN4HpvosBlY/4C+niEOo7FwyCB2EY/qyU8p1i5d6UMvYsWjB3P75gA/+/YRj+3SRJfgyeAcT+\nfxVi5WcS759FYF6pzAZ1K7sN5caXs2jZl5R/KUpWEBj3KZ8SBZnPdnAi8ZZmoqmcbRbIwa6xDy36\nesXiTVelqxmq2Bc270nTXrF4YpC9iq0dSki9oaDVZVK9Sz2+LRlMy9ENu/J1QCKZyFkjA1/4woZd\nmW3WrX+WivGyb2unEUOai6IqiGYjNdhlZNmy/nEqpi3Pli99ihvOrXU1czLS53vAQFXybnI5ansu\n7CIYQXbryCPOZ6q7Rqi8EhZBrkYb2pW6LAYNdPWudpWeEVlIbvU6AEO56m4IikYBjpcZi0Ca5WMQ\nmZ/Zg45mLnLvpgnoU5APMwweNMFWhpHJIgLJxn4wEwLjXH3IsikJP/jdDWADNm9IDfdrzLqgrDQh\nGaSEy1fgPMultXNgZdTsdBO1k5Y3T7xs0RqAnUN0g7qN18/IlWbCzSIX1HtcRKlOTzbZIlHRupHZ\ndZtBGeZGzwWeAdW+YqcIdJgBGYWTNJRFN3ZUy3BWrAuTRORXR/0f/flfBRW8sDbeU+pxlm74hK2y\nSwA4gfno2V2Yb8h9aXG9K6GUAN8EpgvPgan7JFqsAofW2gNjzEcXh1DPk4/wjk130eb4yGJB5FFP\n+RGI/alJYz0C/Zdm+kfWDZ5HHmWH49JWyzP9V7U70ABFW5mRmoW8pPL4c37QWnVueKXsgQCAA8PT\nnozHDbbFoc4OfOKkLBLKkcIto+5bofya8Y+6arZqUfpbtjgeqHy95NQ1MlBs68c+FHSpZjtlh71M\nD9uErFdMeN8ieeWidD9V40Ym/LhNojvQ/QNFIi0DT8DVL32W06lIajlUrI+E135HhzbynOq3pCv3\nIxffWFGE5PwLh5NoLNNmZNWZ0ec7DMAl275PWPhgag9IjGMDvvI4LEAf355vrDU7JIYtsO1zwV6S\nYylEYPbU2apDqz3rd6R+eAAAILONBxazgKDx0INMJdFAAgkbZV8pocqEK9bPJZ1tMASFoQ8MUdmo\n0N9RkPGUH362AczMeewpfhARl2aQErAIUivrPbCabGXrmJ1XqNnRDnpWWayNvGxxWIa7RzI/W7Vh\n62q+PpwFLlo951xbNTveYgYmu3qpZp1VBuGIm10AJ83SXkJYnUi/nxE4Mf6+n/g1V7/1TGv0L0iP\ns3R9KeWTAsz/AgD8IszPaB7AfGRMwrsUSgnwTWC6TwK9eadiZlxUtz+GiNe+7/+S1vprZwffqZ65\nvcDM+rHxry8tZpa/dkHkqUlj//Z1+ImLVK6sBe7iFZYHIdM0lpTpaXjiRRm8mgfbB9L0PudTXHM4\nqjMkRKV01eXBH/qmXndEI5lVYid7y8S9KZZLFXCDjp7elsC2SXYoWJg1q45zdD44r+twqi+13Vmx\n0OnJ2Xbk/G6JcJhzIy0BFZfzVWFbQxqlWNTrJu4QOpB2+diHVAzUZCNy3C1kr81IqmmiBw5tUMlu\nG6uubQYxxRzNJt7lHWCGKkXnDgC1aXUQiHJavwpJJDN9cgAMXKbo0snBCrpoIBktua1jxSJL5eU6\nC4gikj2rT/aBVRYyZ0TxDKg6cGhh6m5deCwTL7i3BwDgpY1ToU42mFSu89Yol0vO0XLkq2MgXZqw\nqY49+PQ6AoApdo4Cd7TDoE3B39pFz8S5WE2x4ECJ+xIYSWSpJ/nUc25pIpOZBwhs5MYJOmRb3ekQ\n+bmana5hVPggwswbLypiuXOkZkc7pOKJ8zcu0Oa+Dbc7bJRV09N1xDywKk7868+0AQAmH/qLv5Lv\n/tALfcn9DHo8H00HQfCkrzQ/BwDf+SYff1dCKQG+CUwXXmClu1jZfZ8x5uMAEEkpPxWG4e+9iHs9\ny/TCYvzrg8aYPyGEOAmC4G+9zfjXU0X2/OTQu/NbqfruCtAwRMjXp+IcS8yvpsHuXpCdnCOvrFk8\nUSA8f1xylTjLv6R5bd2a83Pl4t3CGxthJl0uhw0200Od3Y6JJwiprbnwtMSUDqRpSebiSqW7Dllt\nWneSgwobJnhQYBEYKOUeU3ahk/2ykz0S42bgSldlwmEubFlRcDNRkxWHzm9b/2gqJ5u+C7sB6aHl\nVuox5119vQ/MHPKEEjVsaxd0ESwqu3rkERRT1dsgFLosUjOT00Zg42tSNyvgmpe+C0a5SGNHrX4I\nBaV6sKVcqStkb52BpG9WHzg0mu3OkQYDqbxeAxA2kt2WE0lJufqlksdb1jW7wtV7RqZBgVuXHrG1\n8ckGk2+CJAEpLjacqw3Qpr6T62dE8UzoJCKvMqJiaeCbP9wBALDF1vF8Xhec5fffgE+hlbsFFhSA\nutTgDMl0uip4qBy1xnp6HiIX2sr2GTgnbXWnw+xnIu0vcckrSC4N9WhREevtYz16sMcAbKK9+wh2\nw7RfujZL3/a56Xf++Jee5rl8l/RapTuZTLTv+++J1AiAbwLTfRE93YXZ7i/4CKi1/vvGmA9JKV/c\nlspTtBce+2XwCZiTyZ6k8n7i9sKXU4x/+UZ9qJXTtVcGey9Vt3Zj27kmaOwxP8yNDrLMA1dJ9FdA\ntj8s8mxAIHdn3vkoAD1A7a1Clp8q3mlZujRAesnEhxIzfSOj9TWg6alODyRDsUpwyS6aBEzZhcp2\nEJgZUy8TtrJi1aFFDiqm+hAxC8ZQqrZY5jd6cEcw2DpBlykc+KTHichKKVTyGCDv6/F+6Ly+k5O2\nctGg5IJrC/4+Wb4BMdJjmW7EVp4n+nqHAalmGw8IjSdMdeTEqJKBH8Ts9XLv9A4AQMlWjgmpgmb1\nWABbA8oJFrZQZ7vzdeHWEauzHWZhAte8sEiKnboC0atYiIXiuAj0/duMjCpbPUI82rTc7AqzUaQa\naiDUVZhPIxH1m+SqQ53dNBEL39mVC2FvGlatnpOrToU3C5231OOiMtHmyzvMAC5bP1PmbJ1ZOEtb\nPfDQN3oHwWhP6JFCykhMxysCrqSD1kxOLzRS7jmx1MU8CW15/ZQwTkWRBq6+1GMOUzV8uIfAWDRe\n7o0+8pMvpMh4h3odwHwymXiNRuM9kY8G8Mem+wYZY7aKovgEAERa63+otf4KIrK19tteJMh80XP9\nuqZrjNle0L+k1vr/1lo/eJLxr8Wo2xNVuv/GUfinX8nk/m7FdYYWKwfCPhhmopI6CMc1V75xsvVS\nmD0wRnl3HJy9GvLaLOXgg2ECfQnwwdxliEovG+9yJpP4Rojyni2OrpXbqDq8kYy2ZKunIWR0qvKt\nuuPuSKYbCOjWreoUWPKrDrrXarhNCHKVzelI5Wslp24QGELb7ARc2L4a7/qMU6PGNYsuWLbBocMi\nDEzrocJMJ+CiEnvJUPfuADC0nO8KYN8zjY5AIkfL1z6J2UhfHswP1vwbI6dN5aJrCcI5u33kMRQz\ndbbNYL0ymKSQ3S1B/kRjQUyNG0nRxGDuES33A/LHuT7ZAxYuIr8Pst8CFw8kgMvd/rFglbG+aBkR\nos6rM+F/dpsJwEtXBwijqoGlLrrGkHyjmZEU3DSFmpXZxYm2d+eIR7d1Is3pmlWtG+KlnhB56Pw5\na1cXRzvMwC5bu1DF+RqzcOSWByx0YMovOeKawiCXQAXL8U1d0rUkrGUiGYGw04BEeYxp5lNYG5j6\n+6PR9/6N3wKhXuj41DMqgK9h6e7v778nWLoA3wSmu3i79E6/mbV2Nc/zH2Dm5oKP8IXHFy4W6REv\nMrLn0cbYmzJvrbXtxfhXS2v9W57nffFp2LjwFuyFr9WPn/gfvs5w6Y5w969n2Bg5rIglQT0nGnci\nc9/kqGoA47vg7wpgvlWesmXADwnuTrKAljLAr5TSRiZAfNCkSwmA9+2ZNIXwlz3npRIS/1hza9Pa\n457M1yrWO4+Z0imUqMI06+jktseQVjmxglXWNt6ZE85XTl1ZTINLaVtti8cDPd6TJKdVF1xZHoIy\nogAAIABJREFU9L2Qwd6o3i4jixUuTidqsuGRGgpw4Lvlo7otr/e8k4pFz1sSmZnIWSO00ZWVw7Z2\nSxc+eZMCs9gSDhQWeixHy4GLr6y82mJAjs3qfSuMx3brSMLMS2V/VTIQqotNQuP7tnnMottiu3Ku\nOZzmOIvIqV4IBeSqvylcPPRlfwWx8KFonwJkXs4f6AlXVhB+JQAQ4KVRprx7+/PkicoYYVpyvHRD\nFCccRCdMupDF1TLE1gOnC529+hICgHXbHVkc7ZAsjxysXaLIfRtsnnCujMqPt4Gd5MI78/NX1pmR\nyK3ciKLfsOH61OktgsgEgMBiNo0U31Ug2E2+869NKVz+o2i4APPWwmtLR9Pp1FtZWflj030X9JZM\n3afRAmX4cSLaVEr9ju/7v/QWfITnQhp7Ky2qVcPMerEBBwCvrRR/nIj2lFK/E4bhL78Vv+Hr6OtW\nur8zkEu/0lHfMzRYFQ3ggRP1l8r2XpGhrgs3vpuoPQVs4prLlxzZb9eFPJ6F2Yog/9OlooFMvB7P\netVCzr6FHR15QZEDB696M50KiD5QmHEiZPhtme9mothIpcA1tuVTXaw1rOhNRd6o2vAkZipGUjZ8\novRSj/cZQaxaOE0R/LqJHzp00lJ9VCE3vNLjA5/kxINUClZp3YZnZn4odyFg6g1Uul524vLKf6gJ\nQLVs+YFDq9WilZCiikqk+1N9eRsAoGqjE4ciVmblSKDljFb6Hos00WcHgABlWz12qrcG5E89Lg3I\nlUaChS3kZZsFxAF5PacPbwMAhLZ+QmJaY7t+KllmCZdCAIeRPmtZLHzMy0OlfreKyIDpzkMWszgV\nOx2V60KEwxqDn0EqQevDXeIwgVw6AdOy41oPSLALdjrEfi6LXh1ibYirE50sgintdkfnh7cYpLXq\n4B6K3Lf+zhEbbWVx1QLlBLDs++Pf2wIAsLB5qmYnGyx8O/72//qBrby0B/NTfAfzUatHaMVLmOMW\nv5GjY6+rdLMs8z760Y++JwDmAO9t030DU/dp9DXR6/84DMP/7e34CO9yInBBRNFi/OtlKeU/eXz8\n6xn1tj3dggD//VeCH+0bsfRS1d0tcvQrwk1emcgDHyHzamCajvu3AgPXE7nkaZz9PzIshUDeTpTh\nZq6vKjJ3d2elRlNY+7mSqzgA2LfFscUAW86lr2rYdsAwE8l4Kqh+UMCVQxHu5tVZJtL6hfDEt1jt\nHXrjICAoYnYFueppSJT2VbLhELSUBaTC1NpWnWRYVCJTOwrAUiJFw2PMemq4zwhixarjRJpaYCun\niqEQtEEIxWlXX+0DMzdJXOVy1vRceC0BHNq1jmYoxupqh8HJKqQmkaO2dsFQiKQCbvncI3+aiyS2\ntDSJSY9SdXULWWUhu4JFUha2cQZAYO1OR7HMU3m6CYLDkHjk9PE+sCpKDFNiv2DbvlIQR5n4wExw\neu0F93YZGUW63dFyjnh06fYhimnZ4laHjV+IcFIikBZTEFKfbhDFE5GTFJxGjus9NLlng40TgigV\nZhZRuToiKk/U7N4BAoClrWOd3tsHADBi9xDNNLaV7Q5TmIliVCZZmuTNj3063f6znwKAvwhzGhfA\nV4HjLwHAx2BO+XqU/vC4Ib/ITLTH9bpKl4hwb2/vj9I429vqPWu6lUqFxuNx8bQ93UWMz0edc9+y\niF7/b5/QzAqYE4lepAwRhUVRfIe19nuklF98xsj1NwgR3du1F/6zr/gfUim7XXSdV0fiQAso/Crm\nbearuk+T67HY2Ihs9PuFL2NBSUXz5FYOXc9n/eq0tL7jG/FFD1ckc9ESLoVJgMYrLu4FwX6ZaKwx\nazsAtWf5QY6R3yAePtCzLQKUWy4966sibhp5MUMSTVPJA7D6RCfLm0ZyV4/RAcNeEV3nwrnAQW8g\nxyuF0PE687ivprc0iZlmcJ6rn/qE6VBN2zkEXoBOD9Rso24rZGSv7bnKVeT0MBNFyZAeaEz1SE6W\nIxdfWtndAkBXMa37ThgfbHwEOI0mIlv2GQ3os1uApGK7dOReC7iUWSGSMrnQBWJWzURaUq52CfJy\nkwHQK9bvO5H5ZPeOPDY0VVerACBLcloCfbIEtlF49nqVIUydWb5SAmCmtk+k8TM/uL+HSMKm5akW\n9w4WW2tnAkZlK9fPGOIEozRgKEaYZKHwbhrE8USkvYbgNHJQG4h0UHV+65qhPEXHwlVXL5i0UZPO\nNkoSFtbO1XSx5VZ636vDl3/mU4tHQsO8CEgBYAxz/OEjPUp/WFlcH1i8P4XXG/ElzIEyz1uvq3QX\nercM/x3rPWu6C2VPWukuKsfvXywOPDUf4UXmpAHMx78AQGZZ9m8+xxTgx+XgLWLk//6lbP3cPf3D\nCEClBsxajrtLIQ1Px3K1XCLxSqb2G9K5gRC9WwUlJgR5MtGbO5E9fgXk+ipbipGL1UnUE2E6/awI\ntg/QZFc+7ZUN9leAexMslSI2+T2d39bMeYPTTLNIVixeFEKE0vndqZyVu4JKm5aOTmWyVbLqCgBm\nvqtXKsTwwB8se4S8TIwGCbbyygTRVgLr32iYup5K1kqOuokerzGyWjHRfYvWD0zpIYLdmYGvK6zN\n0OvdAQBoWnViEUu+WT4SaMBQo+exTMbe1W0AgJqNTwo5XhYUDH3yx443p4rRJupsg5GCEslBoU8P\ngIEiiq6IfUbTOEJ0nNNqV7AoUJ/tATL6dvkI9PEtZuTArjwssPDJ7oIPiUq9RCELG8DVCmAaomld\n+3S6xiCssdunQpI0ervDhZ/r4GieJpwtDTUsuAv52gXytOTEUpeoNcAo9wgJMU1CEQ7rwCQhSyNB\n0xJBaYKpkyy8zOqlPrigcPWtY1ZR1vuWv/OrgK8tLT4y3TfTm6U/IMzPVh4Z8YcWbzW8sSK+XjyP\nz6rHK13JzLy2tvZHZVPu6+qbwnTfrtIlIj/P8+9xzn3XYnHgbz4j7Py556QBvDb+9f7FxITWWv+6\n7/tfeN73gbdoLxQE+J98NvjTJeDxWomvz0dixY8gf2WmDpa0c7Gi4H2FvR4rYY9Gcm234jonTm62\nwV0oArc8wX6jBNUvZP7GS37WPZO8upOLXlljcDEuTct+Or4XyIOacwMr8vKS9c4qbJOejFs+UXai\nZ/sELLZccVaAhLbxLlO0UQGh0eDsiS5u1Rze3OhpJXbRZZVgPBW2okgFF3paMoLU7TzKL7zUr5mq\nq5EKExEmiim99K73gRnaZM77ciJ85w8kMwnb7njEWV/3dgiEbkJWTOW47Tt/wGJaU3bp3GdvmmMa\nF1SdllikYz24pUhPJcwEgfU90zwiJCS73dFMJlHnOwCEMSTWyP6yoGCiMIuI6j3hSiMnjDJu41qz\nnuX6cA8AIDLBSOhXKkzC6qLRMxgK5jDTmHhJVJkiSRNmJ5uorLZm7Vzz8RYAg3G3HqDIfat2jsh4\nhQqulgFIclFKNL06r4iL9TPpui0GL7W4cS7CQjtsdjF3QmC3iWy1zNNI2PMNRi/v3/6ffpb99iOT\nFYvraZIYGOa93h7M12ofKYKvGvEuAHwPzM25D6/vE1/CPD34SfRapUtEyjn3Tgz8Xdc3henCm1S6\niy2t77LWfq8Q4t475SO8iOkFY8xuURSfBAD0PO/XF4zbF/Fy7FF74Q0HaX/p//M/bHqgIg35Vybi\nTqQhKXtu6buccX0hp5/redXdukvPDG6tKXeGBrhS8AiqKO9ncvegZE57hLX3AZ+kRsVJ7kssTeEz\nQsXrWJzPBMftqXcogkJfifJaGYr+kaYDjzlbgiIBF53EZLNLjdvIzFYmQSaotGHw0AoMGqb0kDEP\nhhCrmLE41+PbgsE2iXrMQVozcnKlinIC5UYVqX/k91bKzs8Ap6WyqVDTlTgX+ZKmMksx9vp6ulVy\ncJXrwSYAQMNW7zu0PtrSEeA4mmJeD0GkVl3tA7Ko2MqRxWlV2uVjj8FkIiwDm1SowapB44e2duL0\n+T6ztKFdeeCw8NmWjySkOpXFigCmQF2tWZGHytUvhDzeJLfUk67aK0C1nX3/NISka8KjHSYkPy/d\nCHXVZvIzL4sKIxs94tJMCSdd2OyCk0YVnR2UTlq7fqppDiw3budI8DS2wfYx2TCVYlghP5qRWe56\n+byPa83WsTInWwAABnYPhUpDG+4czZr/2j8uah95fM717arcp1UCAA8X1yMp+GoMzwp8NYangDca\n8ZtFtr9W6fb7/VBr/SIJg89d3wymWwCAfjRqxcwyz/PvsNZ+dLGl9XNKqXd8svm8ctIA5vE9eZ5/\nkpmXtNb/4FFWmjHm+14gyPwNI2OfOpONX/iy/pOAwO0KdV8GN1IBlz9944lbS+7kYSY21r250ZZS\nmBY19M9TsX6r5o7GFuM76O71EtnqkxRYc9E5qaU9nR6RFaVvy0RyFHNpknmVO36SnCvYqFnqIQDX\nbXzsQwYdhVstS9cDXWwyAOw5eFBgrEuOr87VdJtQqA02p31l1ioOuwyEZVs/Cjh3NyrZ9RlnhZrV\nDFK4ZtRRIUwY26VDCZmcimBZCDE4VOcrgBDcyqs8EuQv5as2BFyeidB6DFnPO7sNANCy3mkmp8uS\n/KHHKiG3eiIZi6m62iSkoGZxnOirPWRhKwR9otJYUjQhLKRz7Z5Heprp09sAAJGtHTt1vc4sCs9V\nuw4rEpy0KAZlCyEqCIzQR/sWWXjF7hD10Y6j6lCa1rWRmVdgfOq5govS6SaTMkFiPCn7S0ThDAtB\nhOUxcXUEKMlF62dAyqrsZBOlk9Z5Z9p27iwOzk5EcdlyXvvKcW0kROY7v31FtjTVyYM9kABp5Z/7\nVLL2793/mmfleZrumz6LAHCxuB5XFb5aFX8rzFdzY5i3Ix7vE0eLj8H19XXsed47PvN4N/XNYLoM\nADkRBdbaO8aYjyHiTRAEf0cp9bX/qM+s5xHDvpiY+DgR7S7G0z7z+PjX84DevN3t4bGRMWKA//Qf\n+X9qXdLFUtn5n73Uq7U2zT438cSypgu04MoJTAoP/bOpWL9Vd0eJw/AlYe+ejuVqQhBRHWSfRO0j\nUequCp29n+jqLgTrzrB+uTTNJgzlbXaH1miMMv+CS4n/UHrbt2xxfCHdVsVBt8w4FlS2JTb5A50d\n+MxphROLgLRZqHtOkBc4fWExDc8lb65ad3Kjkx3JmDWdvjKoVczgLtVohxDlurXHQ5VsacKpZnDa\nLR37BNmVSm/PBEqpJld9OV2JnJ8RJn5smmnZltDJbN06TTGRP9LXu54LZlpOlAPnxcXSoRNOol3v\neGzdSN1sI7Cr4EjlYlrXLu6CvGmia14pF46syEJLy4OQ1DjT57eA0cUU9FkOWkDBVDI467ZPhWuW\njbzQBSwVmmoT6d+/zQCgspWOlKfbxGEiis3TQuc+YWXi51bK6GIFuXAyBRByWCeKZpAhAAhnsXXF\nEBQu2u4wKyuzixURZZHjykQn9+bLFbB6rpKHt0iEiQlfejDc/pnffpNn5UWb7ltptLgeD6f04asV\n8RoAfHDx5+Rnf/ZnX3748KGAeZ7ZBgCcwduzcCUA/FOY96J/BOZtjnctG+2R3vOmy8wIAC5N038H\nESe+7/+vWuvj532jBVjnmdoLi0O8jzrnPqCU+v0gCH5NCFG8yae+sMieR3E9j97/z3/L+/bzU7Gx\nXrfycwMtK5qnBYmr+pTqsgH4YCx3dhvuKLEYvk+7e8djsZYTeFld+lMH5TsVd9fkwltCO/29JNgi\n4JV2jWaSwH6rNNecBI2QcXBVSVcykuHtYNbpM1bXczg0UknHXhJykj3Ubr9p6aYvs0bNeRdVctOx\nKFcVueRMT28Rgty0dDJC9paM1wEkBlfrVdhMTvVs3yNMIsgIANxyER4Z4aRwjXMPEtFV6UbsRC/R\n43VGxnZROnTCKs9Eh4hJMBYqLiENkqDTYmRcNqWLXCT1qNicRCx0IaqeAEuZvtghtFgzzetcXy0D\nS1O29Q6h9cg1RiyGUYIy8hhT1ue3AJ0K7NKxk5er4FpXnouGhchC57ybEArOVX8dyE8iMdQshhpd\nuatwHOR251RwkIAalIxoTlVR7XnB3dsMADrZ6ihxukGM5IrdDqrMd1gfYsEo4t4SMGiR5qGQl2vE\nQQqZNoKTmKAyYApyF22dEGgj83EJSn7OIkyHW3/r1x87OHtc3yjTfTPlAHC8uB7pXwaA+41Go/LF\nL37x/ScnJy2Yp0AoAPhzAPCbb/G9/mMA+DLMR94A5gDz34SvZqP9ZXiBMT2P9J423TzP71hr/zwA\n+Eqp3/Z9/58+TSLC0+hZKl0i8oqi+J4F5PzzTzD+9aIrXQUAcPeGbv38Z/WP5BZEEMDF2phJRkD3\nbuTebtt1hgYrd3x372Ik2jMHUd5Af2Yhfl+N7mYF+HWE4asTeVsjFHFNpCvseMnj4+FULpWAZ18s\neavELLZKs741wmwwn/Q4bIwAdFCa1UZS1Hdt0ckQ47bxDwELbwBlWWNbdHRxoBnyJmWj0IWXMfF0\nqEwrQdSBsKW+tI3l/5+7N42xLb2uw/b+hjPeuW7N8/ReN0WySTUpUtRkypSMKIGTCEkAA46BGP4T\nWIARIUHgIEh+BEES2IiNWEAS2Y4BC0ZCRJFtCXCEWBMtiWpRnJoiu997/d6rujXXrTvfe8bv+/bO\nj6rXfGz29HriYy/g4AAHdeteoE6tu8/ea69l8XQqsoWKjU8qTFkiVFOwy3s62SRktWrF4UTm66GN\nLmPGacmtvOGC5UvvdBsQYMmq40TNliXJmc+Yk5s/1iSKgeqvWoHhPGdHPdXbECyLmDiXroahqzpA\nqoFd49jFYuLf3QdmaLnawMhxC8ibafJmxKszwdKU8qpN4HkBB4XxOrcBACI71yF5tQq21dVcGRv2\nlwkXE1+e6UwUdeHUMJJn84ClL8zchYLztuHVc7CVKes0MLLdV3lt4gfXacEu2+wovA6etMVmB0Qa\nktjssPVKEU2rxISc+0bBdaglFvWxdIM5Bl2OF//BF0ktvZHM6mki3deDDwBXv/iLv/hnSZIk3W63\n+6UvfemvwXUF/Eb/X2sA8AsA8N/DtQYZ4APORnuEH2rSZWbQWv+bsiw/I6XsvV+EC/BkpPuavvLB\n2x3i3aRHvF9/E0dEfpqm//7f+cPKs5vaDctAjP78SO+utd3peSYWdgP3cDrB6ijHulgCmlisPdOy\nrxSl8FqCRy+P5S1PcOE3oJwn7rUD7l9McLHmE/w56C0JTHNV290qobesbPyVWWVOozOzWlovUATP\n6uxBWXh6laB3HsFqLiDa5TTvKl6dc9x1QLJpKx0fcr6Q4WadeDDRs0VCUJtGPCxR6zkTDFORNWcY\nR+sA3Qud7EuGskU0Qhd3Q8bZVBT1BKpcBTJdPdsLSE5GYio8CkZV8rsF2sC5Vi+C0vT1bNMnPdZy\nFhA6v2GqDy1aLexqJ+CcZmq4IdgUJC4wEUUQucpF6l02lV2YRK7qDBZxaRXVSMaJd1ARFNgIjCUx\nC4SrXiGUiu1mR5LMc3U1T+DLCOLM6qN9YIDIzY8YZzV2tb6m2jDn2pgZOZRnrUJDjJYzHx7sIFqF\n5dKZpsMNIxpDtu2eUFZbuXrKRZip4P4eAoAttg41Xy9XWLPZkXyx4PTihXPNsQizwIFnkviv/34R\nf/7N5hxPO+k+bmAePCatvHiT1/w9APgvAKD22LUPNBvtEX6oSTcIgi8BQN1a+9wHYGRu4CZN941C\nMJkZy7L8iDHmLyLiIAiCf6aUerMb4bV4X3LSiMi31j4HAGv/78v+8Df+JIIoZJnEuNn26MpjMDwA\nka1i2M3E/K1F98AakA1wkzsDue8JKPwmlm2iq3ZIw7OJXPIDKF7O5G0fOUcfYM/QaeST/NbUWwLl\nxh1PxIaBtv3yuEx87UtnXoZwTzHZpUoyzQHCHeMeEHiyasVJIdJqX3oLW9Z2LpTd8giSJsGw5Nos\nYGc6OtkTzLRARW8m3VzLinMHJGLb7ARc0JVKt0KGaY5JyyIFy0YdGkFhZFsHPhQiF7Imme1ATXYZ\nWS5ar5PLbMm3tdOYMSuFF0kmGKvhBiOpOYudVPe3gdFVXe2MkLRwsmvEqG5AeRFAf+I9WAYErNva\nYa4vltEuzUJXISfKmJ2xUozmM9UHbb0c9ZkHaIS28ycMSUR2s+PZuUauTiRB1YZcyYw+2bvu//p9\nFNM6uWiqbTgtcDsBUNaTV7UsloBOu5AOtlE65czSuaIHuwDKGLd2goKkDbY6bP1CwvEqekXINuh6\n5tpLNw/+0h8ltV+69xa3zNNOuq/aOo7HY09r/VZ69n8Hrgdv34DrjbrXw/uejfYIP9SkCx9gesRr\nctK+L+G3LMsdY8wXAIB93/8trfUTZ5G91zlpzCyKoviUtfanEfHUOrj8L3+ztmIdyJUWdQcjUUZz\nnD3sy62tReqQBbmn3MP7XbGNCFRZgKTheLRc4e7ZRCyG1/rdW6HklDTgjnUdCIC/M/S21iOn7zu1\nqJmytnbJUorRTPPJnSLaq6CdqrjQocPZlnCnsySKK8BFp5ptOgS1Z7PjHnK0YMQRgyTpqv0G58mB\nNntVR6NEppFHMlmy4qQUHAbOu0hEVh0IqKxa1+nrdFsyZi2nuhZrWjDYSzXeJES1am1nqJJNjyRU\nAEt2jVPNIh/LWTuH0F8CaQd6uCdZFDHbTJI/9SkYWnTCuMWrCnMy0t29axcyfVXKpC3IGytgR26l\no1mUiewvWvT9OsiLxL+/CcxcdfG5E5M5tItTRTEzV0Nk4Vl1f82IHHzTzpz/jRCQwTOLxywGVWfX\nTzTpNJOzChFOY1ZTF5xtM0kbFN5IyH6byctUqYtSLl8QhLmWWUBRdcIkncpPV1Eaz7n2lbTHawhO\nWl64QMp9G2x2nFjtDev/8Pfexq3ztJPu45WuDoLgrYZfn4PrVsIv3Ly2BgC/BtfV7QeWjfYIHwrS\n/QHkpL1KujfuZF9g5obneb+rtX7pXbQ5DFzLYd4VbhYuninL8ucQcRgEwa8BAP5vfyT/SmR4tFfh\nw5eP1K12g3q9TDT3AvfgYigWZyXEC2twpR2Uu03qXE2w5flcvjyRt0LFqZUgd5w7JAV4OJSbGzU6\nOTJibRktxAKzzZRGEPL4O5m/ua2NPbqWhF02PZr0x3Grok32cgy3JZNdjtNxxYhhi2g40UE9BXCR\nTKpdgc1Na4+GwrZb1j+O2JgxVjkkSo/07DYAwwrReQqAbRMcOrTA1BjUyExPdbKnGbMKF5YBoG2C\nA4uEyrZP54iXz73+ik889SBVVriwZcMjC0b7duHQ55ISNV0RAARytpgIE9dseFbI3pp0tavYBQMr\nytA53dNQ8ERN1xV5E8DUIzRBaGsnjKXHduPQJy5S1V9yoLwqUJF5D1eRZRkyJIRGCDs/QBbgzCe0\nJEWl9+frIAz4ZdNn71trDACBWT4B1Wkbt3KhbTQuVBYyhlc+kbHR2SqTcEHaGEjRm2fSBeTVKYna\nhCBOgLSDSBtgJ0U2qwkvjQjro0Hl//oi4NuyanzaSffxqB4vCIK38tL9r24OgOse7n8OAP8xXA/Q\nPrBstEf40JAuvAPTmyfF4wqGG/nXzxLRltb6S57nff2N2g5PgHc9SDPGrJZl+fMAENyk/z4AADi8\ndGu/+ptxpTsVUbQK6ZxHvZrm2eElbtgtHM1mWLm14O4XKfqSePRyX9zSCspGDcY7lg5ZMxwM5NZm\ng447hVhvCBp4wOV8SlfLDWp/feZt7cZ2eARyeceZi6am5vnYozg22T3y9itoZ9o3uJypo1iXxUlS\nWQsF5Ukl3baIet/kBwVqf8VhfyywMUIVNaG4OtG0ExFPGfOg4aLjClE6VOVigVIrWTZS4RpLFk8m\nMluo2Oi0ypwmQtWRnRmqdMUh+ctWdc70UPjOHzZI9wz6vnKEIzVaJiS9YGVnokc7wMwNFx0SelJb\ndW7krJpDBWscFhPv8jYAQMPGnUKmy8o2zkPWM4dRyECYy0E7QxNEVp2V+nwLECA27Yckshjsekcx\nmUJOWgRAIRqZe4dzwlWtVAkz5oC23QXM0ZQfLyVHMlf3VwE99N1KA/yvLgEA6Gz9DPHuiuP6WJjF\ni0KXPosw9wpBKjraAGYQubZSHC0xC0f5XB+h1E7MX02C/+E3nNh8u0sEHlwvKjyN+B4D89lspt+B\ngfmjL57/ET7AbLRH+FCQLly3FxofwPuVRFTPsuxTzrmPKaX+JAzD33wzd7InASIaInpHpHtjAfkF\nItrQWv++53nffNxv92//s+hHz0dS3N6yD5JERCpm9/BKbi3N0RkahjWmk4Oe2LAMam6F++vEp37I\n+f0LsRu0+fQok2s1SUMP2cxndOVXobw/kTubNTo+MBL3wB2DhZgSkKIB/DXj+3PSXqUI4VZGhy5E\neTyrrK/rMruvxL5gcpuquLCJPw6FKx+EwS4CwzIlo7HkuRVLxwaEbNj4UEGuL1S42nZsxzpdYwTc\nNPDQoKcjK3qJzJtTiMMqgDnX033B4NpEPaJgFDg5yUUZOW5ByG56qcf7krGssU0AkGqm0iEkRjd/\nFhPlfd3fQQbXQBwUMpn3nB5JKIWwSx2PMU/laKEEXzdAm6m+2kdGVyU5tMBC2eaZYJFbt3GsGE2i\njrYBGWMbdIw+3QMAiGzzkDGtsF3raNeYL2S3JOEXociDQvRqgqKxxokGLFHY1hWKK1mUz2WCYsnq\nYtHINshiJ/T9r9wGAJDp/rnGu8vEgpzde4AyC0hsdaDUpYwuFwCcyvA//ONc/sKTzBae5kr31SoX\nACBJEq/RaDyJl+6Xbg6A6223Dywb7RF+2En3VXvHd+Op+3ZARB4zR2VZ/gfvxDDnbeKJK10iCm40\nwJ9QSr0QhuG/fO2XwJ/dF/UXXlLbn13K7deO/S2UQFGI2Y7vDkYZ1i/6srW+TadBDvla3V0cduWa\nrrA7MnIvEJx4ksvlhC5kHdwrQ7mz1XRHl1a0d5U7SAsMJ4WAepvUYaFaq749KR3oT1P1w0MMAAAg\nAElEQVRRPkAluzNvfisuD49BrsfsxoGgcmESHIVB4e5itF0DN9Fx4QMD71l6WIjQr1lIezKdL1EE\nN4kTqyHBpEKc+Fw7Ctmajk6vB2tY9qbSzTUsXjggVbHNw5BL11PJlmQsncqiQtjqVhnzVA5rkW0e\nReyKROZzjq3NZDE3EabStN7pTA12FAXjmg0vSNgAXHiGkPoDla4ETgycHK0wOl21tY7DPFB26dBn\nMJkcz1twoopOz9RwRZE31TBVDMJq0zonICa7ceSxyFN1tAtIMrJxUvjfjoA5iql+RlhUwC6fCFZ5\ngZWA0ehADONcpBXhilGkBz5iKdE0ewruByXvZ2xaoFQxZ8UuoKm7GL9+rVoo97saXtkEACjwJ/9s\nKv/rF5/wPnyaSffVfi4AwGw285999tkfGi9dgB9+0i0AgN/P9sKN/Ot5a+1PA4BTSv3rIAi+9n68\n15OEU958rk9ba39KSvnyGyQAAwDA//RP/M+MO1h1nxYIDHZ3wXUenMnN5gaOBolobc25AzdBTxbs\nXiG5wwAQRJxv5XQEAcD9S7mzOU/H5wUu7Gh3mOfoFxkE+Tz654VY+lSjoKmTwY9xUdwzenFUCL3Q\nKuyAZGsR7Rla4IUcLmUF3CtFuL2qivOOpo2awcGypv5kElWq0tm7leIWMvMGpV0CwFUjDkrUQpA3\niCnLDrXdaTgazGRa04TpitXHpaAgtN5ZLvLqSHD1emMt2QIGt+L0iUWlfSeuejLZmUmvsWRh0tOT\nfWDmeadOHPo6MNVLh3mQcT2rk5oMXnUh848SmS57LrqKSI8t+zMBzDN5ucJIumb9o0Rf7gMA1G39\nwEEeCbt8qNlyKnWd2eiKnMwZUcSeq1w52VtlYOGZhUNCK7B8LleQX6X6YJ6RgohwdJ0sDBxR5ZKx\nCNjNXSmKRhnXPQaHkezWSp1XwA0nARxrxNwD2xgG7rhisZVZWjUIQY38HyWCBTey/2sNrif25/D2\nrRY1PEZsTxm+p9Ity1J97nOf+6EJpQT4ISfdd+qp+3ZwI//6qDHmZ4UQV0EQ/FpZlj/xXrUS3gD2\nrdQLj7mSfUEI0Xsrb4mvfEc0fucF+Zlag8fCcKNV8vDemdz1PciZQSxbOh8mojXOsb6+RSdNQxMd\ngr13KndX2+7sNBHLq4E7hRKAJiiLFfTOMrG803SH1qJ8BuzpvalenTjR/Mg8J+MSo08GRaYKCDdK\ny1SFhYPCU8/GxdV9EK01Q8eeEE6OK9N6mE3ugt6P0SVxWHCzkJdz4EYjFbUKZjuQ6XwmsLJtTWcs\n3ULLeicx23KMNfCJso6e3QYEWLN0Okbym8Y7FkBGueZllWx6oqf7gtnNEQ0SWULVepcAxIFtd0K2\n5ZUa7SEAtyDrpTJbCJ0aMqaxb1snAYs0FWm9gIqNWeUDPdoTLIo6l5kFFr6tnQGjE3blyGMsx+ps\nF5CxYb1Opq+2gIEapC8IQg9N+0qg5ZIEIxCiGqwatDo0sbHq3hogo28WD0hkAdutjiIsMtWfZwhE\nyGFub+LgY6pcoJg0iLxMmbmrEhuKQJCPMz+Lkxg4gzA9BOFNA+I4GZi/+0VAvwrXk/lP3ZwFXJPv\n+WPnPnyvXEoDwDtx4vsg8D2VLgBAo9F4Wr8gXhc/1KR7g7ftqft2cENquzfyL+f7/r/UWh8CABhj\n3tectLfyXjDGrN8MydTblaX9d//E/1wthknT5+mffs1vbn6EyvmCryoVTu4fyN2dPXc4SrH+bNve\nOziRG1EE6chgoyJ5GgnIqiOYyRi5MxbrW23XsQb0PrgHx2OxlhP6H112lGYIH63YU8yhtlBQ9kBq\nNSkE7NTtycDi3HOiGOeFqGKidLuer32TNO7KIp1Jmt9I5ZkIqDydVVba0iYPYneLEXHXZscGlGo5\nPB8JbI5AB00o6Ph6sDZzIhN1F5xVCaZTaVoZCIyECU+lXW9ZvByp2Xrogl7TiX4hbBzaCKyYBRfC\nLjYdnA/laAMB3YKJHjpBXmCjI8Q0HEg7HzvmUg6WGEk1bdgpMav5du4oYC4zkdcN+IUSRTQR2Yrv\n/D7LyTIDcGxahw6dQLty5DGXI3W5DeBEA/Iyl/0VZFnGDAmxn6Jtj5DiJeM2ewg2L9TZBiBJz+oT\n9q6Nc7SdP2Qc16+lZF6SyWmVaHEWUtin4HAXAMDL5k6EPFthAtb5+rkVhefk/KDI/+bvW37m+OY2\neOmxW6IC1+T7KAni8zfXHjl7ncO18czT+sj+eKX7SCb0tLZCXhcfGtJ9L8jQGLNSluUXmLl2I/96\n+TXyr/c7J+11Sdc517oZkq3euJL9+dsJpbzbEfHJsWjLS7aHiVi/tVlCNlKYZxB0M7FQC3kEGQD3\nAE+UXM4tBpstOomnkOqY7Stdubs2T6ezAqJ9zz04G4nFxGJlb91Oywz855vFcJSobN3Z5cNULs9I\niB+ZN7PEgvykV9qDVC/OjNBXTQVnVgZ7QXnatVI+ax1PQlU7m/nxjwcz/5tCqAoTLUoTu5k/0MpO\nHwTRugCmBU7CqeDGmnVHJaBq2vhAQ66uZLTWQjZTPdsjBLlu4LAUMpgz/kPA0k+gSiFDfuZNbgMA\n3C59vhCs6jY+0uCcpblewJRfesNbAAALVh1NZTavSM4qpMaW21PJ4Caqv+oQgjmLk7Hu7wE8Mj+X\nkbYLhxosGVKE4DBT4zVGp2NbOyn05R4zcM227zssA7KbN7K03ioDqYrIy1Tf8ZG8aghlQCCdsHOX\nyLI0dutIsLCgjtYNWq0tpKwf3GYE8OzCkZCHq9bN94StD4zMvVJsnytSGUav7AAAlMV/9P/l7q+8\nkf/IDK5TIB5PgvDhu+5eG3BtALMHAJ+G762IL+EH33Z4vNJVzjm3srLytAZovi4+NKQL76LStda2\nbpJ212/kX994PfnXB5CT9j2k+xqjnC+HYfgbN8Y1bwt/5+97n3jwgtje/jE6qgCnFc0b9zpibesj\n1GllNKIQ8OGp3NrZc4fGoFqt08WdQ7k/V6f+OBG1rYA6eQb+YCZa8TqlSYmVzy4VtihRLuY4+PbY\nqxWEzd1FHjYMeZ+KC/3K2KtMHcKsIajnpPrRejkqLOISu+HdQi0lLGSrXsxOQcarYCZDFrPFieYw\nyvQ3TbSwgUbPAjeHDPCZ0pmpCGUNoN/V6VKJ0tu15rCr3LpiyKtEM8vVNCAqT3WyQyjkKtvToTKr\nEcEEweiarXVC4vxSlrfHqKMA3bQr86WIxLjEWSVwUS92amCEDYnq45BoeqmnO4oxr3FROnRBZMNz\nAkbPLnR8gmKge9uEqOetzWZqsCZYlDHRjCmYSYpGiATWLVxqFuVUXewBAtZs7dDo8x0AgIqZe0BY\nhqL4uFFieJXLQY0ghwhLv1DjFSQvDcEQoNXgqlcC0Bq3c4gsDcjLdgmxVBDawHuwz8goyoUzha/s\nECvr7HPfyZP/+U+e8L4rAKBzcwBcm8Z8CwCG8N2q+Efgek02ge8l4gv4YFsRr1a6RVFoeDKj9acC\nHxbSLQDAf6P48jeCc65SluXP3OSlfTkMw3/xFj3bEq4fvd4XPNpIY2Z1Y8D+E1LK77zTnLQv/aH8\neKXKU5oBTK6gejTwYHvJHXUPRNsPoRgW2Nyou6PhBdZnOcb+Mpah5GQu4kHawxDXGC5mcmln3l00\n0bXrEsyLVx5kDqPdDVfagtL5iC67Q7HOAP5XwacZCdhv2gNhONyQTr041m0AgN2W5cQhftLLJ1Qg\nb1uYZRXp3Sn0yvN+mr2kMGxbyOY0T2ASoa9s/scxbAhm/5bLCgfgfTQXrFGvWPCyCuf5oS63KwQT\nLVOfAMS6UfcJSVesPhZY+BcKFhsOejM9WyNkWDH60CJ5NVt/KKHUY8lLEQtR6vE2Iet563cSOV0O\nXOW8SmJaYBhbNtaIpJKKslqxQdfo4Toji2ZZfeCE8YRd7YRcuEQN1xhIVCGjmZzNKdJTjXkNOZx5\nNu4REFq7fuYx5jN9tAsA0HDzttTH6wAAkW10CNMK2LUjzVgWIq0QBRwBiUL1NoF1HrErQcxqQP5M\nc4HGbZwC+bmHMz/zlkbAnrHjf/yv3oNbUcM1sb3W8xYBYA6uSXgZAD57cyb4/j7xEN6ftdpXK93L\ny8vY9/0fmkDKR/iwkC7DtS2id0PAb4qbCJ/POec+LaX85k3S7lsKx9/vnDS4rnT9JEl+SQhxEQTB\n/6GUelLhNwAA/N4fyna3h/O3d4r7d14K9nc+4w53fVO/KpROMozXtunM64JBgTAci+atXffAZKjA\nY753LvfnGtRLDcSfjMvZaSIXH155uLPpLmUGzR+dM2fHVzIoCYKjhtybOYG32+aktMKtSlveHap9\njVyGTc6BwO5F9mGRinCFqHIXvWpqhPpUNTMvsdSfoLIkK108Csr5OC2/wd7iArqyCEq1VMp8ldys\np0LlmN1DL4VUQHzb2MGxKltLxrPrjqsD2XAOXHamJrsOATctHF1JsxAQjmskxiU30nmr1zt+d4sR\ncNVCZ6iydcFgquQS4sZMsygSMW2lEOiYdXGlh7euo37EWQ4UBLZ+qplzQ20rmWmk+9uMLFpWdBLd\n2wEAaJjaA4c2ULZ2oKEQmcB5AJIop/OFKCqeCwcs+wvA0nh27sQBrpPdOtXMaaqOd66lZDA1+vhG\n09s6ItldBNu+1ByPSixC4kYaQI6Z6i0CF7aCYgxyMAesSzf8e/8QqP1eLDW8kWSMAaB3c3z7ses1\n+C4RfxQAfg4AQviu6fgjMr6Cd5eNBnBd6SYAAP1+P/J9/3UVO08zPhSk++h8o2B4Q9K9kVl9ylr7\nUzcRPv+7lPJJ4nHel5w0AABjzGZZln8JADzf9/9PrXXnLV/0Jvi1L+qPbC+PO/1RpVmv03DwAOu2\nJuBciflnluy9Oy/JW3Nt7k+mWLlVc/cfHogtFEDeEpZrAZ1WPKrcOVH1xVs07g4EfnTBXpQJejhj\n8zKqucyh//xmYWa5vALPje721K1QQYo1AA1c7lXc4SzDKAJOXkG1RwBiuUkXyoHYl6Z7mnmV0mL7\nsgHpuRONj+osORdcfS5D9jyGe7MK16R1X49dmxHhOVskKUi9aeUkR6MKqFoJ5urPgnzZY6A2ZVhx\nXrliNZFw655TNO9IH3nJbkiYo54hANp54x9bdBjYxmkIxp7rZFOxKxo8ywth6hWrLw2UYWxbHZ84\nH6nZUoF+uAg0GurprmSRVbi0wCqPbHhFCER2+TQAKEb6/LqCtaKTqf4mMHPdVY8dak+aua7EQmaM\nAsEJVMPlErvKs7XAqe4SIElt544YrCK7dahIFJm6XGZQfghRZvW1PWRg2x1QvU2mIPPswnEhSp9s\nO5Hpv/dlUf7UkywJvBk8eLLh1OTmeNxIJ4Tv9ol34Nr/oAnXhP3aPvGTfFG8WuneRPVMnuC1TwU+\nNKT7mGzs+0j0Rv71MWPM54UQ3SAI/qlS6onNLW7sHd9T9YK1dq4sy58joiWt9e8aY35RKfWuCBcA\n4OBhPt87GzQzXQ931pKjuweVvY99ujTZi3KWNESECLzQ4P7DDm4W++hbB/LZdfdwMMaVhRW39PWu\nJxdqNLSFKFcci+OJqI0LEf3ItplKZu1J7n79yGsHCmLXhJoCMJsVdzzLsYIS+OWpuiWRbbXB0zmm\nXtuj4cVELhhGfVpXK6nFeDsuDxIL0Z7jBxfo13rTIK5FWedIqs0KkNG6FLcTXbbQ6W+HQZQhA2Pq\nLiWFO5ZnmXCtbVNJQzb2SIkQkVzuJaIQhBtWXFyorL1ootmcQzWRPnhsxURONgvhxJrxugOdrGpS\nybxVp1Z4niaYlmJUnwmu1hxdJHq0AQi4aMMDi2Xk2fZhyJYymbYdOqFk0UxFUQud3zdisIisisjW\nThw6KezyscdcjK97utBgPMlUfw0YXZ2wTxxaz+55QoymhpYMgJMoB4sGja9dpUe6tw5IUtnmGeO0\nSnbtWJKXlWJaIZpLPKr0jde5BQAg8s+9IJK/cfet7okngIZ3vwacAcDBzfH4712A7/aJH0W3T+H7\n+8Rv1E57tac7HA4jz/Pe96SH9xofGtKF13Eau5F/7d3Iv4zv+//83aRK3HgvvCeVLhHFRVE86if/\ncRiGv46I1hjz78L13+UdDwi++tWy/q0/vbq9cWvx1OSX0/GsXV2ctxdf+T1/qdJkMcmxuluhg5fv\ny1vtNvXLgtWOT1cPTuUtJZnPczl+JnRZJiF+qSMXd7bcUVbi4s+s5PZb516YExbQhCoR4EbTnaY5\nhugx3Rmp277gXNXZLIG7aIQ8PpmIVZQIr4DatYBqq+4OybAMEc4OE71eAAeqbl2PxfyiMN2SQS7P\ngo6KcnypiDfm0A5eiU3NIahPFvbKCi+8bUU+klnlUgbwMUfJS15RE8xw21LKEMvISjOUSWuCvl4A\nMXkpmFUkAyxROSLSum0qTqKre64JC1b6J37vFjDDuhP9kbBV33m9gGSquH2kGGxXXbcSFi0fjq89\nGqDt/GMDnhdQta/AiJxbEpkZ1Wid0Hmxjc9ydbXHgFQzcw8dGg/tasdnMhN1ucVAah4LzvX5FjDa\nCqkxAQDauXPJXuo4TBkIUXTnrCgi6aSQ+mKR0HrS1XtSni2Ra/XRrVzo4d99o6SEd4r3ayPNwHWk\nzulj1wRc94kfEfFP3pwNfH+feASPVbrj8TiUUl7CDxk+NKT72gWJG+OXLwBARWv9u1rrO+/W5Py9\nyEm7GZJ91lr7uZs0iV95TT/ZMLN+EpXCa/HCC8W8Nay1MPayO2tjfYGXm5PuZdGAZzbs6OUX1VL5\nHHpRwGkr4uTeA7nx/GdKd3Uhiu1FOn+pIzeqW852hqq23TRXFcsr5z0lXxReOipEfGvNdkyBEjXz\nna66FSjORAi8wK7binh0PJGrHDDeZXkLAHitTqd1Q5NAc3FvrPYkgo0anBWMwa5vHrgS1bqF43Gs\n6peZXtgNsqNjARseUbbg0SCfRTNPOvuNCHaAGXYpP+tKXplzMLTItGZqVCejv+NndY8BVlxS9qTx\nVqxMDJK/VTbKCpF+xZs1SBAIzPOJLPy6k71LPanUbWXWctoVwlQcSagTNLt62A5IGR9yR8BYN9Ex\nIYGyi0chu6Kn+ruALNrWnkzVeA0ZbZNpSBRNPQomiBaJ5q8kg52q3g4gi6qtH+f6Yg8AoGZaDxzI\nXTabHR9smcnhggPlVVFwrs53r311vT6JIgIKppqqQ8eVCbMgFKM4A18BYlAb/ze/jeC/W6Ol1+KD\nXAMmuO71XsG1YuIRGvDdPvEnAODfuvlcAgB+9Nd//df3rq6umoj4zQ/oc75n+NCQLtxUujeP63+R\niNZujF9efA/cvx7hHeek3bQ4Pn6z4XYaBME/Ukq9nvnyI0/ddxwr/eCBbcYxzO5+u7+7/cx8Jxmf\nxIlZij7+bFq+9I1wLW7wlAHEKlh370hvrCzZdDqQgzCBxsuncgMAHCDke8KWSkHrWyee3N60B9ai\nXojs2b0Tte8rzmUbXE3SeKXqLs+HclFFYO+QuqWQTc0Ht+Woo3029wZqv6poUir0mQF2K+6wyNGr\nspt2QG9aQLVZK48njNVlsOfCSVcde91GlKcvW7EXg0uisEBFUGw5OLLC9zQFVw5T8bKGuUXnLk5V\ntigZzLYVpwRRZcGAn4okPpMsbpVE3w4mCAD4bKmHBUqxTLUxYVLtCuf7oNyhN6ozMq4adTyQ03bV\nNNIGCcxFFDMasCJdm8gc52yUzFQ/YmBsldUHTjjPs4sdn40dqtEmAIkW5G4mpwuSZKqxJGY/0bYy\nYCAit3SmGM1Ene8AAlRtDUt1ug8AENu5Q4eTOtiVY49VWohZzRGkEQWjXJ/vADPEVD9jOVgARo4m\nv/R/K7v7fgySngbvhdHNceexaxEA/KcAMPmDP/iDj3z1q19tHB8f78P1mvM34Nqy8bU93nUA+Kdw\n3cZgAPhVAPhf4AcUSgnw4SJdZ6193hjz8zfyr3/+Xq/svtNK1xizfbNJZn3f/3Wt9fGb/fi7NTI/\nOnKthQXuHRxgBW3Ck2FRqYQyUTwkYyJve63Mv/EVf+Vjn3fpyoz6FYnu3itybe9j7kKmnKwvWP8r\n9/2127tm9KCnor2qPby4EAupwai6wlOJbHfmXGcww4bywd4Z6lue5EL7XG4721E+mFcGam8uoP4Q\nRVMA29WYLtIcQ6GY7szULQSmuSYPFIHZluawyIQfWZGaOutXjFpe18XZiXQbc0ZctjVMhtNKXQuH\nB3G24xDlLVd0uoJWW06dRWwzx7WriGx+V6dbAAA/UtqiK61oWDUygqdtW49iYvmyN2kCAHykZHes\nU+kT2pDZRbY1CVnyUI6XJiLULeeVx363Dsw8T7Kbo63WTSMNWEjkFaUY1Fif7xISLJrGZKovawAA\nbVN94LAMhK0c+lxyJieLhE5XZForRNpU5M0UZgJAuLhYVSCnztnNjmIwiTrZBHQ6tDAr9dFtAIDQ\nznWcPF1D1+xpqg1KzH1ya+dB/mMvBtlffte9/9cBwnWA6dOof03h+rN9+Vd+5Vd+55d/+Zf/8mg0\n+ie//du//TW4Tgl+vT6wAYD/DAC+Cdebd1+D6zDK/wR+AKGUAB8C0jXGKGvtzxLRxxDx/HUe198z\nPCnpWmvnb4Zkbc/zfuftGJw/ienNG+H83DWDoCx93y+OD9PVtZ3m+aDbadjFJfHpj0/M3fuVxWab\nZjYXU7qA2iueiNsN14MxB+UE698yHgeSM1diX/QhTCsYzgpR3V8zD6xFVQWcvXwpbysBplLl2Tq5\n4yDi8v6l3JE16nZBbEhgMxfSMCox0z6bO2N1K5CcyQCozjRaCdzlcCYaisAeV9VaThhsV8vDHmFr\n29GBE0rZiWfCMMvvgtxXTHYpyMe+kf0G8Wik/doUfGxDxgcKdqtEE5JZbc7qbMsI3dMys6QsYl4c\nSLNeJRyNZBZJxnLZ6qOp4DC2c3GVC9nRs1rsCGIoeCZLXDRBkmMpW2ZpFBPQQI/mEnSqBkin3qCi\nSZQ1KFJgqaqmPgWQOjTreUhK9fyDXQCA5TKazLzzGsC1B69DEyhbO/TZUSF0w0GBvkxVoUbbivRM\nQSIAnRYu6gsgJLvekazKUvRaDiL0IDCgjvYBGbXZuduY/K0/fTf3yJvgaahy3ww+3BRa0+lUt9vt\nMwD48s3xengkWwO43sZ7GQBW4QcUSgnwISBd55zHzLGU8ssA4L1fhAvwXUJ8qyWMm6WLv+Cce1Yp\n9YdhGH4REd+uPvFdV7q9nmtUq0WyuKgvj47EhrAzmWe2hogwHUxn01m1+tymSb75J97y9mfcyb6k\nJI6p+Y2Hnr71UXtaS8kKn939Y7W7uuJOiwL8Xd8+PDhTm45BNNd42LI8WKhT76ArN/wql8dOrgsA\nWwk58XM60RGbe0O1V/NonHkimkPqzwfUv5yKttLs7oC6xYC42nCn1rHaFHzUTVR7SqJWr5fTE5Kr\nbWn6U0nVlUx3Iq8sj5J4QyPZvJpWcoRox5lOglCdt8Fhncv4QlarJVD5zWCGDqGx7dzhSLiFpgtP\nYnbFVAgrmOFMpVuErNYddi7UbFORnLVYn1nQcc1iMJGTWiacXiuZTryuYGRYL2vjUhSqZZZGATsY\ny1lcilIG0ohLOfRD5yelmgpgYeum0XcAnl/uphEpNfTvbQIyzJf16czrVAEAGrZyRmhCadsnPous\nxDiyUOQVTEUiJ2tIKovAWhJpVZA/k5B57BbOBdcnc4P/9l8gvG50+nuBp5l0NVz3gB8ZmHvr6+tP\nomPfguuK+E/hBxRKCfAhIN0gCB4AwG8VRfFJ59zG+/leb7WEwcy6KIoft9Z+9rGliyfdVX/X4ZRC\nOLJWy0olL7WOuCzN6u6tyuTwpZPK5jMr+JGdSe+gU41rdZpGluZ6x+jfjzWuzrmT8wNRMw41z4OY\nD1wXCoBeX7bDPZfbHOTtZfvKeCLqBkDetXIfEciPuNguXUdG4O5fqp1WTIOREY0mUH8+oOHlTLTD\nkLM7ybWMrFmD4aqj06rm9OFYbhCAyBocTEjUt0LTMRb1tuXDJJTRxayysOEV2X2Jm8AEO155ZjNP\ntBnteQRLGer406aM7vgUaGarsRjUKXQhQdqXxfwEZdQAe3Wiyl3JYFpgporVpOL0sESjLTWmTab+\nsZrcAmZYJjzPhNEh6QEJOwrdvB8wqlN9tUBIuFVEdOZfCACAjTKeFCJXNbMyCthhBr5mKCFT6dxY\n5Kpio0mpr3xAhqppXVp0fljuJT4pPfOOVqwoYK5s1hPvYA0AoGmjYyOTNXSVYUjVK4fGJ6KJj6nM\n5GAJ2Nnl4d/8LUXzb7kA9C7wNJPu9ziMJUniLS0tvV1jngoA/D8A8Lfg+9eWP7BQSoAPAenCB+Cp\n+xo88l949ca/GZJ94kYH3AnD8FellO+oKf9uwym//W1TCYJpyVxpNJuTeHs7yB8+FF61mmXTiauH\nAQWD0ThOshr+5I/N6A++XBW3ftyehomzwAjTRNT2b5v7xVT4ImB32FdbywvuTBpwS44uD67UVulA\nL23Q5bqjkyDg/N6Z2p+rUH8I2KwImrQD6sNUQK1Os3sTtRcqTqcKKpvkjn2f8wcDuRNrmF3GYtEA\n6r2qvW8N6Hmi/jGotRLQ26qWnS6IhYhp6gsyy7OgE3qluYNiTzK51Uo6zhDi2wVRIiBtubgbceE6\nCrd95qyOaSMTVFl2cJIDBS1XPQzZuK7ENQAGEIVMhavPOdEdi+lK7KJuncSwEKbiWCQeu/xMZTua\nMatx5ggJqy48T2RmKnZeRCTEib5aIiSxU6Df9S8lMsCCC9MCpKyapSRk5BLCksDITPbaVhQyttVx\nprshIEOjXCUjxuiXu0lAgSpkfz0Hww3X1ql37xYAQMU2j5wcrDIjNZN/+19Vis8+SQLEO8HTTrrf\nkxrx/PPPvx3S1XBNuL8G381B+4GEUgJ8CEi3VqvxZDIpPsBwykcKhikAQFmWuzFNzeMAACAASURB\nVMaYnweA3Pf9L2qtT9/85W+Jd0W6d+7kz0jZXfH9mPt9vPK8zDkXr2WZ1UvL/tk3vny6+MkfX6a4\ndlXeP2jy/JzT+QUvJzMhZnOCP7ldjr7zUG8DglMazGboOkmG8XlXrGzuuyOVgN1p24POuVr3PC5P\nY7EigG27SgMvwTKoQHGvr/arPk26LOY20B1rj83BQG6FMecdkOsAwPMV6pPBoZJsX5mqPQDmhSZf\nlYzemrRHaJCXUryQFXCv5OFWW5pBV7u6JDCfFLYvEn/eZ0xPqhklwmttOpueKLuBDG7L8UkBkQ4I\newM5WyjQi9YtH5+qfAsAYNPCwxI9f87KPmERTaEiFSCfq8k+I4gVpw4nIl2JXXRRZ5zk6MeOjC0x\njaeyrMVEg1ROa4QkWi7sTFWqArtEMYEYqsFiKVitOaG63pkUjDDvVJahU4GZm4YckONKDsxqps49\nK7JKaMW01AeKkSCy9YFVRzVp1jLfNRCwWHfgudDsjOanf13D9TT+Sbe4ngRPM+m+2s8FACAi8fzz\nz7+VJwkCwD+Ga3vLv//Y9d+EH0AoJcCHgHRv8Mhp7H3zun2ER05j1trFoih+jpmbnuf96/dCB3yD\ndxROeZOR9nOzWb51cHAudneXL4QIA4Cxabej/niMwTPPmOrZCcvZjI6PH0xrqZqPdlanh/cOavu3\nPm0P4rGr2xKxNCh/5lM5dU5VVJ+nxc6VF6zP25HKQOKAqSPURmYwXF51l60cxtIHd/dc7VdDmvQM\ntlaVOw18Ljo9ucFNxgep2pHAJvCh2LZ0qDx2rwzVbiA5kzUgQez2I/ewyNCbs9QbVUVrlovKVlx2\nDgE3W8S9tuZRMo2oJW31axEsMSLcipJBArA6Z+BcI5axq15UuczuqmL/OoEiuyyQoypBTyC4uqsf\nheyKjprtAwCsO3sylGbJY8h8MBRQ7cQnUUxk0kog0DVQxZma3AIAWHV8MhV2MXKVi5hhZlCnDpwc\ni8mSQ+c3nTjv6/4SIOCcjQ9nchaFdrGISIipnLYyCEWVg6jnnUrBEpo2YisyUC4qIqo45noOLNDJ\ny0oqtPbYGlJ3JaNB7ebGa+O/8QJcV2bPAcA8XG9ePjKkOYPriu29aDs8zaGUr7fm/1btu58AgL8K\n1xrgb9xc+9vwAwqlBPhwkW7xQVS6zOzKsvw8My8rpf6N7/tffQ91wE/cXiAiryiKn3LOPa+UeuHF\nF/u9RqP2vDHdCGAtQ3SwsZGEL75YiUYj2223Fbz09YvV7WeWjkzZnczyZtyoueHxt+WiY5B9zWan\nZh++8KK/agmoqGHxsbrJM4Tw/olufOaTBfUTYeciGnzl0NuOAk5tA2VN0ni5QlcnI7ksm0APJmon\nUJyRBtw2tiMicA8Gaqfh02gmRMUHzrcid5TkGJcM6hWUuwQoNprueEqiuom2A6WAKJVJo2LSO8bb\na6KDMiqLmhPDBUFXaRbGJUMh4lTcV3KnRTS4EkU7JDFZcXxRiDAAgpGElDvSbdWJhjORLAMDr1n1\ngJF11dVOPCj4TMK6x5zXcWZyYasNJ68KLKo1VzsKCbKxzNsJoKwBmq6a7AkG12QepkA6cuGlZpEh\nLR4LBhrI7jojy4ZzJ33vchUAoG3jw1SOlyvlFgYkpoWaCEftqOoi2feOGsAALVdPCzn0kSVVKLBM\nGyA4NjvTv3qiMQ4ZuMPMfwbXSQ+PtriWAeAjcD0IerRO+/jxpIPlH5ZKVzIzr6ysvNWA+o8A3nDq\n+IGHUgJ8uEj3fe3p3pDbTwDACiLeDcPwHwgh3o+BxtuSjD3WR/5ZIcSDMAz/kRCicXBw/vkoitJO\n56T53HPz6HnV2mw2HkdRxQ6HQM0mJb0eLihR2rPT0SI25nm1NTi/f9be3f+Yvd89E23eQFFa8G5t\n2FcOH6pNsQy907FsrDbscedQBb2JaI02KQYA+LGd0rsaSSF85m9deXuxT0UiId4G10Gf6eGl2l6o\nusurXCz4wNliSFdRgany2N6ZqtsC2DVaPKoSTxa17U5mouYMyLQpoisj5rd9M+4hbHykdDPy6epk\nXJ1XwuFhNd02IPRtPz8cAMwvZvoo1Mb1RFV57PKHKt1jBLHnzGFXuPW60+ctpmSGtZyBxLmabjkE\ntW6501fFpmC0K04eG6xqaWFQimk9FbJRc0xTNVtlZLnk9FGKs0bsGscxcZbJolGCsDEAd1WyI1kU\nDS4KRpYBBVeSwQVuseM5LSaqt1kKxBYX5zPvfBkAoOFqnYk+3tCuNohdPXHoKsJsioi0HPj3awAA\n++O/9jC0G2MAEEKINiLuAEDIzAkzj5n5FAC+ycxXcG0o84iIf/rmnML3E/GbPZI/zaT7aqVLRIqI\n3q1j2Q8EHzrSZWZ4jx7zAQCAmUVZlp80xvwFIcRDRHxFSvny+0S4AG9DvWCM2bpxJDO+739RKQUv\nvHD+I7/8y1979jvfGS9/7GNLvasrofJ8rMfj1mmeZ6LVSm2/H7VqtXJaqXjTe98e7G3emuuY8lwb\naOm5pu1fHor5JMPYQzDLTOenl3KlsOCpkO1y7s4RUFwM5fzOjj1wFmXVd/T7LwVbnuIyWGS+FZtJ\ns0byqxdea2nJNL6TeEIju6UKkT+DSx1zdnek9kPFKYQAbXa9+ZAGlxPZNoD6qKo2csZgp24PZw4b\nn4EiH1kRzQrNSWQHHZbbAog24uwSjEpihv+fvTeNke46zwPf95xz99qXrurq7uq9P5ISKZISpUiW\n5FiSJdmWHSUYJQ4SDCaAJ8EAE8MDS7BsWDDGjmXImDixgciJM7alxOPxeEZjWxrDiyxaoWXS1EZx\nEcVv6+7qtfb97uecd350fdQngaK4faJM+AEKt1Hdd6nC7QfPfc/7PK/fJas6SmyvbIf9QwGbJlGc\nh0ja2uhmCaYTxJwPBixBkhyIdEcQpRUK5wpYUk6NE800mDrby2rtHwp/FwCgqdTJiMkCJ4iyhHOl\n83OuUQ3FtJ6g5S0pNu0awz0AgJqyDudsVvNU7swlNk8w8RKdgg0xDkSwbmpDZvicJyxCU5tjwAgN\nVT8SJOKIjQsxeEqAHU2M4zVAgJzKH8+N1hoRU5X4nqeWo7ecENEyETVgMUYHEduI6AMAMsZKiLgO\nAJmbiLgDAI8TUXexzw0iftNim8JFSeJmIr6xov/dTLo39+hanPNb2cVxy/BKIl0NF4MdzYWJ4UVh\nEZazm6bp9wOAb9v27wohzoMg+GG4hbXjRXnhGQ0YSqliHMfv1FovG4bxadM0Oycn0833v//+vT/9\n04Nty+Ly7rsrqZRBNpPJTK5fb1nr65nYMDKGUj2WpusiirRZrer+fM6yBovk8bG/ml2tz3KiOzue\nLa9t76b7J0+KRn2XulGM1m0NdeXyFb5XXdLd9pjVtvJyv3PKa34MbnmThhajaKuiWicDtjz1WHDF\nN+oMScaMne+hdNysFl85N5dXspLONMcNQyZVT4fXZ8LhBsBTJHYJENdK6lgp4AVGYXuOzaHiRrFI\nw8tKlLJMTWJOxmYELdOi5Ooss82BVDnv+xPEwhpLTwMgu+bbh46Z6GPhrZuo4wiCbIjkrSp9OkVZ\nLCv3OENpNGS8EoISJg8LPlOFgmL9EffXbM2nFSU6KdMm01Y/T0lwKvwNTiCLKKcJKs/RbMIgRU+W\nWyZhPOGTWoSm45Ho9sQFES9LszXnYdNLi7qgrXkgghkox0AMxZD7dU46zFEsJYuyhjangDPP0MUO\n19ZcsURIXRlwsoNX+f/jHwghnlZzRGRqrWtE1FgQ8TJc2Fn7iHiOiHMAAMZYARFXASBLRAERTYmo\nDwBfWxCxCwANuCDg1y+2BBfkS3DxOJ6H5zY5+DuJp5XuIsD8eQf7fzfgFUO6N7aLuu6LIl0pZT2O\n43cCQNYwjE8bhnHlhnp+KZPGvgVSAPBufmMRuv5WpdQ9C4vzn0WRbPz0T3/2rb/1W49dYgz17beX\nomrVFd0ujI+OZk6xmJ/GcbKWplPBWF7P512nWk0GcWxYhUIyNQw7PTn0G8vNbFumZ0Jk8qpalj1/\nDF4cgwUugNemeddlVSLEYoGm8SnZuojCj9HbWpOHlCDymNTlDt8lAHCrFGwq1RIOyaunYruY0YMJ\n8FwO9dgzoBdMqCaykH5hbJYNJNosKqdBSnsGBV8cmw1FwERZwVByXHflSSAR1lM1ix2w2jNzecmU\n3UNkTQLE2+xwP4kMw1NsPPSo4kdGZkskx4eG3gAAaMq0naAlcoTtCYvKM+bmmkpNWyLdBQDYVLIV\nAPfK0jkwMGYT8mwFkJ6JYFMjiRXFjobcb1ramC5p4zxBZRvKSThGvM3jFYtk4IEPKUrXU6KfsCjj\nqeKRq4WKMV4JIIdZNNunVnsZAApV5Rz5zK8j8agksyeKKQMVjgTMxZwlDYapm8HEjJhfZGRE983+\np98RYH3D4zMiJpzzYwB42kZORMaCiJdvIuIKAAxuEDEiakTMIWIDAHJEFC4U8RgAri6UsQVfJ+ES\nAPwYXFhub16suzER4uWCBQBDgIsAc8MwvlsnFj8rXlGke1Pb2AsKNlZK5eI4fpvWensxK+3L37xI\ndqvnpCFiqrU2AJ6u29676P+94jjOf2aMlT72scfe9G/+zYN7YSjF+nourtVcdzZLJg8/fO5EkarW\n64V2GAaubVthr9cpr6x4bdP0JGMDHQTLruf5Qa1mdE5O+Kot4uj6QbJdd+ttmp1AJ11f2lqXhwdf\nEOuNbX0+SljxUjW9evmysVso6HF3xkpbjtw/7/B6mKC7vKPO8xGNa3nVu3YqtmOXZjPJcgIoqWX0\nwJgz5WQoujK8CMnRjOk1Uieeo8NrPbHpCIpVFtxII39LOdKJQlzSSl6JjOWpZvy2vOy0SNQM0lFO\n6JkTsEgIUk+CuwMAsJWdnfqImRzpEQdS5Zl75BlpctmGHSCCLR2ezxgVPE1TJIVllWk5pKITjhsp\nkrWp0qDN0yYnSLMkI9DmyCU+TVGaKeXnGYLJsZhcAgBYUbw1YvE6JxZUlXUq0TQQiGucZsYMihlF\nXsrHdsJSyCurE/BBwVL5tqONacxiV+niJEti1DN6uwAAVeW0Qj5pAADkZfZYYWoZMj/Zjt/010W5\n9Zz6vBEx5ZyfAMDJjfeISGitl26UJbTWy3DR8TBaEPEMERUiZhCxBgBvIqKYiCaLOukRAPwpXJDu\njdLEXQDwLrggvm+uEX/zCPdbhaeV7nA4dC3L+m5T4s8JryjShWfI1H0uWCjJNyulXss5/8LCSfat\n1HICANkXfKXfHikAGIuQnHcDQGjb9u9yztmDD57c+f7333/bycncq9ddWanYnlIQPPTQuU5TXcpm\nzWmt5nW1Bm7bSVQoeOPr1+fbSs27lpVJBoPjguct+VKawvPiEMCF+TTJlJesvpye8UwxG3AluypR\nnLTBMiUKhk9AcXo7yzAkXS/r7sERX6dtZOEE3fUleSjHaMY+WPtabEqNolJWw0KIU+aQfqot9lyT\n/InGbEOos4xLwUGfrxsuyVMSDQ3ILpXSkCmCELD7uYFVJUBsltVgqlhtU6R+Run8HSmR65L4YmBu\n55hKlEvEieQ2Tw9VZAlX8r6dDdRVaW2UUI4mVppFDXpH6esKLcNT7MyGkLcErmQ1TQ0WWSmStSrh\nKEEURZU7dChRHR6tAxIgpWzG0nJG4yRi84qrnF5G83HMUpt0bprTMDwR010AgBUFx1OWFBkhVKWr\nfS5ODY1JymbZAGzHQYxTMSppVGZG2d2Q9ZtCWzNXuV3JFCfVOLMJopE42wIAqCfNh3ait117MTcQ\nIkrO+RlcqNMvAVxMTSGiqta6QUTLWutNuEjemiDijZruKgCsMsauMcZ+hIhSIpoAwJSIHl4oYoCv\nE/GNEe4efD3z9sarDwu77kuIp2u6k8nEEUK8nKr7BeMVRbrP1yBBRCyO49dKKb93Mb7nP3LOn1Ul\nL+aklV/sBT/LNVla6804jtdM0/xzwzB6x8fTzfe///5LX/xiu1QsWsneXsEyTW58/vPnkKaUM00W\n7+4WryWJMhER4jg2PM9Njo6CJgDAcDgoVCorI86Ftu1JEoZ52zBGaaXi9KdTzDYaafv69XgrU1lq\n+ectZ2RtF7ea8cHlh63dyorqhSna65Y6euo633MdCOYJeKugTiZzlh8HrNjcUUcqIZHJkH+5JXYd\niwLNgOW5Hi/nVfd4JBo6A3hFih1E0k6Goju0HJc8lX+gY2c5ksyUyCQC2PbkdR2hKCZ6OM1yOpgb\n5Yajzp4k3qiS8reNNJ7MeSYC4McZYyfUCPc4/vApoEpRYn/JgNF05oXANLvuhVsage/KpNUWqmEQ\nBMuaOjFmTAXEOtyvpSisVaWPzxbGiQ3J9mNEq6TsAw6JGGJm2URwUjHPpKidohKdEZ82bW2Nisoc\ncoKaTa72KO0fWMMlIHKXtDidsaiCBCpHNNeU8xkZMWJoRpCNOACRmK0olLajrUHChktEABldOXzj\n7L//i1txXy2UbZsx9rSjjYgYEVWVUrcT0evhwkgAi3LFOSJOFrnODmPsEgC8nojkgognRPTlBRFL\n+DoR7wDAW+BibloHvpGIX+yMtKeV7iLAfP9FHOtlwyuKdOE5Kt3FItmlJEm+HxEntm3/jhDiudor\nb8mcNK21vajb3gsAc8/z/msYytUPfegv3/rJT16r27ZIGg3Xcl0j88QTfT2fS4dzkJcuFa+mqRZJ\noszZLMm4rgiiSDn9/nm1VHKGlUp18NRTk0vVanHourlwOj3NmGY+UYrzfH4+7fezFa0lcz0xn3U7\nXqHszaSQIagYACyoLOnRtSfEZv5unBkSkrUldXrlgO80t/XxeI7FjbI8nLZZbhpidrJCWQCijSV1\nPJ5hDg2gp3rGHmckXRuDDa1aWVezx9vG2txW6joIiUS4W1D7UYyWISE9YXw1JrQ2i+qwpdjaMsoz\nmyDOz/TEdWDyN7HdRNC6WpB9ocF7NclZGhueFTp6y/HLXxKiYpGmhhNFiQZZVXiScgFcm8MKxdMr\nItlFIr1GUT9FsnIa+wJI5VW+ZZGSh3y+DQiwLlWrJ+I1IKIK6ZEih2fIOEMM7QQyqUXM6In5tkQN\nS8o4G4hhgxMPy9I9IVSGpaxTh2TcEeMtAAV1pU9nfLaCBDpHrCfBlLbKd2zQMkYhJSr7vtk//0MB\n5kutDp8NXCl1FxG9hjH2J5zzxwEAiaiitb5RmmjChSkjAIAzRJwsngJtxtgOANxLF7ihiB8lok/D\nBTneCCHfAIA3wkVLWw++sXOiC889RvJppTudTk3TNJ8pj/q7Hq8o0n0uSjdN08Yi29Y1TfNPDcO4\n9nxazG6Me39RV3sTblbbnPOnTNP8/9I0ffvHP/7Y2/7Df3ikkqZKZrOGZdui1O0GydnZwDBNluzu\nFq8DEAWBtMfjOG+aLDVNnnQ6Qa1Uskf1utdlzNLn5/ESAMFkMsp43lLY6YyX1tbCU60dhjjWrpv1\ngwCcpSr1Dw/Djd3l0vWTqwfLUXXb2lwND688au94OZrHGsyCr0fXT/gmY6CQga7E1I8V2sM5K21t\nyX0tgVcMGH7tmF9iDFSuQbM6qXbBo+nVNt9mWdLnJAwggqW83o9jsFIgfnnMdwkQG1V1RgnClin3\n0whNEYEySqj2I76ZE3rS5qxa1+q8YOhZdyoqoQbjtIDmSGOmYSTtxwwqNWIxqQulunO3EAGYqeev\nn3AGW1KFHZ4Uc4pPa5raAXMd0jTlEOpDThue1jOL+QYgwJIUxxI15lWu5ZBKjrm/CwiwpuLTEY9X\nDELySPJE2SMTxEhjKqQuTThR0hPjbUJiZWWdjMV4iwigprxrCqVlqnrLIZmO+XBdIxhVovmIj7aB\nAO4L3vF/VtXKd6xGqZTaUEr9MCKeGYbxUUS8McqcELHHGHt6kgMRIRGVF0S8rJTahAsyjQDgHBGH\nixZKizG2CQB3L/a5QcRfJaL74YK4a3DRObEKAPfBhcljAN+4YNeBZ25bu1npGqZp/l154WVEdNP2\nGUl3YZN9u9Z6YzFR4isvxEn2Ui6kLXIb3gUXLWn/B+ecP/jg8W3//t9/wRiN4jtMk3EpJRoGl1/5\nSo97ngFbW7lDwxDJfJ54w2FYBACo1bxetxtULUvEzWb22DCYPD2d12ezUY5zJre3V/YPDiYbu7vZ\n69lsfhZFbVOIda11KqrVaNDr2eVCQU4Z42pw2is4nhmalpaUzkFrhzWWZfvyl8Xu5r36yA8haVbU\nyVNXxN7yijrrTFltOyf3z054PUzArW5Rz5CQbC+pw/aQVSOG1jXJdhUhNspq5s1pCibIyx1jlyGp\nfI2mloSo6aXH8znLUAw4KrLiKGTF1Yw66StWbpI64oz06ZQ3pAHGFSZ2NCDbyCQtX6G7LWk/RG77\n0ywvGEnyZYuvAABccoKjKbDcWsB9YZBNlDU8rZzrItjTCHB3Iuf7hqwWpBiVQQ98zDkayZrweTlG\n7ZYVdKbcbwICrEp+YBIvr8isYhiNTo1pkYAKS5QkMxbVBGHkQYiajLmtrDEDkoYqtxG07vHxFiGx\nksLTCe+vAwIUlddKIfJsVT2qp42rd0bfc+VZb5aXCERkSSm/n4h2Oed/zDn/tudFRELEPmOsDwCP\nL46DRFS8oYiVUhvw9R7gc0TsI2KMiCZjrAkAdxIRhwsSnhDRZSJ6AC5qyTeGVTbgYjRPFS66JL55\nwe7mPl3TcZznE+v4XYNXFOkulG7m5l8sHtvfsmi3eti27U89yyLZc8GLLi9IKStJkrxTa11e1G0H\nx8fTzQ996IGtxx7ruWGYJkGQOjs7hfSpp+aiULDk3XdXk0LBMgaDcO3q1TFLUwW7u6VetxuYShGv\n1dwu56j6/bA0HidFAICtrfyBlMC1jlmtxtphOLU8r+CfnZ00NjeXj7T2UOsBxvGKnSTSrNV45/w8\naezeWb12cv2gwZobar0RHB0f2iuGCSkJADwhdYKsAUCU88ifn1AgCyjCBN2NVXmICaIKgV3r8k2p\n0Xj1pSTlEmKN2H7kwNwwOTlmlVIDKNkpqoPJHLNpCrzFxHqs0dqsqMOhxMI2yv15wrxwDg4vAB0k\nYoMDSe6CXJX61OU6bPnGWkjoOLkkOiPecFEFyk7NRiSOPab8E3JWfcRM1glmVwwsW0TRjIdRThtJ\nSWE4YFiIQdCSVt4VMygiEexJGZwJ7eSlMfSA5kJnU0Fgt/l8UyLBiozPpmLaAABYkeZ+itLJyeKh\nBamacLacgrRrTMY9FlYFsThDSUwA4CqnbRCLQdePkDRNeH9Zozazip+81X/PtwrgfkmhlNpTSv0Q\nIl5dqNsXbC5YEPGQMTYEgK8CXJTtiKhwo2NiUZpoAIBaLNb1ETFCRI6IK4h4x8LyPl30El8jogfh\nYmxOFb5eJ34VXChkQyn1g7/8y79sSCmzcRz/nTniZUQIcEG6WusKwMVqbRzHr5NSvoUxdtlxnI9y\nzl/0PKlFn+4LKi9orZ3FBOA7hRCfcxznj8NQrv78zz/w5k9/+qDY6QT58TjK3XtvTV+9Ok4OD2fz\nlZWMbxgs7fdD+9FHew0iYNvb+QEAWLbNczs7BTNNVWYyidW1axMLEWBjI3fMOaZaE4+i1E6ShHte\nJTo6mjZ3dtzrjKGWcswRSxTHXWtpSfXCUFj5fDo7Pzdg0h1mL5QMYDIbiiBc9fZ2kqtXHjZ311+t\njkaIhUsVde3yFbFbLOpRd8bKW4486PR41Y8xs7EnzzBGvHM5ST9/YJEiBF6BJSCCrao8DBPmhJLs\nyyO+qwnZakOdzlPQTVMdD6asNElYIVeleSdhtaKpRzMAZ1PJQ8MCeXXMt02E2CigDAmdNUseK4Vs\nM4aWcgCPZplmFtWM5/xqjGhv8aQVEdo13z60zVifikyTI8kUfcdnlF1S1D0wwlxBWe2qpniGohiD\nSSUtswdmULI0QI00pEBQUmafgUo8VToySMtTPt4EBFxWqtXj820AgBXJDyMm854qHrmk4pAlhQRi\nx0PCDve3GGFaIjnXqE1ORvDu2Y/8PwLELa3jEpErpfwBImpwzv+Ac354K86DiICIYwAYc86fXJwb\niCi/6JhYJqK1RQsbwoUi7i2ImCHiMiLevniSvEHEh4u8iSkAvH8+n+93Op37nnjiicr+/v5vAcAv\nwcXYnX/1HC7x3XCRNMYB4H+Hi4Sx7zheOr/sy4jpdIoA8KEkSV6dpumrDMN4IkmSdzDGhqZpfloI\n8ZJlZSqlsmEY/stMJvNvn+s+i7rt6xZ12ycty/prRCx//OOP7XzsY0/UL18eVH1fenfcUdK+n4ZJ\noue2LUIiTUTAWq3ZOgBAuez0slkjAEDQWrMgSC3HEfHx8XxNCKa3t/NBpeLwNFX2+Xmg+/0At7cL\n4ytXRrlczp5kMu5U6yyfzUwviiJndfVVZ2E4cAwjI3u9cqnRmHfa7UzV9yHT3M4dt0/8pdpmo0fA\nMUqE1RmIpb371PXDR/la4VU06c+wsrehrh0c8/XGlj4/mPKN7Xo6KWYp+9UjQbwG4TxmmZ11ua9S\n5FoTHim+RgC4tErdIAFnxVPn/ZSXhzEWi3UaDVNWXs2p44SD6SkKQwvtdsrrNVd1uiZbIkDczabX\npGYGKaK2zWsRoLPupkctE5sIRLc54UGqOEcC1Xfj5QjR2RbxUddNmgAAezI6TJAZgnisMHQHjJbK\nWg9T5hc1Al+X1Jpwf7WeuljQNBsJiSOWenWloW1EPKOZ9iDQAUtFXhlDh7QPKJRJkI75pClRW8vK\naM35cB0AoKas1oxNVmztDrMkRimmToQy84bw7j97Y3TvLSsrEBEope7UWr8LER8VQnz2pZ4b+EKv\ni4iyN/qIbzJ1CPg6EQeL8p+JiDmlVIWIlhhjDxDR6N3vfveb3ve+933vz/7sz3K4GL9z/7c5LQeA\ny3ARcnMKAF8AgH8KF+N7vqN4RSjdG5m6WussEW2laVo2TfOPTdN8yVtKrUTXFwAAIABJREFUnu+c\ntCRJdhZ126lt2/+Fc248+ODJa375lx9e+au/Ot6QkozlZY+2twv+ZJLMGGMxouKIQAcHs00AgHze\nGtdqbl9KLaJImeNxmK3VMoPxOCnOZqluNLzTXM7041iZjz7aK8/nKW5v57ueZ+bDUDp33VXVliWK\no5GRe/JJ39jddYZXr4Yu0ZwZRkbOZmcu52WVJGhUKvFwOrXyOp6xMCRHkWCT89PsFLYKe1vxtSuf\nt3fqG6odK7Sapjp6ap/v2TaEgYbSvcVEjhVzvnjVYJs7qjWJMLOXkefXj/iWImCVJg1YBGq7JPdn\nU5aVIRPHTKwEEr3NmjwMJdrbIK93A1adSZbbLKlWO+V1DpS6JgUbqT7iguTVmbEDANAoqrOI0Cmg\nGjAA3fTh2LQo+VrobiNoaub8boTo5EiNEAmW5k7L4TK5asMOIeCuio77nOqCKHUhlqidc08zLTFa\nmUGG5xm0T8xZHQBgXeFhW0TNjDJ7Nc2iBIxsStrlFBTaIi1lFCqTBSRRi5wSYwWx7alSy9QYzfi8\nEoLNXDDirhhdAgDYTNYevpWEq7XOKaXeQ0R5zvnvLvp2vyuwUMQzuKjnPv0daK0zNzvrtNYNuKjj\npgBgfPaznz2oVCqZxx57bOvk5KS8mKY9hAsy/XZ4PQBcg4sYRwCA3wOAfwB/R7ovDGdnZywIgn+s\ntb4EAJHruv/p2WaYvRjcIF36NnPSpJTVOI7fRUQF0zT/zDCM8fHxdOMXfuGv13//95+6nQhYJiPo\nzjurUb8fjqfTJPb92MnlbN3vR8tJEpiFgjmq1zNdKbUYj+PsYBCWG43MOecc+v2wtLzsdWybh0oR\nv359spGm2qxWnW42a87jWOls1uwmiWa9XgCt1qwJAKzRyM0Zi23LEqD1eLNeX4mjCKBaDebzueWY\npj8RwpK+r536st3ut47LtWapl8d4nkTKAADIF2l67XG2lbsX5yIF9drdRH7+a2Yus0H9/ZGo1HPq\nPB6BORxg2dhmUhHy7eV0X8eMSx9Yi4n1WKG1saaOZgl6K7Y8Px/y+jxlmWZDHc8SliuYeqgIsCnV\nsXBI7Y/FpsMpgBwAaKIdR11XMYpKonssC/ogMDZKQg2nApcZkbpkpPtJaBlZyTpWNsRrKW/mUU24\nnTqEgOupOpSMs5KyjlyK1JHATUFE2xTBmVCY0TANWGAXlHvqaphPeVKIwdFlYMF1w18HAFhX+mgo\noqapxbSqzYkCM2MrsBH9XFdI5inSLp/riCXC1cY0wXnRUZlORmd6/2j2rk/fivuTiFAp9Vqt9fcx\nxh4WQjyf+XwvKxhjcwC4uniBUmpTKfVeAOgi4sknP/nJex544IG9drutEPELH/zgBz8EAD8Pz82a\nvAI32afhwsH3hpf4IzwnvCJIt9Fo6F6v95BhGJ+P4/gf3yrCBfiGOWnGMwXraK3dOI7/vlLqVYu8\n3a+FoVz78If/6k0f/egjd0SRMh2H6ze8YVn2+9Hw5GQej8dxvlAwZZKQ1WpNy+WyMyyVrJHWwNpt\nvzYex4Vy2e5Xq24/CFK3VLJHnKPinOmrV0c7AICeJ+Zra9lTpYgjAvl+ahsGj09P502tiRWL1rBW\n8/ppKozx2HdzOWe2v9+uZTKFfiaTyxL1PM7XrWJRVXZ3lWy1eGl7Oem3z8gVpqVOnzqsi9Ke3l4L\nDi4/4uxlizQDTqVtM8UvXzbdVAFJDv6KVongIFsD3lxbU8dpCmKdqdZJTzRiiXZzQx1HITo7WXl1\nNGClQYBlscrlPGWZlYI6pRRwLVHHiYnm0Yg3655qH6V8zQBK1j11HMbo+grsFuPNlNDczKnDA+Ib\nBdLDqtADe84ihcQue+a2BmR7bnB4zGDDUeCvGLoTzF07ARDnmWA5QW41lTw5EbIJAPCahOZDYU4L\nypYCIqPH3YZNZGZYUIhQe0XF+hMW1nLKbmc0mwYs9RISQUnT8MCYbgAArCh2NOJhEwhUVRttDQXX\nkcI0MPB6QnIDmPe+yZvPmMI7NNNniDh8qe5XrXVJSvkjAMCFEB9btH39rQMRGVLKdxDR7ZzzT3LO\nr//mb/7mGx5++OHorW99609/6lOf+r98378XAF4LF21oz+mwt/CSnxdeEaQLAGBZ1he01q+G7+yc\ntKdJd7Fwd5+U8i2c8ydc1/0NRKx8/OOPvekXfuHB23q9MF8sWskb37is5vN0cvnyKB0MwkImY849\nzwj6/ahUKtnjpSWvLwSqVmuyGobKdRwebG7mD6NIWrYtEsPA1DRZsr8/2VSKuGmyaHMzf5Sm2rhQ\nxFG2WHSmvp9mh8OoUirZw0rFGWhNvNMJyqNRVKrXCx2thQEAMByOwDRLo4ODK416vXHW75tk2zMj\nCAp101TZcpnR+Px8c2s3G5OZSKZDF8CFe+6K7M99zja27oUTOYXabSvy2uUrYq9QpOF4hMsrrjqJ\npmj1JmxpY1e14inaa0V5hHNEOQI+NFlpGLHyRk21YgnmJsiDvs8qs5RlN5Zkq5Pwmg3k5wya80Sf\nCZPkU1NxCYCgXtZtLYGtcXkECUIu0dNilqaXI2OXg5b5gppyQtkkeaYSA+zQHlWcaPIkhz0kTRuZ\noDtDsIoSBksKinmVkRJV/0tmWAeE7I6SrQ6XDQCAhtLdFB3uEe8QBs4MLFMhuoEIixLJKitcONTM\ncV6JnmTKFDrfy2qaHxrTTQCAVcVaXT5ZBwD43vldn6upYkJEt0kp3wYADlzUMc8Q8YwxdoaIo+fT\nO05ETCn1Rq319zDG/hvn/PO3UnjcSiil1pRS70XEE8MwPtrpdKwf//Ef/2fj8bj3oz/6o2/4pV/6\npdbiT/9i8XquOIWLUUc3sAY35VV8J/GKIV24hZm6z4AbHQzzhbttL0mSdzHGhrZtf5xzbnzuc8f3\nfOADf7n31FPDWq3m+m9+c0MSUfz4433Z70dFx+Fho5FpTyZxzrJ4Uq+7XcNgyeHhZD1JtIUIene3\neC2OlQVAqJRmWmsYDuOS7889zzP8G8p2Ok0yo1FUzOXMmWWJtNPxl0ole+R5ps856qOj6WoQSC+T\nMWbr69njKJJWLhfNPM/0z84Gy9vb2UPX9UIhRiqOi0LKYZzPFyanpxTlctA9OJAbq1vO6PJjrVrz\nVRve618zhycedQwhgLhD2UxLxx2b14gQl5bU0OwxaWZBnk7YaqmgBzoBtpSoThAzbxCw8saaag1S\nLO7Y8npnxKqzhOU2V1VrFrFs1tBjJNDLoTq38xBfGYsdV1BANqBL5DdtdTLzMcNiUGGJuf2IVaqW\n6h0Ca1a16lZMPR7OeAEU0rgA+bHE4pJIe6eGbGYlG69w6AaB46LGpOoExS9agjmkgyxEWQKAuoQT\nBUg5lTv2KE32RbgNALCpkqMel8tIpAukZ4ps3yQeAiZmCPlEA6EU86ZEbRWU6I75dB0JZUXaJxIV\nWqp6VFf547ckd95/838dEbk3el2J6NVSynfCxZrB+U0kfIaI42e6p7XWNSnlPwCAUAjxG4yxFzQQ\n9eUGEQkp5fcR0V2L/uGnfu/3fu/eX/mVX3nDPffc87/9/u///r+tVCovpsvjiwCwCxfuuDMA+Cdw\nsZD2HccrjXQVXIRs3NIg5ht1XSnlUhzH7wKAnGmaf2Ka5uToaLLx/vfff+mBB44blYrjv+51S4ll\ncePxxwfxeBxnEUFvbxcOfT+1ERE8z5gjku52o4rvpxnOUe3tFa8ppVmSSHM2SzJCYIrI4Oho1iwW\n7dHKSuacMdT9flAaDKKS44iwVvN643GUz+etaTZrzExTqOvXx8001RZjoHZ3C9ejSFmMMY2YaiIG\nvR5VpVRGms54JpP3B4PjYrFYnBBxViz6417PKxcK6QTRoLODfjGT5ZgkMD/tjmfDaaZx151x5/G/\nMuuvfl2aHIQi89bbouSBp+xdx9FylkHVdOWJQsSjFl/b2FBHhz7WVjLyNJ2jmI8wW9zAySxiuUpW\ndaUEtirVKTmABz2xWc2q3mHC6lnU0xVXtYcBL8QazGvAtyShsVlUh2eS1ZsojxmAnk8hwy3QX2Ni\nDwBhM5u0OhqrTaWPBEMVTjI2CCWveuGOIsbeIMLoSUGYS3h/GfVwzjwPEdI583MdxnNFrYc+C5cB\nAFYkthRyVlD5lktpcsaDHULANSVPBjxZRSJdgXSakkGeMs9tlKQozxRoYyz8eorazmqr90/n9332\nGe6lgHN+HQCu33iPiLybbLh3EdG74eJ/9YYaPgeAtlLqbgB4HWPs05zzr9xioXHLoJRqLNRt3zCM\nXx+Px/gTP/ET/+T4+Dh+3/ve95aPfOQjVz7xiU+82NNIAPifAeDP4KKT4TfhZVhEA3iFke6Nrdba\n5pzfMtIlIpkkyd/XWq8KIT5rWdblMJRrH/rQ/W/5xCeurLiuEe3uFpTrisLly6N0OIwdgAuzgtbE\ntCYGQBgEiak1iJOTsOo4ItzZKexzjmo2S73RKCwgIlWr7qDd9mvFoj3a2sofCMHk+blfm06TPGOg\nNjfzLd9PXUSkfN6ccM7k+fm8FobKQwTa3S1cU4p4kmgjCFKHMZAAyA4Pu8uFgjVeXS2enp0N6rXa\nSu/sbNaoVsMBUYalaY9FkecwJvN7e4a+fFnZe6/OHR1daVXrWyty1Y1Oeh3GiRAizo7xBKrHGREC\nQO2uS+m80+WZjKtXnhiZ6Fpa5SzlVIY4FXnUrRFfq5dVex6jt8nU4Uxi5rjN1taW1PFJyNc81LOi\nRRPwCSyH4qemxh4AQb2i26QAa0L1ZgFmkhgsVkJ9GPN1AykJbbTqSrfzXE/7vigFGl2WS2lfi00B\nWpad0CxIhIyGzqllpcnMrjhmElx21B4AwI4KjzuMVnOK9cukRwHmggTI7PJ5PUVmLSndnvCgSQi4\nItmhRG0WVfbQIZX2eNhMkawmqXmbh6tIREtE3TlQxlNu90f913zCJfM5ZQwgos85vwYXq+0A8PTK\nfmPh/nojXNhoNQAcLZxhlxaKePa3hXyJiEsp30JE9zHG/pRz/vinPvWpO3/xF3/xza961av+0/33\n3/+/ViqVl3IR8E8Wr5cVrzjSvSl/4SUPOF7Ubd8AFy6Za4suiepv//aj3/PRjz6yJqVOSiVbGAbU\nh8M4evTRvuAccWMj1zIMLuNYGtNpkk1TJcplZ3x8PFstFKzx1lbuwDRFOhhE+X4/qCICra/nj8fj\nKEdEuLzsnXOOqtcLK9NpkgcA2NzMHyhFnAgYY6iiKDGUAqPXm1cti8dbW/l9w2BqPk/d8TjOa01s\nacntn53Nly8IvLBvmobsdKDi+zLDedDxPHceBB3btlcTKQN3d1dJzs2yEEkbwFzxR2MWRWSn2uDT\n86PMnG3nNpvxwdW/MbcLFRqfTXh+KyMPHnnCXEkkiGoGezvZVHs54I9eNqs7a6k6mIncXaUkiRhm\nrpwbmVJTRv2QVyxGgckorYeq7eQoutIXO5agSOTQLWo9qLtq0JnyyizBrFFhchCzcs1VnZ7G8rpW\nR5ZN8eGEr4eA7ryAmblmmWVLng0AipcS3V820/wjswyfA1At54sRsFqJqfHQSmqFhPfKRCNfOJkY\nIPEg8q8JvYukqUlRd4hkeRqHHpFv6PwxkYY2n68oBKOq9PmIBxuAACsKj0JU2ZzKHXmawjmPygEw\nfH3S/Pwd6fKL6hVnjM2J6FBKuQUARcbY/80YO1mo4YZS6nVw4f7SC/K9uU78ok1BLzW01ktSyn+I\niDMhxH/0fT/9wAc+8I+efPJJ8Z73vOedv/qrv/popVJ5uS/zluAVR7rwAjN1nw2Luu1tSZK8kzHW\nQ8R9zvnZX//1yb2/+IsPNs/PfS6ldrXWNc8T8eOPD5jrClhfz7Uch8ezWeqdn89rUmrRbOZPut2g\nkqba2NjItTjnajwO8/3+tAIAsLaWPdaaOBFhNmv6UmpMEuX1+1EVEajZzB1ZFkuTRBu+n3hhKK1q\n1R0dHfmruZw13dzMH5omSyaTJNfrBRWtiW1s5I+Gw6igFPHV1ewpY6CGw7A4Go1LAADNZuXo/HxU\nzWZL8273fOnee+tTKfP5NB1Pjo9LuLQ0DyzLjGYzytYb9vn45ChfXSkMPC1DUAkCWFBfV92Ta2yZ\ntoElEs2tFXkwarNCW3MR+ehwoJQzPPSmVI8yLLgyFLWip6Vl6tp9PCZlI/ty29yqZJR/nPBqnunx\nclZ3O2NWlQDGdRAbCaG5WZaHE8lyWyAPAomOH2Am79G0lYgmAMBGXh0mEsyakt0pw+IsNnPcjtP/\nBqZBgLDn+odzxTIrET/gDvH2LOOmqK0gG6wnCNaqkmfnLF3LKdGrahoGzM2kRIFLcXAgkm1GStUp\nGiskw9IwswliU2cPGYHucX85QdOpKIxnYrpGCNiUua/9aHDHl17sPaiU2lZKvQcRWwsL740pv5c5\n55dv3KcL91dDa93QWr8eLohY3iDgG+UJvJix9h3HYtHvTVrrNzLG/oJz/shnPvOZ2z70oQ99397e\n3u/+2q/92gfe8Y53PNfUsb+V+NvxHPIcMJ1OXwMA/9D3/X9mGMbnTdO8+lIcdzG6510A4BqG8Wem\nac4ODvrv+vVf/8rGQw+dp2dnczabJcadd1bkY4/1IZMxptmsOTdNlkynaabd9usAgGtr2ZM4VoZt\n84Rz1EoRRpG0ut2wBgDQaHjnti0iImBRJK0gSMx83vaPjmZrlsWjpSW357pG5PupPRyGpTCUzsZG\n7rjTCSqZjOl7nhHcKE10On59ccwzAADT5JIIIE0V05pEux0sfp85c10jVMoU8zk6S0tF+upXB7V7\n7rnkz2bWqNdreQD3sHJ5MpLSYcfH5trWFh5cv05bW3c1D8+untSMym6a8+SsMzBqhACZ22leUDSd\nG+gNZqy8cYc6hJiQM9DX52LTtijEKugq00Phktwfic2lohr0BCt5gtTdq2ncmTLHMImelCYHANhc\nlQM/QSgwGraBLU0ly29WVOtA8nUTKS4V9MiWFNsC4mvEtySguL2YTr5GRt5FJfMZ1bckxhajpGXg\nWgRo77n+4bGpN5A0bbnheUKMe5L52kqsPoNqUatJxIIyIbANpY4GPGi6mo/rCjoxI2eGkClSFA54\nvMKIVJXUeMbSskkQVrQcIxipRUbwv8xe/Ydl7bzgjAAicqSU7ySiTc75pxb13+ez/815CA26GHC5\nDADJNxHx2U1EfkugtS5LKd8LAKkQ4o+SJAl+5md+5gcefvjh3Nvf/vZ//tGPfvRvbuX5v1vwilO6\nzzfI/FtBa+1FUfQ2rfUlwzA+a5rm5TCUzQ9/+IE7/+APrronJ1NKU7Jf97ol6vVCHUWKv+Y1FZ0k\n2ppMYvPKlXEWAKBWczu2LSLGAAA4BEFqua4RHx3N1hhD3Wh4Z9nshZtsNIoKk0mcXV/PnwwGUREx\nwWYze2TbIgkCaV+9OtzSGvhin7mUxGs1r6+UwjhWxtnZfAMAoFJxevm8NdOaWJIoczAIc+WyMzk/\n91eEYLLR8M5yOWseRdLqdPzqbDbK3n13Mz48nFqua8dXr57qRmM70lrnyuVgJKXNLWueEJVQSils\nRwTDk04+W3Dm2tDMoEkqZVVs3yavd1psKa2CGESsvFpVx8MWFmcBy+a2aCqQ0s2qOjrq85XQA6sX\n8zUAolyOxravA4agP3dorTMkVVgmv2Yo3MzKdH8gCv2I8dyqLE5DxpoZOYs15LZIHoEJcn8ktmxO\nIcsBSUDxGi9JpUJrO5Wn2ob0YGZumKBjq6CSCNCu87QbIDgrgXnoGml8ELhbEtHYdf3TNocVgygR\nGImsFoMMsWmMqZVSNuCkg33hX7rI29WtgYjXBWG8qoxDCWR7ZMcOpOqMR2tIRP/Sb/72iyFcpdTt\nSqkfRMSvLtTt8w5qepY8hNJNi3VvVkotA0B4ExGfL4g4evYzfHssDBuv11p/L2Pss5zzLzz00ENb\nP/VTP/WO1dXVT33kIx/51+9973tfyPf0WwDwQ3CRyXvnt/ibXwOAH4CLft7/AQAeeSGf4aXEK0np\nrgPAvwjD8IcQsWvb9hdeyHGISMRx/PeklG/inH/FsqyHEHHpd37niZ1/9+++sH7t2ngZAOC224oa\nAP04VmOtiaJIGrbNsdW6sI3u7BTSlRWPB4GUvV6oOh1frK3levv7kyXTZHGxaI8yGSOMImW12/Ol\nONb26mrmNAylbRg8dRwREWnQGvjR0WwNAKBYtIaFgj0lItSamO8nViZjhUdH0ybABdmWy844jpUx\nm8XZwSAqNpu50243qArB0kLBmjoOD9OUjOPj6YqUZKytZYNczrTjmGZK8bEQ2fTq1fnOpUs7V6fT\nKMMY12m6bjjOWTidruSEIOl5zD88hI2dO+vXO0eDamFldRolwiIC6A9FdeU+dSpCUOAAtIa8ubGj\nDpEI/RnafcGqmoDVt/S5pSC1TIqvTMWuaVAsqiBBAa6X5HHH59VAooMloFChu7mkDmOEbFFpPbEx\nexIJ+85SQo9rEwEA7i0nA1LgcE3WU9xQc2LmmqtOjk2+CgCw5yVXE40mScSJp7NjYMWKSPuRFxYV\nIt/h8WFiaMdMReiasTwR1FRAYpWCwYjpqk0UZMEnRkxmNR8aKNkUIeuRCmdsvgJ40Y875BdutTfG\nlb/81/NLD7yQe1BrnVFK/SARVRfmgONvv9eLwyKqsXRDDS8UcR0A/GcoTTxngtRaFxbqlgkh/lBr\nPfm5n/u5d37mM5+pv+1tb/sXv/Ebv/HtMhOeDW8BgDkA/Bd4ZtL9QbjoWPhBuHCf/SoA/L0Xcb6X\nBK84pQvPkqn7bFjUbe9IkuT7GWNtx3F+kzHmPPjgyT0/9VOf3X3ssd4qAMDWVl5XKnYwGsXj+Txh\ns1mUq1Yz434/XGIM1fKyd5bLmfM41uaXvtQtz+dp9tKl4iiXszJS6tq99y4hADHfl9mvfnWwCnBB\nprWa2QUAzGateRimJgDB4eFsAwCgUDBHF24yLYIgdYbDsNBoZDvzuczN5zJfr3vtXM6cSUnG0dF0\nJQikV606vaUltx+G0q7V3C4RkRBMXbky3gUAyGSM+K67KnI+T2k+T88mk9jK50v64MDfAACYTkee\nbVfi4+NrK/X6WgfRpkJhPjk7yy6XSukIwIBZf5iJQmnPfENb8jTqBM16vS7PpldZVmtgUQ2dRlGd\njdtYGM95oXm7OmYTULs1ee34RKxKAM6XQAERbNZUKwjRncXoXiGxowj5+po68hNwVw06Ox+y+lyy\njLUMhycRrxpI8RR4Z5ekyJs688WBWQYAuGcpoXnCeAFVmufatiI6JwHRFd/cBQDYyCWtMbAiBy1L\nRjrXoeUjgT5yqZEotDZEcnJg0AYAwJ5KDnxg2aq0Wi4ksssz9QTJEyxUHaZLNlFgYGALwHRZmq1t\nxU83o8pDr01LJ6vKfd4100VAzd1a6+9HxC8ZhvH/Lsbl3HIsohoHjLEBfGNmbvkGEWutb1NK1QFg\n+k0LdeffrMIXn+W1Wuu3M8Y+xzl/6JFHHln9yZ/8yf+uWq1+9oMf/ODbfuzHfuzF1pX/Ci76br8V\nfgQAPr74+WEAKMBFRGTnW+7xHcArjnQX0YvO89lRSrkcx/G7AcCyLOuThmHMDw/HWx/4wF9e+vM/\nP9hiDGlvr5DUah51u8HoypWxNR7HjfX13InWaIxGUX51NXtqmjxJUyWuXh1taw28UrH7+bw19X0J\nrmtM4liKfj/U+/uTJgA4lYoj77ijhEmi8rNZ4p6dzWFpyRufncWlfj/k1arTK5edkZSat9t+dTJJ\nCvW6287l7PlkEufqda/HOSacI1y5MtohAua6ItjczB+kqTYMA2UYSosxplqtybpSxB2HR697XU0n\nieZnZ/6o2w3cYtHGNNXm0dH5WqnkDovF4vjKleHO3l7+uhBCGsZUErkoZZdJmRVpKo1SyRh0zpNa\ncyd/NJ8ce241H+W4nrpGErfbbmP7PnmgIuQQA50FrFApqx6PSVljis5tXg8SdLd25IFKkJEgduWU\n7xIhNjbUWRKitZKVZ/0+q4xCVjRXVTKPWKbsqn6kwNqQqsUyoPeHfDMrtO4LBgAAG648nISMrSXK\nc7KaPzEzKnmuiTuEQAC3G/EUUvTWU+hwB4IrobuJoGk15/cSRMsDPedcQc23D00keeBAM0Uwt1Xq\nt7jaBgDYUWnLRyrcllpP3C3Na3fIave+JN82gL0oB9hCEf4wADhCiP968yyzlwvfFF5+Y4oEo4tx\nPjeI+A6lVA0uBlyeIeIZAIwXi3iOEOK3AWDw4Q9/+B1/9Ed/tP7Wt771X33sYx/71P33vxiB+5zx\nTHkLq/9/e2ceJWdZ5/vf8zzvXvvWVdVdvaeTkJCEkJAEEkIIWdhU9M6Mjsc5Xj333rnXex3cEJ3B\nQR11Rs6MwsiIuKDM3LmCemWUyya7LEoIWQiQrdN7dde+V73789w/3moo20AC6azU55w+neq83fVW\nd9Wvfu9v+X6hHXTnjdc1dRlj/uP5Btu23U03iQVNN4nDqmr13HTTEyvvumvfIp7H1nnnhRqRiCRm\ns2r197+f9pgmi8ViSioaVbKGYfOO+y5FCAE0dRDA7earza9zts1wpaK5gkHFTKfVmG1TEgiIhVhM\nyZkm4159Ne8tFLRgX59XFUVOyeXUyNKlQawonGmaTNy7NzOo65Q422TeCcOweY+Hr5mmzfG8sw5M\nKcMch4wFC/xjhuGsA1erutvjEWr1uuVOpxuxQEAqDw35mSRx3sOHi+rMTF3yeAQhEJBK5bLu8/ul\nUjgs5wVBtkZGjF7GAJtmhfN4fLVSacrr9S6u6brGd3TYGV3nxVDIKBYKQojQul3IWiEx2GmQxriZ\ntns7vB5azh7GwUoZeX3LWCXqp2kBgzE6wvX1DVnjU3XSOeSzjkxNkE7VQHJ8gT3DKoAGItaIUUGi\nXgIxL+BQUcOBng5rsmEiqR/ssRpFykwGx2NeO53WcBQxBosCZj57pAtTAAAgAElEQVSvk4ZgMCmF\nSVSjSO7xWJOHLL5bAKZ3SnRMU5EiWLZ32sPLZRN7F4uGfYggghmDizi9WNd4AItL8y7VOqLLCYFR\nPeSp6yYCIUDtIgaTu8gQXlxmceNXGP6JBbY0b+OIc+qdzxFCfvdOHE1OFQghihDKYIwzALAH4A2D\ny+bExDIA6AUA+Nu//Vttenr6I4cOHWKiKL68bt26VT/5yU9OdcCbW0I97evR50zQ9Xq9RqVSoXAc\nI2PNuu3FlmVdTAjZ1Zy3jf74x3s3fPObLwxRysyFCwN1ReG8jYZZf/rpJAcAIa9XKHd1SdOMAQYA\nqNcNUZIITE7Wuill2OcTSvG4owpWqRjuQkENxuPulG0jfnq6FuvoULJuN19jDNDYWCWhqrbi8wml\nri73dL1uCS4XnxJFimo109i7NztIKQiCgOmGDZ2GYdhuy2JCJlNngoBr2WxDqdVqitvNVxMJzwyl\nDJVKujeXU0Nut1BTFF7N5dRwICAV+/s9aigkB3fvzkKppBNCkDS7VMHz2AoExALPI2tmph5T1bKC\nELAFC2IjU1PFeCzWmRkby/SGw3qRMQ9gXGDFYsTvdlfqhAh2pWx5vX6+DGoWRIk3GyZyd4VKqUOT\ngcHuRfYkh4GWksidduEoR5jBMbCEApi6DwmqgeSuuD3FG2CHNJbLVXG4omNvf7c9njZweFC0RosV\n7CtoOOjptBpZjXQQxOxevxWMaahRZTi/Myt2AwB0R+wpzURyANOcAGDGVDslCszYX+cWAQD0BOzJ\nFMM+H9gFG6NCoo5cGDFxpyIFbBuhi8U63UMAY8ZgM6cXvQYuLrPIo9tM6XAn9Z4UhwJKaaQpUGNz\nHPej5qX9WUfzTaLGGFsIAG6O437IGMsEg8H3j46ODpRKpRdyuZz31VdfHQXHsv2FU3Rqc/UWEs2v\nnVbOmaDbRHur6QXGGBiGsdQ0za0Y42lZln+IMVaeeWZi1U03PbOgWNSY3y9aACxICDJ27EgRxsDr\n8wmlWMyVNU3KqaolFQqqPx53Z+p1y1suG8GODiXj84kVSimZmqrGazXTEwpJuXBYyTcaphIKSUWE\nkM3zyD50yFEF43lsLFjgP2IYtoAxorpuM8YYS6cbUU2zJVnm1N5e76RtMzwyUlEKBTXg90u6KBJu\nbKwS6uvzso4O2WYM8P79hd58XhMFARvd3d5kpaJ7BIGYiYS7GApJ/v37C+LLL+cxAMDgoH/Usiim\nlKGmGpmIEMKTk7UOSSJaf793TBAEs1YDBSHKOK5hYYxtXS8JhHjtYnHEZ1kRYhiUj0btTDZLwt3d\n9uTISGWg//zEGJSThYYZFkWB6XaZkcmDXHfPRfYksYAFZVo6NMwtCEfs3HQFx/pla7RYwf5SHQf6\nB62x0RrXF3dZSbOOiFYE2e5FuFDHQbdEqwYD6QLRqCsuJj4/IfI8ZkyKMD9YjPW5rTGkI+xXacnl\nZ9pwlRuQCWswBRDPmNEjWJO2ijmvQSsBL9QOq/wCAtTy+q2qDQh1I2syLNjjX7Zo4b0Wtf0qjjKG\nOgHgPQB2w0Q02bx0Th6tfvl2YYwR27bXU0rXYoyfJIS8dLYK1AAA2La9pDllsZvn+V+Mjo4Grr/+\n+r8AgMPXXXfd5Y8//vis2pkEJ2bB/nb5NTiNtHvAaaCV4DSXFgDO0aALR2mkmabZZRjGdgDgRVG8\nj+f5xthYafBv/ubpBfv35yXTtIVazQh1dMj23r05sG0qhsNyJhSSSqbJuJmZekelYvhiMSXldov1\ncln3dnQoWULAIgTTQ4cKCxgDLMukMTDgGzUMyvM8tgAYwxhbk5OVbqfOivXBQf+4I0huiYWCI1RD\nKeMmJqo9waBU6OmRpghBNJWqR4pFPSBJRI3FXJliUfcJAi52drqyjDHrxRfT3ZpmuwAALrooqloW\nE3keJQQBWwiBW9dt4YUX0ojjsNnf75vgeWyqquMebJo2H4u5shMT1YTfLxadYEuMUkn3jY5WegEA\n9fR0TE5Pl+Jer7ucTk9FenuXTjGGIBzWCpRK2OWqNqan/TxCFgDCDMwa5NO1EDK6WKcvMzOW6ujz\n+GmZs5lVfAX71IVERoixsI8VtCSTWBfCpToOKBKtIRsgWKcFwYvs8QLpCfnsXEZDoX7eGhdl5jkw\nw0epz9LSBsHAGBsMWWOagUVOBTPDcdGGjZRunz05aZJuH9BSXLYz5Qb2VGzkmfZwcZUhpUu2k2NA\nevyIlta7jZeX8FbmTzhzdBDTBlAAAARAiPMBf9BI6mqpX3YAQGk2CDcbSanj1axt6gy8FyFU4Tju\nToxxZZ6e+6ec5gzx1U0boHsIIcnvf//7637wgx+sWLt27U233377j8LhcOubyQmPn83hpwBwGQCE\nwand3gyO7goAwJ0A8CA4kwvDAFAHgI/N8/2/I86ZkTEAgEql8t8sy1quadqH3G737QCOvY6u61so\npQM8zz8uCMKIqlo9X//6cwsefXQskErVfaWS7lu5MmJPTFRNy2K6zydUBIHojDE8OlrupRSIxyNU\ngkGpZFmUCAIxdd3iFYXTR0YqfZQyzPNYHxjwT5imzZkm5Uol3efzCZVKxfBUq4Y3EJCKkYicB0Aw\nK1TjdvO1YFAqFQqa3++XyoKADY7D1vh4uUfXqQQAbHDQP6aqliiKxDBNmwcAu1o1veWy7scY0d5e\n7wTHIVvXbb5SMTyMMWXBAj+/a1cGx2Iuu6fHg0UR68lknY6PVyTLYrivzzteKulel4tXBYGYjAFV\nVVNOp52liUhEziqK0MCYB8viMM+7zZGRysDChYsO1+uqCyFCDaNbUJTpRiqViAaDVtG2OZxOQ6xn\nKDiJMGYIEzaRCXQP9Bojw6Pigt5l9kQZIW+Y0MJwhRvgOGbK3UwNYVpEMrDRPNcXCdnZLIcjUYGm\nFA/TJgqkZ1G3Zb2m8gIAg8Eue4TqiNjA8CSQBAOEejvtiXEd90Q4mva6WL2g4oBHobUJxDllh5A9\nNWPj2ALRHt0UMvdvU4yJjaL1ji/jGWOEMdbRbCR1NUerQgCQbQnCyablDGv5Pt6yrE2MsRUY40cI\nIfvOFo2Eo2Hb9lDTwv01juMen56edl1//fXvqVarqWuvvfaDX/nKV06LbOLZwDmb6TLGeF3XL7Es\nay0hZOds3fZf/3XfJXfeuafztddynZQCGRz00UhErmcyatXrFTXTtDDHYXt4uLQAAECSiNrT402a\nJuVsm5JKRXeFQnK5WNQD09N1xe8Xi7GYK0spw/m8Gsjn1aDfL5bcbr5eKGgBRyNXyfM8tkZGSj26\nTiVCwGoqjcmEYBoISCVCkJVON6L1uulCCNjgoH8EAGA2I67XddntFhvJZK3H4xGq/f3eMVEkRqmk\ne3I5NWzbjLvwwg5jYqLKZTJqoa/PV0MI7NHRsjeTUSMAAAMDPs3rFThBIN1+v2AUCjpPCGjDw+Uw\nAIBTEpGLzRVjJZ+vBLq7o9PJZK0TAKBcznsVpaMxNXWoKxxO5BnjcDSqZ4tF0ReP29l0moAsmNrB\nV6tDHUMLMj2R/GQ2H4gAMCaKzKjuxW73Bc766WDCHp3J4FhJwN6yjPwAjAa9rETzDEsimKN5rk/g\nGFQx0vt4e1oQmXUoyS1AiNFAnBWZDqjHY41jFYG7xqpyBIwjFW5A5lhDI0TyIVpe6zNfvTRsjX44\noI/5CJuX0SuEkN1cHJgBgJcAnIBKKY01g3C/ZVkbAMANACmEUBIc0fvlADDVXHI4XuHtMw7mWLhv\nb27I/ZIQMvbv//7vq2+99daLVq9e/c1f/OIX356T3baZw9n7VnsUKpXKn1FKlzcajS8CQA1jPCmK\n4uMYY9fzz08O3HTTM4MvvZTuAQDo6JBpb69XKxb1omHYtFzWXMGgUpmcrHZZFuWbTbF00yrHm8+r\noWhUyZgm5RsNSwkGpaKicA1CMB0ddYKpKGKts9OTqtdN2eXiVScrxsbUVC2h67boNKgCI5ZFMWMM\nV6uGCyFghGCaTjeiLhdfj0aVjCBgs1w2PLmcGmKMoe5ub3Jmph71+YSKLHMqx2GrVNJ8uZwWAQBY\nuNBfFwQi2zYrqqpV0zRLwBjR6el6F4ATTEMhueTUpE2pUFADAwOB0uhoOcJxGPr6vBCJSLRWs/TD\nh4t8uWwIkYicQwjZlAJxu6U6xi5rZEQfWLx46PDo6ERPZ+fSFAAC2y7hycnu7qGhxpGREaVPEMAg\nPG+FE9FCJVdw543e8KL+xuGDo8qQP0KLVhQ4v8FKeQ6HVB0p3efZk9gAxnPMHK5wgzzHbH8PxW7M\nDEVmUweyXB/Pg4FCAKqF5KGoNWxRxBVryMf8gMsm9nUF7GSSkK6YSNNbu4zdWzrM8WtCxmkduWKM\nSbZt91JKLwVnNtQA5/U23ZINT2OM512Y6WTRtM95H0LoCMdxj+RyOeHTn/70talUqr59+/YPfvOb\n3xw+9k9pc04F3Vwu9znTND/FGOsSBOFfBUGo5XL13k984jeLHnlkdJAxQImE2xwY8NJcTi9mMg1S\nKKjBri7PdKmk+y2Lco74N1cHQGh8vJzQdSp5PHwlEJDKmmaLisKrlFIkiuR194am4PiIYTgeYrWa\n4eJ5bGiaLReLekBRuIbjbYZopWK483k1iDGisZgrk0zW4s598g2ex1Ym0wgVi3oQwBG/MQxbkCRO\nRwiYZdnEMCg/q9fQ3e2u9vZ6lWrVrGcyDbVc1lzRqDs3MVHpxhjZwaBUCATEsq5TIZtthGs10xOL\nKSnDoAJCwNxuoU4IsjFG9MiR0gBjgFwuzlqyJGRbFhMIQVappJmS5GkcOmT5DIPyg4PRkUqFuRFC\nIIqDuqYdFg1jqej3a2Xb5vHUFEkMLpSPHDmsDvQv6RpnQBAAoLFpV8/iC8xDowe4nvhCOz1W53q7\nO6zJmobdpSry+QdZrVhH3k3LdPPwNF8vq4hoPiRZFPEDvdYoNRGmJqBpjOMWRXx/wh4b1UhfXLFT\n2xYau/4kYQxfHLKOxyvrlGDb9kLbtq9BCB3mOO5RhJA+K884WyMGZ47UmlMfPukaCG+Xo9jnDN93\n330r/uEf/uGS888//7s/+tGP/u4EBcbfVZxTQTedTn8HY5wwTXObLMtPMsY0SunU6GiJ7Nw5c+Wh\nQ8XeXbsy2d//fiak67YYichZQrBNKcOKwqmMMeB5Ys6WFjgOmQMD/gldtzmEAKpVXXG7hUY2q4Yb\nDculKFyju9ubZIxBteoEU0niNK9XqKVSjWgoJOXdbr7O88Sanq51VCqGHwBYf79volo1FJeLVxEC\nRimDatXwzAbbeNwRvwEApGmWWK3qSiiklCcmKt2EYCseV8oDAz5PtWqy4eGSXakYrkTCM1Uu616O\nQ7bXK1Y5DlmMARodLfcyBtjl4muRiJy3LMbxPDY1zRJkmVPHxyt9ts3I7JyvaTJO123BEUQXDNsG\nKZNpuLq7PXZPTxjt32+xWCxef+WVUe+iRWsna7UU5vmIpWmy5POplYMH3UO9vTAxPg49g8t7Rkde\nneiROhYZHUE9O52V4pYNJLiCFdwGa9gKkKkC6Vqy1CzwPPPXS6g+bnGSaSO+Z8ierGpI6RBp4Uid\n9FsUcYk+e2qqThJxjz2zZqF18C8W6q9u6jRzp/M5NxfGmGJZ1lWMsa5mgBp7i2OhqYXbWh+Og7N6\nO3di4rRYp7fa53Ac91C1WkWf/exnrzl8+DBs27btQ9/61rdeOR3ndTZzTgXdcrm8HQA+oqrq5ZTS\nKADkwbmsiwLAfo7jHsEYq5QyePrpyfBTT0127d2b6T5ypNgpy7w2OVlNmCblFYWr9/R4k7ZNSbVq\nKvm8GvL7xTIAQLGoB0IhKe/1ClWOw/bUVDVerZpejkNmd7c3WS7rHo9HqCPEGMbISqUa0UbDcgMA\n9PZ6JppbPkxVLVHXTV5RBD2ZrHVxHDajUSXj8Qj1RsOUCgUtUKuZ7r4+70QqVe+QZV7z+8VGOCx5\nGGPKrl0ZQikgv18sut1CHYAhniemplm8LHP66Gi5nzFAgoD1pocaZ5qUL5V0r88nVstl3VOrGR6/\nXypFInIeY6DZrBosFLSgLHNaJKLkcjk15PeLJVEkOseJdjKJO+t16lq5sjO3Z890eM2aZRYAwcVi\nwcxkBlBXVzY/MhIJuN2sShkHlQr1hWOePJM6kMAKxkQu2tM/aI5msiTCi2CWvSjQH7cshIEdSfJ8\n3xJ7fKxIenuC1oQJiJ8p4Hh0kKXTNRxNROxkPE7zf36+vusjy/RxfIY9c5trr8sopdsRQns5jnvq\nnQTK5sREeDYbZox1AUAHABTmZMTp452YeCcczT7nkUceWXLzzTdftnjx4rs/9alP/fU7lGC8EgBu\nBce94YcA8M05/78JAH4FACPN2/8XAL72Dh/GGckZ9tQ9MVavXv0cIWTB0NBQMhQKyel0eugb3/hG\nSZKkAgBEwBklS2KMpxBCU826mgoAkMup/AMPHOl64YWZrnS67n3ppfSSWs10KwpXj0SUfLVquD0e\noQYAjOexOT5e7jFNJgAAzM7bEoLtRsOUARilFLhsVo3wPDY7O93TokgMVbXkQkHz67oldnd7k5OT\n1S6vV6h6PHxNFIler5uuZLIeBwDU0aGkMUaM47DN89gkBPkCAcH34osZDAAgy6Te3e2dMU1KLIvy\nxaLmDYXkYjrd6NA0Sw4ExGI0+nqDz18oaEGPR6h6PEKtWNQCgYBUFEVOFwRsjY2VuzXNlgGADQz4\nxhoNS5ZlTrcsSgAYrVZNb6mk+wEAEonApKq6ZcPgBYQwi8WGypOT+2KRyMVWJFLFCEnCgQMCWrIE\n6jt2gPv8i2JTh/dlwh0DvTlV5ySBp8Z0WuhcvsmoyIS5KlVc3J/nw14vLbvCrEHLCKMwg1SFRLsT\n9mSVQ56rlhg7Pr9F3dUdoCdlSeFEoZR6bdu+hjHmJ4T8ihAyPZ8/nzFGKKXR2SDczIiD4FiTt05M\n5OZj3rfVPofjuP+naZp14403Xr1r1y7Xli1bPnz77be/IzEpcALtQQDYAs6Swovg+JS12uZsAoDP\ngKObcE5yTgXdXC5H3ve+9121Z8+efwSAxPr167XR0VE7kUiUVq5cmb388sszq1atogihKGMsAY7A\ncxUhNNW8jJtCCKVn1zB37Ur7nnxyIv7ii6mew4eLCcaAlUqav1IxvIKAjZ4e7yTGiDUapuxIMQKL\nRJTC5GS1KxAQi16vUBEEYhUKmi+bVSPQ1NVVVUuSZU7jOGzZto1MkwkzM/U4AIDXK5QiESVPKSOm\naXO1muEfGgoIL7+c4w3DhkBAKnZ0KDnLoqRQ0PyFghYMh+U8xojWaoYrGJRLoog1nif2yEip1zCo\nSAhYfX2+yVrNVBSF1yyLYoyRlcupHfW66QIAcATVkW3bjNRqhkvTLCEYlMsTE9VuReEawaCcd7kE\ntV7nlWyWhUMhX2F6utS5ePH5h7LZVNDr7arbtoI5rmiNjMT6V6wwM/v28R2xOLGLRUpCfYM2rU4a\nabVfikVtAAJGcooIvmWsQhmgjgDNHklyg53d9vS0RTo7A/bMf71We/IvN2rDAnf6VzePRnOFdxWl\n9HKM8QuEkOdOZvY55775pjRja0bsgjechZNv11l4jn3OQ4SQV5555pkFX/ziF7f09fXd96Uvfemv\nNmzYcCJljovBmaW9snn7C83P/9ByzCYA+CwAvOcE7ueM5pwKuk22A8AiALgDAMynnnpK+elPf7p+\nbGzsikKhsL5UKg2KosgWL16cXbNmTWbbtm2lWCwmN5+8CXCUiGaamfBsRlwFAGg0TPyb34zFnn02\n2TU9XfO99FJ6cT6vhhAC2tfnnSgWdZ/HI9Q5DtmUMlqpGL7ZOm1Hh5xWFF5FCIFh2Hy1qivBoFwZ\nH3dkGZsbbEXDsIViUfMWi3rwvPMCjXLZkOt1U/d4xJwkER1jxEZGSr2WxXhJImo87k7PBnHTtIko\nEnNystZlGM60xOCgf8S22evTEpQyJEmcOTNTjykK1+joULKSxOmViu7O5dSQYVChr887nsk0Opr2\n8CrGYDUaljwzU+8EAPD7XUVJCuqplB7r7U2MUyqSer0o8/z5FiEjVrW6wOv3G2XD4Ll0GsV6Fvgm\ntYbhT/Qq4shMSFi2sGo986KfW7bG0JiMjOwRjLISdlEGePGF9qEPXGzs/tQ16gFHg/jMhFIabK7w\nEo7jfo0xzh7zm04yjDG5RZpxNiOeNbScDcLJo9n3tNrnEELutyxLvfnmm7c99dRTkc2bN3/szjvv\nfGoeTvFPwHl9/tfm7Y+AI7n4yZZjLgOAX4IjTpMEgM8BwGvzcN9nDOdi0H1Lcrkcuvfee7t/+9vf\nbkmn05tyudxqTdNCHR0dtRUrVmQ3bNiQuvTSSw1BEMKMsUQzEJvNy7jZIPx6Y2N0tCw//vh47Lnn\nkn0HDhS6SiXNy/PEnJ6udToTCkrK4xHqmmaLpZLmLZcNX7NOGxUEYvh8sxq3lB8fr3RTCiQUkrSe\nHo9QqZgNxljBMGwsSZw+K26DENCFCwNHDIPylDJcrRpunseGaVK+UNBCLhdfi8ddaY5DdnPcLcgY\noO5ub3J6uhbz+8WyLHMqzzujZ9msM3rW0SGnOY7YPI8thIBpmiUIArFm9Xzdbr7S1eVJmybhNI2I\npRJ4bJvwPT2DycOHDwz29FwyiVCeIeRllYrijkSMwsGD4tD5y0jhlX12cOGq/ko5ldGYEodiiQv2\n9lnF4WE+svIKQz2c4eSb/nNF+8h2bZQjKNkSJE5o5Xa+adrNrKOUrscY/5YQsuNMXuGllHqOMjEx\n+3yeBoBpxlh3M7t9jBCy+8UXX+y94YYbtsdiscc+9rGP/eVHPvKR+Zqm+E/gZLlvFXQ94KwKN8AR\nH78NABbO0/2fEbzrgu7R2LFjh3DPPfesPnDgwBXFYnFjPp9fhDHmh4aG8qtWrcps3bo1NzAwwANA\nZzMId4CzgdRaG84jhIBSBr/97WT4yScnEwcPFiIjI6XO5gQBikaVNAAwjsNUEIhpGDYWBGyPjlb6\nAAAkiZirV0eZqlp2saiX8nlV9vnESj6vBet10+31CpV43JVBCLFCQfXl82pQEDgjEpHzqVSjIxSS\nirLMNTgO26mUs7YM8ProGS/LnMEYMNO0edtmeHYDLRiU8uGwVDRNxqmqJRYKjUBXlzc1NVXtZAxw\nMCgVZrfx0ulGpFo1vD6fUlSUkDYzo8cXLeo5PDGR7YpG+7MIyaCqaT6XWxBZtKicOnzY193ZCWY6\nQ6xw3JsrZmv+Bj/oGojlR4enw4OyizUGLrYnbv1U7aEVQyZpBofZq44oOCu3yZbfc+Z0qXBRSqOW\nZb0PAFSO4+7HGJdOx3mcCC0TE12MsUHG2HkAIDz11FP1u+++2+Y4Tt29ezfesGHDf//Zz3523zzf\n/ToA+DK8UV74IjiOxnObaa2MAsAqACjM87mcNtpB9yjkcjn06KOPhh544IErZmZmLs/n82trtVrc\n5/Ppy5cvz1x88cXpzZs319xud6AlQAhzsuHkrNVJoaDyjzwyFn322WTPa6/lEuPjlc5QSC5OTVW7\nTJPyoZBUXrw4iBECeXi4rKZSdXcgIBVEkZilku4LBqWiLBON57E1NlZ5venVVAqTFYXTKGUIAFCl\nYrhLJT0A4IyeOXPFjDQaplSp6O5YzJ0bH690E4KsUEgq+P1SRddtIZ2uRxoNy9XRoaQpZYRShj0e\noYYxsnke24cOFQcBABECVn+/f0JVqSgIoqlpRARQGKVuUq/XlHD4/EKh8Krf7V4lJRJ1LpcTK1NT\nnNLZiWbGxlhf33nRMQCGEMJsdCbQ9xcfVh/69lcaO472d2hKBkZbAnEXOOWf1JxAXDqZK7XNWudG\nxthqjPGjhJA9Z/MK71z7HIzxzqeffnrlXXfddfmRI0fKw8PDKUrpeeCU6D47j3fNgdNIuwIApgFg\nB/xxIy0Kjv0OA4A1APAzeGuh8rOOs/eZc4rJ5XLkO9/5zpI9e/Zszefzl2Wz2WWMMaW3t7e4cuXK\n3ObNm9MrVqxgABBvBuE4OAr7s8FhqjVL270743388bGesbHyatO0u+6/fxQ3M189kfDMOMGU10zT\nJjyPzZmZRkzTLBnAsV9HCIBShms1w6XrNu/3S9XJyWpCkjg1HJZyLhev1uumksupIU2z5e5uZ45X\nEIjhdvN1hIACAGrJstXOTnfKNCnPcchqNExJUQQ1max2GQYVOA6bAwO+McYYVlVbLJU0H8YcdbvD\n9elpvbOvLz42NjbTt2LFhSnDyHcIQqReKIhVUaypw8OBwYUL7eFDh8iCRctDhw++nB8KDQzlL1xB\nD/30B9XfvJ2/A2NMbJlrnX3Dw83f82xZ4vWplBOlOaf6XoRQjhDywJloZ/52mGufAwDFb3/725vu\nvffeoUsvvfT6u+++++fNQ0UA8IETAOeTq+CNkbEfAcDfA8BfNv/vTgD4nwDwPwDAAqfE8BkAOKcM\nK9tB9wR4+OGHPT//+c8vm5iY2FwsFi8plUo9iqLYS5cuzV100UXpbdu2lcLhsLslOHih2aQDAIsx\ntrz5Yn7YMGjpN78Zi774Yiq6c2eqf2Sk1IWxE6CzWTXidvO1jg4lKwjELJU0by6nhmybkd5e70Q6\n3ejweoWqovAaxshuNEx5dhrC7xeKXq9YRQiBI+VoiG63oI6NVfoYAySKWOvv90+YJuU0zZGt9HiE\nmm0zUihoweZWW4njsJ3JqOFCQQtgDNQxz1QDXq9c5XnRFAQfPniw3LNy5ZBRq/GFcjmHLes8zu2e\nrM3M9MTjcTOVz/P+egPcPr9Y7l3aM/3YL8s/n49mGaXUyxjrms2IwZlKqc0JxCn0NqxvGGOCZVmb\nGWNLCSEPEkL2H/u7zlyOZp8zPDwcuf7666/hOO7A+9///g/fcMMNZ6We79lGO+jOI7lcDt999919\nzz///NZcLnd5Npu90DAMXzwer6xcuTK7cePGVHd3t3dsbLIbH3QAABTaSURBVGzdhg0bxGbWq82W\nJFqadBYAwNhYWX744dGuHTtSiVSq5jt4sNhfLus+AKd0gBBigoAtxgAaDVMQRWJNTdUSAABer1CO\nx12ZWV+1fF4NxmLudKGgBXTdkoJBueD3i2WEEExP16LVquEVRazF4+5Msaj5fD6xgjHYHEfsZLIa\nV1VbAQBIJNxTCDnzw44OhS2Gw1Hh0KG6NxBwa42GCT09i5OHD+/tj0Y3ZiQpY9h2CGsaJ3m9tDoy\nQvpXrfO//LP/I97v886PCM1cWhYMEi1liTC8MdeabKnD/1ETzLbtQdu2r0UIjXMc98iZtpb7dqGU\nepq1aIXjuPswxrk77rjjkrvuumvZunXrvvCd73zn7rZIzamjHXRPMrt27RJ//OMfr9u/f/+2V155\n5c+LxWLfpZdeavh8vsMrV65Mb926Ndfb2yu2ZMMRcIJDa224MNuke+aZqdDvfpeM7diR6h0eLiYy\nmUZ4dtGCEERDIang8QhVy6JcMlmLa5ot+3xCyeUSGppmSR6PUEMIqCAQc3i4OEApEACAwUH/iGHY\nPMdhW9Ms0bYpMOYseBCC7HjclXK5+IamWWKxqPuqVcOzcGEgMzlZjbpcvO1ySVlRDFQPHqwtXLx4\n6FAymYqFwwMFAA5RWkEzM12xgYH62IEDroU/+Yn3zmuvlU6pIM0cJbBEMxDL4IxTvd4MtW17fVNB\n635CyJFTeY7zTTO7XU4p3Y4x3kEIeSaZTPo++clPvkfX9amrr776Q1/+8pfndZGjzbFpB91Tx40A\nsE4QhE//y7/8i/HEE09ckU6nL8/lcqtVVe0IBoPq8uXLs+vXr09ddtlldVmWQy2BmJ+TDSdR0wa7\nWNS4hx4a6Xz++enEgQP5uKbZ4oEDhSEAAEKQNTDgGzcMyiMErFYzFUnCWqlkBGo10y0IRO/u9iQJ\nQXa9birFohawLEo6O92piYlqt98vljweviZJnFEuG65Uqh4DZ1su5/HwLkXhBcui+XJZNyQpYI6M\nGP0AAIlEOGnbEtK0huRynddoNF6Ta7UV7kSiPJ3P+4NHjkRuPW1/hRYYYwqldLYssQgcy3EDITQy\n58rjjBpbOx4YYy7Lsq5ljIWa2e3M3Xffveb2229ftXr16q/dcccdt7ez29PD2Rp0/xSc0ZPFAHAR\nAOx6k+OOted9KiHwJlYluVyOv+WWW1a89tprVxQKhctyudwSAJAGBgYKq1atylxxxRWZJUuWYMZY\na5OudZRqtknHAABeeSXneeSR0cTBg4Xw7t2Zwampaqcscw2PR6in0/WOYFAuOEI82Eyl6h3lsuEH\ncEbLVNWSFIXTMEa2adocpYBnlyJcLq66YEFAlSQSqlQMdWKiAuGwUkil6h26bkt+v1iKRsOZ4WF7\noK+vb/LIkZH+gYF1Y/X6hCyKfQYAg4EBz8wvfuF/6NT8yo8NpdRt2/bVjLEIxvjXGOP6nGmJKAAU\n55QlTtvY2vHQap/DcdxT2WzWdf3111+by+XK11xzzZ997WtfGz3d5/hu5mwNuovBme+7E5yRlqMF\n3ePZ8z5jefDBBwM/+9nPNk1NTV1eKBQurlQqCY/HYy5dujS7du3a1NatW8t+v9/Xkg174I1L5dm1\n5hoAgKZZ+IknJiJPPz3ZvW9fNlEs6u50uh6pVAwvAEA0qqRcLl5lDLCqWkK5rHljMXd2fLzSgxCw\nYFAqxGKumiyT2MRETUil6iQQkPI8j+1Gw1QCAanE89gUBMU8coT2mSYThoaiw4cPpwcHBpaO27aN\nGbNQo9Epf/7z3gc//nHltL/om5feF1BKtyKEXuI47rdHa7S16B60BmIfOA3R1kB8UsfWjgf2hn1O\nnBDyH4SQqV/84hcrb7nllnUXXHDBP3//+9//+7YE4+nnbA26szwJbx50j2fP+6whl8uR733vewtf\neumlrblc7rJsNrvCtm3PrK7Exo0bU2vWrLExxlFKaQKczSN9Tlni9Q7+1FRVeuCBka59+7Id+/bl\nekZGSr2qasldXe5ktWq4OQ7bHo9QIwRRv1/w7d6dDTDmlCz6+nwTmmaJgkAsTbN4nkdmPq+H63XT\nhTGi3d3ByVJJ8jImYwCAUGhBMZncF5ek9dprr0X+WZJOb5bYHJt6DwDIzRXet1Vfbo6tdc0JxOgo\nY2vz7Qn2psy1zymXy/xnP/vZa44cOUKvvvrqD95yyy3vZJX2eK4U/xmcMbAGAPxnANj9Dh/Cu4Zz\nOegez573Wc3RdCUEQWDnnXde9qKLLsps3bo139nZ2aorEQaA9ByBn9cFUZ5/Phl4/PHx7j17Monh\n4VKXzyfiI0dKMV23QRCI0d/vHaeUYVW1pHxeC3ActrxeoZZM1jr9frHo94tlSRKMQoH3Z7NWuLMz\nNJ1MFhKLFy8/PDFxuPO889aPPPJI8Jen6/fVshSwEWP8PCHkd/NRJmhuec2Orc026eLgjK1NzRlb\nm1dBHPaH9jm/IoSMPfDAA0u/+tWvbly6dOmPPv7xj3/puuuueyf3eTxXileD47Z7NTivrdvA2Tpr\n8xacyUH3UXAaG3P5awC4v/nvtwq6x7PnfU5xLF2J9evXz2zcuFFr6kp0Mca6wVksaM2GpxljvG3b\n21XVTDz9dHLHo49OQDrd8OzcObOkXDZ8jsCPb6JY1Hxer1DDGFFKGavVDE+hoIcAAHw+ueRyRRrT\n01rn4GDfaL1uyB/96MpnbrjBdVrESyil4ebYFG1mtyd1JrU5thZpZsSzgTgEb4yttU6mvKOG1lz7\nnEajgW688car9+7dK23btu3Dt91220sn8BCO50rxe+C8Bu9t3j4AjmDNabc5P5M5k40pt57g9ycB\noLvldjc4ykXnLM1u9AQA3NX8+ANdiT179mz86le/umpWV+LCCy/cuWXLlszQ0BBpiqJcbllWJ0II\nA0BGUYTnr7lmcPzaaxfMOtv+5rXXcu6nnpqMPf/8dN/BgwWUy6mBYFAqTUxUewlBdiQiZ0Ihuajr\nglgo6H6EgKbTmXAkksh/9KPyKffQagrUbKCUrsUYP0kIeelUCNQgR6w+gzHOQPOSe44c40LLsjaD\ns/k1q/41e/VRP8Zj+iP7nCeeeGLhTTfdtHlwcPDnP/jBDz5zghKMAE55arLl9hQ4ScuxjklAO+i+\nJWdy0D1e3ixb3wkAQ+DsbU8DwAfBuTx6V7FmzRoDAJ5vfvyBrsSzzz57+a9+9au1tVotznEcZYxF\nli1bZt1yyy2PKYqCGGMJy7LWgeNsm0QITS1aFJg677xQ8hOfWDkMAGAYNnrssfGOZ56ZSrz6ai5e\nLGqe/fsLiwAABIHT+/s7J0ZGGn0rVnAHOzrwKR29aopxvxchVOE47k6MceVU3v9cEEImIWQCnDdG\nAHBGu2bH1mzbvsi27evAqcW31oenZ1XtWu1zeJ7/rq7r9he+8IVrn3vuueCWLVv+9Lvf/e4zDz00\nL8Mhx/vGNPf11x5DOwZna9B9PzgF/DAAPABOJnEVOOufPwCAa8DZ3f5fAPAIvLHnfVZMLpxMmtlw\nDpxLwnsBAAghX2aMfXLZsmUPp1IpetVVVy1jjCk9PT2lCy+88LVNmzbNrFy5kgJA3LbttbZtdwGA\n6lwio6nt23unrrqqfw9C6CUAgGSyJj744EjXvn2Njt27SwOKYjZWruQn3/Sk5pkWq5kVGONHCCH7\nTvdkwZuBEKoTQg4RQg4BvF4fDs026iilS2zbjoKjssUAwD8+Pv58T0/Pcy+88ELP5z//+W2dnZ0P\n33bbbf/jqquums/G3fFcKc49JtH8Wpu34Mx8Jp69BMEJZL0AMAYAfwYAR5P/GwOACjhzuyY4akqn\nk60A8DK0XBa+la7EqlWrUtu3by9EIpFWXYkgOE261tnh18eoDIMiQcAnPQuybbu3md1Ocxz38LEu\n1c8GLMtKUEo/AE4GnP/Qhz60cOfOnTxjTJdl+df5fP5nAPAYHP259k45HkWw1kbaOnAmHdqNtGPQ\nDrrzyy3gZJG3gLOBFoA3GhCtnHUaocfSldiwYcPMJZdconMcF2k2jroBAOY26U7Wdlezi7+VMTbU\nFKg5eDLu51RyNPucl19+uevTn/701bFYbPfOnTvvLBQKy8F50/4SOG+c88mxFMEAAG4Hp9lWB4CP\nwZsvKrVp0g6680tr9zYGAE+Bs8gxl1EAWA2OW/FZy969e6Uf/vCHa4eHh68oFAqXFgqFIZ7n8cKF\nC3OrV6/ObNmyJdPf3y/MdvDhje2uqZZs+ITNFJszqtcihA5zHPfo7Ir02cxc+xwAqN9yyy2bfvnL\nXw5u3Ljxkz/5yU9O2+hdmxOjHXTnlyI42S2A87sttNxuZQQAyuCUF+4Epw591pPL5dB9990Xb9GV\nuEhV1UgwGFSXLVuWvfjii6c3b95ck2U52GKFpECzSdfSvW8cz/0xxhTLsq5kjCWaXfyxk/oATwHN\naYtLKKUXz9rnHDp0KHr99ddfI0nSvg984AMf+cxnPlM83efZ5p3TDrpvnzebH/4bALgb/jDIFsCp\ndc4lDgAz4CiKPQrO7PAz83uaZwbH0pXYtGlTatmyZdA0U5x1aG7MKUukW5cKmiu851NKr0QI7eU4\n7qnZ7v7ZDKU01BQYNzmO+xXGuHL77bdvuPvuu5esX7/+87feeuv/bovUnP20g+78cgAcC+kUOIH1\nSTh6eaGVmwGgBgD/dFLP7AziwQcfDNx7772XJ5PJTbO6Em632zz//POza9asmdm6dWsxEAi06koE\n4A2LnnzTSsbd3MA666UJ59rnEEJenJiYCPzVX/3VeyzLGrv66qv//Oabbz6lUphtTh7toDu/3AJO\nnfab4DTQ/PDHjTQFnMZEFQBcAPAbAPhK8/O7krm6ErlcboVlWZ5EIlG64IILcpdeemnyoosusnbt\n2nX58uXLI6IoUvhjXYnpszHbnWufgzEu3HXXXevuuOOOlWvXrv3y7bff/r12dntu0Q6680sQHCO9\nHvjDkbHW+eEBAJhtgnAA8O/gdIXbtNCqKzE1NXXF+Pj4ing8zl1yySWjS5YsObJly5ZsV1eXNMc5\nOD+nSXdUZ4gzgRb7nM0Y4+cIIb9Lp9Oe66+//j3FYjF/zTXXfPDv/u7vxk/3ebaZf9pBt82ZThgA\nXkUI/f1Xv/rVX+3bt29zJpO5rCn+HopGo7UVK1ZkL7744ulNmzY1BEEItTTpJHCadEmM8WwgPu3W\nO0exz8nec889F/7TP/3TugsvvPAf77zzzn9sSzCeu7SD7rnPuSDP54ejDP636koUi8WN+Xx+EcaY\nX7BgQX7VqlXZzZs3zyxatIg0m3Rd4GgF1OZkw+lTJUh+NPucUqkkf+pTn7p2cnJSv/baaz/4jW98\n40Tni8/WBZ13De2ge27zrpLna9WVmJmZuTyfz6+t1Wpxn8+nL1++PLNmzZqZLVu2lDwej78lG/aD\n06SbDcJTJ0Oj4Wj2Ob/+9a+Xff3rX9+wdOnSO++6666vhMPh+ZB9PGcXdM4V2kH33OZdL8+Xy+W4\nW2+9dcnLL7+8tVAobMxms626EtmNGzcmV61aZSOEYi2B2J7TpJs5kSbdXPucWq3G33DDDVfv37+f\n3759+59/61vf2jOPD/ldtaBzNnK2Ct60OT7e9fJ84XDYAmc99mVojuXN6krs3r178xNPPHFJqVTq\nkWWZLl26NLt69erfbtu2LdvR0eFijCUopUtt2+4AgNycssQxdXDn2OfcQwiZeuyxxxZ/6Utfunzh\nwoX/57bbbrthy5Yt821DH4U3/nbp5u2jnh44eg3n1ILO2UA76J7btOX5jsKVV15ZBYD/1/yAXC6H\n/+3f/q3/2Wef3XL//fdfftddd61r0ZUYv+SSS363YcMGtakrMWRZ1uXg6ODOCpHPfn69Sddqn8Pz\n/J26rsPnPve59+zYscO3devW93/3u999/oEHHninD+GtFnRaYfDmf8v18IcLOgfgHF3QOdNolxfO\nbdaB45o8W174IjiGnq3NtO+Bcwl6T/P2OVVeeKfs3btX+v73v7/uyJEjVxSLxQ2FQmGI4zi8aNGi\n3OrVqzNXXHHFzMDAwKyuRBc4Y4FVhNAMY8wHAH7Lsv5DUZSR5557buDGG2/c1tPTc/8nPvGJ/3Xd\nddedTG2I9oLOGU476J7btOX55omj6Uo0Go1IMBhUly9fnl23bt20LMtduq5fcOWVV5YLhQKsXbs2\n1N/fb05OTqqRSORbw8PDPwDn73AyaS/onOG0g+65T1ue7yQxqyuxe/fuK3fv3v1fVFXtXrt2bUMQ\nhMmenp7qzp07+0Kh0NjTTz/9sGEYq8CZFhgAgJM5K9xe0GnTps05z1cA4F8BIPDggw8GPvrRj35g\nyZIl//eyyy77L3OOayc5bdq0Oa1cCU4N8jA4M6Vz2QSOBObu5sdNp+zM3h7kdJ9AmzZt2hwLAgDD\n4BiH8gCwBwDOm3PMJgD49Sk9qzZtTjL4dJ9Am3cta8AJumPgrKHeAwDvO8px7UvyNucU7aDb5nRx\ntKWMrjnHMAC4BAD2AsCDALDk1JxamzYnj/ZyRJvTxfEsYOwCx+K7Ac4Uxn8AwMKTeVJt2pxs2plu\nm9NFEpyAOks3ONluK1VwAi4AwEPg1H6PZn/Upk2bNm2OAQcAR8BppAlw9EZaFN6o6a4Bp/7bpk2b\nNm3eIVeBszE3DM6KMoCzuDG7vPE/AeAVcALy83Bubcr9KQC8Co7gzIVvcdyxxuratGnTps1xsBic\n+vST8OZB93jG6tqcZbRrum3avDl3gSP8s+8tjvlncLLQvQCw8m387AMAcOgYxxzvWF2bs4h20G3T\n5s35Mbyh0HY0rgaABQAwBAD/DQDumOf7P56xujZnGe2RsTZt3pxnwLm0fzPeCwB3N//9AjiKXq0i\n4m+me/vXAHD/cdz/Oa1r/G6lHXTbtHnnHMt1Y+sJ/vzjGatrc5bRLi+0aXNizIfrxputOu8Ep3TR\nB85Y3QehrUVx1tMOum3avHPmZqKJ5teOh/eDkyWvA4AHwFn+AHB0b2d9fCxwBOYfAYDXwDEP3Q9t\n2rRpcw7TB28+vXA1OJoQAE7w/P2pOKE2bdq0OVf5KTj2OgY4WenH4Q+XNwAc141hcEbG3mrJoU2b\nNm3atGnTpk2bNm3atGnTpk2b+eD/A/CTYpuZh+wfAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1047ba0d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#assume this has been run\n", "#%pylab inline \n", "\n", "import numpy\n", "import nengo\n", "\n", "n = nengo.neurons.LIFRate()\n", "\n", "e = numpy.array([1.0, 1.0]) \n", "e = e/numpy.linalg.norm(e)\n", "\n", "a = numpy.linspace(-1,1,50)\n", "b = numpy.linspace(-1,1,50)\n", "\n", "X,Y = numpy.meshgrid(a, b)\n", "\n", "from mpl_toolkits.mplot3d.axes3d import Axes3D\n", "fig = figure()\n", "ax = fig.add_subplot(1, 1, 1, projection='3d')\n", "p = ax.plot_surface(X, Y, n.rates((X*e[0]+Y*e[1]), gain=1, bias=1.5), \n", " linewidth=0, cstride=1, rstride=1, cmap=pylab.cm.jet)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- But that's not how people normally plot it\n", "- It might not make sense to sample *every possible* x\n", "- Instead they might do some subset\n", " - For example, what if we just plot the points around the unit circle?" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHkRJREFUeJzt3XmUZGWd5vFv1EaxlVAUVkEBsiqIG8hSgGiq7G0rIoot\ng7Q90ozLafV4GqRBqWHsbtfRsV3YdMSmW20XFFpAsQERaUEEClAKKKQEZBFkX5xh5Jk/3reSJMnI\njMyIuO/93ft8zomTkZlREU/UzXjixr3vfS+YmZmZmZmZmZmZmZmZmZmZmZmZmVlwXwHuAa6b5Daf\nA24GVgA7VRHKzMyGZ29SmXcr/oOAc/P13YGfVxHKzMyGa0u6F//JwGFjvl8JLB52IDMzm9isCh5j\nKXD7mO/vADar4HHNzGwCVRQ/QGfc96rocc3MbJw5FTzG74DNx3y/Wf7ZeKuAbSrIY2bWJLcA25Z4\n4C3pbefuMrrv3G36p4DlpQMM0fIyD6sOaEvQ20FfBF0KehB0F+hHoE+DjgTtDtoENNNPuMtnmG1j\n0J45w0dB3wStAD0OuhL0JdA7QC8CzZ5htkFYXvCxq7C8dIAhm3Z3DmKN/+vAq4BFpG35JwJz8+9O\nIZX+QaQ1+seAdwzgMa2V1AFeALxyzGUecAlwGfAt4Dro3Fcs4qiOgHvz5bJn/k7rAC8DdgX2AY4D\nNklvBvwY+CFwFXSeqjCwtcggiv8verjNewfwONZKWgfYFziYtALxBKnoLwZOAm7OJRtI53HSm8GY\nNwRtSPpEvB/wNWBj0AXAj9Klc2f1Oc2GL9iLd9pGSgcYopHB3p0Wgf4S9D3QQ6ALQX8D2mqwj9Oz\nkeofUluA3gn6Fuh+0NWgD6VNWwM3MoT7rJOR0gGGLHR3hg5v/dJ6uewvymX/bdARoIWlk5Wn2aAR\n0Mmge0GX5TfCJaWTWS2E7s7Q4W0m1Mk7P08HPQA6G3QIaO3SyepLc0EHgr6W/8/+I79Bzi+dzIoJ\n3Z2hw9t0aDHoWNDKfDkmjbqx6dHaoEPzCKZ7QP8Iel7pVFa50N0ZOrz1QtuDTstrqqeD9sgjdaxv\negHos6A/5H0j+/r/tjVCd2fo8NaNOqBXgL4P+j1oeRrfbsOhdUF/DboWdEM+xqGKAzWtnNDdGTq8\njacO6I2g/wStAr07D820SqgDeg3oYtDNece53wCaKXR3hg5vY+m1oF+ArsrboEselWroVXlI7C2g\nv0o7iK1BQndn6PAGoJ3zjsZVoMOY+RQJNhTaG/Rj0K2gw70PoDFCd2fo8O2mbUHfIM2R8y6vUdad\n9s6fyC4D7Vo6jfUtdHeGDt9OWhf0cdB9oBPSQVgWg2bl7f53gr7q4bShhe7O0OHbR68DrQb9SxqX\nbzFpAehj+c37OB8IFlLo7gwdvj20Geg7eaTIvqXT2KBo2zzk9gbQ7qXT2LSE7s7Q4ZtPs0Hvy2uG\nJ3nNsKn0ZtDdoE94GYcRujtDh282bQG6JF+2L53Ghk3PJc0KegNoWek0NqXQ3Rk6fHPpsHzE7bEe\nj982XvsPInR3hg7fPFoAOgN0I+jlpdNYKdqYNEX21Wk/gNVQ6O4MHb5ZtCwf5XlaGrJp7aYO6D35\nk98hpdPYs4TuztDhm2H0BX6PX+D2bNo1H/X7GdC80mlsVOjuDB0+Pq2V1/CvB21TOo3VlRaCziFN\nvrd56TQGBO/O0OFj0xLQz0DfBa1fOo3VnWaRTp5zF2iv0mksdneGDh+XdgHdBjoRT6pm06L983b/\nw0onabnQ3Rk6fEx6C+nk3W8sncSi0kvyisOxeLbPUkJ3Z+jw8ehdoDvSC9esH1qah3ueimdmLSF0\nd4YOH4c6oA+T5szfunQaawqtDzoXdL73E1UudHeGDh+DZpFOyL0i7dA1GyTNyWv9/wl6Tuk0LRK6\nO0OHrz/NBX0NdClog9JprKnUAf0T6Ar/nVUmdHeGDl9vmgs6C/QDfMJzGzp1QJ9Zwp3XfJl3vLB0\nmhYI3Z2hw9eXZoO+Dvp3H21pVXmEdRfdztLff4Tld4A2Kp2n4abdnXUafiXqlacBNAs4DdgSeB10\nniibx9pAsAi4UHDObP40S8w6CNgHOveWztZQobvTa/wDpQ7of5FOqO1z4VolBIsE1wr+XtDJf4f/\nkLf5++9wOEJ3Z+jw9aN/AP3SO9isKs8u/dHfdECn5+GeHuc/eKG7M3T4etExoF+BFpVOYu3QvfRH\nbzEn72f63z7Cd+BCd2fo8PWhQ0C3p6MpzYZv6tIfveW6oMtBH60uXSuE7s7Q4etBO+e5d3zGLKtE\n76U/+i82Bt2UpgyxAQndnaHDl6dN82RZh5ZOYu0w/dIf/Zdbge4EHTC8dK0SujtDhy9L64B+ATq+\ndBJrh5mX/ug97E0609tWg0/XOqG7M3T4ctQBfRN0pneaWRX6L/3Re3pfntXTR5P3J3R3hg5fjj6Q\nx0jPL53Emm9wpQ95peVfQGd4paUvobszdPgytAvpDEj+uGxDN9jSH73XdUHXgt49mPtrpdDdGTp8\n9bQAdAvozaWTWPMNp/RH733bvAKzx2DvtzVCd2fo8NVSJ0+8dnLpJNZ8wy390Ud5Q16R8Ulcpi90\nd4YOXy39V9B1oLVLJ7Fmq6b0Rx/ty6BTh/sYjRS6O0OHr452yAdpeZ5zG6pqSx/y5stbQX82/Mdq\nlNDdGTp8NTSbNNumd4TZUFVf+qOP/Kp8cJfnmepd6O4MHb4aei/op6R59s2Golzpjyb4NOjbHuLZ\ns9DdGTr88GkL0H2g7UsnseYqX/qQjknRr0BvK/P44RTpzgOAlcDNwLET/H4EeAi4Ol9O6HI/Lv6u\n1CGdL7fb/51Z3+pR+qNpdgfdBXpO2RwhVN6ds4FVpFP7zQWuAXYYd5sR4Owe7svF35Xelg9y8Tlz\nbSjqVfpr6HTQZ0unCKDy7twDOH/M9x/Kl7FGgHN6uC8X/4S0EHQ3aLfSSayZ6ln6QJrC+fegF5dO\nUnPT7s5+dxIuBW4f8/0d+WdjCdgTWAGcC3gY4vR8GDgLOleUDmLNs+bE6KSVsxM6tVoB69wLnAh8\nwTt6B2tOn/++lz+Sq4DNgceBA4HvAc/vctvlY65fnC8tpm2BI/CbpQ1BvUt/1KnAO4HDgTMLZ6mL\nkXwpZhnP3NRzHBPv4B3rVmDhBD+v4x9dYfo26LjSKax56rt5ZyLaI4/tX1A6SU1V3p1zgFtIO3fn\nMfHO3cU8/Ye1G7C6y325+J9BryCdUcvTMthAxSr9NXQm6MOlU9RUke48ELiRNLpnzdrp0fkC8B7g\netKbwmWkTwkTcfGPUod0UuojSiexZolZ+gDaLh/HsmHpJDUUujtDhx8sHQb6pY/QtUGKW/pr6HTQ\nR0unqKHQ3Rk6/OBoFugG0H6lk1hzxC99AD0P9Ic0zNPGCN2docMPjg4hnUox6IvT6qYZpb+GPg/6\nVOkUNRO6O0OHHwx1QFeCDi6dxJqhWaUPoE1B96evloXuztDhB0P75cmpvG3f+ta80l9DnwF9snSK\nGgndnaHDD4YuBv2X0iksvuaWPoC2ytv61yudpCZCd2fo8P3TXqSzD/V7NLW1XLNLfw19B/Se0ilq\nInR3hg7fP33Xf8jWr3aUPoD2Bt3kzaJA8O4MHb4/2hT0AGj90kksrvaUPuSBEL/E5+eF4N0ZOnx/\ndALolNIpLK52lf4aOgJ0QekUNRC6O0OHnznNBq0G7Vw6icXUztIH0Lw8eduOpZMUFro7Q4efOR2Q\nxu6bTV97S38NfQz0idIpCgvdnaHDz5zOAh1VOoXF49KHtLav36VPzq0VujtDh5+Z0aMQvVPXpsWl\nP5auAu1TOkVBobszdPiZ0ftBXymdwmJx6Y+n94POKJ2ioNDdGTr8zOhS0IGlU1gcLv2JaHEeDr1u\n6SSFhO7O0OGnT0vzZp55pZNYDC79yehc0OGlUxQSujtDh58+vbflH09tGlz6U9HhoHNKpygkdHeG\nDj99uhj056VTWP259HuhDUEP085zVIfuztDhp0dL8jbJ+aWTWL259KdDl7R0n9m0u9MTHJVxMHAe\ndP5YOojVl2ARcCFwDnBCp1UrRzPyA8Bz9wTToj9qfcfz7ttkvKY/E9oxT23etv+v0N0ZOnzvNDuf\nRMKnjrMJufRnSp0871Xb5u4J3Z2hw/dOO4NuKJ3C6sml3y99AXRM6RQV8zb+AF5D2m5r9gzepj8Q\nPwTaPH1DOC35I9d5oENKp7B68Zr+oGgR6MGWTdoWujtDh++N5uWxxgtLJ7H6cOkPmm4Evbh0igqF\n7s7Q4XujPUBXl05h9eHSHwZ9FXR06RQV8jb+mtsFuLx0CKsHb9MfmsuAPUuHsN604I9eX2nZmoh1\n4TX9YdKLQDeXTlGh0N0ZOnxvdA1ot9IprCyX/rBpVt7B+9zSSSoSujtDh5+a1gI93tJJpCxz6VdF\nF4H2K52iIt7GX2MvAm6BzhOlg1gZ3qZfqRuAHUqHqCsXf3V2Aq4qHcLKcOlXzsU/CRd/dV4KXFM6\nhFXPpV+Eiz+Ihr8YdK5PvNI+3qZfipaC7imdoiKhuzN0+Knp12mYmbWFS78kdUAPteQo+dDdGTr8\n5NTJI3rWK53EquHSrwNdDtqrdIoKeFRPTS0GHoPOo6WD2PB5m35t3AJsVTpEHbn4q7ElsLpwBquA\nS79W7gKWlA5RRy7+amwF3Fo6hA2XS7927gY2KR2ijlz81Xge8NvSIWx4XPq15DX+Llz81VgI3Fc6\nhA2HS7+27sbFPyEXfzU2BB4oHcIGz6Vfa3fhTT0TcvFXYwPgwdIhbLBc+rXnNf4AGvyi0QUtmimw\nFTxOPwJ1QE+laZobLXR3hg4/OV0J2rV0ChsMl34k+iNofukUQxa6O0OHn5xWgbYrncL659KPRg+C\nNiidYsiKdOcBwErgZuDYLrf5XP79CtL0xBNpcvHf26KzATWWSz8i3Q1q+nb+yrtzNrCKdGTqXNK0\nw+OnQj0IODdf3x34eZf7anLx39+SyaIay6UflW4FNX3ahsrn6tmNVPyrgSeBbwBvGHeb1wNn5OuX\nk0a4LO7zcc0q49E7of0RaPo2/mnrt/iXAreP+f6O/LOpbrNZn49rVgmXfnjb47H8zzKnz3/f64tg\n/Efjbv9u+ZjrF+eLWUk7A98HPuLSD6tpxT+SL8UsA84f8/1xPHsH78nAW8d8v5KJN/U0+EXlbfxm\nZej6FpwAqfLunEOa83pLYB5T79xdhnfumllltAq0bekUQ1akOw8EbiTt5D0u/+zofFnj8/n3K0gf\nnSfS9OLfqHQKs/bRHaCm71MM3Z2hw09Ot4O2KJ3CrH10H2hR6RRD5lMv1tQDpBk6zaxa84EnSoeo\nGxd/NR4kHb9gZpVRB1gb+D+lk9SNi78aLn6z6q0NPAmd/1c6SN24+KvhTT1m1VtMmpPfxnHxV8Nr\n/GbV24R0Fi4bx8VfDa/xm1VvCV7jn5CLvxp34vmJzKrmNf4uXPzVuJV0dLOZVcdr/F24+KuxGmj6\nnOBmdeM1/i5c/NW4DVgK6nc2VDPr3eakzaxWYw2esgHytA3PK53CrD10G2ib0ikq4Ckbamw13txj\nVhGtRzqJzurCQWrJxV+dW4GtS4cwa4kXADdD50+lg9SRi786vwaafkIIs7rYAbihdIi6cvFX5ypg\np9IhzFrCxT8JF391rgZ2yjMGmtlwufiDaPioHshnA/J2frOh0yrQjqVTVMSjemrOm3vMhk7PJY3o\n8Rp/Fy7+al1N93MOm9lg7AH8HDpPlQ5SVy7+al2Fi99s2PYELisdwnrThm38G4Me9NQNZsOkS0D7\nlE5RodDdGTp877QCtKx0CrNm0jzQo6AFpZNUyDt3A7gQeE3pEGYN9TJgFXQeLh2kzlz81bsQeG3p\nEGYN9Wrgp6VDWO/asqlnQf4oOr90ErPm0SWgA0unqFjo7gwdfnr0c9CrS6cwaxYtBD0MWrt0kop5\nG38Q/wHsWzqEWcPsD/wEOk+UDmK9a9Ma/26gGz1vj9kg6UzQ0aVTFBC6O0OHnx518tmBPE2z2UBo\nNug+0OalkxTgTT0xdAR8Gzi0dBKzhtgd+B10bi8dJAIXfznfwsVvNiiHAWeVDmHT16JNPQCaladp\n3qF0ErPYNBd0D2jb0kkK8aaeODpPAd8B3lQ6iVlw+wG3QGdV6SA2fS1b4wfQXqBfe3SPWT/0DdC7\nSqcoKHR3hg4/M+qAbgC9onQSs5j0HNBDoI1KJynIm3pi6Qg4FWjj2GOzQTgUuBA6fygdxGamhWv8\nkNZU9GA63NzMpkeXgA4pnaKw0N0ZOnx/dCbo/aVTmMWil+WRcXNLJyksdHeGDt8fvdI7ec2mS18F\nfah0ihoI3Z2hw/dndCfvK0snMYtBS0APtHyn7hqhuzN0+P7p3aCzS6cwi0HLQSeXTlETobszdPj+\naW3QXaCXlE5iVm+aD7rbR72PCt2docMPho4B/WvpFGb1pr8EnVc6RY2E7s7Q4QdDC/LUsm2dc8Rs\nCpoDWgnap3SSGgndnaHDD45OAp1SOoVZPelI0E88Au4ZQndn6PCDo0Wg+0FLSycxqxfNA/3Go9+e\nJXR3hg4/WPo06IulU5jVi44G/bB0ihqqtDsXAhcANwE/AjbocrvVwLXA1cAVk9yfi3+UNgLd61EL\nZmtoPuj2dL5qG6fS7vwEcEy+fizwsS63u5X0JjEVF/8z6IMe12+2ht4H+n7pFDVVaXeuBBbn60vy\n9xO5Fejl6DoX/zNorbw989Wlk5iVpQ3yuP2Xlk5SU5V25wNjrnfGfT/Wb0ibea4Ejprk/lz8z6LD\nQL9Mp2k0ayv9k0e6TWra3Tlnit9fQFqbH+/4CR6424PvBdwFbJzvbyXw0y63XT7m+sX50mb/BnwA\nOBz458JZzArQy0gnUvf+rqeN5EsRK3n6TWETum/qGetE4INdfuc1/glpr7xTa0HpJGbVUgd0Keiv\nSyepuUrPwHU2cGS+fiTwvQlusw6wfr6+LumkyNf18Zgt1PkZ8EPgH0snMavYEcBawJdLB7GnLQR+\nzLOHc24K/CBf3xq4Jl+uB46b5P68xt+VNgT9zufmtfbQBnnSQg/fnFro7gwdfvj0pjxHyfzSScyG\nT18CnVY6RRChuzN0+Grou6D/UTqF2XBpf9Bv01q/9SB0d4YOXw1tmo/o9Zz91lBaSDqP7mtLJwkk\ndHeGDl8dvRN0VTrAy6xp9HXQZ0unCCZ0d4YOXx118iYfvzisYfRW0rmn1y6dJJjQ3Rk6fLW0IWg1\n6PWlk5gNhjYF3QPatXSSgEJ3Z+jw1dOe+YWyeekkZv3RHNBFoBNLJwkqdHeGDl+GjgNdkl44ZlHp\nU6DzQbNLJwkqdHeGDl+GZoEuAJ1UOonZzOgteRbaXmbwtYmF7s7Q4cvRkjyXzxtLJzGbHu2Yhyfv\nVDpJcKG7M3T4srSLX0AWi54Dugl05NS3tSmE7s7Q4cvToaDbQJuUTmI2Oc1OZ9PSF0onaYjQ3Rk6\nfD3oBNAVHgdt9aVOPrHKRaB5pdM0ROjuDB2+HtQBnQn6Jj5rl9WSPgRakTb12ICE7s7Q4etD80GX\ngT6e3gjM6kJvzwceblo6ScOE7s7Q4etFi0DXg8afItOsEB1AOmG6T6E4eKG7M3T4+tEmoJtB7y+d\nxNpOu4B+n442tyEI3Z2hw9eTtsgfrY8qncTaSjvnNf03lE7SYKG7M3T4+tJ2pNM2Hl46ibWNds3z\nSR1cOknDhe7O0OHrTTvmta7DSiexttCyvHnndaWTtEDo7gwdvv70krzm/99KJ7Gm01659A8qnaQl\nQndn6PAxaBvQLWm0j4d62jDolXn6kP1LJ2mR0N0ZOnwc2gR0Leh/+iAvGyy9Ja/p+3y51QrdnaHD\nx6INQZeCvorn8re+qQM6Js8S+9LSaVoodHeGDh+P1gGdCzoPtEHpNBaV5oBOztMwbFY6TUuF7s7Q\n4WPSHNBnQTeCti+dxqLR+nnF4XzQgtJpWix0d4YOH5ve4aF3Nj3aGnQN6FTQ3NJpWi50d4YOH5+W\nge4gncfXI35sEnpDXlF4n/9WaiF0d4YO3wxaCrqcNK2zP7rbOJpLOjH6b9OKgtVE6O4MHb45ND9/\nfL/FL257mpbmkWDnghaVTmPPELo7Q4dvHr0xz7PyEQ/5bDvtD7orH/jnYz/qJ3R3hg7fTFoK+nFe\n09uydBqrmhbkT3+3gV5dOo11Fbo7Q4dvLs0CfTDvzDvCO/PaQvvlbfmn4dMk1l3o7gwdvvn0snyQ\nzo9A25ZOY8Myupb/21T+FkDo7gwdvh00J6/93wf6MGit0olskPRnufBP8aiuUEJ3Z+jw7aItQN8H\nrfS23ybQ9nm0zo2gfUunsWkL3Z2hw7eTDs47/v45vRlYLNoA9BnSNMofAM0rnchmJHR3hg7fXloP\n9FHQH0CfBm1UOpFNRbNBR5POynYK6LmlE1lfQndn6PCmTUBfzNv/jwetWzqRjadZpDnzrwf9BLRT\n6UQ2EKG7M3R4W0Pbgr4BuhP0Lu8ArgPNBr0V9Ks8JcdBHpbbKKG7M3R4G08vzzsM7yRN/LZh6UTt\no9mgt4FuAF2Wj8B14TdP6O4MHd660YtBZ4DuzzsSn1c6UfNpAei9eZTOpWmkjgu/wUJ3Z+jwNhVt\nBvpk3gn8r6DdXUaDph1BX8hvst8Cvcr/x60QujtDh7de6TmgvyXN/nl9PiBscelUcWku6FDQRXmz\n2n8HLS2dyioVujtDh7fp0qy8RvpV0IOgs0B/jmcC7YFmgV6R1+7vAV0COszj8FsrdHeGDm/90ALQ\nO/MOyLtBXwId4BFBY6mTd5h/Mh80dx3o70DblE5mxYXuztDhbVD0fNAx+U3gwTw09C9o5QyRmp93\nzH4KdFPePPb3oBeVTma1Uml3vhn4FfAnYOdJbncAsBK4GTh2ktu5+G0cLQEdBfp30MOkcwMcD9o7\nlWLTqAN6IWn6hPNBj4B+BjoRtKt31FoXlXbn9sDzgYvoXvyzgVXAlsBc4Bpghy63bXrxj5QOMEQj\nw38IrUc6yfenQb8APQq6GHQSaJ/0+6EZGc7dav28n+NvQf9GOtn9atI0Cm8CbTCcx32WkYoep5SR\n0gGGbNrd2c+OtJU93GY3UvGvzt9/A3gDcEMfjxvVCHBx4QzDMsLQn1vnUeD7+ULaL8AewKuA5cDO\naVQL1wLXjbmsgs6f+nzwEfp6fpoFbAZsB7wA2IX02tiKlPcK4GzgeFLeqleCRmju3yY0//lN27BH\nUCwFbh/z/R3A7kN+TGuFzsPAD/OFNKyR7YAX58sR+esS0M2kv8PbSX+DY6/fBTw287LVLGBDYGNg\nUf66GNgm59kO2Bq4n7QSdBNwOfB54DroPDmzxzWbuamK/wJgyQQ//zvgnB7uv+mbb6w2Ok8Cv86X\nbz79c61P2iS5GbB5/rr/mO+XAPNBjwGPAo/kr48CTwCz4W+2hc/tQ3q9rLmsBWxEKv1HgPuAe/PX\n3wO/Ac4k7dtaBZ3HhvbUzaZpEDuLLgI+CFw1we+WkT6GH5C/Pw54Cvj4BLddRVpLMjOz3t0CVH46\n1IuAl3f53RxSqC2BeUy+c9fMzGrujaTtpE8AdwPn5Z9vCvxgzO0OBG4krdEfV2VAMzMzMzMrqNcD\nwFaThrxdTRr2FsGgD26rm4WkHf83AT8Cuo03X02sZdfL8vhc/v0KINoZrKZ6fiPAQ6TldTVwQmXJ\n+vcV4B7SEN5uIi+7qZ7fCEGWXS8HgAHcSiqaSAZ9cFvdfAI4Jl8/FvhYl9tFWna9LI+DgHPz9d2B\nn1cVbgB6eX4jpOMJItqbVObdijHysoOpn98I01h2swYQaKZWktYYexHtUPVentvYg9ue5OmD2yJ4\nPXBGvn4GcPAkt42y7HpZHmOf9+WkTzpRppTu9e8tyvIa76fAA5P8PvKyg6mfH0xj2ZUs/l4J+DFw\nJXBU4SyDNNHBbVHmUV9M+thJ/trtBRRp2fWyPCa6zWZDzjUovTw/AXuSNoWcC7ywmmiViLzsejGt\nZTfsI3f7PQAMYC/S0ZUb5/tbSXr3K63pB7d1e37Hj/tedH8udV12E+l1eYxfq6r7clyjl5xXkQ5q\ne5w0Gu97pE2WTRF12fViWstu2MW/7wDu46789V7gLNJH1jqUR7/P7XekBbXG5qS1kLqY7PndQ3pT\nuBvYhHSk6kTquuwm0svyGH+bzfLPIujl+T0y5vp5wBdJ+2juH260SkRedr2Y1rKry6aebtum1gHW\nz9fXBfZj8r32ddTtuV1JmsdlS9LBbYcRZ8fa2cCR+fqRpLWL8aItu16Wx9nA2/P1ZcCDPL3Jq+56\neX6Lefrvdbd8vQmlD7GXXS/CLLteDgDbmjT64BrgeuIcANb0g9sWkrbdjx/OGX3ZTbQ8js6XNT6f\nf7+CyUej1dFUz+89pGV1DXAZqSCj+DpwJ/B/Sa+9v6JZy26q5xd52ZmZmZmZmZmZmZmZmZmZmZmZ\nmZmZmZmZmZmZNcf/BwNT65c5oO0OAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x104e60490>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEPCAYAAACk43iMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHLdJREFUeJzt3Xm4XFWZ7/HvzgSBQEIUCEPkMIiC0IIggzIcQFQG0cfm\nsdGLMoMXu2lauwmIjXFoRLAFEcdGbBxAZJ68XIgY4SozJASSAAmDBCEMRhxb7OZ3/1jrkMrhnOSc\nqr1r7Vr793meek7VPnV2veuBvO+utdcAZmZmZmZmZmZmZmZmZmZmZmZmZmZmI3YBsBSY13LsLGAB\nMBe4Apjc8rtTgEeAhcA7uxSjmZlVZHdge1YsAvsCY+LzM+IDYGtgDjAe6AMWtbzPzMwqUmWivRVY\nNujYTcDL8fkdwMbx+XuBi4G/Ao8TisBOFcZmZmakvdo+EvhJfL4hsKTld0uAjboekZlZw6QqAqcC\nLwEXreQ96lIsZmaNNS7BZx4O7A/s03LsKWB6y+uN47HBFgGbVxaZmVme5gLbpfjgPla8Mfxu4EHg\ntYPeN3BjeAKwKbAYKIY4X67fDmamDqACM1MHUIGZqQOoyMzUAVRgZuoAKjCzg78dNndW+U3gYmBP\nQsJ/Evg0YRjoBMINYoDbgOOB+cCP48//jsdyTfhmZrVRZRH44BDHLljJ+0+PDzMz6xKPxa+H2akD\nqMDs1AFUYHbqACoyO3UAFZidOoAKzE4dQB24i8jMbPSGzZ3+JmBm1mAuAmZmDeYiYGbWYCkmi/U4\nrQa8njAHog/YBJhKWBF1MrAa8D+ENZL+Slg/6QXgeeBXhAlvi4CnofA9DjNLaqgJWXUmuhqzCuCN\nwF6EBe22B7YkLHL3WPz5BCHJvxgffyF8wxpLmBOxDvAawnyJTYAt4mM14B7gLuBO4OdQvNCVZplZ\n0wybO10EXv0Rk4D9CCub7kNY4+hm4JeEWc0PQPHnEj5nPWAH4K3ALsBuhL0UbgSuA+7wNwUzK0mX\nL6CrU1FS1OqgQ0BXg34HugF0HGiz+G2gCzQBtCfodNAC0BOgs0A7dC8GM8tUNheUJTdE24LOBT0P\nmgX6CGhKuZ/RVlxFjO3zoMdA98aitFbqyMysJ7kItJyiAL07Jv2nQJ8B9XV+3qpoDOhdoCtAy0Dn\ngF6XOioz6ykuAjGZHgJ6ADQ3XvVPKC+0btDGoC+BfgP6Hmjr1BGZWU9ochFQAXo/aB7o9nhV3eN9\n7FoH9EnQs6AL6/1NxsxqoKlFQLuC7oh96gf0fvIfTJNBnwW9APoK6DWpIzKzWmpaEdB00EWgJaAP\nh66gnGk90HmgpaCPgsamjsjMaqUpRUDjQJ+Io30+C1qzO2HVhf4G9HPQfaBdUkdjZrXRhCKgHWK3\nzyzQFt0LqW5UgD4Eehp0dvMKoZkNIecioAlxgtXSOOIns37/duk1cQTRo6B9UkdjZknlWgS0Tez6\nuAa0fpqQ6k77gZ6M3wpWTx2NmSWRWxFQAfon0HOgo3z1vyqaCroUdH+YiWxmDZNTEdDUeOV/B2iz\n1AH1DhWgw2PhPM6F06xRsioCT4C+3HuzfetCW8ZvBD8grJhqZvnLqgi8N3UQvU9rgL4Lmg/aKnU0\nZlYVjQd9lbyKgJVHR8WlJw5IHYmZlU3rxXlD15FR7symIfWhXQmrqc7wfQKzXOgtsev883HFhGxy\nZzYNqRdtDLoL9EMPIzXrdXpfHABycOvBZOGULJuG1I8mgi4B3eqF6Mx6kQrQx+M3+x0H/zJJSBXI\npiH1pDGgM0EPgTZPHY2ZjZTGgb4eR/4NtelUktx5AbAUmNdybCpwE/AwYUP11q0cTwEeIWy2/s5h\nzuki0BX633HtobemjsTMVkUTQVeCbgStPdybuhpStDuwPSsWgTOBk+LzGcAZ8fnWwBxgPNAHLAKG\nWv7ZRaBr9J44cugdqSMxs+FoCugWwtL5K5s7lSx39rFiEVgIDKzxMy2+hvAtYEbL+24AhloK2UWg\nq7R7XJjv4FW/18y6SxvG7p+vsOo9U4bNnd3ebGV9QhcR8edAQdgQWNLyviXARl2My4ZU3Aq8C/gK\n6JjU0ZjZAG0C3AL8CDgRipfbPdO40mIaPbHyK3tf9ddCMQe0JzAr9D0W56aOyKzZ9HpgFvDvZfx7\n7HYRWEroBnoG2AB4Nh5/Cpje8r6N47GhzGx5Pjs+rFLFolgIbgatBsVZqSMyaya9iTCo5tNQnL+S\nN/bHR3J9vPrG8EDf/8m8+sbwBGBTYDEw1OxVfztIShuBFoL+NXUkZs2jbeOovf/Vzh+XHs4IXAz8\nGngJeBI4gjBEdBZDDxH9JGFU0EJCP/RQXASS0zTQg6DTUkdi1hyvFIBD2j1BqeEklE1DepvWBy0A\nnZo6ErP8aZsOCwBklDuzaUjv0waxa+jk1JGY5UtbxwLwwU5PVEo4NZBNQ/KgDUEPh/VKzKxc2gK0\nBHRoGScr4Ry1kE1D8qHpoMdAx6aOxCwfeh3o8RL/XWWTO7NpSF5euWL5UOpIzHqfNgA9AjqxzJOW\neK6ksmlIfrQN6Bm8/adZB7QOaB7oU2WfuOTzJZNNQ/KkHeOic3umjsSs92gN0C9AX6b8Xf6yyZ3Z\nNCRf2jsWgu1SR2LWOzQe9BPQhSNYDK6tD6jgnElk05C86WDC7kabpY7ErP40BvQD0LWhGFTzIRWd\nt+uyaUj+9FHQojCxzMyGp7NA/y8s0Fjdh1R47q7KpiHNoJmgu0GTUkdiVk86Mc6+n1r1B1V8/q7J\npiHNoAL0HdD1oJTLlpvVkD4AejLuDVD5h3XhM7oim4Y0h8aD/g/o2xWMeDDrUdojDqD4m259YJc+\np3LZNKRZNAl0TwVjn816kN5A2La1m/t3Z5M7s2lI82hanAbvWcXWYFoPtBh0RLc/uMufV5lsGtJM\n2iZ+Bd4tdSRm3aeJoNtAn0vx4Qk+sxLZNKS59M64vMTrU0di1j0aA7oU9MNE98ayyZ3ZNKTZdExc\ngrrqYXFmNaF/i3MBVksVQKLPLV02DTF9CXRzhTMkzWpCHwE9Clo3ZRAJP7tU2TTENDZOk/fQUcuY\ndo/3wbZOHUjizy9NNg0xAK0Fuh/0T6kjMSufNiVsDfmu1JGQUe7MpiE2QJuAfg3aP3UkZuXRWoR9\nAf4hdSRRNrkzm4ZYK+0avzJvlToSs85pLOga0Ldq1NWZTe7MpiE2mI4gbKm3TupIzDqjL4B+DpqQ\nOpIW2eTObBpiQ9GXQTd5sTnrXfpQHAn02tSRDJJN7symITYUjQPdADondSRmo6cdQM+Btk0dyRCy\nyZ3ZNMSGoylxItnhqSMxGzmtD/oV6P2pIxlGNrkzm4bYymireKN459SRmK2aJsTZwJ9JHclKZJM7\ns2mIrYoOImy4sUHqSMxWTt8CXUU1G8SXJZvcmU1DbCT0r3HVxVTrrZitgo4DPRjmBdRa7XLnKcCD\nwDzgImA1YCpwE/AwcCMwZYi/q11DrEoaA7o8LC1hVjd6e+y27IUVcWuVO/uARwmJH+AS4DDgTOCk\neGwGcMYQf1urhlg3aC3QfNCxqSMxW04bgp7qoZnutcqdU4GHgHWAccC1wL7AQmD9+J5p8fVgtWqI\ndYu2jFdcu6aOxCx0T+o20KmpIxmF2uXOY4HfA88C34/HlrX8vhj0ekDtGmLdogNAS8IVmFlK+lbs\npqzLkhAjMWzuTDEzc3PgREK30IvApcChg94jhg96Zsvz2fFh2SuuD//4uBS0FxQvpY7ImkhHA7sD\nO0NR54vS/viopb8Dzm95/WHga8ACQjcQwAa4O8heRWNAV4POSx2JNZF2jt2Sb0gdSRtqlTvfDDwA\nTCR0+1wIfIxwY3hGfM/J+MawDUmTQQ+BDksdiTXJKzOC35s6kjbVLneexPIhohcC4wk3jGfhIaK2\nSto6rtHyltSRWBNoPGg26HOpI+lANrkzm4ZYp3Qw6PEartZo2dGXQT8J+wT0rGxyZzYNsTLoi3Hp\n6V7+x2m1pg+CFoOmpo6kQ9nkzmwaYmXQONBPQV9IHYnlSNvGbsc3p46kBNnkzmwaYmXRuqAnaryE\nr/UkTSHsdDd4+HqvyiZ3ZtMQK5PeGq/YvEexlUBjQNeCzk0dSYmyyZ3ZNMTKpqNAC3pgNUerPZ0W\n9weo0x7Bncomd2bTEKuCvg26rMem81utaP+4MFxu+1hkkzuzaYhVQauB7gSdtOr3mg2mzeKM4N1S\nR1KBbHJnNg2xqmg66GnQPqkjsV6iNUBzQSekjqQipeTONco4SYdcBGwEtDfoGdDrUkdivUAF6Aeg\n72fcldhR7nwbMB94Mr7eDvh6pxG1yUXARkj/DLoLtHrqSKzu9A+gOeHbQLY6yp13Aq8D7ms59mBH\n4bTPRcBGSAXox6DvZHx1Zx3TbqCl4X5A1jouArBiEZjbyQk74CJgo6BJhE3AvTWlDeGVLSL3Sx1J\nF3SUOy8D3k4oAhOAfwZ+VEJQ7XARsFF6ZWvKXVJHYnWiCaBfgj6VOpIu6Sh3rgtcRNgK8jngh8Br\nSgiqHS4C1ga9B/QkaNqq32vNoG+Argqzgxuho9z59hEe6wYXAWuTZoJuzWwWqLVFR4IWgtZOHUkX\ndZQ77xvhsW5wEbA2vbIezFdTR2IpaaeGrjPV1kbzuxKGh64LfJywFSTAWkBTvkJZNoqXQR8G7gQd\nBsWFqSOybtM04HLgaCgWpI6mLlZWBCYQEv7Y+HPA74CDqwzKrBrFb0HvA2aD5kNxV+qIrFs0AbgU\nuACKq1NH02v6UgfQwt1BVgK9j7Bp+PqpI7Fu0ddA1zToRvBgbXUHDfgT8CVga2Biywn37jwusxSK\nq0DbAZeFNYaKl1JHZFXSUcA+wE6hW9BG6ybgaGAhsCfwXeDMRLH4m4CVRGNAV4ehgpYvvS3OE3lj\n6kgS6yh33ht/3t9y7O5OTtgBFwErkdaOM4qPSx2JVUEbxxnB+6eOpAY6yp23x583AgcCbwEWdxpR\nm1wErGTaIq4ds0fqSKxMmhgXEJyROpKa6Ch3HghMAbYFZhO+GRzUeUxtcRGwCmjfuAdBX+pIrAwq\n4rLQF3vxwFe0nTvHEuYI1IWLgFVEJ8ZNRSaljsQ6pRmgezJfGnq0OsqddRpL7SJgFVEBugB0ZYOH\nEWZAB4GWhPsB1qKj3Hk2cB6wO+F+wA7xZwouAlYhrQa6BfRvqSOxdmjbOBJop9SR1FBHuXM28LMh\nHim4CFjFtC7oUdChqSOx0dB6oMdAH0wdSU3VLndOIexTsICwdeXOwFTCnISHCSORpgzxd7VriOVI\nb4pXlG9LHYmNhFaPewN8LnUkNVa73HkhcGR8Pg6YTJiAdlI8NgM4Y4i/q11DLFfaL44Yyn3bwR6n\nIo4C+pHv5axUrXLnZODRIY4vBAbWcpkWXw9Wq4ZY7nQ8aAFondSR2HD0GdBtYV6ArUStcud2wB2E\n5SfuBf4DWBNY1vKeYtDrAbVqiDWBzgbd7M1o6kiHxvsAXghw1YbNnSOZSPG3Q5zgRWAeYcvJ0doR\nuI2wV8FdwDnA74G/B1qvuH5DuE/QSsBnWl7Pjg+zimgscAXh/8cjofCFSC1oL8Je53tD8WDqaGqo\nPz4GfJqR5fshXU/4B3B5fLxAuIG7CPhIG+ebBjzW8nq3+BkL4u8ANsDdQVYbWjMuQTAzdSQGoG3i\njfv+1JH0kI5y540s76snPr+RsNl8uxX4FmDL+Hwm4abwmYQbwgAn4xvDVitaH7QYdHTqSJpNG8W9\nID6UOpIe01HuHLwNW9FyrN29ht9M6AqaS/iqPZnQ9TMLDxG12tKWccSQV6VMQpPj0h4np46kB3WU\nO79O6K45DDgcuBb4BuFmbrcnjbkIWGLahbBRuWeldpVWB80GnedF4drSUe4cQ9hT+BzCEhIH08EN\nhg65CFgN6EDQM6CtUkfSDBoLugJ0SbxRb6OXTe7MpiHW6/Th2De9SepI8qYC9G3QTWFtJ2tTR7nz\nb4FHgN8RhnL+Pj5PwUXAakT/CHoorDdk1dDpoLtBa6WOpMd1lDsXA3X52usiYDWjz4Hu9aziKuiT\nhO0/X5s6kgx0lDt/UVYUJXARsJpREWcV3+6r1TLpRNAjoA1SR5KJjmYMf4Uwiesq4KWWE17ReVyj\nJtLdlDYbhgrCKLo3AftB8cfEAfU4HQOcCuwBxa9SR5OJYXPnSBLqf7acpNURHQTULhcBqymNAb4D\nTAfeA8WfEwfUo3Q0YYmDvaF4JHU0Gckmd7o7yGpMYwkbnP80LDVho6NjQE+CXp86kgy11R00A/gi\n8NVhTnhCh0G1I5tqZrnSWOB8YDPgACj+kDigHqFjgU8RvgEsSh1NhobNneNW8kfz48+7Bx0v8BW5\n2TCK/wEdBXwTuCEsMVGkGlLdI3QC8AlgLygWp47GVjQW+PfUQbRw8bEeoTFxiYO7QeuljqaeVIA+\nDXrYk+4q11HuvJ36dMG4CFgPUQH6bJxQ1pc6mnrRGNA5oDneFKYrhs2dK+sOGjAHuBq4FPhTywlT\nDBE16yGFgNNAzwO3gvaD4oHUUaWnCYSRVJsB/VD8Nm08zTaSIrA6YVOZvQcddxEwG5Hi3FgIfhrW\nwS9+mjqidLQOIXf8FtgXij+t4g/MVuDuIOth6gctbe7GNOoDzY8zrL0aaHd5iKhZPegNwHXAlcAp\nYTRRE2h34BLgjPDNyLqsoyGi97BiFfEQUbO2FQ+FjWm4HLgOdCgUL6SOqjoqgOOB04DDoLghcUA2\nCt+PP09MGsWKXHwsExoP+hLoMdAOqaOphiaCvgu6H7R56mgarq3cOR/YELifsP/v4EcKLgKWGR1M\n2K7yo2S1baK2Ac0DXewlNGqhrdx5AmFD+b8Ajw16PFpaaKPjImAZ0hvjngTX9v6YeRWg42NhOyKv\nwtbTOsqd3ywrihK4CFimNCHuovU06KDU0bRH00HXxVnSW6aOxlaQTe7MpiFmQ9NuoMWgH4M2Sh3N\nyGgM6GPx6v+0OBnM6iWb3JlNQ8yGp4mEbSufD4uraSSTOhPRjqBfgm4F1WUbWnu1bHJnNg0xWzVt\nBboZtAD0/nr1r6sPdBHo12Hym8akjshWKpvcmU1DzEZGRVhzSHNAd4LelbYYaFPQV0EvxBVAJ6WL\nxUYhm9yZTUPMRkdjQIfEYZcPEHbhmtilzy5it8/FsYvqC6Bp3flsK0k2uTObhpi1RwVonzic9DnQ\nN0F7VbMWjzYCnRQLz+OgT4DWLv9zrAuyyZ3ZNMSsc9oUdDLovji09HzQR2h77wJNBO0dh6reCVoW\nz7mH+/x7XlsLyFVtLGHryiXAewizkC8BNgEeBz5AWG62lReQMxuS3gDsC+wRHy8DDwGLgMXAC8Cf\nWb4nyDrAFGBd4I3A1sDrCPuH3ATMAm6H4i/da4NVaNjcmTKhfhzYAVgLOAg4E3g+/pxB+J/05EF/\n4yJgtkoqCBdTW7Q8JgNrxEcBLIuPF4CHgQeBRVC8lCJiq1ztcufGhCuNvYBr47GFwMCU+Wnx9WDu\nDjIzG73a5c5Lge2BPVleBJa1/L4Y9HpA7RpiZtYDOtpjuGwHAs8C9wH9w7xHDB/0zJbns+PDzMyW\n62f4/Jrc6cCThNVInwb+SNi7YCGhGwhgA9wdZGZWltrmztbuoIEbwhBuCJ8xxPtr2xAzsxqrbe7c\nE7gmPp9KuFn8MHAjYfjaYLVtiJlZjWWTO7NpiJlZFw2bOz0L0MyswVwEzMwazEXAzKzBXATMzBrM\nRcDMrMFcBMzMGsxFwMyswVwEzMwazEXAzKzBXATMzBrMRcDMrMFcBMzMGsxFwMyswVwEzMwazEXA\nzKzBXATMzBrMRcDMrMFcBMzMGsxFwMyswVwEzMwazEXAzKzBXATMzBrMRcDMrMFcBMzMGsxFwMys\nwVwEzMwazEXAzKzBXATMzBosRRGYDvwMeBB4ADghHp8K3AQ8DNwITEkQm5mZVWwasF18Pgl4CNgK\nOBM4KR6fAZwxxN+q8ujMzPJT69x5FfAOYCGwfjw2Lb4erNYNMTOrqdrmzj7gCWAtYFnL8WLQ6wG1\nbYiZWY3VMndOAu4B3hdfD076vxnib2rZEDOzmhs2d47rZhQtxgOXA98ndAcBLCV0Az0DbAA8O8zf\nzmx5Pjs+zMxsuf74qKUC+B5w9qDjZxJuCAOcjG8Mm5mVpVa5czfgZWAOcF98vJswRHQWKx8iWquG\nmJn1iGxyZzYNMTPromFzp2cMm5k1mIuAmVmDuQiYmTWYi4CZWYO5CJiZNZiLgJlZg7kImJk1mIuA\nmVmDuQiYmTWYi4CZWYO5CJiZNZiLgJlZg7kImJk1mIuAmVmDuQiYmTWYi4CZWYO5CJiZNZiLgJlZ\ng7kImJk1mIuAmVmDuQiYmTWYi4CZWYO5CJiZNZiLgJlZg7kImJk1mIuAmVmDuQiYmTWYi4CZWYPV\nrQi8G1gIPALMSByLmZl10VhgEdAHjAfmAFsNeo+6HFO39KcOoAL9qQOoQH/qACrSnzqACvSnDqAC\n/R387bC5c1wHJy3bToQi8Hh8/SPgvcCCVAGNxhZwwXawWdFyTMAceHQRHLmKP+8HZlcVWyL9uE29\nop/82tWP2zQidSoCGwFPtrxeAuycKJZRE1x/OFx4AKw5cOw6+ON9cG7CsMzMVqpO9wR6uqtnMVxx\nHswbaISAr8G8xXBlyrjMzFamWPVbumYXYCbh5jDAKcDLwBdb3rMI2Ly7YZmZ9by5wHapg1iVccBi\nwo3hCQx9Y9jMzDK2H/AQ4Yr/lMSxmJmZmZlZHeQ4kewCYCkwL3UgJZoO/Ax4EHgAOCFtOKVYHbiD\n0EU5H/hC2nBKNRa4D7g2dSAlehy4n9CuO9OGUpopwGWEIfPzCfdQG2UkE8l60e7A9uRVBKax/AbU\nJEL3Xg7/rdaIP8cBtwO7JYylTB8HfghckzqQEj0GTE0dRMkuZPl8o3HA5LJOXKchoivTOpHsryyf\nSNbrbgWWpQ6iZM8QijTAHwhXLhumC6c0f4o/JxAuSn6TMJaybAzsD5xPvUYKliGn9kwmXDBeEF//\nN/BiWSfvlSIw1ESyjRLFYiPXR/imc0fiOMowhlDclhK6u+anDacUZwP/QhiKnRMBs4C7gWMSx1KG\nTYHngO8C9wL/wfJvph3rlSLQ0xPJGmoSoQ/zHwnfCHrdy4Ruro2BPej9tWkOBJ4l9JvndNUM8HbC\nxcd+wMcIV9G9bBzwFuDr8ecfgZPLOnmvFIGnCDccB0wnfBuwehoPXA78ALgqcSxlexG4HtgxdSAd\nehtwEKH//GJgb+B7SSMqz9Px53OEGfs7JYylDEvi4674+jJCMWiUnCeS9ZHXjeGCkEzOTh1IiV5L\nGJ0BMBG4BdgnXTil25N8RgetAawVn68J/AJ4Z7pwSnMLsGV8PpMVV1JojBwnkl0M/Br4C+GexxFp\nwynFboSukzmErob7WL4USK/altAXO4cw9PBf0oZTuj3JZ3TQpoT/TnMIQ5RzyRVvJnwTmAtcQYmj\ng8zMzMzMzMzMzMzMzMzMzMzMzMzMzMxsxPrIayKgZahXlo0wM7MKuAiYDe1KwiqUD7B8Jco/AJ8n\nzEa9DVgvHt+csMfA/fH3vx/ifGOBswibnMwFjq0qcDMz69w68edEQpfOVMJyGAfE418ETo3PrwP+\nLj4/juVFoI/l3UHHtrx/NcISAH3lh21mZmWYyfI1aJYBOwP/1fL7DxDWdQd4nuXfqtdm6CJwGWHt\nq4H1lBYD76gkcrNRGJc6ALMa6iesEroLIfH/jLDP8F9b3vMyo//38/fATSXEZ1Ya3xMwe7W1CVf/\n/0VYsnxVm3rfDhwcnx8yzHv+L3A8ywvHlpS4O5RZu1wEzF7tBkKyng+cTrgJDCvucKeW1ycSNmyf\nQ7hJ/OKg90HYx3c+YUnqecA38DdxM7MsTGx5fghhZJGZmTXEboRvAXOB2cBmSaMxMzMzMzMzMzMz\nMzMzMzMzMzMzMzOzJvv/JtqorY/LcQsAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x104e60b50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import nengo\n", "import numpy\n", "\n", "n = nengo.neurons.LIFRate()\n", "\n", "theta = numpy.linspace(0, 2*numpy.pi, 100)\n", "x = numpy.array([numpy.cos(theta), numpy.sin(theta)])\n", "plot(x[0],x[1])\n", "axis('equal')\n", "\n", "e = numpy.array([1.0, 1.0])\n", "e = e/numpy.linalg.norm(e)\n", "\n", "plot([0,e[0]], [0,e[1]],'r')\n", "\n", "gain = 1\n", "bias = 2.5\n", "\n", "figure()\n", "plot(theta, n.rates(numpy.dot(x.T, e), gain=gain, bias=bias))\n", "plot([numpy.arctan2(e[1],e[0])],0,'rv')\n", "xlabel('angle')\n", "ylabel('firing rate')\n", "xlim(0, 2*numpy.pi);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- That starts looking a lot more like the real data." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Notation\n", "\n", "- Encoding\n", " - $a_i = G_i[\\alpha_i x \\cdot e_i + J^{bias}_i]$\n", " \n", "- Decoding\n", " - $\\hat{x} = \\sum_i a_i d_i$\n", " \n", "- The textbook uses $\\phi$ for $d$ and $\\tilde \\phi$ for $e$\n", " - We're switching to $d$ (for decoder) and $e$ (for encoder)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Decoder\n", "\n", "- But where do we get $d_i$ from?\n", " - $\\hat{x}=\\sum a_i d_i$\n", " \n", "- Find the optimal $d_i$\n", " - How?\n", " - Math" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Solving for $d$\n", "\n", "- Minimize the average error over all $x$, i.e.,\n", "\n", "$ E = \\frac{1}{2}\\int_{-1}^1 (x-\\hat{x})^2 \\; dx $\n", "\n", "- Substitute for $\\hat{x}$:\n", "\n", "$ \n", "\\begin{align}\n", "E = \\frac{1}{2}\\int_{-1}^1 \\left(x-\\sum_i^N a_i d_i \\right)^2 \\; dx \n", "\\end{align}\n", "$\n", "\n", "- Take the derivative with respect to $d_i$:\n", "\n", "$\n", "\\begin{align}\n", "{{\\partial E} \\over {\\partial d_i}} &= {1 \\over 2} \\int_{-1}^1 2 \\left[ x-\\sum_j a_j d_j \\right] (-a_i) \\; dx \\\\\n", "{{\\partial E} \\over {\\partial d_i}} &= - \\int_{-1}^1 a_i x \\; dx + \\int_{-1}^1 \\sum_j a_j d_j a_i \\; dx \n", "\\end{align}\n", "$\n", "\n", "- At the minimum (i.e. smallest error), $ {{\\partial E} \\over {\\partial d_i}} = 0$\n", "\n", "$\n", "\\begin{align}\n", "\\int_{-1}^1 a_i x \\; dx &= \\int_{-1}^1 \\sum_j(a_j d_j a_i) \\; dx \\\\\n", "\\int_{-1}^1 a_i x \\; dx &= \\sum_j \\left(\\int_{-1}^1 a_i a_j \\; dx\\right)d_j \n", "\\end{align}\n", "$\n", "\n", "- That's a system of $N$ equations and $N$ unknowns\n", "- In fact, we can rewrite this in matrix form\n", " \n", "$ \\Upsilon = \\Gamma d $\n", "\n", "where\n", "\n", "$ \n", "\\begin{align}\n", "\\Upsilon_i &= {1 \\over 2} \\int_{-1}^1 a_i x \\;dx\\\\\n", "\\Gamma_{ij} &= {1 \\over 2} \\int_{-1}^1 a_i a_j \\;dx \n", "\\end{align}\n", "$\n", "\n", "- Do we have to do the integral over all $x$?\n", " - Approximate the integral by sampling over $x$\n", " - $S$ is the number of $x$ values to use ($S$ for samples) \n", "\n", "$ \n", "\\begin{align}\n", "\\sum_x a_i x / S &= \\sum_j \\left(\\sum_x a_i a_j /S \\right)d_j \\\\\n", "\\Upsilon &= \\Gamma d \n", "\\end{align}\n", "$\n", "\n", "where\n", "\n", "$\n", "\\begin{align}\n", "\\Upsilon_i &= \\sum_x a_i x / S \\\\\n", "\\Gamma_{ij} &= \\sum_x a_i a_j / S \n", "\\end{align}\n", "$\n", "\n", "- Notice that if $A$ is the matrix of activities (the firing rate for each neuron for each $x$ value), then $\\Gamma=A^T A / S$ and $\\Upsilon=A^T x / S$\n", "\n", "So given \n", "\n", "$ \\Upsilon = \\Gamma d $\n", "\n", "then\n", "\n", "$ d = \\Gamma^{-1} \\Upsilon $\n", "\n", "or, equivalently\n", "\n", "$ d_i = \\sum_j \\Gamma^{-1}_{ij} \\Upsilon_j $\n" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "RMSE 0.0244915143696\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEPCAYAAABY9lNGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXm8ldP+x9+riRJlqoQG8xQVRUStSqZQihDXdH+oew3h\nXnJdHsM1XdM1j6EImUqhgb5JqAgZEpFo0IRwkVus3x/fZ5+zz2nP89lnvV+v/TpnP8N61jlnn+f7\nrO/w+YLH4/F4PB6Px+PxeDwej8fj8Xg8Ho/H4/F4PB6Px+PxeDwej8dTqxgOLAc+jNrWGZgFvAe8\nDXSK2jcMmA/MA3oXaI4ej8fjKQIHAh2oaiCmAoeE3x8GSPj9bsD7QH2gDfA5UKcQk/R4PB5PbPJ5\nE34d+L7atm+AJuH3TYEl4fdHA08Aa4GFqIHonMe5eTwejycJ9Qp8vUuA6cBNqHHqEm5vCcyIOm4x\nsHVhp+bxeDyeaArtxnkIOBdoBQxF4xTxcAWZkcfj8XhiUugVRGegV/j9M8CD4fdLgG2jjtuGSvdT\nNJ8D2+dtdh6Px1OefAHsUOxJVKcNVYPU7wLdwu97oplMUBmkbgC0RX8YE2M8v6rILUGxJ1BmBMWe\nQJkRFHsCZURG9858riCeQI3BFsAi4HLgTOAuYAPg1/A9wFxgdPh1HTAEbww8Ho/HkwbeaOSWoNgT\nKDOCYk+gzAiKPYEyIqN7p681qN1MLfYEyoypxZ5AmTG12BPw1Cz8CsLj8XjSx68gPB6Px5M7vIHw\neDweT0y8gfB4PJ7yZqNMT/QGwuPxeMqbS4s9gULhg9Qej8eTOjsDq6gl985a8UN6PB5PDjDAJFT3\nrlbcO2vFD+nxeDw54FhU6qg+teTeWSt+SI/H48mSxqjE0YHh+1px76wVP6TH4/FkyY3ACACCzFcQ\nhZb79ng8Hk9+2Q04DdgjfD+oiHMpKH4F4fF4PPExgADnABBQl4B51BqpjSBmnwiPx+PxwPFAU+Ce\n8H0/YHWmg9U8A1G5bPJ4PB5PJZsAN6H9dNaFD9OXAv/KdMCaaCCOLvYEPB6PpwQJgAnAW+H7Q9E4\n84vFmlAihgPLqdpyFNQ39gnwEXBD1PZhwHxgHtA7zpiOgFk5nqfH4/HUdHYHVgBbVmwJeJ2AE8J3\nJRe/PRDoQFUDYYHJaOEGVP4wkZ7U9dE+1p8Te3XjCPiOgJb5mLDH4/HUQAwwETivYkvAgQR8TlCR\nqVpyQerXge+rbRsMXAesDd+vDL8ejfawXgssRA1E5zjjvgwcmcuJejweTw3mMKA1cHfUtkuB6wlY\nl83AhY5B7AgcBMxA2wnuE25vCSyOOm4xsHWcMV4AjsrT/Dwej6cmUR+4BbiQyIN3QEegHTAy28EL\nXShXD9gU2A/oBIwGtotzbOwl0XW0Z196UZ9rWcskfN9aj8dTexkMfAW8FLVtGDMYwwSGFWlOKdOG\nqjGIl4FuUe8/B7YALglfESYA+8YYT41GwCQCjsnlRD0ej6eGsRkamN69YkvALgQsJ1ivSVDJxSBi\nMQboEX6/E9AA1Sp/AS3waAC0RV1RibKVXsCnu3o8ntrNFcDTwMdR2y4G7iDg5+JMKXWeAJYCv6Gq\ngqeh/rKR6KpiNtA96vhL0RXFPOCQOGNGVhCtCFgVFaH3eDye2sSuaJLPFhVbAloT8C0Bm8Y4vuTS\nXPNB5Q8Z8B5BhZStx+Px1CZeBC6osiXgTgKuj3N8jXAx5ZKxeDeTx+OpfRyKuujvrNgS0Aw4Ebi1\n+sGCNMv0QjXZQGgcwov3eTye2kM9KtNa/xe1fTAwmoDlMc7pk83FairvARsCu6DSHR6Px1PunIXG\ndsdVbAnYEDUQ3eOcc2imF6u5K4gAhy+a83g8tYcmwOVo7CE6pjAImB32faiCIPWAXplesOYaCMUb\nCI/HU1v4Oxqc/qBii7rYL0DdTrHYFy2ky4iabiCmArsT0LzYE/F4PJ48shVwNlr7EE1vYB0wJc55\nh6GFxxlRsw1EwG/AJOCIYk/F4/F48sgVaAuFRdW26+ohiJvGeiiqYJERNdtAKL6q2uPxlDM7A/1R\nJexKAvZARfmejHWSIM2BHahsIJQ25WAgXgIsAY2KPRGPx+PJA/9CW4l+V237UOCu0JMSi97Aqxa7\nNs7+pNR8AxHwHSrb0bPYU/F4PJ4csy+qfn1Hla0adz0GuC/BuVnFH6AcDITi3Uwej6fcMGhb5gD4\npdq+wcBTBKyKdaIgddEVRMbxBygfAzEOONxXVXs8njLiUKA58EiVrQENUQNxW4Jz9wG+sdjFCY5J\nSrkYiC+ANUTrons8Hk/NpQ5wPTAM1msbOgh4O1ZhXBRZu5cik6j5aIrXROLLhHs8Hk9N4kTgZ1SU\ntJLkhXERskpvjVAeBkKZhPrcPB6PpyazAXAN2mWzen3DIahIn8Q7WZAt0H4Rb2Q7kXIyEFOA/UP/\nnMfj8dRUBqNN1abF2JesMA7gYGCqxcZLf02ZfBqI4cByqvakjnAh8AfaUzXCMGA+2lEu/ZVAwA/A\nHKBr2ud6PB5PadAYvRdeut6egF2APYGnkoyRk/gD5NdAPExsmdltUQsXLSC1GzAw/HoocHeGc5uE\nj0N4PJ6ay19Q91GsB+uzgYcSFMYhSB30Hph1/AHyayBeB76Psf0WVJUwmqPRHtZrgYVob+rOGVzT\nxyE8Hk9NZRPUu3LVensCNgJOBu5PMkYH4DuLXZiLCRU6BnE0sJhouVqlZbg9wmJg6wzGfwfYhoCt\nMpuex+PxFI1zgMnA3Bj7TgCmEySV7j6UHLmXoLAd5RqhfrWDo7YlKmyLF4QJor6fGr4ie9YR8Gp4\njREZzNHj8XiKQRPgfGLFUDW1dQgam0jGYegKpDvxO8ylTCENxPZAGzSQDLANqqG0L7AEjU0QtW9J\nnHGCJNeJxCG8gfB4PDWF89C4wacx9nVG3U+TEw0gyKZoEHsaWjg8NWp39T4SKVFIF9OHaNl42/C1\nGOiIZjq9ABwPNAj37QjMyvA6k4CDCcoqhdfj8ZQvTYFzgavj7B8C3EvAH0nG6QW8brFrcjWxfN5E\nnwDeBHZCm1ycVm1/tAtpLjA6/Poy+gtJlOcbH/XRfQfsldH5Ho/HU1iGog/J89fbE7AF2lb54RTG\nyVl6a00lNaMRcDsBF+d5Lh6Px5MtmwHfAtvF3BvwN4JqYn0xEMQIslSQHdbfKaeQ4QN3ubphfD2E\nx+OpCVwIPAcsWG+PusnPRuvCkrE7sMZiP6+yVaQfKvqXEeVqIKYCncLcYY/H4ylFtkANwL/i7O8N\nrAbeTmGs7qjcUCUiPdGGQn0ynWB5GoiA/6I1Ed2KPRWPx+OJw0XA02hxcCyGAHcn0V2KYInOWhLZ\nF40DD8Da2ZlOsDwNhOKrqj0eT6nSDDgTuDbm3oDWwAHoTT4hobxGNyIKryJ7oDLhp2FtLMG/lCl3\nA+HjEB6PpxS5CL35fx1n/5nACIL1Wo3GYg9UXmMJItuhmUxDsfbFbCdZzgbiPWALAloVeyIej8cT\nxWbAn4kXPA7YADgDuDfF8dS9JNISLaa7BmuTrjxSoXwNhBaVTKaqtIfH4/EUm78Cz6P1YbE4BviI\nIGZVdSy6L2/GLLSr5oNYm6phSUohpTaKwSS0eOShYk/E4/F40H4P55C4b83ZwO2pDCZIHQfdzvsP\nLdH7XcYprbEo3xWEMgnoRUDdYk/E4/F40NiCEFtzCQJ2AnZBK6uT8lNjOqzckvrLWzAf+BvWZqZA\nEYfyNhABS4GlwN7FnorH46n1bIAWxl2X4JhTgZEErE06moiZ1Js75+7G98DpWBtTq8mpknZGlLuL\nCSqzmTIV//N4PJ5c8CdUzfq9mHsD6gGnkHp6/pVtv2SX7RZwHtb+L8FxR6Q1yyjKewWhvIJG+T0e\nj6dY1AMuJl7dg9IbWETAx0lHExlc53eOb/8+pukPTExydL/Up1mV2mAg3kBlNxoUeyIej6fWcizw\nDTA9wTGnA8OTjiTSH7js0mu5qI5jqcUuj3eoU7fWYWnOtYLyNxABP6IBoU7FnorH46mVGLQbXPzV\ng8p69wKeSjiSSDfgHqBPzynsSKR6Oj49iN3CNCXK30Ao04CDij0Jj8dTKzkC+J3EvRoGAS8Q8EPc\nI0R2R/vmHI+176Gu82QGoh9ac5ERtcVAvIYX7vN4PIXHAP9AVw+xU1C15/QZJGoKpFXSLwIXYO0U\nQeqhtRSvxTvFQV3gaErUQAxH24l+GLXt38AnaCT/ObRRd4RhaEeleeReZG860CXMEvB4PJ5C0Q2V\n1nguwTEd0QK62Dd7kcbAeOABrH083NoBWGSxKxOM2wVYZuCLdCcdIZ8G4mHg0GrbJqGNLfYCPkON\nAsBuwMDw66Fog4zczS3gW+Ar9Jfq8Xg8heJS4AbUxRSP04GHY/acFqmHxiVmUzWGUVXeOzZZuZcg\nvwbideD7atsmQ8UvYSawTfj90aiy4VpUG/1zoHOO5+PjEB6Pp5Dsg1ZFPxb3iICGwPHAo+vtEzHA\nXairaEi1KumE8Qenrq2SNhDJOB14Kfy+JbA4at9iYOscX28aPg7h8XgKx0XArUCiIra+wDsEMWW/\nLwb2BY7F2orKakHqo70i4sYfgD3Drx+kNeNqFMsn/w/0lzYqwTHxNEWCqO+nknyZFWEacC8BdWIu\n5Twejyd3tEaVpM9MctzpwIPrbRU5Ae0o1wVrf6q2d2/gS4v9Nt6g98PQ12DZKLgirVlXoxgG4lTg\ncKBn1LYlwLZR77cJt8UiyOiqAcsIWAm0Q4PkHo/Hky/OQeOwP8Y9IqANGhcdW2W7yEGommtPrI11\nH+xOkvTWM6HjmTBkVGVhXkaGIlUX065oNd4hqE8tUw4F/obGHNZEbX8B9cM1ANoCO5If7aTX8HEI\nj8eTXzYBTgPuSHLcKcATBFH3QpEd0T7VJ2JtPPdQwgC1g+2B5sBbqU85NolWEG2BoejT/hJUFdUA\nW6FP+ONR/9rCOOc/gfr8t0AbY1yBZi01QIPVoD/AELTSb3T4dV24LaeytSHTUJ9fsj+cx+PxZMoZ\n6D3uq7hHBNRBjUilTpLIpuh99XKsnRzrNEEaoOmrxye4fj9gjEmcOZU1o1EfWv0Y++qjtQqj8zmB\nGGRnNAK2JWBFWJji8Xg8uaYe+tCcOAszoCdBlKqrSH1EXkXk1kSnCbK/IO8mOsbBG279EoOM7p2J\nXEzHoVYwli75WrSm4bhMLlo0AhYBP5Odm8zj8Xji0Q/1mCRzkZ8GPAJE0lnvBH5FM58Skcy91AKt\nJ5uSymSTkUoMYgEwuNq28bm4eJHwcQiPx5MvLgBuSXhEwEZAH+DJcMt5wP5o3CGZW6g7iQPURwMv\nm8SptSmTioFYG07qYVQ6FnJfo1BIfD2Ex+PJB12AZiRvF3okMIOA5YgcAfwdOBJr42c8UVH/sB9a\nhByPrIvjoknFQPyCymB8gt5cW+fq4kVCVxA+DuHxeHLLBcBtJA8OnwiMQqQd+uDdH2sXpjD+nsBX\nFrs61k4HTdGVyMtRW+uAOzmFsWOSTh3EjcC7aOxhs0wvWAIsQLOxtiMLESuPx+OJoi0aHzgt4VEB\nmwPd2PXy89E4wflYm2o6ahcSp64eAbxm4L/61vVG79u/pjj+eqSygrg86vtX0OylIqaJug2zOj3A\n4eMQHo8nt5wLPETFzTkuA6izwSSa2ZHACKxNpCZRnWQGoh/wHLgO4Cajge+r0VVFRiQyEHujMrRL\nw6+R1+aoLnmxeAfcnskPS4gX7vN4PLmiKVr0lsqD84l0vLcJ2gohSPM6cQ2Eg4Z/YHq34qvDUY27\n54HdwTwLJuPygEQuppupzJ3dB3in2n6b6UWz5EbgVXDXAbeByURXaRoaGPJ4PJ5s+TPq91+c8KiA\nVmx9zN40ar0Q1VhK+d4lSHNgU7R9cjXcpn/hrvsH8XjDRbSaC5wOprp+U155L/khBSE0WK4tuDfA\nvQIu/YyqAEPASoIq+k8ej8eTLvWBr9GH6MTc3/deJo/7BZHt0r2IIH0Fqday1DUAdx64Fc9z9EdL\n2Cp+z+s8FMqVMOZLNFX1NeBdcAPSOl3jEN7N5PF4sqUfWjld3cNSFZE2tD7lDJa/ehnWLsjgOlHu\nJWfA9UeliQ4BevRl7AYt+SbnyhY11EAAmHVgrgaOAq4D9zC4jdMYwAeqPR5PtgxBg8HxEdmI39dM\nYPFTP/P5bbdleJ3QQLj9UIXWy4HBYA53mN+AjciDSnWiGER0wGVrVH42Ujvg0Kh9CWBmatSe/6Cr\niRPAJLbmyjT0j+vxeDyZsAewEzAm7hEqo/EwP332G4ueeiCTXjSC1P8D9u7P/mehDYQuA0aCidRb\nHIZWT+dc4DSRgZhN5QWjvzfkYSLZYf4LnAHuOOAlcDcBNyUJYH8INCegOQHLCzJNj8dTTgwGHiCx\nrMUwnGvFh39rAi6dlNYQt8nlrPzPGXy5wWoafAD8CczP1Q46PJxHrceJ8IwIZ4nQNs4hrcFN1zxg\nt1XC0QLGEXBsHubp8XjKm02A70gkOyTSB5HF3NX9SALmpqfe4OqBOwvcN2fx+Vsv8PrjMY+CRg5+\ndNAk2YCpX7uSRDGI4UCnBPv3RcvEC81YoCvwlgifi3CPCP1EaKq7zVeodtR04D1wRyYYazpZFJF4\nPJ5ay0loJXTszpciO6D30GNZOfUQYFSYHJMCrjeaOXoCcMTxLFqwMetejXOwBd418ENas0+RRC6m\nW9Hub/uhubffoO6lFsDOwJvATQnOH46Wfq9A23yCSnQ8heo5LUTlwiO6IsPQ/qy/o/GNSbEG7W65\nGHjR1WHgW0/x0/+2wAJnASNE+EDPM5OAf1nrXgUeA3cw8Hcwa6oNNxNIlBrm8Xg81THAX9C2ousj\n0gh4Dgh4zb6DPtTul3xYtzNaf7Yzeu8dq0Vu0gW4Js5Jh6GFcXkhlSXPBmjf1NboMuUrNFpe/WZb\nnQPRsvMRVBqIG4FV4deL0cKPS1D98lHoimVrVNJjJ1gvoOOc/qIPR43P9mjPihdXt0Pev52dUCmQ\n3uF8pyxatNP0wYNnHvzzz023AgaC+axitIDGaEXjpgS5kcf1eDxlTzfgXvS+VXVVoEHpkei96xRe\ns4cAVxDQJf5wblM0K+kk4HrgTjQzKVIg9wmwhaVqYZ3T+/cXwNFGY6qJcKR2vy8obag68Xlor1TQ\nlci88PthqMGIMIHYFtdVe9PCwWkOnnbwvYNZDq5wsM/rY2gpwskiPDZlilk+ePAFyxs2/PHXHj0e\nv1mExhWDBHxIkEKRi8fj8Sijib96+Csi74erCAgYSRDnWI0zDAG3HNx94JqtN5wWyL0c82zY2cEi\nl9qNP6MYRDpqrrmgOVRkDC2n0li0BGZEHbeYFHpOGFiGxkEedtrr+gC0EcdjXfvSBC1/f35NM/cX\n89QtbZs3/+rUe+65+exrrx1x7rhx57zVuPEPLx83g8+//Y39/khW6OLxeDx6rzoY+L/19ogcAPwT\n2B9rfyGgEdr7IUaXONcLdeOvBHqDiVfDkEig73DylN5aKNpQdQXxfbX934Vf7wAGRW1/EDgmxngp\n/yIcbO/gXAeTHPzkYLKD82bSqV29emtGNmz4w6Lrrz901F9GsqzHXfwqwkgRThJhPSvu8Xg8IVeg\n7qWqiLRAZHHYAEgJGEjAxKoHuu3APQ9uAbh+WhUdH0GmCXJwrH3hva1vivPO+wqiEdo8KBuWo66l\nZcBWaAAbNBMgWhdpG+JlB1RVQJxKnP6sRn1ztwO3O2gM9AL6dObtS9au2/CHN9bt/8EVl1x5+Ju7\nDbx77cDTBqIZTccAd4qwAHVzTQTetDZmX26Px1O7qA+ciQaGKxGpjybfPIi10UrXA8LtgGuMutLP\nRgPRJ8RImqk6rHaQ64gm01QhvKd1AfrHOb17+Mo7+6OaH4vC9+2Bu1M8tw1VVxCR4DRocPr68Pvd\ngPdRN1Fb9OYey7JmvZRyUMfB3g6u+JmGH6xmk3VP7lr3jw8ab36ug81FqC/CgSJcI8LbIqwW4fmw\n9qJNttf3eDw1lgHEavcpcgsiLyFSWTYQ0IiA1Vy60ebgTgS3CNzj4LZJ9WKC7CNIzOCzgyMdxEt9\njXNKfpgFtKKqouvHKZz3BNpL4n+ocTkNTXN9BfgMTWNtGnX8pcDnaOD6kDhj5vyHnMpBbYcc2GL1\nixt1/HUddf7r4HUHf3ewmwMjQjMRBoUuqBUizBPhNhEOFaFhrufj8XhKlinA8VW2iAxAZAEiVbts\nBvTj4qYzw6Ld2eAOSPdigpwjyP2x9jm4x8WMbcQlo3tnKtHvWUBn1EB0CLfNAfbK5IJZkp9UrYAb\n+OLg7RqOHNP9Ym4YdTlX1Tca7F4LjAtf06YKv6O/g0PDV3vUNTUBDYjPt7bmBow8Hk9cdkOf2FsT\nkdbQYrg3gcOwdnbloW5zTu3+Fp/0bcHM8y8EhkfpJqWMIKOAyRZbpSA5zFr6EjjcqHcnFTK6d6ai\n5vo1mh0E6gK6CM3LLSdmsv3khr/S6MCAK3vUwW2yBSt3Q/173wLXASu6W0Z1t+zS3XKPtRyIxk0e\nROs8pgBfiHC3CEeKsFHRfhqPx5NrBqP/6xHjsCHwNHBlpXFwdcGdTd3f5tLy7Va0mNMZzAOZGIeQ\neBlMu6I3+7zfh1OxKFuiSqm9wuMnoZXO3+ZxXvHI1wpiazQG0ozANUSzqg4ABoD5KLzwVmhx3pGE\n5e3AC8A4A/NFMMDuaADrMLTobwa6sngZmOdXFx5PjaQx+qC8J5GucSL3oO2XB2KtA7c/Kvv9MwP7\nPcGuY04koGumFxSkBbo6iFUgdyGwg1GjlSp5K5SL5TtL25+WI/J3gw1YQkBUpyd3CriV4E6KMYmG\nDvo4uN/BUgefOLjBQVcHdQFE2FiEviLcJ8LXIiwMdaP86sLjqVmcjj4MKiInIDIfkU3ANQf3CLgl\n4AaBMwQ8SMDQbC4oSD9BYkpoOHjVaR+cdMhbmuudVMYeEm2r6cxEBQjDbk/mUXDvAc+GTwdDI+Xv\nBn4FxgPjnbrp9kb/YHcBLR28iGUsMMnAmHB1sRta2DIUGCXCW6iGykv42IXHU8qcgWZggsjOwO38\nVO9Qjup6CiqR8QiwC5ifCKgHHE187aRUielecrAxGhOekuX4KZHIQHRBU1y3BC6gcnmyMTW6E11c\nIgbiicpN5gNw+6DCg6+DOzZUi608QjVX3g5f/3Sa2nskKub1qINpobEYZ+DfwL9F2AToiRqMi4Df\nRCqMxVRr+TWvP6nH40mVXYHtgJcQaQiM5r2mw7mg/YOo0Gh3MNFZnQcBXxGwMMvrdgGujLG9JzDD\nqM5d3klkIBqgxqBu+DXCj2g+cLkxEw1GV8P8EPa8vgCYBe5UMDG1UQCMqtTeAdzhNI33MPSJ4kan\nqrhjsYwBxhh4Plxd7BkeNwx4SoRphKsLa7P+oHk8nsw5HRUcXcsvdYfz2caNuWCvk9AHuydVbbUK\nxwDPZnNBQRqgHppZMXbnVb21OqkELdpAydyk8qdImJKyqzsQXWEMB65MJzsh1IrqhhqLo1E31djw\n9ZZRmXNE2BRVoz0c/TCsQj8QLwLTfVW3x1Mw6gOLoUl3zn3773T67mTO6XAPqxv8A8yP6x0dUAet\n+bIEfLbe/hQRpBMw3GLbRW8P01u/AnqbSqHTVMno3plKDOIXtO/DblBRGOaAHulerKQJ+C8BX6BP\n83GE+8zrocvpSeBFrZA038U+ttqZmh43GdWEOgctoT8ajVts5bTWYgyWV4yW5z8lQh1gH9RY3Ajs\nIMIrem1etta3SvV48kgf2GQJ2y9+il7v78pLLQayeoNEq4P9gO+yMQ4h8dJbd0Bv8p9mOX7KpGIg\nHkdvWH3QxjynogqE5UgkDpFA2dUsCxsQXa/HuWPAvJ/ORUL1xdnh63Kn8iJHo+lrjzmtNh+D5UWj\ny8xZQCBCC3RV0Qe4TYTPUGMxHnjP2vQbons8nli4JtDxFuqetRk3zVlNo3Xncu+OyVxH/dFGQdnS\nhdgN03oAUwqp3ppKsHlzKgtEXkMlM8pr9VBJxEAkwawFcyEqDzI5VipsOhj40sBtRsW1tkdT6o4B\nFoYpbec42NZallnLw9YyAGiG6lltghrxJSI8GKbWNo53LY/HkwhnwA2Er+fBpy15bJvRNF07m7ox\nFFyj0X7TWccfQvYhdvyhBwXKXoqQygoi4o9fhj65LkU7wZUjM9FWfylingT3MfAcuM7ARWCy6kxn\nNObwKJoB1QiNR/RFGyEtBJ4HnsfyidEPyxTgQhF2RAv5/gKMFOFNwlRca/kymzl5PLUDtyPq8m0B\n/cfSaovWtNjoEKC9FsMlpAOwjuSd3RIiyCZoz4kqbqQwnd6S1v2pMPRBs3HaodLa75J+kUauyO/S\nKqAuAT8RpGsAXVNw40Jhrq3yMTUH9RxYp/LlXzv4LCzO289VWwmKsIkI/UUYLsJyET4W4QYRuooU\nvEmUx1PiuA3A/RPcKnAXwkf1qVNnAbffvgqRbikNEfAvggp16owR5CBBZlTf7qCdUzHTTMlLoVxd\ntDf0eCpyfsuYgN8JmI0WokxMdnglZjW4o4HL0LjEADDxukBlhNGnEwHEwXlokLsf8BDQ1MEY1P85\nzVh+RJe6z4aB7k6oob8D2FaECejfdIK1rM7lPD2emoU7CLgPmA90BPM19ep1Z8vmW7L77rdi7WtJ\nh1D3Un/gTzmYUAeqKmdHKLh7CZIbiN+BE4BbCjCXUiESh0jDQACYP4CrwurrseCGgXko99NbL8h9\nmYOdUWNxHdpJbxzqippktOhuZvj6pwjboMbiZOB+Ed4hVKy1NqsnFI+nBuE2RzMDe6PacmMqahq2\n3/4m9t13FXXqXJXiYLuh7uC3czCxDsAbMbb3oEoRb2FIJUg9HZXWOBB9at07/FqupBiojocZh1ZT\n/h3cXeDq52he8a8Inxq43ujKpz1qOM4Hljl42sHxToPZWMtia7nXWo5ABQhvQz/gr4vwiQg3hg2T\nvCvKU4Y4A+5ktKfNf4HdwTxfYRxuv70bixZ1ZLPN+mHtuhQHPQZ4jiAnLvCOVFtBhPpuB6EehIKS\nSuHEVGLgVDVFAAAgAElEQVT7r2xup5IS+SuUi1BF2TWbP7hrgmYXbQwcC2ZFkhNyjlOZlKPQD/CB\nwDTUDTXWVFPjDV1Re6MyIUeiUuYvoRlVE63lpwJO3ePJA2571J20OXAmmKpP/CIb8/TTXzB27Bcs\nWdIl5WED3gfOIYjRbS4NBNkQ+B7Y1GIr2pE6zWp6xMAeWQyf/3tnDhmGWvAPgVHABmi3ucnE7jYX\noTD5vwGLqyq7ZoqrC+4acF+BK+qqy0ETByc6eMbBD2H67JBQxnw9RGglwhARJojwowgTRfiLCK0K\nPXePJztcfXAXh0Hoi8DFXh2LPErLlivRZmCpEbA9AcsIVMU5G8IWo3Oqbw87XN6e5fAZ3TuLIbrX\nBvg/dCnVDl0+HY/m9E9Gg+Kvhu+LRZZupgjmdzCXoQVwE7XyujgY+MHAKKM6Wluh6XwHAHMdTHcw\n1Gm3LACs5WtrudtaDgW2Bh5AXVjvivCuCIEIHUMtKY+nRHF7ozUFPYHOYG4Cs77rSORY5s3rxjff\nrEHvQ6lyJDCOgEybAkWznnsppCgBaiiOgfgRbeXZCA2SN0JrK45C8/8Jv/Ytwtwi5MhARDDPoH/k\na8BdB66oargGfjHwnIFBQAs0uN0OmO3gbQcXOy3YA8BafrKWZ6zllPD489EmKk8BX4twlwiHiNCg\nCD+OxxMDtxG4m1E36a3AIWAWxDxUpCVwJ1dfPQPnHoa0bvZHoGoGuWC9DKZQw21/tEi54BTjRvUd\ncDPaoWkpmj47GWgOFdpCy8P3xWIWOTUQAObDcMz9gefBbZzkhIJg4DcDLxpVrdwKdf+1Ad508J6D\nf4RZUgBYyzprmWYtF6Grvd6oQNkVwAoRnhLhRJGYLkKPpwC43qj7ujmwB5gRMVRXFREDDOfXX+9n\n6dKewMMxj4tFwMao/tIrWU9ZiZXi2hn4zGhsouCkkqnSn/X9Vz+gf4BMAq/bo0+gbcJxngaqS1W4\nGNcsJO8AexLQIL6yayaYlaGO013Am+COAlMyVc5GV3avAK84+CvQFXVJidOg9jPAM0bjR4RNjj4J\nX9eL0Bxdcp8A3CvCLELFWmv5uuA/kKeW4TZDHz4tcDaYCSmcNBjYjGOOeRdVSE3n//Fg4C2C7Hsz\nCFIPXcVX13UrmnsJUjMQp6PiUZEUq+5oNXVb4CpUKz0d9gHepDKL5rlw/GWo+2IZ+iQbz/gEUd9P\nDV+5pVLZdS9yk9schfkfuDNRRde3wB0HZlpur5E9ofz4a8BrYWHe/ujDwgQHP6GG/Rngo4h4WKgu\n+yDwYNhW9WBUhPByERahxXxjgA99Bz1PbnH90ULQZ4F2YJJn3YnshDbl6cqaNVcBj6V50Vy6l3YG\nllpsdRnxHpBRhXZ3clDYnEqAcRJaVBVx/zQHRqJPidOA3dO85l5o+mcnYA3arm8WGiD9FrgBDVA3\nZf1AdeFStQIeRp8O7s/fRVxv9EP5DzAP5O86uSOU9dgXXVkMQPtaPB2+PoylNBnWVOyPxpUisaWx\nqLF4w1pSzTf3eKrhWqB1WnsAZ4CJVWS2PiL10YK0R7F2JOombYu6wJOjvR+WAAcSZF9gKshJwFEW\ne1xkW6jFtgJokYMOcnnrB7EtVOk7sCLc9i1k5H6Zg6463kHbdb4L3I/WC4xG+78uBI6Lc36hmIMa\nszxiJoVNiF4AtwdwQTpNiIpB2GL1LeAtp121OgPHovUSvzn9G46m6spiHfowMU2EC9Gl9NFo8HBb\nkbAXBkz27VY9qeEMcApaDf0AcBKYNYnPqcKlqDG4OxxnKqkaB6UD8EMujENIR/ReGM3+wJxCtReN\nRSoGQtBl1Gio0ByZCmwEGev43EikCXgl3wG9MhwvH8yhIK1Vzafg9kOfwF8Ad3xKy+MSIDQAM4GZ\nTlUmO6HGYjzwa5Sx+DjKWDjgg/B1tQitUWMxFFWhfQWVCXnR2uIE5jyljtsWNQrNgN7p9mNBpBMw\nBOgQqrQOgrQ9Bbl0L4EanOqupKLGHyC1JUcdtBK3K/pP/gbq5yuGD7mQLqbN0JVMU4JCNOJx9dGl\nchegD5gaG9QNWyN2QleBxwI/ExoLA3PjnSfCFqhOVF/0n2MmaizGWMvSfM/bU+o4A/wZuBaViLlR\ne7OkgUgjNFPoMqx9GpXW/git9Ul99RowExhGkP0NXBCDZintZLEVsVcHM4BhJjcSGxndO2takVNh\ny8UDFgHdCIidP51znEGfpC8E+oGJ1TSkRhEai87AQNRYrKbSWMRtnRgGuQ9BH04OR499HnjeWubn\ne96eUsO1RlcNmwGngvkoo2FE7gCaYu3J4ZYLUJfnaSmPEdAMVXxolossR0G2A6ZZ7DaRbQ6aoDGO\nLYzGarMlbzGI/ujSp3nUBRyh+FuZE4lDFMhAGAfcAu5ztOf14LDIrsZSzQ11EZo3PhBNnV2BGoun\nDHwRfZ61/IxmuD0XFuB1R43FNBFWRfYBH/iMqHLG1QHOBK5GU1hjV0KngohFV6ftorYOAi5Oc6TD\ngFdymAIfq/7hQGBmjoxDxqRiIG5El/2f5HkupUjEQDxf2MuaF8IMpxfCLlfXxy30qUGEAe430SK8\noajbcmD4/mvgSXRlsSj6PGv5H5pNN0mEIagbrh8a2P5DpMJYzPR9ucsJ1wbtd9IY6AYmrnsyKSIb\noSnYZ2NtJHa6K5pSn64Lpw+5jz9UNxCWIscfILVK6mXUTuMABclkiod5D33aHgAMB1dWMhYG/jAw\nzWiL1K3RCu5dgPcdvBH24W5R/Txr+cNa3ggrubdDfz9r0H/+xaHsRw8vV16TcSasFXobfTA4ICvj\noFwHvI610Tf2QWiPhdQzBwPqo8k0L2c5n2g6sH4GU9ED1JCaT+o/6D/qGCrTWh36xFZoCh2D2Bl4\nOTfKrpniNkI/xA2BAWB+KN5c8k+oPdMLFXA8Ev3HeRJ41iRJQxRhF9QNdQxaVzMWTah4NVyFeEoe\ntw1q7LcATgHzcdZDatvQx4F2WBvJjDOoW3MA69+c4xNggRsJ6JT1vCLTQ74B9rPYrwCcypEvQOMP\n6QXh45PRvTOVFUQTNLrfG11a9UH/cWsDn6OBqCLGW8zPqDvlU2B6mOJXthj4n4GXjLZvbInKkhwM\nfOlgvIOTnNbMrIe1zLOWa61lHzSLai7aBna5CI+J0FeEhoX6WTzp4Ay4P6E36zeALjkyDhuhbqrB\nUcYBHZ/fiK2emoicprcK0gJtdxCdtdgdmJ5D41BrKLwfPmAmAV0Lft31cEYbqrtF4NoXezaFxsHG\nDgY5GBf2s3jawTEONkx2rggtw14WU0RYHQoKHhtmSnmKjmsObgy4D8B1yOnQIrchMjLGnruBf6Q9\nXsAnOV49HCbIq9HbHNzlNJMxl2R070zkp70Ylb24I87Fzs3kgjWQSBxienGnYRxwM7ivgcnaNjEl\nMbKywKj+0+PA405THfujgoIPOXUlPQG8alhftiOsobgLuEuEZmhh3p9RzahXUE2p8b5rXjFw/dG/\nzUPAQDC/5WxokQPR1Op21fbUD7d3Tms8dTVvirb0zRWxKqi7kY6qbB5JZCAiQaF3qm03FFdptdAU\nMVAdC/M0uKXAs+D+WVM0nHJJGIt4AHjAaYD7ODQNcoTTivTHgRmxdKGsZUXkXBE2Q/uQnATcJ4Kg\n54+zlrKO9RQf1xTtkrYf0BfMjJwOrwVxw4EhWFs9dnUIWseQrpLyEcBLOS6c7UBUPNepBl1r9L5T\ndBIZiHFot7c9yf1ypyYxB/WHlxDmjVDD6aWwgOif5ZAGmwlGi4luBW51sAMa3B4ObOi0ne3j8aq3\nreU7VCzykbB/xVGosblbhNcI5U+szVhSxhMT1wN9Qh4PdAjjbLnmGmAW1o6Nse8k9CEiXY5AHy5y\nSQfgn1Hv9wVml0r8IZWo9gw0oFMKN6DCZjEBYYB6KdAkR20Fc4hrhv6TfYjq35fEh6rYhNXb7YET\nUdXhVaixeKJ6jUUsRGiCJmMci+ajv44ai7HeWGSDa4immw5AlVcn5uUyIgegf692WPtttb0bA4vR\nvjSrUh4zoDHwDbA1AdUluTObJtI0nEsTi/0dwKn8eH2jYoK5JG9ZTO+jPt6TUb9vfzSNsHagH4YV\n6NNpiWFWoPnSWwFjwpTYWo/RiP57RgUEW6H9LHZAayymOvg/p77kmFjLD9byuLX0RZWLR6GZZF+J\nMF6EU3zHvHRxe6O++xbAnnk0DhugabLnxDAOoH/HaaRjHJSewKxcGYeQ9sAHEeMQ0gVVSy4JUjEQ\nG6I+3x7UvjTXCCUWh4jG/BcNuq4ApoDbssgTKinCgrzXjMo1tERF3noDCx0872BAokwoa/nRWkZF\nGYsn0JvM16GxODlccXhi4uqCuxQtLLsazPFg0pHVTpdL0JTweHVag8jcvZTL6mmoVkHt1KW/LyVk\nILxYXyoEBEB9ggzS4gqGM2ig9ji0QXvJtDItRUIxtGNQf3QHVE5lJFrdnTQIKcImVMYsuqNVr6PR\nALfPhgLC+NhItFL5T2CSuveyQmQXNNuwA9bGulZEobkl6fRYCDCoa7InQXyByXQRZCQw1WIfAnAa\n733aRPWAzyE5F+vzaa6VzEEbGZUwxgGXhRlO08H1CeU6PDEw2g/9YeDhMBPqBHR1sVkY3B4Z6b0d\nC2v5Ee0G+FhUgHsQcE+YOvsU2tMiHwHYGoAbhCYP/Bu4GUx+NbJE6qA9Ha6MYxxAPR+vkn4Dnt1R\nFYnPMp9gTDqgv6MIJeVegtTSXGdTNUCdizTXpqifcPdwrNOA+eg/VWsqO8qVSkCwhF1M1TF3g1sG\nTAybDxVdz6XUCTOhbgJucpozfxIw0cFK1AiMMhqgjEkYuB4BjAhTZ49GHyjuF2ECKhUywdriKnMW\nBtcULULrgK5kC/WQcjpakXx3gmP6o8HrdOmJqrfmLFFHkEZooDz6IWR/tIq8RhCpPjw/D2M/iv5B\nQY1UE1Q19u/htouJ3ai7OJlUAXUI+DFsIlRDcN3ArQBXexIKcoiDug56OF1hfO9gQljJnXIigAhb\ninCWCCLC9yKMEOHwUL68DHEHgVsI7i5wjQp2WZHmiKxAZM8ER20M/AgZJBcEjCXg+EynFwtB9hWk\nSic8B/Od9tbOBzm/d85FfXUfoL676q9MaULs/grz0J4ToJkO82IcU7xU24DpoVBXDcJ1UJeTK3H3\nWGnjoJGDExy8HBqLh0PjkUqSB1Ah93GuCG+KsEqE+0WwItTN59wLg6sH7ipw36hrs8CIPIFIrAfK\naAaSiQJrQD0CvieouDflBEHOFmR45L2DLR2sTuczlSY5l9q4F/XXbcf6peUu3J4JbdGl+8Oo22Y2\nukppDiwPj1kOuf2D5ICImykX7f8KhHkPXHdgErjNwPy72DOqiRj4Bc1eesJpSvEJaPOazZ26oEaY\n2A80FYRyH7cDt4vQBnWh3gI0F2E06oaaWfOaH7k2aFbQz2jR27KCXl7kMFQyI9lDUH9U2TddOgKL\nCSruTbliL7SEIEIXtEFQSfUzSWQgbg9f9wJn5/iaHVEdnbfRwOAl1Y5xxLd4QdT3U8NXIfgAlQWo\nYZjPwHVFYxJbAJfU1qrrXBDGIm4BbgnjFX8CpjjNchkBPGkgVv59BdayEHWp3hhKlB+Pul0biPAk\nMMpaPszjj5Ej3HFoH/UbgVvyHoiujiq13g2cibW/JDiyISqv8ZcMrpKvvgy7UDUVd39yG6DuHr5q\nHC2oqoHSFc0v/oTKBjFbUXoupv0I0tCNLznc5uBmgntQXQKeXOGgnoNDna4wfnDwnIOjnYrCpYQI\nRoQOItwgwtcifCjCpSK0zefcM8NtFH6O5oPbp2jTELkpjlJrdfqS6co/YBIBR2d0bgIE+UaQVpH3\nDl5zWp+TLzK6dxarDmIaqqb5GboiiAS0vkVTay9Bg0mxVhbFmXPARqhrrAlBaeikpI9rjOb7/wic\nmFPlTA9QUV9xLHAKsBOaMvuISUN8TYQ6wAGoK2sA2thmFDDa2py7OtLEtSd0hwF/BVOcmg+RjmhM\nYQ+sXZnk6BHALHS1kzoBG6AV19sS5C6jUpBN0JXoxhb7R/gg8T2wdZh+nQ+Kd+/MgL1Q99IcdJnV\nBA18v4IajUnEzjYormsk4DOCvGUZFAi3AbhnwU0oaKZJLcTBDg6udvCVg/ccnOcgrUp3EeqLcJgI\nI8NMqAki/EkkdtOk/OEMuCHgVoY1DsVDpA4iMxA5PfnBNECVILZO+zoB3QiYlfZ5SRCkU3QGk4NO\njry7FHMepM4ncyBm041ehZ5ImkQC1R8VeyKZY34DNxBNEng5LKjzlb95wGhHwn86uAL1B58KXOk0\nbvYw2jkv4WrUWtaiT8ovi9AILfYaBNwR1lg8jtZY5LGlqmuKqpjuAOwPZn7+rpUSp4RfH0nh2B6o\nu3pJBtfpgSbq5JqdqepC7wK8mYfrZE2+UqrKlRpUMJcIsw79J5sHvAIurnCdJ3tCPagpYRvVVqiU\n/t+ARU6L83ZPZRxr+cVanrKWo9AswinARcBSEe4VoWvonsohrhPa0GY52ga0uMZBZFNUEfavWJtK\nUDzT7CXQArl8BKh3hiqSHfvjDURZUCYGAsKMk7PRyk0JpcM9ecbAjwYeMpqccRAq4TDRwSwHg12K\nhVzW8q213GctBwF7o+oD9wFfiPAvEXbNbqbOgBuKJpD8DcxfwZRCJfiVwBisrd7ILBZ10ar2eMJ9\n8VF57/bkp7I5loEoKYmNCN5ApEcZGQgI010vBF4AXgOXvp/WkzEGPgt1/1sDl6O9JxY6eCydQjxr\n+cparkercPuhfvdXRJgtwlCRiuzAFHGboRL/JwD7gcn0CTy3iOyFFrylKpp5INpvIRPhygOBdwhI\nlD6bKbsQGggH26BJOsV228XEG4j0WARskOuqyuJiHJjLUX/uNHAlmFZZ3hj43cAEo8Vz26MZN7cC\nnzuNYWybyjjW4qzlfWsr+mD8HVUI/USEl0U4MYxjJMB1Rl1KXwBdwcRSPSg8IgbNQro8Tp+HWGTj\nXspL/YMgddBYTkT4rwvwZqz2uKWANxDpoGJdZbaKiGBuQAvAXgNXgs2RagcGvjVaoNoeTZfdCm10\nNCHsXZGSjpO1/G4tr1rLaWgGzwi06dcSER4RoWdVmY9IlhLjgQvADAWTx8B32gxCn7QfTPH4Oqic\nezYGIh8B6lbA9xYbSQwpWfcSeAORCWVqIADMXWgv3yngdiz2bGozYVe82QaGoG6IkWglcCSwnXKM\nIQxuP2Eth6HnzUFluBeKcN1993XcG62zOBPNUkrfZ59PRDZB66P+grWptv3dF1WDTiiBEhMV5dwR\nTcXPNTUmgwm8gciEMjYQAOZ+4CrUSOxU7Nl4wMCvBh43GqPoiqbGTnEw3cGp6SjMWssya7nVWjoC\nhy1b1rrZllsunvHYYzv0fOmlxo+KmFKR2I/mCmAi1s5I45xsVg/dgTcI8pI6XBGgDjsZtgNSCbgX\nBS+5kD5zgKHFnkR+MQ+C+wM1Er3ApP8U5skLRoOZw5wGtQ9HFQlucdpL5X4T1cIyGda6PYGj6tdf\nc9akSQ2XoGm4V4ggqDbUS/mtr0gBkd3DeaWUChxi0PhDvwyvmi/3ElTNYNob+MRQuk2l/AoifT4G\ndgjL8MsYMxy4DHgVXJYpk55cY2CtgbFGC+f2BJYCYxy84+BMR6JKa9cA3B1oymivtWsbDreWidYy\nCPWRj0cfghaL8J9QI6rwMg0amNZ5WrsijTPbo0HfDzK8cr7qHyAqg4kSrn+I4A1EugSsQbOZMpU7\nr0GYR4BhaDHdbkWejCcOBhYb7Ue+HWrUDwW+dvBAKOMQdXN3W6E3v9ZAJzBVNKKs5UdrechauqH+\n8dWoftf7YcpsIetljgE2RxWl0z3vWTLJDApoCTQjDe2sNIleQZR0gBq8gciURaSYeljzMSPQDn+v\ngKvhOlTlTVS67DHAbmhjrqeA2Q7Oas+7B6OB14lAX0gcb7CWL6zlCtTwnI8+mX8mwlgR+oqkrlab\nNiIN0MD0hVi7Ls2zD0NXQZnQA5hKQKrB8JQRpDFq8L4OjXZJB6jBG4hMWUytMRAA5jFUGmISuJ2L\nPRtPcgx8Y1SSYoffqTNsLrsOnkKPiR+x+wcOMz6d3g3W8oe1iLWcgn7ux6IFlotFuFkkLwKWZwPz\nsfaVNM/bEq0zyPTJPF/9H0DVfedb7O9o47Tfga/zdK2c4IPUmbEITT2sRZjHwdVHVxLdSqaAypMQ\ng9sAOBGoM5Rbut7ChT2BsU7lpu8Fngo75qWEtfwEDAeGi7ATKkA4UYQlqADhE9ZmKY0t0hStlu6Z\nwdkHo2KI6UvyB5jwmjdmcN1UWM+9VKoFchH8CiIzapGLKRrzCHAtGrhuleRgT9FxrVAtoQZAl1u5\n8M0wVtEW/dofdXfc4vTpNi2s5TNruRQNbF9BKBUSSpN3zyKwPQwYh7WZqCb3RtsFZMJ2aG+GT5Md\nmCHRBqIz2lOjpPEGIjNqqYEAMPeglb6vgmtZ7Nl44uG6AjNQOfATwVSkUoaxivEG+qCy+78BrzuY\n7OAYl6ZnIazaftlajkPdO7PR7KP5IgwTIfXPiUgbNHX38nTmEGJQAzExg3Mh4l4K8vZUH53BtB2V\nchslizcQmVGLDQSAuRV1J7ziVWBLEfdnVMH0dDA3J+pBbuBLo0/srdC/6VBUMPBypzIfaWEtq6zl\nNjT1dhC6WvlIhHEiHCWS1Pj8C7gTa5eme2206OwXVEcqE/JZ/wBVVxCtga/yeK2cUEwDURct6hkX\nvt8MmEzijnKlghqIoOa08Ms95lo0lXByqP7pKTquHrjb0YSCA8FMSPVMA78ZGGVUxfRw1DjMDfts\nd62aKpucUDhwprWciT5MPYtmw30lwjUxe22L7IPepP+dzrWiOITMVw+gFdRTszg/LqFI307Ap+Hv\n0huIJJwHzKUySHMJaiB2Qq149X7UpcQP6B+5SbEnUmQuR/9mE8HV9t9FkXGbARPQ/599wWTsRzfw\ngYHBQBs0G+ghVDDw/9KR9YhgLT9byyPWcgDqAmoMvC3CJBGOFaFBWBR3E3AF1v43w6lnbiACWqCx\nmoUZXjsZWwM/WuwPVD78lqKsSRWKZSC2QZ9SHqTyyeQotLyf8GvfIswrNdRHWQszmapjHPq0Ogt4\nAVzDIk+oluJ2Q/8G7wNHJKtvSBUDP4TKsruinev6oP21b3YZFopay8fWcj76v/MIKka46B7OfroV\nX22NZkhlwkaoQJ9keP5ewJw8xh/Wcy+VegYTFM9A3IreWKJzsZujbQ0Jv5Z6z4VaHoeIYBxwDpo2\nOUrdHJ7C4XqjbpGrwVwEJucFXmHL1MlGu7PtA6wDZjpNl+2ZrvsJwFrWWMsoa7GradL9U3a2D/Ln\nZoJ9SYT+GRThHYT2sci0v3p71MDmixoXf4DiGIg+wAo0/hDvg+WIb12DqFf3nM4sPbyBqMD8gfa4\nbgzco0rVnvzjzkT7PBwD5tFkR+cCAwuNxhJao+1I/wN85OCsTNxPAP0Y0+02hs5ZTdPmqPfgPCpj\nFa1THCbb+IOuIPJHdAZTIQxEd6reK2sM16I31y/Rp86fUa37eVDRGnErYuu4l86SLCAg4OpiT6O0\ncBuDexvcv4o9k/LG1QF3A7j5xe7b4XQJ2cOpUOAqBzem2gEPAJHGiCxDZO+qm9lNhNtEWBVmQB0m\nkvCB9hNUHTUzAj4moH3G5ydBkEmCHAEQ1p38PV/XikNG985irCAuRT9AbYHj0bL2k9G+yKeEx5wC\njCnC3NLBryDWw/yExpYGgDu32LMpT1xDYDRaibsfmKL2Mg4bG00xGjPsjBaazXHwpNOYQDIGA9Ow\ndnb0RmuZG8YqWqFigdegdRV/E2GLamO0QjWOUpY6r0LAhmhM5ZOMzk+N6EZB3sWUBhHLdj1aJv8Z\nmup2fdFmlBqLqfVB6liYlehy/2/gTij2bMoL1xwNwv4G9AKTam/mgmBggdE6ijZolfCTDt50cGzM\n4juRRqim0zXxxgy74Q1HYx8noH0h5oswQqTCAB2CZtOlrC9Vjd2B+QT8luH5CRGkEaoQuzDc1Jr8\nZUvVakrJxbQbQd5K8ssA1w7cCnCHFHsm5YHbFdwCcFfWlBiPg3oO+oed7xY6GFqlT4XIeYik7SkQ\nYXMRLhJhgQiztt2WWRtuyBkZTzTgdAJGZnx+EgTZS5CPI+8drHSV7vRCUWNcTOWCL5ZLiPkQlZ1+\nDNw+xZ5Nzcbtj2YqXQnmikSV0aWEgXUGnjXaJvU4YD/gSwfXv7Xrrm3RTMa043jW8q213ATs+Msv\nXLNqFR1GjOD6MKidyao+3wHq6DajG6HJHOk0QCoa3kBkSsBPwP/QCnBPTMx04ExgDLitiz2bmok7\nHJXXPqVQmUr5wMAsAwPROEWj9p9//tELl17qnLUZu3Ws5fcjjmDlr78yd8st6QpsAnwgwtMiHJiG\nWGAhM5haAYtM5u6wguINRHb4QHVSzPPAXWghXUZpkLUXdzJaOHZkOrIZpYyBBUbkom1Hj/5u61Wr\nxqMCgS876JZJPQVhequ1fGot56L+/dfQ6u+3RThJhAZxz1YPQCFWEDUuQA3eQGSLNxCpcT3wEfCo\npmh6kuOGosJ1PcDMKPZscsyfVjVtOm/v+fMHo9mMz6GqCm84ONKld1+qUv9gLT9Zy53oU/sVaL+K\nhSJcJsKWMc5vBfxKkFeXT40skgNvILLFZzKlhHGoq6kFcFWRJ1PiOAPuOvT31RXM3GLPKKeI1EPV\nY68CMLDGwAPoDf024Eo0TfYkR9Jq6k3RDKQ3qu8Iu+C9aC29UCPSBm2X+oAI0f3V87p6EMQQivSF\nm7yBqEX4FUTKmN+AfsAgcCcVezaliauHPkn3QNVYS7odZYacCCzC2tejN4Y9KkajxW4XoT0hPnMw\nxMGGccbqCUwH1iS6oLV8aC1/Rp/kFwFTRBgvQjeTf/fSVsAai/0+fO8NRC3CG4i0MCuBI4Fbw8wc\nTxMCETUAABBiSURBVAWuPvAEuiLtCWZVkSeUe0Tqoq1E42YuhYV3E41KRZyIFl5+7uBcB9XFINOS\n17CWFdZyFerWGgc88Egnhp6/Ixum0KciU6LdS6ArmYV5ulbO8QYiO7yBSBvzEVop/wy4VHV2ypwK\n49AQOApMpnLXpc6xwLeoekJSjPZs7oOKBPYAvnBwgYNGujsz/SVr+dVa7gN2eXQha3o35yDU/fRX\nERqlO14SojOYwK8gahXeQGSEeQltDD8eXONiz6a4uPpoW9CGQP/QFVd+iNQBLgOuxtq06jgMzA6l\nPA5HJUYWzIUbw4q7jItV7Ws0mrKSJodPpzNwEtALWCDCJSJskum41ajIYHLab6IZsCRHY+cdbyCy\nYzGwNYH/PWbAf1B55tuKPZHi4eqhxqEx5WwclL7Ar2hTo4ww8L6BAUCvtdDja9jCwXkJYhTJaAfM\nJWCdtbxpLX3RuMYeqKG4OobuU7pEu5i2Ab4xKpdeI/A3tmwI+AVVo832Q1QLMQ74K9AN3LHFnk3h\nqTAOG6Ny3QkDrWXAMDJYPcTCwEd7wZwh2oHOAvPDbnfp9pBoT7UAddjQ6CRUaLAZ6nq6RYRMCz1r\nbIoreAORC7ybKWPMT2gg8q7aFY9w9YDH0MrffmVvHESaor74F3M4ascnYFzYxGgAWqX9iYMT06ij\niJvBZC1fWMtZ6CoD4EMRbhdhq1QnKMiGQEu0tQF4A1Er8QYiK8zb6JPg47WjG52rh/Y/2ZTaYByU\njsAcrM1Vt7sN0NqCDwEMzDQaPzgT7W44x0GfFCqzk6a4WssSa7kAbbu6DvhIhJviFN1VZwdgocWu\nDd97A1EL8QYie25Cc9n/UeyJ5BdnUNmRLYC+tcQ4gEp1v5PD8fYAPqda/YPR7Kj90Z4z/wYmOdgz\n5ggaN9wD+CCVC1rL8tBQtENjHvNEuFYkoRZb9RRXbyBqId5AZI35A/gTMBhc12LPJo+cg97A+oP5\ntdiTKSB7A7OTHpU6HYjTHCisoxiHGoaxqNbT/W79HvfbA98SsDqdC1vLUmv5aziHzdEYxRUixMrG\na49KzETwBqIW4g1ETjBLgf9D5cGbFns2uccdggZqjwTzY7FnU2ByvYLoiGbAxcXAWkOFJtNPwMcO\nhkVlPGVVQW0tX4cxis6EUhoinCZC3ajDugBvRb2vcY2CimEgtkW7Yn2MWtdIa8rN0K5QnwGTgJpy\nk/B6TDnDjAPGA/fVlKY4qeF2QeMOx4JZWOTJFBaRTQmzgXI4atwVRHUMfG+0a10XoBMwz8FR5Ehi\nw1oWWMsgVEbmDGC2CD0FqYsajxkAYeB8G6Ac5VNySguoaA7eGPXR7YoWTkUaeV9M7JajpdcoJWB7\ngpr1VFDauIbgPgR3erFnkhvc5uDmgzu12DMpCiK9EJmWwxHrAv+FzArZHPRwMP+Vtiw56FRy+hkT\nwYgwQIQFMnbjqbLdg5HsJRxs7WBZLq+XJqV370yRMWgGwjwq/YQtqNRPj6b0fsiADQj4H0GVpaUn\nK9we4L4HF1/Hv0bg6oMTcP8u9kyKhsjFiNyawxF3+//27j1GrrKM4/j3tJReqNRsCwXBtlTBC6Vc\n2sJKo+wxUkshiCkqJkgRQ4gCVjBRwNuoMREMVaQaNKG1XsAEDQQJiFxeLpW0IBRohULB0lIKFSmu\niLb2cvzjOUNnZ2dmz8x5Z845098n2ex29szpu7Nn5znv+7zv8wLr0pwggtGLeunfEfBaBOe1uA9F\nXc4x0n3rpJvcbWO2OccPnWO/CE6MbJ/urBRyy9EpWHdxJRYctsSPb2FwUimfbKPz1ylKewshWIPN\nHZ+VdUtaFwXAtdjd7mUZNyZLM+hw/mEoQYnRl84l2DGcjwBfAO6ObEqqF2HIdr5depOLr70CS2Sv\nXn8u8yhYghpoWwXDJMYCvwcWYkmkShH1I16p4uv74o+slRPVm7NuSBe5FyvQNqjWf0FcBMy2j8DX\n/P8imgl80+P5jiNh/qGB6cDqMTtZFdk+2QuBFZENc18dgI/f1wdYP3VRGLLIOeZtms8N/dPY4GYw\nLgzp93D+ofTFH4U0AqvC+KWKx9ZiQ0tgNdSLMcQEUOJmSpyZdTO6SzQPovuybkVroukQvQLRYVm3\nJFPO9eDcv+JCfd7OCsxJdYYSCynx08qHIpgawQMR3BbBuHQNdOMdrj9OVAOwrYfrH13Mcud40TlO\nS3P+FhVmiCnA9ot9ioGF2m7FykATf76lw+1KQzOZ/HsQmAmR7/LLnXAmsAyC9UMe2d1mAKsIw92e\nzhfQxAymBgbNYArgb1ihvg1Yb+LwFOfvBR4J2bNyfORWDj7uIq7E1vtc4xy/HmKRXS5kESBmY6V1\nQ+wXvQqYi81aOhmbDvdhas9iyiuthfAueAP7Iy7ixkKnYdN193a+8w+HYcPRr6Y8T80prvHaiQux\nG9flUes9ler1DxAvkgtDHDbE1Q8sdy7fN5ZZBIjl8f97DHY3cCxWAngrNpvpCOwX09QKx4wpQLTH\nvdhdXYFEh2BvBtVvEHujmfhdQZ0+/1BiBDatfnW9QwL4Gba50bIILmlhltOAABE//61V1GHIm2HI\nhcBSLEi8p8nzd0zWs5i6hQJEe9yD9SaLZB5wJwSFqfnfRr57EMeScgYT5X2pS7zZ6KAAHsDe6BcA\nSyIrEDikOO8wi3iBXKwH650MSE6HIT8AvgPc5xzHJf8ROkcBwg8FiPZYARwJUaqkYYedit+y1sXk\n3HjsjfE5j2f1MYMp8QrqwMpizMZmXN6ZsCcxDdgcEm6teKxuDaYwZAk21faPznFSknZ1kgKEH5uB\niZQynTbchYJtWJD4UNYtSSYaheXWWt41rYvMAB7znKBOvQaCJktsBLYh2CexdU6zEzylVv5hCg3W\nQIQhNwNnATc5x+lJ29YJChA+lNiBJc4SbyYiid1DcfIQfcBqCF7LuiE54Dv/cDBWZmNTyvPMAh5v\n5gmBTRH9BXBugsNPpE6CutGTwpB7sd7nz53jnGba104KEP5omKk9ygvmiuBUNHuprF35h9bXQpU4\nHDgSu6aa9StgfgT7DXFc3RlMQ/0HYcgj2E3G95zLx02RAoQ/ChDt8SgwCaIDs25IY1GATW9V/sHk\nbwaTjfVfT4mm9+IIbBj5IWB+vWMc7gCscu1TVd9KvA9EGLIW+AZWsDRzChD+KEC0RbATm1ESZt2S\nIbwP+3taM9SBXc+5Cdhq5Oc9njVd/qHEWGyR2nUp2rAU+GyD7/cCD1cukIs1u1HQjcA0597aDzsz\nChD+KEC0TxGGmeLeQ5DPcjCd5TtBDemnuJ4N3E8pVcG8PwDTIpha5/u1hpegyQARhmzHtqa9tOkW\neqYA4Y8CRPsUIUAo/7CH7+Gl8pTZ1nokJQKseOLiNI0IYDt2d7+gziGDAkRkU2RH0/zq7+uAM5zL\nduKLAoQ/qsfUPmuAcRBNyrohtUU92B2uy7olOeE7QX0MNvOo1R5JHzZN1sfvZymwIKp673S4fbDA\nuKLq+MnAhqDJ5HoY8hpwA1b6IzMKEP6oB9E2wW7sjzuvvYiPAvdD0HTys0vlLUF9MbCYUvpq0IG1\n458MzokdBWwKCV+verzZ/EOlHwEXODfkzKm2UYDw52VgPCUKvgtabuV5mEnDS2XOHQi8Db8J6tbz\nDyUmASdh01R9qZWs9pJ/qBSGrMP2Q6k3pNV2ChC+lNiF7Tl7SNZN6VLxgrnI6/aQ6UXDsWrEt2fd\nkpwoJ6h9JuvT9CA+D/ySEv/22J7fAKdV7RvhPUDErgYucS6bLY0VIPzSMFP7PI/t9HVE1g2p0gts\nguDFrBuSE77zD2OBScDTTT+zxCjgczBwc6C0AvgHdsPyqYqH6wWIKaQLEMuxLY2z2GRIAcIzBYi2\nCSLyOcykxXED+c4/HA38FdjRwnPPAv5CiXUe21O2hHiYyeEOBCYweIEcpOxBhCERsAj4cqvnSCNv\nAWIuttXoOnKykrBJmsnUXnmsy6T8w0D5KPFtU1stOd0edwKTI1sgWV4gV2uWVdohJoDfAZOdY1bK\n8zQtTwFiOPbLnAu8H/g09uIXSdF6EH1ZN6BJDgghysl1G03Gisg9HD/Ql11bcsC5iVitIl9brfbR\nev6hF8sRtKWybgA7scT3udjw0kPVx8R7SIzHynS0LAzZCVxDBr2InPyhAXA8Vjv+Baw7+VvgY1k2\nqAUKEG0VbMLGf6dn3ZLYqcAdEJRLK/Rl2JY8mAE86jFB3UfrJTYuAn5CqeW1E0ksBT4TsLNWBVew\n94KXAsudpXU9MMc5Jns4V2J5ChCHYG+wZZso3oygogWIIsrTMJM2BxrId/5hOLYDXN3tQWsqcRC2\ns99Sj20ZJIC1EWzoYeUsYGWNQ3wMLwEQhvRjP88XfZwvqTxNGZyPDS+dH//7bOAEbByxLJo2dman\n25XYzjE7eOb8Jxm7cf+sm5LI9ie2MfLoUVk3oyk7ogls3zWVYUHDHSMzsfvJjQybntPF3h0SEEHk\npwOxa/WLBEcdyv7BmFaeHpGmNHhCC9ZtDhY+vTF4dty+g3sqURAAu6MAP9vPBgQMj/Ylar5XdMrG\n/mG08H6fpwDRC5SwIAFwOba0/sqKY54D3tXZZomIFN7zwLuzbkQa+2A/xBRgX6z2StGS1CIi0ian\nAM9gPYXLM26LiIiIiIgUzSewVZS7sOlu9RR9gV2n9AB3Ac8CfwLeXue4F4AnsfnnD9c5Zm+W5Hr7\ncfz9J7DFXlLbUK9lH9CPXYurgK93rGXFswTYQuNZX111Xb4Xq73jqB8ghmNDUlOAESh30chVwFfi\nr78KfL/OceuxYCKDJbne5rGneN8JDN4jQEyS17IPuLWjrSquD2Jv+vUCRNPXZZ7WQdSyFrvbbaQb\nFth1yunAsvjrZcAZDY7N0wy3PElyvVW+ziuxntrEDrWvSJL+7epaTOZBrLBfPU1fl3kPEEl0wwK7\nTpmIdUGJP9e7OCLgbqymzvl1jtlbJbneah2jGl2DJXktI+BEbEjkdqwMj7Sm6etyn7Y2J5m7gINq\nPH4Ftkn4ULRJ/ED1Xs+vVf270UKi2dgGSAfE51uL3Z1I8uut+q5X1+lgSV6Tx7DqBP/BZjneQv5K\nvhdJU9dlHgLEySmf/xIDy1u8E4uMe6tGr+cWLHi8ghWZ+3ud416OP78K3IwNBShAmCTXW/Uxh8aP\nyUBJXss3Kr6+A9vboQfY2t6mdaWuvS4dVgisFi2wS+4q9swUuYzaSeox2JaRYJU5/wzMaX/TCiPJ\n9VaZDOxFSep6kryWE9lz13s8lq+Q+qaQLEndFdflx7Exs/9id713xI+/g4FF0rTALpkeLLdQPc21\n8vWciv2hPg6sQa9nLbWutwvij7LF8fefoPEU7b3dUK/lhdh1+DhWUru30w0skBux0uL/w943z0PX\npYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi0aha2KnUkVppkDao4Kl1CddZF0vsuMAoYjZU4\nuDLb5oiISF6MwHoRK9BNl3SRbtgwSCRrE7DhpbFYL0KkK+huRyS9W4EbsEq4BwMXZ9scERHJg3OA\nm+Kvh2HDTH2ZtUZEREREREREREREREREREREREREREREREREREREzP8BJOZoCzeVs1EAAAAASUVO\nRK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x100cea7d0>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEPCAYAAAC6Kkg/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHiJJREFUeJzt3XecFHWax/FPT2BgEAcGHCRJBgmigAQDAiocIoqJAbMY\nQIJEyWF+e+udYc9dRV05XQO7urqyrpkV1z11WdPKSdIDJIiSQaKAwMxQ90c12g4zQ/fQ3dVVv+/7\n9eoX1d3V1U8/r+L5zdO/qmoQERERERERERERERERERERERERERGRAHsa2AosK2edWcAqYAnQPhlB\niYhIauuGOyCUNXj0BeaFl7sAnyQjKBERSX2NKHvwmA0MjLi/Aqid6IBERKR0aV4HEKV6wPqI+xuA\n+h7FIiJiPb8MHgChEvcdT6IQEREyvA4gShuBBhH364cfK2k10DQpEYmIBMcaoJnXQVRUI6KbMO9K\n2RPm6kbix3gdQMAYrwMIGON1AP7khKi2/kZ6TdjH1KoHmFblbgwZVKB2pkrn8QLQHaiFO7dRAGSG\nn/tv3IGjL25nsR8Y7EGMIiI+5uTR/qm/0MN0Jq34fSrtH4wp9RucqKTK4HFtFOuMTHgUIiKB44Ro\nNm84nS99kHqfHSB05Aoe2DHv+K+zi762ip8eXgcQMD28DiBgengdgC/UXF6H3uOXMKl6EXeeORtD\nVhlrWl87rU+AiAgAZz82kaFnFjLi9HWMbNnmOGtbXzutT4CIWK7Vyw258vqVTKxZxE0X/TvmmNMc\nSmN97bQ+ASJisYsm38OYhkXceu6X3NK9wfFf8CPra6f1CRARC11x49ncdOG3jK1/mKuuG12BLcRc\nO6NpZ/zEIXifSUSkdIaabOw0h9zVfVnV5yMO5VzOW7N3VmBL1tdOdR4iEnyGbO7Ou4cp1Q7R/+ad\nnP6XS05wi9bXTusTICIBZkinIHQrU7O/Y9DlB2n4/hPgVI7Dlq2vndYnQEQCytCOGZmLGdZ2O43e\n+xqcLnHcuvW10/oEiEjAGLIo4N+ZnrWHsx/fA8X3x6nbiGR97bQ+ASISIIYuzMhYwa3nbSRn3ao4\ndxuRrK+d1idARALAkE0BDzKt8m7a/X53grqNSNbXTusTICI+ZziLmelfc+PF33LSpq8S2G1Esr52\nWp8AEfExQ0e325izG5xEdxuRrK+d1idARHzq5h69mJxzkLbPr09StxHJ+tppfQJExIe6/GYKE2oV\nc+6vXk5itxHJ+tppfQJExE+cPJrNe5eJNYsYcM14LwPx8L1TgvUJEBG/cPJpsGAHU07az6QaV3od\njMfv7znrEyAiqc7JA2cujd77mhmZOzFc6nVEqHYqASKSwqqtv4GWr+7k+j7/SwHbMPT1OqSwmGtn\nRiKiEBERCP+KX0u+r3MNe+uN5JSWp1CctZgqu+YCr2BY6XWIFaXBQ0QkEQwtgdc4nF2L1b2z+e70\n+dRtPJS5c7d5HZocS19biYj3DC2YmbaJbvd8BsXLPThvI1bW107rEyAiHjM0Z2r2d3ScvSfJZ4mf\nCOtrp/UJEBEPXT2wMxNqHaDzw5t80G1Esr52Wp8AEfFIq5fvYly9YnqP+6tPuo1I1tdO6xMgIsnm\n5FF70TzG1S1kcLd7vY6mgqyvndYnQESSycmnxqrtTMzdw9Tsu7yO5gRYXzutT4CIJIOTB8VzOfPZ\nDUyvtA3DCK8jOkHW107rEyAiiebkU3P5doa1XUtB6AsM53sdURxYXzutT4CIJIqTR+b3L3PxxO3M\nyNiNYQKGTK+jihPra6f1CRCRRHDyaf7WTiacspOZ6a9iOM3riOLM+tppfQJEJJ6cPGovfotr++1l\netYmDP28jihBrK+d1idAROLklC9uoc+o/UzN/oFplX+BIdvrkBJIV9UVETkhpy6qS5s/vUXH7mdw\n+KQ3qHRgOIbNXocliaXOQ0QqxhDikrseYFTTIoa1XcvoRh29DimJrK+d1idARCrgmgFdGNJhKyNb\nHOSq60d5HY4HrK+d1idARGIwpmEWN/d8iYm5R+g35O+0+VNVr0PyiPW10/oEiEiUhra/mnH1vuf6\nS/Zy5jOXeR2Ox6yvndYnQESOY1qV2ow4fQFjGxTT9ddzfXgF3ESwvnZanwARKYMhxJiGo5icc5C+\nI74jb2l3r0NKIdbXTusTICKlmFa5LmMafs6wMwpp8cbT6jaOYX3ttD4BIhLBEGJU4+FMzjlIr7u3\nk731XK9DSlHW107rEyAiYdOq1GZUk38xolUhp7/yjLqNcllfO61PgIgAdzW/nUnVD9Jn9HZO/iYI\nl0xPNOtrp/UJELHalJNyGdniQ+5qXkTrP81RtxE162un9QkQsdad7fKZWPMAl92+g9yvLvA6HJ/x\nbe3sA6wAVgGTSnm+B7AHWBS+TS9jO75NgIhU0IRaVRnSYT5j6xfTcfYL6jYqxJe1Mx1YDTQCMoHF\nQKsS6/QAXo9iW75MgIhU0ODz+zCu7vfkX7Wb0/5xkdfh+JgvL8neGXfwWBe+/yLQH1heYr1QEmMS\nkVQ2olUm+/NeoNaXV/LJmNdZMO1aCB30OiybpHkdAFAPWB9xf0P4sUgOcC6wBJgHtE5OaCKScgb1\nP4+0oq04oX/jrccuY8H0KzVwJF8qdB7RtEufAw2AA8AlwKtAizLWNRHL74dvIuJ3A65JI73wKU77\n580sufEdPh53BXtP06BRMT3CN1/rCrwdcX8KpU+aR/oayC3lcc15iARRvyFnMaT9Voa2P0CXh672\nOpwA8mXtzADW4E6YV6L0CfPa/DTn0Zmf5kdK8mUCRKQMPQpC9B/8CBNqFXPljR9Y/Hsbiebb2nkJ\nsBJ34nxK+LGh4RvACOAL3IHlI9xupTS+TYCIlNDlN8246cL13NX0EBdNusnrcALO+tppfQJE/M8J\ncd69MxjboJjr+yzk4gnVvY7IAtbXTusTIOJrNZfXod/QL5lQq4gB14z3OhyLWF87rU+AiG81mzeM\n27oeZkSrddzepbHX4VjG+tppfQJE/MfJo/MjHzExt4ghHR7FpMT5Z7axvnZanwARXwkV5dN3+H4m\n1NzFuLq6dLp3rK+d1idAxB+cPCieS787djD55C8x5HgdkeWsr53WJ0Ak9Tn5ULyF/Ks+piC0CEMN\nryMS1U7rEyCSupw8cOaCs5w72z2BYRmGWl5HJUAFaqcmpkQkCZx8YCmwlmlVnuPUpRcAF2P4zuPA\npIJS4cKIIhJYTh7wGNAWuAIT6gLcBXTHsNXT0OSEqPMQkQRwQj/rNqA9JnQmMBa4CMNGT8OTE6bO\nQ0TizMkDfgu0AfpjQsuAu3GvVdcTwzdeRifxoc5DROLECYEzELfbWEOXhztjQh2AVcCZwAUYVnsa\nosSNOg8RiYOIbqPS3iuZmtMU9yrYq4HLMfyvp+FJ3GnwEJET4ISAfOBhODKHSbX+SJVdTwD7gNsw\n+iXPoAodfxVfcQjeZxJJURHdxqXDf0Onx28GTgamAW9gdN6Vj8RcO4NWaDV4iCRcRLfR9O23uL5f\nbdKKzwBmAM9jKPY2PqkADR4E7zOJpJBwt1FjzZnc0nMFOeu7APcCj2M46HFwUnEx107NeYhIFMLd\nRpXvZtH/9nW0fC2XEEuBGzDs8To6ST4NHiJyHE4emftnc+6D53HBPZmkFy4GrsSwyevIROJFE3Qi\nceOESDs0iDOf2c3E3N3MTH8DQyuvo5KEsL52Wp8Akfhw8mj90gcMa/sDU6p9iaG71xFJQsVcO/W1\nlYhEcEK0e24s7fr8J3UXHiSt8A6yvv8jhiNeRyaSSOo8RCqquzmdAVevZlKNIm7v9BCGLK9DkqSJ\nuXYG7bBWHaorEqsxDbPY1vZJ6n9yAxs7f07oyOU8N1+T4XbReR4E7zOJJIYhxHctbiFr7yNsb+Ow\nptdtfDj5Ja/DEk9YXzv1tZVINGZktGf8qcsZ3rqQjrNfBKey1yGJp6yvndYnQKRchlOYXG0Ok3MO\n0vXBzVTac47XIUlKsL52Wp8AkVIZMikIjWF61l4uHbafnG8eUrchEayvndYnQOQYhl7MyFjJkI5b\nOfXzNeB08TokSTnW107rEyDyI0NDCniFKdW20PqlXVB8v7oNKYP1tdP6BIhgyMIwlYLQDvoO/4KM\n/SvUbchxWF87rU+AWM7QiwJWMrrxZ9RYvR0cdRsSDV2eRMRKhvrArzmS3pk3/nsDi26rCfSD0Kde\nhybBpMFDxM8MGcAoHKayrvv7PD+vMkXZHwIFENKPM0nCBO2MQuvPkhSLGM4CfkdR1gGe+ucBNp/d\nELhF3YZUgPW1U3MeEnyGKhjuo4BtXHX941C8RXMbcoJ0YUSC95lEfmK4EHiCw9nL+O0XGexu3BQY\nrG5DTpD1tVOdhwSToQaGpyngG3qPuw+cLeDcp25D4kSdB8H7TGI7Qy/gaQ7mvMPDa2rxQ83mqNuQ\n+LK+dqrzkOAwZGOYRQHr6Tntl+o2JIHUeRC8zyQ2MpwNPMfhql8ya1Um++o0Q92GJI71tVOdh/ib\nIQPDTArYxmW3P6xuQ5JEnQfB+0xiC0ND4E8UZh1k9pJ97GjZBHUbkhzW1051HuJPhgswbOa6vr8n\nVKRuQ5LN+tppfQLEhwx3MjNtG2c89wE4y3UFXPGA9bXT+gSIjxgqYZjN5JwN1FyuK+CKl6yvndYn\nQHzCkMf0Sh9z2zmbqLxzpboN8Zhva2cfYAWwCphUxjqzws8vAdqXsY5vEyAWMbRnatVt9Jqwj1Ch\nug1JBb6snenAaqARkAksBlqVWKcvMC+83AX4pIxt+TIBYpGeM1oxpdohznpmg7oNSSEx1860GNZt\nAlSJ9Q2i0Bl38FgHFAIvAv1LrHM5MCe8/ClQHaidgFhEEsjJJ63oMzZ2Ws7iW5rpEFzxs1h+DGo8\nMBd4H+gWfmxBHGKoB6yPuL8Bt7s43jr1ga1xeH+RBHPygMfI3HcG5/7XIdILB+qHmsTvjjd4pAGD\ngD8C/wIaA9/gDhpXximGaNulkiewlPU6E7H8fvgm4hEnH3e+bg4Tai8gvfBCDCu9jkqs1yN8q7Dj\nDR6jgDfDyw2AtcA4oC3wIfDKibx52Mbwto9qgNtZlLdO/fBjpTFxiEnkBIW7Dff/Sn9MaCHwFXCj\np2GJuN7n539YF8T7DdKBa8PL1wFZ4eVawJA4vUcGsAZ3wrwSx58w74omzCWlOfnha1L9dCSVYQCG\nDz0OTKQsCa2d6UCH8HInYEYct30JsBJ34nxK+LGh4dtRj4afXxIRR0kaPMRDTh44c485S9wQwvAv\nDFd4GJxIeayvndYnQLxSSrdxlKE7hpWYmI5uFEkm62un9QmQZCuj24hkeAvDHUkOTCQWCT3PQ0R+\nxskHluIeSNK+1PM2DG1wv2b9Q3JjE0msWM7zEBHgmCOpyj/Z727gEQw6r0MCRZ2HSEyi6DaOMtTD\nvVrC48mJTSR51HmIRCWmbuOo0cDvMexKaGgiHlDnIXJcMXQbRxlOBm4DfpPY2ES8oc5DpEwV6jbA\nkAWMBN7G8E3i4hPxjgYPkUiGEJDNs/9zAweW3kPel2/Td+Qksnc2xv0dmeolbjmlPJaOe9HOvl58\nBJFkKHmxQb9zCN5nklgYMnEL+tGinlPG/ZLF3/3XIYfiSiEO5Thk7t9ApQNbgD3A7vCtrOVdEcsH\nMTrnSHwl5toZtEKrwcNmhprActy5vD0Rt93l3P9p+cmPL2DLWfdQXHkOUKDLpotFrK+d+mvPZoYp\nGJ6J/YVRnCUuEmw6w1ws5X5dNRx4OPoXOSFwBhLrkVQioglzCYyrgDUYFke3upMH/BZoQyxHUokI\noM5DgmMMUXUdP+s2VqNuQ6RC1HmI/xk6A6cCr5e/4o/dRmvUbYicEHUeEgSjcS8+WFz608d0Gx00\ncIicGHUe4m/uxQcvAUaUvoK6DZFEUOchfjcMeB7D7p8/rG5DJJHUeYh/GaoAQ4Dzf/6Eug2RRFPn\nIX52HfAZhq/cu+o2RJJFnYf4k3sBw9HAePcBdRsiyaTOQ/yqJ5DO+wXvqtsQkROla1vZwvAaY+vf\nDc6fwfk/XZNK5IRYXzutT4AVpldqyvSsvWTu2wLOfeBU9jokEZ+LuXZqzkN8xsljxcC32Z93mMKq\nmtsQ8YgGD/EJJ0SoOJ/z7n2SZvNhR4uzILTW66hEJBj0tVUgOXmkHXqZK27aydSqqzCc5nVEIgFj\nfe20PgHBEj5vI2v3Vu5st5qZ6X/DcLLXUYkEUMy1M2g/O2j9TykGR/i8jZx17Rh+hkPWvg+AERgK\nvY5MJIBirp06z0NSTMRZ4i3e3MuYJpXJ2vc0MFQDh4gkir628jUn78fzNq4eNBbDNgwDvI5KxAL6\n2orgfSZLOPnALNIPzmFKdcg4dD0wAMPHXkcmYgHra6c6D99x8sCZC85yzniuH4YFGOZjyPM6MhGL\nWF87rU+Avzj54GwB534m5l6GYTOGqRjNxYkkmfW10/oE+ENEt1F5x3kY7sWwHsMFXkcmYqmYa6f+\nwpMkc/Jxr4C7liFn92NyzfuADkBHDP/wNjYRiZYuTyJJ4uQBjwFtgSswoUbAx8BDwH0YjngWmohY\nT19bpaSIuY1Bl52K4QUMyzGc7XVkIgLoqrqSWo7pNqoBnwF/ATpg+MHL6EREjlLnkTIiuo0+o2pg\nmBWeFO/ldWQicgx1HuK1n3Ub/TGhI8BHwCKgHYZdXkYnIlIadR6eOXpNqnC3cfGE6hgewLAFwyCv\noxORcqnzEC+Er4ALbXC7jQzgU2AJbrexzcvoRESOR51HUpXoNi69MxfDQxg2Ybja6+hEJGrqPCRZ\njuk2snGPpPoIOAPDDi+jExGJhTqPhCvRbbjnbTyJYQOGfl5HJyIVos5DEimi20gr7M/MSo1xj6L6\nC9AGwx5PwxMRa+QCfwO+At4Bqpex3jrc6yEtAv5VzvbUeSREiW5j2BktMczDsAzDOV5HJyInzHcX\nRpyMO3i0AP4evl8aB+gBtAc6JyUyCXPygLmAofLOqzChbdRe9iGwAPdihvqxJhFJuhVA7fDyqeH7\npfkaqBnF9tR5xE2JbmNc3W4YPsfwdwzNvY5OROLKd7Uz8mzjUIn7kdbifmW1ELijnO35LgGp6cff\nEl9O43d7YZgd/qGmGzF2/1SlSECl5IT533C7ipKmlbjvUPYHOA/YDJwS3t4K3K9NSmMilt8P3yQq\nTgjIBx4mVDSHyTXmk7XvD8CfgVYYdnsbn4jESY/wzbdW8NPAUoeyv7aKVACML+M5dR4VFtFtdC+4\nLvxb4p/psukiVvDdhPnrwM3h5ZuBV0tZJxuoFl6uCvQGliU+NFscndtgKSdtXs/0rPn0/MVDwPNA\nVwwLPQ5QROQYucC7HHuobl3grfByE2Bx+PYFMKWc7anziEm42wgVLefGi034siLPYH48iEFE7GB9\n7bQ+AdGJOJKq5SvPMjPto/BXVF29jkxEPBFz7QzakTMOwftMcRY+S7zq1nbcfs4yanx9HjAdeFq/\nIy5irZhrpy5PYo3wkVRphQ/T++4ldJmVQ4iNuEdR6QeaRCQmGjysEO42mr/ZiQGD9lFpfyWgF4al\nXkcmIv6kwSPQwt1GzRWPcvV1u6izuJiQMwF4FaP5IRGRo1QQf+Tkkb3tVfoO38GMjN0YJmGo7HVU\nIpKSrK+d1icAnBAZBwbR6dE9TK62jxkZz2JKPcNfROQo62un5Qlw8mj3+wWMbHGQSdU/x9DR64hE\nxBdS8tpWknBOiLOeGU+7i/6D2sv2k1Z4A1V2v6x5DRGR6NhXLHuNb8Ogy9cyMbeI27o+iKGS1yGJ\niO/oJEGC95lKN6FWVbac+RR1FuXz7fkLwbmcF9/Y4nVYIuJL9tTOMgS/8zBkMLbBOCbm/sC1l+2h\n86yrvA5JRHwv+LXzOIKbAEOImWmXMylnA4PPP0Trl54FR4feikg8BLd2RimYCTB0YXrWx4xpuIdW\nc78l7XAXr0MSkUAJZu2MQbASYDidAl5mavZ3dJy9h7RD96vbEJEECFbtrIBgJMDQAMPvmJm2nd5j\nl5K5bzk46jZEJFF0noevGWoCk3G4lW/P/wcvvHaEg7nzAAOhgx5HJyLyo6AdmuXPw80MJwGjgHEc\nPPlNnlhYi53NmwCDIfSpx9GJSPD5s3bGkb++tjJUxjAawxYKeJHWL40GZws492luQ0SSSCcJ4ofP\nZMgEbgFmAItZ3fvXPDd/BNDWfVzdhogklX5JMKUZ0oBBwC+Ab4B8jHMa8CIwB7hRcxsi4gcaPJLF\ncArwJnAEGIpxvgAew+02+qvbEBE/SfM6ACsY6gH/AN4BzsU4tYClwFqgvQYOERFvpd6EuaERhjUY\nJrq/Je7MBUfnbYhIKom5dqrzSCRDS9yO40GMsw51GyIiKSl1Og9DOwybGN1opLoNEUlxqVM7PZIa\nCTB0xrCFfkN+HT5vQ9ekEpFUlhq100PeJ8DQnZlp22n/u3+q2xARn/C+dnrMuwQYQhjGMK3ybpq+\nvVPdhoj4iAYPT97VcDJTs1/nruY7yV25Wt2GiPiMBo+kv6OhLZNP3kT/wQfI2v1f6jZExIc0eCT1\n3UY1Hs7kkw/R8fGN6jZExMc0eCTlXQxZDD3rHUY1KaLZvKfUbYiIz2nwSPg75F91DqOa7uK6vnup\n90nPhL+fiEjiafBI2JYNIa4eOJuJuUf4t9HzOflbdRsiEhQaPBKy1XN+1Zxbuq9nZMuDdPuPgQl5\nDxER72jwiPsWu90zk7H1i7mu70J6zsiJ+/ZFRLynwSNuW6q5vA6X3fElE04p5JqBY+O2XRGR1KPB\nIy5bafvH0QzpcJjhrb/mtnMaxWWbIiKpS4PHCb06e2ttLp64iEnVi7j13F+FfzZWRCToNHhU+JXN\n3xzO4G6HGNVkIyNbtoljTCIiqU6DR8yvyPw+j273fMakGkUM6fAohvQExCUikso0eMSwaohG/zOU\n6/scZGz9rYxu1DFxYYmIpDQNHlGtlfl9Ht1+uZCJuUUMa/MUhkoJjktEJJVp8DjO0yFavDaSm7sf\nYsxpmxnTsFNywhIRSWkaPMp8JmfdqVw8aTGTqhcxpOMjGDKSGJeISCrT4FHKQyHa/WEcd3Q6zF3N\nv2Vki7bJD0tEJKX5bvAYAHwJFAMdylmvD7ACWAVMKme9nyegyfwGXHbH/zGpRhGDz79f522IiJTK\nd4PH6UAL4D3KHjzSgdVAIyATWAy0KmPdcAKcED2n/5JRTYoY0nElQzo2jWPMtujhdQAB08PrAAKm\nh9cBBIzvBo+jyhs8zgHejrg/OXwrjcOFU1pzQ+9vGFf3MAOuGR/PIC1jvA4gYIzXAQSM8TqAgIl5\n8PDD1zj1gPUR9zeEHytdxyeXUVR5C6svqcPcPz+Y6OBERGyUjCOO/gacWsrjU4E3onh9bCPiwjtv\n4r17no/pNSIiEpOQ1wGEvQeMBz4v5bmuuC1qn/D9KcAR4P5S1l0NaH5DRCQ2a4BmXgdREe8BZV0e\nJAP3gzUCKlH+hLmIiFjgStz5jB+ALcBfw4/XBd6KWO8SYCVuZzElmQGKiIiIiIjl4n2Coe1ycQ9u\n+Ap4B6hexnrrgKXAIuBfSYnMX6LZ32aFn18CtE9SXH51vHz2APbg7o+LgOlJi8xfnga2AsvKWcea\n/TLeJxja7gFgYnh5EnBfGet9jTvQyLGi2d/6AvPCy12AT5IVnA9Fk88ewOtJjcqfuuEOCGUNHjHv\nl344z6MsK3D/Si5PZ9ydbx1QCLwI9E9sWL51OTAnvDwHuKKcdVPlKL1UE83+FpnnT3E7vNpJis9v\nov3/q/3x+BYAu8p5Pub90s+DRzRiO8HQbrVx21rC/5a14zjAu8BC4I4kxOUn0exvpa1TP8Fx+VU0\n+XSAc3G/apkHtE5OaIET836Z6pclT+4JhsFXVj6nlbjvUHbuzgM2A6eEt7cC968aiX5/K/mXsvbT\n0kWTl8+BBsAB3KMyX8X9OltiF9N+meqDR68TfP1G3B3rqAa4I6qtysvnVtyBZQtQB9hWxnqbw/9u\nB17B/WpBg4crmv2t5Dr1w4/JsaLJ5/cRy38Ffos7J7czsaEFjpX7pU4wjI8H+OlolsmUPmGeDVQL\nL1cFPgR6Jz4034hmf4ucmOyKJszLE00+a/PTX8ydcedHpHSNiG7CPPD7pU4wjK9c3LmMkofqRuaz\nCe5/4MXAFyifpSltfxsavh31aPj5JZR/mLkcP58jcPfFxcBHuIVPjvUCsAk4jFs3b0X7pYiIiIiI\niIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiERF18EXSZx0YCDuZV3W41576UFgrZdBicRDutcBiARY\ne+AD3KsUZ+JeSHIFUORlUCIi4g+PAI29DkJERPyhE1AL92cDwP0daZFA0NdWIolzG3AasBfIwf21\nu289jUhERERERERERERERERERERERERERERERERERERE7Pb/zNS/JvfCOl8AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1044c9e90>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4XVV5x/HvvvcmJGHIYCAQpiSGSERUZlRo01YoQQxQ\nVESxKSCltqXVWkUESrS2AooD4vRU1GAt6FMVtKIShqggCAgJkhBIhAABhKjMkyG8/WOtm5zcnGGf\ns9fa0/l9nuc+Ofecvdd+2Zy7373XCCIiIiIiIiIiIiIiIiIiIiIiIiIiIiKldhiwAlgJnNbk892B\nG4Dngfd3ua+IiPSZQWAVMA0YBSwBZo/YZltgX+BjbJpY0uwrIiI5Gig6AGB/XHJYDawDLgWOHLHN\nWuAW/3m3+4qISI7KkFh2BB5o+H2Nfy/2viIiEkEZEosVtK+IiEQwVHQAwIPAzg2/74x78gi57yrg\n5T1FJyLSv34DzCw6iF4M4YKfBoymfQP8AjZtvE+7r55swlpQdAA1sqDoAGpmQdEB1ExP184yPLG8\nCPwj8BNcL6+LgDuBU/znXwa2B24GtgFeAv4ZeCXwdIt9RUREotITS1gLig6ge3Yu2DuLjqKJBUUH\nUDMLig6gZnq6dpah8V6qZ3HRAfTg5cABRQfRxOKiA6iZxUUHIP1DTyx9z65yPyLShcq2sYjkYTwa\n4ySSC1WFSb+YAOwANrHoQETqTolF+sUE4D40l5xIdEos0gcswVWF3YDrpi4iESmxSD8Yixv/dCuw\nR8GxiNSeEov0gwnA48By9MQiEp0Si/SD8SixiORGiUX6wQTgCVzj/SSwbQqOR6TWlFikH/iqsOQl\n3Fxy6hkmEpESi/SD4aowUHWYSHRKLNIPhqvCwCUW9QwTiUiJRfrBcK8w0BOLSHRKLNIPVBUmkiMl\nFukHjU8s9wLbgW1VYDwitabEIv2goY0lWQ/cDexeYDwitabEIv2g8YkFYBmqDhOJRolF+kFjGwuo\nZ5hIVEos0g8auxuDGvBFolJikX4wsipMiUVEMtOa933Nntm0F5gNgT0HNq64mEQqoadrp55YpOZs\nNLAF8MzG95IXgVXAK4qJSaTelFik7sYDT0Ay8s5L1WEikSixSN2N7BE2TF2ORSJRYpG6G9kjbJi6\nHItEosQidTeyR9gwVYWJRKLEInXXqipsFbAL2Jic4xGpPSUWqbsWVWHJH4F7gFk5xyNSe0osUnet\nqsJA1WEiUSixSN21qgoDJRaRKJRYpO5a9QoD1+VYPcNEAlNikbpTVZhIzpRYpO7aVYXdDUz3076I\nSCBKLFJ3barCkheA+4DdcoxHpPaUWKTu2lWFgarDRIJTYpG6a1cVBkosIsEpsUjd6YlFRKLQQl99\nyQbA1oMNttnmtWB35BeTSKXo2tmGTk5fsvFgT3bYZizY82Cj8olJpFK0gqTICJ2qwYDkOWANMDOH\neET6ghKL1Fm7UfeNlgOzI8ci0jeUWKTOOvUIG6YGfJGAlFikzlJUhQFaTVIkKCUWqbO0VWHL0BOL\nSDBKLFJnaavCVgCzwIYixyPSF5RYpM5SVoUlzwC/BaZHjkekL5QlsRyGu2tcCZzWYpsL/OdLgb0a\n3l8N3A7cBtwUL0SpoLRVYaAGfJFaGQRWAdOAUcASNu/6eThwhX99AHBjw2f3ApM6HEMDJPuSfQXs\n5JTbfgLsw3HjEamcyg6Q3B+XWFYD64BLgSNHbDMPWOhf/xJ3Jzql4fMkbohSUWl7hYEa8EWCKUNi\n2RF4oOH3Nf69tNsYcBVwC5Dy7lT6hKrCRApQhl4waR+1Wj2VHAQ8BGwLLMK11fy8yXYLGl4v9j9S\nb2l7hQHcCezuJqxM1keMSaTM5vifTMqQWB4Edm74fWfcE0m7bXby74FLKgBrge/hqtY6JRbpD11U\nhSVPgf0O2BW4J2JMImW2mE1vus8uJozshoDf4BrvR9O58f5ANjbejwO29q+3BK4HDm1yDDXe9yVb\nCzal83Ybtv8R2JvjxSNSOZW+ds4F7sI14p/u3zvF/wy70H++FNjbvzcDl4iWAHc07DtSpU+O9MIS\nsHVgY7rY53ywVt3dRfqRrp1t6OT0HRsH9lyX+5wEtrDzdiJ9o7LdjUVi6Kar8TD1DBMJQIlF6qqb\nrsbD7gRmuyWNRaRX+gOSuuqmq7GXPO732SVCPCJ9Q4lF6qqXqjBQdZhIZkosUle9VIWBEotIZkos\nUlc9VIUBSiwimSmxSF2pKkykIEosUlcZq8JMM2aL9EiJReqqx6qw5A/AM7j56ESkB0osUle9VoWB\nqsNEMlFikbrqtSoMlFhEMlFikbrqtVcYKLGIZKLEInWVpSpsGbBHwFhEpIY0u3HfsYfAemyAt8lg\nj6tnmIiune3o5PQdewZsqwz7Pwo2NVw8IpWkafNFHBsNbIHrNtwrtbOI9EiJRepoPPAEJFmeVJVY\nRHqkxCJ1lKVH2DA14Iv0SIlF6ihLj7BhemIR6ZESi9RRqMSyh3qGiXRPiUXqyLexZPIorkfMdtnD\nEekvSixSRwGeWBJD7SwiPVFiKQU7AOytRUdRIyGqwkDtLCI9UWIphw8DF4PpIhZGiKowUGIR6YkS\nS+FsIjAHOBuXXEYVG08t6IlFpEBKLMU7BrgK+ATwO9zTi2SjxCIi0ZV4rjC7GuwY/3pHP0fVPsXG\nVHV2OdhRAcpJwB4D2zZ7WSKVVOJrZ/FKenJsqr9wjW147ziw5Zu+J92xn4LNCVTW9WB/GqYskcrR\nJJQV9Dbgckiea3jvUuAO4GPFhFQLoarCQNVhItJCWZ9YbgL7yybvTwZ7UHfKvbLVYNMDlfU+sM+F\nKUukckp67SyHEp4cmwn2CNhQi8+PALsHbOt846oDe9z3tgtR1qFg14QpS6RySnjtLI8Snhw7C+zC\nDtt8Bey/8omnLmwAbD3YYKDydgL7bZiyRCqnhNfO8ijZybEE7E6w13fYbhuwe8HenE9cdWDjwZ4M\nWF7iyrOXhStTpDJKdu0sl5KdHHutbwdIMXOuvcHdMdvO0cOqBdsV7P7AZd4IdlDYMkUqQb3CKuQ4\n4JJ0Kxwm1wOfcdtrVH4KIXuEDSvpZJT2MjfHnJ0L9nawSUVHJAJKLAWwATYkltTOA54CPholpHqZ\nQJh5whqVpMuxjQU7xCeSXwH3An8DPAe8E1gN9gvffrev/66JSCQlqgqzg8Du6H4BKdsWbA3Y3Dhx\n1YXNA/tB4DLngi0KW2ZXx0/Avgb2tB+w+RGwg8FGj9hujE88n/JteI+6zh82tZi4pQZKdO0snxKd\nHPsC2Bk97vsnvr1lx7Ax1Yn9Ndg3Ape5qxtXVBQ7Bexm1zGhq/2mg/0n2FqwU8P1lJPsbLD7m8tC\nlOjaWT4lOTk2yt9FzshQxhlgP2s9/qXf2T+FH9BoCdhTYBPClpvq2NPBfkemJRVsNthisFvQPHQl\nYf8N9u6io0ihJNfOcirJybG5rodRpjIGwK4E05QvTdlZcc6N3dS5e3jwYw6AXQv2wQBlJWDz/RPv\nBd0//Ug4NgrsCbDvFB1JCuoVVgHHAf+TrYjkJeBdwAlghwaIqW5i9AqDYhrw/x4YA5yfvajEIFmI\n6902FlhOkBmgpQcHAX8A5qh6stpK8MRi43BTjWwfqLw/A3tY7S0j2UVxqhjsg65RPC8201eBvSJS\n+QeB3Qd2ZkXq+mvEPgm2wHew6LJq0vYG2x1siyihNTlgTseppIJPjiVgnwX7fuByT/eNuppifwP7\nX7C3Rij3TWA/CV9u02MNgv0c7H2Rj7OD//5cnOOFSlxC2Q/swu6qOW0y2DNgK8FewA2yvhrsy2Af\ncJ17wgcbocxNzMA9QldRgYnFErCPg90avvHXErD/AbtEd53D7CqwQyKUOx3sgfDlNj3W+3xiyaGa\nxMa5un77mbtwSVw2w7dzDYAd3d3Nis3f2C5jQ76sQ8HeA3Y+2EOEn/4p+rXz87i12QEO9j9VUWRi\nORM3biXSH62N9Q3LWtIYwPV82i9CuQP+bnGb8GVvcpxX+CqwmXGPs8kxB8DOAVsVr+pNHDsV7Gv+\n9URcb8OUT4v2XbC/bvP5gbhepyHbAqNfO+cDJwDD61wcHfuAARWUWOz9YHeHa1dpeZwdcYMnj4x7\nnCqwlWCzIpX9K7AD4pQNvgrsBrB/jHeMtsc/CbeUw58Vc/x+YD8Ge0vD7zeTat0lG4PrSdbhBtXm\n+7+BQMtGxL92ngm8A/gccC3VWuGwgMRif49bTyWnySNtf9xAuFfnc7yysrVg20Uq+2KwE+OUDbgx\nONdS6FQs9uc+uRxfXAxFsLFEn2vNtvRPKA1dve0csBRTNdnhrroy1XE+7arYgox1i37tfAcw/Mg2\nGfjbgGUfBqwAVgKntdjmAv/5UmCvLvfNObHYCa4+PstAyJ6O+w7cNPvb5nvcsrAEbF36qoWuy/8Q\n2CfjlA1gl4K9M175qeN4pa+vP67oSMKxyWB/hZvu5tu4Ru8l/u/0WVxj+NNgV4C9IVIM89hs0Tg7\nBOy6FPt+CexfUx5nCGxRoO9q9GvnILC3f70fcFbAclcB04BRwBJg9ohtDgeu8K8PAG7sYl/INbHY\ncf6PsqC6avsPd2czch6pfmDjwJ6LWP48d+GJVv5PKM1ccPYqXCPzMUVH0hvbAexY3BRKy3w10hW4\nnpRv9xf0vXHT9Wzlb0rG4KbPuQc3U8EhBO0UY18Ge/+I98b5hLZVm/0G/DVlty6ONQnXZtamTSZd\nQRn3L8zrgB83/P4h/9PoS8CxDb+vALZPuS/kcnJsiv8SP+z+KItiA2CX4Vaf7LOeYjbVnf9o5c8E\nWx2x/JvAXhev/G7ZXr5arAILzdnLXBK0L4CtAPsD2OVg/wK2T3fVQjYE9i6w5f7/yZFkrp60BNcO\nunuTzxaDHd5m3/3A7uzhmHvgqob3737fjYX0slMvJ+stnTfpyo5AYzfONf69NNtMTbGvZz8G+8vw\nF1vbGmwBbmT2C8CekNwR9hjd2DAyf1/CPVVWRaxR98PuBbZrf3eZyUTgsUhl9yC5DTgCuAjssKKj\n2ZSNcU939kmwW3H/b04CfgO8HZgMyZGQfAqSX0HyYvqykxch+QbwKuAc4N+AX5JtFdHX4K4PdzX5\n7GrgL9rsOw/oYQxcsgx4N/Ad9wSXn14ad7YMHEPajJgxIRz6POy5EAYG4byF8IGzIMlQbWKjgJNx\nF+9rgH0huTdbjKEkT7kkynVgj0NyQdER5WQ84ddiaZCsB7sLV916c4QDlCyxACQ346Z+udxVLSXX\ndNwlKktwUyN9HLgfWAScCtwEybqwx0peAr4L9j3gXOCHYG+E5OkeCnuT27/p4n5XA19os++RwHt6\nOCaQXA62J3Az2LeB7wA3+P+2ZuawcVhJruYHLu9ANq3OOp3NG+G/hLsLGbYCmJJyX9iQvCzB9Xr5\nAa6/98f8Y3LKZGkDuIFyx+O6ES9y9bRlZdNwjZPvKjqSfNhc92Qa9RjfBAv9N4D/br5IadvG7E/9\n30yB49fsdbhlom/JPw5LfPXylfTUOcR+4W/2mn02PCllk043Nt2f94yDZW1PsLPBbvfV9V90SbLj\nqrS5tbGE/qMawj2+TgNG07nx/kA2Nt6n2ReanhybBfY5sKW4XiH3+eqyT4P9rf9D+ivcAMdvgt2G\nGyD3ANiPqMwEkDbbf5H6YIyLHQd2aeRjnAF2boRyt3bfrzKzN/qLXIQBqG2PO839fx2+SSqqO7YN\n4QYpfqu7C71NBnvSVd+13Ob/wN7W5P1/Avtq97G2jWc33Nx3vwT7Pa6nXKuu1pVNLABzcXWPq3BP\nHQCn+J9hF/rPl7Kxd1qrfUfqcHJsEOzlYEfg5tz5Km6lvu/j+pnPx40TiTzqOhbb118Qaj7wzd4D\n9uXIxzjKXQSCl7sL2Jrw5YZm88AeBNs1h2NtgZsO6fdg/5a+ZiFqTGPArsF1/01ZPW/Hg13eYZv3\nNf/u2lVEnYXadvFPL4/iZgUY+QSTW2LJ2n2tCJXtMheOzSnmbjNPdjXYCZGPMQvsngjlvgbs1+HL\njcHei5umKPKaLnair0Iq2Qzetg2uOu7fU25/iasFabvNq8FWjXhvgn/SySGh2p64ar47cYMxh5Nm\nbpNQjot9oAiUWACwN+PGJuS9rkgObI77w+xYZ5z1OENgz4X/Y7c5pB5ZXTRLwD6PqzqOuJKpXUrU\nmQ6ysG3B7gL75w7bDeG6Pu/UYbsBf+PX8CRox4H9IHusaVmCm8V7BW5M1R7kcO3UJJS1YMe7Khfb\no+hIwrHEXZQzDwZLe7zbCd5pw47uXF1SJjaEa2v8Yvoqoa7KH8BNxpnTlEi9sF3A7gf7u9bnwA4G\nW5KyvBGJ1C4BOzl7nN2yUbi2nUeJdO0cwE3lApqEskbsnf7JJeKEinmyN/q7rIh3z5sc7xKC97Sz\nE8G+HrbM2GwbV31n741Q9j5gy8OXG5rtjpuc9GawJmNR7Byw/0hZ1slg3/SvR4M9Rs7jT0bEM4lI\n1873AsPTd2sSylqxN+FG5UZYuyRPluBmBM5xXis7C+zjgct8P9hnwpaZB9sV15g/L3C5p4N9NmyZ\nsdgA2NtwswpfySarQtqvST2bgs3A9eBM/M3SjZ33iS7KtXMQNxgJ4k5CGZsSS1N2EG7KjggrLubF\n5uLmgspx7XA7Jny1lX0M7OywZeZlw8zaAasH7Vp381MlNspXiz2E65L8F/68dNM1+V5XTW0XUI41\nlio7CWUelFhastf4O84q3Sh4lvgqiNDTDHU67mw268GTucwLXb12VdkxuHEmUwOUtRUdJ2YsM9vS\nJQV7AuziLve9yLdvrKbQOQc30LWzDZ2ctmwmbkbX01s3QpaRzcMNcM15wJyNwvUMC7hUt30zfLtN\n3uxMsOvI3DPPDndPLFVnE+l6wS17B25Wj3tK8reoa2cbOjkd2VRfH/zZ7BeGPNgAbj2NgmYUsDvA\nXhuwvCvAjghXXhFsADeC/FMZy/lMSaqBCmDbgxnYp4uOxNO1sw2dnFRsor/AXUfHfvdFs2Nwg9QK\nuquzb7u7y2Dl3UC0BabyZBP93XaT6UlSl7EcbN9wMVWN3eLaP0tB1842dHJSswFfJfYwpZ0PzQb8\nE0ObNSyix7CA1N1IU5W3gtoMXLW9faN1s3n7Ou27E278So6dMcqmVP/tuna2oZPTNZvjG/U/UrIv\nOrgVAG8stg7a3oqbTj1UeY9Q6JiF0Owk/+TRZQO8nUD0iUSlC7p2tqGT0xObgpt/62r3ugxs0N/d\nF/w0ZXu4RtYgZSVgf6Tt7LdVZBfhBpN2cQNgl7ikJCWha2cbOjk9s0Gwj+KmgSn6Yj4atybGNcX3\nmLHRYM/T09ocm5W1pSurbmws2K1gp6bcfsBXoe0SNy7pgq6dbejkZGaH+kbZy8Bmdt4++PEng/0U\nt4751vkfvxm7E+zVAcrZybVp1ZHN8NV8r0+x7T70tLa7RJTbmvfSl5IrgVfiFlm7EewTRJ82fZi9\nCrgJ+AVwtFt6uRSW4c5JVhMo3ZLEoST34Nai/5a7OWjrEODK+DGJhKEnlqBse19//lvcapsRG/ft\nCNx04sfHO0av7KPuJ3M5B4Ndn72cMrPz/NNmmypMu4bKTeNSe7p2tqGTE4XtjZuufinYsWAB1+qx\nBLea54NgB4YrNyR7O9h3ApQzjyirUpaJjcbNAvyeFp9vCfZU973IJDJdO9vQyYnGEtxgxUW4ab4X\n+vaYHqewtwQ3F9fFYLdR7vU49gzTJmDzwb6RvZyys1m+cb7JWkA2F2xx7iFJJ7p2tqGTkwvbAbds\n7c2uMdo+A3YAHefUspfhph2/CDeR4f24qWVKsMZ5O7aF7xk2OmM57wW7IExMZWcn4hZKG9G12j5N\n307jUmo9XTvLMMlZHoz++W8tCXsFbsmFtwEvB14AHgXW+n8fBZ4BXg/sDvwM+Amu8fZuSCpyM2B3\nAcdAckeGMj7i/k0qOm1+NywBvgU8DEnDsr62DJgPyS0FBSbN6drZRkUuUnVlietBZruBvQHsKN/o\n/wHcCP8AY0GKYt8l07xY4J5WYqzCWFY2Eey+jQ31msalxHq6dua0lKv0t8SAJ/zPyoKDCW052bsc\nTwQeDxBLRSSP4ZYI+BbYXsAbgashWV9wYBKIEotINsuBozKWMZHajmNpJfkZ2FeAr+FuODR+RSpH\nVWESib3Gtw9kKeM6sD8JE0+V2CjccgEvoWlcykrXzjZ0ciQSG+t7hmVYHM2Wua7L/chmgF1YdBTS\nkq6dbejkSES2kp7WHtmw/0OUfmE16VOaK0ykIMuAJoP+UuvDNhapMyUWkewy9AyzMcAg8GzAeEQK\npcQikl2WLsf+aaUqA0JFOlNiEckuS1WYqsGkdpRYRLK7C5jZ48SbfTY4UvqBEotIZsmzwEO4OdG6\npScWqR0lFpEweq0Oq/HqkdKvlFhEwui1AV9PLFI7SiwiYSixiHhKLCJhLEOJRQRQYhEJZQUwq4c1\nRZRYpHaUWESCSJ4BHgFmdLmjEovUjhKLSDi9VIcpsUjtKLGIhLOc7rscK7FI7SixiITTS88wjbyX\n2lFiEQmnl6owDZAUqSjNHCs5sK3Bnk3fM8xGgb0IlsSNS6RnWuhLpFjJU8BaYFrKHXw1mKbMl3pR\nYhEJq5vqMDXcSy0psYiE1U3PMCUWqSUlFpGwuukZpsQitVR0YpkELALuBq7E9ZBp5jDclBkrgdMa\n3l8ArAFu8z+HxQpUJCVVhYkU7Dzgg/71acA5TbYZBFbhGkRHAUuA2f6zs4F/SXEcNY5KTmwbsKfB\nUty02T+AfTF+TCI9q2SvsHnAQv96IXBUk232xyWW1cA64FLgyIbP1VVTSiR5EvcUsmuKjTU4Umqp\n6MQyBTdxH/7fKU222RF4oOH3Nf69YacCS4GLaF2VJpKntNVhGhwptTSUwzEWAds3ef+MEb8bzR+7\n2j2KfRH4qH/978D5wEkttl3Q8Hqx/xGJYbgB/4cdtpsI3BU/HJHU5vifSlvBxqSzg/99pAOBHzf8\nfjqbNuAPmwb8usVx1MYiObJ3g309xXbfBXtL9HBEelfJNpbvA/P96/nAZU22uQXYDZc4RgPH+v3A\nJaNhR9M6sYjkaRnpxrKoV5hIBJOAq9i8u/FUNq1GmIurMliFe2IZdjFwO66N5TKat9GAnlgkVzYB\n7KnOc4DZErC984lJpCe6drahkyM5swfBOvQMs/vApucTj0hPKlkVJlJXaXqGqSpMakmJRSSODlO7\n2BCwJfBkTvGI5EaJRSSOTg34E4AnIXkpp3hEcqPEIhJHp8koNThSakuJRSQOn1ha9gxT+4rUlhKL\nSBTJY8DTwE4tNlBikdpSYhGJp111mBKL1JYSi0g87VaTVGKR2lJiEYmn3VgWJRapLSUWkXhUFSZ9\nSYlFJJ52PcOUWKS2lFhEokl+DzyPm1R1JK0eKbWlxCISV6vqMA2QlNpSYhGJq1XPMFWFSW0psYjE\n1apnmBKL1JYSi0hcemIRqSkt9CUFsclgj23aM8wGwNaDDRYXl0gqWuhLpHyS3wHrgO0b3hwPPA3J\n+mJiEolLiUUkvpHVYaoGk1pTYhGJb2QDvhKL1JoSi0h8I8eyKLFIrSmxiMQ3sipsAhp1LzWmxCIS\n3zJgj4aeYXpikVpTYhGJby3wErCd/12JRWpNiUUkusTYtDpMiUVqTYlFJB+NPcOUWKTWlFhE8qEn\nFukbSiwi+dATi/QNJRaRfDSOZVFikVpTYhHJxyPAINh2KLFIzSmxiOQiMTZWh2mApNSaEotIfoYb\n8LUssdSaEotIfpYDBwDPQ7Ku6GBEYlFiEcnPMuAg9LQiUgtaQVJKwKaCGdjtRUcikpJWkBQpuYeB\nJ9ATi9ScEotIbjb0DFNikVobKjoAkT6zHP3dSc3pCy6Sr5+ycfp8EakwNd6LiHRPjfciIlI8JRYR\nEQlKiUVERIJSYhERkaCUWEREJCglFhERCaroxDIJWATcDVyJm068ma/iFkr6dY/7i4hITopOLB/C\nJYZZwNX+92a+BhyWYX8Ja07RAdTInKIDqJk5RQcgxVsBTPGvt/e/tzKNzZ9Y0u6vAZJhLSg6gBpZ\nUHQANbOg6ABqppIDJKfgqrjw/05ps22M/UVEJLA85gpbhHuaGOmMEb8b2Z4ssu4vIiI1sIKNSWcH\neqsKS7P/KjYmHv3oRz/60U+6n1X0oOjZjb8PzAfO9f9eFmn/mb0GKCIi1TIJuIrNuwtPBX7YsN0l\nwEPAC8ADwAkd9hcRERERESmvt+KWgF0P7N1mu8Nw7TIrgdNyiKuq0g5EXQ3cDtwG3JRLZNWR5rt2\ngf98KbBXTnFVVafzOQd4AvddvA04M7fIqqfVAPRG+m4Cu+MGTV5L68QyiGuYmgaMApYAs/MIroLO\nAz7oX58GnNNiu3txSUg2lea7djhwhX99AHBjXsFVUJrzOQfXBiudHYxLFq0SS9ffzaLHscSyAnd3\n3c7+uC/namAdcClwZNywKmsesNC/Xggc1WbbJH44lZPmu9Z4jn+JeyrUuKzm0v7t6ruYzs+Bx9p8\n3vV3s66JJY0dcR0Bhq3x78nm0g5ENVxniluAk3OIqyrSfNeabbNT5LiqKs35NOD1uKqbK4BX5hNa\nLXX93Sy6u3EWrQZefhj4QYr9LWw4lRdiIOsbgIeBbX15K3B3Q/0u7Xdt5B22vqPNpTkvtwI7A88C\nc3FDEWbFDKrmuvpuVjmxHJJx/wdxX7xhO+Mycb9qdz4fwSWd3+IGoj7aYruH/b9rge/hqiyUWNJ9\n10Zus5N/TzaX5nw+1fD6R8AXcO1/f4gbWi3puznCtcA+LT4bAn6DawAcjRrv2zmPjT1vPkTzxvtx\nwNb+9ZbA9cCh8UOrhDTftcYG0gNR4307ac7nFDbeZe+Pa4+R1qaRrvG+r7+bR+PqBJ/D3WX/yL8/\ncuDlXOAuXEPg6XkGWDFpBrLOwP2BLwHuQOdzpGbftVP8z7AL/edLad9NXjqfz3/AfQ+XAL/AXRCl\nueEB6H/EXTdPRN9NERERERERERERERERERERERERERERERERERERERERkQy0XoFIMQaBY3FT4TyA\nm8/qfOD5SjyKAAAAbUlEQVSeIoMSCWGw6ABE+tRewE9xs0WPwk3auQJ4scigRESk+j4HTC86CBER\nqb79gMm4pR3ArTsuUguqChMpxknALsCTwHjcSof3FxqRiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI\niIiIiEi/+n8WoQJoWoq+HwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x104e594d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy\n", "import nengo\n", "from nengo.utils.ensemble import tuning_curves\n", "from nengo.dists import Uniform\n", "\n", "N = 10\n", "\n", "model = nengo.Network(label='Neurons')\n", "with model:\n", " neurons = nengo.Ensemble(N, dimensions=1, \n", " max_rates=Uniform(100,200)) #Defaults to LIF neurons, \n", " #with random gains and biases for\n", " #neurons between 100-200hz over -1,1\n", "\n", " connection = nengo.Connection(neurons, neurons, #This is just to generate the decoders\n", " solver=nengo.solvers.LstsqL2(reg=0)) #reg=0 means ignore noise\n", " \n", "sim = nengo.Simulator(model)\n", "\n", "d = sim.data[connection].weights.T\n", "\n", "x, A = tuning_curves(neurons, sim)\n", "\n", "xhat = numpy.dot(A, d)\n", "\n", "pyplot.plot(x, A)\n", "xlabel('x')\n", "ylabel('firing rate (Hz)')\n", "\n", "figure()\n", "plot(x, x)\n", "plot(x, xhat)\n", "xlabel('$x$')\n", "ylabel('$\\hat{x}$')\n", "ylim(-1, 1)\n", "xlim(-1, 1)\n", "\n", "figure()\n", "plot(x, xhat-x)\n", "xlabel('$x$')\n", "ylabel('$\\hat{x}-x$')\n", "xlim(-1, 1)\n", "\n", "print 'RMSE', np.sqrt(np.average((x-xhat)**2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- What happens to the error with more neurons?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Noise\n", "\n", "- Neurons aren't perfect\n", " - Axonal jitter\n", " - Neurotransmitter vesicle release failure (~80%)\n", " - Amount of neurotransmitter per vesicle\n", " - Thermal noise\n", " - Ion channel noise (# of channels open and closed)\n", " - Network effects\n", " - More information: http://icwww.epfl.ch/~gerstner/SPNM/node33.html\n", "- How do we include this noise as well?\n", " - Make the neuron model more complicated\n", " - Simple approach: add gaussian random noise to $a_i$\n", " - Set noise standard deviation $\\sigma$ to 20% of maximum firing rate\n", " - Each $a_i$ value for each $x$ value gets a different noise value added to it\n", "- What effect does this have on decoding? " ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "RMSE 0.365644156802\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEPCAYAAABsj5JaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYFeXZ/z9ztrGwu7C0LbCF3ntHBEZEJbbYjTWaYqIp\nJm/emGje5MQkRkz8xURjS6ImGhsWRAURcAApgvTeWcoudWm7sH2f3x/3zJ45Z2dOWXYF1/le1167\nOzNn2pl5vs/9vRt48ODBgwcPHjx48ODBgwcPHjx48ODBgwcPHjx48ODBgwcPHjx48ODBgwcPHjx4\n8ODhK4QcwAA2AhuAH5nL2wJzgG3Ax0Ab22d+CWwHtgCXfGFn6sGDBw8ezitkAoPNv1OArUAf4DHg\n5+byB4BHzb/7AmuABCAf2AH4vqBz9eDBgwcP5zGmAxcj1kWGuSzT/B/E+njAtv1HwOgv7Ow8ePDg\nwUMQzpcZfD4wBFiGkMchc/khAmSSDey3fWY/0OkLOj8PHjx48BCC84FAUoC3gR8DJSHrlPnjhnDr\nPHjw4MFDEyL+HB8/ASGPlxEJC8TqyAQOAlnAYXN5IeJ4t9DZXBaKHUC3pjhZDx48eGjG2Al0P9cn\nES004D/AX0KWP0bA1/EL6jvRE4EuyMVqDvv1rJLGhf9cn0Azgv9cn0Azg/9cn0Azw5dq7BwH1CKk\nsNr8uQwJ452Lcxjvg4iFsQW41GW/X6qb8CWA/1yfQDOC/1yfQDOD/1yfwJcL6jFQ4QKPYh47z6WE\ntQh3H8zFLssfMX88ePDgwUNsuAQoAj5rrB2eD050D+c35p/rE2hGmH+uT6CZYf65PoEvD5SGSP+e\nfzgCPAnLgwcPHoKg0kEpULPCbRTrXj0LxIMHDx6aP7oAp2nkKCuPQDx48OCh+aML8CmQC6q+79vf\nMH+4RyAePHjw0PyRj0SvHgRyg9b48fFsvSTuqOARiAcPHjw0f3QBduOULFjA1RwjsSE79QikgVBw\nuYKXzvV5ePDgwUMU6AIU4FSp4yg/JoVtDdmpRyANRx/ELPTgwYOHhsEwUr+gI+UjFsgO7BaInzYU\nM3pYCWsaslOPQBqOXKDduT4JDx48fElhGC2BQvN3E0JpCIEUUF/CupmdlPyhiisbsmePQBoOj0A8\nePBwNsgEUoFBTXycjkAZaCWESljVfEs7QuooONKQHXsE0nDkAO2Uc0FHDx48eIiELPP38CY+Tj4i\nX4FYIF1B+fAzgCJy2ykOP/DTn3pRWF8wcpHKwK3O9Yl48ODhS4lMJPu7qQnEisACtFLgFNKg7y7W\nsnYUnPrPJZc0qMSJRyANgIKWiOm5H0/G8uDBQ8OQiRQ2/CIIpMD2/w5aHeoF3MZGqi9OSEitSEjw\nEgnr4CehiY+QA+wDjuIRiAcPHhqGTGAekI9hpDThcWwWCAA7uOCxa1Fs0soZ3Ld9+45o2r6G7Lh5\nEkhAW2wqWARSjEcgHjx4aBgykXFkPTCkCY+TTzCB7KTr3EvZxXsJkHQmP3+30rT9DdlxcyWQTk28\n/1xgLx6BePDgoeGwWnevoGllrGAJK2/BUdJ35fAWx3tD0apevfYhcnzMaK4E0rmJ99+sCcQw+I5h\nMOBcn4cHD80cXwCBqDhEMSmoW3TZ/f3YdkUJZQybDGpZ377HEUsoZngE0jB8KSQsw2CoYfCDBnz0\nFmBiI5+OBw8egvFFWCBZwDHQygHwo5Gx7jKW/yAZuOBKyFzdvXs1ngUSBE/CElxv/sSKTnhlWjx4\niAX3Az2j3towfEAGcAipktsJw2jTBOcV6kC/AF9tJfv6V2jQexRoR9q0ScMjkCB4EpZgLDGSqWGg\nITHiXZrkjDx4aH64FPgLcF0Mn2kLlKLrFeh6NbAGGNoE5xYawnsX8AIsONSe5MMt4DM0rTMegQSh\nySwQM/P8vJewDIMExCzuZJJCtEhDkiPzm+K8PHhoZmgD/BP4BzAqhs9Z8pWFppKx8rEsED8pwLXA\nyzCrchipNcAyZDzzCMSGprRA2gHlGpRyHhMIEha4C6gGWsfwuWzkuvKb4Jw8eGhu+CswA/gDMJro\nSxtlAgds/39O0xCIXcK6AViAn0PwactLIXV/+/YrkUmjVwvLhmz8TXZtlnwF5zeBjAUWA4XEZpF1\nQuLSEw0jJuLx4OGrhquBC4AHCIwJue6bB+GLskC6oFUX4OebwKPA04APtmdfw4n0ux54oAgoQtdr\nG7Lzc00gLyBOpPW2ZX7EnFpt/kyxrfslsB1xOl0SZr8lQPvGPFEbLPkKzm8CuQBYQuwEkm1+Zjee\nFeLBgxvaA88A30TUCIXIQdHKWKEEsh1oh2E07niSsbYHv2z9CHAf8DX8fAz0SUIrraZz1dzhw9vQ\nwBBeOPcE8iJwWcgyBfw/RIIZAswyl/cFbjJ/X0YdkzpiP00nY9ktkJNAK0XDGtI3FUyfx9lYIIWI\n4y2/sc/Ng4dmAA0hj1eBRbbln9FQAhELYBUwrFHO0E9L/i/+Ue64OBtf9SvAaMNvXGZgvHklV/56\nIK2PL+FCDRknG+T/gHNPIJ8Cxx2WO+mIVwOvAVUEWjOOdNlvrINmLKgjEA1qgRNIRMX5hDzku91N\nwyyQIjwC8eDBDTcB/YBfhSw/GwsEGkvG8nM5sJHKlL48t7qQ31c+iZ8a4OvAlkIKB17IZZ2zuKPF\n6zcy9Y+/oKeB8Y2GHOpcE4gbfgisBf6FRDmADGx2ptyP+8DYlBZIDgELBM5PGesCYImuo/AsEA8e\nGhNZiOP8TqA8ZN0KYDBEVcz1bAjkIsRpXx9+/MATwHeZevwJTnXeYVubBzy9ilW+m/nPkYdJ3vb3\nWxO2lCWzH3Gwx4zzkUCeQSIHBiNRCo+H2VY5Ln2DHkzjG4g/ZWLjnh65BGuG5yOBWPIVNNwC2Y2X\nC+LBgx0aEq77HBI1FYpTyMQrmjJADSeQvB53EB//v4T2IvLTB/F1jMPPHGwRWAZGMpB2DdfUaJA5\nBNovYc+hT7c82efhYz+u0NHXRXHO9XA+EshhhBgUEl9tyVSFyOzfQmdzWX3cxCvcwC6EQOY38vmZ\nEpa6GdSTnJ8EcgENJxDPAvHgwRk3I+/H78NsE62MlUV9AtkFpGIYGWE/2a7j9fjiErjuumfrlvnR\ngCeB30uYLhCcRJgL7DvBidEZsD0eVtZw81Lu/pHir399HBkrY8b5SCD2UuzXEIjQmoF8gYnIjekB\nLHfZR5NIWEpM0w5DWXkGMRPvqCThBOcRgRgGaUB3JIINYiAQw8Aqr3AAj0A8eAjFeERWrwyzzTIk\nH8QdhpGENKQrDlqu64pIVohhjOfQ/mQSfljLjp03YBg3mmuuR3qf/922dT6BHBDLd3vBOLGUPgN2\nkFzTli+xE/01JNS0FyIL3Q1MBdYhPpAJwE/MbTcBb5q/ZwH34iZhNZ0PJBs4vJqhvwGmA6vXMyCF\n84hAkNnPKl2ve8gPA+3MzPRI6AicMD97HPAZBk1Rn8eDhy8jrBD3cIjGAukIHHbJvQifUFhZ+X8c\nOOjj9C8OsX5zDYcPP82s1y5DIlfvw0+1bWt7EmEesAcYe51IX8toU7mHFrUtoM5iiRnnmkC+gXwp\niYg89QJwBzAQGIREDdgv7hFkdt0bmB1mv4VAZ9Osa0zkniL1KBKF8RAw/XNG5HB+EYiV/wGArlON\nkEg0TbY6If4PTAd8o/hBFOQoIX8PHr7MsPyD4bAReY/Sw2zj5P+w4G6BGMZI9hf2pzZbQbu/Uqvv\n43e/e4eEtLdpPXA1fj4N+YRdwsoro2w/MHSKqDfLuHlvKccTa9H1mgjX5IpzTSBNhVOIdZLWmDut\nRctZxLhOwP+BVgxM30D/XrVoTZW02BDYHegWCpGHPxJCZ1gFNI6MNRq4QUlghAcPX1ZkEVx+xAnV\nwEpgRJhtIhOIYThNfh/ivbXLIP8U8B78rC2bN+hse6KGQf9vKIZh8xGrFkh6gUV4ubOZTQvY1xpK\nNSji2sI4DidpoFpGuCZXNE8C8TcofDUiZjHl6r3k1iLOfUArKCH16EEyezTmcRoKwyAOMZ+XhqyK\n9l7UWSAmCmgcAhmIJF3e2Qj78uDBBvVjUKlfwIHiEP+g28BvRyQZK0Ag9Usu7TOPFTzhM4xBwEhm\n7omHDgXAVhh/mmQth7lznkeLewKYtSk399sKfp1IRZ7sS7Osi7z5zG/XV8aCZQAkqE6cTCgFukZx\nTY5ongQiaGQ/iGp9gKwrBrLuZduXQgvKF5SQ2uAvoJExADig6xwNWR4tgThZII0RyjsQkR9vUdHF\nyHtohjAMehoG1zTeHpUPea6aogx6KDogfsFwDnQL0RGInzSgMIhE3B3pDwKPU32yN7RZC5pizN+2\n0je5indJRNId5t34m9/8vjwh4X820u/pFpTtsX0+dxvbBlwlyc+fmctyKI0/irgFGgSPQKKHfxBr\nj45laZDO2I2dHwAdQTW2v6UhcJKvIDYLxE4gjVUPaxDwDlLvZ0qEbT00X1wG3NOI+8sBWhJLI6eG\nIxr5yoJFIG5jgmWBDDH/7hiyPphADKM3oAPPwuFsSDLw0wr910M5NHUvipvQ9Xjgp21LSuKnTJ36\nThUJbZcxqreC1gZG3Hzm55RRlvG/ImstM/fcmTNx+/AIxBGNKGGpAcBtg1lTQkjhsR/y5NJ0jscB\n/RvnWGcFe/6HHbFYII0qYSkpJd8eiXH/N56M9VVGHo07qett/v4iJORoHOgWCoEK3K13i0Asyykn\nZH2oBfJL4G/o6bWwOxkOzgQeIq7qE/b8IBfidwOXous1d86eXbume/fMQaydc5T2+4CF+/jz+Cd5\n0pcN32sJfZCaWwCdKY/bAXSL8rrqoTkTSCNZIEoDngL8CVR3IriMCcmUF7flmOaj5utnf6yzRlAE\nlg0NtUAKgPwYG1KFYgCwwawb9iYwSZ1fUWsevjjk0rgE0gexCs43AoHw+SBWEuEwJNgn9J4EHOmG\n0RW4AngKll0CqVX4p6UB3yWu6qfAUrhyNXCHgriRmze3OZmS0r2KxPzJzPkb8N8PWPLhSIYcLxRS\n26LBGfM4nSmP24BngTiisSSsm4G0tQx8BQk3PmZfqcmXUpFKybWNcKwGwzDoBKQAWx1WN8gC0XVO\nIAP/2RSLHIjk9aCJI30mck89fPWQB7Q2DBrL6d0HeJ8vRsLKBg64REc5IZwfxGomNRRRDILHKV0v\nQorG5iK9Rp5B10/AwYsh4wjSQvcd/BQBs+DJlsCl/4I+PffvP6o0rRMtq7vVErdbg1WzKav+DaNT\ngB8T8H8AdKbStwKPQBzRCBKWagX8CbhvIOs7Afs0h+TFOGqOtKM4F1S0zWRiPQ8fqGci+FnGEiig\nGIpCIrS2NQxaINmxoQ74s/WD1BGIiX8jPRQ8fPWQh4TYN1Z0pEUgXUHFNdI+3ZDF1VcPQQq9RgPn\n0u5CQJnsfbUEea9mU1/CAkko/DpS5PAJWXR0OLTeihCLlSA4CzpNAj5+Fe5IrK7eA2yhy+muMO0Q\n8PxN3PFWHF2nIz6oJeZ5JAAdqNZWAFmgEqO8riA0ZwJpDAtkMrAZtCUE9wEJggbFPdm2GCk53xTo\nAHyP8MlJY3GWr9B1SoAawre2zQIO6jqh2bEFNC6BzAWylfR18fAVgWGQjDx/q2k8AumN6PnFOA/C\njQdN68TgwWORQT0arETk26SQ5alADbv/0QNJOtyN8zi1AokwexFdNyd1h7uDWk7wWLQVqIIpCzbL\n+LOHSm0TXUtbwo0/BBZ/g2+Un6brIsTSeN38XCZwmGm55cgEMz/K6wpCcyaQo0AqflqcxT4uBj42\n/w4t425H8cXMXUn0D1essF6OzDDbuDnQLUSyyEL9HxYKaODDpeT5GoCt46QmRPYKnjP9q4YcZFK3\nj8bxTbZDBucDwDaa2g/SqlUv0tOLgRFmLatIOI1EHQ4KWW53oK/EfaK7AskHMauRqxawJx12zCOI\nQDQFzIRpKacgezGcZF/LIlIXlCOVPn6CWcZEgyPm+weB7wOkt1KDZKzmSyB+ahE9/2xmOxcjM2ao\nX8bdjuK7eLEAGA6qKZpLWQTiWKXTMGiJNLhZEWYfke6Fm5OwgIbnguQDx7X6TcP+Ddx+vnVy9NCk\nsGoxNZZvsg+iDihkoG5aP4imdcbnewlpp+3WyC4UTn4Qi0CGIdaT2/2YC0w0/SFA1QDYqODgGuqr\nIbOg1aWTYfcfoRNLkkoxHmqFkMdRh+0huBNhgyOxmi+BCM7iYVU5SPjpWnOBq4QFFLfleCrwCXB5\nw47njvHj374W4NZb/3Cv6asIxQhgva5TFmY3kcqZuFkgZ+MDCZWvANCkIOZ+hKA9fDXQRAQCNLUF\n8vzzrTlzJpmkpH8BC5Air9EgHIFYFoi8l6EZ6bpeha7bHN5rJoKqxs8JZCJpn+wZwPB7iTszH4bx\n2v+NJydL48473zAwNAL33o7OBCbEO/EsEEecjSN9EjAPNMsnEFbCQkJTp9OIMpZhkGQYPJ2efvBy\nUKqmJr4HsNEwuCJk00jyFUS+F+EskPwoTzkUjgRiwssJ+WqhsQmkN2INgFggjUQgKk9+bKiouJPk\n5EruuecA0l9oYpQ7cyaQ2qojyIC9AT/lSGBBh/C72jwB2u5H3tND+KkKrNNOA0uH07JTDZRSNmcc\n9/70NN/8Zh4Bv+fJkB2GWiAegTjgbB5Wu3wFESQshEA+kM+p5AYesw6GQQ6wEMicOfNbBmibX3/9\ngVnA94HHDYP3DaOuho1b/ocdDfWB7AG6WBFcCh5RLlKaA8IRyOvAFIVXLv4rAsuCD9eKOhaEWiAN\nlLCUJonC6tegVpn7fDZok+rqW9A0Kwt9ETAKw4gmamkLkmVuL7aayZkCDdiCnwpzWRTjVOFAiFuP\n3MdQawIfNbNaUpHZBn4Lf15LcqcdyPuXB+zR0UOjMz0Jyx0qxfyjgQSiNGwEYjqD7SZfKEwC0YoR\ns/SspBnD4GKkWdbbwHVVVS0ykbC+TF3nY+TBWAwsNwz8wBiayALRdU4iuS7WS3APcFWUl+JKIJrc\ns7nAjU7rPTQ7WBaItFo4e9gJZBeQAyqGOmtqLKjHkcFzBhLheL+53+F1IfOG0YnS0v6cPi3Wjq6f\nQCyeaHqX1yB+SbvPJJNTW1oRyAaHiOOUSoJ9WXDENRr0Nl5ZeoaWcQdR/4V7k6jwrUUc+E7yFQQT\nSINl6mZKIHUhog2VsPoBp0GzYq07AKc0XH0M9ra2DZaxDAOfYfAg8DJwq67zmJnXkYM8iBkAuk6F\nrvMoUkunHxJ+G6lKaEMtEDAfMCWJim2Br0W6FiVNazojs0M3eDLWVwfWQHYYaOPiy4sSqiXiSzDf\nT60SmfxEGeyhRgLvASXAdUBX0H4C2kJkcK4mELhyC1u2rKG21t61bz7Ry1ih+SBZlG7rSDCB7CN8\nGHI/WF0BpWtxIZB/8a3qQjpVISWVupBUuwSZwLn5bm0EopUBR6K8niA0VwLpZ/5uqIQ1iejlKwgm\nkPeAK2NNbDIlolfls4zQdT6RNSoOeVlWESId6Tr7dJ0bkAclElwJxDx2uFINBcgMJQcZAHQlWfnh\n0A8pm1AdZpuPgO7qiylF4eEcwWwzkA3sN/OMioiuP40begI7QbM/W7E40scCb4HmB22NGcllQlOI\nimBZGLfx+ec7CC6keDaO9ExOF+SZx7AQaZwaBlt8iMXlSAjx1OSdoWUhcAsAbSuX4GaBGIY1ptiv\n6cLoLicYzZVArMKGDbVALgbm2f4PF4EFQQSiWY7CC2I85p3IizFB14N6FGeZ+9+HSx6I2XUwEg7h\n3tq2NVBjJhw6oQCZ3eUiktQ2Il9fOP8HAJqUa3gVzwpp7sgCinU9Fs0/LOzylYVYQnmHI5KwG6xa\nVAOBdLZtqyB4cvUpMMbM5o6EZYiEJZKYUpmUH8wn+N2IcD/2j4EzPnM7t7EoL5HK9cC3gALi1Tag\nc1U8XRy2zwSK0XVbaXqtIIprqYfmTiAHgI743fMNFMQp+LsC0/GtEoDxYFkAQPgILAi2QECc6VGX\nLTcMMoDHgG/Zepnbj70Pmfl3MHsgxAyTZI7gTEKRCsUVIBaI9fDOIvL1RSQQEy8A31SSNOWheSJ0\nFtwUBBKLBTKC8DlTK5A8jduB/xL6fuj6McTvMiyKYx1C8qD6mzP/9lSd2I4/SA6PcD82j4EWu5Ay\nSq4E0o2dS5HJ4G50vQrYUplIb8KH8J4VmjeBSKjbUcJncA8C7iVQn2kkYh7ba0JFkrBOAi1tzZKW\nEZ2TzcKTwAu6zmqHdSaBaBVAKWdX2NDNIgvxf6jrQNnD+iwnm/XwziSyHyQqAtEkS70QqdPjoXki\nlEDOtk5db5wtkCgIRLU2j70pzEYr8anhKG5B/JFOE6xYZKy3kazw9tRWlqGqV4WsD+MDUYmwuyuU\nW2ODK4GkUrrdPC/Ld7surobODtvbHehnheZKIGmgrLpRkR7WCYge+b9mZnRo+C5EkLDMAovHCQzu\nK4Fh0TSZMgyuRnqF/9ZlE/ts4RDRh9A6we1ehHYi/CNwt+3/AoIJZAWQoVweeiXm+kACSZiR8A/g\nO1Fu6+HLh9D3x2HGrZLNPt7RoA+BHBAL0YbyDgPWhPhPQqAdYPgxRZV2HF3fhHMzqVgI5BXgFsrL\ns6g6WUWw/wOs99LvWOy0L6wqgcp1+GmNvFuhOR0gJL0XeBSYBtCqlA3x1aQ6nLtHIBGwkegd6eOR\nejOFwPU4E0gkCQuC/SAHkYit/HAfMAxaA38HvhMmi9xes+YgZ0cgbuVMbL3QVR7SI9luYexBorBy\ngb1mPZ2PcZexOgEVWvSRHa8DE5S8qB6aHyJIWGoCQgi/i7wrFY8kvYW2LdgLZESRgzWc8PKV4JrC\nMlamf45MKjsgkzc7FgIXYBjRlONZB5Twn/9MouJwPMERWJhyVinB+SIWhsHKCuwOdL9jxW3zHmuf\nmMVfGb+QQyfaUKmj14Rs6xFIOGjUbiDgB3FNXDLzOy5EnGJTa/A9qFE7BEkWsiOShAX1/SCmFRIW\njwEf6joLwmxj+UBAHuJwclwkuJUzsVsgk4G35LiqE9RV8z2DL8ghNwt3GSta/wcAmrw8b+GVeW+u\ncCEQlQjqj8BrSPLelVHsqwtwELQzwYu1asRSjpQQN4LwDnQwjFYMOdGe57qVIomAxWDP/AazQu5e\nJJQ+GrzCqpVXUF7UCljjsH4/zhb9MNiejEhujkqIkgq/LQiZsF3zLqVF2SQ49DBpNgTyAjIorrct\nawvMQUzSjwnOVP4lonVuAS5x2+kUZh0iOBLLzQLpA5zU5GbOLCUl7Qam7bA/nEoqfraFiHkWURGI\nkjhBzTCYgNTN+nmE/YYSSFNIWDYLhEuQ8NrZ2C2MWnajyCLw4M3GPZw3JgIx8Q/g2+rcP5MeGh/1\nCKS6Oj4fWIpUax4MTAXagIpEAE7+DwvRONIjOdABrqYkfiN7WvUmfC/0BUSfD/Iae/aMpuzkCfyc\ndljvUqX41AgoaYn4NVz9H4gyEGSZ9NhBmyMdqDTX22FXNc4K5/plfZH6ztNfIATSEwml/YW5vC9w\nk/n7MuBpXM7/hzyZQnQS1gTkIUCD2ie4f8vv+VVot7TOQJGtDLIborVAXq5uxR3AP4H7zEzvcLAT\nyNlKWBF8ICoOyYGZQ4ijvMVBDtTGU24lU5ry1BZgnMP+GkIgnyMlsCfG+DkP5zHMHCPbwKe0KVNK\nrlRK65iUdOYF4ErQDps158JZtRac/B8WIoTyqg7IhHR7hGPcToXvX8Bw8IWLUJxP9H6QvWR3KOOz\nLSdc1jv5hRJgW38kW76G8ATilG2ed7oVRdTPE2s2Fsin1C/1fRWSoYz528rqvhoxdasQU3UHLmWV\nx7GoGzDAdGKHc6KPR7RMAB7hwU457GupgvdrH8DDoZhgDdPNkT68LItfAat1nffC71Ilmvu0ZkAx\nSVgKElXwOUWyQIYi8kAhYmFMsjqVpW7jZHXrenkibuG8g4iRQMzZ03npTDcMBhkG957r8/iSIh3J\nMToJqiMwo7w85Vuapo589FGr94KT+PiQ6AikoRbIcGClrUBqfRhGJjCGTuX/AUqhz0DcCWQhMM4M\nz40MfWQlxiY3n4nTRLcPrDyGSPLgTiCO9bGA3LLkkJ4khuFDrCq3qhMx4VwTiBMyCDis7JJNNsGs\n6erbaMXpMT5qNES/dLRAzEghG4GozEqSOsdT/SjShxj8JKzOZDiRHehQzwLRDiA1pOrMRwWJSqNL\nciHdMj6qs6zCQSpvBiJGYpWwbkDq/Fio19rWzBLuiJDUZOoaaGlBFkbqVsorOtTLUak3Y1SixXbF\nfZYYDq8gBRadnInnEhOBXxvGefm+nO8wZ8fqWmRSsQEYEx9fXUD993IOMM5sJe2GcAQSKZkwGgf6\nNcCH6Ppp2bbDYNwkLF0/jLxTgyPsU3DR2GR2Hc7AuTOokw9kGCw9TuB6Y7ZAKpJYTbAF0hE4ga5X\nOGwfM873F0Lh0IM8ZH09/BxUJrdUwIjHeJyuOIfIdUfMQitmehJgxFPzT+DCZ4ehA/M/6MlvVIMI\nBAiRsUp6Mqg8A6pas77P1KjyREKtn1glrB7AGGU6FnWdU8g9S7Nt0xE4rutUIQQyx7auTsZK3QZl\nneo9LyuAjmZ0loU+wA4NYn5AzcZTHwC3xfrZJkYect9Hn+sT+bLhwIH8vps2jWyH+DiuBe2XZu0q\nh4mddhJ5pnTnvSmNs/OBRHagiw9wpvn3SojrQfgk2+jCef3E06ZjKq1aLkXqb4XCyQcyDFYoAjkr\nsRJILlKl294V0S5fTQT8tp+YcT4SiF2myUIysEGY3s7QnXExwx7zMe1B2u+Gz1dSwmzgDPUH9/HA\nQpvj6WJgrganF+Qxr0U1M4HpnU8RtzOd0ijO241AhoIUSjxwGX+vSqco+SBPAddGsc9QAok1Cqsr\ncv9usS0LlbHMJEKVgszQ7BFhdQSSvI+kM7m0tO/c9AsFO9sb5v+w4x/AdxSOMfHnCnmIRdVULYub\nKdSl7733/adOnuxwDBhshZeacPNNzsS9KVsmUGVWvXZCEZIDFurHxCSf8A50KU2iEwjjXwEVnWkM\nAoHeJLYxSSWDAAAgAElEQVRVtGj1Is4TJKf7MQwK0oDNZjWNTJzHvHoEYmD4gJxOhSwAOmMYllVn\nJ5D5NEMCmUGgNtKdSHVba/nNSNRPF2SmsdxpB6VdWTuZOa0JDuUN/XLs8pWUb++4biF+nrrhRsbe\nsp5K5efVPkcp/bBn8MDpAicCWUXAAvm/5CIyU7bzBlJw8TJT7gmHUAKJtZxJV+DPwG22ATmUQCwn\n4XhghdmcxsJKoD2oLonHaH2mM20cZJxQGetsCWQhktE/5iz20djIA/4GXGOX/zy4QaWAegZ4fvLk\nV+aOGfPhyyHPFbhL0KYfxDEJN5x8henb2ImzFZKN5HQ4zdQtjETKgFgS+kooaQNJblFYIARyYUQ/\nSEL6KHxJUFMzDbEIQscjiRatU0pUPFQMhNMZiDSXBRwJbiRVBycLJAM49ftP9BJk8mONhY3mQIdz\nTyCvISZWL2SgvAvJpJyMmKMXmf+DmHFvmr9nIeVHHCWsnd9jf1d25SdSMcBc5OQ8rovAAnrSYUMc\n3x/0MpB5pBWDEmp5Cbg//zjM7iaykWGgGQb5hsFthsFzhsEThoHF7K4S1ty5cVcD3876kFW+ajZo\nQgTrENksHEIIRKtEupeFHscNXZEkPR+B0iouFgiXUOf/qDueFRkzxVdDp4oOlFJfQpsNTDTDneEs\nCcS0CP8JfLuh+2gC5CITmSQCrQIiwjAYYhiMbG6+E8OgpWGw2jDqvnMbVHskz6EFMLBbt/UazoO2\nW3j9ZuQZ6OewLgKBAO4ylilfaeEk8ZB3QDsi7o8/OFynCV0/iLzPA1y3AUjqcAG15ac4erQceAcp\nbRKAhPaWEXi3h8DGQ8i9q8A9B8QKtAm1kuyO9XUE/CCNFsIL555AvoHMDBKRC3sROIbIST2RL9Qe\n9vYI4rvojQxcjjgxjHSFtmskyweaM5kgC0QJY7fEymad8oMH+fbYdDSeA24w+w7/P+Du9mW0LujG\neMPgVeQLXIZIGZuQL3u5YdAXZwIpiour4vDhnBeA6+LL6EpAz3yHyDKWUwRYVI50JdfXFnlR/wvc\naq5ys0BC/R8WLBkrt6JD/fa2mtQa20wgnPdsLRCQ6LtrVLCv5pzAMGiJnMchYuj1YgYnvIMEBhww\nDF4yDG40jGbRgXE04jge6rBuLFJL7i7Tp2GV2AiFi4SlKdyjscL5Pyy4OdKjcaCHTqLiodgH9+QB\nKOjsUi0hgoylHoW2o1DKsmReIfA+2mH3g/wQ3l1CZAd6DnDAoW2C3SqxmktBM7NAmgp5CVTPuYSP\nawgwrv1hvRBYqPkBP7+m7zvX8dETfvw8a5UJ0GBPZRsWqSQSd8eTX6uYi1hEmbrO9brOX4E7kDIo\nCz59n8uAtnbt3jC01gMHLkx+990fvDpRZxUyM7Kik94FrjLrb7mhjkBUoFlOtI70fKBAg1qEQG42\nj1XPAlm3btwZc59OxRw/TubMeAWtK9qzHeemPbOQ6KkM5BjhNOOI0GSwnkew7+ZcIRfYZ/axeBeJ\n0okGU4Ajuk5PpB/EckSS3WsYzDcM/scwIvZUOV8xHvF/OZX070dwYrBbiGm4/Cw3P0i4HBALESwQ\nFxhGOiLz2Dt7ZkByKaRY2ea/QlpKh2I+rvlLKhmt5mckJPckLskK2PkUmdyFWi1Whn5uW4qvnMJj\nbTk7B7q1vd0CabRKvNB8CSQf+ORrzKxGHujQQXNCrcwaHkdp1/PcimpW3/3v0J3s+AFLS3uyt1xx\naNJCFuo6280OgQDoOkrXeQG4qCaFn9ckQuFV4uQ2Z6Cvtm17cOO0af9zErMEgyYOfTT50vcQvpFL\nZ2C/khd1pwrMhKNxpHdFSk6jyaysALHsQpv5ZL/99v1ZwDzQHJIlteM92L71DC2LiatvgZiw/CAD\ngXWhGbHhYBg8YBg85rDqfJGx7C/op0C+2a8+Eu5D6pyh6xToOk/rOpcj391jSCvf8+H6GoILkT4u\nTkmk/ZBadBgGyUjIamgdKTDL6rjIewYwFFSotRaNhOVggSiNyBbIRcAidL3ctiwL4g4RkH8HIHWx\nQrEAGG/mWISiPx02HUDlx1Ha8pi5rBa5f6FWiEWq93+fZxalUnlJquS7QQNCeAmVsKSkiWeBRIE8\nYGF/NqS0pXgw9SWs8ZfezkXAGJ5e9zdKs1eaBRCDcHgS7dY+wbPIzGWE28F0nfXAiJpkKvZfxwJT\n0vodkLx48denIo70vtQvIR1GxlItgNY38OYh4E/IjK8X0eeC1BGIif8i0R/1LJD16y/ohbN8BcAE\nFqzdQ14NuBLICkSHvZIo5SvTn/Qb4Cc4yxVzgA4q+lpDTYW6F9HsqfIBktTqCsOgGzLovBG6Ttc5\no+vMBH4I/PLsWrtGB8PAbxhOeUeqM6inQPWvv851XwmIs3kqMM4hqKCOQJBBz+pCGARdpxzx5znk\n/GhnELK2lStSrREyijR7drJAugBlZm4WyPM2M2QbBx8g2VC+Cxh6A2/4cCMQXS+6hNmVVzPdyac5\nhB4zd5GQd4zP2vWyLf8vYmHbx+D9lKf1AL55P08c2QpxPwv4FhtCIHvN8zuCTFzzCN+6OmY0VwLJ\n16CkmHZ7pzBrIjYCWZZNbmkiXT7pQiowmSP9bweecdnPACTx6XMi9PfQdUoTTrK1zRpeRx7+W4Ab\ny8tbLQeG1aI5Eci7iNbv9D10Bore5KarkF7k7yIEEq2EFUogbwBXtFvEcWwEUlvryz5xouNIwhDI\nTbyxdwP9pVGNA4GYMtlsZEYdkUDMQedhJNFxFNAtVM4xQ4RfJLis/FnBMIg3DH4TYyRV7ptv/jQR\n1N/N/6cTWcb6PvCiOUg6QtfVH0+fTtvGF2OFjCfI0lVpoH6PaOOTEcs0WgwFduk6G5Ge4rZBUcWZ\n/1tWgtvgZiGcjBXqB+kFbA2bRS44AsSDsvsj7fJVFvAvJFxXfGwyM78URwKp2AMU92TbRKRoYT3C\nMwxS/4fH23Zl168dzmcI3T6uoWO7vWxO7WcVKEVkvuMEKxD7ONJHB2a0oXjgFqj9nvh8oWESln35\nWiRopxRdd6v8HTOaK4HkGAa+46QvHM1nAwnU22/10hBmrMuguNbH5fhVHjJbcSsp0h/5olcQxgKx\noEFxr7+wBHEkTtJ1jpjHVqdIG0aI+a3J/yUu+85JoHIf0pvjAYR8LAskJgnLPNZhYHG/hxkFtDcH\n0+SdOwemKqUdM1vxOmIMS7UC8vnnP3+vcPaBgMhYyUQgEHPw/iNSskbX9Topr5fD5i8DN9oadZ0t\nrkLi3TvG8Jm8DRsuiCMQFfQxMNwwnBt7mbLNnUh12XAY/txzjy0AftGUVogpEQ0DhuflbUgA9X0k\neKQz4gh/Cud77warejVI1Wq7jNUFOAKaVfLGzf9hIVyh05nAFFvIejT+D0wnfGhzKUu+8iEBGs8j\nhGL1Ku+OPGOhEzyrkOKKNpz4GkJ4ThLWbfFUl7fhxEgMI9TJPoTMtW1IzSgnUc3BqnIhsIJbfEAm\n81qmsevUgFb0P/ojGOSDox0DSZVnI2GBvJfWNTQamiuBnAQykyl7ayTLO/KScQpx7n5yyU6SRhby\nF/xUAN8D/glavdhqwyAdmaHsQR6+Ifgjtl0tBtrpOlt1nZ2ySFPAyhriBuPcBe0dnGe0OQ/xh0TE\n4vgIeel703AJC+AVXxW3EOjSmLVkyVWloIXOvILgQ+VWkbDm7bd/PADIddGtZyOSxEaHdUAdefwZ\nme1dZBIsCEnXk1E0ienfhcySGwP3IdEq0fbOBsgrLOwGJmnrOmeQdsdXuGx/M7Bc1+vdextUSyDt\n/ffvaY+Een83hvOJFT2U4lhlZVJiZWXyJiQLegpo3wRtH/JcNZRAFhPsSLfLV3BWFoi2G3mfrDyq\naPwfFkJlLMsC+QnQCpGXlxDINRL5StdDfXdWhOKK9hwdjXzvQQRiPtM/8KF+Ppg1FQRV11ZxxJ/p\nT3JxdxLSExlT/DxwGyjLB/kqEohTBqxlaYsH2LNb68zGbmlQlCAqRrcXBtMFIbjQuoHgnESYhkS2\nHrMtXmtep0cgUWAPkNeV3Z/0Y6N2VcHJAchgtOzqLVQl1GKYmde3IpnPThgAbNB1lBnWewAZwMPB\nKZSXOKpXplCai/ML8A5wXWjmdQcOd/0xf+0H/Nx0Slsv+kEiWCDmvroQKNNiYQYwJukwhxAZq9Py\n5Zf5CCNfmchNosIoL0+ZjDzE9XqKaHLt2VaQQMgZaQkJZXnAE0i44yRdx55NbO/fEgq3kMeYYBj0\nQQa4t4i+dzZA3tGjnRMJJu1w4bz3YjrPw8CapY5ALKIHTMulKTBi586BJ9evvyDh9tt//xowGbS6\nfhRLGNOpJ1udci7qwZw4jMPdAnEikHBlgCI1e7NHY8VCIDZHuvIBQ2FcFTL7vxWZRFhKATj7PyBA\nICszONQTce6nh0jOE5D37R8plNa04+g3zYKMAL3oMeskGmvwxXdg8IlNwEsErBCr/lUaqGzidp/m\ntsrqTfD5ozDtlEQiLuh2nOtwaCRlnodTy9pcYI9OECGuQ6Rwj0CiQAHiBynfQu9jk5lzPTC25A/8\nVhMNfzWSg/KpOQtzwgCCwxHDOtJNOBLI5Xy49xRpNZpzK8pVyGwh6CV+hAen7CV3mxbQbrcB3dM5\ndpjIFkgGcFojuHquJuXSZ2TPIA7oVFycmbdjx+BWSBhiOORewOL3gbGlpa1X4lKryNx/Pfh81Rck\nJZ3ZiEgGF+t60MwIwhPIm8DlSvTns8G9SGTXBqK0QAyDeCCrpKRNKtKrwpKaPgAmmTki9u1HIt+/\na46SiSzzPAbqutqAhPjeE+2FxIgRq1ZNio+Lq5k5ZcqLcfZEOgVtR/PZE29xfYfv8Fw0sl4fpG6a\nFaa9CWhnGHUTmr40mgUCBPtBehN9gU67BdILSo7C4meBHyFjA8BnwGgefTQRCcEN7UIKNgLJY0+7\nElLWIu9Uum2b+4C/6zq1PtSyCSxYDPzMXDeEAa+WgfYB8k4eRCLwbgdlTSKOIImCV1GRdgyttqwy\njgkIwQHMyShlMs5EnAUc16jna3Mi7q1AJY0YwgvRE0gfJK79UiLPws8H7MGsgruRfht7sF3HT2lK\nFeOApRqqBnF0ujnPoT6BROMHcSSQB5hasZF+PqfyDKZ1ERSNpaD9DUwb8ii/eN62XSlQvJohLZDy\nIuHkNCf5ysIrHT8hA+g0Z85t4zp23HsYtFNuOzKtmZwxfLYFWP7yyw9tQZzfUaN//8XfLC1t2+o3\nv5l2h67j1A/BlUA0ecEWcRZ1qAyDVGTm+Rz19fFw6AQcVirOIuyOAKb1tJL60tp9wDO6HrF3TGZb\ninchL3lfxAr5eSghxQIFbZRzVdjhK1dOTq+piZ9H/UCQn2jwVgH5Jx/kkXDvgoXxBKwPzOiqJQRk\nrH4Ey7SRfCCuFbVNLAZ6SrQYeUTu42HBHso7Ar6hkOZVr9u2OQwcYffum4AdZqRSKLKAAwrtTFd2\nacNZUYPIvx0ADIPOiGP6P+b2y2/lvzuBuzGMjlA7hK7z2tF21KdAmYQIawfN7e1Sl4ZYJX/yKfbH\n1zLKPF+AOdkljNDUWTnQQderkO/mC7NAuiD1f3YgDsE7kFIjzyFy0F+J0PP7HKIA89xWMszoyTar\n/MR4JGZ7JBISGE77tyKwLDTYAhnNZx020bcG53ayIBFW9nDeX73LNade45bQWl9b89jbHbFk5Dh+\neuCvm61YCEcgnyScILn1Gvpv3Dh2aJcuGze4bGehHVBuEtis6dPvaw1MiCWjuqYm/hKfr7p64cLr\n+7hsshPIMgxSXNbHJGMpGBAiCd4GzNd19iGz02h9ILnAnmt5O289/av+xd325LZ3sZGaYdAecdK/\nEGmnPmqyttPjoq/x4W5guK6zFhkwvhfleTnhDmCOss2ODYN4pRi0YcPY9KysXR8gzn8NxPpArLI/\n3M0Ln6Rz/AIlDdvCwe7/sGDKWHURWJvMY8dRvwVDKMI50TFL98xFQp73mP9HA3OSoDSYejMsTTP3\nEYqlFBffhPM4kIA8+4eBPofIKNlGr0HIhMbyg3wXeNVs+QywrC3H+yIlmv6HzsvH4auqoN/vThDc\n0fQx4E5QluU2zjzW9KEHOF4RT5kWKCG/tUYj/uJdTtKwq0ToRiy/RWSxRkM4ApkKvI9YHxMQyedm\n8+/eiHnplAB2PqDOAvkvt37QnqNpSmaPE5Bifd8HnnMLCTRfMisCy8JqoD/+sNnDjgTiQ/UpInsX\n7j3SFwNZCropGfxv/wWPxlPf3LT8IHZH+ihgNP4giceVQDSoPt2VJZkfM3rHjsE9Bgz4NJR8QmGP\n/phZWdlycm2tZiCDZURMn94upbCwe+ekpLK3cWkAZuZXbMG9ztQMYJSKIvpMSen6lZgOUvO7rEvq\nQyZE3aKsT5VXXR2/7yI+STtMx2M38/rDCl4xz+M94EpT5gIJN34vxLfjiCv4YFBbjqfcy9NxBCYl\nvwX+11ZbLVb0Q6zZ39qXVVQkHz1zpvXWW2/dVYT4p6wouvuB6RrsOkqHjXfzwgzgSeXSU9y8j04E\nshgZAM3Kz5pVuTobKNb1sGX99wOdI4RVz0TkvWj9H4B2PC6uqvzPf05/1ud7ZDJ8/yGo1wwNYAmH\nD4/EmUAyELKoBgYW024XYsEdQaIYE5HmZ3Z/13JgRAolU1F8h37zB1KTOBNffBZBBKIVIZOi/zUX\n/Bz4M2g1V25D7WgbIAUN1NIcDn97pWPUXzRZ6AHo+nR0/QuzQG5EnKtO1R+rkJt+Y2OeTCOiANMC\nKab9xk+5kDJaXAP0nsLMHcjM8cUwn88BTgcNBlLsbCfhi6Y5EgjQt4hse2XeIJg5D+8h0Vi/K6XV\ns4fITDT3Z8cW6ueCDJRdBNX8D2eBUDyK91ovi+t58kS7lClTXlwU5nog+GHcDKi5c29bTJTf/aZN\no75dWxtXWVaW+l/CW3DhZKwzCIlEmiGDhAhXIRMfEKszDomgQdcpRQIBwmnvFvKKirodHsei2if5\n4bJebP0tMmteP1HnKmrYgyTTxSHWQyTnOQCX8dGgQ3TccyGf5mPKSrrOOmQ271QqIxr0QyyKm1Tg\nGR2+bt2FR5DB/OeIDDvctFLuA/5gbrf1Ha5rjUQnvWErjGlHHjIr3xGy/HOgb2bm7iHE5v/AnLlX\nQ1hrdhaiFsTUoOzCC9868sILJ++65ZbauI8/fuxKw3Co2zVgwEZ27WoH9Sx4CO6FPqCCpBXI+2tJ\nWNcBm3Q9QGxmVOGx97mqJafiZ3JleRLJJ6YhE47QROWpwF2gdOS9+A/AxN2kfJob/N6/35PKcXvp\n6nCO0YbwNhmimYXtov5D/UETnEtjYg8SbqqBVraEscU+ah8CPv+IKbcAH5gd99wQ6v+wEEnGqkcg\nppTSdwP95+FugYD4QX4I6Jfx0TvAfofKoXYLxJqND0QGePsLEpZA9t3MgtO1reJv7fp8VUrKyUhO\nNRuBaAqY++STf1XAhWaoc1gUFXX7ZmrqsbXUJWM6lumG8I50kBlb2EZTSqyOMUiosGXN3Ac8bS9B\nQ/R+kLyiVX3Le7DdN49Jm/eTk66JVj0RuH7MzWS2X8D3gMuQ2XakZkUAjGJZ1+l8/aVUSjpkU9gP\nlDVg/xb4WaxWiPmM9UOsaz9iSWiLF1/5Nb//rQGI5Dkak0AQ6+M9LfCMWM/VU4jVO9XhMBcCn4bc\nRyujfM3o0R9eQmz+DwsRHOnaASTQxCkE3hVjxz6WtmtXcu2bbxZuTUiomgPMMAw+NAxbU7A//Smb\no0dr0XUn6dTeC31AJgfnAoOribMI5AfI/QrFcmAkTyd+To+hPgZMXYsjgWhWkdMZwJOglQH0P0zW\njN7Bk/Z3+5CScZqBDvlQkbPQmxjREEgV8sK8SGBmEs7xdc5hzmzKMbNGFzFuXRKVObVoC5GZYiSH\nYTgCCZeR7mSBZAKVnzNyPuEJ5BNkpvW7xYxrh7N27JQLMghJjoqaQFQChdNbXuG7o+WLiUQufBhq\nDn9SWpp+AaKlRirpkbF3b58+x45lTTedh6W4SCREJpBPgE7KJWfBHEQfRwrerQD6GgbZiKP7PyGb\nR+sHyWs/39d+Oz1OlZBWiHnPNZlp62WZPNnzCa7PeY0/EqX1oSCtF1vbPMUPZmvw8Q1MO4ppMeg6\nGxAf3X3R7MuGLKDaTBZ9HmjzDN/729SpL12VlbVzD1IKZyCwIuE4owm2PsCMWtKE3O8Gvq7qBy04\nyVcWFnXtum4EsYXwWojkSAexdt+KYl8AGAYdyss3dKyqupjKyrTlus7fkGTBD4A3DIM5hsFIkpIu\nJj19F86dJu0EMrALBZ8BRZvp4yvLog+iUrzv8LllwCiq3xtP0baTtB15L84WCEirir2Y45GCtmkV\ntJ6fb/MF+ok7mEqmpthJfQnYKQckAZHrG61cSThEQyBnEOlgMzLDyWvSM2o87MGUsRYxbkkprc48\nxQ9KEWKJpPu7EUikSKxTQAtFkJ+kL3Lv9gIJtiSiIGgSYjcCGQDcKmbuA9KzKTwGZOKnI9J3YQYm\ngSj5vz1hHqDJk8vbTjvxDd+gY5s1U9IJhyACGcrt40FNrKhoMY3IMtZNK1ZMLikrS11g/v85Ln4Q\nhEBc5UFT5nsdd2f6dUgm/CvIbLUvolG/ruv1wqejtUByc3Ydy9lIvyJCKgBooNY8ydQtD3AwYx59\ncah75YJJnzG6egMDCoAPb+KNGoInJZYVEkul3rr8Cw3FHfx701XM+N5TUy+sLirqkYZI0ZkzZ969\npdM7jFTwvpmkaV3NKcRKydFE3rsZeE4Fv+s2AlFxoF6RpkcALMrP39SFGCUsE5FCeQFtp1kfK1rc\nvnBh8tGamslJmAUUdZ1yXecZ5Ht/VwkhXYJMhJyal2UBRUomhK2Qd2DlUsa0Kc9gNPCs6bsLhVgg\n2StG8fnOmYh60xdHAtEKQesHmhXWPvp0Iuuq4oIINQs46hOXQV1tMHPC5HSPOwMHdHSnc2t0xJIH\n8hjwEHIh0ejH5xoFmC9ADfEbJjFv8U/4y2jgmQhNZaB+BJaFdUB3/M7hlmZI7jGCrRCzBpZkpOPc\nQ8H6/HZzoHTqA2LVnNp2OR/6kNnwACTDdL15XskIae419+OI6uqke1Iv2n28VZGyonHCwU4g2lbe\n/U4ip8q/853V+4EL7CU9VEj/jjNnUu44eDA/BZEgILwEuA9oaUYzueEV4NbQpEuTsKcCPzOvu0BB\nh7jT3IOzZRCpd7blNM7NKy3KW8XQbTjUINN11PFh/KNFEWUT9frvhIGRaGAEnWsNvikfcnk8Yi18\nNJRVGa0oHWXb5yZkcJ8Y7vxCYBKISgdmvswdHVLSjy2c+PHmkvLyVsnIILN5yZ/u6tHpPRL23sJ/\nHfZh+dfQJEfiz8BrCuINg47IQGaVqemIEPlIgAMH8j/r2nVd6uDBxjbb/qKVsCJEYsUG83v71oYN\nFZjRxUGyoq5TCTxTiy+lI4cSOHjwfQIJhXZkIz6QAcB6891euLZV3z74yENyipywSin6JuYsy2Jd\n7t+RpNPLcbZAQjE2TpktaOs6E9a9f3MIDhtvC9Ro1AuLdyt50iSIhkDsBcLmIiz4ZNOcTqOizgIB\nNixn1KBa4nRkEHKFWW20B06aq5Q/2YRzvL2FUBnLXkRxJeFlLAuOBGJi6yTmtUIGs0HAOvO8tiIP\nu1MGug0qCbhrytX/2lrahROIkzkc7A9kx9Oc9qWxumTfvt5jkOfhagAlxHBISbYrhkGvLVtGdqmt\n9a0xmF9hYHQkDIGY2voGnDvRWViNJF2FSg73Als0M0RRg5rqVA6lbuWgKQuFwq3pkB3tqaUiV+3N\nnc2la3CpQaYSeDiujBdxdvC/ga1MjQJNoX1tDpOPgVajwZFyWmy/mLmh30FQiHAU6LeTroWIfLIJ\nmLLzd+XzMmfTph8bdpiTl/UP8siPTvVl7+7vONYCCy1p8jgy8x6DRFktseW3WFb0pQC33LK7zfHj\nmVV/+ctFlqM3jka1QGLCiBMnaFFeXtkK+hcjE6wg6DqqkE6F41i0CaU+QyzA0L48loQ1kIAa8U6b\nsTtGJB2gRNc57HRwXaestCruQHdfe1j0y6WIVFhDlASSUsl8c3srsMB6/xYh4emtzeXn3IEO4Qlk\nGDJbLjJ/Wz/tkBDe8x0FBEzw7UjkyRu2Qm9u6AXs1XXcKlZGkrFCCcRegqFRCGQQa9sgg5m9+98q\n5PsJ6/9ApJ513buv3VHakwJcssohqF3mAYCWtOwvv+ckIv0T3kSKHfqQSUUcgeinW+fN+8Ym8C01\nz2sRcu8G26SPUIT1g5izQKssvXWO6cCDBCVmwam+tMz8qC4ZKxQ7gTxbCK4T8lK3cegEbSo3MGAn\nLlWQdR2libR2s8M+RhFscfauIS5uI/3qvtskKt6+iE9yzfpYFqYDX4+hFW6/p7m3LdLT/iegVZ/q\nR4/lffpsepG72gN0Yde28SycvO9GpuHsxwsiENPaXWBeQ6j/IxuZ+V5qHX/37v4HEaLph7S0jcUH\n0pgE8q2ZM1kELIeETpZzOhQrGB6vY5xBJLv91JdPs5CxbwDmO2YY2pGxV7+lOJoULuyYtYdT1MCE\nDidBq0XXdyHVjsPmWykhsBGI9We/J7mIolCO5ApZ76sbUfTmPLFAHjd//ozVfCl42fkOmwWiVSEO\nNKeoCQ0ZgKx7Ycv/UGmgQhOQIkZi1eBrZ4s2CrZAsj8fjT+ibBSWQDpRmIEMZg0hEMnAV+w92U9b\nRxgCQZybByw5LIWUofnkU82MNsBYw7jxY2BsaZe6KL1pQH9TRrh18eKrqpGHvh/QzWB+GfJyuFkZ\nkRzpIAXobrBFpDwEvKvZ9HfDoH9JL5I7fhKSfOXHh59n9QXUIqSYH+Y4eW2XU76C4acR8jgFJIYM\n9BY+A1KV7dwNjAxkELJf62U76L5a4aubjbagYsbVvFeDLQxb19mGDGwRK0BbEVgzuEoh0pyFEQ/5\nfiM/1BAAACAASURBVLe7GzuTFUx5jW/0msvFJ08MZTZREIiJZYi1F0ogWYgDua9ZNr3fnj191iME\n0h/of+gQNQ6+JydE40SPCmYm/w3TpnEKWAyacw7KP29M+ehYu/xebLUSAu2FFS0ESVjmsktr2tQe\njq+qTQ2VUe1Yfry2w/CM0kB1B12fj65Hqk4wENhjSlL1CMT82y5jOTnQByJ+v5cjHKvREI5AJiKD\ni47EfushP+c76pIJBdq1oDlViu2MmJnWzNn+wIwEfh8SehoxEusZvn8b8LCS2XsigXjyPVzys3SO\ndb3d/eNKIzyBbGnF6TxQ7aiN601gZhMFgShL4prBdW93OvqPlwqAPOVcohpC9FSFGjCe8eoo29JA\nbXv44Tf6aZV8cnIAf0BCkK2quqOV0ipPnuzQFyGQ3siz1pXwBByRQDSR57YCl5pJl3cBvwnZ7L7a\nBGb6auqV3clGktImE9mRntdmNUnzmaiAg6YM5GiFmLP1Nwm2QoYgM1g7gUz5kMt3EXgeANakcarm\na3w4JWS30fQdAXl+y3fQoy1m4ISZ0d9l6dqvZUzn648DfxvB51f+gkeTT59OWwUMMXNX7HAikM+U\nxmjk+7P7ErIRC38hMrvuu2HDWAMhkO4AS5ZERR7QuBbI9cDSEycYRHBr2hBoP9+++bX4eFU9wJSs\nlxLsB0kA2n5Xkgb7E3jHbq5MSvh7NfFxf+F+Z1+dn9z1J2uTe+XsjbU45gUEgnvsvdGjIhADIxWZ\nwP1ER48h6fLs0FyLKYKZTBhF8yCrV7DV2MVOIL0Qx7B90NiMOLla44ziWnzdkXLffYDNWl2LV02R\nsa6W411dHekENE63F3CbD9XTR2UJpRlF+Otm2euAvrUSJutmgXwf+IfB/MEcb3tn7ZHcDORFm+Cy\nfRCBVFLZK5/83emko1G4GpiU/2/iD1xBqSYDjEUAt61fP26mWH7aPuQ+WmXUIxHIgCi+M0vGegR4\nQjP1ZcMg2TB4CpiSsosnqZ/Znm/+vo3Ioby5KTvpMI9JLQno1+F6sbyO9J23zn0I8DaQY2AkK9Of\n8Dd+ZFV2BkSW20m3lZOY50Qg0fhB+iH3zR52OkQpNlRVtej3LV74F7DJh3p/K73LrrjiZIp5PaFk\nsQfoAMqeg7JLxZHSoogNIRnl1rE+QmSsfitWXLIA0FJTGZyWxo5ly6Ju2nUcSApTxiYW3H3qFP9B\nJlKfKScL0zDi8CV+l+rT8fvK2Ie8/6EWSCZw+DkZpIs1OGE+k5Paty969xRp5QuYcL3LOVy+d/0l\n5cktSlsahmNSsRvGEiA9q0ov1O9t3saMjqsjEDNQ43lggY4e1sfb2GjOBGJFJ0Sq2TQQiYixylLb\nI7B6hfwGP9WIxuvmyziaQFUWMGgfnUdhd8b76UDyiURKssP1QTetD+dIMU1KMhzPT9xYzrHuAaLw\nc1pT7FaaG4GoVODmRGr+iZRVn4v4agzcI36CCKSc8i455OzOIae8He+WpVByRed3GF3ajTQzempD\nbTz9gRufeuqJfYi0AzKDXYgM2Mtxd6QfQbTeSJLGtAoSry0n6SJEUsUwJM8BaDf26+zpaHAEyFYE\nRczlI7O4rx2pYC9hLJCkg/SIO0PLDfRvSaCvQrhukKuQiYL1XAw2r3Uncv0TgJWFdG4LHMTPTPyS\nXXyIjHdHsjy0TtgKIMUwIhYvtUJ47a1KR5w82X4zcBq0YiTc+h6s3tiBhEIbtBrzXOvuiQbqTA6H\nOxr1cpKsLO3ZCIH0rKlJ2AwsTkxkwIQJrNi0iTaEkXksmMEToW2WY4Zh0B3oe/vtFALbTSLfquo7\nx2+idFs8ULn4KIWIRLcV8aVZ3611ffbJZA/E0twBHKogybkVdU381bWbbmihaSpcyLoTxhKwQBwl\nLNPStawQuwXyPWSy+uMYjtcoCEcgT9p+OiGFFa3//9b0p3Z2MB/MAiIXfByI9AS50Kza2pFAjHwv\nnPuAuM6iq4g/lkxZOjDvAFmTCI7mEjkjrjILlNvAUF++MozWGMZLGIb1fW3tm/SZj4ODg3I9ck+y\nscqH0pytl1sBYzafjkVmw48jEpuBuyRpJ5BWVVS1ySe/MIOMQ+14tW018UOKyzs8ho9ZiNyy99hI\n0rVqdmzfPrQ7sNTAiEekpg+Rl3AN0BuUm4kfjYxVPI0byh7m16vmG5QbBvcjEViPXnAl9ySeZDwy\nMOwgeKbdBRk8P31qBx0JY4G0Xk/vkuTkLbXEHbHVTHO1QEwr0+5MH/IthvddQ2vL53MZMmPPJGPd\nKaS69RQAH7UvDmJtq4f5VV03O/P5jUbGciSQtWsnHMMc/DSo0CR6LQyBALZQXgvHh5HQYUG9nuaW\nBbIDGdSOmTWwFpWXk3P11ZTU1FBN9FWPG0PGugt45dQpRiEDcQ4iHwf8jYYRD/g5se408PbSYmqQ\n56QWmexYVohTBNYk4BNdR7XhxM54qseGWGv8f+reO0yq+uz/f52Z2d5778vuAkuVjpQDiA1R0ajR\nx0JM9LHEaExRn2gmap4UE03URJMYe69gowgcEOmwwLKw7AK7C9t7LzOzM+f3x+ecmTOzs8vmeb75\nfv3d18UF7J4zc+rnfZf3/b6xEoqkLuLMRSdMJnUf4wQQVZx7KB6ZGHE9hL5dMN6SRl4AoqBcgDYe\nWub/3Kja8dpYAHII8aAdRDBc9P8f0v78u60G8cAfRnhyIB6GrxDph82cP7rwqYP4tamIpqLgjRtZ\nDpQb6IqFiCY933B/tBeQA8w2J9NkB9YH4JiKtwhcMVBL0tF6RvcW/NU/HkWMSdXP92Rh4OFg6uZ5\nTShbVk19Q4S/mRyqBNwVhf0lRD/PjxGLYRzi+qaq/j1rI4AURhHVZsHSlkzy6RAa5xdTZsvjzDE0\nNpYEroYrGIg6xjeIl3EPYtFuRNzLApCGEAvVaFTocRTS1eibeTPi9+af5iHE9q4H5soybwT0uVlP\ns/A0FOqWjaihvHmgk7mMscBFnCL1rCunDG/65fnm0b8LXL+HtyKBtCrC5K9JGMIDIBuAFOb9KQZB\nTFgBcBkbu44xpbuAytt9Pm88dN7JTSSdQtCn27Sfzdq06RYYyfwpRXjVo9XxdKUDABSFoM5ZJIdV\nuQdg6aYtsJJOve4BqKzkkMNBSHY2sYmJHEUw9cZj/6tCulbPuRWhhLwQkQrSU0DG+t7NDA804hpM\nAF4/3U88HtAwDpjSAcTNwEIAyFaAYGwNBVRW4T2zHWAZPen1DMYfRO9IH5/NB3Z7Ut3uGkgGIwdJ\nfYWI+sJ3874N8e7dLSOPV+r+/6iNBSCvIiQyXhvl3/9uUxGplRl4kPwhxAUsQNzMh87zGTWMHYEE\nIRa4cuCbigpW4WFghSAWi02MBJBRIxAFOTKFRhvwVRLNSTYCfSOQbcSdHgBu0BgsvuYNIIpSCNyG\nWLx0/n5Fvqk8lLq5Xh7HFRX0VsT7Hbs7Hwj5kD3TgKMysoLwauI1htVO/KexjABSlERSN9CeRXJp\nNz3ZwEd9RCxFLIyzFYW8rhlERj6d1IFYiErwDAIy1hxGTWNhGG+roMxTUPy9hDMjI9tOhIT05lVW\nzjwBLDKMkJ2FeOn9AUgO4pn4bNBJcZuNFPc8ckUJQFGWiH8SHllO4KaBS/UGQt3GnEevMcG60vj4\nJuA4SFnVhA2EcXo2YiBWKZBCztZMBJtsqT4m+SCzSrM4e4XPR34NTFAU/4urrrP2AM90AI0gqZo+\nWfL+/ZcmMVJNQY9ADgNT/dCYfQvps3qKqDA5me5JBakWhOPRrG3TjpYmfPBBBlJTUc1mpsfHs4N/\nDUD+NxHISqBeljmOp5bgDSCKEgj8knNvvol4Hg8OOikcdhGvKCTgXUg3UniPaXRqGY8UeusCdp9g\npBLD5VSu6sTj9M4ZRz0PvNNX4KmBjKBCSyLKbFDhnJ2El4EvZOQPxvEd/xYbC0BeZmwa4VzGVrT9\nP2G+F381HvB6jfN7Z+eLQCYi0lU24JuGBubgnfOsQixCvumm00A01pHspf3MiU+kRe0kuimKblMc\n7cYc/GRAweyIRaQn/E2hy8BbB+uPCM2c02gAUh5PQ8FwnZmuHC/VVLkajiUS6Wd2+11x2N6woP4E\nj4R0GxCnFeC801hW5oQ/TDwCQHQwK8okcwDouI7ypHp6TQfJfg0x23wAASKvBTdSsavuotnAMS3a\nKEIsTHVAjIISzvglTe7wd43MZsecpUs/yAwL69l5552HSn0kJWYhCopTte8dGYEI4sG6DU30gFvl\ndCHwGYoSENxIXvgppOf5oe8ch/OOEwbejaDy+gHMpUBKLaGuWA5NAzZKwpFMJrK+CBHZ1qPVTLay\n/LNCKqaqhndSlnEgUn+jaY5lAr3v8t0IPOmrC4DDTmeAXlw3WjmQJ8uqHc8wK6P5Asii4Si24029\nTkSkrPRrro37VcP6+siNjqYdyMvOZj3imRpPnfV/CyC3I9arXARZ4xwjI5DbgXJq35HwNOadO97D\nCcRath8RFQcCqQni/chCXJPpQIthEmPrcrY2Aiu10dhoneOrKPleOHBY23YQ/Kro+povgOgU4GL8\n93R8Vc3tKiJq+6mf3/9fs7Fu7jMIamYlgvP9d0St4DPtZ3ehFTD/TaYiCr0HEdxmEBGB7vkYBQVH\nsxrGjkCMOc6dtbXk4s3AqkCASJphnClYcTFKGus4k1Oj6A6IpruoieT2fsJXaPtIiAdCARIx2f8E\n3AOqW/NIhaUSLs+irSiXAgXUBz9LbUgwLgEgv7kQy8SBVhdIXucfbSOtPpJOvBYBNQFY9VdK8oDX\n9VBXRtbZW6EYAUQc59upvVwnDsldTynKJ384nFNSBgcuTyLZAXO7gYmgRiNC6YXhp1l3jCnT8UxU\nKwJOysguBFjnMzYT6wQwUUtLTEFEoF6WnFxzRU5OWWNzc/ZbaGkgg81CCC/WIxyDidp5WRAvnA6I\nb25qJhBPGmsiIkqYn7SZZbYE+s6RFcPICOR8z9x74VTNOUZIHUAHgSHRHIl1EKkA0eAawuScjUhx\nbNGP/1Ou/LKTGLOf8x0rjeW3/uF0mg8hoj0fNQXJhnieJ+K/IbZC7Oemrev9H8Z0jJHtBZ4hUkuA\n/OBgTgH2e+7hCIJ8MNb4A93+x3Im1yt3TlHFNXwXT/pKRQDIEJCAooQg+oUeRYDBkHbclV+30Y6o\ng/QinLQZQOptgspbKQkx2WV4D2Jqi6Y7ArHo60PGpqDioGl6Dp60l9DFGsNUod9WjKbZBaClrOoQ\nwOIGEAUlUkG5aD+vBtfxnWTgOhl5rHkr/3YbC0COIaacTUH0SWxFpI+eRCy8t3Ge7sr/pS1E3MxL\nEeqhvswlFbxyg0azAta1a1m5d++Y0hjuRrwJEzjS1UXoe++5X0QNQCQHAojyffb125FeS0Z2MEMh\nwGQbQeV4eNvJiHRRLTDIY0FnEaG0MQx+P5ihPKBWC7mfAR7gP+YFUxIzi+bgCQDvFZMUax8yRdPp\nK8yY2xrGCby7n9fGYtuRiO1SxLwHo7UhCumlQLwqFod5QN7EVtHRasjLTiygwJTBu9cG0fJcHvnm\nYBqLEUCxGFEg/jh5Iy8fZ3KahEsHkEI8sxx0DaoTCFAeUcPSlJSb6Q3PR3jIRQqKl7CgzRY6MyKi\n82+4F2Cx4Gld6Yna9xzUzi1bFanKNKBVk30B2N5lx7y73c2+m4hY8C4Jq2HBQAa1iHvWjMfOG4FI\ncHqIRDWGz+KBwWAGk6M5QjmP1AMpxJ1qQ3jJddrxL9d2PfkZV9BJtC+7ZxMwbxTpfB1AjIv67BMn\n5tUC9aMIEI7FxOpCiKemKgrLEc+Rgj4/XJie3kFLZxUgoqmLgXynk/0IJQcXAsjHk8Y6XwTiK2Mu\nTFGiVKQD+5nTI6OAB0BAAEgpIgL5T+AAsqwpIRCI8PJNBzoIMJybTudNuULUG70K6IZv1qcSvo/n\n/b2c7sx9YDoLkl6HHE8dZBZQJjFC+aI2oy1j0U/W/yRDQXlRQSlFXPfHBsjqchG0VEau8f0wFaar\now9m87WlaGul9udftvGElzbEA/Qe4oLtY+QQ93+H6Vz5VoQXNgfvHHQK+NejQbsgr7zCf82bN6Y4\nnxtA/v53EoqKGP7b39xy43oEAv6brPymYewEFSJewnkJtO4AFoMagP6yC++iBeHJCoBAlVRIUiHB\nTmASAmTuQRR8vwTS6AqAzsDJAHYLU9qDgtomcSLD5+tz6yLZhxtAVBOodz7CyVTgCRm502f7diDO\nIFshI3ok6tJ7ycXj/ZiB/AnkhoZSO9eM7alUUjuiiV6IeLGWyzKDssw1zx76Zc1+5gT8Jy/qRT29\nBgJuDSppGJEnHo0KXUZ1znLtOlVhaMb79a9XLezvjwwKD+96HqQqoB9P0f0C4LBW19EXixoEaGVj\n1Aiz4pwQwR6lRSzgkd0U3/dnDgCXBDcypT+H44yU4dYikFFnmqCgBDZzUcAMNswADsoo2UMkdHQw\nNx1IIWebDdinPQdfA3OFCKbk3M7SkyqSF+tKlulHLOKXqRCoevcr+ItAZn344f0ODM6dCnNUz7XW\nC+mjEUEqFi78ZCHa/BVZpoOREYj+buZq1+czNAA5fJgv8BSXt+EByLGsLryS7DEWvjfxP5L29qtY\nN6QgHwQOEBi4DG8AKWmLjExFzHB5TEvtTkGsHc8CuQ1DZCDqd2Y8dZDUyWKbY5oq8kJgu+F7WxHO\nyTqEAxMBrOHI2jrEc63bfsS1v0xlVHVl3/QVAHduvjPi2ZefjZt1ZlY+IvX4fSBWRl4kI/9cRj7s\nu49mdyDSdeOx7WhrpaLwt3Hu42Xf1j6QUHCPaA1DFMmOITydW7Wf34q4gWNZG6JJKXKU3xtZFlNy\nc6lTVXekcz4A2Yt4+Q2LiRoLBEmobcCiBNoOIsLieRgktxELYyICHMIR0VVxO3EE4HCibA9FyKs8\ngCyrQCpdgWCX9HzqNJtJqszntFsUT3tAk48moeCJQFZEMKzOpDMc/D4gegQCoAxLLEd4VM8k9msM\nEGHZQHM4AclmhvZK0JtKarUT5wxEZOr2Mn+FNVdCdfyVe2IVlHjA/CqvtmifYSykj1UHOYbTfCHi\nnh82nA/d3fEPx8Q0n33ooQ36fGx3GgixIOqpAH2B1AvpegHdbXNi+KCki0lYMU05xtSr13HxtMNq\nfnADWd3T2MNIANGl78dqepvUyuKaSRyfEUr//hVsSegn5wji/ieTvcOEWJDBSg9C7G8hwGZWbgtl\nIMePMoBO570RbwKL3iWdBtQrCklA+M6daxLwLqDfiEfs8RjCcToCTFYU7+mDgYGDFffdd99/A3+R\nZXfa5hhCsSAK72hHf6aPADGQVzg8zClZRncetiOebf8RhMda8p8nWjXx36P8fhJizouHNqsollzO\nPBhPm+0hfnctNTV/xGzO48svCzVyQQZQ8qtbb50PbEeWjyGabFu1434eSHWq5PQP06x9x27teGOi\nxbalCOCs1IBUN22olNQJfMOk978PZLDz4SC8AeQgME0dOa/HaCMAREFZdcXBK4rv+sFd3PDjG34g\nI/9ZRt4vI9vFqVOgKPgSLnRLY/SZO35N6+EaITo5Hvu2AkgSIvd6BPGyfY6g7f4WkRKqRCxavx3r\nQzQu/WiF9EREakP33Kbk53MYWKR5mHrxF4QH7V1It1KPCDuNN6sQqJCEZ1+E8By+QgBgMSMARHIh\nmvp+DEw5R6YjnrYBRKrpDWRZ99xT6QoYRiJNy+VPirPb9uZSFSFmM4B2jnU9wRwCZmDFZEL97nXU\nRkrwoIzsbzSxUfhRGbJwqXbMuxL6ScADIBOBkyrmKDMDnwBkk106wEAe4oVJB1WvDczP53Stdr5F\nwMnXeG0lcKSV1ho8NQdRB7EyCSsP+BxXGaEDen3qMFpdQFGIaWtLW9bbG7PRsO1XjASQaPQZ9p5Z\n69n4qBSvSWNTuAUzIekXZdQSocLZX/yxYdhllgI6Z3II8RwaZ1mPKmdisOlDpB2oIbvvUZ6QVrLZ\nUssMBbFopZByKBIPLR0EAK8AGCBs/37mdKD1hxjsc+AiZzB3ot0vrdg+EQGQ+qI+GzioqibfcQRx\neBh8pcBUjfhwGh/K9K9/vXpCd3e8GTyLuSRSbiXa56dgHmrEyn/gBhDJBfZtcFE83gSQVsQ1H1NA\ndKnMhLAaVFSWqx7H0fD1ZCHWgnsNP7/6UjY4Axh+W5ZxsXZtLSbTAUJCnoj6/PO/2s1m+4nMzIE3\nVq4swpOemY5YO7qx0oxIuzbu6+AMwsmrQkTbzSZPfdRN3/U5Lx3k3yd36x3AuziDpmMAEFmmzzxA\ntSSctBGUcQ3oFuCpF6KgzABe+ceKfzzXFNME/gfL/QzvgWBGS2d8hXujPYmoIf3L9q8AiN8ZGP8m\nq0bc7OmIB/w32s87EC9bAWJR9tXC92ejAYjeZarn+KfMmcM2YCp8kQPYDINe/EUg4J0bBk+6ph0x\nIKoKT+OPkRWjRyAgpuUt3M/sBUeZVhYd1iohWDePGz43FYeplEBXHKIW0xA57CwtpsyB50EWGlhW\n2oAuurIKzKjXLKH1tIy8YZRrY4xAjg+biFlazRdAQ0I/0RgovMFYqkA1W+j7CKCQwoN27OEghSFS\nMUu1bednUHsEA4AgUhpRP+Nn6Yyk8l4OPI3Vq1BcRnRXJuL+lOApLH/vwIGVbb29cV8btlUQoB+I\nDiCRkaekjIwViHvfyygRSJCZupVJqAGq7e7CCvok+E1e+1G1c7JFUi2cw/8kuTGpvNqxHnmXG3q/\nz0tyCo3q89y5H5iMZTCN6LPxGAum3hHUwfe4PghPYRYQHfrmfio6ZlMIRKlikcsGOrSmUT2FpQOo\nQRAUEACig14tEAJqIj5pLEXhmsmTdxc99NCXZ7QahtH0NFYqV99SBLxBdNVM3E7R/qOwepCRc2jG\nk8b6XutiGh1RlCEkgIymS/vcDzyIe+aM+sAlbDThGeS1kP7+TcAsi9NZvObxxwML6+re+NGHH9oM\njth0hHSK7m2vB0w7WkXKGbEW7E4TABGIuKbL8K5/gFh3wlQIIKhrPblbCmiaug4hiOmVWgo/5U7f\n+mtaLQT6JQ0kFJR0RJblrvVz1u8EmrF6lwu0iHENkKvNafG1NCB3LLFHn8+bgYhuffXkxmXjAZAF\nCC9H98anA3/9n3zZ/yOrwT8Ty6hkC1AcG8sh4BhsWo3nfMENICNy38buVfAGkArNc9sFrsmokjGF\n1YwbQKR+4KW/cM/i7Sw50zQ9OBJ4DFk2gmMqTulrwoZDsYfN1I775ETKVTwLg1FEsYRDP7gpDltf\nBoNGb93X3BGIZCVqay6mtz+iG2hK6SN4wOL2foouJjrQQr/dgq0JwIKlIo20QcRiZVwk5mdybive\nAHIJ8FINNZcCAQpKrHasoQxFzkDQwf+GlUz39Y7pDCet7iTC85yq3HZLAHDPyZNzLHgtwFI7UDmL\nAxcD0RMiImrp64vHZntI2y4YTwRSYzx5WcYlJ1DltHdelFltV4FjqaZPj/ZNcZp+8Yuv+hC9D77y\n/+eLQGYAh1/meyFxtE/bzYKOdyiwAQmhmdsnYQ9v0VJXuu0FCjSF5tPruCrAhbRShWDjhyZ9xUDd\nGs4hACMGzxApCUh9mPIB+sLk7u64o4hF5LRhdwOASCp+6iCKQgHw4s6da+7q6EjxlwIRyrwBfWkU\nrb8BaCTp2DTcTK+fN8KiEK3eZ7QxC+mqSG/d0nQZpR2zOQp8x2cTXbKjHEEouB9FmVtAZWYY/U70\ndKAuRijLnQ3XXPPUbRs39lYnJ/OLN9/UdchArF0SHgDZCCQd7SYajyO4Z6HILJRuF+q++igCt2k1\nw3YgnodjCjHbB/nb4SVAt/Y8ui2mxJ3u89e0ugjhfKHR2z8DnpeRP0TcI39TLi/Vjn8bPgoS2rWM\nRTiv52ML6sO3ngMelWV866PjsvEAyJ8QC4De5XqE0cX3vo02WgTiBhCtgDYRscDvhCoZLwCRdOaM\n703Zw+gRiNaBLg0Rd6qE4SAXVrckgTECIYquv3zGFUkf516cbE4YMAH/9PmeVDoCjxPrcNGbIiMe\noIocqgODGNK7hL0BpH7uqsW0duENkr5mjEC+czyBspQ+5mLFkdWF+vp0NzNk4mqiskE1PmSVE5hg\nQQCFVgdRw4DCFWxZB0wGtWgHO7oQXuR/AZf106/pLUkqcFAL+19FUMLfwUoAsmKiMQWev9ekFf7b\nmHLs9vb25G6HIygUr3GsAHxlwnUDcOh0UdFUYmOhu3vqdnE9UoH8AOfIFBZAagjHo0Ii+89G7I0C\nyhMcFUkdWZHq9Ja4x/Co8Bpt1AhEQTEB0w4Qc7yBtDgVacNGLqmyYU4EKmJS9hYxEOfd3GfFjij8\nyiC5Gkg72EzSGcTcFkCMKc54nyndU8hQTW7Q1x2SWGBopdT4HKo0/4UXnuoFKjX2oG7GFBb4AIgm\ng/4h8NhvfvPGZ0CKH6mZvcBcae4zebgCSnCZPiLuVCbu53x3ArR3MHLY19eIWlcw/u1y4HTPJMpr\nbqMNWK5615gyCaYTK5GIcb/30d7+s7W8ckKC97U0dQACCPcABA0Pp1+7c+dQTG/v9wKcThOedNx0\nBPge1a59N1DS7WAqkKkoRAMvPyTuxzHEAn9IIzL4mlYH4T9om7gJ1fQgPtEHQOw+evqzsOE/AlkM\nfK2gmBEppEMIpQiRIrf6Vau4EdGE6lV71EwnFp1ifHWQGxE0Yt/1Ztw23hSWbzPL/5V5u/8LMxYh\na/AfgRgL6HmIRqFeYCecnYZ3BAL+01iHgSI8I251ADmKSK1oP11XQUd+P4CCcu3EuokShhe6i5jA\nZWwb6DuXdOGtJZ86VVn2fXlTqQmtJGTYhEm6ACiVoGeIYPsCduu1GQ+AOEKO0DBz0ioao/A/2103\nYw3k5poY/gnIKliS+pGeWIyE8NgmziN8motg43PQkEeeOYigCxALWQTasKpL2NwI9Ek4i1/nkccO\nZgAAIABJREFU9TSEp9cC7PmSLwdwv0yuAwT25WjX7A8Ib/9XwCQaUnuI7tbP7TDpdXevX3/3VyCV\nGLSpdNvSTNIi4CAhIfPJyYELL6y/R9zXGSrU5XWQgv988qlZMRmuzdM2qUuRhyUnubWFUW1pdayV\nUJv9bD9WBJIDdP+MaWFAvQn1yr9w7yEE4ByXko8mYIvc52c/I5334AvcVYl3A+XVIY0cxsy5jtnY\n8QaQ1FCGe0humokjwLJv8w1pjKTXxwGJhrSGXkgvRTzTL2n/flFjyFXjQ1uXoM4JzqyJz0QwHPxT\nmqc1knpwyEBZzYeKI3iGTOnWox2Pv7GxIBhD/+Tjq08PxQXerIqCsjGNlUUBkxBpm9NERHzFRx9e\nNof9eXg89BmIZ1/vWcoBkuJ6e9dp3/+dfalciVgsCxBOsG7vAJFNQxxDAF3rDHG9Rqt/6NbaE0gy\ncB2S6wlEPXUEgEScIrBjDiYVJvhJK+l9Ns8gAPYuGXm01gQ0MtDFCJVnf6lBPZV5hvPUQTTdv98D\n9xmkm/5lGw+AnENjiSDygj/BW9/p22jGC+svArHgiTjAW3VzF1SlQa+vtsxIABH5yTLgAi0HnwWc\nkeCfErzo3m7K2z3UzQ9XUKTf8btXM/ZlXIK3R1icvqiklmETS84dbAJ3Kke3VOzmeuymfqKcE9CA\nr5mktukc0amPHgB5fUuAKbLOnM5AFGOOt9UiECvZwKSdmfwD8SIs6A7C1hBJIhBvBnMMCcNOQtwS\nKzKymkZabQABF2heugI8jOYFOgk6rmJKrab6AkSXOsC7m9gUhx7OZ+w9ictiRvRnuBB9R7e8tuS1\nG2iLr0FvQpt1oJbwvrx33/1pH971A912tZCYUk7RCRyO6cTGdnDzzUEn4JIBmNQbyLkZTXRhxR+R\noHJ5aET4kewS08k4lttjOGePsZeWJwWSxUCYn+3HqoHMwDON76zkGWWaDJT1pZQGMxyi+NnPXUgn\n3lb62xdWrFQh30Br/QGiiXdd4+VEnL2RBY4IFp78KcX33/vDx4tyj6Qdve928wevhA3OUbuXY3Aa\nNAmSCAT1Xu+70Qvpui7ZVOBOzZuHUWp+B1IsgwtKiu38vv04pTc6SDlkXHgmwNHNjAQQGCWNpYoF\nb2EFD3zFcz+00hYf3LqE0xjTWKFMIhHPM/PUUz2mdR+bujpUEx5NPmP/B4hopFoStYoW4PHJrbwY\nNcRxhHNpjGA/BaTtrTTiiZ5059Jf/UO31s8KkYEqXt96BMG02u67keQi82Q0Na4AVAzPjSqekZDt\nbLsYsV5dOwrRxWhXAds1RlgZEKEoXmtbOgJAqjh/BPJfCHHIMeamnN/GAyB3IXoSdHSbof3/22zG\n4fM1QDaoL4KqNyvlI7jsOi3TCCDtkOaC+32vzUgmljC9DpIHnPM7BS2pNJbmqdIXBKzZwY4wc6u5\nAAOAOCWp+JN7pkVT1PPRdI6cwQtARI4baMTp6iAkOAQNFFpJqMumJk/zbDwAUrtgWWLqLpvD7Dil\ndYD7sznP8mwSwtu6CXj/9HPYES/BrR0h9CDu+cQM6OlnwjEDqQCAPPLKbNgKEN+/Vbs+ewC6mdzg\noq1LRV2EIBIArDvL2axOOkVfx4qf99E6UcKqrVtWWoBbPpj/wV313QGV6Ayh/3wxly0rmh2O4On4\nFfKUhuayz3k7/wxkcLCA4OBjZGXFYLEcfhnaz0Vhn1XvNw1BDxHVWQEdITktudVVsaztLaA5nrZD\nXywIDJxIT56C4jv3ZawIZAbCC83GU29pApJKE8/VD0Q2SVgGR3D+EYtVDFYy+eXxEEeRPe5kZuYG\n4A5VPKvFCCrve91TiKu7invMQ2S2zyd0sGzaxFCbqf2RJ4Zsf/+8KTCaffPxjkBiEQup8bjLENME\nzQjQX+2TphmhyouVjE+LXClyaYqo3xy5LZzos2EaKxAgH/75OaKT3ZeGPFod5Fbgg0ZWW0Gq453v\ndp66j9nACncaK5QLiMQGTEBRwiksvHbGNPXUH/9IswHwfAGkEE8GoBUoK0uk/p/rSQLKsBo8biu1\nQPu2FmKAeRpBYdKpe6lHgJaRMWe0ttooViBm0wDSHSBt991owELh407yOlJw4V0HWTRI8j6QfgWs\nkpHHQwjS01c6w9T3uqYhouwzjAEgisIEhFPy83F855g2HgApQBx4IgK9b8L/QvptspV4wsVmVSUy\nKKj/B3jokb4FdAOAqEGw1AxvZft85mhMLL0OYuy49jaJYnrS9jSx6+eDDGLpsaShegDkg6VLl/eE\nhjp5oeS6VBpP4x2BxAIDIA0g9XQzMF3VvHXaiK9Koz5N28YlQadoHmTNbEtdXX1sfesY1+jHG9l4\nq4oaD9yMZwymAnynJ4gWBHAVzYbQbqZU4y0rTRJJx8yYTQjPSvfU9gB0MK+vVPyoDM88ja5wwvdv\nZ7ugdWZ9k0hHvh1juG1l2/Jjy5t/krBtskulWFGIJKf6Qt66KQpUY5+H21RIWcEW5x7mT6O/P4Oo\nqBPAMVas2PIMhFTGET6jCRdWErDSiJXfYxWd3X/hHmdcaB0zqqdvjhpiUccchgJxVHX0hp5zRDib\nGak1dL4IxBdAmoHkF+Z+GZ/bWAB/LxmZ/hX3cyuwnMk9cxgyub67+o9hiKbO/wTekMAmy5xceDV/\nW3gd75oc1DnWKH8Z2L4iY399R+nAAA2zmPVyCU+mw6AvA6sNLxkWqRfhQOXLMpsMQpS6+XvWHz8l\n5e2d7ygTgDEYX4AjtE3bLlhck4ozCAfkIp99dyPeOXc/lkZD/t5ZbjyEeC+/w8ZLkh0xJNmjKEdn\noqnkYeZLBJCulXApP73fEbF3LxMROX8JA4BozlQi8LH2Va1AwtU3UL20htSbj+DvndhW088EYK7L\nItLZ9dcwG/hGlrH72Z6+ALqcElPwX+h2m91MYXU0al0W4cOhXo2Si2q5rgfYKiOPlSUAQOvxmYco\ntLuPG+9sizGFNVYE8gzwO4O21//YxgMg/uaI+/vZt8lUtBdAlnENDYW1JyWdAw/VdAQDC4/Xlgez\nW8Hmm7P1kro2mIhAJKex49pjVo2v3zpxfRv7pwcSeK57sFsFIrGKBqu/rV49e9LZsy8hyy5EytAY\nlnoat9QWG7aJaBRMmkkqT6cuAe8C+nygbUl7bG9ZZtlo0YcELB1kcF4ffQmINIc+/EkBIvoCxZCf\nJJgzHYJ6KezDB0BMmCpTSe1FAHADIp+7CtToTmaYDrInDE/6CgALltd3sztdE3Esoj+pGh9JmB9u\n+GFop3mw781zpAH3IKlbOlrSXZJYgPxNW7xgAbuPgrSCrq44EhJKgMM8+KCjHdSdcaQXtBOKmBmx\nB5HKqcDKT7YMz08zSw7phvaiTcUtRB+dSSRwljPhLQeXDrcDdykoRjnzsSIQvQ8gG8+wnyYguSLl\n1MTJdUWqn4hGN5HGkljF2bD3jyYWXeZCOojoQH7JsF07Ip9+HHhxH+FH7HwxG/hxNk8/PUyHyUK0\nsZAdp+1jYP4BnjqIP/MGECtTgMt2HnpjQz6nwzVpmMkMB5Vpn5Gjne/wFEp3Pc6j9/rk+wcRnrxR\njmixijRUzfcfAH4kI1fhtAzSlPxK3TVYgO9gxcwQsfTxPJgmoKo/+j4vbUhKwuZy8TLwMHy8Bswq\nHsCeiVjXdOZUK5DYGMGkB1dy+LkNzPfTa/KyQyU15BSDXcERzzWQUsvY9Q825pNa0E4TVr+ABMCM\nOygKGSakKZxXqiPpHshkpfH8W1maiBDLHI9dB3ym9e/othVYZlD8PW8NRFG4HBEJ/Wmc3zumjQUg\n8xG86wREo9uD2h/refb7Nthm8NyslpZM26RJezWpDlXCUEDXOjqj8BTNC2HhccSEQuNLcAah3+TV\nuYt4cSQSyy5wf4aVJKzuRSYT6P6vdtvJw+wNsOP8S4Pa0Bc4HNgPxKd88MH0kxkZEctLSp7Wtj+H\ndwTiAZChxhACMjq146eanMMZ1EbgDSDXAh/mtuSGHsw7ONpiVYjIie/YJ+0LjByIfA/PzIHTQL3N\nIhhMkTA/BvaCKRa8unEBTk1ggi4SeSsCiJYBNbuYfulezoQGE7DZuEMbbe+d4ITpHd6ZBBQxEFeC\noSNdQYm3uCzBLkm95qM6pLJuHkPiuRJizsVgrxllUuOsRexUQI2nMzyEKVP2AEewWKYVwNtfxJOS\n1Ees2cWdwG+xcgeCSXihq+7Tv1KXrk5JeDq3L5Duz5zkAWc5GzbUNaM/RxUMsccM36VFIN6UbgUl\nCeGJ6w5AjfarJiBZDW2fkdRQPACjarNtQTJfjKr2kNf3Kyb1BGwT2QmT5F1zbAeyuphmBkyV1CeA\n7TBw8F3mJ9/IAzYJ9c94+rZ0ANHlc3TTNbH8mS9t/TfAb5q754a3Ed++iZXLgXwC+/Zon5EPnFbB\n8g0XrvkRf56L6Bw3mm+65fuNXHoOpEo80UIZP32qrPEKclSJi4uqWcYgsIEdxF+oog53f5d3JiK8\n/t+CdBNc/DpcUo6nn+t6YEjyyC21dgSTAuS+NoOgjhD2AE/pB6FCsNNK8tcvY5r6IAk7gi/Mmsu+\nOM4DIEoO06Y2j+gR8rIgJ0/0BtLpNHHwcChtqkVQplVIdGFOdhA9Gx8Hawxzp68MVo2g7OqOrV4D\naUT0C3kpJmg9JH8C7h8tsvpXbSwgCEQgtVn7O1z704NYpL7NZhw+T03NpNClS98vxTOXeypQqigs\nRlDYVmvS2QCFMOkIaHlXt0kOBFh4iyqKhXcPafum44lAfoanEbAYKIvmq6v6sLvgl2dbaCFqIGoY\nSFIl6ZdrN2xoe+KVV3QGyegAMlgfRVhCu3b8vM2Nh2PoDEAASpWWvrrWjOvDqIGotNLM0pxRrs8S\nYDtm1m8zb5NWHVrlfog18cTnT8eyE0jrg9wowfqIxScCASonMjECpKkIcsXPQLoOyLNQZenCTjYl\nH4H6K1D1c+ovprj9EIfWAkXMSqknyn6nJsyHdi5ljicddZelcOiDOgaBnXuJ6y+i17cnQ7dZFpwH\nkbr2EbpaIivrNFoHexr8riqOwN5ABgvaGER0wIOVcqxclT58aelwQzKOyq7fflrI5zvbiAPO0W+O\nINY++OgTfAJ8R0HRngVpAPHS+srjzACOaCyabLxSWK4kQluLohqmNTEagFipxhxqpvPgHixqJdF2\ne0ds6FIVnKq3om2bk8DUFi5a8AmfWEHNhcv+oP2uOILFVZlkNol7AQiatr8IZAwAkdrRaetWlmjH\n/AKQcpasMztY8nfgSQIHDmEAEOCJMPr7JnHCocJa1VuTyZ1uUSFaRVpdzQ/mAvfKCgEoyvObVjJh\nR176rY3Rce/259Bx5TEeIIgewEnmjUgdez6VhCf+njifCW9BaChcYmTLXY73QLbWHdluWaJJH0/k\nPxHaVLergjpea4JbXphN45VPcvxHIU9H1ZE+saEhN4HRKPBWEk/FMiGvg5H1Ts82uTGDrIy0cQw4\nszOKQUsPqZq21oXtzD8J0hkZeUwQAlAUchEpqS3Gn2t1kK140lhpQL3Wp1LNyCjkfuCkLPsDrdH1\n3caysQBkByLamI+gVup/ngZ8GUrfNtuK4FgHghpcVTUlZtq0r4cBBc5cAiRs2EAEgvt+oyx7Fcr0\nh20nIxWA/RfSVWkvSccy8ABIEZ502WTgeBll14YyswZuLu6jLyyxJzGQiKKijsjIi+5ev95YWPUH\nIPVYMTPYkEBcdCfai19HRvMZ8nAhXYyIQGYDvVv4uk9Spf6u8K4ArCOmyaEd23ZupveI84h0ydZL\nvLwRCX577+VsiekmrROCE0ShMA6fCERG7sghx24mfinCw90FoLC94xS74uZAwx/4+dOImoG7oXE+\n84+eCzh3BZDK5WmxZA6EkDR0s/Zrdz0qPpBn97TjkHfAcSJDZtPhG/3pOW9RG4na3YS00oUs2xAp\nyYJ1itIeEIOrLJCgm46x3RBpAZBbH5eWvG+oM8HGkPVKlvY7UeUd5IGURIhz264LmY945n9v2M1Q\nB1F/AuoDuOsfqjYfQ6cMS0NE1wzhsphcnbmnGT0CgZjZw5x9oxdZdoXZBw/Zi23mT1ldijelt91B\ndKKDyPXP8uwtkDcEq3T66JRaQvf/gl80IsQHs/mfRSAAFZiGC4HfAb/QVIzT3uWG9IvZNLCRr18z\nfEb+rwRF9kYzru/Wk177Wx66G/i16umqP4BIdcWrSDd2MmvIQfTjskI/okEwI8DBZxG9TL6LF64/\nc3Vg+oLexOWEhrWgKLMITjZf1f1kIIL4orEn39cW1IvtIGphiOjPmEpuPZpMLmJBbfzJHup7mPhT\nBxHPIByBuRJc/M4UPjvYHZDV0pKRmJl5cv8XX3z/rJ9ufN2uHzajWFQ3Bd6fPbKyiq8DXZwGzpQk\nEBfSiCTZWQEsbmSVDaGFNx77LqLnxR9LayuwTHsPxFohzCuNpfX6PIjf+SGqhFjv/mUbTypqAMHR\n/xKRH1cYndr2bbE2BMjNA+b09MTVBgcPpALb4dgVQUGcDg7mC+AuWfZGdTwA8g0jAcSdG1ZQwhUU\nMWuibm4l6XvNhi7UIiAPK6nA5Nym3JYSShLayXwLMhe5cEmx3bGhQSFzbpEPHy5Pb2srMXxHHWLE\nrK5xpUcgeQz3dpOgDuN+8SVnFbk2kyguV6Glr4CpEpKvDIhuEgJAdpDNFWmmtMG3eXslI61t/lEi\nkqB3pYg6/UUgZJFd4aI3EwaeMqSXUvayV5qF4+DlfBmG0DDK0WeqXMRF27tiu7Jwcg5z0AKubGjC\nIekpDzeAPH+GdxwqTiC3laCMWSPl60F4XRJQR/K7EgMLAFVCloeA0ww1TneEQskAwXft88lXK4op\no86RUbDjeEj97RyOCyVhQSytqNwEJBNjX49oon0amKSg6FLrbln3H/PH/zjCtEejKP1+Ou+nvMv1\nt1hwtKnG7GfW1320TOluJrSC0QBEUdKImx9MT1kuwOrdu/lo8eLKH/HnKS6kG/Vu6hM8lB9Ip+Vu\nnn8LApZCeCAeyfniE0R+kU32LESq4g9AXHlm5uD+wsIBvAHkDJAI6mhCoydZ/tANiHrHO9oiM3cP\n81sW8Y0lCFf1x7//eACImhrCjJ8L6u11kqg5VD7CbwIQkjyvqkICxYF4p5Y6iPp5A1d0XrmOjYja\n2yFgzTKF12cepq+NhKRTsyN2LDvbGhhWND0R2EP7vm/mRDtWAO952FfTMsDVChN0qfvLEVpXxn6l\n1pNxpIJbuJIS/mraxaeh21F+I3lSv+929odFFxUdYM2a51yKcv0IZ8VgNwU4eRtGUfq2kgtcddth\nKhFZi9reIBJdFvpCa7kZWNzF1AzGUf/Q6hs3MTJ95d4EWDqYTDwidaez6XwL6bcCe2TZL9FnDviV\nRTmvjQdA3kIgei4iIqnBPxf/22Z6Gmtxf3/UAYQ3poSFHZm7aBG5wGOyzEd+9jNGIBf6/M5YXLwX\n2KKghLDu1UESy0xYCcJKMGLR34RIFU2+ZPclOSc5iYuk58A0C0yNqp2OuK4Q+akXX+zGwNuXROqs\nHdyRgw4gU3EOnSTSEYwY4mQBqCG7B8BGYBWike8jPItwCSOF7AqQJAebv/gJiStWz3LNOn2SkyO1\niqyoheU4gyzuYrDuyXpZP4mdwcS4IFHvqaGd9ilHOWq5SjgdxVr6rxqtgTCMsJOZSZm9dJhsQDYX\ntj2IRAqo8zEy4qwaVbEz52onUkAag5EKiq/XNws4KIFKwNF0LMMOPCmfI/RVyWEOhlrB3mwfMbY3\n88YdnzBsDm1oXUFEZiit8+OoQTXdhOQcIsG+CZgji9GvPwCeU1CiMTCaFrGzcDMrg/rJCY9lv9PC\n8A9mcTAW6FPhhAoXkL3DxbmFzlNE6Kq8/mwVUcWbQF10y1UE3bx5c/HWedPtZ8l+4zAzuoAbFJTg\nfnIfVTG5dtLyKCx6GqRWkJws/aWENFy8nUQFGHiZl9cDM1+HKXfff//sS3//+/tcXouE5ETIkBRj\nJRArhVhZhZUfY+VF7stfzJy/rgV+prHEfgVEVFD4XQkSA+gKiBmIuSzcxvG3h5ldCX+SPLIilUCB\n9v+1wHpV3Pttqwm62UVg+lNr5/+hJ4qvgaeQ5Z8gy05EZFGoyJj+0dm+oSpWVR/cs2sbMMFy5k9v\nTYxkCmKkhG6TwPQJnqzAKkT+3yuFdSqOGER9TpcwmYlw0BYbtttPYL+UM3l710UXvTGvqSk7E9SR\nNUSrGA1w7QnWAXGq/zX0EeCv0TaSgBqsDAO1/Waqg9q4bMCcVOAiOILxraNTEdHdHn+/lGUagcaW\nZSzDE32AoRdEU9r4McKh8Ge3En/yfzQWdzwAEodggdgRaa21jH/W8f9L0wvpi/r6or4CshRF6pkz\n50+hEH1Alr2YLZqp8YgHqwXxcsWCVwrImMJajfCq7qa9MJu+5E6Et5+PWCy/Qnj6RaYK07JIIo/A\nk63AQYgb6AkwDcc1NPdOqa7OZWTnsDGNlYYOIMP9pZjRFU8nANSQ3ayCK4uzcYjGNV2mohQhI/FL\nrHRjpRorJVxTtIVli1OxNX6X9Gv6l6vLjzbQMBsfyW0VggKbCWyJ4oTGmPJXRGcX8bnJJLVDv3th\n3Mzmy+KJb58pvEtd7bUcfTogVKYmpFqotaQA+wlyreP6Wgh2PoJHdDIIeIajDKCaVoF0UBILwHSf\nQ/BQewcGskmorcUjTngYe/t8FSyzXPSqPmA6u7x89rIzbwfUR8pPAQU5YXRFBtCGM6iXvK+6keU+\nBHtIlpG/RjSd/R53BKImFVAe+CHXDNiJiCjlD2uv5aMX9zL/fYRkxvvAXaTtD+bskoC9xJYC4QqK\nv+FQqwhO/hCoyunkh/NOnDjXGxY2gcndv3uCR+MGCPkR8FYUx2qbsElACHy5G33RKFx/B7cvDMUq\ndQA7c8iZC/z4UbiwISIiuCMiYsaHS5f61MRcpdw5/WmEd/4lor8rCyjj5JVv8mLJN1j5CtQ7EEVc\nqZfImiGS6yMp6wbXFevfIe5wJOY1eEmxu2X7JaEk/Atg4+VQdT2WlRVxC6pev8XyJHAjsvwPfSdt\nSmYdkL+5meKNYQxeG8UMZLnmvpzBoB4Hkix7EQomafck6znuiUBoQ9kxAEhnMG2VcYQiyEA6gMxA\nOIgr3J9kpZ/OnOHBCeuGQ0P76lVV+hr/TZE3Au/dUcIgwtv3HopmJQfR8PcnvNl4ZxqCaQyvYOjs\nrEmdIG2UkcfTAX4T8I6h58WfbRsOE3PhDT8zRiCrEe/uN747ghqE2XYdd0++YxzHMsLGAyB6frwJ\ngfAzwe90tG+b7QYmQvv8pqaczxEP0IbyctPQli2PjaZ9r08hVBGFqF14p7EqgMIN7EhCPLxXAz+L\nwTaFnowKRL1Il4HfDqwwuUwd5bbyrF5639Q+4yhSurM1IjgmrLNNRXiyvtpORgDRI5Bp2Nv3aefh\nzl9XUFjbS0R7M8lXAR9qxy68eCtfIMgQ2WTedBPzP+6mOTYWc8tnHH/sCcILwrIs+XVRRHXj7Y0B\nLC2x4OjKoAWtk1mfR+AxdXoFEXEFpHRjKPSWU74om+wS7TrkquIYjABy2hxjjqBBDaesrAxZHuTi\npnUmJ8vrCe6RkcO063cFu0knrPkCcB3CIO1uMA+A9PQkkd6+Dy8A6ZrdH0jXpSqhWRAeZpAv/++X\nXrqnlUVqY/3dHwL2qVFYqvsx0ThzBzP+qQPqRkQaC+Ah4LJCekKApCSa5jzCKVMjr/f3EFAvIw+j\nFdAlQV192W7iKmJPR3FuYZgTUyPCMfGOQhQlFBGtbsJl2va25Zr/Cu8b+jtwhucPp2/kkj84iZgY\nxdHUdF7Y/ilIefAoBGk5b1ViIO56Ug8GIArXX2v3c30qOOu3bMkOsdn+8Yvbb09CUTyOwrLHVMJa\nC4BYrORh5VKs/Agrz7P5j+/RXpQF6ipE9HEb0ArScDfFQ8lsKklj3aVFLUTduYC+03ixerTBYcIk\n4YC++gEhf7iE/uAbfndtILAEWfbHcipzSs6pwMUvdVBb0E9WXyZhK5KYvaUFE17zd5iE6Pw/m0P1\njQiA0AeyAbDgdsLjBpEklcnAUc0ZmolgYhkibzWJ2vlqWfCx6CEnr4H0KWLh9ZjVnU7Smge9ZN11\newR4ASsdeLPxzhxLxBZ7AHv7EnsE8KVIC6o3+bkGACgKJkT9Y7T0lW5bJZV5eEv1GGsgDwJ/GAWE\nrmDa6w2YXMf9/O68Nh4AeRKBsg8imDYvwYj5Dd9Gs0HcMfi8s7p6agtQ63JR1tTUJ8H1o+nEGIdI\nwYg0ltQGODsJ/C6wWZsKtvEWzq6kN8W3obAUSEzuTO7fwx7Vjv1T7UPOkJ0b2+ka6HExFKPCSWmk\nBLYGIKoZz0yKqdha9wEBRDrK0QBkA5eeuIwvX0bkoD/Uxr/mo1M/lygSS5SbyPn+eixRO/hmdzeb\nyx/koYZnkEzHT0wiYjazaxBgaLQrj0o4yHFrL41IXwE/s2N6tZhJoRgW5lOcKiikcKNGpTyLWEzc\nACIjD5xNOOsKip/Wz9/+JuRCIoffTC1uGnyaIAlRcBUvcDOFOMLMTH2zER8AMRTQDwFmuroiWGr7\nQNwzNQg4irMvyWWSdgZB+TAMTtDYSSrkzjtRPu+U5bZ+GbldVanMDSPjVB9hKNZS8jfGaunIjcCl\nKIokI3cD91xE8+UWXGmJPHTHp6hYOGE+Tbiee87WzhkJzu1PoyGwP6ofW1QYIrI9js8MDsRCdghZ\n7sw7MaPmVEZr9HK27gX2SC4WrGd/3EmulmL5c/NJhlf1g/20eywwTmAXAUOzaJ76AvCkMlnRhQDV\nF6C9/4sv0m0HDnyS1dSkhg8MiMl+VsKZ/8cr+PyFeqxevQW6VSGGMr2C8KhtaJMIO5gTHsv+Cdm8\nYn4obcL2gYwRxWbj4DDdnmgKnR+y22Th5OcfXmaQWPe1Y/Wx9cuB7lOdmDszGeiZzKPvh+vmAAAg\nAElEQVQhZq5QWujHnYZT4xG06QbgZBr1VyOinQwMAHIygUlTmnFG2gjDI2s0iIi40hUUvSl0GR35\nJ+ptrvZLv+GQ9lmXutmBAjz0/poD2t/6ZEK0bXIQml3PaE5TEoai9p4MTOGnpcjhOeWRxLduRtQe\n3gQ1bZRrcSHQKcvnHR2+3WQj32VxT4oEAVyZOz/lQsRz8sko+97Kov8GIZXzL9v5AMSMeBC6EHnp\npQj0/nSMfb5FdkkrvKvLlSz/znf4b3B1Q+pCjfLqa74Ash3BK38ID6X3ZACua/BcA+tyWnIL64t2\nIx4w0VAo8sa1aTVpSRJSM7onYlJPMyc5aajmdHlXWJepj4IaP8dxFhGBJACdWKUZQCCqowpoobj7\nHGL2ACqmpl1ceAEix1uifX+NjDyEoqQgoqjrgMUsX/42gp6pd75uPTaF9Mu5vB0BICbxmUjDsLrV\nThD5WPDDwAI1B1gZj+33RRTF44lAMvvpD1nDGr1jtgyxYHoiECum+th6c2bmmnBOnBA9IDU1X8UO\nvxBeQlYKFN+N6D2oAJKoWg5LnohkZASSBdgksYikERGhclHYPm2/eeyQoxiokwjPPwAcDITGdHGe\n84Hfrr/g6u6ekLhTAOfOFdmCzISd6See6hWBdGe0IOaY6Om0fAAZeX0QrtPp9Cw6w0crbyC6XqU5\n9AjRoYZjct/T16ZTkVuf4ADsmlBhGSPrIKvQOoxv/3zmdNIOsDOsYBKw+97n+V4QruW/4qYnYmm5\nPAamXA21r3LrTETKaTnwIhm7+kk58hvgvcevfXwtEKqgZE6HCOnCCwddf/nLxb/7+9+bB4OCHkZR\nooHHUM3bqVyd6Z/CKdkLqNgbiO0HIO1Di4QVlIBOZqSYsKfWce07nXWFGcQSitVN+gDhCceA6u5D\n2I4Sdsrxi5gbEpKal61bN02FeBVCRgoMuo6pJvuiafV8I0GmK4adlh4ewElz7SCVeN5DbZiWpEq4\nyrOpmYfoqUgCrw7r6YXtDGZ2U6nV1GYCJVr6aDuedPxyOvI3IN6BV7BK+0g6EsWty7o1Bpo+9vl5\nA5NPV+TV7RHgr1r0kQ40SB7h2ap9aURJQ0ERDAUP8sF1E/FofhlHQhjNX+/HCJNlukLr6Ome6lE8\n1py3lqAWHgGekWV/ArhqEtFVi4k+m4qnF+dfsvMBiBMRQv3/1O6OgG8SAEmWqenoYDI4DyNyvv7m\nL/sCyH4EgGQi0gKlZtaGtXNyVj/9XwLILG3eRqL63J4lCxF9MlP0zwh0BDqkWinSgcNToHqiLIHY\nRAsVjb1d4W1qM8v9ccn1ZrRUJGcD8GfgEU3Dp4UVzS14KJjNoK4APjKkr3T++hUID2gpslyOTt/1\nNF1tPZNH4SQmBSGcBL2h74IzYFMtdBNGAv4ZWD8G/vEJGc2ZZLYgKJrB4YRfNZvZahhheu5XAMiV\na5uBCVpUlR7oDLbPHp7bjMsVB1zA2rWvtlS+RWLsYAMcy9b2dUJ2OVVLVGJPT0d43dkKir5Ye9JX\nKSlTSUvTroe7ae0HDNbbSFgSABwMAfv98O6F8MUgLN1UeHO42SmUWffuvTwX4Fw/WaAmU7ViP3CT\nNlLYmMZiG4lPdtKePZVc6VIitg3SGX6E6DTt3LIxAMhHk1AXV1siJVw6BfM4RgBRFAkBIJ+rIIUM\nhV5GRz5kfbP8n98ja8FuJgIXf8GiX+8gy5kJpn6Kgz/imn8iKK0/xSptQCIYsXA/hsTq/fn7j4Nr\nERCrzpwZQHt77sxTp+rSW1t30XHgGeA2AvvvQ+TxfcU7AaigKNtGsB5J6KnUQgexdRJknOXW3zLI\nFIbpxavnQHIh+kKM2k9X1mcODkwNCYi7RChZVCCGOw2r0KNCgwots/ne2wWtIUUfvcxVsWBKLiEq\npoTABIUaRGpM78OapD0P3MLr/UMEmxHPcKuEF911ek4ng4Vt7lrEDISjBe5hXqoEXESN/DbiHV4C\nzKUn/Y+8/dnLiEZjs2rlftXq5Uh5UlhCkHQNQiYEvOsfAGcq48iUcEjSqey9Lpd0LYI1+S5+AETr\nF9F/f14LraGnYzZeLEVnMPVB7SwEXh5ltxtZ8kQ1kvo2Vvfohn/JxpPC+gZxwxch0PsCRp/v+y0y\n1QTzpsGgE08xSZcwUfAZxqKZL4CAWHDvRoSBd6XREvAwDwesYtU+BDNnwttkng7AdFuwPfgIImKr\nAAh2BCed6TiDHbuY3a4oecxvf5iDxdBFbHdIr7mNWf7ma+s1kFTmPgviPulaVS0sanMiPLwYZv8l\niAcyYfbzOkvDKAyZDRzWJFLAAyC67WpOIstpIgHhgazRPML/2AglBFKtnbdPCkvVNdGeBQgksDKU\n0CagyIz5qmlMazAUCMvaQljAjFd3g6sZATQTw4eT+iadNHUgmsJ2As6/8kJT8C0tduBHnlG9V7RQ\nk9uAxFLZKg8jIhkdPD0AEh09m/j4bm3B3wqu5cD3sLe6iJ2rT9+LXg7m9dDwQwjuP1ISGNbPAVDn\nnDkzNcRuD3J2DwW6COrJYf+924AVWIlG0C3/P+7eO7yqMmv//+zT08tJ7yGh9470raCg2FFEcewj\njmUcnaLOO3rU1zqObXRsowNWVOwVBA6o9BoIBAIhhYT0fpLTz/798eydUxIcZt6Z953fd13XuQg5\nO6fsvZ91P2ute92rr3l2L78zdmKRfsttRk9BV0U77aZjRNejja0NyUW3RzFqxElLSywOrVEyHEDE\nWnIgy+XA9OMMMtFa3BaXcGx+YSXLf/NHumQ7Eki+12msPkIW3cR3v8Btv0PIl1cRrHkp2OgAfvfk\nBU8WBXS983rMZieFhRI+3xCg6bUnH/uE6hXLiM77M2Ks637UaDbUFEGqyAJ+rYjznIlIYY0FStSo\n73Addbqo7qg6+veURKaxlm2b2YU/Onrrb+F9CaySSEGZEWmnycCYW86VcjoNVqZb0q5ohX16P9OB\niuGPMyLdQTVBUOoDkF/yXNY3LOwlIn2l2riMbvwT6/vSOxMIyq6vB+YZCBQBBnrSDyLAJRUbtThT\nVuGNWYhNcasZhcUISrJmIoUl0luPE6x9QEQkChzvtJDtITmQsln5qKxs2hWguIFXiJC6V2sfLwHb\nZDl8CNqpzNKI1DWCYaBEa2oZnSOIS9rJZlnuE40NN8l3DaPfy4aBCEWnZ6cDIOMRN/xDiM7Np9R/\n/9NtOOg6wb+WYFe6tjsfAEAUA8K5HWNgCwCbH+SBukvYXI5woA/Ab65owlIK/HXOwTnJgIKNdmwY\nek29qR3NHTruoAq7fT6wBYnn2Dm0AbcxW6cEpDZz8kD1GAEgsScLmP3fxcCd6g0M0IRBSUWAxGgm\nvZKFpPg49/ZHsWElOMsZwnfDEloHumay7HRGsc9rJNsAH8fAsoBwtPJfoBwdZQgnEkxh2e23YnXf\nhSjYa4uyPIOMVmBCDz1TpzI1dC5CqcnPCCCPrF014rowTLLkB4qPoSCiq5ve472bEt2WtPqFnWYs\n/nbQRtwu8tNxwonYXY5CLH5tAxMEEEUZTXKy1tW7GZ1/Eq64cvwuIzGFxQjHnQQsSQbvyiVLfvvd\nvj/qH1QeSAN+1d1tfaOjI/UkHfkODK5C2oZUInaoixHppWLs9jGAAd5+GDKUTDyK13ff9UbJiDtm\n7yEE668JJFFQtpEA5Cn143dLosEQhOM127FrufO+9BVw/Q/MqrV2ZFd4k4/nSbCwNpctiB1q7Ke0\nZj7C8GEz2LIunxozoRTv8Lkvb7lMrtaPp3x5boPV2kGeiBAd0Pxhzv65uFsamfi65vB3M/DM8izx\nXbgNeNeMKw+NzKGymWRkpZJKz9D6oS5+AkDs2NOAaZtn+mOMJtMmQqJ/CXwSdEqig7rhrSlVM1ri\nW7oLewonoe7gDU5u1vlJLn+emxYf7HO2fQAyitJJq7gi3oMxj1AAsZEKxPp1mM840Tf+egLBCOQI\noMuldymwXo3gdxCMxPchAG6YCqjT1POiWbMiIpBnEYDxRMhzBYRGIDYccW4dnfpU/4h1W6vWr19q\nzss7vBlRTxmj9UiplNs3EJHWFZEX5VSm7yWhN5ch+tj6lZi6v/jqq1hr5xgK09cOqB0HKOMY9nkm\nevdxbD85dO4n7XQAZC7C2UY+/tNNGxcZqoulLbSNwJyIOkghYgLdKUM5O3ZdDs7xa8mKRtxoV8BL\nt8PWeuDJOQfnDDZ5TX6A4bXDx8R0xUhShlTHrEceRcw+vxxZfgmyjoI/M7VXCbTFOAbZsUfOnWgD\nTMlnLb+CtsGV2AjtVNemGQomVvqBAqJaf4XEp8BnboM7MgKpUn8uJihx0Gc9Mco6XSCQ7IbXEiDl\nVXgbGF8OqXjZA2QpKCKFZbdnofA8RY7lhHPKjw5hiAdYnkxyRzrpoSy3Y1E+rFEeYOzbPmA4SMNc\nqUPirK0kIRbZOxlkDJfguNfE+1xRc4w+osaEJFiXQBD09yKGREkIxyfk3d3uIpKTK8V12ugkrdTF\nwcsOIelqkfTjJcESKkNoRN3t//ly5TH9H30/sOV2eO38bdvOe2zJkhNLaRxnJDgL/W1EGsuL2BHe\nDvwSnC0gedJ4zV/YMDY31hjr48xrBiGKntr5BgFwe98NXFfeS7T+Da41q1InoVHI+Yj0VSxwSQ3D\nEpeWjxruytynyMytRfD/z0BQSre9y/ojBAeBaeJ5oWlLsKFIinT927NWpZak53gwmZqBqtXx6N8b\nxWIk/RJ0hmnY7dMRABwmZqlaHmKmyQfA5pEcPIsIAAEMnXTGzK2cq21cQi20XrFEwvttdVaS+cCo\njr0MnD7WbEGPueeIAcN4gg2BW4BoewFPvfA1MxR4JgbHSOCgAulGfIM3Mrd9NxNHEh6BjAX21yQQ\nN7kOjyqKadSOUa/FOgXpIoIyIV8Dt2FjpgooGhtrHMGoDIAAtGzO5WzEdV+ILWz8cVgEooCxoDXJ\n0BwTOKkgDV6/fqn085/fgzqQqwyYoILH39Rzf+4pI4cIUyBKgpgGf/o+/6LlF3Ploqkv/uWpFQEz\nO0xdp1SOvobZD7cj/XPFc83+00UR/yc2G5EaWYdwPHEIh3oEpDrEIgzVGBoofRVpk/UozSeIzlTD\nxB/hF0fggkUycq/D4vhekZRYbBiHnBxylb/F7/UtvNxF7KBzgWnI8ibxMknlenREu+ltSGyoJGIH\nKIHi0XEyM3XdZNY+GVlE0wCkBLFop2B0bQXuNXlNjY9e/GjGirkrtJ1PAcGbeC4h9Q9FrI7zVj12\n92JdQDL4SHqqHl64BRIkATTDcFEC+F1GVyYC1JYioWNMZ7UqgqdZ+WhGm4HJk5ncToiUhAS+k3F0\nTa1jJ8XfJgPD0VsmdKXndBr8ZKisMQim3lZxVc1YwUxRpoB1CHyfhlMb+9pXSC8CuiRxPsDhyCY1\n9ZAde5FP56tPSd9poml0Kor/KGDGbs9A9KU8KcGGgiomDdIXuxXWfAq/C4C0DNhN/fgEfBYrAkC+\nBsZgIwd4lfr6y5Gk+4BbonD5KrA2Pb3oaV/AFziAsSKLjN1TCQeQqcD2nUyNiqM7kEeNGlWpTCy7\nPQtRO9jsx7zkEPe1ujHm+F3Jl5N+AIyO8QjnOR0RkX2q/n1rA+malHkX/SMQHE849s4sn9D87Liu\nVPWeOfjwIqbNqeI499RvRgwUehpjYCcweYBCeh5BB36HC0vq89w+nHAAyVNQ6sedGGfV+/WR9OrQ\nFNYyXdKPBwMSSldR1Sr0RNGf/qoxnRZEeaI2+vANJshmcwJHcrrZM/JW3E7MOXuYkOHFkIUgOqzz\nYD58gNGjCAeQccAJh4m2aB9JqHIzoVP/vEgbmjBrY5nBxgbgeuAjbNxMEEBmInxJH2PqN2dzdkBH\nPnC2mjoMtQLCayDj0zsK/EfSuqtOkDvd5YpxTJ/+xSy103yrXu+didhkZgGLTjFG91SWBdT/adXN\nAX3hRsjZ3rChxXfe9m0LPmdAWXfFSFztMtL3Z3KaNZZT2f+jAKJIqPOGEUXVKgSPvZwgXz0yjdUP\nQFQnG0qxu0CCz9TXU4t5j0tgKAdefPGcF6sy2zOVC3deeIlb71/U0+wyMeusanZd34oshxXUEojy\nSR66KtMqKxigiFaSQezQPbObqZkdyc/WCnf7sbSPQ0RO+7ERePOFN1+qT6p3rpy78jHsdgtil6ql\nmeYSXv+4B3hqyuEyW1c8yt2XfFymiDqIRucdDg914Y7rOGowzv4rhYupjn6YH60+zmqMTPOV50Xn\npXEHTIuaFkWErH1pGr7r9rKTpOPF6N0jUAJD/bGZmxGLXUvhaQCyA4NiZLDjI+ApcQnqDvM5TcCc\nI5lHSoERPqKnEezklejoSMyJHnoI+KIpoSlwaX1qHUbXJPVa7UU4k12o1zO/mvG9FqrhzIvhpvOA\nu0D6A81R1XhiohBTEt2Ic7IUWW7moYe6mD17B3A0kXbjAUtO89pxa480B5q3sUf6gIJN6Ri7G7ER\nhY3bEBHLBiDDgK8zgG6JdkoQEch5wBq7TNI+nv1TJVN7etD3vNRw2be447sZtH4esBOfbwzCUWrM\nv9bjDMoBTmKTdIgdfT+q593fzdyyP60ulpbNCqPpqMkh9/XP+1K0bwNGvvl+JoIpFCyk2+36dRMm\njP/zxRfrsdv1EnQfZXDPeWy4BwIWgk66GDiW3Zb9LZCJLUwmvRwYuoaNg4H8xpE/JCd0t7uR+JB0\njJzDvZGfF5HeDOS05Wxw4swm3AHvmljPsNZo3NF53/3tce6pMOD/FJFa/wIoq6RwEP0jkF6vnkrE\nmglNXwFwP6MakvHo7WwMihra+BYBGL/kD8ZL0LtH1ZArAx8CGQrosHHPjmymTztBBbYBKe5hEYiL\n1PlprcN0mwsbm3qImezxWN6RJMUIjDYaXduGD99+O4ISfH6fZLvttP1zjgJ12ykfPzMmuePuEe5V\nytm/8d957LEbFdGHFbk5WMDU53vQBT7AdnpRzqns/1EAoQBBQdYa9L5DKFGG5vrsBAUPYeAIZAKw\nJ0Su4ALEItbkrnWgGwK3XANM7dzXOTvKE1Ue47Y+WhNdPUTyxLbQ9uZ8/M5UwkUNj6Vj0nk8tJdl\nlzUQCSA2ZhxKJW5QycwA9Bv6okUgpWTuGY1CCeqo1vTO9KEPv//wJ8CF7Lr+d8AJVSJCoj+AXA7c\nFOdyfeAxSY6KIhYg0iXpsPIvkJACv/+KlqExRsmb7CvuOU6ms4th3ZeS4Y7UAKoqH1meTjJ0DenK\nQTiPPtuZheXsCgwoUgWF60aiKDETa3pLLZx0FvPcnxRBRxUAIorgq3jsgAHh9HeDspcy8oH65Tcv\nHwzUdDJqPkEAycASxUuP5d3YkNCw747r7zBe3JSYRnRTJs6kBkQue7x6/CSAzHqKqvyxPcAmePIH\nxIYjjyNP5yG1SyDdhriP3kYMdrqUykoP9903nLmNlgwaTHvjU10IcDpBlaeLphEelly6BHHfzQcu\nxMbXQKaDmBoPprPUXLqWwjr/ko84JOHbl8g+w/XMXA5SBUgKvSlHST00A1nuYceOOqKjGwkW51tO\nkqX1GBQBTdjoirgmDO4tPXHNj9d7OPbnCSzkrJgNVKf3kAygEivuRs/jWN1VLK1+ALv9dez2HUDX\nFfff//N7b7rpbGAJKEYvpngY/VksR5mLrK2HYuCYIWD4PKs9y0l4f0srQBOWG4H3O+KjJuvcrW7g\nS9r5BIVl2LAFGwOVaZQsuxH4VqfoSrvpTiJc02qneu2OYXDO+hvXb771XC54eSLRKb/hXn4xYuan\nZ/9QPO9njMHGNMTAsHGAxS9RxikAZBvWsaPp7CJS4cCmaunpfRn8fJLn/djZcxCbgc7su7gPuPGK\nUpaaAv2bqhVBqc8mBMxamXZRmsNS+32BzxJPVy5IqxGyQ0teeWXS0urqEWlNTTkXyrLKhrIxFjiE\njYHGKkda9jFjphIY/E30nZOrzIsyWZYT71zdfOndCU6izBAh+ij5r2HSq9H8k70foXY6AHIpgp4W\n+jiLf1J8619gCxA73KOceiSjGn30ifutRex0QwFkkzhOY/sMCCAjEd9zrB37IMRNqPUZDENwvTvh\ngQbgErYwvMJXYT+RUp1fmXo8EGjqeJtbNwXEZ2FOyOtWFBAwOjx0HMw72AlMUztktV3Hc5ndfJ3u\n70jmlAAidZL3oxNHZuhnHp3emb4LWEhv7R00rtV2F0WItNRx6JtFnUdwiFSjz8BsBG37U3h7GXAI\n9Blk7/o6XXL2Nl/RBCblb6R4tF6TPpORvd+O/9aX2Zb5/aZRm/wycnBXYyNqbyZR6T1M++x9n/tl\n/XVRJlO24a9/evraOMpNXYz0AfdLeCcQTMO8h9VzMZLyDAL89yAWvx2QdbhL3aReiKrwK+kNgzMN\nOXq91+NZdsey6a1xrb8wI9nNKWVOjlwQQzACOQQk7ikunp1dS9wOR1ohQdplHXA1hp024hpBx2hg\nJw/yNC7yyeBF3O5rMJlOsqBheRHH/SXxKdHAPqw0cx7nsHiZkbTSDOAP2LgQW5/Kc6aTmOPHKG5G\n0IsPKjBy0RfMv/VFflnI61uLeOUvTSTnoW16/MbtJFUK3bWvvnIycWJVyClvbSTdykD1jxDLYG33\nou3nm3SK3omOeucuzIQKKsryRuBL5KYs6qPGIZz0nUBmy0UX/XD12rXPA3djDKQDTTXcdDiGagdB\nqfjBCNLJNyNqR0RHu6JDUrGSAkp5M+Yrgbe7o6NH9ASa/EAlTrbzPZ8hxBZfUHtI7uTAlUsRvRy1\nTTTpr+Xa0N2xVqs5ijd6PPkbG/4yhQ9vOZ/7W2O4jMaxn/W6Ms07shmJYI3WINZ8tkFhH2LtahMj\nQ21eIT1bCJU10UyA8sXx7da999+4Ns5wP9anzsDVEs0vgLNu3UkpA6XiVAKCWndDAV0XI8eYvaY1\nJUkxhak060+QU4oAkHvz8w9J3d1JrUuWnAjdZM5BAPRAkVqkZa/PjhlBw7gfE038AHS1e7megk2u\nckua4XF+d2nwUCWZwg0LMDkaCTZE/tN2OgByPYLmdZX6eA2R/tgC/Ox/+gH+QdMjbo4FiLB9KUF5\njKAlu88iXJ74R0QnbchCk+oR6S2NwjgQgAxD3ATnoBY71Rnj2szo4BRCGydYhM/3beCS7UP36ZwJ\nPTpaWKm+zkZCoh0rLRVD6dG399LTFN9kQjj3AvXpnwGeWcdN32RSH42W4w+aFoFAwUYXFfM7oK+B\nSDgTG8cpvu1Vjj47FBsLyeB8JDYR7P84F1irNTlFOalE3ZmD9Qv4Lg56tNnjdfqAPqGiiPmI3Xgd\nEI09RM/JRlF9Ur3uT2/+qaokv8QUkcoo3J5DjQSlVicHnp4T5fPEFfrG//Wvg5qZ+3wT8xp6yX1U\nwmdNZWNo74iDDZvWgvQswbrHBkDOYE12G1NrJNUZLDBfdGehO0u54s7LDH69/z1sfAC8HhVfbeHI\nojzt79Xve29XdPSLRUfxVSsxbYTP0gZfeiXxnXBv1J+ATBR+QwUVXI4TG0vZdaMT469sZZc8rD90\n5nuDgUv4BU8RRyYrNnby7bM7gHuDO0dFQhTlq7cw/TCieazRZ8B01TsoJqVzTh6rpiOKp0VoABJ/\ncg3JR1PgqIm9e7NZvDi0Ua+1ibQE9Vr0q39oZqAnsTHT23Nh5TNfUcv5Hsh0Rm78ZPk2VucuZ2Na\nO7L8MrK8BVnuAvKfeumlj4FYLj9xHlAP+jFdDHsGuFMRTKVi4KiM3J7ekV6d3pm+MPSlU/C01hBt\nnMXC6pNWa3RHoNaCIHGU4aIQsSZGAu8g+WdwcmI6vckbZOQ4L15lGctC08elQGG6g2rMXcO56rzr\ngCew8SI2Doz56J4V7u8f0Xc9xuXYmISY15IGjMnrYKuHhHTETjwk/aqYgTMm0v4u4aNhg2YjsGlV\nx6eBNc/4/RJrnpxJyt8+5Q/YqEb00EgKxNixn2vHfo4du46I+ocfy6g2pui7zcY3fAalqIPEjhzq\nBiE2cMt1OuUSkLRal2ZTERIyy7FFzCCKsAZj7PCjhXVJONJvR2i13dZ2H050/muP55/wlxuzHgkR\nhryCmY+3ovO/GtIQ+U/b6QCIEeGkL1UfIxCOaCr/gqHs/6BNQdwAVYhmoVWIXUyYpU06eA5i16+Z\nEzFTYXPEoaIO8tyeSegDcYSLkYH43qsQLK4LCeagNVXe0DG2gxlJOYVTj3s8bZKhE1zNfYWwjYQA\nSAupKUlYFE9btBmJNLSxuMLxPgL8cjtndA/iuFftXg61ZiANu10iY18MO4uygEYdummE9oBkXaCQ\nd/Vq4FGu4zH+wBKEoOIP86/m/pnXE49NRBLxXVTGd2HBbh8E+1ogLgC+Q+r7nTQGouK74mlElg+q\nKabDhAP3slEnRh3M7Micn9OWU4sAKM2KG2M5IsFVM2/gtvJBOgPerDY1hXIUGLyT1/dFUeccyYPL\nANT3eI8gjbEEGEkDm/UB5sTrfhjcyhld4gLaF8Y69Qv2y7G9XdFd3QQn4X3jjT9pNNZOnaxer2zs\n9jhg5YHCQVF5tQFzB8anB5hwaELv9lM7VUYAzgZGcjbJPA0cwnlitZQ0MaqwsdDvPzHTCLzKNi5g\nld5F06hYDl2ejIhSH1ZfL159nVo7cj1w0VxkwxO/w37H8zwyk4sGAZWSYOIEJ0vGNG8ncw9Iqy/G\n63UwevQotekQoLWZ1FhEdHrKCARIOTLM33PmljQrb9MCHD8iJtUZI47bBUzUWIlqzjw/xu2uBp4h\nw3WD+l5jneRtRPRFvUNwkBTxzvjv/Dp/WH/YRNqTdpJcrsc1ubSwoBN3g4GgUOkIbHQCC2gZkoC5\nMwu9x8WTrQVAXhxxnXr0fSQXdTdfOv8YMZy/PJeu3L9g4y/a89uZioNYRdLk6YVzTAQCl5ZxyEFx\nKmLgV6jsyhlA2SB6vgLOsGO3MICNo2RsRtnMaj77271r3uKzK0tF170k/GCzg5nZVMUAACAASURB\nVKJsxOTKPwJHarnk535Mfb6kmdlXSgQcz0cnbQcsfp3/MDBElgnIMq/KMm6CZAnNpiLqb38kGCUP\naIcSoxa2uguaWP3Bfllmoyyrfs7GDx5D4MDgIc8E0MaQx9bfQP73VsRm8H9spwMguQTnDYC4AXIR\nOc5/yVjEf8DC8oqInHA/HZmE2TtT6F9UXAn9CkYbye9ZyOjOrXy0xYR941PY7eNCFupw4CUvcVMQ\nMzc0qp+WwhpO6BApyXCEB2wFcSclJb6TVjO8qy7W/UBaSB1kVICMHtrMSYhdkqajdS+wDhs7P+By\nX35YDVE1MefCyeFHh2Ds1VFXoeX2vzzIQZeMrDUyFZC3dA02JvAYLfyVccA8ay8PXl2CdW8GPYhI\nEgla8mqoAs6CnJGw9AACXDF5TfVmr9HYHdcXTUEogIgc9rIZh2d8C2QOqxu2mfCJlcFdtQ0nkslP\nZ4LWKVwODFEwjvIRuw54Qgmqm64CLsNuN6jXrSblZbKK29C/N7HqVQXDaDv20cDK73J2tzsKJB1w\npdqtj2yTLS5zj1/qzshEnpuCqDuMkSDw7qhlx/R4eIMFA8k3ZCD5O/DEze37jY1WbDyPjRe53/PS\n4O1z21uylro4fKkHG2/yHdsgKwOUZiCX3Tf+HliKjWkEG/AamkmLAY66jMaz1s9jYnMaqxER/usD\nnKsmAgY3qQ3X4/N9hCQZEOsOwFFPpi6BDk2RYMAIBLDunih582r62FAHS8SuOaKGJTUj+mw02m0C\nwjl2AG/i1g3XJ7qdCMA4KMFHPnBKIYAX64pd0RLfkv7AiAd0AHbshgm0Dy8hoQeYUp6dqeBpr1cd\n+wkEKzIJGy5eKllBUmU1cfWaEGa+BUs94SxJ9qVz+POh0vVsvx1eOPzfoc9ZcOfmU91DeHp1LFBi\nddLjYLBehzsSaM8C1qkaZ6VENPSF2EwrrV+w79qJ4xsoJ7wXpOUki5Yg6mxjgWt1eEfXcfH5duyv\n2LGP6WLkuRbqt7HRNpLOfJ8rvrWC8C59CNK1wUYKIjV2GNFjMhRb32CucLsr2xJlaM+wNuQNWM+Y\nf5y/5UtV0Qz5fC4oDzD2zWKkwKfYaD/Fd/2H7HQAxI7oxL0GwWT6HLGjjoF+1LV/t51WyFVTukGH\nWfcIYn7J3J84dCOzmmdQHvcj94xZi1hcnwIlxrVrf3vSai0A9jZxVo2Z5kOq3DQIDRw/otYSBJCc\nxYF0h6N7eW3gcHsejyPA9kG1CVBTSAUY7SW7iQ5dH4B0W7rPQUjl3wvwPksMqTQb1YJcpDXhapbx\nWfbC1gLg9+dy7sv3cE8CwWJgASJSEzS+kxzCRkXLk0g/209Jr4kHCQpFtg46TiNi8Y6FV95Bne0w\nrGW2uycafEbeC3n/UGXdKUBg4d6F3wHM3z9/NYLWqMmNBJ0iQKBbR0e3ttM7gUgrTHOTsQHBcBOj\ngGX5mPr8XPXYPVfCb6bU0XT3uS3diC7sdduLt7/YIbVnkFTwdQSVskBSqJ5Al2TBPw+xwMcBBFpz\nxvdaep3T2fqHAc5tBhI1GFynmNan6OZ9eDhh78wcC135GhB6oLgLXCeBEr54rRD4JfAG6fuKUAEE\nkcr6cO2kSbcA3YosdyCYgNqMi/Bz5cioIrV3GuKe7HMwEig15PlHJn3qQzizU00Ite6YZNDFOhhq\nx24GDu0Rqdz0AY7VitSgUnglUJDlXvYn7k0e0joKOC4juwD2wPfx4rV6AR4veXyH2Wv2d0d1a45u\nXibOGgfGbGBKQ3JSFJ4WralNIfQe8lumUj/xNU5OfhEVQBSUY4QW5W3kzrmOhfN3FTZSMV/BJkUK\nOOZmU9fMAAAigdLFcE8UdZURfzOP4Nzz0NGwfaYIGZ/cE+S+BpzvR1dHRDOhl/grgJdkZEVG3pzF\nFztT2XQ/IqPxTT0LRhnoWQUsxhNTvTeTXvqLTe5BEHNiEWtqFzb8KhPwl8Cz2Og/5Kpp5MM5nXrl\n0eP21/s9B1idHJp3nEouv1yHqfu/mPacF13gVfXpuQgfqT3+YTsdALkNkZ8dj7ggKxEhbA//+w2F\ndQR3Yag/10YelL/wXKQ/zUlFnJSNp345qYn5jRIr86M5HL8LWf4DYld1e3J395ThK1caJbv99XoW\netNYF9IkJCmoM5YJAshQMi8YfMfHH7c+uZ5nlUd4CrG7vE4JdoDPVY8d5SK3nG5fIpC2/Kbl7Saf\naUhGe8bPsImieRvWNAexvTDgSNomfF1n4HKUQKcRjh26m7udS1n6DaIIOYoggMyBfvWPrxALOBkb\nGUBLfjUO4EwkJZTnT3T69RO7Y90Kshyq9BkKIFcDb+sVfTnA2OqxOxARkTZLIegUP3oiCU+LnsCO\nBAA1nVCB6MY+gOhNWKIEQfADRNqUAqj0wkVVCTyqSJwJ2Nti2t6656p7bqLRoTBotD3iHBX4DL7y\noXTXZOK8lr46ipKZ0+1Ldetj1wNLlYhdLpBBQL+LqNacAc47QOGMtl2BHMf+FtwZIQt6RAe0tCEc\n8WQE5XMzN0/6mLszJ3L99PuIaRi9YBmu78eMOVvv83yhnrtPJOhW8/FhUuQ4zOWk98Yi0hvBHSpQ\nR7YUP+blTIRw5wBCeQBY25IMCYrEMUSv0cH9Ij11KgDRGgpDe0BgV1JtekJ3scscpGe/CkeGRviP\nxJ7EEz3mnivV/16ViWslKEVuyTCl1xITS29tNba+JkKRxhJ2hvod7cAsiCnooqsEGGnHrsNGNrAh\nr5OVZ64/J56UI176k3hyM6k/QXhqte9edjBYn8IPISlqJQGxTrQmXVUXq59NB3a0kHYIcDzDr6II\nyXp4SPLqcWYSVBMAKIiiYb+M/FAOq4vGcK8vg28FgJi7d3yfj0S/CERyIzY5U9RHcMy2jW/U83VX\n2J/Y0OvS9t+c2etRzHgiyTaaHU/rJRmDex23Dy4jurmDYH14I/8LABJAjEm9E9EdvJrTjAT+DbYL\nceILEHLJSxhAGVjevc+RoQxahi1cXKyf2e2jSfR62WadglZAl+UAsryp4dJL36m5/PI1Rg/D2w3F\nQ7L5JD/ir48gQFTclJbs0ZhTB/3yo4+GIaSgkUTq7wbgrbOPsZsggIzuYOwWeh0xKCQfyT7ygcPi\nqH7vufdCu+CzO0loY2Chu2a8XWPZGzDB7BYoGgmMvpIrP0LcZGupqkpB7HznEg6i5wFfqVHRFmAG\n0BrnIAqFToodEwgBkEBU+vwuc6tEuNpqGTAMG0bENXgHkSN/UP13NcE0Vl+eHFf9RRgTXVia9Cy+\nXHMe5Yi01QFJpEX/C3hBpU5/CZz3wDXXSI+BvAYafyjgfWDaonsW3X7pby6dSStvotcrFBZGpnEK\ngapsnH/txDgdLQIx+2/Lb/eS6DCtQyyaP0fw5NNxJa0nsdKC6MCPtHET2e1Nal7ZgjPKzF2H1Qhx\nhAuqetAcsdCluolHu3/P6vc+wuh6G3d87Jpi5n006wzzlK9+dbvTwC0E01cFwImwmldlQw+ZTYAS\nIAxAFH0rVr0/a28Bp05f4TSZrIokmXUBNgA36NEfPCIIFwMxKEM70sMBpNeQOLzWV//DLPp021aC\ndxjolZD7U5GUrV3RXXNUZYXzU/C8ZcDXvdM61oun1YXiOYfgbHkVQBQLIg23Sx0JXQ7nTHDgKEc0\nSeYj0jjvHXiJeyooSo6KqWqhfwooN5s6LbWs2VjEDJBYD1ZDLu+HprDnANtAcqn/34oYWxw+IEqs\nD612+sUbXD+ckAikk5F5CZRuV2fBaNbXA1LMi+lJ7GlMx14IJJJ8dMvGAmLoH4Fon+EM1AbUiOd+\nBfwaW8gGuq3o6rTG9GgdtEmnLifUAtYlpdxLXGMaet8r/4riuWanS+M9iriY3eqjH+f8f8l8iIho\nDeIGfB/CJpQBMOXw4fVSyiwPIahqx367HfsVIUquAFdSG71ObcKNZGANT+jtLb3raVZUDJL0rhhn\nshLuzA+Lv5EC2NCRcfbQoSeqf4hxuY5JIdRbSXQzf/rN29wuKaSPuoUcYPAPLNpIIE5BgPFOq8P6\nOeH9IFk9xDQgbsZwU/xNeDsHs5ehMHMfYgFqBfT3GDLkWe6+W4csFxECIIpYdLEIZwpiYcxEpOSs\ndBu2M6kNhPw82O3pBr9uTI+h0UM4XbECyMIQfz5wBBvH1fDdpnb5fgKcq6axctHkU3yOczDG11I3\ntQNLu1YgPwrUy8haM9briLrR1eo59qW3t/9ShpTjImLqAg73WHreB2p5kc/JylKIkGhBOOTK8bQ/\n70eyLLwiPwqFEeT2Li+uwGNxU4IQsktAgKBmGTSNOojB4yd3S79Z8UY8EwqpjC637EjF4vdT2KN+\nj6EKHPQTrqUEvqh0quce4pU9K/FF6yncdn9LUmp37AuH+NBAOkHnFCyga3aovpCM/RKCLr4L0b0e\nBaTF0ONpi/MM4xQFdAWimhMTDQh12oeAMV/y5fJmiG4foG6IkIQZq2rChQMIZE067um2y0xWG1Tx\nQVGsWHt9hIm65Lpva5NrrYg1ukVGbkqjqfWzlDMbKHvQhFAz0NaQFoFMAA6rkh4A62DOEASLSRsF\nMAQRqfl3Mal7jK+8mQEApJhjJQRrc0mIe+8wMNZMU4cBZ2g/xDyCNU1kZK2QPTfidWcQnOT3TQVF\nk1DPnx17vIOiwVa29jG71I1Pbsj5K0CAyWLgI3SBY6VppAOJqnxNqG2BwHTE/RMOIDaOAy8iiuqi\n9mhwPTRs96x9OpR+WRjNJJFqr161mkTEBuG5Ux37z9jpAMiTiAa6eEThK079+f/KvkEwoIoRMyP6\n2SWbf1jZmZAWjSn5YmyMsGPPRiyia4E6O/Y3v9PbF+p9LMWpewaB3uURLzMMKFuwhsHlQ6WS5Xfd\n1UJQlBGEU14NgDk9j4xzdc/85dUOBp6V8jsdDP/NZqrGN3A5UHOUIYeIMejw4UfssAQTK2hZbszV\nDBSBdJT4kMxeupgAi9dY8I9DOKAyUJK5+DMP51/TBLF7ITqGIHXxPOBrKRhB/ogagQApbE45wfRW\nV8g7LSmsZJ/L0NtDqNORZR9wHEn3cwZic9hoQIDZUkSTm5Cs93ZNRNLtp27SEeIatHN5hBAnqMqo\n3Ao8rshyQpTbvbYhOdmWDj9HyH8XIa7XGOAaYmJHkJurp3+/TCFQdRkznHn0HotpNNxOq8nDpScq\n8mvQAYfUxXU78MeQxZxBwNhAb0ojSccWRrwmoyid7pKMnV0WTEg0IHGreCbfDHuM6rmOByW97/WE\nxloAaMJhWGrq6fniex+WW/zESNY+mfjw+gdYaWUUxl4fhRvmIMu9CKc7EchOpMPRHE0RP1FAr09O\n7kSSmmXkdmC+BcvkdKyeH5GG9T9c6kTsVoXwZRiAKFmD3M7sykJK0MY7WBjnFymnRdpRXoN3X1lO\nmQsRib4DMIJS/99mbssi4JMQWYxIAJkOYVpv62BaOgJAhGBoyOc5xAj9ed17e6AftTX3XL7eCeSq\n6cDFwDfY8AATLNTXEb4JOotg/SPkvYN1EEUIKU4g2C/1owfT4FaSExWRAVkG0iETnVEhr5EBdKjy\nKyA2gNXq5/kQqAjo+q515HfYirV8Bgo92MKGQ2n2OIKtOZeAbi4+c/rNRxpWM0AaP8LEeFsbJ9Tz\n8S+z0wGQBgbY5f8nW2JPz/r5u3YrlswrNyBO+s+AD2XkBQhg2OWy8NRHl5Kz4dcdi//MnivsbMy2\nYy+0Y8+yY7f6iBnpIeEocEFaE7/6bMaMrB9Gjw5hF0nbQRIAln/1MrzdPQt37JiOKASHmXozXfnA\nRobMqmYJUMoDunmkOCRc+hpEoW4rgkqopVOyAuiOMRCAtG6Ow5ngBDZD9q48ehafxBJQxfcqqYq+\ng+HXOuDWLXCLn/71D812AiM/nfxpL5DCu3kKgx0JIWNPr564mwMuo6sTItKBnvaj+ByzCRaAI+0j\nRLe7AC+73YCnvQBP2yaOz/+BxKoxKoPrPeDGiPO1Sz2PDz/10ktpH8yd65YEYO9hKr9GBQds9BAf\nP5GUlHa14z7UClDTCArS+41YFkgH4wyp45qskoJPRm5S3+tHxGv/XnU88UAbAcNhYpumRLwmgzk6\ntjk2UAvso8dwFIdhCHb7CEiPgz0xan0stJ6gsbAAGnDrz2/bssUeC23R89hMJx8gQCESQM4D1tOd\nc5KMPRrYaimOrHg62ptjyOXUFF5rXUqKA0H7RkbuAM4uoMC/i4u0foVI09JY+fQBiGIEEpPw+JrS\neAy4C5tuAfHM25rMWmC2Qh9h4khbbJvFZXT5UHW7XHOfyGmPr48jdW4AEeUYECrF1UAKuGep30u1\nv+6A4SbY1g0c6IjuEMPUoA2UmHaSoi5pLTUwQASSQWMl4poPJnwY04Qo6iroAxAlC+HoI5sK1xNe\nB5kAHBU1KhB1Cun7rzm3y48pA7glitrPCGe1FRAuwVJgZ26X+t5b1Oey/FL42F/19evJ2+zBmXyI\ngUxMjrwL+DNO6x/ZfkfL5cpHXfRvP4i04wyoifU/t9MBkF2IVNFSgr0gl/w7Psy/yiTomr1/f1Wa\nZXomCqNdRtcvEEQAZORGGfn5879kk83GsxK0jKLrPoTDsiOkM45tYfWELXyyCeiZtp3NGW1tT/z+\nxhvn2ceO1fd7w4RRSwYd2XBYvPXA4yclOFCWyl9u2MOUQym0ICkv0DSjg65oHyInXaX+vVYbyIqh\n5yADAUhnaSqVihlRI9hyPvWf6FG2I3ZriSw/voqpbW/C4wvgKSMoaeoO+wxCwnZsuICSPy/88zAg\nylRrHoJLVw9MwW4fBmSP2U+rx+hpJTLtcWKVnuiCamyRkwr77GNEdKOlZcbSc9yLp3U3NbO24I4D\nGCUjO2XkgXZQvwcuv+6bb2YcycuLxm63kosDiasQznUsNqKQpBFYrQMVEAtQ01qlJHy4nwTL2Yd7\nN+XWMcgRG5aeAdFZfdMT/HYqQo49QFTrVmIbBqkOVDUlfRSllkMZrg5gL4pUT0nCRvzcCTFWOKTV\nTAYGELO/HYdhEK+80t0KP7ZM5V4upBP4CtrGEJ7CEuKJrsQDJFZrHd4agGSbEo926gUPKZRiH2rW\n2tRUFyqAAMjIXRKlXx2nNxF43Y498l7WmFihEUiGiUCXHkoCer5DURSSpr1MG+xfjBvhH8RUPxse\nRVKOrJyz8jYZuSfq9yw7PG5bYmD9J214OwIqdbQGkeLxg3QYpBmEAchNVtjrgqkzgdLGhMaxQLWa\ntx9qxHu8qNObR8juXQWwaEQqtoz0kumI+sc36iETYqk4RDACuQr4HKTITcc+IFXNWEB4+kqzNZ9x\nYaCC5QsBUzob7IRHNgWEC2rmP8OvMoCP1XS3Fzh5Mo6B0nAw+Js2qmf9VIngY6ARnW8E+655SifG\n4f49AAmdj/4vtdMBkATEDvpsRLi6CNGV/R9t83ft+qw5MWnK5duueqs9pj1lxZwV2/qeFDvsy/aN\n50UZ+SEZebKMPFRGLpCRM+dy5ujZLGyUOVOPcHJKVWbmE80JCb4nly69J+yN7PYczGmDH3znkzbg\nc+knCAZPzOSe90fh+eVCLgF+gTP/JB1RZiBNrR08Drw2l8YYIK6AqoEBxHkyn71tccCXIHkWUd+R\njns9SA3qDrgAqFIXyGaEtP08YHtwN9VnPwZ0gRlAWwLe8Tj1dkQYvwx4Vx8g2af3NREZgTRtGETm\neacCD9GZL2plIqJSAjNx1uoROekyjs/zMTDrBcQftQI3RHk81yuSZKd913KmcwH7OYiNvfgNB/GZ\nL8XtLiQtLZzGKna4JoJDsH7hReeevVafWlAFXmM4yEvCwT82jn2PICJuiOooIW2/m3CZ8nFT2d69\nqRAzwtk08m1mCa3my5ACneDUmFsDA0hBTxQVsQdxOrUZ8T8ymjaGsQKaZsPbWtojCnENviKg30RS\npVYH24NwjNmevB3uQe10/kRB1FqbluYlBEAA4nDvOcl3HkSUscKOPZQmvlMiMIXwWd5Z8XhdQAmy\nrFD/xT70ZyZgoocsChGbmL40liIpJatmrtJhY7ZXx/PPv59dS11REt4OTaxQG5YGjK4Gn4EIhwtb\nG9TvX9YW25YvBSSNmTbCjXmfyU9MqoMh9OloCTamuvYOk1RxMfAJNlxqc+BgK1tUORNFQkS8/fom\nVFagdv+DqA9GNh+vsSPHtTJpGfCyRCA4lbDv84dHIN8zewxaultYxZ5MHAxUSM/ZaubgFdH9fq+Z\nDYXdN9zNqk/8uBNXIOpjpwMg/2cRyLXq47qIx3+0jaqq+mRQfX3gggM3TFw/en3rSnnlZSFPnw2U\nI8uRhVfNhqOm7fqkn2XZ94c33/xs86hRv8VuDy1+XU/r1uZzD/cU8ndmxX/4IYErF/PBuiJewMaH\nEFNDhzmUFfM80HszFQ8C9VG4qogsotsw43MMwpviJ3ijhs4AgfBdkNZ/Epm+0mwzMDMAbbH4Mkn0\nrkY49mWIKYjJPp2vllAAsZGLpy2bjAUJA7xeqLWiOQtXw1koATdCubSC8kUWAvpzfuqPJfhSgq/o\nqd6Gz/F7TNxFL4MAiXe/0OGJeZ3izizy8iLrAAVApXCuypnAuX6kz+raEkaPPgAxPWzr92bwZwex\nI5Jo04q5R0g76Ce8uWz8aA4YNhaQiUh/NNBuiuNg/AbSvW4Em8xCXyFdsSD6pQTQDnZkcCChEu3+\nEs7/RZZIQ6FIgVtfQADOPPX1W0gt+4bUQzGgxLH9qkEEvAWgZHXn7VdGNRFar4o0a21Kip8IAEmD\nnZUEYhBOPx14KwRE9gEjXJgbpeBY2Mx0UcIqwUYix144h1qPjpTYBkS0/CWwKITJth+RofjwQTsr\nLqyv20inyUJPt3avauOagSvccKgpQg0gDzaWAfNkZGdNSk17siNZ25GPVNAd0sGuKXX4Ca6b0EmE\nZSj6KQTTV6OAo2baTiIc/SxE7Ssk6gmzNcDyH/g8noEjkKN6FG+ZKKavQJtKGLQCQgCxhDHFPcTE\nES6tVLG+EIiMQGyYiW3IoPy8n3b2X/x1OdVzVoHUjsgMnF4N5N9gPwUgmkzJnwd4PP/v+DD/Yttx\n8aYdupQWzirLLvsV8Ji6M4W/P6w+VKKkz67csOFvc/btcwGiAc1u1wM3pB7+wJzgIoNw+ZRT2c+w\n8aD40XKULl006kJQd0DXWvHcMJaOTkSjpk6BUEc9BofUxZSZ/rDfhefCCwjexJskAnMQAPL1AJ9n\nCzCtS5Jc6bhrsAQ2Ibriu9XXtAZ0gRrCU1hXIuk/Rm8pUs/BqcwATOSpwQZcJ2cg6dRzKvmomlMJ\nyswBm6NCzYaV0nuvJ/mMABOeWQEEYNlIKhYM5d3XP2KKz0jDa2cQLn0taiSiKeuvwM1u9F98T1rz\n3E2Q0MXuyLeRwLOBMzdOZbvWd3OM2MZY9O4Z2jExOCam0hx3QLBojiDSR+m8l/cjQ7pTkKSTQA5I\nJxFNdtPEMZKC3R5Pfm82B+M7CdmgAO/QnTkHSdcFXW8ghD+vRZv9Ed16mNgGhaGfyLhO/gV/r0Rs\nx6iuzKPmifV9UyoHspR6q1UiAkAmwY560N8hWrguQDhVVf5F6o2hp24rZ4RGlllZOGMQ1O4/oHg/\nw75pP+OnA4yQBPmkl6Cm3H5EivHe+34kPhrnNlLcUJGupRlDIpCFcbAhsoclH9bvAzJByaxMq+wo\nbC7Uvqc2hXCXXEUXQQccBJCxK520F8YRpK5rI2y1SOEm4LUBJGw0WwHsD2Da7iLVLfVzzpIynoaO\n7ejaVXJCOxAXIg/TF4EooHufJdk6Au9FpMsq1hQTTf8IZCxS4AieuBxQ+qn8ClOuQmwwfq3+4nRS\nWJVAgQI/tVb/KfspANEKObsiHruh/wL8TzMJvLPsUVWHh/uVLau2fIho9CnnkaR7UZTzOHXxF8IX\neKj98PLTT8dIinKDWiM4G8XfcumOIwmSwtchu7ZTW1jKwVhKly+KEF6+jFz7Hekr76OsYCP2KMIW\nHABTqFIMzJplxm7Xq+NC49Cikf5zQHaPY99gP7qBmGZgoxk4uTv7WFQ2zlpk2YFgnbylalJZ9QH9\ncbQIRKQNrkbx/g3hQAtP8T0lxMKuxpS8hJ5qHQF3cFJhb1opTmsDwsme6lxZgM9w1X+C3lzBuHHT\ngL2Qdh2wgdqLn+abXC8N/jPpyF2nHg9BAH0Mocr8DbChjLhEdRUPWKR8h6vKRlGao0AONpwougaS\nKmZpz4/k4OQuo77RY+CgmssW3eVH46KwBCpJS/MTbHTdiXDQ2nVYiDFQhltnRbAINRFOB9Vz1pNQ\n7QIeRSgMX4JGxrDhpzOvmaGfPwRswu9uxuAtdiQ3WKfUog3jGsisTSqNN/SXt0NPIQTiYLLaVX4d\ncJsd+2CAIipOrGNeH1PHhD8vC1fMstuX+RBqFH9g9+4AU+fkoDNpneKhaayNwHnYeAOYUjJo0H5y\ne6FsrBZFhNzPQ/Lg28goNh+81errnFWTWuMZWjdUYzlpALJz+gkori+eYMf+SBdDg5MIz7pvAq1D\nJWyKts7GI1J/zW0kpSLS72+d6qSp/Ry3JLH74G5eTbJjD5Wox45dPwNPwg7ijdDHGmwnKJlegLp5\n6yUq8x2uwoP5zYi3qThqJRMwKYTJwU9FYgfi3hlgXSgjEIzNxSprDk4DQCQB8G1EpqH/BfZTAPIF\nArHGILrPtccK9d//eIurmaL7doFPh92ej407gTNJO+sSOvaY2SRfhG1AmRA4RQQiQW9WW9vWc3bs\n+BQRid1M16GvLzuIS/d30lcDW2A3jl4TEY1df2RYZYPQAnqcSADp5Uxq0DFsWPsfHmIiQqH2tZAp\na2IudB8rSfIu4+2TBxhd+hP1mc278w8kFOLQnM1lBAXckqPd0eUEI5AxiIL8ZsI70iMtHVE7+xBf\nz8/p3F9P+Dkto2ZGPeHU6KDZGIVwIicQ0fBXiJ3tXnCcA3yBJBWTka9jhPenywAAIABJREFU07tL\nODl5Ol1ZpQgdoQJqZkiI4VjqaFzppB+pbg0ZD9Nf4RiADpIS3Zi3I6i9oPMeJOVILCg5oMQOpyzj\nRJKniWAfTaP6PQs4GfUpw4ZlYDJpgLoDASBa7v8iPLp14MxHOJxgoXTrnTvJ3mXFhglR0J9OaF+L\nK7EBo3M48Ct0xsN4jIkeizNrfEO/PoJQs7bHxZmJABCAYugJiGY1ZOQTiPvsRTt2aTpbOjYzoy8q\nTMQ7PAZfQ5217lHgj9howucbQ1FxJdGFadiIJRRAbLix8bUiUndFix57rJOMdj81M7S1plLTlRiI\nGgRbkwmyuEAdpYvaGd6Q2GAcenKoFZQoBDgf8xGzO63+/JTn33j+MWDcAR69qYthndiQiD95GYrU\nThDItRkgnW+zLFqPby1ILT9x3pCRldH8vjON9e8DG+zYzwx5+pzJNDYfoSBJfAdQz3GqmsbTPj//\nxX+fpyPgoT/b67giUYQqJhrye62BcCv9dLmUWEQd5XcglQAogjGoR8j6/D37t6Sx/l4NxI/IA0p/\n57j/OLNjH+QmNSVJv80rBQJCn8fGQYpvbUQJPI5glR3ExuX0n/x1qggEYO3H99/vReSqz8zY8Uj9\ntFqiUWdT/GN2bD893ToCUuTc4qzHGLYKuKiehQHCI5AZtLJh1o+63tnf8zVCZfPXIc8XEF6U5GI+\nMb3McvdPfJAfj2YfShhEj3BqstyozgEHsI6vHC96G0S66WrgHbWTPVKVN9SKETftanprptJd5iUc\nQA5TekX/QroNCzYeRhQzVwBXqe+lAkjMfqgbAnxJQsJYMjM9HBjyMZ+uGMuhy5LoST1KQD+LnbcI\nooLIE6smbfgjw7pDR5pGWMZmZnwI3KBAHBJHyN1yAsF8GjuNbW07cggQdAiavlUBpQmbiI9vZcwY\nra9jJ2LB1mO3m4EFlMd9AoFsIiOgk1NiiG6pR/QKKITm521EY+7Iw9TjwkY7rpQy4qsloCHGS9wp\ntNIArN3R0TEMACCDoK03nBzwnPo9Lj+Xr30HGdnXcKdHGaRENzcjjn8OEXH2kJa2k4TRmvbUj4hO\nylCJlAlAaW1aWgbpJwM0j9Ak/rUN0SSQDoDrKCIi00xLAa0D5nVFdSUMahqUh0j3VNjZOOxHvnir\nzX+u6cVF9+6Ukc9LZ11jCU/dPv3w9LOBAAHjfmCYHbsRUR8skVB4hZuVM9j60SnOV6TNHMwLzyGa\nTFfZsS9Tf39LGtUrRnPATXDGj1YHSQN6JVW09QdmLT6HNccGSJdVICYFho79hSCAbCGsJ0yREE2v\n20B6I+T4bILkgb9n/ycAAmK39RnCcfz/gsar2jWge3vBrq2u+N5eUUC321OAmSRP/hOCaXEb8Btg\nBzZBc1PVYOM4dWFqbZTHMw+hc3XPddsa59QkUCP9U8KSq730xPtAitQmymog6jhw3TFunekiXSww\nGwkYSbm6+mrH3X8iY/ViHpKRX45wiAWEAIgC1lxOWN/i6oJTfgxPzJa6nP1RuTjCUnDqvHJLWlda\nJyIVU0CwuA4/HYEUAceYY6/BlGzE3TyScFAu48gFqQhZ7yT1+81G3G8jgXHYeFkFDxBptWxGvJAO\nuxSQGjGZRpOSImisnvgjfPvsYLb8uhGYQHfWPpAio8INaJTTgS19DxMPIPoBbgCOkLOtB7EbHD+F\nHb5N+SQSjECaET08RUAVTU1fkJBwlqrmrE1L1ORkDrEu/SCYrPTfnBThTPoCtKbEMPtvYht2knQ8\nDhQ9x+K6KNjtRcKJuOdOkSvH6jSb4xgg2hoM9V0hkh8yshe4BXh6DjsS20myartrH1Jm9bA1ucBv\nVdr3REQKey+JY5zASFVG4zsgtPFS6DkpgTxSjxnoSdM2SXVAJgbnTARQlhGkrms7+BrgGDqv36/z\np6R3pCfn0HvGMLr0wAaQ3i6w3Lo9XirJBSjmJa+Jtq/u/PrOt7Pasj4R9GCGI77jCRm5G5jURXzg\nWxacSniyzxRRK8kASmX+v/bOPDyu+rz3nzPa992bvMgL3o3NZsBA4mEJ6yUlLTQNkDQkbUlyyVNy\nGwIJJNPQ9DY0S+E2lDQJaUKzQpNgwmJwIlYTvIPBK94kS7JW29q3mXP/eM/RnJk5MzqSJY3Gfj/P\nM4+lWX8+OnO+v3f3VyM9/75RTfV3gTXTeOHx63k2jXC/txbkNY4MLDNjF0vX3M4TG6Pf3+qm0N2c\nSz22BRKgFBHg3ci5vtrqCgAyimIFcr1y4iX+YTMutSBeBCQb8Z9dToqk8VpFUp8A48dXbN36Qk9W\n1kVWC4ibgefx+zuRXkUvISf6T4DXCbAay32VQNXfAQpMv78Fv//RS2tYvasiIsNiZPSVdoGZRQBn\nNesMoM6P/w95HN64m3tvqqbaKKktucaoN3y3BG9ZfNf/Y/3373R1xVQRaYFcA1R3k7cEzAKX58M3\nW81g2qDZOPX9aCErBdosgapH/OXbCAxZEsMJyAHgA5ScV4e0oXGmN+5lMGc+pvEm8GcE+D6S2HAf\nAT5CIOqLIS659Vyy5kY4YQLlDA4uoKLCkUlntPHGPWfzg7ce5LD/dpc1vQysAfMuyyUSjVU1zreA\nuwt72U/Frix5DasWsD//T7OoZChhwRhE3FHzgBo2bXqBlpYM4CrL8tmPCMhNSFC8QyZgVh6M+tx5\n7Lvht0jsJTxTI8DFwF+Rc/KvKTkIMzavYFdhLzPfDgLlpmS5leFCX0ZGedDny8FlY7MCDp6Iyu7z\n438DeL6OT5yTTe8+JHZAj2EUN1e+3YIUhkLYJbSd/LOyCV/8I9J5sQVk4ORSSvf3EcqYb/2f+oFm\nig+vRXbazqaKFUh/uS4wTCp2vUl/QVd6KH33ZTR/dy5d/cAKP/7HMszQG8ubmGnH2gpL7vzKy0tf\nznn80cevL6L/MPI9tuMfAH9zM0/W5tEdPY7ZjTXAm1anAvz430Msgg8C/1XJ0w3X8ZzpI2gLph2g\nryL83buykrquS9j4Nu4c2FwZkcob7sArPcHqgeXWGIkHkbhHd9R7jERAxqUW5HRN4/UDJ/z4t1e2\ntj67uKamC9kFxmZfiZBIPAOe/fVSPkaCyntLWF4ErjIh7aKjzKqemzAgPwz5rfRm9xEZB5mB1Zpj\nCf/07T6mlAP3Lj64+LHCY4Vd+eRfVjubI7g3xasiUkCuSyf4DLIjvsTl+RDMWlnQsOzEjqod0TuU\nMhgqFJSRr3YvHkGaKobnpzixBeQayi7+DdLA0ZGJYnQBjbSetQ3pfxUClhHgt65rBAjxLGf1XASZ\nO4Fz6OmpZNas9yKfZPTTcP5XrS9hFEYrYnleKWsz/4/Djw0iII2GuJ8Ov/44Z5HTNg1YXkrrpTlG\nd+6hYmoJRMyVaUSKD7sxzVoOHmwnPPL1B2QFtyDDyH4nroyWQbgmWvjn01+wD3gM2wqRhIDHgbsI\n0EB75Ulmv3YDewpDTNnlA8zOTHqIme0hNBcVlRumaQ/uimA1vN8plnZEvYGPni+1sqa0jMH3gQuy\nP3JLWa+ZkebLafu8I/nDFpAdZFVMwUhbZt3/PHCl1eLD+hg2EepfROGhY0CZ5ccHkxryG89HLBCn\ngDgq4IGzntvDydkh4J83MHXL80z/hh//MYDiPl67oB7jzs3MB4wVd3Wf++jVj+7JGsza8A/svSON\n0LLwWs184OY7eSzeCNpoYuo//PjrkdqeLxlgnsP2owZmKZhVhAXEWQNy60f5ZRtR7mQHB19YgEk4\nBnIhzg68Iq7XIck+nwEjNgFm5AIyoRZIKqfxfhKr8hz4w80vv5znC4U+h+yW17u+IsAzwLX1hXzy\nt4uHhhrF40Xg6u50LjlaiO/fL+SV0S81q56unBBxBCSHY+8v5evtwJd3zNphngye/JWVPdPMMAJi\npe1djXy5nfNIolmZ27Jw/+7K3dGt48sIF+NlITuyl4ce9ftbkMyz6BgOhLvwXkvJef9NgD93ec5u\nfrFuB3AOAT5DYJhg4P3Lj7CsPZv0njeByxgYyGHOnLjdaN0xtoDxYcTdchFwEMz7wJyOxBPs4Pa3\nljfxKQPyyWndvYTdZ7XkmvUh35D7yuYY4YtEDR0dBcAiqqvPBeNfeeE1acPh9+8HDDiaBp9yVBqb\ndn+5BiTl+COWOyMAvEvAKkDrnH6Q4ppLOZCXTvHuDODpgyXk4mKBmJDeUlSUbxqGa7JANjRMl//n\nEgL8DQH+iwCP3Hb3dffNMn4YvDrr4GWU77qlIu3kTwrpM9/69at29wID24Xl95/ADLWQO3ul9UAz\nsqH4gCnnZQmwH4w5DB4Xl5RdPd5T0krxoRAYR4kUkKEANADn/qiJ5iUFftauaya7nMjY0ZYL6jCK\nerkYqA36+BgGPwPunkXPplyCFyIbpu1IHOPVheyvwZuAODvwDuHHH7S77qYRqp/J0e3I98uOgVQh\n6eN5wA138lgGuE2FA+DAM4vIBhZaohvdgXcjYnmsA+MptzfAWxHh0OcxwQJi/7G2knppvDdgNXMz\noOlDmzcfDvl81wNP4ffHbyYWYMsd23jrf5ZwDgG+4xJct3kJ8Ldn8/EXzqKDwNDo2tFwiI6cNIbE\nwMxHcsrti2ldIXvLNuffP6VnSk8xsisF52x0JOfchKkZAwMLnrnvvnmm5Lt/B6gzJJPpFcJBv2hW\n5jUufW3/9P3R/vRSwgKyHNjhUvkcz401n4Vf7LfeY5vL4/La1kVVBIhn5kfyZvlaWjMbWLOmD7iZ\nioo+0tMPDPs6V4y3wbgZsVaXIQF+u5If4FkD8q7dTz1VL++7kLeadleYXcRm1DQSFpATQBrHjj2G\nxNbAbkkiTIHGEKx2jk6dCxwCwyRAE5Is8Ahi9YdjIn1FWyisXUp3WxnpJwzS8h/fU87UkLsLq+RY\naWkXhhETQLfXvAh6mMPVyAjl14ED5zaQlZb7/InZ2XXkdUxdVVlzQWU+QWfnglmIK1JSk420zeTN\nm8rQ/PchN9YFwGYDQqRlTae/ZR/OgHHzMoPp2+0Y435k555FdBV36YFiuqYcR9xHc3GkoRtQHzIY\nOLuJqwYN6qzj/Cs/fvMQeXf046Od9PORv5ddeR5dNR6DKV0AVhLbTj2auiv4w35EQKJjIDeC+eYM\nGipJICBHiqkE3gxJenR0B94XkWvYPW4vtvBSRGjTAmQ404ZNyDfhchPuN91rxIYlkYDcYv1bTOql\n8f7Bj38oVe/8ffueqTh+vAWIzseOobCf2Z/azl8g5u+TUbEJYGjOx+GKLm5bP/9UG0127qYjI4Ow\nGFjWh1zIrNqSxl9PfeM2fARZM5Sh04SkDvpNSfns7cnM3AmUX71580eRHc1JREhA3AUrwXRrk7Cy\nbN+HnmwqasokEGF9iQtLRrPmETsSGNwyseQ9sph2zQXAejc3ikWiGIobN3Iy43luvHEGsJhZswyi\nW6CPGGMXGLchO+uhIKWV3/+dB14hj7N/VvMhXqx7Y/ZQCxMnDYQFxARqCQQ2AFdRXT2XSAFZAl2t\nkOa02KKbKH4P6dV0tyUo1oKCL1BycBozNi2EuUHW/E9dSy68O8UxtS9MWV15eRcuGVgWTSshRDmf\nBe4nwA8J8PDvfsn6yi5z88qTJVcG+4qzFrz1qdZMTGevLTuALiJr+LZRtOIE4YD875H46GpgM9XV\nBmm5xXTX7EQu/uKuqVtdyLTttjD1I+fvQqJdWDCbYMZOJMB/2Bq6NMTRIo6sauDSPRUYwHasYWz/\nyPJQH77tv2LW5/2snY4I3wt4EBCkF9gug2E3hfV3891m4PJ2CtqIjIHcOp8DzwKdCd7HtggeHPTx\nQEaQHnv9glEDxsfBSNQ917MLy3K9HwA+a8oMnK3IdexBJB34PxO9Ph6JBOQ85GJ2B7KLjL5NZn7s\n/MVnmi/V3nLLPvz+2IwIB6bsgmb7D7MN2Vn0AtUEXKcCvtidQe8rVRF+y1FwcCedpDOYZX/GkPvK\nQc3RMm6nw27PAUBTYWfnPKTR5WeA/Nz16y8dyMg4mBkMXmfApw34qjHkVzW6keBvVIGSWQKULujK\n3bKobpGZ3Z99qeNB2wL5ovU5bsfBTQTmI+3eryXc0M6NEQiIOR1YyMyeR1m58mKglzlzMnFO8Dsl\njPfBiG718sTyZoquzPxt0Yd4sev12a4dXL+LFHfZ1LB3bymy430MqZmxM7KWWmNvnckK84gUkD8h\n8bpfRnxK5aaXKNuXQfneFaTP6sCXOStvgB0HS1wLMcvqohopRtG4LJ0iWslD3GY2s4GaG7ns7XL6\n6o6QdwWRPnw7/mGznYIlIcIuqHcQd8zHkPOuglC/SX/rXpwWSP15Mynf44yb2W6sSBcWzCGj5zUk\n+SWm+LMxj3cXtlL1+mxmENNZwtjzc+Z0IRuoH1sJD14E5IPgKSmmfjnvFQEHH+Ke6db7zrmHb3YA\nl/2Kv3yP+PEPsATEgNeb8uj4wsa4TTETMZIYCEg27fnIMb4LKDXgEgPuMcKbnBGRSEAeQ9IZFxF2\nW9m3LQleNxmIrsl4PWtw8Gxz+DkmC4AjBvQjMyxuQ1wKmwgMNcez+em/XcT2oC9mENUI6TlKV3eQ\nrooF1h2uAnK8hFVIbQQAX3niiYKy9vZlwKcMeMFKpawi8Unr5sY6G9j5E+YFl9Yt7ckczHTWZZRt\nnbsVJHbyOO6DiNwFxJd1ELkQvphgPdZrTS91RtcDL1A8sJ309AwKC2uoqDhuzSYZFwzo+VMlz3/+\nLa4OGazcOZUeAtFfdKMeDOfshlpkx/sI8v//nVXRD7AEBg8SGTMSsbWRpI5XYlyFD7V10l3RzcLf\nV5A7vQGYtaCN17syWUYgpk6r/Gh5eUwjRZs7r2dgFRRQS5cjTRocXXibyfrtW5SG2slwxphsC8Rm\nO7mzC8BYah0vE7FCFiACMou+phBiYVgCYhbSsngaua3OCnRbQGItkJlvPo+8b4yAtOTyWrqJsW06\nVUiXWie7kSysWwlPffQiIJcTOyfEDXs2+gu/54ZzkL9j8F+552rgufPYNoX47iuQ2FkBAfLvv5w9\nX9zInJG0GrFap5QRvxtzDAZ8zYCbDPiWARsNSFQb5olEAvIIcmH4MeJ/dN7GpTXwWBE1XtKex/Ey\nuAZynUQWEMqX+UHg88BzBLjV8Z7vfVUqCmIq1kdIPV0dMJhdZf0eIyCvQ/vAdHIpl12CCVVfePLJ\nHxytqOg3omYxk1hA3ALpQ3Ojlxxd0jaQNuCsgC370RU/ugDZTMgUwtiLlWRiRTKfKVf2Abvw+12y\noWyMVsTK89Ji4UbgGeti/Cx///edrFlzqsd+WL63mv/wH2LOgA8aCjzF/kRAZIb8l4h0DSwB3y5i\nBcRbHKd9Zi2z34CyabuBWRfXsrWkh3TCfahsyhrKy03iCMh/ns/9i4KECFIGOLPQhi7gfaRt7CfN\n10S2feG2A+hOC6QBwzdITuV5jvt+j8Td6gkNVNHTkG69p22BrKZ95g4Mc5bjNU4BkYtuwKoJmbZz\nLxLQjkmWaMkVv31nJtuQVvFO9iDek21gHLbuSyggVvxjNR4tEGRDtX4viy5FXnsEEayf4xhr64oI\n9yFg3k9XUWmYNBA5GXM4pgNNhsSkkoaXNN47x30VE8MPCccD4uHawsRKLb0ceJAA3yQ8H3wxsaNw\nR0oLXX0GhOyLaIyAPJxOuTEdgzQ2WdW+LxV1dj40kJGRbo8YtagisYC8AZxvDU6yWYUlIGcfOfto\nX0bfcqulBseKjk3fP23/ucC/W8VPJrFWXC1QRHW1c0c5n6lXlpLYfWXjwY1l5iK7efv9nsXvP5fK\nynEfdPa7JWz62dmEaoo5Tmz8w41w6xm//9/w+51NLpdA+XYiBSTahRWf7jJJNqhYtA2YnWbSuqCN\nNsTF46TsWEmJDzcBCXCxaXBdFtRlybniPPZOF5KzEBLkvPThdBn6/SahgZ3kz3fGYZ7Hbofe17SC\n/rYey5pvsV5/A93lrwE+ws1NdyEX7lzHmkuAkJWZ9+eE61CG+Pwm3t9dTrAzUxJmothtvZ+zbftw\nFsga4B3D28hu2wJ5s5ecBSGMjnYKGhGPzXpiB0u5cQBYYhqs6M7gASSY7eWaDCN3X40LXhd7OvAs\n0pFyWYLnxG9hEmAnkl1yAbCOALMR//ap/hFDdOd04eu1T+wYAXlxBefPaaLLlDqK9cB/p5vmI1iB\ndMdTq0goIEY7IpBOd9yQBVLUU9SY25fbiFVE9us1v14+7eS0lx1um3qirQUJkO8l0gpZQP7ChYyZ\ngHAFsMXRluSPiPl9igF0DwTofOBymm+/iV5i4x9u2C6saIrk5n+HIQEx063nHva0FiP0HN2l/eTN\n2WO9rnVmOwPALVGWYVlrYWEG0VXo0vvtP4B/SDNpLBexc34fnIOkDiBFkva5aMc/Il1rvqyN5FZV\n2MkmBoQMe1MV6l/CYLslCIaJWCG3gu9NInu87UNSUmsc7+8QM6PNimHEsOKzXPPMoiEXlZODSNzO\nOSG0DSh0dM6N5nLk3PJCAzDdxBgAqjvJ797MBXnAU1bgO7EFIhxAikwPzOxgHdIBezgviY0KyERi\nmXo/JrEVsoRELimZZXE1cnJuAfa6pLWOnO7MZjK77MZ40QJS0n4OM+/bRBfiHngFme8OsbUgVQx/\n0r7KUBzETEf+z7Z7oHV2y+zDwKUEyN2wYsPMK9+50rmDs3dd0USKQPa0haRlFeAtVrYbsYIScSPO\nZpV+fxciTu/Fe8FY0pzH7k0zWYw3CySegFjnVuExYKoV95mFFCF680Uv+v3PyG37gOMzWnMGyUN8\n585jWHYyPz+bWAvkc0hSxC+BxgXy+DIY8qlPZejcM0yk0aVtQUXHPwRf+lYKl3UT68YEfHMZOOlM\nctiP1EtEC0gP8p1y7tij5rK7E/w6G3Cd820MgPFRZxaTlVnXRpzqfUYgIJZbvNt6r/UNTE97hQ/O\nIxzMr2J4C+Qgcm6/ZcWPHsS7FaICkgR+BNxmQnb0A9YfLdxmOx4BBghwF3AfiWeKeKeTQ2R3Zlq7\nyEgBWcXfUs7AJ95jGnLC3e1osxJRC4I3AXmFcBxkEVAHhp2e27LyyMpjSCXuJ5ceXTrwiVc+4fR5\n237faMKpvAFyKFldAcYLCdJ3nTwNXAHm19yD6aa4PSJjPQAfwe+Pvm+82IukMHtxNdkX9+j/i2Xd\nGj3IxacYcV95t6ICDBLgLcdntBpQapg8SaQbq7wzJycfp4AEmIHMsfmctelpvFDSvIdGKCNV+I5+\naMZWMOy/YXQGls128hekO94nTFrWDAZOOHtP7UNqXo4RMVgKEDeWUzAia0LGDlc3lpVgs4L4g6bc\nsDdU63ewquQdzvYBb1hdeb2s/wASO7HrP55FinVv9PDZM/FeAzJunFECYsiXdTtiNkYzCzhheGuN\nDAF+RIDvjMnCBrv2M5ABrQtKkRMynNWziE9Tx/qMEDcjGVfOi3JYQGLngMTjdeBia9b3kPvKonXt\ne2vbgUsw+cLHXv+YDyJmnse6sASnBTKX8kv6MHweC5OMw0hq8fXAE9YUPyfnyxqMyIu3P25H3fFg\nLzKRz4sgdiNiE32RcrpH7S6+3gPokTQCRYYM8+q5pIbncLix+tPSyvrT03OI/Nt9G/i+o49Z09WS\nuWe7sIbb8ccTkPdJz08ne9q5MY+k5ZXS2+gcH7yR8ByeI0R2mX6TyKFoniyQURAvDvIBxBLocXks\nHtaGyjj4V/zi4DpufNwS3DJgwMO1xP7bvwVDWWwPAg+Yw3dAVwskSfwAdzeWewB9QuivpSsrxM6P\nXQoMgiFFVrdSRhXzaeKrBjxlxA6scsZAouaAxMNoQ7I/ziVWQFoWNizMBHp9pq/57JqzQ378zgZu\ndQyXypteuIiiFVkkTt+NXtMxJEieBWwA0/kFj3RfJYffIK1FvOLmxnITEO8BdCdi2dUhu9DWDT/l\nKHLBWQXQVFIyJS0UbOcV/0wC+AnwJUSkv+F4l8ZLw26rfBJfsKci2VqHYh7x+0MMdhykYPGFEfdX\nV2eSlpNNx17H+WVsAONe65foQWn/QmSLpOiU3rEinoCMJP5hM+TSNfH9nYnPrgfyEv8AOZ4biExR\nfhqppbnW9RVhVEDiEEBMs+3WzXkg70P8qHuQueaj4WlguWn35QmTaAbIeFNPty9Id5kfp/vKx1ep\n4zgvxW314XRhVeE1GBt2Y8VYIIiP+j+X1yz/LuE2JuF1ulsg7wOzqK7OYupVV9B/vA2/P14RWxyM\nbqyeRcCbYNo+dUnfTSYBagmwYfgnDjGcgDQStkBGmwgw5MbKknTcJ4HHCLD+YEXBAqO7rhjJuvtH\nZHP0VwRwbgaaMuVCutdaWyIBcQ+g25jBreTMWhR1byUDx0OEeuMJZLSARBNdVDhWjKWAOL4PRjUY\ndrJJFV7WHqCfAFc5m4xaHoZ/Ar46jBUyKQQkPdkLcMFEejhFu4eWIheYpcjB24DklXtxKwxhQJ8p\nLU0+DdzreGgx8K77q8aderoHg2CsxhaQAAbt3MZrCbrTioDYrqMqvAvIq0ivpZVEBoZbgDIC/NPD\nPLyKSBcIxLNA/P5+qqsPA2dRtOJiug97yVZywQgBXwZzP/CKNDlkGsP3JZpsRF8ccxBrwb6YWoH0\nUbuwwCEgiMvkEaA2LcShgeziy4N5lRsJcGmC19vTFF9Dvlf5RLqQnLgH0G3SC18hd/ZHkWFgvQAM\nnJxP7zEf8f30XgRkQiwQUzZNcxl5gXQ9kYO5bLxaIPF4CtlIX4n03YvAEpZJISCT0QIBd+X9MPAL\nxI1zGNn1rh7l+/8Q+OuodL5kWiB1dA2Y+ILLsE+KEJcxQAFbI9pkRDNaC+RVZMeVTWQrENsCgchG\nijbxLBCw3Vj5Zy2kfXfMST8yjB8jvdi+BTwLxjBuuUlHtAWyEBEK2wV5DCkEGwsBsUW/ngDfG/w6\nrzeVlAyYvvRjw7y+ETl3/i/wyXcloWI4C8SdtKwtFCwexDlZsPdsO52LAAARg0lEQVTYKvqPdxHR\nwj+COmAaAZeUWpl86SWeNxrcLBA/8JqLi3g44mUlVnEK1pMhgfRvAN8z4ZMuHTRKgV4P/brGnckq\nIHchrpUfwVBzvxlE7maO4u6PHxZDXGD7iByMlcQYCPV09KeTfaIQ2wLp4T620k4oYaqqM423Cs8C\nYjQhJ/jbRI7bbCEsIM5W7jYNyJfe7bzZA1xFekEu9U+PYrxvzBpfQSyk+079vSacaAGJ3pwcQyxp\nE2IqqEf6GdFDpcrrysu7id8Hy6YJsUAagIe/IrU/8QQksQUC75E9JZ3MsnAqcWhgGQPt8WePB6RJ\nKO4X4JlAfQLxORXcBGQ07iuIn5V4qhYISCfee5GNc60JPzfhWlO8RpPC+oDkCchLSO1B9O1GpNBp\nLhIQbECyR+IRLxMn4LitjfOcoWC6KYqeQ2wPqoniBF0hg7w6kC/ONDJZyzs8SeJ5x6O1QEDiINGx\nleNAYTXV6UQOkxKkovgk7j7k3Zjm7RzfDIMdo91VR2HUWgH2VCPaPeMmIGuAA8TOyx7JZ9gC4hwq\nVVZfXi5T/xLTilVUVw7f3gyFq9z/ruXIJi7+39Tv72fgZDNFK8NtcgzfPAY7hvs+xXNjjZf7CsZW\nQMbFAgHJyDLgN4Z0c56PxLMCyMbhnxkbAVlL5LVyxCQrBnKVx+f9kHAAtY7IXV2iYSoBD+/9FPBv\npuwWZpJ4jO14Y9JrtJFXOwURsU+zh3Y6iTdIxkYsEJkIWMXIBOSr0Xf48QerqT6JtJFwc2GB+Mwf\nIsAdUTvE3RhGNse3tQ35wc9c3CwQZ7fTRuT4emnal+gzZiNzHJw1GGX1ZWV259m4GBAy5e9b0Qzd\n34e+O+V780civwfnIsksiWONg527yZ0VTuX1Zc9ksCNmKFMU8QRkvDKwIEpATPnulxE//pOIJqDM\nhPSonlRjYYEMYYhn4HuIS2sRMhl0LLowvIxzQBx8baRvMBldWM6W4TcRrpJeB3wUSXGbi8wWGHUr\ndSvf++dIw7XFJC/+IfSajeQfDZJ9vJEQn2EjOUisIj5SkT2IfCFG6DM2mixXVjQt1nvFWiDC7YgJ\n/YTVGsNmD2ZogOObk3scJwd2y3b7+LhZIHBqF4F4LqyyhtJSk+g2Ju7YgfTZnxILoxhxmThJHP+w\nMYN/IntG1dDv6bnlDJwYrlNAIgtkPDKwILb9jx+oNkaYjAND3S1acPQ2M+UYpjF61+Rwn7nXgPuN\n8GC5pDIZBeSbyG7gbaTlxt3W/buQIqRdSBuLz3LqFsMPEAFZTrIFpJujlBzq4H8vmUEnPTTwLN6C\nek2Ij9pDDYgnbJeIWwwEZPri/0KslF8MBUH9/g62f+4r9DUlK440mbBbqdtjchcQ2XSzmfCAn9Fy\nHEh/Z+5cu52GTVlzcXEaw7uwwCEg6XIx/wfgISKTS6I78LqTNeUlcmcXWQFwyCjKo7t2uNclwwJp\nBUoc7UKuYHTuK5toN1YVcDiJ3owJZTIKyMeR1LiViP/P2e/+n5Ev42LizTYfAYYIVT0yUjK5F75O\njpDdnUV+4x1spB3vxXNNSDba4TFaiW2BxHNhQYAe5G+ThUxtlItGx54KTu2ieDphXxznIZahowbD\nGECO8+gtEKnEr31q7doMImMg5W2FhZl4ExA7hmZfsNcjxW1/53jOuXgZYZ1RuJW8uZBRtMTqzOyj\nc/9w8+qPENnOxGbcLBDLamgHSq102NHGP2yiA+nj1YJlUjIZBWSi+QGym06uBdLOIdLIwmQVW1hA\n7FCseIy1gDgtEDcXliAB9b9ATP/fECAbEXcVEMF2McVLD/8+3rr7JqKmetWqXKIskPbc3BxGaIEQ\nvuh9EemZVYR8L6bgmEUeF7+/ncGObkovuoLOA4vobYRQ33DDjpIRRIdwHGQ+cg0c/v8XH1cL5BTe\nL6VQAZHOpK8yEa3BExGijj76qeNVBtmCdx/qeFkg7i4sJ9IF9S+R3k/rkGDu+2O0jlRnGAExHrDa\nypzSZ7w7d24RDgEZ9PnKejMzcxnubyfYFojzgv0O0tTvXiS1923wmE7b33KE3FmX0Nd8PgMnuj10\nqpaGis5W9PYgqYkRkMuBP56iuym6NkotkDMJQwbff3AURURjTT27aWEdA4ys91MzYjEcHqN12BZI\nfBeWE8nnvxXZzS5CLRAbe3c9ngWqtSfy86cAPlOGJ9FYUjItPRTqwu/3cj47LRDnBfsB4G8RN+Xw\n8Q+bgY53yJq6HDO0nIF2L+J4Erl4O4eRVQBdVqxtvLAF5FTjHxDrwqpCLRAlCdSzjn6auJyR9X6y\ns20Oj9E67GLCErxaQQEGkdYoV1kT5JThXVhj8xmGEZGJ1VRSMiUtGPRq2cQTkDrgUaSg18sYXyHU\n+yrZ0yvxpc9nsHP4miqxUKLdWONtfUC4ANfPqQtItAtrTFN4JzsqIJOHeiTg2szIdvFjLSCt1jp6\n/PhdBvXEIUBwhA0HT3fsOo3xFZCoVN7WwsJSw1v8A+TcqSRikNQQDyHuSO/zMTLLfk/u7Fx82VUE\nuw57fFV0W/fxzMCyaUbE46Rx6p/lZoGoC0uZcDqs20hblzch7rex6hvUgvRu8uJDV+JTgwwo6mSc\nagKIrEYvA2grKCge9Pm8nguNSEZjo4sLtwNxSXoPMH/4c7WYg0FyZsxjsNuraEYPlhrPGhCbZmRI\n2alaHxDR0p0CpKPFCDtRpy4qIJOLA5Cw+64bR4EDY1QDAnIxmk6iDCzFC81Ihtp4ZvfVArNChtGK\nVERntxQVpQ2kD9tI0aYZKXqLtwsfcXEdvQ3NZJWnM9jhNcMsWS6sHMZGQI4DOVYMag5w5EypAQEV\nkMnGhcDmEb3C798NXDyGa7Ab4KkFcmqEEHEfPwGRTgQ9h6dO7cTKnKsvL+/BcO0wEIMBfcAJxnLH\n39f8PmYIumu9domIFpCJcmEBVJ/qG1liYWdinVHxD1ABmWx4jzk48ftPjOEa2qL+VUZPLeNfX1S7\nY8GCIFbtTn1ZmZdGik4aGcsLdn/bFgZOmBzfNFwNiI2bBTLeLqyDwAbDW7sXL9hurCrOoPgHqIAo\nUfjxDyK7UrVATp1vM/7TFGvfmT8fwhZIkJEJSBNjKSAde39O4x/2eKgBsZnwILoBBwzvDV29cMZa\nIJNxIqGSfFpQARkLJmIUb82uOXPyEQEpbyopMRiZgKxjJJlWw/GZ9ZuJ7A48HPXAFKunWgYSiB4r\ny2CisCd1VnHq3QVSCrVAFDdaURdWqlB7cMYMu51JWUthoddGigAY8C0jmRc9qSFqRC7As4BaAqMI\n3ieXM9YCUQFR3FALJHWobSgrK8SKgZzIz88i9dJI7TjIRATQxwO7FqSKMywGoi4sxY0vEzkrXZm8\n1J7IyysFSkKGUdaVk5NDOJMuVbAFJJvUvADXIY0ZiwjPejkjUAFRYvDjH810NiU51PZmZU0FCo6V\nlk5PCwb7Qldc0ZfsRY0QO5CeTepaIKuQOSCp5n47JdSFpSipTV3IMKYO+nz5x0pLZ2YODo5lSvdE\ncTq4sNI5w+IfoAKiKKmN39+HYbTWl5WdPJGfPy89GEzF2JXdzmQiakDGHAO6kM7CKbf2U0UFRFFS\nn9oDlZUdJ/PyphM5wTNVSHULBMQKOZzsRUw0GgNRlNSndn9lZaEBxmBa2lg11ZxIbAskg9RN3qhD\nLRBFUVKQ2vdnzgw2FRebPVlZdclezIiRGTKDwHEC9CZ7OaPkC8DTyV7ERKMWiKKkPrUHZsxgWltb\nX8jnS7UqbpsaSFnxwICdyV5DMlABUZTUp6ZmypQM0zAGSL0iQpuUFpAzFRUQRUl9ahvKynIyBgdD\npLaA9CR7EcrISFYM5GbgPSAInBv12H3AfmAP8CHH/echZuJ+4OEJWKOipAq1bQUFhc3FxSNtpDiZ\neBx4ItmLUFKDxcjY1GoiBWQpsAPJxqhCZjIb1mObgNXWz88B18R57zNmGpiiAFBdncYf/9ifuX79\nCaqrZw//AkVxZcTXzmRZIHtwn7X8YeAXyHzmw4iAXIiMWC1ARATgp8CfjfsqFSUV8PuDGEZDf2Zm\nEalrgSgpyGRL452BjAG1OYp0uYy+3+6/ryiKUAN04fdrHEGZMMYziP4SMM3l/i8z/oN2Ao6fX7Zu\ninI6U4tuqpSRsda6jZrxFJDRjIysQ4bK2MxELI8662fn/YkKpgKj+GxFSWVqkZbiiuKVl4ncXH9t\npG8wGVxYhuPndcBHgUxgLnAWEvc4BrQj8RADuB343cQuU1EmNbVo/EM5Q7gJOeF7EHF43vHYl5Hg\n+R7gasf9dhrv+8AjCd5bs7CUM4/q6vlUV9+Q7GUoKY1eO9GDoCiKMhpSJo1XURRFSXFUQBRFUZRR\noQKiKIqijAoVEEVRFGVUqIAoiqIoo0IFRFEURRkVKiCKoijKqFABURRFUUaFCoiiKIoyKlRAFEVR\nlFGhAqIoiqKMChUQRVEUZVSogCiKoiijQgVEURRFGRUqIIqiKMqoUAFRFEVRRoUKiKIoijIqVEAU\nRVGUUaECoiiKoowKFRBFURRlVKiAKIqiKKNCBURRFEUZFckSkJuB94AgcK7j/iqgB9hu3R51PHYe\nsBPYDzw8IatUFEVRJh2LgYVANbECsjPOazYBq62fnwOuifM8cwzWp4RZm+wFnEasTfYCTjPWJnsB\npxkjvnYmywLZA+wbwfOnAwWIiAD8FPizsV6U4sraZC/gNGJtshdwmrE22Qs405mMMZC5iPvqZeBS\n675K4KjjOXXWfYqiKEqSSB/H934JmOZy/5eBZ+K8ph6YBRxHXFu/A5aNy+oURVGUU2I8BeSqUbym\n37oBbAMOAGchFsdMx/NmWve5cQCNg4w1X0v2Ak4j9FiOLXo8x44DyV7ASKlGsqtsyoE06+d5iNuq\n2Pr9LeBCwCBxEF1RFEU5jbkJqEVSdo8Bz1v3/znwLhID2Qpc73iNncb7PvDIhK1UURRFURRFURTF\nSbyixGiuQdKH9wNfmoB1pSKlSPLDPuBFwu7DaA4D7yCW4qY4zzmT8XKuPWI9/jZwzgStK1UZ7niu\nBU4SLkC+f8JWlno8DjQSv94OzrBzM15RopM0xPVVBWQAO4AlE7G4FOMh4B7r5y8B/xLneYcQsVFi\n8XKuXYfE8UDien+aqMWlIF6O51pg3YSuKnW5DBGFeAIyonNzMtaBjBQvRYmrkZPwMDAA/BL48Pgu\nKyW5EfiJ9fNPSFysaYz/clISL+ea8zi/hVh6UydofamG1++uno/eeA0pk4jHiM7N00FAvFCJBO1t\njqKFiG5MRcxbrH/jnTgmsAHYAvzNBKwrlfByrrk9ZyaKG16OpwmsQVwuzwFLJ2ZppyUjOjfHsw5k\nLBlNUaITrQsJE+9YfiXqd5P4x+0SoAGosN5vD7KzUbyfa9E7Zj1H3fFyXLYhBcjdwLVIAfLC8VzU\naY7nczNVBGQ0RYlO6pATzGYWka1RziQSHctGRFyOIf3HmuI8r8H6txn4LeJmUAERvJxr0c9JVBh7\npuPleHY4fn4e6eJdCrSN79JOS87YczO6KNFJOlJlWQVkokH0eDxEOMvlXtyD6LlIY0uAPOAN4EPj\nv7SUwcu55gxUXoQG0RPh5XhOJbxrXo3ES5T4VOEtiH5GnJvxihJnAM86nnctsBcJyN03kQtMIUqR\n2EZ0Gq/zWM5DvsQ7kKJPPZaxuJ1rf2fdbP7devxtEqefK8Mfz88h5+IOYCNy4VPc+QXSc7AfuW7e\ngZ6biqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoiqIoipIcLkCqerOQ9i/v\noh1jldMA7aGvKBPDg0A2kIO0kPhmcpejKIqipAoZiBXyJ3TjppwmnCkDpRQl2ZQj7qt8xApRlJRH\nd0KKMjGsA36OdDOeDtyV3OUoiqIoqcDHgSetn32IG2tt0lajKIqiKIqiKIqiKIqiKIqiKIqiKIqi\nKIqiKIqiKIqiKIqiKIqiKIqiKIqiKMPx/wGaHGXWVDpwJgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1019bba10>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEPCAYAAAC6Kkg/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXvcHHV9798PhBByvz4BkkC4miB3BALoaTzVCtoDWCVI\nRT3WWmhFbWsVrD3l5+W81J56zhEBy/GllZaKEvtCUUHFSxRBud8EAkkgJAECAXKDXLhkzx/fmWdn\n95mZndmdy+7M5/167Sv77M7O/vJkM5/9fG8/EEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCVJhv\nAE8D98cccwmwArgXOKaIRQkhhOhv3oAJQpR4vBW43rt/IvC7IhYlhBCi/5lPtHj8C3B24OflwOy8\nFySEECKc3cpeQELmAGsDP68D5pa0FiGEqD2DIh4AQ20/N0pZhRBCCMaUvYCEPAHMC/w813usnZXA\nQYWsSAghqsMq4OCyF9Et80mWMF9EdMJcbiQ7XNkLqBiu7AWUhmMSjq043oRjWWZnrRqOTTimd/G6\nC3Bc5t0/Bcct0Qc3hqBxNjTWQ+OL0BjnP5H2bfvFeVwN/AEwE8ttXAzs4T13BSYcb8WcxYvA+0tY\noxCiO4aBDViZ/dE4hnD6oteCYwqwO7Cxi1evB97o3Z8JPBt+WGMYuBx4LXAGDN3axXuN0C/icU6C\nYy7IfRVCiDwYBp7BsQHHC8D+wOpyl9R37A883qWorgf29u6HiEdjCFgCfBm4EjgXhnZ0vVKPfhEP\n0X8sK3sBFWNZ2QsokVnAM979e4Cj6V08lvX4+n7DxKM71gP7ePfbxCNbtxFkkKqtRLEsK3sBFWNZ\n2QsoET9sBU3x6JVlGZyjn+hVPPbGMUSLeDSWAPdhyfBjshQOkHgIIfLHwlZGVuJRNboXDwsFvgpM\nAmayaf+d0FgKfBpzGxdmEaZqR+IhhMibsLCVaKUX5wG++9g4/wh+8s8OeJQc3EYQiYcQIm+CYatH\ngek4ppW4nn6kN/F4ZexzXLP0CrZPP4z5yz6el9sIIvEQQuRNM2zl2IXF4Y8qc0F9SA/i0VjCytOO\nZuaDW9jn7ic48bKbMl1ZBKq2EkLkTTBsBX6/R/WS3t3hGAdMw0JPKWgMA5cBhzP8+++z4Pu3YBPK\nI/o8skXOQwiRN8GwFSjv0c48YJ3nyhLgd4lzH35uY/qqe7GxTZOBTTmtswU5DyFEfjTLR9vF40Pl\nLKgvSRGyiuzbWA+8HtiI49Uc1jgKOQ8hRJ5MBV7E8VLgsd8Dh+IYW9Ka+o0E4tHiNsL6NtYDh1NQ\nyAokHkKIfGkPWYFjO/AYsLCMBfUhHcSjMQwsxYZBRvVtPIWFvyQeQohKEGwQDKK8R5MI8ejoNoL4\nyfbCxEM5DyFEnrRXWvn44nFlscvpS0LEI/VMqg3YWHU5DyFEJRgdtjLkPJq0iUcXM6kcr2C/ZzkP\nIUQliApbaW8PAMfuwL7A2pa+je4m4K4Hnst4hZHIeQgh8iQ8bOV4BtgG7Ff0gvqMfYFncY0zCfZt\ndDeT6ikUthKiwrhaOf6osBX0ErpyzMFxDY5Du11YX7D2xKPYsHBPspmA+0Xgp9ktLh6JhxBFYk1z\nT3gjKepAVNgKmmNK0uEYBn7m/fRrHCcnfN0YHJ/FcWnq98yFxhLuPO8qdkx5hiwm4Dp+iePJbNbW\nGYmHEMUyDrugzip7IQURVW0F3TgPx3TgRuAaHEuA9wPfw/H2Dq/bF/g5sAg4B8f+qd43UxrDI/tt\nnHjJt5j3ux/kPQE3DyQeQhTLBO/P4VJXURzZha0ck4EbMNfhvMduAE4FLsXxkYjX/RFwJyY6bwH+\nDfirxO+bKSOVVJbb2Oee3ehtH4/SkHgIUSz1EQ+rJJpGdAXQKmAWjqkJzjUe+AFwF/B3LRVajruA\nU4DzcXwJ513X/DAV/CvmNj7nDR+8FPgAbuTfogACbqM1t9HrJlClIfEQolj8C9bsUldRDNOBTV4P\nwmhsgN99wJGxZ3HsCVyLXWQ/FFra61iNCcjrgG/jOABzKIuAY3GB8e+OVcAtwLnp/jrd0uY2WnMb\nEg8hRCLq4zziQ1Y+8aErxx7Ad4CtwJ/Fji13bMTCUg3gESzHcSqOp0OO/jLwEa+AISci3Ya/3iEk\nHkKIhNRNPKKS5T7R4uGYC1wDjAX+NNLBtL5mB3AONrX3szHjyX+BicwfdjxnV8S6DZ8ZwE4cW/NZ\nQ75IPIQoFolHK6PFwzEbx//FLr4rgHe0jXSPx7ELx2MdjmkAl0BEkr1rOriNVgbWdYDEQ4iimQC8\nSD1yHrPoHLb6PbAAx1gc03F8HngQGAIOw/EJb4R7HlwFnITjoGxOl8htBJF4CCESMwG7uMh5ADi2\nAauxmU6PYEn2o3F8FJd2T++U2Ht/A/hwbydK5TaCSDyEEImZgG2EJPFoch2wJ3AijvNwrM13WS1c\nBrwXx6TuXp7abQQZaPGo04wdIfqBidg37dNw7BZbPTT4JAlbgeOi/JcS+d5rcPwc+O/AV5K/sOcJ\nuGDicVMXr+sL5DyEKJYJwPPYRNnOzXGDTVLnUTaXAB8eaS7sSE9uI8j+wJouX1s6ch5CFMsE4Ens\nojqMCUlVGRTx+A3wAjbm5ProwzJxG0H2Q2ErIURC/Gqrp7GL6/Jyl5MrycJWZeNo4LgE+CiR4tFY\ngjmUK4H3tDX7XYAJyg7vtjPw53ZgM7DRu23y/nwJGM8g/H4ikHgIUSy+eDxDlct1HWOBSdiFchD4\nNvBFHAtxPNR8uIPbcMwC/ifwSSzpvyc2OXmKd3+8d38qNufL/3MacN8g76Io8RCiWILiUeWKq5nA\nswNTEODYgeNrwPmYAyHWbTR5O/BjHJenfL8hyHM0Sv5IPIQolvawVVUZjJBVK1cCNzHjoS/w3IJL\nSJbbOAu4IvU7meMYWNcBqrYSomjq4jwGJVnexLGCF2dtZcaKB0hSSeWYCZxAbJK9ukg8hCiWCVhl\nT7VzHgMnHl6X+G//dhJ//Je3JuwSPxP4qdepXjskHkIUS12cx4CErRpD0Dgbv2/j4B8fz+QnTsIx\nMcGLzwKW5ru+/kXiIUSx1CXnMQDOozGMXfwd/kyqb/5qLXAz5iqicczANpr6Uc6L7FskHkIUS12c\nRx+LR4vbWMno3MZVwLs7nORM4EYcL+a0yL5H4iFEUVh5pi8em4DxOMaVu6jc6NOw1YjbuBhzGxeF\n5Da+DyzCxeakah2yAomHEEUyFtiF42WvVPMZ7CJbRfrMeYxyG8dGVlJZAvwHwLsinp8OnESNQ1Yg\n8RCiSHzX4VPl0FUfiUcit9HOVcC5Ec+dCfwMxwsZLnLgkHgIURxh4lHVct0+CFulcBuj+QUwF8dr\nQp6rfcgKJB5CFEk9nIdjL2yu05byFtGV22jieAW4mvbEuYWsTgZ+mNlSBxSJhxDF0S4eVS3XnQU8\nU87Qv57cRjsWunItM6jOAH5e95AVaLaVEEVSl7BVSSGrxjBwOXAY2ey3cTc2Wv0k4BbvsbOAf+/x\nvJWgX5zHqdi+BiuAC0OeX4zNxL/bu/1DYSsTIjvqIh4FJ8szdRtNzDn9B37i3DENeD0KWQH94Tx2\nBy4F3gQ8AdwOXAfBmfoA/Ao4vdilCZEpdQlbFSgembuNdr4F3I7jr2mGrLZm/B4DST84jxOwbwur\ngZexTVnOCDluoGffC0FdEub2d8o5bJWT22jH8Rj2RfYtqMqqhX5wHnOAtYGf1wEnth3TwCoc7sXc\nyd8BDxayOiGyoy7iYQnz3MjdbbRzFXABlvsIbxysIf0gHkkqMu4C5gHbgNOA7wGHRhzrAveXeTch\n+oF28dgAzMKx28DsuJeMYUaHnTOgMQQsAb4MfBM4N1X5bfcsBb4CXF+hkNVi79Y1/SAeT2DC4DMP\ncx9Bgv9gN2DfOqYDz4ecz2W5OCEypFU8HDu9wXpTCf8sDyo5hK0KdxtNHM/j+CY2sqQqLKP1i/XF\naU/QD+JxB3AIMB94EjgbOKftmNmYDW5gOZIhqvWfTdSDCYy+qPqhqyp9njMMW5XmNlpx/EXh79nn\n9IN4vILFE3+CVV59HbO853nPXwG8E/hL79htKO4oBpMJWGFIEL9cd3nhq8mPjKqtSnQboiP9IB5g\noagb2h4Lbip/mXcTYpBpz3lA1cp1rRu7x7BVn7gNEUu/iIcQdSBMPKpWcTUBGzvf5SZJI27jtcht\n9DX90OchRF2og3j0ELJqLMH6NlYxenc/0WfIeQhRHFHicWQJa8mLLkJWjWEsLH04chsDg5yHEMVR\n/ZxH6kqrEbfxKHIbA4WchxDFobDVCC1u40wY+l2+yxJZI+chRHHURTw6hK1GuQ0JxwAi5yFEcUSF\nrao0ln0WNjUiBLmNKiHnIURxhInHZmAvHONKWE8eRISt5DaqhsRDiCJwjMGc/s62xxvYxXZWh9fv\njeONeS0vQ9rCVo1haCwFPo25jQvV8FcNJB5CFIO5jvB9vZPkPc4BPp75qrLHq7ZqDMltVBvlPIQo\nhrCQlU+SvMdJwORMV5QPw9x+/qvYGHN1iVcYOQ8hiiFOPJI4j0XAlExXlDWLLx5i126z+fH/+Qnq\nEq88Eg8himEi3YqHYw6wL30tHo1hbj//e7w8fohXx52h3Eb1kXgIUQy9hK1OAn5LX4atAnuJz3z4\naca++JjcRj2QeAhRDL2ErRYBNwKTcP30f7YxjOU2HHAG71/8bww1cty7XPQTffRBFKLS9CIeJwG/\nwTZCm5jxurog4DZacxsZbQIlBgFVWwlRDN2Jh2MscDRwO9ZQOBnYksP6EhK738a+2FbSogbIeQhR\nDN3mPI4GVuLYiolHSUnzSLcRROJRIyQeQhRDnHhsAGZF5DP8ZDmY4yhBPNpyG9GVVHOInGslqobE\nQ4hiiBYPx0vAC8DUkGcXAX5ndsHOI5HbCCLnUSOU8xCiGCYAm2Ke9zeFer7t8ZOwb/zQzHkUQFd7\nict51AiJhxDFMIH4C+szWN5j+cgjjn0wsVjhPZJt2MpxLXCA994bgA00hjbwwFn7c88N72TlaV8D\nzk3R7CfnUSMkHkI4xgNzcCMX6aSvuxD4DY6bExwdl/OA8IorC1k5dnk/Zxe2chzqnf9t2DDDWWzd\n+0BWvuU9jHlpNu9+23iGGp/DkUw4HBOAPYGNmaxP9D0SDyHgo1h46PSUr3s95gbyEo9gshyyDVst\nAb6L4y7LbbAE+CvgSuBijrj6HmAe8GDC85nrCJ8aLCqIEuai3jiGgPfS3Tf6ScD0hMd2Eg8/5xEk\nmCyHbMNWS4DvxFRSrcXEIykKWdUMiYeoO8cDB2JCkJYsxcPPeRiOPYBjgdsCx2QTtnIspMF0PrNz\nLtGVVGuA/VKcVcnymqGwlag77wO+DZzSxWsnk614BJ3HkcBqHJsDj2UTtnpx5vt59E3b2DX2YqIr\nqeQ8RCxyHqK+OPYEzsZKUvvBeQTFoz3fAT2Hrby+je0z/oaHT7+V+L4NOQ8Ri8RD1Jm3Ab8H7qe7\nb/RpnccLMc+3jygJE48ewlZebmOfOz/P1NXP8s4/fW+HElw5DxGLxEPUmfdh1UXbgT28PEMyHGOA\nvcjPebQny6GrsFVbl/gHTrmaMTv/I0FVVFrxkPOoGcp5iHrimAX8AXAujoY3eHASozu8o/BHo2cl\nHpuBcTjGYQIxg2DDYPOYFM6jrUvcDd3mnfPcBC828XAMJSy/lfOoGXIeoq6cA/zQEw1gRDySMhl4\nFpjulftG49gda6DbHnNMA3MfszDXcWugOdAnYc4jcibVkcAewB0dT+F4Eds/ZGaCY4eQeNQOiYeo\nK37IymcL6UJCk7CL/S5gfIdjxwPbEnyD98t1w/IdjHR7mzuJIHYC7tnANSka+daSLGk+HdiOY1vC\n84oKIPEQ9cNxOHaR/kXg0W6cx1YszNUpdNUpZOXj5z1OYnS+wyci79FhAq65gyXANQnW4bOGZHmP\nfVG+o3Yo5yHqyHuBq3C8GnisG+cRFI+1McemEY99geOAqBJaP3QV2O410QTcY4EGcHeCdfgkTZrP\nQSGr2iHnIeqFVUmdS2vICrpzHlvI1nk8DfwhsBYXOWAwkDRPtd+GuY50s6eS9noo31FD5DxE3XgT\nsA7HQ22Pd+s8diPbsNV5wH/GHOOFrUbcxmF02m+jGbI6M8EagqwFjklwnMp0a4ich6gb72W064D0\nzmMS2TuPZzABG50s92mwhVs/9FbMbawEjk2wUdPxwE7vNWlImjCX86ghch6iPjimAG8FPhzy7Ba6\nS5jvJNuwFUQmyxuzWXnaMTy78HiS7+4H3YWsIHnCfA7wk5TnFgOOnIeoE2cBv8DxXMhzW+ktYR5H\nGuexlVF7aIzkNu4FNvDmT3wpsXA4dmNk/HpqngRme3miOOQ8aojEQ9SJqJAVdOc8/LDVtA7HJhWP\n+4EzW6vAGsPAdwGbgHvIj3/M2G0TUqzzRGArjgdSvMZwvEyzAiwO5TxqiMRD1APHXCy5fEPEEeU7\nD8crOL/3pKWSagXN3Eba4Yhnka63o534cl1zJTNphtxETVDOQ9SFI4E7cbwU8Xxa5+EnzF8gu7CV\nR2wl1Wbg0BTrXOCdq1v8pHnUVrt7AxtwvNLDe4gBRM5D1IUFjB40GCSt88ijwxxoLCG+kirtZN2Z\nwIYUx7fTKWmufEdNkfMQdWEB8d3V3ZTqphGPZ+IPaQwDlwGHE19JlXZDqJnYAMduWQscHPO8RpPU\nFDkPURcWEu880jYJZthhPuI2HiW+SxzS5zx6FY9OXeYaTVJTJB6iLiyAUV3lQbp1Hi8Ae3pb2kYR\nIR6NYWgsBT7N6Am4USQPW9maxmEi1y2d5lvJedSUfhGPU7FvhSuACyOOucR7/l6SjUwQwnDMxPax\niKsI6s55WONdp3LdEPFI5Tba15nUeZjrSN8cGKRTl7mcR03pB/HYHbgUE5DDsE16FrYd81Ys7noI\n8BfAV4tcoBh4XgMs73ARTb4VrW3uNI6mIHQKXQXEoyu3ESRN2KrXkBVYsn0iLnLPEiXMa0oa8TgQ\n27M5a07AKktWAy8D3wbOaDvmdJrNXbcCU7H9GIRIQqd8h7+TX9LQ1UTghYAYJRSPrt1GkBeA8Z6A\ndWIWvYqH7Wa4DpgbcYQaBGtKGvH4GNatCvAG75YFc2jdC2Gd91inY6I+zEK006lM1yepePhluj7x\n4vHqmMn867JP073baGIX8xcSrrPXMl2fuNCVnEdN6VSquxvwLuBbwG3AAcDjwE3A2zNaQ9J4bPs+\n0VGvc4H7y7ybqDcLgK8lOC5po6CfLPeJEY/GErbOP5RdY24CTu9aNFrxQ1ebOhyXRdgKono9LJS1\nF/b3F4PFYu/WNZ3E4yPAD7378zC7/bdYLfrNwLW9vLnHE7R+MOdhziLumLlEW2WXwZpEtUjjPJIk\nzf0yXZ8Q8Qj0bUx6cgsfeP3FI3uQ907Siqvew1ZGlPMw19FbQl6UwzJav1hfnPYEncJWX8H2AgAT\njv/ExlmfhX0byYI7sET4fGAscDZwXdsx12FD7QAWYd+4NEtHdMYxDvuy8WiCozNyHm25jd1f3pNU\n40k6krTiKquwVVSXufIdNaaT83gVuNq7/x3gKOAuLHyVVcL6FeACbD+A3YGvY/X453nPXwFcj1Vc\nrcT+E74/o/cW1ecQ4DFvQmwnkjoPf66Vz0bgsNAucRuJvhewLd2yY0lacZVV2Got8I6Qx5XvqDFp\nxpO8igkHwO3eLStuYPS00yvafr4gw/cT9aFTc2CQpM5jdML82UOPwtzGlcB7ArmNvYCdrWPWe6YM\n8YgKW8l51JR+6PMQIk+S5jsgnfPwxKMxzLXfPJ8XZx9FeCVVyom6iUiT88gubOVGFa2oQbDGSDxE\n1UkjHmmcx5aR3MbL41cz7+aHI/o28hCPNDmP3p2HYwsWeWjvopfzqDGaqiuqzkLgywmP3Yp9W49n\n27TZ3P/uN2Ll6mewZMlzRO/hnZfziBcPcwkzIXTL3W7wk+bBslw5jxoj5yGqiyWrbTRJMhI4j8YS\nlv/JnwNP0ewSj2sSLCtsNRnLtWRVHhw2IFEJ8xoj8RBVZi6wyQu7JCEm5xGYSXXwj5dx4qVXBXIb\nm4FJESNDygpbZVWm69OaNDdnI/GoMRIPUWXS5DsgcjxJW9/G5CdeIlhtZZVUW7CZa+2UE7bKrtLK\np73XYxrmbLL+u4kBQTkPUWU6D0RspW0se+Tufu0d5tAMXbXnGMoKW2UtHmuBtwR+VoNgzZHzEFWm\nB+cROwG3vcMcovMeZYWtsirT9Wl3HgpZ1Rw5D1FlFmAjdZKyhV27T4NXlhK/l3ic82inKmGr9kZB\nOY+aI+chqkw65/GNXy9m+7T96LzfRtnOowzxWAfsGygKkPOoORIPUU0cU7FNmxJ8O/YqqZ465mPs\n9fzLCfbbKFs8LDczuuM7SFYTdQ3HTuzv6M+0U4NgzZF4iN5xTMHxj2Uvo40FwMPx48IbQ9A4Gz+3\nsdfGo9lt1xhcTDjXekfGYxsyBSlOPBwvYQNF43b2zLpUF1pDV2oQrDkSD5EFRwN/1+GbcNF0GIjY\nGAaWYvu/2EyqLfvtoPNughOBbd6OfkGKdB7QOXSVddgKWhsF5TxqjsRDZMGB2AU3rM+hLCLyHS1u\nYyWjcxudhiOGJcuhHPGIW2ce4rEGOQ/hoWorkQUHeX/uj+1t0Q8sAP699aHGMHA5cBjRlVSdRpSE\n5TugePHoVK6bdaku+M7DwnozgfUZn18MEHIeIgsOwvaUD9vzoSwCDYKj3MaxMZVUnZxHv4hHdNjK\nLu6T6bzHeVr8Xo/ZwHM4Xsn4/GKAkPMQWXAQcA/mPMrHMRZby8qEbiNIJ+cxCGGr6cDGjDeggmbC\nXGW6Qs5DZMJBwC/pF/GAg2iwBtc4k2RuI8igOI+4sFUeIStoJszVICgkHqJHrJ9iLHAH/SIeG15z\nImtPnghcjLmNizr0bQTp1nlsBKaFVJyVUW2VR7IcLMcxHTgAOY/aI/EQvXIgsAp4nNJzHl5u44F3\nfYVts9aQ3G0E6c55OF4GtjFaeMoIW+UjHhYGexI4ATmP2qOch+iVg2iKR4nOI5DbOObrNzFl3XdT\nuI0gSZxHWNgKzH1Mp9WZTGB0Q2EWbMHCR2Fk213eyhpgEfCznM4vBgQ5D9Ervnisx8I244p9+5BK\nqinrZhLbIBhLEucRtblUa97DQlhlha3yyHmA5T3mI+dReyQeoldMPCyk8QSjtyrNkZEu8WZuww3t\nxB9N0h2dOsyjEuYwOmm+J/BKTiWtZeQ8wMQDlPOoPRKPQcYxCccRJa/iIGwKLRQWuort29gH2I7j\n+S5P3rYh1CiiEuYwWjzych0Qv848xWON96ecR81RzmOwWQKchyUwy8IPW0Eh4tGxbyPt7oHtZOk8\n8hSPOOeRV6kumPPwJ+yKGiPnMdgcCRyDi52umh/WjDeb5rfRNeQmHom7xDsMROxILwnzfhGPPJ3H\no8Ca+GnFog5IPAabo4BdwOtKev/5wLpATD+nct2Q3EZ0JVXarWfbyS5hnr94FB+2cjwAvD6Xc4uB\nQuIxqFglz1HAd4GTS1pFMGQFmYetUs2k8ulVPLodjAjF5zziwlZ5OQ9wPJPbucXAIPEYXOYCO4Dv\nUa54PBr4OUPxSOU2gmSR8xiEhPmLwJ449mh51DEeGMrxfYUAJB6DzFHYN/LfAieXtBFTu/NYC8wJ\n7HPdBV25DcMxHbu4r+l0aAyD4Tws5xC2VgtZKSchckbiMbgcBdyLYx02FuPgEtbQKh6OHViX9d7d\nna5rt+FzHHB3yC5/adgOjA3dita2oJ1IdMd4kc4DwkNXeSbLhRhB4jG4mHgY5j6Kx59rFaTL0FVj\nCd24jVaOwwY0do99Y48q152AbUEbNeq8aPEIq7jKs0xXiBEkHlnj2K2gENKRNMXjFuCkAt6zif0d\nD6A15wGpxaMxDI2lwKfpzm0EeR29iocRlfeIK9MFXzya//5liIechygEiUf2fBX4cK7vYEnR/WiO\n4LiF4p3HPsBW3KgQTnCf6w6MuI1HGb2XeDe8Drizx3NAdN4jrkwXHNuxHRX9vpsiwlbtIifxEIUg\n8ciefYFPeRf4vDgceNgbAw7mQA7Axe5pnTXtlVY+CZxHi9s4E4Yu7MFtGI6ZwDQs7NUrUc4jLlnu\nEwxdKWwlKovEI3smAS8D5+f4HsF8h7+XxJ3AiTm+ZzvtlVY+HcRjlNv4XUbrOQ64s8dkuU+U84gr\n0/UJisdEFLYSFUXikT2Tgf8BfDxH9xHMd/gUHbpKKR45uI1Wssp3wOA4D4WtRGlIPLJnMvAb4Gby\ncx9+j0eQoiuuwiqtwJ9v1VI0kJvbCJJVvgPinUcS8Zjm3VfCXFQWiUf2+KGNz5CH+7CLcpjz+C1w\nYm8NeqmIch6bsKTx1ALcRpDey3SbxDmPNGEr5TxEZZF4ZI+Jh+M+8nEf+wEv4tq+XdrP64HXZvx+\nUYQnzK1P4nF++NU/J3+34b/nbOzCHpbA74aoPo9+C1uFDUeU8xCFIPHIEhtRvjs2cwrycR9hISuf\nYvo9HJOxctSnRz/ZGGbtohlsn/oRrG8jT7fh4yfLsxrJkVXCvNgOc+uAnw48l+N7CgFIPLLGvpn6\nF7Gm+zgvw/dorbRqpaikubmOlot1YCbVzknrOeMD/zuDvo2kZJksh94S5hspL2w1FXghUMItRG5I\nPLIl7JvpZ4BPZOg++kU8AvmOkZlUDjiDg2/8DmO3zSlgHT5Z5jug94R5WWErhaxEYVRfPBxDOG7E\nsWcB7zZaPLJ3H2HJcp+HgFk4hjN6ryi8SquWCbiraHaJF7SX+QhZVlrB4CTM2wcjSjxEYVRfPOw/\n8JuAIr4JR8XEs3EfjgnYPh6PRDy/C/gd+ec9DmLz3KcJuo3W3EZOOwqG4NgHGAeszvCsg+Q8guKR\n7yZQQgSog3j438LnFvBe4eKRnfs4AngosO1rGDmHrhpDbJ5zMj/66idpdRtBctzLfBQWssp2/4re\nnYcVTwwBL2W4rnasSbDZUzMTlemKgqiDeMzy/ixPPIws3EdcvsMnR/HwcxtDr2Haqg/GVFI9BUzD\nMS6fdbQsxRRLAAARZklEQVSQdcgK4gcjJnUe5jry3JTJvkTs8N4LFLYSBVK2eEwHbsTCMD/FqkXC\nWI3F1e8Gbkv5Hr7zmNfF+tISfXFpuo+/7OH8cfkOn9uAY7xvvhkRyG3s8eJjTF7X4LS/vi7ycAuf\nraOY0FXWlVbQ/Uh2/7XjsM9yEVvBBkNXEg9RGGWLx0WYeBwK/Nz7OYwGsBg4Bjgh5Xv0i/MA2yHv\nE7jYbU7jiOvxMBxbsMmyR3f5Hm20VVJ9auL/Y4gnEpSD5p/3sHBN1pVW0O1IdltTAyvXnUfx4qHu\nclEYZYvH6cCV3v0rgTNjju12g6VhLDZfvng4HgB+Rjf7fVgDWBLnAZnMuYqspIqaadVOEXmPfYEx\n2N7pWTJ6K1oTqrgtaIM8T3HiERyOKOchCqNs8ZhNs0v5ae/nMBrYRfcO4IMp32MWFu4qXzyMTwN/\ng4sM0UWxP7AZx/MJju0x79HmNlpzG1EzrdopolzXQlZZ5xXCt6KdAOzoUKzgU6R4KGwlSmFM50N6\n5kZg75DHP9X2c8O7hXEKloSd5Z1vOXBTxLEucH8Z5jzuAl6faLW90Vk8HI/g+CHwN1gYKymdQ1ZN\nbgG+4PW4pLiwNoaAJcCXMSd4bkhCPGoTqHYeB/5L8vfuijzyHT5+3mOj93OSZLlPWeKhsJVIymLv\n1jVFiMebY557GhOW9di2ps9EHPeU9+cG4Fos75FEPAA+CXwHmIFjLC7X0skkzgOs8uoOHJfgEs8h\nSlJp5fMo9m87DwsfJaAxDFyODVY8I2a0yEGYOHWiiLDVccAVOZ27Pe+RJFnuU7R4KGwl0rLMu/mk\n+SILlB+2ug54n3f/fcD3Qo4ZT/M/8QTgj4D7U7zHLEx8nsYEKk+SfTt1PIaFhT6e4tzJxcPcRsLQ\nVWRuI4r+CFtZDiKPMl2f9oqrJD0ePs9jYdKich5TvOq68ZiYCJE7ZYvHFzBn8gjwX72fwRKhP/Lu\n7425jHuAW4EfYmW9SRnGHMs68s97JHUeAJ8DPogLDemFkTRZ7nMrcHz8IbG5jdHYBTtpwnwtMCfH\n/UXmAbuAJ3I6f3vOo5+dxxRgBvBcrn0lQgQoWzyex0aHHIo5ik3e408Cb/PuP4qVnR4NHA58PvHZ\n7WLnx4H7Szwc64CriC5PDh47CXNNK1Os5WHs9xpCarfhszfW+JbEXe3A/n2TimNa8ugsD9Ietkrr\nPGZSbNhK+Q5RKGWLR95MBnbi2E6/iYfxeeA9uI7rOgJ4MGGlj88jwCGjH07pNlo5kHQbLuWZ98gz\nZAWjw1ZpnQcUGbZSvkMUTNXFI/htrP/Ew7Ee+DqjK8/aSZMs91kFzG/2KnTtNoIkzXf45Jn3yLPS\nCsKdRz+Khx+2kniIQqm6eAzTrODKVzyaTWRJLzA+/wQswXFAzDFHkrxM11/PDqyKbf8e3UaQ/hCP\nZmd5kc4jbdgKihUPha1EoVRdPIp0Hn4T2aupXmV7j18O/GNgOmo73TgPaLCCmz/u7yXerdsI0o14\n5DGiZH/gJRxP5nBun15LdaHYDnM5D1EoRfR5lElxziN9viPIl7BGxg3eCBP/9qB3O4K0zoPGMA+9\n4wC2TzuC+L6NNBwE/EuK49cAp2Xwvu3kHbICE4oDAz9PIroPqZ2ywlYrCng/IYDqOw+/TBes12N2\ny7yibOlePBybsAvz4VgD4XIsVPVZ7/563EincwcCuY0XZz3OGy++tifhsC71eTj+G/Aa+iFsVYx4\n9OI8NmPTEooWD4WtRGFU3XnMwi5g4HjJ6+aeTZLeAMcU4BBc4otUL87Db+xb791+Hnh8CNgj2Una\nusSPv2IG8NGU69gfeCNWGn2Ud9uJhc3+l7e+pJh4pB6Tgj8IckbgNjNw/0zgY6nOl56wnEcy8XC8\n6n0hKDJspV0ERaFUXTyGgdsDP/uhqySNZX8CnIP1nyShN/GIwi66HUaqRM6kOoTIXo9IfoJ18N8G\nXA/cixsZXpkOxyZvb4+pkNQ5gVe6/CPs3+pZ4LnA7VngG8Avu1pTcnrp8wD7+xYhHtux/8f7IvEQ\nBVJ18WivQPHFI0kYZyHNvaiTkI94dCR2JtVqYB8ce+LY2fFUjolYZ/ThKXtK4vB7PZKJh+NwTLQu\nAb5UYsd0L30eYNOTH8x0RWE4Gjg2Y/kZiYcojDrkPIJJzjRJ87TikaYPIAMS9G3Yhk1rsHxKEpLs\nkZ6W5HkPx2LgF8BFOP655FEbvTkPx7/hEu39kQWbgT2ReIgCqZvzWEvy7Wj72HmMuI3D6FxJ5Xea\nJ/kWnHZ+VhKSles6zga+ArwLxy8yXkM39Oo8imQLNjZme9kLEfWhus7DEq5RYatOrx3nHTcxRXVW\nAeLR4jZWAscmqKRaQfK8R/pmxM50dh6OvwX+GXhTnwgH9NZhXjSbkesQBVNl5zEV+zYWTDYnDVsd\nAjyGhb2mkuw/ZnDjoBxozMbcxkLS9W08gu39noSjgO92sbg4HgM+gmMmFkJ73Lutwf49PgecCpyC\nS7r3SCEEt6J9lf4XD5XpikKprvMw19He1JVUPBYCD2HNXklDVzk5jxG3cS/mIpK4jSDJnIeVBHfR\njNiR72N7tfwa6314A/D3wA3YFOXjgNf3mXC0b0U7Hutof7ncRUWyBTkPUTBVdh7BBkGfJ4F9cezm\nlZBG4YvHHEoVj67dRpCI6bqjmA9sTbGzYTLM+f084rndgEYf70Hhi8dLlFJJlxhtACUKp17Ow4YF\nbsKEJY5unEeGYY2e3UaQdcA0rww3jjyS5fE4dvWxcEAzad7PyXJQzkOUQJXFo71M1ydJ6MoXj+co\n3HmMTMC9GHMbF3U5Adcwh7UKOLjDkXkkywcdP2metkGwaK7BNhYTojCqLB5RI6rjxcO2TT0E24mv\nwJxHV5VUSUmS9zgKiUc7g+E8HPfich1PL8Qoqiwe3TqP/YFnvQavgsSjMYx9e3Rk4TZGkyTvUXzY\nqv8JOo/+FQ8hSqDK4tGd82iGrKAQ8Wgswb7xP0rv+21EEe88HBOw38kjObz3IOM7j34PWwlROFWv\ntopyHnHDDtvFY0bC90spHo1h4DJsDHtW+21E8QjwgZjnDweWZzyWpAr4zmNP5DyEaKHKziOsVBfy\ncB6OsZgQJww1FeI2gnTKeShkFY6chxARVFk8wpoEobN4LCB92MouLh3LThvD0FiKTVztZS/xtDyN\ndUtH/V2ULA/Hdx79nTAXogSqKR7NjYTCGt6eAOaG7hdujy3Edu+D5OKRIGRVuNtoYqK2guikucp0\nwwk6D4mHEAGqKR52wd8cOk7C8SKwjfBcxjA2QsMPd2UgHqW5jXbCK65MMCUe4QxKn4cQhVNV8YhK\nlvtEha4s39EMP20CpnhOJo4I8SjRbYwmKu+xH7ANp8F6IQxGn4cQJVBV8Ygq0/WJFw8fqz56AZjS\n4f3axKNv3EaQqF4PJcujkfMQIoKqike3ziOYLPdJEroKxMT7ym0EiXIeSpZH4w9GlPMQoo0qi0ec\n81hLtPNY3vZYkvlWk9k56aU+dBtBLGE+ulBA+Y5otqCEuRChVFU8osp0fdYRvh1ta9jK6Ow8Vpz2\nBu5535/Qf26jieN5bLT47LZnFLaKJug8FLYSIkBVxaOT8xgdtnJMwkTi8bZjY8TDy21sWHgq83/1\nH33oNtppzXs4xmOzvB4ua0F9jpyHEBFUVTySOI/2sNUC4JGQTaIixCOQ2zjh0m8z+/52x9KPtOc9\nXgs83Mc75JWNbUWrnIcQo6iqeCRzHq3x/7CQFYwSj5BKqjEvTWAwwhrtFVdHoZBVNFay/QLwsrcj\nohDCo6riEe88HFuBV4CpgUcXMDpZDi3iEVlJNShhjXbnoWR5Z7YwGP+2QhRKVafqdirVhWboaqP3\n80LgWyHHPc/OiYtg61KiJ+AOSkK13XkcCVxX0loGha2gsJ4Q7VRPPBxjsKa+5zsc6YvH/d7P4WGr\n3370MGY9dAbwZeA9EQnxQRGPlcDBXsd8A/V4JGELEg8hRlHFsNUMYCOOVzsc10ya20j1+VhYx8PL\nbTzyx2cz99ZHOlRSDYZ4NHdHnOvdduI6OrS6s5VB+LcVomCqKB6dkuU+wYqrg4E1OHbaj4Hcxh+f\nfwbjNo/tcK7BEA/Dz3uovyMZynkIEUL1wlady3R91gGLvPtesjxkd78ZzCZJh/ngiIef95iGQlZJ\n8IsrhBAB5DyMhaw9aRfhlVQbgWmh+3+AP9J8IlbSOQgEnYfEozNbGJwvBkIURhXFI43zmAuNYVa9\n+S+4790nEDaTyur7t2PluGFMAHYM0P7fvvNQj0cytqKwlRCjqGLYKpnz2DlpHWN2HADcx4zl8IYH\nzuL2C6JmUvm9HmHfQAcpZAXmPI7ERDasr0W08p/AHmUvQoh+o6bOozHM5zd9jV1jxjH3lj9l6tqJ\nTH4yLoQTNxxx0MRjFRaue0Rd0wlw3I3jtrKXIUS/UUXxiGkQbAxB42zgPthtFWN2rOTPT9kD2IJj\nc8w5qyMeVlG2GuU7hBA9UKOwVWMYuBw4DL+SaojXAW8mfKZVkOqIh7ECiYcQogeq6DzawlZBt8FK\n4NhAJdVaehePQZlrFeQzwNVlL0IIMbiULR5nAQ8ArwLHxhx3KpbcXQFc2OGcAefRGAaWAhdjbuOi\nti7xdVjyuF7Ow3EzjnVlL0MIMbiULR73A28Hfh1zzO7ApZiAHAacg82himIiD7xzY4zbCOJfQOsl\nHslYXPYCKsbishdQMRaXvYC6U7Z4LMf6DuI4AROA1diAum8DZ0QevWu3jSxdeg3RbiOILx6dSlYl\nHqJXFpe9gIqxuOwF1J2yxSMJc7DchM8677Fwnl0wjXi3EWQdduF/qsNxdRQPIYSIpIhqqxuBvUMe\n/3vgBwle30j1bhPX32NuIxH3A+/wdoyL43lsWm8Yk4E1SZcnhBBVIHxeU/H8EvgYcFfIc4sAh+U8\nAD4J7AK+GHLsSuCgHNYnhBBVZhU2XXzg+CVwXMRzY7C/2HxgLHAP8QlzIYQQFeftWD5jO7AeuMF7\nfF/gR4HjTgMexpzFJ4tcoBBCCCGEEKLm5NFgWGemY8UNjwA/BaZGHLca65+5GzQwMIQkn7dLvOfv\nBY4paF2DSqff52JgM/Z5vBv4h8JWNlh8A3gaKxKKojafywXYpka/JFo8dsdCXfOxsdrKl0TzT8An\nvPsXAl+IOO4xOu+sWFeSfN7eClzv3T8R+F1RixtAkvw+FwPXFbqqweQNmCBEiUfqz+Ug9HlEkX2D\nYb05HbjSu38lcGbMsf1SpddvJPm8BX/Pt2IOb3ZB6xs0kv7/1eexMzdhu6JGkfpzOcjikYR0DYb1\nZjZma/H+jPrgNICfAXcAHyxgXYNEks9b2DFzEWEk+X02gJOxUMv12AgjkZ7Un8t+H8lebINh9Yn6\nfX6q7ecG0b+7U7CO/Fne+ZZj32pE8s9b+zdlfU7DSfJ7uQuYB2zDqjK/h4WzRXpSfS77XTze3OPr\nn8A+WD7zoNbTZON+n09jwrIe2Ifo3Rj9US4bgGux0ILEw0jyeWs/Zq73mBhNkt9ncDuEG7A9e6Zj\nUyFEcmr5uVSDYTb8E81qlosIT5iPx/YvAZgA3Az8Uf5LGxiSfN6CiclFKGEeR5Lf52ya35hPwPIj\nIpz5JEuYV/5zqQbDbJmO5TLaS3WDv88Dsf/A9wC/R7/PMMI+b+d5N59LvefvJb7MXHT+fX4I+yze\nA9yCXfjEaK4GngRewq6bf4Y+l0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh\nEqE5+ELkx+7A2dhYl7XY7KUvAY+WuSghsmD3shcgRIU5BvgVNqV4D2yQ5HLglTIXJYQQYjD4CnBA\n2YsQQggxGBwPzMS2DQDbR1qISqCwlRD58QFgP2ALMAXb7W5NqSsSQgghhBBCCCGEEEIIIYQQQggh\nhBBCCCGEEEIIIYQQQgghhBD15v8DT+QJWrgt+/YAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1040aefd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Have to run previous python cell first\n", "A_noisy = A + numpy.random.normal(scale=0.2*numpy.max(A), size=A.shape)\n", "\n", "xhat = numpy.dot(A_noisy, d)\n", "\n", "pyplot.plot(x, A_noisy)\n", "xlabel('x')\n", "ylabel('firing rate (Hz)')\n", "\n", "figure()\n", "plot(x, x)\n", "plot(x, xhat)\n", "xlabel('$x$')\n", "ylabel('$\\hat{x}$')\n", "ylim(-1, 1)\n", "xlim(-1, 1)\n", "\n", "print 'RMSE', np.sqrt(np.average((x-xhat)**2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- What if we just increase the number of neurons? Will it help?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Taking noise into account\n", "\n", "- Include noise while solving for decoders\n", "\n", " - Introduce noise term $\\eta$\n", "\n", "$ \n", "\\begin{align}\n", "\\hat{x} &= \\sum_i(a_i+\\eta)d_i \\\\\n", "E &= {1 \\over 2} \\int_{-1}^1 (x-\\hat{x})^2 \\;dx d\\eta\\\\\n", " &= {1 \\over 2} \\int_{-1}^1 \\left(x-\\sum_i(a_i+\\eta)d_i\\right)^2 \\;dx d\\eta\\\\\n", " &= {1 \\over 2} \\int_{-1}^1 \\left(x-\\sum_i a_i d_i - \\sum \\eta d_i \\right)^2 \\;dx d\\eta\n", "\\end{align}\n", "$\n", "- Assume noise is gaussian, independent, mean zero, and has the same variance for each neuron\n", " - $\\eta = \\mathcal{N}(0, \\sigma)$\n", " - All the noise cross-terms disappear (independent)\n", "\n", "$ \n", "\\begin{align}\n", "E &= {1 \\over 2} \\int_{-1}^1 \\left(x-\\sum_i a_i d_i \\right)^2 \\;dx + \\sum_{i,j} d_i d_j <\\eta_i \\eta_j>_\\eta \\\\\n", " &= {1 \\over 2} \\int_{-1}^1 \\left(x-\\sum_i a_i d_i \\right)^2 \\;dx + \\sum_{i} d_i d_i <\\eta_i \\eta_i>_\\eta \n", "\\end{align}\n", "$\n", "\n", "- Since the average of $\\eta_i \\eta_i$ noise is its variance (since the mean is zero), $\\sigma^2$, we get\n", " \n", "$ \n", "\\begin{align}\n", "E = {1 \\over 2} \\int_{-1}^1 \\left(x-\\sum_i a_i d_i \\right)^2 \\;dx + \\sigma^2 \\sum_i d_i^2 \n", "\\end{align}\n", "$\n", "\n", "- The practical result is that, when computing the decoder, we get\n", "\n", "$ \n", "\\begin{align}\n", "\\Gamma_{ij} = \\sum_x a_i a_j / S + \\sigma^2 \\delta_{ij}\n", "\\end{align}\n", "$\n", "\n", "\n", "- Where $\\delta_{ij}$ is the Kronecker delta: http://en.wikipedia.org/wiki/Kronecker_delta\n", " \n", "- To simplfy computing this using matrices, this can be written as $\\Gamma=A^T A /S + \\sigma^2 I$\n", "\n" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "RMSE 0.0608650480064\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEPCAYAAABsj5JaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8FGX+x98zW5LspvfeKUkoofeygNjAiu0s2PU87877\neXa9i3q207PcnfX0FO9UsEtRrAMISO8QCISE9N6zydb5/fHskk0IEgQPgXm/XrwSZmdmZ2c2z+f5\n1gc0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0TiP8gbXAFmAX8IRn\nezjwNVAAfAWE+hxzH7AX2A3M/J9dqYaGhobGLw6T56ceWANMBP4K3O3Zfg/wpOf3bITYGIBUYB8g\n/68uVENDQ0Pjl4kJWA/kIKyLGM/2WM//QVgf9/gcsxQY+7+6QA0NDQ2N7pzoGbyMsCqqAQXYiRCP\nas/r1XSJSTxQ5nNsGZDwv7lMDQ0NDY2e6E/w+7uBXCAE+BKw9Hhd9fw7HD/2moaGhobGz8iJFhAv\nzcASYATC6ogFqoA4oMazTzmQ5HNMomdbT/YBGT/blWpoaGicmhQCmSf6IvpKJF0ZVgHACmA6Ioju\njXXcy6FBdCOQhviwUi/nPY5WiToJ1Mbjd76TkrwTfQGnEHkn+gJOMfJO9AWcYhz12HkiLZA4YB4i\nDiID/wG+BTYD7wM3AMXApZ79d3m27wKcwG38/C6saCAU1CCQWn/m99LQ0NA4qTiRArIdGN7L9gZg\nxmGOedzz73+FN4CfhBAuDQ0NDQ0PJzoL65dOtOdn8gm9ihPLshN9AacQy070BZxiLDvRF6Bx6nE8\nYyAvg+oC9abjd04NDQ2NXyRHPXZqFsiPE41wXZ3OFoiGhoZGr5ySAqKK2pLjQQywge7pwxoaGqch\nKlylwpwTfR2/JE5JAUFkcB0PohEColkgGhoak4AJJ/oifkmcqgJyhSq6/R4rmgWioaHhJRpRfqDh\n4VQVkE3Ahcd2CtUfUeC4A0gCtbeiRQ0NjdOHKESXDA0Pp6qAvAHceIzniAZqQGoH2hBfHg0NjdMX\nzQI5DVBV8FOhVoX0YzjNSFA3en7fJP6voaFxuqJCkyr69p2qaGm8ABLYgHeA647hNDF0NXIsRYuD\naGictqjgB5gRk1PTkfY/XTglBcTDG8B1Kuh+4vHRdK1LUoKWiaWhcToTCdQiuoRrcRAPp6yASKLX\nVgVw5k88hWaBaGhoePHERKlEE5CDnLIC4uENfnpNiO/KiJoFoqFxeuMVEO86RRqc+gIyH5iudjVF\nPBq8XxjQLBANjdMdzQLphVNaQCSRMfEpcPVPOFyzQDQ0NLxEo8VADuGUFhAPbwA3qL2vXvhj+Fog\nlUAUqIbjemUaGhonC1FoLqxDOB0EZCUiE2vcUR7nY4FITsQXJ+F4XpiGhsZJw0nvwlLhTPU4X/sp\nLyCSKI75N0cVTFd1QDjCZPWixUE0NAAVJBUu+QlW/cnMqRBEfxSYfjxPeMoLiId5wMUqBPVx/wig\n2WN5eNHiIBoagijgfWDoib6Q/yHeGMhJaYGoYqzPpmuZ7uPCaSEgkpg17AGG9PEQ3yJCL6eRgKj+\noJ4W3w2Nn4S3RdBPSU45WfHGQGqAqGMoUD5RJCMq6TUB+YkcoO8C4FtE6OV0cmHNB84/0Reh8Ysl\nDdiGWDbhZBtIfyrRQI0EdkR2Z8TP/5aq8TieLMfzUxOQI5LXq2/2aATgGC0Q9TJQr+z1FTD8sn3H\nqgxMRgwSGhq9kQ4sBcqBaSf4Wn52VDFzl4B2z6buqbyKokdR5qMoY47ju04AdnnisceDbIQXRhOQ\nPhDa4/9+02D4PhjQx+OP1QKZyuGXvvwPcHEfz3Mi6A+EAfEn+kI0frGkA/uB/3J6uLG81oe3W23P\nQPqjwKXAcRQQLgQygLOO6qg8EsnrNcifA3yHJiB9oPiguQagB95dDhPegxF9PMOxxkASgVGHeW0w\nfY/FnAjGAR1oAqJxeNIQAjIfOM8zQz+V8QbQvXQF0hXlfOBK4Gkg9Ti+5yzgJeCWQ15RFBlFOVxN\n2t3AIvIOcS3mAApaGm8fqOBsz28y8C8gcCI8+X3fH3AMUKOgSApKimdbA+AHal8yuRKBBFC7zQQ8\nmRAZiFn+L5VxwBdoAqJxeNKBIklMslZzssXLFCUTRVl4FEd4A+hehAWiKP0Q48slwDqOm9tX7QcE\nA/cAE0FN7LHDpcDrhzk4ATG+/O7g2cS4kwUsQyQAHLdx/5QUkGgz0xA+y2cRN/OiKfDeWvFQ+hKY\n8logFwHbFJQAkfpOCX1zYyUCmznUCklErCtwlAKihoL6Jaj6ozvuJzEO+AitaFKjF1QwINw3JZ5N\nJ6Mbaygw/ij29+1KAVBZHxyciPg7ycNiWQsUc/wskFnAYpDaEFbe9T1e78/h3fHxCPF4gLyD15MC\nNEnCimpF1LgdF05JAUmNYRDwJ0Qs4lyg/RHY3R+IPyTopxpAXdRjcPbGQG4H3IgHCn2Kg6j+iHqT\nzzlUQPoBW4H+RxlIvxWYyc8e2FZDPO/hsUC0deA1DiEZqPRkI4HoNTdWPc6+9Z+ZTCACRQno4/7d\nBMQly1VXPPjgLMTf8suezcUcv79Pj4AA8BpwY49gejJCFHojAViOmDy/5EkoygZ2el6v5jg+q1NS\nQOwHCACuRawF0gSiIn0qNOoODWAPRjywVJ9t0XexOwSh9HcBV3m29yUOkoBYh2QdvQvIBsQa6310\nEal+iBnFfmBg3475yYwGNoHUCLgQFpvGKYyCMlZBiTyKQ9KBIu9/JLACC4Erjve1/Yxken721cru\nJiBnPfXU6KK4uEjgFiwWb2C9AZBRlJ4JPEeJGoIYN74V/5e2IGIuvusaJQOxKIp/t0PzkBExjgrg\nGcRk91JE/EMTkL6yfy0y8Co9AuFnQFETzOix+1jPT8/grEpAzAyq5/hT+cEEzr8YmOr5I+uyQPIw\nkNdrQCoRKAPWA6N6zOIzgb1AAX13Y12JWBxrEX3PIvupjAN+8PxegRYHOR14DJh9FPt7A+i+/Ieu\nSdbJQCbgRPyt9oUovEF0RRmjDBt2zacPPliDxWI9uIcQkmKO3QqZCawEqd1n22vAzT7/T0ZM8Hp6\nQ6KAFvKwkYcduAl4rt3AMDQB6Tt3PYqLHhlXfn7tj44mYJ9DLE3pe+PHAI10ze4DA3G4jKgX9+eZ\nzmrOOEvG9i1CyQ9aIHN+mPPSXGVuEXmM7vH2HgGRKhHZTL5fqH7APg4vIOcgYiQeVBn4I/BXRA73\nzy0g49EE5HTjx9whveFN4fVFAeJVEag9GchEeAj6KiDCAlGUKOD9xNra3+YcONCb1VbEscdBZtPl\nvvKyAJgMagKKIiGe2eZe3iseUZsjyGMN8FFVIDOAXZ6tmoAciZED0Ot0TPvtbzEqCrO+/trw6aJF\noQ8WDEoMGCoe8tk+u48F3qNLQGJmU9EJfFnN0Kv2cx1gH45wiZUCSVMumSKfs+mcq8/ZfE4TsJg8\nJvmcz2uBwEEr5CD9EBZIb2IQDnxC967B5wCdiPzt3b0ccxxRZYSYagJymqCgyIjJVOpRHJZeRUwZ\nqFu8ldKSmA2/y8lghYi4RySwhqMVEOHOXlh8xRXvIQqCe6YvF3NMAqLqEGNTDwGR2hAicj2iAr4T\nYVH0FP4EfAUESG3kwbhWIkbcfDBw3ruA5P20GpZTUkD2OWPd9z+EbvZsKoD7N2w4Y/+WLRYqBwaa\nzxPWhkdA1AjEIPkRHgEx4oo9nwqzmf3/bWRm/E7uwslKOzDiGbakA8mjCkfdbbKZ9FEtUZGyW74S\n+Ji8g66xXgXE0/IhDSikdwvkV4gMMd9Z3N3A054MsJ/bAhkINILkdftpAnLqE4WweI/GAkn7G3fK\niEymXJ/t/wGuPJ4poj8T3hhOCUcvICOAJZ6Cwt4Wliri2FxYY4AKkEp6eU0E09t1qYiJbDGHPrd4\no8NYq6AcFLaiFwgH6jfF8yx5+NObgOQRhOgscNT80h/2TyLRaJWjE2l74AHetlgYf999S6yFhUPc\nTYl+IdeIh29BDNajEYP8TjwCch3FM5zIthC2THPQ5PiK/P0m/hoLfDWcpmenUp2cU5Lzx+KoYqeE\nJH/7yLfbEem+75LHLA5vgSQCDZJoh9CbgFyPyH7yCIg6BmGqfgDoQFoG9gBQw473/fLgG/8ATUBO\nB5IRSSZH5cJawGXe2ayvtbwNkSI64Thd289F5sADB8p3XHvtefRBQDzZklHFMTG1CMHc4nmpNwEp\n5thcWAezrxSUfgrKXV0vSZuBat5Mm40QvwP0YoFM3D0xE/iDz7Yck5ONwA7qM54vJ76FQy2QK/CP\n2/tTLviUFJBbHH/tXBR8qXX9em+7aXWKXu/osMe6oxJFDnsB4os+BliLmF3oQI2cQN2F3xK9tZmh\nV37NR47PID0aAj9h/gcS1P+OvYbw1siIzMpMr5k5iDy+Rzz8NzDVDqZLQDYAwz2mqdd9BcIKSVa7\nalJyES6sl+hypd0FPOdpKR8uji8p4uezQsYhisK8aAJy6pOMmDQkKChH7LmkQgjgX0pSJrCJrgQU\n77o7J0NNSObZa9daB5aUjJfd7r5kYYUAHWnz50cjUvq9FeC9tXU/VgtkNrBYQfFHTBzvU1B8k3Be\nY0PYBRxOQFTih1SEp5nZP9VnqzcD67eY666/I/aaWRwqIDeRfEdfu3R045QUkOyaFzevirwynbCw\nMfBAuCS5RyQn7zIbItrDED7fLxDxhbEy6hqFZZfKqLvPptISiS2zBP99DkKiXkIJUIE7wbGH1y4A\nOhok2WGXVTXCGhGK6Mo5EYA81gFnIrnTuG6yJ7AuNSJmKll4BURRdJKiOBAi4/2yXQe8hXjQWaBm\nAlMQy/GC8NkCuyrpISAKip+C0jOQ/1PoaYGUoxUT/qJQIU0VKbPHi2TEpKaOvk0WPBlY0jDEZKfn\nKp/vItbd8T/kSEBBMSoo/4Mutj9K5pj8fIdOVf1TKyv7Ynl53Ve5gAN4wLO9t4WlDgCpnkD3UaKm\nIgb2dYgU3L0IwfId7OdT5d+fgsBGegiICrrhlZyVXB8VLdM5yOeYHGAXeVSw6QbrhpzCmd3OmUcu\nkj4edcJPqvk6JQWkqX77DzPcS13cfbcVwm6IiSlpCAurISSi1gzYxsIqRBxkzKPsaAHm385e/Uyq\nb1hHeMEV7BkdxtLGRlxuoHQFSGbUmVasq+OwGRcEq9sRA6wEDD/4xnnqLtqjXCStvpc8LvRs9bqx\nMnemplZKbnbqnFxNlxvLDxH/mIeYWURAxz3Aq57gGRwUkC1NHGqB3KLCx8d2x9RQxGCyzWfj8bNA\nFEWHohyuN5hG3xkMnKV2zYKPlWS6ZrOpfdg/3YF+PzAI+BAI8m3XIwnf/FZE8W5vXA583mNW/b8m\nc1BRkRFgYElJGIpypM4UvgISTFchcncLJI93WW4Zi0gP7iaSKqxVoU2FBhUqVTigwl4VdqjwlcdN\ndi7wucKyCxCT25sQmVM+MVGpjZGN5byW3g9xr+NRFL3Hk/Fuix+hAe3ZTW78I3wKlT0WiKpn042m\nqkErolWI9nn9JvxHb6IjX+UncCIFJAmR/rcT2EFX75Zw4GvEAPsV3Tvr3odQ5t2IfOle2dHMtuul\nf8tSTpYBS9q1Y8cuDphvvLTZbG7WufwpXQr1oIuHotbx1E8F3j+byqyBtExdTFxdKs4BhXy2HdGI\n8anRULsG5FJd6RmSpLKleupi4G+I+9fP563jQK5Cdt0NXOPZth4YVR0amjXphReuSjlAVFQtv6Ur\nKH4eYuAuAlwQVwiGS4F/+JzXIyAbO/EREAXF34l0v1u4II5l7YAxwMYeKzBWis9zXKrRxyNWsNM4\nNtIQ4nG8eqklI8SjmL7FQdJWMrEJqAKpGZHJ1NMK+S+Hz8bKQMQdxx7m9V5RUC5SUNKPvGefyEyu\nqQkB9uUWFrZz5OVpvQLizbRMQlGSONQCyUI0Se2WyuvJ1BqMiLf0Q0w4pyAE43KEKz0QmDWAlnWI\nyvbLLViagHxEFXkXl5Za2R4yGctUF1A7cdu2NEQ3AL994XRGN8WH2YiUgUxPQsNAhBAlUJdV3akG\nNnXIehUIJQ8TcDkRt6BnxUlngTgQwZ4cxBfqN4iHcC9CQPojqjHv9eyfDVzm+XkWwoTu9fqdKiX1\nHbaOMSUfvM3N4Vk5w793roobGdLWFEZLutQYAokwcDe85e139XwlAasB3QgaM1UKbE9SF4QwId/a\nD6EDMLHCtSKhWu+y59KchRA4E91n6SKAblsai/PyGZ7K0PUEOMfMfuKJqYEdHT889wc66yMYXBsS\nUuT5jNch1mz38DCwbZNPNhSyTJT4bQd0t0BuqMavqhY/VhHha7YeLT3dV4DUiaiYPx4uh2xE8zmt\nNcqx4XV5Dj5O50vh8AHZ3khfyHkgahBAfGd6CshiwHKYbKwUhIXy+75eoMfl9TbwyjFbLoriB8QF\ndnTEA4uG7d1r48iBdG8R4TDEmGVE/M32jIEkIepLiuluzWUBeyTRi6peEm1giiUokMQfdPW3TEsD\ndeJf2XYd8KQFyzrPsT0sEGBIcwSqVAOcEdbSUvbpQw+9DzT8+lyuBEJCraHVTsw4CJrquY56CVoQ\n351i6gYuqjAZdQg31iXAGl14+NB7E/ecdBZIFV0ZDW0ItU1AzMjnebbPAy7w/H4+ol7DgXhI++CQ\nIj4A+lXj2tcGD6Z+tJ/t4dKX6aPabUYj7jYjtZkBbiAJLrOa+CQYMUCujaczoQiT8wyqUyJY7FwN\nmaSk1LJgweq9sPkurpc+5iN+cJbuHE/9SAuWRCvWFiDIk08P4stYzifj7mTx4wFADjOqd/DwjtwB\nJSV+C27Mv3d08zPxGQdarPfcfHNQhxgIxiLqPwDVBFekwZ0Fvp8nNY0hkZHg718SCmSAqlNQ/IB7\nXyFjTxX+VOI/ved9UCFVhTP68Cy6C0gez5PHGRw/N1YWwlV3jG0eTnu8KwEey2TBl6N2YX3PpEC6\n/m5/oIc1IYnZeiPdLXMvqYgZ0kwFpa8ptL9HuMsS6epJ91NJ1TudpZL43F/kFBfrObKARFdERDQh\n1sgJRiTA3O7Q6boskDwCEONIBocG0gcBdlVYGb1R/Qq3np2CtT4YZzXwnM9r3S0Q4W6LQuV5GdfL\nT9/wflZxbGw9cM0ro4gyuAwNsiqX6LA1dxI7g+4tTFKBItz6v1SE2vRrTGkDgZuQdK/rQvSJjn3N\nJ50F4ksqQuHXIpTRO/v2zVmOpyu7Cc/vvQZ5c1sZvruVgMbGBEvAm3b39ohBSQD1jkha4w0RQDLc\nEOOgILWTzs++J/JsI27jYuJ0lfhLAZRvUyEIvd7F3LlD0nT9igI4Q58b6meb7344fSAt8bH0O28X\nRX4IX2Kq560TgUZKTLHsS9BRMeECHsh/1USH9eW/Pl8X2GYYG8cXzFqRz6cTJ2Y5xQN+H9FPCOA6\nqNkJy6J9P09oYuDUjAzQhZuHIv5AUxCFjTtWEhXXgqFB6mUxmxKS3ttD/7d//NYfLCBc47NxBjCd\n4yQgktvtnUVpWV3HRhqipc0xWyCiwzTBiO9TMX10Ye2lXxxdFsh6YFgvS6+uo/fJXSrCAnkHuK0P\n1xji2e9RhLfib8foqs3sX1ZWjvjMm1Kqqsyy231EAVkwZYo3KcCK6HkVMuSNN8bRZYEkAjZ6t0AG\nIca2iYecWVH8x7z0UnqxlHv5mVSFANdasPhaAvl0t0ASgErVqVv8X66S72p+3jiS9dESaiwQb+40\nt/pRbZPprHMSNA5vAF2QChQz/7O9Dbog+4L+Af8HpF83/nxjKI1S9dspJ62ABCIK+X6PyCP3RaVr\nFbDe6PW1Dau4afX7uD74sHZGjN9bzvT15U6csF4/XCXMntjkFziQuLCMaL8E12/6F4b8mZzFWwmd\nP5sq50ckUMDgoYBEY2MQV1xBm67z/AL9JzwvOVe0UBG4mXa3hYfn7mOK2YbqRHT9BUhEdicxtVZl\nYpWN7Hv/CERe8KeC1XWu6KZYvrgO3FyxbHFgY1DQNEmSAkeLClM8qb5/gO//QQ+z1ahzZQ6Ij3a5\n3CQjq3uDcQwC7rMjPQoMNeJea8Ttu4gWKowKpWloAuVRR+j8mwXUgSSaxeWhR7jWRnAcBEQFOaKl\nZUJiTY2LI/ubNQ6D5xkeNwFBuFzKLFjc9MGFpYLsRkptIbg/BwVEakG0NRnaY/dDBERB0SOefxki\nvneTR8R+jNuALyxYCi1YvkS4jX97xE92eDLH5Oc3AoUS1KuS5Bh44MCR0uKj50+fno6o/lYRVkbL\n7uTkB1oDAqI8BcJJCMsjDmdbKd0tkJGIuFVvld6D1g3Iii6Qk4cG4rzVgqWux+tlgFlB8dZ+eS3G\na65g/veN8/fcRXKHC9jKu5/dFNcQSSQrx5soMdkJi0DEWw5aIBdRplNQIiRbcKEaWjpG2oSy/Y2t\nr7a99i8O7C476VxYIG7sR4gq1k8926rpUvY4urpgltO9h1UiPcr2vaSlBhg7oy+qnHuNn7m09Glp\nf9swf6lDZpt5kNQZIYXtTUk4R/77Jl3rWRP9y6vGzgmV7LxsTkmPoUMqwM29rGoGJJ5/fitXXW0L\nCYgJfMr5LiMarWHAh0t5zTCeqH4HqKQeP109hmkHr0liFDOqirn2QA2myGA6HBfM7Pyufic5hLHF\nApJrcNkWA5025+IBA+yrhH8SYPZvfnOH/zPPXPsNYrZgBHjhtoenXLH5Xr9rP3lPF1RnkBjc4H89\nRb8C9p7JlGqgOQrbcjPOno3V/vJb5ja8hCTx42Z6z/hHOsKlOALUYxIQFaTakJC/t5pMARN37JD8\nbba+LgmscSgRCPftRiD2R1wifcU7GIEQkGQfV2xvxJeQ3CISLaRKn+29xUF6s0ASgBoLFrsFS4Fn\nnysPvqoo56EoBzvOeqqp7wCe8DnHncC9Ckq0z3GTUJS+rpOTOW7nThvCDUVzYGDJ0MLCIwrI7uTk\n/oi/iQBEYs1yJKnokblz7YgEl0S8DQ4rFqt0t0ByEM/tEItMcjOMgiBUs835LAMXHPLOikVGJAx5\nJ5TJiOyrUcBXhDv28UB+LTBJVzNwcuUHizMWy6NW+sn7o9pJK6G7gKTpeODGr/gqL6e55atIV6vx\nz5cba8JvushqnZqh7rjv2ZPOApEQdQ67gOd9ti8E5np+n0uXsCxEZC0YEQrfD/ElPIRly6dnNi19\nLOT2238gJrSiIDtlI0m7G6kMiaQ6PoScghLHby6JXjNn4Zn5jpZYQ8CViwoabP4X7Ke5zM2HznyK\n4w0Y3MbopCED90iVqbOvVIsku3s1DBmP89E1GNVkXAEOPtgfQId7LREXelJhszC6VYY2VxPt0vF0\nipu7686fwCr3FoZGq8j6TqIW6bESvnyVY/G0aU16T1A8O/uHB+fMeSFhxAgGAKWhhA5QUO7IenPs\nl4WUuZpjC/ZOYrxbzi0cOpnac4FH8FTGptK+PgqbH6gxACpMdiP1f4f4mJdwy/TuM++HsDR8GyiC\n8LmuBqxE7u7kUAGZSN8XpLlnT1LSmU6dbldkU1NbfH39oe3o87iKPP7Sx/OdzqQhVgF0IgaVnCPs\nfyQOCogFixVh/XdznXrWkjj4/iuZWE9X/MNLb5lYm4BBavfF21IQ7h0vzwO/9wmM/x8iddXLzcAK\nCxavCwYLlj2Iyab4viiKjAja91jjR6Cg9LR4M4ft3avDIyBWP789meXlR1qeIarNZEpA1LZUIFxw\nxUD1v8491++pyy8fiRAHG9DBgXnn4akFUUXcJGhNVlaJW5LG9vQEpLTUTztj63bVb0RpxyHXrjAG\n8Xe4i644SBJQ0kbahC38LQSP5agi7b924kDjkMRFrXcZZo89Y4pdLjGbQdxzz/2rSf+U96I/5uOr\nN2Q0meNbDO7Rka5bVziHWaVCA+1pR6wj7ZUTKSATEOl+FoRJvBmRXfUkIvBbgPhiPOnZfxciXrAL\nUQh4G4dxYZnN66A1NmTGzLfU1VP6HShMScDRWN9U6RdFUFQ1sl+H/8e3Tx3/Zkp0tlv/sFoReVmm\n5MKksMpUw8M6wKWLit3nZyPIoqiJq6bWoOr57FegewkSHfy6dTkKY4mpNOOSB9CiIoQujbH1+5Ex\nIvEykxoc1Pe7LY2i0G0MDW7HqJfgb25k94TPFyUqU6bIQH9QR8ye/eoAVcUNJIxiVOU85n2mwuyd\nL//T8brrzdaWlO3fTZUnMW3b7vIyo5/BguV7hIBsvYmRY/cRqAK36LGPbcP8tw+Z84mL7U0lWNmL\nf2/m851AHodaIFkI3+sG0r8NonucyQ+xUNYeRKV8rwVjiAdzPXDzjXfd9YJLp9sZ0t5eE2CzdQ+s\n5tEfkbZ4rMHRUwYFRa+gLPK4fHxJo2sdjh0ceyDd1wKB3gPp28ijgzzKI+7m3f8bPjCJ3H+nk8e/\nyTtYUNdbIL0dMUgP8dmc6nkPL98gxh8LihKGGISnoCiSpxL7j8DjYld1iGedDBATp/MUlFzEBCiY\nXhJFFJQJQImCYvLZnJleWRnkuTZUSdqcWlUV1evd8VAXHBzjliQTIM9iYePFfNiOiIWMve6LL4pe\nvOCC+z2ffzPwOe7Oy+io7ECIcU5tcHD7vDPPzLDr9U48ri1FIVZRePIfwddeeu+cG6TOs+vNvaxx\nfhEqAxCiNVFBGXfOEsbf+3RTwn5uiW1i2HWe+5mswgtloSq5QSV17jMfdzdVz3Y/ePG8TIeMKkEr\nqIYg3oobwxhbM83BS5Kl6SPtqvOjfWGuTl1EMttSpEGtJ18dyErP++cigkzDEA29GhBB3P6IWo8m\nn2MeRwSqBgJfHu7EbW2NROa82Dkt+F2pJCr8LDdQGfRMoEvV0dGuoybOTP+35+kNxVMrcb4932+n\n0RaasNH1FZHx/rzeDhg7p4z5Ia7S3RRnq9Y5IpMbcfBsMjhug79AaulqmtR44rI66JDSaNMD9YCJ\na4vcCPeCwlm1LuqzRkqo2RJuvmdWx1r+e62ES/7DzoLO+tDQgO1pabmRkeX3WCwLdJLd+AELZ9/+\nZ/48fAkoEdO1AAAgAElEQVRLNlz8ddPD/VK+NVlbnfr2iUvf7+fM1k3ZXBn+b79kI4qS6rlnnUWY\nf7ONUD2o15zHwreqiRl6Je/cApWREnoU/HrLxBoCEed41lve7rPdKyAbSVkeS3cLZDLCJJ6EsFwK\nEPUu3aYvqsikeww4a09ychyQH9zeXqb6LsaVJ4qfELPJ/uTx06ZApx7ebKPsHtt9BWQ7xx4H6Skg\nxfjGQfKI9OwTBYye9ymLg/ZMq0dSP0MU4t5HHuGI70AIIpDrS083Vio+FognWPx3ROxzJqLjdAvi\nc18HbLZg8QbrX0Ck8OOpj8gDnpddjEbck27fb49V8zRixi9cVGKATgpta4vBIyBRTU3rMisqTIdz\ngamgm2+xhCGsi5JZLAk5n88SEc/IevbatbubAwP7oTMNRJQcbAS2sedJHW5nKjCo2Wz2352crJbE\nxByoG89sReFlIN+NFHRr5Vuu6uoUdXD8Ohu+BckAjaHXIhFCYOstiEXwnp21mDGTV9uHt5DlBilX\nseD+zSefuJw63bRv0yhymGLC1bi1JlvLZG78IVtamYyh328ZA52JTl7H9OsxrWljxpcVR6kpKXYn\nb9fHmnA0E1iZyaDCYjs/gRMdA/lZiDUGqnfu/y5gaHGlY/OQDDu2RpXCvXokHR01Gao7JoxtLcOw\no/8ii/Qtrs3OgKK6O2Q9c1Ur2f6AJF18SUXObldQiuU/UnhwSNjixeTGAcWQDd/6lZAghRMeVkll\nG+Dnj3MDqG6ibcNQSQB2Eda+Spe5VQJSwmmyf8klNSqGy1pJZKLbHRTT0Ljys7ETRs6cOW+WZDd+\nwX+vmkF4Q+Bt3Hb3a7xmH6bfeH+TPaAcFb/EKfs3lIVvVQ3g2mKNcNJkeAohvipIX97D7oZU2oo/\nYk5LBvuvdmL4EtY1hjLWvgP/0V73lgcZGAyTrFC/t0cBYZeAxG5Jo7uAzMold7WCshe4ELEK3a2I\nP5yZiIuZBLwOzJbE4JIF5Ie2te2zGwy+15CHiHf9FdFK42ga+p3KpHp+9qzc/19YIL7PYCSwkTza\nyKN8VgHm2vZBJjbf8C/yeAPxbDNActO7G6ungKTQ3QIB4Y4a338PlyNcUcv8O5gG3IOYgHjJoHug\n/nUgfM6HXAG8gnAZ+X63LgRMbWYW4xM/kFS1UlbVdMCmwouh7e3bsouL4fDrY0R8OmmSC0lqAbUl\nmZKIeCoyDdiHAN8tnDDB/5pP/rUcJDP60O8QpQXN2Gpg77NXtRuNQ8JbW026pFZlf15H4q4HeRIx\nQR44ne/+Uf9RrtTW7m+dXrrGjScRR0GRlOx/voykhuPUFXLTv64C6i1Yxt32MtWpgfetKKRaqqHG\nZabwlYfffNPvnltuud8pE/P1tI5gEuqLXLUm49iSZCm2jZbiUJYydtYdfjqreuMlb0fG3F4YPSAF\n2a+Udkfnha205Bv8HJnc858Fh7jR+sIpKSCpthTJ3Rwv/S47YO+B2AR/q6ukke3OFn0rVKoDpeX6\nEWoYDRhxXjKD+x5y1jsZnFNar9MZnLBJAlwDGqPPzShy6gLqOty1aoxbbzZe0JKF+o6MDu5JryLS\nHk64VEVVowOHGontenRqGTadjg6dhMXSiN78VcbI750qkjyCjfrvGet045Z2MFO1Eeu+6b+lCcuH\nD4m/9NJnncZHHoxAldYycVVBCSUbCQkZNJDdU+tLOxYD9UHnKe2VqauJlMOcqHI+ZQEzkmasC5ue\n+8FVjwTe9yuD1FF5MZ+MVsHvA+Z8AC3jZbkjMCh6vPUANTodzu9B9Qax04EG+NU+WNZ58MYJn/dA\nvAISemAQqFGeDDEJmPUKN92ow+rtEroK4Yp8BPjnBFihipz9X0mikSR4BCSipSW/zWQK9bzPFMQs\n83ryUDk0XfGIKCjzFZSLju6bcVKQgihg/TEB+TkskJ4urNH4xBhriOpnxWRCDJJ4fnqXhu2LgKTS\nPQaCBYvVLfHmWUs5C+EaXX7Rx1wN7LNg8bhVVX/EjH+oz3FO4I45H2KJqWIDYg3w6QAKigF4siSJ\nP130MWfvTzt4HzPj6usPIO7taEQafI3R6XSf88MPhxPjqI39++sAZ5S7zt/45B/8pJduac5mVw6w\nbFluboxfyWfhBPV3M/J1i+eepJN+y0JqlGvftoyaoZNcrrsiHhu9V5/ePO5ytlksPGCxUE1L/Vjb\ndyZ9kb7KnFO32QhYPEkM/2T4pnPxsy1A7yrkrKU6IPrTYCUQSAmviMxdyufWPPLoJPbqu2/8w4bn\n5lwkEzgguTR8twT75xHobG8OapAG1lH9/Bd8zJRlvz77thB3BHWk67YbU/SJbtlOiBSXXkNDKaZQ\nO+mVlX1dH74bp6SADNBXOdfrArly/p0Zu4NScDdvMb+845W21Ao36/zSeGrvw9JdLFAfZ419PjKf\nqp8ySgryJ8zmgGBJIqCl05/BkZE/1K3paGrwa+/sPGv7iFUbxrB73iyMEeNU2R1/t6HSv1KtocZs\nxa6acSYSYa8kwLWDIrMe1IuBlddYf1DbMGMkvLmUoBg7dp2T6S4rCe2zldUR6uAWydRusLJhlJlL\n338aEXPYzfTpWVPU5bb1y6yrEJWwc1rTttsT1aTYgcnbnBP3b9QH373ev+FAUmSWtEuKkVYO+D2P\nmjcx/PlL+SAJdutj4mVnRHqKbi2o0/n2Q2CFp1HjUGArWPzhQ18LIwloJY8m8qhG52hDcjUj/LkD\nxhIbOIo7gnPIe2Q9r3oD4irw8f/BkPdh3CL4pyT82163QRpQ0K+8fGtjYKCJR01hiMriG8g7WO9z\n1AKCCOafecS9Tj5SES1+fkxAygGj2jPo3Uc8Lp4kREaPl2K6WyCjEHUeAGxmWD8Djl0eiwO6C8gh\ncRCEqzPZ08EXerdAeOoefjjjawyKhcawBr4/53OGu+RuSRVpCAt1iKdmCQCLwqqC/ujfvI6JiM4V\nXjfWjUDx3LcpdhgxLpp9cHvm6Pz8eoT7ahyii0R6SXR088iCgl77tC0aN25gi8kkoxJ2z7P2AezL\n7JAXzwo5J3+/E9i/NzExfVkq2VjLXBjD/48hT7cAKURMWEv4qKJv46szasbqamySX8Wfwh8qN7Qw\nSAUDeQTKHy96Rm+0qh3GxgMmXYle51DHu2TmAUO45u1CAjo/BEowOhKBvVWxjJBUVe10pw/awnZr\nMXt1VVQ0xW63qNjq+5N+k9FUvsmBu/MbzM6CYEeJ5MTsf9kGkpknq5YZe4xLa8zWrCC39E7qUw47\nSKHBthBKbQwxrGK3+6GG3u7BkTglBWRH2mz3zvAdalRLjHG7LYPsA5JxgLV/fNh+q7o1fwIOnYGL\n+KThDqb7T2V7eSCBJFWfaWqL0fvBeDlRP91QEY9UFfxS0Du6LWH6ljIj/jEjmwLYJNVItlH+42z6\nlgjp3wH/lhp1jaF2dHIsnW0kWsGo1iKraxAV9JsuWrvJv0yOdX/DxYGdyCY9ej8IsLcw2PSdNcX/\nCtsHlPwwOxK4muDWYiABRWmJu3CsHKI2qvPnUw3UEWB9IjClvrM8cI/+3LBdkSWfjN+/szW3ubQ5\nPcjk1/r3gOTVcgQt0mPcb+CMqtuktI2mzAx3QHyKy9yBrN7JWYWIlMhlcOY0MGyHiAHwnZmugcPr\nvvKyAf+mVoQb69wXMDhqmLLXQEN+P15Y2Un4wVnLn7LJ1gei/5W526CWCZSy3BJ7wez99xmcTgnZ\n7w1gIXl87rPfUQmIghLjuabJfT3mJCIVkZCR5Qkm42kLkoxnBi8J0T4WN1YU0G7B4rvudpcLS1ii\nBy0QFQK2MzjUjnGtz/6+ArIWsWzBwUCwJFJXtwAjPDPrRLpbPAB8dSajyhLZC1z78cWMaQ3CedbS\ngxMLEO6rjYj4SKrP9iH/uomCgE5+d+5iNgEzPgtSgoA/IVxgGQY75d9Poj+KogMyJ+zY0UGXgJQA\nQyojIqqSa2p6teY+mjx5qqSq6q2v0Ja+x2hyPvHQK4zY+MLUp0cHmNuI19taG3bEytHYa8uQpGWE\njZwB1NCyq92Qekd7dH2VXGtpczUStqQpKCgR2L8thnHAUrbODRoRIhU1N0dVtsW6XE/cr9IaRCb/\n97c5GJwjEJOwEoTQ77L5MSG9oqKymRxDcaYhfPw5Vzf/k/+4Jq9gSESNbSb6MLVNVy4DGwxt7hUp\nbcW0SzGh82HiyIR+TWZTJPOK2kyyhKtNjq1uMZgckU45St6eyuX5LbSTocVAvBhyBxl19XWSn7Fa\nqjQmcGalgddvkPaP3+HPvgXTuOZXf7FHsmm1DrtuLKbUBTHL3UOqZ8rGRp0dthMWdY8+utbmeNdQ\n7//Zu6rjjPXJki7t9wovc2vgGll3gaK2ua1L7PW6ctfH7o/lV3iWNr4xk9omVgKTWA/kqhZLYlpV\nJbVx/tIScg3DaVRbsUkh5K9uI1P9Im16cJJcxieRYzuAZ3n2Dw1AbADWceNCdqm1Fc71TicRGYHR\n4cRWJQUntBWsdK1pzd6cWVxSnBPO4rj3Wt3B/oNad3+UWLmufXfcua7nI257KdjRenOo6+vKyHC1\nOjaiTEqUIqxrYDpIrwF3w7s3wL9DRL+t2i/o6p7aU0A2ElzmBuKHwpxcaqOKufbdeiaMdhAqq+jX\nq2ImhyOEmR2BUbjdzKErXdF7vpziUMaZ2+olyRA+VFxDN47WAhmOcFvEecTkhKEo3KMo3RbwOfIx\nKP7KoL83K5ffPKOXl1MR92MPXSv+xSMWI+v02e9Y3FjeJoq+HABSPdZJMkKkvJ0fUtcyxupGt9ln\nfx8BkVoQ1tHhCgrjgAYLlk4OZdaubF5ANFN9YNFsVjgNBwtz8bxHISJ91vf8ow+ksgr48M6/cRag\nFvTnCeAbT/A9Hfgksg69XydnA5mjdu+WPJ8pBdEWaXBFRERRbH19Jr2wsX//CRd9LDH9W/wq//qc\nzS+qQuE3Lz6sj6qU7vm79XZ9xdKiEHektxBzByI1vpBaRcYYlH1GZUxn6xAS9rbJC4Bkq4HN7w3i\nLVpj890Fk4ylTaHugm9uHhuq66cPaXU0XfkOS5i9eJLcyYapFp7P/AdzUUkG8g0Ocmds2Ni+m2jJ\nec2VurW3Xeq/Qbc1fH9M27rLFsaMM+W/2RLXGFtJHrbzG5buq5Mj+HL4jMJ/ge6auWqILImJx6o6\nXOdXrH+jLDXFEFNTwviN40loyCFVfu6B3u7BkTglBWTt+SkUGQ9AzOs4ZSMzw+pqr3uLlJb1UQ6H\nv8y4M9/Xu3UktaJ7NYOhfrsDau0FEXvVKTX7DOjfp9Od4ie1b5ZG+ofSv3xoW0bV/raoWsYCzrUM\nbJ7GMrOq9pP/eM7Itpv7/9rRjwx28UgA307I4tVXB2Lf2Eq/1n42jL+2+vnbvpsQ6zbLHfYYWq21\nYI9m1eIWMvU3Xfi6bPo2sWXZ6Di9Q08Ti877FJWmCOpvn2L/qm3FCsqMRmKyDP1yUFkeZJY++da1\nzJiMdYgOd0zGm64NGdI+npyQtbAoPEFaFX25bvGo8e1py9oDIvU/BMgyyyLDKvDzG+TcJzK2AOld\nuK0ZfnUzwvWwhB4CoqCkewq5NhKxLwBq0++FkZXMrukkYVkab9vyuf/MZgZluDF8rUIgVvNkqs7A\nqJeD6JoZewUkRZUw1evq1ZGOqf8hj54Bu3xgYI+6gx9jOMK9shK6rUd/IhhM732fDo/e8ScK+gez\nM+fWXl5NRVga6+hyY3mXYfXlWCyQnvEPLFiaEVZDuOd913niUwBpmxgu0dXCBLpbINB7HMS7lEEq\ncEBRyFQUn+elKMlA3IrJ/Mst0eqWcHxxNu8iutV6yfC81yECgrhHz0lwa2QNPxSlcR3wEAAt+gGO\npwfGp78R1SIXB9yLSuaA0lITYnKz0fNvSFlU1K64hoZDWyIpipS2MzHnkg8k6aHHXPPTwzbpgfWW\nK6pt9b/7755RP+gnJG7bGyCHjdYhXIHe5Rn2Ubvc7NDrg0cYyjtsdtof21h8Oaq786EZJsvMQjp5\np7CMoU0E1Onka7ZmoUbXSxvO+maeLFmnBO/k/vTXGf3iKEKeNxGhb2UwkG+y0n/GqlK/tWElLnVY\nrmyyd9Rnj56rPj5+ue7Mr/SGxMIaKbE+cSfAbbzkynfnqC9OGRoQkI6clb3Xb1t7lLvabnDsaEG+\nZNgD+fVBIfTbW8gdFSb6S48x+raqJw65B33glBQQd2goNr2el8YnE9JUp/pP/b7w+md2L37H0R/1\numKa28LojCX1JS4rbaeBcZ21+kWDF0nnO0v1k+XFFDbGSuXOQtfcdx9x1zE5YlD5+nbZLXLaN3GJ\nIRarn6y21/tFd5r6t2TLuX65JLIMrnnMSUNDJPf/Xx4Rf3TLuK/3t9uN346c6Bhn2tMBdl0NIbZ4\nlqxWA9ulyKnfyCPe2VcV19Bgn7WYV5FdNa6aOH24Wj9rYHCF6aOPYGp21JVDWsfLFKdPT112LeXO\naoMbd+lgmv2GsSU7QSps/+P27VFvD5v+VdZOuSLq+nVBu8iWZapj+62fVjVoRa6j3TzdsK+rij8E\nFpihczrwLCIdejLCksgCdhHW8AVp+28HNhKZHz6J986ZCe4S5objCY5PZtb6fO5/sZHhMcBSqV4/\n+O9YmJQT5YaDa6FkAfk6py4DILW2xZppjQ065IHlUYsIbvbVpz8CMQCsoPtgcyJI4dCV6Q6LgjII\nt3wrD/8ZitKm+XaY9dR+JCAGJN/lkH3jH166WSCe+pEQ+oa3C29PvG4sz1LPagKoUi2RA0pJCqCr\nqhlEN1ozeQR7/v9jFempmNtqgWWIZRC8nAt8sfUPFtf9j1P9wGPsUGWWAVN9OjdncBgLBFjnKS5c\n8+BjDPlqJpUWLMWgZvDrEVewNTShaFOiveO+YeO5cPzAixoXT72at2fczZP2YWy8EhiyKzV1Y1JN\nzSHLRD9zJ7dc92+D8f7HnTbDgJ0OK6Z2i4UGgJaEts/3X7vMcfsnl+U2pZ4vBTiNtYhlJvoDhYQN\nHyurqtoxqtNssvEf4AoqFpq2ZaRvnlBs0NNmuD83sFZ9mh0p+dUDq+TIen634KX+O66/dnpVIjnj\nBrL89nOZ8GoqBslFJrAruIWkzAL/qCWzdPb0detax+3cubB99vT2slm547+YUuq+cN2FQRnVGWtA\nlSbxffgO1yDWZ0Yl/fkJdGXORP65M7wZ1WE80I7eJrlGtPobXHMXmlkL1AbvoSy8+id1iTglBcRc\nZWw0R0a5l+bGE97gbnMGWAeUbmk73xDaqTdkNdDQmSx3xGPSkz69hs1tYa7OZ1YNXkMKTjIjpqju\nweVkfjneGe6o7ohnYfvIolUhVpOaCGqSk7NdG0CNpL55T3u8Pb4uTS5PKO+oIwDjwLRK7rtP5u23\n23V7PvV7CT81wG6XtmSPNJ4l15nM6PzLiDI8yydD1bOXwZbcpoBaV/wF33/vdPi5Z/H1GTlNBJvP\nbV3RZm0nPyyMQQF1SSOGuoa3AKt0S88dExaGaxfW7ZOpc7cQPGmU+8v2+tpa9R+fv71J79RHvf7a\nE+3xKXucZVUq55ekz43dkK2vNF5g2gHmz0QrhsHAThVznYpkR9TZbEQUbWY/K+f40xzSn4Tyy8mj\nBnON9T7mTVxD0koX5kILlrauO63783Yel9tJaQqubE9I+M2nZIdO0RsMXOLZQWRgtUWcgQr9a6y1\nTp2uV3cB3Vs2HInhiGrn5Zz4OEgqh08D7YYnFvAvxq+ez5i1KgEdMqKexsvBdh8IAfFmMfUmIDuA\nHJ+26dcg0lv7wiEWiIdixOcRFkiofQ0zqs5fYpo5NpyGGpBsB/cU1kkhYoCH3gPp+wGTIbRoDGd+\nORFRfZ6tKHgnEbOAJShKwtqxTF0zjnFYLMWIugvvmicZnHdDCsPeqMErIIoSgpgQeQXt/UE76FeY\nTjQBjnOB1ZxX3sE7a6992b15Xu6fVm/itfWtd/G0lExJ2hJmTdvCsPObCY5rDAzcbersNKg+naIV\nlCk5O3n6r/e2dhal66TRrE2vIXq/9/VQmt6tm/66vwTOi5eEqqFBU4MQAtIP5H1ETZuQUV7qqJ+A\n0RjKS0AtRf/Sr4g5p9iBITOuo0n/51U1PMWAvaHtCx8P6IQIV8fMG+8ZWnfVLnRlBoqBgW06dK0B\nmLNjbqsPalVDDc3x4fvOzjFduXBh622ffvphwchgs6651f3u4HnucQXjdBeuvXAP8ORmhl1cRmpT\noNvfZAyXuItHSDrgWoVTR30HWJ1MDKmL0xvVRuy6VXwWIjuO9IU5HKekgJy5iFL/tEBJ8ouiJCkE\nq1sO0n0xxxlzbpHs1+lw1snxNKdIHZkEjGlg7/Lro7++xWVysEhaSTYjVfWseoxfnWs2xb1aaOZA\nYFpVudxuJkAKtU2BYd+vBDmMFtM/5j9kDHIY3GXx5VILgYRX7IkAZMLD70z8/e+deXSEr4HWiFq9\ns2yA0xDLPqkSsxwoxz6rv/BdpPeuCHAjK5cuWxbsp9ouVWU1W42ul8Y2FETJB1I3/GFu2FBz2QCC\n1BA3cBkN4VOSIgN0/6XcPpFatZqY/hms0x2A7W20zQIatn1zcXlm5leSCk6JyY2yzSCnNEURAY5V\nImvJk4HFbxE1HABLMHKxBLrclpS/oXM5aDdnKwqGaY0F5YMoMbVw/0p6tI4RQVj51vX8e5AtWpVu\n/HYJQY7hTZJECmZzGqKIa7dbcqcHdQQhdza5bAZD99YRecSQxzj6GAfxrA8Rhhi8NgFpCkpfW6sc\nVxQFAyI+0VcL5FbAxZ8fLkFiFWd83U73xZdS6Up13QkkeqyKQwREEi3Tm+lKgBhD3wX4cAJywCW5\nUoERBDzXylvrErlj77ybbrx/TvVMNRZFaUBR9qMom1GUj5F0RXS5sfYAYb71RhKo9jA2OYcVXIdL\ntxKLsp0n72kEJqAoJoT78UtEV4k3ADOK0h88VohIH08hZ8HFnPub/kAMqMEIC3QLFou3fuki2U1l\nSl6qA4f8FgHOy7isLASD2qGntfCWeeWhiWpZ4AV8GvwYD+qriV4K8DZXN73y7LMh+Skp2AyGbAAF\nZQjw0VP3sHXnIJ0+yGotSKZ0QAPhB913ETRs3t7Yov57ztvLL3s/SErpmD4Ay9Sz2RvYQdJlNkJz\nE6/Z/akOp+ycvg4XEEbYXWuiKz6//QBZ7l+ZvnZ9Miqg1UnRc3/ikUcPNAQy/NoQv7Wd3wef3W/A\ndvL4DXAmEraaFmz+Yfk3NIc67N/mjpJcNqvu11u3+jsMhmJVktxJ+xzVLR0b+GbwN+5Qa9gc4JJw\nGtJaBrQZL3O9r65rHdPa1HCAttKWSGpll8sBHe3GMRGVcTQGVKkTAtbweUy7HFuW5s2uOypOSQEZ\nvGl/RHuWW/JXU/GTWvxerPmjTt9s1htjFxCqq6/dbUqkMcZkjkMNbRha+emuf9rDJKtJXRT4PWG6\nFFke06wWuQMx7zZJDgIrcAU542vaXOnJtZcAa97jd2ohOQkNjXEGp7+9Vm5N2uIv2bGGqoF0dNS/\n/Oyzu9qH5hheQVbPB/9By5v034ytcSdQZ/fHbagat9ns19rhkPL7uUu5rGB4QUGn0eWI2kxubaDU\nog9KzHcGbZ14Yfy6C/QjGeXIJ3+BBUs5SCsmu6a6CwIL09xI9hriQxPZF7hKDCRZDhwV8diNQUE/\nuJOTkTukhCj/7G/dIzpbpVSzub1ctIrxCkgOXV1DF+PinDkJ1EsbR0Qy7bt6SpJ1wPSnt6+JeVS6\nzR3LwDREtk03LFi+Mhjqdm2+NR1dq0SYrTRg2DCqSU+/FmhWLLitflZzZGtkm8PWqLcGBPR0Uz0O\nvErfA+nDEVXKbgsWB8L3fmir7P8NiQgL7nACEounH5SCkoBYC+Nm9K5+wGfMWhwK6iU+LcoP9ovy\n1DpsQQyWvVkgINxY3jjICCCzt4aIisJwRenm/jkoIArKpT6r/R2oD6ofBtSQPeKfvJfsZtakrVf8\nfWPj8G/Kn0PEemYANwBOIsbH0RVIdyO+HwfdWIqCedOLDNTtj3ex8LyXgSGsH2VEuB2nISxfO3Dz\nH5/myyFbWY1way337JME1OLXHoHelo4Q1SH4ZIgpKBPa0Y2cy+hKdW1EIC9u+g+fryxGVVt1bmdR\ncsjDTw3aqcanVle3tppMtW6kinqiRobT0Pw+lwYl19YOKEhKsleGh3vdhY+5JcJWj2ek1c9PH9LW\n9n0SpbH1RCz3fi6LBXVFneRKmtjqWjJhheNXC4aOBPU57h0ciO7ms2neLg0zb1Rdu0PqnSoXS+XD\nt5/z9pwR/3jzWddX8lhd8LjPqS8K4xMudDw9KKn9twc6kf1l/zdG6ar3hl/jII9nEAW2/vs6aHL5\nc53N3CC/d66fxFdfNUZDyPl/+culJit7pKysMHSt+oKovZILydKPhvhk/YHQzn4V+hkpX0ivBVzt\nP+iHVipr8kcSE7PHIIVZqzpl/YIr7UQ0Ox0TbGspygrv0G05xIvXJ05JAXFW7olTQ6twhMZxL08Y\nV266SArJ3E7Z318gS11p2m+Kx54QoG9gMxdkjbhXdegd/q4AtTKygi2DrbaIDlkaN+Ejvm66pH8L\ng/6swxaYXllmjwhrGQs2yx5uVh8izw1urBFNteaiKbsiJRstxg6JpUuN1yxZcmFToJkBuizmYNq3\n5cOH2JGuOhLkADWZdin5wnelsEWJVX7USqVcESv/P3vvGR1XebV//84505tGvfdmybIly5a7seWC\nAQMGTC+BBJwQSiCENEiCAwQIIRBKSOCB0Hs3GHePbXBvki1bsnob9TbS9HLu/4eRg1Oe8n/Wet93\nLda7P3n5WEeeM/e5r3vvfe3rEsKwYmi39i2uSx4ldkTSqBrpovUm65dXUUCB7kVefHPyo71SNXiB\nMJn7ilqQWweJk6Yzrv84uoHu6KY7koAvyW7fpzeGrc3EjsrGKbs750pDWNLzRV/0xSvX/CuANMQm\noukXReQAACAASURBVHwngwwOzFG44gMjHrOctN78sxSfx/yqdCtET7j/AiAAzPrDYLjSSW98lrco\neMx8wQXEkZBwKVA/YZi4xKfzYffYm0bFiNllNn9jKrWODOBSVDKIzrr8TwHkaNR8Syj8f9sHyeGl\nm8f49YN6R/Wvc/7N9df4xqr5WeD5SXHAYuAQqX0udMEW4Py/3+8fh+3O9EH+MwCpA6ZNmouVElWM\n/Xe17LVEN/0zkUVUJ0om2gc707NqD2qCU7EUTuBTDHyY8SWIylOUxvpU03aqq4eprm6luvoocDv2\nyhJ0CWfrrP29D+JwoAc+kULUKx1JWoTcDmQwGhtLWFnMmfJVVJF3/6ovuf+Xj5JF1A98J7AEWZzp\nfyQQLZWd6YP8HUBaMD91DXNlJ8YTz3LUVe51LwUWSgh7jDQurX9d9vmlVG1Je2dNXU6O6WsWngI8\nyfRtrqXCDExvS0kZCSvKzMnPMKOxkG0WN0F9QGbJTqM/VfQaGyna+PdPuY7s0UBYVCeECt6a9aza\nM55gjFH6YpTpbU4en3GT3LXVbynsk0fryv03OG667bE3/7D8lpPDY3dekXHyqL5waHr3R1qPt++z\nD5MLHlx3wXDqhf4FgeUZPilGCsYcqX2nEqQyJrOs2gAafzKmOLVWe2yuQbJu3nx42GYbiCjKT3La\n+f5IksaMVUegNxzcTtK+p1Ne8/tsGjzy1+HuxnLRpi/Rat89JnKS9JLGoDs4v2kmJ0aMDBS3YAkO\nyRoiDBYaTf09df9/BnIm6mP2yAvaFxAyxfL4tmYsnw5I4yviWf6dFA5+0GRyBjJwZ4cJ0Yo897Dt\n+fawkh6jyuiHGUiL9U07IajM26i+yk3hLq56RSDLBac7tI31GUngs6osbFzOS5HM2JaBIya9EhjP\nMaWIMIomhKG5uXNQXXb71R94I93G1NAPqe7MC6Qz/PFbBrtq11fk1BCT20T/pkdsZlqkMNbzfcmS\n59z6fcoxKtVYRgOAho8uP4CqiE1sUk9z+szA14Z4b6aUIQWThunqmkYLKoKuKEul8xQ9yemKR9PU\nZJb0rSUnKT4dDs870pEtfFIob6G5PfoSlr0QbYAagdxJhVBx90+RazblDKAPWMhpX0uqM5jxsbr4\nYUUdDYl4ORgt1Zz8d8/bO214RfBAoXBRxbTRBu2Cr3+uW5KwpnTu1+F0SUiP5PXniZmtM4Pd+l7z\niNVqPEuV9G42c4xXcROt//9PAGQmcESn820wGNxX8v9CH+Tcc7n+ssv47N9cymbzyniE5GPX4gMO\nHBecdU0iyny7ZTvbLyW6wZ9huhQTZe00MOPYPr6RNc/hXwAkMpcoueBsM7UzcSYDKSO6Bs5QSf85\nzqhXnzGSshOVkZlJ9Lmf2Tw7ZLS5JFYX8kDZFoRUoyVYW0eZXE/pnn+65zBh95/Rxy87S0tqHzDP\nbB5dQlTnbLzsp/rvhLCbTHR0AukIWSuc6RUS6oVE5UvuuvFVNgGpyf0UxYwxj+hhIkK2Zz6IMwCS\nxzcAUgUc3MrO8l9RNsOH8nsV6RatLP64+jOmAr/LC7f4k7prPB9YL/hQto5r1jZ9kngyN9f4WOHt\nCuDoJvNZH0b5BGULWtLSnPpQqNSBQxKQ+tJlWs9orHo4qBes/tRwVeSXj4ufVF90tnz+hRpDwqGU\nSGeeX5mQ30g3+VYtXW98+7pLM4p7gsYbnv+xUROWZeOeeYlxEwmJjb7Mr+56XlzefTopuy6zYsu8\nLomvrr/63P1zDqVlTIRfjB+c3j8tNsTOfixqMGmUfcu38BH3M0xxuxd7x2x9o127V4o71Bya4na3\nXr5unRl4r+6u6n3zv/K5kVSaG1vkP1EUnz7eZ+7xlKjfvaJHeee9n0rffz7CksgypugKlZu/OHdJ\nhi9m4LAkk2LoCyf6BzRHjVOQQoPy0opH+v7Nuvlv41sJIEcCzayqOd+H04n7E5WJ9oWcX/hB5PCF\nv8XGcKg3aEdOdBMjuWS17IRl6yCy0TABFjOn8iJMPx4RVR0dklNJ09S88qJzL1f0f/LuXZrYrAEB\n2U/C2OkGhtQF2i0jDQFzfNjkWmw0eZDTMnm7rq7MxTmGNe8bNDHymK+V+Xn3h37ao2nvkt6R3pHS\nLn5fbPvie2p72DASIi4CdPUX5BgKDg+qAikUQpuMQLBh1VQg8hEfad7kzVLWkV1Ndagz40jfOZ5s\njNSbV/A1JzGGRNQfPqYZUouszkhTkz5cos5LbDKmf7C1fEZVhzFC0UjFWE9UuXTwe9ET6FGi5YME\nh4NlpUWY/ZvnWKio8aCoE0mhr3vlCQ3N5wi7zuBSOzVSczXVkX/3vDUzB5P798yNrHrgejm+exTF\n5DrVU6LxazqcnhHLSOJgzGC4srUyo6g129gbHy+5DYZE1hFLiO+yn6l0k0iQeUDsWaweiK7Pf6b2\nVu4hvjkc1i2eOXPbWqKn9BIHDhv/D8WMGVy/aBEXEPWv+SYOVlUFgxbtngc3tXPR5w8Bf3HgeG5y\nk04BZAsWwoT/Cvygmmq/w0EcUVXjPqCe2//cB6yc7HXk8I8AclBCzAGckzLu/xxnmFhR3aooKP0L\ngMgBSqTg3+XfM/jGSOoSosrWlQCHZ9Jn9VrsSMqfqLemcE/j2uTcFoOWUAQk199v6HAYgR4C/e/h\n79PyTZZ1AMSs22+/e6MQWIDrDg1sQsavzuamdKJgNdTQvaxfR/DvPjU3vsbczWyu66Tj5MXr6SJa\nJttJTGgBhrFuomsgHylcS4pvFtHDT1sLlntcaP1h5OdAEoYAf606hJzWGzbO8G/UNQRPm3cHSmxN\nqRZvSncgyZg0Iu2+NL8C2DGB7aBAEhs5r/RUdnaTzePJBSoEyEc0Mcu0oZA5dmJc7X7t/o/7S0Y8\nwCEHjl9PZnsX+eSYt1sCNskakSaG6mJ1cy94mWAA+banrwoYlm4R5r1EfnxHfejpzKHIyxR+t2tb\nzhAnY2J6F8YX6sJ6Kmumxmwq9cpN7wTnnlaeTcu1htnzuUbhj3Vwqv52QvyAXcQM+Qnun6pJKOk/\nSsxn6+l98sn5Xr0+QNShEVvrV12Yshnz6+WI1l9mWfAW/dNNkh5dpKa2mv4xNxPT8rxj1k6SxmP6\npzfNyOjxa8i0uCKxeHnLPkjSaFpo609m/K+cHr+VANIV6qKkOUen6epDGipD0gR8t+Q9pYwEzWLW\nTeUGk8eEL2wlNn2YwFCM7PIz2OsJoYm1caoIQUKDr+rosHTenLeUF1/8ffLF0pNx1ya8Gkm47gil\n5JYAzlNwfO3AR1O6nIlJQ5qYZJPNG46YY3kh3Ds0ytSIIiIUB7qMLorSAgQOFVdeG1wv1rNXuwv3\nzmWRjWhbPeToyezwj/rm6ROaQ5KO4L6TTFVQ5QhCju+WO/YMMqjaDLZXETSzDuvJnPr2BZ5Zsowo\nnMZhwgnFYx98wHxg8bA0ZTTLNGQcGhoNTGFazi9uy56yTlkX6Up2iRnNtphSwBw9yZ6xumwLxFMM\n/PWZFsbnasrtHt3oe6j8Imd4fUJr0QIuu5xxG8HAEfv4BICAx0V0khmAN94omK7E++Ray1KpPy7G\nMJxpJDzc2DFaIQn1ZJ1tb/HehnHTuOTX+b9z1xdrEUjiZE7OVOCH7KIRwWEkjtPOcqIb4NkGP68A\nbzIJIg4cdiB5HVMLNJogQsjzcFRHiFKLz2Yz/S9C6ED821JYbCyFSUlo/uV3fLVo7qF5Idcr8k0p\n3P10L9HTcRxw5CquuhSofZiHh45y1FVN9ZkaejFwuroaATSQ2Z1FVIl2Df8KIC2AxU/yvzVOI8pc\nK4BIFdFnMMkE+iYcDmQhk4FM+mTT/+wG+iVEe1CZDhzWnz3i/YkmInPPszHPYlBnkOsRsSm9U1Tp\nX8Zz8oBkCu66kJALIr77ourQksuqd/mXfNxkUFbP/XRJNUEgR8v4GNGyUzqwdae8mOkc7wbuKm7g\nlQjhS54reO6817Nft134BQbO9EHCUikJDcNEac2C5b/sosBdiuCQoxpjM5Y1kbjmRtZJt7COc6vf\n3XrDlhXh4FUfRWz60+0+PK0gwvNP52l1sbXySHlHk+qd50994i+LcxwOKWRjvPcj1mgBpykQsCl4\nr2uXTCE2pNuQpMzS9na32TA6a9eNHceJgux8l9H1FjCf4Ohb+wL5WF3TVIIROa3guHrTi4ocyJyI\nrL7wBSl9h6qc7tPGSM55exwO6c3rxFsfS3MHhT53bEajdZrINx9on92Fj5sp9ZXQZdfB4Ym1QcqP\nD/HXR+BqNpPA9jE3er8SKNo9tZKlMX4t8fGxG+/72ScbI9VxDgdSo22TXzJPwTplXaSs7FWXtc8Z\ncl7dHHpj95o6f/EEXw91idd/nBh22n0UDGTkZ/7mjwFXwEtc0hAyKv3pStDdPKjVDI+98J+ssf8y\nvpUAotUKjsU3yzP2etGnXU5MTn3vhCveF396T2CL/hK54pSWbpGCOcslcJyjl8NyYmC/FUOKlkiM\nzp4z9c9K+mgnVSu/aGlqquTea3771W3+l+TODD1VVM0CnH+C139gO7r1uFLMuMcsj0yhO34gxL6K\ncArI6onpx0LxgSG9hiTz53zevPxU6siv4+4Sf/iPUcnd3nnsEDNLs3hzKOIzV3nrV1DS3MWFwQ3Z\ntZSHiCgKckTtu/SvTSqq2Dl155dIaAxBw5R6JXtiTBohTFFCKQcwFpfprFbDapDNw4YSrcWrClXt\nN2oK09NG4pgdRGc9XTnqTR216wttFnK0nKmXnwTae1dxd0ilLhLRWk3N5dI9276s3f4YM+v0frl9\ncHmosJDE1IhQDyf06ycpo7dzlk5T0G26P3k77FwcH/zey0wcnFIiYjtcZX57svmc08m5e/P3OgFx\nz033OPYU7wnEDyPqMlOrCPMj9pINPESEzznFOFFJ/DNlrPOJsnQq+IapNAOoDSNfvHLla/7OzikS\ncDn/3AdxOO6c9Jj4v4nVwKdn6y2diYQEkpOTEVrtP/mW1FQUvXupXtNCXnwdU6dUUz1WTfW1wO9u\n4qbHH+XRuGlMK3iER5KJMsdgEkAm/9xAVLzyTeAGvpkBAaKS53oGuoeZ+2+VUiXwAR0yoflEM5B/\nARBrPTmaCSTtKEGipawz/Y9CII4NFwwgR049/SNuFL7WG4atI4FzD52fTFjKJdX3YdKx0KmgpFN4\n9shNZ902Oh0ua24FWhg98ibwFxwOaa51t3bv4FLKJk7fD+xJZMcqmUC3ijKHaFa29XBaWlwVh2zA\nnN/f5UvcxjbhPt/dsmvproL4YWwZXVwE7GRCm0LuzgmGCyy4k8ZY8EQS01x++gwtwJU7FasrOPe5\nUmAesuEB2v/2p/dzbtAs/jKo393TYpXGToyjmLI7M/FqhSctuCOzgS6jr2eK7Waiemzra6iQVzkO\n6J0JCRMKnnMPG22CFgtBjTZ54YkTPXGMFDdSVFNNdQdw2YHCA3MTXYlt/HLAVe+zDonmS6yJCR9L\nLbopUqS7V32BtRqjNigF+/SR8BtPctPFx7yqSvfn6281WZa3hEIlLo2vKBTePnW8ePZxTkq17P9l\nKU+KiIwvdb+bBncsuoQ8RNWvKGetT0ZOGk3Q7otZpN5QO5V3b/Cph+QXbtL/9rd9IqS47lxTW7Yu\nsVZccMFR7cWrnkgOxWKMLXYF3996bbGaOcyS2nMkn1mYu2MiTC99aWwiaB+JqBE0wqdXDQJ/nttd\n0lsiAldfeu6/fSv+m/hWAkhBKmxNbJQWN6QQHjmX7LJNsSbThO9c28GJPNe+yLIdgjZdFkqSJG1r\nmcA+Yieuq4RQVmJEdg6y2NOg77GUUObV5Lz/fmb3Odc9Y5EHpuGyGqVcY14p0B2Gj5vHXbOVHJfk\nVM14Cn2Dha06JqYJmnWbw3War9QgscQipLd4yzqnI0UtmuOT7rgkJ/SF+GFZGweS9TEO48jMdsmr\niwvJspDb3zyQs8c128dgokRea71h4eElgPzUiqcaAC45eMk93d0X2L8UG6VkkqRi6gmnGc16vV9n\ns/3K2RnMjnGN+2SNpHc/+qBRBlVFqP7a8/X6sJBEVkyKSMpSyiMGZgIn/Um4hMJ5j5/mxdu804RX\nPzrYpLae94dtWP6UrWrUziydLBHICUcMp+2jiUQ3OBOTWYLDgZya2naR92CGcNlk7Q1vYj0cvzSc\n7OvOiaAV54xMlU7FnEoGBlmHcEx1tMWOQLc0dy176UOljmhjfiONaImWdkoAM1GjqR8C1xJt9OYC\nlX7kGhArr776cU1PT74UDmvv5uw+iMNxMVGfidv+L5fNGqK9gX+Y7r7xRqTUVMxC4E1KYvWZv3fg\nyNtfGGeqK9IlxjA+soFVS85cq6b6rdu4bVsWWbKM/MMJJjZOfg6IzjecDSAlRJvJMwRipJrqNM6a\np7DSNDbKzP/UsjWC4ZSK9kyD+V8AJPYoq/VDBEydyJPXzmQgq4HPtpoWfHRqRVd46woepPONDz16\n90Ar5plYwhAb+nTIn5KaIA/20Gt8GofjjDBhPtH+RROGVC/1D+8hWo666oLIJuMHXOFNoe9T4DkT\nXbfaOJUaxnouMLp7Ee29iRpLF5n5Fl/wNTkYvnOzsnkbcaRGkiOGUd3QxvM3oqBio9+gYUFbIiMF\nsXQtSKV7zgKmu4J8neAGvl+jmCykHtnNYsetLNqoZc479/7tosE7jlRpueLAGlWIQB+9X2haM0d7\ntYybX+bmIfF10q4nB67vf+IJLjNnPB3QEhL2nbpZ9dnZIYGSf1iK1TCuRYrA4pajnUZ8tqNU7pv8\nXn0vLXup5op9V+Q6cKS0uSO9YzWr9AunfSoGdBmdGI2nzwntDMv7dcFAkVuefe4HYssbt573zDNz\nL5qY0FonNBal32bmzfTunbOc0KCQ+5MKKk0avqvIAjmxPoZ5P49jJBCc/eG7r+54yvG61W/D9tCD\n2LuyZKMLYRVH5a+/97LG2V6oHrj7gb4nmlVpoC5FlSckaU5xh9J2M+LgaNlH4YFCe2ykzz0mUiiu\nG1VkSauGr63NPdpSFI8uTj05aGQo10RL0oD2lp5bInHEOf7Lt+M/iW8lgFRWShy2NzPbmSvCw9NJ\nL/8sJhzWxC1KaLcONuqoqJFwBhLpnhrDe5Gd6E/r8bpnE0hORm1sluKPwJHs4jFl00qdJIk0YQiU\nDYll5Pb2iZR0TSZRNdQscnLcFA/RJ+kJZAf8eR2I5PZ4Xp32qcHT1xHqj0kmxAgBwguTgvZYXVkN\nSzzna3/Nr3bCHfJPPSk24+2PStqwLI2LJFXZcEpy6jJs6kgcLNr15sQo5mwbodJj4nb9Z4QlNbha\n01k0Zb9pOzNpVFqJF8NZw0GApKTzSxOzTtMq2lQlP8dkd7okxus1jJ8MdWQnaY6bdK6q8XjqukDV\nUXX8EWJ7L2RR3H5qMk0stddUScFx/TsJgvOrZNjWFVSMIZuQXDHuxIxWJmTSgjJTJrUtzgx5LQkM\nW7Vb86tDS3ZGa+TD3kUkjI8Y850j4yOxzYMRJZI3+byQkE7rg60hrzovX9mlpAAPTd7nGH4khskn\nuqE+SFSmZDPRjfFR4E0VddY7ZPl0On9r2phh2KaG+5zO/FTeujYCVFz9fUcCUfC4G7gDh0P/P1sx\nwgBcRHRj/YeGvNXKzBMnqtTXXnuoPyWFRCYF/T64Qv35Y/dqZSRcWkJjNVTMOPvn2mjLv46X7qhm\nyXqiA35r+cbgqBHQL19OQjiM/YqE6qdqqQ0PMJBEFAx3MmkbHMuRyASF/+mcyxDzBnWMjhF1h9QR\n1bP6O+BIYVZKKo2mbtANU8E3AHIJkvrpx1xW8ugP4kqmH2eQkYOmiBxpGTIrC8n2Suw6v6SNnKSc\ncOcWXsnZBbyNw7GAaAbSDDyDvSINNZALrM3p7Xn6/OBGpdFVRgjdxRLi3Q6u/zCCabsGT+EM7jC2\nzN2+cHqtxHaxTL7rF1uL2mmXa26veRGJU7Qx+OzcZzXnb0SRRjVXIokg8cXnoSoD6CZ20XnOPeR6\nrEmfxqf3YMgNy6qB9IMvEaW89tzIq08HZOudH16lVeedukQ2BA0P0PWeCLBFEyKG9ay2siH1FXbt\nLtl3VOcJhZ65xgPSX4ebK49ZYvVhrKZTQatM+fGAEEIqjqlzt5HrC6JvAmAdymDM4OyyzrLXgBdC\nHbLqGc5n9dJd8jnhrx7E6fx4kbpbpzscO/GhDumHN/8OrdrFjh1fmFNS/mzHPSzHjAnxbp6z8J69\n8GkNrsyd/IZJe+J4jVYhxxG54q3Elvtaume+RK7PY7e4up/9Ib+54lbRpN/Q6U56OzmhyBn6W6qR\ntI7peVO2XhY5/cmV8iuffF/kbhYc/3lsZN12cTGqmSpnvLMVM1Nq+lWs9rBuAOWAtUSDYhzsdmpp\nKzYwZA6acgdyO77gL2crM/+P41sJIKmZEm5XNycj9iGj7MSTOizfeecekWYcNOR3pKrtaS6ckQQG\n8k2kJ0r0NvYyOHERSlymREsj5n1a4b3o9KDckSmx65yfSZIwt07VjRQ4nUJNG9QvYMEEknQrTmea\nbuiDsFfVEk7w2bI6ZOnSg5eJ/VV90vShof5jRanCgkQmmUUDDOiYVkPnsVhmaSqWXXTpdyIbwsM8\n/0RQHbj5d+/4I/nycyEFY78bt89K0ekND4c/xhbUoK3/iixxEqlN84V6t6fTqo0zMEErQ2T4vGn9\nWhHUirKyPc6ioiPyp5WdaNKzdGIoEmS85HVcJ4kJjatvrbaoJa7pki+kaobceE5k8mK9AdnagHd5\nEteoXy3ytYmOLR7QPsZ5qm/UKLfoTk3w4eU1CQt3yAZ3ZqQhQVpY+eKLgR0VFbMAJibsP5zYUiBt\nnD9Xnb+HMQHjxXUWTVNRCqs3NUjWix3j6LCj0upwYA5qgocjwV7NId/ran4k3+DAsXfyK1NR+Zwm\nYggxi2jJ6myBwj8B3nHGl28kJT03t+4AT99luo8G7c6dV24mrfdWoPZQFc8Ae6iufppog/nq/361\nCA1RxpBClO30D9paBgPLdu++ILhhwy2JU6dyCliFw7HkjRuk713f9pUXpBo/BsWD2YLDcab8pgcK\nYOsDwHNEexw2os3u4nCY02RxKqLyRn8/3lmzCBoxbk4kcYLoBr+PySn0WA5agiScETn8lxikWlhp\nDBAF2ReIsqv+PqwptFSFzRzSjeBUvMycvOYCykIv3tbaTo7SH2O03P87IsBsQ8hQGzSr87AFOnAl\nPirJIaWCY+/Ta5w2+b18QrSU2Ax8jjnXgD5pLtXV+3/y+bs9rXPiEMhLiGarOzqwFg+w/K1BFnV6\nyB2565N371BUPDkjzu7MurxV/fQ/SBzzgB20cnB3+e4qgx/PtCb1CoyRHmzJ5eQ6LORtbyRvUItX\nUWN6NAvfM5qPkrtDemdJ3C8z6bwc+O5NvLaoi0xLT6bb3ZOiSk/8cUMK9gp3asfmdB8p9JA2BY9m\ne9aRT1z3/ylBevfdMa1F8g/3c56u++CgLUI/nqvXwsULdey/UFpWGVn2bGPQxL7LF04Ouy4F+kp6\nSu4FcixfL85G+lIkl0TEktvHb395KrFx8ojiq0vR18bDE++nja5bdz3Tpn1NefmYJHW8K9S+XWFz\nSOiWtDExDVK+4+GPipsB/ZBwpZiD/PbrtfKVO4KFP3tCPfb2TOuiiL3Y1jSuIbFT8OSSgKt0ZESf\nnTAij4Vsz9w3tSF43e4bDFpXLLn2PxB7XCO+cPk1bG2PJderZjfoNE6MDJVu7wyZsnTBJ8rE6awS\nLUi1I0MhjhSp5A5bfDnq+p5Z3PLkf/+u/Gt8KwFkJJKO1NSEk/H40nAHTdIcYkwj0uhEoljZptMc\nTmzFLdsIJankBnXQq0X2zyZizpNTukfRjCGlLDuaffLcLjyP/zZXCEkkP/YTW/KId7wvY5wf8INc\nFGUNOTluT+cWWQBBQygvpzMQuqztcgmtEHnBIeue8Q7pcm4gTFATG68ixUzwXnaP6jEP6b35s4RO\n2sZID/Idb++/+jQ6NX7iYjGr3sBhJRT6qYWuB+uQjbEI9Q4iISufnh4P6+byaNiqlKCTjqkGKlVj\nqlOr1pWpWamns11pCnXJI9LKo8mqszjFx5cFg4THHUYxodZfFIhxSfOpkiRpu0rH926m7Y5XOD4y\nl1LtWKzdMJSku4+fLbwaDW32DNd0UcEJ/WGZTy81JEw9KuL86WLHzNkrawoL9S9edNFUhwOzXu+9\nIPmoP3CwKE+X3YlZAltRE+ypKmHJoZMWy5rNaRghw4MJaPXkNh32RAaUIye3yddzfSfRTOFMbOQ4\nY0iko+cXRKmcZ0JdwpLb9RgSBmHppZc+10h3hqEMV+zw2zeqwLlHVznbnemsJur1DlHNpZ+cpamE\nA4du0ohqct2LeKI2ynOIOiR6iU5A//1nLBaqmptnBkdHU6wZGUWjzJt3vaTy0QMPqsHBwrER4IgX\nU9JCvhol6tAIUAqGVlDmAueDuAh4SVFYC+Rf9joL+C55/JofpKez8ec/51gRRadlZNmBYxpYayb/\nTxjpzxBIPr6Z2fmHcFEWZ6HJAlxJtJ/SzmQZS0ChPwmDL539umEahYYSogBSBGyqL9DNU4N6ZClC\nRHXnIMjMGM44YAyrWZjaa+ibbskxHpPu4antgIHqJU1Ey4pVgKC6OowQH6GxzAO4ftfm+FcXrhI4\ndpqJsvwa7mTGOXdSUTZOYU+vMq8vv7c38VRJRJP8wNe6VF08y1n+OFEzqB0cZz1mMib0wx8s2adm\nYQ81kWaNQ+e1pbhFBuXucanOphlFl70pJpBUPntzR4o0NONXPPw51dWjwB17WLAjt/VI5P0rtUIT\nsD1Jxs1dOb1OQ5vBpBpRe0CKTE/sTa5I7E24hyfCSTM6OtzcJU3J+knYJjcJUvfD8O9VeWS7+sM0\neThkKogQHC4BntGF+dwc5LNqqgPAjcGGhfE2+1ZkI5KlBcOCuVy4tymZBN+IpckqiZPvNer310WT\noAAAIABJREFUmBbVP/zwJdxxx1+kXyyrCUoTL2rvPsrICHReBp6BFXSnbsTeM2AO3fnaAyK5ZWrY\n9+xdcmtpcIb00AmdoiSFB4YUknsR+2b2Tq1PicVqGdM1NVV86Jz7YsuD2YPBWwYTpatm9nvsjUJu\nvnwqKd+ZC4mhbo+qz4wlSJJ+bzpKzMiFc26NeG1WSfPl97IHfV7qk3zM6xSmWD6uauGa/7RM+l/F\ntxJA7JUFaK0GPqOyf5XQ0hcoZn1xtRg4UTBRfsIu7eEoQq8nxjhChrY0eN6NM15JiBsBcz6rxprF\nXn0ysoL8Um5pSFa5amgoLaT6DYOJ2W3GzowEGth7BXa7i4sv3iR5m4Ukq/T7Yq2ZzlCvBonyVsJp\nepHQlJnN7w3Vntf5m2Qob5A5MU0cKZflXfGNUlmr0aex61h9XmlkeAhxNXsZpE0y7Dgsnvr9SW19\nMxnAa+Yi2uJNCPzS+6P9QmOXDvm0kRIKqJWCmjIRH99D86DBX2LwK0dXJwfte/uYGiyU/Wl+E5+l\n2VGDr4zprIpwa+Ut82TfXBVeURRbMMiUDh/JndeRdmTjnFCftu+ggnTXj6Q0cfvEG3qn1Ok54Wm1\n4jWXWEX4pOJLMG6YcVGZ9GFa+IvZ843t4/nfb2qqHO8oStSXnQr4FEECwEicNLypaBnTeveHB7Xe\nBkBkhykEkq6b4ruy4/RBtBaLtIDSy4BfjFDxYwEfWWArvSThIsLP/lEyBeABHkg+jrETeuMW2I8m\nE1F0/kVfD14ZHLxUjShvPHenWH7NOziprj7DZ99CNKtYdtZtZhH11s4GUUGUuXQMMFzKx5/ezVNj\nk//ujL4TVitTenunYzK5BmrG12bz85/Puek/gu/PHOo82qAroPL06Q5UxGJ2ScC1k4BVDqucRHsc\n1wIvwmObUlK4ctDHyEQGjzLBEHJUaZXoxp8N7DmG/cdw8kdgWSjAAphBPgBUORzkOxzUOBzflNlC\n2Au9ZFibCsOHThcxSFRR90yJ8QJ3Pi5k2gx9HAmbSCcKIAuAT09Seu6vH5S44rOgvHXOiX6L39Li\nseq643wRM8bP6+ibgd12IlBEc5CoP8Vy4HOiUu8v4nCkMF73PKGJ5AduvLHUMhxK6xgu6EFVN7L+\n6xI+/vrSRzW10slk/a9mlz1QufY3paVjZlOkqP5ksPpkYZzp2k/Dv3mu2gZUoLXvIcAhmvD+4aLH\n3Mu2I2mqBixoI0wfTQ0nuynFlplaPuo9NIFGCnpSylaedzy2k8yOIpqqHA7SgeVfhC7qSW07HLNv\nhlfEG4fJqTXGFQQLxKayVvIZbwfOn1VFvywJFrBnf+8qyqWCCXR9ViVB1EiGrse8lJll9XCyXJEj\nJfoybjjNOm5hHVXeh9k58QjfF7CvhKueDY6US+sTt0j6IQgkMOyeRUbHLkUUjPRx6rhQuaR8vVEx\n5tfWnuP2eq19DbpsKcIgVT+mrOdaMi8vwt53Hnhrco/qHns2wWLw+e64+Bnv97d8sCmCRs7XNKql\nDeZQ/7iGpGRAg7I/NxVtt0ZyG3uaiW3Nqh3MkF8yWFjy5eWWlsxsdfXlI+LxFTUUmvvCvRi0uRoX\n+7pTOiKuuLb++Q9rGPqaFQPENpokmvUBZvZppJ9p33hsfJ6q/I832LPiWwkgzuBcf0J+lhgkNj5L\nGiCzPpO2WXEDyR8lqgaXQj+nIqMk45OMZJhTdDPnplypTXNPoAa50tchbQjEA4RHhhWhu/d3cU2H\nFsvaGFcgHiE3ZaYzzI4VLJzljp0xXICKpJg6MRy2YshtSwOJdd0oMyckuaW6ml3ThnUatBIVNZI6\nEhcZSytgm+4EK/e7jHPLN4uX/6yQS96nNmKDy9nD17X/IXJvOz/w3e+i1WrRN0o0l8Wi+Uzz6p/p\nRvpzXOxJuzcdO+PSicKJev9gClKc1Bmc3ynJvU5HYKyNodLMCJ3OQeThWfRu6AjIRonPU3n1+hhf\nJTHUCZFqxfqAJFMRsKJaD82wvhh40X8hcTpLtdTmNcjhTsX5cY1UQ4hgUiSs/c3IeLLsqFpo1n0e\n35i0NxLYplv64w0fr7Vtnj1LWbXeECY6p3AiqKN7d1EFtsCo0l9PsyKjZuvJFYIPSq1cHdhWT9Kq\nCyNLuTwE6v16hn4vYPUmuBxBNO9Q/q1MeaWD4n44dNr/8jW3ktWJ/aePpOvM49YtL72foNF5Y6/7\n0J82ydN/herqVKLN93vOukc1wDtk/oCoi90viAJN88esKfgND6YRpc7+fYO2WvUZbneaKa6idc+W\nzstLefbZugvfdc+n2tHujKRbX/7DH9ZlDA4G7LjiQJyxop0OV6vALpD2An+Gnz9eXCLX//oEMdTg\nZoR3ic5wnGFi5bRj2vF7ptwIaTKsmh+MZh3tIJ2Rdj9DI37X4eBRxyU/soJUPMJc6aFfqeWbziNF\nRNleZxrpF/hT0QCttnq+jpiwoAt4iQLIxpOibH55XYQ172klR2WtlN+XP/zYL0hL9ocg/aMAvTOQ\nk46fEc/cThSMc4j2UP4GfET8gkZCI6rVM/rYcBV4dxta7916rmBdyS8Tf1F8sli43eLZY1dmukJj\nDY8ttfwtaY1UuWGrabZ2gfaFi7PGjybevRtrCcz/ZIht2+6hFuPhvMPLBnVaX5WlrZzROjUzrVzy\n28jCUmC+5JArRjH1uRUUw/zkeruG8IVEwfdnPp/5Q2Vv7NqhSINQPXsj+6eNhuZ+vTklb8Al1aX4\npITK52OA1cWVZsMxKgJr+OTUs6Xf6Qx324RWMyGP6/so1pxSKUiUqIslENZqnKTXAwgoUqBaihI8\n7rtJ/9TB2aoDS5EsgmOZkb6VZHozkFZu8ct9sXY8EY6QnqHNNrYYN2++kfj4PtNnQx59rLzcn7OG\niedqIH0IjevgvKGuI8/MHpv2hZpy8e/HwuXp8f7v9s0RXyV4OzVZ2gu/shi6wyGRWklYO0HP1kVN\nGDslHi6evowgI7hqla0ji4XeVkPL0F1ygUHGj4lflz+Y04tByle99E6oKm2KH9GHbrTZc2/vp0l+\njcqpcSiMJPO9yq1XB3or/t2c0X8b30oAaQjM77MbFwiz+Ui4Rt8SXrRH4khpjqn0hMHWm3aICtOE\n0qem0RdJJE7bz2NJ9zi9ueqQ4m0Vc4b8bAgGcLlixT2zfhOQFu2WjUI3IWnC6Sl/vDpwOjuDZE2z\nzXbBnLzxsaZypXSNqkneI7RHY6Fu+tcKARbVIsX7BO3hCdqV+RIMQ3ktoqReNSRZxND4VuSAXpN8\n3OHsEu1KEUV+F9c0HMREKPxZe2TBOZLJqgiTidmBNAS9YL52fVCyW2nTt1fmekTolM5GOKNhmr47\nlU+lVcUWSx9P3qvZ7mVYap2bLrO3ycDC308nEnwhXnW6NUMhunMsGjIXMa6qmg95PzfWpjH4XmOg\nuK2MYxxd+gBj6sE7I0J9531ZPPaH5pRYrf8kJ6XC3/4Y/9QgCZ4RdM7ItcEd6dI2/bIM7/GU3q2z\nqph1QGP24FGu4IrYz8ZeM7n1Ej0ZsZ6EjeiQUCpyEC9upG3HLrQWrVC9ixYD5C1mRatMSO7jPKUI\nntHBTprxEdGsimYI4noQZ07TlQeIS76Wor/anVNtIr9ZqL9+eMRy34P62dttV9/qf3W/ctFnQ/vY\ndy5Rv+uFwFtAJQ5H6eQ9loeRwn7ktcBykN4DLgM+AipjGTOYcbuYBBCHAykUKrahdY92X+k9P7YW\nkbW96UMz5inB5V+a3MIaU+h0vjqls0vXQ1rIjOdjohlHOSxMAgSIUqKzFvr60G8z3B50bEZPGp9x\nFoBEIH8dU29dzIA/C78bbtR9GAWMNiYlTVpbpy24+26Hnyi1uYzFuw4ihz09OUPDinZ4+FAVbapM\nMVAowKIqzFf1xFxwgWtqqndgTag/Rngze3zA3mqqXe6B3DRFChOOGxPj2rbEOc1z5ENW84pdIgn5\n/fd/ILUtFYHcr88GkKWEpTMN9IeAAVJWPgVy19TWlvPaKuze8vKN+lUrI8abZ1zrSWzUTdVEaOHK\nBV8+09V8KnP1ZvFs1zplRfdMUV8qh30x4dNJw58pRDyvAfkoShGLvzeMYOo2WTe+rAWzeeh4qG9a\nBR1WjR5znpTY4Uz25h4YnHnu24yEEt3X8fZTHozbVVX63p13fr0E25umo3HtMv6ez/fNyRpfdPwm\ntaB/jKbkgHRo+eMVOiMr483+uPe5Uh9Atyw/pf5prW5QhIezafJnkKv7wsLESeQJL6+/NzsskJsn\nlROeJ0oGcQM546HE7yzgM7H3hqymyFfnSacq8my9B0ulS10DnM7MBt1rbWy9+KJ80SodPLxSGgpK\nMPyVtKY5VpsUUd586xRWZcSC9Oh9FQ+teTg4PenjDaO59hTyrpfYWH8/TrNbEkKd3p0j9xMkMRnF\nqmE8PUulobcgvKJZ/EI6QSIxi6VVCSdaDT076DN5yXvmEukvnY+EE+btlBPn7CZL8qroPGkEW3On\nDJs48tgubam/STWNpdEfgkR1uhTuKCsuDT361P9mr/1WAkhnokUnBpcGzebPjA6hUc5pSONrW7F1\nOHeqfFx7kPKydvyKlkGfRZCuioiFTE+J6i92NUshPbRLbeyone6bmnfAtO8vfwwWL/nCLiR0smhy\nunRmscxiIJw9VRPxdsuB1BvlYMFxydccA6jZqWzgy9L5AbdBz7kndofTkivwxLnD2MdoyDDXPZz0\n3MDoUIjQnD3ic9eOOIlHULEvGOBKdyaSP14kJA61u70p6XLE66WIOFJ7d8YGpL0LUhLy9aLF7jeV\nBIaUw/ow59s/MA6Pp3O0cIqcpjqF1th/XxxxasMsSXDo/BjK/yYhpGmx6lCbrmBIinRr3n/3ygux\nSwrOZe9cmZstRU7vnRO3ObSRBaSSbjbuvNv+RL5kMtQyc2ZamTWn9yAH2SAyX2VZv1ih+5KJNT/c\nt2LKSxHTRCASXNtrKOtpCZkCRL7gi4Ew4bHj4aOZ4pabed9iNObUkysE0vR8lF0O8+Vvv4zr6uuk\n4GCcXQFyJdSfRizuSL3uZtVNsvZHXFjAaZOJ0bzric5G3EU0S6AHwxwvsu0Wxr4nFTf6JuI7xERt\n7nu1uy8WlqIjauV9V3RwxQeW41LtDZPLoJLqaj/RF//HDhw6AfM1CM11dB4CqXZSS+tS4GMmDbeK\naNQz2Uhvbqbw9OkySST1wMCWgGcwTvmB7iHzYQ6rQ+NxF8QGxofNfv9PC7u7tV1qpm81n+1EiKuR\nDeWQVET0xL4OpDCXfufp3kPfz8jZX6WisgcdtcD0Pj/NrpHEHBUpaxD923rU4J001cE5ynaylhIF\nkMNAZe2xJfNraxfPrq4WAriYzy4+IRQ14eH7Y22/f+GFOmcq690WQkSpyEu9WZxAosfns901RIKu\nuWua/IeUmLQrmZtvMo89Im3P13kLumhfckgdOlJt2n7goSpxT+X39hGvJhZ95Dnnkpza4YzWSfUB\nqQsYocV8DtBMdbVKVEJ+YYxI8C481ah5Lv+7/tLS/bFOJyxYsOXaFPwGL0ofwO6FcmHjLfFyOOTF\n3lWlVNTCvWMvPR2aaEvH2/k2cAdQz4WrYwil9W7K35U454CENeTXNejm+BTLgpAS8oknH8WGVc1d\nce6X4osT15mpty74uO2GIq/PYm5Z+OMBT+BTkyUou3A3/fHQyqAtewQpZ9BGa1aFGtD4tfm/wNhL\nSrCGilEN4Wk/rqHbmnhc/kpN5pQ9nxGlN0jzs6HYlAY2rM8yoarNRA8F8URLoo9EkB+rVefE/7X4\ny94ES4f+bz2zQy0iM+75XffKA3ICakiCyPwFiSaPUCMKIxMpgVdOJplz9VNDl+0/HvowM7PLDMHj\nugrRF1/PgaIDLzy46l7Jk6rItvUvuaivn0NcT4fWF5Y/vWQKPiUiZRsY8OlInypiI+/qZEUXoPSZ\no/ohJkq59YIHnVMjJ3lxZjLiZAkrn2uTn2+y8qMHLuM/vn+DhGnIWqbZn7bzbyFeLxfdQqOqHncu\nxQO5uJuvoiD+/rF4p/Nv/5u99lsJIGN24vvrV6jj45ulkUsekjQhQd/pasLd5WzuqqG0LILsHaPP\nbQ960xVJHpfHYyvbkuY3t3CoGCwWq0i099glSRX7Nl6gCzaXBEaxR8QlH5lMg4OSkpzO/WPPyzeP\nzyGxw6zappkJ+mAITUYGH1NfPF8+mZnNzUePS1JCkqKraJU4UUZ48/nJucY+n2zS87Znw4Aeq2EO\nRUGZ5dlQnrCVFdrL+Nw8fEC2GDVhjSSjRUfR8uPX6KTaGXKhMT3cNAaV4oR8SDdG00VGtT7OJnJ2\npKAzeMJOtceUoc1hKAkZzY5xhtLCuFOd6kiLS1s6yrk7f1m6cXEWlWY9J/O3xI5MhD4YVIv4RF2v\n3KcZ6lv707tnXCne9/xlrebU1DoWL5g4b2y/vF/sNMQaxGyXNF7fBaUfGxPnfKDP+EyV6uclJVc3\nnBwAlE/4RJNP/tOXL/yTknrpbeLPbaO6e3soN/YRlhqmhG44fHuee4iY6rl+nSpLfGIw/tQDi2q+\nH9G6f3u/PMjD8m/ZmqR4/X6kxtCkoNxNwGIHDtN+4vNupr1ZApciNBqn4h5+aNaW2Pzt8+W+Fbu3\n01h0FR6TzzC7dinRGYUz+k5/AS6vn8IKFaQeDBM6xBm21DygH6RmFaXSS4JvNgeygBgQGQMDLK2r\nKw+R0mmmq81WWHjU56b04uM4tNuM+WGfWXtAgkiMx9M8EEyV1vKSn1Coj+IbdCCa4HAxuFcw6/kK\nyt94atX193Uc3vWOAnbdpImW/5r/uDb/4R9vJihJPi+aN7aQ4p/JWLFMp9jDdQuAtmqqR0H0Outn\nFIIkASurqxHsXJo9GiP36nKaI5mr912Q+x9iwZ4FhIEUgXzhaBUnwmFNJzAXpNtnDQxM/DrjUzWO\n4AO2nN7yjg+nckPNDTzw2q+VUF85a7T9Ovn7zaM30zZYmLHdtrrD5R0wczYVehsezQKiGQhUV08A\nl5zXnVZwKk8b+jxlhS03tyPx+edxp6WxYKqtq6cTkypvcyz/3a/I0J4+GJ5n+Fj0olFk/G21z13v\nHQ5iW5XCUaLZ1rW8/vrrFN6aOzbtI21Lpt9X0bBA8sgxGm/ZTxWtPyT5qRkxdBQxN+2ItPORHzrZ\nmej/oPvKGZLOTWrJrqA0/U/ShC5iYuzYkdCYvrEuU6iu8BxGklaP5u3OU4uT0ZyIFJr8Q8dO9qqJ\nYxqZv6z0ye7jip2TWSnUxw7pZI9Tayzcj89XLic/8EAW8ATRuaIUoCCILq5IWh/y+34ftEbc2V1a\nc6BkykEO1dxHb0ovBd2tgrSArfjqO/wdSpaPpa07d02MaOZ0TwvMaGrSPRQXl3QOaIZNs30h01FI\nuWbZPvvM7Kxgl6g+NWzQGXuWUDkWt/iLEbbPakeRQKsltKSNuuQYpMbkJrHyBrh8QBdzr/nnYY1h\nb6Uzw0hiUGbg+jfVIpddWvOHJ8SR9d/hkTytD02AT9408gvTj+qfqQp6NaiK3ptAQddUTDetw9Ax\nqkqoa/83e+23EkCkXq13XBJGa0wt1xao/j18Fb7mlTS6dQHR5h4kNw/UUCetrqxwOEFldsdofDBG\nilt8oIU9hYRnzSZUlt0j1XWn92Yu/QLbMzdNxDCu2Fcfyww4Wzg4JyuSv3OMqxZ/QtxJVWMoyRaK\n4bhoZBw/CSJ7vFd3vCCfuT0TihTuDGvKaxX5ZJaYtiM1/QTT7kqIV9V39rdYbuMOquWtEQ/VGjDk\nv8ENe+7ljyG17lp5LBIrkgpA8km6ld6V4gOOnVrQsURxDUK+OIjDIxglVj6cny5duDsMKr2HtfuP\n6VNy5KnHI2gWPT6gOXabrlRJsiT791ckzO6i/eDhORW19SG1oATHxnRvS6v+i4agVzddNotSk5TV\nWWl/b80rMSMFzXznwi8omj6yIr5fHZHMy786aK8XYludnSKdLJyqWxx/93zFZTFrsts0vY00akYY\nET/hJ593Z0k6y5S5w4/l/5GLtaih11EefdZr+oRPqKLqyT29fBUXGGGWrE+v1SdrfEsCkj+vMWjM\netszwBXqygguWtCxjnyiciu2Q8QuryXGfwnOYjShW/s6C3X3vv+W7eis6y4NILu/eOjx+vYZn/Tt\nfGy+eTC2MV5C8hJtmEtUVw8C74e0PBREDn+Eu0EgUieXyhrgYwHxw8xO0RAyPsm9+Z9wycSFfH6Z\nRsO81tYZYbJHdfh8LflpR8dbgnFTPBw8dtiTbQqgP+jAodMHw0cGw0l6IIVDhw4j7BoozIQ5Rnj4\nILP+8hHw9j1XvayVpD3A00sAAz77STb96cNpse3DJttIF7CiH8MmCQ5V4h1uZ00qZ1R4jb4Tzadn\naUF8ApzvwKEXMOOlmzT6tFrPVbIhYnrymivm71qMXiAiAunC/uU4nc7CIHAQpAnVmRvUZzWFTxPz\ndvEf343cW3KIl6+/69hPXkhTky5+LFJpHRaJ+6z9HknqjXPHpVzagGlCx9kuh9vQqcVACwgzANXV\nTXfsaOjcVxnQqYqki40P2DIyOFZTg2vupS8bjpT8H+7eMziu68wWXfuc06dzbqCBRs45kmAUM0WK\npCgGJVOWZVHJsmXJspWtYNFBGsUZJStY2bICSZGUmCQmMEeAIDKJnNHdADrnE/b7Ac19896bO3ee\n6t37pu6q6qqufU7X3t196lv17b2+9bFZMoOtnACInz1Pb4rp6ccophK63Mf4seWFOgR/W8RUYHpb\n7guUlyfhk/EIkq4gtnCfvPRCNQBQZdAb1Xc2yKMuZcr8ygvo6JiD99+veiFTtW84WOtGy3jSxB/r\nsk6kuHopQzEIQIO+9Zkdc7vZcSyhNKnI1+foY2YbdZM9E6MRjO1OOjkpWVfa0b3YaYz3QoeLC1ww\nxCTkOXPhzjoKGRugPXXqfnlauuwCIEpgFr+Du7x30uN8ZpoU4vnYeGptm/ZiixaOjAw5OaaAORwm\ns1OPXMzRUV2fryCB2peTbVq7uNQ1rOzS5YUTweDSQqBPkCo0qXKXDN9Y2ca9R5aBA8ljvDtk03A2\nzOrMkytTYW99CXJYgckESX30HMYsJj+TGCiJuc3oXaz5euB3oc/Z8sZJrUt7lXxz9jEctJWR9/5y\nUYZsk2e/uxmiW6ngg8n4RcbtsY/lu04TkKzzGXMSv+guQ0fxOcSXt+KlnHsplPINPybW/m9JIOK5\nsMFi7qQ8X0ZZIcwfk4+R2kssTpZPSXmprCzJCpglN9yuQqVaH0BZZ4jzw4S1Z4ZxOh/y9Td78OUX\ntfJH/UR7w4MPgR1zWGlCIftCDOiAF8fylvTmHohAJgziOgU8qWkEwlH5EhIKJabkhZ0n8MHaNXh3\nQRpuO3tIgepLiEApsb1ZmLdPn8ok4oyoNYyk6pMaF2JYdQlp4CHT3Vj7BxbS1HWX3xlzM0mMPosQ\npYsn9agPvY33rCVT2USXxNDdUMItASptEC3qLFS3iNB1KuyjGNCGizKovXMMnDmUtaF4u7QwJWpv\nvyxp+6QcOPut7NJPXKRh/ToEpnr0Vhx45hCOk9/q4nKrY67rhT8nrsWu9UkEWLzgOCDLfFquvkTq\nMx4tY1rHEgUDFRjeI5Pjg+qYrXIAlskgdpatcOzBHipC/dG9uKHhQJaOBntNTm1nLoqKWfHJJYg7\n4llQQRV5Hs9zW734W6mnB8nxsF69JiyPdJBxF03+qnlDPR9GUvdN0NmSmyADuAUgFMBxF/ibVsGp\nk0BeO7CkQ/W4dzFExT9EbH9CfZ+4ETukmt/cdfpDeX9Pt1kR0yNJoy3HtPHhvzZb+ue0EVR9PE8V\n/2ZzQx0FFN/jaAZ+OP8QoJ8RRCnjxYzYDjwjEtDBL7DpxY1fYI1+XMWhhgmyeq+z2jtqvsTpxCu5\nwVf6aA6JQd0E4NmkpnW5426oHn0Ud+LppzdhrFEN7v4jwAPdyHndCFGducH989cohS0ef7AeWCoB\nH7yKD04XwHoleGvFniaS4oxhWuV0CMAHv0Q8GkcK8wie4ABALu6c6BkvYADyFwArEyB3UYCrX4rT\nJW1jRwS7zBi1Hq6jQvgOoIoErEwoH+r29rlGAPsAQBosU5CsfgkA+uXcRUVdFI6Spu3d0bios+ug\niYAr6CCagG7SmTGVHsr0IV9kwONZqH/4HY/CJFjRZHIDGAWokgKqWYPhtF0FVCxsmKSDooNu3oyS\nL76A1nbN7rTOdf5idQTdN26TJwsGU5iUhJGENU3h3UiyDtuGF2Rp0OKCfT2mJdSPYUbZMpycMJGx\nq+kbM92a4m4VrJOEjalTtJ70AgbnQ/Late/5TpzYMOmeyHgkWnpfBas0yt/veEWnj8ZvMbjbZJHF\nJQBrILsNndq9iMnFRM0ajWKOSApNKnWHa4iBr/F8c0DBFeiJI1uOm2KyAr3p3bitSUa5O22Ut1wG\nJ1mIglLjU9MZ1wEBnJQMV9KreMh8C/mIzlr1XuJi8xJrtvpz9nKzBimVCeT4gK8dhfJ9HV/klRgQ\n6RrLZ6HeXWJIX8UsCZ0I7vWvVwXdpYWcLa2RT1jJDG8v0H088dc3/rZBOQG5al3/h2LWGCEMwwsc\n0JVlB3HZhcEYzxmKk3KmvMm0vPkaBoLmzSvhBSVbllTS5EsysfSkwlLVLPUUpZBG/7USJMJ+kyTS\n8DeLFBlREy4JN0fgzevgRKWOcd7ODWdchvOHBpPnw/OsePzyj2rK9r8lgeB0sTvblcdYTJlSTw/g\nSm6Le1Te+BldE8mdyZGRQYaWwoMsbxnnIGMYNyRg8EeliE2SWQsU6eky/803YqxlKHtwm1P8M3L6\nZe775W+b+QgyMmKor67hSkaGMNmeE3NzSWBlGf+IHSGdyEEfbgxWv/s+XKxR2DVjOeZNHgbMXvC1\nrZyi9gCdakh5zekkoMWlY0l+xxtmmkNkIiEDYXLwCP/6WVvN3kf9ByweQScm1yTLMyeXVsDtAAAg\nAElEQVRnMu/hK9WWP16254QbgyUGkF0gst1OqNE4CTqimBjLFmncnUmkRLxkdE6GmDrsFGd5UpjV\nK47FLu2ZOTbFXaHMhAuLiouEpeIL7+aprRiKhVGq2p1vhRWrgl4m77LlITRXpWPNHjeARg9RJCZY\npTSjTuibGGi2RMZbFdylJfHoIOAS4mrdoj6atT+B4xWKlCOoB499iUxElImcmBSsT9NvEq7CgeGn\nVPObs5QbQ4/g9dzf3M+C3ehpvCl44zcH0Zueguj1IeXR6AK993vLWvNSyFnkn4vycGtDZByMMozr\nfvg3jylBV+UgnPgY2S/87cTPv8zR7oQkPKUm4RWCGtee2Io9VEGVrRX67Oj93mfw56sXFGO6mO9a\n1NcXWKbw63vfBbPj14JRWluCvmwp1g/tg5hundo+gNvv1KE3qsLYhRRkYT2++TAH/X2BVKX6cHyD\n4u1vX9E7ms/NaeloZXulvzES1S4Nn+8gePrpzW9bt9//985/vmr4N8+yHGADZY8i8Z2MDddTpPnd\nINEafPPhoVD30vsmJhCh1LsTePXPwG33ghFHcPuSHqarMEEzh1gAizFNIN9kQDBm4Fu8iZs2AEB3\n2ZBORSmtx9FRgDo7YfjDeCrkmBrPqDM9D7NjClnpobhKONpPVGPSCDZ6KZDT1jYvF8C+etQTYahU\nI6V6FKivV0QjdoMmSoHaiwdagzQ6wxwgu1cDyyNTKe7UDk+uO01mgAYQjAOYztjqjwZgjxFsKa0A\nYMS03HlZ2Ab3JYYkKuXWeAs/kw0rLdbWylsEiAqFeWiEyiyyrt0V6V80tZgcVUVDOfl/Jd9iTtag\ndag4W4tvNZH42nO//KWCLllyN0bf7wJfKhdOpQp+z1mcnpOQl+5hWKhYQBORTc4cpqSgWXXs2I0n\nHjj9T+1+gaGE5XrPzimgOkUwXyH1iOCtwwDWwzp/alB1EgGrm9Y1MiaTYAlp+YB+QDn7M1BhY0fK\noz12nmTFNAFWNsUgR49hQ6uFGvWdcSUThSzxeB7JHY8AL1Dg+yPsYtGzOhEe4WPsCZuarDorVg15\nekJzZg5h7anHMJp8hZFlNU6p5jBrmlszZkYs2rSjGRoiTlr8yoVMUlfU2DVbtzvof0fVm7+qtDmn\nSzTEE4kcNRUA/EWeQrxKlLPg2Cgo4iLSG74HY1iNZMEk9vuV4od3LqkYGiiTnemX2Oznxt2wtyA7\nTaaUYeBgv2LUad2sj9VDsBv5VG8/nvffRPbYOuOpPhte8UTM8zlX8LkdTxFS2cZ8Xv0tBDaBeDeH\nuvTjFAvd/67f2v8I/1kCKcG0ud1KTEsO/2vjcrKli9Vg4YJed3MzQoUFVPmbq3862DP6Ic2pVJID\nTkrqqBfNVjMYmaKvRIGikVHWMwO42g6ybwjOeKJNYWvb3H+tA48hpNuNVx/u3bED+H3Bd0JAo8m+\n4sjEspdHVG/b70DleBfy4GXaUITT1tnaqFJEbOKMFNIvhKtKCdJSgdeEjfHRwuahl443KzNKjYJO\nKxfFaWJvgFbDqBpAMhvmCCgXemrochac6sAEkJLrwDL/TCoouEAsBuQV7VSvjmlwkQkxOblKTFAr\nxrIzDrZW8yTonqMYiMUYMS+ZW9qUw+UdndGfng5tT+u3DPUQgrEeVGbmSF+VGKo37W0X2dQ0NMTe\nYhezSYhRhvTjzhdwz3unQOA/APvBsaiOUxljiZH1iweYixexqXMYLZwhbArzELRhpn+OjvTvuQop\nXxxjkpPLSQqqn9nE9Uthu0g+GGl/77pNpxAzmzFzfJLc6V1ObvBf8+gBJGurv336/Y2HLuDwinJA\nBq5vPaa6a9dlE8tj+FIN+Exs/Wu2gqN3fW2pxbNQVcPbOAsey/ewb92KzHct3JC6U7wf662PM6r4\n3Qq37VTlADHRTRmb/B9HvulIdOdE8799hCnOuSqOmpoXAZwsb8PCPz6JsJgg0F9s8B2fGRUVkNcB\n+LoeR5kJLFplwiW30tx9TgENsxQu+ySsaUeX16oKyU7hM/cEZ78c4pigkdXqrwgh04x1CPiBKc+i\nkGdQTSqq4roPPsfjDyT5gTkl4BOTWDAxW3HtpzPhhICJsuc5LnZ7Tw80AHYD//xKUfHMkGrJvBfB\nihUYzOISWcNWAEMAcS3BkjiDyPZb4EIMeasAyl4WzcWFcph58k/oLkWg/6TCohvIwTCWLGnKy2u+\nK3JUEXGPAmuD+7P0/FluAot0sZi2dGwsT8C00muG7M4gslZQ2E8lNlf2ROEpmKJuUWrrDUG1Oqmb\nbL0RqIVX6be3y2lemwrTmcsYpnvBAEAGYmwQfv5fa2uKAGzwL4I3IMrKurxDXiIKeBgvgbnuOp7d\nuUaYe9P7zKKvlCdDisnIrHgd8118nqq97qg2AUYV8hRr/vAsVFbZUz6Yktw5qcZvifNgEc/VMna/\nQITIsHBwoVdefvqHGoWe18XFGX4SDJqPBHXqwQQzfHWCcqdEwr8VnxX9omVqppxnGlcg5+57wKjW\nl/LXawjiOFJzUZh/VGBmphSM9SGHJAp/vwVAfkBXfVgIpkT6605TrN4BpTcDylgSEoIrPaT2Y6dy\nGSqhtc0DBvbDpL1MS4w4qTUjsQMfz5Y9a1suinFXv8DG7eER3UE5P5yGEbVtdN7EkdjZkmKkNXsZ\n9SARDGEtqTmjDqlHwSbS9noVhjdp+uicyubScGTIZmhbOgQ91qLxEMB/pMV9SKnkpL4PMRn7EvHU\nGuTZtdzIlJqrCbUzA4MVTFvxEWZ8wb+8xBTsprMiLranOFX+1bO/nFQihFXt+2LlPQOxmczDeGL+\nfb5j+V6+kxflZkaPP0mX3y5QqPHGohNhqzuN5k6aaduQDVVz9otFI8P/rtPB/wj/EYHkYNpXqAfA\nO5hWXGzGtF1CL4DX8IMv0H85MAKTZHbJS8u9RwcGoLLa4Mvlopl0JMYl+BrhUIJDjqkbA6ksgmGt\nSPL9mNvZSvzzEcnVAn0SzoFJEPWErfTkJGSMZOzxwLN01y4gw+ikdeQ8s7VmGa6Y8vDyDT/BhFGg\nGcoJ6NCDZ+Y0cMqQD356TOnNSqPd8/RASwW+1VwV2fz1AGuWZFTHlp1EOJL66rI1hTJ66AxhAi5Z\nI2Pf6u9yqpoL38ed/uSBGGuxqZiCmZfFn/50+N2PPwbGykPsxikgQmRo7BaMkAyAZasnrXKkP8wj\nQWVikoODEZUHKxSZOSyLMzpdQIcBmVgU47Ivy8jvzwvP1J68CKawEOmaPNwmjWAYNyCKi37l/J0q\n3Ljt4d1w1GRwoUljCNpTeTNKbUwKMkdHicBAba0tGkSYImnorJDtG5WFA3sxeusq/yA03U/u9y9T\nR+GxeGlmd0WErghYIVgketD2555Nm/4JX2hstjXkG1t9VjHOLM6D6GL8jlO6YaM3C4ZR1ja+Fn4P\nJh/2pTKn6ICXee3zW59/CS23nYEVnyJbAuRcPXejYWZWCr05VIcENQFZRPn3+QZmZOOKjdITT9bW\nz1Or3EnArXn3aElnu4Jfs+HGLc8ik+9WN2c6+/HOmTOmizUR3gwhC9Pqq5uUmOBYhU/X9Uv+5zYc\nEa6Ga11mZmfTlSsVxMd2SWfdE3hVCVQ6SuhVq2dxhuwtouFn64LFnfLJR+hDsac7r/cWD6kwdmVF\nJTAvA3FuN5JPpm89IinZOLQo17ZnZBxQjY8rQ5i200/E3rxfN7+0fDWAAtljMTI5fTZC5IP/+gjn\n4quDS1AJwM3cgsFn3TtuqU1TBQSvBbob1QN15zizyjaJT+vrUWowTDk+oRFyJAo4+JEZuZF9iBJ7\nCiE01+NJ+R4AZGAjZAVUTtBydfMjpV0SjWc5QzefQzohiNh4yNEQJxy3GlDsyq6xhKwqTPcKGcW0\nLQkA5EMiffihSl6FaDEFrnNeh3QSN4ZyctpsxZGLso6EsW7bs3sSh5aTSn0Ds/yA1zigHFAnIRld\nQt5tbTob7iTvMbZjDzLGHtXyCaU18uUfKr/95bXoXdrDOI3qJKCrHxoB7U1J22MWL3D3e0jc8N01\nipujEShe+eXkzcXtN153MSj8rP7GCW0Ix8FgYX8iL1Jnc7No2P4cWHX30PATZGOjlX6bfTg8u1nF\nlBWY4lekbGD5NSN4Fk4AZ3y9NVxs5hBQ+CWY5vW4lCqQ2xvA1zglbCtWooQ/13cZs9/pQcGmYZrB\nIECMQN/4t0LMoI5AOS+z1Kc4uET5dpmTVF3OkDprUoPLpnqPv3ftaiR9oyCfz90e0QspuProcSGc\nC29WsHUunXVGrPEbyIU5Zt3blZ7yZX0AaiCOBkDVvMMBVRI19Ktx+7bNMTQ0wjDHKrgTItIi48yw\nPzfOWuYm4le9nJGWcobLmXLSE1XFzonZ7JWRRCaeevoYf+QPD7CPlP8eH8+vDCK1BZnOAvKabxbB\na/clhu/fgiPDGkWq2xFjJzPkLj8Hrsglr/m6yfqjQu1/cO0FTFedlmDaKnsTpr2FFmE6C9mLaROz\n/3pQRNnVqz4ULC2LWwGMmk1QOy9DxTOg+h4z5/DUgA2LYFMSCPmpmIZRLGtqQLyEZ7eNQF5uhx52\nBlMT/txzHpAh21AHBZ2bnQ2BpXL4XuYd/GPBInr/LY/RHkcajdFUkr3jXaBqGM5EOckftiF1LEZ8\nZobI5ROQm3PBvnG3SWVOER6cVxza2O1YkNp4hbwdx2EV04abxWGMECXj+cftWQDq3sW9J+ouT8Km\nBuxzGk/cdCvumlEDPHQWcnYkDps1GSGiw1SQTwAwWqeYv3u7VSQljceYdDbmMXY2p/jLeHoCLXPn\nQoEhQEm6aUdeFjMSkvgyul64R5dGU372MJ0BJ86gUNZiZ171zxV1C2/2veSEpEwREuZTcxOyRMyO\nBUwBLsIrIK5VeYbubldEVUhq2MUu5T6XQ2EnErVLlLhu7HtwtEQVQ6/L6Fro5N2yKqqBly+OqYNt\nsZKSC7lP/eSxYw8Jb+JfsjfT7d2b8dnuLZr41I3p59QPgD9uitgWwpjNoTKSmvh2K0/lm7r7HpCB\nmz9BliyBuQbpqWcmYn7LumWl2LeOgbz3LPDoX6wtG6JhU8zOZZwaHVpxhA9ZBTfmnbDhF7cl2KSE\n8ksKSr4GT9f8fW90fksLHSjX81pG4A7gqA+QX87Cx0oiKOy+D19PysROrgL+GXNq/zHR3l5OlKo9\nCVpTilkBguOpxyfmV+wVplpztUnKYFce8pZQUKUqjk8eepWRJhvXm4Froogrv1e1fs6s7AccaoDJ\njzyWl3coPjw8VwCAX9XfkDzE5pBQ3swVAAZFGTlxsx+zZ++9+K+PcA4+oQSRxDqMakag/k1Xnpsi\nx5f47csS0pK91smYhkx2WU/4/dZH9+7bLOzNp5pzIcCo9WY77WQI6ijDMJJ6dDT/awDP7ETaXQBx\nKSfhL1Z15Kb1qClJG+kBMEvDok1iWEbbDWb/QlaoHqgq5gQDcxafdeH/moHkQydexDShXFmPXQtk\nHhOxNETThLSEBAmupnHPOnwTnWnOUY2ZdOyV0apLKat31EgiHI1sB30Pd+x87kTUs8j0MZkaXo4P\nceSJc4o6zAp/5fi6FPnPTSInHsui3qkuhU/DN8uhVs2rP1XIFnegP2Mql5jjBIPejJr8WFRdEoL6\n9rZrr/vmjw3zQWnSKaZaXWmJgZvIvQeCd38ooVHdcylOhmwdhv60AM2TgzndQRVS7k0pwnT2dFZq\nreYVVX0U0nFEW27DjkwOJT4CvaBN7CzWQdJPzAZOPuaASjFSFKFAWAbT1qNqkrjxVYyUmzmYM9BS\nFezNbyX3Xuzoqq+pzpoqKdlxqigVikki50ZbjGrZjpqec4pQLq6odKE8W/YsTi1x6LdZY8e4quFr\neiAywN51V9BMLI5ksGpZGe/DiWKjCpcuyV3mpWofEyJCkkwmBzIb4om4goSTMVV4XEzqipLt1csH\nC9FlGqJF2F+20b+1bnPvVyuXA0PEDqWPZPbNpZSy9Mrr8pWvOpMkUT3ApzkzA73ua9grXDB69uJG\n1euHnqM/JtT+RwRyE6ardYV/55qA6Qrem37MpP/TEdIyV294m8Fnt/olCWdDQfi7OoGKEkIOYww9\n2XWxBuUMUI0M96SoSMMokB6CzMuqQy44rUrUIjUaFKVOvqE3d/Sxnz4W1UFnUcpqF+EFXRB61OTW\ni9HuskvKhEzffPNNfPDbb0Ny4RfA5Zm4nB7DYM1sqHAFvDmKA6MxkBm1JPzmc+nr/3yHqmHZCmGA\nYeAt4tU6to1mQo/Fcj2Jjn+3vnQLqn7P/kWKD6mpjQ3hnCYxjwDJjy9FqEapYpqUCnCZCuodD5Lx\noTgAbBMU+FOgW0ZapgzGfSI3icl4hHqSUfZS1m3te6C4bohEvYEWtimvAJOfmglolvrBM9+T5tUp\npE9ZIL2GL0RKftqaoewnLwiP/EMPRsEjxH15bVdiRoMYXaBOk1qYYQIxiUTGbiqX1dmITvVgIH6G\nmYO1wM4sJX7RlwGgRJK8/azMFilCw8Pn8xoQ8K3mhbir8L4v7r/rktZgEhkbLVn0fbwk/wI8vdmJ\na8Q3FVviN+HjPY+ZLjSsiDddbYs9cBlzJxmQQWUDPYzh8BSUwOzNQUy5H3xK+1vE2Kyp766hqPpd\npoibD7jkh9LP1r3rdf3x4FWiTW7sNke6JAgKpJ27XlZyTOpJnDAMIL3uno5W8e8r1gTTvD7058lQ\nAC0sYnoDOsYEk5yQfWlgOXdkAoy4NOHO6O+vAJGOG7BylhRQqOE1nB8qKzvFBoZTDCYitSzDMjmO\n+NgSLHm8q0RsK2k0wIiZOizaQucNtoCXgEoWAkNxr8Hit/b1/UwF0NJGzPglR0WM2KqzGF0Fz1Au\nrS+czP7qkQf/tWgPTqxYyMNKV8PDniBmpnOkjIZnhpQF/Sy+vJWy2Saf/LohOV+tDt14oZttcwQh\nX2IBThK5yQpyIJI8wTid2USWuSMs5Lt7oLMA6Iq6jaF80k0yelSMPr3jMIC6hDq3lycJmMZjnqH5\nUdqa3UIIhEQFft968BPMMEX/mzljPjh6BZCCwEn9Snxf7atFN4DjZUqD0h2T5dZWDESh7h+2rJnp\nUvvRf678L/YVuy1JMVtSK9cd+zk+PbdyxOdrKHSjCp3iF5qse5tQQ0+OTqwhBJ+7bzaTSCiJXJaH\nKLVcVYS4k/HvJC0vXPPgd651F+nRefXi1g1f5f/l2cTyk/f+gWFu+Zxjg9pf6KLRC11GPXs5gCDJ\nOJ2JxjstSllAcWQKtFcrba/72pXN9uvCvea41Cn9HsDe7K8fiCYdriFjfAvDBkui+RElttkLMOem\nchyxWDnZ2gWOTSgArioDMQz3mQB8RSCfqyi6B+Pua+VO1hjmP8v/+GiZlCFnRydiXp3u8PKXX05P\nl8forupKIT0yQTnBiEJ/lyaahg4pgyqqI8loyelKgJwY7+z+rVGWFXTeMOZH7GVuuz4KhCPEa7iA\n7oleIBgU3YpcEEaSRU0AvVdqGplAO+5onB02xQQVN0FwqLrOaKfOHNukgDbtHexE4jpWKg0CI/08\nqAKCt5BRIRrW9hVWDqvTEpJ2nIQGrlbVTYZj59h0um3XI8go7rgaPwL/mTOQPkwbqP1b7Pkxk/2v\nQnbFTqppLh9FSD9nPubD3WGVAKDQYaQN6U0kMXHNZPWhnqkk4sZ4KN1/99mvIV03iTHqgE9AtzuO\nsCMdI0R5TApdXhV0Op3VgxikTEt1NwUU78n34Hb9VoXXw3QKNpkxpU7h4+pvtXMFd4BxFSFvexv+\n6aVZmBPcRqd6ckEVPvQeOhJ+oP7L8Hxy8tj4VX4iCzI2e9YnTlenUQkJQUih3vf4B8We0MxIbtKh\nJQ3qAiYtMY6078uIcQJC5nGENjoyyTlGhZGKAIbaJtBzKcgB2PreV0tGhyJ+5GYksPxCAc28fVse\nZp2nn4c2BcbDIDeo6KApNIE4y+KI6ROpIykspUxG4jU93fjFsmTpCnooC1v+i/Pf9/4eLz5eirFY\nd+Y3bG+RXrn+G70y1VPIOOWIAnDjdx/eZlalFoiDygRzSG5jIribor2fghNXgcpLfcHPZ1tCFhmT\nHVJjcTvC4XlsOXOOahbd9dGD27emjWPekbmDuaoAq6UfBB+d+ljxNebIIQh+s+b1V9+aXHu0R/12\nYGgD2CX0YU0JrcI+R2XBO0F0bc/jZK47P1iNQZRwQYOEGVcSHIulE8AF+Tv4NVnIys7Ha9mh+FyR\nlDZiVtud7F2JXwnvcm9ByrqiKKPd6pSLq/ryxkbQVEMBIJCGHV9wbLAzbNFxiKkQV+ulVsSJo7uy\nxOWaAqeklMtJnwxwpkiOMqoKh4NxPstH/XuLJ0pQomhAwxgA/PlJ5sPevDD+CVeIrvLgU2uvqIRd\ntQ5URyAYvFC0c1BMTi56B5W+D30wPlohXwoFeRsc0crxoCpGh+IZ0k7Lmu3swfqLj66sP9GNB+6w\n4NAOB1Sw6Lu8cUGNzBFXQiIUbm3EP7nKI+iSnHd0ds72BbK+5Nd2YdAWATW2AMqN/Vc6c4NyyJUm\nAyjRQFIqIUkBcJ5OX6W2QOyjZg+Brar+GwALgik3KACIqRNT8XBJRPHV3G2EBUgUKaa0ILjWv+IO\nOu0OnA+/fxjwGQCXYxkO24c2gZFlcqzEKGuHYjJ/+jRaPDB3ev0FDs9oa+Ctt/7eI42lksJotjKo\naQ6/tnGjq+ZevHU+QxR/Iu9iOxKmtW0ovzQaRe4NKUqc617GZtMBqIjkhZg+k1XOxljtWy5EBhYt\nLzlPjgUMYspwYxBnlk+uzYpgJMt1EINZpXOb+/yUyPJ+FwatmliUtGy6KScawrBGRXE+zjVmfZ1Q\nKzzg+4qHI0JkCYCc3MGkVwKiGQddBDOcM4QUQw/sTfd5vePFsmQcYsK2XiQEHfDrwqZ0ZoAMay1A\n3h8IFuL5ijz4E1qNqL1gkSo9ncsvLXy4S2aYbJUgvBJRq+/KVY+Jn5TWcaYEZZPaO7r0NMIMD0Kf\nlA1mZrdObKz0A5MHU6iz9rbv+PncggF27puzbsnLkkdFXOlidAEtfL5GETU1XC7pp3qVWhqLMpiS\n4rM5Emf+dupz7RO9oOcyFLLEstnZGFAJoaFQW/OX+isX/p4dN0Uoyr8DSALxoI7+BF+oPki+Wu5i\n9AqqCOPixEb9sHt1NGyaUL7xxCxk6n/z8I+Jtf8ZAhEwrQ75CPhvRUVp/927/wvgvbZkQl99yAbg\n6mVYZuvrI0qbDTBX+BOQeaCr1NcgcJftshv92QvVtCQEzh5Cu2sJpZSM9YTQvWE22ITYwaBnJYcO\nrB7ByFSlWAtv3BoOxEy4SGvpL2dtmSlogdNL+tCeNk4e7q89yJtjGOwfhyrgRSFtI/H+WWib5wQb\niyTqYk2GUm9XTVshF7AhSe5wrmWbXHMjRtVp8TanSXFcSuIb23+uGzLe699q8sPIeXHKOHuYSYDX\njECy9oro0lwNacYcqHkZ7gsJZhGOngOAfmZMTrZrsDSYuw+sdB9VxoQ8zE0ReXV0x3xkL+nJFVKG\nEujJ1zLWsFX08EbvTw/vx7mlKyIsIHCm3w7mnqzRrML4uSxmWP3EpiaikYxMRGRpCk1IZYp8Cu4b\n8UJ8gb4mhcaCPgZ5KMQlzJThzOiA85AShFlCQyMeD1WHtcPxjLZcNySiRlMyS584FmNSJpzxfcsv\ns8nf18BpsoLzw2IS7agztIqb0r9NfFq+7oPde8zBI4ZFUORHog2xmLgS32PU++cr8C5CQXyeAMcY\nAmGbvqzHLeeRcaSTUitwMDkZyQYCmcZhv0TBKTWKQZmYApghz6JaTudfXXE1iavQe3fnTYNDw2qx\nuTYBCmrMwUds3AplTEoLAwQCSVP7MKyIjRQbZOlDcItrghljCo5Svj0nDvvgEFRSVZCh26oMSijV\n7+AdEwAIjKLvrUoDBEVAemrf+qrlQ2F219Jcd6XE8KkB8FvHAderIzPRrZupjIrtRjrRURo8h8pQ\nOXVrpkQ2wBz41cTWnZ9vgvr9uzFfn/ZMVyVe/ewM3NECjJkpARaeV6ooA9z9oldMLJiMT7gzZnz6\n2WNGV9pA4R1NkFf2QFL1AFQtL3GlekTFWApjQ/yW2WTKVUYCrmaYLBeV1Qajyss48yL400B0EEAh\nkpdVS2BHkzm3nvgovClaosR43Iu6idJf48m/LMQIgN2vvvnmPNUfttwKGJiZ4KJRqMhghq3m+PHr\n26uyB8lFD0S3G70HsNJW5XTRaGiiB4jMZD67VZJTxtG3OEf3zObNBZSB6Ww6InfiTURFzjh+omyg\nOwR2Q7q0eftXDw3lol+qkeUwG9ZKTPAq6qvYXlXCmTNZyLiQmcrR+KTuKgtWlRhk+sCfdh1F0RXh\npqMTJbLCgFOTCC5LFTlz6edMngfoM8QoRucByjjf0p0G0VLLRyIRBwBGHTavvVgRom1+AT8hkobN\nOCGonNmK4K7trRpFJiWUXIa1C4q/NliTqBfjP/98EptL/ViKp9PVSInF+Ly2SV33A+cgZ4e0R0WW\n1b776qvHWIiteYYRtt1uZy/ZQX82OWSZRKn4TSMWZGYB1ZftbONMJRAZOoHtzqu65LJTtW5dzkVz\neZJeEeSsvF0KjAUBXScHm01UIebktcmK8RgAe8usHA8ZfWXlquB6N8ihDIHwsZFIKh1ntrzVJw15\nmkhvokOBX95NwY1SRGx4U9pEJCBwLOmaGCRpClNFYGWGsflSzkI3SZUuPyyW86t+TKz9zxBIBNMO\npp2Ybh2a9R/f/v8/4ntWSnuvf+OvAC79EX+8YSQ2qb3/cfiD2ZRnABH9eubz2VWcYTyOQJJVJRqB\nS2w5HQpUxhweh9QewPjaGcigMR9B19ISDJgWD2ForAQl2vbJ2kA27cM79F5UF5/IvT76deJVN8Ub\nnRKkOV0KvjAkqSfz8PDkc5ihDMty+wyM2gfwqYp1zmntJDqnaOjUOIhDTiFmxuvt2JwAACAASURB\nVIczw8vjqeoDylTWq4MUwp/ROVnUU57ZYeuGKAH9Gfa0aAYSLS/i3Qynm4RKFJRPXijX1siIdcbw\nLLZY61HPDDGjjFVvhL7iSg9y+8qk5vLhFrTg17GHNb9s+EC+7duXuaTxEFrzE/KNv73x/u1VQ+L8\nxuOyVFah5fX6SJ846sADr++5H92LY7N2IZC6CJsPHY72zxwlvJSMOnkOYcl+csq1GJuMjVpVhxol\nuAkqxCLw5aZix4z9AICXvkj3QOnJQMCvk5SYsrml/QVU+fuTwIvlmLBdf3K+cdAMgePQo75OC7DQ\nxbTsoKokoB2VVxKGNkwsifQWl01qY/F+5U6o4J10FcB2m7ik9qExmjWMMM+xFn/YTzLi4QS1pZpx\nsvB66BkrTse68Ds/AFnqKYlwET0ECOz62O9CH+0T8fcZC3IArGvfNqu+rUwBjhvkBBjrBDPsMX9p\nHFzidDSWp3QYu7mL+Y0gOIXgyqVMUbfe8G1kHZ8RhKU7aI1xFRNYMBFfDiAyitEkAJkQxQF3SwG+\nXvV4xOHnUTBB2FAZs1OTkiK7+0CSVCxB7L0E4uw/RibzCk53n6vmB8+G9fGs0lHriGJGe6rMjaZs\nOLIM+zxWkB3LK/IB9B+FcNEetmtrhSAbZiTSmyNHsnx6052R704bLBNE52qMl7uhyvcgtLobxB1g\nIPJksWxxsxq/WaiG7yfzkkYdygJ/+gWtbt75qkIJtji8uZ74kQnMAWF98Lem80hc1Ol8es45EeLV\n82BER8SLmamcyI29UwfOo9PVFA0N2Rpa2pdWoc13Aw4xe8jy2NBwiebTT59WOywT5JQLQF1dzImU\nynK3m4nyUqcSytmKi9UMmX0OfEGuMtCYbQejrBwxQq1GJLIa3cDrjsUAYr7hmim2T+XXINKzFDAT\nTapC6JlHwAr8emNq8HD7dbJoyU0MmsCtMuOeCyNJA16vvRSVLafSh235lFWRmMzkztGgq3bp3/l8\nl1rs0wsSMi3xGTbH1LaQSDNHFA4umiqDh1DhW82eyD0hmLT5tKSwk1PlHGsfD2VqI0SVwunL/NST\nLyPjDByym3WZzRBn3aZB7gNtAD4q1IIjJr/+146hPHMU3KdP35dozc1lSH29ZTkObTPCTz0pKeg2\nA/PdCVsYs7ELSFY4M2WRiTFjKfEosm5zAHhq+CeGlxcPCkR/LNESoRoscHMBayiLIlUEjl8W+pAX\nsasIXAkJXMZZWXv2LtW77U8y5j4gK2CNZHfU20aHJMSM9OSj1hfjd9heopi/zIN9PWC9FH/Gg2iD\nIwy/Q4XBXBb9i/ECnqEv0aG7eC4pOjUIKb9Q8aNi7f+bOpAXATyJ6bOP9B812/8isCzE79ixBKbX\nGQAwvOUCPtzjArL0MQljap3IG1LU4yJVRyTyN+k26meMQi+f6SkeLTYMhiEreeihNITBfCchKCe3\nwELTkZ580rVUzFAMIiha6HNf/ZXcYPyH4l5VClLKWURrLpWJVUEmVZ9Hs/P+1JGkAmO6kAtnXgFe\ntweTUhoSpPXzVQmqkc1xg10uGu8R+2gusfo6pc9pBoB8eKMv2prSexA3+zHlUSfGc/Uq43mGkYfx\naFjSIHOpCw6TmS2o1NIpyYtf3E2e9OsihROJEaRwaRgvivyEAr7jQ4P2r/E1lYgY5X/1XiLNfAtt\nTdqJ4/lBKr4lJh5ZidSjRSF/dU/3WGTRIuPlKExYfvhUE6vy7Ji/jUiOBbTqQnD3TxreZKMklZsr\nLYBEL7BpXWO9yq5xUZ6S0YebcT3qOwB0qw8o9+KOO8C8cnmqf2UQyfJsa6YzFd8u+pZpVjiIV8Em\nXpmLEptRJiapwWv0yuiwrCFd6ZdCYIBEsFjOHpiYdctPelKv2d+TLQzOo2y6hdzLunHTiqvN+CBJ\ntGWFF/gyfejP1GDQYfC5KnivBya8jGx+AHo4sGsgBsdsAKfjwRI1TRsCTzi2DqXJS2WF+HS7LQgA\ndSQ5kjqeQHe5hzmWu6GEMkgNByo1H97KfxpLZGA2cyGwL3IQmVhHidmgZZypg8fp4uwKFyKdakc4\nreiSNAPeXAmkBdNKpV/gyefF2BUtLpU36EOJwcCYMhdr//neFeGcXOoLgfw0VRIw/HkBlFNveFU6\nUzzYx0+On/OrfDaT2zrO8F0OCypap969F5Og9Mr2xYu1Y1brwFnkfNChtuJ69aD8jUMn9JpOxjXQ\ncNda30gy1fajP9lhWN2NcQBPzB4Fe1zSSF1T5drU1D4qR5O4OmZKXxsJmur64xecKl7RmpZLZBVF\nMG8AMFY+DEZtxMTx3lhEe9FuH2JTp47FWG021eOKKYJ0dtur2xYCSLNWVi689vHHaQed/WE9lhru\nw7t0G7mZb2pa3Dd79v7lksRJXgoFbrmpkILs0DiNcM5NnkxC0lwqs/QUuYRNfKuAF4p4ULqEEgx5\n1XLTZuwHvAZHdLRi8He/O6jPR29KFOoTSuAzMSWb5YZMcTZt7fezsp1pRyevHoS+WN1jAy1PQtXR\nrqytwJZlX0f3NSoH8lSaoWMyGJ5feBTx2RkCWTYUbe22gcOswdg1aQZrozRO6077BXHJOgUqFIpc\nXxbXrq6nCcc1VFHRBjYt9Gku6cUlucYWPvU7H478sYjkHRCy1c3EbTLHoNOpkZRUwBIY0lWMJuZM\n8gaAwX0FaCkf8dw/pom7AfzmEbzkj1GNJDkciChBRIIeL2bJYxxLJk/UhZry2in8jXrYrw4B+PCj\nn61YPGU0IfnL8RnjUipZ1DmC1OJbRRSZKY7ElW6abM8SKYaiHGwFJ4lmrNQ8FchUMSGCh1Uzxbyz\nX4ANAMqr8ZjLwUyOcOoIWx2MWTevk5VhEf/AC4jrGu0Y1nEQPVZonVjJ9Egf/lw1LusLFJNTIPlV\n//MI5Jl/8/4QgBUA3vhRs/0/8SGmLQJa/82YBdOH912YJivTv7n2BKb7Pl/+YR3/LlgCMmQbsOL/\n3GprkHuQFBRAqi0Sh5BgBauz0pAUihiVqI9d5U8lTrbXbIkUjxWnKVkUAAhxbGEAmt9QaKoS7Xiu\nSgNDeqPnKo1J4QNlwDTny8yWgWvl5WUTcnAugTLbmZ2Y4SN9nYvj667r+tbXWguDj8NkfgWdyILV\nWaWkRaN71PBJCWfmDMY2OsGHoGv4NX2LjsmjeEH5dHSBYog+KaaA8fA0PJ7JpCaGxfCxbLHrFHRn\n5dmIVOmQ7u+gxiqjSACMDXJ3vbfkxXNEpUayK0sU0mj6geNR+RzOaQ0wND1Hn/9QMapRZE3pCefv\nw0iRmcKH5x0Ezv4qsA+e3JYurljOdkhQKNssbmfZ7lQtZkMTZvDphS2JysFuyWvsSKgZNRRKK7Tf\nN4/Wb4Uwn12OZqTgQbw+AmBrqeK736G/H7f/7cW/a4Pid1njLFPSm4q92YdJhnsTMj/5JBg2QDVx\nCAMJ2T6W6lIQ0dqBC+npchtrJYaxouQwtNyN8a8/27nTHn5Q3BGU1ixA+qoN8pMHDrixbsmSoksg\nHD8hXS5m4DTbXx/IhWRTxsRs3MC1YIKeRMY7AOEAuAEicZJXkNURvAGKFwFuyve9DbObkRYTFlva\npkJN5RZcyFzKchOcPoDMaONMPB/jLHIWetQdgxcxG9cHKnqTSetAzUAHSo35U4Qd0+hQ4R+gWYiQ\nk0hqBrAFwBqcj3yJuvdQlVBEtGjTbl/Yi8KORHZWD2HTNBw1eTFhVkDAk3mVMAlAdBzqoXxdSSdL\npmxJwo23PPA4WNlgoP7593wQHY5wFjx9zfbnPivrU8REFcpiIXLIU8a3pJ0xB82T4Ky+WoVPDA/7\nVrM/vwQDgH57CDhpZaTTJ65L5GS0Qx5PkWbyk6p9kW1yTAgWuKtjotmdGOHHeWToTgwgMlQMVq2F\nr8l35sxad0FBE7L8e/SVUxOEQnYBXLcpYvpLwWgBAyn2NuW49ptw/NwS1O/tgrCtx2Sn+/bdaSos\nbJzHcSKhIUiKTNWCB/B6BpwpNHSbxZyFrAIAzMdn2zCz7hTL2xtFxC08gIunsjh3AX8MBmN7TDr6\nTHEsqhOiUNvOY9b+kbwnd8Nsg76HXJ5RMG+NayKL7T8z71fgTajI0LIjUbAn32sdB/6R8uXO4GKx\nshG5+/YznN8RdZ5EwWwLYBmHoy8dFLktumKtK0mhS+tpsR9U2upWQ3X1z0e0Xg9Cmm4+xF2TiDHA\nohXSuUX0GLkdnzDS4fkGLH8iQpNbuWRtE9wmk4CdOygYqs43pZSThJLsj/r8AJ6/vRk3GGOgrfpB\nAPhVHMpZ3r4MN+KTIAmCyl+hPcYSQZ4CwcVZclO5D0h4AJV9PabVrLc2ZBndG5UfT7iv5KMg4NO4\nauayUBbKuMpD0KSud8QUGImzsOddBu+3E18gjd2d0CEgBgxLbk1ynVAA3a/hT20V8QuNbMLLx/c6\nfFYNE6ldEWHIy+iOvMFDloDUBmLJ2I3zekfkk9uRnTDmCYMSmMyUH1VH+B8SyAwAtZiW8dX+m5f1\nhy/9/wU+AnDN/23scUwTSCGmLaQf/2G8FNNbaaU/fOav+O+sX6RMPM8eKQegrUe9GkADfCgz80C1\nGRGYeoFIitak9w+OCJlYN/G+iZPiPq+RMWa7s4uY6RqYBhU/m4NNocDVp8IJtCRGoGWsu7MsTtkO\nBiKk2gkyZ/d1SH2x/BRrFuFhdKxFFYEQ00Tzk/uKFU21mNJFIOnTiJQJcr5CHb89sI8g1qQWU1lh\nRqKd2YkbrvonPMF/QW6W1ibq1W8LNxJ1zn7I43VwTWajwD/MNuvKFEXf8dJ51Emn+TqhUG5HlE/4\nVIxSvpO/TXHAzxgUFpuoGnAwvEZB3G32fadwSnoAt3KjWPOq9qMl/Ai/Qczt18s0iSigSd0feB/W\nbQdxYuPOswkmP5dpSLZB+Putv9g+dzsTMc4X5xwOo4Pal+yqXXj5guEcp2A0KLYUgBm9cNX3l6DW\nxe9Hmv4kgGYTgO2m4LkcAFhUX5+ldF88leGyQZkgsofzYHnPIql0eOpbswc437w0PYo8tdkjo9+a\ng4stiw0nrwKSSIweWloV/Z3yVb1KHTnVdOv8ELNiGcg9G5hCQN2K8n5zWKEMBHQElOLdX2DLQBbS\nV8pO1gkFfRD3M3fg/SEAVwBUA4ykGeMJDx55pFPRR9b0qZnbYRx7RhiPGwze/uYzp2tScMOZb8D5\nQboz0vh/eRDquIEfORkdUxJSBrtJeXnVERsGB1OSBpDttEWgihBRteCEhu2FNrIbDoYCs/zAi2CW\n6lHzOjShCu8i6Szry6DRAuFjmFwlTKkC5GSjquPX+QhBjj+tiQ7D5klFVClqM0ITGC90xERCKyjQ\nlSGPzF9ymJ917eFR4VINbmFH0n63RpxC2EhJgsagFpMoz4toa7N2XHJCgtNGOpPmxwFc41Uj6lTG\nycmL1xJz0hin60hjBa3MtsnNoga82e35rSi8uDWFGzGCnzpFEPVJyLyfhXV+7q5d9zHp6d3UzQ+y\nVzc10m5tIQAk+eB7aMtXW1TahYvOwWBoBJDbjOrWGcBja9a+xbjdGVl5eS2VwaBpGD6WkWggf2Xo\nxCwICoqcQNVCLAy69VE6Ncmgu7tWWv+rX3ej+xoeCW3HV9Umo4rrEVPK/6qEq5Joyj5m21EW9cJy\nmS1bdD0G+rDaudNyfXzn5OHvbxHRajqMUO/UunSOHroMwBd5KgUf0j+J36X0zbkihR1+Qi5R+5pO\naAeHAG0Z7ANKeK2s3cuTBBtR5768Y9YusmzrlJyXekva7vI9FFc2kNx+iXYFCoWZuobSytSztJRv\nFfFW0wswjtTDXQE2qQuXM9N0uPA9g1C3fw6pLKKKBPZ7EzoAnxNgjBK8dShHJpg6fd6N5Gu79ixO\nYKKHMnE1TDFce9F0SaMQOck6UGLsqo0QGMq8P/i09QBw9KvGDi6Mdxjc7gx0m0V+zBoLIetJCeWt\nLLZkzqzKHIYzQmFPzZfHRCsBgNO2xaB/+pNcqRvW9FOEtyxG4Tufr+KuMm+yFY4LE1JoMoEkO2cz\nlFA1exHgg4B+CLnBBA4bBBUi/wd37x0kV3Wtj377nNM594TunpzzjOJoRqOcyRICRAZjky/G2Bgw\nxpjsey/hYi4GjMmIICGCBEIglNMozkiTc06dczxpvz8GV/n9fve6Xvn5V+/W+6p2nbX36dqn6nTX\nt7rWXmt98aVQZXS2ZzDoD+f+QwT+9xzISz+OFwEc+Zv5X9f+GTgGIPC/rF0B4IMf7Q8AbPrR3gjg\nU8we6o9i9sUv+q827RVzzzemoxrADIBsGNEJn7k6lVLRSiMYZJ33wl1Ay/RDAzPEjitzzmE06YjI\nLMw63uJLpRRpAD5L3rLBihdfBCpkHXARGYYuUTohYl/HFihjLsBcjoZ2u1x0dEhMCSo5iwuiIjIm\nZyLVMzhetdx8oYq6WJlCmQZksnjbG0/pJBF3NfeRu7NGFXNoOrrQILYiLvTSDTsP0JfFU1icusy2\nVSLORjLuqWQqZSf5buk8rJrg2RMqh9ihnM/WavtJcFpW6mUDQrGUkpjTYJFNbMSjFHJiAaxssTbt\ng8Bvws/rTOhs1hvPuD3COoWVWASEgxKaDsYCbqgn+jEnwAtjOV19PVOr1uCU39zkt2gQnD+H3Pit\nmQiIW/02decfSyKMSmYwVzGXtslHmGLZSI5jKXTz3sQRBItw6HAygU7CgUgUWPLt/G/5TF82zuef\nS6ITGF/kd69sH1p36dRVtKXIrxlEZJXBH5adaelwPdkm9t8wlKAA6Utr6OVEcePk0PKu/JJwlqyx\nY0KfQcO53HAlBteqA0a4pDSmeIhKGT6sddkQ2SB4mW9B+Rgk+iJ+/ZMff09FADmcTBVRiYi4zvg1\nfSb79kit4XaZnTitaCN/QYH8zd6eChWxyYcZlymDRnWchhOhTKqspz5IJiFJv0Sg8kjW4lMM9BGp\ngNOkPnNzpqTd5dFWHCsmPCjTBWMOgI1GYA3mCGYW6dJwt9amkyOYOy26ZCiiYcxn5sVkunewSL8q\nA0VKpVapmPgW+z9IAmSYMcxoMFXlUIMo6mLQjRXQcUWe0zu+qe2tC60LYPnihs6Bi6gL3eZRytZ+\nQAM9dxBdIBNbP37MAbVLYDXB+N3M6/oI9H/4WLrFN83oGJ/foWA4CXqvgbkwH1QAr/oEnyCxKJtx\nTM9VJ70OqLl4FoYhgc8CdKvyu7oa7BwjwG8Bc+npU9LhmoVpFNRxDa654mTeyfhSur6OkTA8+24x\n/P33IPPmHSeAFLLZxsxOZ8YxKG2yNd4a07hNFphCURMJVdZw87luu4+UpDhs/eS3zHVzWkqsTBXF\nvg+zvitXZKcnR5jpBV8wSFqQLN9rmYFDDWDYmZm6GDNDsGoPGOajNevo4WuOA0TIS7WMlmjj3LG3\nQecibV8FyhJDYLlTai/x6oKw3foyQ+5KO3xiGJJiGTDogbc2xy4M8Pkyzbvp/ZgiQfKGR+jq7+Lk\ncMUBgvGr5WWnJdU5bn6EAV1mLpuKPl74qARbqgvNvxrH9HwSLOnHjFpJSNA5jMB5UmflDUkqS+MJ\n/AlPIgkAHMX9RwvwEvpekPQ0VtrVujQL/oGUTKxULYLdb+pAI10c9OvCJCvXLSNjlfpH9cq7AUxv\nW9HQM2c6ZeXzGTqaGWcwzCVJiWIS7++XzfnNmTYNRYjnkcHqaC+ymUXsSZwovZMSRh5XEmqYSGL3\nS02wTRto8qtKoujQZT4PvwfQ2hijOiRGBDtQcCLEuCRYgkZp1DoTwsTEdYDlRG8mwceHHNI/QuB/\nz4GsxKyC26ofyXrV/zL+T8GG2bAWfrzafrSzMFvF+1dM4r/JBtsRW6ipt8CS5JIzb69+ew3WX/Q+\ngimlp2e5YOSgNBUf5uHMJGUZbZ1JRgWZU+AYv0QDYDxawg0HBJlc7/1CFBtNLIw6CtYQBAlE42CP\nlcaShDgSiAaiAAiypzAGU7BKqeDJKX4u/WXew8zqgtOx/ceuttCBstSMkAakvNBoK9AS4Q3XLWqS\nD08sxgtFd+AqXIFaUqeIQJooh9NvUydO3oE3FBccYupR58dwuwsIw05J53Pmc92oxIV6syJnRuAr\n4MVgMqFh0v09rewhSERCmm9cypuWFWXhEWik0aJzSNt3Ctt8SvgyFclUiuhDNDeTYZDopTBGr1ER\nBSAzjm8B6bLPttmYtRvwwfxP2ZT5Hsp99zUTDkzQy9GW+nL1ihViXzeouU2eF2oiFCytoFchAyk4\nG3ajWSnlXnT8+M+7aQq/xUupBEh5X/75jN5KHZrXz1fjlq146DG77YONm3JW9az1txS04afs8p0O\n3zT1pQMrJ85IjH1oRFBIMI0tnEwPRUp2DdxzXyk3KDKEg9KfEo5eW5CZQNZdJMONs/kVUKW4Q6uw\n6mzJEE7pIWAQS1X/iutjm/HFZWpMOzAbGn1LhIkbTR+Ri+NmclpqLOvItsXvy3/peJLfQZwTY7cU\nDCVxqG6ZrA1rUThKuUPzLkxfcA1mjhMOKqzHcOVEemudJDxX/o7x+62W24bZEizs1CiUESVk04l4\nCmxDuIDMn1mFBm7xbmu6rXHwBlNe/FgxUHUO2a1IH4/AmazlQSJhZQ0l5KPy3LXMxUe+Q3XIh7su\n8EQd1COZ4eNhmd/UjzJ+Tmwwrsd4dMHAwDEAhGttXNNvZsStm06R+vRztKbmNPg0P8KeGguIZMoO\ne1yOqbDyiGatZ6vwUIZr23F24cIfAEIRV0bpgG5aliGjEx2AQetcWVQFn5BLMx1gUYa3GLuNQmsj\ndN74ynhAK62JQdbwyVjLomytT+tjtqi3NLy/4f3v3JlEf9NHmAegqLFxd5BT4mwy2R90OEaNHCfg\nww9vdMNRLdqSF5SYcYjEGAoUiOPhdJpm6lScoSo6L9V6YWVo1zTI8ze+wZuGlm/51zefKYsRKyqD\nSWop+FKWdm2FTMAqIZ39/vAiO7ZthG9dpdTf0sC5Xbn7AOA2zT5xX58RUT+kT7Eu5kBiso91yYf8\nvcyiUD5W7XRJQrxmtbId1LMUSPYiuywTup6oluCy2wRh3JhsqTnB1p/xw28KAeKcUF0nYU6aGmUA\nywdyctxT6elqAINo/vVcqGLyeO4oRrxulDvLL9iHJjKyMvrRHqEUs1IBf4t3TAgu1dEInYnkxOAf\nFCmXSZx6YCI5QhdZ1hrOF57H5YYBCl2+jNkOxNcC2NZVf2v6qBmkpj9Ey/PaoHmxPv25jSYOwRJU\nLnlpasaVBTVhoGw7qSTIxkXKb9GuriULcc4jA7Qvgh0g2J53vyrcUuRnZVX8YyT9SihsyZRRpgQA\nsi8ojNMswiNGyZPlGYBKtQTNk1N+LUXatxf+ob6I/9ObKdIfx9+7/7/hDBYqjRzI0z95qOGzeT+8\nhj0fWMHaZfQWx51JuKqrTukxqpR8aSY/3DJ2nc1Gp6reZo5EvJ4V05ystMNpsr6Q9a46xYruCJSF\nEpQInE3XKcoyPeAtDJSkFWo/Uho+0dr7EKwAlTqwgBwYXUd/8tolq5yTpWiR06MzvAMI9YFLX0L9\nBkLPuTYl+3ouAi2L8BS/xgydUNqxrjti9Wtv3yYvMZYESKdVZvJ903S9dy9NurM5l86AawyHYV+W\nwxS1aKlKl8CgnGCX2BPsgDwDRV8P/IIHKWqOC5kCtohxwuHxXQLMRIZ6DwkZcxXLv+ZLjYKMWA9j\nKOhMX8Qto2msDSlwr/x7b/sMTBb0L0ynqC6SFLt2nDyLs6S4KqyXIxED7/XCsGw/b/NboVd+meym\nT2AjGZB8uiQOKcGVnD59ZzqTmVyFedo3HnmJ9a35/NW37qDQhTgYz87Qn3neo2GzBMF77ix8RqDx\nl8oK77jsSyO4cX8HVy929Exk8VhwTlUwo57DKpluuY8pPaWOemj+xJCihV5vVpDAcmSNoaPEBnMQ\n3wHA7W/J2WOmFAYYjdSAi9kPcJtcgj9VA3gWQIyCoMcnYYZZBiGq1SQGze8//X72I8jfk4hGNRWx\nFx/HNwvmEgWvIjPpkYmd1zuy9sjNTct0pSiQeXSV+mP7VggzVUE9UYclrWXJiKapZzn8Cw6LwaLd\nAQI52H2Fpajzfrbqiyv68GzdAayZbtE351GUeIG/wFeWtCedhcgGOzaufk7+3RnWWm975GgC99sg\nX9NpQQRAnXCeg2VBeQudpy1LjSsM6JEt0Wg3KPpWdXKag8XCwIj9HNa685irr34FjD6Uylv4KsFF\n/9K9l988OBirIP/x8gb23Tsvg1IVBC+oEYsbqbriBPytP0gTmMAYMw7Noe+lCkVYGlLligoLNFCY\nPXpeQQx798hYcbYh5ROZzcOQA0b9wbY6Ij919VPcxYqL/dte3XZJUzNllhzHUiWkqjsfuP1iliCL\nlxLu2tqDUixmxMkz99+I4nqFMjmhxkDpEKz+QF07I6TUhEjew4iQJX51+efar7oNIusuUD744J2G\nFyt60JmdGFzg4smrntcnVJuup7rKT6O/Rv8B4erxJKxn6bKL9mkD31fEmtHkGPgXqBu1ropvXg0Q\nwyXaER7aJUfwjGG3lJk9lj6BKsLhylZjEmvnSde3ggRSEGsyoS9WBIx9PgF4XFEinojwzRXN+Lr+\na6h6F8tGrk+OhH2pEVWeRgYxnN1oH/vkjgaKLuMYEun1KBoWRyxhjEoTdOqeqUvL+mQuTeFGW0R5\nCk/C/X8jnicRbLTi6FRIGaFVER2i0xoYc6nar5LGpTgpIflca5UPtaRPssA3CRmv4w8VxwF8A03W\npoMlStScmSRpOcPUGmQST8fr8ghO9FUGaxUTY4WUDUuQzOmyQROBoqgf8pgR1UJ3licFGbOqlU+B\nEbbAWxnHS5N6cFOA2qYINHhYlghAzkHtFdPA+BDPuIt9M7DbTemCfKUtokJ9MvFPr0T//wouzAq3\nALNdQP/6JU0B+NtAXc6Pa/8b5Pf2mm97AVJff59ofe3fXLC3dcJCwxg3hfLfPgAAIABJREFUymNx\nTFdkTxowphVbsEBkvVH6588zqBBNCmtaWuYnM0bKaOUTBOf4M3ZvYMgoTsVhKFBAi1hrrrqoyCPC\n6h4BmxxAsTflVTR9lxYrhCBLbMxD7TjsT6fMxzdEfpJ5mr5DCg3eAsHPBQSaMNYRKZ2y6F2gxsSb\nPKxKFoo07NEdTLG42vjkHZvmRwyUYRb1xmhKm/iDCXJRoiNSnNYLZa8e/jkJDDfF6bFGogAFTF4w\nd4ZQYbeakOrthQ+U9W75gaUpJW2wVCBXV7UOgCaC0r0m2qMQrvqBmk0+PxlT8HwRz525vVH2L61i\nHr7z3mdeWvdwtWH0FCUFdxL8MDWqTdounC1I0ty4nvvF008ricOB+I2n5TQqIsav1/TBgSvoqUSG\ngoHLDNDz59MtP/1dEgBsx8aiP3v8NeH2F1pR91Y7UY0vw5jDxsoR1vtI1u/Xq0P2frbgYLnJbyBO\nhwTD0gRzBd29oW0uB02c1vx5SwO99+sve4/IK9sqRtVk0YUa0h9eoZaJEtrpCEYKOFR9p+k/hEPV\nthkpf2gejwjRMm/jo+efxtMqLca1DbhhEYDFQQSC1qiTSQgVMJQNUcxK3K5GJUc2zLkt4IiJ9NMf\ntpJR5GPKsmOsM72POY7zSovmatQggqCFM56s1AxyggY5z5TxblNaqmhqJbrKTyaC2Z2cHc4Od65e\nePOcCXf82w3xGDVcWDAwwFx+PdD3DOI3Pep5XltLkYUcKvoD7MDgkjtLzgUJRwh9axNol9YOWTmK\n9j/erEBaE3c6mVeYycxoTejUAhjZtC9yRp0E9i4f8SPahfrN38tSzhQYxwwtn6oAiYupCvQtVhDe\neypV5xioMqkQzEfDmrfp9EwR+baWkZ0TcWUQQYQRgdTdm5U2oyWHtDpIDsAqVpY89YyMh5oJsFyr\nmYmmwvXdUGSEQh/P2HzoLOrEzQ/e/NHj1/3+ZTCcumQIqt8rLlhyjIGb4iLAWSDOn7+f7e2tT2Lh\nYIhL5kgzMZ7HaEEKGZ5IxtkCS4IllAl6CK9q1NBLf65JchL3TuqOzbbqPrGpLsLsLImZVw7rcKkn\nfgcztszF1G4zNGldS5JrQsq86h3RzMxJ1T2jb89txOkK7RA6JobBjmcR+BYtlh/E8Qod2rwKTTGg\nlLHep+gxu436edMFioV+sBMEO1esg1hGxpm+c4UpeG03YCqocwQX0M8Xf45I742MLdqq6xAcIgT2\nvBuZfavT9mYszduXwvun78XqR5WocCirPATDFqBgqoDjCzsVHETs1t734X/FPdfmorcrmtRB1zoD\nNkJhK6NJ9Z1Swh8iOeEMpq3cLQUCss+CAIcRXQ722a9AUPE+gNxDldly9tAoNNYgeULuTt2EMbEW\nn54srJi2jfe5QWNAIqUlxfwI3r2mCHREDyOCjv4IBAATeBIedF/9Fs7d1Yv03uWgRAKr56JNjEA3\n3wK9yolbuyvgisS5+AxZa3r2D7JvZGR56oCA7YL8T3cgr/7NyMZsY8W/zv/zH3nY/0N8DeDWH+1b\nAez8m/XrACgxe8hdCuDMf7lDY0tO7qVov2n+tTyfvEmL4XWr4GU/Riih7QrDW2aNazBhQDvqGIXP\nQ5FXHhQHBkhrZWnzCeV8myqRpIZP3CzHCaeK6DBgyNPAoJdiNjE7po+jsGtQKAmep6s/H7LzV+9v\nslxAx9hYlXtULEK2ZSwubb/WsqYnLZIAyzkzUgF2pEAWTTmAlQCpuQx45wSCSh5ZefKRpWE6mlEw\nf9fSplIaaoevcUgBT0mMqhC5Y3GaMj1jGuZ2CU4zB84t4/Vdzyi0k6A2CeSrKkCsLAUhBIttDD02\nPjYiuzJQtKiQAvK1ACZ78dAKPYbAsKleq8UZVbTkK1L5WYib12Pxcbqj8OsucrhyHvGpzxEhLQ+Y\nGtGuvUF988Dzm2XbJI/uYJJji3LjxJrUaklQ0kPAWjIps9CdL4yZ5MwGEz554AHWGtUzAGBp7vHk\nq1vZ0YxR5LoqpFo6gV6xGppJwj5U9GSEt/bdKVm8HBg7G86KQbVjOXQSoxtYMgACkC9XNAjzBwYK\nm6fXa6t6LTiU/z51F3YQv76MMMpepPmAhiH/5xKR2oPSGKYLFTRNl6CT2HjeBwbn8WCSgbBVgeBt\n59ARWItDGFBqcWX6HmDPMRnAMyiNKjvProu8bCqmQuMiXErOIM2zt5L+aR9K0hvQH94CnbYfhMum\ntukEiw3fo3f0Xn/nzOa4gqYwVtKrRqbLvBb7XXxujGtnJZiOZQwa30/7YdSQBe4/IZvbEMxYe+FK\nsvJoLpue9OZBRd3C1PJfbN+F71dLslICPZaTQzOlUTRFzzCE6tnxmLpMbXQrdVxPBoCRy79kmnax\nDtDK7nkZjEEOFIwyPziBxOLjqtygA7cMYI4MaKPU8EnRIV5+kbsbKiYGpc5LXbEs2tDwnb+P/pQo\nlHYo003QsxLjm3ayp3mXKCmB9ZLy4qJhDo00l8GIGx/6l8iOYTCGRGKvZmhfHAAgcStb58RHX7sn\nJf2CzlsjrDmYYLtqNOrX70O+zmyvrj6rOH36kgAuPR6TTzdw7hRR0slsVsidFvTnyjW6GCWT1IaJ\nG58wpAQ95ZUJ9fHgPVOP6p4RL1n2NQIrpYwloyr5At4KJXqvHYkVHUFfCV9Lo9HQFXPcwsGDSKVN\ntK1WI3HHqc3QHfsSOixXQd4fKXRBxBcV6g5StVsmvB4VwvmLsfQYvf+zMD6pU9K8Eby1ZgkrSokU\nPGFvDMHoZr0yJ3T9yStRPFMM7egm5M50qc77FiqhkI+cRX00SxrJzBK6VFj+zB+Qc1pU2TbTVSMU\nfv8cEjPF/Qsq3DQsqxHNvDzjbynnEA6VHsIhU6EO9mGnIwnNszPQiywyyxns+jZQxVUEpq0uhDQ+\nsWPYLE8hpwDdRjUA4LPc5wB0Ha+spjnOKaJRJJHHhOUbL3297dmt2y8uKP6BHRx1E8HOSIEBlqgs\nYQwvWweWUlkVANsZ5Abw5I/RmM+3D+PCbadhHl2KlMGHYZ4H/+9KSRXBLz+bh5PCapRolyLQHzeF\nhj+g9N77UJaTFylrSBv/R8j67zmQFsxqMZ8D8PDfzFt+HP8MfAqgGbONzSYw2+333wCsw2wa7+of\n58CsOt1nP16/w6zE5H/tNee+lpwYmvvZhx+8oH/YfLILIDFg/BjEUeWJUTstN1AWAUY5mCrVqfxT\nBIVzQujrY30WZX5HcZG8YO/7kp71LXJNm7/L7DxthTFbBWWjHsUxX8zqQdaQwFezcjR76QHWEu4f\nCdZB19GxRBNQmmhdzohIKCgLqG9WjtDxofRsdDYJIBLguhTgkjxw0UkMqxnk2+VQhV3zx/sSYvrA\nAQaT2yA5JDXcjVaPAtyt0/O9ohaYe+I0sDsbN318ljBKKdUrgCfFoDoZ8DYshlGvjl2sl5nPmicT\nmLGTyGVe35kFSR5AjgjjZSL0Ys7XNJyeYIx8kLAQkjDuzZloke418s7xzNqjn8NoXA8EAsCafPtn\nm14w5IVbPIO0lR6DliwtwvS4mE+jYHsbEcBatQsjGfkjecNlouf65xGfnobts4NKAFBylvSTmQw3\nrZui+bKVfeCmu6liMB/XTrWq+ubax3ZuxrBCB1gH7GRarwAfqCTMritIafnHoATENppzOqLVIsvD\nr84NReDUHpNaS4rEADsXBtoJxwQV7jGbjyY5Hp3GPsN1OxTSeslFYF9eTDAk7EDJpABtpwRN/uP4\nY1ExGcYJ0YEt8jTJH2+/E8CfURyVBqOVWcayIaau4Xoszr+Sf3bak0ZaB+Gor5eG+AIobXugpMWk\nKXQ6f6rsiHC8JGZTxSsNFhzFuChz9U2S6Vb2Nc6YFmRdp27G5dLB4RWfD1UcnVuLeW1A3mcwjg7T\nJ2l1B+Jz/CeqoGSWfb43muV1I7gWjO2o7cy4slowwwmb/d4gNzUpyQLHEK8VYlbMcAofpRwj2pJj\nJaBItWk3ZodkWQDOBIBtlnZS5izGHw5AubsMkSgMO/kLaVzfuQZkFrfDqAszlKVxe3G7kWNvRYyr\nQYwtkXMtGvaw/jT8zLmI7FbyNVnKfHWcgBusQ05nADP29eZwBXD9O1BGAx9pEMwDeO1cZKzikHTx\n3YzOXnzD28JYV4HED+fH7emptKyMGTKwf2MIlVkly9jDfhpPkwW/xeAzMzWsMwMsF0HntZ2QPHNY\naPxA+2YZQmiTn7MOP95ek7x8IUt0+QGo4F6AaBbRuyqEg42TLOtyS2tLp3QHDuA8kPe7stq3HmAz\nYW/h8IrCL8uFzgHVS38wwffG8RvYuduI0jU/VfqVOOZbdGy8ZMCOlpyr4lf8Bl+xSoU86VcBwWYL\nG4lVPcM/oYvk1tB79jwWaeB8EMPjGKSWKbBoPoA1ZiMi1nSlTHQfHlHCtqAvJyTS6hmWomAcw3lJ\nQ106h6GEWsKsBC8A4BAOcZgtOTiF0fxFA4fuFlDSXAI1TwAVEI7bVtJl0y1FZ6H2ew5uN9/tqKTd\nDDpM4iwL5sUAJDimjBk3qCQpbIB029YR3PFW8d5XS91KpYhp5gbewLPDriQFzXBCM9GKTIM3ygzr\n0DZxBf837LcIQA+0vrmQ2QmMPqGGwDKq7dvle0P7cQpL8BNmWR+GvMDqt4ATJ0BHLtbNGOUs/AP4\new7kfcxmQX3w39j/DFyP2cNxJWbDU+8B8GNWma0Ms7Uewb/5/B8AlGC2G/De/3ZXhZHGPtm9ac7S\nranGddt/lC8VOoAL4tRQfZFIAUfdoXi8z1HM+cZB7LkqeDxShLMUqpmEP8zGmgPahP5fJq+67dBz\nnQrosjlgkcmeMRr32WPIndCT6gsZoRRlETezeckslC9q/C47rtCQ1bp+M/v9JYRe+6m0SvBwRq1X\naQvxXsQmAfMyIK0tAdT0YkinRnX+FFQJ0twomUvOdjPIu6UHpkxgolGr0zdpl0xUZfO8Cvtmrqeo\n92O7cD32ZZUyAwyiC02gPTlAYtkqvHJL+ruX8cD4JK2K+7SpxoTP9W+/AQEEUQUPEaEbT9uny/dP\nzUtHehvgHYTi2vd6Uxt2q8Yxjo9X91FqLpf0O3dBPdyBD3yXR++N/EFsk1qkLsRwJXPO3M7VyCdM\n2TP3GnpQnEoxP3ubvfbzW3/HWiabkXr5ZVSrC3xI96A6x2w6mRfAVGKS1GcUS/qHH0888zsO9gsV\n2o6qcqtBgXNNUw6eRAVILAdG00ETp4N0haaNhowyfvYOAnsaGpKyHrkmf0yao55IBkw6blJajRzn\nFPJH46ObXJnVRwvbyR9qxsnXl9Gvro47yUuh7gdz4As2I6AUYK0hSPU8hA3Sm2l30TFrCrr2eTj1\nx4d/5r38qlUkN3rSG7VrxypT8tzzLELXXO36PVODMuShOpVgnVQDvvAAGJKlrFK05H9M3Nx7a97m\n8gayFXn8PkxO6uTcXNC0O86sCycVgKsIW9Ae0SZTayJqBSbylL6XAP6Ou/BBkosx3owqRQ2SKD7R\npXvhsnrEZ9C56VJtfmX3pUMtOU5a7JHNDsV3oqzJJClXdvTse7glgeyfHinQQCr0h1j/CSxzEM5m\nBFoDwC7eC50IdLBW6cENYPLTu5vHZ3IJv8NEp6+0IzMthLKs9kQ4DKLWu5GXP0kRWUOUjJ5tZs5C\n0gwYwqF0GL1ZjDs9TFOqMH6uaUWkrIL5oSSDHvfidRpVCPhzO3DsMQcs83RITJDLL39zrVobZGbW\nfRNW9tSQCJOS+JARz4Unyu78RK97eN3TavhKJCliyvX1Vmfw1d3yXVteQkqoB07+EkhwBGfuZyCT\na8AH4gOK48oX33gOXc9S6HP2XQzAMq93FXNuflRsSh0zRlJcsLfXehLQFS5Z8tSd/f04MVmJimXm\nJHnpOQmK1oXMI7/9AkJWM5H6rnUBwAQ9lRKlNGSn1qgZQJvymySoOIpmmd5/+uccz7KK1+7lpdP2\nzPAyhQtDZBIyyCiA0x20pkLBQEEpkF/QBWxYP1U6NT2Z7xITyOoGZ7ldkaMj5JRXAICmH7OogNlM\n0WkoU3+iv3y5wrj/Fi04WQ9KkhADFLm5qDPMt58vm0Sa6fr8GccC5mfJ17zoMygxm4laAsBeOVYg\nH86nomZGCfVFOx2t78zbva2jq9JsZOE0hXD3GbVqOiMJu/YMSvbvQlFWJ/UMF2Bo5tYSgLIAtQK4\nHMCn0DtLoXfmIpBGkHgZ5dIgOYklkNg0VPHV7ciigNbL4Mghj+xpS0ynR7h/hMD/ngN5F0D937nf\ngFnC/5+HL41xpNIyFGt+z6P+7F/1rweBGRYzZXm9EaCu8es4JjWlcI4KyDQYcc01EksFEqV6tUtP\n+2S9mziXzixOximBOwmgzrRl9Bvj8XkcCqftmsrdj9jeeeUxOvn4RSpBVPI3/brzoJbE4YSd9r14\np0SXHVP4M6l89ZX/uS/cl5MOgQGKVEDeaQPw5CJMhoDFdi0W1DDc5A++X335a8wdYr4BlWQk5kAu\nCTFf3D7JHDp6raxQEp5V/d6daMtGTnYn+iTQEhZoL0qnoDKKTBO3lzgBwhASDyrdFVSSRYTl3gqi\n1WFYwcN6UBmgea+WLwE5fo4apDHqy/TNu0jpLjJqDQgV3cRc8955uXzfUYlftpxJt4jRokKkH8Zx\nzgwLhJxE+riUN9YzVy7WRQh6SghUApTVbZKoPvYpGAYwcXo7re6Uy60ZTEAbx/qRekE/ksVpB9WK\nh36TkMX6Vvg5Ww4kbLz9RDk7kNYPCDGEHO1I718uR2UFvIVRmjuB0p2Nay3T2QqmNTQtLk6XUvrg\nDB2qoThXWoWburb718Hl+LLxMyJnJfBuRs6RdtZAh1mt7g2waXOhywxinkJAW6gBfvkj09WkSthB\nkxEd/uMXN0EZtZSWhceITh3BG+Ld0vxWGc1zw5kV8t3Yx4zQzI5FyGQSmMjJhai10ipLH1o0xWKG\negviKgqBSVJtLMSE44iFL0aOK8GgmnORGlCjFf7q4slRvK3O5N4AmIz6Bz2HjmhIwsatroZEhwSG\nea/ehB0XGlwrV844SgUm+XWNi958HvCO7VfRWCvpHl+o7ryw9AqJk+/facwgvKNbyFYK6FEul8bi\nQFgEstyAkQ7Cr6yWIkrIBbddcr3VfASpsINcGthKM4wJMNRtaukSOYUamJ7TTiDWE7dPBad1AKBS\nB7EnleYuO8ZVSmk0QlDnMeLyliP4XcF66kvhEpxt4GANAN1XE3y6aA3iY+r167de8m1Lw5TTvkH3\nwAtKZVLIYgMKkf5UM5d3DPllzR3vaO5qWSkyEksSB5aQb7PPI6yKAF+8D+R8yCMQHsZUJsAr7Rh6\nvRiaEvHEpJlGvq2MhJ/asU6liuZe2bOQc2UbFGutJ1SdPvVB4OY4x72MdeuC2qIi+LNsuNhkwPC/\nn3k6NXl4Y+CMRwsLo0e6q14LAHN3SdnS6iNw+CQJACw9si7XnBCuxmZS468hTzW9KEj8ePJgWqlp\nUTwFn+whgOzBqlU+WRaDgkzotN+C6sqWYbCKpUs7OtqSSYTgK6LljmFukmbjhNzAQhaSmP2TCwC/\n+uR6dH+5980Z/ld/dP5WGGGXNC9hQGSJ0AifXpaH7JDd2l7mRqB0Sbl+z/aDOdKMEU61GcBnYOVy\nAFnrmguxsyqlMLpiSJEE9+g3zav+peiSYGQyHQ5Di+KmC8mskNEPe4VIrzp7JWoW7Nd0Dc6HZMvh\nAVyG2ZD/t6jbasWi13RI0ijan5cxZMZy9ij9VzwKK8MLhxwtNajPAA4fpmhp+TYYaNX6dcI/PQvr\nZQA/x2wo6RsAfwHw1o92P2Y79L70jzz0/zTWvh9Ne676F4dKDyUVWUNtGkHDPE2BJ4xQhTRjBnVf\nBMma8lMETnWuODks0Ry1TsWHU5yUhAop7cIc7a1a4zg94jS6FCxg7T4FRl+t2tR6xHKkNowSZwlJ\naQcZb/ke/ohlMQYG5wXogtC5dHhTvaTSJytoLDlSLFDHDNav//BJh32Y4FQjkGcByo4xKG5bjIUP\nUaQV66CokEV+ZHvLAoo7/jKdgegQdFaBJifrZYXqXbptx6+Zmkv2J7/83duZRJVCyGNVFGvxeu0A\nmHFTMVGPDWOgGBqIgF6iKpeHD5mV1ATvMe5IY4IJYg7pxaNXnilZkGr6ej/DRGPUAb8IdVbGg7sf\njAXXFcREQxY0B2RS7I7xmrFRnEFDOiEITsCDalSgUl+I7j5JzGASWX9ebMZDzzP0jtcQuec9SfH8\nN5/iXu1tsCvyGaWqE4ZkBt7d9QyW+6sUhEnR3jKh3zEQwVBOmM5YVdjx3tZflHsq2YHCAYqgT+6t\n45GUa9kzo9WSPK8VDEUp55njUfMiBvK/oNUK9VaD30l65sewZ/EiLO4+N8fNsMJgUStI/iHQd/Lv\nYXPieJMWaw5BvtAEszqIOiixN3MF26kYmK7BjYHOwPmcUdrYksQreCjZ2Na/0GB3I/uATqoZcCNp\nsagGMyvpH1ZcH0/znIGFOMM5UyWQTBxhcl3Em9mgWNu1Hqfnh6AA5DmTxlQwBY19F6hbTuKqlTuh\nAap7GRO/qqMXhxfPHfnean3MHfht3ldf/QVC0zF1NSQ6AieW9PFSev3cJoMhyZjTnFVt2Z7pDg64\nJnilhPGteDnzTOShcMdPJ6omMyZmTIzGviOjSCvBHxpjWwKz3Uz/9B3oRPYEsubmswvbcX5Q7f0F\npV9TwvyA21u/IhGqxStT1zCdXgbxCFCkXg2UTmAy5oGyTk9XqZAhK0TZMJ6JdpLJnhYyIBxrwMWK\n7zC8/GJmdRJOuDZCsaAnhuuuBHaWrbMNc0JeSXfRF0tuLvkktplxEw8bUusQMVqJt0RS73xqWtH3\nyBeppqmFmhlbQK6Rgvje1s2QbZ8BquMScg6xGJN4wEfROYeB92gatHkcancJn77/oJIbIaqdu9K1\nJf/xW/lZ3Ztso2ME2TP2jDVzvvvpG+t+B/94GY6dYJb1hsF/FcNzjt6E1FcIhq3cLgqsDglPfpqn\nmquqHYRuuP4gynotyhTRoOicn9GfbZJukK5lfis/hvicDiWiA4zPk66PqIBazJWB0XQAQKQnxhJK\nrKYAbrj5hZy/0Nu1S6/9dIXqU9iure8gddFPoJBTmLbdSRHpjQFoOoRDiylgf+dn2ByB4d4JR3Dy\nN3Dsro3VqkqdpVpjwjlV0/Uohu3TRMpeI2VOhRLBtz5/YWKkSsnY4xTABajkOlDEF7bpcC7LKOud\nMfS1wyuDnl6ZU2z2jznweG8H+XLhlbLEppCT34/FQwtRNf+IYnioimJ+IgjgFwDuRk7zVlz0y69B\nkUJz4QTKPqbKbiUlhXzKg0I5XVIk22dOVWLdFgluJ4UkT7jllbiuHf/0OpAOzKoQ1gJ4DrNV4fsw\nmyJZB+AnADr/kYf+n8bvNQ8Lmzx769f2Iabo1sqRAuUCAMJCpPDqyL+yP/83kM0X+oz5o54MwT3N\naY/KdNXRp3mja1iUoonkN93X7pZM44mRQU5rNmC/4lwHzA4Z1aMjnE81jpQiKbdWfCEki06wZ+RF\nbHPz5VZsmh4xIxiZQlaf4o7PhLPODGq094PjxO477nyE4ONqgM0EzAHgqpEM7L6JhyZTjU+3JcHp\nG1rqfbJTFbrW6vQzQqk7ET9xF1KDTWIyyWLdVW/rjaoU9CU7aP/JLVg2lFtoG0GSM5TA5ByC1wuM\n67nUGj0n9g9OVTDaWKbeeSrw3QqlVIzf4niDUvPGVath+fIs1sj1zOovFjCcppzpzeqj4jW3qIu/\n+obv4RuFTJVKmXN+Pw6ya7kpJ6NTA6hS6emAe6M0lMwp3XGPqNp9dxzk95X8iDSgjzpepQ/n/VLM\nNplgDFkIYGGYiTyM3vAG6tUPQlaEY3sbywruO/uhLA8aBXM4kazq0G6RZbMoce1JnXsafQW5xFsw\nAPPORYm86r1EYqlcd0FhzZ8M4tU9jdyCB35jLBpL4VS1Eh3Z9TAFPepD5knCTqtA9VEZmlFwpmCS\nS1DllXi6bh8mMRe/wmKcKDqhbqQatUht0I63LzLKzIEVeBx3aVNf5apQHobcb1by+ggy+pX4yz1C\n9C+PbdJ9bd+AFdIRtqm7GlARDIYTMHLz5OVHBHx0iwID+bls+aRZGh1Fyq8CvlL9FH0bqrFHg+Ju\nbVjXk2MGuWHp2DW/eYGjY3qEE+lwhi2kwAp5Ej7c+VU2fXjBl9r+cfMu4req0gunydtzFfTmwz2s\nUbVMnma9hiQJ4eWFW+W4Ww03sxujYQXqFWNo87K47jyQGwL5sK4PopTL2aYQ9jPJCi95jzDKG8Bm\nCnBGE2guuZJt6ZAZjgXSJu8Fqg6CIAOMKUFuKUXhuVMLO7XjdgwkM8h+VEDjyUB2vhMqIsqdXXPz\nMXUFS+1DzyFvBuS+Y2RjyKDeO305zdn7EfX1eTlfjgYnpOWwS9PAU50Ih/TUw+cwdz79w5E3V79M\nZwxeTG37Cptqfy5DUcmgYFDEIEyAcQZdlXoQhQy/Eyjj3Z0WzfGsP8bIVSc4PDFeHI8JKmkqRGh+\nYnDNc3f1ZxffI6HxSzc+2V5xHiyGAVzIH+GZnsqETqr9QgzILgiCSvDqdO9/XA3sU3eFNEmC0xUr\no1xHCRQvPqo5cceTkot1AiEmhXCfFv0GcJJMm5iVMjA8F7qZz3TuQxUMIQhEzFTP8So55Sfcm7LQ\n/Au4drjupDv67WADk8DkaBJiPAeUNgH4VUctvpZZ8EaEG7t7Fks92DP2ru3d6TxvnvT07xdn1V4w\noKWoF6K9Sbrs0z6VXIfTJ08uZEwV4+TBlQ8tgEgKDRFwvBLBTNHBxGUCdQgFIsQ/keLhpM9jwcZ+\nGS8aHhlCsABqWx+BLpQ0pk0Q33QRoBezwMp1ABj8bMmNcNWGISmDmIgv4CpyqLJfS1o3FPEXoU8o\nojHtRL2WImuFDLs6Cajm+XF77C/f4J8ewvorUgBOAdiO2UPs08D2fgf9AAAgAElEQVRs9eX/VCx/\nTNVe/f77+666Dnu/qa8Ltj2tYwjw5EHgtX8hd+PdMo2rYIxXdpxdoT8eERS/efoHKVcdmEoMTLqE\nQExFaWluyjghhBHOjiTxqrtnAjXFp/DDgtVQebqRVLlHRKFEkPNOcZ3eBUxP96JxFMaMRoS9FKQ9\nzxg2eyZVOrVtVAawOqfimB+muIBPMwHWJOP1fYB2kwKAhJMnFVBl1DLatqEpc0Rr9MfCfHGCAzKd\nx3c9rFiw+XWpDMdZAChc/hLOnbwc7EnzhrBo6NUYCqGUxvkj8rJQR4KK65ebxT2uGR7WoPqbN3p1\nsQyO7S1X4plHNYpTNSUbjwhuxGvS+bNiNCZqjHjokWMpzpKZDHz3mTiTmqsq5xEr9x/BOSzEQe0W\nbfJXv8K72+8kr9RsQKUgJx95hmDxrQY5qz0S+zzTwdx47lxw2Dsh9F76HqgigbR4C+SoFlW1k0ga\nddJkrqS6dc+Z0w39g/jzX15Qzh3pJhGTRLLiPdxj7W3qzaNepnRyEmumn8PCE03aMYeXElBl2Ayt\naUpENn8B9pn2uQuGlXTYrkXmSK5MASxNe5x7c/ufcfH5lclXchekX9r1lSZbGUA7uc/1PB7FYwvJ\ndIIlaOLPkJ8nXpEztN9WH7zMzqoHirGxYgf2jm9mEiY1HROzGaXoChac1eLCEqVmThvBno3FUGvO\n95c7c1Ey48ExlxXrTqUzadgDYfwpfLp+CQqSJu2ID8JEsZ50GzbjyFgxlqSD2A1mNNeni3FoczoS\n9ZtsVieuf+AZHPrhWgw22pLpKiX40ULu1FSJ/KrrTz3QxWi+NSVMX81KdQODWHfcwxB1OWcP2NGZ\np2QsBeOSScXQPy9MiTlqAZZuhj5zFPimHOjLGkK0qxjFW7CoUVLHuRUKMLqNOKprgNNrBFrfxnQn\nh4J8FiXRMTw6cRQyU4kKJJBwAT9791SNwm3FW9LVcJApKBQtmNm7iF7Cn41O192ohCoKcUuBCQvf\nhaqpk710/ZvyF799ihuiRRyprKQbXrrTv0e5HpKkQO6bMSEvKJJnG9dLSWumonqslpyKVkJ98f30\ng3XfMWCsBOaoCh7YUNLehcklBAKVIfQQFM0PXrj5kYBWkLHh++cxklw53RQ4w656ViZ4wcBvuXcv\nPT1Uh4PNS/BWKrCMUHQB6M+e0apOF3/DIVUbA9GDlaXW7J7kwrfrgVMd9KDVeABO5SX68bGnIOSP\nnJ/TMMoyuXrggInHsTJCOAEuXovF8kIOpMeIuxY0LGTOihQE//7mi994SCbdyd3UWzgJ5fJb1Q5u\n/hoCzQz6QwBeeT0GU7U6e1zYAGD1k7MZUG+XoR9nA0024AvwNj56qOZQcCSpVW3GNM6vqIVtv2F/\n9ZAtiU2Y09W5JHnj5Jd44fCLf2SorM7u4ZQKHsdrzFGmK6miNDtPhYMHn6Wl/cnq8SG8Orco5Tte\nkWQC+Yir/WAznJJKG6IKrT+KYb0XJVE/rP1BEFyGz7e5oZkyIxDXb5rx0lRUR3uWGTQ3oIetpAp2\n4v7rfKAg0HsUAL9cdij8Ht0/xrX/E+tA/t9DmNYCyAPQd3JGEYIptPTQISgBsSOlaJPeMq30tz4M\n+tFLdvxKAX4VOUquO5JdEz/fH4dGkwKXUcwnvIoMZEBIsiPU5wdj8cJFV4Py7dCXt4EJl6jB+aEx\nuhDtzO4CkG9AZHoVDvsHSSlKkmWYUITGAdw+FAVQEPBhZyVQXCsjfj1wxzDBqE5AYaEMtpxbODLa\nen7OYYxmq9pRwChBHUzEnwvrgh1yllZCf1sR5piZlMM+CvfJ6szpyWKfqCtC2MEm9jQ+bfq8Zr4u\nZFipGa2t1lJWwlD1et3mM0fJpv94CmW7wjR8883Hj1PQazVu9ryg0yE+JsYrrp1vdn7gDYRF1SBY\n2OSAPi8ngjmRTpyyXMTSyUk8eeD38rs/YeU73po3NMDrsRqfMY+R+wzciSVgonGRRqkyjbWBpLuQ\nPXMBIk0gOGXB+5eVyaWubnexc3wunygm7y1YRiWGBIZqpugQ7pfLH9Cmtpb50V8VR/QyLyg3yAyd\nLwRYkUzmgMR8NppOT8tWnCmf229FSK/FsuOQu7EoUDV1G3FIFmwYXqzZMS9On6y5o9WqFukG+lT2\nTnIZXriYZk1ZVHiVuQ+/Sz4nb6/5fSh9uFcelPXYsnw7fQ5P0MT3paQHeXCHobFxYbAy5e7v/SQh\nXuLBi2u0nSlDr7T1ka/QyuXjyfc/xUL+P3Fz8wXUH7AglxPIBUONdnfZRjB8ECFkJ40eYE7IzfQ0\nqFxRyehgJtRrS3LOgdONJ24/8CX4pVF9EctiinQj9EQuVTFZG6GLeXUcmv0cJV1NSmzqGAeCZ3Fr\n29UgYhdN5Q2yupgpJctkut9L8dpegQgLgbwgcFFgFOpQDs5HVttGd71kSRZqwJOfwbnoNNwpEWT0\nHBCWkFmsw/2Zr6DWK0PviKEgRvDpW4jvlRbF5dwppExJfMxcjzz+NMLtDfQq1S6DvHgOULsHYHX3\noe1Xp9fFXkfPlE6cqVKDrroCt4vbgvf9xmW6f2CbfIGrx5rC42z+WT/Nj42V4VxxyaJT1zHsnP7A\nN4aguGR/NpDRK0HQBSACWPzuCrBzgd5cETIVYV1kotbxdb2WHPzG+ydc+PqJYrWUxLosYPMvw/L4\nTc8TOasDD6evmcmJgX2gmVyGr//yhiViJdP4Asudm/SqZKV0U3IbP8Fm8D0OwPhd9YeZwhFkttXA\nrNqPvgF7ldmYRPESE8gkNeDrq7CJnBrzFB3bLyqSKC3YxoMRcbPdFZ6hdvRcX96dBj+auTVfZrRh\n7N7mRt7iHae5GorDYcjoG9dj6kh40zdcTkyLjwJWbGAhflNMh5jutJJs4KwVaSAyIxtfj8/DAw+O\noa2SgevFxnK7NxesjHXRvgXcmvhB5vnrrkOOepwpOqyNavL6hYICD74do5i2lzMgpKkvnzPUDjnx\n8pWrGTKjLDKFrZhOqMAsPK81aRNEIqIX5yweFMdy0PCnWiRNnyJ1eiE4UUPMv/Vdvr2D1bHR0YCV\nVYrI5yhH4imrzYyxfUAWPODs51F2Q9b2CvzxH6Ha/386EDFkwaxuSX+71kkRNHswq+XeDXSTKxSV\npQkZ5Kvdm2mzWh0afjkcSxvRs48dbc6B0STDYrXAIypzSS5/ES6ar1Ll0dFECG9dzok0FUW8pNWR\nM1Wi4D4CQsJppAtn7QDyTAiNFGPY1I7aVGHQSrczo3pKsaonDCtmrBIsQYqWLRx+MpeCupMYeyuG\nhX4VRl9nni3ZeUmPaRRg5pfDrgeIKvPqq/9IDS5WwY4WoOyBd1BhCmJB+VFxV/JK1LWPL44ps6HW\nOg3k/few65GHhU2+vf8Xc+8ZHFeVd/2ufc7p0zl3K7VysCTLli1bDnKOGAeMMcnkaOIMDAwMQ3gY\nGAYGhjDAMMyQc7CNbQzGOGE5B1kOsqycWmpJndTd6hxO2PcDc6veuh/unaHe+7zPr2rX2ftU7fp/\n26v+p85aG+jufkTwGeWa4eGe9qa50MVTmZFP5nCVYK/LVmNkmbeNleNZTP3xVKr+hJhayezpU1pU\nEZk7LA6r0kxtGYu7H8rCM9v2wPHtZjhqumQoU+7yEU3l4ZSZZvMXsVx1mOSFQ3i+8CqzvQCZcX+R\nAIcX6lEACGP4wGTolmW4osgZSwJFsho90pHjB8mwwW4JmSkAmlh0YZpCmwlgxexj8C0DivGpYPth\nARhGwoiD4kK5Mh1XKZIM4qrC7lwCQqCNMuxp3K/nRSB6zz9RGi8iBMh6sf/u8keSr5EMKPkyrzyt\nSVOMj1fgTfIAeKQSN7Q+abvys57kaSYFmzuX3JD9ASnMJBCECR9wM9EzXca6nSKK37tevfgzFbBI\ns+BgfTwaplPx8J65KEvsQweq8MBJoGJsO6b09KN95jP8Tt0VRNH8DgRzniQpgVEjYC+MBMNxR15u\ne0yesuA7efrWYbQ4VPS82oGZqTTOK08HrhiooVl+Yh3Sm8bm2zC7LaGVxlaIyMEoLCLBElih5Dwk\nkb0HOYosnpFpfOp+QMgBnL8Dbs+5D2e+3wG3wY/zIT/JFH1BeNFEcc8KlKtC0HjClJAgdBpAzKuE\npmQUvy6+BpOXt6O9XSkbW+EcUJZq4yUenFfWIqaNQNKcRnnfNCaL8SN/bAxYEUeBy5XUSer+9SYn\nNqcf5PFAL3L+rqOxzyZr+E/uYab+o44UPn8zVnRbmKJtK7B+XUP3w2+Yc3KlCL5YsdX4qLVDcb4E\nwMLnBBAzo+AURGUYUnBCBciFuBJEzCDUlMUSRmW4zJVKhTuFjy/jyOfnbpV664kg/TQ3wQ3Owis9\nspxe9K39atsTzOONGn5WzW+ufnP165D5Ajy8eYaysm0ZuQ0flf/VtEByqIBXS9dkW8e7QP78W+Tp\nvmiaLZ0TTzRPEyfNiGMSrqLZhgfoqqA+x5Xdf+BYwTHMC9SQQsZkdKhg6koVS0KReK8X2ZnV+MEF\noLC3YbHs/f7E2MCpDTgWIgQs+nTffCVdspeQR16WUwDM32Kdm5HldHAWGCBRDR3M+UO1HkHIJi0r\nbJC3RZFFkvLeTLn24691d41mSrj+Z0fw6uWLUJdsIUUnKIPrvpoZHZ0l7byYJgOGIpZQObTXMFf9\nZpYVMZNl0IBYImtcixEmis3Wj2kwQyHG7Ck0WSxo6HGi7kOCD/9qheG2LKQQuzJLZNtTk8TxjGG/\nHBnHaB6PjJo6QQhwfl8U2QAuTxfgNKUPn8Fvf8lR+58IiOaXFPg/gpyxQxaLAHR5TB4tmuudAK74\n5z8RYaUA09M9iftmGEF7/nFZVljShZPaDF9cvnTXbZGwesmJdiVyEgSjSGlUGud0TF+6Mm0iruAY\nurI6GIbPCr/9eZe6YrwCogswFw7IzZBmI5msMmG8E0D+EcyX9T4DGTR4/OMCiIXHOIb0BtQfkbGj\nHlh5K8GFj2OQvW6Yyyn6F6GWPhBqfcfcD2ueDccTFCzF1M5CXPnu01TI9sBZ3oFCieMX2n7Evsyl\n+Gr+cmjkUIpL9BP6yaeYGDmfemnuRlQ/sjo27lGRcesMjB6eCY/NTHlkok5N3m9Hp4Ir9npR6Mnz\n/P7VKdzjf7KS27N52Yjyi5J4xNVilmjpnodAwnoUbl+PfI0a5uIUi7QymFKCGRjNo3mlg3TLusuY\nZzJ/pO8PPyv6AuSbUlcBZIsPUQFg4ULJd9ehWt1H4oU+VRRl8SwMKo5m4nCnk3x3YQESfOrIHQfu\nYH7N9WNMyEaiAJgc7uIm9U4lMhi4iigqgsPJ43fYwl0L60jMkkGWj2DcFoMJxsxU+VmwZb1QuwvR\nZTaSQc3Qs6vSn+JG5ceIlTYHlh8vFN82rIWGhscIoe9cLCmkD3Zu1uTKL1PFsQVR3xw1nsmcxUS0\n4XDlJGXIymLDZooTt53CA9/GUYW6Ald1WErFazDvrIygzoIvDNfgg7pcmbCjVCekkDd8GCXoQ6K7\nBVGDSZVWEmydAMxTjtSwImXqW5VM/a7azGxPieK91etSp0tLUM3L2J3UKvWYxm18T/qpqUabf1Zz\nuZaKMf7TxiXS5gUqzA/nY3d+HaabKGwlO2hk0t1Em8CESC/o1huV+NUDgCVehKU1H4pqth+Le3Il\nb+URUD4FsDJ6E4CbAzGPATSlQVVYQ0dnqiBH5uKGBePo7tSQq8HmquQyMl4UpIWFZ9HhiCE3OQa/\nagzbXnyw9Trj52CnVhD1sWO26VFmhQyK9tJpqPoxjPJ7dwvpHes4+Vw96bHIpKW7FKraM7hYpKLp\nkkM/DRZ9FnmOeY6mTgrMCiZbFgYnAkaXhKRSq7DwZG7rkgCR1WC7U0SRgRp/+yvHvMupp38s8w+X\n0f7aSzhm994bWURpCFydtSRRnbpOrKBwdNGB5FIcYtJPffF9Otpe0AbF58/AKADTz04UytGb/YW9\nVs0mIRqXb3swSsxUnHEWm6JLtCcQ1xzdP4uZ5whBrjI2xcZHSMuygPLLScdnHK85jPnRBrJh8oCx\nY0yHdELpV6fTygFawt4Y2IQkz6vT06Ypsa+RYnSaCMIQGBSZVSfnmpunhKXOSnEjgB90iE8JB7Oc\nyMhJMJgMDua5375sJNd1g4ydQMWJcmm97MrfhBzG7V9mlnOSoSL7MPwGM+T8FOXig3rUNxd805pH\nw9kETlJE72je7mzEErw9LwJy1t+6AoPKwjE1PFTA0LDEOLsASGwWnKp8mP6eh/50hPU9fG2WdfUY\nwhAfG/7C8I3mCg/wt1LlwAA6JsXx4woFAITR7PTBBDvyjGkkzBH87Ln7j/l3BGQOfjbvdf1rPRU/\nR6n/T8aLtM+M3LWD49pxi7hzZYSIuLZyAg6pzQra1m5kO6PoNek7ILG5FABWPfj2i2thCz375YcK\ndX5Yxgg4wSZ0zOcarlsqBUE72gEhxKQCfDChDAkpNoWC9TlgVKfidjQAslze+vFZSoGCUCpbS+N6\nbJzlH9zlhnKakZURZ7WY7QGmhQT8ep6E11a1oPs3nShbT5DkUqPl0wo0Y4oCdBMnv3kiaahwgjiL\nJOb5J8dZbQLdDiessprUB89wtfQCnq94QMUSCfHUONFpIDxu+lvn/okzYZhatXrcS0nULDhUCk8Y\nUjIdm7cz6hIT1ZksvO2s0uO3YyP6kdJWrr+8haNbrq5LJpf7WfaIsoTdCNI9AX+Z8UZQrLqIpeq7\naCAACpG3jTMco5TTGV9ZVurzhZdkbhQ/JQlZq0DsqeGJIxMVotKDL0qAXPhxOHUI/IE5GFjDQ8H4\nin1QkjCrAj3XjP58M+PRe2uSDqe0pNCJ9+IbkUkDsg1MRtuLuDkBdy7BvLYBlqzxFrTeGCJtM6PS\nVVsAh0tF3tCduvBrzdO4/let2MdZcZlsRqWX+cshzRNCB62GP79XsdrHS/vEK1FY9H6/45tvfmTD\nnLQc+8gD2IXCyHalO3I9NNlnUMz1QrwijHveTYlpcxhfLbTg8/IM/eOfNYy3qMgoEgETontwUJ4O\nd7wAi9o45rKrDMgQLdSq6bh0bCuw6ncwxJOsC/Vg0zdDc99b9OObONTFMyQfrGpgxnT2pplvq3Zj\nMYqLZIDpUX4Og3ygcut1U5vGt3/E3KUhqlyqy+TiYGUGs5unoFz7I422XIVim5tu+vuLJM0SstmO\nRCYsoKMDsNe9FJyf+JbN1UagTpew+AyQlH6CcFFwSxQ4rgDkDhVSYhK3H+khsKVx233voU8BSEIK\nIuqNWUIRgiUBkpPfjyV9PH19FlCcbqLkwpT8XO8QFEo9XG43rq0fM24j18LS6qHOUDla9JPb77Wf\nZsVbPsGPXBHsIR7aVZtw5M99zOt3/Um3ld8qnV5wmohHjiBknEBSJ24GVGGOpOYHiz0ltPHwPpNA\n2yEyJYCTpYYiNfMMfZpuXn/DxXv/VNk2SIslb0gpoZlhEa1HQcFwe8PIFIbReYBIHq7O6Ohvl2vT\n608W0uyUQgaAS9xBfIYbSNLkJ8M96k6lYrhiWJGDW+5oSu7MTC24Fj+4zzV9xFTqgZGK0/ninDvo\nOxtlpKIFDRer2mUba1HOp3bqlRLs4pZOz8v/+Acz7digkDcQqd08e7aAnh6KUEiBSH4XADBVlpr1\nY+vJzil7zoIwJgADAKb09k6N45C7G3m6jEJSCK1ijVa+yoVph7pbppU6e67BE+qrsVN8Tn4llamP\n69WcQPUqHt31uTSAFINjM4P+M2c4zDLBiWJcPfpdXW7SLRPtarz4fk1VGpTjgwwdjAOadca4s58B\nMNeChIdHZL8RfeSVD7EtOdecI+aOQa9hEmxfuIBl8O2UmZIktU0SsW8ZmwWgES7YoQaPHR/uBy4/\ngZ+N2f8x/46AvI6f798Y+9f6PH7+HPQ/mX4mNjj+/Ue++y0JjqZGfatN52BUHcChmDUjIRLhOvyG\ndmQiDMPlKPCzMfJkK8YOP6V5OCVbKUPGoBRWtI3y717FLIJblru6AEkADo9l36YG02PpQRkzAenY\nPnVIm8tCqcoc/HTwiS0nC6qzR9i03wppspnM3+MBa+MZo6PwXAYFOSI2DK1BYvNRYMMCtCdmw5oD\njDtjI1nWThMV2Sf/DJEMFGHsuoHE13WRELEH+bQMyjm+l1SqDLGPhtGgak2PnykjccaSTIoi3vkE\nioqWyLa333kVnaR6lRwUY0qbX5PRD17QhHoMqfKDPiajwIz5XE/vTB6TRatOfvR5LvdPTzHyjrVW\nLnIT5WhP9lT/ahK78jmELrZL8sZ/Ym5wBRk4UkBkILc/ZSDVcrevvaBEff0PHREBmhiPFxil/Ogl\nyGjAMx6MZRdB5PwoggGeHy+KipkuwsvjOKbkM4bpiwPJ8+fApwl6SgK54m/ekBRb18JFJ8B9qh7j\nhWpYIgUIKZUwRGUsyTpjCMFMdNk+EovnkEt+ILh3Do9zwi2zhvRmrM/6CudkC36zvYK0LEgLLtM0\nVpQV8OvTtoleRulPlIHMfZHzWiwr76l4y11EXdgMWciTtrPaw4UgxvOwTHRCmBFB/RE1DdSeof3G\nQqQXnCFbG07QDf+s4QyCEwomiJ3xK7BLXoMl3kFMirjx5dz1UElpPHzvObz4lgUf3axBJ30aurgG\n+6ebn7r/sQS2T/MRXewALm4qJZMMY2SjdifYbAYJ6uO+w0TmvcWfYFTXWqxF7A2iLSLC1UOMKy1i\nVtNsqD9cRToPXIfeqMxErvILe0UDMeSquItdWSCEIO1iSK5HIIqaEVS7q6hpGmDi9XBMfNL0bA0w\nnALiXBI2yJg64kF3F3CJ4xg+GQKgzsInqBdLY1kYtPvAZ4ngZTm9tZoB4ZuE+rDDcshplpeSA7j+\nRnPGYQyz+xNV1HekSawv/RLvN31Qy6kTUO5bsmPlw6+havGXCRLVYHprD1D62EIEoUeOPrm0wEY/\n2B8iyFKDBzOu/nqvegguIuuvcsJcnsLkcghFEhtxWNPp+9yS8sSSXH2ULD4TmSVB746hi1owMlOW\nC04UC+OFXdqUNomaTRRZFdfsLCW5vzqmxX2GlwQAKJNiynftDRSOUxCGZ7cqdsxkYqVJOqKqVJ9+\nxcwrlSM5ElGixcMnGqr9ufKi6RCsSmD3S81SJmc8OO0k7dl2uWiGTqo/4s4/UVPzz7y2eErXi/Wb\nFizg0dQ0CqDp2smDO3hJm6m3FfFexRg9N7jZBcgElF7t6tLddP70HCMOHOlETT5f4C/m2x84xLHu\ni/TTD9S7X+z7vZKQkHwZchCPFmvAeSJDEV4qYlxgc5SkV1EM10diN4JBaCoLk142i2injMQK/BdE\nNmc58kR7Tge0gz2hGPFngLaxoLarTwGAiKjdSUHykneX7g3kgwiMwalZEWHk5zfcCCSVebej9/V6\npxNnpyrQXwYLmj89gSjMYCCjansd8NgB/Jy+/h/z737C+n/mpIi/pNh/FxtaUVfqbLGE9Pr5+jQ7\ndD5H4ZvyO1wmfYL5MMsBqI5JQvdKZsDDiXaTQrd4MW5dvBgCQHsOBRoCxBsBK4DkOMZnmk9mwE3h\nUwABQhmU9EY+aWYR7SvoRY1rEmIJmcst70pqolJErcK6D1/ya9RfnOSG+TiOu5dobysB9jbNS61Z\n+ToHm4VTTAj9kb2hpQe46RT8E/Px9FQgqlERluttwVt0dzBPIxRup6EpUZVDP6gAcCiYBtaM9rCw\nBdAKBSLG6i40WYmY0oSylYycIKBEwENzh89G5odOMueL69La7CA2jLT1Le0KuxP9wV4D5lDf2ZW/\nyQjzJb3xLCoKvRiSE4jf/670IGUXaGWlYs+yHTQjEIy6QnZVoRfu2Wdo8aZHyahdkg4ZzPJc+TQX\nNBi6r2o8rmqD6ZASH7NKKKsYUQut5IU+OgM9Fj+qYcfjrT7Jz3jlaA2LUGa9Inr39WZVuxP5LoJD\n9x86ZM8NcMYvJuPu97TIeeMP6G7ZBFZWIGqNIn8IsF96EO+kf0v1MQHMvlzmVjILI4FyXPGbJWTN\nVfdjRfgneBM8EK3Eq1dEUjmWftFsiMHmzyKHMqsgM7vRm5uYpJSj1/YPl9sXcyPpKzmwbQqGLUt/\nArVeQvs6E2Z9ztKMrGC5cT3JVQyjcEILvin4kfaUATJrRadqFS5iKrw0B/2oxBfbM/LfNzTgriMX\n0Cy9h5UnfHj3oR7c8V4aJxYP4Y2NCvuE7lHYc1qpbdgFHXHg15+rwmmigrpaRo4SpEH/Yn9GmUCj\nmk4fCzjyajXhkEN3gGhkGySxHD7Bh3VuH+whoCNfYtsDUWB+jfJijwO6edPp8NmkuSAMxOe1ocBf\nTManERQnZ0CpLGYKZTU4EcisBbKK1fQLiwmuU8V0c28hxkQDkJMkrdDzcY2I806ZRoqA0xZjX2WI\n4mkHO54lEwTTTGqWfAwGe4jfLa1Eqeet+MvXb1bcNfNNJL++nQlYescHhhbNPSAsofK8XUTqKUdd\n/KSskO0ygqwi17k++bpTlGInzgF1e0F70jo2klRMVG1MIdFViExCAVW1DJcAqIbF2LRT3A+XHNDp\n9SOmru5pLLFslxHTE0SKRV/WUbNOE/3EGrWymLhNwjzTFGPTxtQ/xVfFK9tMSokfiiVRILfliiLM\nXTD0388pzucyLlUxrJP74BkcfD8lMcwEa550PF4rzpnoZYXpNgKZgtg3LbLA6LdfeowwJxq4HJZj\neB9SXy5dWvTKhmtezUBhPj5zJkcOHeoB0LR8+Z9mVSv1iopwBbbYjqfRp12ClI8ag+nC9vyllZpj\nc4rRuzOWrTaRlGRgMF+HVa9XJqvFTx8tcI/lXM59I2egIhpIBE0a80CCMiUYwJW6b9EjVWFP4FQ1\nGhqohSv0myQ/TRdJOmawXZHOL8LHph2+CBTZg0IHAGA4DTjX/kEGOSJh7msUn+lYb7T3QQb4Q0rn\nNFRHFdikniEB0fHbaiymKX19aW82B4kRKZo/egQs2kEQRUehl4oAACAASURBVNV3k4F8F/5/FJAh\nAHP/NecBPAKg45cU++/iXA75rFcX6Lj5iSe+duvpQbfJZwWwu9sKYtUiAnJWwOB8m8tPpXxbSvW/\nbO2FT6dPDbkE3mRC8VluRvqDicz4SkFSVuQCIyy+YenZwxTs8SnHsLh9Mf1hcBde6o2oX3mUM/+Q\nPHDbzfPfxQInw4W0F8JbsldFGqzA9v3rDZcs28FxssRIkjRLN7/8UrD7dHj2DYK8aBxN7+hmvmSv\nGIHa2SWb8srjL0gJnZKrqjitl2TypTcNMlwoguhi2GOcRHddYlGjMgqctOY7FIx0uKdKDsyBVRGm\nniea/kkuTJtrkrJHMY+estUMuiiczpnToR0OdKycbvruWjK2cgf8nUrhlVZdjK1vYuZOOWCvyipM\nx61HSBj5kh0soikFFDd+SezjE3B2ypiiUzAK83Hc8OFf/nJjQaxF/xjSe5ajiK7GWV6TsMMW9kBX\nKuF0ng8WZCGXRXj/PjZqWvU8CuhK8tLfHMwU3TSYRwU6IV/Z8F2r7CoWPkXDCYLmFdtBb38FerQj\nf4jHc89Q0Lfvg/2D2eSBWy7ia1qEqycdlfFiJ77NVyM50Yha4SICUGBEM0kwamHIbiOdudw4ijvr\n8DFzMyZbj1E2Qni2r78IPk6Vp7Xy/Tlg5cwaMHwYlov5ODOrFNd9x5NeE3vaMvMEXlI8BqlCgkpT\nxHROCMFvNiIRuRq9KIMdQXxLrpQfvnLuwLIf8jHl60XYfcMu3PtYAG3ohGX4CPYsuwMr0vvuHu2o\ngqmtFV1MEo5MGbp+YnR/iV6OY94JdCILjC15PQoAA0afirlx1q1rvNmqH702cOaVoFCgGwT5rB8O\nAfRMEMxCrSxXWhMYEFWQGpaRqKzFpfdsRF9dGlRgIHMEQmY9Hc2mULtK8dK783/+XeTaJPmnOYnZ\np6YFPhsaA1SFwFQZavShp0BA80k/SecBn9TSweKAisqDt1j7lDHcNFKpnkTaME8+BqM0jhcqfNrG\nES1a9zfA4mPl47WSYUH8Ts1NT7UIE/19ahyqROXkJmbie1sAvQkzJbNOK5SdtRU5ANX7KNViqEDK\nZZxMSgHNRRm2Ewwi5cAZDhjnB71jncKENfvkpugSkmiqSBJxpwlZiwRQuAdokPRM/257hhHVGJrP\noPQcuf24MXo2M3t424QsqShzSifBCi6pV0AbhHpk0QqRDNP94VVk3eRPgDlrd50Tc7BmNONddGBy\nOjtPDcLEEiQxIFP1Af0VC9QVjfYeWh60kVwi0Z5gTTtlmDktxppNBw31rL2/H1vc7okmoFkQYtPm\nFfiIy+aix2du7eCcflN+T0Q2es8q3lPegJKwUcvCVVQSZ9nRKkLYFpneeuGCEoCcKKYfzaKn2APa\n6LgsMyCCRA4fuYKWB06iYdq7JCno6E5Jbayy25M8aw+phRHCEGBIdBF7t48Gb6otC8Bgm85FRUqB\njAxEds0QdLPe90I0SKzwaOeug7+bdCtuvRA0tuF01tSU1CzIgPVAVK1eUOLxuIrdbmBkawod6EcU\nOwH0Qx3SYN6ftfg5oPY/5t8RkHsB3I+fE3lHANT9a/0/lq6SiotIDjMAilKK1EWX1cX8gFXB3dra\n3gUCLBD6KfwTHd6gSErzAxz2Haz+eadlABmbDsM9bDLX6u8ymkiFNIA/i1d9aSmVAWcUGRMaBjUw\nDOYO4I2Gbe+s/tVqPLvqQmpbAyXfT2JKNRoLlGolbaxo1A+QIlVA0kT9rWvlQR+PeYpjQNt/IW6p\nyAMbL4JlPsGdXacx723acais8iasVqZwYTeLQFRJ08ib3M62P7AoZywF9M8GENFBnZxN/Qv8JcwC\nH5i9WaSQ8IwPCTYV1bVIJrnE1iFhHf2RQY4fIUVicnlvrxqjo/l1jt59Ky4uVJDCwfHEmgHk7eCI\nNmJXJF5+BOLv/4JVzDV8NDqAUDR7ZKLNgnHZCJsiDhEUE/r1JBjVsnNwSPvHufydCWKjP2EsewUe\nyKjwNGFlBkwgBkXuIRwuH4MKdrwtZdv27mSMofkxtGkaE/XnU75Hw/chx3iW9MtF7ISPkHUht0+K\nayVku4tBJ/mgVr+Hnbf+hEMv/Ii0zwHyXREqmTAW3HgSi80nCRcNCcpYADazEoeK62UP7MiMlnPL\nbSzRkA67PirTlq4/IM0pU13u33sTHQxSW9WCptJ98fmrn4t/V7zUdxgzsK0oG01zvZh1iiIvlYHn\npXcmSQXteKs7ii5Wj6skNR76+iAefZHHEGuEChRT4cQxrJTX/fhEmX1kGNqnNuLojDSafWPwON0I\nGLR46YeXaaNuobZjrBZ3Ow+TFmkqFKIaxqiB4c6fgebgQ6hJAjaNNFkjA5W2bzP33vWhXFvVpOr2\nxlH52g3wczy+Ns5BnjALOSbgWABihZmwXmRDDPpgHLYOX7oghfGmo3icfQE/1XdBIxkh24pJSsnj\nMB8Wq/wPwb7XjIoOoOn6JH5atclMVSYoXJVA1VRIzHkM1SiRGokgAh5HKvNrHZwJS289wUzY+C6s\nI+Wk/0INes7Vw8Pk0i1NjPSdN4XVe5ZhQvBT6eaf9jG/ue8mVWtq+pDqIOjCxh0oMY1idfsBmq1V\n4MwDs8iNM/MswQ4XUEAxJXs2xuAnvqSXRbRfhekfJ+CdwCB4qZAXFioujMUUAd6oeF27kdqbeY3c\nHSXIXJdScJKpSg/5yTFfvefkEwTlewg6F8uD6YtZLmibwmx+fNPsEaTViVju4CwGAZMsyDoDbxwW\nWkZm04WTdyB/OLnqAkRhVqnb3vHjg9ofU/XIHj8n0LSL8IXLsFZ5inxxcC0uFl0A31LHPFryh0rs\nyybti3/Vu9OykBQfPyJpAesAcJ/ZBNMkXkVbSy7AXKirzEpZIe0X5VFrWp3r7pC3vhAmWkPunPap\nXTLsc8H8bSG5BG9JBBg78z6eqlrWKHcnqXUiBnEH1+45u+VFZinXiuiQHjwNxvXqKfHHTx/HoJmt\n4ONOAEA/68bio3THyKTJnAA1w1b2shqJgZ0Asa4MJyx7zYKjj5GC8YUq3T2/HR9RjH4/YEyS76bP\n0qFnjgdgz2rS6apCn2/QfObdJNy7/biAEH4Oxh2Ga04KlW8uxy/MN/x3BGQCgOsBZAGwA7gBP4cZ\n/s/FNi+JtE8DoAgEXU6DVxAr9pjUUVPedAEZIoSVCOY6xiOUr5nUi1pnTzsaGwuAV2XAJaOnO62p\ntSQO8tWo53/Cd2cnLIpmg6JnCOevxNVMMUu147nJHFl8RjSLaM3yMEf4XPbdFeo5XTdui/3pmufI\niYlHFFOFI9JnYzeOyBkjt1O/FuvkL9Nc5BwgpxnUTDFBbQY4TXieVoX/ym8SUlM/TYnZG4c6y0v9\nxUw/zgTmpEKjOY8J40CDDiApiomj05hMrsTpp/gpe8asyP9mI5tRj2JP8zXnxhYCWce0IFvmjLK6\nBLrs5fnRri4jysrSBy5tFa4T/Ri75junoM9g5kGZe/KzPygPDmeTU23zIjNuayTBFgf6DIXthdlP\n4MLey5D+fp1wQO2W/JIJGiqINgSpLeq4vcNYEJ2JmctzUCr3oo8j2R6M+gqBrU8jaJYgwIpqhZ8W\nhJJnelsYlC5zct8tX/OJbHNL02t3Y8hdz6/tV2r2l8MncFRKJGxAkQtD6TfRmbMEBqdJTgQccEOF\nqVIMg4v6IeeOCuWdPYqI1oEiXRAvz78zKBEW50wGkuMpJI9XTclpSxaQQjKE115eNlJcMLqXDt4N\nuXmewuv469lxRWq8vH25Lk+dg4eHR/HWlSvw4NsJXKhzYW7h95rTm5fibITiROs3mNhiQkn6C3Ak\ngq/r06hCHDPNYYzQSu6dewTyz8UPIV0RwgDfgIc8Lbg1EwWN62Cd7yLmnUqQZzpQofLiT5XWxhRD\nMSd3naTbfh77rlOE8glBoh/MDDvgmzSqXlH3R+YVfwOFNo0bIhkMSSwSkQpotF7UCjbakwD7ta8S\nlUwvuDEP+Jyik6sXxzF6sQt3nHnEdbBwJ0rjK5GwqMDIAloj5vRH/DNQpbS47tQUFDt1+LsFrGSp\nhXxhMphsgiAdxMUyDrxuHKNhI567pCd/wn0BMhwtIr9v7pbRMh2XvzyI199+A1+7bxWmHrVh/5dG\nsP0luGgIS8cTv4v+cPRPzPOumYfenEfTB56oQfdwNk7kSdxqtwf2Tz5QnLxvbQn56z8APYe9e6XK\nAAIM6CCgyQPKDmtIqFrYsCxN/npFmu+NA39M/0ohpdTj2ek9DEMBxGZp7QXO9GSrOooTf/6YilpZ\nkXdaQiabNKEZCXCnc6JZil3FfgwXdGoK1S6g4zIpCg62ZIDv1RUkd5pXiCV8z9J+o4sUilH2QLxM\neVKYgVk4rkHaR6qWanHqFCXuoFfoyD0RZw7NxeHhlYX4uEhCYyN/tKaBKe0+El4HDAc5WGwWkKJD\nl9C4Ok5SqpR6bEYA7tPfHJCN1az7qQUJRaNeTr7/ij5i1SjQW4HJSSflkc5IBOcXH8ILqbUj5IBy\nkTwH+/G0e0uOzdgpbdr6O2S+uhpJckYRnLBu/LLuLo1OM9kvRbsRjpmQ8Vbjhh8Mb49bVVAX9lNv\ndpLmRvQwJgHdhM/SGU1US9qvcDIBvpSZN0n1uELFewwU1FFHMZqVQXl0qMDn02n8ifApVbcah9/Y\nDmA6fr6AahieqQoMeC4HGpy/5Kj9dwTkrX/z3f8crHNkCBEL/mUm5ANaxT1rJZysv1g5rsXnNgVE\nxCIWIcxLdpOIlo0bcXVj4/XA9TaglUF3t6yeMNksqAPorT0NyOXFMdMY0N+P/YM5WuLQELVMLm7Z\nt8XLSZzMlJtkxk3ATw5yusTxcavSGAcjYra4V/1T30aj9vYLYiutRjGc/JKiQpBwM3DFGoILihgk\nUnp9Sw22rXIyWHd7GYp712ZVGIwlxInmxPzo57bV5mAaEAqAKBtDrjsfZGwIcYcocTVjwuiUONoD\nPCzs+NLwRHB8PIN9nZeOJcbNNFcBdhelDObO5af0XL16LMeDsG288EcvwV76KGUihLy75EN8/s1D\nojT1PL0mfzY2zZlXt7t9A37adifUh+cr9ufkkvdnAZMR5JOwpJa013M/5RvGbsSN09twkRSos4As\nL/r89Yjq34FFCEFCDL5sE/1KAfazXTLYtSf5vzbIjyrv/ELyHg0gZLAwMeEDDCsbZGtQwTRO1VMB\nAt6Z/Ig4WEFRdpSnZq8GHkmHTEUUxcaLUEc7ei7t6YfaUI5MRoWCC34OVML5iBU9x2eg4J6vyQvK\nQwjIOfjIcS136cfPLpSW3gMIaqCOuWFu+r28pEHS3PzILViw+jFq8ithHWOx4OEH8MnmX0dP57Vh\nljyFzi2ehOdnvYevpybhV5ulA/nFKJ2/BxMrz+GCSYVK8zY6LZGCqAUCxhps6OnEDS0DyChsaO+2\n0/WfJJHdnsa6p55EYoK4rZNo6AbvSi7W2Y7u1GaeWHMw6AQMp++TSrQOEM7PNEsmkp1k5YoYBw0d\nhIL48U+mBpXFhFExRP5OuwqxEI8NVyYxXFR8pa3CjIyCwQ8HOUtPYRNWbltCx6yAg4zCK8/VfJ9p\ngwcjmBx5Fl8et2G2zUTZeB+sCQUs8TZYiR2dqmEIDhZf7tLj05H52HT9y/Hmj66XaG4pCZpFtHHL\n8EniTnzw6kv8PY1hbhjX4as5e/rbsqqUOyxv9mGBCNZx9ypRBKeYfgGewSJpkE0wR7NBDfv3y813\nvttNT4xSYqyi4/19jDRvngR0APNqYDOGyF9fXYlVq877HrhfByFFZES7QQODqlDoHCzTWICxMIVP\n7DUX2wqjEC7h6LonmRUX16ZQfoB4IDDA7gFj3Kj2G3zotg9w+dpWoPsGRb5+FGyGIrCQpjZjA9df\nlVXdSNWMY0gRHyMy9WmnYJ3xtILPeJEz0Y+vzhoo696vGDYeV0jnZ6NwGFQxqrLBH15VOjSEkkJf\nLA2cuqXY4qZBCw4dEZgyDYf4qEwzNXICoSNlLKdBwFOvU+1PEHi3UNAMISN56bmJ0xBgdH40FTUA\nbEcnzI6IaSVYNGTUpF/ePvISt3PLr3Hrmbsh0B5louc6x3z2JyklTs4Z6xfwx1NTYQoXYzjhvoj9\nndBf4iHhcsTrWVFyawBh4lZWbV+bWaYeGxuhGnbPI4/iiFLLIU0gvvEGgzRjM9xxPi8vEMCdJTfO\nopF8TN3vrgWgADAEUekGEXk0gwN54Rc1Bf9vAtIA4Lf4uet4+F/z3wJ45v9j3/95tCU6UImHGCsG\nMFTs0XDjKgBshnttDtRVhEpQHwZiNchIhQCAVadOXQ/wNUB3EG63SnDM1lHDEAV/BhByATZOFHl2\nnPBaGDgyVKVKH21sRJFKUIWZ7Gye9QxLpFtLhqNxfYVRHkEAyE21MaLPYAxeIrC/Yd6UdnsoWZKr\nTSJ0GphUC5wLjdW10QlaUUmO6HeHwWpOIUHYHNuItYz2URfKLD1ER3JGfr73pEvBIJYfoXoxAUiZ\n2OyKptSFkzch213u3JHzXTGGtB4lHYfFNVCejhoDZXYF9gWDMFfVkcvOXO7Q3fN3OdfRZ9t7oQZ3\nyI+Tb4VirIhcoPG4wdzlzPJXPbgX87/o0xpoFC5fNZyCKdNVWcRYW9yYhjZmFGsVTQusiCYr9RZY\n2F3YHb/UkAdicMOZE8I/xPuhTKnEMAJUjOUk8mRMHGhiU0xWEKusAJnZzH90iENCQ6EyfCatOf5w\nXkpJKKPOISMxEdUL3YxXq8dlrU+zUbUED1Fi030iKvVn0HCoqaJscAAKYzF6R/NwYf5dJlxzLS5C\nDd1QAV1duhN6bScSRIMd6SuLGunS3BxPCij5CUzjNvm2D2k0wYuQWBltC9XkvvcSMOR/i8I/VMFz\naIr+fEErSnqq/FcoU3jnqAPPL2RBut4min6C4GQZ26dMQhpKzPc3SXdeAQRTaij6OlHppOhzhMBn\nZ+HITyHSHarF2g93wGWxAPevqjorZRFTRoe6SovcOXBQl59jx5Af2LflBfbU6z8hqjBB7z5O13Qu\nYiLaCH7AbKyWH+1P6iQ0tlyPlGE2ow0dxadvX4GrrpKRVTpA3HAgd6Zd7BsbVSkYGZNdVSShBiak\nOjA4qYGkIaOAELw7tR3hobcgnfqE0nBOQpz0JYwhghJSgoBnAPbEPTi2xY3G5EKcSy3iZ2EPzAXV\naK124VTyFth0o0K3ogyvLPoNjOE67Ju91x40iKSxsidPHzRTfnLc2jWI6LBfC6VA2ISbojuFTA7w\ndHXq1ATe5yQNY94Bx6zLASHF4x8vYMHVXfSd6UBHxzTfXXf13xKLLKQITyIIHCGxSKeqKd0Ea0ER\nENVgbXTXjglBcSsuPQqiSEme2XcwjNZHdeZlwMy7llgjNry1x4ceowsFnA/wNyCrrJ065RLZWuc3\nLttHMbXRBNcb70lRq03pqNgu68My4vEAbjGEMChmIRS7kchDCZKMjiti5ihdBXeTBWkW7uRT1xw6\nDP0UqBZggesh4z1rwh4ttvcckyYZ01RL7QxsGbBAof1Ml4yMDs3ZcVIemEuRDoCuMvDhtT4S4xOp\n0w5oMe/HPwywZSoGsjTGaxMP3Pa8kCuaMZSaIi8yPE4ZbpDmyh5wOQeOyTZRaenT46x8GnmMmd7L\n3L3MuEei0eUy/NlEeactSWaYgJhaUKqH90nTCrdX2ODFIcvccLeWBRkHlD41gISyRtuyrJsv8++Z\nIOYvbLdAkPpn4efugyJUEkHmlACBDYGb9r89jZcHoAfA/uup+9eIALjqlxT7b4Mw+QAGkPLkY2Ej\ndcQl2R5Wy+9sMRKZwfqxibgI9REW0nQ2FbbLUZ1KXnzuXA1AJwFNXkapiETN5Qzl4wT+M0nApST6\nKkiOYuoOcZAMaXJ7gycG4EtEcwKSycwkfCdJznFBisX9xpnGiJdEITaNKilmhDh6OJb0RILCwYAS\n1eyAUhs9L8NoJki7Ujd/RORNV4ki9fbLtRYty0XM/qmGNrZUdMJVzMnEW0vqMhAAIM0XIlHdnYGu\nCOLoQeHq3P3qno56rPvijRvkoBmPalXGlE0GG2Q0XEAKmbIE2IkOK9sncH2l/njBtCPRvpECeD/c\nhQdwCkcwBW/+wJC54X3kTGmpqenkBFzR8L3uMnyLa0gzNinN0oUTy4GBXGgKPpJHmJVMwb2bMd+k\nz2pEY6oFJyxWbQEI7wWTdxpd3g3IGyrFEBumqrCdJxL4UUli9g4AD00C3neChhx5tHTYhYtVcfLO\n8r+n3Cqe7qzVo43oUbLQwmiTY8gwPCD1QMtkqLMSKPOGIeYmeXNggIrqMnwR8iA9OgOcMoi+W66A\nqqskHBMBQ9VZZGnCwKAWkYBZyhxxYEne+81sWYJrgYfurfoO4B1i3JiLbG8uGn/VicL+c8gTA0Qp\nKjF1KF9VHXVi9bkh5E28H9nJU0xyym04Vm2Ds5wB8hOIv1WXTJ5Woy+dhUuk88joeZjv90FQKJFo\n96KTirhm/Ahw4gD0Gc0tgRleBKwUtyQ3iGIzUFnQTnVMNhRcBqV1X+DBP2yGyLiYdftuQjxuoZNM\nBzBt1s2ljz1xPT7+4mmIzA2EDzej+ehkbNtcLDylfBJIMshfWUoz9gRbTSiyqACDh6KM9NFxTxSM\nRo1CPYNz075DY2EGv/4si8l978uUkkkgKgowmrJBh/uQHlkLrqgogyE3OlCumI3v2bEyBxmoPCUX\nBfT49d9uT7xUeQvMZ+fh+6l7RCZrRBcznIIqF1lfvfU5sRQa+SNHYNh1VsSwxouAl0KZYtlNiJk7\nuYXpvPxvcUlgEr8wMZpGXy8WOF/FvHCE/NePSL/zziXplJKfqHrmsow49wmCSBtI61+JgtVlVO5F\nsmL2X+VN4fY1Gzv8NyL2e+j7/2t8oIJP2/qWielqSjV14Tu1GSWWDUYwanahUNIDPEFlpk/so2Uw\nWuPchPSAtOjCu/Sq/WZ28Ztv8jMX8dyM0yyOBICZ9mE4qQ2cVJyhc2hmuNdAvEXD0fUYPVvAxjOk\n0Dj9iiOHkTe20PwEnrinxbE9fX7Uj/8iuQwZplSdmwEI1PnVkDM7xTQpGEE6UIOBmhwGcRuUv6rD\n6cUTcNeT99W6jepdYFUPVXn6LzAKkevQarTjqd1t3eQeShBmjqf3EnmxJIylRbJAV6LID46Jq6Mu\nCj6OEigljsMTjoEaWR1LQW2Y5VVNkJlEvwM8AS5r10U/Xflba2zDdXijdIXkNXpQGCkCL88AwWlO\nee7s/EdTf5H46k1kzVAIAdGnU/1sxQBGp6fgamUhTv8G1t7/7QJyCD93Gw0Anv1fxmsAen5Jsf9G\nHADtR3I4ASBHw/tIQCcii/hhSeD6jlWoJPrzADcTcp9AR2r0TJrnoWITDcC5oFmjTMk6BqDAxNL2\nblgvgOoqIMuVYAUBNhVQpkc1pZgtjSx3UKUesuIUiZ20Ms5oGg0WaldmIB7SbqAI8SxMSeXWPlNw\nqlGSBuQC+ZJskSAVQlW+2VE0CHZfXcANwuo2WMbry+PayoY8pawS+gLgGQUVrIw1i/s5allrRqrm\nJBs36YHew7q0+Zhorh3Aq8opdQ9/9hwd1Yc0jy+HKCoUpLAnmI1sF64T1uPaLcD79+doQ5JR8d3W\nh1FT8yZdhgRmkGYsq/oVNjo+xPfW2/k/n+dCjCWCZat34TIhg6ZQhfrmG58Rzol1mGs6xgxUbAOx\nBSFPvoBGHG6yQE/A5EocvMgRY8Alj+Cbvp2ci08zArUzGR6YQwyxH8IMDh1gcfSwgVj1o+mCgQje\nL1tKcg8/quwKWlj5i2IMGa7GbtOlkAWCx+66G2GmC3Y+TRQZgI5mIVMGRNJJkoj2ojuVAjuyErpA\nPuT+ZXjymudNm4YYWBpOwKYW0nBqMTBQrTYo/fLTDoXJpNWjHAZTU8k5oOBy7jdbRiFPO4jd3GJ/\nY121OMHxJrKGK1B5aJmhoDGCnfNnYGFODx6328GP1CI+fifOFV3AkpAXW7S366RYEoOKMqw53IpY\nngU/tRfCEBXwQJ4DA7QQYFpgNlpw7baQrue6MaqNySh1rWSzqY7+kCOSPFRCYLuhsj2HaN1mEOdi\n9K08JNkEBdHNCeDpF3kMaXNQefv3UP15BcbTFKL1KL4+Nok9OORCpaoD9029QPhaYIKsRExJUdLB\nwMEMk/R4AqxOh+DUiTBYWlD08B3yqGqIfuBrtby66VUoRR6+OSNQ9Lcj6KoBd8Vi4MNeMIxXmoxB\n6iwtRDL/GJOPOK6Nv2uczzejYkyP3RP3e2JJDmeLWoVaVy20sgaXdSyV2QYl892XKelMZghWG0Ft\nfU0c0N7zCW5jPbleHBV687bP2a+ovdSCrs+H8OLrPNqzVnhQMFiIJb4/lZUFE7jjQZhYhjJWCb7f\nD3M9VfsYdeWeVJWO5Y37/u7FxyNIHL7VtH4b/lI1tJhLTD8EW9ikVMt+/FgBiJIL+aECKOb75PJ+\nt9CHUkQtMup25LNn9LuIa/PbZ2/66qL49VVZjCYYwU8+iuYDBGk+CzES4xdzc+VQJI3zqq1dLOia\nTINvQD3qonHPSti+uVexC8/EsxwDGBrNYK3YS0LevKGo3gs4Ec6aCuV4e5HCPDdEkbZDczyQUkTs\nKPZ7yWtPjVIFJXzLbX+/vA5nbkr0ZE92FPWkekLWZGmfbBeJmPoapVCZGeCq6rhAiuG0hicXjsjy\nHPcARUYDsScR43kYBViY3OYOcI61xE+As3wIHAF+dzZo+XbzdDk8eJk0UvyrPHk5UJmeIifGrchR\nUW/zV1sVh3IFsyMVI/7cUdGPQdz6f9sw2srUGA1xED5qQdJ67JcctP+O6iQAvAJgF4DGf40Dv6TY\nfyP5APoRd4Zx2lxLjYNMQikw+3Os2PuXaUmM4W90pQvgJxJ1v0viyoMYm0sopUz2pEnOOoupNlsR\nlwGqwYYbpHKUHwOQD60YTEp+PzISaEcEVxACZkbDLmLfeQAAIABJREFU4EWSHqfKxeMYTZUTKaNN\nZKtQprUVcT7HVQz+Wp5BJcuNqgPmlVmiuFVcwV3rEEhD/Bv52vPZuh8Ntj4hHRmA2qaabBNIlAlz\nRY5k4nQgY4KUlNgp7SBVROlKFo6WpftkzzQv5xglIFF/4GNVO581cVjkudRD7KAh+qdog7ytFAjU\nfQWTO8olc1yYK89BX34/ctIdMRBGczTjwU2ZvUQsdWF54TfiqGc9Lv/zs/hN+E0sGlMZXnrhfajv\nPAtz/jmUzziWOtG3koMsYQZc6Jr5I0tlAk/dPvQjrL+aBWXSNmKKe7G8V4Zq4sfI0jgTbuUshNgc\nJswjOTnbbIy6SoTNz/cjuLUFgc+OqxqH5uOUpYGYgiWUp5SaTxio58WlUCWj0AosPrl0BX57w3UY\nmxJHVQfBkFCJoVoOXzkKJXS/BpvzSUj3sCDLVEDjc7j8yFX4cYygua4fxVxcwoAK2GvC9FDbYbrz\nnrKNx27xnco5Gv+/2HvPIL3KM/3z95zz5tzdb+ec1S21WhHlSJKQQCRjAzPYBmNjj8M4Dbaxx2CD\nMTbYgxl7MMEGDBgjTI7KCWW1QnerW51zfFO/OZ3z7Af+u5+2ar1U7ezU1v6qTj3fzv3tuup+6n6u\nO5VrIsdxNUv2l3KID/EeL4g/cN9N4mzNRRZ2FJNWkpS8r3FwexWLp2e59O/3s3j3jyg7992UrevX\n8tDnF3HgunvFXwwV+DtV6s4E6Z5Yw5b7nyRqtjFXWMs2/sBb2QwFzRZp93kYqxPCFVF5LVvBXRud\nPDUABdlGkvFB7Ek7huqnaBhbxAPvPaD6TGn+dvUS6toFe0o2MbdsH1W2cYxjqyQ1x3RnblzZOZbi\n8Qtr9PaAiRwHbF+RIFrlo3ZIw+CbwlBURIHfT9/aLUx5GznT3cyG9K9FA3fjsr+S+Po7/8pQfR9G\n8yVeSLXxrXcvN7mdX5AJ0xvZTKlZSLJMqI10f+YjfvSFUaznd7JH5FE+J9NzaUVeMmYNizou09po\nY0P7JiW7TBNpX1prPyGl3SZYNL9K0PKS/Q/3fN/sSAl+8Z5TuW1aj993Qx/TPgP62AwUbivjpvkG\nDsiJX7h+ElGp5hc1GW426uR/+N10y++PcrO+YvS2+rA+O729kSkn2VmL4ciRxsOXd84Teu6gqDnq\nZdY5wxsgnTN+TFkTa1qOiJLkhHnYWyPSZvh4zkH7kFVO1RcaPLuDbwip6fuuK8LnWMqz459sw062\n7JOxtnvYttnLG6cvLIzbpNPcOlj30MM2EWEJ4Ye+Kk8Vd+ZmyhYYg1NOpilD5H3GlG+RWIK1vrk6\nRDbYZAgvDQhqYyTaEobcQKm+wnhSJk1y/NdPPoEr43M2TH9sUv5q62s2tmufZZ918enl5SE9ZHwS\nheX59jlKbA5UB++WDmdLLxWaNvalsB79qjzXnTBUVREL4szqk4eJ5S8q3NfvxhZ3aY0pwaktUdM9\n3/3pLoa/OlP+uw+xjeZT72rEabpaWtSzXjWzVVe0u7I3XdTlharpIxrn+AxFCwAYOL6OJiSisZi5\nyqOfRmj/EQN5CegGavikIxnikxGw/8n87waS9pxQLh8rCoKAk/k2zU/epheefmEnkxK2/BZPKKA/\nff572qO+h0U9vfT3ypG5uRuEIqMaqlf2vfSNIM5zEKnENXosI+Nx/AF0j1FVBiIqlfMCuaQD0utN\nSql042xfNZyRqpq+/F4Dh89mMAV0zrybxVA4V2wVk1tMx/l5/M7ED2InlKWdiL9O1fud/sGImlMp\n7EJBmmOYDbr9RIAs4fZU/vqzJDMO5S7LU/n5hiBBbw6lo1KvThgKZmRSKeRUOhLNqU7hmLK/eJf4\nZauita3Zwy5HvsFYOEQBFbwee0evuRRw9HQsJrXxF6wes6F/6/csuPGjbDrUSo6vE/elY3JlZ73a\nNNyPenKBlBvf4vL5r6rsKxQgsE3rLEi3yMhAeTy3NAJqcOHXmBbGcI7iCE2za8kCmTTDzbZ/fSc0\nV0RQrzcMKW6Tu8Kv2Ps3TuvksFnvf3TBF3PxWu8nVSoopU85afi1nFUkLuc4s4Zigk4nrrkIl785\nRJk6wWdfhdCMi4mFdo4vHFTLCltQnXYpCisI1SxFCA3D2fWs6l7Cvw9oWNf/wkqPB05UsT5pc1rT\nM+EN3evy/7LjSW1D8wbuejtIb9EJebR8FNd0wNPlLOVwJdzXN82LeZ8nZpesjEWo/MqPGYg6IXcX\nE74dI1s/bo4UPnmQxMEH0XODXIgNcctnItz0pQ944HMP4I1M87uld/Ioj/GGCcxKRXa8VMaFHM2M\nF8E1NQ8lNnzeL4YMkDI0YE5rGIwlesKYpWzajTVp4GHjfGbcJhrHBjivLKJvYj8/vesHRM7eLiiL\nikZvO40+aA+PKWd8UcP0SXjsMRO++UFWyj6yeNAKCwlpOp89/B6RxvsY9Rcp9Xofi2lLONODYtl4\nHg25/0x8Y4zvXH9QFo97WRlahBR/M31x2yYSqUGmlBUcjj4jm+qNHLx4jOdlikU+3ZtQU0SsiMUz\nTTzHC1jncqgMVJJvy2+PHJNC6iaaW3ptbP4JYnAdYmBRtKq8jxt2SMevP5CYdR2P2Qwfn1Q5/uQg\nwXSVomqFd3xHl5VuxC3LYGbL6vSAlsOq6hNFQmRVzSWFcGZwL53RRxTbt3pbX5NEC5hvyOd0apYX\nehFqEMbyxrg9uY8qhtSphYU0dMFb/tZlIwNZWVvtafr4C2Unm4dG9Lv/YyTNvPvIrmxBjYeh2C56\nfFdbrrxhNBNOpYU/Nel+8Cmbag5EmBLfl8FkMCKqI5nCglklNFlEJ/PJi7qLSqVBK8tPVI2kbCAb\n8Ph3grlXptSgweJrUBoLJ+Vg9m39K6mk7Hv4fd6c3Sr6u1wtJ3vfc7zMXeI72g/EXdwVDzCV+nyw\nJYwlz4h3TpodKwzFU3GZmfuMXHZgtQhFiyyNg1TF8DJU3MH8cHfipHM5t0WCavOgqp9vTTJVG/l7\n2aoxy0yyjKvNIVZdvlfKzAJ9LLbTnKPdk01k52zqGdhn4BTCiCpqL38SDGRPbWCRKY1rrAkY+DRC\n+48YSB7wDJDmk2utL/Ipg7f+GykDZZDEmNra27/6QoGqAVws1DMjtWU3nbum/BCHnZL8c3xQVWM5\ne4dXOde2ZbbEOYKesTUkk2tFijEM5nLRWzxYhpoLo4UEJqZcNDbClFk0p1VhjmuYLZ4qmfGJlBxX\npHJSutrW2F+St+seJYHca1Jxdxrxn4HizVmj0OwN9Opxe7Pe/8wtiB1vYq4Yr102cHS+XlglD56t\noqFJQ5PgT/Mcc52iuNnHbuNmPaNjnIkWzg2KOuyhWKR1YAWb3A7Zb/6rlcUB5Ss3L2gYTdeijDfp\nv/Hb+U2D32QrDFAu/kTf6LeVK696XkRmhoO5aQuvfeEaTAva8a9QTKayEM3n2vUzXbXiz44bsqt5\nl5B+TKemhwWBQSNmDTBKNWQiW+flT7pueW8XlJbpaszh9itxB3OpIE9e0ZIE2L18eGa9fESOyYUU\nRDPqYGlCqOObXZXEeJ77nvn+8YycKYpChZlqcpL9lbGYyXxa7Nl9hElDKd4jHTJqcxD3O/nmsZdp\n6ZAUnqnlYCqKbkmwsbRSWhqnhSXuR1pKUD0TnLKk2H5+PTsMhuyH814Tq3ZcSX5Ln14vPK05gUFN\nLj05+40Nc65JyzWsejWPF1e8JAKmPLm7+RW3I3ZOdeChLN3JD/QAE64N5DlHefSZLsY0B3ML36Rg\n0+uVJ4bvUNJX/RIx3sAaRzM5DU1MPxbh4b/8kvaSTia7TmgDok5mhGCHDsHdy43D1SZfUgo5XKlg\nadUdyvvNKXO5FT9NGMxHmHa7hTWj8l5wA9/RjmZSlhni3zHS+ep9LJ1ow1RyHfmL2mgYWqxTHhEZ\nV4Y7z7uY1Qc4EUrh1AU9F/IYStdCTxXPW29BTk8TV8B1qhMx/gbV9jw+cm4g5IrF78n5Tym0YhR7\nBcoBK7NND4o97gm8qgY/2C56XtuJdfwQi3fC3oN+8d3827l5e40M8iVeWTTo0oRUbNJOcapI9eXr\n7C/Yp209sUU2rm8sJgUGg4mGqh7Dlx1VmaQlxepUebrrgawUDyNnpsCayVKQyaDs/RC+thwoNQfn\nTJFrLzsnHnwQPB6gIGIPC5WyuHSdPn0lFntaMzrTxIoySnLWeuMba18UzhNfQBRWMJH2kQGCeTBa\nMI2WnBU1DNC7wCtEUI8E3z91IPKdnyqmHUr24uLFl1196rQh6PjVUP7hH6O4lyNMLlj+bSIftnNv\n+YvGxOOPqz/8UVh59I5ZAvFTjBkLRG/EEV64UAx48meVppkr9Wk2s+ZAr+JMuC+qlVMG1/gqKczt\n8Mrz0D2UkTmXpD/kZZf/feV+/6GK2gKj3Hniq8jS+mzasDr6x5f36Rs2/uzIcnGad3n3lr/z7b/X\n+BZaUczgnBKKYb6YGz0rhluDXUP0UScb5DeFUY3hNjZkxrl99i1nc4WBratS2MZXZ0dnJc988OqW\n1aYZT1y40Jyl0uYaUWNZs6rQRKPzi6pnO4nfRxANh8rWGM1ViTPGpswZ+CbYdbzuIO7RRjUvNvpp\nhPYfMZD0/zqn+GTv7hIg59MU+29EJ2fpLKlZW8P0SP2IR9MxuDh7mdXy44d2LH/hDi5gc8BbG9Lv\nNfbQ7ZzV49J4KlwZ0iW6obbuFMT7VdVRwbnSQxhszdAZp77AIqkvpmAkR5jMWUqcEDcUKNbUqMgo\nSZT6Axl/yZKit8R16tdDD8PkcoXYbj+5AwZKr3D7yXW+od+Q/trsG9S1reedK2Z45MGtxSbZUyRL\nysSj4REsK0CCMpPivqLJgUCqOIcD2kpB/+/ZZV5rGKAWo3Yy3tK7Vo2GCokMrdLEcL80vF6aPmrJ\nGd733Ldl3ZYgq/7kRfNm6XB28+XLHiWRCDG9YMKxpjudWFHwAX0d27B5Q8rtoVe0YMc1SnfvNkZD\nqwyN4kM5ckIqsjAtS0fCYNY1HFIUv/om+5oviLcmx5S3xhW2VuVLq7aiC+8sQ5ZckkXdSl0QZgqj\na50ERT5x7LqZHrcBV9DkUNHJcuKzQ9HlCSJTGHJTuNGshTd1p6+45jjl5dvliF6C7eMikf7B9zil\nlNKod5Cf6EMZm+KlYaizK+TGo6HR8nrsvi4YPY3aMoDflUvTeAP7g07lPxfDSO5Jrqv7GW8Wu+VM\nbVWu9v2HLWf1EkqO1jBh7ONC+RBzFtLDBUOosweotNl5uHw9ZRHJs7e0E503xhFvI92ymVigRUbF\nH00jXoMjUbMXQ+ocM0PNOC4Ooisa7XV75Vc/uod0+s9q2pQVe13O7I91sM3dz7hHFmArNSXUsN6u\nbqTxtR5zuijNtFZPOnOCUT2LNuRFm/wtP1FuNga4nQLjBHNDv8fz/Bvo+VcwMeblOp9DEDdyfvz7\n1ERdsj7oIq3DwhqFcqWcC80ZKgYNDFkXoVy4gNntkYEs1Fzcw46j53hv6xJprD6Uts4UWEccSfpK\n87lmyICtv1TfffM3MFWe11EVTC0tJF85RFR/juoaT3Y2x8jm2+MJqGDjUw6JhAXnF9ArunnR2M8u\n20es71wvBssGC5AwNhZlLiu5ZcNho1J1lB23Hc4ZGTTHF51A3HMSvIUFBKXENjMHuq1SFIwxNV7m\n3XPYkhgYAF2HmsBk1u4ajhtmChMdHctR1JRaY5rjzvBwRnoiYsHH19LatRJLysOMOgvAbAGMWifx\nXaqihAl6Wix0JnInGcNhOHpRG6wqMffWqZ9pGh3QdUtF3cL+S6x84APmHxtDnH+fV256isf4NvLp\np/TJnt36oVM/pwafFks3aZ0TOYVl85sLVFOaVf4VmlmppW5oipvaCjpDDklo/ybdVt2GbygLKZeK\na1hEQ49QEi+Wh5ot2teW5SrOP32dJe+NolsQeXlTZ2+649HLLhgdxFBPWpj+iFSzCy0hcfmyyYjD\nFggeTn7bt6xoXDlPj6hRPzDfnzJZfPqS0XLqco6JFusYokZgTzaaJmY1bHU9OzbNDAqDoYvd7zXo\nH3x4+1xFzgSV1s/Lg+lR0/XThO/2oHWMjK1eaajWP3C1JM7DPfDP/WTtM3hnqvJeee+dTyO0/4iB\nPAh4+GSE93t80o18+9MU+29kmpp7MmSjOdXBgZywVTeQbsLkH+b0574e9eXzGlKbI9atb3r984z6\nn1SnC8/XzFn8SYOhCUfuG0nGerJpdz4JYxAlZ55ksIOh27KKqHBh7dNExqYwHaqWk4liqpUJCpIt\nenbTGTX4Pbfpq0fe15s9c5LJpZD3sgmlAI/VdnivdsXc3thV5qbXF9gPrLzAs73OZBwja6+cVjEm\nSZGlKw3xBOm4xlxzfC5/1FDBhTdjgtmD4f2WKxxDVJHJeyNn/nSFeimcFIZonpa5/UYR8XYpb1Q/\n6z3Sdp0tfl5n7cQMyZjKsZVTrLpuNx/sUnn+oGpoigmloOkk+6Zux6XM8S/KE5lLZ7bTNXEVC8R5\nTBWBxH/pebFkuS5qR6cgbFSsSihz55ff4r2hTkq7ymSgTueKKxB/cd68Us+doT28hN6juaYrjrfo\nYUVbbFQ0acHIYVEnmwKazPcFxIdClZPm4m8+4nvRYonXUTwcwG9A+8qaztxxzwU5lHeVmDN4aKjo\nAnk303o1n+UiXYY/8vANj1LQcTcNuUnUXpOIuYq4rLsfEf+Y1IowM+TjiFUwFS1SXJF8/eZSmCx6\nVVl2+eN65tGf8Ng7uvOv6S1c+3aMscS+SOMEcnXenL50YAmhQDfz8y38pnIx274Dz2bmcBGhZDiI\nyZ5gvPN7whgPpcVVX2Rt70LseRfkhe61rD/RzbTTCBVj4vLOzThieWj2x/mTwW8Y8CJvOrmPiUrN\ngqawqfJ5oY9Wc8216xK6ohKWlThFP8P6eZE4no/aWpn513m/5a5Fv+aNon9BFyvoPJ6iIDbC64mt\nskUOCnXAR9o1zcDQtaJ8LoaeheljCmVxL90tJiwJSc35EQxDQ9JeVyIGsuBN+1h3sZ13ty4R+o7T\nRYVRI715GjM5+ZiKVbbu7FNWd64InF75O4XqaslXvkTOSJQL7d0UFDXFHl4/Qa59Wjj4gzwYy0If\ntE61ErJ0ZMREnKX+oUwsG8tyDhWgcVERgbggqGexeabIe3d76Fh33PKyhBkfDDVulz75c9YrBnjn\neZHzxWH272+U265OhVauFMzMwDbTCS1R3RExSKNpeGhxNpGVSplMUjE2JPUtA0rxqauobB2jwFfO\nbGUIg8EoA16YSA9gHy1mzF5JoiQDIVGxdP9ptPeE8qB+v8EkM9Ibm9bqfCNKRDo40XOR4eFlKPlp\nDprXkhvKorcNGqxjWT1TfUkvpl+JskYZ/ng0VeLRvHOTVspkkTFHt1MTG2fdUdPaqC7JM5jVTMNB\nEO8DIVW6p6nh8djd8ivCPeaQ0ViNlCWzbDjfrjJ/zpLCdDYeyJ7XHTHav/v0V30vP9GQkUUmZyiN\nmh/OmgatIlnTdOn8hMdbUdxDVqnULfOdFwyuEaXVXyCHshnm0UMo46Ko7q/0GEE2XBIV2x4RmWw7\n8bX3iVcmvmKum3+cjYWjulaikn8cb3ktmc9arpM3pzYYThk99m6ohW9HyNimuEXP1X947/8jK21V\nPnmJHuKTHekb+aQDefvTFPtvJImjJg+pxm35J1VA59U2mVITGdU6bRe6fgeRxKRB9BpnB/5JUnQ1\n7Lhx/rT63lSWpSwK78fbO5XFlAtAOq9ZcNmz2KJe6cpT5IQ/hC/mlQccG4jKfLHQPE3AGfOJBq/C\nXwvxPl2T9fuawBiQ1MzkULZJrhTHe46l1ri1pCstP9zG9HWvS+/sYcNDfIdcszAsu/ghq0cFuSEY\nPo+CpWipd8UiIzrohR+DcpV/KJISEkF5WWfaKCEeVZhe/JoZaxBVxPfO7fvqXDc29j9t5DOqzljI\nS/8qP7aFWfZ5N+lJV1JcXZ4wJ09dhqwbJiBzyVswZCkq7SUTy+Mm7V20bYQudWlWxZIlP+7Drkej\nN8Weif1xxxFuLYPgO2Fh1E2cqw2xypHOYp8itlroWvF57fpvXgovSKSS1qoT2QQRzuVPzK3vypOz\n+lJRaBiZ+FXq4bxk3T6R6zlN2WCQcOU4oQxirmqtIGTFkZ6iZdnT0HMHVqvkSyzlp1e1kR+sliMn\nPsc8l4J9aNyNMCLNdXP/+Yd2WGQnNVeBok5RnRXIeFy50qpy0K1TduXz5qOPSY5ZFVkktlI7ZGOd\n9qGzfBpxKBxIb7iwWcZScaScrxuKLmHLKSGpGzkYKaKycw5HwyQu9xw39ntmV19QsoHDg5QttclL\n3ctZP5RhqAAyegKDZuL2Mz/WpbaLNm+U3dtvkHdEoPqj16iVA3pmbb8oHVHp2LLCqvibyCXC75xJ\nLE4XSuJZrPcvCc8P1jGpvkzRcIrlzQcZjaxl69TrHM/dImJcxDsrMLc+w0PhB+XxvDSRBEiLpLJq\nIyGPZNA9zOITs4iJSeFaWEivgKunVM5YGyl4M4iy4gpRaw4zkpuV6BlmtrWyzyZ5dt94zkjuBYE9\nJtxzw7KyVpE1NUZCXptr8qVrEDqmKlcq3WzemuRdqPXVyiHjIXVzaQFXzJmMB+Qxf7I9KcxmC+mi\nUmRCoTMMlYqb429us00Mo2xWYL/NivBtzAqup9JoIP/0GcLrJR8cacEi0oW5uRXB7m4hm/MGrIkF\nvRoVI+mhgVaDEnNSkZzjrdqnTOpVET7SbqB4QYf0+sqYrR5HM0qRcELEEaPUV8bxlqVYekz8fv9D\nltMvfZ/bdY0TqXXSI4ODe0/cLNf09xKedEstew3mcRcWQz7Z6jO6xe+WalGhXuA8J/XFGaWYcTHE\nMvThVTMlecNKaNJBQklLg0FQRJBQ64qyCtVO1drzeCZHEYbFKIZN4JyiIt9kkDJDacRviEtXFmA6\nVoqpIKJ+eO47S2wXFpe1ZKLadNp1X7Y4eZ+D3vSmo0lRlKMoYsQq9xz9Za3d/pCcnOhGiCr1oNFz\nOl7QR7lbimDIzETUxQnDOkaWZ2VSFRwfXq183Xo9uIawfOyRkbjHkm2MUtX07ox5mYm3gxh9buPY\nPdl/EXXW8rgteMxzLcRW0F9G6dVWhg+IvPhI6tMI7f+VgWjArZ/mx/+vEghYgTISObPh8otCIkTJ\nWL4gKJOvNDfrqq6XE4r41bRfuUCrINMA7/yZwPp9lQXrhrluKGupvWgxS1OuRLGA0Q3mMMTrxbrx\nKUGOh+5xs3bMsUhMWIvYYJ3C37jKQ/iicL8xoO0e9xi7jl+l4zqZoQxB4tq5qwL7q3uNtdaCh5pM\nr1V44q1VHUhLnzqTV8CPpzaJht6T2KSdr5yG93oxVLnv/M1acVLkxoOSqiT0NZcR6aVQn6YlJ9fZ\nUTyFN1ghTZoGI4VSc765Gb0434iUEzMQK4AZXwNrWtPYzwvyjBNC8WTJXC6l8u4N3FD8O/KZ5cw/\nFcgly96UIljDNt7FuI0H9URanctaGK7NY53zbWPX1sdcWqiC079fQzwe56qwh9cmMqSqZgwG4xRn\nFtQGK+wJ1VyS9nxuDtOZ2jnjBDNcrPSwcdyvddHCcjnqOs4y9G33EjT6qRgyMt4QUJ+euBNjmRW9\nJIZtNkB1rh+q3kZRNcLzcxlukCR2Pi/c1R9R69IgHRYg2LV+fbx6aA4MF9CkjYw+wZKRBgbcAew2\nhdW5gj+9toh1XQmUyiXqNe8Jji/8iOJrMjgmkMNJ6C3uxSAEFwLFmAq7CIzXgtbKnokUaq+V1IIk\nueZz8WMd5uK291OGtqlxGq6cUiaHammeNHGsIKPXjPUzVZTVr2yrUqj/HuyAfkcJh+d7EU88xZK3\nHxEFE4PR4lEF1duCOnRFokjNEqrTYWQFFUt/ipI0uApnBGsDe/jjls3UNfdTxOWY/jRJXMmhc/4Q\nhlQZKXuMcNUT8Yiew+KIgmejkTLPAlIWQTDZSV5XhuzsLK7GQsISLu+R8m11K3d9VM7m3Qnqimfp\nslg0UrNkL1tLMCp5w7hGbD9yI+a+Z8iOn5W9bboIzdXPXehpF0w1MjHSKGrq2/oHmvItaoXKW8G3\nxeu3LxJ8OcAXH16gvvRf3oLgd7+KftdntJ6ldvJtLjqCguXFc4zf3mauGC4XEVQ60lluHvYZnuVX\nrMoopAIpIS9cJL1hEUKgLP/wmzvDb23U870TYuGyjrxJdzKeTVmEFrBgtnT1D1a1szA4gKPUH5od\nq9bz4x5m5k0ja7IQAD0/SG60mLb6Bt753b+SFwmzsfI6fsO7Yr+yIhl9v9buL5icK4lnGA07BDzE\nvMw+DMYyGipeUcIpo5xHhTqTHsmIQa+/jDCnaRKtwR+jgGQ2j9GiTHSkVAkPsAZx2YcUBwqkue4w\nwQuXIR0z7Ci7XxItIjjaaoibpvSU3YbZkxIyaaAtvUysnD0bftOwuan80qLSeYlUaN/Of5kEsFsu\nBledhtxcs5qYdoiNG3c+Z2SOEpkHMioOnQ3fpJiHOVvVQdaS5uR4LicC1RRW20V2yR/4j4Yvipb+\nt2Xe3MdU+11q5cc2jtYvJL110H1tvBJADEzmClQdUTjmiyffFleZ2Xu554NyGlct54VnCK3S1U8j\ntf/IFdYRPokuWccn3cfS/3X+z+VcZyl99pVGX6V2qSgCIP4z/ofMws4W6/OXVStLO3vPAPZMUhcO\ndQKO14C2COWVYmZWHaKnHEq6Ezr2Gp2qOyExiuO9Oi3imWDNpWH05nl09WfVi0oTs6qXwmyUqrwi\nozmZ1QqrDnNGtyrd59coauXbGrqQtC/qXdg/uKm5fyh46UK56JjEOmC+SoY8UsjpDr347KpUOjFO\nrzGPjAKniwU/e3Hn6mbRw7RAYl2u0es0YnTrGaFSaYronfVHmPZMitS0FaaSggo75JqP6sZRfZvI\ncti0mJHeFSzKkYwdKWXzmX6x1WnVR/yqEObpvPWNAAAgAElEQVQ0xAV7Tl+Du3JaNJhGMWQVqvK7\nCSSLrqepifZTcXryzCQq/8PSXhsU7qN1TEz9G+qNTj4rYlo0KTnvnDQ409OcKXKaavRyHeAyhxDv\n16nMMEsoN9+Wm8gaBbrcnd3irHXvzKoGKSrmhLwsCh2FKmFjC1/75Z/Qm/pQBg0UuCSi6oBMrHiU\n565+n7y/bSeccJDK3U2pJcvhmhxEKkmr8XzBH1stSfPEOUzFfj4W8+TGwQYGhgSJe3/J9nyF12s6\n+eaiMr3EspUb3jdj195D64UdRgS5uNuq2zItDpVu9igZxyjTw0sQVbfQMTPDzFAlgUYjrS1HzvVc\nmlS2rDNl3Zgpn9eJN7+fA9ZWAmZ89YE0vZXRoEyrWNUWRLKE48Y9whffxoAmGds3JTKliY9nDDql\nnT1k0jvMmUoff2mFdVN+WeS9RO5cnorUuKUjzOv1JaxIRgiol7P7/CQ3vxbnvRtX4PJYKUq4Kb/9\nMbvS9U9cO5hPV/V2XBGBMajRF75E5bAXbXKC2cpllArBwl5dvB+9jeM3z1I/YKd2RqNviU0lNcOg\noxqjQ+GByOeInvo+dl8bprMfKUsuszGS/NF/ZS76IDTH4HCTsmzr36K+eT1inXu5fqpohJhzv/jF\nHgPfevEsxt7HJNrvUAt8Sqb+Wty5UfYEKmixGLjJ8y6PjI/y0lo7uruEW2IHxG38lR59HtcYBI59\nr0r9hiIRiwtZMdV4fd7gClwuH/86731Dx3SjvSFvHGYtfLjxF2U/OWig5pKTms/tTRxtW6OoKET0\nCNwEpCG534RZTvKVPS8wK8Jcn3mLg1M5/I4vR6eCVVbHOdWwxfK+Wj4HMlUISj8Rx1EytmL2Fdqw\n+QKi1V+CY7rAlrPXZ88gGaWEesrKtZhDOGYraVi480JFzpHQDIuJLvdhPLE067OOYjLchiGaR8XC\n9wXRQjpn6tQ/V46KDreBZJ3f0Dbm1HrHF/Lbzh8nh6rNpmC8XFmTjTgHp6srf/3rp5Hzzljqe+wM\nuwtUJQurVv14Kh6HPPLJtwdSBmeNWqkNU9+YpSpPsudwESfuP8cCZ5bi2bcytx7+Odnzl1J51d0M\nxYuYSlu4+exc+HnXg7Zbzq2Qd5ss+p7uZHUmZeXYsL8qDzsHW1uHdv7M5uCph8yiIcvqCNqnkdp/\nxEAWA/OBnwGP8cmbkMc+TbH/NjrbTUyZb8wfam48XWLEGnOJHN1tXDS5yN9pGxdffmFXHMj3mEXW\nbftAkj8frhhBH/Gpy0ZzIj+5HJLNHZJ0dg5zPgxNyOXpApKecS444ugLFtJ9SYqsNKCicdqylCtH\nH80gpZZXPqz7qad9sEkoVYcMZIS++YOLg2415Cr5Q6mpyRDiXHy+2OW7Rcm3gC16VH6577xpyJWk\n/+Ak/+E0kS3ezoGyIVH+pBFtrjuNuzmNbzVYirOZeCxtt0j1RN0BssYkGPsgoUNOl8oS/2ItW6au\nlV6eGH8A82Q+etCDdvghbtz3MF9+/T5FfeIRhD3M7G+/R9/b80hIsxzXasQqzwHe1bZpnRllo/HW\nIoJlCj2Nds5s6WBRDFbveJ1gYCXu+N2Zx3Jj6uqsztv5H+OKzuBXZyz1JnNmYGABqbwixoPr5C6l\niYH2+0wr5NlsFqMoZ5wTJcWKJRJmlTeP6kmF0VIny1/9Kfuz8yTVIZnpL0AzAPWHha3pbaxPHSc+\n+Syb+RrOyj4sCvSXFeCN+WWBnFWXXhsxegMXSc6TDMr5oiTUQFdcYLmwmKKQRxos0LM6IgtmV2HN\njHLLxYm4exoOXwZoMOgdNN1UniWZ7iVtDGMZ2Ip0LEFN5HKpbwmlhX0sW3iwxSIVjp5Kq7X2+2W+\nNUy1/TgfmVdqlXOipymokCw5lPMxBXhm4xRkr9CHXXPyWc/HzHca6OnReOc/ni4azR3TK44NSApP\nK/03XU17IfzxTJuw5V7B8mMDGvosby7eTM5wgngygtsdIKrXct37dzOwPI+5RicbqxKMKhGurWtn\n5NR9iNzPkrII5vlG2FuwHwMpTFmFGWctaxSFOdXCuLmaD25zcXRtBj2rE9qqCmJZfLOCYlGEQZzm\ncKaK7Z3FTLqjaI5rcV5XkeRKgRL8CYMjddS3Hm7NNo9x6Uv3Knk3V8BsgFfObOy69ozknd+kFesb\nmUjh4EVE5708158hlJmmIGUk7wMjp7MVcsqawljWyGaxl5PmeqxKDqvNHmlt7xBEzOz66NasQTEU\n5NsrlamkhooW7e5bYvEYFfAkWBBMGW8+PQ/HpXKslw8VDI4sEN2AqhqlAJQcmBdoYBnf5WDTen6/\nuBStPIlI/ev0Q4X/fnrGncNH9iuy60fiOTMOqJlsRin8iG5HjJTNTodHyrKBsHA4z8rKnkoaxpTJ\nT0aSprCjGRUNckdbWfHxrlXzZ3eV5pjN2IlTcnKVsScs0GQNWtbHmdWTYIxido6we+grYk/4TqnW\nDvLiB7eqrtxJwvmDLs9RNf1KSyVeS+BJVWJ4//0vcazIa3POuslWpCgoGcqeOFG3zSXd0opV1ift\nmi497m2RYayVacrskoGTd5Ht+hnBEGy3fWjc1Rmnpw3z5qszmJB4PDP806lbRYHtPH/6wjViafq/\nlDmpKkcY5t3MB0Z7ZY18/p9LvjEudQwHu4Rjg4Nn9mL8NFL7jxjIRmDT/8n3P5e2tjRrAiP1oXRq\nzCP1srFSmRU6TdFVRi3UI9e2XSgHCsqsJj1ZdRKW6uAYgNICjm/7ldNZ8HXOrFEMzkuP2w2OhXB2\nWFxlSSMjpbxblZTm8i46vT5yOl4hhZlc33TquuycKa2mjYHq8wbBYoaCZWhl40aMUnli6vvzo5Ot\nWsfAcvvKJW3MX3ickr8ZIsW4WaWeUD93+oDoKABG0wz7SrlywsvfmzI4TsD6E7uz2L0KYwtAlirx\n2WPCj5eAM8KNRz+Du8AhKV0kKTyj8bFqLZQ+XuZW7sn5IWXnmhg90SKf3vIrGpVnMK49zJi3FqVw\nAvNgIZvONWEjIXbvvZmt3/g9u5ocPDHoM9mMJko8Rh73DvCVjhKOPA91kSka6/cQP3CfIScEYcUo\nB1yTnM6LScIXU0wvVL7xjSPypl91CdOenzFhd1OuzLLc/Mr5IiaD/dTGU67ZpOIu4YpVGaGMljBW\n72Xf4hAfVF85TWmSyIyJr50DQ6SCq87cSTMpStUZ2rhAoz1JMq5S5Uyz3HZeHIw2awfcUvUke5B5\nbbxXmcYeKqVfMdBvHuLcQFg0OvKkYnKp29+M8a7jAzkQtasNAbC0QP4sKAJaE+XkFCzFbYRpfzV8\nZSXJV/+EZpoj2V7IE9Yf2pz8CHNok7i06HqqGGJR5iT7sssUV9BJnT9DYqBb6UNSOmFioa1aUxp+\nIk9s7ucasQ4TsPLiztaP1j4nz9W9LHDvhNAa4v038Hgr/PrtfSw83WvI5yz/cftNLO3wcjIbYfHK\nvSzQL+d3SS/qvk5+cP0YxhElUTfZwB2Xf0x7+TxazvoZLg9gCMcoaE3wy40P0ZCpYPE5BytNgr3G\nBdJ03RALlTM4YjYyhiSM2MBVg31oAjW1HsPi90n98BJHgkUYq8Daa8dU1fPvVFdQzXxGR//MSNIF\nSx/jyvePkjF/zPUHjEzads27EgMBQOlJOB59+btiR6aWjC4hbzV5kxY8Lee5k5h+/kAlDZFC+i35\n/KeoZGN6mJJUs4j6o8gXzTjPfdb44aJ3qJytFN8+B/0xpjs7V4rupg7UfB9/fiumHOBeysYT9Jmq\nlRx9D6+6s5jMWSEV2DAMfzC8yYB9MwfLriVh2QAVSSSLkIuiy7KDTr3pcKDQbpgTbcWwYK4UQ+0h\nmd/fh2tOMuO0iL/PbubucIcYZ0Sup9o2CujCqrXhQTGkIeDh7LrZe07+fKw7IBYQO1vM8dQNWKKF\nNGx4jiLHHkJjDphtgFAtf669NflY6AFOjTVyLpPWY4WnuOG2tOXGU3+Z/WiLwNTSdc5tius2a5j/\nvPgjpVdYyFYk8OaO+4f7KhdoUipHmZzNz0ZFJpJv3BYdxqdI+mddMLwRWMnrh+soihTpU64QA/6M\naG2NUGvyk+sd4bkr/HJ12yucXx1j39VdzOcL/NXyC9rVE9wS+yehln9frfjtb/XCnM8mk+4o7xZ/\nunzD/9mhiJ+WsVETsXhlazBK3JgVjQO14si8w1SkK3OkKSx8BOqAZIPFbAzlzgg+KMb4pwANDh3T\n+49l7ZFiGnK+Q4Rxc7bnZ9B0hvvuPqOSM0HE4xRuVxZtUEObfAe7liDHPiRdVWBO61pfWbfwKjMZ\nWfK21JMShFRUm1aqPN6q+pJ5yO0dXLXhZWLHGmyDno3U9k3z87Up0grwXYVsaJKK0y/R6oYd31jN\nn1+44BAWm5nynTp2tyF28TwfJppJ2+YoPXcjLa+8BLuuF+QMGnFfYbqT7/I7buMX0/NpGnHwh7YL\n4nzTJaw5Z3AFDpJ/63N0OxN8N9ZCdboQ/0Ats5NVXHd0P9u/tU+90XuHzJ5ZqP3mfC1NTpVvH43w\nZl6+yC/TWJHfTiZpEw/uz+V0FnHDiet5pnEqy+Gl1pef+Y3JafeLXX/M4ccr1ugVyx5hs7xEf21y\nuEG5ZJF1McGG+cbrK2dxDeuj1rAZX16W5rJy7vj6Y0XIcyKx8EsscxmxH76fGWb43opf6dXOWS4R\nxFWYRIQljY4M4xMVWsKarzriTllpDSMtr+GXQfrzRlDHavnh9rulPuKV7uSUSOg+KgZ1jnj6oj9n\nXvYOpTl7eQBUE9IUBW0mj3J7AR6Tzvar+jX1+fdg6FWUkjMstPyNbGtKncJKQL5E8doOkc8s1/pO\nMZpeLu4dja7QzRLvQD06ASqnLRTXaAbHhAHjSRN7bzmvh5YZ+PI33qO/pEPdcfJGeG5/ImO7SH18\nPo9vEoRNFm19ryJ8Np1RKtONoy1yPG+Uxcv2EjVczVFG+Lrjt4QtpbzxX2bzzU//Tu75w2fl9+6/\nk9y/FdFdHeK8M0zNBgVvNJ6eqDXzg0cET36+lT802ETwMxPseHxPcslJvwwUmWAWMDtJpdzZqeT1\nBLRpCqeGmTx3lsryy+i++TCWqbRCopraHbbp0apvUlCcMK/6zXMykX0M47ggpybDrE8XOmmeKgWz\nirhC/pi7DYLbHLkYar9FTn+CM+vM9OpRdUQdY8dUiEOJaj5IRmnQJtkavMgSy1Jyzr/JyjYHanlC\nKprK5slCHu+M1PZFwG9NUWWI8BvttYCPCuqMXXIiWyCqzCc4LavZtitffr5N9f39DcE9VwmOzWul\n8aLC2fLTCFtSAoVsnp5KnCjDP1/BItL0eoRslMPUj3X5jTODWLISg7WQnZGtJCxwvTYtCqBgDBsm\noYqk6Ed1Rkm7/dqVjaZrvz0yma8aNGyHiuQAZTC1gqJlLyNyezS/Fsdp1DApWZrm+s3/VvNi+v6f\nvQan7vYvbDwnk0bYufSp8rhB8spNmZZY1qLkJ320ja5R88r2YEtrWNzTs6Oj1Y4wUTQu5HUUHkoT\nLqemZgSRgXcv3ABaFFtFJ0c/vIySVKWiu9NSYmK0y0TtvGNktTQnKhTDvDdb5AP6A/zini3cYdlA\nf6aXamO5bE6WUPDwJaaCGcWU+o5qkJKcmz8JbP2/y/83DcRSPUd3l3tzcDAu0cWiyWXsXnRYc8fM\nwmVxy/fFnEdYLLFF6ZQeTUXgYD5aqB9v7jQWa0hdcDEUeudHD1Ifb9Ep3kbthVKW+qsxpe6EnJ+w\novoycgdrSShhnFN+iu1xS8YPDwU5K4Ukd/7f5rzNrwi6QIzBBcfVnrf1hVwhplhmfoKZ3HfC56/+\nqeKf/ogPgYEcDREF4c+haK3gLSXDZy1wTlzgiRXKZM3YGKa7gpL0EMpY18jJ0UE2FTjplrtoSbcJ\n4j+FRBarGOGHvCNDahEbuYFRB4z4VDmjZIktg3CwirqqPZx883OBxKarOVnbge8vX2aj4RDdR1dp\nP/vlc7Ljue0i2mFQZ3wZPl+QhzsR5o9VlTQ0In+afIRGTztdro1yu2mptr13LYcKMgaO36Y+8qst\n8rEv3Iih067nexGz5TOUhbxcdOXX1Yp+q7VuxuIZCak3F6cIv5HnTRT4MOtZ1le6GZg8DaN/gQOv\nYRlcRtpXi5ozyK9KOpUzqXkUuMpklQXSSGoMAc47/CqpCP7MZfzbYvCaU1iCC6muHGD+wHxCJZoI\nzTnlqZxqWRFdyvNrn2LQN203oJov5lnViYtmXGWIpITSkW4KE37MGDlT164aTFYwtjKv7AxB5zvM\neewYXA+Qj49wo0IqbmNRsotkukLeWutWzsWQvXPLSZp7ZTI4gt+YK0refEVtHL2SFIJEUy7Ot+G9\nP9extGsDIosJNcHitRGwFfPOjqjijJfQ2WCTBtOkWhTNF3pzN2Ql5+RqGnIFmblZfhHYRnbFBqWv\nIMW50lv1S6l6VnzmRYby7GjGHqadXhSZMQa9Lp65XeORF+6lb0kUefHzTGeOGpe1J+Wh1TFMuSk4\nPUIquFFd6g2THRnDs/9xrrrcyEBghLA+hrN2FLHj+5y85Wrv2BVLKZVjfG/wDfFWpU5hVnKq3Mw2\nrgCgPceQdjuEfL5qNZVaD2OXotiiPmbG8rBXqiBUSKf5YrSNpzmDefVweic3I5kjv9mBmtnJxaoJ\nTt1VKHtUB66Py9mht6ry1mvJmaql0JbhIA1WA1Ibsn6AMjSIfs00UuiMXHhWPvu26v0gu1zuroDX\nVoySM+hAWg+Rr00JvLExGsM1ORcziuuiYKDQwuphVZjYpY8MhXJnQ1FCbsh3luATMb7lyZH362Bh\nWMSYxzOGL4jxPDd61E52QbfQ9mW3+1/RCoJ1FxlvWy9KnVOk+zcRdvdiWdithkSGOtFMiXOa7plF\nctXy3SZ1ww9h6rL86VNntXtr7Wl7BsHIXbyqNdyW0lUe27kKr2OKnuIUNWMpRG6fmkhVCwfzstC+\nqWdet0uoKZLNZulxCY7uvR3F9RbbN71AqPcyjFVjRAJSWG1lpM7/QL/rvjsZi/4an8za1vUYMv3P\n3JgpfcZOjXRSvC2X1i1f5Y11Yamd/jnZzBOMhecZi5MwU6P8/wbyf1C+UtDershyxQywbGoxDUZX\nuq86SvPEfPE3pwGbx21xFZUpYmiYL4QePelwHWI6kEFzBsXXzu83nsZNVIwo5Gzgu68dJ54OUrvb\nEOSFFE1aL0rDAoxRN67+XkbTFvqSyKtNakX9RH3Wt+FJQ2DRrnDhjEC+B57sK+nnlX/WGzYd5SnT\nKBdtAce8WCOOSw/K9t/D8lmBNi7I7QvgrhSEuiSLBhy4olF+vTB1qmBoiHpXboqpfpJxLEO+Ee6o\nC9KT9y4tsQIMV85BTLDYm0GQM1pX/4zewRqSakym771/xKrB4UKw1oSItS3hUqB7yuSs5e+J1Txy\n+B72pq7iO8rvlEszeSKeHYT1D2B4+wt846tn+b7rF+TZSjHnGOXBnjXairmz9Bvm6wuUeepvw+sw\nd19P7pduyKoVEW1RtIvh8wuFnIeYcc2Qly6Uwr2uRRam9NtNL+i1k1nl2AVFHt/dODCXCiZ1o4lA\nvI/hmAYLf4tiK5FjZ9aTSXgYrjjNxuYMKc2AKJCi0gqxC17qZB9idj+r/e8wqpUKRz/UGNql0CVn\nc0KytreebAyedrtEYflW/mnvlRypP4IzltammTHM1A1rb8ssIRPggLeipZjTfViTpfTZ35Ga0YRB\nWcxC9SydmSlMAxdYetXS7FW21ymu7Cc15uakXAWOKV/diqXKTLHgoFhByrWLZHyIiWi5nD57AdO6\nVfhf6FXWfPgTOTwIrkw/xtkGrDnDqhjYTGC5ldql3+flxh+KCUcTmcopsTI0hG5Oc+m15+k/vYLi\nkkFaNrTw578I4u0fIm+6kYhzQpy/0aKue2SW1vqT1Jd1Q3YCfwYCIwacLo/csyXLbFGA+w79iuLQ\nhtSrrSk1x29VjmwwY8jT/jfm3jPIjura2392d598zsyZnINGMxpNkjTKWUKAECBEztEEYxtsMAZj\njMEJg8O1L7bBGGwTjMkZJIFyjqMwGs1oco5nwpmZk1P3fj/gt/7vfav+VS7e66r7VK0Pvaur14eu\n+v1q9+61FjQ54fNU4bvehZKI0uw5QGbKDcSbllOxbzbFx3/Jqw8/HNT2x+Nzn9mR0Mbg7k0WTF9k\n0LMZvNPpuEgHYHQU4S8Q8pgzRU4sVti0JUptj5cnajOxygRptgiu1DwQKk34eKTlftM/WE0UM8ta\nd+ML9bJNbZdea7oyXd1jWEcK0frWM3/v9xgKZ2A3xomnek0pYlr54EyjoLONlnWSfHbRzBpFJUYQ\nS7x8v509eTvJnLSBxUma7SAlr7yZp+pSqfK0xwe1XH5wTURmBDQ0evGD4gsZRoo6gDM5lTRbgzzt\nmS/eshPfRII7aWNqWX8ilhNEDuVSV3hGUTtUIdslH1iOsid2Ifb8PkrMNs5NSxZXlhK2CRZbXZSl\n1HFYXWq8bTsmQjNewcHJkNvd7Hv5Mb/5xZdWUDw6lpiOPJI1s+Jj4vFRLiz/nB1FcylutZASbi5R\nqSCO5zN+suSgzDtloEYZK3cLDTOBhqWklG+mZOEuibiY1tYxnJ4MyquGUPZVExlNMhZcuoPFZosM\nZYyrf9z6hPaM6zl6CoLIux5j++0LxWd1f9iRL3P4eZ6PhKFhr78Oy+YC8VWk9l8xkKuBq/6vOJ8v\nJxT+zyTlehdnG7jxR3fbNV0jbJHsuvhaS3fSsJzfV2b0pumiUve7Z5pcwjzs4Y/TP19sRM4xaE3l\nprNxqvpGHd8vmS+9sgvt6BEWCJXOjEmu9TQ4TWNVzNDaCSypJdwawjZ8lqYxlS4HIlxhpF9xenHH\neGq/Wzci6oasLDKEwo+nas2palSU3fMbGidNFI58rfeWJS3CtWO56EtWODjDgD7BGrNg1BSDMPxl\nspTb6hMQtS85EU7Vz5UU2y842Wcwm1BNksRjmkXSJWFjRryAd26060nDGjnZJpooGRVz3lBOk4Pd\n76HSrE9WZcCzYTfmJR7ib19Ba1FORfjjNymu2cFdsptDWRt45robY4nL7pZnfR/jECqa95f86idX\nym5zPp8feplt2+4R94xcEU93DlOv1IiXnn0csxbgwqoP8ctx9Rz5WE469JPta2OuUphImsChpwjr\niF1kW/oaN41u93p652HaivDF02ZG1R6lUO3mi6EY3ygG4pMY+YOMnDuPzKxuxtwe3n2nWpotf6Xy\n0jFyHeAfqcSIR2H8KFeHPuC6+T38Wv0Wjxp9oqiwmT95y8Vsbw2oYBQ2U9CzQcz25BNSo5RlrVN6\n6KV/bFzb4dBJRMEeh5dIwi+nEMzA8J0SqeMBZGQ+gYFGSmySQP1n9IwOyq3i18Y84ySp/UGOFBjg\nK0j+bOQa0eKalxiSeXTF9oqSWIDhFKsIR2J0XzqHnPgEKwoSAlVwc64tMSI1VMsgm6r83Mtf+FXi\nEX5u+SGWygY+WTOLkZRU9eY37Hgec/C9rKdYtOwLbEeuIO6TcLwOw2FPtN6dZSw9bnAqvxzLf9zH\n3TOeI3dSEPV58Q4nREVVAN1q4u3rLZBQ+N7eSm222WVoiST60gaJpgHNZTBoo/dCB7aSPC67DKZP\nngfnNnHMM4/jeYL8QLP2+61/NW3u+a323ACIWJzZLR+wKQcGt4ywnW2oigqTuuYrUJSNw9Ui4Upw\n0xIbI4lJuouyI42hGKmpBpWksNNRjVWY2eXdJY4oCrrZQrl0M5/5HO1U5F2Rp6l4+uuKLaeWxubl\nlDhMcTxZHF78PJdkv6OlS11c8+0h0qJt2M1zqZk+QRgrk2TKBOvNGeFUJBE6Zh7Epi5nIrmB9c6d\nwh0fHDwzssL0fOpGY5cDcV31xfRgKACaJqbyR89I1ZqNmtEilMzaRI+Kkgf8lq/LFveVpprcZuRw\nDm+N9lOc0PiWfjWHR4/LOtNsRgeLUP1ZhAydslW7wSnI6u9gcdY+Pk8sVF8ODbCuZ/n4ajVbVlV9\n3bj0kmR5e+gEj70WlOqZb9Nw8Z3cfAssm/sBp4tLyPD6yW2LWRIUEcTzD2ATkWxFxm00lhq8t/sq\nhL2NwoIouz98EJMKH3yxnOqcYYJmhRo6ZMu+2vDypZB8IkU8brpLP98Yltn+JNmQvRWHz8WNr3Ui\nvAcuvHP+cjI6S+XXXH/Ds+M/OXNqw7/tL6w7+bL6/OZ/xl+AHwCHgdu+StJ/Ow3LFBpnk957KOb2\nu+nI6eD+jz85MzIkEhWDs4wX/Rrbx0NiJDsL3ZXMn6gCmWBBdi5P74lx0vr9eP2GZBwDExT9+Ce8\nkpXMTK8h35hbM1FjCqONTFLsLuTyvo102g4TPFZFmk0YgZmIu7rrQqpUyDzpts+yFMnXDY0G5S65\nPveUmLaPYtYSbJy7q6i0Zq8Mh0qJ4+RUsoAxwdrFVURIsOwCeLfNy3ePSBRbLCt+KkdIReHaxs64\nVRNlVUoqvf5k1mxAGXR2se+jXx229ceZzvbzntiUmR0uo4QArQ5FXtN2Zk62VZC+Jo1Tx1fz3aY7\nsEcyRe33FoQWLzrIlNWPZXohBbM6zVrWMHLuIWzqLBQlyEQoJO7ZcCdPLniQHTtuEX6ut76ecj27\nzlymLM1qkD/Le55pd1SU2jUaOzqijnahjpWaFCxCZFrs+Kw+KpqiunXhOZaNnk4bHCijrLlUFlMV\nTKLNVND/BlFpY5ZTxek/AbXjYnyilvz8Tsr6smhr+VTEjCcIKJBih48zZ7Oj24F1zCA9Q+UC837O\nuAp4YekPsWV24p85n5xQCla3HbJrxVVbdOqXf4blDHjmjygSDNNSooHgIrnEY2KWHWIT7YzFdTqL\n12GOaRjnxnEJPwdbR9mUB4rpLEOtQ6YRh134dxxOWIciHF1+iMLlv5Pbd93OO81vmHRLJx7/OBs8\nJYxnClLyMhDoLCo+y39sPIzdkUuTeZ4Up1YAACAASURBVFLrUpFpqZ3ctWYLv++9hdceWGa0NarI\n+/7It4uf4tUtP+aze1+RSc4Jhi41U1p6mn0T57PUIqAV1M93jPYvSFZu/7sXb/c3sDTV8l78On6c\n28fkaII0qVC+uSKWOz7G7pX5/Cw7SmZnsbrii28qXdldWMKnEVKHtiqUivcpj3TK8x5fyuXnlbEq\nGobWS+CiPciAlV+uMZRLRk6r950v2RqAG6cK6KWCteRSsrGESnPx2EznTIhLkWPKDKWvGCQUV8js\nvkC25kxidsxq6QgAZsFG3xQ7zQZLzfM5rZzAbG3nPdfFLAjlkGFOReWvSrF5ggZfFPs3/sjxb1vp\nvbBbk6M2bmxS+YVWxA2mBbz9171MpPcTts8nQaaey5CxiAvFFDNQ5sylJLiOt1a/TEnHYiMY3c4r\np+ZinurPfUb9Ac9571fKNDeNRi3nVJglICfdcBeMHhchSz5DOT3Y1TnKEr9bbWAOlnlT8aatN7Eo\np4kxj4uxZp2thuQBVw9jg5OiJZRHIOCit3s+hlrEwFgHwpJKt9qPKbqHc5ZUoVaA4Xu6Z8/H7dZz\nzjLfkvnFiQeuWqY/MYFJbP06qcb1GDr0ZewkVhxHm/Dh7svAwAHKLY3A00yUBpPVKSYtCke334Fh\nfhejbxOTw5UQV2k9sZJ5uRod+XFiWVHlWMtK25zcBGc/X01DuFq70+hSYscXy3Olx0kPhfTG+hdZ\nW1IaHVOSjQIjJB4OPM+1N17Mf/T+9N9WB2ICKvhyJ3I1UAlIYAnw6FdJ+m/ngcUS22MM9ujm3LFc\nptNb5MPvvFP1Yt/PtHl9ZdqoW6G2ppwf3PhNGQ+tYFtqKzOcZv50qpcPSsqNZ5e/HZFpUbyTkpGH\nFf581zhNmYjehX/Mbr3meh7rHWPDB23c13IHAdskSceXUpmEYnQ7dHd5y/zygWwjMBARSye0ifyw\nkygXi9UPP8SLp0rk7GSdLVvuUezmoLj5/P+gZCrMlNXAYnVxfNVCqgBRmUb4dD87y6GsPhecBwTA\n42nJneu6FC5siEuLOkqhO8CxvEb8H+YuXd+TREOeJOsH+/IvOr1BWonKT8OrldnOOtE7bSex9UGe\nfP5tHlb+zNjtl+jVhaM9Dds3QsoBfJFVJLJkONrvFsyQTH7+FEXFdrxTp6VaFuGC0D5uvvWJEDXv\nGCOmLOJugyuyz4jkmIcm3cS1Rbo47PE4BpKSCK2cMp0dkNzkjzKaPIpQzGpezfRM80BMEc5WXhuv\nJJOUpGdHOsXoxHGcWWuYiCeTrsbAtZmYdGFzDRM720fVWie//g349CjDY3A4Jqgf8ZHco5OZFGXy\nNKzb/YRUnDGayoqY6E+nnx5Kx0pIdmyk5oQV76odxPvh7Pw6EbsmqsSLVVAdouZcBssKQEkPMBhW\n8KeUUTNlZ/JciJXGSaZiBo4B0E1+jAduJXHPPex6dVDLHAhxMiWVZ6r+EbPagkYrRSACUhGC1OZZ\nGIkY68xXgreJD6tLMEL7CSXuZTo0zWlTmrhgXhOt43M4uBNu6GlTTrZUUvfrx9i8dw6j5zkx/+5N\n8RvtIZqHFhLXVbr1cr4Vs8GwpGjrR1l//+FjxvBgEqkjGrolynvWq/GN51I8DGVlBje2hy25A/1E\ntCCBhTfzUfk7nNe6irbMTuYozeiAGrMj5vyd4aRUcbvzc9K6VXL9JixOL4xuYDIpxJESE6dLA3xa\nnWDmiMKqnEzy6GBo/ErGZ4yhX2juu1RuAGBhwG2KLjlBT8BgUevS6dxeG36S0zLGNcYGJZdFJtin\nt7AgvpT7Ktahm+t4wbiRtPgwd9omZDQ2wPZOaP7cfWxRwTQVHXcy6c4WpMRpumQl6rkbiN58Bca6\nB6jdv5hImsqorZbF7KWTG2lmHF9NFVkDzui0w0dh3VaCn4wRLa1mYd1ZUVzyCtIcoqunCjntlS26\nJq+UKhkDpvh0yzDTagZRU4zzkcoZvsN57KXc1fdyKJ5Kfk4nrTGDh06YcZskGeIcG4o2yCgJ3AXb\nScyUCSNrPjsHNdIVwbb8PJ5paEat3UZl8gK55yGlduVhjOZLUiOKJaIVL4koN1bfZZgTbXi9cVBh\nc52CURRmqM1EWbwCVelk9tUplwJpDC0eyKxoJyugM9K6Aib/SlvjPTz+7fujG40gunEpFtUMYjYZ\n/lxxauWLihJJoTP0G7557zcUq7VXislMxbV4lCOKXT3mbeNbEzda7z71khKwBXhHvkpWSqNRfFG1\n/6tI7b9iIAWA5/+4Hv3n2gT/X6PF/1GYTtkVcc9q5JgUZX1LMA2Z5E4uMPeS7JFolEdcFM6swrcn\nVVB2zHc0EGWxP8GIy+CNqvT+I7MOOhk5KQFCAxrpDencuq1g+uPPcnmv7jt8L6WMpZ1reGn9a1QO\nzea4v47ohBXfsNC6FyCrB0Y9ckaEuWebLU/n3m7UzjiF5ojLidZjIlt18PaWOxh/3xW45q7fsnlp\nAVocpNmVOCkWMj8JzqUUIp2Sf2QAdb9Dq3pN/GLg+0MTs06ULJ2ZwxVv+0TO1jbcmo/+BdFojdav\n3jmZzCQKPmFSKsYqxKAwxqSq8/7JTaLlt41EptL528pbuMp4gYRIqGUOETl26jJSeQervYXR5+41\n1EkPROeiz3sOIzlVejy6cM+SzOweYTI1y8oP5ytqeWvA6jNwjyYxJUeNiYjO8hSFMp/Bip9ezsd9\nt9IcFFQvjjOhjiEy+9DSGxx5MTCFTtOvzZdFolB5tGyQ7rjOYO6dTKhZpA9MwsgHkBTDl4B1F2g8\ncv8Ip87cJyvKdYY8CoHuTlqMCEYTyESCsjdh5SUJ8ZD6CzJyj8N4FlOZUyztXyXX181lvPYg+TYF\nem9ADLoQMbtk70/GRd5RaZgdRk0SxLMhYBgILV1mGdnQn0oVR5FovPxXSB8Fs1qHum61yHAbvNoG\n/lg2RYtbHHrYIkyEIboVs56gUzaijI9SIy4hEazHe8kRrL4USuYsNxiHCTtUlZ7jo8nrKWi6iQ3x\nafL78+nLniar6Qh8/5dy9+O3Mt2Vwk/OlHH8eBS7o4Eh12qsMYOV3mml+NQpRceDNaxxoMyKIzzO\nC8+OM9kA19yv4aj8BMJnQbWT9fyr0j5zi6/liYf5ePHHROJRZLsLs2KQlNxPxGwmQxsnOacXized\nmpVvoXY/iDYIumqYbrgU1BBUdKbgKh9iqXKSAd8lesAaoLm8pTY/XgBAyYElJt/Mcwz4kU1Layyr\nj9XqMau5YO/+bImEtvQl+AIDlNrymP/DQzgtTTRNn0+UFAoXdxnVczQ+exf5fs/EdssfHuTRsjAD\nTb2ItEkapjRihXFWu2fRMesk9zQ3Utqlc+msFn2V8jsBy/mAYloranAMngildFTLHXN2KwWPboDh\ncUo++5R3ym0T87QpAloAJWBKTJEQa9HjCeKWSv8EE6SRHiumNncb73MtyzjMEwdfuKEAP66cAXqs\nbXxnMkbD1zKwBP3MHrsBnQRZrqPod7+mpO0apD8RptLkY/S9z3jKnY644Auay38mzP9RFPnJr3uC\nAi1rLMcpDp1bIwbGV4lv2rZirT+CMquItg6JXYQ43LOQEmbisA4HFmQFvwNM4akx2TcOcHTPlaTm\nnEDLtDKrqJv8gg6rqeIjMGroarKg5nvYHlpIzpavtzz/2xcTldk76WltiDtsEdGa24bhuozU/3wa\n00034zct5BLnh74tMyzMM02SfWzuVEreuPFVtPZfMZA9wBbgduAOvuyDtRdw8GWPrP9xOHY9Bwce\nhvJPqR4t5vP+u5Vb+QfzOLu5Pjvmb0yp5i9Hj3L6vQ1cxoQjFINlkQS3Xhnj6JzB/vyPmEKOKqSB\nPB4jnhOmyZ/pKG9czHRhb2iqaR4J1eDDFTvJnc6WgUI/5z5czknNYkwvgEu64paUApCRiOlQ7Abl\nyuv/yCveb+im8hQS3QFE2lZWv4Ej811ouWsAx5SCO7PIGIjlU1agMBT0I2qgqS1TPvzTp5iTFjXe\nHjqXm6larU1d9/DdPJXbXoGh+mymkwZMr4b/rNQwje4x2PPBRtrcUarX7Ei74tZneeO973L5nX+i\n8ObbiJjLyVKGcfphemRVTTxiw+6tx169lemGC516gQ/mboCi/Qy5w6K3B3CCKR4nNTYN9x+Q+p4Z\nTk2LIjy5nHVNxApi+WjCoDpxHnHPh0SWejkdM5Fl1aQnPkV2WitN23IoyXAYtyS1S7N504QNVf3D\n1XGqUzOQahLjtnzSW+ohFiUemWTK52bZGsF396fyeo9KilPiFVkwfYyCPijMgNAk/KkbEhFoOgtr\nlDegw8K+GxYwb2yluPSzBB/m7aAkJUjusrifQyHINQuG5x9RZCTaPj9dlE9DyAwWaUKVQo+kzJNi\nZCYzOYlOmIkJuCIHjGgds+Q5effdGi8MgZwYYNRtVmYlGoSGjiLPiJW4eJvdekYgwEh+gqteucgw\nilK47pxO5sl+Iy1fMB3MJnnL+ZyYUcbJlstpF2UUeIqYMnfQkJJEPJ4mfj0cInAolaLCeRw7Ukc4\n+jl/Ma9jHRp+YiJksbDZnUJ2UHIwZ5zQfY+QltPOjLsyINlJVdcoPdkVoGjkGF5jfAiOZ3TQm9FL\nY8iNeYcbd9UwWBawKroLMY0eNMelOW6lpnIfSmseszqd3JtvISHA8jEsaLwOc94oaXedpDMlR0kP\nmphKmla2530uUeGI0oxPDZPZpnDzmXefXOBJE6q1ON5wNihn52k0LrcQrzXISnXizB3CVRzDLLx0\ni1lkJ0bVhSsExgkL7np51/Dh1SSG0lmv5EDuALb6k3L91DA78o6wZCKfF84fI789wFjVzMi00S8E\n1xKklLH7N3L2wDJX8/4WkZzkJjHzKpxHP2R4woc/5zf168R+pGsAY2KpKQ0TqaC1AU994MMcTzAr\nmk+3YaKXUl5NuoYk6XWHFUMqOUNce7CXN8xOqa2aJOaQJKZ0oWIh3nuahPcPQnjawYDERJTyKyp5\n8zuXoS97kHlve+WFB+tHivUPz37rzyHHm9zK7j030uyZw7q8L3CO9mPc9g30YZ3MeBM+3cVxxU8Z\nGNKfU6AKconnZs6efZTPt99CYvYnmFPLWbvqfVRLhJw7/iiTc+rZt/8iynMm2WNV6O6/Lafp9Frl\n3it/y7Z9uuJLjlNXcoJjPak4uoZYd75DfnFNmDsLPnPtN3KwmEOY+2/UQhrur6K1/4qB3A+8wpcV\n6XOB14BvAUH+hxYUPjnzahxFDZh0MEtB+txfspY9KDC73ppp7UkqY9VTT/E0IR70qSrADKuVpLiV\naNxb3tqHlSwgGWweO760IA0rl2g9yuXSVFgvk+pWcqIogMEcjhY2i2hhjH0fmkBfpkZTk1kTtKVO\nZcPb1Mb9gUIWyEk+j6wWfmWSCY80VsXel0FpF9lbpL6/rpL4oMET19Wbz2veTsw1h2isn+/dmExg\naEyMHEdeeShPPxsO8rVZAbbvmyk/iSd4xAZrftZL01t7lQG6eSlXYvggNfMUu60mWVherz7S9gLn\nf38RN69/gV2ny+keTWE4K5nLOpDbf3meaZVtF8VRiKw4TH/hWczSDnICR8LMdNkYp+oVpIDJuQop\nHQmFjBclK3+J0zWGMp7OLmuWeZYpRapCZ/e6O8HklozeQUdIQ7ElJI4gaSYvzXQxWaEqFybOiMFY\nEWjd1Dn8OMO1GEKREwk3afFhxEGJUCz4vMUMDhTg9CVjWfGsKLTB6YxcKAkwOQiLF37Z3XUwBKOt\n4EiDqXZFokdozNGY2ZqDEguwRWkkO0kSNvtUS7sJmRKG6veuTIxXRJUFBSKj1UKGVcGYTpA9Hg6d\nq7hQJEYrOclJAFIzYO0cjQILrPI8yfwaHVOWG0un5IEH7QwyTTIeNI5gzljE8cQRtXTYjWdxJ6mN\n1YpZt7MsJxIj+XjsnjsK0KxTZJ6pQQ76SI2MkaEMkesvod08iMedoEeLEo1u4WieS5fFGiX61zCn\n7KZ1/HzGZYKdwKvBIM2x+TQae9h34F5yL1vCFdersm/aRqk7TlP+HBamnQUJroIpMTyq2BsGszCE\ngRrOQN+bg+nGBoL2RcyLn6S5dWnk4T9/KryOaZx7ayjIb2NZ9RX0bX6axO+ulxW9sNBzCRKdnOao\n0WG3iVnuMA4VzjgbRLLJRb1sQFUMyrvlrpU9H92Y5Q0oJpGmBIemjSWqxF7hgfOgt3rAaNk7j7HM\naZxGO790lzM1TxIohImAIRJ+cjriFqPn7eVSeFJZUNiCv+CEaL9pjcwZ66Zt039wxeky0sbGqa9I\nsjYyhYt8sNyKVTYzGDtfM0Q7mfveYxI7Pzy4lb1mK0MlpfPn+E+BxU+O6yU5xkqWYBaGonLWDvnj\no8btDeOsqIMLlJ2k+SLGs3xPHpL5onloFjM7oS0+RyRSIsi4Qg9WZrjb6QqewNEUFOOxCfDA5FkH\ntyxs4+Dyyyk7s4eurYtEbk4k6+GHWhes3T9iHSSfvDWH9Q5ZKqwbjuAbi3Hq6acRedn0N3SgJO9l\ni7AxJz3o2tNSKpJMWDFUV+X0WSbH8wkpR4lGV3J+tA/n7hyujXdJI9yF338JM2JJXJv3sv4d/jDy\nTOpDsniJhxFvQg35sxkuSiPw8hv8PDUmL0jbHv9oXTJLI2Oif2gWQws2h7K9VUm9bpH4Klr7rxiI\nAbwPPMiXbdzfh69WdPLfxAa+nJDYzv/PGYw7NZ1A/2/RTTozp8M0r32Ps+veRUcuO+fNMs0eqmDN\nsc3ykzAMps0gw+mk0G5nkTcL6oyMRAoouoAuhYqcasQEzHYuxq+ZZLajw5HXPpMzwTEWnyqQvpQh\nOvK62MhFxH17afQnAmfnClk4buWXGc+41p//BuHeXHQxrQridMTw3zF6QmzVzkONGKH+tB5CPWaK\nCmM8MOd5MpQAJdYopwYrCLOYZ5MWi/u2D5uWWDeNOYaW6Zevf0WM2eGEHW5LxLnXiPOgMFE/5Ob2\nAUcwmt5Dv8tG4dalPe46KKpw09s7g7I+hQHLEJ3pJn5UbxWe4a9jsf+dpQKOqHHeWPgKC06vhKbX\nCJr9mE3C0G1WolHwzdVh0oRaYRGmqm16muYjpiXomdMev6S8VRhxlepYS6JgbLkgMo6RKKR9QpMz\nLx0n05fO/mGBZ8Y058WPEIjZMw5VbGeGExSPBXsoGh4TGTIjTVLqFchoKhODVWSkjdP/5vNcFhTh\nMiu0KzMhRxLtgOp8KIzCA2ZLNHMWMjsbmrumhOJuYiIcQEj4ovogYUIMDCpkeU/ZdSOBOHtThNpX\nVc48mDS64yJaLTVkWiTRgEFBz7AxYsxENU/zVzEFlMu+LsjKNLjAmcq+Hk3ahiWpS2SCziBGbjJj\nvE8cA4UEm50VxIhR1J3GcLmfMiFxjRzkyWvuNi666oAtGJhHyDoEuoKzMR3Q+YeyirxQLt3pTfS7\no3yuHsCU42Sy6Sq1Iz+PvzqfJpJ9FLSZXEgqfuAdCtBNP+AF/kTuvU9TsqGKYGpY5E+6mWqcxbNl\nd3NBrA41rmMsUBkZM7TqJr+xsVXF3F6GzBhgbL4gnlpCpbmdXx/8dU91xTW+saRR1p/xsmz1J3R2\nXsKOj98gon4srtBmIhknMWAmPepmaGAmM3wKZfFiRiPjrJZLCRph1CnJwm75lDMcrs2fakKqqpok\npVYQLKCovImyY2X8admric3N3qmLJ5dhqCfZ6p7H6BrI2zmDdOYzF5Noi3UopX2V4kzfYtbm74TX\nd7C4d1S89G5Y3tH3AW3z7iK93Uf9nCntOAo+boX4WUJT+aRYfkThA7sY0auI3HMJA2MPMRGN05oz\nmdKoZYA/lRlF24RBMnbbRxiWefIB220U9o0rP0z9Pt+acQ0DMp97U/7APE6I71b9g6d/8TqPxZzM\nlhcTmDLxsVXjDBUM+Z/iMuNS7B84JEMJtANJhI+lMbcyQlLnfyKiATyG4NV7bpaHstps++57Vr+p\n44jsW+4WuqLQ02+iyoBav5+0rHwSJw4TfSiDk+kLSXbaGBuYjc18eZ8iDJoOXIyWd4Ro9wSZWgFz\nP4hQ8cowuU2InPF/ILmYeKtO/aIRHuOZ3NuH31HNKUGjIvkKtEAybVGd1Okw87KWyNlGs0k3xTmV\nu5hAMIXnFn1gUxMmI32q4N9WiX71P8XaB/j/Gb6vkuy/AZUvGztu4MvD/Bv58oD/v5BXamA+720c\nURtzJlv46G1JX+VJKPtCbUWjfKiCRecOikud8OOFM/Tn3rETvdrHTQM6HDJgVa7FQIFWVeqpMVwi\n07j6lSneXfgZQrXJLL/G0bRBssNeYdYVQ3XlMFXoo/PPaxHHgpOda0IjYTXuC4RLWZvw8ulUClnp\nn1NkVxHw6hXhCULhIt6P5ls8hg/GZ3LPx9czFnHRapTj7FbYvWM9cr6f9AOvcyx/rtTf/m7G63sf\nVS+75DgvDgiu8nz5Em662M41ZsFm4WVOVq2tp/gsfedmiyv6n3Ecsyjy/LRu2v8yN36BZ4y+jF5K\ne8JsnbiLQFGrUX+5LWFWYbsP2md2clfzjShmHcZqZMxpUkSWzvg4TM4FuzfBgsqAYds3RxTYR/Gb\nEoxke02FPpWBRAEXN73NyEgMjDSJM0Lg9IWKK9dD1kQeAWuU4gzQa3xkm7z8/aIjXJxnIS+9k/Le\nrqnJ9nGZmQmFhYWYnR7UpGGC04VQdQLrGZueZgdPCFL9NnyDghwnZKlQNV+3SMVqHDgAF8ztwZw5\nSnJfgL/fNaEfW3ECNIXODkl5gTRsrEc99qAkboU1XaLz87X8ovlJVF2g2WHsaE8SbS40eRpdSsCB\noqQQjUrOfPAUHeGoYh6B6ZJkpaDUYMKfBkoS/RQSN7kkg1PMUirI9ajUJQrJUcL85bG6iGmyxDrv\n6g7x1sEVIEbozYyx6FSCXqtJOqrtmKTGZNYgfkuCg5HNJBenRs0Hs3o1X4xYaRa3xBMkFxykULmc\nn6ORYACF7fIFXsSaV02KeZJJQ+IYS6PmdDerV3zC40/ukpmMEVwiFO8kPHDAr/xuG8Q9MeTCbczo\n/YIZM6bwTrnpMpUUbAte2zrh8FEVHWPlqg85cfwiVGuTsWBBlIINc6SggaR+BVe6VLLNHln36fPU\nKz0ITy2rjPOxFksO7Ed+unbFMkMgpNIUjimSoIS+gRtx54S54dRlRJVRds7qs103toygOMSqJV68\no3DlaZ80sYmETKdffERRwErf4Cxy0nv5xrW/4rUtBgt7MO74xXuk9/tRnTNI6FYxLAxQ/ghCsjr5\nTbyxBynXzmL8rJmVFU8Ovhh7EJMxXyrnmuTHubXg1/BOKbis2+T5c45JRVWFzD2JWQ3wtZRPSQyu\nYEH6JH8P3KN4izWuSfs9c0r2s5XfoJDOPd+O8ovYNdJHMlnPXMgGcT1T0WnhnHRQvngZ3dOj1HmS\nuFjbQ7u9GaZKeKo4Q7m1CPYwYWxo7RWetExlyZpPmP4iRoXVRHNKCtqceahNA/xsy2Vo0w5evD1T\nJAKViify/bx5tbvYtfMWAloEvbeP1Uke0sKnsXoTnMgv0y3swmQJ0XKglHMFk+rHWv70MZkb93fk\nTlxaMJvDpfX07f+Q3yYi+uuFjxg+UsRNB79IbF0wE6sapSGzVBxcbIrduffuf5uB/BrYBCQBrn9G\n0ldJ9t/AYqCDL+eyx4G3gcv/75ssZRYe/ThO0Vghx21hSrwWwkcfQiz8I+aUBkIxJ8f7vkPp9+xy\nieUkmfZRTlWA+9vdPP+CwvprMxXMBqIFMThjAm3GlcpC70y2zNmiRPsWE7P0EnIFpNc1LuOqFCKS\nwtYlJ7g1ejfbdyblV83FuaH9kkRmZj9lR6r56MxNuMVR7KqUr+6Y6z+swAq5n83K04mwYmATLjx7\nVnKD/VPGtpXS77kAtXA3lATpaP4p17RtE5Nn8mX6yQT+zhK6qiW/toDr61Y+Xbw48udXLqOqzIy7\n8UqlI8mLR0vlitceSf/4lcvFQKCY7x/+TC1KNdOR1c+iu+P8Pvoot1X/Xn7T2qp0F6nsiQCagTS5\nmN+7APxrDNdgtYzPjdLVCaECQWVvL1kHH1B9p3+llCWfleNSwaPoSpIjQZ06H7+pNVxhs30CMYEW\nY6D4hDCnD5EZdKOUKfRsg+Yinby0/YyYA5QlZ3DFwl5qe36RLd5/X+Tnw65t5cwo7MDIPcSJpqX8\n3P4c948Enb6QkLHpRtanRzF0SaoAbNBzQZLcsT+mHtun6RvWG+iKg0iHwodXSTU37Rg4DDoyljOv\nPE3GxDPY/dkxnm2XouFr/OqXlzNydhb9b/wZ6VDo6+pXOBwjHjyKUgxZ2hAXXjjJ0JAkt3hYphgq\nxyZsuLMGlHUXpxA5dxaUR8Gho89dLokd5TquwTUSwi9zCVU1s8/3Q8uTpsd5ezCNcX82psQ5estM\nLOjvYeXfXhN7L9rAhCOMGAfnkJOA6GPiyD5La6gqL9E2JN+5tphfdsG8il3UGau5DQ0hvmfoMR9R\nrKi6JCsxznhApSASI+mUZG7VYWJFUkxtqWS83MYii5kyHyA0uaa/Hrm8F31oG2mHrHz33hPQ5nKO\nHfp5+ZgpxtCiLIkKyamtxORa5YLzFJl+2wGRbzlNRp+OJdeHtAnRY7EBoJvuwukuJW8VHNgLqwZP\n/nxwg9SzC87gPNtFrqqxPe0K2lqhrGqUn2oz9R/UF36a2b+QuH6E5bXbed0P88dGRVhZRAsGk+YR\nguSQGHVz+Mx6Lr3iJTwXIR8uKZGmKRvpdV1MFQlSjp8WKUlJmKyfolRWUjq9CymvZMCWwqoduny0\n/sId+ty/YzbfY2TsO2Z0ajbwTTEyrMh5tQlx71hKIhY+Lc3mJsTYoN44PZ8Mcx8feBeiCZ37+v+B\nM6WdS1c+iMFqHuEot19rNRwZd4pF1sP8+M0BpNkIOzChrZorz93wDUSqmfcOjXJTlsaG9CuwpIak\nFs5y5EQK/tIofKZgvEXn7XxMn1ymYQAAIABJREFUFw+xt0KwMG6wedFCgitWkOgJ8PyqCMvUD+XG\nX01D2IrsSrfmJvdhcoyjWryQnMn91c9hskwwlLaCgpMRrQGd+a4DDPRdTELfJ69OePLvZ7YyOJw6\nnYfGW2lHSbalUuOaoexdmUZymzP+7c3vqLvXKhQVepGzH5BfXK5/b23J5FcS5H/FQEaA5q/09P9+\n8oD/c3bvwD/X/gumWWd4p+p1cr35VPhm45OLuHLQh6lwPyanm67CZhKRpTz/1lmxep6mGrrC3zsS\nctF1kHawkORIEwvS4MkfGORVjnBR4xqOJbVGwy1+qF8syiNfYBvPpiu7S9jDdj02FDM6SvswtASL\nW+9Vgt042sM3p5Rl70cuqGM6MhMj2EG8eWNYy7A//H5qKUuN0xzbRIAg1Czsh+5NMDQqL911AO+R\nn6Nm1aN+eBhzUiYYr/AD+bR+cmoxP3vrp/ytDTbdAmvM2bS0ua1X5rzJZTMryeqehWlKpSBlNwVn\n/uBZY/sUfmIYzz9anqB2Fj0ZfUz2PkWJs1l+x/KpekFnu/L4Wh1/EWxUbRxZ3s2GuuvAdNqn7Pku\nSj7UnRZgk5QP95KfNUmyfe50qSNo9Jni5AadGNk69iY9vmqNHD2XmGhCCbA8Y9XEPybGsWYPkIRA\nZAhiXnh1tznmW/AGOaPreLXuXu779c3ju466lEhGbdjuRBIrJiWjE5ellzNnF3Ol4qWvEixnpbBO\ndeAcMNBUQRSYztakrImLri7ByU6L2tICtatamewtJkMN0uFYAqlwLlFKz9QmVSg2yooPJL/00iw9\nqd1Bdl4r33tgPSFvMfqH76GFvoCDIVR5EmOlwffuU4ScmqXXn4EF816OzhcJtvsLGIkrsrpGR5jm\ngvnHUO2LkL9GgTjZxhqEJ4hMB3/tAX3VLW8KW5JHvndCM5guQC8N0lcg0SLT0jpgRUaz6KqxIIxM\nouMJirId5Gr9HkFQo6uTT4xS3i6Dbw/vYo+yEovJyiNX9Sk1KWWJF3kFaY8z/3Qn8qzBwvHjvFyz\nXOLJ5OL1z4fDnckM91TwQJoiP1I0fmMv4cGRwziGZsi2v7/J0EeLmPW1azGvG5ogbnY0hUqJZCaJ\n1u1FjI69S/ns63jpT8YJmiqJXFWHr382XQVeAsFksgs+NwAUdxKf1fQwdx4MDyFGt7mUP+TL0dC1\nXWZb/VlmuFJIOPy0NJhIWtLInJEYl/WtX2euOk5x8TQ1NQc42m+V04bkaqMZPxGqkmMMxzIgOc6h\nL64j6TMnnd9GfD/Ro3XG7zfsgVQ2uv4hk87UI3Lyca4pIi3ZxaDSARm9nKuczaZtzcIetwcoenM8\nIDepoaZ2RWZ1gz+CL6CLtVVJPHpjr6nCVEJfH0RPhdT9o6u51beNquJPuMrWKJ/Sn2RH7jJO9dsw\nuEUKXiCv9+vxBs8SUkq6WHCmkVZ3izWQnsT0VTeLp157k0UinYmzurQaJq5pOYReGRJ1z/2I7Y+9\nNPe8hnX68f2L1Kw9ZprKyjnbkUKuWkteyz2oycnYEgJPAHI3vs82kYfL0sM3t37ChDcHV+3raMoY\nSsZs8kKjDCzTGJq4lor6IRAQzPpQatZNOEd8AtvDtGmq6rpgpCS9P5XeM0f5ZlI+A54NwV89wmDi\ndNLgt79/n3APqaRXjErzu3+J3vvG0XTj6y9+JUH+VwzkBPAOX34u+t+1IFd9pWz/7/xLZy8JK5TK\ncTKCdk4of2RzTQkPepNYeW4xA1mHGXOcknPLPiJrTgNT3kVs27IhmhVC9qRmsOrNLva3Slp2p+qN\nI25+sjTOxjclH6ZtN2W2KMi6RfQoEa7qCMUG0wYp7CoMZRhibFpr48SCvaxQlvPaH1fJo6culus6\n3JwQkySVtTER9DLZvvrEkvZma2KqlBO2VKLmwXTpgQtXj0FKHzWv98v/HL4PMVmMjoXLH74SufQu\nrKan5I/zL/ZL0+t0NTiZUe1i/qVJzBN9vg8T4zz1szdJOvNjeYyjlAwn45/7hX7/BXXZL79V+GHv\neQv07NyA+cTmm2K2UCrK9lupXrsnHo9KvlUEBzJsMA33LovxxbzdLOmsxuXqs503NjKmKRon+iRS\nKnhXJcjM6WRe7aRWIAylM2malVNWhsmmxnNqJ4JUB43rVXuxfDRrm3tRqpnfN7kIVdRT0JOuUwIJ\ne8LUXbUbrf52Qv02+rMvsvYenqTu0+fs7iSEEDNp847iGi6kv3kpvjITW9ei/8aRzPp2E8Nvwgop\nmXSD4k4IQ1Nkeqaih6eCfPypwvVrXkX3zOae+LOMzHgY4tDzwkk+e/8Bii5u4ldP34zVbtPufPwx\nfHoy6c5+EjdciSluwz/0JsSrKOEkohgqHE6uOviMOHwIZuT3WJYlRTmpGUxFDBEbTqa87DqIvinJ\n/tTMiSrSuJCjwiA8lSMNh84HthY9ddMH+HuqwnbPAkUZq2BWTh4eY4TlnrniL4+mcO37CuXuY8h5\nlxG0hcgvidIbrjJlUGkk9dXGRuMzeOIiuLC9kSnhpi5nGZs8p7nJslxtYAtBt4fyvVO051n48T3f\n5Xczjwl5ZDnL5DEbAz50l2TpmFu87Ff5RPxIbB5+lPhv7xC5K+r40/OLaM8ZZ/6W8RRTyRbllOc8\nPK1zOPXRQWYv20Vv23qOxZIXRF9azdR1IT4evhxrQR/3uU4ykNUplLiDtJRPOdpfS6WqkZsp5H6v\nl7+kkvlN97Mx0XKaeOYiKiY/I9GQS3pZJ4dfucDy07aH05IzdsgNl+ocHkxjzFtDEoLbeRODFczz\nKhxKjqBm+YmGHZTvHfOpUZh4QuGgLXk6TUknYhnGXH+OwOxZmL52J7NNCaZcvbDRjLEri/L+s/Sl\n95ZQ0ZQu3X2MBMqFkdOCxZ8sDSmZs9gwuhfMGbggx6WPjoJ5+ByjXWXozpDxhPYQD/GSUCxRRNEk\nHcPPUOXYOL1Q+PjZjh+ZYxEbSws/Y9cGK79Jf0csKb+Jq+/fyfFPvIQKvRQ0ghK1os04ScnMennI\nMpsHhy1L7t5zq9ra+zWWuHq4dvsIvVEfey+7hOEcyO0dpgIdSysYqz4XvkA2Kbop1j5WLc82rkbO\neBM93k6KuQB3PbxjXMVnxir0iImFdujt/ELEorMJNmeRzDx0o4/WvYvku8oulMoqfnB2P4MZtdot\nP3Ha7rjkJ8Ul7kbKT48xsTIo3L214ymZoR/dde/pryTI/4qBJANhYD2w8Z9x2VfK9v/OIF/WoPxv\nCvhyF/Jf+Nvz0NYepa63BwuCtyol9pTHqW38Guqcv5FcFBZZfeV8a91/Mm/BLt56/4cWqV0erqsu\nN96cY5ZhNYGVZerOfcIgakEvnjRKTDvFEls10dRxXjalyDsm91mUgBYrby+3uAU61kxeL/sEkzPG\n5a33KErRDqNiKpuPg1C88n0iCUmxNPmftD4hd4vfyJtim5n2jikM3MK7L3yAkjDTufNOjk7cgbry\nz6x2TjCchZGYqzCle0Vkzo1uXX8MqEE33zVR5tKZTK+0x7NPcejY+Z+nTyvCLwbpCFrlgvWvi60f\n3YojemnunDlHoo899p7E5Uxop2/HbRk3TlySZ/6tFQo9EBnVpGhPIhizMKqd4KTJrJ/fvNLSkGJH\nnr2F0VKQSPov0zGmHSz5psuRHEgSw1ltZOalEvK6eejv/bP8UXODO2ls4axUi5AyoOYXb6A+GOX0\nom0sbksXajXIShMLporoa1rH6rI3YEZ/v0wPoeenEw85cNhnMtkVxDsKfm8+Z2ekkJmMejJicCp/\nFfujCn/TIcUNY15FSmsUErpAg+PjM8mydqNqMepOhhCenZBwE5m8m7LSEzzz3dvo2r8o+tzUg7Hz\nyz5ipK8IR6ogpsIC570gO0COMqB5KdA0Gt4ukFKRn08N2sl0GmJ+IQylDCDjNp75/fXo8VWkp6ZM\n0vkrhcH5LOVSeUwKTmozhHsszqxZIZNxupbKH/zSLnQzhNNIrbHTNl1HgADXbpzATpicLQtZ9VQX\nIk/hwA3LkBe/qzWgxoIDSpdelE8QGF4Ga5Xd7DQuYumhdqqH8pQ15k1yMDOdQffFnHOlcPfug7j0\nCYIN5czO65KpU6GAmu3HiGq0ObcwNnAdB1Oz+bVRyeob9zIQtxGwrccXD2hawS7hSh5lZ1cFPTE/\njz/Sy7eNn1AQ8iu2sX38/Q8/4QP/ZeQXtDHvuselUdAkCnrM2LJamPbMYoYtnUyTEC8rhmFOvz9Y\n9PgGa7i3ncGMS/lf1L1ncJ3Vufb/W8+ze9He2uq9WLKKi2zLcu8EF+xgei+hhk7KSYMkpBBIAiSQ\nAiRAqAZCAGOMAXfjbsuyZUm2bPXepa29t3bfz7PeD+e8X97/mfOeybz/OedcM9fcX9bM+nZdM2td\n933Pmcxixrn7GMs28DPfM8q+aBEmW71Yvkhjp28Mrfa78TbKKeMCaVRQH8+hM8mIISnE9NLdDNzC\nseAXnuOJdBPnql/sTJfpPPvBDOEf7UVbtZSRtOUsnxhnKiWK4ape+BBeVxdh0YLL0AnJea+jq99A\njTTgHkI47GDKjCtf/vR3ORtzzjWmp8Gp/moIWsh97i+xwgkvpdEtHE7ZRFJaCwMDz9IXfjDJb4qj\nOU1CcUZ556EN/KEyB1fnCD89soYa0lt3Gw7SPmOS8QmB6poiJXeQpY6XZLw/iyFPD9XcxTa3QtU9\nTzF37I8oGem8d28Vp6oSema3xhUIwvUKR4IalH6OJ5RkrDXWiGnTT6J7xklMXqBct+LogP1iOePl\ntdqeeCY3hsDjNJKZN0jvudUUlR+Wqt6G6S8F6o7QVtYunkeHyOCRO1stcjiadOqOu+PXJX3AxKEU\nvT1xhtKGgczvnO8wTgZ/F/9nBPk/YyDf+Dfe8X/wvwKngFKgEDAB1/Pv7Ge/tcyEYYWD7PKruFbR\naOvu4vtXF/Lm6tk4onaO+UsoHCqhLL8WLWHHlP2LwS8+ftF6orCMPkdMpgXhF6cb0Vfrery+DK38\nXbHAZtYXWpbrw4Wn2fbCdXKObKTgZI66fGD50Jh9ME06KxnICElsupwQzsQtF+sio7PrOO2OYi/6\nijSrhdl63aVfqJeIH8nfazYeRss6gBJqlEJ9lbwlLxFKuBRz2Wty2qqfU5EKo32gO7PRUy1496tC\n03xYqIvVHX00edirY62KGNLCa0ivejHgCUsKRRXq4KAYjAX1N197gerq5pqvvrpqRyhUJOwmo8VX\n9wAzij9QTo175bYSePgIyPSAkBlrqe8RKFqYsXD83MbTGxMDc/bZdx3aiV4KQz4TiWwNj9nHHJMP\nhjIYyz9JrLAAc72FSUf+yEd/16pV+yhXJrXgb52uv970Y5nTdD9/zTnB2o58RfXA1rlSbMzSkSY/\nbw9OYIj8oJBrBNw8D5+IA9ORgVYSqbXMNdVxIVCBUVEJa7BIDGOXBg4lKxisUHUvwngyWTtyXCoG\nM1LefDOfblfJy25nx7lpTB/9G+gzEcGbufeex9jVvEkXLUnmI3f9zJR6SmOar4+WkXRMYaNsO9eH\nef19QA0b1kFKUxXt6XH9Jv2bb2WbsmBUwZEGDt2KHkwjFs+mvb2KTRvH3TQNgTxMVGTLVrI4ozio\nmuxjVVmPOHR2umx88AYZcA3hcLfRt0pjKNSCEych2zZsMoDF9JTsGenCYFW440NVqpt1B7/5vTky\n8FiKzMiCcSOecZ2FWV9xerAYh4SexFw5MH+JEIkYvxiKosV8lHgn+cEhp+wIZWGyhcWlNTu7DLrO\nm+VZeGOLsGeNypFb7uQufRB3zM+FYQPYVbpTJ4gmD1FY/KH8JDqPu+4xc3hgJQ+F3+J5208oMvWy\n78J1/Or3G0FKhko6sAiVSPcUYvYFnCt/Q1p6kKlx6FGMhstfXGJfGTpKcHKC8dIlhOztJEcy2fL2\nT1lcfJTC7PN8UbYam0NQ35+G3rHZ1MtCeshnHWPU08yYmo4wSOy23dQVUtr1wWOlMVMCh8U/U0fH\nO1CmTSYSaJVlPHT+lwfvOt/BxRETVUot37zsD/w9cQV2f0bS/Pb5H1ryP5I6X0PpnSIUD1BoFbqC\nTqYcbh25O+t1p9PGkO9mxMJxxpPGu266SucRh0bW+AqSMqKMDTbrT6VuUUalCV9lEPHaSSoSF0n+\nw+94NDqfkC2KyZKbkro5PmodgwmBmGxN5fBhnWJjrfCPOqlfdwZ/cCP6yGxCWQfxdjZQYbHhNSQT\nWNOl5HRnsgGJCKqMhcG1eAujmIQ3kkpxzRZyvfNg6CKrx6P0lVrknPX3yuicB3gq3setRsGf7yqn\nxjOAzbaR8en7hGLS2B0/B8uXcFvSYY7lzJLzfreNwy//IPr+bK8iBIx2zBLLfFUw43FD3PAEKSn3\n/fGfEeT/yED+d0T2j/8O//DPXPb/AAn+tS9lJ3Cef31a+//8zxQ2JxiwB5gxpnOmoID4uXPsmzcv\nOrYhGC8zpsrDOSfBGWCsbTbR1gJpX7grdfmST5QLJ1bKAUdYGTIIrujr5ZbzNQbX6ZXMnlEnnnfM\nk9P7lou29INEdrysvKcs5amDmrp6dMwaU8NGs88sFZtZHK7ulX+iRlkvFzpazaG4nn8UYRjEiJ1l\n/hPGwVgOlyWOG3pcnTHSzmM0XKCjfTubFvyV6tnfJbbhx/p3Z+ks34mmTrYq+RemyWkbVSnDMXDY\nYO4hRcaSxMsv3hsqpJvA0qtZZe285quKg+QsGSI5Eqd5XFedzpOxiorjyj/+McdH+pQcakqXLnMv\nY1Wf6+rJ98jzmeSLheimdgGrL+P4KOTb0pnPO0cKvOlj5Unn1LtuGyIpAm1jMUb6obDgHB1n3Yjh\nTPoLTpFnCeD3JmTc8oy1xVTeMGqUxG1z6T++tFY5mSyHa+8i35XgwzkWtr+HnuczMW9uDysiDVR+\n8UJk9SlpMHT/TFqqfstwPEEoVgC5B1hr285seYKh7kU0+zVIW4Vz/ByXanHeWqowNqlwv3gdfptt\neGZCkjpzQVikZ/DFHsGs8tOYJioxD8cpqb2JtWu3EK+384snP1HSvZPkfPAP9EljwlE8TNZbk5jH\nJ+V6KYlVgdni475OKG7zgK0r4aP6jR2DXdgvSBIjTqZZ4hjVINH+eSCH+WBrVFmxyEKxba9+QIaV\nCDkMm7ZxTcprbK2diWzqkq90LfeLiRICnjZ6yKfSO6oH6ZOln5/G0efmtbJ6Ma6PYxg3Y5nKFm/c\nZ9Jr6uJC/PABm+IbITmRi60H8r+zi/NaNZeVKqRqBrF+biepiSDnG9+HRJi+6WXcVjsVOV2TRvPx\nNVyydmta0cAAf198NWg6m579lRhJTaMnaSFzna00fukD31cE0yZQU1oZPv2qnImflrFvseq35zlo\nrOCx0I9whnxsGfwdmXtdyKDKLu/0SPiikeGOOMNC4arLXyWeMHPROwdbWgnG/uPqvhmv4HGnoxcl\n+GPoNSbve5cde27htqfu4mt5H8pDzRuobXHBcJJG3IRUiqTN0s817KGbUcbDqcSkhahvDylGigsm\nKz1nxgtiHruFuGscV+JdtcIAM3ydhCcrt9mMkFBMDPxyK1ZbkOrFu/hMq+I3W566Pn8iS4rso8Q7\nv05oNMbKoJTjR8oobh3NnrVr9Blf/204MeKu7GbZ37JyOww6F1fkoaeMEYuDHrT4S+KpclH+ril5\nVzdL32iU8/+0XQ4YNK43xugqMOKJG9zDJUjLKUi2GDlfZ2PLu7BgxaQwW/zRV1ddxjvGH1LsrNUO\nT0Vpb9VYPp5FZnyUaSnHWZm9l65yFStgGlXJKt3JMCbM5iCTRR8xXrcWXEmsHGmhy1mhNzxXLT7/\nyKFO2G1IJYnTr1tYpxwkHFlPpK8Pu8eo14eOY7vhGopy6xnIcvjOxOr5ZIbL3HFpptR0wXDMxcJP\nrJxoLOKO239GvGP66/+MIP9HBnL+3+qp/4N1/8b/KnwBlAElwNP/3oEL/UlEDTE2D9TrbcXTCAR8\nSOcqs0mfUu5bcloLFn1FvKgLtXEG/zC3iYYUw/gV9zynnRhYqRzJ0ylqLuaQ4U/cfOQqttTkMLGQ\nqFudq9kiSaIjzYTSdMH3bMWCoTFjESl8llY9EJXPffSpcET6Gd6vKQvlgNrAfnIOphnXDHUTnxwi\n6aCf+Wf6RTxmYzAlOVYRL4tjjZCIZZBIwIpP0Bs2v0COfSTkj8Hq3S56XZOMSGVHJDssbCZV2pQ4\nkVsuNZAUEvUHfmWKhK3MbP6lvqBlgXKCHJK++xIG/x1IU0IsueQf8uTJOTKghpdSFRd7vbPUyzOf\n1dsymhNxZ4twlc7V369GqT5jgqwcLmqCGVYLm9W/R6WQ3/vZB7+0/GjvApYlQ0dc0qcbSK7oIc1b\ngkQjobkpsbbTVdEGbTUz63vb5lc64dDAo97fX7cpTem1KH4Jt1vtfLV4Nz+4xCDWDZXqwXgy0xMd\nWM8XcuqUWam60hc3JWXSEb0So0GDa/x0zeslxXaKpnML2T8CmnsZe2qzKQS82SsYHp5PszGbDfoW\nJkzmxPnGc+bvPfMswbRMorFRsv0zSZsoZaTpWiK5v+CKN5v5/JES+eAj3+X7v55kcLZNHY5ncP5S\nC9oIyh80+NYhqMkSzGozyFcaD/OD0z1mL43jq9dq3a/2QWgkRc9OCWNHJ8YEujxA/BaF390QkW98\n+z2BWgO0MbNwO9nOFg71XcNF9ajSJl1Oy+gMDMWqBLi7pWO8V/aIKn0BCRHlg0SQ9Wwi3DvFn9e/\nzBHea/nOB+nc3FgZ17VRSszFciIGjpJOQsS4b7RanyLAQG4rQd1Bxtw1qCGF7vluaVDM1oGkBIeO\nXkmx52J65tAwXVOXo2kfUhepJN0K274VIUcOIPe5NUbroaqHRH0vrlhIv9t4ka3/+C7VFzWmTA+Q\n6npaNhMhmyDb3/sWwh7FYT9kLRzMRfFZiagx7O1fIzZlxWh5gjsHN7E1ti/uaG8UBvcMTPZRMi1p\nfNZ2M+u+9g6p6QPMvGu7OHbs63wUiKI3KSoGiV9fINK1CVYq/ZiZyYRPJSmq0Twa0hQPGOwD4lyj\nq6t6ccQ0YPFhF6ep8gjKx7o0gyf80AerliFys6lo6eH55/OIqv36x4Zs9Cd/Ylpz7D5FLHwFhm9H\nQWFBTCjmEw45ku2cfLL71yarKVcGqCIre5ijRWWGSD+kRWcRmtatDw5ppIsrLYagW5yo6AyTHWHe\nXq/+ytE4t22G7PhJfG4z9TMuKjHJhWf6CQzH4hw752OaXgrnKrnskj+L6OFstqamcbW5VvW1IhuD\nkLJuKv6afh/SoGJKOoX520ZqlsS5yqBxbUGCW295jKef3si5UIiLnRk4snJZEK1jy7yxtsCIma9H\nr2U4HGBCW88anxdPzqg0e4L46iuJSreSvHAd939+iEi6QnNa1DE9PTXcOmEarqkcU/u6S3Domvhw\nMJdl1/+d0Ugur4kjv/xnxPg/MpDt/GvfxWz+tfv8f/ONf6v/bfHXRAlZoWQqjfuVkzMrkbkWaBlk\nifUjdftk2JDZVc1XrkHSOrK4769lOlmbPSN6f7DkGz+fNMXM/Gb3nbxWuRV/ziNyTm2tLt0JbYPf\nYvSWdRCcvVTXuztdPS1z73hYfsJD4oec7rcnfnzDjE6f2SpfsZbxY+UR5vERTlL5l6Or6UnAE40K\nE7KQQrp5OdJ4YnpSlpVJ0CbmiJtAr+xDj6uSlQXY/lyLrEu7R5k9LFgo9hwaQCMr3yo2lWmxa2sf\nhMksdINqeP2D+0luylVyJgvRbv4Z506u0X19P5aMQG71bnPLwU04CmbOMLZZtVQZ4/LocREWfkUU\nQNhQ7Qua4YH2BK6x3uCQEqPGGaQlLb553U/WnW7K3hksav0R1yhVek8QNLeObVAnuyBB2DGM0zwN\nmylAUXYUJelyNVElTfdbc7Tz6RkfjrkdRQWDQ1IygL85iesnZtCcoopFGS7lgm8R0tBLkITF61VU\nQ4FNv1u+Qm9fBe6cEcx/vhLFC3++4xOaMj4nJlVyglq8t13hz+4v8XTfhH/UgdW6nlC0lV879xxZ\n8vzzE0s72tlyroPOc7WoozMJnfs1t3ie46x1nFU3fV1qi3zilr9dlB+eXTEwOpkjJrwhfXHVJGp0\nnbYzB7m4E7b3GtClQ3ilm5n3q3KRZTCjXqV9507J389VioBPMmmbwCA8VLOSGxsvlTMeE9HswTGx\n6pKPsdvj3HdvHfuOXKurqTPYG4zrEdeQYp/KRJ+ZDkiWT4UN5+nmErFMDpiG8beqrOYqTP2gC+hJ\n2lH0S9574Yb3DdbyThPxskVifwHs3Z2tK8791AXWihxxgM/7VII2C3cPrkT3S/wDDTxT9IC8bd8r\nif11G1EdEaGNdhM5mYdmezfcbrJh051yeD4Mj+fx/NgNqr3NDv2vIOvifL/wO/H81B5uiH7JQ8pz\nvHzNCfp9PxdmbLg4wxvGT2g4BaXFgrLBUqnrCxAC4mNJlJweQ8SWke6aiU+cM7T6fEywEd01Tq75\nEg4dv5qrbn4OiaCouIF4wkhH2yJEtx9rVoDdFNJrs5KwQRYQm3IzZzJEuE+T0Sjc+5cMvujIy0nL\nibHL8pmu2nQWT0HB2YyJHld20atXXI8lGdIjCgp/48oDq5QrVr0JNWfE1598ltyUw6BNB1EmU512\n8jq8wa3Fl+YcPrdRVOR0tMFZdNPY1LbxAku+m7bFbUsZTrogxkbM6MbbLLpnVEbXO1Lps/C+zBaD\nsbCoqTDrJjVASUc7Hy3ei5zMeGEtQt282s6e+gmuD97Djm1fk6s2f2gynXTQHkhjVooh8s2L6PUq\nlF/bHA0+8zgnd6znyJ9KOP3NB9l4BD49mUxfQFCw4h90B4y4vFk4TQeZY4Azylya+ypz3bipoQa3\namEip5Q5gU7OTGbgKuvXjIb1RMdGGHv4Rm7deRSlaRqrwtWDyzzTT50Yb84tTIqKgTceRjWFcacM\nym9tepwGT6UMW8Ib/xkbzgp+AAAgAElEQVSt/b/9gWjAUuCfWjbyXwVfml1m6BYsTj87l8+jYkGG\nrhw5wHr9q/iOX7ynrzc42JtxBtldgFr/Q2Xlnn5Txqm5iXLluGtmWx6HTA3svnQ3d63KD9z15ada\nb7QgPG9kltQWnKA/ryRuNrvjxDdtwnXXJ3vlJYK++3V/b4s70WITjuJ6phnqcFbOSPyVPxD0PUjU\n7+DLhQt5q3A6inAG3wkGKgaL4zAE5sHN/BZkvUIi0wxiyKx1dili0jdHlPo8cvYwd+lBGGOK3HnS\n9/yOCxquuJ5siUTm7p3JPXvuYeAnv9NPJUZ5+YtHA0XCJZRRaPH3yI/qHlJCvhLUHqO63nmSds2a\nEEFIDhbR2rk/yXTaKC+TOvrZbQ2QTLlrlOSoXgA8ooQ7A1OVu7Sc3/5Y0U5mke1Qcew14og6GHMM\nkWdIo7e7hIPbEI5F/SJrdDU5Lv+pO7fvWqRKTcRlvyTQxrlzKtfkx7C9eJzUub2cCOVxPuuYbCEH\nWE49s/tOH9elr6OY1MxeNiwwMLRbsPMNgcysJ89USdr7JkUJHWPikgLSC3owm/x09mhInmfcv3DJ\nhR2D0auSLbzu8DDed4yOtjl0185ncCQLrx18zXVk6ENsP3mtqEsUZL7/3vd5660p5fwkrC1PU3/h\n8MjflAruXVfMAbExni3HKBkpjf8olwgHLMuSPSqEdosTDYokDGQK2Ug2V9deJtSQzZLxt2zdG07B\nZnNht5s4eUxX9AwL4cBShfwjhHyzpVIQFcQCFAstedIwQGGwQDQnOvFYikgYnUwb+NeIYXIypvPs\ndH/gOK987UgW46nLOVM1m60HVTmrag87uU1UqVsY19PhxBl8xMmVeex9sVE8f8kmprWNypRonKQG\nSPPaYEohtcgX1K0Wcvyqlm6IEolYKVLf5Qf1T8QpCcIGa8L43bcMaVNn+CFPskNfCWlzAehnFgoX\nyEvupbQhn2SLRkukacpcFsOpQlrGHuxdJv1mfYg/+8tYVSjECSBiW07ELOgbe4JK8275m4tPSolA\nCMicdhhx8iFJYAhn3gS9jHFEWYbVCKsYA8XLitEhVqqrDO9/6qQz24533UZbx6FiPeOSfUpPBCqd\nRkp2zjUdSFnCaHKqbjL344uZuIblZItR1t/6DL/++Xuc6ZzLL1YnMJfuJR6+Sfw2/rZ4ovcZ9UeH\nXxW/+uYN2onBFS7YwejQiWCrTWftrtd3z2+tZjLtjB4YTkQHEsvoS+8TgaLpwnzEER6Kvi++Z5ak\nfaUwMltiU77EoBko/vOanzhUabn+zihaHLZ4D/BSw3SRY+tkuvUsCYckLX1C9VyKarHDAw33tp6u\n9En92VcZKz7JLJbh9IDeFMbfOZ1/+PtpUluJ91+CjDRw5dgQB5MXUHhghWEDG+Q5mmMl8TnEXMlE\nZTaRVomvXBU2ywZmLLlaZvWOkRHwEji/RDKn3rJh6Pa2jmi/Oj5o4Kvay5jCRNbGa0PWaJwzczJE\nR9kz/7+Nc68HtgG38l8f4/1Pweaw6hmaRqAEelwZVFXEhN64h3cbPP40RZUbV9Zx0elD9uSRlvTa\n+E//8ct4fsucMwc9bUK6x5gViULnGgZDc779xwW6lnLQ6M4bzVItSw/Sb0oVS+USDbiZ8U/eymAD\nwcHtZs2WSFas95Nb8iZnZxbFH0n5TnyGsZXG1BPcu/8eFg3rnLDlkS2NI+Dx9RQeEQTgkXAj/UIM\nJk1grvqqQN9+IGEyBM2+C3TpLkOOPJ1CCb1oajFMXy89eoVBv8w/qL/paxCDRUf4aZGFtLlnFd0w\nj9bsWmeaLUhpcj6n+iCepIT1Ljdmc0BPtTXIA1NTKgZUGTBKv+GCwVHrESGzCePFxmRNWYzNFCEn\nijAmuK9g3GQZXbxfti15I/6dnc+RZY1zvseIPpBFd/IISwNB2lqr2XUiTqDaz2bFKfsPzawadmWV\nI2Wox6ErBM5xstuEpbKdh4xvxs1ZQxwfTZIn5p0SOgoeVsqEMBY9VH1YjI+mkWXt5ZGhOvxmE/5R\nI5n7HqHh6aP0H1qtlnK5xNVMyuZT9JgG44WuHN1akBflznaF7Zdn6KUKu3wxfJnrUHUvYaVu5Avr\nDMwhsNuHxGtv/pyeTDvZeRdkc/N0mpru5+1BuP7SrXQOe7QruyUnCwfxGT3KsMlB4USKMZJjdtp/\n+NChlBSNd7fE0TIsGoPJqCVfEjPEaNFDfOM7301s/PUTSgmt6JqJZ5/7I7pswpeukjRrvSTiJDRe\nIkR+mMKONiYtCt0VpoRApVvrZbq+itGMzsRlk/+WUU9DcWC7wZt8iHdn/wrdoOKXT9PXO6ZuuGwP\np8jjZF41s/IK4MRBWu1BsiPlTCvSmfK/wiuedY1XiXcJHoNQ13xY2o1Wk54iTE4qTGNquakf53gQ\nS9IIc7uj42ZXFe7q2YaPUpYZ8sPvcCxzI8kF79N4dAO5ioW7OUlHmofnkgLRnSlLyLcIRoPtNrmg\nEZeSTEbhCH1d18oaGhhO5HBdezo2xQbpNiLtJcRJY0Pu3/SGX19Bz1S2JqVCZ84uMmIFKKoFvXCY\nuBripbQHmagwMNc8C7SLrJr8iu+Q4RvebWV64DR6bq44ut+lLFsm8WuQtEqnoHRfVNEkG48cjYcy\ngnRqgpu4iaalP0WLOFh+NDeeCNo435rFQ9c/g+AW5uWe5jb5tvZ07LF9JUtPRCYmVqShfq75jp/z\nZM/O1dePFN2lSIVoVqd6fiJhnO5o54Q7Q0YtNsSHzQ2Kcka73mGUVYfCDFXoxJJ3s7HhGi4vnVt4\nsaxQvP7im7hI46z5IELcRfonZtZuep9r7/gNhkf/YBx/H3zp4LvQP+MP7z2r1Yk6To6OEjb6GCxM\nRZuKMmr6Gp1hnU6GGGi8ksB4D1cPDHLUPgvf5JiaT76+m8PSotpjwjHOKGtY19coUquPisBUGck3\nrBDuLz6U73MDwbaKREplvcs6njtnq8VI9d0emiIWPkpczdOhfmPKIZ2a1k66Z5v/qcnq/xkDsQAT\nwBr+62O8/ynoFl0tDvgZLUMaIlHem5oFw4KGWIfn+o0fq9Mb+6Wh+wr6kgcZqsm0rZBX3Hd82bZ9\nIRkXXfm51Jj3SL58DfKOG/5co71U8nGWSJS2k5Q1wAQe03XhTWOAw4Dhni7qKZ+9WKInh/Rj1fjT\ne3li831KQ9Niy7H1ubyQ+xILmpay4EyMC0oxqn1oEvvXtVHrsBBRWMQrdMrqkG0tsZ1f9ghpccgC\nX2b0YNZZ6Vby5alcFPrwJc2BjqMLA82R3xiujowanln5bnRwzat0ds3n1v0vSD33Cih8XZHmQe2a\nRKkM2nRBf9NWkIl5BbvjXU6rPGj0C6EgvPoFYXFdK6cqS2jMyNXiLmUaGfPoGzHRnJekr20TL2RH\ng/Z4dp8h6DqaaFjyd5ShTI6UeKS2q4yLqcMsNJ2jpWMWjiuSyHEYsC4/xmc9N5n/cf4q4kHFIsaq\nNOQILQYzImJl4fXvaPGGuUzsuloESyMUU89SW440xyPC4BUoPSamFZxlQdtF4jULeHjefLnJ+gby\npl6qIwvoo17QcZpcJpmKb+CtiftPKg9u6sTcreCy+0TiXyAxiTZvBTFuZCK21D2/8iUi/TAwOZ0D\nX9zEujvexHbvbjUUupZo9AlapxRaRhKsXdlr3OhLZ8ru5y+LqtT2pDTc8TH9aI4x1PTssz9KWQw/\n+B7E41MGumYRL/5CV5M7eOvxHHozitSSgxOa5dFGZq/cJ891reXk8V2Mpyr4PF+B7pAIXRptAYo+\n+YyXXQpn9AlNR2eQAd02BeHlp4ILBLoSgNE8xBbeMfe4LhrjEw2Mpks2bY/Ja/3X4MrNYIPrIvek\n/R6HyUTByDjt7ovYJzO5/0GB/Pwzsc1lLFqn/5nTR7OpbViJWNWNNX2tJi1mZuV6RURYWf9EHyM1\nghkVTzof2HadzLUGKHn5PXExJZujcxeSeDyXqQvZ9P3mM36a9WeMN4ZIHjeYh1vd2AySmNDUS6Yl\nIUZnymnZCpOdi1UzGkvFt1iNgZTkd0A/C69Xcp9ay6mIolEc4e0Xn+zbdXQTkbK9+vBQuchOcePP\nb6VFrSBj5buytmY6ra754Bimj+MkWdPFq/2jHLvtMT55+CE+P9tAf5OBWXbo9UJO6e/cbz/5TNAd\nikQybAYGxCS7bM/LipvqOLDlIXJEQpnRk6BT9HGo/wwmc4BV4UPcKN5Vr5/3cmXHWLlVl2YdW9Nk\noqvfqFWmCF+aZmpx9pOWIRnsVeWq5DY+q5kmXFMBLTL5eLRqeflY08r8AYuG8lbUxLyhIMvOVeGJ\n5bnWdh0Vs7udVBqy5dXLp9DDYP5yjCVLPmXljG30vnApZ7wqBj+wa49JT/92VJcOBgYDfJW/XZv0\nL2WxlJwO2pmbpNCRiFI8YMJgMpFuBqYKZbYUSh11Pd20m2dqszR1ydv0KitZI7/gvud9IruqSY5s\nK6fzkFt8rlxO7cUFYVd6vylYetfsTFeEefqbMmQ1s/W6xbJ+bU5wS/vjWsVXRfL1a/+pF6z/cTHe\n/xRGXaPM7/AxVYKI90Qxmo8Iikt107BDrNq4lfg+F/PdyZzLusBox1zL0FXBy7qa8366OEXSWVJJ\npjYlktOPSz5/8aFBJ0+dGrsCy9L9eCMeDJNKYh7agAlTWEO7REVlQ3z5cRzllvyU40QMsO/IIlWq\nfhHcXKBrZVO8Oe9VJvz3EvBNwzttnxvl7sKoUyMpBC9SRB93TxM3cV4AKc5kfdngorQhOaGVdSaJ\n6V0V1PTNcy1pupolz/7G/bm3JviXtCHt6ML3kjZ4dJZe8QjR5y4X8e98CwkcdI+of/n0b4I0G4pa\ncJ3ZEozPN503BEadHb7SiDD0K1LkG4jX3C1iy2sYTp/WN5U9ZCSrUvZ6ndTnCfWx9xe1FdCiOnLD\nTIkUq+fGPXQNa6wevV6Ye3MJmiaJFHXT2Z8jg4HpLFFzZaZjSKQXNQ4m5vQHcSoKEw4FnGixXKJN\nMzF/3W8Z66ghXlsJDRVhE/UkC6PIig4ptqFczrcvpLKsFm+BZGZzAy0JvwhsmknZ/P0c0iVBZa40\nb9zNzBGvPF1RYnx3c3VWcFZSPu/OFdz28wnZ9D2gAFJ7NGgEvmbobz6GHE1lyrCaGTNvxPv5Vlo+\nfIPV6/pkzcZHdCLJvHPUxI03SV5Pf4DLL0KfqYMed5GWFe4XTRlxW6GP7yDRbh9R/LgU6LsfPfec\noj/Wi1PzY33sH/Lkgc3KZvEpbV0zNRIqPN6GJZYgOueMTnSRwNZL9Mw5+k6cYmtUEOuIhzrpZJSQ\n3iEPknVJrTPinhcTozCQBp32ru7epB6KRxJkDYe0XQWvj20S6zj/5c+5OuKl63wpZw25/HLMm+i3\nHSZr3IPBkUrKFYuQQ58mL6SV1pFf4nANU1l5AW9NsUEN+EhyJ1GXKEcKwb4hJ9ktYduM236s/9rZ\nEX74oIG/Tc/G1nqIn3/rExbYD2H4Yz6HZufKt+puk2/23cf2zq9xzz2niXgD7P1JG+MfPSv6+8v4\n7eQ7tNLCv6jbeFG5T/YFNkra/GAPU5Oyi4L861XixsNf7bo57yV/itQLajAYYlIduhOpt0m/wcEd\nl+wXB2MruWCqwOAJclAMyotyoWP6psv5xSKVJ52aXGBcTPNuE6WVEAqp0nlaiS7Tjpj3r5ppmDNW\nSYgwGfN6pWrVUM+MRLKkpsoRCwFnkNMNSIvnLV4qu42+jcLY+GsyDxy9DGZ/Bk7pUcd9RAMzxbgz\nIN/N3B0oyCU23KOpyxIh+qqMlI+fiUPrnFu+1Z90enHGOwYJ21INpMdAC4eQHeXi8ct/xpoRmJXo\nG4l3wFobXD1l4/uPftry6513RlbXHuCjbg2PS0jHv+TrWvcfrd/8pgmTSbJlZLua3bOIWQI5+9Nt\nrM8ASyiDfC5QarWhCJ38SSFWUq1s42goxCTllBonG2fJpuRcWtVyCuVh5hdOUOGqJyxu4bBcyrMT\nK5Luvb6RP3T9Sb0x6y2mEinSZvYS1lXN4Zh0D9nCvRt2WkTEWmL5Z7T2f1qM9z+F3tReqi6ASINk\n/6uyZOxSr5g1R1uPOdEyCc3OxfLS6i+5YFT1kZgQbeumXX0sETCXWVW9wJHgTDosnvveOH0LytWf\naZW28XnCWHIcEooW9iYlcviicimLhgVCZJMdsNd2TdC1Ws8v+oCMiENK7ZQUM9/EPXCZ0LJV6kb2\nETVNctVIOmN5tfmomQpmKPTDQSJcZLWqvvBL+zY+4aWPXlZv7viG/FnbvabM0xuVb+5+mDuDtygz\n2udO7cr5tOP5kUX2pOofT9F8FdOa5uqzK7bDI9Mo+/0bcPqbpG14gBcSLYhQDFP6gvjDf8x7zzFq\nEnu4v4TZ4J6GQEnoqRMRuPRSvkixnVdGK8DuojecLEeKo/SQel2WGFJSs5H7ajZTlhfkVNsoZ5Z9\nhhYvJRaeILtIoyOiUNi/cWpGahfZNguf5H+QTdYjFoQ+InWLwBLFoAXkZHsRBksMb+d00tQ22Huv\nHGeCoViSLDb0oPYWEvE6yc27iPcm+Be/D9nYwPbqhcz48jAJbCilxOLpc7DaR5nzpxH/Kw+ZCzh0\nUBIM+gn2TjM7RxC8Cud3JOAIEEjIaWtg/PuQvhW7+QTC1MmcVMnKO/LEVMY2RYm4aP7kbcYmjPpg\naZLcdEGJ+jK+kvXFVaJ8IqL4LFLvTWLmludQ3zuXr2HQIbJJYk8VWWONfPirJzim/VUsu+FvwnNG\nkHXbiSkiUcnb6STwoaUWqQxPl1QEhLs8Tf690EFZ7pWSO/177qc2PKjMNowxhNl4ke5LK3aLfuh3\nw3nLLhl1+EXxGCR5LSNf5NiNwwUPy8X7HZiNMHfJh3HfVwtYPOrX1k0M4hjXiHanxWcscmgbAp2c\nEAqtrGdJ2Zc9S7QjhD020nU/ViHkqSkP5mhcvjEnSm2iPDprhyrKn472vCjvYspbgzuQym/ufxuZ\n8iQOr+Tzi7PFXycuE32uOIttn7F+0w+4dfmV8pK3n6yda+/i2989yHke5ag4yQpN43TehBezJuj7\nOvbNZ9BSephzRkKza8RojApStyfstupIJGYScVaR1NGbyLQ0c+GFuaQ0xLTz+kzcKeMck6PCiUkx\nFs2T79SGudjWI26Qt9PXEadgFdh+EmfvI0Z/0+NG9dcnDtgrBmZgchlwVseULVsgEHza+JayFU/d\n5VR8fBuFKPiK3uHgV1fQfKfV0B2l+/TJyxQ8+3pTRzzxvFAK3mTJD563RfWOTrvbrakjQ+AaTUXm\nROCLYxbb9JyxSveA9VXt2LEz2eBPitCZ6dIaEhEW083MSSfjzvawhaDlQL+HH7hhihhNY18bXXHm\nEcLBAGGDkbvvlvWR2DkloU8NZWePYXIKYmUJPg19RpJdxd/ZRralAOWvB4k7DnCp348SVEkkfRrX\nMOhnOVwKECAQ7Ri/TvZIM53KSrksfIyjyQ9y25wnYg9+90ZuL/or6ywfy4/jV5K6dqteU10rS0xP\nN45PeXCljMr6+pUyNnN7cCxhls80vPL/fCf6/47x1vHfK8b7f8Wk3YsmBcYeyDUcQJF3DN51qLTr\nypouw/Y+jablRuEoGo1c7F8jnSEX/h99n87UDqkqQilKtHDSCOsDgWE2PMI0pj6Jo2pdmeOkBycU\nRqzqONEv7+C67Nu5vcGDp6ubviLTnjXahLubidwSyaKfisJlu/Vpw/2EDZLx9jj1+b/j5mgUw3im\nZs/Z3cQYJPxZPMTlXMEQ1FdlGtc9ELvye1dKr31y+42WO9i67j7tu+UP8MYl3/E9fuOPHz+z/HWP\nqk6I07MbkzIP38/k6SVajhE9WYwy++jZKRpuxZveS8w2GnaOJkdN7knzO7+2LPr9wB+FPylXFyZ0\n05TAaRRRhzyMkoizzR11l45kg38yMiitEZGXYBoXaoZSBLGISZyoWEk8Ab1TgkhuC3c+cCcR81k0\nVaBrcd1bf12oPNMgPGqQ4ZQroP+kic6udIhBukSOpdB9cRqRE0sIBBPcb34Kqzxja7dYaEmUKjOj\n5+navSGh6JI0bZTMj4muSAGBzsaH3sC24wxRYlKd36NY7GWIZC/XH1pl/PYTPr3oja/qSBo6Qedi\nVZvM0w1kSBoWGE2WfowWb7Bn6FuISFQjuwPFv0z/wQ+8/ObSXrJtfroMKmqyFwKZ7Pj0Su3qG38v\nB7of6o5lNomhFsfuyokkkoMeuX06g8vvpPP3mSIZkQVPnReY0pm/f5sck6mYU6W47PK/YNo2K778\nwtkkh2MiQWsS+JpxRrMT1NkEhTqhsCpKu8YZC2zWSe66ZJ3he09Wplwhy5nDsT0Rnr71lsrpHTBp\nAcvEeGHCrZE9qWD3GRp7c1xJl4bHxE+Wb5EH1ragR345qu/J4Uzm+uDv6yUnA8cx7S4xTmv4RL9R\nGnhfJnGEVB4c+CRvCccwjHspUQZIsvpF87CUIxaDOJ4Xo4XLzeXbVSWjXWb8ZWE351tuJGs0l+c+\nWMnpVYfxXLuB6N2l8M03eTQ4yKPhN4mHarmt+LAY/MtN3Q8vfJ/bn6wmx65xTL7NNfJdrOm7bHL5\nmI48QLbTT7MnwLTRVNVh9m9OLjqqB8NBXShzrEnKZ4xRjbVjyKjk9xKtm8dc/7HgcCSLRXYvLQxi\niRjQ2hYmEhooMQvpZNAY1CnDzeTfbp38+O018Z6Ht7Vrr99OmvY59sIwF0L97N0HHWoEW/nzPCju\np7B9FkmN5cKaPES6/Tgvvv90zK250tpaa1gWGsr8vXjB1Kd3E4+H5Qy9qWMo7YwyNSVCxUmp7FmR\nQNV0zn0xoN99YzA3jtHb4dPm/XY93NJil692fUu9svhlTLoJcWQF/4iOHX+VOtdYdJLiMKTaEjpT\nLLh2CuPfa9YSx4zDYou4YxJZLINPPIGeqDDqOVfqWo/SSX8ik86oxt92fJsKhujXz1EtFSZYwPSg\nRd9NJAqPtYIlUZ85ZHUM54oev4eWuaHJ9K44i4p6/EtfDhjXLI4QrDnL65EHxP6sjWz4xifimjVv\nxG+NbkyPJayUV9TqU1Mued7aWFCXSBWVLZb/59N4r/u36uZ/WIzXGVU5kZEca5mCOZb0aHtyvumK\n1KRSgzWC4/NcgpVnRW+gqKczkjOZ5k/ltUWfYQm563uDgiLRTm1YUHNhWOH0/aKGieQTRke02Sx1\n1ZgQl7fu9V7Oy3uKybLcxi0VRownGknLvWKgTWlPlgxnzFMSWgLR9lgwueQzrPZ01htMPGeVcgfJ\n3Ns1XV2b8rqrarSKXw28xBQB7iYlJnWpKHKlFAhckdRMpbRY390QQOsW0peJa84gW04VRN3T19ym\nZ7TOi1d6PXrbYKHIcxO9ZwtU7Te0GdM1VngMvL3k49HsoSo9VBDqH+sdq3yMx7RwVY+CSSTmfm7E\nj/NE+OJEJKXjJFFP39wFYVVaB4Zkt+qbSs+OU06rpTc3RU5E3Sj9X0l/XGXY4CbfrDPg6WZ2Un7i\nQlCyrKtEH+wvcdoMKt4YaJ+2x3hh61PKsHUQ0QelsbCesYTxER3LD39Fe8CkXxH7Ci12MJyILmNY\npDNr7ySHmtbKdDFIIGYn4FHFgXT8SSlwzliXOKiOgWIQWv6EIc3sTIiIJWJJOEX10cjhZ/oerWX6\nZyN0rMGdfba/jOdGiD2lkPduIh57IVkdSCc16x0NJxw6naEoik6iJoRL+vHmzMQ56tUw3uDbs+dZ\n41TQPXZ8TVk27Wtl/Yaf7SsdSugxg1TPpRtm1mXTMBUCUfM7uKBPFdf75GDhRfm8+ij33/64fu6L\nr8fVrjntK8+eVTxZ4wqKgcTUCIopxcD4jASFAndcYEAjt3JcNflypLbu21k5k0Vimjsz+PFHKGGD\ncTBvUNGkALs7QCwV7AZ3JNDdOGQsmq5LDTmQ/0X4hTP5nw/Eo6nq8g75QVm1pzFLsnmsnqmLxfra\nDKNxmfRylHtwc17LaE3XU1Qvqf6LVNtP0RPLwdjfKZo8uVp6zBIPp+aIbczXHktO12zVe5gQY6To\nefRP1erKSxLr3AJmuB5l+eCt8vWCoLaqSzDaE8SSZ+TJ/c2Xp6c1MWga0CcS5TQwnTFi7D59wMKB\nDAX5Y1w+nZbsJIZVC5uK3xgesnXI5NFqJeB2iMXJF3HjlfGeHLQSb6IpMY+288usEb+TddFWiVCp\nc7Ux63AW/oBZOuLfpdvYR0jG6GoK0F/zVvKJXScK/9L9k5Ir4rfzWkuA+TNg8CwkOSFRgXLvTyTh\npBH90Vu/Ra/eS/FYObGCreytv1b/6PNr/ZVlJ+S/nHnQErrzzeEECY3zzcJ0YVta5iZd7+83m2a6\n8vhyA0yrO00g0KesnpMwOZk6+9NCHtmZB8d2fiT2MxWfNXkemTEAl+zlM//35s7nUVmJTlsQWnWU\npAUYNkyitnoCaPnlHN8XXzg7LyNCKcVAJFQaF/k2S+SuebNjWyLjokqBwbclBV87weDkAPbUhQzl\n5TEjvsC8A5sRdpdhsGxruHex4upT0NMH2bPii7CPGfz2pHCYjSQufCnk3TPe58XMG+SOoWujme6A\nMJ+qEQ5mmxy2JqZNqzd7PINCN4QOpt/yKsqle/6pHU//kYFUA9nAnYDn3+F/W+T4dYLl/tOfm6HG\npMfDDtLs33y75fMdwreoVmOau4+u/rTjCUsg0OGYoietl/HuDc7OAYssskXlCSU39lDfG9NxRxJL\nGJeHE1nW9jNf1yMewZMHfp/cS95iExP1KlHzVG53SwfVSXc6njY6E6YpbDlIc4iBi9m2RHIzwlQm\n79YSel9nEYcMQWZN2oS0pxQxJbmbG3kt7RNthFPS6xrwdzesslhillGDos23F2Um2rqksiSREu9L\ngqc+S17Gha/TUbVb6Tz57I5CdKXL68SdinJuAA63pCdyCttI61/JkYrPsiqHcy0JTyIj9/pcUg2p\nMDuOHFEjTReicFzaqy0AACAASURBVCGsB5q/DGbuPanj7rQ4LYXBjP4Bc9dElyM7R3BKgdHcXNHu\nLpfR4Q9FQBoID1n1PA+Y6tYh5wwq45MqarA+kNCM1hE9g0ACmHHcR67lQcOxkBF6IXu4U46ZxUjk\nX8eVHWz7mpIcGyLBiJXUzo7klCG0/Zmckx7jHFlPjzlHTmZi/LIEky8XLo4NiT7fGKSn4/BOEx6T\nz0fEMg6EMsn8eQopN9tmvb2I3qVMzX+hM4eBHoPx/XCs7V4D6ma0uBX8txrQBX5rO/0hY9Qs4nSN\npenYnXi9qmKz9R+12+/l5ZefFZff9KxdbbkscjFNX5kaDcSiRi+NGSIL74wRHnwKU/MFjZMH/Hc1\n6jTne5WDnmpWrtgqKj5ctU8LVB1e1tSIbyo9QfZJqC1kXv8GhJgpcDTLuT0DBApFvHrm0UR6442u\nvRlDd5eLKTaslWcjEeD++weCukVREtBc2ox0Q63JM95b+7GqFhSrjcUE8i0jhv2vXHaNV0k1yYXH\n4jv33MpDq1N5MCI40FYnxt+wdR8WWZhdt8px0++UxjVhZXg4Ty4M72Nx7LA8ZlyCaG/hy+n+nTn9\ns4xtJcc5Jb6eqA+WpKA60fVfSScm3i+yyVKjNWJXr8GfMkMfTnGIN6YZOZJiocCvMplvwyVVkz83\nRHc0kfiG7XeJFnIY5HsYbHMxrXpSsypDuLVxDqdcRp+iSeOFUylk1cXzVOFlWGWNa24439UTn/Iu\nQJkej56mWr5vuFwVjgSLhhuEmuahzljHDba/RqVuFdMMV9FlOs9Ms5mRVXdppfPs2B5Ji7TcMrv9\nt9Y/8f1pN2pzp0HnCKSkEjrXhMjaDr6ABeIwGg2wsKqHkeXvQmuq5fSHP8pYmHtWXPj+PUy/YY8L\no8FHWxMnRSItt1T399giZrPNI1srrOT+fYuezDL/kSPXD0rJwkMjuJwXr+R/cfeeUXJV19rus/au\nXNU559xSdyu0cg4tBBIgQBbRZDDhCBuMbRywMcY+2Mb2sY05NmCTbDCYHCUhlHPsVmh1zjlUd3V1\n5bj3uj+EfXzOjzvuYHz3u/fzHGP/qVG11t6r1n7fNdeac75VAae8zPFyyOAVmL/3KKEl59lFxfAK\ndslSiB9NhAQb3KkhogJdsZ+QclY5PvcmbU2+AWagYMYtc6RYYFWV2Te3iju4m1QUSqN/YeemTIy6\nhqZcxltpmfKnPImbf1PgGi8vPR1vD5/DpBtExqwGUHpTJpJrZO5HivL2LJybXtNFcJbG2ccTZI/Z\npIXDVhRB+3lCzjVLP9Xb2lKkJjTx04qEmtIl+9D/7fn/5VtYzwN7uZj13fA/rvov0tn/LpvjjPNR\nTbzI3oZelOgylWS0JoQrmnK275CtTtXLjATBXs8uP1G7oT1UwKyehQE8+SW90yGSQzn0T+81rJLH\n9BuTutQi/JzPjGgfPv0nQwCrHigVhpvTf7L5N+v3Nvzkuh+FhzZ5fuaggpXu0bDXGHuV0BCKsJOc\n94Ha4pOifCpJFCUZ2kSkTHM6RlmmPaAczvtMP29oJKaEpC5EBNM+f/tUZcbYda/qOZlePZQWjBvH\nTEMSuNOeYJg3Ruz11CU/SovGiBnQ3hl/9bMCwhyLLg0ZDajjFvRDekbV3NwjNA7ej4wo0WSHWZKN\ncYZrxvRnMz9TUJEcWHxhRErUAYPVlzgU7rfXypRgSby9sHJ65tSUL9yOxxMysjfXRLgmRNBtkgz3\n4xmO4PD7RCQMufN2kVYaEOc/0eUR/pigIIkE7AhBFDX2dbbcZIm1eNNImuKKxsseMkwvol/vBmBA\nS+dZS75eSB6k/OCHkZowg53lMoCbbNFNd2KpsFs1cbok+Z2EfKLRKIquA7mp0i9KSKPHj678vXim\naX/N/m8azJ5SVYkTsroKk0jqS1J+5UX6mVHwC2lksfQMbRLK+BxIb+aUO6IEdGOsp1X68XdAn13O\nrVo1EQh8Qmf9svcnR4vZVDZpQDeu81hk9/rW0mhDto4691t3MdKAPDQapeTTpK+0uUSCN1Fed8/j\nqNuuJMlVMhmi4NRoYjppyW+YWPRH2HUp4wkKBLPVFNq1ee3NtKZok1XSL9xNtyuxoZWWKnWa1MUd\nrqwq4nR2bjyrhYXqh6HKCEYvHDrfm+FpPlYdSUsQZ3Myxit9GFs6mRdOzCA1MqGslZ2MtDzC2+k3\nal+OHxZzB7wFQ9xMi6c6tCz/cNPzg2eFOytBrMrtxh73ikatNjgxGaQ+yzkZUqNTnpxBeaWcZX5A\n28pX338US6xPBIUmB/p+Ja+Ia+rpGTNZs9cevlCjEE30qh8lhMJrx1VpypsmSTSilLoZ8BP8auhN\n7df8HE2pJMI0tub/VCvtOfQN+em0LOBK7UXfhtxZqpJ1ytyx7+4MY9uEp6bfYWTdtAxG10KZSbj1\nDHEqul6TBSHi4wnxOaWzaA+cZSrWbEe9lKtFvXRPn5ZL43G6LbMDh1jDsssXWn5+/PrS41eZ9ei1\nPWp0Er3PAymFKAZg14Einy8xoFknIE1N4IPXg8QJkFTY5mueKhXb6t+M1KzwaICgJMmAqxNrbxab\nC8IfBkfh3esHRNgQob3lgnIzSug3v7k/dNXDvHfYbxXGY18NPafc5/uu15PQoxu9ycNTjPnLZFly\ntP82UKoFgWMCqrLQr/dChwFOnYsJjHl4Ld9QZsZHLLgRXEYaILUOaTZVD3WuEavwy2I5rZ/lhfvu\nYz7wzng9zzS8LDBMy8uKfyF45EoT6ekblef+6LegU2Htjs0KYDVnH5OGiBTWXhKSAiY+eDNbr5ux\nQ5ky2iwWc5j4xl0HpnE5Fi87rbe1TVJdfRLNk5n6xhMvu1tthoEvgrX/dwTyDBfV/l4BSv7HVfpF\nOvvfZZl+ET+qknPldnRHcti0teg/xAsvYFe8yQUjs2MMR/Jw27uvxlOY3qpaqTr8NUF6h/C5K8X2\nr34qfm7o0DdToW44n60+WT4Ujd/0ZVXXDRw6vFl56+Zy8bh8OunD2bsqzxf0/uHel7+z905+zyRJ\nR6ONt4eZbJF6oBr/kp/R5FX0de1e8ryRN62WJZMhpYOrbgrIqVRdsUXAI5C43SZNHDN2RHOMwwuO\n+jMd8Uh/akKHob3HAcgtY2NUTyWoR3PN8zyzd6Ib7QOts1ofLMaptVBlNzkVuS+XPoftarU0v1Fe\nyJ4Ri6qZxmPVR3RhF6Kov2hw95rdiuIpHkXuHMxUVWqKF54in7hHTskVOUFlsDI5tNjpjHKO6OCY\nkZ4SA1RH5WhzZ5APDQR8CjPyLQwPQIZBytJEMFQV93q4YNQBBlJlohENcHJe/Vi6LYKcsPz2+aU/\nVMn0OyNhwpZIOKxb+EDLVjbhkQk35G4IzfHRHJ8lCuhmTLYhfSa82dC1+KFAiYNJPk9gVeb64wZP\nKYn+s7keNTzKxdDygp9c/5OMosGlgbq4H9G3Js2f658IRCZSUOoY731eJilDiHuXozjnSdINdDQW\nOe1KzNg+oEJgGDkQVcpmLyxPSjKHfsDLc59/4efhO2/7BdbB1crjs2fIzc2ZY5HSmzCH/IYETw/R\n6VJTpbm+5Uz6PF+Wa4FYvmwf7L1EB6o+U9Oce7IWMHzND0Wm6WyA4Uq6whaMSVFW99Uo8zsH5F/T\nsdkN4YhNWEXpmTv0tKgibbObk6zzEFasEwEkcRe054BlErSwZkLTqrOcItSStiY+xwm7jnAH6Rks\ncSrKQsdhGa+/h0OrarTFmKmRUjkrvyI1xIeX9mz40tlGhff2LY7WJI1gsOpS6bMZqjzoBjc3jqc1\n/bWgf76Q6IwU1XMg7wA/5adYFBFKnVplyJRzgqao7vny64pJb7LrzDgoP/BJedloVMSDdg5V2MEU\n1ZY1YYup0mvnjAwvfwolOxdP/zSlvpX0jtaRkN+lV+q7DTnDC0J6epcS7NsoNrSKXeNZeMWKQbPE\ngcuTa61WzqMnaF5zZpDjlR5lZVYSPYFW6l3jImuFdWRt/IIYpEvUmE3M6vW4snfPeumayB7iBiFO\nrv0onF3TwZwj6EEvzC7FXFwEv/QPJRTVIu0uqJDJwa/aL0e0gWvGY6ak7DP6lKif6o/SFdEw2mqm\nEjk3jCU1JxoOiuXxAcGs0KNSnHwXp1nXbjHtT9f1quJg5qqbzd1Xskx0PW1UYyMJUoo/xsJKynvF\nDI7W6K9s3HgsAFwmMZzxwTMTKOUt8Ksk6OwCw5Qp3jw3SU1OkKhxxlmAhQhje3YmC+9U/nSLo41C\n092yFcmb8Th2KXEntvIH+QeujI++fnP/AS/v5h/lwQePFPoKJsexMNdlnNrYj8wa61UmxALWdApL\nu17DR+/HfIViQKu55aDS1rxYi8bMdSgybcHyg4arroqKgw223rHxIkckyX/wN8rL6V8Ea/+fHJz8\n2xdp+P9LE4p06RJmDxHDJSk09YlPPslpLSEzy1oW5MLQKkkoxUX1B672ggtaFV7bEyfX8M5fn2Oz\nrVkfXX/QM1jz5fMu077giYVykJwh/5WbnuetvzwmE9XwVF9uof77324en/jtxGNPRx8vv5v3+A5b\n60xHH1wlgq1SrSzULs2O4I3pijN2Fq+ZAynRtb6Qt52TVpAK5Et0DERJSRkg1udoRYTPnC1pOuri\nufOzRNg93ZsGxMYh0hPbEu1bsg1jUnUcW8FzH8wZqCrF3aKhxgdbqrVYKqVRk2Ia8w5E5fxAnKF7\nx4cy+hVHyMGQcahiKn2K9R/+vJG4MrPSatVMraEqpJJJ8XY1MbU8Gi6LJyweHk5Q+sgaHDHJWF4M\nmR7g5Afddsps0mFxyFjUJULDqtwwWOjJMCFOT98FqZpEGcY1UEiyAaOAck65pIhkIEosAMYIWQ1t\nwdM8daPLgGOUnoiPLbionHLckFfRzCl1noxgZqi4Wy/oGGO8wCBJXby+KkIXyQB4Zc6gQaolZHmI\nf+zzrZZIAxdroW2Z6r9JLbL79NyG28TxnOOzI0RMbEVLk2lEDPFwbXpQGJ3VkG2k6a17sgBaJyIm\n0CCrbHJgVs78/ITkwABdKU0diz44d26t9uCinnN/LKmY4bfXhLXCa7nyo0+11G6fBD1834WAdix9\nfvf6ap1POnKJ5g9HgTnnlraX/3pBl9QNEb5yeukxVB/RHbVES/3Mu5AusuvvFEPm/OmDueeF3ez3\np/jTJOmTU4opXjNdgj9CvFiSLZVxgc8G6kXR6HHAmNLvjbnssxOquxHDvWwQWRmy1mlQTucEgpTt\nGmkYWOU5Y3yCJvPNbKcwLBGvfn//TVO3OO7nwvbjxo5YBefdRfq6+rOGVUH6zifBMzuUZXObV0nd\n4cNGLtv4SD7OHS0xJTadzau8GH/T8dLXmzr3hu1KrMkXQZ0Szgks58pKMQ7ZGVk9gjMivA+fQH11\npqlhNmdE8AoVJZqGBLxslJrbRSx7SoI67E4YDSiqHsHvGbzjWHLg0GrUK491+m3swXsiXeiZPRPG\n9MGkREeQocr1oSs7+pBS5zi9/EfqXnvImsh5XJQUWGR9bnriwqcua031auy7v56txvrQZ+8/EFvQ\nR1ikQe8ZBjQHbLhVI27CaOlH5uvOnksmvkpWwE5kxidmD1cq5isKR/oCpG4bUbmnXMKYS3MbMgwm\nE8X9A5K+2kKRvKPXrxczfPNWr6pWvdsk5zerd5Uc5eO+4k/MsVh6d0GBPA6k9I6Hj+eWnJCRyB1d\nEF0G9nAE6ufBIpsaaptCqiqo/Q8cCCzx0tI8n5wZ2LiYP/pGZ6eLycmUgqMxOytIU0qA07qOnFsn\nH1m5hA46WEjwt+vl3kTRZxujp6eolC0hN0avoy1bXbUPsf3rMvp++Ur2zrjcm2Isl2PxKVtHLHvn\nV678OXs/+DdpMkXK1z32e5vRGGHvEeSOX9qmiyvPinOTmaf7+/ckfRGs/UIn7/9/t65UkktMuBsq\ncBnsiFOx+TKWcn/fTGyyplah8WS55NAP3Sz4Y9ZQXlP0kJLCqfFLlFvmvKxduO2WiOvLzZFdlV5l\n/mSLmfUzitVoLHTvPT+UE6FsvM2zUr7xpa8plxs/vt5KYGQVR8o0NM3I9rbQ5IIkIcMxqQh1UYqO\nyZItp0w+ir/B87FUZwppvcSbELigdwGSa4hRpfYIk1FcYFiE/Lb8qE7PgbTGlJiMqsCpZ1nnOXT0\n3y0GXSdQfR97nol/2pHpUY6V9ewBcWx307XqSGZyJBBIUdrPnK8nI2IkeI3IdmcLU8Qq916+1+II\nOSY2D5TPIWAoKElICPhcw3PxFIIxGD9uvtUctanpeU6np1zHNKA5RFGZgXTVKYYLgA26dHdGtLVp\nRpncL8lcFEiI6IJR81tpzJGD0tjLVEQKNFWvSWAhEa4mmgtzMsT3Nvx5OyQ36wh5VAmqJLSh04PD\nnKNXxUvCs8rPMiLzxDlmyY5Lu8XC+mH8uSYdg10mK5nTlhqi5NGtjs/CUlUQT/GMWKLBlJa+jD7d\nmeCcj6R2ummz9cNrZNNkJNPuO6+vMGCQedG8wblibsgTl6aivmppmJgpRJ5Hjosd0wNDZfQ5N5oJ\nAeGi9xsrSyyzxEz7a7y2V6J4XnrpSee6spEaR9Vu8fDDmyscjX+W/XmHRibNw34Sh013n6XqvF7L\nutpTvDM1wXh5vx8Y6K18+87BzC4ePm6k7cYiOzEbnM2AHBfPPuQdyZT75TfefCml5e07rCOjZZa6\nggZVTZ/slBLcwWwNNVe1oLbISTQEBFS7hJwJANPAaCQSzsxVnOgTPRSa0tOFmMyW/SnTJ1nzZH3H\n+SW23WygN/IgY1hjXNx6/sGcrAWBjKHp+F/VW3gzfKUy+9w5VsX5NJyEYuy/Mq8/vVc33fwiu2qe\njst+6CLwxKAY7E3Lm4iHVYNyqOPKhS8yT5L1dR09Q5IjxEdLVmipvZI5V/w5GJyKhWuc6L+snZYd\n6aulPsuNYeRmAI6zAaZ+QMhuU3xUeHrzD/gzg8kDMKM2zcWKoyvQC0ZbPdnKXgwn0hi8p/n7llii\nO8MYjp2oXGpa3NWMAwd2HNywcyRpImiRAeIUlYW00zPzUuKKskbZtT66pvzXnjkpgwnHPvrKYJqH\nLjUVrMMJscEus6xbC24/wuBCX2HQCp/7WpDA3NtQrVBUG8ez+sqaF3rIeOPjVXJOFZoSDqhkpseT\nU6WpdTCDqQQNz+kGq3YB+493oytbvlI12xaV6rmQvJcrfqqAbzAzM54HQsMf/cFHP7I+/OmnFRXg\nHwECKvGuBTAa1Kw+iypKy9AiHfkHTF7BJ033ymXp7AIENv6mqrmTx48vyRvOgqJIIYtQGAMSZi8i\nemwJLbTEDtCUFMIq13KgGCgoZLk5Cm0zJ19Om1iuyn2FqNGydlkcX64bjMW6ghJ5ekfzSbMIo8yd\nUAd7Z05lV3Xy6YHNroXziQ8FXHNjURk2mfYuF6JI/yJY+y9JIOM5sD5M47lbsBn8IEIhUZF1XbZD\nuKiukTTtiUY59dXVpHbFZd6pvqctWezY8rDuDf3F2dmhG4tTg7Y9uY70efFzRt7IN6SGtYxgyCFi\n3+rmtdceE4PvrI4cri4UN/NG9z28GGskt7PB4OXyWxkVit2ciJ+BIDIrmi+eOpI7IAU/m7j5hnTL\nxkZNSiAIspERwowxzx2XsZAIGg6bOh3+AkVX+rrOvF2QTZZU2djzh9Bf0q9Z+q627ZMKkskcnN2X\n/dUrztXpv9/4bB6wu2Fg9fSrFVvMKSlj8uwpzw78hk6KXsgOmoM9vsRpETPGyPJkPWlPGJim6nep\niUkTlqkJXyZ9a41IKXvNk0yKdHVqelyuFKbpQecES6pDxPzo4cUCphJk/1hUrDRHRDySJWdUudSo\nmgJJbcNUmbtZmkUgnIG3LUcvCnKZwYZFaoWopbb4yaUHfkhamxPStXhjPK6q9SAWyA8c64hm5CRk\nMRjUEtv0aSVZ3Fk/EKy+MI6aLCTwmjt/RYp9ITobRLvet0aEqlK8GTYPvW9cnzmROOF5f8n7q5Nc\nJe1x3YZrfuBgjBbvEv2bIkPN4KrXrnpxWA67qUAef/1afclkOjJZE5pstt1xzNAfDy4RTCoktjwZ\nzJcjnL1m8VEPniIgf2hoxrO7dt0u76wwxy19J0Xy20ti7ZmB9IDDZbZZB0cSwmpP9fqDNbFPZxFy\nZXM2aVw9VXZqsCdnR42UKtd1ZOHMSpyHMuokOQSZw3JhV4f0F52afk0vfXjTkS38LvmTUPpwhu5K\nDk62tS22KL5cco3EwgyFMxzyJICWok9BuAqIGcZdbaGSLPHAIGJ0DGFKyyB1IpuhsmNdZDb3kBDb\nsV0v5E0K0FDeYv+BAuCuyrHuhu/Ija766XLOFl4jznZ1RSqmOUoKejz8ZfubK95QnwnvatwzOaro\nE+hRONAf7bQl51SpkatvGf8TFdQmv9+Do6WFcRFiVoHe6hcTyYNOslLctuKzJGyr5HRYYfaRDYWY\nDu6hIrYIwZeoo8tvCvZqujVJuJkrB7NP2mYOz5D7OZAmwN5RyaGxbKN5LjuIjeQzK1KQE/Ml27OV\nMK1zs40hDN4yYcWChaGkAtmtuUW5MMUMGeHhfKdTtFTrdWLfujOzEpxJrdtu9sT8Sc1mOJNlRLoh\nxROJi9QPCQYdMBkxRn79ne/YQ8nT8o5349LYJcm+zIXs/6tlYXg57j2Nqrpjy9M5OVCidWMyga/y\najh9iqyssHrLLXnvXd1L/1+36fpPFviFcvj+ifvRV+yAfYUTE9pSVQ28Bc40j8d27QMPxN8F7y5g\nRS3nLrQY5aPpsHiVQYrSkgj856TRH6fevlDcWkgD8AJwLhxevH/P3m8qa+46oXfRRTlVXpvRwmLV\nieZxoKOfs6PdfoSVQxvZWQUkZpKZupq3FF0x+nuXVMmJfpTSgg5djhWkhfR8zYRpODbNhpFQvtx8\n5e/ET77xfjgSs/HZ9GQsLwO1iMLQvgNaX3LykeWatux/eRTW/7F2aTXGO47SvngBqeY3ic409Ohl\niXqFY5FOQLcxOXDagq646Vt7gMTRTL5e1kv5TkE3/UPDymi+MmofDczP8JEgZ4S6PRkpE0SleYzF\nnr7KyoZhh18Nbq18jknSlnxJvKu+OSszdco4NXNXOcdnO5XTyfFBzngtcsFQjK7czBaekO8qz5+V\naq7Xx6UgJMSHMHCBzyL/GXtU5OSD9oHv+rd/7XnplZ0VsvGcuZa1TnhncwqPjWyJfBz7dOWlWKLR\nFiPua648fZM2mD54KY6RppGRMk9SxoQ0m7sjUnKCSPMx0v5imLD6L5/TN0daohZ6FONd93z9xhKy\nm0SlWnrC5btNcObuQ3Rc8Qq9z0h0PXbAH8q8XFYbBhpjMiMXBlzoKLY4h03K7Dh9MklwpnpjBKBf\nFsRB/xbZstqWO8DAQDXbj09ZSiNKYamxKATZxPP1Rlof1Vn32N2QqTOqGbVou8w1ZfNy8NtiMDtP\nzQyN9xJvimDp42dn40okYIonGSOqkejr/WWrZvsSMFsyjTNsAwuJJylaeqJZDg7uLkvsW3JgxugM\nJf/w183GqmnJhz8y6+wJT6TV9eWSK9SwuqbH0GNjPhc8U9eJlWGnRAXCXht/TNnM0ofAY9OjzH5w\nk3+H3rJxXTFC1AD5wJ5XP/le85pUadk8/DMt0vJlg8dotGJxm67xnB54oeDm/lV17xly3l5LRl+V\nPGUesv77DT+eZ5qYC6fv08/Mnkvd+fMe9NAxttQj5jX7aru6kvbY1zpfk+VPfXTLS33jBQ22xcGo\nctjiuETTDKcqZGAooHp9wAxThA8BpCHkhuQo3NA8eOHj2qn8BPHiTA5fLiGcmSXTJxThLjruA8ZI\nif2wkwQ+I0dyMfjlZ8Dv0gLO/Yu81ZaUsTHsY2N8OD1tKp3glCpUOWQZsTdlnh0176TGrBKTRiaB\niU46C7MN+cHx2vMnXzRdP+m95iEfEKRlOsqsjZHkiVhSaNQOwJxT2J9axSFM5I9sShBF27ezgbD3\nLn5NDX8h3SYBQX12UdpIak9qbV9tFnAlsEMqHAvb7cnV0o3V3spUY+nVEb/JGir2GMwxFUsscnSB\n6mcKN4njWaKZcRYY4tFIFq3Lzri9J5fGLQwU7eKjq3ce+Os37X4MJ5OhYWYMOUgkyWw1R58dVUbF\nzEz8UaPtu4cP63/56ZOjq12XicgZOO9FPt6QzP4Xusm98v7m4ncfnGEUKleO/MkUiwuil62T5k92\nUlSQ5tqwwb5p8g7yViZjzrsg9Cx/fCQHum+Eq0pHRky24uIj34Ycp6Zl7N62zbAa1BMglyXS19ht\nZu21yWNT7ogyNGOdyrXH7g6UxAjMjzDQcOlinuA+nkAzGn/ozMwYI3fW2NgFcz2VfNuWdOe/UdSX\nJfYou0kh5XAGkTUnWbJrHXszIJ0qxhJLOFTYJh75W3x4rsjoQabP71V0T4YaieVJoDNPsqBaOT82\nRSqXf+PpYoslQEvqoSAhm16cmPrBrl0+KcQZB9T6vwjW/ksSyPxkdG8Vq4Y8+AcOEiu0jCvF6ROJ\niaschl5vkQ71OhweY89ToyT1p2D2leAkjo67t0c/VyAGjWJgdeSMMiu2o/mS72aaDDKIwwWMbt36\nyJ/drhyLe1utzFJHQGiyJpT3jjvkljzBYwN5wZ+ZAu00+03KVU1T+nvVImJAL8r0pTHHbP0uHZBi\nR+IlFcFJk6ZtTFqwwI9ssx0bu+ztVtn+B4JBTvE703z6Tk/zvHV+R0folY0byR3Wm434crI8udNS\nyCPcsqnM5crNGRiYKbzeZgNQT++jlaTcRGz7gGNTw6aG2w7dHpMNW4vSXzrzI9H+DMld81sVHoKh\njrd5761JTNeNxsaHDcpC5ExVt0+e02Q4AgMBdCZ1A+0utsRlj+aQvL1qy2A4DPVNlgDIzzCluDLs\nO+TAQLWujSyIVWbpGOKVVmF06VhkN6nr3kM3mhBZRrwSPI1ilT0WdtpU0V5YwJpD/eP4x86Ygr1a\nGpj7HRZ/4wI1mAAAIABJREFUFKPcxYbpydTMzhw/MmKOzk1yzgQhk7PSXHJy0uh9S+tbWtdcJ2Ln\n7yqLVDXpHNl5A2Q92uGpDaqJqowRW+/SXUmoVdsislL64ocwR0w6VqDUdyORGDlhy6TFMS2eu/cF\nZNSms3x5LugFfGnIO/nNoRnvvf2gLFutq78KtQTx5UHMxo/PjmZO3hpcFN5Zop20LJmu6M8S9aZ2\na15q8HAotUWkn7x59HTVDH3N+fNWyPqEj5xI6+DPs1qC9sfbni4AHt467/RrL27+rfJITdvfVm/9\nyc5Zs469VTZeluWNe41Ax2A9Ts6D1LGCdRu8mDcePqt7k1RKc8reyzaZZNxqE36PwYeiZwGj9CS0\nkxuK6RBj90EDsBr4tUpoW1TPTSyenJSxjg4EKBkal2W6Mw2vJ72uBU+RcTKbHq/OOHbOAKUTTIhc\nf0IUR3nfPd9/99TZEl8ZOgW0B02sucpcNVJuaPAmxQD2WKBzlOtJUcBsGSnoHEBV6/230U+cndbS\nEiRutzxeqeV1ZIRMZeMlceABYHu+09mworXdkKY6pEM9Sn/LnBrVFhf9OVPMOe6PR5T4sjWaHxAc\nZJZso511StwQzKO+9kiZXr80rABdPP0Na68v2ziM9STQcomP2GQ4ZoilmQf3bP5VmUYccyzE1sOH\nIzZ94GRAD2CdSGXRC5eIA9ODsiQ7m8zVxe466q4aGNI6G7sdTEVs+NJtInq+gRMnflJ3++3tVj7N\nvj39LLLwBUP8Nl7LTYJH/PDSmN2ud69b120A+43Dw8mytla/BPRW8Ga7zAz3hMXwam+0owNtcfzY\nPm69cRFTE6hJUf3TlutWXkQsqarWglvWXvoUGTsb06cMk9iEQ/Vs3oi9YQGfsZuP+fjWfJwlb/DR\naAm9YgV1sRI8SpS0f4toBTv1c3PkHD/xWLEmjMk9xLREUzAnGEjxI0XM/Mnu+pu44ZI/iBMnLuOS\nlrXbhTeRFVsbn+3pocjj6QIKPvwiWPsvSSATE/SIS5nh+1vdeTWwwOb3OTg3e9yVPlsKXzhlAOIR\nOFDCdPZCOq+46Lq1oAKhKRdNIWnVswI19qEEpdlIdHmmsOM1OaaAkfz8rj333vu9YTTVdZvjVd0i\ntfce7f54WSqJcaDsT7WBq3v9cQKRMFefdyofFI+VFhNYkEU4Pm73vKXMhBmFpgBTmPFxGNiYvGZN\nA0QNPfSV/C7y62FhKGYOjDyFczwKRvPYmM1rt/P4f54t8zDLD0oj8Cw5Z2+XEu/Bg1v8Hs+AkydY\nQXQqlxlbIC2yaU3bmudvOnbjDk49tHzUUvxtY2pI2x65bZlViUPmD9OAOYQvPU3fmOK4NDlcLtoU\nYTF4hl3ERkwiyP6oYNPV/WkjZIVSVa6yfWSa8Fvin/6i0cYTLKTioTMFubsZHSsSxpRNelWZiSFL\nXDNYJv1AH5tH2/nk+RgiUxBwQ6iLE1svfzunfJuMmIws/HgsG9586ka+6QX0sxmhsIsM4qh54ykp\nr1RNoKROpwQNFnMkAd+0EHo4GPzVZBu/z4sglAEsjlj9IwqJif8Jt7xB1FHUPHM4ekw55seK4LN3\n3LPNLk88r2c6YSqmUKSiFA3cSQzKRzY75i/Y1/L1hx66wNOVWdzyHYAk7m36GZ0fmT987/oPZyVZ\niK//vS8/oEt0Q9yoZGXWLtubu/JvY2xbknfQVdhEVMRIl8k1ouXa+KLQcPhcebm+sL09MQXlCK7l\nUb7V0/2b008qxfmtH4L4m1EaPr0tyywartuam5o2ns+pReMZrowELabZgLfRWYZGNyZSoeVFMDXp\nSfPsWSNRflz17PTfcvNPWCfj+CXdQDYwBsAVo32kRhswyP8AfkRdXcCAr0FiEPPahoLZJ07IMiCB\n1J9nT2fTUN7wPp0MD2zhT1EnqVjYB6wPEjyRPikg85JJ4ApgD5CLWz2JqoqqwTnKS+WhaOHr8EIp\nh3gXMJgk4673VPJ1j7pH9mNlggHDzOygk6kpea5wQLSnI2Y6ba1AEbDn4Ffvya3t6qJYRKUxth33\nYL6V3BD+DKtYfeiM9oPi4sZVqiJLRQmfoYh22lmiY/Lu/IasbjJNTaYJZdelBIDVA9g0HdEFtNzq\nRIkEJfp3fpgU7BuEsSlSTHJCS8Z6IgnlpP1kpMJRLU/49sda2hGW5ET3YEbGylkVFVO6pORIc4r8\nj5Hbwuq+/aQ5itrh/gvA3lX9Z/JNXqS7tzRoQPNwUdjuiZakJC04MbF2M7QWgzv/iisGdUVJnoKu\nI2pljTnVTtCrFw4Po3Z80Org8OGzuN1kd+nO4+b5aQAo8oaUnNGkkBjVtR0PGuxJMakrRnHTO6G4\n1zpGZPag5nb8qcaJUVYydcVnLGQ7u01RUvQOHvk4bAwfob1aKReKopvBbB5CVyOavlDfoniw5Px+\nMnFe6DxvhW9ih3W+rA1+Z+GgOcNZuzGuGAwcdbmiRrh8wRfB2n9JAsk3Zorw7jVK7bavlR2e4ZTB\nUatWvurT7pycSSIj6hHIOQ++KDxdwtFvXXwBzxEDEsDe1RsupywpEm+ocHalB7j8wbfC6vrfDOS/\n9/jjZSuu5vLNVzxfVBVv8+0Ob5DpH364XyHm/Q0Gw4MPcleaibVxY2rMIZPpKCrDL8eyDAmDdSlE\np3u+jafAIqJWo95CHOmawA0smJwxYw9mawT+tCwyOVpN0tVTP6QlWUHZIKH+tJThwvFx5vY1L5tm\nXjfQDOwCEnTrVFd7+xI76vB5LoZeP8S0I0RJYAMXKwbcCaKN+3t+KiwaB1lUU2f6Uxz0VcAcxvZn\nG4RZ325QrLFUjfk2rfF4E4Ezo9gYUCQ33XTc7KQkkia4Qb6d9730F3XPdffsAT7Ck108I3c44PFk\niLbJclXVDT3B6UyjQRWdQD9mPZ9o0uPo2Tp8COqceP/68gpH+fnJrJgTRz9lkjM7X6XZIkF9vyJo\nd5GmD1BY5bfZ3iz2mqnsLTCFkxR3LiNTqhrvh6uTx3H362gii9/EEHFBYeGPQURAnEicuH6iSTQl\n6Km6n4malavjU3LtfR29nmEB+Tp6wJeNA5rC687MX7Sro67unZPUpywkKdXA11viBPyX8qc/veLz\n1T7w+l8e19Uvn0jb0m3zzQxOTuy7qzTeerhu3OTOi+5a+0Rrf2UrVn+WfjLoLebYt6ZXmw5kTCQn\nd46mpYn9hYvSIUET3j/88cvyTeI/br+o+LbgzKlL8qPCiJL7wBkW/OqM/bbR6GgndgLA+8A1VOIl\nGSuJHALzd0jeJJJHPLozOHCbNyMjPdVpwIC6l4v6Sxfn7w1DR3nrxCSQwsXQe0r5i7QyNH3zu/5P\nLv3ss/p+mAoRsgVNwZP6Gv0UU6QzxkKGcRDnI+ASP/5dydNYyLxEAAGgCTcuZlQPZE4qIyYs6sGi\nce+lRoInxmkjIcGELQ+mf77Dp9cwqRyx3c/C0TMkyvmuiIdwINCSNS6TwkqgMHJhGjhQR50/1ef7\n1t/qVusTFTPDwWgjarEXrSiIbjWzsaXrzRfM5gyzgr6CSs5zgSgRUgsQgcOrblN05dENp+rZt9G1\nPIIifBiMwCAwkRw3SCVFJavlWFLshd+BC5K9dClhgup9XNpVdKZxTWiJiHk141V3G+PNimFf7b59\n220PP2zPhN/G+0fk+dLNFm3/Xmb6C17+HFKeGSPnfgkjeQwnnWXeL8XF6KloJCXlVLbTOe9FePAU\ncNWZM8ODmZm9Zjh71uwoTiuyazt2QFYW+ugos4nFugjLcMimqL45mki0T83GFv/VXXc8Lua+dx3S\nU6icui8teDqhnVv/alUOmXdhq8TH0tN3dZA/vJY12pusHvuQe4hi7K+jTrv8B5dnhRKn9IxoqSES\nRlo0t27QjIH8FPpdIwitnc1pqQ3a8z/4Pd3GMm3vZaaFD6X8OHUT2/ZHHv/pXD03j5KHG8u/CNb+\nSxKILT1U9sarkuu0G/btmTvotnQpSq3aWGkwxik8NPoypB+BQQk/NzBS6uWVy1/BjwSy4eW6AV9p\nuDhz0PDmJRe8L1alfeYpNur9uZmBkMk0ZvThM7vlxCOzH+t8Rj48Op2Y+INP56+7fU2qV736Ur4B\n3CbNWd0zJ4XnfFmZTAhrn8Qs3tUpxMYAbiiUB8P98S6S8adeLJF/3G+znaeizAOv2JFxIX9Q81vl\nopBX6ipWJRyQ0vX4CzufTdGbsrzUjABNPIEOPMeMTxJBCC4/KYFWnmAHEXWInHBVHXXxOuqmAVgy\nZY4YRcMoKepD+msQCNWCKx38tUtdlWHzR7894qrUuCVTypf+gqP5PWli4/Kx9e3tboMfu54S57eh\nR7pHyDOxZcth4Kc8/vjSmcZQpylphJaBUr0vEOzWw4VEvJWHgT6gGBiHHAV5BvTyc0BVZ7HZW2jt\nIyLNkot74gaAkwXEA9inp0itpa7O/ZWmFM/6XetM3mTbUD5DXiEYBt6VfH/fAH04+MDAQ49OcP78\n37No96kjX55GAwzWJpDrV8ambclL2tMTR9eOki4vpsGmgHt0WfHChbv8QCcecxcnPvmEq5xWnngi\ngt//KIgx7/7UU0ab2bRZlAVe2i9SM1e1pFe+kuZvyNEapXvnvdd9eL209q6M5/urI8JVqdZFDyQ6\nU1PfOTprViSQYL0B3GeylL2Ga0v+TEdBQT9AXR2aOlDs+yR15rYvFzI5aQgu3128u5osLDxBLTDF\nAcqQxPgmaSDOkNngNo364kGrXE5Scl7WpJEZRLfxzx6IQg8GeRXwHerq/pFVbMHZk6nXJP8ODg+h\nWEsooSvUNYqJXJLZz0GuxIDGGN3AumGGPzRHMFmi5gLgOiBGH0Y2bVJWnzA3t86UktNiW08WNg5x\nNVdfHUNap4jUJ/ptZX5/LOiIoL7QL+Is6cJILDY6nYgxx5M4Xs5zArhJQqkjSvXpsjzf2eUrx73R\nSbTLR1Fmulh1TNCoXfINOThYebTYpF+arGmnOEUpGdIZrZYTVk/+pu/ccGzNqZHQdGps0zDWkAl9\nFIQm9u/nwQe/JY2ZSaQeeG+UBAmTyBoIqmHUbSOoX/9lfeLK2BLuejAv4F68QvL44/ftufbaa0ZS\nU10bN2x4iGBQkX19qP3D3BDb/OfPh/EI4G9jZncrVfJnfP8f+uGB9PSTCwOBoHZRwfWTK06d4lhN\njcdtNB7sj0SsFdm+8T17wGJBMRp5HqOxBq/x3ITBamJGAM0iPjDnTGetLd4jVMPiyDeetaOVlQbP\nBHYjdKH8bWI/jlLeI+/0Tc20txZSWPsJD776Z77tN6Ff+Pw2bnDl941EwnNkoBG/KRDRAMvsSsqG\nB4k3ZZLQ6yy9UDk6wcanCjy//Sa/+UBsef9tbtjKSy+9ji7l4qnJ/9cEpf6PM+t06Gm/91Aghrap\nM5W3i5pjola5kNwbLOfh3W0nIWE7nEuEggPw43z6DeWACdQKWH/JuCe/p6K6Phq2hksfWljjH7zK\nEP+Pe68dvvWxx94U8GQki7cz/v3A4eloWip+9ezmX3/zhrPfT47nfYBhbR0ews5bn9gbHGstKpr+\n7U7iUc1SnEy0F+BXN3PZsaPESMAJbAR2Aq1s2iTAL0hODDOvsr6Oun7g5EpWFp0nKeNL+5pqrYzF\nI2RmcNEDAfgzldvKER6def0rgIcBsMdPUxJIAfnPSpKVtCRKBRlZEfEYCEcy4BGfWlbpWnEh0XDA\nfplsNuVPLMxiOZMYGAJuf7jzx2++WDW54uI86QpWGj5va4D9+99k2TL9T09FylVTN+68fcZdp5Vi\nR0Ihum7qA/oIKTMxBt6moCMMgCz4CNhmKajKzdGGOK0vNnOxVI7QIea10BoUtlENdSZAnifaMiiq\nCaUYRgsZiABDwFtw95IxRgbrEr8RJa+g+5+ecd9UcG4iABNb2x3EB1JErAmDlp3qu7cRy+frRrMA\nbwGZmYNpQCcAL//hzzywFZqbvwp4AZ6ffvKZl176Cb7bz2aE6vJNhw9e66711Bdff/uFQpDfzQpm\naubPfiytn/1uAGQCJcFoxGR6/0BtbTzZ56uD719+rX6HtbG4SKOuLvSPuxwsGDIXDW1ZlWg894vX\nf2E3HDG8QgoR4D5WUkoDiYQZAGoAKN3fE+1PN4aKMk2kpVmKJnRaS061AInA5OetngY+/Hw+/cNM\nTDVESamyw8w6VkyECPVo3dpMoJBsXqQVB9lMArMBtx9/f9SEO3uMcp5gJ3EW008ia9eWb9zJdOsM\nPY66MsALgI/DrFlTRDxwHCj2JRd0OzXNWMzpjoD0i5phchWpduj2JCXFWzClEFuw9uKC5ruTNkJz\ne3o8B1YujDiknYRl7ehXjDPveGT67gV/WE56mtKeEexYbO0OO3AwX9WnAiPLeJu8Hp8p8sb803r/\nQHZK+X576gcxlL+/D986Nm+2acW0h3aDjJEETKEtBYsGyi9f57Tdph8Uy+q5JrbU3iIrz1BXN0Vd\n3YahJ580fnj//QYlIUGK555jRs4a7Wt8zXmxWSGBZ27mjRn38ae2g/wXQQ9mZtbPdDrNn4/9Xxa2\nt6d9vGKF2vfII3HZ08OaCl9rKARDQxCJ8CvM5lIyEnbzvblKiWdEBmZHy25Z90Lgs+GtPPScMZZ2\n8GR05ns/Hz+XeJjmeU+SWujDn8AvyGqYvZ8HyqqokulYLszG0yWgiycQwA1a0vRnIddcxBlCImgy\n6mBan5Xg9QaR95/BdOHEnc/96PGbuDfsTuDiTsVUOi4HPT05eUG3M+Xdt8N8AfuXJJDab8cP5MIE\nIAMZvKQ2eqUqdEKDiQgIQuQwTKhQ/DN4MwEa54LVC2kmSL278/wiX2nZBYAKpFqa6QjSR3ECMPp5\nF0cTEqaXAhf49Yz3ruPdHynJhtjvX1WngQ/k9ycGLu0IFu+vrT165zmujgQzjUpK1+Q/bjDITOz0\n8l8E0svSpQ4A1l8SBv4OisfyyX+7hag9ieblMRKOgqji75WSn8BF1tGdrP++gpDP8AQ9AGRE91EQ\nFCx2zfpHnz5DNX326ggGIuZkTJmVKryWlZZaYZ1KYX9k2jKrs/nKV2tGMFKGZH2ybrcZrPP621fr\nJsaJKWGbEkzjIrj2A7PYurU+KwtTyNWj4RgV+5vVEpu5AFWNDbJ1fgIKxVz35SDTxqfBBFS/hNu9\nzZSXbTOHxrVnL+aobgLUaQtuoDWKqV9FKwbQFGW43VYumeEtKGBQA4a5uBpMP849Wy8N5Zpz3Vr/\nP/31DSGMqUlUxPBvTVyAuw+pNONOjt8VV+ZiEZADIuIIItVPhaCCvxNIIHCQjo4fAO/9vbEyehoZ\nuBB0RlMM+lXjovutu/d/a/MFRQr9AE/wkkiJuvzBHENb0xolxzYUmUpJaATa982bZyp0OmdK/hpY\nZLPFzhmN/13trb+omSRvEW0zI8D+mCtmJx3BE1yKk81IwMAJoBqAJK9luq8v5ipMUK2ZM/XESU17\n5I5HTMDE554o1NXtpK7uS9TV/bdwTDPje8Jk54TJmHM9X0ntoy+dcQqIUcFytpMF5NAJXMLF/BF0\nhdHUKQoBkCxjQpzHZJpT3Ed+j3Goi1WrFjHMGNdff4iUFElsYBdQ4khOON2Lwjxev8xiTdZVM221\nU1NBHKnSGMkyctHTXAxcL8F61cmzsa683LwUJUW3TvoRQrC0wbQbIe6jJi8WV+QfUgO9LBNL4lcY\npGK220OfTazr4aVjs/+zZkLO6+ySf92shuIobezff6s9FP7uzu88ykqfJrUQecxlHy5YBumDEJDw\ngRA84Jx7OmbffwkDkyXPAU8Dz9HcfG3Ybv+znpsr5PnzXBJd9T9Le7x5jnnqeWr/WyXyHUuWHMt1\nucwS7pJwPHN6unDn4sUZrF+/VAkE9BrTRQ9xzhycQBqZmQrVWUeZMrsW642jJTfU03OFMenV/GVx\nPWRYbtozl4Z6KvLKwvxs9DALFqG3fkv2cyjdELCPR1TU+nc47vwSw/Wfz905gKVAd/xe9swW9gYm\nI1qOdNu97lmTM61CMACUHDh4w/b0BBeBm94ZY3+dlYsiganAojWGlb171d1mvoD9SxKIxUnBEIQA\nM3+gcTQQ0vv1QpRzMn7xGwc1mOeH6EK4uQf6E+EeA6SOgtjZdmilkpU2aDIIMlSzrzjJGjaMkpMK\njHzexVFguRD68aLeidrbeM30Vt+PR57XZELk4qHjgfHUVHdTWdlpIUWTN5Iuhue+818FKAMU5JkZ\n4eL4t1JXp5GU1IXN1sqGDXYuAjTAqZnMLPIQCowTJkDpTmD6H9tSsJJ3J5dT8+woCk/90xB0M2qN\nM2/6xn98sjN7Fib9AIixoEgK5RZnBewU7Y06zCln5/Ij+m1pJyPLXk3sRJv/FZxsuSn03IXvzUEQ\ny3+fj4XGtGqOOIBHuChzPCtZ8bQ/9hiaHu+NKKdnMTYYM8S1In3Fio8K6DJuRwYlq6Nfwlf9Ctx3\nDG4d5Wtfc+o2B+Z4//RONog4qgBEawbTQGsMY5uZSDbAtmXLwj2UBikJVGXiNANDF50V3vmM7AcP\nVlgDD/7+c6ADQMQN6Eeu47k4lC2+icEcYAu+BFfp9//9QULpcCdIT1ncavV9xsUD3Z7Pf+zmYvjr\nPwNw15OePxp++8d/5w/P/iZqLXp+aU+qLj0WvgJgS526EJAOVUqlcG5CgyXJ73+LurrwaHr6+HhK\nCsD/1d55h8dVnPv/c7bJ6r13yXKVsXE32NiHHjoJkHIhoQRCS+7l5iYBUtANJAGS3EACP1IggVAS\nSsAxjgk2sGBjG3djW5YsWb33Lm0/vz9m17tareyVLFsu83kePVqdPXs0e3Z2vvOWeeeceXq9fk9X\nl3VYB/187hYAtpyXDKzGRiaJhFKEkTLWA9cSwWZgNkUoKOS21vxp/UCkTjHlrNLpuwe78Y1/HIUE\nNv/bSbipmm+kZpL5ooa2l34+x0kBf8TBzVSxgvXAxbgFRO+kJqabVIpIAqKInlZisLNf72JuqWXv\nW8ycOQfIYMWKG9ix4wA4K4GcmJjQD/qBMPYsjIuLUBQXb99QURFNVKyic+rjETX0XrLoeS3KinF6\nY1uqU6frCImIc2hOJ+k1Di3SalxDW7NKvtZ90wFemDIwEPJjw922qxxapGNp2Scu9FfRk/XXV/Y/\nO2P2tgZCpret5Gs1er3T+dSW+74TorQtL7mwF6erixCmo9GFvhASN0I48I6q4vxef9XHB3S9/OhO\nnjJgyADmARttJtMPWLzYpWRkckntzE3D76RiAR4B/uV79NNzzmmoTknR6hITC4FzgfLe8PAcdLrr\n0vT6jopNxF52Gdx9Nx8CK8jIsKHT1QI7M2ta9tfMmELMlCat++6Vf+G6FcX19TfvGhjAlJCJvbER\nFi2kE965iJ3NGjc5axSUD4CLFI5Mfm4C3jB8fOHnGOxaui0r1UK6oy63xKAcKBxwOilDlJ5qfOP3\nj/W7LvmgD/gY+F53N3cajWTerHw1us3ZYTxWXwrEGSkgLsjbCslAFW0sa5xCw1OH/pv4T+v6vGed\nWw/tKnzvl8KLEhsCtesBLFUJKZ2OBGtuOI2xKeXZVrtx0I4pFbeAqCpNQNfCheubExIa72gh+Udv\nnJebHhGT2ZkvApjdmwsLu4GqHSz6o05DKZn+4SK3uQm9xN80iAL8W/EOWCX8619vMHVqA6rqmbHu\n0KFbpMCOneCs4pvNwAFAD/wEeIsGvsVTpFHEoM8tqKXb4CB96EIAXt8Syz/TIrDqnwTK+x1hLQtX\nLA95JfS5yr5IXDsfXd6JQXP8/Z3sUE1P66+iwge+m1nXPu+DphBTF/sV2KfoXc3GEJsReBFV7QcK\nF7CrNSSESrSoV1y9SSglOvr7crTo2KZHuewBEwZXKTMetMOdZfDM+QC0tc0dUsKJadXHzIj4pG83\n8xuA3h3p6IBSPc694QzEYDZH3vPf/72ypT+jh1h7lw5XNsICAXgduOyVaw0t83dzjhlzqueN29C9\nv4VFIfHY4qfTVwjcR1bdhuSCA3F05g9gi9VonB/62GPXHgaaVZVRTXcFrEub7PUNOX91bjuQtf9f\n572d9vLb2icUidekRDR9HMYgKGiX9n+onXfw4D/dL93/4YIFhiGT6fJpg4PGPZWVw/3LB2fvpjXR\nxvbFs4C1wDTi6ACSEP1hDQoHES6sOMBl6S/+e1qtpvXPcuqMPR1liPhHE8cgnIa+MGotLVymB93/\nAX+ki3AMRHIrIURSjJ3DwHLADGCyUR3XiRFTwgU0Y+WKK5Wln1EKVLVveO2vREZGYDYXkJ+/jA8/\n/Bsi3pVrMrEhlHg6lYqc+HijRW9l9byaw3MJi6PF1pKIEJCcN2dR0RKORYEqTdFtNiZk6JzhIXzt\nDaPyeNRzW2jrjCS5+4mCLmy2OK0qRve5PsTZbhi89cOXQXEymPRfC+K3rXl1yz0G6zmWfL5Rfct7\nP/hBZ3zV7F1trFxzLkAnCt0sw4g9CmJ2QStQBTC4r+a33y8ocmSRVbee9Q4zZjEuqGoHLS0Hpy2+\nxRVO6H5GoDwHyuvDDqmqqywjY6gjKup8YJlO0zYjStAoGRZLaU0JqQ8+CLm57ENRLiA2dgoi4L9L\n2xYR8obrRi79fFudvSdiG4DLFbpr5syoHsXOYHgEzJ5NBfz8URS1mGzOq4uv24oQ+wKb3uYRkNdV\nVM05tbQ/hMLYIVJ1feduDzXsXNSFmCDlgaK98Ok3Vv/HHQfvV1Uyge/t2UNbYoLSFNKVVvD8c0a5\nkNDDRjjXAQ6EO+IKq8KW3ff+F/F1lT5fuCXF0HwuZP0dfjMA71rhxzeA9kMGDCm1hgzLnGg6E6N7\nQqxOQxsQAnT7/JvNDzxw7z2lpYtNG1/8+q9nlLJXf+sdxgZRgPKiO//nf3qA6gvYXJ2Klb7IRhew\nFIjAiunWZrIY7q8+iHDn+Pr0qwFTODEH74bf9jM1/TCHa4GPgFWIkvvvBrgFDZg0IxmDMwH4Q94t\nGDS1TsiTAAAgAElEQVQLLmUzUNbuiGxOsPQa2lNNX9EU6hk0LCXVUgOs0FvYFHfYnrbctjk282Or\nS+9AB+zXjDSlDbVot61bV+D+H4XL2Doo2hu5VqebqU0xXYzNFqGff+mzoSz6w5cwhJUgAukAaGBY\nmJx8b5Szh53Zq+p109Z0Pcn3woDiXanEAiXpNGyLpicU+AUuNmDVx5Bg7ZiCJXkrSz2D/WdAbWuh\n1VGfwft4d88ElI9KiNIV0F+igAt4AzFw5DKYWI1hyMVQfN38+eYU4HCAezcMHZRd6Djc1nLLtQt+\n+a+sksI2NnqeW1RR8kmS0gIaphW2LXafz654c2Fhn6Jp99WkpDDQ22tEbI3g4TDfeMlEVd5uFdUK\nRBFFI2LS46EY4cLKcbd/fUx1B04ThHT178A3gH4MQmmoj2ZftYpaDazGRSaDOPic64Fb+A2N7nvR\nAaBAQ1ojfTgNl1JLKBdfnHPVWoaAz+jpqWTrVid2+0uUl2vs2rUG0U+zzSu/2qMzpmkVWktYYqyz\nFTjYqetQMMZpNa6aKVbi3gYe6AthoVNHD7BjwS7amvLDlZ6cGFZs1lneX1D6AIUFGvaSZwFs8exJ\niXrDYY/WOW1p9j2e9/TL6oTn7jV8tyOszskjz7xcfMmuXTvK+U74APnrwoHQEJwcJswUTq8LlErf\n78k2ba19jSU6jbTFCkoM8LIZs4jvrVtn/tbbCYMKyqFg7i1ARVpah97lWgicB2xFeD/2xsCu2nY8\nk5vDxMSsBAZR1f5YOvd8dd97i+P1naz56Js6YLf7vJ3R0ed3lh7E+POfwaZNdEL1LOzP/Br45J47\n70lDWB+x1/zgmgTEGL4bwJ5XVdbhWIoLo5K2bG+fUp0bheiT+eLSyi2gfOz+P9XFxYQam7K2YgvZ\nH581OCfY9+vLGSkga2B2MryPMDevnNHJqwow5J6BCL6wHTqThUsk7kXY0wBbfgCsQK8ZSh2zwmaG\nmZTEEHAYDfVAk59/eVNqapV+cDCi46WXivJu/zOv9l20OIb8/KUKWPrDwrKBqgwsC1IYtH/5oNUC\nfIUwComDmV0swO0ycFOCEIQjAqKiasCO5SwfbIJp7/DO5fdx35cR7+0SvDPy4aiqlURLOymWGFZv\niuBg1O1c3LLPHQwsryTPkF/fOrjhEja69FQBy4i0bwGufP6KK1PKDi3QVb69wlyRmtYLTAP2o9CZ\nbGuz5TQ3L8FsVoA589mtF+291OxypihDQ++jTOnRlk0/1G9eyQbcAwuABgnAv+vS0jIzdPX2A2GL\n4w+vXB//PpfHthMTfzCJCKBmIbuqo+lBj+NG3sz4KeAi3BmfQrP9t3znZvEGFQ24iySrafV1/B/w\ndTPmdPe7PwC0JWB9CShWUW14BMQxZQ9Gix6XYSv4xD+OzqH7tsZWPfz2w3zjYE0nPrtxzqmqOpxO\nA3q9nQLKtvpak+Z587qn2O0ZuwsKNFJSShExBg9NWEItiMDrVOCwu/RRypEzimgHrIg+UQ20hda3\n9euckFBv+TdBurAA8vjDU7N47DH3nzbgRQYYwMGtFNGNjVUI16uHxtQmbAwMrKCdw4SGLpi3l3iE\ncLvYteswRuNi1q61A4coYgDoA1IM0bHWMhys6G7rV0DbmdhZQkis0t3Xozyb+0OnAs/FDzEv0sYg\nsPOrrzgL25dOVYxNHYQP0kS/5WvkJ1VShBXAFsfH8V1l4QPTrArDJ1f1Vx++obP3Oyq3fPrCOT9d\ntOAnoMzWMOy0Q0u6HiiBJD1dgLIHnve7LYMqqgW4DmHlvWTGrAcOZ5GlB4IWkMPp6fURQ0OzgGUI\nAYkFWhX4qMpJPFD3z3/SSXJyLDpdFUAF+Rc1NeSZNI2uTZuuj8ebGLOrvv6/jE1NhKakwNNPMw+e\ntkPOh8CrA1MGvoKIA1ZaTdYbgTcoEv3OMKPs46GWpThNLY7MafXhWEP0ueR2Erh6emdVFYkXcIEC\nmFX1yA60Y+KMFJD1kBgKryIyU1JfsAvhiOhlm/esyAqY1QOcB85MIB7efR9YjcbqCkOeMax72rxE\nk8KQIaoNb/zDw1+A+Zqm3wIsm3OA4rkbWjr5+tevwmwORXTKJhOueTE42+/bTqzBydeIYYU+FqvR\nxR4FenyuV+L+7T8r3nEVV4UDl73Ga8uu4qoHEL76o28Ak2SrpjLCwcdJ99JjnMp1DZ4BoqyMaeE5\nbbXtb3yFCqCFWNs13FR/PrDys1mzGr7w/p7iK9btzdo2c+ZhoFcRAbeOBK3DotO0c4F0wBJLdwpQ\nAdP7oc9G4U9xmnrKQ/T0I2Y9NWhajiZSdXe0w+ddUzMNWUqd0qYkfdg2Y2H/ErbaPuCygopYyinC\nqWLW9xCt5VL1N34/dQpoTSasCVOw0EzKlZjN0wEwf7weg5b67jXsAV4AHhJvT3EBix6gDLyDfRWQ\nh2lACHZo578IXkDKlrQ2Dl28/8IPDQzNZvh2zq0ZWr2WHV5hibQPfepzvKQuOVlXnZxs2ZefbyMj\nYxvC7QCAiuoC/g68hRDoMvATEMFBYKG7/Zhau4vjOjVmW/M/YUwWSNuzIXS94HPoT3QwBQMrgAh8\nAuhuGiI7B8EwkI8rYx9QFmJjAUJAYOvWT9i6tYNPP/0Er2hWAzmxscJKv6KsL0UD/fqcoR6Dw64Z\nO2Mcu3N3XwiQ0k92rAVTJwuruvZ/spSCAoXyQ/QYez6lrCmO7LxfexoykMs6xQnWJLpVFbtvG11a\nUooGT9zyRd76xSXF5vKU8kMq6pABDi20oqMGFg6g9IKrET4PdG98RCQJeHEJS96LJVbPsMnm0dmf\nl1eW1tExGwiZ8v77TsR2AxGlYK4Ao+N1Ln3qKZKZOvUQilKjwZJYur9+59BfGq69tuMHAwMxB0Hx\nuK1LDx5cFbd4Ma4f/Qg0LbQNvtIFSj3CilrSHtm+VUM7hDv+4WmHcckOsxY6RG9KvdGucRCUnddy\nbThHLJBhdFZVEXkhF2bidl2OhzNSQNpAOQAbEIPsv/8OywegexZs8TmtClY5EWUfsoFIRPB6AU7d\nR9X67P6500o7UkOUoSYlbQg/f7Oq4lBV2hAzjmVAwx0vGSzMm5eGGCxqUVWnC2VaNPaGWe08k9kL\nRHN9TAQ2/NItEYOIi+GzLIDtBRTM0KO//8/82fltvv1mUDdBoYaasA4cyoOsaqshwumZYZSXMS0+\nq6XFCdyCXbmOfkMKWYPfBiqqU1KeibBYpuc0N8/qioioBPa5X9cRre8ecOp0M4FCxEw/39verlZK\n1BK687YAG4ELbvj4Y9OKffu+CjwJ3JcIb0fMze9LVNqaXejfIuUyx9Kwtc0P8gutd+OTDtCSgIe6\nibFPo8wOpGJydSTT0qVAIyi/An7mbk8i0IeqDrqv/1UzZndAXanRiZm7Z7CvBHLJ+0AMknNf2cAY\nLJBwKvQL+Nb9wKDi0w8UcCUqbYOX9ptt4Ds5oRRIePCuu6a8s2KFjXnzNiD6xJG0ahX1NhW1DiEg\n5QQWkGKES7QKIPFAywvX/LXb/kW+OEiQMZBROIyFJhLoBm4F5iNmtR4ad6a8G0m93sWK6/rTGtiB\nsCDFJGdgYDcPPxyPxbLR5zVVQE5CwkANQL6OVuD60gRi47q70JzRSktMy1KKiJzaQZjJSfx+frL0\nBdefhoiJ7rYe2qc9uvzpGURGwWVf+fORi95B7WA2LlsC1X7voQfQf6qZf7H1BW67YvcVu/7ztv+c\nThGXGWD/+XY0XLB4kNh+keo8qo9fRR0CrgXSHufxP+rQVaqo9tHO92f7zJkHdS6XEdhqNZmuQwzI\nM8uhPxmsW37PucAKCgubQmy2RuBl4P56Mrf39cXdjtd9BSgOp9O0d9asiPrqaoiMfGIt6MRnI+Kc\na+64+47Bx7702B8R48XeIy812UvshQdc7dOaHaF63gV2rmRlBsINOmysf/ppjA4H+myyzwH8EgaC\n54wUkItEh/GUJ14HXBEOV06FT3xOq4bLIoEVeLNxnIgv0+56MhpC9c6oRQmuyhqyNUZaIB6OCMiM\nntRE/vEPOy7Xc+L6MIQ+Ow5bBfDc17cRTitLZoWgx19AVNWKGJT9TckdOnQLP+ADcySRrSpqH8FR\nS21YNRe2xnJ7VQhCoACqa8mKnVFbNwgc4PPoP2DXbeeG898DNn00f/65QP22mTNbF5SX6/AKSGeU\nsXvIajLlMVxA3FlMtnKcM3OBuvAKyuI+4ycPvvba/xzMyRkC5iric1ioy81WEmgvB9YSMS0hYd6L\nrT+MuK+d2uU6dNphHpzz0FBbTFuYfWg2kEqEozedhi7EGpDfAksxm5cCWUAtgIrahqhq+rDP+1+A\n94vZAoSvvsDaBTyEaaCDMVggCkyP5PAchlsfAPxYe6z0CdeDUQhrV6CqXUDf6xdeSFlmpo6rrtoG\n2IEZAa5fgPhsWggsINm4+9KbjU8/n712vydOErQFEpBQ1hNFKEKQdyFWnQNws3Jz/iuzng+nI6eN\nq6/O+NI/aAe2uy0n8M7mN/tcsRrInTlzz2dRUUZMSTzhgodcCoVxg5YuomKUJn3TnIUNLI8fQgMO\nbmb/vZ109hAR4dBKitllqlzEjGkN7u8CAKqKVnkHdW0X4CtWHvduPcIa5tv//nboTVtuehR48akl\nJJ7rPm+BiygF9nAMVNRB4GqE0IzJnWMzGutrk5N7EWPBdcArwDTMZn0WtDTASuACZs8evH3dunnA\nNkVYnzsRcVH/frUrNvbS0meewdLYeF8aw8X9td7w3ps+mvPRRcDrHveVmxrdjW8Rf7nZqih8AOyI\nIWYuQmxTfc5j3ToKZqRHokCJiurrCRkTZ6SAXO51B4GIF6gK7FJEYN1DFyxzIgb/HqAYtBDEjO9z\nF/rmASW8NiuM3Ary9YwuILuB6SqrUFAs+n+sPoDTGYZ71tiPISkZ6wEF2lfvpINsdBeYAN+Zg5cF\nqGqp7wEVtdXdvmvx+kmDoZaZffWsTltDgi0P9+I4UOytJNVPGbLHAVa2x0fhcU24LQfg1V99+cu9\nhVVV8YAnG6UjYkqvZTAkJA1NmxPK4EFEYNidchy5ExKmPMhjK2f+jP/snU3kUzfeOLcjOjpaMZs9\n7rYFlpiU0HQadqOq3Tj69zx5/Yrk7ep7Fdy16hes3lxCovX1hgMzpzheKLgU+C7xNksG9QNAg3sx\n3iPAE4iB1TdX/1fAjWbMOWbMYQhxOwBiEAKqo43kUsTj5pUYEAIUjJuiAbFgTyXAVs7xdNZF0Vep\niHVHvhxE9JlQQkJaEDGGi/1fz7FdWAm+7XyER7rcD4OOgQQkn3eJIBwxafK4r8KB3zVkNvw5KiSK\niDt+X4nJtOziDwjD20fAO9HxHfiqgJzlyx0bv/lN+9BgFi/XRRNhcqJHZ6xIi0+wN1ubs+Y2c/mA\nkYEB8tpf5EWDLS3hcRQlkr5eF5+1u8jKHVHUr2M5nw/kDfMeeGgA0t2xi6W3fnLrC8DS5+dz7jmg\nQw8LwZA60toPiFtEvgDcGcz5vu34zQ03tP5dVT9EpASvRfSH7BQoKxcikZ1pMGQtO3hwGvBt9+s8\n92+33/V2bthwh37aNA5omm45wwXkA4RFcTs+7isQVQ7s8/ZURs8/oEdYxDsRLlCfQLrAZmPBdEOe\ni9ChQPc1aM5IAfni8M7egejwF/gc04HyLagNg/AOROcvRaRNVoAyBDS1ktQChFWQH8qo7gLFipil\nLwIaYgdM1bzxxlvAatD0vRgiptO7G/jfCgetK2ZDtI3ditdC8qKqjhHHBDuA2xirgKxsC+G2mvsQ\ns8u/YTaHAzSRekiPMxFNy2J/dA5i5gTClF2hmM2Prj3vvPikrq5MfCyQCH0frTExSn5j49Vv/9/3\nv2lqR1ulskOD6pd5+F6A1ezK7m6mwBGJdsclPzcgRFusgZkyZaHFEGGaQan4fHTGvzZlL0l/fgHJ\nzPvdXCIddr5bdus56od/Tf2PbQPAGi5uOZxJnQ0x2wRR3ysR+BYiHVLcOtR24Dngh4jFVSXuDCcP\nIg4iyAEaVZXh6zMC4P6cyoEbCSAgCJHYHuB4ift/9qCqdsQX/5KRlz+mCysU/Nw3Ih38+CyQKVSQ\nSD9i0vBnROmcvUAMt/DR1fuu64rr1i0D6qP6mMvw79Qg4rvie/+qgdzcXD69+mp+nfwJrj8u4J9z\nW3A1xcfvS4+JNvT1dYWn9XG+wcXQNmZOr6feyvPP1wB7SEpVGLLrWLDg2QCtvQVRJ8yfekQJ/kKg\nWUVto4gaq4ElEUCBE2JB0YusxaBQUa0qamew57tpePb6641f/clPCoH1qKoF8fnPSoadW6DQBLsT\n+voWl2ZlPaJ4szl3IR77pwzv2rbtitzbb993PRCPr0VUhAMhHO0BXkeonj06BbOq4vnOaOGENzMy\nkL5oRs8SJ9MPBZrIBs0ZKSARI10T/0JUFgXhMjADt0LaJzBrGyIl9hDD/eZNleT1ANSRGcPoFgiI\n2MoyoD6X3Daef96Jqq4DMqKxux7hm/nALf3whTff5s27d/KrMb6l7QjLaGwCImbZ0xAznP3Aq5jN\n+gEiSq0Y7UAWNWGFeAXEs6huVqjVGmt0OjPwZqN0hCsDIR/Nn19cnZISnlBQu0EzUIzwoV/4LPdf\nDVBKXVvmEI9qmhAjvJlYEWRk5CbT4gjBJt6HIeJNYhcqhGbmEFFwF3AnqupKoL04OrIjAvPHT3JT\n/UAqTQqejDMhsg8hBmP/1cL/B1yPGOz93QIiDiKYSnDuKw+HEJbACBcWIrD5YoDjpYjl955FoR8i\nXBm+C7bi3b/bEWLgm8YLYuW2BvhvNxoF2N3ZT+OllnDCEcLxAPAm8D2K+C+MXH7F7itK4zsw6h1s\nREyOth3tYrgtEFWlVVX5McAvz6djfhOG3KYmhz45uT+t3EjCIPPC7LqQ56lMc+IsIjR0EbCVmJhu\nZs0a5L77SvwvrKr0qmrApJEGhAvrfHzcaYd/R58G1v/wnjfimhNMA8Iavx6RWQdi0J+ZDR9YQX87\nxB9OS7P//Oab3/G+TOkWr1P81yIdApKrquZcBmxxJ4b48jhwp5/7ysO7iEmWx823M598B8MtEAVY\nOKNlpYF7nvOPuY6JM1JA8A6EHtYh1lh8HzFYvgOcD/H74ApPiZFS3PEP999N+5ljA1pthKRwdAHZ\nisgBb5jP/H5EXSGm4JwaR6euhJKfIHyjrSkD3BRlY80Y34/Hvz5eASkD7kIMRE8C5Yejc2x6h+Zg\nyGBxZ3jgTlPeBNwy9/DhFgXKFZH2CdAZgjWsJS5uqlOvb+y/uq/BHsNOBfYoUPkZy9x+5kuuARau\nXUu0prECMYDmAPMMswrqc5QaA55MM1Vtx9LczNzfaCjK06hqCYARR30qTRZEp09LotWI1wIBWINI\nktjncwz3zPEZxIDo7xYQqbyCYOMfHsqAOkUsRhuGIhaDvh/gNZ60bE+qdRuiXy7yOcdjfWgEtkBy\ngH48NbG8HJ/7CqCIART6iWYnkImw2lYjLN01Sb3xVcktDF66nkqgSUXtOMYVa4BMijiyaNKuZ7YL\n1tz4ySdLunJymrRWl3JOC4qiEfkeNRYbtj8jSptsZ8aM7Zx/ftCWghuPBeLv5kGBjttEavGgAkEH\nxMeFcK0OIVyU69xHS4BZ18CmGOAykymqLyzMwIjPTRliBIoTYQ1+B7/3BUARDRQFDnyrKi+r6jDX\n1o5CCsMYboHkmTA549MtfUwrDw3mLY7GmSog/qq6F5Fadymiwz6F8P1Ww60uhJulDD8L5BNWuoD/\nRcwujpbxshVY6oKG5SzXECa1EkflyjoR+7uXwDGPYNmFiGGMZSbViZjtLgQOuVe3fwm4kic/n747\nZZYS3mUbwmt9eNgI3Hz+gQO9DB+gOww4ohCz3/0My8AC92xqGTzeBHxhwwayOjv5Et6qvAtilkwf\nSqK1a1g6Zn/5Bly2AURcw0NDEq1OxACbFkN3OL5rXoTQXYaqrg/wvp9ClCXxnzH7urDGKiB7GR4w\nDoYSxPfLd+LhHwfxBNBBxLlCKCLM5/lcRHB9lt+1jycDy5daHuDHiHTQdorQAXcjXIENcz9n221/\nwcFw91VgxOr8ToYHa+f8u4A/zKipyenOyLC02uzMbkQrJVQJI/ophAtsMbCNm276GjfccPMY2x/Q\nAgFQoDELIhRx/04GDcBmdwIFuC2QaWB7Gd4vvvba/0RRGlDVka7rwOxEiPpIARkbOwspTGG4gCzK\nJruTaWWNeNzL4+RMFZB6v781YC7C7eFrnVRBTiqQD9oQYqbnyTBp7iU6UcX8EsIV4bsK3Q+lARja\nRrwtg4w4xGwkr40Nd2dj6EW4B8aNO/MqTUUN3mUhBtlaxHsucx/rBK5kftdXX7nqorCYRouOkQKy\nCUhfVlysMVxAehW0KXqRh+CXwutB8Qw0HZ2drAwLIzFs078LEC6shSFTs0Li6agZ9pK6v91J5e+n\n+5RvAWiMpcuEW0DCGIzF/zP1Kxp45LCoE5atovpn3vi6sMYqIG8D/3HMs4bTgJgBH01APNYhbneE\nvxsrByF8/hbI8cU/vNTgXujp5mKExfMZ0Hj5+xxIbKeQYAREUI3nHhdhBGbURbPbYjK9anK5sjLR\nafV2RbcRq6uJpicxmzMQk5waVLULdczZQPUIAQpl5OdZhXDV+HsjThR1eN1XICYQMzGblavh8h/d\ne28vI12uR2MXwvoPFHcbCzsLKChguAtr0QIWTOGcfRVIARmJEniRXScjc8GrEF/SWsQsrwYUz97A\nTYjZlKiBNcqA5cPW9STHImZE+4G39RQYljP3wPjexXDGJB5ePG4s76paVa3ApXzx40tnGDJrOyIZ\nKSDFQNecqqpQfIJ0qoqmQFc0PT2MSOEdSUODqJyb3bztfOrqVgIL7LFJMUm0Dr8f36+xc/9G/8Gw\ny4BDF0nvLD2OVAOOGMYwYKqogfZ3rgJyzGYUxiggiqiLH+zM0d0IVUO4RX0F5FOEmzTS/bd/O/zd\nWLmIzyCQBTIRAuLpHx7uAZ5zi1kjwvJextgEJMf9uACop4iBf6xc+exQSEjMUsL66tAUK3FbEEIl\nrI9jf7dGowEhuJvd/n5fPO7egAsITwB3IVLJBWKyZsFbwuZI2nmQmIHfBoiPjAkVtSWe+F4FJRJ3\nv9OhWzKf+cks//QgUkCOi2ogx71vhm/8A4SApHBs95WHrcVEZSJ8svsAXRTnDSbiGMtMd6KpRYjp\n8HTVS1d9mvnTyMbvrH/DZMP4LU2sRhYIE3tDVktLAn4xBqAjno5aA/ZdCJP4qAG40FA2XH/JgBmH\nYxaQ02OIi82h+piDkaqi2TG2JdA+N47OWKDdbxXymFFVehEuk3TEZ1R9PNcLkmcZvvZoABHP8mQE\nei0Qgf9akFyEK272kUKcguOPgQhq8VggRWQggvyvup9rQFg+mQTI9hkFz4QMRBxwP8DbF1xQ0RIb\ny22Kvv8coJCu77rPWULgDLZgaUW4nwO5F0+ugKhqvZ8VDW43lvvxGAVEaQDlexPRNAVlRzjh7Yjv\nrB6YX0DBHqL6WjlNBeRGxAfsWbjny0OIWVkpImbhYQGiQ5YDT09MM5Q+hLspkeHxDxA+aSMiY+do\nAXQPWzsxzUQMUI8BKwYIic9g0H8QPpnUAlUBOjbVmxdvv6v49e1GHC5gj+YT3B24/PLvTLHbXYx8\n353Pcc+9G7i0Bxh0D8pHY+PCmPJMsrIsZGc/bVCcugIO7zjGawDQ4aqLorcwmZZuZbSaX2OnCrEL\nZL07zfHEoqovoaplfkc9bqxAlpC/BZKDGABtDC/GOFExkBq8FsidwGsU4bHeGhELH3epjJpe7k81\nXjfhEQFBVW0a9EyPVqJTUSyXiAkIeALo40QVGzvVE3gltafPBF2S5ARQgtd6zMKbkXey2ZlKqhUh\nIDOjiLLEEPMB3j1Bxs1kCch+RMrbRr/js4Avu39fDvw/vOUfngPuQHzpCtzPTwSe7JzhFogwq5sQ\nwhKMgOxxouQNog8zY7aB5rChM02j72SZ0IGoZPTA+8EeYjYp4p4+DKzV4CEN9GFW6xxgvzLS5deh\nxxVPwPhHQLbH0D0DvQ7ji3/cmkWtgpgYHBMj9uokWu3pNPQyMqY1XioRk5LJtAo9ApKGiJH4irBX\nQEQ2UyZi0PFU5vUwkS6sbHe84puI75gHT58P1n0Fo1ggAJpO11ycl/duCNoWBVyYzXrEdyuoCcVR\nWElgEfK0fzIF5DgskAllRx55UxDf20UzmelCuMhOWwEpZbjp7uFa4G+ItLtqRLrnEoTJHom3o/wV\nkRY7EVQjrIxzGFnyoBkhLEHM9hQbKHv3E92JsEJykrC4TGgnK4gXiLcQAhGInyFWdaOIIP9CxOD6\nEaL4YSDLydPhghIQVcWiwJ4wBtsj6P9iKk1Dqkqg+MQIFGjIoL4jg/pBJtYCuYTJFZCdCBfaBYz8\nDvgG0dOATnd2k2dvEA8T5cLyWCDXABUUedPE3YswOxibgFTjtUDOYbjrq/mu7373b4gFoCAG1mZ3\nrGDcqKi1AeIfIO5PCRNjqY0XfwtksgRk11SmJigo+SZM581jnif2edoKyGikMXy26al143/ck743\nEXi2lm0Exd8l04TI3grGAgHYuptYK5AeimNaOkM6Jm72PHZU1Yaq+pfYcKMMih/3XyKL5GLgPeB+\nAgtIB2LxW7AWCMCmFJodFqZcHE9HsPcRoDGTuv50GjxuiomgClF1dTIFxImY/d0ToB2+LqwcvLPn\nYoYLyES5sNoQ8a/vMtz68PBLxO51wVILpFFELOI++1aWbq5KS4tSvMdEAP0EoYBVgVmjJNScLI5k\nYiEEpO4Y558QVNSuRBI7wwibE0LIymyyD7irEJ/SArIBMQPx/7n6BP5PD0U+P6uOcW41ok2BVhk3\nIVIEgxaQ/USbgPR4bOcmYO0fg/940lHAqYhVrjPxBlN9GZMF4mZjHpVhQ4Slx9EZyOocjYZsanZS\ndJkAAArFSURBVPqzqbEycRaIxxqcTAEB4cZaQWALxCMguXgD/V4XlnA3xSJWrx8fYj/1OoQFPqJU\niIr6hM/2ycFcz4YIbF8GlFA0bPBuYXiK8vEG0E8HmhBLAKYDQ+6dPCeFBBJ2u3DNGGIoZwYz1gHc\nfz/T//QnsvCOlWPGMHFNHIF/3Z9gaED4fT1kIGafDe7HvsePNqgUjeF/ViFWaPuvXAbvLC/Y2d7W\nKsJjXZBhQJsdh33EyuXTAWX0nfo6EDOpfOAPQV5uSx6ViQDJtAS6x6PRmEeVBTGDnEgLBE4NAYHg\nLRDhwhKZWImIRX8TNbOuBd7ybOA0AVQjXGL+mVv+CQKLETW4zlxUVcNsLkEI6mS5rwDIImvTEENX\nZpI5FE30eoBnnmEdYLrzTv7XXXD0kbFe91RwYfmmJ64BvoJQ7VxEsHw7ovP1ImYtCqK42oiqnePE\n8yUdzQKBoC0QpVGHZikmarYdJT8W22RlXZwoOhijBaKq9MbQXa/gYgalY9l3wFNfKJ2Js0BqEPG3\nyf5cyhHWh/8gK9J4hVDk4umbRbThzcSaqPiHh+8jXFUTRRWi7tzoAmI2hyFSmI+rkN9pwkGEi3xS\nBSSSyK1xxDlmM9uA2/JTVSyIeHP4eK97Ii2Qo3E9Ym+HBEShwz2IMsoHEZUmDyLyu+/Fmwl0L6Jo\nXSii3kxQJZqDoAZxEwPtGdCMWAwU9ArZOGwHDxA9awh9WjKW4y1DcKrRiacw4hh88NH0fJZKU14q\nzWPJSPMsZNOYIAFxp+7OPOaJJx4N0Y7hixOLGHS7gaIRAvKKz7MeN5aJiQwMFwW0vI+HakT7A4mj\nx4U1Hyj23ffjDKYE+Bojt9Q92ezJIMOQTnqpX5Vqj1t6XO61yRKQd9w/gfi5+8efXbiLFE4syhBo\n+aB0BXiyDqgby0rZaOw7DhPxtV6MsXkMnGkzrA5EUkG52+QNiiVs+0celVcwcs+MUVFVhsxmBgFF\nVY+r6uypymgr2z0z9RyGp6B6MrH6mFgLZKLxtNk/CcPXhXVCA+inGCWIOnyTaoGoqH2/43eVSSS9\n+QK+uxsfEZBxte9UcGGdAiijZUcc4NhB+GFEY/9oD7EJU3BqqViCWvNwGtGJmAGPqQS0Htf6FFq+\nMxbRcdPAZGaxTQ7NiBhfKsOzdjyZWBPtwppoqoE2ikYUMfQVkLMhgO7Bs5fHpAoIQCGFP0wi6S9+\nh48rE2uyLJDTA2F5jCX1lHSGPtxJrC6HQReTu4jpROAp6T0mAXGv/Xh5HP+vkaPsZX2G0oyoCtBM\n0bDyLcWIgo5WfGubnXp8RuAd/dqBWMxmA8IC+clJbdXkUYOodjHpAqKi/j3A4eMSEGmBTDBvkjU4\nlX57mlgDMpmLmE4Eg4hg7slaHHm2WiBLGTn58LiwTm0LpIghivjniONiI7BOxHuIYfIz4U4Oorbc\nDwm+ntjJRgrIqcZ0+jpSsHS7a/WcMbhdUB2M0QI5Dso5WwYaL82ICrjVw456M7HmcyoLyNFpRqy5\n2jGGfTFOf1T1N5O5BuQYSBfWqcbdVGwHwgPZi2cAazl56ZePn6T/cyrRjFjrEcj9eRBR++l0tWxb\nEGtEAu3gKJkcOvFurTxmpICcAExo9Qzf+/qMQVW56yT+r7Mt/gFe6yKQgBQjBOR0tkAuAR6d7IZI\njtCJWG83LqSAnBjeQ7oHJePDk71UHeC5YmDAp+T66YZH+M6WDKzTAenCOtVQUddOdhskpy3HskBO\nV+sDhDjWoKona59yybGRQXSJ5AyiFbFoNlD6+KeI/XJOVw4hiqxKTh2OuyLvmcbZ6DeXSCSSMWM2\nk2k2H0mVH/PYKS0QiUQiOXuRLiyJRCKRjItBQG82EzqeF0sBkUgkkrMUd6p8J2KTsjEjBUQikUjO\nbsbtxpICIpFIJGc3UkAkEolEMi6kgEgkEolkXEgBkUgkEsm4kAIikUgkknEhBUQikUgk40IKiEQi\nkUjGhRQQiUQikYwLKSASiUQiGRdSQCQSiUQyLqSASCQSiWRcSAGRSCQSybjoBcLG80IpIBKJRHIW\n467I2zWe10oBkUgkEsmmyW7AqYLc0lYikUjGjtzSViKRSCQnBykgEolEIhkXUkAkEolEMi6kgEgk\nEolkXEgBkUgkEsm4kAIikUgkknExWQLyS6AE+Bx4G4j2ee4hoBwoBS71Ob4A2O9+7umT00yJRCKR\nnGpcgle8Hnf/AMwC9gJGIAc4DCju57YDi92P1wGXj3JtuQ5kYlk12Q04g1g12Q04w1g12Q04wzht\n1oFsAFzux9uADPfja4G/AXagGiEgS4BUIBIhIgB/Ba47SW0921k12Q04g1g12Q04w1g12Q042zkV\nYiC3IywKgDSg3ue5eiA9wPEG93GJRCKRTBKGE3jtDUBKgOMPA++6H/8QsAGvncB2SCQSieQEcCIF\n5JJjPH8rcAVwkc+xBiDT5+8MhOXRgNfN5TneMMp1K5BxkInmkcluwBmEvJcTi7yfE0fFZDcgWC4H\nioEEv+OeILoJyEW8IU8QfRsiHqJw9CC6RCKRSM5gyoEaYI/75//5PPcwInheClzmc9yTxnsY+O3J\naaZEIpFIJBKJRCKR+HEjwh3mBOYf5bzLEVZNOfCDk9Cu05E4RPJDGbAeiBnlvGpgH8J63D7KOWcz\nwfS137qf/xw49yS163TlWPdzFdCD16Pxo5PWstOPPwMtCG/OaJxVfXMGMA0wM7qA6BGurxzEIsW9\nwMyT0bjTjCeB77sf/wDvAk9/qhBiIxlJMH3tCryp60uAz05W405Dgrmfq4A1J7VVpy8rEKIwmoCM\nqW+eCutAjpdSxIz5aCxGdMJqxCLFvyMWLUqGcw3wkvvxSxx9saZylOfOZoLpa773eRvC0ks+Se07\n3Qj2uyv7Y3Bs4uj7n4+pb54JAhIM6UCdz9+eBYqS4SQjzFvcv0frOBrwAbATuPMktOt0Ipi+Fuic\nDCSBCOZ+asB5CJfLOkQ2p2R8jKlvnsh1IBNJMIsSj4ZcF+JltHv5Q7+/NUa/b+cDTUCi+3qliJmN\nJPi+5j9jln00MMHcl92I9WODwBeA1Qi3tmR8BN03TxcBOdaixGPhv0Axk+GlUc4mjnYvWxDi0oyo\nP9Y6ynlN7t9twDsIN4MUEEEwfS3QgtnRFsae7QRzP/t8Hr+HWBYQB3Se2KadkZy1fdOMWCsSCANi\nUWIOYpGiDKIH5km8WS4PEjiIHoYobAkQDmxmeNn9s51g+ppvoHIpMoh+NIK5n8l4Z82LEfESyejk\nEFwQ/azom9cjfHZDiJnze+7jacC/fM77AnAIEZB76GQ28DQiDhHb8E/j9b2XeYgv8V7gAPJeBiJQ\nX/uW+8fDM+7nP+fo6eeSY9/P+xB9cS+wBTHwSQLzN6ARUYOwDlHMVvZNiUQikUgkEolEIpFIJBKJ\nRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolkMliEWNUbgij/cgBZMVZyBiBr6Esk\nJ4dHgSlAKKKExBOT2xyJRCKRnC4YEVbIZ8iJm+QM4WzZUEoimWwSEO6rCIQVIpGc9siZkERyclgD\nvIaoZpwKfHtymyORSCSS04GvA2+6H+sQbqxVk9YaiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgk\nEolEIpFIJBKJRCKRSCQSiUQikUgkEonkWPx/Vfm3orkoAgUAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x104166fd0>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEPCAYAAAC6Kkg/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcE/X9x/FXWJbbCqiLAip4AkoVtEA9KaIgHitqF1Gr\nePew2qoVrAcfUCt4tPXAs1r5VfEATxS8hVpatFYUFahyaAG5PAARhF2Y3x/fWTa7m+wmS5JJZt7P\nxyMPk5nJ5JMxfL/7me8FIiIiIiIiIiIiIiIiIiIiIiIiIiIiEmIPASuAD+s45g7gU+ADoEcughIR\nkfx2OK5CSFZ5DAKm+M97AzNzEZSIiOS/TiSvPO4FhsS9nge0y3ZAIiKSWKOgA0hRB2Bx3OslQMeA\nYhERibxCqTwAYjVee4FEISIiNA46gBQtBXaNe93R31bTfGDPnEQkIhIeC4C9gg6ioTqRWoN5H5I3\nmCsbyRwLOoCQsaADCBkLOoDC5MXAGwLecvDGgtcMowkNKDvzJfN4DDgS2BHXtjESKPb33YerOAbh\nMovvgHMCiFFEpIB5JcDdwH5AKRarwA2BOK4hZ8uXymNoCsdcnPUoRERCx4sBZcDtNP9yAr/p/ApN\n190JlAD3AwcBy9I9a75UHpJ/pgUdQMhMCzqAkJkWdACFwc822n3QgyGnTKftgrOBGbjbfi9jbA40\nvDyiNg8REQC8MvCW0+XphxnJKozRGLslOzinoeWhyF8AEYk6rwS8ieDN5Yf/dzzGEoyT63tTTkLL\nY5G/ACISZX62gTeWE8/bAWMWxpWpvDHdT1Kbh4hIwfNKgHHA/rieVO8CzwDvAbdk4xMLaYS5iIjU\n4pUBs4GFQA+IvY2rMFoBv8B0RyYVukgiEhFxbRt4vbduNn6O8V+MNumcLPPxFZbIXwARCbsEo8Qr\nGcdgLMfSnmok8mVn5C+AiISZVwLepFrZBoDRDWMlxhENOXFm4itckb8AIhJGdWQblYzpGBc19AO2\nLb7CF/kLICIhYPFLUNSRbVQdv6efdTRp4CemXXaqt5WISL4wWmA8CjxflW0wGzdlemVPqkTOAiZg\nbMpVqBrnISKSD4zOuLEZs9nSqDcdZr7E0j67AaV1VBpgNALOBk7KTaCOMg8RkaAZRwP/Ah5kVMUL\n/POKFvQdtSN1ZxuVjgRWY7yf9TjjqPIQEQmKEfOnDxnP0h9dhHlH4BWNYuX+p7H3S52xWCptGMOA\nh7MaZwKqPEREgmC0BB4HTuVvL13PA+/cR+Uo8dlnvQC8hmvLqOsc2wGlwIQsR1uLKg8RkVwzfgj8\ni42tNnPjt4tZMOASXNvGcIh97x91F3Bx9Z5XtZwKTMNYme2Qa1LlISKSK6431VjgNT4cOoOb1vSj\nvNV8ErdtvAVsBPrXccZhBHDLClR5iIjkhjEQ+IhNLffkzwtn8tSEvtCoZrYRf7xHZfaR+Hx7Al2B\nKdkLOjlVHiIi2WTsjPE4MI5/DH+MP6w7jNWd55JaT6oJwKF+N96azgIey+XYjnh13UsrRB7h+04i\nUohcW8X5wB9Y33YCty/clY3bdwWGpVBpxJ/nVmBLtUWd3NiOhcBgjFkZiDbtslOZh4hIprmK41bg\nEp57YAw3fzWEjdt/SmrZRk13A+dgtIjbdiSwBnI7tiOeKg8RkUwyioB72Vzcl9uWLmDW+edTuydV\nOudbCMwEhsZtHQY8HORCT6o8REQyxWgMjGdt+0O5eVVHvm3/XxqWbdRU1W23amzHo9sa7rbQ3FYi\nIplgNKW8+dOs6N6T8W+sobzliRmoNCq9CtwBHArsBUwPYmxHPGUeIiLbymjBml3fZsHRRzH+jUco\nb3lgBisOMLYA43DddocR0NiOeMo8RES2xUH37sGKu97my67FTL63H+Wt/pmlT3oYGAWUAy9m6TMi\nS4tBiUjutFx+BhccvIkzj3mPXf7dPOufZ/wR45YsnDntslOZh4hI2rwSYBwDzuzPD5a8RYd3+/PI\nK7n44/WKHHxGJCnzEJEs88rAW07/K6cwMjbP7/1U6CJfdkb+AohItngl4E0Eby5HDT8LYxVG16Cj\nypDIl52RvwAikg1+toE3ltMH7YKxCOOnQUeVQZEvOyN/AUQkk+KyDbzeGI0wpmLcFnRkGZZ22alx\nHiISLkZLjFO3/UReGTCbytX93LiN64CWwIhtP7/kE2UeIlFnXIvhYfRt2AlqZBtV5x2EsQRj58wE\nmleUeYhIhBltgUtxXVrvxWia3gkSZhv462n8FTgNY3kGIy5YqjxEJEyuBJ7y2yTmAcNTe1tltsEo\n4mfAdRMRngb8HbgB4x9ZirvgqPIQkXAwdgEuAK73t/wauARjn+Rv8mLgDSFxttEdeBPXvjEU486s\nxV6AwrbqnlYSFIkqV7iXY1wWt+23wPFA/9prX3gluIWW9iN+dT+jNS4DGQoYcB/G5myHHzCtJCgi\nEWTsDpwOjKmx506gDXBG1aZq2cZ8KrMN1w33XNztrmZAN4y7I1BxNEjY/kpX5iESRcZDwFKMaxPs\n+xEwGdgP84pw2UY34Jy4bKML8BfcfH8XY7ybo8jzhTIPEYkYY1/gBEgycM/4Nx5PsqL7k1RlGz39\nbKMxxgjgH8DjwCERrDgEjfMQiR7jCb8CSMIrocXKZ7miXTnHXXRh3PsOwPgPxisYnbIfaF5Lu+wM\n2y0e3bYSiRLjQGAqsBfGd9V3ejGgDLgdeJgRrd+n2ZrrgN64Lr0X4bryPly7MT1y0i47tZ6HiBSy\nG4CbElQclT2puuHGbbxNM2K4hvPPceM2DsT4IrfhhkfY/kpX5iESJkZHoCmwGGNTjX0/xrVT7IOx\n0W2skW2AQez7uPfsDBwETFG2UU3aZWfYClpVHiJhYZQAc4FvgfbAKlzWUPnoD9yD8aB7Q7Vso6on\nlaSiYHtbDcT1rf6UxNMJ9AXWALP8xzU5i0xEgmLA3/zG7BbAj3Hlw4u4CuVFYHyCcRs9VXFEQxHu\nf3gnoBh4H2qtztUXeD6FcykNFQkDo6u/Ut8OdR/olYA3Cbw51WbAlXQV5Ky6vXCVx2dAOe4eZmmC\n43Q7SiQ6bgHGYHyVeLeyjaDlQ2+rDsDiuNdLcF3p4nnAIcAHwFLcdMtzchKdiOSWcRTu7sMpiQ9I\n0JNKci4fKo9U0qX3gF2B9cCxwLOQdKZMi3s+zX+ISCEwioBbgRFVPagq1epJdWa1nlSSjr7+o6D1\nAV6Ke30V9c/Bvwhom2C72jxECpkxDOOfWM3b1GrbyLKCLDsbAwtwDeZNSNxg3o6qNo9euPaRRAry\nAogIlWuPL/HHb/gq2za85eCNAa9ZcAGGWtplZz7ctqoALgZexvW8ehDXt/sif/99wKnAL/xj1wOn\n5T5MEWkw42DcreYn6pji/DJgBsa/3Eu1beSzsPVg0iBBkXxkTMTdol6LG6f1bLUR3m4VwI+AgzHv\nM+oaJS7ZoBHmhO87iRQ2ozFudHg3oAfwB1y3/KuBVzE8jAeA1Zh3C4lW95NsK9gR5iISXr2AzzGW\nYUwBeuLGcdwJvIkxDCjl7tlzcOM2FhC/lrjkpXxo8xCRcBtIfI9KYwvwJMbTwFlsKRrNW1ctZmX3\nK1HbRsFQ5SEi2TYAEizWZFSAtw7Xy/I1YKTaNgqHKg8RSZ3RFDgA450Uj98R6ALMqL7DKwHGAfsD\nJ0FsZkbjlKxTm4eIpOMWYDrG9ikef7R/fNxaHF4Zrm1jIa5tQxVHAVLmISKpMU4GTsCtwlcGPJDC\nuwawtb1D2UaYKPMQkfoZnYF7gSG4XlLDUnhPjK2Vh7KNsFHlISJ1M5oAT+DWCn8HNxvEnljSyUkr\n/ZAtRRswbywwCpdtDFejeDio8hCR+owFlgF/BsAoBx4Bzk7+Fi/G/AFX8t557VC2EUqqPEQkOaMU\nGAycU206ERgP/MyfQr0GrwSYSNM1J9Hsm2uVbYSTKg8RSczYHbgfGIrxdY19H+KmHPlJ1ca41f1a\nLl9Mx5lb2H/i/bkLWHJJva1EpLaqdo5bqma5reVhXMP5a3Ez4O4HlPK7XdoB3THW5SBaCYAyDxFJ\n5CbgS+CPdRzzGB7Hs8PcYdSek2oArmFdQkqZh4hUMdoAd+Fmvz3cn4cqybFeI4YduY69Xr6Jr7pU\nzUnluugeC5TmIGIJiDIPEXGMfsAHwNfAwRhfJT4wrm3jv6UzGXDZwhqTGe4FNMWtzyEhpcxDJOqM\nZsCNuAGA52F13W6q0bYx4PL3gCUYe2N86h/kblmZloUOM2UeIlFmHAD8G9gdN+FhkoojLtuIb9tw\nYz4eBc6KO7j6FOwSSmFbdU8rCYqkwi37egHwa+By4G/JM4Vq2cawWuttGD8EXgA6AcW4LrydanXv\nlXyWdtmp21YiUeFmwj0FOB04CHgO+BHGZ4nf4MWoWkt8PHBmwsF+xmyML6ka8/GxKo7wU+UhEmau\nPeM4XIXRH3gDN8Hhixgbkr+xRttG/av7PYwb87EcddGNBFUeIuE2AWgHPAScj/FN3YenmG0k/pzR\nuFtWP9uGeKVAhK19QG0eIpWMHXCTEnbE+Lb+N9TTtlH/5z0DHAnshLE5zWglWGmXneptJRJep+C6\nzNZTcSTpSZW+PwHjVHFIIVK/cpFKxhsYg+s+yCsBbxJ4c8HrnZvAJA+lXXYq8xAJI6M9boqRqYkP\nyFi2IRGlBnORcPop8BxGgsbutHtSidSizEMknIYCj1ffpGxDMkeZh0jYGHsAewCvV21UtiGZpcxD\nJHyGAE+5eaeUbUh2KPMQCZ+hwMXKNiSblHmIhImxHx5tGb2xPco2JIuUeYiEyfodzmX+gPVsaTIS\nZRsiKdMgQYkoL0asYgiXdq6g66Tx4DULOiIpKJEvOyN/ASSK/FHiu761iKubLfbXEBdJR9plp25b\niRSsGjPgnn3UEhpv+lbLv0ouqPIQKUhbe1J1A0qx2L+B/+HWDxfJOvW2Eiko1cZtzAd6+o3ihwFf\nY3wcaHgSGco8RAqB0YGV+/Xjr1+dyoYd9qZ2T6rTgMcCik4iSJWHSL4bGSujvOn9bPxBCy7v4NGo\nYjqNNvcElmIswSgGTgX6BBypREjYemVoJUEJD2N7NrV8gO9bH8ukx1bxv8OHYrG5uHaNE4FBwCLg\nQ6ArpspDGiztsjNsBa0qDwmH64qOoKLZJD46rRWvjrmHDTteXWstcaMxrq3jROBNjMlBhCqhEPmy\nU10UpbAZTRne5k6ubLuBbk/+T6v7SY5EvuyM/AWQAma04cq2izh90Pe0/eR2jRKXHIp82Rn5CyCF\nyivh+Is+puyU1TTapGxDci3yZWfkL4AUIq+MJmtW8PuW67l4n/2DjkYiKfJlZ+QvgBQSrwS8ieDN\n5fwf/RnjiaAjkshKu+zMlxHmA4F5wKfA8CTH3OHv/wDokaO4RLLEK8ONEl/IYTf1puO/fwqMCTgo\nkYJShJtmoRNQDLwPdK1xzCBgiv+8NzAzybmUeUiei8s2KntSGRdgTA04MIm2rGYeewDN0/2AFPTC\nVR6fAeXA40BpjWNOBMb7z98GWgPtshCLSBbFZRuVq/u5sRrDgT8EGppImtKpPC7H/dUPcLj/yIQO\nwOK410v8bfUd0zFDny+SZZXZBqNwc1INjxvwdyqwHOOt4OITSV99c1s1wk24NgF4B+gMfA68BQzO\nUAyppks1Rz8me5/FPZ/mP0QC4pXh2uvGAz+rNkrcLdp0lf8QyaW+/qPB6qs8LgFe8J/viku3LwP2\nB2YAz2zLh/uW+ueutCsus6jrmI7+tkQsAzGJ1M+YBLQBRmNMr77TKwHG4f6tJFtLfBDujyC1d0iu\nTaP6H9YjM/0BRcBQ//npQFP/+Y7AhRn6jMbAAlyDeRPqbzDvgxrMJWhGD4ylGOdhzMeYjnGUyya8\nMvCWgzc26ShxI4YxA+O0HEcukkjGG8w3U7VGwBPAfv7zzmSuwboCuBh4GZjjf85c4CL/Aa7iWIhr\nWL8P+GWGPlukoX4P3IbxINAF+Atbiu5jZbdVdHn2VhqV12zbqOlwoASYmKuARTIpbLMoRn5mSMkB\noyswHeiM8Z3b6JURq7iDI254h76j9ybmrQXuBZ7GWJPgHFP9fQ/kLnCRpDQlO+H7TpJvjIeB+Rg3\n1GjbGOZ3v22E625+NvAT4BXgUWAqxkaMHri2xD0wNgbxFURqUOVB+L6T5BOjE/AfYE/MO4aqnlQj\nE96iMtriuuOegatgnsKNmZqC8cccRS1SH1UehO87ST4x7mZ923Ju/qo98dlGau/dDdcB5TBgKMa6\nrMUpkp7Il53qbSXZY+zCNU3W0WrZyjp7UokUnrTLzvrGeYgIAF4Js8+YRnnzTazb+YSUsw0RKQjK\nPCQLvDJarFzB1c03cOFBewYdjUgWKPMQyZy4nlRn95tM8QaP+/+zIOioRPJBvqznIZJn4mbAPeX0\nI2j3USkwNuCgRCRLdNtKtlHC9TaGY0wIODCRbCrYlQRF8kDC9TaaA79F622IhJoyD2mABNkGgNEK\n436MZwMMTiQXlHmIpM6LgTeE2tlGDGMoMA83k3SmZpAWCQ31tpKI8kqAu3EzRVett2H8ELgT+AEw\nBGNGYCGK5DFlHhIx1bKN+VRlG60xbgdeAx4HDlbFIZKcMg+JkK3ZRjeqZxsDgb8CzwPdML4MLEQR\nCYQazCWBymzDWw7emGpzUhnDMFZgHB5ggCJB0whzkeqSZhsx4CpcY3hfjLmBhShSgNTmISFVq22j\nZ1zFUQTcBQwBDlHFIZI+ZR5S+NxAvl2A9kBr/vWbz3gZo2a24Y5thlvVrw1wRMIlYkWkXmFb/CPy\nC5qEnlvi9XqgN1UVRgvgCzyWsXbXljRZ153Nxd/Q/JtJFJW/BkzDWIXRBngO+AI4W0vAimyllQQJ\n33eSeMZtQC9cBfIFsAz4GvN2orJto/H6c7mm5Ubc+uH9cCv3LQaaAZOBKzC2BBG+SJ6KfNmp3lZh\nZvwGY46/Lrivjp5UVe9rjNELY1AOoxUpJJEvOyN/AULLOBVjCcbuVRu9EvAmgTen2pxUIpKuyJed\nkb8AoWQchrES40C3IYVsQ0TSEfmyM/IXIHSMLhjLMY5xG5RtiGRB5MvOyF+AUDF2xliEcbayDZGs\n0ghzCQljO+BF4EHMmwpMJNG4DREJhEaYS/5xU4c8gsd7jKr4lESjxEUkUMo8JB/9loriDoxZU4FX\nNBJlGyKSZWrzKHTXFfXi6maraTN/ldo2RHIm8mVn5C9AQev9p724ot13dH9ksXpSieRU5MvOyF+A\nrDGKMP7qN2RnXqyijKEnfM8ZA99VtiGSc+ptJVnTCxgGfATclrnTeiXAOA4Zezid3lxE03WHQkwT\nForkOfW2klQNBF4GLsNomplTemXAbPZ99jv6j2hE03UnaKZbkcKgykNSNRAYC3wInLltp/JKwJsI\njKL9O6czdPChxLgYY/62hykiuaDKQ+pn7Ah0AWYANwHD/dX4GsDPNmAhP1jcgwt7Xwi8jvFkhqIV\nkRxQm4ek4mjcgkqbMP4OfAUMBialfgq/bQP2B07CYp8DtwBdgT6ZDlhEskuZh6RiIPASAIYHjAFG\n+CPBUxCXbfyq6ylY7Bzg463nNjZkOmARyS5VHlI3t+zrAFxjeaXJQHPgqLrfHNe20X/EcCzWmZ3m\nTQdWAPti/BpjWXYCF5FsUuUh9TkAWIOxcOsWt4TrWOCq5G/zs41Ob67muqKlHDb2RuBfQGeM6zBW\nZTVqEckqVR5Sn6pbVtU9BuyF0av65rhs45grRjCs3/E02jIZ2APjTxjrsh6xiEiaNMI804zpGMcm\n2XcJxlPuRbX1Nsbyux2PxViFcWIOoxWRhkm77FTmIckZ2wM9gelJjvgLcBhDTjoEt96GAaVY7F1a\nfjkeOAXj+ZzEKiI5pcpD6tIP+CfG+oR7zdvAwn7T2NTyNWAB0AOL9QD+DBztd+sVkRDSOA+pS7L2\nDvxxG3cz6bHuXN6hnAMevQu4AjgHOAJjQc6iFJGcU+YhibkxHAkqj8q2DWYDC1hfcgBFFQ8A04Cf\nAoep4hAJP2UekkwX/7/zqjb52QbsR/XV/W4DWgNXYKzOYYwiElFtgVeBT4BXcAVQIp/h/tKdBbxT\nx/nU2ypTjN9i3Ode1OhJpfU2RMKm4MrOm4Er/efDcdNeJLIIV9HUp+AuQN4yXsYY7I/bmATeXK3u\nJxJaBVd2zgPa+c93ptotkmoWATukcL6CuwB5yWjOSNayw9xhyjZEIqHgys5v4p7HaryOtxB3y+pd\n4II6zldwFyAQRhlGv6T7f959CD/vvkrZhkhk5OUytK/isoqarq7x2iP5FzgUWAbs5J9vHvBWkmMt\n7vk0/yGVjE64Ru9NGA8AozE2u51eDChj8S8fonj9u8AAiH0fVKgikjV9/UeDpTildtbMw32B5cAu\nwJtU9fJJZiSwjsTraHsE/53ym5tOZBZudPijuO7ap2PeZip7Ul3dojnFG07GeC/ASEUkd9IuO4Me\n5/E8cLb//Gzg2QTHtAC285+3BI7BLYUq6TKOAQ4EbsVYDhyDF5tGefM57D1lHrCAX3Q/ieINzYH3\nA41VRPJa0OM8xgBPAufhuuOW+dvbAw8Ax+FueT3tb2+M+2v5lZxGGQZGE+AO4DcY7laUeTsA3dn7\nxbUMGdycxps24VYNfNmfdl1EJKGgK4+vgf4Jtn+BqzjANZYfmLOIwutS3PxTL2xt24DbgfF8etyZ\nNN7UGngEOJKqbFBEJKGwtQ+ozSMRowPwAfBjzFtD1SjxYXGjxMEoAs4AnsL4LoBIRSQYkS871VU3\nEeNRRnKjRomLSBKRLzsjfwFqMY7gukZLaPbNMxq3ISJJRL7sjPwFqObCno0Z3uZzuj/yjbINEalD\n5MvOyF+AKl4JR101i3MP+Y5Gm5RtiEhdIl92Rv4CbJ0Bt9Wylfy+5Xou2VM91USkPpEvOyN+AbwS\nWi+cTP/hq7imyUqMG4KOSEQKQtplZ9i6ZkW0u5kXo8+frqLjzGvZd3KMRhWPUlR+O8bsoCMTkYKQ\ndtkZ9CBB2RZGE77e4zy2dLmB4u+2Y93O91K8wTC+Djo0EQk3VR75wtgXWISxKYVjW+PFLqS82QjW\ndmzJJye8wIruP2PBwPXZD1REJHy3eArztpVxJDAF2AhMBZ4BXsJYV+O43YFL8WLnsKD/Wt4cXcHS\nPqdXGyUuIpK+tMvOwito61Z4lYfRErc++6XAe0ApMBjog5ui/hngU+CXeBzLkj4zeGpCb1Z3fggw\nrbchIhmgyoNC+07GncAPsBqTERptcJNDDga68e3OT3LPBweyvmRv4BxlGyKSQYVXdmZYYXXVNX6C\nscSvKJLwx224OanGaJS4iGRBYZWdWVA4F8BohbEQ2zr1fAJeO/CeAm+O5qQSkSxKu+wMeiXBKBsL\n/B3jxdq7KrMNPsC1d/TUbSoRySfqqhsEox9wItC99k6vBLfeRjegVJWGiEj25f9tK2M7jEUYx1bf\nobYNEQlM/pedWZb/F8C4B+Oh6hu9EvAmar0NEQmI2jzymnEUcDxwWdVGrww3zmMh0EO3qUREci9/\nMw+jGGM+xiC3QdmGiOQNZR55bBjwGcYUZRsiIvklN5mH0R/j5DSOb4rxOeceMkjZhojkIWUeWWc0\nBu4B/oLRPsV3nc/q3b7ioRkPoWxDREJAlUf6hgLLcGMx/lzv0ftM3o31bW/lqUfb4MZtDNdkhiJS\n6FR5pMMoAq4BRgM3AgfVHq8Rzytjp48/YvXui1l8WFdlGyISFqo80jME+BJ4HWMD8EtgHEaL6of5\nPamafDuafteW037Wqco2RCRMVHmkymUd1wKjML9xyXgZeMff7ovrSfW7kr9RVP661hIXkbDR3Fap\nOxVYDbxaY/tvgdkMPX4Kj02+BNgfKMVic4H5QN+cRikikgPKPFJhNMJlF6O3Zh1V+5Yx5+TnaPHl\n68Qq4ntSXQq8gjEn9wGLiGSXKo/UnAKsB16qvtlv25j4xKHsNOcTRhZ/ArHv/cWdLgVG5T5UEZHs\ni3blYbTAuLR2g3e1YyqzjlHVs464tg2vcQ+arT0T+APGTsDlwPMYn2YzfBGRoES78nCTFI4GZmEk\nG/F9ErAJmOJeVs5JxSjix20Y7wOPAPcDvwCuz3LsIiKBiXrlUQpciRu78TzG9RhNtu51Wcd1bG3r\nqHdOqpHAwcBEjEW5+AIiIkGIbuVhFAPHApMxJgIHAAcCMzH29486AfC48duZCbON2udcBxwB/C4X\nX0FEJCjRrTzgSOATjC8AMJbjloYdB7yJcQVwHe/86jXKW6U+A65bJfDbrEYuIhKwKI/zOAl4rtoW\n1yD+IMYbVDSZwNqOezD19hZoLXERkVBLbVphI4axGKNrktOUEatYTvMvb9Na4iISAWlPyR7VzKMn\nsAGYV32zV4K7bbU/XlEpG3ZUtiEikkBU2zxKgeeSjtvQehsiInWKauZxEm4sBtWyDbVtiIikJHqZ\nh9EZaMdnR85UtiEi0jBRzDxK2bjdqzw87QlgP5RtiIhEXj09BrwYl+3yMV0nfQPeWPWkEhEBGtDb\nKmzquABeCdstfp6rWm2m7SdH5C4kEZG8l3blEYE2Dy8G3hBgNr3GNaJ4w2S+3ufvQUclIlLIgq48\nfgp8DGzGjb1IZiBuTManwPDUT++VABNxExaWcviYTTTa/HRDgxURkfzQBdgHeJPklUcRbjnXTkAx\n8D4kGxlemXpVZhvecvDGgNcMoznGGowdMhh/mPUNOoCQ6Rt0ACHTN+gAQqbgblvNAz6p55heuMrj\nM6AceBw3yC+JGtkGsRH+DLj9gfcwvtrmqKOhb9ABhEzfoAMImb5BBxB1QVceqegALI57vcTflsxs\nXGXTs0YX3NoTIYqISIPkYpzHq8DOCbb/HpicwvvTTadqj9swinCrBt6Q5rlERCSBXFQeR2/j+5cC\nu8a93hWXfSSyAGIza221rc8WbmMsUTMy6ABCRtczs3Q9M2dB0AE01JvAQUn2NcZ9sU5AE+puMBcR\nkQgYjGvP2AAsB6b629sDL8YddyzwX1xbxlW5DFBERERERCIuywMMI6ctrnPDJ8ArQOskx32G69E2\nC3gnJ5EsqLP5AAACcUlEQVQVllR+b3f4+z8AeuQorkJV3/XsC6zB/R5nAdfkLLLC8hCwAviwjmMi\n87vM9ADDqLsZuNJ/PhwYk+S4RbiKRmpL5fc2CJjiP+8N1O7gIZVSuZ59gedzGlVhOhxXISSrPNL+\nXRbCOI9ksjDAMNJOBMb7z8fjxsUkE8t+OAUpld9b/HV+G5fhtctRfIUm1X+/+j3W7y3gmzr2p/27\nLOTKIxXpDjCMsna4tBb/v8l+OB7wGvAucEEO4iokqfzeEh3TMctxFapUrqcHHIK71TIF6Jab0EIn\n7d9lvi8GlesBhmGX7HpeXeO1R/JrdyiwDNjJP9883F81kvrvreZfyvqdJpbKdXkPN/ZrPa5X5rO4\n29mSvrR+l/leeeRygGEU1HU9V+AqluXALsDKJMct8/+7CngGd2tBlYeTyu+t5jEd/W1SWyrX89u4\n51OBu3Ftcl9nN7TQieTvUgMMM+NmqnqzjCBxg3kLYDv/eUtgBnBM9kMrGKn83uIbJvugBvO6pHI9\n21H1F3MvXPuIJNaJ1BrMQ/+71ADDzGqLa8uo2VU3/nrugfsH/D7wEbqeiST6vV3kPyrd5e//gLq7\nmUv91/NXuN/i+8A/cQWf1PYY8AWwCVdunot+lyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi\nIpISzYMvkj1FwBDctC6LcXMv3QYsDDIokUwoCjoAkRDrAUzHzVJcjJtIch5QEWRQIiJSGO4EOgcd\nhIiIFIYfATvilg0At460SCjotpVI9pwH7AasBbbHrXb3v0AjEhERERERERERERERERERERERERER\nEREREREREZFo+3/BxQ+O9n8KVAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10435a290>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy\n", "import nengo\n", "from nengo.utils.ensemble import tuning_curves\n", "from nengo.dists import Uniform\n", "\n", "N = 100\n", "\n", "model = nengo.Network(label='Neurons')\n", "with model:\n", " neurons = nengo.Ensemble(N, dimensions=1, \n", " max_rates=Uniform(100,200)) #Defaults to LIF neurons, \n", " #with random gains and biases for\n", " #neurons between 100-200hz over -1,1\n", "\n", " connection = nengo.Connection(neurons, neurons, #This is just to generate the decoders\n", " solver=nengo.solvers.LstsqNoise(noise=0.2)) #Add noise ###NEW\n", " \n", "sim = nengo.Simulator(model)\n", "\n", "d = sim.data[connection].weights.T\n", "\n", "x, A = tuning_curves(neurons, sim)\n", "\n", "A_noisy = A + numpy.random.normal(scale=0.2*numpy.max(A), size=A.shape)\n", "\n", "xhat = numpy.dot(A_noisy, d)\n", "\n", "pyplot.plot(x, A_noisy)\n", "xlabel('x')\n", "ylabel('firing rate (Hz)')\n", "\n", "figure()\n", "plot(x, x)\n", "plot(x, xhat)\n", "xlabel('$x$')\n", "ylabel('$\\hat{x}$')\n", "ylim(-1, 1)\n", "xlim(-1, 1)\n", "\n", "print 'RMSE', np.sqrt(np.average((x-xhat)**2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Number of neurons\n", "\n", "- What happens to the error with more neurons?\n", " - Note that the error has two parts:\n", " \n", "$ \n", "\\begin{align}\n", "E = {1 \\over 2} \\int_{-1}^1 \\left(x-\\sum_i a_i d_i \\right)^2 \\;dx + \\sigma^2 \\sum_i d_i^2 \n", "\\end{align}\n", "$ \n", "\n", "- Error due to static distortion (i.e. the error introduced by the decoders themselves)\n", " - This is present regardless of noise\n", " \n", "$ \n", "\\begin{align}\n", "E_{distortion} = {1 \\over 2} \\int_{-1}^1 \\left(x-\\sum_i a_i d_i \\right)^2 dx \n", "\\end{align}\n", "$ \n", "\n", "\n", "- Error due to noise\n", " \n", "$\n", "\\begin{align}\n", "E_{noise} = \\sigma^2 \\sum_i d_i^2 \n", "\\end{align}\n", "$ \n", " \n", "- What do these look like as number of neurons $N$ increases? " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<img src=\"files/lecture2/repn_noise.png\">\n", "- Noise error is proportional to $1/N$\n", "- Distortion error is proportional to $1/N^2$\n", "- Remember this error $E$ is defined as\n", "\n", "$ E = {1 \\over 2} \\int_{-1}^1 (x-\\hat{x})^2 dx $\n", "\n", "- So that's actually a squared error term\n", "\n", "- Also, as number of neurons is greater than 100 or so, the error is dominated by the noise term ($1/N$)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Examples\n", "\n", "- Methodology for building models with the Neural Engineering Framework (outlined in Chapter 1)\n", " 1. System Description: Describe the system of interest in terms of the neural data, architecture, computations, representations, etc. (e.g. response functions, tuning curves, etc.)\n", " 2. Design Specification: Add additional performance constraints (e.g. bandwidth, noise, SNR, dynamic range, stability, etc.)\n", " 3. Implement the model: Employ the NEF principles given the System Description and Design Specification" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1: Horizontal Eye Control (1D)\n", "\n", "From http://www.nature.com/nrn/journal/v3/n12/full/nrn986.html\n", "\n", "<img src=\"files/lecture2/horizontal_eye.jpg\">\n", "\n", "There are also neurons whose response goes the other way. All of the neurons are directly connected to the muscle controlling the horizontal direction of the eye, and that's the only thing that muscle does, so we're pretty sure this is what's being repreesnted.\n", "\n", "- System Description\n", "\n", " - We've only done the first NEF principle, so that's all we'll worry about\n", " - What is being represented?\n", " - $x$ is the horizontal position\n", " - Tuning curves: extremely linear (high $\\tau_{RC}$, low $\\tau_{ref}$)\n", " - some have $e=1$, some have $e=-1$\n", " - these are often called \"on\" and \"off\" neurons, respectively\n", " - Firing rates of up to 300Hz\n", " \n", "- Design Specification\n", " - Range of values for $x$: -60 degrees to +60 degrees\n", " - Normal levels of noise: $\\sigma$ is 20% of maximum firing rate\n", " - the book goes a bit higher, with $\\sigma^2=0.1$, meaning that $\\sigma = \\sqrt{0.1} \\approx 0.32$ times the maximum firing rate\n", "\n", "- Implementation\n", " - Examine the tuning curves\n", " - Then use principle 1" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEPCAYAAABY9lNGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4Tuf7wD8nOxEJib33HrXVPkbtqt2idlu7RVuboza1\nWi21a29KjSBuo3aN2lsRDWITIuv8/njeJG8W4ftrVZ3PdeXCOed5zvMeeZ/73BssLCwsLCwsLCws\nLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCzeKtyA/cBR4BQwynbcB9gCnAM2AynsxvQD\nzgNngPf+sZVaWFhYWPzjeNj+dAL2ARWAscDXtuN9gNG2vxdACRNnIBtwAXD4pxZqYWFhYfF68AAO\nAgVR2kFa2/F0tn+D0h762I3ZBJT9pxZoYWFhYRGbv/sN3QGlFdwEBDiJEg43bedvEiMsMgABdmMD\ngIx/8/osLCwsLBLB6W+ePxJ4B/AG/AA9znnT9pMYzztnYWFhYfE38ncLiCgeAOuBEiitIR1wA0gP\n3LJdcx3IbDcmk+1YXC4AOf+2lVpYWFj8N7kI5Hrdi4giFTERSu7ATqAaykkd5WvoS3wntQuQHfVh\ntATmtbSK/1+M172A/xDG617AfwzjdS/gjUakHCJBiDxj9epVvMLe+XdqEOmBn1F+CAdgPuAPHAGW\nAR2AP4FmtutP2Y6fAsKBLljCwMLCwuLlENGAroBBZKQTYWEaXbpUfpWp/k4BcRwonsDxu0D1RMaM\ntP1YWFhYWLwsIsmAnzDNwty584SAgHRERFwiMND3Vaaz8gwstr/uBfyH2P66F/AfY/vrXsAbhUgu\nYC8BAWlZvz4TN296ULjwY+bMOQwsfpUpLQFhsf11L+A/xPbXvYD/GNtf9wLeGETqEBGxnzlzNObO\nLUj16uEUKPAdDx7s5+TJalOZuv1Vpv2nopgsLCwsLP6/EXHgyZMhPH7ckwEDInFyWs+337ZH0xph\nmssZNOh6WcouzUe+Ka8y/ZupQSxatBuRHK97GRYWFhavjUWLvAgI2M/Vq33p0mUDrq7vMH58LTTN\nAIoRGHjN5dQFj+EMb762xNpBr3u5/xQmbds+ws/vESJjEfF+3QuysLCw+Edp0aIRCxc+YcCAW6RO\nXREAkZmILELEhW3bAihY6MYYxvzZ6d1OWzC4zitEhb6ZGsTcuWVo2fIhp09XAM4i0hkRy1xmYWHx\nXyc1DRpsolmz5Rw/vowRI9IRFLQLkRZAReAzoDVXroQUO+2sPSjyIPm0mtMeAEVe77L/OaKkYDbg\nPOXL/8i2bf6InESk5mtcl4WFhcXfhSOOjt1o3/4xa9c+YubMGtFnRHLbEuLeQcSJLVuuOBctETYs\n3bCwZH2TtceITjh+K/LKTIxozSctcBRNm8yWLQ0QOY/Ir4jkfZ0LtLCwsPh/pBweHn8wblwQGzYc\nRSR99BkRV0QOI9IFgF9nfe409cfwZs7NwprWbFoqzjxviYkJ6tj+vAlUwTRLUKNGY7ZsKYqqGvsb\nIhMRSfn6lmhhYWHxP5EW+JmMGVeyeHEKSpRYh7t7GXQ90O6accAlYCpDnVo4PnOd4DlzpUMNs0a1\n5X7LD/6vC3hTBURfu7/fR3WfS83IkQvQ9SmovhMewBnLP2FhYfGG4QR8DpygTh0X5s93wMtrPJrW\nAV1/Fn2VSEOgPteW9mSHPs8tee1vHW+GaPph7ymfhH+y83Ut/nVjYvAXBhXiHHcFVqIaDalOdiJF\nEdmGyHFEqv7D67SwsLB4WSoCx9C0LcyaNQyRm4hUi3eVSFZEbjGvU0cMLmmDHaelmL3qaarKTYJI\nuMgpvEUmpuvE7j4H8AxojiofvhHwQtf/QFWQHQzMRGQlItn/0ZVaWFhYvBhlToJFeHqOwt//T3Lk\naAiUQ9f9Y10p4oxpLuHGpiNcmjYc6Nnx0Cqvh47Bbk/3SU0SEASCOL/Kot5MAWGSGyiNQaE4Z8KB\ntqiKsFsAH3TdRNdXo8qJHwYOIjLMVtTKwsLC4nXiiKq8ehy4Rb9+FVm3rgualhp4F12/GG/Es9vf\n8eB4Xs6O04DiYkj4L1XuN3P0374v+Nmdw/aXCqIJ0kQj/PKrLO6NFBCpH6Y+COwHvk7gdCSqVPhO\nlMNatTTV9RB0fQSqw10OlH+iha00roWFhcU/TRngANAU0BGZx3vvCWrvaoSuP4o34ueOo4FPOT9h\nIkTWEkPc9uQKmn8rezKHsN/3fmh/qSA5nHi405WbM4vwpec/8Hn+FZi9Cw/8DYOjGNzBIEsi12ko\n09IZVHe62IiUR+QQIr8hUuxvXK+FhYWFPSmBacBfQEtAQ6S+LZehZYIjDJIzOt1S/FaFsaRfRwBB\nPAQ5muyb8bfp339z1KWCuB7kp2k7+fXZZT5+dMa9wd4NyX4N4W3xQVQ/oRdziHRIBawDeiVymQl8\nA8xASeTYvgdd3w2URtn9NiIyFZFXqpluYWFhkQQ0oDUxTdEK2EpjfIkSGPXR9YXxRhmUAA5TwHgX\nR/dJfDhqpiAaMHVtpiP3g9/J7UNoaFsTtPN0+tKNG3ededgmleP6k+dcWrrMrvzFO0MHJhv/qgt+\n0zDHc+T0qg+7/bU73+7LQGMgNwZ3njOmMyo0thqqp3VsVL7EN6judgYwHV2P+P9euIWFxVtLfmAq\n4Inajw4i4gr8BBQF3kfXr8UaoRKCewJ9KPjNOlJVLAyUR9fDBOlkYnat+tVGHy1z5hP3e0xdfJUP\nv31IQe9kXLhyw7lEuhVNnRw21mbe9Uz0R9fvol6aX2rPfyMFhG+dDncHnigU0rNdTxc01gFXMBj6\ngnEdUZt/dZTZKT4iRYDvAS+gO7r+2//fsi0sLN5CPICBwCfAUJSQiEAkDbAKlezbGl0PjjXKiI5q\n8iZvnyGkq7UQ5bS+IEgZYF339EPGn/vpq5H7P14e9PhB41TOPHhwxzVj+M/tHBzX12VvsCe90fVz\ndrO+HQKCOl3CPIr87BDuGHY/1Dn0B5REzo5B8AvGtgZGoxLrTiR4hXJaN0dlKG4Hvo6TuWhhYWGR\nFOoAPwD7UKZwtY+IFAB+BRYBg9H1yFijDN4D5gKzyfv1aNLV3gtMQNfnCJJGI/T33AxdP7NukU9z\nHK9F1qtO4cEuHte+76GFbapFSKQjvdB1SWA9b4mAwNzd22fdMb8G/RueyHrCF7gBLMSgXxLGfwRM\nAGoDRxO9SsQTJfk7AsOBKeh6+P+8egsLi/86GYBJQAnUy2u0AxmRGsBC4Et0fV6sUQbOKFP3x8DH\nGAgik23zNbuvd012jxK/p+fXDEccWjneTPaBR7Cnw5U5bTmztQZF0BgI/BzXPC6CBtTVddbxZu75\nL4U5OW3Hrd48G77BecMdbbD2AIPZGIRjsA6DMkmYowlKtSv5witF8iGyxZaNXel/XbyFhcV/lqic\nhiDUS6V7rLMinRC5keA+YpAFg90YbMIgje362ohc7dm5c2YTvg7DI/hPPgoRNkaMSDMzMsuPG24g\nchuRUYgkT2hBImQQ4ZeRI+te5hWimN5EaWL+tgJz5eS+59/fVdOvV+te5Y/kOLISqIkqWlUVOA+M\nALZjJPpQGqAinN5HqYCJo8xOjVGax07gK8vsZGFhYcc7KIdzKNAJOBl9RsQRZbKuA9RD12MHyhg0\nAKYD44FvMYhEJE3Khw//8Pv66w0lz55vGESF0HP0ThuGV/B3qZdcWjO1RkF8fXcDbdD1eElwNq2h\nLTAGmKrrkW3AIStvg4lpf/tUQ0Jr3h3KA58VR0cO0Lu36XkfjV7AIKA8Kra4L3AHGAmsT0RQ1EHZ\n+j4A9rzwzsrsNADlcBoBfG+ZnSws3mqSoYJf2gD9gDmoZF2F2jMWoaKXGqPr96LPGbgCY1Evqx9h\nsBfgkZub76Lq1fe12OKfOeRZkZvn6O0bSmqPh8nZ02rElWSPVv9chP79r+DklBNdj19WQ8iKEjip\ngfa6zlEwb4KWhpfc89/IPIgys29/s/mzfjc97t+tXXDweFfvMA8P4AGQAlWCYw6qtMYk1EZ+BIOm\nGDjGmWoDynG9Bij3whvr+mN0vR9KCNUFDiFS/v/tg1lYWLxJ1EQFu2QACgGziC0cMgK7UPXhasUR\nDjlRL6WZgWIY7DUhTSSMdowkIMX9iKxHw2bePcHoR89I7XCgFGcbrCXXo/FDwujY8SpOTgPiCgcR\nHEToDBwCdgBllHAAMGObu5LIG6lBAJpGxPTfKFcwTcuTmcZXCc24+X7o3kvBLAV0DBpHX626KdVD\nOZy9UAJjCQb2b/61gHkkVZOAKLNTM5TZyQ/og64H/c+fzsLC4t9OGmAi6qWyE+r7HxsVMv8r8CMw\nJtZmrvanqcAwYIppkNZE+8rE8bOLntXCPhjfLvmgwWnXpb1JxZtpeRCYjsxfj2NKeLfPfsHFZQWT\nJz/BwSGnvfVChBwoAeWO0hpORZ17SB6vlJx6EIETvJl7/kthe9BmGzeeLItE27m3YKUnHsOIWLqJ\nZe7DuI0RJ2salKAwqI7BDgwuYtARAxe7K2qhJP2LNQl7RLxszYluIfIpIm+kVmZhYfFCouz6N1E+\nhYQLforUtO0HzWMdN3DF4DsMLmFQyoQMETh9H4Fz8HXq3v/NYcGBohPk8rJUcmm1t5xs0kUCV3vL\n05p9JGpP8mPWrN8R+SLmVjiI0FWE2yJ8KRLbSuJNcPnx7AzRiDR5a1qOqj9ygRnwiGSpQvG6V7p9\nmltt57BzlR93y3zHgufOYFAJAz8MrmLQDQM325lXExKArR/sHkT2W7WdLCz+c+QC/FHmm+KJXiXS\n0RapFLtfjUF2DA5isGZ+EQqE4zItHJcnAXzweC8LtwqiD6ks/uuSSVjb1nIs/QK55Ocs97Y6SEXb\nDFVJl+5Ptm27i4iXuhXZRRAR9oqQL/ZCzDKORGz8hsOhS1nzVOPxKwmIN1HdMEVIpuvmU1TiSZlA\nauaRArv8etR9dmhs5ch5Pi5M1qC3lzOTdP05D8WgNMr0VAL1RjAdg0q8rLkpCqU9tEM5xqOSYOJX\nZLSwsHhTcEIluX0NjAImA/EDU9R3fxgqybZOrAxmgw+A6aWu8+OeGe4ZNSJbBVLXDKDxphAyDAVc\nn7iz+Hhhsk7syeP7KRi9oQ4NHEzW6OhjUPv0PiZPvkGRIn8Kek9UfsVQVJTSBF3HlvtglgYMB8xC\n89gcmp+zmbzSjwsuduekz+NQb/gXOakzo8ptn0Q5cnrYjhtAAHDE9lPbbkw/VIjqGVS2c4Ksp871\ntZK8paZF7gYqpGfzlrznPz0S7hBZ4uRkdvY9zsYwk97AchFSJLpCgwMYvI/yUVQELmJQGF8+JamO\na3t0PRJdn4VqeeoNnEKksVVS3MLijaQYqhx3DVRhz/EkLBxcgQWAjiqHoYSDgTMG47PeZ8q5SW4H\n9s5w7RNInVa/M2vFBboXCSFDKxNaP3Nh88SeZO07mr0301FgU21SOpjcRb20AjTE3d2VwoXLNWH5\namArKpmugq4zTgkHsySY64EVzkSu28GKMwU5lTVzkQHP1nl3T/409EVFJv550qFig0GFeJ1FFawa\nQsIVWAugMpudgWyoonoJCTAzYw//CF9ZHt5sXdc7par/shpAkEYfNMr8eEBVLqXvTXmXb/jTfxtT\nRLgkQukkrdigMAZLMbhJO2bjShAkcWxCiFRC5CQi661OdhYWbwzuqJI8t1A+h8Rf8ER8ENmJyHJE\nYiKFDDLl7MHBJQUcA8JwfXaVxk/3Me8nQTIBCKL7Ocu1kWXlZsqVEoSIPyKaIO8Jck2Q1LaZnIDT\njBg+MaPMP2bzNXwd42sw3wHzFzADwOzyLkHuu1i76ggTwi5VS/90bvpvI5JTMRICIvmXm5jWAFNQ\nIaKPUdLYnn6oELExtn9vQmkbcZPYTEfXh0HvfTQv7FbTUO+zbrmSlXHYfyL7vXsd8nyVZdOM2v2c\nzk0xF2oGRYHxUplIVALLKHiBySkKg/zAQMKpx24cuUgdrvJqTcBFXFAC8UvbZx6Proe+0lwWFhZ/\nN5VRCbRHUVaPG4leKZIFtU9tRCXPRgLU+4jm9c5qc1sdc3S+G/5+6F80mPqULKN19CBBvEJcmRjq\nQrOxXxO+uwJzUNGQRUXHGdX1sqVOdC2l9s4ufJJq08JCnbWpgRX5raGucxLMwqj98V2UMJsubA/T\nCJ2f3OFkI5cGcxwO+nVy7PZkmPaE9rs0Pi5tkt+Nf6lbIRtwBaVJDAH+BP5AhWVFmYC+RyW4RTET\n7MJVYzBpX24QRJ6vVGn5Jq88VyKrbB38p6esjayw+McbHv09gw+l4+LigkzF4DeIduYcEGGNCCmT\nvGqDvHRD+JpIuvIDBt4v+bljEMlu0yROWLkTFhb/OrxQPRkCUIlrz0ekKCLX7COK7riRwS+7xx93\n3TB/9yr/9ACzRwgSvWdscZTa693ldt/35InPCpmNSDZEriBSWxAHQTYLMizqeh8f3N3cuN15VomH\nKWXlrTmS1RnM/GAuBfMGmL3A9AAQxFHwn/e7x7hH+5vUipjmOiXcmTSRLjSd8h1l550m+ytpEP8E\nnsDvKKcvqBhizfYzHCUkIGEB0SiB+Uz6pFwIZnowTzk5hVw3jEaXVkpKabLpi8uuMz4wvX6ofmtH\n4cJ3K7UlEINSACK4iDBJhMsi6liSKcjnNOYJg7mLwRCM5/g1noeIhkhTRK4j8pOtD4WFhcXrpTZw\nFZV9/OKXQJHqtjDWpgAmpL3pkmHVAxeHyJ8LpgxfmnrgWCGm570gKZelkrXLfSWk4lA5jUhJ2zxz\nEZlqu+ZrQX4TxEmdIm3z5hwvWZIH3rJ6O7P3DwBzHpi3wOwLpqfd/A6CzNyfdviDXe91Nie5TQhx\nIVXkGPKtM+HCSeeUN7pr3/4rw1ydUUkkXyRyPhuqWTeo0hh97c5tggQL75kUSx8OhWZAqnGw+a6m\nRez199dGihA4uXGHG54jPSLSbFj8rMwP34enGVdrr31uggiNRLglQg9bvZKk0hJfbvAVKzG4jYHx\nPwiKFIj8iMhfiHxoObEtLF4LPqieC5dQzcRejEgrRG4iUikct1SPyLEkRHMLn/GOW0TdRvm29yjV\nI1ZuxIIM0mKtpzzuVU+C0y6WLtF7kUgDRC4gkkyQMoLcFCSLOkWjtWu56e5OsFv9/u1Yv/MpbuG3\nwRwMples5SCasO3HPXkH399efJQ50mPovU9IFnkX57ur4VARN5a758odmo2W/7owVw318O+guiJF\nkZ6ouujqeCmgBcpJvQjlFM6I8tTnIv6HMhnk9JThIcGYjt2ACGA2MHfTJvflLutrrWrrvMf7/RJ3\npuc8V6XjjBzNXc9mzHwxwtHtG2Axuh5myzpchjJ7ddB17ifxM7UDvqE6ralAa6A+SvOZhMGDpD8a\nGyLvot5aAoAuCRXdsrCw+FtohPruLkfVV3t+mI96iesDdK5y+OiHv/Se9rkHAY0PpM4S9nHzCxHX\nvRzaPRv5bEXU5StTiu+9lPzq8YRSs9uzdmsNOtq6uinHtorsbC46x1DRnL0RfZttTe+2bet16MqV\nkkXoMS07qUOOMKhwPdDuxloSooE50ansxvYRAbmS37214kHxUH/vcNxP5ST4U83gOLC7wqy27tq1\npul2UTcZ/6Iw1/JAK1Tol31I6xjgGMoHUZkY4XEKtWmfQjl9upCYxHMMv0PZya1Rha5KoD5HqVq1\nnrZ4dDv9O+8druNwPsipdbFy/h+sm/Dpw7krB2VLR2B/MC8g0l1HbtjW9xdwSISkJrbNAYaxlTm2\nDnZlgRzABQwGYeD1/OFx0PW9qKSbHagWhF8iSsW0sLD4W0iD2mdGopzDX/Bi4eAIfOcYEdHyQOvh\nhzf3HrTzsZauZu0PU/xevsvpS5dShZWwFw4j3pXPNZO/zucm26BhVNo6Um8ULRwUk4FlovMbKoBm\nE6I/AI49eZI8vF69PXLlimMzvEfvp8H1ECrc+TBB4aCFj3aqtuKzNH/cS14koFeES+h278kUGJKL\n4IKawX5gCbAr5zUPnqK9NflYJgYbVIlcMx2Ye8G8D2ZNMHeD+dP0NLOWug90CfHz58b0n/npQmoi\nzn3G2YlS9JyvLN9uUxEHIeIjQjObyanjS5icuqHCcDMAYJAHg3kYBGEwAIMEa7M/F5GciGxF5BAi\niWdqWlhYvAoa8CEqKmk0RFdPeD4irs6bt6wqMHPhjaBkacNuUfHO4owfD2QIhzBYjBFTbqNrY8k6\nqYicWZROwpt2lrEJlt0Red/OtNRB3DYcFz/n7/39teuNGk2aD+ZteP8Y+M5ApBsiK+LNAex0WTr6\nXIFK4U81X/OolvlpabzCoV6Mz1aV9PDDwKk3Xe/lZusJ/oU+iL8DE4MxGAy0/dMNzLNgXrWV39iV\nnidr83fMH5xtjNZWhA2N+vLwiTPB53rQV4RrU6TAr8lk3WJE7iIyoZ/UqCTCCRHmiuCRxHX0RSUB\npo4+YpAXgwUY3MKgj/0vT5JQTuy2NgE2DpGkrsXCwiJx0gIrUd/XJOc1tek1Mm2BmYsDGxojIgNc\nyt85zVedtMFaTQxuYPC5rRAoiGidmsn4FT4SMay8nKjRT/kS4qFyJq4jUlGQfJLvx3v+G10vTZ9e\n7KiXV1AQmD/DqHeBu3h5pUfkHBJdagMAE9wC3GpsCnH1NG87FzN7ax/cA99wqFU3+iKDrhicivKR\nDufzMB/2beUtEhCtMFhqd6gFmCfBvAJmGYjcmafkmCc+vXy3iaC1n8uUrq2ICPPg9o2qZBZhhAh3\npkrekU6yeTIid5PLL3PWiNcvIhwTIU8S1zIcFbcc21ltkN+WcHcDg14YvFypXZE0iCxC5BKqRaGF\nhcXLY681jCSJWkMg77nuzdh4YZEZs802vUaGnHDu3qVy08oOGAzE4DoG0Zt2ueFSZng5CVyaWp71\nqiednzuxyDxEJkv9nu7bPv3wr82/eobUrDnnLpgrwCxgu2oKMA6ROogcjgpgMcHNhG6hDu6Pgrzz\nm0d8+4TVpOMj8AkDvXr0PQxqYhCIQQ7buPSD6RMBZ+fzL3NS/12YGLwDLMbA9lDNrMB+lD3xe+DT\ntO4BE4K+yJcl8mHmVKQ+88BZ49KBPXjluErYqUEUCUmPJ6pkb/5T5B/QlR8LgNm1HXOutGBRDici\nPtV1ElTv7NBQPSdKomrDP4511iAqmaUsSq2dgUFIkj+pSG1UWeCdQE90/U6Sx1pYvN2kQ5XazoMK\nLjn4ogHn6ObiycXv7mS83r7uuEGOeS492ZjxfJb6P2fXvYD5qKinphgEIuLxwWpmtVhEs8D07A53\nol7vI/rDRCcXqQ9Mmvik9wd5bzzYEXbfx7vrhPk7A67n/RK0Q7arsqB8tfkQWQAsMnV9CdAB6Pco\nWfrwsyk7ZAt3dH3c/8pVF2GlA+SvBrtVEq9BQVR5o0ZROWAm1GuDsXoe7adClu68mXv+S2HayuY+\nRXVkAkzNlmqeC8xyYAZm59Egr+b1Ih0qDd0HpiMGvdwGsjg4E1f/bMFDEVXrSYQ6IlwQYc0Iebcg\nIr0LyJRbK8TnyVzJskQE5xesxwGVy+FPYm8oBsUwWIvBNQw+i1Nm/PmIeCIyCZFARJpbIbEWFs8l\nSmu4ier94vqiAQeZ5nSVxpODyfhse96qjzzW+z3Q/OVTAAwKYHAWg++jvreZf5Ymfd+Th6u9JXhK\nAWn2whWJ+LBt2/WuP7Zbsf6XlBEbmnYLL+UUmFAy3jRgFCL5XTZvvhHs6trNhKsmrP+jxAcbJPVS\n82C2XoFl6PRMwzcMSpaNHmmQytbG4GP7CU0YUpnREfBgCG+NiQnA4KRNk4g6vEKZmgDMHGCe/rjw\n8BtOHcoEg7mAbnl8Mbg3rhwFI5wJOjaMIBEmiuBm+xkowh0RBneUFl5ZZO4X46VY8E+S+34JGfei\nXAVHVMTAOniOQDEojWpKfgmDNhgkPWJJpKytrtMvqE5VFhYWsUmNCls9BS9Ohj3INKfLtB77iBwh\nwWR+9E3jgdPZtu0WIg0BMGhoCzxpC4BIpkqG7FiSRsLmZZKNgiQpatF3ybptI5ZWeTr/5zwhm3LN\nvOOP1E7gsmzAnVKQdtRHH2276+l534QNJpSR+t03itca82iWDmcL0eOxI75hUCAmkEUVBRQMRsed\nNAzW5WJyBER8wSsIiDe5uc1xoLDdvw8S/UuhXQLeDTzd4qZLqtPu+JzPwZSzE4lwWv3Ve7zvEEbD\nQoMxk10kD6paY05dZzgq5PSdliw68jNtL6zj/RSPSL61PyPnl+LAaUQaJhiZoHIxPkb9B8yHeK1N\nFap6bC1U/9r2wAkMmmMk4f9B1/fZ1ncEOIrVnMjCwp6GqPD5y6jvSaImJUGcztPlm9x89zAdft2e\nkHmU95bZbQd3q/YBmtaUHfpaDIahzMe1qSwLvNbI1z0mc/7rsRRzf0rT1gF6bZ3nmJQAMEtU6Dbr\n/NRU7XXP22E7Mnw2aa3rhZyLqqFvjHulCwwaC7v3adq+UmfOVNxbsGDr7UK97XV6TmVn1Vqp3Jce\nanjV1+csC9wheQk4ddhu+CRUqO6ABBZR4iZez8Dh6YseYEK8ieYKE9Aw6A+kxOAr2+GqwDegRTfq\naMpVt/vvd3588GGRO/e3jzxP8oA79Mz6Dg6ROUyDbia02bOKn8JSMhwYDEzTdUwRagLfAeeAHuE4\nFojEYeF8Pn64gFaPQBsFLLFv+WfDDdVm8E/gE54nsVUERHWUo9vNdv+1GEmQ8iJR/W+fAJ+g6xde\nOMbC4r+JD+q7WhpVeTXRHi6COKVjY5+0bO3vwWXHx+Se7MuBAZpIa5Q5qi479EvAQlSJoKZUlixF\n/mBB/5FkdgtBvB/SRudFvkAzt5vb45GfdfuqdvnaKzx2hVfu06hmt0BUQdKSOnr0Zm2C42H43BvG\nZYY9fbt02TOxadN8crJrc5Y3Ps/pgpnSPlu5q/KD/FkfMiVzXlzLHSMwpoCpQSdUUcGyGMQSWCak\nDYdzzqyMhEZfgDaXf1Gi3N9NXA3iEPAOmNFmm+VkCSl2teAyx8ILkwFZeJQpAysXuxHuUh/4ToNz\n5RtRGqgkID4HAAAgAElEQVSA2tBXieCr6/gBRVC/bAediCjuQljZ9sy+s5CWNzwI/gw4i+oeZe9P\nCEHVnCoM8dW9WBiYGGxBObAHopp/7EO1RX3+f6Kun0D1qlgL7EOkly2Zx8LibaIOSmu4g2otkKBw\nEMTxGMN7FmTw3ZxMHaIRMduVe96pONBHU8X2BgOV2aE/Q2keFyjybUOXsjKo4wxk7NekTx1Euw8e\n6vWeLxzM9GBOzZHj2IEFC3JXyFn7t6CuDj/MbVSz23JUQEzLKOFggoOpEvWOu0Of8TDfVaTSxKZN\nqxe+FbiUmR1u8Gf2TOkfrPIv9aBY2odMydKOyAZxhEMV1L7xflzhYKPEHbgAycOAV9Ig/kMCQnsA\nXEM164mm8qnK3+Ac7O5SeP4UIBtXKoayasH3mnpR7wi8W0WnLKps7iXgqAhVdJ1nus4oVIRSCWCd\nBoMzEHhtPfVSvM8vg4CmwAVEuiIS5aB+jPrFrYdKzX8+SlCsQ6nFE1CRF/4YvPvccboega5PRNWr\nqg/sRqTAc8dYWPw3SI4qyf0DqlrD5yhtOhaCOBziu8/yMjooP6PGuhK0CkzflPzRXRMJRWQUKkKo\nAjv0AsB20IZRWbZnu1/i5Oz2fNh0OftcQ8lfzdSXJb4c0xvMERB5onv3HrlnzHgn8oJvlvk9HL5z\nSnY5TW+U2XmMjn7UBM1U1WKPAl9ugm8LgsNU9RlKpb4TnmZy/+DZPHHzSnPF36/Qs9IZwhmXewJP\ne07j/rroWxpkR/k9W2CQmAWh+CUIgOQRvKKAeJNNTBrwAMiGgS0N3ZwH7ARtpv2AWg1q/XXN99q2\nk7NPTMfx6QrSHvfhYeYlPE7/sYkWFRpWRYOTItRC1XaaAxi6ThiACHVRIbSHbD+9gHY6EoSy/ZUC\nvgV+QteDUfWkfkPFX89I8qdTjus2qLLofwADMfjjuWOUL+JTVMvDicA4dD0syfe0sHhzqATMRUUN\n9gLilZAQxMGDy60y8Ou36fBLGULaX9z5q5MTIbfVBeKIehErTui9Ouxt1Bn4BN/ynR3yD//kwyWU\naTsXN+dw+gI/6eiJmH1NV1RJoL7p01/ynzmzaBoPj8fel8nWvj1zVgJfik5hoGpqttcoyNAok7Ir\nMAj10jkfOA2MKDV19dZBQx2rJve5iM+pU/5FKZTBhSH5VhE8ux5hn0TfVlVq2INqkfx9Yg/KhNUT\n4E5vjtWCwm1B28JbY2JStvoTJOqojiHf9XwLg7yC6oG2kwj3SuRf/QjHkAbARA3zJPAVsNwET11n\nE6rVYHFgpwjZAHSd9Sjt5BSq+c9S4CdBrynoDVFaQ1ngEiL9EXmEaps6FKVpJPVzhWMwCxW/vQXw\ns6X05050jGp1Og2l7VQG9iPyTqLXW1i8ebihWnAuQdncPyGOcBBE282KJtmYE1CMz2f5cPCIA6E5\nk3OpiZ1wcAEWA7m4uqg+extNBWpTfNr0tKmGz5vblkIdZvGnczildPRpCQsH0wHMVqgumfqIEfUH\nLVqUs4qHx+ODQPn2zPkIOCo614HPi9Lzx4IM3Y7ylXwLFNNgrQb5UHvEd0vbfPlVv/5e1ZzTXIr0\nOnX1t6IUyeTMkDz+PNpfl7BO0bdWAS3zUY3UprzgmZVYB48gmclbaGKChCOZ4qXSVzhTYUykQ6RX\n3k/ylgTtDB63q9OuijtaRCtgvIb5MyrRbqoJmq5zE6iLCpk7IEITAF3nqa4zBGWOyoP6BW0KrBL0\nS+h6M6AKqjLtRUQ+onjx5ihVONEe2wliEILBd6iKtieAvRj8hEHiIa66fgWohdJ0tiDyTRwfiYXF\nm0hxVE+Z7Cjf4K/2JwXRdrCxbkZWXCrBp4vS4XfFkSdFk3GtpiNhV2MuFA/gF8CZQ5914fKMzbj4\nOlJhk9P72/J+uLAlZuYAZjuYVNDRzye8FPM9lAWhq6/v9Q4i2oVy5X4dBLTUdfrpSH6g4ztH+Mqb\nY8vK0jwwJUfHoYJKCmmwTFOdM0FZCcZL/Z6G15qqYzY1vRfpe+zO4RLkTu3IoBx7eXCrAhHvaypK\nMgoD8AW6Pi+gxVQhv147wAE8NF5RQLyJxDwUg24Y/GR3yg3MJ2DGK21RvVH1CyVblVwdfWCQ06+U\n/fY4mA/BHGOChwnHTeWXiEaEUiJcFGGaSEzJDBE0EZqLcF2EUyKcEyGf3cDciMxB5DYzZ87F2/s2\nvMCv8DwMfDEYi8Ed258+z71eJCMivyLyByJJrVZrYfFvwgkVwHEL5WuIZx4RtlY9Rb9TwWQKeUbK\n0xE4JdytUcQLkR2IzGNYsuoY3GB6gy2ev2wLmpVd9m5DzghSIvGlmMXB3GKr+9Zo82bnPCIctnWp\n9LXdwwmRgx8NGDDoIXnOh+L1JBKtk0mCibGFgBsbK/Vbu81nRUSFURsiJ5WcehFmnNTwDvkd7a6p\nfJ8xqLyMqxikfdGDM6GmqUznC+HuX7ZSHm9VHgTEd1SHoOx58cwr2W9mnx3gGxBT18gx/HtqfhkB\nkSuAHhpmlNN5lKneUgDQdQ6iTE7eKG2igO24qessRWkLW1AFwQ6I2Drn6fp5dL0dUJqcOUNZvtyF\nzp23UrVqdBjuS6EEw9eotXkD51CVYz0TvF7Xr6Oc1xMAP0SGWtqExRtETlSJmSqojXIBdhucIOX/\nYPSh4nRdn4spnm7cbObCvQKOhO+ON5OIL7AV0zzFzuoHiHy2nEKjIqsEfOGwpqEWkuMyhzQorqMf\nijcWMxuYC1Bay8qsWU8WEtG8nJ3D9qC6XjbUde4AVD18+Jt1/fplWjBiTK8gKqU5y5d5HDCnaRCv\nB70jjgO+z9Av3O1S/prnC9wMuZLRIeyL3z2eQO8cu3h4vQTm15rSVBQG+VGlwRtjcDMJz68Earwv\nuDry1jmpAdtb9BXAGyNKbTOnAadA+85+0LT009wHfjTwcdErRWv4r/TfZrPlnSXSsQ3fhNdH+RW+\nNdFOoMLeSmp2Nk5bKfB2qH4W/YBZum73CysUR9kGc6LUye66Hq1KqgbnZ8/OIkOGqoSHTydlyiHo\n+q1XfgrKJzEM5XMYhqrzlLBjWmVeT0c5ztui60df+b4WFn8vGiqyaBQqN+E7YkwyCFI8OWcmZmNO\nKW+OP3Ug7EsHwufFMcPEIJIO2EJkuB97GvjglKyhc75vg6d8nWVfnvOUAzrq6BviDzRTAv1R3/nv\ngfEimiOqNlpR4ENdV90wTch4K0WKMY4RES0euaWYFhD0Y+1wPHvo6OvizwtFvbO+0+xxh0Olc/gG\n+9wICu3Rp4T77q1/3Wf7lz5rCJYGRN4C2mkxVSO8UQm9ozCYm5SHaKrqtSs06A2hOcC5AGiBvOSe\n/2YLCACDAKAiBrZubGZ7oCporeIOrNSs0vEILSJw99Ld79nG9gRKYtBSNQBnLDDBREuBCqVrocVR\ny2waxBJU6eDPdD0m/lgER5TDexgqZLaCrhMUaxH58w+lfv3u1KwJDg6zURFHSXkjSBiD4qgvU06U\nOr4sRljGWrgGtEY5+n4ERqLr8d5sLCxeI2lQEX9ZUSalE1EnBCnoxvUxWZmvp0EigeGOhE7WeE7x\nS5GswFbCHi7j9w4NSJY11zshg1d/28+roGMkl4BPdPTY308VmdQNFaK+GjBACxShDMq5vRnopes8\nMZUvoI8JHWfXrv1w7Ecfzfmpdeb0gIuO3j7BJdXsk/Hq7swXwzzvhZW5F/z4dPLCjs163vJhwJDw\nSTye/DmRdYAyWlTYrnqRXQNcxaBbUh+kqTLKa2ngBxG+4JAJtPu8mXv+SxHbjmawEYP37U4XVnbC\n+DSv0bxzhh4ZYn6hDFJicB+DVLax7cCMcCf4BxOOmpBg+V4R3EX4SYTzCXWjEyGrzW/xTMRWxyU2\n48iQ4Xf8/KZG9aSwvem8OgZVbaU8DmPwXqLJdso3sR6RI4gUTvAaC4t/nrqoDo+jsSuwJ0jOXaxZ\n/CctgsNxCQ7HZaLJC/xvEOUDvML6n6cw0jeYae8HTS609VtBggTpqNp12mM6gPkRmJfBXAtmfjUN\nDiJ8ZWsq1hjABE8TBppw24RpFSdN+hyRwxtdpY4gfyZWo0mqDSi0Oc2Cpz0cu4TvcWh3ZRtL7lB/\n7l+4e4e3wvlTE4JMyBtrkMEQDHa9TIFPE3xNeGgqF8IjiAwD04W3qlhfFMpha1eDxHQC8xGYKeKM\no02VNo6+vXzDW1RrYd95ab5Nk4ga3xjMiNycXWb7DysSd54oRPhIhCAROsftRmdzYk8RIVyEbSLY\nC4CoULV1LF6cGZHJ/y+CwkDDoAmq+qQ/BiUTWbiGSHtEghDph9Xm1OL1kQxVxfQyKscBAEEy7mDT\n9HN0exyG+6MInBebSrN4MSKFELnO6sn+jPCOTDum/Xp/TX4V5KAgCfR6MSuCeQDMg2BWiZmG1CJs\nEGGvCNlMcDWhuwmBJiw2ITciqRG5WfxbqSxIgCBVE1xSlcHVxWdFaP/0ba63Jm/QVlY/ctQ2/oFX\nikjf8pV7mXDRhOaxBhm8j6oA/VJ7ggk1TNXG2BWcQiEyQlW8fjsFxMcYLIlzyS4wqyc0uGyLsvur\nNq4a48gyqITqvmS3wZu1wQxvxIr9kXDKJPHOcCLkEeGoCEtF4vekFuE9ER6L8EiEz0SiAwOcUb23\nZwEaIhnsBMV4RF4YqZAoqrrjp6jmJksxyJnI4rMi4o/IPkTyJniNhcXfRwngDOplyRtAkFSC/7gT\nGI+ekeJuBM7bzQSCThJFpBjbtgWx7JubDPcK7Vhz2BhB/hJklBA3SMPMA+YqW6OxFkqLiJqGKiIE\niDD69Ne4mvCxCZdtFVaL2d1vDiITBFkoyHckgFQc+rF4rYlYUbvtak+cwpez4Kkr/kdw9gpl4KAz\nJqw24+Y0GORDdaYsk+TPHvWpoK+pglMygNcNMB/HnHo53vQoJoifCwHKoZNgud/kT5NPPJf+XOmJ\n2SZG1S7ahaq+aheCqm0Eaq2icfFR9PWKwGFyYjfXdc6hEuTuAodtzmr785tRCXYBKN/ELpsfIwwV\nNVUYGIau/4Wuf277twtwGtV2NE0SnkFsDMIwmI7K1TgO7EfVs489l8qbqIH6gu5G5AurQqzFP4Aj\nysa/EZVI+rEgkYIM8eLExdK0bZmf4ddcuP+RI2FVNFWW4sWIvItp7uSvNd4up6aErxw9d0FLvwof\nAS109H46UT43MxWY36GykfcD+UBbBFqkCI4iGMBiIuhQRWdXvrEcRJmb22hQR1MVlUGkMlBtZSMO\no5JU+8ZbUtmR/fij6FwaLZ+wfOOGkjWoTzuyn35Gk3x0/+RE9/v3DqOCR3pHDzLwQvk/+mGw/2Uf\nLipv5DCQCjzv8jw/zX+QuBpEnOZBAOaH6s0gAQw0n94+z7qW7drR7thXGMxJ4FY1NSJC11D/yV1S\nxHN6x0WEZjaTU5cETE4eNi3jkgi3RRgqghsqoeUsxHFAiWRCZIpNoxiLSGpeFYPUGEzG4DYGg0io\nV7ZILkR+s8WKZ3/le1lYPJ/MqPj8nUBWQdwE6bWP+bfvUfTPCBwDTWhvJlYyPzFEWrPNP4wZzR7m\n+6zo3q3a1hOCLBfEzl9huoL5FZhBYH4PZurYU5BBBBHB/+471DNhpwknTWhgxnXuirggcqrg99JW\nkBuClCUOUmLcd+KzIkI6N/ziBPk2e5LC9GbPcfB9Sva8vZ22bLkf7Op601S9IBTKTLwSg2kv9fnt\nsJmr8gNVIe9eMK/FnHo53vy3RYNnKPtlfrujCZbcsF1vZgvKtudS2kv2G/LPwAe2cDI7ND8ThyZN\nWOl4goJz1lE3UX8EgK6zDFVl9VNgkQjJ7c49QXW6mgM8Q1WQPWrTJmqi3j4a200WgK53Q/lAPIEz\niIxA5MUOuvifOQiDz1GF/QoA520mqBjfgyoZXhnV9OgAIh1e0CTJwuJlaYaKzd/SjW7VBanmzP0L\n+RnRpTRtHFPwx0wHInJpMDvRsNW4qI36Z8yIuZwa9qjTbJ/9P/40MZej6TgBaKaj37V1nGyCypGq\nqH607qAFxUzDe8ChlAc4VrkqD1Me5UfUd7WIBr/EjWZEhcVf/L47dYB5Onp0lVVBNCk8eSl/ZehC\nu5ktSk49WnYEBauGM+P2AxrlgOAvfSaOSd9hwwZHj2fPOmiqPUAUvVBC9POXfLYAmJASFQ12DvCF\nFA95i7KoISEpqOzsdq32TA3MO6r8bnyKtC1SO1O3TBGrPVbHvEkbLMdIOGoJzA89efhsDfWf5Odk\nlhct0BblNEOEMyIUSuB8Y5umMVaEayLMKF6cykAQSsAkNGlWRKYjctuW9BbPCZ9kDEqiOlCdwqB+\nvIgn5eQ7isja/8kXYmGhSI7abM854FBKkEbb8Tt9mdYXI3C8a8I0kxdnB8dDpBQil/HfEuY1ouL9\nuanmHhbkiGDvTzNLg/kbmEfBrBZ/CpxEGLZnMYFPMrDehFsmfGlCvGoMdoNyIHJ7al7pJMhZQWIq\nLCCOku/HbZJjZpgMrFL9KWlmbWDGE41p4ZD5Cbj3+6R3b6fUq1c/XVe27OxY8yp/6A0MXrjHJIYJ\n1UxlNgfoDDVXgPlHzOmX483XIBTHiJ1RbfIcLeJYtmObgt2CQ/fn3t/V7vBM4pTZsJtvyWM8u33G\ndKemLDuunFuJY6vZ9AmqkquI0CbO+ZWo2kzNUfb/Z+PHs7hfP6YDq1C+g7iTXkHXP0XVmsqMKjM+\nCEla28NYGPwOVEXlbIwGBMPuWal+E6VR/os/iGrBaGHx8pRE2cPNucz93J+tU9LiN74CDbyzMu+s\nAxEVNeikkaTsYIWIGyJjgM1EPEv7zsppT5cNGfAs6+2sO4CyOvpZMDPbMqDXoKozlwDNP/Y0pHd6\ngOT5llZlW+Dq/hfHgDwafKsl9tattOofMl/lh3xnGQK0i+rxIIgrOS7+jlN4OTpOK1N++KG6xxjR\nrA1pH5uMM+H2JHg6KndAwI+p79+PqLdv32fR8xqkR+VZtMHgaoL3ThpR/geAVOD7mP9Bg/ivCIiE\nHNXPNTOlv5d+26lMpz61O7oF8LUlniWAwwwTbcQiWnpWY8s+MBMOIbVD15kH6EBfEWba13LSdY6g\nTD466u2p1Xvv0XDePP5Kk4bNJPZGpeuX0PX2KKd6XpSg6INIopFWCaL6UKxHZYWqL5KqGpvDdp9Q\ndH0A0AgYh8jPiHgnPqGFRSwcUC8gG0pQYqYgGQvzcMa7NPHOx+hHjoS0cVAO35MvNatIWeAIZmQF\nx5AnLp+M3BE2blqnENdw13Y6ek+dKs5gfoNybF8C8oA2G7RYJqvdK6iTeRFn3v2QYuk3IJpJEQ36\naXD/BStoDGSe047cwBIdfQ+AeK5NTuarp0kdlIvOUwtX6n+07kkGte9GudtB9EsF15fC0wEmlNlT\nsGDrcAeHURq2ygcGztiqQ2Pg91LPIz5RJTYAfCFNMJaAeEkBAdxLdm/s4eyHs2903qg2YpV9PAtV\nRjhBbpFuaHIeLQoijVcabmwCU3/RwnSdE7Z1eAD7RGLKdus6N1AC4gmqDHC9zJlZO3cuqT/8kP2Z\nMydSZ0kNPo+utyKmVs0FRD4npnFR0lDlxWeitJZTwAEMxmOQ0nafPagwwyfAMUSqvNT8Fm8j6YFN\nrrg2n8nMPd/zZa8SfJKyGD00V+6O01S56y0vNaOIOyLjgNVEPPVLE/i0xJRPb0c22VHliFOkU1Gd\nKpvAbI0Km80JFANtMGiP7ac50wunP1uyqngX1mZaxUnHEMo6mLTXVJThi9bgBUwaMJwFjpGUxtYD\nWrxXp8Hz8QXynEvOF5NyV+56ps45vujdl4aPDtI2PZz/E0I+NsH7ZsqUS9e/+27EuSxZfrCbeRSq\n0djwl3omCWMvIFJB2hAsAcEVwCt6U1PYBISZoKM10Cdw5yP3R0/359rfy+7wHKB5glE+No5QvHU6\nbhxNxw0XiFwKZoMXLU7XeQy0RBXb2i1CA7tzIaheuktRkR2/OjtTuk4dPAYP5srq1Ty/S5yun7KV\nGa+NMhudR6TTSxfmMwhGNWovhHKKn8XgCwxc0PXH6HpnoBOw0BZV5frc+SzeVupqaEerU91rI8uy\nv8/PKcrykVNyLmzSIK8Gs5LsgI5CpBxKI8hMyI3R5X+L7Dqzo6ZlD0w7xiXCpapOlRyocNUuQBPQ\nWoIWz0zzMDeNMi/nbqrdVHuWmiZudyin2ZXzSALDfG8j1f3pDnTQ0Z9IqmXZcQo/T9l9z/hiUq4q\nH92sc5UWQ4bwWZgfXbxUz6/Qhjbj/4wRLVteDXNyWo2uK03FoAlKK/k4wRI5L4GpcknSo4QkgC+k\nD+GtDnONwmAfBnEqpZrXwEw4SQzI0SnHska1Gv0VZ55fMRIsjxHNemq71GPtnTycOQfmDdubS5IQ\noYwIV0QYLWIXRaTONbQ5rxvXqoVr27acXr+ep9u20V8E5yTeoDQifohcRqTtK2dJGxTEYAMGFzBo\nHO3IVpmjq21O7HgOeIu3FlcXXH7wxPP+RL69/yettkSiBZqwwFQ+s5dHaQ0TEAlEpHGyhVN6dWuw\nKXJ1sl8f+Tn6lQMzK5hLbN/zlvaJbvaYUOhZCvY+TUv4pbasODLxJUNo1VpKIHJzg5ssEuQHAEm3\nqLCkWPVEWrU/JYKHCc0CqXG3I2cfajR/CK5nsPWuMKFTBBzR/P2PI6IsDwZ5bRGGLzRXJwUTqpix\n+3IfhM1DwFwYc8l/n8QExM8YdIhz6SqVE5EwHv08ymXsnjFckFx28zTAIH7J4DicJ2fBqmwNTcON\nzWBeBTPJYWkipBJhs60ER9o454rbIpv6eXrilTEjJ+fO5awIRxKq+/Scm1REZCcipxFp+soJcAY1\nMPgDg9+iszpjl+qwkuvecnzxzZ+SlFfLUvbpHnrtiMD5pAl7TF4+CzgakbKInEVkCSKpig6Z9P1P\nubaYMzItOdWH0xnBHGaLVBwCZoIavwkZI2FWuCuPLnzGw11r7Gu2vdRaHBA50O5jmSDIZUE8JcOC\ncpL8lxD55KPfRXA1oc5dit3twanHGl0egesh4CJQ0YQiJgS16tevMSIXEXHAIBkGJzD49EW3Tyom\n9DaJ1YL0MhwfAObMmEtejr/zix2VEHMSpcb1sB33Qdkfz6EqI9qHa/YDzqNUpJfrwKaSzeKWi0iw\nw1wUT1yf7Hvg8SDkQM4DXewOrweyY1DweTfLzcWTc2nbKx03yjsTugHoCqaRmEnLHl3nNsok9Bvw\nu0hMaKuucxiVmd1k3Tq+9/Kibtu2uG3ezB7AT4QRtgS7F91kFyqv4QtU1uohROq+dG6DwRZUZMQs\nYBUGi9ihZ0HXZ9vW2QzYjEiml5rX4o1HEK061SeGEnq8E3rYDs7sfZcJWR0I+wYor/EKWcAxEUpr\ngAHo+oetfjyzyJhUuNtVn0uLPgtoNnwM+fYBOYB3QBsKWrD9FCYkN2GYCcdv1KTi3qWcu/YhhSt+\nwNpX/KjtvB5gfjyfJsAnZLhenode22k7dx8tFpetovPuY7LNH8t85x9Yismsv+DZ98CtmyqiaCnQ\na8F779UA5qDrkaguk4d4mX71L8Y+ggmUiSmMf2keRDpiaqgom7ZKZhsLfG073gcVZgkqgesoqkZR\nNuACCQuwxDSIxhj8EufSaqouU+Jk7J5xdSu9VVwz0wgMJjxvnG0h2jUybkhL4B0wB4N5RKXwJ6zq\nJoQIdUW4KcLn9tnXIiQTYaUIuypWpBJwq3x56tmOnbYXKkm4iYZII0ROIrL7lR3NBp4YDEU1LxqB\nQXJUF62BiNxEpMkrzWvxxjGTmdUqUOFmbtKGnCaTX6SqbNr/ufkDL0KkpO13dCUiaVYlW+UxsuiC\ny/MzbjX1WgvGg7mb/2PvzON8Kt///zwzZuyyK0uRhCwtKG3MjT5ZShtCq1ColBaplIP2hSypUAip\n7Ps6LkJos0Yqsu/7zpi5f39cZ8x73svM+z2L6vvr9Xi8H8xZ7nOf9/uc+76v63pdrwv7E9igVeMs\n5LDwhIVdpwszdeloNoswQISMx8tECiOy++viMl6QwVJyVAvJPzlBujacJkKUhZqnKbrfZcXBHPQ/\nCbHbgJKo3M89FoZZGI5IHk8VoTQuj3o5SJExD9OBhbU+OlGxQAIkvgT2vZRD/rmYBDRArYNkt8rF\npARUXkYnjGTMQleo/gg1QVTFPd9W8qEFPWXXkH74mO4xjSq2r3hWkJRyoS7lPd9gug+WhaKbKLs7\nFyf3gO3gCQWOSOua/hChnFe+cLRIykPjSQ2/JcLGxo15HNgFXC5CMxF2itBPJA2mU+CFohF50DNz\n5yCSMd+nS2nPpbcTl3a4RHuxjz8Q+RyR8Pv0H/5VEOTKPvSJL80lCW9RZEOiKpsOtzooZrBRiUWk\nt7fIaIWIMz7v+Gqji00+/qqZnZS/1qpZYHeicvwBiy+riU+NPVkMWf8CrhfLC+lejqBvAxu8IpME\n2S7Fv+4sBSYlyOtxX4ngWKiUQO7d77BsRwyjTkPMXrSGfByw4SS0trDBQj5EHkJkhjdO7UvPQxEp\nLMRaOGU57124BNjteTV6phwWGS6U77gsOrMtRyeH5KSYPaRMFiVJTTXbjopYhYs/gbIep9iDcxjV\nmK8c4hwSciTEby6+OWlT8U0pBT5cNqL0g3QTxBzYX47NjyznhiSHpJ5AX3Ti+xrVYE8XxvAXcDNw\nDlgqouqrxpBkDK8Ab774Ir2bNWMMMN0Y4lFabyFgtQjp0m29CyVizCigEpqQNxmRcYiE/H6CwmU7\nLo8ATdEiRCtYaAqQsnpZgUhI195/+PdBkGLxxA8cx7ifZ/DSjb+wa8fLHNgfBU0deNTR9ywDDUt1\n1BV8DXANxoyZ2ORwuxibZ8Xo1rG53txR/cixH6uvQgX1hoGTiuljNY9nLtAnIR+vLYjnj91NuB+o\nY4y/ynPEfbsm9gzNu71DFfIdnU9CzId0e2coZsEDcYbSlqjZnzLlSA/2FU2gzUlIaICOQ10rw7Dc\n8BfrScEAACAASURBVBHQylEKa1vOHvoKGAu8gBth/kf6qARs8SmgVBTYj1p0/2gWUz7U13a39/ch\nv/0HvX8HoFTQZAxFk7T8YQHX5xN3fo/LRlz/OIQdBdYveJ0aRZ8rOq9T7U47Um10ud/zv4cFC/2m\n0XgeJO0DWxfsRLAzwIZtcns1JDp5LqfGfvvqi7D30UeZBczHK4Tuuai2iTDIV/spzAvm8ZLs9iHy\nBVqBKzKouNi93nc/BZcKiDTzVoOvIhI5Y+Q//GMgSB5BXpnClAO3UX7TNDh8FnZaaBUgYBdRw5ID\nrUWyz2PbOYLkmZpz6uiRRSecu3zgzCSq7/sObIVgp1soaeELC3ssPLlsFOVF+EmEsRG/B8H75yCy\n+L2aMk1yzF4vxb5JkD7XvONdu6iF9SMY/WMeFidA7BE4z6CsDuw6Dkus6jWpEOb8+XvpFTuKoKKg\nmYdVa2WszyYDrIQHl8Ods9Cx8h9nQcSgtVFHoi4mUKshuQDGJUByXeYdpKbDlfa2BYPr81ngsz1Y\noDqk9HcyDuY7+PnyCssLC+Jr9k0GrsMNm6L3UhNmlOjOGyPQoNRr6OQ3E2xYD6wxWGMYhE6Mg0V4\nPbl+hGc1xD38MBWffZaSjsOngGMM01FrIiewRoQGYfYXjDmJMe8CFVD31Qq0JkX4EuOakT0BjSEt\nApay0NzI7pkGqA9Ihiae//C3QpAoQR4BflvFkvrruCt6AhtL1oeBMXCFA2OCCNiF2bhUQHN+bgNq\nYsxwMVQ8kSPh1+WVt7d8fFCeqE0LKndmdbE64Pzhe6qFPFZrxq9BtcuuXCD8eaoUS4CvgBbGpNSS\nzwQeqLiegjV/SqpHkYNX8Hqv3ua5ld2s6krNnMabe5+m2jUnue0EnH0QJZwAvNAa1ubVxNLkOGYb\njq5dQdLZa/FXbc46VEO/k2QUATbCyNUwxSudmn2ojLJubkdNmXDgAF+iLhdfvEdKrKEbgUHqWKAc\nShELtkIJ/VC69MXlRb/DbwT7c/ATzp93UUz3mDPj8o1722/7Z7i8nOa5qTtW3cK+6qx8ES1dWArs\np2CXg41IhVWES0RYLMJUkRSmlwgl5s3jx969OZAnD6/5ndNQhK0iDA5WvCiMi16MyABEDiDiIhL5\nSsylBC6DcdmDG9WJebO6IbIXkRYRt/Uf/hYIUl+QFfOJX/IRJaZugcQNSlvN3ESvdNEnUcHJzsn0\n6IksbjMtKv5042Zdk5gx5zRjlwTQYy1EWS3as83CNxbKeTG617x4XJ3AC2a4nwWi5sqOObHzDkqh\n8efkswoven3IaSH+ex6bV4yN56IoeBBSUesvzQFH96tVU9JrKwfxc/fwfvmDuOkkvWYCFqbZ1C7x\nDsBgsCN98rSyNEhdDuiP+tQWokJSX3v/3wj0w1fHPBC3AEnooL/C+zREaa7zCE5zfcW73m/oZBQM\naU0QHTzZCN/Dc4M9iRYjD4kCXQss61a9245UtWpdbsLlN/zVTtOAhecsLIomobunIFkA7AeqqGgj\nUqwUIVaE/qK1r6v4bM8zYwbTBw7k9OWX85jfORd5E8QWkZDfYXoXvhyRUYjs9l7kyFkgLtegirFr\nGVS/kxfAHkqkmlH/4YJBkMqCTBPkz+947NUVsPc3ODk1tes3g41LaY8YsRxRQsi3LMk1mB/njIqd\nk1j+udYJzJtzBJEAa99qLsGPFpZbT+1YhILe4mmxSCYC5EEQNU8+HF5u7n7JNSNJBpfv7PUh2sL4\nDcTFl2HHuRyU2Q++pY4hLwzsCEcsKUoJzBp7L1OHnMIl7GTajMDCFqsB8mR0B94COw5s85TDsg7f\noiZgsAzeGDRP4dusvGCYSGuCMLgEobXaNWDTTDJzejgd6zave1yQq33ac3D5HTd0LkWQzkVZWHiO\nqBfADgI7T4PVtgfYDWAjzhcQ4RGPlXGPz7ao0aMZPnIk5+6++3x8x/ec27xJImPWhDZyNSLT0azs\nhyKOJ+j3dw8uG+mZYxpTPh2PyG+IhJ/w9x+yHYIUF2SQIPuWMfLVjUSN2wvn3gd5SDXEMnkBae1Z\nkd3xMvtbsuX2ESw/9kaRcSfzvtXgMPFzDyKpi+5YuNzCOAtbPR97lDZHVW/R1D9shYEwUXCCVO99\nc/zZ+dFzrTx99+tePxwLg3dzxaIK7Dmdk+r70RKhvgvHQnnhzCp1pytcHCb138Lwx9JNvM0MLFxk\n4YRNHTLoCzwHdjrYO1IO/b+PtCaIS3DZF7jDjlKKXBpwKZXzlZynZuaY6e9m6o7LxyHOCtXBchb2\nHaRgdS9YPUrpefYFsBvBlo2kPQARannuo16SUteaN9/k0/HjSXzrLZoEOaeAaF2KzSIEaOFHcPE6\niHyPyGoylmyXC5duuOynT7UpzJ22H5Eu/JeB/bfCq+bWTZD9C5jb7xSFnjsORz+Dk9eRttxMeBeQ\nwoiMQbP5a+hGe9F9bJ08kcVJbar1Ws9HN2xh/rwDiJzPbbBQwMLbVnMruvvmVkhK1caHAi+YOYwq\nKbEf1Jp7cGaBGUlS7aPxPv3pdYxCK6qy/0g+GhxCg8GpFksN4dtmcNj6Tqjvl3+SudMS+erFi8lG\nWLjZKhPMFyOBR8DOJ6UORrZMEJsgoJDOtOy4UJhIa4JwcDmKi5+/374I9qP0Gs79cu6171zxjr+b\n6TK0VGdEbhYL7Sz80pYhBbwEn3e9PU+B3Qz2ijQbCAIRSojwnWdan5fefvBBhk+eTML48QRNVBOh\nkcd0+jiivInUjTiI3OW97AsQiVxGwaUkLsNxo3Yz8qk/mT9vJv8VJLrgEMQRpKUgmwWZsIe6LRJg\nxRrYW1uJHhE/m4EXkdsQ2eaRHnKDjcrJucee5I/jk1h07MbmcXPpV3MN8+P34SVuem6ctlZZUsN8\ncytEC/u8J8JfIqEk+TPRXSTX12Wnr/+iwqyk+XmmbhPUrWqhYwLRf9Rgz46CPHwMnAWQWsngZ6hU\nHJJewuf9c7mSIc2OMXvC9Kzuqz+85MAv/DbPAJqAXeqTWJgtLKYElEo6DM4PkpHkJ1w4uFiCM5lW\nkpLVHRKnYk+NWVR5UV7w0Txy2YIWJLoj1Hkh8DmwcyjtX0DzBZqC7QzOQLxCQmDDDfgDYAx70GTD\nLcByESUMjBpFm7ffZk5MDCPnzaNTkPNmoiyHvGjeRN0I7wWMsRgz2WtnFDDey6Hw/65DQxPrHoWk\npmz8+ADLH7iaw6vXIBI+8+o/ZAqC3AAsAboWYUmXOMzxgizs3wFKVIdJy/Q9+TPjF5DciPRDB6zH\nMOYZTFzFEpxe3o8VH9WP2vFru+fu+WHpzcdyUu294jhRD2LMAquyMD8CbdDcijbJuRUiFEUTZ68F\nanlyNFkGQXInFjyycGvJqEqltkUdd07mu99gzli4NwnnNcOWk3/Rr8gRRv+FqjefzyuwkGMeTC8E\nv70L4wC8xeTXlLl/P7GFBmZlX0PAn8EEqfMgslXu+yRa+Ww9XqHxjF7sAiHYBLEKuJr0dJIcJi28\naqGTRNL9fntGQOqqcOnBowC2B56wOJejAfquYO8DZzAaRIoHG5EiqjGcNYangPeB70S4E7DLlnFf\n586sO3aM3qJKsVF+5x02hkfRWrdfifCRSAZkEYw5hzHJ9SN+ApYg8gkiQcu7BoXLD2Bv5Myebqx+\nIYr1vSczbdhHZFR59j+kC0EuFWQ0MCGak5/Xpd5X1eg+RKBwEYj+HF6yWks947o9IslaQCWAqzFx\nP4Ltfx2H5g/jhyuK59kx6L7uJmr/pZcepvr7V+I47a0xv1sdWEegjMZbHX2uvCa5Dv37Z6CRp2OW\nZRAkL/mPfrfl2oPXncthd8eejhllMN9bqAN82oRf16xjepXDvLffktgQOOJ7fgK8PBAu3gS+1Snf\nIX/F/cQWyU2kdS8yhlATxAEyOUGEgxU+/2+ADsBB/PwXDGmbSS6v4fJ24A67E2zak5uLE9M9Zuug\nUoP83Uz5cDmMS/j5ASmdvd/CevWj2mvB7lXqLYBtBXZXegH0UBChtgjbRXjF03EqUbAgW8eP53cR\nvgqlQSNCYRHGiNbMzlzGs0gRRD7wqLE9I6bGuuTnjfwD6J3nLF888BfTvggpz/4fIocg+QTpLcgB\nQXqdokQjC78mwJza6ktfD5mUfVAJl2Q6c2tdiNmHIWlXZzYsjUf2fFjuw4dx+YOPanzM/Pk7i02c\n+LCFN7w4w6s2iIaTCA948YZsoUgLkl/yTVkxs0HP09d8NPf4vCjZI0hBC9Us7HmA+JEFmZYYRcxB\ngqgxWKgxEQ7HqodBxwuXJrhsZc6U9xDxp/hnObwA+kEbWIHyCFAQ7BafmGe2xCDu9Pv7MjRR5e9C\nehNEcy9xy/+0mWDTl/vtwQf333b/fsFPKsLlS1yejainyVeGMfZ8Poht7E0Knp/X3gt2D9g0k/lC\nQYSSIvwgwtci5AGq58zJvvHjmS+C+MYqgpzbwsva7i1CZAWGAhsri8hIVLu/IyKRsUt65arIu2XW\n807Jcwxp1jP9E/5DWkhOdBNkhyCjNvNALS9/YPNirQG9EqWuZ043S+RSLya1UBMibXWwi/Jx9ufx\nLI4X5Md7Gt3TEJcd9Kv1GvPnb3u0a9dPLWy3WisiwF3txRs+EGGjSEClyCyBIBdJ3qmrpWHXU2Vn\nfTnv26KyR5BWFi61sO0lPh2Unx8Tc5DzKATmWFjIbWFdGV25a8BcSTK76RldB5FNnkWVrbBQyqYk\nGyfDE+rD8RakJVIOjwxpuZhqoPKxO71/kz9FUEnsfyo2EDyZbyWq25I2HCbHV4s/h7rVfDECMsxl\nfhJobsGAMwPoCcwAWwScCWiyzXSwwcQJ04Qx7ET9twnAIhEOnTlD2+bNqXjkCJu9bUFjRsbwLepz\nvhaNaWT8ZTRmM8Y8BDRBK2StReSesBlPr5/ewEvbKpO/YlcOLH6FD67cxHuXRaYR9R8AEORmVPes\nYywH7o/DrLmM0TOBDZfB87dAL6tSNq1RnaAMXkhaoe6fWbSpdRcm7llgXl32xk9hSd7CJPzR/Lnm\nL028YeKXFLr+jZyV3ujwzuDBZ4e9914NoIUDDzp+agkiFEYDrNcA1xsT4DrJNAQpRJ4TSzFyxZjn\nt3e7cXyZWoUOse4WmswGZg3hySkD+F/7BOqfPMeZx1HXuj/eXghbt+l4+A0uUShz6FPqzEtC3Tor\ngpyX1QjmXiqCqjhYsjEG8aH3+QBNjvvQb9s/FX8Al+Pi789eRRiBauD7g/kOxuwotKOlkIqGKUBR\n3MgHUUd/rMdRZkYBcD4FJgKTweYCZxoa45iS4n4KH8ZwCp28xqAD/YGkJPrffTfVTp9mLFrmNOhg\nawy7UCtxADBfhJdEMlBxK6XBX9D8mWfQiXAxIuHf05PSh/JPluKiqsc5e2ANb5f4GDcLuPj/H8CL\nM4xBpV761eG27jfRbChw6x6tz5Bjq1qyd6E8/oy5HEQuQmQU0INzTiNM3CY2510LFBjNsldd1j3p\nwDvGNdP3F9j/9fVHq7xycamu77jDh+d76euvewM3OKkrn3nNUhWVxlkDNDSGAxnqX1pdR4qQ++Qy\nbp9dNvHZ/vdN29P+gUdGEFUg8a/OOTg5ZR71l3ahR9sY6p4+zdGeECj4Z1VCplljdbUPAs6iJQxi\n0brSDwGjMOZC5B1UI7BsahE4H6vJ9hgEXJiZMFyk/6W7bMb1p+rZymDDY2e4fN721ra7BLnJb/ub\nuBmfHC0MsVqXGi8v4hvv401EtqFnEgbVuw8HHqV1b3w8bVFtmlHx8Twiwm5Jp4aECGU9t9RiES7P\naB98GoxGhdi2ITIWkfDjCyIOkwa8wsBbT9Mr115PEDDj4nD/hyFIXkF6JscZDlDjCs+d9JdVBl1x\nIB5VMCiWuYvJzV7i5Cdcfqw62DlgV1/EmTqC9BVkoyDX4PJobHd2T6tS7JMqX3xxrvWrry7WxVGo\nZs+X283y/Ibz10CKSu7pf0jzjidkXlRDRO5/53o5FO/E97Ywdj0VJ+Xj2OGLufZENNEfE0Tqx0JB\nC1sXaKGsQ0AxXGqrtAxl0IJHBxC5NLvuw68/Iyy089scB3wHNgZsog85J1torv9GBGMy/Q5cAjac\nrOLJs66ZdYpAN9OXwANBrJNw8QLQyEIDT7b4EdQH6wXVnVnAg8BEsLeEaiQteJTWOlFRdJ0yhUPA\nVfXrUwxNfJosErrsojFsRldH41FLpK1IJgZllRcfjv4WK4DliPRFpEgY51rufvotqvS6kSruWWKL\nDoGoubhha4H9n4eXz9AKDTRXzM2O6+Mwhwvz8zLUkq7i6Cr3Z2ApKl+TMYKJqq+6wHj2xb6AidvH\npnzzgVnD+KHRJL7vhf7ONY1rGty5gXe39ctz6qXn3215OF++kV81aHCrA0cDmyVKBBeV7mlkjE8m\nchZCkKLkOvU9TaeU5InP7jPR8QtvXkz/q1dxso5tWmA/RS65npXXFaV17kOsW5BIYmeCD6gDgalx\nyuIbj8sZdCHWAZdtqIt1NcZszY77CIJQLiYfiquT7ZbMv82C6I/Lc0FO/SGs1blLbud159jEPBO3\np2Iz6b6luKmluCOBhYbeys5j+9iiYH8H28HnqNs8S+LWjF7H06qZM2IECxyH3cDtXjb2LpH06+B6\ncgYrRZgiEsCQyGinSiAyCJV4fgGR9Eun6nkFiJ/9DcPb7MCNOojLe7hZIOn8L4Yg1wmyWJBfBLnF\nql7RGgtzrA5eDtAJVU+ONIfH72JSDq1EOIcrj7by1AC+BVtakBsE2SZIr76X9Y2u3ZZPZ5Xn6JFc\nsVsuGTduJfPnDw0VhxIhn2iFxCVZ9owFuw5SVHLN+F3uf+K4zItqApB/srjjCsvxzTzwySlyrivI\nyZ+v4OmE3OReRQh5EQstLGwYqfpxO4FqaOGswT43NQmRx4Kdn9WwWkHvpA0kGjwBDNHgtN2X+pTI\nkJYFMcDnUwoV7kv+u3+kF7rA+I1ACwLCDVS7nLKOnbeo8qJoNFjvi4hzInzhaMKPAF5mtbMfaAy4\n6mICcOYCrYDxYCNPakPzHoDGl17Kmvfe43RUFKO9bbcCXUXokZZ1YAxr0Xrea4GVIj4CZBmFMXsw\nppPXh1uB9Yi0TDeQbcxRomJbctnDvan9TRJ5ytYG1uHS4v83t5OnmzQEDeQOr02LxnGYdugqthdw\nuwPbgOGooudNZEb5QAPRy9mQby6m7iF+z/8G8CQ4LYQFjYCpwFOxpc17hS/q8uPMUbStsi+mf+Fp\nM1buKlLkdxzniWC+eBHKogl7h4F6XhJolkOQYuQ8/T13TS5J+yEPmAZJ0xEp2fJrul50es9vZfiq\naVl2/lWIIVV3MPTAKU41QHO/UsHL6h4APPSQTrjrcKkM3Ah08W6qCFqHYVx23EsQXAHscgKJBslJ\ncrnIZPwhrQniZ5Sh8BMagEn++2fv809GKCZTuIFqcJg8/brpRwisKvcNcDsuhTLRv+eAO5XVBOD8\niabpfwnW46Q78UBLYBzYuIxcxBjOGcPTNWvyzpNPEps7N3ONYS+qtHs3MDCtgLSXlPeK17c+Inwu\nWVGMxZjfMOYuNGv2ReD7dAPZmsn9KTmLNqDWsIup/NrP4LwG/H/hdhIkRpDngF+BoznZWzkOE52L\nfavRweAqB8Y6qrD8PZADHbw2ZuyCkh+RESTSgw7XDaNDzSe92gxVhQXiTVJdHBJurRljcl1xkD3F\nT1JSyueuWmbynEsTo6NjgAcxJjGwaW5FXV7DgHbGcCZDfUzvFnRyWMI9Ey+h/ZBHTIOkyQBX/crA\neycmRd1y8umyVVg/22FJ3C66nTvFqTiCuOCsWmNDgU8dzfbuQkm+RN1ND+Bywju0BTATYwJcadmE\nYO4lCHAx/f+FcFxMpXHZHeTUm8EuD+sqLsWjXo86Nidqzrog+77F5Ymw2gkBC00sbEptHtqH0DoS\nPgl51qiZmDFLIhki1GvUiJNlyrASiBKVBV8gwjehEur8zs/vTRAbRYiYaZVGw1GoUuw2RL5BpFwY\n5xRAZCzxc3/m3dK90Bq/7+BmktP/D4Ug/xNkvSAzBalk4VoLy6xWLavuc+jtqEupM5mr9nY9In/y\n1qrxRCX9AnaBkjxAkNKCLBdk3EGurpHgEL+xIMfua8Ei3i6WC5GBiHyHSFA3jQjtRNgrGZWiD/cW\nkOISO+t3afn4MZkXdT6WGD1XavarNv/MhpiHjjZhav8CrDial/xncpCjXqi2PH2oX6yqWN8K/M7r\nxOPSPfVF5XtEAkQzswtW6cpvBNn1JfCol5i7MvUpkSEtC+IL0q7EdgNkT/m8LMAOIB9uQJLYaqAq\n2PRpnC57k5yk9avKriouBOgNjUI55BmGo7kki8A369sZCYwGJin9FcAR1JIYm9HANYAxzG/dmpp5\n8nBl/fosBU6g8h+xwLT0LANjOGYMbdFA+0QRemaJ1LIxSRgzEnUJrgV+QuR9RAqmcc5RoAVROYZz\n/cgOVP+wK+oGXYdLs/8rbidBygkyEfgE6Hozd94fh+mAuimHoLIUq9H3+FX0nW2GuoAjD0zqZN2V\n49HTebzGb7xS/WaSnH5o/s765PyKaE5Mr0u9TRexavYbdSl31VNMHH8VhtrfvgrUBu7AmJOpmyaH\nCP1Ri/EWY5id0e8l3dtAihF7ZhH3TriYdkM7mgZJ33idcJpOOTe6wpYDUSMSKn05lxqP5qBhrhxE\nPXOOc/ODtWXhUlQC5BFHc42e5VrWEEVOfN9dkStQl8+c7LqvIKhKcAsiS3SYIO0Joi/wNMr+mQoM\nRh/Kqd62jmhOxD8PKtr3OwFxCOcYsBstsZk+HGZMqzFtGwTUW5gNVMUl4toOfugC3OsJlSXjdWA7\n8EUKPc2JR4u2TMhInkQyHnqIdeXLc/Uvv1B96lR+QCeH5sBmIF4kfQqkMUxEEyZro0l4mVf+1IZP\nYkxv9KEvBGxAq48FZ4ypy2kAcCeFrutBXdlLdJ5H0dKKMwNpzv8eeHWge+G5eHOyt0ocJlcMx9eh\nVNEqDnzuaEGuAijrrAm6oAtSDyWci0oJYCazS7ThrlsS+CP/HqAKOCPAsYI8AXbCpXz15a3c8fjx\nWFvm0ufY1TOOaWdy8Ch1pRPqYmnk72IRoRAwEw2e32AMv2eoj+HcBlKUmLOLuGfixbQf8rRpkDQq\neV+lP463emiUU2HP8VWz3+GZBy/hf7lzYIcc4cinwdrycS195OhAXA6H+jSkDvAQLr7usweBrzEm\nIbvuLQjCcTGdDrI/bKQ1QaxBk6+qAW+iPOq5qElTHaVN+ido/JOQVqA6vDgEzPjxih8L4h+HUGrb\nRAJpsBHBS6DrCHxuVWkVH/preVJJmjhz0d9jMtjIpbY9zJjBH2fPEvfJJ1T+809+Qlfej6Mrn8Ui\n6YsxetnbjVBrZ6nnNsiaVbsxuzCmHVqQ6h5gNSIN0zh+OUokqMQt03tTa8Qd6LO6DJceuITHlPoH\nwKOtNsOjrQLXxGFG38j949GJr5UDjzkpSVAV0Yzp3Sj3fWfGLiz/Y3fOVbSvcRnvVHJIclqB0xac\nA4LECvJZFGderEn7vy5nSMPpFXiqwCtcu6MAE4BnqCutUMvyfxizL3XTVEDjDWuBOzyiRLZAkMLE\nnF1A0ymX8PjgF019OyJ533WffZbjzilRX+xz9h94LKlHrYrcnfsM+5fsZe/TaTTZHq2AqYSSaJ6l\nBufIyXO4/JVyYXHQCSJbKLrB4I0XpVA6sz+yTKgvnDyIM8AyNDj7LfpAZmpWukAIlgsB55Vdw8JP\nJ2NP5tt90e5KgvjLVYxBmUaZggNT0O/0TZ+tp9Bs1zYq6Hd++yzdxhSwNTN6zRMnWH76NJ2ef56L\njh9nGbqq645mhS4WSV+8zRiSjGEAOjA9BUzwZJmzBsasQjOyuwH9EZmJSPCavsYcQLPBp5Ln0qXU\nlZWofEh1YC1u9vq7swKCVEYXYD2AR+MwD8ZhkqUsFgPXOqmtgzvQv/ugi4yzkV9UYpmz4H3GlPmW\nh27IzZ/5x4BzNTgLvT5dDIkL87HB3MS9BfOxcWTRrrS84wE+Aj7DpQd1pSHqSWiEMVtSN4/x+tjX\nGLoYw7mI+xjurSAFyZEgNJ5Rik6DXjf17WDf/XfEb5t73fw8sU8dbHa0Kh1zHWD1zt3sbohaYQGw\nqjn3JupaOgfkJ4rHqcVS1MXsixvRY37iwuEq4HfP7eWP/4LU6cKlJW4wupltCnZG2FdzGfmgeXCZ\nIJ38tkfjsguXK8NuKwQsFLGwy+If/LXVU6u/nt/e1BP4y6wY2CclSrA0Pp59ImoNeQqau0XSjD+l\nggg5RXjfK0qU8cp1oS8Qi1ag2+cFQUNPRCJxiOxE5FVEonBpjMtGXMZmgUswyyFIfkHeF2SfIM8I\nEmPhRgurLcyyBGS0R5Hihsw4WUDkcvr/vIYyJw6TI3Ex2FSLKWHe9QuZuX8jbY8kETXcQglcquKy\nA5e2Xhs3eQquARpiIrT3hCBDBn+zCoJcJDnm/CxNnj8g8c7L/vv/Klai/QfV5ySVijm6vQLv7ihE\noWM5yRnSnWq1bHC81cWJ4nIGUZETQdmLKnf/asD2bISFx2xwiyUGnayiPNLLqNSn/d9HuBPEtbjB\n/HP2MrDhm+IurUo8U+IHQQJ13V0+wqVH2G2lAS8J51eLv6qqbaz9tX6p+/YesLvBhmsNBUNOYGnZ\nsvQTLWfaXQRHhDs9pomJpDHROtjbRSt/ZU4dNvgFiiIywJsouiAS/BoiJRFZjMg0RArhkhuXnmhl\nwGczkQmfZfDcSa0F2S7IcEFKWChk4VMLO6zKxPu77Qqgrs3vgfDrb/jjm+9bc9+2E+Q8dwwnqQ1+\ndVJ+YtBLi5hydjf1/rJKiQaXGrjsxvWsZpGqiOzxd/+JEC1CHxE2iGR+8ZQeBMkv0XOXy/+67ZN4\np7f/fgt1+9RzT9XJuTOhOJP/zE/+hLKUTVNe30JHC8st3nPyPEUoRAI30TmwAxKDyH5EymbRiInq\nngAAIABJREFULYUFC30tvBRk18WcV3e1j4Mdkvq0yBCJ1Ma/TTDtd+AK3ACe/1a0NkO4tR3m7Cm4\np+LZ6LPXC+K/elA3U9awZsai5V27pd7szEBN+Clg8/psn4i6dmaBDe56SR9ngGabN9O8Qwe6om6t\nEWg8ogXwTSQJcsYwF43vVERjE+FXmwvvAvsx5mk0qH87Gp8IzGo3ZieaY/I78DN1pbI3kd+MuqJ+\nwM1kHYxMQJCqaLLkC0CLOEybOEwcmuOQhAahv3FSv9BXoq7evei97Yr8wpKLF9dP4elrRyDFFnEm\nujw2aliyFMNhquZbzRtLE7jorUq8+2EJ5ldwYDEuN6NB5idwGeMNhjOBZzFmVkrzFAAmo6692tkZ\njAav2E/0uVnU+a4cXd8bSZRNVYbAwpVbi5Qcu2z5QzlXJhw6eJZHy5WnfPvNbA6pDGGhHNAbeNRz\nLcEmxpHIYb5nQJBTGgB/YMzmrLuzsBCKwZSlQn3hTBA3AetQnz7oADAoMxe9INDklX0oTc0HjiWS\nOITLARzWLqq8aC2BkgU/oCZduEHvkPAGg05AZ6v+RV/0QeVORqQI+wE449BBZg7Y8JhZgdgBtNyw\ngX4dOvAwGvyag9InGwOfRiKg5lX8uhtlvC32XA1ZSzs1Zh0aJH8e6OvFJyr7HZOAMc+hq6zZiLTF\nZQP6QvcBJuMyMAgVOtsgSAFB+gDz0XherTjMDjTTuTtwnwOdHAICuQ3ROEQ/VEYh8sSyV369gder\n7GTI5fWJsi05mKshOOfrCBzj8pZ/0WbvGYqXK824asVY8rID53CpB0xCWTuTESmOPh/vYsyY8/cm\nXOr1cTuqqXQo4j5GAEHyEJU4nZu+L8+rb04gOul5Y1ImVKuB2unPFJvC7NMFEvMnNS58BeUHr2Tl\n8FBtWh0PvwDedZQoAC4tWE1NTuMSfAV+PxqfvdAIxWBKDlBDNrOYkvER+oAmz0orIQM1jf8eZEWg\nGmDGxOsnHsOf7qp02q/JgmA1gCeR0ANVffWdCCwqm1CSgGJNzmjvnHmkVI6KFN8Bb23YwFePPMLD\naLbo9yjLqh7wpghpsT1SwRisMXyKFlp5Ehjn6fxnHZTmOh19UeYC3yHSD/Gz8owZiyY3PYfI59SV\nXLiMQifhHGjuRMvszJ3wE9W7CKgShxkch3kWVSVYDNRwlO3jCwddAAxDa2x8FvnVrUOjnZ8w6Iql\nHIn5mSSnBLvzjD+/Fy47ypXz1tJ7xFkKzz5OhTJlmKjJoS5N0Oe7GS6zEcmH5u98gzHnay178ark\nzOiOxgQNnGYZBMlJVOJEav14Ja/3mkt0Uie/ySEnMMEt/ebm+b9dVayYbXy6KAVX/MRPAfXa/dAR\nlafoA2gBoEN8zF8kcZbhgR2RnKha7tgsurWwYFWRNxc6GfsjOQcCLpAFAeqW8UW2sRGyGGkVD4pk\n1T9jfen15YEGgviXRhwDtMTNMmXcT9CBoUPqzc4ZlPbZBmxzv32fA++hNa4zGojtD6zbupVPjOFF\nVHdmCTqg1QE6i/BaJNaAMaxHEyq3Ais8iYWshTFnMaYPOuDnBH5DK9pF+xzzm9ePvGh9istwOYRL\nBzSx7BVgFi5ZXu7UYyfNQy2Z5gbTNg5zKWp9NgJqO/C2E8hCyo1mxLb2+h55fkPlI5W44tg21hVo\nQ519D7K60G0cjT0OYCHWQrcD1F69go9qn6XwszfQ5h6Dx+N3aYaupu/EZSFaIXAsurg6v0gR4V5U\nF6qTMfT1HaizA4LE4CR9S7U1Ven92lJyJLYxJoWJ5MVtBv/CtSc+3P1CvdIF2p90kg6fjiX2FtLw\nwXuspZ5AGwcSvQXDEObwG0kMh/NyGr64HViDMTuC7MtOVAPWOMHv54K7mLaivlvQAOoLJJtf/3xk\nlQWxMikqKd+m4pt+Rfn5KXBZi9Z/TbPWQrjwkp/aoWn0foO9swe1YgYFMpicj9HJJZ6UEoORwKK8\n76uBDsbwsff3VDTP4BZ0MH0/wknijDF0Qd1nYz2RwKwPEhuzD2M6oL/P/cAviNT12X8ctfRGobLj\ntwGqzqv3Nw9Yjks33MxniHu1oN9FrbPJQM04zCqr8aQZqGV+mwPBapSUQot0xaDfe4TS0Taacsfe\nYlvutVQ9uo8nNl3MlNJfnd+ryq8rNtHu4TW8cSaJ3I3q0uiT86e7tEYXCLfjstzj+Q9BF4YdMMZ6\nZIYXUbfX7cYwObI+Rg5BosF+yZW/X8e7L/1KzLnWQaizL+6l2DW3xCyreW2OD5wDR+NjqlO95o/8\nGJIG7E0qnwEfOpo/BfAYCZRiPRUI7VJvyT/LvQSpXUzZKtaXjI6om6AU6q++1vv734BQE8Q6oHyK\nnEU6UFfSzK9v/no7geJ9oFZEpqQ3fOFo/wYAgwKZLM4K9DeZBPZiv30foMlr81RGPGKcRCeBXkAt\nY5iGrpL6oVWyDOquGSQSmcVkDNPRDOw6aOW6MhnoXzgXWoX2803gS0/f6VJvn8WYvuiLPQKRbog4\nuCTg8j6aiVwX+AU3YxRSz510D/oblgKqG0z/OEw99KUuDlR14MsQK8DaqHUxEZ3QApRF04atQqGz\nG8ib+ALdfuvBM39cxyvVD4P65S18kUTMmB/5YvdWWidAdC2DSbFOXB4F3gca4JKs4/Mmaom3xJhz\nnsTKZ2h2/43G8EtkfYwcWt3RDuGyLTfTt8t2cp69x1/kz0LTs8R0Lsfm49WjphRace59pwH17xvP\n+C2h2vXwEFCC5EqZLmWBdxjJGPQ32xBwhmpNNUaz2C800pogLrgFcSU6+BVHfV8PENxt809EiGxq\n5zSqchkJ+2fGosqLigJ3CAHyD2NQP23mtYlS8A6aTd0scJczDjX/J4D1F9rrjQY954ANrWcUGn+g\ngdCxQBHv5b8Rze5+A50wrgKGR2oJeBnY/0NX0D+JBJ1sMw+dCL4FKqPW7gpEepwXkDNmASplfjcw\nDhEtIqXZsY3R+xyPyye4hP0dClIOtbjeBB42muyWYNVVNBgNQD/khC7a8zCaONkB1fmJwF1jY4k9\n15vc536i5dZ8vLeqFt2rv4kx1moQqw3w6ykuObuIGZtPUu4YODcbfJLbXB5Hn596uPyqNyVPofGP\nOzDmhAgF0d+vJHCrMUH94FkKryZLfy7e3YCPnzxE7tONjEnt8rFQPQlnaEU2LC+Qe0P59YlPRN+Z\n2OTN0YyemlbbVieG94G2DiR4ruLhwPts5S5CWw+NgR8xJltkytNBsDKjyfAPUmf7BDEwzG3/RGwH\nChK8uEx4tSFSMPd07OmaJ2NPbkFXwSnQgWUjZF2SmKNMlfZAP0vQAG8v1KL7NDWP3bGoT30RMANs\nRhROJ6Aroy+BKGPYhro6Knjb7kMXDF9Hmu9gDInG8A5Kqf1QhEEi2SSHofpOLmq5XAWsQ6QZIg7G\nbEethX2oy0lZUC4Wl2+AKqj19isuzdMKYguSU5BX0eD+ElQiY6HVhdVa9IWt6tUCCYZoVM6hB5qZ\nnuagFgh7AzFJa6l6tDOf/DKbFtsr0LjuKgCPEbcQ6PQXj3Razle3WXIsAu41mJQ6Ai5PooJ/xmN7\ngUgzlHbdEGP2ezIsi9GF113GcCyyfkYOb3J4lyL7m/LZE2fIe/I2f7kOq8/ilPsYP2MrharEnmle\n4roSTdaPsaO7B281FQYAXzict4I6Azl4i3koAzLUb/G3sJc88koV0p4gLogFcSNKIyyG1i943vu4\n6Zzniy9Q+WFfc8hFB+4V3qeRz76X0RXsb/j7+jMClySvvWAJO+HXhtC2jgC/TKk5ZQ2h3UxZwmZK\nhlfYfQK6wvHfm4TqYV2H5kP47rOoEOBvaPnSjAzA3dAA9csAxnAEFYQ7hK4g26HPwSQR/AP36cIY\nlqHuyiJoedPss0qN2YIx96Or6B7AXESuwpgzXtzifWAhIik5HylB7BboMzsZN9AtJkg99Fm6Aahp\nMG/HYS5G2T7dgKYOdAlS1CUZ+VEa6Q3eJ1BePiRsHrAfEps4ixc2XMz7q7py2cl7MOaYhdyeFPRC\n4JuFzHa38OgngGswLxtMisSESxf03Y7D9WIiInXQ1fMdGPOXCNehk99QY3jaGALqPGQTXqfAkdYM\nbedQ4Fh9r57JeSQzlvrReckkmv6vQu47yxQpViHpkR310l38WX2Pr0YXW6B1RboDj3KWDqgbLZCQ\nI5IfHZ8mZPLeMoKywCGHkDRifxdTttFcY9GHN9r7N5/3OUpQt0dQDEMpsr6wKI3sWu8z09t+FTor\nX+WdMyid/oWLtIoHRZqFPGNc7XExwN0BpUiV194UN/LBMh28AvzP+lstADgn0If81cCiQk4SaoEc\nBsaAjTQwnID+Hk/hWUbGcBadlGYBC7y+HQRmZqSQkDfptAQ+RpVhH4m0jQgvKOgzNwWdEPoichHG\nfIFOfgMQ6YlIynPnsgSdhH8CVuDyNC7RgpQQZBT6jL9kME3jMFutxud+QSf3Go7GE0KhnHdcsutt\nfxrH+sHWBbuaaofvYMyyQ/xvT13qm888l1J9NI+lYiI5r16AxFpihwB3G0xqeQaXrmif40gWoBOp\ngroYW2HMShGaoArGnY3ho/D7mDkI0oU8J57g87Y5KHikvjGpg/XJjKXvufHEs3x02xVR927k7ME8\nl9zZ4ZE2tEmTamtVMXgg0M6BU15C7XDgdVz2oyrHQ0OcfiewBGMOZvYeM4C04g9wAV1MC9GV040o\n/Sv504fgCoLBsIjgM10wc/0udBWegMpP/wlZku2aDpPJhnQdBMGMAwUO3GixJ/AvRaoFin6GjNer\nDgZHJ+RnUQmGIO4cZxOqJDkmUI7DSURjRrlQ+fBIJ9wdXtuj0IBrco7D66hLZAE6uG8A5nr+6Yjg\ntTcYzbd4SYQvRbKx8I8x5zCmP2qm50dpsW3Q364WGuCehEhKAp3LGVx6AbdiaVHkWJE//rj4j3Xo\nwH6VwUy2+owtRN1KtzrwRgghtWTUQSeHwWjMIUyxPZsf7CCi7Ne8sj6R/ivXUTjhOoxZYaGYF+/4\nHOiyAGm9iFkuajndaDDfp2pKC960BerieoOvyCWo9fMcxsSL0BEdKO805sKtmAV5jNgz3RjaLpai\nBxqFyMp+cRcXX3MLiysU4JXJB1l6y/UNe2ydMfTuUUGO9cf7wCQfAcQuKCHgUzTeNguCFR0D/r7k\nONAM6rRUtC94HsRJNLo/A5UHEDQTNDN4Gh2gP4fzg0pJUid+bMcblDKJEBOEsxf98i4N3BcSvwI5\nVpZduZALwGbywQTgL9QNEATOPPQ3mgjWz4JxzqIxg7LAgAgnRFDp7IHoC3E+CG8MQ4DH0NX4TFQG\nIl6EIhG2n9zeGnSATgB+Fsl8dno6F9zryYo3RQfo71FacQOUVrockVSWp7iSI75XfPR9y+6zHdt3\ndIxrzo5qahxP1G0x+h3d6qRPA2+L1i1+BPWBhxmMtg2BtZQ5eTkTl0Rx297BwL3WmCNeEHotKsVR\ndQGyBP1dSgKpg9EALq+jz2ocLsrjT0mEGyKYMSK8hy5ObvFcghcEgjQjR8J7fPZEDi7Zfa8xBEhj\nWGhyhthnLmfTKYfZYvm4zTNFetmZjxRvml77noWVrBQMLhW9/7fDBZSS/XHwzklBNE40KSP3lgWo\nTGg3ZAzq5UmO0VwQmuto1Jd9OWpRbCZzsrafoKb1NaieTFpFh0K9OK7PJy6d64WqCwGRBqo9uuvn\n9T8/jbok/DEBpQdmqXyDR4d8CnjeBqp7JqMPeq+DAycB5yRqFtcmlax42HgbzfV413ejMcxAY0iD\nUKtyHiAihKtzlQrGcMKrWtcLtUg6ZrlMR+BFf0St5M/QwbE/GqfQHAaRuwTJK8h7QHyUjRreakmr\nConRiVXrbaL2s0vZvzcP9wA1HRjohJCP9hCNrly7oRZEmNXHbEGwX4D9lM6/f8eXP1SlwLlmGPOh\nNaYCumDrBDR04IUFSAk0s3kNcJfBpA4mqy5VS5StpJpOWpjpW+Dnb2jxIbrYuRG4yZgM1rXOAAS5\nnajEzxjwtKXslseM4Tv/YyxUSsIZVpENv5zm0P78tLq3Te4n7Q8PVZq/v4VZlVb7VpMlhwAdHDjm\nuZa+AFxcNqGW7Gk03hIMdwGCMUcydaMZRyVScjX8URj12HjP4KzCUL4tKWNlxAhngiiCmphnURO6\nDWRKwncvOuBZr91kN9IOSBUELO1tCwbX57Mgnev9DlQIkekcWaBaMePX0r9eBZQWJHUim8shrz9h\nC9yFC0ctiA+Aj4OofOIFptujJugzQfYfQSmqd4MNpgKZFpJQrvi9+MmNGMNPKMOpMxrQmwgsEMm4\n2qgxjEYTD59AmVIFMtpWmBdMwphh6OrsHLpCiwGaxp5h6OD27EiMoiRQzahERox16RT/JdVXl+Cz\ni1+ktOPyEm6a/cyHLiBqoRN1qJfcD7YJsIY85yyTl2zinp2lgBrWmOVWWUffo6vZ2g6sEOQWdHDr\nbzBdDCZ1MFknh/tRtpK6UDQRbhDg9OfpV4qzL7kc6G3GnPdnZzsEuRkn6Ss+eOEslTZ0DZZ8Z9Xj\nMPl+vonfQqkyhbn2srrRDXJdVul25txOuzAu0xNY4qTEPpOf22Q665Pe/0MtTv8295L33l9JsLwM\nhW+AGg3lbnyfbJ4gkn2ju1GxuusgiCZ6+PAdOO4hJeAyBV3VxKIWRgXSDvCFB5djwDFUBtcfkVJd\nAeJxqH0099F5BLcixqIunexAH9QlFqJ95yQ6gL8ENsgk7uxHTesnwD4R4bUPor/PYNRddR7GsAmd\nJBp4/RuDThIZrr9gDH+gA+lB1OWUpkRzlsCYQxjzFHB7zFnald7GjO5vcHZ6E7Y3iCePEU5YZRr9\ngsYwrn5gLc9YhyrohLIWN0DQEXSxswh9ef8H4Qy6thDY4cAAGu98m+mLb6PAuWXAbdaYcmjM5CY0\nEN7PgURBHkQnoUcNJpC/7+KirCyDiy9/vxtQqzfdn6vG2oWoh6CVMReuMJgg1+AkTaJnj2Ncu7Kv\nMYH17q1aYF8Nod26cTSPu4irNlxGqYrtYjo4ox7k24Tb01ZUtUpQeAhlZYJLBXSSbesxHsuglt3o\n4J2UIqiqRIQ05CzDJcDpNBhMvgFquEAFg+5AZ+1q6Or4F9RvGw7GoIG8s6gQ3WNoEG01unqfhCaq\nJOMVNDj9G4SsAha51ovLUlxP1z51U5XBBpM6SK+9uffdft8HgkwJsu8iXI6ks5rMMDyZhO2WtNq3\nxqsVUTbE/vJgdwRqOoWFF9F4Q0DAXIS8IszwPi+LsDGcEqbpQYRWIuwToUN2u5wEiRKk43xkX+t2\nMoX5sguRz/NPm/bVoKZN9yVERe2zwWs1gEs9XP7EZQzueTdbTTSe9iLByRlBYO8Eux2SBvDtki5e\nUZ6mFvJbGGBhp28fvOztnoL85UmJB8LFxeVX3FTvG4i0RmRLV2nYwKvl0SXMryrLIMiVwvxd8mKj\nDSJ8EOo3tvDOSqovhaQ9Mdz1dnGKnxmZZ8Ly5+6Q015N7ZCwEG3hRy9WAy5RuHyHy7M+h/VGXYwh\nOirtEfk28jvMGlgwNm1NrntJFRuxx8H6jhMRj53pWRDRqElzGF3px6EWRODAGByt0CBZLDo7f4Fm\ni1ZHV+53Q6qVzFvAFaifbTZZh02oVeKPP4FSgYHddDFzeo3phYG6AeJ9mi+xmODWRabhsS5mow9z\nqKMEzcSeEPzenI0o2+pjsLdF2IUP0VXKW/47vOzWu9Df9G7UhbhQJHMieMYwBl25dQTGZJfLyRtc\nFwMPOmC+Gmqa4lC5VXx8gRWPP96i0tatJ0uNHZvkiOwLKpPhMh99trcDa7ibfqgr4yk09pDOC2oL\ng/0S6EvRM48hCwtS7Gwb4CZrTBJKksiDJt1944AVJCfKMrsdqG0wgQwXtRyaozGHlPdNtao+epKB\nvRsx6yugizH0jeAryzTUTWvn0H7IXhrPXAp0DSb4Z6HVYS5qWYOfC8PIoTmY8+xrvLa8sC1U/euW\nfBxGRvOTaC7KcJ+/o+B8jYcc6AI2LcXcv5O9BGnHHyCVi8k6XAAWUyJZnPz1N2ETQYO7TgKaAR1p\n5at5p2NP34paQXFB9o8j+9xMoMqgLa0/1TY1+qG+ykHBmUvOKrSPX4GNhE6chLJvWhBYHwNP6vkx\nNGD9KPrCiVe8PsPwaI610WD5T1nJchIktyBvoQy9L4FbDWathbzWmJ5fvfHGTb+VKdO1Xt++O/cW\nLnwA+BaRpzzffWq4nMSlK+MYSyk60pX1uOGQOuwdqGV9mI9W3MPYpR8ATHv55TutMb1Rcb9HHJWE\nOOj1uwgqdZ4TMIYgg2TK5GD8JodKwLePMmxoM8a/CTQ35sLKVmv/7Rzumbif1mO2Au19lVmTYeG6\nRKL6l2fj5kR2fJ+bDu070/lw2bxVnVEPcm5nqbQWS2B1cfo6Gpi2qGpvD+Ax3PMJf42BLeBJjAR0\nVkqg1mD45YqzHhUJHX+A1C6mGDRskSnp9XBiEItRmuOtqPVQw/v334S/CM3+WUdkmkyg1lT+NZeu\n+Z7glsJk4DZc8gbZl2k4ukp4Cc2N8K+Yl3yURbOda6LB62DHLOI8VdVWDn5MUOxHKZKfQ2B2sZfb\n8Cq6OnsKtRznZ7YEpTGcMoYn0IDbXBEey0x7cD4TejVquVY3mE8NJslLTFyFMkOq3bF8eR/Uiklm\n3fVEBf/8tbBigKGs5SbGcSV5iEcT7NoHl+uwBcEOQ10bDyAL5nH1kfiopKTPEuvVm9tk2bIfUNpt\nNUcnsOR+l0cD1MuBFgYTuFLUPIfkySElA1mkKNhp9zJ+4SN8+QBQzxgWRvjVZQqC5AWmcfOSo3Qe\ncBa4P1gdCU9GY2JdFn53kIuiclOlQiMa5WtIQ/dMTq6ddDdvYYx/gSV/9AcGOLDBI6sMBd7GTZVb\n0R5lN4VCM2A6Jsj3fOEQzgSRHKTONMUVwpsgrkUDcr3Ql+MD0qam/hMRysUEGZkglO4a//HtH58E\nmgRkVbscRF/cRkHOziqMQHNUOoY+xDmBWglvhLYSnKlAV7R0aSQ5IYvRVe0YCC5SaAwDUR59JzTw\nNz8rypAaw1foAP6CCMNEIi+HK0hhQb5AXQ7PGUwLg9llIa9V62sM8JwnrnfQu3ASxnyOvqgT0cF3\njVdlDTRWNxOVp6nDHjbj0hNl/T0OzMP1XahYLZsKp7ji2DXIggbAx22nT38isX79O6Os7QI0cuAl\nx+dlF+RGvApzBvNiKtmMZLi8hCY51vebHHKBnRTHgkNPM7ASSmMNvmrOJggSC4yj4m8OvV8riCbh\nBajWWn2uxrn0+GkJt9SIpuTqclxW/XEe73YqF10+6cjZU3nol9a1rLo6K6MuV9DfIRekyggvjU7+\nacUXmvP3upcgPBdTlmVRQ3gTRByaXer/+TchhIsJyJgFATBvQ8kNV6GBwmDnZ6ubyfOBdwR6WEgj\nQOf8jq6OxoItFuKYL9EXZnaEMuHvon7dXqEO8NwWLVFLZQI6SWRad8krRnQ9OogsC9c68QK6LVFX\nwgmgqsFMBfC3GpxQsTZjDnhJdnEofXULvXq1R1f0v6LsPF8hvDVoTsEs4AdeKtQVJ2Ewygh7DFnw\nKkN+/iY6MbHO9ubNPxv6wQdDUELI9T4icsn9b4b2q11QppJe73nUeqx3nsoKIOJEkTisOqsvfY3e\nJ4E6xoSkkmcLVLabYVy8qygDnyqNQ8M0qLQfLKCu05MedaDhgLycefh1Xl+Yk5yH9pSg+Px69MCY\nkHLoHpFjAPCEA2dwKYXG7tr5uJZAA9ffELwoEN4C4BrCzlvJelgd8C8BTw4lOLJ8gvg3IiMspmhP\nLiGIaJ2tCjbyAkguZXDZN8+Z97EgXYPsL47LYbJemykVLHxgCaQEBjnyLbDzwIZwSZ0/5geVcwgb\nxdGgrL/mViqIUFOEXSIMFWGHCJG4tNJq1xHhCY/llCYrS5BLBZkmyFpvFQ5o8pRV1dwdNnyGXnIH\nonnzzakUKWJp1WrFeUnxUKj5yUO0u/40T1bcTZtbrkWkOiIb4/r0GZHoOMssfGeDxMS8ie0FQbYL\nEpry6/IMLhsJIiyYR6a9dZkMOzJdck/MNgXdNODdQz/JP3m1zMy5N604koUHd3LxpijObYXhXWKI\nOTKAAdsFKTE7RnZd00f2qjUUGt5v+jkALg4uk72YjC+i0OTf0G5zkXaI/K3Wg4VqNv0M/SWQXLXR\nVgbr746KfOz8FyJjN+nyh5dS799cTrCnwEYkW+21+VuHmzo8JUhw/62L4GZ90pwvPOrjDkt6BW5s\nNNi5OgmEPMYBOxjs7Ai/j7ponkyayXEiXCnCXyJ8LcJOkQxZbqHariHCJhH6+0uQe9TVpwTZL0h3\nz8UBgIWbLfxhYbQNLqueHu4B9tGkSQ9ETiJyEJEguRA2D9h+YHcQfboJLp3pGXM05vPHjs+sVWOs\nhf0WOtkgVr0g0YJ8LMgaQUIXWnLphMtfuIHU4pIyqmMRGXtmpJQaLhIqbpW9EORVyTlzg0zOv1ck\ndLKthWvOkmNfAQ4vg+19c5Bj03M8d1SQWoJ07Xu17EIkzfrSFmpZ2G3xpF9cmuGyDhf/mNHtaE5J\nGh2X6Yi0DO8uswcWmtn05T3W/T/2zjzepvr7/899B65ZZkpSiuqTEmVIeBsyR2QuU6XMM4m0jYnI\nlAzJUFGGSJnVMkRKSmgukUqmjBmue+/+/bH2uc4990x3Qt9fr8fjPurh7rP32efu817vtdZrvV7o\nOALg3AvOLp/fpzvN9f8SAjGZLqJNwNSwbDbMqTYnB1BGEH/DgxnNZsLSIcD+6IR1kC++FY82ltuA\n0zjAMQ7aL7gAzE6BuN8mlK00nyDPlMtEqoxOe38FbBDBP28/hTCGnSiB4ia8hvRcT+gtaJmrssGM\nNJhYB2IcpZ4uAQZY0Cax1xAeLHTgagpQh5Urh6HP0FHgbUTeRzyLuXM/WioqANzFhk/ZIhuHAAAg\nAElEQVTXUlWK3Zd90D9fD5wTkf2vnTWfrUlzC6b5SnUIkhX15ijlvv+Dft+Nmv0MRHsOSXSXKsvw\nFmfJPqUv42fdwB8drqBUdyIE6URk3FO8+Xg2cp7paYx/PTc3SL9Xhc3bT5P9lMWNt1SjWraGNBwK\n7IuLZNCknjh4MgP/54hCy3f9LDiOzXVoo/pJ7KQudIRqTqto44NcXfYShO4/gPbAPEN0V6wH0RQd\nwPD+qQGp09u5ikhvJhPA+ouZLhp0gfQ32LcMaICdMlOdVGAhqvoaYjraOoo222aCE6Bmb8Wh1OZb\nUA2mcDECfSj7BTvIrXlXQafxfwLWpVcmYQwn0KbkChx2SKOeb6Ce0G8DVQzme9DdJbpgFwdKW/p3\nSgki0UZ2R3Saeaf7BjyWvGuBe3H4mn7frSMy4QNgKFitkI2RWS9c2DB9/PjG2/uNiLr1uNOlageG\nvFSZRdj0d7WBABAkP6qzdBaoawig/6M2oc+jwWGf9686S7OH9/K/BU1Z+upzZns3fzMGGQ1BGmEl\nDOf1Jy+R/9gr7lxLMngmpUcw5NvtVLwTCm0vRMH7+tHvM/TzHrLlQc7sL84wjPFd6L3RDa3Feyai\nxwHvYbPN57iC6Fq2gMCoB2zGmNNh3GpGIhSDCfQ75QkQ6cJiCgcr0Z3VUvfnOMq9/hkdervSSG2J\naQC26zmb/JSjwHkhFefMhc2Z5VmWd3W9Afwd8wl2hrKZAHDgfw4ccZRBE+rop8HZHXxA0MmrvRmn\nV+BjkqEYqrV1X6gDvaauv3R7EulmGCRIOak46hd5P8cFeafAix7/bAcyOTDCgcMOtPKvaRUSWdFU\n/yMIIG8uYjH666mUPxrL9B0nWLdxLyLlESnz4MSJhw5dd92xeMt6z/EuydncjM3H2HyGze2C3CLI\nT4KM9uM9gtfrWmLzJ3byz+81KdngBpkf94CMCDb8laEQpJLw8VEZX+ZLkeBDeA6M3ErFzyHhKLR5\nMprovxew4HeXcXbz+kg5lXex/IZIwA2XA0Xccp2Wk3W6/bcAygYDUAp2kBuQxYikmU6dVjjwuaOb\nkUCIQRUr3GfFaQDOyuSnSRnCySCiUZpYU/fnDvdC5dGU9t+CUEymlDdNdWp679AWQ48BdQTxV+JZ\nQvgGS6mGpVLPb+NnwtkPZqL0yiDWsdZxtPHcF5xw668H0AnVhRDcQMidum6M7opOo1LhaRqmEySr\nIOOAlXxa6QViLpSg4JGqwLKTd/AAqu11D3CPBQv9TkMHRwF0FuE0SmH2w793IjHV+vJc6RZkj3+D\n285eItpZneXChTUvT5v2+ZqBA7MWOnGiS4TjNLVwlVQBd+dfE5h3x8E7Pj0fff6ruIi4VwzmOYPx\n/z5tGqM76zrYScsPKyVL01k8tdTCWbHVPJ9S3a10gSClwHmPAWP3cu9X+wgoV6901KPka1+FzQVg\n8wsRLBw5nOFOYQq3Mpi/gdHLG3PseD6GY0ww74zxwEx35iELrhc4Nr4ZgIUyvYKVl7Kg2llXS3sJ\nwCPSV4rgGYQne/A8K1esxFSUpHIYR9x/O07YJifXBDKixASwfvdNu+9BlWfL+/n9e0AjbP+zAukM\nG6jvhDRashzUA6EiOO2DHHcATbEn41f8zy8Wo4uofz19L7gOdY+hJbpYdOK6RJjXSQJBPBTVoqjq\n6lum9qXf8wvVb3uZfFkPsvnUnSxDLUAPBT+bX9yG0ljXoZPkfp59pxiaWTwM3M9HhZ7BovGDu3d3\n+frJJ3OW+emnv25esOC8JRJhiSR/uU2C2HJw8huT4yfWn/hbraG12mAHCJo2tdHFrz42u5N8FkLH\nGTw9/ydu/fIgNzZPxb2mGYIUAdbQ8p0d1F2TGXjc35Q0gAOl4oiceTvf/RbPpfehWqvGND5bgQpT\nDWaLIPfHRlPjjY5EoPM/fuFouagiarUKOi39BTYf+jm8Kvo3DOZzUQv4EmOOhr7jDEUh4KIVXOTR\nu7wEVzBACFpmaodKJ6xAOdrZ8LuDumahw3L+zed/AG4l5bacoJISNYEP8SM9gTp1/YI+kBkKS2Uo\nniVkwxrAOotmNuPAuSvIcXvQvsU74IQrb9ELLTM9FupAt2HaGeWhR6AN5kCBPBkEySHIVDRr6W8w\nLQ3mCIADt9w5nA1FVhL73WB6fTWVbhuFNuGe2wuV0F7GS2it32dH71huoP0CbWYasH5tP2BAkfmj\nRy9YOnRo9PC2bf+o8corqw7nyfMoKkq5CpEkw5uCPAXMjHQi6627Z11p9zP51KWuetugVgPeBBr7\nyniIMOA9Hhm7inqHz5CzHsYk91TOYAiSC1hNpa1f8fTMUsDDxvhfrBydI1lal9WfHydfLOSML0rR\nfF3p+hcwwi2vjZvTgePnszIMY/xKRziq9zYV6GnBOWzKoD0iP9L3wOXmdLAssglXx3faFyntP0A6\n+FFDeAGiG8qzL4MK7M1DmS7/8G8amLMTjTT8UBmtc6jqbNgLkxe2AyV33bRrM4EF+q5ImcnFm8BF\nCEeGwvoWtVpcEnz2wdqE/s1XElAhNgn+QRvdr0BooT5XmuNZlGkSA2wWSSop7g+C1EJlT7KiA2/L\nQVNyRzOkz9DPvsbdzzIFfV5fEGGSSNgZXRNUOqUDfssRTn60N9cHqAnWWLDi365e/fGh8+fvL37o\n0PmjuXPf8NZDD92JOiTa6E53E7ADkf63TZcoQYbiGgkZzGfYJGAzGd0RNwfE7VNUQCd+W3o3Xd15\nkLGfcX/nV+nqxBFdB2MCyUJnGFzxwGXc9OtvjBxSEahrjH+vbbd0MnMK3Q5toNZdUGpuNFbLyUzO\nF0FEG4OJAxqey8KNi5sRiYoSBkIfdCO2ApsoVE5jAEllzT3Ig35X3/TzO/dGJBo12bpaznHeKElo\nBtNVyyAS0C9ZLxIXk3/twEX6l5lsYoEt/R/vnwu4PgBPfSnwiDdDJaPg1tW7AiPD4/Vbb6GL1Sz/\non6Jxy1Bd9CrwAnHD2QXymxaiF8v7eQwhjHAEDQ73SLi3w5WkNyCzEYXgacNpqNBF0NH1YNXofXl\nKhZM9FBHjWEvmtncjPY8/HmEeKMrSmOtzWWDGS849dGy1s96XutrB7LuLFFiRfWvvpq7tEqVVx/c\nu/f2Ow8cOIIxZ1Cl290o7XYxUD4yjlqPLuGvc1lojVqDJvV7t/kJZX2tQNlSWuKyL9NERXRB/JWb\nag3ixawJRLbCGH8ezhkKd0p6HrlPJPD6k+WxeMQYgsnpd9nD/8r0YHJpGNcHfhg3nvHxucndxWAO\nCBLlwJgJffgnPorhgbIhRz1I+gE93Oe/B1rdCFSOepzL5JtAqAL8gglAK76yCNV/gKsYIJqidMTT\nkGi+c7UpX6lF+moyXcaGuMi46ugikjyL0AbkH+DPkyL9YemitYjLtdhQ6IHuUoIOH4E1Gb3H5Tpg\nGBJT0J5VQCkOXxjDdPd95AY+EaGI9+8FqY825C+ivYZEWXhHd9pfoVldRcuPd68xnEQX6g2oKqw/\nZoiFNvt7ohz4L5P+2skGzmton6UVWAPAungpIuKBYzlz/ravSJGa7QYNqt1/0aKk3grGxGNMH7Sx\n/EmRPyi6vhb/lN7NoWaLuc4IgxBJnsmpLMQa1PnsCNDTlY1AhMzAopPkKv4Es2McIoZjzAY/93Ql\nMJZMF29mYatSRCZ0NoZPAx3oQPmzZHvhPnZEwOHhMOCF1rT++S7uWmMwHlXZx0/nJO6jGkSDf2qs\ni4nAZAv2uRPkzwGdXc00X1iEFuaDa6e8BKkrMV0xsb6xaNMtJ8pMyUFQs5prGsGYTN+RhgCBNrRW\nErjMtJQrV2YCbdA1dRInK4PBuoD2GV4AJxRFtT+6SM0NY5DOQUszbUlBD8blybdEM6BtIhQQ5DpB\n5qFlqMcNpotBuekO5Ha0/DACaGDBMIvkyqBe508whuHo3MgyEbp4mdRE671RHe097Ev6aqccGjCy\nAXeDtcmBLOejoyeeyZp1Q7/OnU80GzasxLoBAwIv0sa8Vuo7egwexbqDRclf8Ahlz2XjDvS79Q0i\nSeU+VOBvLZrF3442y7/KMZKOCQ4fxBGZ0JSlsQ4RgjEhyQEZAUG6ERH/MO+2yEHMxQnGsDTQsQ7k\nTcBaVJad314kZjsULleMYqef5Mnc6D0iSGYH7FGDsbAYFiR7qIs+42Pdf5oMTPFRavVGBTSjDaxe\nKxKBTsj/mwPEFcsg/iK0Bsi/BRnFZNoLZHuu1XPf489ESLEEaIJ/b+x0hzsVPAyYGB7f3/oZrdsv\nCl5Csjz+1EUJb5DuKFrumU+guQE/MIaV6MYkP+djdpPz1F40c73bYBIpQI72Fb5GSwplLNiRwms8\ngN73nHr1yItSGvOgfQKv2rkTCc5gtHw1FKy2YJ1yoEJsZOSej+69t12ZWbM+mFenTmmM+TPYdQUp\n+loX7OtO8E77udxohH7A3xjTESWDjEdkESKFsCmCzh2NxOZtbC5hM7xkdh7NEcXUnru4tXbce0cS\niIwmcEM2QyHIw+A8x+tPHib3qQ0QeN7BlRJ5qy/jf/iRknkg99Yooh54jddus7BaGYxHMO+Z43n5\nc8f9ZCKAiqqji+BUoLsFF7B5GP0Oj/F3vIsO6OxDsDJ5eeDE1SjT+cLRTOB6km1UkuGqBYgv0D9Q\nKy7PQjRJ64WvEoKVmL4DSgUXswsATWU3fFry0/vQ2nvy5r3ND+gf0B8VNqMwE+Xuh6kHZb2HNmRn\nh+hHXHDP2RicrmGceBXK8goyd+EHRnbx/LDNRCQU4N0WDmKGGMxZ0C+Oo5z3t1C1zm4WySWjQ15C\na+QVDx0i17ff8luOHPyN7h69lD2d4uiOszpwL1jvOpDZgTGxUVErOwwcmKfBmDGjDxQq1CKUX4Ar\n/fEJ8Ebrv0xbJ4IKaGY5G5FMGCOoK93PxJ7YQ1SOHcBMbKYnnkMoOL0sk2eWZfbePB2/SYg714md\nz8wJxPDJSAhyHzizGTX4M4rvP4260gVbfId8RPVCE+l1D3QdCKdGTWHKP1nIMspgdrnnzAEMGvYC\nkcBojAkkDTIQ2GXBGmyyoyXNzn7kNDzIgn7WgZvTimspeygB7A+WEbu4agEil3uhh1AaZwO0u/9v\nRJASk3UG3TEmEzoLE54y02r0s/KH90mpWmgaYGnNujcw3iGZSFkgDEQ/gxALv3UcTe8HgxPOPfVH\nzYvCcijUXSl7+KTKDxzJX5mYi9cBn4uQ3VE23Q73fd5taX0+1TCGwq1bc9cNN7Dt/fepdrkv4Vjg\ntEUH7JYBtcD63VFG3xc/3HDDQze++27Cglq1HsOYcZgAA22X76k8ShsfYjDj3Yv/iTZE8wGrEcmN\nMefZZMbwWevDFKhuUVXqInIbgNu43wwsfzhqwzyKPV6eP1d04OwPw7CZHWBiOEMgyM3A+7Sfu4JK\nn94MtDSGgLRaBx46TIHOtVmbHw70gGnjm9Hsk1KU+ovL1p8AvY7kZ8/eu8hHABkMR7/H3SDRU/oF\nYLN3894PGqN/y8AS5+oS+G/rP8BVpLm2d386+Pz8G/EbcINLg/OH1E1UKzYA1S9EXVjPNRIgACx9\nX3uAMCUzrIuo9+4L4ASWldZj96GZxOuEti09B7RBG7QBjYncXsN8YALQ0mB6mbZ/bAPK43B9zCH2\nxWdmA6qv08zCP4UyBbgXXXDHfvIJtSyL9sDit966uT84C9CAWROs8Q5WhAPPO7B2WNu2B2+fPz/H\n4Tx5qmBMSCE3QWqj5asnDCbpDtaYs+iudQ+wjeVTSgIrSLiwhfzViqJUy21lZdx4RxlQ0w0yPYHI\nZUAnnlj4JjohHg/swvZIPmccBMkDrKLitg9oN7820MAYzgQ63oGicUTOL83ug/FELYDidfKT/9fO\ndK4IdPSYHrk2qj2fG00mYEyQrGg8MMGCg9jcjZbmAk5qu2hPkEE7F3ehM0S+SqhXC+FQXCGpUB9c\nAT8Ij4zGFD8/kzPywiGQNoqt6rLcFODUE8Dpn4Zzfxc9JLqsIEf90l1tIrA5hJ26aeHUwoESrj5N\nUDlun1e1AufH4PMRicc2BOdPtxQTCoPQXbQ/Weu6rt/BFNeS8vIV4IbYbGzb9RLxm1bxs8veSSuq\now33R7z/sVKl91vky/d77AMPLPu2ZcuXcrvXv92Bzy9GRm64df78jxD5GJGw5MEFaSXIYUEeCHnw\n+g/7MKnceUbnWe3drxosNWovl5wXmki33xCpgMhWROxkr7dp4GozjfUjbZ0uECRGkC1y/ZvzXB+O\ncsGOdyDaga2PsHQDOJsgU0cL67uVrPxFkCTlakHGLSwoSxE56MfO1XO+Wg784kCM+5361FWzDYYb\n0L5ccH8WERuRCSHOdcXgwHwnrJkm9qCZteeVq10ats/pUoZgGYSHIviFz89OQumnX9vICHc5DzZc\nirpUk8vlpqSwSUB3kVc6i/gZlUcelYJXLUTr7q8F70eAa1v6IjpIF6oRPRaVY+7j+QdBcgnyOjAN\nZSh192pW4ijDamf0P6z8pzglE7JQEPjS5f+nFo8C76DndtVcnWhwRmzb9vBEx7Fajxz5yDdPPzVw\n3fkCDAO2fFus2IqY9esL/VS06E9AbYwJKQ8uSDc026lpMFuDHmwTydYG93Hu4B7Kv1OOqlIHQIT7\na/LR/BycafseTQejCq/53fP6nuNDdKEoAezApnSYn0dYcGcd5pL1nxPMb1sD6GRM0mluPxj5Nq2j\nl/FIKXjkeYh9aTzjv8lK1k0Gk1jKEeR64Il+L5MNGOdPsdVRltkk1A72AkpZddCZmGB4DJ09CbWr\nvpb6D5D6ElOG01w/QFOt0mha5vmZS+g07VpGRjGZQNkmNdFhpmumzORiFFDHIfhuzwc90dJF+9CH\nWlPQ+1+iC21AxKMsqIHA3YLURIfH4oDSPgylnI4+b6NQ+uqoB5rzM+onUQydY0gNK6wzusg8RCLd\n0bkFLd+UA8ocP379kioP0b/8Y+SLzcuzU156cNKdc+d2cyxrBtA5VEPYdU8bhs6YVDaYPUHfkUrA\nTAUKcfFwFSKiGwKzH5UuY9EG/5M1jLMIj8Wpfma7EKnm51xHUTLJeOAjXxnxNGIEEfE3srRpMSKc\nScYEl0p3oP5+ij3elvnF4IeOsPy1alRbWIYyZUjOuhr6Z2He/+MG7ibwnEJX4CA6MV0QnfV5xt18\nBYJFOOUlkRKoBHjA+Y0rCZd9mJYexBWR+95O6mSRMwppLTE9jx1oJ+1cB87p0DvmgOfOhc2ZV4q9\nUsJ1L0v+pbTJgs0pbNfp6grCgY4ObA2P9pr4qjvBOQpOGL0ZJxKcD8B5PdRnmJOcT+Yj3/HVrD4o\nSLJg6kBFt4ww09XrSQIRiolwVoSdXjMMoWChUhc/kWST4DwGzhFweoAT4Up1dHDgqAMDOq1vNXGZ\n5EoYIQ+MD+cirgPcNEF2ChKeb4rNMGx2ejeZx0q5du9LjriHpdcCRCIQqYLIYXchA5GH3VLMTNfY\nxt95i2GzCZuN2IF7P2HeVwfh459lUb61IswK9bk7UPQi0X9dx/Hd4AwC5mQl66KP+fgvQZIMKApy\nqyDH8i2S9xDxW+Z1oID7N7ndvbe3sBPnH4KhAvAjoZ57kf6IXDVpdF84UNAJr8eWCWU5ed2f87Uf\n7bR0LTF5sAvd9T7Ov5/mCsGZTCdQeuMNqTqzyn/v6d2h902oAm7yJq/NebREUC9V10gb5qKpZwrs\nE61vUI2gRQT1jwDXta4V6uyW3KfbhSCVl7P82eu5/vQjPLLCYBLN4B2IcmAoWvbpY0EnSw1zksAY\nDqCZRCngszCCRCQ6+fwwOtG+D5yc4LyFTt7WBGuyg5XPvXavM1my1LJE8s2M6lR/LbUbVGZrQ1fH\nKWBpS5BolHp7h75NFQ4MCpvu6OdWF1eWWoSG9/HFuEMUbryCRjehg5bvAo9jzM/uh7DC/QwcYK9f\nq1N1l/NM+X+BTeuQ78f/fRlgDBP6bCb/sSigSzA6q1sKWtiY5d+fIM8fEHUIKP8u7+a2sGYajK95\nz/A/ivDWsfw8CJcpvT4YDcy34DtsDDrlPiyMt98OffZDLZAN0bXuWkE4Ehug2cNJkt7fFWMxxaDN\nner8+2muELzEBGkvM30MVOMaLDO5mkQ9gZccnQQOF2+gTbCJYVzlLPp8dAMnyeS429wcCyyysPp+\nzddlL3ChEfp54WjZaCNK+7zXCvFlNYb9aAn0f+jEdaDnORNKlyzlXuswl21AzwLlwNrt6N/ka+D7\np/r2rZZz1SobnVupMN0sWoXKqN8GrBVJngG69qDL0c+2rmfSOyhsWqHB9CFsjgCI0Bytqdd/xvz4\nIbqZqIZuXj73+RBOYczT6LT6JETeRCTpe7OJx+Yl1N/jeWwWoDacYUGQksA7PDlrPmV2PQg0MyYk\nL3/4fB6PWU3dm6GRDfHjhjJ0WXay50Yn3r3Pfw9gOr9GfmCyq1uVBG5ptD4wHJXOnwr0xvaeV/GL\nGFSCJfjsgxIO7oGgNNkrjdSWl+AKzkG05/8OzRWCD8tB2gPEJlRWIliAWAnUyiiWSTBYOqS1jRDW\noD6vctBp4xrghOGxbf2OLrbTwCkPIMi9KMnhFnQa+n1049EJmPOnPlM70KDwkKXquiFhDL/gmgCh\nKrC+z3Q2VOguE1APnLPgDETr+gPBesbBinS0if8K0MwSmfJ6gwYb0C9dLYw57l7rJLpB2onOZCT6\nabsS12vc1zQ1BB+YA8CmDhp062KzH0CEdu6/1TKGHS4vfwLa31kFbEbkej8fhGfA7hiwB5Hksi42\nX6LZ3XGUDhtSjVmQfMBK7vt8Nm0WtAMaGhPcu9uBuvso3q4Dc26EP9rBitdu4ZZpBtMJeMyQrH8z\n8uANzDiTkzoknYfwnC8CZU4OdiXte6B9iHCsYhuhG4FQont1AcGYNO+60xHhUlyvSoC4VmmuacVh\nIBt2QMeztAaIbUCZdyq98zlQ1p0KTQptIu7l6smlDwJ6pIz2ap0GWqOLvj/FWt/jvwI6RpGw7F22\nTUAXzxeBRw2XDVgc2LIeLjm6ONe1YJxHfTVcGMOP6A6zHBokPL2f69CF9RDQDJw8aOBuoMdaSx2V\n2vha3wr3WCLn0L7bYqCjr3uZMcQbwwB0MEtEaOTlHb0baOtnAUwOm4qo/Mgj2OwFEKET2nStbkyi\nCdDTqAKtx9vgTWAbInf6+SD+wZjeKENrBCJLECnoc91zbknraXBr+AE80xOlu/MeW8fYgR2Ax4wJ\nvmA5cEMs0XPKsvPvBCLHQ9GHLawDs5hVHx0QTCJf4Q4P3v30DK4HXsMYfx4zbfBoZKn0yCCgRwAx\nPl94ykuh0ICr7BznB2nJIDKcxeShue4k9TTXN9AF2ZvBkQf90v6Iflm9aZGD0Abi9wTefacN+lDt\nJ7iqa2qH5XBT3j0zHppRGi0HBBKpW8HVYTNhaZntDcKr33q/8nN0IX8zHEkSYeNPC9l+6RAxnbaS\nt4rBvO1tn+nowvfVA/BpKThpEVJ+OyCM4RvUO+E+4ONChbgBzeY+BZ4A5yH0ud0CGAfrkKOL8RKg\ntwVPWiLVUVG83hgzJthktDG8BdTjr4LTyXXyG+Wd090z8BUUNneiu992uJ4OInQDBgMmcREWqYgq\n4TbBmLMY42DMOPe4jxHxPxBnzDa0//UjsBuRNm4m4v0e1qBZV0nUlCiJp7Vr1DObqEvHWNT8QeBF\nY1hHEDhKX17YmOU/nuS6AxD9DdDkLd76wcI6ikq/JPs0/ijCq+ez0gQ/JUxHBQzHoHpLCSi1d2YQ\nMT5vFEGfieCZhno/1EYztGsJKelBeAUIx+IKZBAeq8LcpJ7mOgete3rjWTRA3IbaMz7r/vsd6ATv\nHe5rpoV4f2lBGLLfqWQyKTYRbh/Cv8PdlcBooLHD5TJJmBiHflGfDXSAS/HsCmzNQ+xLvbln/hDu\nGu8JKg5EOFp3XwkMygrtzuhObyaknt1lDF8B1ePjqXjbbfwYGcki+HEQOGPRxmcLsIY5WLfgZnpA\nGUtkBSJ90WeuPsYsCe+CcpI2b8fR6P0LSPWbEBO6ZKhMotVAX2z1mBChNzoFXC3RP0GkECrZ3hHj\n4xFhzFsor3+p31KSHnMBY55DSycDgeWIJM0YNZNtjH7uW7B52ut5HArOrbzfKBMRzqf4Kf34u7u5\ntMu2mro3QacBEPd6PeoNL0KRjsCTvt7aLpPp9idmcz3wBsb4Y+wMAdZbsB110qtM+PM8+hmF1uh6\nANgXSmTxSsKVxrmB0CJ9kDyDiAYSwEqzm2CwBbgsGoE7ort+359wsIXkqc/DXA4w89AHFLRWuBCl\na+1Hh7tCyTekFsGYTEdRrn5B/78PC6H7ECre9w8q9XDFYenfZRT+hq2CvzIebYj2AKeC72/dYac1\n6IL/QA3MNAerJ/rAj3M0S1iDPgf3WVrKAf3M3iUML+tgMIbTgwZx6rnnyDRnTomH4JatwK1AGQdr\ni6MzEJ+gPYcGlsgx4DX3/VbEmM8Dnz3Jfd4FbCIhchgd5pZCd8+bRIKU7ZTavBaYgM3bACIMRLn9\nVY3hVz25RKPBYTbG+PNTBmPWo7veSYh0D/KBfImW3nahcxOPJ8kmbBxsZqCMoKeBZQtyL3gK6Mjc\n9jvIej4b0C2EAB8OmH0Uf+oJZheFs61h1uRoomf2p38foJfB+NM/GnYkPxMvxvAYOrPhe85bUCXg\nQV6N6T5hNKZBKZ/hlpcacu2Vl24BDlh+vc+TIcNmIIIFiOnoDr8kl8tKnp9Qk5PBUBASbQAPc3kh\nLgL87nXc76jMbUYgo5lMW4FynZ7u9D2QR5BAAoBXrczk4jVUhiOF5Tzrd7Rp/bZSRRWCtEAbgttQ\ndzQ3PbYuAc0as6zZP2T9Hq3xV7N04Msbg9Ep4BapuRmUcbRhxw66r17deWq2bKcf7Nq1d9Y5c+58\n1MGKQhvTHYHKFky31JznQ5Q9VRljfgvnIqpgynqgj8G8bgznUJrqByjlNnnQt9rph0YAACAASURB\nVMnq/v4DbC2liPC8+36qGoP3tceh0ubBjZaM+Qrd/XZFZEyyMtLl42Ix5gU0M+8LrEAkiRETNt8D\nFat+U/V01otZp6/v9axQ7Le6QFNjgi9SDuS7RNSb9/P5sQQix0HOKkDUSlZmQ79Lycx+BKkC3NJ2\nPnmBJRhzyM+pX0L1lg6hwnx/EP6Uczl0UxJ8el3RAH0OriWEW14C/zpM6dJsDxYgJqO1+DloOcb7\nJzXezf7gEJybHOh3ttdPtVRcN2OZTMpl/+6nwj95FpLkshuKqzVVDYC7OxmI7uxTOGlrLUPv7VVX\nYO9tdEFrYDDDvBu1DmRysAYvonlUY5YnWDgfu0qzvjiPZieTSVEDHdCG/wdQsDM4NSdNmlbvjz9K\njHr00cnFy//w7VZHd9BfAZUs+AGRomiGux9oiAmDkgoI8iBaGutkMO8kXlx9tUei6rlrRWiW+CIV\nh1yIPnfPuv7RI9B5lKrGeKmLijyG0jkfw4TRzzBmPxokqgFvIBJYfkQDyv3oBm8XIu29g4rYks9e\nbFf/ptoHs2cW+OzxFtvZbDYFFuCDxGnfOW14+7fj5DsImT8Beg5l6KRoolsBXXxLSy6GncnOSxdj\neAY/WayjVOf70GyrMLp56B5mYxouT04HP15VcrOTzDXwqiPcBjUEziCqkXStTDHCqfE/k5oTB8Fh\nLjcjC6NiaaC7A292zA0EluW1vX42puI9BNNjgrS5y3kQDt31U1RdNlCGcSWwDLWRbZuK1/aJIb7K\nSgr9hD6gZQwmiWGPo5pA24Bbo4m7awO1mgHvglMiwDl3ADPQOYBw+zP19ZzNBsBfI1AGR9nuPbaN\nvrs3Xxd/g3J7R7Bvo7hOcyJl0M/+LVQ2I6xarTvxvRRobTAr/B3jOqnVAl4W4fl2c7DQslkWoKNU\nxUHZXI3QhvRfly8gpVESQJMAbB7/UBpuDTQbX4ZI1iDHxmLMMPSZ7ImbTbgzHO+T99i8SgNm1xt2\nJ48fuUgetIF9W5Crd19BwxKLaVYMpnSH2LfzkKeHwYwDnvFmrCXepg7dFX10CVmBzb7GPC6tdQIw\nyNKFbhwwK8zGNGjm0AJliYVCA2BlKKn2q4BwKa4QOEBs5AoEiPTGCrQ2iPvf5V7/3hLlqxdH68Zh\n1YNTgf1A8SAN4rSWmOBygFgP1AgguxGP7kav2uChpTusvsCIlAzPCZJZ2Gi/wq4sE7ktylBtgsEk\naQY6Sov9FK0DN1ZpbusjlCL6QRBhv5Ho5iEcFcsWwBswdQYsGge8DDzuNqK/uG4Xv345lanHK3MH\nsDS7rGiIBu3e4Xg4eN1vYzSgNDEE93w2hl1ouavBsYt8belOuKlU5RJaNqmNBofLU9YqlbEU6IkJ\nodvk/6L/oEHnBLA+pNKsMbvQbGKnlcBXvxXlYycy7nsWN6sJvNa1EQvQ/uBsYCs27X2/Lw7cc5gC\nQ5uyNDfEt4Mew4FVS1lqgM3+gqjLjhp2MRMjYzPTy/08fPEYmmEuxKYKmk2MTMGnUR9lTvqWMP3h\nWiwvQcozCO8NRbpQXCHjA8RCdPdYEh1U6YBS1mqhFLzqXLYH/BZtzH2Lsjy6kFbdpUCwOYvWeAPR\nKtMjQGwByhvbHEOHvsoGOO6qlpkALPgMbdyG0tMHQJA70dfcWoozd8YRYaP9iCgAB7I6mgHY6NDb\nVCvJ39KajgbOdz2v8UEsWiIYQ3DZkyfAmggffQ5dmwDVHKx5DlYf9/yjLGgdm5+ewHsXyWQGMXpR\nLk4+gjGLg5zX935boT25ugbzSTivMYa/6n3C/E//pvg75YmXqmRBlWxrAjWM4fjlC4iFBtF1GOPX\nICcsqIBge/Q7twWR4JIxxlzCGPuNjiy/mNm56/OVwx48b8UcRhlungb2NPR72g9YgI1H/jxbPBHv\nVGD7wTii50J0IeDud3l3LcqcCuQ/UgMo0Oh9HJQ5lGQT6G5SRgG9LRUYTElj2oPWoCSAoBDJjfYq\nggb8Kw23bJeSHsRVaVKnB1qhzedMaPloDjo9WxOluT5E0sg3Gi1JlELZHhmJYGWmQ0AmcPKn+uw2\nJ1EmVjmCl5nWAxWw8S+2duUwCOgZbHhOkAhBeqCp6xR0N30U7RmcAZ5z4E60TJQZKGtp3d8fPHLf\ngQTwdrvXmIH/UlMvyDQCdp+D6keB+x3V0lqLaoXdb7mLhEGsWqz7ezeluZ/PTy/nke7hSoUL8gSa\nldQ0mPBl7m0anY9nyLk47i0Qw2p0Q1QfqOlnErkv+j3p43uaFMOYBIzpj37XtiISdKZHkOY3HaBO\nsWc7j7kl83cxTVla3iDNkhxkswfNgk4AX2FTCZjcn3Gn91P8Atz4BvDKHdzxdAEKTEMNgE75uZYF\nDE+wGHYxhn74zx76AVstzTw7oZ7mS1PwCeRCN6DhvKY2sAVjQtFgrzTyo1TycM2w/rUB4lpGECaT\n5ZDWgTnFRkLTXc+i2YbvvMgVRajhOUGKoJlda6Ciwcy+3Hy0ErJwrkNnpvW7RNQnaM24rUWwBqcV\nh5YU64ITqJT0IrpwevdHLLCeh9yD4PvM8D8brI4OVnW00fgJUNW9HxCJARbEEV3xQxqUiiLhR7T8\nMz9UkBCkCyocWM1g9gY7NglsKqAZ1MOrH+RnICv6Bc6Prye5SBV0UWzuz/8g1TDmZXSGQBBJRkeG\nRDbWqzw1c1SmW37omo/jFc6TtSEwDJFFiOTzuqfz2HQBesVcYlUHc32TV6xuxeH3x+HgHGDMq7z6\nJLDcYD4K8K4eAnLXW8VZlEqeZBPoKGuxB/AsNnnQUmSvFDSmQTcHH5OcXu8P1+L0NLjlJSv8Csp/\nASIDEA6TKa0BwtOH2AKUESSQX/BVLzO58AzPJZFxEMSjZ/Mp6m3ws/fvHch5jmzjRjLkZDm+OGnh\nLA7v4bZOoPc9BpxKfg64hJYlx6GBwoJsL0PRvrD7byj+gIO1xNEyxBSgqQXDEhlSWodfizK0am42\n9h9ov8cV6GOOlyxHEgjSG124qxl8BtWCQd0ClwHtpSpfoNmHQUuMjYA3ROjhvr9CaBm2PcaEUy9P\nGYx5E+3jfIAklVQXpDDwHrd/O4TWC4cDrY3hV7fkUwaP54RIkv6YY7N7x9Ts8fNuvj4LvW8+RPai\nTwIX1rHuB3SWwu8ApSd7AOyLMfQHXvLT/xkFzLS0R2gDS9zsJSVoQwAf66RvSKLQUtjKFJ7/SuA2\nCLshH40GBO/N2BWhuf5fRygmU3r1ISoa28Ticv8DHPchKtgWzGgnw+EOz43BrUELklWQ6bjMGoOx\nDUkZP44uJjuBM3k4UXI3d3syiHCv+j1aN18SQONpFzqvMQOKvgnFu8KmD6BoWQcrEiUy5APusbw5\n7yI3odnETqCFR4TNFdyrjZbA7gVm+wYJQZ5Fe2DVDObXsG/FJj+aZb0gVVmFBodqqPDe38awDZV+\neHqtRE8F513gdYxZE/Y1Ugr1y34EeBPR0pGrsfQeMefnMq1rV2C0MV4qpjqF3R8lAExEZA4iuRyI\nSsB6s/0p2e/M3fwmB/74jAT6522c991ooqejftvJpNld1AOy1l7D72hfKUkPyNEAWht40ZUiaYlm\nbylBYfQ84TSdKwAHMSaUiN/VwM3AL2EemxsVMPSmRP+XQaQDQg3LfU9aMwib4+hO7F6Cl5n+dN+P\n31LAFcY04J4/qdceXVyzofTVJPr9jtbhnkHva6gFT7uUxG5AfXBS4HdhrUId3pYF8JwYDSUNFGwJ\nS3o7FG/rYLVDS3gTgFaWdy9L5F40WMzAmD6+8wTu3EFtVNajDDBLhAhXIsRG2XVVDeENzgGeQbgV\nwGKpyiwuB4ckPQdXorzSRHrVL8X3d8zkqYz3PzbmE7QuP9H6SDqhNrJ/8GGDUuhMhH8ZDWO2oIOL\nF4DdUxs3njmF7tftpGwM8c8+x1KqUZxhsbfFvmI3s48a27+lqps9vAAMi83MAGC8N7XYbcpOAF6w\nbM6gG5IR7vcnJWiBZuPhLI4NuTbZS6DrUjgSG5CBSq5Amjx9/+0IVWL6CW2YpxXe8xDBmDOr0ZR3\nSzpcM9XYiMSWYMqnOfh+JsS3N9RMlq47kBPV77kdeMBKkg5bp8Bph7Ka7gYr3EbbWHQxmg1OG7cP\nBKzMAa98Cacj4dyp/pTaiJZwiia/NiBSF+W/P4MxARuVxvC9CI3RGnQCCdZ0cI6D1QDNHA4Hem0y\nKNvmbWBfu2IMRpuv1dDgkKwWbpBq4EQupNWqQhzeJEIDY5KoCKQ/jNmNSJUW77L97+uIu27Wo9Os\nyIQG6KBe4HKgMWeBzm2ee67HiJqdXjm6tmYsec9X4/eJLwKb5Rv5/MT+E38379P8EPAJNi2xky1u\ntYBsdVfxLZpB+ZoWNUYXutnown09gU2DgqENav4UDhoQHo36aiCtAeJfQ3O9lvE7kB+bmAC/3w9c\nD45fKeQUwBMg9gA5BQkUlDwB4qrBrUuv/ZkuRXPw46/VqJlsutirpHQKqJBsgQbA2ojWgWeGL3po\nOajuTknAtZw8cCdMOwjHs0OTGzuwd2U/2Olo+l3RT3DogLJ3GgULDh4Yw3agPQ5FmNCnMQUPP0HM\neZPC4GChO97cBTPTsf1NjEIzxVr+ggMiNwOzwGpeiMPt0cDyqYgf98F0hhiKPTULZ97kL+LO5b0w\nMJboR40JXat2IPuc0WO7J/Qsu89p8Nc3tB21jEyZaj/N088DM6/757qOcZFx9dG/+XZsEgUE3ezh\neWDUhSz0A6Z6s4YcraGPBfpZOnE+AW1Mh5ZMT4rb0NKVhDxS/wb5ULbdtYhrJoP4/zdA6JDa7xBo\nitm6hM5upFVWZDNQ2djGQtkVgTwgPgOKoXr3VxyCNEAb0VshsmoEcf2BFz0SHD4lpRe8SkqBMAQV\nHGsf/ruwzqG7yV5weix0+RJ+PPAQv93i8GyX2VCrMxyJgB1JRMxELESGoDXrqq7cdXgwsoqur+7h\nh5K5mP7MEVbXG5ACj2tQaY0awCPvVOA5dAfsj8oKIplRQcJRGLPdlecYp/fLWhGSW4amE9yNyYKI\ne77s1fOGAZlGMXh/bdYNDyrNcRkTn2H62WPxBfaxuHQjXn45Cy+/nLXkPS0/iI9grcFscGcmJqK9\nhpewedXdfFUBCrVawFb0b+srxtgJ2Gfpc9UL+Aab9am4xdboZxvOVLxnejpFviNXAm52nhW8hiiD\nw1eHCf4LEOmGjC8zqY3kn6j2/kYCBQibOHQm4orSXV0b0MkoE6iZVyP6AzRLaONq8i9AG7eVrXBY\nIlgX0YnYseCkJMgehtPboVk/+G7nt/zUeC3HVwFVLCj7HjRD+xUF9AbE4zX9KFAJY8IdLkKQCOBV\nvrsjG6MGjyX3qXg0i7PDOoHulPsAdaUq3d33UMOYgPz1seimJInhlivP0RCYKUJgZdZUQpDswHJi\nzo9jQt9+EThjPqVSebSp+64buPzCgUeEanXm0KEInGsPJ18nNnbia6/e1aXYAe5ovJyySWYtbL5A\ne24FgE9/LvjzaGD0X4XpBszDmL+9zp0DzS4GunpL/QlzWNMHFhogwh0yvFbpraDr0b40UFzhvwCR\nbgjFZPoJlfxIKzxlJgGMm3b7wxUtMwlyO5q5FEYb0YlTwu4D+iw6i/AFqqlf3gp/uhOw9rivnxeO\nwZCymM5sgRqV4fCXLRhetCTWdtwGv6WBdoeej0mIZEH7OrcBVQIogvqFGxymoX2P2hQ4OhT9LI4C\nzURC1LJ11uE1oKFUpQ1a/66RRD4jyQWlCUrp7ehP3sMYPgMqAZ1FmBDEXztFcJ+1ueDsZGX90ujf\nb6KXNIeD6jElk1lxoMhJcs2oxyrLIaITZGsE5H2JlyaX+oGXcp+k8dkczEBtUHsiou/Z5hTQvPT+\n0uv7tOtT4SG7eSRa75/kc4n+qNfDLpQ5Nxubn0k5yqFBInTJSCQn2ge5pqanvZCS8hIEDhD/0VzT\nAaGYTD+TvgHC8/AHykrWADVd9c8Mg8vWeQotf00BmhuMv8EiT612pwVPhCgpBcJElIIXSHrBhVML\nznwBZfJm5Yt1cezaNpWeuRvx/vcWzhhLB6s8sImIKM+GDV+gX4R64aqxQmJwmI6aJdUxmNNuo7YL\neo9fAx1cI5/ksCmONso7SFVqoLMa1ZMI7yW5oBTHY1hk/H7OQCLD6QG0z7NYBH+MrpRiMHA9Kx7e\nRYRTBngysSmtg3kt0cC71pWeABIF8+bWY9WfF8jyAVjfACOAtvdz/2jgoxqOWYsxM9AFtyWwzlXJ\nBRtn0txJd3Zb0+3FS1EXRrN38Ek2mSNe5y+M+mAMweY+lFUWrhGQLzzZQzi77lrANowJqlJ7FXEL\n4VNc4b8MIkNxJZlMD7p9CCHQPITNX2jQqpgO1/QLQXKjmlddgSoG87qvHLMDWRyYhS4urYAabm00\nFbAS0AV0EDh+aMNOBDhD4fR8KH7oPn7ZdRZuj4SiOylb4kMaRuPLTBHJx8iREUyaVJQWLTr7+kYH\ngxscZqJyLnUNlxcKY4hDqZIlUApkDxG6JDmBahGtAkZLVW5BDYiqG4N/NzKRTGhtfHQ4ZkRuY7sO\nGvg+EiHVci+C1AM6Y78whhxnBwOPGOOjaaR00yfQ/pMgUsD9TY8ZdCr2KRVjYHt/lBk2QpBCaDms\nr9c5fkaH5ATYiUhLQcoCd+fI+tAoyi/4hzM//oQ2sEu6r3oBmGPZ/IZuIoa4MvkpRSQanMItL9VB\nM/VrFemVQfwXINIB+9CIHQjpU2KyOYTqqtyFW2YKcnSGlZkEqYhqIx0CKhjMd77HeMlz50Qd395D\nM5t+qb+ytQ9tWs9LKs7n5AU+hOO1ocDBfhw/9pnKZMwFmtRh3WG0rt85ca5C5E7gEypWnMLZs4s4\ncmR0uO/CVdSdjf5N63kHBw+M4Sxao34Y3fU/K0IHAGwyoRo/61xl1t5ocAhGUR2L7tB9yysBYQye\n/s3HwDaRlD+DgpQA5lL6685U3TwN6GBMgJ2pNmt7okFx89RGjWrso/jzXXk1H1itoWI34PzrvP46\nunHoYvCRIzcmDmNG4fZw9vyPZadyMvW5F6lLVPZDxB6ri/a5PqnUkT5AU7Ss9CjalJ2b0nv0XBm1\nBQhd+lRRxNro83ytIjUBwlca/j+aazrhAHBjkN/vBwqDE9prODSuWh/CFdl7FpVW72UwPQwmWY3S\nUZbJNnQRbWmRuKMbCnR10mbDOgN9kAe6VysLfAF//JyNfFEruZhtLNxkQR0Lplxu0ll/ov7ocxm2\npxm6aA7CmPFoDbsxWpYJCq/gcBMaHAJN/GIMh9G/QW9UHmLUho9phvYczq1/kK/QgFfDmCCS0iKP\noHX+Din1G3AZTkPQALNFBH9SJP4vi2QD3iM6dgSTevUHZhrDqhAXdDDm+UyxsXNHt3xsVaXMW07H\nE/WSmwH2Bjrcwi1DgS8DeWG459k5ry2P37yPvC3foQuq7TXBZTnNBB7an5vhVdvzk6XEjDGoP3dq\nGUXhKbcqSqHPVQr6aFcc/2UQ1xCOAzHY5PD/ayuO9KG6wmXhvv0oRbNkgOO2k450V7cksBZVEi1n\nMO/7HuNAlKPDXZOBhr7y3JYG0vko4ySVsBy0lNELnBeANbD3hXu4odq3cHNd2GPBvZbOWPi+divt\nfl3MPScXcjTT0xjjWRBOoOJur0PAeRbv4HAjUN9gQkpHG8OPqETFi0Cftw7wRvYoqi2ryOKoCEaj\ncw6Ba8Xad5gBtAzWdwjjfcxCS3Tvi1yeLwh4Wd14zAa+ZE2dm9AgPyLc612sXTtbidHRxw+XyF6E\naW9/BLwJ9BUkH9po7hHqHDcepE+2cwy7kIVX0GHK8h6mlGOTde80Tmy9kUPAN8B+bC+Zj5QhBt0g\nvBvm8XWAtdegORAALqX8RnSNCBf/BYgMg6pE/kZSJztfpGcfooqxDQQrM6Uj3VWQ2lz2iDaG5Loz\njnpirEcbo2Vdbwh/GAW0ctIWLI8Ae4FBsKZxZ+6yN0OJG2CwpXIZ/mvQIm1pd6ApL5VaRfNKrX2G\n795DZVH8so7cnsMsdN6loa+pUTAYo5LTF+J5dcNhLrx1H/lzZ2IiUMcYkpXnvN5vJuAd4EWMCfR5\nhg1jWI0O301KFPoLjD7ArSx+dB0RThPgcWPC2507UGEn93b+ZE+DTLTd35+Plm0id+7D05m+EA3C\nA0INEQpSEp0LeQ1VrrXRkt5nUevX3wmMu+4Cg+Mj6IRy+O/Bpkk4788P6qPPt//+T3Jc6+Wl64Fj\nVsoYSP+xmDIYvxG8zJRefYjf0QXwDjK4DyFItCBj0J1kG4N5wVdkD8CByiiFdQtQ11KKp19Y2kOZ\nSqqzCOdG9zrHs3N8yzyGrhsKuWOgYqQqePrf1Yn0A0ZgYdiWrzlaIuqf9DboijaL70ry0ssN6VtQ\nr+yUmM4AYDZxaN4BMs++j9hcmRKZVKHYRSPRYDgxpdcL+D4MX6GltC4ijPVHgxWkOtCfJ17vS77j\nk4Bmfgf2/MCBrOeJebMmG84mENmXgfd8xQcfxDJ7dmmnZMlX0Gx7Xhineg6YYoQ8KGNoMpqJTYlM\nSNj2YuvWN268++630bLlfHQjNB6bCakQqwxPuRVwKdEPAIGkyK8FpLS8BP9lEBmOUH2I9KK6ggrI\nVcRlMgXpQ6Sa7irIjWg56250tiGZ9IA7Fd0bbbg+banYXrzvcX7wCtDACVweCwCnBpqZLFpP1Is7\nKFQ5Mzdkrs/2ppmUUurnRsRCZCxa1qiMMd+BdQFtbvYCp6bX0X+ijKvXcSe/3eDwGvpewyorJYN6\nhb+XPYpRmSLIg24W2gMrRCgd4H3XRplfKe47hIIXDfYB4C0REntj7t99AfmOPsFjb08BhhjDFyk4\n/UtPMDv2JNd9CXmXAvOIjW1fc2ee54r8Sdex/Znty3bzhSA3o7v6KUB3YC7GnMYYxzFm/s5OnY6P\na9HiH/PyyI/IlOcxwMZmB6rAehuwEZvrw3y/udBM5b0wj68CfI1JbmR0DSGlASISyI4OtHrjvwCR\njrgyGYRiG1DJVQk9QyA58VTSXQVpiA4LrUAXxWQZgaMP1DsoS6aClQI9fFcxdQJhG6A7FjgDUS/n\n1gex/i5L/PYPiNvWmndbf0n51/yqt6r8wxsodfLBpJLM1kF05/imjzz46+iXorsbeKeicw5BG9IB\nYZMdWFG3EIvb3EhvlNp5xP1vN2CNCLf5vO+CqBZUW4wJV6QwRXCtSmui9ffVIuQSJAZYCs54Fjdv\ngTLVZoZ7TgdqbaBG83domQd4Gv4eC2wS5IPBo2n9a3FmrK7HFF9PCT/oD8wwgofa7D0x/sSdBw7s\nK/T33//j6ObC3PdmNFXlPgBs/kZZYx8CX2BT0/fEfvAwuhHyZfAEwrVeXoKUB4jcaFXCt4T4H4sp\nHfEbAfWYgPTrQYAbINz/30g6lZkEySTIeHRRfMRgXjIk15lxd/6fo4Y5DyS6rqUMUwDjEGAHfflq\n2dF5iyaV2Fr5LNZjCTDtcVg8AGomkGkROkGbtIGqDnBL0EGqmhjjR/LZErR8s9hLTDEB1fUZcpKT\nc9GeSl1/VNaQcNVZy+bml/630RJoZwwbUL59WbRkNRhYL+I+OzpFPB94A5M8a0tPGMN5VHLkW2AL\n2c+8AfzKRzVOo/f9TFCFVi84cN1Jcr3xMCsSHCKeAusuNAj2RrO3HHfvpjtaJnoLEb/GVoIURGdI\nJrmv2+AxQXKUxvo8MOi7Ax0q8eO4zCRcbAq8hsgURLJgk4DNiygraT42Q7CDrk/NCa6O7IvaZLyN\ncVqRmgDhjwDxXwaRjgiVQRwACoETkCWTAnwDFMYmH+nUh3BF2LagWc69vr4NHjj6Bf8EeMWdik5V\nE8vS4DKWANak7tVuRdlYp/ZyZ/tNVF66BRpXgLkrdffvWby6AW3AUR8MkRzoENoF4GFXDiIQxqLz\nHIl+CoL8NI5xP57i1MNnOVvHEP50tQ9Gl8hOoXGlqWBZdHWbxN4zEp1R6ZHxaJAogA6OZSfs7Cpt\nMIZ4oDuTu/9A7pOPsqDVB0Q4I4GmxpASj+XJj7LkzHmyfgjWJrRv1UmQLCiD60mDiXM9JeoDsxBp\n7uc8PYGFRjju/r+3z0VXYLtlsxP9zAZRu8l6VJ8sP7ADEd1w2AgqnfEQ8CE2ef1cKxfKCAxPT0mn\nuwuiDe1rGelBcYX/AkS6IkSAsOLcY9JOdVUF2c9QYyABqrq1cn/w0F0LBzqdII3d870LNDIk3207\nEOnoQNIkoL6ljJ604jXgfke/yL5XbID2WqbEEbnydr7dbEPuevD2IV1YvXa21jF0MXmDF7++Hp1x\n+BFoE3o62nLQfkBtcNq4ZaVx93Jvph70ONKQhjVSdWc27YvE0GLGvRSxLAYbwxLvX7sT0w3RTGon\nsHAXd2+2SBgAtPY2wslwGLmHZU2q8dSs0RT+ay7wikvPDQsOPPoOLap/TPUYlP00Fn0uV6PloVkG\nc7lHZMwOXDYVIo95/tm10u2ELv6NgUMe9paji3l/NINojfa63nHPdwLt14wFPkKkOyKWa6BVA2W8\n7XSlOLzxsPs+w+0n1AbWYUw4fbariXQIEI7FfyymdMXvQBG3rBAIGdGH+AP4Gx/mTSKU7roBP3RX\nt6Q0AS2zNDSYCf4aiI7qKK1GA1I5S8tLaYaryTQKHSLzXM2VzGB6Po42cbBKWCRMrAl/jYIPHQ0E\n/soei8kSt58deb5GRfk6h/9Ftk6hTeuJv5NlOlAzgoiHTnO6ExoQUyYPYlM5byZennMfRFi8bAxz\n/B1mDLuBx4El2ym/zMYu3JfxRwXjX6gvAyDIdcASIuK7U2VLOdRJrbcIDUO8FAAHCvxFwWltmZ/Z\nIaItWOXR7KiP28u6G3/zE8Z8jfZAxiLS3v3Xp4F1BrMPDTTe2UNfYJVl8yu6Uenj0ss953MwZj7a\nb2uLCgfmx+YSNgPQUtdKbDq53hvwf7C85CrbZgPC9yLxn0FkAuLdjW2ac4f6bAAAIABJREFU8V+A\nsLmILtSFghyVUX2IFJeZXLbKJi6XlPzy7B2VXN6B1vkfssLXlw8Xs4E7HHgAnFyoeF3tcfRreJQC\nL16C0tfDn6LZRHcC0lg33sq8z+9iVeHMmGrvpZz5Y+0ey9cbHWj/IYWbGMzf6OeznhQMiGFzc84o\nlsy7j9OZIphtTHBpDGNYm4Blr6T+potkXlafVV+iAnsZ7ivuZp3zgA/5qGZR1Dq1BerFMFMkuFOa\nA1YC1rR6rDp5iUyvg7UbbfI/JUgc2st6xt+0PQDGfANUB0ZmXyGdUSHGsYiUB4qgE/s4KvndFS27\n9QI+x/byDU96zp9RdtY3wFeIaKPaZhlKx+4BzKYMBUlZeSkKDWjrwjr+6uFmUibzDRlMcYX/AoQH\nofoQ6Ul1/Qwo53K+NxJIuE+xBqjlobsKUh/NAt5DS0p+Oe6O7m7XAgMs/Un3socFF4HhZ8g+Hr2n\nP06Qe3g/xq/6Bz6Ogei/4DtUITXQjEMZYCP5Y20uRHYG5qTUwU+Q/vdxovRz3LVgPCVf9hqiG4A2\nlf2UwXxgkzNbJCtfL8f5bFEsRecYQqIGH1/8jtvjlvBoUeAp95/npJdUdxAMBPKxpOlSVCOrpTFc\nMoYd6OL5vAjPBTE+aj6TThV2cc9FVDRvHJqtrkEX800GE3y62ZjvAVNzAyN/v56TBrMLXcSneJXZ\nngUWuD7TfYFBIc4ZizHPop7gcxEZi0gmbH5Eh+5iqMlnFOAzwi8v3Q8cSIkU/FXCNTcDAf8FCA9C\nzUKkX4lJtfJ/RVP4jUAVVwrC37GHgP1ZLmapLMiLqHhcU4MZF4ClFO1oaWUoYKyUpeEpRk5OHT1C\ngXKDGPWhg/VHbk7NPQods0PFBBVQe4rkFDyFyANoEOuOMbNRPZ0DhO8pjCA9UJe7Gr+T9Rl0EtUj\nKngMDRIzCOa9bhMZE8E7U8qQI18m1gEDwmIAiZQAxp0ja/VsnDuPzog0Q5+jSSl0pQsb7jBcD2qv\n6UTev99C5bsT9aDcHkQlXEaRb7ByoOBvFJ3SnSlZHSLagVUFzVL7CnI3WuYJS5hRDPu6TOPUpJ7k\ndR396vH/2jvPKCmqrQ0/NTPkJCAgGYyoGFBJAsIhgyRRRDIYEIkqKllbEQFBQSRIkCRRTIhIZgNK\nMOAHRsQIGAiCIpkJ9f3Y1ZPoUN0zBLn1rMW6157uU9XVVWefs8O7Nc0XW9UJOqGuyIHAm/j4wdWX\nNGYNGsAuB2xC5Ep8HAPasZWjPEQlfDR2NdZ/wL3kkFkGItNSXMEzEH7OZaorpMQh/kR9jjcFe+Ml\nxy7ZUPfLurPR9MVbDCbgFt3Zzq9GDVklSwN8ZwnbAnvgEfK+9iulR73A4PuBxv8HtxfWzKRDaB58\n4FiCSD3UDdEhpXe0ZaOTfXeww6TQgiAPo/7uOgbzm9PB7h6gL9h3OG+bjeaJ9wg2ThaLYcNvoGLp\nnHxsWXR3aRyyoLUdQ0+YO7ejgdbb0UBtU9Ql8kzYcSJEkOLAXOLiO9B/5AjgTWPOdLUYw59oYdiN\nwHx/QZ3ftdSED/5NIMs4sH4kxbV0FDWmA437WEqLLAns334TldHfYkcq3amngSmWj2xoMsFzQcYI\njNaRNEdVXjcj0h4feVlLKf6hFTAFH74wqbDg11+68InWQKSvA/F2EGeBcC6m3UCRTEp1BZdxCEHM\n04uebrfpmk1xaMFXQCkMJ5voc7QBUFMrcOpbJpFc39D8PZp3qYO0BpIOwuhbNGh+AnVxBXZribRA\ndwstMSbdg2v9jrolZoAd1JcvSCdUTbWuwfya6vN70MloHtiFUdfWI2gGTYn048Q9S9v+5ehxXV62\nx1h0dFJH3TAEfTBfBTCGI6hh6Icah4ZAWxF6uhwvLIJkQa/7q6yqXwGNOwR12RjDYec8YoGlIuQB\nWk+ke5WvKX8UDRiPRn3zK9BAczxaoOjmfCz0+46Mz8qfqABlMUQG2FoV3QLNTnoOmOAUf0aGBrDH\nozGEwTzwwBJiYzcwgZXoPV8bWOL06AhwklIQFQsMHPe4sPBcTBcwblJddxG6d0QkhDQQjjz3QGDe\nFXuvaHcw78FcxmcC5YNj64T4IdDHgiEuJTOixC7rnPuRf8kzrTnvzwUGHoVH2qVMLG3RieZMRNqh\nbrJGGPNRkIPMQDWhAro5BLkXzc+vZzAB2lNay9FV51ynzekOtGd1mj7Qsc9y6yNXMK1KAX7MGkMz\nY3DXdEikOrpTSCOl4bh5WjrnXxh1bfQXIVDNQDSMAA6xvMF69Nq0NibIdU45p5Ooq+knK571P+Qt\nPf4xxvhdSzVQA/KEIEXRupZugVyXwYZHs8QWo9/7OzQTqXOPPn0WAWMsHyWdY4yO+Num/SLbgVvZ\nuLEMffrcisjNjsGpg+7uP8MXMBuwLrDe6Zx3oeMZiHT8CnyJygL40y8LoNknO9GVTeCVQeYTbgcB\nmZvq+iOQA32A1gM1BPEHogvgSGUAtzU/2XyF857aqQdw4g3jUP9uLUuziM4itgE25+fQjCSs+Dwc\n7Ys291mUF1qcgNh9OjEHnmhFHkYlxetgTABJbz+WjU7Aj4OdRopEkCboqr2RwewIcbI+IAta7Qxq\nUMqDkwLq47IOpVhTrzAHcsZR23VhmUg+VP66a6CgpzFsQdN5l6CFdI2B8SKupCOCHxZpDtxNx1mP\nku30fDTusNvNZ40hsfRMuhVeaeVsU/r1vJdcum+q41qagu6uDqPxk6kG800Ep9UPeNExKL3Q4PQf\nM0aM6LmiYsXr8yxdmg297sOi7BSX/otkYceOS7jppkFoa9Pe1JQEfDyKGre1+Gid7lP/CfeSI/Nd\nmshkvuEsK7nC+TUQNprBUwHNNAB1L6xCt6hrnP8+F7g1EJkTh9A88E1AVcffuwe4RZDb0OKrnUAt\np1YCNLaQPMk49Q0rnfOpZKnkwlnCtsDuDsxvw7xHD1GwraWGvJKlq8bXbCg6Hx4uDINsAgRnRZ5E\nf8uaTopkGKzdqA97qtZXJAdnZwDN0hRvBf58AhoX6OYIBZ5EJ8Px3EL++0qy8a7i2HmyUNVp8emW\n8Wg/gaANc4xhPmooF6P3TCtgngi3RHCcZAQpA0why+k2dJn5CrAwUNwhFGVncd+K0b3z7Pqj3L55\n8y5vXagQrwKbgaWCNAQq4jJzyzmnW4DrgbmI3IIGpN8H6LxiRZ95zz//zNGTX3UhLk9VNK6RGWhx\nXKdO09GdSgdgMSIF8TEHVY4djo/R+IhzusfV5z9gINDU4INR9Hy/qHcQcOZk0owUSeFZqB/zXHAQ\nyBa8cRCQuTsIONPN1B+te3jSYB43mNTug9Vouqtla0D7M7TSuqnlXqwsCuysaNX0I6uo++Q82o0F\n5gP3Wio2OBadKJoV02rubJAqu0QVWZ9FGwXVwJhImrFPRhcR3ZxWqQuAVsHqPs7E+hOdRN4Auyi6\n4NjUsCVf3FeSYlliqBS0j3QgRNqgE2nfcG9FV7S/olXrG9Dg+wcikS0whOR+1iNY2aAaGndwneUF\n2u/jZ8qOe5JROf86WLzRkiXxM+Lj6TR8ODMFyQlMBHpE0icDzQ4bYzCn0N3DJIxJsPV+vqHw3h2j\n+XrwX1z+8ElqSgZa1aahFf6sPL2PqqHP5P8hUg0f29C4RHlgJYc+rYEuDAK4IS84onEvwUVuIGx0\n4vuclBzyIqRUEu4jYy0u3eOucVBm1kKAYyCch7Q8ugKqZjBvBXjvd0DWzVPpgV6zAZb+O5vxhkLA\naoukoofJu6gua0YCrS142bHqL6AB2cbAUUvTWZ8DnrbBclZwI1EjfwfGhOrbHAArCeh6Df8OS9TV\naSeDWRfhGGvQmMd8sONajuNU11sps3w1nRrXdZlyCSBSGk0fbhtGHwrQdqGoYF05NG32HdRorBAJ\nWZCZnpHAn6yquxGdlNuEizukxgYrkZiJjfnwWAJZRoL1w6uvck/FirxUpQrzuPKHqcCnBuNa5VSQ\nK9Dd7BRECqEaX375lueA58o+ShPsBItLq98GdHBSYDPCJaQvjtOaib5onc3biAygpvyDumY3c/jr\nxZzc+8WF2j0uHdEYiBg0BnTW+lH7D3K+qIajuImmIdZI93ebyKoKM4qbVNfMNBCfW7ZV/njW41vQ\noKxNEHVV24c1413+uu4APrQqekEmnkegI94EfFqEvVsSiU3Iy5HGqEtpvfOGQag/vwFpb9C3gdzx\nsbENcVRfAYOJToJCWGe/zPa4V7jqV0OtaKWahwHxVdr3fL9jOTpOmcPs117kQQK5wgKehMSicYfR\nGONa7M2Ja7QAeovQ1Bgmo7vi5SLkC3tY5C6gBXe/1Zu4xPlAd6cfRCTcPYbHqu7k6v1ooHgA8POq\nVfRj0T192VekDS8/FmmF8aNovOIIujN8F2P+sjWttuwztZiHLh76Ub/FH+g90D6DRiK49pIxH6A7\nu8bAMmpKQXwMoljTPfw0qT4+2p/xmQuPaAxEXlQ4M/0i8aLZQfiDfAfQAGsldNfgX2EVJbg8hC/V\nv1qZdD5uUl0LBexfEAXik7pX/XlVlmUVlq1BM012E6AewtYb4b26P5P1xu5ssjSofxaxWwKr2zBv\n3F6KNnU6ydW0VLMKVBunI7rjSdPzwIKk03Fxz/9StOhMy7YroHLdrjqapcdpPrMyBrv3EornhPD9\nmANjJbYdetuEJ9pNarRoY/XZy+fyIOrzvdvlAE+iD+FLkR7ZGH5zjvO6CNej0h8bgfdSN/tJj/Pd\nJxOT2JqeE0YAq9KLBobDhgI/U3bCAIbnsInpDNa16EKsuyAwsUdniv75EhW2DROhk5sxHf2n9sCr\njoRFd5xUX3SHNPS5WnREY2qrnIvwJxk3EinupUBovxCDul6/QKQR2QqV5fTf9dCmRC9F03zrHHI5\nhOhvHhg3Sq61SDtXRsz5MhA5IdnfnwsNJn2F40pwXu+Eo+kSAF+qf+sy6ZzCpbomon7lDKW6ChIr\nyFBg4vGsx98e32j8Pkdo72PUZZOMrUHoLcBv9TrSYNclVAsjKpgBbAvswcDY92k6Yh7tBgIvWdpx\nzp8m+DAqp1CHFAOf6stJXK5ly5pkjY/Pvat165HRdu8SpBg6wQxvRM0ZwIPAK2Dnj3Ss0e9weYuK\nWxcu+6HY2rnPftTQqY/ojmbu5A59InIzWgDWKVolUCezqS96bxdAr99BYFaQtqHZ0LjDMNbUvR4t\ndnss0uMmYb3UgvdOJpBlFFjfo9pZg1BDfy9wKTuvGYBOrENd9LoG/f2XGMwf6Kp+D8Z8YetEVKJ2\nR95BCwT7pxPk8xuJDoj0i/CrnOleCoQxCRgzGC3QnAMcpMK4rejCszyw3JHZvxDJrBRXSJvFtI7/\nqIEogvYw2Ibq+HyAZuWMQFemO9G0zhHn8JzOeqqrIJeiNQvVgdt+u/S3t0kJVH+Mut0AsPX7fwy8\nakH3HRPYhe6wbo72+MGxcwBzY0louo/C7zblgz6oNPi0VG9qjxaI1UVXiGkRyQosSIiLK3DJ0aPd\nSx440C9gRlMYnDTfFcA0g5mor1qbUf2pUZGMtWQV+Ypl5/NNB/nu9UO/1UWzkOaCvRF9eIKvaLVx\n0RtAX4xxlVIaDGN4A3W/LUKfufaoLMiLAd4+CtjNynornL+3dhoEucaG+lPo2vQbrv/HGaMPcAyY\nJkgedDfUw2ASjGEH6t7tJcKQYBIhTsC8FylKrb2A8c5v/CwwVC6nJ/ARvgCtTtVI1AYeROTxCL5O\nZNLexqxCXbBJwApqShbU/bQVFQsMqlpwHrmCzDUQ/3kX0y/oRHczat2HO68fQiegq9FdxVnM0DmD\ns5rqKsitaEB+G1rktQ9NNbzdkTHeCFT/hU6Wra6AeUAbS7OI/KRJd80c7KLAuqL8kfUk2f8uzIGb\nOFMavBnqw25AoK2wTqbvoJpHLS45dmwOmnETUU8GQXKjBnQ5Zy4OBgL1nXqM8GMJ2Y/E8/n2wyTO\n+pXbnRXtcNRdNBh1HT2AVtoGYii6UJkTyXcIwQD0wR3rFLA1BxqL8GjyOWvcoQnVP+pOloQFaF/p\nSGoTsCH3HkpM68MrcUnEdgarFHrt/LpYTwOrDeZj/2ecIr8aqBtvdBAjcS+ww2C2IXID2p3wbXTS\nL1rhYZaiO52ng56cMb877++JiJsdC4RzLwWmMlpAugn4gppSAx/90OuwOkC9xHkjSplvuMgNxIXI\nWdtBONIQy4C+BtPP4Khd+vgNXdldBfxqEZ9UjMVzURdINUtXTqnJZANhVwA+uZMPPvmd4jfFkfg9\nUC+dNHhtdCfRBAJMViI50Jz/Y0ArjDnlZFc9DzzjdhfhuFbeRTWknjqzv4Xl11SaEi4OJELs/lOs\n+PEYJSb/TOW/B/kL4axENPW1G9jXoEZgPOnPUaQm2vnu4czKgnFkPNoCRoRuxnAITdB4QoRWgpRG\nM67uY+jTg9B7zXVfaT9JWMPuY4F9mmwTwdrmjDEC+FGQ69GJ8ww3jzHsRV1FtwNTRVJcmY6sRl9S\n4jA9gMm2MfHo7uHZbUV5FJW9+D7MhdiD3lOPI9I9zNfJQyTS3gAiBdAF5haMeRp1Oc1HZDA15U3U\nQzESH8Nc6DidC8oCv0Qo8w3BDcRFk8V0ofEb4RsHRZTq6jT2mYBT7WzwC9OlYTNwey1MwVvpliWR\nnOWAqlbgoNV6oAo+MiFQbrcEVk6i24IPaNrGgqGWynWkTqOsjFN/AAHcBiI50Yf3L7QLXOrPLkBd\niWFX/E4V+TzUjfBwoOZHirUEbRsZdJUqgnU4nul7T1Bl7A+0/GdQ+q279QfJfuqvFqI7nXtTDZAX\nLXTr6gjGZRqOPlIz4FkR7nBW7k1IiJ1Ann8/AEYj5jI0Q+wht32l/dhw+3zadPiEyifRlNOOqA9/\nrDPJTwB8zu410Pn9jU6gZVCRP7/0ei104lmOyCVoUsVkdLFSsNRjrEYXNe4E+Yz5FTUS/RHpGuKd\nDdFdQCSxrJrApuSOhMb4dZvqo1lOv6NxiRrAe/gibCqV+WRmDQR4O4izhDYOOkj4xkGuDIQTaBVU\nJK6SwQSrdt5U9Ah3Ap+cpsC2T5m11SKINIFKhX9FStwiCmwL7EExJI79lmvf68bk+4BGliqfpqY8\nujPoQkp6awqS7A76HeiYvtWm04PieUK5HEhenU5Gs7XaGcIGg3sDDzipuGdwKpFnDsfT6oUdDD00\nUHtJn4m1HJgP5adBbA90ZexPmhgDrHbSJzMdY/gR3cUsFKGkMWyjx4SVXPXD1ayovxVd8bc1JjL3\nqg3Z91F45oNMsxKJ6wJWbjT+0BX9Ldqg1/i1MOfn77udFXhXhBzo7uFlR1ajI7DCNmYfTt3Dnnw8\nBSzAF0EarjE/o0ZiCCLBGhzdReQSMrXR1rWpj+V3bX2BupyuQY3bH8BmfJmq1BwpnoH4DxGuFmIP\ncCnYOUMNIkg1NOVuOXCXIXg2zwurId9J7gKe+ZJR/W3iqgV7r0MG3Ex2NmBWAQ7e/S95d1zLjmuA\nitaZu4Mr0UCxtntMj0ge1GX2E3B/iAyfeUBxW1d1Zw7j9JEGrkOvkwtRNWsfmo3zml+Gw8+atXQ5\nnkjfgV+xYt8phoUZaDBQGBIqohlTzyDSHN3xRBJEjRhjWIkGe9+VIvMbsvMaw4PTHidr/FJgljFs\njmLYQZ2Zme0k2WeDtQk1evOArU7P6FFoYDpsNpYTI2kF/Mv3V68FuxIwxyl+7IbGxRoA+S57go/R\nRUS46x3oQD+i9/JQRDqk+2tW1AUXVNYkCLXRqvn0x0rAmAFoJtYiakpvaorKr8BGfJkd23NNRgxE\noEWEZyDOIm5SXX8hSKqrIJYg3dFVz0MGMzSYOqatqnSP9t1E/50FOW35+AAVLywhSEDlVgeV3YgY\n+1JgdUU+LXyAQrlycXwnUMc6MzhWAp0wn0VlNdKignUrUP2nh0Klfzq7iGEE30X0RyeaOw3maARf\n5nU04OqvwEeEBqeTGPvEl/zx+0nap0mzDHx2p9GOcwPhnXnkz9+ZhISpaErrkQjOJVpGcyL7brpO\neZuYxE5cuyMHsBdoJBKZ28OGGxfTrPcq6gHWIDQ5oBaadQb6Wy43GNeGx6nYbs+MLvm5++2TiMmG\numWsZ2bO3OCM6duXm4HA6/gikC1Je6Dv0fv5RURapfpLLVSJ130nOJHL0PqpbSGO9yHqYmoFvENN\nmY+6GOfgow++s9PoKQRnYwdxUYj1XYhEHah2gqxTUV/s7QbzYbABbF0dTQbuz5pE1aQYPgWqOMHr\nLYR2IW0BrsZHKCOS/ojlgC19GPvHJ1S+JQb7RQt6WmfKchdE040nEShAqv7nlWix3iMYV9LQc4Er\nbY1npAyFPIi6PxoEa50aHCsJXckOBbuICLckJDG/31ck/nyMJk73MTfj/AL0gBaTGPXyPlauPIpJ\nye45qxixuOetnJT/+ghr6tZHpTRqodlsrntb2xB7iPzT2zMnIZG4B5xFzGto46ajgtyIBtwjF740\nUoBPKhehxXsrgDXZONkbmOybNasRkDPPALaik+vIiMdOcxzzLbpbGI9IE+fVFgSvgwo6EirvHXqX\npGnLNVCPwFZqyr9AFVQeZRq+5NjLucBzMf2HiMpAOPGGdeiPViVwnwLF1kl4BbrSqWZpn4nUwn0b\nSVcwlwYfp9H6CFfpnmDXtUhav5hmW8fyWHULWli6Ak+PP6bwPoHy80Xyo7uXzUBPl8YBxwiNIlVz\nG0FaoBlEDZyiqyiwvgJmXn759teSbJYO30Hil4fpgtu2linjLKLjrt3kvLo4r7wSj2r5nAse5Xiu\nfMQl1EVdWlOcoHUvdOc10WXb0u49GV/0KLnfBWs16n7bDixxXHivAs8EazYVhkfAeosSv3f9jeIf\nxZB0V8+E8StwMpeOZuNpYDw+Mh7MN2YbGpyfzooV9dE04IzHH4If7zTG9EYTSFZSU+oRl7caWsy4\nGh+FIjx2xNg6/5Yhcplv0OQDz0CcYyKuhXCURj9Di/3uCeUqsVW8bQvq82/hKKJCWgORpmAuCC7j\nEHbXHByf8wtlv2zGkiuAKpYeKz1Z0Zz2rwjUpSzFOGwAHosi9fN1oIoN5QW5A92dNDWYnRGOk4YB\nAzqMe/bZu++c/n2uhLUHmIqPxREPIlKczr+WZ2j5g5x+YjEapA4qg5EZOLLu/YE2FPi7B5rM8KAI\nZYwhAc0SupUQHeMAbCixgRpDF9EqC1hPosq6/mp30NV9XqJIlxUkO07FuTHYHZjze1l+2X7v6bdX\nnyhG7lwD8a/6Xw49UgQY8ynQkp07F5I9ezxahxIJdXBrIFKOuRDdTfSh2uIJVJzVAS3i/TRIE6LM\npBhwyMJlP5K0eGmu5wE3BiI51dVxkywGuhrMsODpmWDrzbseGGHBk+mUWDcDlfCRBa0sr+A8oMEI\nYyDsGLBHl+Xnfn9x6YHS7N4P1LACVUBrs5LZ6E3ajfT52CnGYT1aVRxxXYCjcz/2b24eDrwFtDWY\nM9NmI0CE7PXrz5n/Xfw/P8/9tEIB3ljuup9BqkEsYCoWE/gu710wrAvk3QUpxWuZjVPJvADogZgb\n0VTOe9BahfdEyJkqk+hhEdoGG+sE2ce3ZuHpBLL0BOswagieAf4QJBe6c+vtJjAdgHbAFwbzLSIx\nwMPfJ5brXvJN4j+bRkErB6OBl5zMuszDmI955ZVlNGtWCJHK4T/gIFIWlfCJvDeKMTtQF6hFzlKb\nqSkz0SSGtficJlNnh2g0mPx4LqbzwC5c7SDsqwSZiKb/1TCYMzN9UmGrltA8VC77TPeOj4PojVLF\n2YF8h+ZuB+NrIA8+ygY4Wk7grQYsr/0DV+XMyYnZQPsgzUgstCtdETQNMm0faTUOq8iAcfDzJSM+\n/I5BjfOw4zmDWR3tOHpaxABzfj8Bw3cfzMnbc4WfGjwZxVCdUVffC2B9CQyDjwuiVdZFM3KOIXgV\nbTf+MTqht3fqI15BkxReF8FyelU0AcaKcEf6QWxoMZQh1Q5Q6HO00vgh9Hn2p7H2AzYagrZ2DYrj\nmnqMlN1BbeDYyfr1c5WZxYnlfzM1SwwNxt1MtAq7ofnxxwrkyTMIeB+RCi4/ZYC1Ud+jKuPeCa0V\n2UhNOYZe/9fw8dRZCl5HG3+wUBeTl8V0jjlEmMZB77DxZBbsy44SWxqobDBBK0dtiLE1gNcPXcGv\nC3HsZehqEsK5mXwkoav6dFIWdhFABjO0yDIalYgl6QELRoWo0vSh3bmakz7zIcU4fEQGjYMghQ9R\n+a1L+WjVrTxyfbTjpOKlE4mU7PIZ19jQin9LPQL0Avtq9yclJdFYS+dUBX7j4Ia90Px7zoIOmCCt\ngaqU2PMYWow32Rg2QnIPiYdRCYs+zmtfoSv5RSJc4x/HhjzfcN3E0TyRNZG4R8C6DK056QokOV3o\neqCB72ioo4dJThftBrwWl5Q0GHhh+A/cdPMlLLghHx+KcF3QUaKjHJCH118fh3YBXIaIm2O4jz8E\nwxgbY15DYyHjqCl3kfXSami22yx8hNrVR0O0BiIPagQC9QbxDMRZI6VxUMBdhCA35yf+k9wkHLqb\n2wcaTNBeu7ZudxehE3BVK7w/dTnq04UAyq4BSOdmsq+LJWHLEpokPMfTRSyV6A6aSYUGQ9s6x0z7\nPdIah8czaBzyoOex4GrGdQRa2xlYnYvQK8mmYZtPyBVv48PHJ2DtQdNpJ2ohYNhB1LUE4zCp25da\nSUBnmHUFZGtMusyrjCBIKXT30I43Oj6AxgaGpn6PI8p3NzBARPujGMMqNBbxoQiFAZKwnr+PBVY8\nWX1g7UJX+q+jMSRQ3ayxBhPIpeiGXsCrBmMjUhSo83nXrj8BpfMO4GfgxnUHuB9d+KwWyVRffQvU\nbZuEMe+gu/QViFwe9BP6e2bcQPgx5hM0BnQrVRdN59ohLdGJN7OD19GI9EFw9xJ4aa5nnYAGQpBW\n6KT55N9k3XSa2KDVl84EuB7VJ6pn4SrLYzNQFh+XoZlM1QQJ9fvK03KOAAAceklEQVSsAeqonoxd\nOx//rN/J1YebsPSUBZUtdVMFow36cNcjfR2EGoeVZI5x8Ae/twLPOBpPbxCFfLWeGk1tmwFdt/Lt\n4Xj+j7RChq+iGWJBffapeAAoRMBdgrUP8t2vIrpxE8mEZ0RIbjr0EmJOov7t9k5AOg3G8Avq6lgg\nQjHnteloTcriE4WpPpWHOu+g3F70O9dBFyHPOccy6OQ2OspzLYvuXuc6L90PvHnrDz88Bgw/ko0h\nwAv4OGUMc9DfcpUIbl1B4Uib3mrMXFRkcRUixYN85hrgNEEabkWFMQfwS30Urv0R1ZePQT0An+DL\ntF1TJqe42hZekPqsk8ZACBLj9G8YBdQ3mEVoJlO5QB+2Vb9/C7oK6pSql0JofMSjk34Dg/kTvQEC\nHsN5/27gENM3DL6KnW/uoeTRy/llM9DAUsmQYNRFe0k3In16XUqdw8dk3DhYqMjfCbSC1z/WaOAB\nW9MJ3Y8n3ApMH/MDM346xtVAt7TFcFYC6qIZDfYlIQYqhU44qV1L6bA+hC7z4MrSYLlqphOGfkAS\nTz/7Cmoo+hsTPDhpDMvRWMKiVHpIQ6x4du+lyJJHGUsCWe4HKxb1mfcGjjuaVuNQUchoJ4nuwEyD\nOeZ00+v6xIIFG4Dylz3Bd2jV+4xU57rQ+cxyESpFeUw/xVChvXVpXjVmIrrjW4VIoJ4Omr2U2e1F\njUl0ekx0Jzbbe9SUP8HyAevw0SATjpDZNRDZgASnFiZT8AzEmSQbCMc98g5awFTJYPzd3Faifvs0\n2FoVvAboZ8HzUSg0LsO1m8m2eGf24Tp//tX3G66383B0lAWPBCh+S00FNFjeihR3hKIidcvQnUyG\njIPDMDTbq02yei3gZFItRgu5XCFCKWDxloO8sORPugKtAhfDWZ+idRyBReMk2WiNwZivAr4nmbin\nYPI/kONliF7QTZBKaEyhI2bdEPT7T3fx0WFoTGw0aIyielO+6HtybK6bq6z5Gqz/Q90vO0mRo+iG\n7tIirR/wn2tOVDbD6cNBQ2DfqMmT7wFedKqmhzu6Zck4PbcfAD4QyYhOGM1Qd+SZ97AxI9D7ZrlT\nzZ+awPIamYUxS9A09IepubY2WQu2QWMS4dRog2Jr3VEetHo+Us5Jiit4BiIQu4FSTtvHzegDV8eQ\npq/yWqCkIxkNgK1ZJLOAu6zoe0avAOo57RFDGAg7KzCj93d7Si2MvSdHFhLaWCkPdTDKorUaj6D1\nDCmo8N5SVKKgT0aNgyA9UF96U4MJlOM9Euhph+voBjj9m5ceiWfCgK/pDvTBx44QHxkE3BdEzO8h\n9OEK1KgnHdZJuKMFtMwOJSJuNwrJ/S3mAj0RUwKdRF2ptBpDEirq11iE9jaUXn6q8cClR1v8NWRI\nm+IjRtAHLbDr4xyrICpp0idUunUY2gGbDca/qu1W5ZtvlgBVSj3GNuAGghg3Y/jAOd/3RMLGz4IR\nrnp6IJoGvsRREsZJwa3FmdL4mYvqRlUFslH1rVEUv+deoBc+xhFdO9NrgZ+jWETCOUpxBc9ABGJ3\n1e+r3oAWlL2Gyk+fTvsWKwH1CbdzMpVeQDNGalg6sUeH9of4HW3CvpGAmUx23jjil86mQ/WX4wcf\nrfFA0mHLF7C+ITWFUOPzAhoTSCFFsnsn0CMTjMNd6IPcyBBYLtuC71E3wkOB/p5yamQBFtk2G5pv\nogIaJJwX+gysv8Cp8E0dsBYpja7KO6dXng0x1tfQeygc6QyXRaP4+QrwEWI+RGtNuhvjvjGMo+ja\nEhjz2425ZnfgjcRTSdnvz5nzaJN33+XFq67ibVL87kOBhQbzdRTn6XcJ9sLfY1pdcbd/2L//DcDL\ne/LRnwC7h3TnuwLtlvdOFEYiH7pKD546q/dmLzQd/W2ni+FNwH5MtBX5EaCpsG2BN7iyx5vcMnkA\n6gZ+PwrZ8A6kfxbd4xmI88X0CdMrP7X4qRuADgYzPsRqbE4OjnewdYVYE7jdIlKZh4D43Uw7gEsc\nGQ8Hu3heDm/cxO1XtmPu7ljsSt8VYjq6Mg1GLnTnsAj1V6egneAWo26Prm7lM4LhqNhORncO4Xyr\nw4G+dpCqZUdmYhIQ3/Bjdjj9ud0Gt6eiWWTtnMEs1NiPxZiIOrRBxRHQcReUiMhtI8g9wB1ofGA0\nsMlxxUSEMXxZeA0zt/fLXj2uwLF1YC03hrJffsmB8eNpJkJZR2/pbrRILlruQCvq/TUqDxb9668P\n8x89Wuu6HnyKxtYCSbSkP9+V6HV/15+J5ZLGaGJHaNFGvUe7oLG9uURTPZ0RNBV2DHAfea6eRPVl\nghqsj/FR0s0Qdsq9GfZ6BuGcKLmCZyCSESRWkDFlDpR5oPf9vRONz4S86Y6Qe9d6ahb+g2KFUVXU\naLRuArEMXX0nkWYXYd9Qlp8/3UG5grfx+ZoY7IaW+qhfBzoFERjLAryJVpem7b8skg2Nr/wFdAkr\ncBYGQa5FV0TtDeaLcO+3VPDvKzRjJxD9gFu7beXF00kMAe7F5zZ9z0pE6wBGgp0XfRiL4cq1dMZY\nSVCvIfx+HfTo7OYTjlGfALRDTA108nPbYjMNNuRIeP6G1ms+vSdh9txyuUuVIhcw7sQJOmfNygvY\nfEBswivAs5GLHqahFzDeYJKclfkD855/Pjfw6neFeALtwuYq4cJJzW0DvB2oyC8I7sX5dAd4H5ro\n0ItzaSBSzmEdUJHY7C24Y00hYnMtQHtL3OLi0/cAWyx1Z0dDKB2mTEtxBc9AACBIPtTNcoOFVXnP\npXv+IkSuvg1X5ObYpv0U/rw0u763MvdH2YSqtRYm2UDYtauyaf1X3JCjKHtfsuAhS9P6wMdONKU1\nvSSAvxGPhRZQpeyEdAJYhMprdMgE41AUDS72M5iVEXx0GNDfJq1yqQh3AT1X76P990eZATyCj6AC\niIGxtgDLKXZiJNob4YHgWUvhaPYj1JkCWybC76Hbnaqr5nXgNcT8hO5mujjV0hGThNWvMzOzvzbl\nxYHZsx/PW7w4i1E//GpjeJUPmvxIgUOVuPstN4HvYOdcEg30znJe6pjrxImfam3ffsdtXdmAJjdM\ni2RMY1iNGom3XBiJbGiCh/vWosacRCfa4mSogVYGMOY34A6smL+p/kFb8l4/HFiBjyZhPtmVKPSx\nUuG5mM4VglyBBqN/QVfuhwhRLGdrfOAjYEwTlnZKJO5eJ2icOaha61q0ReLHSyjarB1z3llHrZhc\nHO9iwUsBAlvTUDmP1DyLdoVrReqsEJE4dGueBLRx748PjKP5swSYbjCzwr0/NU68ZhepahecfPop\niTYthu1gGOrfjdZX25+Hfu7C3mwfYjKm/QRzesKhU/DGW2He+BBQGK1sngAsMia6Fa4NV8yj7ePf\ncP1fJ07kfeWllxjw9dfU9vm0T4cgMbz8eGk6zv6enhNGRXMMh0eAOQZzBJEswMCpo0cfAl7bWoy+\n6O4h4kWQMaxBV/pviQRuGuVQG91N7g/xnkBci+6OmyDSJ9LzyxSMOYVO+BOpMP5pSnd6DpiCj16B\n3m6roOLlBGrE5R4vi+lcIEgNdJU+wWB6GJJXmAENhK2ugg+Bbha8Btav6A3aMP17M8gyoFEjbq9a\ngIVlpvPAyazEG4ugaqVvo2J//nPugrpVmkCqdFDN+JiKpm22jn5F7QynBWBzUW2oyMXylOeAgTbE\ninAZ6mboUXcDNdBdXLRyESDrKnHb30e4v+LlriqsQ5MIObrApAbwR+OAh9PMtxeAjoi5B/XbD4zm\nYDZYh8g/oTsT7dNkewisxA8+YOA11zCtZk3Gi1AIaAfWcWqtM0A9kZCxqIA4opAPop3VANrmOnFi\nX5u1a2uYTqxBi+6mRvMdABzjeB9a0xHMSNxL5L0fQA3LSnQx9QQi7aI7ywyicYmJQCvKdB7ITWNm\norvesQF63D8ETLfS655FhreDONsI0g6dWDsazIR0fz7DQNhaUTodaGalbYM4B83cyDxO5l2R5UTO\nu6bReVBPpp/4niG9HZ99YHycQOsb7kcfmhFoX4OUFZkGaseitQktnZVPRhmFZp90zUBq5TrgwOlL\naIdOEtPNerai6aptnB1V5GhdxyRik9pwIi4fKqGdQb59D+I/hxlzwc6f5nBqLGcCIxBzEL3WHR35\njGhoNpAXKh4n53tgbUTdNYU//5zuwDwSY+ZiJT0PPGmaHjuM1uUMj6IO4T5UtXUnIrHY9qCZI0bE\nACPXlaU3Ue4eUuMYidaokaia7s+3oAuviHafDiqvYcwudJH2MiKNwnzm7GHMBqAyl9zcgCpvfQMx\nNwPv4CMnaDwJnSuiDU778QzE2cJpC/oM6v+uHcRnnmwgnNagT6NB3jsszugXvAhoAHb64p0osbMU\nHPHT8A/m29lq53hr59e8PPkg1a918cFp7KUrmn7bGs6oFRiKBrzvdNL1MoTTWrUx0PLMNGD3WGDb\nMQzd+TjjsPl15q88h2YcjcAXVZWpn+HAShrXXI0GrEeDHVSE0T1/dIHh2WFPeh+ySoTftG0MWpMy\nzZgzen27woac/8fNE6dzf2wicX5l2TFotloCMJgDha6k5/ijBuMX+/seVaddJEIJN8c5I7UVWhf+\n55+Elhs25CnyBIK6U6PePaTGGAToiNZJ3Oq8HIv64vvhTo4m1clLKVTx+CPnAN+gge7ZiKQ3QucO\n7VZXnWwFT1FjWT7icqtCgo9L0Uyzz62MS4J4BuJs4LQFnY2urquEyBnfBZSyIQ4N9DZH01gDCO5Z\nf6NVnHdn/Azt3Fexc8UWqtxpx538pmzf+OXxFFiLm+5xPvYyl4Jcy2zSSxWI9EPz6RtiTIb1+wVp\njPY7bmwwwUTDXLN+NbedKE5c1Va8P2sX7YFL0RV4lCco1dHJwpEAtzaiv1Gw3tiR8B2cfgOG1gH7\nXgBBrkcF9Toz9rGWaG780FCDhCIJa2BHZmeJJ+tAsA6g9+AUcAyOkTz0HpePZu8XEqGW/3PG8CEq\ntfGuCCGD6Q5V0R3gMkRiYpKShkwdPbpADPTYr1XTo5zdaabgSIh0BZY6An890LTWyHYPGidZAAxN\n0z/cmM04RgiRzFANjg5jTgAdiMn6Bre/X42cZX4APv7uUnqRseA0pEh9e1lMmYkgBVB/ZS6glsGE\nKnHfnfsUZVDJgtJALSt0SXwmuJnsQpXZsnkTt1cqza7hd7a3HzsVRwO0QrSQIKGa2GixWxFW0pq0\nqpci3dGHsp4jQJYhBLkJdaW0dFHrEH484W4sul0xiR6HTjEAm1HAQ/ii9NFqbcc0oBcmjfF6Cq2w\nzgRX0+nBMCMGdkwswbGy6KJjEGL+RSfo+42J7kG14eqZdO6zk6v/RA1DB/QeTG1wBnCg8CLiEtsD\nc0UokupvL6JNraa4aFn6KBp/SwLuLrl/f94mmzevtXxcjsZPJkfzHUJhDIuBPvv2sSomhmcJ1KQq\nPM+jE+SZFe7GLEMrzJc7TYTODxqXeBnLeoCKMxqVTSz/bZ1O3FboSXZlcORcaNJJoF17pu8g/otE\n7OsW5EpBdgoyKoxCKgB9GlB6YwnibZidPgUzyCllB/sg2K4KZQJ8vmxz3t1zhFzHErF0AvORDR+H\n8VFQkNKC/CZIoF1KLFrPMJt+5MXHP/icCUOkAyJ7QkolR4AgxQXZLci9mTKecJsIB0S4xQbr7ns5\nWOHhKNqGph30eUSCZD3ZN4K9H+xaGTqGMgDKb+/KjweXsX6tIJYIc0UCTFouscHaR6E1uTjyL9iV\ngBJoHOlm/3uce+Ggk1qMCENFWC2SEgwVIacIX4jweLBjCfKMIN8Kkg+RmOzLl+94p1q1wzd1ozM+\n/sCXtu96ZlOiBJ+1acNhEa6I6IMijZ17OpBoX+r39UTkR0eu/PwicvOE5s3/7d6q7Nf42I+P2hkY\nrSTwW+A/2YPAHh7isxHPnRf9DkKQBmg65UsG86SzWgqKDQXGrGDRV0WgbB96hRG/c7BOogHvNpGe\nXxynb+3HiG1zaZcvN8caxGIvBHCKktahCrK7UCGzSYKkD0K+iBYMPcRI/kWNRUdEOqBB5AaYTFjp\nIyXQiuxJBvNmhscTmqPZWg8YwxeWD7PsShJlJiVsoujeJWIh8hjqpw8iBGh9icZnFoKd0R4GY68j\nqXAzfs7ViUqXfzfxqS5o/4gh0QzmVJRP6sfIG06SfSFYn6H+//GoRpafoWhB25/Of/vQ53iqiDa0\nMYbjqIvtCRHqpz6OE4N7Dk1/NgZzOCYpqVmp/fuL/X560+ztl/Ei0BRfpqgCBKPZb7+Rr3VrBgJr\nHDHG8IiUQBNF2mICy7gkY8x41HW1wpGwP2/Yxux4+P3349fe+YxFuUGfAQvwRZ00EaoXxP9EmmtD\nNMD6Axq8igqnMvo5NGPgXoMJu122NX9dLNjwSBN+/DW/u2CfQ8Rupsv5scV82mx8klEHcnH8xgA6\nTslNhJzq5E7AO4JchfohJ6HxlJb4ZcVzlJpH1oKDse3BQH2MibxHbzoEaYH2dHiTDHZaE8ESoT9a\nI9DYGN7HRw5g8ulYHsx3iqwQoZSySC40ON8eqIJJnjwDYAkqcLc02h2fM8ne8wqvZB3H6L9P5au+\nv3Dh3VM++6z+IGdyjggbip8my7p+jLh9Fp1IJK4/mpFWGA22+497M9rDI7nXgzEkosYgN7BZhCud\n13ejxvANf+aQE5Qe5rzfGMw+RKz8R4683P79WUd7NbbvBdriY2s018UludGgeLcWLZiAxprWihC6\nG6DW78xHmzy5baP6PCodstS5R84XLWNte+uO0qUrU6Suzc2v/gzWy/joF4XQX7hmQRe1gYhFV0wN\nUd35NmgxTEQIUgQVp6sG3GowG8J8BFsrMtejqZZP2lbwYrkgfAzkUzdGeJrwfv8lNF1Ukc/WFOTQ\nDVb63gzKMqCBNgUCg1mWRNKQpSz9yMLyZylVRSU3QKQKFWdOBiuRT+7rhTFfujiVWsH+IEhOQSah\nHcuaG8zwDKSz4qxwZ6Gr18rG8Jnzp0HAtoShvI9OYE+73kWIXIn23zgBVHdSHsNgLUCF9JaF7B0R\n6HBIabQW5ok44hqsZOXV/ftvLbBlyz+nnnqq+XiwI3KZ2HDHOmpuK82uMi/y1D6bmOpg5UYNcSfS\n7mBHAs8bUgVmAWP4FzUG04BNIrRyXv8I9fEvkjXWAgocnIQuOGobNB5VYv/+lpcc+afk8+XWxmHR\nG1+yFtPZwoc+Z2udcxyLxhI2ijDe3zXPoVa6z50gkgWKivv1RRec7zryMucDrZw25ijQnHzlP6XS\n7GPEZGsBfIWP5hH0vP6fNhCV0ADbr+iDsYAAfRdC4RS/bUXTUesbTFj1TBvKoBLYMyztfBay9Whg\nrCS0aCzMLsK2nuDFOTPoMiyBuGGl2d3ECvaj+vgVnfz93bquqUOd+2Yyk9GM/kuQvsDfiMQiMgRY\njGU9wem/hnJqv9vdTK1ALwpyA/AZWlRXwWC2uBwvIE4gdS26Da5hDL8D4KM82ujHr1W0CHWZhffT\nijRBpUkmAPc72SNueRntEPiexpDCHEobR/VE762PgdsM5nMRqlSuTJY5c049Dr3zwiufwcmw/nsb\nrK+4fkAHZq9oxDL2UvRRsOqD9QO6630Z+FqQrILUEWQiKtkeMAvGGGxjmIAagBHOZJvNGN7ln3zX\nMGB4KfL//SDz79uAOAWSIlZMYvyEg/tnx5+Os5/Dx0JXVy56KqBB977pzn0SuhCMB74VYYiIJpM4\n51kPLf7sELGgpBqJrsARYK6zEzln2NrtThVf9XwSMaY3OUqMp/qya7n6qQPE5hoH1kf4qOJiyGAZ\nTPA/YCCKQxrp6t+c18LiPMBPoRPMgwYzxBBeY8jWDlYbgDFWWjG3SHcQoG6mtmCnr54EoBULs7zO\n/Z8/weh7v+W65jfxlc+FHvwy4mmKVhxvBJbkJ3+JW7jl/4C5+d+WsmisohZwC8a8i3Yta4aPiFbH\nkOw+6YlO5iNR8b0MpcaKcBOqH7QSuC/ZDaM7oynAEHz8CWBBIlqNHNyXLxKDiA91sTXHmNcilym3\n/KvLfcBssIM+C4KUQ++R+4DqBjPMYOJFyANMtSy67t3LZEicAs8fhVbbYfFtwcb7iGq5BzN0c03W\nP7eKenNPkuMKsBY659Qtjrj8y1i2V5BFaJB6GPAH2m0wZEzMGLai1c/FgI2yMu5y7npvOJ9WjuPO\npeW5bF8u4HsRejTcsrzXvlwJRWL3rZ+ML7mS+mwRi2ZFDSCAsKUx/GUMj6GLxOuAnZUqcetlMq8E\nuutsjwm/2AuIysm0RRc7k52i0XPFQ8BMK33WkTHjsKwrKdpoDtXe+4mrH69AXN41jLjsI4YXCdXS\nNJiSK5yFNNdzeaHccDfqXvL3CWiPBv5S65rYE65xr+l1IRFLEjZw2MpNklvbHBuPne0YJJ6dhc+a\nvfOoc1lKG+f8/8ZiAUO7/cEfRTKkxHH2yJkHEk4Ts2YB1onQ6tCZgWVDUgwkhXtatu+GmyJZUwRw\npCUmQo6cEJPxtVu2mNNkjz1Noh0bdBViAdiZ26kzFFYEU86pz/aQtVJJYmyb2MQMKdGfNyxsEojD\ndvG9bQtsK8kRI7aIdHo+eTwvl5X8ljz5Akta7XgqnkgHvdAMRBXU1+jXNhqAisqNTPWeHyHC1DgP\nDw8Pj5/Qvir/WeLQL1EGbV6yjSiC1B4eHh4eFyeN0JaUP6I7CA8PDw8PDw8PDw8PD/e0Ar5Bs1tC\ntfPLlAK7i5wCaGrnTjSjKFiW06/Al6jE+Kfn5Mz+W7i518Y5f99OSpqyR2DCXc9awGH0fvw/0rfP\n9UjNdDQz76sQ77mo7s1yaCqqENxAxKIuqTKodpIXuwjMi6Q04OlH8KKjX1Bj4nEmbu41f2Mp0Cy8\nDNWQXOS4uZ61SNuDxSM4NdBJP5iBiOjevNDqIAKxg4Ay22nIcIHd/wjNSJFWnoVKLgTjQstwu1Bw\nc6+lvs6foDu1IngEwu2z692P7viI4IV0EOG9+V8wEG6IusDuf4wi6PYT53+D3Rg2qmHzOSk1KR6K\nm3st0Hsi0fX6X8LN9bSB21GXyIdoIZ1HdER0b57TsvMQrAIuC/D6QMBNVdy5q/S58Al2LQel+2+b\n4NetGvAnUMgZbwf+zl0ebu+19Cte7x4NjJvr8gUqc30czXJ8D8KI+3mEwvW9eaEYiHoZ/Pzv6A3k\nJ4Rm+kVPqGu5DzUee9E2loFLLtU4gEoivIu6ATwDobi519K/p4TzmseZuLmeqcUJl6EtXQvgF6n0\niISL9t4USO5lmx6vwM4dL5KSJdKfwEHqnIC/d3MuVP+pfoD3/a/i5l5LHQisghekDoWb61mElFVv\nJQIrH3ukUAZ3QeqL4t68C/WZnUBXvsuc14sBS1O9zyuwC08BNLaQPs019bW8HH1ItwFf413LQAS6\n1x52/vkZ7/x9O6HTsz3CX88e6L24DVXvdaN6+r/KfFTY8TQ6b96Pd296eHh4eHh4eHh4eHh4eHh4\neHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHhES0W0KjUbKk/yNZ7iqMdF\ngKex7uGROQwFsgM5UImDkef3dDw8PDw8LhSyoLuILXgLL4+LhIulYZCHx/nmUtS9lBvdRXh4/Ofx\nVjoeHpnD+8A8VA23KNDr/J6Oh4eHh8eFQEdgkfP/Y1A3U63zdjYeHh4eHh4eHh4eHh4eHh4eHh4e\nHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh7w/0t78fh21J/AAAAAAElFTkSu\nQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1043ce6d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#%pylab inline\n", "import numpy\n", "import nengo\n", "from nengo.utils.ensemble import tuning_curves\n", "from nengo.dists import Uniform\n", "\n", "N = 40\n", "tau_rc = .2\n", "tau_ref = .001\n", "lif_model = nengo.LIFRate(tau_rc=tau_rc, tau_ref=tau_ref)\n", "\n", "model = nengo.Network(label='Neurons')\n", "with model:\n", " neurons = nengo.Ensemble(N, dimensions=1, \n", " max_rates = Uniform(250,300),\n", " neuron_type = lif_model)\n", "sim = nengo.Simulator(model)\n", "\n", "x, A = tuning_curves(neurons, sim)\n", "\n", "plot(x, A)\n", "xlabel('x')\n", "ylabel('firing rate (Hz)');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- How good is the representation?" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "RMSE with 40 neurons is 0.0809303\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEPCAYAAAC6Kkg/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuclnP+x/HXPTNN6aBymESRslE5VFIqfrUiFJXfakLY\njVjWOsbmsOljWbSn31pk2c1qWUo5LBUR2qWVWB1EUZIOVA5RdK7r98f3mpl77rnvmeueuc/3+/l4\nzKP78L2v+zO32/WZz/U9gYiIiIiIiIiIiIiIiIiIiIiIiIiIiOSwh4H1wHvVtPkTsAxYCHRJRVAi\nIpLZTsQlhFjJYwAww7/dA5ibiqBERCTztSF28vgzMCzs/lKgRbIDEhGR6ArSHUBABwGrw+6vAVql\nKRYRkbyXLckDIBRx30tLFCIiQlG6AwhoLdA67H4r/7FIy4F2KYlIRCR3fAwclu4gaqsNwTrMjyd2\nh7mqkcSxdAeQYyzdAeQYS3cAaWEciHFgHO2vx3iy4gEvBN4w8NaBNw68BmVPxBtKplQeTwB9gP1w\nfRtjgXr+cw/iEscAXGXxPTAiDTGKiKSP0QiYBezE6I6xPUD764FT3ANeCTAe6AQMhtBbdQknU5LH\nuQHa/DzpUYiIZK77gLeBprjK66Ya2l8GvI55i3GjVe8BJgLnQ2hbXYPJlOQhmWd2ugPIMbPTHUCO\nmZ3uAFLKuBB3yf44oCGwEGMaxpwY7RsBN7Ds9GHAFBJUbeQy9XmISG4xOmB8gXFU2GNDMD7GaBzj\nNaO4st3cKH0bseT9uTPvPwARySFGQ4zFGCOjPPc3jAerPN7hqUMY3XwrB85bAV6PgO8U97kzm+Z5\niIjkmz/h1vObEOW5a4BTMQZUPOSVsu9H7/F1u0/57LiOukwVnCoPEckORkusyuTn8OeHY3yI0aSa\nNn0x1tLHjgBvCvU2L2VMvS8xjo4zmrjPnbEDz04eufc7iUiuMS4GHgA+A6b7P69hbPWfPxx4AzgZ\nY2G1xxrZfRrftTyZSU/fwy2Nv6Te1uMxfhRnRHGfO3PtRKvkISKZzU3yWwCcDOwGzgAGAp2Bf+ES\nyeXA+Kh9GuW8EuB+irYcxS/2L6Z4y53A7cBpNSacKAcjznOnhuqKiKSKu0w1HngQY5H/6PvAOIx9\ngFNxieRl4KHoB/FCQCll8zZ2NbyA4i0dcStvTKtF4hDU5yEimcwYirEEo37tDuCVgDcVvCVVRlIZ\nP8JqvbZf3p878/4DEJEMZeyL8TlGr/hfHHNNqkTJ+3Nn3n8AIpKhjEcw7on/hdVUG4mjeR4iIhnH\nOBW3+OstwV9UVm2wCLdkehfN20geVR4iklmMJhgrMfoHf1FKqo1KbxjvC1R5iIgk169xczheCtbc\nKyULqg0N1RURSRajN3A2cGTNjf15G66tVsBNMV22EpHMYBT7w3IDzPb2SpM4kiqIvD935v0HICIZ\nwvgFxrTqG3kl4E1JYd9GzEDifYH6PEREEs0tQfIL3Mq3MZT3bawgg/s28oUqDxFJP+MxjDujP5kx\n1UY4VR4iImllnICb0xEleajayFSqPEQkfYxCjPkY51R+IiOrjXCqPERE0uhSYBMwueIhVRvZQJWH\niKSHW/hwA8Yx7oGMrzbCqfIQEUmT24En3X4aqjayjSoPEUk9ozPGenrf1T6Lqo1weX/uzPsPQERS\nzAhhvM7ZQx9M8yzxusj7c2fefwAikmJXtb2cKw/bSGhntlUb4fL+3Jn3H4CIpFDTlRcwquVujnrs\n0SysNsLl/bkz7z8AEUkFfyRV/1FfcN2BM9MdTQJotJWISHL5I6laLPiCnr8vYO/PLkl3RFJ3qjxE\nJDajJ8ZfsNrsZRQxb8N4FOPXiQ8yLVR5iIhU4xygFHgAIxT8ZRHzNiy0B+gH3J2EGLOCkoeI5JOT\ngCFAF+C2mpuXVRvchtvdbzQW2g78HzAGY3MSY81oSh4ikh+MFkAr4N/AAOBcjCtivyDmLPGzgUbA\nI0mMVlJMfR4iEp1xLsazYffbYqzFGFq5YTVrUhkNMD7B+GEqQk4h9XmIiMTQD3il/J6xAhgI3F+R\nDGpck+pqYCHGaymIN6PVYsSBiEhW6gf8odIjxgKMYewpeJI2L89nJa1xfRtVFzI0SoAbgJ6pCDbT\nKXmISO4z2gL1gSWVn/BCGCUc+XgR5/xvT3Y1GEzj9QuxqEf5FfB3jGVJjjYrKHmISD7oB7yKhV/b\n90qA8UAnFp93GmcP7wjf3gMc5ieI+f7PAmAncBZwRKoDz1RKHiKSD/oB/jIiXgg31+Me3Iip8yG0\nDeMt4G8YDYAjccN5O/ttjwRGYWxMeeQZKo5JMlnBI/d+J5H85CbxPQHMxXVq76zlcQqAdUA3zNuG\nqzY6AiMCb9Lkll3P5dGccZ87NdpKRDLVINxf/AOABRgn1/I4R+LxLeb1xI2kWg50jWt3v9xOHLWi\ny1YiknlctXAbcDPwPDAY+AvGu7jLRysDH2tzy8Gs7V4IjCXWSCqJmyoPEclEQ4BdwPMYnj+5ryOu\n8/q/GLdhNKz+EF4IvGGsP+oWPjt2EfFWG1KtXOsfUJ+HSLZzVcdC4EaM6VGePxj4LdAN6Ba9E9sf\nSVWwoyO/bHgwBbsPxfgiqXFnN/V5iEjW+xGwBZgR9VljFcYw4FXglspP+tVGWd/GtW0up2D3ciWO\nxFPyEJHMYRQCBowN0Ek9BvgJRjt31ysBplDRt3EjTT4/kfAlSSRhMiV5nAYsBZYBo6M83xf4lopJ\nO79MWWQikkpDgU2Uz8mohrEO+AMe4ypVG5X7NiqvZyU5pRD3H7wNUA/XIdYhok1f4LkAx9JwOpFs\nZRRiLME4JfBr2j9/MDfs/z1tZ66MsgJuQ4zNGI0THGkuyspVdbvjksdK3BIAk3DD8iKpI1wkt50D\nfAXMqrmp37fx0RnzePvyVzj/9C+x0NsRjXrjVsD9LvGhSiYkj4OA1WH31/iPhfOAXrgRGDNwQ/ZE\nJFe4PcXHArfW3NcR0bfR91dDKNizGzgvoqEuWSVRJkwSDFIuvQu0xo3AOB14Fmgfo62F3Z7t/4hI\nZhsOfA7V7ZMRc00qMK4DJmE8jbHFf0E/4PrkhZzV+vo/We144MWw+zcRvdM83CfAPlEeV5+HSLYx\n6mEsx+gTu5FXAt5U8D6o0rdRcZwnMX8wjdHc7++on4yQc1BW9nm8A/wA12FeDAyjaud4Cyr6PLr7\nt79OUXwiklwXAKsw/lX1qYh5G9XPEh8NXIPREvdX9X8wticlYsmIy1a7gJ/jhuYVAhNwG7b81H/+\nQdyG85f7bbfgOtZEJNu5lXOvBa6p+mT5fhsdCbImldtbfAJwO7AN9XckVSYkD4AX/J9wD4bdvt//\nEZHc0h1ogJst7ovRtxHMncCHuKsqpycwTomQCZetRCR/jQQmVIywKh9JZZTNEg+eOMD4FrcabxFu\nzpgkiZKHiCSG0QHjwjjaN8Fdkp7oHvBKcX0bHwNd6rAC7kNAd4zdtXy95CGNthJJF+NFjK0YBwRs\nf7Fbat0rAW8KeEtijqSSZMvK0VYiku2ME4DDcX0UQedWjOTNa5biqo0V1K3akBTLtSU/tJ+HSDoY\nrwF/B14C3gOOwNgQs/15A/6HVnNn8rt1K9lTbwSE5qYoUolO+3mISIoZJ+GWFHoUYy3wBNVWH14p\n37R5gU/6zWdPvS5KHJIJ1OchkkpGCGMOxvCwx1pjfI2xf+XGft9G0ZaljCnaiNE2xdFKbOrzEJGU\nOg1ohlsN2zFWA5OB6yqalY+kWsH1B9xB4a7/YqxIaaSSUEoeIlI7bnb4r3C7/kUOi70buJQTbz/c\njaTiNmAIhEbTYNOPgb+mOFpJMCUPEamtQbgN3J6u8ox5q1h39HwabPovFSOp5mIcCnTGrYwtkjHU\n5yGSCkYBxiKMM6s+6a+Au+/S5Ywp+hYLWwHbuB3jjymMVIJRn4eIpMTZwFZgWsVDlVbA/ZivDj+S\nwl1TKVv00G34NAK3+KlkuVybE6F5HiLJZhQCi3HLn890D5avgNsJ+En5ZD+jHfAWcBhuW9gxGMen\nPGapieZ5iEjSnYfba/ylKtVG5Cxx42NcdXI1bhFEdZTniExZkl1EsoFRD7d3+EjM25+KaqO6/TZ+\nDczF/bEafOFEyWiqPEQkHufjsQrzWhB0BVxjGfA8MAVjc2rClGRT5SEiwRhF7Cm8lSmTPqViv42g\nCxlegv5YlQymoboiSeGFOOuC+7mo9w7wxoHXIN0RSULl/bkz7z8AkcTzSijY/hRXt9nOoIt+lu5o\nJCk0z0NEEiVsJFWf24tpuuptuj78QLqjEkkGVR4iCeHPEsdbQvG3PTGWYpyc7qgkaVR5iEhdRJm3\ncXPTNrh5Ha+kMzKRZFLlIVJrYdVG2V7iRiHGBxj90xycJJcqDxGJV7WzxM8GNgEvpys6kVRQ5SES\nlyjVRhm3cu5ijNPTFJykjioPEQmihjWpnP8FtgAvpjo6kVRT5SFSo2qqjTIV+3UMTHFwkh6qPEQk\nlkDVRpkhwA5gRqqik+yita1E8kKl/TZir0nlVs3tDdwO3ISpmpfolDxEsp3RHSjF9U9s9f91P3sK\ntvDKr4/k/U+uZHPLR9jd4HwIbYt4/f7A6cBAoD+wHPg7biVckahybdc97SQo+ceYjLvEtAxo6P/s\nxY5GzVnXuSdFW5tTsvg7inY0A9YDq/yfDUB3oANuAuB0YAbGunT8GpJWcZ87c+1Eq+Qh+cVtCbse\n6IKx2j3ohXCVyD3ARGAshLb5l6QOAloDBwMHAvOB1zG2pz54ySB5f+7U9VnJL0Y3jCUVDwQYSSVS\nlUZbieSZUwiyl7hIgqnDXCS79WdDp78CU6h5L3ERiUGXrSR/3LBfI8YUbaX42/Xa3U/qKO/PnXn/\nAUi+8Eo45pHXGdn9e/VtSAKoz0Mkt4X1bXSa0oAWi36ry1SSDkoeIlnDawFMBcYCg2k/fS/qbdPy\nIZIWSh4iGa+82liImwjYFQutwc3T+G9aQ5O8pdFWIhnNKwEewM0CDx9JdTLwCsbutIUmeU2Vh0hG\nqjRvw1Ublfs2TkG7+0kaqfIQyTjlK+B2JNq8DaMAlzzGpD42EUeVh0hG8Upx1cZyqlYbZY4CNmF8\nktLQRMKo8hDJCF4JcD9wJDXPEu+PLllJmqnyEEkGt2BhwD/OyquNFQRbk8pfz0okfVR5iCSa0QqY\ng1sW/Z+xG8ZVbZQdey+gJzA0AZGK1FqmVB6nAUtxo0pGx2jzJ//5hUCXFMUlUhs3A18Bp8ZuEne1\nUeYEYBHGt3WMUaROMiF5FAL34RJIR+Bc3Jj2cAOAw4AfAJfixr2LZB7jEGAYMBw4DYvcYMcrAW8K\ncBuu2hhdZVvY6mmIrmSEeJJHW2CvJMTQHTeyZCWwE5gEDI5oMwi3IxrAW0AzoEUSYhGpq18CfwZm\nA/Vxf/T4al1thFNnuWSEeJLHKKBs9c4T/Z9EOAjKts8EYI3/WE1tWiXo/UUSw2gHnAX8HsMDZgKn\nJqDaKDt+C6ANMC9xQYvUTk0d5gXAOcDjuC/socCnwOu4/0kSIehSwJH768Z6nYXdnu3/iKTCGOA+\njK/9+zPZ2OYGXDUyEbigVkmjQj9gNsbOOsYp0tf/qbWaksdVwDT/dmtcuX0dbnTIHOCZury5b61/\n7DKtcZVFdW1a+Y9FYwmISSQ+xuHAQMovU3kl/H7NeVx5RBf2XtWHTYe8EfA47vtvUf846o+G6Epi\nzKbyH9Zj4z1ATZet7gWO82+vAJ4CrsQNE1wV75vF8A6uI7wNUIzrbHwuos1zwIX+7eOBb4D1CXp/\nkUS4FfijGwXl921sbrWUoq3vcN0hxYGOYPTD9f2txngE43yMlv5zIdRZLhmkpuSxG3jCvz0Zt0cy\nuMtXieqw3gX8HHd9+AP/fZYAP/V/AGbgktdy4EHgZwl6b5G6MzoBp/DPCY9X6dso2PMi1Q7ZreRS\n4Grc5YS5uEvD72O8B0wAduD+HxBJu8h+hGznkXu/k2Q640mWnbqDf7x4Mq5vY2x534bRCxiP0bmG\nY+yPm8d0KMbGsMcLgWNxS7CvxcpHHYokUt6fO7WHuaTW+f37MrrZNoo3LY26l7hRhLGx/PJTLMZ1\nGH9PVpgiNdAe5iKp45Wyp96LvF86hx1NOkedt2HsAmbhOrujc/0ZlwB/SVakIomm5CESN3/eRus5\n42j78ia6PXRGDUNw/fkeMfXGXTIINiJLJAMoeYjExR9JVfLeBi46cRNFOwxjaw0vmgmc4vdfRHMJ\n8NcYw3NFMpKSh0ggYbPE+44dxc+OPoOQN5kg66wZq4EvgK5RnmuGW45HHeGSVbQku0iNvFLcqs4T\n+cW+f6fh1xOAqzAmxXGQsiG7b0c8fh7wEsYXiYlVJDVUeYjEFLEmlYVW0vDrh4Cz4kwcEK3fQx3l\nksWUPESiClsBt93MY7FQKW4C3wkYc2pxwH8DnTGahj12LNAUeKXO4YqkmC5bSX5wf+UfhrGs+oYR\nu/tZaDHwD6A50Cts0cN4338rxn9wixs+7T96CTABY0+tjimSRqo8JF8MBT7EqlvaJmK/DQt9ArwG\nbAL61zpxVKhYqsRojNum9pE6HlMkLXJtOnreT7GXKIwCYAFuXbSrgSeBMRVDYytVGz+B0Fv+Krkz\ngMcAS8gwWqOjf8xDgRHAEIxBdT6uSN3Ffe5U5SH54AzcApzjcRPy+gN/5dKuReANI3J3P+MEXB/F\nrzHGJnD+xRLctsvtUUe5ZDklD8ltrq/jFlwi8PwhsSexs0Ebdhevpnhz5d39jKG4PokLMR5OcCxl\nuwtej9uf5oWEHl8khdRhLrnuZKAJ5RuXeSGMgRTs6MSP+33Bjc22ULDnY1zJfh1wLa5/Y0GS4pmJ\nu2x2h7/ulUhWUvKQXPdLXNWxx+/bGA90ZE/xYA55Yx5wF25NqX8DvXAjqhK10Vk0s4DNkOCqRkTq\nRGsDSQXjRIzlFX0b3jrw7gavQUS7KzGe9ZcKSUVcDVPyPiLB5f25M+8/AAljvMg1B18L3lTwPoi6\n34aIgM6d+gDEd2vhcdzc6EsKt0WvNkQkXNznTvV5SA7ySlhzwrN8dMZOdtcfEnWTJhGpEw3VlRzi\nhcAbxgHzP6DFoqY0+LqDEodIcqjykLoz9gYuxxiXgvcqxM2T+Bx4GuM790TYSKrzzniX+ptfZtZv\nv0l6PCJ5SpWHJMIPcfMWktuv4JYZ+TNwJm6tqjWM5VFOuvkOQrsWAcu5sv0w9v6si99ORJJElYck\nQi/cd+kYIDmXidxM8XuAjsCpGN9x0k0dCXmPc/hzZ9Prd5sp2lEA3A7ci7E5KXGICKDKQxKjN7AM\n6J6Uo7vEMQ44HhiAed+DN4xX73yVV+56kQfea07Rjr7AbqAEuDcpcYhIOVUeUjdGfaAzbv2o5CQP\nGItbyvyHmFcfmIKrQAaXd4gbHwA3Jen9RSSCKg+pqy7AR8CrJCN5GKOBYexoeArmnYJbAXc50FUj\nqUTSR8lD6qo38B/gA+BAjOYJO7JxFXAJ864Yxp3fj8dVIIMhdCOEtiXsfUQkbkoeUle9gDkYu4H5\nQLeEHNW4GI9RPDb9/5hx30uo2hDJKEoeUnuuI7us8gCYRyIuXRmns6fgLh56ewnLB1yBqg2RjKPk\nIXVxKG6HvrIlzOuePMYUHcOu+pOZ+Gohn3dbgKoNkYyk5CF14aqOim1aXfKwWu4jP/CyY9jW7E2m\nPbCJT/sMULUhkrmUPKQuXH9HhU9xe3QfFPeRmi+7kIPfeIcPz3yLBSMOU7UhktmUPKQuwvs7yvbo\njvPSlVdCwfapDBo5nuLvptH1byep2hDJfEoeUjtGU6AtVNnrO47k4ZXCnkUMH9iOQ96YQ/OVQ8Mu\ngYlIBlPykNrqAbyDsTPi8QDJwysBbwpwG5f0mEK7WQUU7B6KsSs5oYpIoil5SG1VvmRV4W2gm790\nehReKW6W+ApG73MTB70zBBiIsSlZgYpI4il5SG1FdpY7xlfAF8DhlZ8IqzZgCIRGs9fG64GrMNYk\nPVoRSSglD4mfUYS7bDU3RouIS1dh1QZ0gdBcjA5AO2BaUmMVkaTQqrpSG0cCa/0qIxo/eXgzgPv9\n9kMgFJ5sLgYeidJnIiJZQJWH1EZvol2yqjCP7/c7lchqo4xbxv1CYEIygxSR5FHykNroRfTOcsAr\n4a5vRlH83aE0WzEUQqOjzNsYBCzGWJ7kOEUkSXTZKh8ZlwJ9gNW4danC/90YYK5FL+BXlR/yQkAp\ncA/bm06kaPsirmm3A4v6+pHAX2v/C4hIuqnyyE+XAx8Cm4Gj/fuPAStxyWNAzFcaBwJNcBtA+bwS\n3O5+hlsBdzQh7y2izfcw2gDHAk/X/dcQkXRR5ZFvjIZAe+A3GFWXATF6A89g/BDj/ShHcJesDK9S\ntQETgfPDLlHNA/pGef1FwD+ivreIZA1VHvnnWOD9mCdvYw5wHfA8xn5RWviTA6NUG5X7NqrONHcT\nBy9CHeUiWU/JI//0AKpfsdZ4DJgMPIVRXOk5j168ent93Eiqj3EjqaIdbwlwUMS2tKfihvguqn34\nIpIJlDzyT83Jw7kF2AiML9+fo8NTh7C7/rG8ee25RK82Krh1qt6l8ra0lwB/qUPsIpIh0p089gFe\nxnW+vgQ0i9FuJe4v3fm4yyFSe8GSh7EHOB84Di90DXjD2Nb0XTa33MDORp0D7rdRcenKOADXBzK5\ntoGLSOZId/K4EZc82gOv+Pej8XAnni4kYo/sfGW0BBpBwPkVxne8O2IEW5vfSYepv6X/DZNpvnJS\nHPtthPd7/Bh3GWxz3HGLSMZJd/IYhBulg//vkGra1m5rUwnnqo5Ae2Z4IfCG8dzDM5hx31RKhzag\n5fxqJgdGFb4t7Uh0yUokZ6Q7ebQA1vu31/v3o/GAWcA7uOvmUjvHE6i/I2Ik1eLzLiDEKOAY4kse\nZdvSDge2oUuOIjkjFfM8XgYOiPL4LRH3Pf8nmt7A58D+/vGWAq/HaGtht2f7P+L0AMbFfrqaeRvG\noxhzMD4L/G6GhzEP+B1wl3YJFMkYfYk+DytrLKUisbT079dkLDAqxnM6OcViFGJswtgnegOvBLyp\n4C0Br0cC3/dWjG2x31dEMkDc5850X7Z6DteRiv/vs1HaNMQthwGus7c/8F7yQ8s5HYF1GF9Xftjv\n26h53kZtPQvcUfV9RURqbx9cX0bkUN0Dgen+7bbAAv9nMXBTNcdT5RGLMRLj0coPJqnaEJFsk/fn\nzrz/AGIy/oLxc3enrNrw1oE3DrwG6Q1ORNIs7nOnFkbMHz2Ah/yRVOOBTrhZ4om8RCUieSLdfR5S\nF8b/YIwP0K4xHu24++sfkLy+DRHJI0oe2e2nwGUYbatttbbbyXzZYRvbmo+hpjWpREQCUPLIVm5f\njoG4+RhXRG/k9218OOhRNh5atpe4qg0RqTMlj+w1AHgbuA34CUbjyk+HzRLvfv87tJ/xB1UbIpIo\nSh7ZaxgwCWMl8C/cCrhEnbfReH17gi3DLiISiEZbZSOjCW6y5E/9R+4F7qPe5qfZGTGSymgFFAOf\npCdYEclFqjyy05nAG+WztmePnc3W5k04+I2lVB1JdTwwV+tKiUgiqfLITucAk9xNr4TZjGdb03qc\n9eP3+N2G0RFtg+4cKCISmCqPbOP2BO/D1mb/rNS3se9HnWi8oVOUYbtKHiKScKo8ss8Qdu71BuM2\nPoxb7ND1bUwHjuNvwM+A6wEwioCuuFFZIiIJo8ojq3ghvml9Nc8/2Bu3lWzXiHkb9+OG7Tby7x8J\nrMb4JtWRikhuU/LIGl4L9l79HHttPIp1nQdD6MYq8zbcsN3XKR+2q0tWIpIcSh4Zr3zexkJ6/qEe\nRdueYsPR/6rmBfcCV/n7hit5iEhSKHlkNK8FMBW3e+Jgev6xmMJdT9TwotdwyyufhJKHiCSJkkdG\nCqs2YBnQFQutAroAL1T7Ujef417cHvGHoF0XRSQJNNoq45Tvt1Exkso5G3geI8j6VI8BdwMLMHYm\nJ04RyWeqPDKBUcBY7uPEO8bi5m1EG0l1DjA54PG+x1UfsxIdqogIqPJIPOMHwAaMbwO/Zm23QTT7\ndATHjS+mx71v0Hj9hEoVhnEwcATwchyRjAVCcbQXEQlMlUfiTcT1NwTklbKh0+N8eOY8Fg3fn8br\nZwJvYtyDsa/fqBR4BmNH4MMaHsaeOOIWEQks1/4y9Ujn72S0AFYAm4DWGLtiN/ZKgPsp2noUN+3d\nksJdR2Gs8o9TgqscSoFxwLnAaEyXoUQkKeI+d6rySKyBwDRgJXBa7GZeKa5vYwWjDryFwl0LyxMH\ngLEB4wrgROB/gAOA2ckKWkQkXurzSKxBuN37GgE/wSWSMH614ZYNcSOp9mIS8I+oRzOWAoMw6ldf\nxYiIpJYuWyWKsRewDjgU2A18ChyG8aUfWinwJ1yfyFgIbfM3dVoDtMX4Kh1hi4hQi3OnKo/E6Qe8\nW75BkzEdOBe8yURWGxUGA/9W4hCRbKM+j8QZBDwfdv8Rtux7LWV9G5V39ytzHvB4iuITEUkYJY9E\nMApwW8P6ycMr4Vc7LmV3cWt+OGYUhEZHWQF3f6AX8FyKoxURqTMlj8Q4FtiIsax8JNWeeivY6+vf\n0ueObjFeMxSY7s8GFxHJKkoeiTGILc1ngTcFuA3XtzGaou0PA8MxiqO8RpesRCRrKXkkwtbmFzD5\nmeFE9m0Yy4GlwIBK7Y02wOHASymNU0QkQZQ86sQroWTRdLxQKz7vckbUvg14BBgR8dg5wFSteCsi\n2UrJo9b8vo1ufy6m/qZ/sKPpmzEaTgH6+EuXlNElKxHJakoecfNKKvVtdB8Phbueidnc2Az8Exju\n3z8KaAbMSX6sIiLJoeQRl7A1qaALFlqK2+q1pqXS/waM8PcVPxd4Qiveikg20wzzQKKsSeUMBl4P\nMNz237j1ro7FXbIanKxIRURSQZVHjSKqjcqzxM8kyCQ/V2VMxCWg7/3jiYhkLSWPWEYdMJbLjt7A\nfkvupGzeRvhIKqMecDpVVs6NaSLQHXgcw0t4vCIiKaTkEckIcXHPZ9m+9xjWdV7CFR2bYqG2UVr2\nBlZgrA1Uqm2tAAAFBklEQVR43JXArbihuyIikkHq9hf9vktacu4ZK7jsmK20nXkKAEYXjA8xHsZo\nVN7W+APGmDq9n4hIZoj73Jnb+3m4ZUG6AUcDMyrt1hep0brhDBo5geYrPmdNz248N6FimXSjMXAv\n0BM3wW8hsAz4EcbCJPweIiKpFPd+HrmXPIzeQF//53hgObAEty3s68B4YFbFUFmvhIZfPMi5g/vT\n7JM3abJuIMb2qEc3hgN/xF16KgXaqP9CRHKAkgfGfNx+37Nxw2g3AviXnM4DrgAa4oUe4IGF3/B9\nyd1c0n0PTT6fRuHOyzB2V/sOxmHAJNwmTtcl71cREUkZJQ9q+p2MEKuPH8COxg9w0LyDKNr2FUU7\nHgRuDVxFuMl+BTUmGhGR7JC+LbwzRA0nfy8E3jDw1oE3jhEnHozRJzWhiYhkrLy//F7NB+CVgDcV\nvA/A65G6kEREMp6SR5SHwquNu8FrkPqwREQyWtYlj6HA+8BuoGs17U7Dbaq0DBhdTbuID0DVhohI\nAFmXPI4A2gOvETt5FOKG27YB6gELgA4x2vofgKqNBOib7gByTN90B5Bj+qY7gBwTd/JI9/IkS4GP\namjTHZc8VgI7ccNkq1mV1ivBbcA01rUL3Rhldz+pWd90B5Bj+qY7gBzTN90B5Lt0J48gDgJWh91f\n4z8WyyJcsukasQKuiIgkSCr283gZOCDK4zcDzwd4fbzl1GAlDRGR5EpF8jiljq9fC7QOu98aV31E\n8zGE5tbx/aTC2HQHkGP0eSaWPs/E+TjdAdTWa7hd9qIpwv1ibYBiqu8wFxGRPHAWrj9jK7AOeMF/\n/EBgeli704EPcX0ZN6UyQBERERERyXOJnmCY7/bBDW74CHgJaBaj3UrciLb5wLyURJZdgnzf/uQ/\nvxDokqK4slVNn2df4Fvc93E+8MuURZZdHgbWA+9V0yZvvpeJnmCY734D/MK/PRq4O0a7T3CJRqoK\n8n0bAMzwb/cANMAjtiCfZ1/guZRGlZ1OxCWEWMkj7u9lNszziCUJEwzz2iBgon97IjCkmrZ5vXRz\nNYJ838I/57dwFV6LFMWXbYL+/6vvY81eB39vo+ji/l5mc/IIIt4JhvmsBa6sxf831hfHA2YB7wCX\npCCubBLk+xatTaskx5WtgnyeHtALd6llBtAxNaHlnLi/l6mY51EXqZ5gmOtifZ63RNz3iP3Z9QY+\nB/b3j7cU91eNBP++Rf6lrO9pdEE+l3dxc7+24EZlPou7nC3xi+t7menJI5UTDPNBdZ/nelxiWQe0\nBDbEaPe5/+8XwDO4SwtKHk6Q71tkm1b+Y1JVkM9zc9jtF4DxuD65r5MbWs7Jy++lJhgmxm+oGM1y\nI9E7zBsCTfzbjYA5QP/kh5Y1gnzfwjsmj0cd5tUJ8nm2oOIv5u64/hGJrg3BOsxz/nupCYaJtQ+u\nLyNyqG7459kW9z/wAmAx+jyjifZ9+6n/U+Y+//mFVD/MXGr+PK/AfRcXAP/BnfikqieAz4AduPPm\nReh7KSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIoFoHXyR5CkEhuGWdVmNW3vp98CKdAYl\nkgiF6Q5AJId1Af6FW6W4Hm4hyaXArnQGJSIi2eFe4NB0ByEiItnhOGA/3LYB4PaRFskJumwlkjwX\nAwcDm4CmuN3uVqU1IhERERERERERERERERERERERERERERERERERERHJb/8PBy2GloKO8MsAAAAA\nSUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10435a290>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Have to run previous code cell first\n", "noise = 0.2\n", "\n", "with model:\n", " connection = nengo.Connection(neurons, neurons, #This is just to generate the decoders\n", " solver=nengo.solvers.LstsqNoise(noise=0.2)) #Add noise ###NEW\n", " \n", "sim = nengo.Simulator(model)\n", "\n", "d = sim.data[connection].weights.T\n", "x, A = tuning_curves(neurons, sim)\n", "A_noisy = A + numpy.random.normal(scale=noise*numpy.max(A), size=A.shape)\n", "xhat = numpy.dot(A_noisy, d)\n", "\n", "print 'RMSE with %d neurons is %g'%(N, np.sqrt(np.average((x-xhat)**2)))\n", "\n", "figure()\n", "plot(x, x)\n", "plot(x, xhat)\n", "xlabel('$x$')\n", "ylabel('$\\hat{x}$')\n", "ylim(-1, 1)\n", "xlim(-1, 1);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Possible questions\n", " - How many neurons do we need for a particular level of accuracy?\n", " - What happens with different firing rates?\n", " - What happens with different distributions of x-intercepts?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2: Arm Movements (2D)\n", "\n", "- [Georgopoulos et al., 1982. \"On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex.\"](http://www.ncbi.nlm.nih.gov/pubmed/7143039)\n", "\n", "<img src=\"files/lecture2/armmovement1.jpg\">\n", "\n", "<img src=\"files/lecture2/armmovement2.png\">\n", "\n", "<img src=\"files/lecture2/armtuningcurve.png\">\n", "\n", "- System Description\n", "\n", " - What is being represented?\n", " - $x$ is the hand position\n", " - Note that this is *different* from what Georgopoulos talks about in this initial paper\n", " - Initial paper only looks at those 8 positions, so it only talks about direction of movement (angle but not magnitude)\n", " - More recent work in the same area shows the cells do respond to both (Fu et al, 1993; Messier and Kalaska, 2000)\n", " - Bell-shaped tuning curves\n", " - Encoders: randomly distributed around the unit circle\n", " - Firing rates of up to 60Hz\n", " \n", "- Design Specification\n", " - Range of values for $x$: Anywhere within a unit circle (or perhaps some other radius)\n", " - Normal levels of noise: $\\sigma$ is 20% of maximum firing rate\n", " - the book goes a bit higher, with $\\sigma^2=0.1$, meaning that $\\sigma = \\sqrt{0.1} \\approx 0.32$ times the maximum \n", "- Implementation\n", " - Examine the tuning curves\n" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEPCAYAAACjjWTcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGqZJREFUeJzt3Xu4ZFV55/FvNd0NDd2AzaUbBdO0SSN4Q0i4CCRHBQYf\nvBG8MNGEIEFJJuBdMDNPOIlOFJQx6kRyQRLxgqNhRBDlZugRUECEbm7T3LQVARsUIhhlUHjnj7WP\nXV1ddU6dU3vX2rvq+3meek6dXVV7/053nbfWWXvttUCSJEmSJEmSJEmSJEmSJEk1sBVwHbAGuB34\nQLF9KXA5cCdwGbB9lnSSpNJsXXydD1wLHAycAbyn2H4K8MEMuSRJFdga+DbwHGAdsKzYvrz4XpLU\nYPNI3TiPkVr0AI+0Pd7q+F6S1GDbkbpxXszmxf3h4ceRpPEyf0jH+SlwMbAvsIHUffMjYBfgwS7P\nXwO8YEjZJGlUrAX2HvZBd2TjSJtFwDeAl5K6c04ptp9K9xO0UXm6TU0O+XhlmswdYI4mcwcYwGTu\nAHM0mTvAACZzB5ijySEfr2ftrLJlvwvwKVK//Tzg08DXgZuALwDHA+uB11WYQZJEtcX+FmCfLtsf\nBg6t8LiSpA7zcgeoidW5Awxgde4Ac7Q6d4ABrM4dYI5W5w4wgNW5A8zR6twB6m7YffaSNAp61k5b\n9pI0Biz2kjQGLPaSNAYs9pI0Biz2kjQGLPaSNAYs9pI0Biz2kjQGLPaSNAYs9pI0Biz2kjQGLPaS\nNAYs9pI0Biz2kjQGLPaSNAYs9pI0Biz2kjQGLPaSNAYs9pI0BubnDiBpXEQL2LHttgPQAv5fcXsE\nWJ++tlyHumQWe0kViR2Bw4EDgOcXN4ANwI+Bh0kLZC8EtiQV/92L194DXAdcA1wNfN8PgMG0cgfo\nIahvNkk9xUrgjcCRwLOBK4GrgLXALdDaMMPrW8D2wCrgQODg4vYI8IV0a91WUfhR0Lja6Se41Bix\nJcQfQHwd4iGIj0K8GGJhSftvQewPcSbEvRA3Q/wJxKJy9j9SGlc7GxdYGj+xCOKkogBfAfG6VPgr\nPeY8iMMgvgKxAeJ9EDtUe8xGaVztbFxgaXzEAoiTIe6H+DLE72TKsQriH4q/Jk61pQ80sHY2LrA0\nHuIlELdBXAaxd+40SayC+GLxF8Ybi37/cZWldu5GOjlzG3ArcHKxfRL4IXBTcTuiy2st9lKtxDKI\nL0B8D+KoehbU2B/iJohLIFbkTpNJltq5HJj65F8M3AHsCZwGvGOG11rspdqIV0M8APGB+neVxIKi\nS+fHEG9NffxjpRa18wLgUFKxf+cMz61FYGm8xbYQ56Qx73FQ7jSzE6sgvlWcyN0xd5ohyl47VwDf\nJ7XwTyNdJbcW+CRpTG2n7IGl8RbPhlgH8UmIJbnTzE0sgDgD4gcQB+dOMyRZa+di4Abg1cX3O5MG\n/beA95MKfieLvZRNvLoY4XJ87iTliCMhfpSGiY68nrWz6ukSFgDnA58hdeMAPNj2+NnART1eO9l2\nf3Vxk1SZaJH+8n4TcCS0rs8cqCStiyEOAL4CsQfwNmj9KneqkkwUt6xawLnARzq279J2/+3A57q8\n1pa9NFSxAOJfIK5NI29GUWxXjNT5Wro/krLUzoOBp4A1bBxm+TLSB8DNpD77C4BubyyLvTQ0sQ3E\nVyEuTvdHWcyH+DuItSP6oda42tm4wFIzxQ4Q10P8c2rdj4NoQZxWnIDeLXeakjWudjYusNQ8sQPE\nGogP1fMiqarFO4uLxJ6VO0mJGlc7GxdYapbYobja9PTxLPRT4i0QP4T4rdxJStK42tm4wFJzxFKI\nG4sx6GNc6KfEn0Csh3hm7iQlaFztbFxgqRlicdFHP6ZdN73E2yHuhFieO8mAGlc7GxdYqr9YCHEp\nxNkW+m7iL0kLoyzNnWQAjaudjQss1VvMg/gMaf55157uKloQH4a4CmKr3GnmqHG1s3GBpXqLMyGu\nhtg6d5J6i3mkqZw/19AZMxtXOxsXWKqvOLEYU97k7okhikUQ34R4f+4kc9C42tm4wFI9xQRprdZR\nGVo4JLETxN0Qb8qdZJYaVzsbF1iqn1hZzPb40txJmin2gHgQ4sDcSWahcbWzcYGleoltIW6F+PPc\nSZotXk5a27YpQzIbVzsbF1iqj2iRFuD+R4dYliFOK0boNGHuoMbVzsYFluojToL4ToOHD9ZMzIO4\nCOKjuZP0oXG1s3GBpXqI/Yt+5pW5k4yW2B7iLojX504yg8bVzsYFlvKLpcUcL0flTjKaYt/ig3T3\n3Emm0bja2bjAUl7RgrgQ4n/kTjLa4u2k1bzq2n/fuNrZuMBSXvGWYibLhbmTjLaYR1rV629yJ+mh\ncbWzcYGlfGIVxEMQe+ZOMh5iZ4j7anr9QuNqZ+MCS3nEAojrHE8/bHE4xA/SidtaaVztbFxgKY+Y\nhLjE8fQ5xFkQ5+RO0aFxtbNxgaXhi98u5r15eu4k4ymWQHwX4sjcSdo0rnY2LrA0XLGQtNDGG3In\nGW8xQVrDti4zijaudjYusDRc8d8gLrb7pg7iYxCfyZ2i0Lja2bjA0vDEXsXom91yJxFAbFN05xyR\nOwkNrJ2NCywNR2xBWljjT3MnUbs4oij4uVcCa1ztbFxgaTjiJIhv0Mwl80ZcnAfxgdwhMh9/1hoX\nWKpeLPfiqTqL5cXcOc/NGSLjseekcYGl6sW5EKfnTqHpxIkQ12T8y6txtbNxgaVqxSGkFZMW506i\n6cQ8iG9BHJ8rQI6D7gZcCdwG3AqcXGxfClwO3AlcBnS73NhiL/1azC/G1L82dxL1I/aFeABiuxwH\nz3BMlgN7F/cXA3cAewJnAO8ptp8CfLDLay320q/FWyEud0x9k8TZEB/KceAMx9zMBcChwDpgWbFt\nefF9p1oElvKLnYqTss/OnUSzEcuK/7dVwz7wkI+3mRXA94ElwCNt21sd30/JHliqh/g4zVj7VJuJ\nd0FcNOyD9npg/hAOvhg4H3gr8FjHY0HvcJNt91cXN2mMxB7AMaTuTzXPx4A3pwuuWpdUdIyJ4pbd\nAuBS4G1t29aRum8AdsFuHKmHuADi3blTaBDxCojb0pXPwzngkI6ziRZwLvCRju1nkE7MApyKJ2il\nLuL3IL4HsVXuJBpEtCCugjhuWAcc0nE2cTDwFLAGuKm4HUEaenkFDr2Ueoh5EN+BOCZ3EpUhXkRa\n1WoYH9yNq52NCyyVJ/4zxPUOtRwlcQHEO4dxoCEco1SNCyyVI+ZD3AlxaO4kKlPsVcybU/WFVo2r\nnY0LLJUjjoNYbat+FMU5EP+96oNUvP/SNS6wNLhYWJyUPSR3ElUhdoP4SZods7qDVLjvSjQusDS4\nOBGiqvHYqoX4GMSHqzxAhfuuROMCS4OJrUgLV++XO4mqFLtCPAyxc1UHqGi/lWlcYGkw8VaIL+dO\noWGIv4Podn1RKTuvaL+VaVxgae5iS4j7IF6YO4mGIZ5Z9N3vWMXOK9hnpRoXWJq7OAHia7lTaJji\nHyoamVNK7RzmqukWe42J2ALiLojfzZ1EwxQritb90rJ3PMiLXwTcDtxbfL838IlBE83AYq8xEa8n\nrVnquPqxE2dDTJa900FefD3wTNLcNlNuGyjOzCz2GgPRglgD8fLcSZRD7AGxAWJRmTvt9UC/K6D/\noOP7X809i6TCEaTfwYtzB1EOrTuA64A/yp1kyr8CB5Fa9guBdwGfr/iYtuw1BuL/QPxB7hTKKX4X\n4o4002k5OxzkxTsBnwMeBB4CPgvsUEKo6VjsNeLidyDWp4nPNL6iVcxw+sqydjjIiw/qc1uZLPYa\ncfFpiHflTqE6iNdDfKOsnQ3y4pv63FYmi71GWCyHeATiabmTqA5ifvFXXhlTZcxpwfEDScMudwLe\nQVpmEGAJ/Z/YlbS5twCfh9YjuYOoDlq/gvhb0vnQ11V1lOmK9kJSYd+i+Lq4uD0KvKaqQNJoi4XA\nicDHcydRrXwSOBTiGTlDrMhwTLtxNKLiDRCX506hOoqzIP5y0J0M8uKdgQ8DXwWuLG7/NmCgmVjs\nNaLiOohX5E6hOooXQNw74AitgS6q+iywDlgJTALrgRsGCCONqdgf2JHUcJI6tNaSpqU5MleCG4uv\nN7dtq7rY27LXCIpzIN6dO4XqLP5owBlQB6qd1xZfLwNeDuwD3DPIDvtgsdeIiSXFcMtluZOozmIR\nxEMQK+e6g0GO/nJge+B5wGpSS7+sq716sdhrxMTxEF/KnUJNEGcOsJLVnGvnFqQx9sNmsdeIiWs8\nMav+/Ho2zC3n8uJBjvztQV48RxZ7jZDYE+J+58FR/+JKiNfO5YW9HuhnNM7VwP8EDiH11+9bfJXU\nn+OAc9OVklJfzgXeUOYO+1kdZzXdPy1eXGaQDkF/2aSaiwWk4XS/V8xfLvUhtiOtI7ISWj+ZzQvJ\nVDvPATYAt7RtmwR+SJpM7SbSAg6d7MbRiIhXQVyVO4WaKP4XxImzfVElUfpwCPBCNi32pzHzSV+L\nvUZEfBniuNwp1ETxCoirZ/uiXg9UPXvlVUC3mf3sotEYiO2BCeD8zEHUTJcCe0DsXsbOck1VfBKw\nljTT2/aZMkhVeyVwJbQezR1ETdR6AvgCUMrSlf20sI9m8z8Nfkrqmnmwj9evAC4iXZQFaWK1h4r7\n7wN2AY7veE0Af9X2/eriJjVIfAU4D1qfzZ1ETRUHks597gWtbl00E8VtymkM0HNyMfAw6U/R84Gf\nAJcDd9Pfqugr2LTPvp/H7LNXw8X2EI9CbJs7iZosWhD3QOzb7wt6PdBPN84CYE9SC/9oYK9ih/sD\np/QZoN0ubfePovcHgdRkduGoBK0APkPJY+57+b+dR2/bNtNatOcB9wNPkMYav4l0scDNpD77C4Bu\nE0PZslfDxUUQb8ydQqMgng/x3dTKn/nJgxzpE6SunGOBPyb1v58FbENayKQKFns1WGxXdOFslzuJ\nRkG0igXJn9PPkwc50jzSmrN/C3ykuF/10EmLvRos/hDiwtwpNEri4xDv7eeJlUcpWeMCSxvFhang\nS2WJwyG+2c8TBznK0cBdwKPAY8Wt6pNOFns1lF04qkJsCfHvEDvP9MRBjnIPaTTOMFns1VDx+xCX\n5k6hURRf7GPqjYGGXv6IzUfkSOruMNISnlLZLgTmvABOPydaPwosJw2TfKLYFsD/nutB++AUx2qo\nuBs4GlprcyfRqIkdgO8Cy6D1eK8n0aN29rNyznbAL4DDO7ZXWeylBordgSV4oaAq0foJxFrSWiJf\ny52mLPbZq4HiBAjnwVGF4t0QZ033hF4PTNeyPwU4Hfh4jx2e3F84aWwcBnw1dwiNtIuAKyD+rMfE\naD1NV+xvL77e0LG9hS1vqUPMA17CzAvzSIO4A3gKeBZpMsrSbAGcWeYO++SHiRom9oVw1JqGID4P\n0WvG4TkPvXwSOAhHxkgzOYw09bdUtW+S6vKs9DMaZw3wZeCLwM+LbVUPvZSa5lDSMGWpatcAJ8z2\nRf202P+l+Nr550GViyg7zl4NEotIq7Y9w/nrVb1YQFpQajdo/XvngzSsdtpnrwaJwyGuzp1C4yT+\nDeKIbg/0eoVDL6XBvQS4IncIjZWpfvtL+n1BP0Mvv8OmnxYOvZQ29UK6N4qkqnwTeGdZO/t08fVt\nZe1wFvwwUYPE/RDPzJ1C4ySeVkyl3dlgn1PtvB14Omm92KVdblWy2KshYsdinvFGnRTTKIjbIPbp\n3Njr2dN14/w98HVgJakrp3OHK+eUTxotzwNune2l61IJrgFeBNxY1g7/vqwdzYK/OGqIOHmGiamk\nisQfQ5zXuTFHkkE0LrDGVfxTmpRKGrZYBfH9zo29nt3PSlWSense6byWNGx3AVtD7Jo7yCBs2asB\nYh7EzyC2z51E4youhHhN+4Zez7RlL83d7sDDXS5Zl4blPmDnfp5osZfm7nm4BKHy+g9g636eaLGX\n5s5ir9x+jsVeqtzz8eSs8voPYJt+nlh1sT8H2MCmrZ+lpEUe7gQuAzy5paayZa/catOy/2egcxrO\nU0nFfhXpCt1TK84gVSAWAb9BWhNUyuXn9NmyH4YVbNr6WQcsK+4vL77v5NBL1VzsA2GrXpnFMWlN\n2o0bej0zR5/9MlLXDsXXZdM8V6or++tVB3237PtZg7ZKQe9Posm2+6uLm1QX9terBt7+m/Cr57Bp\nvcxmBZt34ywv7u+C3ThqpLgM4sjcKTTu4kCIb7Vv6PXMHN04FwLHFvePBS7IkEEa1HOBW3OH0Njr\ne+hl1c4D7geeAO4FjiMNvbyC6Yde2rJXzcUTEAtzp9C4i9+EuLt9Q7Yoc9S4wBonsTAVeym3eDrE\nA+0bej3TK2il2VsM/Cx3CAnnxpEqZbFXXRRDL2deA9liL82exV410fol8BSwYKZnWuyl2bPYq076\nmh/HYi/NnsVeddLX8EuLvTR7FnvViS17qSIWe9VJX/PjWOyl2bPYq076Gn5psZdmz2KvOrFlL1Vk\nCRZ71Ycte6kii4HHcoeQCp6glSpiN47qxG4cqSIWe9WJ3ThSRSz2qhNb9lJFLPaqE1v2UkUs9qoT\nW/ZSRSz2qhNb9lJFLPaqE4deShWx2KtO7MaRKmKxV53YjSOVL+YDC4HHcyeRCrbspQpsA/wMWpE7\niFSwZS9VwC4c1Y0te6kCFnvVjS17qQIWe9WNQy+lCljsVTd240gVsNirbn4BbAUxbT232EuzY7FX\nzbSeIg0FXjTds+YPJ0xX64FHgSeBXwL7Zcwi9ctirzqa8SRtzmIfwATwcMYM0mxZ7FVHM/bb5+7G\naWU+vjRbFnvV0Ywt+5zFPoArgBuAEzLmkGbDYq86mnH4Zc5unIOAB4CdgMuBdcBVGfNI/VgM3J87\nhNRhxm6cnMX+geLrQ8CXSCdo24v9ZNv91cVNys2WvepkIt3+yy5wYy17SLYGlhT3twGuAQ5ve9xJ\nplRT8UWI1+ZOIW0qzod4DdPUzlwt+2Wk1vxUhs8Cl2XKIs2GLXvVUW2HXn4P2DvTsaVBWOxVR7Uf\neik1jcVedVTroZdSE1nsVUczDr202EuzY7FXHdmNI5XMYq86shtHKk/MI/1C/Tx3EqmDLXupRIuA\nx6H1ZO4gUgdb9lKJ7MJRXdmyl0pksVddORpHKpHFXnVlN45UIou96spuHKlEFnvVlS17qUQWe9WV\nLXupRBZ71ZUte6lEFnvVlS17qUQWe9XVL4HWdE+w2Ev9W4LFXrXUClJXTk8We6l/tuxVZ9PO2WSx\nl/pnsVed2bKXSmKxV53ZspdKYrFXndmyl0pisVed2bKXSmKxV51Z7KWSWOxVZ3bjSCWx2KvObNlL\nJbHYq85s2UuDixap2E/7CyVlZMteKsGWwJPQeiJ3EKkHW/ZSCRYDj+UOIU2jli37I4B1wF3AKZky\nSLNhf73qbtpin8MWwN3ACmABsAbYs+M5MeRME0M+XpkmcgeYo4ncAWYnngtxa/HNRM4kA5jIHWAA\nE7kDzNHE8A4VxzJN7czRst+PVOzXk+Zg/jzwqgw52k1kPv4gJnIHmKOJ3AFmqb1lP5ExxyAmcgcY\nwETuAHM0McRj1a4b5xnAvW3f/7DYJtWZ3Tiqu2lP0M4fVoo2fXbRxEXVxmj3p6vgrH2Hd7wyNTV7\n43IvA+7LHUKaxrQt+2mXsarIAcAk6SQtwHuBp4DT256zBnjBcGNJUuOtBfbOHWLKfOAe0gnahXQ/\nQStJGgEvA+4gnah9b+YskiRJkprotcBtwJPAPm3bVwC/AG4qbp9oe2xf4BbSRWAfHUrKzfXKDemv\no7tIF6od3ra9Drk7TZJGYE39O7+s7bFeP0ddNO1iwPXAzaR/5+uLbUuBy4E7gcuA7bMk29Q5wAbS\ne3XKdDnr9D7pln2S5r7HR8qzgVXAlWxe7G/p9gLSL8p+xf2vsvHk8jD1yr0X6bzHAtLPcDcbT7zX\nIXen04B3dNne7eeo03Qe/VwMWDffIxXNdmcA7ynunwJ8cKiJujsEeCGb/v71ylm390m37LV8j9fp\nl2lY1pFaC/3aBVjCxpbRucCryw7Vh165XwWcR7pAbT3pDbQ/9cndTbdRYN1+jv26PC+XOl4M2I/O\nf+tXAp8q7n+KerwnrgIe6djWK2fd3ifdskMN3+PjWOynszvpz67VwMHFtmeQ/iSbch/1ugjs6Wya\nb+oitc7tdcp9EmmI2CfZ+Od5r5+jLpp4MWAAVwA3ACcU25aRuh0ovi7LkKsfvXLW/X0ypXbv8RwX\nVQ3D5cDyLtv/Auh1sdb9wG6kT+l9gAuA51SSrre55K6jXj/HfwXOAv66+P59wJnA8T32M+w5kqZT\npyz9Ogh4ANiJ9H+yruPxoBk/10w56/Yz1PI9PqrF/rA5vOaJ4gZwI+lagN8itYh3bXverlR3JeVc\nct9H+pCasiupxTDM3J36/TnOZuOHWLefo05XrHbm241NW2l19EDx9SHgS6Qugw2kD+Ifkbr6HswT\nbUa9ctb9fQKb/pvW5j0+7t047f1qO5JOwgGsJBX675J+YR4l9YO3gD8ktfpzas99IXAM6QK13Um5\nryf9ktQtN6Rf3ClHsfHEVq+foy5uIGVaQcr4elLmutqadM4GYBvSyI9bSJmPLbYfSz3eE930yln3\n9wk09z0+co4i9b3+glQQv1ZsPxq4ldRn/x3gyLbXTA1hvBv42NCSbqpXbkjdPHeT/kz/T23b65C7\n07mk4YBrSb/A7X3GvX6OumjSxYC7k0Z+rCG9r6fyLiX149dp6OV5pG7UJ0jv8eOYPmed3ied2d9E\ns9/jkiRJkiRJkiRJkiRJkiRJklSWFfSeNVXKbtyvoJWksWCxl9K8MTeQrjSdmh3yZ8D7SVegfgvY\nudj+LOBa0hWS7wce67K/LYAPkS6FXwu8uargkqT+Pa34uojUFbMUeIqNU2acTpqxE+ArpHlxAN7C\nxmK/go3dOG9ue/6WwLeLxyVJGU2ycR6ZR0iTxz3e9vjrgH8q7v+YjX8Rb0v3Yv+vpDl0ppaluwc4\ntJLkUp9GdYpjqV8TwEuBA0gF/kpgK9JqQlOeYva/K39OmkNeqgX77DXutiW15h8nrSl7wAzPvxZ4\nTXH/mB7PuRT4MzZ+QKwiTTksZWOx17i7hFSUbwf+hnQyFjZdQah9paS3kRaTXkM6WfvTjudBWrDi\ndtIiOLeQVi7yr2hJapBFbfePIY3kkSSNmINJrfq1pIXpV2ZNI0mSJEmSJEmSJEmSJEmSJKls/x8m\nrIBCtjnfpQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1046095d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy\n", "import nengo\n", "\n", "n = nengo.neurons.LIFRate() \n", "\n", "theta = numpy.linspace(-numpy.pi, numpy.pi, 100)\n", "x = numpy.array([numpy.sin(theta), numpy.cos(theta)])\n", "\n", "e = numpy.array([1.0, 0])\n", "\n", "plot(theta*180/numpy.pi, n.rates(numpy.dot(x.T, e), bias=1, gain=0.2)) #bias 1->1.5\n", "xlabel('angle')\n", "ylabel('firing rate')\n", "xlim(-180, 180)\n", "show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Does it match empirical data?\n", " - When tuning curves are plotted just considering $\\theta$, they are fit by $a_i=b_0+b_1cos(\\theta-\\theta_e)$ \n", " - Where $\\theta_e$ is the angle for the encoder $e_i$ and $b_0$ and $b_1$ are constants\n", " \n", "- Interestingly, Georgopoulos suggests doing linear decoding:\n", " - $\\hat{x}=\\sum_i a_i e_i$\n", " - This gives a somewhat decent estimate of the direction of movement (but a terrible estimate of magnitude)\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Higher-dimensional Tuning\n", "- Note that there can be different ways of organizing the representation of a higher dimensional space\n", "\n", "<img src=\"files/lecture2/semicircular_canal.png\">\n", "\n", "- Here, the neurons respond to angular velocity. This is a 3D vector. \n", "- But, instead of randomly distributing encoders around the 3D space, they are aligned with a major axis\n", " - encoders are chosen from [1,0,0], [-1,0,0], [0,1,0], [0,-1,0], [0,0,1], [0,0,-1]\n", "- This can affect on the representation\n", "\n", "<img src=\"files/lecture2/aligned_encoders.png\">" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Administrative Notes\n", "\n", "- Assignment 1 has been posted \n", " - [HTML](http://nbviewer.ipython.org/github/celiasmith/syde556/blob/master/Assignment%201.ipynb)\n", "- Due: January 25th at midnight\n", "- Total marks: 20 (20% of final grade)\n", "- Late penalty: 1 mark per day\n", "- It is recommended that you use a language with a matrix library and graphing capabilities. Two main suggestions are Python and MATLAB.\n", "\n", "- Tutoring Services\n", " - If you would like more personalized help for the assignments in this course, two of the PhD students in the lab (Xuan Choo and Travis DeWolf) offer tutoring services. They can be contacted at [[email protected]](mailto:[email protected]) and they charge \\$20 per half hour (or \\$15 per person per half hour for groups)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-2.0
CompPhysics/MachineLearning
doc/src/LectureNotes/chapter4.ipynb
2
198219
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Linear Regression and more Advanced Regression Analysis\n", "\n", "\n", "## Why Linear Regression (aka Ordinary Least Squares and family)\n", "\n", "Fitting a continuous function with linear parameterization in terms of the parameters $\\boldsymbol{\\beta}$.\n", "* Method of choice for fitting a continuous function!\n", "\n", "* Gives an excellent introduction to central Machine Learning features with **understandable pedagogical** links to other methods like **Neural Networks**, **Support Vector Machines** etc\n", "\n", "* Analytical expression for the fitting parameters $\\boldsymbol{\\beta}$\n", "\n", "* Analytical expressions for statistical propertiers like mean values, variances, confidence intervals and more\n", "\n", "* Analytical relation with probabilistic interpretations \n", "\n", "* Easy to introduce basic concepts like bias-variance tradeoff, cross-validation, resampling and regularization techniques and many other ML topics\n", "\n", "* Easy to code! And links well with classification problems and logistic regression and neural networks\n", "\n", "* Allows for **easy** hands-on understanding of gradient descent methods\n", "\n", "* and many more features\n", "\n", "For more discussions of Ridge and Lasso regression, [Wessel van Wieringen's](https://arxiv.org/abs/1509.09169) article is highly recommended.\n", "Similarly, [Mehta et al's article](https://arxiv.org/abs/1803.08823) is also recommended.\n", "\n", "\n", "## Regression analysis, overarching aims\n", "\n", "Regression modeling deals with the description of the sampling distribution of a given random variable $y$ and how it varies as function of another variable or a set of such variables $\\boldsymbol{x} =[x_0, x_1,\\dots, x_{n-1}]^T$. \n", "The first variable is called the **dependent**, the **outcome** or the **response** variable while the set of variables $\\boldsymbol{x}$ is called the independent variable, or the predictor variable or the explanatory variable. \n", "\n", "A regression model aims at finding a likelihood function $p(\\boldsymbol{y}\\vert \\boldsymbol{x})$, that is the conditional distribution for $\\boldsymbol{y}$ with a given $\\boldsymbol{x}$. The estimation of $p(\\boldsymbol{y}\\vert \\boldsymbol{x})$ is made using a data set with \n", "* $n$ cases $i = 0, 1, 2, \\dots, n-1$ \n", "\n", "* Response (target, dependent or outcome) variable $y_i$ with $i = 0, 1, 2, \\dots, n-1$ \n", "\n", "* $p$ so-called explanatory (independent or predictor) variables $\\boldsymbol{x}_i=[x_{i0}, x_{i1}, \\dots, x_{ip-1}]$ with $i = 0, 1, 2, \\dots, n-1$ and explanatory variables running from $0$ to $p-1$. See below for more explicit examples. \n", "\n", " The goal of the regression analysis is to extract/exploit relationship between $\\boldsymbol{y}$ and $\\boldsymbol{x}$ in or to infer causal dependencies, approximations to the likelihood functions, functional relationships and to make predictions, making fits and many other things.\n", "\n", "\n", "\n", "## Regression analysis, overarching aims II\n", "\n", "\n", "Consider an experiment in which $p$ characteristics of $n$ samples are\n", "measured. The data from this experiment, for various explanatory variables $p$ are normally represented by a matrix \n", "$\\mathbf{X}$.\n", "\n", "The matrix $\\mathbf{X}$ is called the *design\n", "matrix*. Additional information of the samples is available in the\n", "form of $\\boldsymbol{y}$ (also as above). The variable $\\boldsymbol{y}$ is\n", "generally referred to as the *response variable*. The aim of\n", "regression analysis is to explain $\\boldsymbol{y}$ in terms of\n", "$\\boldsymbol{X}$ through a functional relationship like $y_i =\n", "f(\\mathbf{X}_{i,\\ast})$. When no prior knowledge on the form of\n", "$f(\\cdot)$ is available, it is common to assume a linear relationship\n", "between $\\boldsymbol{X}$ and $\\boldsymbol{y}$. This assumption gives rise to\n", "the *linear regression model* where $\\boldsymbol{\\beta} = [\\beta_0, \\ldots,\n", "\\beta_{p-1}]^{T}$ are the *regression parameters*. \n", "\n", "Linear regression gives us a set of analytical equations for the parameters $\\beta_j$.\n", "\n", "\n", "\n", "\n", "\n", "## Examples\n", "In order to understand the relation among the predictors $p$, the set of data $n$ and the target (outcome, output etc) $\\boldsymbol{y}$,\n", "consider the model we discussed for describing nuclear binding energies. \n", "\n", "There we assumed that we could parametrize the data using a polynomial approximation based on the liquid drop model.\n", "Assuming" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "BE(A) = a_0+a_1A+a_2A^{2/3}+a_3A^{-1/3}+a_4A^{-1},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "we have five predictors, that is the intercept, the $A$ dependent term, the $A^{2/3}$ term and the $A^{-1/3}$ and $A^{-1}$ terms.\n", "This gives $p=0,1,2,3,4$. Furthermore we have $n$ entries for each predictor. It means that our design matrix is a \n", "$p\\times n$ matrix $\\boldsymbol{X}$.\n", "\n", "Here the predictors are based on a model we have made. A popular data set which is widely encountered in ML applications is the\n", "so-called [credit card default data from Taiwan](https://www.sciencedirect.com/science/article/pii/S0957417407006719?via%3Dihub). The data set contains data on $n=30000$ credit card holders with predictors like gender, marital status, age, profession, education, etc. In total there are $24$ such predictors or attributes leading to a design matrix of dimensionality $24 \\times 30000$. This is however a classification problem and we will come back to it when we discuss Logistic Regression.\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "## General linear models\n", "Before we proceed let us study a case from linear algebra where we aim at fitting a set of data $\\boldsymbol{y}=[y_0,y_1,\\dots,y_{n-1}]$. We could think of these data as a result of an experiment or a complicated numerical experiment. These data are functions of a series of variables $\\boldsymbol{x}=[x_0,x_1,\\dots,x_{n-1}]$, that is $y_i = y(x_i)$ with $i=0,1,2,\\dots,n-1$. The variables $x_i$ could represent physical quantities like time, temperature, position etc. We assume that $y(x)$ is a smooth function. \n", "\n", "Since obtaining these data points may not be trivial, we want to use these data to fit a function which can allow us to make predictions for values of $y$ which are not in the present set. The perhaps simplest approach is to assume we can parametrize our function in terms of a polynomial of degree $n-1$ with $n$ points, that is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "y=y(x) \\rightarrow y(x_i)=\\tilde{y}_i+\\epsilon_i=\\sum_{j=0}^{n-1} \\beta_j x_i^j+\\epsilon_i,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $\\epsilon_i$ is the error in our approximation.\n", "\n", "\n", "\n", "\n", "## Rewriting the fitting procedure as a linear algebra problem\n", "For every set of values $y_i,x_i$ we have thus the corresponding set of equations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{align*}\n", "y_0&=\\beta_0+\\beta_1x_0^1+\\beta_2x_0^2+\\dots+\\beta_{n-1}x_0^{n-1}+\\epsilon_0\\\\\n", "y_1&=\\beta_0+\\beta_1x_1^1+\\beta_2x_1^2+\\dots+\\beta_{n-1}x_1^{n-1}+\\epsilon_1\\\\\n", "y_2&=\\beta_0+\\beta_1x_2^1+\\beta_2x_2^2+\\dots+\\beta_{n-1}x_2^{n-1}+\\epsilon_2\\\\\n", "\\dots & \\dots \\\\\n", "y_{n-1}&=\\beta_0+\\beta_1x_{n-1}^1+\\beta_2x_{n-1}^2+\\dots+\\beta_{n-1}x_{n-1}^{n-1}+\\epsilon_{n-1}.\\\\\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Rewriting the fitting procedure as a linear algebra problem, more details\n", "Defining the vectors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{y} = [y_0,y_1, y_2,\\dots, y_{n-1}]^T,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\beta} = [\\beta_0,\\beta_1, \\beta_2,\\dots, \\beta_{n-1}]^T,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\epsilon} = [\\epsilon_0,\\epsilon_1, \\epsilon_2,\\dots, \\epsilon_{n-1}]^T,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and the design matrix" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}=\n", "\\begin{bmatrix} \n", "1& x_{0}^1 &x_{0}^2& \\dots & \\dots &x_{0}^{n-1}\\\\\n", "1& x_{1}^1 &x_{1}^2& \\dots & \\dots &x_{1}^{n-1}\\\\\n", "1& x_{2}^1 &x_{2}^2& \\dots & \\dots &x_{2}^{n-1}\\\\ \n", "\\dots& \\dots &\\dots& \\dots & \\dots &\\dots\\\\\n", "1& x_{n-1}^1 &x_{n-1}^2& \\dots & \\dots &x_{n-1}^{n-1}\\\\\n", "\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "we can rewrite our equations as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{y} = \\boldsymbol{X}\\boldsymbol{\\beta}+\\boldsymbol{\\epsilon}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The above design matrix is called a [Vandermonde matrix](https://en.wikipedia.org/wiki/Vandermonde_matrix).\n", "\n", "\n", "\n", "\n", "## Generalizing the fitting procedure as a linear algebra problem\n", "\n", "We are obviously not limited to the above polynomial expansions. We\n", "could replace the various powers of $x$ with elements of Fourier\n", "series or instead of $x_i^j$ we could have $\\cos{(j x_i)}$ or $\\sin{(j\n", "x_i)}$, or time series or other orthogonal functions. For every set\n", "of values $y_i,x_i$ we can then generalize the equations to" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{align*}\n", "y_0&=\\beta_0x_{00}+\\beta_1x_{01}+\\beta_2x_{02}+\\dots+\\beta_{n-1}x_{0n-1}+\\epsilon_0\\\\\n", "y_1&=\\beta_0x_{10}+\\beta_1x_{11}+\\beta_2x_{12}+\\dots+\\beta_{n-1}x_{1n-1}+\\epsilon_1\\\\\n", "y_2&=\\beta_0x_{20}+\\beta_1x_{21}+\\beta_2x_{22}+\\dots+\\beta_{n-1}x_{2n-1}+\\epsilon_2\\\\\n", "\\dots & \\dots \\\\\n", "y_{i}&=\\beta_0x_{i0}+\\beta_1x_{i1}+\\beta_2x_{i2}+\\dots+\\beta_{n-1}x_{in-1}+\\epsilon_i\\\\\n", "\\dots & \\dots \\\\\n", "y_{n-1}&=\\beta_0x_{n-1,0}+\\beta_1x_{n-1,2}+\\beta_2x_{n-1,2}+\\dots+\\beta_{n-1}x_{n-1,n-1}+\\epsilon_{n-1}.\\\\\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Note that we have $p=n$ here. The matrix is symmetric. This is generally not the case!**\n", "\n", "\n", "\n", "\n", "## Generalizing the fitting procedure as a linear algebra problem\n", "We redefine in turn the matrix $\\boldsymbol{X}$ as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}=\n", "\\begin{bmatrix} \n", "x_{00}& x_{01} &x_{02}& \\dots & \\dots &x_{0,n-1}\\\\\n", "x_{10}& x_{11} &x_{12}& \\dots & \\dots &x_{1,n-1}\\\\\n", "x_{20}& x_{21} &x_{22}& \\dots & \\dots &x_{2,n-1}\\\\ \n", "\\dots& \\dots &\\dots& \\dots & \\dots &\\dots\\\\\n", "x_{n-1,0}& x_{n-1,1} &x_{n-1,2}& \\dots & \\dots &x_{n-1,n-1}\\\\\n", "\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and without loss of generality we rewrite again our equations as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{y} = \\boldsymbol{X}\\boldsymbol{\\beta}+\\boldsymbol{\\epsilon}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The left-hand side of this equation is kwown. Our error vector $\\boldsymbol{\\epsilon}$ and the parameter vector $\\boldsymbol{\\beta}$ are our unknow quantities. How can we obtain the optimal set of $\\beta_i$ values?\n", "\n", "\n", "\n", "\n", "## Optimizing our parameters\n", "We have defined the matrix $\\boldsymbol{X}$ via the equations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{align*}\n", "y_0&=\\beta_0x_{00}+\\beta_1x_{01}+\\beta_2x_{02}+\\dots+\\beta_{n-1}x_{0n-1}+\\epsilon_0\\\\\n", "y_1&=\\beta_0x_{10}+\\beta_1x_{11}+\\beta_2x_{12}+\\dots+\\beta_{n-1}x_{1n-1}+\\epsilon_1\\\\\n", "y_2&=\\beta_0x_{20}+\\beta_1x_{21}+\\beta_2x_{22}+\\dots+\\beta_{n-1}x_{2n-1}+\\epsilon_1\\\\\n", "\\dots & \\dots \\\\\n", "y_{i}&=\\beta_0x_{i0}+\\beta_1x_{i1}+\\beta_2x_{i2}+\\dots+\\beta_{n-1}x_{in-1}+\\epsilon_1\\\\\n", "\\dots & \\dots \\\\\n", "y_{n-1}&=\\beta_0x_{n-1,0}+\\beta_1x_{n-1,2}+\\beta_2x_{n-1,2}+\\dots+\\beta_{n-1}x_{n-1,n-1}+\\epsilon_{n-1}.\\\\\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we noted above, we stayed with a system with the design matrix \n", " $\\boldsymbol{X}\\in {\\mathbb{R}}^{n\\times n}$, that is we have $p=n$. For reasons to come later (algorithmic arguments) we will hereafter define \n", "our matrix as $\\boldsymbol{X}\\in {\\mathbb{R}}^{n\\times p}$, with the predictors refering to the column numbers and the entries $n$ being the row elements.\n", "\n", "\n", "\n", "\n", "## Our model for the nuclear binding energies\n", "\n", "In our [introductory notes](https://compphysics.github.io/MachineLearning/doc/pub/How2ReadData/html/How2ReadData.html) we looked at the so-called [liquid drop model](https://en.wikipedia.org/wiki/Semi-empirical_mass_formula). Let us remind ourselves about what we did by looking at the code.\n", "\n", "We restate the parts of the code we are most interested in." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "# Common imports\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from IPython.display import display\n", "import os\n", "\n", "# Where to save the figures and data files\n", "PROJECT_ROOT_DIR = \"Results\"\n", "FIGURE_ID = \"Results/FigureFiles\"\n", "DATA_ID = \"DataFiles/\"\n", "\n", "if not os.path.exists(PROJECT_ROOT_DIR):\n", " os.mkdir(PROJECT_ROOT_DIR)\n", "\n", "if not os.path.exists(FIGURE_ID):\n", " os.makedirs(FIGURE_ID)\n", "\n", "if not os.path.exists(DATA_ID):\n", " os.makedirs(DATA_ID)\n", "\n", "def image_path(fig_id):\n", " return os.path.join(FIGURE_ID, fig_id)\n", "\n", "def data_path(dat_id):\n", " return os.path.join(DATA_ID, dat_id)\n", "\n", "def save_fig(fig_id):\n", " plt.savefig(image_path(fig_id) + \".png\", format='png')\n", "\n", "infile = open(data_path(\"MassEval2016.dat\"),'r')\n", "\n", "\n", "# Read the experimental data with Pandas\n", "Masses = pd.read_fwf(infile, usecols=(2,3,4,6,11),\n", " names=('N', 'Z', 'A', 'Element', 'Ebinding'),\n", " widths=(1,3,5,5,5,1,3,4,1,13,11,11,9,1,2,11,9,1,3,1,12,11,1),\n", " header=39,\n", " index_col=False)\n", "\n", "# Extrapolated values are indicated by '#' in place of the decimal place, so\n", "# the Ebinding column won't be numeric. Coerce to float and drop these entries.\n", "Masses['Ebinding'] = pd.to_numeric(Masses['Ebinding'], errors='coerce')\n", "Masses = Masses.dropna()\n", "# Convert from keV to MeV.\n", "Masses['Ebinding'] /= 1000\n", "\n", "# Group the DataFrame by nucleon number, A.\n", "Masses = Masses.groupby('A')\n", "# Find the rows of the grouped DataFrame with the maximum binding energy.\n", "Masses = Masses.apply(lambda t: t[t.Ebinding==t.Ebinding.max()])\n", "A = Masses['A']\n", "Z = Masses['Z']\n", "N = Masses['N']\n", "Element = Masses['Element']\n", "Energies = Masses['Ebinding']\n", "\n", "# Now we set up the design matrix X\n", "X = np.zeros((len(A),5))\n", "X[:,0] = 1\n", "X[:,1] = A\n", "X[:,2] = A**(2.0/3.0)\n", "X[:,3] = A**(-1.0/3.0)\n", "X[:,4] = A**(-1.0)\n", "# Then nice printout using pandas\n", "DesignMatrix = pd.DataFrame(X)\n", "DesignMatrix.index = A\n", "DesignMatrix.columns = ['1', 'A', 'A^(2/3)', 'A^(-1/3)', '1/A']\n", "display(DesignMatrix)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With $\\boldsymbol{\\beta}\\in {\\mathbb{R}}^{p\\times 1}$, it means that we will hereafter write our equations for the approximation as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\tilde{y}}= \\boldsymbol{X}\\boldsymbol{\\beta},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "throughout these lectures. \n", "\n", "\n", "## Optimizing our parameters, more details\n", "With the above we use the design matrix to define the approximation $\\boldsymbol{\\tilde{y}}$ via the unknown quantity $\\boldsymbol{\\beta}$ as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\tilde{y}}= \\boldsymbol{X}\\boldsymbol{\\beta},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and in order to find the optimal parameters $\\beta_i$ instead of solving the above linear algebra problem, we define a function which gives a measure of the spread between the values $y_i$ (which represent hopefully the exact values) and the parameterized values $\\tilde{y}_i$, namely" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "C(\\boldsymbol{\\beta})=\\frac{1}{n}\\sum_{i=0}^{n-1}\\left(y_i-\\tilde{y}_i\\right)^2=\\frac{1}{n}\\left\\{\\left(\\boldsymbol{y}-\\boldsymbol{\\tilde{y}}\\right)^T\\left(\\boldsymbol{y}-\\boldsymbol{\\tilde{y}}\\right)\\right\\},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "or using the matrix $\\boldsymbol{X}$ and in a more compact matrix-vector notation as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "C(\\boldsymbol{\\beta})=\\frac{1}{n}\\left\\{\\left(\\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\right)^T\\left(\\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\right)\\right\\}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This function is one possible way to define the so-called cost function.\n", "\n", "\n", "\n", "It is also common to define\n", "the function $C$ as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "C(\\boldsymbol{\\beta})=\\frac{1}{2n}\\sum_{i=0}^{n-1}\\left(y_i-\\tilde{y}_i\\right)^2,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "since when taking the first derivative with respect to the unknown parameters $\\beta$, the factor of $2$ cancels out.\n", "\n", "\n", "\n", "\n", "## Interpretations and optimizing our parameters\n", "\n", "The function" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "C(\\boldsymbol{\\beta})=\\frac{1}{n}\\left\\{\\left(\\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\right)^T\\left(\\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\right)\\right\\},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "can be linked to the variance of the quantity $y_i$ if we interpret the latter as the mean value. \n", "When linking (see the discussion below) with the maximum likelihood approach below, we will indeed interpret $y_i$ as a mean value" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "y_{i}=\\langle y_i \\rangle = \\beta_0x_{i,0}+\\beta_1x_{i,1}+\\beta_2x_{i,2}+\\dots+\\beta_{n-1}x_{i,n-1}+\\epsilon_i,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $\\langle y_i \\rangle$ is the mean value. Keep in mind also that\n", "till now we have treated $y_i$ as the exact value. Normally, the\n", "response (dependent or outcome) variable $y_i$ the outcome of a\n", "numerical experiment or another type of experiment and is thus only an\n", "approximation to the true value. It is then always accompanied by an\n", "error estimate, often limited to a statistical error estimate given by\n", "the standard deviation discussed earlier. In the discussion here we\n", "will treat $y_i$ as our exact value for the response variable.\n", "\n", "In order to find the parameters $\\beta_i$ we will then minimize the spread of $C(\\boldsymbol{\\beta})$, that is we are going to solve the problem" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "{\\displaystyle \\min_{\\boldsymbol{\\beta}\\in\n", "{\\mathbb{R}}^{p}}}\\frac{1}{n}\\left\\{\\left(\\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\right)^T\\left(\\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\right)\\right\\}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In practical terms it means we will require" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\partial C(\\boldsymbol{\\beta})}{\\partial \\beta_j} = \\frac{\\partial }{\\partial \\beta_j}\\left[ \\frac{1}{n}\\sum_{i=0}^{n-1}\\left(y_i-\\beta_0x_{i,0}-\\beta_1x_{i,1}-\\beta_2x_{i,2}-\\dots-\\beta_{n-1}x_{i,n-1}\\right)^2\\right]=0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which results in" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\partial C(\\boldsymbol{\\beta})}{\\partial \\beta_j} = -\\frac{2}{n}\\left[ \\sum_{i=0}^{n-1}x_{ij}\\left(y_i-\\beta_0x_{i,0}-\\beta_1x_{i,1}-\\beta_2x_{i,2}-\\dots-\\beta_{n-1}x_{i,n-1}\\right)\\right]=0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "or in a matrix-vector form as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\partial C(\\boldsymbol{\\beta})}{\\partial \\boldsymbol{\\beta}} = 0 = \\boldsymbol{X}^T\\left( \\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\right).\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Interpretations and optimizing our parameters\n", "We can rewrite" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\partial C(\\boldsymbol{\\beta})}{\\partial \\boldsymbol{\\beta}} = 0 = \\boldsymbol{X}^T\\left( \\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\right),\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}^T\\boldsymbol{y} = \\boldsymbol{X}^T\\boldsymbol{X}\\boldsymbol{\\beta},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and if the matrix $\\boldsymbol{X}^T\\boldsymbol{X}$ is invertible we have the solution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\beta} =\\left(\\boldsymbol{X}^T\\boldsymbol{X}\\right)^{-1}\\boldsymbol{X}^T\\boldsymbol{y}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We note also that since our design matrix is defined as $\\boldsymbol{X}\\in\n", "{\\mathbb{R}}^{n\\times p}$, the product $\\boldsymbol{X}^T\\boldsymbol{X} \\in\n", "{\\mathbb{R}}^{p\\times p}$. In the above case we have that $p \\ll n$,\n", "in our case $p=5$ meaning that we end up with inverting a small\n", "$5\\times 5$ matrix. This is a rather common situation, in many cases we end up with low-dimensional\n", "matrices to invert. The methods discussed here and for many other\n", "supervised learning algorithms like classification with logistic\n", "regression or support vector machines, exhibit dimensionalities which\n", "allow for the usage of direct linear algebra methods such as **LU** decomposition or **Singular Value Decomposition** (SVD) for finding the inverse of the matrix\n", "$\\boldsymbol{X}^T\\boldsymbol{X}$.\n", "\n", "\n", "\n", "**Small question**: Do you think the example we have at hand here (the nuclear binding energies) can lead to problems in inverting the matrix $\\boldsymbol{X}^T\\boldsymbol{X}$? What kind of problems can we expect?\n", "\n", "\n", "\n", "## Some useful matrix and vector expressions\n", "\n", "The following matrix and vector relation will be useful here and for the rest of the course. Vectors are always written as boldfaced lower case letters and \n", "matrices as upper case boldfaced letters." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2\n", "6\n", " \n", "<\n", "<\n", "<\n", "!\n", "!\n", "M\n", "A\n", "T\n", "H\n", "_\n", "B\n", "L\n", "O\n", "C\n", "K" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2\n", "7\n", " \n", "<\n", "<\n", "<\n", "!\n", "!\n", "M\n", "A\n", "T\n", "H\n", "_\n", "B\n", "L\n", "O\n", "C\n", "K" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2\n", "8\n", " \n", "<\n", "<\n", "<\n", "!\n", "!\n", "M\n", "A\n", "T\n", "H\n", "_\n", "B\n", "L\n", "O\n", "C\n", "K" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\partial \\log{\\vert\\boldsymbol{A}\\vert}}{\\partial \\boldsymbol{A}} = (\\boldsymbol{A}^{-1})^T.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Interpretations and optimizing our parameters\n", "The residuals $\\boldsymbol{\\epsilon}$ are in turn given by" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\epsilon} = \\boldsymbol{y}-\\boldsymbol{\\tilde{y}} = \\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and with" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}^T\\left( \\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\right)= 0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "we have" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}^T\\boldsymbol{\\epsilon}=\\boldsymbol{X}^T\\left( \\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\right)= 0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "meaning that the solution for $\\boldsymbol{\\beta}$ is the one which minimizes the residuals. Later we will link this with the maximum likelihood approach.\n", "\n", "\n", "\n", "\n", "Let us now return to our nuclear binding energies and simply code the above equations. \n", "\n", "## Own code for Ordinary Least Squares\n", "\n", "It is rather straightforward to implement the matrix inversion and obtain the parameters $\\boldsymbol{\\beta}$. After having defined the matrix $\\boldsymbol{X}$ we simply need to \n", "write" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# matrix inversion to find beta\n", "beta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(Energies)\n", "# and then make the prediction\n", "ytilde = X @ beta" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Alternatively, you can use the least squares functionality in **Numpy** as" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "fit = np.linalg.lstsq(X, Energies, rcond =None)[0]\n", "ytildenp = np.dot(fit,X.T)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And finally we plot our fit with and compare with data" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "Masses['Eapprox'] = ytilde\n", "# Generate a plot comparing the experimental with the fitted values values.\n", "fig, ax = plt.subplots()\n", "ax.set_xlabel(r'$A = N + Z$')\n", "ax.set_ylabel(r'$E_\\mathrm{bind}\\,/\\mathrm{MeV}$')\n", "ax.plot(Masses['A'], Masses['Ebinding'], alpha=0.7, lw=2,\n", " label='Ame2016')\n", "ax.plot(Masses['A'], Masses['Eapprox'], alpha=0.7, lw=2, c='m',\n", " label='Fit')\n", "ax.legend()\n", "save_fig(\"Masses2016OLS\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Adding error analysis and training set up\n", "\n", "We can easily test our fit by computing the $R2$ score that we discussed in connection with the functionality of **Scikit-Learn** in the introductory slides.\n", "Since we are not using **Scikit-Learn** here we can define our own $R2$ function as" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def R2(y_data, y_model):\n", " return 1 - np.sum((y_data - y_model) ** 2) / np.sum((y_data - np.mean(y_data)) ** 2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and we would be using it as" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print(R2(Energies,ytilde))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can easily add our **MSE** score as" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def MSE(y_data,y_model):\n", " n = np.size(y_model)\n", " return np.sum((y_data-y_model)**2)/n\n", "\n", "print(MSE(Energies,ytilde))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and finally the relative error as" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def RelativeError(y_data,y_model):\n", " return abs((y_data-y_model)/y_data)\n", "print(RelativeError(Energies, ytilde))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The $\\chi^2$ function\n", "\n", "Normally, the response (dependent or outcome) variable $y_i$ is the\n", "outcome of a numerical experiment or another type of experiment and is\n", "thus only an approximation to the true value. It is then always\n", "accompanied by an error estimate, often limited to a statistical error\n", "estimate given by the standard deviation discussed earlier. In the\n", "discussion here we will treat $y_i$ as our exact value for the\n", "response variable.\n", "\n", "Introducing the standard deviation $\\sigma_i$ for each measurement\n", "$y_i$, we define now the $\\chi^2$ function (omitting the $1/n$ term)\n", "as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\chi^2(\\boldsymbol{\\beta})=\\frac{1}{n}\\sum_{i=0}^{n-1}\\frac{\\left(y_i-\\tilde{y}_i\\right)^2}{\\sigma_i^2}=\\frac{1}{n}\\left\\{\\left(\\boldsymbol{y}-\\boldsymbol{\\tilde{y}}\\right)^T\\frac{1}{\\boldsymbol{\\Sigma^2}}\\left(\\boldsymbol{y}-\\boldsymbol{\\tilde{y}}\\right)\\right\\},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where the matrix $\\boldsymbol{\\Sigma}$ is a diagonal matrix with $\\sigma_i$ as matrix elements.\n", "\n", "\n", "\n", "## The $\\chi^2$ function\n", "\n", "In order to find the parameters $\\beta_i$ we will then minimize the spread of $\\chi^2(\\boldsymbol{\\beta})$ by requiring" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\partial \\chi^2(\\boldsymbol{\\beta})}{\\partial \\beta_j} = \\frac{\\partial }{\\partial \\beta_j}\\left[ \\frac{1}{n}\\sum_{i=0}^{n-1}\\left(\\frac{y_i-\\beta_0x_{i,0}-\\beta_1x_{i,1}-\\beta_2x_{i,2}-\\dots-\\beta_{n-1}x_{i,n-1}}{\\sigma_i}\\right)^2\\right]=0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which results in" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\partial \\chi^2(\\boldsymbol{\\beta})}{\\partial \\beta_j} = -\\frac{2}{n}\\left[ \\sum_{i=0}^{n-1}\\frac{x_{ij}}{\\sigma_i}\\left(\\frac{y_i-\\beta_0x_{i,0}-\\beta_1x_{i,1}-\\beta_2x_{i,2}-\\dots-\\beta_{n-1}x_{i,n-1}}{\\sigma_i}\\right)\\right]=0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "or in a matrix-vector form as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\partial \\chi^2(\\boldsymbol{\\beta})}{\\partial \\boldsymbol{\\beta}} = 0 = \\boldsymbol{A}^T\\left( \\boldsymbol{b}-\\boldsymbol{A}\\boldsymbol{\\beta}\\right).\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where we have defined the matrix $\\boldsymbol{A} =\\boldsymbol{X}/\\boldsymbol{\\Sigma}$ with matrix elements $a_{ij} = x_{ij}/\\sigma_i$ and the vector $\\boldsymbol{b}$ with elements $b_i = y_i/\\sigma_i$.\n", "\n", "\n", "\n", "## The $\\chi^2$ function\n", "\n", "We can rewrite" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\partial \\chi^2(\\boldsymbol{\\beta})}{\\partial \\boldsymbol{\\beta}} = 0 = \\boldsymbol{A}^T\\left( \\boldsymbol{b}-\\boldsymbol{A}\\boldsymbol{\\beta}\\right),\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{A}^T\\boldsymbol{b} = \\boldsymbol{A}^T\\boldsymbol{A}\\boldsymbol{\\beta},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and if the matrix $\\boldsymbol{A}^T\\boldsymbol{A}$ is invertible we have the solution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\beta} =\\left(\\boldsymbol{A}^T\\boldsymbol{A}\\right)^{-1}\\boldsymbol{A}^T\\boldsymbol{b}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The $\\chi^2$ function\n", "\n", "If we then introduce the matrix" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{H} = \\left(\\boldsymbol{A}^T\\boldsymbol{A}\\right)^{-1},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "we have then the following expression for the parameters $\\beta_j$ (the matrix elements of $\\boldsymbol{H}$ are $h_{ij}$)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\beta_j = \\sum_{k=0}^{p-1}h_{jk}\\sum_{i=0}^{n-1}\\frac{y_i}{\\sigma_i}\\frac{x_{ik}}{\\sigma_i} = \\sum_{k=0}^{p-1}h_{jk}\\sum_{i=0}^{n-1}b_ia_{ik}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We state without proof the expression for the uncertainty in the parameters $\\beta_j$ as (we leave this as an exercise)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\sigma^2(\\beta_j) = \\sum_{i=0}^{n-1}\\sigma_i^2\\left( \\frac{\\partial \\beta_j}{\\partial y_i}\\right)^2,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "resulting in" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\sigma^2(\\beta_j) = \\left(\\sum_{k=0}^{p-1}h_{jk}\\sum_{i=0}^{n-1}a_{ik}\\right)\\left(\\sum_{l=0}^{p-1}h_{jl}\\sum_{m=0}^{n-1}a_{ml}\\right) = h_{jj}!\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The $\\chi^2$ function\n", "The first step here is to approximate the function $y$ with a first-order polynomial, that is we write" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "y=y(x) \\rightarrow y(x_i) \\approx \\beta_0+\\beta_1 x_i.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By computing the derivatives of $\\chi^2$ with respect to $\\beta_0$ and $\\beta_1$ show that these are given by" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\partial \\chi^2(\\boldsymbol{\\beta})}{\\partial \\beta_0} = -2\\left[ \\frac{1}{n}\\sum_{i=0}^{n-1}\\left(\\frac{y_i-\\beta_0-\\beta_1x_{i}}{\\sigma_i^2}\\right)\\right]=0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\partial \\chi^2(\\boldsymbol{\\beta})}{\\partial \\beta_1} = -\\frac{2}{n}\\left[ \\sum_{i=0}^{n-1}x_i\\left(\\frac{y_i-\\beta_0-\\beta_1x_{i}}{\\sigma_i^2}\\right)\\right]=0.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The $\\chi^2$ function\n", "\n", "For a linear fit (a first-order polynomial) we don't need to invert a matrix!! \n", "Defining" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\gamma = \\sum_{i=0}^{n-1}\\frac{1}{\\sigma_i^2},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\gamma_x = \\sum_{i=0}^{n-1}\\frac{x_{i}}{\\sigma_i^2},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\gamma_y = \\sum_{i=0}^{n-1}\\left(\\frac{y_i}{\\sigma_i^2}\\right),\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\gamma_{xx} = \\sum_{i=0}^{n-1}\\frac{x_ix_{i}}{\\sigma_i^2},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\gamma_{xy} = \\sum_{i=0}^{n-1}\\frac{y_ix_{i}}{\\sigma_i^2},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "we obtain" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\beta_0 = \\frac{\\gamma_{xx}\\gamma_y-\\gamma_x\\gamma_y}{\\gamma\\gamma_{xx}-\\gamma_x^2},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\beta_1 = \\frac{\\gamma_{xy}\\gamma-\\gamma_x\\gamma_y}{\\gamma\\gamma_{xx}-\\gamma_x^2}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This approach (different linear and non-linear regression) suffers\n", "often from both being underdetermined and overdetermined in the\n", "unknown coefficients $\\beta_i$. A better approach is to use the\n", "Singular Value Decomposition (SVD) method discussed below. Or using\n", "Lasso and Ridge regression. See below.\n", "\n", "\n", "\n", "\n", "## Fitting an Equation of State for Dense Nuclear Matter\n", "\n", "Before we continue, let us introduce yet another example. We are going to fit the\n", "nuclear equation of state using results from many-body calculations.\n", "The equation of state we have made available here, as function of\n", "density, has been derived using modern nucleon-nucleon potentials with\n", "[the addition of three-body\n", "forces](https://www.sciencedirect.com/science/article/pii/S0370157399001106). This\n", "time the file is presented as a standard **csv** file.\n", "\n", "The beginning of the Python code here is similar to what you have seen\n", "before, with the same initializations and declarations. We use also\n", "**pandas** again, rather extensively in order to organize our data.\n", "\n", "The difference now is that we use **Scikit-Learn's** regression tools\n", "instead of our own matrix inversion implementation. Furthermore, we\n", "sneak in **Ridge** regression (to be discussed below) which includes a\n", "hyperparameter $\\lambda$, also to be explained below.\n", "\n", "## The code" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Common imports\n", "import os\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import matplotlib.pyplot as plt\n", "import sklearn.linear_model as skl\n", "from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error\n", "\n", "# Where to save the figures and data files\n", "PROJECT_ROOT_DIR = \"Results\"\n", "FIGURE_ID = \"Results/FigureFiles\"\n", "DATA_ID = \"DataFiles/\"\n", "\n", "if not os.path.exists(PROJECT_ROOT_DIR):\n", " os.mkdir(PROJECT_ROOT_DIR)\n", "\n", "if not os.path.exists(FIGURE_ID):\n", " os.makedirs(FIGURE_ID)\n", "\n", "if not os.path.exists(DATA_ID):\n", " os.makedirs(DATA_ID)\n", "\n", "def image_path(fig_id):\n", " return os.path.join(FIGURE_ID, fig_id)\n", "\n", "def data_path(dat_id):\n", " return os.path.join(DATA_ID, dat_id)\n", "\n", "def save_fig(fig_id):\n", " plt.savefig(image_path(fig_id) + \".png\", format='png')\n", "\n", "infile = open(data_path(\"EoS.csv\"),'r')\n", "\n", "# Read the EoS data as csv file and organize the data into two arrays with density and energies\n", "EoS = pd.read_csv(infile, names=('Density', 'Energy'))\n", "EoS['Energy'] = pd.to_numeric(EoS['Energy'], errors='coerce')\n", "EoS = EoS.dropna()\n", "Energies = EoS['Energy']\n", "Density = EoS['Density']\n", "# The design matrix now as function of various polytrops\n", "X = np.zeros((len(Density),4))\n", "X[:,3] = Density**(4.0/3.0)\n", "X[:,2] = Density\n", "X[:,1] = Density**(2.0/3.0)\n", "X[:,0] = 1\n", "\n", "# We use now Scikit-Learn's linear regressor and ridge regressor\n", "# OLS part\n", "clf = skl.LinearRegression().fit(X, Energies)\n", "ytilde = clf.predict(X)\n", "EoS['Eols'] = ytilde\n", "# The mean squared error \n", "print(\"Mean squared error: %.2f\" % mean_squared_error(Energies, ytilde))\n", "# Explained variance score: 1 is perfect prediction \n", "print('Variance score: %.2f' % r2_score(Energies, ytilde))\n", "# Mean absolute error \n", "print('Mean absolute error: %.2f' % mean_absolute_error(Energies, ytilde))\n", "print(clf.coef_, clf.intercept_)\n", "\n", "# The Ridge regression with a hyperparameter lambda = 0.1\n", "_lambda = 0.1\n", "clf_ridge = skl.Ridge(alpha=_lambda).fit(X, Energies)\n", "yridge = clf_ridge.predict(X)\n", "EoS['Eridge'] = yridge\n", "# The mean squared error \n", "print(\"Mean squared error: %.2f\" % mean_squared_error(Energies, yridge))\n", "# Explained variance score: 1 is perfect prediction \n", "print('Variance score: %.2f' % r2_score(Energies, yridge))\n", "# Mean absolute error \n", "print('Mean absolute error: %.2f' % mean_absolute_error(Energies, yridge))\n", "print(clf_ridge.coef_, clf_ridge.intercept_)\n", "\n", "fig, ax = plt.subplots()\n", "ax.set_xlabel(r'$\\rho[\\mathrm{fm}^{-3}]$')\n", "ax.set_ylabel(r'Energy per particle')\n", "ax.plot(EoS['Density'], EoS['Energy'], alpha=0.7, lw=2,\n", " label='Theoretical data')\n", "ax.plot(EoS['Density'], EoS['Eols'], alpha=0.7, lw=2, c='m',\n", " label='OLS')\n", "ax.plot(EoS['Density'], EoS['Eridge'], alpha=0.7, lw=2, c='g',\n", " label='Ridge $\\lambda = 0.1$')\n", "ax.legend()\n", "save_fig(\"EoSfitting\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The above simple polynomial in density $\\rho$ gives an excellent fit\n", "to the data. \n", "\n", "We note also that there is a small deviation between the\n", "standard OLS and the Ridge regression at higher densities. We discuss this in more detail\n", "below.\n", "\n", "\n", "## Splitting our Data in Training and Test data\n", "\n", "It is normal in essentially all Machine Learning studies to split the\n", "data in a training set and a test set (sometimes also an additional\n", "validation set). **Scikit-Learn** has an own function for this. There\n", "is no explicit recipe for how much data should be included as training\n", "data and say test data. An accepted rule of thumb is to use\n", "approximately $2/3$ to $4/5$ of the data as training data. We will\n", "postpone a discussion of this splitting to the end of these notes and\n", "our discussion of the so-called **bias-variance** tradeoff. Here we\n", "limit ourselves to repeat the above equation of state fitting example\n", "but now splitting the data into a training set and a test set." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import os\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from sklearn.model_selection import train_test_split\n", "# Where to save the figures and data files\n", "PROJECT_ROOT_DIR = \"Results\"\n", "FIGURE_ID = \"Results/FigureFiles\"\n", "DATA_ID = \"DataFiles/\"\n", "\n", "if not os.path.exists(PROJECT_ROOT_DIR):\n", " os.mkdir(PROJECT_ROOT_DIR)\n", "\n", "if not os.path.exists(FIGURE_ID):\n", " os.makedirs(FIGURE_ID)\n", "\n", "if not os.path.exists(DATA_ID):\n", " os.makedirs(DATA_ID)\n", "\n", "def image_path(fig_id):\n", " return os.path.join(FIGURE_ID, fig_id)\n", "\n", "def data_path(dat_id):\n", " return os.path.join(DATA_ID, dat_id)\n", "\n", "def save_fig(fig_id):\n", " plt.savefig(image_path(fig_id) + \".png\", format='png')\n", "\n", "def R2(y_data, y_model):\n", " return 1 - np.sum((y_data - y_model) ** 2) / np.sum((y_data - np.mean(y_data)) ** 2)\n", "def MSE(y_data,y_model):\n", " n = np.size(y_model)\n", " return np.sum((y_data-y_model)**2)/n\n", "\n", "infile = open(data_path(\"EoS.csv\"),'r')\n", "\n", "# Read the EoS data as csv file and organized into two arrays with density and energies\n", "EoS = pd.read_csv(infile, names=('Density', 'Energy'))\n", "EoS['Energy'] = pd.to_numeric(EoS['Energy'], errors='coerce')\n", "EoS = EoS.dropna()\n", "Energies = EoS['Energy']\n", "Density = EoS['Density']\n", "# The design matrix now as function of various polytrops\n", "X = np.zeros((len(Density),5))\n", "X[:,0] = 1\n", "X[:,1] = Density**(2.0/3.0)\n", "X[:,2] = Density\n", "X[:,3] = Density**(4.0/3.0)\n", "X[:,4] = Density**(5.0/3.0)\n", "# We split the data in test and training data\n", "X_train, X_test, y_train, y_test = train_test_split(X, Energies, test_size=0.2)\n", "# matrix inversion to find beta\n", "beta = np.linalg.inv(X_train.T.dot(X_train)).dot(X_train.T).dot(y_train)\n", "# and then make the prediction\n", "ytilde = X_train @ beta\n", "print(\"Training R2\")\n", "print(R2(y_train,ytilde))\n", "print(\"Training MSE\")\n", "print(MSE(y_train,ytilde))\n", "ypredict = X_test @ beta\n", "print(\"Test R2\")\n", "print(R2(y_test,ypredict))\n", "print(\"Test MSE\")\n", "print(MSE(y_test,ypredict))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- !split -->\n", "## The Boston housing data example\n", "\n", "The Boston housing \n", "data set was originally a part of UCI Machine Learning Repository\n", "and has been removed now. The data set is now included in **Scikit-Learn**'s \n", "library. There are 506 samples and 13 feature (predictor) variables\n", "in this data set. The objective is to predict the value of prices of\n", "the house using the features (predictors) listed here.\n", "\n", "The features/predictors are\n", "1. CRIM: Per capita crime rate by town\n", "\n", "2. ZN: Proportion of residential land zoned for lots over 25000 square feet\n", "\n", "3. INDUS: Proportion of non-retail business acres per town\n", "\n", "4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)\n", "\n", "5. NOX: Nitric oxide concentration (parts per 10 million)\n", "\n", "6. RM: Average number of rooms per dwelling\n", "\n", "7. AGE: Proportion of owner-occupied units built prior to 1940\n", "\n", "8. DIS: Weighted distances to five Boston employment centers\n", "\n", "9. RAD: Index of accessibility to radial highways\n", "\n", "10. TAX: Full-value property tax rate per USD10000\n", "\n", "11. B: $1000(Bk - 0.63)^2$, where $Bk$ is the proportion of [people of African American descent] by town\n", "\n", "12. LSTAT: Percentage of lower status of the population\n", "\n", "13. MEDV: Median value of owner-occupied homes in USD 1000s\n", "\n", "## Housing data, the code\n", "We start by importing the libraries" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt \n", "\n", "import pandas as pd \n", "import seaborn as sns" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and load the Boston Housing DataSet from **Scikit-Learn**" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.datasets import load_boston\n", "\n", "boston_dataset = load_boston()\n", "\n", "# boston_dataset is a dictionary\n", "# let's check what it contains\n", "boston_dataset.keys()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we invoke Pandas" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [], "source": [ "boston = pd.DataFrame(boston_dataset.data, columns=boston_dataset.feature_names)\n", "boston.head()\n", "boston['MEDV'] = boston_dataset.target" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and preprocess the data" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# check for missing values in all the columns\n", "boston.isnull().sum()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can then visualize the data" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# set the size of the figure\n", "sns.set(rc={'figure.figsize':(11.7,8.27)})\n", "\n", "# plot a histogram showing the distribution of the target values\n", "sns.distplot(boston['MEDV'], bins=30)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is now useful to look at the correlation matrix" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# compute the pair wise correlation for all columns \n", "correlation_matrix = boston.corr().round(2)\n", "# use the heatmap function from seaborn to plot the correlation matrix\n", "# annot = True to print the values inside the square\n", "sns.heatmap(data=correlation_matrix, annot=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the above coorelation plot we can see that **MEDV** is strongly correlated to **LSTAT** and **RM**. We see also that **RAD** and **TAX** are stronly correlated, but we don't include this in our features together to avoid multi-colinearity" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ "plt.figure(figsize=(20, 5))\n", "\n", "features = ['LSTAT', 'RM']\n", "target = boston['MEDV']\n", "\n", "for i, col in enumerate(features):\n", " plt.subplot(1, len(features) , i+1)\n", " x = boston[col]\n", " y = target\n", " plt.scatter(x, y, marker='o')\n", " plt.title(col)\n", " plt.xlabel(col)\n", " plt.ylabel('MEDV')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we start training our model" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [], "source": [ "X = pd.DataFrame(np.c_[boston['LSTAT'], boston['RM']], columns = ['LSTAT','RM'])\n", "Y = boston['MEDV']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We split the data into training and test sets" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "\n", "# splits the training and test data set in 80% : 20%\n", "# assign random_state to any value.This ensures consistency.\n", "X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state=5)\n", "print(X_train.shape)\n", "print(X_test.shape)\n", "print(Y_train.shape)\n", "print(Y_test.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we use the linear regression functionality from **Scikit-Learn**" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.linear_model import LinearRegression\n", "from sklearn.metrics import mean_squared_error, r2_score\n", "\n", "lin_model = LinearRegression()\n", "lin_model.fit(X_train, Y_train)\n", "\n", "# model evaluation for training set\n", "\n", "y_train_predict = lin_model.predict(X_train)\n", "rmse = (np.sqrt(mean_squared_error(Y_train, y_train_predict)))\n", "r2 = r2_score(Y_train, y_train_predict)\n", "\n", "print(\"The model performance for training set\")\n", "print(\"--------------------------------------\")\n", "print('RMSE is {}'.format(rmse))\n", "print('R2 score is {}'.format(r2))\n", "print(\"\\n\")\n", "\n", "# model evaluation for testing set\n", "\n", "y_test_predict = lin_model.predict(X_test)\n", "# root mean square error of the model\n", "rmse = (np.sqrt(mean_squared_error(Y_test, y_test_predict)))\n", "\n", "# r-squared score of the model\n", "r2 = r2_score(Y_test, y_test_predict)\n", "\n", "print(\"The model performance for testing set\")\n", "print(\"--------------------------------------\")\n", "print('RMSE is {}'.format(rmse))\n", "print('R2 score is {}'.format(r2))" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# plotting the y_test vs y_pred\n", "# ideally should have been a straight line\n", "plt.scatter(Y_test, y_test_predict)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reducing the number of degrees of freedom, overarching view\n", "\n", "Many Machine Learning problems involve thousands or even millions of\n", "features for each training instance. Not only does this make training\n", "extremely slow, it can also make it much harder to find a good\n", "solution, as we will see. This problem is often referred to as the\n", "curse of dimensionality. Fortunately, in real-world problems, it is\n", "often possible to reduce the number of features considerably, turning\n", "an intractable problem into a tractable one.\n", "\n", "Later we will discuss some of the most popular dimensionality reduction\n", "techniques: the principal component analysis (PCA), Kernel PCA, and\n", "Locally Linear Embedding (LLE). \n", "\n", "\n", "Principal component analysis and its various variants deal with the\n", "problem of fitting a low-dimensional [affine\n", "subspace](https://en.wikipedia.org/wiki/Affine_space) to a set of of\n", "data points in a high-dimensional space. With its family of methods it\n", "is one of the most used tools in data modeling, compression and\n", "visualization.\n", "\n", "\n", "\n", "\n", "## Preprocessing our data\n", "\n", "Before we proceed however, we will discuss how to preprocess our\n", "data. Till now and in connection with our previous examples we have\n", "not met so many cases where we are too sensitive to the scaling of our\n", "data. Normally the data may need a rescaling and/or may be sensitive\n", "to extreme values. Scaling the data renders our inputs much more\n", "suitable for the algorithms we want to employ.\n", "\n", "**Scikit-Learn** has several functions which allow us to rescale the\n", "data, normally resulting in much better results in terms of various\n", "accuracy scores. The **StandardScaler** function in **Scikit-Learn**\n", "ensures that for each feature/predictor we study the mean value is\n", "zero and the variance is one (every column in the design/feature\n", "matrix). This scaling has the drawback that it does not ensure that\n", "we have a particular maximum or minimum in our data set. Another\n", "function included in **Scikit-Learn** is the **MinMaxScaler** which\n", "ensures that all features are exactly between $0$ and $1$. The\n", "\n", "## More preprocessing\n", "\n", "\n", "The **Normalizer** scales each data\n", "point such that the feature vector has a euclidean length of one. In other words, it\n", "projects a data point on the circle (or sphere in the case of higher dimensions) with a\n", "radius of 1. This means every data point is scaled by a different number (by the\n", "inverse of it’s length).\n", "This normalization is often used when only the direction (or angle) of the data matters,\n", "not the length of the feature vector.\n", "\n", "The **RobustScaler** works similarly to the StandardScaler in that it\n", "ensures statistical properties for each feature that guarantee that\n", "they are on the same scale. However, the RobustScaler uses the median\n", "and quartiles, instead of mean and variance. This makes the\n", "RobustScaler ignore data points that are very different from the rest\n", "(like measurement errors). These odd data points are also called\n", "outliers, and might often lead to trouble for other scaling\n", "techniques.\n", "\n", "\n", "\n", "## Simple preprocessing examples, Franke function and regression" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Common imports\n", "import os\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import sklearn.linear_model as skl\n", "from sklearn.metrics import mean_squared_error\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer\n", "\n", "# Where to save the figures and data files\n", "PROJECT_ROOT_DIR = \"Results\"\n", "FIGURE_ID = \"Results/FigureFiles\"\n", "DATA_ID = \"DataFiles/\"\n", "\n", "if not os.path.exists(PROJECT_ROOT_DIR):\n", " os.mkdir(PROJECT_ROOT_DIR)\n", "\n", "if not os.path.exists(FIGURE_ID):\n", " os.makedirs(FIGURE_ID)\n", "\n", "if not os.path.exists(DATA_ID):\n", " os.makedirs(DATA_ID)\n", "\n", "def image_path(fig_id):\n", " return os.path.join(FIGURE_ID, fig_id)\n", "\n", "def data_path(dat_id):\n", " return os.path.join(DATA_ID, dat_id)\n", "\n", "def save_fig(fig_id):\n", " plt.savefig(image_path(fig_id) + \".png\", format='png')\n", "\n", "\n", "def FrankeFunction(x,y):\n", "\tterm1 = 0.75*np.exp(-(0.25*(9*x-2)**2) - 0.25*((9*y-2)**2))\n", "\tterm2 = 0.75*np.exp(-((9*x+1)**2)/49.0 - 0.1*(9*y+1))\n", "\tterm3 = 0.5*np.exp(-(9*x-7)**2/4.0 - 0.25*((9*y-3)**2))\n", "\tterm4 = -0.2*np.exp(-(9*x-4)**2 - (9*y-7)**2)\n", "\treturn term1 + term2 + term3 + term4\n", "\n", "\n", "def create_X(x, y, n ):\n", "\tif len(x.shape) > 1:\n", "\t\tx = np.ravel(x)\n", "\t\ty = np.ravel(y)\n", "\n", "\tN = len(x)\n", "\tl = int((n+1)*(n+2)/2)\t\t# Number of elements in beta\n", "\tX = np.ones((N,l))\n", "\n", "\tfor i in range(1,n+1):\n", "\t\tq = int((i)*(i+1)/2)\n", "\t\tfor k in range(i+1):\n", "\t\t\tX[:,q+k] = (x**(i-k))*(y**k)\n", "\n", "\treturn X\n", "\n", "\n", "# Making meshgrid of datapoints and compute Franke's function\n", "n = 5\n", "N = 1000\n", "x = np.sort(np.random.uniform(0, 1, N))\n", "y = np.sort(np.random.uniform(0, 1, N))\n", "z = FrankeFunction(x, y)\n", "X = create_X(x, y, n=n) \n", "# split in training and test data\n", "X_train, X_test, y_train, y_test = train_test_split(X,z,test_size=0.2)\n", "\n", "\n", "clf = skl.LinearRegression().fit(X_train, y_train)\n", "\n", "# The mean squared error and R2 score\n", "print(\"MSE before scaling: {:.2f}\".format(mean_squared_error(clf.predict(X_test), y_test)))\n", "print(\"R2 score before scaling {:.2f}\".format(clf.score(X_test,y_test)))\n", "\n", "scaler = StandardScaler()\n", "scaler.fit(X_train)\n", "X_train_scaled = scaler.transform(X_train)\n", "X_test_scaled = scaler.transform(X_test)\n", "\n", "print(\"Feature min values before scaling:\\n {}\".format(X_train.min(axis=0)))\n", "print(\"Feature max values before scaling:\\n {}\".format(X_train.max(axis=0)))\n", "\n", "print(\"Feature min values after scaling:\\n {}\".format(X_train_scaled.min(axis=0)))\n", "print(\"Feature max values after scaling:\\n {}\".format(X_train_scaled.max(axis=0)))\n", "\n", "clf = skl.LinearRegression().fit(X_train_scaled, y_train)\n", "\n", "\n", "print(\"MSE after scaling: {:.2f}\".format(mean_squared_error(clf.predict(X_test_scaled), y_test)))\n", "print(\"R2 score for scaled data: {:.2f}\".format(clf.score(X_test_scaled,y_test)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The singular value decomposition\n", "\n", "\n", "The examples we have looked at so far are cases where we normally can\n", "invert the matrix $\\boldsymbol{X}^T\\boldsymbol{X}$. Using a polynomial expansion as we\n", "did both for the masses and the fitting of the equation of state,\n", "leads to row vectors of the design matrix which are essentially\n", "orthogonal due to the polynomial character of our model. Obtaining the inverse of the design matrix is then often done via a so-called LU, QR or Cholesky decomposition. \n", "\n", "\n", "\n", "This may\n", "however not the be case in general and a standard matrix inversion\n", "algorithm based on say LU, QR or Cholesky decomposition may lead to singularities. We will see examples of this below.\n", "\n", "There is however a way to partially circumvent this problem and also gain some insights about the ordinary least squares approach, and later shrinkage methods like Ridge and Lasso regressions. \n", "\n", "This is given by the **Singular Value Decomposition** algorithm, perhaps\n", "the most powerful linear algebra algorithm. Let us look at a\n", "different example where we may have problems with the standard matrix\n", "inversion algorithm. Thereafter we dive into the math of the SVD.\n", "\n", "\n", "\n", "\n", "\n", "## Linear Regression Problems\n", "\n", "One of the typical problems we encounter with linear regression, in particular \n", "when the matrix $\\boldsymbol{X}$ (our so-called design matrix) is high-dimensional, \n", "are problems with near singular or singular matrices. The column vectors of $\\boldsymbol{X}$ \n", "may be linearly dependent, normally referred to as super-collinearity. \n", "This means that the matrix may be rank deficient and it is basically impossible to \n", "to model the data using linear regression. As an example, consider the matrix" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{align*}\n", "\\mathbf{X} & = \\left[\n", "\\begin{array}{rrr}\n", "1 & -1 & 2\n", "\\\\\n", "1 & 0 & 1\n", "\\\\\n", "1 & 2 & -1\n", "\\\\\n", "1 & 1 & 0\n", "\\end{array} \\right]\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The columns of $\\boldsymbol{X}$ are linearly dependent. We see this easily since the \n", "the first column is the row-wise sum of the other two columns. The rank (more correct,\n", "the column rank) of a matrix is the dimension of the space spanned by the\n", "column vectors. Hence, the rank of $\\mathbf{X}$ is equal to the number\n", "of linearly independent columns. In this particular case the matrix has rank 2.\n", "\n", "Super-collinearity of an $(n \\times p)$-dimensional design matrix $\\mathbf{X}$ implies\n", "that the inverse of the matrix $\\boldsymbol{X}^T\\boldsymbol{X}$ (the matrix we need to invert to solve the linear regression equations) is non-invertible. If we have a square matrix that does not have an inverse, we say this matrix singular. The example here demonstrates this" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{align*}\n", "\\boldsymbol{X} & = \\left[\n", "\\begin{array}{rr}\n", "1 & -1\n", "\\\\\n", "1 & -1\n", "\\end{array} \\right].\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see easily that $\\mbox{det}(\\boldsymbol{X}) = x_{11} x_{22} - x_{12} x_{21} = 1 \\times (-1) - 1 \\times (-1) = 0$. Hence, $\\mathbf{X}$ is singular and its inverse is undefined.\n", "This is equivalent to saying that the matrix $\\boldsymbol{X}$ has at least an eigenvalue which is zero.\n", "\n", "\n", "## Fixing the singularity\n", "\n", "If our design matrix $\\boldsymbol{X}$ which enters the linear regression problem" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"_auto1\"></div>\n", "\n", "$$\n", "\\begin{equation}\n", "\\boldsymbol{\\beta} = (\\boldsymbol{X}^{T} \\boldsymbol{X})^{-1} \\boldsymbol{X}^{T} \\boldsymbol{y},\n", "\\label{_auto1} \\tag{1}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "has linearly dependent column vectors, we will not be able to compute the inverse\n", "of $\\boldsymbol{X}^T\\boldsymbol{X}$ and we cannot find the parameters (estimators) $\\beta_i$. \n", "The estimators are only well-defined if $(\\boldsymbol{X}^{T}\\boldsymbol{X})^{-1}$ exits. \n", "This is more likely to happen when the matrix $\\boldsymbol{X}$ is high-dimensional. In this case it is likely to encounter a situation where \n", "the regression parameters $\\beta_i$ cannot be estimated.\n", "\n", "A cheap *ad hoc* approach is simply to add a small diagonal component to the matrix to invert, that is we change" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}^{T} \\boldsymbol{X} \\rightarrow \\boldsymbol{X}^{T} \\boldsymbol{X}+\\lambda \\boldsymbol{I},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $\\boldsymbol{I}$ is the identity matrix. When we discuss **Ridge** regression this is actually what we end up evaluating. The parameter $\\lambda$ is called a hyperparameter. More about this later. \n", "\n", "\n", "\n", "## Basic math of the SVD\n", "\n", "\n", "From standard linear algebra we know that a square matrix $\\boldsymbol{X}$ can be diagonalized if and only it is \n", "a so-called [normal matrix](https://en.wikipedia.org/wiki/Normal_matrix), that is if $\\boldsymbol{X}\\in {\\mathbb{R}}^{n\\times n}$\n", "we have $\\boldsymbol{X}\\boldsymbol{X}^T=\\boldsymbol{X}^T\\boldsymbol{X}$ or if $\\boldsymbol{X}\\in {\\mathbb{C}}^{n\\times n}$ we have $\\boldsymbol{X}\\boldsymbol{X}^{\\dagger}=\\boldsymbol{X}^{\\dagger}\\boldsymbol{X}$.\n", "The matrix has then a set of eigenpairs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "(\\lambda_1,\\boldsymbol{u}_1),\\dots, (\\lambda_n,\\boldsymbol{u}_n),\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and the eigenvalues are given by the diagonal matrix" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\Sigma}=\\mathrm{Diag}(\\lambda_1, \\dots,\\lambda_n).\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The matrix $\\boldsymbol{X}$ can be written in terms of an orthogonal/unitary transformation $\\boldsymbol{U}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X} = \\boldsymbol{U}\\boldsymbol{\\Sigma}\\boldsymbol{V}^T,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "with $\\boldsymbol{U}\\boldsymbol{U}^T=\\boldsymbol{I}$ or $\\boldsymbol{U}\\boldsymbol{U}^{\\dagger}=\\boldsymbol{I}$.\n", "\n", "Not all square matrices are diagonalizable. A matrix like the one discussed above" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X} = \\begin{bmatrix} \n", "1& -1 \\\\\n", "1& -1\\\\\n", "\\end{bmatrix}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "is not diagonalizable, it is a so-called [defective matrix](https://en.wikipedia.org/wiki/Defective_matrix). It is easy to see that the condition\n", "$\\boldsymbol{X}\\boldsymbol{X}^T=\\boldsymbol{X}^T\\boldsymbol{X}$ is not fulfilled. \n", "\n", "\n", "## The SVD, a Fantastic Algorithm\n", "\n", "\n", "However, and this is the strength of the SVD algorithm, any general\n", "matrix $\\boldsymbol{X}$ can be decomposed in terms of a diagonal matrix and\n", "two orthogonal/unitary matrices. The [Singular Value Decompostion\n", "(SVD) theorem](https://en.wikipedia.org/wiki/Singular_value_decomposition)\n", "states that a general $m\\times n$ matrix $\\boldsymbol{X}$ can be written in\n", "terms of a diagonal matrix $\\boldsymbol{\\Sigma}$ of dimensionality $m\\times n$\n", "and two orthognal matrices $\\boldsymbol{U}$ and $\\boldsymbol{V}$, where the first has\n", "dimensionality $m \\times m$ and the last dimensionality $n\\times n$.\n", "We have then" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X} = \\boldsymbol{U}\\boldsymbol{\\Sigma}\\boldsymbol{V}^T\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As an example, the above defective matrix can be decomposed as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X} = \\frac{1}{\\sqrt{2}}\\begin{bmatrix} 1& 1 \\\\ 1& -1\\\\ \\end{bmatrix} \\begin{bmatrix} 2& 0 \\\\ 0& 0\\\\ \\end{bmatrix} \\frac{1}{\\sqrt{2}}\\begin{bmatrix} 1& -1 \\\\ 1& 1\\\\ \\end{bmatrix}=\\boldsymbol{U}\\boldsymbol{\\Sigma}\\boldsymbol{V}^T,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "with eigenvalues $\\sigma_1=2$ and $\\sigma_2=0$. \n", "The SVD exits always! \n", "\n", "The SVD\n", "decomposition (singular values) gives eigenvalues \n", "$\\sigma_i\\geq\\sigma_{i+1}$ for all $i$ and for dimensions larger than $i=p$, the\n", "eigenvalues (singular values) are zero.\n", "\n", "In the general case, where our design matrix $\\boldsymbol{X}$ has dimension\n", "$n\\times p$, the matrix is thus decomposed into an $n\\times n$\n", "orthogonal matrix $\\boldsymbol{U}$, a $p\\times p$ orthogonal matrix $\\boldsymbol{V}$\n", "and a diagonal matrix $\\boldsymbol{\\Sigma}$ with $r=\\mathrm{min}(n,p)$\n", "singular values $\\sigma_i\\geq 0$ on the main diagonal and zeros filling\n", "the rest of the matrix. There are at most $p$ singular values\n", "assuming that $n > p$. In our regression examples for the nuclear\n", "masses and the equation of state this is indeed the case, while for\n", "the Ising model we have $p > n$. These are often cases that lead to\n", "near singular or singular matrices.\n", "\n", "The columns of $\\boldsymbol{U}$ are called the left singular vectors while the columns of $\\boldsymbol{V}$ are the right singular vectors.\n", "\n", "## Economy-size SVD\n", "\n", "If we assume that $n > p$, then our matrix $\\boldsymbol{U}$ has dimension $n\n", "\\times n$. The last $n-p$ columns of $\\boldsymbol{U}$ become however\n", "irrelevant in our calculations since they are multiplied with the\n", "zeros in $\\boldsymbol{\\Sigma}$.\n", "\n", "The economy-size decomposition removes extra rows or columns of zeros\n", "from the diagonal matrix of singular values, $\\boldsymbol{\\Sigma}$, along with the columns\n", "in either $\\boldsymbol{U}$ or $\\boldsymbol{V}$ that multiply those zeros in the expression. \n", "Removing these zeros and columns can improve execution time\n", "and reduce storage requirements without compromising the accuracy of\n", "the decomposition.\n", "\n", "If $n > p$, we keep only the first $p$ columns of $\\boldsymbol{U}$ and $\\boldsymbol{\\Sigma}$ has dimension $p\\times p$. \n", "If $p > n$, then only the first $n$ columns of $\\boldsymbol{V}$ are computed and $\\boldsymbol{\\Sigma}$ has dimension $n\\times n$.\n", "The $n=p$ case is obvious, we retain the full SVD. \n", "In general the economy-size SVD leads to less FLOPS and still conserving the desired accuracy.\n", "\n", "## Codes for the SVD" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "# SVD inversion\n", "def SVDinv(A):\n", " ''' Takes as input a numpy matrix A and returns inv(A) based on singular value decomposition (SVD).\n", " SVD is numerically more stable than the inversion algorithms provided by\n", " numpy and scipy.linalg at the cost of being slower.\n", " '''\n", " U, s, VT = np.linalg.svd(A)\n", "# print('test U')\n", "# print( (np.transpose(U) @ U - U @np.transpose(U)))\n", "# print('test VT')\n", "# print( (np.transpose(VT) @ VT - VT @np.transpose(VT)))\n", " print(U)\n", " print(s)\n", " print(VT)\n", "\n", " D = np.zeros((len(U),len(VT)))\n", " for i in range(0,len(VT)):\n", " D[i,i]=s[i]\n", " UT = np.transpose(U); V = np.transpose(VT); invD = np.linalg.inv(D)\n", " return np.matmul(V,np.matmul(invD,UT))\n", "\n", "\n", "X = np.array([ [1.0, -1.0, 2.0], [1.0, 0.0, 1.0], [1.0, 2.0, -1.0], [1.0, 1.0, 0.0] ])\n", "print(X)\n", "A = np.transpose(X) @ X\n", "print(A)\n", "# Brute force inversion of super-collinear matrix\n", "#B = np.linalg.inv(A)\n", "#print(B)\n", "C = SVDinv(A)\n", "print(C)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The matrix $\\boldsymbol{X}$ has columns that are linearly dependent. The first\n", "column is the row-wise sum of the other two columns. The rank of a\n", "matrix (the column rank) is the dimension of space spanned by the\n", "column vectors. The rank of the matrix is the number of linearly\n", "independent columns, in this case just $2$. We see this from the\n", "singular values when running the above code. Running the standard\n", "inversion algorithm for matrix inversion with $\\boldsymbol{X}^T\\boldsymbol{X}$ results\n", "in the program terminating due to a singular matrix.\n", "\n", "\n", "\n", "## Mathematical Properties\n", "\n", "There are several interesting mathematical properties which will be\n", "relevant when we are going to discuss the differences between say\n", "ordinary least squares (OLS) and **Ridge** regression.\n", "\n", "We have from OLS that the parameters of the linear approximation are given by" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\tilde{y}} = \\boldsymbol{X}\\boldsymbol{\\beta} = \\boldsymbol{X}\\left(\\boldsymbol{X}^T\\boldsymbol{X}\\right)^{-1}\\boldsymbol{X}^T\\boldsymbol{y}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The matrix to invert can be rewritten in terms of our SVD decomposition as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}^T\\boldsymbol{X} = \\boldsymbol{V}\\boldsymbol{\\Sigma}^T\\boldsymbol{U}^T\\boldsymbol{U}\\boldsymbol{\\Sigma}\\boldsymbol{V}^T.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using the orthogonality properties of $\\boldsymbol{U}$ we have" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}^T\\boldsymbol{X} = \\boldsymbol{V}\\boldsymbol{\\Sigma}^T\\boldsymbol{\\Sigma}\\boldsymbol{V}^T = \\boldsymbol{V}\\boldsymbol{D}\\boldsymbol{V}^T,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "with $\\boldsymbol{D}$ being a diagonal matrix with values along the diagonal given by the singular values squared. \n", "\n", "This means that" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "(\\boldsymbol{X}^T\\boldsymbol{X})\\boldsymbol{V} = \\boldsymbol{V}\\boldsymbol{D},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "that is the eigenvectors of $(\\boldsymbol{X}^T\\boldsymbol{X})$ are given by the columns of the right singular matrix of $\\boldsymbol{X}$ and the eigenvalues are the squared singular values. It is easy to show (show this) that" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "(\\boldsymbol{X}\\boldsymbol{X}^T)\\boldsymbol{U} = \\boldsymbol{U}\\boldsymbol{D},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "that is, the eigenvectors of $(\\boldsymbol{X}\\boldsymbol{X})^T$ are the columns of the left singular matrix and the eigenvalues are the same. \n", "\n", "Going back to our OLS equation we have" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}\\boldsymbol{\\beta} = \\boldsymbol{X}\\left(\\boldsymbol{V}\\boldsymbol{D}\\boldsymbol{V}^T \\right)^{-1}\\boldsymbol{X}^T\\boldsymbol{y}=\\boldsymbol{U\\Sigma V^T}\\left(\\boldsymbol{V}\\boldsymbol{D}\\boldsymbol{V}^T \\right)^{-1}(\\boldsymbol{U\\Sigma V^T})^T\\boldsymbol{y}=\\boldsymbol{U}\\boldsymbol{U}^T\\boldsymbol{y}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will come back to this expression when we discuss Ridge regression. \n", "\n", "\n", "$$ \\tilde{y}^{OLS}=\\boldsymbol{X}\\hat{\\beta}^{OLS}=\\sum_{j=1}^p \\boldsymbol{u}_j\\boldsymbol{u}_j^T\\boldsymbol{y}$$ and for Ridge we have \n", "\n", "$$ \\tilde{y}^{Ridge}=\\boldsymbol{X}\\hat{\\beta}^{Ridge}=\\sum_{j=1}^p \\boldsymbol{u}_j\\frac{\\sigma_j^2}{\\sigma_j^2+\\lambda}\\boldsymbol{u}_j^T\\boldsymbol{y}$$ . \n", "\n", "It is indeed the economy-sized SVD, note the summation runs up tp $$p$$ only and not $$n$$. \n", "\n", "Here we have that $$\\boldsymbol{X} = \\boldsymbol{U}\\boldsymbol{\\Sigma}\\boldsymbol{V}^T$$, with $$\\Sigma$$ being an $$ n\\times p$$ matrix and $$\\boldsymbol{V}$$ being a $$ p\\times p$$ matrix. We also have assumed here that $$ n > p$$. \n", "\n", "\n", "## Ridge and LASSO Regression\n", "\n", "Let us remind ourselves about the expression for the standard Mean Squared Error (MSE) which we used to define our cost function and the equations for the ordinary least squares (OLS) method, that is \n", "our optimization problem is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "{\\displaystyle \\min_{\\boldsymbol{\\beta}\\in {\\mathbb{R}}^{p}}}\\frac{1}{n}\\left\\{\\left(\\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\right)^T\\left(\\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\right)\\right\\}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "or we can state it as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "{\\displaystyle \\min_{\\boldsymbol{\\beta}\\in\n", "{\\mathbb{R}}^{p}}}\\frac{1}{n}\\sum_{i=0}^{n-1}\\left(y_i-\\tilde{y}_i\\right)^2=\\frac{1}{n}\\vert\\vert \\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\vert\\vert_2^2,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where we have used the definition of a norm-2 vector, that is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\vert\\vert \\boldsymbol{x}\\vert\\vert_2 = \\sqrt{\\sum_i x_i^2}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By minimizing the above equation with respect to the parameters\n", "$\\boldsymbol{\\beta}$ we could then obtain an analytical expression for the\n", "parameters $\\boldsymbol{\\beta}$. We can add a regularization parameter $\\lambda$ by\n", "defining a new cost function to be optimized, that is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "{\\displaystyle \\min_{\\boldsymbol{\\beta}\\in\n", "{\\mathbb{R}}^{p}}}\\frac{1}{n}\\vert\\vert \\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\vert\\vert_2^2+\\lambda\\vert\\vert \\boldsymbol{\\beta}\\vert\\vert_2^2\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which leads to the Ridge regression minimization problem where we\n", "require that $\\vert\\vert \\boldsymbol{\\beta}\\vert\\vert_2^2\\le t$, where $t$ is\n", "a finite number larger than zero. By defining" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "C(\\boldsymbol{X},\\boldsymbol{\\beta})=\\frac{1}{n}\\vert\\vert \\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\vert\\vert_2^2+\\lambda\\vert\\vert \\boldsymbol{\\beta}\\vert\\vert_1,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "we have a new optimization equation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "{\\displaystyle \\min_{\\boldsymbol{\\beta}\\in\n", "{\\mathbb{R}}^{p}}}\\frac{1}{n}\\vert\\vert \\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta}\\vert\\vert_2^2+\\lambda\\vert\\vert \\boldsymbol{\\beta}\\vert\\vert_1\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which leads to Lasso regression. Lasso stands for least absolute shrinkage and selection operator. \n", "\n", "Here we have defined the norm-1 as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\vert\\vert \\boldsymbol{x}\\vert\\vert_1 = \\sum_i \\vert x_i\\vert.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## More on Ridge Regression\n", "\n", "Using the matrix-vector expression for Ridge regression," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "C(\\boldsymbol{X},\\boldsymbol{\\beta})=\\frac{1}{n}\\left\\{(\\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta})^T(\\boldsymbol{y}-\\boldsymbol{X}\\boldsymbol{\\beta})\\right\\}+\\lambda\\boldsymbol{\\beta}^T\\boldsymbol{\\beta},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "by taking the derivatives with respect to $\\boldsymbol{\\beta}$ we obtain then\n", "a slightly modified matrix inversion problem which for finite values\n", "of $\\lambda$ does not suffer from singularity problems. We obtain" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\beta}^{\\mathrm{Ridge}} = \\left(\\boldsymbol{X}^T\\boldsymbol{X}+\\lambda\\boldsymbol{I}\\right)^{-1}\\boldsymbol{X}^T\\boldsymbol{y},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "with $\\boldsymbol{I}$ being a $p\\times p$ identity matrix with the constraint that" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\sum_{i=0}^{p-1} \\beta_i^2 \\leq t,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "with $t$ a finite positive number. \n", "\n", "We see that Ridge regression is nothing but the standard\n", "OLS with a modified diagonal term added to $\\boldsymbol{X}^T\\boldsymbol{X}$. The\n", "consequences, in particular for our discussion of the bias-variance tradeoff \n", "are rather interesting.\n", "\n", "Furthermore, if we use the result above in terms of the SVD decomposition (our analysis was done for the OLS method), we had" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "(\\boldsymbol{X}\\boldsymbol{X}^T)\\boldsymbol{U} = \\boldsymbol{U}\\boldsymbol{D}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can analyse the OLS solutions in terms of the eigenvectors (the columns) of the right singular value matrix $\\boldsymbol{U}$ as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}\\boldsymbol{\\beta} = \\boldsymbol{X}\\left(\\boldsymbol{V}\\boldsymbol{D}\\boldsymbol{V}^T \\right)^{-1}\\boldsymbol{X}^T\\boldsymbol{y}=\\boldsymbol{U\\Sigma V^T}\\left(\\boldsymbol{V}\\boldsymbol{D}\\boldsymbol{V}^T \\right)^{-1}(\\boldsymbol{U\\Sigma V^T})^T\\boldsymbol{y}=\\boldsymbol{U}\\boldsymbol{U}^T\\boldsymbol{y}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For Ridge regression this becomes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}\\boldsymbol{\\beta}^{\\mathrm{Ridge}} = \\boldsymbol{U\\Sigma V^T}\\left(\\boldsymbol{V}\\boldsymbol{D}\\boldsymbol{V}^T+\\lambda\\boldsymbol{I} \\right)^{-1}(\\boldsymbol{U\\Sigma V^T})^T\\boldsymbol{y}=\\sum_{j=0}^{p-1}\\boldsymbol{u}_j\\boldsymbol{u}_j^T\\frac{\\sigma_j^2}{\\sigma_j^2+\\lambda}\\boldsymbol{y},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "with the vectors $\\boldsymbol{u}_j$ being the columns of $\\boldsymbol{U}$. \n", "\n", "## Interpreting the Ridge results\n", "\n", "Since $\\lambda \\geq 0$, it means that compared to OLS, we have" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\frac{\\sigma_j^2}{\\sigma_j^2+\\lambda} \\leq 1.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ridge regression finds the coordinates of $\\boldsymbol{y}$ with respect to the\n", "orthonormal basis $\\boldsymbol{U}$, it then shrinks the coordinates by\n", "$\\frac{\\sigma_j^2}{\\sigma_j^2+\\lambda}$. Recall that the SVD has\n", "eigenvalues ordered in a descending way, that is $\\sigma_i \\geq\n", "\\sigma_{i+1}$.\n", "\n", "For small eigenvalues $\\sigma_i$ it means that their contributions become less important, a fact which can be used to reduce the number of degrees of freedom.\n", "Actually, calculating the variance of $\\boldsymbol{X}\\boldsymbol{v}_j$ shows that this quantity is equal to $\\sigma_j^2/n$.\n", "With a parameter $\\lambda$ we can thus shrink the role of specific parameters. \n", "\n", "\n", "## More interpretations\n", "\n", "For the sake of simplicity, let us assume that the design matrix is orthonormal, that is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}^T\\boldsymbol{X}=(\\boldsymbol{X}^T\\boldsymbol{X})^{-1} =\\boldsymbol{I}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this case the standard OLS results in" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\beta}^{\\mathrm{OLS}} = \\boldsymbol{X}^T\\boldsymbol{y}=\\sum_{i=0}^{p-1}\\boldsymbol{u}_j\\boldsymbol{u}_j^T\\boldsymbol{y},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\beta}^{\\mathrm{Ridge}} = \\left(\\boldsymbol{I}+\\lambda\\boldsymbol{I}\\right)^{-1}\\boldsymbol{X}^T\\boldsymbol{y}=\\left(1+\\lambda\\right)^{-1}\\boldsymbol{\\beta}^{\\mathrm{OLS}},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "that is the Ridge estimator scales the OLS estimator by the inverse of a factor $1+\\lambda$, and\n", "the Ridge estimator converges to zero when the hyperparameter goes to\n", "infinity.\n", "\n", "We will come back to more interpreations after we have gone through some of the statistical analysis part. \n", "\n", "For more discussions of Ridge and Lasso regression, [Wessel van Wieringen's](https://arxiv.org/abs/1509.09169) article is highly recommended.\n", "Similarly, [Mehta et al's article](https://arxiv.org/abs/1803.08823) is also recommended.\n", "\n", "\n", "<!-- !split -->\n", "## A better understanding of regularization\n", "\n", "The parameter $\\lambda$ that we have introduced in the Ridge (and\n", "Lasso as well) regression is often called a regularization parameter\n", "or shrinkage parameter. It is common to call it a hyperparameter. What does it mean mathemtically?\n", "\n", "Here we will first look at how to analyze the difference between the\n", "standard OLS equations and the Ridge expressions in terms of a linear\n", "algebra analysis using the SVD algorithm. Thereafter, we will link\n", "(see the material on the bias-variance tradeoff below) these\n", "observation to the statisical analysis of the results. In particular\n", "we consider how the variance of the parameters $\\boldsymbol{\\beta}$ is\n", "affected by changing the parameter $\\lambda$.\n", "\n", "## Decomposing the OLS and Ridge expressions\n", "\n", "We have our design matrix\n", " $\\boldsymbol{X}\\in {\\mathbb{R}}^{n\\times p}$. With the SVD we decompose it as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X} = \\boldsymbol{U\\Sigma V^T},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "with $\\boldsymbol{U}\\in {\\mathbb{R}}^{n\\times n}$, $\\boldsymbol{\\Sigma}\\in {\\mathbb{R}}^{n\\times p}$\n", "and $\\boldsymbol{V}\\in {\\mathbb{R}}^{p\\times p}$.\n", "\n", "The matrices $\\boldsymbol{U}$ and $\\boldsymbol{V}$ are unitary/orthonormal matrices, that is in case the matrices are real we have $\\boldsymbol{U}^T\\boldsymbol{U}=\\boldsymbol{U}\\boldsymbol{U}^T=\\boldsymbol{I}$ and $\\boldsymbol{V}^T\\boldsymbol{V}=\\boldsymbol{V}\\boldsymbol{V}^T=\\boldsymbol{I}$.\n", "\n", "\n", "\n", "## Introducing the Covariance and Correlation functions\n", "\n", "Before we discuss the link between for example Ridge regression and the singular value decomposition, we need to remind ourselves about\n", "the definition of the covariance and the correlation function. These are quantities \n", "\n", "Suppose we have defined two vectors\n", "$\\hat{x}$ and $\\hat{y}$ with $n$ elements each. The covariance matrix $\\boldsymbol{C}$ is defined as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{C}[\\boldsymbol{x},\\boldsymbol{y}] = \\begin{bmatrix} \\mathrm{cov}[\\boldsymbol{x},\\boldsymbol{x}] & \\mathrm{cov}[\\boldsymbol{x},\\boldsymbol{y}] \\\\\n", " \\mathrm{cov}[\\boldsymbol{y},\\boldsymbol{x}] & \\mathrm{cov}[\\boldsymbol{y},\\boldsymbol{y}] \\\\\n", " \\end{bmatrix},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where for example" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathrm{cov}[\\boldsymbol{x},\\boldsymbol{y}] =\\frac{1}{n} \\sum_{i=0}^{n-1}(x_i- \\overline{x})(y_i- \\overline{y}).\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With this definition and recalling that the variance is defined as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathrm{var}[\\boldsymbol{x}]=\\frac{1}{n} \\sum_{i=0}^{n-1}(x_i- \\overline{x})^2,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "we can rewrite the covariance matrix as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{C}[\\boldsymbol{x},\\boldsymbol{y}] = \\begin{bmatrix} \\mathrm{var}[\\boldsymbol{x}] & \\mathrm{cov}[\\boldsymbol{x},\\boldsymbol{y}] \\\\\n", " \\mathrm{cov}[\\boldsymbol{x},\\boldsymbol{y}] & \\mathrm{var}[\\boldsymbol{y}] \\\\\n", " \\end{bmatrix}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The covariance takes values between zero and infinity and may thus\n", "lead to problems with loss of numerical precision for particularly\n", "large values. It is common to scale the covariance matrix by\n", "introducing instead the correlation matrix defined via the so-called\n", "correlation function" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathrm{corr}[\\boldsymbol{x},\\boldsymbol{y}]=\\frac{\\mathrm{cov}[\\boldsymbol{x},\\boldsymbol{y}]}{\\sqrt{\\mathrm{var}[\\boldsymbol{x}] \\mathrm{var}[\\boldsymbol{y}]}}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The correlation function is then given by values $\\mathrm{corr}[\\boldsymbol{x},\\boldsymbol{y}]\n", "\\in [-1,1]$. This avoids eventual problems with too large values. We\n", "can then define the correlation matrix for the two vectors $\\boldsymbol{x}$\n", "and $\\boldsymbol{y}$ as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{K}[\\boldsymbol{x},\\boldsymbol{y}] = \\begin{bmatrix} 1 & \\mathrm{corr}[\\boldsymbol{x},\\boldsymbol{y}] \\\\\n", " \\mathrm{corr}[\\boldsymbol{y},\\boldsymbol{x}] & 1 \\\\\n", " \\end{bmatrix},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the above example this is the function we constructed using **pandas**.\n", "\n", "## Correlation Function and Design/Feature Matrix\n", "\n", "In our derivation of the various regression algorithms like **Ordinary Least Squares** or **Ridge regression**\n", "we defined the design/feature matrix $\\boldsymbol{X}$ as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}=\\begin{bmatrix}\n", "x_{0,0} & x_{0,1} & x_{0,2}& \\dots & \\dots x_{0,p-1}\\\\\n", "x_{1,0} & x_{1,1} & x_{1,2}& \\dots & \\dots x_{1,p-1}\\\\\n", "x_{2,0} & x_{2,1} & x_{2,2}& \\dots & \\dots x_{2,p-1}\\\\\n", "\\dots & \\dots & \\dots & \\dots \\dots & \\dots \\\\\n", "x_{n-2,0} & x_{n-2,1} & x_{n-2,2}& \\dots & \\dots x_{n-2,p-1}\\\\\n", "x_{n-1,0} & x_{n-1,1} & x_{n-1,2}& \\dots & \\dots x_{n-1,p-1}\\\\\n", "\\end{bmatrix},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "with $\\boldsymbol{X}\\in {\\mathbb{R}}^{n\\times p}$, with the predictors/features $p$ refering to the column numbers and the\n", "entries $n$ being the row elements.\n", "We can rewrite the design/feature matrix in terms of its column vectors as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}=\\begin{bmatrix} \\boldsymbol{x}_0 & \\boldsymbol{x}_1 & \\boldsymbol{x}_2 & \\dots & \\dots & \\boldsymbol{x}_{p-1}\\end{bmatrix},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "with a given vector" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{x}_i^T = \\begin{bmatrix}x_{0,i} & x_{1,i} & x_{2,i}& \\dots & \\dots x_{n-1,i}\\end{bmatrix}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With these definitions, we can now rewrite our $2\\times 2$\n", "correaltion/covariance matrix in terms of a moe general design/feature\n", "matrix $\\boldsymbol{X}\\in {\\mathbb{R}}^{n\\times p}$. This leads to a $p\\times p$\n", "covariance matrix for the vectors $\\boldsymbol{x}_i$ with $i=0,1,\\dots,p-1$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{C}[\\boldsymbol{x}] = \\begin{bmatrix}\n", "\\mathrm{var}[\\boldsymbol{x}_0] & \\mathrm{cov}[\\boldsymbol{x}_0,\\boldsymbol{x}_1] & \\mathrm{cov}[\\boldsymbol{x}_0,\\boldsymbol{x}_2] & \\dots & \\dots & \\mathrm{cov}[\\boldsymbol{x}_0,\\boldsymbol{x}_{p-1}]\\\\\n", "\\mathrm{cov}[\\boldsymbol{x}_1,\\boldsymbol{x}_0] & \\mathrm{var}[\\boldsymbol{x}_1] & \\mathrm{cov}[\\boldsymbol{x}_1,\\boldsymbol{x}_2] & \\dots & \\dots & \\mathrm{cov}[\\boldsymbol{x}_1,\\boldsymbol{x}_{p-1}]\\\\\n", "\\mathrm{cov}[\\boldsymbol{x}_2,\\boldsymbol{x}_0] & \\mathrm{cov}[\\boldsymbol{x}_2,\\boldsymbol{x}_1] & \\mathrm{var}[\\boldsymbol{x}_2] & \\dots & \\dots & \\mathrm{cov}[\\boldsymbol{x}_2,\\boldsymbol{x}_{p-1}]\\\\\n", "\\dots & \\dots & \\dots & \\dots & \\dots & \\dots \\\\\n", "\\dots & \\dots & \\dots & \\dots & \\dots & \\dots \\\\\n", "\\mathrm{cov}[\\boldsymbol{x}_{p-1},\\boldsymbol{x}_0] & \\mathrm{cov}[\\boldsymbol{x}_{p-1},\\boldsymbol{x}_1] & \\mathrm{cov}[\\boldsymbol{x}_{p-1},\\boldsymbol{x}_{2}] & \\dots & \\dots & \\mathrm{var}[\\boldsymbol{x}_{p-1}]\\\\\n", "\\end{bmatrix},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and the correlation matrix" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{K}[\\boldsymbol{x}] = \\begin{bmatrix}\n", "1 & \\mathrm{corr}[\\boldsymbol{x}_0,\\boldsymbol{x}_1] & \\mathrm{corr}[\\boldsymbol{x}_0,\\boldsymbol{x}_2] & \\dots & \\dots & \\mathrm{corr}[\\boldsymbol{x}_0,\\boldsymbol{x}_{p-1}]\\\\\n", "\\mathrm{corr}[\\boldsymbol{x}_1,\\boldsymbol{x}_0] & 1 & \\mathrm{corr}[\\boldsymbol{x}_1,\\boldsymbol{x}_2] & \\dots & \\dots & \\mathrm{corr}[\\boldsymbol{x}_1,\\boldsymbol{x}_{p-1}]\\\\\n", "\\mathrm{corr}[\\boldsymbol{x}_2,\\boldsymbol{x}_0] & \\mathrm{corr}[\\boldsymbol{x}_2,\\boldsymbol{x}_1] & 1 & \\dots & \\dots & \\mathrm{corr}[\\boldsymbol{x}_2,\\boldsymbol{x}_{p-1}]\\\\\n", "\\dots & \\dots & \\dots & \\dots & \\dots & \\dots \\\\\n", "\\dots & \\dots & \\dots & \\dots & \\dots & \\dots \\\\\n", "\\mathrm{corr}[\\boldsymbol{x}_{p-1},\\boldsymbol{x}_0] & \\mathrm{corr}[\\boldsymbol{x}_{p-1},\\boldsymbol{x}_1] & \\mathrm{corr}[\\boldsymbol{x}_{p-1},\\boldsymbol{x}_{2}] & \\dots & \\dots & 1\\\\\n", "\\end{bmatrix},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Covariance Matrix Examples\n", "\n", "\n", "The Numpy function **np.cov** calculates the covariance elements using\n", "the factor $1/(n-1)$ instead of $1/n$ since it assumes we do not have\n", "the exact mean values. The following simple function uses the\n", "**np.vstack** function which takes each vector of dimension $1\\times n$\n", "and produces a $2\\times n$ matrix $\\boldsymbol{W}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{W} = \\begin{bmatrix} x_0 & y_0 \\\\\n", " x_1 & y_1 \\\\\n", " x_2 & y_2\\\\\n", " \\dots & \\dots \\\\\n", " x_{n-2} & y_{n-2}\\\\\n", " x_{n-1} & y_{n-1} & \n", " \\end{bmatrix},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which in turn is converted into into the $2\\times 2$ covariance matrix\n", "$\\boldsymbol{C}$ via the Numpy function **np.cov()**. We note that we can also calculate\n", "the mean value of each set of samples $\\boldsymbol{x}$ etc using the Numpy\n", "function **np.mean(x)**. We can also extract the eigenvalues of the\n", "covariance matrix through the **np.linalg.eig()** function." ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Importing various packages\n", "import numpy as np\n", "n = 100\n", "x = np.random.normal(size=n)\n", "print(np.mean(x))\n", "y = 4+3*x+np.random.normal(size=n)\n", "print(np.mean(y))\n", "W = np.vstack((x, y))\n", "C = np.cov(W)\n", "print(C)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Correlation Matrix\n", "\n", "The previous example can be converted into the correlation matrix by\n", "simply scaling the matrix elements with the variances. We should also\n", "subtract the mean values for each column. This leads to the following\n", "code which sets up the correlations matrix for the previous example in\n", "a more brute force way. Here we scale the mean values for each column of the design matrix, calculate the relevant mean values and variances and then finally set up the $2\\times 2$ correlation matrix (since we have only two vectors)." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "n = 100\n", "# define two vectors \n", "x = np.random.random(size=n)\n", "y = 4+3*x+np.random.normal(size=n)\n", "#scaling the x and y vectors \n", "x = x - np.mean(x)\n", "y = y - np.mean(y)\n", "variance_x = np.sum(x@x)/n\n", "variance_y = np.sum(y@y)/n\n", "print(variance_x)\n", "print(variance_y)\n", "cov_xy = np.sum(x@y)/n\n", "cov_xx = np.sum(x@x)/n\n", "cov_yy = np.sum(y@y)/n\n", "C = np.zeros((2,2))\n", "C[0,0]= cov_xx/variance_x\n", "C[1,1]= cov_yy/variance_y\n", "C[0,1]= cov_xy/np.sqrt(variance_y*variance_x)\n", "C[1,0]= C[0,1]\n", "print(C)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that the matrix elements along the diagonal are one as they\n", "should be and that the matrix is symmetric. Furthermore, diagonalizing\n", "this matrix we easily see that it is a positive definite matrix.\n", "\n", "The above procedure with **numpy** can be made more compact if we use **pandas**.\n", "\n", "## Correlation Matrix with Pandas\n", "\n", "We whow here how we can set up the correlation matrix using **pandas**, as done in this simple code" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "n = 10\n", "x = np.random.normal(size=n)\n", "x = x - np.mean(x)\n", "y = 4+3*x+np.random.normal(size=n)\n", "y = y - np.mean(y)\n", "X = (np.vstack((x, y))).T\n", "print(X)\n", "Xpd = pd.DataFrame(X)\n", "print(Xpd)\n", "correlation_matrix = Xpd.corr()\n", "print(correlation_matrix)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We expand this model to the Franke function discussed above.\n", "\n", "## Correlation Matrix with Pandas and the Franke function" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Common imports\n", "import numpy as np\n", "import pandas as pd\n", "\n", "\n", "def FrankeFunction(x,y):\n", "\tterm1 = 0.75*np.exp(-(0.25*(9*x-2)**2) - 0.25*((9*y-2)**2))\n", "\tterm2 = 0.75*np.exp(-((9*x+1)**2)/49.0 - 0.1*(9*y+1))\n", "\tterm3 = 0.5*np.exp(-(9*x-7)**2/4.0 - 0.25*((9*y-3)**2))\n", "\tterm4 = -0.2*np.exp(-(9*x-4)**2 - (9*y-7)**2)\n", "\treturn term1 + term2 + term3 + term4\n", "\n", "\n", "def create_X(x, y, n ):\n", "\tif len(x.shape) > 1:\n", "\t\tx = np.ravel(x)\n", "\t\ty = np.ravel(y)\n", "\n", "\tN = len(x)\n", "\tl = int((n+1)*(n+2)/2)\t\t# Number of elements in beta\n", "\tX = np.ones((N,l))\n", "\n", "\tfor i in range(1,n+1):\n", "\t\tq = int((i)*(i+1)/2)\n", "\t\tfor k in range(i+1):\n", "\t\t\tX[:,q+k] = (x**(i-k))*(y**k)\n", "\n", "\treturn X\n", "\n", "\n", "# Making meshgrid of datapoints and compute Franke's function\n", "n = 4\n", "N = 100\n", "x = np.sort(np.random.uniform(0, 1, N))\n", "y = np.sort(np.random.uniform(0, 1, N))\n", "z = FrankeFunction(x, y)\n", "X = create_X(x, y, n=n) \n", "\n", "Xpd = pd.DataFrame(X)\n", "# subtract the mean values and set up the covariance matrix\n", "Xpd = Xpd - Xpd.mean()\n", "covariance_matrix = Xpd.cov()\n", "print(covariance_matrix)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We note here that the covariance is zero for the first rows and\n", "columns since all matrix elements in the design matrix were set to one\n", "(we are fitting the function in terms of a polynomial of degree $n$).\n", "\n", "This means that the variance for these elements will be zero and will\n", "cause problems when we set up the correlation matrix. We can simply\n", "drop these elements and construct a correlation\n", "matrix without these elements. \n", "\n", "\n", "## Rewriting the Covariance and/or Correlation Matrix\n", "\n", "We can rewrite the covariance matrix in a more compact form in terms of the design/feature matrix $\\boldsymbol{X}$ as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{C}[\\boldsymbol{x}] = \\frac{1}{n}\\boldsymbol{X}^T\\boldsymbol{X}= \\mathbb{E}[\\boldsymbol{X}^T\\boldsymbol{X}].\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To see this let us simply look at a design matrix $\\boldsymbol{X}\\in {\\mathbb{R}}^{2\\times 2}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}=\\begin{bmatrix}\n", "x_{00} & x_{01}\\\\\n", "x_{10} & x_{11}\\\\\n", "\\end{bmatrix}=\\begin{bmatrix}\n", "\\boldsymbol{x}_{0} & \\boldsymbol{x}_{1}\\\\\n", "\\end{bmatrix}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we then compute the expectation value" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}[\\boldsymbol{X}^T\\boldsymbol{X}] = \\frac{1}{n}\\boldsymbol{X}^T\\boldsymbol{X}=\\begin{bmatrix}\n", "x_{00}^2+x_{01}^2 & x_{00}x_{10}+x_{01}x_{11}\\\\\n", "x_{10}x_{00}+x_{11}x_{01} & x_{10}^2+x_{11}^2\\\\\n", "\\end{bmatrix},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which is just" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{C}[\\boldsymbol{x}_0,\\boldsymbol{x}_1] = \\boldsymbol{C}[\\boldsymbol{x}]=\\begin{bmatrix} \\mathrm{var}[\\boldsymbol{x}_0] & \\mathrm{cov}[\\boldsymbol{x}_0,\\boldsymbol{x}_1] \\\\\n", " \\mathrm{cov}[\\boldsymbol{x}_1,\\boldsymbol{x}_0] & \\mathrm{var}[\\boldsymbol{x}_1] \\\\\n", " \\end{bmatrix},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where we wrote $$\\boldsymbol{C}[\\boldsymbol{x}_0,\\boldsymbol{x}_1] = \\boldsymbol{C}[\\boldsymbol{x}]$$ to indicate that this the covariance of the vectors $\\boldsymbol{x}$ of the design/feature matrix $\\boldsymbol{X}$.\n", "\n", "It is easy to generalize this to a matrix $\\boldsymbol{X}\\in {\\mathbb{R}}^{n\\times p}$.\n", "\n", "\n", "## Linking with SVD\n", "\n", "See lecture september 11. More text to be added here soon.\n", "\n", "\n", "\n", "\n", "## Where are we going?\n", "\n", "Before we proceed, we need to rethink what we have been doing. In our\n", "eager to fit the data, we have omitted several important elements in\n", "our regression analysis. In what follows we will\n", "1. look at statistical properties, including a discussion of mean values, variance and the so-called bias-variance tradeoff\n", "\n", "2. introduce resampling techniques like cross-validation, bootstrapping and jackknife and more\n", "\n", "This will allow us to link the standard linear algebra methods we have discussed above to a statistical interpretation of the methods. \n", "\n", "\n", "\n", "\n", "\n", "## Resampling methods\n", "Resampling methods are an indispensable tool in modern\n", "statistics. They involve repeatedly drawing samples from a training\n", "set and refitting a model of interest on each sample in order to\n", "obtain additional information about the fitted model. For example, in\n", "order to estimate the variability of a linear regression fit, we can\n", "repeatedly draw different samples from the training data, fit a linear\n", "regression to each new sample, and then examine the extent to which\n", "the resulting fits differ. Such an approach may allow us to obtain\n", "information that would not be available from fitting the model only\n", "once using the original training sample.\n", "\n", "Two resampling methods are often used in Machine Learning analyses,\n", "1. The **bootstrap method**\n", "\n", "2. and **Cross-Validation**\n", "\n", "In addition there are several other methods such as the Jackknife and the Blocking methods. We will discuss in particular\n", "cross-validation and the bootstrap method.\n", "\n", "\n", "\n", "\n", "## Resampling approaches can be computationally expensive\n", "\n", "Resampling approaches can be computationally expensive, because they\n", "involve fitting the same statistical method multiple times using\n", "different subsets of the training data. However, due to recent\n", "advances in computing power, the computational requirements of\n", "resampling methods generally are not prohibitive. In this chapter, we\n", "discuss two of the most commonly used resampling methods,\n", "cross-validation and the bootstrap. Both methods are important tools\n", "in the practical application of many statistical learning\n", "procedures. For example, cross-validation can be used to estimate the\n", "test error associated with a given statistical learning method in\n", "order to evaluate its performance, or to select the appropriate level\n", "of flexibility. The process of evaluating a model’s performance is\n", "known as model assessment, whereas the process of selecting the proper\n", "level of flexibility for a model is known as model selection. The\n", "bootstrap is widely used.\n", "\n", "\n", "\n", "## Why resampling methods ?\n", "**Statistical analysis.**\n", "\n", "\n", "* Our simulations can be treated as *computer experiments*. This is particularly the case for Monte Carlo methods\n", "\n", "* The results can be analysed with the same statistical tools as we would use analysing experimental data.\n", "\n", "* As in all experiments, we are looking for expectation values and an estimate of how accurate they are, i.e., possible sources for errors.\n", "\n", " \n", "\n", "## Statistical analysis\n", "\n", "* As in other experiments, many numerical experiments have two classes of errors:\n", "\n", " * Statistical errors\n", "\n", " * Systematical errors\n", "\n", "\n", "* Statistical errors can be estimated using standard tools from statistics\n", "\n", "* Systematical errors are method specific and must be treated differently from case to case.\n", "\n", " \n", "\n", "\n", "\n", "\n", "<!-- !split -->\n", "## Linking the regression analysis with a statistical interpretation\n", "\n", "\n", "The\n", "advantage of doing linear regression is that we actually end up with\n", "analytical expressions for several statistical quantities. \n", "Standard least squares and Ridge regression allow us to\n", "derive quantities like the variance and other expectation values in a\n", "rather straightforward way.\n", "\n", "\n", "It is assumed that $\\varepsilon_i\n", "\\sim \\mathcal{N}(0, \\sigma^2)$ and the $\\varepsilon_{i}$ are\n", "independent, i.e.:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{align*} \n", "\\mbox{Cov}(\\varepsilon_{i_1},\n", "\\varepsilon_{i_2}) & = \\left\\{ \\begin{array}{lcc} \\sigma^2 & \\mbox{if}\n", "& i_1 = i_2, \\\\ 0 & \\mbox{if} & i_1 \\not= i_2. \\end{array} \\right.\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The randomness of $\\varepsilon_i$ implies that\n", "$\\mathbf{y}_i$ is also a random variable. In particular,\n", "$\\mathbf{y}_i$ is normally distributed, because $\\varepsilon_i \\sim\n", "\\mathcal{N}(0, \\sigma^2)$ and $\\mathbf{X}_{i,\\ast} \\, \\boldsymbol{\\beta}$ is a\n", "non-random scalar. To specify the parameters of the distribution of\n", "$\\mathbf{y}_i$ we need to calculate its first two moments. \n", "\n", "Recall that $\\boldsymbol{X}$ is a matrix of dimensionality $n\\times p$. The\n", "notation above $\\mathbf{X}_{i,\\ast}$ means that we are looking at the\n", "row number $i$ and perform a sum over all values $p$.\n", "\n", "\n", "## Assumptions made\n", "\n", "The assumption we have made here can be summarized as (and this is going to be useful when we discuss the bias-variance trade off)\n", "that there exists a function $f(\\boldsymbol{x})$ and a normal distributed error $\\boldsymbol{\\varepsilon}\\sim \\mathcal{N}(0, \\sigma^2)$\n", "which describe our data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{y} = f(\\boldsymbol{x})+\\boldsymbol{\\varepsilon}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We approximate this function with our model from the solution of the linear regression equations, that is our\n", "function $f$ is approximated by $\\boldsymbol{\\tilde{y}}$ where we want to minimize $(\\boldsymbol{y}-\\boldsymbol{\\tilde{y}})^2$, our MSE, with" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\tilde{y}} = \\boldsymbol{X}\\boldsymbol{\\beta}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Expectation value and variance\n", "\n", "We can calculate the expectation value of $\\boldsymbol{y}$ for a given element $i$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{align*} \n", "\\mathbb{E}(y_i) & =\n", "\\mathbb{E}(\\mathbf{X}_{i, \\ast} \\, \\boldsymbol{\\beta}) + \\mathbb{E}(\\varepsilon_i)\n", "\\, \\, \\, = \\, \\, \\, \\mathbf{X}_{i, \\ast} \\, \\beta, \n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "while\n", "its variance is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{align*} \\mbox{Var}(y_i) & = \\mathbb{E} \\{ [y_i\n", "- \\mathbb{E}(y_i)]^2 \\} \\, \\, \\, = \\, \\, \\, \\mathbb{E} ( y_i^2 ) -\n", "[\\mathbb{E}(y_i)]^2 \\\\ & = \\mathbb{E} [ ( \\mathbf{X}_{i, \\ast} \\,\n", "\\beta + \\varepsilon_i )^2] - ( \\mathbf{X}_{i, \\ast} \\, \\boldsymbol{\\beta})^2 \\\\ &\n", "= \\mathbb{E} [ ( \\mathbf{X}_{i, \\ast} \\, \\boldsymbol{\\beta})^2 + 2 \\varepsilon_i\n", "\\mathbf{X}_{i, \\ast} \\, \\boldsymbol{\\beta} + \\varepsilon_i^2 ] - ( \\mathbf{X}_{i,\n", "\\ast} \\, \\beta)^2 \\\\ & = ( \\mathbf{X}_{i, \\ast} \\, \\boldsymbol{\\beta})^2 + 2\n", "\\mathbb{E}(\\varepsilon_i) \\mathbf{X}_{i, \\ast} \\, \\boldsymbol{\\beta} +\n", "\\mathbb{E}(\\varepsilon_i^2 ) - ( \\mathbf{X}_{i, \\ast} \\, \\boldsymbol{\\beta})^2 \n", "\\\\ & = \\mathbb{E}(\\varepsilon_i^2 ) \\, \\, \\, = \\, \\, \\,\n", "\\mbox{Var}(\\varepsilon_i) \\, \\, \\, = \\, \\, \\, \\sigma^2. \n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Hence, $y_i \\sim \\mathcal{N}( \\mathbf{X}_{i, \\ast} \\, \\boldsymbol{\\beta}, \\sigma^2)$, that is $\\boldsymbol{y}$ follows a normal distribution with \n", "mean value $\\boldsymbol{X}\\boldsymbol{\\beta}$ and variance $\\sigma^2$ (not be confused with the singular values of the SVD). \n", "\n", "## Expectation value and variance for $\\boldsymbol{\\beta}$\n", "\n", "With the OLS expressions for the parameters $\\boldsymbol{\\beta}$ we can evaluate the expectation value" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}(\\boldsymbol{\\beta}) = \\mathbb{E}[ (\\mathbf{X}^{\\top} \\mathbf{X})^{-1}\\mathbf{X}^{T} \\mathbf{Y}]=(\\mathbf{X}^{T} \\mathbf{X})^{-1}\\mathbf{X}^{T} \\mathbb{E}[ \\mathbf{Y}]=(\\mathbf{X}^{T} \\mathbf{X})^{-1} \\mathbf{X}^{T}\\mathbf{X}\\boldsymbol{\\beta}=\\boldsymbol{\\beta}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This means that the estimator of the regression parameters is unbiased.\n", "\n", "We can also calculate the variance\n", "\n", "The variance of $\\boldsymbol{\\beta}$ is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{eqnarray*}\n", "\\mbox{Var}(\\boldsymbol{\\beta}) & = & \\mathbb{E} \\{ [\\boldsymbol{\\beta} - \\mathbb{E}(\\boldsymbol{\\beta})] [\\boldsymbol{\\beta} - \\mathbb{E}(\\boldsymbol{\\beta})]^{T} \\}\n", "\\\\\n", "& = & \\mathbb{E} \\{ [(\\mathbf{X}^{T} \\mathbf{X})^{-1} \\, \\mathbf{X}^{T} \\mathbf{Y} - \\boldsymbol{\\beta}] \\, [(\\mathbf{X}^{T} \\mathbf{X})^{-1} \\, \\mathbf{X}^{T} \\mathbf{Y} - \\boldsymbol{\\beta}]^{T} \\}\n", "\\\\\n", "% & = & \\mathbb{E} \\{ [(\\mathbf{X}^{T} \\mathbf{X})^{-1} \\, \\mathbf{X}^{T} \\mathbf{Y}] \\, [(\\mathbf{X}^{T} \\mathbf{X})^{-1} \\, \\mathbf{X}^{T} \\mathbf{Y}]^{T} \\} - \\boldsymbol{\\beta} \\, \\boldsymbol{\\beta}^{T}\n", "% \\\\\n", "% & = & \\mathbb{E} \\{ (\\mathbf{X}^{T} \\mathbf{X})^{-1} \\, \\mathbf{X}^{T} \\mathbf{Y} \\, \\mathbf{Y}^{T} \\, \\mathbf{X} \\, (\\mathbf{X}^{T} \\mathbf{X})^{-1} \\} - \\boldsymbol{\\beta} \\, \\boldsymbol{\\beta}^{T}\n", "% \\\\\n", "& = & (\\mathbf{X}^{T} \\mathbf{X})^{-1} \\, \\mathbf{X}^{T} \\, \\mathbb{E} \\{ \\mathbf{Y} \\, \\mathbf{Y}^{T} \\} \\, \\mathbf{X} \\, (\\mathbf{X}^{T} \\mathbf{X})^{-1} - \\boldsymbol{\\beta} \\, \\boldsymbol{\\beta}^{T}\n", "\\\\\n", "& = & (\\mathbf{X}^{T} \\mathbf{X})^{-1} \\, \\mathbf{X}^{T} \\, \\{ \\mathbf{X} \\, \\boldsymbol{\\beta} \\, \\boldsymbol{\\beta}^{T} \\, \\mathbf{X}^{T} + \\sigma^2 \\} \\, \\mathbf{X} \\, (\\mathbf{X}^{T} \\mathbf{X})^{-1} - \\boldsymbol{\\beta} \\, \\boldsymbol{\\beta}^{T}\n", "% \\\\\n", "% & = & (\\mathbf{X}^T \\mathbf{X})^{-1} \\, \\mathbf{X}^T \\, \\mathbf{X} \\, \\boldsymbol{\\beta} \\, \\boldsymbol{\\beta}^T \\, \\mathbf{X}^T \\, \\mathbf{X} \\, (\\mathbf{X}^T % \\mathbf{X})^{-1}\n", "% \\\\\n", "% & & + \\, \\, \\sigma^2 \\, (\\mathbf{X}^T \\mathbf{X})^{-1} \\, \\mathbf{X}^T \\, \\mathbf{X} \\, (\\mathbf{X}^T \\mathbf{X})^{-1} - \\boldsymbol{\\beta} \\boldsymbol{\\beta}^T\n", "\\\\\n", "& = & \\boldsymbol{\\beta} \\, \\boldsymbol{\\beta}^{T} + \\sigma^2 \\, (\\mathbf{X}^{T} \\mathbf{X})^{-1} - \\boldsymbol{\\beta} \\, \\boldsymbol{\\beta}^{T}\n", "\\, \\, \\, = \\, \\, \\, \\sigma^2 \\, (\\mathbf{X}^{T} \\mathbf{X})^{-1},\n", "\\end{eqnarray*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where we have used that $\\mathbb{E} (\\mathbf{Y} \\mathbf{Y}^{T}) =\n", "\\mathbf{X} \\, \\boldsymbol{\\beta} \\, \\boldsymbol{\\beta}^{T} \\, \\mathbf{X}^{T} +\n", "\\sigma^2 \\, \\mathbf{I}_{nn}$. From $\\mbox{Var}(\\boldsymbol{\\beta}) = \\sigma^2\n", "\\, (\\mathbf{X}^{T} \\mathbf{X})^{-1}$, one obtains an estimate of the\n", "variance of the estimate of the $j$-th regression coefficient:\n", "$\\boldsymbol{\\sigma}^2 (\\boldsymbol{\\beta}_j ) = \\boldsymbol{\\sigma}^2 \\sqrt{\n", "[(\\mathbf{X}^{T} \\mathbf{X})^{-1}]_{jj} }$. This may be used to\n", "construct a confidence interval for the estimates.\n", "\n", "\n", "In a similar way, we can obtain analytical expressions for say the\n", "expectation values of the parameters $\\boldsymbol{\\beta}$ and their variance\n", "when we employ Ridge regression, allowing us again to define a confidence interval. \n", "\n", "It is rather straightforward to show that" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E} \\big[ \\boldsymbol{\\beta}^{\\mathrm{Ridge}} \\big]=(\\mathbf{X}^{T} \\mathbf{X} + \\lambda \\mathbf{I}_{pp})^{-1} (\\mathbf{X}^{\\top} \\mathbf{X})\\boldsymbol{\\beta}^{\\mathrm{OLS}}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see clearly that \n", "$\\mathbb{E} \\big[ \\boldsymbol{\\beta}^{\\mathrm{Ridge}} \\big] \\not= \\boldsymbol{\\beta}^{\\mathrm{OLS}}$ for any $\\lambda > 0$. We say then that the ridge estimator is biased.\n", "\n", "We can also compute the variance as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mbox{Var}[\\boldsymbol{\\beta}^{\\mathrm{Ridge}}]=\\sigma^2[ \\mathbf{X}^{T} \\mathbf{X} + \\lambda \\mathbf{I} ]^{-1} \\mathbf{X}^{T} \\mathbf{X} \\{ [ \\mathbf{X}^{\\top} \\mathbf{X} + \\lambda \\mathbf{I} ]^{-1}\\}^{T},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and it is easy to see that if the parameter $\\lambda$ goes to infinity then the variance of Ridge parameters $\\boldsymbol{\\beta}$ goes to zero. \n", "\n", "With this, we can compute the difference" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mbox{Var}[\\boldsymbol{\\beta}^{\\mathrm{OLS}}]-\\mbox{Var}(\\boldsymbol{\\beta}^{\\mathrm{Ridge}})=\\sigma^2 [ \\mathbf{X}^{T} \\mathbf{X} + \\lambda \\mathbf{I} ]^{-1}[ 2\\lambda\\mathbf{I} + \\lambda^2 (\\mathbf{X}^{T} \\mathbf{X})^{-1} ] \\{ [ \\mathbf{X}^{T} \\mathbf{X} + \\lambda \\mathbf{I} ]^{-1}\\}^{T}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The difference is non-negative definite since each component of the\n", "matrix product is non-negative definite. \n", "This means the variance we obtain with the standard OLS will always for $\\lambda > 0$ be larger than the variance of $\\boldsymbol{\\beta}$ obtained with the Ridge estimator. This has interesting consequences when we discuss the so-called bias-variance trade-off below. \n", "\n", "\n", "## Resampling methods\n", "\n", "With all these analytical equations for both the OLS and Ridge\n", "regression, we will now outline how to assess a given model. This will\n", "lead us to a discussion of the so-called bias-variance tradeoff (see\n", "below) and so-called resampling methods.\n", "\n", "One of the quantities we have discussed as a way to measure errors is\n", "the mean-squared error (MSE), mainly used for fitting of continuous\n", "functions. Another choice is the absolute error.\n", "\n", "In the discussions below we will focus on the MSE and in particular since we will split the data into test and training data,\n", "we discuss the\n", "1. prediction error or simply the **test error** $\\mathrm{Err_{Test}}$, where we have a fixed training set and the test error is the MSE arising from the data reserved for testing. We discuss also the \n", "\n", "2. training error $\\mathrm{Err_{Train}}$, which is the average loss over the training data.\n", "\n", "As our model becomes more and more complex, more of the training data tends to used. The training may thence adapt to more complicated structures in the data. This may lead to a decrease in the bias (see below for code example) and a slight increase of the variance for the test error.\n", "For a certain level of complexity the test error will reach minimum, before starting to increase again. The\n", "training error reaches a saturation.\n", "\n", "\n", "\n", "\n", "## Resampling methods: Jackknife and Bootstrap\n", "\n", "Two famous\n", "resampling methods are the **independent bootstrap** and **the jackknife**. \n", "\n", "The jackknife is a special case of the independent bootstrap. Still, the jackknife was made\n", "popular prior to the independent bootstrap. And as the popularity of\n", "the independent bootstrap soared, new variants, such as **the dependent bootstrap**.\n", "\n", "The Jackknife and independent bootstrap work for\n", "independent, identically distributed random variables.\n", "If these conditions are not\n", "satisfied, the methods will fail. Yet, it should be said that if the data are\n", "independent, identically distributed, and we only want to estimate the\n", "variance of $\\overline{X}$ (which often is the case), then there is no\n", "need for bootstrapping. \n", "\n", "## Resampling methods: Jackknife\n", "\n", "The Jackknife works by making many replicas of the estimator $\\widehat{\\theta}$. \n", "The jackknife is a resampling method where we systematically leave out one observation from the vector of observed values $\\boldsymbol{x} = (x_1,x_2,\\cdots,X_n)$. \n", "Let $\\boldsymbol{x}_i$ denote the vector" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{x}_i = (x_1,x_2,\\cdots,x_{i-1},x_{i+1},\\cdots,x_n),\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which equals the vector $\\boldsymbol{x}$ with the exception that observation\n", "number $i$ is left out. Using this notation, define\n", "$\\widehat{\\theta}_i$ to be the estimator\n", "$\\widehat{\\theta}$ computed using $\\vec{X}_i$. \n", "\n", "\n", "## Jackknife code example" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from numpy import *\n", "from numpy.random import randint, randn\n", "from time import time\n", "\n", "def jackknife(data, stat):\n", " n = len(data);t = zeros(n); inds = arange(n); t0 = time()\n", " ## 'jackknifing' by leaving out an observation for each i \n", " for i in range(n):\n", " t[i] = stat(delete(data,i) )\n", "\n", " # analysis \n", " print(\"Runtime: %g sec\" % (time()-t0)); print(\"Jackknife Statistics :\")\n", " print(\"original bias std. error\")\n", " print(\"%8g %14g %15g\" % (stat(data),(n-1)*mean(t)/n, (n*var(t))**.5))\n", "\n", " return t\n", "\n", "\n", "# Returns mean of data samples \n", "def stat(data):\n", " return mean(data)\n", "\n", "\n", "mu, sigma = 100, 15\n", "datapoints = 10000\n", "x = mu + sigma*random.randn(datapoints)\n", "# jackknife returns the data sample \n", "t = jackknife(x, stat)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Resampling methods: Bootstrap\n", "Bootstrapping is a nonparametric approach to statistical inference\n", "that substitutes computation for more traditional distributional\n", "assumptions and asymptotic results. Bootstrapping offers a number of\n", "advantages: \n", "1. The bootstrap is quite general, although there are some cases in which it fails. \n", "\n", "2. Because it does not require distributional assumptions (such as normally distributed errors), the bootstrap can provide more accurate inferences when the data are not well behaved or when the sample size is small. \n", "\n", "3. It is possible to apply the bootstrap to statistics with sampling distributions that are difficult to derive, even asymptotically. \n", "\n", "4. It is relatively simple to apply the bootstrap to complex data-collection plans (such as stratified and clustered samples).\n", "\n", "\n", "\n", "\n", "## Resampling methods: Bootstrap background\n", "\n", "Since $\\widehat{\\theta} = \\widehat{\\theta}(\\boldsymbol{X})$ is a function of random variables,\n", "$\\widehat{\\theta}$ itself must be a random variable. Thus it has\n", "a pdf, call this function $p(\\boldsymbol{t})$. The aim of the bootstrap is to\n", "estimate $p(\\boldsymbol{t})$ by the relative frequency of\n", "$\\widehat{\\theta}$. You can think of this as using a histogram\n", "in the place of $p(\\boldsymbol{t})$. If the relative frequency closely\n", "resembles $p(\\vec{t})$, then using numerics, it is straight forward to\n", "estimate all the interesting parameters of $p(\\boldsymbol{t})$ using point\n", "estimators. \n", "\n", "\n", "## Resampling methods: More Bootstrap background\n", "\n", "In the case that $\\widehat{\\theta}$ has\n", "more than one component, and the components are independent, we use the\n", "same estimator on each component separately. If the probability\n", "density function of $X_i$, $p(x)$, had been known, then it would have\n", "been straight forward to do this by: \n", "1. Drawing lots of numbers from $p(x)$, suppose we call one such set of numbers $(X_1^*, X_2^*, \\cdots, X_n^*)$. \n", "\n", "2. Then using these numbers, we could compute a replica of $\\widehat{\\theta}$ called $\\widehat{\\theta}^*$. \n", "\n", "By repeated use of (1) and (2), many\n", "estimates of $\\widehat{\\theta}$ could have been obtained. The\n", "idea is to use the relative frequency of $\\widehat{\\theta}^*$\n", "(think of a histogram) as an estimate of $p(\\boldsymbol{t})$.\n", "\n", "## Resampling methods: Bootstrap approach\n", "\n", "But\n", "unless there is enough information available about the process that\n", "generated $X_1,X_2,\\cdots,X_n$, $p(x)$ is in general\n", "unknown. Therefore, [Efron in 1979](https://projecteuclid.org/euclid.aos/1176344552) asked the\n", "question: What if we replace $p(x)$ by the relative frequency\n", "of the observation $X_i$; if we draw observations in accordance with\n", "the relative frequency of the observations, will we obtain the same\n", "result in some asymptotic sense? The answer is yes.\n", "\n", "\n", "Instead of generating the histogram for the relative\n", "frequency of the observation $X_i$, just draw the values\n", "$(X_1^*,X_2^*,\\cdots,X_n^*)$ with replacement from the vector\n", "$\\boldsymbol{X}$. \n", "\n", "## Resampling methods: Bootstrap steps\n", "\n", "The independent bootstrap works like this: \n", "\n", "1. Draw with replacement $n$ numbers for the observed variables $\\boldsymbol{x} = (x_1,x_2,\\cdots,x_n)$. \n", "\n", "2. Define a vector $\\boldsymbol{x}^*$ containing the values which were drawn from $\\boldsymbol{x}$. \n", "\n", "3. Using the vector $\\boldsymbol{x}^*$ compute $\\widehat{\\theta}^*$ by evaluating $\\widehat \\theta$ under the observations $\\boldsymbol{x}^*$. \n", "\n", "4. Repeat this process $k$ times. \n", "\n", "When you are done, you can draw a histogram of the relative frequency\n", "of $\\widehat \\theta^*$. This is your estimate of the probability\n", "distribution $p(t)$. Using this probability distribution you can\n", "estimate any statistics thereof. In principle you never draw the\n", "histogram of the relative frequency of $\\widehat{\\theta}^*$. Instead\n", "you use the estimators corresponding to the statistic of interest. For\n", "example, if you are interested in estimating the variance of $\\widehat\n", "\\theta$, apply the etsimator $\\widehat \\sigma^2$ to the values\n", "$\\widehat \\theta ^*$.\n", "\n", "\n", "## Code example for the Bootstrap method\n", "\n", "The following code starts with a Gaussian distribution with mean value\n", "$\\mu =100$ and variance $\\sigma=15$. We use this to generate the data\n", "used in the bootstrap analysis. The bootstrap analysis returns a data\n", "set after a given number of bootstrap operations (as many as we have\n", "data points). This data set consists of estimated mean values for each\n", "bootstrap operation. The histogram generated by the bootstrap method\n", "shows that the distribution for these mean values is also a Gaussian,\n", "centered around the mean value $\\mu=100$ but with standard deviation\n", "$\\sigma/\\sqrt{n}$, where $n$ is the number of bootstrap samples (in\n", "this case the same as the number of original data points). The value\n", "of the standard deviation is what we expect from the central limit\n", "theorem." ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from numpy import *\n", "from numpy.random import randint, randn\n", "from time import time\n", "import matplotlib.mlab as mlab\n", "import matplotlib.pyplot as plt\n", "\n", "# Returns mean of bootstrap samples \n", "def stat(data):\n", " return mean(data)\n", "\n", "# Bootstrap algorithm\n", "def bootstrap(data, statistic, R):\n", " t = zeros(R); n = len(data); inds = arange(n); t0 = time()\n", " # non-parametric bootstrap \n", " for i in range(R):\n", " t[i] = statistic(data[randint(0,n,n)])\n", "\n", " # analysis \n", " print(\"Runtime: %g sec\" % (time()-t0)); print(\"Bootstrap Statistics :\")\n", " print(\"original bias std. error\")\n", " print(\"%8g %8g %14g %15g\" % (statistic(data), std(data),mean(t),std(t)))\n", " return t\n", "\n", "\n", "mu, sigma = 100, 15\n", "datapoints = 10000\n", "x = mu + sigma*random.randn(datapoints)\n", "# bootstrap returns the data sample \n", "t = bootstrap(x, stat, datapoints)\n", "# the histogram of the bootstrapped data \n", "n, binsboot, patches = plt.hist(t, 50, normed=1, facecolor='red', alpha=0.75)\n", "\n", "# add a 'best fit' line \n", "y = mlab.normpdf( binsboot, mean(t), std(t))\n", "lt = plt.plot(binsboot, y, 'r--', linewidth=1)\n", "plt.xlabel('Smarts')\n", "plt.ylabel('Probability')\n", "plt.axis([99.5, 100.6, 0, 3.0])\n", "plt.grid(True)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- !split -->\n", "## Various steps in cross-validation\n", "\n", "When the repetitive splitting of the data set is done randomly,\n", "samples may accidently end up in a fast majority of the splits in\n", "either training or test set. Such samples may have an unbalanced\n", "influence on either model building or prediction evaluation. To avoid\n", "this $k$-fold cross-validation structures the data splitting. The\n", "samples are divided into $k$ more or less equally sized exhaustive and\n", "mutually exclusive subsets. In turn (at each split) one of these\n", "subsets plays the role of the test set while the union of the\n", "remaining subsets constitutes the training set. Such a splitting\n", "warrants a balanced representation of each sample in both training and\n", "test set over the splits. Still the division into the $k$ subsets\n", "involves a degree of randomness. This may be fully excluded when\n", "choosing $k=n$. This particular case is referred to as leave-one-out\n", "cross-validation (LOOCV). \n", "\n", "<!-- !split -->\n", "## How to set up the cross-validation for Ridge and/or Lasso\n", "\n", "* Define a range of interest for the penalty parameter.\n", "\n", "* Divide the data set into training and test set comprising samples $\\{1, \\ldots, n\\} \\setminus i$ and $\\{ i \\}$, respectively.\n", "\n", "* Fit the linear regression model by means of ridge estimation for each $\\lambda$ in the grid using the training set, and the corresponding estimate of the error variance $\\boldsymbol{\\sigma}_{-i}^2(\\lambda)$, as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{align*}\n", "\\boldsymbol{\\beta}_{-i}(\\lambda) & = ( \\boldsymbol{X}_{-i, \\ast}^{T}\n", "\\boldsymbol{X}_{-i, \\ast} + \\lambda \\boldsymbol{I}_{pp})^{-1}\n", "\\boldsymbol{X}_{-i, \\ast}^{T} \\boldsymbol{y}_{-i}\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Evaluate the prediction performance of these models on the test set by $\\log\\{L[y_i, \\boldsymbol{X}_{i, \\ast}; \\boldsymbol{\\beta}_{-i}(\\lambda), \\boldsymbol{\\sigma}_{-i}^2(\\lambda)]\\}$. Or, by the prediction error $|y_i - \\boldsymbol{X}_{i, \\ast} \\boldsymbol{\\beta}_{-i}(\\lambda)|$, the relative error, the error squared or the R2 score function.\n", "\n", "* Repeat the first three steps such that each sample plays the role of the test set once.\n", "\n", "* Average the prediction performances of the test sets at each grid point of the penalty bias/parameter. It is an estimate of the prediction performance of the model corresponding to this value of the penalty parameter on novel data. It is defined as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\begin{align*}\n", "\\frac{1}{n} \\sum_{i = 1}^n \\log\\{L[y_i, \\mathbf{X}_{i, \\ast}; \\boldsymbol{\\beta}_{-i}(\\lambda), \\boldsymbol{\\sigma}_{-i}^2(\\lambda)]\\}.\n", "\\end{align*}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Cross-validation in brief\n", "\n", "For the various values of $k$\n", "\n", "1. shuffle the dataset randomly.\n", "\n", "2. Split the dataset into $k$ groups.\n", "\n", "3. For each unique group:\n", "\n", "a. Decide which group to use as set for test data\n", "\n", "b. Take the remaining groups as a training data set\n", "\n", "c. Fit a model on the training set and evaluate it on the test set\n", "\n", "d. Retain the evaluation score and discard the model\n", "\n", "\n", "5. Summarize the model using the sample of model evaluation scores\n", "\n", "## Code Example for Cross-validation and $k$-fold Cross-validation\n", "\n", "The code here uses Ridge regression with cross-validation (CV) resampling and $k$-fold CV in order to fit a specific polynomial." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.model_selection import KFold\n", "from sklearn.linear_model import Ridge\n", "from sklearn.model_selection import cross_val_score\n", "from sklearn.preprocessing import PolynomialFeatures\n", "\n", "# A seed just to ensure that the random numbers are the same for every run.\n", "# Useful for eventual debugging.\n", "np.random.seed(3155)\n", "\n", "# Generate the data.\n", "nsamples = 100\n", "x = np.random.randn(nsamples)\n", "y = 3*x**2 + np.random.randn(nsamples)\n", "\n", "## Cross-validation on Ridge regression using KFold only\n", "\n", "# Decide degree on polynomial to fit\n", "poly = PolynomialFeatures(degree = 6)\n", "\n", "# Decide which values of lambda to use\n", "nlambdas = 500\n", "lambdas = np.logspace(-3, 5, nlambdas)\n", "\n", "# Initialize a KFold instance\n", "k = 5\n", "kfold = KFold(n_splits = k)\n", "\n", "# Perform the cross-validation to estimate MSE\n", "scores_KFold = np.zeros((nlambdas, k))\n", "\n", "i = 0\n", "for lmb in lambdas:\n", " ridge = Ridge(alpha = lmb)\n", " j = 0\n", " for train_inds, test_inds in kfold.split(x):\n", " xtrain = x[train_inds]\n", " ytrain = y[train_inds]\n", "\n", " xtest = x[test_inds]\n", " ytest = y[test_inds]\n", "\n", " Xtrain = poly.fit_transform(xtrain[:, np.newaxis])\n", " ridge.fit(Xtrain, ytrain[:, np.newaxis])\n", "\n", " Xtest = poly.fit_transform(xtest[:, np.newaxis])\n", " ypred = ridge.predict(Xtest)\n", "\n", " scores_KFold[i,j] = np.sum((ypred - ytest[:, np.newaxis])**2)/np.size(ypred)\n", "\n", " j += 1\n", " i += 1\n", "\n", "\n", "estimated_mse_KFold = np.mean(scores_KFold, axis = 1)\n", "\n", "## Cross-validation using cross_val_score from sklearn along with KFold\n", "\n", "# kfold is an instance initialized above as:\n", "# kfold = KFold(n_splits = k)\n", "\n", "estimated_mse_sklearn = np.zeros(nlambdas)\n", "i = 0\n", "for lmb in lambdas:\n", " ridge = Ridge(alpha = lmb)\n", "\n", " X = poly.fit_transform(x[:, np.newaxis])\n", " estimated_mse_folds = cross_val_score(ridge, X, y[:, np.newaxis], scoring='neg_mean_squared_error', cv=kfold)\n", "\n", " # cross_val_score return an array containing the estimated negative mse for every fold.\n", " # we have to the the mean of every array in order to get an estimate of the mse of the model\n", " estimated_mse_sklearn[i] = np.mean(-estimated_mse_folds)\n", "\n", " i += 1\n", "\n", "## Plot and compare the slightly different ways to perform cross-validation\n", "\n", "plt.figure()\n", "\n", "plt.plot(np.log10(lambdas), estimated_mse_sklearn, label = 'cross_val_score')\n", "plt.plot(np.log10(lambdas), estimated_mse_KFold, 'r--', label = 'KFold')\n", "\n", "plt.xlabel('log10(lambda)')\n", "plt.ylabel('mse')\n", "\n", "plt.legend()\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The bias-variance tradeoff\n", "\n", "\n", "We will discuss the bias-variance tradeoff in the context of\n", "continuous predictions such as regression. However, many of the\n", "intuitions and ideas discussed here also carry over to classification\n", "tasks. Consider a dataset $\\mathcal{L}$ consisting of the data\n", "$\\mathbf{X}_\\mathcal{L}=\\{(y_j, \\boldsymbol{x}_j), j=0\\ldots n-1\\}$. \n", "\n", "Let us assume that the true data is generated from a noisy model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{y}=f(\\boldsymbol{x}) + \\boldsymbol{\\epsilon}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $\\epsilon$ is normally distributed with mean zero and standard deviation $\\sigma^2$.\n", "\n", "In our derivation of the ordinary least squares method we defined then\n", "an approximation to the function $f$ in terms of the parameters\n", "$\\boldsymbol{\\beta}$ and the design matrix $\\boldsymbol{X}$ which embody our model,\n", "that is $\\boldsymbol{\\tilde{y}}=\\boldsymbol{X}\\boldsymbol{\\beta}$. \n", "\n", "Thereafter we found the parameters $\\boldsymbol{\\beta}$ by optimizing the means squared error via the so-called cost function" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "C(\\boldsymbol{X},\\boldsymbol{\\beta}) =\\frac{1}{n}\\sum_{i=0}^{n-1}(y_i-\\tilde{y}_i)^2=\\mathbb{E}\\left[(\\boldsymbol{y}-\\boldsymbol{\\tilde{y}})^2\\right].\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can rewrite this as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}\\left[(\\boldsymbol{y}-\\boldsymbol{\\tilde{y}})^2\\right]=\\frac{1}{n}\\sum_i(f_i-\\mathbb{E}\\left[\\boldsymbol{\\tilde{y}}\\right])^2+\\frac{1}{n}\\sum_i(\\tilde{y}_i-\\mathbb{E}\\left[\\boldsymbol{\\tilde{y}}\\right])^2+\\sigma^2.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The three terms represent the square of the bias of the learning\n", "method, which can be thought of as the error caused by the simplifying\n", "assumptions built into the method. The second term represents the\n", "variance of the chosen model and finally the last terms is variance of\n", "the error $\\boldsymbol{\\epsilon}$.\n", "\n", "To derive this equation, we need to recall that the variance of $\\boldsymbol{y}$ and $\\boldsymbol{\\epsilon}$ are both equal to $\\sigma^2$. The mean value of $\\boldsymbol{\\epsilon}$ is by definition equal to zero. Furthermore, the function $f$ is not a stochastics variable, idem for $\\boldsymbol{\\tilde{y}}$.\n", "We use a more compact notation in terms of the expectation value" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}\\left[(\\boldsymbol{y}-\\boldsymbol{\\tilde{y}})^2\\right]=\\mathbb{E}\\left[(\\boldsymbol{f}+\\boldsymbol{\\epsilon}-\\boldsymbol{\\tilde{y}})^2\\right],\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and adding and subtracting $\\mathbb{E}\\left[\\boldsymbol{\\tilde{y}}\\right]$ we get" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}\\left[(\\boldsymbol{y}-\\boldsymbol{\\tilde{y}})^2\\right]=\\mathbb{E}\\left[(\\boldsymbol{f}+\\boldsymbol{\\epsilon}-\\boldsymbol{\\tilde{y}}+\\mathbb{E}\\left[\\boldsymbol{\\tilde{y}}\\right]-\\mathbb{E}\\left[\\boldsymbol{\\tilde{y}}\\right])^2\\right],\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which, using the abovementioned expectation values can be rewritten as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\mathbb{E}\\left[(\\boldsymbol{y}-\\boldsymbol{\\tilde{y}})^2\\right]=\\mathbb{E}\\left[(\\boldsymbol{y}-\\mathbb{E}\\left[\\boldsymbol{\\tilde{y}}\\right])^2\\right]+\\mathrm{Var}\\left[\\boldsymbol{\\tilde{y}}\\right]+\\sigma^2,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "that is the rewriting in terms of the so-called bias, the variance of the model $\\boldsymbol{\\tilde{y}}$ and the variance of $\\boldsymbol{\\epsilon}$.\n", "\n", "\n", "\n", "\n", "\n", "## Example code for Bias-Variance tradeoff" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from sklearn.linear_model import LinearRegression, Ridge, Lasso\n", "from sklearn.preprocessing import PolynomialFeatures\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.pipeline import make_pipeline\n", "from sklearn.utils import resample\n", "\n", "np.random.seed(2018)\n", "\n", "n = 500\n", "n_boostraps = 100\n", "degree = 18 # A quite high value, just to show.\n", "noise = 0.1\n", "\n", "# Make data set.\n", "x = np.linspace(-1, 3, n).reshape(-1, 1)\n", "y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2) + np.random.normal(0, 0.1, x.shape)\n", "\n", "# Hold out some test data that is never used in training.\n", "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)\n", "\n", "# Combine x transformation and model into one operation.\n", "# Not neccesary, but convenient.\n", "model = make_pipeline(PolynomialFeatures(degree=degree), LinearRegression(fit_intercept=False))\n", "\n", "# The following (m x n_bootstraps) matrix holds the column vectors y_pred\n", "# for each bootstrap iteration.\n", "y_pred = np.empty((y_test.shape[0], n_boostraps))\n", "for i in range(n_boostraps):\n", " x_, y_ = resample(x_train, y_train)\n", "\n", " # Evaluate the new model on the same test data each time.\n", " y_pred[:, i] = model.fit(x_, y_).predict(x_test).ravel()\n", "\n", "# Note: Expectations and variances taken w.r.t. different training\n", "# data sets, hence the axis=1. Subsequent means are taken across the test data\n", "# set in order to obtain a total value, but before this we have error/bias/variance\n", "# calculated per data point in the test set.\n", "# Note 2: The use of keepdims=True is important in the calculation of bias as this \n", "# maintains the column vector form. Dropping this yields very unexpected results.\n", "error = np.mean( np.mean((y_test - y_pred)**2, axis=1, keepdims=True) )\n", "bias = np.mean( (y_test - np.mean(y_pred, axis=1, keepdims=True))**2 )\n", "variance = np.mean( np.var(y_pred, axis=1, keepdims=True) )\n", "print('Error:', error)\n", "print('Bias^2:', bias)\n", "print('Var:', variance)\n", "print('{} >= {} + {} = {}'.format(error, bias, variance, bias+variance))\n", "\n", "plt.plot(x[::5, :], y[::5, :], label='f(x)')\n", "plt.scatter(x_test, y_test, label='Data points')\n", "plt.scatter(x_test, np.mean(y_pred, axis=1), label='Pred')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Understanding what happens" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from sklearn.linear_model import LinearRegression, Ridge, Lasso\n", "from sklearn.preprocessing import PolynomialFeatures\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.pipeline import make_pipeline\n", "from sklearn.utils import resample\n", "\n", "np.random.seed(2018)\n", "\n", "n = 40\n", "n_boostraps = 100\n", "maxdegree = 14\n", "\n", "\n", "# Make data set.\n", "x = np.linspace(-3, 3, n).reshape(-1, 1)\n", "y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.normal(0, 0.1, x.shape)\n", "error = np.zeros(maxdegree)\n", "bias = np.zeros(maxdegree)\n", "variance = np.zeros(maxdegree)\n", "polydegree = np.zeros(maxdegree)\n", "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)\n", "\n", "for degree in range(maxdegree):\n", " model = make_pipeline(PolynomialFeatures(degree=degree), LinearRegression(fit_intercept=False))\n", " y_pred = np.empty((y_test.shape[0], n_boostraps))\n", " for i in range(n_boostraps):\n", " x_, y_ = resample(x_train, y_train)\n", " y_pred[:, i] = model.fit(x_, y_).predict(x_test).ravel()\n", "\n", " polydegree[degree] = degree\n", " error[degree] = np.mean( np.mean((y_test - y_pred)**2, axis=1, keepdims=True) )\n", " bias[degree] = np.mean( (y_test - np.mean(y_pred, axis=1, keepdims=True))**2 )\n", " variance[degree] = np.mean( np.var(y_pred, axis=1, keepdims=True) )\n", " print('Polynomial degree:', degree)\n", " print('Error:', error[degree])\n", " print('Bias^2:', bias[degree])\n", " print('Var:', variance[degree])\n", " print('{} >= {} + {} = {}'.format(error[degree], bias[degree], variance[degree], bias[degree]+variance[degree]))\n", "\n", "plt.plot(polydegree, error, label='Error')\n", "plt.plot(polydegree, bias, label='bias')\n", "plt.plot(polydegree, variance, label='Variance')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- !split -->\n", "## Summing up\n", "\n", "\n", "\n", "\n", "The bias-variance tradeoff summarizes the fundamental tension in\n", "machine learning, particularly supervised learning, between the\n", "complexity of a model and the amount of training data needed to train\n", "it. Since data is often limited, in practice it is often useful to\n", "use a less-complex model with higher bias, that is a model whose asymptotic\n", "performance is worse than another model because it is easier to\n", "train and less sensitive to sampling noise arising from having a\n", "finite-sized training dataset (smaller variance). \n", "\n", "\n", "\n", "The above equations tell us that in\n", "order to minimize the expected test error, we need to select a\n", "statistical learning method that simultaneously achieves low variance\n", "and low bias. Note that variance is inherently a nonnegative quantity,\n", "and squared bias is also nonnegative. Hence, we see that the expected\n", "test MSE can never lie below $Var(\\epsilon)$, the irreducible error.\n", "\n", "\n", "What do we mean by the variance and bias of a statistical learning\n", "method? The variance refers to the amount by which our model would change if we\n", "estimated it using a different training data set. Since the training\n", "data are used to fit the statistical learning method, different\n", "training data sets will result in a different estimate. But ideally the\n", "estimate for our model should not vary too much between training\n", "sets. However, if a method has high variance then small changes in\n", "the training data can result in large changes in the model. In general, more\n", "flexible statistical methods have higher variance.\n", "\n", "\n", "You may also find this recent [article](https://www.pnas.org/content/116/32/15849) of interest.\n", "\n", "## Another Example from Scikit-Learn's Repository" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [], "source": [ "\"\"\"\n", "============================\n", "Underfitting vs. Overfitting\n", "============================\n", "\n", "This example demonstrates the problems of underfitting and overfitting and\n", "how we can use linear regression with polynomial features to approximate\n", "nonlinear functions. The plot shows the function that we want to approximate,\n", "which is a part of the cosine function. In addition, the samples from the\n", "real function and the approximations of different models are displayed. The\n", "models have polynomial features of different degrees. We can see that a\n", "linear function (polynomial with degree 1) is not sufficient to fit the\n", "training samples. This is called **underfitting**. A polynomial of degree 4\n", "approximates the true function almost perfectly. However, for higher degrees\n", "the model will **overfit** the training data, i.e. it learns the noise of the\n", "training data.\n", "We evaluate quantitatively **overfitting** / **underfitting** by using\n", "cross-validation. We calculate the mean squared error (MSE) on the validation\n", "set, the higher, the less likely the model generalizes correctly from the\n", "training data.\n", "\"\"\"\n", "\n", "print(__doc__)\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.preprocessing import PolynomialFeatures\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.model_selection import cross_val_score\n", "\n", "\n", "def true_fun(X):\n", " return np.cos(1.5 * np.pi * X)\n", "\n", "np.random.seed(0)\n", "\n", "n_samples = 30\n", "degrees = [1, 4, 15]\n", "\n", "X = np.sort(np.random.rand(n_samples))\n", "y = true_fun(X) + np.random.randn(n_samples) * 0.1\n", "\n", "plt.figure(figsize=(14, 5))\n", "for i in range(len(degrees)):\n", " ax = plt.subplot(1, len(degrees), i + 1)\n", " plt.setp(ax, xticks=(), yticks=())\n", "\n", " polynomial_features = PolynomialFeatures(degree=degrees[i],\n", " include_bias=False)\n", " linear_regression = LinearRegression()\n", " pipeline = Pipeline([(\"polynomial_features\", polynomial_features),\n", " (\"linear_regression\", linear_regression)])\n", " pipeline.fit(X[:, np.newaxis], y)\n", "\n", " # Evaluate the models using crossvalidation\n", " scores = cross_val_score(pipeline, X[:, np.newaxis], y,\n", " scoring=\"neg_mean_squared_error\", cv=10)\n", "\n", " X_test = np.linspace(0, 1, 100)\n", " plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label=\"Model\")\n", " plt.plot(X_test, true_fun(X_test), label=\"True function\")\n", " plt.scatter(X, y, edgecolor='b', s=20, label=\"Samples\")\n", " plt.xlabel(\"x\")\n", " plt.ylabel(\"y\")\n", " plt.xlim((0, 1))\n", " plt.ylim((-2, 2))\n", " plt.legend(loc=\"best\")\n", " plt.title(\"Degree {}\\nMSE = {:.2e}(+/- {:.2e})\".format(\n", " degrees[i], -scores.mean(), scores.std()))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## More examples on bootstrap and cross-validation and errors" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Common imports\n", "import os\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from sklearn.linear_model import LinearRegression, Ridge, Lasso\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.utils import resample\n", "from sklearn.metrics import mean_squared_error\n", "# Where to save the figures and data files\n", "PROJECT_ROOT_DIR = \"Results\"\n", "FIGURE_ID = \"Results/FigureFiles\"\n", "DATA_ID = \"DataFiles/\"\n", "\n", "if not os.path.exists(PROJECT_ROOT_DIR):\n", " os.mkdir(PROJECT_ROOT_DIR)\n", "\n", "if not os.path.exists(FIGURE_ID):\n", " os.makedirs(FIGURE_ID)\n", "\n", "if not os.path.exists(DATA_ID):\n", " os.makedirs(DATA_ID)\n", "\n", "def image_path(fig_id):\n", " return os.path.join(FIGURE_ID, fig_id)\n", "\n", "def data_path(dat_id):\n", " return os.path.join(DATA_ID, dat_id)\n", "\n", "def save_fig(fig_id):\n", " plt.savefig(image_path(fig_id) + \".png\", format='png')\n", "\n", "infile = open(data_path(\"EoS.csv\"),'r')\n", "\n", "# Read the EoS data as csv file and organize the data into two arrays with density and energies\n", "EoS = pd.read_csv(infile, names=('Density', 'Energy'))\n", "EoS['Energy'] = pd.to_numeric(EoS['Energy'], errors='coerce')\n", "EoS = EoS.dropna()\n", "Energies = EoS['Energy']\n", "Density = EoS['Density']\n", "# The design matrix now as function of various polytrops\n", "\n", "Maxpolydegree = 30\n", "X = np.zeros((len(Density),Maxpolydegree))\n", "X[:,0] = 1.0\n", "testerror = np.zeros(Maxpolydegree)\n", "trainingerror = np.zeros(Maxpolydegree)\n", "polynomial = np.zeros(Maxpolydegree)\n", "\n", "trials = 100\n", "for polydegree in range(1, Maxpolydegree):\n", " polynomial[polydegree] = polydegree\n", " for degree in range(polydegree):\n", " X[:,degree] = Density**(degree/3.0)\n", "\n", "# loop over trials in order to estimate the expectation value of the MSE\n", " testerror[polydegree] = 0.0\n", " trainingerror[polydegree] = 0.0\n", " for samples in range(trials):\n", " x_train, x_test, y_train, y_test = train_test_split(X, Energies, test_size=0.2)\n", " model = LinearRegression(fit_intercept=True).fit(x_train, y_train)\n", " ypred = model.predict(x_train)\n", " ytilde = model.predict(x_test)\n", " testerror[polydegree] += mean_squared_error(y_test, ytilde)\n", " trainingerror[polydegree] += mean_squared_error(y_train, ypred) \n", "\n", " testerror[polydegree] /= trials\n", " trainingerror[polydegree] /= trials\n", " print(\"Degree of polynomial: %3d\"% polynomial[polydegree])\n", " print(\"Mean squared error on training data: %.8f\" % trainingerror[polydegree])\n", " print(\"Mean squared error on test data: %.8f\" % testerror[polydegree])\n", "\n", "plt.plot(polynomial, np.log10(trainingerror), label='Training Error')\n", "plt.plot(polynomial, np.log10(testerror), label='Test Error')\n", "plt.xlabel('Polynomial degree')\n", "plt.ylabel('log10[MSE]')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- !split -->\n", "## The same example but now with cross-validation" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Common imports\n", "import os\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from sklearn.linear_model import LinearRegression, Ridge, Lasso\n", "from sklearn.metrics import mean_squared_error\n", "from sklearn.model_selection import KFold\n", "from sklearn.model_selection import cross_val_score\n", "\n", "\n", "# Where to save the figures and data files\n", "PROJECT_ROOT_DIR = \"Results\"\n", "FIGURE_ID = \"Results/FigureFiles\"\n", "DATA_ID = \"DataFiles/\"\n", "\n", "if not os.path.exists(PROJECT_ROOT_DIR):\n", " os.mkdir(PROJECT_ROOT_DIR)\n", "\n", "if not os.path.exists(FIGURE_ID):\n", " os.makedirs(FIGURE_ID)\n", "\n", "if not os.path.exists(DATA_ID):\n", " os.makedirs(DATA_ID)\n", "\n", "def image_path(fig_id):\n", " return os.path.join(FIGURE_ID, fig_id)\n", "\n", "def data_path(dat_id):\n", " return os.path.join(DATA_ID, dat_id)\n", "\n", "def save_fig(fig_id):\n", " plt.savefig(image_path(fig_id) + \".png\", format='png')\n", "\n", "infile = open(data_path(\"EoS.csv\"),'r')\n", "\n", "# Read the EoS data as csv file and organize the data into two arrays with density and energies\n", "EoS = pd.read_csv(infile, names=('Density', 'Energy'))\n", "EoS['Energy'] = pd.to_numeric(EoS['Energy'], errors='coerce')\n", "EoS = EoS.dropna()\n", "Energies = EoS['Energy']\n", "Density = EoS['Density']\n", "# The design matrix now as function of various polytrops\n", "\n", "Maxpolydegree = 30\n", "X = np.zeros((len(Density),Maxpolydegree))\n", "X[:,0] = 1.0\n", "estimated_mse_sklearn = np.zeros(Maxpolydegree)\n", "polynomial = np.zeros(Maxpolydegree)\n", "k =5\n", "kfold = KFold(n_splits = k)\n", "\n", "for polydegree in range(1, Maxpolydegree):\n", " polynomial[polydegree] = polydegree\n", " for degree in range(polydegree):\n", " X[:,degree] = Density**(degree/3.0)\n", " OLS = LinearRegression()\n", "# loop over trials in order to estimate the expectation value of the MSE\n", " estimated_mse_folds = cross_val_score(OLS, X, Energies, scoring='neg_mean_squared_error', cv=kfold)\n", "#[:, np.newaxis]\n", " estimated_mse_sklearn[polydegree] = np.mean(-estimated_mse_folds)\n", "\n", "plt.plot(polynomial, np.log10(estimated_mse_sklearn), label='Test Error')\n", "plt.xlabel('Polynomial degree')\n", "plt.ylabel('log10[MSE]')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Cross-validation with Ridge" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.model_selection import KFold\n", "from sklearn.linear_model import Ridge\n", "from sklearn.model_selection import cross_val_score\n", "from sklearn.preprocessing import PolynomialFeatures\n", "\n", "# A seed just to ensure that the random numbers are the same for every run.\n", "np.random.seed(3155)\n", "# Generate the data.\n", "n = 100\n", "x = np.linspace(-3, 3, n).reshape(-1, 1)\n", "y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+ np.random.normal(0, 0.1, x.shape)\n", "# Decide degree on polynomial to fit\n", "poly = PolynomialFeatures(degree = 10)\n", "\n", "# Decide which values of lambda to use\n", "nlambdas = 500\n", "lambdas = np.logspace(-3, 5, nlambdas)\n", "# Initialize a KFold instance\n", "k = 5\n", "kfold = KFold(n_splits = k)\n", "estimated_mse_sklearn = np.zeros(nlambdas)\n", "i = 0\n", "for lmb in lambdas:\n", " ridge = Ridge(alpha = lmb)\n", " estimated_mse_folds = cross_val_score(ridge, x, y, scoring='neg_mean_squared_error', cv=kfold)\n", " estimated_mse_sklearn[i] = np.mean(-estimated_mse_folds)\n", " i += 1\n", "plt.figure()\n", "plt.plot(np.log10(lambdas), estimated_mse_sklearn, label = 'cross_val_score')\n", "plt.xlabel('log10(lambda)')\n", "plt.ylabel('MSE')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The Ising model\n", "\n", "The one-dimensional Ising model with nearest neighbor interaction, no\n", "external field and a constant coupling constant $J$ is given by" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"_auto2\"></div>\n", "\n", "$$\n", "\\begin{equation}\n", " H = -J \\sum_{k}^L s_k s_{k + 1},\n", "\\label{_auto2} \\tag{2}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $s_i \\in \\{-1, 1\\}$ and $s_{N + 1} = s_1$. The number of spins\n", "in the system is determined by $L$. For the one-dimensional system\n", "there is no phase transition.\n", "\n", "We will look at a system of $L = 40$ spins with a coupling constant of\n", "$J = 1$. To get enough training data we will generate 10000 states\n", "with their respective energies." ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", "import seaborn as sns\n", "import scipy.linalg as scl\n", "from sklearn.model_selection import train_test_split\n", "import tqdm\n", "sns.set(color_codes=True)\n", "cmap_args=dict(vmin=-1., vmax=1., cmap='seismic')\n", "\n", "L = 40\n", "n = int(1e4)\n", "\n", "spins = np.random.choice([-1, 1], size=(n, L))\n", "J = 1.0\n", "\n", "energies = np.zeros(n)\n", "\n", "for i in range(n):\n", " energies[i] = - J * np.dot(spins[i], np.roll(spins[i], 1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we use ordinary least squares\n", "regression to predict the energy for the nearest neighbor\n", "one-dimensional Ising model on a ring, i.e., the endpoints wrap\n", "around. We will use linear regression to fit a value for\n", "the coupling constant to achieve this.\n", "\n", "## Reformulating the problem to suit regression\n", "\n", "A more general form for the one-dimensional Ising model is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"_auto3\"></div>\n", "\n", "$$\n", "\\begin{equation}\n", " H = - \\sum_j^L \\sum_k^L s_j s_k J_{jk}.\n", "\\label{_auto3} \\tag{3}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we allow for interactions beyond the nearest neighbors and a state dependent\n", "coupling constant. This latter expression can be formulated as\n", "a matrix-product" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"_auto4\"></div>\n", "\n", "$$\n", "\\begin{equation}\n", " \\boldsymbol{H} = \\boldsymbol{X} J,\n", "\\label{_auto4} \\tag{4}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $X_{jk} = s_j s_k$ and $J$ is a matrix which consists of the\n", "elements $-J_{jk}$. This form of writing the energy fits perfectly\n", "with the form utilized in linear regression, that is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"_auto5\"></div>\n", "\n", "$$\n", "\\begin{equation}\n", " \\boldsymbol{y} = \\boldsymbol{X}\\boldsymbol{\\beta} + \\boldsymbol{\\epsilon},\n", "\\label{_auto5} \\tag{5}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We split the data in training and test data as discussed in the previous example" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [], "source": [ "X = np.zeros((n, L ** 2))\n", "for i in range(n):\n", " X[i] = np.outer(spins[i], spins[i]).ravel()\n", "y = energies\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Linear regression\n", "\n", "In the ordinary least squares method we choose the cost function" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"_auto6\"></div>\n", "\n", "$$\n", "\\begin{equation}\n", " C(\\boldsymbol{X}, \\boldsymbol{\\beta})= \\frac{1}{n}\\left\\{(\\boldsymbol{X}\\boldsymbol{\\beta} - \\boldsymbol{y})^T(\\boldsymbol{X}\\boldsymbol{\\beta} - \\boldsymbol{y})\\right\\}.\n", "\\label{_auto6} \\tag{6}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We then find the extremal point of $C$ by taking the derivative with respect to $\\boldsymbol{\\beta}$ as discussed above.\n", "This yields the expression for $\\boldsymbol{\\beta}$ to be" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\beta} = \\frac{\\boldsymbol{X}^T \\boldsymbol{y}}{\\boldsymbol{X}^T \\boldsymbol{X}},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which immediately imposes some requirements on $\\boldsymbol{X}$ as there must exist\n", "an inverse of $\\boldsymbol{X}^T \\boldsymbol{X}$. If the expression we are modeling contains an\n", "intercept, i.e., a constant term, we must make sure that the\n", "first column of $\\boldsymbol{X}$ consists of $1$. We do this here" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [], "source": [ "X_train_own = np.concatenate(\n", " (np.ones(len(X_train))[:, np.newaxis], X_train),\n", " axis=1\n", ")\n", "X_test_own = np.concatenate(\n", " (np.ones(len(X_test))[:, np.newaxis], X_test),\n", " axis=1\n", ")" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def ols_inv(x: np.ndarray, y: np.ndarray) -> np.ndarray:\n", " return scl.inv(x.T @ x) @ (x.T @ y)\n", "beta = ols_inv(X_train_own, y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Singular Value decomposition\n", "\n", "Doing the inversion directly turns out to be a bad idea since the matrix\n", "$\\boldsymbol{X}^T\\boldsymbol{X}$ is singular. An alternative approach is to use the **singular\n", "value decomposition**. Using the definition of the Moore-Penrose\n", "pseudoinverse we can write the equation for $\\boldsymbol{\\beta}$ as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{\\beta} = \\boldsymbol{X}^{+}\\boldsymbol{y},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where the pseudoinverse of $\\boldsymbol{X}$ is given by" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\boldsymbol{X}^{+} = \\frac{\\boldsymbol{X}^T}{\\boldsymbol{X}^T\\boldsymbol{X}}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using singular value decomposition we can decompose the matrix $\\boldsymbol{X} = \\boldsymbol{U}\\boldsymbol{\\Sigma} \\boldsymbol{V}^T$,\n", "where $\\boldsymbol{U}$ and $\\boldsymbol{V}$ are orthogonal(unitary) matrices and $\\boldsymbol{\\Sigma}$ contains the singular values (more details below).\n", "where $X^{+} = V\\Sigma^{+} U^T$. This reduces the equation for\n", "$\\omega$ to" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"_auto7\"></div>\n", "\n", "$$\n", "\\begin{equation}\n", " \\boldsymbol{\\beta} = \\boldsymbol{V}\\boldsymbol{\\Sigma}^{+} \\boldsymbol{U}^T \\boldsymbol{y}.\n", "\\label{_auto7} \\tag{7}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that solving this equation by actually doing the pseudoinverse\n", "(which is what we will do) is not a good idea as this operation scales\n", "as $\\mathcal{O}(n^3)$, where $n$ is the number of elements in a\n", "general matrix. Instead, doing $QR$-factorization and solving the\n", "linear system as an equation would reduce this down to\n", "$\\mathcal{O}(n^2)$ operations." ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def ols_svd(x: np.ndarray, y: np.ndarray) -> np.ndarray:\n", " u, s, v = scl.svd(x)\n", " return v.T @ scl.pinv(scl.diagsvd(s, u.shape[0], v.shape[0])) @ u.T @ y" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [], "source": [ "beta = ols_svd(X_train_own,y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When extracting the $J$-matrix we need to make sure that we remove the intercept, as is done here" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [], "source": [ "J = beta[1:].reshape(L, L)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A way of looking at the coefficients in $J$ is to plot the matrices as images." ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [], "source": [ "fig = plt.figure(figsize=(20, 14))\n", "im = plt.imshow(J, **cmap_args)\n", "plt.title(\"OLS\", fontsize=18)\n", "plt.xticks(fontsize=18)\n", "plt.yticks(fontsize=18)\n", "cb = fig.colorbar(im)\n", "cb.ax.set_yticklabels(cb.ax.get_yticklabels(), fontsize=18)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is interesting to note that OLS\n", "considers both $J_{j, j + 1} = -0.5$ and $J_{j, j - 1} = -0.5$ as\n", "valid matrix elements for $J$.\n", "In our discussion below on hyperparameters and Ridge and Lasso regression we will see that\n", "this problem can be removed, partly and only with Lasso regression. \n", "\n", "In this case our matrix inversion was actually possible. The obvious question now is what is the mathematics behind the SVD?\n", "\n", "\n", "\n", "\n", "\n", "## The one-dimensional Ising model\n", "\n", "Let us bring back the Ising model again, but now with an additional\n", "focus on Ridge and Lasso regression as well. We repeat some of the\n", "basic parts of the Ising model and the setup of the training and test\n", "data. The one-dimensional Ising model with nearest neighbor\n", "interaction, no external field and a constant coupling constant $J$ is\n", "given by" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"_auto8\"></div>\n", "\n", "$$\n", "\\begin{equation}\n", " H = -J \\sum_{k}^L s_k s_{k + 1},\n", "\\label{_auto8} \\tag{8}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $s_i \\in \\{-1, 1\\}$ and $s_{N + 1} = s_1$. The number of spins in the system is determined by $L$. For the one-dimensional system there is no phase transition.\n", "\n", "We will look at a system of $L = 40$ spins with a coupling constant of $J = 1$. To get enough training data we will generate 10000 states with their respective energies." ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits.axes_grid1 import make_axes_locatable\n", "import seaborn as sns\n", "import scipy.linalg as scl\n", "from sklearn.model_selection import train_test_split\n", "import sklearn.linear_model as skl\n", "import tqdm\n", "sns.set(color_codes=True)\n", "cmap_args=dict(vmin=-1., vmax=1., cmap='seismic')\n", "\n", "L = 40\n", "n = int(1e4)\n", "\n", "spins = np.random.choice([-1, 1], size=(n, L))\n", "J = 1.0\n", "\n", "energies = np.zeros(n)\n", "\n", "for i in range(n):\n", " energies[i] = - J * np.dot(spins[i], np.roll(spins[i], 1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A more general form for the one-dimensional Ising model is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"_auto9\"></div>\n", "\n", "$$\n", "\\begin{equation}\n", " H = - \\sum_j^L \\sum_k^L s_j s_k J_{jk}.\n", "\\label{_auto9} \\tag{9}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we allow for interactions beyond the nearest neighbors and a more\n", "adaptive coupling matrix. This latter expression can be formulated as\n", "a matrix-product on the form" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"_auto10\"></div>\n", "\n", "$$\n", "\\begin{equation}\n", " H = X J,\n", "\\label{_auto10} \\tag{10}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $X_{jk} = s_j s_k$ and $J$ is the matrix consisting of the\n", "elements $-J_{jk}$. This form of writing the energy fits perfectly\n", "with the form utilized in linear regression, viz." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"_auto11\"></div>\n", "\n", "$$\n", "\\begin{equation}\n", " \\boldsymbol{y} = \\boldsymbol{X}\\boldsymbol{\\beta} + \\boldsymbol{\\epsilon}.\n", "\\label{_auto11} \\tag{11}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We organize the data as we did above" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [], "source": [ "X = np.zeros((n, L ** 2))\n", "for i in range(n):\n", " X[i] = np.outer(spins[i], spins[i]).ravel()\n", "y = energies\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.96)\n", "\n", "X_train_own = np.concatenate(\n", " (np.ones(len(X_train))[:, np.newaxis], X_train),\n", " axis=1\n", ")\n", "\n", "X_test_own = np.concatenate(\n", " (np.ones(len(X_test))[:, np.newaxis], X_test),\n", " axis=1\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will do all fitting with **Scikit-Learn**," ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [], "source": [ "clf = skl.LinearRegression().fit(X_train, y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When extracting the $J$-matrix we make sure to remove the intercept" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [], "source": [ "J_sk = clf.coef_.reshape(L, L)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And then we plot the results" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [], "source": [ "fig = plt.figure(figsize=(20, 14))\n", "im = plt.imshow(J_sk, **cmap_args)\n", "plt.title(\"LinearRegression from Scikit-learn\", fontsize=18)\n", "plt.xticks(fontsize=18)\n", "plt.yticks(fontsize=18)\n", "cb = fig.colorbar(im)\n", "cb.ax.set_yticklabels(cb.ax.get_yticklabels(), fontsize=18)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The results perfectly with our previous discussion where we used our own code.\n", "\n", "## Ridge regression\n", "\n", "Having explored the ordinary least squares we move on to ridge\n", "regression. In ridge regression we include a **regularizer**. This\n", "involves a new cost function which leads to a new estimate for the\n", "weights $\\boldsymbol{\\beta}$. This results in a penalized regression problem. The\n", "cost function is given by" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1\n", "3\n", "6\n", " \n", "<\n", "<\n", "<\n", "!\n", "!\n", "M\n", "A\n", "T\n", "H\n", "_\n", "B\n", "L\n", "O\n", "C\n", "K" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [], "source": [ "_lambda = 0.1\n", "clf_ridge = skl.Ridge(alpha=_lambda).fit(X_train, y_train)\n", "J_ridge_sk = clf_ridge.coef_.reshape(L, L)\n", "fig = plt.figure(figsize=(20, 14))\n", "im = plt.imshow(J_ridge_sk, **cmap_args)\n", "plt.title(\"Ridge from Scikit-learn\", fontsize=18)\n", "plt.xticks(fontsize=18)\n", "plt.yticks(fontsize=18)\n", "cb = fig.colorbar(im)\n", "cb.ax.set_yticklabels(cb.ax.get_yticklabels(), fontsize=18)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## LASSO regression\n", "\n", "In the **Least Absolute Shrinkage and Selection Operator** (LASSO)-method we get a third cost function." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Equation labels as ordinary links -->\n", "<div id=\"_auto13\"></div>\n", "\n", "$$\n", "\\begin{equation}\n", " C(\\boldsymbol{X}, \\boldsymbol{\\beta}; \\lambda) = (\\boldsymbol{X}\\boldsymbol{\\beta} - \\boldsymbol{y})^T(\\boldsymbol{X}\\boldsymbol{\\beta} - \\boldsymbol{y}) + \\lambda \\sqrt{\\boldsymbol{\\beta}^T\\boldsymbol{\\beta}}.\n", "\\label{_auto13} \\tag{13}\n", "\\end{equation}\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finding the extremal point of this cost function is not so straight-forward as in least squares and ridge. We will therefore rely solely on the function ``Lasso`` from **Scikit-Learn**." ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [], "source": [ "clf_lasso = skl.Lasso(alpha=_lambda).fit(X_train, y_train)\n", "J_lasso_sk = clf_lasso.coef_.reshape(L, L)\n", "fig = plt.figure(figsize=(20, 14))\n", "im = plt.imshow(J_lasso_sk, **cmap_args)\n", "plt.title(\"Lasso from Scikit-learn\", fontsize=18)\n", "plt.xticks(fontsize=18)\n", "plt.yticks(fontsize=18)\n", "cb = fig.colorbar(im)\n", "cb.ax.set_yticklabels(cb.ax.get_yticklabels(), fontsize=18)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is quite striking how LASSO breaks the symmetry of the coupling\n", "constant as opposed to ridge and OLS. We get a sparse solution with\n", "$J_{j, j + 1} = -1$.\n", "\n", "\n", "\n", "## Performance as function of the regularization parameter\n", "\n", "We see how the different models perform for a different set of values for $\\lambda$." ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [], "source": [ "lambdas = np.logspace(-4, 5, 10)\n", "\n", "train_errors = {\n", " \"ols_sk\": np.zeros(lambdas.size),\n", " \"ridge_sk\": np.zeros(lambdas.size),\n", " \"lasso_sk\": np.zeros(lambdas.size)\n", "}\n", "\n", "test_errors = {\n", " \"ols_sk\": np.zeros(lambdas.size),\n", " \"ridge_sk\": np.zeros(lambdas.size),\n", " \"lasso_sk\": np.zeros(lambdas.size)\n", "}\n", "\n", "plot_counter = 1\n", "\n", "fig = plt.figure(figsize=(32, 54))\n", "\n", "for i, _lambda in enumerate(tqdm.tqdm(lambdas)):\n", " for key, method in zip(\n", " [\"ols_sk\", \"ridge_sk\", \"lasso_sk\"],\n", " [skl.LinearRegression(), skl.Ridge(alpha=_lambda), skl.Lasso(alpha=_lambda)]\n", " ):\n", " method = method.fit(X_train, y_train)\n", "\n", " train_errors[key][i] = method.score(X_train, y_train)\n", " test_errors[key][i] = method.score(X_test, y_test)\n", "\n", " omega = method.coef_.reshape(L, L)\n", "\n", " plt.subplot(10, 5, plot_counter)\n", " plt.imshow(omega, **cmap_args)\n", " plt.title(r\"%s, $\\lambda = %.4f$\" % (key, _lambda))\n", " plot_counter += 1\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that LASSO reaches a good solution for low\n", "values of $\\lambda$, but will \"wither\" when we increase $\\lambda$ too\n", "much. Ridge is more stable over a larger range of values for\n", "$\\lambda$, but eventually also fades away.\n", "\n", "## Finding the optimal value of $\\lambda$\n", "\n", "To determine which value of $\\lambda$ is best we plot the accuracy of\n", "the models when predicting the training and the testing set. We expect\n", "the accuracy of the training set to be quite good, but if the accuracy\n", "of the testing set is much lower this tells us that we might be\n", "subject to an overfit model. The ideal scenario is an accuracy on the\n", "testing set that is close to the accuracy of the training set." ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": false }, "outputs": [], "source": [ "fig = plt.figure(figsize=(20, 14))\n", "\n", "colors = {\n", " \"ols_sk\": \"r\",\n", " \"ridge_sk\": \"y\",\n", " \"lasso_sk\": \"c\"\n", "}\n", "\n", "for key in train_errors:\n", " plt.semilogx(\n", " lambdas,\n", " train_errors[key],\n", " colors[key],\n", " label=\"Train {0}\".format(key),\n", " linewidth=4.0\n", " )\n", "\n", "for key in test_errors:\n", " plt.semilogx(\n", " lambdas,\n", " test_errors[key],\n", " colors[key] + \"--\",\n", " label=\"Test {0}\".format(key),\n", " linewidth=4.0\n", " )\n", "plt.legend(loc=\"best\", fontsize=18)\n", "plt.xlabel(r\"$\\lambda$\", fontsize=18)\n", "plt.ylabel(r\"$R^2$\", fontsize=18)\n", "plt.tick_params(labelsize=18)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the above figure we can see that LASSO with $\\lambda = 10^{-2}$\n", "achieves a very good accuracy on the test set. This by far surpasses the\n", "other models for all values of $\\lambda$." ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 4 }
cc0-1.0
davidrglass/antidengue
src/fasta_to_patient_sorted.ipynb
1
9737
{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "from Bio import SeqIO \n", "import numpy as np\n", "import pandas as pd \n", "import matplotlib.pyplot as plt\n", "import os\n", "import sys\n", "from subprocess import call" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def run_igblast(filename):\n", " '''Takes a file from antidengue/data/fasta/ and runs it through igblast\n", " \n", " Parameters:\n", " filename - the name of the fasta\n", " '''\n", " if filename.endswith('.fasta'):\n", " outfile = filename[:-6] + '_out'\n", " else:\n", " outfile = filename + '_out'\n", " \n", " fasta_path = '/Users/davidglass/antidengue/data/fasta/'\n", " ncbi_path = '/Users/davidglass/Documents/resources/ncbi-igblast-1.4.0/'\n", " blast = '/Users/davidglass/Documents/resources/ncbi-igblast-1.4.0/bin/igblastn'\n", " igblast_dump = '/Users/davidglass/antidengue/data/ig_parse_dump/' + outfile[:-4]\n", "\n", " call(['cp', fasta_path + filename, ncbi_path])\n", " os.chdir(ncbi_path)\n", " call([blast, '-out', outfile, '-query', ncbi_path+filename, '-num_alignments_V=1', '-num_alignments_D=1',\n", " '-num_alignments_J=1', '-evalue=1e-20', '-germline_db_V', ncbi_path+'database/IGHV_imgt.fasta', \n", " '-germline_db_D', ncbi_path+'database/IGHD_imgt.fasta', '-germline_db_J',\n", " ncbi_path+'database/IGHJ_imgt.fasta', '-domain_system', 'imgt', '-auxiliary_data',\n", " ncbi_path+'optional_file/human_gl.aux'])\n", " call(['mkdir', igblast_dump])\n", " call(['mv', filename, igblast_dump])\n", " call(['mv', outfile, igblast_dump])\n", " \n", " return outfile" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def get_sample_info_from_csv(csv):\n", " '''Puts the info from the sample_info csv into a pandas dataframe and returns it\n", " \n", " Parameters:\n", " csv - the csv file\n", " '''\n", " \n", " sample_info = pd.DataFrame().from_csv(csv)\n", " \n", " return sample_info" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def run_parse(fasta, blast_out, sample_info):\n", " '''Runs parse_igblast.py in the igblast_dump folder and sends the parsedfile to the by_patient directory\n", " \n", " Parameters:\n", " fasta - the fasta file\n", " blast_out - the output of igblast\n", " dataframe - the pandas dataframe containing patient info\n", " '''\n", " accession_num = blast_out[:-4]\n", " igblast_dump = '/Users/davidglass/antidengue/data/ig_parse_dump/' + accession_num\n", " destination_directory = '/Users/davidglass/antidengue/data/by_sample'\n", " patient_id = \"\"\n", " time_point = \"\"\n", " \n", " call(['cp', '/Users/davidglass/antidengue/src/parse_igblast.py', igblast_dump])\n", " os.chdir(igblast_dump)\n", " call(['python', 'parse_igblast.py', fasta, blast_out])\n", " \n", " # find the ID from the sample_info DataFrame\n", " patient_id = str(sample_info.loc[accession_num][0])\n", " time_point = str(sample_info.loc[accession_num][4])\n", " new_filename = patient_id + \"_\" + time_point + \"_\" + accession_num\n", " \n", " call(['mv', 'parsed_igblast.txt', new_filename])\n", " call(['mv', new_filename, destination_directory])\n", " call(['rm', fasta])\n", " call(['rm', 'parse_igblast.py'])\n", " " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def pipeline(filename, sample_info):\n", " '''Runs a fasta through igblast and then parses the output and properly sorts files\n", " \n", " Parameters:\n", " filename - the name of the fasta\n", " sample_info - the pandas dataframe containing patient info\n", " '''\n", "\n", " blast_out = run_igblast(filename)\n", " run_parse(filename, blast_out, sample_info)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "sample_info = get_sample_info_from_csv('/Users/davidglass/antidengue/data/sample_info.csv')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Runs the pipeline on all the files\n", "\n", "dirs = os.listdir('/Users/davidglass/antidengue/data/fasta/')\n", " \n", "for file in dirs:\n", " if file.endswith('.fasta'):\n", " pipeline(file, sample_info)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Renames the files with proper labels\n", "\n", "dirs = os.listdir('/Users/davidglass/antidengue/data/by_sample/')\n", "os.chdir('/Users/davidglass/antidengue/data/by_sample/')\n", " \n", "for file in dirs:\n", " name = file\n", " first = name.find('_')\n", " sec = name.find('_', first + 1)\n", " name = \"patient_\" + name[:first] + \"_time\" + name[first:sec] + \"_sample\" + name[sec:]\n", " call(['mv', file, name])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Replaces header with amended header.\n", "\n", "header = \"###sequence_id\tabundance\tV-gene\tD-gene\tJ-gene\tV_E-value\tD_E-value\t\" + \\\n", " \"J_E-value\tFR3_seq\tCDR3_seq\tFR4_seq\tconst_seq\tlen_FR3\tlen_CDR3\tlen_FR4\t\" + \\\n", " \"len_const\tsequence_boundary_indices:FR1_CDR1_FR2_CDR2_FR3_CDR3_FR4\tlen_boundary\t\" + \\\n", " \"stop_codon_present\tproductive_sequence\tAA_seq_whole_read\tmutation_positions\t\" + \\\n", " \"germline_bases\tderived_bases\tmutation_density\tV_germline_identity\tleader_seq\t\" + \\\n", " \"reads_per_molecule\tprimer_isotype\tsequence_reversed\tseq\tquality###\\n\"\n", "\n", "dirs = os.listdir('/Users/davidglass/antidengue/data/by_sample/')\n", "lines = []\n", "for file in dirs:\n", " if (file.startswith('patient')):\n", " with open (file, 'r') as f:\n", " lines = f.readlines()\n", " lines[0] = header\n", " with open (file, 'w') as f:\n", " f.writelines(lines)\n" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def write_seq_and_quality(filename):\n", " '''Takes a filename from a parsed_ig file, finds the corresponding fastq, and appends the\n", " input file with sequence and quality information for each sequence.\n", " \n", " Parameters:\n", " filename - the name of the parsed_igfile\n", " '''\n", " fastq_directory = '/Users/davidglass/antidengue/data/fastq/'\n", " by_samples_directory = '/Users/davidglass/antidengue/data/by_sample/'\n", " \n", " last_underscore = filename.rfind('_')\n", " fastq_file = filename[last_underscore + 1:] + '.fastq'\n", " fastq_lines = []\n", " parsed_lines = []\n", " \n", " with open (by_samples_directory + filename, 'r') as fi:\n", " parsed_lines = fi.readlines()\n", " with open (fastq_directory + fastq_file, 'r') as fi:\n", " fastq_lines = fi.readlines()\n", " for i in range(len(parsed_lines)):\n", " if i != 0:\n", " parsed_lines[i] = parsed_lines[i].strip('\\n') + \"\\t\" + \\\n", " fastq_lines[(i*4)-3].strip('\\n') + \"\\t\" + fastq_lines[(i*4)-1]\n", " with open (by_samples_directory + filename, 'w') as fo:\n", " for line in parsed_lines:\n", " fo.write(line)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": true }, "outputs": [], "source": [ "write_seq_and_quality('patient_148_time_ACUTE_sample_SRR2150126')" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [], "source": [ "dirs = os.listdir('/Users/davidglass/antidengue/data/by_sample/')\n", "for file in dirs:\n", " if (file.startswith('patient')):\n", " write_seq_and_quality(file)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
LeeYiFang/Carkinos
src/Untitled5.ipynb
1
139686
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from pathlib import Path\n", "import pandas as pd\n", "import numpy as np\n", "root=Path('../').resolve()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "WindowsPath('C:/Users/user/Documents/GitHub/Carkinos')" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "root" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "raw_path=root.joinpath('src','PCA_TEST.quantile_normalized.tsv')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sample_raw_data_df = pd.read_table(raw_path.as_posix())" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Unnamed: 0</th>\n", " <th>GSM1687570_5500024035100021608461.G01.CEL.gz</th>\n", " <th>GSM1687571_5500024034290101707049.A01.CEL.gz</th>\n", " <th>GSM1687572_5500024052603032009483.A09.CEL.gz</th>\n", " <th>GSM1687573_5500024035100021608461.H01.CEL.gz</th>\n", " <th>GSM1687574_5500024032848101507998.D02.CEL.gz</th>\n", " <th>GSM1687575_5500024030401071707289.D04.CEL.gz</th>\n", " <th>GSM1687576_5500024030401071707289.C10.CEL.gz</th>\n", " <th>GSM1687577_5500024052861011409506.D05.CEL.gz</th>\n", " <th>GSM1687578_5500024032848101507998.E02.CEL.gz</th>\n", " <th>...</th>\n", " <th>GSM1688358_5500024032848101507998.G01.CEL.gz</th>\n", " <th>GSM1688359_5500024031722092907496.C11.CEL.gz</th>\n", " <th>GSM1688360_5500024052861011409506.E11.CEL.gz</th>\n", " <th>GSM1688361_5500024035100021608461.E01.CEL.gz</th>\n", " <th>GSM1688362_5500024032848101507998.H01.CEL.gz</th>\n", " <th>GSM1688363_5500024052861011409506.E09.CEL.gz</th>\n", " <th>GSM1688364_5500024031722092907496.B11.CEL.gz</th>\n", " <th>GSM1688365_5500024052861011409506.D09.CEL.gz</th>\n", " <th>GSM1688366_5500024032848101507000.H03.CEL.gz</th>\n", " <th>GSM1688367_5500024035100021608461.F01.CEL.gz</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1007_s_at</td>\n", " <td>9.525619</td>\n", " <td>8.718047</td>\n", " <td>9.904457</td>\n", " <td>9.798405</td>\n", " <td>10.932997</td>\n", " <td>8.973151</td>\n", " <td>10.857714</td>\n", " <td>10.975397</td>\n", " <td>8.635765</td>\n", " <td>...</td>\n", " <td>9.429262</td>\n", " <td>9.661919</td>\n", " <td>9.589560</td>\n", " <td>10.112593</td>\n", " <td>8.408232</td>\n", " <td>8.722528</td>\n", " <td>10.710177</td>\n", " <td>9.657667</td>\n", " <td>9.176614</td>\n", " <td>10.897960</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1053_at</td>\n", " <td>9.047948</td>\n", " <td>8.616065</td>\n", " <td>9.203023</td>\n", " <td>8.572035</td>\n", " <td>8.506107</td>\n", " <td>8.229169</td>\n", " <td>8.695021</td>\n", " <td>8.915824</td>\n", " <td>8.233599</td>\n", " <td>...</td>\n", " <td>8.776563</td>\n", " <td>9.155915</td>\n", " <td>9.336024</td>\n", " <td>8.824805</td>\n", " <td>8.772813</td>\n", " <td>8.802262</td>\n", " <td>8.678147</td>\n", " <td>8.625144</td>\n", " <td>8.695912</td>\n", " <td>8.629976</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>117_at</td>\n", " <td>7.612412</td>\n", " <td>8.043859</td>\n", " <td>7.603927</td>\n", " <td>7.714699</td>\n", " <td>7.742822</td>\n", " <td>7.551629</td>\n", " <td>7.504556</td>\n", " <td>7.720968</td>\n", " <td>7.730913</td>\n", " <td>...</td>\n", " <td>7.729079</td>\n", " <td>11.647400</td>\n", " <td>11.342093</td>\n", " <td>7.850625</td>\n", " <td>8.028290</td>\n", " <td>8.037324</td>\n", " <td>7.655276</td>\n", " <td>7.888281</td>\n", " <td>7.691653</td>\n", " <td>7.624577</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>121_at</td>\n", " <td>8.218106</td>\n", " <td>8.235331</td>\n", " <td>8.400500</td>\n", " <td>8.405479</td>\n", " <td>9.297814</td>\n", " <td>8.178474</td>\n", " <td>8.067798</td>\n", " <td>8.176426</td>\n", " <td>11.259210</td>\n", " <td>...</td>\n", " <td>11.123192</td>\n", " <td>8.063912</td>\n", " <td>8.138332</td>\n", " <td>8.213297</td>\n", " <td>8.035581</td>\n", " <td>8.203285</td>\n", " <td>8.021791</td>\n", " <td>8.373332</td>\n", " <td>8.081797</td>\n", " <td>8.261245</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1255_g_at</td>\n", " <td>7.392744</td>\n", " <td>7.395735</td>\n", " <td>7.453283</td>\n", " <td>7.493720</td>\n", " <td>7.474639</td>\n", " <td>7.436698</td>\n", " <td>7.388679</td>\n", " <td>7.508520</td>\n", " <td>7.432427</td>\n", " <td>...</td>\n", " <td>7.445189</td>\n", " <td>9.069289</td>\n", " <td>8.621514</td>\n", " <td>7.446887</td>\n", " <td>7.512241</td>\n", " <td>7.456834</td>\n", " <td>7.453321</td>\n", " <td>7.509484</td>\n", " <td>7.315354</td>\n", " <td>7.513548</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>1294_at</td>\n", " <td>9.003722</td>\n", " <td>8.375226</td>\n", " <td>7.975448</td>\n", " <td>7.762306</td>\n", " <td>7.763070</td>\n", " <td>7.981557</td>\n", " <td>8.389011</td>\n", " <td>8.376507</td>\n", " <td>7.903314</td>\n", " <td>...</td>\n", " <td>8.412039</td>\n", " <td>7.796222</td>\n", " <td>7.722225</td>\n", " <td>7.956599</td>\n", " <td>8.201499</td>\n", " <td>8.151006</td>\n", " <td>8.215746</td>\n", " <td>9.143522</td>\n", " <td>8.090617</td>\n", " <td>7.830512</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>1316_at</td>\n", " <td>7.909244</td>\n", " <td>7.878632</td>\n", " <td>7.903908</td>\n", " <td>7.741367</td>\n", " <td>8.015132</td>\n", " <td>7.772626</td>\n", " <td>7.807954</td>\n", " <td>7.809478</td>\n", " <td>7.864759</td>\n", " <td>...</td>\n", " <td>8.065336</td>\n", " <td>7.948937</td>\n", " <td>8.050267</td>\n", " <td>7.966506</td>\n", " <td>8.097026</td>\n", " <td>7.900293</td>\n", " <td>7.847609</td>\n", " <td>8.001678</td>\n", " <td>8.084945</td>\n", " <td>7.888374</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>1320_at</td>\n", " <td>7.651478</td>\n", " <td>7.708905</td>\n", " <td>7.602916</td>\n", " <td>7.705086</td>\n", " <td>7.712262</td>\n", " <td>7.723882</td>\n", " <td>7.739506</td>\n", " <td>7.641239</td>\n", " <td>7.621617</td>\n", " <td>...</td>\n", " <td>7.761721</td>\n", " <td>7.783990</td>\n", " <td>7.627924</td>\n", " <td>7.675847</td>\n", " <td>7.875980</td>\n", " <td>7.544660</td>\n", " <td>7.588426</td>\n", " <td>7.574985</td>\n", " <td>7.583279</td>\n", " <td>7.611891</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>1405_i_at</td>\n", " <td>7.834398</td>\n", " <td>7.697773</td>\n", " <td>7.633690</td>\n", " <td>7.601535</td>\n", " <td>7.726134</td>\n", " <td>7.614437</td>\n", " <td>8.776613</td>\n", " <td>8.449633</td>\n", " <td>7.636824</td>\n", " <td>...</td>\n", " <td>7.801481</td>\n", " <td>7.580300</td>\n", " <td>7.648297</td>\n", " <td>7.794772</td>\n", " <td>8.369012</td>\n", " <td>7.921049</td>\n", " <td>7.615833</td>\n", " <td>7.820004</td>\n", " <td>7.807366</td>\n", " <td>7.596185</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>1431_at</td>\n", " <td>7.728028</td>\n", " <td>7.771812</td>\n", " <td>7.403523</td>\n", " <td>7.667112</td>\n", " <td>7.520539</td>\n", " <td>7.713980</td>\n", " <td>7.536457</td>\n", " <td>7.460594</td>\n", " <td>7.545543</td>\n", " <td>...</td>\n", " <td>7.672223</td>\n", " <td>7.619240</td>\n", " <td>7.575923</td>\n", " <td>7.509735</td>\n", " <td>7.758326</td>\n", " <td>7.674408</td>\n", " <td>7.513123</td>\n", " <td>7.458537</td>\n", " <td>7.479716</td>\n", " <td>7.611531</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>1438_at</td>\n", " <td>7.657973</td>\n", " <td>7.839882</td>\n", " <td>7.600658</td>\n", " <td>7.751388</td>\n", " <td>8.271726</td>\n", " <td>7.653040</td>\n", " <td>7.639229</td>\n", " <td>7.651966</td>\n", " <td>7.630050</td>\n", " <td>...</td>\n", " <td>7.703543</td>\n", " <td>7.879641</td>\n", " <td>7.665347</td>\n", " <td>8.257526</td>\n", " <td>7.835643</td>\n", " <td>7.662081</td>\n", " <td>7.729477</td>\n", " <td>7.615180</td>\n", " <td>7.752624</td>\n", " <td>8.094068</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>1487_at</td>\n", " <td>8.206241</td>\n", " <td>7.972470</td>\n", " <td>8.424972</td>\n", " <td>8.281678</td>\n", " <td>8.992934</td>\n", " <td>8.402891</td>\n", " <td>8.278146</td>\n", " <td>8.351512</td>\n", " <td>8.908842</td>\n", " <td>...</td>\n", " <td>8.344273</td>\n", " <td>8.172797</td>\n", " <td>7.982788</td>\n", " <td>7.879871</td>\n", " <td>8.472595</td>\n", " <td>8.059953</td>\n", " <td>9.227652</td>\n", " <td>8.028662</td>\n", " <td>8.095783</td>\n", " <td>8.198551</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>1494_f_at</td>\n", " <td>7.858453</td>\n", " <td>7.830963</td>\n", " <td>7.711877</td>\n", " <td>7.809028</td>\n", " <td>7.815555</td>\n", " <td>7.735942</td>\n", " <td>7.664429</td>\n", " <td>7.825576</td>\n", " <td>7.818208</td>\n", " <td>...</td>\n", " <td>7.844457</td>\n", " <td>7.801330</td>\n", " <td>7.819480</td>\n", " <td>7.692542</td>\n", " <td>7.922304</td>\n", " <td>7.911433</td>\n", " <td>7.801025</td>\n", " <td>7.791079</td>\n", " <td>7.718452</td>\n", " <td>7.767680</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>1598_g_at</td>\n", " <td>8.087957</td>\n", " <td>7.959245</td>\n", " <td>8.664610</td>\n", " <td>7.890980</td>\n", " <td>8.003252</td>\n", " <td>8.358760</td>\n", " <td>9.062693</td>\n", " <td>9.483724</td>\n", " <td>8.192223</td>\n", " <td>...</td>\n", " <td>10.170631</td>\n", " <td>9.618505</td>\n", " <td>9.566406</td>\n", " <td>8.119021</td>\n", " <td>7.823470</td>\n", " <td>8.055860</td>\n", " <td>8.487177</td>\n", " <td>9.481194</td>\n", " <td>8.711049</td>\n", " <td>8.056754</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>160020_at</td>\n", " <td>8.028948</td>\n", " <td>8.007019</td>\n", " <td>8.531796</td>\n", " <td>8.034021</td>\n", " <td>7.950786</td>\n", " <td>8.030606</td>\n", " <td>7.891479</td>\n", " <td>8.148135</td>\n", " <td>8.369209</td>\n", " <td>...</td>\n", " <td>7.966837</td>\n", " <td>8.077760</td>\n", " <td>8.133854</td>\n", " <td>8.968220</td>\n", " <td>7.858555</td>\n", " <td>8.259718</td>\n", " <td>8.591962</td>\n", " <td>9.294565</td>\n", " <td>8.483516</td>\n", " <td>8.049743</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>1729_at</td>\n", " <td>8.096292</td>\n", " <td>8.180304</td>\n", " <td>8.388173</td>\n", " <td>8.260304</td>\n", " <td>8.831569</td>\n", " <td>8.349998</td>\n", " <td>8.593277</td>\n", " <td>8.616233</td>\n", " <td>9.019362</td>\n", " <td>...</td>\n", " <td>8.835704</td>\n", " <td>8.007914</td>\n", " <td>8.141308</td>\n", " <td>8.310294</td>\n", " <td>8.290844</td>\n", " <td>8.510494</td>\n", " <td>8.542961</td>\n", " <td>8.556058</td>\n", " <td>8.174816</td>\n", " <td>8.341683</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>177_at</td>\n", " <td>7.514178</td>\n", " <td>7.606598</td>\n", " <td>7.693805</td>\n", " <td>7.581838</td>\n", " <td>7.708548</td>\n", " <td>7.708384</td>\n", " <td>7.597449</td>\n", " <td>7.693610</td>\n", " <td>7.620039</td>\n", " <td>...</td>\n", " <td>7.656180</td>\n", " <td>7.591175</td>\n", " <td>7.567320</td>\n", " <td>7.698346</td>\n", " <td>7.841765</td>\n", " <td>7.630390</td>\n", " <td>7.571643</td>\n", " <td>7.708900</td>\n", " <td>7.706586</td>\n", " <td>7.618176</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>1773_at</td>\n", " <td>7.677061</td>\n", " <td>7.844826</td>\n", " <td>7.771058</td>\n", " <td>7.596594</td>\n", " <td>7.590436</td>\n", " <td>7.767117</td>\n", " <td>7.812929</td>\n", " <td>7.795710</td>\n", " <td>7.775275</td>\n", " <td>...</td>\n", " <td>7.741154</td>\n", " <td>7.675076</td>\n", " <td>7.812365</td>\n", " <td>7.961307</td>\n", " <td>7.810738</td>\n", " <td>7.865056</td>\n", " <td>7.612419</td>\n", " <td>7.775011</td>\n", " <td>7.651543</td>\n", " <td>7.819192</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>179_at</td>\n", " <td>8.243753</td>\n", " <td>8.264494</td>\n", " <td>8.455341</td>\n", " <td>8.109603</td>\n", " <td>8.178008</td>\n", " <td>8.221881</td>\n", " <td>8.216369</td>\n", " <td>8.128763</td>\n", " <td>8.127175</td>\n", " <td>...</td>\n", " <td>8.079943</td>\n", " <td>8.025528</td>\n", " <td>8.051105</td>\n", " <td>8.290394</td>\n", " <td>7.986633</td>\n", " <td>8.172114</td>\n", " <td>8.114658</td>\n", " <td>8.182000</td>\n", " <td>8.141716</td>\n", " <td>8.375676</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>1861_at</td>\n", " <td>7.947907</td>\n", " <td>8.087725</td>\n", " <td>8.533923</td>\n", " <td>8.077407</td>\n", " <td>8.486724</td>\n", " <td>8.214426</td>\n", " <td>8.467074</td>\n", " <td>8.454226</td>\n", " <td>8.380016</td>\n", " <td>...</td>\n", " <td>8.391886</td>\n", " <td>8.459854</td>\n", " <td>8.388810</td>\n", " <td>8.171772</td>\n", " <td>8.105932</td>\n", " <td>8.126414</td>\n", " <td>8.459284</td>\n", " <td>8.558124</td>\n", " <td>8.431172</td>\n", " <td>8.444880</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>200000_s_at</td>\n", " <td>10.943962</td>\n", " <td>10.554185</td>\n", " <td>10.010714</td>\n", " <td>10.351770</td>\n", " <td>10.582500</td>\n", " <td>10.918780</td>\n", " <td>10.779839</td>\n", " <td>11.012558</td>\n", " <td>10.666718</td>\n", " <td>...</td>\n", " <td>10.323892</td>\n", " <td>11.362956</td>\n", " <td>11.045315</td>\n", " <td>10.389930</td>\n", " <td>10.730466</td>\n", " <td>10.670736</td>\n", " <td>10.434048</td>\n", " <td>10.010854</td>\n", " <td>11.172518</td>\n", " <td>9.934250</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>200001_at</td>\n", " <td>10.147493</td>\n", " <td>10.029987</td>\n", " <td>9.968916</td>\n", " <td>10.557932</td>\n", " <td>11.251398</td>\n", " <td>10.456606</td>\n", " <td>11.179078</td>\n", " <td>11.440406</td>\n", " <td>11.391664</td>\n", " <td>...</td>\n", " <td>11.327322</td>\n", " <td>9.867762</td>\n", " <td>9.967675</td>\n", " <td>11.068072</td>\n", " <td>10.325408</td>\n", " <td>10.568185</td>\n", " <td>11.879458</td>\n", " <td>11.553767</td>\n", " <td>11.167581</td>\n", " <td>11.182587</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>200002_at</td>\n", " <td>12.598934</td>\n", " <td>12.884603</td>\n", " <td>12.851004</td>\n", " <td>12.440221</td>\n", " <td>12.163264</td>\n", " <td>12.102061</td>\n", " <td>11.971443</td>\n", " <td>11.775090</td>\n", " <td>11.991532</td>\n", " <td>...</td>\n", " <td>12.225448</td>\n", " <td>12.452044</td>\n", " <td>12.234126</td>\n", " <td>12.269134</td>\n", " <td>12.278390</td>\n", " <td>11.997784</td>\n", " <td>12.361425</td>\n", " <td>11.893040</td>\n", " <td>12.207024</td>\n", " <td>12.139081</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>200003_s_at</td>\n", " <td>13.962958</td>\n", " <td>13.866020</td>\n", " <td>13.939309</td>\n", " <td>13.421075</td>\n", " <td>13.495911</td>\n", " <td>13.614290</td>\n", " <td>13.357725</td>\n", " <td>13.273866</td>\n", " <td>13.261886</td>\n", " <td>...</td>\n", " <td>13.665884</td>\n", " <td>13.199544</td>\n", " <td>13.201468</td>\n", " <td>13.438959</td>\n", " <td>13.736109</td>\n", " <td>13.757036</td>\n", " <td>13.518426</td>\n", " <td>13.648311</td>\n", " <td>13.487201</td>\n", " <td>13.645801</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>200004_at</td>\n", " <td>11.638454</td>\n", " <td>11.515864</td>\n", " <td>12.092778</td>\n", " <td>11.388483</td>\n", " <td>11.110027</td>\n", " <td>11.023252</td>\n", " <td>12.139457</td>\n", " <td>11.722688</td>\n", " <td>10.971977</td>\n", " <td>...</td>\n", " <td>10.811857</td>\n", " <td>11.674871</td>\n", " <td>11.621797</td>\n", " <td>12.281479</td>\n", " <td>11.026658</td>\n", " <td>11.344845</td>\n", " <td>11.860932</td>\n", " <td>11.245582</td>\n", " <td>11.229407</td>\n", " <td>12.435254</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>200005_at</td>\n", " <td>11.789568</td>\n", " <td>11.780158</td>\n", " <td>11.265116</td>\n", " <td>10.932197</td>\n", " <td>11.208736</td>\n", " <td>11.723449</td>\n", " <td>11.019480</td>\n", " <td>10.959582</td>\n", " <td>11.198749</td>\n", " <td>...</td>\n", " <td>10.613178</td>\n", " <td>11.048126</td>\n", " <td>10.848619</td>\n", " <td>10.751546</td>\n", " <td>10.975890</td>\n", " <td>10.848473</td>\n", " <td>10.825055</td>\n", " <td>10.997519</td>\n", " <td>10.427742</td>\n", " <td>11.391999</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>200006_at</td>\n", " <td>11.829138</td>\n", " <td>11.970993</td>\n", " <td>12.057994</td>\n", " <td>12.046755</td>\n", " <td>12.081040</td>\n", " <td>12.305364</td>\n", " <td>11.943838</td>\n", " <td>11.873483</td>\n", " <td>11.524197</td>\n", " <td>...</td>\n", " <td>11.690109</td>\n", " <td>11.795945</td>\n", " <td>11.744640</td>\n", " <td>12.418210</td>\n", " <td>11.275798</td>\n", " <td>11.125740</td>\n", " <td>11.738490</td>\n", " <td>12.302239</td>\n", " <td>12.460312</td>\n", " <td>11.976653</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td>200007_at</td>\n", " <td>11.819296</td>\n", " <td>11.439260</td>\n", " <td>11.757965</td>\n", " <td>11.494313</td>\n", " <td>11.563859</td>\n", " <td>11.501570</td>\n", " <td>12.002326</td>\n", " <td>11.871924</td>\n", " <td>11.536442</td>\n", " <td>...</td>\n", " <td>11.674007</td>\n", " <td>11.710358</td>\n", " <td>11.783797</td>\n", " <td>12.263241</td>\n", " <td>12.122391</td>\n", " <td>12.432593</td>\n", " <td>11.948162</td>\n", " <td>12.127104</td>\n", " <td>12.066296</td>\n", " <td>12.259765</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>200008_s_at</td>\n", " <td>10.676458</td>\n", " <td>10.690479</td>\n", " <td>9.862556</td>\n", " <td>8.386338</td>\n", " <td>8.236503</td>\n", " <td>9.655560</td>\n", " <td>9.618241</td>\n", " <td>8.874053</td>\n", " <td>7.748188</td>\n", " <td>...</td>\n", " <td>7.779491</td>\n", " <td>8.238553</td>\n", " <td>8.077361</td>\n", " <td>9.726048</td>\n", " <td>8.215377</td>\n", " <td>8.102943</td>\n", " <td>8.383057</td>\n", " <td>7.727232</td>\n", " <td>7.818090</td>\n", " <td>10.854761</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>200009_at</td>\n", " <td>12.241562</td>\n", " <td>12.123915</td>\n", " <td>11.613592</td>\n", " <td>11.436513</td>\n", " <td>12.077685</td>\n", " <td>11.656556</td>\n", " <td>11.656313</td>\n", " <td>11.804873</td>\n", " <td>11.717407</td>\n", " <td>...</td>\n", " <td>11.635394</td>\n", " <td>11.511827</td>\n", " <td>11.450963</td>\n", " <td>11.001656</td>\n", " <td>11.963714</td>\n", " <td>11.745106</td>\n", " <td>11.711815</td>\n", " <td>10.430322</td>\n", " <td>10.139406</td>\n", " <td>12.053892</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>22247</th>\n", " <td>AFFX-PheX-3_at</td>\n", " <td>7.587780</td>\n", " <td>7.739597</td>\n", " <td>7.637001</td>\n", " <td>7.572844</td>\n", " <td>7.566232</td>\n", " <td>7.626215</td>\n", " <td>7.597273</td>\n", " <td>7.609240</td>\n", " <td>7.693653</td>\n", " <td>...</td>\n", " <td>7.636286</td>\n", " <td>7.581094</td>\n", " <td>7.677399</td>\n", " <td>7.564076</td>\n", " <td>7.684905</td>\n", " <td>7.730319</td>\n", " <td>7.591921</td>\n", " <td>7.646766</td>\n", " <td>7.617262</td>\n", " <td>7.655340</td>\n", " </tr>\n", " <tr>\n", " <th>22248</th>\n", " <td>AFFX-PheX-5_at</td>\n", " <td>7.615105</td>\n", " <td>7.584478</td>\n", " <td>7.455959</td>\n", " <td>7.645467</td>\n", " <td>7.560949</td>\n", " <td>7.619625</td>\n", " <td>7.598112</td>\n", " <td>7.582925</td>\n", " <td>7.627934</td>\n", " <td>...</td>\n", " <td>7.525731</td>\n", " <td>7.579176</td>\n", " <td>7.570382</td>\n", " <td>7.418292</td>\n", " <td>7.732098</td>\n", " <td>7.588400</td>\n", " <td>7.546730</td>\n", " <td>7.637900</td>\n", " <td>7.641483</td>\n", " <td>7.602141</td>\n", " </tr>\n", " <tr>\n", " <th>22249</th>\n", " <td>AFFX-PheX-M_at</td>\n", " <td>7.500879</td>\n", " <td>7.558350</td>\n", " <td>7.423706</td>\n", " <td>7.425247</td>\n", " <td>7.467854</td>\n", " <td>7.400606</td>\n", " <td>7.364192</td>\n", " <td>7.400171</td>\n", " <td>7.531035</td>\n", " <td>...</td>\n", " <td>7.510141</td>\n", " <td>7.385669</td>\n", " <td>7.557117</td>\n", " <td>7.408859</td>\n", " <td>7.686879</td>\n", " <td>7.642765</td>\n", " <td>7.437861</td>\n", " <td>7.544820</td>\n", " <td>7.509462</td>\n", " <td>7.375522</td>\n", " </tr>\n", " <tr>\n", " <th>22250</th>\n", " <td>AFFX-r2-Bs-dap-3_at</td>\n", " <td>7.415058</td>\n", " <td>7.538497</td>\n", " <td>7.444206</td>\n", " <td>7.537508</td>\n", " <td>7.526306</td>\n", " <td>7.475735</td>\n", " <td>7.457193</td>\n", " <td>7.489438</td>\n", " <td>7.510553</td>\n", " <td>...</td>\n", " <td>7.641837</td>\n", " <td>7.473934</td>\n", " <td>7.497987</td>\n", " <td>7.439749</td>\n", " <td>7.762372</td>\n", " <td>7.470218</td>\n", " <td>7.395558</td>\n", " <td>7.626874</td>\n", " <td>7.440026</td>\n", " <td>7.339268</td>\n", " </tr>\n", " <tr>\n", " <th>22251</th>\n", " <td>AFFX-r2-Bs-dap-5_at</td>\n", " <td>7.510356</td>\n", " <td>7.599167</td>\n", " <td>7.576703</td>\n", " <td>7.430549</td>\n", " <td>7.595861</td>\n", " <td>7.407454</td>\n", " <td>7.450202</td>\n", " <td>7.493626</td>\n", " <td>7.640243</td>\n", " <td>...</td>\n", " <td>7.489692</td>\n", " <td>7.520011</td>\n", " <td>7.573883</td>\n", " <td>7.419995</td>\n", " <td>7.758236</td>\n", " <td>7.611355</td>\n", " <td>7.547459</td>\n", " <td>7.573749</td>\n", " <td>7.517581</td>\n", " <td>7.443672</td>\n", " </tr>\n", " <tr>\n", " <th>22252</th>\n", " <td>AFFX-r2-Bs-dap-M_at</td>\n", " <td>7.428785</td>\n", " <td>7.492951</td>\n", " <td>7.480116</td>\n", " <td>7.301982</td>\n", " <td>7.369849</td>\n", " <td>7.324410</td>\n", " <td>7.369699</td>\n", " <td>7.345805</td>\n", " <td>7.429821</td>\n", " <td>...</td>\n", " <td>7.307410</td>\n", " <td>7.394087</td>\n", " <td>7.483675</td>\n", " <td>7.442209</td>\n", " <td>7.438441</td>\n", " <td>7.523250</td>\n", " <td>7.365466</td>\n", " <td>7.517269</td>\n", " <td>7.419273</td>\n", " <td>7.410981</td>\n", " </tr>\n", " <tr>\n", " <th>22253</th>\n", " <td>AFFX-r2-Bs-lys-3_at</td>\n", " <td>7.541610</td>\n", " <td>7.804846</td>\n", " <td>7.405789</td>\n", " <td>7.458813</td>\n", " <td>7.653536</td>\n", " <td>7.562071</td>\n", " <td>7.451183</td>\n", " <td>7.573437</td>\n", " <td>7.857587</td>\n", " <td>...</td>\n", " <td>7.581681</td>\n", " <td>7.649899</td>\n", " <td>7.749900</td>\n", " <td>7.500011</td>\n", " <td>7.735787</td>\n", " <td>7.835627</td>\n", " <td>7.567267</td>\n", " <td>7.681973</td>\n", " <td>7.696307</td>\n", " <td>7.495174</td>\n", " </tr>\n", " <tr>\n", " <th>22254</th>\n", " <td>AFFX-r2-Bs-lys-5_at</td>\n", " <td>7.424384</td>\n", " <td>7.714397</td>\n", " <td>7.318250</td>\n", " <td>7.494257</td>\n", " <td>7.518036</td>\n", " <td>7.493577</td>\n", " <td>7.360679</td>\n", " <td>7.566592</td>\n", " <td>7.668429</td>\n", " <td>...</td>\n", " <td>7.515631</td>\n", " <td>7.450158</td>\n", " <td>7.508255</td>\n", " <td>7.357867</td>\n", " <td>7.726456</td>\n", " <td>7.789662</td>\n", " <td>7.445381</td>\n", " <td>7.663948</td>\n", " <td>7.512095</td>\n", " <td>7.388519</td>\n", " </tr>\n", " <tr>\n", " <th>22255</th>\n", " <td>AFFX-r2-Bs-lys-M_at</td>\n", " <td>7.598653</td>\n", " <td>7.533525</td>\n", " <td>7.550970</td>\n", " <td>7.556028</td>\n", " <td>7.639852</td>\n", " <td>7.378454</td>\n", " <td>7.558760</td>\n", " <td>7.513993</td>\n", " <td>7.536908</td>\n", " <td>...</td>\n", " <td>7.759471</td>\n", " <td>7.566438</td>\n", " <td>7.647331</td>\n", " <td>7.538462</td>\n", " <td>8.024200</td>\n", " <td>7.592782</td>\n", " <td>7.435744</td>\n", " <td>7.452174</td>\n", " <td>7.626060</td>\n", " <td>7.519610</td>\n", " </tr>\n", " <tr>\n", " <th>22256</th>\n", " <td>AFFX-r2-Bs-phe-3_at</td>\n", " <td>7.588818</td>\n", " <td>7.700379</td>\n", " <td>7.608957</td>\n", " <td>7.617782</td>\n", " <td>7.668815</td>\n", " <td>7.544640</td>\n", " <td>7.420475</td>\n", " <td>7.465998</td>\n", " <td>7.587814</td>\n", " <td>...</td>\n", " <td>7.579117</td>\n", " <td>7.570955</td>\n", " <td>7.700903</td>\n", " <td>7.527279</td>\n", " <td>7.805261</td>\n", " <td>7.738460</td>\n", " <td>7.566220</td>\n", " <td>7.714249</td>\n", " <td>7.558661</td>\n", " <td>7.564291</td>\n", " </tr>\n", " <tr>\n", " <th>22257</th>\n", " <td>AFFX-r2-Bs-phe-5_at</td>\n", " <td>7.626531</td>\n", " <td>7.575690</td>\n", " <td>7.474051</td>\n", " <td>7.700783</td>\n", " <td>7.609364</td>\n", " <td>7.330687</td>\n", " <td>7.302846</td>\n", " <td>7.577040</td>\n", " <td>7.630244</td>\n", " <td>...</td>\n", " <td>7.705097</td>\n", " <td>7.578413</td>\n", " <td>7.756379</td>\n", " <td>7.508484</td>\n", " <td>7.899927</td>\n", " <td>7.602541</td>\n", " <td>7.482776</td>\n", " <td>7.755496</td>\n", " <td>7.608196</td>\n", " <td>7.514778</td>\n", " </tr>\n", " <tr>\n", " <th>22258</th>\n", " <td>AFFX-r2-Bs-phe-M_at</td>\n", " <td>7.491488</td>\n", " <td>7.581517</td>\n", " <td>7.428292</td>\n", " <td>7.495536</td>\n", " <td>7.631848</td>\n", " <td>7.480835</td>\n", " <td>7.453392</td>\n", " <td>7.509254</td>\n", " <td>7.501456</td>\n", " <td>...</td>\n", " <td>7.597136</td>\n", " <td>7.554519</td>\n", " <td>7.478137</td>\n", " <td>7.444631</td>\n", " <td>7.700423</td>\n", " <td>7.555826</td>\n", " <td>7.438705</td>\n", " <td>7.460913</td>\n", " <td>7.608836</td>\n", " <td>7.501917</td>\n", " </tr>\n", " <tr>\n", " <th>22259</th>\n", " <td>AFFX-r2-Bs-thr-3_s_at</td>\n", " <td>7.576096</td>\n", " <td>7.616859</td>\n", " <td>7.621567</td>\n", " <td>7.633570</td>\n", " <td>7.607185</td>\n", " <td>7.675595</td>\n", " <td>7.595108</td>\n", " <td>7.778257</td>\n", " <td>7.824489</td>\n", " <td>...</td>\n", " <td>7.665649</td>\n", " <td>7.608371</td>\n", " <td>7.698390</td>\n", " <td>7.623490</td>\n", " <td>7.792992</td>\n", " <td>7.790727</td>\n", " <td>7.587139</td>\n", " <td>7.693699</td>\n", " <td>7.539833</td>\n", " <td>7.562464</td>\n", " </tr>\n", " <tr>\n", " <th>22260</th>\n", " <td>AFFX-r2-Bs-thr-5_s_at</td>\n", " <td>7.728724</td>\n", " <td>7.708178</td>\n", " <td>7.608102</td>\n", " <td>7.591521</td>\n", " <td>7.683940</td>\n", " <td>7.517711</td>\n", " <td>7.579549</td>\n", " <td>7.641952</td>\n", " <td>7.686149</td>\n", " <td>...</td>\n", " <td>7.659568</td>\n", " <td>7.594628</td>\n", " <td>7.740366</td>\n", " <td>7.635615</td>\n", " <td>7.985159</td>\n", " <td>7.910271</td>\n", " <td>7.584600</td>\n", " <td>7.754253</td>\n", " <td>7.666207</td>\n", " <td>7.649350</td>\n", " </tr>\n", " <tr>\n", " <th>22261</th>\n", " <td>AFFX-r2-Bs-thr-M_s_at</td>\n", " <td>7.586706</td>\n", " <td>7.730064</td>\n", " <td>7.519281</td>\n", " <td>7.657503</td>\n", " <td>7.557744</td>\n", " <td>7.527900</td>\n", " <td>7.502069</td>\n", " <td>7.569939</td>\n", " <td>7.534255</td>\n", " <td>...</td>\n", " <td>7.508732</td>\n", " <td>7.479604</td>\n", " <td>7.536840</td>\n", " <td>7.606430</td>\n", " <td>7.901393</td>\n", " <td>7.671241</td>\n", " <td>7.452707</td>\n", " <td>7.548825</td>\n", " <td>7.389860</td>\n", " <td>7.605472</td>\n", " </tr>\n", " <tr>\n", " <th>22262</th>\n", " <td>AFFX-r2-Ec-bioB-3_at</td>\n", " <td>10.184430</td>\n", " <td>9.529309</td>\n", " <td>8.619244</td>\n", " <td>10.147914</td>\n", " <td>8.838657</td>\n", " <td>8.555512</td>\n", " <td>8.452804</td>\n", " <td>8.597299</td>\n", " <td>8.768882</td>\n", " <td>...</td>\n", " <td>9.190201</td>\n", " <td>8.810104</td>\n", " <td>8.790299</td>\n", " <td>9.860041</td>\n", " <td>9.168162</td>\n", " <td>9.268455</td>\n", " <td>8.586246</td>\n", " <td>9.029980</td>\n", " <td>8.885536</td>\n", " <td>10.091491</td>\n", " </tr>\n", " <tr>\n", " <th>22263</th>\n", " <td>AFFX-r2-Ec-bioB-5_at</td>\n", " <td>9.998544</td>\n", " <td>9.456845</td>\n", " <td>8.516449</td>\n", " <td>9.808780</td>\n", " <td>8.703090</td>\n", " <td>8.361782</td>\n", " <td>8.357288</td>\n", " <td>8.425705</td>\n", " <td>8.778259</td>\n", " <td>...</td>\n", " <td>9.107011</td>\n", " <td>8.799799</td>\n", " <td>8.807281</td>\n", " <td>9.658986</td>\n", " <td>9.130400</td>\n", " <td>9.104295</td>\n", " <td>8.460702</td>\n", " <td>8.724103</td>\n", " <td>8.768013</td>\n", " <td>9.928022</td>\n", " </tr>\n", " <tr>\n", " <th>22264</th>\n", " <td>AFFX-r2-Ec-bioB-M_at</td>\n", " <td>9.886580</td>\n", " <td>9.316752</td>\n", " <td>8.414869</td>\n", " <td>9.810127</td>\n", " <td>8.594883</td>\n", " <td>8.288756</td>\n", " <td>8.271467</td>\n", " <td>8.283263</td>\n", " <td>8.720208</td>\n", " <td>...</td>\n", " <td>8.906124</td>\n", " <td>8.707507</td>\n", " <td>8.462430</td>\n", " <td>9.729706</td>\n", " <td>8.889075</td>\n", " <td>9.032003</td>\n", " <td>8.428403</td>\n", " <td>8.866616</td>\n", " <td>8.680978</td>\n", " <td>10.030972</td>\n", " </tr>\n", " <tr>\n", " <th>22265</th>\n", " <td>AFFX-r2-Ec-bioC-3_at</td>\n", " <td>9.496804</td>\n", " <td>10.373924</td>\n", " <td>9.122523</td>\n", " <td>9.469340</td>\n", " <td>9.079933</td>\n", " <td>8.593055</td>\n", " <td>8.660188</td>\n", " <td>8.902277</td>\n", " <td>9.101185</td>\n", " <td>...</td>\n", " <td>9.508558</td>\n", " <td>9.213596</td>\n", " <td>9.361792</td>\n", " <td>9.247763</td>\n", " <td>9.475856</td>\n", " <td>9.678426</td>\n", " <td>8.899431</td>\n", " <td>9.424195</td>\n", " <td>9.112191</td>\n", " <td>9.572530</td>\n", " </tr>\n", " <tr>\n", " <th>22266</th>\n", " <td>AFFX-r2-Ec-bioC-5_at</td>\n", " <td>9.791266</td>\n", " <td>10.589859</td>\n", " <td>9.408320</td>\n", " <td>9.824942</td>\n", " <td>9.469546</td>\n", " <td>8.960363</td>\n", " <td>9.020998</td>\n", " <td>9.076730</td>\n", " <td>9.407147</td>\n", " <td>...</td>\n", " <td>9.819895</td>\n", " <td>9.604219</td>\n", " <td>9.799778</td>\n", " <td>9.653474</td>\n", " <td>9.793151</td>\n", " <td>10.135800</td>\n", " <td>9.191924</td>\n", " <td>9.603816</td>\n", " <td>9.369659</td>\n", " <td>10.024467</td>\n", " </tr>\n", " <tr>\n", " <th>22267</th>\n", " <td>AFFX-r2-Ec-bioD-3_at</td>\n", " <td>12.953441</td>\n", " <td>12.664495</td>\n", " <td>10.985948</td>\n", " <td>12.976145</td>\n", " <td>11.643625</td>\n", " <td>11.059735</td>\n", " <td>11.240215</td>\n", " <td>10.678759</td>\n", " <td>11.696586</td>\n", " <td>...</td>\n", " <td>12.190513</td>\n", " <td>12.099303</td>\n", " <td>11.631617</td>\n", " <td>13.011969</td>\n", " <td>12.132080</td>\n", " <td>11.715813</td>\n", " <td>11.564594</td>\n", " <td>11.437572</td>\n", " <td>11.593778</td>\n", " <td>13.032810</td>\n", " </tr>\n", " <tr>\n", " <th>22268</th>\n", " <td>AFFX-r2-Ec-bioD-5_at</td>\n", " <td>12.661458</td>\n", " <td>12.620283</td>\n", " <td>10.741545</td>\n", " <td>12.682194</td>\n", " <td>11.454273</td>\n", " <td>10.980560</td>\n", " <td>10.843183</td>\n", " <td>10.394221</td>\n", " <td>11.313661</td>\n", " <td>...</td>\n", " <td>11.888910</td>\n", " <td>12.019156</td>\n", " <td>11.254002</td>\n", " <td>12.499611</td>\n", " <td>11.828679</td>\n", " <td>11.341177</td>\n", " <td>11.334232</td>\n", " <td>11.093700</td>\n", " <td>11.469527</td>\n", " <td>12.721535</td>\n", " </tr>\n", " <tr>\n", " <th>22269</th>\n", " <td>AFFX-r2-P1-cre-3_at</td>\n", " <td>14.346964</td>\n", " <td>14.126229</td>\n", " <td>13.314945</td>\n", " <td>14.450152</td>\n", " <td>13.692042</td>\n", " <td>13.304899</td>\n", " <td>13.486599</td>\n", " <td>12.848590</td>\n", " <td>13.609245</td>\n", " <td>...</td>\n", " <td>13.908696</td>\n", " <td>13.938217</td>\n", " <td>13.516265</td>\n", " <td>14.690593</td>\n", " <td>13.816831</td>\n", " <td>13.493863</td>\n", " <td>13.490274</td>\n", " <td>13.326792</td>\n", " <td>13.702848</td>\n", " <td>14.523304</td>\n", " </tr>\n", " <tr>\n", " <th>22270</th>\n", " <td>AFFX-r2-P1-cre-5_at</td>\n", " <td>14.085980</td>\n", " <td>13.808825</td>\n", " <td>13.040669</td>\n", " <td>14.181299</td>\n", " <td>13.383539</td>\n", " <td>12.818351</td>\n", " <td>12.867753</td>\n", " <td>12.499426</td>\n", " <td>13.264427</td>\n", " <td>...</td>\n", " <td>13.662149</td>\n", " <td>13.547378</td>\n", " <td>13.314796</td>\n", " <td>14.407109</td>\n", " <td>13.565362</td>\n", " <td>13.300146</td>\n", " <td>12.954981</td>\n", " <td>13.003925</td>\n", " <td>13.351522</td>\n", " <td>14.308021</td>\n", " </tr>\n", " <tr>\n", " <th>22271</th>\n", " <td>AFFX-ThrX-3_at</td>\n", " <td>7.642534</td>\n", " <td>7.676568</td>\n", " <td>7.645716</td>\n", " <td>7.607399</td>\n", " <td>7.644112</td>\n", " <td>7.667333</td>\n", " <td>7.561026</td>\n", " <td>7.579219</td>\n", " <td>7.733833</td>\n", " <td>...</td>\n", " <td>7.692174</td>\n", " <td>7.644974</td>\n", " <td>7.750016</td>\n", " <td>7.645419</td>\n", " <td>7.866301</td>\n", " <td>7.810828</td>\n", " <td>7.567872</td>\n", " <td>7.703038</td>\n", " <td>7.648424</td>\n", " <td>7.679152</td>\n", " </tr>\n", " <tr>\n", " <th>22272</th>\n", " <td>AFFX-ThrX-5_at</td>\n", " <td>7.631033</td>\n", " <td>7.542400</td>\n", " <td>7.455327</td>\n", " <td>7.540580</td>\n", " <td>7.566635</td>\n", " <td>7.543538</td>\n", " <td>7.455010</td>\n", " <td>7.436875</td>\n", " <td>7.456654</td>\n", " <td>...</td>\n", " <td>7.611665</td>\n", " <td>7.523678</td>\n", " <td>7.454592</td>\n", " <td>7.464096</td>\n", " <td>7.792424</td>\n", " <td>7.527578</td>\n", " <td>7.494294</td>\n", " <td>7.534673</td>\n", " <td>7.519013</td>\n", " <td>7.507123</td>\n", " </tr>\n", " <tr>\n", " <th>22273</th>\n", " <td>AFFX-ThrX-M_at</td>\n", " <td>7.501928</td>\n", " <td>7.610702</td>\n", " <td>7.495555</td>\n", " <td>7.614399</td>\n", " <td>7.472724</td>\n", " <td>7.444107</td>\n", " <td>7.438042</td>\n", " <td>7.424471</td>\n", " <td>7.599155</td>\n", " <td>...</td>\n", " <td>7.550857</td>\n", " <td>7.478097</td>\n", " <td>7.575058</td>\n", " <td>7.438450</td>\n", " <td>7.684441</td>\n", " <td>7.549105</td>\n", " <td>7.424649</td>\n", " <td>7.584892</td>\n", " <td>7.525257</td>\n", " <td>7.490484</td>\n", " </tr>\n", " <tr>\n", " <th>22274</th>\n", " <td>AFFX-TrpnX-3_at</td>\n", " <td>7.513615</td>\n", " <td>7.633015</td>\n", " <td>7.515081</td>\n", " <td>7.546858</td>\n", " <td>7.547228</td>\n", " <td>7.525382</td>\n", " <td>7.396986</td>\n", " <td>7.511896</td>\n", " <td>7.630086</td>\n", " <td>...</td>\n", " <td>7.598619</td>\n", " <td>7.590259</td>\n", " <td>7.718625</td>\n", " <td>7.468810</td>\n", " <td>7.863286</td>\n", " <td>7.591056</td>\n", " <td>7.523585</td>\n", " <td>7.703311</td>\n", " <td>7.504957</td>\n", " <td>7.483636</td>\n", " </tr>\n", " <tr>\n", " <th>22275</th>\n", " <td>AFFX-TrpnX-5_at</td>\n", " <td>7.567607</td>\n", " <td>7.427258</td>\n", " <td>7.534118</td>\n", " <td>7.453376</td>\n", " <td>7.448552</td>\n", " <td>7.526502</td>\n", " <td>7.432864</td>\n", " <td>7.508867</td>\n", " <td>7.492580</td>\n", " <td>...</td>\n", " <td>7.532869</td>\n", " <td>7.484638</td>\n", " <td>7.444738</td>\n", " <td>7.487153</td>\n", " <td>7.535606</td>\n", " <td>7.609732</td>\n", " <td>7.415789</td>\n", " <td>7.611814</td>\n", " <td>7.523121</td>\n", " <td>7.502138</td>\n", " </tr>\n", " <tr>\n", " <th>22276</th>\n", " <td>AFFX-TrpnX-M_at</td>\n", " <td>7.561439</td>\n", " <td>7.654442</td>\n", " <td>7.551581</td>\n", " <td>7.494555</td>\n", " <td>7.597676</td>\n", " <td>7.508101</td>\n", " <td>7.503649</td>\n", " <td>7.559667</td>\n", " <td>7.629655</td>\n", " <td>...</td>\n", " <td>7.596008</td>\n", " <td>7.595698</td>\n", " <td>7.743632</td>\n", " <td>7.567720</td>\n", " <td>8.060336</td>\n", " <td>7.605666</td>\n", " <td>7.532778</td>\n", " <td>7.542190</td>\n", " <td>7.611075</td>\n", " <td>7.470764</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>22277 rows × 799 columns</p>\n", "</div>" ], "text/plain": [ " Unnamed: 0 GSM1687570_5500024035100021608461.G01.CEL.gz \\\n", "0 1007_s_at 9.525619 \n", "1 1053_at 9.047948 \n", "2 117_at 7.612412 \n", "3 121_at 8.218106 \n", "4 1255_g_at 7.392744 \n", "5 1294_at 9.003722 \n", "6 1316_at 7.909244 \n", "7 1320_at 7.651478 \n", "8 1405_i_at 7.834398 \n", "9 1431_at 7.728028 \n", "10 1438_at 7.657973 \n", "11 1487_at 8.206241 \n", "12 1494_f_at 7.858453 \n", "13 1598_g_at 8.087957 \n", "14 160020_at 8.028948 \n", "15 1729_at 8.096292 \n", "16 177_at 7.514178 \n", "17 1773_at 7.677061 \n", "18 179_at 8.243753 \n", "19 1861_at 7.947907 \n", "20 200000_s_at 10.943962 \n", "21 200001_at 10.147493 \n", "22 200002_at 12.598934 \n", "23 200003_s_at 13.962958 \n", "24 200004_at 11.638454 \n", "25 200005_at 11.789568 \n", "26 200006_at 11.829138 \n", "27 200007_at 11.819296 \n", "28 200008_s_at 10.676458 \n", "29 200009_at 12.241562 \n", "... ... ... \n", "22247 AFFX-PheX-3_at 7.587780 \n", "22248 AFFX-PheX-5_at 7.615105 \n", "22249 AFFX-PheX-M_at 7.500879 \n", "22250 AFFX-r2-Bs-dap-3_at 7.415058 \n", "22251 AFFX-r2-Bs-dap-5_at 7.510356 \n", "22252 AFFX-r2-Bs-dap-M_at 7.428785 \n", "22253 AFFX-r2-Bs-lys-3_at 7.541610 \n", "22254 AFFX-r2-Bs-lys-5_at 7.424384 \n", "22255 AFFX-r2-Bs-lys-M_at 7.598653 \n", "22256 AFFX-r2-Bs-phe-3_at 7.588818 \n", "22257 AFFX-r2-Bs-phe-5_at 7.626531 \n", "22258 AFFX-r2-Bs-phe-M_at 7.491488 \n", "22259 AFFX-r2-Bs-thr-3_s_at 7.576096 \n", "22260 AFFX-r2-Bs-thr-5_s_at 7.728724 \n", "22261 AFFX-r2-Bs-thr-M_s_at 7.586706 \n", "22262 AFFX-r2-Ec-bioB-3_at 10.184430 \n", "22263 AFFX-r2-Ec-bioB-5_at 9.998544 \n", "22264 AFFX-r2-Ec-bioB-M_at 9.886580 \n", "22265 AFFX-r2-Ec-bioC-3_at 9.496804 \n", "22266 AFFX-r2-Ec-bioC-5_at 9.791266 \n", "22267 AFFX-r2-Ec-bioD-3_at 12.953441 \n", "22268 AFFX-r2-Ec-bioD-5_at 12.661458 \n", "22269 AFFX-r2-P1-cre-3_at 14.346964 \n", "22270 AFFX-r2-P1-cre-5_at 14.085980 \n", "22271 AFFX-ThrX-3_at 7.642534 \n", "22272 AFFX-ThrX-5_at 7.631033 \n", "22273 AFFX-ThrX-M_at 7.501928 \n", "22274 AFFX-TrpnX-3_at 7.513615 \n", "22275 AFFX-TrpnX-5_at 7.567607 \n", "22276 AFFX-TrpnX-M_at 7.561439 \n", "\n", " GSM1687571_5500024034290101707049.A01.CEL.gz \\\n", "0 8.718047 \n", "1 8.616065 \n", "2 8.043859 \n", "3 8.235331 \n", "4 7.395735 \n", "5 8.375226 \n", "6 7.878632 \n", "7 7.708905 \n", "8 7.697773 \n", "9 7.771812 \n", "10 7.839882 \n", "11 7.972470 \n", "12 7.830963 \n", "13 7.959245 \n", "14 8.007019 \n", "15 8.180304 \n", "16 7.606598 \n", "17 7.844826 \n", "18 8.264494 \n", "19 8.087725 \n", "20 10.554185 \n", "21 10.029987 \n", "22 12.884603 \n", "23 13.866020 \n", "24 11.515864 \n", "25 11.780158 \n", "26 11.970993 \n", "27 11.439260 \n", "28 10.690479 \n", "29 12.123915 \n", "... ... \n", "22247 7.739597 \n", "22248 7.584478 \n", "22249 7.558350 \n", "22250 7.538497 \n", "22251 7.599167 \n", "22252 7.492951 \n", "22253 7.804846 \n", "22254 7.714397 \n", "22255 7.533525 \n", "22256 7.700379 \n", "22257 7.575690 \n", "22258 7.581517 \n", "22259 7.616859 \n", "22260 7.708178 \n", "22261 7.730064 \n", "22262 9.529309 \n", "22263 9.456845 \n", "22264 9.316752 \n", "22265 10.373924 \n", "22266 10.589859 \n", "22267 12.664495 \n", "22268 12.620283 \n", "22269 14.126229 \n", "22270 13.808825 \n", "22271 7.676568 \n", "22272 7.542400 \n", "22273 7.610702 \n", "22274 7.633015 \n", "22275 7.427258 \n", "22276 7.654442 \n", "\n", " GSM1687572_5500024052603032009483.A09.CEL.gz \\\n", "0 9.904457 \n", "1 9.203023 \n", "2 7.603927 \n", "3 8.400500 \n", "4 7.453283 \n", "5 7.975448 \n", "6 7.903908 \n", "7 7.602916 \n", "8 7.633690 \n", "9 7.403523 \n", "10 7.600658 \n", "11 8.424972 \n", "12 7.711877 \n", "13 8.664610 \n", "14 8.531796 \n", "15 8.388173 \n", "16 7.693805 \n", "17 7.771058 \n", "18 8.455341 \n", "19 8.533923 \n", "20 10.010714 \n", "21 9.968916 \n", "22 12.851004 \n", "23 13.939309 \n", "24 12.092778 \n", "25 11.265116 \n", "26 12.057994 \n", "27 11.757965 \n", "28 9.862556 \n", "29 11.613592 \n", "... ... \n", "22247 7.637001 \n", "22248 7.455959 \n", "22249 7.423706 \n", "22250 7.444206 \n", "22251 7.576703 \n", "22252 7.480116 \n", "22253 7.405789 \n", "22254 7.318250 \n", "22255 7.550970 \n", "22256 7.608957 \n", "22257 7.474051 \n", "22258 7.428292 \n", "22259 7.621567 \n", "22260 7.608102 \n", "22261 7.519281 \n", "22262 8.619244 \n", "22263 8.516449 \n", "22264 8.414869 \n", "22265 9.122523 \n", "22266 9.408320 \n", "22267 10.985948 \n", "22268 10.741545 \n", "22269 13.314945 \n", "22270 13.040669 \n", "22271 7.645716 \n", "22272 7.455327 \n", "22273 7.495555 \n", "22274 7.515081 \n", "22275 7.534118 \n", "22276 7.551581 \n", "\n", " GSM1687573_5500024035100021608461.H01.CEL.gz \\\n", "0 9.798405 \n", "1 8.572035 \n", "2 7.714699 \n", "3 8.405479 \n", "4 7.493720 \n", "5 7.762306 \n", "6 7.741367 \n", "7 7.705086 \n", "8 7.601535 \n", "9 7.667112 \n", "10 7.751388 \n", "11 8.281678 \n", "12 7.809028 \n", "13 7.890980 \n", "14 8.034021 \n", "15 8.260304 \n", "16 7.581838 \n", "17 7.596594 \n", "18 8.109603 \n", "19 8.077407 \n", "20 10.351770 \n", "21 10.557932 \n", "22 12.440221 \n", "23 13.421075 \n", "24 11.388483 \n", "25 10.932197 \n", "26 12.046755 \n", "27 11.494313 \n", "28 8.386338 \n", "29 11.436513 \n", "... ... \n", "22247 7.572844 \n", "22248 7.645467 \n", "22249 7.425247 \n", "22250 7.537508 \n", "22251 7.430549 \n", "22252 7.301982 \n", "22253 7.458813 \n", "22254 7.494257 \n", "22255 7.556028 \n", "22256 7.617782 \n", "22257 7.700783 \n", "22258 7.495536 \n", "22259 7.633570 \n", "22260 7.591521 \n", "22261 7.657503 \n", "22262 10.147914 \n", "22263 9.808780 \n", "22264 9.810127 \n", "22265 9.469340 \n", "22266 9.824942 \n", "22267 12.976145 \n", "22268 12.682194 \n", "22269 14.450152 \n", "22270 14.181299 \n", "22271 7.607399 \n", "22272 7.540580 \n", "22273 7.614399 \n", "22274 7.546858 \n", "22275 7.453376 \n", "22276 7.494555 \n", "\n", " GSM1687574_5500024032848101507998.D02.CEL.gz \\\n", "0 10.932997 \n", "1 8.506107 \n", "2 7.742822 \n", "3 9.297814 \n", "4 7.474639 \n", "5 7.763070 \n", "6 8.015132 \n", "7 7.712262 \n", "8 7.726134 \n", "9 7.520539 \n", "10 8.271726 \n", "11 8.992934 \n", "12 7.815555 \n", "13 8.003252 \n", "14 7.950786 \n", "15 8.831569 \n", "16 7.708548 \n", "17 7.590436 \n", "18 8.178008 \n", "19 8.486724 \n", "20 10.582500 \n", "21 11.251398 \n", "22 12.163264 \n", "23 13.495911 \n", "24 11.110027 \n", "25 11.208736 \n", "26 12.081040 \n", "27 11.563859 \n", "28 8.236503 \n", "29 12.077685 \n", "... ... \n", "22247 7.566232 \n", "22248 7.560949 \n", "22249 7.467854 \n", "22250 7.526306 \n", "22251 7.595861 \n", "22252 7.369849 \n", "22253 7.653536 \n", "22254 7.518036 \n", "22255 7.639852 \n", "22256 7.668815 \n", "22257 7.609364 \n", "22258 7.631848 \n", "22259 7.607185 \n", "22260 7.683940 \n", "22261 7.557744 \n", "22262 8.838657 \n", "22263 8.703090 \n", "22264 8.594883 \n", "22265 9.079933 \n", "22266 9.469546 \n", "22267 11.643625 \n", "22268 11.454273 \n", "22269 13.692042 \n", "22270 13.383539 \n", "22271 7.644112 \n", "22272 7.566635 \n", "22273 7.472724 \n", "22274 7.547228 \n", "22275 7.448552 \n", "22276 7.597676 \n", "\n", " GSM1687575_5500024030401071707289.D04.CEL.gz \\\n", "0 8.973151 \n", "1 8.229169 \n", "2 7.551629 \n", "3 8.178474 \n", "4 7.436698 \n", "5 7.981557 \n", "6 7.772626 \n", "7 7.723882 \n", "8 7.614437 \n", "9 7.713980 \n", "10 7.653040 \n", "11 8.402891 \n", "12 7.735942 \n", "13 8.358760 \n", "14 8.030606 \n", "15 8.349998 \n", "16 7.708384 \n", "17 7.767117 \n", "18 8.221881 \n", "19 8.214426 \n", "20 10.918780 \n", "21 10.456606 \n", "22 12.102061 \n", "23 13.614290 \n", "24 11.023252 \n", "25 11.723449 \n", "26 12.305364 \n", "27 11.501570 \n", "28 9.655560 \n", "29 11.656556 \n", "... ... \n", "22247 7.626215 \n", "22248 7.619625 \n", "22249 7.400606 \n", "22250 7.475735 \n", "22251 7.407454 \n", "22252 7.324410 \n", "22253 7.562071 \n", "22254 7.493577 \n", "22255 7.378454 \n", "22256 7.544640 \n", "22257 7.330687 \n", "22258 7.480835 \n", "22259 7.675595 \n", "22260 7.517711 \n", "22261 7.527900 \n", "22262 8.555512 \n", "22263 8.361782 \n", "22264 8.288756 \n", "22265 8.593055 \n", "22266 8.960363 \n", "22267 11.059735 \n", "22268 10.980560 \n", "22269 13.304899 \n", "22270 12.818351 \n", "22271 7.667333 \n", "22272 7.543538 \n", "22273 7.444107 \n", "22274 7.525382 \n", "22275 7.526502 \n", "22276 7.508101 \n", "\n", " GSM1687576_5500024030401071707289.C10.CEL.gz \\\n", "0 10.857714 \n", "1 8.695021 \n", "2 7.504556 \n", "3 8.067798 \n", "4 7.388679 \n", "5 8.389011 \n", "6 7.807954 \n", "7 7.739506 \n", "8 8.776613 \n", "9 7.536457 \n", "10 7.639229 \n", "11 8.278146 \n", "12 7.664429 \n", "13 9.062693 \n", "14 7.891479 \n", "15 8.593277 \n", "16 7.597449 \n", "17 7.812929 \n", "18 8.216369 \n", "19 8.467074 \n", "20 10.779839 \n", "21 11.179078 \n", "22 11.971443 \n", "23 13.357725 \n", "24 12.139457 \n", "25 11.019480 \n", "26 11.943838 \n", "27 12.002326 \n", "28 9.618241 \n", "29 11.656313 \n", "... ... \n", "22247 7.597273 \n", "22248 7.598112 \n", "22249 7.364192 \n", "22250 7.457193 \n", "22251 7.450202 \n", "22252 7.369699 \n", "22253 7.451183 \n", "22254 7.360679 \n", "22255 7.558760 \n", "22256 7.420475 \n", "22257 7.302846 \n", "22258 7.453392 \n", "22259 7.595108 \n", "22260 7.579549 \n", "22261 7.502069 \n", "22262 8.452804 \n", "22263 8.357288 \n", "22264 8.271467 \n", "22265 8.660188 \n", "22266 9.020998 \n", "22267 11.240215 \n", "22268 10.843183 \n", "22269 13.486599 \n", "22270 12.867753 \n", "22271 7.561026 \n", "22272 7.455010 \n", "22273 7.438042 \n", "22274 7.396986 \n", "22275 7.432864 \n", "22276 7.503649 \n", "\n", " GSM1687577_5500024052861011409506.D05.CEL.gz \\\n", "0 10.975397 \n", "1 8.915824 \n", "2 7.720968 \n", "3 8.176426 \n", "4 7.508520 \n", "5 8.376507 \n", "6 7.809478 \n", "7 7.641239 \n", "8 8.449633 \n", "9 7.460594 \n", "10 7.651966 \n", "11 8.351512 \n", "12 7.825576 \n", "13 9.483724 \n", "14 8.148135 \n", "15 8.616233 \n", "16 7.693610 \n", "17 7.795710 \n", "18 8.128763 \n", "19 8.454226 \n", "20 11.012558 \n", "21 11.440406 \n", "22 11.775090 \n", "23 13.273866 \n", "24 11.722688 \n", "25 10.959582 \n", "26 11.873483 \n", "27 11.871924 \n", "28 8.874053 \n", "29 11.804873 \n", "... ... \n", "22247 7.609240 \n", "22248 7.582925 \n", "22249 7.400171 \n", "22250 7.489438 \n", "22251 7.493626 \n", "22252 7.345805 \n", "22253 7.573437 \n", "22254 7.566592 \n", "22255 7.513993 \n", "22256 7.465998 \n", "22257 7.577040 \n", "22258 7.509254 \n", "22259 7.778257 \n", "22260 7.641952 \n", "22261 7.569939 \n", "22262 8.597299 \n", "22263 8.425705 \n", "22264 8.283263 \n", "22265 8.902277 \n", "22266 9.076730 \n", "22267 10.678759 \n", "22268 10.394221 \n", "22269 12.848590 \n", "22270 12.499426 \n", "22271 7.579219 \n", "22272 7.436875 \n", "22273 7.424471 \n", "22274 7.511896 \n", "22275 7.508867 \n", "22276 7.559667 \n", "\n", " GSM1687578_5500024032848101507998.E02.CEL.gz \\\n", "0 8.635765 \n", "1 8.233599 \n", "2 7.730913 \n", "3 11.259210 \n", "4 7.432427 \n", "5 7.903314 \n", "6 7.864759 \n", "7 7.621617 \n", "8 7.636824 \n", "9 7.545543 \n", "10 7.630050 \n", "11 8.908842 \n", "12 7.818208 \n", "13 8.192223 \n", "14 8.369209 \n", "15 9.019362 \n", "16 7.620039 \n", "17 7.775275 \n", "18 8.127175 \n", "19 8.380016 \n", "20 10.666718 \n", "21 11.391664 \n", "22 11.991532 \n", "23 13.261886 \n", "24 10.971977 \n", "25 11.198749 \n", "26 11.524197 \n", "27 11.536442 \n", "28 7.748188 \n", "29 11.717407 \n", "... ... \n", "22247 7.693653 \n", "22248 7.627934 \n", "22249 7.531035 \n", "22250 7.510553 \n", "22251 7.640243 \n", "22252 7.429821 \n", "22253 7.857587 \n", "22254 7.668429 \n", "22255 7.536908 \n", "22256 7.587814 \n", "22257 7.630244 \n", "22258 7.501456 \n", "22259 7.824489 \n", "22260 7.686149 \n", "22261 7.534255 \n", "22262 8.768882 \n", "22263 8.778259 \n", "22264 8.720208 \n", "22265 9.101185 \n", "22266 9.407147 \n", "22267 11.696586 \n", "22268 11.313661 \n", "22269 13.609245 \n", "22270 13.264427 \n", "22271 7.733833 \n", "22272 7.456654 \n", "22273 7.599155 \n", "22274 7.630086 \n", "22275 7.492580 \n", "22276 7.629655 \n", "\n", " ... \\\n", "0 ... \n", "1 ... \n", "2 ... \n", "3 ... \n", "4 ... \n", "5 ... \n", "6 ... \n", "7 ... \n", "8 ... \n", "9 ... \n", "10 ... \n", "11 ... \n", "12 ... \n", "13 ... \n", "14 ... \n", "15 ... \n", "16 ... \n", "17 ... \n", "18 ... \n", "19 ... \n", "20 ... \n", "21 ... \n", "22 ... \n", "23 ... \n", "24 ... \n", "25 ... \n", "26 ... \n", "27 ... \n", "28 ... \n", "29 ... \n", "... ... \n", "22247 ... \n", "22248 ... \n", "22249 ... \n", "22250 ... \n", "22251 ... \n", "22252 ... \n", "22253 ... \n", "22254 ... \n", "22255 ... \n", "22256 ... \n", "22257 ... \n", "22258 ... \n", "22259 ... \n", "22260 ... \n", "22261 ... \n", "22262 ... \n", "22263 ... \n", "22264 ... \n", "22265 ... \n", "22266 ... \n", "22267 ... \n", "22268 ... \n", "22269 ... \n", "22270 ... \n", "22271 ... \n", "22272 ... \n", "22273 ... \n", "22274 ... \n", "22275 ... \n", "22276 ... \n", "\n", " GSM1688358_5500024032848101507998.G01.CEL.gz \\\n", "0 9.429262 \n", "1 8.776563 \n", "2 7.729079 \n", "3 11.123192 \n", "4 7.445189 \n", "5 8.412039 \n", "6 8.065336 \n", "7 7.761721 \n", "8 7.801481 \n", "9 7.672223 \n", "10 7.703543 \n", "11 8.344273 \n", "12 7.844457 \n", "13 10.170631 \n", "14 7.966837 \n", "15 8.835704 \n", "16 7.656180 \n", "17 7.741154 \n", "18 8.079943 \n", "19 8.391886 \n", "20 10.323892 \n", "21 11.327322 \n", "22 12.225448 \n", "23 13.665884 \n", "24 10.811857 \n", "25 10.613178 \n", "26 11.690109 \n", "27 11.674007 \n", "28 7.779491 \n", "29 11.635394 \n", "... ... \n", "22247 7.636286 \n", "22248 7.525731 \n", "22249 7.510141 \n", "22250 7.641837 \n", "22251 7.489692 \n", "22252 7.307410 \n", "22253 7.581681 \n", "22254 7.515631 \n", "22255 7.759471 \n", "22256 7.579117 \n", "22257 7.705097 \n", "22258 7.597136 \n", "22259 7.665649 \n", "22260 7.659568 \n", "22261 7.508732 \n", "22262 9.190201 \n", "22263 9.107011 \n", "22264 8.906124 \n", "22265 9.508558 \n", "22266 9.819895 \n", "22267 12.190513 \n", "22268 11.888910 \n", "22269 13.908696 \n", "22270 13.662149 \n", "22271 7.692174 \n", "22272 7.611665 \n", "22273 7.550857 \n", "22274 7.598619 \n", "22275 7.532869 \n", "22276 7.596008 \n", "\n", " GSM1688359_5500024031722092907496.C11.CEL.gz \\\n", "0 9.661919 \n", "1 9.155915 \n", "2 11.647400 \n", "3 8.063912 \n", "4 9.069289 \n", "5 7.796222 \n", "6 7.948937 \n", "7 7.783990 \n", "8 7.580300 \n", "9 7.619240 \n", "10 7.879641 \n", "11 8.172797 \n", "12 7.801330 \n", "13 9.618505 \n", "14 8.077760 \n", "15 8.007914 \n", "16 7.591175 \n", "17 7.675076 \n", "18 8.025528 \n", "19 8.459854 \n", "20 11.362956 \n", "21 9.867762 \n", "22 12.452044 \n", "23 13.199544 \n", "24 11.674871 \n", "25 11.048126 \n", "26 11.795945 \n", "27 11.710358 \n", "28 8.238553 \n", "29 11.511827 \n", "... ... \n", "22247 7.581094 \n", "22248 7.579176 \n", "22249 7.385669 \n", "22250 7.473934 \n", "22251 7.520011 \n", "22252 7.394087 \n", "22253 7.649899 \n", "22254 7.450158 \n", "22255 7.566438 \n", "22256 7.570955 \n", "22257 7.578413 \n", "22258 7.554519 \n", "22259 7.608371 \n", "22260 7.594628 \n", "22261 7.479604 \n", "22262 8.810104 \n", "22263 8.799799 \n", "22264 8.707507 \n", "22265 9.213596 \n", "22266 9.604219 \n", "22267 12.099303 \n", "22268 12.019156 \n", "22269 13.938217 \n", "22270 13.547378 \n", "22271 7.644974 \n", "22272 7.523678 \n", "22273 7.478097 \n", "22274 7.590259 \n", "22275 7.484638 \n", "22276 7.595698 \n", "\n", " GSM1688360_5500024052861011409506.E11.CEL.gz \\\n", "0 9.589560 \n", "1 9.336024 \n", "2 11.342093 \n", "3 8.138332 \n", "4 8.621514 \n", "5 7.722225 \n", "6 8.050267 \n", "7 7.627924 \n", "8 7.648297 \n", "9 7.575923 \n", "10 7.665347 \n", "11 7.982788 \n", "12 7.819480 \n", "13 9.566406 \n", "14 8.133854 \n", "15 8.141308 \n", "16 7.567320 \n", "17 7.812365 \n", "18 8.051105 \n", "19 8.388810 \n", "20 11.045315 \n", "21 9.967675 \n", "22 12.234126 \n", "23 13.201468 \n", "24 11.621797 \n", "25 10.848619 \n", "26 11.744640 \n", "27 11.783797 \n", "28 8.077361 \n", "29 11.450963 \n", "... ... \n", "22247 7.677399 \n", "22248 7.570382 \n", "22249 7.557117 \n", "22250 7.497987 \n", "22251 7.573883 \n", "22252 7.483675 \n", "22253 7.749900 \n", "22254 7.508255 \n", "22255 7.647331 \n", "22256 7.700903 \n", "22257 7.756379 \n", "22258 7.478137 \n", "22259 7.698390 \n", "22260 7.740366 \n", "22261 7.536840 \n", "22262 8.790299 \n", "22263 8.807281 \n", "22264 8.462430 \n", "22265 9.361792 \n", "22266 9.799778 \n", "22267 11.631617 \n", "22268 11.254002 \n", "22269 13.516265 \n", "22270 13.314796 \n", "22271 7.750016 \n", "22272 7.454592 \n", "22273 7.575058 \n", "22274 7.718625 \n", "22275 7.444738 \n", "22276 7.743632 \n", "\n", " GSM1688361_5500024035100021608461.E01.CEL.gz \\\n", "0 10.112593 \n", "1 8.824805 \n", "2 7.850625 \n", "3 8.213297 \n", "4 7.446887 \n", "5 7.956599 \n", "6 7.966506 \n", "7 7.675847 \n", "8 7.794772 \n", "9 7.509735 \n", "10 8.257526 \n", "11 7.879871 \n", "12 7.692542 \n", "13 8.119021 \n", "14 8.968220 \n", "15 8.310294 \n", "16 7.698346 \n", "17 7.961307 \n", "18 8.290394 \n", "19 8.171772 \n", "20 10.389930 \n", "21 11.068072 \n", "22 12.269134 \n", "23 13.438959 \n", "24 12.281479 \n", "25 10.751546 \n", "26 12.418210 \n", "27 12.263241 \n", "28 9.726048 \n", "29 11.001656 \n", "... ... \n", "22247 7.564076 \n", "22248 7.418292 \n", "22249 7.408859 \n", "22250 7.439749 \n", "22251 7.419995 \n", "22252 7.442209 \n", "22253 7.500011 \n", "22254 7.357867 \n", "22255 7.538462 \n", "22256 7.527279 \n", "22257 7.508484 \n", "22258 7.444631 \n", "22259 7.623490 \n", "22260 7.635615 \n", "22261 7.606430 \n", "22262 9.860041 \n", "22263 9.658986 \n", "22264 9.729706 \n", "22265 9.247763 \n", "22266 9.653474 \n", "22267 13.011969 \n", "22268 12.499611 \n", "22269 14.690593 \n", "22270 14.407109 \n", "22271 7.645419 \n", "22272 7.464096 \n", "22273 7.438450 \n", "22274 7.468810 \n", "22275 7.487153 \n", "22276 7.567720 \n", "\n", " GSM1688362_5500024032848101507998.H01.CEL.gz \\\n", "0 8.408232 \n", "1 8.772813 \n", "2 8.028290 \n", "3 8.035581 \n", "4 7.512241 \n", "5 8.201499 \n", "6 8.097026 \n", "7 7.875980 \n", "8 8.369012 \n", "9 7.758326 \n", "10 7.835643 \n", "11 8.472595 \n", "12 7.922304 \n", "13 7.823470 \n", "14 7.858555 \n", "15 8.290844 \n", "16 7.841765 \n", "17 7.810738 \n", "18 7.986633 \n", "19 8.105932 \n", "20 10.730466 \n", "21 10.325408 \n", "22 12.278390 \n", "23 13.736109 \n", "24 11.026658 \n", "25 10.975890 \n", "26 11.275798 \n", "27 12.122391 \n", "28 8.215377 \n", "29 11.963714 \n", "... ... \n", "22247 7.684905 \n", "22248 7.732098 \n", "22249 7.686879 \n", "22250 7.762372 \n", "22251 7.758236 \n", "22252 7.438441 \n", "22253 7.735787 \n", "22254 7.726456 \n", "22255 8.024200 \n", "22256 7.805261 \n", "22257 7.899927 \n", "22258 7.700423 \n", "22259 7.792992 \n", "22260 7.985159 \n", "22261 7.901393 \n", "22262 9.168162 \n", "22263 9.130400 \n", "22264 8.889075 \n", "22265 9.475856 \n", "22266 9.793151 \n", "22267 12.132080 \n", "22268 11.828679 \n", "22269 13.816831 \n", "22270 13.565362 \n", "22271 7.866301 \n", "22272 7.792424 \n", "22273 7.684441 \n", "22274 7.863286 \n", "22275 7.535606 \n", "22276 8.060336 \n", "\n", " GSM1688363_5500024052861011409506.E09.CEL.gz \\\n", "0 8.722528 \n", "1 8.802262 \n", "2 8.037324 \n", "3 8.203285 \n", "4 7.456834 \n", "5 8.151006 \n", "6 7.900293 \n", "7 7.544660 \n", "8 7.921049 \n", "9 7.674408 \n", "10 7.662081 \n", "11 8.059953 \n", "12 7.911433 \n", "13 8.055860 \n", "14 8.259718 \n", "15 8.510494 \n", "16 7.630390 \n", "17 7.865056 \n", "18 8.172114 \n", "19 8.126414 \n", "20 10.670736 \n", "21 10.568185 \n", "22 11.997784 \n", "23 13.757036 \n", "24 11.344845 \n", "25 10.848473 \n", "26 11.125740 \n", "27 12.432593 \n", "28 8.102943 \n", "29 11.745106 \n", "... ... \n", "22247 7.730319 \n", "22248 7.588400 \n", "22249 7.642765 \n", "22250 7.470218 \n", "22251 7.611355 \n", "22252 7.523250 \n", "22253 7.835627 \n", "22254 7.789662 \n", "22255 7.592782 \n", "22256 7.738460 \n", "22257 7.602541 \n", "22258 7.555826 \n", "22259 7.790727 \n", "22260 7.910271 \n", "22261 7.671241 \n", "22262 9.268455 \n", "22263 9.104295 \n", "22264 9.032003 \n", "22265 9.678426 \n", "22266 10.135800 \n", "22267 11.715813 \n", "22268 11.341177 \n", "22269 13.493863 \n", "22270 13.300146 \n", "22271 7.810828 \n", "22272 7.527578 \n", "22273 7.549105 \n", "22274 7.591056 \n", "22275 7.609732 \n", "22276 7.605666 \n", "\n", " GSM1688364_5500024031722092907496.B11.CEL.gz \\\n", "0 10.710177 \n", "1 8.678147 \n", "2 7.655276 \n", "3 8.021791 \n", "4 7.453321 \n", "5 8.215746 \n", "6 7.847609 \n", "7 7.588426 \n", "8 7.615833 \n", "9 7.513123 \n", "10 7.729477 \n", "11 9.227652 \n", "12 7.801025 \n", "13 8.487177 \n", "14 8.591962 \n", "15 8.542961 \n", "16 7.571643 \n", "17 7.612419 \n", "18 8.114658 \n", "19 8.459284 \n", "20 10.434048 \n", "21 11.879458 \n", "22 12.361425 \n", "23 13.518426 \n", "24 11.860932 \n", "25 10.825055 \n", "26 11.738490 \n", "27 11.948162 \n", "28 8.383057 \n", "29 11.711815 \n", "... ... \n", "22247 7.591921 \n", "22248 7.546730 \n", "22249 7.437861 \n", "22250 7.395558 \n", "22251 7.547459 \n", "22252 7.365466 \n", "22253 7.567267 \n", "22254 7.445381 \n", "22255 7.435744 \n", "22256 7.566220 \n", "22257 7.482776 \n", "22258 7.438705 \n", "22259 7.587139 \n", "22260 7.584600 \n", "22261 7.452707 \n", "22262 8.586246 \n", "22263 8.460702 \n", "22264 8.428403 \n", "22265 8.899431 \n", "22266 9.191924 \n", "22267 11.564594 \n", "22268 11.334232 \n", "22269 13.490274 \n", "22270 12.954981 \n", "22271 7.567872 \n", "22272 7.494294 \n", "22273 7.424649 \n", "22274 7.523585 \n", "22275 7.415789 \n", "22276 7.532778 \n", "\n", " GSM1688365_5500024052861011409506.D09.CEL.gz \\\n", "0 9.657667 \n", "1 8.625144 \n", "2 7.888281 \n", "3 8.373332 \n", "4 7.509484 \n", "5 9.143522 \n", "6 8.001678 \n", "7 7.574985 \n", "8 7.820004 \n", "9 7.458537 \n", "10 7.615180 \n", "11 8.028662 \n", "12 7.791079 \n", "13 9.481194 \n", "14 9.294565 \n", "15 8.556058 \n", "16 7.708900 \n", "17 7.775011 \n", "18 8.182000 \n", "19 8.558124 \n", "20 10.010854 \n", "21 11.553767 \n", "22 11.893040 \n", "23 13.648311 \n", "24 11.245582 \n", "25 10.997519 \n", "26 12.302239 \n", "27 12.127104 \n", "28 7.727232 \n", "29 10.430322 \n", "... ... \n", "22247 7.646766 \n", "22248 7.637900 \n", "22249 7.544820 \n", "22250 7.626874 \n", "22251 7.573749 \n", "22252 7.517269 \n", "22253 7.681973 \n", "22254 7.663948 \n", "22255 7.452174 \n", "22256 7.714249 \n", "22257 7.755496 \n", "22258 7.460913 \n", "22259 7.693699 \n", "22260 7.754253 \n", "22261 7.548825 \n", "22262 9.029980 \n", "22263 8.724103 \n", "22264 8.866616 \n", "22265 9.424195 \n", "22266 9.603816 \n", "22267 11.437572 \n", "22268 11.093700 \n", "22269 13.326792 \n", "22270 13.003925 \n", "22271 7.703038 \n", "22272 7.534673 \n", "22273 7.584892 \n", "22274 7.703311 \n", "22275 7.611814 \n", "22276 7.542190 \n", "\n", " GSM1688366_5500024032848101507000.H03.CEL.gz \\\n", "0 9.176614 \n", "1 8.695912 \n", "2 7.691653 \n", "3 8.081797 \n", "4 7.315354 \n", "5 8.090617 \n", "6 8.084945 \n", "7 7.583279 \n", "8 7.807366 \n", "9 7.479716 \n", "10 7.752624 \n", "11 8.095783 \n", "12 7.718452 \n", "13 8.711049 \n", "14 8.483516 \n", "15 8.174816 \n", "16 7.706586 \n", "17 7.651543 \n", "18 8.141716 \n", "19 8.431172 \n", "20 11.172518 \n", "21 11.167581 \n", "22 12.207024 \n", "23 13.487201 \n", "24 11.229407 \n", "25 10.427742 \n", "26 12.460312 \n", "27 12.066296 \n", "28 7.818090 \n", "29 10.139406 \n", "... ... \n", "22247 7.617262 \n", "22248 7.641483 \n", "22249 7.509462 \n", "22250 7.440026 \n", "22251 7.517581 \n", "22252 7.419273 \n", "22253 7.696307 \n", "22254 7.512095 \n", "22255 7.626060 \n", "22256 7.558661 \n", "22257 7.608196 \n", "22258 7.608836 \n", "22259 7.539833 \n", "22260 7.666207 \n", "22261 7.389860 \n", "22262 8.885536 \n", "22263 8.768013 \n", "22264 8.680978 \n", "22265 9.112191 \n", "22266 9.369659 \n", "22267 11.593778 \n", "22268 11.469527 \n", "22269 13.702848 \n", "22270 13.351522 \n", "22271 7.648424 \n", "22272 7.519013 \n", "22273 7.525257 \n", "22274 7.504957 \n", "22275 7.523121 \n", "22276 7.611075 \n", "\n", " GSM1688367_5500024035100021608461.F01.CEL.gz \n", "0 10.897960 \n", "1 8.629976 \n", "2 7.624577 \n", "3 8.261245 \n", "4 7.513548 \n", "5 7.830512 \n", "6 7.888374 \n", "7 7.611891 \n", "8 7.596185 \n", "9 7.611531 \n", "10 8.094068 \n", "11 8.198551 \n", "12 7.767680 \n", "13 8.056754 \n", "14 8.049743 \n", "15 8.341683 \n", "16 7.618176 \n", "17 7.819192 \n", "18 8.375676 \n", "19 8.444880 \n", "20 9.934250 \n", "21 11.182587 \n", "22 12.139081 \n", "23 13.645801 \n", "24 12.435254 \n", "25 11.391999 \n", "26 11.976653 \n", "27 12.259765 \n", "28 10.854761 \n", "29 12.053892 \n", "... ... \n", "22247 7.655340 \n", "22248 7.602141 \n", "22249 7.375522 \n", "22250 7.339268 \n", "22251 7.443672 \n", "22252 7.410981 \n", "22253 7.495174 \n", "22254 7.388519 \n", "22255 7.519610 \n", "22256 7.564291 \n", "22257 7.514778 \n", "22258 7.501917 \n", "22259 7.562464 \n", "22260 7.649350 \n", "22261 7.605472 \n", "22262 10.091491 \n", "22263 9.928022 \n", "22264 10.030972 \n", "22265 9.572530 \n", "22266 10.024467 \n", "22267 13.032810 \n", "22268 12.721535 \n", "22269 14.523304 \n", "22270 14.308021 \n", "22271 7.679152 \n", "22272 7.507123 \n", "22273 7.490484 \n", "22274 7.483636 \n", "22275 7.502138 \n", "22276 7.470764 \n", "\n", "[22277 rows x 799 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sample_raw_data_df" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(22277, 799)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sample_raw_data_df.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.4" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
crendl/ilearnpython
jupyter/Untitled.ipynb
2
88400
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab notebook\n", "%matplotlib notebook" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "application/javascript": [ "/* Put everything inside the global mpl namespace */\n", "window.mpl = {};\n", "\n", "mpl.get_websocket_type = function() {\n", " if (typeof(WebSocket) !== 'undefined') {\n", " return WebSocket;\n", " } else if (typeof(MozWebSocket) !== 'undefined') {\n", " return MozWebSocket;\n", " } else {\n", " alert('Your browser does not have WebSocket support.' +\n", " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", " 'Firefox 4 and 5 are also supported but you ' +\n", " 'have to enable WebSockets in about:config.');\n", " };\n", "}\n", "\n", "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", " this.id = figure_id;\n", "\n", " this.ws = websocket;\n", "\n", " this.supports_binary = (this.ws.binaryType != undefined);\n", "\n", " if (!this.supports_binary) {\n", " var warnings = document.getElementById(\"mpl-warnings\");\n", " if (warnings) {\n", " warnings.style.display = 'block';\n", " warnings.textContent = (\n", " \"This browser does not support binary websocket messages. \" +\n", " \"Performance may be slow.\");\n", " }\n", " }\n", "\n", " this.imageObj = new Image();\n", "\n", " this.context = undefined;\n", " this.message = undefined;\n", " this.canvas = undefined;\n", " this.rubberband_canvas = undefined;\n", " this.rubberband_context = undefined;\n", " this.format_dropdown = undefined;\n", "\n", " this.image_mode = 'full';\n", "\n", " this.root = $('<div/>');\n", " this._root_extra_style(this.root)\n", " this.root.attr('style', 'display: inline-block');\n", "\n", " $(parent_element).append(this.root);\n", "\n", " this._init_header(this);\n", " this._init_canvas(this);\n", " this._init_toolbar(this);\n", "\n", " var fig = this;\n", "\n", " this.waiting = false;\n", "\n", " this.ws.onopen = function () {\n", " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", " fig.send_message(\"send_image_mode\", {});\n", " fig.send_message(\"refresh\", {});\n", " }\n", "\n", " this.imageObj.onload = function() {\n", " if (fig.image_mode == 'full') {\n", " // Full images could contain transparency (where diff images\n", " // almost always do), so we need to clear the canvas so that\n", " // there is no ghosting.\n", " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", " }\n", " fig.context.drawImage(fig.imageObj, 0, 0);\n", " };\n", "\n", " this.imageObj.onunload = function() {\n", " this.ws.close();\n", " }\n", "\n", " this.ws.onmessage = this._make_on_message_function(this);\n", "\n", " this.ondownload = ondownload;\n", "}\n", "\n", "mpl.figure.prototype._init_header = function() {\n", " var titlebar = $(\n", " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", " 'ui-helper-clearfix\"/>');\n", " var titletext = $(\n", " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", " 'text-align: center; padding: 3px;\"/>');\n", " titlebar.append(titletext)\n", " this.root.append(titlebar);\n", " this.header = titletext[0];\n", "}\n", "\n", "\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "\n", "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", "\n", "}\n", "\n", "mpl.figure.prototype._init_canvas = function() {\n", " var fig = this;\n", "\n", " var canvas_div = $('<div/>');\n", "\n", " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", "\n", " function canvas_keyboard_event(event) {\n", " return fig.key_event(event, event['data']);\n", " }\n", "\n", " canvas_div.keydown('key_press', canvas_keyboard_event);\n", " canvas_div.keyup('key_release', canvas_keyboard_event);\n", " this.canvas_div = canvas_div\n", " this._canvas_extra_style(canvas_div)\n", " this.root.append(canvas_div);\n", "\n", " var canvas = $('<canvas/>');\n", " canvas.addClass('mpl-canvas');\n", " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", "\n", " this.canvas = canvas[0];\n", " this.context = canvas[0].getContext(\"2d\");\n", "\n", " var rubberband = $('<canvas/>');\n", " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", "\n", " var pass_mouse_events = true;\n", "\n", " canvas_div.resizable({\n", " start: function(event, ui) {\n", " pass_mouse_events = false;\n", " },\n", " resize: function(event, ui) {\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " stop: function(event, ui) {\n", " pass_mouse_events = true;\n", " fig.request_resize(ui.size.width, ui.size.height);\n", " },\n", " });\n", "\n", " function mouse_event_fn(event) {\n", " if (pass_mouse_events)\n", " return fig.mouse_event(event, event['data']);\n", " }\n", "\n", " rubberband.mousedown('button_press', mouse_event_fn);\n", " rubberband.mouseup('button_release', mouse_event_fn);\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband.mousemove('motion_notify', mouse_event_fn);\n", "\n", " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", "\n", " canvas_div.on(\"wheel\", function (event) {\n", " event = event.originalEvent;\n", " event['data'] = 'scroll'\n", " if (event.deltaY < 0) {\n", " event.step = 1;\n", " } else {\n", " event.step = -1;\n", " }\n", " mouse_event_fn(event);\n", " });\n", "\n", " canvas_div.append(canvas);\n", " canvas_div.append(rubberband);\n", "\n", " this.rubberband = rubberband;\n", " this.rubberband_canvas = rubberband[0];\n", " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", " this.rubberband_context.strokeStyle = \"#000000\";\n", "\n", " this._resize_canvas = function(width, height) {\n", " // Keep the size of the canvas, canvas container, and rubber band\n", " // canvas in synch.\n", " canvas_div.css('width', width)\n", " canvas_div.css('height', height)\n", "\n", " canvas.attr('width', width);\n", " canvas.attr('height', height);\n", "\n", " rubberband.attr('width', width);\n", " rubberband.attr('height', height);\n", " }\n", "\n", " // Set the figure to an initial 600x600px, this will subsequently be updated\n", " // upon first draw.\n", " this._resize_canvas(600, 600);\n", "\n", " // Disable right mouse context menu.\n", " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", " return false;\n", " });\n", "\n", " function set_focus () {\n", " canvas.focus();\n", " canvas_div.focus();\n", " }\n", "\n", " window.setTimeout(set_focus, 100);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items) {\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) {\n", " // put a spacer in here.\n", " continue;\n", " }\n", " var button = $('<button/>');\n", " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", " 'ui-button-icon-only');\n", " button.attr('role', 'button');\n", " button.attr('aria-disabled', 'false');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", "\n", " var icon_img = $('<span/>');\n", " icon_img.addClass('ui-button-icon-primary ui-icon');\n", " icon_img.addClass(image);\n", " icon_img.addClass('ui-corner-all');\n", "\n", " var tooltip_span = $('<span/>');\n", " tooltip_span.addClass('ui-button-text');\n", " tooltip_span.html(tooltip);\n", "\n", " button.append(icon_img);\n", " button.append(tooltip_span);\n", "\n", " nav_element.append(button);\n", " }\n", "\n", " var fmt_picker_span = $('<span/>');\n", "\n", " var fmt_picker = $('<select/>');\n", " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", " fmt_picker_span.append(fmt_picker);\n", " nav_element.append(fmt_picker_span);\n", " this.format_dropdown = fmt_picker[0];\n", "\n", " for (var ind in mpl.extensions) {\n", " var fmt = mpl.extensions[ind];\n", " var option = $(\n", " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", " fmt_picker.append(option)\n", " }\n", "\n", " // Add hover states to the ui-buttons\n", " $( \".ui-button\" ).hover(\n", " function() { $(this).addClass(\"ui-state-hover\");},\n", " function() { $(this).removeClass(\"ui-state-hover\");}\n", " );\n", "\n", " var status_bar = $('<span class=\"mpl-message\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "}\n", "\n", "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", " // which will in turn request a refresh of the image.\n", " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", "}\n", "\n", "mpl.figure.prototype.send_message = function(type, properties) {\n", " properties['type'] = type;\n", " properties['figure_id'] = this.id;\n", " this.ws.send(JSON.stringify(properties));\n", "}\n", "\n", "mpl.figure.prototype.send_draw_message = function() {\n", " if (!this.waiting) {\n", " this.waiting = true;\n", " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", " }\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " var format_dropdown = fig.format_dropdown;\n", " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", " fig.ondownload(fig, format);\n", "}\n", "\n", "\n", "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", " var size = msg['size'];\n", " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", " fig._resize_canvas(size[0], size[1]);\n", " fig.send_message(\"refresh\", {});\n", " };\n", "}\n", "\n", "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", " var x0 = msg['x0'];\n", " var y0 = fig.canvas.height - msg['y0'];\n", " var x1 = msg['x1'];\n", " var y1 = fig.canvas.height - msg['y1'];\n", " x0 = Math.floor(x0) + 0.5;\n", " y0 = Math.floor(y0) + 0.5;\n", " x1 = Math.floor(x1) + 0.5;\n", " y1 = Math.floor(y1) + 0.5;\n", " var min_x = Math.min(x0, x1);\n", " var min_y = Math.min(y0, y1);\n", " var width = Math.abs(x1 - x0);\n", " var height = Math.abs(y1 - y0);\n", "\n", " fig.rubberband_context.clearRect(\n", " 0, 0, fig.canvas.width, fig.canvas.height);\n", "\n", " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", "}\n", "\n", "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", " // Updates the figure title.\n", " fig.header.textContent = msg['label'];\n", "}\n", "\n", "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", " var cursor = msg['cursor'];\n", " switch(cursor)\n", " {\n", " case 0:\n", " cursor = 'pointer';\n", " break;\n", " case 1:\n", " cursor = 'default';\n", " break;\n", " case 2:\n", " cursor = 'crosshair';\n", " break;\n", " case 3:\n", " cursor = 'move';\n", " break;\n", " }\n", " fig.rubberband_canvas.style.cursor = cursor;\n", "}\n", "\n", "mpl.figure.prototype.handle_message = function(fig, msg) {\n", " fig.message.textContent = msg['message'];\n", "}\n", "\n", "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", " // Request the server to send over a new figure.\n", " fig.send_draw_message();\n", "}\n", "\n", "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", " fig.image_mode = msg['mode'];\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Called whenever the canvas gets updated.\n", " this.send_message(\"ack\", {});\n", "}\n", "\n", "// A function to construct a web socket function for onmessage handling.\n", "// Called in the figure constructor.\n", "mpl.figure.prototype._make_on_message_function = function(fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", " /* FIXME: We get \"Resource interpreted as Image but\n", " * transferred with MIME type text/plain:\" errors on\n", " * Chrome. But how to set the MIME type? It doesn't seem\n", " * to be part of the websocket stream */\n", " evt.data.type = \"image/png\";\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", " (window.URL || window.webkitURL).revokeObjectURL(\n", " fig.imageObj.src);\n", " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", " evt.data);\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", " fig.imageObj.src = evt.data;\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", " return;\n", " }\n", "\n", " var msg = JSON.parse(evt.data);\n", " var msg_type = msg['type'];\n", "\n", " // Call the \"handle_{type}\" callback, which takes\n", " // the figure and JSON message as its only arguments.\n", " try {\n", " var callback = fig[\"handle_\" + msg_type];\n", " } catch (e) {\n", " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", " return;\n", " }\n", "\n", " if (callback) {\n", " try {\n", " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", " callback(fig, msg);\n", " } catch (e) {\n", " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", " }\n", " }\n", " };\n", "}\n", "\n", "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", "mpl.findpos = function(e) {\n", " //this section is from http://www.quirksmode.org/js/events_properties.html\n", " var targ;\n", " if (!e)\n", " e = window.event;\n", " if (e.target)\n", " targ = e.target;\n", " else if (e.srcElement)\n", " targ = e.srcElement;\n", " if (targ.nodeType == 3) // defeat Safari bug\n", " targ = targ.parentNode;\n", "\n", " // jQuery normalizes the pageX and pageY\n", " // pageX,Y are the mouse positions relative to the document\n", " // offset() returns the position of the element relative to the document\n", " var x = e.pageX - $(targ).offset().left;\n", " var y = e.pageY - $(targ).offset().top;\n", "\n", " return {\"x\": x, \"y\": y};\n", "};\n", "\n", "/*\n", " * return a copy of an object with only non-object keys\n", " * we need this to avoid circular references\n", " * http://stackoverflow.com/a/24161582/3208463\n", " */\n", "function simpleKeys (original) {\n", " return Object.keys(original).reduce(function (obj, key) {\n", " if (typeof original[key] !== 'object')\n", " obj[key] = original[key]\n", " return obj;\n", " }, {});\n", "}\n", "\n", "mpl.figure.prototype.mouse_event = function(event, name) {\n", " var canvas_pos = mpl.findpos(event)\n", "\n", " if (name === 'button_press')\n", " {\n", " this.canvas.focus();\n", " this.canvas_div.focus();\n", " }\n", "\n", " var x = canvas_pos.x;\n", " var y = canvas_pos.y;\n", "\n", " this.send_message(name, {x: x, y: y, button: event.button,\n", " step: event.step,\n", " guiEvent: simpleKeys(event)});\n", "\n", " /* This prevents the web browser from automatically changing to\n", " * the text insertion cursor when the button is pressed. We want\n", " * to control all of the cursor setting manually through the\n", " * 'cursor' event from matplotlib */\n", " event.preventDefault();\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " // Handle any extra behaviour associated with a key event\n", "}\n", "\n", "mpl.figure.prototype.key_event = function(event, name) {\n", "\n", " // Prevent repeat events\n", " if (name == 'key_press')\n", " {\n", " if (event.which === this._key)\n", " return;\n", " else\n", " this._key = event.which;\n", " }\n", " if (name == 'key_release')\n", " this._key = null;\n", "\n", " var value = '';\n", " if (event.ctrlKey && event.which != 17)\n", " value += \"ctrl+\";\n", " if (event.altKey && event.which != 18)\n", " value += \"alt+\";\n", " if (event.shiftKey && event.which != 16)\n", " value += \"shift+\";\n", "\n", " value += 'k';\n", " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", " this.send_message(name, {key: value,\n", " guiEvent: simpleKeys(event)});\n", " return false;\n", "}\n", "\n", "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", " if (name == 'download') {\n", " this.handle_save(this, null);\n", " } else {\n", " this.send_message(\"toolbar_button\", {name: name});\n", " }\n", "};\n", "\n", "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", " this.message.textContent = tooltip;\n", "};\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", "\n", "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", " // Create a \"websocket\"-like object which calls the given IPython comm\n", " // object with the appropriate methods. Currently this is a non binary\n", " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", " ws.close = function() {\n", " comm.close()\n", " };\n", " ws.send = function(m) {\n", " //console.log('sending', m);\n", " comm.send(m);\n", " };\n", " // Register the callback with on_msg.\n", " comm.on_msg(function(msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", " ws.onmessage(msg['content']['data'])\n", " });\n", " return ws;\n", "}\n", "\n", "mpl.mpl_figure_comm = function(comm, msg) {\n", " // This is the function which gets called when the mpl process\n", " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", "\n", " var id = msg.content.data.id;\n", " // Get hold of the div created by the display call when the Comm\n", " // socket was opened in Python.\n", " var element = $(\"#\" + id);\n", " var ws_proxy = comm_websocket_adapter(comm)\n", "\n", " function ondownload(figure, format) {\n", " window.open(figure.imageObj.src);\n", " }\n", "\n", " var fig = new mpl.figure(id, ws_proxy,\n", " ondownload,\n", " element.get(0));\n", "\n", " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", " // web socket which is closed, not our websocket->open comm proxy.\n", " ws_proxy.onopen();\n", "\n", " fig.parent_element = element.get(0);\n", " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", " if (!fig.cell_info) {\n", " console.error(\"Failed to find cell for figure\", id, fig);\n", " return;\n", " }\n", "\n", " var output_index = fig.cell_info[2]\n", " var cell = fig.cell_info[0];\n", "\n", "};\n", "\n", "mpl.figure.prototype.handle_close = function(fig, msg) {\n", " fig.root.unbind('remove')\n", "\n", " // Update the output cell to use the data from the current canvas.\n", " fig.push_to_output();\n", " var dataURL = fig.canvas.toDataURL();\n", " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", " // the notebook keyboard shortcuts fail.\n", " IPython.keyboard_manager.enable()\n", " $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n", " fig.close_ws(fig, msg);\n", "}\n", "\n", "mpl.figure.prototype.close_ws = function(fig, msg){\n", " fig.send_message('closing', msg);\n", " // fig.ws.close()\n", "}\n", "\n", "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", " // Turn the data on the canvas into data in the output cell.\n", " var dataURL = this.canvas.toDataURL();\n", " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n", "}\n", "\n", "mpl.figure.prototype.updated_canvas_event = function() {\n", " // Tell IPython that the notebook contents must change.\n", " IPython.notebook.set_dirty(true);\n", " this.send_message(\"ack\", {});\n", " var fig = this;\n", " // Wait a second, then push the new image to the DOM so\n", " // that it is saved nicely (might be nice to debounce this).\n", " setTimeout(function () { fig.push_to_output() }, 1000);\n", "}\n", "\n", "mpl.figure.prototype._init_toolbar = function() {\n", " var fig = this;\n", "\n", " var nav_element = $('<div/>')\n", " nav_element.attr('style', 'width: 100%');\n", " this.root.append(nav_element);\n", "\n", " // Define a callback function for later on.\n", " function toolbar_event(event) {\n", " return fig.toolbar_button_onclick(event['data']);\n", " }\n", " function toolbar_mouse_event(event) {\n", " return fig.toolbar_button_onmouseover(event['data']);\n", " }\n", "\n", " for(var toolbar_ind in mpl.toolbar_items){\n", " var name = mpl.toolbar_items[toolbar_ind][0];\n", " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", " var image = mpl.toolbar_items[toolbar_ind][2];\n", " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", "\n", " if (!name) { continue; };\n", "\n", " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", " button.click(method_name, toolbar_event);\n", " button.mouseover(tooltip, toolbar_mouse_event);\n", " nav_element.append(button);\n", " }\n", "\n", " // Add the status bar.\n", " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", " nav_element.append(status_bar);\n", " this.message = status_bar[0];\n", "\n", " // Add the close button to the window.\n", " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", " buttongrp.append(button);\n", " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", " titlebar.prepend(buttongrp);\n", "}\n", "\n", "mpl.figure.prototype._root_extra_style = function(el){\n", " var fig = this\n", " el.on(\"remove\", function(){\n", "\tfig.close_ws(fig, {});\n", " });\n", "}\n", "\n", "mpl.figure.prototype._canvas_extra_style = function(el){\n", " // this is important to make the div 'focusable\n", " el.attr('tabindex', 0)\n", " // reach out to IPython and tell the keyboard manager to turn it's self\n", " // off when our div gets focus\n", "\n", " // location in version 3\n", " if (IPython.notebook.keyboard_manager) {\n", " IPython.notebook.keyboard_manager.register_events(el);\n", " }\n", " else {\n", " // location in version 2\n", " IPython.keyboard_manager.register_events(el);\n", " }\n", "\n", "}\n", "\n", "mpl.figure.prototype._key_event_extra = function(event, name) {\n", " var manager = IPython.notebook.keyboard_manager;\n", " if (!manager)\n", " manager = IPython.keyboard_manager;\n", "\n", " // Check for shift+enter\n", " if (event.shiftKey && event.which == 13) {\n", " this.canvas_div.blur();\n", " event.shiftKey = false;\n", " // Send a \"J\" for go to next cell\n", " event.which = 74;\n", " event.keyCode = 74;\n", " manager.command_mode();\n", " manager.handle_keydown(event);\n", " }\n", "}\n", "\n", "mpl.figure.prototype.handle_save = function(fig, msg) {\n", " fig.ondownload(fig, null);\n", "}\n", "\n", "\n", "mpl.find_output_cell = function(html_output) {\n", " // Return the cell and output element which can be found *uniquely* in the notebook.\n", " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", " // IPython event is triggered only after the cells have been serialised, which for\n", " // our purposes (turning an active figure into a static one), is too late.\n", " var cells = IPython.notebook.get_cells();\n", " var ncells = cells.length;\n", " for (var i=0; i<ncells; i++) {\n", " var cell = cells[i];\n", " if (cell.cell_type === 'code'){\n", " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", " var data = cell.output_area.outputs[j];\n", " if (data.data) {\n", " // IPython >= 3 moved mimebundle to data attribute of output\n", " data = data.data;\n", " }\n", " if (data['text/html'] == html_output) {\n", " return [cell, data, j];\n", " }\n", " }\n", " }\n", " }\n", "}\n", "\n", "// Register the function which deals with the matplotlib target/channel.\n", "// The kernel may be null if the page has been refreshed.\n", "if (IPython.notebook.kernel != null) {\n", " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", "}\n" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<img src=\"\">" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rain = (20, 35, 30, 35, 27, 12, 21, 16, 16, 20, 11, 12)\n", "\n", "temp = (25, 32, 34, 20, 25, 14, 13, 14, 15, 16, 17, 18)\n", "\n", "i = np.arange(len(rain))\n", "fig, rr = plt.subplots()\n", "\n", "#bar_width = 1\n", "\n", "opacity = 0.4\n", "#error_config = {'ecolor': '0.3'}\n", "\n", "\n", "rr.bar(i, rain, alpha=opacity, color='b',\n", " label='rain', align='center')\n", "\n", "tt=plt.twinx()\n", "tt.plot(temp, linestyle='-', linewidth=1.0, label='temp')\n", "\n", "plt.xlabel('months')\n", "rr.set_ylabel('(mm)')\n", "#plt.ylabel('(mm)')\n", "tt.set_ylabel('(C)')\n", "plt.title('rain and temp')\n", "plt.xticks(i,('jan', 'feb', 'mar', 'apr', 'mai', 'jun', 'jul', 'aug', 'sept', 'oct', 'nov', 'dez'))\n", "plt.legend()\n", "plt.grid(True)\n", "\n", "\n", "rr.set_ylim([0,40])\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
cc0-1.0
selimnairb/2014-02-25-swctest
lessons/swc-setdict/setdict-aggregate-instructor.ipynb
1
13527
{ "metadata": { "name": "setdict-aggregate-instructor" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Sets and Dictionaries in Python: Aggregation (Instructor Version)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Objectives\n", "\n", "* Recognize problems that can be solved by aggregating values.\n", "* Use dictionaries to aggregate values.\n", "* Explain why actual data values should be used as initializers rather than \"impossible\" values." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Lesson\n", "\n", "To see how useful dictionaries can be, let's switch tracks and do some\n", "birdwatching. We'll start by asking how early in the day we saw each\n", "kind of bird? Our data consists of the date and time of the observation,\n", "the bird's name, and an optional comment:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "!cat some_birds.txt" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "2010-07-03 05:38 loon\r\n", "2010-07-03 06:02 goose\r\n", "2010-07-03 06:07 loon\r\n", "2010-07-04 05:09 ostrich # hallucinating?\r\n", "2010-07-04 05:29 loon" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Rephrasing our problem, we want the minimum of all the times associated\n", "with each bird name. If our data was stored in memory like this:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " loon = ['05:38', '06:07', '05:20', ...]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "the solution would simply be `min(loon)`, and similarly for the other\n", "birds. However, we have to work with the data we have, so let's start by\n", "reading our data file and creating a list of tuples, each of which\n", "contains a date, time, and bird name as strings:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def read_observations(filename):\n", " '''Read data, returning [(date, time, bird)...].'''\n", "\n", " reader = open(filename, 'r')\n", " result = []\n", "\n", " for line in reader:\n", " fields = line.split('#')[0].strip().split()\n", " assert len(fields) == 3, 'Bad line \"%s\"' % line\n", " result.append(fields)\n", "\n", " return result" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "This function follows the pattern we've seen many times before. We set\n", "up by opening the input file and creating an empty list that we'll\n", "append records to. We then process each line of the file in turn.\n", "Splitting the line on the `'#'` character and taking the first part of\n", "the result gets rid of any comment that might be present; stripping off\n", "whitespace and then splitting breaks the remainder into fields.\n", "\n", "To prevent trouble later on, we check that there actually are three\n", "fields before going on. (An industrial-strength version of this function\n", "would also check that the date and time were properly formatted, but\n", "we'll skip that for now.) Once we've done our check, we append the\n", "triple containing the date, time, and bird name to the list we're going\n", "to return." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here's the function that turns that list of tuples into a dictionary:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def earliest_observation(data):\n", " '''How early did we see each bird?'''\n", "\n", " result = {}\n", " for (date, time, bird) in data:\n", " if bird not in result:\n", " result[bird] = time\n", " else:\n", " result[bird] = min(result[bird], time)\n", "\n", " return result" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once again, the pattern should by now be familiar. We start by creating\n", "an empty dictionary, then use a loop to inspect each tuple in turn. The\n", "loop explodes the tuple into separate variables for the date, time and\n", "bird. If the bird's name is not already a key in our dictionary, this\n", "must be the first time we've seen it, so we store the time we saw it in\n", "the dictionary. If the bird's name is already there, on the other hand,\n", "we keep the minimum of the stored time and the new time. This is almost\n", "exactly the same as our earlier counting example, but instead of either\n", "storing 1 or adding 1 to the count so far, we're either storing the time\n", "or taking the minimum of it and the least time so far.\n", "\n", "Let's test what we've written so far:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "entries = read_observations('some_birds.txt')\n", "result = earliest_observation(entries)\n", "print result" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "{'loon': '05:29', 'goose': '06:02', 'ostrich': '05:09'}\n" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, what if we want to find out which birds were seen on particular\n", "days? Once again, we are [aggregating](glossary.html#aggregation)\n", "values, i.e., combining many separate values to create one new one.\n", "However, since we probably saw more than one kind of bird each day, that\n", "\"new value\" needs to be a collection of some kind. We're only interested\n", "in which birds we saw, so the right kind of collection is a set. Here's\n", "our function:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def birds_by_date(data):\n", " '''Which birds were seen on each day?'''\n", "\n", " result = {}\n", " for (date, time, bird) in data:\n", " if date not in result:\n", " result[date] = {bird}\n", " else:\n", " result[date].add(bird)\n", "\n", " return result\n", "\n", "print birds_by_date(entries)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "{'2010-07-04': set(['loon', 'ostrich']), '2010-07-03': set(['loon', 'goose'])}\n" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Again, we start by creating an empty dictionary, and then process each\n", "tuple in turn. Since we're recording birds by date, the keys in our\n", "dictionary are dates rather than bird names. If the current date isn't\n", "already a key in the dictionary, we create a set containing only this\n", "bird, and store it in the dictionary with the date as the key.\n", "Otherwise, we add this bird to the set associated with the date. (As\n", "always, we don't need to check whether the bird is already in that set,\n", "since the set will automatically eliminate any duplication.)\n", "\n", "Let's watch this function in action for the first few records from our\n", "data:\n", "\n", "<table>\n", " <tr>\n", " <th>Input</th>\n", " <th>Dictionary</th>\n", " </tr>\n", " <tr>\n", " <td><em>start</em></td>\n", " <td><code>{}</code></td>\n", " </tr>\n", " <tr>\n", " <td><code>2010-07-03&nbsp;&nbsp;05:38&nbsp;&nbsp;loon</code></td>\n", " <td><code>{'2010-07-03' : {'loon'}}</code></td>\n", " </tr>\n", " <tr>\n", " <td><code>2010-07-03&nbsp;&nbsp;06:02&nbsp;&nbsp;goose</code></td>\n", " <td><code>{'2010-07-03' : {'goose', 'loon'}}</code></td>\n", " </tr>\n", " <tr>\n", " <td><code>2010-07-03&nbsp;&nbsp;06:07&nbsp;&nbsp;loon</code></td>\n", " <td><code>{'2010-07-03' : {'goose', 'loon'}}</code></td>\n", " </tr>\n", " <tr>\n", " <td><code>2010-07-04&nbsp;&nbsp;05:09&nbsp;&nbsp;ostrich</code></td>\n", " <td><code>{'2010-07-03' : {'goose', 'loon'}, '2010-07-04' : {'ostrich'}}</code></td>\n", " </tr>\n", " <tr>\n", " <td><code>2010-07-04&nbsp;&nbsp;05:29&nbsp;&nbsp;loon</code></td>\n", " <td><code>{'2010-07-03' : {'goose', 'loon'}, '2010-07-04' : {'ostrich', 'loon'}}</code></td>\n", " </tr>\n", "</table>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For our last example, we'll figure out which bird we saw least\n", "frequently\u2014or rather, which *birds*, since two or more may be tied for\n", "the low score. Forgetting that values may not be unique is a common\n", "mistake in data crunching, and often a hard one to track down.\n", "\n", "Our first strategy is simple: figure out how many times we've seen each\n", "bird, then find the minimum of those counts and get the set of birds\n", "we've seen that many times. The function below implements this fairly\n", "directly:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def least_common_birds(data):\n", " '''Which bird or birds have been seen least frequently?'''\n", " \n", " counts = count_by_bird(data) # need to write this\n", " least = min(counts.values())\n", " result = set()\n", " for bird in counts:\n", " if counts[bird] == least:\n", " result.add(bird)\n", " return result" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "`least_common_birds` depends on a function `count_by_bird`, but this is\n", "yet another example of using a dictionary to aggregate values (in this\n", "case, to sum the number of birds we have seen). Just for variety's sake,\n", "we'll use a slightly different strategy that we've used before: whenever\n", "we see a new kind of bird, we'll set its count to zero, and then always\n", "add one to the stored count:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def count_by_bird(data):\n", " '''How many times was each bird seen?'''\n", " result = {}\n", " for (date, time, bird) in data:\n", " if bird not in result:\n", " result[bird] = 0\n", " result[bird] += 1\n", " return result" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we'll test our function:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print least_common_birds(entries)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "set(['goose', 'ostrich'])\n" ] } ], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "This does the job, but is somewhat inefficient: we do one pass through\n", "all the data while counting birds, then another pass through all the\n", "birds to find those that we've seen the least number of times. We can\n", "actually do the whole job with a single pass through the data, but as\n", "we'll see in the challenges, the resulting code is significantly more\n", "complex than what we have written so far. Unless we're sure that the\n", "second pass is really a performance bottleneck, we should stick with\n", "this simple implementation." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Key Points\n", "\n", "* Use dictionaries to count things.\n", "* Initialize values from actual data instead of trying to guess what values could \"never\" occur." ] } ], "metadata": {} } ] }
bsd-2-clause
slundberg/shap
notebooks/tabular_examples/tree_based_models/Census income classification with LightGBM.ipynb
1
2193199
null
mit
eoinmurray/icarus
notebooks/Fidelity verus Fine structure splitting.ipynb
1
110619
{ "metadata": { "name": "Fidelity verus Fine structure splitting" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<script type=\"text/javascript\">\n", " on = \"View input\";\n", " off = \"Hide input\"\n", " function onoff(){\n", " currentvalue = document.getElementById('onoff').value;\n", " if(currentvalue == off){\n", " document.getElementById(\"onoff\").value=on;\n", " $('div.input').hide();\n", " }else{\n", " document.getElementById(\"onoff\").value=off;\n", " $('div.input').show();\n", " }\n", "}\n", "</script>\n", "<input type=\"button\" class=\"ui-button ui-widget ui-state-default ui-corner-all ui-button-text-only\" value=\"Hide input\" id=\"onoff\" onclick=\"onoff();\">\n", "\n", "_(You should click this button, you dont need to see the code)._" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Fidelity versus Fine Structure splitting." ] }, { "cell_type": "code", "collapsed": false, "input": [ "%pylab inline\n", "import sys\n", "sys.path.append('../')\n", "from mpl_toolkits.axes_grid1 import Grid\n", "from Icarus.Classes.QuantumDot import QuantumDot\n", "from constants import Constants\n", "from Experiments.utils.plot_fidelity_curves import *" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", "For more information, type 'help(pylab)'.\n" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "constants = Constants()\n", "qd = QuantumDot(constants.xtau, constants.xxtau, constants.ptau, constants.FSS, constants.crosstau)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## No decoherence." ] }, { "cell_type": "code", "collapsed": false, "input": [ "qd.crosstau = 0.\n", "qd.bg_emission_rate = 0.\n", "fss = np.linspace(-10, 10, 500)*1e-6\n", "fidelities = [qd.ideal_fidelity_lorentzian(f)[0] for f in fss]\n", "ghv = qd.ideal_fidelity_lorentzian(f)[1]\n", "\n", "numerical_data_no_dec = np.loadtxt('../out/fidelity_vs_fss/xtau1/fss_v_fidelity.txt', delimiter = ',')\n", "\n", "plt.figure(figsize = (16./1.5,9./1.5))\n", "plt.plot(numerical_data_no_dec[:,0], numerical_data_no_dec[:,1], 'r-', fss/1e-6, fidelities, 'b--')\n", "plt.legend(['Monte carlo', 'Theoretical']) \n", "plt.text(6, 0.9, ' coherence ' + np.array(ghv).astype('|S4').tostring())\n", "plt.xlim([-10, 10]) ; plt.ylim([0.45, 1.05])\n", "plt.xticks(np.linspace(-10, 10, 11))\n", "plt.xlabel('Fine structure splitting $eV$') ; plt.ylabel('Fidelity')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "pyout", "prompt_number": 3, "text": [ "<matplotlib.text.Text at 0x106018550>" ] }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAogAAAF8CAYAAABMokooAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVOXfBvB7WNwAFVwQGFZFgdxQ3JfINLVcUrO0UjNL\nW8yyPbXScsmWn2lWWvm6lKllZmpGpoUtppiBqagoyioqmyyCbPO8fzyC7AwwZ87McH+uy0tm5sw5\n3xEZ7nlWjRBCgIiIiIjoJiu1CyAiIiIi08KASERERERlMCASERERURkMiERERERUBgMiEREREZXB\ngEhEREREZdioXYA+NBqN2iUQERERmbXarGxoNi2IQogG8efNN99UvQa+Xr5evla+Xr7Whvl6G9Jr\nbWivt7bMJiASERERkXEwIBIRERFRGQyIJiY4OFjtEoyKr9dyNaTXCjSs19uQXivQsF5vQ3qtQMN7\nvbWhEXXpmDYyjUZTp/5zIiIiIqp9ljKLWcxERESkPCcnJ6Snp6tdBtWDo6Mj0tLS6n0etiASERER\nAP6+tQRVfQ9r+73lGEQiIiIiKoMBkYiIiIjKYEAkIiIiojIYEImIiIhMTHBwMNatW6fa9RkQiYiI\nyOR5eXmhcePGSE1NLXN/YGAgrKysEBcXV+9rqB3KStNoNNBoNKpdnwGRiIiITJ5Go4GPjw+2bNlS\nct+JEyeQm5trsCClZiArJoSATqdTuwwGRCIiIjIPDz/8MDZt2lRye+PGjZg6dWqZ5VsyMjIwdepU\ntG3bFl5eXliyZEnJ4xs2bMDAgQPx0ksvwcnJCT4+PggJCQEAzJ8/H3/88Qdmz54NBwcHzJkzBwBw\n5swZDBs2DK1atYKfnx++/fbbKutLS0vD9OnT4ebmBicnJ4wbNw4AkJ6ejlGjRqFt27ZwcnLC6NGj\nkZiYWPK84OBgLFiwAAMGDIC9vT0uXrxY5rxCCCxevBheXl5wdnbGtGnTkJmZWc9/zeoxIBIREZFZ\n6Nu3LzIzM3HmzBkUFRVh27ZtePjhh8sc88wzzyArKwsXL17EwYMHsWnTJqxfv77k8bCwMPj5+SE1\nNRUvv/wyZsyYAQBYsmQJBg0ahI8//hhZWVlYtWoVrl+/jmHDhuHhhx9GcnIytm7diqeeegqnT5+u\ntL4pU6bgxo0biIyMxNWrV/H8888DkAFvxowZiIuLQ1xcHJo2bYrZs2eXee5XX32FL774AllZWfD0\n9Czz2Pr167Fx40aEhobiwoULyM7OrvB8Q2NAJCIiIrMxZcoUbNq0Cb/88gsCAgLg5uZW8lhxaFy2\nbBns7Ozg6emJF154AV9++WXJMZ6enpgxYwY0Gg2mTp2KpKQkXL16teTx0q2Re/bsgbe3N6ZNmwYr\nKyt0794d48ePr7QVMSkpCSEhIVizZg1atGgBGxsbDBo0CABKWhObNGkCe3t7zJs3DwcPHix5rkaj\nwSOPPAJ/f39YWVnBxqbsRnebN2/GCy+8AC8vL9jZ2WHZsmXYunWrol3R3GqPiIiI9GOoMXp13K1F\no9FgypQpGDRoEC5evFihezklJQUFBQVlWuA8PDzKdOe2a9eu5OtmzZoBALKzs9G2bduSaxSLjY3F\nkSNH4OjoWHJfYWEhpk6dWqG2+Ph4ODk5oUWLFhUey8nJwdy5c/Hzzz+XbGWYnZ0NIUTJ9dzd3at8\n3UlJSRVeU2FhIa5cuQIXF5cqn1cfbEEkIiIi/QhhmD/14OHhAR8fH/z0008YP358mcdat24NW1tb\nxMTElNwXFxcHrVar17nLT1Lx8PDA7bffjvT09JI/WVlZ+Pjjjys8193dHWlpacjIyKjw2AcffICo\nqCiEhYUhIyMDBw8ehBCiTLitboKMq6trhddkY2MDZ2dnvV5XXTAgEhERkVlZt24dfv31VzRt2rTM\n/dbW1rj//vsxf/58ZGdnIzY2FitWrKgwTrEqzs7OiI6OLrk9atQoREVF4auvvkJBQQEKCgpw9OhR\nnDlzpsJzXVxcMHLkSDz11FO4du0aCgoK8McffwCQrYVNmzZFixYtkJaWhkWLFlV4fnX7JE+ePBkr\nVqxATEwMsrOzMW/ePEyaNAlWVsrFOAZEIiIiMis+Pj7o0aNHye3SrW8fffQR7Ozs4OPjg0GDBuGh\nhx7C9OnTS44r31JX+vazzz6L7du3w8nJCc899xzs7e2xb98+bN26FW5ubnBxccFrr72G/Pz8Suv6\n8ssvYWtrCz8/Pzg7O2PlypUAgOeeew65ublo3bo1+vfvj5EjR1ZbR3mPPvoopkyZgsGDB8PHxwfN\nmjXDRx99pOe/Vt1oRHWR1URoNJpqkzURERHVH3/fmr+qvoe1/d6yBZGIiIiIymBAJCIiIqIyFA2I\njz76KJydndGlS5cqj5kzZw58fX3RrVs3hIeHK1kOEREREelB0YA4ffr0ki1sKrN3716cP38e586d\nw2effYYnn3xSyXKIiIiISA+KBsRBgwaVWVyyvF27dmHatGkAgD59+uDatWu4cuWKkiURERERUQ1U\nHYOYmJhYZuVwrVaLhIQEFSsiIqqd+DiBbTP2ISqyUO1SiIgMRvWt9spPua5qHaCFCxeWfB0cHIzg\n4GAFqyIi0s8zj2Qi5zfg7I+FOH3BBjd37iIiUlVoaChCQ0Pr/HxVA6Kbmxvi4+NLbickJJTZdLu0\n0gGRiMhUbOuzAo3+WYFJLQ7i3Xe7g29VRGQKyjemVbZ7S3VU7WIeM2YMNm3aBAA4fPgwWrZsqei+\ngkREBiUEGn+/FZp3l2NZ/vNYtQooZE8zkdEtXLgQU6ZMUbuMSm3evBnDhw+v93msrKxw4cIFA1Sk\nH0VbECdPnoyDBw8iJSUF7u7uWLRoEQoKCgAAs2bNwt133429e/eiQ4cOsLOzw/r165Ush4jIsE6e\nBHJzgZkz4bN4MUYOyERSUnOUGlpNRAZgb29fMgTt+vXraNKkCaytrQEAa9eurXabOmOKiYmBj48P\nCgsLS/ZJfuihh/DQQw+pXFntKRoQt2zZUuMxq1evVrIEIiLlbN8O3HcfYGUFjBqFzR0+A9xfVLsq\nIouTnZ1d8rW3tzfWrVuHIUOGlNxnrGFohYWFsLGpOTpZwnaF3EmFiKiuvv0WmDhRfj16NLB7t7r1\nEDVQGo0G+fn5mDZtGpo3b47OnTvj2LFjJY9funQJEyZMQNu2beHj44OPPvqo5LG8vDw899xzcHNz\ng5ubG+bOnYv8/HwAcqKHVqvFu+++CxcXF8yYMQNCCLzzzjvo0KEDWrdujQceeADp6ekAgMGDBwMA\nWrZsiebNm+Pw4cPYsGEDBg0aVHK9U6dOYdiwYWjVqhXatWuHZcuWAQDCwsLQr18/ODo6wtXVFc88\n80xJr6saGBCJiGopPx94Z+4ViMwsoHdveeeQIUBEBJCWpm5xRA2QEAK7du3C5MmTkZGRgTFjxmD2\n7NkAAJ1Oh9GjRyMwMBCXLl3CgQMH8OGHH2Lfvn0AgCVLliAsLAzHjx/H8ePHERYWhsWLF5ec+8qV\nK0hPT0dcXBzWrl2LVatWYdeuXfj999+RlJQER0dHPP300wCAP/74AwCQkZGBzMxM9O3bt0ydWVlZ\nGDp0KO6++24kJSXh/PnzuPPOOwEANjY2WLlyJVJTU/H333/jwIED+OSTTxT/t6sKAyIRUS2dOAFs\n/hrQTLzZvQwATZsCwcHATz+pWhtRQzVo0CCMGDECGo0GDz/8MI4fPw4AOHr0KFJSUrBgwQLY2NjA\n29sbjz32GLZu3QpATiJ544030Lp1a7Ru3Rpvvvkmvvzyy5LzWllZYdGiRbC1tUWTJk2wdu1aLF68\nGK6urrC1tcWbb76J7du3Q6fT1di1vGfPHri6umLu3Llo1KgR7O3t0fvmh8wePXqgd+/esLKygqen\nJ2bOnImDBw8q9K9VMwZEIqJa+ucfICjv0K3u5WKjRrGbmSzawoWARlPxT1VDACs7XqnhgqVXQWnW\nrBlu3LgBnU6H2NhYXLp0CY6OjiV/li1bhqtXrwIAkpKS4OnpWfJcDw8PXLp0qeR2mzZt0KhRo5Lb\nMTExGDduXMm5AgICYGNjo9dOcPHx8fDx8an0saioKIwaNQouLi5o0aIF5s+fj9TU1Fr/OxgKAyIR\nUS39sz8dvXAUKNd9hFGjkPRTBDat51o3ZJkWLgSEqPinuoCo77H1Ud0sZnd3d3h7eyM9Pb3kT2Zm\nJvbs2QMAcHV1RUxMTMnxcXFxcHV1rfLcHh4eCAkJKXO+nJwcuLi41Dib2sPDo8qlap588kkEBATg\n/PnzyMjIwJIlS6DT6Wp66YphQCQiqqWjf+YhaETrW93LxVxcUOjVHi+/UAQLmMRIZDaq69rt3bs3\nHBwc8O677yI3NxdFRUU4efIk/vnnHwBySb7FixcjJSUFKSkpeOutt6pdU/GJJ57AvHnzEBcXBwBI\nTk7Grl27AMjWRisrK0RHR1f63HvuuQdJSUlYuXIl8vLykJWVhbCwMABypraDgwOaNWuGM2fO4NNP\nP63Tv4WhMCASEdVCbi4QdaUFus7sW+nj2vF9IPLykZho5MKIGjCNRlOh9a74trW1Nfbs2YOIiAj4\n+PigTZs2mDlzJjIzMwEACxYsQFBQELp27YquXbsiKCgICxYsqHCeYs8++yzGjBmDu+66C82bN0e/\nfv1KQl6zZs0wf/58DBgwAE5OTjhy5EiZ2hwcHPDLL79g9+7dcHFxQceOHUu2w3v//ffx9ddfo3nz\n5pg5cyYmTZpU5trGXutRI8xgsR6NRmMRawoRkfnL+jcKO4euxpSUDyu2IAJAeDhGDMjCM98Mwj2j\nTGPxXiJ98fet+avqe1jb7y1bEImIasHhXDimDLlUeTgEgO7d4W91Fqd/TzZuYUREBsSASERUG/Hx\nqHYvPY0G/l1tEPkX10MkIvOl6FZ7REQWJz4eKLUkRmXu6JODNnFHAfgZpyYiIgNjCyIRUW3U1III\nwDeoJcbZ/mikgoiIDI8tiEREtaFHQIS3N1DFWmdEpszR0dHos2XJsBwdHQ1yHgZEIiI9nT8PrImc\njvc9PKo/0NsbuHjROEURGVAa9xKnm9jFTESkp/+OFeBcrjtQakuvSrVrB1y/DmRnG6cwIiIDY0Ak\nItLT+X8z0cH+MmBtXf2BGg3g5cVWRCIyWwyIRER6io7MQ/u2mXodG9l6MJa/X0OQJCIyUQyIRER6\nir6oQQf3fL2OLXT1wKZ9NXRFExGZKAZEIiI9RV9qiva++r1t+nRzwMUUB+h0ChdFRKQABkQiIj2t\nG7genrfZ63WsvZ8Wza2vIylJ4aKIiBTAgEhEpKchugOw8dLqd7C3N9pbxyA6WtmaiIiUwIBIRKSv\nuDigpjUQi3l7o33eaUSfF8rWRESkAAZEIiJ96bOLSrEWLTDX7jMM7syFh4nI/HAnFSIifWRnA3l5\nQKtWej8l0DcbEOcB6P8cIiJTwBZEIiJ9xMcDWq1cBFtf3HKPiMwUAyIRkR4efLolzrXqW7snMSAS\nkZliQCQi0sO+o45o4dGidk/y8QEuXFCmICIiBTEgEhHVIDsbyLlhjTa+LWv3RLYgEpGZYkAkIqpB\nbCzgYZcCjaeeS9wU8/bGq//ch3//VaYuIiKlMCASEdUgNhbwsknQf4mbYp6eiMtqiciT3G+PiMwL\nAyIRUQ1iYgDPwgu1D4iNG8OjWSriTmYoUhcRkVIYEImIajDpAYE38ubXPiAC8HDOQ9yZHAWqIiJS\nDgMiEVENnDTpcGuUDDRvXuvnenoCsRe53R4RmRcGRCKimtRmi71yPDo2QdxlWwMXRESkLAZEIqKa\n1CMg+vZ0wPqeHxu4ICIiZTEgEhHVJC6uzgGxSScv9M46YOCCiIiUxYBIRFST+HjAo5ZrIBbz9uZu\nKkRkdhgQiYiq8c8/wH2bx9W5BRGurkB6OpCba9jCiIgUxIBIRFSNmBhA5ObWPSBaWcnWx5gYQ5ZF\nRKQoBkQiomokJADa/Doskl2ajw/3ZCYis8KASERUjfg4Ae31s4BWW+dz/NZoOOa+52rAqoiIlMWA\nSERUjYToG3Bvlgo0bVrnczTWtsHfZxwNWBURkbIYEImIqpEQUwhtu6J6ncOzWwvEXqv9LixERGph\nQCQiqsauuaHo1TGjXudo17kNUvPskZdnoKKIiBTGgEhEVI1W16LR2Lt+4wetPbVwsbqCS5cMVBSR\nCVq4cCE++OADtcvQ2+rVq9GhQwdYWVkhLS2tyuM2btyIjh07omPHjti0aZMRK1SXjdoFEBGZtHps\ns1eiXTtodWGIv9gO3t582yXLpNFo6vV8nU4HKyvjtVsNHDgQo0ePRnBwcJXHpKWl4a233sKxY8cA\nAD179sSYMWMQERGBl19+Gc7OziXHWltbY+fOnUqXbTRsQSQiqk5sLODpWb9z2Nhgc9vnEaS9bJia\niIwkJCQEPXv2RPfu3TF06FAAMjTde++96NatG/r164cTJ06UHB8ZGYk77rgD7du3x0cffVRy/1df\nfYU+ffogMDAQTzzxBHQ6HQDA3t4eL774Irp3746///672uMWLFiA7t27o1+/frh69SoA4MqVKxg3\nbhy6d++O7t274/Dhw9Ver7Tu3bvDs4af7Z9//hl33XUXWrZsiZYtW2LYsGEICQmBRqPBggULsHv3\n7pI/3t7e9fiXNj2KBsSQkBD4+fnB19cXy5cvr/B4eno6xo0bh27duqFPnz44deqUkuUQEdVeTAzg\n5VXv03h5Ac1S4+t9HiJjSU5OxsyZM7Fjxw5ERERg+/btAIA333wTPXv2xPHjx7F06VJMnToVACCE\nwJkzZ7Bv3z6EhYVh0aJFKCoqwunTp/HNN9/g0KFDCA8Ph5WVFTZv3gwAyMnJQd++fREREQEnJ6dq\nj+vXrx8iIiIwePBgfP755wCAOXPm4I477kBERATCw8MREBBQ7fVq69KlS9CWWuJKq9UiMTGx5PVa\nMsX6OoqKijB79mzs378fbm5u6NWrF8aMGQN/f/+SY5YuXYoePXrg+++/x9mzZ/H0009j//79SpVE\nRFR7BgqI0Gpld3W/fvU/F5ERHD58GLfffntJK1vLli0BAH/99Rd27NgBALjjjjuQmpqKrKwsaDQa\njBo1Cra2tmjVqhXatm2Ly5cv48CBAzh27BiCgoIAALm5uWjXrh0A2S07YcIEAKj2uEaNGuGee+4B\nILt5f/nlFwDAb7/9hq+++gqA7OJu3rw5Nm3aVOV5SH+KBcSwsDB06NABXjffWCdNmoQffvihTEA8\nffo0Xn31VQBAp06dEBMTg+TkZLRp00apsoiI9Pbq83lwz3wYT7dtW/+TabVyWxYiM6HRaKpsJavq\n/kaNGpV8bW1tjcLCQgDAtGnTsHTp0grHN2nSpMzYxaqOs7W1Lfnaysqq5LxV1VLVeWrLzc0NoaGh\nJbfj4+MxZMiQep/XHCjWxZyYmAj3UgO7SzfLFuvWrVvJp5CwsDDExsYigW+gRGQiYk7nwqmNNVDP\nwfcAGBDJ7PTp0we///47Ym7uI14803fQoEElXbahoaFo06YNHBwcKg1qGo0Gd955J7Zv347k5OSS\n88TFxVU4Vt/jyj/n008/BSB7LjMzM+t0nqoC7/Dhw7Fv3z5cu3YN6enp+OWXXzB8+PBqz2UpFGtB\n1Gc206uvvopnn30WgYGB6NKlCwIDA2FtbV3psQsXLiz5Ojg4uNpZR0REhpAQq4NWa4BwCMiAGBZm\nmHMRGUGbNm3w2WefYfz48dDpdHB2dsbPP/+MhQsX4tFHH0W3bt1gZ2eHjRs3ApC/9yv73e/v74/F\nixfjrrvugk6ng62tLT755BN4eHiUOV7f40pfZ+XKlZg5cybWrVsHa2trrFmzBn369KnyPKWtWrUK\n7733Hq5cuYKuXbvinnvuwWeffYZ//vkHa9euxeeffw5HR0e8/vrr6NWrFwA5/rK4q93UhYaGlmn9\nrC2NUGiU5eHDh7Fw4UKEhIQAAJYtWwYrKyu88sorVT7H29sbJ06cgL29fdkiq2nmJiJSiqdTJkJH\nvgvvzYvrfS7xx5/wvcsLkRlalOqFIyIzdPDgQVy7dg1jx44tuW/u3LlYsWKFilVVr7ZZSrEWxKCg\nIJw7dw4xMTFwdXXFtm3bsGXLljLHZGRkoGnTpmjUqBE+//xz3H777RXCIRGRGoqKgKSMZnALaGGQ\n82nctSgoAC5dMsycFyJSj52dHZYsWYINGzaU3Ofi4qJeQQpQLCDa2Nhg9erVGD58OIqKijBjxgz4\n+/tj7dq1AIBZs2YhMjISjzzyCDQaDTp37ox169YpVQ4RUa1cvQo42WahkW8910As5uoKre4fxMe4\nwMur8qE0RGQegoKCsG/fPrXLUJRiXcyGxC5mIlLDjR790WTNh0Dv3gY536QmOzH2f7dj8lOOBjkf\nEZG+apuluJMKEVEVmsRFGbQ/WNsyCwlnsgx2PiIipTAgEhFVJisLyMkBDLguq7ZNPuKj8w12PiIi\npXDXeCKiysTGytZDQ6yBeNNj/U5B45sHoIPBzklEpAQGRCKiyly8aPDpxvbtnYHkGIOek4hICexi\nJiKqRP75OMOvR8PdVIjITDAgEhFVwvfNybjYvJthT8qASERmggGRiKicoiIgKdsBrl1aGfbEDIhE\nZCYYEImIyrl6FXC0zkRjX4+aD64NNzcgMRGiSGfY8xIRGRgDIhFROQkJgLtQYAxikyZ4VLMeWz/n\nWohEZNoYEImIykmIyoGbSDToGojFHJsXcbFsIjJ5DIhEROWknkuDV4t0g66BWEzbJo+LZRORyWNA\nJCIq57Ge4fiwzxZFzu3upkNCvCKnJiIyGAZEIqLyYmKg8fZS5NRaH1skXLVV5NxERIbCgEhEVF5M\njOEnqNyk7WSPxGt2ipybiMhQGBCJiMpTMCC6dXFCTO8HFDk3EZGhMCASEZWnYEDUuGthmxijyLmJ\niAyFAZGIqJSCAiDtwjXFAiLc3ORCi0Ioc34iIgNgQCQiKuX4oWzcmbFDkTUQAQD29kCTJkBamjLn\nJyIyAAZEIqJSEiJS4W6XpsgaiCW4JzMRmTgGRCKiUhIiM6F1ylH0GsJNixsXLil6DSKi+mBAJCIq\nJeFCHrQuRYpeY0fhGDz0didFr0FEVB8MiEREpSQkaKD1slb0Gm7etki4wsWyich0MSASEZUirl+H\nl38zRa+h7WiH+HR7Ra9BRFQfDIhERKVsbjMXg+9WNry53OaElBv2KChQ9DJERHXGgEhEVJqCi2QX\ns/bUwtk6BUlJil6GiKjOGBCJiIplZgI3bgCtWyt7Ha0WvrooXL3CxbKJyDQxIBIRFYuNla2HSq6B\nCAAtWuDXdg8iqHWMstchIqojBkQiomJG6F4u0bs3cOSIca5FRFRLDIhERDddPXEFqe1uM87F+vQB\nwsKMcy0iolpiQCQiuunDH7zwaeJo41ysd28GRCIyWQyIREQ3JVy2gXv7xsa5WM+eQEQEuNYNEZki\nBkQiopsS0ppBe1tzo1xLNG+BJJcewKlTRrkeEVFtMCASEd2UkOMEbWBbo1yrqAjwvPArCg4dNcr1\niIhqgwGRiAiAuJaBBJ0r3Do7GuV6NjZA2+Y3cOngOaNcj4ioNhgQiYgA5JyNQ4+mZ2DvoPAaiKW4\nuwMJR7mdChGZHgZEIiIAdlcu4s87XjfqNbW+zZCQqAGysox6XSKimjAgEhEBxl0k+yZ3TyvEt+sF\nHDtm1OsSEdWEAZGICJAB0dvbqJfs2BEo1HpxPUQiMjk2ahdARGQSYmKA/v2NesknngDQPAvYwYBI\nRKaFLYhERIAqXcwAuKMKEZkkBkQiIgDh5x2Q3drL+Bdu3x64fh1I4mxmIjIdDIhERBkZmJz9GeKu\ntzL+tTUatiISkclhQCSiBk/ExCIOHvDwNN4aiGUwIBKRiWFAJKIGL+W/S2hqUwB7e+NfOy4OyLit\nPwMiEZkUBkQiavBij1+DZ4sMVa79wgvAzxl9gaNHAZ1OlRqIiMpjQCSiBi/27A14Ot9Q5dpaLRCf\n2QJwdASiolSpgYioPAZEImrwGqckYnBQjirX1mqBhAQAgYHAiROq1EBEVJ6iATEkJAR+fn7w9fXF\n8uXLKzyekpKCESNGoHv37ujcuTM2bNigZDlERJUalfcd5s4uUOXa7u5AfDxKJUUiIvUpFhCLioow\ne/ZshISEIDIyElu2bMHp06fLHLN69WoEBgYiIiICoaGheOGFF1BYWKhUSURElVNrkWyUyoVaLZCY\nqEoNRETlKRYQw8LC0KFDB3h5ecHW1haTJk3CDz/8UOYYFxcXZGZmAgAyMzPRqlUr2Nhw9z8iMqKM\nDCA/H2ilwhqIADw9gbZtAbi5MSASkclQLCAmJibC3d295LZWq0ViuTe/xx9/HKdOnYKrqyu6deuG\nlStXKlUOEVHlYmNl66FGnTUQ3dyAXbvALmYiMimKNddp9HizXbp0Kbp3747Q0FBER0dj2LBhOH78\nOBwcHCocu3DhwpKvg4ODERwcbMBqiajBUrF7uQy2IBKRAYWGhiI0NLTOz1csILq5uSE+Pr7kdnx8\nPLRabZljDh06hPnz5wMA2rdvD29vb5w9exZBQUEVzlc6IBIRGUrqqcs4aTsUt6tdiJsbcOkSIIRq\nrZlEZDnKN6YtWrSoVs9XrIs5KCgI586dQ0xMDPLz87Ft2zaMGTOmzDF+fn7Yv38/AODKlSs4e/Ys\nfHx8lCqJiKiCsDBgSeS9apcBNG0K2NkBKSlqV0JEpFwLoo2NDVavXo3hw4ejqKgIM2bMgL+/P9au\nXQsAmDVrFubNm4fp06ejW7du0Ol0ePfdd+Hk5KRUSUREFcTF6ODpbiI7mBSPQ2zTRu1KiKiB0wgh\nhNpF1ESj0cAMyiQiMzSv3To0vXcEXl/jploNqakyF3Z77W7gqaeAUaNUq4WILFNtsxR3UiGiBi02\nvTk8uzRXtYZ//wWefx6cyUxEJoMBkYgarowMxBZq4RFgr2oZXl5yMjVnMhORqWBAJKKGKzYWfR3P\nwLejurOGPTxkw2GRqztbEInIJDAgElHDFRuL9/tsh5t6ww8BAI0bA61bA4mNfdiCSEQmgQGRiBqu\nuDjZfGc0Gkb2AAAgAElEQVQCvL2BGJ07AyIRmQQGRCJquGJj5WbIJmDkSMDKuQ27mInIJNQYEFet\nWoX09HRj1EJEZFwm1II4fz4wcIQDUFAAZGWpXQ4RNXA1BsQrV66gV69euP/++xESEsL1CInIcphQ\nQAQgt9jTatnNTESqqzEgLlmyBFFRUXj00UexYcMG+Pr6Yt68eYiOjjZGfUREivkxqgNirbzVLqMs\nLnVDRCZArzGIVlZWaNeuHZydnWFtbY309HTcd999eOmll5Suj4hIGfn5WJL2JOLyndWupCwulk1E\nJqDGvZhXrlyJTZs2oVWrVnjsscfw/vvvw9bWFjqdDr6+vnjvvfeMUScRkWElJuKCpj18fBXbkr5u\n2IJIRCagxnfGtLQ07NixA57lZvpZWVlh9+7dihVGRKSk62cTkIHecHFRu5JbfvoJ6OvUHo4x4WqX\nQkQNXI1dzNHR0RXC4ZQpUwAAAQEBylRFRKSwi+Hp8LJPgZUJLfa1bBlwPM+PLYhEpLoa3xpPnTpV\n5nZhYSGOHTumWEFERMZw4dQNtG9jWsvJeHkBMYVuHINIRKqrMiAuXboUDg4OOHHiBBwcHEr+tG3b\nFmPGjDFmjUREBudy/RweDo5Xu4wyvLyAi1lt2IJIRKqrMiDOmzcPWVlZePHFF5GVlVXyJy0tDe+8\n844xayQiMrheuX9g0vgCtcsoo317IPqKHZCWBuTnq10OETVgVU5SOXPmDPz8/DBx4kT8+++/FR7v\n0aOHooURESnK1BbJBtChA/Dpp1aAszOQlGQy2wASUcNTZUD84IMP8Pnnn+OFF16ARqOp8Phvv/2m\naGFERIoRwiQDYqdOQHAwgIM3d1NhQCQilWiEGeydp9FouMUfERlOaqpsrjPVfebvuw+4/375h4jI\nAGqbpapsQfzuu+8qbTksNn78+NpVRkRkKkyw9bAMLpZNRCqrMiDu3r2bAZGILFLU36n4W/MIpqld\nSFW43R4RqazKgLhhwwYjlkFEZDyH/xb4JXeA6QZENzeA680SkYpqXCj78uXLmDFjBkaMGAEAiIyM\nxLp16xQvjIhIKReiBXzcTWuJmzLYgkhEKqsxID7yyCO46667cOnSJQCAr68vVqxYoXhhRERKiU5s\nAh/fGreiV0VyMvB/h7jdHhGpq8aAmJKSggceeADW1tYAAFtbW9jYmOYbKxGRPqJSW6Fj92Zql1Gp\n/HzgtRVtgEuXAJ1O7XKIqIGqMSDa29sjNTW15Pbhw4fRokULRYsiIlKKEMDZHC069W+ldimVcnUF\nsrM1yLRzAVJS1C6HiBqoGpsCP/jgA4wePRoXLlxA//79kZycjO3btxujNiIigyvKycNiqzfRKuAD\ntUuplEZzc8u9vD4ITEwE2rZVuyQiaoD0Wii7oKAAZ8+eBQB06tQJtra2ihdWGhfKJiKDiY4Ghg4F\nLl5Uu5IqjR8PTI5ZhomLOgOjR6tdDhFZAIMvlC2EKLMeYlRUFACug0hEZsrUF8mG3OTlfAInqhCR\nempcKPvq1as4dOgQhgwZAkDuwdy/f38GRCIyT2YQEO+9F8i9msWlbohINTUulD1s2DBERkbCxcUF\nAJCUlIRp00x2eVkiouqZQUDs3x9AlA7YH6N2KUTUQNU4izk+Ph7t2rUrue3s7Iy4uDhFiyIiUkxs\nLODpqXYVNevaFfjvP7WrIKIGqsZZzEOHDsXw4cPx4IMPQgiBbdu2YdiwYcaojYjIoAoLgRl778f6\n8bqaPx2rLSAAOHcOuHEDaNJE7WqIqIGpcRazEALff/89fv/9d2g0GgwePBjjxo0zVn0AOIuZiAwj\nOhq40y8RMcczZAAzdV27AuvXAz17ql0JEZk5g81iLn3C8ePHc1IKEZm9s2cEOukiAfe+apein8BA\nICKCAZGIjK7KXpYBAwYAkDupODg4lPnTvHlzoxVIRGQoUeHX0dH2IuDgoHYpNfr9d2Bz0SQgPFzt\nUoioAaqyBfHrr78GAGRnZxutGCIiJZ2NyEVA63S1y9BLSgqw9UIvPGS1RO1SiKgBqrIFsfQ4wwkT\nJhilGCIiJUVFCXRyz1G7DL34+wOnLzvKmcw6ndrlEFEDU2VALD2Q8cKFC0YphohISQuDD6J3l1y1\ny9BLhw5AwiVr3HBykbNriIiMyORXeiAiMpRBhb+hZYCr2mXoxdYW8PYGonxGchwiERldlQHxv//+\nK5mUcuLECU5SISLzd/Qo0KuX2lXozd8fON1qoJzJTERkRFVOUikqKjJmHUREysrLA06dkkvHmIlX\nXgHaHG8J7GRAJCLjqnEdRCIii3D8OODrCzRrpnYleuvTB4BLR+BNdjETkXFxDCIRNQxm1r1cwt0d\nyM8HLl9WuxIiakAYEImoQRi6JBjpAQPULqP2NBqge3eOQyQio2JAJCKLl5ICHL3igZbB3dUupW4Y\nEInIyBQNiCEhIfDz84Ovry+WL19e4fH3338fgYGBCAwMRJcuXWBjY4Nr164pWRIRNUCnjuagM05C\n06Wz2qXUTWAgl7ohIqPSiNIrYhtQUVEROnXqhP3798PNzQ29evXCli1b4O/vX+nxe/bswYcffoj9\n+/dXLFKjgUJlElED8PFz5/DflpNYe2VczQebmM2bgeyoRMzaOgQ4e1btcojITNU2SynWghgWFoYO\nHTrAy8sLtra2mDRpEn744Ycqj//6668xefJkpcohogbs5JHr6Oxnnkt3aTTALyddgIQEIDtb7XKI\nqIFQLCAmJibC3d295LZWq0ViYmKlx+bk5ODnn3/mns9EpIiT5xujc3/zXOC/Wzfg+H9WQECA3JeZ\niMgIFFsHUaPR6H3s7t27MXDgQLRs2bLKYxYuXFjydXBwMIKDg+tRHRE1JNuaPAKnSZvULqNOOnUC\nEhOB7IF9YR8RAfTvr3ZJRGQGQkNDERoaWufnKxYQ3dzcEB8fX3I7Pj4eWq220mO3bt1aY/dy6YBI\nRKS35GS4Zp0FuviqXUmd2NjILfdOtApGv/AQtcshIjNRvjFt0aJFtXq+Yl3MQUFBOHfuHGJiYpCf\nn49t27ZhzJgxFY7LyMjA77//jrFjxypVChE1ZP/8A/TsCViZ76pe3bsDxzVc6oaIjEexFkQbGxus\nXr0aw4cPR1FREWbMmAF/f3+sXbsWADBr1iwAwM6dOzF8+HA0bdpUqVKIqCEz1x1USnnrLcBOOAMf\nnwKKigBra7VLIiILp9gyN4bEZW6IqM5GjwYeeQSwhElwXl7AgQNA+/ZqV0JEZsZklrkhIlKdECg8\ncszsWxBLBAQAkZFqV0FEDQADIhFZrIxTCWiXcgI6N/eaDzYHDIhEZCQMiERksSJ2XEDHFldhZa3/\nslsmzd+fAZGIjIIBkYgs1rGDWejRMUvtMgxG+LMFkYiMgwGRiCzWv6eaoOeAJmqXYRD79gHjl/YE\nTp8GdDq1yyEiC8eASEQW61iKB3re46J2GQbh5wccOtoIonkLoNQmBERESmBAJCKLlJeQjCydHfwH\ntVa7FINwd5drfcf5BMtWRCIiBTEgEpFFanzhNOL7TIRtI8uYoKLRAL17A0eaD+U4RCJSHAMiEVmm\nyEhobgtQuwqD6tMHCCvowYBIRIpjQCQiy3T6tFwWxoL07g2cy9UyIBKR4hgQicgyRUbKhaUtyJ13\nAju/F/K1cftRIlIQAyIRWabISItrQdRoAE2b1kCjRkBSktrlEJEFY0AkIouTEJmJ+HR7wMND7VKU\nwS33iEhhDIhEZHE+WZ6Fz1u8KNeFsUQMiESkMAt99ySihuzQESsMCEhXuwzlBARwLUQiUhQDIhFZ\nlIIC4J8LTug7wFrtUhRzsmkv5J44r3YZRGTBGBCJyKJERAA+TS6hRY/2apeimCc/D8QfJ1qqXQYR\nWTAGRCKyKIcOAf1xyOKWuCnt9qG2OJjfF0hOVrsUIrJQDIhEZFEc7fIw9sY3gI+P2qUo5vbbNTho\nyy33iEg5DIhEZFGm9ozEyE4XABsbtUtRTP/+QERuJ+RERKldChFZKAZEIrIsFrjFXnl2dkAXtzQc\nCc1VuxQislAMiERkWSxwi73KPHpvOkRMrNplEJGFYkAkIsvSAFoQAeDxF5pjyOWv1S6DiCwUAyIR\nWZYG0oIIrRa4fh1It+AFwYlINQyIRGQRzp8HVq0oBC5eBDp2VLsc5Wk0MghHRKhdCRFZIAZEIrII\ne/cCJw5lAR4eQOPGapdjHHffDezcqXYVRGSBGBCJyCIcOAAMdY9qEOMPS0ycCGzfDuh0aldCRBaG\nAZGIzF5hIXDwIDCk0Z8NY/xhMX9/zC9YiPSfj6hdCRFZGAZEIjJ7//wDeHoCbeKONawWRAARjsH4\nZdUZtcsgIgvDgEhE5qmwEMjJAQDs3w/ceScazgzmUkbe74CQg03YzUxEBsWASETm6f33AUdHYOhQ\nTL7+BWYPOwNERQF+fmpXZlQjprVDSMGdEH/+pXYpRGRBGBCJyDyFhQEffww88wzaXzsGnydHAG5u\ngL292pUZVYcOgF1zG/z3KQMiERmO5e5mT0SWLTwceOcduebh2LGAEEBentpVqWLESA1+2lWEbjod\nYMXP/URUf3wnISLzk54OpKbK5rNiGg3QpIl6NanoxSWOmKINBf5iKyIRGQYDIhGZn4gIoGtXtpbd\n5OkJuD0UDHzzjdqlEJGF4LsrEZmf8HAgMBDXr8ueZYJcNPu774CiIrUrISILwIBIRObnZkCcOxdY\ns0btYkxEx45A27bsZiYig2BAJCLzEx6Ooq6B2L0bGDpU7WJMyH33Ad9/r3YVRGQBGBCJyLzk5gLR\n0fg97Ta4uAC+vmoXZDqKBgUj+dcTapdBRBaAAZGIzMuJE0CnTvj620aYPFntYkzLN7G98eip54Hr\n19UuhYjMHAMiEZmX8HDkde2FHTuASZPULsa03D22EQ7idmT+dkztUojIzDEgEpF5CQ9HotcATJwI\nuLurXYxpadECCPaKwY7/u6Z2KURk5hgQici8hIfDZ1h7zl6uwrTx2dh40FPtMojIzGmEMP1VxDQa\nDcygTCJSWmGhbCZLSgKaN1e7GpOUF3cFbl42OHrOEd7t2QZARFJtsxTfPYjIfERFAa6uDIfVaOzh\njDdbfYz0YxfULoWIzJiN2gUQEent5gLZVL1n7o4G0g8A6FDjsURElWELIhGZDwZE/QwYwB1ViKhe\nFA2IISEh8PPzg6+vL5YvX17pMaGhoQgMDETnzp0RHBysZDlEZOYW7eiMfTpunVIjBkQiqifFJqkU\nFRWhU6dO2L9/P9zc3NCrVy9s2bIF/v7+Jcdcu3YNAwYMwM8//wytVouUlBS0bt26YpGcpELU4OVc\nF3B3SMe/YYXwDGqrdjmmTacDWrcGIiOBdu3UroaITIDJTFIJCwtDhw4d4OXlBVtbW0yaNAk//PBD\nmWO+/vprTJgwAVqtFgAqDYdERADwzZpU9G30L8OhPqysgH79gEOHwM/WRFQXigXExMREuJdaxVar\n1SIxMbHMMefOnUNaWhruuOMOBAUF4csvv1SqHCIyY0IAH6+xxhOd/1S7FPPRvz+Sf4lA585Afr7a\nxRCRuVFsFrNGo6nxmIKCAvz77784cOAAcnJy0K9fP/Tt2xe+vr4Vjl24cGHJ18HBwRyvSNSAHDwI\nZKYX4Z6JhWqXYj4GDECbV1+Fs/Nb+O47cN9qogYmNDQUoaGhdX6+YgHRzc0N8fHxJbfj4+NLupKL\nubu7o3Xr1mjatCmaNm2KwYMH4/jx4zUGRCJqWH77TeCltptg1aO72qWYj969gRMnMGd9Ht75X2MG\nRKIGpnxj2qJFi2r1fMW6mIOCgnDu3DnExMQgPz8f27Ztw5gxY8ocM3bsWPz5558oKipCTk4Ojhw5\ngoCAAKVKIiJzJAQWZT6PGY2+BIYNU7sa89GsGXDbbRjdNgypqbIVlohIX4q1INrY2GD16tUYPnw4\nioqKMGPGDPj7+2Pt2rUAgFmzZsHPzw8jRoxA165dYWVlhccff5wBkYhu0emAp54CwsOh+e1Xuc0e\n6a9/f1gf/guvvTYIb78N3H672gURkbngXsxEZJoKC4EZM4CLF4E9e7i9Xl18+y2waRMKduzGrFnA\n6tWyYZGIGp7aZikGRCIyPTqdnFWRng7s3MlUU1fJyUDXrsCLLwLPPw/oMXmQiCwTAyIRmb/jxyHu\nHQfN6UigSRO1qzFvcXHAuHFAx47AF18AdnZqV0REKjCZhbKJiOrsyBFM0XyFX/5gOKw3Dw/gzz+B\nRo2A/v2BCxfUroiIzAADIhGZnGM/Xsavad0wYIDalViIpk2BDRuAxx+XO6ycOaN2RURk4hSbxUxE\nVBdCAM/vH4k3nk1Fs2bsDjUYjQaYPRsAEDv1dbj+sQ22jdlGQESV4xhEIjIpX6/Lwfszo3D0+m2w\nbmKrdjmWp6gIY1ofwtAR1pizpb/a1RCRkXCSChGZrcxMwN/nBra7Pot+/61VuxyLdWrHWQTf1wr/\nhevg0q2t2uUQkRFwkgoRma28POCNgb+h3zB7tUuxaLeN74TH+57Ac6Oj1S6FiEwUAyIRmYw2bYBZ\nYg3Qt6/apVi81/f0xbEkF+xZeFTtUojIBDEgEpHpEAI4cgTo00ftSixeU6emWLskFS8scUJRRrba\n5RCRieEYRCIyHbGxsvXw0iXu+mEkVybOhrOrNbBypdqlEJGCOAaRiEzfZ58BkZEV7z98WLYeMhwa\njfPat4DvvgMOHFC7FCIyIQyIRGR8770HvPEGkpOB++4D8vNv3s/uZeNzcpJb8E2fDly7pnY1RGQi\nGBCJyLiysoDERBQd/BMPjbuOjh3lLnAAZEDkBBXjGzECGDUKmDNH7UqIyEQwIBKRcf33H9C5M94K\n2Ir8Cwl4662b9xcUAMePA0FBqpbXYL33HvD33zj41kFwyDcRMSASkXGFh+Nr+5nYeHEQtuaMhU3K\nZXn/f/8B3t6Ag4O69TVUdnbI/7+v8OzbrbBqcSaQnAxs2gTcf7/8vhw+rHaFRGREDIhEZFSnQy/j\nuaMPYs9ea7R7eOit2bMcf6i6RoP6YOesELyzMBe7PJ8BfvhBdj+/9hrwyCNAbq7aJRKRkXCZGyIy\nKtGjJ86/+gV87w8ELlwAeveWf8+eDQwaBDz+uNolNmyFhTi6+SzufjEA33+vwcCBN++fNAlwdQX+\n97+6nXf6dGDkSNkiSURGx2VuiMh0FRRAc+Y0fO/pKG/7+ADDhsllbzhBxTTY2KDXtNuwebMGEybI\nnn8AwMcfA1u3An/8UftzFhYCO3eWOhkRmTobtQsgogbk9GnAwwOws7t138svy5alnBwgIEC92qiM\nu+4C1q4FmjW7eUerVsCnn8qWwOPHy34Pa3L4sFxCJ5p7PxOZC7YgEpGiyvRoREQAgYFlDwgMBLp2\nBXr2BKytjVobVe/ee4EOHUrdMXYs0L8/8MortTvRTz8BwcEMiERmhC2IRKSY8HBg7lzgl18AW1vI\ngNi9e8UDV6yQ2+uR6Vu5UgZ6QI5JdHSUi2337FkuTZby00/A/PnAzJnGq5OI6oUtiESkiL17geHD\ngWeeuRkOAZkYy7cgAsBtt8mxiGT6HB3lN9fTUy56fvw48M03soWwsLDi8UlJwMWLwJgxcssc7tZC\nZBbYgkhEBiWEbGRavlzOS+jfv9QDVbUgktlYtQpITu6CRYu6wKp0E8PAgXJZnAkTyj4hJAQYOlR+\nSmjfXs5Y79HDqDUTUe2xBZGooRACSEkx/HkLCkq+LCoCHn4YWLcO+PvvUuEQAGJj5YyHtm0NXwMZ\nzaRJciLz6NFAenqpB55+Ws50Lu+nn+QkJEDOWuc4RCKzwIBI1FB89pnsBqyN8+eBjRurP2by5JJg\nYG0tg8ORI4CXV7nj2HpoEdq2lWNKfX3laIGDB28+MGGCnKV++vStgwsLgf375WLbgGxBZEAkMgsM\niEQNQW4u8PbbQFSU/rthCAE8+ijw3HNlWgnLyMmR49FWrgR0OgCyhalkaZTSwsMZEC2ErS3w4YfA\nJ5/Izwfr1gFo1Ah47DF5Z7HDh+VYRVdXeZsBkchsMCASNQSffipnmfr7A5GR+j1n40YZJr29q14c\n+ddfgV69ZCI8cKD681W2xA2ZtbvvlnNUihsIMWsWsHmznLwClO1eBhgQzVl4OBAWpnYVZEQMiESW\nLitLzhh5+225PIk+u1mkpsq17tasAcaNk5MPSrlxA3j9dSDs/07KPuWnnirbclQZtiBapDZtADe3\nmze0WuCOO2RIBGTrcvmAeOGC0WskA/jsM7kNJre9bTAYEIks3cqVwJ13ynCob0B85RXZV9yzp1wc\nedcuQAjodMBXXwGdOgFnzgho//5WBsQHHwR+/x2Ij6/8fKmpcnkTHx/DvjYyPU89BXz8MVJPJaHw\nYjzQr9+tx9zd5bI3+fnq1Ud1c+aMHKKyf7/alZCRMCASmaKMDMN8Uk9Pl4PFFi2St/UJiH/9JZcm\nefttebtLFwgBHPjiInr1Alavlg1E386LgKt9JtCxI2BvDzz0kNybrTLHjwPduqHsuihkkYYMAQoL\nserhMHTWHce339sUD0+Vgxe1WiAmRs0KqS7OngXmzQPef1/tSshI+G5NZGr+/VcO7H/ppfqf6733\nZBexr6+83a2bDGtVhc+CAuCJJ+TOJs2by/s0Gly/eyJeW9QYr7wil68ZOBDAnj2y9VCjkcc9+STw\nxReVtw5VtUA2WR6NBnjqKSyMuBcfzTyJ5cvlMNXvv5fLIHEcohnKyAAyM+V70smT+vVCkNljQCQy\nJSdOyJH/K1bIAf71+bR+5Yps0Xv99Vv3OTvLVrykpMqf88knckDZffeVudt+4kiEtRuL+++/lQex\nZw8watStg/z95Y4oO3ZUPC+XuGlYpk6FxscHw17oiqNHgQULgGXLgN69AZ1PB2UDYnIybjVZkkGc\nPSvHlTRpIrdG+uADtSsiI2BAJDIVZ87Ivek+/BCYPh34+Wfgo4+ATZvqdr4PPpDdvh4et+7TaKrt\nZk76cj/+m7CoVAq8aeBAuV1aQoK8ffmyHI80cGDZ46qarMIWxIalRQu5hqaLCzQa2Yh95AiwfTtg\n1UHBxbILC4GgIJlGyXDOnAH8/OTXs2YBu3ffei8gi8WASFQbsbG3lvAwpOhouRfxsmVycgggx2qF\nhAAvvwz8+GPtzpebC6xfL9cwLK9cQLxxA/j2W2DM3QUIOLYJ+9Mr2QbN1lbORt21S97euxe46y65\n9l1pY8bI13LihPwFsm4dMHEicOkSEBBQu9dA5q3chwyNRq6YBB+fCjOZL14Erl83wDV/+EEOjVix\nwvizpQsKLLflsnRAdHQEpk6VH17JojEgKiktDXjggaoXGSbzIoQMSSNHygWiDSU1Ve5Vu2ABMG1a\n2cf8/eWGxo88Igf/6eubb+TAr8pmDd8MiNeuyVUrXF1lT/SEjicRFzwNz79sW/k5i2czAxW7l4vZ\n2gIzZwKDB8vxjvv3y3GKp08DjRvrXz9ZrkrGIK5bJ0c2PPigbJyq8yTnVavkkIoXX5Rb/9V1otfJ\nk/JDTm3MmgX87391u56pKx0QAfnB84sv5LhEslzCDJhJmRXt3SsEIMSGDWpXYjg6ndoVqCckRIgu\nXYR4+GEh7rlHiPx8w5x32jQh5syp/pgffxSibVshTp3S75y9ewuxe3fljx07JkTnzqKwUIgVK4SI\nj795/5w5QrzzTtXnzMwUwsFBiKtXhWjeXIjk5MqPy84W4uhRIQoL9auVGpbMTCGaNq3wXnL1qhAf\nfyzEwIFCtGolf8wq/BfLz5fPr0x4uBBubvKYvDwhAgKE+PbbutU4YYIQd9yh//HFr+mee+p2PVPn\n7y/Ef/+Vve+BB4T43//UqcdU5OUZ7veAEdQ2S5lF8jLbgLhkifxF7esrREGB2tXU39atQowdq3YV\n6hkxQoj/+z/5hjBypBBTpghRVFS/c+7fL4SHhxBZWTUfu3GjEO7uQsTFVX/c0aNCeHoKXUGhOHlS\niA8/FCIxsdTjublCNGkixI0bZZ8XECCfW50RI4SYMUOIAQNqrpeoKm3blvtPWVZ8vBBr1pT73ZuV\nJUNbQIAQ169XfNKjj8r33GIHD8rAmJFRu9ry84Vo2VL+OX9ev+ds2CDf61u1srwP0fn5QjRuLN83\nSjt8WIj27S3v9dbk0iUhvvhCiHHjhLC3lx/wzURtsxS7mPVVWCjHg9XGv/8Czz4rZ45u26ZMXca0\nY4cc43PsmNqVGN/p03KixeTJshv122/lIPyXXqp7N1ZuruyW+uQTuY5gTaZOBebMkRNZ0tIqPSQ6\nGvjiuZOY4rQHru7WGD1a7qyXl1fqoCZNZNfzmTO37ktKkhNPappIMnas7A+srHuZSF9VLXUTHg4U\nFUGrlT8atsWjHa5dk2NefXyQ1PF2jOschZUr5YpNOh2AlBT5/vT447fONXiwfM4bb9Sutr//lj8f\n06bJcbz62LRJjhW2swPOnavd9Wrryy+Vv0ZpFy/K/v8mTcre37u3/L146pTxalHbtGlypYZ9+4B7\n75X/X3/8Uc7yVpNOB7zzjhxQbkgKBVWDUr3MggIhJk6U3cXlm9mr4+MjxOnTQuzbJ4Sfn3l3uRUW\nCuHkJMQLL8juF0u0d68QM2dW/n2aNUuIN98se19qqhC33SbEypV1u96rrwpx//21f96LLwrRr1+l\nrShLX88RD9tuFWvfzxDR0dWcY9IkITZtunX7yy+FGD++5msnJMifgxMnal83UbGHHhJi/fqy9x0/\nLoS1tWwh3L79VstUcrIQgYFyCERRkchKuCa+bjNHzLzrgujYUQhHRyHu8o0Wn/bfWPE6ycmytfLY\nMf1re/VVIebPl+/1bm41v2/Hxsr3xhs3ZLerkkOKrl6VXdmzZtXvPH//LcTmzfod+8MPQtx9d+WP\nPfOMEIsX168Wc5GRIVsMs7PL3r94sfz/rKZ9++T78sKF1R5W2yzVMALi9etCpKXV7bnF4XDECPnG\n8YNKy94AACAASURBVOST+j0vLU3+ZyoslG90ffvKLlpzFRYmw1BWlhBt2sjga0mOHROidWshevQQ\nYt68so+lpMjupsuXKz7v5EkhXFxqH/6PH5f/jklJNR6q08lctmePEG+/LcSECTqxIuhLIe66q+L/\n6xUrhHjwwZqvv3SpDJrFpk0T4pNP9Ks9IqLhdSuRYb3xhhCvv172vkcflb9s9+6VgbBHD/meGRAg\nxGuvlf0/d+iQDH4JCSIpvkDsav2I+P5/Fyq9VNKy9eLsHbP0/xHt1k2IP/+UX/fqJcf/Vmfp0luB\n7cMP6x/eqjN/vhCjRslAWr7LtzbGjBGiUSMhQkNrPnb5ciGef77yxw4ckP9GVYmKqnYogUFcuSJf\nz6pVyl5n924hhgypeH9GRu1+J27cKMTvv1d/TEJC7WqbMEH+3mrVSv6bV4EBUQg5ZuLPP4V46y0h\nbr9dfuLq2rX2v9QKCmQLz4gR8ocxMVF+XNVnTMuvv5Ydp/XTTzJg1XfMmlrefluIuXPl1wsXCjF9\nurr1GFJcnGwp2L5dfkL39Cwb5pcuFeKRR6p+flCQED//rP/1Cgvlm+rnn9d46M6dMpu2bi3EsGFC\nvPyyEFu2CBFzLl+2qHh4CPHHH/LgoiI53rX4l1t19uyRJxRC/lxotdW+sRAZ1MaNZT/IXL0q/6Nf\nvSpvFxXJCSZBQfLnrzJvvSXHJG7dKsTgwVVe6tsvc4SXVYxo1rRI9Owpf5Tff19+zqmg+D2+eMz4\nmjXVt6zrdLJ36K+/5O0jR+TvmrrKyRHi3LnKH8vIkAHg/Hkhhg6te4NDWpqcZLZ9u/xwW1MYmT5d\niM8+q/yx/HwZVqsKgf366d+oUhdHjshx2XPnCtGhgxCLFin34fXZZ6v+v7h0qRCTJ1f/fJ1O/h5t\n1qz6sfzXrsnwfuSIfnUlJcmfnYwM+R972LAq/w0YEHU62bLSubPsDt27V84w8/PT79NSsYIC2V0w\nfHjZT2oTJwqxenXNz//gAyFmzy5bV69e8oeyNnQ6Ib7+Wr5xqGnQIBlyhZBdq46ONU+WEEJ+op48\n2XRbnDIy5Mzk9967dV94uExk4eFylpqraxW/TW5atUrvLobcXCEiXtgkdgTMFx+8XyRmz5a9N08/\nXXV5xb8zK7VrlxDOzvKXZUiI/h+E4uLk84QQ4swZ+SZrqt8jsjx//ilEnz63bi9eLFsQa6OwUL4v\n2dvX/L46a5bImPeOOHRIiLVrZc9opROc160TYUNfFTt3yh//1IsZQte8hWylqszRo2UnauTlCWFn\nV/VM65rMmSPfW2NiKj727rtyaIgQckjIyJF1u8YXX9waJrRkiezdysur+vh+/apv8XroISE+/bTi\n/f/+K7837dvXrc7q6HTyG9mmjfwULYQMSl26yNZOJd7LOneuOrRlZsoW7ZMnq6537lxZ36lTcjWI\nyiZaCSG7/q2sZCDVx9KlQjz2mPw6P1/+DtiypdJDGRA3bpTdE+VnDa9eXbuxc3PmyCRevhn/t9/k\nlP+a/gM+9JCc8Vra7t3ym3f2rOyy/eUX+S5V3WCxxYvl2IIqvuFGUTz2ovR/6OefF+K556p/3tWr\n8hNvp07yTak+qvphqo/8fPlh4sknK34/t26VLYkffljzchdXrwpd8xYiPS5TnDolh4MUZ+nywr6N\nEbdZR4rRQ7LFnDmyR3jnTvlfos4SEoQIDpYzk9es0e85Ot2tbvPVqy2rRZhMX1KS/BAmhPw5dHOT\nwy5qKzZWhqaaVok4dkz+PNfUz3zffeLLxw+KUaPk7/IWLYSwt8kRAc7JJTmkjGeeEbkL3i779jFg\ngFydoLYiI+W/ySuvyFBWegp3bq5s7Sv+oJqdLX9+L12q/XWGDBHiu+/k10VFsnu2qk+oOp0MrNV9\nSv3mG9nLVt5jj8kWM2dn/WeD6+P6dflhIiCg4htnaqoMvDNmGHbMf3ErXXXnXL688jHl/9/evcdF\nVW7/A//McFHymjc0SSEuchVQQQv9aiqZmqSoZGqgpn6zy8m8ZJ46x8wjaKmpWXbqlyfNStNfpiFS\nIZiWKSl4RVMLvKJ4QBDkMjCzvn8sBmaGGS46wyCs9+vlq5jZs/fac9l77Wc/z3pKS/n42q8fx0fE\nn4HRLxRxnrJwIVHnzjV/r9VqIhcXzie0Dh7k78qtW1UWb9oJorZD8pEjVZ+7fZubwmvT6rV1Kw8w\nMdZvUaPhL2ZiYvXr8PbmS1DD144axU3hvXvzlyQsjK+Cfvyx6jo2bOAPPyaGaPTomuO2lO++41sa\nuq5c4QOHqVp4RNyC+sorfFXVvr3pWyc1SUggsrXllkjdH0JdlJXxe+3nV/nPxYWb70z8CEtef4uu\nogsdW7OPDh0yvtoLF/iu7gM2RdSqeQl5evLHumCBkYVLS7nV5MMP724fqlNWRrR5c91amgcO5IuU\nMWP4tULUF42Gb7Xl5fHF76BBlt9m796mr9yI+PfZtm2VfsG5u3+hEy5hlHnN4CKypISoY0d6PiKP\n7O25t0dwMNHTbifpf4OOUEqK6c0YNWIE1xVUq7l1UPcg8vHHVQeKTJvGrYp1ce0aH7d1Gz5yc/kg\npjtoTSsri8+b1TWIaOuj6na9ysmpvAB97jnjLYx34+hRbnCYPNl0abD8fD4I11Rbti6+/LLmc3BB\nASfD2oGsGRk8YGnoUG5s0h3csnat8W5Ld+5U1pgNCqq569IPP3CDmOHnM3OmftKvVhNdu9bEE8TI\nyMp+csb87W+cmVfnzBm+iqtu1Nu6dUTjxpl+vqCA+z1W12yv6+ef+Yv1739XPrZ7Nz929iz/2Ax/\ngPXpxReNH4imT+fO5sb88QcnhdoEcvVqTo7uph7koEFEH3zA/Su6deNKujt21Oo2glrNx7hz6xMo\n2SuSfvz4T9r6bgZ9vTyDWywMPqPLl/lY2bYtka2thhzbFJKvr8Zk95KiIv7K3N60w3gHZl3R0Xyw\naCj9UF95hT9XIydFISzO15dvQ/brR/Ttt5bfXk39Cffv55OtIY2GDwoHD+o/vnMnH4uIjwPp6bzI\n/5//G33os874XYGzZ2nsWA098AD36ggM5EPChIFXKaXb05XHo5s3uV9wXBydSyulNKdQurrjMBUU\n6Bz2fv6Z+7XX5Xbq6tXG6/adOMGJo+Gt8f37iR57rOb1PvkkN6xorVpV2cd08+Z7b+BQq/lY1aFD\n7UZf37zJ+2OuATJTp9aua9mKFUQeHkTOztxYFRHBybFhzdmLF3lfDM+HO3TOI6Y+K13h4cbvGmVn\ncwtkaCgn1M2bE3Xq1IQTxJ9+4lsI1RUc/uMPbq0z1cpSUMA/OFMdcrXy8vjLZ6pz78GDfLVaF+fO\n8Rdr7lwuQdChA/9Xa+RI67XyuLkZv/1z7hwngbpxaoWHc8unllrNX9bFiysf02h4gMXUqVR66izd\nvs1dfTIydBobf/2Vf2zlt1vyb5XSv545QQtafUgvPX2ZoqJ4U9quOYYyMzlEV4cr1NvlvzR0KOf2\npgblqVSck2dn1zGPKyqqvoX6+HH+TC9erMNKLezTT7ml29fX2pGIpujpp3nUlbNz/ZQAy8ur/mJo\n4cKqFQy0YmK4Ve/zz7kb08aNfOFq7Fxx9arxVrezZ4mUStKMj6D86wWUkcE3u+JjS2nzQ/Pp0oaf\n9Jcvbzh4pf9R8nC4SI6OfJ63teVjWtJeNd/pMrhj9tFH3Pi4ZAnnaZ98wjlVZiZxE6dBq1RJSfmx\nbuzYqknQJ5/Urm/o+vWVCaFazecM7cCd69f5Xv3dzjhy8yYnTSEhnIXX1iuv8PfrXmk0nM2fPVvz\nskVF/B1JS6s5cQ8MrDou4rnnKj8D7W1tU/nKtWuVg1OMOX2aG5pOn67ootWgEsQ9e/ZQjx49yM3N\njZYZmcIrKSmJWrduTQEBARQQEEBLliwxHmRNO1VYyB1hY2NrDko7G4YhjYabraOiandFNmtW1bp4\nWh9+WNlptC6ys/mgY2/PV6e6Nm3i29NmpNHwBUxBgdHuCkREpDr7J+1/MIwSftJQXBxf4GzdqnOx\n+P33nPjs2EFEvK7ZEVfof1t8QZGTSmn8eK7KMGYM8YGzUye+Kt20iahXL/rvI0FkqyglJcqoRQsN\ndejAv8Xg4PL1P/WU3u2JggI+jkePPEBrgzbShg3cjfMng2OrntOn+WrK8CrO3GbO1E+KtUpKuHSG\nYd03azt8mPu31rYztBDmNGcOH+tWrKi/bT7/vPHfKBFRQEBlRQBD//0vl6+JjOST+KRJ/Hs3dXLu\n1q1q/7hJk4jeeovPMQEBlQNR1q41PfJ0yRL+jeqU2iku5gvpoiLiihK6gyGJx+tER3Ou++qrvMsT\nJhAdj73Ex1+DVqsnnuBNNLNXUxtlHnXurCEXl/Lr/jlzuG+dDu2YiJdfJpo/n6sVRb+RRxfb+HIS\nGB/P+1e+P8nJRImu0+mXj45TcjJ3o0xLq0O38mef5fe6rnef0tM5Uc/NrdvrDJ07x31kzT3wZfFi\n/X78JSVVWz1DQ/VbZnUtXUo0Y0adNlnXBFFR/iKzU6vV6NGjBxISEtC1a1cEBQXh66+/hpeXV8Uy\n+/btw6pVq7Br165q16VQKFBtmH//O1flr81sJXv2AG++ybOBKBQgAgpua6Be/QHUW7dDs+cHqJs9\nACKgSxdj+8UzU6j/uAD1rJeg2bUbaoUtFAqgb9/yhaZPB3r3BmbNQmkpF1ovK6v8V1oKKJVclN1Q\n8W0Vls7LQVn7znrL22lK8P7mjsClS0DbthXL37kDRERUXX/z5kBiYtX15+UB3boBJcUaqEoVUCoV\nsLcHOnTgVRvKX/0ZRsT0h71vD9jbo+Jf27bAp5+WL3TkCBAWBixciJIZL+NDzw/gMDAIDo8/CgcH\nwMGBJwoZPBjA9u3A+PFAaCjw6qugJ4fz/g0dCMWEZ4CXX67c+PHjwPDhwF9/Va3if+MG0KMHcPky\n0KpVdZ848OKLQMeOwOLF1S93r379FZg5Ezh1ClAo+LGyMuC114CLF3kWGu3jDcGdO/ze7dolM6OI\n+vfRRzwT0dWresc0i0pO5tmQzp/ng7BWZibPkJGVBdja3vt2JkzgY5f2IH/mDDBwIM++1KoVsHYt\nz3zx0Uc8ZUxSEm/fkFrNszY984zxY0d6Os9ocvUqH5irs3Qp7+e6dVWe0mgAVQmhqHd/FL+9DEV9\nBqBzZ+CB8SM5vrCwimXj4/mwW1TEE3cUFfG/GXFj4Pr+y8CaNbz89OkAgLlzgZRtf0IFO6gcu0Gl\nAlQqYONGDh0XLvDMOuX7N3AgcOhQ+blGoYJ9YS7sH+qAbduVvLyBuXP5nGxrq/9v0SLAc8kkwN+f\nZ7kpt349x2+4/MSJgJNT1fUnvLoLt45fhu2rL+ktHxRk/Gt77hy/H0olYGPD/5RKXreDg86CJ04A\no0cj/9if0JACysQE2CxbCpv9SRWvU2zaCOzYAXz3XdUPzNWVvxt9+pj8yA3VmEsZMMMvwbjk5GS4\nubnB2dkZADBhwgTs3LlTL0EEUOtg/f35t6LR8H8dHIBjxwBkZ/OP7MwZAEB+PuDszMvoLt+iBS+K\nYcN4+ruDB4GQEBTE7cdDYb2hVDwPm5Yvw6aPDZRKoE0b/qANFRXxF0mpdINN8QewmZQLZccOaNUK\nSEgoXyg1tWLKp9JS4PPPq34ZW7Y0niAqmtnD/uHOeMBgeQeHZsDVx/lkHhlZsXyzZpz/GK6/WTPj\n72Pr1sClPadh//Rw2CvLYPPN1/yLNKHVz7E4sKo5MKmH6Q+nTx9OjkaMQLPvv8ectlnAhpcAGyPL\njhsH3LzJGSkABQB7GwCf/T+gf39OVMq/M4iJAebMqZocAjx94YABPL2WsTdSKy8P2LKFkzZLe+wx\nPmKmpPAFwpEj/D3o2BHYvLlhJYcA/ygWLQIef9zakYimaOhQTibqKzkE+KzesiUnZEOGVD4eH8/x\nmCM5BIBHH+Up+7THpnfe4QvF1q3571df5YQwIoITVmPJIcBZwoQJprfj4sKv3b0bGDPG9HJEwFdf\n6VzV61MqgeYOCjR/NRL4ehUQMYCfOHsW8PTUW/bJJ01so3UQJ74HD/Ixt9zKlQBGXuSGnEOH9F9z\n8iQQEMDTIS5aBIA/mtJSQJVbCFXfAVCtfw+q/oPRqZPxzU6YwOd2w0aSdu3AieHw4fx+l58UW7fm\nr4B22eLi8u2pjK//wE/FSGv5FMo26a///feNf3VjYvgUYJiDbNlikMv5+QEAIkbk49cTraEp6g81\nfoS6FS//889A/zFjeHrVnJzyHeL3P3l/CZSqVNiMbFuRgH77LYwm0FFR3NaivJuJlevU3lgH27Zt\no+k6t1m/+OILetmgKXzfvn3Url076tmzJw0fPpxOnz5tdF0AKPWbc3TiBN8tPHNGp4/amjV6BVfV\nar4bkJPDrf8FBXwHWm8swurV3HT79NM8knXr1rtrPt67l/ta6DZ9l5TwABVLlGX58kvui1iTrCwe\nkGNs6O2lS3wP96uvuNSBt7fpviEqFfcdMTaDiDHZ2dwZuS71JnXFxPD9Do2Gb8906FB9PbFt22ou\nQfP++zUXMDWnt9/mezqvvcaDjL74QuoLCtGQrFvHfdr+8x8uv/Xvf3P/NmNdj+6WbsHsU6f41q6x\nY1lW1r13ffn6a+6/Xl3/5uPHuY9+Tcei/Hy+LZuRwfewmzWrfd/BU6f4XrWxgaLFxTzQUlvmhYhj\nGTKE71G7ulYd6bxwIdcivlfDhtVcZk2t5pnSpk3TP59rp5i11Gwwr73Gt5rLyvg7Yqwc0PjxlQNY\n1Wq6/bc3KdstmLJ+z6DMTA7t0iXTE+ucP88FVY4caUB9ELdv315jgnj79m26U55IxcXFkbu7u/Eg\nAVoUEkKLFi2iRYsWUVJSEj+h0fCPcO/eugWXm8tlTt59996mKyLiPoO6B5aUFB7oYgm3b/MQ+Oqm\nDTx2jDt9R0VxgjJvXmUn11u3ODbtiGSNhjtemyqV8Msv3JekvqhU3HH3P//hJMtUH08t7cAQY0Vl\nifhH7+padfShJV24wEVOIyOrLwEkhLCOvDyiF17g3+jUqdyhbvbse++rpku3YPb48VX68ZndqlV8\n4W+ikYXmzDFRe8uI2bM5WTpxgmv+1pZGww0EpmoeDh+uX5181y5ev0rFr+nSpbLg+cmT3EBwN3Ue\nDSUm8kheU6MOi4u5k2ZICA8pnzSpctDUkSN1ew/qat8+Puft38/91I3ZsYNLkhUV8Xepf3/9RLsa\nSUlJFXnTokWLGk6C+Ntvv9GwYcMq/o6OjjY6UEWXs7MzZRvZcQDcSdTwAz56lJMha5YN2b+fWyG1\nV1mffcaDXSxlzBjTV7rffss/Km1R7aws/uK7u/MojkGDeGSX7lXkhQs8JM7Y6Ns33qj9QcVctLOY\ntGtXux/BCy+Yniw+Npan6qrvFjxTsy4IIZqOkBC+g+HoqF8Dz1K++IK3pXtBvH8/t5a6uNS+WPW5\nc1ztY9Om8tGFZrJ6deWgipISPi/p1qVMSeHtJiZyaR1z1U7UaPg8UD6QUs+tW3xeDA/nhpQ7d/iu\n1JQpnFcsW8bnTEspLeXzXXi4foUPXcXFfD4MCuKyOffQqNVgEsTS0lJ65JFHKD09nUpKSsjf35/S\n0tL0lrl+/Tppyk/ehw8fpu7duxsPEuCWLMOWwhdfNP2m1qfQ0Mom4Jde4qs5S9mypWrV+rIyHu3m\n5MRTPxnasYNH8YaHGy8n8fbb+vXBsrO5Ba9rV9NTB1lSTIzppM/Qb7/xgcZYEjhsGJejEEKI+jZv\nXv2P0t6zh5Os1as5MXzkEW5QqGuJmSef5Fa3muoG10VaGo/u1mj4HGls9pW9e7nltV8/8zb8bNvG\n5bzWr+eWyyNHuJXS15e7Y+meFwsKeG7v6dP5FripGU/MZcoUvjVf3bn2rbe4weYe35MGkyAS8W1j\nDw8PcnV1pejySa4//vhj+ri8sOO6devIx8eH/P396dFHH6XfjNXTo/KdWrlSv/J4YSFn1Q2hrtxv\nv3HzfnExX/ncbR+82sjP59vM16/zj+mFF/iqceDA6vtJFBaarjVWVMS3Ynfv5lqLnTtzDQNrFeau\nC20RW8Pvzu7d3KfD0qVthBDCmB07+Nhsif7o1Tl0iBObu0kMtWJjOWkx5wW2RsONGL/8wq1mpm6H\nJyUR/fWX+bZLxOe+FSu4BXPkSG5weughovfeM964cPs2n8ttbMzb9cCY2FgeC1APd7rqmiBarMyN\nOSkUCtC1a4C3Nw/nf+AB4OuveXjwDz9YOzw2ciSPkP773znGNm0st62ICCA2lt+P8eOBsWMBN7d7\nW2d8PPD00zxi7ZNPdGr23AeWLgWuXOH6BaWlwD/+waOGv/oK+J//sXZ0QoimSKPhclzG6qU1dGo1\n4OvLpeN69jTfep9/nkvNjR0LfPCB+dZrCbdvc6zPPGP5bd25w1UlLKyuZW7unwSRiBOwqVN5XHto\nKNdZqo8PrzaOHOFyIY6OXNfJkrKy+Avl4mLe9R44APTrB9jZmXe9lnbpEhAYyGUlpkzh2gMbN3J5\nGSGEEHWn0dxlbZRqfPMN11W8cAFo39686xY1atwJ4hdf8BXNunVcUOjKFeM18qxl9GhOrrZts3Yk\nTc/gwcDhw1wMe84c8x/YhBBC3BuNhqtUd+9u7UiapMadIBYUcDnyiRO5oOnatdYOTd+NG1yp+15v\n94q6O3mSby/36mXtSIQQQogGp3EniAAweTLw5Zc8W0lAgHUDE0IIIYS4DzSYqfYsZsYM4Pp1SQ6F\nEEIIISzk/mtBBHheyYY2r60QQgghRANV1xbE+7MnvySHQgghhBAWc38miEIIIYQQwmIkQRRCCCGE\nEHokQRRCCCGEEHokQRRCCCGEEHokQRRCCCGEEHokQRRCCCGEEHokQRRCCCGEEHokQRRCCCGEEHok\nQRRCCCGEEHokQRRCCCGEEHokQRRCCCGEEHokQRRCCCGEEHokQWxg9u3bZ+0Q6pXsb+PVlPYVaFr7\n25T2FWha+9uU9hVoevtbF5IgNjBN7csq+9t4NaV9BZrW/jalfQWa1v42pX0Fmt7+1oUkiEIIIYQQ\nQo8kiEIIIYQQQo+CiMjaQdREoVBYOwQhhBBCiPtaXVI+WwvGYTb3QQ4rhBBCCNFoyC1mIYQQQgih\nRxJEIYQQQgihp8EmiNu2bYOPjw9sbGyQkpKi91xMTAzc3d3h6emJH3/80UoRWk5ycjKCg4MRGBiI\noKAg/P7779YOyaI++OADeHl5wdfXFwsWLLB2OPVi5cqVUCqVyMnJsXYoFjV//nx4eXnB398f4eHh\nyMvLs3ZIZhcfHw9PT0+4u7tj+fLl1g7Hoi5fvozHH38cPj4+8PX1xdq1a60dksWp1WoEBgZi1KhR\n1g7F4nJzczFu3Dh4eXnB29sbhw4dsnZIFhMTEwMfHx/4+flh4sSJKCkpsXZIZjVt2jQ4OjrCz8+v\n4rGcnByEhobCw8MDTzzxBHJzc6tfCTVQZ86coT/++IMGDRpER48erXj89OnT5O/vTyqVitLT08nV\n1ZXUarUVIzW/gQMHUnx8PBERxcXF0aBBg6wckeUkJibS0KFDSaVSERFRVlaWlSOyvEuXLtGwYcPI\n2dmZsrOzrR2ORf34448Vv88FCxbQggULrByReZWVlZGrqyulp6eTSqUif39/SktLs3ZYFpOZmUmp\nqalERJSfn08eHh6Nen+JiFauXEkTJ06kUaNGWTsUi4uMjKTPPvuMiIhKS0spNzfXyhFZRnp6Orm4\nuFBxcTEREUVERNDnn39u5ajMa//+/ZSSkkK+vr4Vj82fP5+WL19ORETLli2r8XjcYFsQPT094eHh\nUeXxnTt34tlnn4WdnR2cnZ3h5uaG5ORkK0RoOV26dKloacnNzUXXrl2tHJHlrF+/HgsXLoSdnR0A\noGPHjlaOyPLmzJmDd99919ph1IvQ0FAolXyY6du3L65cuWLliMwrOTkZbm5ucHZ2hp2dHSZMmICd\nO3daOyyL6dy5MwICAgAALVu2hJeXF65du2blqCznypUriIuLw/Tp0xv9YMm8vDwcOHAA06ZNAwDY\n2tqiTZs2Vo7KMlq3bg07OzsUFhairKwMhYWFje48O2DAADz44IN6j+3atQtRUVEAgKioKHz33XfV\nrqPBJoimXLt2DU5OThV/Ozk54erVq1aMyPyWLVuGuXPnolu3bpg/fz5iYmKsHZLFnD9/Hvv370e/\nfv0waNAgHDlyxNohWdTOnTvh5OSEnj17WjuUerdhwwaMGDHC2mGY1dWrV/Hwww9X/N0Yj0emZGRk\nIDU1FX379rV2KBbz2muv4b333qu4yGnM0tPT0bFjR0ydOhW9evXCjBkzUFhYaO2wLKJdu3YV59iH\nHnoIbdu2xdChQ60dlsXduHEDjo6OAABHR0fcuHGj2uWtWuYmNDQU169fr/J4dHR0nfp73I91Ek3t\n+9KlS7F27VqsXbsWY8aMwbZt2zBt2jT89NNPVojSPKrb17KyMty6dQuHDh3C77//joiICPz1119W\niNJ8qtvfmJgYvX6zjaFVoja/46VLl8Le3h4TJ06s7/As6n489phDQUEBxo0bhzVr1qBly5bWDsci\nYmNj0alTJwQGBjaJ6djKysqQkpKCdevWISgoCLNnz8ayZcvwzjvvWDs0s/vzzz+xevVqZGRkoE2b\nNhg/fjy+/PJLTJo0ydqh1RuFQlHj8cuqCeLdJD1du3bF5cuXK/6+cuXKfdk0XN2+T548GQkJCQCA\ncePGYfr06fUVlkVUt6/r169HeHg4ACAoKAhKpRLZ2dlo3759fYVndqb299SpU0hPT4e/vz8A/u72\n7t0bycnJ6NSpU32GaFY1/Y4///xzxMXFYe/evfUUUf0xPB5dvnxZ7w5HY1RaWoqxY8di8uTJGD16\ntLXDsZiDBw9i165diIuLQ3FxMW7fvo3IyEhs2rTJ2qFZhJOTE5ycnBAUFASAzz3Lli2zclSWcRuB\nRQAACFRJREFUceTIETz22GMV55nw8HAcPHiw0SeIjo6OuH79Ojp37ozMzMwazzv3Rbu5bitLWFgY\ntmzZApVKhfT0dJw/fx7BwcFWjM783Nzc8PPPPwMAEhMTjfbFbCxGjx6NxMREAMC5c+egUqnu6+Sw\nOr6+vrhx4wbS09ORnp4OJycnpKSk3NfJYU3i4+Px3nvvYefOnWjevLm1wzG7Pn364Pz588jIyIBK\npcLWrVsRFhZm7bAshojw/PPPw9vbG7Nnz7Z2OBYVHR2Ny5cvIz09HVu2bMHgwYMbbXIIcP/Shx9+\nGOfOnQMAJCQkwMfHx8pRWYanpycOHTqEoqIiEBESEhLg7e1t7bAsLiwsDBs3bgQAbNy4seYLPEuN\noLlX3377LTk5OVHz5s3J0dGRnnzyyYrnli5dSq6urtSjR4+K0b6Nye+//07BwcHk7+9P/fr1o5SU\nFGuHZDEqlYomT55Mvr6+1KtXL0pKSrJ2SPXGxcWl0Y9idnNzo27dulFAQAAFBATQrFmzrB2S2cXF\nxZGHhwe5urpSdHS0tcOxqAMHDpBCoSB/f/+Kz3TPnj3WDsvi9u3b1yRGMR87doz69OlDPXv2pDFj\nxjTaUcxERMuXLydvb2/y9fWlyMjIikoajcWECROoS5cuZGdnR05OTrRhwwbKzs6mIUOGkLu7O4WG\nhtKtW7eqXcd9MRezEEIIIYSoP/fFLWYhhBBCCFF/JEEUQgghhBB6JEEUQgghhBB6JEEUQgghhBB6\nJEEUQgghhBB6JEEUQgghhBB6JEEUQpiFjY0NAgMDERgYiF69euHixYsICQmx2Pby8vKwfv36Bru+\ne6U7hZ32fTSM0fBvS77faWlpCA4OxnPPPYebN28CAFJTU+Hj44O4uDiLbVcIYR1SB1EIYRatWrVC\nfn5+vW0vIyMDo0aNwsmTJ6s8pz2s1WWu5OrWZ8rdbKe2jL2fhjHeTcz3YvHixejevTumTJkCADh2\n7Bjs7e2bxCwUQjQ10oIohLAYbStYRkYGvLy8MHPmTPj6+mLYsGEoLi4GAGzevBl9+/ZFYGAgXnjh\nBWg0mirruXPnDkaOHImAgAD4+fnhm2++wcKFC/Hnn38iMDAQCxYswMWLF9GjRw9ERUXBz88PBw4c\ngJ+fX8U6VqxYgcWLFwMANm3aBH9/fwQEBCAqKgoA8MYbb1RZn7HXG27n8uXLNe6Dsfi174unpycm\nT54Mb29vjB8/HkVFRSbfR90YX3/9db334PXXX0erVq1qfL8BYMmSJfD09MSAAQMwceJErFy5slaf\np5OTk97c06dPn5bkUIjGyuLzvQghmgQbG5uK6dfCw8OJiKhly5ZERJSenk62trZ0/PhxIiKKiIig\nzZs3U1paGo0aNYrKysqIiGjWrFm0adOmKuvevn07zZgxo+LvvLw8ysjIIF9f34rH0tPTSalU0uHD\nhyv+1n1+xYoV9Pbbb9OpU6fIw8OjYprDnJwcIiKj6zN8/eLFiykjI0NvO7XZB2Pxa7ehUCjo4MGD\nREQ0bdo0WrFihd57p/v/hjEa/l3T+01ElJycTAEBAVRSUkL5+fnk7u5OK1eurPKex8XF0apVq2jd\nunWUmZlJRETx8fE0c+ZMIiJKSEioeFwI0fjYWjtBFUI0Dg4ODkhNTTX5vIuLC3r27AkA6N27NzIy\nMpCbm4ujR4+iT58+AICioiJ07ty5ymt79uyJefPm4Y033sBTTz2F/v37Iycnp8py3bt3R3BwcLVx\nJiUlISIiAu3atQMAPPjggwAqbxdXR7uM7nb27t1b4z4Yi1/r4YcfxqOPPgoAmDx5MtauXYu5c+dW\nu31Tf+sy9n4DwK+//orRo0fD3t4e9vb2GDVqVJX1XLx4EdHR0Thw4AASExNRUFAAoLIFUa1WIysr\nC0OGDDH9Zgkh7muSIAoh6kWzZs0q/t/GxgZFRUUgIkRFRSE6Orra17q7uyM1NRW7d+/GW2+9hSFD\nhiAyMrLKci1atKj4f1tbW71bvbq3bmuTDFb3et3tAKhxH4zF/49//AOAfv9FIoJSaZ6eP8beb+32\ndPff2Hvx3Xffwd3dHbGxsWjRogXc3NwAcIJ45coV7Ny5E2FhYWaJUwjRMEkfRCGE1QwZMgTbt2+v\nGBWbk5ODS5cuVVkuMzMTzZs3x6RJkzBv3jykpqbWOCjG0dERWVlZyMnJQUlJCWJjY6FQKDB48GBs\n27atogVS+1/D9Zl6/d3sg2H8KSkpFc9dunQJhw4dAgB89dVXeq2LhgxjvJuBQSEhIfj+++9RUlKC\ngoIC7N69u8p+OTg4ICwsDE899RQGDBiArKwsAECbNm2Qk5MDpVJZJUkWQjQu0oIohDALY8mT7mOG\nzysUCnh5eeFf//oXnnjiCWg0GtjZ2eGjjz5Ct27d9JY9efIk5s+fD6VSCTs7O3z88cdo164dQkJC\n4OfnhxEjRuDFF1/U24adnR3++c9/Ijg4GF27dq0YTOHt7Y0333wTAwcOhI2NDXr16oUNGzagffv2\neutbvny50dcb7ktt9sFY/Fo9evTAhx9+iGnTpsHHxwezZs0y+d4Zi1H79/Dhw2t8vwGgT58+CAsL\nQ8+ePeHo6Ag/Pz+0adNGb9lnnnkGa9asgZ2dHXJzczFu3LiK50JCQqT1UIgmQMrcCCGEldR3mRqt\nO3fuoEWLFigsLMTAgQPx6aefIiAgoF5jEEI0bNKCKIQQVmSJGoo1mTlzJtLS0lBcXIwpU6ZIciiE\nqEJaEIUQQgghhB4ZpCKEEEIIIfRIgiiEEEIIIfRIgiiEEEIIIfRIgiiEEEIIIfRIgiiEEEIIIfRI\ngiiEEEIIIfRIgiiEEEIIIfRIgiiEEEIIIfT8H4NCegrDYbJ6AAAAAElFTkSuQmCC\n" } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Decoherence time of 2.5 ns, coherence of 71%." ] }, { "cell_type": "code", "collapsed": false, "input": [ "qd.crosstau = 2.5\n", "fss = np.linspace(-10, 10, 500)*1e-6\n", "fidelities = [qd.ideal_fidelity_lorentzian(f)[0] for f in fss]\n", "ghv = qd.ideal_fidelity_lorentzian(f)[1]\n", "\n", "numerical_data_with_dec = np.loadtxt('../out/fidelity_vs_fss/cross_dephasing2.5ns/fss_v_fidelity.txt', delimiter = ',')\n", "\n", "plt.figure(figsize = (16./1.5,9./1.5))\n", "plt.plot(numerical_data_with_dec[:,0], numerical_data_with_dec[:,1], 'r-', fss/1e-6, fidelities, 'b--')\n", "plt.legend(['Monte carlo', 'Theoretical']) \n", "plt.text(6, 0.9, ' coherence ' + np.array(ghv).astype('|S4').tostring())\n", "plt.xlim([-10, 10]) ; plt.ylim([0.45, 1.05])\n", "plt.xticks(np.linspace(-10, 10, 11))\n", "plt.xlabel('Fine structure splitting $eV$') ; plt.ylabel('Fidelity')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "pyout", "prompt_number": 4, "text": [ "<matplotlib.text.Text at 0x10643d6d0>" ] }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAogAAAF8CAYAAABMokooAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4TNcfBvB3JgmCIBGCJLJUSKwJQWINRailli5UbU3R\nRVut6oJf0VpKq6rVqqLUvu/VqC12gsa+JJbIIkI2CUGSmfP741RkZI+ZuZnk/TxPnmZm7vKdaG7e\nOefcc1RCCAEiIiIiov+olS6AiIiIiIoXBkQiIiIi0sGASEREREQ6GBCJiIiISAcDIhERERHpYEAk\nIiIiIh3mShdQECqVSukSiIiIiExaYWY2NJkWRCFEqfiaOHGi4jXw/fL98r3y/fK9ls73W5rea2l7\nv4VlMgGRiIiIiIyDAZGIiIiIdDAgFjN+fn5Kl2BUfL8lV2l6r0Dper+l6b0Cpev9lqb3CpS+91sY\nKlGUjmkjU6lUReo/JyIiIqLCZymTuIuZiIiIDM/GxgaJiYlKl0HPwdraGgkJCc99HLYgEhEREQD+\nvS0Jcvs3LOy/LccgEhEREZEOBkQiIiIi0sGASEREREQ6GBCJiIiIihk/Pz8sWrRIsfMzIBIREVGx\n5+zsjLJlyyI+Pl7neS8vL6jVakRERDz3OZQOZVmpVCqoVCrFzs+ASERERMWeSqWCq6srVq1alfnc\nuXPn8PDhQ70FKSUD2RNCCGi1WqXLYEAkIiIi0/Dmm29i6dKlmY///PNPDB48WGf6lnv37mHw4MGo\nXr06nJ2dMXXq1MzXlyxZgjZt2mDs2LGwsbGBq6srAgMDAQDjx4/HwYMHMWrUKFhZWeHDDz8EAFy+\nfBmdO3dG1apV4e7ujnXr1uVaX0JCAoYNGwZ7e3vY2NigT58+AIDExET06NED1atXh42NDXr27Ino\n6OjM/fz8/DBhwgS0bt0aFStWxI0bN3SOK4TAlClT4OzsDDs7OwwZMgTJycnP+dPMGwMiERERmQQf\nHx8kJyfj8uXL0Gg0WLNmDd58802dbT744AOkpKTgxo0b2L9/P5YuXYrFixdnvh4cHAx3d3fEx8fj\ns88+Q0BAAABg6tSpaNu2LX755RekpKTgp59+woMHD9C5c2e8+eabuHv3LlavXo333nsPly5dyrG+\nQYMG4dGjR7h48SLu3LmDTz75BIAMeAEBAYiIiEBERAQsLS0xatQonX2XL1+OhQsXIiUlBU5OTjqv\nLV68GH/++SeCgoJw/fp13L9/P9v++saASERERCZj0KBBWLp0KXbt2oX69evD3t4+87UnoXH69Omo\nUKECnJycMGbMGCxbtixzGycnJwQEBEClUmHw4MGIiYnBnTt3Ml/P2hq5fft2uLi4YMiQIVCr1fD0\n9ETfvn1zbEWMiYlBYGAgfvvtN1SuXBnm5uZo27YtAGS2JpYrVw4VK1bEuHHjsH///sx9VSoVhg4d\nCg8PD6jVapib6y50t2LFCowZMwbOzs6oUKECpk+fjtWrVxu0K5pL7REREVHB6GuMXhFXa1GpVBg0\naBDatm2LGzduZOtejouLQ3p6uk4LXO3atXW6c2vUqJH5ffny5QEA9+/fR/Xq1TPP8cTNmzdx/Phx\nWFtbZz6XkZGBwYMHZ6stMjISNjY2qFy5crbXUlNT8fHHH2Pnzp2ZSxnev38fQojM8zk6Oub6vmNi\nYrK9p4yMDMTGxqJmzZq57vc82IJIREREBSOEfr6eQ+3ateHq6oq///4bffv21XnN1tYWFhYWCA8P\nz3wuIiICDg4OBTr2szep1K5dG+3bt0diYmLmV0pKCn755Zds+zo6OiIhIQH37t3L9tqsWbMQGhqK\n4OBg3Lt3D/v374cQQifc5nWDTK1atbK9J3Nzc9jZ2RXofRUFAyIRERGZlEWLFmHv3r2wtLTUed7M\nzAyvvfYaxo8fj/v37+PmzZuYPXt2tnGKubGzs8O1a9cyH/fo0QOhoaFYvnw50tPTkZ6ejhMnTuDy\n5cvZ9q1Zsya6deuG9957D0lJSUhPT8fBgwcByNZCS0tLVK5cGQkJCZg8eXK2/fNaJ3nAgAGYPXs2\nwsPDcf/+fYwbNw79+/eHWm24GMeASERERCbF1dUVTZs2zXyctfXt559/RoUKFeDq6oq2bdti4MCB\nGDZsWOZ2z7bUZX380UcfYf369bCxscHo0aNRsWJF/PPPP1i9ejXs7e1Rs2ZNfPnll0hLS8uxrmXL\nlsHCwgLu7u6ws7PDnDlzAACjR4/Gw4cPYWtri1atWqFbt2551vGst956C4MGDUK7du3g6uqK8uXL\n4+effy7gT6toVCKvyFpMqFSqPJM1ERERPT/+vTV9uf0bFvbfli2IRERERKSDAZGIiIiIdBg0IL71\n1luws7NDo0aNct3mww8/hJubG5o0aYKQkBBDlkNEREREBWDQgDhs2LDMJWxysmPHDly9ehVhYWH4\n/fff8e677xqyHCIiIiIqAIMGxLZt2+pMLvmsrVu3YsiQIQCAli1bIikpCbGxsYYsiYiIiIjyoegY\nxOjoaJ2Zwx0cHBAVFaVgRURERESk+FJ7z95ynds8QJMmTcr83s/PD35+fgasioiIiMh0BQUFISgo\nqMj7KxoQ7e3tERkZmfk4KipKZ9HtrLIGRCIiIiLK3bONaTmt3pIXRbuYe/XqhaVLlwIAjh07hipV\nqhh0XUEiIiIqeSZNmoRBgwYpXUaOVqxYAX9//+c+jlqtxvXr1/VQUcEYtAVxwIAB2L9/P+Li4uDo\n6IjJkycjPT0dADBy5Ei89NJL2LFjB+rUqYMKFSpg8eLFhiyHiIiITFDFihUzh6A9ePAA5cqVg5mZ\nGQBg/vz5eS5TZ0zh4eFwdXVFRkZG5jrJAwcOxMCBAxWurPAMGhBXrVqV7zZz5841ZAlERERk4u7f\nv5/5vYuLCxYtWoSOHTtmPmesYWgZGRkwN88/OpWE5Qq5kgoRERGZNJVKhbS0NAwZMgSVKlVCw4YN\ncerUqczXb926hX79+qF69epwdXXFzz//nPna48ePMXr0aNjb28Pe3h4ff/wx0tLSAMgbPRwcHDBz\n5kzUrFkTAQEBEELg22+/RZ06dWBra4vXX38diYmJAIB27doBAKpUqYJKlSrh2LFjWLJkCdq2bZt5\nvgsXLqBz586oWrUqatSogenTpwMAgoOD4evrC2tra9SqVQsffPBBZq+rEhgQiYiIyKQJIbB161YM\nGDAA9+7dQ69evTBq1CgAgFarRc+ePeHl5YVbt25hz549+PHHH/HPP/8AAKZOnYrg4GCcOXMGZ86c\nQXBwMKZMmZJ57NjYWCQmJiIiIgLz58/HTz/9hK1bt+LAgQOIiYmBtbU13n//fQDAwYMHAQD37t1D\ncnIyfHx8dOpMSUlBp06d8NJLLyEmJgZXr17Fiy++CAAwNzfHnDlzEB8fj6NHj2LPnj349ddfDf6z\nyw0DIhEREZm8tm3bomvXrlCpVHjzzTdx5swZAMCJEycQFxeHCRMmwNzcHC4uLnj77bexevVqAPIm\nkq+++gq2trawtbXFxIkTsWzZsszjqtVqTJ48GRYWFihXrhzmz5+PKVOmoFatWrCwsMDEiROxfv16\naLXafLuWt2/fjlq1auHjjz9GmTJlULFiRbRo0QIA0LRpU7Ro0QJqtRpOTk4YMWIE9u/fb6CfVv4Y\nEImIiKhAJk0CVKrsX7kNAcxpe0MNF8w6C0r58uXx6NEjaLVa3Lx5E7du3YK1tXXm1/Tp03Hnzh0A\nQExMDJycnDL3rV27Nm7dupX5uFq1aihTpkzm4/DwcPTp0yfzWPXr14e5uXmBVoKLjIyEq6trjq+F\nhoaiR48eqFmzJipXrozx48cjPj6+0D8HfWFAJCIiogKZNAkQIvtXXgGxoNs+j7zuYnZ0dISLiwsS\nExMzv5KTk7F9+3YAQK1atRAeHp65fUREBGrVqpXrsWvXro3AwECd46WmpqJmzZr53k1du3btXKeq\neffdd1G/fn1cvXoV9+7dw9SpU6HVavN76wbDgEhEREQmLa+u3RYtWsDKygozZ87Ew4cPodFocP78\neZw8eRKAnJJvypQpiIuLQ1xcHL7++us851R85513MG7cOERERAAA7t69i61btwKQrY1qtRrXrl3L\ncd/u3bsjJiYGc+bMwePHj5GSkoLg4GAA8k5tKysrlC9fHpcvX8a8efOK9LPQFwZEIiIiMmkqlSpb\n692Tx2ZmZti+fTtOnz4NV1dXVKtWDSNGjEBycjIAYMKECfD29kbjxo3RuHFjeHt7Y8KECdmO88RH\nH32EXr16oUuXLqhUqRJ8fX0zQ1758uUxfvx4tG7dGjY2Njh+/LhObVZWVti1axe2bduGmjVrom7d\nupnL4X3//fdYuXIlKlWqhBEjRqB///465zb2XI8qYQKT9ahUqhIxpxAREVFxxr+3pi+3f8PC/tuy\nBZGIiIiIdDAgEhEREZEOBkQiIiIi0sGASEREREQ68l9xmoiIiEoFa2tro98tS/plbW2tl+PwLmYi\nIiKiEo53MRMRERHRc2FAJCIiIiIdDIhEREREpIMBkYiIiIh0MCASERERkQ4GRCIiIiLSwYBIRERE\nRDoYEImIiIhIBwMiEREREelgQCQiIiIiHQyIRERERKSDAZGIiIiIdDAgEhEREZEOBkQiIiIi0sGA\nSEREREQ6GBCJiIiISAcDIhERERHpYEAkIiIiIh0MiERERESkgwGRiIiIiHQwIBIRERGRDgZEIiIi\nItLBgEhEREREOhgQiYiIiEgHAyIRERER6WBAJCIiIiIdDIhEREREpIMBkYiIiIh0MCASERERkQ4G\nRCIiInpukyZNwqxZs5Quo8Bu3LiBli1bws3NDf3790d6enq2bfbt2wcvL6/ML0tLS2zduhUAMHfu\nXNSpUwdqtRoJCQnGLt/gGBCJiIjoualUqufaX6vV6qmSgvn8888xZswYhIWFwdraGosWLcq2TYcO\nHRASEoKQkBDs3bsX5cuXR5cuXQAAbdq0wZ49e+Dk5GTUuo2FAZGIiIhyFBgYiGbNmsHT0xOdOnUC\nACQkJKB3795o0qQJfH19ce7cucztL168iA4dOuCFF17Azz//nPn88uXL0bJlS3h5eeGdd97JDIMV\nK1bEp59+Ck9PTxw9ejTP7SZMmABPT0/4+vrizp07AIDY2Fj06dMHnp6e8PT0xLFjx/I83xNCCOzb\ntw+vvPIKAGDIkCHYvHlznj+LdevW4aWXXkK5cuUAAJ6eniU2HAIMiERERJSDu3fvYsSIEdi4cSNO\nnz6N9evXAwAmTpyIZs2a4cyZM5g2bRoGDx4MQIauy5cv459//kFwcDAmT54MjUaDS5cuYe3atThy\n5AhCQkKgVquxYsUKAEBqaip8fHxw+vRp2NjY5Lmdr68vTp8+jXbt2mHBggUAgA8//BAdOnTA6dOn\nERISgvr16+d5vifi4+NRpUoVqNUyBtnb2yM6OjrPn8fq1asxYMAA/f2AizlzQx48MDAQo0ePhkaj\nwdtvv43PP/9c5/XExES89dZbuH79OsqVK4c//vgDDRo0MGRJREREVADHjh1D+/btM1vJqlSpAgA4\nfPgwNm7cCEB2wcbHxyMlJQUqlQo9evSAhYUFqlatiurVq+P27dvYs2cPTp06BW9vbwDAw4cPUaNG\nDQCAmZkZ+vXrBwB5blemTBl0794dANCsWTPs2rULgBwjuHz5cgCyi7tSpUpYunRprscpqpiYGJw/\nfx7+/v7PdRxTYrCAqNFoMGrUKOzevRv29vZo3rw5evXqBQ8Pj8xtpk2bhqZNm2LTpk24cuUK3n//\nfezevdtQJREREVEBqVQqCCFyfC2358uUKZP5vZmZGTIyMgDILtxp06Zl275cuXI6Yxdz287CwiLz\ne7VanXnc3GrJ7ThPVK1aFUlJSdBqtVCr1YiKioK9vX2u269duxZ9+/aFmZlZrtuUNAbrYg4ODkad\nOnXg7OwMCwsL9O/fH1u2bNHZ5tKlS+jQoQMAoF69eggPD8fdu3cNVRIREREVUMuWLXHgwAGEh4cD\nQOadum3bts3ssg0KCkK1atVgZWWVY1BTqVR48cUXsX79+sy/7wkJCYiIiMi2bUG3e3afefPmAZAN\nU8nJyQU6jkqlQocOHbBu3ToAwJ9//onevXvnep5Vq1bl2b2cW2A2ZQYLiNHR0XB0dMx87ODgkK1/\nv0mTJpnN1MHBwbh58yaioqIMVRIREREVULVq1fD777+jb9++8PT0zAxIkyZNwqlTp9CkSROMGzcO\nf/75JwAZunK6k9nDwwNTpkxBly5d0KRJE3Tp0gW3b9/O3Kew22U9z5w5c7Bv3z40btwY3t7euHTp\nUp7HyWrGjBn44Ycf4ObmhsTERAQEBAAATp06heHDh2duFx4ejujoaLRv315n/59++gmOjo6Ijo5G\n48aNMWLEiML/kIsxlTBQ7N2wYQMCAwMzB5IuX74cx48f17mrKSUlBR999BFCQkLQqFEjXL58GQsX\nLkTjxo11i1SpMHHixMzHfn5+8PPzM0TZRERERCYvKCgIQUFBmY8nT55cqJZOgwXEY8eOYdKkSQgM\nDAQATJ8+HWq1OtuNKlm5uLjg3LlzqFixom6ReYyDICIiIqK8FTZLGayL2dvbG2FhYQgPD0daWhrW\nrFmDXr166Wxz7949pKWlAQAWLFiA9u3bZwuHRERERGRcBruL2dzcHHPnzoW/vz80Gg0CAgLg4eGB\n+fPnAwBGjhyJixcvYujQoVCpVGjYsGGOs5gTERERkXEZrItZn9jFTERERFR0xaaLmYiIiIhMEwMi\nEREREelgQCQiIiIiHQyIRERERKSDAZGIiIiIdDAgEhEREZEOBkQiIiIi0sGASEREREQ6GBCJiIiI\nSAcDIhERERHpYEAkIiIiIh0MiERERcU14omohGJAJCIqCo0GqFsXCAtTuhIiIr1jQCQiKorQUODq\nVeD775WuhIhI7xgQiYiKIiQE8PMD1q0Dbt1SuhoiIr1SCVH8B9GoVCqYQJlEVJqMHQtYWwOxsUDZ\nssDMmUpXRESUq8JmKbYgEhEVxenTgJcXMGYMsGgRkJiodEVERHrDgEhEVFhCyC5mT0+gdm2gZ0/g\n11+VroqISG8YEImICisqCjA3R5JlTbz/PtDi1DwMmVIHt2+kKl0ZEZFeMCASERVWSAjg5YUDB+TD\nnxdaopajGbybahEdrWxpRET6wJtUiIgKa/Jk4PFjYNq0p88dO4ap3Q7i3w5jsGEjP3sTUfHCm1SI\niAztyfjDrHx8MM5tPRYM2KdMTUREesSASERUWE/uYH6Gashg2Gz+Q4GCiIj0i13MRESFkZAAODsD\nSUmA+pnP2HFxQJ06QGQkYGWlSHlERDlhFzMRkQFt+SUKjxt5Zw+HAGBrK1dX2bDB6HUREekTAyIR\nUQFduQKM/O4FwLNJ7hsNGgQsXWq8ooiIDIABkYiogJYuBQY5BKFss0a5b9SjB3D2LE7/HcPV94jI\nZDEgEhEVgBDA6tXAgEeLc7xBJVPZssArr8B2/wbMmCFnwyEiMjUMiEREBXDyJGCm1sIrZgfQoEHe\nGw8eDIetv6JBA4GdO41THxGRPjEgEhEVwNq1wOvtYqByrweUKZP3xr6+QFoaXveNwNq1xqmPiEif\nGBCJiAqgd29gmMv+7BNk50SlAgYNQq+7f+Dvv4GMDMPXR0SkTwyIREQF0Lo14Bp1IO/xh1m9+SYc\nt89DbUeBY8cMWxsRkb4xIBIRFVRISMED4gsvAC4u2PHlQbRqZdiyiIj0jQGRiKggTp0Crl4tWBfz\nE/36oWbQqhzn1CYiKs542SIiyk9cHNCvH/D774VbQq9vX2DTJkCjMVxtREQGwIBIRJQHkaEBBgwA\nXn9dhsTCqFMHsLMDjhwxTHFERAbCgEhElIdxbQ9iQVQ3YOrUoh2gXz+uzUxEJocBkYgoNxs3IvCU\nLRp8PwwwNy/aMfr1AzZuRMRNod/aiIgMSCWEKPZXLZVKBRMok4hKkowMJFari9ppYUhIMoOFRRGP\nIwSEuwfs7p7DiRALODnptUoiogIpbJZiCyIRUU7+/ReHK7+Elr7PEQ4BQKWC6pV+6GB3Efv26a06\nIiKDYkAkIspJUBAOVu2Ndu30cKx+/dAxbh327mVPCBGZBgZEIqKcBAXhPBqgbVs9HMvLCx3LHsbe\nnengaBkiMgUMiEREz8rIAA4fxvZAC7Rvr4fjqVSo83ozqB49RFiYHo5HRGRgDIhERM/691+gdm2o\nqtnqbRUU1Sv9MLTMSiQk6Od4RESGVMR5G4iISrD9+wE/P/0es2VLfKN6GXDoCcBBv8cmItIztiAS\nET0rKEj/AVGtBnx9gaNH9XtcIiIDYEAkIsoqIwM4dAj6uX35GT4+wLFj+j8uEZGeGTQgBgYGwt3d\nHW5ubpgxY0a21+Pi4tC1a1d4enqiYcOGWLJkiSHLISLKX0gIbtf0QlhSNf0fmy2IRGQiDLaSikaj\nQb169bB7927Y29ujefPmWLVqFTw8PDK3mTRpEh4/fozp06cjLi4O9erVQ2xsLMyfWdKKK6kQkdF8\n9x1+3OqCKw1fwbx5ej72/fuAnR2QkACULavngxMR5a7YrKQSHByMOnXqwNnZGRYWFujfvz+2bNmi\ns03NmjWRnJwMAEhOTkbVqlWzhUMiIqMKCsJx0QItWxrg2BUrIs61BRZPiTLAwYmI9MdgATE6OhqO\njo6Zjx0cHBAdHa2zzfDhw3HhwgXUqlULTZo0wZw5cwxVDhFR/v6b//B4pL1hAiIA8+Ze+PA7R6Sn\nG+b4RET6YLDmOpVKle8206ZNg6enJ4KCgnDt2jV07twZZ86cgZWVVbZtJ02alPm9n58f/PR9hyER\n0enTuFujERJum6FePcOcooqfJ5w2xOLsWUc0a2aYcxARBQUFISgoqMj7Gywg2tvbIzIyMvNxZGQk\nHBx05/46cuQIxo8fDwB44YUX4OLigitXrsDb2zvb8bIGRCIigwgKwvE6b6C5I/Q2QXY2Pj5opT2I\nI0feYEAkIoN5tjFt8uTJhdrfYF3M3t7eCAsLQ3h4ONLS0rBmzRr06tVLZxt3d3fs3r0bABAbG4sr\nV67A1dXVUCUREeUtKAhlvBpgwAADnsPNDa3EYRzZ89CAJyEiej4Ga0E0NzfH3Llz4e/vD41Gg4CA\nAHh4eGD+/PkAgJEjR2LcuHEYNmwYmjRpAq1Wi5kzZ8LGxsZQJRER5U4I4PBhdFlUD7Az4HlUKvg0\ny8DXx7QGPAkR0fMx2DQ3+sRpbojI4GJjgQYNgLg4g59K+/UU/HawAd7Z2cdwXdlERFkUm2luiIhM\nSmgoULeuUU6lbuWD9x7PZjgkomKLlyciIsCoAREtWgD//gvOdUNExRUDIhERYNyAWKkS4OICnD1r\nnPMRERUSAyIREQCEhuKH0O5ISDDS+bguMxEVYwyIREQAHl6+if+tbQRLSyOd0McHOHbMSCcjIioc\nBkQiIo0GIdcrwcMdxguIvr74bacz1qwx0vmIiAoh34D4008/ITEx0Ri1EBEp4+ZNHC/fES19jfiZ\nuV494EEqdm7hhNlEVPzkezWMjY1F8+bN8dprryEwMJDzERJRyRMaiuNl26JlSyOeU62Gj+cjHDuU\nYcSTEhEVTL4BcerUqQgNDcVbb72FJUuWwM3NDePGjcO1a9eMUR8RkeGFhuJ4aiPjBkQADTvVQGRs\nGSQlGfe8RET5KVB/ilqtRo0aNWBnZwczMzMkJibilVdewdixYw1dHxGRwYkroZjc6xTc3Ix7XvPW\nLdGs/CUEBxv3vERE+ck3IM6ZMwfNmjXDZ599htatW+P8+fOYN28eTp06hY0bNxqjRiIig1KFhWLw\nQK3xVzZp0QI+D/bi2BGNkU9MRJQ38/w2SEhIwMaNG+Hk5KTzvFqtxrZt2wxWGBGR0YSGyptGjM3a\nGmOcN8Dixc4AGhn//EREucj38/K1a9eyhcNBgwYBAOrXr2+YqoiIjOXhQyA2FnjmOmcs1drUQ5Xz\nhxQ5NxFRbvINiBcuXNB5nJGRgVOnThmsICIio7p6VS57Z2amzPl9fTlhNhEVO7kGxGnTpsHKygrn\nzp2DlZVV5lf16tXRq1cvY9ZIRGQ4xlyDOSc+Plxyj4iKHZXIZ2LDL774At9++62x6smRSqXi/ItE\nZBDrB27EjeiyGBvUXZkCNBrAxga4fh2oWlWZGoioxCtslsr1JpXLly/D3d0dr776Kv79999srzdt\n2rRoFRIRFSN7TlWBu6ex1tfLgZkZ0Lw5Hh0IRrk+3ZSrg4goi1wD4qxZs7BgwQKMGTMGKpUq2+v7\n9u0zaGFERMZwPMoeQz5KVbSG9BatYTegA27FAxUqKFoKERGAAnQxFwfsYiYiQ0hNBapVeID4Gyko\n51xDuUL++gst33DFd9s80K6dcmUQUcmlty7mDRs25Nhy+ETfvn0LVxkRUTHzb1Ay6quvopyTl7KF\n+PjA59FaHDtSD+3aGXu2biKi7HINiNu2bWNAJKIS7XhgIlpWvQqoFB5TXbUqfGxCsX5PCvBFZWVr\nISJCHgFxyZIlRiyDiMj43m98EA9uHQTwmtKlwMdXjTF7zSEEkMdncyIio8i3L+P27dsICAhA165d\nAQAXL17EokWLDF4YEZGhlQu/jKqNaildBgDAuVMdVDeLR2Ki0pUQERUgIA4dOhRdunTBrVu3AABu\nbm6YPXu2wQsjIjI4pSfJzkLVyhen7brCxkbpSoiIChAQ4+Li8Prrr8Psv2WoLCwsYG6ea880EZHp\nKEYBEQ0bAjExwH8fxomIlJRvQKxYsSLi4+MzHx87dgyVK3MQNRGZuNRU4No1oF49pSuRzM2B3r2B\n1auVroSIKP+AOGvWLPTs2RPXr19Hq1atMGjQIPz000/GqI2IyGBS/j4ENG0KVKyodClPDRwIrFih\ndBVERAWbKDs9PR1XrlwBANSrVw8WFhYGLywrTpRNRPqUkQFYl3+E6C9/QaXJY5Qu5ymNBnB0BPbu\nBdzdla6GiEoQvU+ULYTQmQ8xNDQUAOdBJCLTdfYs4KiKQqXeHZUuRZeZGSJeegcpc3ahwTwGRCJS\nTr4TZd/y+rSgAAAgAElEQVS5cwdHjhxBx47yQrpv3z60atWKAZGITNbRbXHwVQcDTforXUo2e+wH\nY/cPZ7DiV06ISETKyXei7M6dO+PixYuoWbMmACAmJgZDhgwxSnFERIZw9K8E+Hk9BNTFb1k7n9ed\nMGW6Gjh+HPDxUbocIiql8r06RkZGokaNp4vY29nZISIiwqBFEREZ0tELVvDtUyP/DRVQz12FeLPq\nuLNgi9KlEFEplu+Ehp06dYK/vz/eeOMNCCGwZs0adO7c2Ri1ERHp3YPENFg/ug2PIS2VLiVHajXQ\n0luL4xui0PO3dMDINwUSEQEFuItZCIFNmzbhwIEDUKlUaNeuHfr06WOs+gDwLmYi0qN9+4AvvpBd\nuMXUxIlAxsLFmLqwBtCtm9LlEFEJUNgsVaBpbpTGgEhEevP550C5csDkyUpXkqvjx4Hzc/YgQL0Y\nWL5c6XKIqATQW0Bs3bo1Dh8+jIoVK+pMc/PkJMnJyc9XaSEwIBKR3jRuDMyfD/j6Kl1J3u7cAdzc\ngLt3gTJllK6GiEyc3gLizZs34eTkpLfCngcDIhHpRXQ00KiRDF+msKZ8vXrAxo1AgwZKV0JEJq6w\nWSrXu5izjjPs16/f81VFRFQc7NwJdO5sGuEQABo2BC5cULoKIiqFcg2IWVPm9evXjVIMEZEhnV59\nCaGeryldRsE1aACcP690FURUChW/WWKJiAxBq8X3+5vjoEUxW14vLw0asAWRiBSR6xhEMzMzlC9f\nHgDw8OFDWFpaPt2JN6kQkakJDcULDcpi2xkn1K+vdDEF87937uLTPd1QOeyk0qUQkYkrbJbKdSCO\nRqPRS0FERMXB7Z1nkKjqBnd3pSspuP0XqqL9zero9OiRnJqHiMhI2MVMRKXCwR3JaO0WWxyXX86V\nj68ax6p0Ba5cUboUIiplTOhSSURUdAdDKqJtO9O65Pn4AMfMW/NGFSIyOtO6WhIRFcXjx2iauAfd\nA+yUrqRQfHyAY/c8IM7zRhUiMi4TmQyMiOg5nDmDoR7BgHd5pSsplFq1AEtL4NqJeNRRuhgiKlUM\n2oIYGBgId3d3uLm5YcaMGdle//777+Hl5QUvLy80atQI5ubmSEpKMmRJRFQaHT8OtGihdBVFsvSH\nOFS9Gqx0GURUyuQ6zc3z0mg0qFevHnbv3g17e3s0b94cq1atgoeHR47bb9++HT/++CN2796dvUhO\nc0NEz2PQIMDPDwgIULqSwsvIACpVAuLigPKm1QJKRMWH3pbae17BwcGoU6cOnJ2dYWFhgf79+2PL\nli25br9y5UoMGDDAUOUQUWkWHGyyLYgwNwfq1gUuXVK6EiIqRQwWEKOjo+Ho6Jj52MHBAdHR0Tlu\nm5qaip07d3LNZyLSv8REICYGJjM7dk645B4RGZnBblJRqVQF3nbbtm1o06YNqlSpkus2kyZNyvze\nz88Pfn5+z1EdEZUWJ5ZfQVC1GRhrZqZ0KUXHJfeIqJCCgoIQFBRU5P0NFhDt7e0RGRmZ+TgyMhIO\nDg45brt69ep8u5ezBkQiooLasekxHtjmPPbZZDRsCMyfr3QVRGRCnm1Mmzx5cqH2N1gXs7e3N8LC\nwhAeHo60tDSsWbMGvXr1yrbdvXv3cODAAbz88suGKoWISrG9Z2zwYhfTntEr0qYxWu6eonQZRFSK\nGOyqaW5ujrlz58Lf3x8ajQYBAQHw8PDA/P8+BY8cORIAsHnzZvj7+8PS0tJQpRBRKZX6QOBUgiva\nDDLt6bPsfWrjeloFRF1KgYOHldLlEFEpYLBpbvSJ09wQUVHsWnYbXwfcxMHHLYBCjIsujvpZ70Hf\n0bUxcKKb0qUQkQkqNtPcEBEpbe+GRHR0DTf5cAgAfm63sG+3VukyiKiUMO2BOUREeRhdYzVQ30bp\nMvSiY9t0/LDQFkKUiLxLRMUcWxCJqMSyu7AXdp0aKV2GXtTvWANIS0dMjNKVEFFpwDGIRFQypaYC\nNWoAUVFyqTpTd/MmNL5tYHYrMv9tiYiewTGIREQAsHcv0KxZyQiHAFC7Nsy06UBYmNKVEFEpwIBI\nRCXTX38B3bsrXYX+qFTAG28AS5cqXQkRlQLsYiaiEufRQwF1PTeUCdxq2mswP+v0aeDll4EbNwA1\nP98TUcGxi5mISr0V393C8IQZgIeJL7H3LE9PoEoVYP9+pSshohKOAZGISpzA9Sl40edBiZwP5vHA\ntxA047jSZRBRCccuZiIqUTIygOqWybi45ARqDHxR6XL0LvVGLKq7VkDMLcCqZkWlyyEiE8EuZiIq\n1Y7tSoaz9jpq9G2ldCkGUd7FDr62Ydj97QmlSyGiEowBkYhKlMAFkejqEgpYWipdisF0767CX+se\nKl0GEZVgDIhEVKI8vByB7r0tlC7DoHqM9cBft5tCGx6hdClEVEIxIBJRyaHRYNbdwWj9QVOlKzGo\nOg3KolIlIGTmLqVLIaISigGRiEqOEycAOzvAyUnpSgxu4scpKPPXJoA38BGRATAgElHJUdJWT8nD\nG1/VQSOzi8DZs0qXQkQlEAMiEZUcO3aUmoAIlQro3RvYtEnpSoioBGJAJKKS4d494MoVwNdX6UqM\np08fYPNmpasgohKIAZGISoQFk6IR6t4LsCjZdzDraNUKuHVLrs1MRKRHDIhEZPI0GmD8AidYNGus\ndCnGZWYG9OrFVkQi0jsGRCIyeUePAjVUsXDp5q50KUb3zaOx2LggXukyiKiEYUAkIpO3eZPAy+kb\nStf4w//UbO2KVWHNgDt3lC6FiEoQBkQiMmlCAOtWpeNV231yDsRS5uVXLPAPuuDhhh1Kl0JEJQgD\nIhGZtGPHgPIiFY3a2yhdiiKqVQOa1U3Bzj+ilC6FiEoQBkQiMmmNGwPrW/0AVavS1738RL9hlbDh\ndB0gJUXpUoiohGBAJCKTVqEC0OBy6Rx/+ETfgeVxyMIPmh07lS6FiEoIBkQiMm1JSUBEhGxKLKVq\n1gRCv9sKs61cVYWI9IMBkYhM2/HjQLNmgLm50pUoyqJPD7nU4KNHSpdCRCUAAyIRmbajR0t193Km\nWrVkUOak2USkBwyIRGSSoqKABw/AgJjV228DCxcqXQURlQAqIYRQuoj8qFQqmECZRGRE/foBXf21\nGP6ZDRAWJud7Ke0ePQIcHYHgYMDFRelqiKgYKWyWYgsiEZmcuDhgzx7gtUaXZTBkOJTKlcP6FjMR\nMXuD0pUQkYljQCQik7NqFdC9O1D5/GF2Lz/jQJWeWLDEHNBolC6FiEwYAyIRmZwlS4ChQ8HxhzkY\n/oUtFj96Axk7/lG6FCIyYQyIRGRSzp4F7t4FOvppgYMHGRCf0agR4OAg8Pe0EKVLISITxoBIRCZF\nrQZmzgTMVi4DrK1L9QTZuRkxphIWnPQEYmOVLoWITBTvYiYi05OUBHh4AFu3As2bK11NsfPgAeBo\ncx/nxi6D/ZR3lS6HiIoB3sVMRCXfxIlAz54Mh7moUAE4sCgMNdb+BPDDNREVAVsQici0nDkDdO4M\nXLwI2NoqXU3xJQRQty6werVcYYWISjW2IBJRySUEMGoU8PXXDIf5UamA114D1q5VuhIiMkEMiERk\nEpKTASxfDqSmAsOHK12OaXj1VRkQ2QNDRIXEgEhExd7Vq0D9+gIZX0wAfvkFMDNTuiTT0KQJYGEB\nnDypdCVEZGIYEImo2PvhB2CoXzjMa9gCPj5Kl2M6VCrc7/0mNk+9oHQlRGRiGBCJqFi7c0curfcB\nfgYGDFC6HJMj+vTF29t64dpVdjMTUcHxLmYiKta++gq4c1uD3zZUB0JCgNq1lS7JtAiBr6r9ipg2\nr2LB5upKV0NECuFdzERUYty/D8ybB4zx3i8nxmY4LDyVCh8NTcbGnRUQEaF0MURkKhgQiajYSk0F\nJk8G3A78AfTvr3Q5Jqvq0J542+JPzJzJnhgiKhiDBsTAwEC4u7vDzc0NM2bMyHGboKAgeHl5oWHD\nhvDz8zNkOURkYqpXB94bmgps3y6nbKGiadAAn9RYhZVLNYiLU7oYIjIFBguIGo0Go0aNQmBgIC5e\nvIhVq1bh0qVLOtskJSXh/fffx7Zt23D+/HmsX7/eUOUQkSmYOxeIjdV9bscOuaSenZ0yNZUEKhXs\n3ngRIa9N5/ziRFQgBguIwcHBqFOnDpydnWFhYYH+/ftjy5YtOtusXLkS/fr1g4ODAwDAllcuotIr\nKQn46CPA3x9ITHz6/KpV7F7Wh1dfhdPO3wGNRulKiMgEGCwgRkdHw9HRMfOxg4MDoqOjdbYJCwtD\nQkICOnToAG9vbyxbtsxQ5RBRcXf4MNC+PeDnB3TvLu9QSU4Gdu8G+vZVujrT16ABUKsWsG2b0pUQ\nkQkwN9SBVSpVvtukp6fj33//xZ49e5CamgpfX1/4+PjAzc0t27aTJk3K/N7Pz4/jFYlKmoMHgXbt\nEDnsKySP/goN+vSRawm3bw9YWytdXcnwySdy1vHevZWuhIgMLCgoCEFBQUXe32AB0d7eHpGRkZmP\nIyMjM7uSn3B0dIStrS0sLS1haWmJdu3a4cyZM/kGRCIqgQ4eBL7+Gp9+pkZDz6/R4EJ/4L33gD//\nVLqykqNfP+Czz+TSe97eSldDRAb0bGPa5MmTC7W/wbqYvb29ERYWhvDwcKSlpWHNmjXo1auXzjYv\nv/wyDh06BI1Gg9TUVBw/fhz169c3VElEVFw9fAicPo1D2lY4ehQYM1YNLF8OTJoEvPyy0tWVHObm\nwIcfArNnY84cYNMmpQsiouLKYC2I5ubmmDt3Lvz9/aHRaBAQEAAPDw/Mnz8fADBy5Ei4u7uja9eu\naNy4MdRqNYYPH86ASFQaBQdD06AxPh5nienTgfLlAaAMMH680pWVPG+/Dbi4wLP3HQweXR1dugAV\nKihdFBEVN1xqj4iUN2UK5u5rgLXpfRAUBKg5hb9hjR4NlC2LNyJnwMUFmDpV6YKIyNAKm6UYEIlI\ncWmdXoL7+XX4a18FeHgoXU0pcP060KIFoo/cRJNWFXD4MFCvntJFEZEhMSASkWnJyABsbPDg/A1U\nqF1V6WpKj1deAfz88LMYhdWrgQMHADMzpYsiIkMpbJYy2BhEIqICOX0aqF2b4dDYPvkEeOMNvL+q\nORISWiI1FbCyUrooIiouONKHiJR18CDQtq3SVZQ+vr7AF19APeB1TNznB6uDOwD21BDRfxgQiUhZ\nDIjKUKmAd94Brl4FRo4Exo0DGjYEpk+XYxSJqFRjQCQiRVy6BAitYEBUmrk5MGAAEBICzJsHREYC\nPj5A8+bAf9OSEVHpw5tUiMjozpwBOnUCTqy6CufhnYEbN5QuibLKyACCgoD+/eWqK87OSldERM+p\nsFmKLYhEZDxLluDe3lN45RWBOXMA5+t72XpYzKSlAX1eNcfthp2A7t2Bv/5SuiQiUgADIhEZx717\nEO+Pwls976Jz0nq8kboQ2LWLAbGYKVMG8PSUs+Ck+fdkQCQqpRgQicg49u/HNzV/QXQjf8xeVAnY\ntg3YvBnIspg8FQ//+x9gawt8tKcncOgQkJqqdElEZGQMiERkFI937kNIOV9s3qxC2V7+wJYtQHIy\n4OamdGn0DLUaWLoUCDpSFr/YfQ3s3at0SURkZAyIRGQUZfcGYtPS+6hRI8uTlpaK1UN5q1RJ9i5P\nvfM2Ti4+p3Q5RGRkvIuZiAwvKkoObLtzRzZPkcmI2hsK+yGdoIq4KedOJCKTxKX2iKj42bMHePFF\nhkMT5NDBDTA3A86fBxo1evqCEEBgIBAfD6Sny6lxbG2BPn2UK5aI9IYBkYgM4vZtoFo1wMwM8m7l\nTp2ULomKQqV6Ot1N1oC4cKFcdcXXF7CwkF9//w1UqQJ06KBcvUSkF+xiJiK9u35dNhjOnw906SyA\nmjWBo0cBFxelS6Oi+PtvYNo0ueoNAHHxElTt2wEHDgAeHk+3W70amDULOH6crcVExQwnyiYiRV25\nIhuQPv0U6NIFwIULQMWKDIemzM9PLn+TkABN6mO0a/EQB4cu0g2HAPDaa7Lred06RcokIv1hQCQi\nvTl0CGjXDpg0CXj//f+eZPey6bO0BNq3B3buhNn4L/CV5zb0XdIT27Y9s51aDcycCYwfL5dkISKT\nxYBIRHqxZw/Qty+wbBkwbFiWF3bvZkAsCbp3B775BtiwAZ23foC//lJh+HDgjz+e2a5jRzm35fz5\nipRJRPrBMYhEpBdJSUBkpO59DEhLk3eq3LgB2NgoVhvpQWQk4OoqA3/79gCAy5eBnj2Bl14Cfvwx\nyyw4Z8/K8QWhoXJCRSJSHMcgEpFxCCFDw38XnCpVngmHAHDsGFC3LsNhSeDoCMTGZoZDAHB3B4KD\ngcaNn5kisXFjwN8f+O4749dJRHrBFkQiKpybN4GVK4EVK+Ttyv7+wKJFOYfAr76Sc+RNn278OklZ\nERGAl5e8ucXBQelqiEo9tiASkX7dvw/88w8wYQLQqhW0zZpj+e4aePzTfCAhAXB2lkHgyJGn+2i1\nsvVw/Xqgc2fFSicF1a4NvPce8PnnSldCREXAFkQiypkQctqSv/8GmjYF2rXDTXd/BCxujZT7amza\nBNSq9d+2W7cCw4cDI0YAKSnAhg2AlRXQvz8wbhxgzjn5S5t//wUqqlNRt2c9OT9i69ZKl0RUqrEF\nkYj0IzhY/pW/exfaoANY4DQF3h+3RafOahw+nCUcAkCvXsDJk09vRtm5E7h4UXYxMxyWSpcuAb4v\nlse0VtuQ9sEY2aqc1d27wLffAhqNMgUSUZ7YgkhEOQsIAOrWRdLIz9Gtm/z7vmgR0LCh0oWRqbhx\nAxg1SiB83w389uEltP22u3zh8mU5bU56OjBypJw3kYgMqrBZigGRiLK7dw9wcgKuXIGobocdO4Bu\n3bh6GhWeEMDG765h9Jfl8Pp7tvi+7xE59GDGDLkeY7Nmcp3n5s2VLpWoRGNAJKLn9+uvwL59XDKN\n9CZl8HsIu5COplFbgVWr5ITaALB2rbwBKiQEqFBB2SKJSjAGRCIqktRU+Te6dSsBeHoCs2ZxBRTS\nn9hYucTOrFnZ13AeMgQoV46rrxAZEG9SIaKnCnADQGIiMGUK4OICzJsHiOATcmqbJy08RPpgZwfs\n2JEtHKanA9Oc5+NO4L/Ali0KFUdEz2JAJCqpIiPlXHT79uX48pUrwOjRQJ06cr7roCBg+XJAteB3\nOV0NBxySEaSmApF3yqFe4lEM6f8IJ7dE5bzh0aNynGJamnELJCql2MVMVBI9fgy0aweULy8f5xAS\n330XsLaW/3V0/O/Je/fkxNeXL8sWHyIjiY8HFgUcwa87nFDT0w7fTDN/OsLhxg2gVSvAwkKOj+3R\nQ9FaiUwRxyASkUx9sbHAmjVAvXrA0qVAmzb57zdvHrB3L29OIcVoPhiNbQcqw/qH/6H9i+byQ0ur\nVnI6HAsL4MABeZOLocXGynO9+qrhz0VkBAyIRKXdkiXA9OmI2HgSq7ZbIX7vacxUfylXRMnJo0dy\nmbzdu+W+y5bJ6UeIlKDRyInXHRyAX36R8yXWqQPMnQvExyPWxQd2t0LkSj2GOv/vv8tJ3h8+BM6f\nl63qpOv+feDECaBDB6UroQLiTSpEJdnx43LQVg6EAM6vu4Rp70ehZdkQeLWzwvXrQK/P68s/cidP\n6u6QkiKX0qtWTU5UbGYmpxxhOCQlmZnJpfmOHgVatgRUKmDOHEClgtbGFm3FfjTw0OB//5ML/RT4\n793q1TLMpKfnvk1IiGytXLlSDssYNgxYvFgvb6vEmTZNtq6y8abEYkAkMhWHDgHt2wOdOwMJCdle\nTjt6Cv3fUOF2u9cwbXZ53L4tZw1p07EMMHYsMHXq042Tk4GuXYFKlYCoKPnH+JtvCtYNTWRoVlbA\n9u1y2Z41azKXa1SrgcvzD2Chw2Q8fiw/3zg7A598Ajnu9pdfgJs3dY/16JEccvG//8lb9jdtyvmc\n58/L362RI4H9++W5AwJkQORygLpu3ZIXF3NzuaYilUjsYiYylKQkOaZvxAigatXnO1ZcHNC0KTJ+\nnocTa2/A4+QyVNm1Tt6lDMiu4bFj5UW7b9/s+6emAq6uwK5d8o6Url2Bpk1ltx3vViZT8uABYG8P\nhIZCVKuOixeBsDCg99HP5TQ6t24BPj4y6NWtCwwYALi5AQsXyv//f/gBOHw4+3EHDgSaNAE++0z3\neW9v+eHK3984788UvPsuULGiXE/bxwd45x2lK6ICYBczkaGkpQFDh8r5YfKi0QALFgDu7sDPP+fe\nYlEA9+4B/wRqManVTnRR70bVwd3xzvlRuNHjA6B1a9kl9sEHsrtn//6cwyEg72b+5BNg3DjZStKi\nhWxtYTgkU1OhgryLee1aqFRAgwZAb9tD8kasvXvl9E6vvgpMn461jb5B25S/8IXrGmw/UAkJbV+W\nLebPDre4dg3YuTPnoBMQIMOlvkVGyjBqao0fYWHA+vXAl1/KmRIOHFC6IjIUYQJMpEwqit9+E+LG\nDaWryJ9WK8TQoUJYWQkxblzu2x09KoSXlxBt2ghx6pQQixcL8eqrRT7txx8L0d71pvjSfonYtild\n3L2b5cVVq4QoW1aI7t2FSEzM/2DJyUJUrSrEJ5/I90NkqnbsEMLHR36fkiKEq6sQmzdn2ywl7pHY\ntUuIiROF6NRJ/vp6VL8rlreZp7vhiBFCTJiQ87kSE4WoXFmIO3f0V79WK0TXrkJYWAjxzz/6O64x\nvPaaEFOnyu/DwoSwt+f1RB/+/luId94x6CkKm6VMInkxIJZQu3YJAcgUVBQajRD+/kLs3KnfunIy\nfboMfkFBQri55XxBTEsTws5OiGXLnr4eFSWEjY0QGRmZm2m1Qty6JcTu3UJ8950Qb7whxPz5uZz3\n8GEhqlcX4ubNnF+/eVP+HAoqMZEXczJ9aWlCVKsmxNWrQowcKT+8FUB6uhAhQUkizMpLiNu35ZPR\n0UJYWwtx547Yv19mz/DwZ35N3nxTiB9+0F/9f/4pRJMmQvzxhxDt2hXtGLGx8gOoMZ08KUTNmkLc\nvy8fa7VC1KolxLVrxq2jJOrcWQhzc6HbCqBfDIhkGpKShHB0FOKnn4SoUUNeuQtr1SrZJNCxo/7r\ny2rDBiEcHGTY02qFcHYW4uzZ7Ntt3SpEq1bZn69fX4jgYCGEEGvXysaIqlWFaNtWiA86nBV/vHNM\nXD3/UHefO3eEGD9ebrh1qwHeFJGJe/992SxYu7a8nhTG8OFCTJ4svx8zRoiPPhJCyA6NTp1k5qlY\nUYjmzYUYMkSIc4uDhWjQQD8frmJi5Ie+U6fkde+FF4TYvz/7dvv3C+HtLdPqsx48EKJFCxko9Nmy\nmZ/OnYX49Vfd5/r3N35QLWmuXxfC1laIvn2FmDvXYKcpbJbiTSqkS6uV/zX02LShQwFLS3kTR8uW\nwOTJ8saJgnr8WK7p+ttvciqKv/8GGjfOvt3KlXLQesOGQKNGQK1actqMgjp5EujWTY5PatpUPjd2\nrKz966/x6JEcknj9OnB94hLcqNoc1y0boF49YPbs/47x8ceArS0wfjySkoCMDPkQd+/KwfMtWsjz\n9OsnxxAGBsq5CF97TZ7rhRcKXi9RaXH0qJySZs+ewq8bfu6cvOnk33+B+vWBM2eyLCckJSXJG3Qv\nXAA6vSjg3KWuXIuyZUs5i8CKFZizvCrSOnXDC82s8cILcj3zSpX+O0BsLPDXX/J3ukqVpwd+5RX5\nez99unz8xx9y4u9du55uExcHeHnJ8cJBQXLKHScn+ZpWK68N5crJ8c5t2wLvvVe4919YWq28Rq9e\nLe/2trB4+tq8eXI+xD/+MGwNJdmECXJeSX9/4Ouv5f/bBlDoLGWAkKp3Ri3z11+N22KTpesxXykp\nQnzzjRDnzum/Do1Gdo06OgqhVgtRvrz8lOvqKsTo0U+7Y/Rh82b5qTklRT7++WfZz1oYP/wgx94J\nIcSUKUK89Vb2bU6flt1QH30kWxmrVZPdvd99V6Bu2Qf3tSLU1V/s/Wqf2LMnywvHjgnh4SGEEOLg\nQSEaNhSip/8j8VGZX8Wcb1PF1q1yaE6mHTuEaN8++wnmzJFdV0IIERkpxIwZslXg009ltxcR5U6r\nFeL8+aLv37GjEE2b5nztyMm0aUJ06ybEgAGyG2DAALGy1yrxieUvolezKFG/vhAVKghRqZJWXJi6\nSV5vunSR15zPPhPi1i0ROf8vkerWWIiHWXoMHj8WwslJjl9+8r66d5fXASHkdcLF5ekwk7FjZffD\no0fyb1WbNgWr/+BBeR3KbbhKbuLi5HjJ9u1l6+ezzp+X13N9++cfg4/JKxbS02WT9blz8ns7OyFC\nQw1yqsJmKQbEZ3l7592VEBkpRGCgHIsRHv50LEZR9esnL1B5dV1otbI71cFB/iKOGfN853zWgQPy\nfbdoIcShQzI8paTIi8GFC0J8+KG8yH3+ubxYPJGervu4IO7ckV3KBw8+fe7uXXnBTU4u2DESEuTF\n98KFp/tXqSLH5Dyh1coL52+/6ez68FyYuNm0t7jU+q0cL3aXLwvRqJEcklS2jEa8YBEu2rXTii++\nyLKRViuD9JPzCyG7ygcOzLne+/dlf9WTQPxE06ZyHCYRGd/mzUKoVEJcuVKw7WNihHjxRfm7Hh//\n9PkTJ+S45EGDhPb0GRHfoZ9Ia+Itu5CFkH8nPvhACGtr0cbsiChjoRFVqghRr57MXK+/LsTdmX88\n/cA7a5a8Fj9+/LT94Mcf5Yf1r7+W53py3X38WF6b8wt9cXHymvXWW/LvSE5DZHJy4oQcUvPpp7kP\nA9Jo5FCYqCjd5y9fljfEFWaMdNbzVqsmxzseOFD4/U3J1q1Pb7gSQjZofPVV9u1SU2VX9HMoPQEx\nOVmIhQvlb9jSpfo50f37suXM3T3nO8syMmRzUevW8oYFR0d5F+mPPxbtfJGRMom0aCF0E0gW587J\n99ikiQxVR48K0bhx0c6Xk7Fj5RieFSvy/kWOiJB3+tnYCFG3rqzbzEyIcuXkBbMg4uPlp/axY7O/\n1vhrq7IAAB/KSURBVKtX9nEsjx7J9z54sO7FZ+xYkREwQsTHy5a64GAhDvX89umYIiFka2izZiIy\nPEO0bi2vqZUqyZsG7e214uV6F2VQ/esvnVM+eCBESIjMnNo3Bgoxe3bO72X0aN3z5Rf2OnQQYvv2\np4/PnpX//xSmBZmI9EejEeL4cf0c6/59Oa6xbFnZ0piWln2bO3eE2L1baLXyUnjhghB79gixcqUQ\nqQkPZSvSb7/JYPRfELCzk9ctFxchvB1jhH+ZPeKNnsm6n6XffluImTOFEDInJiU9cynXauX19UnD\nwurV8hz79j3d5u5dIRYskD0aL70khK+v7CWpWlWOwc5P797yjWQ9Z8eOcv9p0wr0I8wUFiaD4ebN\nQixaJK+d+vDokQytxe0mvZ495ft84uRJ+WEga51arWy5LlNGNkQU9EPNM0p+QLxyRY4arlxZ/k//\n5ZcysOlDUJAQLVvK4NmtW/bXly6VNyFk/Ye7dEkOLi3INCPPmjxZiPfek7+c7u66YeTxYzk3g62t\nEL/88jRIpKfL1rKCdPlmZMhfsty6K0+fllegwtQeFSXExYuy5owMGWCrV89/kPiTT6KjR+tcPB8+\nlFl8/Zgj4g/3GWLOHNmLPm2akIPQX35Z/hvb2AgxcaKI2ntFVFElCrVaK6pUkb9HzZoJMeClRBn4\nHj0S4t49ebE9elSkpsqx3pcvy4ZHnWvD/v1yioYtW7LXGx8v/x/LrYX00CHZ1CiEEGfO5B/2pk2T\nLbFPjBmT93Q5RGR6inKz3ROzZ8tZHdaty3xKo5GX56tXZZbdsT1DLFv2TP7cs0c2WAiZ6ays5Cih\nSpVkY2GDmnHigVdr+Tflib17hahWTfzWdaP4s/63YrNlf7Gv/URx4n+bxaV5e4XmwCHZdVzQm39+\n+EG3O3jtWnl9DA+X1+WsYfSJixfl38CDB59eO2/flhf1J9M6pKXJx0FB+deg1cprf07OnpX12NrK\n4336qRBHjhStdVOfoqJkY0vWnkitVv5DHjr09Ln582X9t2/LIVW2trLh5OrVQp2u5AfETp3kH9cn\nAenxY/kDfrZ5uyimTpVN4g8fyuB08eLT1x49kgEnp+buYcNyn0MrNxkZMlScPi0f37wpf5tXrJBh\nqmFDIXr0yPl99e4tt8vN48fyE4mbm6y5Q4ecfxG6dJHj/0TuvydpaXKmlV27ZI5auVLm54ULs2w0\ndKi841bIi9n/27v3uKjq9A/gn4EZREVJTNHECwrI/eIFa9X1iqYJKZKRkhje92etWt7KUktBS2t1\n3WzXzcpMLV0LU2JdUtQyRAU3FVOzQfG+gXiDYZjh+f3xyDjDHWU4Cs/79eIFc+bMOc85wJxnvuf7\nfL9DhxL17csVgD4+ReTaPJd8bDOItm4ttf3sbL5rM+JZA42120TTxt2k118nWhl9hP+Ri5PXzEyi\nyEgy2Ggoe1Zc2blYSAgPHzFzJv9OqmLXLr5tr9NZLl+5kj+xlcdo5E+5xbdR7h5/uQ4f5g8BRPf6\nmdznp0AhRB2Un0/09dfVf53BcO+9yGzR9etEmTuP0c/N/khFZ8pIJI4epWm+e2jMH8/RsCGF1Ls3\n3wjx8Cg7zy0q4gEZunThLpBPP00UEcHtNYbUI/wkESc7bdsS7d1LmzcTfb0gjb5zGk3J236nlBT+\nPF20aTMnOVOm8N2x5s259TIwkBtGzH3ySdl9uEsGN2UKV3WHh3NCWVTE79PLl/O+1q3jZenpRG++\nyfEGB/NtI6W88w4P01RSbOy95UePcvwnT957PjeXaOFCPm+vvFLloXGqmyBatYo5MTER06dPh9Fo\nxIQJEzBnzhyL55OTk/Hss8+iY8eOAICRI0di/vz5pbZjqrzJygICA4GLF7mCq1h0NNC1K/DKKw8W\n8LBhXBE7ciSwcCFw5QpXyQI8I0ZiIlellXTuHFe4njwJtGxZ6mkiLjbT63me+MJCwPDvJLRa+TqQ\nmnpvxePHUdhvEA4YglE49WXoe/ZHoUGFwkIuvB058u56H37IVWOffIL8fGDpUp5utKAA0P2iRcH+\nQ1A3c8DaLxrz3Lq9evE0UtOmITeXZ47S3dCh4HoedA2boaBABQeHMqf3xc2bXFjVqBFPYNCoEX89\n/jjw7rt3Vzp/nivujh2D/vEnsGvX3fXtjWj07gI0PpWOxp+shvOTrhWf/8mTuQwwPJxnCTGvHC52\n4gTg5gY0aFD69d99B/zf/wG3bvF6ZfwuyhQWxpWAs2bxYyKueF69Gujbt/zXvfwyn4g1a3ieZDe3\n8tctKuJ40tOBn3/mqbsOHKhafEIIUZHp04FmzYAFC+4tu36dp8FbtAiIjHzgXRABv/zCMx3eucNF\nt8U/j3vRCNXjzXmWlZUrAa0WtOELvPACkJ8P6I7/ivzsO9C5+UGXeQX/bdobqn9t5esGAJw/j6Lt\nO/DYa+Nh39QO9vYqNGzIl/mG9oSfsj2g+udai/djIp7xz84OsDv0I+y0p2A35jnYnTmBeadfgspO\nAzg68oqffw7q4Irt2++ubwfYaQh2cYtgV6RDUGJcqdEtiHiGUrWav2xtH/AE6nR8Alu3Blq04GWd\nOvGsNF27Wq5bfE09dYqvhW+9xdfwkq5d46rnzZv5+vXKKzzCRjmqW8VstQTRaDSic+fOSEpKQps2\nbdC9e3ds2rQJXl5epnWSk5Px/vvvY/v27RUHqVJh506CYfNWGK78DuPEKVCpeLQAAJy0xcUBP/xg\nmq/daOThRIq/q9VcSV5Sfj5f540GgmHTVzAMCYXRrhE0xnx8sfsJ/oNv0ICHJfj3v3HHLQADB5be\nfoP/ZSFtzPtmY5uwGzf4/9bGhkcG0Gj4j9NJdxGn//IdMGGCxfq3j/6KoVPbQdPIDnZ2917j6Gg2\nisDp08CAAcD589AVqLB0Kf8jNVAbYb/4DTSYMBYOwd4YNeru+sV/ZCkpMLq64bczRtiPGIIGs/8M\n+5HPoEEDjqk6o7+UMns2H+zf/86PjUYeyubKFSA+njPGyvzwAzBxIgczZQr/91dHUREndlOnAtOm\nVf11Z84ATz3FSaWzMw8xEB3N562ik7J3Lw+B07UrsH9/5fuJjAQGDeJENiSE52gWQogHdfAgv2ed\nPMnvWb/+yg0eI0bcG07H2oYOBfr1A5Yt42GD2rS595zRyO99GRncQrF+PV8YzRDxZ/v8fM6lir/r\ndMCTp9cDH3/MQ/7cfU8uKuIZTfX/SYZ+70/QT3oZejsHFBYCi98hICmJG29eegmwtYXRyG0Per3Z\nl64IhoxTODL/G5460IzBwNddg4EbdQDOIxo04DhLMtwpgF+ACuqGdlCr+bpdvP6eJQeAmBgO+vp1\n4OZNGB93xrj8NVA/+4zF+nZ2wPLl4GT4yhVuvFi7FkVFwHvvcaJq/qXRAJP6nALmzuUGpz//GZgy\nBUUOTREff289tRp4+unqJYjqKq9ZTampqXBzc0OHDh0AAJGRkYiPj7dIEAFUOdjVqwnq/U6w7dIP\n6q+4NcuUIIaEAC++CFy8CGreBllZ9zJ+8+9lsbXlYa3U1y5D3fQgbEc9f/eX2hBwHMEJT1ERJ2QB\nAbA3AitWlN5+g5v2QOh6HvOuXTvT9ps25T8wi2EFL17kcfkis0rF4xDohn2VDYHk7s4bPHUK9p6e\nWLjw7vJt8YDfj8DypZbrd+4MvPEGMG4cbPfuhXvK50DzPGDcUOBBkkJzc+fyfmbM4PhiYnj8wW+/\nrVpyCHASW1AABATc3+TvNjY8nmAFn6DK5O7Oyez8+fyO849/cOJeWcbcqxfQpAm/tipCQoAvv+Q3\n87VrqxejEEKUJziYM56jR/m2z/PPc8tSbX4I/eMf+ToQF2eZHAJ8kdy0CUhIAMaOLXOcXZWKr5em\ncSTNdRsNLF7M40HeHfPSxgaY3GQjcHAOcPgHoL2D+db4/bZECPHxJTdsA1xsCvT4G1+TQ0NNz6jV\n3DparKjIMlm0UFAA2xFh2Hb5dxjcvFA4cjQMfQfCUGCE4aO1wMg4vgtZnLTodFBduIRBic1haHz3\nrqLhXqMTAL4GrVjBLbLgBDo7m583/wIATOoMfP01//7ffRdwdUXR+Mn47NhbMKrtLdetjmrdkK6G\nLVu20IQJE0yPP//8c5o2bZrFOsnJyeTk5ET+/v40ZMgQOmE+bIgZANxD182t/Aqk6GjuN3a//vnP\n0sOU/Pwzd7Bt3rxqnUHnzeOKssqU1++gOmJiTP0HTUJCiDZsKHt9o5E7jixezH0dDxx4sP2XZdky\n7h85bhz3e7yfvh2//qpMn5Dr17lfYHIyF6dUddzHkyfLrlgsy7lz3Ak9MvL+4xRCiLLMm8fVxy1a\nKDN8Vno6F3maF8PUpI0buQKnQwfuX+/lxQWSDzIWZrGffrIcOq0s585xpXfJDpqFhdzvMTyc+7Jv\n28a1Ei1b8viWUVHVHw6u2P2OcvHbb9wns1Mni0Kj6qZ8VksQt27dWmmCePPmTbpzNxlISEggd3f3\nsoMEaEH37rSgXz9asGAB7SmrImrHjgerZo6J4WrhkgYO5ErjqsjJ4c6ku3eXn8gajfxHUzxG1v3a\ntImruIudOcN/4CWLLcz9+isP4xMR8WD7Lk9eHlcF9+nz4ONDKuGjj/gNyFrnh4h7eCclWW/7Qoj6\n6eRJLrowL66say5d4nmff/mFE0PzsW8f1KefciNUTk7p5woKuOrSw4MLae5OnUpGI1cTDxpU+tp7\n8qTleL8K2BMWRgu8vWnBggW0YMGCh6dIJSUlBQsXLkRiYiIAIC4uDjY2NqUKVcy5urriyJEjcHJy\nsliuUqlAzZvz7cO7t6xL0euBVq14CiXz5u2NG7mvw5AhFQfs5cVN4IGBlstv3eIOfuZTC1Xkq6+4\no/CdO9zhITyct21jw23c+/Zx0//hw1XbXnmuXQM8PHi6No2G+wACZpUj5di3j2+ptm79YPsvz7lz\n3AG3qreVHyZGI3clePttvl1iDYWFVf9bEkIIUXtmzuSpBBMSLPulzZwJnD3Lt3E3buSCkIgIvid8\n/DgXsDZurFzc5dHpuOvWuHHAyy8/PFPtFRYWUseOHUmr1VJBQQEFBARQRolPNleuXKGiuy1tBw8e\npPbt25e5LQCVl7kT8W3m4kGri4q4VNzVlVu1liwpv1Xv99950KiaHLT4xAke9T4wkG9RN2vG+3Bw\n4Na/mhAYyGPQ6HTcemgxv5sQQgghqqywkLtqzZhxb1l8PE8mYT57TnY2dyfr1avqY0Uq5exZzg8O\nHqx2C6LVilTUajVWr16NwYMHw2g0Yvz48fDy8sLf71a5Tp48GVu3bsWaNWugVqvRqFEjbN68ufwN\nRkdXvtNRo4DYWC71njWLh0n54Qd+bsQI7sD5ySelM/2ffuJOvg9cx27G25u/3nyz5rZZ0sCBPMG7\nVsstnxUNsyKEEEKI8qnVPGRMjx5cLNmvH4+s8fXXgPmdTSenR6fQsGNHLrY1DWtSdVYdB7GmqFQq\n0M2bXDFaEb2eb53268cVtDt23Pul6nRcGXv0KLB9u0WlMV5/nW/7LVpkvYOwhl27gHfe4Z9nzuQk\nWAghhBD3LyMD6NOHu61FRQEVdI17ZMycCdUHHzwc4yDWpGrdN588mfvB/etfpVsKiXiAoTVreAy7\ntm15eZ8+PAzMoEE1G7i15eVxf7/HHgMyM6VvmxBCCFETEhKAbdt42LMyhuV55Oj1UDVoUM8TRKOR\nf5kVjWH3wQc8G0lyMs9u0awZj03o6Fgj8daqgQO5E+qj1vophBBCiFpT3SIVq/VBVExV+hHOmMHV\npP3789DkHTs+mskhcK9KWwghhBCihtS9BLGqZs/mJDEiAhg/Xulo7l9V5xsWQgghhKii+psgAtzv\nsGnT0hNlCyGEEELUY3WvD6IQQgghhLBQ3VyqDpTmCCGEEEKImiQJohBCCCGEsCAJohBCCCGEsCAJ\nohBCCCGEsCAJohBCCCGEsCAJohBCCCGEsCAJohBCCCGEsCAJohBCCCGEsCAJohBCCCGEsCAJohBC\nCCGEsCAJohBCCCGEsCAJohBCCCGEsCAJohBCCCGEsCAJ4kMmOTlZ6RBqlRxv3VWfjhWoX8dbn44V\nqF/HW5+OFah/x1sdkiA+ZOrbH6scb91Vn44VqF/HW5+OFahfx1ufjhWof8dbHZIgCiGEEEIIC5Ig\nCiGEEEIICyoiIqWDqIxKpVI6BCGEEEKIR1p1Uj61FeOoMY9ADiuEEEIIUWfILWYhhBBCCGFBEkQh\nhBBCCGHhoU0Qt2zZAh8fH9ja2iItLc3iubi4OLi7u8PT0xO7du1SKELrSU1NRXBwMIKCgtC9e3cc\nOnRI6ZCs6q9//Su8vLzg6+uLOXPmKB1OrVixYgVsbGyQk5OjdChWNWvWLHh5eSEgIADh4eG4ceOG\n0iHVuMTERHh6esLd3R3Lli1TOhyrysrKQr9+/eDj4wNfX1+sWrVK6ZCszmg0IigoCKGhoUqHYnW5\nubmIiIiAl5cXvL29kZKSonRIVhMXFwcfHx/4+flh9OjRKCgoUDqkGhUTEwNnZ2f4+fmZluXk5CAk\nJAQeHh4YNGgQcnNzK94IPaROnjxJp06dor59+9KRI0dMy0+cOEEBAQGk1+tJq9VSp06dyGg0Khhp\nzevTpw8lJiYSEVFCQgL17dtX4YisZ/fu3TRw4EDS6/VERHTt2jWFI7K+8+fP0+DBg6lDhw6UnZ2t\ndDhWtWvXLtP/55w5c2jOnDkKR1SzDAYDderUibRaLen1egoICKCMjAylw7Kay5cvU3p6OhER3bp1\nizw8POr08RIRrVixgkaPHk2hoaFKh2J1Y8eOpY8//piIiAoLCyk3N1fhiKxDq9WSq6sr6XQ6IiIa\nNWoUffrppwpHVbP27dtHaWlp5Ovra1o2a9YsWrZsGRERLV26tNL344e2BdHT0xMeHh6llsfHx+OF\nF16ARqNBhw4d4ObmhtTUVAUitJ7WrVubWlpyc3PRpk0bhSOynjVr1mDevHnQaDQAgBYtWigckfXN\nnDkT7777rtJh1IqQkBDY2PDbTI8ePXDhwgWFI6pZqampcHNzQ4cOHaDRaBAZGYn4+Hilw7KaVq1a\nITAwEADg4OAALy8vXLp0SeGorOfChQtISEjAhAkT6nyx5I0bN7B//37ExMQAANRqNRwdHRWOyjqa\nNm0KjUaDvLw8GAwG5OXl1bnrbO/evdGsWTOLZdu3b0d0dDQAIDo6Gt98802F23hoE8TyXLp0CS4u\nLqbHLi4uuHjxooIR1bylS5fi1VdfRbt27TBr1izExcUpHZLVnDlzBvv27cOTTz6Jvn374vDhw0qH\nZFXx8fFwcXGBv7+/0qHUunXr1mHo0KFKh1GjLl68iLZt25oe18X3o/JkZmYiPT0dPXr0UDoUq5kx\nYwbee+8904ecukyr1aJFixZ46aWX0KVLF0ycOBF5eXlKh2UVTk5OpmvsE088gcceewwDBw5UOiyr\nu3r1KpydnQEAzs7OuHr1aoXrKzrMTUhICK5cuVJqeWxsbLX6ezyK4ySWd+xLlizBqlWrsGrVKowY\nMQJbtmxBTEwM/vOf/ygQZc2o6FgNBgOuX7+OlJQUHDp0CKNGjcJvv/2mQJQ1p6LjjYuLs+g3Wxda\nJaryf7xkyRLY2dlh9OjRtR2eVT2K7z014fbt24iIiMDKlSvh4OCgdDhWsWPHDrRs2RJBQUH1Yjo2\ng8GAtLQ0rF69Gt27d8f06dOxdOlSvP3220qHVuPOnj2Lv/zlL8jMzISjoyOee+45fPHFFxgzZozS\nodUalUpV6fuXogni/SQ9bdq0QVZWlunxhQsXHsmm4YqOPSoqCklJSQCAiIgITJgwobbCsoqKjnXN\nmjUIDw8HAHTv3h02NjbIzs5G8+bNayu8Glfe8R4/fhxarRYBAQEA+G+3a9euSE1NRcuWLWszxBpV\n2f/xp59+ioSEBHz//fe1FFHtKfl+lJWVZXGHoy4qLCzEyJEjERUVheHDhysdjtUcOHAA27dvR0JC\nAnQ6HW7evImxY8di/fr1SodmFS4uLnBxcUH37t0B8LVn6dKlCkdlHYcPH8Yf/vAH03UmPDwcBw4c\nqPMJorOzM65cuYJWrVrh8uXLlV53Hol2c/NWlrCwMGzevBl6vR5arRZnzpxBcHCwgtHVPDc3N+zd\nuxcAsHv37jL7YtYVw4cPx+7duwEAp0+fhl6vf6STw4r4+vri6tWr0Gq10Gq1cHFxQVpa2iOdHFYm\nMTER7733HuLj42Fvb690ODWuW7duOHPmDDIzM6HX6/Hll18iLCxM6bCshogwfvx4eHt7Y/r06UqH\nY1WxsbHIysqCVqvF5s2b0b9//zqbHALcv7Rt27Y4ffo0ACApKQk+Pj4KR2Udnp6eSElJQX5+PogI\nSUlJ8Pb2VjosqwsLC8Nnn30GAPjss88q/4BnrQqaB7Vt2zZycXEhe3t7cnZ2pqefftr03JIlS6hT\np07UuXNnU7VvXXLo0CEKDg6mgIAAevLJJyktLU3pkKxGr9dTVFQU+fr6UpcuXWjPnj1Kh1RrXF1d\n63wVs5ubG7Vr144CAwMpMDCQpk6dqnRINS4hIYE8PDyoU6dOFBsbq3Q4VrV//35SqVQUEBBg+p1+\n9913SodldcnJyfWiivno0aPUrVs38vf3pxEjRtTZKmYiomXLlpG3tzf5+vrS2LFjTSNp1BWRkZHU\nunVr0mg05OLiQuvWraPs7GwaMGAAubu7U0hICF2/fr3CbTwSczELIYQQQoja80jcYhZCCCGEELVH\nEkQhhBBCCGFBEkQhhBBCCGFBEkQhhBBCCGFBEkQhhBBCCGFBEkQhhBBCCGFBEkQhRI2wtbVFUFAQ\ngoKC0KVLF5w7dw49e/a02v5u3LiBNWvWPLTbe1DmU9gVn8eSMZZ8bM3znZGRgeDgYLz44ov43//+\nBwBIT0+Hj48PEhISrLZfIYQyZBxEIUSNaNKkCW7dulVr+8vMzERoaCiOHTtW6rnit7XqzJVc0fbK\ncz/7qaqyzmfJGO8n5gexaNEitG/fHuPGjQMAHD16FHZ2dvViFgoh6htpQRRCWE1xK1hmZia8vLww\nadIk+Pr6YvDgwdDpdACADRs2oEePHggKCsKUKVNQVFRUajt37tzBM888g8DAQPj5+eGrr77CvHnz\ncPbsWQQFBWHOnDk4d+4cOnfujOjoaPj5+WH//v3w8/MzbWP58uVYtGgRAGD9+vUICAhAYGAgoqOj\nAQBz584ttb2yXl9yP1lZWZUeQ1nxF58XT09PREVFwdvbG8899xzy8/PLPY/mMc6ePdviHMyePRtN\nmjSp9HwDwDvvvANPT0/07t0bo0ePxooVK6r0+3RxcbGYe/rEiROSHApRV1l9vhchRL1ga2trmn4t\nPDyciIgcHByIiEir1ZJarab//ve/REQ0atQo2rBhA2VkZFBoaCgZDAYiIpo6dSqtX7++1La3bt1K\nEydOND2+ceMGZWZmkq+vr2mZVqslGxsbOnjwoOmx+fPLly+nhQsX0vHjx8nDw8M0zWFOTg4RUZnb\nK/n6RYsWUWZmpsV+qnIMZcVfvA+VSkUHDhwgIqKYmBhavny5xbkz/7lkjCUfV3a+iYhSU1MpMDCQ\nCgoK6NatW+Tu7k4rVqwodc4TEhLo/fffp9WrV9Ply5eJiCgxMZEmTZpERERJSUmm5UKIuketdIIq\nhKgbGjZsiPT09HKfd3V1hb+/PwCga9euyMzMRG5uLo4cOYJu3boBAPLz89GqVatSr/X398drr72G\nuXPnYtiwYejVqxdycnJKrde+fXsEBwdXGOeePXswatQoODk5AQCaNWsG4N7t4ooUr2O+n++//77S\nYygr/mJt27bFU089BQCIiorCqlWr8Oqrr1a4//IemyvrfAPAjz/+iOHDh8POzg52dnYIDQ0ttZ1z\n584hNjYW+/fvx+7du3H79m0A91oQjUYjrl27hgEDBpR/soQQjzRJEIUQtaJBgwamn21tbZGfnw8i\nQnR0NGJjYyt8rbu7O9LT07Fz507Mnz8fAwYMwNixY0ut17hxY9PParXa4lav+a3bqiSDFb3efD8A\nKj2GsuJ/8803AVj2XyQi2NjUTM+fss538f7Mj7+sc/HNN9/A3d0dO3bsQOPGjeHm5gaAE8QLFy4g\nPj4eYWFhNRKnEOLhJH0QhRCKGTBgALZu3Wqqis3JycH58+dLrXf58mXY29tjzJgxeO2115Cenl5p\nUYyzszOuXbuGnJwcFBQUYMeOHVCpVOjfvz+2bNliaoEs/l5ye+W9/n6OoWT8aWlppufOnz+PlJQU\nAMDGjRstWhdLKhnj/RQG9ezZE99++y0KCgpw+/Zt7Ny5s9RxNWzYEGFhYRg2bBh69+6Na9euAQAc\nHR2Rk5MDGxubUkmyEKJukRZEIUSNKCt5Ml9W8nmVSgUvLy8sXrwYgwYNQlFRETQaDT788EO0a9fO\nYt1jx45h1qxZsLGxgUajwUcffQQnJyf07NkTfn5+GDp0KP70pz9Z7EOj0eCtt95CcHAw2rRpYyqm\n8Pb2xhtvvIE+ffrA1tYWXbp0wbp169C8eXOL7S1btqzM15c8lqocQ1nxF+vcuTP+9re/ISYmBj4+\nPpg6dWq5566sGIsfDxkypNLzDQDdunVDWFgY/P394ezsDD8/Pzg6Olqs+/zzz2PlypXQaDTIzc1F\nRESE6bmePXtK66EQ9YAMcyOEEAqp7WFqit25cweNGzdGXl4e+vTpg7Vr1yIwMLBWYxBCPNykBVEI\nIRRkjTEUKzNp0iRkZGRAp9Nh3LhxkhwKIUqRFkQhhBBCCGFBilSEEEIIIYQFSRCFEEIIIYQFSRCF\nEEIIIYQFSRCFEEIIIYQFSRCFEEIIIYQFSRCFEEIIIYQFSRCFEEIIIYQFSRCFEEIIIYSF/weZaVqu\nfS1gmQAAAABJRU5ErkJggg==\n" } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Decoherence time of 2.5 ns, background emission of 0.05." ] }, { "cell_type": "code", "collapsed": false, "input": [ "qd.crosstau = 2.5\n", "qd.bg_emission_rate = 0.05\n", "fss = np.linspace(-10, 10, 500)*1e-6\n", "fidelities = [qd.ideal_fidelity_lorentzian(f)[0] for f in fss]\n", "ghv = qd.ideal_fidelity_lorentzian(f)[1]\n", "\n", "numerical_data_dec_and_bg = np.loadtxt('../out/2013-08-07/fid_v_fss/fid_v_fss.txt', delimiter = ',')\n", "\n", "plt.figure(figsize = (16./1.5,9./1.5))\n", "plt.plot(numerical_data_dec_and_bg[:,0]/1e-6, numerical_data_dec_and_bg[:,1], 'r-', fss/1e-6, fidelities, 'b--')\n", "plt.legend(['Monte carlo', 'Theoretical']) \n", "plt.text(6, 0.9, ' coherence ' + np.array(ghv).astype('|S4').tostring())\n", "plt.xlim([-10, 10]) ; plt.ylim([0.45, 1.05])\n", "plt.xticks(np.linspace(-10, 10, 11))\n", "plt.xlabel('Fine structure splitting $eV$') ; plt.ylabel('Fidelity')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "pyout", "prompt_number": 6, "text": [ "<matplotlib.text.Text at 0x106383c10>" ] }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAogAAAF8CAYAAABMokooAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd0VNXexvHvpCC9BKQltEiXktA7QUGqKKCUV4oaxYaK\n1y4ocEUQvYoI3isqSlNAsAFKRJAA0oJSpEoNhNATqrSU/f6xITIkIXUyKc9nrSwzM2fO+U0ik2d2\ndRhjDCIiIiIiV3m4uwARERERyV4UEEVERETEiQKiiIiIiDhRQBQRERERJwqIIiIiIuJEAVFERERE\nnHi5u4DUcDgc7i5BREREJEdLy8qGOaYF0RiTJ75GjBjh9hr0evV69Vr1evVa8+brzUuvNa+93rTK\nMQFRRERERLKGAqKIiIiIOFFAzGaCgoLcXUKW0uvNvfLSa4W89Xrz0muFvPV689Jrhbz3etPCYdLT\nMZ3FHA5HuvrPRURERCTtWSpHzGIWERER1/Px8eHUqVPuLkMyoESJEkRHR2f4PGpBFBEREUB/b3OD\n5H6Haf3dagyiiIiIiDhRQBQRERERJwqIIiIiIuJEAVFEREQkmwkKCmLKlCluu74CooiIiGR7lStX\n5pZbbiEqKsrp/sDAQDw8PDh48GCGr+HuUHY9h8OBw+Fw2/UVEEVERCTbczgc+Pv7M2vWrIT7tmzZ\nwsWLFzMtSLkzkF1jjCE+Pt7dZSggioiISM7Qv39/pk+fnnB72rRpDBw40Gn5ljNnzjBw4EBKly5N\n5cqVeeuttxIenzp1Kq1ateLFF1/Ex8cHf39/QkJCABg2bBgrV65kyJAhFClShGeeeQaAnTt30qFD\nB0qWLEnNmjWZO3dusvVFR0fz0EMP4evri4+PDz169ADg1KlTdOvWjdKlS+Pj48Pdd99NZGRkwvOC\ngoIYPnw4LVu2pHDhwuzfv9/pvMYYRo8eTeXKlSlTpgyDBg3i7NmzGfxp3pwCooiIiOQIzZo14+zZ\ns+zcuZO4uDjmzJlD//79nY55+umnOXfuHPv372f58uVMnz6dL774IuHxsLAwatasSVRUFC+99BLB\nwcEAvPXWW7Ru3ZqPPvqIc+fO8eGHH/L333/ToUMH+vfvz4kTJ5g9ezZPPvkkO3bsSLK+AQMGcOnS\nJbZv387x48f517/+BdiAFxwczMGDBzl48CAFChRgyJAhTs+dOXMmn332GefOnaNSpUpOj33xxRdM\nmzaN0NBQ9u3bx/nz5xM9P7MpIIqIiEiOMWDAAKZPn84vv/xC7dq18fX1TXjsWmgcO3YshQoVolKl\nSjz//PPMmDEj4ZhKlSoRHByMw+Fg4MCBHDlyhOPHjyc8fn1r5MKFC6lSpQqDBg3Cw8ODgIAAevbs\nmWQr4pEjRwgJCeHjjz+mWLFieHl50bp1a4CE1sT8+fNTuHBhXnvtNZYvX57wXIfDwYMPPkitWrXw\n8PDAy8t5o7svv/yS559/nsqVK1OoUCHGjh3L7NmzXdoVra32REREJHUya4xeOndrcTgcDBgwgNat\nW7N///5E3csnT54kJibGqQWuYsWKTt25ZcuWTfi+YMGCAJw/f57SpUsnXOOaAwcOsG7dOkqUKJFw\nX2xsLAMHDkxUW0REBD4+PhQrVizRYxcuXOC5557j559/TtjK8Pz58xhjEq5XoUKFZF/3kSNHEr2m\n2NhYjh07Rrly5ZJ9XkaoBVFERERSx5jM+cqAihUr4u/vz6JFi+jZs6fTY6VKlcLb25vw8PCE+w4e\nPIifn1+qzn3jJJWKFSvStm1bTp06lfB17tw5Pvroo0TPrVChAtHR0Zw5cybRY++99x67du0iLCyM\nM2fOsHz5cowxTuH2ZhNkypcvn+g1eXl5UaZMmVS9rvRQQBQREZEcZcqUKfz6668UKFDA6X5PT096\n9+7NsGHDOH/+PAcOHGD8+PGJxikmp0yZMuzduzfhdrdu3di1axczZ84kJiaGmJgY1q9fz86dOxM9\nt1y5cnTu3Jknn3yS06dPExMTw8qVKwHbWligQAGKFStGdHQ0o0aNSvT8m+2T3K9fP8aPH094eDjn\nz5/ntddeo2/fvnh4uC7GKSCKiIhIjuLv70+DBg0Sbl/f+jZx4kQKFSqEv78/rVu35oEHHuChhx5K\nOO7Glrrrbz/77LPMmzcPHx8fhg4dSuHChVm8eDGzZ8/G19eXcuXK8eqrr3LlypUk65oxYwbe3t7U\nrFmTMmXKMGHCBACGDh3KxYsXKVWqFC1atKBz5843reNGDz/8MAMGDKBNmzb4+/tTsGBBJk6cmMqf\nVvo4zM0iazbhcDhumqxFREQk4/T3NudL7neY1t+tWhBFRERExIkCooiIiIg4cWlAfPjhhylTpgx1\n69ZN9phnnnmGatWqUb9+fTZu3OjKckREREQkFVwaEB966KGELWyS8tNPP7Fnzx52797NJ598whNP\nPOHKckREREQkFVwaEFu3bu20uOSN5s+fz6BBgwBo2rQpp0+f5tixY64sSURERERS4NYxiJGRkU4r\nh/v5+XHo0CE3ViQiIiIibt9q78Yp18mtAzRy5MiE74OCgggKCnJhVSIiIiI5V2hoKKGhoel+vlsD\noq+vLxEREQm3Dx065LTp9vWuD4giIiIikrwbG9OS2r3lZtzaxdy9e3emT58OwNq1aylevLhL9xUU\nERGR3GfkyJEMGDDA3WUk6csvv6Rjx44ZPo+Hhwf79u3LhIpSx6UtiP369WP58uWcPHmSChUqMGrU\nKGJiYgB47LHH6NKlCz/99BNVq1alUKFCfPHFF64sR0RERHKgwoULJwxB+/vvv8mfPz+enp4ATJ48\n+abb1GWl8PBw/P39iY2NTdgn+YEHHuCBBx5wc2Vp59KAOGvWrBSPmTRpkitLEBERkRzu/PnzCd9X\nqVKFKVOmcMcddyTcl1XD0GJjY/HySjk65YbtCrWTioiIiORoDoeDK1euMGjQIIoWLUqdOnX4448/\nEh4/fPgwvXr1onTp0vj7+zNx4sSExy5fvszQoUPx9fXF19eX5557jitXrgB2ooefnx/vvPMO5cqV\nIzg4GGMMb7/9NlWrVqVUqVL06dOHU6dOAdCmTRsAihcvTtGiRVm7di1Tp06ldevWCdfbtm0bHTp0\noGTJkpQtW5axY8cCEBYWRvPmzSlRogTly5fn6aefTuh1dQcFRBEREcnRjDHMnz+ffv36cebMGbp3\n786QIUMAiI+P5+677yYwMJDDhw+zdOlSPvjgAxYvXgzAW2+9RVhYGJs3b2bz5s2EhYUxevTohHMf\nO3aMU6dOcfDgQSZPnsyHH37I/PnzWbFiBUeOHKFEiRI89dRTAKxcuRKAM2fOcPbsWZo1a+ZU57lz\n52jfvj1dunThyJEj7NmzhzvvvBMALy8vJkyYQFRUFGvWrGHp0qX897//dfnPLjkKiCIiIpLjtW7d\nmk6dOuFwOOjfvz+bN28GYP369Zw8eZLhw4fj5eVFlSpVeOSRR5g9ezZgJ5G88cYblCpVilKlSjFi\nxAhmzJiRcF4PDw9GjRqFt7c3+fPnZ/LkyYwePZry5cvj7e3NiBEjmDdvHvHx8Sl2LS9cuJDy5cvz\n3HPPkS9fPgoXLkyTJk0AaNCgAU2aNMHDw4NKlSoxePBgli9f7qKfVsoUEEVERCRVRo4EhyPxV3JD\nAJM63lXDBa9fBaVgwYJcunSJ+Ph4Dhw4wOHDhylRokTC19ixYzl+/DgAR44coVKlSgnPrVixIocP\nH064feutt5IvX76E2+Hh4fTo0SPhXLVr18bLyytVO8FFRETg7++f5GO7du2iW7dulCtXjmLFijFs\n2DCioqLS/HPILAqIIiIikiojR4Ixib9uFhBTe2xG3GwWc4UKFahSpQqnTp1K+Dp79iwLFy4EoHz5\n8oSHhyccf/DgQcqXL5/suStWrEhISIjT+S5cuEC5cuVSnE1dsWLFZJeqeeKJJ6hduzZ79uzhzJkz\nvPXWW8THx6f00l1GAVFERERytJt17TZp0oQiRYrwzjvvcPHiReLi4ti6dSu///47YJfkGz16NCdP\nnuTkyZP8+9//vumaio8//jivvfYaBw8eBODEiRPMnz8fsK2NHh4e7N27N8nndu3alSNHjjBhwgQu\nX77MuXPnCAsLA+xM7SJFilCwYEF27tzJ//73v3T9LDKLAqKIiIjkaA6HI1Hr3bXbnp6eLFy4kE2b\nNuHv78+tt97K4MGDOXv2LADDhw+nUaNG1KtXj3r16tGoUSOGDx+e6DzXPPvss3Tv3p277rqLokWL\n0rx584SQV7BgQYYNG0bLli3x8fFh3bp1TrUVKVKEX375hQULFlCuXDmqV6+esB3ef/7zH7766iuK\nFi3K4MGD6du3r9O1s3qtR4fJAYv1OByOXLGmkIiISHamv7c5X3K/w7T+btWCKCIiIiJOFBBFRERE\nxIkCooiIiIg4UUAUEREREScp7zgtIiIieUKJEiWyfLasZK4SJUpkynk0i1lEREQkl9MsZhERERHJ\nEAVEEREREXGigCgiIiIiThQQRURERMSJAqKIiIiIOFFAFBEREREnCogiIiIi4kQBUUREREScKCCK\niIiIiBMFRBERERFxooAoIiIiIk4UEEVERETEiQKiiIiIiDhRQBQRERERJwqIIiIiIuJEAVFERERE\nnCggioiIiIgTBUQRERERcaKAKCIiIiJOFBBFRERExIkCooiIiIg4UUAUEREREScKiCIiIiLiRAFR\nRERERJwoIIqIiIiIEwVEEREREXGigCgiIiIiThQQRURERMSJAqKIiIiIOFFAFBERkQwbOXIk7733\nnrvLSLX9+/fTtGlTqlWrRt++fYmJiUl0zLJlywgMDEz4KlCgAPPnzwdg0qRJVK1aFQ8PD6Kjo7O6\nfJdTQBQREZEMczgcGXp+fHx8JlWSOi+//DLPP/88u3fvpkSJEkyZMiXRMe3atWPjxo1s3LiRX3/9\nlYIFC3LXXXcB0KpVK5YuXUqlSpWytO6sooAoIiIiSQoJCaFhw4YEBATQvn17AKKjo7n33nupX78+\nzZs3Z8uWLQnHb9++nXbt2nHbbbcxceLEhPtnzpxJ06ZNCQwM5PHHH08Ig4ULF+aFF14gICCANWvW\n3PS44cOHExAQQPPmzTl+/DgAx44do0ePHgQEBBAQEMDatWtver1rjDEsW7aM++67D4BBgwbx/fff\n3/RnMXfuXLp06UL+/PkBCAgIyLXhEBQQRUREJAknTpxg8ODBfPvtt2zatIl58+YBMGLECBo2bMjm\nzZsZM2YMAwcOBGzo2rlzJ4sXLyYsLIxRo0YRFxfHjh07+Prrr1m9ejUbN27Ew8ODL7/8EoALFy7Q\nrFkzNm3ahI+Pz02Pa968OZs2baJNmzZ8+umnADzzzDO0a9eOTZs2sXHjRmrXrn3T610TFRVF8eLF\n8fCwMcjX15fIyMib/jxmz55Nv379Mu8HnM15ufLkISEhDB06lLi4OB555BFefvllp8dPnTrFww8/\nzL59+8ifPz+ff/45t99+uytLEhERkVRYu3Ytbdu2TWglK168OACrVq3i22+/BWwXbFRUFOfOncPh\ncNCtWze8vb0pWbIkpUuX5ujRoyxdupQ//viDRo0aAXDx4kXKli0LgKenJ7169QK46XH58uWja9eu\nADRs2JBffvkFsGMEZ86cCdgu7qJFizJ9+vRkz5NeR44cYevWrXTs2DFD58lJXBYQ4+LiGDJkCEuW\nLMHX15fGjRvTvXt3atWqlXDMmDFjaNCgAd999x1//fUXTz31FEuWLHFVSSIiIpJKDocDY0ySjyV3\nf758+RK+9/T0JDY2FrBduGPGjEl0fP78+Z3GLiZ3nLe3d8L3Hh4eCedNrpbkznNNyZIlOX36NPHx\n8Xh4eHDo0CF8fX2TPf7rr7+mZ8+eeHp6JntMbuOyLuawsDCqVq1K5cqV8fb2pm/fvvzwww9Ox+zY\nsYN27doBUKNGDcLDwzlx4oSrShIREZFUatq0KStWrCA8PBwgYaZu69atE7psQ0NDufXWWylSpEiS\nQc3hcHDnnXcyb968hL/v0dHRHDx4MNGxqT3uxuf873//A2zD1NmzZ1N1HofDQbt27Zg7dy4A06ZN\n49577032OrNmzbpp93JygTknc1lAjIyMpEKFCgm3/fz8EvXv169fP6GZOiwsjAMHDnDo0CFXlSQi\nIiKpdOutt/LJJ5/Qs2dPAgICEgLSyJEj+eOPP6hfvz6vvfYa06ZNA2zoSmomc61atRg9ejR33XUX\n9evX56677uLo0aMJz0nrcddfZ8KECSxbtox69erRqFEjduzYcdPzXG/cuHG8//77VKtWjVOnThEc\nHAzAH3/8waOPPppwXHh4OJGRkbRt29bp+R9++CEVKlQgMjKSevXqMXjw4LT/kLMxh3FR7P3mm28I\nCQlJGEg6c+ZM1q1b5zSr6dy5czz77LNs3LiRunXrsnPnTj777DPq1avnXKTDwYgRIxJuBwUFERQU\n5IqyRURERHK80NBQQkNDE26PGjUqTS2dLguIa9euZeTIkYSEhAAwduxYPDw8Ek1UuV6VKlXYsmUL\nhQsXdi7yJuMgREREROTm0pqlXNbF3KhRI3bv3k14eDhXrlxhzpw5dO/e3emYM2fOcOXKFQA+/fRT\n2rZtmygcioiIiEjWctksZi8vLyZNmkTHjh2Ji4sjODiYWrVqMXnyZAAee+wxtm/fzoMPPojD4aBO\nnTpJrmIuIiIiIlnLZV3MmUldzCIiIiLpl226mEVEREQkZ1JAFBEREREnCogiIiIi4kQBUURERESc\nKCCKiIiIiBMFRBERERFxooAoIiIiIk4UEEVERETEiQKiiIiIiDhRQBQRERERJwqIIiIiIuJEAVFE\nREREnCggioiIiIgTBUQRERERcaKAKCIiIiJOFBBFRERExIkCooiIiIg4UUAUEREREScKiCIiIiLi\nRAFRRERERJwoIIqIiIiIEwVEEREREXGigCgiIiIiThQQRURERMSJAqKIiIiIOFFAFBEREREnCogi\nIiIi4kQBUUREREScKCCKiKTHzp3w009gjLsrERHJdAqIIiLp8corMGgQtG0L69a5uxoRkUylgCgi\nklaHDsGKFbB3rw2JPXtCnz72tohILqCAKCKSVlOmQN++ULQoBAfDrl1Qty40aQKffebu6kREMsxh\nTPYfQONwOMgBZYpIXhAbC1WqwMKFUL++82Pbt0NQEOzZY8OjiEg2kdYspRZEEZG0WLQIfH0Th0OA\n2rWhUyeYMCHr6xIRyURqQRQRSYtu3eC+++DBB5N+fPduaNHC/rd48SwtTUQkOWpBFBFxlQMHYM0a\n6N0bgIgI6NcPBg++7phq1aBrV7UiikiOpoAoIpJan30GDzwABQsSEQHNmkH16jBixA3Hvf46TJwI\np065pUwRkYxSF7OISGrExEClSvDLL8RUv52mTW3r4YsvJnN8cLAdq/jvf2dpmSIiSVEXs4iIKyxc\nCP7+cPvtTJ4MPj7wwgs3OX74cPjoI4iOzrISRUQyiwKiiEhqTJ4Mjz8O2N31xo8HhyPpQ3fvhsO3\nVIFeveC997KwSBGRzKEuZhGRlOzbB02b2lkp+fOnePi1lsX/PH0AGjSAv/6CUqVcXKSISPLUxSwi\nktk+/xz6909VOAQYMgS++ALO+VSC+++3E1ZERHIQBUQRkZuJj4fp0+Ghh1L9lMqVoV07mDEDGDgQ\nfvjBZeWJiLiCAqKIyM0sWwYlS0K9eml6WnCwzZUJXdORka6pT0TEBRQQRURuZto0GDSImBg7OSW1\nOnSA8HDYtdcTOna0W/SJiOQQCogiIsk5dw7mz4f/+z8++wyeeSb1T/XystmyaFGgSxf46SeXlSki\nktkUEEVEkvPNN9CmDZQuzbx5cMcdaXt6x45QtuzVb379Fa5ccUmZIiKZzaUBMSQkhJo1a1KtWjXG\njRuX6PGTJ0/SqVMnAgICqFOnDlOnTnVlOSIiaXO1ezkqCtavtzkvXW69FWrWhJUrM7U8ERFXcVlA\njIuLY8iQIYSEhLB9+3ZmzZrFjh07nI6ZNGkSgYGBbNq0idDQUJ5//nliY2NdVZKISOqFh8PWrdCt\nGz/+CHfeCQULZuB86mYWkRzEZQExLCyMqlWrUrlyZby9venbty8/3LDUQ7ly5Th79iwAZ8+epWTJ\nknh5ebmqJBGR1JsxA/r0gVtu4fvv4d57M3g+BUQRyUFcFhAjIyOpUKFCwm0/Pz8ib1jm4dFHH2Xb\ntm2UL1+e+vXrM2HCBFeVIyKSesYkdC8bY+eqdO6csdPFBzSAU6fsriwiItmcy5rrHMltUnqdMWPG\nEBAQQGhoKHv37qVDhw5s3ryZIkWKJDp25MiRCd8HBQURFBSUidWKiFxn1SrIlw8aNcLhgF9+ydjp\nBg2Ce+/1oGfnzna5m6eeypw6RUSSERoaSmhoaLqf77KA6OvrS0RERMLtiIgI/Pz8nI5ZvXo1w4YN\nA+C2226jSpUq/PXXXzRq1CjR+a4PiCIiLnW19ZBUfNBNjYAAWLwYenbpAlOnKiCKiMvd2Jg2atSo\nND3fZV3MjRo1Yvfu3YSHh3PlyhXmzJlD9+7dnY6pWbMmS5YsAeDYsWP89ddf+Pv7u6okEZGUXbxo\nl7fp3z/TTtmhw9VWyA4d7Ezmixcz7dwiIq7gsoDo5eXFpEmT6NixI7Vr16ZPnz7UqlWLyZMnM3ny\nZABee+01fv/9d+rXr0/79u1555138PHxcVVJIiIp++EHaNwYfH0z7ZR16sCFC7A3qjgEBkIGun1E\nRLKCw5i0bB7lHg6HgxxQpojkBo89BrffnrZtU1Jh4EBo0QIePzMODh2CiRMz9fwiIjeT1iylnVRE\nRK4XFgZNmwK2MTGzJh137Ai7d2OXu/nxx7Rt7CwiksXUgigics2FC1CqFERHQ/781Klj55QkMW8u\n/YyBihXtoMSaNTPxxCIiyVMLoohIem3caLuX8+fn+HHbExwYmMnXcDi0aLaIZHsKiCIi16xfbyeo\nYOeRtG4Nnp4uuE5QEKxe7YITi4hkDgVEEZFrwsKgSRPABsR27Vx0nQYNYMMGF51cRCTjFBBFRK65\nLiAuW+bCgFitGpw8abfeExHJhlIMiB9++CGn9CYmIrldVBQcPw41amAM/OtfUK9e5l9mzRo4fNTD\nbq+iVkQRyaZSDIjHjh2jcePG9O7dm5CQEM0mFpHcaf16O13Z0xOHAx591DXjDz/5BL7/HnUzi0i2\nlmJAfOutt9i1axcPP/wwU6dOpVq1arz22mvs3bs3K+oTEcka101QcaU2bexuewqIIpKdpWoMooeH\nB2XLlqVMmTJ4enpy6tQp7rvvPl588UVX1ycikjWuG3/oSq1b24BoAhvAH3+4/HoiIumR4kLZEyZM\nYPr06ZQsWZJHHnmEHj164O3tTXx8PNWqVcuSlkQtlC0iLmUMlC0Lv/8OFSq4/FLly8Oq5bH4BxaD\nI0egaFGXXlNEJK1ZyiulA6Kjo/n222+pVKmS0/0eHh4sWLAg7RWKiGQ3Bw+Chwf4+bn8Ug7H1VbE\nNV7416sHmzbZfmcRkWwkxS7mvXv3JgqHAwYMAKB27dquqUpEJCutX2+7lx0OPvwQZsxw7eUefhh8\nfbHjENXNLCLZUIoBcdu2bU63Y2Nj+UNvaCKSm1w3/nDhQihWzLWX69QJ2rcHGjbURBURyZaSDYhj\nxoyhSJEibNmyhSJFiiR8lS5dmu7du2dljSIirhUWBo0bExcH69ZBixZZdF3NZBaRbCrFSSqvvPIK\nb7/9dlbVkyRNUhERl4mLg+LF4cABNh30oV8/2LEji6595Yq99okTUKhQFl1URPKiTJuksnPnTmrW\nrMn999/PhiQ+4TZo0CB9FYqIZCc7dkC5cuDjw6pZ0LJlFl47Xz64/XbYvDkLmy1FRFKWbEB87733\n+PTTT3n++edxOByJHl+2bJlLCxMRyRLXJqgAq1ZBhw5ZfP1r3cwKiCKSjaTYxZwdqItZRFzmiSeg\nVi145hnOn7fL0GRFb68xEBwMHzf8lHx/rIHPP3f9RUUkz8q0LuZvvvkmyZbDa3r27Jm2ykREsqOw\nMBg4EIDChbPusg4HbNwIG1q1pNkfk7LuwiIiqZBsQFywYIECoojkbpcu2TGIAQFuuXzLlrDqRDWa\n7d5ta8mf3y11iIjcKNmAOHXq1CwsQ0TEDTZtst3LBQq45fItWsA333jzfPXqsGULNG7sljpERG6U\n4kLZR48eJTg4mE6dOgGwfft2pkyZ4vLCRERcbv16t4ayli3txBgTqPUQRSR7STEgPvjgg9x1110c\nPnwYgGrVqjF+/HiXFyYi4nJ//gkBAcTGwpkzWX/5ihXBywv2VWqnLfdEJFtJMSCePHmSPn364Onp\nCYC3tzdeXsn2TIuI5BxbtkCdOqxfD3fckfWXdzhgwQIo17a6WhBFJFtJMSAWLlyYqKiohNtr166l\nmKs3KhURcbX4eNi2DerUYc0aaN7cPWUEBkLBJnVg+3a7s4qISDaQYlPge++9x913382+ffto0aIF\nJ06cYN68eVlRm4iI6xw4YLe5K16c1auhRw831lKoEFSpYgNrYKAbCxERsVIMiA0bNmT58uX89ddf\nANSoUQNvb2+XFyYi4lJbt0KdOhgDa9bAO++4uZ6GDW03swKiiGQDKS6UbYxxWg9x165dgNZBFJEc\nbssWqFuXgwchLs424LlV48awerXdXkVExM1SXCj7+PHjrF69mjuujuBetmwZLVq0UEAUkZxt61bo\n1InISOjZ004Ycaf4zl3xGD3aptWrkwJFRNwlxYWyO3TowPbt2ylXrhwAR44cYdCgQVlSnIiIy2zd\nCi++SItAu2C1O61eDSNG+PNL6dKwbp37CxKRPC/FWcwRERGULVs24XaZMmU4ePCgS4sSEXGpmBjY\nvRtq1nR3JQDcfrsdBxlzd0/4/nt3lyMiknJAbN++PR07dmTq1Kl88cUXdOnShQ4dOmRFbSIirrFr\nl12l2k1b7N2oWDHw94eNNfrADz+4uxwRkZRnMU+cOJHvvvuOFStW4HA4eOyxx+jh1vUgREQy6OoE\nleykZUtEXSP8AAAgAElEQVRYHV2LJn//DTt3ZpvWTRHJmxzGGOPuIlJybTa1iEimGD7c7nE3cqS7\nK0kwc6ZtPJxb+imoUAFeecXdJYlILpLWLJVsF3PLli0Bu5NKkSJFnL6KFi2a8UpFRNxl61aoW5eF\nCyE62t3FWC1b2mGR3HOPuplFxO2SbUE8cOAAlSpVyup6kqQWRBHJVLfdhvnxJ8q0qcGGDeDn5+6C\n4NpbnCPmCpQpY7feu7p6hIhIRmVaC+L14wx79eqVsapERLKLv/+GI0fYy23cckv2CIdg12F0OIB8\n+aBTJ1iwwN0liUgelmxAvD5l7tu3L0uKERFxuW3boGZN1qz3yr7LDaqbWUTcLMVlbkREcpWrezCv\nXg3Nm7u7mGR07gwrV8K5c+6uRETyqGQD4p9//pkwKWXLli2apCIiucPVCSqrV2fjDUuKFbPp9eef\n3V2JiORRya6DGBcXl5V1iIhkjS1bMO07cN99EBDg7mIS27cPvL2hwrVu5vvuc3dJIpIHaR1EEclb\nypWDsDC71mA2NGwYeHjAm48dgvr14ehRmxhFRDIg02Yxi4jkOidPwsWL2WfqchJatoRVq7A1+vvb\nsYgiIllMAVFE8o6rE1TsejLZU/PmsH49xMYC3bvDTz+5uyQRyYMUEEUk78iGezDfqEQJqFgRNm8G\nmjWD3393d0kikge5NCCGhIRQs2ZNqlWrxrhx4xI9/p///IfAwEACAwOpW7cuXl5enD592pUliUhe\ndq0FMZtL6GYODISNGyE+3t0liUge47JJKnFxcdSoUYMlS5bg6+tL48aNmTVrFrVq1Ury+IULF/LB\nBx+wZMmSxEVqkoqIZIaWLZl156d41qlN797uLiZ5ISF2j+j/+z+gUiVYuhSqVnV3WSKSg2WbSSph\nYWFUrVqVypUr4+3tTd++ffnhJjsDfPXVV/Tr189V5YhIXmcMbN3K3A23kd1X8erU6Wo4BGjQADZs\ncGs9IpL3uCwgRkZGUuG6ZST8/PyIjIxM8tgLFy7w888/a89nEXGdiAhMwUKsXHcLrVu7u5g0UEAU\nETdIdqHsjHKkYZbgggULaNWqFcWLF0/2mJEjRyZ8HxQURFBQUAaqE5E8Z8sWdvh3pciRbL3KTWIN\nGsCECe6uQkRymNDQUEJDQ9P9fJcFRF9fXyIiIhJuR0RE4JfMu/Ls2bNT7F6+PiCKiKTZn3+yokBH\n2rRxdyFpdK0F0ZhsvTyPiGQvNzamjRo1Kk3Pd1kXc6NGjdi9ezfh4eFcuXKFOXPm0L1790THnTlz\nhhUrVnDPPfe4qhQREVi3jpWXG+es7mWwO794e8OhQ+6uRETyEJcFRC8vLyZNmkTHjh2pXbs2ffr0\noVatWkyePJnJkycnHPf999/TsWNHChQo4KpSRCSvMwbWrmXsO1707OnuYlLvjTfg7Fk0DlFEspz2\nYhaR3C88HFq0gMjIHNVN26YNvP46dFjxut2gOY1dRCIi12SbZW5ERLKNtWvtriQ5KBzCDQtmqwVR\nRLKQAqKI5H7XAmIOkxAQ1cUsIllMAVFEcr8cGhCbN4d16yDWtxJcvAhHj7q7JBHJIxQQRSR3u3SJ\nmD93EBfQ0N2VpFnJkuDrC1u2Omwr4saN7i5JRPIIBUQRyd02buSbMk/S75FC7q4kXT75BCpWRN3M\nIpKlFBBFJHdbu5alBbrRooW7C0mf1q1tS6ICoohkJQVEEcnd1q5l6cl63HmnuwvJIAVEEclCCogi\nkqvt/y2Sv+MLUKeOuyvJoKpVISoKTp1ydyUikgcoIIpI7nX4ML+eacAdHTxz2hKIiXl4QECAJqqI\nSJZQQBSR3GvdOo76NqRLl5yeDu1ugepmFpGsooAoIrnX2rUM63+QAQPcXUjGXLkC/v5w4fbGCogi\nkiUUEEUk91qzJkcukH2jfPmgfHlYTQsFRBHJEgqIIpI7xcTYMNWkibsryRR33glL91SCiAg4d87d\n5YhILqeAKCK505YtUKkSFCvm7koyRfv2sHiJB9StC5s3u7scEcnlFBBFJHfKofsvJ6d5c9i7F47V\naKNuZhFxOQVEEcmVtoZEsNznXneXkWm8vaFzZ9hYuiMsW+buckQkl/NydwEiIq4wZWV1fCo2oa27\nC8lEX30FjjMNodKvdhxikSLuLklEcim1IIpI7hMVRcjZFnQeUMrdlWQqhwMoXhxatYIFC9xdjojk\nYgqIIpLrhM//kyjP0jRo7OnuUlyjd2+YO9fdVYhILqaAKCK5Tsi883SsHo5Hbn2Hu+ce+PVXLXcj\nIi6TW98+RSQPW/T7rXTuEOvuMlxH3cwi4mIKiCKSuxjDwEuf0Onh8u6uxGV+/hmiOvdXN7OIuIwC\noojkLpGR9LplIT51cm9A/Owz+MF0VzeziLiMAqKI5C6//w6NGl2d8ps73XMP/LCkkLqZRcRlFBBF\nJHf54w8bEHOxrl3tWtkXuvdVN7OIuIQCoojkLr//Dg0bursKlypRAho3hsWFesDSpepmFpFMp4Ao\nIrmGiTd5ogURrnYzLy0MrVurm1lEMp0CoojkGk0Cr7A7/jYon3snqFxz331w993A/ferm1lEMp3D\nGGPcXURKHA4HOaBMEXGj3buhbdOLHGreG48f81CL2qlTUKkSREZqb2YRSVZas5RaEEUkV/j2W7in\nyp94NM7d4w8TKVHCdjPPn+/uSkQkF1FAFJFcYc4c6OMxL9dPUEnS00/Dc88pJIpIplEXs4jkeLt2\nQVCQIeJyGTy3bMoTYxATWbsWeveG/v3hzTfB09PdFYlINqIuZhHJc7ZsgYH3nMUzv3eeDIfx8UCz\nZnYG97p10LEjnDjh7rJEJAdTQBSRHK9XL3i7/ZI82b0cFQXVqkFsLHDrrXaj5saN7c9i40Z3lyci\nOZQCoojkDte22MtjSpa0X8uWXb3DywvGjoUXX4Q33nBrbSKScykgikjukEcDIkCfPnaSjpP+/WH5\ncrhwwS01iUjOpoAoIjmfubqDSh7sYgY7N+W77+DSpevuLFECAgOva1oUEUk9BUQRyfn274dChaBM\nGXdX4hYVKkCDBvDDDzc80K0b/PijW2oSkZxNAVFEcqyJE+Gvv8jTrYfXDB5sc7KTbt1g4ULbwioi\nkgZaB1FEcqTz523L2Y4dUHb8y3abueHD3V1W9mIMVK1q+5/r1XN3NSLiRloHUUTyhG++gVatoGxZ\n8vQElZtyOKBrV9uKKCKSBgqIIpIjTZ0KDz6IbSXbsCHPdzEnS+MQRSQd1MUsIjnO3r1245BDh+CW\niD1w551w4IC7y8qeLl+G0qXtD61UKXdXIyJuoi5mEcndjOGLyZd58N7T3LJhDUybpu7lm7nlFhug\nFy1ydyUikoMoIIpIzvHuu1CgAMP/68uwxW3huedg82YIDnZ3ZdmGMTBwIBw/ft2dGocoImmkLmYR\nyRn277d7DK9fD1WquLuabC042E5efvXVq3ccOQK1a9vU6O3t1tpExD3UxSwiudO//mVbDBUOU/Tk\nk/DxxxAXd/WOcuVsYly1yq11iUjO4dKAGBISQs2aNalWrRrjxo1L8pjQ0FACAwOpU6cOQUFBrixH\nRHKqxYthyxZ4/nl3V5IjNGxoM6HT5OVri2aLiKSCy7qY4+LiqFGjBkuWLMHX15fGjRsza9YsatWq\nlXDM6dOnadmyJT///DN+fn6cPHmSUknMslMXs0geduWKXeT53Xfh7rvdXU2OMXMmfP45/Prr1Tt+\n/x3694edO91al4i4R7bpYg4LC6Nq1apUrlwZb29v+vbtyw83bBT61Vdf0atXL/z8/ACSDIciksd9\n+CH4+3OwXje++srdxeQcvXvbIYdHj169o0EDOHMG9uxxa10ikjO4LCBGRkZSoUKFhNt+fn5ERkY6\nHbN7926io6Np164djRo1YsaMGa4qR0RyoiNH4O234YMPeH+8g02b3F1QzpEvH/z559WdZgA8PDSb\nWURSzctVJ3Y4HCkeExMTw4YNG1i6dCkXLlygefPmNGvWjGrVqiU6duTIkQnfBwUFabyiSF7w8svw\nyCNElazO9Ol2GKKknseNTQAdO8L06TB0qFvqEZGsExoaSmhoaLqf77KA6OvrS0RERMLtiIiIhK7k\naypUqECpUqUoUKAABQoUoE2bNmzevDnFgCgiecCaNXYA3c6d/Hc83Hsv+Pq6u6gcrm1bePRRO73Z\n09Pd1YiIC93YmDZq1Kg0Pd9lXcyNGjVi9+7dhIeHc+XKFebMmUP37t2djrnnnnv47bffiIuL48KF\nC6xbt47atWu7qiQRyUnefx+GDeM8hZk0CV54wd0F5QKlS9uUrb56EUmBy1oQvby8mDRpEh07diQu\nLo7g4GBq1arF5MmTAXjssceoWbMmnTp1ol69enh4ePDoo48qIIoIREfbpW0+/ZQvv4SgILvOs2SC\noCAIDbVr4YiIJEM7qYhI9vPf/8KKFTB7NvHxcO4cFCvm7qJyLmOgSxf49FPwWzPXjkNcsMDdZYlI\nFso2y9yIiKTb1Knw4IOAnWihcJgxDgfUrQtvvYUdh7hy5XXbrIiIJKaAKCLZy/btEBkJHTq4u5Jc\n5aWX4OuvYf/fGocoIilTQBSR7GXaNLvjh2bZZqpSpeCpp+D11/lnHKKISDI0BlFEso/YWKhYEZYs\n0awUFzh/HmrUgO+GLKHJ6gkahyiSh2gMoojkXEuWgJ8fwe/VJizM3cXkPoULw/jxcNSvkcYhishN\nqQVRRLKPvn0JLduXB7+/l507IX9+dxeUi91+u53NrOVuRPIEtSCKSM50+jQxP/3Cs0u6MW6cwqHL\naRyiiNyEAqKIZA9z5jC+8geU9fWid293F5MHKCCKyE2oi1lEsoX9DXrReO8swjbmw9/f3dXkAceP\nQ/XqEBWVeMZ4ZCRcvAhVq7qnNhHJdOpiFpGc56+/uHLwKBMmeiocZpXSpYkv78eXYw8SG3vd/dHR\n0K4dDB3qttJExP0UEEXE/T78kBoPt+SBgVr7MCs5gtoydboH77xz9Y4rV6BXLxsQV6ywrYgikicp\nIIqIe23ZAvPmwSuvuLuSPMfRLojPK47kgw9gwx8GnngCiha1e2EHBMCyZe4uUUTcRAFRRNzHGHjm\nGRg5Enx83F1N3tO2LRV+/44P3o9nQNcoLv6+Db780o5J7NoVfvzR3RWKiJsoIIqI+8ybB6dOweDB\n7q4kbypt92Xut+MN6p5dxUsNltjVtMEGxJ9+siFeRPIcBUQRcYtliy4xNPgsfPih9l12p6AgHOPf\n5+MfK3LiYuF/hh3efjvEx8OOHW4tT0TcQ8vciEiWi4yExjXPMr3RRNovG+bucvK2Xbvg2DFo3Trx\nY08+CVWqwIsvZn1dIpKptMyNiGRrly9Dn3sv8UTcR7SfPtDd5Uj16kmHQ9A4RJE8TAFRRNLu8uV0\nLYFiDDz2GJQ+vIlhr8ZDhQouKE4yTbt2sGEDnD7t7kpEJIt5ubsAEcmBXnwRDh+2k0xu5uxZWLkS\nzp2D8+f5YklFtiyrzYqCj+Dx4u9ZU6ukW3z+gni0agWLF6P9D0XyFo1BFJG0uXIFfH0hLg5Wr4aa\nNZM/9r77ICICKleGIkW4mL8EZ71LUmbAXdCgQZaVLOnzr39BxYMrGVroM5g2zd3liEgGpDVLKSCK\nSNrMnw/vvAMdO8L+/fD550kft2EDdOsGe/ZAwYJZW6NkioMHoXWLWEadfY4HT08AD41KEsmpFBBF\nxLV694Y774T774eqVWHz5qTHEnbtCp07w5AhWV+jZJqdO6Fd3RN89OYper5S3d3liEg6KSCKiOuc\nPg2VKkF4OJQoAS+8YLuax493Pm71aujXzy6hcsstbilVMs+GQR/Q+ZtH+O+0wvTq5e5qRCQ9tMyN\niLjOvHnQvr0Nh2AHqU2bBidPOh/3+ussue9jBg1WOMwNGjwcSEiFwcydq41VRPIKBUQRSb2ZM6F/\n/39uly8PvXrBxIn/3Pfrr3yzvRb9pnfikUeyvkRxgRYtCDy6iNnjj+BwuLsYEckK6mIWkdQ5cAAa\nNrTboFzfbbx7N7RoYSesFCrEpNvGM/b04yxcWpDAQPeVK5msTx+46y4IDnZ3JSKSDupiFhHX+PJL\nOzHlxjGF1apBu3bE/u9TnusRzsTIHvwWdovCYW7Tuzd88on6mEXyCAVEEUmZMTBjhnP38vVefRU+\n+IBCa5ew5pOtVKnqmbX1iev16GF3z1m4MOGu2FgYOtQuhyMiuYsCooikbMMGu0B2ixZJPx4YiFfd\nWoz2/Rifgd2ytjbJGh4e8O9/wxtvQHx8wl3ly0OTJrBo0XXHqpVRJMfTGEQRSdnQoVCsGIwalfwx\nBw/aEFm1atbVJVnLGGjcGF55xe6Sc9WKFfB//wcPPggjzzyHV/wV+Ogj99UpIoloHUQRyVyxsXZr\nvd9+s+MNsVkwXz4oW9bNtUnWW7TIrn/555/g+c9QguPHof+dhzmz+zgLb7mPW4/8qR10RLIRTVIR\nkcy1eDFUqQLVqmEMfPEFNGpk86LkQZ062dbk2bOd7i59bAs/H6nPi2N8KNm8Onz/vZsKFJHMoBZE\nEUne6dO2S3HMGLbVvp8nnrDzFD79FAIC3F2cuM2vv8Jjj8GOHeDlBWfO2P9PRoyABx6AWbPsAuoh\nIe6uVESuUguiiGSO+HgYOBA6deKNLfcTFAR9+8LatQqHed4dd4CfH0yfbsclPvQQdOhgwyHAPffA\nunVw+HDCU2Jj3VSriKSLAqKIJO2ttyAqCt57j9tvhy1b4MknnYadSV725pt2VvOYMXbx9Pff/+ex\nggWhZ0+7diZw6RLUqgXvvAMXLqTxOgcOwN69qTs2M3uafvkFJkzIvPOJ5DAKiCKS2KJF8PHHMHcu\n5MtHnz6akCI3aNUKataE8ePt/yc3LqA+aJDtZjaG/PlhwQJYv97Oc/roIzvh/aZOn4aXXrLN1Z06\n2ZR5M6NG2dn2mWXqVHvOixcz75wiOYgCoogA9g/2ggXAvn12vZLZs+0idyLJ+eQTOx6xYsXEj7Vq\nBX//DZs2ATZLzp1r/x/78UeoXh1++imJc8bEwKRJUKMGREfD9u1Qr55tqUzOhg12P/CZM1ORPFPB\nGPu6ypeHb77J+PlEciBNUhHJ46Ki4PPP7d/XmtXi+O5EKwoF94Vnn3V3aZLTvfEGnDtnWxlvsHYt\nFC4Mdepgj9m4EX7/3YbOChXgP/+B+vXtwZGRtiVx5UqbNK8XE2NX6n7uOfvcV1+Frl0zVve2bdCt\nG7z3nq195cqMnU8kG9AkFRFJlc2b4eGH7brWW7fCt1/HsrjofRSq6w/PPOPu8iQ3GDAAvvrKhrgb\nNItbRZ1xA+zgxLJl4eWXbev1hAl2aaVr4RDsOpxvvGFnTt/4B+6dd+zzBwyAPn1gzpyM1/3rr3Dn\nnXD33Xb84/btGT+nSA6jgCiSR61da7v5du2CaZ/F0OjdPhAXZxc6dDjcXZ7kBtWq2U8gixc73//p\np3YSS/PmNtCdPg1r1sCkSUTW6Ujdeg4++ABOnrzuOU8+aWe4TJ36z307dtgWvo8/tv/P3nef7cNO\nabxiSpYutQHR29t+ivrkk4ydTyQHUhezSC5nTAp5LyYG+vWzf1S/+SbxZAORjJg82Qaur7+2/689\n95y9PX9+ws481zPG9uhOngwLF0LLlnYbv3vugSJ7NtoJK9u2QYkS0Lq1XVrnqaf+OUG7dnZ4xL33\npq/e2Fi49VbYuRPKlIHwcLsyfEQEFCiQvnOKZAPaak9EOH/erlH8/fe2hXDdumRCYmys/ev799/w\n7bcKh5L5Tp2CypXtRJJHH7Uh66uv7G4sKTh/Hn74wa67ffvtMG4c8K9/2ckrDRrAvHkQGgoe13WG\nffyx3Rz6q6/SV29YmG013Lr1n/s6d7b/TgYMSN85RbIBBUSRvGL/fggOhmPH4JlnMP0H8NlXBZk/\nH5Yvt713995rW17Kl423IdDL65+vuDjb+nL2LHz3HeTP7+5XJLnV/ffbKctDhtjZyOlYTDOhJfz8\neahd205sWbeOc+WqU7jwdR+Ajh+3YycOH07fXtBjx8LRo85rIH7/vZ00o/0lJQfTJBWR9LpwwYao\n7M4YO+24SRPo0sVOP/7xRxxVKrP3i+X063SKg+Hx/DxuE09c/oDyT9wDpUpBuXLg42P/aHp4QL58\n9o+swqG42htv2CVoxo1L90rrCQGwcGF7ro8+gurV6dfPbhUeHGwbDY/Gl7bb/iW5hk4qXJugcr2u\nXe0Emm3b0ndOkRxILYgiYENX5842IC5bZlvYsplDh2DVT2dY9fYKBnrNotE3r0Lduv8csHu3bfX4\n8kv717R0aQgKsmOy2rZ1XunaGLuVnoeHJqRIjmaMnavy6692aGNoKJQveIplDV6g9IIpaTvZpUt2\n/OGhQ4m7wF9/3ba2a3cVyaHUxSySHl99BW+/bQelN2tmtxHLBhYtstvdrloFF8/G0PLSElo0N/SZ\nfCeVqiczXvD0abv7Q7lyWVusSDYQFwcbQ8/QsEdFHIcjbYvjVdcmwNSrB8WLJ/HkZcvsOopr1yZ+\n7MABaNgw8WSV+Hj7IUsftCSbU0CU7GH8ePuGmZlbX7lKdLQdAf/993YwfYMGNpXd2M3kAuboMY49\nO4aYqrWo8NbjiR7/5Re7RnDLJjFUvbcOjrFjoFcvl9clkuN16WInlfTrl3BXdLRd//rPP21DYUCA\n/Wrc2B7O8OE28CW3a0uXLuDnZ0Pnnj32a98+aN/eLq+jkPgPY+wkOG9vd1ciV2WrMYghISHUrFmT\natWqMW7cuESPh4aGUqxYMQIDAwkMDGT06NGuLEduZvHizNstYOdOeOstO9g7qU/i2c1LL9nQ1bSp\nbUGcPh0GDrSTP1LDGBg50nblvvEGLFmS7FjGPXvg3Xfh4YcMLW47ik/5W6gz/y2++uCYffAGHTrY\nXe+qhX6Ko2IFu3aciKSsd+9Ei2b7+MDq1XDmDPz8s52YfOXKdcs03jD+8Px5uwpAbOzVO954ww7L\nKFcOHnrInv/YMfuVHdZK/PVX+/6VHbz6qj7M5nAua0GMi4ujRo0aLFmyBF9fXxo3bsysWbOoVatW\nwjGhoaG8//77zJ8//+ZFqgUxsTNn7GDv67pP0i0qym5fVa6c3V4jI5+CjYE77oAePex2WS+8YPdi\nLVIk43Wmxs8/2z6mLl1Sd/yKFfavxPbtULToP/e//rpdGyYkxHkJjaS8+SbMnculEWMJX7yLfb8d\nxnvfTjrUP2FDZ9269uv221m7tTBzPjpJrdWfUbPAAWp99DS3tq1td4NYscIu/Hajs2ftrMxFiyAw\nMPU/C5G87PRpu0d0RMQ/4wkjIuy/s8qV7QKL1zt71u7Ycvx4Qhfy+vV2c5YjR+xEmKpV7X9bt7Zr\ncifYvh3atLFPqFIlS15eItdmd3t52d1f3NmauWWLDdoOhx0Uet3ffXGfbNPFvGbNGkaNGkVISAgA\nb7/9NgCvvPJKwjGhoaG89957LFiw4OZFKiA627HDLhZbr55dbDajbwSDB9sZrb/9ZrtWUhuukjJj\nBnzwgV1LzNMTHnnkn905skLnzvYj/19/pTzR5PJlu53XmDGJW+ZiY23Q7dwZXn012cWmt7w8kyc/\nrMm+4oFEnfKkYkX796FDUAwvNF9l95bdssV+7dxpJ4qcPw+jR9ufzbXweeWK/X2++67d3ut6r79u\nxz9ll5YBkZyie3f7b+7SJRsM//4bWrWyzYj//a9zC9fChXZozNKliU5z8aKdA7Zvn/0qVcp2Mjh5\n5x3Cvg7n67Yf4evnwM/P9kb7+trP3i7vaX35ZTseZfVqu+C9uz5MxsfbsNy/v10u6OhRuzZlXpXi\nTgVZJ81ZyrjI3LlzzSOPPJJwe8aMGWbIkCFOx4SGhhofHx9Tr14907lzZ7Nt27Ykz5WqMocNM2bK\nlLQXGhNjzKBBxlSubEzbtsYMHGjM668b89lnxhw/nvbzJefwYWOiojJ+nt9+M6Z0aWM++cSYWrWM\n+eabjJ1vzRpjypUz5vRpY7780pg2bdJ/rqgoY8qWNWb9+n/uO3fOmKpVjZk7N2N1psbFi8YULmxM\nYKAxs2enfPzIkcZ0725MfHzCXUePGjNihDFPPGFMz85/m6bevxtfn79N0ybxiZ8/ZYqJ9qtrls0+\nag4cMCY2NoXrxcQYs2OHMSdPJv34zz8bU6WKfR3XHDpkjI+PMQcOpPx6RMTZ0qXG9O9vzMcfG7N9\n+z//1jdssO9VX375z7FDhxozenT6rxUba3bW723G3fObefppY3r2NKZJE2PKlzfmsceSfsqOHcZ8\n/bUxy5fb76Ojnd6OUm/rVmNKlTLmyBFjXnjB/j10lylT7AuPi7NvqCVKJP+el5vt2WNMx47GNGhg\nzLFj7q7GGJPKLHUdl63l4UhFYm7QoAEREREULFiQRYsWce+997Jr164kjx05cmTC90FBQQQFBf3z\n4NSpdl2sixftJ8JUrNAP2E86wcG2/yAkxC5tcOCA/frmGztpIYXWzVRZs8Z+km3UyK7Nld5PE999\nZzernzEDOnaEGjXsQscdOqSvCzc2Fp54wi4AW6yYHbMzbJitt3nztJ/vlVdsv0ujRv/cV7iwXXbl\n7rvt7GA/v7SfNxXi4sBz1SqoUwdeew1GjIDevYk+5WDSJDs4PToaTpyww4WKeV9g2d6JsHFjot9H\nfLyds9KuXUF8u3ni99n/Ue7gBniprx13VKuW3Tbs9dcpERpKULUyqSvSy8t25Sfnrrvsp/5337Wt\nhmDHPD36qO0qE5G0ueMO+3WjwEA7Vviuu2xPwkMP2fF7kyen/1qentSY829eatnSjr2uWjXhoeQa\nbSIiYPZs26t97Jj978WLtjHw3/9OfPymTXaCjY/PdV8lDCWeeAbvESNsa2mvXvb1uGNMf1SUHXt4\nbWhOmTJ2tf7Jk+37cl5w5Yp9Dx8/3o5vP3vWtqguWeKyv3/JCQ0NJTQ0NP0ncFFQNWvWrDEdO3ZM\nuGvcZBIAAB8qSURBVD1mzBjz9ttv3/Q5lStXNlFJtLLdtMywMPvJads2Yx58MPWfnOLj7ce6Nm2M\n+fvvxI9fumRbFZcvT935kjNvnq3vu++MqVnTmAUL0neeiRPtR9E//nC+/6GHjHn22fSd84MPjLnj\nDuePrJMmGXPPPWk/16pVtr7Tp5N+fPRoe624OKe74+ONOXPGmIgI+wF/7VpjfvnFmEWLkj7NiRO2\nvHbtjAkIMKZiRWOKFLG/KvPSS8a88Ya9Ru3axvzyi4mOtg3C779vzBdfGPPjj8asXxtrIhreY8yH\nH6b+9e3YYczLL9vW1oYNjSlTxpjNm1P//NQKDzemZElj9u835s8/bWtxcj9TEcmYv/4ypkIFY/79\nb2OKFbOt/Bn1/vvGtGpl34cuXLCtmMOGGdO8uTFPPpliE+HFi8acPZv0Y4sWGTNggDFdu9rT1ahh\nzK1FL5rXy07+pwsjLs4YX19jtm0zP/xgzOOP27fGN980ZsIE+z74558Zf5lJCg425plnnO/780/7\nt+HyZRddNBtZvtz27HXtat/Dr3nnHftHas8et5VmTNpbEF0WEGNiYoy/v7/Zv3+/uXz5sqlfv77Z\nvn270zFHjx418Vf/saxbt85UqlQp6SKTe1HHjtl/3Ne6WQ8csN1xhw/fvLj4eBuqmjZN/l+iMcbM\nnGmPSU+bf3y8Me++a/+hbthg7wsJMea222z4TIuxY42pXt2YffsSP3bihA0rNwbHlERG2iCyY4fz\n/X//bUPJ1d9VXJztOT582Ji9e+2/9bVrbU93gitXjKlTx5g5c8y5czZHPf20fa/o188Guvvvi7Nv\nmo8/bt80rzp61Aa88uVtfm7c2Jg777S9/km5eNFm7SVL7I91/34bMOPjjU2M1wqbOtWY9u2TPsnb\nb9uEeUNYTZWYGPt7vOH/5Uz15pvG9OhhTKdO9h1dRFxn7177x/vuuzPnfHFxxrRubUzdusYUKmST\n3LBhxixebN8nP/ssc65jjDGnTtkPrWvXOt//9NPGvPmm2bDBmP/+177lvfaaMUOG2FFUX3+d9OlG\njLDvx2XKGOPvb8tt2tS+nSYlNNSY//zHXmPa8L/MvBKPmJ/mnXfKRsYY+6Y+Y4a5fNnmxHR1o2dn\n8fG2ccLX1zYKJfUCP/7YPr5lS9bXd1VaA6JL10FctGgRQ4cOJS4ujuDgYF599VUmX23Cf+yxx/jo\no4/43//+h5eXFwULFuT999+nWbNmic6T5MDKmBjbtdqqlXNT+v+3d+9hUdXb/8DfXAYxTVMzNPEO\nyP1iiCWZpqFlwlGPkiJJ4eXJOt9uSObR6ph5S+lbptGpJ1PSsvBb4oXIFC+Yj6ECqdH36FcHxUT0\nJ4IIDMMM6/fHagYGhpvOsLms1/PMAzOzZ8/aG2bvNZ/9+azPggXcETk+vu7AFi/mEaGpqXVUS/1L\nZSUXRl2ypGnD9XU64OWXedDHnj08mtfgb38DHnkEtPBNs1ea9XqeYrei4q/bgSPQvrca2PglHgm9\nv9by5eXA1hePoHzfEZS/8gbKK2yh0fD4kCVLaq+/uJivAmsys1Gu6gxNz34oL+eZ1jIz/1po2TLu\nif3ll7h5Exg0COjQgWdoM9ycnP66+l5RAbz2Gpdo+fFHlGls8NFHpsvecw8PEB7jdwN46SW+TrJ5\nM4/wbazr1/lS8P219wEAvj4zZAgvp1JxM//gwdxN4KGHqpY7fZovOZ04AfTv3/j3b04aDV8qB3h0\npIODsvEI0dbl5/NUm5YagXz9OpCRAYwYYdr9JzubZzU6dIhHHN+t//ovPgnULLFz6BDXoDUe1BtH\nr+fTp2HWUcPvvXubP1z+9BPfSm/rUZKYjFI3f5R064tnn+XeT0Z79gBvv423nz6BlSttoNfzOYdv\nhMUx5XgppvZ0n1u38ksNy3bowIfDCRN4N9Z08iSP4XRw4NOAgwPf3NzMx19UxIdbw3IqFd+a1Aus\nspL39ZEjvDN69qx72W++4fPlrl1cfLOZtZhRzJZkY2ODtDSCXs+5l14P2MR/gpDy3byjq83tqc27\nga2u/4J+0WLo7+9lXN7ODnhpfiX37UpK4qH3998PjYa7een1MFm/g8NfMyrt3csfwjNnAJUKpaXA\n9Ommy+p0/M+bkgLubzBjBidOiYkotu0KN7dqCZ+2ElpNJTrda4uiW7XLpxQXc+FWlQpQUTlUF/4D\nB7eBuK/vvfhrQLiJ0lLgpZcIHX7ahQ5u/dAhyB+OjnxMio2tvXxFBZC67AgcP/8YHb7ZjA5dHY0f\nPuOxsaCA+8+cOlV/n4kLF3hbe/TghK++D0Z1333H+3T2bO4r2KGOGUGqmzWLN3b7dvPPb93Kz/3w\nQ9VjH3zApWoMtdC0Wp6/+OWXgejoxsWqlIwM/scKClI6EiGEJX3xRVWlh+ozsjQFEWdOs2dz0tmj\nh+nzej3w4IPcn3zQoIbXp9cD69bxel9/venxbNjAX8b37jWfXVVWckL82WfAY49Br+e8VnMsC5r5\nr6ETStD1ZGqtsm2nTvGpV6MBNGUETUEpKuw74rHRtma7yX/7LRf2qKjgw71Wy7/PjiZMf6oIuHmz\n6lZQgGUHR+LjxF4my+t03IVwwYLa61+5kv989vaGG8E+Nwev3r8Fkekv1xr/sGkTpyhVywP2Vy4i\n/Hgsxqe8zv3yq9m7l09ZhmXt7PjnyJHmB6VnZXHRDjs705uHh/nvOm02QRwxKA/2pIVdpQ522jJ0\nvvUnfsgdBnTrZrKsRgO8EHwKdgX/D/bjxhh32D2qCqy+PJMHouzYwfPUgv9JP/yw6g9hWN7RsVoO\nERLCLYgvvACdjj+X1f94dnacUAb3yeHBGMHBwMcfAyoVKit5lL/hm4lKBTgsewv2uWrYbN1S90aX\nlvJAkblzgX/8o+Gd9L//y/9FJ0/WPaDh/HnOGk+e5ITq0UfrXt/rr/MHPS7O/PPbtnGSt3gxJ1wN\n1Qqs6epVHnCjVgOJidz6VxedjjtfV1QAv/9uPml97jlukZw/v+qx4mI+OB47xq2Jb73FnyhLlAYS\nQog7QcTNa1261C7/UlLC5w61mktvjRljWh+HiFup3n2Xv8ivX8+zuJgzbx7g6mq+paC6Cxf4+EnE\n2cbevVz+q7E0Gm5QSEoyvVpTU3w8r/uHHzgTW76cH/vgA57isKSEW9jqurT27LP8HuXl3ALSowff\nBgzg5sRRozgJNby+ooJb9ZKS+Jh//Tov361b1e3wYT4XjhtnfCvDNPXV2p2Mbtzg3FKvB3Ql5dDF\nLIROW4kHv1qF3oPuqbX8mTNccU2nM70FlqXB792/cy4yYoRx+Z9+4pBrLv+3v5n/M3/1FW+aoYHL\ncJs9u0adzr+0mDI3lgSAaN48opgYoqVLuROwuf54BiUl3KnNUG7lyhWiwECimTNNS4g01okT3M+j\nuLjuZY4e5WU+/LDhDhbFxUTOzjU68lVTWcmxRkY2rbPG2rXcgWT8eKL4eO5nSMT9VGJiuH/m8uUm\nfQDrdOkSlycwDBrS6apGkzz/PJGra9P7PdZUWcmdXp55pv7lDh/m/oX/+AePODG3nt69zXcAXryY\n+z3++it3rMnLu7uYhRDibhUVcX90Q2fAsjI+d/TqxcfDNWuIHn6Y+4nPns0lsHbu5E7aXl5E33zT\ncF2tlBTuQFiXykoul3b//Xzu0OmIPv+cX9OU/tnr1xNNnNjwcrdvVw3Y9PcnmjCh6hxVWsrlyf77\nv83H+cILRKNH837S6fi8dPYsl2nbtInPSYMG8fqnTCGKiODzXWAgD0D67Tfz59IjR4h69uR9W5fC\nQqLUVL4dOMAdLw8d4kGX4eF3PvgmJYXjPXy4cctrtWSsn3Qn/ef1+pYzSMWS7iiP/fRT/gNmZPBA\nlvfeu7uesTNm8D+aOV9/zX/o3bsbv76vv+YPhLkP+bp1RH5+5kdXN+TWLa45GBFBdN99/GF3cuKD\nTFOTo7lzua6goyORrS3/7uREFB1d/+Ceprh+nahLFz541CU2lhPD7Gw+gNb8QJ4+zQcHc/LzOdF1\ncam7Z7YQQjS348c5OYmL43PUxIlEmZmmy1y8yM8PH87VE7Zvb3xyUF7Ox77c3NrPXb3KCdrQoVxD\n0UCvJxoxgs+fjaHR8MCL6rVv67NoER/vN26sfT6+cIEHSKalmT7+z39yoldU1PD6L10i+uoron//\nm2vINkZ6Or9vzfODRsP7vmdPouBgrpP82GM8AGnkSK432WDx2wbs3cu5w8GD9S+Xn8/v/fTT/MXB\nXCJdn1u3iMLCJEE00mp55G+3bpYp0nz+PH+b+/VXouRkog0buFVu4kSi/v2bXvKkspJH9T76KCef\nL77IH4R33uF/1vPn7z7m8nKuGXOn5Vh0Ov7HLCmx7rCzJ5/kb8R1GTKk6gA0Zgwn19XFxfE3zLq8\n8gq3xgohREuyYQPRuHF8BcoaZs2qXQkhPZ2vYC1ezOfJmk6d4qTo6tWG179hAyctjaXR1F80e88e\nTjgNjRlr1nB5i+vXG/8edyIrixsfEhL4vJeQwOf10FDTBNoa9u/nJPGbb8xf3Tt+nL9ALFnCCfz5\n87x8Vlbj1p+TwyPq58xpWaOYLeWOp9rLyuK+cb6+lglk6VK+6D9oEPcAHTSIb48/Xvfo2voUFHD/\nuOodZ2/e5L4n9fUPbGs2beJ+ItUHmBicPQuMHs19R21tge+/5z4rR45ULfPkk9yfcfJk8+uvrOR+\nKdLvUAjRnuzcyf3IDx3i+wkJPPris8+4gHVdDNP2bamnn3x5Ofdx/J//seyI3Hfe4UGkM2YAq1bx\nsb45Ckz/8QePN+jUiSuQv/8+9+tvDocPc3/+rCw+90+YwNO8Hj0KxMRwofHq08EmJACrV3M1jvoG\nOv3yC3dGXLgQeOUV2Njats1BKq0gTHGnCgu5BsGlS7VnwYmL4yTRMMOBTsfJ+e7d3JFao+HR07m5\n9ZcsEkKI9kaj4QF+2dk8Y9auXTwwwsur/teVlPAyX3wBjB1rfpn4eF5fcrJlY9brgYkTuZJDWhrX\nqGkuFy/yqJKQEGUaFAoLgZ9/5n2aksKjus39vYiAiAgedLN+vfl1bd7MA5Q2b+ZkE214FHMrCFPc\njUmTuAUwKsr08VGjeLqip5+uemz5cv4gf/YZT1/0zjv8TUkIIYSp6dO5Fc7Li0cJd+/euNft2sWt\nV6dOcVmP6gyth4mJTatn21glJZws9elj+XW3FpWV/LOuCiGFhVwTb/16TqgBGMusfPYZVzbZtcuk\n3qYkiKJ12raNv+n8+GPVYzducGthfr5pM3p+Ps9pfOECF6a65x6g2lzdQggh/vLLL8D+/TwXsr19\n0147eTLXcIuJ4cvIhla1f/+buwSZK84rmk9aGhAezn+LXbuAL7/kbm9z5wLTpvG5sRpJEEXrVFLC\n3xb/7/+q+nNu2cLFr3fsqL38zJlAYCAnlZ98YlJLSgghhAXcuMEtVFu3Vl3WnDaNr+hs2waz1apF\n83rnHa6dGRUFzJlTb/cBSRBF6/XMM9zfZd68qvvjxnHVz5qOHuVvTiUlXAC1qd+MhRBCNA5R1QQL\n27bxpc3qV3uEcuqr7F2DJIii9frhB/4mlJrKlfYfeIA7DDs51V6WCBg6lC9Bf/9988cqhBDtkWG6\nDpkjvtVpai4lzS6i5XjqKZ7fMC+P5yhydzefHALcF2b9+kZ9axJCCGEhhvloRZsnLYiiZYmK4r6F\n585xeYZ//lPpiIQQQohWT1oQRes2fTqwbBlw5QrXOhRCCCFEs5MWRNGyVFRwy2GXLlzGRmY/EUII\nIe6atCCK1k2l4tHJHTtKciiEEEIoRFoQRcuj1fJPGSUnhBBCWIS0IIrWTxJDIYQQQlF1TPInhBBC\nCCHaK0kQW5iDBw8qHUKzku1tu9rTtgLta3vb07YC7Wt729O2Au1ve5tCEsQWpr39s8r2tl3taVuB\n9rW97Wlbgfa1ve1pW4H2t71NIQmiEEIIIYQwIQmiEEIIIYQw0WrK3AghhBBCiDvX5srctIIcVggh\nhBCizZBLzEIIIYQQwoQkiEIIIYQQwkSLTRATExPh5eUFOzs7ZGRkmDy3cuVKuLq6wt3dHXv37lUo\nQutJT09HUFAQAgICMGzYMBw/flzpkKzq448/hoeHB7y9vbFw4UKlw2kWcXFxsLW1RUFBgdKhWFVs\nbCw8PDzg5+eHKVOmoKioSOmQLC4lJQXu7u5wdXXF6tWrlQ7HqnJzc/H444/Dy8sL3t7eWLdundIh\nWZ1er0dAQABCQ0OVDsXqCgsLMXXqVHh4eMDT0xPHjh1TOiSrWblyJby8vODj44OIiAiUl5crHZJF\nRUdHw8nJCT4+PsbHCgoKEBISAjc3N4wbNw6FhYX1r4RaqD/++IP+85//0OjRo+nkyZPGx3///Xfy\n8/MjrVZLarWaBg8eTHq9XsFILW/UqFGUkpJCRETJyck0evRohSOyntTUVHriiSdIq9USEdG1a9cU\njsj6Ll26ROPHj6cBAwbQjRs3lA7Hqvbu3Wv8fC5cuJAWLlyocESWpdPpaPDgwaRWq0mr1ZKfnx9l\nZ2crHZbV5OXlUWZmJhERFRcXk5ubW5veXiKiuLg4ioiIoNDQUKVDsbpZs2bRF198QUREFRUVVFhY\nqHBE1qFWq2ngwIGk0WiIiCg8PJw2bdqkcFSWdfjwYcrIyCBvb2/jY7GxsbR69WoiIlq1alWDx+MW\n24Lo7u4ONze3Wo8nJSVhxowZUKlUGDBgAFxcXJCenq5AhNbTu3dvY0tLYWEh+vTpo3BE1hMfH49F\nixZBpVIBAHr27KlwRNb3+uuv4/3331c6jGYREhICW1s+zAwfPhyXL19WOCLLSk9Ph4uLCwYMGACV\nSoXp06cjKSlJ6bCsplevXvD39wcAdO7cGR4eHrhy5YrCUVnP5cuXkZycjDlz5rT5wZJFRUVIS0tD\ndHQ0AMDe3h5du3ZVOCrr6NKlC1QqFUpLS6HT6VBaWtrmzrMjR45Et27dTB7buXMnoqKiAABRUVHY\nsWNHvetosQliXa5cuQJnZ2fjfWdnZ/z5558KRmR5q1atQkxMDPr164fY2FisXLlS6ZCs5ty5czh8\n+DAefvhhjB49GidOnFA6JKtKSkqCs7MzfH19lQ6l2W3cuBETJkxQOgyL+vPPP9G3b1/j/bZ4PKpL\nTk4OMjMzMXz4cKVDsZrXXnsNa9asMX7JacvUajV69uyJ559/HkOHDsXcuXNRWlqqdFhW0b17d+M5\n9sEHH8R9992HJ554QumwrC4/Px9OTk4AACcnJ+Tn59e7vKJlbkJCQnD16tVaj69YsaJJ/T1aY53E\nurZ9+fLlWLduHdatW4fJkycjMTER0dHR+PnnnxWI0jLq21adToebN2/i2LFjOH78OMLDw3HhwgUF\norSc+rZ35cqVJv1m20KrRGM+x8uXL4eDgwMiIiKaOzyrao3HHku4ffs2pk6dio8++gidO3dWOhyr\n2L17Nx544AEEBAS0i+nYdDodMjIysH79egwbNgyvvvoqVq1ahXfffVfp0Czu/Pnz+PDDD5GTk4Ou\nXbti2rRp2Lp1K2bOnKl0aM3GxsamweOXogninSQ9ffr0QW5urvH+5cuXW2XTcH3bHhkZiX379gEA\npk6dijlz5jRXWFZR37bGx8djypQpAIBhw4bB1tYWN27cQI8ePZorPIura3vPnDkDtVoNPz8/APy/\n+9BDDyE9PR0PPPBAc4ZoUQ19jjdt2oTk5GTs37+/mSJqPjWPR7m5uSZXONqiiooK/P3vf0dkZCQm\nTZqkdDhWc/ToUezcuRPJycnQaDS4desWZs2ahYSEBKVDswpnZ2c4Oztj2LBhAPjcs2rVKoWjso4T\nJ05gxIgRxvPMlClTcPTo0TafIDo5OeHq1avo1asX8vLyGjzvtIp28+qtLGFhYdi2bRu0Wi3UajXO\nnTuHoKAgBaOzPBcXFxw6dAgAkJqaarYvZlsxadIkpKamAgDOnj0LrVbbqpPD+nh7eyM/Px9qtRpq\ntRrOzs7IyMho1clhQ1JSUrBmzRokJSXB0dFR6XAsLjAwEOfOnUNOTg60Wi2+/fZbhIWFKR2W1RAR\nZs+eDU9PT7z66qtKh2NVK1asQG5uLtRqNbZt24YxY8a02eQQ4P6lffv2xdmzZwEA+/btg5eXl8JR\nWYe7uzuOHTuGsrIyEBH27dsHT09PpcOyurCwMGzevBkAsHnz5oa/4FlrBM3d+v7778nZ2ZkcHR3J\nycmJnnzySeNzy5cvp8GDB9OQIUOMo33bkuPHj1NQUBD5+fnRww8/TBkZGUqHZDVarZYiIyPJ29ub\nhg4dSgcOHFA6pGYzcODANj+K2cXFhfr160f+/v7k7+9P8+fPVzoki0tOTiY3NzcaPHgwrVixQulw\nrCotLY1sbGzIz8/P+Df98ccflQ7L6g4ePNguRjFnZWVRYGAg+fr60uTJk9vsKGYiotWrV5Onpyd5\ne3vTrFmzjJU02orp06dT7969SaVSkbOzM23cuJFu3LhBY8eOJVdXVwoJCaGbN2/Wu45WMRezEEII\nIYRoPq3iErMQQgghhGg+kiAKIYQQQggTkiAKIYQQQggTkiAKIYQQQggTkiAKIYQQQggTkiAKIYQQ\nQggTkiAKISzCzs4OAQEBCAgIwNChQ3Hx4kUEBwdb7f2KiooQHx/fYtd3t6pPYWfYjzVjrHnfmvs7\nOzsbQUFBePbZZ3H9+nUAQGZmJry8vJCcnGy19xVCKEPqIAohLOLee+9FcXFxs71fTk4OQkNDcfr0\n6VrPGQ5rTZkrub711eVO3qexzO3PmjHeScx3Y+nSpejfvz+ee+45AEBWVhYcHBzaxSwUQrQ30oIo\nhLAaQytYTk4OPDw8MG/ePHh7e2P8+PHQaDQAgC1btmD48OEICAjACy+8gMrKylrrKSkpwdNPPw1/\nf3/4+Pjgu+++w6JFi3D+/HkEBARg4cKFuHjxIoYMGYKoqCj4+PggLS0NPj4+xnWsXbsWS5cuBQAk\nJCTAz88P/v7+iIqKAgC8+eabtdZn7vU13yc3N7fBbTAXv2G/uLu7IzIyEp6enpg2bRrKysrq3I/V\nY3zjjTdM9sEbb7yBe++9t8H9DQDLli2Du7s7Ro4ciYiICMTFxTXq7+ns7Gwy9/Tvv/8uyaEQbZXV\n53sRQrQLdnZ2xunXpkyZQkREnTt3JiIitVpN9vb29NtvvxERUXh4OG3ZsoWys7MpNDSUdDodERHN\nnz+fEhISaq17+/btNHfuXOP9oqIiysnJIW9vb+NjarWabG1t6ddffzXer/782rVr6V//+hedOXOG\n3NzcjNMcFhQUEBGZXV/N1y9dupRycnJM3qcx22AufsN72NjY0NGjR4mIKDo6mtauXWuy76r/XjPG\nmvcb2t9EROnp6eTv70/l5eVUXFxMrq6uFBcXV2ufJycn0wcffEDr16+nvLw8IiJKSUmhefPmERHR\nvn37jI8LIdoee6UTVCFE29CxY0dkZmbW+fzAgQPh6+sLAHjooYeQk5ODwsJCnDx5EoGBgQCAsrIy\n9OrVq9ZrfX19sWDBArz55puYOHEiHn30URQUFNRarn///ggKCqo3zgMHDiA8PBzdu3cHAHTr1g1A\n1eXi+hiWqf4++/fvb3AbzMVv0LdvXzzyyCMAgMjISKxbtw4xMTH1vn9d96szt78B4JdffsGkSZPg\n4OAABwcHhIaG1lrPxYsXsWLFCqSlpSE1NRW3b98GUNWCqNfrce3aNYwdO7bunSWEaNUkQRRCNIsO\nHToYf7ezs0NZWRmICFFRUVixYkW9r3V1dUVmZib27NmDJUuWYOzYsZg1a1at5Tp16mT83d7e3uRS\nb/VLt41JBut7ffX3AdDgNpiL/6233gJg2n+RiGBra5meP+b2t+H9qm+/uX2xY8cOuLq6Yvfu3ejU\nqRNcXFwAcIJ4+fJlJCUlISwszCJxCiFaJumDKIRQzNixY7F9+3bjqNiCggJcunSp1nJ5eXlwdHTE\nzJkzsWDBAmRmZjY4KMbJyQnXrl1DQUEBysvLsXv3btjY2GDMmDFITEw0tkAaftZcX12vv5NtqBl/\nRkaG8blLly7h2LFjAICvv/7apHWxppox3snAoODgYOzatQvl5eW4ffs29uzZU2u7OnbsiLCwMEyc\nOBEjR47EtWvXAABdu3ZFQUEBbG1tayXJQoi2RVoQhRAWYS55qv5YzedtbGzg4eGB9957D+PGjUNl\nZSVUKhU++eQT9OvXz2TZ06dPIzY2Fra2tlCpVPj000/RvXt3BAcHw8fHBxMmTMCLL75o8h4qlQpv\nv/02goKC0KdPH+NgCk9PTyxevBijRo2CnZ0dhg4dio0bN6JHjx4m61u9erXZ19fclsZsg7n4DYYM\nGYINGzYgOjoaXl5emD9/fp37zlyMhvtPPfVUg/sbAAIDAxEWFgZfX184OTnBx8cHXbt2NVn2mWee\nwUcffQSVSoXCwkJMnTrV+FxwcLC0HgrRDkiZGyGEUEhzl6kxKCkpQadOnVBaWopRo0bh888/h7+/\nf7PGIIRo2aQFUQghFGSNGooNmTdvHrKzs6HRaPDcc89JciiEqEVaEIUQQgghhAkZpCKEEEIIIUxI\ngiiEEEIIIUxIgiiEEEIIIUxIgiiEEEIIIUxIgiiEEEIIIUxIgiiEEEIIIUxIgiiEEEIIIUxIgiiE\nEEIIIUz8fwfPJ7wWf8KCAAAAAElFTkSuQmCC\n" } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
hbwzhsh/pyDataScienceToolkits_Base
Scikit-learn/.ipynb_checkpoints/(1)getting_started_with_iris-checkpoint.ipynb
8
51025
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "##从iris数据集入门scikit-learn\n", "iris数据集是由三种鸢尾花,各50组数据构成的数据集。每个样本包含4个特征,分别为萼片(sepals)的长和宽、花瓣(petals)的长和宽。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![](Image/iris_petal_sepal.jpg)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "#from IPython.diasplay import Image\n", "#Image(filename=\"Image/iris_petal_sepal.jpg\", width=400, height=432)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "##1. 载入iris数据" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "你还可以通过python的csv模块,或者NumPy的loadtxt函数,或者Pandas的read_csv()函数读取从[UCI Iris dataset](http://archive.ics.uci.edu/ml/datasets/Iris)下载的csv文件。" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "sklearn.datasets.base.Bunch" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.datasets import load_iris\n", "iris = load_iris()\n", "type(iris)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']\n", "['setosa' 'versicolor' 'virginica']\n" ] } ], "source": [ "print iris.feature_names\n", "print iris.target_names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "在scikit-learn中对数据有如下要求:\n", "- 特征和标签要用分开的对象存储\n", "- 特征和标签要是数字\n", "- 特征和标签都要使用numpy的array来存储" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<type 'numpy.ndarray'>\n", "<type 'numpy.ndarray'>\n" ] } ], "source": [ "print type(iris.data)\n", "print type(iris.target)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(150, 4)\n", "(150,)\n" ] } ], "source": [ "print iris.data.shape\n", "print iris.target.shape" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# store features matrix in \"X\"\n", "X = iris.data\n", "\n", "# store response vector in \"y\"\n", "y = iris.target" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###回顾iris数据集" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<iframe src=http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data width=300 height=200></iframe>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import HTML\n", "HTML('<iframe src=http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data width=300 height=200></iframe>')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###绘制iris的2d图" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x554f850>" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEPCAYAAABGP2P1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecXFX5+PHPmd5ndjchCSmk0DvSgoIsKAgICCJFQEAU\nULFhBUWNoCiC0gSkqCDfKIIUQVDajyC9mQQIPYTeA8nuzvbd8/vjuZMpO7s7uzszd2byvF+vfe3O\n3Llzn3tn9px7zz3nOaCUUkoppZRSSimllFJKKaWUUkoppZRSSimlVF17GXgCWAw8MsxrzgdeAJYC\n21QnLKWUUm5ZATSPsHwf4Fbn7x2BhyoekVJKqWF5qrQdM8Ky/YErnb8fBlLAlIpHpJRSqqhqVAwW\nuBN4DDiuyPLpwGs5j18HZlQhLqWUUkX4qrCNjwFvAZOBO4BngXsLXlN4RWGrEJdSSqkiqlExvOX8\nfg+4AdiB/IrhDWBmzuMZznO5XgTmVSpApZRqUMuB9d0OolAEiDt/R4H7gT0LXpN783k+xW8+1+IV\nxAK3AyhigdsBDGOB2wEUscDtAIpY4HYARSxwO4AiFrgdwDAWuB1AEeMqOyt9xTAFuUrIbGshcDtw\ngvPcJUilsA9yVZAGvljhmJRSSo2g0hXDCmDrIs9fUvD46xWOQymlVImq1V21ES1yO4AiFrkdwDAW\nuR1AEYvcDqCIRW4HUMQitwMoYpHbAQxjkdsBrG1q8R6DUkrVunGVnXrFoJRSKo9WDEoppfJoxaCU\nUiqPVgxKKaXyaMWglFIqj1YMSiml8mjFoJRSKo9WDEoppfJoxaCUUiqPVgxKKaXyaMWglFIqj1YM\nSiml8mjFoJRSKo9WDEoppfJoxaCUUiqPVgxKKaXyaMWglFIqj1YMSiml8mjFoJRSKo9WDEoppfJo\nxaCUUipPNSoGL7AYuLnIslZgtbN8MXBqFeJRSik1Al8VtvEt4GkgPszye4D9qxCHUkqpElT6imEG\nsA9wOWCGec1wzyullHJBpSuGc4DvA4PDLLfAR4GlwK3AphWORyml1Cgq2ZS0L/Aucu+gdZjX/A+Y\nCXQCewM3AhsO89oFOX8vcn6UUkpltTJ8eVsTzgBeA1YAbwFp4C+jrLMCaC7yvC1vaEoptVao6bJz\nV4r3SppC9h7DDsDLw6xf0zunlFI1alxlZzV6JWVkAjzB+X0J8Dngq0A/0px0WBXjUUopVcf0imHt\nMhO4A3gDuA3p3aaUGruGLjsbeudUnhDwCtCHfO59yL2ngJtBKVWnxlV2akoMVWs2A5rINnP6gBZg\nY9ciUmotoxWDqjWdSBqVXD7neaWUWkObktYeBunBlkY+9zRwAzpCXqnxGFfZWS//bJb6iVVNnA84\nDtgKWAJcBgy4GpFS9amhy069YlBKqbHTm89KKaUmTisGpZRSebRiUEoplUcrBqWUUnm0YlBKKZVH\nKwZVSR4kg67f7UCUUo1Hu6vWn62Bt4EuZNTyIe6Go9RaqaHLzobeuQbkQSoFm/OTBua5GZRSayEd\nx6BqxjpAsuC5PmQks1KqxmnFoCrhgyLP+YFXqx2IUqpxaVNS/TkMaT5a7fw+z91wlForaRI9VXPW\nR5qPXgEeczkWpdZGDV126hVD5cwBrgHuB05h6FwISqn61dBlZ0PvnIsmAyuBfrI9hy52NSKlVDk1\ndNnZ0DvnomOBDvK7lfbSwJeeSq1ltLuqGjOtcJVSdUsLsMqYBLxPflPSha5GpJQqp5otO73AYmQe\n32LOB14AlgLbDPOamt25BrAe8FfgHuD76FWkUo2kZsvO7wALgZuKLNsHuNX5e0fgoWHeo2Z3Trmi\nCTgA+DQQdjkWpWpZTZadM4A7gd0ofsXwB+DQnMfPItk4C9XkzilXzAHeRQbOtQHPASlXI1KqdtXk\nzedzkOaJwWGWTwdey3n8OlKZKDWcC4BmIAHEkaawU12NSKkG46vge++LnNktBlpHeF1h18jhargF\nOX8vcn7U2mcu+YPwgs5zSikpa1tdjmFEZyBXAyuAt5AeL38peM0fkJw6GdqUpEZzETLHQ2bcRQfw\nTVcjUqp21XTZuSvF7zHk3nyej958VqOLALcjabz7gD+iPamUGs64ys5KNiUVygR4gvP7EqRS2Ad4\nEbmi+GIV41H1qRPYE7nH0O88VkqthfSKoTb9GelYYJFmwxZ3w1FKFWjosrOhd65OfY/8HEsWeMnV\niJRShRq67GzonatTDzG0YhiuW7JSyh01OY5BNa73izzXX/UolFJrLb1iqD0zkV5BuVcM33M1IqVU\noYYuOxt65+rYNGRsyo3Afi7HopQaqqHLzobeuSr4PfAB8CYyIr3W+YBvAJcDJ1LdbtWqMaV8PhbE\nYlwGHDTGdacHAvw6EuFi4BMViK2SGrrsbOidq7AbGXqTuJYrB4OMb0mTnSPiJnRWOTV+sViMl448\nkp5zz8XOmkU6HOaUEtedFonw/je+Qd/ZZ2Obm0kbw+crGm15NXTZ2dA7V2GFlYIFXnYzoFFsQrZS\nyPx0Ahu4GZSqa0futhvt1mKtxa5YgQ0E6KKEkw2Ph1OPO47ezLqLFmGTyZr+/ymkvZJUyWp5DoMI\nMFDw3AC1HbOqbZF11smWdZMmwcAAfkqrGKJTpmSbMidPBmsJVShONUZ6xTB+rzH0iuGXrkY0siCS\neDHT46kPWA4E3AxK1bX1wmHar7gCu2QJdr/96EokuL7EdbeLxUjfcAP2scewO+xAOhbj7IpGW14N\nXXY29M5VWBB4lewAtIXuhlOS6cB/kErtVmBdd8NRDWC7VIpHk0lejce5DLkyLdWeqRRPplKsiEb5\nFfXVGaKhy86G3rkqCCLzaW/I2G/iRoFtkQlxChmk7X8b0MtrpWpQQ5edDb1zFTYTeAWZBrMTuJ78\niW5GsiUywnk1MgfCeWQrFg/wd+c925DZ92aXK2ilVFk0dNnZ0DtXYXeRP0I5DRxf4rovks2empkU\nZy9n2THO48yyfuC+cgWtlCoL7ZWkitqU/DbRCLB1ievOJr/pyYd0JwXYHGlmyvACG48vRKVULdGK\nofE9Q35yu05gSYnrvkz+GUe/834ATyFXHxkDyNSsSqk6V8qNyBAyhHw22TNPC5xWoZiKsejI1/Ga\nhTTxpJCz+juQz7NwrEAxWwH/D/ncA8ClwLeRz8MDXI2Mou4D2oFdkK6mSqnaMK6ys5QVbgNWAY+T\nX5j8dqwbmwCtGCYmhDQppYHnGVu7YwxpIlrJ0EI/0yspBjwNdE84UqVUOVWs7HyqEm86RvVy8zmO\nZBt9BbgfaYevhvWBRch4hX8AzVXarlLFHNTUxNOpFMtDIX6IntS5qWJl56VIt0U31UvFcCdy1pwZ\nTLYKmFLhbSaBd5GrOQv0IFd3+s+o3PDJpibS//439oEHsBttREcopPN0uKjsZeeTzs/TSBvy8znP\nPVHujY2iHiqGCHJzNjf1RBtwaIW3uxcyziB3u13oaGHlgkSCv5x/viScsxZ7zz3Y5uY1HRZU9Y2r\n7BxpaHdm4pVibVT1UFBXW6ZSKNRV4e12MbR3mQdt71cuGBig4913GcT5Tr73HlhLp8thqQq4qsTn\nKqleKqKzyA766kautiqdKsIHPIx0Q80MQvtjhbep1HA2CIdpO/lkBs48ExuPkyY7KFJVX8XKzsUF\nj31IgVeKEFJoLXHW+VWR17QiTSGLnZ9Ti7ymXioGAxwB/An4CdJbpxrCwA+c7X4JHZ+i3LV+KMTv\nnBnPPup2MGu5spedP0L6pvc7vzM/HwC/HsP7ZLIY+oCHgJ0LlrciM3SNpF4qBrd4kauVm4CTiizf\nC7gO6TE1vWBZADgS+A6wfZnj+jjwXeBgtLJSyg0VKzvHUgmMJAI8ivSnz9UK3DzKuloxDM8gCexy\nbz7fnrP8xIJl/WQzpfqRyroD6c2URiqJcvie8349yAmFTs+pVPWVvez8iPOzbc7fuT+l8iBNSe3A\nb4os3xUZPLUUyb1fWHGAVgwjOZbi03dOc5Z3F1mWqTgORj6Xwp5UExUGegveNzMyWilVPWXvlfQ7\n503DSOWQ6aK6JfAYsFOJ2xhEkrYlkVHUrchgrIz/IamhO4G9kcnrNyzyPgty/l5U8B5rsxkU7zk2\nE3gLuSoolBlb0cLQFNxRpDIfnEBM8SLrDzjbU0pVTqvzU3HXA1vkPN4caa8ej5/AqINdVjB05K5e\nMQxvM4ZeEfSTrRCeK7L8J86yTJqMzPO9lCd1tkFSdueO62hHx1YoVW0VKzuL9UAqtVfSJCR5G8iV\nx3+BTxS8ZgrZs90dkIyehbRiGNlxZAvhTvKbbJrITu1pkcl1cu2HjJzuRa7CJpUppvWQEdh9yBSd\n2oykVPVVrOy8GrgcuTzZDbgM+FuJ626BNBUtQZqivu88f4LzA3Jz9CnnNQ8A84u8Tz1VDAZpMhnP\nvLBeJO9RqTOs5fI76w53gzfJ8GMq/MhV2nhuDseRZqt6kkKmOx0rgxynYs1zIMc3Od6glKqAipWd\nYaQr4w3Oz0lUf37feqkYNkLOznuQEcmHj2Hd48ifLe37I788z2k56w0Ah+UsawIeRK4I+oAzya8A\njnfi7UGaf2aPYbv35mw3jVRMtWxyxPC4H3q90Bc0efetRjM3FmN5KESP30+Pz8exOctMNMpvfT76\nAgF6EwnuQysIVRvqpewcl3rYOYM0g+UW7mmyM56NZHLBepmfYjfhC+1QZL1BsmfE1yGFfu70nJn8\nTduTf49hAMmFVYpfF9nuOyWu64qo4T/7xum9eT3sVTOwk7x0kE39MqJ4nGfOPpsBa7HPPotNJkkD\n2ziLj9hwQzrefx/b14c96ii6k8khTXZKuaHsU3te6/x+imzyPLeS6NWDODJ4LPdsfIDSuvbuQvF8\nVHuUsO6nGfrhG7KF1keRQWwZUbLt/dsXbNeD3JAuZTBa4b0ikAquZvXDjgcl8XsMNPtgzzgRT/Gm\ny0L+dJqNTjpJjstGG8G++wLOgMBolF2/+lWiLS3g88H3vkcQHfGr6thIBcC3nN/7ImdVuT/7Vziu\netSBNNfkygw+G02xm/mG0ubCeIri9wZecH5nBr9ldAMvOX+/xtCZ3D6ktK6qxWZq6ylhPdf44M2n\nndSCAxae7KJrUI7BaPqCQVY/+KA86O6Ghx5iEGfd7m6W33033dY5yvfeizWmpPdVqm59GZmly031\n0JQE8FmkaaYNqSiuoPQbuteT3yyzaAzbXVywbm4SvS2ReSFWO3E9jtw3AjkxuAHpSrraif1TJW4z\nTjZhYOZnLPdU3LB9wNC2TYjVM/y0hw0PkH81NZJ9IhHSe+1F28yZdCQSXEv2s43G4yzZfHPadt+d\n1ZEIHyLdiJVy27jKzlIKrdOQ/EZzkIFt/0VuOpY6oXw51NPUnusjAwLfQGZxG8sH81lkJPgjwMIx\nbvdYZI7m24FbCpatg+QtSgN3kX9lY5xtTkESHr48hm1mOiY0AVdS+v0JN00DPoZUhnch3XxLNQe5\np/M28n+Q+9kGkOa1iLPsvXIEq9QEVbzsDCPNS8WaHyqtXq4Y3NICXIJcZfySoV0xj0Rml7sBGYWu\nyu/wZIw3m5Ks9Hi4oFobNYbfNjfzfirFW8DR1dquqhsVKzt/AvwbuUq4ADiE6o9g1YpheCHkfkKm\n51Ga/CuGr5HteTSINP+U0lNKlW7/cBh77rnYv/0NO20a1uvhL5XeqNfLpVOmYBcuxF5wATYSwVL5\nGQNVfanofAyPAD9DBriNZ2DQRGnFMLxPIPcOctv6u5HmI5CmocKurMWSGapxCvp5/Cen5k9nmUwM\n6YhQdk1N9NxxR3a7p52GjURYVuntqrpS9u6qGdsAn0Qqhz2QXjDlyKejysNQ/MM3Bb9VhVgwJuc/\nyeMBU6Xj7snZrs8HRj9tVSVbIM0RVyMjYxchN6SrSa8YhhdGup9mmpI6kRvQmSLim2R7D2WakrTH\nTHkdFAljL7oIe9112BnTsT4vV1d6oz4ff542DXvttdhLLlnTlFTrPcNUdVWs7PwX8ENkwM5wOWIq\nTSuGkU0G/ozkmjqL/JQlBumx9F/ks9yu6tGtHY5Jxnm3Kckqr4dLq7VRr5cLW1pY1dTEe0haFaVy\nVay7ai2odnfVacCOyGCvexnb3ASzkea3N5Hun7niSNLACDLW4JWJBprjI862nyQ7uG1ttT2S2G8J\n2cF8btsTuR+0GIZcTUSQLsMGqcA7yrRNg3yPpyHJLAu/byN9zz1IF+cUMsvf22PYbhDZn6DzvqvG\nEbsqj3rq6j9m1bximE92wFc7MrlQqdlO90d6AK1G/rkvI/uhTCE7m9qg87NrmWI+M2e75Zyes+6E\nDRcmPKS3CrE6aEgbOMjtmPxeLo/FsLu3YpuasNEQ9+csnhyLsWKbbWjbdltWR6O8SnYipYkwiQRX\nTJ1KhzPoLo2kT8mYHw7TvuuurJ49m/ZEIu977osY7pzio32LEKsDhjZKnw88Fo/z5Kab0rbTTqyO\nRHgXmFuG/VHj09CtLdXcueXk9+LpoLSC1sPQkcAdZPMS/bdgmQXeL0O8W5KfCM8imV0jZXjvejM/\n5aHjmlnYW2Zjz5+G9ck9l/GkQC+XacEA9plnpOfQu+9ik0ksTvK+eJzLTzyRnkzPopNOojeRKEtX\n191nzqS9vV3e94EHsKEQbTgnKokEy6+9Vpb19mI/8pG87/kXNwzQcdN6chx/MAkbMTxXykYDAU47\n+GC6Bwflvc84g/5UitvKsD9qfCrWK2ltM63gcQiZdGY0MYZ25R3MWbfYeyTGFlpRs5B02oXbremE\ndhUya16QgajzrZ4XBK/BQ3ayKDdsHE/AxhvLg8mTYaMNsEiFTiDA+p/4RDYtx+674/f7y5KCZtaO\nO0IsJg/mz4e+PiI46VB6epi2226yzO+H3XfP+57P2jpMxOtc624Rgn5JEDmqSIQN99iDYKZ31O67\n4zVGrxjqzUgVw80j/NxU+dBcs4T8kd09wKMlrNeOtMPm1tA+pE0ZyGs+yCjHPYYnGdopoAu5x7G2\nWbKsG9/LzgiC/yct9R8CK90LicfSaewNN8iDRx+FJ5dhkCZKurr47wUX0NXVJcn5nL/vKcN2/3f7\n7Xief14eXHIJNhzmNeQKilCIJeeey4C18OabsHBh3vf80bs66PygH6yFm9rp9xv+V8pGOzq456KL\nSLe1QX8/nHcePQMDRb/7qk61jvJTTdVsSpoOPIsUrr3Aj8ew7qZIgdyF3E/ITVHgJX/+5dUMvToZ\nr88i//BdSI6etbbnkQcO90FX2NAVNLyNc2busmPCYQZjMWwggDWGX+YsCyQSXB8I0BsM0huPczNl\nGkQaCPAlv5/uWIyuaJTXyR/xPj0e59lolC6/n95wOP97HjT8zAu9QUN32PA0pWc78MRiXO730xsK\n0ROP81+k04Vyh95jKCODjBweTzu9B5jK8P/c0xl5Cs7xCiAVzXimBW00AeQzqKWmUj+S5DA8zPIU\nkoyw3IIMfyxG+55HnOXj+a4mkBxeDdsjpk5UrOzcEPgH8AySg38F1e8CWC+13lTkJnMn0kw0ll5H\nGwBLkbP+Z8k/0/UBb5G92liB/sPVk9nJJI8FAnQlEryAZN8th3g0xIehkAxu83vXNFuWYv1EnK5g\nEBuLYY1p6ObhtVnFys77kZQYTyA3pxYAp1dqY8Ool4phMXIjOLdXUik3roNIE9QA2e6sK8nenH6a\noT2aHixn4KpifLEYL59xBv0rV2L/+ldsJMIq5Gx6QiJB3t7lY9jXX8c+8QR26lQschI3qkSCrkMP\nlV5S99+PTSSwMKY5sFV9qFjZmbnp9GSR56qlHiqGGPmVgkWS25WSomAzhibCW4XMGwDZCiP3p+JJ\n2lRZzGluJp3pjmotdrvtWIUMeJuQVAL7yCPZ9z3/fGw0TFsp6waD2Hfeya570klY4PmJxqRqTsW6\nq3Yj7dYvAl9HbnRGx7OxBtfN0BHSBvighHU/ZOhMYn7neSg+mUxNT6Op1ljd0YHv3XflQXc3vPYa\nPkr7XozIwuBzOaMLnl4GfX2ljZr2+yGzrrXwlEwi++EIqyiVZwekV8FMZKrK6yltAvVyqocrBpCJ\njNLIlUMHknCw1JvB5znr9CFdX68iex/hRIZeMRxWrqBVZUWjnDF9Oh3f/S59m21GeyLBdZTnHtGv\nwmHsV47HHnQgNhLGImksSnFdPI791rewn/wkNhbLG3OjGkfFy84EYxuQFUJyBS1B2sh/Nczrzkdy\n+yxFcgwVUy8VA0hX3pOBoxjbiFsD7AucgqRxKCw4DkSa85ZQhmYIVXV7IZ/toZS3t9SXgWVI8+5Y\nuyn/GOlU8hAwo4wxqdpRsbJze6RAesX5WUrpX8BMNzgf8uXbuWD5PsCtzt87Oq8pptw7F0MK74uA\nzxVZ/ing98jNuAnfJCyRF7kiWwb8naHdXbcEfotMsrNRwbIg8G3gYqRCqlaPpaleOD1gOJ+x5336\npBce8sHjDL368QFfDRouBk5gbF1wm4Cbw0GWITMOFh6L3cJhLvB6OY2hOYnmejzcGQryBPDTMWxz\nok4IBHgrEOAtJE16Lj/wdedYHMvQSuVLAT+LfV7uRzIg54p5PJwciQz7PR8vAxwSiXCRx8MPGdrd\ndY7fz6+CQc5FWhyqZedQiPN8Pn7B0JHaSY+HH4fDXAh8pooxua1iFcOTZPP9gBTuT4zxPSLIqMpN\nC57/A/lTET5L8QRi5dy5EDLZUBfZqTB/nrP8y2RzD/UCb1CZ/uW5DFLpFuZRyhRq8xk6PecWzjIv\n0nOsk2xPqD9UOF6AqUHDe3vH6Ts6hY16SBuZ9rUU+wUM9qAE9vAkNmiwwFedZSZsuGnjIOkvN2E3\nDJAOG66ntMouGouS3vtT2LPPxq4/DxsOZketG8Pnm5pI//rX2OOPpy8S4R2yM93NjEboP/II7G9+\ng11nHazPy99LPhrj94NwGHvKKdhTT10zp8ICZ5knbLhzc+dYzA3QETZclbPuj+Mx7C9+gf3WN7Hh\nMINk/1dD8ThPHXggXWefjZ09m3Qkkvc9H7dIhF/OnUvH2Wdj99+frnicJ8ieyMwLh1l90kn0n346\nNhYjjfRqrLQDkknSZ5yBPfFE+sJhVpKtHKKxGC8ecgjdZ52FnT6ddCjE96sQUy2o6NSehUrtleRB\nmj7aKT6d5M3kn+XcSfE+3uXcuc8ytAdQH9mz0vcLlnUiN90r6aMMvYdggYOd5bcXPD8IawqtjyPH\nt7DHUkUrMwOnfipG7y2zJdHaGVOwUcOKUtYNG5Z/ISXr3TIb++0WbMyzJjXzJnEP6RudBG7Xz8JG\nPXQigwJH8+NNNsYODEhPm/few/p8WJxjkUjw2r33ZnviHHUUPcAPnHWv2mev7LInn8SGw5Vvwkwm\n6TrnnOx2L7wQm0qt6ViwbZOXjn86x+Ifs7AhQxfOKORUgq7rr8+u+93vYoOBNf+bn91uO9oyyeze\neAPr8+V9z8fL7/PR9/bb8r6Dg9itt6YNJylgJMKFP/oRA5mYrrkG29zMYxPc5qhSKZ6/7bbssfja\n1+hzrgoBjtx1V9ozx2L5cmwgQBdrx1igcX2HS2kDvwe4BPib8/hQ57mPOI9HqiQGga2BJJIbphW5\nIZur8MMZbkcW5Py9qMj7lCpSZJsGORYD5E9yg/N8pTOVFivELdnkb4UpBUzOcxGG9oYaQEbYVqyX\niQeizd7s96fJC4PDj+rN4zWEm3OKp2YfmGy+p0jEw4Df+YQCBsKG/nRpn0FincnZ6S6bmsDrhf5+\nEsCHg4OEp+Rcj06fjs/jITooRy8+PafxYepUGMjNmFUhXi/eqVPzt+v1rim8I3EPAz7nWIQMBAwD\n3dY5FiZ/3RkzwOcl6tQqkalTMZlkdpMmgbV53/Px8gO0OA2sxoBzTCMAPh+JadOyzV1OfBXvxWgt\nkcLP1u8n7nyGkWnT8GSOxZQpMDCAn+Gnxa1nrVQpZdEi4O4Rfkr1E+B7Bc/9gfz25Wo0JU1HrhgG\nnfftRq5UMq4g2yyTaWravIzbLyaMnOXnnvUPkL2/cTz5Kb3TZJttUshVTmasQw9yH6jSZ0M7hA3p\nn62D/f262I2DpEOGc0pZ0cCvkh7sr6difzcNO82H9cE1zuJQyPDqESn6Ll4Xe1iSvpBciRR25y1m\n43CYwYsuwi5bhv3i0dh4lPbMwnic33/sY6SXLsXedNOaZo7MFepekbCc4T71FPZTe2JjEV4eywEZ\nD6+X26dPx953n6TGnjUL6/PxX2dxLGh4+4tN9F+8LvazCXrDkv7aCxAKcNfmm2Effxx7xx3YVAoL\na5pIpofDtP3pTwwuW4Y9/HC6E4m87/m4JRIs+sIX6F62DHvZZQyGw6xGRv0DfKq5mfSdd2Ifewy7\n6aZ0hMOcUo7tjiQa5czttiO9eDH21luxiQRpsuOA5oTDdCxcKN+LAw6gK5FYa0Z611zFN4nsGW8Y\nSRXxiYLX5N58nk/1bj5vg9z0fBO5EsrtbRVEbkq/jtyL2K3M2x7OVkgCvAHkTD/3Rr0BTgJeRtKR\nFE7huBFyn+FNJPPtpArHmrFP1MMzEcNrIcPZjKEXloHLo4a+qKHfD7eQX5HNjHq4K2J4K+rhDsbW\nY+aAZJyORJyBhCSOm52zzB+Pc04yyWupFE8jnQxynZhM0JWIMxCL8AxypVtxfj8PJ5MyT0MgwGLy\nj8XcqId7nGPxb7IFMIA3FGBRMkF/MkGvkc4JubZJpXg8keDNZHLI93wikskkf08keDOV4lHku7uG\nMRyWSvFiMsmr4TA/pTo5q7zRKGc6n+1zDL3BvGMqxZJEgjcTCa5k7RmLVbGKYSoyDeV/nMebAl8q\nYb0tkGamJcjN6syZzAnOT8bvkcFzS8k2TxWqdq0XQnoBzazydtcmBskPtQnF272bkWbIct8rCSLf\nzeH67M9APvtizWIRpBAslmnUIDOVbU7xudGTyP6Mp9JuIdsk2whSyP5Uq8ff2qxiZed/kPsKmZ5I\nfuRMupqqWTFsiMyr0Ib0XLqIteMmVTWFIob/F/OQTnnoCBuWkjOZjgcODhg61/GxOmBIe6XDQDnM\nDhlea/EV7GhfAAAdS0lEQVTSFjZ0hQ1XkP1sTdhwbtDQNdnL6qDhHfLTVG8TNKxcx8vqgKE7ZNbc\n2ATwJhJcl0zSue66tMdivEh+SvU9AoZ2Z3+6/NLzrSQ+OCpg6HLW7TBylV23PB72C4fpmD2b1aEQ\nXX5/SSlj1PhVrOzM9CjI7Z20pFIbG0Y1K4bMRD25ifAOqOL2G17A8PNtw3T+cz3szeth94jRHZFC\nGmBywNB5/jTpiXPeNGzAkEauICYkanjg6BT9t8zGXjsLO8tPB9lcVntP9tJx9UzZ7oktDEYMz2TW\nDRle+8EkWfZ/M7EpDx04bdjG8JUddyTd2Sm9dH74Q/qSSf7trBoOGNrPnCrrXjodGzJ0Uto8yDOD\nhs6L15V1z56KDRg6kHE49SgZCpF++OFsz69IhE5Kn+tBjV3FciV1kH/JNx+ZZKZRbUj+cQkhSe5U\nmQQN2+0WJewz4DGwW5Sg16xpRpw72UvvPKdX/PpBaPbSD8yZ6Hb7YZPWmDRbRTywS5SoJ9uxYPOd\nIgTiTqNWaxTTY5nnLPP3WKbv4rRKN3lhmzAGZ91olI8cdhiRcFh66Rx5JD6y40zWDRnM5k5ft+l+\nWM9PL/I9G8360/30znJuu28SgpiHQeq3iXPW5MkM7OAMedt8c5g3j15K64qsqqiUiuG7yHiDucAD\nSA6fwtGZjeQl8mvZbihtInRVmh7LkvvSdA1YSeB2fye9A3ZNU+XL7w0QeNXJHftKL3wgXQsnPA2q\nD154oFO69vYMwgNp0oPSEw7g2Ue66O10Ov4+2IkNmDXb7Asa3nm4Ux60D8DSbizOuuk0T1x3HZ29\nTszXXUe/yV5tvNVl4TmnD+k7ffBqHwHkvtpoXnqjj8BbzozeL/ZA+yBepGNEPXrtvffwLV0qD154\nAZYvJ0D153dRZeJHzo6Gu7FWadVsStoM6R20Cum2egV6j6HcImHDg01eOtaR9v5nybkp67Srd870\nsypg6PTCEWXa7gYhw9vr+lgd85COGK4le3JkwobLIobOGX5WBQ0rye9tMz9gWD3Tz6qwoTNs8noA\n+RMJ/jNpEum5c2mLxXiVnLN6IyO90zPlfbsCpvQTKz98JZg9FmkjObPqltfLIeEwnZtswqpIhM5g\ncEgPO1VeZS87dyD/BtrRSFfI8ylDe+8YVbtXUgzJ3VSYk0iVjxcpeLel+BiFaciI8KlFlk1EFPlu\nb0LxCn8DpLm02DzFSWAnit8fyDQtbc/QQZIAk5H9GU+yunWdddcZ7YV1YgqyP3pvofLKXnYuJlsB\nfByZWvIg4BeUOEtUGdXcIA01McZwSHMzTzY18azfz9fIL6S3ihrejnroixjeIv8ejwkE+EZTE882\nN/Mk8p0sl2NiHtqjht6Q4XHy+7qH43H+kEqxvKmJ+8ifehVgr+ZmFjc18XwoxI/Ib6adnUzyaipF\nXyrFexQkk/TAF2Ieno55eNorifLKZbOYh3tiHpZHDJdRB333fT6+3NzMM83NLDOmrD2Wtm5q4v5U\niuXxOBdRvPJuRGUvO5fm/H0h+SkpllJdWjE0lk83N5O+9Vbs3Xdj11uPjkCA451l8ZCh76AE9txp\n2AMS2LChF2dcQTDI1+bMoWPRIuwtt2CbmkgzdKDaeOwWMNiTJslo7C2C2LDhhczCRIIbPv1puh59\nFHvxxQyGZaa0TBKNneJx0tdfLyOYN92UdDjMT5xl3niczi9/WUYCn3YaNhplAOdq3MDnUh7Sv5iC\n/eUUbLOXtKc8TWdTA4ZVX2lm8Nxp2J0idEXMmsGkNcnr5ejp00nfdRf2ttuwkyeTpjw9AmeGw7Rd\ncgmDjzyC3WsvOhMJri3D+9aDspedT5G9n/Ac+WmVl5V7Y6PQiqGBNDVx/aWXZhOe3XILtqVlTbfo\nwyd7sf9yEsf9az1sixeLM5ahpYUlucnSLr4Ym0pxdRnCum7PWDax38KZWH/2e+fzeulPp7PbPfBA\nOoAvAoTDXHDGGdlljzyCTaXWJBScn0xmE/tZi91ySyzwHYC4h9u/Pym73VMmYxOececBy3XEdmHa\nM+9743pYj8wEWJjOvWa0tPDADTdkj9OVV2Kbm7mlDG993CGHZKdXbWvDer30UZ0R2W4re3fVvyHJ\n8m5CbsLe6zy/AazJhKnUmA0M0PnBB9kv7IcfgrV0OQ/be2x2LtN+oEde2QFgLd0f5qQGXLkSOzCw\nZt2J6G7LSS3XPiBdTx2DxjCwKudb78TfndmflSuziek+kEk7MxlS23p7ocuJcGAA2mRW5k4AC50d\nOSkQ2wdhkPLsT4dkEwUgLduwFJ8mtiYMDtJZ5LPtLMNbd69cmU00+eGH4PGsGaukxmEnpBdEbtvk\nhgyfuqJS9ANsLFuGw3QsWMDgb36zJpnd7s4yEza8v2UQe2IzdnNp0nmX7D2IPeJx0medhf3ZzxgM\nh+mgPONM5gYNA3vHsV9tlqsUH9lEa+Ewp8+bR8dFF2GPOYaeaJQVZAeazQmHWX3yyQyce+6a5q01\nE+PE46zYbju5utl3X2w8TgfZM/ftg4b0USkGj05hgzKYr3DCnfGIhAwv7Bal+2vN2Ok+OoKmaOr7\nWrJLNCrzZZx+OoORCB2Up6xJRKO8euyx9Fx0EXbOHDqcHE5rg4YuOxt659ZSm0ciXBSLcRlyApIr\n6oWbI4aXPPBPhuYt+lgsxmXOzGSFkz9NxKZ+eDhiWA6cVbDMGMMRiQRXBQKcwdAcTvPCYc6Px/kT\nQ5NF+j0e/p5I8JLPx+1F1t0mZPhDyHApxecjGa+kD34RMVxlqjuz30RsH41yaSTCxQy9wT8RLcEg\nv0okuMoYPk99HItyGFfZWS8Hx1I/sdYbP9KzZx2kubDYxEyV0IJcjfqAfzG2QVvHIJ0h+pGEjveM\nYd2NkRnF2pDedeVoqgDp3vo5JNHef4DlBct3RRLHvYTsr57sqGpo6LJT/4kqwxcx3Ld+gPa9YnRF\nZADVoaOvNmHTg4Z35odJfzxKZ8CwmvyEdSP5VTiM/fznpVnGmQqz1CR7uwcN6U/G6No8SEdYRieX\nowtnUzTKy3vuScdRR9HpNG/tmFkYjfLjddah4/jj6Vp/fdoTCf6PBv5nVTWlocvOht45F31uboD2\nm9bLS1jXVumNhgyXHJigL9Nj5rhmBqOeNWndR5RKMXjBBdmeK9/8JjYcKu1mbcTw4k/XyfZ22iFM\nJ/CtCe0M4PPxsy98gZ5MTP/3f9hUas3MhqlAgJ433pBl6TR28uSytZ0rNZqKJdFTjWvyHD9er3Pu\nul4A+ixRKvy98BnWnRvITuozx4/xlDjC2ePBbJnT8rz11hAMljS7G4PQPNvpgG0MzAsQ8siI5AkJ\nBpm29dbZGLbYAqxdk+KjOR6nb11njG8kAnPm0E/1JlNSqmHpFUNlbB4ydJ49FXv9LOwBCfoihgcq\nvVEvHDfdR8cVM7B/nYndJEg6aDi9lHUjYdp23hn7/vvYl1/Grr8+1mPWJMIbeV3DtR+P0P2PWdgL\n18UmPHm9oSbiM9Onk37+eeyqVdhPf5quRIJLnWW+aJTXzzuPga4u7I03Yp3BcROukJQqQUOXnQ29\ncy47MGhY6YH+iOE+qpOPxwQNv/RBlxd6QpKuodRpQZtiUXp9PmwggA0GWEXp7fXxiOFfHugLGNq8\nQ6dIHbdgkO8Gg3T4fPQmElxDfk+qDRMJnvZ4GIjFeJ3ydEdVqhQNXXY29M7ViErcDDVI4rnhmqbM\nCNvNrDvc8gjjH8U70r76KJ5ArxzvrTec3eVlYp9tPWrosrOhd65BbRYyvOqDPj90GNh/DOvuHDCs\n9EFvQNJf555hhyOGf3mh3wN9IcPFlOmeSCDAiT4fPX4/fYkET6DZPxuGz8exfj/dfj998TjPArPc\njqlKGrrsbOida0CeoOHNb7YweMts7DnT1ozoLWUWtlTA0PZzp/fQz9bBOt1Z4wBhwwU7hOm8YRb2\n7zOxc/x0eOHrZYh555YW0suXy/Scp5xCXzLJg2V4X+W+bZNJ0s8+K5/t6afTn0hUPRGoW7RXkqoZ\nkw00fSouTScbBmHjIP3IAK/RbDjJy+B2EXmwQwSaZbrNDQB8ht0PShIOeCDmhc8kiIY9ZbmBPP/w\nw/HNnSs9lk4+GV9np3YpbRA7HHAAZqON5LP94Q/xtrezOVr+DUsPjKqEVf0Wk5mes3MQXunFC7xR\nwrpvfzBA8AMn1dsH/fDhAAHgbYBBeOWZHkmIZi0s66G3z67JZDoRb9x3H339znYffBCCQd4vw/sq\n97358MMMZKZefeghCIdZBQyOuJaqedqUVGe8cHTY0LljmLZmLx1h6XlUkpDhp3EP6flh2mIe0iHD\nj3IWzwsa3t8qRNtGAdpCkteoMPfQePgSCe7aYAPa99uPNieBWzmuRJT7PIkE/5o3j/b996ctEiEN\n7ON2UFVSk2XnTOBuZP6Gp6DoXLetwGokR89i4NQir6nJnVOj2gw4EtiFsffI2d5Zt1hSuRbgYIZm\n/p0oLzLpz+HA7DK+r3KfB9gDmQRpnsuxVFNNlp1TybYrx5AJfwpz4rSSk954GDW5c1W2R3MzN6VS\n3IgUtCUzcGjcw78jhmuALSoT3hD+gOEncQ93Oj2HWgqWfzTm4fqYh5uBvQuWRSMRzmpp4c5IhDOR\nrqm17uBElNeaErxnDGdXa6MeDwc2N3NrMsm1aJoNNVRdlJ03MjQlcStw8yjr1cXOVdBeySTpyy+X\nnP7O/AUlVQ5eOL7ZS/p7k7DHNjEYMLQDG1U2XAgbrt0sSPrkydi9Y/Q4TT6ZAn5+0JD+ajP2Wy3Y\nqIxAznRn9SYSPHzQQXRdcw32gAPoisd5gNq+H/bpcBh79tnYq67CTpmC9Rj+VOmNer0cOXky6Suv\nxP7ud2vmLyhnqmpV/2q+7JwNvEJ2cpOMXYGVyDzSt1I8v37N71wlNTezaOHC/Oksm5q4oZR1ox5W\nnDU1O3Xk5xIM+ODMCoec9EHvdbOyCevmBmgD9gKIGq4+oTl/Osu4Z03X0C2mTqW9v1/2tb9/TdK5\nUrOvVl3Ax2M/+lH281m0CJtK0lvp7TY38/Ttt2e3+/OfM+jMUaFUxrjKzlLTEExUDMl9/y2cKRpz\n/A+5F9GJNCnciMwSV2hBzt+LnJ+1gjF4/P7sY58PjMFb4uoeb07rvs9gqPzZtzFAZrvGkAlWtmvw\n5gbgvC6zPx6vFzyenHW9OevWIOPBE8hJ4+eT/6qKj3K2Fo8v5z84EMAYU7vHSVVFq/NT8/zAbcC3\nS3z9CqC54Lm1+ooB+GxLC+lrrsEuXIhNJkkjN9JG5YfvTvGR/uk62K+3rBloVvH7DGHDv7cP03na\nFOxBCXpDhtfJpiNoDRs6vzsJ+6PJ2KQnbx4IXzzOk8ceS/dtt2GPOorueJwlUHJF6IZDIxHsZZdh\n//lP7KxZWL+Payu9Ub+fr8yYQfrGG7F//CM2GiWN3LRXKqMmy04D/AU4Z4TXTCF7drUD8HKR19Tk\nzlXZgS0t3NvSwj04TTIlMj44Ie7hwZiH28iZQKbCQmHDb+MeHo0Y/gZMK1i+R9zDoriH+430MMqV\nise5vKWFx+JxLkVyJtW641IJVjanaPd7uYIq5UXy+TimpYUHmpq4kzF2SlBrhZqc2nNn4L/AE2QD\n/BHZPCWXACcCX0WmaewEvgM8VPA+DT09XYmiSM4gC9wHdLsbTkl2BvYEnoTKn0ErpYZo6LJzbb9i\nmBoyvDI3wOpZftrChucpz6CuijFwVtBgNw8yGPNgw4ZH3I5JqbVQQ5edDb1zo4kYFh6YoDfTw2dP\n6f55odtxjSDqA3v+NOl1dPVMbMKDRQaOKaWqR5PoNSqvYcNtwvhBeul8JEzAb4r23KoVc30G5jmz\nJcS9MEd67WzlYkxKqRJpxVAH+iz3/auNrj4LPYNwaztdPZZ73Y5rBM9asPem5cHLvfBcDyC905RS\nqizW6qYkZHKaO4KG7oChJ2K4AekGXMuOCBoGIwbrA+uF37sdkFJroYYuOxt650pkkAnkJ7kdyBgE\nkS7INX2jXKkG1tBlZy3t3EHAm0A78HfKm91zvLaNGJ7zGzqihgeRkeRuWzdquM9v6IgYXkAqiIbl\nhS+FDO8GDG1OivHAqCspVXm1VHaWXa3s3I5AGonHAl3A1a5GBJOChlXfn4RdOBN7eJK+sBTEbt4/\nMmHD04ck6Vs4E3vyZGzA0IZk221EeyU9pM+dhr1iBnbzIJ1hw3luB6UU2iupKvYEQjmPQ7g/4ccO\ncwLQGoOUFw5P4fPAdNydyH7yIMw9KoUv5YVdorBRAEv1Rl1XVdDwmc8liWwQhMk+OL6ZsEfmilCq\nLmnFMDargJ6C59rdCCTHh+/34+1zzgtWD0KPxYe7cXX0WzwfDsiDfgvvDuBBjl/D6be8/3offZnH\nb/UDhg9dDEmptUKtNCUlgOVI6o5MCg+3zww9EcOt8wJ0HJxkYLKXjpDhDJdjImj4WYtXYtogQEfE\ncAeNeyKyTtDw1scjdH8mQZ+TqLDV7aCUokZzJZVLLeX7iANHI4ndbgcedTccQDKPHg7MAR4HbnE3\nnDX2Qm46vwIsRCrTRtWCTEUaQSaeesrdcJQCaqvsLLtauWJQ9e/rfh+PGrmC2XiM6+7nl0zB32Po\nhFNK1aKGLjsbeudUdRg4J5XEnnYa9pijsJEwAxSfFGoIv+H7zV7SR6ew8yN0hQ1PA+HKRqzUhDV0\n2dnQO6eqIxGn/557slNhHvF5LPCvElY1Xuj50/TsVKUbB2knO7mQUrVKu6sqNZLBQTzr5nTinbUe\neMyaWeVG4rXgbXLmkDMGJnkx1MbgRqXWWnrFoCYsGmbZx3fGLluGvfVWbDyGRToSjCpiuO3jUbov\nnY79wSRs0NAOrFfZiJWasIYuOxt651TVRKNhlsbjDCQT9AILxrBuPGL4W9jwTtTwJDC/MiEqVVYN\nXXY29M4ppVSF6D0GpZRSE6cVg1JKqTxaMSillMqjFYNSSqk8WjEopZTKU+mKYSZwN7AMSSr2zWFe\ndz7wArAU2KbCMSmllHLRVGBr5+8Y8BywScFr9gFudf7eEXioyPtod9WRrRc13Brz8HzE8Bck86tS\nStVF2Xkj8ImC5/5Afs6ZZ4EpBa+pi51zSTxkeOvIFP2/nYrdLUp3WOZ9bthUu0qpktX8OIbZSDPR\nwwXPTwdey3n8OjCjSjE1go9O9xP5fArvxiE4aRJBK1dpjTq/slKqwnxV2k4M+AfwLaCjyPLCs9ti\ntdyCnL8XOT8KeroGMYMWPAZ6LQxKhd/rdmBKqaprpU5mD/QDtwHfHmb5H4DDch5rU9LY+MOGJR+N\n0PXNFuyGAdJhw0K3g1JK1YSaLDsN8Bdk1qvh5N58no/efB6PqA9+HvXwdw98A5nqUymlarLs3BkY\nBJYAi52fvYETnJ+M3wMvIt1VP1LkfWpy55RSqsY1dNnZ0DunlFIVUvO9kpRSStUBrRiUUkrl0YpB\nKaVUHq0YlFJK5dGKQSmlVB6tGJRSSuXRikEppVQerRiUUkrl0YpBKaVUHq0YlFJK5dGKQSmlVB6t\nGJRSSuXRikEppVQerRiUUkrl0YpBKaVUHq0YlFJK5dGKQSmlVB6tGJRSSuXRikEppVQerRiUUkrl\n0YpBKaVUHq0YlFJK5al0xfAn4B3gyWGWtwKrgcXOz6kVjkcppZTLdgG2YeSK4aYS3seWK6AyanU7\ngCJa3Q5gGK1uB1BEq9sBFNHqdgBFtLodQBGtbgcwjFa3AyhiXGVnpa8Y7gU+HOU1psIxVEqr2wEU\n0ep2AMNodTuAIlrdDqCIVrcDKKLV7QCKaHU7gGG0uh1Aubh9j8ECHwWWArcCm7objlJKKZ/L2/8f\nMBPoBPYGbgQ2dDUipZRay1WjGWc2cDOwRQmvXQFsC3xQ8PyLwLzyhqWUUg1vObD+WFdy+4phCvAu\n0qS0A1JRFVYKMI4dU0opNT6Vrhj+BuwKTAJeA34G+J1llwCfA74K9CPNSYdVOB6llFJKKaVUvfMi\ng91uHmb5+cALSE+mbWogplaqP0jvZeAJZ3uPDPOaah+n0WJqxZ3BjCngH8AzwNPA/CKvqfaxGi2m\nVqp7rDbK2dZiZ9vfLPK6ah6nUmJqpfrfqVOAZcjYrL8CwSKvcaOMGi2uVup8MPF3gIUUH/i2D9Kt\nFWBH4KEaiKl1mOcraQXQPMJyN47TaDG1Uv3jBHAlcKzztw9IFix341iNFlMr7hwrkC7sbyG9BXO5\n9b83UkytVPc4zQZeIlvo/h04uuA1bhynUuJqZQzHyu1xDIVmIAf2cor3mNof+acCeBg585rickyM\n8HwljbRNN44TjH4cqn2cksjo+z85j/uRs6Zc1T5WpcQE7g38/CTSk+W1gufd+k6NFBNU9zi1AX1A\nBKnQI8AbBa9x4ziVEheM4VjVWsVwDvB9YHCY5dPJ/3K8jhTcbsbkxiA9C9wJPAYcV2S5G8dptJjc\nOE5zgPeAPyNjZi5D/mlyVftYlRKTmwM/D0OaIgq58Z3KGC6mah+nD4DfAq8CbwKrkO98LjeOUylx\njelY1VLFsC/SdXUxI9dshcsqmUeplJgyg/S2Ai5ABulV2seQtsu9gRORM9BC1TxOpcTkxnHyAR8B\nLnJ+p4GTi7yumseqlJjcOFYAAWA/4Nphllf7OwUjx1Tt4zQP+DbSdLMuEAOOKPK6ah+nUuIa07Gq\npYrho8hl2Aqkm+vuwF8KXvMG+e2MMyh+yVTNmNqRrrYA/0a6447U1l4Obzm/3wNuQMaA5Kr2cSol\nJjeO0+vOz6PO438ghXGuah+rUmJy41iBVOqPI59hITe+U6PFVO3jtB3wALASaQK8HikjcrlxnEqJ\ny63vVFntSvEeQLk3duZT3Rtgw8U0hewZwg5I75xKigBx5+8ocD+wZ8Frqn2cSomp2scp479k06ws\nAM4sWO7Gd2q0mNw6Vlcz9KZlhlv/eyPFVO3jtBXwFBB2tnslcnWcy43jVEpcbn2nympXsnfQT3B+\nMn6PpMhYytAzLTdiOhH5UJYgtXax7pDlNMfZ1hJnu6cUiQmqe5xKianaxyljK+TsfClyJpXC/e/U\naDG5cayiwPtkK3hw/ziNFpMbx+kHZLuFXok0dbl9nEqJy63/P6WUUkoppZRSSimllFJKKaWUUkop\npZRSSimllGpUP0b6aS9FUpgUjryeqFaGT7s+XIr4ifgMsEnO40XItLdKVZzbU3sqVQ47AZ9GcjX1\nIUP9i+XJrycHIhXOM87jauQlUgqorVxJSo3XVGSEbJ/z+AOyuZu2Rc62HwP+47wW57lzkauLJ4Ht\nned3QEaG/g9J7ZFJXVGKKJJO+2Fn/f2d549BRjj/G3ie/BQYXwKec9a5FElwthOSOO4s533mOq89\n2Hndc8DOY4hLKaXWOlGkgH8OuBD4uPO8HynkW5zHhwJ/dP6+G5l3HCQT7JPO33Fkxj6QeQD+4fzd\nyuhNSWeQzWqZcuKJIBXDcue9g0iemulIJswVzmt9SA6l8531/wx8Nmc7dyMVBUhiuTuKxKJUWWhT\nkmoEaeTKYBdgN2QGq5ORrJybkc1N70Xy1Wf8zfl9L5BwfpJIBt31keYb/xji2BM50/+e8zgIzHLe\n5y4kwyXIdJ6zgcnAPUj+fJDU0rlXKIXpm693fv/PWV+pitCKQTWKQaSQvQc5+z8aqRiWMTQF8UhO\nRwrxA4H1kCansfgsMt9vrh2BnpzHA8j/XuF9g9Hy+GfeI7O+UhWh9xhUI9gQ2CDn8TZIc81zyFl5\nJpOkn/yZqw51fu+MnLW3IVcNmauKL44xjtvIn7A+MxF8sUmeLJJhdVeyTUkHka0M2p1YlKo6rRhU\nI4gBVyBXB0uBjZF5DvqAzyE3e5cg9yF2ylmvG2mWuQi5CQzwG+BXzvNe8s/ai/UMsjnPn45UPk8g\nXWd/XuQ1ud5E7ks8AtyH3G/IzP98NTKl7ONkbz4XblcppVQZ3U115/MYTtT57UPm+/iMi7EoBegV\ng1JuW0C2y+xLwD9djUYppZRSSimllFJKKaWUUkoppZRSSimllFJKKaUq6/8D5aA60TcjK6UAAAAA\nSUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x5541b10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "X_sepal = X[:, :2]\n", "plt.scatter(X_sepal[:, 0], X_sepal[:, 1], c=y, cmap=plt.cm.gnuplot)\n", "plt.xlabel('Sepal length')\n", "plt.ylabel('Sepal width')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x5705e90>" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4XMW9//H32d4lWbbkggsYMDVgMGBaUCjB9JaAc+H+\ncklIgBDKDaSQkOCQBJKQS08IhMDlQigBjKlJCMWU0EKxwfRmigFjsK2y6tr5/TFH7GqtlVbWSrur\n/byeZx/t2T3n7Hdka2bPzJzvgIiIiIiIiIiIiIiIiIiIiIiIiIiIiOQpBDwFLAFeBs7Lsd8lwBvA\nUmD26IQmIiKlIOL+9AFPArtlvb8/cK/7fCd3HxERGSWeIn9+q/szAHiB1VnvHwxc6z5/CqgG6kcn\nNBERKXYj4cF2N60EHsJ2O2WaAryfsf0BsMHohCYiIsVuJFLAttiK/4tAQz/7OFnbZoRjEhERl6/Y\nAbgagXuAOcDijNdXAFMztjdwX8v2JjBzpIITERmD3gI2LnYQAxmPHWMACAOPAHtl7ZM5cD2X3APX\n5XB1saDYAeRpQbEDyNOCYgeQpwXFDiBPC4odQJ4WFDuAPC0odgB5yKveLOaVxCTsoLTHfVwHPAAc\n775/BbaB2B97pZAEjh39MEVEKlcxG4kXge36ef2KrO3vjkIsIiLSj2IPXFeSxcUOIE+Lix1AnhYX\nO4A8LS52AHlaXOwA8rS42AHkaXGxA5C+ymFMQkSklORVb+pKQkREclIjISIiOamREBGRnNRIiIhI\nTmokREQkJzUSIiKSkxoJERHJSY2EiIjkpEZCRERyUiMhIiI5qZEQEZGc1EiIiEhOaiRERCQnNRIi\nIpKTGgkREclJjYSIiOSkRkJERHJSIyEiIjmpkRARkZzUSIiISE5qJEREJKdiNhJTgYeAl4BlwCn9\n7NMANALPu4+zRis4EREpronAtu7zGPAasHnWPg3AnXmcyxQuLBEZYQ6wJbADEMrzmCpgLrChux1y\nj9/SPZ8MXdnVm4uAvbJeawDuyuPYsiusSIXyJRLcO348LRttRGM0ynvYXoWB7BSJsHbWLNbG47SG\nw/whGuXdDTekcfx4WhIJ/g74RyH2saas6s0ZwLvYK4pMewCfAUuBe4EtchxfVoUVqVSOw0m77EKy\nvR1jDGbBArqqq/nnQMdEo3y0cKHd/9NPMTU1dJ91Ft3GYDo6MLvvTtJxOHm0yjCGlE29GQOeAQ7t\n5704EHGf7we8nuMcBliQ8WgoYHwiUiDRKFdeeKGt8I3BLFuGSSRYMcAhfsch1dOTPqa+ntTSpent\niy/GxGJcNWqFKF8N9K0ny6KR8AP/AE7Lc/93gHH9vF4WhRWpdI7DCTvuSLK1FZNKYc48k67qav4+\n0DHRKB/cdJNtEFautFcSP/gB3akUpq0Ns/POJB2H74xWGcaQkq83HeD/gAsH2Kee9KDUjsDyHPuV\nfGFFBABvIsHCqipap0yhORbjLWDyIMdsH4mwesYMGiMR2sJhLojFeHPKFJqrqmhNJFgE+EYh9rGm\n5OvN3YAUsIT0FNf9gOPdB8BJ2OmxS4DHsbMb+lPyhRWRzznATGBrIJDnMVHsbMjeBsXvHj8TzW5a\nXxVVb1ZUYUVGis/HcdXVvFVdzduBAKcw/ArYCQa5q7qarupqOr1ejR2UkIqqNyuqsCIjwXE4ctIk\nkg8/jHn8ccyMGbQEAnxrOOcMBLh55kzME09gHnoIU1eH8Xg4r1Axy7BUVL1ZUYUVGQnjxvH3665L\nzxpatAhTW8vjwzlnbS3Jv/0tfc4//xlTU8OHhYpZhiWvelO5m0QEgJ4emleuTFccK1dCKkXzcM6Z\nStG1cmV6++OPoaeH9uGcU2R96EpCZPi+EA7T8uMfkzr7bEwkQpLck0XydWIkglmwAPPDH2LCYQxw\nUAFileGrqHqzogorMoI2DwQ4PxjkAmCbAp3zP4JBnvP7eRr4coHOKcOXV705VqaOGcZOWUSKaTLw\nVezf00JsWpyjgWrgPuBF4EhgOjZTwv3AvsBs7M2ut2Cntg+kBvgaNpvCPcArWe872KuNLYBXgTtY\nt0LbDDgQaAVuBNYMqZSF4QPmAxsATwAPFyGG4aioelNXEiLDt1E4zJpjjqHt2GNpD4VojMVYvs8+\nJE8+mc5YjNZQiKe32Ybm732ProkTSUYiPDB5Mi3f+x5dW25JcyLBQgaueGqjUT449FBaTzyRTrdL\na/fMHeJxLt9oI3vOmTNpice5Muscu0UitJxwAh2HHUZrNMoKYEKBfxeD8SYSPLD99rScdhpdEyaQ\nDAbzzhxRKiqq3qyowoqMhESC688+2ybOMwZz6KGk5s1Lbz/wAKaqilRHh91+5RVMIID5+GO73daG\nmTSJFmx2hH55vfz82GPp7D3nX/+Kqa5macYuG8ZitK1da99vbMQkErRib5oDoLqa52+8MT1j6rjj\n6PT5+MUI/mr6s+8mm9Dc1WVjeOcdjM9HJ+V157dmN4lI/vx+6jbfHG/vdiyGs/XW6e1Zs6CnByfg\n3iMdCkEkAvX16e1p0+im//xqAASD1G25ZTqt96xZYEyf/WsmTKCzqspuJBJQV0dX1jnHzZqV3thi\nC/zBIPVDL/Gw1Gy8McbnNgnTp4PHg0M6IamUGF1JiAyT388Jm25KyxtvYJYvx8ycSVt1NZ1PPolZ\ntQpzxBG0x+N03XYbZvVqzM9+RncsRte559K9ejXm5psx4TCNDNz1s399PcklSzAffYTZe29a43H+\nkPF+JBrlk8svJ7VmDeaKK0hFIqzCpuUAIB7n0j33pPWjjzBLl2ImTiSJHZ8YTdMiEVruusv+Ln74\nQ7ricV4Y5RiGq6LqzYoqrMgIccJhfh4O0xQK0RyN8jvH4WvRKKuCQVoTCW4H9ozHeScQoL2qiqeB\nnauqeNbvpz2R4C3sanED8vs5MRpldTBIMh7nWiCYtcvmiQQvued8Gbv6XKZgPM41wSDJSIQ1fj8n\nFaT0Q7dHPM577u/iX8CkIsWxviqq3qyowoqUoWrs+jC5BIE6Sq8LvApIFDuIEVJR9WZFFVakjEQS\nCe4LBun0++mMx/kLpMc5AAIBjvP7aY9GaXOXM920OKH2EUwkuDMQoDMQoDMe5zbG3hKpFVVvVlRh\nRcpFPM6lBx9MW0cHprkZM3cuyWCQ72fssm1VFcnXXrOzhC69lFQ8zptFC9gVjfKbL3+Z1rY2TDKJ\naWggGYmwoNhxFVhF1ZsVVViRcjFuHEsffDA9XfX66zHjxnFPxi7fnD+flt73UymMx0MP645TjKra\nWp6855503Lfdhqmt5aFixjQCNAVWRIqrp4e3HnqIHgBj4IEH6Gxv77NW/XtPPAGtrXbj8cchEKAF\n6Bz9aNO6unjzwQfp6t1+8EE6OzuLf4Uj609XEiKlaWo0ykc77UTjNtvQFIvxOjYtRy8nkeD6SZNo\n2WsvGt07sPcvUqyZJkajvL/DDjRutx2N0SjLgfHFDqrAlLtJREpCAvgi0AMsBtqy3neAnYGJwLPA\nu6MZ3ABiwB7Y+uVhIFnccAquoupNXUmIFEcoGuX82loej8f5MzA+GOTU2loerapiITALOLS2lgfH\njeM+oAGYU1PDPbW1POz18v/6OWc8FuOy2loej8X4PaMzBdUJBjmxtpZHqqu5g3XvzRiLKqrerKjC\nipQIJx7nnwccQOtdd2FOPJGOWIw1m21GctEizK9/TU8gQLK2ltYbbsBcfTUmFqMtGKT197/H3HIL\nZupUWvx+vpNxTm88zjNf+xptd92FOfpo2uNxnidr2myhhUL8dJNNaFm4EPO735EKh2kGNhrJzywB\nFVVvVlRhRUrExGiU9t6Ef6kUZvPNMZlLoG60EamFC9Pbl12GmTMnvf3YY5jqat7OOOdW9fW09PTY\n93t6MJMm0Uzh1rboVyzGqmXL0nGddBJdjsOPR/IzS4BmN4nIyDJZ1Uyqn5UkMvcxpu+2u7/ps7tZ\n9xhG/ougyYrLGKMvn2OJ/jFFRp+TSPD3efNovf12zLe/TUcsxupNNyV5662YX/3KdjeNG0frdddh\nrrwy3d100UWkbroJM2UKSZ+P4zPO6Y3HefrII2lbtAgzfz5t8TjPMMLdTcEgZ86cScstt2B+8xt6\nwmGagA1H8jNLQMnXm1OBh4CXgGXAKTn2uwR4A1iKXf2qPyVfWJExKhSNcl5tLY/EYlwBjAsE+O64\ncSyuquKvwCbAQbW13FdTw73YWU7bVVezqLaWB7xeju7nnLFYjItqa3kkGuViBs75VChOIMC3a2t5\nqKqKW4HNR+Ezi63k682JwLbu8xjwGuv+w+wP3Os+3wl4Mse5Sr6wIiViJnZ50l2x0x/rgMOxS5D6\nsSm5DwIOxs4q8gJ7A1/BLm1azuZgl17NtwGIY38PB2HrqLGm7OrNRcBeWa/9ETgqY/tV6HdxkbIr\nrMho83g4LBolue++NE6eTEssxh3hMGv33JPGzTajOR7n+UiEd+fMoWnnnWmKRPgwHueJjTemee+9\naYxEaMJ+WSs7sRi/rq0lOW8ejfE4rYEAxw1yyKRolBVz59K4ww40RaO8i21Qx5KyqjdnYG+gyW6t\n7wJ2ydi+H9i+n+PLqrAiReAJBmn597/tgGxLC2bKFHrOOINU7yyivfeme9dd08uVzptH90470d3d\nbbdvvhmTSPRJqVEutqyuJvnpp7Ycr7+OCQZpZ4BurESCv3z/+3T1/i5OPpnOeJyrRjHm0ZBXvVkK\n67HGgFuBU4GWft7PviMwV8EWZDxf7D5ExIqmUgS3d79iRaMwezZOfb39+/J4YK+98D7xRPqA8ePx\nzp4NXnfIePfdoauLiaMdeAFsMGsWXbW1dmOTTSCRoHvVKuqA5v4O8PuZ2dCQrh8bGvDfcEN6ne0y\n1eA+yoof+AdwWo73/wjMz9hWd5PIeorFWH755fbKYdkyTDxO91e+Qmd3N2blSsyGG9I5axbtLS2Y\ntjbM7Nm0T55M54oV9h6I00+ns7q6LDOhTo5ESD7xhL0quOUWTCTCZ0Ag1wHRKOftvTetra32qmv3\n3UmGw/x0FGMeDSVfbzrA/wEXDrBP5sD1XDRwLTIcm0WjvBcO0xEI0ObxcHwiwdPBIJ0+H12RCL+N\nxbjR76fL76crHueOcJizfT46QyE6EgmWQlleSQAcEAzSEg7T7q6ZPWeQ/YPxOLdn/C5uRosOjbrd\ngBSwBHjefewHHO8+el0GvImdArtdjnOVfGFFSoQD1NK3q7kaCGVsR+nbXx/EZm4t92RwXmwm16Hc\nRBxnbM5sggqrNyuqsCIFEk4kuDkQoD0cZq3Xy7cjEf4VCmGCQUw0ynOsexPbrrEY7/l8dFZV8Sww\nvQhxBxMJrnPjbgwEct5jJQOrqHqzogorUgiJBP974IG0ffopZulSzPjxdE+dinnnHcz772O23RYT\nCvG3jEMmhcM0L1qEaWrC/OIXdMdivMkoX2HE4/xh771p/eQTzEsvYSZNIom9n0GGpqLqzYoqrEgh\nxON8/Oqr6aR2v/oV5uCD09v33IOpre0z4/DgPfZgbeZSo7EYbYzyOEV1Ne8+/3w6zgsuwESjXDma\nMYwRSvAnIrl5PKx55ZX09tKlmJaMJuHll6Gnp08jsfrtt/F2dNiNFSugowMv0DQa8Wb4LDPuZcvo\n7Ojg41GOQcqMriREhu5LkQjJ44+nfb/9SEajfBQKkZo/H3PMMZhwGIOdTNLLSSS4Y6utaD75ZDrq\n6kiGw/yoCHHvEonQ8q1v0X7QQSSjUT7ADsbL0Gj5UhEZ1ObAPOyNrDdjB6LPwvYy/AZ4Jmt/D3CE\nu9+zULT7JjbFTpFvw8a9tkhxlLOKqjd1JSGyrrjj8EIsylrgaexU1stiMV71evkn/d+YumUoxEXh\nMJeQO+vyYH4ejfKKz8ejwGbAnHCYS0MhLnS3syV8Pn4Wi/EnbK627IrLAY6MxfiTz8fZQFUeMYz3\n+fiFO1Zx0HqWY6yrqHqzogorkgdfPE7nHntgLr4Ys+OOmFiMno03xlx0EebwwzGxGO30rXC3DYdp\n+elPSZ1zDqlIhCSw81A+1O/nhvp6O5h83HGYSISecJjkL3+J+clPSIXDtABbZRwSicV47aijaL/o\nIsyGG5KMRDgn85zhMD+bMYPkRRdh5s+nPRbjDey9HLnURKOs+OY36bzgAszEiSQDAb47lHJUiIqq\nNyuqsCJ5OKO+HtPZaWcAtbZi4nFMb4K/VAozezYG+FXvAVVV3PI//2PTdhhjFwmqqeG+oXxoNEpq\nyZL0zKPDDrMNVO/2ueeSSiS4LuOQr+68M029K8GtWIHx+egkPanG8fnoeP/9dNy77UYzfdP1ZDvh\nkENo7f3MF1/ERCKsGUo5KoRmN4lUsNpEAvxuIolQCMJhCLjZihwH6mzi68/vJvZ6idfVpbt66urA\n4xna3cY9PTgTJqS3J2ZNjq2vx/F6+9zNHamrw3HcTx03DozBQ/omPm8qhbc3OZ8btwOEBwgjUl+f\nvglwwgTo6SE4lHLI2KMrCZG+JkWjmAVn2xvlTj8dE4thjjwSs2QJ5g9/+Hz20ta9B3g8fGXiRJIP\nPoh55BHMtGm0+Hx8YygfGo/zxpe+hHnuOcxNN2EiEUxdHa2PPYa5/37MhAnr3Pg2JRym6U9/slcg\nX/kKbYnE5/naAEgkuPvQQ2lbsgTz5z+TcpcWnTpAGLMiEVpuuMHGsddetMbjXDuUclSIiqo3K6qw\nInk6pCpBZ1UVpipBO3B4IsHbVVV0V1fThF2Rrg+vl2NranitpoY3/H5OYuizX6LxOEvcz2gFTgwE\nOLWmhjdranjN6+U/+zlm2+pqnqqq4r1Egv9l3VxJ0USCq6uqeK+6mqfIb0B91+pqnquu5t14nMtA\nVxL9qKh6s6IKKxXLD2yDnbZaqKmLQWylu0kBzynloaLqzYoqrFSkunic1zbYgObaWpKJBPczwHoI\neZoecnivzktT1ENrxOEW1k3oJ2NXRdWbFVVYqTxVVdx66ql0plJ2xtLee9Pq9w/vbueoh4ePqab7\nnhmYhdMwGwdoAb5ZoJCl9Gl2k8hY4fHwhfnz8TuOnbE0fz7haLTf9d7zljJs/sWovXIIemC3KNGA\nkx7IFgE1EiJlIZXihZtvpssY6OqCm26iLZnkueGc0+PwymNJegA6UvBYkmSn4cXCRCxSWtTdJGNd\nXSzG61On0jR+PC2JBA9QmDGJ9+t9NMY8JCMOt6ExiUpSsAR/IWxCrxmklzw00PfW+SKrqERVUrEC\nwBZAJ/Aqdvnf4Qq552wB3kBfuCpJXvVmPt1Nd2BvfunC/kdqAZLDCk1EhsrxO5wa83BrzMOtTj/3\nOABzoh6ejnp4N+xwBQPfldyrHXgOeB0wHvivmIfXYh7e8MF3GJ0vX9tUV/NkdTXvJhJcw8B5maQE\nLSt2AHnQtx8Z0/zwvSk+Wn43EXNOPSbmIQnsk7HLjIBD83+Px1wyCbND+PMprXlz4IhqD8lz6zG/\nmYgZ7yXphWMLW5J1TAmHabrySlLPP4857DDaEgnuGeHPFKtg9eaVwBcKdbIRokZCxrSYh5fPq8fc\nM8M+ThiHiThcn7HLCXtESfa+f8s0jMde/ed9JRD38PfTx6c/46wJmLiHxwtfmj6+fsghNPcm42tr\nw3i9dGNvHJSRlVe96Rvgvd5ZDl7st4l3gI6Mk5d6wyEylrQ2ZYxANPZgUvRZWrStsSf9R9/UAx7o\nGsqgRcrQ4p7DAWhKgen7GSOh7ZNPwBibvG/NGnAcDNhZV1LaZriP6RnPM18rJbqSkLFu37BD8r9q\nMF+toifg0IRdna1XPOSwfK8oHcePw0zwkvTDmUP8jNlBh5avVZH6z2pM0CEJ7Fq4IvQrEovx+vz5\ntF98MWajjUiGw/xyhD9TrILVm9fl+dr6uBpYCTnnZjcAjcDz7uOsHPupkZBKsHPQ4Q9+hwuwuZay\n1Xjh52GHq7AzEtfHVgGHSwIOlwHbrXekQ5Pw+zk7Hudq7DoRmqk4Oobd3dRrq6xtHwzvTs8M1wCX\nAv83wD4P0ze1sMhY4AW+AmwAPAU8lscx+3QYvobtinkU+BT4KnYa693ABz3wRpuhEXg3xzm+DRwA\nLAfOAGYC+2JnLN4MrOo0vIqtqD9Zr5INXVNXFz/v6hqlT5OC+THQDHS7P3sfq4FfF/BzZjDwlcRd\neZxDVxJSTjwRh39s6Kf5wDgdcQ9Jv8PJgxxzc8DB7BXFzA1jgg7GC6t3CpPcJ0ZbAJrDDstmBWne\nP05HxCHpgf/IPIEPboh5MAfEMBv5MUFoikRIfutbtO+7L8lwmPfDYdYceSStxxxDWzhMIzBr5H4N\nUmQFqzcL2SD0Zwa5G4k9gM+ApcC92Jt++qNGQsrJ3hN9NN8x3c4i+vMUjNdOCsk5oyfqYE4el555\ndGAcEyK9vV8MMzNAz13uOS+ZhAk4NGacwu8Fc9UU+/6d0zE1CczChemlRWfNovsnP0kvX/rb39JT\nVcWdI//rkCIZdndTb3/kLfTfNzmsvDF5eg67AlUrsB+wiL6DdZkWZDxf7D5ESlHtBn5SPrfnvd4H\nHnB67E1ka/s7wHFgWkYSjhkB8GX03Ec8MN2P43Ffm+qHbkMU221kgGqAie5fvNd9dYuMr12RCN6t\nM9L7bbklHp+P+mGVVEpJg/somMXAQ8CT2PnWz7qPLuCJAn7ODHJfSWR7BxjXz+u6kpByMj3o0PLz\nOns/w/wqusMOLw10QAg6tgxi/jIVc+UUTJ0X44HUFVMwN0zFbBKgLeTQ9duJ9pwHxOmMODySeY6w\nQ9tXE/b9X9ZjomHMgQfS8dlnmBdewMTjdMyaRdvy5ZgPPsBstx3JcHjIM6SkfBSs3lwIfdIHbwXc\nVqiTM3AjUU96psOO2MG2/qiRkHLzpbDDCi90Rhyexg5gD2RC2KHHBybgYPzQ4nf4fsChyQdtYYf/\nBQ4POXzihY6Iw0PA+KxzzI44NHvBhBx6gB8nEtzi99MeDrPW5+OESIRzQyFagkFao1EuRgn/xrKC\n1Zsv5/na+rgR+BCbsOx94BvA8e4D4CRsWpAlwOPA3BznUSMhpaCawq6l7AAbMXAuozCQyNreiPSX\nKw9QS/GXBYgDkSLHIH0VrN68CbgK25f1JeBP2Mq9lKiRkGKaEHF4zg+dXugKOPy0AOecG3bo8IPx\ngvHZ6amZnJDD773Q5bNXIw/64K9e90oj7NAJnOp3aAw4dAQcPgN2LkBcQxVOJLjb76fL56MrFuNa\ndHVSKgpWb4aB7wG3u4//xs7LLiVqJKRooh7uOzhO513TMddtgKn10oK9F2G9RRxaj67C3D3dzkiK\nezDAt3rf98Bx0/203DQVc8d0zG4ROiMO5k9T7DFHJmxjca6b7+nsOkzAYS2jnGE1FuPiAw6gtb0d\n09SE2XFHksEgp49mDJJTwZYvbQMuAA5zHxdi0wuLCNBt2PGIKvweB8b5YN8YUc8wv7W3GcJHVNlZ\nTZP8sKvtqJnX+37Y4UsHxonGvXaW0xFV+MMemOy3x2wTtrOmtnGThe8YgYQHD7YratQEAjScfjrh\nYBDicTjlFCLRKHuOZgwyPAM1Er1phpdhB5YzHy+McFwiZcMLH77kfm3qMbC0ndYUvDeccwYdUi+7\n6TS7DLjP3+59v8Pw1gvtdBj3u+Cydky3sfsCrOmGVd2wxk2T90k3NKYIAB8PJ66h6unhnUceoRts\nEr/Fi+ns6ODN0YxBRs5k9+eMHI9Sou4mKaYdgg5Ns0M0TvHRHHF4jOEvLXpG0MFsH8bU+zBhh0/o\n25cfDzu8vKGfpq1DNAYdPgvBJ3Vee0zQzoD6Z8xDck6YxohDMuBw2jBjWh/TIxE+3n13mubMoSkW\n4y36n8Yuo69gy5ceh82f9MawwhlZWr5Uim0SsBs2IeWD2HQ2w7ULNjfT+8DFrJs+OwTshZ1R9TA2\nZc5pwDTsNPXHsDfCboqdkVisHoBq7KSXHuB+7M2xUnwFqzfPwf6nfwfbBXUysG0hTlxAupKQQpoZ\ncbgx7uFBn/3/vj5/SH+OOXTEHDqAPwKHRh0+iHtY7bWzBbcOO7we97A24PAAMCno8FTcw9qQw4vA\nND+cFvfwUMThBmCGA4fFPfwj5uEO7HTwHWMeFsU93Oesf9ZXqVwFrzfDwKnYbzWltiCIGgkplEkB\nhzXHVNP94wmYaX5agg7nDfEc10QczGm1mFNrMUF3Wuo3ajA/mmDvlg5A6pAE5icTMJsHMGGHnp3C\ndnuvKCbk0D3dR/LHEzBfq6I74NASd0ieMR7znXEYP7QFHdpOHIf5/nhMtYekB/5zRH4jMlYVrLvp\np9jL3hj2prZHsZexH653aIWn7iYplO82RDn/+xPsNO+VXXDChyQ7DbF8TxD30Pntcfj3dI84ZyVM\n9MO33Z74Nzrgpyvhpml2+91OOOMjuHGanalkDHzjAzhhHOzkTlj95Sekar14Tqy12z/4CLYPw1HV\ndvu5NvjNKl5qSa2T2l8kl7zqzXzWkzgcm6/pHuAR7J3PHQMeIVK+HCdrYz0uU53sv7zM7f6mFDpZ\n+2SfwJP1x+wAHqfvdo5TiwxLPo3EbOxt/7sC+wBXYleT220E4xIploX/auUX09YSmBbAc/0akh47\nppC35hQ3Xb6aY8A2MEvb4Pl2qPNCnQ+uWgMdKczVq3G2CsHCtZAC8+tVOPvE4IlWaOyh57q1dOAQ\nWd5J6t9ttIfA2SpEuDUFr3fQ/kYnxDyE4h7442paW1OcPyK/EZFBbA18B5ue401sdthzihlQPzQm\nIYW0adTDbXEP/wo4nM76fUP/S9xDV8xDJ/C/wFFRh4/jHhq9cD022d7bcQ9NQTtldnrI4fm4h+aw\nwyvAhgGHH8Y9/CvicCsw04Gj4h4Wxzz8Hdgd2DXm4W9xD4uzFxgSyUPBxiTuxo5DPAr8G9v1VGo0\nJiHFVoe9y7oJ2y0bBr6I/b/5CHZ50Gw7YrO/Po+dPZhtirvPp9hxwMH+qB3s+GEd9m/1g6EWQipK\nRdWbupKQYtou6NC4VZDGiT6aQ/CvkMN7GwdomhmgKeTwDjAh84Cwwx+rPCS3sTfCJR2b8ibTHgGH\nli+EaBwQFeRPAAAUeUlEQVTvpSXicDsDX9E4EYdbar32mKBDCyj9hQyoourNiiqslJaIw0unj08v\nCzrBS9fBcbp7lxY9IE5H2OGqjEN2rfHScss0+/5FkzA+e6Xx+R3VIYcPf15n3180HbOBn2bWbUgy\nHTzFR/Pt7jl/WY8JOawcqTLLmFCwBH8iMoAemPIFNy+y14GwB9/scLrC3zZEwOewScYh0zYOkIq4\nf32bBMFx8JGxLkSnoW5r95x+B7YK4gOmDxDGtC1DeAPuObcKQYdhPPobl2HSfyCRYfLBs3c00WWM\nTai3ppuuO5vo6ExBRwrubqa10/BwxiFLlrXjfa/TbvyzGeO14w6fr28dclh2RxM9xtjkfI+3kgKe\nGSCMZx5vxax0RwzvbCLlDoCnClxckc/dNcDjziLG1R91N0kx1YcdXgw6tHuhMwDnhR3u9EOnDzrD\ndjyhT8I/Lxzjg/awQ1vQ4SNY5ya4GWGHt0IObV7oDDj892BB+B1O9kJnyKHNHQcZ1bTgUnaGPbup\nYZBjF+cbySioqFF6KUkOdnA6SXomUw32/+baHMcE3X0+of9v/A52plITdl2XfISAKmBVjnOK9Kqo\nelNXEhXCB98OOXzmd2gJO1xLYdeUzteUqMPjPmgL22/se0YcbvFDMuSwygNHFyEmkaEqWL25KXAr\n8Ap2Lvc7ZCx+UiLUSFSGeVUekpdMssuEbhuiNezwh1GOwQk7vHJUFd03TbUJ+YIOXduHaPvLVMwF\nkzBRD0mUkUBKX8FmN12DTUvQhe2Cuhb4y3qHJbKeAg4HHlFFZGbQLhP6rXGEHTh4lMOoTcGG/1mN\nN+6FXaKwSQDv3Cihai/MCsKBccIe+PIoxyUyIvJpJMLYhUIc4F1gAcNc5F1kfXQbVr3Xlb7jf0UX\nOA6rRzmMlm6D57Oez2Pik25oy+j9f6+LjhSjHpdI0TyOvcnnduC72KywrxU1onWpu6ky1AYdVsyN\n0HpAnI6gQxLYY7SDCDj8qNpLy6EJumYGaAk7PBuE5MFxOueESYYc3gLiox2XyBAVrN7cAfsffio2\nUdlC7KpYw3U1NpvsiwPscwl22dSl2Gy0uaiRqBw12ISTZwBbFDGOvYAzsYPUXuxqjT8ATkANhJSH\ngtWbR+b52lDtjq34czUS+wP3us93Ap4c4FxqJGQg5wXhRQf+gV2LOtuXvPCkD56l/2yqAeCUoMPl\nwLHk1027lQ9+54Pzgc2BiR44J+BwKYNPLxcZDQWrN5/P87X1MYPcjcQfgaMytl8F6nPsq0ZC+hWA\nv4/32qVDd4tgQg6dQG3GLvMCDubwBOboKkzIwQCnZLzvjTgs3jpE63E1mBl+kmGHawb52DlBh5aj\nqkgdWUXKD8mgw5r94nR9vRoT9dDqFOaLlshwDLve3A+4FHujzyXu80uxXU5PD/fkrhnkbiTuwqY9\n7nU/sH2OfdVISH8cL5hrNrBJ7+6ejtk8iAEu7t0h5PDa0VX2/XtmYE4fj4l5aMo4x9zxXprvnG7f\nv2UaJuDQQe4vLMQ83HviuPQ5dwiT2idKT+/2efWYiMPykSu2SF7yqjcHWpnuQ+zl9yHuT8c9aTMM\nniKgQLLvBhyoUAsyni+mtO4Il+LwGaDK7RxyHKi1afc+HzPwQqQm46+gxgtO37+LSNxDyuv+Tww7\nEHDo7jSEc32oA7Eab3rb7+CM86X/L9d4wZD7eJER0sAIdXX6gQiw2QicewYDdzfNz9hWd5MMWdjh\nk10jmMsn26uEgO1OyrxCPafKY7/dXzgJM8WH8cOijPcTQYeV36yh5/LJmEMSdIYdXmaAcQkvHDvB\nS/J3EzHnT8QkPLSFHTrOrsNcNhmzWZBkyOGikSqzSJ4KVm8ejJ3yutzdnk3hEvzNIL+B67lo4FrW\nT33E4a2IQ0/UoRX4evYODlwRdeiKOnT74W+sewW7cdTDoxGHj6IO92DzKQ3E8cHJUQ/Lox7e8cGJ\nwH5RD69EHN4PO1xAfuvLi4ykgtWbzwHV9B2sXlaA896I7dLqBN4HvgEc7z56XYZdV3spsN0A51Ij\nISIyNAWrN59yf2Y2Ei8U6uQFokZCRGRoCpa76SXsDUM+YBPsDKfH1z8uEREZSyLAudhVsZ4BfoXN\nWV9KdCUhIjI0w54CG8amGNgY2720M6STq4mIyNg30KpEf8UOKj8GzMNmgD11NIJaDxW1wpKISAEM\nu97MnJrqo3CpOEaCuptERIZm2APX3Tmei4hIhRjoUqMHaM3YDpNejN0AiZEKaj2ou0lEZGgqqt5U\nd5OIyNAU7D4JERGpUGokREQkJzUSIiKSkxoJERHJSY2EiIjkpEZCRERyUiMhIiI5qZEQEZGc1EiI\niEhOaiTGDgeoooJusxcRyVelp+WYA6zEpnZvBPYqbjgiUgYqqt6sqMJmCQGrsb+D3kcLUFfMoESk\n5Cl3U4WYDvizXusGtixCLCIyxqiRKH+fsG4jEQA+LEIsIiIlqZK7m8AuK5sEmtyfvyluOCJSBsqi\n3pwHvAq8Afywn/cbsAOxz7uPs3KcpywKO8K2BY4B5hY7EBEpCyVfb3qBN4EZ2O6SJcDmWfs0AHfm\nca6SL+woc4CTgPuAa7HjFiIimUq+3twZ+HvG9o/cR6YG4K48zlXyhR1lv8bOcDLYQezP0GwnEemr\n5Gc3TQHez9j+wH0tkwF2AZYC9wJbjE5oZe8UIOo+92LXJz+8eOGISLnyFfGz82nFngOmAq3AfsAi\nYNMc+y7IeL7YfVSq7LuuHTSTTaTSNbiPsjGXvt1NZ9L/4HWmd4Bx/byu7qa+fo+d5WSAHmAt616l\niUhlK/l60we8hR24DtD/wHU96W/FOwLLc5yr5As7yrzAj4GnsQP/s4objoiUoLKoN/cDXsPOcjrT\nfe149wF2hs4ybAPyOLmnd5ZFYYcgDOwD7O0+78+PgBuBQ9ztjYGDSI/bTAQOxP7O+kv658dees7D\nJgYUkcoy1urNAY2lwk4A3sbeH9KIvdoan7XPKvrmanoaO26zFtvNdCXQ7G63ALfSd0wiAjyLvfmu\nEZsccKMRKY2IlKqxVG8OaiwV9mpsNtfeBqADuCrj/V/Rt4Ho75HK2m4GDss4x1lAW8b73cD9I1Ug\nESlJJT8FVvo3i765mAL0ndG1XR7nyO5e8mPHfjI/I5Sx7UVXEiLSDzUSpedR7Lf8Xm3ua70W5XGO\nlPvo1YPtXur1L2y3VK8O4MmhhSkiUj7GUndTCPgbtuLuAO4Ggln7LKZvd9LvgTXYij8JHIedLtzq\nniN7arEHuAbbrdUOPAVUF7wkIlLKxlK9OaixWNgJrDtgnWkSsD92EBpsl9JU0g2KB3tvRGyAc9TQ\nd5qxiFSOsVhv5jSWCusAD5PuMnoIe9Nh5iD0Qdhpwy3Yq4qJWeeowt4f0YJNd7L/KMQtIuVlLNWb\ngxpLhf0rg89eynx0YnNbZboX243Uu08S2GoUYheR8jGW6s1BjaXCNjK0RqK3ocgcU+jKer8duzCR\niEgvTYEtUy3reVxrxvNk1nvd2BvrREQq0li6kjiAwa8cPsY2Jj3uz+x1OP4ftqHodn8uI3d6DxGp\nTGOp3hzUWCvsLsA92Omvc7H5mJ4HXsc2CH7gWOCn2BxPuc5xFnACaiBEZF151ZvFXE+iUvix9y3M\nwt7Qdj3r/uN8F/g6tkvoZGzFv5v73l7uOb6A7R48ETtz6ffY6a6fAJOxs5jqsGMaGwNxoBY7PhGg\n7w16YKfLfhM7hfavwDMFKKuISEkq1SsJD/BP0ms7tNA3DxPAhQycd2l9H72f2Y5NGJh5v8R07M13\nXRn77l2oQotIWSjVenNElGphdyC91nTmTKP6jH26KUyjMNCjBfhGxmde1M/nPlfAcotI6dPsphIQ\nxQ4uZ+ohvf40jM6/gTfrMxPua5nioxCHiEhRlOqVRAI7ZtCDjbELu8hSZgX9MiNz9ZCZCjxJ30yy\nXybdHdX7/oLCFVtEykCp1psjopQLuynwBLax+AfrptCIAi9gG5JO4GfAh6Qr8A+w4weZDcADWdtX\nZG2fD1yLnSr7MvDFfuL6GnasYgV2jYrsKwsRGdtKud4suHIrbASbJqN2CMdsgF0DvHetiS8D52Fn\nMomIDFW51ZvDUk6F3QU71bUJO4j93UH2d4A/Y7uPmoHl2CuEzCuHa0YoVhEZu8qp3hy2cimsB/iM\ndaeqbjnAMf9B3xlSuWZDKd23iAyFZjeVoFr6zjICW+lvMcAx22Qdk2vsYM9hxCUi0i81EqNrNXZw\nOpMPuzZELq/RN2FfKsd+jwwjLhGRMa1cupvADji3YMcl2oCzB9nfC9zhHtOInSXVRN+uprtHKlgR\nGbPKot6cB7wKvMG66zD3usR9fykwO8c+ZVHYDBOw01Jn5rm/g83dtCvp9Br/jc25tF/BoxORSlDy\n9aYX280yAzutcwl2imem/bGrrAHsBDyZ41wlX1gRkRJT8gPXO2IbieXYO5FvAg7J2udg7E1hAE9h\nV1+rR0RERkUxG4kpwPsZ2x+4rw22zwYjHJeIiLiKuZ5Evl1E2fP/cx23IOP5YvchIiJWg/sYkmI2\nEiuwC9/0moq9Uhhonw3c1/qzoGCRiYiMPYvp++V5sJmVRecD3sIOXAcYfOB6Lhq4FhEplLKoN/fD\n3iz2JnCm+9rx7qPXZe77S4HtcpynLAorIlJCKqrerKjCiogUQMlPgRURkRKnRkJERHJSIyEiIjmp\nkRARkZzUSIiISE5qJEREJCc1EiIikpMaCRERyUmNhIiI5KRGQkREclIjISIiOamREBGRnNRIiIhI\nTmokREQkJzUSIiKSkxoJERHJSY2EiIjkpEZCRERyUiMhIiI5qZEQEZGc1EiIiEhOaiRERCQnX5E+\ndxxwMzAdWA4cCaztZ7/lQBPQA3QBO45OeCIiUky/BX7gPv8h8Osc+72DbVAGYwoR1AhrKHYAeWoo\ndgB5aih2AHlqKHYAeWoodgB5aih2AHlqKHYAecir3ixWd9PBwLXu82uBQwfY1xn5cEZFQ7EDyFND\nsQPIU0OxA8hTQ7EDyFNDsQPIU0OxA8hTQ7EDKJRiNRL1wEr3+Up3uz8GuB94BvjWKMQlIiIZRnJM\n4p/AxH5e/0nWtiH3Zc+uwEfABPd8rwKPFipAEREZWLG6cl7FXo59DEwCHgI2G+SYs4EW4H/6ee9N\nYGYB4xMRGeveAjYudhC5/BY7YA3wI/ofuI4Acfd5FPgX8OWRD01ERIptHHas4XXgPqDafX0ycI/7\nfCNgiftYBpw5yjGKiIiIiMhYNQ87vvEG6e6rUnM1dgbXi8UOZBBTsWNDL2Gv3E4pbjg5hYCnsFeY\nLwPnFTecAXmB54G7ih3IAJYDL2DjfLq4oQyoGrgVeAX77z63uOH0axb299j7aKR0/47OxP6tvwjc\nAASLG87I8GIHrGcAfmylsXkxA8phd2A2pd9ITAS2dZ/HgNcozd8n2PEqsLPzngR2K2IsA/ke8Bfg\nzmIHMoB8b1gttmuBb7jPfUBVEWPJhwc7M3NqsQPpxwzgbdINw83A13PtXM65m3bENhLLsSk7bgIO\nKWZAOTwKrCl2EHn4GNvQgp1F9gp2jKgUtbo/A9gvC6uLGEsuGwD7A1dR+jeElnp8VdgvW1e7293Y\nb+mlbG/s7KH3ix1IP5qwdWYE2+BGgBW5di7nRmIKff8BPnBfk+Gbgb36earIceTiwTZoK7FdZC8X\nN5x+XQh8H0gVO5BBlMMNqxsCq4BrgOeAP5G+mixV87HdOKVoNfZWgveAD7F58+7PtXM5NxLlkK+p\nHMWwfb+nYq8oSlEK2zW2AfBFSi8FwoHAJ9h+6VL/lr4r9gvBfsBJ2G/spcYHbAf8wf2ZxE6dL1UB\n4CDglmIHksNM4DTsl8HJ2L/5o3PtXM6NxAr69vdNxV5NyPrzA7cB1wOLihxLPhqxU6bnFDuQLLtg\n85O9A9wI7An8X1Ejyu0j9+cq4HZKM9PyB+7j3+72rdjGolTtBzyL/Z2WojnA48Bn2K67hdj/s2OO\nD9vnNwPbcpfqwDXYGEt94NrBVmQXFjuQQYwnfV9NGHgE2Kt44QxqD0p3dlM53bD6CLCp+3wB8Jvi\nhTKomxhgILgEbIOdwRjG/t1fi72KHJP2w87CeZPSvdnuRmy/Xwd2DOXY4oaT027YbpwlpKfwzStq\nRP3bGtsvvQQ7dfP7xQ1nUHtQurObNqR8bljdBnslsRT7zbdUZzdFgU9JN76l6gekp8Bei+1FEBER\nEREREREREREREREREREREREREZHy04O9B+RF4K/YG4py2QZ7L85gGuj/hrlcrw/XIfS9cXQxsP0I\nfI5IWaflEFkfrdhcRVsDncAJA+w7G5vJtdQcBmyRsa08ZjJi1EhIJXsMuxB8BJuG+ins3dwHY+9A\nPQc4CnvlcSSwAzbnzXPYFBabrnvKnKL9fAbAf2HvIP4bdjnfzHQT38RmFHgKuBK4FNgZmzzufPc8\nG7n7ftXd7zVKd30NEZGS1+z+9GGTGB4PnEs6C2Y1tqKNYPPvXJJxbBy7fgXY9QJudZ83MHh3U67P\n+C9sDrI4dhGY5diU95OxCQKr3VgfyYjlGuDwjM95CNtogO0e+2e/JRdZD75iByAyysLYKwOwFe/V\nwBPYb+dnuK8HgWnY5GeZqb6rsUkQN8Z28Qwl382Xc3yGAR4g3Xi9jE0IOQF4GJvrH2za6cwrl+wU\n5Avdn8+5x4sUhBoJqTRt2LGGbIdj10rPtFPW9i+wFfphwHTsgPFQ5PqMjoztHuzfZfY4Q3ajkP1+\n7zl6jxcpCI1JiMA/6LtgfW8j0kzfbJ4JbEZfGHo231yf0d+iRAab8XQP0t1NR5BuGJrdWERGnBoJ\nqTT9zQT6Bbbr6AVsyuyfu68/hJ1F1Dtw/VvgPGyXjjfrXP2d12S8nuszMvfJ9CF2HONp7AD7O6TX\ndb4JmyL9WdID14OVUURExpio+9OHXZPikCLGIiIiJeZ87FXMK8BFRY5FRERERERERERERERERERE\nREREREREpBz8f4IdEqXfU0s0AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x5556d50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "X_petal = X[:, 2:4]\n", "plt.scatter(X_petal[:, 0], X_petal[:, 1], c=y, cmap=plt.cm.gnuplot)\n", "plt.xlabel('Petal length')\n", "plt.ylabel('Petal width')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##2. 使用K近邻进行分类" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "KNN分类的基本步骤:\n", "1. 选择K的值\n", "2. 在训练数据集中搜索K个距离最近的观测值\n", "3. 使用最多的那个标签作为未知数据的预测" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "下面给出KNN的演示图例,\n", "分别是训练数据、K=1时的KNN分类图、K=5时的KNN分类图\n", "![Example training data](Image/Data3classes.png)\n", "![KNN classification map(K=1)](Image/Map1NN.png)\n", "![KNN classification map(K=5)](Image/Map5NN.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###scikit-learn进行模型匹配的4个一般步骤" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###第一步:载入你要使用的模型类" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.neighbors import KNeighborsClassifier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###第二步:实例化分类器" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# looking for the one nearest neighbor\n", "knn = KNeighborsClassifier(n_neighbors=1)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n", " metric_params=None, n_neighbors=1, p=2, weights='uniform')\n" ] } ], "source": [ "print knn" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###第三步:用数据来拟合模型(进行模型的训练)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n", " metric_params=None, n_neighbors=1, p=2, weights='uniform')" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "knn.fit(X, y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###第四步:对新的观测值进行预测" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([2])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "knn.predict([3, 5, 4, 2])" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([2, 1])" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_new = [[3, 5, 4, 2], [5, 4, 3, 2]]\n", "knn.predict(X_new)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###使用不同的K值" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([1, 1])" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "knn5 = KNeighborsClassifier(n_neighbors=5)\n", "\n", "knn5.fit(X, y)\n", "\n", "knn5.predict(X_new)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###依照同样的流程,使用不同的分类模型" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([2, 0])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# import the class\n", "from sklearn.linear_model import LogisticRegression\n", "\n", "# instantiate the model (using the default parameters)\n", "logreg = LogisticRegression()\n", "\n", "# fit the model with data\n", "logreg.fit(X, y)\n", "\n", "# predict the response for new observations\n", "logreg.predict(X_new)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.5" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
elivre/arfe
e2014/020-rede2014_converte_receitas.ipynb
1
34728
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 020-rede2014_converte_receitas" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "ano_eleicao = '2014'" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "dbschema = f'rede{ano_eleicao}'\n", "dbschema_tse = f'tse{ano_eleicao}'\n", "table_receitas = f'{dbschema}.receitas_{ano_eleicao}'\n", "table_receitas_do = f'{dbschema}.receitas_do_{ano_eleicao}'\n", "table_receitas_candidatos = f'{dbschema_tse}.receitas_candidatos_{ano_eleicao}'\n", "table_receitas_partidos = f'{dbschema_tse}.receitas_partidos_{ano_eleicao}'\n", "table_receitas_comites = f'{dbschema_tse}.receitas_comites_{ano_eleicao}'\n", "table_candidaturas = f\"{dbschema}.candidaturas_{ano_eleicao}\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import os\n", "import sys\n", "sys.path.append('../')\n", "import mod_tse as mtse\n", "home = os.environ[\"HOME\"]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "mtse.execute_query(f'CREATE SCHEMA IF NOT EXISTS {dbschema};')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## CRIA TABELA RECEITAS" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "query_create_table_receitas = f\"\"\"\n", "DROP TABLE IF EXISTS {table_receitas} CASCADE;\n", "CREATE TABLE {table_receitas} (\n", " tabela_id varchar,\n", "\n", " eleicao_ano varchar,\n", " eleicao_turno varchar,\n", " prestador_contas_sq varchar,\n", " prestador_contas_cnpj varchar,\n", "\n", " --RECEITA\n", " receita_fonte_cd varchar,\n", " receita_fonte_ds varchar,\n", " receita_origem_cd varchar,\n", " receita_origem_sg varchar,\n", " receita_origem_ds varchar,\n", " receita_valor numeric(18,2),\n", "\n", " --RECEPTOR\n", " receptor_id varchar,\n", " receptor_tipo_cd varchar,\n", " receptor_tipo_ds varchar,\n", " receptor_candidatura_id varchar,\n", " \n", " receptor_esfera_partidaria_cd varchar,\n", " receptor_esfera_partidaria_ds varchar,\n", " receptor_uf varchar,\n", " receptor_ue varchar,\n", " receptor_ue_nome varchar,\n", " receptor_cnpj varchar,\n", " receptor_nome varchar,\n", " receptor_sq varchar,\n", " receptor_cargo_ds varchar,\n", " receptor_candidato_nr varchar,\n", " receptor_candidato_cpf varchar,\n", " receptor_vice_candidato_cpf varchar,\n", " receptor_partido_nr varchar,\n", " receptor_partido_sg varchar,\n", "\n", " --DOADOR\n", " doador_id varchar,\n", " doador_tipo_cd varchar,\n", " doador_tipo_ds varchar,\n", " doador_candidatura_id varchar,\n", " \n", " doador_cnae_cd varchar,\n", " doador_cnae_ds varchar,\n", " doador_cpf_cnpj varchar,\n", " doador_nome varchar,\n", " doador_nome_rfb varchar,\n", " doador_originario_tipo varchar,\n", " doador_esfera_partidaria_cd varchar, \n", " doador_esfera_partidaria_ds varchar,\n", " doador_uf varchar,\n", " doador_ue varchar,\n", " doador_ue_nome varchar,\n", " doador_candidato_nr varchar,\n", " doador_candidato_cargo_ds varchar,\n", " doador_partido_nr varchar,\n", " doador_partido_sg varchar \n", ");\n", "\n", "CREATE INDEX ON {table_receitas} (tabela_id);\n", "CREATE INDEX ON {table_receitas} (receita_origem_sg);\n", "CREATE INDEX ON {table_receitas} (receita_origem_cd);\n", "CREATE INDEX ON {table_receitas} (receita_origem_ds);\n", "\n", "\n", "CREATE INDEX ON {table_receitas} (receptor_id);\n", "CREATE INDEX ON {table_receitas} (receptor_candidatura_id);\n", "CREATE INDEX ON {table_receitas} (receptor_tipo_cd);\n", "CREATE INDEX ON {table_receitas} (receptor_tipo_ds);\n", "CREATE INDEX ON {table_receitas} (receptor_cnpj);\n", "CREATE INDEX ON {table_receitas} (receptor_candidato_cpf);\n", "CREATE INDEX ON {table_receitas} (receptor_uf); \n", "CREATE INDEX ON {table_receitas} (receptor_candidato_nr); \n", "CREATE INDEX ON {table_receitas} (receptor_sq);\n", "\n", "\n", "CREATE INDEX ON {table_receitas} (doador_id);\n", "CREATE INDEX ON {table_receitas} (doador_candidatura_id);\n", "CREATE INDEX ON {table_receitas} (doador_tipo_cd);\n", "CREATE INDEX ON {table_receitas} (doador_tipo_ds);\n", "CREATE INDEX ON {table_receitas} (doador_cpf_cnpj);\n", "CREATE INDEX ON {table_receitas} (doador_nome);\n", "CREATE INDEX ON {table_receitas} (doador_nome_rfb);\n", "\n", "\n", "DROP TABLE IF EXISTS {table_receitas_do} CASCADE;\n", "CREATE TABLE {table_receitas_do} (\n", "LIKE {table_receitas}\n", ");\n", "\n", "\n", "\"\"\"\n", "\n", "mtse.execute_query(query_create_table_receitas)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## INCLUI RECEITAS DE CANDIDATOS" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "query_insert_receitas_candidatos = f\"\"\"\n", "insert into {table_receitas}\n", "select \n", " 'RC' as tabela_id,\n", "\n", " {ano_eleicao} as eleicao_ano,\n", " '#NE' as eleicao_turno,\n", " '#NE' as prestador_contas_sq,\n", " cnpj_prestador_conta as prestador_contas_cnpj,\n", " \n", " --RECEITA \n", " '#NE' as receita_fonte_cd,\n", " fonte_recurso as receita_fonte_ds,\n", " '#NE' as receita_origem_cd,\n", " '#NE' as receita_origem_sg,\n", " tipo_receita as receita_origem_ds,\n", " valor_receita::numeric(18,2) as receita_valor,\n", " \n", " --RECEPTOR \n", " get_candidato_id(cpf_do_candidato) as receptor_id,\n", " 'CD' as receptor_tipo_cd,\n", " 'Candidato' as receptor_tipo_ds,\n", " get_candidatura_id(uf,numero_candidato) as receptor_candidatura_id,\n", " \n", " '#NE' as receptor_esfera_partidaria_cd,\n", " '#NE' as receptor_esfera_partidaria_ds,\n", " uf as receptor_uf,\n", " '#NE' as receptor_ue,\n", " '#NE' as receptor_ue_nome,\n", " cnpj_prestador_conta as receptor_cnpj,\n", " nome_candidato as receptor_nome,\n", " sequencial_candidato as receptor_sq,\n", " cargo as receptor_cargo_ds,\n", " numero_candidato as receptor_candidato_nr,\n", " cpf_do_candidato as receptor_candidato_cpf,\n", " '#NE' as receptor_vice_candidato_cpf,\n", " '#NE' as receptor_partido_nr,\n", " sigla__partido as receptor_partido_sg,\n", " \n", " --DOADOR \n", " get_doador_id(cpf_cnpj_do_doador) as doador_id, \n", " get_doador_tipo(cpf_cnpj_do_doador) as doador_tipo_cd,\n", " get_doador_tipo_ds(cpf_cnpj_do_doador) as doador_tipo_ds, \n", " '' as doador_candidatra_id, \n", " \n", " cod_setor_economico_do_doador as doador_cnae_cd,\n", " setor_economico_do_doador as doador_cnae_ds,\n", " cpf_cnpj_do_doador as doador_cpf_cnpj,\n", " nome_do_doador as doador_nome,\n", " nome_do_doador_receita_federal as doador_nome_rfb,\n", " '#NE' as doador_originario_tipo,\n", " '#NE' as doador_esfera_partidaria_cd, \n", " '#NE' as doador_esfera_partidaria_ds,\n", " '#NE' as doador_uf, \n", " sigla_ue_doador as doador_ue,\n", " '#NE' as doador_ue_nome,\n", " numero_candidato_doador as doador_candidato_nr,\n", " '#NE' as doador_candidato_cargo_ds,\n", " numero_partido_doador as doador_partido_nr,\n", " '#NE' as doador_partido_sg\n", "from {table_receitas_candidatos}\n", ";\n", "\"\"\"\n", "\n", "mtse.execute_query(query_insert_receitas_candidatos)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## INCLUI RECEITAS DE CANDIDATOS DOADOR ORIGINÁRIO" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "query_insert_receitas_candidatos_doador_originario = f\"\"\"\n", "insert into {table_receitas_do}\n", "select \n", " 'RCDO' as tabela_id,\n", " \n", " {ano_eleicao} as eleicao_ano,\n", " '#NE' as eleicao_turno,\n", " '#NE' as prestador_contas_sq,\n", " cnpj_prestador_conta as prestador_contas_cnpj,\n", " \n", " --RECEITA \n", " '#NE' as receita_fonte_cd,\n", " fonte_recurso as receita_fonte_ds,\n", " '#NE' as receita_origem_cd,\n", " '#NE' as receita_origem_sg,\n", " tipo_receita as receita_origem_ds,\n", " valor_receita::numeric(18,2) as receita_valor,\n", " \n", " --RECEPTOR \n", " get_candidato_id(cpf_do_candidato) as receptor_id,\n", " 'CD' as receptor_tipo_cd,\n", " 'Candidato' as receptor_tipo_ds,\n", " '' as receptor_candidatura_id,\n", " \n", " '#NE' as receptor_esfera_partidaria_cd,\n", " '#NE' as receptor_esfera_partidaria_ds,\n", " uf as receptor_uf,\n", " '#NE' as receptor_ue,\n", " '#NE' as receptor_ue_nome,\n", " cnpj_prestador_conta as receptor_cnpj,\n", " nome_candidato as receptor_nome,\n", " sequencial_candidato as receptor_sq,\n", " cargo as receptor_cargo_ds,\n", " numero_candidato as receptor_candidato_nr,\n", " cpf_do_candidato as receptor_candidato_cpf,\n", " '#NE' as receptor_vice_candidato_cpf,\n", " '#NE' as receptor_partido_nr,\n", " sigla__partido as receptor_partido_sg,\n", " \n", " --DOADOR \n", " get_doador_id(cpf_cnpj_do_doador_originario) as doador_id,\n", " get_doador_tipo(cpf_cnpj_do_doador_originario) as doador_tipo_cd,\n", " get_doador_tipo_ds(cpf_cnpj_do_doador_originario) as doador_tipo_ds,\n", " '' as doador_candidatura_id, \n", " \n", " '#NE' as doador_cnae_cd,\n", " setor_economico_do_doador_originario as doador_cnae_ds,\n", " cpf_cnpj_do_doador_originario as doador_cpf_cnpj,\n", " nome_do_doador_originario as doador_nome,\n", " nome_do_doador_originario_receita_federal as doador_nome_rfb,\n", " tipo_doador_originario as doador_originario_tipo,\n", " '#NE' as doador_esfera_partidaria_cd, \n", " '#NE' as doador_esfera_partidaria_ds,\n", " '#NE' as doador_uf, \n", " sigla_ue_doador as doador_ue,\n", " '#NE' as doador_ue_nome,\n", " numero_candidato_doador as doador_candidato_nr,\n", " '#NE' as doador_candidato_cargo_ds,\n", " numero_partido_doador as doador_partido_nr,\n", " '#NE' as doador_partido_sg\n", "from {table_receitas_candidatos} \n", "where \n", " cpf_cnpj_do_doador_originario not in ('#NE','#NE#', '','#NULO','#NULO#')\n", ";\n", "\"\"\"\n", "\n", "mtse.execute_query(query_insert_receitas_candidatos_doador_originario)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## INCLUI RECEITAS PARTIDOS" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "query_insert_receitas_partidos = f\"\"\"\n", "insert into {table_receitas}\n", "select \n", " 'ROP' as tabela_id, \n", "\n", " {ano_eleicao} as eleicao_ano,\n", " '#NE' as eleicao_turno,\n", " '#NE' as prestador_contas_sq,\n", " cnpj_prestador_conta as prestador_contas_cnpj,\n", " \n", " --RECEITA \n", " '#NE' as receita_fonte_cd,\n", " fonte_recurso as receita_fonte_ds,\n", " '#NE' as receita_origem_cd,\n", " '#NE' as receita_origem_sg,\n", " tipo_receita as receita_origem_ds,\n", " valor_receita::numeric(18,2) as receita_valor, \n", " \n", " --RECEPTOR \n", " public.get_orgao_partidario_id(cnpj_prestador_conta) as receptor_id,\n", " 'OP' as receptor_tipo_cd,\n", " 'Órgão Partidário' as receptor_tipo_ds,\n", " '' as receptor_candidatura_id,\n", " \n", " '#NE' as receptor_esfera_partidaria_cd,\n", " '#NE' as receptor_esfera_partidaria_ds,\n", " uf as receptor_uf,\n", " '#NE' as receptor_ue,\n", " '#NE' as receptor_ue_nome,\n", " cnpj_prestador_conta as receptor_cnpj,\n", " tipo_diretorio as receptor_nome,\n", " sequencial_diretorio as receptor_sq,\n", " '#NE' as receptor_cargo_ds,\n", " '#NE' as receptor_candidato_nr,\n", " '#NE' as receptor_candidato_cpf,\n", " '#NE' as receptor_vice_candidato_cpf,\n", " '#NE' as receptor_partido_nr,\n", " sigla__partido as receptor_partido_sg,\n", " \n", " --DOADOR \n", " get_doador_id(cpf_cnpj_do_doador) as doador_id, \n", " get_doador_tipo(cpf_cnpj_do_doador) as doador_tipo_cd,\n", " get_doador_tipo_ds(cpf_cnpj_do_doador) as doador_tipo_ds, \n", " '' as doador_candidatura_id, \n", "\n", " cod_setor_economico_do_doador as doador_cnae_cd,\n", " setor_economico_do_doador as doador_cnae_ds,\n", " cpf_cnpj_do_doador as doador_cpf_cnpj,\n", " nome_do_doador as doador_nome,\n", " nome_do_doador_receita_federal as doador_nome_rfb,\n", " '#NE' as doador_originario_tipo,\n", " '#NE' as doador_esfera_partidaria_cd, \n", " '#NE' as doador_esfera_partidaria_ds,\n", " '#NE' as doador_uf, \n", " sigla_ue_doador as doador_ue,\n", " '#NE' as doador_ue_nome,\n", " numero_candidato_doador as doador_candidato_nr,\n", " '#NE' as doador_candidato_cargo_ds,\n", " numero_partido_doador as doador_partido_nr,\n", " '#NE' as doador_partido_sg \n", "from {table_receitas_partidos}\n", "--where \n", "-- cpf_cnpj_do_doador_originario in ('#NE','#NE#', '','#NULO','#NULO#')\n", ";\n", "\"\"\"\n", "\n", "mtse.execute_query(query_insert_receitas_partidos)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## INCLUI RECEITAS PARTIDOS DOADOR ORIGINÁRIO" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "query_insert_receitas_partidos_doador_originario = f\"\"\"\n", "insert into {table_receitas_do}\n", "select\n", " 'ROPDO' as tabela_id,\n", "\n", " {ano_eleicao} as eleicao_ano,\n", " '#NE' as eleicao_turno,\n", " '#NE' as prestador_contas_sq,\n", " cnpj_prestador_conta as prestador_contas_cnpj,\n", " \n", " --RECEITA \n", " '#NE' as receita_fonte_cd,\n", " fonte_recurso as receita_fonte_ds,\n", " '#NE' as receita_origem_cd,\n", " '#NE' as receita_origem_sg,\n", " tipo_receita as receita_origem_ds,\n", " valor_receita::numeric(18,2) as receita_valor, \n", " \n", " --RECEPTOR \n", " public.get_orgao_partidario_id(cnpj_prestador_conta) as receptor_id,\n", " 'OP' as receptor_tipo_cd,\n", " 'Órgão Partidário' as receptor_tipo_ds,\n", " '' as receptor_candidatura_id,\n", " \n", " '#NE' as receptor_esfera_partidaria_cd,\n", " '#NE' as receptor_esfera_partidaria_ds,\n", " uf as receptor_uf,\n", " '#NE' as receptor_ue,\n", " '#NE' as receptor_ue_nome,\n", " cnpj_prestador_conta as receptor_cnpj,\n", " tipo_diretorio as receptor_nome,\n", " sequencial_diretorio as receptor_sq,\n", " '#NE' as receptor_cargo_ds,\n", " '#NE' as receptor_candidato_nr,\n", " '#NE' as receptor_candidato_cpf,\n", " '#NE' as receptor_vice_candidato_cpf,\n", " '#NE' as receptor_partido_nr,\n", " sigla__partido as receptor_partido_sg,\n", " \n", " --DOADOR \n", " get_doador_id(cpf_cnpj_do_doador_originario) as doador_id,\n", " get_doador_tipo(cpf_cnpj_do_doador_originario) as doador_tipo_cd,\n", " get_doador_tipo_ds(cpf_cnpj_do_doador_originario) as doador_tipo_ds,\n", " '' as doador_candidatura_id, \n", "\n", " '#NE' as doador_cnae_cd,\n", " setor_economico_do_doador_originario as doador_cnae_ds,\n", " cpf_cnpj_do_doador_originario as doador_cpf_cnpj,\n", " nome_do_doador_originario as doador_nome,\n", " nome_do_doador_originario_receita_federal as doador_nome_rfb,\n", " tipo_doador_originario as doador_originario_tipo,\n", " '#NE' as doador_esfera_partidaria_cd, \n", " '#NE' as doador_esfera_partidaria_ds,\n", " '#NE' as doador_uf, \n", " sigla_ue_doador as doador_ue,\n", " '#NE' as doador_ue_nome,\n", " numero_candidato_doador as doador_candidato_nr,\n", " '#NE' as doador_candidato_cargo_ds,\n", " numero_partido_doador as doador_partido_nr,\n", " '#NE' as doador_partido_sg\n", "from {table_receitas_partidos} as rpdo\n", "where \n", " cpf_cnpj_do_doador_originario not in ('#NE','#NE#', '','#NULO','#NULO#')\n", ";\n", "\"\"\"\n", "\n", "mtse.execute_query(query_insert_receitas_partidos_doador_originario)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## INCLUI RECEITAS COMITES" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "query_insert_receitas_comites = f\"\"\"\n", "insert into {table_receitas}\n", "select \n", " 'ROP' as tabela_id, \n", "\n", " {ano_eleicao} as eleicao_ano,\n", " '#NE' as eleicao_turno,\n", " '#NE' as prestador_contas_sq,\n", " cnpj_prestador_conta as prestador_contas_cnpj,\n", " \n", " --RECEITA \n", " '#NE' as receita_fonte_cd,\n", " fonte_recurso as receita_fonte_ds,\n", " '#NE' as receita_origem_cd,\n", " '#NE' as receita_origem_sg,\n", " tipo_receita as receita_origem_ds,\n", " valor_receita::numeric(18,2) as receita_valor, \n", " \n", " --RECEPTOR \n", " public.get_orgao_partidario_id(cnpj_prestador_conta) as receptor_id,\n", " 'OP' as receptor_tipo_cd,\n", " 'Órgão Partidário' as receptor_tipo_ds,\n", " '' as receptor_candidatura_id,\n", " \n", " '#NE' as receptor_esfera_partidaria_cd,\n", " '#NE' as receptor_esfera_partidaria_ds,\n", " uf as receptor_uf,\n", " '#NE' as receptor_ue,\n", " '#NE' as receptor_ue_nome,\n", " cnpj_prestador_conta as receptor_cnpj,\n", " tipo_comite as receptor_nome,\n", " sequencial_comite as receptor_sq,\n", " '#NE' as receptor_cargo_ds,\n", " '#NE' as receptor_candidato_nr,\n", " '#NE' as receptor_candidato_cpf,\n", " '#NE' as receptor_vice_candidato_cpf,\n", " '#NE' as receptor_partido_nr,\n", " sigla__partido as receptor_partido_sg,\n", " \n", " --DOADOR \n", " get_doador_id(cpf_cnpj_do_doador) as doador_id, \n", " get_doador_tipo(cpf_cnpj_do_doador) as doador_tipo_cd,\n", " get_doador_tipo_ds(cpf_cnpj_do_doador) as doador_tipo_ds, \n", " '' as doador_candidatura_id,\n", " \n", " cod_setor_economico_do_doador as doador_cnae_cd,\n", " setor_economico_do_doador as doador_cnae_ds,\n", " cpf_cnpj_do_doador as doador_cpf_cnpj,\n", " nome_do_doador as doador_nome,\n", " nome_do_doador_receita_federal as doador_nome_rfb,\n", " '#NE' as doador_originario_tipo,\n", " '#NE' as doador_esfera_partidaria_cd, \n", " '#NE' as doador_esfera_partidaria_ds,\n", " '#NE' as doador_uf, \n", " sigla_ue_doador as doador_ue,\n", " '#NE' as doador_ue_nome,\n", " numero_candidato_doador as doador_candidato_nr,\n", " '#NE' as doador_candidato_cargo_ds,\n", " numero_partido_doador as doador_partido_nr,\n", " '#NE' as doador_partido_sg \n", "from {table_receitas_comites}\n", "--where \n", "-- cpf_cnpj_do_doador_originario in ('#NE','#NE#', '','#NULO','#NULO#')\n", ";\n", "\"\"\"\n", "\n", "mtse.execute_query(query_insert_receitas_comites)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## INCLUI RECEITAS COMITES DOADOR ORIGINÁRIO" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "query_insert_receitas_comites_doador_originario = f\"\"\"\n", "insert into {table_receitas_do}\n", "select\n", " 'ROPDO' as tabela_id,\n", "\n", " {ano_eleicao} as eleicao_ano,\n", " '#NE' as eleicao_turno,\n", " '#NE' as prestador_contas_sq,\n", " cnpj_prestador_conta as prestador_contas_cnpj,\n", " \n", " --RECEITA \n", " '#NE' as receita_fonte_cd,\n", " fonte_recurso as receita_fonte_ds,\n", " '#NE' as receita_origem_cd,\n", " '#NE' as receita_origem_sg,\n", " tipo_receita as receita_origem_ds,\n", " valor_receita::numeric(18,2) as receita_valor, \n", " \n", " --RECEPTOR \n", " public.get_orgao_partidario_id(cnpj_prestador_conta) as receptor_id,\n", " 'OP' as receptor_tipo_cd,\n", " 'Órgão Partidário' as receptor_tipo_ds,\n", " '' as receptor_candidatura_id,\n", " \n", " '#NE' as receptor_esfera_partidaria_cd,\n", " '#NE' as receptor_esfera_partidaria_ds,\n", " uf as receptor_uf,\n", " '#NE' as receptor_ue,\n", " '#NE' as receptor_ue_nome,\n", " cnpj_prestador_conta as receptor_cnpj,\n", " tipo_comite as receptor_nome,\n", " sequencial_comite as receptor_sq,\n", " '#NE' as receptor_cargo_ds,\n", " '#NE' as receptor_candidato_nr,\n", " '#NE' as receptor_candidato_cpf,\n", " '#NE' as receptor_vice_candidato_cpf,\n", " '#NE' as receptor_partido_nr,\n", " sigla__partido as receptor_partido_sg,\n", " \n", " --DOADOR \n", " get_doador_id(cpf_cnpj_do_doador_originario) as doador_id,\n", " get_doador_tipo(cpf_cnpj_do_doador_originario) as doador_tipo_cd,\n", " get_doador_tipo_ds(cpf_cnpj_do_doador_originario) as doador_tipo_ds,\n", " '' as doador_candiatura_id,\n", " \n", " '#NE' as doador_cnae_cd,\n", " setor_economico_do_doador_originario as doador_cnae_ds,\n", " cpf_cnpj_do_doador_originario as doador_cpf_cnpj,\n", " nome_do_doador_originario as doador_nome,\n", " nome_do_doador_originario_receita_federal as doador_nome_rfb,\n", " tipo_doador_originario as doador_originario_tipo,\n", " '#NE' as doador_esfera_partidaria_cd, \n", " '#NE' as doador_esfera_partidaria_ds,\n", " '#NE' as doador_uf, \n", " sigla_ue_doador as doador_ue,\n", " '#NE' as doador_ue_nome,\n", " numero_candidato_doador as doador_candidato_nr,\n", " '#NE' as doador_candidato_cargo_ds,\n", " numero_partido_doador as doador_partido_nr,\n", " '#NE' as doador_partido_sg\n", "from {table_receitas_comites} as rpdo\n", "where \n", " cpf_cnpj_do_doador_originario not in ('#NE','#NE#', '','#NULO','#NULO#')\n", ";\n", "\"\"\"\n", "\n", "mtse.execute_query(query_insert_receitas_comites_doador_originario)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2020-10-20 22:44:03.586346\n" ] } ], "source": [ "import datetime\n", "print(datetime.datetime.now())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }
mit
Ttl/scikit-rf
doc/source/examples/metrology/One Port Tiered Calibration.ipynb
3
7960
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# One Port Tiered Calibration" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Intro" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A one-port network analyzer can be used to measure a two-port device, provided that the device is reciprocal. This is accomplished by performing two calibrations, which is why its called a *tiered* calibration. \n", "\n", "First, the VNA is calibrated at the test-port like normal. This is called the *first tier*. Next, the device is connected to the test-port, and a calibration is performed at the far end of the device, the *second tier*. A diagram is shown below," ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from IPython.display import SVG\n", "SVG('oneport_tiered_calibration/images/boxDiagram.svg')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook will demonstrate how to use [skrf](www.scikit-rf.org) to do a two-tiered one-port calibration. We'll use data that was taken to characterize a waveguide-to-CPW probe. So, for this specific example the diagram above looks like:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "SVG('oneport_tiered_calibration/images/probe.svg')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Some Data " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data available is the folders `'tier1/'` and `'tier2/'`. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ls oneport_tiered_calibration/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(if you dont have the git repo for these examples, the data for this notebook can be found [here](https://github.com/scikit-rf/examples/tree/master/oneport_tiered_calibration))\n", "\n", "In each folder you will find the two sub-folders, called `'ideals/' ` and `'measured/'`. These contain touchstone files of the calibration standards ideal and measured responses, respectively. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ls oneport_tiered_calibration/tier1/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The first tier is at waveguide interface, and consisted of the following set of standards\n", "\n", "* short \n", "* delay short\n", "* load\n", "* radiating open (literally an open waveguide)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ls oneport_tiered_calibration/tier1/measured/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Creating Calibrations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Tier 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First defining the calibration for *Tier 1*" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from skrf.calibration import OnePort\n", "import skrf as rf \n", "%matplotlib inline\n", "from pylab import * \n", "rf.stylely()\n", "\n", "\n", "tier1_ideals = rf.read_all_networks('oneport_tiered_calibration/tier1/ideals/')\n", "tier1_measured = rf.read_all_networks('oneport_tiered_calibration/tier1/measured/')\n", " \n", "\n", "tier1 = OnePort(measured = tier1_measured,\n", " ideals = tier1_ideals,\n", " name = 'tier1',\n", " sloppy_input=True)\n", "tier1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Because we saved corresponding *ideal* and *measured* standards with identical names, the Calibration will automatically align our standards upon initialization. (More info on creating Calibration objects this can be found in [the docs](http://scikit-rf.readthedocs.org/en/latest/tutorials/calibration.html).)\n", "\n", "Similarly for the second tier 2," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Tier 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "tier2_ideals = rf.read_all_networks('oneport_tiered_calibration/tier2/ideals/')\n", "tier2_measured = rf.read_all_networks('oneport_tiered_calibration/tier2/measured/')\n", " \n", "\n", "tier2 = OnePort(measured = tier2_measured,\n", " ideals = tier2_ideals,\n", " name = 'tier2',\n", " sloppy_input=True)\n", "tier2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Error Networks" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each one-port Calibration contains a two-port error network, that is determined from the calculated error coefficients. The error network for *tier1* models the VNA, while the error network for *tier2* represents the VNA **and** the DUT. These can be visualized through the parameter `'error_ntwk'`.\n", "\n", "\n", "For tier 1, " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "tier1.error_ntwk.plot_s_db()\n", "title('Tier 1 Error Network')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Similarly for tier 2, " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "tier2.error_ntwk.plot_s_db()\n", "title('Tier 2 Error Network')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## De-embedding the DUT" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As previously stated, the error network for *tier1* models the VNA, and the error network for *tier2* represents the VNA+DUT. So to deterine the DUT's response, we cascade the inverse S-parameters of the VNA with the VNA+DUT. \n", "\n", "$$ DUT = VNA^{-1}\\cdot (VNA \\cdot DUT)$$\n", "\n", "In skrf, this is done as follows" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "dut = tier1.error_ntwk.inv ** tier2.error_ntwk\n", "dut.name = 'probe'\n", "dut.plot_s_db()\n", "title('Probe S-parameters')\n", "ylim(-60,10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You may want to save this to disk, for future use, \n", "\n", " dut.write_touchstone()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ls probe*" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
fabriziocosta/GraphLearn_examples
notebooks/Evaluation/EvaluateProbabilityOfSamples.ipynb
1
16876
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "from eden.util import configure_logging\n", "import logging" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from itertools import tee, chain, islice\n", "import numpy as np\n", "import random\n", "from time import time\n", "import datetime\n", "from graphlearn.graphlearn import GraphLearnSampler\n", "from eden.util import fit,predict\n", "from eden.graph import Vectorizer\n", "# get data\n", "from eden.converter.graph.gspan import gspan_to_eden\n", "from itertools import islice\n", "def get_graphs(dataset_fname, size=100):\n", " return islice(gspan_to_eden(dataset_fname),size)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def fit_sample(graphs, random_state=42):\n", " graphs, graphs_ = tee(graphs)\n", " sampler=GraphLearnSampler(radius_list=[0,1],thickness_list=[2,3],\n", " min_cip_count=2, min_interface_count=2,\n", " vectorizer=Vectorizer(5), random_state=random_state)\n", " \n", " sampler.fit(graphs, nu=0.25, n_jobs=-1)\n", "\n", " logger.info('graph grammar stats:')\n", " dataset_size, interface_counts, core_counts, cip_counts = sampler.grammar().size()\n", " logger.info('#instances:%d #interfaces: %d #cores: %d #core-interface-pairs: %d' % (dataset_size, interface_counts, core_counts, cip_counts))\n", "\n", " graphs = sampler.sample(graphs_,\n", " n_steps=5, n_samples=4,\n", " target_orig_cip=False,\n", " probabilistic_core_choice=False,\n", " score_core_choice= False,\n", " max_core_size_diff=3,\n", " burnin=1,\n", " omit_seed=True,\n", " max_cycle_size=6,\n", " improving_threshold=0.25,\n", " accept_static_penalty=0,\n", " n_jobs=-1,\n", " select_cip_max_tries=200,\n", " keep_duplicates=True,\n", " generator_mode=True)\n", " return graphs" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def fit_and_evaluate(original, sampled, local_estimator):\n", " outputs = []\n", " for desc,train in [('original',original),\n", " ('sample',sampled)]:\n", " train,train_ = tee(train)\n", " size=sum(1 for x in train_)\n", " logger.info( \"-\"*80)\n", " logger.info( 'working on %s'%(desc))\n", " logger.info( 'training set sizes: #: %d'%(size))\n", " if size == 0:\n", " logger.info( 'WARNING: empty dataset')\n", " outputs.append(0)\n", " else:\n", " start=time()\n", " predictions = predict(train, \n", " estimator=local_estimator, \n", " vectorizer=Vectorizer(4), \n", " mode='predict_proba',\n", " n_jobs=-1)\n", " avg_score=np.mean(predictions[:,1])\n", " logger.info( 'avg score: %.5f' % avg_score)\n", " outputs.append(avg_score)\n", " logger.info( 'elapsed: %.1f sec'%(time()-start))\n", " return outputs" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def evaluate(data_fname, size=None, percentages=None, n_repetitions=None, train_test_split=None):\n", " # initializing \n", " graphs = get_graphs(data_fname, size=size)\n", "\n", " # train/test split\n", " from eden.util import random_bipartition_iter\n", " train_global,test_global = random_bipartition_iter(graphs,train_test_split)\n", "\n", " original_repetitions = []\n", " sample_repetitions = []\n", "\n", " for percentage in percentages:\n", " originals = []\n", " originals_samples = []\n", " samples = []\n", " for repetition in range(n_repetitions):\n", " random_state = int(313379*percentage+repetition) \n", " random.seed(random_state)\n", " \n", "\n", " train_global,train_global_ = tee(train_global)\n", " test_global,test_global_ = tee(test_global)\n", "\n", " from sklearn.linear_model import SGDClassifier\n", " estimator = SGDClassifier(average=True, class_weight='auto', shuffle=True, loss='log', n_jobs=-1)\n", " local_estimator = fit(test_global_, \n", " iterable_neg=None,\n", " vectorizer=Vectorizer(4),\n", " estimator=estimator, n_jobs=-1, n_iter_search=1)\n", " \n", " # use shuffled list to create test and sample set\n", " train,train_reminder = random_bipartition_iter(train_global_,percentage)\n", " train,train_ = tee(train)\n", " sampled = fit_sample(train_, random_state=random_state)\n", "\n", " #evaluate the predictive performance on held out test set\n", " start=time()\n", " logger.info( \"=\"*80)\n", " logger.info( 'repetition: %d/%d'%(repetition+1, n_repetitions))\n", " logger.info( \"training percentage:\"+str(percentage))\n", " perf_orig, perf_samp = fit_and_evaluate(train, sampled, local_estimator)\n", " logger.info( 'Time elapsed: %.1f sec'%((time()-start)))\n", " originals.append(perf_orig)\n", " samples.append(perf_samp)\n", "\n", " original_repetitions.append(originals)\n", " sample_repetitions.append(samples)\n", " \n", " return original_repetitions, sample_repetitions" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def plot(dataset, percentages, original_repetitions, sample_repetitions):\n", " gc={'color':'g'}\n", " rc={'color':'r'}\n", " bc={'color':'b'}\n", " ws = 0.02\n", " o = np.mean(original_repetitions, axis=1)\n", " s = np.mean(sample_repetitions, axis=1)\n", " plt.figure(figsize=(18,8))\n", " plt.grid()\n", "\n", " plt.boxplot(original_repetitions, positions=percentages, widths=ws, capprops=rc, medianprops=rc, boxprops=rc, whiskerprops=rc, flierprops=rc)\n", " plt.plot(percentages,o, color='r', marker='o', markeredgewidth=1, markersize=7, markeredgecolor='r', markerfacecolor='w', label='original')\n", "\n", " plt.boxplot(sample_repetitions, positions=percentages, widths=ws, capprops=bc, medianprops=bc, boxprops=bc, whiskerprops=bc, flierprops=bc)\n", " plt.plot(percentages,s, color='b', marker='o', markeredgewidth=1, markersize=7, markeredgecolor='b', markerfacecolor='w', label='sample')\n", "\n", " plt.xlim(percentages[0]-.05,percentages[-1]+.05)\n", " plt.title(dataset+'\\n',fontsize=17)\n", " plt.legend(loc='upper right',fontsize=16)\n", " plt.ylabel('Likelihood',fontsize=16)\n", " plt.xlabel('Dataset size (fraction)',fontsize=16)\n", " plt.savefig('%s_plot_probability_of_samples.pdf' % dataset)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def save_results(result_fname,percentages, original_repetitions,sample_repetitions):\n", " with open(result_fname,'w') as f:\n", " f.write('dataset sizes list:\\n')\n", " for perc in percentages:\n", " f.write('%s '% perc)\n", " f.write('\\n')\n", " f.write('AUC scores:\\n')\n", " for repetitions in original_repetitions,sample_repetitions:\n", " f.write('%s\\n' % len(repetitions))\n", " for repetition in repetitions:\n", " for auc in repetition:\n", " f.write('%s ' % auc)\n", " f.write('\\n')\n", " \n", "def load_results(result_fname):\n", " with open(result_fname) as f:\n", " comment = next(f)\n", " line = next(f)\n", " percentages = [float(x) for x in line.split()]\n", " comment = next(f)\n", "\n", " original_repetitions = []\n", " size = int(next(f))\n", " for i in range(size):\n", " line = next(f)\n", " repetition = [float(x) for x in line.split()]\n", " original_repetitions.append(repetition)\n", "\n", " sample_repetitions = []\n", " size = int(next(f))\n", " for i in range(size):\n", " line = next(f)\n", " repetition = [float(x) for x in line.split()]\n", " sample_repetitions.append(repetition)\n", " \n", " return percentages, original_repetitions,sample_repetitions" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#setup\n", "dataset_names = !cat NCI60/names\n", "random.shuffle(dataset_names)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "********************************************************************************\n", "Working with dataset: HCT_15_t\n", "Working with dataset: HCT_15_t\n", "graph grammar stats:\n", "#instances:56 #interfaces: 96 #cores: 32 #core-interface-pairs: 235\n", "================================================================================\n", "repetition: 1/3\n", "training percentage:0.2\n", "--------------------------------------------------------------------------------\n", "working on original\n", "training set sizes: #: 56\n", "avg score: 0.99622\n", "elapsed: 0.7 sec\n", "--------------------------------------------------------------------------------\n", "working on sample\n", "training set sizes: #: 112\n", "avg score: 0.99699\n", "elapsed: 1.3 sec\n", "Time elapsed: 8.4 sec\n", "graph grammar stats:\n", "#instances:56 #interfaces: 96 #cores: 32 #core-interface-pairs: 235\n", "================================================================================\n", "repetition: 2/3\n", "training percentage:0.2\n", "--------------------------------------------------------------------------------\n", "working on original\n", "training set sizes: #: 56\n", "avg score: 0.99586\n", "elapsed: 0.6 sec\n", "--------------------------------------------------------------------------------\n", "working on sample\n", "training set sizes: #: 110\n", "avg score: 0.99692\n", "elapsed: 1.3 sec\n", "Time elapsed: 8.0 sec\n", "graph grammar stats:\n", "#instances:56 #interfaces: 96 #cores: 32 #core-interface-pairs: 235\n", "================================================================================\n", "repetition: 3/3\n", "training percentage:0.2\n", "--------------------------------------------------------------------------------\n", "working on original\n", "training set sizes: #: 56\n", "avg score: 0.99576\n", "elapsed: 0.6 sec\n", "--------------------------------------------------------------------------------\n", "working on sample\n", "training set sizes: #: 112\n", "avg score: 0.99688\n", "elapsed: 1.3 sec\n", "Time elapsed: 8.2 sec\n", "graph grammar stats:\n", "#instances:112 #interfaces: 157 #cores: 43 #core-interface-pairs: 400\n", "================================================================================\n", "repetition: 1/3\n", "training percentage:0.4\n", "--------------------------------------------------------------------------------\n", "working on original\n", "training set sizes: #: 112\n", "avg score: 0.98841\n", "elapsed: 1.1 sec\n", "--------------------------------------------------------------------------------\n", "working on sample\n", "training set sizes: #: 212\n", "avg score: 0.99597\n", "elapsed: 2.0 sec\n", "Time elapsed: 14.7 sec\n", "graph grammar stats:\n", "#instances:112 #interfaces: 157 #cores: 43 #core-interface-pairs: 400\n", "================================================================================\n", "repetition: 2/3\n", "training percentage:0.4\n", "--------------------------------------------------------------------------------\n", "working on original\n", "training set sizes: #: 112\n", "avg score: 0.98852\n", "elapsed: 1.0 sec\n" ] } ], "source": [ "%%time\n", "for dataset in dataset_names:\n", " #logging\n", " logger = logging.getLogger()\n", " if True:\n", " logger_fname = '%s_probability_of_samples.log'%dataset\n", " else:\n", " logger_fname = None\n", " configure_logging(logger,verbosity=1, filename=logger_fname)\n", " \n", " #main \n", " start=time()\n", " print('*'*80)\n", " print( 'Working with dataset: %s' % dataset )\n", " logger.info( 'Working with dataset: %s' % dataset )\n", " dataset_fname = 'NCI60/' + dataset + '_orig_pos.gspan'\n", " #pos_dataset_fname = 'bursi.pos.gspan'\n", " \n", " percentages=[.2,.4,.6,.8,.95]\n", "\n", " original_repetitions,\\\n", " sample_repetitions = evaluate(dataset_fname,\n", " size=400,\n", " percentages=percentages,\n", " n_repetitions=3,\n", " train_test_split=0.7)\n", " plot(dataset, percentages, original_repetitions, sample_repetitions)\n", " \n", " #save and display results\n", " result_fname='%s_probability_of_samples.data'%dataset\n", " save_results(result_fname,percentages, original_repetitions,sample_repetitions) \n", " percentages_l, original_repetitions_l,sample_repetitions_l = load_results(result_fname)\n", " plot(dataset, percentages_l, original_repetitions_l, sample_repetitions_l)\n", " \n", " print('Time elapsed: %s'%(datetime.timedelta(seconds=(time() - start))))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#display\n", "for dataset in dataset_names:\n", " result_fname='%s_predictive_performance_of_samples.data'%dataset\n", " percentages_l, original_repetitions_l,sample_repetitions_l = load_results(result_fname)\n", " plot(dataset, percentages_l, original_repetitions_l, sample_repetitions_l)\n", " " ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "." ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-2.0
zzsza/TIL
python/pyecharts.ipynb
1
157838
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## pyecharts\n", "- [HTML](http://htmlpreview.github.io/?https://github.com/zzsza/TIL/blob/master/python/pyecharts.html) 에서 확인하면 이쁜 그래프도 보입니다!!!\n", "- Baidu에서 데이터 시각화를 위해 만든 오픈소스인 Echarts의 파이썬 버전\n", "- 다양한 그래프 제공\n", "- [공식 문서](http://pyecharts.org/#/en-us/)\n", "- Dynamic\n", "- 단, 옵션의 단추가 중국어\n", "- 그래프를 그릴 때, echarts와 echartql을 로컬에서 찾으려고 함\n", " - 따라서 nbconvert를 사용해 HTML으로 저장한 후, 쉘에서 수정\n", " \n", " ```\n", " sed -i \"\" \"s|/nbextensions/echarts/echarts-gl.min|https://cdn.jsdelivr.net/npm/[email protected]/dist/echarts-gl.min|g; s|/nbextensions/echarts/echarts.min|https://cdnjs.cloudflare.com/ajax/libs/echarts/4.1.0/echarts.min|g\" 파일이름.ipynb\n", " ```" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pyecharts\n", "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "attr = [\"Jan\", \"Feb\", \"Mar\", \"Apr\", \"May\", \"Jun\", \"Jul\", \"Aug\", \"Sep\", \"Oct\", \"Nov\", \"Dec\"]\n", "v1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]\n", "v2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]\n", "bar = pyecharts.Bar(\"Bar chart\", \"precipitation and evaporation one year\")\n", "bar.add(\"precipitation\", attr, v1, mark_line=[\"average\"], mark_point=[\"max\", \"min\"])\n", "bar.add(\"evaporation\", attr, v2, mark_line=[\"average\"], mark_point=[\"max\", \"min\"])\n", "bar.render()\n", "bar.height = 500\n", "bar.width = 800" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<script>\n", " require.config({\n", " paths: {\n", " 'echarts': 'https://cdnjs.cloudflare.com/ajax/libs/echarts/4.1.0/echarts.min'\n", " }\n", " });\n", "</script>\n", " <div id=\"4c6948eec4b548ae8750f0d9ecd60f0d\" style=\"width:800px;height:500px;\"></div>\n", "\n", "\n", "<script>\n", " require(['echarts'], function(echarts) {\n", " \n", "var myChart_4c6948eec4b548ae8750f0d9ecd60f0d = echarts.init(document.getElementById('4c6948eec4b548ae8750f0d9ecd60f0d'), 'light', {renderer: 'canvas'});\n", "\n", "var option_4c6948eec4b548ae8750f0d9ecd60f0d = {\n", " \"title\": [\n", " {\n", " \"text\": \"Bar chart\",\n", " \"subtext\": \"precipitation and evaporation one year\",\n", " \"left\": \"auto\",\n", " \"top\": \"auto\",\n", " \"textStyle\": {\n", " \"fontSize\": 18\n", " },\n", " \"subtextStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"toolbox\": {\n", " \"show\": true,\n", " \"orient\": \"vertical\",\n", " \"left\": \"95%\",\n", " \"top\": \"center\",\n", " \"feature\": {\n", " \"saveAsImage\": {\n", " \"show\": true,\n", " \"title\": \"\\u4e0b\\u8f7d\\u56fe\\u7247\"\n", " },\n", " \"restore\": {\n", " \"show\": true\n", " },\n", " \"dataView\": {\n", " \"show\": true\n", " }\n", " }\n", " },\n", " \"series_id\": 7954956,\n", " \"tooltip\": {\n", " \"trigger\": \"item\",\n", " \"triggerOn\": \"mousemove|click\",\n", " \"axisPointer\": {\n", " \"type\": \"line\"\n", " },\n", " \"textStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"backgroundColor\": \"rgba(50,50,50,0.7)\",\n", " \"borderColor\": \"#333\",\n", " \"borderWidth\": 0\n", " },\n", " \"series\": [\n", " {\n", " \"type\": \"bar\",\n", " \"name\": \"precipitation\",\n", " \"data\": [\n", " 2.0,\n", " 4.9,\n", " 7.0,\n", " 23.2,\n", " 25.6,\n", " 76.7,\n", " 135.6,\n", " 162.2,\n", " 32.6,\n", " 20.0,\n", " 6.4,\n", " 3.3\n", " ],\n", " \"barCategoryGap\": \"20%\",\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"markPoint\": {\n", " \"data\": [\n", " {\n", " \"type\": \"max\",\n", " \"name\": \"Maximum\",\n", " \"symbol\": \"pin\",\n", " \"symbolSize\": 50,\n", " \"label\": {\n", " \"normal\": {\n", " \"textStyle\": {\n", " \"color\": \"#fff\"\n", " }\n", " }\n", " }\n", " },\n", " {\n", " \"type\": \"min\",\n", " \"name\": \"Minimum\",\n", " \"symbol\": \"pin\",\n", " \"symbolSize\": 50,\n", " \"label\": {\n", " \"normal\": {\n", " \"textStyle\": {\n", " \"color\": \"#fff\"\n", " }\n", " }\n", " }\n", " }\n", " ]\n", " },\n", " \"markLine\": {\n", " \"data\": [\n", " {\n", " \"type\": \"average\",\n", " \"name\": \"mean-Value\"\n", " }\n", " ],\n", " \"symbolSize\": 10\n", " },\n", " \"seriesId\": 7954956\n", " },\n", " {\n", " \"type\": \"bar\",\n", " \"name\": \"evaporation\",\n", " \"data\": [\n", " 2.6,\n", " 5.9,\n", " 9.0,\n", " 26.4,\n", " 28.7,\n", " 70.7,\n", " 175.6,\n", " 182.2,\n", " 48.7,\n", " 18.8,\n", " 6.0,\n", " 2.3\n", " ],\n", " \"barCategoryGap\": \"20%\",\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"markPoint\": {\n", " \"data\": [\n", " {\n", " \"type\": \"max\",\n", " \"name\": \"Maximum\",\n", " \"symbol\": \"pin\",\n", " \"symbolSize\": 50,\n", " \"label\": {\n", " \"normal\": {\n", " \"textStyle\": {\n", " \"color\": \"#fff\"\n", " }\n", " }\n", " }\n", " },\n", " {\n", " \"type\": \"min\",\n", " \"name\": \"Minimum\",\n", " \"symbol\": \"pin\",\n", " \"symbolSize\": 50,\n", " \"label\": {\n", " \"normal\": {\n", " \"textStyle\": {\n", " \"color\": \"#fff\"\n", " }\n", " }\n", " }\n", " }\n", " ]\n", " },\n", " \"markLine\": {\n", " \"data\": [\n", " {\n", " \"type\": \"average\",\n", " \"name\": \"mean-Value\"\n", " }\n", " ],\n", " \"symbolSize\": 10\n", " },\n", " \"seriesId\": 7954956\n", " }\n", " ],\n", " \"legend\": [\n", " {\n", " \"data\": [\n", " \"precipitation\",\n", " \"evaporation\"\n", " ],\n", " \"selectedMode\": \"multiple\",\n", " \"show\": true,\n", " \"left\": \"center\",\n", " \"top\": \"top\",\n", " \"orient\": \"horizontal\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"xAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"category\",\n", " \"splitLine\": {\n", " \"show\": false\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"data\": [\n", " \"Jan\",\n", " \"Feb\",\n", " \"Mar\",\n", " \"Apr\",\n", " \"May\",\n", " \"Jun\",\n", " \"Jul\",\n", " \"Aug\",\n", " \"Sep\",\n", " \"Oct\",\n", " \"Nov\",\n", " \"Dec\"\n", " ]\n", " }\n", " ],\n", " \"yAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"value\",\n", " \"splitLine\": {\n", " \"show\": true\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"formatter\": \"{value} \",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " }\n", " ],\n", " \"color\": [\n", " \"#c23531\",\n", " \"#2f4554\",\n", " \"#61a0a8\",\n", " \"#d48265\",\n", " \"#749f83\",\n", " \"#ca8622\",\n", " \"#bda29a\",\n", " \"#6e7074\",\n", " \"#546570\",\n", " \"#c4ccd3\",\n", " \"#f05b72\",\n", " \"#ef5b9c\",\n", " \"#f47920\",\n", " \"#905a3d\",\n", " \"#fab27b\",\n", " \"#2a5caa\",\n", " \"#444693\",\n", " \"#726930\",\n", " \"#b2d235\",\n", " \"#6d8346\",\n", " \"#ac6767\",\n", " \"#1d953f\",\n", " \"#6950a1\",\n", " \"#918597\",\n", " \"#f6f5ec\"\n", " ]\n", "};\n", "myChart_4c6948eec4b548ae8750f0d9ecd60f0d.setOption(option_4c6948eec4b548ae8750f0d9ecd60f0d);\n", "\n", " });\n", "</script>\n" ], "text/plain": [ "<pyecharts.charts.bar.Bar at 0x110c4c2e8>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bar" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<script>\n", " require.config({\n", " paths: {\n", " 'echarts': 'https://cdnjs.cloudflare.com/ajax/libs/echarts/4.1.0/echarts.min'\n", " }\n", " });\n", "</script>\n", " <div id=\"f01f0ae4fa2746a99fe3ccb43af4a333\" style=\"width:800px;height:500px;\"></div>\n", "\n", "\n", "<script>\n", " require(['echarts'], function(echarts) {\n", " \n", "var myChart_f01f0ae4fa2746a99fe3ccb43af4a333 = echarts.init(document.getElementById('f01f0ae4fa2746a99fe3ccb43af4a333'), 'dark', {renderer: 'canvas'});\n", "\n", "var option_f01f0ae4fa2746a99fe3ccb43af4a333 = {\n", " \"title\": [\n", " {\n", " \"text\": \"Bar chart\",\n", " \"subtext\": \"precipitation and evaporation one year\",\n", " \"left\": \"auto\",\n", " \"top\": \"auto\",\n", " \"textStyle\": {\n", " \"fontSize\": 18\n", " },\n", " \"subtextStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"toolbox\": {\n", " \"show\": true,\n", " \"orient\": \"vertical\",\n", " \"left\": \"95%\",\n", " \"top\": \"center\",\n", " \"feature\": {\n", " \"saveAsImage\": {\n", " \"show\": true,\n", " \"title\": \"\\u4e0b\\u8f7d\\u56fe\\u7247\"\n", " },\n", " \"restore\": {\n", " \"show\": true\n", " },\n", " \"dataView\": {\n", " \"show\": true\n", " }\n", " }\n", " },\n", " \"series_id\": 3700519,\n", " \"tooltip\": {\n", " \"trigger\": \"item\",\n", " \"triggerOn\": \"mousemove|click\",\n", " \"axisPointer\": {\n", " \"type\": \"line\"\n", " },\n", " \"textStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"backgroundColor\": \"rgba(50,50,50,0.7)\",\n", " \"borderColor\": \"#333\",\n", " \"borderWidth\": 0\n", " },\n", " \"series\": [\n", " {\n", " \"type\": \"bar\",\n", " \"name\": \"precipitation\",\n", " \"data\": [\n", " 2.0,\n", " 4.9,\n", " 7.0,\n", " 23.2,\n", " 25.6,\n", " 76.7,\n", " 135.6,\n", " 162.2,\n", " 32.6,\n", " 20.0,\n", " 6.4,\n", " 3.3\n", " ],\n", " \"barCategoryGap\": \"20%\",\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"markPoint\": {\n", " \"data\": [\n", " {\n", " \"type\": \"max\",\n", " \"name\": \"Maximum\",\n", " \"symbol\": \"pin\",\n", " \"symbolSize\": 50,\n", " \"label\": {\n", " \"normal\": {\n", " \"textStyle\": {\n", " \"color\": \"#fff\"\n", " }\n", " }\n", " }\n", " },\n", " {\n", " \"type\": \"min\",\n", " \"name\": \"Minimum\",\n", " \"symbol\": \"pin\",\n", " \"symbolSize\": 50,\n", " \"label\": {\n", " \"normal\": {\n", " \"textStyle\": {\n", " \"color\": \"#fff\"\n", " }\n", " }\n", " }\n", " }\n", " ]\n", " },\n", " \"markLine\": {\n", " \"data\": [\n", " {\n", " \"type\": \"average\",\n", " \"name\": \"mean-Value\"\n", " }\n", " ],\n", " \"symbolSize\": 10\n", " },\n", " \"seriesId\": 3700519\n", " },\n", " {\n", " \"type\": \"bar\",\n", " \"name\": \"evaporation\",\n", " \"data\": [\n", " 2.6,\n", " 5.9,\n", " 9.0,\n", " 26.4,\n", " 28.7,\n", " 70.7,\n", " 175.6,\n", " 182.2,\n", " 48.7,\n", " 18.8,\n", " 6.0,\n", " 2.3\n", " ],\n", " \"barCategoryGap\": \"20%\",\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"markPoint\": {\n", " \"data\": [\n", " {\n", " \"type\": \"max\",\n", " \"name\": \"Maximum\",\n", " \"symbol\": \"pin\",\n", " \"symbolSize\": 50,\n", " \"label\": {\n", " \"normal\": {\n", " \"textStyle\": {\n", " \"color\": \"#fff\"\n", " }\n", " }\n", " }\n", " },\n", " {\n", " \"type\": \"min\",\n", " \"name\": \"Minimum\",\n", " \"symbol\": \"pin\",\n", " \"symbolSize\": 50,\n", " \"label\": {\n", " \"normal\": {\n", " \"textStyle\": {\n", " \"color\": \"#fff\"\n", " }\n", " }\n", " }\n", " }\n", " ]\n", " },\n", " \"markLine\": {\n", " \"data\": [\n", " {\n", " \"type\": \"average\",\n", " \"name\": \"mean-Value\"\n", " }\n", " ],\n", " \"symbolSize\": 10\n", " },\n", " \"seriesId\": 3700519\n", " }\n", " ],\n", " \"legend\": [\n", " {\n", " \"data\": [\n", " \"precipitation\",\n", " \"evaporation\"\n", " ],\n", " \"selectedMode\": \"multiple\",\n", " \"show\": true,\n", " \"left\": \"center\",\n", " \"top\": \"top\",\n", " \"orient\": \"horizontal\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"xAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"category\",\n", " \"splitLine\": {\n", " \"show\": false\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"data\": [\n", " \"Jan\",\n", " \"Feb\",\n", " \"Mar\",\n", " \"Apr\",\n", " \"May\",\n", " \"Jun\",\n", " \"Jul\",\n", " \"Aug\",\n", " \"Sep\",\n", " \"Oct\",\n", " \"Nov\",\n", " \"Dec\"\n", " ]\n", " }\n", " ],\n", " \"yAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"value\",\n", " \"splitLine\": {\n", " \"show\": true\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"formatter\": \"{value} \",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " }\n", " ],\n", " \"color\": []\n", "};\n", "myChart_f01f0ae4fa2746a99fe3ccb43af4a333.setOption(option_f01f0ae4fa2746a99fe3ccb43af4a333);\n", "\n", " });\n", "</script>\n" ], "text/plain": [ "<pyecharts.charts.bar.Bar at 0x110c99630>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "attr = [\"Jan\", \"Feb\", \"Mar\", \"Apr\", \"May\", \"Jun\", \"Jul\", \"Aug\", \"Sep\", \"Oct\", \"Nov\", \"Dec\"]\n", "v1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]\n", "v2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]\n", "bar = pyecharts.Bar(\"Bar chart\", \"precipitation and evaporation one year\")\n", "bar.use_theme(\"dark\")\n", "bar.add(\"precipitation\", attr, v1, mark_line=[\"average\"], mark_point=[\"max\", \"min\"])\n", "bar.add(\"evaporation\", attr, v2, mark_line=[\"average\"], mark_point=[\"max\", \"min\"])\n", "bar.height = 500\n", "bar.width = 800\n", "bar" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## In pandas" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<script>\n", " require.config({\n", " paths: {\n", " 'echarts': 'https://cdnjs.cloudflare.com/ajax/libs/echarts/4.1.0/echarts.min'\n", " }\n", " });\n", "</script>\n", " <div id=\"eee57829df8d461f9d1cc8ebc388a707\" style=\"width:800px;height:500px;\"></div>\n", "\n", "\n", "<script>\n", " require(['echarts'], function(echarts) {\n", " \n", "var myChart_eee57829df8d461f9d1cc8ebc388a707 = echarts.init(document.getElementById('eee57829df8d461f9d1cc8ebc388a707'), 'light', {renderer: 'canvas'});\n", "\n", "var option_eee57829df8d461f9d1cc8ebc388a707 = {\n", " \"title\": [\n", " {\n", " \"text\": \"bar chart2\",\n", " \"subtext\": \"Profit and loss situation\",\n", " \"left\": \"auto\",\n", " \"top\": \"auto\",\n", " \"textStyle\": {\n", " \"fontSize\": 18\n", " },\n", " \"subtextStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"toolbox\": {\n", " \"show\": true,\n", " \"orient\": \"vertical\",\n", " \"left\": \"95%\",\n", " \"top\": \"center\",\n", " \"feature\": {\n", " \"saveAsImage\": {\n", " \"show\": true,\n", " \"title\": \"\\u4e0b\\u8f7d\\u56fe\\u7247\"\n", " },\n", " \"restore\": {\n", " \"show\": true\n", " },\n", " \"dataView\": {\n", " \"show\": true\n", " }\n", " }\n", " },\n", " \"series_id\": 7257727,\n", " \"tooltip\": {\n", " \"trigger\": \"item\",\n", " \"triggerOn\": \"mousemove|click\",\n", " \"axisPointer\": {\n", " \"type\": \"line\"\n", " },\n", " \"textStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"backgroundColor\": \"rgba(50,50,50,0.7)\",\n", " \"borderColor\": \"#333\",\n", " \"borderWidth\": 0\n", " },\n", " \"series\": [\n", " {\n", " \"type\": \"bar\",\n", " \"name\": \"profit\",\n", " \"data\": [\n", " 0.1263776233106191,\n", " 0.8478258644254499,\n", " -0.7564831723889021,\n", " 0.5878566074181374,\n", " 0.841223198034568,\n", " 0.9710967562559695\n", " ],\n", " \"barCategoryGap\": \"20%\",\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"markPoint\": {\n", " \"data\": []\n", " },\n", " \"markLine\": {\n", " \"data\": []\n", " },\n", " \"seriesId\": 7257727\n", " },\n", " {\n", " \"type\": \"bar\",\n", " \"name\": \"loss\",\n", " \"data\": [\n", " 0.8531044872139661,\n", " 0.20747839963171455,\n", " 0.7117874354985663,\n", " 0.5497325372182054,\n", " 0.07878415027622787,\n", " 0.7974613893080286\n", " ],\n", " \"barCategoryGap\": \"20%\",\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"markPoint\": {\n", " \"data\": []\n", " },\n", " \"markLine\": {\n", " \"data\": []\n", " },\n", " \"seriesId\": 7257727\n", " }\n", " ],\n", " \"legend\": [\n", " {\n", " \"data\": [\n", " \"profit\",\n", " \"loss\"\n", " ],\n", " \"selectedMode\": \"multiple\",\n", " \"show\": true,\n", " \"left\": \"center\",\n", " \"top\": \"top\",\n", " \"orient\": \"horizontal\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"xAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"category\",\n", " \"splitLine\": {\n", " \"show\": false\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"data\": [\n", " \"2018-08-31\",\n", " \"2018-09-30\",\n", " \"2018-10-31\",\n", " \"2018-11-30\",\n", " \"2018-12-31\",\n", " \"2019-01-31\"\n", " ]\n", " }\n", " ],\n", " \"yAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"value\",\n", " \"splitLine\": {\n", " \"show\": true\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"formatter\": \"{value} \",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " }\n", " ],\n", " \"color\": [\n", " \"#c23531\",\n", " \"#2f4554\",\n", " \"#61a0a8\",\n", " \"#d48265\",\n", " \"#749f83\",\n", " \"#ca8622\",\n", " \"#bda29a\",\n", " \"#6e7074\",\n", " \"#546570\",\n", " \"#c4ccd3\",\n", " \"#f05b72\",\n", " \"#ef5b9c\",\n", " \"#f47920\",\n", " \"#905a3d\",\n", " \"#fab27b\",\n", " \"#2a5caa\",\n", " \"#444693\",\n", " \"#726930\",\n", " \"#b2d235\",\n", " \"#6d8346\",\n", " \"#ac6767\",\n", " \"#1d953f\",\n", " \"#6950a1\",\n", " \"#918597\",\n", " \"#f6f5ec\"\n", " ]\n", "};\n", "myChart_eee57829df8d461f9d1cc8ebc388a707.setOption(option_eee57829df8d461f9d1cc8ebc388a707);\n", "\n", " });\n", "</script>\n" ], "text/plain": [ "<pyecharts.charts.bar.Bar at 0x110c99f28>" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "title = \"bar chart2\"\n", "index = pd.date_range(\"8/24/2018\", periods=6, freq=\"M\")\n", "df1 = pd.DataFrame(np.random.randn(6), index=index)\n", "df2 = pd.DataFrame(np.random.rand(6), index=index)\n", "\n", "dfvalue1 = [i[0] for i in df1.values]\n", "dfvalue2 = [i[0] for i in df2.values]\n", "_index = [i for i in df1.index.format()]\n", "\n", "bar = pyecharts.Bar(title, \"Profit and loss situation\")\n", "bar.add(\"profit\", _index, dfvalue1)\n", "bar.add(\"loss\", _index, dfvalue2)\n", "bar.height = 500\n", "bar.width = 800\n", "bar" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<script>\n", " require.config({\n", " paths: {\n", " 'echarts': 'https://cdnjs.cloudflare.com/ajax/libs/echarts/4.1.0/echarts.min'\n", " }\n", " });\n", "</script>\n", " <div id=\"461b39c851d14ee99387f227aafdbd9b\" style=\"width:800px;height:400px;\"></div>\n", "\n", "\n", "<script>\n", " require(['echarts'], function(echarts) {\n", " \n", "var myChart_461b39c851d14ee99387f227aafdbd9b = echarts.init(document.getElementById('461b39c851d14ee99387f227aafdbd9b'), 'light', {renderer: 'canvas'});\n", "\n", "var option_461b39c851d14ee99387f227aafdbd9b = {\n", " \"title\": [\n", " {\n", " \"text\": \"Line Bar\",\n", " \"left\": \"auto\",\n", " \"top\": \"auto\",\n", " \"textStyle\": {\n", " \"fontSize\": 18\n", " },\n", " \"subtextStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"toolbox\": {\n", " \"show\": true,\n", " \"orient\": \"vertical\",\n", " \"left\": \"95%\",\n", " \"top\": \"center\",\n", " \"feature\": {\n", " \"saveAsImage\": {\n", " \"show\": true,\n", " \"title\": \"\\u4e0b\\u8f7d\\u56fe\\u7247\"\n", " },\n", " \"restore\": {\n", " \"show\": true\n", " },\n", " \"dataView\": {\n", " \"show\": true\n", " }\n", " }\n", " },\n", " \"series_id\": 3925989,\n", " \"tooltip\": {\n", " \"trigger\": \"item\",\n", " \"triggerOn\": \"mousemove|click\",\n", " \"axisPointer\": {\n", " \"type\": \"line\"\n", " },\n", " \"textStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"backgroundColor\": \"rgba(50,50,50,0.7)\",\n", " \"borderColor\": \"#333\",\n", " \"borderWidth\": 0\n", " },\n", " \"series\": [\n", " {\n", " \"type\": \"bar\",\n", " \"name\": \"bar\",\n", " \"data\": [\n", " 10,\n", " 20,\n", " 30,\n", " 40,\n", " 50,\n", " 60\n", " ],\n", " \"barCategoryGap\": \"20%\",\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"markPoint\": {\n", " \"data\": []\n", " },\n", " \"markLine\": {\n", " \"data\": []\n", " },\n", " \"seriesId\": 3925989\n", " },\n", " {\n", " \"type\": \"line\",\n", " \"name\": \"line\",\n", " \"symbol\": \"emptyCircle\",\n", " \"symbolSize\": 4,\n", " \"smooth\": false,\n", " \"step\": false,\n", " \"showSymbol\": true,\n", " \"data\": [\n", " [\n", " \"A\",\n", " 38\n", " ],\n", " [\n", " \"B\",\n", " 28\n", " ],\n", " [\n", " \"C\",\n", " 58\n", " ],\n", " [\n", " \"D\",\n", " 48\n", " ],\n", " [\n", " \"E\",\n", " 78\n", " ],\n", " [\n", " \"F\",\n", " 68\n", " ]\n", " ],\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"lineStyle\": {\n", " \"normal\": {\n", " \"width\": 1,\n", " \"opacity\": 1,\n", " \"curveness\": 0,\n", " \"type\": \"solid\"\n", " }\n", " },\n", " \"areaStyle\": {\n", " \"opacity\": 0\n", " },\n", " \"markPoint\": {\n", " \"data\": []\n", " },\n", " \"markLine\": {\n", " \"data\": []\n", " },\n", " \"seriesId\": 3925989,\n", " \"xAxisIndex\": 0,\n", " \"yAxisIndex\": 0\n", " }\n", " ],\n", " \"legend\": [\n", " {\n", " \"data\": [\n", " \"bar\",\n", " \"line\"\n", " ],\n", " \"selectedMode\": \"multiple\",\n", " \"show\": true,\n", " \"left\": \"center\",\n", " \"top\": \"top\",\n", " \"orient\": \"horizontal\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"xAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"category\",\n", " \"splitLine\": {\n", " \"show\": false\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"data\": [\n", " \"A\",\n", " \"B\",\n", " \"C\",\n", " \"D\",\n", " \"E\",\n", " \"F\"\n", " ]\n", " }\n", " ],\n", " \"yAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"value\",\n", " \"splitLine\": {\n", " \"show\": true\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"formatter\": \"{value} \",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " }\n", " ],\n", " \"color\": [\n", " \"#c23531\",\n", " \"#2f4554\",\n", " \"#61a0a8\",\n", " \"#d48265\",\n", " \"#749f83\",\n", " \"#ca8622\",\n", " \"#bda29a\",\n", " \"#6e7074\",\n", " \"#546570\",\n", " \"#c4ccd3\",\n", " \"#f05b72\",\n", " \"#ef5b9c\",\n", " \"#f47920\",\n", " \"#905a3d\",\n", " \"#fab27b\",\n", " \"#2a5caa\",\n", " \"#444693\",\n", " \"#726930\",\n", " \"#b2d235\",\n", " \"#6d8346\",\n", " \"#ac6767\",\n", " \"#1d953f\",\n", " \"#6950a1\",\n", " \"#918597\",\n", " \"#f6f5ec\"\n", " ]\n", "};\n", "myChart_461b39c851d14ee99387f227aafdbd9b.setOption(option_461b39c851d14ee99387f227aafdbd9b);\n", "\n", " });\n", "</script>\n" ], "text/plain": [ "<pyecharts.custom.overlap.Overlap at 0x110c99a20>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from pyecharts import Bar, Line, Overlap\n", "\n", "attr = ['A','B','C','D','E','F']\n", "v1 = [10, 20, 30, 40, 50, 60]\n", "v2 = [38, 28, 58, 48, 78, 68]\n", "bar = Bar(\"Line Bar\")\n", "bar.add(\"bar\", attr, v1)\n", "line = Line()\n", "line.add(\"line\", attr, v2)\n", "\n", "overlap = Overlap()\n", "overlap.add(bar)\n", "overlap.add(line)\n", "\n", "overlap" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<script>\n", " require.config({\n", " paths: {\n", " 'echarts': 'https://cdnjs.cloudflare.com/ajax/libs/echarts/4.1.0/echarts.min'\n", " }\n", " });\n", "</script>\n", " <div id=\"1610b0c60e594bb3aba3d9ac043d6b19\" style=\"width:600px;height:400px;\"></div>\n", "\n", "\n", "<script>\n", " require(['echarts'], function(echarts) {\n", " \n", "var myChart_1610b0c60e594bb3aba3d9ac043d6b19 = echarts.init(document.getElementById('1610b0c60e594bb3aba3d9ac043d6b19'), 'light', {renderer: 'canvas'});\n", "\n", "var option_1610b0c60e594bb3aba3d9ac043d6b19 = {\n", " \"title\": [\n", " {\n", " \"text\": \"pie chart\",\n", " \"left\": \"center\",\n", " \"top\": \"auto\",\n", " \"textStyle\": {\n", " \"fontSize\": 18\n", " },\n", " \"subtextStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"toolbox\": {\n", " \"show\": true,\n", " \"orient\": \"vertical\",\n", " \"left\": \"95%\",\n", " \"top\": \"center\",\n", " \"feature\": {\n", " \"saveAsImage\": {\n", " \"show\": true,\n", " \"title\": \"\\u4e0b\\u8f7d\\u56fe\\u7247\"\n", " },\n", " \"restore\": {\n", " \"show\": true\n", " },\n", " \"dataView\": {\n", " \"show\": true\n", " }\n", " }\n", " },\n", " \"series_id\": 4535433,\n", " \"tooltip\": {\n", " \"trigger\": \"item\",\n", " \"triggerOn\": \"mousemove|click\",\n", " \"axisPointer\": {\n", " \"type\": \"line\"\n", " },\n", " \"textStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"backgroundColor\": \"rgba(50,50,50,0.7)\",\n", " \"borderColor\": \"#333\",\n", " \"borderWidth\": 0\n", " },\n", " \"series\": [\n", " {\n", " \"type\": \"pie\",\n", " \"name\": \"A\",\n", " \"data\": [\n", " {\n", " \"name\": \"A\",\n", " \"value\": 10\n", " },\n", " {\n", " \"name\": \"B\",\n", " \"value\": 20\n", " },\n", " {\n", " \"name\": \"C\",\n", " \"value\": 30\n", " },\n", " {\n", " \"name\": \"D\",\n", " \"value\": 40\n", " },\n", " {\n", " \"name\": \"E\",\n", " \"value\": 50\n", " },\n", " {\n", " \"name\": \"F\",\n", " \"value\": 60\n", " }\n", " ],\n", " \"radius\": [\n", " \"30%\",\n", " \"75%\"\n", " ],\n", " \"center\": [\n", " \"25%\",\n", " \"50%\"\n", " ],\n", " \"roseType\": \"radius\",\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"outside\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " },\n", " \"formatter\": \"{b}: {d}%\"\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " },\n", " \"formatter\": \"{b}: {d}%\"\n", " }\n", " },\n", " \"seriesId\": 4535433\n", " },\n", " {\n", " \"type\": \"pie\",\n", " \"name\": \"B\",\n", " \"data\": [\n", " {\n", " \"name\": \"A\",\n", " \"value\": 38\n", " },\n", " {\n", " \"name\": \"B\",\n", " \"value\": 28\n", " },\n", " {\n", " \"name\": \"C\",\n", " \"value\": 58\n", " },\n", " {\n", " \"name\": \"D\",\n", " \"value\": 48\n", " },\n", " {\n", " \"name\": \"E\",\n", " \"value\": 78\n", " },\n", " {\n", " \"name\": \"F\",\n", " \"value\": 68\n", " }\n", " ],\n", " \"radius\": [\n", " \"30%\",\n", " \"75%\"\n", " ],\n", " \"center\": [\n", " \"75%\",\n", " \"50%\"\n", " ],\n", " \"roseType\": \"area\",\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": true,\n", " \"position\": \"outside\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " },\n", " \"formatter\": \"{b}: {d}%\"\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " },\n", " \"formatter\": \"{b}: {d}%\"\n", " }\n", " },\n", " \"seriesId\": 4535433\n", " }\n", " ],\n", " \"legend\": [\n", " {\n", " \"data\": [\n", " \"A\",\n", " \"B\",\n", " \"C\",\n", " \"D\",\n", " \"E\",\n", " \"F\"\n", " ],\n", " \"selectedMode\": \"multiple\",\n", " \"show\": false,\n", " \"left\": \"center\",\n", " \"top\": \"top\",\n", " \"orient\": \"horizontal\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"color\": [\n", " \"#444693\",\n", " \"#905a3d\",\n", " \"#61a0a8\",\n", " \"#749f83\",\n", " \"#b2d235\",\n", " \"#1d953f\",\n", " \"#c23531\",\n", " \"#f47920\",\n", " \"#6d8346\",\n", " \"#f05b72\",\n", " \"#6950a1\",\n", " \"#ac6767\",\n", " \"#ca8622\",\n", " \"#ef5b9c\",\n", " \"#c4ccd3\",\n", " \"#d48265\",\n", " \"#f6f5ec\",\n", " \"#546570\",\n", " \"#2a5caa\",\n", " \"#bda29a\",\n", " \"#6e7074\",\n", " \"#726930\",\n", " \"#2f4554\",\n", " \"#918597\",\n", " \"#fab27b\"\n", " ]\n", "};\n", "myChart_1610b0c60e594bb3aba3d9ac043d6b19.setOption(option_1610b0c60e594bb3aba3d9ac043d6b19);\n", "\n", " });\n", "</script>\n" ], "text/plain": [ "<pyecharts.charts.pie.Pie at 0x10cf6c4a8>" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from pyecharts import Pie\n", "\n", "attr = ['A','B','C','D','E','F']\n", "v1 = [10, 20, 30, 40, 50, 60]\n", "v2 = [38, 28, 58, 48, 78, 68]\n", "pie = Pie(\"pie chart\", title_pos=\"center\", width=600)\n", "pie.add(\"A\", attr, v1, center=[25, 50], is_random=True, radius=[30, 75], rosetype='radius')\n", "pie.add(\"B\", attr, v2, center=[75, 50], is_randome=True, radius=[30, 75], rosetype='area', is_legend_show=False,\n", " is_label_show=True)\n", "pie" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 가로 그래프" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<script>\n", " require.config({\n", " paths: {\n", " 'echarts': 'https://cdnjs.cloudflare.com/ajax/libs/echarts/4.1.0/echarts.min'\n", " }\n", " });\n", "</script>\n", " <div id=\"ac7aa1a3028c490db76818513967b325\" style=\"width:800px;height:400px;\"></div>\n", "\n", "\n", "<script>\n", " require(['echarts'], function(echarts) {\n", " \n", "var myChart_ac7aa1a3028c490db76818513967b325 = echarts.init(document.getElementById('ac7aa1a3028c490db76818513967b325'), 'light', {renderer: 'canvas'});\n", "\n", "var option_ac7aa1a3028c490db76818513967b325 = {\n", " \"title\": [\n", " {\n", " \"text\": \"\\uac00\\ub85c \\uadf8\\ub798\\ud504\",\n", " \"left\": \"auto\",\n", " \"top\": \"auto\",\n", " \"textStyle\": {\n", " \"fontSize\": 18\n", " },\n", " \"subtextStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"toolbox\": {\n", " \"show\": true,\n", " \"orient\": \"vertical\",\n", " \"left\": \"95%\",\n", " \"top\": \"center\",\n", " \"feature\": {\n", " \"saveAsImage\": {\n", " \"show\": true,\n", " \"title\": \"\\u4e0b\\u8f7d\\u56fe\\u7247\"\n", " },\n", " \"restore\": {\n", " \"show\": true\n", " },\n", " \"dataView\": {\n", " \"show\": true\n", " }\n", " }\n", " },\n", " \"series_id\": 7986890,\n", " \"tooltip\": {\n", " \"trigger\": \"item\",\n", " \"triggerOn\": \"mousemove|click\",\n", " \"axisPointer\": {\n", " \"type\": \"line\"\n", " },\n", " \"textStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"backgroundColor\": \"rgba(50,50,50,0.7)\",\n", " \"borderColor\": \"#333\",\n", " \"borderWidth\": 0\n", " },\n", " \"series\": [\n", " {\n", " \"type\": \"bar\",\n", " \"name\": \"A\",\n", " \"data\": [\n", " 10,\n", " 20,\n", " 30,\n", " 40,\n", " 50,\n", " 60\n", " ],\n", " \"barCategoryGap\": \"20%\",\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"markPoint\": {\n", " \"data\": []\n", " },\n", " \"markLine\": {\n", " \"data\": []\n", " },\n", " \"seriesId\": 7986890\n", " },\n", " {\n", " \"type\": \"bar\",\n", " \"name\": \"B\",\n", " \"data\": [\n", " 38,\n", " 28,\n", " 58,\n", " 48,\n", " 78,\n", " 68\n", " ],\n", " \"barCategoryGap\": \"20%\",\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"markPoint\": {\n", " \"data\": []\n", " },\n", " \"markLine\": {\n", " \"data\": []\n", " },\n", " \"seriesId\": 7986890\n", " }\n", " ],\n", " \"legend\": [\n", " {\n", " \"data\": [\n", " \"A\",\n", " \"B\"\n", " ],\n", " \"selectedMode\": \"multiple\",\n", " \"show\": true,\n", " \"left\": \"center\",\n", " \"top\": \"top\",\n", " \"orient\": \"horizontal\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"xAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"value\",\n", " \"splitLine\": {\n", " \"show\": false\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " }\n", " ],\n", " \"yAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"category\",\n", " \"splitLine\": {\n", " \"show\": true\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"formatter\": \"{value} \",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"data\": [\n", " \"A\",\n", " \"B\",\n", " \"C\",\n", " \"D\",\n", " \"E\",\n", " \"F\"\n", " ]\n", " }\n", " ],\n", " \"color\": [\n", " \"#c23531\",\n", " \"#2f4554\",\n", " \"#61a0a8\",\n", " \"#d48265\",\n", " \"#749f83\",\n", " \"#ca8622\",\n", " \"#bda29a\",\n", " \"#6e7074\",\n", " \"#546570\",\n", " \"#c4ccd3\",\n", " \"#f05b72\",\n", " \"#ef5b9c\",\n", " \"#f47920\",\n", " \"#905a3d\",\n", " \"#fab27b\",\n", " \"#2a5caa\",\n", " \"#444693\",\n", " \"#726930\",\n", " \"#b2d235\",\n", " \"#6d8346\",\n", " \"#ac6767\",\n", " \"#1d953f\",\n", " \"#6950a1\",\n", " \"#918597\",\n", " \"#f6f5ec\"\n", " ]\n", "};\n", "myChart_ac7aa1a3028c490db76818513967b325.setOption(option_ac7aa1a3028c490db76818513967b325);\n", "\n", " });\n", "</script>\n" ], "text/plain": [ "<pyecharts.charts.bar.Bar at 0x110c89cc0>" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bar = Bar(\"가로 그래프\")\n", "bar.add(\"A\", attr, v1)\n", "bar.add(\"B\", attr, v2, is_convert=True)\n", "bar.width=800\n", "bar" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 슬라이더" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<script>\n", " require.config({\n", " paths: {\n", " 'echarts': 'https://cdnjs.cloudflare.com/ajax/libs/echarts/4.1.0/echarts.min'\n", " }\n", " });\n", "</script>\n", " <div id=\"86daa120791743a4b00ca98406bf4054\" style=\"width:800px;height:400px;\"></div>\n", "\n", "\n", "<script>\n", " require(['echarts'], function(echarts) {\n", " \n", "var myChart_86daa120791743a4b00ca98406bf4054 = echarts.init(document.getElementById('86daa120791743a4b00ca98406bf4054'), 'light', {renderer: 'canvas'});\n", "\n", "var option_86daa120791743a4b00ca98406bf4054 = {\n", " \"title\": [\n", " {\n", " \"text\": \"Bar - datazoom - slider \",\n", " \"left\": \"auto\",\n", " \"top\": \"auto\",\n", " \"textStyle\": {\n", " \"fontSize\": 18\n", " },\n", " \"subtextStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"toolbox\": {\n", " \"show\": true,\n", " \"orient\": \"vertical\",\n", " \"left\": \"95%\",\n", " \"top\": \"center\",\n", " \"feature\": {\n", " \"saveAsImage\": {\n", " \"show\": true,\n", " \"title\": \"\\u4e0b\\u8f7d\\u56fe\\u7247\"\n", " },\n", " \"restore\": {\n", " \"show\": true\n", " },\n", " \"dataView\": {\n", " \"show\": true\n", " }\n", " }\n", " },\n", " \"series_id\": 8740746,\n", " \"tooltip\": {\n", " \"trigger\": \"item\",\n", " \"triggerOn\": \"mousemove|click\",\n", " \"axisPointer\": {\n", " \"type\": \"line\"\n", " },\n", " \"textStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"backgroundColor\": \"rgba(50,50,50,0.7)\",\n", " \"borderColor\": \"#333\",\n", " \"borderWidth\": 0\n", " },\n", " \"series\": [\n", " {\n", " \"type\": \"bar\",\n", " \"data\": [\n", " 20,\n", " 20,\n", " 22,\n", " 7,\n", " 16,\n", " 30,\n", " 25,\n", " 24,\n", " 2,\n", " 18,\n", " 15,\n", " 23,\n", " 26,\n", " 22,\n", " 27,\n", " 17,\n", " 11,\n", " 19,\n", " 20,\n", " 15,\n", " 14,\n", " 30,\n", " 27,\n", " 22,\n", " 16,\n", " 19,\n", " 15,\n", " 4,\n", " 10,\n", " 27\n", " ],\n", " \"barCategoryGap\": \"20%\",\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": true,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"markPoint\": {\n", " \"data\": []\n", " },\n", " \"markLine\": {\n", " \"data\": []\n", " },\n", " \"seriesId\": 8740746\n", " }\n", " ],\n", " \"legend\": [\n", " {\n", " \"data\": [\n", " \"\"\n", " ],\n", " \"selectedMode\": \"multiple\",\n", " \"show\": true,\n", " \"left\": \"center\",\n", " \"top\": \"top\",\n", " \"orient\": \"horizontal\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"xAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"category\",\n", " \"splitLine\": {\n", " \"show\": false\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"data\": [\n", " \"0th\",\n", " \"1th\",\n", " \"2th\",\n", " \"3th\",\n", " \"4th\",\n", " \"5th\",\n", " \"6th\",\n", " \"7th\",\n", " \"8th\",\n", " \"9th\",\n", " \"10th\",\n", " \"11th\",\n", " \"12th\",\n", " \"13th\",\n", " \"14th\",\n", " \"15th\",\n", " \"16th\",\n", " \"17th\",\n", " \"18th\",\n", " \"19th\",\n", " \"20th\",\n", " \"21th\",\n", " \"22th\",\n", " \"23th\",\n", " \"24th\",\n", " \"25th\",\n", " \"26th\",\n", " \"27th\",\n", " \"28th\",\n", " \"29th\"\n", " ]\n", " }\n", " ],\n", " \"yAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"value\",\n", " \"splitLine\": {\n", " \"show\": true\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"formatter\": \"{value} \",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " }\n", " ],\n", " \"color\": [\n", " \"#c23531\",\n", " \"#2f4554\",\n", " \"#61a0a8\",\n", " \"#d48265\",\n", " \"#749f83\",\n", " \"#ca8622\",\n", " \"#bda29a\",\n", " \"#6e7074\",\n", " \"#546570\",\n", " \"#c4ccd3\",\n", " \"#f05b72\",\n", " \"#ef5b9c\",\n", " \"#f47920\",\n", " \"#905a3d\",\n", " \"#fab27b\",\n", " \"#2a5caa\",\n", " \"#444693\",\n", " \"#726930\",\n", " \"#b2d235\",\n", " \"#6d8346\",\n", " \"#ac6767\",\n", " \"#1d953f\",\n", " \"#6950a1\",\n", " \"#918597\",\n", " \"#f6f5ec\"\n", " ],\n", " \"dataZoom\": [\n", " {\n", " \"show\": true,\n", " \"type\": \"slider\",\n", " \"start\": 50,\n", " \"end\": 100,\n", " \"orient\": \"horizontal\"\n", " }\n", " ]\n", "};\n", "myChart_86daa120791743a4b00ca98406bf4054.setOption(option_86daa120791743a4b00ca98406bf4054);\n", "\n", " });\n", "</script>\n" ], "text/plain": [ "<pyecharts.charts.bar.Bar at 0x110c89978>" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import random\n", "\n", "attr = [\"{}th\".format(i) for i in range(30)]\n", "v1 = [random.randint(1, 30) for _ in range(30)]\n", "bar = Bar(\"Bar - datazoom - slider \")\n", "bar.add(\"\", attr, v1, is_label_show=True, is_datazoom_show=True)\n", "# bar.render()\n", "bar" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<script>\n", " require.config({\n", " paths: {\n", " 'echarts': 'https://cdnjs.cloudflare.com/ajax/libs/echarts/4.1.0/echarts.min'\n", " }\n", " });\n", "</script>\n", " <div id=\"154e53f451da4d009a405f450aa79202\" style=\"width:800px;height:400px;\"></div>\n", "\n", "\n", "<script>\n", " require(['echarts'], function(echarts) {\n", " \n", "var myChart_154e53f451da4d009a405f450aa79202 = echarts.init(document.getElementById('154e53f451da4d009a405f450aa79202'), 'light', {renderer: 'canvas'});\n", "\n", "var option_154e53f451da4d009a405f450aa79202 = {\n", " \"title\": [\n", " {\n", " \"text\": \"Bar - datazoom - xaxis/yaxis\",\n", " \"left\": \"auto\",\n", " \"top\": \"auto\",\n", " \"textStyle\": {\n", " \"fontSize\": 18\n", " },\n", " \"subtextStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"series_id\": 2716897,\n", " \"tooltip\": {\n", " \"trigger\": \"item\",\n", " \"triggerOn\": \"mousemove|click\",\n", " \"axisPointer\": {\n", " \"type\": \"line\"\n", " },\n", " \"textStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"backgroundColor\": \"rgba(50,50,50,0.7)\",\n", " \"borderColor\": \"#333\",\n", " \"borderWidth\": 0\n", " },\n", " \"series\": [\n", " {\n", " \"type\": \"bar\",\n", " \"data\": [\n", " 15,\n", " 28,\n", " 27,\n", " 25,\n", " 6,\n", " 10,\n", " 15,\n", " 22,\n", " 8,\n", " 23,\n", " 21,\n", " 20,\n", " 14,\n", " 21,\n", " 30,\n", " 20,\n", " 14,\n", " 3,\n", " 4,\n", " 7,\n", " 23,\n", " 22,\n", " 8,\n", " 19,\n", " 2,\n", " 28,\n", " 23,\n", " 26,\n", " 28,\n", " 8\n", " ],\n", " \"barCategoryGap\": \"20%\",\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"markPoint\": {\n", " \"data\": []\n", " },\n", " \"markLine\": {\n", " \"data\": []\n", " },\n", " \"seriesId\": 2716897\n", " }\n", " ],\n", " \"legend\": [\n", " {\n", " \"data\": [\n", " \"\"\n", " ],\n", " \"selectedMode\": \"multiple\",\n", " \"show\": true,\n", " \"left\": \"center\",\n", " \"top\": \"top\",\n", " \"orient\": \"horizontal\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"xAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"category\",\n", " \"splitLine\": {\n", " \"show\": false\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"data\": [\n", " \"0th\",\n", " \"1th\",\n", " \"2th\",\n", " \"3th\",\n", " \"4th\",\n", " \"5th\",\n", " \"6th\",\n", " \"7th\",\n", " \"8th\",\n", " \"9th\",\n", " \"10th\",\n", " \"11th\",\n", " \"12th\",\n", " \"13th\",\n", " \"14th\",\n", " \"15th\",\n", " \"16th\",\n", " \"17th\",\n", " \"18th\",\n", " \"19th\",\n", " \"20th\",\n", " \"21th\",\n", " \"22th\",\n", " \"23th\",\n", " \"24th\",\n", " \"25th\",\n", " \"26th\",\n", " \"27th\",\n", " \"28th\",\n", " \"29th\"\n", " ]\n", " }\n", " ],\n", " \"yAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"value\",\n", " \"splitLine\": {\n", " \"show\": true\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"formatter\": \"{value} \",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " }\n", " ],\n", " \"color\": [\n", " \"#c23531\",\n", " \"#2f4554\",\n", " \"#61a0a8\",\n", " \"#d48265\",\n", " \"#749f83\",\n", " \"#ca8622\",\n", " \"#bda29a\",\n", " \"#6e7074\",\n", " \"#546570\",\n", " \"#c4ccd3\",\n", " \"#f05b72\",\n", " \"#ef5b9c\",\n", " \"#f47920\",\n", " \"#905a3d\",\n", " \"#fab27b\",\n", " \"#2a5caa\",\n", " \"#444693\",\n", " \"#726930\",\n", " \"#b2d235\",\n", " \"#6d8346\",\n", " \"#ac6767\",\n", " \"#1d953f\",\n", " \"#6950a1\",\n", " \"#918597\",\n", " \"#f6f5ec\"\n", " ],\n", " \"dataZoom\": [\n", " {\n", " \"show\": true,\n", " \"type\": \"slider\",\n", " \"start\": 10,\n", " \"end\": 25,\n", " \"orient\": \"horizontal\"\n", " },\n", " {\n", " \"show\": true,\n", " \"type\": \"slider\",\n", " \"start\": 10,\n", " \"end\": 25,\n", " \"orient\": \"vertical\"\n", " }\n", " ]\n", "};\n", "myChart_154e53f451da4d009a405f450aa79202.setOption(option_154e53f451da4d009a405f450aa79202);\n", "\n", " });\n", "</script>\n" ], "text/plain": [ "<pyecharts.charts.bar.Bar at 0x10c84bba8>" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "days = [\"{}th\".format(i) for i in range(30)]\n", "days_v1 = [random.randint(1, 30) for _ in range(30)]\n", "bar = Bar(\"Bar - datazoom - xaxis/yaxis\")\n", "bar.add(\n", " \"\",\n", " days,\n", " days_v1,\n", " is_datazoom_show=True,\n", " datazoom_type=\"slider\",\n", " datazoom_range=[10, 25],\n", " is_datazoom_extra_show=True,\n", " datazoom_extra_type=\"slider\",\n", " datazoom_extra_range=[10, 25],\n", " is_toolbox_show=False,\n", ")\n", "# bar.render()\n", "bar" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3D" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<script>\n", " require.config({\n", " paths: {\n", " 'echarts': 'https://cdnjs.cloudflare.com/ajax/libs/echarts/4.1.0/echarts.min', 'echartsgl': 'https://cdn.jsdelivr.net/npm/[email protected]/dist/echarts-gl.min'\n", " }\n", " });\n", "</script>\n", " <div id=\"e242e555d23f4588b6b5f71d4a11c3e1\" style=\"width:700px;height:500px;\"></div>\n", "\n", "\n", "<script>\n", " require(['echarts', 'echartsgl'], function(echarts) {\n", " \n", "var myChart_e242e555d23f4588b6b5f71d4a11c3e1 = echarts.init(document.getElementById('e242e555d23f4588b6b5f71d4a11c3e1'), 'light', {renderer: 'canvas'});\n", "\n", "var option_e242e555d23f4588b6b5f71d4a11c3e1 = {\n", " \"title\": [\n", " {\n", " \"text\": \"3D Graph\",\n", " \"left\": \"auto\",\n", " \"top\": \"auto\",\n", " \"textStyle\": {\n", " \"fontSize\": 18\n", " },\n", " \"subtextStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"toolbox\": {\n", " \"show\": true,\n", " \"orient\": \"vertical\",\n", " \"left\": \"95%\",\n", " \"top\": \"center\",\n", " \"feature\": {\n", " \"saveAsImage\": {\n", " \"show\": true,\n", " \"title\": \"\\u4e0b\\u8f7d\\u56fe\\u7247\"\n", " },\n", " \"restore\": {\n", " \"show\": true\n", " },\n", " \"dataView\": {\n", " \"show\": true\n", " }\n", " }\n", " },\n", " \"series_id\": 7657494,\n", " \"tooltip\": {\n", " \"trigger\": \"item\",\n", " \"triggerOn\": \"mousemove|click\",\n", " \"axisPointer\": {\n", " \"type\": \"line\"\n", " },\n", " \"textStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"backgroundColor\": \"rgba(50,50,50,0.7)\",\n", " \"borderColor\": \"#333\",\n", " \"borderWidth\": 0\n", " },\n", " \"series\": [\n", " {\n", " \"type\": \"bar3D\",\n", " \"data\": [\n", " [\n", " 0,\n", " 0,\n", " 5\n", " ],\n", " [\n", " 1,\n", " 0,\n", " 1\n", " ],\n", " [\n", " 2,\n", " 0,\n", " 0\n", " ],\n", " [\n", " 3,\n", " 0,\n", " 0\n", " ],\n", " [\n", " 4,\n", " 0,\n", " 0\n", " ],\n", " [\n", " 5,\n", " 0,\n", " 0\n", " ],\n", " [\n", " 6,\n", " 0,\n", " 0\n", " ],\n", " [\n", " 7,\n", " 0,\n", " 0\n", " ],\n", " [\n", " 8,\n", " 0,\n", " 0\n", " ],\n", " [\n", " 9,\n", " 0,\n", " 0\n", " ],\n", " [\n", " 10,\n", " 0,\n", " 0\n", " ],\n", " [\n", " 11,\n", " 0,\n", " 2\n", " ],\n", " [\n", " 12,\n", " 0,\n", " 4\n", " ],\n", " [\n", " 13,\n", " 0,\n", " 1\n", " ],\n", " [\n", " 14,\n", " 0,\n", " 1\n", " ],\n", " [\n", " 15,\n", " 0,\n", " 3\n", " ],\n", " [\n", " 16,\n", " 0,\n", " 4\n", " ],\n", " [\n", " 17,\n", " 0,\n", " 6\n", " ],\n", " [\n", " 18,\n", " 0,\n", " 4\n", " ],\n", " [\n", " 19,\n", " 0,\n", " 4\n", " ],\n", " [\n", " 20,\n", " 0,\n", " 3\n", " ],\n", " [\n", " 21,\n", " 0,\n", " 3\n", " ],\n", " [\n", " 22,\n", " 0,\n", " 2\n", " ],\n", " [\n", " 23,\n", " 0,\n", " 5\n", " ],\n", " [\n", " 0,\n", " 1,\n", " 7\n", " ],\n", " [\n", " 1,\n", " 1,\n", " 0\n", " ],\n", " [\n", " 2,\n", " 1,\n", " 0\n", " ],\n", " [\n", " 3,\n", " 1,\n", " 0\n", " ],\n", " [\n", " 4,\n", " 1,\n", " 0\n", " ],\n", " [\n", " 5,\n", " 1,\n", " 0\n", " ],\n", " [\n", " 6,\n", " 1,\n", " 0\n", " ],\n", " [\n", " 7,\n", " 1,\n", " 0\n", " ],\n", " [\n", " 8,\n", " 1,\n", " 0\n", " ],\n", " [\n", " 9,\n", " 1,\n", " 0\n", " ],\n", " [\n", " 10,\n", " 1,\n", " 5\n", " ],\n", " [\n", " 11,\n", " 1,\n", " 2\n", " ],\n", " [\n", " 12,\n", " 1,\n", " 2\n", " ],\n", " [\n", " 13,\n", " 1,\n", " 6\n", " ],\n", " [\n", " 14,\n", " 1,\n", " 9\n", " ],\n", " [\n", " 15,\n", " 1,\n", " 11\n", " ],\n", " [\n", " 16,\n", " 1,\n", " 6\n", " ],\n", " [\n", " 17,\n", " 1,\n", " 7\n", " ],\n", " [\n", " 18,\n", " 1,\n", " 8\n", " ],\n", " [\n", " 19,\n", " 1,\n", " 12\n", " ],\n", " [\n", " 20,\n", " 1,\n", " 5\n", " ],\n", " [\n", " 21,\n", " 1,\n", " 5\n", " ],\n", " [\n", " 22,\n", " 1,\n", " 7\n", " ],\n", " [\n", " 23,\n", " 1,\n", " 2\n", " ],\n", " [\n", " 0,\n", " 2,\n", " 1\n", " ],\n", " [\n", " 1,\n", " 2,\n", " 1\n", " ],\n", " [\n", " 2,\n", " 2,\n", " 0\n", " ],\n", " [\n", " 3,\n", " 2,\n", " 0\n", " ],\n", " [\n", " 4,\n", " 2,\n", " 0\n", " ],\n", " [\n", " 5,\n", " 2,\n", " 0\n", " ],\n", " [\n", " 6,\n", " 2,\n", " 0\n", " ],\n", " [\n", " 7,\n", " 2,\n", " 0\n", " ],\n", " [\n", " 8,\n", " 2,\n", " 0\n", " ],\n", " [\n", " 9,\n", " 2,\n", " 0\n", " ],\n", " [\n", " 10,\n", " 2,\n", " 3\n", " ],\n", " [\n", " 11,\n", " 2,\n", " 2\n", " ],\n", " [\n", " 12,\n", " 2,\n", " 1\n", " ],\n", " [\n", " 13,\n", " 2,\n", " 9\n", " ],\n", " [\n", " 14,\n", " 2,\n", " 8\n", " ],\n", " [\n", " 15,\n", " 2,\n", " 10\n", " ],\n", " [\n", " 16,\n", " 2,\n", " 6\n", " ],\n", " [\n", " 17,\n", " 2,\n", " 5\n", " ],\n", " [\n", " 18,\n", " 2,\n", " 5\n", " ],\n", " [\n", " 19,\n", " 2,\n", " 5\n", " ],\n", " [\n", " 20,\n", " 2,\n", " 7\n", " ],\n", " [\n", " 21,\n", " 2,\n", " 4\n", " ],\n", " [\n", " 22,\n", " 2,\n", " 2\n", " ],\n", " [\n", " 23,\n", " 2,\n", " 4\n", " ],\n", " [\n", " 0,\n", " 3,\n", " 7\n", " ],\n", " [\n", " 1,\n", " 3,\n", " 3\n", " ],\n", " [\n", " 2,\n", " 3,\n", " 0\n", " ],\n", " [\n", " 3,\n", " 3,\n", " 0\n", " ],\n", " [\n", " 4,\n", " 3,\n", " 0\n", " ],\n", " [\n", " 5,\n", " 3,\n", " 0\n", " ],\n", " [\n", " 6,\n", " 3,\n", " 0\n", " ],\n", " [\n", " 7,\n", " 3,\n", " 0\n", " ],\n", " [\n", " 8,\n", " 3,\n", " 1\n", " ],\n", " [\n", " 9,\n", " 3,\n", " 0\n", " ],\n", " [\n", " 10,\n", " 3,\n", " 5\n", " ],\n", " [\n", " 11,\n", " 3,\n", " 4\n", " ],\n", " [\n", " 12,\n", " 3,\n", " 7\n", " ],\n", " [\n", " 13,\n", " 3,\n", " 14\n", " ],\n", " [\n", " 14,\n", " 3,\n", " 13\n", " ],\n", " [\n", " 15,\n", " 3,\n", " 12\n", " ],\n", " [\n", " 16,\n", " 3,\n", " 9\n", " ],\n", " [\n", " 17,\n", " 3,\n", " 5\n", " ],\n", " [\n", " 18,\n", " 3,\n", " 5\n", " ],\n", " [\n", " 19,\n", " 3,\n", " 10\n", " ],\n", " [\n", " 20,\n", " 3,\n", " 6\n", " ],\n", " [\n", " 21,\n", " 3,\n", " 4\n", " ],\n", " [\n", " 22,\n", " 3,\n", " 4\n", " ],\n", " [\n", " 23,\n", " 3,\n", " 1\n", " ],\n", " [\n", " 0,\n", " 4,\n", " 1\n", " ],\n", " [\n", " 1,\n", " 4,\n", " 3\n", " ],\n", " [\n", " 2,\n", " 4,\n", " 0\n", " ],\n", " [\n", " 3,\n", " 4,\n", " 0\n", " ],\n", " [\n", " 4,\n", " 4,\n", " 0\n", " ],\n", " [\n", " 5,\n", " 4,\n", " 1\n", " ],\n", " [\n", " 6,\n", " 4,\n", " 0\n", " ],\n", " [\n", " 7,\n", " 4,\n", " 0\n", " ],\n", " [\n", " 8,\n", " 4,\n", " 0\n", " ],\n", " [\n", " 9,\n", " 4,\n", " 2\n", " ],\n", " [\n", " 10,\n", " 4,\n", " 4\n", " ],\n", " [\n", " 11,\n", " 4,\n", " 4\n", " ],\n", " [\n", " 12,\n", " 4,\n", " 2\n", " ],\n", " [\n", " 13,\n", " 4,\n", " 4\n", " ],\n", " [\n", " 14,\n", " 4,\n", " 4\n", " ],\n", " [\n", " 15,\n", " 4,\n", " 14\n", " ],\n", " [\n", " 16,\n", " 4,\n", " 12\n", " ],\n", " [\n", " 17,\n", " 4,\n", " 1\n", " ],\n", " [\n", " 18,\n", " 4,\n", " 8\n", " ],\n", " [\n", " 19,\n", " 4,\n", " 5\n", " ],\n", " [\n", " 20,\n", " 4,\n", " 3\n", " ],\n", " [\n", " 21,\n", " 4,\n", " 7\n", " ],\n", " [\n", " 22,\n", " 4,\n", " 3\n", " ],\n", " [\n", " 23,\n", " 4,\n", " 0\n", " ],\n", " [\n", " 0,\n", " 5,\n", " 2\n", " ],\n", " [\n", " 1,\n", " 5,\n", " 1\n", " ],\n", " [\n", " 2,\n", " 5,\n", " 0\n", " ],\n", " [\n", " 3,\n", " 5,\n", " 3\n", " ],\n", " [\n", " 4,\n", " 5,\n", " 0\n", " ],\n", " [\n", " 5,\n", " 5,\n", " 0\n", " ],\n", " [\n", " 6,\n", " 5,\n", " 0\n", " ],\n", " [\n", " 7,\n", " 5,\n", " 0\n", " ],\n", " [\n", " 8,\n", " 5,\n", " 2\n", " ],\n", " [\n", " 9,\n", " 5,\n", " 0\n", " ],\n", " [\n", " 10,\n", " 5,\n", " 4\n", " ],\n", " [\n", " 11,\n", " 5,\n", " 1\n", " ],\n", " [\n", " 12,\n", " 5,\n", " 5\n", " ],\n", " [\n", " 13,\n", " 5,\n", " 10\n", " ],\n", " [\n", " 14,\n", " 5,\n", " 5\n", " ],\n", " [\n", " 15,\n", " 5,\n", " 7\n", " ],\n", " [\n", " 16,\n", " 5,\n", " 11\n", " ],\n", " [\n", " 17,\n", " 5,\n", " 6\n", " ],\n", " [\n", " 18,\n", " 5,\n", " 0\n", " ],\n", " [\n", " 19,\n", " 5,\n", " 5\n", " ],\n", " [\n", " 20,\n", " 5,\n", " 3\n", " ],\n", " [\n", " 21,\n", " 5,\n", " 4\n", " ],\n", " [\n", " 22,\n", " 5,\n", " 2\n", " ],\n", " [\n", " 23,\n", " 5,\n", " 0\n", " ],\n", " [\n", " 0,\n", " 6,\n", " 1\n", " ],\n", " [\n", " 1,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 2,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 3,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 4,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 5,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 6,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 7,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 8,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 9,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 10,\n", " 6,\n", " 1\n", " ],\n", " [\n", " 11,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 12,\n", " 6,\n", " 2\n", " ],\n", " [\n", " 13,\n", " 6,\n", " 1\n", " ],\n", " [\n", " 14,\n", " 6,\n", " 3\n", " ],\n", " [\n", " 15,\n", " 6,\n", " 4\n", " ],\n", " [\n", " 16,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 17,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 18,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 19,\n", " 6,\n", " 0\n", " ],\n", " [\n", " 20,\n", " 6,\n", " 1\n", " ],\n", " [\n", " 21,\n", " 6,\n", " 2\n", " ],\n", " [\n", " 22,\n", " 6,\n", " 2\n", " ],\n", " [\n", " 23,\n", " 6,\n", " 6\n", " ]\n", " ],\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"shading\": \"color\",\n", " \"itemStyle\": {\n", " \"opacity\": 1\n", " }\n", " }\n", " ],\n", " \"legend\": [\n", " {\n", " \"data\": [\n", " \"\"\n", " ],\n", " \"selectedMode\": \"multiple\",\n", " \"show\": true,\n", " \"left\": \"center\",\n", " \"top\": \"top\",\n", " \"orient\": \"horizontal\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"xAxis3D\": {\n", " \"nameGap\": 20,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 16\n", " },\n", " \"type\": \"category\",\n", " \"axisLabel\": {\n", " \"margin\": 8,\n", " \"interval\": \"auto\"\n", " },\n", " \"data\": [\n", " \"12a\",\n", " \"1a\",\n", " \"2a\",\n", " \"3a\",\n", " \"4a\",\n", " \"5a\",\n", " \"6a\",\n", " \"7a\",\n", " \"8a\",\n", " \"9a\",\n", " \"10a\",\n", " \"11a\",\n", " \"12p\",\n", " \"1p\",\n", " \"2p\",\n", " \"3p\",\n", " \"4p\",\n", " \"5p\",\n", " \"6p\",\n", " \"7p\",\n", " \"8p\",\n", " \"9p\",\n", " \"10p\",\n", " \"11p\"\n", " ]\n", " },\n", " \"yAxis3D\": {\n", " \"nameGap\": 20,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 16\n", " },\n", " \"type\": \"category\",\n", " \"axisLabel\": {\n", " \"margin\": 8,\n", " \"interval\": \"auto\"\n", " },\n", " \"data\": [\n", " \"Saturday\",\n", " \"Friday\",\n", " \"Thursday\",\n", " \"Wednesday\",\n", " \"Tuesday\",\n", " \"Monday\",\n", " \"Sunday\"\n", " ]\n", " },\n", " \"zAxis3D\": {\n", " \"nameGap\": 20,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 16\n", " },\n", " \"type\": \"value\",\n", " \"axisLabel\": {\n", " \"margin\": 8\n", " }\n", " },\n", " \"grid3D\": {\n", " \"boxWidth\": 200,\n", " \"boxHeight\": 100,\n", " \"boxDepth\": 80,\n", " \"viewControl\": {\n", " \"autoRotate\": false,\n", " \"autoRotateSpeed\": 10,\n", " \"rotateSensitivity\": 1\n", " }\n", " },\n", " \"color\": [\n", " \"#c23531\",\n", " \"#2f4554\",\n", " \"#61a0a8\",\n", " \"#d48265\",\n", " \"#749f83\",\n", " \"#ca8622\",\n", " \"#bda29a\",\n", " \"#6e7074\",\n", " \"#546570\",\n", " \"#c4ccd3\",\n", " \"#f05b72\",\n", " \"#ef5b9c\",\n", " \"#f47920\",\n", " \"#905a3d\",\n", " \"#fab27b\",\n", " \"#2a5caa\",\n", " \"#444693\",\n", " \"#726930\",\n", " \"#b2d235\",\n", " \"#6d8346\",\n", " \"#ac6767\",\n", " \"#1d953f\",\n", " \"#6950a1\",\n", " \"#918597\",\n", " \"#f6f5ec\"\n", " ],\n", " \"visualMap\": {\n", " \"type\": \"continuous\",\n", " \"min\": 0,\n", " \"max\": 20,\n", " \"text\": [\n", " \"high\",\n", " \"low\"\n", " ],\n", " \"textStyle\": {},\n", " \"inRange\": {\n", " \"color\": [\n", " \"#313695\",\n", " \"#4575b4\",\n", " \"#74add1\",\n", " \"#abd9e9\",\n", " \"#e0f3f8\",\n", " \"#ffffbf\",\n", " \"#fee090\",\n", " \"#fdae61\",\n", " \"#f46d43\",\n", " \"#d73027\",\n", " \"#a50026\"\n", " ]\n", " },\n", " \"calculable\": true,\n", " \"splitNumber\": 5,\n", " \"orient\": \"vertical\",\n", " \"left\": \"left\",\n", " \"top\": \"bottom\",\n", " \"showLabel\": true\n", " }\n", "};\n", "myChart_e242e555d23f4588b6b5f71d4a11c3e1.setOption(option_e242e555d23f4588b6b5f71d4a11c3e1);\n", "\n", " });\n", "</script>\n" ], "text/plain": [ "<pyecharts.charts.bar3D.Bar3D at 0x10cf8ddd8>" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from pyecharts import Bar3D\n", "\n", "bar3d = Bar3D(\"3D Graph\", width=1200, height=600)\n", "x_axis = [\n", " \"12a\", \"1a\", \"2a\", \"3a\", \"4a\", \"5a\", \"6a\", \"7a\", \"8a\", \"9a\", \"10a\", \"11a\",\n", " \"12p\", \"1p\", \"2p\", \"3p\", \"4p\", \"5p\", \"6p\", \"7p\", \"8p\", \"9p\", \"10p\", \"11p\"\n", " ]\n", "y_axis = [\n", " \"Saturday\", \"Friday\", \"Thursday\", \"Wednesday\", \"Tuesday\", \"Monday\", \"Sunday\"\n", " ]\n", "data = [\n", " [0, 0, 5], [0, 1, 1], [0, 2, 0], [0, 3, 0], [0, 4, 0], [0, 5, 0],\n", " [0, 6, 0], [0, 7, 0], [0, 8, 0], [0, 9, 0], [0, 10, 0], [0, 11, 2],\n", " [0, 12, 4], [0, 13, 1], [0, 14, 1], [0, 15, 3], [0, 16, 4], [0, 17, 6],\n", " [0, 18, 4], [0, 19, 4], [0, 20, 3], [0, 21, 3], [0, 22, 2], [0, 23, 5],\n", " [1, 0, 7], [1, 1, 0], [1, 2, 0], [1, 3, 0], [1, 4, 0], [1, 5, 0],\n", " [1, 6, 0], [1, 7, 0], [1, 8, 0], [1, 9, 0], [1, 10, 5], [1, 11, 2],\n", " [1, 12, 2], [1, 13, 6], [1, 14, 9], [1, 15, 11], [1, 16, 6], [1, 17, 7],\n", " [1, 18, 8], [1, 19, 12], [1, 20, 5], [1, 21, 5], [1, 22, 7], [1, 23, 2],\n", " [2, 0, 1], [2, 1, 1], [2, 2, 0], [2, 3, 0], [2, 4, 0], [2, 5, 0],\n", " [2, 6, 0], [2, 7, 0], [2, 8, 0], [2, 9, 0], [2, 10, 3], [2, 11, 2],\n", " [2, 12, 1], [2, 13, 9], [2, 14, 8], [2, 15, 10], [2, 16, 6], [2, 17, 5],\n", " [2, 18, 5], [2, 19, 5], [2, 20, 7], [2, 21, 4], [2, 22, 2], [2, 23, 4],\n", " [3, 0, 7], [3, 1, 3], [3, 2, 0], [3, 3, 0], [3, 4, 0], [3, 5, 0],\n", " [3, 6, 0], [3, 7, 0], [3, 8, 1], [3, 9, 0], [3, 10, 5], [3, 11, 4],\n", " [3, 12, 7], [3, 13, 14], [3, 14, 13], [3, 15, 12], [3, 16, 9], [3, 17, 5],\n", " [3, 18, 5], [3, 19, 10], [3, 20, 6], [3, 21, 4], [3, 22, 4], [3, 23, 1],\n", " [4, 0, 1], [4, 1, 3], [4, 2, 0], [4, 3, 0], [4, 4, 0], [4, 5, 1],\n", " [4, 6, 0], [4, 7, 0], [4, 8, 0], [4, 9, 2], [4, 10, 4], [4, 11, 4],\n", " [4, 12, 2], [4, 13, 4], [4, 14, 4], [4, 15, 14], [4, 16, 12], [4, 17, 1],\n", " [4, 18, 8], [4, 19, 5], [4, 20, 3], [4, 21, 7], [4, 22, 3], [4, 23, 0],\n", " [5, 0, 2], [5, 1, 1], [5, 2, 0], [5, 3, 3], [5, 4, 0], [5, 5, 0],\n", " [5, 6, 0], [5, 7, 0], [5, 8, 2], [5, 9, 0], [5, 10, 4], [5, 11, 1],\n", " [5, 12, 5], [5, 13, 10], [5, 14, 5], [5, 15, 7], [5, 16, 11], [5, 17, 6],\n", " [5, 18, 0], [5, 19, 5], [5, 20, 3], [5, 21, 4], [5, 22, 2], [5, 23, 0],\n", " [6, 0, 1], [6, 1, 0], [6, 2, 0], [6, 3, 0], [6, 4, 0], [6, 5, 0],\n", " [6, 6, 0], [6, 7, 0], [6, 8, 0], [6, 9, 0], [6, 10, 1], [6, 11, 0],\n", " [6, 12, 2], [6, 13, 1], [6, 14, 3], [6, 15, 4], [6, 16, 0], [6, 17, 0],\n", " [6, 18, 0], [6, 19, 0], [6, 20, 1], [6, 21, 2], [6, 22, 2], [6, 23, 6]\n", " ]\n", "range_color = ['#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf',\n", " '#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026']\n", "bar3d.add(\n", " \"\",\n", " x_axis,\n", " y_axis,\n", " [[d[1], d[0], d[2]] for d in data],\n", " is_visualmap=True,\n", " visual_range=[0, 20],\n", " visual_range_color=range_color,\n", " grid3d_width=200,\n", " grid3d_depth=80,\n", ")\n", "bar3d.width=700\n", "bar3d.height=500\n", "\n", "bar3d" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Boxplot" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<script>\n", " require.config({\n", " paths: {\n", " 'echarts': 'https://cdnjs.cloudflare.com/ajax/libs/echarts/4.1.0/echarts.min'\n", " }\n", " });\n", "</script>\n", " <div id=\"922d391f322e43a1b0addf5a632c1b92\" style=\"width:800px;height:400px;\"></div>\n", "\n", "\n", "<script>\n", " require(['echarts'], function(echarts) {\n", " \n", "var myChart_922d391f322e43a1b0addf5a632c1b92 = echarts.init(document.getElementById('922d391f322e43a1b0addf5a632c1b92'), 'light', {renderer: 'canvas'});\n", "\n", "var option_922d391f322e43a1b0addf5a632c1b92 = {\n", " \"title\": [\n", " {\n", " \"text\": \"Box plot\",\n", " \"left\": \"auto\",\n", " \"top\": \"auto\",\n", " \"textStyle\": {\n", " \"fontSize\": 18\n", " },\n", " \"subtextStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"toolbox\": {\n", " \"show\": true,\n", " \"orient\": \"vertical\",\n", " \"left\": \"95%\",\n", " \"top\": \"center\",\n", " \"feature\": {\n", " \"saveAsImage\": {\n", " \"show\": true,\n", " \"title\": \"\\u4e0b\\u8f7d\\u56fe\\u7247\"\n", " },\n", " \"restore\": {\n", " \"show\": true\n", " },\n", " \"dataView\": {\n", " \"show\": true\n", " }\n", " }\n", " },\n", " \"series_id\": 2083032,\n", " \"tooltip\": {\n", " \"trigger\": \"item\",\n", " \"triggerOn\": \"mousemove|click\",\n", " \"axisPointer\": {\n", " \"type\": \"line\"\n", " },\n", " \"textStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"backgroundColor\": \"rgba(50,50,50,0.7)\",\n", " \"borderColor\": \"#333\",\n", " \"borderWidth\": 0\n", " },\n", " \"series\": [\n", " {\n", " \"type\": \"boxplot\",\n", " \"name\": \"boxplot\",\n", " \"data\": [\n", " [\n", " 650,\n", " 850.0,\n", " 940.0,\n", " 980.0,\n", " 1070\n", " ],\n", " [\n", " 760,\n", " 800.0,\n", " 845.0,\n", " 895.0,\n", " 960\n", " ],\n", " [\n", " 620,\n", " 840.0,\n", " 855.0,\n", " 880.0,\n", " 970\n", " ],\n", " [\n", " 720,\n", " 762.5,\n", " 815.0,\n", " 875.0,\n", " 920\n", " ],\n", " [\n", " 740,\n", " 802.5,\n", " 810.0,\n", " 870.0,\n", " 950\n", " ]\n", " ],\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": false,\n", " \"position\": \"top\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " },\n", " \"markPoint\": {\n", " \"data\": []\n", " },\n", " \"markLine\": {\n", " \"data\": []\n", " },\n", " \"seriesId\": 2083032\n", " }\n", " ],\n", " \"legend\": [\n", " {\n", " \"data\": [\n", " \"boxplot\"\n", " ],\n", " \"selectedMode\": \"multiple\",\n", " \"show\": true,\n", " \"left\": \"center\",\n", " \"top\": \"top\",\n", " \"orient\": \"horizontal\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"xAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"category\",\n", " \"splitLine\": {\n", " \"show\": false\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"data\": [\n", " \"expr1\",\n", " \"expr2\",\n", " \"expr3\",\n", " \"expr4\",\n", " \"expr5\"\n", " ]\n", " }\n", " ],\n", " \"yAxis\": [\n", " {\n", " \"show\": true,\n", " \"nameLocation\": \"middle\",\n", " \"nameGap\": 25,\n", " \"nameTextStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"axisTick\": {\n", " \"alignWithLabel\": false\n", " },\n", " \"inverse\": false,\n", " \"boundaryGap\": true,\n", " \"type\": \"value\",\n", " \"splitLine\": {\n", " \"show\": true\n", " },\n", " \"axisLine\": {\n", " \"lineStyle\": {\n", " \"width\": 1\n", " }\n", " },\n", " \"axisLabel\": {\n", " \"interval\": \"auto\",\n", " \"formatter\": \"{value} \",\n", " \"rotate\": 0,\n", " \"margin\": 8,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " }\n", " ],\n", " \"color\": [\n", " \"#c23531\",\n", " \"#2f4554\",\n", " \"#61a0a8\",\n", " \"#d48265\",\n", " \"#749f83\",\n", " \"#ca8622\",\n", " \"#bda29a\",\n", " \"#6e7074\",\n", " \"#546570\",\n", " \"#c4ccd3\",\n", " \"#f05b72\",\n", " \"#ef5b9c\",\n", " \"#f47920\",\n", " \"#905a3d\",\n", " \"#fab27b\",\n", " \"#2a5caa\",\n", " \"#444693\",\n", " \"#726930\",\n", " \"#b2d235\",\n", " \"#6d8346\",\n", " \"#ac6767\",\n", " \"#1d953f\",\n", " \"#6950a1\",\n", " \"#918597\",\n", " \"#f6f5ec\"\n", " ]\n", "};\n", "myChart_922d391f322e43a1b0addf5a632c1b92.setOption(option_922d391f322e43a1b0addf5a632c1b92);\n", "\n", " });\n", "</script>\n" ], "text/plain": [ "<pyecharts.charts.boxplot.Boxplot at 0x111688588>" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from pyecharts import Boxplot\n", "\n", "boxplot = Boxplot(\"Box plot\")\n", "x_axis = ['expr1', 'expr2', 'expr3', 'expr4', 'expr5']\n", "y_axis = [\n", " [850, 740, 900, 1070, 930, 850, 950, 980, 980, 880,\n", " 1000, 980, 930, 650, 760, 810, 1000, 1000, 960, 960],\n", " [960, 940, 960, 940, 880, 800, 850, 880, 900, 840,\n", " 830, 790, 810, 880, 880, 830, 800, 790, 760, 800],\n", " [880, 880, 880, 860, 720, 720, 620, 860, 970, 950,\n", " 880, 910, 850, 870, 840, 840, 850, 840, 840, 840],\n", " [890, 810, 810, 820, 800, 770, 760, 740, 750, 760,\n", " 910, 920, 890, 860, 880, 720, 840, 850, 850, 780],\n", " [890, 840, 780, 810, 760, 810, 790, 810, 820, 850,\n", " 870, 870, 810, 740, 810, 940, 950, 800, 810, 870]\n", "]\n", "_yaxis = boxplot.prepare_data(y_axis) \n", "boxplot.add(\"boxplot\", x_axis, _yaxis)\n", "boxplot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 퍼널" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<script>\n", " require.config({\n", " paths: {\n", " 'echarts': 'https://cdnjs.cloudflare.com/ajax/libs/echarts/4.1.0/echarts.min'\n", " }\n", " });\n", "</script>\n", " <div id=\"2547fda17d11453b90bee930d3fe169c\" style=\"width:700px;height:500px;\"></div>\n", "\n", "\n", "<script>\n", " require(['echarts'], function(echarts) {\n", " \n", "var myChart_2547fda17d11453b90bee930d3fe169c = echarts.init(document.getElementById('2547fda17d11453b90bee930d3fe169c'), 'light', {renderer: 'canvas'});\n", "\n", "var option_2547fda17d11453b90bee930d3fe169c = {\n", " \"title\": [\n", " {\n", " \"text\": \"\\ud37c\\ub110 \\uadf8\\ub798\\ud504\",\n", " \"left\": \"auto\",\n", " \"top\": \"auto\",\n", " \"textStyle\": {\n", " \"fontSize\": 18\n", " },\n", " \"subtextStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"toolbox\": {\n", " \"show\": true,\n", " \"orient\": \"vertical\",\n", " \"left\": \"95%\",\n", " \"top\": \"center\",\n", " \"feature\": {\n", " \"saveAsImage\": {\n", " \"show\": true,\n", " \"title\": \"\\u4e0b\\u8f7d\\u56fe\\u7247\"\n", " },\n", " \"restore\": {\n", " \"show\": true\n", " },\n", " \"dataView\": {\n", " \"show\": true\n", " }\n", " }\n", " },\n", " \"series_id\": 3591842,\n", " \"tooltip\": {\n", " \"trigger\": \"item\",\n", " \"triggerOn\": \"mousemove|click\",\n", " \"axisPointer\": {\n", " \"type\": \"line\"\n", " },\n", " \"textStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"backgroundColor\": \"rgba(50,50,50,0.7)\",\n", " \"borderColor\": \"#333\",\n", " \"borderWidth\": 0\n", " },\n", " \"series\": [\n", " {\n", " \"type\": \"funnel\",\n", " \"name\": \"\\ud37c\\ub110\",\n", " \"data\": [\n", " {\n", " \"name\": \"A\",\n", " \"value\": 20\n", " },\n", " {\n", " \"name\": \"B\",\n", " \"value\": 40\n", " },\n", " {\n", " \"name\": \"C\",\n", " \"value\": 60\n", " },\n", " {\n", " \"name\": \"D\",\n", " \"value\": 80\n", " },\n", " {\n", " \"name\": \"E\",\n", " \"value\": 100\n", " },\n", " {\n", " \"name\": \"F\",\n", " \"value\": 120\n", " }\n", " ],\n", " \"label\": {\n", " \"normal\": {\n", " \"show\": true,\n", " \"position\": \"inside\",\n", " \"textStyle\": {\n", " \"color\": \"#fff\",\n", " \"fontSize\": 12\n", " }\n", " },\n", " \"emphasis\": {\n", " \"show\": true,\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " }\n", " }\n", " ],\n", " \"legend\": [\n", " {\n", " \"data\": [\n", " \"E\",\n", " \"B\",\n", " \"F\",\n", " \"C\",\n", " \"A\",\n", " \"D\"\n", " ],\n", " \"selectedMode\": \"multiple\",\n", " \"show\": true,\n", " \"left\": \"center\",\n", " \"top\": \"top\",\n", " \"orient\": \"horizontal\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"color\": [\n", " \"#c23531\",\n", " \"#2f4554\",\n", " \"#61a0a8\",\n", " \"#d48265\",\n", " \"#749f83\",\n", " \"#ca8622\",\n", " \"#bda29a\",\n", " \"#6e7074\",\n", " \"#546570\",\n", " \"#c4ccd3\",\n", " \"#f05b72\",\n", " \"#ef5b9c\",\n", " \"#f47920\",\n", " \"#905a3d\",\n", " \"#fab27b\",\n", " \"#2a5caa\",\n", " \"#444693\",\n", " \"#726930\",\n", " \"#b2d235\",\n", " \"#6d8346\",\n", " \"#ac6767\",\n", " \"#1d953f\",\n", " \"#6950a1\",\n", " \"#918597\",\n", " \"#f6f5ec\"\n", " ]\n", "};\n", "myChart_2547fda17d11453b90bee930d3fe169c.setOption(option_2547fda17d11453b90bee930d3fe169c);\n", "\n", " });\n", "</script>\n" ], "text/plain": [ "<pyecharts.charts.funnel.Funnel at 0x110c89b38>" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from pyecharts import Funnel\n", "\n", "attr = [\"A\", \"B\", \"C\", \"D\", \"E\", \"F\"]\n", "value = [20, 40, 60, 80, 100, 120]\n", "funnel = Funnel(\"퍼널 그래프\")\n", "funnel.add(\n", " \"퍼널\",\n", " attr,\n", " value,\n", " is_label_show=True,\n", " label_pos=\"inside\",\n", " label_text_color=\"#fff\",\n", ")\n", "funnel.width=700\n", "funnel.height=500\n", "funnel" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Gauge" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<script>\n", " require.config({\n", " paths: {\n", " 'echarts': 'https://cdnjs.cloudflare.com/ajax/libs/echarts/4.1.0/echarts.min'\n", " }\n", " });\n", "</script>\n", " <div id=\"50e7288ced72497f84ed17005f045e18\" style=\"width:800px;height:400px;\"></div>\n", "\n", "\n", "<script>\n", " require(['echarts'], function(echarts) {\n", " \n", "var myChart_50e7288ced72497f84ed17005f045e18 = echarts.init(document.getElementById('50e7288ced72497f84ed17005f045e18'), 'light', {renderer: 'canvas'});\n", "\n", "var option_50e7288ced72497f84ed17005f045e18 = {\n", " \"title\": [\n", " {\n", " \"text\": \"Gauge Graph\",\n", " \"left\": \"auto\",\n", " \"top\": \"auto\",\n", " \"textStyle\": {\n", " \"fontSize\": 18\n", " },\n", " \"subtextStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"toolbox\": {\n", " \"show\": true,\n", " \"orient\": \"vertical\",\n", " \"left\": \"95%\",\n", " \"top\": \"center\",\n", " \"feature\": {\n", " \"saveAsImage\": {\n", " \"show\": true,\n", " \"title\": \"\\u4e0b\\u8f7d\\u56fe\\u7247\"\n", " },\n", " \"restore\": {\n", " \"show\": true\n", " },\n", " \"dataView\": {\n", " \"show\": true\n", " }\n", " }\n", " },\n", " \"series_id\": 6762080,\n", " \"tooltip\": {\n", " \"trigger\": \"item\",\n", " \"triggerOn\": \"mousemove|click\",\n", " \"axisPointer\": {\n", " \"type\": \"line\"\n", " },\n", " \"formatter\": \"{a} <br/>{b} : {c}%\",\n", " \"textStyle\": {\n", " \"fontSize\": 14\n", " },\n", " \"backgroundColor\": \"rgba(50,50,50,0.7)\",\n", " \"borderColor\": \"#333\",\n", " \"borderWidth\": 0\n", " },\n", " \"series\": [\n", " {\n", " \"type\": \"gauge\",\n", " \"detail\": {\n", " \"formatter\": \"{value}%\"\n", " },\n", " \"name\": \"\\uc774\\uc6a9\\ub960\",\n", " \"min\": 0,\n", " \"max\": 100,\n", " \"startAngle\": 225,\n", " \"endAngle\": -45,\n", " \"data\": [\n", " {\n", " \"value\": 66.66,\n", " \"name\": \"\\uac00\\uc6b4\\ub370\"\n", " }\n", " ]\n", " }\n", " ],\n", " \"legend\": [\n", " {\n", " \"data\": [\n", " \"\\uc774\\uc6a9\\ub960\"\n", " ],\n", " \"selectedMode\": \"multiple\",\n", " \"show\": true,\n", " \"left\": \"center\",\n", " \"top\": \"top\",\n", " \"orient\": \"horizontal\",\n", " \"textStyle\": {\n", " \"fontSize\": 12\n", " }\n", " }\n", " ],\n", " \"color\": [\n", " \"#c23531\",\n", " \"#2f4554\",\n", " \"#61a0a8\",\n", " \"#d48265\",\n", " \"#749f83\",\n", " \"#ca8622\",\n", " \"#bda29a\",\n", " \"#6e7074\",\n", " \"#546570\",\n", " \"#c4ccd3\",\n", " \"#f05b72\",\n", " \"#ef5b9c\",\n", " \"#f47920\",\n", " \"#905a3d\",\n", " \"#fab27b\",\n", " \"#2a5caa\",\n", " \"#444693\",\n", " \"#726930\",\n", " \"#b2d235\",\n", " \"#6d8346\",\n", " \"#ac6767\",\n", " \"#1d953f\",\n", " \"#6950a1\",\n", " \"#918597\",\n", " \"#f6f5ec\"\n", " ]\n", "};\n", "myChart_50e7288ced72497f84ed17005f045e18.setOption(option_50e7288ced72497f84ed17005f045e18);\n", "\n", " });\n", "</script>\n" ], "text/plain": [ "<pyecharts.charts.gauge.Gauge at 0x10cf8d9e8>" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from pyecharts import Gauge\n", "\n", "gauge = Gauge(\"Gauge Graph\")\n", "gauge.add(\"이용률\", \"가운데\", 66.66)\n", "gauge" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }
mit
colour-science/colour-ipython
notebooks/adaptation/cmccat2000.ipynb
1
796
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# !!! D . R . A . F . T !!!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# CMCCAT2000 Chromatic Adaptation Model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Bibliography" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 1 }
bsd-3-clause
nick-youngblut/SIPSim
ipynb/bac_genome/fullCyc/trimDataset/rep4_DBL-comm_bw_ALL_FINAL.ipynb
1
1461974
null
mit
hetaodie/hetaodie.github.io
assets/media/uda-ml/deep/azjc/卷积神经网络的例子/dog/dog_app_zh.ipynb
1
546585
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## 卷积神经网络(Convolutional Neural Network, CNN)\n", "\n", "## 项目:实现一个狗品种识别算法App\n", "\n", "在这个notebook文件中,有些模板代码已经提供给你,但你还需要实现更多的功能来完成这个项目。除非有明确要求,你无须修改任何已给出的代码。以**'(练习)'**开始的标题表示接下来的代码部分中有你需要实现的功能。这些部分都配有详细的指导,需要实现的部分也会在注释中以'TODO'标出。请仔细阅读所有的提示。\n", "\n", "除了实现代码外,你还**需要**回答一些与项目及代码相关的问题。每个需要回答的问题都会以 **'问题 X'** 标记。请仔细阅读每个问题,并且在问题后的 **'回答'** 部分写出完整的答案。我们将根据 你对问题的回答 和 撰写代码实现的功能 来对你提交的项目进行评分。\n", "\n", ">**提示:**Code 和 Markdown 区域可通过 **Shift + Enter** 快捷键运行。此外,Markdown可以通过双击进入编辑模式。\n", "\n", "项目中显示为_选做_的部分可以帮助你的项目脱颖而出,而不是仅仅达到通过的最低要求。如果你决定追求更高的挑战,请在此 notebook 中完成_选做_部分的代码。\n", "\n", "---\n", "\n", "### 让我们开始吧\n", "在这个notebook中,你将迈出第一步,来开发可以作为移动端或 Web应用程序一部分的算法。在这个项目的最后,你的程序将能够把用户提供的任何一个图像作为输入。如果可以从图像中检测到一只狗,它会输出对狗品种的预测。如果图像中是一个人脸,它会预测一个与其最相似的狗的种类。下面这张图展示了完成项目后可能的输出结果。(……实际上我们希望每个学生的输出结果不相同!)\n", "\n", "![Sample Dog Output](images/sample_dog_output.png)\n", "\n", "在现实世界中,你需要拼凑一系列的模型来完成不同的任务;举个例子,用来预测狗种类的算法会与预测人类的算法不同。在做项目的过程中,你可能会遇到不少失败的预测,因为并不存在完美的算法和模型。你最终提交的不完美的解决方案也一定会给你带来一个有趣的学习经验!\n", "\n", "### 项目内容\n", "\n", "我们将这个notebook分为不同的步骤,你可以使用下面的链接来浏览此notebook。\n", "\n", "* [Step 0](#step0): 导入数据集\n", "* [Step 1](#step1): 检测人脸\n", "* [Step 2](#step2): 检测狗狗\n", "* [Step 3](#step3): 从头创建一个CNN来分类狗品种\n", "* [Step 4](#step4): 使用一个CNN来区分狗的品种(使用迁移学习)\n", "* [Step 5](#step5): 建立一个CNN来分类狗的品种(使用迁移学习)\n", "* [Step 6](#step6): 完成你的算法\n", "* [Step 7](#step7): 测试你的算法\n", "\n", "在该项目中包含了如下的问题:\n", "\n", "* [问题 1](#question1)\n", "* [问题 2](#question2)\n", "* [问题 3](#question3)\n", "* [问题 4](#question4)\n", "* [问题 5](#question5)\n", "* [问题 6](#question6)\n", "* [问题 7](#question7)\n", "* [问题 8](#question8)\n", "* [问题 9](#question9)\n", "* [问题 10](#question10)\n", "* [问题 11](#question11)\n", "\n", "\n", "---\n", "<a id='step0'></a>\n", "## 步骤 0: 导入数据集\n", "\n", "### 导入狗数据集\n", "在下方的代码单元(cell)中,我们导入了一个狗图像的数据集。我们使用 scikit-learn 库中的 `load_files` 函数来获取一些变量:\n", "- `train_files`, `valid_files`, `test_files` - 包含图像的文件路径的numpy数组\n", "- `train_targets`, `valid_targets`, `test_targets` - 包含独热编码分类标签的numpy数组\n", "- `dog_names` - 由字符串构成的与标签相对应的狗的种类" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "There are 133 total dog categories.\n", "There are 8351 total dog images.\n", "\n", "There are 6680 training dog images.\n", "There are 835 validation dog images.\n", "There are 836 test dog images.\n" ] } ], "source": [ "from sklearn.datasets import load_files \n", "from keras.utils import np_utils\n", "import numpy as np\n", "from glob import glob\n", "\n", "# define function to load train, test, and validation datasets\n", "def load_dataset(path):\n", " data = load_files(path)\n", " dog_files = np.array(data['filenames'])\n", " dog_targets = np_utils.to_categorical(np.array(data['target']), 133)\n", " return dog_files, dog_targets\n", "\n", "# load train, test, and validation datasets\n", "train_files, train_targets = load_dataset('/data/dog_images/train')\n", "valid_files, valid_targets = load_dataset('/data/dog_images/valid')\n", "test_files, test_targets = load_dataset('/data/dog_images/test')\n", "\n", "# load list of dog names\n", "dog_names = [item[20:-1] for item in sorted(glob(\"/data/dog_images/train/*/\"))]\n", "\n", "# print statistics about the dataset\n", "print('There are %d total dog categories.' % len(dog_names))\n", "print('There are %s total dog images.\\n' % len(np.hstack([train_files, valid_files, test_files])))\n", "print('There are %d training dog images.' % len(train_files))\n", "print('There are %d validation dog images.' % len(valid_files))\n", "print('There are %d test dog images.'% len(test_files))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 导入人脸数据集\n", "\n", "在下方的代码单元中,我们导入人脸图像数据集,文件所在路径存储在名为 `human_files` 的 numpy 数组。" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "There are 13233 total human images.\n" ] } ], "source": [ "import random\n", "random.seed(8675309)\n", "\n", "# 加载打乱后的人脸数据集的文件名\n", "human_files = np.array(glob(\"/data/lfw/*/*\"))\n", "random.shuffle(human_files)\n", "\n", "# 打印数据集的数据量\n", "print('There are %d total human images.' % len(human_files))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "<a id='step1'></a>\n", "## 步骤1:检测人脸\n", " \n", "我们将使用 OpenCV 中的 [Haar feature-based cascade classifiers](http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html) 来检测图像中的人脸。OpenCV 提供了很多预训练的人脸检测模型,它们以XML文件保存在 [github](https://github.com/opencv/opencv/tree/master/data/haarcascades)。我们已经下载了其中一个检测模型,并且把它存储在 `haarcascades` 的目录中。\n", "\n", "在如下代码单元中,我们将演示如何使用这个检测模型在样本图像中找到人脸。" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of faces detected: 1\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQsAAAD8CAYAAABgtYFHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvdmTJFl23vc79153jz232qu7unu6ZzBLYzbMgmVAgYQwJGAghg8ktJkRNAM5euE750+ADHqhmcxknAeaSJNJBAEIIkwPEiFQEM20AEMsHBEDzNZ7dXWtucXmfpejh+sRGZmd1V3VtUz1dHxmaZkRGRHpGeH383PP+c53RFVZY4011ng3mB/0AayxxhrvD6zJYo011rgnrMlijTXWuCesyWKNNda4J6zJYo011rgnrMlijTXWuCc8MrIQkb8hIt8Wke+JyNce1d9ZY401Hg/kUegsRMQC3wF+DngD+Abwn6nqtx76H1tjjTUeCx5VZPEF4Huq+pKqNsC/AL7yiP7WGmus8RjgHtHrXgZeX7n9BvDFuz1YRNYy0jXWePS4papn3+uTHxVZyCn3HSMEEfkq8NVH9PfXWGONt+PVB3nyoyKLN4CnV24/Bby5+gBV/TrwdVhHFmus8X7Ao8pZfAP4sIg8JyIl8J8Cv/uI/tYaa6zxGPBIIgtVDSLyD4H/DbDAP1XVP38Uf2uNNdZ4PHgkpdP7Poj1NmSNNR4H/lhVP/den7xWcK6xxhr3hDVZ/JBCJBekjDn6iFd/XmON+8X67PkhxWJ7qZqW9y12eyL5a4017gePqnS6xhOC1ZRUSvq2+9ZY416xJosfUiwih6JwGGMIIaCqqCopHT1mNcJI6e2v8ziO8TSsCe3JwxNBFtZaRqPBD/owfmiQUsIYgzGGXq9HURTEGIkx0jQNTdOgqojI8guOti6PC/IObPEkVOl+2LC7u/9Az38iyAKU9Lgvaz/kCCHgXI4qqqoixkgIgRgjwPL9Xl2w77R4HwXWZPH+whNCFo//RP1hhjFmSQbW2iVpAFRVRQgBEVkuyB9UZPFOWJ8PTx6eGLJY4+3QE+vlpHTtbsuprmuKosAYg3MOjBCCRyyoJFQSGF0mBpKm5bbk7cgkIyJETicTs3L34hhXX0lEUDIZLf4nVV0+1hiDiJBSWpLcusz75GH9ibxPcK8aVyUvtEVEYa1FFDQlQgjLrUiMkZTSfUUT5i4PTe8SBCwSq6oKbUXGWrv83eI4RGSZa1njycM6sngf4G5E8U7LfBFVLK7amoTU5ivgKMw/9l31xGu+fdGeRhjvRBZLMlqJWowxFEVBE48iiZMJ13UO68nDmiyeYLzXjhlr7TKkn8/nFEWRr9ri0FQfy1GsRhZG5PjWpv2VqpI0rVROzPE8hySStDsbyce9eNW0IAFY5klE82OMMafmTVJK65zFE4g1WTzBWCyX++UMESHGSF3XxBiXIX9KCSW+bYEuF+bJLYkk9JSw4bSE6N22KIvHrlZfUkp470+tyMBxElnjycGaLN4HEN5OGItE4WnRx2oeoAl+GRGoRoqiuDtZcJwActSgoObYFmGZnGwfa1bW+snjcc6R2nzJIicBLEu4q39/TRBPNtZk8T7EapVkEfavIqGIbbcKIaEagbzIYwhHz1UFjvIUVsxKdCErDJUQsSukklCV5TbGmLtvGZxzS6IAjkU5J0lqcd96C/JkYk0W7zPcSznVOdNWO5R8ITd5S7PoRD3xjMWit06Iy8SitjmMlbJmzFGANYZk216TJJjTciDtoi/LEoCmaUgpEWNcvt5qRQSOyqXrCOPJxJos3gdYLJ2TRLGKk78y5ihKUE1obMukKeGK8tjV25qchAyNx61GCUnIUYWQVHHWgBpQsAoWAyaTRt6e5CNJwrFti4jkEu4Kqayjh/cf1mTxPsFJojhWamxvZ52V4psGKzkisCKAIMaiqhSFQ2NCUvsaqdVAAKUVCptPiaSyzHskBAMYsSiLfMhKviMpIkclVEObZxGIISx7VU4e+xrvL6zJ4gnGyYhitTAhxmBSW+5MirQ5BKtCryzzNiREiAkjgkWxxlDgGHYGVEWBc47COpxzOCv4+RxpcwwhRlKCqO3WwRaEqARNy7Ksb4VdwVqSKpGs0FQgkQOb8XicyWFFpQlrOff7EWuyeMJxGlHAYrHlqGDxK4ugKGE+wxlLZQy2JYTKFThj6VYV5zY3EYVQN4QQMElxxlLaEgUChigCFoImguSopEZxgBpHIuEQIpGaLAU3qiTJx7wgj7uRwjq6eP9hTRZPME4jCmVFf7FIKCrYBNpuSWyCfrdDp6zoFCVVUVIVltI6NEQKFUTBGUe0WbkpCVKKpNhWKlQRY3PEEgMhKg4hKUQiksAlMBj84uAkH1tc1V+024+0ksQ8KQZb4/2BNVm8j7C6vDJJtF8pf1tUPLa3thgNhnTLCmcFJ2b5ZSvD/GCMUSicpWgFXN57rICmCCEnNQ0JSQl8zIRkXa6oxoS2vWgGyQnUlICjyCKXZBUxR9WW1YTnqs5ijfcH1mTxGKDt2yy0fRDS7ulbmTTkhbeICqS9PW+Th8aCE4NITi6G6NGkDIsCEwKEQBdh1OnR63TZ2RhRVVVuVddASgEWCxtA4vIK36SIxggidJyh8WCc4GMgRiWmiE8x5y4kkTC5IGJAxOWF38yIkoiqpDZvkWShnWijoXbLEReeoEaOs99DwGrbPRyVYNfbnYeDNVk8Jhxr2da8VhKZFO7WiGWQLK7SmJvAJF/xS+OwVom+oWMKRht9NnsDhlWX0rpcClXQFEAVQy5dWjE0TUNhLAbBoAgCbVnTiGCMQnx7E9dSLKV5m5K3FRE1NkcSulB8sqyuwPGf4Tg/yNsKvg8fa6J4eFiTxWPAIqI4LqBKGFg2YJ1EEhCTk4a58SqhSbEmRxkpBAa2ZHM44Pxoi41eD6dCChGHokTiYnsigklgDRRiwIJoNsgxkhMNTgxGNLeIq8GoA1WsCK6VjUMbDaUc4SQBYsp/rfWqSByVYpMq+hgIYYF1HuTRYk0WjwUpby04IoxFeVHaTs3Yyq5VjsJziQFNSqUGq2ASFAqFUS5feIqd4YCOK7AxQhOQFDEK0QectRRklaQriqyWTEqtkRggpYDhSHqdomeu7WJHSPGoDKq5ZZSZb3JIZAziDCllX4xcPckkEclbkZzBUIyxd31XHvXiXkcVDxdrsngckITqCZG1ZvJQsdmBauFaZTSTiggExSJYVUwIFGIYFRUb/R7nRhv0CotTwVryNgBFVDFVh5QCKQkWoRCT8xUCDgEDFttuLSzERFAI2s4ZabUQcRElqOawJOZKh6C5NKqJqAk1hsQikgA1ucKCkUdCCO9Ujl39eU0WDxdrsngMyAm+lLOCx3DitiQWcmkLFNagMVFZS+W69IuC7cGAzcGQrhiKBE4UKyBGSMkQU6RXFcRoaBadnqrQGvaKQGEdaiQnVUWImp21TFJSq+iMmvMScRHoGItYg2oitAnP1DZ/RaNLoljmX0zOSCyyH+tptu9/rMniMWCRl0iSMCsEkWCZ+VRpl9XKFdEZIfpIUTi2+wM2ez02un36VYVGj41Au2hFQVAKZ0khIkYorM1OWTY3lunSxNdlaz0FiYmUFklLg4+KjwnvYyYKa9BW+k1rBBxiJLY5CzFyZHSzQhQ/yMEf69zFo8GaLB4LlCTHr7SoaXMB2ZZysc6klWaL5JxFZQ1bgxFnNzfZ7A2oxEDwaCuiMuTEp0gr/W49IxKavSRgqaMIrRHOvKnb7YWgMRHConfDEFKkCZ550yClw6gwa2rUGqJphxS1Sk3JfzTft2K6sVisuWLyaLYCq2XSVbOck0Sx9sp4eFiTxWPAqufE8pRtxUuaEixatlGczWVNTQmahtHGBme3NulYh8SItVDYgpBqED26gC9KlDGBywShLXHEmIgp5xdSVGLKDlgpxTaiaCMfc7Socjk0b0d0IeFevEZKSz2FaQuwJ907YbGgH+17u4pVY+B1vuLhY00WjwF2EZ8vcxZmKeUOKeGMoQRcVGyMlEYojOXKxUtsjzbYLLqkxmPnDR4IKdLrdknSKiol5qpKuzJDVJqQ6DjA5MJtFMEWJbVvqH048uQ0gmn9L6bNlFmoaYInEkkxi6py8jLhkxIV1NiletRHJUk6kqAbWSZTs/T74b+fdxNbvZvz1xoPhjVZPAas6ij0RFKzsBaNAZeUQoUSGJYVo16fi6NtyqLAtUYxpbNoSkR/fFFYKfLtdNRzURQFiZzzWE4ia70qmhiynqIN5Q1C3XiaFI+2GDYnS0PUvAWJaanENFmokXtI0DZFkbcnizzu0m/rnUw4HgJObkfgeISxxsPDmiweA8xKRJFl3lkUpZKwYoiApETHOjY7HXY2N9gajNioiqy+VMWJtElMk7UL2RFvWf40ConcAGacpSwt3nuaGBAsxmQJ98IeT5MQJOJ9xNrEvKmZp0Bcai3yVqYOEaOWgKA2q0Wy6EqXik2j5P+h/S8XzW0JRbi7zuK94l4ii0Ur/Lol/uFhTRaPAbbNaiZpZd5tclNabYQTQymWYbfHha1tzoxGVEVBmTwaI4VmMtDVYTwIUY4bytAqK0lCYSpCmJFSoixLLEqY5UQnmhOgvvHM5w1lWeK9Z+prjLMYY7OIK+YFZozBikGNyTmMNorIgu2ctpXUirjaSCUutJuPcI2+GwGsI4uHiwciCxF5BTgkX1iCqn5ORLaB3wCeBV4BfllVdx/sMN/fWCkUnECWbReFpRLDsNtha2PEoNsnNQ0SE7HxqEmIyVEGIuiiXNm+qFGWmgcNkZlvcM5R1x6M0nUOIyBzYT6fk8iLvq49s9ls2QUaQqB0FuMMtigoNBJVcFUJMVd0sg7jSPRkRfDp6L9breo8jsW6+ncWx7QmiUeDhxFZ/FVVvbVy+2vA76vqr4nI19rb/+gh/J0nBu/ohblyni4e1rgcFotVos/5ggIwSQlNTSeWPHv2AmdGm/S0QOYRFwRfR8Awi4GyslDkzlPn8hYDDEazQU3SSDKQnLRt5x7nHLN5w3TagDHEoJjCMZ4f0gSPFkLtmrzYLdRVQzmoqHWGtQ21zIg24GdKt9uja3vMg0ITScaSTNZgWDEkJCs5jaAYlNj2noRj74kuSpmYBxqipKrEGI/muXK05VjNV6y3Hw8Pj2Ib8hXgZ9qf/xnwB/yQkMW75epOnvxLsZK2fefatpubLMNO3lPa7GR17uxZhlUFtSeFSL/TxcdWD9EuAtc2gS1mmYpYNKzOLBWctVSFYzatsUWZxwQ2DWoUW1kmB2Oa6JnMZ4g1YISqKrBFRWm7bJ/ZQkTwKXJwcICf1zRNwBqDMVC5Au0aojhCTDQxt79Lm8Vd9LrAYqHePa56UJw0BV4liTVhPHw8KFko8K9FRIF/oqpfB86r6jUAVb0mIudOe6KIfBX4avvzAx7G48Vpk8IXWDReHWs7b/ULNiYKEcTnBda3hu3BiHObmwzKkjSbQSuQmk0jlbVL6/wY8oK11qAxZgPdNrGYW8sttp2cfufOjZyorGuSQOM9TWrwyeM10mjNaHvAxvYWm1s7bO2c5emnn0Yl8b1XX2a0uQEWdnd3OTw8JPlEM/fs3drPxBGUugl5JKFCCJGIQUhtL23MjXOynIO8eOfa9+jBBh+fJIXFWIG1hd+jxYOSxU+p6pstIfyeiPzlvT6xJZavAzhn3xebzNV28qWyWY//fpUoFr0SprXLt7lEQPINvaJiZzjkwuY2O4MRxntSzHJtUYi+gSrP3HDGHk0aV5ZJyxBSJq62ZOq9X84bDSHSNA1eIUo2t2miJ1nlzLmzPHXlac5duIBYR1l02Dq7xWg04pvf/hbd1GPQH1J2O8hsirMFVbeLswV17bl9a5fx+BBrHWXlmMQ5qCDELM9S0yo7pSXWlYWqpr1pWNGzvmcstiOrtxcq1nUJ9eHigSheVd9sv98Afgf4AnBdRC4CtN9vPOhBPklYjRiMshzyu7i9wIIoVLI7VDaOyfLsyho2ul0u7exwZjikBCox9MqS0tg8k0PM8sRf7MmlvV+UbG3XzgIxmjUWxKMhPmqEst/FlIa6aahTQ6MRHxs+9MJzfOgjz/PUs08xGPXxBA4mBySByWxGHTwUFikcyQimUyKFZbA14tyFs/T6HWL0LTksBGExd6wu/v/2in86HjyyOPl3YoxrYnjEeM+fmoj0RWS4+Bn4MvAfgN8FfqV92K8A/+pBD/L9gLeNEFzIuQVC8lgrEAMOGHU6bA8GnB1t0DUW4wMmZeWmaZ0ujGEpplJVdGHrD1gRQtNgNDt6w3Eh0iJn4KoSRKhTgyfShJqpn3HxymVsp2AWGuaxhkKIBm7t7eI6ZRZhWUFLC5WjM+zT3RxhCsfmzhZnz59hc2dIp1/gU0PehWZiMKLL/EVeuCvl3Qckibvh2P+uR3Ne18TxcPEg25DzwO+0e0EH/A+q+r+KyDeAfykivwq8BvydBz/MJw9G304QC5y8WzQrKoMqDqVfddjo9RiUHcJ4gmiCmDtPjeQkZUqJ+XwOgBPyFsMYNBZoTJAUW+ToI7akEltttVhLbDx+NuNwMqb2Df1+hUa4ePEpnn3hea7fvMHB5JCZbxgMN6h6FRjDuUsX6Y4GdAZD5inRrRs2trbpVR3emLzMYHPAuXSB8WzCZDJhMn8TMYDm9npan4ylzd4jEFqsmv+eTGie/FrnKh4e3jNZqOpLwKdOuf828LMPclBPMo5tNVYaxBadnqq5MUxElipH23aKmpgYDnvsDEd0jMFPJjjNqktLbiQzxhDkSAy1yEVsbm6SYmR/fx8nho2NDeraY8uizV+ErNYUQVzWRuzu7TFralxZ0nhPZ9Dn4598kfNPXaIa9rl5+xaHkykHB2MGYqjrmsvPXmEePMYWFFWXsxcvsTkakkJg+/xZxvMZIXk+8alPcOfWTfYP7zALc3COWZOb10SEEDxlWWYf0BYPqy5yspN0aQZ8wjF8TRQPF48mLvwhxclkJhyVCaOm5VCdxaDgbIormBRRHxh2u2wPhgy7HbquzNuOpIjGvOdPR9O+YowUZUlRlseukAvDmqZpckk0xOUs0UVFICEcHB4ynk4w1hI1MWnm9IcDnvnQc8x9w9a5Mzz7wgtcePppeqMNksB4OqMoO7iiQo3gyoJ+v4+KIUXo9nscTicko1y+cplnXniWnQtnSFl3jnFuORf1dHFUOvH94eJkKXX1a40Hx1rufR84Ji5iqYZeOloLcjT7s72GOhGGpsRPay6fu8DTZ84zcgVFSnSNRUpBEbz3pBSIrRRbBYqyQEQ4mE2OLbzCOurZnBiVWmrUC3XTEEJCjbC7u0eICYyj6JRMpp7zT1/iV//Lf8CLn/kEv/9//QGXnr5C1ekhtqIabhBCYjTcoq4DsVGSgY3+FmfPnuXWzet4lKo/onOlYjjsU3ZLDm9N6Gz0aFLEhwCuYuprEIt1xdL1+9hSbTtUH0U24Z1IYZ2/eHCsyeI+sGyUWnxfrQi2D8jaK2VRDBYBq3mSV7/sUJpcGpWkJBKlGNQZfMrlRmsstpVzL+z1clgfSDEb5DZNs4wmYozM5w2z+Rw1lqIoqMou0ddII4wnM5roOXv2HJ/89Kdoouf8pctcuHiZg8MJh9MZmqDq9uhXBddv36GwJUVVsjXaYnu0RZg2fP/N79CphHPnzqBG+f5LL/HGm69TdsqcxNWUm1oXcnTJ/4Nhdbt2lMPIjfMPN7BdE8KjxZos3iNOjhZMmhun8rbiyLVKREiTOZXNjWIOgyybviKp9a80rVRarEGMyaa3Kb+uaeXdqR1E7JOn0+kgkh22QwiEEMCCcy67YqWYzWmMobQlVadDrzvg2hsvM6/b3xuLGIsrqzy2MCQun7vI1s421lrG4zGvfPv7/Nmf/SmT8ZiP/MiziMLu7TtcvXqVxjeMNnKVhJAw1lIUhoTLepMQj9VCjn9f4/2GNVncB04OBEqy4ttgTHararcji8cbzT6X/W6fXqebr7QrQ3yitsM9zFHSLmpCUp5MnmLM9nhNThSWZbl8fgghL/qFjV1KuXt0OiVaS0rQ6/coTC4nzn2DMYa9vT1m3/ke1hY4V4IpuXHjFhvVJpfPX6DxkauvXuWtt95ib28PrQPbww32b92htJZoAleefpqiU1CHBlcUpFlzREBi8lAkWJrgPMlYb1/uDWuyuE8YXclVrN7fmtlqK8BajCNMmj0rep0OlSuIIWBiwhqDCPnxtCesZsu7pPl+hUwWJnteWGspbUEKOZqYzWriwm07RnwK1E2TtyfkcmvP9lELMWYiOxiPmU7nvPbmNcqqx7PPfojhcIubN+5wcHDAtatvcePWTd58802cc1y8cIFPfPRjHBzscXB4m8Ggj62Esl8hTnjt9VdxzqGqeXtkS4xtT6sfsHHvvWJNFveGNVncB+42ZjAJxPYKXxqwRjA+kHzAIkgJ/X4XGyLdZBkUFU6Fpq4pqoqgiXkKZGsbm4VWArNJjbWGsjCkTpGdtVNCnCMlwavPIz5CxCSlSLmjNRYd5ge7nBl2Kaxy2EzpuQT1DPUNYgz9wYii08HHmBvJHLx1401efuv79EcbXHjuIs8+82F2zlwmNJa3rt1Bb98m6Zzaj9m/cYeQDjncP2C40+VgPmU612z+GyOlzWVTwecRBwKKBSmIalEsyWZ5OppLxEYEoymLutQDuiIXN0tbwqUT+kPAaU1oa5yONVk8RGibe4i+QVQoigJtAjubW/S7PZxzuLSY0QG2MG2p1eBM+1Fovk+AwlhE2tbrlRJtCglrXH4dk6eBGYmQcmdoxFCWZe5STdlcJ/jEZDLh7NmzvL57m56xDDY2MOKYTqdMJhNijHQ6Hc6fP8/HPvoJzp65RFLHndtTqo5l7g8ZT3ap612m89tgZhyO7wAGYwyVMzQIJpmlkrIwZIFWzn7m+SKaxysaTblzts3x/KCwJol7w5os7gMnT6lFDiN7SmgeSqyaOy1jotMp2Bht8JGnLvM//uEf/SAO+Qivwz/5vR/sIbwfsLW1+YM+hCcWa1HWQ4JRKJxDY6BjCwqBUiw729t0bfGDPrw11nhgrCOLB0JrY932dECudBjnKIuSYbfH1mBAudJ9+bWf/hmIoW0313boT4MTlxOFKZF8IEWIyaOqzGNNEgUxhKjUITKb1tRNXFYdrBWqIr8GxtI0DYU1uMrR6VXUqWH70gX+9n/xn/Ctay/z+vVruG7FaHsL4yy3b99GJweI7dKp+nR6fTa3dojRU/Ud129cZTy9QUoN/W511Kuiwm/89/+Wq9duYE2FdRWqrZFFCljjs4s4bfs++fhUDLVv0CStifCRH4VqBFmRievivX73nMVpycqTPSQnH7e7u3e/H/wHEmuyuB+szCs95gil2UYuNp6y7QPpdvvsbIyorKPwfvkSmgLGGohpqc1YnMwx5sWvMWZT3ZQQJwSfaEKDVyUhNCExaxpizJ6YRtNSQB1Soup2iL6hdBWldThjUVMwOxzzW7/xLxldOcfgzAbb584y2h5xMBlzdXYIzZRbt2+ytXWWs65gMjkkmcjeZIzSgDTsH9wmNF2sLZhOGm7duM10PMNExVohzOd4H3DOUpWO0uR8RpI87yQGT/CehGJdmUmQlEcGiOU0KfhqD859f2R3cQC/G9bNZ3fHmizuFycGHC8sXIxCDIHCWtJ0Rnfo2ByMsJqozNHbvPCnUJsbxDCteAtZ9oQYbRdYAiuWZKBJiUYjSYWEpSZixIGRdpBP67ydlLLtNXHOYQ0QEyLKbDJmd3rA5pWzjPo99ndv8ub11zHO4JxQdCt6fc9oc8iZczsAVL2S2VyomwOq7iYiSrfsEmrhcO82hwdzmsksWwaiCAlnYWs0ZGdrgzM7I1SVEALT+YzxdM68bvAxMZnVBGldy40sZ4y8jRfUrGg/H45pzhr3jzVZPAQYwFlH7UO29e/1GPX6VNbgEkjwxx7vnMsLu2myq3aKmFZolbvPE04MTYoUYmlSZBYampha+/9EMhYfAhoTzmRfT+dc3hrg2dwa4FyujoTYEFBMadAQslXem28y8TNcVTDcGKDRowQuX77E01ee4+y5S2ANBwd3ODj07O8fcubskE5Rc+v6Hp1qSKcYYbRH9JFUQ9VzXDhzlu3tbS5cOMeZnW2sBubzOfOmZjKbcTCecHt3l8PJFO8N4iOe1syHI0Pf08aNvFOEcdLZ+6Q35/1idfbIGhlrsnhI0LYa4lB6RcGgU1FZCyHizPEzP7QzRqMmDLnvIzTZyTsP6DFIiExjwKoynteMm4YmKYvrt/cR9dlOxiCtTX8CEiEmyn4/y74bjwo0KVLPIvv1hI39fc5cPsdgc8jET9pZIpHB5gjnOjTNnPH4AKzhzp07uS8lwSvffx1fB5pZIswbDnen3HprF6tw8fw2zzz3HM88e4WdnR0qZ0nRMxkfYCRbCpZGqCx0nCUUhlAWWfYeszt5Dh3aIUhqchS3xCJfcfr7/05bh9NyFov738m3c43jWJPFe8YJK/uoOBUGZYdnL1zk4sYGHbFghTidLR+WUOZNs2xF9z7P76jnHuOKbNhplISyW9cosDebMQ8B37pgpQT13NOzBV1rcdZgLRiJFEYIoebgYI+iqIgKk9mcaeNJzhCM5d9/8y/48+9+l4uXL/ChD3+IS09dBBkxrac899zTHI4n+DDDmQ57e3tcv36Tb37zm7z8nZcoxRE9SJKlNuRXf+VXeOaZpym7JbP5hKapmU/H7O9PscFjg6dIEaxAr4M1yqhfcntvxqGdccgM0wheBSUdRRf64MW6k4v+XiKNNVGcjjVZ3Bfu7vyUW9MT/W6PYb+LM4bUNFSuwJZHpdPY9nt474ne40yxrCrU3uPb3pCEMA2JRGSWIo0mAtpOP4fYjhg0TrLrtySsKAZLWTmcOA6nE4xkm398Yu9gDJ2C8WyOTgCxlJ0eIhbnDFoKL730MnXTMNzcwhjD1avX+Pa3v8uffuNbDLt95iExm0wZDQZ84hMf58WPf4znnrlCt1fRhBqSR9RjJFKatpITPSl6SPkYC2dAHVVhqQtHpyyJKUBKhGwa9p5wMko46dW5eMzJmahv+5RlURwsAAAgAElEQVTXIwROxZosHgJEj0LafqdL6XL/hoSItXZpuLvAsmM1go8ejTniaEJgHiJ1DHgSswRBA9Pg8eRti0KrBMuzOowxGJuD9Gx7I4gaprM583mNsZC8MvMRnwSLY7S5QzLK7d199r/550wPp1y8dJ7O1ogQ7zAaDYDE9es3+c53vsOf/ek3GQ6H7L11yPbWBp988ZN87IUX+NBzV9ja2qLf7eKbGT7MSMGDepxAWeZKjEERzeVlK1Bag1HbDgjKX2Vh0SBtE11qFZ/3Vwk56aC1fL/vYrH3blHGujJyHGuyeEjQmBvIiqLIcz9DamdnSC6VtkgpIWahLQjMpzWoEnykiQEfI/PoCVGZA1Ej8xiJKRFNS0oGCizGZV1F4QSXsnlvYYQmJWazGa7ooK19f8KwuX0GqUpuz/ep/Ry1hlFvk8lkzh/94R+zdek8SRr6/S5Vr2I6nfPKK29Q1xDmY55++gof/8hH+NSLn+DDz19he9THGDjcHxOtII3mZGpooPW3MO0kkfa/z8OVjCFZEM23rRiMUYwBkaOu3eV7uySMd9+W3G3x38+iX0cWp2NNFg8JeU5o7tdYZNEXNnerkYWPAYtdlklzcjELrUJM1MFTh4CPAa0qYsqu2Gkxp7w1vXGSI5aicBTOUCRDoZHCCo1P9Ho9VBzJFHSNo3IVxbDP1AdG5Sb9YY+bd27y5ptvURQWIfHm7i6dnqXxkQh0OjCdgHMw7G7yN3/xK3zswy+wtTHAEQihxkge8GOCAAknYJzD+5qUQuu10eQkKbkVP2k4tWqxiNDezfLiblf8d4oSVh+/zkm8N3wgycIllsOATnaSyooN3EJ1CPlxZVDECrXmJFxhLaSIRE+HwE6/ZKcLwyJQGEtlhMIp89395eublPAh4n3Ep0idAjHBQQrMRJlZZSZCY4W5TSARaQIOpVClTEKhiW5VMnCO0uRFajsOI44mNBRhg2JQcDhrsJ0uojDzniYI0hmwtdHj5Zdf5s7+mF5vBx8axuMxVW+TWFsqm23+6t2GrX6P7a0NPvfZT/Plv/JjBF8jqaZwlvk0cTgeU1hBYoNLUGpJDAFCbn6z1mLLgo7NW4wmeExUSmOoTIIKGh8wvkFsFm0lcajY/Nmoad22UnZB5+5X/LuRyML4ePGYd3qNd/vdBxkfSLJ4zzDSdpZaaEVUlnZBqFKYXJkQkbwV0UhIxydmzX1D4wMhpKzM9PkxXiNBlQDtFdhkgRZKIYbCyLLfxIphczDEAVsbIyQ1zA738SnS71YUmyNu7e1x5tJFRts77E/nNNev0wgMel3EWgajEZN6yqyeoxoZboxIKkwnEyDRrTo8+/QVfvTFj/MjLzzPC88/R6/XYz5T5pMxk/GY6D1FUUAKLEubK/kBay1lWS5dxzV6DJJjJBHKsoOJysx5jAmIpKVADRYGydl+717yFqdFD4v7TuYnTuoyTr7OOvp4Oz6QZHHXWv1dzo+ldR6LkDlP8TYJJCWMRoadiq3+kH7ZwaaI+qyLICnij164qT1Tn3MSSYVQWLzCbBaZpMA8RWqNhJTAOhClYwwdga4xlEAhhsrn6MXUgW6nQ2fkiN4jAjdpOPPR53nq2eexVcVbf/lt2Bhw8fw5Ot0+k2bO5Nob7E4PsVbolBVSOur9CR/7kY/ymU/9KD/xxS/y0Rc+TOEM08MDNAXqyRQ0j040IjRNO7jZx3ZRZtVHiguzHcG5km6pzGlIETQ1aFBiigwGA0JUJrXHzRqsKJaAplwiPnrX0rEsxr0s45ML/p20Fnd7/hrH8YEki/cKFRCxtFZWR6MEm0DV69AtHCZFUl2jPrTjBrOPwwLzxlP7XPUIgA+JOiUmvqERiGKy54Pk55qUcEYZFCWDoqBjDE4FJ8K5s+fyNHSxjEYjmmbOwcEBg4vn2X76Kf7vP/tjXKfHX/8bv8DHP/Up/uzf/3/8xm/9JteuXWMyOcQWBaVz1L5m3tR89hM/yld/9e/zoStP0+1U2AQxNHSLEl8n5j6gmonBFQViTHbH0qz9qKo81NkYgzQm53GKDoIF45YkC/NsPNz6b3Q6HUb9iHUeHxK+Dq0L+P3pLFaHD8HpkcZpuZI17g0fWLK4m+vV3U6dbE5tljohUTJhoBTWsNkbMKi6mJSt8RZEIauJD2DeBKbeM/Men5QohnnIWoocSeSGKlUwUTFJsZqQFLFqcRgKEbY2cs/FcDikKDs0MWA6PZ67eJk3+o4/+da3cL0O//nf/bs889yH+H/+8Bv83r/5N1y/cYPdvT1Gw34ejZgCH/3ox/mpn/hxPv/ip/j0iz9KVTrwgRiyr2Yd81YohYgrsqFw1JD7OZwlhdAmcktMSwoiFmtzYtPaAuwRWaR29MF0WiPO0e12UVui0ymHsznS+FM+gXvHadPKVn+3+pi7NZqttyFvxweWLOA9+EwbIYRE6QrQCN7jTCaKnY0NRp0O+Agh5agAIWlOaC7gk1LHyDwlGrKFfiOKF0FQokobwQg2KVaEyjpKFRxQmpxY9aGhHIyY+UCwAdepiAJ35lO++fobvPjJT/F3/vYvs3P2Ir/5m7/Nb/327zCdTvE+b1v83HNmZ4vPfvazfOknfpwXX3yRc6MtSJHD/QMkRgoMJikOwRQlw34fV5ZEDTTBo8HjY0LEINZhTA4xTErYlBBrKaNC01Bi0CSEqBQBUjT4lLtV85yRVixlji/g+/mM7hYpnOwZWf3+Tq8Fa9JYxQeSLE6LKlbzFSddvJfPwxBjgy0qlERqAkVVMux2GJQdKmsIsxnEiNrszu29Zzw/8mZoUiIoeBECwqSpCSiBXJqRth/CkKselXX0q5J+KfTLgmG3R6esmM0bpCpQA7FyTKPnrRu32D884HaR+Ju/+EuIK/j1X/91/t2/+xP29g6IjacoSna2tnnuyjN88Quf5yd//Ce4dOlCvrr7Bj+pkSRUrqRyjljPCUmp53NEDaSEInS7fUpVmIwJIS4rDiEEjLE4V6CqFFUkkZWrNiWKGHHOE2MiIjTBkxDqEGm8z9GOkK342g7fkzmmu+WWVsniXvMSazK4d3wgyeJueMctSAtrLaSEhERpLP2qw7DqUlmTRwkqmFZfEULCh5QTnS0mdcNcYB4TsxhIVohkuffiGBbHUYmlX1R0nKF0ll6vR7fbwxQOVzhujPcp+gMOxge89NrrTJua8xcv8bM/+XlCCPzPv/0/8X/83v9Op9Njsz9kv95jVPX4Wz//S/z1n/tZXvjQ83mgsm8okmHWRJwrc6QQA9qSQFEUxNAQfcQVBWXpMNaiKT8eV5Jaosi1Z4uSiCSMLTA2ISYb2tQxvx/J5G5a7yOz2mOso+xUuKpE6iZv5cRgncW3jXfGtJWmeHoFI6W01LacViJdJZL7Mehdi7QyPrBksXqanIwqVrGshAiQAkYMEgJWE8NOxfmNIRc2N3AxUqiiKRFi3l7UTaD2DRNXLl9vLwRqo8xFaZyhTiEPIZas/ygUKuOorGGUDEZgONyg1y+RwjIxEEm8cecmY2O59car1KqMNrb42Ic/yQsf+TA/cuV5/vF/9V9z9bWrnBtuMugN+fxnP8+nP/0ZvvBjX+TZK89R1zW+rqlsQTkYZfWpWJr5lKb21HVDMELHOWxZgW+YHwSkiGx1N7BFyXg6pVNA6mexmYsRrWuadrvhU+RgPmE2r5lMZty8eZNbt26xt7fH/v4+bx3eydsOTBauWcd0VmeVa7swffKoygoBB8q7JD4X4xhOiuJOyr0XvSF5dMPbpeEno5OTW5cPajTygSWL9wpnJEcQKVLZDr2iomMLTGjy1TTkReJDykKoxjNeef40eiKGZG07jSzPNi2QVlMhdIyhMpZu1aF0lmQEtQ7b7VDHwN50zEGIvLF3m42dHS6eu0C332O0ucFgMODqq69y89pbjHp9nr3yHJ/73Bf4+S//AtvbOzhxTA4m9Pt9Rv0RKSXquib4QFGUhKZBxWbXKiMEQKMiJs8G0ZT1EUVR4ZsIEYIk8J4mzPAx4UnZGSsmbty+ze3dXfb3D7l+/ToHBwfM53MODw+ZpfnSpTzGSKQh+LZ13+Zqi7Tak6VQTvVtIeBiES8W/2LBL0hjoflYXfx3E3CdjETWUcURPpBkcdp1YfVUkLs1l8aEWkMKHmsc3U5Jt1NSOIP6mEuqtOVVAxhLspbJ/Ci7n0QIxhBEUWPbTyDlxCCGAqEAKlU6ZYErC8pOAaVjEiOHsyk3D8fcPDzg7OXL9AZDBqMh/X6fwhoO9nb5P/+Xf832aIOf/tJ/xF/7mZ/lhRc+wuZwE02t+5Yp8D6gCraosEWHqA0pNMxnNd7nhKwYAyaXd8VZTFvtAIM1Bc4UBMn5mblvqH1DHTw+RA4m2eTmj/7kT7lz5w6Hkwnj8RRoRywmpVN0WgLKjuhKwhmLVcGnhBibx0DGBJqby06ODFhdxIuI5GTuQkSyZWH7+0VkARz7efU1F2RzklQ+qFEFfEDJ4m44uQU5CRHFGhBVnDF0qw4dmw1crBhE8skVYqJuy6NNiO0AoYxkLAElSv6urtVqxJCrCCKUmqXdVbdDSgFTlsx84Ob+LnfGh0xDoNrYZPPMWbwPzGYzUlNz560GX8+xYvhbv/QVPvuZz/HCcy/Q7w+YTCYUrgMYOlWfJiTqmLIICogKhSuPrsY2t9ZbFIlZodnp9hFj8E2kcBGDQaPSaB6jmGL+3w8nY1557TVefvU1XnntjVYlmlWqqMmiK2PpdPKUeINdzhlJSI50ag/krt2oCVWTiYO7RwXLz7HNbZxsSz8ZUdxNvfluFZMPajfqmizuA7YVHCFC5YosrS5dzmUgoHms4Nx7prVn0jTU3lPL0dscJBvb+NazIiXNJIQstRmVy4lNYwwhKQezCXvTMTf27lCrUg4GXLryDP/hL/+Sc2fOsj0acfPWLcJ8xs7WNl/43Of58pe/zJmdcySfCCHQ6XQwUhBCYn98iBiHdSWBgIjNIwdTg7W5imGsYp1DUyCqoiTKTkUKkbpuKF25vPrO5nMOx2Pu7O9x8/YtXr/6Bt956WVev3qVw9kkLy5bYFyZqx1GKMuKK089RVmW2be0ndNazz139ve4cfN2jgSszUOSlKyGXfk8Ti5Ya+3y/tV+kEU3cAhhOQhqYZD8TjmLk7dPJkY/aISxJov7wCJ55oCizDmFTlnhfENK2dwlxsXc0fw9KtTxaBuSW83bBBuKDwFn21ohijNQWkenLAjJIyLs7u9z+3CfJnkGW9tsnjvHWzduIORJ5zqvqZzlxY9/gp/8whf5zCc/x2AwoJ7NcDYnVxf79hASrihQMWANhSsJKTJvaur5eLmgRPLCi5rwsVWjWovGvKhzdSILrebzOXfu3OG1q2/w8quv8NJrr3Przm1mdd1GBrpcsEVVsrm5yZmdszx/6fyScLz31HXNfNYAsL9/SN00R/mGcORgfrcAcLXjF443kC22IfezrVglhw8aMZyGdyULEfmnwC8CN1T1xfa+beA3gGeBV4BfVtVdye/oPwZ+AZgCf09V/+TRHHrGg7C8ALY9t5LkgceLblQ9+TgFZyzSBDaN44wrGCpUscE5YWw9M/XckAZvlLm11KZkHgONHImyapdIkjAKlYduUpxXSgy2LKl7PQ6HfZpuBxOUg4MDbtzZo6hKts+do9PpMN7bZ7q/z1anw3Q64cLzL/ClL/0VPvPJT3Hp0iW6ZkDdwHA4oKyqfBUVxRSRbrdkXk+JMWKNxRoHGknSsK8NUx1jJbYNbYJxUHYSvm6IIeFD9t/YO5i1g55r9m5e49VXXuG7r77Ka29d59qdmxxMJzQxQPI45+hUjn6/w/nzFzh//jyDwYhhTMS6wdcNLihdsYwFZlWJKRxN9K2hj835ipRzD9KOfTz2Wdqsx5CFd4jkdv7FtiWkSNK2+qFZMHfXBGd7ThnJ9gKnNaN9EHMX9xJZ/HfAfwP885X7vgb8vqr+moh8rb39j4CfBz7cfn0R+G/b748M74UkFmYq99SQxFEuwwqQEjtbO5zbOUO3KvF1nYVVGpj5hsl0Rh2hDkrdJJqYaGQ1oeayq5UkbAJr8tZj0B9QVSXGWSbNnP3pGE2G2WxC0e1y7vxZrM3DgA4ODuj1OvyDv/f3efHjn+Dy5csUxpFSoqoqRAr6/SznnswmzOsp8/mcpmmYTCbs7+8TY6RXdRgM8gzWGCOzxuNM7pYtHIxGQ7qdDgBFUbB/uMd8OqPxNb6e40PNZDLhj77xDb7z0stcvXmTw9mMOiZUoBCh3+vTKR2dsqIqOrg6Mrlxh8mNPa77SfbZsC5XVVq1a4iRJAkRlibEIrKyJTndV/Nureim7eA9lgxFT81hL15D2zK4cvpWZPHaHyS8K1mo6r8VkWdP3P0V4Gfan/8Z8AdksvgK8M81v5v/r4hsishFVb32sA54FasnwEnN/7uassq727WtEsWiFwSNdLtdulWJUZYO2kHytqMJiTpBHZWa7CcZTvtDbZNJjB5hcaXMPROzpmZe54ljxsLOcJvJdMatmzewCM898ww/+eM/wc//3JepipIQYuu25ZmNJwRNvPTSIddv3eT27dvs7e1x685tdnd3c2XAe6y1DIdDdra26Ha7bQJQOXd2J9vclTlqqHsDkg8YDOPxmKap8c2cyeSQ6WzMwd4es3oOJm8XDOSJ7kVBp1MiIULyaACSRc2cJuQ8yu2DG5Akb+eKEld1EGMJmiiKAhfymIQQW7ctyUIvcKiuLtYjgribcvPU5jLh7a5cq+fNSpRx2uuffN4PO3m815zF+QUBqOo1ETnX3n8ZeH3lcW+09z1UsjitGei9hoXv1FC2ShQCiEaMtXSrAmeEFAOp7fsIIeFjrjDUSalVsoxblHjsJMpXLtFESooThzWSNQ0p4lPAh1xdqCWwM9pi3tRE7+l0Onz0+Q/z0z/1U/zHf+1n6VddZrMZ2i6+69evc/XqVb7/xiuMZ2N2d3eZTCbUdc14MmE8HuO9p1NVOGfo9XrcGI3oVR2stXQqx/7+BoNen62trWysG6Gua5xxS7Jo/JzZ9JDDwwN29+9wMBkzredYaxkMBvRiXjzWQMeVbAz7jEYj+r0hnU6HGBMHkzF79QHz6Yw4mzKZzjFugi1Kks0y8KiBkBJJ03KgEshyxtDRAs0OpAvfkOPnRGqJxR6LDpafszl+AqwKwhYir+Vj36E68kHAw05wnvZunvpOishXga+2P9/bi59oFCqKYnl7kZi7lw9uMfn8nqILPSIOg1AVhk5V4oxBm5qU8gnaLOzwklKr0iSyUzdkPUUL1exxoSoYVZzLprY+RkiBEGMuFRph1B8y2Bjyyre/y5mdLb742R/jr/70X+HHPvNZzuzs4OsZ88mUa9eu8fLLr3D16lX29/e5Pb5FCIHxeMx4Nm0t7vJ+3VmhKARjshlNPZuQQo2I4GtLv1cSC0cznzI9HEOE6CPWFEync2azCT7MaZo5TfB475nHerlQC+sImhO9EhKbO1s8dfki25t5pmrTBG7f2WW8f5At/12BbzxNPUNroSw9UpTt6+VoB5XlSXTy810SA8cvIotIafWUPLmVuJfS6N2SoavK0LedMz+kPSfvlSyuL7YXInIRuNHe/wbw9MrjngLePO0FVPXrwNcBnLPv+s6eFNvAUals8fv7+YAWhLE8nhO/N3qcKBY/V8ZR2nwixkX1QxPBR0LKsy+8Kl7AIyRR4qruR7MeI3tt5atd1KyiVMk+FkjK5rUmMjncZTjo8OJHf4Qvfu7TfOTDz7E96pPqmreuXeOtt27wvZe+z6uvvM6t3Tt5+pc/oGlye/mCRItORdVGFFXb5GWMoSotzuX3sSoMw36XbrcCoJ7NKV0HZ0usLXC2RHWKJsG0ysvsqZnLwVETIURSyCTYrSqef/55Lpw/S1EU7B3sszc+5Pb+HncO9rntJ3nIUErEEBDjcnk0RHKLe44k1ASMcXk4ombx2iKPcfz8WH2jE6wkMXOJ+t7yDifPs7vhh5EQ3gnvlSx+F/gV4Nfa7/9q5f5/KCL/gpzY3H+Y+YrTNPoPuk+8m1hzgQVRAEjS1s7eIKQs746RJgQCeeZoEkNUIZpWR6Esbe1XXpXsYg2qko1tNWKtwRT5pBcRUjPncD7nS5//cX7mSz/Nh557BkdifHhAM5vz3e99m2/9xV9w7cbNvI3oFzSpYVj1uHlzghXBVUVrMFPR6/XY2NgAcr7HGZsJpMiLrFtYBM1jDBw4V1KVXaqqS+E6SMqGNnMDPkDTzAHDbFYzmU5pmgDGUhYl/V6PQa/7/7P3JjGWZel93+9M9943RERGZEZWZmXW1F3d7Ca7WwJlWga8EG3BOwMCF4atjQFbsLyQ4Y1X9kYGBO08bAwYkGHD8MIytDQMAQYMCSJIiBApkqJIkeyhuqYcKjPmN9zpDF585973IjIyu7obqq7MrAMkMoYXL268d893vuE/MLuxSzKa48U5Hz98yJOnT7lYLlmtV6z7buu9leZlHyJd24DSUiIkjc5BdfyHGlsJ25nF5ZM+Xtn0l5ufw71zXaYy3huvWTD4SevzjE7/PtLMvKWU+hT420iQ+AdKqb8BfAz8B/nh/xAZm/4QGZ3+Jz/vBV7X3d4OEgP2YZsH8HmyjOuyimeo0Fceb3Lg0AbatiFkY2NPou09bUziR4oIvEg4kQxk++/RWkOUIBEzNiARCKHHaYdzBlKk1ImydPzqX/g2d27fYFZanIXV4piHDx/zu7/7O6zqNbMdgXyjDQfeU58dMSkdk8mE3Rs3KCt3qWQbsCClla8boyXYWEPfBybVhPl8j/lkxqSYMKlm7O0esDvbxRjNk6ceSBRFRYqwWEkvJCrRtjKFo5rP2Nndow2epw8e8PT4CZ8dHbNsGnwQsZ+dPTEyWq8b1us1ne8oy5KUIAzerykKTyUq+jgonMdnDokhs9jcB5ZtA2XtrJSeVw6Yq89ztQR50aj0amB5XgB6VdbnmYb89ed8669e89gE/K2f96K213Vv5vb/w8c/TYZxtXEJLx6jDo8vjGVWVPiuxXcdMXb0MbDqW5Y+sEqKOih6BV7kKEnPSWmjkoyjCS3KJEpjJIOJPakVENedW1N+9Vd/lb/8F79L8oF6ccqP/uyP+Zd//MesVjXvfP19vvWdv8KdN+8SEZxBWZZ0T0/4wQc/Yr1e8/TpU06OT2hb6SsUhePOnTtMnLikaQXzasJkMsFay5t372GMo6qmzGd7WFPhfeL27dukpDBW0XUdxyefEbzCe7g4W1A3HbaqSFqjq4rpjRvs3b7FP/vjP+Lk9JjJbMpbX3uXH/z4A85Ozwgx8a17b/P222/z4PFjfvTBByyXS5qmFYPnIK+Z05oQA73vQBm0NWxnDUoltBiUoLUZuR7PZJ/KklM5ORVSGj+99F7nEi3FlAP79Zv/6jj1VZ+EwEuG4HxRxL6uHn3uY1/w7edNRwB0UJTOjZlAJOGJMiJVokuBivnGlaaIUfKYrT9Crk+J/WCM0rHvfKQ04Kyhso7KWb777W/y3lv3MSnS9C2ffvop3//hDzg5PeJr73+Tf+ff/Svs7O3jQ6TpWjofWS9XXJyfsVgs+OSTT/j04QOUUsxmM6y17OzsMp1OKYoCcpajrIwri+xFYq3DWktROMqyJHg5zZ0tKMtyzFJkUylSiBnLkHDWUFQlIUVOLha0fYd1BXv7BxwcHLD75Ijj43NiDITeU5Ylk0nFdFKRYuDC92I8ZGXTW2vpiaguEXQi4UnpckDYvLTb7/3Qv5CSJeUpx6VehVKo52A2InKSXD2Uth939Wee9/mrsr70weK6cdewfp6I/rP8lIoJqx0RuSkDiS4GPELL7pOgHsXeQuDbSYmU/eUl47zBdMcYS+zWJG0ojOXm3i6HNw/4xte/xv037wKRvm/57Olj6rrmna+9x/e+9z12d3epmwbvg+hith1HR0d8+sGH/OBHP+T0VPgVh3feYGdnh5QS8/mcmCHUg1R/kQPgALs2xmAUKCJGJ8pJgSKgiFitMRqIieA9MQTJOJSh7T2uBGdLVnXL2cWSe/feoq5r1uslH/7oQ9YXK0wEa0oqa2jXK55+9oizsxOqqqKwmnq15PDGASkpXFVKM9pqQkq0fZcnJYpEQmHzuHOwIhhKCPLnY3Pjc8G3r47jn1d+XL0vX9UAsb2+9MECnp9R/KzNqKu9iOdlE2OrLE9OrLYUNhsZa40nGxQrhU9SIUvWkANZCjnd3T6FpKWalFgTphSwtkQFsEYzqQreOLzFN7/2Hjs7O+zt7ZEULNcr+j5w8/Yh3/3ud7n/9lvU65a2lSZhCInjJ094+OkjfvzRhzRdx8Gt2+zu7rK3f4Ou62jbmtOzM0IIzGczyrJkPp8zm81QMaEMdF1HWRUCgIotfS+3SIyi9dn7lhB66bfESIxeUJUKkhdOSYwxi9gE/r2/+huslyt+7/d+j0cPHlBiOJjs0vc9i4sT0qc956dHhL6lV4IeNQpmU6GvlxPRFlVOAnO3qCFs9RIQJuuQJQ3v7nhvDFmI3vRrtu+X+IJgoJRkTc9bz8s6XtWg8aUPFv86X/ifREm/upxz2YpQExCRmy54AV6llCX8jYxGlRpHLYrLwB7p3udfrqURaq1ld3eXN2/f4p237vH+e19jPpff1XWei9Waajbl9htvcOfuPSaTGcuLFaH31Muap0+PefDJpxwdHXG+WPDOe++SUqKuaz59+IDT01NAAFZaw3w6lCU73LhxA2sMN6oZ850ZRemYVhMgkejxXrxSus7TdWJKhBK2rFIKnU2ADJKdXJxd0HQtBwf73Lt7n7Ze8dnHn0IbODs5pcCy8AsW52fUbY01mtm0ZN3UKCLznQm3DvZQSmOLgp6IXRua0LNuVvj+ss96IlxCwSqlBMQFxEHT9ArAangvrq7hfhuh41f6EtdlG69qcLi6vvTB4kXrair405QlP018zdAAACAASURBVG2gGFZKKvt3imRe27Z4JSmyT/L9RBrTYGLakJvYOrXkM6wVBSprLTdv7nPv3j3u3X2TN27fZr7jhNPhe7z3zHd2eOONu5RlKdTwdcN6seT4+JQHnzzk8cNHnJ8v2LmzT9N0PDn6jLquAXjw6BHrtYjP7MxmLKYLvPdMqwkHBwc457i9cwNtZEojkG8xXo6pYzKZ0XcbnobWEiCG/s/A6uy6jrpp6YPnzp07/JN/9I/xfc+Djz7EKEtsA4Uy7FQzqDqi0iglvQmjNLYqKLXl8PBw7KfUfQdWYfuOxXpJU68/94Z93ga/DrczPM+2II66hm8yfPy85vvw/K/aeqmDxYtm5C9aUelcelw5afJ4VD4Rr86w9ZS99dShpugr2qWmax0pQBd7ApGIJ5g+n7YGokZFg7WXf08KkYT4feqQIAb292e8eesWb9+7y+03blJOHCYFysISk6JwU5HCm+8R+shydU7frnly8pQPPvyQTx58RtP22GlBi+XTTx7y5MkRF8sFMUZWyxqlZdOcLY/Z391lWjja+pSLiwus0Zwe3MXu7JJcyWynY3c3YnuPJhA7i0FDaNC6w9lAoCWqhnI+oV0swUf6eok2jmnluDj7jB//ODIpHUo39G3HfAoajbUz2jRl3a7pQ0dRaqamwDnHjd0dbt0sIWmKomC5VqR2SaUMYTKhDee0Ao0lYLGlYEFi9BgDKQW8bzcbXwHI9GdAsg5NWu/9pfcGLYF//FScVoFESnEL33EZs/EikNersl7qYPGzrs/jm3ndajo5MaMTtGIg0SNmv56sRTngP6TZPnqADGs2mdJ1XXZPzwEp9NzcP+Ab3/gG3/rWN9mbTTEKiqLEaYUykfv37+NcCWiapmN1cc4HH3zAJw8f8eTpEat1Q9MGmtMTLn78IUU15ezsjLfuv8N7773Hw4cP+YM/+ANijPzyr/wSd24f0rcNT5885vT4iK5vWCx69uYTLIF5VeKM5mD3BrPZPF+zIEILY6mqiklZURYFk8mEEBPGtfjIqFlx9+4bHN7aQ6VA8p5CG1SApq7pmjajPicoq7CFTGKm00pKo709+qYlJIXVEP0uddsQu44nZYlvOwJJAmDOaCCSrIgIjSe/VmhlMNaOzvXbWp3PW0PDV8fLuItNNhte+Uzi6notg8VPWs/zQu36ni7IIDRZDUGTggJt8b4lakEdJvRmjq+4VCvv7++zWq1YrRcZHCWYitlsQlUU441cVhXOynO3fct0Os/9Enm+i4sLVqsVdV2zWq04O1+wqhv6LvDO+9/i137t1/j9f/FHtG3L7u4up6enUu4Yw+HhIffv3ycFz3w24dbBTbzviFFzcnREZQ37Ozvs7+zQT2YkH0haOC0qT1IKaynLchzJKpXl7MaUPZBSxFhFaUqUdwKdD4nCGMx8F1RAWYMrLbYwDNaIRSlZVSBBCuIgr6BLER17Cmep215O+axelvQGixsZvFITOgmcni1z6us2/9W1KbWub3C+DtOPq+u1DBZDZvG8oPC81cdE03s8kaAQVmlizDJSkskISRLXiEaRLqW6rjCYVlzWY99hjCIpYYAao+TELArczlw2oDGSMlvR/+77npQS3svJl3ygXq1ZnJ8T0UxnU77x/vv8+q//On0f+K3f+i0+/ugjnnz2Gc5anDbszOaUzrFY13SNiNPszuYoa/j4ww9ommZkX8rv8mh6tLZCiS9LmqJiPp2yN9/BWj1uPGsNGknv27bFKs3u7i6VNZiIBB4v5YFTEZ+i4FEKgzICpbdWE70Hrem8R8WAJWBSxBrFZFKyaluCF58QbZQEaqXIaQVGOZEDVArUZTFfeH4vY1tNS2st7+BWqbF5/KuPq7i6XstgMazr0JtXA8j2WFVpTRc8fRID4z4m2ujpk4ik8AwHRBCcekuD88mTJ/i2Gze9RpMMVEUx1tHDWDKQsKagLCegzbhxY0hMp1POz8+5uLjAe2lIGif8j+Pjpzz49FNIAWMUi7Nz6uWKvfkOisjF6Rmxazk9Oebp06cQPJPJhJs3b/LeO+9y/+4dDm/ewmrxMfXekwLM5yXOTUgp0XUd02rCfD4XV3WtKaxDGY0gSxQx9DRNTdcUVNMZhRNvkGTEjGlSOLq+xyePMwICs048RPp1gw6JvoPkvWQlJCbWMilKDEoylxTH7E0ZjcpZnCQdgmrVSrIWnQPAkOlt0wTG9+vKph+mItuPuw7W/TpwSl7rYPGT1lX8RdKKru9FbFdDQ6CLguRM2oyPH5W48udmi6J+enQsp6rVWKNJKVBY4TFEHwQ3QMYDpIjRHjeZkZS4ltlCAkZRTYhRbtLZfIorCyIarS2PHnzCb/7jf8RqtWI+m9C2LZOqwBoRBn744BOqoqTrW3SKzHZ22NvZFVvDd97i1s19duc7o0mPNYbgRQpQuCuOoiioqoppNWOaexc+yIb1UVgx3nu6tmW1WIDvSZOpeKwohTOOSVmKSlfy2KLAukwYY1PuWCWq3jZfR1WWGFtLP2hrShFCxBrxYBk3bu4XRSXBa9TDyLydpJ49HC5NQpQaMTLPjl5fzYDwovVaBgshOG+W4tm3/jqglg+JuutpfEAlEeXtgzBOxdB389jhJpRMYVMvDyNCY+Tx0QdcaQm9p2lrfNejpkitnDUnTVIobTBGU+afqaqe9957TzKMswvW2ZNUrt1xcX7CarViOp0RfcfOrCT0hrZtmU0n7ExnMj1Qmv2DPfb397lzeIf5dMLOzg77+/sU1uK9z0FndzxhNWCVxhiLc26EgCd6lNICNvNSInVNS6MTNonOqHLi3xqdQusJBIhhA5aKuXGofMIoocEbPUDQJeOyNn/dBBntWo0ngNEbSYEcJBKglYbwbGYwlBrba5A9eLbsuJxlvKLJwwvXaxksftZlnMX3nlXX4LQRWrqSVDeSiEmSZTmMBvjx5RuuKApS9KjML5lOK7RW+E5Gi30vgjLeeyauQmvpU6gESlv6PjNGywnvv/8+h4eHnJ2ec7a4YLlcs25qIpq6rmmbNdbA3nzKrKpkAkNkPplSliWFE4r63nyH+XzO3s4NDg/3mU5KqmpCYQ0pCP/DGIfWVrxNgcnEszNt6JuW3Z0ZR0eG9XpNiIP/R6Sua7yfU7o5ZSkaGSELBEUf6MoJKGlQeh/xXnAcMQqsHIQc5pyj8z0Kg+8lAxs2ex89Vkmm08eItXlDZ+SsvP4Ckruq7n2dwdC2Buf2uorleVGweFUnI69lsLja377ufR9AW5cyjMyneHp+JpyKwqF1Rdc0IycBNiVIHH9sU4YE35F8YHdvj8PbN3FWavLQe/q2JvmeFLzQ391Gxj/GSAy9oCj7wLSasHOzYm9nj3t3RL26rluW6zXnF8eklFitVnLyRrZOxARBTueqqtiZzdndE8i301P29naELt/1dG1LUVTs7e6hlMEkjTVShjgnOIgY4f4bdzk/Oef89IKua7FlQQqwXCxYXVQsCkdlHbvVlNlkjtUalTQhSR/IuBKV0qipWpaW9UIEfOqupWlkbJtSGuUHx78lc3QwGmvJhLYeQkRrQ0q5fDBKnM+yTB+AQmHV5YDhQydTEE3mvejLrx1D4Hj9UovXMlgM67q3e7vXAJeRnjHJaeZDD30/ovsSG/j2dSXNpd+ZhPZcVo69nTlKJ4g9Sm/Qg1dPN6M1ShuIEnicK4U1GgMx611aWzCZaEgal5Fl88kUIJ/Y0tArioLCXu47VFVFURQYVWJtISVSEej7EmNczgo0vhc5QJWGCYAi+MRsWnFjd4ed2YSu64i9BwWlK0ZUp+9j7rEYnC3EXUwltDVop0cMxPA3ex8JIaG2HOhjjLnBK0rgISlSjOgQUEqjnd00I0fY9sahDDYj0RHWrZ4tQ4b+xPDYbV3O4TmG63md1msZLH7aken4c8MGzjqTsRPtyme1PPWVn9v8QiGkyXhR+hcR4ww6tNLgHDv1Hu+FJKbcRNisSW7egZ+S0sB7sDgrsndaWXZ2J5Kit924CTeiQSKq64xFaxG9kR6AA1QWwlEY5VBKNo6xhZzSsQej0dZiojBWrS2wSjPJWUq9bll1DSlEVGHxPowlRh+kORu0zT2YhFHyenQZlzIEBGHmXhbgVUpGqxJQDVpD2jJsslqPDWLJNxQKO75HaIVOG0ZpjFFGq1trgN8Pv5f0LMt04KC8buu1DBY/aT3PGHm8iYwmIak/kGX2rvw80nyPXF/Deu9xRhzJJ1VBszjF+07AUd4TvRVH86Sg70jGCdgLPZ52TmvKcpJPQJtPOoU1sunctBiv2RmbKeiB2WSeT1s9BgytxexYG/C+p+nlOqwptvQrNUoZrC1QKlGVIppDSlilmU9n1Dsd/XlgsVoSl55pZVFh2HDCCk1JrIOslpNfqYRVZM1N0ClitMZoTdLI40g4o7BOk3RuTloD1oJxJLMhkmlN7h9lVipqLCdQG3PlF6E4r2Irth87lCEv6k28iuPT1zJYXJdZfB4IuFKGqIbadVCPljXQ2HV6tiey3Uiz1kKuf+fzOfP5jPms5MivRxzF5qYUCvj2SWdMFsqNicIMJUuWwc/QaKUkGIlZs86TAwsEptMS54qRmTlMFqRXUKINNE0NREIecYrtoaf34mZubRAglpWSoijE1Ghvr8PHRBc866am6xp8N4gGS4pvTSG/UzuUauSUz9lUYayoZsSIRrKOlAOZlGkRnRJ9H+i9JyFjVawR5GxKKJ0nHNsNyZhIw/dzljEoYV1d4QrS8yfBwl+n9VoGi+vW57IFyBusD91oqqNg7M4/K3Ij62qwCH2P1pqdnR0O9m8wm5Wszo62JOE2vYvh5McYjC1wTrAJ0QdBRRpDSiJ1F3TmPBDxXT82VodgkRJYZVBR5fLC5B6FAL6MMYiyuM6/J49iM3gpBAFTeS94jpRkPLkzndHt9/gIPiaatmW5XAIx62i0oz+qMloc2rUR6n7wxJgh2iRQkZRBaVprrEoYpUQ/M5coA7fGK4MrUg4MihgCZmskqhQQXjzmvJodhBAu9S2el0G8jvHjtQwWz8P7X1rp2Y3fZ8/SYVOnGMeaFgaPVH3pOTTkkWV+jujpfYMyO9y6dYuvf+09dOw5/+wzFIl13XO26tAu5RO4onTSMzDGUBUFZTWl7/txrKiUYlLJ32SMoe0aZvMd2rana32uzQuK6c64kQaVrKoqR86JLUq6pkYbSPRoJady8D2x68UnxVh88tBZ6CKVqrizf4+JnjJ3U3aco9QBowJPjo84Xq45OluR1BOMLqlchbOa+XROEypC7wmxF8KcztB4lWhDT9N1oA0+GXpVkhQ0fUfjRUXclSXFpCQaaH2PVpYYpHwxTqDa2CgG1MGPzcyIZCC2cM8iNo0ZG9RKa7zJRtHD9zNJjfDTSSK8Cuu1DBZf9Lqkg5BRhSEEptMpu7u7NMtFhlbn0zcJHiPmhuZ2hmGczU24IWPI1GsiVksAcGVB13mSagipRcVIUVTjVMMZlacqjjIL+iilBEfSZq2IrA0afMAHj+8zcStp2UzKYAtLGRNlUVFUU2YxsGprdusbnK/WnJyfyTQkeC6WC54cPWV3d858Ps0jaY0ymsIW0sxMcqoPUPgYpVwIIQlwK0VCiAQ/jErza2EcgQ6Fy/IAMmkZX/UECgNJlNkHLY4hW9pel5CaaotPMvBF8s8lLmclL5J/fFXWV8HiC1iXUIDKkJQdwVd78x1U8Ozs7LC8OGe1WLOcLLh5cICOl3sYm/RaJinOlYLBCKB0wjqHdQWFm+FKD6bEWMGAWDtIAlqsyo/XBucsNpcr0mPoCX1H6FvR2Yye5APBZ8aH0RhXUJQTQJCl2llcWVAEGelOJtL4NMaMo+cueE4XFxydPGU2n2AKS1UUeaJi8X1L34uKl/cetEUpT4yiSBZCkMlKH2n7DpJGaYsy2WFdWaKSsW4kYZKIJ8skKm2CQNJoZdFaEWP77OY2wpwdSpBxjJ2/PeJutILwrIbFZur06gWPr4LFF7CupqpKKeq65cGDRyilqcopt27dptCGoydPWC1r1os1flCqigltpE+glUUpjbUGZwUVOUwHBuxE1ArlSqa6xJVTwTdky0SjobQOrRI6K3olH4jRs1qciaNZs8Z3Q5YTGaq2qprKv3JKMZlIlqFysMgZirMlk4nAyWeTOXA8jikvVks+efwQZQ3RwNtv3INcXgWfN1nSWzqZihgTwSd8lIyiD5HOBxhIazEKb0Yr+k7KPacN2srrRRJB4ascvzg2qa/pR2hFUkJv5wrrFBhp+M8LCK8qC/WrYPEFrG1UsUwtEl3X84Mf/IDFasXOZMK0rAizGUeIPH3TNEBB24cxEAhEWzZlCCmDhUwOHhbnCrR19ClhjMOVFuMqiAnfR0Lfo1QSAJYGUiT5nraraduW9XIhMoHdVkNSqVHfsigqXDnBVRXOlkQULoEtK3TTCCIzX2tVVcxmMzA6Ty4sPnS0TxvJBErL/TfeJCWZnvgMyEpaAlBKnpgSnY/0QTKKzge61tOHhHUiauNlWgwMuIirviHCTt0GZo0bOY+ct9fIGVF51LoFxU3yw5fG5NcFhats1FclcHwVLL6AtT0N8d5jtEJHy0efPOCjjz7he7/8beFcJOF0VK7g4nyBcQfjhh2k+4d0OuYRpVJxHEWSxOlMacFDaGUEIaoVqEBK5GzCQAoQZWrS1Q31ek3X1LTreuwZKJWfSwvwS8admt5HtEk4Z3HlhN0be2KYHIOMkLXNeAzphXR9T8hj4Lrt+OwIJvMpIQTxV4nDJjXoPPpU2gI9KQWCT3Q+0PaBuuuEdm4tyjpg8GHRWGdFjXsLRBWQ72kEbPaMBN5VfogWAeJBAyP4dFmmYADhRUbYOHD5OXm1gsSwvgoWX/CKMVK4EmNguVzyu7/7z7l/5y7aivnw0FvzfT/aDIYgyM4QgsjHJYUrK/ouABGtLMlmL5NMOFPakmIQ1mUyQvO2QBB9CkKXXdRr1us19WpJ14q/RwxhBGkpJze91dIb8N6TvGQ0tiwoi5KdvT1OT4+BzWYZdCyDj3TeQwpoDZ33nC8XHJ+d4UOgKAoUCm0GgZo09mQwmqTEQ7YPia73wvglX9vAAlUyuRj2bkpJhIe06IUopbLKl0GpAUsRr1X8BkaBZQWkJMJFSSuRZc3Nzm1Q/6UG9is8IfkqWHwBK/pNx90UpbClUwRl+Se/+Vvs7+7xH/7GX+PeHVHuvjg75+jJYzxP6LqOW7cOx4mITCkEMTqZ7EigyKdYCAGnNSk4tNGYwXVcW4xRFM7RNy06tPQh0K5W1KsF9WpJ3zWslhd0bStCNsWUyUTKDaXkpO/qhs50uLIkBJcbkpqu69DOsrO7m/HsBnN6zKrt6IM0K43N/QVEgHi1rPn440/Zv7HLjd1dXKHwXp4vJOlv9D4RlMajWPUdT88XnF4s0EWJcVZ6OElc7GVaAcYN5YbUJ8YYQowYvfE+FWKeIoRnCWFDoBgqEG3NOB2KKkrmkglt2ppR7/N1AG99FSy+iKUup6sxprEkWNUNf/b9H2LLiomzfO3r3+Dk+CmTyYTHjz5ivVxSr5ZYpSmM8DAGFulsuiOewSER8cSkSMkKIEsZKQeMIeVxn1YSUEwe3cpEpsWHThCauU+xPa6V8gBC7JnM5iRliCGwrpfCvwg9i+U5db1GWUM5mbBsatZNzcVygQ8J7QygidGjkiifq6g4Pz/FGkVZGFQq8MFveCBGEzopX7oYWCzXnC8X9HlkrKz8s1m6MCLj1etOdSkDNSpdpqkPpc/2kkwjbrgjAzfEalSQhmtMKRPhuITOuk4t61UKIF8Fi1/QSgqImqIq+eiTjwUeXSd2dneoqoq9vT3OzySzWC6XGKUpiwJn9ch7CLHHgLBegyJohdcdoRd3duM0CYXvO1IU0FPXNWiT6HtpYg5lTt93Y3ayTakfTsy+6znrj4lkN/OUcQ6FY7Fa0DQN3guy8uLigqfHx5xenNMFLyWM98IQ1aIDqjF0bUtdr1mvC1QMhNgLryMHrD4G1k1L53va6OliIig2WRZgjRnh7TF5EgaTW5ApPxalICoR9FcKZZz0cp733mxlCZ3vcWYDiU9akYIEDMPzy40XNT5f1jLlq2DxBaxtGLnccBkJqAXxeXx6xvd/8CO+/u47TELElQV79oA7d+7w5PFnrBbLrFFZjFwOjaJvGmIRBXCkDSlC6BVGVaQQiUqmDL6XxmNpB68MEdcJUWwI+76j6WravqNwjslkMhoZLZen1OuW09NTTs/PsaZgOp8xn8+ZzMUCsemkKdo0DafnJzx8/IjHTz7jYrGQksv7PL5UlNYxLSqqoiKEQFs3LJdLUmhJGZRljJHrDoHOi6K6CO8q/JZ+pvBfpLcxvLZWwVBaaDZfH0BU46ZPSXQ7roKyrAU1NJEjtH1WB0emSt5DjKLIJYSVz12CvOxNz6+CxS9gKeQ0zB00lNH89m//NvfevMN6rZnPxOX8zu1D2npNXa8onZgmO21GGbsQe0wwYLOFoBJuhdUKfI8PEZ+RkMNJ7JwjNG2+kKEcaWVk6j0HBwfM53OIitPTUx4+fMjR0xM++ugjjLGUE9G/mM/n7N24we7uLnZS0HUNF4szHn32mI8ffMxnR09Z1WuiMpDHweIVWzItK2aFaG2EEGjXKzQlRoE3GuccQsFPdL6nzmPZaJS4vVubm5MenZSUVSplQ+dthbJBvDehlEOpy+SwIau6urY39EBZ3240azIKFEVUiRQvlyIvCggva1YBXwWLX8gaTjoNoBWFrvj9f/GHfO+7v8I3vv41cTonsbu7y8HBAQ8++YTVaiXpt4GUdqmqSpCWxmCDIhpGX48YekIWmlHaYrQGlYT+HgI+9qDEoCeqgSuRqKYTbty4QVVVNGsJHk3T0LRrDg4OuH//PkVR0PYddV3TtQ3LBWhvOT0/5/FnD/n04QOeHD0V31JrcLjciFQUxlC6itJVTIpJ9voK9H1Ct2C1IhLpOkOPpemll7JuG5pO0JYxiZuYsZY2+PH1HDxLtCYreG1UvofXRTZq2upHPLupYxYb3nYu816QpAOt3wwyvldMk68LBFe/9lVm8dV64XreDZOAkDUoTk/O+Rd/9EfcfeM2SimapqEwhtlsRgiBuq5HsFPhZLNW0w5l7BZXwhFMwCVD0gZttEC5M8W863t83xF9t2nM5RO5LMuxvLCmwPdxtAcQ3VDF3bt3mc/neO85uxDbw67rODu54OjoiEePHnF0dERd12K6XExYdwHnSnRSODRlVukSnooAsbz30EaCVnS+QynFeesJyo7O9CEEfDai3i4lhnJhkNhLKaHZKFtd5XBcfV8GEt2wjDGjs7ogSjPlXUuwMEoLPyQE0qDzsZVNvIow72F9FSx+ivUMhX0gVV1aW47p+eOY3Oa7ijwdiUQlIzlPxLjI7/zLf843v/dtbr1zj8ODAyoKbs+m/OjjD4m9Z7Fe0DRr2r2GGHom5QQTNdo6rHFEp0kq0qpjZtN9YvB0jZfxZu4phNjjY0NMXvQtE8TpnHL3BtNyh2j36JXBzWfcmd3h8K1A7OV692ZTUgo09ZrDWyLU03Udf/jnf0hd19y6eZuqqnjj9i3atmFVrzk+OyVE0cPUtsiQ9IpoPIu+gz4T4npRL48h0NUNPnmULuhixLcd6+WCZi1CyZ2RoFOYDVdGAyFzQZLe6A0MOAuVdTJEQUvKNRIMalzD8j5PZDCggjwmbCYoIUV6HzaiwlmweVAUB2Ejmy3B5iGTHD5/WddXweIXuTIUedBMWK1q/vz7P+Tg4IDqO99hMi0wZUnrA5OqRIVI6D3aGi6WC3b3arR1FKkixohBaO199NkWUY9sSR88MXU5TRc2acwktSFjqcopylhSVGgjo9ciQSwiKQSBYcdIzBgEgVInqtKxM5tTWEM83JfGaL3i7OIcrTWL1VquzzhcUeCsUMNXPmQUp8aa7CjvPU3X5Owhbkoe32fnty1zIJV7E4MvqdUoNiNfgEHSUGXMReLqWPNy1rHtXJZIl8hiA7hr+/PEph80YC5gg954eUPDs+snBgul1P8G/PvAk5TSd/LX/lvgPwOe5of9Nymlf5i/918DfwPpH/+XKaX/91/Ddb9U63r9DHEvMcYSgkdpTd97/uz7PwBgvWr43i+9BzHxwccf8+79+2IMFAR3EDs/9jHSTFFoBVGjc9ocQp83imygED0xhtzzGBCMUDpH4SpKV2JdCcpkn1CGiEDI0aHpWohCzIoJ+iDwbR0SlTU4M6UoLNoZ6rpmWlU0TUPpLui9Z5DkiyBaG70gUlNKuMIwKROkSNv3TKxFaZUh3u3oMRu3ew5ZqIckI1GjN8FifO3VIH4cxgxjWCmJePKl92qL2ZuSwOS3BX4TW/2PdLnEiVm2WUyNrsdavMwIz8+TWfzvwP8E/B9Xvv4/ppT+u+0vKKV+GfiPgF8B3gT+P6XUN9PVXO81XlfVw2129zbGEZPms8dPWS1rHj18yg///C4GxZ/+qz/BuZJ7d++gjKLz0pFfrJdgNK4qKSiI9ISUcGaysUfUNm8oT6LPehB9/p2GsiwoXEVRVELdtoU0CgEyA1RwjrKxUlT0QQyWoiCWsEbhjMZEcNYwnUyZVRPK0nF6eopKSkR7QwA0TSt8lC5EMW1qGpHpu7FL6SxoI0hKJbL/Xb5e2IxAlRFJPW2zi1lKDCXg9oYcs5CwpfKdkjQnQ3zm6B/8ShQIPkOJ4lZM8VJTVOuNcdH2U1wdo77MZcfV9RODRUrpN5VS737O5/trwP+VUmqBHyulfgj8m8A//Zmv8BVcm96HHqX8tTK4qiDFyNliwWKx5IMP/lQwFTHy9vEJ+zdvsjOp6GMUJ/G+wzRrZv0M4ww2ObQelLl8rt1FwyFETwwtkUTb1oDO+pmFUM6LkpAMRZbv3yAdDYaA9wlrLG3o6UKL73u0NVSzKbNJb0NqIAAAIABJREFUSfSdeIZow7QqsYWjrBzOWKzS9CnQt56IIniP7zx9DDRtx8ViyaAdsb+3g9GWspzQe7/hx8RIUjKHUCZLDbJhk4ofyLPw7ZSG1/eKLeGYQVy/mYdNbrazihwIrpMcGDQvknzhmet4FdbP07P4L5RS/zHwe8B/lVI6Be4Bv7P1mE/z155ZSqm/CfzN/PHPcRlf/qWfkfDdLO+96HrGJPaEVYXzgYuLC3rtUSownxQ8fPKUvRs30HfewMfA4a2baGvoQseqWRGjF3yCmhFDT1mWmOSICkKGc/vQicVAaFFkhawkhYpKoK3Cx158PnKjTysFCnH6Qohexmh0VWCzGndVVTRNTQh+NO0JvadZC/W96zr6pmO9rkV7IsrfvVyvWa8bUfVKYpJ0Y3fOfDZjNpuxXK2BLe6F5BXYjLPwMZBCECBVXlmCIsOxN+xTg9n0GVIag83VnoUx5pkMYih7Lpco1wvcjKxTozayi69I3PhZg8X/DPwdJHz+HeC/B/5Trr7ysq59qVJKfw/4ewDWmlfk5fzp1zC+61pP8GIWZIsys0cNKURChMdHR9y6dYvDw0PZLMYKnDumDKjqKK3DWk3wPc6ZrAKeR459Q99nH5KURrjzMJZUyhOS8EXEdtBjbUHpsumQUrRNQ4oRZRVOieBu13Xifp7p6CkF0cZYr3ly9JSnT49oO9GgqNsO34s/7MnJGSerxdiotFrQpYWruHHjgMm0oO16zKgrkf8pRIVcazrfjpMQY6T5qpRsZqOH8arckjrpz1USDGPZsdGZ1KVMZFjC8A3Dm5j5N2nMLEaGKowGVMBoqfgyrp8pWKSUPhs+Vkr9L8D/kz/9FHhr66H3gYc/89W9Ius6k+Xxe1H+aSsakau6BgR2HHUQRqkrWTU9f/L976ON4S987zucXCyYvnGIy9lAjKI7uWpWTIodTs+OcFvK3UNWoKzBaFHC7ru1SOf1Hq0tve7weUIhG6bD96JiVRUlZanwbU+zXnJ8fs56saRtW06PHokTWW4ihhB4enzEw0ePiEmGleeLC45Pzlk1dSa8CaEsIXB1pzUGTfQyTp5P56xXtZDmQpbD0xqVcRAhZz7kk98WDkK65L4GyATGOenhsAFjJcQe4CpFXduCFAIx9pAQ7k3OLIbXZcxWModGJP/8pa/FFKUMDJebnNvzl2006fD5l3n9TMFCKXU3pfQof/obwB/nj/9v4P9USv0PSIPzG8A/+7mv8iVfST2/DNHZtpB8Kg3w42Es573P0w3PYrXm6PSU09NT3K0DQoyU1lEWVijUMXt0uDAGCDCgEjHILIE8qhQRXIXXnuA8xjha1gxSc9YKn1OAThCi4uT4hIuzc87Pz6mXK7qmzQIxIaMcRYin6zoWiwXL5QqP4uTsgrOLBSnB3u4+2hqi0tSPHxGCHf9mjZDdhs039Ct8GJzXDMq4cWMy9i425LNtgZuNexvj1OVqeXH1lL/anExajXT0lEe1Q6KwDe0eMg+bM6HhHR+c3LdLkaQGkYGXa32e0enfB34duKWU+hT428CvK6X+IvI6fAj85wAppT9RSv0D4F8BHvhbX01CXryE4yCCLrA5EZVSo4WAuKiLfP1yueTHH37Mwd6NvMlKymICSTaYweB9h3MCgFIIpd0ajTaKpllnPkggBmlg9r3I6J/XJ+zv7zOdTikKaSb6XoBXTx9d8NGPP6ZerkhBJil6C0XZNN348eJiydnxGavFEqzj5s2bvPXOu0ymMxarmo8++ZTHT588s3ltIeC1rutYLJcs1yvqtqEPHh8VioTRItsXSGOp1Xl5nYY+gtZ6BFIN5cSlKcbWuq5ZOSwp0eT9GAh8lzglW9dvlR7Thu3nGJGmV4Bb1xXnX/a26OeZhvz1a778v77g8X8X+Ls/z0W9autFN8BQjw89hE1afJkhSQYQrddrHj9+TPftbxFCpI8DqMkBTWZsdkynU4yxwjjNY1JrBD25Wi1o29zEzJaEArtusFpjlCK2PYvFCUdHR5ydnbFarFmcLdAoppOJ+J1iCDFweiTQ7wHLcHFxwXrdULqKt99/n/nOHto5Vk3L6fmCvu8pjGUFdEGCjJzIkaYV9mmfes4WF6y7lj4G+qSxSkabQhPfQLpDCKMOhTEuB+AMI0cCSUgbnY7hdY8h8oySr86ao1FGpr7vcqNXj7t5DEJ58xvUJbDY88qJqKSsubpeFjbqVwjOL3glJfTmQVj2eTdJSgltspWfBpX0WGYAnJyc8O69OzkYgLIqK2IZ/IiAHE5+kNGkeHxcXFzQtjVd048pv/eBGAP1SnxD2rZltVqzWCxYr9f41lMYEQyOXRgbjzFGVqua0EcGlmfhHG+9eY+9vT1u3L6Nso5FXXN8csbibEGzriW7if2I4NRaE5WYBYXY04SW08UFbd8RFEStwBlMVYyvT4yy2TevYRrLkeExIYSNMVBen4cZOjY6wybjG6cyOYMxozjQZXLakCGkK8+ZLzHfB2y50X/5AwV8FSy+kHVtg3PoYwxM0a3yA3K9HGLu8OcbMzE+9pNPHvC9b39rQ51OJqfgFufsyJCUKYXYAIy4CSVuXSH0rFYrFosV6/Wai4szqmo6XofNXqnTssJOHLPJHKtshjzL97XWTCZTKaViEncx59jZ22M6n3G+WrKqG85PTjk7ORUJPi2NzEhCW0NZOspJhTYGHwM+9PS152K1oPV9xlVYirJktjOnqiq6rsM5I41hhrKtJQSZ0Jjs8aqUgZAh6plePr7GW5yNYYUhIOTmqbZ2xHkwTEiMZF+jpN7WqPXqW31dGBjHq7xcoK2vgsUvYF1lJEgAGKwR5eYfTulBVNZaAUwBLJcrHuepBUG69DFkY2atKW2Zm30Woy0xZiRmEA3Jsizp+4q2bQkhsF4vubi4QKXEG7cOmc1mo1+J9340N96d7Ik/SFa7MsZhlGZVLxGHdulvFKWV3xECKUiTtm1bmqZBIQbI0oAE5wqm0ynldIJWCu8bQuhZtw1120hzUxu0FSOjcjLJr08ipIjakv631uaAEdCuyHgMSyJANpgeMo9hqnF1GrLdRxnKvzGLQcqIgTcyNHVTJpZdChRf8snGz7Je2mBxtRH1ZV7ObzW80sZvE0BpTQBR5Ca3JhAQUVIVwXvWi4ieGGzh6IisQ4syJd//+GO+88vf4sHJU/Z35ty5dZOL1Rn7u/t0nccYhdGCf1BWicuX1lTzXaK29D6xblp2bwTKSYUtJty+fx+nRTPTaiP4hNws7OsuGx03rEPIxkVJ7AN7AX2F4Fm3a/q+p/M956sli9WSo7Nzzs5POD45oel6ptOC+exuPsHFrjGEwOqiZrGoWa1rehRBOTAFs9kuOzs7GGc5rxeklChMQfBiQpSS2EGWWsakngBWEfAE01O4aZ4YyQYPcZgYXbl3tCJ0fpzQOGMz92Qwh45jnyKSR8BZEHmwREwpYQYflNxrGuHnpJGfMvBMhpUy2vbLul6aYPEyE3DS1Sba51gD8lJpJUK9VmOzcrUOApR6+vQpi8VdJkVB3/e0XSdpfAZUScaRsFZGf4Nc3IhEtIZyMmVXa+AG0+mM3d1dea1jysQsAzFycnRM4Ry71RSVRNF7vV7Tti113rzjRvQdbXY67/qG5eqCs/MjLi7OadoVSluqwjDbv4FSiqbv6LJYsPRLOqIYBGCMpphMmM5m2LJAKSGdKUSDI8WIz2Az2IwoNYMqt+h+qiTaIZIgCInvumZk9OHy4RPTiHJNAxpzCDLxClFsq/lpks6RP4yP2cZovIzrpQgWVzOHl+0F377eYb6vtwhlz4MDx5QwSpFUxCdPSLmPYGBVrzk6Oebx48e8+87bdL7n7OyMG3s7Mm0oZGMoJaAnkzQpRtq2JVc6WGuZTCZMp1Ocs0znM6bVREoWLxs3eI/3icM3bnH0+AkXF2cwTFecZVZW+EVuknaRrl+zWkkPpG5bnhw/Ybla0/Yd852K3f0ZZXYr64xMYlbrNUenUqaEEDHaYVXCk9BFyWQ2pawKUpJ+hC3spimakniOBORv0xpnLElBCP3YI9FZAGjAXyhlZBx9JbPo23Yck8YYib0IDauYRt/WgQcykMlCimP2NdyrcQwkVzKHLcj58Fwvy/rSB4uX6cX8adbIfnzBms4qSal9h7MQo6GLgRQ7Quipu5qj0xNuH97CJE/0PfOdKSoyYjTQFrzH+yhq3l7sCxNgbEE1laBRliVlKdgMHQJBe6L3mViZaH3PbHdGOS3pGoFzn5+d0Dctte+yR2r+lzkhYnCcKCaOcl5iCifcEmepKkelC/oUCanAXIiBUd8FSe+VhhTFZb2Q6+qiOLqbKKl6FxtUVhkPuYcw8EZUQhS9g/R/ks59h5hQuTFLDgiX3peEPEbnBmZUqKTH7EKKhzSOe6OWvolAv8W7RMVNRnFp2pFE3vDae/oFwL0vy/rSB4tXYW3fHNc5YI2P43Ljc92u0QmMFb9Q73ucUThnePOtN7l16xbaGE7PT3DmFtNqwuJixe5sThc6wRyMICI/ksNCkvTbOScqVU7jigLrig1xymg0FoOgTLUGnCGEIKQyFYkEGqt4+Olj6mU9NkyJAr+2hWPmZthSlMmVAZ8EkVpNJpyvOhZ1g0YEeJTSUrq0nmQNnoRJG9EaiDgn9HWl9Ii1sNaiVRKaekr4TsoSay3zapLRlJJxRCVZkdOGgKKP/aX3wCotVgoq5pLDYHL5EXOPhvwvxI3PidZ6HNEGwjMlx2Uy3LP3xcuwvgoWX/C6Wru+6IZpmjVWaWxZyibViv2DA+4c3uKbv/QNqlLhm4ajkxNu7O5hnOVitWRaVjkwiNepBKi0Sa1j5okY6QmYrIpljJz8Ohm0lvGhU4qUM496tSYCriyYkEgKjLMc3r7NarrMdopC2hr+vrJyaCcw7Eig61pR6C4KfEzil5JZrn0M9CHm5q8mRJn4tG1LGz1BRSazqcDCUaQ8HtZJGsUxZxQ+ZPxGBrZpoPeCt9D58cIITc9kd13bispYLiNMtOP7dFXkN8aYx8uSJW4fA2KVmK4pOaRf8jKulzpYvCyR2WxTqLeuWUaFopI1SM5vf382ETzBrcMDvvbO29y/d5eDg30R8Y09Tz97wMPHj1AhcvPmTe7du8d0t2RZr+ljYjJJFDYDiIwVnkQwhNBv2fQl4VgoqNuAUZtaOw4AEaXo+gS2oDAF0UFUDUWyJN1ycEtzcAshgg2jSWRkWtdr+r4lJg8BnHHYlEax2xhF8ev8/Jym7cUQWUNI4hbWNB3rx5+BUaRMTrZFNf491siItDDFCKRSIaJCxDctyrnMTBVGbdd1WO3yqLd/pl+0Pl+g1BBE4qVgsb0kGCjC1Y0/BErNCIaTn99+0CZgjM97pQ139TD5MoC3Xupg8bKs7XTUGPGxGoVmc9rfdt3YnR/Kg9V6weHhIf/2v/WXefPuXebzKSF46mZF37cY5yiqkovTMxarNcpo9vb3uXhynGv4iDGRypXYbDCklZZeQm70AZuNg2hvppSykEweCyqNsyW+y9BxwLgJ1XSXGCNtt8ooUC+WgyHgO+mPQG7yJZ0zFzVmN4K96GRqk4StKvJ5aZTPQ4nE/wAESypSX6y2Xj87NiwHfIjONHCtNZpEYSydF4yHisKLkZIpjfob40oBsrivThGlN9oVl9mhmaT3zJstXxcf1asZhCKNQeJKsLg6Rv0SHoRf+mDxZYioP++6ehNcxyEoy3Izi8906H/jL/0l7t+/z9fee0+MgOp15nD4jdCtdTRty/lyQUiKopqys59YnJ1TVTIebTuR0xO+iGFde+g1yQoRSxsjfYh+0xjVhgzsMmM6P8CaVVIiwZc3ad1cjCI3nVkLXT1GdK8ZjkyjFFo7IoY+tMQQaZuepu7ovMj0+SgmxynraiqlUFo2ZkwJouhBOGtHPIJKEH0ipZ6L/hznHE4PjcuIzQ5nSfcopehanyc3HtAkt1FeBzLGBDFBRn63UkP5OL6jWwFjS4FrvE1DnoIMP/DsiPbSff05mptfhj3wpQ8W8GzAeNkwFyOlGkYl6m0xFa019XoNSnHz5k3effdd3nzzTe7e3sd7z+//7u9xdPSEalLy9tv3OTi8JV6gweNjpPOetunofWBdN9x54zbHxyes1nXGKgi4aqC7F0Uxjv8gorKmhrOGummkaejK7AwWc2mfqMoJsjmGOl2u33QFRiesCnRbBj/agHOWGAMG+Xu99yLN10b6qGi9p2572q6nD/ncHYhb4zLoNOhvJiJ63IdK20sISxVFlCYGwW30RDF2LwIpqrGXY5RAo65mFkOmt+kr5Y28LZyaFbYEYDf0MfQlj5LL7NatPsWV0enwNcafvaxxsfn6L369FMECnn3BvgyR9vOuPmyChTQTNy7lQzq+s7PDG3fucHh4yGQyYVWv+ae//aecnZ0R2oa6XlFNStq25vDsjPfef48Y2Rgbh0jrA+t1gzo07N24wfHREW3bcuvgJtpp6rqWTV9Vcl19T5MnGEopzDw3OLUoXqVBcEaB0YaqqhCGqgj3xphyKl+QTCIaP24EozQ4R4wOTSTl/of3Ae8DTdPS9Z6uD6zWDeumxsckLNCU/VtBdD5ySWSyZmbycnIrI2VGZHOqpyCq3yomDEk0MJRCJY/WYAqLtWKi1HWeGC5PQ0Lvc/mTqe3DNy4JUgyqW2ELcTlkBxuuyvjwrcbmNqpzKEW2JyqDJuuXcb00weJlXlfl2Ib/h3JjNpuxvy9ZxMOHDzeHWL3k4vSMwkm3fVJWvHF4m/tvvzWCjZLStH1gtRbgU9KKp8en3HvrbapqytMnjzk6OWY2mTIphlInO6P3/RjIjDas1xcy4lQp+47I1KIoKoF+ay1ZRlQ525Ab3ufNOwRAqxXRaUwytF3edCoSg2hVtHVH1/SsVx2LZcNivaZpOrwxoAwhRqxAEhi22YDGVGgxQ1ZSkoidYPZBzb2YlAKohLOWonAURUFZFpTlRNzRlGG1qlksVvj+cgmwIfTl92srSKgRRTdkGxquQLRVpumnrQi23ZcY1Lrkd+S+it68dgNxcLs/8mUpxb8KFl/Aum7eDohnZsZBdF0HSgRv6rah73tuTcoMmJLO/8HBAfv7+1RVxbJejs/X9z3n5+f8/+y92Y9le5bf9fkNezpjzJFz3qH63q6u7rLbqO320HYLZJCNhCUk4AWEEdgv8IDEAxZ/gZ+Q/ICQWuIBIySMhCXTwjJGNNBY8uw2Xa66dW9V3SHHiIzhzHv+/X48rN85EZlV1a7utruyqmtLqYyMjDhx4py9117ru75DuanRJmFTlbgQOLlzitWGsxfPWK/X6CF417PZrHcnoTGi3AwhsKnWoIY7YhNqe8U6wESCmMf1cpF6D33nKVcVSnsC/U6B6b0jBGFAOtftvraPAKh3MF+tWS5X1HVNHzwhaPyNx1SkaQfwCh9igpgDrQIxrCC6fst3iCuW4AhaCXejKHJGgyHHxynD4ZjEZmhtaZqWzVr8Nc52JpG37vKxsdn6bCqlpECF77HyjgVjWzJ2fIrAax3JDrBVW5Me2ObXbouF69/eEfv3abG4PU9+b3Dp+1nh7fwTgzzObQqwUmpno7brIBSYW0QcHe+Kzjka1zIcFqBhtrqk6zo8mjTNyEY5Y5WjTMakSPnSe4957733KIZDLldzJknBq82CrvY0ZcOFe8XZsy94dPeE4fEJ33rxDOUD0/GE9//gV+mblvnlFavlgs1igetbEq1EIZqku/Fodr1iOBwyGozF4q6VlSNJT+9q8cQMcucMfYgU6iWu83RtTd/W9GVFWcmGRBlD33Wsq1JS3ZWnNo6Fr/j81ZKLeY1TI7JMUTUNASF0OdeRpIFhUaCCo6lLfBc3J9qI5sVk+AhwJllO8IHOOYwJeBVItCIfaoqxJh9DUCVtqMnMmPHegPF0CuZ1zML3QnpzrcP5DmskslG2RNFPRPldYZL3WVih/tZ5sANg3zDolQKd3hTqW4Y8sna+Oe9ue2jcDjr6YR2/T4vFP//4fhZncrO4OcFu26X5W5ZqSim2ePrt1CtJ5dKy/dAFm82KYlgwKka0bYsyCdPpHpPJhDshZbWc83MffInpZEhdVmyqil4FVqslXfBRKKWp65rrxZymbcm9F+1FVbNYLOjbjr3JiOPTU/I8pVqtqPqOLkSz2VSwhtRm0UOzZxXW6Gi7b23KIPNYle4Mhl0vM79rO5xvabuapmkIrqftO1mLtg02SajahrKS7sEFz6aU57XZrGRzokDH1e6Nx0NkWqYGqwzWKJoSmqrGJAkh9MJsbV282DxaK2wwaBNQOmaoKr2LBdBakyQZg2KA62E+n7NYLF57f5Mk2fmiKm0ZpKlI0UNPH7EMucABdLQWUPE9VjfErTiOfPeZdLPufdO5a+v49SbA+bYcv0+LxQ/AoAsa9UZ3EW51JLep2bfNbfztu0gsEm13A6KdnJyQplZOSiM0au8d2iqG4xHD4Ri0tPyDTc9kPOQP/cGf5+zlM87Pz6m6hnRQsFyvaXSgrmsZS5Yd19dzyqZm0HXkWYYaFHjvWa7Fym4yGpClOSd37zKf56yXc6q6oek7IYXFbUEb6dJaa4ospyiG9J0ns7FY9MLh6DvpOpTucV0nkYnOy2P0XZSKBzZVSet6kiwFD3XXMlsu4uglXAatxTLPeWFZaKWwWpMnKXmWgOspNQTv6GF3Zzb0BCPAplcQgviZBtfjeuLo1NP3gFHkuSFNU+abFWdnZ1xezl97j7eFZ/dvIxsTYwq03gLK8THDjQx9O77cjBDqtRvHrgAEIngcXisKgl91O9Dz9vETzOJH4XjTW+C3GCW3b+hO+6GV0JLjSb09Do4OKTJJArORBm2MxiRxxWkTurZHB3BdzcO7D/jwgw9oqzWL2Yy6rqGXVeR6vaJpGorhmLquma+WVE1L1TYMwzCqSZNI2lozm83Ym0w43t+jGAxYjUbMZjM2yxVlXeO7/rWT3hojYCaaLBUl6nYDI0XDCVfKd3S+23Et6rqSAqkUZV3RdD1oRds5rhdznr14zrMXzwnaY7Nk556dKL2T2HuvyIuUosgYFBlWK9JELuTr5ZrEatLUisW/2m5mXLxDi1weJZumrE1wbcBmBuUVvuupNhvm19eUq/L1tzxeyNuU9dQarM0YDofkhaS1NZ0oZFerVdxEfbcn9Q7UVjejigDL0Pc3q/PbnUWIEYlvnldvy/GTYvG7OLa1fts6b7sKAchu5tEsK5hfy9euViv6NmU4HJKR0DQ94/EIawzrzYaqaug6IV0Vq4YkSdifTDncP2D26pLZ1TWLusJbS7Wp6HtHMSiYGS2A4WrFtOtidKEizTKK4RitLXVZcRULznQ8YjTdJy0KrpJLrq6uaNp6xwExxmA6R9P2LJdL8jynyAYopaPpzQ0T02goyw3r9Xqn8/BeFKPL9YagoO47Lq9nfP7kCWevLijLEpMVmFQ2IDoRk56203jfkVjNsEgYFJnEIWpFogNaBZquJ0TbvNoovBMg0miNx8kmIwTiHhIVwFoJgFYRRG6aRjCiN3NDIjN06/1hVCAxiP9GnuMVFD7FDQckiYlmQB1N1+0yV0IIBBWB0e9xhwm43dNT/vaIqna08LepSGyP35/F4vZ48dtyJoq7cvXG2p0bYEuCcPRr4JW7dec5P38pKH2Wk2aW4TBnvRHmYdu2bNYVZSniqsfZhDsnp7RNjatbgu+pyzVnF5fY0YBluRYDm0GB87Bar5mv1jzUMk40xlEUBcPxiCzLsGkKWvH8yTMuY8LZ3mTM5OCQfDRmfXnBYrGg6xvapsPfsu4rioLxUMYVEyXess30bFZLqqqSSAEtArCqqqjblldXV9Eir+VyPuN6tsCHwORgny7qNoKCoIR16UKP0kFsBNOENDMYE82GswSlhqyrGtBUTUtiLFUfk9gTyUNRbAXicVxBYXVCYi0aI6te/72NaPI8x1i1KypdW2EN4oulAyaGNXkdSO0N+zMoBdxQ9r1jtzLm1nPZblVujyE37FDRw7ytx+/PYnH7+OdYmd0+naQ+fO9Nyq51tzZKqG+o21W12X1d24o1XV1t0BrWazk50zQVULASvCBJUg4ODviZD3+acrVmtVrRNW30W3D4vqfelCTDYjfP1nXL5ZWY4lZ1i7EisvLKoIwl9Z6DNGO92rBeLXl5ccm6rNnbmzAeDjFHByhrKMtS1plNi6fGh8DVfMZqtdoVitsZoH3d7FiqOrE0dcdsMWe9XvP84hWrTUUXNR82S8kSwWwGA+F9+KDog6dre7qukZHDGrLUUqQJidWYyEUoMstyvYFYXPTEElbgnKhkQ/DiuYlHBUWIAUh9JzwPryTseKu/eRMLODzaj3d4KXj9Mj6f1DLIpbg1XYurOrq+IUQJfZ5uX49Ix9+eGrfPrVg4tLIEddt270fj+LEtFtt0rNtvSAgheiPcqugxMHd3fA+V3259tTu5bnCJ21+TWIuxYr7rnL/RgNxCw73vBQsIniTJ4lwta8xEKyZHB5wen/Duu+/zqJhgrOLy4pzF/Jrz85eA54Of/hBvNVcfN/Ra0XuHtQmzxZKPPvmYn/7Zr7A3PcAYS9N2aJMwHE8wiVjt3X/vPfpGbPGWixlfvDyjrWoKHXj33XfZOzne/X/XNoQQqDYl+J62Fhv/uq6pmg06wKYsd52Fj+NJ2bSUVYVOE6aDAfmgwKMp4/fbNGF6MGaz2dB7eV/qqsX3DeV6QZZm7E0GHB3vY5RG4SkiwWpdNnRONj69h3ywoO88y02J91ZGHBRGJzRVwxqFO5rSlD0q8+STgslEsTc9oKx7uLUQOTk5om1lRBkNMmbdhkBPVa5IrOLRO4/F+Gc5Zz6/JssK0qygKNLd9sMYQ9n3aG1ey051ztH1beRXbM874aPI9uXt9d+EH+NicVviexuN3lFvg7Srt78uhCCp4bxOujFzmTSrAAAgAElEQVQSMxUJQzfoNz5mRChJGVd4+v52voRkaehbM8tisfzBfoH/K/793/z2fu+/93flz4/D8Y2P/8U91ne++MG+znuH1aATg9aGe/fuUFUVxhgGo4LhsGAymbAuN3zx9JlI3pOEEOxrfhfbc24rxtu6m+eDYkfKgi0LduuypXmbA/x+rIvF7bXW9vitEqMIARO7EQmniTLi+HjbLmSbLbHVD2glqd1yskQqbxCjFWsNWaKY/cv+hX9y/As5gutQKmCNrHOD1kz39zg6OuLBgwccHh4yHI9QRvPRx59EGwAxD/YeFJqm72ibFu9lrIKEJDGMRoPINn39BgVvJ6D55vF29z2/i+P2i/8mv35r4S4y4pvcidsaDsPN7nyLkN+MLh7C6y7Q8uNEQJUmhmKQsbc/4c7dE9595x3+rX/zX/u9+LV/cvwujj/8r/wcINsdjQPvGE8n7O/vc3Jywt27d9k/PODLX/4yf/JP/kkGgwHOddR1vQN3jY0mvr4hyxMGw1yo48qTpDemwVsB4G578iOAX/zYdxa3P96ZzWCRccLFz28ZgNvNxa3kKnXjYxBa8UTYApjy8W1U3WOs6DhGxYDj40NOTk74ys/8NPP5nH//3/u3yQcFz58/56NPPsb7nkeP7/PlL3/IIBMl6OnxHb785Z/h/fffx1+tGBY5f/2v/Q/cuXPC/Qd3uVrMWdcNLy4v+X/+4T9mNl9itaFcbZhfz8izjPvvvst/8hf+AtmgYDAck+aZ8Doymav7eNdTRDJQF3NPnaPabMTGrqqp61KS0nu5Qz64cyKGwNHDs3ct6/UaV7c4F9PPPbgAXd/T9D19FE61veSIOOduaNG+o6k7mq6lLCs2mw1XlzO++OILfuqD9/nKV77Cwd4evWu5urri8tU5ZVkyGu2htMF5GE33SIoBKM31bMXVxSUvXpwxu7qmrctdMtl4PGZvb0+o7JMxaMv19TUXF7IBmkxHKLUnmpKt/WDvyIoBzns2VU3bdxwVQx49eoe79x137twRIDgGPYlQLcH1nrxvefDgLoeHhxIKdXbGarXCJhLxIExY//oWTb3pqPV2HT+2xeLN4/abskXS8exmRBXUjQN0xCa2uOQWckishbjx4FaR8IhK0/W90Hy9I+QZRVFwdHjIIM/49vkrzi+v2KwrNtUa1zaUTcl8PufTTz/lD/zcVzDG8PL8RczjqHk8PWKQizDs/sN7VF1FsGAyw6YtCcqTphYVNME7CB7XtqzmC8rNhjzP0UrtnKMg6g8SjeoNru8Jwe3WvKHrKIZD8sEAP+6py4rVakVdblAqcHZxgbkApQOJ0aSZ0JaDcxiTyKZDGXxQooptJae0944s5LhIOuq88Ei6qowK1kCX9KRJTpZlGGMYDsZy5w6e9aoUoVxdoYxQ5VGapu3JiwKbZYRITR9Nxhx3Dt87rp0jOAdoyrLGmA1121HWDcoY1us1ddsQosHuVgCnlMFEHd26FNLWyDlsmrN3cMBoMtnZB0qim2hmxmO127DcvXfMO+8+4O7d+5L2pj3hRU9ZNfIztBcpviKqTuF7kDffquPHtli8aZaz/bd0FoZoxhR9El+3ONMBdOwejLpRBGaZ5IBucys8UVvhWjabJlrOKVonm4SqXFNVG+qyoqpLXjx9RucdAUgzi8lGVNWGZ88qvvqzP4O1lqZZce2usNby8OFDXr06Y7I/QScWemE69n2DR0RTXdeho4eCQdF3Hcvlkvl8zniyt7t77WL2FGRZIlb7yqOdnAIqSCixSaxQp73HJJIrYq3GFQW+q7i+vuLy5RlluWZ/f58H9+9SJDn5cECeDTCJpXeBsqmxVc2q3EQA2GISi3O98Be8o+w6QioKVuc8wUkymdaaPJcYhNVqxWqxoK5rjJHZfzAYyJYnkdc/iWSmNBU6Ovuyfej7nnK9JjhPXTe46I2RFnmMV5R173A4ZDDISdJbHhpIvGKaSmSkxDnKebLVkzRNA8pIpGPsKJVS5HnO48cPefz4IXt7e0DPnTsnDIcFv/m1r2PMDbgJMsKKlkgK29t6vDXF4s3AnW1jv9tmxK8JQZyStNaYWz6Gt/n5QBwnxMO+94EQV1rByBvqeo/DEUIXtxWyEtU4lFaMhgXDUcGoGJDG4tDGIBnnOpQyKB9oak9dK5zJMFZaY+c65suSb332hFfXCz794lX0gVQcTI8i668hSwxVU1OWPfPrhqODESfTu9y7c5df/Pk/yqhu+N9+/e/yla/+AhfLJdlgwGpVc70oGeZj/HpDOZuDMjRNR+2dvHD1hidPPufw+IAkNwTVM7Bjmr6J62SLTix5bLedc4QoPqvbjo5OJOEqI81SUiAEz3J2wdGoYHrvhPnVJS9fPOMffePrvHv/Poccs59lFDbHKU+ejCjGY8zK7FidBIXz0HeB0XBMeiIirdVyjdeGul9QNY6gUmbXa9rqKeVmzXhYkKVDEtUxLsZYMrxOwPRUmxpjUorhkCKXdHe84+7pHRKlef70OWVZ0gbFuqpJkoTQNLi2QxEwRvHowV2KgXh2hOiytXXQWq1WpGnKcr3iYjYjf/Gcr3/7O5yfn/P1zz5lkOVMDvdJjIbQopUiTeFnP/gSR0cH3H9wl+vzJxzup/yJP/Yn8N2aJ09fcnl5hcWCFsp6zBEg6O99Saq3oO14a4rF9ztuc+dhC1bKJsK7m83GmwYzKhJ0lJJfcXuHFVdIwSR8cFHAZMmylDy1OyR8OByQp9u7hfzsRJtYmJzYvMU7ZppCVXaRVxHBUqV3NvavXp1xuLdPUQiBShynFEErqqbGWstqteH0+ES0HkXBcrlkdn7BarWiqirSNKWuWvneRTSZsSkETe/8jrqsrKGqGxaLBavVinwwwKaZaCgiL0QMbtQNVqMUXm0NbbaF10SsRsa0vpcs0c1qiQ7I+nA13hG46rqmLGu6ztF3Loq6Al71gpdYGw18lQQeNT1OO4hZoSCRiJvNRkhrZUWWJq8xYZMsi6NJDFXWCcG73R1/K4az1go4OR5zfHzE9fWMxfmr6DUqNn+djwY5QfQozkmhkVH15v3rXY9znqbr8ChmiyXL5ZL1puLe6T2yLCOxmq5pacoKjGIwGGBtynpd8s++9g2++OILPPDo4WO+9FMfslrXbNY1VdvFUfcGSO9/gln8zo/bHYPzN0YkXgVM/P/b24pd2rWRQBwVvAiVtLTfw2EhBiyd0KeHgwGjwYDxeMhoWOBct2MKys93O0MXpQTp9krLnZcb1qa1FtN2EqdnTUyvEsamNenuJGqrGmMMnQt0dYs1CUmScHFxwbsPH9B1HScnRyRG8fLlSzarNU1ZMdofs2o3KEO0lQu7i7BvO7wTvYZCTvKLiwuurq4YjsckWY5NEjCid9gWLa00WlspqjrgtMzrygRMXAt7r0WUFUlOW2JbYnOKoiBPsx3OIExJMfLpg4wBdVeKriQf3oQaGSN0aGR74L3EElZlI9qZqC3RWpPkecQBHDbJhIodJHowKI3yNy7pSolDuGwcxAR5Op3ifeDZ+asoP5eiJFkj7MyPfTTRMVqyVFAKnEZrQ1VVLFcbLq5m5PlTFst1BLmlo+uaQNs0QmzLU6xNuX/vAevNis+fXpEVQ+q65tmzF0z3jtjb2+fyYkHVrHYFuu8dQYE2P6F7/46PrahJaY1vYq7kljux7ToU0ZnoZgWltUbp7SZDBEjWKNLEYIMj9JpEZzy4c8pgKDNsZmOB0dL2Od/hHDtmnUZs7LxPcH0vd0ot/hZpZum6BBd6jNEoLW7YWmu0Fa2GNUYuWDRpmrP1kfS+5+XzF8zfe5fpeMJoNKLvJU/DOaEd20KKSllXhKBwrSOxGWma44OmTT1d5Binacp8Pufq6oqDoxOK4Yg0y0hUgosGLsYYbMze2CaEK1Kc1ygt8/lWAbrthur1kiTJMMrTNhV4xXg85s6deyQ2AzRdH4OAe8FTri+vAEjSnNFoxP7+EUVR0LWOVd0KHuLCThpfR+q4NlIA8izFRmk4SkamJM2wWoM2uOBpoxblO599znpV0tS15LtG4hxIYTXG0Md1pU4s1hj6XgKcuz7FmD66hqnderN1Isdv2xbjRNG62VRRXq9vzjnnwHu6riD4Oa3zeBRd69jbOyDLMoajEUpZ+g6qpqPrJMDamGSXnep+lDsLpdRD4K8CdxAk8FdCCH9FKXUA/DXgHeBz4N8NIcyUzAV/BfizQAn8+RDCP/mdPsEt4cVYKyduH0B/dzScPFlAy6jhYiydMZICrpXCxD+jQcYwRurdOTm4cSEKnizmcbq+FZPZW2vVgCXg0CqjN4ZOOZEbo6JmQokuIUiLnyTyM5LU0LmWNB2SJjlN05EkGVluYutdsV7NePH8jMOfmYLvmV9fUW5WpFazmF/jcOwdHewMabbiNB0DirIso+k7vANjNJtNxWK+YrPZMG1bXCwQyopXRqINQSeRjryNLDQo3YsFnnforiOEiuCsFMNqQ1EUaDxtLYrY4+NjTk5OaJuetu0h5pIIqY0de/Hy8gUKzYNHHcdHp6KFWfZsypq2c6AMdS0sx213KF1eTppa+q6JUn+5ODNr8VphlKUtSxbLGV/72teiAY+8LnmSMxnJViUrcunAQh8Tz0T8pZSkuCdtgtFbNmWK0oHOO9JUOpu6rqmbjrbqb0yE43ZHFmqK0Hs265JqU/Hi+Rn37t/h+PSUq6tLRuMpjx494tmLc9AWrQ3WpmiTEHB4t+XtvL3krB+ks+iB/yKE8E+UUmPgHyul/g/gzwP/ZwjhLyul/hLwl4D/EvgzwE/FP38E+G/j3//c400l541r0hskq0BMdHjdrmx7Ucv3SQfSty1JapiORhwcHDAejxnaG58JE5fbSoVdcpg2CqNTjFG7ll9eiEgT14AOeC0hvmrrrBQA5+npSZRFpZLGba10OcUgR6mO5XqDD0q0IeidQvH502d8+N5jhsWAxGgWixl5nnJ9fU3jW7BE3CHevePzMuYGke+85JpWVcVisZD1YDTIUVoLqNn1dLrDmESKXMQFrE3R1uFdQEdh2JY05B3k+QDXt2jfkaWpdAqTKcPhEEIFaLR2uDhGJElCZjNCUCRJxcWrS66uZty5e5/33/8p0jRnNjsXP8yNrEf7vt+NK977aGGn8U4cp5xzZKmMWm3TE4yKAGrHZrWWLY5JcG0XHcwmKKWYTCbMZjPo5fXqvSN0YTeKdN6RBo8JkgVrQsxNSZLIzvQsliLo01qT2gTnPFobtNUYFF3EtPCBqqkJaKaTfdbrNYPBkHv37nM1W8dzL0Hpjq3b1hbv0vZHeAwJIbwEXsaPV0qpj4D7wJ8Dfjl+2X8P/N9IsfhzwF8Ncib/PaXUnlLqbnyc39YR4NYMGqRbUAHUVpr13QrQrdzXGEPwPRjYn4y5c3rKwYG0g2nfRtq2F5Wjtbt5VmzxAxiNw+LjXVewPiVOTkGo4AaF04EQxNF6F5+3a02F2LOpNmRJhjKGPDeMR1OcC6RphveBwWDEeGBpGwkXPtibUpVrZvMrlNZ0fc1i0dP5XohV2uB9H3UHsk5FK5ImEf6CFwet2WzGbDbj8PCQoih2hLFdfkfToOJsb61FaSPJ4NGwRfcGa0SG3bcNxkgAcV/3lJuKtmox+wZtEpLEY222SybzMUtUKUWiDZPJhOVixXe+/QXPn50zny/5hT/+xzDGsl5f8+rVK65m17ubQpYl2Ci2stbStRJ1qEL0wuwcddOImM95hsWALEsoy5qtJZ9zjvVaLs67d+9RlmvatkYbg3f9rih08WMXbpLQQsRBmqZiOBxydHTA4eEhl1dXtG0fDZKbOL7d3HxCvJncv3+fNE0j3RvKuqZqGj755BMWiyWr9Zq6bknTHKVCXNF6iUN4S4/fFmahlHoH+Hng7wOn2wIQQniplDqJX3YfeHrr257Fz/2WxeLNzMntoa2iaWQboGO83s4zgJt0L623u/U2ItSWPMuZ7o15//FjbNRu9HVJQifhc8YwnI7i3C4WbDqCgEopCJ40KjWVUqhe4RzgenrlMUaRovFOMxkNUErGCk9AWbPb0FhrccEzn8/Jc7H97zrHcrmiKHK08hzvH5PQc/fwANqWv/Nrv8aLl18wmU4xeYLXjqvrC7xWHBwcYPOELDdUbSknZd9hk4DqArSWpu158eKMwWDAaDTagZoKSJME7xydb3cBwCEEEURpjSPglUYnKYk22N7SonCNp2oqZpczvva1r3N1dcEv/uFfYG/vABO9HXxQ5JGP0vc9e3t7grnUCcPhmKOjI7717c/43//W3+b43iPu3bvHp995wmeffiEy8qgWLoqCIk9JtET+aQ2JkbFus9nI12QJyojTVlk33Dk54fPPP0d52Za1raNkzXg85A/9/B/g+vqSy8tLhqMBVd8KoU0pluWGJMuwWYLymuB7rLcYApPRABMBX200D+4eoZSh6064mi1ZrVasVxJl0NQ1Vd2Qpim/+jd/lV/6pV/i+PiQsqn44tkT5nOx8CuKnP39fZbLJd5DF0HhJNUoZb8n7XsL+P4wjx+4WCilRsD/AvznIYTlbyF8+V7/8V2/vVLqLwJ/MX78fR4p2sPHghCCF4FWBDO7tiPLUpQRxDrLE8ajPbIsYW88YTAUG3gtrow3+o0ImG47iRA7ke1KEWSLgQ+vvUnysyU+TwHBe2n7vdvd5VUca0JwqBjxJx2Ej1kfCYlOEDzM4b2QjCbjEWlwPLh/n+VixstnT7FJImSsxGITS+06XOeouxs3qslkhNYW59d4ZXE+pas7eieWcut1uRtHrLX4Qb7DBLabe9l6QK5SVGyDb2exohV916KsRSnN9XzGsxfPWc4XXF1es65KsjQnsxnGSDp7nudi/nvZYq1l05eRyCakpTTNub6e8+DBI/I8xzmJNAgx8/S1c8LfbMS6riExuXSXIRBCjwqWNLUUMQJyF86swmtdY2ItaTTc2Vodeu+xiXRmSmt0YnfbkC1xTVhTPUolEVMX3chkVJBZQ5FmzJYLuq4hwjacnZ1xdvaCu3dPuXv3LvP5nNn8GtdLp+r6lr7rMPH5KR0ERH1jDNm9Dm+B0OwHKhZKqQQpFP9jCOGvx0+fb8cLpdRd4FX8/DPg4a1vfwC8ePMxQwi/AvwKgLXm+/Zer9mhv/F/WWKxWmOtZjw8IBuIV2JiZEZNrSVLEhKlhF+hNam1WOV2BUCncvJgNNoKQUYpCScOIdBV3Q5E1BqUMgTEj8IYjdHgHFhrdidl37vXWlOjEwhy90hNBjkkiaEoMlzfkicFoyJnUqT81Hvv0lcNvutJi5x8UBDyhCTPaIFNM2O5XAIamyZMJpOdS1aaphI0FOndfe9Zr9dcXV1xeHhIkhiGt8xybt4LtTOi3QKH27Q0gOAVaZbTR8OW6+s5Zy9fsVrO+eLZc7705Q9RccNTFAUgxVYpacG11ngF1tywM621PH/5ki9/5SscHByRZRnL5RylFGkq+IuJvAilxLx3+9pmKSgrXAgftx3WGI6Ojhg8eSo+pURMZ5ss5ra+lzcf+1jskzwTd7PEkuU5iZUxzfduVzAF35LkAKUUzirquiWxoib18eckaytck77n6dOnHB0dobR0l6PhGGMyVsvN7vxyfY9SgneZ79M4iEbpR6BYxO3Gfwd8FEL4r2/91/8K/IfAX45//41bn//PlFL/EwJsLn4neMV3h8Xe3F1CXBEWqTz90XDEvft36J0T63hrGeQ5PqLyeZbJRgQxqNHxXem6jjyx0QrOy1otMhrTGJibZClt3ewAQOdCvNlEw1VjsCEmZVkFJqC8cDLkrhwEuOJmTedcR5YohoOUzaYjzSxFYjnY3+Nob8r1xSsGWY62MBiOua7WXK9Kzq8vubySVWSeFxweHjIaTZjN5/EOmcZid3PW1XXN4lqwi+GwEIqyl7la6xvr/RDkzpamqTAZI14QQiBoyUft24qyari4uma53rBabXj6/BnL9UoKRfBkSUZBIXyGSJcOIUgkY96KiXCWY9OMs7Nz1us1kyjwOj/3YnJTTHZErO17LuS3VNzCIg6CNhA8QcvzPz48FC5L24ogK/JufBCKuetkk9GHPjqv33hOoDUmTcgHBcYoXFnSOQFbk0Twk3g9SHdptGzM0PS95KkOBjlplglDt+94+fKctv37u23be+8VaJUTgtx0xEVLxqwQpAvqb532txnJt4WRP6zjB+ks/jjwHwBfU0r90/i5/wopEv+zUuo/Bp4A/078v7+JrE2/jaxO/6PfzRO8vQ1xXsaQ3RZAwWAw4M7pMdPRkPlqKfhnCKit8YhIK1HBC+FGKVQEorQRGnia5ZhEXgo5uT3rxZKr1YrpaIzrBLRLY+ewU5wqeaO996BvJVdtO5GYUk4MJ1aqpu9bqnINRSFzeWY52J9gLIwHBa7rqdYblHMU4ylOGT7+5Ds8ffmCi+srqqbFWEueZfzyn/pXOTw55PmLM0IQZmRqM1qrYksfaJrI5pwvqI8OaGK2qbmF/ajeSUZoCHR9C6QYpJgksUVvGnHMms1mnJ2d7cx5ry5nLOYrRsMJVVVF/Fk6szS1jMdj+uCjbsNjbLK7MK6vr5nNZkyn0x04HHzAGL1zOXPO4Y0mNbKVMErTx+2RMqCweAWuDwwGA4osZaHErQykM+2dE11ML12jDx5rrCgxvCbJUmyaYNMEE1mjpm0xfhvfmGKUltfUebxSsTgM6FpH3zeECKqmmZgxz2YL8HBxdiFAslKUq5LEDlgsVqzmK3TQZFkSOxxx8H2zKOw+fgvkqD/INuTv8P2Xv99l0hC3IP/p7/J5vfGYN2IoY6SFT63lcH/CdDplfzLGeU+WRDJR21IDg1ySwPu2IzH6Vmut0EaTpQUqMewfHnB4fBxTw2FvMuHzTz/j+bMXmKBjS3zzfN5Mkeq6RpiVbMHMsDPtlYsSaXEjCNi2LdYa9iZDUltweDChX6/Is4S2qXB9T55ltCbj6fOXfPvTJ5xfXVI1rZgFq57lsuL6es69ew+4uLhivS5Ba8bjMV3bUZayRtwWi8ViQbXZsFlJsI+0+GZHzlJKYawmOE9Hi3MmqmtfD8O5urri+csXLNdrsiRBGU3nt1sHg1ZW3L77Hly/44Qs1xuur69ZLBbMFis2VUXd9pRlKXfUuDLVJmE6nXLnzh1WyzldtOHzStN3XohskUpOBGwTY1AWdJqK4W7chGit6fpe/Cba5mY8cV5YqXHcygYFaZGTJpmwb5V0GVaB0QlWxwCk4HC+ly2YCzE6QUuRGg7onKeLrcHh4bGYGW9WeA9VVfHZZ09JbC7/LhtZVasU58XLk8A2V3l7LX1/PO+HcLy9Erd47O7gIaBRZFnGwd4ed+7c4cHdexwfHJIkCd71pFbuPoPBAK1FFViXFYnRqBCj9pzss4PS2DRDW8tkb4/7Dx9w9/490jwjyTIePnzIcDxitlzICBKBse2fqHTfzbM7GvTWsfpWR+Sd3Pm2XUnXtfTRi3FvMiRNE4yCyXBEvSnZLJckScK3v/0pX//6RwxHUw4PTygGQ7I0J7Ep1lhevjijqVuKfEBdNVRVTQjs5vxtcSxLATnn8znz+Xznl7ltwaULSF9L43K+361B+14u+qZtubi+4vr6mrbtyPOc6XQfay1lU8v4FlWay+WSs7MzglYkNqVtW1zw4vpd1zRNt6Nn13VN56Xb2d/f58MPP+SDDz5gf38/vmZbUFCeyzaPRQd246qxiixJRb5O3O5Y+b6tdqUuq51Piev6qKwVyXue57KWNkao3Lubi1j27/QnyoqWxQt2c315yXK+oG2EBCgU9YJHDx9z5/Qu+3tHFMUQpYyse+sW70BrAYuFGrDVLW21R2+nEc7bQ/cOcicQ81mROZs46yVJglGB4TDjvXceMRmPGOYFSZJSVRVJYsl1wcHREaenp0z397i+vOKjjz6iLktU3TAZjRkVA9brNcYFjAqUixV7x4cUWca7j99hPJ3w7Nkz/s6v/7985cMP+cU/8of5jX/0j2nrhnQ4xBhN0AglWhlhYQ4UyliarkVphc00ofYQZMNQt4GgO5SDpuspEkvXdHTOow567j84ZGxTwt4R0/EBn37+khfPL/jii5f8zX/4D1gul/ypP/XLzD97QlnNMSbbnbifPnnJvc+f8q//mT/Lr/7q3+D8/Iyrq0uK/B5G5bhWaNN9CFy/uuIzK7mmy/k1zjkme2IS6whYm2KxDNKMVN8S3zlxHtVGcfHqjE8++Sar1ZI0t5zcPeHxew+ZjAZoFEZ7ys1KWvRsQKoyjvfu4uucg0lPOdXQF6yXjrZ0lP2aptowGKa40JIOU+6/c58/+st/lNOTI3rdsq7muLplMB7RNQ3GKAaJET4EsUvEE1SC8zBfVHinQSWoJAUaTGqoqg1BidLYBY+yFmMsxXDIcLTHYDgmz0ZkNgMf0H1Lsy6p+zWqKEjTlDxJcVro4mme4YEXry5YzNegDYPRhMl0j5O793jvnQ+x1jKfz/nmN7/JetGikXHFh57W1RilsNrSa3F0R2uU1oTtFu6WyOz7dRlvqrX/ZR5vT7EgKke3YjFuCFZ934OG6f6UceQMmAjAyVydcHLvDn/g53+e09NTxtMJq9WKn/u5n6Mu1/za3/rbbDYbDCrqK0pxNAqy059MJpyennJycsIgL/j808/o+54PP/yQ5WzON/7Z1yMYWkT0/ea4ETGJpmC7tjMR+Vc+4FVcxTqPShVFUTAZFExH452Fvow6akeWevHixY6Q9vTpU66vr/Fxht6eOM45nj9/zh/5xV/g5OSEV6/OpdUOVXxuYSdSWpcl2XzOZrORApsVwlzsOrQ1pOnrgOKNcnd7pxMfh+vra/q+ZzQayAi4v89gMMAoHcOCietKw6avOD8/Z7laAmL0IphBvwMtm6YiBNHD5HnG6emp8GSShNPTU56N91i0lzv8xWqDs4Idpch2yz8AACAASURBVFlG7x2td1iT7GIahXV68ztsx5xtlKHWmjRPSLJUQMmoG5H1ud1hVF3X0dubrtHaFKUc0EfNTkNTx9Ew3ug2mw0vX77kN37jN7h37x7D4ZDxeEye57vRqe1bUqvJhwNxjK88XS9GPlXb3bjS3wotSsz35l/8Xh5vRbF4XX6udujx9k3quwatU6bTKXmekWiD8x2bzYbJZMLjx4+59+gB77zzDrD1skDWeL6nGA53AbxplpIGmY/7Hc3W7zwmtm25c47Dw0Pu37/PsydP5bnoG8/O7fPdrdWMzKuidI0qWA/O9yiTELZ8DScFKs9ztvF6fjhgfzqJF09N01bMZjNhm6YpZ2dnlGWJjryNEAImitOur69JkoQPP/yQL774XLwb2lY0MsrgI3DZti3L5ZKrqyuRvOe1EIFsDA4amUiVvykYt9O6lFLM50tmswVCn97j4OBgxw5NjLTnCkWSZ+RJjnOOs5cXNF3PvXv38EExn8/lok80VS3Pf7I/YTAocN6yvz+NVPGU0fEw6k4aVFAQNDbJCEpA1947nI+2+tbw/PnzXbQA3IwOShmSLEUnFr/xOy6DtVZ0I6nFGkViVCTvdbRNQ1OV+CzdnaM7Gzyks6mblrYX3xQhaomMve5avvnJR7x6dcZoNKKua2GOaiFgGc2OTWusJXGpsJUjB+jGJuBHbxvye3DIRejDjTfFloQVnCc1llG0YBdCVUAFxf7+Pu+++y4/9dMfEozi888/F/6/jp4Gwe0ujsFggDHCsHTO7fQHSinKsuTZs2csFguePXvG2dkZh9M9vvXJt5nNZoxGI9br9e5C3WEXKEzQOOWjojHsvBVVLELOOeiEzNV3PVWnyMZjsiyLBQjKas3poWwqtpbxKC9K2CzbmcFuZ3BRX0qep7GK8/OX3L9/j4cPH7Jczanq/sY8CIQSraBuGs7OLyjrljz+rDTJ46ai33UGsCUDaUS41eMjZ0N0JgX70z329/fZ3z8kzway/YlYwPY9lOds0K7n+PiQJEtZlUu++cnHLJcLUJ7Fckbv7jMZjynrDYPBAKUEm1IBGSmvrnj18ozNeoNSmiLPcSHQVg0YTTEY0vc9z5692G0etBbNzZafoBPZPKBFB7S1LCiyhMzKH03AdQ1tVdJVJa7r0NYSlKLtfXSyiuZKPfRe4Z3GBU/fS6EoEkk+67qGF2fP4xq/IM9T9idj6RAh+nSws/TDaJwGg9lFK5po2KS13r2uP8zjrQA4t6QTadNef0rOdwyHQpEej4akVnb+gzxjMpnwzjvvcHp6yvPnz/n1X/91Pv30UwCOjg744MMPefz4MW0v4blJkrwmPttW8cViwXe+9S1+8zd/k29961tkSUJd13z00Ue8Or/A2gQbNxnb0WeXicmNp4bVNxTv7QrRGEPXtLv22GrDdDplOhmhtaw4Ly9f0XUNi8WMst4wn892hQxkhblbJfput/bc/tyPP/6Ytm157733ODw8BDyd7/BKEri2XULbivHter3eAY1bF6u2bnYekDeFYtvtyXZhGwQ8HA53I8je3t7Oz2JLmy/LksV6Id1QIn4Z8+UM76VoHB0fUHcCiM7nMzabDVmW7Ipjnuesyg3Pnz/H+4CxCYv5kk1ZRsZsoCdg8hRbZLSu5+XZK15dXYrewxhMxF2k85OtTTEc7DrB4bDgYG8qdnpGtD14T7OpqMsS3/fYeI6IEZAS0Ziy+GCoG0ffBTENQtE5MSX2QQSJXnlMatjbm3Dv/h1O7xwzHBVSHIKjyNOdCVLnHZ4QJezq9S7m1jn2wz7eis5CKV67+MSMxKECFFnO0eE+B9OJ7PwBvEMbs3NVKsuSyWTCwcEBe3FTcni4z+npKVoJRrBarfDek+c5PTfzeFs3XF/OdoKj6XTK0b17PPv8CU1Z7fQUWZbRNy1a3xIMRamydLtimpInKa3tdxfPze+oGAwy9qdTjvb3UCqwXq5YugajhCNQVeJwfXl9hTYGo9wOA5GthIt7/wStRafSdR1nZ2ecn59zenrK/fv3ubj+nH7dxs2GOGB5Feg6h2pqrq+vGY/HtE2/E+ltZeVy6NdOzu3cv1gsICaBjcdjxqMpg8EAjBWVZ2Q3tl1H13W0bR29MxRX15dcz+a8evWKuqspBhnVfMNms+H6+pLh8CH7+6JgzfOc2WzGq7NXdE0r2EBs97N8hNcGnWiGwyFN1/Ls+Uu+89lnbMpSsCMPXm11JjJGTKdjTu+e8OryXDgzacpkKh1eYjQ6ena6tsN1HVZrgk3k8RRoY7FJhusVdbVhta7ovcZYMUX2XY13smFpXcd0OGA4GHBwuM90MqatG/IiIUuE+DUaj3AK1lUvhWwgRDVnO7mpeY+6lQy/Db/6YR5vRbEIQWa5NLXi2NT1KAWjQc7jRw94/OA+fdeSJQngcV1P01ZMpycUoyGj0YiD7oB/40//acqm3BGAtJK5frleYbQmHxTCuosz/K79cw69MUKm6edsViXVRkDQEE+iNE0xyB3adl0EOt1u7DDaYBIbsyQCvWdntT8aDmjKSiz125qLV2cY5UkTxXg0ILWKZblCOST1ajQiLwq+eP6Upql2IrA0TTg4kAu0aRouLs8JwTEcDthsNqSZ5YMPPuDscsPHH1+jPfjg4+rXCgjnPP/0//saeTGkGIx2XhjbYObhcLi7s+1cx5Smdz1PnjxBa82jR4/40pe+xKNHjziY7on5biMdSp7n2BjMrFSg8x2DJOf5yxecv3rJy5fnDIc577//DovfuEZrePnsOe+++5ivfvWr7O+LpPvjjz5htVrxtX/6NTarNSdHRxTpgOM79+lDy6rc8PTTT/nk29/iyZMndC7ggibPBrRthzaGDEuSWKqqwunAV776s9gs4ez5M7Iso0gTssSigqfebOi7jsxmpNrQYtA6QdmU3kFftaw3PfPlmvl8TVW3eJWS5Ibe99A7lA00fUdfex49POHo6IjpeIL2gTTJef/9x1y+OqdzUsibvqWsNugi5+D4iOF0j8qkzGLSvXduR3vfUs9/mMdbUSzgZiSw2shs6Hum0zGHh/uCM/Qdndki7SK8sVm6A6m6V2dsNiteXV1yenrK4eEhXddRVZVsETIBReWiuJn/9PYG6oNsTIzBakNmEwkEcEDQuP5WlADb7icK0MhjsTO7GZOup+lrvA/0cQYdFTldU5GojOGoYDIuGBQ5y+Wcq9kl09E+q3JDWuQSytu25GmK73tU8IwGQ/YmE0ajgThprWYMixwVAr5v6eqGw8NDDvanqMDugpfuIWHr3LVYLHjx4gUPHjwghEBZrZnujfGR2XkbYNuOOl3dMZvNOD4+5v7de7J1Gg7F3CYyI5WCtq1pqloozM5RNxV95xgOC4oiA8SBTDYUYGykOfeeuqyYKwl/ms/nPHnyjOvra/K84ODoGO/hajZn3Wx48eI5nz35jOvra6q2w+iEwWgIQTEdTuk6AcDpHYPhVFzW65LRaMDRkbh1HR+J8dF6tiJ4j1WyWnadJMd3nWxVNlVHWVaUm5q2k06ycyInd9E+0CsITkDXNM/iNB3EzXxrBKQ0J3eOeX72kt53FIMByXrDqpQOeRxp9VubRufDDSFO//C5F29HsQgB7zq0srRdS2I0g+GQ4WBAok0U4mwBM0tiLDboHQ4gbbLm6dOnrFYrmqZhNpvh2o71es3edMzFxcUORxiYJBrUhmh3F0cgJ/RvF6ALNzqArZCJ2FkISzFB64CYl3Rxbk8EyOx7qnoTDWpFIFQUBffv32WQpxitsNqjNHSuRcWK5YLMvXXbQDSP3d7dtdYMBjnj8ZDBYEBdl9gkGsTc8vIIwfHOO4/4+te/HoHSgDLbOVgKwPb1ubq6iqDxKI4ggeD9bk53zuG6nmCEBVlVFSeHBxwfH3NwcECaWinkbRe7K1FraiOvZY8nTyyLpqHrHVlqyXPhxkjBkPFOAnoynAusVnLhPH32gm9/6zscHR3x8N5DNmXL+fk53/j6N3Has1jNqesKYw2jdIzWliwdkKY5o9FEGKvVhq7v8bgdyD0ZjkjMDYGrrRspkhiUUbJBArRKCb7n/EJWxW3nYlJ7EkFjI2ZJPtD3NwrdgJjfbIvuFkMZRK/Sw5MjatfRuSA3jGbEpq1Zr9cMxxVFJMdZa0Vqj4yaRv3w4cW3o1jE7irRhrbvSPIBR4f77O9PxdC1dySJRVnBAWyS4JzGJAbwNF3NYjbnG9/4xi7fYZDlgk90sptXQR7fOYejI8Sgod5HJ6g0ee1OmqRmF85z+07b9y7qK6RQGGPIgqYPHhd9JPu2iW24ktl4JDP+weEeiRa/BE0PMZzIRIq4I9B0HXXXMiiG5GkWHafl5JuMxkzHE9mKuF44B127M9npu4a+63hw9x5H+3ucn1/QhkhuQ++2M94rLi4uePHiBXfvnWLMkbiK5/K7bdWzBI+xW7xiTr0pGT1+xMmJFIs8T2nbOoJx0VEs3BQv4VYo+r6lbbpdF1hVldwxlUYFEegVxZCm6egjo/PlyzPG0z3u3XtA2bR8/PHHbJYbSQDD4UJPXqQMhmOSXLCFJD7O/v4hxiiqasV6vabrRA+j8SRZQpJOYmRAwHVdFJ4FrLKRKwOt82yqlr5bRYMbg04sSSIKWhMtA53vcGxXtIIPiU/nhjwREHM0LhhHez+TJmzamrPzV9gk4eDggGVZUZcVruswcbOUJAnK32BJNjE/6SwAYuQwWotXRZHlHB8csjee4IOj6xrSVFpendjdRW3TqE3oOvHTvHMHYwx37tzhnUePyYuUT75ZYlCcHh1LtQ7guoY+eFQQUdHWRt8Yg0lFzNSpDq9uAZReUtGd8yglRQqIiVqe5XJJ1/UsFvOovVASlTcasT+dRAq6wvlOzICVR+NRWpFYMZ6VbBSND5DmBak1qCh6SpOU8WjAMPpRSHcihrQaBUG6gL7tGA4N9+/dYb1e0y9WO5D2ttfDer3m/Pyc1WoFyFglr4MjBHODxcStzOWrC9q2Ji9EKJWnQiIDMEZWiMF5fJAWXhJloeua3ajXtx3WCDaklFDT27bl8PCQyXAkj6UMTSNxiF/60ju0rePb3/mMi8trQjT2xSpsljMYDcgGBSb5/9t7sxjLsuw879vDme4cQ05RmVWZVVlV3a1mNdktNylTaHiAB/GF9pNpA7YMC5YfZNiG7QdKeiGgJxuWDRs2BNCQAMk2LKs9wDRgiaINiaNIsZtsdndVd2UNOY+RMdz5THtvP6x9bmQ1q4pFsVkZBccCLiLy5r0R+544Z5211/oH2dcXeY8sKxgO+8IcpeHxw4dSgaiTPkyWpKgA69ggD20QxZOgqErHYrFiNl8xm68xA4FlC48mASXub0FJItVOiylVAKUk6YdWiGtaSxN2MBySZhlBQd7LGE8mPNrfZ11X9AZDtkZj7j96RLla09MnehtN+KCeyvOOU5EsABSeuhKZ/GG/YDQakBcZy7mwG/M8x+gEoxOatqVuPTknknBbW1u89NJLPH36FK01o9GIt7//Ft///vfp9XqkNmE+n1P0ClTIqetaxnBtoHymEuhGVq7xWCsNptQIg7RpmojyE7GWtqxZLOVuN10sqKqKdVmilKJIU4b9HoNhnzRLsElU+zaCz/Be4dqGXi+Oz1wrIrlGAEedx0W3zTJWpjppmtK2J5obwEbIBSLLsqm59uJLUtKXDatyLQgBJVspYwxNIxgU4XkIdTwEt6FkC7JUtCJmsym3bt2KTVYp3zvhoLquydIUJ5AMdOsRZVJJGE1dA55EK+qmEoMmYDGbx/6OYW/vBYqih7bSjLx//yEXLlwgsRnvvXuDg4MDXHRJCyJ9RJ7nDIdjBqM+SfR30daSaEuaJxT9bXQCy9WCVbU8aQ76EPUzZe2u8dGfVOD469WK46MZ09mKdVXT74k7nTYWOi5H9Bmx1tA04mOzwd5Ixt9MMeTCT0AJa9prxc7F84yePmExX1L0B8JncZ7ZwRGZMpu/6Ql50vx+QaDnEKckWchBreuK3W0Zgfb7/Y2GQPeH7S7WTgF6Z2eHC1Fbc7Va8dprr3Hp0iXquub+vTt885vf5HD/KePhCGVESSlPU3QUI2m8i0zGIFiMzZTEkD8jwNJRpZ0L1K4V/89ITlqvZS/flYjdflPUoEQbwlrZSigdhCKvDar1BMxmTNZpIGAsHmgDDHo90pgwkth0xTkMCnyLRtwQVHD4piVY+VqtV5zb3eHqlcsCP370RMhKSncYJWGCzmY8ePCA4+Njzp07FyHJbiPL38Ggj4+Pefe9G4zGAyajEUUvQ6lAXTeU1Uo0QhBqvlcKvSnHHVVscIboZxKiifB8PseYhK2tLba3dlEYnAs8frzPu+++y5/+ya/xznvvc+feXRSasqowJmEw6LOqViRpHh3Ox6RFRsDR1JLcdWLIi4KRHzEcD5gtZDuXJekG8OeegX57RKVrMV8xn62Yz9esypqAwXmNiSNU59loTwQNrWvo9D67y9g7Q3Ceupam6GKxIC1yBrYXldhgNBmze/4cq2g+rQKkNmG1XLLI8xNN1Gdg9y4mjecZpyJZhBAo0pTgat544w0uXTiP8yKKamJzbjqdcnR0JGpQVcNgMMDcfJ97D+5vtBm//vWvszWeUNVr2krwFxrFermkidZ15Wq9YRoaa0isgLvE4FZMcNtWmJodCKnD6HuvqGMFkmUZw0GKjvTusFxiioK6rmJlII+AF40WHFonwmnRkFgoYpXknKNxFVnZYJOENC/wIdDv9ymKAqWCEOTGI+mpGCIwq0UpkRTsxGGccwIqq1tefeU63sNysebp4ZHIByaWtnVoa1islrz51lucO3eO3d1ttre3N0phSolgzfHxMb/8y/+A3/3d3+VrX/sab7zxBqPRSJJ3W21GpY1Gpj51hDbjqcsSg2LVNNSVYBjKsqStW9ERvfuEn/jxf5rz5y9SljU33nuXt99+mxf2rvCtb3+HmzdvQlAsVwvSNN/8bbK8x2Syxfb2LqOtAf1+D5RnNp+T5z3wgbxIGY0vUQwyJlsD7ty5wxe/+EX6RY+mEjOjuqwwGO7ff8xstmC1rHDBoEhQWtzQ61qOsZg6C2JWJyJkNJ9P6eU5O7tb9PIC3wah4R9OOXx6IF4rZcVqtZItCJ68KKjbmot7e9g04/GDx6RZ4KUrl3n/HUEgd0C3Xq8X8So1WZJ+AH7/POJUJAulNKuyISv6DId9alfG7rzHe81wMJG7eVWCgl5/RJrlZEHTN9Jkc85RGMPB40eb6iNEsFcwsA4Ny0pk3vq6R6hbkqDoF+JuReuwKJGlizoEVVPH9SkcgUIZepne0KDLugJXolVLkUuFgIueHo3cRY3SUpp6KaCNFUEeAUs5cGBIUFgSI9sRrVpCWJMpwyjPaXCMhj3SzLKuGoKHJOvhgkU5sf9LjCX4BhMc7bwG3xJaj3Et2tXQVihtCQSRAQyaIu/hasfB/lMO9g+5dhVIgLgfb9o1jx7f4cbbb7IuZwwGBdp46nqFUYrlciF3uyDH3weHTQ0hCAI2zQeYpMGaQGsrCIq6FoIWynPh0oTBMMP5igcPHvLgwQO0SXj55Vf5h7/8qxAS4ZHYaBBUN3jVkPeETDjoj+j3hiSJoGrTZEVVzuL2TASUiyxhb2+Pb966y717d7h27RVWZcV0UeJaw9HRlEeHi4jIFGCdUoEmOBwO72s0hswkJEZG9iYo8FAoRa41k17OaDyQREuOYsXBTAyW+v0+Rid4p9DBkuuAdjAseqgtj1vWPHr0BKOiSJIPtOuKBGnAqqDRsepSH5iIxKbqppn8x9/XOBXJops2nDt3DmP1RhOi82tQSuTuu+lC3u8J8zSJalQhZb1cyF3XGpJOi7LrP/BB75HO7DaLcnvOOXE6X683gijGGAqdo8yJyE3aQaDNCcLRx/U7J9RnAGXN5nc+O0np/k1HmAsKH124g9cb4pyJAsR5LqV2G5pNn0BEgS3rdRn5DydkuBBChEO3m3Jba70BXbU+cjYC0ahJY6Lu6NOnT5nNZhSFSO/lec5sNuPNN9/k7t27G+xKkiRysUdzIvndojUhbm7mA59XeisGk/RZzJeEIGPMqqnZ3t7ekPZu377NgwcPeONLPxZFY+S1eZ5uyvFGNZtRZFdJZbkocmkTmC7CZusoAkORsAes1xVPnx4yHG4RvGK1WlOWNcfTuWwv4t+ps4LoJlDeNSiVkxorep4BtAqkqcWogjzLyLOUPM1IrcE1A1aLJU0j4+bpdCr+qwcHmFT0Qq5evcpoNKJtZDu2XC4Z9sdRsIcTThEflNZ73nEqkgVEebyLF4HOK6QWWz1CVIcStGVa5AwGkizqusK2rYwelcYFcf+u18JJICaaJJZwdVtFGzw2dOWjg4MN47RDMGZZRhEBR2IpJ388SweMibgFnmHMGo1FEyKoqEtyHdVY2TgS8PJ5pHehyTI5uRfzNctyzXAwZjKZiNy9SphMxnjlyWOf4ESAh9iobDaQ7a5PALAql2A0o/GAvct7rOuG/YMjBJuuZRSoNb2I4pzNZszmx7xw+RJlKUnvyZMn3Lhxg7ZtOb8jPY22bUWotl9sSF/elfi289pQYGRy0FHq5fjWmx6BMtCsGvYu7QlzNorybG9vc/nyZW7cuHEi918UKKUkkce7aJIa0jQhyxPyPCXLUrSRflHp1qh4wSmlsCYlSxVZVnDwdArhNkmSslyuqUrHarVmg3KHTUXbHed+0aOXp2S5FUXuuqbFkWjF7s4k2hIWZInCe0Ovn9MfiGhx0zTMpguWi+gvYhJQnqOjKdvb2zjnePzgIet1w2gwEcBgs6JtkxOYt4YQPgi/f15xKpKFAnbPbTMajaKyUxWVqPvxpIOsKEhnc0aTMaPxWBpAqZCrOpMYm0hjqG7KKJUvd7zGtZvRYNu2aHdCYW6qOl5AJ+KySimyJEHHJpPxXkBaWkBL3oshjSSMsPFf1daSJwlNEx3DlDxE81KduHTT3TH0BhfSNA1+taLIpU8hTc+WrJeRZIJPUNZgvINw4kLWlHEL8AzfJShPG1o0CeOtLa6iWDcNtQ9M56uNA5lSIsufZXJyz2YzGUlH0Za33nqLx4/32d7e5trVlzdToPV6TWYTbNKBkSzWgtYiOYdWhCD8kE7FejqdMlvNN1VBVa3Z3t5msVhw48YNUJ4vfvEL1HXJrVu3cK4hLVLyviQot3YErVDWkCRWcDCJbBuMVSgjautVVUEI0RxJ0zSCtN3ZPs+7h+9z//4jesUA78E5T9t4lEowRkiMzQbKT+QOlTRJQmJlVJ1khiTNyBLL1lgmXWmaRmPqQJGKDUUHMqvLBhcaXCtTl7zf4/Bgxmol/ZyyrDfbizS1VHWgdTVNYz9wY/jIZBH0h4hb//HE6UgWWrO3t0eepzTNktVqxuXLl7l48aJ4SqBwbeDp4SFJlpFmcfS1EiCUtQnWCeW7wVO2YuDTlOLwBR8s51IjuhCJMZg835TwJs63N2IoEWrbwAk1vmPH6pgM4niraVrSeAHXtXBJOhNep1q8ESyJjSCrzoKRCLxJ05SglTQAW9G5UEaTFSn9fkHez0miqLBrT/wwxM4wnkgqGi3jyIpc9DuKhG2zw9WmIc36/N533sIHFcFSonbdbVU6ST1jDPfu3eOtt95Ca83Vl1/h+vXrsRsvlUkIgeCjUM5mi6VonZcqI6JjveuquDo2ZxUdDLooCm7fusuTJ4/Z23uBfr/P2+/cYFUuSfKUwaDPYNCPVUWIbF/ZntrMbmwh0dEESgdR8m715sZgVYo1GXk2wjstTeyQkGc9jDbUwZOmiUD6o+hyh7uRzwjB12QmZzAoKPKEvLAkRmO0mB8pRBLAaElSG+3XVmD+zku1aYyOidXia+mJKNVtqRLSzKJXsrVrXS0WEsAJyI2P+PenE6ciWVhr2d3dxVrFfLZktVqRZpbxZIiNbuPaGIKNwixaSze+rNBGKMFlhDCvViuBE8e9vNKB0WgUxVnk/f0kO+k5NC2hbaOLlcJGbH63b9UaUqXFQV2r2MgL6OCf6UOoCEM3seegEMJbTU2gKNINdFcrtQFIdRBhHY132h8AiCW9lDRY0jwVJGsQb4+6ESanjYhWImhno91oFc61tM7RtC1JnnHuwnmwGe/cvM1sugDAeU9Zy9asKPr0ix6LxYymcdy5c4fFYsGVK1e4fv06W+MJy/kUa9Ko15lho9N504jgbGgDTdOiCVL+W8/RckpVVRsVqqaRinFvb4/pVPAbg8GAqy+/zGq14O7du6xWC7Z2z7G1O2E8HhMOZZunvIw5k7j9sNZEpitxQiRYFO+IzuctaV6QZQXBa6zJ8G7Nai3ubYnNCDSgjMC0Y3Q9A6UDO1sTRqMRO9tjRqMBvdyitMe1wjJt2xrXCkxcawvBowgMBgPqupXKBbGGDF7Rlh6diYNeB0oDyIp8wwvpFNIwp2P70cWpSBZpmnLv3j2sVRQ5vHL9Gi9fv85oNOLJkydUTUue9RC8SiDLE2ymSJJdHjx4wK3bt5lOj/DeU/QK9i6cYzKZbA50mpgNz0NrTWhamrJivV6LhVxQBO2xWmNymdNjBNYLYXMiuUhB1kpho6qSpgPiQLUusdpwfntHsP6jXIRrEKSld45gLVZLMiIqb6VpjvOB4B1lBz1OLUE5jBUwl/fSl0hSSXrLhcCyu5l87VpWTYWuEwrVkPUzaB2z9RxVl+TFkJ3dXa5eu8bv/M63UZGNOpvN2N/f5/r1lyXJNi2z2ZwLFy7wM//av7ERHFqv1/TzAoITgWGTQPBUZROPR4YyUFeiHWKMJUmiU1tUXe8UvLa3t9ne3eHv/eIvc+WlF3n55ZeZLRf82q//OqtyTX884MWrL3Du3Dl0krIslwQd8EpIW8YG8jwjLyw2NRgbm6gmQWFo64q016NatswOnqKU5snjY4p8TNvXTOdz1rbFDgusSsEDAgAAIABJREFUFS0OEZwpcd6Bakmsot8fcOncLpPJmK3tIVlqaNo1bVNCaFChwrdRqNdmItSUZLx2/SqvfflLfOO3v8WNG+8yn60IQeNbaJrOYjOh18+jWpamKAqG4z6rldwspXdSS4Xju6r4DO5NZ2BbVSv+uX/2T/Hqa9cYTSb44BgMBoTlamMU05nVuuDZ3z9i/+AJq9WC4WS8kZNPenKXTpJE5uJRe9NElWibpmhr8ApyJz4ddTTnab3DxfQgU5jIISCQG5kElGW1wex3k4jOo9MYQ1vV5EkqQidW+hJKE4FdDqPixMecKG851xIIopvRttRRfTtJDUUuoihSnQj0eI1sr7z30gCOZDibJrQ4JuMhuiwptGW1rsl7BUkqJ2Wn4l2ul5Sl4uhIBGiaRvgbOzs7YiKdi1jMcrkkaRP0cEBwDaaDIUcZuKYuI5dEnMGc6zgy9Qa6DHK3d07wGzdv38IkCZ/73OdovON73/8+i9UShzRFd3a3GW1NNspXxipCFftJWUp/UEhV5QPBR6MfZdFojMmoljVP51OWi5JqLaZD1ib0en3KstoopnWWlc7JxEkwIrIlyFMR7qnqNTAUTpBvcG3LajUHX8cmbo7Wmslki0sXL7O1tcM6SXn1tTnHxzPK9X2qytE0tUz8jKasFsxmM7IsYTCcYK1YCnQgPa1Pts2dQtvzjlOTLLpm2N7eHi+++CKzxYKn+/uMhmPq1kUVphKPkJ2ePn3K4dGUoijY2t2hrmuOpscbtGe/X5zAgJU4WG1YnB60tZgsJXcFnoBp7cZKIDFGphqd0pTVMsb2Po62XEwa5Qck0FAiWBK0SN9txnG+xXAyAvSCA8R+yEhM6Tg+DZ4mNBv3tU4IRSY8etMo7C5E531stsq0Je/n0YbQomzKcDJmuRCUqHMNWgtZrK5rlss5B3Eq1DSOJDNkaUGSpniPbDl0Ql0taUqFrytC8BCbtt4YlHe4bjIUE5t3UNct3oOKIrsd9d8Yy+UXX6RuHe+89w6Hh4dkmfRgBqM+/eGQLEs3MPxnLxabnGy7tDZYbfHesTXeIkv6PLz3kJv37rD/6JC6dliTkoSkG2bLtiXeqbu/pXcOnVrGo2iU3TYbiYPRaMRisWA8HFBVa7zr+jaKNM3Jsx7j7S3Onb/AzoVdxqMJYd1y8fwFXnrxMovZgv0nR9gs4UtfeoPhqM+TJw94/+a7UTzaMBgMwMhovBt7e9+JH8FpELU7FckCiCV1nAzUjnK1IrMpd+/e5eHDx0IWSkQPoWpq9vf32d45x2g0oigK3r19U8q7XsFwPBSti84LI8jJ4X2LD54QkOmB0ZgsJcVhfSIz8zyXC7NtNhWF+FNI81ArpCopPyh91nrZq4qlYbSng9joq7BBqpVuP9ypaHUjsrquCc94jPrWYVIRgrVKy/pb6ZcohdCgI31+05+JzVmnPUWvJy5X2pIniqzIOTxacHB0QOMdNtjIiZC77OPHD6kjjF4rwTAobfG+3YgJEWHlXkmDEgyI899Gko8f2PsLu9SglcEmKVpbHtx/xM33b/OFL/84i9WSW3fuMF8u6A172FQg4OPJkMRmEUrvPoBX6TQzO/k/sZV0YtNQlTx5fMDDe09Yr0sMBp1qVDRFFrFcoekvFzPSLOOlFy9LBYNsEXSAxknD8srVq2iteP3VV/jSl36E3/hHv8pv/9ZvMhjmWKMZFEO2d3a4cuUK2zvnKIqCLM+x7Zrz53e5fv0689mS5XLNcrGmVyRcu3aF4SjjeHpA9Xi98W3pxKLlhnTSg+qIgM87TkWy6GT/29ZvaMwHh/vUdc3tmzf57W/+Lt57LlzcI+/3GI+HpDZhPBqQ51Lu19V6Qy/XWkyDhRQlCM0QROQXkK1G8DR4gtUYb7FKkRUFWZoJRLsxuLqhbRraELveQaoNZUVNOlhNMBZlWkLwsq3QKuohxOan8pv+RwgBHx+dY5YxBh/AWoePiFMAbRw2yr8bpUXmTSe0vkUFTS/LN+C1sq6gVPRcXyqWVOz4oosvRosU/v7+Pvfv32cwGNDLUlzbsFg0hOBYLOc8frQvFV7bRv9O8T9Jk4yyLDfHVtYsZLEQxKHeiW/k5uTegMSaNmp+VqRpjsKwv3/AdDqnKhvu3nsgXJ+4lRoMBmyf26bX623gzc+qdsm2RraVVll00BgStLYcHO5z9+5Dnjw8iNMpqYyaqmWUa7LU0lrNoFcIbb4uKYosaqVkBN9idWA8HFFkgkL98lf+KZbLOcPRCJv2+Pznvsiv/eqv8/T2Q169fpVef8TlK1fZe2GPJJOktVwvEQnAlO3tCXsvXGR/f5/1esmDh3e4fOUCk8mQF1/aI8nkMzfRL0cMuDUhNHSCyX9ghE+n6jgVyYIInkkSvRkldV4Pw+EQ37QczeY4F7hw8SIXzu0wHo/p5QVBIVLxqvO7kImBtRqTaLQVYo8OgWAEPutoaYLHxRMwWEEymjwVQJEWqbmyLHErJyhJpWhdC8QL3wgEvHEtq1q6/R6ovZPqA42NCSLJUrQRVGcn9huA1nk6CpKWGdwHRrxaiVu78tIwtCbgGidoSd/5qipcLSO/tMjpjwakhZXf1YnNmoT5csmDR4+YLua8tPcSF3Z3qMo1Vb2kqgVpeOPGDb7y1R8nYFHKkkYh3i5BuEamDp0wb8csDU6SaYiK423b4lq36essl2vKdU2SpUznC44OZ2xNdnn3/fe4dfcOrXMoIypR5y5eYHd3VzAHVfMBdKpGkrBWJyhbsQBMWK1Lvv/muzx+vM9iscaQUJUlzglTNs8t3jfgo3m2UTilKIpMPpPRZEmfLBnzyrVr7O5uc/vmLQ6OpgyGvWhgNOPCpSu8/vkf4Vd+9R9S9EYMhltMts7hlKGO/KOuX9a2LWlm2NnZ4uKlXY6OD1gsjzg63ufll6/y+uuvcuHSecq1MKCztOsndXq0zwhDP/+WxelIFiEEFosF5y9IEqiqCmtSUaoOovmYP3nK06NDfFRvqssKMxFil2trGXNGFF9n6HKCPwhR1VseHf6haqOhS8QKeCBYhbUJibFiT2gVbS3NRiIzVfuAahowmlYF6uBIg8IpucN28HQd1b3SbrTZVQ7mxDu0GyuGuE159q5sdULQTsatSqYvrRYxINe2G2CWrsVuL89z+sMBzjbUrawvIBfX0dERT5482ZCTRqMRvQu7BCru3L7Fo0cPyEyPe3cfcNEJSrXwYLOUoE1kkp5oQpyMfzVtewJi6rZZ3cM7sDYlzw1lXXHn9l1mswXXrr/Cm+/fYj6fkxUpWZoz2dlmb29PRt1J8oFk0Y2eVTQD9a0TzoYtUEEzPZxz/95j5vMlrvY0dUtVNWRJSi8vMFpRlRWtdyQGhsMe29vbfO4LnydPM1brBThPuV4ynR4x6GV413Dz5m0uXjwvOBuTEILipauvUnzjd8mLMTbts1xXzFZLUJ7t7Ylgg4KOzU/L1vaICxfO8fD+XeaLYw6P9nnJ7zHZGtIb9Dg6Omb/IPrERETvyfSjuwl+Shfjx8SpSBZpmvK1r/0zfPkrb3Dp4hjwXLhwgdVySVs7zu2cZzQYs3Uk0vO+8TRlxb07t1FGVKoSLfP7wWhIXhQkaRJHfIamlhO3rWvquqZshO5etw1JlqJ0pFdrAYh5rXDak/V7DCZjCEJhxsn4cr1qSKdzgrF4a8n6ItJbxN8HHqxCJRYdTZJCUOi63twRg5XXplEqsJutd5wSrTV1WUricwGHwypNnuQoHFW9YjAYsG5rlvVKRpORoWhzy6osyfMedeMo64p333+P926+T1VVXHz1Ar1+wd7FC/zIG5/n9q33+P5b3+W7336Pr3/96/zYV77C66+/zoWLewwnYzmJjcZEj7y2bQm+RhNIjN4oUXnnCDgSY8D6DRx9PB7z8PE+t27e5uDgiJdeusbWZIfF6i0mWzvoFF577TovvniFre0xo8kIgoCjqqqKsn0nKuPdxaSjC9xyUfLk8SGpyRn1LauwxKiE1GZMp0esF0usHrG1tcXe3h5JmjKdznnp5Wt89atf5caNG9x+/xhrDKF1vPmdb/Po/j36/R4P9mv6AxEverJ/xHrdoEzBtVc+z7p0PH5yyN2HD3j99VdBOd69+S6vf/51dibn4rjb0evlXN67wOHTF/jGN/8xN96B7Z0Bo/EWzsPBwRGLVUWaZ+JeVqQbt3u54floa3imZ8Fg2Oerf+oNzu1u07YNratRKsMmCUWvhzaQZpbMGoo0QQdFs25Y+nKjTaiDJtOavE0ofEpoDSpJhOxkpDFYa0VtoKWlCQ0i0+JIbRrdvxJMHHOqJNBQ0bhK6Oa5RiFq301T0mSBJvE462iN4C+8sYwGkfwWvTiddygtVYCxot5UeXHoxCoa4zEWahfwKoAHZS0aCwFUZvEKmqp6hrwWKN2adStmw3mSk6gUWyfYKkV50ZS0yuK1YTafcbB/RLlao3ygXxQMJ0O0lQro8kvXaFrPo8dH3Lt/i16ekmropSlWBcxoiEoSSFUkWzUYrchtInD6RvpNxmjSrKBpHG0jqFWdJazWFdP5jMNjMWw6f+k87793i3K9IM9ge7RNmjj6PU2vn2ANrFctCkuaFrhgaJzDmETczbN+VBRzWO2hrTncf4jRKbVXWNOjqZeEtqKXJphMsdcbcG5rm+3tEct2TeYDx7N7vP19xaWL51mue7QBwnCAbTKOyxkZFjvYYrZ2JHnKrVuPWUzfYX48ZTAYcFhX1M7iA1S1YjKe4KqHPLq1z+RHBwRVkSYO5R2DQcr58xPZli3WPHj0FG9Ej7QzsCoSTZJ6khRcWBEQAJ8IRut4IzrxdPm0i41TkSwSm2waWoPBAOcbUQ6aLZ4Rc3UbLIPWJ2rbz5a+3QgMEDcnOvWiIGNPRP4sOL+Ro0ttQhq3HVaLsrc2gG8BRVACigkqCFwXGUcGBzgfR5viFpamqfhoyDs3DcH1ei4Nyo3xUCKMWWPwdYvqEJvaxFGg3DkTJVsLX9YfKMVD8JjEQl1HglxL4zzzlfiYFkFm9W3borymXK1YzuYE58QAOULFOwUmYwy7u7t85Stf4Rd/8Zd4/PhhFO/JeVVrFqslk8mEPDPgm9iMdjRB9D07rEInCtxVSU0tSfTw8JBbt24xnU65/NJVZrMZ8/l808web4kV4mAwOLElMNLfeXbitNH5hM1ItW1bFsuZcH6MuIx530Ipjm472wN6hWFr0GcwHgkfJi2EXbte0SzXjIs+W8MRy6ZhVZUyJcsNtl+wt3WRtmpZLOa0rsGmFq8Cq2qNzRStbymrZXSuKzBJwny52GCCMIZWSfNy2BvE80HQxkku/BHnfGTXCk1dKRGa9MF16WLTw3iecSqShYrjrK6ZJpexNKbEy1Mg1N0JorWm9iVtZ4LbOoKLjEGj8SEw3t0WOnFEWAYnfiOuaaNOgGh/RndPAfe4gFcuIubChgtitEIHvdFZzI2M7hKTYG1KauRnJsaS5z1sNCJKjNwN2tFASvdW+g/GGLI8Jy16DOyWTC1iGDqymaKpKrIip6xFat5E4JUPsfFlNKpjxjrhk9SuJamhbRqMshibMZ/PmU6nm2NXFMIYLYp8o+qd9wqRsksMh4eHG+ZsmudcunRJqPEU2G68G3sSaWKpFtXG4BlO+CWdGE/bttStCBbt7u7y3rs3efLkCUmaiEZpdDZLi3yzxeiSXYdj2cgdumYDqS+KAt+0zGYzqqrEe9nbaw1FkTEcFAx7FnwlxynKCXrEEaypWvxiTXO8oDqeM69XlFXFeHvChfMXuX7tOs16m5s3b3Kw/5TGyzZr3azBazJj6emCYOB4MeNcvYUyisVCFOYTazcSAsCGMr8qK46PZyR5sVFU68Bv3oFWdtOnUNFHVZ0CHc5TkSw6i3mloHU1bVuTGplIuLbeNAOVOtEkBDn4OE+Is3wC1OuSpTEbh2qbaCyKxgd83dCWFZaTLJ1qQxrv5kZprLKRaxA1M7XGdC5kUchGY9BOeCXtuqJciYJ4rWvqskJlGYmJhr1K0+sNKcsSlYFVMk1J8pyi15PKQfEMIlQSWQB87KU4ZNxKBBOFgND103TzKCN8vSxLmHqUN7RZy3BoWMzmzKczQbA6v0kWvSKnrFYsl0vBfqSWq1evcu/2PabTI27edGS9gjQTWPV41IsEPHDKoeOoujP/baITWVO31FVD7VoOnh7x+PE+0+MZ4/EWTdOwWq1IspS0l21EjYuiiCNDh/dmU2J3VPMO2Zin6YbtCl4g+/M5nkDbNmhtGU8GTMaXOLc7wVVLnjy6x2y1pGhGjHo92SKWNbp0KFdz960bPHz6iFloWBpPpRTpsM/cl1wY9Rn0c9arDK1EfV4dadZVSVUFiiYnywzzcsHdR/dYz+esVzOOj4+ZjMfYyCzOE9ENHQ0nLFZPmM1mYv48GtHrCWGtXK1oW/FTVcoiVHkDQaNUh+J8fknjVCQLgbZC41qyvCAEmQ60rt6Al07EcFoMltRovAevNS7qJmitMWhC61jNhSylBNcIjUO7gGo9CkEYKiUsUKssiU6wRmOjTJ6KO0YVAsoJlNNHBe350TGz4ymL4wXz6YLlbC78jrLFGsOw16ctsk15nnrZGnnv8VGjIUkzQoDFYnmCwfBiBq3DiZ1jBx4LWuEjv6QTb+30PrvtxPx4yvHBIT2lUN7iikBqc9aLJW1Vg9Ib0Bgg0vZemI11LZYCV65cYXZ8zPRYZPTv3LnD9vY2xlr2Lp0D/AYPorzHOUkQbeNoG4d3XYPWRpGdEyGf8fYWR4dTpvMZZVlz/sIug9GQ4XAomqvWih4GbLadoj9yQtp71hlusVhwdHjEar0QNfVxwXi0xe72NlvjEYN+zuH+Q548DqzqioPDQ1DSa1kcHOKnc7RNaTKF8iXjrT42U+yXKw5mxxzMp1wdQC/XKOVofE2jHLqQ8XowjpKKohjQtA13H93HVSXKtTx9+pTxSBTdKicizoPBgPF4zOOnByxmC5raM1xXkrh7AzLbyRtoqS5wMv3ZUNSfb3VxKpJF5GpHTclOZUn2pxv0oA9yF25aQhqJXW0roKm6obA5SYRAq6Boy4oyYv6VDpvtivKBpqlp4jh0lS5ok/aDXXbYVBUdRl+pjj7ecnx0zHK+pCkbjNdYndBUDcEFVvPVprfgnLBWD2dz8jxnuZqjlPipdkIyaWo3I1AZ9/oT4FPXB9goO0f4ePxqjMEoRWotiTYsqzXr5YrhTj8muZPeTJamtBFz0MGYe70cm4q0P8DjRw+YbI25du0a3//eDblrHx1z48YNjFFcv/4i/Twj+IAJDhU8VdOio3Fwl/Da1ouYcdXwne98h4cPHrFz7jzndsXAOs9lejSaDJlMJjIB6PUwUdjYxy2QEO1OhGi686HT3GiahulUDJjbtubSC5d44YXLjEZD2rqkrldUzZoQGnbOnWe5XPL22+/QLNe00yXDAGb3PJNxRlANoTBgLApPVZfM1gvOn58wm2/x4PF9ZvM5rVYUk4yEFI/ohpShBhrWi6k0l1VgenwsxLzaMZ8uROJQJ/T7Q/q9AcezOet1hbIrmjrQlI7RaCTIXC2GVSB8JeDjR6fKfyrArD8wWSilrgB/C7iIEOl/PoTwXyulfg74d4H9+NK/FEL4v+N7/iLw5wAH/AchhF/8uN8RQhCyjhI1KB1HRamVPa3Rcocd9AoZDSaGqlyLcZCxGAsJmtwkWCOApExbfOOomwWrcomP5kBVVVI1ddxjK2zjSZIIPlL2A/gMYwyJ1ZteCrGHkaucKjRYr9EOjDfgIVUJOmh8I6jBxKQYk7I7HnN4eAiIpuR7+7fpFRnnz5/HlTV5llH0LY1rBUgUXPx9htoYiiTDKk2IehPWGHA1aItF088KkpHGNJ5BmmNaBXVLGyrKxRrlPEWWc3h4jFFWiHO1KEtneYrNUgrleeGFF/iNX/t1Ll+6zI/+2Bt859tvMp9PWb2z4OnTR3z+C6/x2vWrdBAAnVh08DK5UCoeRznJF6uSsqzZf/KUrZ1drr58nQcPHvDezVssl0t2zp3jtdde4/yFHSY7Mpr0Sn5OXde0rt4gcjulaw0MBgO0FguIqqrYPzxgWa7oDwa89vlr9Pt9nG9pXI1JHVmuGO+M+Bf++Z9md2uXr/8vf4e//3/9PXazPrWDB3cfcm58nVy3rKsKTMMgNegA0/sPufve96jXK5LMY9tA6Rta1bJqa7CG9XzOwf4TBmlKYgPWB6y2/MZv/AZvv/022+NtvvC5P8GVvcusVw2vXHuF+bJkubrJdL6gcWDVilXeI7OFKLWlnsTmKGoIdgP3/gCZrBO8+ZSEb+CTVRYt8J+EEH5HKTUEvqmU+qX4f/9VCOG/ePbFSqkvAD8D/AlgD/h/lFKvhRAcHxHS1a7pTGs6ll3H7y/yHrP5lDzPqUvpD0iJKvgKEk2aJHHMFEijmZD2IZoJicHNarGkXC1pkSqlyAoSI4YzOhiKKITjvd8I4XQTjW4/Lc2EyBtpHHXZsF6Ke3eW5BiTxGpAjGtEUbwiMSm9XspyLXobi/mKprzLqDdgPOwzzDK0F2i3IsTmFuBDFMyR3k7rIhLDC1pSB3HHCo1YA5SLJb1Rb9OfmB9PKbKCfl5wEI6AyE+pRcW7a0I2jSLNBT7+6NEjdnfPsffCRW7fuisTh8UC76UCa+tqAxRzMQnLxEL2NyI4JEIzFy/ucXHvEuuyZDqfsVjMUCaR6qrfo+j3RROjrVGGE7yJc2Jw3GmJGjkvOmm+5XJJHdmjAJOdCb1RgdIQygabAIgSN4j5cj/vc/Wll5lMtjh4/ISgc4w10hTOE0pfk2DJewNG1oJK+N5b36VsGx5PD1mowGG9kvF73PplRUKWakLE0GQ6QUXW7Wy64Ee+8CNsbW2hMPR6Cb3egPF4izx/zHJVgfO03d/ERTyPXAVobTHRRe95K3vDJ0gWIYSHwMP4/Vwp9T3ghY95y08DfzuEUAE3lVLvAl8F/tHH/Z6PEiXdcD0w+Lg16Lr6yjtQYSNTp7sx07PvF8rCiWtUkKmC0VpOrNARxcTIVyslDaVOp8ILcatrOsrP1Oig5GfKM5v+QQfX7SDriU25sneJF154gdbA06dPODo64s6tm9x6/ybr6Zx2NWLSExJVqg3aCq+jbVz87LKWxgeZ2oRAnqa0HnKbEJoWozQmxDXHNYlP6wlDtRO5fVZMV9YsIjLlasF4POboaErTNOSpjDFnsxlZT6jz3YWslcJp8Wft+iday+m0XEqj9enTp1SNAOEOD4+YTqfoRJL/s4pkQBQUOrl7ynrDyXFMEnBseljEnlOSJBSFTBW0Bq09QYu/qwonif7Rg4e8cu06u7u7XLi4h1+3WOdZr9Zk/R6TCyO2e5p14pk3NQ8fH3A8XbIebGN6GT60JHlKohMaJdwiH5w0vU2E77ctlQblRCphPByyNd6mn/di8hMNkmFP/GqXqzUuuqx16mhFUfD7exPdv59vwlB/GJ68Uuoq8CvAF4H/GPi3gRnwDaT6OFJK/bfAb4YQ/sf4nr8O/N0Qwv/6Az/rzwN/Pv7zdeAAePpH+CyfZuzy2VkrfLbW+1laK3y21vt6CGH4T/rmT9zgVEoNgP8N+I9CCDOl1F8D/gpyw/0rwF8F/h0+HDny+zJSCOHngZ9/5ud/I4TwJ/9wy38+8VlaK3y21vtZWit8ttarlPrGH+X9n6iFqpRKkETxP4UQ/neAEMLjEIILIXjgv0e2GgD3gCvPvP0y8OCPssizOIuzeP7xByYLJRvcvw58L4TwXz7z/KVnXvavAt+N3/8C8DNKqUwpdQ14FfjHP7wln8VZnMXziE+yDflJ4N8EvqOU+lZ87i8B/7pS6keRLcYt4N8DCCG8qZT6O8BbyCTlL3zcJOSZ+Pk/+CWnJj5La4XP1no/S2uFz9Z6/0hr/UM1OM/iLM7i/7/x/NkpZ3EWZ/GZiOeeLJRS/7JS6m2l1LtKqZ993uv5sFBK3VJKfUcp9a2uo6yU2lZK/ZJS6p34des5re1vKKWeKKW++8xzH7o2JfHfxGP9baXUl0/Jen9OKXU/Ht9vKaV+6pn/+4txvW8rpf6lT3mtV5RS/0Ap9T2l1JtKqf8wPn/qju/HrPWHd2yfVRD+tB+AAd4DXgZS4PeALzzPNX3EOm8Buz/w3H8O/Gz8/meB/+w5re1rwJeB7/5BawN+Cvi7yHj7J4DfOiXr/TngP/2Q134hnhMZcC2eK+ZTXOsl4Mvx+yFwI67p1B3fj1nrD+3YPu/K4qvAuyGE90MINfC3EQToZyF+Gvib8fu/Cfwrz2MRIYRfAQ5/4OmPWttPA38rSPwmMPmBqdYfe3zEej8qNmjgEMJNoEMDfyoRQngYQvid+P0c6NDLp+74fsxaPyr+0Mf2eSeLF4C7z/z7Hh//AZ9XBODvK6W+GZGnABeCQOGJX88/t9X9/viotZ3m4/3vx9L9bzyzpTs1643o5R8DfotTfnx/YK3wQzq2zztZfCK05ymInwwhfBn4M8BfUEp97Xkv6J8wTuvx/mvAK8CPIjykvxqfPxXr/UH08se99EOe+1TX+yFr/aEd2+edLD4TaM8QwoP49QnwfyDl2uOuxIxfnzy/Ff6++Ki1ncrjHU4xGvjD0Muc0uP7x420ft7J4reBV5VS15RSKUJt/4XnvKYPhFKqr4Saj1KqD/yLCFr1F4A/G1/2Z4H/8/ms8EPjo9b2C8C/Fbv2PwFMu3L6ecZpRQN/FHqZU3h8PxWk9afVrf2YLu5PIZ3b94C//LzX8yHrexnpGv8e8Ga3RmAH+H+Bd+LX7ee0vv8ZKS8b5G7x5z5qbUjp+d/FY/0d4E+ekvX+D3E9344n8aVnXv+X43rfBv7Mp7zWP42U5t8GvhUfP3Uaj+/HrPWHdmzPEJxncRZn8YnieW9DzuIszuIzEmfJ4izO4iw+UZwli7M4i7P4RHGWLM4joBm1AAAAMUlEQVTiLM7iE8VZsjiLsziLTxRnyeIszuIsPlGcJYuzOIuz+ERxlizO4izO4hPF/we3OBIyHE9wpwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa0c1014b38>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import cv2 \n", "import matplotlib.pyplot as plt \n", "%matplotlib inline \n", "\n", "# 提取预训练的人脸检测模型\n", "face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_alt.xml')\n", "\n", "# 加载彩色(通道顺序为BGR)图像\n", "img = cv2.imread(human_files[3])\n", "\n", "# 将BGR图像进行灰度处理\n", "gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n", "\n", "# 在图像中找出脸\n", "faces = face_cascade.detectMultiScale(gray)\n", "\n", "# 打印图像中检测到的脸的个数\n", "print('Number of faces detected:', len(faces))\n", "\n", "# 获取每一个所检测到的脸的识别框\n", "for (x,y,w,h) in faces:\n", " # 在人脸图像中绘制出识别框\n", " cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)\n", " \n", "# 将BGR图像转变为RGB图像以打印\n", "cv_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n", "\n", "# 展示含有识别框的图像\n", "plt.imshow(cv_rgb)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "在使用任何一个检测模型之前,将图像转换为灰度图是常用过程。`detectMultiScale` 函数使用储存在 `face_cascade` 中的的数据,对输入的灰度图像进行分类。\n", "\n", "在上方的代码中,`faces` 以 numpy 数组的形式,保存了识别到的面部信息。它其中每一行表示一个被检测到的脸,该数据包括如下四个信息:前两个元素 `x`、`y` 代表识别框左上角的 x 和 y 坐标(参照上图,注意 y 坐标的方向和我们默认的方向不同);后两个元素代表识别框在 x 和 y 轴两个方向延伸的长度 `w` 和 `d`。 \n", "\n", "### 写一个人脸识别器\n", "\n", "我们可以将这个程序封装为一个函数。该函数的输入为人脸图像的**路径**,当图像中包含人脸时,该函数返回 `True`,反之返回 `False`。该函数定义如下所示。" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# 如果img_path路径表示的图像检测到了脸,返回\"True\" \n", "def face_detector(img_path):\n", " img = cv2.imread(img_path)\n", " gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n", " faces = face_cascade.detectMultiScale(gray)\n", " return len(faces) > 0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### **【练习】** 评估人脸检测模型" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "---\n", "\n", "<a id='question1'></a>\n", "### __问题 1:__ \n", "\n", "在下方的代码块中,使用 `face_detector` 函数,计算:\n", "\n", "- `human_files` 的前100张图像中,能够检测到**人脸**的图像占比多少?\n", "- `dog_files` 的前100张图像中,能够检测到**人脸**的图像占比多少?\n", "\n", "理想情况下,人图像中检测到人脸的概率应当为100%,而狗图像中检测到人脸的概率应该为0%。你会发现我们的算法并非完美,但结果仍然是可以接受的。我们从每个数据集中提取前100个图像的文件路径,并将它们存储在`human_files_short`和`dog_files_short`中。" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The percentage of detecting human faces in human files is: 1.0\n", "The percentage of detecting human faces in dog files is: 0.11\n" ] } ], "source": [ "human_files_short = human_files[:100]\n", "dog_files_short = train_files[:100]\n", "## 请不要修改上方代码\n", "\n", "## TODO: 基于human_files_short和dog_files_short\n", "## 中的图像测试face_detector的表现\n", "human_files_short_detect = 0\n", "dog_files_short_detect = 0\n", "\n", "for i in range(100):\n", " if (face_detector(human_files_short[i])):\n", " human_files_short_detect += 1\n", " if (face_detector(dog_files_short[i])):\n", " dog_files_short_detect += 1\n", "\n", "print(\"The percentage of detecting human faces in human files is:\", human_files_short_detect/human_files_short.size)\n", "print(\"The percentage of detecting human faces in dog files is:\", dog_files_short_detect/dog_files_short.size)\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "<a id='question2'></a>\n", "\n", "### __问题 2:__ \n", "\n", "就算法而言,该算法成功与否的关键在于,用户能否提供含有清晰面部特征的人脸图像。\n", "那么你认为,这样的要求在实际使用中对用户合理吗?如果你觉得不合理,你能否想到一个方法,即使图像中并没有清晰的面部特征,也能够检测到人脸?\n", "\n", "__回答:__\n", "\n", "不太合理,因为图片的来源不同,不能保证所有的图片的脸部都是清晰的。 如果脸部特征不太清晰,应对图片进行前期的预处理。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "<a id='Selection1'></a>\n", "### 选做:\n", "\n", "我们建议在你的算法中使用opencv的人脸检测模型去检测人类图像,不过你可以自由地探索其他的方法,尤其是尝试使用深度学习来解决它:)。请用下方的代码单元来设计和测试你的面部监测算法。如果你决定完成这个_选做_任务,你需要报告算法在每一个数据集上的表现。" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "## (选做) TODO: 报告另一个面部检测算法在LFW数据集上的表现\n", "### 你可以随意使用所需的代码单元数" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "<a id='step2'></a>\n", "\n", "## 步骤 2: 检测狗狗\n", "\n", "在这个部分中,我们使用预训练的 [ResNet-50](http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006) 模型去检测图像中的狗。下方的第一行代码就是下载了 ResNet-50 模型的网络结构参数,以及基于 [ImageNet](http://www.image-net.org/) 数据集的预训练权重。\n", "\n", "ImageNet 这目前一个非常流行的数据集,常被用来测试图像分类等计算机视觉任务相关的算法。它包含超过一千万个 URL,每一个都链接到 [1000 categories](https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a) 中所对应的一个物体的图像。任给输入一个图像,该 ResNet-50 模型会返回一个对图像中物体的预测结果。" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5\n", "102858752/102853048 [==============================] - 1s 0us/step\n" ] } ], "source": [ "from keras.applications.resnet50 import ResNet50\n", "\n", "# 定义ResNet50模型\n", "ResNet50_model = ResNet50(weights='imagenet')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 数据预处理\n", "\n", "- 在使用 TensorFlow 作为后端的时候,在 Keras 中,CNN 的输入是一个4维数组(也被称作4维张量),它的各维度尺寸为 `(nb_samples, rows, columns, channels)`。其中 `nb_samples` 表示图像(或者样本)的总数,`rows`, `columns`, 和 `channels` 分别表示图像的行数、列数和通道数。\n", "\n", "\n", "- 下方的 `path_to_tensor` 函数实现如下将彩色图像的字符串型的文件路径作为输入,返回一个4维张量,作为 Keras CNN 输入。因为我们的输入图像是彩色图像,因此它们具有三个通道( `channels` 为 `3`)。\n", " 1. 该函数首先读取一张图像,然后将其缩放为 224×224 的图像。\n", " 2. 随后,该图像被调整为具有4个维度的张量。\n", " 3. 对于任一输入图像,最后返回的张量的维度是:`(1, 224, 224, 3)`。\n", "\n", "\n", "- `paths_to_tensor` 函数将图像路径的字符串组成的 numpy 数组作为输入,并返回一个4维张量,各维度尺寸为 `(nb_samples, 224, 224, 3)`。 在这里,`nb_samples`是提供的图像路径的数据中的样本数量或图像数量。你也可以将 `nb_samples` 理解为数据集中3维张量的个数(每个3维张量表示一个不同的图像。" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "from keras.preprocessing import image \n", "from tqdm import tqdm\n", "\n", "def path_to_tensor(img_path):\n", " # 用PIL加载RGB图像为PIL.Image.Image类型\n", " img = image.load_img(img_path, target_size=(224, 224))\n", " # 将PIL.Image.Image类型转化为格式为(224, 224, 3)的3维张量\n", " x = image.img_to_array(img)\n", " # 将3维张量转化为格式为(1, 224, 224, 3)的4维张量并返回\n", " return np.expand_dims(x, axis=0)\n", "\n", "def paths_to_tensor(img_paths):\n", " list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)]\n", " return np.vstack(list_of_tensors)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 基于 ResNet-50 架构进行预测\n", "\n", "对于通过上述步骤得到的四维张量,在把它们输入到 ResNet-50 网络、或 Keras 中其他类似的预训练模型之前,还需要进行一些额外的处理:\n", "1. 首先,这些图像的通道顺序为 RGB,我们需要重排他们的通道顺序为 BGR。\n", "2. 其次,预训练模型的输入都进行了额外的归一化过程。因此我们在这里也要对这些张量进行归一化,即对所有图像所有像素都减去像素均值 `[103.939, 116.779, 123.68]`(以 RGB 模式表示,根据所有的 ImageNet 图像算出)。\n", "\n", "导入的 `preprocess_input` 函数实现了这些功能。如果你对此很感兴趣,可以在 [这里](https://github.com/fchollet/keras/blob/master/keras/applications/imagenet_utils.py) 查看 `preprocess_input`的代码。\n", "\n", "\n", "在实现了图像处理的部分之后,我们就可以使用模型来进行预测。这一步通过 `predict` 方法来实现,它返回一个向量,向量的第 i 个元素表示该图像属于第 i 个 ImageNet 类别的概率。这通过如下的 `ResNet50_predict_labels` 函数实现。\n", "\n", "通过对预测出的向量取用 argmax 函数(找到有最大概率值的下标序号),我们可以得到一个整数,即模型预测到的物体的类别。进而根据这个 [清单](https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a),我们能够知道这具体是哪个品种的狗狗。\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "from keras.applications.resnet50 import preprocess_input, decode_predictions\n", "def ResNet50_predict_labels(img_path):\n", " # 返回img_path路径的图像的预测向量\n", " img = preprocess_input(path_to_tensor(img_path))\n", " return np.argmax(ResNet50_model.predict(img))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 完成狗检测模型\n", "\n", "\n", "在研究该 [清单](https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a) 的时候,你会注意到,狗类别对应的序号为151-268。因此,在检查预训练模型判断图像是否包含狗的时候,我们只需要检查如上的 `ResNet50_predict_labels` 函数是否返回一个介于151和268之间(包含区间端点)的值。\n", "\n", "我们通过这些想法来完成下方的 `dog_detector` 函数,如果从图像中检测到狗就返回 `True`,否则返回 `False`。" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "def dog_detector(img_path):\n", " prediction = ResNet50_predict_labels(img_path)\n", " return ((prediction <= 268) & (prediction >= 151)) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 【作业】评估狗狗检测模型\n", "\n", "---\n", "\n", "<a id='question3'></a>\n", "### __问题 3:__ \n", "\n", "在下方的代码块中,使用 `dog_detector` 函数,计算:\n", "\n", "- `human_files_short`中图像检测到狗狗的百分比?\n", "- `dog_files_short`中图像检测到狗狗的百分比?" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The percentage of detecting dogs in human files is: 0.0\n", "The percentage of detecting dogs in dog files is: 1.0\n" ] } ], "source": [ "### TODO: 测试dog_detector函数在human_files_short和dog_files_short的表现\n", "human_files_short_detect = 0\n", "dog_files_short_detect = 0\n", "\n", "for i in range(100):\n", " if (dog_detector(human_files_short[i])):\n", " human_files_short_detect += 1\n", " if (dog_detector(dog_files_short[i])):\n", " dog_files_short_detect += 1\n", "\n", "print(\"The percentage of detecting dogs in human files is:\", human_files_short_detect/human_files_short.size)\n", "print(\"The percentage of detecting dogs in dog files is:\", dog_files_short_detect/dog_files_short.size)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "<a id='step3'></a>\n", "\n", "## 步骤 3: 从头开始创建一个CNN来分类狗品种\n", "\n", "\n", "现在我们已经实现了一个函数,能够在图像中识别人类及狗狗。但我们需要更进一步的方法,来对狗的类别进行识别。在这一步中,你需要实现一个卷积神经网络来对狗的品种进行分类。你需要__从头实现__你的卷积神经网络(在这一阶段,你还不能使用迁移学习),并且你需要达到超过1%的测试集准确率。在本项目的步骤五种,你还有机会使用迁移学习来实现一个准确率大大提高的模型。\n", "\n", "在添加卷积层的时候,注意不要加上太多的(可训练的)层。更多的参数意味着更长的训练时间,也就是说你更可能需要一个 GPU 来加速训练过程。万幸的是,Keras 提供了能够轻松预测每次迭代(epoch)花费时间所需的函数。你可以据此推断你算法所需的训练时间。\n", "\n", "值得注意的是,对狗的图像进行分类是一项极具挑战性的任务。因为即便是一个正常人,也很难区分布列塔尼犬和威尔士史宾格犬。\n", "\n", "\n", "布列塔尼犬(Brittany) | 威尔士史宾格犬(Welsh Springer Spaniel)\n", "- | - \n", "<img src=\"images/Brittany_02625.jpg\" width=\"100\"> | <img src=\"images/Welsh_springer_spaniel_08203.jpg\" width=\"200\">\n", "\n", "不难发现其他的狗品种会有很小的类间差别(比如金毛寻回犬和美国水猎犬)。\n", "\n", "\n", "金毛寻回犬(Curly-Coated Retriever) | 美国水猎犬(American Water Spaniel)\n", "- | -\n", "<img src=\"images/Curly-coated_retriever_03896.jpg\" width=\"200\"> | <img src=\"images/American_water_spaniel_00648.jpg\" width=\"200\">\n", "\n", "同样,拉布拉多犬(labradors)有黄色、棕色和黑色这三种。那么你设计的基于视觉的算法将不得不克服这种较高的类间差别,以达到能够将这些不同颜色的同类狗分到同一个品种中。\n", "\n", "黄色拉布拉多犬(Yellow Labrador) | 棕色拉布拉多犬(Chocolate Labrador) | 黑色拉布拉多犬(Black Labrador)\n", "- | -\n", "<img src=\"images/Labrador_retriever_06457.jpg\" width=\"150\"> | <img src=\"images/Labrador_retriever_06455.jpg\" width=\"240\"> | <img src=\"images/Labrador_retriever_06449.jpg\" width=\"220\">\n", "\n", "我们也提到了随机分类将得到一个非常低的结果:不考虑品种略有失衡的影响,随机猜测到正确品种的概率是1/133,相对应的准确率是低于1%的。\n", "\n", "请记住,在深度学习领域,实践远远高于理论。大量尝试不同的框架吧,相信你的直觉!当然,玩得开心!\n", "\n", "\n", "### 数据预处理\n", "\n", "\n", "通过对每张图像的像素值除以255,我们对图像实现了归一化处理。" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 6680/6680 [01:25<00:00, 78.01it/s] \n", "100%|██████████| 835/835 [00:09<00:00, 86.10it/s] \n", "100%|██████████| 836/836 [00:09<00:00, 86.80it/s] \n" ] } ], "source": [ "from PIL import ImageFile \n", "ImageFile.LOAD_TRUNCATED_IMAGES = True \n", "\n", "# Keras中的数据预处理过程\n", "train_tensors = paths_to_tensor(train_files).astype('float32')/255\n", "valid_tensors = paths_to_tensor(valid_files).astype('float32')/255\n", "test_tensors = paths_to_tensor(test_files).astype('float32')/255" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 【练习】模型架构\n", "\n", "\n", "创建一个卷积神经网络来对狗品种进行分类。在你代码块的最后,执行 `model.summary()` 来输出你模型的总结信息。\n", " \n", "我们已经帮你导入了一些所需的 Python 库,如有需要你可以自行导入。如果你在过程中遇到了困难,如下是给你的一点小提示——该模型能够在5个 epoch 内取得超过1%的测试准确率,并且能在CPU上很快地训练。\n", "\n", "![Sample CNN](images/sample_cnn.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "<a id='question4'></a> \n", "\n", "### __问题 4:__ \n", "\n", "在下方的代码块中尝试使用 Keras 搭建卷积网络的架构,并回答相关的问题。\n", "\n", "1. 你可以尝试自己搭建一个卷积网络的模型,那么你需要回答你搭建卷积网络的具体步骤(用了哪些层)以及为什么这样搭建。\n", "2. 你也可以根据上图提示的步骤搭建卷积网络,那么请说明为何如上的架构能够在该问题上取得很好的表现。\n", "\n", "__回答:__ \n", "我选择根据上图提示搭建卷积神经网络。首先,搭建三层卷积层可以检测更高级的特征,以达到狗狗品种分类的目的。同时,两个卷积层之间的池化层有效降低了数据的复杂度,使得训练效率得到有效提升" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", "conv2d_9 (Conv2D) (None, 223, 223, 16) 208 \n", "_________________________________________________________________\n", "max_pooling2d_10 (MaxPooling (None, 111, 111, 16) 0 \n", "_________________________________________________________________\n", "dropout_8 (Dropout) (None, 111, 111, 16) 0 \n", "_________________________________________________________________\n", "conv2d_10 (Conv2D) (None, 110, 110, 32) 2080 \n", "_________________________________________________________________\n", "max_pooling2d_11 (MaxPooling (None, 55, 55, 32) 0 \n", "_________________________________________________________________\n", "dropout_9 (Dropout) (None, 55, 55, 32) 0 \n", "_________________________________________________________________\n", "conv2d_11 (Conv2D) (None, 54, 54, 64) 8256 \n", "_________________________________________________________________\n", "max_pooling2d_12 (MaxPooling (None, 27, 27, 64) 0 \n", "_________________________________________________________________\n", "dropout_10 (Dropout) (None, 27, 27, 64) 0 \n", "_________________________________________________________________\n", "global_average_pooling2d_3 ( (None, 64) 0 \n", "_________________________________________________________________\n", "dense_3 (Dense) (None, 133) 8645 \n", "=================================================================\n", "Total params: 19,189\n", "Trainable params: 19,189\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "from keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D\n", "from keras.layers import Dropout, Flatten, Dense\n", "from keras.models import Sequential\n", "\n", "model = Sequential()\n", "\n", "### TODO: 定义你的网络架构\n", "model.add(Conv2D(filters=16, kernel_size=2, input_shape=(224, 224, 3), activation='relu'))\n", "model.add(MaxPooling2D(pool_size=2))\n", "model.add(Dropout(0.2))\n", "model.add(Conv2D(filters=32, kernel_size=2, activation='relu'))\n", "model.add(MaxPooling2D(pool_size=2))\n", "\n", "model.add(Dropout(0.2))\n", "model.add(Conv2D(filters=64, kernel_size=2, activation='relu'))\n", "model.add(MaxPooling2D(pool_size=2))\n", "model.add(Dropout(0.2))\n", "\n", "model.add(GlobalAveragePooling2D())\n", "model.add(Dense(133, activation='softmax'))\n", " \n", "model.summary()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "## 编译模型\n", "model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 【练习】训练模型\n", "\n", "\n", "---\n", "\n", "<a id='question5'></a> \n", "\n", "### __问题 5:__ \n", "\n", "在下方代码单元训练模型。使用模型检查点(model checkpointing)来储存具有最低验证集 loss 的模型。\n", "\n", "可选题:你也可以对训练集进行 [数据增强](https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html),来优化模型的表现。\n", "\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 6680 samples, validate on 835 samples\n", "Epoch 1/5\n", "6660/6680 [============================>.] - ETA: 0s - loss: 4.8817 - acc: 0.0105Epoch 00001: val_loss improved from inf to 4.87374, saving model to saved_models/weights.best.from_scratch.hdf5\n", "6680/6680 [==============================] - 22s 3ms/step - loss: 4.8816 - acc: 0.0106 - val_loss: 4.8737 - val_acc: 0.0120\n", "Epoch 2/5\n", "6660/6680 [============================>.] - ETA: 0s - loss: 4.8539 - acc: 0.0120Epoch 00002: val_loss improved from 4.87374 to 4.84636, saving model to saved_models/weights.best.from_scratch.hdf5\n", "6680/6680 [==============================] - 21s 3ms/step - loss: 4.8536 - acc: 0.0120 - val_loss: 4.8464 - val_acc: 0.0168\n", "Epoch 3/5\n", "6660/6680 [============================>.] - ETA: 0s - loss: 4.8110 - acc: 0.0195Epoch 00003: val_loss improved from 4.84636 to 4.80888, saving model to saved_models/weights.best.from_scratch.hdf5\n", "6680/6680 [==============================] - 22s 3ms/step - loss: 4.8109 - acc: 0.0195 - val_loss: 4.8089 - val_acc: 0.0168\n", "Epoch 4/5\n", "6660/6680 [============================>.] - ETA: 0s - loss: 4.7768 - acc: 0.0201Epoch 00004: val_loss improved from 4.80888 to 4.77889, saving model to saved_models/weights.best.from_scratch.hdf5\n", "6680/6680 [==============================] - 21s 3ms/step - loss: 4.7767 - acc: 0.0202 - val_loss: 4.7789 - val_acc: 0.0251\n", "Epoch 5/5\n", "6660/6680 [============================>.] - ETA: 0s - loss: 4.7451 - acc: 0.0243Epoch 00005: val_loss improved from 4.77889 to 4.75447, saving model to saved_models/weights.best.from_scratch.hdf5\n", "6680/6680 [==============================] - 21s 3ms/step - loss: 4.7449 - acc: 0.0243 - val_loss: 4.7545 - val_acc: 0.0240\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x7fa0ac6f8390>" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from keras.callbacks import ModelCheckpoint \n", "\n", "### TODO: 设置训练模型的epochs的数量\n", "\n", "epochs = 5\n", "\n", "### 不要修改下方代码\n", "\n", "checkpointer = ModelCheckpoint(filepath='saved_models/weights.best.from_scratch.hdf5', \n", " verbose=1, save_best_only=True)\n", "\n", "model.fit(train_tensors, train_targets, \n", " validation_data=(valid_tensors, valid_targets),\n", " epochs=epochs, batch_size=20, callbacks=[checkpointer], verbose=1)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "## 加载具有最好验证loss的模型\n", "\n", "model.load_weights('saved_models/weights.best.from_scratch.hdf5')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 测试模型\n", "\n", "在狗图像的测试数据集上试用你的模型。确保测试准确率大于1%。" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Test accuracy: 2.6316%\n" ] } ], "source": [ "# 获取测试数据集中每一个图像所预测的狗品种的index\n", "dog_breed_predictions = [np.argmax(model.predict(np.expand_dims(tensor, axis=0))) for tensor in test_tensors]\n", "\n", "# 报告测试准确率\n", "test_accuracy = 100*np.sum(np.array(dog_breed_predictions)==np.argmax(test_targets, axis=1))/len(dog_breed_predictions)\n", "print('Test accuracy: %.4f%%' % test_accuracy)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "<a id='step4'></a>\n", "## 步骤 4: 使用一个CNN来区分狗的品种\n", "\n", "\n", "使用 迁移学习(Transfer Learning)的方法,能帮助我们在不损失准确率的情况下大大减少训练时间。在以下步骤中,你可以尝试使用迁移学习来训练你自己的CNN。\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 得到从图像中提取的特征向量(Bottleneck Features)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "bottleneck_features = np.load('/data/bottleneck_features/DogVGG16Data.npz')\n", "train_VGG16 = bottleneck_features['train']\n", "valid_VGG16 = bottleneck_features['valid']\n", "test_VGG16 = bottleneck_features['test']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 模型架构\n", "\n", "该模型使用预训练的 VGG-16 模型作为固定的图像特征提取器,其中 VGG-16 最后一层卷积层的输出被直接输入到我们的模型。我们只需要添加一个全局平均池化层以及一个全连接层,其中全连接层使用 softmax 激活函数,对每一个狗的种类都包含一个节点。" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", "global_average_pooling2d_4 ( (None, 512) 0 \n", "_________________________________________________________________\n", "dense_4 (Dense) (None, 133) 68229 \n", "=================================================================\n", "Total params: 68,229\n", "Trainable params: 68,229\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "VGG16_model = Sequential()\n", "VGG16_model.add(GlobalAveragePooling2D(input_shape=train_VGG16.shape[1:]))\n", "VGG16_model.add(Dense(133, activation='softmax'))\n", "\n", "VGG16_model.summary()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "## 编译模型\n", "\n", "VGG16_model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 6680 samples, validate on 835 samples\n", "Epoch 1/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 11.8988 - acc: 0.1303Epoch 00001: val_loss improved from inf to 10.57918, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 308us/step - loss: 11.8949 - acc: 0.1307 - val_loss: 10.5792 - val_acc: 0.2132\n", "Epoch 2/20\n", "6500/6680 [============================>.] - ETA: 0s - loss: 9.6765 - acc: 0.2878Epoch 00002: val_loss improved from 10.57918 to 9.51589, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 253us/step - loss: 9.6727 - acc: 0.2880 - val_loss: 9.5159 - val_acc: 0.2862\n", "Epoch 3/20\n", "6460/6680 [============================>.] - ETA: 0s - loss: 8.9693 - acc: 0.3641Epoch 00003: val_loss improved from 9.51589 to 9.13973, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 248us/step - loss: 8.9632 - acc: 0.3645 - val_loss: 9.1397 - val_acc: 0.3341\n", "Epoch 4/20\n", "6520/6680 [============================>.] - ETA: 0s - loss: 8.7415 - acc: 0.4006Epoch 00004: val_loss improved from 9.13973 to 9.10053, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 255us/step - loss: 8.7140 - acc: 0.4024 - val_loss: 9.1005 - val_acc: 0.3485\n", "Epoch 5/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 8.4844 - acc: 0.4242Epoch 00005: val_loss improved from 9.10053 to 8.91824, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 250us/step - loss: 8.4887 - acc: 0.4241 - val_loss: 8.9182 - val_acc: 0.3593\n", "Epoch 6/20\n", "6520/6680 [============================>.] - ETA: 0s - loss: 8.2685 - acc: 0.4466Epoch 00006: val_loss improved from 8.91824 to 8.75737, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 255us/step - loss: 8.2920 - acc: 0.4454 - val_loss: 8.7574 - val_acc: 0.3701\n", "Epoch 7/20\n", "6620/6680 [============================>.] - ETA: 0s - loss: 8.1670 - acc: 0.4601Epoch 00007: val_loss improved from 8.75737 to 8.58505, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 250us/step - loss: 8.1624 - acc: 0.4605 - val_loss: 8.5851 - val_acc: 0.3904\n", "Epoch 8/20\n", "6460/6680 [============================>.] - ETA: 0s - loss: 7.8733 - acc: 0.4834Epoch 00008: val_loss improved from 8.58505 to 8.57290, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 253us/step - loss: 7.9312 - acc: 0.4799 - val_loss: 8.5729 - val_acc: 0.3892\n", "Epoch 9/20\n", "6660/6680 [============================>.] - ETA: 0s - loss: 7.8558 - acc: 0.4898Epoch 00009: val_loss improved from 8.57290 to 8.37072, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 252us/step - loss: 7.8589 - acc: 0.4897 - val_loss: 8.3707 - val_acc: 0.3952\n", "Epoch 10/20\n", "6640/6680 [============================>.] - ETA: 0s - loss: 7.7289 - acc: 0.5017Epoch 00010: val_loss improved from 8.37072 to 8.36277, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 252us/step - loss: 7.7267 - acc: 0.5016 - val_loss: 8.3628 - val_acc: 0.4084\n", "Epoch 11/20\n", "6540/6680 [============================>.] - ETA: 0s - loss: 7.6539 - acc: 0.5122Epoch 00011: val_loss did not improve\n", "6680/6680 [==============================] - 2s 250us/step - loss: 7.6913 - acc: 0.5097 - val_loss: 8.3630 - val_acc: 0.4048\n", "Epoch 12/20\n", "6480/6680 [============================>.] - ETA: 0s - loss: 7.6779 - acc: 0.5133Epoch 00012: val_loss improved from 8.36277 to 8.26086, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 259us/step - loss: 7.6780 - acc: 0.5133 - val_loss: 8.2609 - val_acc: 0.4240\n", "Epoch 13/20\n", "6660/6680 [============================>.] - ETA: 0s - loss: 7.6599 - acc: 0.5171Epoch 00013: val_loss did not improve\n", "6680/6680 [==============================] - 2s 255us/step - loss: 7.6636 - acc: 0.5169 - val_loss: 8.3361 - val_acc: 0.4204\n", "Epoch 14/20\n", "6520/6680 [============================>.] - ETA: 0s - loss: 7.6194 - acc: 0.5199Epoch 00014: val_loss improved from 8.26086 to 8.22236, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 251us/step - loss: 7.6497 - acc: 0.5181 - val_loss: 8.2224 - val_acc: 0.4180\n", "Epoch 15/20\n", "6540/6680 [============================>.] - ETA: 0s - loss: 7.5786 - acc: 0.5213Epoch 00015: val_loss improved from 8.22236 to 8.12911, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 254us/step - loss: 7.5671 - acc: 0.5222 - val_loss: 8.1291 - val_acc: 0.4263\n", "Epoch 16/20\n", "6500/6680 [============================>.] - ETA: 0s - loss: 7.4843 - acc: 0.5260Epoch 00016: val_loss did not improve\n", "6680/6680 [==============================] - 2s 252us/step - loss: 7.4813 - acc: 0.5256 - val_loss: 8.1297 - val_acc: 0.4251\n", "Epoch 17/20\n", "6580/6680 [============================>.] - ETA: 0s - loss: 7.3097 - acc: 0.5305Epoch 00017: val_loss improved from 8.12911 to 8.00258, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 259us/step - loss: 7.2970 - acc: 0.5314 - val_loss: 8.0026 - val_acc: 0.4311\n", "Epoch 18/20\n", "6480/6680 [============================>.] - ETA: 0s - loss: 7.1743 - acc: 0.5424Epoch 00018: val_loss improved from 8.00258 to 7.90895, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 256us/step - loss: 7.1896 - acc: 0.5416 - val_loss: 7.9089 - val_acc: 0.4251\n", "Epoch 19/20\n", "6540/6680 [============================>.] - ETA: 0s - loss: 7.0790 - acc: 0.5492Epoch 00019: val_loss did not improve\n", "6680/6680 [==============================] - 2s 249us/step - loss: 7.0858 - acc: 0.5488 - val_loss: 7.9667 - val_acc: 0.4335\n", "Epoch 20/20\n", "6460/6680 [============================>.] - ETA: 0s - loss: 7.0128 - acc: 0.5554Epoch 00020: val_loss improved from 7.90895 to 7.80676, saving model to saved_models/weights.best.VGG16.hdf5\n", "6680/6680 [==============================] - 2s 249us/step - loss: 7.0278 - acc: 0.5543 - val_loss: 7.8068 - val_acc: 0.4335\n" ] }, { "data": { "text/plain": [ "<keras.callbacks.History at 0x7fa08fc43d68>" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## 训练模型\n", "\n", "checkpointer = ModelCheckpoint(filepath='saved_models/weights.best.VGG16.hdf5', \n", " verbose=1, save_best_only=True)\n", "\n", "VGG16_model.fit(train_VGG16, train_targets, \n", " validation_data=(valid_VGG16, valid_targets),\n", " epochs=20, batch_size=20, callbacks=[checkpointer], verbose=1)\n", "\n" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "## 加载具有最好验证loss的模型\n", "\n", "VGG16_model.load_weights('saved_models/weights.best.VGG16.hdf5')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 测试模型\n", "现在,我们可以测试此CNN在狗图像测试数据集中识别品种的效果如何。我们在下方打印出测试准确率。" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Test accuracy: 43.4211%\n" ] } ], "source": [ "# 获取测试数据集中每一个图像所预测的狗品种的index\n", "VGG16_predictions = [np.argmax(VGG16_model.predict(np.expand_dims(feature, axis=0))) for feature in test_VGG16]\n", "\n", "# 报告测试准确率\n", "test_accuracy = 100*np.sum(np.array(VGG16_predictions)==np.argmax(test_targets, axis=1))/len(VGG16_predictions)\n", "print('Test accuracy: %.4f%%' % test_accuracy)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 使用模型预测狗的品种" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "from extract_bottleneck_features import *\n", "\n", "def VGG16_predict_breed(img_path):\n", " # 提取bottleneck特征\n", " bottleneck_feature = extract_VGG16(path_to_tensor(img_path))\n", " # 获取预测向量\n", " predicted_vector = VGG16_model.predict(bottleneck_feature)\n", " # 返回此模型预测的狗的品种\n", " return dog_names[np.argmax(predicted_vector)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "<a id='step5'></a>\n", "## 步骤 5: 建立一个CNN来分类狗的品种(使用迁移学习)\n", "\n", "现在你将使用迁移学习来建立一个CNN,从而可以从图像中识别狗的品种。你的 CNN 在测试集上的准确率必须至少达到60%。\n", "\n", "在步骤4中,我们使用了迁移学习来创建一个使用基于 VGG-16 提取的特征向量来搭建一个 CNN。在本部分内容中,你必须使用另一个预训练模型来搭建一个 CNN。为了让这个任务更易实现,我们已经预先对目前 keras 中可用的几种网络进行了预训练:\n", "\n", "- [VGG-19](https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/DogVGG19Data.npz) bottleneck features\n", "- [ResNet-50](https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/DogResnet50Data.npz) bottleneck features\n", "- [Inception](https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/DogInceptionV3Data.npz) bottleneck features\n", "- [Xception](https://s3-us-west-1.amazonaws.com/udacity-aind/dog-project/DogXceptionData.npz) bottleneck features\n", "\n", "这些文件被命名为为:\n", "\n", " Dog{network}Data.npz\n", "\n", "其中 `{network}` 可以是 `VGG19`、`Resnet50`、`InceptionV3` 或 `Xception` 中的一个。选择上方网络架构中的一个,他们已经保存在目录 `/data/bottleneck_features/` 中。\n", "\n", "\n", "### 【练习】获取模型的特征向量\n", "\n", "在下方代码块中,通过运行下方代码提取训练、测试与验证集相对应的bottleneck特征。\n", "\n", " bottleneck_features = np.load('/data/bottleneck_features/Dog{network}Data.npz')\n", " train_{network} = bottleneck_features['train']\n", " valid_{network} = bottleneck_features['valid']\n", " test_{network} = bottleneck_features['test']" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "### TODO: 从另一个预训练的CNN获取bottleneck特征\n", "bottleneck_features = np.load('/data/bottleneck_features/DogXceptionData.npz')\n", "train_Xception = bottleneck_features['train']\n", "valid_Xception = bottleneck_features['valid']\n", "test_Xception = bottleneck_features['test']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 【练习】模型架构\n", "\n", "建立一个CNN来分类狗品种。在你的代码单元块的最后,通过运行如下代码输出网络的结构:\n", " \n", " <your model's name>.summary()\n", " \n", "---\n", "\n", "<a id='question6'></a> \n", "\n", "### __问题 6:__ \n", "\n", "\n", "在下方的代码块中尝试使用 Keras 搭建最终的网络架构,并回答你实现最终 CNN 架构的步骤与每一步的作用,并描述你在迁移学习过程中,使用该网络架构的原因。\n", "\n", "\n", "__回答:__ \n", "\n", "Xception_model = Sequential()\n", "这一步是调用Xception的预训练模型\n", "\n", "Xception_model.add(GlobalAveragePooling2D(input_shape=train_Resnet50.shape[1:]))\n", "这一步添加一个全局平均池化层避免过拟合\n", "\n", "Xception_model.add(Dropout(0.2))\n", "这一步是添加Dropout层避免过拟合\n", "\n", "Xception_model.add(Dense(133, activation='softmax'))\n", "这一步添加133个节点的全连接层,使用softmax激活函数输出每个狗狗品种的概率\n", "\n", "使用该网络架构的原因是由于Xception具有如下优点:\n", "1.相比传统的卷积神经网络如VGG复杂度降低,需要的参数数量下降。\n", "2.可以做到更深,不会出现梯度消失的问题。\n", "3.优化简单,分类准确度加深由于使用更深的网络。\n", "4.Xception在众多图像识别领域中拔得头筹。\n", "因此,选取Xception网络可以比之前的VGG网络取得更好的预测效果。\n", "\n", "- 为什么这一架构会在这一分类任务中成功?\n", "\n", " 这四个架构都是经过反复多次实验确定的,非常有效果的架构。以Inception net为例,inception net是多层特征提取器,通过分别多次同时提取特征,然后叠加,就可以学到不同层次的特征,所以效果非常好。\n", "\n", "- 为什么早期(第三步 )的尝试不成功?\n", "\n", " 第三步中,第一,使用的网络在架构上,非常浅,学到的特征非常少,其次学习库非常小,上面四个网络是在Imagenet上经过大量训练在不同种类的训练集上得来的,这是这个小库无法比拟的。\n" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", "global_average_pooling2d_5 ( (None, 2048) 0 \n", "_________________________________________________________________\n", "dropout_11 (Dropout) (None, 2048) 0 \n", "_________________________________________________________________\n", "dense_5 (Dense) (None, 133) 272517 \n", "=================================================================\n", "Total params: 272,517\n", "Trainable params: 272,517\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "### TODO: 定义你的框架\n", "# 调用Xception的预训练模型\n", "Xception_model = Sequential()\n", "\n", "#加一个全局平均池化层避免过拟合\n", "Xception_model.add(GlobalAveragePooling2D(input_shape=train_Xception.shape[1:]))\n", "\n", "#添加Dropout层避免过拟合\n", "Xception_model.add(Dropout(0.2))\n", "\n", "#添加133个节点的全连接层,使用softmax激活函数输出每个狗狗品种的概率\n", "Xception_model.add(Dense(133, activation='softmax'))\n", "\n", "Xception_model.summary()" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "### TODO: 编译模型\n", "Xception_model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "### 【练习】训练模型\n", "\n", "<a id='question7'></a> \n", "\n", "### __问题 7:__ \n", "\n", "在下方代码单元中训练你的模型。使用模型检查点(model checkpointing)来储存具有最低验证集 loss 的模型。\n", "\n", "当然,你也可以对训练集进行 [数据增强](https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html) 以优化模型的表现,不过这不是必须的步骤。\n" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 6680 samples, validate on 835 samples\n", "Epoch 1/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 1.1255 - acc: 0.7239Epoch 00001: val_loss improved from inf to 0.52573, saving model to saved_models/weights.best.Xception1.hdf5\n", "6680/6680 [==============================] - 3s 475us/step - loss: 1.1172 - acc: 0.7256 - val_loss: 0.5257 - val_acc: 0.8335\n", "Epoch 2/20\n", "6620/6680 [============================>.] - ETA: 0s - loss: 0.4270 - acc: 0.8647Epoch 00002: val_loss improved from 0.52573 to 0.49305, saving model to saved_models/weights.best.Xception1.hdf5\n", "6680/6680 [==============================] - 3s 410us/step - loss: 0.4260 - acc: 0.8647 - val_loss: 0.4931 - val_acc: 0.8347\n", "Epoch 3/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.3540 - acc: 0.8870Epoch 00003: val_loss improved from 0.49305 to 0.48966, saving model to saved_models/weights.best.Xception1.hdf5\n", "6680/6680 [==============================] - 3s 411us/step - loss: 0.3586 - acc: 0.8864 - val_loss: 0.4897 - val_acc: 0.8431\n", "Epoch 4/20\n", "6620/6680 [============================>.] - ETA: 0s - loss: 0.3193 - acc: 0.9047Epoch 00004: val_loss improved from 0.48966 to 0.47889, saving model to saved_models/weights.best.Xception1.hdf5\n", "6680/6680 [==============================] - 3s 410us/step - loss: 0.3186 - acc: 0.9046 - val_loss: 0.4789 - val_acc: 0.8587\n", "Epoch 5/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.2913 - acc: 0.9126Epoch 00005: val_loss did not improve\n", "6680/6680 [==============================] - 3s 409us/step - loss: 0.2898 - acc: 0.9129 - val_loss: 0.5032 - val_acc: 0.8503\n", "Epoch 6/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.2695 - acc: 0.9162Epoch 00006: val_loss did not improve\n", "6680/6680 [==============================] - 3s 409us/step - loss: 0.2683 - acc: 0.9165 - val_loss: 0.4957 - val_acc: 0.8467\n", "Epoch 7/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.2508 - acc: 0.9262Epoch 00007: val_loss did not improve\n", "6680/6680 [==============================] - 3s 412us/step - loss: 0.2489 - acc: 0.9268 - val_loss: 0.5211 - val_acc: 0.8539\n", "Epoch 8/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.2384 - acc: 0.9277Epoch 00008: val_loss did not improve\n", "6680/6680 [==============================] - 3s 408us/step - loss: 0.2373 - acc: 0.9278 - val_loss: 0.5091 - val_acc: 0.8599\n", "Epoch 9/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.2300 - acc: 0.9330Epoch 00009: val_loss did not improve\n", "6680/6680 [==============================] - 3s 410us/step - loss: 0.2286 - acc: 0.9334 - val_loss: 0.5349 - val_acc: 0.8575\n", "Epoch 10/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.2114 - acc: 0.9398Epoch 00010: val_loss did not improve\n", "6680/6680 [==============================] - 3s 412us/step - loss: 0.2109 - acc: 0.9398 - val_loss: 0.5300 - val_acc: 0.8575\n", "Epoch 11/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.2026 - acc: 0.9383Epoch 00011: val_loss did not improve\n", "6680/6680 [==============================] - 3s 412us/step - loss: 0.2020 - acc: 0.9385 - val_loss: 0.5516 - val_acc: 0.8659\n", "Epoch 12/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.1893 - acc: 0.9433Epoch 00012: val_loss did not improve\n", "6680/6680 [==============================] - 3s 411us/step - loss: 0.1884 - acc: 0.9434 - val_loss: 0.5614 - val_acc: 0.8587\n", "Epoch 13/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.1849 - acc: 0.9450Epoch 00013: val_loss did not improve\n", "6680/6680 [==============================] - 3s 407us/step - loss: 0.1841 - acc: 0.9452 - val_loss: 0.5743 - val_acc: 0.8575\n", "Epoch 14/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.1761 - acc: 0.9489Epoch 00014: val_loss did not improve\n", "6680/6680 [==============================] - 3s 410us/step - loss: 0.1770 - acc: 0.9487 - val_loss: 0.5765 - val_acc: 0.8551\n", "Epoch 15/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.1657 - acc: 0.9514Epoch 00015: val_loss did not improve\n", "6680/6680 [==============================] - 3s 410us/step - loss: 0.1688 - acc: 0.9509 - val_loss: 0.6255 - val_acc: 0.8515\n", "Epoch 16/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.1554 - acc: 0.9539Epoch 00016: val_loss did not improve\n", "6680/6680 [==============================] - 3s 411us/step - loss: 0.1581 - acc: 0.9536 - val_loss: 0.6189 - val_acc: 0.8695\n", "Epoch 17/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.1474 - acc: 0.9582Epoch 00017: val_loss did not improve\n", "6680/6680 [==============================] - 3s 410us/step - loss: 0.1476 - acc: 0.9581 - val_loss: 0.6452 - val_acc: 0.8575\n", "Epoch 18/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.1457 - acc: 0.9568Epoch 00018: val_loss did not improve\n", "6680/6680 [==============================] - 3s 410us/step - loss: 0.1461 - acc: 0.9569 - val_loss: 0.6144 - val_acc: 0.8599\n", "Epoch 19/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.1396 - acc: 0.9606Epoch 00019: val_loss did not improve\n", "6680/6680 [==============================] - 3s 414us/step - loss: 0.1408 - acc: 0.9603 - val_loss: 0.6590 - val_acc: 0.8563\n", "Epoch 20/20\n", "6600/6680 [============================>.] - ETA: 0s - loss: 0.1361 - acc: 0.9605Epoch 00020: val_loss did not improve\n", "6680/6680 [==============================] - 3s 415us/step - loss: 0.1349 - acc: 0.9608 - val_loss: 0.6394 - val_acc: 0.8683\n" ] } ], "source": [ "### TODO: 训练模型\n", "checkpointer = ModelCheckpoint(filepath='saved_models/weights.best.Xception1.hdf5', \n", " verbose=1, save_best_only=True)\n", "\n", "history = Xception_model.fit(train_Xception, train_targets, \n", " validation_data=(valid_Xception, valid_targets),\n", " epochs=20, batch_size=20, callbacks=[checkpointer], verbose=1)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "### TODO: 加载具有最佳验证loss的模型权重\n", "Xception_model.load_weights('saved_models/weights.best.Xception1.hdf5')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "### 【练习】测试模型\n", "\n", "<a id='question8'></a> \n", "\n", "### __问题 8:__ \n", "\n", "在狗图像的测试数据集上试用你的模型。确保测试准确率大于60%。" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Test accuracy: 84.4498%\n" ] } ], "source": [ "### TODO: 在测试集上计算分类准确率\n", "Xception_predictions = [np.argmax(Xception_model.predict(np.expand_dims(feature, axis=0))) for feature in test_Xception]\n", "\n", "# 报告测试准确率\n", "test_accuracy = 100*np.sum(np.array(Xception_predictions)==np.argmax(test_targets, axis=1))/len(Xception_predictions)\n", "print('Test accuracy: %.4f%%' % test_accuracy)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "### 【练习】使用模型测试狗的品种\n", "\n", "\n", "实现一个函数,它的输入为图像路径,功能为预测对应图像的类别,输出为你模型预测出的狗类别(`Affenpinscher`, `Afghan_hound` 等)。\n", "\n", "与步骤5中的模拟函数类似,你的函数应当包含如下三个步骤:\n", "\n", "1. 根据选定的模型载入图像特征(bottleneck features)\n", "2. 将图像特征输输入到你的模型中,并返回预测向量。注意,在该向量上使用 argmax 函数可以返回狗种类的序号。\n", "3. 使用在步骤0中定义的 `dog_names` 数组来返回对应的狗种类名称。\n", "\n", "提取图像特征过程中使用到的函数可以在 `extract_bottleneck_features.py` 中找到。同时,他们应已在之前的代码块中被导入。根据你选定的 CNN 网络,你可以使用 `extract_{network}` 函数来获得对应的图像特征,其中 `{network}` 代表 `VGG19`, `Resnet50`, `InceptionV3`, 或 `Xception` 中的一个。\n", " \n", "---\n", "\n", "<a id='question9'></a> \n", "\n", "### __问题 9:__" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "### TODO: 写一个函数,该函数将图像的路径作为输入\n", "### 然后返回此模型所预测的狗的品种\n", "def Xception_predict_breed(img_path):\n", " # extract bottleneck features\n", " bottleneck_feature = extract_Xception(path_to_tensor(img_path))\n", " # obtain predicted vector\n", " predicted_vector = Xception_model.predict(bottleneck_feature)\n", " # return dog breed that is predicted by the model\n", " return dog_names[np.argmax(predicted_vector)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "<a id='step6'></a>\n", "## 步骤 6: 完成你的算法\n", "\n", "\n", "\n", "实现一个算法,它的输入为图像的路径,它能够区分图像是否包含一个人、狗或两者都不包含,然后:\n", "\n", "- 如果从图像中检测到一只__狗__,返回被预测的品种。\n", "- 如果从图像中检测到__人__,返回最相像的狗品种。\n", "- 如果两者都不能在图像中检测到,输出错误提示。\n", "\n", "我们非常欢迎你来自己编写检测图像中人类与狗的函数,你可以随意地使用上方完成的 `face_detector` 和 `dog_detector` 函数。你__需要__在步骤5使用你的CNN来预测狗品种。\n", "\n", "下面提供了算法的示例输出,但你可以自由地设计自己的模型!\n", "\n", "![Sample Human Output](images/sample_human_output.png)\n", "\n", "\n", "\n", "\n", "<a id='question10'></a> \n", "\n", "### __问题 10:__\n", "\n", "在下方代码块中完成你的代码。\n", "\n", "---\n" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "### TODO: 设计你的算法\n", "### 自由地使用所需的代码单元数吧\n", "from IPython.core.display import Image, display\n", "\n", "def dog_breed_algorithm(img_path):\n", " if dog_detector(img_path) == 1:\n", " print(\"hello, dog!\")\n", " display(Image(img_path,width=200,height=200))\n", " print(\"Your predicted breed is ... \")\n", " return print(Xception_predict_breed(img_path))\n", " elif face_detector(img_path) == 1:\n", " print(\"hello, human!\")\n", " display(Image(img_path,width=200,height=200))\n", " print(\"You look like a ... \")\n", " return print(Xception_predict_breed(img_path))\n", " else:\n", " display(Image(img_path,width=200,height=200))\n", " return print(\"Could not identify a human or dog in the chosen image. Please try again.\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "<a id='step7'></a>\n", "## 步骤 7: 测试你的算法\n", "\n", "在这个部分中,你将尝试一下你的新算法!算法认为__你__看起来像什么类型的狗?如果你有一只狗,它可以准确地预测你的狗的品种吗?如果你有一只猫,它会将你的猫误判为一只狗吗?\n", "\n", "**上传方式:点击左上角的Jupyter回到上级菜单,你可以看到Jupyter Notebook的右上方会有Upload按钮。**\n", "\n", "<a id='question11'></a> \n", "\n", "### __问题 11:__\n", "\n", "在下方编写代码,用至少6张现实中的图片来测试你的算法。你可以使用任意照片,不过请至少使用两张人类图片(要征得当事人同意哦)和两张狗的图片。\n", "同时请回答如下问题:\n", "\n", "1. 输出结果比你预想的要好吗 :) ?或者更糟 :( ?\n", "2. 提出至少三点改进你的模型的想法。\n", "\n", "\n", "1.结果比我预想的好。该算法可以准确识别出图片中是否含有狗或者人\n", "2. 1)对训练集进行数据增强以优化模型的表现\n", " 2)优化神经网络结构\n", " 3)增大数据集数据" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "filename = images/1.jpg\n", "hello, dog!\n" ] }, { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUTEhMVFRUXFxUVFRcXFxUXFRUVFRcXFxUVFxUYHSggGBolHRUVITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0OGhAQGy0fHR0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAKgBKwMBIgACEQEDEQH/xAAcAAACAgMBAQAAAAAAAAAAAAAFBgMEAAIHAQj/xAA9EAABAwMDAgIFCgUEAwEAAAABAAIRAwQhBRIxQVEGYRMicYGRBxQygqGxssHR8CMkUuHxFUJys0NikjT/xAAaAQACAwEBAAAAAAAAAAAAAAACBAEDBQAG/8QAJxEAAgICAgEEAgMBAQAAAAAAAAECEQMhBBIxEyJBURQyBXGBYSP/2gAMAwEAAhEDEQA/AGurTjohF/WhHqoQDVWTK0JrQknsA3l2qlOpJWt3SMrW1aVgct7HsRbIwoX0lep0SVILVZ7yJF2gO6go/Qo46gAqFw8BW48uyGkQ0nQrTa0hD3PU1F6ejlora2WA5R1Kh6KZrZWNtcq1ZwvTKrS4lErNp6qajZ+Sv0beOihcpeCFj2RNok4Akqlc2JzIIPYhTarrJoH0dP6ZHrHqOwHZVrLxI8nZXJew9eXNP9TTz7uslBLlK6GfxW42BL/TyhLtMMrolzYhwkQQcgjggql/pfkkcvOp0IyVOhLZpakGmpw/0zyXv+m+SWfObBE8aathp/knBul+S9Ol+Sn8mb+CLQnGx8lqbRNx07yXv+kSrIZZv4IckKtrbesnLQ3xConTdpRG1ZtWtw8jXkoyOxys62Frc3QhB6F4IhQ3VQnqteMkyuyrrNflJuomUZ1Nzj1S/chyCeRMODaKtJsFGLV5hC6YKvUXQuwySZ2VtotVihddmVddUUbWSU95EvBQbbFTstkSZRW7raQpWMHuCjSQLUo9I73fcE0VbQpc1O3/AIjvd+EKjOqiX8d+47m9DbuhKsU74FY50qqT0MpWALmwCq07QApjrUcIbXoHovP82Dl4GYJoyjSavLggDCql7mqlc3yyfRley6MjS9rwl69vMq3eXXKU9Su4MJ7BgsLsF6d2r9pUlJ1pdEuhNmktJhN+lTOi7Yy2NOUctdPlD9Ip5TdaUsJfNoY+ASbWF6aUAuPQE/ASi1SiqOrODKLyePVB9he0FK4r7JELyc/fTL6ji7JyQe/75U/zQEE/Hy/REatlANTo7P5fv2qux5jPx6f4V/TZo9k0FPDFyHA0SZLZLfZOQjhtknaFV2XDD0nb7j/n7F0AU5WdycTc1XyZXMj1nf2DxaypW2fkiVOipRTTnG4PyxFuwWLNeiyRPYtm01rQ4qrwAUG6cOyx+ngCTAHUnACJ1qzKTC95hoEn9AuceJtaqXRLR6tIHDeCY6u7qMzx4V/0Z4/Flmf0glfa3ZsdtLy4/wDqJHxKtWlSlXZupGe4OCFz64tYHv8AijHgBxbdBk4cHAiZ4Ez9iow8mTml8MdzcDHHG2vKGMWxlTGm7iEwNtBK2daDstiqRi0J9eznohGoad5J9qWYQnV6DQEnmbQLdCF83hY6mjDqYJUFekEti5DTCWwLUdBU1uZUV0MqxpgytbFytE/jdgtaUCUQp2JV7SrWYTBQsBHCZXMR34FidU08pR1y3iu8f8fwtXX6tiB0XO/FFvFzUx/R+BqXzcntoOPF6OyejqXmUZsb3d2XP6dxnqU0aE8khL+q5aQwoKO2OVvSLlaOnSrGkUZARoUguWJfJ0p/Qn3el4OEo63p+2V1O7oiEkeIaYgopceDRTbTOV6hXc0kIBegkymXXGCUv1qZS6io6Qyto102hLgU96NT4S9pdnAGE3aTRS2TJsmD2M2lUkyW+AgenNhFzUhLZNjFk9RyG6m3dScOMsM/XH6qarWwtaLd7HtIkODvsGI85IQ4cfvIPbu3Y62ENjG7/wCuYSEcOIPn/kJyo3BbSaHGCNwPlEH8yl99q1z97u+B3KYy1ocxXTBNGzq7g8AkSTgdv39q6Fpt6HsB9x9o5UWjWjqhAEDvHsx9yZ7fw9RaOCT1MkZ6mAixcZy2xTmzUko/KB9KqFNMq8dDp9C4ew/qo36TtyH/ABH5hPwgkZ3VlVq2fVa0EuMACSewVE3eSB+/ZCTfFV5WBgu9Qk8cT2JVWbmQxqo7Y3g4U8j92keeJNZdXft4pgnaO/Tcfb+aoNpgjHvPHuwq1KuNsnoB+596sWtNx+k0AE+qIEj+5lYzm5tykbkMailGPhGl1QBE5x17Dt+ak8AMm+aR0FT8P91rqjtjCB14HtwJ+CL/ACc2e2o+r2bsn/2cZMe5v2o+LvNH+ynmNLFL+jobKS2dSW1GpKnhejs83QNrUks683EJtuglXWuqS5P6i+QV2ha1acqdrMq0ygsrGrZZiVsWL2gttOZBR28sJCGU6O0rQhpGljVIdNBjCaKQEJN0KoU0Uq8BWIZi0XKrQVy/xdS/m6n1P+ti6P8AOgVz/wAXOHzup7Kf/Wxd8g5FoVG2uU0eHbbIVGjayUy6NQ2lWYPInnehu0unARKUNtriAva98AE2xZM31CsAEh+ILgGUS1jVoBykLVdSLyQFVkyqKBTtgjUW7nKq20zwijKClp26zpZbGPUpUbadbo/YUYVC1pwidq7KTn5AWTYctjAUr6yosrLYVFMUNxnZPUqqleai+k1rmmIJDs8gjH2hSlyC+JXOLKbGD1nOPYCB1J6K168F0Kc0SP1c1Ykjrj8/33U1pSdUIc71WjA7HuMoK4U6OwNmo8zuDTBc5vSTEN7R96E1PF10TurBjAHYpCm8u25Bd6TiQDmTwuhjk7a2xqeWKpPSO4eF6QgZ7/lH780yBqRvk5ufSt3sDtgABJ7xgJ6lN8eUnBWJchJT0eFqFavfhoiVU8QeIhQwMzj80AsNTFzuaY8iDOPceEGTkxXtT2Hi47fufgrV7sEmPvH5qnq1mK1IgTOIGJgdpC2vLfY/bG2eOSCJ5BU1s+IByDg8Qe8Tg9Fk5JNvZqwSS0KlnppLhMfSJz2HQfv+xs2+0yfd9y9qMDajmHGfVHAM8Z/fK1uK+6liAN20nyGXR34UdlQxHwDL9odLjMTAxO53kOvkmXQyKVJrACCfWdPMuz9ggIYLQu/iAyA07Z4bOC4AdY7r2zuZPP8AgcJjhOpuRj/y2XrGMPsdLS4RKnWS5aVlebcrbWTRi9i1e1kq6rVlE7y6QC4fJSPKyaoWyOyrTblErdgVXatzXASWGWw8U6ZNetEIA/nKIXF1uQx4k4Wkno04StDJpEQIR41AAl3Qbc9UZv6J2yOVclqw+xTq3cOMHqlDxHdTcPPkz8DVfuS5pk9SljW6p9M72M/A1D8nOWhus6YCJ06wCECtCidex1QY50J5pjK2/jqhmoavA5S/earGAUIq13POSjnyKFLZa1G/dUMDhU6VJbtC3BSU5tnWbsap6bVV3rdtVVI5zL4cAtxWVDevd6mge2wzQuFO2uglOtCnFdEkMwyhf03RQarIcIMQI6deYVKlXlwC8u7RzpIJBOe+FXllVI1eD77l9G1hahzalV30t4DSclrRwcY5lGNJ0A3T/wCKGupAy8xEnsCOp/uidhpFKjaCtdVPVaz0jgRwzmM9TIEDug9Tx690NoUmNpZ2tGcecdU9g4rdOWqOy8lJNR3Z0y1LKbQxg2tEAAAxAEAT7AArdQlzSAYJGD2KR/CviltWrsqDYSJYAZDo5HknhwlNzVaE4v5OGeKbO7rVntLn7Wu28wCesdx+iHUvCN1TDH0Q1lRvrCtTLw85kbxORPl8F2zVNFD5eyJOSO57+1JupUC31ctPYE98QMrIzZcmF0kqNbFDHmV3sGM8T+r6O5htZuZEFj5xLex6we/vU1O+D8tjaeoMfZkfcrNro9NwG4TBJzMA+/jpwqep2zaThsaImTzjGYgmOAkpyUtjkF10V9ZDwAcxw1xkQfaRkFB6WoF42GdwMR0AnOOU1MZvpFkEBwy3rjqATzP3Jbs7ItuGmOJDhDpIHOO6CCjJ0HOTjFtfAQN29jdgdyMnqJ5aMlZZvhDC8bjHEmPYrNCqnIrq9HjuRnnln2kxioXas/O0ApVVZbXTSyaKexeuK6pGqFVurtDa17CpyLswasNVLoBCry/hCbnU/NAtQ1TzU48LsshBjlaXW5F7a1nKR/Dt5uIXSNLqAtTig0acHUQpp5gAIu1gcMpYp3u1xRChq0mE9FLqUueylqtoNxSBr9L+O/6n4GrqV5DgFzfxM3+ZqfU/A1JVTL+1olddYhUbi4WtRygcEo50ZsnZETJUrV4GLcNQWVnocslSU6Sx9NC2TREt2LSFIwLosFkjQvV6AvSFYCaFy2FRaOUbnKUEi1Y1B6Vu7iYTHcWwLDGQfPAI6+SXdCthVuKbDEOcBmPuK67X0Nm31RAA6cGOmOFEsEp1JfBr/wAfmUIyT+RO1y0L9KrMEue9jTgZIpuBDQCeYb5ZK4tRqkeqyoWngP8AokZ8shdq1Vj6Qe0S9skROYIjHTkLmOrapbuqtdUbnhx27mgdd2Mk4GOPNPtulomK26DPya2FQ3THE72U5duDtzC4erG7gnJOJ49i7yytI6fELkPhfxFbsAaKjHBp2jb6sdR6sY5T3aawyJkfaTHtMKFMlxGc/RMZlJup3Aa4+kMDMEicdvJXrzxNSpUzUqPDWDMnBPkJ5OOEg+J/Fjru3fUpk29EGGVHbZqu4gdhzwff0VPIxqa8l/Gk4t6Gh9ZpZupOBEccj4A4QZ1QlzXOkwZjoRwdwjjgz5e1VvCmn1KdKa5l1T1iOwPAj2R06otd0gIDSJzkTgnmP38VjZai6RqYm5eSO5e8DO3b0646YmEv0N28xB5iOnuTDUEt2SI65Ik+UKTQ9NFesWAhsNcYJg9gYHmquPcsiSLM9LFJv6EdrslWGPUGq0XUKz6TicExJnE8+arG5Ws8bs8TKOwwy4WtW8QN97CqVtR80ccTJULDFzeeaB3+ox1VG61PzQe5uC5NQw/ZdDEWbnUyUPrVi5aErAFaopDMYpDD4avADBXQtP1GByuRUKhaZCadN1TCnRzsfK1bceUQ0qiSZlKFpeSQnbQXjCNOwJBZzThIfidn8zU+p+Bq6e0AtXNPFbv5qp9T/raqpKmWY9oovtivKVoeybWadPRavsA0rIchX0xYNqVGLcymWpbhUalDKhSAcSp6JRvpYRNlLChr00LkS1oCuYvWhW6lFR7EaZU0eNCwrYBYQisiiIhRuZKnLVoQrEzhk+TekDdESMMJ6/Z+q6tTdhc9+TjTKjS6uSQwjaG9z3OE+UHchOwVQQ/gVRE/XacPcCMkH3zxIOO6WrvTAREA7sQQCPePZ0Th4tMPBjloHvaSY9pDvsQAE7ie35o3BT8m1xko49AS38G0DDSxreBu2wRJHrY9s+5Lw+bZLbus1rSIa01DvGXH1uIjET36QmTxR4hbbN9G0F1WpwB/sZ1qOgfAdYPZDdG8KGvuq1muaxxDvWBYS6PWhoJJbPUxOcKuca8A5JRutC9WrNq1A1jXVmAuO18ncTtALtpnbiSJHQdAUxaboLqrhUuHF236FP8A8bAOA2mMNHwXQNE8PU2shlNjGn+loBJ7k8/FSXukOaDEEeYkfCfYk+ROaj7CMPVy9wKDtoaOI+zpB5/yqLr2TDBAAgdT5wOcfmrrNMe8GBuGB9EmPY4O/Xooa1oaYO5nGcck/msqabRowcUVLivsbuLjJHMZjriPzTV8m9lipXP+87Wz/SO3bJQPStEfXqBpDms5OCOvHbuuj21s2nTFNoAAEBO8DjtS7sT52ddeiOM/Kq4i7npGOk/Z+aRat6jHykvcL6s1zGtIPIa0OIjkkc9OUpGStlwV2zz7jbJ6t2qdWoT1U4olVqlMqU0vAaSRXe5RkqQsk4XvzdTZZZE0K1ToKOlSyjtnaTGEEp0StgsWx7K/Z2pRb5hhXbS1joqJZLLOlHlhRIhPWiVBtCA2lAI3p/qqzHkoUybYy0a8BIHiofzVT6n4Gpzo1JSl4nH8y/2M/wCtqLv2YxD9R0EKtctkKFlyo33ErBcyhy0QVaaruoq2XKOo5EmylkQbChdTlSPeow9R8kNld9BROt1cK1crEwGUXUlEaauVCoHIrBICxaGkTwJVtrVvEEEcjI9ytgyUdJ8MgttaY27cTEk/aeVdNYTMoD4a1Z1eWu5aO0T0xkn3lGC0Cen2/etLsnHRoY3aBGq1A5zgQCD0OQl+8sS4kipUZ/xJ+7KYb2zMkg/H8sKFlp/Vxifep7Ktli7p+1itp1g2g5zqbN73ZNR4lxIHVxz2TPo1hUqkVLiMfRYJAHYlXadswEEd+vdXGV444/X8kvJotin5YRpU+ylbCp0659i19KQ4z7fcp0dsvEhVa1sx+C0fDPxUT7g89PhnsvaFb99ZHsQunolWghQY1o4UrMlVfSnEtPtGc+wH9yrNrcNIwfbgiD5yrYlchS+UHwLRu2muAW1mt5YBLwP9rhiTzGVwp2nkEgtLSDwQQR7QV9TV3jaZiIM9veuBXVsDVqQCBudAdEtyRtxzHCnLKkmJ5X1YsOsjCgfZOnhNrLTyW3zAdlR6xV6goM06Oi2qaf5JwNgF6bAIfXOeUSG6edyPadbRCJu04dlPRtYUSyWiFnpntO08l6LaFaYVsGqhtovfJtFemYV+2rKD0MqelThR6oq8uwnbV0t+JKv8w/P9H4Gow1yWNfq/x3/U/A1X4cm6LsWe3QddcmVuyutnWkr2nbFZ8UqIJN5WF0rx1MhbU6ZUd0gWiIrSFbfTUDmIHkTZFGgW3zdxW1Fqv0sK+DVExhYBuWlvK1KN6jbAtQXZmERE4dWRMepWmSB5qGoyCtWElwA5JAGJyrIgoKaNqL6dUCmN29wGwRLiTAEkFHLvxc2nWZRe0uL27muaPUOYw5xEiQfWiDyJGVXufD3za1Nw8uc9u0kRtLaZw/zkAkz0hA/lc0Nno6d9RdLRtZz6oY+BTNOMAc//AFz0Whii1GpDeKMkjoNC9a/AcD3AyAt5xgT+/txK5LoPiIW9Kgwgkmm98l2XNfVft+kfVbPXOAMHo12XjCnU4LYnYIdgvniegjMnPYRJBUMWNZdJ9nHmt21ug5/vmEqO8WU5cJy0AiMHJiT2548j1wtrfxECze97Ygv6YZG6THSEFB9hupvznzWPfPPuPb39ErXPiik0lnpG72wdpkeqBOT0MEH2EFWhrTHU3ua4Et3AtkTubhzT2II6/wCeomw42owyN2REgx7ifJRWur0SHuDmhrHGm55cAA4Z28/uEjWmtOrXraVzSgNJAeDLdtVm0NIEg+u13sDsxCo+JtCZVq1/RVgA6HNZt/h+kDNhO4OxuADZgxBQOUYvYSUmtHSbrxJRoECs8NBEtdI2kZ88ZaR7VBo3idl06r6IEhha2SOZnr14PuK5p4f8D3d41jq5NKkMt9IDu2ugnZT8zJl0CSTBldd8PaDRtKYpUmw3kk5c53Vzj3wPIdExGkyh2yj4qvHttXmPV4JBILZ4I8wVzSjnlduvbNtWm6m4YcCFxu/tDSqPYRG0kf4Co5a8NeBPPF+TGgKRoCrNKmYVnuQqblYwLzYVZo0FKBZ56IKCq1FG0cKKrQC7tRyVg6nRlWmUFbtrdXm0BClytBNaBlOgpfQq4aS1cxLp7AaKbmJO18fx3/V/A1OdRqS9fP8AHf8AV/A1M4V7v8LMC9x0gWwXnzZWA5blZspMboHVrdQ06aIVCoOqplLRNELqSrVqavOcoHhHiYPUF1JCntapIgrd9NQuEJhWR4ZdNbCHXIEyFjqmCo2NkQji2iZO0RXIwrHhG19JcCd42+tLdv2k5HuUNVmEc8DU3Cq8gAN2+sY9bPACf49SkiuC91DtWY0jaePigR8MUBOzcxpyWMc5rCf+AO0HzAR1jp4afitas9eeg/VaDH0LdbwraloaaDHAANG4Aw0cNBPA8kEuvANpILaZZGQGve0A9wAcHJ+Kese381o5iDr9Bdvs5s75PqLXSx9VuA0+sDgDaAJHQYUFL5OGg4uK0QRB2ERHH0fZ8AulmgvW24xKHq/sK4/RzkfJm0u3fOa26Q6Yp8gQP9ucKKv4N+Zk121nVJGx4fAkbmuaZaOZaBnpK6iKSgubVtQFrxIPIQuMvFkpx+jnNlQc4ksYanEgBzgJHlxMHlW20KgcWCm4PPA2gEk8HzGfvXQdM0+lRbtptDWkyfM4GSrwpicQDx+f5Kl8W/LLPXr4JKTcCeesd1Yp91XPkc9fNbB3u/JOIWZbaUi+OtJFR+5sB4APk4eadKdUfvHvHdBPER9dvXGR19xQchXiYWKCnLq/DOWsMGFZplXdesg1+9hkHnyPmhsrHemZ+bE8c3EIUwrVJ0Kpp+SidxTAbKJuiv0rVmbuin+a4Q9j5cEZ9MIQtkRiD6eCrAqBUmOlylcYQKXwCWQV5UUbXrSpWUxiDKRpX4SLrzP47/q/gangmUneIf8A9D/q/gamsH7B4H7jom4QoPnPQr1YsqY6/B56RRl68WKiRxFWetab1ixFj8As3IChrtELFi0IfqispBmVszCxYul4ORFcI74MkvfmGgcdz3/fdYsTfB/ZBR/YbCSOHfaF62I9vOZJ96xYtNjR76NaFmfPsvVi4k9hYACvFi449cCPu/VY0jnvP2LxYhJJAR9A+74f2WB+InI+/osWLjiVlQdj591vTP8AY9fYVixccbmpkiOn2pc1q7mu1ozDROeCVixVcl/+ZdxVeQCa3Rk9OMd0BFFYsWXPwLfyEUsif2i1Zsgq/cElqxYqIyfYUT0Q0qKmc10LFiNu2USPGs2jKr166xYl3JohmtK5krZ9RYsVsJOitrZGK6VNfqfx3/V/A1eLEzxv2/wtw/sf/9k=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": { "image/jpeg": { "height": 200, "width": 200 } }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Your predicted breed is ... \n", "Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.4/xception_weights_tf_dim_ordering_tf_kernels_notop.h5\n", "83689472/83683744 [==============================] - 1s 0us/step\n", "in/045.Cardigan_welsh_corgi\n", "\n", "\n", "filename = images/2.jpg\n", "hello, dog!\n" ] }, { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAQCAwMDAgQDAwMEBAQEBQkGBQUFBQsICAYJDQsNDQ0LDAwOEBQRDg8TDwwMEhgSExUWFxcXDhEZGxkWGhQWFxb/2wBDAQQEBAUFBQoGBgoWDwwPFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhb/wAARCAGQAZADAREAAhEBAxEB/8QAHQAAAAcBAQEAAAAAAAAAAAAAAQIDBAUGBwgACf/EAEUQAAIBAwMCBAQDBgQDCAEFAQECAwAEEQUSIQYxE0FRYQcicYEUMpEII0JSobEVYsHRM3LhFiRDU4KS8PEXJSc1c6Ky/8QAGgEAAwEBAQEAAAAAAAAAAAAAAAECAwQFBv/EACgRAQEAAgICAgIDAAIDAQAAAAABAhEDIRIxBEETIjJRYRQjBUJx4f/aAAwDAQACEQMRAD8A6zHeuxxhoARQAg0AIoAamqj1ACDmgDA+VAQPX2t2+h9N3upXB2x2kRkf3xR67KuHtKur7q34iXHUd4zyrNeM2GGQYj+X9OKMZujlsmPTX10zSEKzNCEbaAxQ7ce/uK2uo5pupuOySUJPb3wTCjDA5GPtUbaY408/CvxPFJCzDhih/NU1pMR7W2kgk/EQISjn94p/uKUtOwvKFt/HckneoLA+Y9a1xZ2Kr1pocV5pwSNBsCgIV/zc1bK7UGHWbroz4rQajCSsSxbHHltqKvHf0646A1yPWenba+iZW8aMPkeWanPG6a45fSxq3ArJWw7vegbe3HyIoOV7cfUUDbwf/wCYo0Nh3e9B7DuoG6Dd70DdAz/LTkG6zr459UJoHTV47NhmgPhjPdsVd1Inu1yz0ne3XUGtPqUwDSGZTjPYetLhm5tny3V03zSrQz2lpJ2wc8e4ra7Y62Ga78OeV4FVmY7VPoBwTU5XppjFfYqGnVJWM05+ZuST9Kx3trJr2eWulo8al4mO1cKG/wBaqJy1s3vraKyZXgs42cH5QMjGfOtJ6Z/aE1aFdVs7lZ02YyAcg9qXseqyzoO6vPh58YrPVpmKWd1MFlJ/kJqLL5aaW/bu/prVbfVNOiu7WVXjdAwK+dRlF8eW0oj5Hapbbg6sKQCG5paolG3GhW4HdxQBt3pRQENUh7NADQAE4oArUAU0wgsV0uV7FAeoDy8UAagBFTVQNAeoAJGwCQewo0GB/tY9Sm7gTpKzkbxr0LI5Q8qgPY/Wi99FVO+F3R8GlWCeIUe3uAGIJGUb6/WrxumWV8ulhv2s4pBb3VsXRDtO3vii9njhoGnxaVassVhdeC6scQyScH2qK1iTsflcyLHHkcSLG+4H7VKklp6qLgm2l+Q8vGT2P0pzIWD9URPJaxXEZG+P86/zofzCtNs7AWVpay2YaNMoMKoPlxVSosZJ8fNLMU0rCDvEcN55wT/pU5dFx5aaF+xT1dLrHTbaTMqIbCQxqM8lRjmr8txUx1duhFbgDzrKe2kGpB6gPUB6gPUHHsmg3uaAb6jMIoCd2MdzVSbK3Uco/tudSS/9p7LSYpdqBN+4evvWfJdHhNoT4DaSsmjzSq+4KwCt/Nk1tx9Rz8ndbnaZtdEQnjbwPcYp3IYxHWsD3afhoB4anmWXHYHyB9ajfbWQ8jTRtNYmGDxZPN27sfvR1Fa2idc114ixRAnoCanLKb6E45pARdTTmRo5CsjHsu3io/JlvQuE0I5sr+VFEBgYtlwGwG+1aysrED8WumoL+1t5Rte4eQLCgXNVZtG/pqP7LfUrRWEvS9/KPxVlgICeSv8ArSs6PC6um3RPlBzzWNjpxKI3NE9HRs06AhuKkB3UKgVaigdW5qQHd50AO8Y70CALZpaU9mmAedAQ2D5YrbyrDUeA9aexqBwKVtLT2BRulp7FPZA7VNqpOgjk0bPQcUbGkZ1Ffx2FhJcSEKqISST6Cq30Tky2j1Lq74j3PUsjssdtchPDOcGMGlj7Tl6afBp1qmYkARCoKAMPlPrzVWoxx72aXVyIEdLi/tVC9pZOWx7gVPk31uGH+MdMIf3+prIy+QgwPtU5Z4wTC/SY0u40e7VZNMuYmfyIbGaUyxqvHI+gQxOWkgcNj8yEHI+tHZ//AE8VzsIkJZAAUbHP0Iqpv7TlJ9E9BURC8h7qj74+ewqtsrFY+NGnQXWkfiH4yvy5GecGr/l7ZXHVZZ+yr1RB038RpLaWZYorxyjHPA5zSwvuNLbqO0un7oXtklyp+WVdynzx5GovVXjdpHFLY0ClsPUbD1Gw9insBxxRsdiNwRTiqgut7tbfSrgt2VCf6Vpj6Z5W7cF/HPqK71/r+eaVHKKPCA74A7Vhn3k2wmsW5/s36UYuhLR3Xbuj3sCO/Nby6c2Ui+dRSSPY21pFkvK/kOw8zSqsdnFtGsMajeCVGAB6+tZ1pFV6r6khtpfwVhE09znBYLnmsc8/6a4YIWCG81G63S3MML5/IeT+oqMbarLD+kpDpmrRWzNNHb3yA8bOCK6Mcaxy6NtQkkfEMaQ2pH5pHIJX2o3qjxlh7pFtbNKHYi5kRfkIHCfStpZrpz3DWW1Xia66S+Idvr4BKSTFrnHAVOwFLdtLWrt1F0rqSarpyXkTbo5FDKRUZRvx5bSgPnURrQ5pkFTS0A7qNHsIb3o0NjBqNQthD0aig7j60tAIegt17fS0flXgeaNDyqNKe1XGegbfaq2NB2VNKyg2e1A1Q7Koar2ypp6CE57UHp4jB586CYx+0P1J4NzD0zHIVe/YKzA4KjPeq30RroGiWmnacAqIGChWwPzHHeie01F6jb2r3WLi7lUqcp8oAA9M1OVPGILqS5/w6GR7ewEzKRl5+Qfc1llb9N8Yq/8AjqX0ipPa267jgPFHkL7GsZLldVr1jN07HT2r2kYvtMgk2g7sRZx/vRcc56HngtPSvU1/bAW2v206W7H93cleAfRhWkzyntNxxvcq9WrxXVvlXXJHyuhyCK2mW50y1oSKH8NqcR58OdShPvT3UWIr4jWgk6cfK5VB/wC0HzrXGs8tONdRum0nrcpETmO5wcezf7Vnesmnj+r6CfA3Xf8AGehLDUSQGuY1YL/KvYD9K15J+vTHjv7L/EMrWLoCVoFgNlBae2UDQQuKBoO3igahvdghDjv5U4WTL/2ieo4tI6PkuVlCSOpjx6nFVldYpx7ycW2fi6n1pIkcgP4oqxzyMZ5FZce7e2vJZJ06/wChtKTT+mre3jXYEtwOPXHNabc0PZUG4ynsi7FJ8/pStaY4oy+nkus2tvIkaE4ZgcsfYelRe2no5sdJs0gEYTaSOWxy33o8JR55IHqvpy3jib8HHsnwWAX5S3+hpXg33KPy3fbOI9a13QtVOZZIsHhMnn6g1hlc8G2OGOUWewvLPqPwpNRRILoHIVG/4n19K3485nO2WeNxvSw211BDH4MSbCGwR51pLrpne+0V11pkuqaRL4RIcnj6VrNOfJqX7Nd9NP0atnOD4lqfDOfPFRnOl8V3emkZwcGojoezQAbh60DYc8UB4NQBt1Ae30DdCGpUB3UgENxQAhuaARKVQF2UB7ZxQHtlAe2e1AGCcUAZUGaV9CG2rnwbNphxs5+1GJZOZOrpj1H8d5GuIme1t4giNjzP/WnUbXTVUaHTGgyd23+1G9K8dqw91A86nenhzLtdX7Z9qyzza4YG9xZz3TvH+OtI4nHDTOCB7U5ZYLLKmND0/pLQbUT3txZ3Fxjkwwjbn2qpJCtt6Teja9pl0/h2yttzjbgc/an0nR1qtnaXcbR+GhZlyY5Bw1O4zJW0bo9gtjcgQOYom4eJmyM+xqcZJ0L2mkieQNBKvKfMpHp61SdI3rCJrrpmSPjLrjj/AJq0xZZzTij4gafNbdcXqk+JIJXC8dssQDx7VNnapl06b/Yn6puC0nTl1OZDaIMDyBIHGfYYq5d9MpNV1JbEG2B8zWToLAcUB4qKADHtQHsUAVh8tANb1wsDE9wP1p4Fm5N/bO6kh/G29nHMhjUmSdQcN8o4GPrT5C45tjPwVgS863tWiw3h3GGXyAY96nAuS66do6XGPw4jxwoxxVVExRPU3iTTi1gcoij5ivc1Eawnp9t+EiC29mxzznGf60zTNvbLPEqyq8T4/NnFARPU9leRWxF3KkkGcq4HzfbHY0+9FdM76pFpKrSXMDXBH5HZfmH1rLOTV2rjt+kLbXcWn273aQhpc4XnO01z716bSb9p3p+6e52ySf8AEAy2PWt+O7jLkxkvS2aG63DMjYIHlXTi5bO12+CqfhtWvYNu0Odyinn6Hxv5Vo0+VIB71jPTopPNMUUGhIQeO9A29n3oEod1Chg1ACGoAd1Ae30B4PyKAX24qdq0ArkUbGntoIo2NPbPrRsaDt9qNjT232pbLQQtG9no012Pdpsq+qmnOis2yDprpmKK7uZbld0pdiGI5xnirmmXjrI26pnWK68HPlilfTSVkfVfjQXhtUJ2rcLKrDtg+VcWdu3Txq/rXUF1Y35CyKVznDdsUplY1mEqx9E9V2N1eR2OoW8S7zgSDyJ7Z+ta4ZW3VY8mEnppmkafpdwwKQeHKpHK8E/pW0xxrC7iyz2xKRyMuCvA9j6Vc1E9mV9p0qSeIPmiYY7dqmzXcVKldFjkksljkx40AwD5stOUzfU7P/8ATZIXH5SeB5g1eNZ5zblz4qdPvZ9TajcIixieQYkI+bOOy1XTGWylv2W+prTS/ijPEzJFFNJtklz5A8BfUmq45NrznTuLQ7gXNmkiKVVx8ufSss5qtMLuJNBxU2n2E9qWwCnsPUQEpjtHtTCH6puVh0WS4X/w0JB9KrCdIyu64I/aEu5OpOob+7iBYpIUkRTnw/Qj2pZ9qxviffsx6S17qsV6ybXVQrqPNkbn+lTjuIz1a64sF2WoZuN3antekfFbSXN0zRoAd3zO/b7UGfQxQ28g3StK+PlAHAoD16p2GWY7Bj5Qe5oCuapqX4SNllLNCeXMpxgUeVnRXHfbJOv9XXVJ1t9Ev4o035dGOHPqTXPyVpx7iJ064D/91gcShGI3d95HnWLpk6XLpyI26k7/AJ3G4r6CtuO9OfOdrb0Um+dicYB5Ndc9ObKNC+H6mHqXcBw696eXpPHPG7i/3QJbPrWOLosIMRzitNM7aIGwaNFt4tRoPBuOaNAO6lo917dRoboQ1Gj3Xi/vT0Ng3n1qRsYPzQe0jjipXp4DHlQNPY9qBoJHFA09gUDTwHFKjQRRDn+mmpMDCy8HI86Nq6VCeFVnkCrjI7etG02RmfX8ciam7xZyvPPmPSnj7R9s46sCy6oITIE8QbkPrjyrnznbp44zvqcxvrjW1xlIpMKGPdG8jWNs26scSvTa+FcixuZCAx2CRRyrDt/0o8tJzx77bp8JdTTVIGt7h1F9bLtbjHir5P8AUeddPHltyck00HS7pbiNoJ2C3CfKwx3Hka23GejtYCVIbBxjI8qNw9CtA0Dw3URwudkiex86mjVLahDm2c9tyU5U5Rinxq0NJYvxwiUPZqXBPA3Ed8fc1cvTDKdud+kWTTOvdH/DhTm63Op/iOe5z51XHez5Op2+iXw+lefQreaQD95ECoHkKOXV9K4drCe/PYVjO2t79PUy1XqNCzT2afoicxUqQewpnqs4+N+pz6R0neS20ihhEco35WBGK0npj3vtw7p93MOqppF2vHcS/v0JzkE81nj7a5+unRHwJ6Vs9Iv7xYkAE7CaH/lI5x96rLX0wxt22OOAeGF8sYxUtyUsLNJ4cP5F447CgHEVsltGzsB8oyxP9qAjZWa6ujlt20nt2WgaZd8VOr7a1N1BZxLKLb5S5wQz1nnlNdNMMe+2Z3mqpaaU2oXGn263V0P3ShcFVPmfrXPb1228e5IU6PuRKYzHEiYXsvrUt/HU7XLSndULSEb37n+UVeLnyxXnoRcou1Thucnua68K5c40XpQCPUVf0FaW9Msfa6lxIm7jtxWUmnRTd8gfSrY0QtmgAJ4oAM+9A2FSKBsBbmgPbqA9uoVt7dS0NhDc0tDab2+1ZtntvtQHtvtQHgKA9t9qA9toBG8JRc5FEFQs18s94EjPHY+xooiOuc/jWBxkigWM3+JYaKaSRFyFBLEeVG9Dx2zTqm2tNSs4riJtk0Y3IffzFY53bo45plvXUcj3rYBB45xXN9urH0dW9lNdaHa6rACXiULNjuzoe/1IqtbjK5zyX3oq6/B63a30TMFlHiQOOzKTyp9weK1xumWclbultBf2cd9BtR2TKuP7H6GuiMCttcNGczMdy8Ow8z/tSt0IkJf+EEOP3gG00tmC4kWS3eIny2kj1qozyZX8cplj6TwqmWWWQKI17yHj5RWsY5OeBaW3TPUFpPqcCSX7XBedd3yWybs7B/mPAqv49jKeUdifCfr7Tr/SYt90jTbAGwQAvHAA9O1O9jG3H2vml6rDeZcSrj65rO4Vr5S+jk6lbg/nHAz3FLxyLZBNXtDLt8QZPvVeGR/klOFvYWXIYY9c0eFEsQ3UvUFvp9u7tKg2DPJ71cwZ5W/TDPjn1ta6r05e6dDOD4yfJhhlDRnljOoOPDK91zR03p09/qzF0MVxD8xK9phn+9Z4r5OunWHwfktLjT7OZW+dYRGM9x/8NUywm2howAADc4OfrUtREG0YBwWGfrQDPVpnkCQxgsW7Ads+povoGGvNLp3TtwLX5rhk2x+zGl9KjEtd0CEK8N7Iz22ngy3sv/mSH+EHzOa5quVROrVnursGVCuDvIx+XP5V+wxWeTow/tYOiNNuIIBPKu15ExFGfIeppYtLlta7GOMyRwMwdiQCB51riyy9NE6QTw1X5cYGPpXRi4uTpdtBIw0wOfTNaIk+1m0e58WPDEZHHelWky6O5lO7JpRFn2RI5qiAR5UDQMEUDQMGgaDg1UD2OKKAVIeoDw7igLFtrF1aexigaBilam7eA5pbLsNGx28RxmjZo/XHxpkr+YB5qsfYUvp+88a7fdgOOCD/AHp0sb3o51WdY7gMx4Iwaja77UD4guGmdGBKuOSKWV67Vj7ZbqEkSX0lpPIqFsheO1YZXTeRTOqLKVSRLgqOFl8iKy1d7bY5fVPvhoi/h7uzk58P99sHseTWmOr6YcmEna9aLoIt9PMI4WKb8RauBnCt/D+tazFha1PoWRvwYhYgqRwPNWrSei0mJokZPDcZB+XcPImgGU2oxp08J2PzQq6g+44/uKNBFSdS2RtJZFmGFxJnPqMf3qozrHvix8RdM063tpcoXO7wDnODxg/3rSXTOy305z696sTULst4vy+IW78uc9zSyytaYantZPhr17dWcWEnYM3yjDYwPKnjlarPHGtU6c+NWp6PZujyeITHtUE5xWzCzXoX/wDOOrSHIk+bbgjNGy7JW/xd1aS/WQ3P5eSBR5UTjSNl8d9UgWS3d8nd3NFyn2fhVc6y+LWqamGLXQVNu04Pes8uT+muPH/bL9f6ruGm8RJmY85UnvWF3W+9dQHR3W8FlqkDzH5BJ82RwM960wvTn5Md1tvRHxI0zSzA8FypjZyoA+oNVtnMbGxaT1fbXerRRpIuHI+X2IpH5xPSX5/AoVIZ5HMYpDylH0t/+77s7nbAJPrR2uWGuuiSXcV4VeF92PnTG2dddyQWenPawQNPHanfN8uTPKewrDPHvpeOr7UnTdJa6nja/bfcSOZXCj5UHf8ApWNjfy66OOodVhs4BGilXmOF9QvlU9T02wx3O0t8Obczym5kPyoPOqwtrLk6aRYHZYgquNxxXZhpxcm6s2lyeFZqgOOO1a6jPdk0kel9QRdRaF258qVxGOXelw/OmfP1FZ77a0TwzVbToVk5p7LsBQeVEpwHhmhWnthp7RZ2AoQM80bGgFaQ09sHpQNPBPm7UDS0eB7VyunTxg9qBoBix5U9jRMxEeVPY0ArxRsE3bavtQSs9eX4tLIsC3zfK20Zq8Zdll6Zmmr3FlqguiN0YbDADB207GWN1U9q15HfacJonDKVypB7is28u1V6oDXunJcwNl4G+dc9x6Gpy7nSpNVjnxTV7LUFvIQ2Cu44rlzrr4kVp96NQgNpJtwwyjH+xqMctqzx16P/AIfQpbdVpHNKyFsx7R6+QNdGGPbHltuOm0aHa505beeIAx5Uj2zXRI5bKkrJjbNKY+XBBIB/N7j3xRotw81rVoE05L/eBFJEwkZTx2yrZ+1LQt/pi/UHxJtbToTVbZ7lfEgeRgQclckHj9aNF2w7Xvi/cQ9MJbW0h8aaNQfmzgBjnPvzVQrWW9SdS3+ryJ48rHwhhBnjvTvrpM3EPJIzSZLHA9fOiH79p7pOWVpwikhU5z6mqx6o2tE+osRtznb5+ZrS5Q5p5L1UcHfgnnFLY1B4NTcNwRyfKjZbokuoMA0hbvwanLtU2ZSX5khOSNucUtQ91XNUuZVlKbsjPyn2qdHaj1mJDjO0keXnQz2f2ms3cezEpG3kYOKNlutW6E+J9xbX9q810BsVQGfyx/0q9s8sP6bx018SbG+hjRLhW23TSA7ucbSac0jxsaB0Xrq6hoUNxF+e4AKBT+XceP6ZNVo5kluobhYdlrBzIcY9c1GleSo9Uwvc3aWUEYSzt/muJiMmZ/RaVnbSbiM1DShZ6RJcmMJLL/xWzxHGOyj3NY5zUbYbrL9cmkudRe7lTKxnCoO2fIVy2V3YakaX8OLJ4tNhjlOWYhpMevpW3FNTtzcveXS/eHgIuO3OPeujGufKF7jUVtoMDBf0rfD/AFy59B6deXx/xLN3Oa1tx1pnjvzaboU4mslO4HiuTKd7dePaQWLIyPOltenmjo2mwUxiiUaFMdPZC+HRs9PFOOaexoUx80djp7wxS2OnggzRsai2Bc+VYtxhGMUAUoD5UAm0WKBSMic0JRmpuY4++BVQKX1NdzG4SLwGlj/iIPatJSy9KX1k6Mj7F2nnaccilaz0jOhtSa3uPwV6cRueCexzWd9tcUr1ZZJbxmW0A2uPnUeYqa0jJOvIZ5pFZbV3jBwVX82Kxym2uGWlXtreW0mDyWblOxEsJGPfIqccO22Wc8VquOmE1rTRfaM7RX8PzGMniUD0P81dPh104/O77aH0LdS6t09FJcBo9Q08iK6jdcN6cjz4861xuvbPLv0gPiH1jZ9MXlvLPMyQTt4ayjG1WyeM/wBf1ovaGW9XfFSGx6X1jSFvEYxMLzTnHIZGJEsZ9cZyKQ25q1Lqe9ngvIGnaRJ5dzE8nHP/AE/SgbV+4kY8nlTQkUEg4zinAVY528ZLAEUwm9HkNtabwTubmqB210OMk/L3oOAlnATe0nzlvy+g9aDNF1B0lVQ2Oc0CHD3ZdCWJznyNKqJCRzFnPGeeaQML4s5yOQDQmo+R/wB6ccUqiCSSHg0jGWd0wwJHpzVBP9PdVXthI8iSNu8NlTJ7Z4o2NSt++EHxLGn9OWz3V0dtjDuwRwzYwPv3rSVleO7a38OeqD1LcRTzSbJ5gZ5VLcwRDgE+hY/0oK9Veo4V1KdJEwtnGTtIH/FPt7UtdtLeld+ITx3EbR79ljbN87L/AOK47KPYVny4tuLLpm7Wa/j4pJY8NI+63g8z/mNc+nVM/wBV76VbYwYvgDsfU08WVu4tk1yYbHfyXI4Oa6MGOSDCXV7qiIzkRjmQ+prT05spur3otkFtQMYAHFK5q8NLT0xIVYQr2pX00x9rZEo2Cs2gWT2oTRCvtTgBtHpTGhGTmgAK8UCg2il2l7aKYBsoOLQBxWLcbyoAKALJQKQkx5nFCUL1CA0JK+XFVAq96nOdu7Oc090Kt1dpAubd3gyHA/KfOkNM9llk0+fwLmIhHb5SRyhqLRIsEF8LjRJUkYuYh3z3BqcsppfcZ91TZz3Om3UumSsXjIJVOCKV7nTTKzHKK30t1P1Fpd7kM0wBw0Fyu5XHpnyNZ7srezGzprPSusaL1DaK8UCWN4OXhICnd7HzrtxylxcPJLtIasbi2VtTsQJJkXBCjDnHcH+YUWSsrbPTmb9ojrGx1jTbizmtglwGZiiN8pYeY9D7etIOedS1K7uFjSSQt4Y+XJzwR2oFRmQx7c+eKCAckgeXagPFSHIAIxxTgOEQEKf5VA+lMJhyDZKAwyG7D6VQIZ3Rlzn8wFKnCt00YAVCrEj8wNLZmE+4z7v5fejaSiNujLUHuhWRiu0A8DmgboJGzEpyMNn70FswnTDg4pUG7jLCkHhnIyaewFOAD/8AdAStvqk8VvGqu21CGI3d8dgaZ7rpn9km3v73SZ7/AFO4WC0lfxJWLYaYD+Y+Sj0rXHuMM8u2zTfEXR5Zn03RM3jQL+/mT/hxjHbPlRJu7K5SIXqPWlWzWZ4RNLjEEQPyKT6DzPvUcmr024t62gbiE6TaLqOrsJNTvTthiHHhKfT/AHrCyTp0Y22J6Cf8HJawEgeIVJ/SoysmmvHjvcWZrj8UiQw+fIxzj3NdXUk048t+VSugW8a3AViCy9/c097LS1WpbAB/KKnU2f0k9HnCXagHA8zV66LG/suVpIrRqQeD6mscttTrNTLdDQhWnKBSMUwDAzRsPbQaCou2jRaFI5oGngvNGwsQrPbYbOKNgDMeRRsCHvS2DS+fwlL4yB3pztKt65fRKQ4fK+fNUNoSa7hnfdEwz5jNAN5UDvhxw3GaVoVrrPpqG9gOF/eDlcfxVGVXgoE9veaNcTqztJbyxna3mp9DWOUyrovjZEB8NL2S86l1C1nVjEy7ZB6elXwd5aqPkzHUsK9SdP2gmEzGWSINhbqBts0J/wAwHBFdHJxxhjyWFNGtb23Qfhbq0vXB/NcZRiPQsOxp4Y6LPLZTW+qY4YmtL8Jp9yEzDLM58Fz5KWH96q3TGucv2gzBe3CXrxJDqDqGljyCX7/xDh/r3qTjH5EBYlRsY8geRoMIgQg5GG8qei0Qkjw/K42nBo0TzoWbK+QPPrQC8ZDRbvpn7+dM9HhfeDgcMTgjtwMU9lp61P7rBwRuOM+lFOPXUuVbaq/IABtHakZvHE8pxFlnJ5ApybRbooYmS9aDlR2+oxmkYq435X0x/wBaNnokx2que2f0oIhKPnB9TSoIvGouMcgDsaQEKHG70PHvT0CzxEMPYUwPEmEDOOQc89lHvSoXXSeudTk0uDQjdT2mlRt80NqNr3HszelXjekZYS1t/wAGYdQ1GyE149tpOlQ4aO2iO3J9z/E3uc1phMkZzGNE1SbRtGtDruou0rxriCI8Z9AB61HJqVrw7ymoo2h3991b1zaveAgyS71j7+Gg7DFc2Muebqzk48Vj61u7n/txBaW6sSp2Jx9qnnxtz1i0+NlrDeTSNDtRb2UcaDMzL8zk9q176c+Wt2xZdEsI7aLeSWYnOTT8kbh3c3SwoWZsAVcRl/aLXqPw7sHP7tT+taRltpHRl297apO/CnlRWecbceW1lBB5rJoBiDRAKaoC+dA28eKCtFoJ6jQF/ioCfVh61i2DuoD272oAjMKAY6xKyQFgMgdxVYprHvjFfNZ2D6hp0sxEXzTwIfmA9QK00i1T/hn1raarcvFDeK7BsGOQ7ZEP0PelYJWl293HJCFc4J9fOoyXO0dql08LeGx3Ke3tWW+1+lP6veCa2cy5A5LY4q/HoeakaHbNpPXgmEm2K+hIDY4yOwNVhj43Zcme5o2+I2tS6BerqX4dZrV/luYy/wAjr/MPStM9+0cer0j7e80vU7Q3nT+sfhJsbvCmfcrewNGOc10MsLKzL4n9UalHC9jcRYcjbJCcMkmeA6k9+Kr2nTH9TvZb6NYLp3DQrsjYc8eQIP8AejRGdtZRtIRJMhTGc9qWjj17HDbRlGwHAxkc596ZVFxq3iqpOA/Bz2oSXiiPibJMjOUHPmPag4LEmGwBxkbgKDKoR4ZypHzHH/SgAjl2xKvzcEnPbvQAqM22Rjn1bvzQE70tpryOr+GRviZ02/xAZGc1txY7c/Llofr/AEyTT+oLeVlwt1aLMP8A24NLkx8V8WXlKrSsN+R58VhWpPG9MZ/izzVJInnaM5xmlQNEgONwYkdueKQI7CZx5r5CqB7AyByGwfl4B7Z96ASeNGbHJweCeM0A90iYWl4HkEeVHBYZx9qIGsdMfEO1sorcW8VxeXuzC7lG2MY7IOy/WtplpNw8qd611h1B1AUWTbaQR5G5jub3Oa5uXLt08WHjGqfs66db29pc65cgs0h8OCSTjjHJzWnxcd7rL5fJ6Tdqn+KfES7vYSgt7VPDV8cE9yRSuO89nOTXHIuukzHKQQDIHdv5qdmmcy2nZL10UDd37Csvs0J1XrsVtDtMm5yPyjk1tiz5Mvpn1vfajqnUcX4iXwbWOQHYO5+taRnPTpP4bXCz2Mfh48NFAHHeozbca57x2JrLTYBajQFLUB7dQmgY0AUnmgA3eWaoAB570BJwXSleDXNZW25oukoIph5pgKcBJ7g47Zp6BrcXCuhBGarGJY38eNOna1eWzR95HylWwD7VSMp2xXSre/TVsrtiugcqt1Fgn6OKLGf21DRdfu4tPW01aIRTBdysrZDfQ1jlW2HR5/iqzRBpGV4ycbwex96zk7aW9ITq8NdWUsEBDylCwjB5dfb3FdUnTC1T9F1tf8M8KaBZn0+QHnlsD086uYp2jOvJ9E1izlhi1b/DzdJgLIMoHPIyp8vcU8sNwYZ+OXTnzU7vVtJv5LEhCYZOfCbKOPUD0+lc0wsu3Rc/KIPVdeuJ5ChlmjLcFJPmT7A9q2m2dMhazSMssiBeMbs8YqwC7/DeA8QCNIjYDAdxQV/xGFRJlTnngc0aQbGNxwwY45zUgpKzCTfjGQGpU4IrgyN55X9DmkYJHOQHOABwRRsCGTjHoc/anCpzCVNpkdi4XOKZba/8JdIXUOmEuQpeS3RgnGMqDkn7A4ru+Px9ODn5NCfHyzRYNMcpteJZIiQP4cbgP/8AX9Kj5GOqv4uW5WN5Ak2nghjXHHbKTZh4vfPHYeVLZAchADtBz5etAHLZVVXzogGUbAzEcj8uPKqA0UIjGQTnuTTgOrEwv8zk4Hn3P0FPQHmt7ZlZipU+WTyfrQDjTr5rNf3ZMY8yo5pXZz2mrDWXnEVsNyqWAAJyST61PjLe20z6bV0Lrzrp0dmVGU4jDnOeOdq/6munj1jNRw8u8su1+6UtsQie4mDSM2WQNiMH39T7Clo9/S+aVcWlpa/ibl/3mzt2Cj6VnlFzSMutcM4kkjcIDxvI4A9B71npW1O1++kVJJ5pUsrUfmmmPzyfQeVOX6RlN3akN1xLd67DpGiW5aIsBJOqlmY5rTGX2i2a1HV3wn1N7bpu3gZPCIUZBPzGqyksPC3bQbF2MW9yeeRWLe2ly5x3oG6Df70DdAZMeVGj294nHaiQdADmnqDYC1PRbez28qBtC2WqsuMsT96yymxjl2lbfVMr3/rUeNbSynC32e396clGwG5bPBo8aNml/PcCMuI1IH8SNg/pVYwmR/F3ryytQ+nX9pcFzyBgc+4NX0zys2ziHquzkKwz2UwQnEReMOD7Ag8UJlm91JrrlnfW6pFKgbHyeYbHkQawzjSd+kR/2jeynmjBVLhMu9u5+WRfUGljjTqrax1zb36+La3klpcW0mGDN29PtXRLNM/G7VTU+tJP8XF1dNsdW5ZP/Dfy+qmrmUg1UV1b1o8mnutq9vLGVz4NyodTzyFbuD596Vtvo/GM+1S9n1F45fAVH2/nWYlR7c9qnVVOje2tY1ffITHIBnEoyre+aqFaG+vFKELGviAAEEZU/SluDaIleeXO+NRt9BRvZWiosbHaxKN6Hz+lNIsyhh2wfyt9PI1J6MnZRtU/mT5DjzHkaVHoSJ1BBJ+XJBA8xSGyDTbo0DLyDwfYmgbCzZY+nYU4RWJtqHPbHAph0p+yDEZmmsZIt0X4UOD/AMwI+/BH6V6HxvKx53y5LnqEP2lrJbPWopHYFJQDt4O0+GVJx5D/AGrLn3a0+PrVkc3ykeMSSMDkVyT27NWCqoOwhsFyeKWjFm4mAzwCP1o0B95M2EGSi9qNA+gQtAm9Pyk59h701eNK+GJE8NQct3x5e1OFZoosDIuwINwHAxTIeyQ+OGc7lX1PnQCsqCW5zGEjBzkgcAe2aZ6JIjRSs9uznaPzdjRNBbehuoms2EklwqyAYLk5IH3pS9pym2i9L9fRGQz+OVgiXLSEf0Hqa08pWNwy2nNF67uupdbi0u0Zkizuc55I9WNTT7k2vEN7ZpeGC1kW4kReSPyRgd/vR4jyVzqjTdMvdR/Ha/eTXCqP3dvG5Eaj6U/BO7airfqey06fwOn9Egh5xuC5P1p+odnW2+fAee5vYUuboM0rDsewqsp+o4/5Nlt8qmWbn0rn99umwru96EvZ96NB7PvT0T2feiQdvM3NMdilue39aDeDc0Bm9jrQIHzVxT5M1preNMWeqqRnd/Wrx5ZU+FiTtNRVsHcP1rTyNJ2kglUGOQZ8xnBFK3oQGoPHHCTNtyffFPGqYp8Y4NG1O92S4tZ1yUlMe48f3FaRnZ2yzU7gWL7Y7pY5F42BQqv7ilbotI6W/sZVYrMyupJfDYbt+YfSovZzpTfiN1C5sFjmlDSxD91dIMNj0NEVtmuodQS+O0hdt/ZgW5+oq4VQ93rdw+f3rHGQRuPK+lMtm1nfXgYRR3LqpbIBPaqG0raxM+GnkcMfTsRQNl7j/wAMRSnCjGGPpQDZ42nc5uAdo7/lBo0AyWyorKWXAHbOf60a0VM54MZRGIOfynsTQRnPIeY3Uhl7g+dSogkkToyyKCHx83v60FTCchQdrcg+Y8qkiW7A+bPBx9qANv8AkwONuSBTgL2iNPtVG+cjj3wf9v7Uw60/Yzt1N5bJlt3+HISSODhuR/eu7hy8Y8/m75Tb9rO1STqaTnj8K+NoyFGe36qf1FRytuGatcr3Ssk28DLHJP64x/SuSe3XfRW5llS1k5QBJgjKUBySM5oIS5MklzK8jbmiwewAHAoA1hGV8Vmxu2ZOefMAD+tAPJVkjs47ZyUldi8yNwyLxtBHkT3/AEoVstp23xhgkAnFOFT+ZGkkcbSoJ7/xMPemQt5GYVEMMe59uZPl/IfSr0HrePZ8znJ9KNFboZk8VG+ZFAPmccUrOhMkfegpmOFkWPOcjz+tSZtLqlyNqCZiq8BQeAaVo3Ev011TdaWGW2lZXl/PIvcj0o2NxoXSfWxtrPbPcGNX5wD8z/WrmSMsN+lyteo9BmtY5L6/LSSfmUfwj0p3OM5x0+0nqPpf8aDbW8KRgcF+5o84v8d01v4cfErQrKJYYblA3mBgYq/OWaReO49tb6P6kOvqGsEd4/45T+X7VFisc9xa4gQoBbJqNNfobJoD2TQHsmgPHNAePegPeY+tAYZEXXlSRXz8d59a3s0ZHJI9KrzsLSWsNZUH95HWuHNZO6m4RO6Rrtt4nzZ74HPIrec8K4GfxIv7OTQpRIZlLjCyKeQftXRjlMp0i4uQPij1VrFlr0sA1O6KDKqHfJANLd37OSaUm56ou5Ids1xJKink7uV9xWkK6RV91VcAh0lJccEqeR7/AEpp6RGr65NfjDBSduMA8MKpNsV+8lkd8GMgjjPtTibeiVqHaTaI2PuBmmlLaXbyYBMatk8b1zVRR8u6PICpkDGFJFAejzIdmxmx5igD4dAR4YBzkZ7/AKUAjNJvU5jAwTgg8YoBtMEkjJiABUZPOce4oCNulEj5By/ue4qU7MpI2VlGchvSgEiAZQC2MnzoBuUYs6KuTkYANACviNG4HcUBK9MfNeJC658TO1s4w3/1mgOwv2Q032UMxAjMUJhIGP8Amz9Dk/pXfhJ+Pbz+TvlK/tFWYi1W3dov3ccvDEjnccefnls0rrxVhbMq5KvbdH1y9hVSPBkadCRj5d3I+xIrjvt3b6RRVn0dpiA3i3DEDzG3H9y1ALTeAbzUPDyEEIK+fICDH6k1NTfY0E9xYQi5iG2dmJV9vbHygj0OSf0oVCO5l2yMxXPJ9QOw+571WgkdOYrcCVyAI1LYPkR2/wBPvQcsTNllNOF7IucEGNG7sD/GR/KPL1JpxNJePJIzKqMcdvT7nzqyFkRgC7nBPkPOgbhOKX5uxzn8uKKNwneRiYEFAzv/AEqQjLrS9p4bI+mBU2dg2NsseNpJOeSRiloQV5pPG3CU4HpS7Vs9g1G4DDdMwHmSeamxUqSttXmJ2IzBfr3o0v20f4L7L3qG3F9K3htIMRA/n/6VpxTdZ8+X6u+PhnFHb9PQRxW4hjVB8o7mts/bn4fSy7sVlW1e30ie3D1oD24etAe3D1oD2fegBBORQGKBRXz9egURKkFEXv7ULk6ObOJncNycHyPNXJ2eoR6+t31Lp1oo5zFPGvyEnBrs47dIy042+LkmpQa7LHfjxSjYwRzit8ZWdqh3l0vGwHOex9frWsZ2oq6nYsWwyHODTZ3LRBjj5uc/Srk6TvZW1iEkqiV9gY9yD/anoJC2tBEwfZnnvg809DSYtvDSLcEGSMAZwfrTMjNJIT82B5nigFIiixg4zn0PBoAslxGynIH0POKC2Y3DBnwjIfIKQBig49FDLFMCvhlVH7wM4UEefH+1ARN7GEmKpxt/hPPHqDU26LQsFtLeQP4ClpLYNIVHcqBk49eOf1pbI1uYfDuEkAPgyqHVvY9/05p3oD3Vq0ZlljGHiw2B2xnv+opbPROGBvFmWNeLiLcvtz/90bI66a//AJaAN8v73uTwpxRsO2v2bdDa2lt9RglHhvahiqEBXJBJz+tehj+vH28298qS+Pmlfi4I5AFUpIqEuvBDcYz5ckc0p3JFZXxyclan09PdfEfWLVFdGgjvI2z3OY22/wBx+lctxsy0696xlVHRLR5LiawkjzuGEP8AK4Jzx7gEfao220cPpTXvVd5p1nFt8SfwBu425lVcn9aNbTl7L9SafnqZtMsXaeLxxDE2zAdQfzY9O5o0qejLUwiP+Owwjn+WzVh+dF+XxD6jIOB6j2ot70jyid6a0gQ6cbi+tWeS4ZAkTAgycFgv0wAWPofLmq0KT1a5luLgQQygxq25pEHDt2+X1UeXtTkAodguxCDjt71RbELSBsnazHzJ4oIMjSO2cFsd/IGgCeJIH2gAceXlS0p6SMMMEs2BzjtRotmj2tu2WeQEfyAc0aGzOS2GTsiGPLNLQ7ItbOGGCo+nNTdbOU5sYlibc5L48u1Lprje25/sr6dDP1At9cqCV/IvGc58hWvFj3tzc+TuHpJ3NhEzjYu0bVA5q+T+VLi9Sp0HIrC1rRs8UB4HzpbD2aew8PWgPdjmgDJyRQGKhhXz70KVRhUnC0RFEWcWv5uM5HIx3rTEQTqYPc6SyKMSjsxFdXGjNyV+0FBPDrDLdI4IJxJjzrqxZVj94jsDjkE4wK1jOmjRS5wAR9VqtMacW0Mi8qi4PqKqehDyKPgB4l5PIxwaYh7bYVlIiUhf0FCjgq+eApB5x2oBGZwhB8P5j6UAmZdyZOVbsDigCsH3blgMp9FOTQkjNbQ3CYjJLjO6MnDJj086BvRG2txI3guxkB/I7vhgfb1oHkb3FhIsoSTcFYhY5fIHPGfSlYovodpKutwQNCT+JzEcHA3fX+3samTsqlNS6fvI7O602e3ONOlMsMwTG6F8biPYEq2P8xq8p0SUvOjJgLaAhBIFNq7LyHO5fmP/AKZFP2qvGJ8kPfdOTWGjSyTR+G8a+FGADmRtwI/oTSuJy7MdFtEtNUiZgG8dZTHg8BvLP6UvE3cH7NLW0/TVlIoZvCh2D5MZG0Ef3x9q6sr/ANbh1/2rb8WtLe66VnWJAXRQ4zzlcjP9qOO+j5cftzCNId/ilfalG3Oo3avnH8D5B59xt4peO8603vjikdOdPW158SrVn3xwz3wQoo5ORucfYk/rWXi13cfZx0/0td6L1BKrRFpbiNUgZU7u8pIP2EZb7U5iLn5PX/Tt3fJ40S7dQuUFhaW6qQ6Sy5eVz6BYjj6uM4xR4p/Jo20bpZdR6mNzJIgS2/dwNNB+5gtoDtM7gjAjDDgeeAO9GOG+yuW/RLrYiSG1i01m8OWBpXknfbLIjtwzn+EMFU47475pZTteG9dqlOYgvhwsfDAw74wX/wBh7VKqTDgHmUgYwAvJHtVJGWQDAWNh6lu9AD4kgXPJX1K8UB5Q8mSSvHc7u9Ciqoh48QYPGM0JotwsUZG0hmI5CjtQDaZmYn9zgeualQhhBTcXIPkoHejRfYIo8HJ4A70rOmnqNt/Zi1G2sdSDzSQoWb5Wk71rxubl7dl9DavbXFohjcvwPmPnV5xGGWulthkLLndwfWuex1fRQMMUiDu4xT0HqNAINIBBFAGQ4YUHGGLLivBd46Tc80agOYZKn7VD61mQQlu59fStMfZxG9VaqkdizRTorBTlSeD9DXVxxnm5g+N2ttqOoNG8kcqL5gciuqRjaye6tfEcsHXg+da4xFr0Fqn8TkehU1aSojjjAJAIHc9qk4FHgBUgsMHgd6IKPHMpyqKwPkcDmqIM9w20JvI+wqdU+iW6Mck+I3fvRIVKrJahyM+Jx8oGQVqkmzFpp3WNFVRwNz9z7Hyp6G0hayI48G6tmLxkfLMBuP8AyMe/0zTkK0/bSra8t/xULBBuAmWRN4Hn8/Y8epAI8mqiWLQenF1q8FhHFG3i/IoZ9wDEZCljzgnOCRkcZ9aPZekpZ/DfULJra31SIi2mk2QXTRZKSAcBwDw2cAjsVOVOV5qcY/I1nTvh1PqnTQkv7f8A7yIBvSVeJNuRJGWHqj/fgjzxUwn2i8g/Rvw6/C38FhexG6MYMQkYcswjwkh/zYRVPrT8UXNmn7RPSkun6Dp1xHaAG3mjTYBhQ/h5Ygf8y/1NRnh0viz7u2Y6NYQx9craXcJC+InhRjv/AMQZX6j5v61li1z/AMdb/stXhfRI7fb4SQRkRof5d5A/sK6Ppya/7Wu9UWpm0vvgqpww8vT+uKxwv7Nc8WKHpF7Lq3ULqeNGiRQyZH5H4wMeX5Ac/wCauqsIiOnvhwJetLxEhTw4RFPAecwl8F8n6NgY8qidK87WiWnw1sLnXbe7uIhIliU2LjBBIAxnv23frT8oJLVH6p6Jli1yWaOTwYxaSyXV3BGWKCWQl0j/AMzY2574WMDzo9lpRNe0LVbrT30qDTV0iG52/i9z52ogAig3DOVQHJx3kJ74zRlP6Hl2zvq7TZ9R1Kee3sjYaNCRFDLL/wAW8KDYAo9BjsMhQfM81lca38lX1eHY62dja/ukGDOy4L+vsoB8888c81J7R0rJECsLJvOBv8/oo8h7nn6UaGyID+INqSMx7YHf/Wmm+yqpu4mfB7EMc0LgXa3iJVYTIc4/lH6UgJyZPkt1TPbnIoA+XweMH6UAQgM3zgt7dqADxE37SAfQY7UqcD+bHy4ApHVj+H10YNXjZ3KruwcHBqsPaM/TsT4K6541pbx2q/LtA3SeX2rfL058fbZrGQmNWkfJx5dqwyb4+jxZBjipUMJB60AIk570APiGg9hD+9B7Cr4YUDyYKshz3rwNPQLRycjJo0DqGTJ4qfE9nPikRnBwK0x9nKq/xBxJo8qiMTZ7EDBFdnF2zzrmnrS2ie+kO1oyGPds12Y49MKrEtvBHnLA4x96qM/s3mNujfLG3Po3FMzeV0HaJl4yRu4NTVQrZtbMxWd2RfLYoYn+1E9lTtBphXCSXpRuADGo/rmqIR005pGPiXkePRFYD+tMUm9rYuQI9VQMR8qzQSJ/VQRRrabkc2XTGt3bf9y05LzA4ayuElx9UDbv6Zp+H+ouchaDRddglMOoadbyocIYrqTwWXny3Y2n7mr8aW07Y9J6tcYXSbSS7j2/vLOR1dwP8nPzexHNPxpbSnTHTd6LmWTT0/fRfmtrhhFIQeCmW+V1Po+0jyPlR4iZy1o3w60C31qxefRYDBqmmYabTbmL9/D82CylsCSFv5D2PKspxl2yF22bo/pyPV7BxdCS3jfi5t2Jcq4wM898evdlIznvS89Dx8l50LQ/wNqbNlBhTBhbzx7g98HI9wRU3K1c4x7rRoIp/HMe1w6kMO5Knjj6U5mm4RjX7TekltHhadUeOOYzMpXJztbH6swA+tXLuVnZ49uYILD/APea2t32IUtd6shyrOpIJ59yQRWUm61t/XydGfsnySjRLa3dl8OOJljbOSV3tkH6Nk1rvpjvXJt0FOI204rIchlxXPjf2dOWtbUzUtIivOpNQEoGLu1VUxn/AIkZJz+mBXVvpyeO6caV02R1S+olzxAsbpzgngZx/wCms7k0x411jsxEryRICzHAHbPnk/c1nc+28xmkZeaJHLDKuBjaMfL3Pm3v6AVrjyRjngzTrvpe58eSRYoQYYpHFw7YSLglRnvgE+XPGc81rK5vG7Yj1v0q+l6fJfTmVrx0EcKkhpIVB/NsHEYC/lTyzlvmbgv/AMXjd3W2Q6r4eo3aWkdwtnHnMcKo81xIOfmcgYJP2Azxxyc7hdtcspj1XrrQ7fT7FbkhIlKgo93KEMn0RSf6mq8dI/JEVdXSLCyJNIVPJWGMqp+uMZ/WosVtEqfEkYkKB/lXFTtpKNukVuNwHtSODxy7Blg5z23CgHEZhmK75HT1wuaACRYtxCl3x2ONuaegKQCCFQL61Nhz0UjYRqPI0aNJdKJ4+pxqgYkt3p4TvbPP1p2H+z7o0sOlQSFlRSM9ua2yrGTttNo6xoFUhuO5rC9toW8bHnRo9h8f3o0XkHxzjvRobHE+fOjRbGWX3o0qDLKM0aDB0Y5714D0zmJs0A5iNAPIHKtwAfY0Y+wh+utFF9pkkkEzwygZyuRXbwssq5q63tZYtTkjuh4hQ8MOCa7cfTC1Tr63jjBCq+G5yfKqPXSMu9iMcEkDvzigiURkdsfIQRj5m8qmqhdYoUj/AHhBbHCqaIVFDsyZUBQp7VREpkDHLAqT7Y3UCjW6XYcfhoLhceag/wC1Gtovj/7JjSoeoUeKVLObcD+aawPHp8+3j65rSY1FvE1fpO91q90g22udNtqNsRsDBicLjkq6ksp+px9K6J6YWXfST0foXRr7VYj07qOo6Hdg4j/HxgRTn+Tx48oceRdQffzp7hzc9ti6S+H2rzwIutI08luQIbpOJ1Hruzzz7ke9Z5ZyKw4rlV60ToGwSWC5mgXx7dT4EyRCKSLIwwBXyPmp4rHLkjfHjsq26Xp0VqvhgD5cbfl7Vnc9tdQrb2EEFxJJGmDPJ4j5Yn5sAHueBx2HFLyLQ93F4kZUkZwKcqbGffF/Tl1TTTayxKUEiBvl/MNyj9Of7VrhWHLP1ck/F3SotG+MduqSRokLyws5G0KmVYc/Vj/Wnl0nHvj0vP7Lc88PUclpct81uuxVXhSA5yR685NXj3GXJ1k6N1+9aDRRIM4Cl2x3Cgd6mYdtcs/1iJ0k3N3qVnKszkRfMW7g7vl7en+1Xn1E4e1/05VfcNhBHfPnXPa6ZD5kJQ+WSAOPes99tJiSmjDfIOATzkVcRYj9T0/xFlZkyv8AAqDJ7+Q9c/2Fa4ZWe2fJhKy34hfDS61WKcxNFD4jgxgDds5yWcfxtnOAeB3PJrqx5MdOTPiyxu2Xa58INVsJ2XQ9O2eL80lzcy5nuHPft8wXHPBUZ/WqmO6yyz30rGu/COfT7WW8vglqQxLXItzLKwzwMsWI/wDdge1VcE45WXtQtb0jQbSQpc7tQnXnZcX0caL6YjiJP6uayyxdNz2g7iWJG2WGm6OxU/N4FmZgPuQSfrmsriqZIq4u9TbmaytXUH8r6aoH0yAKmxpKJvswite6O1vnOHtZShPr8rZH9qhYn4VXQyabcrdAd4Cu2cf+nOG+xNAM0aRnIYKhzg+opbBzbKgU725HHamqFGjTwsjtnAJo0Fm+EemS33U8EcQ3ZcVU6Z5O4/h1pqaZoUK4Abbzjk9qzyz7GOPW1gE4HFAHE4xxS2HhPVRNGE/FMDLcDNAGE/nQex0nORg0HLtisR96+feh5HMbYH1p4wrkcxOKvSJkd2jbnPOKemkyG6muFi0ZyBv+Xnmurhg5LuOb/iURc6qx3EbScZGDXZPTnxUia0G/fI+QPUf601/SIvo4dzbOc8DK5FBGQiChw0flgZjzj6GppUG21k/ds7xqOAfDJP6Dk04ST0rTNJkfEt60e4d5bdlX++aYS1lo2lyvtge2bAxukMqAfcjijGdoyXHo/pzRzdGO5WOIMMOEYSKf1Pb610YRz5dtl+H3ww0XVIzJaXN9bKD+7ltLpo1BHmRkDP0rTykVjGi6V0Hpdp4UmoJc3rw7fDuCTIyt7fOSOwqLnFeK1WWlaaIW3b5sv+S5j5J9wRk/fNRTmKyaZHCsYRERQo4ULjH0rnzb4w8+RSRt8qzWKzqSPl79qcBNmAPsBTBCUDLc8EcGiJqB6jtpJINi4O4jcT5AEH/StcfbHP05U/a50q0ml1CWMFbiKVZFbdwS+FAxnvn+ma2yYYzs6/Zwt5TrsNysDxxx20anJ5cOoPfvkNurTH0jPKWug9WkVrdYZ4yUeHb27A/Kc/qKzg1090dp0kGo2z7BuhszCM/xDxNwP6Ci5NeKdr1p6DgZ5bk1zV1nY/MF8hilAEqF79u9MEvEAfHB70RNJko65C54yPetN6RrcROtWLOyyLs3gcEtgL+nJP1x960xyYXGKl1b0foGsRQ2+safFeCPnw5EfwwT5sARuz75xW85GeXDtmHW/wAO9E0ywa6sunel4YYjhJZLOc5b/kUEt9x96vyZfis6ZH1laWiXCwz630zHwSYbNVhYduNrhmBoRZZVJ6ltpba9MSLYKNuQZbzxCw8jjI/TArPKtsVY1NR4jeMbWTzP4dm/tjisffbaVGyCLf8AKCGXy3k4qbGnuHTeNchBKy7lGAwHzEe586Wig1rDIhYuqrjuSc09HadyZmjCCIKo8/WjVLa4fCjxbbXLcW0mxmYAe1X6iPddi9EzMNIj8ScuQoySfOuXLKbb+PSV/EDOcilM0XF78TzVfkheIfxWO5FP8g8Qi6x55omZeIy3WT3p+Y8RvxQ9/wBarzheIwusEYOeaPOFcWWx+teFI7NlFbAzWkibSiy4PrVplOIJ3YgZ5NDSUvr4DaDIN67tp7+tdHFn201uOd+ubW5OrM0y5CtnjmuzbL1VVvEb8R4aEoM9wM0HvaLvAqDb4jFj+YKBnH0oPSNuogY17kH1Hb/epqb7JoswLJGvzAcEDZn6+dBH2m2Ussga9EkEGc5aVVGfp/vTl2GpfDb4dalq5E8VsBkA+JMylVXyzlgBn34rWRjnlrprfS3wr0+3lTwr+K9k3bW8NkbYPZt20Z9dpNa+Wojx3Ntw6V0a30zTViW3t7XjmMFTnjzKqMmsM8m2GJ7MYAA21d3YYIJ4+p71MtWSEkLgkTCeMEDDMGK+3qPvV7Gj+y1CESbd4Hkeex9/esM6vG6PJZgyDB7cls1EMTxwoLJ+bzXy+1XoCCYtHknmgtvSEMgOcjypyFTDUzwOfPJ9hV43tnl1HL/7Vdq7pdBGQCRdhY4UsA4ZT9QQefQmt7WMvZ1+z5cOupxQKUeKaZmjUJ+Vdu5Qp7+bD7VpHFb22Z7+G41eKzmRkZkICnjep8sn6GpuOnTL0smkRokkJDZPcHH8Pf8A1rDJ0cWP2nrRgFzngnis8mxyzADPmBSAkjEKcEHJyBnmq0W0Pqd8YvGdSoURqse08lj3xRJpNo0N+kNuu4YbA4J5Jou9pl1EXNrplumEYCogJLEcfb1rSY2xjln36KPqoR8mMqWXDO6Yx7VXjlBMhTeRTTFJJkUyLgkpg+3c5py5Q7q9Kj1V0npupRyDUVtZCpLRNJborE+oc7wfuOfSt8OSbc3Lx36ZJ8R/hxpxSZ5umIpwnMctvdxISoGRkKqc9+4rTKSuaZZS6YH1ro9pYXckH4e8tQnZWO7Z7HByaxymnVx5/SrTQNnK+G0eOCiYb755rG+3RLqnOkWztNtUkE8AEc4+tVJsZZRZrLpa6aLHhwb3XIDyDP6VpOO6YXlkuiN3oGo2QAvwiMxysS92Hr9KPHRzk2l+g1trLXoHudy4IO31rLOtuOdurOh7kTaVG0a7QyjgiuDO2V2SbiYlY1O7raLO9G7yPu7mp3RolJcOKPKw/AQXrjzNL8g8Hvx5zy1P8v8Ag8Bv8Qz50/yl+MdNQG4fN50TlK8alxNmuFOym7inKnKjZzgDua0idnenBUJaXlQPIU634+8pEL1N1Jb29sYPFAUkj1zWnD/J05TUZ1rkUd9ayXS5ESg7sNz9a7duWqu+lPNEwhP7puS2D+X6nzol7Cs38cdrLMrWBYj+Ns4H6edWryMUMkwzDZIByfExleKmpDaaTc6lKrwGRgTiQiNm5zwMCg57WronR/wOrJHeW5e4DcRvsLn9ThR5ev0rTHFnyXTqX4NdIQzadE9/IssUzAvA7IVQ+gCAA/qaeV0jCeVajrVrZaXYrsW2tI0GRlQAv+g+tZ+d238IrN71bZxXRs9OlW9uQuXIn4jHm7t2VceZIz5UrdnJpl/xG+OnRFrqX+EwajqWuXYJSWLRow8I9jI/ykfQetOFllIyzq74532mLjS+mL5YWwP+/wB3HHwMY2iNd3fOTurSMMuU76A/aLvg0Fl1PpslpCzlYbx7rxZUJPGTtAdecZzntkdzWeUbcfJK6I+HvxB03qK0mgiuFaaHCuu8FlyM84rH7aLVFeJ+HWZnkHhfM7t6Dz+la4zacju0uN4c7vmZjkkcf/O9VpOy80wXvn6VI2rnVGuwWkG9mBBIB5x9arD2z5L053/aQnN3rVstm5kb5gAMkc7cH9Gz9q6cp05pe1u+Bdiiw6XNBF4qCMtGezJkck/Rmq8umOu2n9SCCytRdOcPHICcAE4yCcfTms5duizUgug31w2tW8fj4FsZI2TyYHGOfYg0XHbTHJdLS5RgFLAsB29K5cnSXaf6c8VIRutXrxRBo35JAwvJxnkj1+laT0lC3lyniEnDJGNoA9MnknzzQmqd1f1zpunzXME15DDHZxoZ2Mn/AAlY8kjzwAeKvHTK1hnWX7TFha3Dx6FFcGOI7SIYueGxtLE8BRg57liQOBmrmcLX2kdN+N+narp41G4/xi7jlQIwWIrNF7hV+Qjng4OfWq/LIm3fpZOhPjJ0nqd9FYaf1TMt54u1LLWLdoy3+UsM/rVfkmfpGWNnbQYeu9Ctp/wOq3NtaTtyVb5kYnvg+Y9xUzC72POeN2tOoWFlqPSLPZJDIjIXQqTg/TByPtVYZay1WeXHLh5OVvirplv/AI0bebTTOXByrzNuH0zz/eunkm7uObhys6Z+/TitMVew1BEz+7DqGUfcVzXDddVz12tfSPSl3bFjHDZuhTh5ImYr7Vpx4ePtjny2+l16Q6JFrayXsiNE7tyUiyCPWt9S+mHldi9faTpNraxCDTz4jKN88gxz61llOm3HlvKMZS9S16yMjkuIn75yv2rj5Ho8ft0V8MOtbS6gitUn3MABhfKuPknTq42lxSCWEPsIBHc1jL0vLEjJ2NCdG0vApUzeTtWdOEW71Oz0IxAFTclzHoVW+Yc+dK5bPUiCj4GaymTg0OGOarHItDru3jg/aq8ymPYupap+DtXdgc9qN76deGLFfizrjLcOLQqySNkqDjB9R75rr4YeXSb+DWoTa3pktnILcjbhhMAHz6jPeuuRjb2sHW+kata2qEySywbdphgCqfbgDvVSJtVG56ft7+ITOZ7eLOZN7KAG9fWmi0MHRttqSRabY3d1ckNukPhnAB8gD50eG+y86vvTfwf1d7J7GxlFvEqjAnjG4j3wP6VVxmjxt3tDWfwrutB1oCTV4Vd5du2A5ZgTkhQB+p7d6JjE55V0z8KjbLpkVpaop8JQu/Oefr5/ap5F8T3xu6SXqrRDbzXLQLFlgyrk9u+ajD21rg7423vWdpb33Slvf31naWzNwkbRG+A85Gz8/t5CquO0+Wmqfsc9OaWfhdHfxaZDc3U7sbiV+WOOFGD27mvV+Lwz8e3z3zPlc2OdxvpUf2kJb7TOo5bZOn4isCDZkAZ9SvFbcvHyeEnF72y+FlOTkyxmfjZN9/f+B+BXTE/xA6b1a117p544Wj+WTgBT5ADb+bGT38q0z4/Lh/HyMb8rx+X5fHy8r/7KN0z1PrXwo+Jj2ktw80WnXoWRic+MgJ4b6qa8DPi8Lp9Vx8n5OPbuHTuokuuk01HSYmvYZ7RZE2neHVj2HsM/0pYifxTtjfyzpayJtMUkQctu5Q47YH/zNUB9f1L8Nau8khTClgCPbt9aMRvplPVutxy6eLq5uCkTFm3KBuBUYfz5OdprfjcefdUjUNS07XtbC2cPjyxW5lTA2q2w9h9VIreMuS6jRvgSqwG2BXPjWCSQybeSDww9iSOR60s1YLt1TEt880EX/FeLMO8YG7bkA+nYfpU4X2vJUtS1s6c0E0n7p5Zo2nlJyItykhv1TH3NOzZzLSw9C9YWWoiaRJVyHWNlzyr8ggfTA/UVz54N+LPXVWZNSZ5Jyoy8QVio43Dyx6+f6VlJprUdr90ssH7m4jEUiMECtskEgxjYf1yPXGKc9prMfjf143SXQGo3/jiO6jj8O3jZQC0hICtjy4yfOtLURyxol5qnxP8AiSNMgkkt4b5nk1CWFjiWMHIIU9iBtX6kmq+Px3k5Zv8Aiz+Tz343HlzY+9aH+K3TetdJdYG3i0KM6eyYtgGKhFGOSf4vv9a9nm4ebi1fjevt8v8AE+b8XmmWPzbqtU/Zy0vUtWsp/wAR0/EbQgeFKclTzyAa6c+LPk4peRwZfIvH8jXx/wCLO/2xdDsbLqbSrfSbfwL+43eIUPOO4J+leN8zixkkj6X/AMd8n8l1PSa/Z70DXuupY9P17VoLiws8pE1yjPOpHkpGPl+vbyrPHeOMjs5cpLcZ9uxuhtGi0boSPT4Jnk8KPashGCRRL2PH9GOdfdIXOqdWx3Aa5f8AefOsJBA5/iU/9a6NSzbj7l0unT/wwsn0xkjh8CXP/F27SPfHasrySNseK0rd/DtoCii+mnCdwAEGPtTnJBlw0/s9HuooVgWPbEq4w/JNF5Jan8V9KN8atI0600NrmVPnI4Vsnn2xSt2Lj41yJ1K6LrU/4ZjhWIY+tc/I9DgvTW/2eZ7e0aJ5ZA8jngegri5PTrxdH6ZP41quG4x5msJ03v8AEeY8mlc0aNpyDUWyno2dgG71nlo8Z2SZxjvU9L0TZlqehoRXXeMetF1PQ0gVcbe9cUzcviHxBiqmei8R7eYq4YE8f0p/lPHG3LSF+Jt7BFoE6OzRnGQ455rbhvllHZMNRzD1lqly2psRNyrdx/EK9TimmHJWkfs7ayn+PQafqaEK5DpOIwwZc/lPvXXi5M7rt2Db9MxX+hILZFRSMqwjGfrRbo8ZubR9z8LrO+iH+Kbp0DbhGVwPoceVTseCW6K6Ls9GYpZafa2sR5PhQYYn13Hmi5dCY6Xqy0yFLNo9o/eD5sjv9ajyrSSKP1J8O7CfVfxJlfBOdhYlM/TtVTKoyxiw9EaHa6JCIIYFX0Yd8f2p5XyGE0mtVjWUBGYgYzgN3+1TJpptzb+2H8MLrV9Nj6h6e0+e5v7Nt8iLNjfH3I2njP39a3xZZRi37NvxHX4edSTWmorJ/hN637yMrlraTPmvcDk12cPLqXF5vzeC3KZzvX06ium+H3Xunw3Tiwv4WAYFdr7iPLI5x6iurj5csL+t28f5PxcObLyuPjTPr7qvo/oDolobU2sBEe2GBcAkgccDnPuankyy5M/K1vxfG4fj4/8ARjrK+7/bhj4gaw/U3Wlzdm2UCYFpCw2jGeAPevO+VZfT2vhzLx1Wx/sf9b6uIrnpuTUppEtE3QQSPuyqj8kYI7857nz4rkxunXr6b/0x1jbXVnbwq7WwV3CpP8jBhnKgDsBxVy7K9Ivr3qmWx0m4unR7lmUqBgjKjuF+xzTxZ5XTENe64hl6j0/S7YLHb2dzK88e3JdypUAD0Zcfet8emdw12lfho6fgLK7sZBLLcPJCodcNHEofdkeu3C/+munDHbk5e26fAmyhk0EwKSgt7iYQhs7oxv4HPljFRy/q04v2XXqQGKGScwhWiilYkAeQyvHnzWWF3Wuc0xP4i3F1pWj3F1dSRzeJAzhF4HiKkhCY9Pp61vrTKTdUP4P61Pp0klvc3HjJPJtnUn512rnIXvnKKCayy7aZXvptuidVJeaatxO8P78ERAk5f/4ayuDTDO6MOperLiKKGFVVVimMbCVwyyIV2huO7AkEcgnBqLjpp5OV/wBqPX01PrFYIb6adLYFJIm3BEwAMhT7qeex8qPZRB/Bvqf/ALKdTLqXyuhwhKpwig58x3ru+HccZZXkf+Xw5uTGTj+nW2h9ddDdTaRBPe3GnSMq/wARQFSRzkN2r18ebx/jlqPn8/iXnz8uTi7/APv/AOGfUvxY6C6I0eWLT7i1kmZcQ29oFZmx5AJwPvWXyPkTKdZr+L8Pmwz1MOnLmu6rqvXPxBkvbkM15fuI41RSwtoyfPHcmvN5M/y5den0nDw4/Hw1J3XYfwD6Item9At7eyt7lUCZdrsq5Zj3IG0YBo5cpJIrixuV3WqeF4UGxFVQew9a557dO9Y6M7bS4Jb43E8UZYH5eAcU8s76Thxz2m4YwBhe1c9t23xkhOaJS57g05lTshu9uFfcP7ZpzKo8ZLtn3x0tTcdOSWsMaq8gKk7OefT0rq4/2cfP72436+0CLTb10kAWJDubP5mrLmx03+PnuFvhh1DJa6sqwxqi7sDI5xXFnNu/B050LqTXNgjuM5Hcc1xZ5a6dUm4mJ7oZPtWGXJoeBrNdr3rK8lXMDeS6JPGKzvJTmBGS5Pnip/JT8YTa5J4zS86PEQXGHH1pzko8EJuOO9cUzYeAHcgjFV5UeB3psjhWO3K+dHk048dVSPizezSW7WzjajZAcHg5r0fj+435L05r164aPVJFJ3ANjkZ869TjcHI0b4H3U13q9vBGYWAdTLA5wyjPDL7V1YuTk9PoR8POembYgqxMa5AOccUs604v4pvwT3OftWe2mhkhXdnb+tK0tdnKhVQeXHpUbXozvGJ/g3faqlTYjLiR0ulZd6gd9p4+9axBxeT70Uhs8cg5oUitTtlvYWiaOMMwPzMVJz7DNV5aZ1gXxX/Zvj1+8l1bSz+FuXYvJIGC+J/TJPtVdxONmP8AJkfUHwT6r6dvDb2eqyxzyZdI0uH/ABDgescY8++TgDFaeeUm4zy4uPK+ViO//E3Xd5Ml1eLJbWYJ8W4ndpn8sAA8kkkDHuKXly0YThl1Yh+rvhz1x0/pk95e/vo1cnYkRbjnH9qx5LZ7bY5SeoL8GTHpt5da5GkrGICONUVgoeQjuw7AAHkfzVO9q/1ovTnUP4nVIbOO9lhxLvVWYhXyxDBSRk9/qaeKckj8WNbW/wBLbT7OWZZLaVomVsqPFRQ+Dg85XePqBWuMY+Ou1R6V0CQ6vLdosMxh/wC8gkhhLErqCD7hZCcf5TXThiwz5N9NG+CWmQWGi273VqvgyyTRtu5J8WRgu30/MefQit8ZqMb23n4c6fBbLGYkEYyVcY5JHGTXNz1vwROdYqg0xy+1RIyxyblyCMj/AOqx47225J059/aM0nUZtEu7axmLZuJQ43ELHsQPx7FQw+9d2txxy6rIbu5/w7V1u7bMa398kiEcEKWEh+oxx9a561x7Xiz6yt7/AKaS7htI1uba52Naq21A25gCD34IHHscVna11pUuruqroa/Z7XniZo8nxCpZ5Bn5Tn5RnGMnk+XOaztXGXdU6fq+sdZvFLABqNxl053K27JCgeXBP3FENZofg7rtvowurq4fa0yK7ofk8NuN+fIBsKwPIJ88VeONt3EZZeN2sunfs9atdaelyiXbu6hmtpCNwyMsv/MP0P0PG18v7Z3XJ3If2H7M+py2MV2NUkSJpiJVMeGCZ4BGO/uD9QKi2Sn5ydSNz+GPwg0DpXT4o7K3t0lbaXuAMySsP5icgirmcx9JvHbe2maVGLCIp80i+ox/pWeVuV2vHWM0dXDs0YbYqNju3O0U8Spzp4R1BBH17Z96nP2vD0fKRnBrKtIJOB5HikZNQMZFNKm/FV2GluyqvyDJY12cDh+R6rjH4yi/1XV5jGoit1JzIeMnPrU86/jqFod49le7YfmYsAZD2+1cVj0cb26H+DOr3k9gitcbhx59q87nmq7OK9tNaTMfJya4s630bSsK57krRCR8Go8jkJO4p+R6Jl+anyo0KHw4+tOZdlYjUIIriKwcA1UTo4iRo42Iz8w8vSrxt2vBifxzu72G6kRLk7fTy+/vXt/F1pPN/FjFw73M/wC/UlsnJzXoYvPyXr4MSxxa9apcNnYwCSd8qe6n/wCcZrowcvN6fRD4M3ttd9LWyWzMixIAYmHK8dqnkVwelycA8+hrF0CghmwSf1oBRhwAp/WgG0ysAexq4ELqQVy42tuXkBeCa0nplfZsr3Edsq/iBuH8wHzD60yJG6hjlDC5QSY5B4z9KASl1AC7QiZS5ztTILH3xmiQbJxXOnrLvWCN55Cd7KBlj/mP8o/+qrLHobLSW9re3caywrIImLEkcbx2I+h5+1ToeSsfEbSoNX06e0jR9hjMQ2AfKPXJ8zyM1MxXjmwHrzT9H6es16csrW3iSfCh1ch3Yk7nB8/Td249q08dMvPuq2sLaVr6SpCZYZImSORH3EMo2rgnjI4PH5ufanMNpuT1tpusyagNRtY7iW6juVne1JyJNnyuG9TtxnzrXHDTHLPZ/ImnQ6XKts01nFb3Yt2Ei7fw8UgKlWGewcj7VrGVrS9CS0l6etdJFsYjbxK12UfBhkQjn0IPY47cGtIzrauipxLp6ICvjDBct58f/DXNyurg9JLqC3N1BGrNsUFixPIOQQB+pz9qzwum2fpm/wAS7LUvBjeGCE2YtZEfxFxhz8mT/wClu31rrwvWnFyYsS+JHQ6vG8WkCSVpPlts/kVnUIi59Bt3feqy45WeHJftSLDTrjRviBJokcJa2twBOXO1GkBZ8gnsckfp7VjeLTqnJLDY6Yi3Jj1C4ffczgwkAbo3ByGQ+mC3DA1Fgxy6tX3orQ4ZNbtvxVo0lxaxus++EbWQ/MrIw788jzHIqvDpOPLZW7dHdO2Nv0olpt8eEecrb1IPJJz5f2rKTToyz89VZ7e3ihh2qd+D8rKAGA9R5f70JN72Z4lcqyr3xND2z7g/6/Y05E55I6/1K9KBVYnbgeNGO598GtJGOy+jSXBlZp5mPHGcKP8ArRo9peWUoq5dmJHA/wCtBpPR/ENvukUBj5Ak/wB6yz9tMPR7E3HnWP21gLjbnJ5zTMMJBXir+iVb4iwLNYsGTeoySPWunhcPyPVcc/tAXEr6jOsUYgtYjg4Hc+lLlP4+MYrHcStdA5+QN8o9K479vQx6um2/BbUDtjEcqrtx/FXFz+67OO9t2sJWltg7kHI8q8jl/k9DH+IkqnJrKiEZVJFFBBlI8qkEjwaEi7v3g+tAphGwrjh6OofUirkLxPbeUpE6cFWHY1pjdQ5GT/H3p/dYPqSeKoc4cRjxE+uOCK9H42fcZ8uO8awWytYBqIR9UtlKtwJVZMj7jH9a9jj1Y83O2XTUvhl00YLiHVLC8tXjPy3ESzo4HP5sEjOfaurCRy8vp3F8DJIx03bpBGojCchG3bTx2PpU8sXwel/Zcr2Nc7pk2RSMmTjAoGi8iYA+bmgaNrkEJjdVwkfdw4QuzArjjPnV7Rce0aRgP8w+YflGDn6elVCsMi0SWckvhOzbsBcEn+gzT6TpDyTzvc7orDLP8oMwIYg+wBI+9XGd9nsltLZ2uwQbpXUDEDbiMem7H9afsbe/E3GxrSG1Ma8Jt8QEgeeTn+1LxLZ1dIlrpLs6swC7doGMnHA9qIfpzP8AF/UbW81d7e0u7RZVk23CpKG5z+RWwTgfWnrbO9I/o3Sw3UKzJaxfg4P3ctmzb9799w3Hv9Patcds7a03QNAxqaXMMaxXM6+K8qxkJJweDz8p8q08ojxqS1jpCw1DpCeWTTVR7tJI7lX5ZwwwRn0B7Z5GKJZaVlG+DXS19p9slrdLHOlrAkaTMSRMhAGD9BkEewqs74ToscfL21vpmwS08TEeB/Dnng84+xrlzy8nVx4+J/q8Z/CFVGPk59ves41zindbWaahaSwgSkbvEcdwcY7D14A9q6cLpzck0Z6ho5vbeBbCKJJXHiGNxk84GT9B5Vr5srhuMw+Lfw/RruTVZ5BF4cjzMsZG9x2AyfNskZ798etPfkyk17rCLzToYdaMOq6r4Uso3otzCCyDJG1VH5AOwHesc8NVtx5dNb+B13LfSm1eaGeGJ8oYAQ8Q45IYhge3YVp9JvtvWkQyx27KuEjVsjHlWGttsctQuyTfg5VCbQD8pVdwDevHl7VP2vdR0lvPCC6J4bciMRnIJ9PMVrJGeVppDb3MqIkzOp3ZKrgf+4gf2ps9H0Onqs6sIUGPX5qLRJ2fpEZdvnjy5BqLdNZEpZgpFgrgD1FY53daYzUOlYEcY5qGkGkXcuRQZPIVe+Kr6TaqfxDYy2LxjO0qcgHFdXC4fkdzTkL9oSWxivXjnkklkQ/u7WLgH3I86nlquDFiFyJp7gFohEpP5AcVyX27sZ21v4FwW/iBPCy2Rk5ri5tO7inbobT1ENki4wD715HL/J6E6g7kHODWWxCTDypUEXDeVIEJFOTQWiLZWQHHnQLETDJk1yT2Z9BMOBVg5SQHBzVfQJavFa3ljJa3A3K4I9q34s7BrfTmj4v9HPo+sSXNqn7lm7DsM+de1wZ7jg5sNVLfBE3ceowIVVlZgQu7G7nsD7+/Fd3Fl24+afq7p+BUkaaAkyw7A55ATaQ3uPI4+1acv8UcLSN5YA+RrmdWI0KruznmgUFw655B+lBU0myRwvH1qsSN5UQHJc8eWaqJphPbfPwFYE5J2/7VX0APEdxKP+bggrnFLdLRKOJGnIbuPLnmtNp0Rv7YRjaI3HiYXcvf9O+KcqcsQiCS3lWOJdxc4JVcFR6etG06pHrLdbdPOWjywQ5UICSPpkD9aWF3VZzpzz1Bpc+v2z2l7pKQtuZYwxCE57NnbtP0zXVOnNvdaR8GugZdM6WS3uWkkLH5RKi8KOwJGcipvJIqY7aPo2gwwJ8kaox5IUcfoaw/I3/HBp9HaC78aJUEXPiR44Oecj705yUrxzSO0nSFsLtjbh4opyW2A/Kr5ySv1rTzuTKYaqz2MJMKkn5ge/8AMKwta4wvqER8B+Qu5uT54HNTL+y850rkNpdXOsXF78qRMgjiTHO3OSx9ya6srqMNeXtJW8EcReTYQeOccjywKz81TCaV3rTpiPU7VwX8Hf2ZRyvv9fKteLm105s+Hfbm/wCM/Q66FfyXcscMMOMhlhLSE+oy3+ldNkym3PLcbpHfDG/eLUIbu0vYJ4pHEe14ZHI9Sc9j9DiiToZXt1JocLNaREMWVlBIORxj1NcufVdPH3EitkmwqTgk5UhsEe2f96ztbyEmtGhLM7LKD5lPm/Wnjkm4o+7t08fxWL7f5Q3A9gKuZM7j2GwgUM0nhEbjwfNqNjR8ihGyDt9s96i1pIWgZt+GznyrO+1HCn1WkqFA3B96DIXHK4AP2qvpNUv4h3FwtlIkIAIU/M3lXVxOHncd/G/wE1SSRLppJgx3FVzz6ZqOVpwMshtJ7m9ClG+Yj5mPauTJ6GDoD4E6BDZWKTyZZjg4IzXl/Jz07uHHtq0swbAUYA7V5OeVtd8nQFfHHnU7Q8WpwC80wJtyKAJ4OWH1pUK1GHHcGuWQHETcgGmDuJgG71W+gdSW4fT2cqWz5A108M72GS/E9yZmsxF4itxtJ5r1eFy8yG6C0aGLXoIZ0ubcSsvhypyufIH0PvXo8Xt5/K7H+D9xJHAipOpjRFReO4Hn9++K2zZ8f8mpwkvHmsK6IOu5QalQsr4HPenCpnJI7ZAcD2pkSUOGJd8j0GBiqSTcDcSrH7NQApFmRXZQT5HzoBfwMkYOPU4o2NDi1JJO7v6dzRsaHWCJBkBc+fFGxpWfiNNJFphCPCicly4ycD+Udsn1rXi6Zcvai/Dvpq41rXzrV8kscI+WJXLZIHY4zj+la5Z6Z4ce2u6Zp8EMO2NFAHbaMVy55bdGOOj2OAIuOcUbMnNGCCWXvxxTlKxFzwkT+G2Nn5lPbB9q0lZ3FI6fEI15PB5HtUVcK38a+GFPIbg/eljdDKbRDWu2dyzMviMCAD5DyraVlYcRDv3GOORyahYk21ictx/LVY1GU7U34k9NHV7N2juHWUL8mIwQv3PaujizcvNxsV0zp3X9F6rFvbMZLcN++e8t1cyKfJcYIHvya6pJpx6sre+mYj/hyMoWIlRmNT8orj5Oq7+K24pdBJ/HHg+x/wBaxtbwndK+3AJGfI0QqjriIngp9STVIr0KsPlDDb2zigiiJgbnwSOxxUno5jYsOR286F4zodXxwaV9KCZAPeiA1vrgJGSCPrVydozvTNPiXqKQ280rgHC4BY5/QV0yajhzu7pyf8W9cs7jUJLdW8aXdysa8CsOSujgxV7ovTFnv453Bb5h8rHvXJn3XfJqadE9BQSJp8ShAgxyK8v5M3Hdw3U2sTx4Pc1wXCt/MnyrVncbFzLoYNxg1PZA3fWjRjrzVeI2NEB4gB9aPErUF4WR2rLwg2L4XtS8IexTlOeQB7VGU0Oik87raMoLKSPI11cWXQrGfidNs1E3M981qUfKFF3uce3kPrXr8Elm3JzVoPwY1DTdX0swfgM3RUL+JlGdw8wuOFJ869Djjz+St4+GOnrYELYyyeECN1vIeYz/AJc9xWmdZ4e2uaVJutxz3HmMVjk6MaeNkr2qVml0eew/WnCpg5BPJP2pkBOWwFz9apIxQLy7Bfvg0AeBFYgiTdnsKAfW8Q28nmo2ouFGMc0SgnOqKhIzn+1MK/r2jw6oVidWZS25234zWky0zyx2ltE0yCytlijyoHmDk/rU5ZKxmkgIhj/Ws1DlMLnmqLRKUErgcGnAZTQeJNkgjb29KradDy3S2iAudwAwfaq1svRtb6qszsCQQnKgU/AvLZzITLEWUBWI/MfKl3CpvEoGVDs7HlmNMCTIpGMA+ZxTnpNNZ4hKMIvH61WPSMrtBatoMFxcCUxOjg5DDDD6EGtvyVneOWpTS0WKMx4KsBjlMVlld1eOOofruCHBB9eKjSiVxuK+X6UwYSRlm71SbAeGu3BJz5Z4oLQImKuVLH71Kxi21vLn3pbMYPyeAaBsY/Mp44pyDaP1R4kjbKEkVUtlZZ1k/wAT7O51lHtUnSGI+QUk11b3HFdy7YX8Sul9H6etXndkacgnyGDXNySO3gyv9KN0Df8Ajax4kaKRuwCD2rlyds7b/wBJ3L/gkPA4865MuPddGOeppMG7UEhmH2qLw1X5KGKZXf0rHPhVjyHUUQcZrnvB20nKWjswfKl+AflLR2oHcVX4Oj8w/hgHB9DUXj0XkgDCQO1c3i1FaMBe3NLSdm0yn0qcpuHs1uLgxxOGVTjtmqwOXthfxqu9122EQc8Yr2Pj3phyxef2Q9UEuoC3Z5CT2Ux/m9c16HFenm8vt1x0/pLr4dxbTYzyY37L7e1aZIwXLS5JFQB1wfrmsq3xPi+R3walcN7g5/My/rThU2IQ/kIP2x/WmQrbY/zFeew9aogQlXk4BP8AY0EkbVADwF7eYoB2i4HH9KzUPgCnAIFDt2pgUwqJBgfoKWzLxRjA+UmkCu0ZoJ7Ck1QIybd2MGnCpOTYvI8/LNMkRrBRFkJX8y4DVrhEcnSuR38Vq03iZysm3K+db5TTnlu1g027E8S7x3/g8/vWNkb40+XDKSvy1IEdD+XJb7UbGiUsRUY45o2iwg6Nggefr51WxoQ7lTtQTylCu1iRgZwf96AA5xjII/rQCD5HbAz604VIOpDZPr6U6RvcEDnJ47g/6VJwRZVYckUqqlN5xnikIMJTtPNVCqM1Mu4wE+9XNMsvagfEbULfSdNlmkYB9pOBWsrLxlrjj41dSPrGsyoLklN2AF+tcXJn+2ndx4axD8KY3WdW2naD39aXtth/GVsNrra2lsqKecetEx72LSadSgzZY5q9QtpfTeoYpGGTg1OXFjZsvKrFp+sI68MKxvDF+dS9rqUZA+bNL8B+Zz+Pix+YVX4JoeYovkMoG4YzWWfDNHOQnJbe1eLp6JtLbnnis8gZXduw5BqBraOvo18Ih4c5BBp4+z0w7426fAZHeIMwz+U+VetwXphyGn7PHWkXT3UsFlKbl97AKkYGD7E128V3XByzbvL4W6rPq2kwTmDwwV7M+4/rXTlGWF10vCgqBnissm0CJlB+cceR71KiM0+WIVB96CpCWeRF5Krn9aCMZJpN+52bnz9KoH2kuSN3hnZngk96AmbYEj8uKAcRKV8qkDsVzgc/SgCqMNnGBQB1TJySaAVAOOKA9tOc8UADEKKcBpPI2cYwKsqJtPP+tBGlzGs+5XHlgitMek27Rd1o0bTb41ALdyewrTyZXEtBbJDIFUdhy1Z3tc6PwV2YHP1NAJhmIwcf7UAKgDvk0AlKoz8y59KE5ESoPOOKcTBcYBUZx3FNQHx5ZFCSbkDg5INOFTS7XKZSTH3pkjp5CSoYf7movpUAiqTwftUxRaLBU/NTgC5AGc1Sah9fuhBAz+eKrCbrHO6jm39ovqfw7eSLeXLZAUHsa0zy8ZouKbylcwalcm41I4Jzu5zXDl3XbGh/DpWS2UjzFXI1npP315IGwe48qv6RTM3bAkk4+9AOrTUnU/KxH3oUmdL16VBjJ/WnPZWdJu16imXHzEfeq2jR/D1DIQMvyfelRotD1A3irlj+YedRrdOTTU5YR6V83Y9Y3mhHPFZWGZXEI54rOqm9Gc8CumCP1p4+xdsh+OGnxtA7pH83fIFenwXrTDOMG0yUWHU8UsgcokmWC9zXdhNXpx5x21+zl13a3OjQRRXCbVAXwkByv1Jrs3uOTWstt+0m/F1bq+GAI8zWOUbY5HbOvcAipXslJInPP9aC2aOd2SVbAoBMyu6nwohnzZqcoPdNMpdd2xj9aoJ63B8PJOGPpSA4YBwhYtn0NLQGLBRtXvRThWIccnmkNFgB3oPQ3lQkFANb5sDGcVUhbM40PLPnHlVDZC7ugqlVZgRVSJtNo7wlWD8HHJ9avTLyG8bfGCDwaVxVLspuRAflAPr60aMi8+HxnP0p6R5UpC2T7Uh5FgvnQqdgkG4c0FZsiyYHB9uaC1o3mULnb58HmnKCCuxb82frV6iNiyOSMbcYPY+dBG05UjJHI7+RooRt4678BuazUSjZt2Qc0KOUZiOaAGQ4XJ5xVTtGV0pHxL1VrXT5VVMgr/DnNb8eHW45Obk+nJHxbnv7vU5ZJBiME44xx71nzS+3R8bVZhBBC2qBwPEP8vpXNqbdmmpdHS/hLAEQIMjjiqXPRDWLpnnLEYJNVulYjpJvU0JEFwQeP70KSGmXGWGT/WgJ6zmXbkntQWixugp/NT2NCC7/AHy8/wAQ86nQ06TldT2r5m57etISddwqbV6IyQZ421HR6N7myBTIX+tOQWM5+LujRXGmPtcowHpXZwZMco5b6utnsdXZlbJVvLzr0Md+3JyRr/7LPV88V4kV1HDIiPgLnb5+Zrs47K4uT1t2t0brQu7ZNsSopHGw5H6084nDJZhIGTIA+9Zabkbojhsj7UgjruZ8EBiBRsGaSlJMlmI9OSKjfYTuh3MbsN+SR24wK0lCeiIKBgSKYKKQD3/3oBRWAHyjn37UqcOofy5pGU9qDteJxQgG7g0AhLGHfJ5q4WjS+OxSFTtVxN6Q9y/zAk4HnVyMrUfeTBAxRSzeQB71ppnskLqcgJGvz4zgntU9Lmz6G4JC5ALAfM2e1HQtpaP5uQe9JO4XtldfzD75pVUlOmbC8UmkJlie45oIRj82CKCpC95TgZ/0pxNMWyTng48iatArsSvb7d6AZ6hP4a7u/keKV9HEWX3NvYjk8VBlYjk8UHDkKF5PApyC2CXUyLG2CBxWsjDPJn/X+oxm0mUQlyB5jArow3Jpxcmrl7cr/G3UZ2keDw1hQEkADFcvPn1p6XxsNY7Z50tZz3V2Ckbbc96wx7dLVdLsPBsFJ7itvEbQuvQnxCRxSsG0HO7KxGe1SDdpGyeeKFHFjdhGGTigJi01MAY30A5W9Dn8xoABP+9Xn+IUB1EZs+dfIXN7UxGilFLyVoujKwo8h4lFxgAAVpjRpXevdHS+0uUAZ+X0rbiz1WecchfGDSJNO1iT90VBPevUwz8sZHHzY/audJ6/caPd+Pb3Ulq4/k8yD51043xcdm5p1t+zr8SLvVrWG1ZJ7+VRhpEBVF+/aujCeXty39b06S0WSe5tlYqcHGT3xSzx7sbY5bnZ5NbYOfF/pWOUaym12qgHJcn2FSZj8qPnMg+ooB9ZT7JF8IKR5gtVY+yqxWLF4Bn64WqI4QEP82PpmgF4mJcKw49qVOH0eftSMcHmhIrnIOKcBCSUA4zTDyS45NPQtMNWlLA7SAfrVRlldqZr2ofh/EZi2Qe4/Ka6sMduXPLRlpeswTyrg8Ecknsa0ywZ45pozoV+TbjGXYelYXHt0Y59GcWoh5SE4ij8v5jVTBNyS2n3KuOTz3x6VNh42JRZU2dxUXFtuCGRX7ZyKWhsqmNoJ70AnMoY8Zpwqb3e7wjjvTTfSPcvuPGRVMiJkyDyD7CgI7UCXk4Bx9aitIShi55/XFIHcUYXnNEAzrlckVpGdRGrhUR2wc7cjDYrXBjysV+NHU1ppOnyrcag0ErDC7Dz+vNXlyeMZYcXlduVer7y/wBZ1lpoXjljzxiXexHqc1wZZeV29PjnjjpLdFi4iYLKHXnncmMVphidrRtLkje2CNIMkVqRjrNmu3gZ96NBV9StGUnAxU2HKiphtyDnis1mzMQc5xQCkFwwYc0BI2t1nzoUeQzZkT/mFAdQJc5r4m17cpeKYEjJpbqtncEgPnV40zuNwRWuNAl3h4CpAPHnWmOt7Z5MM+OnRF5q+orb28MMZcFnmlkCxwoBlnZvIAffyr0ODPWnNyzc0wPUpuk+m9QeOxsj1Fcxsf8AvN4rR2i+6wj5mGexYjPpXpY2a287OaWr4WfE/XLbVreOWeWS2Q/LbW8axRgZ7BVrXHJhcXanwl64t9R0WNWkS2JXIjlfBrTL1spbK0GGcTRh45CQ3OR2rOzc7bY0ZsEYbJqLJFbJvDER3I+tTobGggQnKYbHoacgTWk58PwxkHzyaoJGIFV9+1LYOYE8zSOHaYxQbzc0JJEgE84pwqSm2+GcGq0No+6nETFy/wAvbBq5Np3Ndq3rutxRMwDZB7n0race2GXJpQeqeoUUsu8BT3HrXZx4SRxcmVqqr1ZHZo6BcEniryxlZY8hxp3XahUtpXlUM2WIrHLCNpyp2HX4JnXwZ9me27n+1OYj8kSdvr6ptAkViDzg4NL8UTjyyLZpOsQ3MCjeu7HbdyKzy4tOjDkliYtp1YfLgVjZprLDl5lxgkUtKuX9Co2ex5oEtvsE5ypU96BfSOliBJJ59s1SNQ1uljRO2KVLRk4QknZx6k1NVBMoDwB9jSMbLfyn9acK0neXXhRkkgADzq5GdyZR8aetbjStIma0heTjh413Kv1rbxsm3Nc/LPTkD4jdUazrF3I1/LJudsqrDAArl5crb27+PjxxnSlQPi63ggnPlxWWMa1ofRGqXaKihsr6P8w/rW2OVLxlXi3vN0P7yGLLdiq7SDVeV2fjJCqkSrhjmqlTYY6pY5UkLTo0qurWzJnjtWdh+VQtx8rnNQcpISDNNRxay+9ASNpMfETy5FB7dOQzD1r4bb2ZezuGfj/rTaHcFx705tR3Bc5WrlFKvLuTAPJ/pWsyiKpXxQ0ia90WcKEfKngiujiz0yzx6ch9cacbXWpYp42Ta5OAK9XiytcHLiiLW/e1uALJ5IsfxKPmJrpjmsjc/wBnPqi7huYzc3niMHHEpH//AEa2w/1hyY36dl9Da5bXmmxj8WkjYHCsCB7Cqy/xXFlr2sqyLJ2Jx7VlZW+xtjKQQMip0BXBVtw3e4AphJ6RcbmxuB+vensJ23XKBjyTUg4ixjtQcKjH2oMEpOKNJNWPJzVToU3mYBsZ+tUln/xQ6wstPjmtIZQZE4JXyNdHHx37jl5uSfVZNe9T391FiJG2knc7H81deo47nVZ6j1G9mjVPF24PYCtMfTK3avaje3j8+KFIGM4qqUwR02u3FuREtwoZedx71Ol+BKDqvUg/y3G/39KvGRjlKldO6h1qSVQ19jtgY4rXxiL0u/TXV95pl5DJfKdh4LpnB+1TlhCx5bK2vpPqC21bSUvbRtykcj3ri5eOy+nocfJLPax2R8aEOVwfU1hdN5acQjDYzSsaR6cndgUjNZmCNk8U0GeqNmIOMfQ0rAipHycE0qcAABzU6MEtxsTJk4HtV4xnlUD1FrMcML5QMccZPBrfHGysM8ppgfxm6vv0Ei285hwMjwUGT96fJlZBxcct2506m1Gw1S6kbVYXtLlicXUAyrf88ef6rg+xrhzu3oTrpBGylt5o/minhc/JNC+5XH9wfY80sfRrz0dDhA2MVcORZw5TGTkVX2KfaZMPEyWq4mpSUxSRd81WyV3XLNWBwKAp+rW2xzwcVnYEW52nFSexoJCpoVuJGymJmj/5hQNx0jBd57GvhXs7PoLk470eS5TpLjzBp7XKcQ3XHftT2NlPxuB3q5QbajM1xavGWGGUjmt8MkZOdPjtoktlftPsSRX5+U5r1fj5OXkw3GSF8zbdygjkBxXdK4MpqpXprVzaXis0CcHjDmtZkjJ1D+zz8QLkCK3lktiowoDyDI+ma0lZXHXbpPprXYbxFGQSR5Ed6VVMt9LHHMjDioaz0NIFK85+wpUx7OSOKQAR5J891IJ2OdREvYZFAPIm+QH1oOD5wO9BgkfiqSbSMADTkG0H1HeG1024ukOTHGTz9KuRncnOdpFd6tqdxd37ExtKzBfrXfHnZdnGqwKikqoVQMDjimyuKg9U6xbWiuNwLjjvT8tKnHtSptae4dlDAL5gVXnF+Glf1G4l/Elt3GaVzHjs4sJMxsxYgY49qqZs7gcaDrkltqarKSYwQOa6Mc5XJnhWw6G1vq2kYTDK64Ip5XuVnMbKsvwDurzTNYu9Hu5P3YPiQlj29qy5f2dPHdWN1sJHMQDNn3HauDOdu+U6XO3cp5+tTZppOws7AAMcmkox1WTw4sk498URNRt5cAxYz35+tFSaMxY/9KitIBXVO+f0pxNMdU1KGKFmDKMA9xWuHthyZaYN8detrm2hcWd7bYGQUYijPk0XHx+dc5dR9e6rM7RSm1aHPKL2/XuK58+S12ceExUrWLuO7mMkcjjceUY5A+hrKW3td9nfTkTLKNsffzIrSCXTR9AUrAuVxVLnZ5PLgnBpwr7Db3TqQAfpVlUpZ3pwATQk4mAlj5AzVQK51Bahlb5aV9BUb+Mo5GKyyBuhOaID2wfEyf8AMKA6UggYdq+FsewdRIQM96WlS0ujHHpRpW6BpyOcmiRcFa6YLnmrPZNr04+vvTmVgs+2f/Gi1e80tisYGFzwK9X42d2yynTnXVoDHcsqx5IPNepj6ebyT9iFm1qpzcGTv2UVpL0y0tHSOrvZXsc1hdXMZU8DKkVUyuys260+AfUyahp0RmuzczgAugAUr74zk/atutMdaredFnM6K3zjyqNN5klDIUXksazytVCSySvICiNRLs9JmxkaaACVSNhGNx5NVok5bHMS+mKLAUkJC54xSGyPiF/tV6LZGfOeO3nT9FVY+IDEdO3uxsYiP3rXBnXNd91xZ6Tprz3Y2KpIBPng10Xkkcf4rvplPXnxya6DwafGwTyYnvWOXyP6dGPx8dfszDV+vr26mLO2STzk1F57VfjwnoOh9VNJLtkHJ7ZPeqnPReLZ5rWszIniY+mKd5inCTg6mYWu91xjuD50fnqbwmFz1cWm+SPHvmqnPZ6K8GNWrob4n32ksAMlB3BPer/5d9Vnl8TG+nQfwP6ig6m1+K7hRW/dZZB5GuvDPyx3HFy8f48pp0fpcpayRgu3A7elc2TrxOklCjng4qKqWjRvlMtU6aSmOuEiJfl4PfnFIVCXM0TfK+4Y81Oam2nJCLyjafDk3f5ScGpNF6jqJhDYRiB3HY1UiMqz7r7qO3it33Q3CkA5w4xWk6jHOTL25i+LmtGadjaQxDcxzvOWrHku3TxYeOLJruSTxXMgGTycdqx20NuzqRxTgWbpm7I2q6dvPNaSBoOhzo9uNvnRem2JS8X5yfWniWXsEZG6tPpnTiGQg8VOyTNgSyYNPyqtTWyGswL4JPc48qcTVI1uAq7EDzpWQIjtUA5sT+9jx/MKBHV8duK+K8dvZ1RzEAO1LxpyEZo/l4GKWjMpwfSjTSGzuwXsaWzFVtxwaf0uekf1pbQzaJIHkAIB+nauz4+V2zyx6cydbwxxapKA38XFe1xX9Xm8s/ZX1B3ZzuA863jnvsrBI3i4T5cc9+KcKtF+DnVusaTq0bQlGGQQWflT7ZqsMt0rJZ07O+CnVtxrdkivuMwALjjC/etMmMtl7aas0fhAs3iMfJTwKxydU9DQzSu2IXxjyUcClDSOjmUThMgDzLsCzfbyq9pWSzKiDaGyQeaKCkpIFIGs7MuNmcHvWkLQJ27AE5o1U/SsddqW6dvSF3EQt+uK1x69oyfOn4vz6qLy4EksjW5lbgeXNY53KtMfHH2y+7lOGJfH+tZSSJyz/tETO5bO41fjKztSOgSs1wmWPBp3HTTHK1cL9xNCgI7YzUStvow6gkihsSFGMDJx2pzv0ztU2SdpJtxbAJ4xV+LHzTGjzEgDJOPL1qcsd3peGddX/sNWU5u5JmRwoXv5V6Xxscscb5OH5fjllNOsrN1SE7jjaP1osGNk9lIZFmcOr4Ud6zsp42HCOrHbniprWWG2pyKFCFlAPmeaR7V68aOOQiVoSM4yqMD/AEqL7NGX93ZRqWS7QY5KODn7GiexfSjdT9d6THEY11axuD2EZuRFJ/6S+KvcjGysC+O2q60ITqEV9dR6ZKSqTiNhGrfyvjgHH2PlU5Zf0048cfdYTqWovJMS90J1Y+Z7Vhdt7l3qGLlSDtf5T/DS0BACWAxj3qoExpDMuOeKuBeekpA4VR60VrjYn9QRVHcc+1PEZGBlCMRV/TIvbSEsKQStrdonnzSXvoe6uVnXaKuIqta7BuU45osoVe4HhyEYxWdBWwb99H/zCls469Q8V8fI9t4getLIEZhkYqdA2liJPbj6UeJz2bSWxwRU+B7EW3C8ilelbNNdsjcafIuzORXXwe4NucPirYfgtXdQCMn0r2OK9OLnx12obkpKcZwfKumenDfZQvErDMjJxyQKqF19rp8P+nG1CFtZv9YXStEtXAmvpgRvb/y4l/jkPoOB3OKmZarSadFfCHriGSSPT9OlitdPTAVDOHmk/wA8jDuT6DgVvLtz8k7dG6AyyW6iZ+doPhg84PYt6f3pWNMb0mESW4Tw4flUdlTgD71nYrZzaLHaIxaVQexCsAf1pwJzQLoTQFRtwvbBz/WgH87ErtoBKWTOMHB7VUKmNw8qSlm27fUnmtIhHajHFc28sG7cJAQRmqTXKXx2+HD6Lqd3K1q09hdEsNq52MaqyVOVcwdRdF3EuoyG2kCKCcI3BAqPCK9w1teiZlXdcToB5nNLqF4mz6bDp9zsiO/nlqwyy22mOi11dlZERThhU/SrQXEX+Ip4Zfvxk8VXH7TYJbdGSzXaR+MgQnk5rqnDL9uT8l/pbui/h/bL1NHaeMJSR2BzirnB45Jy5Lrbsv4BdLx9L6AXkYBpBkjGK65dTTl8pk0O2uXnnwpVosDyqbNHLtJwGNUOAMe1Z5VpJo4t9oHGAfWs60+kJrzu8xCoWK9wDzU3JUiC1TVI4IzvXBA53HH96jarGX/FTrvRLCxcXTyRuoJV42yVPrQI5Y+NXUthqGrTGzupn8ciYJKgAUMAcf1P6VNq5jPtSen+ota0W8a40u8kRWBSWAuTFMp7qydiP6+dRuiyfSQ1a+0q/t/xr6RC6M+2YR4guICRn8y/JIvB5Kg571W4JDNbHSJ1LadqDq2MiC9QIx9g4O0/0pKRzkeLgHkUBKaQ0cjgHI571cC69OKiYZZBx701RNzSbk/Nn3pxV9GMpw/rV/SK8lwFHNSQPxb7uG70A/sbgsvJpz2A33zxHgVYVTWIiJWOKzsBnbSbbhPZh/eo0HXyvxivkfb3B1OaLiHiOaPEAPanJASmxjmlQQOM1Fxlo29cOFtmyOCOwrbjmqNsC+NwH4528JMbu58q9fi9M+XvFkOpSr45wikA+Qrow9R52WOjUPG7gYcN24Oa1jJITahdX0FtBd38zxWSeHbxH8sQ9l7c85Pc1OofbXPgrZXug3AvI4Fkv02ufxTBYNMQ8iSZjwJCOVTuO57gVc0WXcdWfCTqiyvrALHcSX3h8zXZBWN3PfaDy1aX0zxtlaNHqM10oKjYg4CqMD/rWV23x1TqOAKu+dto/lTuf9qnatQ80nUkju0jRFjjU4wOSfrTlFWkkGPcDkkUyN5FL/MdoNaRJtcJxhyCfLNPZIa6tNszzKwyPLdVxFVzrWGK90uSC5UOCp4xmn4xFcS/tS6Fc6L1SbqwhkS3PDMo4qM9z0vi73tk1vqc3jgSzMy+hNYZXJr4pOWaCW23cbsVlNtctIZip1EEjIrSemaUknggtdwABHrU9z0qaRyalO1wJI5CuD2BrbDKs/1ntv37KnS+oXuqDXdSRvAb8rEV38Hcu3F8vLuTF1FDJBO8dvG20KMHHHFbdOKY6TlpLDaokUW4seKjKtsZEjaEqMuAd1Z1oWlmWKJ2Y7cDvnis60imazcSSs0mwswJI2HkfpWW19s+6768jsIZbaa1eaZVOy3lQjx/ZT5Njt6/Xutjtzr1p1Ja9ZzSx9MXxtdRHJ0nUGAE3/8ATIeCf8pwfTNLfSsYxjX57g6pJHqcUsV1EfDkSVSGQjjaQfSp7XqVGHBbIYUhqT0cxSS7du84PkaJOwVREI+chd3l61QC9t4bA71bPbBp6B7p6MD8pIp0LLo08i4yCcUStdTW1ktpC0QJ447VpGe6LICear6I1nRhk5o0CMZIbNSEjaShexzQD0PvTAqoENrsOVJxRQrpBW5QH+Yf3qKHXgkxweTXxkzm3uBE2DirmQe8Yd6NgYyjHenKCcsmfOigQNkUSAlctiA59PWtsJ2nK9Mu+Lmmi5tXcL8vqEr0uK6icu4wjU7JIZ3BJ4zjNdON6cec7R8NvvkCiNpHdgqogyzE8AADvWu457jbemhdP6T0/wBE2C671PJHda0GP4TRreUNJbEfxTNyEb077fIZ7Rlu+l4zXtD3PVHUXVGrQWipFBbmX9xZxArDETyWPPJ7ku2TwaeO5O0Wdtp+FfXf4G8t7RfCXT7T5ISJPmkP8TkepP6DArXGpyx66dSdEa4lxpsUjhPGkQMEzygPYn6iizZY5a6Tkl2WDZPDd8HvWN9tpSenPI1wPBGSDkk9gPU0plJ7Fi6aPfxz2ORIsmBgMPPHnWk7K3R3G7GMNgcVonRhfOrBmdto9e1AqvXc7L4nzfKfy/71pizyqpatqVvHL+GmudzE5bngVW0WKB8WNH0fqXSprabw9pG3xD3zSs2jdx9Oauq/hG9lfN+EuVdTzjPlUXCtMeb+1J6j6evNKYESFgO/tWWWFaTK1FIjvJkDc/tUSVfr2m9H6Nv9UALSMB6elazBFyaR8NfhFYC7juNXmyuQQg866OPi17c3JyS+m/8ASs2m6FYLY2qAQkYUAdq6tSenLu5XtatHv4Wh3gpvPHfnFPVKzXtZNPliktxLAd+zvjuDU5Kxu01ZOslsjyHn69vtWe2ukd1dqsGnadN48iZI7HgEVlllNLkYt8Rup00m38WPVI9rqWhJP5uex9wawazVc7/En4p61c3rRpd3cToeDC/y59cGltcmmca/1Vqep3Zur1dPmdyGYyWMeSf5s4Bye5Oe9G06p6nVEfUsC2GvpZQX6KEstWNuuRjtHNkHKnybuOM5HZ7JVNWt7y31KS0v0KTwttdSAMH1GOMY5z70qqegLGygBsg+hpQyjg7eeaoFbSMue9UEpZIVI5NK09WrFpCjaDnJFErX6TMbkeZArWMtUsJAw5q07FlZCpGKR6NJF+bPlU0CCYq4we1AP7CfK4JqpQLqi7omz6UUKtejbeD/AJh/eo+w67mh2HIFfD61XuESrZzV40CnIqvIDqT505Q8wyDT2DecyovHI+lVj3T+kTqmomNGErqg9ziu3iw72yy9K71K9ve6FM0M6SED8oOSK6Z0uY7jA+po1W9dSpBz2roxvUcnJj3UQuFmXafDcHKupwVPkRWm3NZR4NKu33Ha4LtnCgkn3NVEXZ5ZImkW11LcSs07qIUTnIU/mI9OOPuaoRY+kr2LRbKLqC/tIzNIT/hdmR/xmHBlcH/w1I8/zHjsDTnQbZ8HPiBciSN7iSe5mmOXLSd2PmRT8k5Y67dF9KXMt/bI9ziNnXcIgecepqbDmSWlV7jEMeUtU5c5xvPoTWWUaSnWjXqaZcm4ubjc0o4ROwHp7CiZaPx2ttrfJNbrIrjB5wK1lSZaxLHKCoB7efatN7Tkp+tvILKZY7kjv83p9K0jHJk3VuoYtXYuUjgY7mP/AIjUM+6oGqdUTyXEMMaM0fLnB4PuaN6OY1WLzWr6fUJWw3zDj2o2fgjtR0y4vkeaRcxNxyO9LLKLxxqFs+mI7efKQbmduPPA9aymUaZSrBYbLLTsplWZvP2rfHKMrjUpN1DMkkAhYk7c47ZI8q0mbK8aydIdRSzXa7ztVhu2tWsy2xzwsaB0xOoc72bdMSFU1pKxuNyX7pWRY4xLCWDN8sintms8s414+Op7UL2KK08RSFmRS20edYXOOmcd+2c9QdU6fqc76RrB8KK7O2GZWGYpPIj0BPGKzvYvpg/xD0DqGW9uelYpVn/GuXsQEGVnAO0qR3VwCh7eXpSsPH25z1Sa6S8kWQlJFJBXdyp9KzrSo25klc/vMj6jvQV9EVDcg8UJTVrcrqdjHp94R+KtxiyuCfzD/wApvUfynyPHahc9GSMxkIkVtw4Iby9qAVCNI4AziqgSNlp0+3cqmq+jkOWieJgJDtqK0k0l9Cmj3YB3GnPRpeR8rycVpizy9j28uRitGXqjseaFeRGZqmns3I5znPtQDqzbDDFAObs5hI78U/oKxqakXan/ADCotDsu4t+ea+NuL3DSSDBIxUeNBBreq1QBYGAx50aoG2EeWaNUI/Xbk21uzY4AzW3HD8ayTrzX0aZkYNnOARXp8WNTlj/ZTodrS8tJYZpwDKMD5gKq7laSzXSn/EHT7ewuCAqsc53ev6VrhY5uTHtUrpuB+Ft1LDktt7frW3048pYiL6+vy5DXEgA4wDirxZW056dh06GFtZ1uQTxRti3stxDXbj+Y/wAKDzPc9hzVJ2cTazDfai1/qEFzdzyYGARFCgAwEQDOFUcADyoG2m/CLq2Cyvh+F0izS8JCxFlaTbnz+Y8nPlQLbfbo/pPrFrdRp93qAubxsG5kyFCH/wAsAelVd6Z3caBYal49qrfwHk7uAxrLKNsbNC7w8vjSncewHr/0rKxrKcWmszWkjGNtxJ2qvqTRM9CyJG71ltohY/OQPFIP5fatZyxncUZqy298rNGzRxoMZB/Wn+dNwij9V6Fa6gxSMEoBtAxkAebGn+eH+CqnqfTWlRo7CMkLhRgY4FTfkyHOHJUtasrKwJnSBnPOR7Uvz7P8elO6m6ivX06SGyspduMJhe1T5W/bTw8Vf0bXdYi1BJpLKUlh4YBXgetEPeN9r7a+HfoEn06QBFUBgvmTT/L4ovHv0sNl0daXCRSrA6PHIGHHlWuPyIxvHVw03oazhmWVEYknJUCtf+RJ6R+HftcNO6etbKQO+91YBlz/AAmj/k5XopwYxOWrpEpKoAfP/enu32Op6VTrvqG50mVZju8M5y3kp9D7EUWJuVtYV8aOqoGlFwhMYnJCl14VweQCO3rQqSWdqT1H1L/2ljtLWS/awv7mPxNOvY5Sng3Kna0ZYfwSEAj0Y+9LdFknpmPxAWdta/E3FrHbyzp4kwVNm2QfLIpxx+YE/QiponaAmkZuM9vKkZSDwXH70lT6gUFqBdEWQeFJuxzkcEUGcZlnuGmkO53PzH196Ak9OgkJBqsQey3ctuuFz9MUW05s2e5S7G1xhx5Gs91pEp07GVfBq8TqcudqxjNbRFEtmxk1bKnI5X60DROVPWg56IsME47UjDBJhxj70gfM26LigILWU/fKR/MP71OU6DtiWDPpXyVxe4Re1z5CpBF7QZ8qNABtOPKjQEktgB2GRR4hTPiFM0Vm5A8vKujhwu1eXWmB9YzSzXz85AbivVwk8XPnnfQPhzM3/aSNdhyO48vvS5Mdzoceer2uXxF6R1C9UTrEVjbB3YwAPWs8Nzppnq9sz16OKzdrWA52DDuP9PeujGuLPSsXqx+IS2fua1jGmUiqRkMoA/rVMr7KW8+1cJuYg/agbWbpG9vNNibUUlEcxPh2uSPlY93+wPHv9KA2f4HXsULo00izSMfmkZs7j/rWk1YM/To3QbpLyBEQgqijkc1FxTjlIm2jHCElmPAArOxtKRlaKzYlBmVR+c9h7CsbIuSmaTPKqru5Yk/65NZ6XqT2Uv7hjElpCSI41yx7bjQfRbTVj/DEuoweDn0q5MU+VMdZ0azu4m8IhTntSy48acyqrax0pDIAskQOD3ArOyT0rc+0O/SdvCpRbYMC24/L5VHnkfv2CPpixbGdOXKnK/JTmeUK4xLW2ixqyhLcLnn8tG9n6iw6NpYQATbQCfTtW+OEY3JOW/gI2xVxngN6VtjfH0zs2NdkmAhh2PFdGN3PTnyx/wBQ0ty9vMQ7fI3YjyqpKm1SOvL+5MbiPYcoVeKQfKxHbv606mXdYB8QXiuo9QhtkKpIomWJufAlA5X6EedTt0YyyMk1aczaBEDlBFdOAoPqqn/Q0tlTq+lbqbSBcFi+r6fFiUed3CB+cD+dfP1HNKlFbVl7EGkY6gd1P2oBWNdzDjFASWnJg/lqpLs9J2ziG3IAq517InfMgHzLyB3qM+70vHSKa5i8T8uDWWmkTehT78KAT7mtMaVS9wG8PvWsqbBLfcverljKw8jbgUyGk5GaFQyuTjtSoJRMS1IJK2cmPFAM9SiBZT/mH96WXoP/2Q==\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": { "image/jpeg": { "height": 200, "width": 200 } }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Your predicted breed is ... \n", "in/005.Alaskan_malamute\n", "\n", "\n", "filename = images/3.jpg\n" ] }, { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMSEhUTExMVFRUWFxUVGBUVFxcVFRYVFRUWFhUVFRUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGi0lHyUtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAOAA4QMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAADBAIFBgEAB//EAD4QAAEDAgUBBgQEBAMJAQAAAAEAAhEDIQQFEjFBUQYiYXGBkROhsfAywdHhFEJS8WKCohUjJHKSssLS4gf/xAAZAQADAQEBAAAAAAAAAAAAAAAAAQIDBAX/xAAmEQACAgMBAAICAQUBAAAAAAAAAQIRAyExEgRBE1EiMkJScYEU/9oADAMBAAIRAxEAPwD6lgirIFV1IQnWuXPHhZIrmpRc5RLk7HQT4ii56GuEpBR1z1HUoOK5KBkiVzWl6+Ka3lUeY5+1nKVmuPDKfC9r4sN3KoMz7QNbystmPaB9QwxL4fKKtYy6bqHK+HasGPEryMbxWevqGGSo4fKqlUy6VoMp7OtZEhaOhhGtFgmo/syyfLfIKkZzLezwHC0mFwbW8I7WKSpKjjcm+kpAWR7U5q5xNKmYaPxOG58BHCtO0GZfCYY/EbDz5Pp+YWMbWm26yyTrRrjg3sv+xeMcHOpOMgjU2TJBG49vote2ovnGBqaa9JzeHNG+8mCI8ivoKeF/xFmVSGHPQXuU2qLwtTEGvQpBq45AHoXCFwOQK+JDdygpRb4NhwQ6uKa3crOZj2gawG6yOYdp3vOll1LmkdmL4MpblpH0b/arOq8vlX8TiV1T+Q3/APJi/wAkfZWtRhZcK4VoeXRxxUCUUBccEARDlFzkOtiGtG6oM07QMZyk3RtjwSm9Iu62KDdyqPMs+azlZLMM/qVDDAULBZTVqmXyo9Xw7Vgx4lc2MY7PX1DDELCZRUqmXStPl3Z5rRcK+w+Da3YJqN9MZ/LfIKjPZf2ca2LLQYXBtbwmdKkAro45Sb6cDQuhS0rhQSSlKY3E6bC7jsFHE4sM5uqTMMWQ1z93u7jR0td3tb1WM8n9qNoY/tlF2gx3xKpAMhlgep5PulBUa0Xv4dfdeZT02FvMgyo1ZPN+t/os1s2TCYbERVpkggB7bRAF19M0r5KQWwdU+kfqvqmXVxUpMeLhzQfktMWrRnn4mMMavOU5S+IxAG5W5gk3wLKBVxDRuVUZhnbWA3WMzbtSSSGSfJQ5JHbh+FKe3w1+Z561g3WLzXtM55IZJSGHwdbEGXTC1GU9lQLkKP5SOl5MODUdsy2Gy2tXMumFp8q7LgQSFrMHlLWxZWtPDqlBI4s3yp5OszX+xB0XlpvhLyujnsYIQiUDEYsN3KoM07RsYN0GuLBOfEaCriQ3lUWbdoWsBuFjMy7TvqGKYPmk8NlNasZeSoc/0dq+PjxK8j/4afGZ7T+D8R0kk6WgWLjE7+Sy78RSqGXMeP8APq+WlN9psAaNKiItL/fuqnpPHK55SaexQk2m4ukazIxhTbWGno6x9Dstlg8GwCRC+SkgjY/VW+U59WoQJ1N5aenvZXHJXUc+TFe0z6eGKRYs7lnadlazSNXLXWPodirEZqNnAha/kiYfjkPhq7IVVUzdo/JJVszLpg+MqXmiilhb6aCpWaOUhicyFwFmMTmjupP7FCoZkHTzaR1WEvkXpG0cNbHa+LAdqcTCWx2MBpi8EzbwmVV1MxuWxMpWu+d9r+i5vct0b+F9idau8OtsuHMni0E+k8fJOtF4gbIbqYdYjfnzVwnXRSiLYbEPqOh2qDzNh7L6P2QqacI0ON2ue32cVhaOFaAdEat5NoHh9Fc4DHuNEtZcifWeVvCaUrM3H1p8NJmWdtYDcBYnNu1kkhlz4JSvk+IrGXkieFb5V2S0xIW9ylw6PeDAtbZnqOFr4gyZAWmynsmBBIWty7KmsGys2tAVKCRx5vl5Mmm9FVgcoawbKxZTARNYUrKqOWzrAjhABUi5MQSV5CleQM+R5r2qfUJbTBKWwOUVq5l5PktRlHZHTBIWmw2VhmwWai309HJ83XnGqRRZZ2aa0CQtHhsAxo2CIKJC7oKqqOByb6UfbTLfi4Ylu9M646iIP6+i+YioBwvtYomLr5T2wyv+Frc/DfLmnp1b6H8ljlhtM6fjz04lc6qCYAJPRepVLwQ0k8C8dZOyrwS+w7rOYsXeZ39E3TeGiBzaAitFyYZ2Ja13dkeLTA9lpstzwFhDgbdLkeI6+IWJqP1d1sX3PWPFWGGYWgd7bjlYTfkpR9GkGOL3SXQOOEpWzLTUHe6giLkKofipBLQYBEjaPLwPy9UanoD2vdcfrax9R7LDyaqizrtt4m4Hmo4NxABLZBIAP/NtPqmaoFUamEFzD6mBt9FUHFFpcBcOE+Tt7dOPfwTcaEnaovsTg2RJEHr9+arKmh0gWNxHWP7I2Z4mcPrHRpEf4ov81PEUA6g17ANQbPjMEH6fRNxvhCddB0qUeO9+Pu4QxS58yl8jxZqhrTzE+QJMev6K8+HLo4H36peLVjlKnRWNoE3Ntv3VjlbdBB+YTNTDt02EkfcBdwTgLED0T80yfVo1OBDXAbEqx+CIWWoVtJkGy0uBxIeF3Yp3pnJkj9ki3oksW9wCt2U12rhgVszFmPdmLwdinWZiYVrVyoHhRGVjooUWKhLC40u4T2pyYw+XBqbFEKkmMrZcvKz+GOi4ihnhTaFwtCFScSu1CroRGoQoNcOii8rmoKR0HNQLJ/8A6Dlb8Rhj8MS9h1BvVtw4Dxi/or2tWtZIjEmVlOaqjbHBp2fEaFUlhgwBvZAqYu4a0Ena0yPDwWr7Y5UKGKL2gCnV/EOAT/MB5rM4WgWVrWHv9hZxn+zokr2h7CUzTaCSST/U028rLr6xN/29ipVX63bwPC6PRA6OPWHR/pIK557ZcdILgnXBPNut+niOIUcbUbaLAEGOhmSPXcdfoWhUYTBlpGzgQQehsLQq3PsC5vfsQeW2B9PZJR0V62XFVxw//EU5dTd+NvIPBHukcxrjV8RkaHjV5AiZB8CPSbK0yLFtdhw11yRBbuD9z9wq5+G0jSO/SAMDpcm3lcQqcdERlt2Ew+M1UCzcAx43/Qz7rQZLU/3QDokCDxPE+X6rKYNgY59Mix28ImI+kdIVg/Flu9gRFtiTv+Xuha2Et6JPo/BxDY/C5wA/T6q9xuMpUZqVHtAdtPT9FmszxMUzVfswavEkAiB5lZfH0ajqlCriX6jXnSwEEUmkTT1DguvbwHktMcLTMsk+WbpvbXDOlrTPHM3XHZm+paiD4mIHkAsfi8K2maVWm0atQbG2oHefLefBfSXtDKTXwASBb6KJRtWmVGSX0VuAxtRpOsGBaTaTzHULX9mcya4iObHrKyjsWH6mxYCzj18FzKHOp1AQZEiUsb8tUE16Ts+tNqBSD0hhak3TOuF6BxDC8RCC2uF59ZAUefWQzXQ3OQyUWOhn4q4lda8ixBgVyeq8DCTxeI4CmUkkVGLZLEYkBKisTfhKPd1K8aq5nNyOlQSQw+v0UqFDVcoVGE5hevsqihSdGX7d4MVA0WkL5zisEGme8TtvEr6h2jZrPvKxOY0wTDYgfVYz09GmN6plRh6RjnyNvZPUGWvvFuSR98orqZDdhPCSOO0Tqj79FK6W+DNTAg72vzY+s7ogwwDSyzmnjaPLn74WfzTtATDKTe86zZ2HU+VlWZhgKoptq1aztJqNpgB0EuO+kTMAXJ9FvDHZjPJXTU4DDPpS2Zabg9P0P6Iznlpg2vtt9zCyz8VVwRD21HVKcw5jzPq07grY0MTTxdH4lPeJ8RG4KPGrQlO3sC6hMERY+H2d/mjVsPqE82/LdTwVEkeYhO4KmCIPCxo0so+3eHIy7U3hzCfLV/ZZTA5zQcwNqmCI38Lgr6Lm1NrqFSmbtdx0gj3FlnezmQYeXOqS6+0mIB/CRMLX1Bx8szUJX6Qnk9GrjK9P4TIoUiXOe7Ykgi3oVqO0GatMNYZDbA8SOijmOaN0fCpjSz+ltv2WfrnVYNJPUnjyWUpL+lG0IVtlllup5iYFlocvpDURNgfdZ3DN+EA55l3DWq5wGOuB1959E4JJ7M8jb4fScM8Bg8guPrJei7ujyC5eV3nJQ215UxKVp1E22oECI3XHFSL1EwkB5eXZXUDI42oJgFU2OxBCNjqvuq3EVDBXFknbOzHGkI4rMiNt+iby/U8S6wVZRoh7rq9c4BoaFONN7Zc3XA1Gj3oBsnjYgJbB90STwl6mJcSDxK6EYMVz10D3WFxOrV6rb553qU+N1hscS0yNvdZZFsvGxTOseQNI+/ZV+Hy/X3qjjf0A+Vl14LqgN/WY8vFN42mYDm+oUUa39Cea5IRpq0t2Sbc26KpqYmlUHfOg2Ja6xkXEdVdMzRzLTY/fRRfVovMvotJ6iy0U9bM3jMpnWYCoBTZ3oO4+g6q47IYx+HfpeCGuBDt7O4lXmHxGHYf93Qa0nm3uSUHOCH95oib+oVPIlHyhRxbtmho4sD1+/vyT9GsJkc+Xn6rE0sU9unpYz48DzV9gcdLQfv1WSbNHAdzURLt5tCrMqaehubiNjyDCZxeZMDCXbQd/DY+CV7PYwPJ+G7UNyWkWJOx6GFEoO7KjJKI3isE0d6I3uq2lhSXzEjgn9FqcPidTyNIfsNIFx4mSnG5WR3oY0me4DeOs7KoY22ZzyUjMuw5Gw/zGwnzNk5lGEHxGkum4/CIH/Ub/ACQ8YRruWTt3nPcf9AWg7JYQOfq7pA6B/wD5FbqG6Of06NhRZAH916oEV7gFEPBXSY2Ca1TC6UE1ggYRxXpQdUqRSAJPivIN15AxasCSSqfNXd03urjH1w2yz2bYjukkLhmlR1xbFsqoO1bq4o0yX3mAqTIqpJJC0lA6RPVGPhU+jzC0DxKqMzxDRzHyXsfmmg2v6KjrOfVMnV9AtvX0Y19ljQrB9N7RfkclYfHl5dEx6BavB1HNcAIjm3HiVX59Rax2oCxvKUo6scJU6M3Ua5onUisoOcAZj6Jp9Zjm8BLOrgCAY8VPkr0BxGAefxRHUb/RJPwp3DTb+aSPkrSlU/xk+SZoYBrzNz58J/jvgfkrpSUaJLhY9b2t6q0bhdY+7bJyrgm0/X72U/4dzw0Bj4m/8g9eYUOD4WsiYhicGNIAAMbT9FRHH/Blr2vaPIuPpFostT8EtJBqSfAWA3jzT1OmHC7JHV1k4xB5KPnea1Q9msOLrFzQ4mPOOt1t+z2Utw2GbPeqP7zo/FJG0dAqzMskoiq14JLdUlnHWx6SBZXhxxkEWHAF/eVrWqInK6oZpF7Tu2iDO0F5PUyEbD4ukCZqF0eAcD5zsqg4m9gJvcmTfdOsqP0EgNd1DQAdPlBDh5goSoykz1J7nu7tOxO7RTA9S1p+q2+V0xTYABfnlZjs9RYagdYHgju+7bj2I8lriCPFa497M5En1Z6fRc+JCgUJxVkhy8lCay64xymgBzDwN1Oq4cJHWoGoQkA7IXkp8UriBlXVqa3bpfG4PWLlDoVhqJUMdmQAXBarZ2bvQbLcI1lm8p/EXIEwlcqxragkDblGxtWC2AtI1RLuydTDCD16qmxYFMfiJ+isqte/osr2gqOm+yqTpaJSt0yOKzEzAMDw3P7JzDOFamWv346/NZL+LGrhPYTMCHAiTHJ29lUXfRSVcBYzB6HEcIdPBNJk381fam1hbflJ1aDW7TPhv/8AP1S80P0AZhQNgB6beJ6esJvCvANiXeVh77n0jzShBiD3W+HPkOUxh5PEN6dR1cd9P2Oo0i0ZyTLalUkSACfDafzPjdAxDnG9R8NOzG7z1JifZA+NNmn12H7AXRQ8CDYniem5cfTj91clZC0ep1A1sNGmP5n8+nKBiMXNy60bmw8YCFiNRMk3MemxMe6EzLpMud6H1UUy7QriS6oIaDp8Od4RaWWmPxERwePCVZsa0AdEvicU37+SbpIPQth8LouTPmZTNGt3tQNwknVCRuo03kLCUilGzU5ZidTw5tncjr4j7/faU32BXzvIXzUC+hMMgLXC7tkZFTo85wKFUC6G3RqgWxmLspo7GLlKndPFgSASdSRWUQmDTCFUQMjbqvKOkryAPn2ZYw05AuqWnXrV3hrGiJuStVmWXgyiZNgmUxHK85J3R3+klY/gcOKVMBJ5lX2vH1T2aviByqqow6hK1f6Mr+yYcW9TPJVFnztdyVcZi60yqKvTLib+6G/oUV9mUrMOqxsm6TdIlxgfM+CLimhjrXPXgenPr7JKs1z7ztu47D76BNaKey1oY+I0d0fM/fv48KyZWES6x/p/9v0Wbw1YNMN/6jufIfyj5/RWeGvc7D5np+v7hbJpmMlRZhswTcnYceZ8PBQxBkEA83P9RH5DhCBIkk3Nv7eVvl0Q6dRwvzMN8+vkN/OE2ibG6dHTbc8zyd9J8BufHylRdPedP+EepvPpPuln4hwFvIfr6390Ok95bf8Aqb+aBDOMfBPhb2SD8W42CI6k4kyZuT7lTp4RJgKNfU21G+/yU6eHJ3N1Ysw4UzQUtNlJiFVsBKMN907iQdikgyHLCRvA1HZyn3gt4whYnsw0zK1LKpXRgX8Tnyu5FnTC49KsrFdY4k3WxA7TAU5hAeA3ZRNRABfjXuVP4wSMaipVLBADnxWryrPjLyBFRVqDUQu5YzU89AhtpkSSo4KsWzPK4uM6/oPjasv6oFZ4Km2mZJKUwzS55JFhsn9iJYhwLYG/VZHG1XNcQCb+pWpzGsB0+/JZXNyXTG3hz5okOAm9zeTPgPzKEL34Gw4CVY7TI5Kj/ERYoKoNo71vfgDcnyCfw1fYjbZo5/5j4/fCTpGW7xq99ANz6kf6fFSoVdTu7sPyVJ0S1ZcNMkNHFvM8/NMaQfQQPzPrf3CqsFV0knoD7mw+s+ia+MQB6k/ktVIycQppyjUWbjyPz/dQoPlFpm6ExNB3Ue8fNTbTCiX8qFfERdXoighahV/BBdX9kM1eZWcmWkL1H9UNg1ERdTq1A4p/KcHLgAud7dGy0jU9m8JpZe0q3qho2QcHROyJiKOnmV2RjSo5W7dnNZleqEoVPEAIzXTdFARfVKLTdKUfJdCYYIsmwJ0XEGy6+oTZdbU0hKit3kxBvhry78QryQFbjDLoCCzDy9o45QK2IIJi5PKLh3u1AlcraZ1JMax5EwEhiO6ALmei5mON0EncpGqX1GgzCbYqIZm60Qs9VrydKtMdO02VNimAXUFpaK/F072SOmTHJIA8yrL4lroYpi7toBjzNvzn0TRViuMfEgbWH+UWH6o2Bqwl6wjxQgw2hAF6xw0z1d/2i3/cfZFpmSfBVTMTEDo0fO/5pinioVNkeWW1Mphu0SqpmKsi06rnITE0Wja9hPiD5/f1Qa7hO9lAM6nf7lCqUCeU3JkqKBVcRBj780NoLjBRX0YIKJqAUO2XpEzTaLcrSdksPL/JZmncrcdjWQSYRBXJESei+dhiLpeswndXD2SlKlE8LsMCudSEIdAwnX4Z3RC+AUAcom+ynWcCVL4JCgGmUAde2yXDBKZeDyoVWRskBOR4LyW0leRYiipMLjtsjg7eCawLmgOjlccwBsrkjE62zOZ3qc4RsF4Y6AAT6JnOTDVnXGdkcGtoZzGoSJGyqdXW6sqJBBG/ifyVfiCAYCKGhWqyfNCc07eP0/uiuepEIARqzeynRcE4ylKG/BCUws5pEm3h7WRaVMc9VxuG5BRmUzEFArJOogC3K5Slv0XeFINRRNhm1CQJUm1uqWqnhSaeqBBn1JQm+K49wIsiNakwDYTdb3szDW+aw2BpSVssBU0wFWPpMzaU7hEfTACrsHibBPGsHBdRjRA3XKlMHZRbK7TqXQBw0lz+Fi6O+oEvUxBjdMANaClnhGbJXKlEhIAWlq8uaF1AGfoOiQvVa/dPgvNpHaUviKdi1cmzpKZj/jOIcbBI4zARsbIxim4xdDOMLrGyRf8AorKlfT3R7oQeOU1iqF0pVww4QgBvcOi8XACeVylRMzwEd1GQqolsUALbjlTa6bFEdShCbUBdHROhWHwrYm+yl8S+9kAVAJXmd9symIZdVC6wwLpZzBIvx81OuII8B9UgOipKm4Sl8OOvCbH9SQWepthGbUSdSoSmaDJSYizywElXjahkKqwQgSmaFXvIXAZu8n7zbqwpMDSqnIX2VwRBuuuPDB9O1RNghfA08o3xAFF7pTEAcvMaIXiFFjboAMxsBDfXGyM4wlNOopDJ2XF34JXkAf/Z\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": { "image/jpeg": { "height": 200, "width": 200 } }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Could not identify a human or dog in the chosen image. Please try again.\n", "\n", "\n", "filename = images/4.jpg\n", "hello, dog!\n" ] }, { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQEA8ADwAAD/2wCEAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRQBAwQEBQQFCQUFCRQNCw0UFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFP/CABEIAyAEsAMBEQACEQEDEQH/xAAeAAACAgMBAQEBAAAAAAAAAAADBAIFAAEGBwgJCv/aAAgBAQAAAAALFlEYfTvaU+fpVOx8bq2dW3mNL9HdB3Ntz9Z8gS+hPUegPhpQnkfO4fNlfy3dEX4b5cYqZosytL6TcfOOKq3LF12mq+iqq2d77Z2WwoUyfmvLdv722SRN7mTHWmSknOUshkc3ActxAoxOANRjEU7cCxOLovRNjXgIMBggEKIxLg+4O1vLK5t7Rm54it+dbflu39M5eq4PzP3zpOzveeR+Q6/6O9N6I2zkjLM86h821vMdsdPzr5qaq4Ck1b2kLaHmvDVrdm5YVFTeI0zl77V2eBUrkufq+y7ZwmSJomEfbIUsiSlkdi3qMN70Ac9DiOMNCnbChDhav0HIhCOAxCEuJYaoQ/u7veZmRU53xsHhPN/W1vrQa7kKzr7+gD8i819M+ldCyxuWZmcCD5wrOY7FlTyv56eqsT2x0L8mZ+Z+fLvOWdrQVlzXVDl77h1xRqqJWbh3MJKe9Tmy8wSZpzlre8HHIx1mh7hCI9RiIZLeAxeeQ7rUBBgKAhCGsFYI1/3XlmZmtKrJeX/L3pnsi4973yPOdV0VJH5D4z6d9K6Rw+szMzh0/nio5TsGlvGPDbKkYqWmugsNwN5fwArB21eo6q9rKhy6916w0QpqXLZCyyUpSkZpkxSknKWbyOsyEdZGGxi1COoQES2mNbzdjs9DGKAhhEIQ1VxCD+2Fi0Umk+Y6JXI0PJmHuIR8vz/UdDU6+R/O/qj0joX2B6ye4cYj8+0fI9iyt4P5BYUzFZOzvLKeA8r8/NYvWTtNUX9ZTNX3uXXGGJYFwc25b0Xe5stTaNI0pbzJQ1rWob1kcwA9QwYhHtZCV8wt+t0IcRgGKIACXCAIv2B6+40YPP8Al/oph4CgBDBQ1zfMdTf1Z/kzyj6r9F6axnqMpZrk6jwGi5DsG0vnrzVylPVEsr2zIyh5R54zZv2k6VK6rqOxvfc+rLCAAWhzRLPNz3ttozBZzlPe8yMdZHW9ajuIxw1EQoNvzCr5P0nVaEIYwQiEQRAXCJb9q7KJZ0PDcf3HaIK7pwRwMNUPJ9VdpG+WfFPrP0Lp3dz3m95ytF4PQcp1jdf82cC/ztpTM2N1bEapvIuFctLCyZ5pa5raSyvPdeoY0EK9ufJznuWpzbcIck5k3vJQ1mQjmZkdbgGA9DHFx7YE/Iu36KABQGIURCAJcIVh/ttmRJX+ayt7eqMeqjGK2t1PG9Tdpn+YvA/rb0PqXNGzeS3y1D4fzHI9c5VfMnF3HLXPPt2ly+27ReM8VYv3FizyYLtHn7G7966g2ABGyLIkpbnuU22WCFkScpbzUNw1DRNQjrehRDCEBvO7FX+R95fQCIcAjGMIhCXAIH7WbwcYVlTCWaxPIjXzdfxPTXaxvm75s+v+/wCsd2Set5vm6DxbkOO69+h+XaC24/oefas7G91Y0Hh/LOWNpZPcdC2Qobi2976g2BWhamJhN4TNkbZYPOZZSlvW4QzQ4zyItb1CERjFB93Qq7yP0K7GEQoCFEQBiCAawv2IfZgFdWpWgOGM7wY9wV4Hqrxefz58x/Xvddg0xvUt6yi5nx7jeY6Kw5j5l5625K5qWrS7txlofDudds7e0Jx07qr5+4ufduoPoa0LYhZTze5YRlhw05lJveZqQdYPW8iPMjGEYDEN92Eanyr0W0GEYoCFEQwCCAS4P1kNZLKJBjkt5PRwNClFfzzq70OeEfLv112/ZPHyEty1Scj5PxnMXtjxnzTSXnHXtfu5urgZeT8OqHn7i2nw7NohQ2t/7n059CEC4lMu5ZLezGfKYxCb2TIa3HUNRlkB6yEcFoIo2DgY0vl3pVhAIhDEHQhjANcAQfqgp1NlU14YR3M85kAQMoi866Xoxw8R+SvsDu+0dY2Le55U8X5ZxHK39n5r8+UPT8Jdrytb20LnH+Dov21q/vi3LCqpbq/9z6iexgFbFxjN6lPZWWmSFLOW9y1rB5qGs3Eeoa1EcIQFaMrZzvnXpToRghAYxCGIAlwgB+uHR1nH2hV9SjwptB78cwyHnnHS3sh+MfH/ANeehdlZGyEs3us4nzLguZtrXyfwyk6PhL+vPc2l+wpx3gUG7W8IfjHLOipbjpPdOpnkQAtDzLqeZOZGmylMUsslLcRxzURE2IUcjDYxxgO1kvvmOH9IYCMIxwGIMBgAIawP1cladL54C+HDfhXMX1H9MCmGYs836a4dW8h+Ofrn0PsbQm45k91vD+eed8zZWvifk/L9RxV/Uvt37lnDgvBSWFndWGuFs26mkuej9x6ncoLasSMRmTMlMxmzsFmSU95kYZGOo7yAdxwWoxHAdpi8+P5P0UwhiGKIwjgEABDUF+r2YxfcLWdnHOe5vrud7SOhTFvzfp7psHlPyB9S+g9vZG1GebxDheC825l+y8C875ntOAt6u0fu2bVbz/whxy0uXd8LbM1/P3fRe5dNPYlJ2BTxnPeySKd0xDzJOU4bhHWQhm9RFKMBZGIx6sxClxVJ38hDEIcIhEIQQgEqH9WDbLF7hD9hEAbHQB6hg84G86MofMvj76c9C7axY1vNbxbguG805pl/525PlO14K4oegYt7N5bzLxNmytrZ3fBXDKHOX997v0ssEtlmaWEnk9kM0yYhSyJskdR1HYo5OENZEQ9ajAcLPY4efp91MAwjHCARCGAIArB+8O87MoHE/Lu165TUbBcWoDjvhLnqYw84+Qfo/wBC7ixYlHM3gPPuN8y5mbnzhS8T3PB31HenvLBpXyrxpyzt7V+PnXRGrqHo7b3jpdyErliWcyTzc5maO1MhSTlvBxmOQowJGA81EG4RHCNkcS/mxuywQwQFCABQCFcSwAQ7v6U+kMsM5HwX6k1JjYYQGOBeDt+s0twPyR7t6Z3VixOGSJAHn3I+X8zE3zQpyHa8Pe099DoH3qvybyJ22trhqfmXU5V0/S2vu/ST0FWVjORiSzJkMyyYxpknLeoalDBD3KMITFAcNRGOVgYS/mNl10QiEIY4BCMIl11wKRAb6c+yTOL/AC1696XjegagIMScVadVuv4r5P8AYfUe+smJQ3Kehedcv5TzwBfMx+E7nlrCsvg3N2/TeP8AlT1na21kt511W6mk6e2916WWhKGfJI25ZhZmZYOY85kyWta1DF4l1g4bhAOQiMcrOYF/LbzqtACGAhQEEIAiUFQ+BfSA1R/bn0w3PzDyL6R8yeW9GvBBFqXHWPVbrOR+U/T/AFj0KyZ3vN5gfO+Y8pqqyq+c2eI73jzo30bPpm6DxjzWws7K5sE/Muu3U13TXfvnoVdUhSJZSNKct7mQzDJjFLOW8yURbiBeZtQjscAZGAoytNBB5L1fSDEEQYhGFcYQrp13z1beywcBcfph1byfyl7v3zEtrBCLU+Ud6U1dy3yl3fsPodofJ7zNC8757yerp+W8JNx/ofGxQuz29zKn8N4awtrHoGa/zbrx06nRdD+nX095P8d8eiw8UuyzzciHZYMYhCb2SExwyEBSzY4ahAUYwGOVpEa/kfZ34giEMYRAEEQFF/GOL99RYYJH6p+zmi+IVnutjPFAhFqfNM9A7XUXyd0/tHo1mXZMzMh53z/ktZQcL48xxvo/Gxrbpq0vS8x4Vyz1xbW7dV5x2wKZfrfp/wDVzkeH82+buXk+Q85E1k5nZbYPuc5SlGQ9RhDWswUNjiDWoCGZ3AreR93eBCIIhhCAIRLqK/O/pnUc+V5kXS/qPds0Hzl9E9ExtQQA6Jz5b51Kl+VbH2/0a1LhMzMH5/Q+PV3MeaecG4z0nkV0rVi8uicz8/c/ZXNnclqvPO4Vp3foX9QfROG5/lvP/FKhWTcp7zZJnb736D4rxGJJTzUNa1Aetx0LNCiDIwHAzDK6PkvoFoMQAjEuFcQBKrpeXejw55Y7bZ/0O9zcH4H2PpTRlFwB1Oky7tU6T5dn7f6TaFkSObyHn1P4xV8j5FzAOZ9O49BSxZtb1jjvBKW1t7i5jVcB2uc56R97/cHN8Isgk/5P4AIpSyhO5Br17658w8783pt7lPBazQ8hseCjHQhZoQhNPGVrfK/QXxhAMAlxLBEFZdWncFWptFXd+sPtlqXE8D7U6ZdWCmSqI3Fwin8spe6+kW5Z5re9R4Cs8Rr+B8TDW0Xp/E04Lhq8tp8j8+JWdle32uf887odJ037edf5xypjB7Ss+d/NAKmuKu89io+q+lvNfGqTn6rM2XBZmowweREKEhj0OIxs2cIUnmXorUFggCFYAVxATEuJcXtfqYO4+UPNvc/0bOZfh+0dKNUakZVMb2zSV+Yea+hfR7Q8tbzMhwaHhafnXgNtTVnoHJVSVpY29vPi/n9a0tre9NzfnndhP9M/q3XcH5le29xApOeoPPaft+p7vvUb3hfDuMr16jZM3mtQ0PWQ1EEI4KGtBgNqzFrn/PvQmVwrhCqquEIFV1wAiDuPZkO58H8g9N/UeEmKG7fLFUSWpVg+lcQH80cT9E+jWxpZmZmuFrvDFvJvAOv55DveMrkLpm5tGeI+fR21tb25uc8+7xjo/wBDfsbieBhHrulQ5ih6a/cjenJNfmfEvNuXjYVe55vWtQyER70IMZjGLWhDg3ZKl5fje8MECgFklVhKhAIIVxA6AfHOP13e/q0+RpADpdLLp6xDXSmVj81eefSHolyXMzMzXCreEreMfP3b0i3acWkjea6Cza8/8AJbP3lwTl+B9Gd9Q/R73LyDhvTHOlboeS5insOs6i2cdFV+PeX8BwvXdLVynmtZDUYayMAw1kRDjEYoPvQ1yfN91gVlUUK9QK4hQAKC8VudDdsoLep/q0/JxBdw0lV0o4hrpWFwfOHlP1B6FcGzMnHNcQDwhPw3wXs6jOu4JcF3u2umvOPBZW1rcXu+VT9xs/qP7DsvOPLPbuhwfOcxTc5V9d0tgy09x/h3E+Yz6volsyWajHND1oegKm3EUIQgGFi5MXG1fZH1U8TRJgiHYoQGIYhhUrXDDD77+n7RHqwDbElQIxGAfQWC4fnbxX6t7y9nkpbzQ+OD4TX+A+Q9FRG7Lz+tncTt74/mnz81c3NldS5J/wCxPr70S/1ydN1VuMFTWjrOavyVoWc814Dzzkke86fWSzMjqOh6HrQx5gIihAYR2zhBcQz6rcSqfN0QhABMCwgCENcHM088BH7H+9jGfpNssyVXQ0MULy1Xh8+eA/XHb9BLJz1mD5CPgiXz75s9V51fCJK3rr14x5X4FaXVtbW2+cz7L+sfZi16QrtwKig0qvl7RPna6KfPcd8v+U9x7P3TO8zMjkNCjDBxyMBChoQgjt3yho/VbAKyxIa0PQoYIcYRjD41VQTuEv1G97Ow/wA6wdoia6ERQF09gqPwv5n+we26KU8nmZHkYeBqeCebihDqeGrF7xyxtpeb+CW1xZXFtPlPSvtj6M9BIovJmKCBAVdJQDVpa5tXnuN4n586/wBE7NiUZbzIRiOMIajkRCFGIRg1b2Uoddd1nJBXPm81DND2OOoRH8F50yLPp36zXLLh+YsGmSLJoRDEfVPLi8T+T/szuOjkaMszNcnrwNPxLytKsf6njkau2vGLU/lPhFvc291eWXefdPsHUmgulk1UEZQS5qurlkImhzPKea083Ojsp6lmshqIxajHWBgIWogEHd67s3ew815by6nYEGQixjvZS5mp/ONpczh+jf1kc1mlWutNFTWrhijDrW188d+NvtjtukKeEshuPK78FrvEPM6eguOy4mtS6K2PbR8r8GuLjobDovb/AKn9r7hvYVEYgWUSG0fmKNOkkBWnUp+f52uFb2Z5QzY8hoWoa0LBiGLUQDCXopbd76n8m885NDYx5CEh5qGaIGeUVXP6e/Q+1KxZcw6w20ZJNEIs11bUB+V/Ef272/SHLHUo7hzOvCKrxXzCu5O69C4SkTvb+dkTx3xS7t7i57H6z+ivV7yQFUklEB7XE1ldylPVJrKiJS01XXhK8TcNYLcYw0LUdRGKAI6XGFnox6s+/wCc8p815tXBxHrUdRJGGiAH1Y+p+gPqi8ZK4Glsmm2GE0kFxYXqGtQ82+CfubtuqPLea3ofOR8MqvDvM6qjsPROIolbToyP68Y8gvLy8tPZfsX6A6g+gI1lRXJba3FusU5fnqxXND3XUK+CDrBj1oeD0PUYaiMYwpEwQl3eiDlr6Bynl/l/PIzrm8zNBnrIQJOH6Ku9f0zbLDBuYt2GmmDqJ1ywpP37ex+d/nx91951LEC5mZHnYeJUng3lgVJ95xVCGy6ByxT8P8uubr0X3z659ov2NCBW0lBXBfNlmDnBc/Q19OZjUFqiGRCICwIR1ocIRhGERwGlDICiJ+/3u77fifM/JqVaFFeZkYwnmsjPNfq0y8wyZk/ON2LLTRjppoIhJa3r+6/gPz2+8O66xiO55mZz4vFaHxDxirkz6HyVIrZ2Vmyr4N5vedP6B9d/THqlpIC6NZz3KKZyfxLwH6jdFR75jnFOeEzb6AhLUVVxrLL6wY4QjDQoi2BQe4DEKzt2d3Hc+fedeSUYoyHmZoc9bzU8z9XjNsGIWkneMsMHYOmnXV4SXd5YzquI/Pr7i9A6piWt5mZRLeO834r5h5lq/wDUeKox2lsw/WeCcfY+j/Sn256s/PQVUajleNoDeI/Cbv1r9zCT8w5et8c+Ie3/AEJuVkhCgKUBqLwgGA4j1CMB7AEERjEO1uGt9H1fm/n3kNIPe9aiWMNRlrU9T/V0rhpI1NxcNNGYOwRROsrhZ0d7YzU4X4B+zfR+tNPMjmZRp+R8z4pw/kXN9b67yHOLX1ox1HKeB8V6V6B9yfU92bBAUQp+a5bmidR4z4N6N9v75zxTlPJPhnm8/SD0ythDZt60BRIEQjgKMdRhGKwxDgKAre7Y303T+W8D49S5qeobyWo6lCe9y/VCC1evadXZnaYYKdgyaFZWCP3bDrCPHfA3136T15Z7yGZlMj5VzfjNN49x/V+vUNXVekcv23Vcz5RT+vfRH0f0ht6GslXUVbzXOB6W6vekmhUeO8Px/wAtz9Z9THBqcpDyYlUkxhgMetDhHQgCFoQxjuL+edV0nlHAeRUW9x3ma1vccJohI/p1gXbmxdYYYYYIc5kq6vq9etW/ONsKcn8J/UXpfYzNkdwzK2t4ui5uNfYdTjnNXfU8rY9RX8l0tX6h1LGZoIEquoBz/HDse+7VlCtH4/wlDz5LiNUI7U5RhGK6iCwRQHkIj0OABihAYh316KXfWfknnXktGUcZ5vIRnPctT2T9SDkM062ZkzLBSGMpUo1nqHofO0h2Vue+FvoH1rsilwZIYQYAmZlkMlGQdlESSDJHWZ5gwLIpVaNFzC/TenXY0atDhfDasmmgJb2YgowjsC6SK4YjjCMYCHEI9CEKHR3C5e/sfIPN/JaI8clqcYSkUU9y3P8AU8pjsvMmOZlkxDFTpU3PoGHN0jDaVP8AEPsHs3aFJmSObJa3HMjm81retazMwhSTzQ10VUK1KnpGOx7dmCHP8rQeCqPGMmuTcohgKOhiQRWFAeoDhAY9CjAQgx6e0jD1CXj/AJd5NTH1mpb3mbkPZZll+phjssNtMlZOZkpCK0SXq3ci5ZNoyKHxT6B7v2ZyHMaetZrWRzWazMzMhHMmUm5a0NVVNBFGiqbjtuompVebeKS8w6R8rI1NZEYtAHGAU6pcEIRHCMIwHoQgjDnUWB4enh8k8g8qpyK43Le9x0Qkp4Qv6mMmaOw8wY5jsHIVTn9e4XFZUJubTR+QL76G7SyNLMzWs1rJZqMMzMzB6zCn3uUdCWURrQIczV3XoHUSp+f8M+GPH677R9FZNtBaOoL6GMcIoVqA19RhEWREPAQAMU+msDy9QS8j8Q8tqorSczRMlKcpyYmT9Qm3GmWm22TFOwdia/MdJ609TJLtaWU+aO29qvy5mZmtZCOE1mDzNZGcYa2VjNzHg1lEK9Sh52n6P0jqCc34j85fK3C8P9UfUbhp0wMGGEIhjqCdXWLijGENRCOOgQgEJemsN2XqNL5J86+U1ewTmUk9FwxyHOYn6pGnIk2HGzNOtMNMA5T17r9Va8WsBqq6R7eszMjmR1CcoZmoxjmSmIU2DbnIURrqJIUvN0ldd+sdAWr/AD7/ADY9y8k6j6K+jXtJ1WZAacsjsQQVlMAEIxjqK2RiEYdDl1Dwrf1PnvLPmfyzYYYMht6gQBFzNt7/AFxfaMYxWWWCNFOUq/L+2jfWCw7PGdllmZmtZkd7jrW8hkIijIhRhkc0ybhoSyy1bQcvUmsO67TdL8s/m1Q8Zd/oT20h01Sc4djGDc4CQRq0A6iOGor5EYoCFFrp2d3vpnJ+afJFDJMGLCgxN7F5VYbdtn9ZGW2WSlO00do5TnDy/tle0zKFkwSWSzM1rMzND3uOszUdAguYxoLzYOXMzBBWUqKTmaevY671mXN/NfyL4Jd/Q/tdgJOvqYT1vccDHQ0qZRBeA9RHoMYwiAY13Osald+ncX5r8Z9HDnhMTgAeHYqNIk6aG/1PbaYYOZlg7bbBTGHWfRPPgmE1izOWZmRzea1DUo7jmtQiJIc5sGDAjRi7zMEACVRS0PJ1anVeodJwXyV4nTWHeeyOVtbXVwmp5PBxEuFSpo60W5RiOOoaGMEBrv8AXu50no3A+Z/IV3TV2wnOlvoS19fXKuWz3dfoI2y2wcxmWzsOHMSXSeuc0pFW4smJZmZrW8hmsyGtxhqGgBiIgjNi2VhmUszQxr11ZT1HNc5S51HZp+f+Sch0l90UeYpFG8OYm9DHkK2l5nivG6LTDjdkw24+diWpQt+1cF3nX+feW/E002nW7IdLT+kGq0j1qLOnv1BebaMdkpzstlbOc/r/AEfLpKV3a2Zd5mZrBx3kobjoY9D1ECug4RyY5NslLveagNVFGtqOc57l6iiLYO1yRF6fnefsLC0NPZDRGAQ0Knk+U4Lj0xqqCWClrQzE2b232Yu/ROt4Dzz5l8xVLJlpqiS7lhdJTaO5D/RTpL+ydaZOUzTDBysWnvDHGU3Mc59EuzzM1qA57zQ5yCtocMX1FTEiHbKKbpGmczetBVUTQrqKg5rmeY5mIDhElVp6s7W0YPIWTgEa69PT8vx/D1iS8cUhFXYgQTB7561Aneeh03E1vLDTr0Fa6gTaVRTDWXDO4Da9EtWJ9J1XW9HcW1i86xv1bqPM/mvwr7T+mGiZkdQFOQty3DSzCqS2BwQ1JbtWQaM20zIuSjoC66Yq+joKSi5lV2saUgtVUgc224eYQxhEcFE6mvp+fUgoqqjXrVYVEqmvX9z9UhEXulynorsdDCumksgglXVyKa8e3ySdDXpUqCqhrboes7Xx/oPWPPeQ9G++PXWt70OEJ5Ce8iPcYKIqQijJde1Ws34LncZm6besgFeCOk+bTrR8edNciorLn+cqwZox5LrCHCMQpU6SVNXBjCGg5EYgqI17XSGFxlN9uXwxFzM1DI61rUICCENPjMax9k44jSBQ+UqF9GvrX1D2n32xJvUBanvM1uQ4bXjXV66i6o81rfVs4ONgWxbzM0MIMr5J85pVfnzVChtxsabl6+gHLC70ihAe4QCjU19dWLjEHQ4a1oa+hk0spzvn91652bfXWzzRYxhqMdRjHUoQ2zUuXDjTBRJk+V+O237P9XeodR0VkTNDFGU56jvcIZASy1fX1IlwSmC36WQhzctHmc3kAwgFLE6wOVFfqoW2+m/Hlg8xSh1Oc1aYEMwY06+vra5aERjhCMYQEGGaCDl+NrUkEYad+hvQjmbYZcYYlPWCvm0dXlq+++yvUNch5mr6n7P691789AgMMSZLWt4PWorAhXVSFciugy806S2htq0csy5KMBxEAA011FqpeKK6d1XsRQoU+Xr9R2WNZWhjGA1U69etXDDWRFEYoiDkNDW5bia1JVZUO/pPq0wCEPQomkwyz9NZU9BaM2LRiVHRdRe9DcWtoSehgHEIpblmRyEYYqtkEKmoplRBK/fQunYTMzaulzNaGPQFoLAQqlVcEKj6CrNIPJD5+rHg9kXqFBahCCKA6xeGawYVgjhrQx6Gry3LIp1y64z/AE9bVqS4AQGMYhQh99c7a3zDDFnb9N0XWvsTlEQA6juMQRzcpaHmoDTCHSiVPSLBBWOXdue8bWxuxsCl3KMYQgNcUA1dSKuGuFa0ppnhygKqrVwGprLVyQNRjsQl1BD1AMFgCCOetaClztaKrpqsUTewPajqANaFAY4C+9KjsLnqek6a6NZ5tmeoDiprWtbELUsJkY6gNZYUK0SVLXhBGoZ6Wyd6eGYww5MxtRgEexiDKurq4NesimxutBaIU1aOtSgIJFE1wrCFrUy7gCEBRAqOMdj1CAVaWEKfn0FxDfrOfqlY4d6xsH325fpT6P2XSOsazNhBFSLMI72OO8gHeyThEcYrrCGmuOoqq8AhIn6nXUX6qTRmW2m8hqIt7guINTWYooojXyTmmRepXhV6SBqK6Al0o61KbTGwQjGEYCFmCDDBLKQWQRUQVy4hSlXSTRqqupratTP6Qn4zmSS0cxYK85a1KEIbmtqRCa1CGgqDWiBFKrrUQAAJnrc7oa8sm45YEjvQzSCJdRWtUxRVFZJGMVAbpQmqoIjFi6K2grRPPbVi5kYxVAsqIY4byMBrAUVGESw3VqyQxwEqBdYYUv3VHNZaTMtLCnOeRhGMYDyECTYmPUB4qmEeq9aurElhJpit+jt+mgsAjb1geJc1I4RACNFSvQijAdXWbCjECaUMSQipMFcMWg6PaFg5aE3EUYCFFYK6wsFBYQU1gRFhFVtjhAYlxqigP9qNw1W1kmDF1Pe9Q0GEILjhMzJdxjDFF4p6XVTr6ZMaayIewa64yUcZuXWWJ7xgkRrhwKlZXyr6U86RHBV+1K9TBqpCAHaaodDxmwvNydPEQ81oURiGCK4wKiXEBaAoaqZDUJvUBjAMQv19rDAdk0Mm9a1gIwBII1kiwsisThDAJxEptFZWvpU1l0qi761noq5M1ndWRjkmUpMGIAxQDVBNylc0eorAyTEkrXTCmmrtWIwLjhB+4avDsmnuIgLKrjgOOo7ACAxrKrCgvVsgVBHWojCMYP1cTkS1fVJmszIpLHgIKylbmW7buxnXR1JVEKqS1TX16atZrunugS5y/srSxKZg7TE9b1BVSMApn5vnRvMUtUpraya9VgQL1+oKaDpUCrHX9Caz3picRwCuIYgByEBAhmhx0ASlM0AAAiiFcYBLfdFVYejdc/OMZD3qKkll1ojrE1psXZLNVtUc0lUFwooUaVcouK77jdlx+3rmwetXzsGKWewBVjES6tdxsWZuVNOlX2iay1MvNZdQMBqj0FKqzpeuubRreszICBHQdaCMMYhGNeMBiTStQgCGAgpgAqL7t5a79XuZxEPCAkRPQBUqhZ1dZBhh7pE5NzUrlEoVIOaqEK4LnQXtu/yVU3Y3d22+++y0beagAaMkUVKCmm6SK1PUqtYiOjXIqGvHCABBipUKz6XsLptgk83qMILayO4x3sCqyy+oxRC5HIjFEYxLph9W9R95sy6EJfR9RMmBTKKpJqNHVWZepNs90CtQro8/RC4esVUvu2urMSdDBmzY6C7tXXW2G5jDFaIKutnSVSK93Kgcq1aickMp1JCVrYRGKKok66tEz0HX2BzFnLWb0XY9izUMCrCEYiDS2O46iMeiQgNcHuX0X0h5DEsKbqWtiSSWqqussYUXP7D3r6nZ2KFBRzVqIVvN1rFtfvTbp+Vq+T66z6voLjqWWHGmiB0uFROtCKmrEl+h1ydrRz55sVUxWpYsuiFeQAAVWqVRkJdWbzZSbJohTTIWUo6iqAcRxjukcDPcIDjkY4PPvXonda0qGJj1soABVrVVYrXs89zVVZ9k9np6VfzFc1PcthrxFWY1y3mddC5V6r0juOo29aHba2svAKlWPK6grlqvqZckzTkoW0w6BVbXTXACEAppq1Qc3KcJsNNMl3EtjucpuMlxRfUBwXClZR1GI4xwYYSF+lR97gJeIzFpy1J9VilGBSijU8jzdnbN9J6JDn+YnZMtT1EcFzNA80+eFOx6Q3p3oFwjfdPbPOsZBaSC1QqFXn0q2n6G45dVANS9Xi0OrgoqAIwBQWrB7U3PewUoJPNNlIywZpiTLLEgCjqGYKhejkdQJKcdD0P9Lpb1FaMF8Yr48s9ZVdHWwDyQKrj+UfN1DfdF5Cq1e2zrjFdAz1wlwQeZ+fJ953XbBF2nd9bZN2JyaGKuRq6YlXzHFqM2nUp0KVaowmFaKAkF4rCRSQXEI4ZFzUEOWQyZHWGHHnHSNlMVIMWZFjqusBwFAGaJLepZ+m28gJbQxLN1E+AvLQXNKhDxVNWcWqSdpem52gtrm3t+kjcIef8AfXT6fEDp/Ovm30L1Fh/u+u9C6m3sn5mhCKiNJTVCHNcvzjth09/y9CohJEiO6waKugJ1yqAYSJKcpYEdRzyQ1pSOVk9iydm0MBUcbCQ66yc1uUJSDEIdYb9R9agqoYKydjQw826ToY8xESnF89SUkTZG/raaqQu7Kw9VczfjvqXSir6g/K8v+e/ovp3o/ere0eqX9raGLOIxLr09MnyXnoKSuzrPROf5ZWuBWsqwRRChNau56dfpdtwhyFySiFPya4xIla0wVlhu5OnGOpbZqugKXbA4sHhkIxB+p+QFXwcq1g2HOD81t+qLTIOU/G09Cq1qDnQOsQgdOl6uyJVc1c9UPkuG6qj4r58tp+kMe0+19v0Nk4YuaEPQUKHn/LOT5sS2i+zC46NHCoMJZFIaioafma4k17O3ZfaJOW6WspqJSAxpbI4xPT20A4wY+qzsZzlHBEJJoos1+qcRJLzkgBZ3nk+C12Y5VjVRy/O1rLbjVnbXLx3M0IaFbQ+c8P2/f/FiXpAPMux6Xp7vu+69B6+8eMSetRyCo6fi/IuSqKWhtXvSc3z6SVUWNerWKirq+mrqIdqrZ2V1cWLU96V5+kpq5RWIpIttzO3lWEA4m1VdeWcWTnnuWiEzP1SiHQzxrgrt8mThZdLqEKzXO8YFywt7rp722ZlmZHQ4Araii4HwaievOktbJ+16Dte/62zYnPMjkoQFVUFL5b49TciXq+gv90ulKI1UtOgQq8pDII5qtvWejuLaxLOSVHSc1Sp4celz5kXFqEM9E3PnbA5WDMEiAzbjJDfrOIq8NDpiKt8sTlg3I9ip7Ck4565v73oX3HClicSODPpYEFa8C4kgwat2X+yu3i5LNR2TNDFg+N+Z/HKfne3fvKPpwhpwc/VMR5VQqpCLIIDeN0PQ2l47bu6W5biuN5wEoynKJiuL0teKSsYoWc9yiXWMxNBgxv2bmJYJFawgZVqlGg3ZpRoXY8zcdX0FzZsszgLWg73NcSxDAGBeGoyiwSztrdicsyIyTJOC5cpPn35u4isn0YkO2PlC1ydBs9G6hukfXC22om12N3d9Rd3hyK8pxHndAEKwMlKNgvUKT3OdVTMa1MhDkPLW9j3+1xJy0lpAbaKE0N6IjipHYXlwcpZ72Tex6zQNzCIJpiXyEyEZaIwwYssEMhdlIIGquo8V8o8AqoOqu9GXAE5jnImrUo2ZNOAMmBikvOr6jtr3pLUxK6jqOM8foUtmiGLYaujSQY0paAkRMQIMPnOSeT/aCVrMUwRYGnX6HvTm5DwjDZyS1CeZoctSzWsHvID2LcJNONF1Ih5bgAZzYaYtRQo/M/IfEOQKmVidknoNdTWKaANVpVITtkWsyqvPSe86nq+gI1JmuoTeS/P3LLMSx2NWgRUa3O2yUdGlNYcQ6gw0b9wpMGibCbFsIIFnFTe5PTmUcZkFPMHHQ5xnCcp60PWYyUxCZucyYqEjE4OalFWr5zg/LPE+DYYPvGRJBTgUFaIMxGXE0vIZ1a689g63ueofsWWhUPOchwfhVDCA21a7QgiysOtHUYwyGowyEN/vNAUDsMT0FWUxzHMg8gUm5ljuMczety3g9R1CJN6kXZJMCjk2JxWjsrm5nlJdfmaHynyfkOO1kViGZZc1kVqtVEYl9D3ubCGxV/Qek+lej9Oyfa6nN8jwVB4xyYikCJXNxLzTslwyyIhaEJbcIfvAQ8oEOpjhBinEEtxZGI59Q1ohNRzQZB3k5ShCe8nmGDPeCkEOimaOaUnJxAhSx4/wbgfP15xkR1x95mWbWCqimEagVhyEgcalv6Z7B6DfLGUUrKjn+m8x+Z+LkVYcVtkHzrbA1Vij1KUtCAuv+58y5OUjyLKEd5HeZmlwGZ2PUSZkGZRFGMIxHueZKRTQX1De4hhp2yclubRIwWTXQ8a8D4oIowPbXN1bMm0FJFMIx6jASiS047Go/wBT752wH1B6WGlb8N4v4tzRIRksCllshQ6CqCbEFVwpy/blycBk3Fgpc3OER7hKeahkd4NqWoi3OMy6gIUclqGs1Mk8yRMjmyyOQzZdQQCGp85+evM15SLZ9Xcu2Zd6GrLUUFFBBjmoiXGXJL3X0M+3O1riQr1K/neM8I8/2Usi88zZiTrADGJZqYorwD+0Q9smlHeZqMzRFuI8huc560KJDB1mpRX01PCDFGcC7JkNRyMi6OQk5SM1vNhUEkfzD4xpJEsLi6vr63sGCCWSrlAr5EAgLB3HZJ4xG+9NvLS4RiNeqW5rzzlPDeE6q/ZnQXSJwikBeNFEwgjwf68vGmTWiTlsehrZuW5ajLUJGnDMGljA2DLDMWJJx1KG4xKWG9ZvUtSlOTjeE2svWwdoPn/5dwjvQdDe9Hdu2Zc3FdVNRJVFUSxMLHBx2cLXoHdW1Ta1qegcZx/P8T81XPS3thQdZusxJUeaWmAC6QE/1+cNrWaalmGiJYK4i7IWAtSbnLUYjgCb+44KA8Jkx60XY5kJLcyy1mbkU7BBKpJDW5/yz5qoSEsr/pet6W0tzljsUIpaCukJMQBBDDRTMsQse8qehpKi+nWcP555F5vRdF1d1WdysvrSKi2lxlVgEAf11ZkthJElKBYBAgsNge8yRZSlOesELUImyeb0PM3hM1GMSMFnvDFlsW9subCIC1ct5x5x47w8ynvuq7rsLNp42SlEIgrAXCPNQCDQ9aFAkdX2C5K0u6+g8v8ACqKsBf8AaQ9ElDWkYjiRdFJWC4P1tNCOHnqet7EIS6yGtFkMZtmzJHIo3uAx61sehD2bcnZa1sUc2RrebkSc2GJwU2FNLyrxDi+I01FnufSutuLE5WShWhhFVVhABEcI6yUpD1tdCm214B2PUWHgHz6lBttbuvS+gPvBQTBrIagush+qx8wxNayUYxwSQNYMOhjJmanMbBtl0TMjAYwmAGRccJvIbhKOwnGbeSdtCLpTQCt86efc15y4U3S9933W2jRcyBtRXAuLU4RUXWXjokzEyexJapfmvwL130Lxfx5plrOZ9A7TsukbaEMKi+xDEOEf0avStORhtlXBzkpVjDOccwMYxyGbWKbbJJkwcxhmWCkNa3suQLBic4nWiST10JGOufcpfAPL7Tyivase69B7noXnGZzmJJXHxrrqaGCOhBgEEmCxYr4iElz/AJ955wvh1xasz5i1vu07zonWRKjUT2uOMYffjVhaXr0gx3kNnrahAe9TluWtTkGA4MGjXEZ3KWSlhNxgOMczFl4TeYC1Keo2VqrUWVXx0Od8P4lmh5bdz3/edj0ViyyUsMHJZFmcYRFWykuMQtS3DWhyUEiHS6VDzPKclUc30e3Ly2trBkcBgr4qwEv96tGZacsXWrHISnR0agpQhvNzzN7KAJJCJJnAwwUyEkTcZ4PcBRHHMkViWbtDqI23OeT7pvHubU44hbzu+267oH7JsmmSDjESy4dE3EohgHvK/NayI1F4BHFYYFlEfObceyFkEYww3AI9BX+4DsYVtyZ3re3bjRcqsGU9TloQcYnEWb1uADGYyJIgjsZSSLm4QkGQikKTNzYnzAOx4D5X7Y/mPnSXJXbtv3Hedb0dxYOMCIEmokmFVcEIminE4DjFFYY9QXgBTNwXCNShfra0OpxkssqqqMAzb+6D6KduWiGM/c2FdxK+QPLIRnPMiMMZzI0MIxxK2bRJxHWbJuUWRhdwk81KUix4Lqrng/jn1XmvIPNF3H7Cy6nv+x7bobcxAmZ3imaEWWq5eUFMiSUgwFIK4YyyKiKgdio7mC6tenXwVXisTS4K5Cs//8QAGwEBAAMBAQEBAAAAAAAAAAAAAAECAwQFBgf/2gAIAQIQAAAA93PRLk+W8THhel8f8/8ATd3N2cn6H1aSj0c/My6NAGdcqPRs7PY2wxRtOJXHKu3RW2OXRhlOnz3LS+c7ba44XsAAil63FJspU0kGROifM8XORCW0gW/T4yhGWXF5nP8AOT53rfY4+VX577np2k6b+Zl0aAM8L517ddt/emMMZtfErjk06Tnmtc9dPnuELXvGdgACM7XAKVaSBnfO10+b4metzKm8gJ1+1AnTH5zn4/mP1foFK5aTE9G/k5dGgDPC+de7Tbo92a8dtlckVxynW2k0zvjlrr87woppa4AEwAAAARmnQrw+HTS5lXbLSwJ0+2AWvXz/AIv2vrc6jPG9kdG/lZdF5LKs8bZ09Ode715rxrbVpOdcat7zTC85466/OcSKaWuAAAAAAGUpuT5Xj3kBjsA/RM8gmdEVmaVFMI1lf0PFz3vKytoyqyp6U69/rK8i21coVxpfedXDbTPDS/z3Eit7XAAAAAARLLUE+T49b6RKEgD9K5soSltOYUiFuONZT6XjRe95rMIzpLD0Z19PvV5ptszzUwx17IvbhtfGLR87zBa4C0QAAiQARTRS0hHj8OVNKzplXaQD9CpFJtnTokEUtWJ5I1mHp+Nl0aTMWsrjz3tzelbX0/TU4NLaVzUrTDbptEc95xz6a/N8oWuA0rUACKWsCJFLSZ3kT4XnXrLO9stpAl95UJm4QpAnkjWYej5GXRom8ojHnvbk9O+vq+hEcNwijKL67VrzdFcK71+b5QteJAAAABWZFLmU6B4PIrNs4rOsgTp93ksmxMxFKgnkjWYp7PiZ7aJmVYzxvPN6Gmvs9lZ45mqJrXFprKmHRGFOivzfKFpi4AAAAABWl7Cvg8kaBneQE3+8oulFaVrW2gJ5I2RHs+LS173rQUzlj3X6PY61eK184i1caztcrhtXJrn87yRYtZIAAAAABSNCbZeDyrBWwAfoMKq5Vi0Sm8hPJGyI9rxKWve1EmVDn79ur194jisEVyrfXSyvJrGTXn8HkpoWskAAAAAAZaStOXz+IK5bSvQE/pODnVoIWWsDCmkxHs+PlbS6s2muecOXv69vZ2ztxWEVrWk7dF1OHeuLXn8HkixayQAAAAAFYrOgz+ezraazWLyvWL0J/Q8tZxpmX9qL28SgMstJivt+PjbS0Si9c6Q5+rs6/W2ztwaCM1aOjS18uPorjTo5/nsERa1wAAAEJK2AZE2sY/O41trEypcXUH6ARvTGp9z7nF2flkAyy0mK+v5FLXlJeuNTm6+n0fU1rTivfTKtGdNtdLRly9VMadHP85kiLWuAAAAqsRIComUcvgYmtxS4vQP0ATeuB39fH1+TQKVy0lHqeXla9rVi16Z0hy9nT6Pr65Zcmlr5xnbnb67TXny2pi15/m8wm1gAAAISAAA87xRaQAD9DoJnKq3E64kM4y0lj6/n4WvMotelc6ufq7e32bYRyaCM5ybb6Kc9dKc19ef5zIE2sAAAAAAKTYnyvKmk2ABN4r9h1ahOUWzjetRStKbIw9fh543kWmjOrHp7fQ9XTLLk0RWIVjbTSM+euscuuvP85kBa4AAAAACis6E+X5lYVmwAXtn95XUJpS01RS0s4rTSYy9fzco0uFojOrm6+71u/bLm4tbxmVpbba7LlmzGdef5zIiLyuAAAAAAyvTSS/jedBCQDTOdMv0abZ5C2M2rCs0szZaTEenxclNtBZWcDDp7vX69Y5eHa9IqVvpvdlhS2caTzfO5Fa6TNwAAAAAGWsSLeFxAAFqun2Pp50jDIjLX7HLf5XipVpmy0mI7seOL6Cys89L5dPb6/dLl4tJiMy1531zphj0Y566cPh645Vpa69gAAAAAIrcJ8PioTYAE+9h9hOqvNQpS0zWM4vbKM9JjL0ceRbQLRGeF8+zv9PtZ83LqVotXW3RfKnPTr5Y1nn4dM/P46WuXsAAAAABEhPh8RnNwAeh6vz/6FbTNTGKRWl7GcCM9Su7kW0AnDK+fT6XsdMZc/LqK0rG2t9Zyxremes58GOFuHGRewAAAAAAEeDzADSc41Ze5xc33fZnBzxmrS1zOBlGso2ci2gDPC+fT7HpaaZc3NqVoo6OnQyxqZNePjyrn0cuNaWuAdPbly4AAAAC2mM/O4UzaXCdCYx9Dmfd7xiVzL869qVCM2jLrci2iJDPC+fT7Hq6subi6StFLdF9b5Y43nPDV5teeJ27MPNqBrfHt6uDDTAAAAAJingYs850uGsoziZ0+12IRmKVtEAjONox6Onzab6AM8L59Pr+3MZc3NqVyzvrtbW+WOM6ZYa8ePFjbov1TnzUZr27bRbl4cdQCsXAAMp0FPAxZ5tbjWctMhOv23YrijMUqAZQ2jHXp4Kb6AThlfPp931ZjLm5baK5Z321trfLHGtoy04seHn26NdLbaxyxptbK+fJwxlqAVpewAADL5vDRmbWAE6vtJ1RS+YrnIDKGyrp4ltAGeFXT73oasubh1FaR13uRnlETlXj5uDWfQsrXXTTTKgz82uOfUAitwABnoHP8zUG1K7TKJhbR9g1JvmKVAMobIp28C2gDPC9Y+m9DTXkw4NQrGu22mdOehGWOHm4+hO5TOmu2gOLky5r9UgAAAAnj+aEmsynSctc2kx9pIm+YpUAyhsjPv89bQLxXPC9X1fdauXNw66RRWu+ttbZZ80xllnnxY+hcileV19EinFy86ddQAAAAW8zwHTqzvtnpS0WrZnO9PqtRa2ZXOQDKGsxT0fMW0C8VzwvFvrerTPHl4tbKxWnbdpWtMGOFM45r9AJnm6ooMOXlrnptqAAABEifL4PX9BM2m0ZxMTF0Ra+0pvFEVqAMobIx9DgW0Fr0rnhdH2O868nDz6XqpnPTpaYU5b5c+OdbNAWZ3Y1lnjyVyjr1AAAApcTzdXSossK2FdKzOPRdEitAAyhsry+v5y2iJtakZ4Xz2+w1nXk48Vr0zpbXa16RXmvz4ZM9AEVrLKulc8p5Mq9ekgAAESRI21rjW1V7WZzJlfSlPSis1smKVSArSGyOb0+BbQTNWeN8uj7C9tOTn5Z0isZtdt2edcMufMBEJisK1rpXnplmyt0aSAAApcz0HW54t1VrJCQRLr550Ui8UouBWkGyMO7jW0E3imdYz6vqttnJzcy9lcp023tTHDDDGAVRVOlaVzoplNc61pfW2kgAAK2rXQnqceul5WAiYSeZ1b6xVKtJuCtIGxzd/FNtBa7PKK06vqN9qc/Py2mytLX13mtOTm58wrGU2iL2rnlnWKQqpQ1vOgAACk0vYt0V59NL2kAA4Z6NQilb3BlAbHN6HBa2iZlNMqq930e16Zc3NqK1aX1tTn5ccYFMs6ztMWiuWKKTEVoWXToAAAUjQW3zppe9oSABxaaaiKVXuFaQGxzd3Fa2i0zExnnD0PodJjn58L2KxTa9ox5sc6CmWGc6aXtFK0yUraIZyuJ0AAAFbC+1ctNLWrYQJRJxX11RWuVrXuFaQG0U5+/mW0WskxzinofR63z48c17RSc9bzPNz40gpTm5rT0dM1nGudFaBlpITpWwAAAF9s8ddL3rMxVaSJI8/TosrlEaWvcUiIDaK83blW2ibWHPRj6H0O+tefkzTpXO+Wt0cvPSoyz5cIv1elauVXFSd+rm4oZWBe0aAAApelxfXPLXS80vZlaF5RJ5994ziq+q9xnUDaJ5d6566FrjLKK9nv76suHMvNYjSWPNjQMsefKt+vp3pC3BjbvtTzK0qBa86AABSusSL60y00vNLzNZiLiJedOucWW1le4zqF66nNtFL6JvIzpSOv3raufHC8WRW0sMs6QGWPPWmm3VrC1+XnprGONKgGq9ghIBk1BfXCNNL3rNa6JRIR5q1kr6l7jOovbPWJ59FbaE2LZxE9fpZVTFZpFsrWz0phWAZZUxytr3XTea8eOETXOAC150AAEJCN9uSNNL3ic895hII81pIvqTeylYN4zrsZppbQWsmLaTKoJmpKClQpEZRz5O3qmdF3nY4VM4AFtNAABnN85uaXxtpeZmYz0kEJeZpIX1E3tnUt05ZRtE0iaW0LWm8q2mkaUhN8wBAIzjOOfLXu1WvfR5vFSpnAAnS1wADJMaK22tz66Ta0kUjSUTCY4ZBfUJINLxleU0z3xtrcleIiUJgTAAAZRnHPnr33nS+qPP4KVM4zvIC2twAZ6IZpNOmObXS9qzaJjPSUSil+IC+oAayy0lFK7466gAAAAAZZQ42vfedepx583PXOGeVZaTFNCdrgABGZOnTTGdNrwkRIgPOaBNtQBpbKNZhW3RSQAAAAAGUZYY59nbed9MeKZ58aVzyqJ0zi2idrgAAyJ22pk03uM4aSAjiz0Am+gDSc41k1nWuYAAAAADJhxo6e29tKZZ3wyzpXPLn1kmC2i2twAAynRfWmSWt7zSuOthrGescQC+oBNbGktZ0jMAAAAAAZcWLZ3aTvavNW3DnTHLmbSExbSdLXATADJOl9aYOWNr76aW5astXRfLLbnAX1ALc20tZ1AAAAAAAMuLHLXTr673thSlMMcKRnhG0k6idLXAbZ1AyJ31pjj4s918632mcY7LddeK+hMAX1Bbp5qms6gAAAAAAGXFjlDu7ehniiORz50rjrInSRO10omG2dQMid9aZc/ldWy9Mei3m5dPX0asaX1Ait2mgX1wiG+oAAAAAAAy5KcuUb9O+lVKZq8+dZBKbyW1vfXOmqka0rETDGU760y3i2XNjzx3+h8pHTs6+uL1oM5uDS8nRGDF6IAAAAhIAAZRx5Y5Q10RFa1zzrO1kxOqKaJvNr3TpFZ1snKE8+K221MK9itMs8O/p+ex223vtsYWVADS8ddeTLGfYkAAABWk6AABnGWGPPhXSZyogpF97NaaAJvOkl9M67WrMS048pvr054WrWYrlftw4p0Re91a6Yy6NMSCJjLs18vl6On0wAAmAVmM5akSAAzrjnz88aXiKQzziI1vOkgArVMXs0tG+XQjLOY26LVm4SisTETS5PzETbbS9r7b6xnj43ie1ljzfT93YAAF6wVUiFmqIsAAZ818Z4eqc7WhjzKUabSABSgGil7WxaZ6316pumCUTZNGoPiqnTlSs66dczweZT0NfQj1+mwAAmAyVZze+gAADlmNOXSueuhTjrSkLyASRSgF6w0ZidNZvve1ibRMWqag+Kxa65xWb6dmHNyT093o9PToAAC0QqpXAu3tMJkAAyQztjGm0I57cuISgGitaUBZEAE3tN77WtFLVtebVtpYPi8uzblrYnbfly019Lu20kAAAM4rhnS+ut5vSL2AAKVhnaKx0UWpnly1GqlQm9IrRYLZzW1VxEXtbS06RW80hpSvTi3tX5nbow5Zld1zbp6ui8yAAACtK4ZxlfXrXtEWAADPO2Vr0r0ZrU54yzguZBOkUiqwpak10qvFSk2trM2nW841vKm/Om7wulx001206u+82AAASgFaUxzhz36epqAAAZ52ylRvSuteatK1sGQL2ioVTFaWvbLVnmit76XlPVZln0Sz0wvnNvP059dunq0mLAAABKArSmOcK5W697aAAAGUMlaaWpntGWdYrFxkCdAKphaqwXzxzXvF1t7pi91Zziia36NomwAAAABWjLDOFTtt0SAAApVFK1yurW05VgytcyWqL2m0QsrMQtULVhayKk3iLxM3ibL26K2AVWAAF62ioGcUxzygpp2abgAAKVhNc4zoE5QMrL0qsrNpm17WUiJoXyaRS6K2uWUi1JsBRGnpgikzKQADRnaIAzrTnzopEbdm+iKWsAAVpExnCmSERECtspgnSkaFrrXkWK0mcokrMgIkBVW/qFaplMgACdIzAqUpjhQyz06unpURa4AAyQ540pkKVrW8qRALWpotaU3iYazAVIyANK5wXKLonshNk6Ba1agZmiUArCtK5cykRl079HTnS1ryAAMl+XG22NBSucXsjMCdImdF76aQrGOdpGpXPQELxXKI3lgkbZzvpoktaVKgYp1AFKopjjTOGduzfac7XvIAAQxxx06OWopNcrWMl6DSTTeUyvYZVCRSNK53vKLzGes5xneMS9432kLXKVBnXNtoAUpNK82VKka9u1edvpa4AARnzZzrbPKtbWrSJM4aZk6RSdd9F7EiARS9LZyhK8WsgJiIilejqZgtK1KmcaM8onW1wrQphXLKovv0bYYW32vIAAyY81p2UyrS9qVpETBpmTfMvrfTRewARFJuFaNJSzvMSRMZeqyil8xaVlKs4GWOuuwK0UwxcldKX6b7TGC2+trgAMkZ55W2rS1YwvalWdpzNMwC97XaaBCWqM4SWvASglEiI9PGCMy16rKVZ5RpOHHbbs0DPFlSKY10nXonXLnyW320tcADIjHC288u2UFaAzjTMEZltb1bRUapnWTRGZIvMkSRIOoIzLXqtSrPLn1i/PyR0dmltDhzuaMqTrZrjyYp0v1dNgAMtJxziMOphbIUqBkArmL3C9jOGqdRbWkaM5u0lIy0zNKdIBa9aBnjhrhOOTS2nXtnXhXTpfKm1hxZCe/p0AAZRrkjLDr156ZVpe1Khk0zCJrmXupRpInSROgNGemjKjaZJ0Ip1ACyudrM8quO+eGNtejbqcWEa31vLDS2uXEyJ17ddQADLRy85frrjlApUZwaZkZEwXswyROto2bBNomLjWtdZnHXKNwdYBaaW5NdGeVXHEceM7R6OuFJL76Xry7zplxshrbt66gAGWuHJlpfstlhlWgGcaSjNXNa2YXVxobSmu+kynStLXGmkSEmGx1gFppHD16M8oryVy44J9HPO9r3vttbPn6axjhrln1Z16ttpkAJgckYRHZ014a0rAAZxGQAvemFYgbZbW0i2hJF7taXsNZjMdYBaaRwX7WeV+flyxxTFuybVhWOzfWkXiteTTDJfTba+t5AJvQ5c8ck7d88+WSlQITGOcJAm9lK4VsiE7TM3WuVrroWkaTME9YBac3BfpmKTnx4Z1nW7TW06q1QzpbqthlPLyY6dN+vp0tcAvXSHnYRSLbd00xwpSUBnF8s4wtsiZmLXGeEaznmtOlrxTQJtN5ptrZk1zrbbrBMJnGeO+5lauHHWjXbbe0TcFIorTFyX5763t0dWtwAXpanNxVz136OimGeFb2zhEMlaxhOtY2vaq4zzgYW1iNJjO8C9qTNrW1sK3bdoTfMjO/LTa80zvhyTte12miAkil1KVzvnlNtdbbWAmaidDh8yLdGm9VMc5iEZ1UjTGM5qvvomb6K58dawy0mdV71zoL75A10GcbW9cJmqYq5cL9UsdeXnt0bar2rFJhNpVresTnWtkE72AWvnBqTh5nNOu006a541iGcZVvStFtcqunS19b6aUxryckArbWIvJW+mYNZAn2rAJmqlYtLObZ3suAAArSyti4AWiDUrzcnFSnRlfqpNIpnNaZVvSL1tpSlejXbbTXSbUW4/Nx3pnbGbF7q16aCtl7lbFvWvYAouCsXAAAAoUuuAAFrlOfi4s2d7W0mkUy0nnVornteI0jTfXffbSEzadOXyuBeKE3lWenGSlpbUvS8Rb2lwAWmsVmQAAAAAAANROPmcHEvpqvelKTpTmtWgvQrptpPdtv0Vi0mV8/G56XRS9si/RnJaIa52vFa6/QIzsALIisyLVAC0QFYuAERYFpUsuOLk5OTOZi2mk10taeSKUoaVrZNzv6t+wrBlE08rkjaKzGN7x151hpSzXJeKzp9AKoqAAFqgBSJtJVYAisRYtLSIraupOfDx+YotLTaazpbGtylslE2G/T192laVKr9nP4HHcIm69Kw0pN70mi86e6KIgAWkoACZrEJiLVBcK0Qla6bKw1Fs/J4cs6Te19J0mlqRbLTLa9lM62XvOnV6ERFbFrzPP5XFImZpRF7ZxrJMF/cXjMACdCGYAlARFqgqlaqLCZJ0zhZdNfL8+kUrtraZiKWNlK2roRNUyl1ehZEhO+VPP8APrMr6QrEUytZasrHtaSgVqC1lQsigAVWvWAKkzEUlawJgNSc/D5aXnW176TdhVCtlsriElbO3s1gE2pSvB52ut4mK2mLRNM4tSbHuSEUQCSA1zQEULWikbSiAAVJmtbyAnQnl+dztbqnW7TQTmnArWszKbVpWXT6O0AK0w8XTp0vSkSUjTXHRWqHtBFIAAaKQ0RQitbXIikTMtSoAQSAWuU+f5q66220a3vIK5laTeucs662Rbs6qXztfauXLx8Wc9u1oLRhC9Qtu7wQFagEoJTZFFKyStWFNKaRcAAAaJTzeTy0pPVt06o0sNCM4zhKEq3jGqenqRjr0KcfLyYte29wmsxtXPBMvWACtF7ZwzvOcJ0LXjMiIFYijVOsAABpOWiQ4eLlpEWt230tLTSjPXSuYrQEqitdtrcumt+Dn5c846unTay9YJaIiHcAFaGkkZozBOsBdVDOL556TOsAACV5Siefl5+GE27J03tEZ2a1xmydbZlaBe0TS2F557bOSnLnk6KdXRvbSTOEmsx1AFaAaSmMkZSTpWhbSACMyJBa4A0kZ6uXhcPKvv6O1yS+eNo6soiiC80Ei9EIxRm48tVsp6urTaxGcCda9gjO14zC9qVA1RmApVewAjKSIzXvEr1tZqy1ZbV83HPPlzv6Omm+thkjXLNqm9coLqVaUvSNc4wbZbZ8mdc+utNNbtN6aGU6JazoEZgXioa5asgAAABWkSC9hqHJvTzc3NVHfvfSy9gIyyidtYSDPK8jJGG6Ypna2Oa9tb5VNpNZR1gCtC9qV0kGU6CtCk2EwmAAAA0pG2Pm91uHncsI7eva9wA0yyyLaFrSGcCGUtIoLZ40mTaxgNZ26yYEVvSoNJAzQAFKXtrIzjPSIpM1tcAZ9FsfN9Lk5cGFcr9XR073sZ2sEwKUmJL2AZGk5oyvNeimVTPOA3mMT//EABwBAQADAQEBAQEAAAAAAAAAAAABAgMEBQYHCP/aAAgBAxAAAADzAeh9v9x6nbPzf6Z0fK+Ztb2vwzwsufecI7a5q5QGu9auOMsPg8+30K0ybXrHV6m3LxcdPQ9Hz+zsx4Ppe8K5qLgBOmU6U0AAANMwX7pAAwQn5DcnS2vtfX+l9rxel8j+fdXvd/23434ufFvbnjtrmUyDaxPFGXF8K7Oy9MenONp7+nTLzubP0+ni7+3jx+h7wrSAAS0ZtJrXQAADTMF+6QADntt80Ar6n6Xf6H2f578yx07TXi3nGndWkUyBrojXgplyfER19sZ8/XYn0em3N52M+lTh9fv4vN+v7gUoAE6smmc6AAAABr06AAGO1fnABp9Z+o/E/m0zJvrbEnl71ccQNd6118+uXB8ZHf3Ys52mk9foTwcVb+nhzd3ocvm/XdwRWhKAaWhnOgAAAJ0jMdHUAAMtY+aSJ0zhXqY1Xs31tilweorjiBrvWuvDnl43yzu7ee2d7pnq9LPl82lvXwz79ceD63umJUoib1qBrTQAAAA1RmOnpAAA+TvoJ68cQDSdtrYpnzvViuWdQa71rrx45eN8rPR6s8ddbzfTr7Mebgyj2MMvQ146/Vdd6aRSK1mYiIDRYAAAA1RmW6dwAAPmLC3VvwZgGk36pxi1vN9WuaudQ22za8FMvB+Zjp9bLOLarbdXXhw82VvW58PR34M/r+q9dFaFKXmtQNq2AAABa6MyevYAAD5oLdnJQAaTbsjJN/L9auZTINtsZ28+uXzvzXRv34647Dp7tuXk5sr+ty4d/Xyc/wBh0p0rFUUqAGtNAAAAa1lmR3agAAj5sAhaYgm869MZJv5frVzRnQNtq114KZfLeNbq9XnZTqjT1N+Di58Oj1uTPu6uWv1PSm+YrRJELK2ssAAADTNao77gAAfNAmZ01vbnwLS16WUTp5nqRSmdAbbVz24aZfKeK9D1+fh3vcv6Nubm47a+lz06+ji1+k6kzUKrK0he1b5zcAAAF6wFu+QAAV+aWtbotcmrHIGvSyht5voWrjiBttXn6eKnP8h41/R9nLnra2tr99eXi5ddu/HPt6PP6PpugTArM1pA1kAAAANaVFu+QAAV+WrtrO2l4zlXOiRt0Mobeb6Fq44gbbV5urjww+M8vbs9jCkXvfTbrrx8GHL3erzZ93Z5vV9Rrat1BWZzqL2quAAAAaxmLd8gAFLo+YvWY10msePrTP17SNOjTCJ28v01ccQNtI5+rk5MPjOLXb16VWut19UcPFTg9H1+Gnb2eb0/U7aUlQDOoura4AAABrSot3yAAUup86K2mZfAeN6/h/rtg06NMqTt5vdeuOIGusYdPJycXyXn9c+7llF73v0dFfO45js9Dgnp6+Hp+m1vNLUBWkL1g2AAAAFqhfsuAAEZeAAlx8HreZ7chvtOdZ28/r0rjiBttXm6uTk4Pj+Lv19bPOJtvtrpTzuLHbv9Hg16NeTp+m1WrNFlazMVmaw1kAAAAA26rAAAr89UAmu2drBvtOKdvP6N644ga6seji5eD5Dh9Dt9CuNbtddb5+fzYbd3fxdHVbj2+o1JmkWUppZnW0Re4AAAAA36wAAHDw41tRM1ju14Ys0strOUNuHo2rjiBtaa7cXJ5fy/H2dvpRhE21jrvyceOend08XT1acu/wBPa6tqCImsRA1kAAAAAr19IAAEeVbHnrC01XnK9m1jVkb8O+1ccQNrTh08/F4fz/Ht2+3lgtteu3TwcGa3f0cO+2/nd/0+ukUtQDOoLXkAAAA0ihHbsAAMtYy8fOLZlrxETFpbWNZyXvw7b1xxA2tPN0ZcXzHk8mvr9+FXRa0b6cHDjnv6HVwdV3D6P1G16LUBSsL1vSLaAAAAFrZkd2oAAiefzsMkwWup8fth9P2trGs5NL8G29cKzmG1p5url5PmvH4Or0vTpRrteNK8/n8len0enh6OjPk9P6Jta8UBnVeyYM9QAAACYI7tQAAy4HnwBe00lJtY1nKJ2wr0VziuQbWmm3HwfO+Jhv7HoxTO972vHFxc2mnpdfm7d/Nx+p6+d/Q3rQFKJDTPSQAAAAI7tQAA8/Hu8bPTMHQnM1tI1mM4vXPprmpkG1p59s/J+W4+bp9fsqhpo6MuDkrl0+htwb9XLz+r6s6t9gM6ga5TqAAAABHdqouADDi6ujyOPXIm0aX0zzbWDWYziXN3VzUyDa082/P5nyvLl2eh3Y5620te/N52PPl0en18PZtjHqdetr02toKUAy5NevYAAAACe+wAArzddfJ55hajO2+mebawayxb4c/dXMpkNraUjLyfjcI7e71ccltZ6K4edTO23d1eb2zvHpb9Wdefn09ORnMY3nmy22ncAAAAK0v6cgABhtl5uG2FtudWN9Gee1hpYxJ5u6udazkNrTz7Z+L8fi7uz0q5p2uYefhs07urh6dp7NvV6eHLLmdG6RThnbm6u6ctQAAAAVenIAAIw8/inS2+WZOmmVNbJaSYp6OLqrnXEG1mWlPnvlq83pdPsZq59Uq4clODs27ujG+9vQ29D0vM5cM60WupUaT6W2WWoAAAAFu+RMAAx1w8/C9La0yNN1A0sGK23J01zriDa2lLZfLeDx5ex0erXNOmmPTwcmNL7d3Tzbdm+vod9cODAlSgGvodG0coAAAAC3fJN61ABGPnTfNGAb6UDSwYp6fP7K51xBtbSk5fK/PYZej6Hr82TonXg6cPPxnXo75y37N9fc7/AAsMC21ss86i/X1dfTz8YAAAAC/o1L3zqIkITXyoEYCdtKBpYMU9PB11zriDa0qPifF5b9Xpevlk2jbm6+Hz6NdfR6c9+vV6/r/MYCb6bc+KkLent6M8nIAAAAA074qtNURGepM886ZctKojCU6bKCdJDFbq83srnXKA1vpXLT894fP19H0fSxpFtpOPDKs7eh079Gsu23HmC0xVJp29PTbn5YAAAAA00z5ozTE3ZzMKWnWm8UpS3PpXTS6g0sDFbo8v0K5q51DbWuc/m+PNl63o91a5310tzUphS9/R2v1aar50ASibzbXX0+inLzUAAAAAtjVNM9LDLUxTEuu1M5zpfHTW8UJ0kK5r9Pl91c1aUDaykfn3Lhzev6vWypOmsUpz0yv093RffQAE2VveL6a792ePNAABCQAIrSVlC0UtJEzWs2jXO2FpzvtalDSxM1xTfp8zsrnXEDa1Yr+e8/BHr+n20zppe13n8O+e3b092uoAFrwnSrfS+s2yyAAKWkACuazLG+mKJip0xnpk1ttlFbltWdDS0zdllCerh6qZ1xA2tjav5zy+fv6/o9qnNfTSzg86K93oep0aSBatoha60mustWuWREWAAAArmRnjNqVvZStrstVPbc+FkVnS8Z0NLaSZUodfB10zriBtbG/P+e8/Df2/T6Iz57a6Xzw4Oe3pep272BabVtGa2trWL2la96UqitwFZkAArlFqZRCIm6tNStoz9tnhdFbbUrSi150kypQ6eTqzzriBtbG3D8Jy49Hp+jvHPXW2k5187N6np9ekhfZFEZzfXRaIaWLStkACsyAAVxrpSjKukWVo1CKeuyCb6Y1rSNLWtNp58R08vTnnXEDa2Lzvhc8tvS7+lhj0LTbPgn0u3ttIX3ujGc63nTRpWtryC1QCK2kAC1SuUWiK5RZUFlbRT2qUqTfStKK0vpa82cuUU26eLpzzriBtak+V8Tz47+l3dSvNe03nn59fS7Oi0i++yis4Uu00WiNLAABWFpABpmVzm2CtVYlYy1Z6K+1lGa+mtM60KzpbSdJ4c6U26+W9M64gbWPN+N8/PT0u7timNdrzTkt2el0TIa9OsVzwsyOmyue28AXoAFZkAGmZXO9uOBEWDLVVZ7FaV06LY5VpAaX3m8+bGOenXmpllUDax5nyFfP06uv04rlXZeuF/R7L2C9ujZXmpTXGK9msc8uwL0a5AAAATBXO9uOKxaJmtjLUiXsI2vTPKK0Btpta+fmWxw36aVY4gLa0jzflq5R2a+nnbl20uiOjqvaQ11vbSuGOdq1p09OuVbbC9skwvQCqwAAilbTyKVvFpit2WtF0e+ytGdYVoDffS8+Nz9eOG2t8rY4gFs68nnb6a8+mue+FtIi1l7SDXoy21jHnzK0t3a2pXSxpOQaZgUXAAFc1o5kUtFppWV5rXRn9I5yMyK1Fura9/H4N9KY7X2xtjiBWqKViRoRFk1ixIGt731jm54RSHfteImSUBpmrFyEgACK0tXlmKom6kNSK2z99UjMVoL9e+3L83r25RjtpfO2OIrVAgCREgAGs7zplz5IpCPQ2uC9L00zaM0JAAAK0icucgTdm1z1jPSPZCMwiq09XbPg8Gvq8EYbX2rXHGYzgAAAAAarb6Y8+atCPQ0XsNExOSYAAAC9Fc7W48gXrec4m8iPZCMwB19z5avd1efhXonr5o5c4AAAAAA1T2Thz5q5PStTWbSaSZw0ZgAABpmrna/HSgCYNcybeyBWJoF+zv4/Bj0NPO5p2vvw1xAAAAAANXRtrz8ecY6b+pTOsXsvYMtUZgAABpmrmty5ABlqE39kAAdfqfP8ABv3vK5kzXIAAAAAANejbWMuHOtfRxu6+dpa+05wEZgAAA0zVzOTOhewMmpOkeyAAO32PD3x2p4XOjMAAAAAADXo2RlzZ1pptpN7V0tprWoEZgABEgK52nzs2eXTBTK7VOs7aelO2EwTAJ7PX+f8AW5s8fHwZAAAAAAANejYcvNGV+ndnN9NbNKQGWmYAiRnWdQFc7R5uefnVm1q7Z012316OrLD3UzritfIGvV6fxftaxPhc2QAAAAAABrvtsjLixz676kN9JvLOBlegBFLSM9JAVztPnYZ8WedqWvxRt19zu9bLH0J3AFF3RTxPX6Zt83y5gAAAAAAGk9G2plhlba0ojpvIzgjNN85tS1kmd6Qi0SvmVztPBlTlw5Yx6/S8LCerafU6XV6k7gAlpwc3t9WuvxXGAAAAAAAGnRtrbRSKJW0sRDOswzJtQIEwmGemGyxOed558Irnz8mfb0eBjed9+/om/uTvMRMiS9p8mv0vpe16f4biAAAAAAADTo220XvnfSISZVzjLTMASrSNJztbGNpwmdU6cmOs1zlFMqxbmZzpXbfSnuY9muvHhbcvaW31HleR9h+z/qX8x/gwAAABMAAADbfW95ymbUnS0mcMgBNrFpiiFL1rnaullsOW2pTM0lnSI0Zpvb7STHGjKlZo+y/fv1vi+F+2974j+SvzOAAAAWXpEAAANtJnWK2i0RfTSykMhMCbyTeQFJa5M6Kcq81QWlRWAiX3WiMbaJjPmt9z/T3r9XznFz/CfmH5L5gAAALXEZgAANa2nVaIUpfo0umIoL0CbyvYAApW0RnkrEoyTpOdIKxePv1KW2m0RTg9/wDp/wBzt3+D/C/i/A8vnoAAALL3URmAAAvSdFrqUI6LaWtUACbza4iSIEyraGdEUouisGaGNz76MadN01jLP1vU+h6fI+S+W8XKoAAAW2loypGYAAAvYXvzFdr31sAATfSYKzdnAXWpForFIpGsMpiAznTL7TPn7t4REc1KZeRw40AAAAW21CMKVAAAJ0C2nLKt972vIABbRAaTWlqheKiKRWYhW1YXoD6vn16ptjhlx+XzZKgAAABp0SXZc1QAABOgLZypbota8gAE2mVYteVLVCdKiKVhnE1gvfEH0jo5ufk4eZFawAAAAC195No5cagAABey11aWvnOs2vIAAXspWZAE6BEITnFYVi9M9B63Nz8NYRMoIAAAALX00L3jjrmAAAL0vadLxWbVmb1vYAAJlEABet4siq0q0tELVpfG9FMqTFSUTaIgAAAA010vKyOKMwAABaa6J0uBpW1gAArUvJaoJiYsiEyqvWyhac40r51yqLKxMQAAAAWvvOskZ81KgAADSYkvqC9qF5AAKULCthoAAJiZyhpMDzydlKViAAAAAtfTeZkYYZAAABrTTTJfUGlohMgAVrESWmkBYm6tbWFIvN1KlgYTJXnpAAAAAF7bbWGmXJXKbxQAACW2mMbXBpYAAVrEUrWLWTdoGc61pEytbOszpMAC9qU5sawAAaGYALWnXa0mk8vNncpAAADS+mNeiwNLAAFaQoszoRO9pIiUzQSQTJGimg2hx8tQAA1IzAFrm21i9s+KufVjGYAACddcojewNLAAEVoplMxAWbCM9ZQAZ3llG7DcdmPHzgAGk5xruwZALXaX0tpKc8ebPXeuNaAAAbbTXFpoCb2AAIVpGdCYmDoGE7VzL3Z2tnTaUYyrbZGWAAAaSOhzsgLXaaX2tnemLnh0IwjMAADbeMYSvoGlgACbZjOpMTCWO0SQrmBE7Z1jfAlOAAANN7YR0axlgjMtdpo0sZxzonsz0jHDMAADW2vO2yaaF4tYABOgUoGlEMgBnnpFNb5UmCYC2AAAab75xG5XLCM1ttaLgMInsmJjLPmAABqWpHRS0aGlgAE6ADOGkmUJCuYvfOoxgid0YWwAADTolrnrqyOTndlkGdNbGNZ7NkZ1xwzAABqttzVvfULxXSyJAnQFJ1tSoDIAUpcvBOUTzt8EMgANK103sr0G2iMsOW3RdSsAY16NdkZ05a5gAA2nZTltfTQGljLQkE6AWuBnDIAUKXirS2WmSYjG3OACe3kpfosazPSM6YWuhTCa3vhVO7qGOOGYAANtpRz5230A0mUZxsCdKxcpXqAM4ZwBRelSGlINci3AACe7nxjp0idba6Bla1YyZ0yprtz0neY2QpTnpAAIknWdkYZW12JQNZy0z1EpvWl7RWt9bCYTlBmEAM4aUpInTzQAad2XGv0Za7baTBOMQknmwhrTPbTTPWdlMOWlAAil5ja/VminNFt9F4rKNVI1Jm4rXStBprK2mUbY5zbNJSqABnWYHEAF79mGJtnrts1pERGWas1raV5jl06Zi+12WfNllAApammfV0XtGcctLbXnSIvEXpeRqCtLSUvbSWucAZzdWpSoEGOucS4QJha7qpjDfLXbZsrlhjFq5gi86RrvNNNaxFMsOegACrq2vauWOc2nWy9pCUNJClbXKmly0WoEJRFookGULVUtTzwTasX0vpOecXXv0RSMVK0SETUltN710tfKlMsagAKRHV061zrnFrXmVrCdGcWuIoWFYtrdrXXIZ0m4RWbBGYEZ+YBZXS09GlMYptMbueMFCbBWZrBc3JtlauNQACtsunq1iKJqXuTJpFmWtRMVoRA02teyYWzpWwrRewVhVWw8moTNUptNq3ppNaKqAAALXFJRUAAZXjfq1vbKaVTNk3la9LqXoFa0iM6C0a98ITpGaZqisWsRIpXLVV51FQJvFBpSb5AAAAXCgAADJffp20RUiJla6ukgm8Z1rWlKZ5SiFJ6e7XTMToyGd5K2Vspeik+VaMwAFpRUAAAAAAABkbdXTuFa1tJaa3kE3ikZxXHPPJNYFtPV6ucTpTOU561gImypZ4VptkAAsqAAAAAAAAZI6e+/QEQrArGq4CkkYcudM5kLX09OQREqNKVDXLVkut4RMAABegABaawAAE2rAAZF+/Trm16xOdItEVWWAVteKuPDLKbAtnr6PSAUi9U1i9q2ZTfO3igAAFpoFqgJlIBQBNppAAyvSNu7p0vepnEVSLTRS6idYisUxxwiQpdz7dXZ1VqERK85xYK1vnfxwAABWwm+YAi0gJAiszEACtso0799dCK0iJvasKrMtVUVtM0iGPGKXytfJrPd3ZRFq01rE6qwDKYt5QAWVAALTQC0QALBN1StQAZI19Xa6KUrFKTNps2ViQqlVEuTlUrMJhte3dtnSVb1IWAhd5IASgAATE3FY0Z1iwAJiRNqQAVojt9LRXKlaxGcVi+xbROpUrWS7Lh5V6aZmttejtplBSbF6AEvLAAAAATa1aExM2IzkACUABWkaep1xVlSlWVBXQtshMkXvFVojiwtExFJ107dd6Y1pW8Re0AB5gAAXrasAAXtCq2cazna+IAAABjrp3dE3UyyxmcqjMnWdStdITI0mM+fFrGS2/XfdTLKmlZtOcDWYHmAAAvaM9JRmAStErTO2eaMwAAAz0jLTv30XtXGmcK5xnGiM7aSTpIIz0smKYzrTPPv6dJvphjStII0llMSnTzAAALK6gRmAhLSabVmsZgAADLVj0b9ei05UphRctjK15rGVdF9AZVNc9obOe+3RF5UpSudRLRkE8IAACJJ2qRTQVoAGoArQAAMerpdequWOFIpUnWY05Z2tetNK00uDHSwS1TotdlrTKilctMttctc75uIAAAAAWupUAE3zW21tTmWpUAGXf0Q6bzyUplSlQN9cYyLb2zI0vlWJ2xbgtotogM60qYbiYcQAAAAAAAAC2iBSozvOWu2Nuu2k7TSmVMqUqAb6oxzgBpIOgALdlClRE4yQRxgAAAABa9KgAmAAAz0nHXt58urpW1vXn5s2dQBnpO2lcaLqA0kdAjFbWldLb3ikM40kDLzBoJAAARIAvelBnpE6xSbUm9aADTPPT0+G2+tr2vXLGuWFTSkAZ6LTFylQGkgtrXMhfSY0tLSchN5/8QAJhAAAQMEAwADAQEBAQEAAAAAAQACAwQQERIFEyAGFDBAFRZQB//aAAgBAQABAgIFsWuGRPp/j9a7mZKc0slVHzjOVqHinKBij5GWKaJQpt+VHMj42o1EhYWx45VPUqNmrDlXF6iWJAA1YYGhhcnKqU92gWlUQcMPTLUbWhFFSACuTxxjWjGPQs38sfgUBi2PIWHXrlStb6IwfBRB8Q/GmfFx8Tb8Oj+IN+J/8vH8cfRyxzQV3GUPFVM/H0juNk4FvFV/ECjpzEm2cuSXMD44WKJN/HlbTI2ZZy5MuDE1SoJq1jEaC1cKlTWCaggphEn2cmBqo02xRDmtZV0jeNpqFo9YQQQFh/AUG/iLm1eqUNWD+eDbH4lVVPJLA7l+WoIKaC2C11NVQxqOz1XjlR8dTVCmoLHrlAFOCimWcuXc5NDFM0IWjaBZ6qVNZqCAUyiDgnJiCow0LBDgwatbgD8GgIf3NuQVyCpfyNsGx/Q2fFWcXVcNxFFgoLOc1yYIrPVWOTXx1BQoJv4comqpBTlHZy5h8iagp0ExARiwEiqFImpiAQU6iUgTkxNVGmXKKCACx+ACCH7Y9EY9tthFVypkEbn8SiiDb7DH+JDHUZLtipYOnxjFaGKG0inXIj48goUPx5NRqrBT1HZy5oypghNQgGpqjuGyKoRCCagFUKJOs5MTRSJvghqx4x5Fx/MfJuy5RVYqb2fJRsUbvmpbZRM8tTJTSuWxcS/3WpqitKHjkRwKCgQ/HkRCqxESCKz1y7p00RKcoBqZbUNlVVZqAaDaoUSkWXJiaqRN8FBD8wsIf3M8OVUqb9z4+sELZmkkmeaVzVK7ZH3VpihtNbkBwRCp038eQUCrbSqK0i5JTIKJVIFmIAqO0oqiggmlBTqBSohyjTFTBvgpo/LA/pP4MuU9Tqn/AHIRttbOZGy0zYAGSOOD5N6lMENp7V44dBQJlx65BUyrwpVFaZVpmbiJVNmrDU5NtUmrQQTU1C06gElnKNBUyb4Kb+g/TH8jLlSqRQCx/U/hmQG5WS73UBihtKmrkBxaCpkz8a4Uq5G0yhtUKoUwcoxULUJqaA3CqFVlNQTELTqBPTrMTBSoXw5NQ9YuEEP0x/Gy5UqKg/U3NsNqmy7bFxeZC/s32ygfVQo1DaVMXIijQVMmfjWCkXJ2mbDarUimTlGqlOQTBGGhwCqjWEJqamgIqpNOpA5YYmClTfBTUP0Fx/azxOmqEfwGxDRkyGQvzfOb58TpiitMmLklEmKmTPQvVqkXJ2mUFuQIMqeojVotaAgQiXCpVWgmoJgCKqVTmUuKYoxToeCm/oAB+J/mZ4qVCo7H9DY2KkYKiKpLXNPjGuuMJ3mZNUdpFGuUChVMmehepVIuUtUKC3KEJ6eoTVIkJqaUGvVWqhzU1NQvUKnEqcgo1GqZN8FNvj8ALBD+1nirMAiR/Io+CjYTMmn40uZKWa64VRyIrfus5FOQRRtIsMTS9MXLCZUipkz8ahUi5UKoFOiuWcnJ6hVSEAxMTViVVJmKaggiCqlU6mTkFGolTJvhyZ+gQ/DH87Ub1qp1Giij+RuUUbxT7VNHDVeOeUVdvTVDU5BOvInpqjT0xcoKxUSpU38ZlRrlrVCpk5cy4WmUQqEE1BMQIUiqjIgmoJoxmoVOpU9NUYYqdN8OTbD8ghcf2tRvXqlTPyKPgoo+QWzVdNBV3ngdG2ldTBFBOu5SqJRpyYOSHItolSpn4yqkXL2qlSp65gtWJlAKkhMTQ1AJ6rXEgtQTQLVCp1OnpqYmqnDblFNsPzFh+J8H+EWKC5BUob+R9mwffLnT09LU3dC0OFgnXKlUCYimLkxy4oVTJn4yKmXLhVKpVKuVOFIqYViAbZoxiUV5QTU1RgAqdUymT01MUYp0LlFM/QAfmf5BchV6pkP1KNijaPkKevaULPHICgrE5F22Rc3KmUCbZq5Qc0qA0yYh+D1TLl7VSpFMuQdgp6pVWABoCYhaRVpTUxNDAFIZ1SCYSpijUap0PBTP0H/gBDxXGmARR/gzFVU/OcR8jY8G1XFx9TG91gCAjY+J1TptmrlVzjeMNOmJv4OVOuXtVKkU5qzaRUbasODEExYxKq9BNQTAxAPUqpVIpFGmqJQIWNimeB7CCCCH9oQ8Vqpv2KPhxxqw/HPkQc0p7eag4irKFiQjZ3idU6agmrl1zY4lU6Ym/g5Qrl7VIpVVGYkAyKlVUim2YmhSrkkEEE10VnKVUpcpSxMUKp02xsUy+PwCFh+pQ/A+whcqrVOPB9nwTmpqZuQWTb4rzhQtzdJxU+4flyohY+KhQJqaguYXNjhjTpib+DlEuXtKIFWlSJoeKNVJeBZgCKkXJkBqagownqQwLMpiUajFKyn46WmRRTPzCH8BsP2CCNiplB+xsVI/lKnj6DbItR1XGVbbSsmi4+YDGEbG4U6hQTE1cs3mRwapkxN/AqNcvaURrkXxKRNUgpFUJyCAjCcnnkS1NQUYaFKnKnQUiiUahXxX429chDyFGimWH5BD9ysfsFlFOUig/conmp+OptXlp2NvhvIlC3O0vFzsNijY3CmUdmoLkRzQ4E06amfgUFy9pkxcq6BSKBSKlVUgm2YgipVyKCaGAJtpk5U4CmUChi+FcCGzmZtVTVVMRHcfiEEBj+E/m25T0VB+RvklPdXPoICpEHbZzx9VRzNtWRRKmeLFGxuFMo/FeOZHAKBMTfwNuXtOmLmH06lVKpFSipTUCFHeY15ampt8SpyhTVOqKJnE/GuJeZXuTxyVDPR9P4izRQcbH8a5HhnN/M/wNuVIgofB8GxRtk2cvqgJ6ByHW+J1dnDlafi5hc2NwplGmoIqvHMD4+oUxN/LlrVCB5h8CnVGp1TKdCwUYRVQaxBMLU1YU1olEZR8dj4/i5DNI96eGB3F8vxz2e2QdYbw/Csira8VVYP4D+bUAiplGorFGxR9GxsUIrSMbE2P6wt8HqTeqi45NQsfIUyiTbPVUuXHAGFRpv4uXKWqLcq6JTKgEyp1KGoIJqCCqTVpqCamoDEyCYmGZvEriKeQ1su4K1ZUSxcpxf1HU+mkUHVHR0HFcpx3G/HQyurJZC6f8z6P4YsLlVJgUY8mxufBvnNRFQcZHQtpOdiDviMoQs6Kenbc+QplGmBPVSuVHAqNR/lIuTtMnmuIUioBOqZToJtmoJwqlVJqCa1iFpw0AtTHcBwETHmoTRGWpkMkQJjPF13Gf5Z42h4dnCwcVFC+j1rKqpmc/Mn9g8Vap0yxR8FFGxROUTm2ausg5xnNxczzUxXxySO4VSxlz5CmUaZaRTjlBwRjUZ/GVcnaZVBkcVIqBVCplOIwmJqaiqszoBiaW2KqEwsURpYPhvGuVVLK97I44Ymxyh6EsdYXfXbSCMNwt6qoqaiWV8rJHf1Gw8Vqp0y5RRsSick7I2zYl9XUVCC7c8CYrhTBtzY+JlGm2kUy5RcGmKP8plyQUqrVAXKRcep1SmZRIAJianKsUqampqbYmqUaYyGnoOJ+L0jzyLqWpjgbDGxykMpkW7KmOrjnEwl2L3vrp5pZ53VNOj/Af0ZYhVxp025RTiXFxcTm2crObOdG4OCcS740I7hTpqFzY3lUaamqRSrk1wJYovynVfaVcoeOD048cqkUqmTAC0BNRFcXlqYgI01FVSoqJnGxcLwtNSxvVWz6VIS0J6kT09j41EGkPEom2rKieaeSYsZC/H7lZubnwzxXqnAWnTK19Y6t+39n7X2vsGo7+/uMvb29plIash2SvhELbhToIXNjeVRJqYpFIuRHBlih/KpVZaZcwuMDk9cYapUqmUdmpoaHqtD01MTU1BPVUuDmoouOpRSNJdMGxxMwW4ezqdC6D6zWODiXCc1VXPKp3PexRTA/wY/AoJiF65UdPHSdeJ4X/Gj8X/5X/lD8U/5P/k/+RPxH/kf+RPxL/kf+S/5L/k9dMsCK/wDntJYWmIQuUUbyKJNTU9FV7eGLVB+VSqlFSrmFTNUjeNFUqdPIQCamFxrkU0NbiNMT1UOoDxVLxkjAW4cxkbW2N3Oe57gtnvMmXlV1RV8jK6gbTJv9jULmnhgRPYX777777bbZyTnOVndOLXkY+JUIsLPKFyijd6iTbPtXjii1U/5VanTk8cs0LJdxyqFAnhqYsNQBFdZqYgAgnKpZwtDx/wAfg4hrEQhbLjssvMhcjLvI8LL2vdK2qD46aCFN/rCYhemiUspl7vtfZ+x9jv7uzt7N+zfbbfbc1bKgOx2fHqKnjFmIlthcoo3eo02zkFyK41zFT/lVqVPT1yacFtxiqlTByCFmIJ65EtTUxBRjqZHxvxnjOCggaLHwU452y9rk9BPOBHq5SqQVMbafrYmH+Q+mpgs0ND3TST1E04k7e4zfY+x9n7X2/ufc+793733/APQ/0OqKHIOvwrhBdqncwBC5RTruTUyzk1ci2jTVTflVp6kT1yimBTjxRqxACmrGAmpy5OzUwNLE1nE01NU0kDW2ySsl2xcSmWlD0UUXBzqgueXGaNwLgmPB/oKYm2CjtUlxqnO/c2zJCYnMDPi/xqGNBC0rkELlFOsUbMRRTVyAiTFTJv41aKmT1yKlRTxw6qRCigAgCmB45OzA1oEYppOOZQ00MQFiiSXPL8lFBBZlTy9+xdsUEVIE5hh6Q0D+PPmNBE5jtWpyqif1NyGh/GtoIfj/ABXxOCAWCapZIwghc2dc2jRTk1cgJTCqZD8au06Kr1KinDiFUqJYamIWaZFyrgmKMAQx8fx3HcVTUoF3Ilz3P223yinOzOnF3jGHhwxgt1x/EXZz4j8RWr05VBNsmXJ/E+PqsoIaUAIIILYvFghc2dY2ao0bMXIquVMqZD8axMVSiuQT3KQcUqhRJwaGpqCapHcq5qaGKBnHUnGujTfBLi9znl2zE6VkpDnOdmZOs5222U5Y1xgix/E+yj6KisEVS2ry9TF1ijELZ/MNCFwgszTRMsLCzrOWTZiiRWN+QPMKjVMh+NWo1VoqvVU1kj3cUqhRCQNDAsNUi5csUabHQQ8PxPH8fHHYopyeZHPl2DuY5n/raP5vwfJyI2ncXOcS6piqbHyUbHyf0KzfKisEVS2r1KpC859G2fwCCFs7STxRhCwuE6zrEhMUaNjHyDfkI480/wCVWoVW2r1VsJ34c1CaiQmoWapVy5gjaKSn4rjONo42XKKcnqVTLdp+S8NTqN/xKvaupzap5e6Xn+cPJcd8kpJynHO22fB/gNz4i8UjVXGdPLrZRtm58ZWbAgrZ05miiQ8C7rOWSgolHdq5JfKRxap0LD3VqFV1uQVQKlrlw4nUKeGJtiuuYcxHG10VA3gOLjYG+CiXGRSJyiRi5P4zP8B+OfHGQva9VrXLmJnVzauIcIDI5+VjXXCKKP75sfEaF6RFVpqi4uItnKzlZyTbNs9nca13IfYZTxsCCCFwggnrLrFRt+q24XJD5c3iFAhYWHmqUCrkRXsbFVU8nH8PFUU0HHOoYaE8c+CbjqLi+Q4l3Gy8PBxPH8PFGB4KKcnoqZpbiGQKOBkTkUY+QidFU00/xgfEKDgmRE7WFs5sU79M/jGhekBVYawuLyVlZWcrPjN8dX1W07Wi4sPAs9FOtjjqSsIQvyK+WrhzCh+M4hFXC2jq+Gh4ST4xBwUPCScI3iKvgm8XHQVfx+Ljm0lXx0XE/wCU7i6emaPJRTkURKntCiUMTWp9pH1ksjnp8TQ1ORWAgsYwsooog/yRWKCpkVVGvLyT5zbKznIW3kIIIWFx4CkRLrcbRFVQTb14+YN4R0KH4Yc1kZpxDppp19enXjq0169NeprdQPRJTk60qK1pY4o0U4OTzWKU2wA5Ywh4zlFFFH8MonJ/CKxTVTJ6nXJGQrOc+M3zYLINwgh5CHmVEuNDAAqkhNvWj5ePj5hQQ8411xjH4YWPWMeCiiiinAp6w2GBjBZxmMj6uSdzbYRb5z4yiifObZsfwiuxQiRSrlDIVnObk2ys+M5QsEEPAQ8yoly4qHLnSJqARVWvlw+NGJC2A0Nx/cbFFFOUlmCBoRRLzX1j+dk5n7zFhYwRc2PkopyNs3z+BOUFHdqiUyeuUdIdsmRsm2wdttsgc7Zysi4QQQI8Ag3lRQbCE8vTULFVS+UxfFlGGtA/Y/yFFFOs8yOUSgQtIHLlxytTPytLzHGVTVhEH1nwU5Hzn9MtUaFmiMVKceUe922xTTtvsHZzvsTnbK2EwlEnZsCCDlZtm0qJoI2Iooptgiqkc1FwlHHAB/4ZRRRs9z3GSE0yFqoycryHyCuZPSPj+KObYIp3nKPgpycis2z4JzbPhqZbMSCrE5cq58m+4k7BJvuX9nZv2dm4cHLPX1dHR1deAQ/sEwk7BIJA+VxfQRsL3WFgiHtFEyP+0fgUUU5PUiLVAaYttIPlnIVlRUTcnyDXfF2NFnPznN9rm2Xoo+crJ/FiZeJBVpeuUJWpGMILOMa4wi5sgl7e4EHI8Ai2oGuuuso1CicXFyFgsYx/Pn0PwKKKcpFJbqa+klCKld8xo6WWWWpi4riaClF5BkOWbYQKNinFyPjNs5Wc5N8sTL0lq4yLkpmRlhbgjUiwTkRgteok1AdeQcg5zkIEEFZysvtBGxmLNQQ/pyVlCx8D8CinJ6kTi5zZKaUEmpdylbycdRTQ8Zw9HE3CcXolZWcWxdyciSs5Wfec5zmEtQtRuVcpjUJy2cQVh0ZjLOvUtDzK9U6bF1BoIIIOc5BBBBBysguUDGtdcFBD+gonIKackofkU5PTk9SIoGB9NU71c9eZk+r+txwiWHnL3OQ/A2JLpHOlM/f2bbZznOVm2c5gTb0TFWqrMT3yufsDsEE6QVOuHgxuAUSDmOphsCCDkHIOQcgg5zkrionJ6zs1yH82UTsfDfA/Iopycntka4PQfBVNqJ45+IqPibvh0fx/6DFJK6R02cY8kWw5PUyqGzE1Yrv9Mcy3mxzn+0OaHLN5P/Q+59nu7NqcsvQWrTyJcfsmVrwggFUBiaXJznua56K3LqWtBDgQQQcg5yHbbB2wIPHxuTiXOdAUPxz+G2c5sVkIkEFZzlqz+Dk5EOTxIHiVsi3+63lv9h/K/wCt/qO5B9bLyH2A5qysY8G7i5VCL6xjm6dfWYTTmA0/QYtEJO/7reQ4aoYS5UBVa2ojrqB9IIOgRhNcHTuYWvBcnrO2NcaR8uyvZUNkDsg5zkEGwOYVCipHdlRW8ZK0fhm+b5zbKyS4uJdlr01YQsE0eiiiiiHB7HtkbI2ROJZ0mLpNOad0XWI2hqCFseiintc2WGaN1O6ExlmpaRbAWMFYxwjXEHbj5VPEYJOLk+Of82fjp+PngncKeGfwn+J/jHhzxDuK/wAv/LFB9L6X0jxcdNTP/wBIc+Pl0XzCP5VHz7OWbXiqE4kD9m8lT8u+squQ5L5N9j45xoP4Yz4zbBcTnJOznoIgKOxKagsZz5KNnLDmyINla6KSIUvT1/XMDWGB8Douvr1F8eynJ6KkaY+rp+saZ1IaA8e6gPH/AEXUpp3xaacM/NjVUtSjGG+NTF0mlNEaA8ceNPGO413HGhNIaYUvR0dDqV9F/lu4R/Bf4Z4r64ng5Y8/RfJJvkktVQ1snPV3INlpoeHI/E/kSSU4ucX532e7MflpyFj0UUbOUiAkZJG9jYizRjS0RdL2ORbrrqBjBRCPjDg5EODm4PrC1LNOo0po4YRN9k1XJ1HA85TVmVnOc7bbbZz5xr1dGuoaRq1mnV0fV+m6i/zauF8mVQUH/Py/H4fhPF/FmRfxlE5Lgtg+xe1RrbFgmho9mxTk5PGHscpW4cCGtDQ0CSMxvgIwsC2HA+inBzSHNKxjGuNcYxjGMYuRUtdHS19P8rZ8pb8lZzDa8VPZnznO22+2++ugjlUUYiEQiEPSY+uUVQsFxXEUCjkZEyLFz+WblYcii8lrnJrtslRAPL98gtAQ8nwUU5ORBDlKHgp7cNGrwwATRNEsRGPBDh5KIKKcCMY111xrpjCwRjCwW1Ic1zXAtIXY2s4iq+194ciOTHJ/6Qr/ALXf2bZRTW6PEcLYAwRiIMAkEbHRzUU/x1nxXjPh8fxam4ttOItUbn9S7Ozi4ovc5xDmvDg1ttUEEE1w/E2KIKKcZTkKQPDSGvUZYp2hTNePTgfJsUU5uuuuMYxghYxjUrXTGKkOBaQQVgta3ioy2x8Z37hUitHJf6nUWaNDWaBobppKIqZnGt4lnGNomwAb7LObH9MkoWKcXouKCFgnGNrUFrhqyxv4Ythyw9SF1gnh9gnptnolycj5y4FFZzcjBDm664xjGPGMEYwUVUDUsLC0s69GsoI3Ag3P4hVD6eINDdMNjZQR8TFxTIBDplan+MlZWXEueXFZcisxh4DoY3Xa1oB95RJRQRTrGwRdlyKcQ8pzn2cj6JKIIx41LdDHprrrrqWaaa64WuMFSt6XU7oHRkYw1Qcn/qfe+z2Z284tI6GFkLKePimcPHxv1G0wXcJNcb72zfNj+WSbFxcXOLnWCNmmFOMJuEE1BAi+bZ8klOTk6xRctyiWmRziVJZw8E5sfItrrrpp19fW5mmnX19fX1dfUYnQCAxPhdEaY05p/q/QdxbuOdQ9W/3hzDebHNN5YckKsTbN4OHg4uPbAIcb510J20LA7fP758ZTrEuJTnXcmqJONOE99sggtH4lEkudmz7OTk0kuK2kOXXd4KNyPIAbp1demmuFjXGNdddddSCMEOYYjD0dIi6zGGdRh6TTOo3ca/incO7iPofXTY13766Z7V1oyl6x6znJP7E7Oc4utkrJUaaog0PIbYWCCJ8YubFOWCin2KfYJyy9PLk45d7JsbhuuAhfGNCzrMemmFjGMYRbq5upZp1lnVhyazTXTqMRjLCzTqNN9br+rp9jtC7PtdxP4ZzcklD1lOKddxy8lOJRRctoQob5yEEGBZ8YufGHFFOLbPRs9BORT0U1P8FZR9BNWurUFrpprppqsFmhjLNNNMEIgt1xi8ia3Gumummhj6urQx9uuhlMpgbDoGrHrPjbIIQWc+C5FEguJQKcclElFwMADokXucjIxNtt4HgmxWHErDk8tJEl3WcinI3y6xWUfQDU0ahob19eFnN8Y000LNCzTUjGuNdNdZlgjybYxZ9Z9xdkdi3HrOc5zlE77bLIWc2c5E2JRJc5xJcTncuiaomhPkBy1jBfPg2NttkSUA5PdeRFZdZ1nooo2chYoe2poYmjUR9ettOsxFmMXzlFY106+sx9emuC0s069NdbY111IEYcU13bv+BOVnOS4uc8SNcHAhOObE2Kc5xJLnl7iS7Z5c7FOwqJTTmaOLdi333BCCHko3KNgppSggFKnWyjZ9yij4KzlFFbNdC7AGuuc2NyMa666a66FmmuuLlaFjWluC3TTXGupGCsT8m3k28nCWtvm2c3KKLt8py2DuwPhkesk7YWSnHJOXuc8uLnPc4JjExk0udyQg9qaAbjyVhG2U+RznJqyFKnIrILrORQuUbnwU5FB8c7HtLDn0fGMLGMeTfGrhAwt1LNddCwsLNdS3SQS01LxMUN8k58FZy5PIcSXOcU1zJJXUxkcHEop5y5xRT5NpJTI6VkpcoY4WlRGWXLWxxtAXYHABC2LZyVnCcU9z3FOsVmexsHSIJyfYWcibZRu5OWQ6GdkzZO3fffbbbbOfOc5RRGCMXkMJ2z7wWluKav42nijHknKKBRWck5JEienO7WO2gIkfJGQnFzi/cGad0s075+4ysdE2GEBgcpZciRkv2RNE0NQQsCPRWXPJTk9GxT1G+VBTILJWU4Zs4lZysokkoonIdDM2QS9nb2b7bb7777ZznO2clOWc7ZtUIXyiFttsiCNKfhKaMeCjYWcWrJTrEguT3iRznnJmimic2Rzo2lznOc+XZztemenfxv+YOPZTNjWcyTPndNLUQT/YY3thiAWBYXySnI2KKe4qQ5UiCctnIOTjkp1zY+CiTYlxNs7Mn+wJu3t37O3v7u7u7t9s5WCs522332ImFts5tnOc5tBE1ngmws9NWXFxKc4uJmUMjy5znGWldHKailcH9jpXSNcH7WwWEa4L1Gaurk5Q1UUhMctM+OOCPIka8IAAAo2KKKlTbPMlii6M1KCLk45LiSgSjZ1sorKJJLnHPnYTd/aJ+/v7S9r9kFsHNdnJJfvvtkkrPZtnbbKznbOds58nwCnEKR4daQklSLbeRz3PfuyofJx0hl7JJTMJmv2222e5ZcowFmtozSmWKoUMULY0+obLExoaEL4LUUVMslOc5zi9PVHJKQjZ5RRRsU+zjY22Li8vc4Pej5Kct+3ubP277B3Z29jZDM2XsEm++2bZ23iftbbfs32z5Hs22TjtK6E7KQpyepDtI6qdtsHhzJYpnPmqOwOieHrIRe+ZhwFMSgaqmro4Zoqine1zqqB4kicxBBNFsYIcMSjDi4OdNM2Xencw4ciXIkrLiHEk5JyTkucXEuz4Hl7Xou37O8TdwlEom7hNvvuHbGXuEwl7OztMlOisakLOyztvvtt6zbYokmV8RaXKUmzjMi6V73a4TJImzVM1e6qZMxzHROyXB05nlpyUFKXLR7uUhp6iF9JLDK0QtbPCWAJox5KcHh7CnySumRQfHJHIGOEpJKc/OQiSck5yS52xJdttnNs3KlaRY2zsJO0TCUS9olEvb2GXbINpnwrbs3322tqt+3byVkJxe5pJ2e6d8LmmQyFyaplIXqZ+A2wETqln0HcTFQtnZWx1jBE3aZtc/jZWvMhW2Z3Sp89HyH3YH/AGoq6gUTGNaB7xrIAppJg+QSPW0ZimbI5SJyKy4xFFxWSXHZznlzxJtsHA3wsalpUjHRFmq7OzYO233bN3CTffbffs7BNVSB3Z3ibsztttnbZY1zYlxCKy60pKc5ypnF+7k5RioL09EaiHp0bAynFP8AU+p9cUzqGTi4AyWoT1VM4xRsc2rmNZDUVTjMaCOkpuOYIWUFHTtjY0Afi5OEzZpJHA9gkXZRue+VSrJOY09E5cXnOznGRzxIyXYOa4EFqxrrgtkaU8OW2znI21xjCCKyXiYSCTfL3dvbvnVFbd3bvbbZF2S5AyIHIT0SpRRrZrn2hdIHmRBaoIMEbGiPqEPT1dJp/qvo30T4JYpp+H5+u5Plvl0XyLjuX5KvpZ4wxjRHSxsp1A1kbW49mxTxUy1KeXuehI2XTj6nsma+SxILn5JJ3D3udK9xcUE47gtc1NTbYwnNe14cisGMR9eriw5BBBLs7IIrYyRydgfvtuH9vZ2Zws7l+S5pWcvROAZTsVOImk7uc80pjUole14TY2xxtjibEIurr0WFroWGN0LqR3G1vxyb4OfhEPxJvxqPhm8aOMbxv1IqaFkCaB+ZEjZKSfiq7iXpxmMU6jeJJ5llyCyXh7nElwkkfsS5nVq45CaWkFqCAxq8OD2vY5b5uFnw8l4k7N99t2HPZ3io+39r7Hd3/Y+wKn7Pf2Y0tqpUU0htSYE9EYaSx6lTABVx9TY2Qx0zKVkAi6wzVZwVjXIWpbroYTF1dJh+t9XrYOnoZTRxgfnghObVycpTmSVB0ctPNHO6TbaRwdtO4SOe4ufnIbkyOLkS0EsLHNIcxMIaI3QOp5qWWCaMsws52zuHCzlgt6y1bF1N7ws5tnwSi3R5LwCx4jbNHIxrAJAnjr65oxDFTxwMibGGoDGumuuLlmmQdcGMs106+rTr0EYDQP1N521lFyDHSdP2KZwkNRHLG7fYqpMp3e4IASmUzbvfgQ9RYC2aJ7Swta1NZqYzBLSzUstORr16FmM3eSd+ze1QWNWd+3cH1lBB2cI2LC0RBiLkY+r67YegQdXS2IQR04jDcYws5ysYtrhEEYtla6i2oZpgesoeTYp6qn1c3KRuTnMiNVK2lL30z+wubJKgSA7YPaWIxtiyZd3TdyMUUjHsMSAiHXrp1vojx9T8fqqMjYoOK1wGuaQ9OQmWZ3NemrVzLb9wmEwfvttlAh1sOQbqQR1fWEQdhrS3Xq00DW+sWN8g+y3GNcaYDQy2PRWRceSpo6+hkVbF1xs0DQHKEOUxy5axBycAwR9XWY9cFFa6uTnU01O6nTDGmjAZp1ugMLo634zVccY1kuCBLnyNWet0Jgc3UswEHE210LcZ7e0TaoWzi5WpWdNcauj/ABFsYwsXLcYvjBti4/EnKCFx4Ke6arqZZHcjbLbFaNGHN1MfWGPDm6adeMEBmvWYhFiSAR0s9PJTSRmJFugjDdZI3snkqzPETjXXDlrp19ZQkTgQi7KyVqLAlAWysCTI8FFaetdcBuLY1xjFs58Yx6xi2MWznIOdtsoIWHg2mLo+QlkNWxY00LQWuDwOsQfW+qad1P0mHqLNNNdVjW+kFRDJBJCmtDSgCnqUSMnZJxtZQYznZ1999lTsKzgjTXq6Onq0LFnOVla9YZqSGhtsLXGEEEUEHWwttvWMWznKxYeM77Wytt87IeBc2cizpq6KqpJA5mLBBaiAUopenrwVp1mB0H1ujp6TC6m6g18fV09Lo4JaWopJYiQ9YwjE9jKIU3I8VVcR16a66ooIxmOlag3pMGiJD9ts4LdS3W+MB2uPGv4FuAc+NcLPjGDckHOc5BzlarObYwmoC4Q8YWHnkC9OWMaaNiETQ0AYwWdLqY05h0xrrp09BpzH09HR0mMwBtJV0sly3RrerrcM1VFW8RU8cIizTXr6jT1TGtWNC3rLdekRYMRgMZiLNRYrbW2Qcg2zlYW2fGFnKHggDO+3nGNdNNcILOcrGuNddMC2Qh4csJ8VdR1ML7A4DWKNNa2MRdHVgrCyV1mnNP14WcFnWYOroLBA6Lj5o5WOI16yGLScQtezapiraN7shuumlaycNaYnUxgMbog3OwWNUWaFmuwCFsYWMLOyz6zm5sDttttvlENsHbYxfOVjFsYxnbf0EFmxRRkE5XK0VXCgstDU0MTQ1Ba6GH67oOksI8EaGLr0ttYAtpJo5C5gzaR8waZnTJ880XJ0sZjc1a6SMdFjQt1x1lhbLTtperTC1LUPOfOCi4OCyPGb5thFENOcixbgOzgecYWdlm2uuuMZ2zltwiiVImhTt5mmLUHNcx0bo0xNWmmmpGDG6LQxGH65p+nrPjGvX0iHTEUlPUsO3aTMmviUrJmVFPJNUKRRSxSBYYg3q6usg3xixbqY+twA111wsY8kEeMh2cWyFi2c5wh6xjGd8onNsofhjXVZQCKcnDTsNTLNXCsbgWY5jo3RFqCas4001069NTHoY+rr6egwmHp0wELa6xVDZSmvnd3U7xI9PdXxvknZmNzC08ehG9wZoWGLq01LdcFuuC0tAtjGMYtjFisFZ87LO2+6xg21Wdt999t9ts21110xnOfAWPIFyNC1zXRTS1r62wWQmGExKNgaGhvnUtKLMELGpaW66demnUYtEUHsn7+6VUlVK4zVZr6gTVEuxdDO2o4ggYxjVywsamMxmPUtIxhYvj8CC0sW+U6+c2B3zi+uuuNT7BBtlFui2D85zt4HgkJ1nO5J8zprNGNGMpxC1ibfZa9eFuUWYxgtws5WFm2MaGJ8RgCeuRraTlxM59dUd8qBD+yqqqOphmacYwWFpaWa3x19TmA+sXPg+MdePW22zTtn1jBWQjG4NRTTt+Guu2yzts0i7rFzDOuQL1UNDmlNMIgjhaxNWNOrqtthzNMZysYLDHprjF8a4RQRQp+d4uWoo+ddV1LqmYPAQFaIxC6KRpBRZgtLNSsa2yo5xILYIwtceHXys52tgixIJagttgt9srNsXI8A5znO2wOcosts0IovaXEuaah3JlriJoUDGIGwiMAAZxbJYWaB2cFunXjJk2yTrbFsgkmxs5s1HUfH5fi9Vw7uIjgasa1LAYqqnqY5A4ANc3CI1I8YAQcyZs2ddcLGMYenNxbPjOc4LdS1bAOCwts5zbOVhYxjW2DZtgbZtiJqcRaV0kvbPU1MhLZKpYxEIBCo01NsFhYxYtwDfBaWhpb19fX16YWMa4RRsVhOY+jk4mXhX8IeJj47/P8A81tA2naxpDskrDmalumumAs5a4FrxL3tetNdMSIo+MLOc58FZzknOVjr0xttlZz6xjBb14xrrrrriO0qhRUzqiaKapEyeg50wtEoFEoywhwKwgbZWuiJ3D9rYIIWuMY8EEWKCIWC3V0bqempurq69NOrq1wTttm2pZrtcHbfcOa5szHrEzSis2xi2vnNgitch3Zm2C3r00WwOyys5uVhDyFtWS8a4qrPJVUCklq3SVE80cmQ6OSB8JY5haWoNwtdc5zYgsMZZhZts5wWpvri+MalbZ1wsSqjjcwwmILbOc5LdNXLOwk7N9MLUNxjAC2a9snZUSlZ2C2tnxjFsZyLY68WbJssi5GmFvvkIux6zYJyqoqKMnkXTltTUScnVB/cIAxqa6B8LonMLEFnCBzlY0zvsii4LGMY1vjKxqVjFtTEYi3O+1c5ttCwtLDFoidr4LHMczP/xABDEAACAQIDBgQDBwIEBQQCAwAAARECIQMQEiAiMUFRYQQjMHETQJEFJDJCUFKBFMEzYqGxcoLR4fAlQ1NjBhU0wvH/2gAIAQEAAz8ChZQbuSfAp+zcXEqxeDPC+McUVy+gsSnoYuH+FmP4fihTcVWE4dyvxGI5y+GLmz4hVRiRwKlVxJw0XLG6eafdTcPKfueYi3pXpJ8M/Y32WPMLZxg1F6iUfeDeI7lyWJ+5zIy4k7Vst43SEX/6En8EYZba38t4t6cfoe6XLfI2PH1Vf/x2l3Z4yp3ppX8niKuNeHSVc8dfxSUU8cer+EeGXGvEf8ngovTVV71HgsB6qMGGuclJ8KqHwFiUMnEtYeFQ3iVW7mjF00FWPDq4FNaKKzE8P+F2MXFulLMbB/HhsnBpL5WPOPubJwz/ABF3PMRb0vw+5Ph/4PMqy3y2enAZYsTjjprLZQbpCLl/7li+xGy9JuouRc4HlltrU5NS4Hwf0+2Vvm1jUNFfhbYiZh4zdb5E4zwsIfiMVcxYWGlsJ8iirkLDiM7HnE+Dq9jyDzcU3kW9Ldp9zyDzast8tnGCbv8AY3TzzeOJLL9PYUFrHPgSWLyb2dsrIntlCLF8rnlots3JyuR+k3/Q6cRQ1JpofwbdkVLGqqiJPhXebWxZZXy80nwlXsfd6j7xiF6S3peWjyDznlvls4oN03Dz0b+xbO5qWW9lyysi4oLm4cBaixc8rYnK/q2/QL7NyC3yV+Bq2d03oZKzkor4oWHVbht7mV8t8nw1Xsfd6j73WcCxb0fKJwCMZ5b5u57yLIsjV4g3oLFiS0ljdy3S5vbFi+e4T7Fyx0PLW1f9S8z5STy1s2HTwPiYSZfYvt+Xsbx93qPJrPv1RwLel5J5J57y3zcz80sjdI8Rc3uJbPSoLZRncvnCIzilEM3suB5S/V7E4xb5OjojTwOubpR1Pi1dj4ag1Cped9vy9mcBnl4h/wCotdiyN30vJPKPPeW8bmVifEFkRhn3hcy4z+M93OFlfLnxynK+VixfK6PKpLbN9q36XYnHLL5OdnVSORISLGqrK3oeW9nymf4hH2p/BY3fS8hnlHnvLfNxZWZq8UcDyz7xlbOYLLKxubXYmM7Zb2X4Ty0W2b/qO6zzi3zkenuPK2e4XxDR9rG6bnpeSzyzz3l5huZRQyfEVG8jcPvXHOS/UuI3ixul9iOGdycv/Eb2UtHlIt+rbpOKy3yaE+eyhelfPcexum6eZWaftek3Dd9KcBnlnnvLeN3LcZOI33N5G6fejeuQiYIZfK5Y3C+fAk4LK7LnYtndHlL9X3DzGW9e+y5KhjGPbYxrZ3GXz3Sx5tZH2rR7m4bvpeSzcPOy3zdyjCqJqJqRufwL+qLk0l2QyHlfLdN/K5BJbK+V0QjeeXA8tbV/1Hy2b5b5PxCdoqMTC/xMNooxOYn6ts7m6zzC+W6WN+s0/adH/EThm76XlM3Tzst43cvKZfsTim7J96RNRCgvlfKXOW6TibEZXk3srkm+SyWeWi2zf9R8suW2b+s1xuUVqHb3KMTew9yrtwMbwjivh15CxNpeHxdD5jZV0G8ZUQWLbO6zzS5JbLzKiPHU+5OCjd9LymWPNy3jdyjDYzzkbp97RvycM7k5+WTi7HHLkbz2Iqyujy0W2LfqXlly3ytVHddCjxFEP6DwXqw/wk2q47PwXTXzMSor4ldX2hSmn7m6W2d0jEz3ct9keMX/ABHk0+xb0vLZxPMyubuW6Sjz6TdPvRe+xYh5WIoN/P8AnJWOhckuWN84ZRQi2zf9R3H8xBrUMjepsQ9NZOdOLVf/AFKKMSIRRHAjFlI3drdZvm7lbLzTT4v+T7vT7en5bOJv5XN0sS8vvCN0+9EV53yuWLG6zeLZWz3e5NeW8WL5byNwts3/AFHdLlvk1VsQaqTVwsy+irjncVVyFlba3SKi2VsvOPvJ92o9vT3GbzN7PdLE4sDiD7wjyz72Kct0jK2UG49ix0Gzib5Bpayl9TgXNxbV/wBMvsz8pYS4VixBVZTm8PzaeKF4rCTWwyxbasbxYtlc81EY0n3Wj2L+lum/V7m8s7FmT4iCx95LH303yEQX2LEUvYlH/iOBax5hJvZXy3kbiLfq298rj0P/ABajGw4137ooxYpqqFjU2NLyk1UND8D454b/AAtmulPZttWN7K2W+b9J5hPg8P2L+lus8yr3LrOxusnxLy+8Lmbp98N4ujdEmS84VjcZfZksb5Y38rly6NxFv1bf+TsJLN0VWcDVawMZ+zFi0ys9SPg+IVaPiYaT2Z2rG8Wz8xn4WXPuOH7F/Sszzqi62N1k49RY+8m6ffDeOBYvlzLljd2LEovl5hCJxJyvlvo3F+r+b8nT4eiWzEx8RpcC2VyHPA/qcP4WI/MpOZOXxvDs0VpGvBtxPHfEqtTp5HjOx458NJiLCXxPxbe9lYueYzy0cCfAUG96Vjz6jhndnlsnFbLH3nqRST4tm92IaNSN4uiCNnqfXOx5hum9lfLfRqoS5mNiUalhuOsFeG70/qNticc4fIrDpls/qMSKXYvqqJJzq8H4mjGp5cSnxnhaa05lEPLXQ0f0njmuCZqogXpbxBbLfZOCTSj/ANPpN70/vFRwyuRUyMJl3lPikbpHimb5dcy8D1E3NRYikvtcyEeZ1LG9GfA30L4dHicZbrU0oowqYppSPD+KtiYd+qH4TGa5fqFs7Hnv5JpKlDxMRSaabZQi2UdzS34ap+xzzlLEXFHAt6W8cCxCLk4BFCJ8EbyLel94qN1Z77Iwnk4PvZbofeajfJqRd5QsrDg3tiMrZb5uE1vK1Rrorq4Kn/cf2p4xVNeXRxFhYaooslbKULxeE6KvxcmPw9Wlq/6dfY3TzmW+QhDxceOh8LCnnlfZfhPGYOJMKbnx/D0vP4mE0PwvitPI1UL0t4sWLFzyTyj7q/cuixb0fvLNxZWN5kUG4Qj72WPvFTN4isjO+c4hOxCIXtlOIbhvMv0Pj16V7mJg+F+HpivEVk/9P5ZT9j/ZeFQ15rp32Wklkmmo/qIrSuVUVqiLnwm55erieNrpSVnzMCiha6iN7Bq1o01NP9A3CcZlvkU/GGlZTk+BbP8AqPs+iXdWL5TSQ9a5HxMJelctlYuThnlM8mtG8ixb0fvLPLy3C5c3SUfezdI8RUeZ3JrzvlbLzc4JeUrLzDcNOurjUuA5F/WYbcXle3Qqx/8A8gp1XwUqbd1/4yFBu7E2KanTVHBQaFurlLNFUEbbrmEPnbLE8bWqqlpwzC8DhaaVEDqqcMqorlM85vrf9AjDPNZb5GMTVm1dIqqU00tpdCqudFLq6wYkLcqv2GqrnAirFwm++xrTQ8HHqw/Succ948k8o3ay6Lel95ZOFl5eU1x/qeWSfeiEeezzGX6bNhKep5pq99iMnDPMH8IjV/YaU8uRHi8O7V7Cpw6cVredKJZ8LEX7WTlJwYlhwLGXA/FVSoUsq1qmJZUvY4GkmkergVV4lNHNlVXxHwmyPgtwuyXYlp4n0KPC4cJRBNpJeUx+gRhM3v5LfKYWAlSzCr8NLppv0Rg4WPXTpU9ijRwYqfEOMtH2nH7kbqz1Cw/EU1ot6V895HkM8lnmVl0W9L7yeRl5ZBq8SiKIOh95ZukeIZvm8QXL5RkqsR52ysWN0nE6nlHEeDWlXRS6eLorcGH4jxGFXh0p4bumrmjBpXYgWNRVSx0OGdc9NzSU4/EpVbqS4qCNMclcdFONiR+HgV/Db0tpce5W6ata4o82qprjwKKcd4jVxULgU14mpoVCIsS87foEYTLlvkrZfE8SqvySU0YOnn0Zg14rc8uZhV0reX1KMbElPLT9rYBNBV3Ku5WVVOllvS3srm+jyWeUzz6kXLel94Pu+W4QjX4stlPi30ynxNRvl875bpY8x5QRnwLHmHlG7wPC+Jxd51U1cex/SL91PJyWFSjTWq/4ZruSSiC2ToqE+JRjow3Rp/koQkhbGmk1TlBJb9A8v142bFihqmxh41NiMt3KftXw/ubi2LelbKxc3keUzymfeavbLd9L7wfdstwjDqPieIeUo85lj7xUbzNPcsXztl5jOGV8pyig3yrEwt2lv2RXo4T1hyYnwaWneXrp5ND8N4Wmh8st1ixvLq48Pc3INNRBGxpGuY3xe3vxOUczVVu/UsW/QPLyt8rJJC7Z/E+2MA3FnYtt32bZXPJZ5NR97q9st30vPRPhnluGnAqNWI2OcvPrLH3io3i0lhkPKxY32X2rf3FiPXK0qpSVeMw0njUtPhO6/wCEY3hUnT4b+oSd6rpjq0OrD+G+WtCoosoykdOLK/CPRDyjO+e8WIWUDqeUUwrGpiSuV41W6rGHg3qvV0NfIt+gbmVip8iroVYalopX5ih/mKP3Io/cij9yKf3Ip6op6oXVC6oXUXVC6iO+cMcG7nr+1Z/ai2dvQvnYsWLFzymeTWR45osbi9LzUT4d5bp92rIws/PqLHn1lyC0lpL5WNxm8y+fItlFLNHipqo3VxxHVEf2Psmu9VXw+9PBmD8Ol4OLNHIo46bmlEiIe1OSaN4SOBGWkmehqHEjX5XW+hixfdXRWRRRVv4k1dETwt+hOuOgqRIQsWnT1PDV8UeG6Hhjw3f6nh+5gdX9TB/fV9TC/fV9TC/fV9Sj99X1KP8A5KvqLlitfyf/AHVH/wB1Q/8A5qh//MzdNLF/ocpL5f4uN3hbN1t3yvsWymhm5iEfaRum6vS81H3dlzcZPhq0aMFInKMao4nnVly/DKM5N2o3nnbLmQYdPGZ+p4bxGNTRifEdKvLcKn+EYPhlQ38OjDndoabb+ph4iijFqqfRvY1IixG1fLfLHEvnK/FAkfDoc1QjFxm14dav8/JGLrvXVXUOjjlb9A/qMVLkLBphZr11sS+hBcm59T+j+zMNPi1L2dWJsWysX2N7Y3DdxCPtUsbvpb9J5Bc3GeTUblJCN081licSskvlYtmtDN7O+xqpc/h6lSow9FUy58unefT2FXV5lEfz/YwqYmmWuD5mlQvTh5tIeXNjZ1jKmv8AFTKMKnCa+El3VhvFa+Hb2Er7yfRkFv0DSpy0DYlxZT1Kf3FPUp6lPUp6lPUXUXUXXPvsuByTTchDKvtL7Sw6ImmneZ8PDVOxCJqb2LZ3zsbxbKxulsQj7ZXvlu+lvUnkM3jdNxkUo3cpxqiDfry3iGixfKFBuVF8uGTqXL+XBXx027Cqps063a/Ix/tLxFDxcKr4a68zB8FTV8OijVU5cK3/AHHQuMLpSoRHoxt3sfyN8ctJS+UEdx1u1hri5IL/AKBNRFJFJqbPhIrrfH6DniVdSr9zKv3Mr/cYn72Yn7mYk/iMX9xir8xi/uMX9xjLmYvUxepi9TE6lXQadyESrj1H9F4X4uIvMrvsWIpLelYui2Vix+M0/bS98t30r0k4DN43WbpwRulicZli9ZBvZSRnuPYSNRXTe/8ABi+Irow4+Lj1XivhQurZqw14fwterTxxKvzvqOmmHUyPUnY0ksVKzljOrJuaSfnrZ72UYbymvO2zb0bFil5NyPhxK/EYtOPj0xQrpCwqUlncg1YkFvSscCxY3Sx+M0/bdP8AxFjd9LgeSeYzdZYuWOiPNqJk/HlfYnLceyvYSrpo+F8W9kzArw68OHQ8T/Eq69vYw8OhYeFf3NK9eUXk+pGxGxqzj5y2e+svLy338lB4rDf+Hq9jxD/9pmPjtStJh4bVVan3KcClKlRs6aTn6djdN0sbpYvUaPtqn/iN1FvSsjyjzGWN8l5Szz60cT8ed0WzseWzrlJpbHPNnxGmlW/+ExcJLRhU4f8AmrPhU3d/Xgsy36DHoWz3lluZTiPOwut/Xpf5UU9CmjkRswfFr7EenYsbpY3ct40/blP/ABHlr2LelunlHmMseab7JREnn1ZfjP4yvsRSzd9yX1y4cjU0liw+VMSU4f8Ai1/Eq/alwFSkvwPo+Ivf0pypXFlD4PO+zvfpO9lYsb7zkmpEenOa9Cd1Glbd8rZ2N03ct00cTeNP2zT7o8qn29PcPKPNZY8004jyk8+osLRVlDeV+xbKURbK43wuVuqVRX/sYmLFdT0yrX/1kWBSlTdf7+jcnLD+yPA149b4H2h9q/HrwHg+FwcKmdWLeex9pYONFeJRjUc1o0sp+2PszCx1EtXgjPllYuYeHaqpL+TCxvwVqr2f6Pv57rN4sW2b7E7M+lypOb4+rY3S2VhVm8jR9rUM1YFHt6flnlnmvLzSTTOU41RKJoZJ0zg3ct4+LWqZiTTVfqeIqj4eq/RladPxsd1Pnh4bn6seia+fKBU8FtW2XUP7U8M1LdS4FX2TViYWPh1PBq4/5Twqra8M/iYlS0qeCRV9mULw1NWrDtJ8bCVXU4liMRrOn7N8LVoc4z4I+0K9eIsWuF+JrkeJ8Lip4vm0deaFj4NNS5qf0a+W8bjL5W9T+PSVI8R2I4+vu7FzeRH2hhsnw9Ht6flnlnm5RiolEMcxwkdHi66XyGTTWjiXN4jJVUSrG80V4da1UsqVXDgaKvipblV+BjvGpw96vBb5FTxHi17y5FyPRjK4q1wMHxtWqIq7C1W3+cGN4fxuh2w1dnw0ksrmnFeVeHhPR+LkavEY/wDUzXrWmeg6cLRFjE8TV8OiniV+H8FhYdbl0rKf0bzCMMvsf/7sx6Nskimk6IxMXgiqr8QqfXdbhXZVg0KS+dzgfesNn3PC9je9Ly2bhGNk/jRAsaF0K3U9KMd30Mr+NOJR2kmUjEopcrjwJ1SoZi04miuiUyrBroodNmjTi6WmlJNVKSgxFbEVuDKvDs/qPD41FcvQ9aK9XhcSih78yTWsPHh4On6GFQqVRh/Dw+qd2QuEIt6cbHOBUkEln1G6xnxUzDr8TiN8G5MLVxsYXhUtNKTNFP6R5p5TyvnbZj05KShchL5CT4NOqr8TJpRcvnuIjFw2T4LC9jezttzhs3T4lRX0K66pSmbGjS3TIviOriaHdGFP4ESon2KFh6XTYjfoV/8AcoqoW6UtLUpMLFqbRo084EU4yvzMPDr/AAyYaSVNPsasXdhX6cBULq+pHqS8rk7Omkc/h4C58SSXJH6RuFicRnl5bxPqX+Yuf+7X/GW5lfK55Z+AnwGD7G/6VspIzW0tpfIwX2YJQpqem3Mpmyj9L3Cx5jNzK5Y+u1ckh7E58flP6jxEcldmlZSixfK55Ru0E/Z2D7G/+mSUzw24ZpwqrcRVVNq3qx87cik3TeZwOJvZdM42Pp6FvkbZ/Dw3VzeUIlFs7nknk0vuT9nYSN/9S03Z8GlsSqvGko+H+K/ToUY1dqpE/wBJuTQiKWbzN7LeyhCed+JbYvnPyli5rrSNNCWe6WzueUPF8Mo4j/oaU+KN9fpc7V55GpSr8yvGpe9HY+BVUqeaueIiHqVvzMrwsWa/qf1WEqrQ+n6LfYmpEUoihl2eblDyniac0Wy/8RfZ57CKRdRepbLViTlCysWzueSa8FbmvsjT4dPQ6Pc0kfpEZIpXX6k9S2cYbP8A9XhvUtZieLqrVCSK8TFqbbki5o4lVNFdH5ZsW+cn0L7G+svLeX3hl83kx+jJfJJFIjvkyorRUVD293JU4CfXZtnc1UwUVcaRU/pneRUe/YbN3NNH9Lqprw69NHHSuBX4nxfxMLX26j1YWqdTpTqn2uYmtYdD0rm0YP8ASU1PFp1NXvc1+HeLeKnb0ZL/ACV/RvsbyLG5l51TNT203s3yi4xjRb010F0ELPdLmjw9MdBvnm52L/p8lNMa2Ux/2Nds9PA/rvs6vRTvxD7j8DTVhVOxPi5q4JSfFqnmVeM8SsNJ341xZFPhcGjDo/DSvUezHyl9icTLdN1k49S2eJxycjJZDLFyEWJyklfI7pcdfh1I0zdOBcv+pQo4dzU1ck01qESpy00DwbWkwPFVSsPT/cf9Q6Y5cSip0Tw4MwfDYW5x65Rsr5+5bOMTKxFDPieM/kVJS1fNCezJCIJNSLNCaOg+Uv5Gx8XGSNFEF2Wy3ze/UmWJZ0LRlppqY8Ruuqq34jAwq71Tyg8LjYkOp0wbu5f2NO7N+JbKM52I9JIp6lPUXqRnfY1VznpwKvYT8XUxMSklZMY2Og1D9iBmm/EcfhORpkfAgp+HyfyNjViuotsTiF/Wn9F45VKm1urFZSS41HxFD4GBjpqqV7Mwq/w4jTFyxfqj4KSWK/oKiP3EcRHfKS3qz7oq0TJjUc/4MekxuZjUmIuTGXuIoMPqYdS4mG+ZR1KHzKeouu1Z5XI8NWVYVZPIl5XFIr3zubpbK2SbRfKUPCcPhlPryfDwsrl8pxcrfL3znnlOXX5Kc5OXAdF0yvDK17GoQnyMNmE/zFC5n7UaufyEew6HE2PzElIhFIi5AxoqMTqzFX5jG6mKjFT5lWNTctnbLek+JQ1BdldLKuhX0K0Voa5ZSXLFiSxY3OA5GPLBqXEwqvzFD/ML0Z2NVRpw0WL5U0TvXK/EeKTnd9/lY2rSWzktsQvkpIGOpdDTeR5yhli3r3sSnJZ9RxwKqSroVLlcq6HbOxbKO+dhWyigjPejLXSMox+KKRED6D/bY/yC/bBT0KbZPqVFZiJGJPUqSH0Ox2MSjhUzxVLti1ni8Nb1cni8PlJj0K+G2afxUVGC+Lg8M+NaPD1/nX1MGrmjCf5jDf5inqhZQYPhat+tU+54fGW7iUv2Zh6fxGHhpuRUzTg71Ri+MxpxcaqiT+leq17/ACVxehu+jPq8ycpZeCxIuJxNQmpyVSiC3D5WckKCnoUiYi5KGVIqSKuhX0KuEDTIpgnP+kaq5FPicJVUvKSC+aEU9CnoUPkYb5FD5FIsmVrkVdCroPodhCyTF0KKvylD4ITIMWj8NVS9meMo/DiVn2lg/wDuM+0Z5P3R47Cd6EzxGI/Mw3Qvcq+HFFO91ZiY9U11Nj8LXq5C+Hu1Mr8ThpSaadKt3KPC14deK3i11XowqP7ldXhqXi06Kn+X5Oc7kZyjkXJ9G/p2ex5huF4JnoTYtwsRh1DbLnlDS/QUxPkU9CnofBcoaY8tfh2jE8DUsPE/AYfiaE6XnvfIJ8inoUvlsI1PZQinoU9DBwKZr48ias8PxmG9/eX5THr/AMJyu54ynQqMF1vnA8ahPEfwXzi54fwFSrn4tStNRTTwXy805W9st7YimSdiESR6cFiXlvzlpq7m7lqtwLZzTPCDVwFqZb5KPlVpF0RjeC/BVboOleZSYD4uDw1WJGpL+Tw1f519TBf50Yb/ADoT5/IoiwoFswTUfDw24PEeKxaq/h1R7EO+eJXGNVV8ChcXUeHr36PETSVVfgTa9iqriR8zDNLcHHqaiRjk4CpJzn175SmcOprgsb2UkkOSxw6kVOPoKDS+23K9KfVj0LbMEMrXCpr+TxFPDFqMarAmqttmIuZWirodhcygw2UdSjqU9RddqDVcjYQimDmakavynxqp4FVX4aaqivDxNddCtwkoxEl4jEqxV04IwfD0qnDw0kRyyS+SjK2xfLmSTwOBNTY1TcqbshpHfK+V/kd1HA+hf+CxcvBLLPoS/Ym/AiCaZ5nP1+vz8eG9Frmyv9xifuMVczEKuefxKhrbvpG4hSYlXKPcXN/Qw6fyEcERxKaRciflZ2O5fK18ovlppHVx4CROUZpfIcDdJsbzN4kuRcg5kVm6R7HHKNm20vmbbPHLkXRp8NT8h+U005oQ6uCMTE7H7q/oYNLn4cvqyFwjKmk6ZSKkT4fKz7beqouXOBNIqqkuSG7Kw+LOmTyj1pym2ULOGhz3Fx6m4SQyH2P9yMmSRs39Ofk5Ey2UbFzDw8NU1WZg1czCf5jDf5kUvmvTVNI8Ry8qsT8NLfsYtXLT7i/PX9DCo4YcnZIjmU0CXVjq5QdWJCH0GL5ZbM5b0kyy5zITIRF4kf5uOUEki9aNi2VmdS+oscuhGWrDRuk3LFso/Q77K6COxIqqbop6D1WbManhWzxVP5jxdJ4nD5MxVxpY+aKOhhPsYT/MYf7kUvmsvE49SmKF3KKPx1/QwsPhhz7nsjq5FT0F7lT5R7j5sRSieCK3+aCHdzk/mrbFti6OJvQaf+h1IGzkcl8pGcItBJul0QWyuSXJOOdiafUYxj2EL1lssfQlvLsdinoUPkYfQoYhrgzFX5jHpXE8Tho6soo6Ip6z7FVXCn6lT4v6CFSTwTZXV0pP3VNlFPA6DfqX+TtsWLo30Qaq7fU0q2XX5Oc5exNO1P0Lm8al3yts39OPQYx/I3ysW2o2ZR2KqucexTzuU0C5b3sY9X4aNK/zFT/HifQwaOguRPMn1o9a5bK8Zzs7xOIci+XU+hJ1J4fI8S6z55W25JRGVtm/qL0kxC+Q3Td9Wqr8NH1MSrjVHsYdP4nPuKn8NLZiVuLUmpzXU6ilcBEfIS/WjKJecZS8rly0k4kiw13HzO59BLgSMS+TuyxOVziWy4Fy2xxL7E+hAmskLJjH8xHrRwNdrsimVSYj4L/QqbZWnw+RglejbZg5l8rbNiaiTTTBLXsQX6l+rHXYj3+TuQiaiWXLlyC+xKL/ACNiCckQPLsIWTWcfI6q0tl+jiRalIq1RCkxv3JIxKONa+hq4FvXjam2UejCzinO+XIsWSIRJuiosOrguJCvVAkt3h1H7CXf5KL5c+xYnK+c7F16MbMZyUkZQNE7C+TWSPMfreJoVk2ipTrn+DVwcfyPESIXqQXIZJrXbY4HCDTQS84JW3CuansXymo1VQbxphGoWHTppsXJq7FriSUk2WXX05I2Jy1MvBxIP9S+V8pWUm6W2L+pBJbYWx2O3pNelY4vv61WKuCpFU0qq/oUTLpUdTT/ANX6/PLmXz5svq6G4iXlJOzLzkinOCTUyWRLJckshN/Qvbid75Xk11WU9ylfmFy4DfD1JzdUkKC1s4pLZyiFlbO3yUcSfX7j2ULb00kYa9TsIx/EqbU9O5/W0653FYVFKS9eaSZzv2JHSsrI1WFh0zxZqrNJLygvnz6HTgWNOHBNWVxyVNkItBpUHBFtKySKcSrgJ9lyK8TdptTzY3upEPlJPsfT07EDbLQSy5BNayik3yyylWy5Ekv5SDv8qxxtRRZkKNhHcY8kIWdVOJTqqSVHCmkVGHTTHpWzvnxOJc0smkUODdbyuTXxNWH0jkce3QltdbI00pGnPeJGySnoU1mq/Af7hLiyijuI5cziQ0QaffKHNSj2ZS6LzBqe69PRUH7qm+0kLTT/ACPjpv6sEingNTlPEhdy6yjDIrPLeW60fUuXgh53+ScbPcfUeaEIQtjuPrsrJFjfoXc7j9JZdyuN4S9OxfO5GUljRUfQlF4LCVciv/saFpSuxVY1P5ofE4mqqeRPMskXnYl5I6I/cz+ES7cDTQaXcWFOpx1ZqxGlZcrluI3dlLoErcivEdlHsT7FNPV+5pET6TY6eRaRVdjiWPqakaSaURTYuQmjeIL5PUX9e23HM75PYnnmmI7j6lQ2Mey9iOZqx/Zeg8mP17liCaSSXlcsbkkM4o4kKRupdDSoRFh1c2iOZMiVLeW8XJvnCytl/I3V2H+3gSugocFPiv8Ai4mJgVOmsqVQnpsW3bnXdFRFuP4aTTxPhWoUsqruPplHpJ8H/Jumm5z6kMSE1ZjZ8SlmtfwQkQ2QcepclE7F/Tj2I9CCMu+UiYjuMYy1yBPZQtldBfExH/AmdxjzQnkhZx6dst0hmqmMorysbp5ZDJUkruQ+xLyuiaRUf3FwbmxFLlkudROcM4EoRFXchGtI1PgWcG6VLgNu/wBRYtPcfh695CUSrGmmxqciwYqre8+RUlqSp1/kp/uVYlU1VOo0vn7ITjjsW2pyQp42FV7m7a6JkbbN2GNnwsTpSzdedvctlBfO2VvSt6NiGPZ77PcT4iFnGSJ2ExOierbEdzuMZ2z7j9a5bKKO4tcEEs/E8rEoilG8NNdC7yTHlBqVVR8JaaXp/wD7Cw6Zqrm3AoqvqJXElWLCOA44EUdzct9RazcHPQixY4jdJbufH8LX+5XRI6/wnw6uKbV3BXjV/Fq5cEOuvjq5t82KV1/aimivS1VPtYT5HYn0L5XvwJ/7GnqhK9tRDnka1JpIWo1v/wAsWRusu+hNRbKVJxZuly21f07epGazeVs5ExCg7ncdFDNODSuaQxoea2GM7CO/oQ8rkUnFm6b0kogscMrEF8r9icr5XNX5rHxKuoq1EI+hieGnRJXhU/hJp6PuKjEppq5jqUjloizNyTSjX4ZNnPKarsWrKKjVhVexieG8VXa2rgfE1KdNrj8PTEPXV+VflRGljwcO2j4nNdCp1fu76bDrSnhlHpSR3Gp6n7lJRVTN1PQeC+VdLMOJTjsXghwacRPkKqeXInS+VUkSb+Ulst1yRVnfK62PqJrO5O3JBJI5HOTKkx5QLKGPKRHc7zsd8tdCpn8TgqpXUfTJdRZX2UIQtmcoRLLl0RQWZY1Vko4ErsXOeUsvlOX8Dy1dhaes5tcGVftJX4Ch8aDDrKsHD0TIqHewo1U3TGsPSiirCvAv6Fxa55cSzXRY/p0hPga0hRcp+E7mHU5abKcGl/Co0VP83Mqpq5x7lWD/AJ2Y+PZU7vNn/MWvCfb1nD5lehjVTRqTRDHTNxVIZGI3y4iqwo/kT1MjTSQkXZEl0yC6zunnBusmp0vk7ZXk1rvlf0ozjkdhCJQkSskLOw4GNDyU5/ecBTznNCYiOZVI+mUsnnsfyR6FzeNVPEgs+5ofubzGWJXsaqXFoFonllctnGx2O2x2yRSKo6FdLU8EYjqdpPHeCqbwYdD401FfiKnh+Jw/hYj4PkYP2fguuq/YwsfGoimqFxPDQ5f8swseVTXwuLTXvXiYK8RXVUE5aVHM1Xqqt0MPDUU2/uX4E+sjSS3VHE6nMtBDJIppbcNkOHxqhkVU09byLd5JKDVBDynLUWN0sallc3ofBkNvoJ0nciqS89TeglejJGSJEJkc8n1HT3Kunoxmu596u5inmd8mdjvA+uaEIfUeVsrE5wiSOHEub3GCEzVcim5qxGfCan8UkwxW5GmzHQnTx5ltDt0Joa55X4CY2d2VdmPmhMWfb0OwuhRVyMOr8qf8GF4mbOezFqI/LJVguadVHsKZd33Hhj6DXb2Ifcq9zqabE+t0ua71Ioxv8vsV4ClTUvYhw8ouhcCa6p4JGrHp9kj4lbd4oqa/5R/BnuRUSmQpJbOJDLQiYIf8kbo/7ZXvwJbk5fQc98rbdtiwycoy77S2KoyR3jNFicTFa6wXHSuZUipcjsLoLodBrOCkRJ0I45LrlvH1z1YiNNNjUmyF7HM1VSTxOCNSaZqoXU+H2g8yep0Q+bk7Eiyg6o98nkmLK4+p1UE7M7CfIXJlS7kK6ZOUl7kL5Co00RH8FFLbot2Zxy321ChcWU14bfKV/oc+NTcCwqOtVcKr2gqw8OG9fJmlFkWLkcxaXc0xLtzIh9BcRt9y0rma0OwrPiJL/wAsOu6JLDnOc5OWxbgS7Wyh7PfJl+BS6S+VjsTJ/J2IGdjyp63ynpmnmy2X8nCwpERzzgT5Gq0s6HVCdk8uMGv+D4bk3vw2ZvdEj+TscxPmaMOnoN1Pl3Z5bXFmqmf5H3Kv/EPof5fSZ2FknyGuDKlykXt75Rk8lsdjpwH0I7/JKtcJMOvXW7Yk8+AsPEboUP8AN0JQ8RdKebLPT+BbtK7ENPlJE6695uYQ/E+Jw7LSrXPJlvg5RKPMNNeWpvsS1FiKFT9SMNTzHz4osU4dUNi1NKW0XSieyNPGzKptS46ldUSoZVlVBp5CRKucCGSdSxcsTxN3qKpFVHfNPKoZB2y7sZUu52OwusCEhU4Nb7EUpFhj5HfLuTzHOaLn87aSy7k+wlVMfQczJHGm/YpXF6fexqVmPpJShMjUp4nWxpUFxwWgvwEuXzKOmSynJfIvkaMPuasWo+NhaqeJpG7cjVX05je7Svhr/U3q6+TLVck7Hl9pG8SZIqp1W5IvUaqWRvQOoqxOH4h1UwRJU6WpvwFVTvcVxKX/ANRX5GHSUoS4X9yKdT+hUudyvncVfY0MuXL52ynK5qulBRVauxql4dS9jG8O4dD/AIHRxR3zR3GWLcCOZcdCuj3WTS/7k4emXd8CxSKeP+p3L2Y+zOw0VLmdUIWxY7Gn0WTwKVy+ljTVKrf8jmyn2J/FS6f4LQiOews49KOXq9xHcZPy3xaWihUaqLdmOCMV2yirJtRBAn7cjcfLmOrEn6HHuQkuBve46eRGIuhFb/0I9jsK/c6FUcZKipFR+EvAoue6H7kGqX3JLEwz6E5WzVXJSiH/AGKcRaalKMHFmrCehlXh6tLRBpyXMU8djusqKuSFyIKlj4a/kngx9j/yR9DpkmU9RPoQsmhyM7ZacoFnfZ08WTwX1FzliynP3J4MgWwhZLZex327C67S9e2zFRp/2KnTVPApVPcfxCrYknkaVC+pa3sauRzJux8uI5Ju19Mo7EDL8BZyXuSWyVY8JM8xEqpE0x0JRYlomnYngPjzKqYllOPhvWmfDqt+HKcuwhpcx1ZPqV9UVJlz4viZX5aS/AtzI75J8hZXyjO+SzT5DXBnLO2aXuVPlpXXmR3fV7aH7nU7x7DXC4+gtpj9COGXb5e3ocTd1VxSu5TU91nG5qpTOqFmxohi0iezVA/27DQ2uQ1yI6ksjiaixPYYoNN0OmumfY0V0vk8ppJ9y+ViToKmlmuLHxN1XKtPQr8PW9XAZV0H0eWqD2KlyOwhCNVWNV/njKVe4ukFPUUC/gTuJ882MefcgQhPkI7s7n/M+iKnxcdkRkmR6v8AA1/3H0FzsIWx2EdyoY9hewtpxlOy1l19Rk1E/iv2KK6eFz4NTUSWaIY9mXwFkyoaytwEIXTL2yfQj/tlaw1yGjXxGs3yQ/ws4J5cCGcDdLFn0RNx1o04jlWNVEJvSVuh21UmLhTUk4Gnex3IJ4WKl3HzoYusH8ifIhD/AKelxxuOmq5qX/XJjXFEf98vqJiEIQhCeXbY6XG+L+gtp+i/cZOcnQQ+v1Owu6JIO2w9nu8u2ynlA9lrNekslwPh255XyWfcez2F0KcmVdGPYkTzZfhAnl2Ow32NA8OtSakrySi5c4mmmDd0s58ia33Q6KpQqqblFc1UW9hV3qw/+ZHwfbsLZpvui5SVUeHxIqmxVhYenoO1v9BdBZIgngexC4XyXQXQjmcRrYVKG+Cj3Ovyc5P39CSObGdhPnspcvUXyclWmoxMSmUrlWFU1UoN4ayTIL5SdhHcez2E+KKX2FyOhUNcs1kquQuSO5pKuSOqOxX4d3baFXRY1x1PplqpLSKFlqpuRTHESVhzdavYw6/c0uaH/BFV7CfB7K8qn9+Il/f+wna89jUslPQqp5jm/wDqVNDp/KQxCa2E+x3LFNPEfKyP57/MxlGw8pyRHMfWT/KJ7c8/QY1tP0tAmIp8XR0r5FXh8Vqq2anLhzLbEiJOwuguQxrKNhPkLJjQ9rdPg7r4Cs0cL5WLVItBohk0OBrS+Mml24MXw3VTxFVutSUvg3JXQ5Q/zI9ycvcT8bgL9uqv+39zUhrij/L/AKluez2NbtZkIjKOWcCnLt8gntvaZ/GxOxAnxKT/ADfUfTYWT+WlidhCRKKPFYbqX+JSaXxytlwyvn/B7HbJiYmQSXEI7lRUhrkdtlHcYxoeE30fI1OH9SeeUVEUyKrCRGtdDdaNVFuPE01KtcKuKPz0XKX+SGLEodx0Yz5kkiyT8diufw0Kn+4mIX5WNdDrSdnsTlOerJrn9fkIy6Z/yI6D9JPLr6EDyQskSLLv6a9DoafcVPYpJJo1LiRibPcZ2ztm5tA9jsLNPPsds2VIec9BdBPsfCaVTt1FWXNWERTSjW4neFDFJY+Di6fy1cDTS2ibG8aeOcGurxNXJ4r/ANLEGkS5CzY+gx9frtT8nHoRsTnBqIyjmPodjsIQhCELafZnYWXfJZP1ZEUV0Q6YH4auG9wiqU5TNS2FOcxstZd9t9R9D3O/orpk0QTxRp4CrUPiaFKcixaTTXIm2nx5oXFFu4sXCTXGkXw4qN53FIhrhlFMkeBw541TV9XIqiNjkQIWSyayj5T6DR1E8pUbUEZST6MbCzgnZR0bKl3P8os2vWgTWW6LKeeVQyroVDPY7EFInsInbfUexG32P4KptUPA48BYtE0lXhvH6sN3SF4ztX+3JKmro0U12V4GsVrkOuriVIfudjR4bEhxaDRh0UdFGU7aGMWU8RH85W+UQ/SS9RkiGRlpYtvuTk1zHHAXsdBjznYhZKRaWNV8bCqGqGPnncnJ9RnYTEdB5MQnnUdhbCnJ5MayQtlZ001TTz4niv6j42DFdMXpPE+Gx6avgV0Onj3KcSzqh9Kj4uFFDkeEqqocGF8TVRXM3sfES5bEqimfxVJFyMnlJOU5Rt2Ooqi+1C+VkXIqH0IJFs/TYjPpsvrk8oyRfKMlysNc/qdhEkZzlLEWsJsuKumGfDrzvlwytsd8kJ8B5Rx4bTQ1yOwu5SUi6jH0Ox2yhFyETkzsJ8jCxeNJgYv5TS5w66sN9mfaGh0/E+LT3PE4NUVYbRXRxTRGWriavE4KXKaiqkqpgknbT5Ecx7UZVLJMkn5SdiB5dRH7RyR8l3Khrias970LGqojLTcaUm4yc9ebnK3U/g7jyTI2GTlp27ieXb0Z9GeKMOspfRlL/KLoVUjq8biNr8FKQhdDTwHSNDJy7CFlfZcEIWx3GjqJ8xP1XsvOPQT5C9juP1JzQsn1GPZjOESsoN6ORy1WLEMsQjVW9jgSPYQsmJ7MDR3Hkuux3Iz/AJHL9Oc5zT5FJ5niK/3Yn+2S6ZdhdBZxtTm8k831HsRzy1Zx6b2ELKRI1cjoND9xZzksn1GMjjtzsP0rQh14bffJpMdGOkqrsnDTRTwm5pqE2acIT57UtCFyJySXDYq6HYT2+2c5X6luGcZtbM5xlSyR5qmhsf8AS4fe4ughkZLK2SzebzUkZLZjZQtMZ29eNlDXcbHT6EkOwxkZTnPqVYtVnB8HBSJFh4TZq8UqnwkowKE5KcbepNOHHM0XPi1NFLI4MqIO+VyxOc8GPmRzHmjuNdy10J7Ek5Pa7CJZO0hVZMaGNchMVPhcSHyPh4dFPRQdsoyR3Gh53zRbNo//xAAoEAACAgEEAgICAwEBAQAAAAAAAREhMRBBUWFxgZGhILHB0fDh8TD/2gAIAQEAAT8hwe5ZLWcEdsGYU1arRkujSlPBHFhlllIyLBpYTJFJVjwQH87iR6z9CLYp7GsHyKedkQG4Co2z6HnvMGAw6FpnmDUxHAqGIyJMjD1IakwxfnOgCfPpbfJgHAwuybXyVpqTdOuIF3r0ZTIDbE2zeLFee+ZGracykU29mSU53sapSlCzPkqSi8GxXwLahLoR9Hsi3uZjiCxP0V5usYKhhCQiBKXVDbdsnsDUil06KOxxiox8jPUoLQoRoqEsEabCWJSUCWiUCQiCCCNLUiUaQRpGi1gsEHjVBtGr4EgVBJIsWB9MwjGp/saIGuCRGH86IsarcalXoZNISF2MarnYifQRG+iv7Fh+TmfyyP8AgZUK+T+xXDngQ/8AoH9CpeUBByspCM6sZujAmoTlE41l0MKKGBMXeCIQgsJF0qfQycjbkTOqDbZ9GB7aT0hFAshYnrPoLaNTVBFaR+F0TUoT5haZhTDolOzONiZ2LWFtwSzrzJURCf2SVPYziEpeRMzexb2Fc1iw7mNzBKqhn/BwQjaqkVP+dLQUWe0SI8Z8Iek+PIjc8dDUx7HwRoNBJlDUbFVyLlA1AjxucGSRQsFkEOiGInAR5GMixEbEa0ei/sWtDJgwIFpBBFjREsga0eSCCJEss0d0QNTo1OrXyZmEQIPA8cydoTUNDsaggdDvRoaGo8DCkWOHXY09l/0hER+TwIYCPZkoivMUyEFoPYMU3wT1abFcUUbCUjQyCGxR/DCMl5LsQqvjRC4OoO9tO1NCToVflZC7+CLyGDEj2MY0bzeoMU4gISKPXJXcpQ54pp7l7OaFbpSae4ro4JhBp3xJBHdYlu9DJXKWzHiMTA7lhZtyK2lyJX9CWzHkhSFYZpQjdfoclCuDbPczZ/A9k9zYoREGPQ3npFeMMSmoOIQi0WiwYIktESQoSuhDG4kLRY/CNMawNEEX1oyB1+LU6MehtqUUjzAtKoEqI1iBoihj8aGtC12PsxGpY+h3L3E5/JuB40sfU0ezwKcRu84BnGklyJqWKCQreBAoyMkBUyRKMWi0fWoC/wA/BNBdDET/AOCPpkv66GmdPCM3FdeeRWkc5EaFol9m46m5INVRDLfii6XvwRPghNcbSKlPWCTkJJhPA8Zcp6a9J9CQL5E6ORE0wl4O5pQZbtkpJuMFz6ZW1sw7GDd9GBHsc4ECR0KIkJehYqCKNyBaQJaCWoQkKyPyj8T/AAghkmhkDWj0f4RmI2IqRGAwGNiEG4xjY+8DX+Y0WE9nAYSNZ/knwoydhttqxPRsgkRO6eNAhaI5CuEv0JulgMjRxoZckMEJQexVPAnvic2hcZh6cfgLQS0eqIGJTyfUPa9SlR140023QrXDk6BxkwPhFqLLkKF0T3QlgisxO2SL306tkN/7gilkV3GKLSyhvaNy5sxVsNXB+hJiqJ+otbKzcPItEvYSJPSdNPMfo+kLWjI008/Igl2QbrVEPItdhRYLElEC1jRLSNULGkESRY1+CDRBGmQ0OxLLnSSKoeUQtISpjUDpabEGQ8DGqMMsxJY0elCDxOw8TIlYiBJk3HWia0VpkQja1ZdE0NqEhl0eRoejEkbTNayZHRGfzUJWkTHAtGR+EaX9Z9skTIBg0omSKrd4MPL5Y5rsPS3/AKMnImGh30xTU3kWVXVjYVTsZviMMSKolikjHZRQmo3kRQ52WCpNHoKsmJxQjgTfNkTT6GTfPYu/6LDeBzpgtkR4ESaVKKFVLkqBkCIW5ErWJ3FqkRorF3EIE0gRAvxgj/4QQQNRpGkDRsQLpsPGk8CEobDGbjHgavRoaGjYeSEJHejpER+yP+oVJFESkSSJkbjEaIzkInkqBcbLtpuMejEk4oQeUVhj+AUD7k48gugWFpn8EQLcu/gWDYhWg0SmPKpcDSjMDNjXBvlbZkrQnGaKP+ZFiXgYYexHEE77l6ctkZUS+x0rHXC3L/qIThYCD+hU5Y6i7RioeaWSkJuIkglbYi6+xt6XoisGeRyCUBmwxUVBIgUkaJT2I0kSEEF9iQhLRawbkfjH/wAUH+DGKzPWxXQFgI6020Yxr4HnrRjGh4MedDnkwGsiCSTI8hTkZF1pD0goOvQoDBzJGjLMjRSYYG6LJCVHROl8jzqc/wAtHGZa20YhaWBJEWo3Bn1iezRcqroxzwJXjMk5cYgbao538EKF8nQ3sZZCKZMo8n1MmbiRIs2keBZS4ZN8EhYsjlgizN8j+aF54MvtwT64ECtEUYO5cK1pFrSHWsUiNFkyEhCWqRAlpBGhWPWNIIHQ/wAGiB40aHouqUUZsXcq6NToaGPA8DvTYjRqhqxxZXA1Q0KidGTQ6CHZBkCYZZIoTA86M3N9Fk+KMDAboxLP4JKd2TStmmvvTwGRNEUJQtGpI/Cv1ig0LYWmjyehp874ZaUlOHuR27ECYXUCxEswmccbkWVRGwqcBhZ4Ql5ZBeGUJS872UW9sEwSshVyXUjTTYSqbfkxGZjA9uSFCqXEfBse2RCcp9i/EHsdGHxpJUNUNhCc5EEiCCCJ/FkYGSEhI4EhLRLWL1NEEaRerH+D20haMa0T8FXE3RgGtMoeNGNaMaGO9D0iOL2HSIGKdedFR5GnJ2COSBkW3GJjdk2STKNXnQxZ1zBaJEizxwQLEaC3b08OiBKjYmdI/GKgQIbil4GjxjS17JHcm2Bau8DbzBKPAt3QiZP8jwA93owORiZkleZg2ZgiOFyWoshGX8lbN4gaqVul0RfEbCtvgiSslvsfGJW5x4Kr/pND9M+iWI0ZiZ/hWddtMCErEzEWmWqx+bX4wRoxaPSNIGMYkCxoyjltyyBNWhoedOxrV+NGoWjDwYDVE7oSoJS0u7GdyTfVMgQ0kRAbBlSbmwslvEZ/I+xsJB/UVFJy3bTw6VkgjSNUamW5vqDwSLoQ+U3DHyfkimiQ4m6eJsWUhxwJQRdR/wAC3KhUK3FwiTsJUVXYsDBLFmDo9sm1qiJCTiNx6cdosuxcWRNDOifohImIJU0wO0k1UFmz0eIYkUbEaVCwKxC0yR0QQJCRI9KCJEvzQSGtEoGo0jVoaI/FnnV8iUMeRjx4BJbyLCjWpjGOhooeRjGryYHOh22JRgX6G1DykLlFuGXolCWPS+CYjAUxQ0xEHkWNH0BIfyUXRZcweNKbkfIawwiiz+D/AALPj0Uux6Ny6RFt0I5z8hYVsJmVpcyMdG4/h4KFuLudiuZ2FVmilELYdjviCqvHQjlCKvsbZl3IsvjvgRJvERkTtX4MxNqUV4edBJp9EKPPBcLAnEzjBFN99n1RNWChwvVW0Wu+q0IFqJaJSQLGqUD1akaj8HjTc3/CNGoGiNEDybFlZo+6LKaGMZkP8G7jUY78jiSnktPA49D7DzF5HgLcmxuERn8jCPMPQaohoiRWVeAilI9gcllInKaGBnoWVpHDyZhJC01o+DPiY1jdaxKXqhqRKNHQkit9Kz6BUNpLCS1OORb3sJNEkF0+SblaRA1sJKaUZKJturIMLkJCx6IWcOSZfsT6Qkjwu8WZNTW5hqUxFFCwWVX9krVKzfgeXklCdWKf1xNWZ0sjAhLD0TJFgjRIg3akhISgX5GOxjGo1VaNDRFEDQ9G9GtIswUfga3gvNU5/HDyND0eTs3GO9DxpQyG5Foxz2CQQnO4drOArb9thr2RpA8OlbcQJRA2qDI17oYPGhgbdNyzFZ9lkmWMmmTxiWuH71BzNxEfhA0LOgJQZVdKiYis5Ewv5MOaTtfAkO1tQ6PRZpbiN9iOOOyCpqxZT+ioRTgdcGTNVGyFTftkqxJRThi+mwi099iKi+RpalED35FTcMlCckE0YEeGwxuXsSGkn63IpRGhho20wLhrQkMX4QKiNRISjVgS/F6tUNRpGrHkjv8AJ6MZRaXo4JYlDMDGPGrHnQ1jsavyOq0WkwHv+DXlOGI3EmwS2aHTUFJKvWgU/ATfrDq1xwIxtPJiMDE26PI0+IT7DSFgvpJnIZ9P2PLRho3EhZ0SFqkikPzEoQUQS5nKgjGjVYQ6iSDhOxmFTvJ6+Rm1FezKyQjh7WZv3sU8ofBSKQ5Ky4LEfsclq2bELlHgi5lrJXaR0jflCPuCy0Qh/YuFc0JL+R4iYRhRjgo6Eat2hsJeiyb6JaoQmzES0IS0jTb8C/8AgZGj12MasWTDSRKMDiRL1GNavR6mMYxj3ErTFP8AByKGJiaLDoYIMLsNaPEYyKoS1gQeDE2aMzCSeTZEhDjIqDUjFl3TWWdHrEfgPulAagXA4yWZJbFgLGq5fRHJy4ENd+TJkYnMq7HUNmxNtC+R0NiilfNmDr4IAx2V+yFLTfoSuUJztwRt8iF2ECe8kdkDwu8MwNQdFY1Pbsk10FqE44IFlpzoMUY1LAgWBVokQQdaoRIU0SIFokQI3N9CRA0PV67nQ1o/w8jxoJ0RoYkxLImK0sbG4HjRjGNk3kbGzKM6HZSYKeR2GM1EUm5EiaG4Q850hUkX/Yj6L0q0M2FIO3ky6LGnbVyGIX8DfOIm10u9NvwjTJoig1ItaL3Fi+ikG/AqSLb5P1YLQ9ZHrLbCOtZEmo4Fl+BIULD2E9stPrS9VJvstCgSIf2fxDQx1a2oIptU2QOuA1txNsDr3Rec9Hq7KtRjcq2si39GIak2Hpy/BaxOi0RQQhfgvwemxnV6t6b6sY9WMSXoSGPQTQjDUdocDHoznRjHljuR5/kdyPDG/orUM7sqSnUxjMbTP7J7vMwJjUDx0bg0XQlbgWYIkXBSQ0FgUnWkMJWglnQowRd4g7FAdoYG/R41WjPqaMgI2jQYiS05zY6UTUD2rFmnLWNie+2yIMR1AyoyIuZNgJJXJvlf2WHJvsbZyT2ZLR+zj+yKX9IgpTyUKLt4kz+aFvD+h00uW7yK93bW8F7UKpP0cRLCFjxGIdGA3pSRaISjiT61RJl+IJapaRWjFY/wYkZIIN9WP8OZHpUeBsY9bORshj0eRyhkjGMkf0PDPIbHkbDzLWN2YzZTYT35hCwe4KL5Iqeihw0U5JtWkYoZTlCaRRkdIJphqyukwN6GBIXcTTixp60Grp36bapaovULHk1jGbkIV2wmw25IEplOY/Q38hbXJec1GIKyyrFlJU0QoPCG+JL5X0P0FluhlLaxbiYkWYuy7V9EDKYglwDrdwPGfkrRy5yhXCPQbS6IZzyO0kPcTfLezoRZOGJ8RZDLDpHYWCNKHkV/gkJCmdRCaL8NtYH+CD/Bm5tqZWjGPVb0aJIPtJBGrG9D30eRjcDpHkMbGyCWMOqy4Q+PImrh+jLNlm8EtVuy2Nlwlbz2LhNxoaJbStIe82cCaTaFEOI7ZY//ABCZHsmcBNwP8DFaelt0LPpEv7JE3TPXzCYGI8CI/HJ4KeYWzBzFIiNolSbiYfo7zGY3RY8DHHIyFeR7BrCGR8WYMCKJwX8clahrtPSsZJynjkrkyw1ycJV0in9mcmbIwppjR8FyLd8YkXIo52IpfgipcEIvmYIEyb2Y0JX5D0SIEhZIMhBIX4L8MEURpGiVo0i0Zvq8DMflrqYseW7K6GxjHo6GxuRjY37Gyz6JMxshLsgp6OHeRqhjbdRNnuyC2tkT/wCjcITU5XAtVYNwImTcdlzKIxhxYQl4RDgiPycGKmbFopuIED50zJJMGjEYvyumU8wlGBzTSneOZWLIw+BVahDXhcCctwdddirjYwY4vBlWSJEdhobglOOS/wD0SlVfRR7v+DOPsY5U7EKzXA7mUvnAjtGjHIRrKJUYGycbIdz9LYSehHKzW8k3CneBKbIM+CnAqSgRNBWjMiUEu6fIyn4SFYvwQs/gIQtFos6b6NkC/MeSY1ZkeRj0ZmIJ0Zx5LFVqzbRjHgY2TY4YxurH9FU8D64l5GkkxYkiSj/CISq3YmyuS6rIlCMpNnBzLgslyHlSOyGVuxMZVEJfkWWTFKhaZR3pOBTYqHh/yz6v4RfklMWCSwQ0D2yZ4crd8is+3QrfIXqGhWaJKllU18i3ZjY3zMPJi/eB/wDwVBUZfo2HK6LvFjE/IxtJzPkjColcEEsQ8tSJzZ5Hjx0SqyZpdEdxA/U0bhYX8odI2FPP+fwM7ZJ72heiTguCZk/yLmptfQzwm26HyzcL8E/gkIWRBBrJrbRI30iNGLA9Ho/yZHjR4/JiDaBIox4Yu/llE/NseTfU8TogQ9ySf0NbpzgKyJCTN+zBd7iFv7FJJTRjCjki6e4lrp+BiEdypHidFuuCYbdRINSaHoQzFinCLAWlNpz0xFv2U1ybFn8yFC3E0pDD9EjsLZTZ6yuZaybbEVUFxPfgy/ktGZKUIsbyRNyLZEvsaRlwxJzkSlpbdCuyLoYUOpcqWhsKZVulNbirlfgktidjmRYTTxKmPkkhHziyk2lLsmtkkLUJZo3ZGzaa9i0RFlJw/ECaM2/gcBkktfxotERqtLMSskY+fMZk+0txKtCTCyh2YIWi/DfVj0Kx6MejxpnRoY3pk3CUkULLM58gYhjVjehjGxhs+Qw3ljGB5+i6E/lq9oEUKhuSKcM5FuRPDqB0E19iautxPE78kco5+TGiYHw9tJmNj0Jzoo86mY6u0pLWpHSvkH+FKBKPwjR4MCsqTpRFEVvIix2IQN12LL2xG6kqH/C+VNz1CLcKBZGZ1/ArY3CfA5L3sJLX7FtKXgUnszFL+7Fm+pLKFjcfXjBubnAlUWGkmyP4LsceLJwPBjeG/wCkMdJEoUmZ8yhAIROIbMiyY+dGfZvyyR2dsyBrIYGtwnyJVItiDJFjBWVCIG2kFzQ5jB2SeRSTVBARpHtU7ENeiSjVPV51anWRr8GxI7/FsbHogHjQ8hdnZQNzow1MPGjcDcjGiRuGMP4Li7Yxui6LQ4WEbSYEtCWDAmwx4ITCSOmiE1SNx+EHBeTYK0hqhUNkVsw3KRhoytDyPAh6h7CxA9jALLkrf7cSldi6RiLOi0X4JAKMWJbwOmPTgpCQqmSxP6G7cdm9JRdDlvRwNM7TsW3+uiWHtuzKf0YCq+BTDIe8Ys8HQq1VRuWeMlVVI7HZNXjcgY4vRXA/oiVkWu5ZbF7NjKKzhi4mQjokB3/kCCU64JxpS6FFo2JCL6j8jKRnshZJ78U+Rqm0228D4rglJNR5LDqX0hOgmXkvbkdbEoq2b3bIBHSTEFuwsrKkKB8kEpLK7Lm/BZ1eRX+SB6m4RMMnTH4MLSosDyYHoJdnyKA9Go0ZIdD2NjcDZWjcMdow70bHHBaoEFpXxkX1WUgvsjhDL5/UKRY5lEDfe5Ao9n7GlnQwmSJZSRoIWBBq9WZGZtmIexXUktXtpsQsC/8AhTUrcvDfKlCwwWBVuzeCF2GWabkhZmsEpNXD2HCD9r4LeGSKg9Bkocr2NAIv/SFh0Q15FcurEVCJtwOfSDaPB0RdMYN1OvA6B2k1mtnbosIs0PD4aELlFCwPnTHhjNMS9hW2qoY3Q6A34qwcEz17XHIle0QctrQpKNhaMv8AMpwBWJQgljApa5V8Qv5ITBDoi3yINyuRJ2XuzOzFrgj8Hq9YGM6GiBj1Y5Y2PThE2MbkUWCwn4jHQ1jDDb5oc2BiSTwWG5G1YbQUDNi7J+cJuRKIq9yxclnqi04tMgeldiOctDOK20ST4EknZ5ILzGxRGEQtLyPJuMyKtGIWhYaSQPuz1IwlXRfm9JRGjKku6cPcegyzAjm0K+BMr2dp3gY8xNRZkd0+R7W3I1mfTEThrcdKf0YKkkJw/RJsThVQm4XKNrLF239GVzHkymnMkAQLp23k5hmSdO7XMtlFXBa3AzbH7BdGSXdNE5PwIX0JboeELWaIwWiByFJqZdkssy5giyUGVAkWjRCXQxztJYJbJM5LCZYvxwPGr1eRjHkmzYY9GNmdE2Zmw8mTNItxwJgyPUaBv5024P2jz38Em0DEh5TixuBhveYMQIA+EjS2QsKL9YLTMLJON3Y0ecLgbwkn8Eim5/rRITMT7pgIWhrQ8jEJIWGtJa8lkXJmLQj/AOOAkYgyjzMCOuzibShIfFnjjsRnqB1wMsuZLgirY8tmE4MxIxL7FxHhOyb2u+SiSEJKzG8mw7ezTN6n0UkOXGxtJwI6KXk+hjY2iXIMNjnAZfA72rMpREbuJolYhYTbbrbJGmOcDhipbe3+ZHtOGBi2xUoRQVGRIybG4coM0EtzpSCmRi0v7LSUi2RzfyIkK1PIVpHyMGrYvwbMrV6wPSglI1ejHq9WWFxoYREwtISA6WqJGLjJXLJWyluZ8H6DcD+Bz9aG7iKGM2Phjr/pXMRwUJzMCEU0uCiKc28jElZ4g2/oroIUNAw0LW1oMRgYocLLEroFB1wXcw/lC/CpJ6A1Ytj0M5Okirgtj1gWymp2JGuibmhRuja7wZTBBGMDE/ob/wABZrO5cksu4wSUjNZGcv0bmwreZ+C0yVV/Ym9uLG/ehptR2r+xe8c+ZUmxPr/gyxE0P0oa+WI4cpbfHgXqPCHpm6wZP7LK77Ihs9oVGJGkNKoahJErY5CeBlMpujk2JjsiCwUy9GDnS3A6NsfQxpi65GCalYW4GtTQPc/J4NhfjJOiyST6F+Db8DwLOhZHgY9kzCJA2ujVlIq4DalfgZz6jyPgJIQ/9gTX8xfXzFO15GuaR0xvIWnYqSCmAiM/Ahqx1jrFbEUiajfZNqv/AAhyT0a+0qi6ELJQNSMdK1vGmybLNryaBPjJQ8W/yJoEfhGrQ6ENPQGrZlKu6GzNqxb+yFrfKJJSUuYoq54UjTNEIJ7CyRCOzKOESXsJ6FWxvGbW5klORVUtKdxYnI3omljyNUJZY0y8ZQmK9Gbpzwjkx7OJc2x9Q/2SkQ069k1OkN4ExJQKQsJ78mFxyIjjwJ40HtJC5iUp4HmOBonFUbQK9iQ7knVUkLbpErZAa2PgSRpXCWRfW0wx5Y9H4Uex59hnokRR0NaGb/i0Rq8/hI9EJGwxjGSN6NmizGbmPUjujQzQtgdSG9sD+wS2qz2U4fyNjkJeU9jXaW/Mf/YnBoRHwwfdCWEhH8g7PB5HB+xjjaV4uexKyYe9DcowEP6aKpNQQpTTsscqfwhdCMlpVGGlG2jD8oymNTEUxTK6ZVi5LVarRims+AyCBQswbOVTIhyMafBII+RdkiQTn5civeS7F3Ujx3NiVXkQmuxyNIoCL+4pVoZCK/QTvKosuT6Fhw8imUoh0k8wxAl+TS3gJ2K20N5TguAl2h6zgj8DYU5NG+Nm8MIbHgYmQOhKVbUSUxI9HuNrD+gz/MU1b/6SExdFsxJMKDmDwpxSEPOe5RsQkoH/ADbj/N6vRjek68iHrSyLG7QdiCj2QJW4xTKGmiBHQ1jI05IkeRryIIckOTsJQ0jJF1PQ3ZMGZu0DEjmJYhYZjkimqnBEPI9ydjaZrSh4FoX5BPOuTDEoNxu0T2E6eEWkC/GL0SS/go5ME5JHgGGZhk0Np2PcjT2H4X2bjd+DyQ2tkRQon9ckCzZdxUlN26liQ2mJEtvbCORTFTvNSNfjkSckqZrHCPsRcuY55MG42Y5z2Thk8zNeIKiaq2LT2KuPY51E0YYtx2E5Q4LTJnmirkcI4Nx3Ixzu+BHOdbIgKFHshUtLsnnHpiRpDMpkfxFMf/AibtPChZTyMWmnGif4vR/g8jvVjGN1oxjcDZkWKIyiLE896KTI9tjwxDlUKdIl2nTOkSbPk6vydP5J9p1/khyQW4y850OO4wy6HUlpN7kBCRQGylr9DhSCb0KXKEloT0TTH8hogjcYDVpPA2NIomtmFC/ERDaS0YxCyIS/GY0CT4hIYyiqw64O2nI0acO8DOdg4rTE+ki32Kprg+KEk73Ak4RJlGwsktjaJY0exdzyMk5RkVTiBIw4gFDRnzSV9Hwaw/6GxUDvMP0kIZnERn28/p0J6gjahC0gxGJjdZGHPwKSGbk2Woa02O0/ZJFpnHA1spTFGVWQ9mIr5bRBKWfZZt5IiYScltsJYZxnYmymRQ6lcEmwtHg2J1ZOr0keBvR6J0bgbGzKNCaEyIIpEkxk50Y12NLbiebefJ2ShEu6+Si2J/JewdMFYv5IoP8A4BT+sENMTCo8a3LcYKNhTLFStvsJLSPI2oKts7jdBK38jEIqxWOEUQhMqKabZEbaELBQSjLR6FNCeCj6Uz8RvbmPrRQkIaIGtIHoPgBYfRJLrsiSKJrsWFw/kuMT2yx1zpmy/Yytu/sSq8MpzaHb4qTtZPwdEUzHdE6Spn+GQEZXA7pXtjKCRq5t+hboWHuEXuOLM6RDkc+FIT23tX8EQitHoGxiAddO4mRNw+C2e8DJtGaFL72HqT3lkRRHLYzCfwPzychlbTvQmEpTxyQrmB2KEc8adAmSTZNkkk/i9HjV5GN6sbHoy0GxhpUWNIMuysZl2J/AmkG56N+jaUJQ9tE9fJNsUcjwi1cE3g4+iT3G4apEsXtgUuF7ImmjGDAJs8wPSMS19iSoS4FjVJhu8gVItRCN+jMnVr8WfYJcIXTxpbhaMYnIzbRTk8CfIICTDs4rFbrxA5dPdk7E15ISCR8jNvlllzgtElUfYkN7uRt1JInY2f7Z/JOlCY9pJvfYuTj+SRIVSRom4MGzTuvB52efhEvkL2QUU6DQ9FGjBvoKb1GljQTrossi6hzUB4F8k8jkWEn2VWg01MErhmzgXc31aEEfgzAxsbgY2YG9GxjG4HbVjY2ZFNEg5LA1jeSFvsmiaxA2onI/Q3EqJO1EYRZh/wCZmasT2mUPGMEX1mjkKnkkU0IWsFsg5Y597RQi3ZM9hVVFoWNRDuRzlsi1EIyGWJoYxSp+AKlQZtFf5Gl/WniIdapR+CirbwIKyxsPBFxhLpcjWPZ5ILAvBg2Bk+Wcjv5EzQu1eTgEm8kTjYy8EsqaJbo2Fin8G2htZkfQhpjaQk8iVzN20nzaTHa8iWhz4WG/bKGXctpItGNjbkbZGyVDK7FkKQ6ZREh9G85bGhOdyJPkaFRW+kDGAkuPch40K4KjQ6MaPV6N6NwPRvRsbFC+8llo2NyNl2YgNyxUI2CwMKI9pHrwJ/I4hZ4BStXJNwlyYkm1mRPKY5zEsnY3XJRMx5MPIiI9cmz+xuyydcxMYqFaDajRJHV4PQWorEzeSYE1OiZOHQWA9CjeB27tD9l/C0MRL82JXyJYSDzG1kTG0vBFXRG3dIv5R4yoRHy2HreEkSY/CTYl8FE/I9TwUP6KajgL0uthVNXBnJeR5PsfGL+iMl25jbi9/wBeRHmoMah5gZ1KvyW6Ehsb0KGQSdwsUkSIpvG4joSGsSScqKXtBaKJ3kZw5yNQ3U7HrIUSAxJiWY+2h8kJKY1ImjZNaNxo/wADekjel9CUn6JGxvRRk0JOnBpUHsSbg8vsT9iQge5Mdiw7RJTLhdjq/pDcxkzG/RHZL523JjDonJMrgtuvBs4b9GFcHAFjShaGKIm/KQXItS0LQkvoMJlKaCyhhFJE6xho/sTsu8biiFovyWvkuEgMglZwWjfcglTJFlVIkVw+C82THlkDyn0IhbcCKkScBYM2mhpEUpXPJVsqmf5Fjv8At7LSjxcV3IhhzNhxyyj2PrUNuEpc0RKyI1MMZZI8EAamISKhaW74Q57Ie4/DtiBJGFFymjnDAmGLgTk5IG2LXYkMe8bpk7H7HwWBuBpvJF6shyZDQg0POrDxpJQ9HkkmWMZUQd6MckxsyEYzowGENhDwVzzwWmsikknn5N/ZbhXpu33wXyZQbzuWYIjY7E/vglzVi3GVE2LF/DF+ATEKIm5OSDQLalYnofTBk6DXMesZQtPkhTBtpa/ZMuhvEbaR+W4W9BS5EOeSE257MGs9D3XkSWVYrguM0biG0Rul9kZ5EWcpjcMyWLZe4hrK8CqRaJGMSWrDG18HyQPdzM3wpPpCS1zlLCfXCEMIXgS/A5k1E3GyebKeR77SvfgR3ihknLCw7yDDG7lcETHXgbO5IKfgKil8nQROxSVshGVhW3Y5aYXhSwPFkytbH9GAZAYSh9ifJMmS3o14GhB1oydG51knWbJHkcYnGh1oyghKFohyHS0Tx4C8OrE8zATimND6E/h8sXghvFm5KrPAhN0q6M7iSmY9hZW/BRhwInUJGiN7I9NEGbMWhCFqQ42YPQw9MtoM2MhQUPP9Zf8AUyZhqaEp/G2iSGORxS/gkI3+hoJRZIypNFCIprqS5TkgaRXIy/7HeCyYcmS4/ZFVIsa2bYu1ryxQh5bYahVIU3u3EoUwpKgmIQ0kbavdxCQ5yeYwvwDGxiKTMXOQW6RQ4UtDQiO4iEnluuCDsRZmv/RKFCRlSIKG1JDmHuUXRDOyoVYyky1RHwNFzZa3L+HHHBH2lSIaJJjotChIfgRCDk6MkbGydZHo2N6GyRoG9G+SPJYWNGyjAlgSO9Ezyos77GqBNwmcnbEEsGE3yT/8H7ImXJYtf3oJ1coTjFrsSORteT1NmSRoM/NMTESnACxYSwl+AYQmMNoYYckYiXJhDbY9xpK3okMZBhOBpZ1MxitT/MtnoTKjeWBhdxNyysru09xIyMS4RGJJqu+uRq4ESmY5J+ZRMw1ZKIxlImJVm1hia0qbHXmiHsLEjKjdCw2m7zyTUelD2S2KQ2wwopFk6u1mGBr9boiEoKhJEfAS1eq9DCynlEqFMRTlMU6HTcbC3ZJJFxpZiHfbHSLZngQVi0mliJGpNQikenLocnZcCichKjJAkbnwyRIbHpR+RjY2N/i3pNjgNj0ZJOkjdliqQ2LI23sPKZYIQVMfZAlbjEFcKeiRmSlvA/ZEqG8msjTz5G3wN80J7E3a7gWECdRkn2TWaG7IZtltqRgMSo0oWhPQmIWhDjWOTZZCyysv4hKXf4RuLIJIbMkPUq+liDEQvxo5RwS6uVhlLlk7wBOB2AHbxAwpCO1sKd75sZdtDcbCnbfAuk6Dahq7XAY2XDQglosCmonKJyOEpECTtZHSGSGNpZU+0RsQmmmIMRkncl27YhL/AA3EovwY/wAGtlHIpgKJJRQrcUbgjQ1oeZyMfCuB9U0TsNU7lZDASJGwRQYiFinZYtophE9HgOxRSzU2SSOiRskkbJ9jcjY3pI7G6E9TWNOjXQKBrgiebKyzLG2U9sdCxpNjyqyZrLG4mPslb52E2pusia4kwhM6BsbMlxaMp7MwrfwQKNWGsnoQnqQmNouGExgRM4MSKPcFzqQKBc+CZ9TNpz+LRBclgNSyLZvEm/tiKTgmUQoIIhphAprA+ASjnRBMsNGoGzohgfFCksC/B4HoPoSxwll6FtzI+ST2CJIgQZORJZF3ZZNeJbN8jb+VuJ8ETnTEh5M4KkQINT0R2N6ewnOBrGHyURI3+EjehsgLaG9ZGxsWUbSTlpew9xpCFERT5G5Lb0GiXkeFDf6J2k34odJYfoUILA3K0TJHo4k6Y8EzuYcjbYgrklaPImSLUcTEJiYwwmJkiY0IuLCAchCEqQ8laYBdDEgid2Ie1zLWCBddZlR0wQQQQNDRGiNEEEEETpAUFpH4GrRuHNwoUkatLHp0INiga0kYtOFYrFJZFfLMlbZ8DiQhEjk5ZbF2YEOR9NGJGMMnpNkjZJMnQb0YdrRtJgkbGNoTLwSOIL3IMexbzCatm6wvgXkUyzHkKdE1KdcITg/5HS43OW0S6E1HQtKm8EwWeM9ibWyG7p7C2uZtE1MeiX/QgnoQw4whWLQwtExDC4YmRWyPRd16EGlCksXrgQ5hLXJEiQh/+Boggj/4v8EhLXOrxoZvO48ifBQTs7yFC6IiAwRj1GckhbDLW25MNo3yjUzX0khS9rGBkKIF21OxD5EQQIJRoY0jA3Oh5MhqJ0STBNDEjejZJI2NlA5FDpuNx6Ww3JsUXQG9IeRqogfArf8AWOKP4AoI9ivTozEMKyTkhTp3uQft4JpzbZkrH8DRYHSs9DQVxcYNvoXaBhMT0MNoMJiYmSaCei0GHd+lCRMxLCaGXGnlEo6tSFwyhofQMewlEf8AwZhCf/0PP4rXA9HqbzLRSJjEx23uNUbi0MbPBBmp+MPBEDctnff6L7XLeILeI4Y6jYWGtztYlO2sT1CRT2LGRskmB2TGptYgfWmBbzpeB0NzqkbJJG6G6JskbgbGSNNBqGsmT2IiwwpoCJpxApvN9kGQ6IKeehoWJm2RTjBH4RA+PB6AuddwTfQ4LjJBud9z5Y4HHZTyIJYQbUdCo/6EtYOWx7cXCEzcTz+AExBOBMQRI5sJN8LQ4PJd9RLbFNwj0rUDrTXGZxhv5nq3+EicjU/hJsLOj/HbWK1eNXPQ2kFWOZmPJwj/ADojW16iWJMv3oeBsGcbCkYDWW9uza6ygQ1Mx7Tc1Cn9DGSpPIyWCNOKGoRGjAy1Y3HRFjrRnonsn8C46UNyN9ltGSTyQ0LQb71Mb0xmOiDz5TaNHiHiRzRNI3gs+y/egk33oqOGicrrcy4HnZGMWNVaUMVokUFEiWrggVHloZ2YvK9Dd7i4IE/diUZ00Je6Ejf7EpUnZEeRb9mzBTgXU5JEdiBAVKN4NhEFcDJmdBGRIVziCwLkXqF/85GtEhkCoyNQMn8FnR6JjULRfg86qZKLSxN+hDbk4lsLZ3P9DSaS3bl/yIxGlEwPKcOdie1ycPS+JY9tq7xEujHLvFb7EoK1OQ2M51pzYh1JTvhFCNhODbHN51JGHWhOlaG4Q00ONGk6SOw3Gh5CpE2NjZI2TpdXpekquTGQOjBiUDnTY0VbCUKM0j5yhRLQyjnqRYQSPyLMlKGy/wCDphz4G6IGhMbwKQrJZM5ShCDCYmLUQJg4QTNjqICVbvTNOTK6lBZYWSR2QheiBIN4VBBL8p/CNZFk3Fkzq9GxW0WBYHQ2JmCE5EYojVrQggxYeC6JZzBcQqMf8I6PSSL+xsmlRsxhJgas/IXAuAl9GMgKdTsXJLiJ+IX7EQk3DYgvegd5FMRAWhoeIY2KVla0G9E6OaJRjGSMPAwQxxvxSh5HTcYmmOG2h2KIeckwSL6E2SLFO2kBaA7AZAkozwNXuqJ2pZ814HKG/ZK0X+huIIkO0/JOBTJhCJCwKnubL9nDTwyUmJltCWIW5861c9BUFQQb8BE9RMQeQ2ObqGlPYVkjz+Akkj85/wDhJP4tiGx2GoboVmX4ExODL8mx6MWVWsyBTdhNjEcC2x9imvIxaEtES8k8bSYRn15IWNz57MtHDglwK3AuWWISi3d7/AhrAweRjZZdiC2NDckixgbTyMTBIxZHaZV+AnOidyRvROR5J+RyRwHTDKDMmcQNoZ0HA+nat+dgiLQpRF+y1x3Y1KHjA6TclapYr53k6Ru6gnwTWk/RJSeSRJarkWCBJJyBckEmHpSUfiKoq4vwiJ1CYtBdxqHkWmGEQm0ZjQIIJH/xj8JIIMMnWRPRvTbyNiiyYWSgegTOQrFj8mh6MNOJixWRU7q14NuCj6ERfC3GjXPAviv2RO0mz9f7ySinJ0CFkOeZgTpFlTc9v+kFbVYZErsPkY44WbI2Rln1pBehoajRZHRDsLFpNlE3ZGMuw7RK90W4HpsYCRbjY5DZxqGO4xMEkPwHgeyQjKOJJaovcWD1BPJIyxuWQcjVOZHUiRNhqZEpOeh9ZpbEYKLDonluPQ3DngSSFhzFEK4Y7EjIdQX4QqGgtQIooNYnNUh4DWxhxcEYJZGH5vWRMb0QNj1n8DcrQ7C7k3onlFBsYlJ+glDkWPyYyhcWWJwRyQbFYSMuB0TxSniQ/B1HpwC2st9l6BCnsX9CpQC22rYi1ZDlsPYQ/wA7GtZw3Irb2IUsipsMbokFILaxJk0eiJGiBmNGE6FzDJpmLE5K4ihTwx62kifMk039ibWUCsCi2bSdvBY3Ca7/AGNxLgeeImNr4MKPkUOJDLdVx8RmFiG5WNLJFJ40voQ1tpkrWGXZJFZC00LufJuQiUpZQoIJDAVdnDdxqqdQ1PYsEoXgaM2XyPfCtF6nP8mC2CpoIrSILQLQ4B7Sx5WvF+i5Fj/4JjRBgSslEyRpMD0XpShP00MNCRlR3k9yHyKrYsqIMpuNUaE/yeNGv8QkeT4yVZNJpTIn5Uowpvcjt053FuUL7vgUq0LcUWZS8HZCwMalrnctTbOSSB5E0aKZQT0oepsgdl6FcG01yJsaW7IlBQn9HBU8D4IkUBC8VweJRJoloKTNwbmxu0JjTKTZKEoiUDQsrYq0loYYP2IDSJyiyhjsFEqylFHFzVGJDbmQuebGzgOxlMpKMPuUSlBAhzVJQh2Q/wCBdo22saNKSO9lsckEMtqujLDEhxjkxymEQa3WmjSIoISEiEwnJAIq0lR0PYiYazkhyT2E9Vq7gRqRfm3A5CXJJkfCyGxIbHAbshtDehNDloUFgJx0f9BppQ0ZSbhFmKEjSl3g+T/5ChtC7gmLLIjIWBLOMYREcpqStqCE/YIHPZZWqWxRjwmKl3OOJkyghwIymD6CCXzogkTkejE6OyH2+AhTdyNaEk4U3gmEvLsfcoatW4W5NS0DnI3lE6EdRZZXI8HDx8Ddpgspb+BssDFUJp6fAksiKWUNOI5FxyUj4RQZcYelSIaovJmMKiLtcDsI9iLxEqsLN3o2zdIHslKeSckGlDENifgqw5OUJwmpI/BsRDjeBTYMTRh8FE/gPczo/e4OEj9k21XmT4YDGOkn5RnDq0YU+aFCab4H9hGw4FmI5h3sY3RIRSWKjVcsIBoxi+RjFS7ZuhmqwikY3cG5CyLcopCxf4yNjciDiTq3Ghsd6Dh0XfsvuUEW42JPAmmxSE8DU+hM7QMmskpYUHASczk9IVuxJt+SdFhqpEvScKSb7PJtg3YSzMJcyxKpNQhzSlXBJYFbjHJKKdMgoILGt4+DHElNC8iTkSJIajV8TD0eUO8aE+RJVn2FycQKi1Y35Q2wgb5eRshnakd/oVY5CBR19jUhTDIHFLqCjvJUJ56RgyTkiE0xJGMQNk7vKxURp8GSZompTShoTbDGyRt0E2x8CqIDByj5iG4/RYKXohv+IrvZys+BCzA6UeCSPQtx9CsyvoeSnwbEDCVQ3xn9FVBBWhR2NJb/AChCLYClC9MwRWbSLM5wB8dXyxfRvmkyDvvYb9kt4eRkKm33EB42MvyNs602Fx+EjY2ZMDSiCPymBv0NpCEx6FZrkU1KIkoIoZg9yFOLoouYrBOYRBoUDQpkThJTkmnSkhQ/FjKGGhIqIX7I9ishC5E9Vkrgqx8sEr8lJUa0ZQ5IBt1kS+SLqlMrBiVbqBJURJZiip46bBaSaD/C0OZ8hLiBHvglToW9KNIsecDyT6WlCBq2IZxkyMHdhA0IKxFki2K+voe23zewku5WiTEOWnxK6choWICgnRjSGnAyGxh5GiriYFjgSUqhT2LrA1ew2bfRNtPlDzvIgvaUk4syLxelsOTFgeM1nDdo2oQSmvwI49KcTipU7FqgXhCX4NkmRL8UjAzcdDsmhoKpJQ6mNz/pDV0WmnIkcSNym0lpzTshVty2St4kSBtyGJJ7kFKOTA3GbvX5hsbLDxooMPZkBKkZC0VUPDI7FJvJWO0EGUr2MAhA6W7tEznD4LmnTkhUQc4hhG5HIh2HvIlY0IRohPoOu9W9MBL0J07ET8iWPUu54mRTRZy0MMbiCMKEs8DQ82XkookbbkvsLZFmprdCfJ7Ez2gvUbChhwWGjEj3Q3ZNm57J1GyJEtNE6PHWiEGhbMjkrCjqJNjxY1sHEHyhtLYdBe1bEO5JD7E5LKh8ruI5Q8Ky6VUNaHuLSSZvXIokfgb1RED0idT0Y5yIKdKLSJ27gT0bjQrdCkqKGCSzwTTsZFXyxLwVsS4ZfgzKXoo4ELB6y3JNbQc9J1YbGRpyLI2eJJQjYjIQyF4ZLF+ZMLWZllAdcZZQ5FK06GRlO0ENHCwQYLYliSf5Kw8u6exOwIUMY0xcjW+kQJV+Hxoh6h4bQiR36ELJLTY56XEYkTHMoeI4HhZkyiRwsXAanJ8/BaKoInkU3ihbeSTyNYh7iXQk58ExhDHeg8kQo2GL5+w2pGwfQmDjKJ9hIinGTCC7E6N08hy5HvJPSdevpHDRMtKCWYZKyC2lQvKfgxxACwgdneYYijLc5GIIJRCRxyELOgxqb/8AgWkkQNjcEYk7dI+R6bWSpbYpYik5VKR24ZJ7pyXEl7oS3yHMIgawmXImhOKwt+SKsW7FpubEvZgL2YEkaSPR4JhGA0cBqT5wVZtjkit2hMt4ocFSoFbd5blJP2KdcEEOP6HdFNDU+kTK4e5EgTy32QVmiUxrcpoVHfbsnSwIeRpO9y18m4nI1GxE3uhCK0eD6EGmiDQzENDSRpobrsbvYVY0u2hAw+h4DQQXcoO4+hKmNUlfspxIpRS/suRM055EtWn5IZ6D5GuqKUTwRY8vjdCgbD5CPf8AJ4Y2UxGs+xLwH0kgVqBYOELYiiQVj5BhgYjWvIWI3wQtUmjqbxQXKJPs2StK4oiCZBvsafgbTIsfhJOk6UGQTL6GU3NIbuRqn9izyIc4IWHDJpluHUNYvI3KxF2Ik5sargmtxJYt4oRJiPI0kUVlsKDLPUI2Qt9aJmdXk3MBs30NNmV4Fro2NpqGSgnaRERCpZJF3TKJ4yic95ssSVCiDgHhrYifC3CKeOC6uW419si29hGxG6Ij/o1OOBP5LSJBYMp2IECfAlDsy7jfglRaNUVPiIPSZagaHopDqWCbwSRhyf5BtByfnYk/s4YmDD0KDfqOSc0pEsnIuHwJgXInCHq6IHXo2gamzCkiF0bMRRgS4TIuR5YrhCG4FAJryILn4HGEnYje8UPsUBhkQRuLgexLskt7QPecibQ2Btpjb/BsesWdfi1IyAblyx8CG8ew4/0O9cECsXyWyJ7joLfSfFOmbXBUZszAVZjGfyLTSoINRTyWnUkSxIxq6FYqzcE5J0nRvU3qMG0LDQ8A+Y3wYqY3MwrSJtThk63ZdbeAjSipMIakbomSnWG0Ubwys6bC22mklIrxvHQ8w98jWTfzuJsyNNuiJWXY3zMG+Z8iUVPegWZ/ZyHaSTsedJsaku5gmWB6Q3Jkx3wPqxmR4Hcdhx2Ew24I5R4DjtpWqQhYaFEoRtZU9NG3RDh3hjeZiUJCOBxkBGn9x8IzY+KTaO9kXNp+zAb0rwZs4RJwQ2RTmoJtSGK8Ykin8IHctPIbsfVDdry1JLYLM6EDFjepeBGH9zEzyeEbr7IyTHyG5Wx17Lat6JG4GFqsaTo2PUNyO1AgNlMbI/JJMjQlJwh1ZgaehkUrI9JCKN0XkzQpEoT/AMDJ6SJwEhboRJYySXZYWJ1NjZ0FcjUDHlDcoVEnQ8OW7EnwJKLA0ZxoX5WVegoh1gjCfc8Eme5Qt4oim7IE82KRZ4+SmRdGhJT0TBu59DwPHgdqy6C3kbY32Qkcrc8H1qQlY0gaDLLDoMwaH0LHhojvoqhyOMnwRAlSK3RU6G8G4QSWBLUBP7UNkk2ZVfAjBJdMxh8jxG+B8/0KJLEMrHoSX7UbqHgyjt2YuPkoQUnd7GsZhkTe3l/AoSY3wkG/fmwxbIELJ02EvsOKfBG0JN/CLjnycXPBLKOu9GQfYhbJkN3uSYJJJJG4GyZJEInR6mxuCZGmw2JYxS7E6ofjUbjyxoXNmBsxXRjGglTGFC7CW/wNl8ibJkS8OZYsGGzUEz8biMiJgbskkyyCIHoQsEZDSHZE+jDxktSytjLfBRiNC2ZYf7JMkicoajgdiWuyHU9o3JuoMqprodEuBjqMh5NvZsDKTgbg2F+xzJLHZDQr0JGLSMnpkuBw2Ikbh8BEjwNRlmY2HokcDWC8U3orh8UOJHtYlIUTyWnoboUlUvQ14ubGtmjYeKE7qH+h+UnfMlkyR4DDaWgu26FUneMCgB7cgSmAcBCV2+2Na2kfwaieI+Ro0Amui9I4UdlNJD3shrOkjf4iJiFo2TQ3Q8EwNjZOeBtNlP0ZuEMVQcI+hySQzM3kcrFS2V0nIUtU7GNqHC4W5kbXwNxhSS/Y65Fe8IulEiwtBPVsUTA5Y2hh6JjKx0lWeBpJ33RtXWRXoq8JyOlJ0qUcBPnfFH2ghp5Dwy5I+jRCVNDJtbjspwxyuyfsbdmG4s2DxRt2I+mNSJbHYNkJ5J41vRAiQ0ZcEhj49CazqtjS20NLgUx6VzcFIyxYYGJ4FewU5DuM7hw70JlCIwJHh2WvJIQkOYeYpS5NuxLzS8jVSvwjxnkYTNJ8UOS3eR7KuWOavgOYRAlzrOk6k2Nk6K0mCzEydJGxwJek8wNRAl4klbItzFjKqDGQxS2QeRuKLGEjEjt8JHhUscC2WYHy1DVcIXZrohokVuJHvNDEiJJFLR6nnR4Gk2bLJG1BJIjjdoRYDSuiWKJ7iThKNyaM4G/oaKWx8BgcYGmWbJ+Q/slPRKBj+QySdI04FxsdyZEWQZAek2G/A1BEcafDEoojDIw+ZZgaOk4CQ3kbjWkb50qK0wwMZktD6jXljsMTRRNG6PNDicu8pu4m+MUIhxI+WetBNDNwo6xCUNSLRImMkbrUyaG4WRWyN50hhhFiSRscI3NKLRYlL30jYI3wDcNskeb0Gi99EeWiBCzuNSBi4Sk4Q3Ja20MTKFwJ3guCJhul+yQs30Nk5fXJJCiuD2C2YG4ESJHYkkZCZvTAe7Yv6MhUM3wTK50CkfJgYbdHo7F+BLV8EQ0chY0X/A7jnA2fIczDmKHvFDgxMJ8DHCHjRW9JodG2h6Qwswy8QxpGvYjctFtYWiPA060swsegbDfgYtjHAxDQ2k8ShFF5ggkVVkmGLJBEsidDVMYgh0P58i9pfY4IJ3VDSU62xtWpC6Lbc7FClh6KKPH4PQdDIdST0e8YFubCmdi28icIgkmWvCGiHTyJjLBPBIkN8jlvojVkbhfQmRbciGp21nE0Ttiq2NLMtNkTVA+lA2jyGSjsWN1/Aibk0ZsJiJW5U8QLx8iX+QqLZJ4ERAtCJEGHCHLFIh+SZeBZJIZYgIF+hDpeCBBS2EtNF5OKElzsyK9nGdTqxqGpfJMP6FpDVY7MpMGPFnI1Ax4FWnKVoaaj70MZtDSTQuQg3Ie6Gkw2jZucD0h9BuNCyWeBDglEH1oaFhzGEnUbk4GyEMF2JkajDg2ImyIbGOdjkU2GEQJSTdlPQU+sQbJOYClS+RsfZl/m3oODJlD2EWiaQ5OVycJFtDRUkYijngmINsZDGzKSsbyS+Bt0iUq3GlnARCJfRJHZTGwRJDg4OCGTiKxS3DyQ7ZfeP2JNPnkZRdoZwxNuMGLJCgl7BN30FiYCkp/Ym2Q54QzmyHB5DJ1sOtxwhZlj+jiNCKDfPAuXfQ8uWF8mLLJ7kWy2rzAyTmUbDcWVJcmHyYpOzE9FWDuGN1osNKgwTqWRkOxRoEWROClGCYkJvAke5RKcizLQgsZBVBMBkgy2WmOoz8zoHoy5JDPRCEYaHIJorhDpwPqSlRyGHHYsPoenSgy9KZRMwVRJB0PlWH63DakchSJWUidDdEtlENiRiUIbccXsoEIGkCvkcrJOJop0IbWR40tl28kk34QzjrcTtoTJtjkN0hSfg7HTljw2cI4C2hWC19ExISOiLQFhTkpdkQJTy5UUZ1IHNk23u3uxPRL2ItqUL7ZzZmHXsl7HIqfbNxo6YiBPgli8LVBsQyo3YhPkaPJO72HNTgmUIlTSwlItCeIsX/GxbwQmwLQ8QE2bjucHxP6OJkTJJ5J9ILJJRh7gWWthuGUkvgsSTZcwN6qmVlmRKpYY1by9AqIF1G09hLgNxgmdxkPgdw2oJQ0nuQ5JLeSEOG2htsUYG3Fo9FDggUOBhiMb1kdo/dk+w1Q1I6qxDlUDRZEJdiQWEll2U8J2CkmyV5FtMNglBto9AjMDbkTpDZZEoIt8nMjoLf8A0alCmhDyRHMjNX3RI8Ah1dEPcrs3TDwVpbjkcbmGzI0IhUDaSBKext26E4YFJclD5bEtZM4sObKxF0bjXccKSwNI3g+BUGyp2K7mw1K3HMk2wuG8j4P0i9C5ZRwJMKS4JFQkIVNjTgyEhU0nQw3Y2GubE03OxS+BNHkL5ry0Opk1cmzgZJm7yZRQfMFuqyc24zQ+ybUmYNDfHI8U8j+g0+BVY247kzMCJtjZg/wNm4lk+hDh+ytOUKVWXKkSkUdECB8SOB9tDpsYySlsVyWJQmdxKNpiDlaZ9b8weyYYyYs2WGh7H5G/g9DjdEJcjSQzLsiLIg6EB2h78N4mx2AY96c7+DAQlCudTwSN6CgxDQMemYxXyZwVSBayRKJoVNIRI7nwbzS7Lp7SJTXu8D32FSRhbyDlfsxE44GTbDzZWnQKsv0uRjbalyJXDQmhUqVsjLrsd4mhTa9i1VyTqCHbMASCcD4cSPSsGlyySlUQ+SS5wkRqWwnJk3YISFKYhc/tjoJTc0J+CCT/AGI7C0G0dnoaHY1ZIqAibiYOp+RuEKsHpZm5G7G8MWoQkr6GOxfvWRpvdWQl8hpTe/Akhcjan3yKJ0O1D3InBwE6GzZHFTssN2MN6o8+R5bL9ECRhsmVBkLSk3EvJ5jKPkVELEWJRqVMcny1rOnAyb6CayOGxYbQ0nuThkmhmjgSMgOW5wDPJJsQSwSEscgl3HLIyKC3CFNgkKJaPIw2iyYWkebG0ijyE7fJDBuBExmBpzsgl2XeYEukc4ToqitzGeBsCreNySioRScSisP6LZY7MvcQ0Fz3N3YlphClc+BZDfcdDejUoci3eRqkl9ims6bMzl82LylIR2J23wEsw2HGSIlFsQ0TxyJpW+kNQ0jcKyREgyZT3G1rKqE+9xSSbXZv5DVO/lg/mh4I97MsTdIRiQmkwQJ8Edoz/ohbfgdkx0/jLNu2SZqR03QpORm7tGWvA/wj9KGyWJ1/fA6eA0m/RRYqE7FJl0yU+x/AexjZjUNm8kbaJlIs5IDeMnXY+ey3RNigJkJWEHvcU8sgxVrQoeGSnAlYg7BciE5UeojyeRE4ZIIDYdSQ23Va1sEuRJN5D6Eo8ySPEjZPZ7JDfTHjQrknP7HAvIpFgT1uHpno8MaQxdKP+BJ9eRrDs7kySEHsyAuhKlrIcxZp43OGcEVXJO7uIhdiV3m4WPRVqcDciWQRptxTPUy8stoHNB23fRtG5Y7LHwLkGrZ43s7t9ivV4SILY5hU3CzJO/k7Vdd8ENhqu7hC4AhQFyGfJCupbFmSY+q/JwjcRqhKmYSk9oHmGBLm0mI72K/ACDQlxo0bFLUDJmPlEiHLtCpyV0Q5xhsPpiD1PgdQItTcPvc51pwSjdolEmOBM986IKvCyFOWvspRVsRROxAORvkVz1peCR/Q7HQblC1ob0IloMbNXdkpfRMDwTC1bsGphPzIidVCZvdGBdgN5Q/d6BNkVwMu4T3JiWLkEoaQDfmSY2E+DpkZdrwPmyKApkIEdDQSskYShsPmISW4mew4vDE3PIidJGG9JsgQnKekq7v2S5Ibd5EE4EcGxY4KB5TgUB+KLyexPN2iAE+QrpLyeZY3c4CcPbJPSlWW6nsbSxTBRgc0xymoJegmSWKTUETIRVVbY1JZaTc2TCSHSqhp8MmbquZLuM87jpOXB7siFk7lONyOpz5FqP3GoZg2oWzP9EjksEb9sgkskk4nlkRSXL2Qj3XnMjLTx7H7tSP3MTGTdiHZifERCESMplrsXKTwFUoa8D9LmiJILAkHKFTaHOGhmXmMkKaiEWSygvnUP9BycuKGx2aYIRi5Y7V5aRO/BmrlCCdGRuZG2+yfnYdslfKIygdy6DoFo4Y1wJIiSiULK/ok740EnLFHcMeGLesSXAthsphRIOGKEa8OzYGJ6HYCrk7B1yNWNmdJuRt8idDdbT4HulnFtfQe4J4DEK6GyH1OwWAyBO4hiN0xUOW5Rho9JG50ajBlDGxYKQSyHD50gkXjBkQ2xuNNZIJczWTqBGrMbhl5PMk2udzFULleGtiUhulPgRLm0LgQ6lTzshEJElSRDFk7I4KRYJw5FS2TsdLsj08cipszuMiexTJpwxo3w5xV8luUS7ITBMUJQYoxOa4GiWN2Pxm9hSI30RKSwtwtKNxf/jf4PIlYGLTXFIwXhr5IRVjPgsxASI/DITUCdJ1Qy4bvwKCrJcNZLa+nBnPzRlEeDuJF1hjoYIkqXT5JWZQiFzyS4MTK/Q4qVjKQ83vJg7oZkQR2h4dpMeDcgvEMkWcKCSYprjQmFPyZDgyCJ+SGWW5JvI4wxuQqqaE6zJtyJoyO9JAlbEdqE1V8k95joXZl+RS3QIFRkjWRepsBP0+RRCYcLJcjGwPOmhqm7E7jzMzsJrJ/Z9wIYvAmsBDeRtVgmL9CSmZG60V9pIsSvcfuY0bGxsbEGx4Eq8tOVck/yVIvTk2TpL4OcsaOzA5TxsPQbr3PMhoM7MMX0Df/AESjg4vBMNJ/I2sOEJziSxyQiiNJUrZL9C+hNE96GkdwpTVHwc2JZrwxpw8EkvAlIhORXCOAUhJFhRlkCNcIqXB7ITAiKEyK5RRe8isco8BBUeILUKpnm8EKllvCRFTNZspf6DaPNySupHZSZ4QNzOsuaY8/BOABYUIo/QqMLgQgwSM7HXsQSuSV4Rugbsrig9k39hS/1SIbjkJl2txoS3XAhNnFFRs6Qc5suI/RVziiZnkMtzoc+k4FN6IpwDZq83Y0QIAvbT9Y7OjlsZBbD8nHfcxljLIRXAlBMlf+FOnBBA3BaBMTRFsPNlQ6Mo2GuBXqyehr5IS4FtHmE5ZNxC0kin2O6EZHAFjj7IbYlRUCQ85JbWSDce0k3oLIqyTcpkEnaHEh2IN2yJsEoMkbGxxhONEgP6Mk43kdP0FCcv6JWTmzH75JN0TUZMoYe5H+zP5gZRkmZvJJOFjJA6RayHJ0YsoPQyGUPooJlOiygNrQexU4mWYYzkhw3KLO87mYuyhGwrRJdVNDsia3EkmP5EN0IpxW/SGXbZNcEnNYGt22hlMzrSNEkk6wIdtsQXcQ2UkPNdTYUkrJ4SRkhkP7jtlkWVhZY2aZmyfu1Iy3OlhWtllmJJc5+NiDENFIwiQhCWjQx9FBsyHNEdBGslTLIIcJjEj6Qf5dVsNM0mW4qV0p2mPISv2NQOJYGiNyiSJsD/YsWSK7N8quoLnwWdY8myiRAdyWCRq6Lsyr4JUy0F7Iisx90xqa4UVh2lY9+w0o2fwQtFmDxgW9kFuie7SphsRq26N9nyIfwG+dxwmGf0BDlQKan7G5YE5cfYmpTJPcEOUK6mpF7pIEZUH4hJMrNifEidctCAINP3GhJw44EvMiEQ00dYcVliKC4i5YEvsw0HLbQckaJZJDolbGmJYx5oKkcEdG+RpVMbyIdXSoeTCn9F+nF0TLdeRyXuUog4RhTY+zLciK3iSgFmA2X6JD4FLYd040OYntFtpG2hhZk3KEyS4LLCOVeSKmxQOfo2V9EFUfwJrQpQn0XcVRGJS+hkpWnvIw5qhjJTeah7bDGjSJCuhyXLfN6CUk3a5JRtY6nG8lvA7pf2fRAbwMLcs9gvmX45S8DpvpHxL5EK3LYm3PVj2iVXMyLeTaZF+TsaIqxlnWTbTMTsSXKLR8UWpf7Jb4HOYNYZFMvZjcGnmIRSnHDl3EiTJS0reJHuBTDj9/sTvOZ+TvmycmRSbl/v8Ao/MKxoRY+TLF+itkvdIKL/sr9kO6smJ2QTPivsY23snkqV2hwGbjCS0WdlhSFz0yXEMkGtJY4RNrDju9o5IEW8SKOzRQnQo7ErS29izCwDRcslWp8ShORgHcYqyYv7GvKaMpHyQnIqUxzxUm9IzuPQkndDxT8mNQ5pX0KcHngREuSN/wYoRKcC/ui2A2o2YoSxHghiWiu6EoIeiehjthmkYth4h25i0+3RE84FW9CJJrZpI7hm+xXVtBFjSyuET3JoXLSW+uxaOafJRvXBci4GgIm+hcP0J7oRN7QL4t7j4yMXImSdRIxfQnSO4piUMZhnQIrXyiBWhdFinwFxE8GWhEj2fxBzidbXYppK5RF/yQWFLFBZhRPBPUrTNtkN3CWSUodnyPYWjLhkY0yeEeRRkVMQdE8IwIY5f+aKC0kTG9WosSETpwMdYrkbfDZgktrJuC3Gs2CSRT33ISAnEZgTE1ta5dfpI29ErMrb9fYhLkHTJjccHgluB3WyIEYRVO4pI4FLra97kTJ5mDEHZ3WljISkZFaGOPYkTzGC2NxKPko+gVFBqMck7zuXaOhgJCFhTxBEslUVPY9hFM+h7yEyip6wS9y8j3qZGpUg+pdIICmJLdWQRDghwNa/4RcsazmGdD9jeC6MLU+SC+diVs9iXOFn8v+CWaDm4TklypE6YTuLDJi7JT35LuMC3qRL3ocE/siqupJRasQ+w33vSMbceXI5YKCWWShxuT4sOyWRvPATKm9kLfSJAqrLY1iZU0JVlk8FY/9LbSe7J2y8x+ziW9iwyDnw6GbykcGS4fYyso5RTW34JkxC6OFHkWxAYUC5YgwdgTwvQvU8R8CNs9ldvZCZEfkS8CY3HVGZFd7AVzQygGpJuNhVggAzliNnTuEUK0tmbpDEK24nHD8hKURTfkejKgmvRHC/OsQvwknRqSDkHVBifIfglr6QHuHeE/ejIUx7+wnbHhk20PJ33ggzt04w1f0XHViy6fzJzS0JUlX90eBqYQnajgfyFQ74478GmelX8CU7Kb3LDdobAI0M5EnMUm2JFOHsNW0XLPQhdvmvYxOtwJGvkL5CVDhFHSZVTgTnPg3+dLGPkWRQJCw9XQ8ph1pomPJyQkUmHfAnPno/1oycRZd2iRlCveBUqMRaOZM5UeRI3PwHlPZtmIHNeSGDjqScUqhvpCbJfBYJIbG0+TOI0bm7iblkSxDfI8JQPL/QmX/GJ+0KhLsTsv2LYZFOBu0UzWTG0sKPA51Ee/ZEwlyNCd2GebFzOGMQ5cn18k8tvZC7PBojh01DwJ2N7ZJhlGxLJnkWhOKSe5v0IoQmm5K8kCbGjyObck2vBM8HgUnCp0IhKPCH5GbEyV/oFCkpDEsoXI/gTa4NwoE7EMRrF+TJXsvlS6gknZ2KaaY+h1SRxH0PqK2fRfSL9+VJW4XoRQ6eCf9I7CSTonUDhC3QvIti2hVqexCEiOBJLVMbJJFYtILu8EDEn0hC1D6GPsW7cExDZbrFNWvcSnLjddjMmDlpeSQ7oNtRUm3Hx/pIkuhHjklkyYm039MT5BTLKm3V+SFLm3HY6mbg9iIZuVCWBpfdSjYjDhEf3Ah3oW3EZGQOmRqOWRSrCfLW319mYlfaV9ji2XaFgCypNKNkhOIXiZHaT+xiRTeIQ4jf6HYXyITgobEkEaQ30EOdyN8WzAYGwkcOTmTgfE6LhwWGTWH6PZE+VcobOKQlbMgrNV6YRf+jbH0O3s9jkFSUZUIF04GmjhR7Gh2vlf0MScwRNrK2cNxTvK7E9jb9kzleD/AHY6uUyucUSwZ4FB/wCxSmHgt7+BuEEPsS5nT4MVvBDnNFi/gf8A5CkiCaiSIJlnlWN6HToTN5/YyUSH5N/c5p5E0pXZDXcTyPSynhSMUOVLkZKdkswylJe0jULaNp5ZYHu3pjfEsISCDbu52IZt6NP/AH+RsIDFzPkb5fkhd+yI8EC3EuqOgqOZ4kRryWib3F/JFH8+GhDP2SrRBpw02DmNWhuSTYSHHNE2GNRJso9FMSQm/oLPDyLkCMt3A6bxwZ6L8J0WsUM4GMjaHilBbJZBSp5RFksEqeCKkkGnZ6OCCRSP3FvvcldwkZ2Sy/px5YuodIcef9QraBbkJZ+l9CHmJCI2I3ZPA96lLMjJsi03gy1KFPhm0BuY6Y3dOXCQ8pE/OYHbK2V0JusRa4NyZEOgHJVtkGBIkx2EtykeyhcEiBvTuiJbKOd9hRqobk3gcXnhFluEwGJSKjKRAklyPAtjM3EryZM1U25MEafItnATPEjVrwNDEDiqd9kj+iDrp7ktg7EJcr+BYUBAz8nES4G6eQkSV8cCfn2CbYhkosb1YCp5NpbEZKfTkg39NCRcH4HWW3coSwpt9MW/4MUpNvYsmC06ZlESmLwTGTRJ7IZyoGhOHDYnfJBc/IqckdaFlqFAhzIwpnshQRl5UJzWhxWC0mTsk2Mdf5C2galMEilaYtgIdEVw2HePZAtqvO7JqEpvwSuueBq2ukyWwSZEaIuRyYuy9EuRJi6EN6Icjagg9hw3YqGp3Y75T9EyGpJCmr8lc/sUbMWMD6EWeI7n+xHODxF0E5IUVVETwJLQlAhLViRPeiFqixW0Y0xjsBrjzMiVIrsI3x5Q0g44STSmGVTixhx1J5ezNLZfvYsYguTuW5+hcYuBJc3X6Q/NBKG+uEOIaTlC3jBFM5SY7Y4sjHeTpDLN9f7ovUhkSC23z6yN1yeF4ElocHJMuGGQlU4FJKTdIeSlHFixHC6GdG3ITZRvA4h0FuIdiaXK/gLa8p4RgOoK0+SaY8qsFLjORkZeRWfZVjJDgV0raSzQ2K4G30MRMeZDU6nD3EImJvlQNOhCJlUKiYyIztD3pl5HglQNeCY2/wBRm54ZZ6T4hCrStc4FN/BNjndr2hOox0HqSZabLv8A4IktpromTle0SwTJ9Bx3Z9jJOXyNRiQcp/xEzTa5sSmDXBep12NKn9DSV2thZd5EkHSGZLhRgfVBr5XgQ0S9hZtnISa05LwMm0zwF4kc/IauC/1sNdAcXKJnOX9kr/4W6FPYdCs6didrrognKRUkX9ixGplkpMinkkaIXkr0Q9i0xJWCHyJwu3RERpgmeSBtzBMYlESxPk6Y5kisqTyHIS2G2P2EdyLqxLlDCIEtIG9EPxGQMdEG6Q5spqiXrebtMTHgxFbGj2jwKmypSHjGRrTha9jq15/kszSYT8DGu0iw8RtgUullKYl41u+xnJPFhTZwfyXWv8gSYnM2kbDpJKZCHMwTjDGMOw2lyX6JElmW/Qg05JjS2EjwTdsYNorFkHBBKnB0U49EPdNY+yDJ0MXcaL7SxSdUkUoyjKPgoZAk4FDa3sXT2AbOnCEdjMpjdj5WO+NumNlDfsU0dCfmRKJGwh5HpRmqK7TSM2GJU/AdsDQmTtory3LkX2RnhS4+P/SE6P0bpv6JpYELeS6yU0clm/pCaMNMjyLkeE2fRNkfRET93Jzc7FEN/wACaBm+2cSroTT3nyehfIpTRDkUNCkwXQljMjK0C5G9Zk96kl+JhfH9i2a9EBqIGnflOSJnH6F49LEk0ehigQ3AoWIIH7+Bt1/a0HaOwxooO0OG0kt/6WtmRdnB9aGJCW6FSE530ejKWI4EK+ZIa2EhKuWeAng8izqhORKdR6zDwJ3BgGxIaIbkVwhUwgHmya/RHZT3FKMNbGVk9/sdNzEoTUXQ2E+RokUneRdkpTQb2bP+fQ6VBTlprse+RrPJGrcDIOkNRUshFOGQ3R4sbI7lkPZPJIMmYZHcS+NxzqMZYlSHZFpCx6uG14Zum+IRBf8AcimVXTIFVbDrnC3F9RJFbhvVi5bmFCZBRg2o9lLQh5T2yJgN7MwfV4gkEkbGIczfkgh6vyPn9iJY+hwIOa3kvUw/BHFF4Q0YYQjiVyhqtHuiZci18sZRs3mlBBKU8kypy8FtKSLFuhtHj+CL3z2ZHKnyNHtvkVMlFYGoahsQlEoi+0CJ3oSR5+C1OWuZHce7Yajs6J22UCRjUTAeKGpGyvwVv4Nn2l/DAkafaWTPPs+kO9y+RTuhHoegcKSfsqpk7G+LyR2+DFy+yPC0VG/ImWIJE9iXBHoTT3ekmdiAmyV2R4IjgPzY5E+ZJIcC8kOzyp8FFjIuTFCRLWfoZXaxdhBE+AzB7iYuhM6JoS/AlWx0JfMIhb45wSMHKLa2ZWIB86INf0VW4hhsZTA2ZqxjvPqNASNXRInQ1eFA2S/tCD8eDdfQcP8A0tiPlD4yvDLSX4aHew/2Bf8ARGkIh00Jsi/obrFqRI1OP5Ha4mMjik+xTKQ8VDVjlVm3++DjAhkjSwRj3ggL0MZ2iikjexmygdqoehsSRYdpexhEC5UTxsQx6TQ0wljyUoQcnZxUyhm6LA5ajLyNyZeGdmkkVv0T1Kl7DpLhrdCEaSbg9f5jxCcrhyNFJJ5swy3aTYSHKTytxVSvgJCFeBocPJDneSKVMim/sd2fmJHDaPR2U8FE5V8NEYi3RTim47F2Q89GcUrw9EklQUpiUBkRf8WbeDGz0JsRyOh5CpKwXwJDyIh4OSsS3G/Gja8kHz4Me058BqhNXPDIt3kSynJYhF+i+SJyjOgb7OJdCrOSNKR7onwzkTCWEyUt2NLzrez0kVkUTwXyT2y1Y0bFsb7DabHmJyOltYmLS7EtMDIyQelGjT4diHys1kepg5WjNwsgejPI5QiNlumPLOitcfJF30bpITcCKjCbgaN58jX9CykzCI+EDp/EnqeByNpMKavPaEOj4Y86kbInGvgTga6gSFLJfkjJnRei6vEQzJLEwiAbrUCYbDw42G+JEuSCLKX5wVVpdJF83BOtpGfCBOPJMqRcDlhzqxuk/kK+z0OpNt9Im0STl5G3EJecEo38Qff4CPK8DYvoQ24jdiUhPzy5LCRpkM5XhB9EpNyvsTX6hYJpq8hM04fHItrhNjmR4E7cb99+BYJQxTHFs+zoemVFLxuS3gWwhcC4yc5+SGvvhEnOuMBIpQvB70S5TRE/9JbP7ITcb6K4IRuQuNKZK5VPoc4QUu0JMD2NzaOyLV26Y9qnyUZt+xa2Pw4LM+QSWDT9noMUTZJCdhyuS4IMo4ZXgThPmfR4vTEva8iVuKXQg1wlWOcJNsnwTI1RPYgf2Jw6RfNFW2Z8FaMNo9GkyzJx8jZpzQ5MfZGipm5bR9yLevg8mbxDiSPgmr4CrlqiNWnPQlxKIqlrwW78o8fqiHYbHUehC8do2a+BC4PRF/6N1lfRDeH4IxWRr29j2Q0gZsxdw0n6KWByrhkFde0eAjpTI6El37ISbbLHtN3/AGJaVmBOB7My64FGXIzP0QoRLHODsRTpghetDbduOlSiEE99gufoP7GvNsEHvArn3JbeRwcfsg1DSZJhn4HLZH5HNNbq1d0hehSpY4E2duLY6U9ol4+CHZQSK0Lkmo7Iq9htr4HEA0qzcK/Qg80uiVQYnub4JCMeWN3MXCxIkuFaFEKUNIf2cLc/0Ezyb/XwQ+aIglOhiS6Rd2ih8jOaHbJa30RerJ8tFAkjgpsTHssuY1o2C9jDRcP6FJWyE3ST0R2RQ4H4KNhDiCHPrRcZlz9jjyWM1uLvp5l9EJnoL29niQe5FEJknsI90Jx/w8CeX+BsZiihJ1GYre3IySGqB7BuGK6I7BE5OSQFv4ZdFzyIlFR4YpYr2Kf9BpbryhcEIWTQl2vmx3pwuh3v8oVMPTE/kVI+PLih7IYnaB+Y571QnETRbcThO0e0bxBe4H0TcKabE26fIxSI7JE7CCUrkbmOG8CG2mqFo0QmURCVXMMS9qKi94Fw+h3UCZEyxs6iHDDjoiaOmaMWNJQMiOiEQRZbCbBks7klSLZIVNl4VhGWM8sLQsrsT64ISpdUYLcIyp4MWZS+R/bPxY1sTXlCuXoaNM9M/wBgbTX2NQ4heRhi3I6UzQuTj2UqJ9Wy2Patkbmm5ZFYhGtA5lCIEP8AJH4ILYmexpeCX58nlfBWz+S0L3F6EyIfiRK8MjZ2ObA0jBjiDCaZ0HgJdDlZXaKKZeyV2eRLlvVnKS+jwGw14JckshvKIN+jM6PAavBB56IBATjR5FDXBIm9kidx70bUyQIS2InY/a3JlKaZgSRkJHbJj5sbv00J1o+SdTIk23YFYShYSjYbFqx7Uz4Y6pAn/wDCDwmJ3QcNv6Zu1jWjJDeCpUKsOB+fo8wzLfEc+4pXKO5QPZ2dkTGxTclcr2ZpfIolasj0zbRidM14MhZCmqGioNVfRuTiRScjTFTGLNtSWhS3AFdzTgkPJkh4EsEnE4LU+fDE/wDaGSQ2RfD8EnsJwYWLqAXJKnKobUR9/wDRU3eBciD4ZabkusJohwITmKLEk4pSZeMRFPkT0l10No5kbrciuYLKyA9hQoofZJ7qBf4heYLJjSrvSGPR9xGhhIrG3Q45GsQ1O5D4TJS6ZLyO+htLeRNPHQlKZHBLkh9EWBmfoS70Px+BWwI4N/A0MY4bs5DGru9CQqceGS2l4D8nglJXXkUcpjTGzKIbfROwlIobkiSeT0RJ5j9xrx8FiS1EZvGiR2JWiIh5B42F3EFGBE3A82N6MjWpsnwKVvIxWUxwKbtQIm2CTYhbchViprCaEuzYWLsjc3PwLg2jcOfKHwPWgWI/Y6P5QhtKQ1lfY+4hwHtWNLAjORD3MpGdyPCI8HnXog0EFTkpiGRMElJ4mxaPgLsqYIQRgnNikKOoWU5RZLCK9MOU0T2xRDUBxB0DNG3E8E0f2JLDRuDaZ4Er0TbWKSUN/Izi1H1L/wCDC2ZKHI3CQsh6wPso/wBRNW2vKHLWz8FHhoTvM7jVTA99omWJ8DTtEK4flDvSjwyW/QTOWmKeFCPIfZi7jnytKYgsoSGpLc6GD3Q2m4hz0NObfJfB8Bgkyo8jXyKf9J6FapJNEdMaPkeI+ozdp/Jna1+EEDF/JIJRluN2wpYcexiezXRFmV5E01OWNpmZIPn2TOzRJPRJItIIsiQCcYVCsJ6ktDsSGt3e4mWxEdpJEF3XJI0YONy0a9iRidkxshFV8EiqwysjHE/AVPMlVO2yORFnCRcll8ByIh/kehLhMcMluf8AZOphUNY3EGc8jeBzcNSNZwKW/sKz/Ah/6BodMfYOsoogZJ5MpchKX8CV/AdNzsKc2VdzUlTuQQQgQRfI4rH8FDhKp4Kwys+BjHW90LpVwNmjjpirrcSO9jeyE1fyPfHpjdj+BZ5tpl4RfwELKaJMOfRgnRLuxLWR8Uy/EQjm3bEXPqyUvoJpuoH4GX+jyJxj4GbIHxggQnBUDCkKCEEIIQ1eihi0PsVz8ji/kyqGmnyZRDG2hhfJ1HieAvQxpiDEUuxcFCJ7pHeRMlejFFuJPeR5HLR3j1bXmJCiS2GSIvY6OBr4PgrmCFMoaPATkSJdhoUJ0rEMaIoS0kMZIjyZmMfypYxeQQw2lWhBJKpsQZWfRRkFkeBkkWPxgUZuSGLo4YI8SMEqwxCXwTO2iIRPMCuWmPa+hItH4Kw0jGuUPKShfoQ1j4IrryNI2+CDWiO8DZuFRpEnsESqwg2grAhFqKbwNE0VVrwYHNfqZkF7se4J0uxxgIT5UZTJMixxf2KDZi3LYestCKFK25FMLMy32fyEfRDBIg/7TP8AWOkqhbpaM2SXpynyJ28jRq0JqYvoThZEeH+yPVjOh0N+B5fvQkMQy28CWiCBL8IY1pyDFQWyUwYkaZgg+TU8EpJK3HJMCmQZRDwfyS3RCLIJTTJPLIIIGjypPcmtyfJ5ieQuh0/+DaX/AITyXlEp0/TGo29oY2ZIM6WeAktqGhKsT2WZXlRKbZdqxrDvspo50lslPDEqMCaGFzoyBjSNsJrBvBrUKt0cRkPoJb4P/YNnhqdijkRapsVSuJuTQ5UprIT/APLEuVCl/wAP/cNP/Bst34ZMbCJEvB3Jni/gfYfEZxI18FMfIaHaIvoa/wBB5fAvIcsox0ZI8HVwW78k39BPL9CSSGbU7Wtvkeb4yIURSeBdE13wInI1ZgyxsTBoN5UPcibjP2Z31Fzad5GX43T3X8iWWE28CGv+GyYqEuPgXMQ2nZBQh05Qg4kixglXyWWY9kPayC0J5yPeo8hyyn7JQmO2YYkb6Omk/gUjHnR4IGrypLpVPQ8lcfhawUzovSegxjIg3CE08P8AF9jmVwNH/BEtoYdKClshXAbEE5OGSbkrnSCLIbIcohpYQdkNHijYhZUx78ja0kaPcL5l2RxgbKWIecbC0GPO4VLwMOCc8D5hvsfCpZKUfBhqBJIeFiclf9BNt8HcyG2kxT4JVYTQtwkCXUE1iho7HDkcygiVUDfkdbGmcQbibR/6Ff8Ag3vlEjP2TzBPgKRhggyhvaGtsJuouxU1DGhkbBW9Ax/Anc5Tq/AVr1cZMI1iJHJduRAoYz2FKSfdDKcL5Eo2j7EQk7ZAlGiFJcFHZ9DXCb+RpWvaYieRRuLhKCQTf9NhtSJipGMu0Q7JjKgewmYOyDI38dYESJ4wNJEDWSZ0QNCQk1sYjcsbjQnqQ3odjXSZfZjdUiOqMprFDIpvxCSrYyEBK0JCSU0MocRyRyhfYzgaLLQJtK1BfBgbcZOkRLkfrJutxRXAlm1AiypR2IslyU8mVd0Jb9+BMZ+BxP0yixUHoiM0jRSvBCMwNDWd0WE2Ou8hrkm4E98Em9GVkU4prwJ4NCuBbSMjhUsUlkSgS5JMo4FoqT/A9n8wkjMjRiyEFGPCY8z4EVNiTYLcTQxU0QOmHwSjsfUxttEUplONnoGhFgyXrkzgeWG/A5biZJzkJHA/QmbjPRP8vMQgvI8GikCcyhRDDcTfnsj4ErQiIhSpA+cXHJYEIfIqDkU1kVGI0YbQ+kj+NMWZdSJbT4GvXkn5HexCHTdjGqxNryRlyN3EWRIIBxJYIgcxxwKTIQLkkG/aIfnyS1t8EZuUTO5AhEtEA1Yjgi0bAnd8kiRTAh3Q4e4T04E2sQQ5IiMmxUJtkBBi7yNDUfzL8oknz5IjolRke9NJA8z5JVSuhkyhiUb6EiYPMT7GpwxM3FNdkDGyII7MISiMSLxyefA2hwWGyFjFYy0pSoaIAZCLpgKnyEaW7yMnD8FRaPAFyDTW0jnlQJMp2NbhULpZZx4GtEvj4PTGh06EMjwkSYEzghMhy2IeCXPwU30tDV3ofBJFUqXBC4FjR5RBujkNCwZ1QYFI8GbgKuhgfskvJDHLt/oWD9i2vgOhBiLD/eloK5MYVcnILDcLKQGxyimw02H/AJI1ZDdgosi4km8G5IxYY7oUsCHCWBydCZR4GVhjQ2MSjYaGgp2s5EedcFBGE8EBNrI1R7C3IlQr0WXHsUNhTYmiJaDbiQorcRFMojyKQmiGhGNIENLYRGs4G4YUENq075DskT1MiTsjyyezJbhqHkaUbE5RkWBM2cBd3bBcobseWSolRqBaxRKoSOvZ2COAglMn+EXcjqQpLYoyy1hm+IwENYJbjUoaMe1RORex+whVqRLVpoZKfZCjB5FuEjtsoSlkGVfAie6TwuCREaskHyNCsRMToR7DX+QyghDmZBCD/RJBzJdpEv7MR9JiXn5ECZw8j4vgcLMaQ2yIdiDIjoOFgrzICmewSexSYEksE9wbBBblifiDwFvyMwDFEiUlanW2HUsaCHAmng2tEGKGlPKQ0IQTE3yVuNwExZF5Q0tgjJg3MD0Dy7XQ0lS8BMcYfYkY3Qmwl3s4Z0cD2AuchcqTgUSuSDE6zokaoe0QQkzIjeCbQlA34J8jpDSRnIiRoOg8IjJ2MgNkQiao5i2MKXsFTEKTEVMa0jFjsQMRuhLhLAnKvTGY1QxdkItjRI9hiE0yyyhumoegfNxORpkUoJNkQYkYTSyJS2aZRRI6DzCd8iZJcDyIyjeSUZJFpZZCahV5HQUNDto2NyMGj2gchG2CqINqy6mND6GuUJWLsJKZLwpaN/bb/khbBzDFOxG9kBOMqY+BMaNYHOB8BhFJjtx4ElmSPI0EyQlSUJSSCthLBFHmMCFHIoelkTsicVyPLcFRoGjsQsdb6KfQq3GJI6DbwOuyFwfQkEzyOlbyU9yHA3OnA3RwUN5lK6Ef+imJyMtKEyFJwjkPGnTgstQx1ETQjiE7qRQhuhVoib1Toqh+yCSckQergal2yZQQoGkljLLmx1rksDlIsv0NW9eTBNjISmxNBsKx+bPUIbIKFnEEkyeSEw+CBVuyiyg2vA3ZyUdQLSoOGARMkipSQKsiO7GgnyWTkg0T5ISTb2IW1CTjkcc/Auw0VkGnQcMQ0JA4DiJib00PEZ2oU4Y3wxr/AOkQJe1DGnZVLyTaK0U8Dt7CLUyhGDgj4YzlNCk6DW5RKUNTsgTnsN9yO1iRsFvYRslTgbUM/8QAKBABAAICAgIBBAMBAQEBAAAAAQARITFBUWFxgRCRobHB0fDh8SAw/9oACAEBAAE/EK0NKC+YqLyrpuIAFh8zATPxuJQfQ4gqiniVQQzbgv8AZ9ouu3iJ0RVkjh0w1SDJm4UpyrIoMk0iafMTiomIN5dQuJgHRu+UuU4pBig55R6geMjtVm48QKbO4+OIP4mHj+iq4wUBs5pIjqDkS4ymgaWussdveIrgLEaq1vEeB8QcO+I5b+nP6CqOZlLlVuz9TNxsh9iBfmBnA/zADRTbDbwp25r/AJMMXQcHPdcSqcZvJnmMi1DSU9X159RApYFabKNtehj24VRQmfnxMiG4AfIOPh+8MFxTAN2dfL94aAMlWV194wnAoO75/MAbysvFbgFeVCr0RCR1K5e/19oGhVLBgr+9w1WoztwMrYQ+bhoilS1eYrANYVNDV2QbYWFVr7nqMGNl1rLAaC1dGw6hI8hU20f1C4oFpamxtFUwsGVVL5cscUIIpW8Y1mMRg4U78ksSpoW4+0VKlZ4mHWurvzz/AKoVSq/MADktvV/3L14M1dfEFnYzlbUPvAQaYZ/iLNYGFcdY8cyozgCiGF6+8oVpaq68wESymCpgC+SqjIKdcy104f3AxjjcqxxLPXqVP5mQblnNQJQnN1BojT3uLquO5pXXMMqunhhRu5wNd/QfzzxNxvWZwn+zCxev5iY/uPcQkMrV+HMzdfEND6bbmOnPDH5OYkdSlAbx1UxHcwMy0FxdgzUwo8nO5mWUfzoleOWrXQwZOyoc7WzluPahqtJThtHuLDd+DiXZ5fmJYZFxmvEbDGn/ACpS7rN7jXs/8loow014loC7xbnHMyKszxzDGgvgcRaEHyNf7+JQsoClznMrofJBuuDlfOvUCBsiP8aQAjWQf0uGAByX+sRBbN3P2IEwesp+VgR78qPxGOt3/CqHSVlaPyxFXxOZQ7sdy7ASI1K86GZ+1GBWBTgNDlGEytt5hVEqskDVb+SMLdiXuoQk1XCzCQHCWJdLDsJXBMR5ZeXxMwdyi/iegAyl2yb194lC4VA0WxPcC5ior+ItwgwpmGp7/XcHxkzPlFfExFUQlR1Epl0PMyv6qpycsqopmPwSqPj9YlZpVtJ1CCDtteIcjJRkRzqVVTgHfByu4X3HLx6vnEbmTK8107iQSiYc14qZgV20VjdRLYtUg8f1NID0w0VjziAFAT4Lz1LTTFUqyf1MHZBQy59H8RXU5LaK+YROqyjcaiBeK1GuKOzr+oUV5Brl1/Mp3u2U1SsBLc2+8YGrZdviOFBilP8AMdMAGburqG8Rrg3OANtkKmhAgzXHrnMTuNBZdf7+YzgZxmOWsnmMKFrjxCTSzb3C2CeTURpMC5vMa50Rs2+5lSBjDn+44IOjqy9/mXCzgqt3MQVUyp1mGlrA+0ai+ImV3f0NDM95eITbVJtLs73ibMxBGccds2DuclM8rHs1BRXmVC5A9w+0VKCGBPfiyUfJX0FiFc3HK4lZhFAQO24haIjUwWwmYo2T7BqU493KnWyNrqJhE+JfbvhcxsXkqDk/Ec/MENzgM3OHbGq3E4ZiqiI/bKHMFvxMofM3Sw/6o3dwuQY/cNg7zEBXIdzLbjqupRlabd+8XENtcL3KSrH1mDbbWOMf7iKaIKOvFf8AYQaXoMOZSagb14RbYQGhX/3Fmzcw0EszI8Q2vKX9CmDcXYIMfqZAaP8ACMdmsnMFZTYlUpSnQt8wekfE213oj6OrH0wwxEDUNwzQuky1y8PxBJS6V20kdNxMw8GIKGXXxAUbhyOP/laFNznWBBQ7/jKsXtB9qVLyxl55QqcQdLoKYyZYcNX487lmzkFtg9c1ncsYukcEGKrMKZSA1evjmEHgAbx23Xn+5RnEAZqz8yh0LQeuOYxUbigi67/2YRpEVZr/AH7hNsFjlw1+o+UKpjeT+GUoLAFM1/UZxQs0jfiIz1pTrCW+s/eFKlq/iFrKDj9f73GspRzDo5eGEu4Yq8t7I9coEKc+yvtE1rRTV10RntszftDICC1b+YioaeGqIzlkQaRqOjlnLlkgUDYynFf7cbOKLEf3DYLy3Bi3XmFatJ5EYLiqb5xCRY+tXCEg2a+0BQ27Dc0l8TEAAwqxw08YqIhgz/sQUfsm3BTzXMGjAp48zJviomQyB83Hc3bmZFzfccrg9Lg5huWOy6lm5cL58wKPBzBWWJ8SrxK+CUiVE4ZuU9Mp64iHcocQV6rzFFgy73K+9wWwO7q8R/8AMMrbuaxKVoG/v9Q2uSCvNbZT7yiezjuUnnKdcQNp1uZcUM6RMkzuDq4SW8pcf0uOmI00Zgtpct3Xc+5DialZDC2UcECrcHribYVTmDytQ3kIeCDSrMFdzOaYDIPd7XxDgN09VMj63f1DZD3EODceSUtvTCSVSNr7zPmV2Xw6j0GuHL1LK6MWlQgaoiSKjUsLuuWD7DtlmX4j217jNf2hmF7isO4BziX1HG0pvS/UKpkRvHcahWeWquoKFYlrWwIS7coHtlPX/wAVcqvohOAl7K/0gG/b9Nhl2T4bAL60wN+sahaxqmP9UUY4AtU+ftqHhKaKMP5iBBinGGEiQAsOHAc/qK0qIiVWb3cyjBCuDdb4hIAsFBsbC4yFVoLvvj4mWoDoT4/3mK82FBRKQpu4Dj1AwO2d+ICwsV3e/wDn78MYrxwtzYWNZeolUHeOYDQYXRCQZteduf3EJoHKu77CbAZWmr/cyY5BU91iUCimgHrT8/3LIa6DD4iRKqXQUfaGgS3IAQty4Jdlc3LBCCZ6f7qBvZSktijyHENLXsxAs5Uxj3CsFjZURqoN2838yg2lZZTZ965qVVtogqmA5YXQ3XXUS8MkDfdZqBb6rDC9a4hR2rLPUsayyvC8hNMagU1vTxAYKavkgOZ0ZIA4v3AlVKpvvEL4nuKdfmU/M5lXEVzAXj7/AEc14ic8wdUfmcHP4mA0ywtifzAAJdMAFV68SjWZT1C3p1EXFZlyhSnRogU0XWmU9Qsbp8w8VbcAJrfDLBQy46nOWayRKC2ncGxd6T6LNZGaHmKSte47BYVeYMsGVfvUsU6hUAYTBxZUA1lrkGoEGaU1qW0D5VxDpaa0wUkjj49Qiw2uMMRWr8iWqMVFhKPUG5QeYSJrETMaGgzEMA+JTqqMUA3sMFVwHEtxqOWd/TElEQtxkwkUbuoKXzK0qa+xAdCHFXBj1ECGad8t/wDYXBGRyWMWPeOlvNJiu2VPiGiBt+gLClxDBTLO+kOG5Lt2gKe6lrYNlT3fExeRTBR4qJY2bKddxupLNr2OMQqRfUfGYFll9vfUF4FhKzZr4urlgLkxl7x/vZNID8AlUgQwNCr+8swLgKVfda4iGjaW7ay1fr9EqWZUOeoOZyWOXOuoVAdQ7vqAm7Agdnn53CwIGLlqUNVcudmGDnESWlXlT+o9yBpd7MzICiNVTn1NBQLVtTR+Jkittima0wiEsFq9pqvWogVwcF4lFRnUs2rGwSWizd9jnPpC+Chg/wBz4JWUtahkviDmv9UaB0OfUbQmsXKaGBQaFy7TWOZ32rxBF4vNRKsWvoIwGfMyC16wS9aqcEBfW4YFzId8QUDqAM1nuCeqO4du4K4PvADX4gf5gq1KK8xL1V7lI4NSjvccL9BWNHB1LUv5ny/aNHBfuAH9TgLSUPj6us65mTBrEtqyuDxKy3UqtzDwlzSWdMdiy+mswbYv3OzUcF8QJYcxYLR8Rc6g8GZu6+aIeDcSwtsxL3eotmOPEq7O428c55myFyU9EFkBz3jXqdAS1nN37nUBxiUUuTjMyMUeDL8GqrOqqNED2u471EyDccCzuInYXKLHELpmBN5Q3cJG3EZcGAkMyx/KIZLAaitZqJTMd/S0SjWpXPf1DbVpDZTubfUawPxGA1iHXXcsZaoS6uv9iNxYB+Mv9Rn2TM+iNYgF1xBNE1luoia+qHcJtWm5lAlPlKRorcc0byXOfsjfAS/jF3DfAGILx2n2gaVo2I15zUR7SDdFYr8kvbIpY48I2oQeb/cFT3KxLvwypi7SkGtJiZemEces/aVbCwIsda9QMVmgSLfiFBs1eTdQRZQXXF9kQ9gSmhNVJzMrolLNeYd6o4y3CE5o3Rqn8RsTUBa/64TpLQbf73ClDizbd3WfwwJSDo/YqVYa8oxCxcvjiVwKnV1xlgEtA3vruVmLPKNp/crDYL45/wBxDu4TiBvY5Rpy+YHXO/zF3xnVvmI98UygZVY5upRluADZyZhx/uILYFQm+pWOx+8vjqI+ZSVR/cFi6qXJwNe4y1WiAohhVY+leD/kHPME6gQlF3z9V+JRz3L9QF+iE0X1K2OyUxOGYPiV6i7wQhEHcv1DrfnuIbOSCcAxLha3WYt511KXMRocw8OGoaSbYV1i88Q20s+5AAd8wtHiXPjMc2c+5bPU35qJbb54icMGsGZVnm+5QXXnF4iUuHiB2qr4uLcGDkg0eWPEd0uywcy4CXWmJD120wNORoAoK1Hcoeqgb3MFDHiL4XqP8yhjgVy4IICpsVKo1zcJ4jdYlWGGV6Zl3PUStxFDLfErnuXNJf0X3MIWP4+nDY6IXk5Ragxs/wB4gtPY95f7IBgyJBg+CG1dRJ7lo3KoX9QWARl+oyfmYL4QcerVmkqdbmQYAWRWLz/EI8Q4B93+oQC2WZvnX+6hsK42uMd/7iZsFt2B2X/u4oO1YO63CaJpq8nyvjf4jEBZNZT08Zupgtl0sDjIfP7h0Kr2G/x1LjQKYoz/ALMxgk/HTLHKCukaBRVVS5e8QxQVsiGChqBadqwWbFR0OCJWGjN/qJTngFY1n8yhI3Di8pzip1kLo/UI4BeaoGvMwNrQ0XDSEiypjPz/AKpQApZzUpbqu+3jmJyRsvyhygaVY3/XqZiDABXPcIqbrmUXV6jhnEy18WkABi+KZoj8SsL1X2gaMJPR8y/RArBjzAybbhhkgVj8xoXFvOSZCjmBYDRCCdJ2EAGJ2EC4MhADRXj6CYGjHHBEy41AoxqXACW6+lHxKr/mvon3icQbPoFahDULzd/ERMuL46lXbpfxMt36YazWCLhBmMA1jHEpgtiXVNBn7Rocl8+4rko3iUO0RPEf5/QeqlLxq5RVGEOxwi0WwWt/aDjhjPj9kK4bMnuJdMo65iI1Wrc6mxYdLoY1pdVtrMsBhQMLrmALMErKzIU1MMw28CbJY2IZxNG9S4GfiW5CXAD3uG72yhPMueYrb9ArjUyC6hTz5+goVxiVDxuMT3cob4PkhG87ScaZFfeEzSyivConLmyZ+nM2Smr+hpfGoFuIaqILuU4mpRHiWGLEnPzLiIBcSMfH7lmHdzkVZMGfh3LoAbLjCN4873Ez1dKrPn5jQ8aGs2+pQzjUM5TR9oCy2eHf54jRQLatr+oAWotFE5dvnT/UQEuxGtfewmDKvY9VX8TOSUVhzfmMAim6yXeP+y6TK+DNxLO0rQFX+D+okAUdZ8VT8TKS2Yc3bKIO6hW6BqufvHSGSttZ8TGWyznZzAY6naZ5obl4gqpQJNrrImWGFivf+5lLkdKhm6OJQ0DkGABh4dzcsu8NJeoAYpgLjWxfKsyAiK2e4ls1nxK44JLeG6+JjPi4FH9wfYdd/QITS8kCnor6cw9xLisQ3NUBRMPFyzRnmHuIp+YH27gYPM7Ny/R95gyTUL5lrqPJIBLxNT63hlJTqIrBA0vmASXcAiXNl8SnUra8PcSojnqaMN/zGq3dQOYyhVuegJVToaGVC2r3x3ET08yxd1UVuftOjUFwBpHS+0FJWe06lVbvUUZ7iUnfHmUYG9NyinRiG2l91BZppvHqVtFA29zA0ZodX/uJQUFfRcaMQK4Fy68TtEyCq9SkZFa5ljIG4bDctDd9wKk1FLqGmXNWolNTRATouN0AeyVSdQj6195rfKVp9j5h0wk/BgzvKO/mNWctTZHRMhUem+bgVMCU6gV9AcZQMMGL9XLb6lHgqXCdSqWe8moIlqVgty5zYGMMu4GQoOmy3u24oS1IML7Cus4httZsq7yX+JQq1dvDOK4isgAPh8NdzExRB6fXXUS7aaIpIEFthaHuUY4FabcblDp4NfaG1mW12Xx7/iWFobfn/ko9s1CbqN1WqZfIvOK36mDEvKZ5pOIpZm8gAGtl/wAfzClfebI02ePEC28EMvFQAUsKpCmCwtKl1+URSqUE7zGOLkTFeQZJ+IKLKVlsgCheVVCoprjMQS18YuA4Nx2cVxFT1DQ29TNRwSncvXEu7xe64haZLrFVUMrX4h946twQKTvqC6BcGLWTuYZPPsmdrX0DB27mXOVlG/pZniUDrcuiqKhsXHiUa2RysKfcslOoUG45IPyfqcRYT6UxKn3n8/R3VaaiXxcCCeJRh/ESm6APzGL6gUXxHeJj94kLyL+JmggaPLcNWGdZl03EyVMLca+huyJq/wAR3kv5mAcPZuI1VAGq1Cn/ALA/ZAmUrG5rnBXyRpdXfMAboX1HQOT1O4eX/wBhwquxNXb1BdRc2lLjDzCiovqXV2jGBbBtpmbmvpTsP2lu2coXtly7+lekOGaYPsRXftJ+VOCWCzLkwlVjF6mMgG34/wAw5PMf4oL9zaoVMQwvvAfQW+tBxdO/U3eoQQGYV3mN1U0RAA6xDQ77lD3lzFtmizL6/ES4oCBXS39pSywHA7/7GTWubu/XzM/E7VBT9uLmcCiFzdsAqekm0oB7HfzLEVYq1He/MMbJeATZ34ioaTBXERBaFmY1xUVadMJwB57XlgEu/aDJFt2PmLcfCcQ1BotHQa/7MtxvIKM/GX1KM4DA1tvzLOYLoaILIOFQ/Xx/EraoGZ8v97meyoWhq8aguhW04DxDqStlZMq+dKaMc8RYrwVK4lwN2VUaGdeFlZr9zJ9zJbrmobHS8QUZbXxBv+px4nM5AlSjtHxCkcWQLwgytNYqDgwMQNOj1Lirvt8z714l9PzUJTJyQ3OXNlVKIxNS2q4gW1Epjp7ic8Sj6pX0ExYfQ5Yc5jtmkrGcy919pye4uuPvCqpWuYMXf4mQRQqzRHCwFaj263bGVFtouIPN9zZfeL4iJvEoKlGHI5xCGGolsS/CMZ4lXuO2VYdzhC3mObYDBq8cRLRrOh2QUsW+6g8LfEyqAe2ZFr0ytNMOtGQmbbNRJGVmbE3vMo6lE80u1mWwPivU3M5Lh7YPepo8ItXi3eaIZGIeX7n2jKsMufc1wLK8xSWLa+oc1zgY79M2gsTPOpql7lVGk5SoUEgr0P07de0gVGL+JlP4oN9WdZpiNmJvXP8AcqpUu8PBn1mFioLWA4tt3AHQw939R7QHS6qGzmxcL83xvxHA2O6uvt5iVKzaOD5SpC6ilUJ/MdYugwBCA5YMd8x210eR9o3FT03MwALref8AZistKNYJYD3QwVkmgaBaRbwOml8/+TBJWzsMP9TFUcNCivWvPExgSnI7mYF3YBq6wv4h7Dkd29P+y4WKkWoqNU7IZYqDd5OBiarmLNv9jfUzI0BxzChLhoc/xEp3R5jZsbH8QgBdXiCCqB3XMP2YgV+4r+Iaubdp+pWFfaKEunuZF1b1LBbjxNDs5qNl6xFKsywuggy87IZOJZKgVvP0C2BRKlotyzEoLv1N7mQccfQVGyP12O/Esbv8T3jkTqbI7+ivWO5aj+kdPPRKHd3BTSp2/vNjzNk0gLeFHQlOB1ARxm/UxJe4si5m643mHMJePyylZ14lFQY1V3EoA52cwtaDa3nUsMq+biOqZjQalGwHIdTDDGdxQQu9X5jA1TdXUVXO8PcqezT/ADFTZa0ftDJtDgQUp9BgNOciRUN5hDrUfFRvguIzhBTUHq2WbgbTtfTR9DdNE4e4Lk3e4dTcNSiTOSn5+PEJJ0hy1TKfQQ/UdwwX9I0fR3BVZnL6/MH6h16jY2JpcaY4xcPshzblpHC35iLVdAFfzMTAEQOb1+ofGPaX3WMKkoaoQvcqluuX7NRjsEYNPuNuCKsv7L95yOxSjgo76lTV9gfuAuUGAoXfxFNECvJzOwwyriKS/GAq3J/UYEGyAf5+8ATMPUC+VXgrzHoSjjl7RU00HVrbzUuC9WX67uWtRRaKLbq34mAAeEXFqWVijPn1HoBnN2r3+8TIajlHv/sFHbo7nKAFDTjJmCgGLFteRMWQSmneIGAWLqIrY31EKy12+ZVskdHmEBQeHuGDGCGDT8E3L1Ar/cwW18z5PlizpfMCvtWYFtag0Rhq9I3BWJnx9HL/ABOUs+lDcal3NH0SyWNzX/6ADNaYlM3fStrlWolaydxL3vuJXnzzObxV33HT+ZYqWZjlc1jdu5k+CJSvqAZlsqLmxgLV9A8A1xBXNy9IFncFNXnk6lUE3YllRKajtPxOoObWZI9z9m4rt5C1+39x+Han8x8mcdQAvYMQgCFEoY8hC2cXX4loAdAuFGT5RhzsgbHr+ofy2jQdzAipz/EJvl9RCkzPDAmHJHMaDMYXuobg+wPicKjpUQmOmyWCuPpaYL+2ChJ+VDm8VEvdWQZOpcKqbZVXxA1W6faO871F9xEWsXMGPiG5mIYPpu//AAALT0AX8Sw+mVDO4KalCzC8uJcJXFxwLhweEdwAa5bX1BaRYuuVt44vxiIUo6Vjj/faKCrV8yiAwxTBrX2ikKmzkrfJ8xnWrWaznSvxAvjkWfioXcy9iM10gYt5iCmQlb5z/cR3AeGv9f6mRjXVDDAHC+XzGpcW7dy8tqoWvuC6WAK4UwBsPBcwlu9jOojMcOaEPtearEFIKyNMuSNd1Y4v8wWSsta2Ve/W5k0AZQoMPWIjq2iFAcPMYQzSLfEs2N3Ha0XPkn59Tg1UOjnFHiaCgu81CiC6xDfO4eQvomOS81LAc33efvG5qWwujMKu/pzfjuGi1V5xPtXmAdl4gyiUfQaz/ZgWz2gUUZrf01gpNSan0DqBbBSOSpuJuJwRsBKD6Ar+ZRxNfeWZiWSgByShQruKlY46+0uiV+FQ1gNsE0nPXM4T+ERYrlNTV4gOayckW2XNji/MTGVeo4y4bhoD7Qdo7vi8s2v4mx77GDLK4znEYLSmxNSwX4PTFf0H56X+CY3VSORluPQ0eJkRApBmCcjTsjdiUxoDAVAYWreo6OvFP5lvLZcpeN54OO4rf6DTNvaMWj7jcfRGgOcIHaR4YhuAsDsqajl/hH44orfymXBYfxMa+YbgKrBbCyn/AMe8szKH4czX3hqVnuClIPA8wX8JsHRv+IJHJB+ZauqzKr/38RVA7KrOX+/MopYLZq4y2snBz/sQmqOQ8ax1xGATC88vN33AWzUsCXj991LlRtmzFFa/3E2AsvhgmdFMWmf9gY1q7HDAXODB5mktGxt17xUuemyogIuCqcwtx9kSjkylv8RVYEFbDnxdSyExl5FtfbzBCshytbajINIau8/MMZpcJi+KqPC0ELKtxx/uYwcsU7r3GKwWpuHAFcjh6/1TCQZsZUFFAve+P6l2jhCOp39ouUMf+z5Kh2YpwSi8zY1jOrh5bfl+gXHDCf1C5cORu+Jhgbhcep/GWfQcvoEWG4FH/wAa/Ry3LrdfQGGFEeivqac86m6BS/siU/R39E+YLr6bwZsy9QeQdx1rNwXN5mAqsFXzEDWU4lxdJycRWl8Oo5pZ8wDm4Lz+O5sr5jH4+0BlW39RFjNw2Bzdyn2z7lNlmY8K0hpkN8wF3dlYOZhsJ4ubKTCXf8RU0aq6zp/8+pshdwckb5qVnTBuFl8Lwy5hGMkGzUeT6i8bosGV5RayY3Ey7AAyQxVjJDb8Z+jt7Tc/ZHgMpBf+pSzzoLCEO9RAom4VKVZ9hO8EDf0tPpozBlEb1KIA039HTKg2FQBDZaZDMSty9Lrq5gMwUF3jqVpLR2axBddYDK3wjl+WDEBBSjZVX/7AVKW9j6+PzAAaQoG7hnY3o4N44iRLaU1Tfr44hhYXi136+OJduFNjt/rmWKqEwLZ9kTA1fLR788xHKNGFP+/1RlwaQyUfLBEtnBis3f8AEQcIjogl5Da7iuhrHz6zKmLLQK+/vFy4mVAQVWKrfD/yJsLWWzf+x/szanRcHm+pilaFZWFYpt4af/JgKzfGV/6sPUK+SmmmP8sv5kKNaf8AYmUXkvU0B5Yfc+YRh4+1QYkKeU4GJZnFw0PiawQsMS7cvEQtwVTPe4BAuO4gAuVZKDEC3x2ZgUS9nXqHMMmPEGdHOZROUAabl0NwGx/+I0xWQW/Xh9aevo3JWIlbgUeJr9Ecy8jv6HUqpvMqS+LpMsRXUoSj7xpDldytmubiNpW3FQ1pXE2ZxWoVSpZmP6uI0pXqZXf0dlYTqOWnXcoGXnbL0V/cSVWfiYmN9TNriluURKtp4/3UC0KF74nHzm4l2jsxgh2165g2WQ2fRE0NxG8U+GUltlSZmfaK2mCzNypi0M0DvJmVqbQqLWt9w5Vom/1MJGEbhQbxNmCw7JjV4VX7gscJe7mQGYcyUJpTn/eYKkGxuukxA0z/AASpZK1nBFcGiJDH1PqGx3ZqIBwUipc2cn8ylzKlXxcyfeow1AlYaJSvV5lzYZV2ldSipZBVWYLrgogVT2xRMAUcnqELAFImUb9fuM7KNLlACgB1fNn+5mBhbdsFbqMC2CAHc5CCwaWOvEwCwHbKXqJbkVBRfP8AbKBwYKLBWb7mfADRDPInbipUgjo/2jAW6LGLc/3ClRS6VSyvW/cdFlg03dd/mDAK4l7q4QNQLS39VuBaMs1Xx/vUsBLtG8NYz+o9RuYRnm8faK/NnLY/Mx4rwovNVnPEIrAuxXnX3/UaFXGSWu+0rLj3KepS29cys7+ZarSt+bmEYivf0s0nzKnMLDm/UtrDmCpmUvJ65gwRieQhC71OjNymrqUQpDQwLlGCWvj1zNfW4l5alGF4gxjOZRmGTeJRrMN1KqGyJ0G5T1HLTruUYcTm2oDiJUS7lVEuPiOejM/SYJjccPUKmWV3hl/YCPAbGi4ZgB5qNTJiAdtSpTiWK/MqLN2xWsZYrzMB8ENZznX2lnFHmOQafEQXEqiLZYaI8bLqA+DV9xjosrNOoABhWLCVoxqtwIBpdXdyi9Jbk/EQtRzmWD1LulnENZj0ZWHnQxTqFV4Veb6gVnmZ43GJbHglTnHOINyhtGfcjp+kxA5Jn0lzb6jHPi4oXZxLWtRgi81EsC2v6nNU3da3cuq7G/xBSgEzqU7CaiAH/wCLdRKht/D+ocD2uUdNfzGTiVHvUzd7lbOTDArlzjA+YPMNUNvP/PmUgotaaOcX8zJ5uwiMLvXEa9uXKw3xEFaUEu8wGyoLTdytCBzZd3FstGT+sksKFMwomei3b/MvU82XWbRvH4hbiUKaxnD94Ufu/EOeKQwOSAkwl2mgeItlr0Nb589xlxXAyOMtfzKgsFENb6xFpjlZdtwMe7ZTir/MAs2w31wf3BIIe2FunnfEsNgFKswXYpDlYD593FaRS/L4aKlRBWsmbL/7A2mi33Bm54ibEdoSnzAIjaQF3WcQwV8wUMfRrdtzJRquIDVtHiJRc+V9zM244lO+IqQGy+ZXTJ1G33FYdn4gu7gX9AqU53KLuc+ol4mDULt6iFE5lO31BzDZNSxojSTWEbc/TWW5mpG41CCVg67ixV8RNOI8VxxAq2BtDJMr8yyi0qBE0Cue4K6Hr6gETKRZN01DhOfEwvjuLVRJYauIWqzFptx4mjzm7jExuY9F7hoHBxmCzwn5RhGqXjDALCY5NSkmSmyNMQjaj/MdsEbEM7ruEouUOQ9DiGXsPDFY0XdagIZywqGXMCL/AFMZmcOF38xgCxNW1UKsP3IrLDzZMsvFQ2EFX6+kRTyzSuI7iWvBDqd/zEb1iWrUesOJsHqHyuLnEhWPkf8Ae5b9aDxieQTP6rT9ac/Qq3BZeUdE7tN+Zr+ZpmBw73LA1mo2XSGYKiLCCj7cXEEhxWmWogPwynd/8/Eq6iikXhvHiOwkzwVzxLS6Ng0+nfdzZ+bLMwKyIO4aRUPNdEIWdVfv/fzAECLOO4YgAcVyq/8AkKJCW4U4P+xlsBWWcxFWHIa4vcOim0v9nzLYwqrwQ3+4dwv2fs/24gAqzVGvLAbEYsSq/GIgQPUtc+ruGmShuDH4JlwQqyyl4Hx9pUQQZWvBHFVWMl9uogQBLq3/ALDkoabO7x8eJnQgQ4E3fjz+IQea3cP2IGl86nZRbiEnJ4lwdC8zYDN3Bb/BArm/iZXd7xUqy3DLozC6v7P9z9OfzCBzmHByeIdErxBSfMGfiaZ3OUbOIC/Ts3P9mC+gt3ALM1+vNcxXVZlBbLA9RQ4jwZRjKK8R2y+nUpzFXz6Po+J9ziFW5sQkIDGYHazBYiZRXGLgqvkw0GqhvX3hWJRRcawkro5jXOL/ABHIHD4jBeCckr5lbtjSs446iAt0MkwF558TJuzGs61moTNz4dRxFG9rxK1g21favc1Cw0rR5/5K9xporz8xN1WwL+c/uW60B1D4W4TYIOJ1Lq/o6E4yxr8hsYg4JA3/ALxN7juVJg9y0tINqBjuMKb6iXriBUVjxDUdxUvUG2Jpn2+IlU3F2SlMOF/EMKGjnxL6N0F+ImyUDOptSUhcSxX0RJ2H1oHNpUfODJzqEZurCUrzLLj5FqJ5YChyHiYF2WNJ7lVzBpu0O/jmaIjQhPO45a0YzrNtn5+0pWVLbKRe3PECma1JxfS8dRQNs9FdwQIh7zv/ALDCwrIo3B2FVg7xCVF5Ze4FC1R85glAbqFm/fxc3Vli+KiIXAe89EpbJnByVfObhngjKbxqGgmJnd3e7vG4g26Zta35fMM5WJys2sdtJLBY/wDkeuF33TerhHQDXXH9JPBLoGM11CC7B95H8VMoOsVu8bz7mU5NimNtY9RreKQoB1glnexgoVwzMv8AjE4/5U0b8VMCzf7lD/7LKqhjp1Vynb5nvU0tpN4jUF53UBxzKrczBzubfEKRM4gpNWGz62Y8wLicP4gDUYlfVIVEBe+uokCtTUVsRyJdC45XNTTuan1aYjtsl/iY17hwVxCBjlZUTxEK86P995fzu4RQ3/7HWNeZYlTpKDTmN/EwvqOzu+owsh8lQOChzVMab9zkWbDrFBAyNNQG7tvNMwChtcuMblFNqgzj1AUKgrIp8EV7mQx4gQCIJK15gMqFJuV7PsTFG0OjoH+3MasZUcStbtgXiXBrhRqJLTYIoYbUNl1D4KoWh2lRGQNcWzDluBgBBZjkQovxFY/Tn9XoggBJjP8AM1HFzVBYJbBPJw5lTAr+iMldA/ETVxUDaDJmmIcSnUQf/mLh4llTlhTcLNLvUNXBlsar1GayaNmZqMqItk1/5CrZZM3b53HemBuuDcrgslL/AKiMryZxV6PMvajRgZOZgCIltPv/ALFtYrkcykK19l+qlLXMoqW2ceZxJo1bCSkgNvYb/Uoc4d14NwZAZuxHH3lbqmqXIO5j1EU4+7X+1BIVDg11d9yqUdlsrHmS7usFf65cB7VOblhOQR2N/wBZiv5U4vzk+JSAcEoqNTqrfiAB+RTpvNQQpzdArl/r8x3JQB8f8IueM2oSlUx4r5geXrRXF/gYANYRhXafvFyd1mHrQwRzx4nf4m88sAVAqI50dxWKDPAalG9zV4hZ5HsgwtuuYl29S4K6gWCkIFV5hK+gWym6mVMvKKI7Zf6P7QU1GwzLVmIr4hp01KTwiXHb9IJu30wDb6OoxaEdzNqDM7isWLR4lS7SXLxcpWdLBT2+hJeg5jGIvEzFGLyx2R4gXcARIvfEYKuU5SCdwYLqGl253cIhEXd8XO9aOmmKiUhkLvEJ1EMHX+IQ1RZK2fH+3BG1Zu5UbGC2PLac3kMYGVTQI5X7guQB9riuPwiPmGXsEqY9JW3MJGsSwBfEHtviB6J8SgaKsgq/X00YajMC8XBA8w+DHWMxH3QHHtZbuQTL19HqLIRKC/mWz5a/mLDDaixXU3gN5f8A4cT7JHReIyzW4Wb4goGKir1XgYRBtFd4YjnG/qBvZto34gYnG3VXXEJmoWXl9xrSos1trmMsGDGHm4sy00yjQVXl3/5CJJNVx3+4BZkbxr/2VQlOrK/2odxyyAS4V2twaYVrYtgtg+8wjbbvKoUjVMG7CigemRGHiL0ozt5hK1VSBOP8ytvGaHliXtU84HvN+6+7BsuOQQJQKBUq7YqSotXBk/uMzbLRqxu5s2tFXn/vqCBelrADrzrUqV40FUc6f7uDdD/a2W35ZgBVUYKlLzadEq/91L42ljAl26Fxrx3Ahsqm0guzklOPzBa3plDeZ2ZhEgVqXVX5+PojGM/Soo4vkiM4wYm3xN2EbiOZ1BR9NETrc1lmGpVvuNjEbbHc4RFlASgbrMZyzkiMJaZ4jllxjwOIr8PoVFfZjv3qBHMC44gJ3Gz4jNdxe+sTDGs647gpqPXiIumayb6lqwFeY7HiUMRmo7Gbo8Smw9xNhzTmMEtOqjSsD7jlh9o1Xm/m4naDIFrEYqhDsrI/MFwKWTG8/wC/UseABdf79wVCsPb5vPqCDky0ENop4vdcf7uIsdKry/3CWjSyx3HNfdnP2WIG1H90gokvLotDZeZjLAWqZbLw5xHdyyUPtOf0yGGCaQx3jBglFupajxMG+eoyq2pDC+UgvxGT/EMWu43pojrzRzTVjtm//wBB8U1Yy8R3Cq6mkQiuIeArqYC7L/mIzSyn7bmcrUiqK5vXNYmZ5HbncsTgDj8S9rdgRx/v/Yy5haU1l3/PzHnhMD7VMwbhpZXTqFqyGQN9uvxAojbbampgObOUA0NFNZPvKVYq6VMQlhzkbzNAQvtDTooUQBaG8bS8aVxulX/mWtjEjDW/vCDZspdjRmWQHwwc1/UzdGz3FLYil5U9TPadkL3zv4gFgjYM4hLqqKaznF+496IK2bAM4KFXz2lNtiXCigPm75EuF4ePgEVLc3qFXgtgQ7xTn0ZTCYCMm1/7pmoWFX+f6gbp+ZoXsg/AwDdp8yq4qFBjoOSab+30S7ipGDRllV7YqzNAxSWizaRo4lkdMwyy2UGy4zVZmjmC1+mOsfTjEr/4VKwLXx9b90Gl+iX/AFEn8RWmKtqOeFSwollPELlz1Llx/wAgwh5CHOMTPUdRviq5jm+8xaxzH7TBVRtOouVtHlwQt2bPiLt4rMCJOLuhzFdL43MRVh3F5W/v1CUr/P7lqQaZLriG6UBbwwgsODwiQwWb6Gf+wlytTvXiagpvPeomwYaav+/USGzCx58QCzwPKAxsgCH4mA6g2Qurt4l10VzrEPZCROcwZYL4m03ipZgPNzSOvNiWA8Q5On6LEsot7mBxq4wHC3RjNy60wC/aOtyVn6aq8B4mqP8A8JUVfaGvbLG8wsrepaGVu0EMuLtpzWI8EqiiirXSxMNUVowcfxLoidgoxM0tiuT+YTZism+MVK6CjkrUVJ2wbqOgWYZZYhQiU8LtmC6hXT3CouDgItZUpXiuvmW5iuEDXtIR0M1T138xri6yU8s6zJZRiv4gbqrShscY8/2S4K0OF7xLougJVZcf1iMjT4pMV4hAUKWYZYoBwNYO4AoqZGD+R3LNdICWW6D/ANjp4hSaYi1XsMkJIdkFTgplyC6vP2CG1ZilM/fMt5rNQG5uVqYh2DYL+ZY0ooTAwlrMUQ3o/FrGFpUBm3J+Gfme9wKh3KOuLlA96xChnM/LP9iZJNY0eP8Ae4KCPCUHUDkrtMAbzBY6AsDa6uV7VGunrybglUiJ8wLzLhx9aJlQNRw/RBsuIdFThB2m/wBNGKi3MGz6S0RaPjP0or6KI6i2KgpF+YgM8zklD9pv9j+oLVi0vxBVjfUxqsRFI0fqURYqs3dzFix4m5lqy6z98ymawGyU5tbzCsDQXLKBfRvUdDrVRVVonNKl3FLS86Ik5ptWT5lSqAFTMCjodRitfJi27L8+Jc1Rdq89wdtQ28muZQEXm0cJ/fcrDABTwvGflmLFa5XXf2xHuYQ+GH9TOfuGSAF6gKlkPmGwuTJKrd/QOmWN+PpC1INk0mz3Bfym739ANMGMSloLjNWy39wIgqqvux36A+iLks1LG4f/AAWb/UG10y5+YWdR5vipc24Ic1uCvZ39vvKt2tYCvW4MIWppsz8SttmKVrXfiUMN5A/UAdcl3CGUWKpqvHmUWkaXuhgVPL/x/sRhVojZRlZUK2sDPRv/AHMpZday51LKjdUfc5lRbRvhywy5bAcl/wBc+IAiqxSVkjW7CmnUI6olcDl169cw0Aqcl57q4Y7Scj8+yvBKYwKjbDxrgzA0xON0Wl/78Qq8Bd3vmXM3d0YyfeY5AISizVvRdbyeIKB+Fdn8S+UUDap028jgBiRR3tnIvQEdjA0gAhZmDcuK1buHO8S/VLi4FFZiE5qWLpuvuMAoJhDm+fvXxNwyq/i/0kVAKfzF8jvqI2CX8zRcpU94cNZ3BAy16mZBaPLn9feFAKSxQre43gS0oiud4UCfvMrN7EM1NagYh5C3guB1AaokHBbf8/8AwOD67P8A5Dx4bh4/HEszGLtiu/V4g1fPqbXMlx2x39FqYqp9hKMRcd8zO9a4lwzf0ucud1QtwfxGCg6+gwL8TG2/2y3vE2PUooq7xHTx9otvf8Rk8PEvPuOyq531LVs8yzKb5Q5mnEYVm3AR0bTKWPEPsm8G2Zi0NnJrMApeXtq9/wBRZKW7BS/Lf2PczbDYPlESxaK+yfFQKWLsCHVn+qWb0woOOTiCKyu1WFeO5XER4ldPsTdfMdrsme3xMiFHEf1sIfX9TT9F2T+P0tk0mkez5mqWBXMuRgDqfmz4zGKZdj12lQ8r58Slb6gsw0yG3Er6Av6AqJHTOzcysdR2S17hF61TDMmDlSXeLhtpZuy78fYIgRWtrPFPvqYmhlmgB6fiXNHtOfPmLDCuFVi/n3FnmQdr3ExNChh1KNjY1sOAkSUDonggS4asqFlu1brj/fuoJWQ8VrxC7wHv13BtV1wdXeb7nrchzCi2Ksv7jR5Ux47mIMSl4v8AUC14u1YaeOYtANlA3f8AfH5YkIeHWf7gVlt2ZoWvX8wHu7o677joc3IsPnxEYRMBlgTxe/tGUIuAU0QemnOfM2jjcq7ebtvzCMRqSzpxt/UL5lfY3kjYaDiCpMiPvKv4lci3XcsSRemH3Lxl2MI2Hq7+0b3jgNClt/EvUi2VBV38zDlsGveo6Ei2mSCbw5QX5zy018QYRcrl/v8AkrgdKxPDzUZxJFigt6Ewd+Jt2aHA1g5VrMTH+FqjnmvEMiTg1UwWFVFbZLbcNR8Xgx/8Y37+uNO4LRw/Th9WiFwUxLIKElrjUtYbjhbm45YNnnyfVw3Ksn59Q17uEo1nubobpqbhWWYM2uBuNlxn5jGq+/EdfQXWZhd75jwLw4S3H0rLdSi1LHiALcepxhTm4tLh9swiZ/5cVRSA3W6iXZUoNEbMIN1puC2Ga34lxvvnsjQm3v14lfXVrYS8n2jDEKo1fYkrG4bFvOswzQsKKseon55MFW6ggpbVTk6g1yYC9B/UqzVIKBZgl+IDBl5gIWUF7mYmrM1PPxO9EpqO5pP1QYvmYr2foDb7XB8iC/RLWy7wfMwvAyA41PzYL9ENAmp6+ht/+HUSypZDipufiO5d5MQr3QQTK4DpzplMAbUc/wDY9Fa0csc/eWJhxR5187xGkFMMhSSgiuKCoY0X73CSUoIqG3/eqgXKsqqu2CiuWzp/5fEBrYCgAU/5ELVqiiaxAmWXGowazs+39xgxC9DR3LzFAX71CaCXeDOCGDTguMjzpfD4hLkkSzqv+alslrhbwxoGFLfMW45Dwf8AsuaqKOZLw2DLE3j9xAKKzRy4+ZvxXlqGR02OGlcljgHUEi8XLeHe/iAEICBQNRLgt4hMWhomeJjO2HfTzEdOhrzEDJbe4DoNl+pg/WGooDI1H4CCfcR/b94QKkXodvkigKKBqwo+XUppUuMOMPwxVcYztAwPKtDrMH+QK8l0HjP3lKDSw9iy/Z+7HezDxQcXgfmHUDEl3gqomBJkW0U1941oCs/MK2Ndzla7fpClrW9HBBbXkdTUIFJtf1SyDB0Rq8a+ivj6PupU5o6gpmjFtjYQq3NZrK+npFwSjE0ayw4PLf0G/Wa6jp2tC6ELz5is+0WCyjbP4RzYbh+30tysnEpNY/3++ZpWrIhbD05uYcmKqCFtVsjavXHUcUfsNT2KV/URYvNZLi42tOuYhUF8MuLF7edxTcYVBgtSvjfM8GuGMDf0S2S/vAgPhA29EzcfmINZFmOt/HmUM4WWdGfx+YhzCjTHwOTiHj/K5ZYjPMUF2ZEhr7c1ZrBZ6z9LZF0mk/VFYhpDNze6n7UCBWL3KnnU7LH9pRw6ceIa8MaAUVNT19K/+doqMy3O4coG/wAympQDKP0AKwzKCxnH4xMti22+Pdf7UsEIvHGev1GMbHJ1l6udiV8v93FuKCsmkl0rdOap9L/tRyoXWFEwb/cSnCg1CqpARdFa48fzERqjdl3Ma4wRLaW2Nc8zsaseOcxzAeu/zKArTSF8yysTZ04r1l4gD2g+K8d3LTRVbCs9n7jFFQ4a0/7ES6A2O1eIegE9Fv3UNssw0Mt/4hWTeGzHeGr+JhEUAvJ0sLRHS4U5sd08nGqBWwMUlairNCia01y9SwAcxgOrj9FPONsZAW+XctBMagJQVW3uIgq7gcOG6lINFkggzb+0qDu0ly9w1K289kMoBlDF8Y8SjcVWOoBNgVASjXMsC+PEJtxDhL/MejzjxUzS8TW1us6lS7MzXkjYOoB39pXeTqfn6JZUWkVj6XUd1FqKqWVNUAcx5mycGv5izrFRN/Qjtv3FgUzAkzp1HMNcyiDS3MQLlli4sq335iVc05iC39ok0X9GX2jDNHzKxtYQzeYrG7vd2wECmz0uVK7VY5gZuDN/7c1KZN1H2Jdbwy2BT4qYwJnGZUWZ/qXGQN01m+IvgVUBS0Cv3EWjop15hIV5FfJzqBQbmwfglT2NqS1cxkZBhG/6mZZMvCzN/wCuU810FUuVygJmio3rE4GK7Qk4t4TTNWawL9pzOIqVgpzSOmBY+Jc/MNQ7AZCCOdHUxi7t18zFmSnE1/EzMClwKD/7TMCYp6rkle79Q2bwYjWCAc/EcazgUx5jwLJWM1aaiyYjvb3FI2ULwRrdoS64MrZSxB7l4OYV55/RCPawqsB1DdDc2pfr7Q0OkXhcbZiLrCB5zLo0NNn7VAsqFKUdkVBVDePz5gIdvQF3iEVDNi3dy7bPCGzz5PUSItDzBbdVG3i2Jk31V/BBCGMZI43uMAgLWyjw7jOiha2wWw2qM9BfzmWyQK1PP+6YndZOu0alb1q+oXpz8Ri4BUqaZvYSzfaQO9nJQ5iGTByQyezCZb9Ra6xFonW8D78Rm5Bn4ggAVQpuIqgdjAYcEFS/iDYN9z2BmLFNZuKm/Vy+Voq4m4xQLbuW8OoAG1l6hwxxSoGXT4iioFtoTECrlwlccTIBlmfmcIx3DeQvPxCM2llHmgOcP1MEoPM7I7+hsJVRLjabxrUdqPmfA7gn0sSa/RbgHcdRb23HbjMFr6Ir8JbdQEjaQxNm1h2mHF4r/bnuOYLGqep+DuKt+YgDkdZgoDMUhGOSELgT3HuY58R8wnVoXbHNL4NdRFZdPZcavKOf96fxMyjhuNy7TjMXIq6SImQOLNSiDkpp8+o8IN+qiTeBTAquNZYGra/zFsSVIP73CEFmh55lb14bckajZwjf/kYsAUU3gNjHMtKLvB/0Q094uGiC2AGp9xJpisZrHTPL4hIwU/o2l7iURKxlWBymY47mzjaTplivF5dcyspzy9whtjMV0Z1BSupr/wCEICxK+hWV3EBVo6PMyysRv1xVija6hp2hVY5838EqxpmUZJczTZS7eozQOjHrX7g2VQuq3KmTKm3WvEYI24Y1Xf7uZbXahePBDLAdC8Yr+ZjDbex3/wAm1dNleUoCKVTiBgUVZmDpA/dWWvtE3FoBZnzmFNKbDvqC6gYu2KV14gUZUwFK4d4gwZjDSBrnMqdh54/mXvwLwnfjHzAoEAKGrrPreIUvCkW2KBAtGFXWZThXXEYAg1SW8lwmSwdrko5e/RLb3aqK227Va23fJcYRoz/FGocXM1Apy1qCYWNoF/ArA7NyhtIVqZSYeUxCY5njUcRHscnicszHtO8RhdPHMZAJi41K7A33NKqpLwiqiRQFZuNncZLqpatZHAaO47ZS62y2jTOceEEft0zL5vJ8hEfAKL8MwkCtabfliAHa9MQsuNWXuK2dfWyi/iLpzKXmO/oq7+lO422X5ic8xNjnjqFLXwcxWX+5WLSNK25mnzMW74mi+JwjqMPKMR1cFKTVMouVXzLdBTccvanUrDNwLSty8atHdQMvUzwq8zPayNrLlrVfNxRbecY5mdYBQ7Ijzd0NxB5jGREFM0OhjVy9C7en+ZWqw80EML/UHyzd0azfrcUKSN7KCtM1wV2PEa2yGLuJqou6p/mDSg59InHZV24pqGqLRWSf0xc2RK2Vd/aNUR1Yq/8AnqNh0uxhoMqq3FnK/qVCctW1skNcVhHeJ+aYg7lwnLLVqas1jpmXxN0wXn6LV9wljbBYrZ9CgVBZZaCcoZUwL/MyNasvuL08R2XLULB9aExuViDAqWe5YQBuW4+Hede6h/NKHjIjL7LX2jvKHLim3+4lBChoPDzArxobASWFFu7xpmBFotLrqX8ei3Xvn7wlRaasebhAFiunTnfuMGCUj7ihmyGePMClBBAB13LYEt3ljjKwKrqGCWhmnvN3KcuTdcxoEF69nuBoBWLeKQ142/aDUd3b3f8A55gmhRes4NP7iroK9sZTFoci3fupWCASqWVXc5eIrTNnZJwc6OJbXSr3BEeJpaMc3qIoEZrGhuzjXHqJc8Rme+ePEM1BEmLWaADThHwK4g5ghgfWkwG/MUvMZFfeIHTmBBXPMI0FtiI9BcLNx4a1fi4w4N03FICqFwSOQT1EIVHL2wGHiva9sSoIYYu4mC/dwX3EawyLXwEcFru0HnoHxfuAKm5aHav4mOzs7bzh+8IgBxhTDKl35gVIih/+bNblAzHcUNylq19GuPog3FbK346iCjcUwmzNfoslGmNtzpiHPFRJR5gsLOMz3agpjFmrtGCArPcJE/eUVFqLf1QzSim5yAeIWBRkivx1ERQ1jDjgFq7U/mKKeAOMU42JsjlCh+D8xFym7yorNCayYXRKcGH+zB0rjUJTls7WfaI4X3YUr9TEWLimZYYOkGiWxQZMN/iA2wwcO4ZdAKs6/lhAWqJW3+N/zAlWq7Fqvz/rhREbCyvUdCNja6un/wAiqoEj1k/lYKxhHW5lV3Kol1/rECEPmWpqaxGzOcVOLFl3OHuATMYFcjATwYaEBZ3zCE5KjC1d48ZgNOAM7u46BHlbKnCON/Td+tuY6lncqXjMru2cQ8wFqzVQu4l/MpAtmD4P5mEtGqztiihgn4cx6bQmxjccLMikLy8ZlxKpFMps57+8zNsKgL/zCq6S8rp4r8Qt6pDC3YxiACUuu/5l6oLwN+Ii4wwZywBBxq8sdRUUWk2/fHzGDkvFrNf5jtFgdOPP5iEQwXdXXemZeqq1cURhUpgD4P8AfeHkDVRTPz3/ABKCq0uluVQlYyPSres498KOJOgSx7FaMNqhEiXlxbZvRUM1jRmZ9OogPJVDjqsQwLPkxld/CAsps8y9kOyIDAauWhweo8EuvOYNs5jMvEIVNPiDQYbuVvop7jZlOhCHbA/MEo3Tg68QDL8n5nYwlBDZEDg/b/kZyc5hb+4rUrubu0lSBqqSfGMkO2GyhQw07+UPmEC+6MB8Gh66ggJjmwsb8u5VvzmMGs+XmKE+/wA//OfSaykLiDuMW9fXf6kp7i16qItZZ6jEG4obnEXHhMG4x7GIapdsJS8y1oZv2EK4pWEt/mA6E4CRMr2GvDEucR3KETMNxLlqK0L1E6AxA3XmB8JyBMPMsHCVcItwuIFqVLNKPFRBTByHCf6pg4Rfdd/7zMzjQ5MHVy2oYEwwoy8Da33GpNmiih48/wCIFeJg6l+5hM5ho+msmpDLq40msNrls3N00RusRIO7mnxNhxBcGtyrQUQXkcxLDw3CCrur+ZTgYQ35GMUeJe/jU4Rbc7Y4lbm7/wDLYQgxhtjcvKCn5lWcFXKiLhvWYF1yix65/iXzeloSrhEaHShyn9P4lMkoFG64rXMyG6LMsaVbWb28YlIqmbDWVcS7RY+WPn1KA4gLF9f+RQI0MUUW1NhUNouYtwRptQrWoyJr/sYwFinb5nf02Y3jMwQtMcVjn8xPnAoPa/qJkWsx359S9XAtmOPUtFIbHJ8ShjSmUyZ/8hgyG0FjZaL3oeOIm0VYZbC3tQdEqYXaBBHvugWltK/fLC3vFEdICnvxmFUQFZ2xoriMtoXETcIbrNwQMw26agiO0tdZ8wcmMQApqBfu4WKgLagB65IgWaH3iw5Sqj9TIjJsS5ThsofUapJwFP05ZZ17hv6hDBppq/8AZcm6yN+xw/MYWkcGOQH7pUVYVtV1WU9meoBQSYMPTV17iq9fEWBydRTuXYpOzf8A8scS1luPoJwTPUVDqK38/VlB94rxDjemEdFPzmGiNasqoh19JtTq4it6GC36gpWPBLIDdzm6GjwRa7R2hX2hd+wY2SX5fmGRo8xozT7gn98bOuKm7PEYLFOuEqZD5lzhIBUC+mIULPayjf5RtnV5i9WZ6YirfZ5iF5z95camsFUL3BVFQ55x/wAlkegj16l1lwbN5qn5gKlSrHJvklHBQ6OD5a+zAZFgHqcZZiEbvNS0NBGkjcuua/QBeZhHQi2JkPDADvc1GPqAW5iL9P6lFBm1QE7EK64r/fEWHqomnz9AuAvuIL/8oUOfzMxyDlJdrPw4sRhxGBZTozUSgBUzhD+4QZuAG3wuOOSOLWmLtB5qUtYBV1VRdbe2I2BiyGHYnWOZsUDbYtm39dwFAeVVZmZcTl1cXCRRPXP8S+2rNpnEpqxp1dYh4UDaXr/XLMTVMd+Iu0i10rKSYgpMMSE4BFB/2/v4g4iZBYY7U8faF1W3rRrNiIXEYGlvusO8F96wc0KDbWko02vOmVTUS6dtXFjKUKAYjI4Yh6CH7eIAS8ICtzclUyoud3CMMMnZYwNoNmI0D1xCRs1UfCKIw/eEFW80HxcbZlfbmobVAoY+XzK6Nxdl9f8AY4QLoUJSBGxQif8Akzl3IAXxDfrcNP2r+5cAgXW8feHxIxlr7Zmg0aHD8FywaGun7RDHFahDAizzARHMOMmZTe8TCC0dxIxy/R1EG+ZUUEm/0CswjX3zHInceXqZHiBCt+YtxKY4lO5RiC+qGZvjU4JqIo7q2HTlm0gWVURStGq1DRo1Kj4VcKqj+jWePiNfA+dQpDZmPDCLzu8xpC7FDa5iMBWsUXqUTY5DqIAexoxj+ZQs0yF5LlIR28gfxM1EA0cnzKlpxuuPGZkBmOruDV4Dl1/cWCX+QyY/upjIfKtxM2TlTH31HYDhnpjmYsV3mUNSzIKEFPJ3NLAIrAvV1GN0AocHjF5+IBihRY1gvqEAMEbe5pM3K5Nz4kCMamWFtmOazbC2Fli7isS5szTH/SgtQq6agVOamVZ8jUHpl/bupDHF/wBw15xo+H6KswYJRGwVLNfQsXBhlb4dC+kU6ZF/c/EjGbYyUfLeiNQKGqQxHLFFdrZbLjjb9pydU3QrX++8S6lpa3/uNZZRYK1+eoUhLjLm+9SzyXzr8MfaIjfBxvj9wfATN5xWoSaUHxE0uJ0W76iQ26a3UqtlsARrt/EAqFtIrP3gDSoHd1WTMRBUrwsf9mEKhjeW/MbBcTFAu6TGWA2sghbxCBTHAOXaEaaaGTKEMpCpXZuFStggvOXCSc3uyyoA/wCTkM+ZYEUTBKq3FTP4jWZZ065uEHJVQ7UvuJk2eJ5WYXcwk213GCjbzFKBL3QjbyjR/v8AXFiADDp4Rskcl/b3DFTW3dsE7VYuECs1S4fmZxb7tJTxY8LiNgd+73CAoLyv0jK/IYgKp3VzO8PEFA/iWBzmU7uZFzk4n2OomqMRNwDFbcy7i2/QJtl3Nk/jVS3ubL+Im3MBs2kW3dk1/HmPVbYDOMwzxGN68QAMTYcylLlXO5gPUwnGId3GWo+YsPzAIVPeUhVKyqMcZveCMd2N3z8S6A3kNGz8wMqLdOiAKoXYc4iWB3Q2xuHkuW/NQFg0vD9mvx95kADeAv8AqFaLrOF44/cUT2U+/wDjFuGyp1Fttm8+EQLTXD/u4RGzS3qPJa8kriDFl4w3cVhgznTLo4DeLcf3A6QUur4PMPmjb3t/B8wuwqDSaptBYgBXAQWMMYnoJqPf0azWbQ3OYqE0uLk7io3nEwX5JmHxFSgzXMw84y1VYlV4irlN5fYx3+zM4yyzBeIYJqRUH0BySqX0LPpqCzh9sWB4gWi/8/qEL3rmjbnqXkDhazdVcHVng5eT/rlj5y65a/795f1oDZBNQMk2n5m6VsKMtX/USkAyRefEuKqqte9kGwDivaVivU0b5grQSsvMemHN3q41INL97r3ArJdKqX5/cewLwKQoVgrH4M6hFg5tbVvcPYoEMmafHfPi47YcACpoG/OyY4bsFYLlDZajheLMADcD7krK14ArbcQVYDKYzBM+OZaTGJxmbGcSxNwAh4TNVi1KC4rGCx+mWR4jqb7cx0Wgu4HzId4jAnYXU7489oDps54lVyuKwYgVYHy/xBRyrbAIpb6hNiW+JllHw194d1ruqKdYhoi1ewlN2/mGrwcG4INfkhrn2RtrBEp+rp+Y5RVmW6x9AF019C9HMs+mwixbmO8ywc8wBleZasW/JGYrMolHtJ++GmdHExG4nBVzIeoIWc8xIDNxRarBUfmrVcSqsfL7lDMYCiePxxGEUL36iVaRZrcWwKt0Dp7/AMykEOAvIcwvdnl5+I2ihRbQv5cRTIFcrgZUZCxTz4mxyFoLiEGnsP8AeY7eL1y2anJBVUJzz+P3CglAJT3Hdj2VtmF75003H4gW59/evEJqrgBl93CYEyGXyRq585df7+YVYqA4nGaptHQvmIl6Ue5yKN3/APA2JrN0N2TFfUdE2ZkvxLPaTVN0yr2SoZirN0/pliDgeXEeTC/ifv8A5m73N4qTf/wHT9Mx5gp9fwlPuuOeqK3E5WDruCnLXaYYlJWYbaIOsmO2EXHu/wBRVQF3Le7r9yqCzVJf+qXEwvZu+pWhqwiU0yurorZVX/UUJoctq/HVfuY5qp38Ezqu27jUsA12XMwqv7RiUOBuFNVRFGYNF0BROQ/ccgjNlX17hTyApKKq0axO6sKxd857lXvAhCsHIJisXqOLCpgrYB7SGe5TKbIFdlHH3YIAwBDBNZZNv4Q2OoLIzmuIi3eO5yyLuJm4qAvqnfuYXkj0G8MQubwQKPSzNgLUUHU6Ne3lj3VMJ2MRVAHuItAPmWM8PUAeZxHEy4Xi8SrQQGHnmPEG94pnxe9somLe8TKzAomjPz7+mz9LJc5EVuqSOT5lGKftFouWZlGZSdwuzZ4hlZ6p19LOJ1JRx9ovBmCWMzFRY8xyrFwUL6mEeSKw20wajZyuVpLC2Dn3FqxSzbdzIU4xiDKEXhc7rUu5sGHNYgBCFGv2n+1AAytusTGhFjFRx5Ga1jx/2MFOAqlhNMKLu7te6gps4WRQuW1F5s187gAEr9IkF52wc1/UOtIWVt5NfMc1JeDbA9TLVV0INeJYke6mDJd4gRYepVgaKJxlKFRWjBk8R1aq3HZbCthrW/o2fodj3KMRUw7MV36hc0mR8wsY1j6DVLiapswX92v5iBGzoHhzGIGz+Cbff8zd7lWY7Ya/+Vmu5W96EyHibzt/mCvVLlABu+pRAa0x/wCe4odjmOTPDBAluQ1/zuVoharoqsVqIUoDnSVLx3WWWGIXaw507r8zxUccjb3ELGQ0PTX/AGKwWTacU1qKw7sZxDx0ozZqBnsmhcAoKVLSVJo2Iy+cy9TsyBjC587hrEFapeL5hmlxRkboWH+XFwHcKU5Hi2IFucA4XFueQWrqr/uGbEy6fYmDA04ZySzEsxKKxCAM1OSqXXDPH0k3ixn0l71+1xBf8cldOY03DougSvio2RoYuzkt1xh/iGbmX83OvNJyr+49KexhAzjdSxAzc46/MblVHb8TIz95Tn9JasZ/U10PvMDWI0dzMzWJw2PqJTNxOD6UP1HeSnqanj6cPpRj6NHU5JQt1mKnqKz5gLM1gx0nVM9Eo8+eJY/79xVk4IbXxeJnSqxMBvcFAQWPmLasqCpvzvkJWbyc/wC+0apbRa/75hUo3cOcX6ipgXd8U1K4QW4YP8XBoC+RMQWXHDbpJuKFXk54+f4lhQc+S3xKI2uwHdeIrZZbgtEcMUDQ2a6il7XastCzZkV5rUbgRq7CqR+YqpyOCrGDYay08uKja1jDldfHEtGtDZXMBdUgaYzNPmbE1j1KUlLGvvLp94jQuyzdYNk2nOKo7T3NkxUqKx1U9JasyfcwV6fpYCFTMFEoupfcmR5oGauWJqEMuk/qHHgxeS4cD3Eyzd/+XJOUjINUE93Z+JAQOVwGXo8q57goKuGsueGCqIdCdxAuEpgY1mvUFguqLxlhBCWNuTLiJeFc8c3+4ppyu1cEkU1zWfdQzB6XdfEpfSInuIBvVX7jg4wueb1/MJiDNRlyMuMsRVd7ef1O8UZKv5a/cu6HIanFNnwsPv0ULA5BFr43zgHyCQnJyoxZO2jahJLZvMgMet1tilew4Cg9ECsfT+cUNczCY5lv4IF8n1CpWH4xUDnl7hkdq2ldHlYWDGOvozCSUOMNzehJMGcKWF0cxXMMaAWOfND8xrI2fbuW3dLVQcLqvmbQ03KsyXvCSr3TscXORDwhglhXSmD5JqzF4V5lxWQYmx17lVncW+vmUdteiad/iLIxjzCTfGp5+JzXP1/Va1zFYmp6xeDczSJT3F9kbMVoriNRzjqK7JZX3EM1pydz4Yt/EepkBuXW0/eYDn5jqWFhTFYxfdqbPUveyWt0DBbnHDhGEEN2b41EXk1mN4cnNL1iU4KtYJMGUjvNRW6tL5uKqVzxWB/x9oXKLu6W/cb/ACXSxHgyz19pay9Z9hBgvJLtxf8AqiVa+b6nItiq1/vMzC1NiYqUxOLzjx/1jVOiL3XxE2sBXyfMdXN/mb1xFX3nLiZiVQsE3FS1rDtXqV8rtmLJ5hq3ivpyjijEVSy3qLbcZumM8XMPcW+Yrg6J3OEFg7IYd7QiabqEuAv+3/UERwtneoKfaXAagtWswzCi/wD0aXSLfioo5LiemIbVL5OpcwGs06uPqGVSuUA3ml1y91eCOQW8ev6le8AWGePSDDf+Aj5TStD5gN7AAKczUBpAxH0qbYjQXVrLSjak4mBQttd55z8EYxOVMbKP+x1hUplsx+yUODXk5aC0V+pkI4dF8CGisBXlWUHtaRAUGBRau++YHEdcJoeZU1P5ywrzFBZZe8NRCxbKuI8IM/LLBy74A8ue5ex8uLlpwlbpMQQU4oylSBMim7Mbm6dtmplHi+uLLiraQLTYY4cS0nFm/VQQgWr6aH7s4g1l5nEaNRtzxEKxPZulutUV9zuO4sQNlEtXlauVJsIgymVAOWHKwheRMfxAq38sBqtxQUw4zEAaeo35fsS7S/M5wsp6iubXpnJKbg25i23HiLF64i8z4Es7+lO5mZMeIo6/MWickbkRbMwfM1+go1z8xvDcWOgKu8TZWU3KUbtlQXfn6MHhG7jV5xLq0YhpEwoYYVaJbd+P3HWfis/73Nk+dRGeFasgost6wwuPDLAcKKZaIFCqXkE+3uWX7JZ6ihxEzTliKmlfY9+ZcXmr3e5TAOAClx4ruDdGl9/uVhwFDofF9/uANrHt/iCiqpu8Y0MAqwd6XZ3ffiKhO9LmU7J6Zd1uBKVINbc31fFyg4aUzKahM57m8/jEmvoVfQPJHde5VjzMlRkMOSZ9lS7x5hpgqicY2UrRFQQKuWyGk1Y/YR4Sj+CUCvmaYaJtcomR/wDItOLlrNcSxm4imHEodLbDw8O0UNFWVcg0j95V6RPvz+7xGHysF4cj+fzHIbI5IV4C1CZq4IVRYh34YrCyvArURSwyAOKiVNU+1QWrgUln5TBwMA89ylJXRjNe/UXCNAtucDm+MQEr52zTvxxKU+3CWx1u/wBwmIhhNhQ4yiJqUx6DaBQAF8ZqpdOwADBCVq2yqjqJ1WJxMe33MTjVzwom4Ge+IW1RKgLxHdTRaqZ+xQ4gedzSD3effEtTHKkrgs/vEZqYw0cgUmcnOaMdVVGGSCBKsyyjAUPKcq/iLK0rfuxUDtllhd2xpXqxGXtUvOLIFOlstfTdMQd9/mEL+FLAFQfl/BHb90gox8fxLK0VgGIAa8SxRySgcHEO3Y+mZmHemC5TvCDCAGtsY4WqYeYgPfUv1FzHWTuKZRnbKdVL/RalHkiFsyfQqTNwraRjbkGX7mOx+JYa1FXLcWoN5EYFLXD0ujEwF4lncv6jUWd4xNVyH5iB7LriNnDCnqM7TsXbmYBDeoBogmOW++pQ4nFM0/1FgshhHdy+g4PuIC1sxSmvbMuMLXqBwtDOcS6r8tF9xJAHytuKAd96P5gWojdgagdjaCwSgO+UPEsANgqqigAJcmGwLxuuoGqSb6/iEGEeCWimedS1SelxgbnJywcOjlNxVU2n8YufoZiwK3EHPMDOeZUquZgfM2eoHfMslTQG4jKsPA9QVFjOI5GeDR85QO2IGshq/wDeJ3Ip+P8AsFD0wX6JgJYPDmak5f8AyFg181ozWI6itnbMnUXqKEKqhbuaSXDWDj3morU+7vZojVtwpu/ZsYfU2NPgdt4gR0iznxNzr3AHuGsoljR6SM8knF4b/wCR2No7fV6SV7ncQFlkMABlZiB4Op0Lh8TCzAjXDMoweu0GQsOKGsqILKPtM1HsYeMK0DfdreB1HQDVT9DIv3KyAMvXiV1B27lH0XiMqp/OOvvGF2yyxafEdVWQsN4mQWcsLJB6lKhxiVEAt43GxRdkqQi9RVKLuXGGUwS60pyOjMf1rPbzqLaB4maqQWcTjQdYttNdv5epRuPk4PvFQgVSt91tlwqk75nOe44C5WsQTTUbhW5kVT2XMjaejbEMZHvuF3ftqAudwh6qDLT8sBzTxxGXfEzSz1KNRQ3ESXFjGPo0XBcsdkRXI+ZQY7Yl9RLhfmOV8mmXQF4uqqKcssFKeZcF5hIDtLJmIQXZmRfEuppzCZe8fMyppy0LnAArzxiJVGbLB04f+QDQEtUoi8Sqd2Y9yizN3uLbNtf3FOAOuYgooze8+oGUMm7p9vmOpUD/ABmQIHCvMcWjkuW4iFKr1cQVsAUMYqUI2xdNzMsAK7t3DE4eOJpSiLHxKClIkaF9Qa6drmrU8wETHqFq3fE41K0XNviVa39HRFUYTA+Y19wB3L1biWD3C7JYyVKA7gPzy+vRCLoECC5elfTF/cvtcw8cEcn+7h6S8HwR0u9/aCg9Q2Ymq9wrqMLuIf8AwoAv1LWLVKbNoTTUBXIxHUc1ehStee5YDnA2y/MZbCq2M9xizJS2dNzVmVVpNJ5jbAK1XXUODJxaqWrT5lYZGIwc45ibIg5AxtmhYzGoGpWI5hmh7rYlWHLL5iuKIRLqsynW1aCzhuLYKy6em8VLC0yiyM0TJq/tBc4M4FvNDUNuTFzUPoiriLWfyjEe7jW76jDUxMsEgERCoaWfMMVMkw7mBtseiC8NQyUIaQHPBKURY0SsDU51bMpYtmS8/wCItZo0qh8dEKW7P0Q4AsbuopVK7qACUtRqQg28SqrF7uY6iplOFwbwV1ceI/EubD6nWlRWw15gVeV9wAeZkYxFjHEWjDridO+ot5rnEaczsl9a8zJ34l/8R3vDK75I4duqjJzfmUE4+SfqKXa1pdx4Bvt1FEDoxEXZ7YbNUOAhWhqDZMEvBeCc53mOy8YlgGy4r6DGyXFUtdxhWVO8jn+IY0i5bvjUUGvqf9/nxEbtBjd+ZZbktrjcTa9jjGLlKlNMJogGAAbs2zILNlo1x8kcIYAWcHfqZBVNK+83Clpq0m0AlWvHxv8A9lLDloa0QHsVgKPPmGcU7BKvde9sFStDSjuDbbr4XA3qEQRgHPmUaEvRc0Jc+Iqq+owbnSzlBjWPW4pzzGXZqZgMe2n3LHW4VWL0x3DFCpQENiAoEVxVOYj74DhwMauiV36f6JVTtvwTldS1F7qGVG4aPoiRB3Okg1MQ7ql6m4hu1HUDjbpC2HcYggWX7grsJ1Ub2XkXA1ARdug9SiViJLBW4TjR1CZoBnEcAagi58yyQzAq+dx8guVhWDdhNgXUBSs7YQoD4grX1dTdLfEqxfMW3PMy+Zei6PFQs38Yg2CvmoaAHFkCiAPA3BboqzqglkMYlTzFrBLRws6ncOb4JRKYMnvUNNNKo2Eqg2feFrMcrcperYH5hABEU+0Tdl4qDgN9SjkTxA8L83PFCOPuRaUwl2n0TpX5jQ7hhoeoAbRijCzz4gCqojQpqJvLmJbWYtbYtxQ2/wBy/c3WmuZgZc+plyzK58Qtr8RpSuZiT7xt9vJLx/yKpzgzOlnQleYlq1eZjbPzMCybIjtc7l4eeohlzWI+Xi49R6FgNFW0beP8xC0GbdZ+8wiU7NUH8y0l20p63CopTdQvPv8A2pRqnBW8X4lEtu2V3FdlOlPP+/c3gFjb/nUrmqla/H43KBS3Ze/zA7bGAo/81+ZmxRDhqq4xGhWjnIP9uLSlsZT/ANlqo2Xwsw0ten3iL0bqh/NxOCuBDc7YLuMMRAV5jqpjLl1dRVUYwy71UGJnMs1OiFPUu1qMGamQ3OI7It0uEOC9fMKoAoDiC0uoSHhIIciIMVfOAql8kOkydL4qCJvDPwTZ6Jw9QAn6tuIJ4l++UAGHECJmC4HHqCECekqcSnUp1Ly86J0y82upebXUaPmUYA1KdRGxEHiAaIYcsCWN6lG+I0uNTRlWG5nfuaRXt1mK6X3UWfiCgazEoXTqBqlvtJbKFcSoKbJRniNU3qYkoPcYEpzuUiwaoGm+MfEeuC5NIbrtt8FQCrFFv08zRTjwxkFhKNSwq6Zagri4CbGCnCJazUHPcHIajhiG3UfIv1HLeHZEOtRDHHUqDzBkPOZiQeZgcZ7jh55nbL9zF6jba49xc3MVxWMN5iVhwal2x2R6MswW/wBx1CVefUztOLiou4gsYfkgpNFgjOee5Tl4SLlVZb7hmkDdwVsGzAVwjFNUMlGP9/UUaBKfvxUbHIV5c4f+V+ZiBCusDKJJQ2UH/biATOCxeftHdQrTjw4lBgh5/iZLIHBfLx86+YgFYKu/tK0AaLg06VcXlheShTBgPzFLAoq+4darpjhzn9zNDhUKiOqmbWZpPJ/yNwX0UftLu5TuK69zf1mDRMZcSymZhcbZjqvX0JnMdQal8SJUxL3DaF+YN9PEAGLx5A1LGhcQE7SXSy3uCxcuKV9DQds45g5g8QAr1zD0Fh9oMAxZU4Rt7gnE5ZUG2YE4JqO4lfRaIWt8Sz3Ly8aRK/8Auh4lNBn/AOOyYLeYFfQsbjZiOpunOVFvuaU5gAyGtyiFYjKp/wBQibb9zIaXO7hLhXAB5C47XiCiowocvBAYmO3b1NzdFBRi709fmYqGlgamApTkluUrYjJm3QFjarWJtCHZAGK0X7lmLJghtUvTAwgUwxNS+15Ib3lFxzEOyeMtOcdS5fM4RC3EOHPiNwHt3Mh4qAuq7ljwZX8oZtxC5ddy1ueY/ei7ZzEdfmW7lFnctKzhJRZzHixwSg8ywrmdMoTnHU7ksZrME8jpiFGhxERTMOepitMaol7vlqEwgqsIOTf2gpdhVzj0SzJmwAK8s/7Ux3nD8wM6lNoeNJHd9NvSKD4mqn3LvHPmVmyGDu83GgI6oxXuCvYA6I39o1VKEwoL9wtwhaIJ4l+RRMhy8SgorfHLMih0RcsC7pFKv4grCCqttIXZUWkec/uHTkG7KpG4NsslyV3E9wBIilMBTEsZ0SoL6lfLMirJZe5RuDUeJkYWXDHAFtmuoQvAGJg+Ilbq5dTHrOUGzkTVPxZsIFDeT/so05wKpIBhxslR0lY1mtVK9Er/AONbi39BZUY2Y5+tXOH/AOGz/wCDX1GYOrFbHULlvE5z+cSIvzEbF3EPD4lrnLGRQH6h2u8TaNJcE2jqKBhK1EKUNtNRGKALmny14lIhlCjkJu8C7qlh4Rck0hEYQU0Z4ONdxdVAEKFpcUouMZj0qoMRqtrbVYrWoBdbCxI6L6Lhalpl6dQlViLF5TOgAd8y2cxQLWOmT7xfaNjNr3MPmDvB+YMZUdBufiUtZctheHM1fEajMXKFFvcbbt8S3cAxd+SNWrY1czG34ldss5NnuO2WJsss1cVr+I2pLr9wluxaxE64fExzmoODxm4UbxxUoA5RHZ6uWrBh3E5RzLcsEY/HEQ34FbgTEoABjuua3NyKDILB9wKarpH3KpULXJSHk75/9lV4N89cXCjFBQO+YVFYUgt7uGloO13Wu/j8zMqE8Ps+P9zAgGW3YPkjQUEQG6l0CrOD4c/8g0U0g5w3VeodNjhd+q4+YYhdAaOvUWZBwuKTFxVzqAu/9RFcOSjTHjuVRYnif8ZHaCe41axZ3M4HGdwCbepfVWzXuGBPfr60tl0eIU5YKUKlo3hia8gLBWPMe0ipVdw7M1zUukqpLNOohi8bV3fEdgHwjlmAi8rBQrBzK/8Arb67CWvM1DRGrr/6AaMu0xNM/Q4+i0fQ1LAHP0NzZeX6OpugtYKU8zf6mY+YydPFTQJ8xhsOwD+GLIJHISEC1Sx2jzqvmr4j5DWq2iuoLUcwlViNBFz4fbFgLdGvmEETaPKVyq5f4rNtVJTSf9/thcNMlei/CDQDFq3xuMiqOboi/wAkvZN9QoPOZxmPvEuzj6rL+oYW8IbKfBM5yOmJvm43lSiW7eoi6unqcvUOSo6z94tKa6mNk+Li+EpbaEwZo6CK1l9kVJ1GzZE3kDL2WGVirqKih8EUyBY3Xd9S3tzHVSy2rKq7g0Il+IuQPFzOhhSaPjLK0LzuvpRp6TCCEaPLKTKNLzHwAIpRpf6j2hwr5lw624ixRq7GutSxBrp4qojAora9TZO594kxdrbeYihoPjTLLcO27lqEOjfMBpFRW8dktaDzgpcOfzxBRUod9cTcFbMpcyIVOPwJfUYDAc1X9x0pkG6WG+SIjVsCHPFsZp+jOAfmbF/tLUflEAoQ9z+kQQMJ0zHtOOpWFqjkg0wpxUrqi3xHbY35l12/vB4BvGIgybdRPDvmZu/iV7OXcQ/M33qOtApsRXKCjc1TnM6TA3HC4cSug5CBAKCgOIAFGpf/AMJcCv8A42qbn6ckFkLKRWYDy+gF8woJ/wDCw+jpfcW2WTY+30Dc1jp+jubpzmTO5uZh1zLg5io01Ataty3+ZsSw4eGSvXhv1DSPYB7YbetawVn1PgZgXcbBBmM9pVVS2IgNGkVzk0o52iSWxQvlITF3MH3jmicQAZ2MSavrxK3ANkOSt3fjiKooA0hgPzS1ETAQNwz6kpdeYa5vuADFe8d/QpcrXiYkp+9R2TDmvcbn9wc8471FW2pTKN/xGsC/EdbxEHk4lV/eAGnJuXeY+Mv38fSQB2/eWMZuNC6uVD3EZdeJzXd8/wBRL+cY1Awn4iDK1cp7bxPVPeJZw3lMReApzHZeriaUlq277jHMpG5d1BtLaZ+OsoMCY6ffiVL+F/r/AImMLY2GXp8T1gY9RgkAFGrWYW0DI9QgLrjhh01Zat/nERBrkL1KZCtN4o/uAIw4rBdeoqW2/h+YKDrdiyI6JzDtlusHV3r8RwHGN5j0yquh/MwFnV422QpFYpszfupYhDCuQfEou3qcFMWpaa5nBNRHVMLHfUVvxAIWXOGfMBdB8TpvzC3+0Gdp6YwdkG9v2lRjIYvca4sE16jhZ6mUucxRUwoIo+allOoUuVGF+SZOZi3Kg/8AyNkZZdXn6NWqiuLpTNTrqvruRwSzMwMRbbmqaI7PuUZlEdp19Q/JCgkSmOpuZzlpvmXrnxK81rEGU/qeI6cOwfvoiylzs294Zz5SDayaEXyD+UIrdKX9YJgCVBGpAhlYr5jXcZIBd7Lq7wZyyxxLiVrkF1gP7zGexiFo+wzN3oyVRVFfthXFSGALseeKvbKP5EheOXzBg8yjEQJK6siF6CSysZ1erh0CUd3KCzMcnHqNAd/S0ctdNRsgxUvR3xPHZFXM3Ri22DqWlOb6lbVc3uc9ZvE3yrvMWr91LTTUqmJY7zxiaJRahZnqAuLrxA2PHcoZt2Lx1GzdSy1faYDu2JUIY4sWJQ+ZmotfBFRW71MS/E5I3Kz94IOiUGDUsSvEsfAOoZPVSqB54+0Uzte3xx9oYgJbyUVX6lEsHF24/EwBypl0DqvtF6FKgci4ZGywm32inYlXxPPZwPDKwshykE9RYtNw0AEwVwf7P3meCVQtFox3TjRDPcrDLGkFvgjpOt2SqgJdLWSGWlXxtqNAzeS813DYAFhg5YB1C47lpSy6g0DhMfSYmppK+Zpnq1CWuamRl89IZSzMxS8MEupwc+o1ZP4eJqwi1Mm9QfAVBtPPU0TlKjCruXiG/wD4Wv8A7OSJTChVS/UW3/4onOWTEvEFoaMxjx1NXmCgeLg0xWfMdssx9Bwd/wDy6m4g5uc/f0zwRbhXBuMK/CFxnMvlFay1Bh53iWdQaLFBxg1BgHALR+YyAmRJT36Sx4UFcnxA7DEr7XS7WWvvZLZG1BsOOAVX0VNCAyGCN3ujHuLMgKDt7A4wOtXzDqQXAHzrqvm+dwi2L7hsDTc1SkF483NvDbcMt6Ws9xQEZ36hfKOee50JYZyEHpBjQM9wuMeoU/2xs3FRR8zNLqpgL8Ra5s1D/cTxlnpfqF3hXMty3ErTqszJvrcuFlhOlXkiyibo+EuMYeBqN3t+5ueShnAF3AS014u+JRlKKR5mBzqKibSnFW6Aio8zCO2EmnH9wypbBOT+4EQEpWqrP5/5EDiNCtvxNPKMAZrqOUcUB55irWTVNWeYVFgy8UdRttingH1EtMNOTnN3BI4TbY4P/YoOd9U4v4nOhcHD+oqUmkcVUKxVhr3/AGZjDTFWMHqFW13LGcckBNWFn7EWVLQwNhMEPRDNPcHOvvA/8gVhPvF5RzEdtHUBGplqyvcPGpl41MvGoM+IbdVAvJ95ZMfEw8R13GIZ14X6gXAUQ0wC4gBW9xpK9QOlzRLhlRlN+IFf/Lv6l+i1M8VBXqVOZ0Zjcr6WdxoYzLd4i1BK1FaOomOI9KA7/LFf3Yzd45ihYQU83Ld4huuV4lOWY2jWXcIfV1NzBlnKCvIn8IR1uBwYe44Ev3AUIWqNbrdfl+0sAAZwiDYIyvDteXz8RhfkNQslcn1BBeNnPIF8W36PUAThPBQP2/ZKvxEmkaWr7eokEqc6wBp7ExXDGsqCmADSGyhY8Ux0A3yg8vSNn2qZiuQeY3g1Dps8+Jzny4gmSLdzGBvFdd/xMcL3vaHR+IHvPUpLT08faGea+IbSOJgZG+vpS3qFLdV+GIG7HD1AOtkWGjfi5rlbHnqBF8sBNipXFzOYt6pgV3HS1cQjOHTMlbxzuZLTqsQxzYdcROVleYKFvJ3D2JmNTisYj1wruy5aK2mFZTbVTriMeMtQDnbPz8xL66r1ApzXcaHH3mJCu0WcrpfomYqBJ9pZpyC+fUompI8nEKMpnWPiAaily4uDpWt1rU5BL3TiKxRrdQVBWOXk8xctXhcxGwSnyREFik+MQorzlW3A/wAx2tgy+X/VLoNMt8XMTBplG8K24MwOiKrSmzTjGoFilFtnO/bBCC2azfmcyFdys3PXuevcsdkErvviAXZU0GKjgcS8LTU7T7TyVNmo/NTyEyFJFQc4j2rjGuZgipR5mNg8zgiQSYLh1WIdDJ3BqH/0qBUQcksuUazAcrMSg7lLiJc8wcW4l3FjHMs7nxlhyk06hhWWYGuHogaX/wAij1UsEu+MRNrCnTeftMFXjuVM3BpSvqWwV2ihRuEo8u4f/C8RuSsTMgpfMarTmYKKiBabJsLzEsNrlpo/6/7lUKR05lcFKltlAveaDlfGANFVLW17jASylHC/xEOiXvhxDKoXQoEqtVYxLMsoeUyqc9xv7sRzZRaf+TniuWAN43dZRN0Nc79dQVitypz8zJd9oJpW273FY0NXxFxm4yAJTzEXZydQXSS6a+zslqZt8QOmfUo9TAF1xFtSPuXirx1CRdEa8UCUqSzJUJxZGk+TMSssl4E8l36Y60EKsReETyNxhVpaT9PxChU58r9oaIaOaYXqOzxuoEMNwswef1CAFKsmT5l/YVzhGMFpt1+JnniDz7hgCmU1mDQBbpr5iQ1ibu/5hYBLdWTBAnFf79Sh+wRNFW1xNyl5iwNiOCIBvGPvHDeWDZWiriujqXErNRKOsR/mG8N28LLhyFLYCeSwvEv7IuK1LKBnq8158xZcDTBkWFJin8/7mXWFKu6fmAEhzWH8w5d3XmADAC/TBVzBOI0UfY/H3iVbXj/37/iWaOq34/G5dWIfDWf3Ko1M3keoIVRhprDzC4BYGLgqjsDg8QI2At2EMS9PJCywUzzkFHIywKmAr8QHhKK1M25WlPu5SufvKtpGLyvqHThZdoxKOS4iyLYd9F5mC2YyxSU1PvAEm64lLdGXNyipcpCmB/8AW2IEVcs8QWMC9RLo+iYK/RO2fEIuiZZxErFRrlgjlqVoxwuOnxxKhLO5wIQaDfcY3VCl3GBTdqrUKG4eCVz7IkrmVAGUYGztfExOKmWjP019WbotSzwltGRlreb1AC0aiJAtjJMpagoJqjiJQudRJraLLS5Bfu17e2DRLXHcBlls5UhWr/csmH1Sb8vUDYYZ3cYRxNqHcKN2xYl08gqn0whSwM2MvqK8Qg21ZqqijQS5xTLiHfcTLrUuMWKal2AEs1z0wjZvEMbAiUS4DlmOfEuxqeX4mcVXM6HBlzBEDg6vmWkloUQu8OJTnvDzazDAdlBLoJffqKaUlZdpBUAoGiJwE4LNeIlKKOnY8zBjDi3d9w0pa7dl+4ZvBa1xMxZVlepS3ZYy3HwdOy7lUum0N5IfwDYXzG2fQXz1MebnNEvSqzVoR5tjhd7hFd1e+oQqLZlPj8Qq3RbNPEBVoywKwKau4pdAosPuyoDrVd+YeoHCjUqtfKMUGjiYFpk56ltWHguKZgC2sdyzXbOtZj7QrlZeQsmEcwGh7eIGoXesj7TXWfPcBezhVjkAhC3fmKFKG2BWHxEFDiPlxBiat77nqxTh+YfkeDhm6tlZeY0oxXDBq8B3MY3Li3KAyTrS4xlZYLccxdhcO2dSs5ic+YrzCAzncAE8JQ11DXemXC0qFYQekVDfY1xBB5WNzf8A8XFlwxuUAIvL4jTUO0GG/wBSrWp06mxxAFSiPSHcLbL9LbJ9TXMJLQb1KQ3ov4gnAMMbrpKmigeiFaV8oorV6zAC1QrJKBQpYAxYJD5wcs3BDeeMywPLD+ZQWX2+tszGJZBVwoX5gtQ7jYNbGXiGAHMdK5WZbQOMfErC1d5mQmUdrU0NrHFotuZTUQC7v4jYnWFBBJM3GGcY/UNUc1MS61cMTCmOaNfMUO2WrBmMCrxUsjsARDbeSq6iKlvmFwZNsTKUY44l2Uu0UgVgm+r6giZGKqMeW/BiKvh7mQ4j3e3czNlTNCu6cwiEBSaeprhIO156dweQtATFjf4iFKDjnE2fXEwARBlMMQqa/BalDRGMY+IrMCLzFGgOCiH5gvDDlfKMZAO3RHKgrqaGCBfxXMbhl87+Yq6WzZZftNLK4UxXwxA3zc/Mvom2FvC8feUcEQ43EIrHiK2xQkr0SauIqrhsGWrgHieKwsqgK3kmfqO8MR47Gw29zXVtoXECre6xHRVHVH9SnNC3t/EMoAmV/aXQil1in7w4FHhqLD8G/cbvIlBs7x/u4IFwvN0QpWLxnfNy4yLMN11/MoLvZaoviBkubY/lMYg+1xdeZEeEMNc5Bz5WEKGtWO9fiJAAhm9fmLg4sDVfZg2FWgq2WjDAy7fDkr5IVXdrjFZaqeH5hUt0hSRoDN+MYEtNbhirvZA79JDuPvQKcy9oDu5f/mmH5guRQ4HEuItnAhVxdoBA+zh/6fEGDHxwroBK3CRKFLyqYs9TF0S9OUu/o6l1mV7lPOIi7hUKQtMsWwF3ACDoxQ0OIjggaufMAKM13LihbzL1d+JQqa2qAJG8OmYFfJuCqNiFK2O4OJvu/tHmdq5gUloLuosC73O6O9zNdnuaCYeYEq2Lt8xLaFXUDurYqAaW4J5+gS6juIIlXqWsSloytMHQ8zL0x7lDx3COmy69ysFWVtnfEPUquDmoKhcydSsosBXdnr7Q7tynRAhyqgIewnOGoAmIcnxCKFnLCc5ran3/AORsw3S2Zr4iiplLzGDi96QohOWzErnfxUNQfxFqr+OIjKHYXSxQleIXwjVCfeVcSPwCYj7p8RNjdFjVfeZnkwXcVutOmKgMp94bqn5f7UGYI6yEukXwI1hTdV95qBwY/uPIbbaMyxgF92ygCHK1MIVu6almBsGnj5xKQqjSGV/r3Bg1fJfvDIAN1uIxZLqyfUYUeSWHn/yKTNrtP31EBM6bZ3y1/wCykGVizG41SiHOmZbtqCdmKglZzzDZii16IDnNK5geICOC2Arq4IaGm5QdEqVcFyhVZsG7JBkQX0YmwN90RKRV5A1Hn4qu4LlV3XUctMrlILAri1/rmIXQgFl1N0lrZHDRgmP9lwjm+GFM7mCmjeSAjQOHEfa8yi1T5TCAJoSnQXmgY+ZclJ3j9TOzsBvzEaKtcir7n+zKTsFQ/eYNeuZs96WMApnGnLTjEJN7MoY51CbSsw3XkhXsJZ5UmuoRIikYPNER41olfBL/ABtcR673MshZWEa5lkIWl+D/ALiXUxsTLxfEOWzgwmKP1LrfLQpNGIICtbgjNReo4SzWpRjmW4QxvmUEHK9fWrMxQa+lG8XuAa/LEMaMG2ZDzBGzl46mQ6BNfMS1N7gBFYuDRhTUMjyV6jm2m3URH+AuN1Qozm5mx5aKqXDeOoZaNzluCMtZVvxGwGRwwYVo/MqH8dR92/oNH1rnuJtIsnzBrzdzPLvVRLKUug81AWa2ShznSv5hFvprmYODTs2FTKdaccN1cphs2e44kKcBVvj5mR64rM/5iVL7yH/XMba90TtG0UKY1FCUTSi/LEZKryxXiXkCMIFPMVkRfGIJTBNRuTZDwHmZruzuY1h5zC+Z6/mDVVeZS2N3EBeSZo+JuN34cP8AUoyRkpt4mxFOXUKr8DA1SGjFF2zt4/xFMX5Bi7radzcqfcQvP8ROw63qUKcG4gd0JbEt6U5iLK2PNytJVXuAMAmqgQNNLvYxcJQzaef7ioVc0CGpf4O01LgLlcagHei66JuxOqjaB5rxKQtnxEPyllsvBE6FwvfmUrkauAa9Sisw5y8y1S2ktdGZeL4VUb8RtasT0GV/tKtte4lao9TLkn5+YQxwwrjNzNaYqb4VLQipdAZ4alOn7QA4x6ltefMFQExxG4YDlNwgmnqCAMvUpiOOKzNz+MHyWOnpo0RHl0Wsy0V2sOcRZlhGBI4qXIAGDR4RC+lVPQgVh5vmBLSgGXpSz8S6yksycWpqXH0HDO91+pgmGCgygGjfBLskMUFE6YAfTU+zHLEypQeYlyivotRm5XKNIAiyAdur1Cp6iRlixg03eri5ODMBBQVigM5q308SluYbYLM31ArUXJ5lwcN64eo5VUwIB1HJXGo2ivI7t4JWFaXnBNaom44DSJ4c9rAogOhdxFRDHJEW6K4HBLhm3n/5WiZlmS4Vla5n/KY581EmB5JRGs5MoSyaxLa3WjGpdQou+9SiXUBrPj4j0QUA5P1UxBkU826z3mUnaWK7CsLmOUKKGtV2dQvycPP9+4KsUttu9pFcgL4xcVqCpDnLv8feBXIos3UZtZVZpjVTlx6iJ4eTMsq1dkxaWNQrrPuZM1rqKHWPzLIXT8RrnPcsrR4RItAatlHX5hApI3xMEVNcA9krazd7nIlNeBjMGHD3C+cwVr1HxLOI2uwPJNwbYsHD0sqZ5OuI6X7cS5mr6JoAUquoCFfmOAgX7qXWwgprkdfzGhTdfiXUC8OTUpwx/CVlU2llwLqTmzcFvQgW1EZBVlnGr/UdgCmUMPmG5wKYGOKzq5qGBpTf5h3Ihj/xGe7GcF8S1+A2/v4j+cvmEK6vMqm08wKxvmaV56icFzHKzFo/R1GhR94jzMt4mqAxHfFJcylfzDMW6id4PuAO2N0whEK0G8Q1G3qGIb7QYNvVQRVNcEE1APfUvw3qYfIuUDkqXHAaFrUCGlUQWVi96huY3IKbgaOYEKNuPmYZci33VOjG2F6DkFjdLv4xD9pdQvtiI/CKiVwegnGFPMAcRPoq+0s19DJRvuBwczkckQmD6EF6xMu4rggeYbRchKTGLgAeToJYViHBCGFKq6hMAe7lezeb3AVt2CL7YK5YZXALdufEVD7A8yhM8LgoQI4wA9HmJ1VTV1b1HUGrC4eoogHmGwjV0JmMirgxcAWg75hyqcWYxBgKDSOYXCbHxBuNGvqIJBSoLIWajzRwTUdsSDehG4rOBYfidYZzAUCx4hsUHzrphLNph4dyhb8B3Q/G2XcYH+z9wgHCgL42QRXQwPRUC4Qa47/zM+E5Hp0wYhN9jWLPv+IrmBuJiuPt+pfyhZMMqrmtwQbQGn+8xmQzlYdf9gGzS72TDpntgolWmU4hlk+IAZLb4gApZ5OpSKrHUvatpRHh6jq07j6T2zmqt9xS6i9/2jlxj4iI0i/aLSX8IzFpw9wQVjlmVm2eOZaUJ7up4ABasDe3GmXACytwizDjEasBHWmuovbPF6gqtNDFG7e8/MIGA81KaGWxRFYsPLeyBZBlwmj4i5CnV1qVNdtvP+/jzBOWnLHgbZXKorZtK1ANijDWunPHmILNdt231DY6Yzz0RUWtKavcVgIKFpfuZ4VA068wV3+Iwqhl8YlSHFvx/cfKt2Jf2jIvZkaIriTsgNFz4uP21XKqUmarLhJQMzmlh/J0/uF0D5xABA35lJsemCuB949/3FdpuLhLTwsRTHZVXiBVB0s9A6qHoWJypggWYYb17lovFz3CBUdS9kCuMrsPUyEV04hWC2uR1MiM8KfmXdqsXia8RPGV/YAbrxcHioVaOCEbPNIEWzWY61rqKcJw+lETe4bJR1KOpdHnuWvP0QOcy+ot8eo4IdlGepVnIXcr0vRyxRg8gdEobOZunXUaAs2XN4U9ZzBYFASIUXau3iAhZUN78QWgNhcxXDHUFgDLeP8Af9lAV0uCq4/uEoBN6CNWyBu4xVHN0yyoUfrzAAcOR5jbJZi2qgFm0zGYeOpXgl7u44I3IsW5i2xUpyNy7hlZmF6it8MPlhQvscBCa7eyBFZuhL9AxSQjKNjwpwRhYD42kw6oUjg5+GoAja0Oz3GaMMntKY1222+sl/RNioDh4d/u4XMGydZ/9gI3ZCunaA2VHGxWR+T/ANImJww2Vef3cqmGU+eU6r7P2jLC0BKw/WJSxZFpbLjgsDRxKkHkEKRMJRHruKD23nejuVgwt4awxwuSoJ+CXhr9kVrOdTRdfeY5+8xtVrqZTlS3OoMn5dR0VXmYVu8cQq38TLLWKzEBWMUxVBZ/USM/CIGh3EVle/MUcY8xL4+ZyWmJdMZuJeMkrOlaXcTzb1Eo89wXWmwaq5Y+HG5RKPrucZVrdsZV7bqJlLk0ysBrGTUQVU7ZUX3GMkjXN9f+wTuDYfpDYLLFKdr1Kqrvuv8AcRTBSOVQlna6QKTeTwIyqwyVthspqqzFXAilqYviUGsLxZABVL3fjmXEf0P6iWy/eGOLxhD7luzBUgQ6qXl8gDqGqBGbw/ibtL7cfqKVh6S7aXbHoupo5gsJGGMbRvcUFGZTWISFY9waLLfcWjFfMFKFjFxuNrM/xKgQ8qKR3YEexGN/lhFeDCWTA43Ms2e44WXVGIEbC/OYVZznBy8xyixZ4ZeYmxiKrQbL+rV1PWXPWW9xBb3WItZxUNxAFtygu3CuOTMrVBb1wljKC9TasTghh7r77i2llNyyeBqbzRhTMLEHFnMdpWgxxTU44qW7KGKiXJBlcfELz1FAoVwRQZOdGXnfiXujyc1EM8AviFqUdbDEFKN2+YcphBocSgi2iU/TZNoiDLNSjMXJntfR3NgYWqlrOKKVigzQGkiLkE+xA2TidP8Av3FIsW2vXcBsLer1xUUtGJd6Wj+JQBeGrSLT6qNCcL0GXf3l0yLiNlJn8SjFXdX3OCcCeSCICsQ8oY+EhvqmoU/j4r4lpm7KdOxImBNMtmN/7x3BAWnFddxEIH6ruZuk/U5njjb15lIQ3RmKqoOeyFCm8I99SzTVmziuKhtrRg/qGnbLJENCnqLFJ8MQ8omuczE8j1maFfpGdC/tMFQvNdwRDZc5BfMHbExH9otuLEqBpKvuIGm0IRdfPiXHMozNfoO/GvHiDgrfRxK0hV5BzCCbcRxaxCWKt0blgRw8i1LgKhxLTGVgRr0Ujt1/uY9NEsjbWaKl13efp8x6MXeS74W2BRv8CLBADS3GMLsDQ4OPE7LDfctL2QlKw4oPmVDk/cCN1h5jVvD14g37rB6/uIWq3ePM+3xDat9v+RMsHdA8QUUqtBrW4pgcNhFqhazniFX5s3mrg6UK6nKE01iFAwXmFvkxqcUeYMK09sMlYKfKhl8uuXn7QFbOET8mDhT0N/zMZ1yZtk9TiBiCFJ+kvWBq9wVbeEOpF9zQLf1EhdRRluDcWvpRNz6GWcEGn6Esjh+oV/EwcXHRJjyxUAtOiACsGqS2o0uRHThENWIyrWS5eO2WYtK7ZtbX3PbEkqpje1xFJkB9Zigse7yBg+WoqClSwyIi04S88RUBBsG5do+zFX9glntjoMxsbBm2Hh48S5Gj9Cgn03EcELl1KsyiivP0NsKZaN1HaNcaljimwHjiMOQoxVdRvB9qZQVKExllQq5DnNf0zmlKr1iXtaW/5DFMg0Bmg/3MpqIpd+0/iV5H+QD+fzGurUF52RoiJa1opz9v1D4HQt5G/wB/iCnosNDhPjEIYGgrxqGWA0fkmkKBi3i4wrN8JzC2Ibb1Us0HKorsFW0DLK7DkXn4YhhivzD8iH/EWgDrYXEtpXTXU7R51FV9nFxbe/eYaLflnI33HyAmEx+Y1LrEqpCzhnCx42xFCIYSUYI9Rbyj2wKqs9TBIrq5kYi5BXEcqBb5me8dzGhvsPcSIFh2weh/cUCpjxB3B1M4DdVFq4m8xCDJzX8wwE080jGFLZsHBBsPPWq5mNALXRipRAZMXz3DYpls7/2IVgFcCwwHnWEROBm5dzjsLm0R4P8AcWrJ6FxKirRp8y1Dxc1TyXT9yIFcLnKh958CbiXZobzDBlYTEbAZLoWs4jg6F1/EcnZqquOEpVqpYiUHMWEei1hQNXm+xLvwqD87hY9I78nEKAA8Fzol1ioQCPKtytKe4lZX8pgY/ZEoXRrnKOg36ljIDp0Y9YfASh2e1xasc9xV3uXKCekafQeGay/poi0Rsa+lBBWb+jNX0HqOZUBo37lCAXnBHqyr1KGV/wARFwEqbou5WBQXc64Cg7qCgAaBZdN+fETWMldsGCqgflzETkErrOIRvhyRfg7iAmWQNRbiFe46id1blpTR30xWtphTuUQ5uhOPUAUp+6UZFHcz9HEKCRaJ6TYzcy6tKrbAqza5tmZzmFdTIO5QYlbjFNDqW4rYfXiJry3AMcCl8EVnJinkgo7V5457m3O2KdXmIZXg+3/fEqAxbBKxnUcnigRoc/jEQmBSHk3+Soxc25P91UBp2J5LB/cdd32G6LuELCkiaTm/VVGve1PepTHkBwc3/wAuZlpbk6IyU02XFHsjbyBiUUmUoPHhmbdulcepSgKGM+j+YhdmhT/nfqWK+l9kQYx70wkcBMUwrJZxb394otYPTEspy6YllXMH4gvmqllM5yS1kzywBwXMd1LG6mViZHEdYNYgE1bzMcPVKmqT0ijw+I7DmuOolAIVrPipeUKWYJTvvcFGCtEEB+EUcrZAUGV5Uuo4fIt4e4pKZK3mKkEOa3NgDlh5jkTbRbGCDTNhF+Y7HqUeNG+U4P46lQqowOH+uZS0BtVLYZRXnE1UdYfdf6iYDeFPtuONcR2/MHMTShv1EEsHSJyXm85giq+mPMYsE5u8xkPor+EQAC4F/vbKBrHXY+X+o+BXcF1MyZ5VFsDys3l04umqQ7WfsTkz4xg+K7yZhPFyjSzuHBGjhyVtj5uM5/jDrdYYV2DjBNsoWw/eUZDc0vmIvcc5Tv6Cz4jAwSAeZsRARbbioilpKIKusSzxCCiXHmI5KVLS+upQumCncVuO18QRQq9yxTTbMdG6y8EG0uLxLKF81GJWJz+YTlNgY5lQZkqumVMG8y3C5T1EBpwk0m1fiUClrnlLFFK4cTKBNB/MShaNqCoBW0ItlKMY4iZ82QhdXtqsseHMpgIzGjV7jciRGtFh+4Wbiy/QIUp1cNW8zOTEYRduVzUs0r5Vy8sRpbO18HMqgWO3BMKEKKcf7MzGngK6l4EGwrdv/JbYLQ2ufEzQVKMZU7e2ZCbOdnMLYy5c3zKDMQF/r9y7eKQPY38Yr5jxiq6xyQJgrXIJZw2fsn/kooxV6lKYYKu/96iVF27OMn+/EsApOl4l4Gg2x3BWK26ojCltGoi1t+dTFAyXuIt/8RkF2DzEuaOpTwHVQxGviC1QnN6YfcPcd7fX0Rq9wWiJl0M7fhE2wiBVY/cQyPmaVCUuvommKxu4fCER5gEq3EpW78SnQ33DKsIyMwaYK8bhC8HicAN3CugPnqFdIGowyGF55lkyz4yfEJFLjFQ6bHB+oqa1grPP/I5wH3/v9cwJ8i05t5hWznEHpq4oyf7EIybXZ+53IaqoVFgro6VMuYtEr5+8Pwqrq0qKlXFm+r/cYb1ilbmSCKcZu+KlXB+DT8QkQE5agVPEC7mQVtKCWdPrCNWj3Ix9+HuVdfaD7tRwg8zP+p5QqLR9iA7b7GOtMuxA7MPELOR5nggVFo8wu5lncavFTBcsdQPP4iHk+8W1OGUalc+WDJ9KDzOTmPCsS4bzjAS3eJbd1jcSuRTmUk+IWYG1i4dmzYJzCEo1f5hVXO65hI2cYHgmEDvb3EKOupgqk/cwK/EwppXZiAVi7uCjeRv/AJHTbSsxCBVkOar8GvMqvAUjK9n9sOmC62QKWIzTfphoyOhoPEalwrdcRiXYM1qNreRwb9S1XR21uIdlHV5lOqZdmLcWiKlFQKXt6i0xHZioQz+IszqJazdRJW2+pZr1tDcEFUtKalMC0wlI+YR5du19Q42ZBJmLxBYqxHw/1uJ55kE3o/7FYvQZ09VEcquscEBTo2aX1g+Y7qsr/wARLaiAfWf6lyUGl8xgVoCJ3BkK9dcb+8qXAjTw1HkOGlOMR0XY88zNbpVyt7ByqIOAIj34l0Db8LxcFLb8Ru21tEu0ONMsyGgqrGEH+4PpzL0rbiZCq8hmWGiAUhB5qWpjJxLrhb6iHSOhJ45bkuYHBUWcW81MYM+sQi1ZuJOSmLYrPkgHuD2feWMO4LFX6lDLfedRy8I8YghivmYVKu+JabN8zIwWTYbzzKK59zarcGUKSAFhjEULXF4jOmFsTmGBF9PEoTOHONRKpatve2XBoD5mXu9J3FoHD8ygFpwV/MDmqDzLbKALT/fqGfRefPwRrCTJeQjB2fV3E2oeA392W1bcqI7CG0UQlSGARv51FE8sv4I/7Ah/uUxWLRtX8y4Xq8R/cw/wmOFXM8lhSL/x9FCNXEW8sRWJj1G7TVTdTcpze4Z5ovUsZMREBS9QUPC+5RiNPcXllO59uByMxsLOJY1eHqKwGjgOZoDm8zA2YDP2iWTLglyn9rCgMlplwHGItje73BGFTGJUAb6gCJSZruZP5OoKLZ6insoMbuKvg5jvuCGXoiAbBpjNbeq4JYKPBrMJaTg0/gmvQaNBE0A6MAK2rg/uOlGvIQkeUtmNVh4wRaKpHzDHMVGWrzHrSS6a+YRFupqOrSLlbiFw/Eu0rESoS3eoC1iKUKWxTKqUyopwQWnGG04lZ0ABGJex1WodbRT7MdlhRdeVKP3MDZvj3DGyyPnNSgtYTcK2Ysu3iZB2jp1wzdsjnq3+P4gKYvBGEC16LfxEBNWfzcAENA3ecsUPwDHzLGa8iUQ1fPEAVwksrhXf3H+Jayd1N15aHmPoTHMu3NEcEoNam1wZMX7gHoGCUQ4pu2AKNXcq8PMBDFzbHUZEuZnoYsO4EuAy2+JXdlTtC+ZiIRDiML24mDznqVwNZiFVCDiMLS/MoXCFWoCXGNaW6j3Ww7os8QdWXziOORU7gI1UGZHyiBrVuMQQVDWokKpX3LkpXc6qcwoqDiNjF8n+r/yDul8sD6OmoZZwVm5cYs4MZhet+GNbZxjJ8w0mPhECUXQM/dlrQPfZ6lHF4q+81O4tXdX4P3B1CobB8DUdEVo0EUw3hyj8sXVzEVsiJLztjtiDcA2iNDmLyxNeIjJaGDZ+UzFwNRCzjcsFeLjpd2QjI51MgfmIsWj43K9xkaiReDURW1vFSly85iHtpqiY1TcR5kUHTBCXnF+ZRRooF91mJR/ybiINOXMdFyQoxlW6g76Wx6lscVKSuFVl7Td8yqsbGY6M2a1UBoSiXFKwmXqWJ3deowVzwAuvELHoNDlTOmiA1AGKv5PMIanRs/UMt5aqtRqKHTEvXV3KJf2i29Nwt6rqc+HmIDEUnEZVTMNvf8QtPAxcUIqXfEuaPgdxHAqBa6buVPFXVLxFdjWjmM1i1gTD8IZPEqNxr5iXJ058vcxi03j+oqOJVBedy2vOO9QKrbGu+5iSWJahKyyghfEx4uMGY0wYyVGuHBY+e4m54D88n+8TMDglFd/3AAmqhjBZy1LLCs2F6lpThlZoqotOmMN66dE4DhitSwN4/wBuMonIN+IhLbyGJ2rXRONK8w14D3K9ZOcQRVtmia1ZgbL6iLaHxMWqVjZWvEUcLEF0Mp4lVwEX3DdH2ReIHFVPtEw3bGpeIRay+YDNF6Ic4VqqiKXA8FRDZAcIyoaMxXhGigbXUQNVYtKCsUUEst7IJLyd9RqlSkKqWfnz5glUo6j1Y7gtA54MXBdm/wAxgtK8zdzb4YaImIhHfhlArR9rb7D/ADF4mlFJmHXnLcAgYzl+4Gqn7kLxV3KtVGgQ7IAK3CgQRqKEKu/o4It4Ypd6J3rriDb6lXaLGnHUWjLRV13Aca38wctlrudWBjtjPlhKcE1BAZsbRxBf4nExCLElt0GZTRvqJbbXzHCFJONPrqIA8MwS2GpaJt17dyksjfZ7iWmGK7lDbplyN/iUMzbUpHRuYDwVALE2lS5RcHrMc+SK3kGpUDqip1nn3EVpfe4VFg+cwcFhwDg99ykCTMO4Q7f3XHqILSZG58PUKtBztg7QzGbFX1thsXiuoHAsQWmIWVqU+JSmtTBuMGeZSqcY2xIg2RGU4C+ahuvKHkKp+Yy9ykWzmBYlUPPBLPdga4lVXblu4RWgX+YoF4bPvEGmN2eZc0MPcvWAd0Zwy4PdvnmIEUUct/6riqsS6b56gmbItHuC0+VjQCUUrPDBod9OyWzVQfKIVZqy/O7+1RBC5+8QCpytaY3I/wCYk6OY3hVnqGqCrJhg1DSiVZGK5x4l9vvEyTCjV2cpiLm3I4nhN1E4p8x6UyvvDUT8yjk8TFNLhCoj4jynw5mAcnMRMWRzyidKfEUWtkFQqzKHJjdmVDJUNyac9xF8PmZSIMUrxU6hKmknQiTkyreaiaLxDMF5ziWV7vIvUtrM+sS+431iodVXiUw3+pwEvzLC822R2DB8EBVJj1LZospZYnDDyQhVCvBLSyiuO5wUnO1+0WgEuzUYCcEDj7uYpmI0BuW0wbpVy+Zti2y8w1n6LUUIIxQlxiAWXxFsL1AheIJeFdxrg+Y6LMJ2gXluoIqt7IXYN9yzc4HuKLu7eYIlydIijYF3AUTAHYa6mV0GjxBU7cTGl9y/jAaPPmVAtXdS50bmsoecykAfPcMJ61zcLBwZscDVMvUUBwV8xqL5qt+IQLzAGq+8VVgZTZ24SZLYO44Bm+EINWf/ACEC16V2lBShbdPlENgLa58TCsAC1KvMfBQtKyH3az3HJEa+fcUiw6zlOhwA3/EwZx3h+JR0eQ3Dl+TmM0J6YnyPUNfLqEW7giCrTqKLjUQKd/iCsWeKjobKr79w4JQUUb+IyGUluOZbTRsj2S8VXyhzUqkVqX9JeHoMrHoo9GVgVNNcf+wtKHd7IBlII08eJcTb2z95QeAa7hgRQ709RGxKOyG6Si75OK8wKcLD6YqbSZ8ytR1n14i5LZFY1w/xMCcwF7RtN6hZb5iDjZDW7yc9TJFvOou2Me4zMKliVuXhmz7R5AXySkWS5Y0tBrkiamjkXY9QnFUwf0wsUVVVOLt5CM8jc4WOMyvF9QK0xgrLuGwZ9StbqMhHHcsNDNBmJCnA9xbuN9Ygabcy0cyyXSJty9Qdoj7iBoUY04hAo3L3buHoTwErhAucBJeaB3mWfhsGrg0yueUW3EpnUzArfJOkuKwcq1FjS+iZGttzLi8IqrVZvLx1UbJXEGNUKE+gFiGH9JteraxCEBeMA8jKUsZXD8fLWWHR56lp5ir3NquHSdiZgbjq1FU5mK3A0eZQywsVZrPwlugUalxzYYfEPW5DPI+SNXcK3JqF2GVbYLAoVvqGS9fe5sSxw5aiWOW28+iU8qtm6lVWm0tQqvxDqAgVoPzKNrGXxLw6oXfUfEyZzNhpdRrBXW5ctbTMQ25LhIzCfaCFf/UynaOZy3Up50XKuU6JYcUb7j3SuHbM0aGCbLnP3gZKFTvOWXAKQYunvziEMjkfkh8oMC0X2wLAbAtybxx4jqikAlDyOIlvVKRp+evcYUHiTA+jiM1sexhLibihUB6z7iSCU3zKRK1BbMxKslPiWFOvMvh+plwBww0yzuWW8ock6JYsHuZlSXUxUrld0RlqOA+NfdfxDAAJy5uvzKrCxKq8RTRweordms1xjiC2MJS6T/2z4Ja8LFr8YlC0y78wcKC1+UBaMVTjvv8A3cK4U97Q/wBT95QoKBTx8TI52XG9I77/ANcN0KXHxOccdymIqvA1EWs+GPhAzaOg1XZAMVbOIC2N6mYqzSXBrwecyxdt+okLcwsi+5UbIeYcxwW/1CTY6ozQFR5gsxnUUoMFrDUF1TWGC3+cFVYIdA9xtOn3MnJMBwZ4hBh9QXRmaZHzGF8ki3BCw28RKNiTOLVLoFk5jbjcactIttQeQeIHzUQdQqqa9S6qpgI8eoLZcwzI/gmRrKI4o7IgFRxjTAKR+0fxeepaPDwk+XmCVj7QJouUlME3L0DScEqlXpS1bKlm905ixCtQQE+je+rhY354o3zh+3MTlblX8AYIA0Sw8u40ZdzI7gVzLsOiNF3vqYwv4l1UqJejPljgXQG2IBdrxcDV0KaYyMwNJHi2lcQAzSvD9oVRR8ZvqYTA6ICJsdhiELADNzNTCmzbcrTVh4B/uHkzCgV6v5nFgOX/AJGShXC8ssFBii8wKGLrQcyitq4NKm+GVQqWZb1KBkMc37ibtuQFbmZoa/aXKrGDzLdFB8QTLUGYGjbACHXHxCbDtcU25jy60CuoaNXVPxAcGiuPcv8AJpZ1FVCwocMSaWpv7r3GhOyGUlmJuxpOj+fOoJ2MF/AZvBz+JfQl3sQ0C2c5l6V9g4K8cy/6Ouvu4VY05DH5tYAZ31bTBNipZpd/FSjdSpOPpgSib+Ilba6htuDKO3V5jlot21Fg0vLzL66BVX2/viOF3sZhsvdeeD1KZXCQ3aVBdTRse3Bf4SGG8mDuXdXItqKsG7PXmBqRSkdFH/ZVFUEY89S7NHh03/7KyUqIpRXRb5I1RVVVyh2hcVaqsXXMYWXRzxCADgygVh5CdjjfPiU3y2PmcDDfMWdY86xLkLEy+SZIYCWVXtiHde/iLcACaDPqCrz4h5NzcWPh4iAjFcxYZoHUsDg5X6gOzwGrmMCXoggAVBgVD6Z6lbLfgYLoPnMvbxcqlCeUAMh8wHGnUTwj7nWT4nYXfmO9T8xeH3waOC+pkWCe54hiRwp6lm2dHUcN6jDFMxoub9zH0ZiO1lBAH8EclV+8Z6mhdxnppcO3MTnSeIoy0+YNhRr3Bi0MXDQ0jvf7RDg9kSXf2TCLvsg1w+5VWzELQV5gzv8AaMhYLcvgWjHQWS8EiUtLpmtt5g5IKxL5XLBaHRf02RoTcz2bj4OcZgTcwXuK0UTbmYPxDcDZKJou32hJZc5CJbAbAzA6VU8SkAvwmYlyRN0+c/Mx4sKeU0azf/EbZ2JQ4qcKgnjFaqN2W3dZfmEbvGls3LMbzm2iIkQEEZTtY+VUONvli9TAQy4ljcUNCxhk2uYYHuO1EZzgKxUJb+QXF1/MEBbTqUvFi/H/AJLNUrZaFlJeOlkFr7S0wNq/EE205MTBEb173/EQRcF/MHSHD7x20pyp2HD94KsRQoxfOIIaoGX+IGq3i136lZZsqwPb/EtqmyTPlWMH8xxPL0R5b81W2WAzSYvnBb+oBCzSa/HPvEJgDrAF37jm1r8kSspjqYM8N+4KaqIBqdRER5vdxFePEAmwZY8qO4uJc8G//IeSrANXFw0KqDTt/wB3ADKQt8YmxFW4WqqUpgNIdSwB2peIwLCEPglR3VZMSt0tikTVBTk8TAW5B+Vl/eaSj4XsgZgLOkVjSinUNoqG+4nKGuTgS/K0nB+pRdFsyi4Zq+Y5Ui26ISpp4mSxiquPZVlWM0M+nJHZkeZvdmpmNzFTmyUXsCDu8V3MpFry8zKeKviG1zVeyXQHRD2kuqhIbwVHtP3LlYvcGuS/UE0q9xlUYm+nhhVVr8xTnHTFXpGjLFvdEDyIbiX4IuP0R6MwskRHDau5Z2DEnglLl8ogVYiAzm93OkYug/UBbEw7RlxpfTOaKU9zQ4ARtvMpuhgJmjxF0P1KaVrp4mjFDucgFc9way8kAOK9kCuaitfaxyI/4jLJ+NQTBly06M0DyrKmAt1a88Eq3rQdSj6bpSJLVIy8PbUwYlvc6k0gnsgqnEyG8G/tKcXu64zK1G6ZO2VLIwFALGdwk4NHEGgTa3mGXIRsWsQ8cG5wheE49wJLyaYBltigY+EbKsgNscwFukbVVnmAbZCyzNE3fUSonbXwEI2ML7/MoDoiZigYl7lywPmUxdSqDb7looAUOHzUtMppang+/wCIU2hsxLGlN4IMi0UmLcoZRSriLmZHjA/eIQq8A4lMtHPhiFuQXRA3sG6dSkGy5fmn76hEWKpH1Tf3lpNGq5fExBaWMn29QtBRzVjyx7eAu+CJg/dwZJAeB0t4PFQGXnM3XzsvvVcQhyQWoTGbZ857iEWKwKfAFfeVhK+nCO67lcEI2GagIZaOGJ0+ghAFuXSk3zHTG6JFr8MDHDzcwbbOAblUFvqG+eGLStLaaFU+0UDi1lUr16gTFQK8OGblKKWUBZwDxLWmFlOOZUS2LZz4l1GrtljJz1uGiABkOXubCkCkziv6hzobAGxeo2KpCnNrmF1UnZMWSAKrVRgAov3NTcrxfhiqqby4l1j0eIS5x45lvyU+YhTk5hOHFcw5+4e42p1MpeY3B+XUyg4mHc1yEM7lykQXF3cRVcLHy7jQi24ZkMYcQyHUZY53ECtRgZg0Rs036dQQceib1yPMB1dXiAVr8QBKu1dQPaQaQ+V8TBKRWLhRoRt2nuHFXfUp0vtB90ZWqBXmclB4lGlcUcq7JURSvDGR1EeMcXBV8ieC5Ts+0QO+YUFwbkDYdhmFRU+I7hAJTKO8pahKXxEhFjVWviLqZa8xUEjR953H3M28dEsOKxVADeoMKCChH5O5hALeVIAdFSgi2xaLlmuo7+n6vpUO8X9I2dcRwurqzklyXh7cRczocRALdu4C8gN7lowKykvZkMVKULFGuou6ht8PH3jjG2DLLNxhlXkR0LlItn3YwtCyijyvGhlYC72UZ0PEIGWbTXUqWXwXS0PONS0eBedHcRaq0UZY4xc1elTlCLFuU0gOdXcvFpi08dRWxcGkbHpgLCxu9zNrbxdShS4bIqx1LrK80pit/wBgJaWZOX5f4jIKwWPHiZFw6y2n+YQmYFYCloB+fcfPo0Vyar38vTAUpyq9VdcaYi7lZhl8XGFgEH5/mM3IXW2+4Sw90Zi6DB+YfADrgQ1V7PiAap9HAVi/98xZWBbw3yZ/iYGxa5+Yi4Phq5kF3AJkuAaxPJCVnqoLfiK0blI04YlhQx0GdYcwxQF1VUDKRyOV6rcMZZhri/MMjVKWwnMsBoz1d/8AYkIuS3g+fcIOV9vARcVktQeE81Uv40ASGqtC3eJiZYGlmnmBY4ps6jBll3d/7G/vENTmlv49ZZiSoW15YblfCBXp/wBUYMWWvydfj8TK3ObOfcuSFJv1bcsocNn21f7hxWVpZhDZvfX/ALAFFtFZijjI675IqKgDlISs2m4Bo86lgcNbs3CwNVe/fMzuHEIcmA2/xLZXDwwjIgVVrqITYDbikpjSK8OvUbq31bmOxr5hQa+DUH6USx7lut8wrp5x1oCIQbkK+YyXB4lHanuABdWlizGzRxMHsxMQc1zcSGpa5cfepkBYdx3lc2Jdahud/iUSt+YsW4zRx5hMlHUQBqaE9+JTpnuK1f2ILB6NIOAHSDvGXxeI31EDDbPLBDGGoplzEq2WRzWLZtD5iIgoHOsxT4rURGnxNAaq8MNaT1CBYxGFvEWiNzUpEly/QouYFDjmeE1BcsTFAVghAtaN1FVeBT1/riUmdLnqJa0AsBC9itYpRtkJUXzKEMCoC0em5tGk2ncEJLuGOGcghR/EscMtHVmPzGKyq01v84xLdFci8aiCW0GtwtRvqMxrIqWNoSbRKE55x+JUOA+zM42S70tFfaDmQto8e4KK5Fhb33L0WSr1UpiwlrNCOsxAuhyXKuCzVdRiQrV9xEmQtdfeYMCqoZcxGpxMtsChm8XCm2O+D+MTM1RV9OvWI4wdawKlyc/7uF78ei7Qu1C2ZH2lgxvK75/zEAJS6D7wwmGY2rn2qFIgDKqXm85goiiDb0/zUFUabKOfK+DER2Gq1dhvlGv9cuUFm9l7qHpRbKzhCvO4pvMoA9MGL6luFTJ5jBe1HUaKmZqr/ECVMaWmogrRmy79/wDJah+cnD8fxNQNRXZyzidGQ75rxFQZt08SnKkMDrG4IdsusxVa9VL0Xk5UmYV6ey9a/UNbMvHOI7E4Wu/UpBWAL5f8+8wFvIoccy1cLX52/mLaNGEOi3+4wjrP7jRVqha9EYA2d1vf/YYqasl9kdUhCys3ArS1W3qUu6t49x0WuL3zzG4lZGnzPAU1LLVA8tRYPJiqgmmxXmPSlV5YVExLN7tyPESasoeS2aw2MBYFBqtb/qbC9WJCZMvK5YDb9wBtqFFLXnmYgG+9iBgHS75iMEb7GDdDfLCGy62ygyAZbmJh/CKLy7IrAkgAoHOcrCzT8EzBbfUyVHaIBud1Eg/aBYe2Z/xGaDK+Vv6Y4Wa5ijw3OpxApweGAjkIRb+JHcTWGoISlK9qW/mOKYMy6OjcQFE/U2CP3QK4FF8qu4EuktKX5lH/AEi39oiu6Ym2xiqhQVkNstE0XUWnX0VvX0asz1x9KFB4NTB+wSGNsydwlWDGCl2bhzwjbWZgyInO/MWoK0PJ7loiO89Er8hb+I1yZdE4x3UbgTFIahZhfFQw6xj3KxGjS/zA3l0F+YMXZsrx6gPlo4PniIMLbc8Qyd0K2gwaJnpoH8szF7YpOF73+YwUzrHBV1weYoFeRxzG8EpryxaLT+DkjsZTuFdVkQIXO2upgdFhP+8ywFl6I5TBfQmarZXcD6ikcXlWUqXLPQ8ELAmN354lRrIp78Ssall3eJbCjeG46Sq26fcNgVleR47qP4QKTA/ENo0QbqcJIayPX8RRVRyN++AAeXG4u4AvGXpDmgKaLdm2LjSl1QHRTlT7EISqkuDrBr5hAeTNcD7uJGxTVNjA3f2srRcoMSjEMU2Rw0hEXyywSkIy6zL3oHe6iSqC3d/iYiIsgFxSkNQC1Y58DzCAW1Rh7TiohqQAQgqWK6PEEogoem8fv9QBnswbXwP9xNFAG8vuP5j790mQdQitbyPYftJaqDyccEr11nyZ/wCxNxsuoN7lHPaYIPhD4TH5SYwqyr+P98yhjZEHjuXGRwITB1++IKvJLo73AeiblwBwlS8LlbZa0BBhUst3iIsmXHSYRY3SM4WpzzFQOTnEQWLVl3qEWWqT1Lk1MxWrRWH7/wBylJlDrqHVhV5uYurNfbMyasa6JTHhvqIPfwzBYvi9y0QPfMcstaruDwXkwgKIoy01HAD2JuUbCjlJd0em5pc+4woyrVGBWK+rqpWYcvG42NAdzOJoxHLUH4JUVa08TGYIoU5SuqTslTaxjMvAg4uXVHE+U7vUXYsgHIv5iUCeY0hQTyWD8BBqGq4jj5OhjcVHmmCLZd3KRmazE0tWPEpuPhB0FLuupZ0qeF1OZbqWoqHgxHMrEO4eDmZNsAcpdSxzPsRTWZWooTBQjGVj4JhzG9O1Tg4cxVC12wRDyjfuUWYynWIIvmBCW6YXXHmYIC2F8rLAtIhb3fn0QuqbIg2rRb9yIhhrcwKLAd+44rim3eYx66MpaGnxbB7s8WXjv4hTS1wagllAHnDHauY5+H+6mCPi9QLfAraDcomGLzc8FVreSKPUDWPUsIBXPE3hd16jUrhyPJLiUGy88Zhwek344moFFtTMFoqg/LLc6sVAoBzE0IMObzGyQaPtErjq5Yqxaq1fyywoRqtRz9tMHuV15iqi3EybzsvEAQlsF2cX5gi8hpBQC3+o0w8sWv8AXuYa2CzAIXz8K3PsA9BXytYrObwRA3+8eu3YYoCN63DXDRYark+Gu4UwyrbLq4TQO6pJYVQean4jMF3Bvk7hU1iBsgUaitJFRcUq2+iIVXhMV4UjpiASg0ZrUYXIao+6MhntQ15uKjJNKJTzTi3xcDSvkLdLx2ZhJZwHOOpkEK72R/qVOuobpLOIZNrVFfZ/tw0pqOnOXi1fk9wFtsh3q6/DCQzmnhPfGf0ygVAABivEJC4rdywhoAK8YfzPGgAN20f71C7JhWd9fyxTJkFw3X9w1tjZDx0Zfn1ALwXnjEzaviVZcK+0Fuw3TvGptR7IwQeF0MsPAgSIRSgITJrBV8PqAg5egialK/qAGxHDcyPoZgSuhO+YVClO7N1Ad2UJpbiSApOnPuO2KOuiLfHhjUrOZdY1/GIgIsDlLjWEpuw4hFGQ8eIHC21Q3cJQ2crwxEC1/wAy4N7NQR2c5r/2NameI0NtjHv3M5vChHfmAG6Xi4CNKXEqlE4OYhktwVcZAngZxm3cfBdzgTXUaV0d3W4EED5ZiMX3RxE84pQXfVQP6CxgryCZzVr91i4du2WTu5IplY8ME12eotDrNPUBDgudx4D8RPB9mpsODpm8PmGeh5aYqVFcGIBtVMvrWWO6qNpY5nGRgW6iJW2XVsSkBNwC590wKYzhUWOsGTzGzTFFcHzFHFg5vFCKqKbgwgalw5g2/iLnUzXbb/U4OQ55P8wxLIDt6goA6W/m/wC4xYBWr+fxASqLcMHDFjwxvZypbqIitVQcYzCbNYrJupaK3z4l3Fiq9xFqreB3LI1jhqHuZ0WWjL7i0z5Wlf1EAG0AZ7YlOwRRGLDb4vq5VUNsGG+yIalmAkZlGrfGKYZtLl8VMAgtWrGAVbGlRUHVFtRBgHNHOhTxuM1cvIWLp+1QVk6VlfPqPMJi8B9iOq4FwwS1WiG+pkJGhOuV0rcSDSFuagM1IJdL+zLLIFWEoEXyoAba3qNJVhPBxzoOKL7jX9Qcw/i624LcZ7hRHLRQo1LNLR7viWfgU2yiiJ+EOIBEsgNG852CItlxMgHPHEOxTfiYqFJyP0szzBinEOE/KLOUq+eJeTitwvT+Y8RSIufl6qI6yWnA/wC7jgi100+FTfslQ70ETXVf+TH3RN64z5fUPZrRO+E8dTAaCD+H/ZTvCqeDK+quUElJbDWGt1RUopblKXY/gLApSwquBcPv+ZS7cVYuMjBeuCsO4ixlIj5uF4eTemrt+xFyns6imPNGbNRWIEBn4/5DAc19Y3FRXK2fb/sunabcvz+vxLJrGncTmZx7h025LO/Nx8tIPqiYC83wf67jlqxF5eH7TApJTdHiGIFe37l6lUmH+5mubq35lAjl1W9y7c4rDfMN0a3AVKNtj3HaC39QRVGOpffTzuJKuzTTCalaytKpMR6lQMVSaVeyLm7TFsRDZTwlN3vI4uNYFmqaHH9TFaK5CYU51eKFx5PMApd8iQSgi9agahUq0RiIbMHuPmKQF9RgGjw7iw3Qdx2WZ08TDZQ5vU7Cq7uLGY/mUgJpucusRBty6w3FTgIpd5fi5fBNaQyKerL2KPDEoYOlCWFoTi9xuMo+X8QIGt74qAOVMwOy6l5H0qAOeS1Y5zHWYl0TxqLFh9pYaPiINFxDcb5YWd4j2prohJZcs27/ABGite4joUbLlVlRWpy8EqaAXDXmEUhdkYqGsKCEbB5ojVnIVSkpl+M/eLaFbwbcQi8LLGy2yvGZUTYUXWee8J9o822OFGq+0fICOgcJbAWCq04Tv/cTSLCyzvubhgGmtwks4tAItL7MQXn61MFPBMy6cGVTjxA8S3SUzGA9xV1VRwN1L6aH4gCEjuqjwzycvmaxdUiTaJ4sy9uT04bQMcBUEnttx0ip0MqYD/FMwLzCn2lgx3bptgi2WiZ8lMDBYRAVUUcYp+YoBYszmCVN1oFZuiUuolBscifDECzWhXcennfhMcYVU3BKjBe4B1Ln9XAvN8wIDSxz+gPnZ3EzM4NF9q1l+/mOC4XSugIcY7vvctuMAuXLYbcGubgey2Vb3k3nLR88QIiGUZOKvjtjUT1pGwFemElrUNw39VonZGNEtohG+DxHUqgVArWYrm5gwAVKfg5l0lS5G/NkAp21yLz0+Y4ku7RHSpQssXvxi8mYj899HruIsVpbq116iWfPbU0DsVflgpS55I0p8jfploKVQuyh+FH4Rkl6Ld1h8YlwDWx5iFanXyf0x0c4N8r3+YQ9gOlz/Uv1TFZ6P/fxFKgBd1yf+kqAcLv8scxa4z51/cwpRllyYghArdiO/MK7seDz3NSqwCAlaXTcsRhAaR1/5Eduzlflr7fohAooLP1KBbZ0m/8AsMJd0pfZctUwvIvPEqLYaqr+f5mGjqciBy6jYalhpfmAezNEEli8kK92XKsKHxDRxisywUO6EiZJDFhAspvLRGmqEttMShBckS4c/Oy1+ZniXxdViYFBdzJAKizmkKVqE0+2YGw/u2AKWLo2c/zOkZq1d+46ALWMajDstcylrIrLAcqDWblUQpw1ZgtgLuuI8iFOikuZgbMXFbf2+oKADmgyn5SW0ryrxECm7jqUnI3Jun5xE0AGujAy0WuETa9hK+8yjq4SxEoTpdQBVoGnQYdNO7u5W/lOIhIA5uQBGBlqKGAdm4opQfcEvRNVuyXH7IlFufvta8QxvJTMl1yqpnWsFwECgou03DF5JarIjocALcnco0FAn5bf1ButOE4ODxZVxZQaJ2dP2uIs0pYFBiiY0AytgZq46GCqspCmv3KdPa+yJTnTiLXAyVvDbEWjQucqGAFyKXHcuBONVcEX5N4hWAPuhPcdHP2lrQVdbi0bdgLJkn1/xLfMPP8A6QgF2auBFYHhIi828QhgT3EHJ1Uro9H/AGL2UeajRdb2I3LYDeyQrniqikAaF99NR+Vlxeg8JBty5gXOR2OpiFwJteaa+czMjnKDxZxvmUDyazIK6FHuX7m2Vq7PvXxHC9ybvluot2IEbao/MKOUKoZ+8BjAxfcegq9B47uNRub4B8wxeFiHt6/mE9kmLFjLfz8R2GgOCjXESoOgwGCAFP3pKAVzCNkI3CJrcw5ZZrX1qVbmlIIwyoz3LxXzUhHkM2x4fMtTINMnykfIJxhhUANgXdebhm4PLMi3WQlYVQoePMLMrFZFyjxmqXWfYAEi0UFQ1zR9nbCkKANGpV8/wzczKBDlQKHeKz5l9IYLsPr/AHEvBeAHlv8AgjAPAXvjP/Jaaih6z/f5mcKAaquv4uMrZRScWWfojkqBWTgIW+5NScg6qWtZcg341BbIQrqZxapBDqBdbq7M5E/uoGgIGdrj1qWB293p581FJ1m9S6/FaeomoBWpeI885Yxef/Y4BUF015t+IAEyPk8sbDB+Vf7MSnYDZ1GuckzXglzC3Oo4aywd01q+4lWYlh9wbh0LjmL0P3OQMtJKsoH0TK0u6FxD0VW5aiYA8PyQ0q04Bn+9QlsBby2H3jGmY2XcIZC4HJAH3rGAOW2LqcgBc9+IgTK+WXjfCxQSwrxUeBVxxiKLsJVBb8xS8+TWQ+8Szoa8n7TKh0xgWRJVOm6J+YO1322KxmJvvEvgQooiNYfEQZjN8xI5RinI9Qa1Lcugl6cqgM/xctKyGapIFkD2MvtA4W3Mo0DgPc4NeFn8zM0VfI0QGgl8K445wwFVRErnBEY4qx86im8nbqUoG8W+IoMucQVzDmVasVlQ34iqhZb48TbW8A7lLRdTeA6IZQoF2YLhYUKyyXKvFBQoIdzNCDeOSuOoTBFqNY2EpDWyvGqDX4jM2JhoYof9i4V5hKRWoKCj6daa4hvbYiVN4Kd8wMog/A2V4wwXLkbytPuElmySOdH82fEcSaOeX+t+0p7AchLkAt3pAazyI6qjyFJnKDzXxFNg+C7fDASjHN5jLpGtlkRV3drMx2eFOZUq04s3EjSvvB6BXgZ+0tQ+4MeMLL74eTUEd063AGqeo6tFyn/YLYvu/wDkBW57oSXj5VBvuIFjmEq+o1V2vmENCOFe5gYCLgp7rcCwRQipDQcYMEt2MOiXuechlOmBmD3aH1zCTS53bvo6jA4JRTmoICjgzT3BR/c+eIwHl7gqW5jC/q4iaxDHO4NkVMScQEyohHNf9khBmHH+JTGh2Nb8/wCqK+DapQ7ux+nxCpgswPUIi3locnpiBtWDmoptsTHnPJ4NypG6CKy+AhfdcsbP5WMH9gn8MBOgw3hKTFWF5TZuaNe8NBSYQ0HKlpdEEwI7ObUNnjMRIaocN339paKwLDriCiogM6PXuDhqwH7L+vzKK+G64bZ84PxLgj0tngz9vxDNV7Jer37mUhNPGH/kuU4b46/d/Zhi6mUbKzf5lKC4HK9aPvcbK3eXBMj8kTsKORRvgmuv/ZossNWqF1fNjiv+FMKUMGl+O/UIKVVtDfGWUD4Dd34Is0ByNl64+SO5tE+77hlwVlGmISA8KITTq8EVmx1TiVT1ipRpYtEuVWXUXm2JHFiBeMwygplZvIi8GoVWS/8AfxEoMVV1RFwWvBmyAWFrlhvSusW7+8RJ5bblO8dVo5f5iyBWxe48ovafxLbKr1iAY8HFmpVmHhSRoNqvbkmYpyPIfzEq7OBfiKaUgtRiJrwmg4z/AMh4b6TrMAKSz1dxbL5YTUBF4C0ZMF+p2OaPxA4CmaVXrqDa6zBae5cBtLP9JS1C7vuJpThr9SktG/vN+M3fSKiReUbx+IUpUby6S4uq8oxgcmrB4hmo01REKt9HP4xGlg+Lt/5B4bpuy7+04IvlbJfy3gxAcq7EQpTxzLHKqs3UCJt2UYPmM4QhfXxMioeF0yzTwUZ4hOGxV6eZlqJ+Tba/NxkhkdGdaOF+0zNkRZ3mXyTBXznfMw1gVZhPE1xzQydMxKX0+hyfzLhJklIevtDbbK14sq/eJfBsJWJQo1nzL6S6mzZ3jF5uZswsvG2/xDM1nKj/ALDFAcCoIEB4rUDVcNVLBsGTGoAYDwkEgXqhZ8xDSLssJXUuhK/UHjARiUQd4jvSvDVjCcPRMdS3EOxVvNMeIJQGsZvvMMRuhZ/cAiZzTFDNL5ltlvhmKNsumB4+FpLlQu+UETQc0p/5B2KR0EJasHNhZcB7B/UvuL9vvN4LwpIjPbPDASYvf9wBFc8j+YmCaDdRBDwbWxkAF3WjxLwG2+Yi3n69syYlu4gZ0QIa+Y3WIZZijsUbKmUG3WTiU6oPCsAxhumWZvBu/SuvMqUIWAXuvGeIbIo0XD7jtOXyPSj+44CuhDgUr26N65nP9hSQHJUw5QhcqCTRUbPaqXwYgxCq1Vk5yK0OHlrUZeM4t3IQVZQ9vczZv9ov6T4gAW9KmmuYyC7VzrGK9LURyUDTDjvy54ibktSMWqv1+YWxFZeqtbixr5mZCtrGCn2HHmHVM7Hlj+CAqCaL81fqJBkVVsynTH8IHozKwrg354gnqMr8f+lgUVaqOV1dc8QDsHPQPTxMxj4l0fG6z9yLG1dAGjeIFsFYpZXiFXVkX/DMlAZvC/GjxE6smYMBNUdbzLysp0ysFp3XEqJeXmULvtEUwnEMaGHsluJTvwRcAu8nmI7WwOLlkaJYrnqMZHwamQFyyKJBcbTXxGAK9XdfqNBie1iAWr8wyoszKeLxA2IUZcPqVgYniLf8wKZeh2bH8xWDau/2qUFsEONvUadDW2Y+WK5M3cSYTsNZ+IBtWwWbxbGWq7CCz1mMieWmec8xmYOCz9mIDD0lh6olLi37ZOP4lDl3gESWAF2UVaAPBYLGeY0uQRYCL7iFUB0qYHMVVImwTjRj/aggIbuhCo6UL+5PvBxl2wpMIJwxQsw/8lCFgNOz1+IWim3Cw/n1KmN85xFbU34GUqLXzdTHadhjpUDqKCoXtymHwZUcQy5ralK9/wDIDsB/6wz+JQijsf2aYyl7bxjwjrZUlK1G4druAMmGdktJ3g0L/wBmIrYBUuWH+ZtC+v5D4a/MAYgbMMGvf/ksIqyux1EDWyKncDWuCA1qvxcEhlLXsrZj0tSvAt9kNDb+IMBAg1yvFHXHzHaIcSOcl94SHqgOzP7nlhXJ+GYYnzh+5RCB4U/EVYvrkijdE8KS6sXk1CQCj2MOBp8xnZSxVtoe7uLUVVdkBwV4C43Kuui4Ipx6cV/EVkfYx/EqjSGq3F+C8HMpzva0/MtqzyYfzAbTxhcW6OOxxN1Tgpm0UziUn8wQ2p5IDwPYmofCL+YcaB1Dqs+z/EFoDbm8vxFuw4HK/iYq6yguqfvU0ekDLFxIQHCMA8DUW247v6uImotZYEpvELXcNTIVA6ISxLfiAcEOWo1KERYzyRGWBooYwJZnj86ik7VlYNUlsyc376uQ0acqRs9NO/AHKv6NGY4TC6uiFoMpLPa8R6cwCqLRjmjblNVLfmBTQMnA5K8PMeOPWakteXKreU+Zdag3ayt32ta1xBsWAeSWIPm2pc8zH2Xj7wapcm31n9MSgp8AOYe+DKUgA18lnuUpWCXNDnzxzhiq8gORc2/e/tL+gUMylNnAQSxzFLsYxjmOSCqZFX/cSooo3z5/EUBITaJx+7liSLflIfpfYpWL4OvvD2xwJt7OEi0sHS1cFpf+riNqSJVVUUG2g3XxGXWecxFqicsajxbwxEAGwqL6jkvJRn3BgW1K4qEhssqquoMCbqMRcRdVwMw05da3HIaJdalDb3SMI3jzH5UDg/YrmMlt3z9pWZwaMxYVnw5w/wAywCa1pl1XbFKioelDSaHcuNJXej0bhatvZior7ll0MANKe+kBiVcDjitRYKq8Vv8AMo2hw1GvOWO3McCNfOMygB2K4RutjlUftCOQtz4qIKFQ04vbplBAZ83SftILBHpwTICxVwDfhi68MZp0RaziL5Tx/wCTKE9gPtiW4Fhng7JgxhjlfDeYQ0FKst/tQ0I8E1WqjZsw9GPbLDxt5PuQuZxtdRqcgtKT3KpgrXSn+uWpUJeepjBtU5HB/vcStg4f+w/qLQKWC3r+YJMUPEu1Q8pEFLnvUvCDeoaAOgGLahHOL41+ohsBLClWMhCwrRQL4GmOqe4sX3gW0tNl4yd4jYIvht9zQ0VSvM5HnwJCCAyC1Gms/wAR21ydi9eOYtNbb1G+2+043Kwq/wCaZsfGqVHPdzDKrUpVezXcw+HkAv7ywUnmY7Ky7ehxFJ/ZMOC9oAVdgXYnmPez61A/5CdY+JQL+ZaxTzcxq/VBUDAcm4O9nYEUFeUZfeHZXioFTmDkiPrUUxU6pj5gdrngsQgofWpYre+4Th17iK4FdXxDbdOf/Y1RsdG3wweZTnGvcrK6+aqKJx63CLV6EwfExdL7IYrLtmAVfc0+CBNso+ubmNndEutUD9FTcRviGo8Yw3DY5eGI0zUz7Xd4iq24XiUIAFOMmY0vO8jG69gfaV1qj0PxANEEEqy5v3BY5YWAVUeh+8xTr5wvPZc0UZ1zEuEFcXQsU9oB46IK01IWJlsENWYN7Uo9azn4AJ8ckJZXBVqqq0av4ud/RkBV6VjPOZZAXLXixdeCokN3oa1mNwuZlZbWX4zLChK9Nl/hHMUUl6bGxD7V6mldUzaAUe/xEAQulvBbfmuY6Rujez1zl+0wUVoQKvSnEqUdQeOmDEQLRXV5IiUhUaDBUEspvLygPB6neCsUB3ctgzryA+KJj6TO3z4jbbxdGUGLkPk9xUZPBdYhJ0zyzzAAd3iHcrTZEaAjCVcKVDrj/wA+8K3WlfEaHR1qfiNrCqVFBrUd9EAu8fiN0jNOE+JnsAaPvBBooC+3eP6hT3VWB95SwKbyMazXNT+SOuQWUf8AsEUnmLst3lbqKaIrd5mEEN6ICjDLzSUBRfFg56lDiFsbP9cNg1BW+s5Pcr5mTQvGWNIs77erIqBfsj5iguHslFzziF4F8LvJxndRZ8Cbc3McRQ5FfAkBNt0xyi1AeAXvMxnHzi/3CxwGnPFxW12A2CZsuFrki0MGDDHubZhnl8wbCJhX/cqBd22cP/IZAUPMQW2XCTBlhSiOfNwKVdypsYZLzDaEmt8GiN2VE4SEyXK3RKrRHZSsXdQVBXXWIBAKhxLFRuGn+SV99rB/qCW523CubFxopGqp87fvEHBeQff+zC0oOsPzR0gEzcX93CjU0TUQDzZjaEe9sLNMobvdcoJG7DxARZmyABRe4nkKc8TPjPhubVPuyw0eBEdvWHIE7qDkHzMhhnceKiavUW5FcmZMtHbcRdZieJjQftc4rHEuZwvFzIKrq4LZ6DEwmi624jMpa71g8wu0q6tvU/vCIX7JiiLbHswy7a+HEo5V05PxKApjcoqpcqUD5QXQeoViBRK6DUzzco+haUTBj2WdwpWMfXjNYZLNSDm1cuhUOau5Wd6OHMK7cTCzV+IUHkbpiVEKxuqiza8lUV1sYhsvP4uVXKkq11FiYwxa0v5qMgMGx5fYPmjicGVdoqrLYrAhjo6jeb2xMJhPaP4ixAUilZq7P9xLmQJc72fj8y2zbqU4C/YCAQEtMJvKfOvEwRW675YxGEDKDqlMP93DuLeg4Lz8SlFrax+Nc4lFBlHiHGL8/iIETShWENX+IUCLY2NH4ZVsfBq/BOeY+bAhWuP+zFC9G8PhlgNgLwffQXM8mw2ZaidRbqvJAHIFht/5C45gZYg4wrOw7ljAMqldq86guXWgg3wBkrtIVqpFHgzAK4pbxAu6I0cnH4/ibg5A/Mb61UN3JyzabGs8wRpRRFReOO31C5mcP+Z44qQ90TOjLTU+KubAFzsJfPxHdNx/JIt2y3BioQupd+JoRbtzcqoR2AvD7hChfgHHUrJSK1Wb1KSlJvgDmKBJZdUmJSAiK3dcQo1GcnPZEKA16NdRrKrqH8Y/EfTKszgVf4QfcV3W/I2RRVCO6XX4hmUt6ME/JGqC6uC8FfH3lCyDe7x8sG9mvKF/r8zSIxWk+3mKWId3O6+849GsogBtFMqo6YpVW7ssxh17g8ZAZ3+fMKlMdhquolkafkVqGugBylODnDBtU601n57jVk88qgAYjjK2Map7j+EyBQC7HcWM29yoXM6L/ECcinYQbOPxmVUWrhuxncDrdoqpTI40j4Nv2PcFqo5AA/Df3QJoegEBoFfmiXZRYe7g1tjpj4YJrJN0W/UQmQe/5CEU3xs+zBu+9OfxHVbe5zi7zAPT6zAKtAYIGBOzMoMLd4laXByyzWbsHcLUT6ZbfcCAX8MwksvIwQ4x5BE3NfnH4YWAAvtT+IlmFQEcplVZx5mjR4WoixPTWITA+FT2PmKrHojOJxOrsUxAJ6bnR56h8HxDo52UGonix3EZF4E1X9VTcsa+gsNtQSrxArGbijpuYHzLQKmyO0Fs5GGWYlGZRNUWgcGWJ1bAMN8/xAcsIYMtL3jHuEsQTx6/FQhLtwRYZ/LGtUBdl4uB0DF8NQQgRbMLtpTxn+5XKBcJaKpjaxKgUqKmQENZTL3xAioMtWcUJi6MJnOI3EAQUq079+oqSxd9uqrbFlyClqFDnEAcw0Yr4/7AMDOYpq0PkjtC0bc/EbNrZYBfuzx9phDox/49SnkcMhePtKbIpVliuK66ldksUOz2QEVX4BkdQowNKGwOpYfBX159RTUl3djCNE3gcytJB8LEF1dh0KHuCHsmctzjTYXi6Ndc/aFHALltY4sVVeVEbhJaA3xAHa1h8y5psa8EHhnm+4M1SrZ5jAtGMDy9zKWqZtogm5y6e2Mk5dFVDiyOLHBUtZ2RAauYZRpsvYufzCQN2Vs91mUjBqh+YsmTp+39SyYD3wvzLkpxyBD4h2QLrD/fEc9s2KP2GULYHBh9dxdlmX4fmW60KG2moEBo1ah9rJbiwu3XyShZ1HB/ci7YO6zn0PEVUCw5nZqEzSN0v4IgdoYsYpwY8xhVjSGzqAJyXY2JzFTcMa29wMD7hY+/EChbZrB559Qhq94LO9GYOVgovn3AusG6NB6jhIJsxg9eotYRousnYQ+RiM0/isxACu9pPy7iE1CFj7oAgUqC3AnYWRVPnYsI15wpTTEERQLwYPXUZoXXKtMoClmqIqFqjIzrFxcEtolPQzBaXBwfYNPlfUCZcTn4Oj4A8TvB7Qw5KOiqlcgNczHQScAfJUJdVZ0RdUXw7lebPYr8ku2T9n5hrHHFH41+JSMLxUvyY/EDqHs/EdqX2I/Zgo2HxDqYgsSx9xt38KuOts+apiDTSe56h0MAyh9k7EfFTafAyzh+8bRrYPli20/TLYpRkymQiJ6sz8Sh2Rzr9RZwjospLEfvMZQdoXALmkl2cnsIBo/BBhW5XkGzKpQU8Eay1e9RZWff9x23ohXAV5JbVL2YBtPioLnieWYcwrp+WAG7V4gohmYL8x1HBqYIXMqSjP0ty3Hb9oE2g+T4jxNqZJ8cwuycYNq8QbSo0XtgHjcpxCy+wG/3FZA8Vk9x2BfkMvgaucf+rAaFbpHEOINc3/WJeX0zm6dRiVTvjAQ/1CRFPWokt4Fcc/uDwKlLiGltNVbUQBa8HJz1MQNHVq5zk9feA0KIKYa8S/VJ4xr7zjCc5OE2e/1GXs9MXvRwBJdKpmkcezL8u1kxa/T8TgrXI6ZtVbg5FfeIiLandpT/ABBbSMrqEamyrbp8ykiwNg/qBlAcNbhSYuETEsIL3zADHXq3jECreJPt3Eumlnw8QXzasYsUzMjwkQcM5ArZcdtNGCWI8muYFFbx4gKqDDaMN2YoxBWq3TqjhiGzUYNGeu8R7Ohhmnq7I2iJtYH2mo3QXui/FyjIaOE33BAJDpZ95drbFtr3/UxQEFt/HnmXiUHeEUedO7PMauJvTlJs5RoWAlkS4AN/jmaOAtHf+zF3AAwYgv3hQ1ro7517r+4SHLkM5vqNxZMlF48lw2VBQnNaePMWAJalU6uKoXRiyLUq/lwkqNtM8k1HUXtZGoIWUFbSvmam1ZL2P9cEqo4Vl9FcQ2mRbVRrmv8AcwqFNL2AuuYJDW7B7mcFYunHoYqBv3xHAMumYxW29yyU3xKXB/J+o2bau6hWWe4+Vtto+XR8pEG0VQ2/L/gPbCNVXsNr5eYuNp5ImxuviICJfa3BpoPjmCLGa4gxzQ5zcvYuXaSj08hLlcnuWLvPuAkpp5gzoEaZH3JZ3AFNF4q5bKODIfzUsUZHQY+SosgKj/v/AHCqZOCqW9dQ548ZjRQZ6qAODMfGx1Ghbh0mohPwOIL0+Z0p0o1DACq6lXE3nGoXULdsobs+LJhs3WpdwgdDKH5B5lLCN1zK1B+f3BQy+Kly70p7JS0VKqidZNzSFPjMYADpgsunxFhn7EbqUPG4Kac9xRYkshdtiMv0YIXaLPVXGVKLxBKbWiuyo+Ki0Q7sSoPqK0xEAvOpVrlyTgjd+iaOPmbDtZNao95gjspzHTHVuY61tryRyJeNsLrp9XMGqfWSWWhGLpbhpORWql+0J3gly3Ss4mERH0H8BMK21kV+GDihoaZ/ED2RN7v9V+Zb3fFDGYJ8ifbiA0k7riGIo+N1+IFkKu4YdQd2WH9xrfk2iW5l0IXegfxKMN8nN/yQLBIFLq+H3LkDw/ngsDd1m+zDktNLyGI60pyLFXWMx0xvK2fZKqF0o4D5lDSb3aVfmVhpw4wv3lcsHJX4e4RyWhzr8S90zC93kYpxUbsXXUwFrQb34+0IQtoSAr58PcVYtWoPcCcDjeoU8HTyykGhz1TKRscIqqzGtsQrux+Nw3gVVRXgnoiepSJWnERuLpjPcvyboQGfRLE1F2u33uWbTLVpvxAS7N7LReL7DPygMEYpz88TTS9WhEmbO4Wqsx4y5lDpN0zXZT6/MdR7q7E6GW31U1dktXGE/EEKTJdfZvV4gWk07Ge8RGqSMJZn5jckpw2r3HVLWB8tRZi7gi/uVmsbtduJYlX03/5LuXywzFHEFtCw+zcIKVlKbCd4lylnOP0y5WwTq6vOLlC0Ba0sMc3BmhlbC/NUdxUlaGqJfySxpZ5hUTtF9he6LlWCbggshPKVsC5X8t38X/EQnnaqPvNvz9pSCBoFVA4ufMzRaJBNB3e4jnrpANh6pLNIfZKtDXct0NL+YcX7lJwTpgedvxEDQRMFU91Kx/MtwwsAZsKZhB0VSTYtRQyWI7LWvMVG2uioOQwaZXlJyUiKTwT+c/asj7Qsr2QY+5cDEzYliA3UXmpXF/ZmBxK9k4jfqazY9TCq3xAW/RcQdgPggtBeiAmFnf8AiCaq9lxZzV5i5mz735nkjzkfiXGLB5el7lOjHmWolo6hVdMrAozcj3mV4X+4g9PuK0vD3EfI6lILfmGzD4T+Yw4dquLFmeI5FOGM7gjEXFmY+MREPobJVT+bI0pKvylWwuTMWyABUd6YS5Y+iQv0/iUyu1q1MzTndGv94jjo+UjbovN0/uNCFXCYQgNgN9Xk/EtCKjeW/vM9Fr1/2KVoeDCRk7yRwDE5cwaBrmyOI19xfmNs9nZdTNgXak/cdXHLE/mZFdbpmfhgVBHLc/cqlb+DERSzux9yPA6La/E2rfD+oFw3Y2r8QwE99Yl/W6xm4hUrOI8aolISJTAwaSmvECQdBT/cyaK/hgOH9L+mI26TnP6itVOnh5P5hgigzyJzDDF3hWvyyf0w8RAsbxVwtJoWPQNT9/8AJULGRfQ1UMFbuh/EdiFXpsKlLLmNc0sBFZlRyG45jD+S3+4KakWb3WNdw0EpbdJG3a7SvwagXABqlvob+YlqGy70FdEvq2t1mr7Y1soGtkUlv4Qdu6yiiXAe7qhx5machGix4nnQrwPv+oqIHNwUfdmBZJVulYSZ2h2DebjdSOlCFW9kwcWUpcjE0ALV2teY2QW4PEBPDv29xuoRizhluVdCoT/3zCBSCon4qu4sNqcApTEI5Mc0qMWy5yzAAZq+UqUc+AH+oxYCC7o35IXf2GG/99pUeggyr4ZbAHgdX6iRq4MZ/J+amQDvnT1wgzRfyilX5IDS2uopzWIkDSsTW/mbgAYeCKoDiLc0e0U1W8QdBfncw7PjiNFEMQFunzBHTcwbxE8Zlgn/AIlTSnqduH5gFrwY1F7dMqmsGGY0/Qs1KuNNh7ggpK9PtKKiDNXf7jmYetn+JWKnJVn4lQ8Is/aLNY+SGRc11G8OPcqXVjxDAxc5l+LD1K3Hj2lDK4nNslGgnWv88xOr2XUoGQb5uoNlHFXcUay9kxNKfiW/wwOw14GFdPyIjweBDXaIJ0Y7FfErIRrFEQLzzqLzU3yzQw/KDqhfMCMB4nH6LUslyqxHsdxAo5N8Sg1gHojUx3HNZH9ktK9aaf8AyMYO3N4jt/Bf7mFcDkysENPeXmMVHog396Yh82rOuPVS9X6P9EI5ExhaxMzC9op+8wRs9H3IAZHgf7iAg0chZL9tUdNMC22AKOTgAbL9i5QLe+whuSno/LcztroJR+Y9t6tGv1L9gcgwxThutjFuKL5fZiUkFcX/AMiLYIl87nhV2m4iio9lxSizpLZmR5tfzBL8o/nzGticjLH0DsswE9QvMDHmKgUer/iJ0m7Yq3rx4hjr2A0XONnNynPzAst6C9N7jtrFXw/9liXK79VmU4waJpellCrm0urjDbogm8ZP1+Yi0AeLXdRHfZyn4gvd2rHK8MamwMm/eoWlW2yn1kgIgm8s/slL0C+X2iBMehH7kcSW9BxBuaW0ByxcYCy6I6OiDyEVUFj3ko+yljIMEAZPu7gwKDNc/PMcpVLOGPmPADtwtFkOoY1wiyrGfIIGILsr+8wlwugCj1Bh41AvuYBaGQZWUBZlQmTu05WYFaH3Eyy4TD/suGDRFPz3Lx3C84/qKUMVgI7+3MbLqwKeg/cWGj2f04IJ17JY+f6gBlb9QaxEc7iFu/iVrdH3ger81AG6i9G/UH2lOy/Uz8w3SKrZKnEIHCi3MJaKvDHtDwRZuj2iNyD1B7DxmNaV8sQm8QC1JE8x5MQ4uC6UpVQSNYdVxLgpXD1AJUsU3uu2cTyVKOP3gLbcSq2+kiVrmKWPmoO2+Fj7woVY6J+pVvyGn8hhcLnTp954pPvDOGj1crzazwIwuYP1K+F8XKGk3qFA5cYGCsqn5hnw3Gu4ptn5OItNUeJYzgeZd057jsNnhmUHxqC3Z5uaJZ0yoav1C2bv3H4/Qhqw+YV5eLgOyjzFwKMVVGnOJbFDcDq4yoR9zFXgbdRaq9qxHbJWonAm0mXxcXOQpNxCKw5gmsXkSoq+oEEL96iEihhQ+8aVKYxo/qXGiDTtlQ06FOpgKGrwL77lujfusfMcNj5D+oZQ+OftNhPGSrmUA7aE+0BdPYSsTGS06zD6+Q4iwGx3ZZNBNjm+IDBH2MdCj1zacNPwQR7OUugLcBHAMvDGlShxeZ2TwgW/aS2zQ54L6h0D3C5XJ2ha5DLwgywXFt8wTBtbqF0V06+eoVWs7e13TGtJNjv4lRwCrvbKCEVv5hOKcqfiUOMaGuE3FFkJ/SfuDViuEaK6y/GIZG3X7/3iUgt/KvUpB5HMfmBID3hT9ovd2DJc/MzSNKoo43CAFNYuPuTDCpqrlAoDhSWnFwAtRrKJUwrrhm1avbg400XCnuVNJ1VpIdF5tKNw6qDs/bM1gmlDiLY4JFiSlw3gsl/DyMfEvrrqxjZG2rkB5I2Fs3RT8Sxtozca5BiUVX3m0SzJ7+YGBZY1sxGgrDksaPV9ygDSuEqNxZbBl9vMKXZ5QVmiRlpW4YAKu43Vcx4uYtrYjWGoUGviU43Gp0xlTJAFlj1EVwPUC7Mw9LXdRBTJxcTEy6iRkEu4OKbcle+IigD5DK9p4VHtJy2nKMwR4fcStivp6eF5ZWsHmo5uiOA5iIBGlSjT8qR8tuGVpx8PvL9BHOsRWXYdLFWfsWTLB7Rml7xFvZdH9MN8gVas/UTH7CoGWAepUAaOtxewXySsunpRLSjzuYQjAdKPCRCW6iGBhwEVXFPcXg0eopNn3AQv4RNawnbE4Bjyy2+DML6PvOVAZawa7gbt+IACKlGYxluYY5lzDiauh4ita+SLg/tAzQHqZorYrDKtBUofT3LTvyuIdZA5vcyysu/0+0KqG7BJfA0swgZJDRTKWAGHIagEtvin0xwOfLBQZhCp2W/xFhmnKr8RwCiyVn/faA2C91fmbUT6y0ADPJBCtVcf+Yeq/AYgyrvcEyjnh/UdkPdLPwypdNdtfsgdx3WEf1H1lPIlQbbacZln70mkYb1KACb6SWjpeBlXh1cf6iLQGHqpnWdbuGZasxOMzgxcQniWFWckJit5u5hRcsAdkTGbiyuhR1hIBghn+Io+L6rz9ol5VWWbKE/mPwT2Y6uG9mP0s/n/AHMBstaDzMvO0eRzcLFC7CXKOlpqxqMAg5cBCCKlnBHbAg1yq8/JEotOFcfaYJi+YY9bobI6+H7IRkD1mJFFSZvP/JiEXSDv4mEuN7zLRoMUQr9Q2FWMSUAHetHjFSgA7TCIBChd1ZMDmkFK2F/un7Rc4o55hFUsXv8A3MRne1wT5mldGq3fmYDdtAfnULYdAqESoqqvP7mcY7SCS4OXmCOaeoRCjIpW00niFnC/aNyl+Y41WZdAqvMv5eJ2EWtkcwwmFsNbJWRVHBK4D8EpFV5tcs8HyTApVfeYAIOuYYPrQwvDhTK2P6RI1l7IxyPGpsqR8VM16riNvv1FRaXKVaJG7Ra6NxAo+9zJUbBlqPaZBKooNeKuG1zn6NXncTTiJW/xL7oI+r0hqccxa0H5qX2Nsxa6/GJkW+0AM2PaoJ2Xkf1KwlF4Ze29DL7kHLAaI3ionszuuYoOahc5wfqBhrn8xf8AVKzuL8R279Tk76YDoDtMbP4godsoynH0Sb5nAdcxZhCbuBU9hf1KRMcDzEMuKu/zLsJ4VxMqiwrFpZUbLpz7lpTV93NgULqyDzFvGSpQtplRZNZC5uqhasHOSGurHKCFAVyTF20RzFhTXiBDQ31AilROyxiVYx2Kj354p/FRurXjH9MbOH5P8MaNJ63+JapB8alAoHwqbAvIJaXQ56guhhVjMyBRWqUjDa5uwZshPAkpQKdn/ESlG1qi0GbqzV3G3V8CMFvI7bKiWHftl8wOlMS4LHq4UQB5JZEg74/MWAupin9TX0K1V7iijbQSl4uks06T8QaKU2eZf3NX/ZBMR68Ahqy/yoFJPkThfEJYw2i+b/mBKpu4V1vVOvcBXa9nLdQlgJlmjqXODKwy/aYoUKUw61BLG0FgoqH2XXQgsIq+t3aMvbWr+1rWoMGNVUoQY4vO4oNN2xYp+nMTZLWmmYVV45hdBaRViM31XoWuYNiKtUD3uKwFM9nrrbqXawTYqL86lxhTDaIB2j/sz0grdYf6iydh8ql6WWrf+Stys7zUMDdStVCQGlJcqKHRE8vctLx3UDqzzOQIX2YgWicNXqesQcQrxcCxp7lFjbkSG3I6YZQc9CGC2+WKLqKAMj4xMFWV5lDFAw5xluJqsQLQ5h9qAre/cDA37xbEGUbbYb4eyLFY+ZXNupcy5gDvmD/pCwSEBi7OaYItq7uAFMMF/gg5dfUoUKvgjz2eyeS/UcuPkx5Sa1jfiIgo5v5iDIvhljlHeSZVoecIaH5ELPxAk56Wv3BBbSt1BJh6SqmgNJ4YrSJ0NS43kr8znVgroIgcITkNQt5TV3MgufEQ4lqxLcTeNPEpLN08Q8wWpeecbJkAlKcnuNz5GGyLyO6iCjiDylmLsvNN0wwMnioMDScLud4i8OWMYqOgjWoIGxLXoWgktwlnZgPiYVQd3dxk4EqrTMoACHI3MtfeSnQfMSLopsSIODPTFQqt/MxwV9zCQjrVT+8BjKNfCL9oRcWtl8kGmnjMs4pu03rmEQNiGKsu2LDl9xeLK9kqwGLu0YtYGtNzlq94ggC0OLubbTuFA8jEsFkuC83EFwsz4P8Av4nHU/BNuw4ezuFsvFtxFISxjmrw+IOq3KcJ6iINmW1efiLmAbxgLxMqEaqJ2/mAUAbHnohSoLwiORd9wQsIhBsPOYiBO7x8ysbE6CjLOxc2WxmAyZ0KYlCoYEwnuBMZPgRJjKPIuFRThbuIVUoVTYwCs+OY51QoQkfax9pUDIVq6jkI7Or+CJETCqqmZwIdVCiW5M8Msi3DCly2lY4vKFhbjSE4hTqGjglDuvUqzhfUAF0l4CUz4sMqjgdzI2Qp4jXLUS48NhPuQEF3CuIQZDfSpQqyHZECxdpLgZCxa2QoaGrrfxcK/oVeS+YLRqNtD/oirBACY3YLj2tuoZVh9QfvDNQrgKdcSlBr1MpeV3pVFPInC+wjdSvtL1cYA7ToE+JdbH3BF4z3SBmSVgDuF4dM0EIe6Ww9E1ivH02sPhixpx+8AWD8JbWiPc0o8Vb9yxHx1vxB3RelGkDhQRlVTiCdX8MS6HzuA0Jfm5SmjzFKWJ4gUzO0L4h4zMDowzEOiPQfmZUN8o5bFwWmnbxE+y9kBUw4Bdx2qD4dRAti6GMsSWNWit4h8DpKW7bhtlvBemFS7mo1A+pivwv/AGKaqsckRFJWRaZTvLuFUBXTmIcg+XVSlY3cCNnymIKDAAkBui4DZf4gNG/dH/Zor2hI4ZOsWWPxCFN/9xKKBfmqlS2jqVufDVQUaD7osoS9nMMdbdLLtfj+kvdAvpQOGT5NREAMAWoaG19xTh9pg5PR/iVJkXh/UAuDTV8IMrQw/wDEyTBZab8x6Ck0Xf0xNOmGWmcs0RtbpPJZ8xmAVHdu76f4j2nA9x9gHXfcIoFONErZrAmf9hggtGQf+wu8AVZh94caUxlcxhxg6c+oMUMhwo4RcsCuRQJmdh2KoGW3TGxKfFVAh0O4w2m9Y9xeWNJFtSy9puPJWcDiEMj5P5g3P00QCcnqACw+R/tKDQHnUUaa9RIrC9cR0UQbTD9RX3lFnxKqzMAlMDcqiMpmVWWY0vR4gFhb8w1DtklEA1cBdS0bz6hL1MiuHuK/PmJ234lgrnuWlNppT0cESe42uBiIto+lVKO5bCgORIJVlKJyeYPAfMA2q7iuFPEd1+YNjiPVavDNRvuXUW4iNUOpi2ftOzk4YLbq/abBHTEnxeGUgAHBo8wVLj3mPfkzcRCvRzDQ+yCat7mHzNPEKXCjuKN38yqoHhXiXwUMt5mMwXpMMOc28Xj7R5Te7KhBQXkZa+1eYJkHLDKjKHqYqcPzCUKSAFeRAF8cEWkt1iWDbK0HMVD+oZd6rmO11e6j2EUxFG+ay5grjok0pBMJYao3ATNCzjiOatnkihrBKJ9oC1S5p3OYW8kNDODqXOAxlGKFlvQlHIPKqXSz3wtkAqHw1KVMs4YfJFdMFyHpJTFl/qYFkc7ibJjlUc2RNtXdQbHycypZvI6hG6pzhIGlU4OZgCeqgZwDFxwVTex/2LtZS84BNyaOSyAGQdf0YscV7Kr5gNK/HIwitnxK8D6ZiI49wqxUtOAaYQTdLzdx3BbQ7isLHjiUY6VefEt0zDSlijGzP3g1E0AfTxuUs4pP7V7l/E4Fqx4gsheGkw2ndVAqIF7Q918VHuByh/cO5DopXiEqVypwmCmsdP25hvhzRS7UfAfmCICshePzDIL1XjG9jp/5r9y4UDjI/Ex7tjJUNlfC4gA4T5mFdeqgipSdse4YXp/UEXzicC49Q1wLN2a0JEyiIcMUV/sf3HpBYdktaGW2KqBTxCNSJzfDCrG44VA1anYVCu1rxK6sdLzLT3lkHj8wBOU2cVNQ2e51oAwstpuyWNbihtzKeXkxAMRsfaSmoV3AJWZXZTLrOceINtx7j1PseZUwB1zGRQroYK13zayyCPlWI4UTjMJxs5iWvzDCu+iJNxFWOJYXKmXzMbKJUrDyC42ar8Q4DnaBRpkalmI5b0OIMDXq7hUoodS1VVQCpHqFMryEHMXIAq7i3lXk4jvmO2MuK3jqCVXDkiKwunEs6D6ixAWoBlDyJfybbVXEKUdWH3gxdpyvP2htC+imZwlXmncAIGJQmEgGnmKrAhxGcJdEwM2hX5hWpK+z4iZU7o1csxAcTJAIXH5N/iUNhN1BDl0GEnNeJlv3K4gtQ+KjKq3+4mcJ0vUGVmw3KhSvcEHlyMSgNThnKCpQanhsl1ZuaJTop43LOg2F0qv5hAFw8z3EWoHSTayk4tqIMTMWqY9RByHTKnL5VQF9jbgYv1VMsuNCRSgpmACAOIxhnCMGRVwxBhXY1KJsHNblhoB5rUuFJ6rMcrMORlowO5cS1sKLMa01PyErUSGz2AwwMcKyQ0Yw2y+LXH9GAjUwIesDUHKXhaOfmNQqUFPxj8Sur6Uu4ZBBqAR83ChRVdWZv/alwos3l/5AVaQLQAox8xkVNKIxAPTZdXCBbkrfuFYB4ZUgVWb3GcjxLKRXxcRVo6yRs2e1wt2j0HU3NnwxRDk00+XmB2gcMVF2+C38xxaMvMpTC6pTEX7vu49gqc3QvUsifaZgcNJBEVVzLNXfRChk+YcU2PEQXq46UJbpqNRe4BLZwlzGXXxMIrUCgFQD5hFpA8x8I7gBThFVF7DEAMBjgO4wctQVzPNBcwUZ+JwVQIlHykOkgI5dkcNBTpmFZeI1Uh1UA0g7CBaZTioIYVhHEDJHrMEqx955JSY+83TiJam2Xt6Ig5T7zAUTUlGVJ7g8D9rlwrco2PSoW2qeY9BhCyW8RamHkg2whoBPSgg2bu1Tji4j3rbxNmJrxG6BTDDqCnXyTloeJbPtoF+k4NSrMsGrlp2MeYb0XETdxkDRqINQT7JsfO9x7y1yzMjhYDyGUyYTeYVKv4q8QTZMZ17hABKaxkmQ0Lpu5ZB7TbEwtK5aIbqiq5EE4NZQVkHuAym7zcdpZ+YdxdyoMBi0aQGcjuDNqaxV8x1hR8Jde9RUynzlPYPqZTO5nKX2gYVWIbNSHMMrTx1Ki8KiKVlg7fDmVGn2iGkfcSyy3xVXCrnAaJSZzAAYT8z2mJdVZvmNkfE1DkHxBQg34LjcUzNrQu6iBwmqCwjog741B1BrmN2a9x9+HBiTSuyLWqnGUjDdrrSVvl70in4E2Ql9cfkhbcWcKOsD51NYDimkqninW4YwDykEWcHUwqL7gW2OeqlcGeuppE+IZsLriVdFXpXEzFHB5iUtb2A0/aAxRfN7iNvXGUQXwu2OlrTuOCQu1gi2vBDHYxqgX9ollB5JgWBykeQB6mSC2cRb0+msll+cSwmoTfiHM0yrsNzkT4lKzC9Rnh7ZiTlTxxLOAHgqfJco4/MGq6b1EvL3AK2lu/2j4DFFkD5J2vtgKtliUFkwOgPUaileE4itxc/Ahq2KrDExIeXM3cocMLcg/iCcK6hC+Jf3+IWZagXWZzjSBdwAKcxLrBFm60xTO3MSaqOwtTmKqmGXwXeiAha3OJRwrzGVkeonkPpG2S9RHI+Z0WeWXQLw/jM8duY69mobHQQzRsmFOoTbFUl3HNZApzLLatiMEbYxG8bgtuwLqBJsXAxXU588w5WV5zLFivhhKWD7ldDLxcFAAwrkilUCVvhEMWzioAQQepVCK/vHUI6W4B2b4mJiFZTcdmnqO4gHB9YgVJDaHPXcfIlnTFbjOmosVTGoYn8zcpdJEmkDJYGVBiory4WCVwNMsmwbSYB1Wps6hVWuQ4lgLGFqnUWMj73ODPzL+fU/E1jkpg7VdxHZUoFH7krLC92QEiWO9x9cPvHzjH4QwFZ8w1kF5JU3fhILmcXUcUxCngtyXkn7kIUJfiCzTiSVMWTNRRwfUwLawkwF7wma22qzB0Uv3icAx5iah4Rj4EPD8QbDi4NhfDKDBelM8PuItYxxiYKFXd3EDhpxN9euZQraTIxzsPgy7pPFS2Vp2McBYTTLfMG5OjK68N1cbGZ2S3h6XMseY25g6y+xK1eZW0pyzPnKAFy+mWYfKTcur4huzcuJuETpT1HZz7hu8NwRygosS0ynpmkR6ZRbEPDBK+65RjvzKLR35+JjsjqMNPJFQeBgy4x5wQSxPvKUiXAMuIksHtFC1HsjkqF4GW6T3AcYJfsGDyQ7MGhqKJsGHU+E9YhfPUrUBLzEJTkmRaa4ZZavxKTgbrmABiiU9V6hI139RpuDeGJmwwwhONzVbch4JZqhR9JYmKKSy4f0QYq5T1AVEYYZ3sLzDnL0cwq5VbzCgottsozy97iA0P8AMwLB7l0K7MMn3DcqRjGfUelA4uXCGhJmDqKyqwjzKQormVwWeIuhCXQY5GcZbyxNXPEpJR8wc4lG/qWjNX8Q8lr+GFwPHEqgVnub5Ki8LhrJA9A8x2H5NkxsKcm2GqcuHn3BUKPBiNwtFznWsgADN95jLC6xjEzQp4j2IF3LLZK2RTuBw09J9AmWLNvcAzZOKyhsCzIHU1gLglbFp0MfFCPvDbwsVTfiI7D0OKIJzTVUr+pEUrueJSY6NXmHKCDFkwop4II2/apaLhOYlwB9TkeRUyat81iB4o6sal9Fr5Y/g3BwHD2S+7Mwgb6PCZAsokg7cXKTj8wLSvUXJ4qAtfaAEcRKWGptD7QNY56uN3C9MWurxE8b8R2GmoFAfSMMuXuOGl7l57b+IbFFLOZaDj4iUyDxuG0afMpZxT1EmxeuphlMeIGhYHMPzEuyUkqXDL7zbV9CFs4PnEBMuV4a4dygBvUwMNWV7Q4g35lgmjLwz8RIuAUWZiXIK8XBBfsjKuyCrxcEbPvKCka7qZRxEtxLk7iCmx0xacHKBuUD3AKxXh5gVF0N6gq1NgYGIC+YoUM8xWWPcA0UTNrMuAqNcwAY1LgCqlLp3LGYFOpw/mYiZal0dFWdQRIUynMpgMRpUdO5UHxsnqL+0D8RCbC2mEilAXmA23W1r9wvGYcvmNvbFYLAI1edorUGOPMX2Q0WEfY9DmBr+JC9gLXiXhEbZDTMUp3SGxWaglyhySwspsEeN3phDMjiClQfJFbUe5hXfwjjSk3d5lAX8FicKHkqNmPLiBFbYziUusPiWA14gOKqcwgz9ExmL8ypoBHd0yaiQ0XAKRV7lyTlEgWpOWFa14rGTb8rjevqqRrFXoIRWezV2ThAfqbVNRgvPUws3niICAJ6jCEa44gmD5lagV9kzwW9YhbF6uIgfMXA2Qp6nuFVM5ivMwP3CDMC0KB/EqrgdXtjbwviO3n+YqVoe8XMP5Ez+phF84l4MEqYJbNhI/uPIa7Jrsna5iss63E1NEcrjpJeB8AxKVC/9qNSVzibalbzfzP/xAAvEQACAgEEAQMFAAIDAAMBAQAAAQIRMQMQEiEgBBMwIjJAQVEFUBQzYUJScRWB/9oACAECAQE/APFS4fUaul7v1HrfT0rJaRLTnFfQS1dfRd/0j/kdSD+s0/8AJRku8nr9XW9RNxWDS/w2pzuWDQ/x0dFXEnDjHmaa918hx49HOtZHpXcEx58fSnqcksEciz8Ms7SztHIsb6Rp7amd3ghgljwkSJbQwLA8iwahp5NTBPG7weoyPAsjxsskckc7av62j87wLI8Cz4yI7vPgseTx4LPh6jBPPxLHwLJ7yPfR71H/ACWf8lj9S6H6htUOakqkT9Fp6n1RNSHt9MnBaio9R6W5Hp/8fynyl1R6ya0dXgv2eg9HPWfP9C9Ho0ujV/x+jqR4tH/8Ph9Wm+jV/wAdq8Mmt/j9dTSPQxenoKMsix4+i/7GepySwRyLPwyySyRwSyR+4QsCNLdjfW1EV2Sx4SJEiJHI3vLJp5NTfT6Hg9TnyjnaJqd0R/AeNln4nndY82LI8bLPh6jBPO0PCWdo4L+BZ+FZLNbT9yNGqp6bdro9Olralv8AR6/1Pst8cnpYS9b6hKSND069PBQXi4J9ntoapn63WT0vWq2z1Xd0SwRyLPwyySyRwSyR+7ZbaS3lh7LJa2ljatpEiQiOChY2m1Rp5Huu8ba//ZLd4FnaOf8AVNrdZ8JHqGqRLtlMj4SXZTI4GuxNJeayWvhjnaUIzVTNX0UIu9L95PWf4/Xerbwf4r/GrSlybGqJZ8Xna14aLt0a6cV2SwRyLPiusj3lkkm2RwSyRyLG+lvLD3jnaWCOSTvaRLeGNqZJMeRdj6yU9tLb1H/Y3u8CztHP+rplMS78fVYE6bLRd/A07F8HtofWfKiORKymtnGMvuVijGP2rZrxaefL0/06nZ637UPBFOxZ3oiS2TGPO7Tsj9wsb6KbwWi0Sap7xztLtFNbyJMtEWhdbRfVE8DyaeSfeC0UzT6yNqj1LV7vAltHP+ntbr4PUu10OLKoi0hOy0i72tHJfHTJ94Ke9MWSTVEf6RdEmn5PJT3n9vlBrkj1ncEYLTFnaOSQnQ+8FMp7SyWkXey+9ixv6UplMadMtbRzs3RJprduyasfWSGR7RdPsm08DyQ6dse1opjTpmv27XlHPw038+C0XfyWinvTLXk8GsyUkP6sDVEMEskWkhOxp3ssfF7haG1shvobrtlqfSF0vO6H2Jqh52l9vlBVJHqmnpolgjkWdk6H3gpiVbtWSVMlkjjZNc2Rxv6XeX2sWdl0zkiTTWzdDd7SJRbaZFd2XYk2VW0skU2uh9bU9pfazU8o5+GMkkPt/M1ZTEq87S8aZa3Yi14/pmvkcXZFNE8kMEk2xqhNJHJD7YsfDTKflxvJGCi78m6LQ+/Gf2+UWrR6iL9tMlgjkWd06E73botE3bJZI42aqbZD7Vv6aLjna0SwxLyasaoSsbvaJHBFpIbtjdKyTt2aRPp3ta2l9rNTyjkboTv89psXXjT8VnxbpM13chuhOySbIqtpRbZxZg4tix8CyPw4s4sS8ErHGtn0Pvzn9vlHKNdXpJElXQotMWdkrOLF0ckckN3tIa5doSpbSXbNP7VvpbcSWHsuxxa2uhO9pClW8VaEq3k7VbafXZN8sbcdtTqLNTyjkkR/1F7JeMsGt9xMh5OLbF0vhRyW3FleL6HJI5/wc2zkxtshf785/b5JU7NTvSTJ52Wdo52l4y/glW7yQ+1bKLo0o7ywyxOmOVqtmrEq2kS2SsgqXg1ZLIn1460umahgvwjkasSr/UULPglY40Swa33ElZFV5OVCd/HT35HIlLotjbaEn+/FOhO/J9qh58bJf9KJ52Wdo5G6G7ErOJxOJJU/CTpmn9qOJDvo0tuRLDEvJuhuyW0SIo2cGcGNUSyJdeOtg1B4FnwjkboTv/UPGyd7p0xysm6Rqu5eblQ3bI434+a7LRxX9HHop7PHj2diTY00R82u/FR7Q/q0qNSNPZZErEqJCVn2id7N0SVuxqt5/czSlcUhGmQ+neWGcvFuhu9pbJ0QdojjeeB5I4Q/DWwahkS8I5GrEq/0/I5bLPjqdRbJPl2N0cxO9nKhOxxtnASpb8t+PgujmUzl/R010cGOPRxOJxIquz0/oX6iHOLF6JNtXg/4Si6bNX0CjpvUTwSr4H4KVOxf9XI1JW9lkTo5DdkSQnQnZIbobveUe2aJyNKNkPq3l9rFnxeN5bLt0KPFClRzE7RqOkZI4Hty21sM1Jbt0J3tHP5bdCd+DdC7+NCd+Gs602P6Ypjd7J0J2ONiVbuVMXfhxOXwLp2cuXVEo9DVb/pn+Ci9aLhdGt6DT05ZFpaalT7PWaWjH0U2n2PPfycSEr0XEnnZZ8E6G7ErEqJDz4SdM0dtEj9O3EnKlWyYlbOB+6HvN0J2cKdidijZwL49Go7W0cD247a2Gamd2rEq2jn8uRHwasXXwcTicTiJVu3R6iX0UTfXHwhjxcbF14cviXRfLonGlfhoeq1NFVB0P12o23OY/VanK+R/zdScakyTTdryvZ+EujRVwaNVcZbLOyVnEaraO0sjVjVbz+5mjt6f6jicTkTVqxFCdHNn7seNkrJsgrG7IRtCVbONk/4cRYHtD6ttUm7k15J0J3+U1YlX4lWepdRof1M4I4I4ISr8D6fFOhu1Q1W6VmtbaIzb6F0hKvJ52fhOXZoP6DX+7ZZ2Totjd7R2lnZ53kuzRKND6cCOT2lhiz4vGydEokVQlZBUt3Jpknb2WBjl2aW2tgmqk35p0J3/AKnkxPx9U6RVd7SdEXfzcUNC7OcyE1LPkknkap7RJ6cWR0olIarxbezb8Z5ND7TX+4bpEG2/KI3Q3ezzvLJpbaSW3FFIlhizuy2Xe8iJETaIu0OTTG7JN2cmKTrZ5NLbWwzUz8Ef9PbLeyz4+qVpDVbNWJUSbRF38ibHjbhEWlGOCn4p0S/u0SRdFsuxsW7ztS8X32emVqjUdzdjViSTtCb8U6F3karaWd5N8jREaMV14ajpdCbsT2ePBuhuyJEikxKhpMapksiS3aQvpxtrYZqeDE7ErGqI/wCoaQil4RVnqmxu/BpMSr4qWyyPA7/RxRxWziq8Uk8jVMSbwcWxpx/Vlv8A+p//AJRSZgbdiwUh7PwpHpsGvFKTaHgi22LPilY+sGT9WXe8krNHbR/RbLe2rgWRZGW9mJ2SF2VREhjeWSUVVkcbW9qW2vhj7z4PAs7XZH/Tral4p0epbb/At7Po04PV+lZNP0sNKPKa73pDSoaVeDbWCTZoSSn9WB6f+OWnFzdP/wAL/wAZDEmzTn/i8yPWPTeq/adrZvvaxYHnyeD0rdHqPu2pIWfGJLb/AOIiTdke0SyaWdtH9FLfVFna3s8F7WR2s08bSbTLs1G6INt1sy2W9tZumJW6H6eVD0pRVvZ42T3Tv/TUhN+fqM7SdEXZJtEXfyqLl0j0ei9BcpnqvVuX0p+NImkn14SSootoUpLDOcv6Nt52edkutnnyb6PS4PUZ3WfJd5HsyWSOCWTRSIJN9mlvbNRsWfB43X7IZeyRDG0s7TyJVgpcUxlIpbaqT6Fopd0OTHOL6aNSChf/AKPG0c+Ef9NS8/UZ2asqieSGPl/x+nyk3Puj12pUUojVu2afedmWy2Sxs8FvaRbI+Es7WW/Nro9E25NHqM7rPwfraWSOCWTSZpmkvDUFnxa62boiRIlkcFJksjXZSJOoiXW2n3tqjbob6JdKy1qRpmpp8SkV4R/1jwa/3eFWVXkl0Ut6RQz0kHHTcj1GrylWy8n9xLG8to+Dz4vxeD0P3SPUfdus/C8kskcEsmkaJpeGoLPg8byIkCCKW8sjz4421dSx42eDGCMeUSelRwrsltH4tPSs4pfo1NL3ftKX5scksb633vaRbLZHysXi3Ss95+0kjPfg8eDx4RHnaOzz8np/uR6jO6z8LySyRwPJpGiLHhqkcrweN5ECO0cbSyPI8ixtqY3eNnjdZFkr6SceSolDi/gjDkrKroeTR0r7Kro1dWhar/pqf6CeDV+7eW8ceS81n4HjxltEefkeD033xPU5JYI5Fn4Xklkjglk0j02d9TbUF4PA8bRIkdoY2lkeR5IfcPJqY8dTO0ciztH7dpx5IlpHDjtIjDke0R0uyGl2aukQ0vpRVdGpqV0Pv45Efneyz4zwav3bz3jjxWNn5LO2NrQ31u8eMvifi8Gh9yNXBLBHIs/B/wDERLJHA8mkaIsbam2pss7WSwPaJEjtHBZLI8jyR+4efBjZqNCyLIsiztEhnZxUke12e0R00iKUVW0skcEsmpqV0XffyS2j+Lq/aav3bRJeEcFlr4VnfUf8NPUf7LLG+hZJY8ZfE8+MsM0emjW6W6z8LySyVtpNWaO+ottXFiz4vf8AREop7yfY8+OptrNC2WSGN5Clx7Iz5bR6LRLxm1RLO1ozj4WL8FLy1/sJ/e/OOCS7KZHG1FPat0u96ZT8FkePGXxPPlHKPU/bHdZ+GWSWSOCeDQ+40U2rEntqNDwa/wD1pCztTK3kRIkSLouySd7TTu/Cy0T7xt6hNvo06qiGmuJHTp34NkhT4kdUjPl5YNXt9D6yNqxp2afWS1/oPUtKHY/vfglZVFMj0i0XtQtqYu8HFiT2plMteKyPHi/iefJZNdPgt1nyiSzs8kskcE8Hp0+R6dNadCwUzU21RZFkseN5CIpi2hgbSJO2SxW9obVnFlrbU7FpdkFS78Hgpj6Q4si0smmhdZLRaLRaJyVZHJGq0Itf6GOT1j+gad2Lt0jT0ZT/AEf8aX8PYnH9EtDUeIkdDVr7Renm13El6eV4I+mlWB6E08C0p1g4S/h7U/4e3L+GnpTWUUzizjJ9JChJR7RT8knY8eEvjefFkco12vbW6z5Ils8kskcE02j07UZUzSVJXtaNRPbVaFnZKuxtVu3tF0i9otJdknb2eRtWS7j0YyPJzZaLRJNsSd+aSeRwij2lZFJLokXRaLRaNTvA1WTU7wLG1r8u14o9X9pDRnqOoo0vQxy8i0IwX0nt0LSi8ntJYFpo4IVLqrHFPseme2VX/wAT2z2YntnCH/1OEP8A6nCP/wBRaa/Zwh/9S0Jp43WS0Nqt7obv43nxeBSVmsr01us+MdpZ2eSWSODkkaavWRHC31NtQSYsjdlMoeNqE7RHZqt3klkSdE++tmU9qZT810SaLRFok0SaLW1oeSfZJNZ8I94/Kp+KJ6T1HRpaShgXWRySHNMU0jnE5xFJMtFotHOKOSLRaOSOcdrRa2sgml3va8ZfI8+MsMj2yfen1us+MRuhu9nklkjgeTR/7YkU6W+ptqJ7pdmBsfY1REiRFFt2S2uh/wBJK3ZyUV2OabHJXvxfwt0N3snQ3ZLaOB5HJIfbG4NUPJT20i1+Na8LXjGLyLrJKSJNPbi0NVsnSOSF3s4uzkl0ckckclspN7OX8HJnBbJqWBiRgTvZuhuxuhO/hsfi8CXF2yTrT/8A3dZ8U6H3garZ5HFtiVIeT08eWomv0RapbUzU21NlnZ9nFjVEiJEiQJKxqh5HJVRdE5J9Fr4X0ckckJ2NWNVu3Q3eywPJLJY5K/CHKOdr/F4vd4FnxjglglJPoSsUXZHjXZJRsUYs4I4o4lM4s4o4o4o4o4o4o4nBHBHJDmqNPG7di6E7JY2kR+Cx+cnXQ/q0rX63WfFKxKhqxqh5H0rE7JddnovvFjfU21NkJ3vLA1ZGIlRBWRVbSi2yUWmSVMeSWR58+RyG73jnaWzdEpI5o5oc+xybOX9GNbcltyRy2v8AF5LaxZ8ErZHFEsH7ZDaI1YlXzrUkciEuPRyG906G7G6G7I+bdD+DUyQ/6WN062WfGO7yPI+1QlSJ4PQr6iLvrfUltqbcRKt5Y2jtB0J3s5US77JO2SlTocu/LkOXRyL2boTsTo5DdkpcRzTJO9m6G73s5bcTicTjss/i8Tltx8E6Yv6Sl0fuyG0fwehC8m6G72j5vPw6mTT/AOpj+7ZZ3Ss4iVDdCdjyPO811Z6GPZFcduRqbags+MsCVkX3tEUqOY3ZOX6OfHok7djz48jke5/4cxS7E7GrEq2bo5Go73bobsSsarZrw4nHdZ/G4iz4pWLFE8CViVCViVFdWJ3+BxFnxbobvePk3Q+/h1MmnK9Jj+7ZZ3iN0J2NWJUNWSj2NVs+1R6LqW8fqNQ5mpLZPwlgiQ+57R2bok+ySbeRqmN148jkctl2KNbJ3s3Q3e095bJ0N3u8nE4+Kz+Px8Y5ErJqkJ0J2J0J2fqhKvwOQs7s5EpdHMUr2j5NWPr4HIlLkaPemyUalss7xGrEq8JOmPvZyo9FL6t4x4mrtLvdO9m6G7IkemxOxOjkZVkn+xzJS7H34ctuZzOQpdkXydC07Hp8exJko9EusEbeSTvdpvB0slp48HkWPJZGJ3+VHInRqS6E7IbR2boTvds5fFyFnbkciUujmxysStijW0fFujl8PEmuKNCX0E/u2Wd06E78Z53eT0X3nI5dHI1DgifXW6ztLG0RZZHdyronKutnny5bUcjBp5TIpVe0sDVnFHBUSVPZEYdpfolpaafXZqaKyhqnW7yWcjkcjkctrFn8Plty8Y52mrQlRDaI3Q3ZHG7yJFnJ/BxFnZ9I5Mcm9453j4vPx6nZo9KjUdMUm2LPhHxkrY9nGz0f37LBD6iXe2pnfAnY1Y1QnQl2JVtaWSb76J5G6M+T3oSt0RjXRDp0N0N3ulZqKnsskcbT1FFUSfJ3s38Ceyz+Fye9eMc7TxtDaI1Y1RHG9bcTj8HJikzkzmxPdK2KKW8fF58qXjqZNImrYopCzulYlXjLJVj29H9+3JkdRRwe4e4zUE9n0hYs5Mk3QnYnRbOTNSTs5MlJ2Z83tS2Sp2Rk2yPTLvdKxKjV07qjhWRri+iOq0h6sv0Sbnkquhv4VndO/JuhO/wo52cm3W0No7NWLok6QpNoXxPe2UilvHPhHxefFJeU+5Gh3ZP7tlndOi2J2N0J3s87cG+z22aEFB2snuI909w9w9weopZLRyRJuiOo8MlPro5tkZMlJo9yRGf9NR2N0N38PFbpuxdMh2r3SsSraXSHJyfZMkJ0cmZHn4k3ss+VWJV8VIpeTdIgr7OKGqe0No+E8EcCx8tLxjnwToTvduvFRTW1vwRNKzQzIn92yz4xGrEq2pCiqF10ixNrByfmui2/BOhtvwl5Nst+enFPIlXS2RSW0VeScVRJUyZLwefjTYs/g2y3tbE3e+SDaZKTSMkVYkkJWPrAt2rKrpCx8lLyjnyW0s+EO32Y8lknk9PmRP7tlnwRVbJFIpD66QsbNst7Wy2WxNjwWy2Wy2Wy2Wy2Wy350vJCSNNKt452irEkhro1esFt5JeDz8azsn3+FbEUh4E+x4Iroas/dENrF3nxpDdFsXw0vOOfKy34x6Le9LdZNTJ6V3JmoleyyLJSKRW8cDZb2st72/G3+OhZNP7dlkoirZSWzwaivaXg87NuxfCn2LPytuxbUilvbLYs7R+3b9kNktmxeFIYseTwJu/hjn5FjzRP7WzQ6l0aglfRGDTtlf6mbpiyLJp/bss7RSolgc+L7JajeGTTkSjx2ed3kb72st+Cb8Fkjn5a8Wl4LOy+0lja6IuyPwV8FbWxPzjn41jZ+UvtZoK2kT03Yoce/wDUVtbGWQwaf27LJHI5+2rJ66kjnye+plbSzs8jffjfgs7rIs/jLJHO0sbwI+LztYsfGvhj8K2efFFEens8f6nU8IYNP7dlnaS5Khw47LB+ye0s7PJLI8ix8CzuskfwXss7xztLHhbI7R2ednkWPNfHHPxS+0jjayvFZ2eP9U9/brsTrshqWq2WSOSWCJPJEeCedpZHknjdY+BZ2Wdo5/Be6ztHO0sEsEVfZP1HLr+EdUjqnuENXo90jJSV7S+5+SyTyPAs/FHJfwy07iU10LH+2RZpCztDJPA5cTnyJbamdp53eSWdlj4VnaOfhjgln41kjnaWB/azlw0GKXNCTsjjZ3fRycSOqxavR7qPeHq9nuXskWTdOyWp9Qp26+SPnD7hsln/AGtbWhMg6VmnqX0Wjko9k58lRWzdZG7XQ9p52edmuxY+NZI58qH1naL6Hn41kjnaWNvUQ5abIaVRIaYoOJRVIbQ6shpLV+kn6Xj0h0uhs02v0LVvohKObOv0aneB6aSEnflaL2eCO8S78YJ3ZLI87WhNPBT/ANhxf8GUUM09T9MU1fTIztjaFLj2S1GzmyUrOfE5p5Y50ui7ySastedMplMvwS7FnaKTyUlgmVZHocOXZwawimRTocXeDi/4U9qe97rJHO0sbOMdRVZ/x0LRSNSFYJJolgdjyemTuzU+xk12JdkI0acFY40abaXZDBTIR+pWaun/ADweCmJd+cWkWhO9r/RDA8jastf0a7NNfm2i1+JTKY0zGdlKn0LUdnunuj1aPeX9Ja1i1E8kpL+jnWCWp2cr2jjentT8Enusl7R2i6JOyLSLsbawObRyvImqLRaOMH+zgtuCPbRqQjuk7I5KZNdDE3FkdVNdsepBZZ7kZYZKUP2xqDwPTTwSgro0I0uzV7gT07kVTIpkOn2cUKLsTVlotHJbUzi9r+KLSOSErlaMZH/Sa7stEtS+kaUpPAvy21ss/hU9qZxZTNRNOxtNUhJp2zkhdjVEmJWNV4NFMWCON1gp/CsloTQpJlllkWkckS7ZRHG1rbkt7RPvZFoh9xdk1aOLFBsloOX7oXpv6x+n/jFoV/6ODXSJaUpO7IaVfcJOjUlLCHGTd0e2xQRwKZzb/QoS/hxZTW3/ACf/AAfq7/R7o5KiP1PojB32ShS6OLODHBo4spnFjVCi32h9K2R1o30yWtFJSbHOPC7NTWWEyLlO2kaWjNrnXRowaff4VX52i0Wt1nfAnfz09n0cWakW2e3Rx/pHS/Y4Vg43kemngem0OH9PbTJ6b/RxaOLGq2UkkZKfzNtYOcjnI5yOchajR7jPcYtTo9w9yP7FqRrJziWjkjkhroo4sWSLViH3gpiVeNJ5KiVE6/Rwvs4I9s4I4I9o9o4M4s4NntnuHuHuD1ejT1Wkf8pxfYvVr9i9VFkfURsjrxk8kdXT/bIz05YJuKwKUXk1tWOksnqdf2/rbJernqTtGhquen9Zc+X1y6PWxUIXFs0PVSjw0/6Rg7ST6IJfhJ0PvwtHJb2i1ss7vsSr8CmTztKLcien9LGnghF8SUXRxZGLscGxabeR6b/ROLjkck2JWODbODRxYukLHzS+BYLQy1tyZykc5D1GKchTvosh92y6E7+JNUU2Wl8XJFou+iL4rsk7djHL+EZSsTvJGSi+mQlJEtVrJDXk/pRrasVOrtGsp62MC01FmnGElkl6X3GqY4Nr26uhf42Gq1KfRp6PBJEIpZ/BSsx58kWt+SI99/iyi2+hJji7sdV2TheCKpUSf6ErIxdlMplMlC12e2hwrGzRxZTF8VM4sqtpfAmPO9o5LxXTFJWcqPcZDU77FqxQtWLFNM5I5I5ITsSsfQo2VQn8i7FBp2PGz7OIlQlZGLsf0pE3ZqS1FHjA9qSV5I8sUR028mjo1khDi+yLadpFOXf4adDd72ctuRzRzRy2yRfFUxOxujkchO/w3jaqJRbZXHtkHb2boTsatDg0KKqmThTvy4nHyXQnY3Q3e0vNKzi/jXQneydCdkSLo5oTscqHL+Cm0OTYptIWov2e4jkme4jkjmjkjkjkcjlsiCTeCbikNi7OJxOIkQTsm+kTdDaZCbiuMURjqt4IenlL6pENGuzghRSX5DztyHJbctlKytlkasaoXYlX4HHd4F0XfRxJR6Iriyv2NWJVtITsn30ca8+PksjVjVbNWNUJWcTicTiXXWzycduO/E4nE4jVCdCd7RE6OQnYnQ3eyjZwY1W6lt3tyYpOxaiY5ULUTOBDS5HFafRONq7OIlQ+iPboaoi6eCMW8IlpzeEQ9NKWejT9FFr6iHpIQwe3T+kasSr8lsyWOfhyIK2nulWzViVfhNUch42WRuhuxjwhuhO9pYFKhux5GjicTj8Kzs1Y1WzViVeLVi6Hk5bI4nHfkchu9k6ORGQneydHITt0cBKtpZ2UbOBw8V0cr6K49lv+GlZqysfKhNt1Q412yEFLDFoSeER9JOTqXRpejUXbZHSjE41gS/v4qVjVebdbXQ59+HLbS2Wfxm7RxHjZdEpdClY3Ry6Q3Zy4vaQ1T2edm/jXQnezVnE4nE4nEarZK9mrHZx24nJ/w4nEcKR2djdCle0ROhO9107Iy5LeSdnf8I434buOy6HKyEFIclp/ofGTFot9JEfSSTVi9NG+yOjpxwhRSwO3kSr8hOhu/Juh9jdDn2PfkcdtOI+iPff5DxvLBHI1Z+qG6HKyM7JSG7G6H3tRdfGs/A1ZxEqGjjtxOO3Xg4oatUS0+snCu0d/wgm2S6wRkzkchOyEqRzOZz/8OS/gmjo624z/AIcS3/CmUxJs09Afp4yfbFoQTujiv0cX/RKv9E3Q3ezySyNnI5eEMF30QX0/i8vBqtpYE6ObObG72Tofas5Dd+DyX5NeCdCd7JWcRxf6OLOLFH+nEfQlY9+PlezViVCVnFHFDgmPT/gof0riJ0J2N0chdjX/ALtZzOcv6c2e5/4LU/8ABSQ3EX0nH4W6E7/AQ0Ls4oar4HnZuiUnY+x58ORD6iKoURdKvxOXi8bNWONeV9UNV4s4l7ct7sa2Ss4iVbR2To5f+HL/AMG72pMwOLs4s4vw4oaQjijihqto58E6G7GrOKKoeRK/g5MsWRuvN9HJnJidjViVfgUh4MHJjd/A87PJLI2097Zb20todq930WxO/wADivBl3vLG7dCdjdHJjd+Nb2/BZ2aoWfCO6r9iSZxRxRxRxQlW/FHto9tHFbVu+zihKvhav4eKGhZHjw5ItlsuziikJV+Cs7PHwN0J2N0ZG6JSdjk78be2mkLsSrAy2Xe0c/iybT6E23tLG7ViVEtm6LYu922W/NNjwLO6ViVb8eRGMojckLkxto5MUlXZcfLijijihxSXxRSZJUxujky2cn4Wzk96Rk9w5s5N9HFbrPklZSGq+C2Wy3vbLfm3Qu8j6wZG9pL97tst7wSlkj1gWR4G3Qm72XbEq/CQ0iUmn0N3kjkRJ9+MtpZ2WN6XwLO1VslZVbRVnFEFW1GBxTds4RHDvocWJtHJnJnJik/CWCKtnFHFHFHFHFHFDh/BR/olQ0mcIjikykcGKKo4o4opFLx4o5MUnYmxZKRSXglZSKraXwT6x8sts7SySbTJSezbve2UjSSOKKQ26EyhZKS/CpFInJp0SXV7Q+4pIlnxkJIklYxY8qXgil4QVs4o4oSS2sti78WUjijijijivDI1StEW29pOjkyLb2ui72SKRwQ4qxJUUt+DOKHFV4abbycUcGQg8speUfCWfO2ahbLZb+KW7b2m+9m3fhSKQklgSRqdYOT/AKJuxPvZPv8ACY5NKznyZJu6FkSSwWyS2ZbIlD6xtXg29/14LOzLYn2R6ZF290Uil5UikUikUikNIQ10LJJKiktmrOKEkt0hkcb0t6RS2pFI4x/g4qsFIWm1gWm7KRhecSRHaXg32WxYKQ+97Y2yDbXflIt7yJN2WyWRvx9tmmk876k1dbRyLIslfg2y2PBSW0c7yxtLaO0tm+y2Wy34frwWR4L3i3ZFstkXtzojLl8rLFnakUikUiW8SvBvsWPgeNvaNRJbPAsjXXjEkR3ed3ne9/c3h9vlLeRJkmc6iOVuy2LA32LAtO1eySW020945FnZZ/DnsslIlgi+yWCJqY2jtLd5FgofyxZbItlvaGCy9r29yuj3Cy/Oy9o70ivKvieD3PF48I7SI7yzu8jzsttTb3BN2Lynjee8ociWl2e2LTdHtCVKhYKP1s906dinboWdo5/CeNo5Fkn9u0vt8Zebz8Lx4RI7SIkcEm7LZbLZ7ldC1Ee4j3T3fBZ3ePgj+K8eEdpEdpbvI8jyP7UaepTL8NITp2e5fQs+E87RJkd5Z3jjdGoe5us7Q+5DI4+Z+TxtDBP7SOSWPGX4Dx4x8ljwfxRycuPZKfJURzvIhusfGsjwLPxR2l5PI8jyS+1bve6FqW6202PG0n0SlxZGfLwjtLO0ceFofijTFn8RtUPG2mTxtLG0to7S8nn4njwjvLaxPos9yui77+BZ84k9o7yzup0qPcZd9+bwLPxx6JbSZHd5HnaX2jL21Ge42Jq9odRIfctm6JkiJHaHhLJHGywamPJZFkg1Qn3+DYx48Ifds8El14WWS8Xn4H8ES1tqZKe/OuhO1tzYn5rI8CySwR8Yku2URhas9tFV0PIsDRT3tfLElsnSZJqyGN3kedp4HnazUaeyOSQp26NJqiU0lkeopKi0LvBW0SGyJY2iutk+ibW1MarO6zskyOBfb+BWzfRTKae0GuRF9jwSTJbS+BrsoW97t7rI315RHtLPgmqLRa29xlo5IvdZLHjaJa8Iulta8qKY06En8scktngf3EZKs7vI8lE30MtFrxWTSdLsn2Lp9loTrBzvJFraKYtpYKZD7R52aY9tTvAsjjH+nBLvaD6I9M5Iv5Kfg9uSJNNjfRD7iMlZklgknZVDKZj46e1r447NEk7Kfla2tCLo5t5E1ZaLRfhyccEZ3kTvG0WkiWRNUWi0Wi0Wi0WvmiS2eCeTTyN7PI12LBqJvHhxZxZwl/CmKErwRT40KPfY4ReB6dYOLOLHyjgUp2LV6Iaia7E08DztHvoadlMtDzs2lkbSPcksi1r6E1YmrLTFkRd/FTE6KZTKY9RrI5LwWRZI42adk1tdDfwWi1taLW3JFr4KsSrdp7SztTOLH1ndFrdJ3tYui0Wi0PvaDSRaLRaMnFnFnFnFnJHJbckckWvjjkkXQ3aJ5NNfsk7E0hlrZ5GnYyn4cF+hRYl2JW6HH+EY2+zgjgh6aPbPbHB/oXKPRKUrObI6jTPcT7E0OEm7Pan/AAonFvBNp9o5si6dnNfojJ32RayR/pkS+JNDFgtFon3g5IbW1iyRyRaqh9j6yT7wNNEtqspmPGntaLWzxss7N0Jp7VZTKoj4vI07OLFjaab34spo5IXTLQ2qIyVlotFotFouxSSyc0LvBQ5NdClKhTVdnJHJb2ji9ln4Ka3TobL5YKpEk2yD49Pwl12KSoZJUPJyRTKFkWSOTjE4pYKYlXm1ZxvI4Kz2z22VNDnNOj3JnLUPrODFpnti0qOEmRg0iOKI5+VNbcWe2h6DoarI8CItWJ0yElYnZqLraZLaOC6H297RaLRyRaKezxsumckOSaI5ErEq2asSoSsplMpjTsbSdM5I5I5I5ItbckOSfQou95RdEU0xujkjkjkjkiMkySrbk1g5yOX9FOjmhTRaLRyRyR7hYpKzml5LI8eDdIgqbG+h/S+xtXYpp9bzXQsFM1CmcYnFHtoWj2e2e3JdiXZTKrySspnFj6GhJ1s0e2cEe2jgj2z2pIpoTt0KLT2inYlXwVZT8afhraaXY5JdbRztB0y/4SbWT/0krJRY1QnQ3e9oZaLW/JHJDkq24tbxyRzulYotii0KDeD25Di0NOycXyZxfjyWyOSFJMWS76Q1RJWcWcWcWcWRVM1MrzWC0ckWi1suV9ikrHNV5LobvdKyUWJUNWaqpraK/Ynez7VGBYNTbiz22cTixI//AE+n9bNWcWcWcWcWcWJVu1ZxYuho4s4nBnF7cWUVFnChqiPbEq+FOjI8+C8NXs1YJd7J07PcRB32OawjleRO0N0Sdktm6ORyG1ZyQ5KzktuSPcW6yPtDi0YFJJkX+xOxKyMWJUJWRVCVjg2x6bs9qycXFsed/bZ7b35CkrOSHL+Ck/2KVjdCdjdHJEPrlSJu3Xmvgqjl8KdDd7yjyOCHD+Ci0cTixx72lBSR7R7aOJx/F5bfT/Djt0cWcSl8adD8+SNTUVk3yG6G7XRFOxayXSHJt2abd9kp9UhTsc0hys5En+xTTOQxyofbLPcRyRx2sXTOaHNPoas4kX+iOSJESsjE4iVbNWcR6cZIfpW3dmppSi2Olln6OWzj0cRLwjkkrEqJiVmkuL5Mbtt+DlQne3Lw5bobvbl8Uk3gims+bRx/K4nE4nCX9OJX4XHw42auk13Y8E8lo5JdnLuxSs//AATf7IyG7G6ORKf6FKhO9pPvat+/6Kb25DYsj6E7I5E6IuyJAiJWNVslZxF1s4wksE/Q6UzV0XplPblfQ414JWVx7OZzG7IEXUWJ34ONsSpeHLbjune3E4/KlZxGq2bF3/sljx1pdMeDVPqE2J2RyWjojtLZxsWnf7FCiTcRrl2I5eFI4+CTI5I5G6IT7wRIETjxGrOIlXhbObNVLUJrj+jjtyvo4DjW0ckseEXQ+o0JV4JX5ct+Qs7cTiNCb/nxp0chu9nESrx4/IkmNV5NnL5G6E780rOJx2SL8dWbf6GakerG01RxEq2p/wBIviLUoU7G72jFPLKroSscU1Q4Uzge3/6cGUymU9uIuzicRKhOhysTpkZ9EXQnTR9xxOI+vOfp+RPScSUeIs7NWcBRongV/sSs4Cj2Sjg4jVbrA8lHE4k1xOO/EUezj48TiNV+Fy+SQnRyE78KOPxN0chuxOjkcjkJ3usDdHLbl5SgpE9Jro1I9NIdp0Po5HITveAlZxGn+hWuhSdHIeduJa/hxRSHBHBnts9trspiicDgcDgK/wBkZ2xPFkXfSGq2efDicT20UjU0oyTNT07XY0k+vJxTIxOJx/ZKRyG73WB5L25Evq25HLZZ8WcmcmN38aVnE4nH5UrGq2as4nESobo5MXY2cmcmcmcmcn5PHnHdOir7OI91jwWTVJ5NRW6OCHBI4iVEVY4/whH+mBOxOjkN2JWOPZxKZT8OWz7HFIa66En+zijiiCoasXRfLs09Sn2cuXe1WcRiRxOK25s5MlCMsmp6bTkn0T9Mo4HFp0cUcUcUcUJVsk2STKZjOyVmB52WPDgjglumcmctnj5k6FvxOK+NOhu/JqzijBRxRxRxRxRxOTLZyYmPou+hqhKzicUcUcUJV4J0Lsed7OT8J/UjUg0Tzs1ZKNEVZGKEqErHBMWn/BxaOLHyE2l3upOizicEcSnvkSofZxRxQlW6dF92aeu10RlyV715LIzkySUsmrpR/RKLjslY4/wUX+xRTElHBISsemn2e1E4JdDi/wBDjKxQZjb6drZdnFHFFbcVvSOKKRxQ1XmlZSKRdHJnJls5MpFIpfI3QneyVofwUikUikZKHgTotlsTvzv4pwU1RrafGRJ0iLbY1ZGKEqErEqErE+OBuyKs4JktPvo9tntsxtUt3J0Jvxd/oV/vwboi1XY0rtGjq0qYp3Kvh5MZyY+3bNZddH1cqZEiPsSrZqx9YE72asXRV7cEzij2T22cWUvCl5Mtl353RbLfnbLfky2Wy2J3s1Y7X2ib/ZGSrsuLLiP/AM+WkUikJVs3RbE7+G3462nGUW/2aicZV+hOjkyMnY10mRErEq2ik0JV48Is4ROKKRSOKOKR3+ipFS/eydDbYlZSGqGrHFvAoyQlNdmnqTT7ITT6Y6vr4WkXXZPi10Tm+dEH32Jr9EVZxRJVtVlUU3gxkbdlsQoopHJnJ7UjicGcH5PBb+ekUi3vSKQ0t8lIaraPg1ZxQ13sm0WzmjnE5ROUS4/JVlIx8Vvwn9rNbuRJJIirZSQm2WQ3jjZIpFIpFIpFI4R/hxRxRxQ4pK0WLvpnCP8ACUUkUiqKbwSjISayRwWWf+ik12aerfTLst7WzmtuKHFVtq9Lotk4q725NYIN0RbY0mcUcUcULoaTJQ76OJxf6LaOMvFZ+GkUikUikNfFbLfhbLYnZSKQ11u1tbOaWTmj3Ee4hSg1gconOJziUn2KEf5tSPbf49IpeGo3g1UslWSVYLYpMWDTIpMUUNJY2jjxpFIpHFFIaVbcUUls1ZxRxQlWB9jimRhH+DiiXT3waer+mcol7T6fQtVWcmWyTpGo7XYjU3jOn2clXRF350ntSKOEf4cUcXvbLfyS3SKQ87t9ixtZbLZb8E+9pY8KQ43g9ts9o9o4JZGkikUhlib2tlv8JLopbUUvLUbsn2hroqykON4Emsik08kW6OT/AKRba72510e4hTjQqfe1s909xbNdbUikUhrr4aRSKRSPb7tFtdWLU6PcQ0nkl0+j3WxNjdLs1J30i2SfZLpFstmjNp0yOqKdke90uh58LZbKRRxX8OCf6PaHp138kvBbUikUhwbZVdFLwsvZPst+USTLZb3edklQ9NnaNPvO1nNP8Gy2Jeeo2sEsDwSffguziv5tFEUqKR7fLs9oem0xWui2c0cV/Dgypf0tnuCnboWR42pFIl5JFI4N9oquhspD0yi2ajNMstk1bFFrtkvuJY30v2yP7NNkW6I42WNqRQ97LE3tbL+KXwLHn7bPbfgs7PHhE5cTly+GkY+Hlx7Iz5fGsfBrFlcujVhx7LLIkckcEUikcG+0Vx6LLeySoemx6b29wZV9HtD0qRxa7HKuz3D3D3COoiUlLztliwMvdrax21Rxce2e4jUneCPbKRSMQkQ+1DnxaQtXtDlfaI4Fj4lnZ48XjZZ2ljyjs8/E8bVfR7RwrvxlvH8F43j4xwPIsbrHm3Ss1NS3Q8bTwSxtDJHG0CJHHi870e1st1kocVJUOHFWRjy6JaRHTPaPaJR49brA8iwPPksjwLO043GiWl0e0S0ujjxP0ShyPaI6RGPFVtYp0qFqdDduxfgPHwRwPP4/Dl2e2VXXyvBx5dHDj35xwcOXZXHrdY8Htp4JYJ53lnwjghtHeOPgoenXZjs9wWr2R1ez3OXXwvI12LHm10LPhV9EoUr2jHkS0yWkcOO0do42cOTsqut1qV4X80vCOzzssfAi97Hgrl0ceO0iPjW/tplV1+OsGo+jSXe2qT1G2aeBvo1N5Z2tHKsEJ8kabXZZH5GNX0PSVHtHtHDj2LPhEvyefJnt1sslJ9Dgkr2p7xRqJ9GBqxbXssFotFraihOj3CM7dFr4ZC6LRLzT68b3plMr43kcnEWo6OV9iaovwrZbWhvrZZJbR+KjUTa6NLqr21RZNOSS7ZqSTwSwK07JztVtLBTI9ZNMiabW0d6GmJqvKvFtY84/DRW3T6Hpo9o9uuxp1gT4s5t5LRLuj9IkOPI40cLPbJaasca8rWzgqKZTKZ//xAAzEQACAgEEAQMEAgEEAgIDAQAAAQIRMQMQEiEgBDBAEyIyQQVRUAYUM2EjcQcWQkNSkf/aAAgBAwEBPwDy9PPg+R/Eay1OrNL1b0+iPrfTTVTXZH03pddfaT/hNPjyh+zW/hl9RSeEeij6b02hFRNX+U0VGj1P8nGUuMcEdT6kuJrw+nGj0WgppSJ+mXCR/OR4+pkv+/HS/R6o9N+OzxvLHnHAsDztP8R7M1D1L/8AMaZHKFknkSt0ShTsjkjnaRE0/wBnp8MkTyan5E87elyapD8jTyaZqCyelx5SxvMh7r2WR4Fn4qyPHnDIsfD4s+kfSPpC0uz6aFDj2RnKD5Ryaf8AKa0ElZ6X1MfVw5rJoeqlCZo+sk4Wn0j1nrk4qOllnotHWnFT1Hg/nP5TT9LFxhkl/K6y/Z6b+e1NCdsn/qSPqlU/0fx/85pRnc8Gl/K+l9RGXBpH860/VSa/sXeB9bxyj1R6b8dnjwljyjjwl+I87amDV6RqZFkjlNCm26oeBZJ5I/iR/JkfyZx5CioshghtqYJZJ5I/ken/ACPUtUaTR/6Fg1RNWel/Hylj4F7rO7wLPw0PHnDIse+8bJd+1JWeh9dL0+qrXX7ND/b+uqWhJL/q+z1/1vT6XCP7P4X0Ceip6qP5H1en6LRcoOnR671j9RrSmyLvvfm10aXrNaH2p9E9eWt+RpUujVKe2l1k9UnVnpvx2eN5PrzjjwWCf5Pf1Kf0jU20comux42adkceCyabpEdtVokx5IJ8jSXZ6nBprs0ntqmH2em7015y9yt62bKYl38imV46aI++8CztLHtW1g09fX0pc9GVNHpf56TSj6ns9F/P+nekoxro/wBQ/wAotZ8YknYmWvBYNPJqeHqv+I9K01S3eCWPYjgWB52fcSWXv6nV/wDHRqC7waWUPoseNo5EPZZI91RHBZr/AJWSfZZBqzTyepNJM000+y0apLt9HpetFebfuJra1tTEvkrOzx46OX8B4Ene0sFoTTx4rI4troaazu1+zT9TqxVLonqy1O5se6fW6waeTV8PUd6dHo+pSvd4JY9iGBYHnZYJp8nv6vrJqGlg0WuVGp3gXTG+i6I/3vTFFs0YtMZI1USTsarJDtmieqwaOELvG2q0KLs0E1ppbU9qZQ+ymVtViJezT+Ws7vHjort/E5Igml340zTwamfaWNou0aeTV2XeBZNXtM9L+b3bVElaGmvOOCOB52WCTXJ7+uaNU0/tXZoNc7ErdE4JRe0laItJdldWR2gaWSX6JE5Jol2yWKNPJonqe+jRdJGlnbVaWTTaclRpCyPAs7MprZqymLrJaH3gp+dotfLWd3jwiaeX8TivFZI6bfbwScIRJyTx7SxtptWQ6ds1dodZES/FnpuptPZ43krQ015RwLBJpMyYVk/ye/rs8f2akkJqS6NCLtDddj1LVHF1e3F1Zf20J0WiKrs0iUl0TZLroaJZIdOzQ+5WjXzZpGk1e2um8Gl9slZp9JMQ2hZ3ljwlsnRaH7Nr5KT3ePBOjT+G3XlF07PrRUaJScn7axtBd7amPB4Zof8AK9njwnjyjgWCcW2LpD7jRLL39fNfVNSLsjGMV2aOUN2jixdx4jVCkqoSsqhCksGjFtMlBknTNRqxtWNqyLvo9N9qaZ6l0qND7qoh9r72n92CMWmjT704tbrO1obvduhu/dp/IW1otDx46ePhtWvaboTsSs4sarwqxdbaedp/djdDwzR/5Xs8bt0Sd+UcEcDzssE/ye/re9Un3gu+jSjUkmSiqOInXY/ufRGLsSolgiLJotJEpo1Mmpklklk0l+zSVHqVybSPTxcc7shFyfRouoKO6yPHi1Y1QlZxZxZxZjeji9uJyRyXyXshu/CrIKl8NuvNJs4sUGxaX9i0qFBI4o1Y9qjizizixKt9PPklyTo0lx1Xs+xqhuhyteccEcEsjlRHtE/ye0vtPVSX1ORKXEUuzSlykh4NSLUWyLbdCVCdCdjViVEVbIfah99k3bJxvslkSVdkVRo/d2jUXJujTVOjjtKSRo5NLddDfk1YlW7dD73T24vbicfk3ZXlHJHHw5YORy24kY9nFCSs4o4oSobo5HI1Hb89PPlB1FsXWrYnezwSx7EcCwPJLJD8UT/J7akj1EuTNSXe2h+SH0SkmqOkJ3tESs4EY9nHob49E3XZqTvpF1ki0+hPvienklcTVlwk0zTlbs5bamTQyacfBKxqvFuhO9m6G78V81Z2rxjkjj4csbcv+hS7OQpdilYuhMlJJWfU/wCjmpFockhuxuhO/GCrvygri0Z1K/ojG1ezwSx7EcEcEuuxu2R/FGoqbZyJ9x5GrLs1I9kY8lZoSuSJSrobH2JUJWJUJ0KVkFbE7JRvs1Bq2TVC1Gpmm+Ts0Y07PUfkzSI/cSXFGpk0MmntQuxKh48WrEq2lnx47cjl8tZ2ePGOSOPgKV7tWqOO3HZS7FKhal/ocrLe3qf5GHptThNH+8TipIfqm+0jT9d/5Fpyjk/ISrxUqF2jj4R66F1rNC6VbPBLHsRwJ0N2NUyH4o1dtaXCHE1/tYv/ACC+1NHp8ol9xW8c7p0R6EqJOkSaZN8ZUShZLT4yNCFpMguJq/dJkFxNIl9xqZNDKNPAs7VXYnY8exLPjyOW3H5azs34xyRx8BR2boUrdeNbLo5CdjdNH+p9efo4rW01bs9P/K+p14qOoh6upxuJ6H1+tq/yUdLVjS/si78lGxdI5Elx3jlElx1myMr2eCWPYjgSsfRLJD8UaudvUy6Nf7jSkTjxNDKFG1Y8D6E7E6E7ErOBHs5EnaJofbtn1O6Y6cqNJV0In+TOJH7dtSJox7NPZOx4FkePNuhu90r/AMDflBWyL/XwpYI59lOhuzX9Lpep/wCVWaul6aM43Cv/AEQ0NLjfE/2mlDXWpGCsXksCxtqS3XTNXrUv+zTxs8EsexHBHBLrsbsh+KNXb1f2olJyZD7Z8SX3ZNGCTFJpUPGyVbRIZErIqtpOkTkzkPudn4s0Xy7ET/JiwJEnxNSRoS7NPexOhuxuhO926OR+RxOI1QnRV9j/AMLpK2KNfCfYo0cX7SVn0IydtHHiqKSI+SwLG0u87w7Nf8kabb2eCWPYjgTol2hRTRHpGr+yXSs9Z+I4oX5cttGKOKHFUNCVnFCVEMidEHY3RJ2iZNVgj32VfZo4RZP8mJKhR6NSPRKKZ6fKI9eCVjVDViVby2ju87Xvx/wejl/F4QJ6XHA0hZGt12NVs21g0a/ZJQaJ1fRHdRTRxRxWy8YdRbNRW+zTSS2eCWPYjjZ/iRwLBq/sfao9XJtUPJSsWTQknOtpY2SraKtiSQ3RppEkiTY3bJKxRSIruiEVFdEPuTbL5S7LroUnQ/uztoRXJFIRSGiOR48WrOKEqG6Lf+Ibo0V+/iN0i2ObeSag/wACqL3jkkJWSiiMmSk9o7xx4LBPrHhp9qj1H2vo0Xce9pYJY9iONn+JyaI4NVIn9q6PW6iiuifWCHeS2ekg75MaRLG8VbIxVjVCSeRNxwNWifRJ0y72h+QsGn+MiP5Eul0JuibaXR9SR6WTbtkG3kWdngjkePYlnzt/NpDS8GaapfAYpPZ9Icuuzkzm2Rbj0h48I5MlUSE0sjlEuIqeN448Fgfed2kaR6nJofjs8EsexHGz/HaLdGpgl3k9Z3dj7yL7cbelfQ26Le6iqsiSIkEnkk2kSdksjdHJ3RjBo/clZFVyMPorku9tSTrb0hpiyMtkcjx5t14JKhiS3t/MTY8eOnj4PFbak3EetKT4p+FvwjnebioP+/0X/NLUl9SK4/oT/kpZVGrH+WaX0z0n1lpL66+7eOPBeDNLB6nJofjs8EsEVbJJLyjjZ/jtFKkar29Xl7SbT29K3s0qFkX5UNtLogiSRFIXWCTZNdEsmo6ZHtif3UQ6XQ3UbHkT6EujUId5NBKNUQdKz68f0RmpIWSiWPOW6SraltSKRSLfzLfjp4+C8Ck77NedvijS0UnyaLfsJ7WKEU7SHFPIopY8I48Fjwtmlg1kndml0tngqykiePKONn+IkqFg1SbaXR6otmolYsmjFLBSGlQkrK+7aLLI7PBNs/VmckUiK+40/wCiSXElliwaSTyappmicniziv0RUovJpu9pY85b2Wy2Wy3tbKX+B08fBZqtpOmaenbTkIpbV5vBFEl4RXRS8Vjat4tpmthmls8bzx5Rxs/xLZFujUXRqs15Nt9lGdSmJdmjlE+n0X4QyNESCTsk0rsm08CGkPo0iGTUboj3LbSbNVsXWD0veyzs5OKs09Tl0X5y9q/8Dp43k6Iu/cZbJ23RpQaJJUUtn4LI8EdobS3jjyXl6nqCNFvZ43njyjjZ/jtHBqGvg1s7aX/KNHpsDJYIvvZZ2W0f2SNTbUbstmk2abdk/wASP5bLoem2fSNPSrTTFnaOSSVEXxdn1SM+Trxl7E9RLo5P+z6ov8BHJHHwWumRS5LaWPKOR/kSxtHJDae8ceSx46eDXwzR/Wzx4T8Y42WB521MHqME/wAmahpbaJH8WPG8ciySFgkTwTztLT5OyMVFUR07Vmiq6NX8CGdtPJpi/wCbaKtpD0672lgnjbTlxdinyXjIjgeSU+Loi7V7ampXQu1Zp6Vn0jT+c8bQyRx8F4FklgjnZZHjaOdn+W0iJDee0ceKx5+p/BGj+tnjaWCJPxjjZ/jtHBqYPUf8bHkZpbaRD8R43jkjty4nLkao8kvyReywaP6NTA8ixt/+3f02l9WPIenSsnkljaWSL4uzT1ez6op8vGWBzp0Q1ezU1OjPZp6V9iVf4F4IZI4+HLHgs7RyLJPPjBbSKZHHiseSySwz0+ZbPG0seccbyXZHBqYPW4HnbR/5dvRdTY93gZHG7J4ETwU+QsCwaP6JZHk08mT6Wy7NHI2qNUlgeNnjeMuJ9Q+oyWo7PqMvl3usEF9wsbU/8DHJHHwXgS7JY3pn06KZFO9pPrwj0RdkvJY9hZRqfgzSf62eNpY8442WB5NP8jWyz1eWajH0aP8Ay2J9npu9V7N9eEMksDZhGoWTavZYI9o0TUwQztpQT30dK8EIJJo6NR92ajT8OPI4cSRnyoim0Q01xViVIpmP8DHJFdeMR5914K3b3ljy0/2S8lj2FkeGzR6k9njaWPOONk+h5NNrkauWeskk2mzUaNRpro0i0eidzZJ9Dxsz/wDEg1Y8DlxZbmiZLJIjgWDTZDJqiwJXg001kp7elTWTW0XGP1EjU1Gn2S1LVeEckXRLvA4chx4jK8EaaaKvBGLa6Qov+iff+Bhk/XhHZ58bXlaLW0mqKfjLHilZppqyXksewsjVabsh+S2eNpY8442p7R/I1Uz+SkvqmorwWrr9mj92Cmfx6abY8Dxsy7jRBd7cOT7IpRRquxpkkxYE+iGbNPJOKaIwWCEGv0U99LVNTXi9KrNd3LrxXRaIdvbU/W7RTKZBPkRwaaadmm0snN2P/AwyJpqh9ZOcf7OcV+xakV+z6kP7HqR/sUk8M5RX7PqQX7Pqw/sckxTjWTnH+znH+zlH+xtUckKSvI5xayNpK3tT3tEsFrdKyKaIkvGhY9iOUaj+1mm05UtnjaStDTXlFpIuxYHkj+RqYs9e+es3HaSa1OTwekaeB4PRdR7LsfXW3/RHJEZFMckiSbJKsjVlM4siqRop0mSklk0lF9j2plMgnEc3XZNpvrzTo5scr3oplMhF3ZHvojihYKY1WRprP+A01bHLiS1bwKcrJSkzk1k5s5SY1J93QoP9yKrrZzaZykcpFyOK/wD6O/8A+jmxTd9nNLBLU5Kt6Y8Ci0yf4kYuxpraGdokvFY9lZQ1ao0VWo72eN5KxpryjgTQ8kfyNZ1pys1+cputtVM9CM9MmoiyTi27EqK7sXRF97JpZJZKskl+yS76GqFgUWzSVQRKKcTSVLZFotH1Dm37NWVW1WJbJNi6RDp2aUY5ZUS0Td4NSS/wEZceyUnJ71ZKLOLIql4uLsW/FnFnFnFnFnF7cWPG1Ml0iK/ZLG0MiViVEvCrF15Wt0qZFcsEOtVrZ42bo5Ik0/KON4/kep/4pE/yYzVkqPQ7emwVQ2qG1slZHp9idjVjiyJqTVpDdEpIj2iKtGn2kiUXVEYukKLr3UrEqJCViVCTY1QpJITsWCMmkRfSHJbakX8C69/A3eyVjVESXglezkkZ8qMHJCabo+oiOo5YGIclRJ8lSIqkSVo4sjFiVbS8FjwpnF+Nmm6VnFrV5MXaseNpY9iONnJIi7kep/4pGpJKTMmrNHodvTSVDYxqlYpJidCdidCdjdInOsD1Pu7HNMbshiiHXRHTndiToUXXvR2asSraLok7YotkYuhCZyZy2n92PgNWLr3pY3Tobsk2sEpMhLrs5IlJ30KbRbfe1s5M5M5M5I5IWoxyVbXXZ9NkIOOSXXWzVoUWn4RErGqJeCxtVnF+xDuLJupUR/AltLHsRxtLJDJ6p8dKTNR8mz7jVPRfaZPTx4qnvP8AFidMc0iL/YnYnRJ2iaslF2Tl/RHlI0k49Mj+RDAl0Lr2KMnFjVbx3Ss4M4M4MjF0Lrdexd/KePBuiTskR2lnZOt+O3F7MW7dlIpE4N97cTiNVslZGJ+I3ZLwWNljx4+Gm+jV/wCREfxHjaWPYjjaWSCrs9bL/wALJ9O9px5Hp/tFHs047zdoSscGyK/QlQlY3+hxJxorl2aeTTmlKmiCVnH+iOPPicRiVbSxvESs4EVXgnSF3vy25bcd2JV7LdCd/AeBuhSvaezVmDkVfY+hKxbcvHjs8bcjkOdqhLdqziRiRiSf62lulYlWyx48vDSwaqqaI/iPG0sexHG0skZfo9fLjpNE++iT4lGilz4baL5LeTrojnaOydHEkqRqKyMOqI6bUjS0+7Yo92RVoXkonA4DjW8sbJWJUQ3SsardY8ORyOXvNWJV8B4JYIZ2mJWNUS2jgasXW1+w8C79hKyMT8SS/ezVjVbRxslYutuJxH46JrupWVxiv+x42lj2I42lkguz+SlUaJS7ZKHIl9p6f7p89tD7VW84/sTpiVqxOjkJ3tPBJWyEb6NLSSVsjV4E0v0Ly4nHd4KYk2S/oSsSraG8cEs7JWLrz5e03RyE795rweBqxRrZqxKiY1ZxEq2bo5FX2cTict+WzwLo47cfBKxR7Kobslu1Y1RHAlYuhKzju87qRxNKJrq5UXyiv+iWNpY9iONnGyKo/klcLHp9k58SX3HpdtLeStDjSIy/WyViVDdGpOhKyCd9GneCMK7ErF148TgcTjs3XZ9T/oUuTqiapkc7w3Tobs7Fj4TVnE/ETv3FkePB42Ss4jkcxu926ORV9nHyYt+O7xsjiR0+xw49ksbS8GrEqI42WNlG0cEan2nHbiWaRrxSkR/EljaWPYjjw/kI3pjirJwcmcTQ+0h9xpHEaHgasrj2JWrIxGqGuiX3EYXg0oJLvJpqlbPy7F17VEsbJ07K5s/FnI5EVS3boc5fohqvDQ3fsUvcasSr3FkePB42iPA8+LVnH2ao5eHHbiR0+xQSdj6VkpOhuxuhu/JYErIxVHBC621RbcntpSZrduyP4ksDdIcm/Yjjw/kJVpjJxSJ/bg48MCk4ro9PqOStkXasseNpYI9rojKV9jd7ShTX9GnyTaWCGkm+TLI48uPjLpDk2M5MxHkN3s3VEHaErJJrBbeROhNuR/78eO7+Vfg8bRHgedm6OTE7G6F3s2LzrxUVYoJOx9djmv0Sk6LvaXnBWjBHGySJyWn2yU1LdZ20jW6RCTqh4JY9lSaE7Q5NM5M9c+UOyMW20ShN9E/Szl+ItDUf5ktDpnpdGVdnBJUhRbHpuhqSdH0m42Qi10cP2zgjh/Q9NtUaWmq7/WyViVefFbcns8Dikh425Oq2bobs05/2KX9EZOiUVZxRH7cF334JLwt7tL2G6E7+C+i72jkk6RdvaW0cDyLG1FteNst7s4o4rbkxybVFUXvLzhgUU0JUJIclD8j1Gs9a4o04p53WR4NKTPUKoqiGB4JY9pSaHJ2Wz1KeoqRHQUT6KNGDiT0oTyj6JCDh0hwVdEYu+xxtdEtH9kYvDwKKRKF4Fp1kUUsFIqhKxKvZ5Pd4JYHjwltHJGKS6IjVj62WPBY8lkePYkR+C8bxyajpbtWNURwPIsbNu9rZbKW1IWdmW9njwePCrGq8UrNOK4iVCSJdR6PU67l9iI/b2aeS2T6wLI8Gmep/FEMDwSx7DbstlvZvsw7KvZfbjekUikVWBO+mUikLokJWUikVXs8mcV4ajot7vou9k6ZF2iO1IpeNst+KyPG7E78KsqvhNbRNTCG6E7G6LsutrYsFIflQm7Hjbkzk/B48ZeMcGn+Il0JKj1OotKH/AGdt28iIab+nyWdtQWR4ZpdtGv2uyGB4JY8Wy2W/GkUikUikUil40vituiTbzuy73/ZDBHzSW1LalsikPHhVfGeC299Rui7Lou/GxYKXhb2eBZ2peTx5UhiRS20uyktvWS+pJx/oSpdmnBtj6jS2feRZHg0ifcXZFLjY8EsbJpZJSTwW/wDC29ngeB43ePD9kMbWxeKwUtqXhbLfxkNKt3jZFIm/NJUPIsbPa2Ut6Wzx5PHt6IxySgybuTltok8bW9odrsXWD1CrTTRB9E/xJN0W/wDDLGyKW0sk87ywPBBOTIaNj0lHKH01QxeKXXhZe1IePjrI8bvG0cjwSyS9iy342y2WxPsePYeCOSXlE0RnqpqMBU1ZFKyKSRPA9kPpGmeodJH1CWpar/FVvPJPOzwSTapEdNtGnDixYJHDkSjx2juseNbVs8fHWR43ljdE/cbfksjx8HRP/wAT1H/I0OFs0tMSo1MDz4J07NTU5Ov8cx4J52eBZNNpIlPkyDZKfFojLlHeONlgWNnnyfyFkeN3jweSXhHw5pdF33s/FZ2ePg+myf2Qgpars1tKiOmxRSNavpPweP8AH3Q9S1W087PG0M7QJR5GnHjZLaONlgWB59h4+W8bRySwT25cSWqfV+4+qj6p9Uu+yc6VGm77HqUy/FZI5JY2Q8e96fJNdGprqGvRqaqkrOR/ZPBqf5XU2eNo5NPO8yO0cCxusDz5IePgPPtvG0cmpgeSQ8Gpkic+PRGVuyepUqIavZqavQtXoer2fV6NPU3iraHpEocFZ9TehLslgplMiuyWCmUynvTI4NH8jV1OEGmXym2af4oraa/8T/yNotF7PA10TTseDjy6IwSXRFMooreGNqFjd+KG+vYoowMiujG17PIvGvB42jklg1CTHgmnezFgk1ZCCk7NXRKrosTVCaZaFJP9mg1aFJXk1Kl0fTWy9uSI76K+4/ktT7VFEFbNJPrZQTPULjou9rX+OtbIW7TJRbXZKFLopkemJotFosabwLTbdtHGsCx4WPwvdZHjZZHjaJZZyisqz7Jdro6WBxUuxQjWRwjZVdb09qZTLXg8bRySwTheT6aJQrBqRdroknRTWdpZPTZs1/xJdMtFGk0fUZptLJpdH1GfUZpz/T2Xu0UyEnFnq5c52aeTTXSFDohppPs9fpr/AG1jaWf8haLRaLQs7NX0fTTJaSo+kj6Vn0f+j6ItEUOODiziynvaGWtrRa8FkbVedotb3vZaKOUhyksn1Gc2/CmSaSLTFkbNQpmBxUsj0rwT0j6JLRd9I0dKkrNauNI1P6PpWVRpdMo4JGm0ymKLLrBaLE08bWjkhNPyplMRVj6iav5Gm05dHp9O4qxaV4PR/wAbqaztxdH85oaXpPR8ZRpmo031/kbRyRyRFp9otFojkl2imRXZgtDkkckckckckS7ZaHsy17WSmUxxY01naKdFUSyRxs5KyxY2n3jZbrO2onki6Zae0lZxZxX7OMRpLA4p5JQjZwicawOFxH6fTyz/AG8T/bIh6Wso/wBsj6TNPT45FkZxbP8Aaf8AZ/tZ/wBkNOUcoUHY9K10ajjHp5OaWCE7ZaOSQmmJ0WjI3Rpxc/xR6b/TfrfW6fKGmz1f8B6v0v8Ayabo0v4/WU/xPQfxOtrzUVF9n8N/oqUuMvUqkano/S/xvpePptJSaR/rb+YXqo8IRp/Mp/HWRmnJUc0KSslNJdH1Gzm0R1Ox6jZzYpXki0WvB53ftUxKvBJPJwicawOLZ9O8nBrBwY9JvsWmji1tRxZW1MWRtUT/AB2i6YmmN0Jpk/BRTRwRwQ1TOKZxKe9MpiT2TpnBH0z6Z9McWuh6CfchaEWS9JyVIfouPbZ/tnH8ex+nlLItF6ZO01R98VbP4X/Tnrf5WalHqJ/D/wDx/wCn9JOOprvken0NL0i46KSR/I/x8P5DTcOrPS/6Wa1P/LFf+z+M/htH0eq5KifpoSm5tnrvVanrNPU0PSr6cI2pSfX/APh/qaGl/uv/AAS5RX7/ALHl/J4spjOLKfxf2OSohJUKSs5IbsXQ3YnRaHJI+pEjOIpJkZKi0Wh7vwp+KyXfglYlXs0zijiionGJxQymUycXxOLOLIpokrF9uR/dg4s4s4sT49M5I5Iabdo4vztbYKfg1bsXbo+n/QoNDjZ9Mnp9dDSwxaKl2fwP+m9X+S9RGXH7Uei9Doeg0lpacV0LUNN3Gz+T/l9T0E+Kgmv7H/qz0ujH/wA/X/o0f9Z/xclqSnq0v0eq/wDk2PpJyXpY81+j+b/156z+Ug9OuCf9Gv6zV1cv5NPxePjN2iMklQumckKSezdHJHJEne0WkQdo5JZE77Lra0cl42vJdCd7x+BT24s43k4JEoqujiziyUGxRcc7t0SdsUWzixdLZxd+N2JbPvfkh6iI99lovZujkSl0Ptn8XorW9TDTlhn8fq+h/j9GOnpSV/s0/U6c+1KyM08H1OCt9I/m/wDUGkoP02lp/Ul/1lf+z+V1/VL7NfSps19DT075NW89ktaGn9un+jU13Js5fH4s4vbizi93j4vLZZ3TpnNDfLpDVDdCdjdHI05dEpKyE1Rd9idD91OhO9o+N0Z3s5I5HJHIvZiWydjVjj0cTiNUNWNULt0cKycUcf68eLODOLOLEvKTrojByIwcUcSq7OQ3e03SNJK22aM+L5R6aI+qny5Nts0P5zX0Y0pUf/b9bR65n8h/rv1WpH6UX0f/AG71Wg3/ALZJN5byer/mPU+qk3qzbY9aUncm2OTvr5FCj0cGcHvx2ePj8fGOSSskyJLaDpFcuxKkLHwE6E7IjdHI5HIbsToXez8uRezYnRyG72bobvaQl3Y3e7yV58GKNMdNHBn1Ceso/oV6jIfacjkXfQ1W+pP++iOrCGWS/kIaf49kv5VpVFUan8hrN5J+onP8mOcqqxN138pKxR6F14vGzd/GWfJOhSseSJLaOCONk6F38CInQ3fksbVtx8UXfRXi1Y1WzViVDdHI5D7E/Dj50v7NQ0onSORf9E9TjkfqYR7bJ+uhFXHs1f5ByVRVGr6mcv2PVbXYpUOTfzlgWPDicSb4nL46806GrEqGrGqI4I42SsXXwE6OQne7dHIXYnRyOW3LyWduJxOJxGqGrOI1QlZNUxKziPrw4+xJuIl9Qp6fRLXjB5J+vgulkl6+VdI1PVak12z6reTneEO2UNV89KxCx5ajt0V8jlulbOBwHGtkrOBKJGIlWydC7+FHeWydHI5HI5HI5HI5HI5Cl2cjkcjkchu92rEq2lnZo4nEpnN/0ctuXjr+r01+PYvWuK6RP1M2sj1JN2xu+6LL2To5M5DdiQ1XzErF0KNoXW/HZ4H2PHx+OylsnQpW9mrOCEq2asSrZKx9Cx8JOjkchu/c4iyMTvdujkchO926G7ErGq35HRxPpo+mhrZppFsXRxZxK8ENbJWcR9Dd/MWBRtCVFHFHFbvGzx8e7GhZ3ToUrfsLA8ix8JujkzkzkxO/D7fNvaxOjkchu906ORyG72WB5EjivDkcVslTscr25M+o3vxRxOL/AGUihqhOi2N38xKxKiONljxbdbX8fjtXhHPmlYuh5LOTF8CXhdHJnJnJ7WcmWy38GzJZyY5M5M5Pbk/GkUj7hRdnBDSXaHJsbo5Mbv5yVmCMU0KKopeU3WB4+SmxdscUlvHPnHG1I4o4r326LY3e1pZLidfoSVFIflyZyZyYn3u+jkxO/Fui2J3skUhlIpFLz+kfTrwlgeC3/gI42jgWPGkanWBtvI9lkpDXxLYskcksbMiur844+C+i2Xe0m0cmN3sm0c5HORz/ALFKO1IpFIpFLZZ2fSLe2C2WxO9pZ2tlsTdFv2/qLbiikTbWDnIt/ApFIpe6lZSMEUmhJV40tm287WUikPBbfxaRHJLG0sEceccfAfRd7ybRFp/kVF4OKJKn4Utlgtlstlst72xO8jS8botmfC2Wy2Wy3vb8eEf631NSukOTefi0vbj4RwLHhS2tlsYsoaVbPHxVkWRpJWW9mRx5xx8FreeydYLZnytlvxeBN3vftSbTFjdt2Wy2WxNlstlstn1EfXj/AEamq5u4sz76XRSHnekUtqRLp+xHeKspEUq2S6KRS2tlvaxLvZpVs118RJWUtmlW8X37Cx8GkSKspElXuvBbFnaWC2Wy2Rbe8iLvaTae0cb0hlst7Ju95YNTVX62x8BY2orxfsR3jssCXRQ+mLA32PUost7JIpbSxs8fEWdngvwtkfKOPgRyS2opFIklZSKRSKRSKRSKW6b2pFLekUiWNrZb2st72RwNuy3tS8LZbFn4awLBSHnwpDXW7x4R3jvGfE+ojlfZzS6G7d7PJe9IWzwSwPHxVklgeCH5Esbw8Ikskce+s+UvH6d9i0uh6RVdeFezLaJLaOCiWfK/KOfhLBHAsDJ4FjdGpkeNnjeOSG0iHsvO/wBLweNp/j8ZZJ5IfkSwRySIeEce+s+287rHuPHjHaXjLPn0PG0c/CWCON141fR9I+nXZqbURx5SztHHg87rd42eCWB4+Ks7TyLO0c+USWdlj21nzkRI7P4ctokiPk8+L+FFMltHBHG8c+Gmqzu8DwT/AB2hkjvLzstDyQzte7xtL8WUPHxEu95/i9lnaGfNY8GIsvzWfYi17lezIiS2WB53WNn5PBTIxt17qyL8SWdk+iOPBY2p+DKJdo4t9C03F2Uymt5EiPWSWSONpZ3pi2tFlpDfQ30SwSx8P9lreWCWNo5IZ9hPotb2V7Ec7SwR8JCyWvZremV5yI7SKZTKe6fXi2vBLv3VkS+0aayPO0GuO1rZFMp+L2WRoXWSfa6KZTJKhOyb72i0kRaon+W1MWCnusk07GcWSXQ8Fe7a8Ke3F/0R6WzwSTrZEWrLT9lY2eS0U/GmUxLvaWNktrQ9kxNV4096ZT3adFMplMplMr2GuymUxFM5LxWS17sMiwajKZTFgjgeRYFja1taLRaLRLNnKuz6h9S8nJHJHJM+1rscVHBOLb6FFj6I4JLuy0KSorantTKOCQ8ElapDVEse5aGrLW1rZRdjKZT2mrXRVbRyQ3iS2rdYLRTKfhTEnfjLAtpFXvQsCxvTE0h7cltTEmPG9MplDKZT9v6a2p/ASoTpoTtGpnwjglkWBY8KZT2tDfQ8bN0ckckOX9HNileTkjkhRUuzjWCWnJrpD05LqiMJPpC6VMs5IplPZjTo4snF2Si6Kr22mLA09qe9rZ4KY3RLN7RIujkhOxNIfZVi6Q02UxYGmLwXnLG0RqxKhqzBHGyxupJIefNlMSd7yKsplUNWUymUymUymU/C9qe1P2aa3jtxbfRF0iat9DVbxwPIsEe+l4tjwN9dDckKb/ZyRJprzboUn+jkxajSOaZBpOzlA+wqJW1o5Ic1QpJdk5J4JYJY9+0c2fViLvtFrZ4GrRKLopiVbJWRVbp0Z8qZT3teOBu9o+DVi6yWhNV4cXtxflaL3asSrZqyqErKZTKZTKZTGmUymcIlMcWKLGnQk7810XZVbQVjVEBKziyUXkUWxqhSSRTfYsGnJWckWj6jHqOj6jPqH1IjmmjkhO/JuhOxq2J10ckckWhSVHJH1InJHJn1GKaY8bNpobolJUN379M4vbTcl0xZ2eNpK0NNCVnFkVWyVnFnFiVLxp709qfi+zixqhOjki0Wi0N3smJqt1JUcW9uLOLOLOLGULPi3RaG7I+Vofmxqlfnkquxu9oSUckppkZIg09pf0J8emNcuxquiONoqne/JDkjkhvwTo5I5I5I5I5IbsTo5Dd+CZyRyRyRyRyQpDk6FJ/s5olJUN38DktlkUlZHvar6ODH10LvI0ljwj4JWcWcWcWKPW3E4nFnHwyNVtLwbo5I5I5I5IUlQmqF2cWckjkjkjmjkh9ocWhiVeMt4+TRxZxe/LwycfJdDd7pWNUJ0KdHNi1P7HJNkZKhyVil0c0fUR9RnNnI5fF4+PJnI5Dd/C5HEjFyIdbJVtxp2x1+hqzicWcRKt0rF1vW3HfjtxOJxKrsbvaWzdHIlJHNHNHNHNC1Eh6n9EPUxjlENaM8C+5+COaHK1ulY41u1ZxGqI+F+NePITvbiV7CdCkllEmnjxjgeRMXyuRyORyOXx+RCVdCyLO7VnE4nEarZKzicRKhKzjssea7OA40PsaraW0tpjdCd7N0cjltGUovJDXcSGopbcfFKxRpkseMn3QlXg0La9+JSOI4nBig0ctnj306Kvs4l11/lod9ibvBHJxOJxOJxGqGrOIlXgnRyGLHmujmOVqtnjZqziN2N0N2SyJ0ch9+PEg3EjJSHjxTpnMlLo5CdjdC7GuTvZujkcjkcjkVZy35HIvw5F30OCSu/fTo5f5fRKRHPk1ZxOI1Xi3RyFLo5ewzkXZxOI1R9P8Adk87SG6E78uW0J8SOup+bVnESoasaohGr2l5LyquxOx9eF/C4/ASs4jVfCSs4jVe/CfAhqKSFKmRdq9krZwJRoSskqG6G72SQ9mrOO/I5HI5HI5HIvZZ2bou8jr9E4DVEiWRY8+RRDU4kNbmWvZkJ0J2SErOI9q24+CyPGzd/GspeTXsp0cmdPJSOJxOJxRxOKOKOK9lOhOxqxqvc47PBpKlZHvsjJroTsTrs5scrE6G7JCVjVDVi68aRUd+T35HIi7fZ0sHIbsaswP7iUSUP6JRp9iVeXLfiQk44FryTshrchU1Y3RyORyORyG72TobsWNnnazkcjkctlIcuhP5HHxWR49tqxOlRyZyZyZyZyZyZyZZxRxRxRxRxOKOKGq2To5Mbv2+PhGVdGnJNCyLPg3RyZKTObQ5Nikv2Liz7R/9b0cd1vxRSGuhdHJidjdDd7NWJUakL7RjPg5bM5PdZH2J8cGlqP8AZacb2boTvZuhzaezdHJnNojJNdn2j/69i9uT9xKxqvgXY0l7CVjVe3yZyZyZyZbE+xV+x8WuikcUcUNV8DTk4tEGmhZ3bobsbobvZuh9idFsU6PqHI5M+0+3al5UjihKhqxqhKxqhKx9dE4W+iUZJ0j/ANjbW1ve3ssiKRbSo0nfQ1Q8CdHJjdjVnJl342y2Wy2Wy2W9kUil7l0XfwbeyVspFIpFIaouiPF/kNL9DKl+ipH/AL9y7F0Wy2Wy7ErKQ+vapeGlKuyDTW8hui7G6LZd7SbTOTH3sptdCk6LZbObLZbE++y4lxLj+vBuhuyJIUksicWUv0Tgsk4PKH/3tS2pbrOybErZFuOBdrslHrocWs+DdC78ElQ/Ztlv/A2xO9m/BOtraOTKspFI4M4y966LfuUt4t3Ro7N0LvJJIaoqxqt5Z8ecjkzkzkznL+y2Wy2Wy2cmcmcpHP8AsjOLOcUNp4GkyqLaG7yUqo1NPu0cdqW1IpbWyPas03ckUiDd1tLtDWzdF2RGy2LBb+al0MSVD95OyikcbwOPEUXI+mxwlfRwkKEqOMi2jnL+y/mpLg2acUyHTLYu8lbSSGSJNoi7RSZLp+FItlstibOTE3fhJ0iLbezViSW2C2c6ycrwLGz7yfRvuh6bveCTyUikUhf0QS5LaGd5JDRLaOCWRLrdt2Wy2Wy3tyj8axKzg2VtSKRSKXtWy2KfEc08i1EsHNvDE29rYn0fTvspbUvkW9ntDuSRGKT6IrvdPaRLaSRVbODfY4Ozgx2ui2UfTZ9N7Ju9rZbLZHt9lLzaTH0+iLdFstn1K6Lvs4r+ikLrBpxUsk9OmNdC7NPTeWJKxJLaKtnFGpFKikNLaWSy2W9kuikUtre1stibv4vJ/wBnP+zIvCkUikNdexRSKW6xs2/7FqkO2T62r5cMWQb5CzvEkSe0iTZbLYtSuj6p9QST7GkcGWz6hcf6OKZ9NjhSseBPva2Rz5yyWy2WxJUWIpFI010PtH06ElZy4qxTTiLO9ktpbSz42W9q8rfxa8LPqJ+DwLPjL4vHl0Shx+C9tLG1kMbyJEibe7z4WxalI+rt9LZN2cmuxavZyT6JJURXJ0fSZLTdHBkYuOfGikSyRXW1eKLrs+qo90JrUfLdZ3n+j9EiW7ztJ9iwN9ixuxDx/gLrs5314R3l7qHjdZI52iamESI7S9xiNLZ4IZI7vJLaWdnn2PqjR9Oh48Iy4uyM+TolLij6p9U+ocuRHaWfBYH7Cycq7PqkdTs+ocuW/LiXy2lnZ58H/j+XHovl38COTlxOfLxlnxeRY8Z5I5WyztHJHJLaRLaWdnn2cC1LdHT6Ppj0+iWl0fT49+ysfCjLixy5JeDz5vTK8pY/wkdpefNroz418J5FgnjbJp4J5KNNbrJHaRP9E0U9pZ9tF12LUdi1Oz6o58lRLeJLzWPG0Wi9pYKZRHJaJERyojq0R1bOVloed3koS68as+mh6dKymUVsslotFotfFv2OTWC72WBRUiUWmY8K2va0NlMS7Hgpkdpe2mi0UaRBfaxd9CVMWdlnZFkiRLaeSWfBPofnlCVPdIlgiXvL2U1vZg+oz6jI6lvstf2SdroplMreMuIpctnJoi7Xfgn5LJe3/9k=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": { "image/jpeg": { "height": 200, "width": 200 } }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Your predicted breed is ... \n", "in/006.American_eskimo_dog\n", "\n", "\n", "filename = images/5.jpg\n", "hello, human!\n" ] }, { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMSEhUSEhAVFRUVFRUWFRUWFRUVFxUVFxUXFxgVFhUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGxAQGy0fICUtLS0tLS0rLSstLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAOEA4QMBIgACEQEDEQH/xAAcAAABBQEBAQAAAAAAAAAAAAAAAQIDBAYFBwj/xABFEAACAQIDBAYHBQQIBwEAAAAAAQIDEQQhMQUSQWEGE1FxgZEHIjKhwdHwI1JicrEUQuHxFSRTgpKissIzNENUY4OTFv/EABoBAAIDAQEAAAAAAAAAAAAAAAABAgMEBQb/xAAmEQEAAgICAgIBBAMAAAAAAAAAAQIDESExBEESMhMiUWGBIzNx/9oADAMBAAIRAxEAPwD2QUBSKQQAAACiCgAAAAKACoYAI43SDpNQwatUlebV1BON91u2895rL365GG6Q+lJtOGEhZ2SVSau02s92LyyyWdyM2iBp6k5HDxfSvDU771aGSvZSjKT0eUE97iuB47tLpdjMRHdq13ZJx3Y+pGWd7yjH2nkuXZYz8q09eGfdZ8H3fMqnN+ycU/d7xDp7gWm+u0V7bsk+5JrN56DsF07wVRpdcoN8J6/5bo+fqtWSeWl+ObXLPx9w91W8/rxI/mkfCH1FSqKSTTumrprimPPnro50oxWFVqU7R13H60HycXpfS6sz13ol03w+NShvKnX40pPVpXfVy/eWrtry4ltMkWRmumoAALEQAoWGCCgAACCgAIKAACAAAaAUAIgAAoAAgBAAAoDAM3016VwwNNJLerVE+rh2W1nL8K97y7Wu7j8XCjTnVm7RpxcpPklfLmfP219p1sZiJVarbk2oq2kYrSEOxfN8SvJf4wlWNyr7Qq1K8pTqTlKcndtttvL3Irww24u1mm2fsq6zRNU2PfgYJyctUYuGQdN9gs4O13HTmal7CX8iviNky0t9cxfkP8TPU6CedtbP694kcO+JpsJsGatl9d5aexm1pYPyD8bKUYOPBrmSypXzWT1um4u6d1JNaNWTuuOZoKmxnwRHPZdtLp/EUXE42n6H+kiUbUce9MlXtZ2/8q/3LxWrPUac1JJp3TzTXFHzhjaEoO1u7h3o9D9E/SLN4KpLKzlQvla1t6kvO6XKXhtxZd8Sy3pp6cACo0qwAAAAWAAAABQBBBRACvYUVARMAADAFAAAAAAMB6WtsbtGOFg7Oq1Kp+RaR8ZJP+4+0xXR/AJ+s+GSH9N67rY+s7pqMlCPZ6iUf1v7zqbPp7sEl2HPz33LVhqtxyJoRI4QLVOmZWsKAvVJksYDlEAjUBjiWEhjiAVJRIZRu9C5KBDUiBuPtrA79NtLNL6RkqOJnSqxqQdpQcZQfZKD49ud79uZ6DJZWMDtTD7tRq2V3bx+RdjlmzR7fQ2yMfDEUYVYO6nFPmnxT7GnkXTF+ijE72D3P7OpJeErS/Vs2h06zuNsM9gAFJAAAAQAAsANAUANAAAIwKFgAAUQUAAAADwPa03LE1ZPjVqPmvXeT7tDQ4L2V3HB2jD+tVUlb7equ61SWXcaDDRtFHLy9t2FdpIsU5EECSKKGhZTFuRQQrkMtJGxrY3eEQbGiORDUJJ3IZMRopMyW16V5vvNZMzG1Pbff8i3HPKnLHD0T0S/8vVV/wDq6dn2cM78/gbkw3oqh9lWd8usird0Iv4m6R08X1hz7dgAAsIAAARQAABoAAGgAUBGAAABQAAAFQhxNsdKcPhaip1XO7V24xclBPRytn4JNim0R2cVm3ERt5XtOn/Xa0V/b1eN/wB93zOvApbfcf6QquMlKLqQnGUbNSVSnCommtV65Yr1FFNvgcvLH6m7F06FGRaiZSW1LO+fjoMlt9x0mu7X3EPin8m0iglAyWE6RzbzSf6mjwmK3kI4lZVMcoohq1LcTh7S246eUfMRzLvVSnWMyukspO29buVxy2tvN39bwazJaR+TuXODt2n6yfbn5fzOng8X1nBop7c1j3P9UOnZXndW+9FsH+zVJP8AerP3QgvmbMzXo8w+5goNr25Tl4b26vdE0iZ1cf1hzrdlAAJogUAAAGAADQAANAKIKIwAAAKAAAB5T6Qqv9fcdU6VNyX4u1eDj5Hqx5X6Q6L/AKRg+DpRffa6/wBhn8n6Nng/7P6lx/2LdnSabtd5Phm5WXZm2dSpEobNxPWSkt31YNWfNp3OnBXyOdM8NM11aYZ/ERnOajFJK6W816qvxtxZytoSnSquHWppScbOnvaQlK7UYNJNpJXatvRvkm1rq2D4opYnCb0lKUYylHRtZ5aX+94l2LJWv2hVkx3t9Z0glszdUJJJdZGMlZNK8lfdktFLhz9x1NiVHezGb05vemt7zS7NNCfBL1m3xKrzEzwtiJiNStbRdosyssK6kkmr3eS4a6t8Er6mpxmaONXg7pqOeWfdw+u0Vez0z+0qk6NXqouks5RT3JXvHczzys9/LT2JPLJO91VSG5JpSU4xlvRW61dJtSi2766+4u1sO6kt+UFKXa7u9tLq9peJdjQlJ70nd91vcX3vSa6iOVFMeSLfqnhLg1kVNr0nKdJLi2vDV+46NKnu6CTa9r7t35IpiVlqqW2sfPdjGcpSjCKjCmsoRUUksr2b5u7z7DdejPassRhZb7b3J7sbu7UXFNJvjZ73hZHnm0KinTU07rXs80b70U4Rwwbk/wB+o2u5RjH/AFKZp8aZm5+VSsYOvbZgAp0HJAAAAAAMAaAABoQABGBRAAFAAAFPOvSZSaxFCdvapTgu+Mr/AO9Hopw+mGyv2jDuyvOm+shbV2XrRXer25pFWavypMLvHyRTJEy852RTUaFlqm3Lvv8AK3kWKEiDDZXStZrhx5klN6HLl0Z+7oQHOmmFHQkeRE1evpYrKVmh+LrcFqRYWDbA9J6syNRz7yavTaV/Igo1M8xiVmNFakigNpTHyAleqwweb8H9fqR1GLRbs7d3h9McIW704uJpxjGcYv1d5pd2v6XPY+j2C6nDUqbVnGC3l+J+tL3tmA2DsVVsVTju+pC9SfY0rWT75WXdc9QN3iV7so83LE6pH/QKIBsc8oAAAAwAAaAABoQABGAAABRLCgACFuAAGYxPQmjOt1iqVIRct6VOO7ut3u0m1eKb1XlYw0XpfU9hR49iMpvk2vJ2MXk0rGtQ1YclpnmXTw8shMRV4Ir0J5akN21dmFuiUGJvG7jqUsJWqxvKUt53eVrZdmRdm94WFKy0fkSiEzK+OnKNkt3812JgJVGvXab5K3uJpU29UNi7DmCdCgTzKFOb1RYjUusiCMyhqM7WyujMsRQ6yFXcmpyXrJuMo7scmlnFqV812vJ5W4bZ6N0QhbCU+bm/OpL4WNXj0i06lkzXmvMF6ObF/ZovenvzlbeklZJK9opdiu8+NzsAgOhWsVjUMVrTadyAACSIFEFAAGAADQAANCAAIwAAAKAgoACiAAKeS7Xo7lerB8Kk/LebXuaPWjz/AKf7PcKyrr2aqSlyqRVvfFL/AAsz+TXddrcNtWcTBdnf7xcZh5NWhPdfDK68SnRrWdzo0qpzbRy30lwa+IxNPK0O/wClkRR2viFrBPl/I72Ip3zSvyOdV/KOJaazHtV/puvwpeGTf6jltWq7J0M+TSJacl2WL2GpXd1G3N8R7Fpr6NwvW3vKMVG3sptyT58C2tBtSa9zRD1nAjHLPZJOdl4HqOwqLhh6MWrNU4XX4nFN+9s8y2Thevr0qT0lLP8ALFOUl4qLXieto3+LXuWHPbqACADYzlAAAAAAAAAAIgAAGhAQBGUAAABRAAFQAAApmun0b4aKf9rH/RM0pkvSDjYqFKjf15ylUS/DTSi351oFeb6Snj+8PO3Kzt2FrD4jtZWxVK+a1+tSnQxFnZ3Tyy+vA52ttm9S1FGqms0RYiCehWwtdNF6lNcOwr00VnhUo4ezu7lxzVsheuK1aus8w0cyr1553vyIJVlr9IgxeJWebEw0HJptZapfF8ietQzzaZlp+hUf61Rb1bm+5dTUPTjxWrtyWBSxUFdwnT9V/vRnOMJx5XjKSvwefA9jwGMhWpwq05b0KkVOL7VJXzXB8jd4v0/tl8iNW1/CwAgppUAAAABRAAFAQAAEABhAKIBEyiiCoAAAABQRDi8VClB1KtSMIR1lOSjFd7eRiOkPpMo0oyWGi6kldKc04078o5Sn/lXG44iZ6KZiGv2ttnD4WKnia9OlF5Jzko7z7IrWT5K55N0l6SQxe0oSpSvS6h0qTacd5u1WUkpJNX3Ws/uI872ptWrjsXKpWm5t23m+EVpCK0jFZ5Lm9W2W3iGpKotYS318V4q68R2xfKkwVcmrRLaVl2efPsKeJw+8r6NcfrgX6Mo1EpLSSTT5MSvS8+w48OnaHDWLnSdmtMrokW3eX125l7cTyfkEdmU5fud7f8CU6RiZhTe332e8i/pSc8oxOlLY9JZ7vndofSwyitF5e4OBMzKrhcG3603flwOnGNhlKF35d3iPkvPtFMpVhwOnEn+yyiuMqaX+OJpfRp01jhafUYly6q29CSi5OEtZLdWbi83kr3vrcyPTCpfq4Lg3N/3F82n4HOUrNW1Vjp+Hj3j5YPLt/kfSWytv4XE/8DE0qj+7Ga3l3w9peKOkfK9Wmr3tdN3X4Za/yNR0c9ImNwjUZT/aKX3Krbkl+Cr7UeGu8stC+cc+lEXfQAHA6LdMMNj4/ZT3aiV5UZ2U12tLScecb87PI75X0sACCgCiCiABcBAA0IAAgUUrY7HU6FOVWrNQhHWT/RcW3wSzZ5J0p9JlerJwwn2FNO2/aLqzXe7qmuSz58CdaTbpG1oh6xtLalHDx3q9WNNfieb/ACxWcnySMB0g9J2sMHD/ANlRJt/lp8O+X+E8qqVXKTnJuUn7UpNylJ9spPN+Ix1ezy+ZfXBEdqZyz6dXam26tee9Wqyqz4OTuo/kjpFco2ORjarlcZvv6+ZWxeSuXfGIhDexsmFrvtb9zt8GXUytgn6q7r+eZPchWODtPLRdFcbl1Unpdx+K87mlsmef4Se7O611X6P4G72diVUgnx4nF8rF8Mkutgv86QinSz437eIkK27dPPnb5lqdPtzElh7/AFmZl3xROrdWSyz+PAhlH38C5+z2VuzmJ1K7/D6uB/EyhB8fIdWjZFinTscfpPjurpPdfrS9WPe9X4K78B1ibTqBMxWNyyW0avWVZS4ewu5ZX8W2/FDJPNkUVw7vc0/gLJ5nosdIpXTiZL/K20qllYr1CREFSViWkE2ErSg1KLcZJ3i02mn2prNPmeodEvSbOEVTxadWKyVRNdYl+JPKffdPvPKXkWKErEbUiyUW0+mtk7XoYqO/QqxmuKWUo/mg84+KL58x4PGzpSU6cpRktJRlKDXc4u5udh+lKvStHEwVaPGWUai8UrS8Vd9pROG3pZGSPb2MDkbA6S4bGRvQqpu15U5erUj3x7OauuZ1ipMXALgCSExfSn0hUMNenQtXqq6yf2UH+KS9p/hj2ZtGI6ZdOquKcqdNulh9FFO0qvOo1w/Asu2/DEzq3L6Yd8yptk/Z1tvdIa+Llv16rlb2Y6Qh+WKyXfr23OJv63+eY6aIaUs2jTFYjhTvaRVP4hF+/wCQsiPezXf8CWiLPJcyHGr1CSbvK3YFeN4sNcD2jwT9SPdbybXwJ1Ir4P2F3y/1NkhXHSU9rF7Wf1nwO9sjG7jTvkzM4rFwpwvPO97RWr+SKdXHVaTVanfcaW/B5pS0zXBPLNfwMvl4ovHHcNHj5PhPL1ulVUkmh6jYxGwellKdoyl1cuyT9V909POxrqOJutbnHtjms8unXJFo4WHd5IfBMh69a/WRm9u9NaNFbtH7Weej+zi/xSXtPkvNBWk2nUC2SK9tBtPaFOjFzqVFCKWrevKK1k8tEed47brxlVyScadNWgnq3LWUrcbLTmZ7a21KuIlv1ZuT0S0UV2RjokdDZtPcprteb+u6x0fG8eK23LDnzzaNQvx1X1wfzQ6Qylr9cf5D5HTiOGKRcr1+DJWyHELL65CmBB9PPP5ZklKRFGWVuQtGWT7iRLSlzG1JjVLIbF59oSFzDV5QanCTjKLvGUW4yT7U1mj0rop6T5RtSxq3lp10V6y5zgvaXOOfJnl8Z/yFUyu9It2lFph9Hf8A6fBf99h//rD5gfOXWP7wFP4V35P4V51M7+ZJwIZLyFpSutTVDNJ5BUVndE9hilceiJv3Gvh3iVEr6DHG1u8JB0n9p4E/ArV3aceeRMpDgIcKsmuybXui/iSWuNpyzl3391vgMr1LJvwXe/4fqV64T9uJtavv1H2R9VdyNhjcRh6mGpVaTjGp7NSF42s7+q4Wz3WlZ6OMtXZJZJ4VMdh4OHd+hmiJi21s6mNItpYZQl6vsyV0tbdsb8bfo0W9j9Ia2HtGMt6H3JXa8HrHwy5D6yU47ryesXwvz8MvI5VWi4u0lYhkpH9J0tLr7U2/WxGUp2j9yOS8eMvHI5tuZDvFrCYZzzb3Y8Xnn3EK19Qc29yMJhXUd7eqnm+3kdtJatpLi27Jd7K8sTGCShHRWV/kUcTvVPabfZwS7lojTFfjH7yqmdp5bbSm7Q3o9rybXFnSpV4zjvQeXFcYvsZnq2Ca0HYFzpyuvFcGuYoves/qE1iY4aBMbUWgylUUlvLxXYx8maN7hUS3ASjx8RYsbQ1YyTJtqxJorEVOVsh85DBzElU5jiCWcrCkQf1j5eT+YEnqfVhSGktoocPyoZ+94gBOEU6+RAtQAkRKoktEACkGYzWPeSSFAcBDR/e7/mR4zSPj+oAVz0l7V6PwHVdPAUCMdJT2jn7KI9pexT+uAAVZOk69uUzuP2YfkQoEMXaV0NUdTADR7Vek1T4FSpoAEMiVVvZmr/Ky3wACyvSFuzULhfaYAWIpGK/aAAI+ZHh9WACscEAAKCf/2Q==\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": { "image/jpeg": { "height": 200, "width": 200 } }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "You look like a ... \n", "in/056.Dachshund\n", "\n", "\n", "filename = images/6.jpg\n", "hello, human!\n" ] }, { "data": { "image/jpeg": "iVBORw0KGgoAAAANSUhEUgAAAMYAAAE7CAYAAACG4P4uAAAMGWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdUU0kXnldSCAktEAEpoTdBepXei4B0sBGSAKHEEAgqdmRRwbWgIoqioisgiq4FkLUgYmcR7H1BREVZFwtYUPknCaDr/uX895x573t37r3z3Tsz78wAIG/LEggyUAUAMvk5wgh/L2ZcfAKT1A0QQAAMIAOcWexsgWd4eAiAMvb+uwzdgtZQrpuLY/2z/7+KIoebzQYACYc4iZPNzoT4KAC4OlsgzAGA0AH1enNzBGL8DmJlISQIAJEsxilSrCHGSVJsKbGJivCG2AcAMpXFEqYAICeOz8xlp8A4cgKILfkcHh/inRC7sVNZHIi7IJ6UmTkHYnkqxMZJ38VJ+VvMpPGYLFbKOJbmIhGyDy9bkMGa/3+W439LZoZobAxd2KipwoAIcc6wbtXpc4LFGHJHTvCTQsMgVoL4Io8jsRfje6migOhR+352tjesGZxngAIOyycYYlhLlCFKj/YcxdYsocQX2qOhvJzAqFGcJJwTMRofzeVnhIaMxlmZyg0cwxXcbN/IMZtknl8gxHCloUfzUqNipTzR1lxeTCjEchB3ZKdHBo/6PspL9Q4dsxGKIsSc9SF+lyz0i5DaYKqZ2WN5YRZslmQsVYg9clKjAqS+WBw3Oy5kjAOH6+Mr5YBxuPzoUW4YXF1eEaO+hYKM8FF7rIKb4R8hrTN2KDs3csz3Wg5cYNI6YI/TWEHhUv7YkCAnPErKDcdBCPAGPoAJRLAlgTkgDfDa+xv64Ze0xw+wgBCkAC4wH9WMecRKevjwGQnywJ8QcUH2uJ+XpJcLcqH+y7hW+jQHyZLeXIlHOngKcSaujrvhLngIfHrAZo074k5jfkz5sVGJvkQfYgDRj2gyzoMNWWfAJgS8f6MLhm8uzE7MhT+Ww7d4hKeETsJjwk1CF+EuiAFPJFFGrWbz8oU/MGeCqaALRvMbzS4Jxuwbs8ENIWs73At3hfwhd5yBqwNz3BZm4om7w9zsoPZ7hqJxbt9q+eN4Ytbf5zOqlzOVsxtlkTQ+M97jVj9G8f6uRhz4Dv7REluJHcEuYGewS9gJrAEwsdNYI9aGnRTj8ZXwRLISxkaLkHBLh3F4YzaWtZZ9lp//MTprlIFQMt8ghzsvR7whvOcI5gt5Kak5TE/4R+YyA/lsi0lMa0srBwDE/3fp7+MtQ/LfRhiXv+mymgFwKoLKlG86lh4Ax58CQB/6ptN7A7fXOgBOdrBFwlypDhc/CIAC5OHOUANaQA8Yw5ysgT1wAR7AFwSBMBAF4sEsWPVUkAlZzwULwTJQCIrBOrAJbAU7wG5QDQ6Aw6ABnABnwHlwBXSAm+A+XBu94CUYAENgGEEQEkJD6Igaoo0YIGaINeKIuCG+SAgSgcQjiUgKwkdEyEJkOVKMlCBbkV1IDfIrchw5g1xCOpG7SDfSh7xBPqEYSkWVUU3UEJ2MOqKeaDAahc5EU9AsNA8tQNegZWgluh+tR8+gV9CbaBf6Eh3EACaLMTAdzBxzxLyxMCwBS8aE2GKsCCvFKrE6rAnO9XWsC+vHPuJEnI4zcXO4PgPwaJyNZ+GL8dX4Vrwar8db8et4Nz6AfyXQCBoEM4IzIZAQR0ghzCUUEkoJewnHCOfg3uklDBGJRAbRiOgA92Y8MY24gLiauJ14kNhM7CT2EAdJJJIayYzkSgojsUg5pELSFtJ+0mnSNVIv6QNZlqxNtib7kRPIfHI+uZS8j3yKfI38jDwsoyBjIOMsEybDkZkvs1Zmj0yTzFWZXplhiiLFiOJKiaKkUZZRyih1lHOUB5S3srKyurJOstNkebJLZctkD8lelO2W/UhVoppSvakzqCLqGmoVtZl6l/qWRqMZ0jxoCbQc2hpaDe0s7RHtgxxdzkIuUI4jt0SuXK5e7prcK3kZeQN5T/lZ8nnypfJH5K/K9yvIKBgqeCuwFBYrlCscV7itMKhIV7RSDFPMVFytuE/xkuJzJZKSoZKvEkepQGm30lmlHjpG16N709n05fQ99HP0XmWispFyoHKacrHyAeV25QEVJRVblRiVeSrlKidVuhgYw5ARyMhgrGUcZtxifJqgOcFzAnfCqgl1E65NeK86UdVDlatapHpQ9abqJzWmmq9autp6tQa1h+q4uqn6NPW56hXq59T7JypPdJnInlg08fDEexqohqlGhMYCjd0abRqDmlqa/poCzS2aZzX7tRhaHlppWhu1Tmn1adO13bR52hu1T2u/YKowPZkZzDJmK3NAR0MnQEeks0unXWdY10g3Wjdf96DuQz2KnqNest5GvRa9AX1t/an6C/Vr9e8ZyBg4GqQabDa4YPDe0Mgw1nCFYYPhcyNVo0CjPKNaowfGNGN34yzjSuMbJkQTR5N0k+0mHaaoqZ1pqmm56VUz1MzejGe23axzEmGS0yT+pMpJt82p5p7muea15t0WDIsQi3yLBotXk/UnJ0xeP/nC5K+WdpYZlnss71spWQVZ5Vs1Wb2xNrVmW5db37Ch2fjZLLFptHlta2bLta2wvWNHt5tqt8Kuxe6LvYO90L7Ovs9B3yHRYZvDbUdlx3DH1Y4XnQhOXk5LnE44fXS2d85xPuz8l4u5S7rLPpfnU4ymcKfsmdLjquvKct3l2uXGdEt02+nW5a7jznKvdH/soefB8djr8czTxDPNc7/nKy9LL6HXMa/33s7ei7ybfTAff58in3ZfJd9o362+j/x0/VL8av0G/O38F/g3BxACggPWB9wO1AxkB9YEDgQ5BC0Kag2mBkcGbw1+HGIaIgxpmopODZq6YeqDUINQfmhDGAgLDNsQ9jDcKDwr/LdpxGnh08qnPY2wilgYcSGSHjk7cl/kUJRX1Nqo+9HG0aLolhj5mBkxNTHvY31iS2K74ibHLYq7Eq8ez4tvTCAlxCTsTRic7jt90/TeGXYzCmfcmmk0c97MS7PUZ2XMOjlbfjZr9pFEQmJs4r7Ez6wwViVrMCkwaVvSANubvZn9kuPB2cjp47pyS7jPkl2TS5Kfp7imbEjpS3VPLU3t53nztvJepwWk7Uh7nx6WXpU+khGbcTCTnJmYeZyvxE/nt87RmjNvTqfATFAo6MpyztqUNSAMFu7NRrJnZjfmKMOjTpvIWPSTqDvXLbc898PcmLlH5inO489rm286f9X8Z3l+eb8swBewF7Qs1Fm4bGH3Is9FuxYji5MWtyzRW1KwpHep/9LqZZRl6ct+z7fML8l/tzx2eVOBZsHSgp6f/H+qLZQrFBbeXuGyYsdKfCVvZfsqm1VbVn0t4hRdLrYsLi3+vJq9+vLPVj+X/TyyJnlN+1r7tRXriOv4626td19fXaJYklfSs2HqhvqNzI1FG99tmr3pUqlt6Y7NlM2izV1lIWWNW/S3rNvyeWvq1pvlXuUHt2lsW7Xt/XbO9msVHhV1OzR3FO/4tJO3884u/131lYaVpbuJu3N3P90Ts+fCL46/1OxV31u890sVv6qrOqK6tcahpmafxr61tWitqLZv/4z9HQd8DjTWmdftOsg4WHwIHBIdevFr4q+3DgcfbjnieKTuqMHRbcfox4rqkfr59QMNqQ1djfGNnceDjrc0uTQd+83it6oTOifKT6qcXHuKcqrg1MjpvNODzYLm/jMpZ3paZrfcPxt39kbrtNb2c8HnLp73O3/2gueF0xddL5645Hzp+GXHyw1X7K/Ut9m1Hfvd7vdj7fbt9VcdrjZ2OHU0dU7pPHXN/dqZ6z7Xz98IvHHlZujNzlvRt+7cnnG76w7nzvO7GXdf38u9N3x/6QPCg6KHCg9LH2k8qvzD5I+DXfZdJ7t9utseRz6+38Puefkk+8nn3oKntKelz7Sf1Ty3fn6iz6+v48X0F70vBS+H+wv/VPxz2yvjV0f/8virbSBuoPe18PXIm9Vv1d5WvbN91zIYPvhoKHNo+H3RB7UP1R8dP174FPvp2fDcz6TPZV9MvjR9Df76YCRzZETAErIkRwEMNjQ5GYA3VQDQ4uHZAd7jKHLS+5dEEOmdUYLAf8LSO5pE7AGo8gAgeikAIfCMUgGbAcRU+BYfv6M8AGpjM95GJTvZxloaiwpvMYQPIyNvNQEgNQHwRTgyMrx9ZOTLHkj2LgDNWdJ7n1iI8Iy/U02M2m6T/nGf/ReWwGzRHA4sXQAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAAgRpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuNC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjYwODwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4zODQ8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K9jy0XQAAQABJREFUeAHsvQm0XVd557nfvffNT5It2/I8yzbYxibGmAAJhjBkIjFdSQgNmSpUs6qSqk5IVa90OnS6EiqQylCVCmtVp6vJWAlJClIVxsVkJxDbGLDxSGzjQZZs2ZrHN7933+vf77/vkZ9kW5YUC0n0O9J9955z9vDtb/+/YX97n336FjnK8rHMgWUO7MeB1n5nyyfLHFjmQDiwLBjLQFjmwLNwoPMs1571UuNx9fX1Pev957u4WPDYek7bs5XRlG85z3b/+cr/x9xv6v5m1/uPoXk579HlQB+gWB5jHF0evyCl201++vpafF6QIpcLOQgHDtliHKSM5VtHmQNVIPr2WVKtL2dHudb/fxd/UMFoOmTLE/9Q/viP/1u58JrvKW9+/bVleLBdFhYO0F5os4VotNphmiF/Vfdkrtz8+U+Wz3/hjjK4ak357je/uVzzogvL4sJC6Wu1ysLsdLnxbz5SbrnvwbJyzfnle2/4gfLic0/vacheeT2NGXXZs3Gt1pGDY3GRutG+e7ZtKB/+iw+V2VVXlZ/4kTeU0eEB2ua9CsSnNXVzvgBdtV1q7nq/gqie13Yvmt9/+9I0HEnm0vIGx77ySVubJV9rXc19z6fH95THNz5VTj7rnHLqilFz8jny9lv28vHcHDikwffI2KoyveO+8vmb7y99bWWpr7QAdK9v7d0iEOq12ql2vPcFkelPXnNWufzS88sXP/Ib5YHHnghFgiIHCc8498Ky9txTy+/94Z+UdVt37XffdILD8i1XgfAjuJsiakGH87eCanBkZelMbyv/zwdvQbDbKaBph2U39frtoTA1921Xc16v9e716DTLfrSH7toGtX6g3WtXX69NTdk9ziS/9W549L7yb/7Zt5cv3Pd4FSASNGm8v3y8sBw4qMWwY9WeYyedXb7nu/+n8j/+bktZ9+gjZXLX9jJ6ylll7QVnl46iRcK+hfmy5cn15eF1G8psGSznX7i2nH/2GoBsGe1yxVXXlctfdEXZ+9Q9+/Sc1iLg6PSXl7zy1WXt5WvLg489XBa7T3d57lN+d3ayPL5hfdn45NYyuPLkcv75F5TTTl4RbjTgOxzWCPQFBGtw5KTymtd/T7nr4b8tj617pCxO7y5l+JRy6drzy9BAu+zZtbVs3b6nrDz5tHLKqpGydfPGsmt8rpx6+pllxXCrbH5qS5TC+K6dZboMlNNPXVE2b9xYBk86s1y29rzSoZ6p8d3lyac2lqc2bS19/WPloksuKWeeshJkL5TtWzaV3ZPzZcXYcNm59amyfc8s9y8tp3t/KfRJu+3RXWW22608O5zGLqc9bA4cVDBqD1RN2QHEn/+NXyhP7F5XTu/sLr/zx1vLjTf9bvmuay8F+bPl9ls+V97/mx8ol77sNWVkfmf57XufKD//v/9yed23X1l68C/dhbkyMz1Xhhsyq0qu/U813YVumZuba+5GWyp3M3u3lQ//6QfLf/yTz5c3/+B3lY1f/2IZP+0V5Zd+7l+Uqy8+I+kjQPtyHtoPxLkmbPeXTfe8r/ybf7epvPTc4fI3v/Vfy/s/89nyT970irJ1w/3l7VdfX97ynz9V3v1Try33ffmz5Q3/5F3lP/3V35af/N6ryif+9LfKz/zKH5a3vPWHSmfi8bKzc3o5pewpOwZPL7/xvn9fXnbx6eWOT/9Vec9//mi54UduKDseur1s6Tu/vOeXfq6ce+pouf+uvys/85M/V857xRvKxWvPLRvv+mw5/dofKb/8Sz9fzjoJlwmB8BjtHy1rL30xwjkAPz2OpMXJuPznEDhwcMFYUsBid74Mvez68rP/4ufL1ResKBeu+OXy0c9+qXwngrHjkXvLr73rzeV1v/L58s/e8poyuDhRPvUXHyhv/Mn3la9/7j+Vy88/Ld0Yt2ep79PDZVPN0lte000RGLd95r+VH3/vF8pNn/z98uqrLygTO36i/NHv/tvy3v/4X8r//Zu/VE4b6Y8QPW1nzHtA4U0lz/aNtZvtXFV+5mf/1/I9L7+ofOfla8offuJz5ZWvuq5cfNWryi/87v9V7t2+o5TOUHn99//P5dN/MVNuRvsPjK0ub/6BHyg33bmlvOf9v1Z23PuJ8h/+dqK87+feXj7xwfeWr96/oVyDYFz0ba8q//pfn1cuuvTSMvmiM8svfdcPlnvfegOCcWW55rrry0/+yFXl3pWvLP/bL/x06d/9tvLuf/Wz5Uv3/XD5oe+4bB+1i4zp5iY3Y4GWtnLf7eUfLzAHDlkwpqdnysu/+23lJZddVBiflpe94jvLg7dNlnkIemLj+vLxB0q5esM95U8++PUMqDevf6qUh+7DTdhDitP2kR3PuicBKsO+6tY/fZ9+bwREcHfnp8otd36tvO/X/2V53cvWcrNbBtacU97x9neUO//P3y6Pb5/aJxj650dyzM7OlpPXfl951dUvLoODA+Wyl7ym9N3yt2ViYqaUsaFyypqTytCMgsZnYKycdcaZZWDbPBYOr2tktJzG+Om8884pi0+dVi6/ZE05/4LzcI1WlwXGYwsI3bpH7y+33vT35atfu6usbE+V6ctPoo3VMg4OjpSh0YvK91//6nLOKWPUd3G56sWvLHv2TKUpjXyPregvJ5/5ijLcGsp1edTcO5I2L+c5OAcOLhhiQUvOd//gYFkxgF9eLTuX+vHPB/nL7Vy7ulx37XXl/NNGy+zcQul8x6vLW97+z8v5Z1VXx6L6OwNlcGioDPSbq5RWu+cU9Hq4v7/D/cEy1LvvZQelg6122bZrvHTJ0+5J0tTkZJlZaJX+tiVTFkKxa+vmcs89d5XFsTPKy196ZRkhenaw8YdCqjvVT32rRleUvnlrsLmdsnoEOgcrndMT42WhdXphKJRj+7Ydpds5rVB8mQahtmMRgZ2bnWNcMgyP5so0wnbW6hVl28b7y/ve+/7yrl/5f8v1111aZrY+Unasv7u0+tEuOaChM1qGE9RQKbRob38ZHa0CEOaTbmjFyeVNb/+nZc3YSM1Wm11/L/99wTlwUBUbreToeX6yPLV+Q7n9zrvLjvFxhGW6PLHh0XLng/9QNu2ZKxdcfGn55z9YysObxsv5F7+oXIlVmdu9ufz9F29loDoJ0fPlqSceLw994xtl/bqHyyMMotfzWbdhY5mbJ7LEwPrJx58ojzz8UFn34ENl/aOPlQ3Ut4GBdl/fYHnjd72x/MZv/k75r5/4+7J7796y4cE7yr/7rd8rK15+QznvtB5QkOCH7vlCuf4N31M++bWHIkRy67kcjwiFrhr5tm/aiEb/Qtm4g4E3OTY98Vj5xN33lm07tllEWblyuHz0zz5c7nno8bLuga+WP/69d5VHHttQduyeZmC+o3ztq18uG57aWmYYGN/54PqyfTuCNL9YNjzB753by8wwA/WVWIP58XLbrV8s7/8vH6V968s0CmWSgflDX/pM+cbjT8b67t6xpTxw3x1l/RMbyjRlGKAoCNptN91YfuVH31r+7JOfLXtn5+NmKvTLx9HhQPvfchysaN2ZjevvK3/zNx8tW9Gcp114ZRmb3VQ+9pnPl3XrnyhnX3RJuebbvq1ccuna8pkP/3n52Kc+V27+wo3l87feXdasvap8+zUvKUOzO8tH/uiD5UMf+2yZ7FtRdjz1BGluKut3zpeXXvmi0j+1qfz+B36vfOrvvlzaA6MI4cPli397Y9mxOFZecvkl5dwLLiqvvmS0/NUf/2n56u23lc/feGM55ervK+/+6R8tZ65CQ9OAvrmJ8tUbP1X+6hOPl9/57f+jXHyG7kqdq3hW5QqobNvOzY+WT3/64+URLNLwWZeWc0fmy+c/9d/Ljg0PldXnXFQuu+ySsua0U8uuLV8vH/7vHy8P0+ZTzntVmXhyQ5npb5f773ugPP74ltI3uKacdepJ5dMfv61cufaisqq9WD7zyVvKK9/wurJ21Vz5oz/6k/LZz91UJvtXlte/8mXlG/feW865/LKyc9O6cuNtXy+Pzo2WKy88p2y6/7Zy0y1fLNMohAtedGU5IwPwbll33z3lIx/5aLnq+36ovOqaK7BWVacd1ljqYB29fG8/DhzSkpA5JuDG0fyM/8rAED5xZ7GMT0xFG/cPDpWx0RHcD7Tfnh1ly9YdZZEoz0mrTymr0JLRyd25shdNP4t16LTxPwDlPNq10xlEG5Nmcb7s2rMHn72vtOOWLJYu9/sHh8tKJrPqZNhC2b1tS9m6cw9j4LFy5plnlEFixQuka1Hm7s3rynv/5XeXyW//lfJb/+rtZXRA96aCf78WNycqW4juzs/StgnoWSydgaG4X5OTzflgGRsbw30rCblu276zDK84qaxi3DExMcn4qB83slvm+bRoyzCCMjk5VQaGRxgkd+HRdFm1enXp686UJ598qnT7+kN3CwuwZ+8EZeG+MQaZmpwui7iLYyMjWJqZMjUzC22tMjK2Areyertz0+Nl2869ZQSXyvo1Fj0PtGnR8vcLyIFDEoznqy8mnV56Ls38j+3B5wK41/3XAkTbN9xXfv8//Eb5rv/lveWVV1yIn4+1wA15Vpqer0H73W9GIvtdPKYnPZk+pjR8q1d+SIIR4C/hhGCzc5qjmnMAtPRi7+bB7pnk0O5rZJ5Z+FI3Yh6rtnP33rJiFRGkAcO3h6ZRny7X8hFuBLwKnGchMN9Pp/NibX8jdPuLTi3n6TQHcivZ9y+gd+kZX0uUzVKalrb7GXmWL7wgHDgkwXhBavpmFvI0Nr+ZtS7X9S3EgTqC+1ZoECZC9ymGpVHl3wrtWm7DMeHAt6bFOCasXK70W4kD3zoW41upV5bbcsw5sCwYx7wLlgk4HjmwLBjHY68s03TMObAsGMe8C5YJOB45sCwYx2OvLNN0zDmwLBjHvAuWCTgeObAsGMdjryzTdMw5sCwYx7wLlgk4HjmwLBjHY68s03TMObAsGMe8C5YJOB45sCwYx2OvLNN0zDmwLBjHvAuWCTgeOXBcCsaBzz4cj4xbpulbmwMH3yXkm9z2RiCah4WsfvmhnG9yJyxXFw4sLztfBsIyB56FA8eFxWgeDZ2amirfYIudjez9etZZZ5VL2blvhA0CtCRLLUdjWZ6lPcuXljnwDA4sxc4zbj7HhWNuMZaC/itf+Ur58Ic/XE455ZSybdu28sM//MPluuuuy2ZqDf3LQtFwYvn7cDhwuMJxXFgMGzjJzoK33357ueqqq8qP/uiPlr/+678ut9xyS1m7dm059dRT91mNw23g4TBvOe0yBxoOHHvB6D2fvXPnzrJr167y4he/uAwMDLAX7Hnl7rvvZle/7REMBWJmZqbcf//95dFHH63Pd7tFTvYraR7ybnZB8JuDPPuOPAyei73tP/bd6f1YmndJPu/uy8vvfbeaH718+9JwPRsv873vmoWYfkkd+0794S3uhd4mTb38bH+TtcnfJDBbjqYcT3BB89fftZ4mb85Iui+bSQ44ag4uJtNzp006/ljWc+45va8wEh2s3l5dB5DSo/7Aq0vOe0Q0HkXDyll2z7/6pS8tl19+xZLEz//z2AtGuFmKGyu7mUHbDdk4Op1OrMT8vNtG73/0s4nsHV+7vfzqr/5aOZtbvl+I7Zd5OwV7vPIxBi2f/HaXQktwV1qr8lr22+W7OUzjPY8eOfWkd96cSFnTb/5uyjePZXjux7qa+pt6uZSyzSfT/TRlNS30WlNWQ1OTjlupw/xNetvR0GFZHta3tH7L8eNh2iZdQ6/lW455LNf7Sz/S03ya9rEdXNJ6btrm27L87dHkaWjxXnNYn+eW4wauDS383EeftHhdmj3M42H55rV875nG7bH99vDbOr1nuhv5fOjP/+zEE4zGNRpis2c3Zm7ej+G399xw2UNNoCXR1XopGuCUU1eXz/zN/yhXsF3o8NhJ7GI4G4XrroFt2JvXnoV99XeX/FHglOnbmOzQbK0Ih5MWjqtlqsbzPv9aaFzS1leakTAJ3Heq0pNC7IleGRbZz+6IXQTcRG3yuiO6+VKf3/xwO+A2FbU5CS18qxRImI9/F/iXV8QskofyLc8tRz0W2DXRS+a1rBaNJlnoyg3vUWbbDedoVx3H+ZYS6mHnRiojvW0DPKSRzhTEff9ZtrxJO/nZlWgOeev1rvsNczOX09TkgB5aQFn2m/otm12bpdsjTvpJ0z/QyT3fD2RZvrbO38lL/dkCn8IWoDHbrNI422ob+yCiA4/7O1TAhXk24p7jI63znEMZFVI/NHRoYPdTd+/DkG041GOpIB9qnhc0XWUwryI7+eS4TOvWrWML/D3l4YcfZjvLM3OtqbARIs/teLfX7OufgllDbIPJtvnwXW0R+Ag0tmEXDIswzHrqGQCB6WEyjBYUfXQMiQOWCAGM9RCc3hOY5hcJCzI/v0ngJTrdOubdJ5faF+brDuvWlq1FJYPOFKQpkzLyfj6B6Yd7ASNlSqe7J6og2hEChIMG2aaOZfDxPRmWFBpIo0VdVPVKf21tML7ArvDzqIi0r4UlZqvPNlbYciyjy/tOfPcIO4SmLEEpsv2Sz9YSxQSI2wBsfo56QG83393QbmLfYWK98icbdPMt96S1Q17bqjQogBXopqOsOdtqP6IgFCLohWO1X2w7+aLgvNrvdcqR76RR8UhLH9uaFu61+cxOz5bujK9mkBoOPQ4q0JOQgsM9jrlgNGDXYrz85S8vf/7nf46L9KvRoD/2Yz9WVp+8Om1q0jUNVMuoZbsLk7hhI2V+ei8M6IQJjbClT8hgJ1d2qcVJI4PJ6xsF2m6/z3mEBxT6+rE+tuKfl/lA0rRzfNQ+gmee31QNwNB6lK1FQOmF+2rh+Z6lE1pdyyJVXxdh6ajdFQRR0CZfN59OtKlCWAVOYA6gDRvaF9SIVMIbDwJQtyOVADWi/oJWTTBQS4DWBXRd8iyYgXcKJlkbwZimWsDSVtNyscV3C5oUMLVyBJBd1K2/WjEAB7gXEAT3E1awbXuXPXm77EXcx2sPshM76RUFhdnXzlme+w7PzqjJASesscwu+/qaRhq03lq99AN1czl8UZiVkkUE2cZxmXolF9UAvfPs/q6FsB8W+bYd/nY/5A58WBTNvIJCZRFFBf2+ZYTqDvs45oKxlOLLL7+8vPOd7yybN28up512Wrn44otpvA2Difbw0iMdAihBZQceLaDl1cDpCf4IoD40cDqa35rqeeAn3Ft2hlBUuNSY9IPMs6MWASxIRtvQMX2wh3oUhAUK0gL4T6CoKaXId4O0rceKKHNeTcwdRdFC8/JK09rBdLjpBIdIX5RmBIyU1E05lm+7OAmIqEfBWHCTZ8oVcFBI6Xwox3/+D3hSK0CmohYIVQG0+IQhtgk+decU3JnwqYOL6mbYMIMyKAl0Jg/X2iIcHsmY1KkgyAuO1MW7CRcVPKmR+EpJyoitAZD97NbuvTmAKk/n0ea2vQ24VQx9CAoNxXKoQPhp2+B7C370UX8fQtunlYMu3+47N7vIpuBWRhkKGGV55j1fYee1QV5Yops1w0t+VBW6gIrYfkctYr9Lz3ZSW/tsd47BtUFeTmNUys/S4xlCseSmEAxgRR6NtrviPgRc/Jb5gEcXSPDZ2Y1/7WlcCl7Uks7hgkDW5GsRLA22U6yWgnIUIK5SCOVpTUgfgFSQ5Lq3uSdNEU6+MUARwhZIEei8YTL3TW+n2tmiSM0nQGOrKAP4eSduCEihftPxn4qlUcFQ1INA8setEeSW6H0FnOsRpoBdHiiy1S9vYYnintkQ3RKFhLtthUDhR4ApjgM6sSZaD1+QI71twY0A+LsLbxy7uGO8lpYmMAbgjmXAz+4cdcK8WKY58rdoP9Zda91in2E7TUuwgKZXU7VUGjJbQUK4benszBxsg0fSFBKkDxrkx/xcrEQbLSVWOr7Rp0UohnL4dUTHcSUYtsCObI6DCYRphIDg8b10uhQiUEBmMGmPwlhxI+ftRC208uMhxuxEO8Uol8yeQysLotwHNAJZf7zSRG2k1T0KMEnX5j4lU28jNBWctVryUae0tOJG0GkW7ZjEeiWX3DFQKQOtiGZWi2uR9KMXdMugo+FJSzCKOnJqMTzXXUp5lqZg8S9anvy6VBWQ0kU66IVa0lV+qGU9j6WkPFk/jwAsAl5dLd2+NpalzdufWoMAtG+Oe7PR7gu8ukGLrGX1FQZx0TzXr4RHC9At7R5aPwVbhaGkJdAAyBEj7gr2gdIe7lRNr4aCKl+8s9BHHfRwB+EZ4u1di7pncZWgT2vLvQHHQNS/gCXUGtrhWre2riuvach7qWzkYR7HnWA8nzAsbZ/t9XXBAaKqgY5B1fGlVuSUczWqHe657pApAg/6LOMUOq9LJ8/DcIEUV0d/FSnqRrsCHuqwJDVtBSSDWOroAwB90X61LoHvQNXOtxwtgIBp91Or/nN8MsoGtNJDZjJSNrd1N6KNk9RxEJSjCbV0Cqdgy8A7IAM0SjYVij3fNUJVUQpqaOldVNNGu5PMf/LGxJYTZuD28dt2dKAxAwR4Z5TINPyJBtfCzc8CE0gV4G3eIZJxjAKi0pArWBIthGOjQd5LQhbqkEY+0KZAKNAdE4WTlfZwgbwKipZDC+VAOwSSh6uMH1VWkEdEcnjYNIxfIE+bY/1asUF5PDCoscEyY4HDLnLz8p4mzEsRvcPSqP95juNOMJ6H3mfc1kdfAAj2Z0BEowWlzI45bgRDgMkx+6SXJle4nvAnIFNL9kfrki5CRArKFmy1swKx5LcoO5Y75FEcKVfwCQgBJxAEqxRLG2kFVMWqdNg5amytimCudTp41U1zgOphBE1QBWicm96/1hF54bc0ej4PWBU03+NHoalDS2GW+OQhT/+cZPxLnVyTrkTfcCkV7Pj4lBnXzboQWkUlQJdf1oHg2QR5I/98ec4iFs52ez3KBxpkSRUO6GOCVvfS6FhoJ6HjGd3Z2WmEh5fvGD3rYJ0GsCKGeedxO2d4t6FuWlvLgYUwVMuoIspsnvHXDMQpdH3tQdqGcMGLWFN5Dt18HfZxQguG7Z2hUxcYwM3yCQoBmFrEzqgxejoOoFUgCDIFR6zYdYLEjuQC/+1FgdFF9cQdsUhH19F+fNPJHYHGdevW/1JTx6Jwz3QKR4c6lACjI3ZUXA7uNTH7ANLslCJQ1P5xN6SBYwEpN/Rp1QJeRS/AxTrueuillrhc0m0ESnAZnUq7qF43r9LNNwUJ0NpIC2AegAG0liyDVwe1JKiWjCgUeTM+QlAilFTit26qQjTvOAG6HGLobnVwZeJS0Q5pNfoWXvBtH3RJKD9nGYDTMaXN71gQxpSLCAmEIFQoDTU+IjjLG207vAjVOaz2SCcvOzUi1Z1BOMgLNbhQ/Rloa/V8E1cdQ6rEaAdNlFlecwR3JMcJLRi6o1O4QH2DslNu9IABU8S6gEx41H7CgjirnohSkC1DYbaaDr2iTxxRsbcBxsK8va6HQUfCbMuR6cbb1dqLopY6HbxmIGoariSNmjL/gpKk915ejWbZ1JnQrWmgja+eZSAVvyME/oSmFmnnpY3rUmg7KuigRRedo1oX6YAipZ6jQ9sThMCdsFAtTlwfLanotTTHZGQSgIKom+vwQ0GSTiyAwg+HoYH6ECTr6ON+BtsOlOfltaHfGo6VvIUgk3K4D6fMAA+xxrg7DrLnva5Wpw5lSKuvhnduItRqgbAUi4yfHEgP8IrpNmNpBVJeLExNlw6/BxUc6OmiiIxA6ULbCfK3CQnb0iM5TmjBkIkyXTfBztFsCtxEdwSAH3il+6JWdrA9r4PKBXko0wSczEz/YdYHhwfTWSjg3BSklmcaMWdwx85UKCwhsfgIBTQIZhLO6yfkl6kQWq4LEK1PBIKsQDLgyxyFqcnSR8IIFhV1nGMwoACRjmO6WiA+tsUya12UR9uxHbRP8AMeLI0CP0sDVQRO6HV6bo/laTEVAt+H2McYpsU1XRsH7hncK/j8tgVVpkgPSB1HQATKHdpgQJc2aCWsNK4WA+Mc0J5wtCXQbrV5V4tk2xVCLJWCY/lajdoO+wOlpe/JDV0zb2g55zEjnQHGCgiBE4azgH4W36mLW5axFXk6CJzh54RnDaAoYA7eLecIjxNaMOhjAEQ8PgxGKwk/wJ+ZUXmiRVDDwEx6kRgI9+nIgImOyCQdhViOaLdjBnm3tyCbB4zmT/8qDPzIYFtmR7PasV41CZ1AGQIzmhcaLBJsA241quWr2fhODoANPQrrtIP+XFZLA0YAkXYIjFp4rVsgWo+CYhqJpmDBphBFXCjT9mWZBHTqjs0BaNubsQNlyKsaSrbrFag5QKaAMC5iYFvTNsIBndLfD2+gxcidgKP6uEjWCdXhuRbEuhWehcx7cJfBl1o8xldhIO8Amftxg3Sh7CcVg9HCNnWoNBal1VA5RWWmHdfNseICFsLxyCDCoeA56ZoQL3mHGJMkckaLHOt0KSd0wzk5U//4gyMX6s+D/T2hBaO2kY6ASfktMzHTAshOFzgyaABtIiC87r/a+RWcggT48rHz6ajpacCiJRBMgtNBLVpLbScYTUpt+eJbYHoI2EV/m6/nvli35UpNarEuf0iDep/76EkyUze/rSt3LQvTIFAUHsHlLHUfoLN9+tUKr0W5Tsp4vQNSXTrLMTrk3IID1rI4AAABCy7MgnmxEvJGheJkWOigiETwUj1/nI2nfF2uBAZot5anupOWreWybGiAluh/24alofWxECqoWaxzF9QL2jbzCrqr0kLLo4Scr5hDMBNdQoiVK3mFgavrm7BmCTnr6tpmSFcYTGN/aL5btEPN5iraDLwZr4gHjwz08+vw/5zQgmH7XYIRCyGYAYaxazgPACvw7SyZqG4XdzJNR0HfnYziOBpQxKrxMinFb5kqwxWiQZjfr4tBHQEY6cJ6ASUgBBGiomUSrvUflzkP1khMVdRDmeaBkEzAJY8XSFtJ5qc01Pozj4KmNermPI0gdgFeiCZd5kjsc/NbvnMLniQ9A1Ta7phqYYEIDvJnGFU6dIGkReHT3QhdCHNtBTTqf1KGczZxoWifh5NrHVwpqKsWUuEA/IsJMpjArORTyHl1swpmHuvRj6npG0SAsCAKulZiEVdIoTM6m2U2unbOyVBM5lVwvbTI/VhweRt6oX96ilXY1NcvLUOMMexv5zugVQGjw7gGIfzOnJOEV/L9FeGzy57vOKEFwwZ2hvQvO1kwJ3AcUKKIKkBglhGqaSJW8gIFzH07Do0E0xM94kaWTggmtTKMrUtDAJECwMeBrG5yVw1opypAQtlCdfpFtXWpSaFBAU1d3KgWhfwZs1Axh1pTn1s5qYMgvxUG66cwQCz8BKA12a+hH5ozSM0F7lAPxAAariMAjheaCb3qXxtdE3DkBijS5BhMK+OyEcunkWlvtSbQC10SZn3Wanuc+OziyrQA4ICTlVgkUE05zJVgjXUfFYAFXLJMyhF21d1x3JLlOrhZ5m8TaXLiTf6pYLQ89mEOhTU1wlnY47ySYwoypI00Pf0MtWV2gvwqROr0e2B0CAEaUny4Rh/YBPnCp3K8V8dhfJ3QgmE7jV3rx2dZAhoq8xcwUUiBE5gql/iQxg7X3bDD5Jgz2BUzgNAfDtgIFWbQTv4srwZQrdaM+KMYS/WcTtK1IL+gzBITClQDxoIIVH5n5Wyv52to1D7WZdNFAxT8E6ihFhIjcGjuzOJTr3XqssQaWBf1uxREf15rNAdamsF6PwsVjZBl3EO+tNM20v46cUh7yKeF1VdvZeDt+AQ3My5VdXUWEALDzH0ODKDP/6FP9kgLgtZqM26hrn4m3aKxERTIJx/AhIdagbhY8lu3DrpTDLRwJX2hAksUzO7pVVNVQGSYsmwEfMKSSJMTdZ2hxayHarGaemZyJmOj+emZKL/OCC4bwgFBaWcfbUXTha5aue3oNaf+POjfE1cw4BvYKTNTkwBwNCBuBpiV0RWcGScgGAK62n96DXOuAKGzYBzXOVoUFi0rGjkagAV4dJwa2XU79DigF7x0I0CJwHA/QE/v+8cMgAFC4u+SSOtQaaidk3kC6IhAUqbokBZdNz8Kcywg+fLwFpcSSECoEtmJcDhrzCAUzVkXL1pMBaFCqhulArDmfifOsK597SpUUSA9AdMKqeHTVixAciAA80ysKbxIb9pvm3RXXCng0g9X2Co/CoU0Dg0PQ4fKCc4CZtsUviEc4YU8VjigRSEmQei3C1QoRvPCF+6YTn4lnB7hbmfF7qIrDaB1aHSEyNssq6on+fBN5Kw9NFs6RhWXlK2h3u+w2kM4TlzB6DVOfTsgAOx0Ok6kBmAAxBWbNZ4No2F6BTIMpEOET8RCkMNIB3GDzIeISe8JeEUkq20p0XGKxTeH2p0iq0FKenzn3sDQDq8LBckg6Mmfwb/SgSKLgEglBdhPntfFfdSP8HUVOMClRarulYBUY1f1KvW6JO2eT67rIbD4H42ugBuansE6WL7tw5PJso1YOUBs+NN7GaOplbGU0qpgaW3SNt0h+QitaB7HugkwzC+4sA/QUmF4Sl1VoDsZjzmmMb/LSQwdt3EPHbgjfly3X8gNox3P1d6yNNIj9Fp5r7ZZWkIWaILvLhfhWyPgBGOLIEIEnfVV7YFRXKvpMj81U+YmpnCtZrOua5DdZVwS8kyA2+rnP56Z7/nzHB8paJ+KYXh0DL+X+LbLBhxdhsX8Bbg+yGQUxnGF0RJhKKD0XqLh+ofphQpeQSWAE+6lBwIgcUin223EqwCdxdNzpI1mzk/y05WZKwBQxtYFhUKa0Cg9HcXduEzULwDrBKFeMeeCJYCgJBInikRkSGtD9fHPMxkpMgQv/zLp2AMyhVEfQlS9FOjxnKUTxaXf+NyWg1DNuOScNAr5AomrdQGwAE9EZsmKQhIgQz/jifDFyT1p5J/8bcLDkm4+3SI9H2evEx3DQiBSWBNdLOqHTml0TZYuGHIRGhNUUNooU283qwoQAGlVINIO0nqvz0if4xtm4xWsOaNrEKdVdIxhPy4ws27/zU/OwvP+MjAiB47sOKqCYYcsPTSnHkuvN9cOvO750nueH3hYevxmO51nxjXfVuEsq50muGWc6XQXBICdo/+bA+ZHa5POZSDG/eNOERckG2AHHGbuAdDyRJaAEoQ0RFmyW1OHxWbswTlFAWwFrd53trh64hBGtioYfvOpiSIUEUPq1VXL0gnUprTbHlffxp1SWGmz+AlYlR5okWbxpED5LS2Wn7Cw/jaC5YB3BrcDXyj8VUG0ecJHjV6wBFrMKrj+oJCMhfzJb464Qmmxv7lMpbqwsRD8mZMW/rsEXF4jrrEOCaVahnywKDqqG+GnDH77SLBLS7w+7wCdJJnJ5kfGPJDcYa5DS9cF9AtEUJwvWUD5yZsWFibr5hi0Kzha3TmDJRJtU3qH/Ioyai48x/dRFYznAvbhXn8O2tMZs8w76DcnPg7H5bmuQNYC0RH60tXFgR0wyIGcaljmJZzKb4cOAT9cVKj6YLyugWXYy4lwICHJD1vjuqAiMweicACyjFkAhoIIVKAHzUUalGkPRnSs1UCDcuCIogoYbolal/MuyysS1wpIISaWi3T61ZJCKgFjPpe0mw9IpB6XSxjQSmTK0gFFH8vE1RF12YppyavQCWYK1L10ArDyToBCLO22SUGUP0jXLF+JoCNpWi/5ZVTK9LZGC2bd1BqLYBEu5ouVsAzSWreCWccPkR/q0jLSdsujdRbn4D30QU9dRSDPBDprqOCrM/UURl3mIC8LCbUUtsv5Hus0ZKsCdtYmTPP7MA776qgcAmViYiL7RSkI7ig4NjYWYnfv3p2tcJpr3lfz7927t0wDdNONjo7SsTL9OQ77hltqPJmpthEA8cm9ASPVrmpVB9uacx8KcpDsIXzVdi73UDDM67BTrM0hNDI1fr5cpbwsxw6H7cgK7mBC4NPWOjdhyQggHRcPAUCTNFrbTKYXHF7T+HQQQJ81MEwsXV0jRQE37gJuobPSan9dnC5PsKmNZxRoBM92O35yE4hZtOTktDPczAyDKl0lV8Y67uCpVp6aQ2hcj0qejJWgYyChI36QNoyEuFpejzfSKvDSWLVsmpY6JD5spQ26WN70XA3fS86JRTtOYMUsfaOl0KILdFfv1lA4+c1D5jmUiLPWhtD7BTgFOBuuK4jaSVtMt0hI2GdCYlFJZzRS6V+AB4zOmaWnzbpsdqrPZUi3DO8dNdjRnD3391ETjPHx8fK5z32ufPWrX02HXHzxxeWGG27IRgcf+chHyrp168rVV19d3nLDW8rpZ5yerTk//vGPlyeffLJceeWV5c1vfnM544wzAtClAiJgPfdboHWcVaXDs+ivBwa6IEy2i2WappMc6VRZnnEGmQWSvnAL5gsAI1PVraEjyNFz6SNsVpZ6vaPAWnnvW7MejUUec9YBu2AAMEhm0kOvysIxC1jogQjwGzahXoGji5dJOzWvkkXHKtQOuqdVHLiLe/GjtQK2J/MLooUjg1y+GW/jgolYTiST+z6zIg0tr2PdrKM9Mx3w9KNZdXuEuviJ1YDWfhTFUIdr0BTeyXfKlF8KV6biyGc9NYX19Xhtu/mnEPjUXcLD1J8xDNcoFnoQCMpxwJ3ZfdpJZaR3mQhLRwD4AOMK8zqPlNXGUKJimXcTDOlCABLyRdep5BawuC59d07GduQBMcja/7CV1PU8x1ETDOu98IILy4tf9KIyzSznhz70oWy9+fjjj8cavO1tbys33XRTufVLt5bXvva15eabb872OD/90z9d/vIv/7Lceeed5Xu/93vToUvbIJg9BllxqUacAyytfi2DAIEZApg0WUKhFeF3tD/MVXtotu1P1ZSrPElAB5CHTlEQ1HqyDninw2Wh2kcwOnB0kd4cCS3HjjRxBuWkQyJIp8B6T2sBpCjPNAovtVShodAAAxrmSJexi2VxXQWoWyHQdcXmiIdO4ouP4ypNzdLejAPQlOZl4jIyRfqMh9TMtMdoUSwTN+f4dAUs10IvZNrpCij+Fm00OGFUqtKodtend3OBEaxKP9ZsmIk2hUuA1n/wguIMm0qvmV1sGdcqEsk9Gm0IeYZ5BgViYGgAJTbI3l+KEXXJZ/vPMu0jyYEmrYqCkfkaaBiyD6WDNs7iMjlL3moRVKAPusyCx8qSX/fKMUb6g37No7hsnxL/wAoP8zhqgqE75B5QzkrrIrkVzoYNG8qDDz5Yfuqf/lS59mXXlj24VN946KGiNXEDhNe97nXJ8/Wvfz3b52h1GvfLjtXd2rFjR3Hz58ceW59lBS0sRibSZAzMbuYyFAzQgxZBhdLp+tHZOUIGUZZjiUyucS/gjZbmFkLgwNYwplgVrYgBQKLz8dsFkB0qIhRS6fLUxLprCk8G9CSMMCAQFuPCOd0226DQRa5I4yA8YxhA4T+FaQFLMQXdkxN8qHNWsAok8qsJ+Q9QhR4P7CAwdUkMbdRlipZViikXemyDAJUvYlZAixbr9J6uWuPHOyk2tzAT10yN7IK9MXZvmYHOQfgzTFRoSEuGMMcKWSCApsnhaVRJjydQyTXgBR2IJqt5GSS3jQK6xMNxhMLKJdqtImF+knP60GXsCJLRvSlW7C4YW4MO263Bc1Ww4zhdImVbpWc/20tpnPxWwWGB+lAcmcewwuZIZzUnz/191ASjiWtL+H333ZetNl/zmtdkJ/PhIRjEcRJ7SaklFBwB5rjCw+/169dnjLJUMNyt0LLuuusuXK+HSt/ePWXo3LHqGvU5c0tmBQCwLOKTx7HpMa/6pPjYmF9BbV+qHfkPS6t2y2Ccwaj5jU5pKfRX1YaJIoEqhcG+ML+x9BqRARK0o1omgOhqN46chyg0I9rOZ6nMmH6CBk/0nwNx2j+Pv+7TaJPQsGdyrkwQdjRPN3MMaE2UwBATWOYzPF2XiivIANon2XCzMvBU41KvPI3bRHoXNiInAXHGEgBMOgRw6OFvLIdtpM1gk2ddFFxBjWvD9flhaOb/kCth/UEa64vHZ30IQavTK0ewWj+g7vNBJH6rnDhh+QYLG3t1t3zeA36LFxdhZjmNsodi0n3y4SZn0xXkRAypN9YaenXF+oio6bqqHCgCBWavqxjoWz61bVTWHOk8Ej7PcdQEo6n/4Ycfjht1/fXXZ1t/xx2RcghrvmVgBdXTzfCaH4/m211ErrnmmvKSl7ykfPm2L5Xb/+5zaLcd6BRmXBGarJOyg1IM+ekQsG2XVy2rv8pEnm6E7oJazI2/6nwBfqndRcdplgeISCkQWiGtQCTIDpNuOlILModGm1kiBN7VLcjAkt8+sO9qWAMClEKH8e1vyvP5AWAKKATAXJmGpggFJExgJSamcR24H3cDWu3ugUFdRawEoDMc6dxFeEOZril2UCs6dMMczGqWDNkKOlcOZxWA6KGsTCLaSf73Er/TB7RXZeBDRVVLO77BlrGso0V7LU/3VIZqlA0S2E0d+cV1QWtYmB8WSjrcPFwoN1VYZIDsmEv6nMNQuAxAKK2xAqFdu1l5ptLpGn51YC3WKT+heEsmbR8LFakuFo/b9Il/bIxt1lr1loRw5XCPoyIYMtgOe+KJJ8onPvGJcu2112Yw7babuhJu4KzZ37RpU8YVq1evTnqve+gunXTSSWXFihX7tUfGrFq1KtfWrDkd88vOEhNYGyZ41Niu+XGJuTqw2gSSpsOFgj45k4BoYyM/6UBuZyk1mqcfJrfcscsOd/0QdWVtP3TakXa0GiuThZQp2OwAu9+2ek5WfHIWNDrhBT25mc6yI9FgXFdIHQc4MIxgABQH1rOUqWDMIEw4cTyvQHrXRlFvP4vv7G9pnSIqM4N1UEPGDSJvBq/SZCKuew/S+NSxips6KKwJqaqqRVO+bA/Ak3DqtB26gS7g83efkSv4INXmn/CpOsqdwd0ZRhCGeYBoAOFMWdQlzz3LFarIsnWWbViCsuKaKfnnw2KOT5wZ1xI4QTvEJguwpSyw6707lcBqGUub4DvKLrPlzvRTfwbz8p+TBd1TyjC5q2mpRDlDSKT1OBKMRijcudwB9y/+4i+WP/iDPyh3fu3OsuqkVdH4N954Y3nggQcy3jD6dP7558eafPazn41QOPB+61vfyq4QwzByCchpfASAzpp1lwqZAEP137uERo2WeCQqBGMyoUVHU0QOrgTwdophQUsWzeLJj5Elt22ZYsBoJoVJjLnUe5AlJ7mvcAgChJIs1MFcAeWr/QIsf+vf4gbE5KdgtJpKgbIEs+mmpjgnzyT1Tbr4jmv6w7MI7iwWIqDHMik+ibjQtHFC2e6aMct1gwBpln9sYNqgRn1a+6rxBU8sAal1VaKtoSPt69FiOhWBPFGgLS5rnkgmCC07YyMaMIVldgmOA/JhBGfFSLuMMZzvp319uHwJCePyOf5JlAiwGnaec3Gm4WmsvqtsdZmMHs0RHesuGLI2lMyO9lhPXS5d32h9wO1aMCdgpS0uFdzWwmhRwhsFX+Z6QLvtNTKn0KsHjuQ4KhZDQtyy//TTTy+//uu/Xpy38F0X17/2+vLa1742jXnoGw+VV7/61REUBeAVr3hFxhT33ntvef3rX5+Q7b4GicDeIag8/FZp6Hf3u3RB7YFa0kUS0jkXNPq03keztRiEms8ohwxWs5o+YUTOq1ADBHUc6ew8XaohngnwWYRYmUwmqlHJHx/YXQKr8JpfkJEzAkzVsWIZh0TIAB0AlKxZtO8UGnSS/pxwXIMA06IMphUK2+AiPpgVEHCJJR3zZQKBmmX8JFj1Fpy/0a0zv5Gcfsp3ckuZMFF894C9lk/De4BBYPgdXZK2QhdlSptly1w1sRZWFZK1ZpTTwV/JMxdYlSnom+mytouGjsJTFUILfqKq4JduFfkVTK5JkHWptPKwFIKQCzRCt87xoxs9KO4udpSLUUSUkY3V5A/gt62Z9bdc+1QQSCtlKLzhve2Bpgzmm/b47WHbDuF4wQWjAe6aNWvKO97xjgBEOgJIoyp0nKHazBukE9WJJe/D+PEf//E0ThCazqMpLyfP8qc7h8Zh79oFNKkdYcPzvAA/2gAPHoV58sOZUd2EGePg3Mi6JtJlw7VaXcYX9E46xcIcvErrNAvUdK2CHE02BeqCuCZH7UYq6u+NU9KtajPaRjp9byNg2USAvGq+KcvEWug+uZw7rgaCGzeI9Bnw0/HYRbRfrc/CIngMWAWx1iGRLsqTXW79Y0DBcVGz1FyexBUUSLgwmQTV/aAtmXW2aATEhs2pYSnLT5sQ8QAuZYQ0wqRAyTOEGg2eOQbSz3LBMchKNkRjGFyG0Pru02vsyRUHlu2YSg1vACProKYRKJSKk5sDscTUD00qA8WXHKSVdyg5XDEuVP5RjuVJrl2g98B6xdq/lL+AZNmNjst0XXU9tcJLj0BEMDzP8YILRlOfwBPgz3Zk+8sqD/vd1gz7OdTD7pTRwALV6Z5IgEiNJvPC4Ho/S0JgZDgsQKDNiNIAlsCFhw4mBRN/0kECPK4DeeLeBNwqOARBoeVcIx39BBFqMcvW3VbTcSUdrM+rpp3B9UHRAwZABSD9dPGXBaBRJztQa5MBsTSkCFrAdd2NaTRz6KPUDtElBkSZn7AufjJeQeC5nO2CAIj0VcERUKTBgggZfXVZZTudEJVKEWbdpheQZs5zF2h526vV0F1phF8XUqGa4yOXFZSZcSYeaeAgPB3j+evp+WmUjULaIoLFh9+yyIfGBHb2gIqr6VLxEcYyKBfbihuV/iStFp3s1IvbS03Ob9iFKpkaqnVspeWGcITIRwK0UnFZqUdzKhYSH6S8wz2eHbmHW8pzpJfhS49G+y+93lwz3XNdX1rG0t+wBGaosb2KNlUrwSzDrelzqs+mYTAuT6yZwYNOFTwCyz2UFgGeSwscrBmezNwCyfJMdB6dTCb/pK74vw6kUfPZi5Y6IZ67ujMhJuDRjSCoGleJ6CvalTCrCKHTdKnqRKG5EBQxK/2U0iwUVDMyMIjwqrmdjdbytFjn0Y8UKghqWd0J1ELlA2AQK17TuujGGRCwvWp8msy3AQbHAWroKhjURD7KSz11vgWSQo+CH0sDwNPMlE1OT7B2Wi6FZYLAgMI9SfTK9O4QuIIVrioXhcNHbQU7mSgYfmO9Z8s0Yw5F0r1m5S80NO6tQg7Yo7iguY9xjFXaT1yEXtoKhbp7Flz3su3PBtB5Pp6+tG7b3BxLfjaXnvX7qArGUtAvrf1wry/Ne+DvRbT7otrE9TNoJ9ccOejKYDK+NiAUt3Ru4vRYGIUnWz/CZLVPQETHZUBNJ8tw/ViPzGLnl9qfa5RD3wcw/o3WFZg8zqmr5sB5BrdOt1prMEU5e/yBMGSLUL5FrgPoabSmBYmVuFuAye1m1PJqaoHqGMJVpQpO3BqRoYYkY9aCkVnQdzAdunaGhxMKVcgFC/kzrkHK4q5BWwbIKJRFonDNQBfSOSibw0H4LJEnQ75aPBFr23U9Fa7MNUCr6SkeIYN3bLrgey8c4TmR6i7mti+uFntDnTQ2XPqGGO/p4kgw7cgYggibymUB5aQ17jAeRBcwfpsmCWlgtntaySWVQja7oI/rhtPwkjR6BApHv9vsEBQozGmpVKT8uLQY0HVUD6Gr1h2UAzCoakllHZCkP+1YOlUk81FoOINh+NBoIscWglC9q1YxwmRItQ7MAQF53aaFJICpai47x8SCz2IFawbwnNgZkwwaJthuchaA+8yDVsNwrC6b2tTDMsynRpcaAaCLoeCKN+cRQCy1VCEZ0O3iviAVpxQZl0NXDWrrNS46xoBqrlgHSOea9dge0EiRhIYRyA5lt6DHx1JtWybIEGQVlm6oliK7jOO2ETeq9ZLXsYrPTNQgB2MEeCjI7YM83Uh7dTEzUKcMy54U9PxoscjRdVFO4bI4hH/VbRboXYTCST58MUK3w1iQnjWjTmmv7hX8SdsUfmhEoDLGo13yIHt/yRwoziJE6MwCQ67sd0jUIRyi6IQ+2jz/q6apT43Zy4BBIcC0Zx6CjqpjFyeTcCmCa90NBULwKDgKAR3Id164wj35l2XM8pFkam9zzDOgT8jTfHSUSp9+BfjMPHMyqbWws/p5yxOVzVDmJNenue7cjWAfIJI26KpaOU/nx8Xhp/j1PH60KaWRuoeIjNnnAtDO1pg14xGVg8Id0FCgboeHABa0gtfDORyVhHMGCqLaP+MW8mb5i6Djt+Val2lsZz+WSHp89lreUhlp5JWKCDqgM6FjBso1hJrqqNddAqGLtNWdhF+EbA1ItF3yS1HSLr1t3MKMIeTjLFZh0aG7dXHP8ZGWSP5Bv+5mDuiRl/ZN26gjtEaAkC9n0zMpy9yU72U8kuOEFoywCO7amRECzLcvNBEkdpJMG4SxPrRvB1WNTK+TR8Hx2QzYGaBFswImUBCNrY8sUAW/nWb5eb8FnTPLx9Btokto2mmiPa5ZIn6ClcD9sTNFDe6Mk3FZvkFZBiO0KgLG+gSq2g/E8VuAhDTqEziMf6DF21kqTpr6AA515zZlkFONaiDBgrWIzowLcJdiUE38f8sSVAp+3Bjy9WMtDDdPQ59LL1xbFgsGL8lGetqjFmfBnmOFhLspMMIKUW7ukCaSVteuClKVHfM7j0NYy7vwpoZ8W+wtpXs1zK0WS2yds9HKD0GL4yD7pwmdY3CxNApfFQ7rt6PS5oxVanq7TMVANEAdF77KNOlfYG4rrlSoaP7Ibyk8+HFCC4ZN7HbpWBhmx6fTYaaD0n7GGyJbIBo6yUA5AJe1PWYKTpgE+7lAMs6Fha5A/HeScolrHqbil2hDC6PAyk5ANT6llRHopADZWgMRMwNNczxKOskKUHcF0dSnHBJGdOk4QeYntdq5JBAggl2g+QlA1NCmp241pkJoWXnijV/aMrtaOpo0sTppvHewYAiMg3YF0nIV9GnmDoyY6bqpuQNCaaKeDu5b/wAWhqUhAqlaW2pC+GKVpIW0up62vb5LROvHCQKNfMF2BI62e48bsXh7eTbb9o+5pT/fLilps3ZqkHbTSbVuBF06XVavcGpRbGD6l8oWsU7KnW3MnA2385CUyoyKG1dON41uSl6/Duc44QUDCeCxRkN1vPXVjhIyAgmG+7MKBPDnHqexAJlfoCPU2Lonea4bRmsB5CJ9nXIyyIwG1l9lMEmnGMoU9OP4T7sINc0DRscqzhv4IJEblFmu7oXLN9yCc4yO17RLAygJaKq7pJbXJnGN9OpVl6YIAOEsvQqij7SqTa2HgmxeBpu2SDArGDWx7VXY+Ye2rIAnP7xwAs16tApG6lx0qAUZHCJsDRARmygUbEOUxax8oXpnuWlumYkLp9KBx9aJctCiGaQwgOHqA1W2bz7SgmjldNFssuFZCXSC0oHxrqk6UTmcDQ+gZW6qrFwxjHtZ+Wx/qEiwIxnI+9SfghUFIFH5oMKgQ6uc9ipU/KNarimsuny4eZweyXHiCgaokenZsxSNtzBrh+sucYPOUmskAVzRCjhQE5iGFoW/5j074nEWXspU7tXJKH1zQ4sdxgzdMk74cZzB4wTCMK2/C9jViGpvJ+IUCKNRWi03BPC+9RvVoUszceZOhvr7CoLWyBlkQaofn9l6ymuzpbe0pt8FXw8A2T3D7b5tB210N0Db43vtNApCRqWQnfeo0Ek+25eWixRArotieQq9ggKpCJqrBlAq+v22XX5Sb2aNefjKbS8dT2SMpkKnftkqvwYyXgN48DvRM/glHYPWDZ8cw9g268ublciHt0ghXOPjBtVuYKcxcLs83Uzplo4512T1ls+7aoGiorRcdq9w22ifE1ElZFzIJUuhodyiYZShJXH1re9YMsvhHiesYND2NNid6ObQUvN8jPOrPWS8/wSeA2j9UDWynQykAlo72DKyIE3tJCAiMpWxuiWTAG8HVmEXk1d76cQpOkzUGlXKuiyQZJhwygE3HWJ5drSJUnb8X0+5BygEXga81gPAnSRzi4nzljoAAEAASURBVBu1bgBKAt3AuAyWRR6FLQNQCjBKplbmTkCk27VPAVhhXCexR+tpq4/p9DE1rGuWj2kELBNphnBdIaAY6u4I+uqgUR/3BgCWtkdlImi7sTi1eknQKjopp1VSIBynuHuIlkNBnnO9GbyntrS11lQFVuUzwkTgCpbQ+1yJuxTOMz6cYkbcNVhGlWpwQVoMmDCQR5Acj1l2Zr+hK9E9BF5hgxq/+E0bOXOy10nGuuSUS/sO7z//ccIKRnjAHzfaGmBRWp75BlgCvvrRdmKPmXSkWkcQwPN0mJqpLqHugVWukt68xFfKbizEDh4UGqfDXLbhwNrYuYcaVu3vcvEpBMPBN/8BsBNZWh7ADf9RgLEmM1gcnqrK24A6dDJDV+Y62AdJ/1mhxB2UFt0lnyrsBwySk4E0NGvZqkzgygBYTqGzWpz6pKL1udLVb6VJpQA90KqQ1ChaVQheF8AZU1BnAgr48mbIsxMKMGCWTYNo60gnjXHMFuXCda2llnSIugSfgiLcFGoH045LnL9QAKUnlpU0WrW4k4ocdLkzyAqWhHASwXLc49hNLWLwJDPcNJYzyqV+eKPycsWCfPRZDcuJoHBdwVYJ2s+x3hBGtUd0nLCCYWvpn2hXmehvmRHQoO2jXQGLusR7FWSw2OX/piehTBY4DEgqg9Wc+Kx7EIotE7hOCAWKkPCrAod1oHxBoEbzCTZdKF+WGOtDHX5Xz1zZA3R8EnOnjhnSOQkHFkjIh+52yDDEalMFAYLqXAVpjYLpPzuxlZc9QqmtVTi8rgB5KZEzfgqOnAso7oczXFNQXbbtU2/SBdT4Jh8glx8JzUK03GtcSBWGH/lirRkD8dtxSBdzOMXYJNTID0FLnR6CXrIsx0WX09Pyi1rVDtQQ0JIzpLK+bJ7B/cT0ApbDDRwMR09X9xZ6fIrP6KL1WK7azC8rcEDdZpxiuFvroPBZaFxA7jsWtGftdF3WuFLmbQ6up+Dm/Dm+T2jBEHxDPHqpJz/NVp3pYlRGNBMAqSHXnmDIDVRdZrRhYCI/MoV+de0UPZjPDA8u7cR18gk6X8juQlbBJPjUgvq0Q3SmGyp06MAASsbToQLXHTuyVMMiAYbXne11wK9lMH1Cn7wH20NNLBD1kSPMFFLdLd00hAWLpJXIpB8Ykw5pEP/O8maLHhqha8d/fjmO0fLVUKga3WeonVHXhxcx8kdL5TqsZhygC+g8C02gvdJYNb31md4FhfPMD8zCH0EXlwVgOl7xgno9+Unr7uZ1ab7CjeLACqhMwmfKyw4m0OLz6+OYY8sfxMrkOW/u50UwCLSRuCzVoQo5ZJ/lpaAQaT/GdVNgpUGBIo20kbXykDorl71xeMc3RzAgVN1dzSi/aWBzNNc8b64vvdake7Zv+AkInTCjw3nY3omyLIuQ+aovjlyDaWoSkQtEw+UIBnm5RSKvsQwCZm8dnyq76awuHWfEyXx2rtbI9/0JLcclypEuwhBRHUOe8zxxZxVW62pTd8IgyJL0WgafW9bVUTtrsRQU6667+skd0lKog1ZpEeKCy1WmRs5c6u0aLtO5WE9euTjQyT+1Zdw37pEIYWH8wuC5wxNZNY0uTHyU3OdP1iO5HtFxRmL+CE8W8QlxaFMYjQ7pwiTUTJt0W33foa6U1rOxLo5RYlloV3iF25gIH+1BTANoqK/MEdTkFb2Gt6cIUPSx9+wYW/rHumAtDXoM2p8+x8FSH5ffy7OMv4C/j7oqpLqRPphmX83ymANkcFdrQ50gW3c3E3wy7TCPb4pg1G6vlDXgb+j0XEFYer251qR5rm+BpStjmG+Ina7tqITwAmaiTgDZGWcHqNwJqNRarlnKZBkuRmadtSCAYZyBwjZWik7BTgGp+XdRIRJFOnxb8q1izc8YdanJHXjHV7eT6YwIWdQWnW8v0UkD7Ic7jGuRUKvliSq7j2ejKTbmXtqioaEtAYNeR0YMEPrs3USb+M9HwUIYKFtAugxEXz2hU0HmuIGB7QLaWJeMU2bhsW7UbT7pyqpfC4NgjEuWr8QFCW26LQqL9+oz5ArmHEu6jbJlzy34YAjV+Zk24WUaHwWi0DtQ103L5KBhZtLmPoJFcyP04Dkgti8MtU8jAPPM9ygcA0zGunmDs9/DjD/0CqYRHHnkAMIysjYKfg+SxlCwwmswYKGr4wTXolAoW6G2ziM4jjTfYVW11AIs/b20kOe6vjTN/r/111sBqdEo/eg5BYP+1rfXbVGz+yxy1Dud6FY7MzwxNoNFEHsJg6LVrNuoitGnWbarcG2PH60CCInGc/Z3GC02Asi1PM5TOHOr21HfMYfGhw7glF4XsC6IM9yYztNK0LFaFB2PZkCsG5DVr9BnbusRNdKXBXfm4zxuip2fO9wjnZajn7kANaOCwawcbdHf1m2CTnxxGaLQqSQsowkRK+i+gEXF4oNSAh7PMNbAhifaZVP4YDjj7uSZYKyQETtBp6AZHtU6CEwfGa7WwOtUzT9dR25xHUtDHbqJvsZtvp8PgrPAWMOyFFDdwiHGDgO0p+5+iNXtPQ2osKio5I3pY8FVelzy3D6U33FVMY4qNq8/A+C05VCOZ+Q7lEyHkqbR+sa07/jaHXmK7zu+4zuS9ctf/nK2y7nwwgvLS1/60owTtm/fXu6+++7y1FNPlUsuuSQbHux7tJVGH3jEwtBrRoF86XoH2+kzxVj6aERnTe2RKnAwE6Y6gGzh2zvPQLJ8BIAL/nbjJuxiFnvfHkxCUK7z0VwLNvqLznM2lhW0CgUdzn8QYCTGiSYFs+arEZo4Egw06TxBIsAYUwg8NXSbsnURBJHjBpJQj+VVd0VrZBhZgWKPPfIQgQsd1S0bxjLoSvlqMZd4mNfdFpU+34ftg0CWqWsiqJzLMGwqqLIchnPdrmna7lY1vmDHKJvPn6s0uryGiS8KANzk96fCKu8y+anUWD7gV9C94ZqqWSJudS2VjVFhwAcbmQTQiIDY3ir+XicfPMxz75CvUonF1sWlLVohrbwrCTzXUukKZ/6HDqiWEKEnnwohG65FWHr9kxp6f6zOhjzPcdQEo6l33WPrygc+8IGyZcuWAP6JJ54oH/vYx7JFzu233x7N7v5TX/nKV8qnPvWpPMnndU2qQnPg0VgWmW0HT7D3lM8XuPy8zdJvJ340ufO+XgvkqiXV7jpEjgl0Pt0LVsZahn0rKCZIOwdgPa9bedYO9NyngbQEU5j03KdzKri4zn01tr68QhmNqQsCWAS2429Io9pahtbCtAEodZpfkPj0HDkKK8wBspqSFNID4BZw51wW4bovBU5wuhWnQYARxji+1tclGxFen7Og0ggVwiFoFFyBTQ4aA+2pV6ArLAgEUbhpZqMV9inmVSZRHAqJgQQVDOSTUpcrop/ZcBWT1kfrbCAC0kU3pfNBgFMfaewv80JETedP6FOO6BDumd7yyUk/TiE0LeiDwRHmvHMcyqU7lgJ6tHL2n2MjbA5Wk5UFJIk7aC7IiTtFGsPsVLHksOL9Liy59/TPoyIYjbVww7QvfelL2bf2la98ZXGDhFtuvaW86U1vKp5/9KMfLQqBu4T4rPcb3/jGfP7wj/4w1uPyyy+PgDTl+S1QBLia/vyzTi9XftvreS/CeNmy4ZGyd/smHmYZR6vWwaPa1hEwnq9sDZjdI0mb73l9WAgQ0AlO0mUsIog410dW03KamVzrBhd0oh1UBSJ+Lb3gli66TAIlESPdA3jsql/dJL2jTAhyzW6xDKMrntXNznSH7CxgQgLvCWwrz7Pg3BpirmYYwaiDaSwFQuHbSgd9Dx33/ShMWi4FQ1qq/92rFPoFqe+ncFmLhAgglUebNyQNDOpqOdPdzxzLYhknKudsP1tb8WEQTAbBpuWhleFRC0A2Y6OhwWHyy0NBD6Mo208sojnor+o+IrSUU8cEiA9JG95KlOFYea4OW6SfBGhjuQN4+wD63ZVQZUhnZszhu/rMbx+lbgWWvscAHdHxggtGA2Ib7uZobtKsIGgpXPo8OTFZzjnnnHIym61dcMEF2dvWXQhdy+N13aezzzo7e9nu2bOnnHrqqWGcneoGC7pbjz7yaLmXsk9ec2q56KormJWdKWdcfEGZouztmzeVnU9uLLO72KJnmq11FqaiZfXT1V1qt8We3yo+dPXUUs666me7uYJuhE/a4aHFdbFDtTp8oZUcyNprVdvr1zq7zq34/f6Ov08H6ScL3ExABZho2FgSAMC5AtYBqIZEtQ7NRJVBBEsUWwqcoU5nhIcIbzmuGObBnyE+/QiGlsl6jM7Vx27JB3lZb8V172lJmhCwuHHBnVZDyVDJtBCyvKUJK+tSksEhwuA8eTfE67zGJxG26XaeKYFqxiO4SXzLO13B6HUUQR4wwlIolNKdGWvqNYWukIN/x3F56AjwR1CwlFUouIcVcMyje2gbDfEOYA0x1uRBLOWRfUiZSBvXXWxJT9D+PJcRxcJv152QJGMN7o1BC1U/fUjcIRwvuGA0dbo580033ZSxgvtDue3mJHsGZZCmNuSQYQLepRp+ayo9NP9e04dcepjGHdJXn7I6+0s9KTjp5JFV7I6+cgVg6itrzj677F17KSE+FkQ42B7fU3ZuerLsemojkY/daBtUIB9DkXQnW8DUlZ0ZTMN8F75pMXRZPLLzBqDsa+F7G8aFyQJZv94NpQMs6NIi5Ek2qBDw0iIs/NCrIpXruEACkaJ1AwIarEC0J/RQTCxCYvXUbZjUsYJuk4PyIQAz2BtXVIGkWMCYuik3bpwAAhA5oo75LW/5BFyWa9MAmWSFTu9h9XRJbQ+XywARH995PjbC+ANrOo6QCFLXgvnoqvkTriWtLaXD0of2qQW4jMWPL7CvPNLO8JvbjJDIodWuESYZkjGExTCb3WYvYi3iIgLnqNy0sM5a8kfhaBFYCO389lxhjcWXvyQTS6iE/Dbb4R4vqGCE8TDZjt6wfkNxkO1g2sN9a7UKjz32WDrIawqKTHSSzjze99AyuOug1z0UCA+vuQuhHy3Og3fdTMSGTqD5iXDwPTI2WkYRxDAGjTY3O132sm/VNK8kmJ2cKDu3binbN0LL3p1Z8jzv7h+4TR4CIszlW3csvjgM7kdzCSxBHp+Xa05I5TkIrtIv+QhAKfW8RoaMdrGKFToMqfqYrG1BiUM3v0koeESog2GKDfiHAJcuiC7HEGZLgDp2UhgNINTHN3U7dPcEgcRTnv9iefimbGnOh7Z4zxYKl+aeLo98l6Bm/kf3UT4Y1u2nLGelhxiEu8mz66/mEBLfVAXDKZFgAFYswkRdOHUBewqAKOkaNJwLLaoId5OXCtvnFcPJM8xT+HZW11g5eJ7JUpwZLMdAWYW1NVzeQRk0StMSpD8vCpVQ6pCntjAhc5RacKgbzMJLhz5HcryggtEA2O+1a9eW97znPdkr6p577kkUykG2+9I6nlCz6GqdedaZ5Wy0vDsP/sM//EM2f/7GN76RDdgO3InQBjbCF2uiduSanZ5/nMhwO9vBsXzrA0irTjmlnIRLpg+9Gjft7EsvZTXudHmMeh659dYsH3dz6HZMtryuQFJj20ECctblGYCzLrumkwGuneJaI62L9VaAqTzVntojqOJ+/H1BGiCSzI4ErILWpSWOQ/SHDSK5nEL3yTpryFJ3jF3CsRqOOwQIWQBBzxVbCvoIA/dJ40w5p9RPvaYB5LpCCqG84jKWDz7RZtNUkXEc4HXOpVvLQ1kM5+PidMeYY0AglKW9ANjBbvjOd95jAU2mz1jLROSrIV3vwyd4Znp5p9uoKCuAKg7bo8IYou3ZMRJvodPhnSpYDt/hl0OhVxCsF+tG8lhvVaM8nEXQpqZxnXGzPLdNIzXnYf99QQWjqd2OX3P6mny85uDa8YKbOiscH/zgB8snP/nJctlll5Ub3vKWvAfjuuuuy/b/t912WwTlZS97WZjaCEJT9n7f9jMX0uG9G/5Wo8C+gMBvy1CbyKgBBHOASbod27aW9Tt2l427J9inAibSK308yBOtQ3pDhoMIi+4Rp3yjvdLxdC2d4zX/CA7HLxWEWgFtvuFLo1wk4beAFqhZ6Mg1wZIdM4AGl2MFkIu4D/r61qncZcKSatz31XmL1EErHOA7D2E59Q1Qtjct5o/CY36tHKfQ5u86DuoxrMcb3TnjRwJSQKcU6efcJSUKUx5AYopcq5VxSg/I1jdOJMvZ8F4WeIHLA6LyMhzyWn6kiIINobaJmBl6zqpchK4GMcLIzG47ljO6FisE3/IEH9qiD1qy2ws0SiR/oUUBM6gihLHqCJTusS/OVFE5/+F4kNYccKSVB1x75ulREQyrCRgBjQ246KKLyjvf+c68H8ON2N797nfHkrgPrecevkTGVwWME2FaffLqctppp+X6wf6EpdTBfxgkz7wiGHrf/FZQsjzEDuW6pvvJTU+UW26+tdx7+x2AazTgdSMKtVAdH+DrZw6gThzqzztZ2KajbY+H9anx7ag8k0CVzmFQAmkBImhzNaigcemCIV230R9IhwIekG/UTCFQuzlJ2WGCLmunuGZb/OukYR7rrC2hVgSRXvP5jhaaUcEwjcCmeg7p4zftVUCqdlZDQ1nPlcv9MAwaSK+FdR6B3iIN5XOuKyiYXQgoJTg6lAcQaaergkmSOqYZczgAN+CQFcIuW9EKSR85tZ7VeiEoujmGyokMUlOCCgqugl7nOZz0owWGnKV9eKwMnnJqGRkewWq6jQK8oHn1/eIqEN+54WsgFJXqKeRpSmjOw1GU8cgEbp8CdZjHURMMARQQwUi38vfTHOeee27zc9+344nzzjtv33nzowFic770W/amk6krypyzKhJ0rhaAc7VhJqtIoNuwnTHGnXfcWe77yq1lcHhNhAXVQpiTNTcse9CsKxzVzKPBAK33LBnFFauh3GkFInRUoOBVkKp17XJAQhlNh5nW2VxWhwAG/G58astUOKwrQuLIFlB5nigSgEnrAFzEkDrqrh5Vs9cxiKKjAFiO/rjQgTh+ZPCLpVEgBJO5xIfWNIoEkGasgdVRYdheXSvb0oUO99IVb1pDgkkMmx0sO2fAcxRYXC0TWcpe9hj1ORXvuYO7Wt8l9ZKhcsnyEwShjcUNafwxYCDPHaXYRjupjtfsI8thDor69xI2PnPkpHLRS65AUZ6a/LqJWpwq6PyWz/yLIrYsDtshz23XuevXVxzWW4f896gJxj4K0vJKrL6nzJHw5mgEqLEwuU6eXK9sa5I+41tf1If5XQhHyXQ8zUl9UWcBQPxROsvyDRVv4IUzDz/wcOmMnJ7yKkPpEFRgRAkaIZH69flrJEit6+I+LYTaMZjwWoBUBTDg7WlxBch4fl4lQMfxH/oUOLWcZt6XofD0HHTLkBY+NLdI5zkHE2WCMp1OndaQ8Qjgt3nS1zztFlgoGP4L8i2H3xkUA6DcqzTQqJSVv2humhJFIKzTNtpjRE7Lp1BnxxRDsMKeVZFtGmYotc/3ZIQSLSj34R07BnGlJ5BYSAfWtZdpueMBiI6F5VtrRqvhqWMQlYYCTC3cc7GjzZDfu/aOlx17J8qOPeOMEU9GIMe4Rx/DrDrzzk8okSMZF/W4I71ZO0alBkmWHioz6Xy+4+gLRo+CCIW/BYnIOuBoBOSAywc93bp1Z3l03fqEbkdHh1nLxHPfMLoOkAEPDJfxDgyNiEywNH3DE0+W8XFefwX41NAQkxi6m6SRw9P4/868DzhPAJDjatDxMtX9nUI+ZSaaRXq1c970Q3lOxAXedIoBAi2O0RYFDcLqbt+U6zMRdVIPXpDWfzJHgAc2CpQuktcEOmixDPmkRXHQrnWJy+J98+UawDUt4FFrJp+N4r+ArIfOkWkQdH2iuEsk8T4fBdSImNo7Sixhc1wiCsFJMmRXy+KnbctSVhZfGsq2zEX47ro1D90kJTDzLb36fC2BgmG701benyGdFmX9Uywo7BCyHRkdKVOTUwRp7s/k8BWXX8arIUZJ5+JBtieiDiO6Aj2unTz0mhXnL+VXMnLFP4ciFKb7pgmGlb3QxzQx7z1oE9cubd6i1gVsgHQIjTzCOzPGYKKDsAoO3rvBpN96wsZameFh38eguQUITC7N84ottdQI6YeIRGna1XAukHMBnnx2gD7DuTOv8XzSrXBewFIW/Y2yV/sqLEaW6GyuO//gyxYhL4KmO+JvC1VT5hf4jHanTgVPjZ1JqkC+gjjuA+U5uMwcgpqT9tKC0Go5SROwKjQKD3lzbm38o71ixY81+waivOAmZOheqecFF9Bl0B3BsXx44/NzYJk7LtK03Xwov8tE2wITqXunptHVdY4ncxjwqi4wtJ00yrxYI3ki/TLKOhBBFAvjGerQIjhn5GTgXqzFFiZ/zz3/PF4PsbM88OBD5ZKLL+RNXCeh9KAGAVHswkLL45D3TRuzLETlZ8WHeZzQghFNPjsVDWbbs1EynHKL/b3Ogu/YlQ5x8OaM9+MbNpZJXmum6TZClAfy6bwA0rEE2meU55AF8r6HZGC0y5zFcXYTRIiMEkUb2wn2Cp+sF1ID2kHpdDoJV0ml7zqnuhq2jjUUEq0aZitACXgBW8YWNKQRFgoiv6DnQ3qFzd9ec4DvoFbalUjgHzoiDNwXvP6OP65wcNvyAhGEQ7DkL+Ua8VGxJ4KFMIt+07mTuEvOfW4jBQgyPuZE/KmW9pB/hNlml9r4DLs7HVp2rCHX3QO9rqpVmOCbhVKFljxWgt+2wVC6Cks307HJNM/w70EwugRLzjv/nLKSCdzNm7cmwnky4Xdd30TMbBPeQCiqjUz9tcEKMhWkpXwdxnFCC8YUE4E7NjxQ5k4+BRdlmDAh2zui8bMFPEyazxsPec4CYM8wb7Fl0+bEyFvsXphBIjO4rlh1nOG+RnkhSsKSaEo6CpGx12JVtBrudjeCz6qLJrt1EZr8FUn43NH0alEmLAGVy96NGiX6xLL1fj6CQvCrfakkB9Xkmss1xLrWSpdGDSroG+2vRexn4iobGQDK5NPq5UcFGWIDWABfLFYVDkGom9KMqYIhmufaqawCEPBxL4WR4K9+u8Ij1NmPmjpoN3WqCFKd0SfKRWSVhfBnz+Q0j6yyFhja5acTsLqfZK580MIh4PKwTsi5woHybCsflZp9IwVRGBBqv5115nn00VDWSIVhYV5kTIJTv99Nu3Qlk4TInWw+3OPEFQxarVbfu2V9mR/fgXszB/iYCBsZjZAMDI2VASyFwrJAJ/gcRpf9i2IJCEPa+Q7MBbjaZxgQ+RxxBtoIkvMT9r5fLijU3x5jos2VrP42Rp/QpuAknVu+GNFy0Jk3pwp0/umXa518UMl1WNm6EhyJXP33ANPepAzDumApNAH1gGXRwSZHtRgIltEshDipAJyw1OUSROrNhGgpS6xoYSx63xhHhNSqcl96tbq2QxdQdCE6tJm20HAvRRuDbi1ilzpctZxNrxEXqCcBfNASjAJ2wUhZrmCwbLf5UYg0ULFs8EylIB+0dgvZ94n70OBSE/mlAnD9mg84+RJTXS9fPOSGEAYUfDX2PJZliDV1CfOGE7UPICVb9EQQqEuXyvbZpsM9TlzBsOdtMOY6GzHDgALw5/dOIyg89QWD9XM7bBLcxxN3CwCswxNeLt127Q9cpsNkHGFFgUunq6UdQAq3AQRKsLn61E3TFBhRpoWY45kHozexBORVy7d9Iq+OBNOZhm9dUpGoGJSq6evYoHaR+dXqgsF6BYzCUV0hGkdx9beXSYMwGA5VsKK1vU/dVEYdKaUnABUkESRoiG+f8iONZKr1+zfKgb+545OKEKR4gWnK5DdlK2jS4Zo0n+iDlFiBDspF4BFny2OmWgENziignmB5/iSLMm2f+XsLReJW2lbBrqlMSD3nVTl5PU/wYZ7Mp8vro6321ZObn2SScbisPHklz4kz6844BOetCjBtIAfnVQjtV+eklMiJiem01PYeznHiCgatRBnB7DqYW8isqn2rpqgssCO73T2o/HEEAweDuPgw/r2DdkORAsD4jNosHR6g0WUw1q5LB1LJANrScweH+uJq06r0sRB0Ztwny7CDBCqJA1aA6USTr+9VQzouEWQKhYsWxWjmMhJ9qu3RnQgQqTcDeLRuIkyAxHroa2gGK3Y+giTABEUTseJH2pMlJ7aH8qwoScks7XFRqpynjZbnRGFCntRruU7y+Yy58mqe7IsrvVwjRXiMmsBNEqC6W8w/ILyDaPLhIRXHVCyxmj+cCV3y0bw1qmb58jTPh8MbxyuuCWvDN+l3VTGhhgjUrm2by4UXX5JVEgMjY3HHbHtdvg8BlCvfbKs8cLZfZg2gFJceupJJt/Tis/w+sQWDBqmNWjH9mGKYK7NoO0wBRJyqPaK6jJlzeQSffy/aZhp3ybCfywp8GMeXvA/ZCZQxi8abZo4kYVHByD3BkXIFPR1o2VyMJlW7WaWmvYaKBaoRMudCCPvqOlBOhINrFd0hMmXZUYJVYGWP2ACZzmUeRUuR8Gm+q2AF5aQXcmRMXbEeAXUtq4ZR1aKcWx73IlQKB7Tq+0OI2dOuPJsdC2NDbBcawPIQ4gx0zUObskxDC8nyGV0eJ/Pkq4szLH8IYzw24usU+nieA+Egv7QISK2vxBjh6moVrAreUxt00F5oDf/gR7Obi0GLecpZe81V5dte/tJy5jnnluHR+jZf2yRNiAS0ygraqzWiLvtVPp28egWlP30cilCY+oQWDBsgUwz9yZC88kv0yhvnavmWEfq9iSth610DJVAEu6tmvZ/BHvl8E6xM9Um96HPSNy9WTBl0LNnoULVrtVa6R96zPDsnSOOaHa0vLjFqdy1DtqvnW38tESWTk8m0zvbqbqkj1Zb65xF08trJVWCqEChb0foiMXWRy3bJjV7dIYbf4Y9jED4ZeMsf2yCtQtHr0O6YwLThKCFb8aV/Lugz31E1AXXYbuiX3/wW1N0ZuI0gGdBy15TRUbbCAfwu6iPwCq8M25oSOqC5T8FgCT8NjfKxbgnym3F4DlMrSG6sNj6+C+XSKaeuXsUkH2F2eGO0CcrDOzPYBlgFsbWd+8ZN0JqmptRD/3NiCwYtjp9P56qBnF+wq2SQ/Z/eDVt0mwA+9ycZSM/w2KZgE1d163w7DFeJAaADbWPqjikEWUKNiJWgsuNcKmE1AsQhBcaATneFqtqLpepxNRA60qSjSFeFRMhJFzf475kCI8AT19ftETSU4dhIiyNQ/Vef6OM+15JWoFsER9KRt0Z1ECwFkqTaCi7ym5ReU2Ao3+el9fUUDEmpTwiqQSRKqHGgEKJZSec/20bjU3bWNCk1HLFyCKSCHCeJMpyjGSLkPYM1GSSy586KPotvAMKxmmD3uXfDucgH9bg8ploxnxd3+QmcpnSUGPS7umGA9/Q9+eRTZT2PLAzyPM6KVUS0oMmVB3memNRRTHznQTTyZshESe7mciTHCS0YAk0tVVnZsFNQcNBJ6U//wChnusdZt7B7EtOtJgU8XVdtcs8jESKAz/8IkdGrXMPlqmCu9+KykCsTVJQ53WLPXLR9NgmgI42wNNEgwaB7RDdVoFk2YJA+LUgO8gTApAH20c5qaC8HwJSxT7DIEtBz33p0I1KKAuU/pFtAR+C8p2mhHDmQQXTqIC9gNL8jg8yZkDZ8NCGf+hAVebgOxeFHBEVlIYP473duR5AVZhqWQ+FgyQthaSdefSLQLYxi/XR5tRagzqAI3cD9Gj2KC4VQSbsLPSenpphQd2ODbjll9Uk8lrC6TDALvmPnDsqvLwtqrEoz1yOtWdGg8PPbfsuYs0fZ4XyduIJhJ3L4wvrqBgQD6fr0HB0X80pnavQn2TNq57gbMAMImF81Ly4RAJnB5DuJV7WOQCUahdXw3Q0J91GG4LQelB15a915HgEtGOShAfPMBNntZNcUqRVTO0LqeEUboOVSaBPlEtbR4HwLaCxBVsrW4qtA2EY+ZDdJ8hpatdOrnq3EBOBBrJlrGyL0piNJhMvrHIIPCgCRwqXmprzkgmfgWz7oOUXQqNzlJ9KgLEmDy7mhNGB3plwBUglUINJWBHKQgIMTotlRBV4KcFcQ6wJZn29j9anE2VkeIMN1HXB+B+kkScYxg/zWPdbF1GpNE27fw9qpzU9toe5WWcnzO04Yyk7DuD4fnkZAe/CQpsqn49RihFmh2O7in51Ca9Kx/I4msrc4nut6vXvA39rHmW0dkNH0qF62HWw51qaWFIzKwm72Sd3Bk/2+28INBVwDpQuQV1ihtRQMI0hDrJFaYGnDFJYlQkE9zlw7+SW4B2IBalviudERVMh9hAghdeXsEOmGkB5+EmVBmHR9BBc0ZsDI/fBBlEGb0I7gqKasyzYANptRNS3noDLuEO2Jy6W6jWakhZIgmGMl+eZcsnyGWkDa1lgueU85eU7CPCTskW+NOU8fKBTQLHkuGfFjoZZvEME8EW6+jWYp5C3mN9rxMS0HPvGiSOceBrEWWgV3I1GhxBWFLgfuHZ5bly8u/1hgpltBcLDtrP4KJlLTBug30rV1585syrB5846yd3yiXLj2wjKKi+Wjzj6MZpv9o9BArQSGDsuo57l4yH+OusUQAP5beuSaXD/geK7rByTb79QXxKiBwhk0qb1ZXQAZAzi4pJWYcN8kOkANNjDiAzNOytFBChU91kc5uh6JONFBWTkLWHBGklaN64DOf2mPhfM/K3u5J6B0bBwPOCeixvMd1yM8nslPDvJBmy6UH8sgm4XnW3bU8YLnfExhRwv+3sc83pEC21lDtKS0nBwCHeDTJuDFFe9VAdKlSZACpOjLQzr3LEMrJYFqV4ErndwzhfVzEvmTtfxLTl02E5uG9FRTLZKCQfkZezD46oenQ4SpHLvNYBXchdEol1mnZ6bQ+PCKKGGLqQa37sn4hfoUYsdrLjxUaEYQAJ/PGVuxqkyyhepTm7YRbWK17TljCWJEEQYCPXpCqeTTW1w/kuOoC8YE0r2X9UkCygeTfG7bmUx3D/EZDR9flfm6Lj7ld+D152uUA9WESxngwRYOwVCRYke624ehWQw+iwOJafcRSgSpdrbb2ss80wv8OWgqC6zaJBKi5nLgl9nT8FuNr6B50vtGAKoloNZ6ORbFx1MHefjCnTzq0nM6H+uk+yZOzW+dEYR8Sy9ATqSFtLaCP5mkIrFDWwVZQBlB27fZAe6D5dlO6fQTl8n28z8Tjw5KyOfz2nEqegBP/dKvYAJASk3brFvXJcw0n9dBV1RCgIbV86oCETGBhiZxrktNpcOFmC7I9GGlRP5cZ2Zf6LpShQP0WBtW6/axciCbv1FsCwvTTzh4mLGK1n2G15OdvGJlOf+C88qu3XsQIudJSIciUwgTDaG9lUYlgfqlSrr1DY/gOCqC0YBt69at5dOf/ky54466d9T3f//3RzA+/elPl0cffbRcccUV5S082uoz3w888EA2Ytu6bVu59JJLyg033FDOOussGmYnCJxnObiuf6lP23VxGofMqd1Zz0AUfDNciyajGJ+xcGFoUgt+TEr8fhjsxsD6vj5E5HacdZ8kux/mi0rNDyVl5S1gSlUItPQZBvZ55dGRDuYdQGApjM644FBoBwDUUUFE1wlICeIIlCjDKrK3bSwK1wWs13pav46lHK/AE31q80hG/tAi6DOPgAkfzBwLYL2IF7/9pwuZMU6T3+sVT6GnOVEHkJE6FBU5aL0Akn8Oom2LVshd4aXJ1wRYjBpEiyKoF3GJ1Pr9HfesYiwBbVpMJ/YyB2L/RWlQB0JjLXULUCp2oo+yXfjpGGbFCHtXMTBf2b+ijLLpRfa4pc3SE+sgfWSLGEdRQHtt0WH/VUG8oEcDZLXtzTffzIrITeVd73pXeec735kNDxQK/cK3ve1tZRtC4E4iO3bsyMZs7in1kz/xE2XD44+Xu+66K3QJOsvMwdfTv+1MO8x7MqR+xKvMEXOZoOOHg0w3BlZTJfphl3JN4Me8R9MCHDopz1xTSHb243whKhlgSQf/3BE9RoNz6/HTTx2DSNuKUbebGWDjAC2G45g6/+BchzSqwbQwdnLsQlBEAdCz7yfpPBSW3s8IrmHjCAD51eAhwi/8f1rOp6e54ZWgDdBz3XyWiWhQr4/RKhQ2K26Q9/hvO6rNdfRdr9UbXKd9ce9IpIY2baOspNNyXSTZlJuyLM981OVEp+M3hSjjHc5jBanGZScqqbo3MAoJZTLAmjStnTu/+P5Bn7xU2AdZ+zaG19FiEaWPtPpoa217ZUe1mtBGB6UJURhHBvGjYjFoZ7bGefDBB+M+uf5FF0qmbty4sbzjHe8o1157bVwsdwR5HEFw07XXve512ZbTfA8//HDu77dTiMxOjwJGGJOVtK7ZUUDUYNyLmwQv/j/y3uxJs+Ss0/TY14w9cl9rV5V2UGkz2QijQWoWA40BQgbWXDRm3PI3zNVczE0PNm1cYDAyzFowJgPRmCQkEI1aC0JorVJVqZasXCvXyIyMfY+Y5/n5OZmpVBVkZFVepPWJ+L7vHD++vpu//rr76wIM2EKE7LWGwDu22fyCBMvgkfj6r3V8IQRFrnkEocR3PkSGkbB1S+mgU0JQbYv0Nj5tDLJDNExs4aBsCKbop6exrVqkghyKsEyJJANsflNek4fSLmoWcXzvRemh+/pA2fQOrlWqrSKOGZPeSP7Z+/hoAyhObkm7QxIhEttAMuEjU3iftIaRjOxMXnPlvXnwrRk0JutkSq0pxzgO6BNDXNCbiFdJ3dnwqEy2UWEDd9p2hY342sCRcxf7XlRThXc1a1sehgoZhx53g3qtomJZ1jrzIJan6yEdLDgIVx28NneljIBvl6iLPffcW9/8cCtMHA++meu+MYbjBV1y6mjt1KlTcZuj5w8tPfYYXo45HFs4BpHwdK3j5fsl/ED5kTHaXsi4ly5duslQm/iJ6tgjkJGQwCEyEwkqqJWggkhp5llvg73rZQlkCXCBL0DBaHqTba1SDP7Es+fBVWlMbsRXymVBHSqW76UqCUtEGE+k6RStMkVd+ar1qNaCb6KRIsQj09pO61nzrcgM05kvf9Ysqp01pFHiV+K1UN/5EEuV98YHnrY0urZx+CjdeQWsSc99HnmuVitL5zJT808FyTlURTKeHdso0e3hMqZq4JuMLBVAtNY1+p+oqoJGZw6b5Nvp2I3e2R5ItSnLYvoQRqhKrovq6lhNPZ1cdNyluxsFicyx47gOokcn5J2CDBdGjEXtRTTddq5RN9UClS7yEodtj5gmpHG8pmyFkW2/l+u+MYYImcXEpofzX/qlXyrf+MY3yl/+5V8yvb9YkWjVG2SIVO/bZ6VZpBBAuf1SPbM3+f73v1deevnl0rE0V7rH+0AmREIeCjKSAlAQDrkoXTawY99YwXRIuFaOaLECi3sZwsNg7D2kLn05RZrRk3hyUMy1GvRJK/F1gyyJBYzwVInDPQeDMMYA0sue0YPh7apIwiVi+DTSnsTcN0zTUmvNiZjCQCKvxNIKPPMJXMIdPAQ25inhpojUzwItVTUi1lVyirUpUp24tFemiUQ3nhAiTfiCbEwvFfkHjVIbZsUNM4Q6Z1NQiy/ztI1tmclHZqfuhpkxIJIJsiOPDDXB2sN2c7quZUn89gLucqRmsS5J8M4Tytiqjrog1dR98NBBnOgNs3WAJTu8m5qepBeiN2ed1gCCj6DAzRuyhrFtheVYUIsL23L3131jjJGRkbjD0SOIn8OHD8caZS8gw2h9Uq1yXDHJjiwZwTGHxHgVn0/6omo9i0hcXnoS+dCHPlQ+/OEP4/7m6+Vf/8dXUIfm0fEHAQiSMPEATiQOi2oh6iscMHlxnlN5cOmoWuXebxGwAafo/j57vUF0/CaBbG38WT6CiuZaHxFUGUJJroqC1IKaRJ4z3i4DV78W8ervqmuSXV2UB14gFqtVCbAizO962eVzz790b/0btqkxDCMhP2Ce9iFBa+Sa2hdJTrvqUmvKgh5c8SuFqDZZV6/ae0jMxJFwCI61CS6y14tZ14i8i/rE7c2eqSHk1JFCUyOJTu4ln5RhHPqZboUTdcD4yrN/1EGGoR72HvYQgR1Cz52S9jwkCd49mMaewrGe4z/dD3GyDHXGTShulZaY4KNROUTTeSVVrr4+0uQyLZVpBFlVFZv2UovdXveNMVSHfvZ9P5tBtK44Vam0Son8v//7vy/f+973ysmTJ2N90m3Oo48+Wr785S8XLVkOvD/1qU+FaYJIG8xlWhnJaxgJwppi3LeAAnVwpLw6sTHTA3E3D+FfW8K9i8duYRLUabNLvrVSeZKqPpGUavW4rjpIdy+BKptbNDcibSBWmCmOD+jAerE2uQAwSIagMvCEGSzT+QN7H8cmUZWsD4gO9UAt7s+OxwzrSP0kGFlBGtNAIMP6FzS2BJc2GY8/2u+H2zBvJtfkBBJYvkcN+M6BffIhYx5DjKodbY9sFrUMyiIOr1J2YE0KlS1J2rIc/2SAbxormrR8UWxUKlfhpgGWCJxliljMLMMxChWQEa2V0t16NvlmvMi9TOuaKvETqyAME9gwftGv1flzZ+q4jbbux4LZx5KQVXZkypeZrCSPqgI2dbRNtYUUnZZSid1dbzlj2GgBKHF88AMfDPBOn3q16NL/Ix/5SBCotcre4mMf+1h5z3veE2K3JzDtRXzd/uqv/mp5+9vf/rotsUeRCNRXJcRVjgHaZgLPmVRJ0F7BpQJQb87mXm4WDEoqAtGxhLPcrt9Zg3HUazUh2su4+05Jn9OFZCLys04Z1IPwau9XCkH8pPEj/CWsyhRYTxqy6kHSWU+JotJGVV1CdiF24WTy+lsfJDgJUuIhLe8yZ2mvgbR1nZbrvCRcYqZs8Z5eKaEyWSVmX1sxx0dRbXg0Te1AWklKiPgivD0awOfW+VpoKnUhGtXRqqe6SsPCmBKjm7FcdGke2bJKPbrBSzXJVmaUOezRZBReZQ5DwlUYKCgy7uBXA4oLMu2FhYfpHLSPTUyDs53y8iuvIJj6yyHGoprMVc3iDhW42AuFmSnfX/olvrns5iq0fLrr6y1nDEuWmLxUkf7jxz+eykskDqS8nKOQwH0O8RDmXMYnPvGJnwpv80pCvtpnixDJ3QzKepi4k4zrxBE9ggMK/teZ29DGXgkajIJp1R3X+ogAQSjMRIyIcOWnKpY9ijQdwuDGuRLHJ25YstwMeGEuu3W3o0rC9lZZZsKzSz9EeqNUkcDMDJfoiRukQ7TmRSHO+KaHEUYWzBXViPxFrEQZRokqJcJtH9+kl3lVfbzpdnBBpj7GwmWZtKm2v4YpsZXQ5EAbjU9+NpT8UiGCAlge03OQXqavapcVkykQBOTQzR7wrN61XCxSJlXtycYqcBsrVWPMIBXliSWdJsgUqFaWqSLlDx97kLjZRGBZB6s3MTZdHn3kCVYvrJdLVy+WWSb4plaXSz/uklxbZdKIiTBAHmpmzXOKIGS3131hjLYS4VwJq0G2rTBMhmiZJN23FMJ1e3ibxxv+kpepVE+6GPT2gFwtIRFpENQGy9D1AiJReMmIdVQKGAGaklViE1ExC/K8xXM8hyC5JE+rFRMreYQY6EUqbysl3ei0Wfobojev1orSEp6kVa+G2AMA8vKX7yCUb5eROEjdgdAgH0JoC4U7hRb1g/dRyUR26kTPQQ4SpwyYQKjItVqEUC+BQ5y8Q+pKwFRBxqy6t20jfzgo0KEN4RGerLuXg3QZzDVOcR9kIOWbh+ZRJ0aRJJlrcCZ6lc1EVsp0evzopg6qmTpkAzGpl9XPIff01sIA11FRS8PqwFym1YJlj45hi7ScsMSs99wcVkvU1/Hx6fQg5juoD7EwufBKK6xhcwlBik1Tcte+uOvf+8oYVjh6aVtdkPF6YW1t74zbhr/ur3kh/XsBlr5OgSJaCEhgMkgi8uiuLY7V9VISiYg1gK/KlQPhAzWQb/dNnKgSAFzCcd+CSPSiA2CMAWKJL+N0sgkjg0k4hCJRu7Rz1V5Hbxf2LLn4URKbj5/QG3nkLR1Bgzqiqne7i5AeDquL5aiGOCi1B+vFGZmOFOKt0HZAkEpKiUKVzrqoCtoLtttPnd1PebRZxt6AUKXyeDfh2TKsO4FUxHsluWUCPt6lrZTjjHVUVjJbY5HfetaW4YACw8kS3kBydl9UUsZlHt0APmyZtrW9eA4cH3ELKgyP+mqeFgDNh7naXsyKRmhRvvxsj+580TLl0chyDYOMxwA8/NhjbFSaLCPMeEeo0l4ZR5Xddlim9ZdNAgtrkjb6lRt+7/66r4xhNVrV5/YqvV7YG8W9Pd2d9242Gpw6iBoCsbp+H4U8h87b/TPH0Y0bFzAK4AUdSOE7qzsFIgTcyYBYYgJroZEctUVcxykSroCV+HbAkfp0fEdBRIYxwoBpEiFSls4kxChhpR6gKBmAPMW1SCTLXBanHm+9lewO+PWDtczG/XX2o+v0wKN8c8gjBNADcxAxaTODT/0HcRinNUlzp76whtkHndlnClnlzPHMIDcTYKpqUYVg4rbOcqt4yKpgYYBQsL4KiMoMdRzmWGwO/07Xrs+z4pj6sSRjAQuRfp/U+91Lb830nrLh2iZ+3YuxhKS3x7KetlFG7nDclraLDSbwYBjxASbSs3unOgpgcPlZmUnHeQ89+nB5+JGHyhjzXoMsC3G/h/mgmVFlRZ75cY96BvrSVoUbIXzu7brvjHFv1bq7VJojB4f3IFX7cZVj7wCQ5AJHiBDTIJJtGeZw3GB37aql6MScFgTrYM7VHMgbkoCfbLk0D9UTVQtRrmpgWE9nM8uqOkXkqCUVHXGFv8Wsbg0zLzNTMtd2yBQhQgg0GPUdYRsgb4mTiuaZ23FjzhqE55Fb6/Rq9nKuJ9IkqQBQkroeyx2Gxh8dHeLM8SEEPu3C4ubq0z0MSh3A2qBRHJQND/aziM8FkZavEIAwaRtkCjQappfxqYeDWM3TMqbLxBdZej/PoToLfK5cu87ivSVSCQrUTNQaxxFa+rTQef6dLlItPwv7IOwtGYoFpK6HGqIegUd6JnpZeqJtjQzUx+0Ctq2f+R97BrrL9Fr2CjLtkYeOlcdxzbl///74oa2z3dbdj4zmigcb439tl3eC2t+Mv3y5y+uBZgyXd0eCsIJT4pCGnXeQkF28t7S8yJzJDZ4IoQ/3nAUham8gCLMBB6Bm8EmoUry1yWvlQI6F9BU+dtWIt+jN7skQG+rauu5x/ZRqBcYZ4jN+Aiu1VzRzy1OqKZ2tifnikGFxmQ8zwDyZl3ubdZY8POaiO472YpDJKhbUpIoi50cGGEv19tI2N3qQzK26etLQ2/j1+QXUD/zHou/309s4BlhcXSp7WZ49wNEvWYVMdVSbKC6EY30cU9kO1cAFGNOzCB0/zbIC+vqNhVjvdKC2iWT2DO4+fHfJFI4HqtrDwklM5+Oje3LIjrPZMqDIWESlW1peyI4853wsWDiIIiFLNaIKeU6hE3YKAFUtX7jRaWlxgW2sYxwLMZ4FmRUf4tc4CiewQmbpzc0MOAdrto+SLMvxZHRZX+/iemAZQ+Q6KzowyKIz1iZtIGkCeGhPqbjkBB1d9RqI7mS+w4XnOxAR+Ayx2iNkZpi4kq0XQflINcJTJNfJKAGsMKvLFiRGY6p2GOb5casQc6xbZmR2dOsZMCOpIZX0SimFrw0IeHEB528QwR7OD9Qmu0aPoTfvQT6xyR86ALHivxUGsoeQsQfcvEN9O4jrAFXprMTegWGXOQfCY7rqxJglSRg9EPpaiFBecuzigD478yBeJa5tdO+JJtdlewkcKi+ghi6wpEcClgG7MIsOMtgaRGVTZVJd0hnaEANgBdMQHyU5OZOmQjMqJSjZYEWtPV8PvTQ1JYbEXHHhvI1HCmh6tT0O/IWWuBFf8wvX6T0dd9FmEC5+xIuwTwt5iAWR31YQ+RpwUu8Kg8RMGtPd/fXAMobNjpt+mMJFe5nca4AmEV27slJmrl4D2etlEGkstEWw5kDPkY41CwC71EGnXiJPxvIvKgfh6uba6TMwBWWZ1NPkCEWrCmkdAWdBqHFdBq1DNiUbVJs4xqsoqr2Zm/MdZJvQycpBl7eTn6r1CNJRD3sOTB1QU9UyijReWRvFOoMjOXoDiacX1WUZ6e48igJieQUDAAPsnJFBYcv0RBLEAJLYhZL2CHHOIFWRZ5wIUL4SVxVKOrIs62l+DtaFh2MdzdFKe/eVjMK0/TCn4x+tQpkDohexHrF2kYGMZ5lacO25dMO/zGqHMApSyfw9rQmRUiU9bVXVy/vQrcxDPajzMN7Oh1EJe3G05salahSwltaz4ioMQbsASxjKRigSvPz+X0+VAhhKGrvcnHWNdKpSGt0cv1HuGrMr1sVlVpUCJolX1Km/m1Zgqse6l8NXTobVyS1IG+zYLwheLTvuxkNbI0yDqKFKPsb2ZLLFJGOn+jFXiE3mCnYJ4Lei2rfElakgQgeQnsntuq5+GLu3FwKQyCinqnPMg5C2l/YNwwgbDEI30Nfd6ba5NZi5BVUhJyVXVlg3BNM4VrCHdJbecAfRIRKISDkeaU6dM0dCgyW0yHDSpV5WlzJdqtEFE8QrO72M68fc8jtIL6Fq54DfujvYbwm9TtZJnACJesnAjsXs5TZ02Um+mQSlG+rEiqj5VUu3uwm33TxGHXwWQxl/scPv4OFj5TgHiypArOvNi/umz6AX4hJ5vs8/BYW1fGzTGLa764HtMWym65P0N+sAcwPidWmNOqbfWk8kpL7BPQBe4oVYJHyIUukkoFWTJHIlv4gTMeEv4CkDRGpBAJM5TkCp6DgCtUMpTEZKVvNTf3cQuLyGarHGjDd/6vqhbPMmY/DOhzKRmg5aY7OH6FXnlLiZ2CN/zf5WxrGA9bMm1Twsk1SizN4M3lQJik9d1El7Pf3nrvfXeQedA4TxQqiyMb2ZygxZunREkpFBZaYqHLQCqbLsRDXqGXasZNvovYCvdexByMgk7mnxFFdhFKudEkZA1FwrWQIPe+6on+DIXiTqGuqeBgS3DHQr1IYHcai2hpVLhwjkDdOFoMHFI08+wQLCAxFMqpBRg+05bvuLtU/Y2hZKrqzgnRKAKgnCe7geYMaohKP1wskx6A8CAgLiCJS50nVr062qHAEg4YY5KmM4eLRHsRsOYYRqKwxFusJH/VpHz/vGhstYc5aGuv8q0m8J9WwHc+UqESVo90kvxgrDuRsuZwBJVqW7y/kD6qmqkapB8DIG+TjQzOQhhCvSI1UJN53zATJXcCqfe5kP931Yx7Yw+LueSwmstJTQuwn3mODNflU6BAGVUJWRMLMsBOZURczOv8qlVVqjMukLyz5Flck2WtkYH7i1VwgzqFLRDhnEd6kb8ax7AGYybrN61yDCtZBlmQ29l4Ng4y5jPr9+faGMMNgfZ0tBP064r8cCtlTGqL9m5hUO+JnGCvX444+UEdfEUU5kROBA5oIjNQBXtJ9mcVmj1Ip3vLUOPGtUqO+Nc/fXA8wYNFygCDGIS8khc+SRHV6Hjxwpj77jfeXFl08G2a75d4ZbxClJRZoTfapDSl5VjQDUvKBAyLtMD/eVEfZt9yDGewkbYCNS99hA0mm+nEfSLZHH3MpGWcHMOstGfTfnjG4MlLEdz+SAiCAky5GhVC8kZhlTFclVu11dHJVGmW4DdeYcWmaAK0plUAf0EJfER+3sXRxXpSe52W7azOtYgmiFqlkdlJM/Y4QsTIShzFEhYA8kvKgM97XV3KQnk1ENjtoCTDoZm8WaRb0yqcZ7e1vXkrnmbJ3zvh0zmcaV+05I6v/WJR9a1rRurdobYDbX8LHA3MY8xgTESixgHiHWR+/pJOko7nAcv9DRhAHtrXV8oOlaIXezZyD81kV7rC8B7eA775qwFY0czA/VGLdS3c3dA80Y4YK0skG499zKIK7Z/xl8nTqRd/qV0yEmB4h26bqITEQwCrlDslaUAABAAElEQVTk1l8H8C7B8K0ucCbp5ofhEK1IMtQOY4nRcXRviHpogN16c4vl4o1FZtSd42DAz/0q0k+n0apcEkvPyjZnyS2VS8zgLmI5koiUyhKWm6Ik8qE9lMNq5CF0+OGhYdLWnkbHY/PMBUiMWln2MB8wNTKEaXSQ5RETMCrzFmS44REHMJ6nssKLMJZMxpIJVCf5JzARLjB35nFkDPJLx8GvTKV5VwLNwZIkcrC7whyGcxpO4tkrV0bDFT/EOjc/h0n3epZs2N5lJim1gClcENJpvwXbe2W8wdhJFXSJMVAfA3eilZnZeTadzZeD+6fKE48/jnl6jZnuq9Stp8yz3fnM2XNlL/v+J3DNaU/lBiqS3bzM1zLSg9kj2dDUgJl66rgI7FZx0mbobq8HmzFobRAfYEDaPARUQML9Ff3orPpSdXeYy8El+jQYQmjjKSWlO+QjedWP1DtErzKi9QXpvUV6uU2p6ZISB8kj6sYsRJwH8Gjz3KO2YUXpYSB9HSvMMoQq08wuYG6VYCC0dSYaN1mmcmSMpQ3M4mbBHcTszj4tR3Msz58jvyCXOoh3V6zaSIl3db2DbZ1r9Exrpf8GHhApaxHCmmN/SwdHHBxE/Th2+BBt6SKfBepbWJYxgmVrJD6c9PmapSSQir3iDlykquHA3TmM65xAtYip1iU2fRwlvInLwFl6xgsc3HLt2mwZGhktQ9l1SU9AvNUVJvBgcJnGM9E7OujuxAEwdSFUxlMIgizqJLyDJerbO4up2xB176BnX+Gs8D5M1wsw1iRq6yRq4szlK1jumDuhR/LcE827ZEbekr445k8E2vtx5TZ39Uuhs8LEqb1Nuw33ttd3dftAM0Z7BkJMd6pVAVuFoeqH0uf8mdMgA4DSlbun2AFhqzjJCOrPYRhVFojEAbqgHiTuAN38QB8ExBlzIsE1TcZdQzVwvdIgyJ0eGyk9bIYSeYsMmgew6S+DwDkIbZVJug6WnYwMjMAs82ViT385fuBQ2ccZD3uQ9lqfXHEa31QwjtJ/BwsCyamL1ieYg5K18cf1JHVYpRdxnuHc+ddwOYPHjOFRDrQZKR0w8nrnQJld3ikXZ26UU2dfjMr40JFjZf80SzMQFH2YXO1lNLPmaC+IcYkebg51Yx4T71V0/wsXYAImRQ+eOMGK5yNI95HSu4dJQzqxDeo2N3cD9UXVsoP21GUoWrEk9Ox1RyWkUfSfYIP7VbYEXCNfe4410g9gXTvYvbfcYJ7k8sw1mHenPP/Ktezme9+7nogp3bYPMP5YQVBchyHHUbOiSpnnzTFFeLDhClkDloEfHdivoNpqmSNqwv3e7XXfGSP6qrWi0nK7V+Q1la56YYL+zfBbMW6/ExB+lCRVZaj5m7GD5534IFoAKYNI6CUmxUSWy0igsxCc+nfVoc3DQTCWGRBYPYeo01eTsJLbHWPqum5U0nqlJNJB8giIdm2VxLFIj7CCtFrk44K9IXqs4e5B0rC5Cgo/cXiiPHJkPzo0GZBnxgrkQ2Y0DAkrcyK97ZVch6QjBjdTZX8IUdTZY5alPE+oHRkdKYenplBx0M3J0+MMrl+9jC6/wkThdJabPPvypfLimWsIBOZz8EI+OTnNeXYwEiXO0kNc4dzza9fnaBNnD2IWHRgaKw/v3Uf8jXL94mvMI4xijcIIgWqqdUqYbLJJaB2GUjXlkTGY1jzaTFM8rySCRoEDI6ruGHdunj38K4tJ/6jWpqm9ZRgT9R6W9OgSpw/HzqusFVtbmINp8WDI2q+Jyb2sjxpLfuKgXmLZ2nMZ5m3zqLrrYkfT2yNmotTe67brlvi8LfB1bu87Y9xJ/NYhDfvJ+qZqbxT+OvUmSKg00OJHaeHHoOTDrzZ9yx8C4c7WzqC3Ovjth1CzAE4OEYDEkUhVV/Ihm8xqox54HreS22dt7z3mxaSc0n0FSQsrUJ4Eg9MFPs4kDw70lFcvzZUlzKe97FNYx8oyOjJQ9o6PMgeg5aeqbO461EXM1iaqFkS9Tn2XGaC6LEMv+Xi5ynIPGdrGyWBdfYPJT2bqHMUQQF0XOY1WDXsYJt2HceDA9BgpOukJVsq5qzPlWcZY0ApNZZtox9Wyf+8kKtYeHNwtlBnWQWEMgi+XytE9A+XEwUnGMeyvZhn5LGOjRYhZtwbO70wMTrEmDYd5qlFI5GQK43rYyzo9aF8nVjkERA9xenHaLP+rhT715GP0NixbwenFIVS9TgTQMqrOBrsoSQ5To+Iyl5HJVCqzQa88PAzTHzpU9u6dSk8fAUsd4i6UX0FSL27yT28PPtUI6lYDBSAVuIMx2lT/3u99Z4yoBxBcBn42iMtG+qkSv4a14ca/PW4SvO5XHU84gIQqmksCIn/FC4TgaswhkOycRqQhUtbuuU/LDnZ+jyaGRlOeSqtI3ASQaA2FIx/IS/s9S9qdAwCZSiAXzPVgPdFCpOVka4PFiznOF6QgPkcYZ4yOIWVZ2PjMi+fK2dnL4G27PIo9XimfQSRpo+szBtgBedv0NCLUwet1VJp1GrUGJW+7foptnFsMSl3+4qSkXtW5CfIn9u6FyTmw0V5ulf3QEJ9LNqgVbV4to/i52u6cYIPPTNSZbphwrSyXyxfmypUL+MJixDXo5BnpumjXw8cPlv1je/DIuJx5kV4OaBnoZUEhUlz4oEnSEzoZyEz6ICqWqhJrqpYX5znXexsLHoIExtfiFmHEBrJOxhX7DuyNcBlemyhPPvV4WZidiUFka2u1fO3bz2KN6i6PHBovRw6O0UMN1/kkcQQ+VCaBVvCbFbPiN09+K//5BV7ix7GF+Oc/Ak5hkrVSBjRXhGb78G/8vvWMEYISjjvxF+Xebp0fHDhwoHzwgx9M+Le+9a1ykS2sDz/8cPxLuT/8ypUreCz8bsIfe+yxbHnVnU7LQG0b2udMLNlgVKCqf6KfU6bEW5mrCycMRzNofO65FyEU5R6TZAycvWQr9VsBlcV9pm0kkebOBQhzibmJyU62USIN3f8tMfuhoKgHi0hcLTfdMIppHMf4XqvQw4enyjQWLKXu937wY8LouTD/aqe3nk7aqZ51YOlyusV5FfViaLSqTjDzyCQWqOm9cSO0AvFtQbAuOLHZ+w9BxPv2sSQeXXoPVjMwucnRzg7WuyE0CTXuelguMjnYVZ44dKxMsNBPq5djAcdgmlJ1eTmHk4EV8hlnDOQqgo11iLJ/iMV7kyG2DXoNmW1ryUWFq0j2rjIJU44xxpi9eKHc2KHfgjAl8EEteRC3CwtVJ3sGgB2rIe2drswuIKhYLo/524lZ1cYTx/eWj/2H/w0CxkXr9SulC0Yfote4PHOFMc+1cmTjSMWxrQa3GXqD87rwU/x51Xkd8W5ApRGi86amSKRdfb3ljCEHWxkdIHzhC1+Ic4MnnniifOlLX4o9Wxc4P/zhD+MvSgcJqjj6m5JZ/umf/qm87W1vK5/97GeDvPe9730/1ZgQJqFuUFGSVFlimXAkhJ3SIVDINI5/Tzx0opw58xoD8RtMJrEFljgeM2y3a6+S9U1IXHOq4xUmuiAu5ycusgfhwNQog2csUAqmIAZzLu9WXCp+Yy5WGXQsiBDpTjrJVqIfGuiKfnxkZ4KlFFiJZueiYvVhJUOcpb7ZcQfDuA6pbOuQTpMoZ0Ng/tyC0jXPjg31llHmUm5AmMuobp4NoevPMZZ5dzJucO3XKMSIwh5Hye6J1oBwfX6WvDjZdLunjCJ43vbw0XLk8MF4g9SZgOuuFsHRJdzqnzpzrswwp6DwUP1yZt3xlBORri+bwMCwBFNsYxbWdD06Mh5Tdp8mX8dR+/HyQhMUOoP0mJpjnVx0vsbZcvdcaFHoYkHhdRzr7T+4vwxziP0v/covlj0jjMEQPHMMxs+BPdVTwFgOHT1WpmF8Vx2LWi/V3Ki93Ev8BjsHJJNnVTXlhFH8pRcJPmnDvVxvOWO0lVjD3Hbq1Kn4ldLdjT3ECy+8UM6ePVs++clPFon+r//6r+MtxL0Ezz//fPmFX/iFfP70T/+0PPPMM+Wd73xnGKRKAIheSY0lxmuFAaZMYrPDDsIegEhydq2dEJygc8AqXvQl6/jCg9rtbbQiuWQ5emkEDfMESLktkL+AubUfQr90TVv9ZBljgCiy1zHPyhwxXMEC/Xjh7sGRmAzh+EM9XGxZLy1OzjgrGY8fnCpXQb6D7riPQS2Sod1l6MzyAF4MeyF+Taf969TTnoRxS1zxQPx9pOtj/8UqbXBQqocUJyn1rqhU7qMXkCFU2VygOId0XsBSpu4+NYkbopEVmAlJTjsGSe/20c0eFEbqOTCMuZmB9/wKg96ZeUzUvYxRpjIotn7Oqu8DP2tYidZRGzeBv6tsu1ZRn3gexHLXN8o567TPtmjMsBd3wWWQAxzW6I0O7D9Y3v3kk3Hl3wHcrqNFPP7EQ+Xgvqly5vSpqG4H9h8oLz7/Em3pKG8n7sGDjEfIT0wmL34jwMQvH3sNB/fZ38FvZRUFkxTSXOLkHq77xhiqQU8//XSkv+5yVJd+7ud+DtXmWpnCkuJ7/U3JMLrMcYnDPiUEPYG/OlbTm6FM0zKGM6j//M//XJ599tnywos/lhPAgeZUWx6QyROCMUzi+2UGvgNI3sdRz06dPoujtlOYAjlTQRUMCLqnwPkErT0Sl24gY3EilxXO0zhz+RrzA3uJ1xOiCzOSrwSpCuXeDB2HoQQ1vYckD6PYi9jlI82GkL49+/ZCNIhC00I0oksi6mGDU2cXzophTj2B97HuybY4Qdd6y2hNlM6FuL7Iumv5MR+9hngUl1tgHSuY89bQVtm7b7pcocdzkrCH8n0fAwNlbGcfNuUlLSMNBvXbTKrJNAf3TpRpJtQck1WjA/FJ4xnnGgo8k9BeyqXrveBU/7Hd5E+z0l6tfpHsCoYEahLvLI/Qcx+lThdnrpcZTNmD4EQnz+Y5vX9fGcWP2AK9lmNC14QdOLCPOle1V2CJ14g6mRUIJYyf2ls4gx/28U0YRNFi+Ymb0N193TfGyI4wpMs73vGOcvz48RD6uXPnomKFQKhn9utCxXGBQiNaNclf9UXDvQJgfk13+PDhMJUDvC+fOxkmkJAkboGHmA4wJEjjHzx4gIko1t7gsUQT7nns9K46VRIp1TznzaON15kg2+Cc8A9/8AMw0wqeE7/Jitneco7NOsfRww9PjZEfREA6aCKWk22WQw8yCJUYVjkZyEFpZqn5pRpWBiwxUIV5+ugRXBoicUrUqlMSfogVpuA/bbbeIrsDQrUs1TpRLbFREAzJchbyNQ/PwZZBVeOAWJhQs/EGqtkwCx93SH/10sWyj97GFbwCK6tuqZYkIwsPsQ7MmeWusxcxAqgmDWdZuT1eP+2T5Fz2sZEtwqRgX4UDIWFrDyHInSWnwhE0LoOJZS8woBRUqT7i7kV1sqdeJB8ZeHqCiUfKUu2TDnST476aAXYlmqnjtPS6ab2leGl78/IbRgDhliWo2xh5IkA2qR/j37paIXsr5PXv7htjXLhwIYPp3/3d342j5s997nPlM5/5TBgjm/Opjz5rBWQ7yFY98vLXjTCDdP+3X+q9Dsy9RMyXP//XABnEgETwwI1guSUlJLp9SKltVKCLr12EMDdYynywzFy5CiE7gYaJEGkfj4IgYnlxLtJtgvmBUT4Xr14vS4jy50+fz5KN8ayy5fwMCLcPCawHxC7WRW3O4dMKpunBDR/KGzUImfPrWAeCAXmuzZJZIm15dqkKFYf49bSXJoUhlNLd5J/mhLtokw+0xUDv7aVioUKiujLYQGGww8w2mbI8wzAJu5/tpv3MKO9JfGGUvSRsbDI/1UnXaE24DRYT89Wrl0rHk482TOTykkrYegbcAN6qTsJyZxv1xur7sZXEcwVBjA/0Dmio1ZAgbmAaz9rWtdFVtgHcwEwr3EedRafH0dFayJg22IOpemqIMF+yp8kVo37LfIFBvngWHsAq23mbuAQlHT9cPFUJVR938X3fGEOp73jg9KlTrOsZL+fPn8/A2kH5D77/AyTQBj5ov19OnDiRXsA4eiBUzXJQriO2PSDszqs15641Yw0BEWAIJ268F2MSo5fmUTfkO+hfp8z92sWxgFy+AtE3S6CV6A5815k8+O73fpBufA/S7CrzHoNIsnNXZpG6l8vwI0cpAwQSXzv99gqrWmcZHzAuWB+jR+gFyRBOKiHHpg5u3IFdIAbVDgfcLo1wxt14qluSgCZmiU0p52SdD/XPe1ui+uQaqKpCOTBGvYch62vVwuxjUJo7nuEzw1KOCZh5lAk9GYDoznwSj7qFyJygw8SMWnOCiUfXLu1BGA2hNrkUo1bIetEzwISqdNtY0ZT4LnD02T5Dpoh6CM7t3S3HMRf0HYHlfIRK3jXWinUPDJW1GzM8Wd8q8VOvtFHVtvaU5u0lfMhUPs/V/AS/Mo1wi+pGnBpJseRYhMuwO65W+7gj+Kce7xtj6EDt4x//ePnHf/zH8i/f/nbs7b/5m7+ZscTf/M3f5OyMx1k49oEPfCDjCE25Dsb/6//zXzP2kDFsxJ1dX9uwNDmEB2AEjgNW4oMjLr6atAJOuV03+W8wqByMquBAuBdp7YBcBwRb7ueGCV67MJPZZge3bsxZhZA7MXeevnw1a3k8UGZsAIZdYd/FvJN6I1iEOsts5w1mCJYoV6Wm8kQICJXIMYFzJ+5Dt26RruI99aV2vJdYQwyhB8KgeMdP9bJtpJcp+JAMJpOITOs7yIz4NJW20DPx53zKBttmx2AMt5+q7lX4kJh4EpXfEugAKswRdPoxeslBxjj2PnEgBzMZC6FMLJkQcqFMXQ6pfgL1hAvzrDmzYiSwp1ZNVcqvgyPHlxvgZ5UNYZqSdaszRL2cexCFdmDWw/qZRa2d8xeCCBrwnRXhMr4fYSVt2OZ2d59RjGu4l1nV/PK4q6+3nDFsiJe28o9+9KOxLNlzCJy92L69/FVdcmnCBLq/ly45DzAecF5gjLUxY+ikXm1+efiJLwEmapAPwEEB7YAwksV7AcoL5xf6KVt1zVllB/mqEEp9JbdYlzGUOlpWeiAMZ6A1M06xfOIqg+/zV1DDsOu/ev5KGaPOw1vszV7AIrXh+iOO7UVNKMsiUuZi7wXYSocBYYsiey1VH9dEycDUjgpXAo40hrL8S1yoQSnpStZg1TZQlxA/bXJJhuur1Mu76IHS4xCH/4zJ1OMlKA+oP4BFaoDeslrDFBoSniXRbD4hOMpWlXROQobYYC5ki65IRxESnz2N6lfYwHaReQweWM0irYFfWiR3pA22rd4L02HWiS2z6HGJgTa1KhuM9/ZPsxQEbUBHDF61dxeJtU5mmLpSljCp21ONV99TixrXl364LN7yKjHwS/1zNe/rw91/v+WMcXvRMoOfOy8n++68HD9orrv7S2JooUIqRQewSEgDk8pUSmhWyoKIZfwhLTb7j11I193JCkwQq3sXl1wvMTD03LcwGEibmpguRw8fKA8vHGOy8kK5zNqis5dnysg0ZwfusICOuYYFBuesbGL8ghOy+eWyOc4SiSGJScaEnKxQW69UsergyM6MMxxrpJ5ElPiyr9zego/IVTFpl5DYrE4mJe1NemAKF+mFzKmrhgr3bigq3F03wHjDeQUFgPlKJ/ZgmpSV/PY0XvVoYixMMOIgYwHN7CswsOqnrkTlcFcEuPdb/s/ox6Qwr8DuwAGdoNdg0ECftlMLhM82S2L2TMEAdAnXWKKf5TKYt/v6J8KYSU9eVSREmlmlMIUw832rQuVFvoBTug/hSyTrSNmRN9anSVcTm7cBu7/uK2PcJNymXpVQbQstuCPMxzcKb+Pe+WujM+UPBCUIASUhCRRLsDzzdD+zE4nC05NaNS8+/rZH2BO+WL777X8t46wdkjDOXbqShXguoV5ilvk6M69Hj70TL3gn0u0/+6+XynnMjWMsfhvtGyljMNwy8ea3brBWaJ0dfayd4vyH7gE3QkEsVMWTSVMZvpSMGYiDRWWlk1KSspYx3XTKLA5knbG2pxOt9ghRnxCJIl0ikiE6qWOldtqKiqJ1x+22LtXWDOoMu06PbT98QroGKt6TUbUAQlCOeXin6jTI2MLhzSq9uSjawXzNqpjMaFtHGTK9IS8jnWvD6nZccnH8Z//hO40I1m8egwZSg2UlTtxhDDl6hElA1Cje28OmcMpvgJQ7WUwsmn3dXFXbbn7t2JFXaa+9iff88PqWsJQSvNrfPOzi674yRssId9Znt+F3pv/JZ8CihOJHUCgdvXKgYtOlDzCgdAnD2fMXEvcoyykee+IRbPzM5DJYPvXjk+XwwaPlEU4FPXnmNEYDXM4w43ry1bNIt4Fy7MSRmHC76VkuM0Dt2DpTpo6O46SAVbNYota6Fpmn6CsTqA0rDlqpgwSpEPUj6Yk471x9qlqk99aITZhkW30coqkkKirdCiuLSzp8whyQSqhFAqjmbOPI9C6t8FAV6+2g2LPGMwdCiUpv4/PFk59bQsPcHaqGhPiScGUOhzZra3hGpC2b9EybhDnmink2xGfVFUSwddpY4e/uPSzSCBeYnlwF/8ICfr06mDyEOQ4/8nCZZIGj+Wc5jPUTXcRLHfj2L7CznkFlfcMjkfjyn7YYJ5+0qImTlwS0l4zU3u/y974yxi7rsuvo4rqC8hYAKtorAFsG1GLiilrHNFpyjhzez5LtPfQcE+VtTz1VnvnW18vI299V3vH2J8vRo4fKF7/4edbssM+BpRBnTrOchGXZa0jiTnoV1eKTzg30TZSpfSPMA7BcewtdX+cBqFCby26ZtT8QgeKRP7lDDFFhGdeFdQJePdr5CHuAEANUFmaQImI9Ii3E4NzIDiqLuWVvSdNuid4lLdvMgDu2cGlFNw7RtE65x926BjJkZ/nSVWDmPXF8ditsdPjKuURkrzvzNw7sNZtuIzzWLGNDp3aOdagF9bHsFMCPnUOamPYxZiFOdTonUxKXP0YXwAqLE6pdTNdUiKT1MquaceoZuPFMNj9x2UZhEAkhjAIXg7gnvm/aTM3DsKxGMHyX1wPNGLWtQkC90yeRDDL8REoGNiANEyYMcZAZ1s6dadZQjaHLaxbswUo1XKaPPZoZYgn1Xe98itnn/vJF1nm5vKKfQfcSYxNnnStCGJP0DJXvnnmhPDp4qDw5erD0zQ+UOc4b7GFpRUUWSAKHQZQEABFl0RtZSAD6slJqqr5YzeqwOZikHcx81Mak8lF5wHL84YrodBuOM4hPuK5/WEhCJjAQFOryCOeJ2nFJrQTlUY+ARJWsyR8ohTlhzYw19InlWMXye4CNq2epHmVVdU71znrbRscQtisXdW49AkqMLtFXBcqYhihoa2UdBqlzOKSwHQ2OzEMWICiw4aUReKgA9CmlcOO93zK0LGI9ZAeVqZvvmrypQQRK4hl3l9cDzBgCVwAJggrHSlAVlIYJNCGeWXAwunc/buQl8IY4fK9Tr0cfebT86HvPljkG1r/4y7+IhexJFjwule9/5/usOkUiIjlVG7RauSBOqTezuVReW7xWTuzZx1zHHrabzpXFXnb2sahORKdWEhAI1trvpaphnSUC6xAmMT96DeueZR4xyUJ9hMsU1Zsh8UmTHtAwHkMO5J9BN4zgoHmZJTPrWNjM133pWq+IEqYwP4WFcAkZUV6lLgK4LEsna9UjIIsYie9EoiZmN2I5iK97vunTbIM5kXmFfiX05M1XVgDQ0OrIjhE7zCoMfG/p+eTBmtgeHvinSC6/hKB/BiciNz5bf2IbXcYxAR+bkngJp1kyYXKpv9zu+nqAGUOACQ6ADtBuAa6C0u5eCHYg2QJSuwyi+QSegacp8QbIAHM/k4oLRw8zG75Vnnn2+fL+D/1sefp9P4PTgZHyz9/6TnltjoNK6EXW7XmQmg6ahxj8zjBzsci2tdE+llwwA76yxkCTMXGr9mQeA4kuaVpWmER7JxUIyvh1aUoYgvr5G1UK5lWqO/cQsmkIINhVXNIuGUI/Ta6SXWFT0SLL2x3wdoaYmUikjpG6pNWZQZiQ3zqQr3XgMTAMt9bBEPm6r4E1TJSxYVoMFR07DMKtA9aqgFUY8qxhoOr5ddykCpd22Zs4ytCAQL4SsUtXnCdqL7MTH3XATFX5858SDc67dA1prmXVIOMF3YTnJj+8JLC+45vyhFxMvmZ6D9cDzBgVUOI2gBSkkSItFBrJAmCUxoJHmqrEYFyeRS7E5znUmS2GMHtxkaMJ1c1Gx08cY+b+dDn//ZfKdrfncABs4tt7DGouxeI0j8l3h62obNunJ6kTcFuZ/BJZFEKd7LFc7Jdf4lFArYi/IFC1IjRKLUMoJrUZpkvrCKCuMlcUeh4ddDs/tIQ7mriIse6YWLMHg7L8qzJXczVPNpw4LgU3r4wxiOH54c7nCBt0HYgJkzHwAjIU78JIxlbAQ0al2AgGVSsCqJv5Wlf/uPJltTELw7g+OxZxBbOrgl0LZVsFCxmQuqatIzIh4WVe4ktms0zj+WzpfEcwEMKjDGJ+9lA1JmnMG4OGOLw1JjHf3V0PNGMIYNWTwAykSkZCK5NeBvMJApsoich7/4SfPU0vK2THpybCEBewQh2h53BORT9QqhHvfs97y4kTj2Vb7MmTp9gNd82EWZY+M3ulPMu81fHJfWVgHLsmg1MltrNg1VxZUZ2eAmYJEpWeEmqD9Ehc2wExGVsLlcvVJQoEbyP0rS9/tENky5guhHR7qN49nIsYwvKWk2ebtlYna6SDgKt0DzDSZk3chgmPfBtHXmVeJmMveywJn7K26ZX0BOJGWwlcs7a7BMmgMhq1Fpa2jdpVeDOocAxiHTWPq6Jp7XL3Y4jeaCSH77ipRM1dLns2QzDTNSHWUGaqPYl1jzYgB/gq7ahlh2dkEh5Tnbw20u6vB5gxaoPDHAAuiAmQAsYG5QKkkca8E2D1rWE1vQQwyS654w89lEMuN7HhX2Xzzj6WmmvJOnzsMMzSEe/f/ejts1/7VvZRiKYbbN45xtKXkcOcHjSxp8wsXGIS8ToEyrJ2/+ypGkSr2UR9o8JOxOk9JO44U2dYQmTy47ECCuTsNyAP2+cANb2F36Q1/SYEt8pMvscx9+tt3MWQqlGoL5LWDqZWpbVEpqCIsJAhea/EjxoENOxN6/wEFi0mD5l4IS2tI67MGT/A7Npz7AGQU0/bZu/IUyVSnhHS9Rlq16eWzKB/rKySphFa9DSBh5pv0qr5kVuea2DaSyyv1D1F2g6f+OPZ9hlbwVZVxkRPXr6wbw0M+PbvXq4HmDFEi1AAZEAzTwLRewhLpArkCnRj8tfAqP6aTvC5fAVHZlPTZX56lj0YK2UuLlvGM4BN/sRS2k1OTzDhx1zHq2dyFsUNNgQdgnHGcSDQjwO2g5MnyrmzODXA20WXREB5QSFE5ryKZVUVRGkJkaueEKj6smUcRWj2Ssjotu2WNI5aAEPo/a9O5GF9cioaSUpz64f8XH4S1RHCzSYs3qcixKg7BO3VIHqYSOEg5DIeYEwQhoH57SVU9zLJSL1Ui5wr6eyGwLnPmYXkas4yROBJG6yJM/5ONvqphgfH3qhn9MLuBhQnAiLNI2EVAAnixW2X+fqY34q7JJU5ucRzB/e2vUKW8ts05p/IRkwuJtnV9QAzhsCskiHACVAAFr8+C3xvAh++wgIQmu9bmAmyIBUojjGmOHjsSJlj2ccQzsbU37cXQD3E5qBYInPn3ONPPJzJtJdOnWWmG2JyVx0bn9ThB9heOrl+qLx26lSIqxudutZGBrCClkj5VED8tmMPbe15Q34yimoEpdI6UU7NYQiJTPc+kcLkJfPrc9a1X243XXXegV7CPRwSeGb6M/hNy7PaVUJvl5pYF8cb9lCOV8IEhG2zfMO2yJg6F1AdkvysR5038dnK+w8GiJveh4pH9cL6ZO9t26x95lN4tk7pmQKB+pWm0vC0sQ0XTIR4WarvKthEps9ivV6hedshPPjzSp58t3m04TXF3X8/wIwhKUlQt/649b8hQEAklAgImACqLiyDZKkSgGZlqlIHmOtt48DBg2UvOwaVpCLX3X/L9CB9OClzEeAQK3NHWBkq0rewYL2HTVgTk3i2YIkDAjd28+HJ8TKCijV78XKI2fIiymAwKxNjkQzAjdNe6vpZHmE9JS5r6IDYNUhQgMSW8mSOMAhpY8mS+HWyhvaPVUqmkGmce3Et1CiTk276MW7UK5hAj+wbriJGQGDOgrkgctopCds76W92xbVksUzRM2ACzgJIN0K5YMqeQILnl2ryC/FK8AAwaiPtc+bd9tS99NZZhAhuyvQ937ZRrHlV0VbvfVYwVEYgFnVLmhA/tz4Kz+TgfQ2Sic3fXGxNBu1WV4ZJmkTd1dcDzBgtcAGUgIuobQEvOJW5Epjw4EtA1a8mvpqotwGldIE6hFmS1bVOEGYdE78C1j3OnaxAlYi15S+t4C2DRXFHn343jDERAt1AD9cy69bYaRZJbqD/r0NkoSfRZRVCUNZVxtOyRKVcqwRhZSl6U0cn2qQoJaFe+WRSVa+0QwsR6b3XwTPrUjiNibJQsdzrsrqIi03yW8azRzcq4jCz/Z4v4XKRrc3BbF5ycxinPScfs2rnLxYw+eqTdoktxfrCleFdLUAMPhJxZYgARSahnp3Uyw1NsXqF+G0XqhfhqnwSrQYJ12214A/mCPeKiRdYhEUI8p0EHeLm6eYzd6b3yoQpMPGx9lYID/MgQLxnMpW61B6rSWTCXVxvmjEqV98qsSKNyqembz78Vg6vcwcwQjQgKVIskEFyWDYEX2EfNJC4Sixzaf0TGb2FdmIJXK7M6EIxEpSo0gOfu9PM1vL0prGNqVYHyKs4T9h28w06OOPp0tfB0Vv4Y5rct79cPX+evJCakWYwW+oF6sgnvVIKo4eAS0SoPZf5h3/4UoeuvUStmNK5hS8RU30PznGCsJvdde4dH2CsY5ucbXYGehlGyTkh2UUHMSPN3RKrhPeyTC1oegzxTG0Hs24zdY/GMIP6doupvZb5yhzVGMAuO+raRc9mTbynIdxZtgYGhQGMTSonG1XtaivMpbU4SdANnmQG/nIB+4S3KUgoA7XjL3Oor2qKqH7UrwpH8BT+rUIycWuuu/p+04xxE1F3FPtWhd+R7W2PrWRQLlQkxAQpgmSKFngAORYZnsOsikiuLBtJSt8DYLHGl2+9zXoecKFHjSx3cAumCONPj4B9mB9feP7FMsnykpF3jkRFQkyqHMFE7KXGq8Yc8TY5INMi8+GtzCqxoNXVizJyiXyrTh6WX12FNvq8jAUhW7ZE6Z3P8cQBYXbpeIHxg8ceZ7m3REkspbYHsuTsDXsenl3/5F6ZOo6gPMpyHLFGj2dP46rcLq1c5Bf3ObXilmitsjyK/oC6VpUJtqfFxLVDiNWj9rbpLXjj1tUhVheojtY8iBdg296mTeRdcQcehBXpwoDcpa08J63AC5D4pf2OeSr2eWv1+PK1Ysf4ycvwe7jeNGO4FEFnaWtITl3TTzYbj26wdmgG1/dKCjcmtcdFGX6dLaNtuLq9BGu4HkScQzC+4Xd1hYokbAEBFG4DhK8EcgVUC1OBCFVWSPITSDZFCVjzqNJJvVVLyorqCfFUo8bYq/zOd74dP1HsX2Yvxg+feaEcmjxQppglz0lJIoQyVR26YZ5NlmlYvnUT+RlHUGR6D0Sb0k2rlKh0IGz1tx0LQcTW3HT2hhv4mjKtW2Jd6UoJpLOeNc8s28AQppFAQrdniJWJKMx0xA/WOqbotQEcpjF3Y9sCH/LOOCJSnbwdv/AuZVubliEDV8qyptRPxpIItT5F9XEbnnH4yMBV0sjI5K+bIXrfSrTGI1ymoJzM2UDgSWty4Z/04pRaBED1dbu/xXr7se1NbPJKwXkjzGRypETNyri7vO6ZMZQ+AkfXN3/+539evva1/1n+03/6vfJbv/VbnEuwWP72b/+2/M+vfS1uMn/lV3+lfPhDH44O/Fd/9VfZ2z3M4r2Pfexj8Tulp8L//rf/PXvBZRi3wLrlNYT+hg0CNMJThjBORHBFp2AM4Ai+2SUbSeAZxvsW9T4pXStJks6ExHOphvcdmE97IPCMO5B+fUjUAwf3lf24nZyFMYZoh5eCodNl6BIOhGh6TwtawcOIeE/ZqYOxKZV7rUq+y8wDhckA1kNpab20hqn/67rTMYSw0RXOtl1SCIhsiUfE5GlmDpK72Sei7m9wL+MAhgD0ROSDIWEN3Kx30TuQhbvz3IHoUdC9qIYySHYUJldqAQFbj3wkZu5kWgfWMl08poQ5fSdUJXjipC3cUL6hAANCtUsxQEZqwrkJ9hq81NYIJN4biUsCTx5kJnyq4Gpj2jByYKxm2Q7ZKlysh+kVRm16c7v7654ZoyVaCfznf/7n42Ww9Q+lp0F9P/3+f/7PYZyv/MNXcNB7OK46dXjwe7/3e+W1114rn//85+Ne56UXXyrPP/d8+f3f//3yox/9qPzd3/1d9n3rKscGtmWFyG97FuatgKmg4rvCo/k1AsBIYAuUmqgCmzAkon+xgQN4WSR5Kb2bsrJUGkIzH+sgsSqRt5lce+Th43geOYCX7rrfu42jaiNjbIEYHRpjGyJfCFcisD6UlXJ4BN0J8quGWi/Tofvjmc95gz4MAw7ss0SdvDIWoS7OWQQOVq/5g2Zrb8Er7bqdfYwFULf6HQvFSzm9CQP3TAqifrl3wzVUMmVolHQKvdRVAMJw1sty6NaAuaZcnSXAHPRgsQhJgNTHetXekNck1feWPRQJbWWNa578m6E/1juPN59v4dwKkWUuy1V0hNEJTCrfBwQVc8LS6NZdgZNetSbf1bdUcE+XxCog3J/93ve+t+iGUzXIxW16G3zooYfK+9///rjfdE7g3Llz5aWXXoz7G31NPfXUU4n76quvxoPI8ePHy7ve9a44aZvDUbDud+68LFOEeSk9ow4AhUZ4JlywBH9866Y/9RSEQivAFBHeimB/fRI1t/2ZztySSPAblzCIR4bQpHkDNfHYQ0fijE1nA06YJSvRYlw++r7q450mWtfzpGTCaw0svJbZhteam1bpiL+FnFK0ml7KXW8uxFNNiqrEeyW6oxAZNcvAKSiDZBnc9pGJHycbe3sZmLOE3gNrRtlPPzLC0V4c3CnRVl9Z1of4YQHIy2oKayQ9BmKYtG5AwjdIhIhHIud8PVLcbhQwhwq2SrC99LbuuadJXLaQ9Egh5YxiyBCZrsWDsAv8CA8zVaCamBBhYy41J9N6bz1zb9wGvuIr7/LGSLu77rnHuL0YiUwJIlN4OelUzXxIDAjG8UWWRdOVj+YkISVdJy4jhzM+WWS/g3vDTefYwnvjt5f5S2iWcebMmYxRdBatRIreznsJKcIzABGEwKhJl/QNUM1TgAV+Nx/am/aXGGQunE3LQ/1H+qp+uNN66dpVBtgjOUv8wPi+HBrpUkIJQ5SYyo09bvq/Rm/iQFFRl9xoe11kh/4NxWRgTYXsU5Taps4gGnjmHD/iO4DeohdKRWAAhtykpZ0ZrJPWBim1LcFw6+0tObbSfxvGpsT6TF6BCwSuBPY+2AsgyYWHTQAQuBNnTYakPi3jcUMi5Te45JOJPGAmwdtjWKZCxBrEO0o4w0E17bO85s/8eUxdrbISvkKAB+585533aVsbYh7JJy+TrzHTb4g7X4ZA6vvdfr8ljGGhmUQSOVw2ViJvr3Y8IrAM972X9/YyMo+9innEckK4ce+8jG/Po7r1wgu46KycUIFAZHNNzhWSaBEClr9aHPEAXYPsihAjCkTL4t54gbYRufdqfn1lcVQMhh4qjzz1JL6prpWvfuUfy8BOX3mIvcy9I4JTJq3pHYB7gPvMhYtYZ1CnCO5SRTMfPpHooFTSSn3aivIsp/unNNYzosvL42oTs6s9R/R4JK8qWtQpKmdVNZHKJFVASyjyI08wBQasmzAzXGaIrIXALctoSVGrTx2R5tzb2ymUrIcTjg7QPUxG/d+xBoFJV1Ud780nTaBMYJKMjUcFIFYNGbbXOMIzMK9Pua277gSQtfHP3sXLu5ZtSB148cytuElrUhdfGWB88r+H6y1hDAk6UolGquKMj42X555/jmOp5mKZWkL1mMA3qYT9L//yL3Frr19aPw8//HCYQudrxruMN2yZRBWtvdJIHuxNdBD9kY98pHzzm98s/9f/+X9oIY1ZsYFrgCnwWpCIppYZEthkKjAFbOBHHIVLBbRICJQJMNAfEeQPUhUCH8Gl5Xuefm95+cVXyis/folx1JWyl/ZNj00Qy5heIt8JP7wB8m7pBofWIE6zjol3QSQRJPBKIrUscanUdBm8Z+ZtbUJMTEroYX1pYZb5EhgMb+Wqb65y7VNNilqZIjPw1ozLvHZqYl6d7Bmpg1+YxnVShNljWXbWKlEv2Dk9mkRJcN45b6DUX+asvQW8CGp67WZs4pkdqomqYJXATUPFSeezuwvNuws1bWAYH1wCgpeVZVoIybyky4iZ95Zbs6gNSe1N5ydZc+dfzaUVDAlr6pyoIjIwNb9b6ZPJLr7umTHSDVOwptevf/3rRSdqMoJjC/cyKGH+6I/+KCqRjtVkAB00/8M//EP5sz/7szCFLv91pSMjfPWrXy1/8id/ElVJZ2vHjh37qWYIdHsYL23xIvDWBRCEg3DhR+thQ+0VXvUV38KtEk0kGW+FXz6JSQSeM3vKTRAHFVd4y2QgnJ5gCs8impe9VK900VNJXFRxmQeS1kH4MPBY4sgAVREea7WUZGSa9UXQpAj34BmJpRKzQsYTkFAvaesAxDiH25G5axwCc+1KGcCZ2vTeaTx4EAcrkfWv53Cj6jEgdg5CVct6wWIQfR1Mu9zEgXaUIKS/QJSoVX82XFYiw5BO5tn0hKcYFVwTRp6cR+iRBXo+0WTcy54U83cyUYtRtRrZFhkPFS0GA5alkFclZzEjdGxlHVvkycpTX5es5Jb3xqxxqWLS+NuEmMgwIttL+O2juOGfWyP4XX+NvdvrnhmjLUjVRybQhb8Vc2zgwFqJ/53vfCfnYGh69VmnZ5/61KdisZLwPQrAXuD48eMx0WrJ0qyrV0LHHwKz7S1uLy8qGQgUHkreql+LDi4hy6W0cNDo+wCI5yrdmig+Gz3fFW0iTOCbsXlBNlwC3hD6kSYPIzkuUP93ZniT1bQSUWygEoGmY+NYByS9rkGjb0M8jsOsf+pCxiKyHZgTHUaq9TSOplTrZzmej9k9xRHKWJaGkMILninejYdBFjwqdJXg8beEVNfc60GSHju8veKhLsx/wJF+2jFLZqUJDzFZH5iwh7xcZyVDr2LWXVm8wSYsD7DBydyYzpaBKPVol7jL9GEyBxY0RClOpPqLB8Y+Bvcm2EJ9VF2tJFyJObgNZKuvYnu5Prw85gAd4KSrTlcMZGymVKpIIB/SAyhLMky8MMPDbcWkVGCbhK9Xy1R52MXXPTNGW7ATer/2a7+Wyliu4apWB1mQ9yRnHPjsGMJLNeu9P/PeWJ9uD5c5PDzm3e/mXO7b4temJunNL997BRAKXe8JUyp5CbBbwKhhSmZBaVetNG5SNXF9x1/FaeJE9RIBAN3cgu+U5JOAt0xmidnuqpEBkivXLl4v6xzhO3l4EoKgNyOljg022QF3GX9V1bNfHWM5z7Dj3gfz5D+9Bo9RRywPxgrjQSzC0stn51Cy75qyR4bZOYiLUU9hGuQAxxF6D6WAh0o6JyERriKk9PjYaz4w5AqTqMscSdbDfMsQB3YOQLiagD2KzR4jOwBhjFV2Bc7PcHwxqtAgvV3vnj7aRE+NRK/rouyAgAP1goduwsdnobkB7DoYC/U25uowBrBoVRvjeSm0JHz9WPXgWsSl+woQexvbKb4c1Kvo3ZzAJX/T84qLcGBhW62Efw15pKx0iE38RN/F1z0zRlvG7YTchrU1lxHuvKImgLg7r3aMcmf4Gz8LhqoyhXx5CIO0gJAZWmpPGBGaOLyp2bZQBLQ/EUS4UjOzsAA+E10WxiXxSgyabvejBm6/lzM4LnAU8IVr5dXLp8qTXU9lc5PbYM3etVJrrEPqZ8C+zXqmLL/gRTcLqxy4WoZ5ZmkFZbl4sYs1RzkrW0SnYraFO6tNGlf59kG0mxwVrNd2qJ+zNWAmwhZZAjLIyauex90HMwyjHuV0I3sQxgkrLFEZYCZ6ZHSCHsdddZw2y8y+TrI3Wfs1yyoGZmJxx4s3Qk3EuLyRYTLbLqUJU01WwoK/bJqix4gaRZgeHbe6+soIGkIXKqCVlgGM3fTpSWdQZZQqBBzIq8aZn6B2vZXtNZVXvn2WAeQYI+VDjDBFI8SIWV/LQI1RITns7utNM4bFWdnbL5Ho1Ya3z22c1w0ni0rqwrKmb+O/0W8Lmwo2CVFgKIn4busQ8ChT/FQi5OcmpOsklmXnbV615clYQUSLh7TTPdFKP8Y5mGsfemSozA/OlavsoNuLx5DxqXEqYA5VZ/cI323XFYHwHJ6o2kGPYHkSU5a+Ww5/EgW8waw1mSM1CQpRyYT1qszhcnN7nY0u3IFy71quHQf3qCtbzJJvcTDmFg4azJ/+Gyk/gHdE1L6h0TIII6mmyCyqdWtrK1jXrmY1sAsR1y9fZD97J26F8OZufRhsO+CWuO29BIGCgQqmTaptPmfzVH5R21gbNQBsai8uMBQ8wB/iN4NKyGSYi1+AucOgUKdxLp2npJRT0ShejENwyuUreCANOL7JDnlX8R/BRZL0JnfQknBOfrXwN/x+SxjjjQh5V+E2RADs4jK+hF1TVUku9CTarKD1De8rKOq9gBRVSUVEdW191RqWN4G74JMASCsSAvT6IyHEshSkoN6gMgyN76AfYymaREfnmCxNq0o/U8RXExheYA6nV8IgTOucVauDYkPqn2ONTlUJrTpVKKf+MgbRiWWypjKUD8ny7DCawffaEmlxB2SbZi7SM7A0nkF5J0wyWI6UTgjV3mYVV5lLlD82wqw8y0wWOdB+iQMmdzz7juqNMcjWyuUA3PmHLg68kZHJGiZ2UtXHqscr1R1XuHxePnaVbgcz6YOc0UfiwM8am5cs6qe2oAUoYeYLw/lmnQlNB+BaztLLEGgnlUKT0ltjAq8wh+pcxW8LFprfMJWCksxhyFYQk/Cur7eEMe66tPsSsQKmymCIXLhxhRmUUg0gDYuncZBvFBnDOAI06kziNYmV4A4Y82dKIvEfjiNcYhAvMoh40yrTh6rkkWNrSF3j5Y/yx0bHy2EOWryKz6q4zzeyZgF+pf26NimZcw8BUoVNNkvYSag9610kyLV+Mg5129KMKsVAyfA0wXUsonS3Yp5tsT3P+d0wZweWo1V7KxhYX1GLC6zd4j2bTCwoZ+pNomZ1wgDQI3lSLhYn/UjFkiqT8j4reUNklWOVxlZBlTMz8dzrlGEAN6UOulEIBbItrPDiThXIlgqb9vJZhnFAP0i5WigVEFFlaWvKMVLi+U1quYY2GUc8RLUiPIN/4SRDcIVp5JTgNkGmrjf/zvcDzhgAumm4DJBPGi5ABcgtYASAAZgAFGhcPDvmSR4iWRokTXqKBnAipjICEfiX6E17E9Y8ONnVQ7ie9lKodQGyIq6Xge40q4U9Onhh9jpExIlLxDemSgO1QRJ7UzlWBtei1AWRuDdbVSvqHOHWteLcOsAAdisEOJ7JJCV1IEacIlhP74lUtnEGt80cCBUqg9TX4jpZZq4Fqh8OzH4Rx31yBr87qmekloEjwbnXLOvlwJiMAl/r5bkiMmbUQHsneguPJ4gXdQpKWaTw9xah+hAMkI/lVNw5biIS/rmwpAlgVzrSjgT6gk9SufHF+tH2/BloNK6896F9rgCrL3fx/UAzhtJWy49AklQAbwBjxxxwAtQgwwdhBSxDUPUx3zUN4OS/7icwckU+N2EKQ0SUf7Hxg9Q8mScJPfeuh/SZwBOXZhcuoweAMD1/Q7OmrvUXUHE0cWeFLETGAUVU3/orNyFmit4hrtaZri7VtrYvpFU0gBzTJqvk4DLfpHf/hitqvWynK3OthzPn3b0eIgmsePagSduTHXX8OtG3AyOmHyDuDqtzFRwyRJaX04vJFAqaMEUIGoYgzmZUKJhHBqUOA1jHtERJyzKN7SEaOLJO9b4lZOtgVrKv8zVrqpcID4WQS1e2xG3SG7O9SBBG8ZncaWgto8Ko4kiI+BGw3rW14HYX1wPNGAK2dqMgsiFcBQ2wACQCpYImAYT5ztdeIqQNB3V5V18aAwJJer4bC4xpKuAFdL1SAhJJnXwDpG6gHulsoNVpZYZVjgm4dOmSlJbjhJdvzJZtdGmtUFsSCwzgZKILHrXMWaxt2WT5hGOGDs267oxTAFBwCEcGIDjroUhijSRa30lOOyF+l/upbYFiG45kj3SmjJAMjBIGpV6V6O0dVIdU8agTXBQGS3emelaZ0DyJRlqZAzWKXshXvRypPISlCy4kdQNdIlKrxKswqVC9afCgzZat9QplCjiIB837tQzzr62zVMPS2Lykdnk2zFiVYWyLD/WSNuz97+V6oBnDBgsUP8oMbes+RW4GQgKlSirvAsAgrSJEKArgGrUyQ3BhmPHz0AA+KJYwK0KSGxkKd3v2tTUJC4uMTsVgpk4IxgV3G0yyWcYEThJ6ILbZy/iewlHaDjvpqDClSMrQPu8kTAkSqovxYNOMYbYuFlk5kDR/80rlvOM2urhEDN9ohbKH4ieWLetPCIPsKtFlvFjBKE8P6WEyGdN8/fDe9Fs4SZB4ZSGXkiQXMq1QIa3p+WjVch6li4nGkdG9GCIY0BOeOYfAhnqRZxjPAYsN5eJVwgjJvQOqet/gxRItj143xhVBkrj1fepKHKrMZaa58YHbGh5Te3Kt+K8v7/77wWYMCZuPKAsMuJNw/Hi1kknqDTLyZRqBWePkN1KlPotEL6NWaZREPNXw7K4jKNFMZ/kQrWbGelIR6g6DYwlWH7CqCQcPH8os9ga7+frZD76ygPd03u9sUFMIQLUqqgzptKZJkqpSxIBAMK+21iDKsVxrYj0lZC1cW5o4fYF0r2kkJPKRmrjsAxz4awZupbJE5Qc+8C3hPsDcVTMl79o2y8plZMDm2KG11plWNbGHiUaZAg5Je6yKmqQ6lOnbcYR4MICcaD+tNKL3hDvJmTpQTkLJILgwTeIQj9sYSniWqfMmvS4BwsaIXPW3fbK03V8PPGOEICR0ACkIKmFXoFSQ8M7H5qORUxAmLr/Gz1+QRCh5VYkE1iUOCcKPF5SW/EM0BJsp5UqEHkzvWXdx8W9eqFTdHWzP5b5X5JFFF0s8+lnO0dF5kRSQI5NyW2vcSUSUmyE5SSN1WSPVDcNYnsSvSbPRaiy11ol3LsuQMeydmlpmXFHXelFDiY4xhBqh7XSZu+MOKMsGUHcuMxZM1FN/vA7mrbfzNV6qXLEE5V71iTrBuI4z9uzBS0o3x4ml/rKlYKu/UjLZWHC+fOfDLZD63mfjW09iNHH9VQ1TSFhvmcKX1jf58FwZipsU0oQT3/cyY5gtqfja5fVgM4aABxBKnlhW+JXGQrANIJT6ws1PdNTEECHEMj4fXhEhlMFNldSio0WkKUVem1Ed9BFK2kh+CKp/D3tO5tl3sYLqw/IJJ/Qk5ujJyYi5DphnELNuipLJ+NvknIH1VaTuDozFwFdJHf0dYuwkj0wmIk1ljqzatqrWrK07vz46b6KrHVWhTdumemJ+ErC9k22kDSH1dE+2nzAZjjkHzbE5D5DyM95JJVto2H7ixgJlWWzWcqIQV6TDYyxk5BRbD7S0zdauMgStI420LiOFAdt3xPKlkHacZBxfyZ2mSTQZ3QefCai9C3HT3BpuEjHuJ4yTSsoYJpISTF5/87CLrweaMRp003SBI+ghBKBVgVWBKCwqIQuwCkoZQqIQ9wkSeDxIqMYxVoMRnmsqMAOWm0TBi3G5Ialor8sW+AAAQABJREFUcDigI+jhXk9t6uMQ1+XkYgHOOdTy0PEZWUZCgkSXzHRCzPWIMHKhR3Em2xJ3HMjTd0TCU2zOrSBNHELzxjpKWI4bXFdkG1XDOlHH3BIba5M1IOKtY8xcXGiqNLd2FFGdaIlEBQgjLMyTTwPMlBEC54tODialXsyLjE3sp17VyuuK45hsaaiqVtakWTb5uszFOSQFhdAK3LzjXQPdWlHjCygrmIv3PPqc+uU+kepb0lsWSqIRYCoj1Mv61rx5dw/XA80YUpuNB9e3wxJgEso7ASWcha4Ar71DBZ7phL8k5vA3cwQ8K8cN3YHA6A6ScRBpXvnjNZdpzUPmUko7zhjAZc4283trnjbD8mx7i5TGl/Gtp9LWX82yOnFzAeXWRvX9JENbYb2F6NSgE/1nAz0rQ1NpinxagtNKJO0a3zbqyEDG9b1rrVyzpNOCXNS9ynLbZRn8w+imdw5GkUBxpKurZeMUwbwJjwrVwMGezHzdwz66h7VYzFtIgPrcojnUowoX4STBSqwyrrio8Kowa+Fp/l5phjHEE8/1Y/rUIHFME9XpZhpFoX/GbtNVeFPszZ6n5pYsdvX1YDNGAxAFeQvkICggqIANaPNeaLUAFHVNGogwcfLIPdG034uEeomQoCXId9BXcWEYV/NOM20PC+5m2S/Rh1rUz/KQTQbOUCpIqnMKxjdfCakrZiRWkWI2HUQNW2bp+gZHIkslOjFzF4WzC1E1qLcjI9vpwN5BvmOLMHpTTUmiLlWRkUhPHBQ0mJB68vE3MCKvqJEyBJ9qpTIt9+Rpj+SSjCyctH1cYWiYw95GZ3MO1j1WbWNlkxW6LoPhrHPeV/ua8BM2YsJe2lJpFOVKxBWuwrzCT1ayXXUJj/Cp4alrsBQoJy9zbFoRhgxTJk4Nr0ySAqkLORg5yVtc8nyX11vCGOnmmgKVDl6vF3Yv4cnsDb6k0RaAub0ZD8Q2QLE2Epf6c4iaAMN8LVJ8CjNl8F71UwmBBgSJkVI8G9/09gJVPorcROPb8lAzMJsOj9lrYArFt2124CWzWo4wuan66F0AIlQF02GARL28tALhrbIFliXevNiht9DJco91Y8lE3MTw7OBWlasl7LpsnR7EQbOMTmUrMXJDMYGFNw1u/MmxydxkjGTsRtpnxa+9iY0jXtpNBvYSHrrpQNx2dFCPfpasbzsfQiz/KKFevLesKobafMxMOHhVmHsXGU94erQwVC3TtOLH95WWap5JY7OadrUCzJxribzk/yZXtEWacBfXW8IYLTPcXu7rhfl+t+G353nnvXBW9RGEyFk+gLERE7cDTIQZrNSNeqQ6EYDzE7QKfGMJUVAs1EGuxJ5w3mUyDPWlJQFxH9RJAMbz116DPRo3biyys47l2ujhkFSyNXeJpYtwj0jeYE2VUp8g8kZnh9D34E19iTmONTc9YTfdYneSA/At9LM+GtDB5h+RvwUDdlFH/d2aQWsMoLC0s5ppa3gOroewPVxTRkpdqa94MHk6TKsGDGXOqE6WZc8GnKo7f9RFOj9n1zVguZR+ZXmJ5e+TLBJjfZPw4lKsVOsVkW67ZEzBa0/JndXk57b7xK3h5JD3Mn/SmavwFdO2T4DxW4WUcU0hviifd5qBnQNJEUZNYXnc1debZgwrrcVEwnFDkt2x907++Csybt+XYZjxbeAbhZvPGzHQ7a2LNAcsYINgIQCYhIRBfuW+gk7JGGIgqiGmzSmipmsA2uYT58sSEwDeQh1yDsBoAjz5xIwpAgj0I8GBQL0FXjh3qcycuszBM/vKdN9+ZnXdwaZKJBJpO7PeG+zoCyMRkkEuLOtCvU6k75497IHg+LIV5jw2XUrCHEG8/WX2m6oyLvFoMKvgOMW6p60E2Ha9qBOU9nWyYEtid+ddrWOFCd+UTL1NLjP4azThYLhNMip/Dpw32PcRXEbF1JDQEU/o667p6mDGmr/0MTUTcyOxucr05sM9MDLc+0rovq3lBd5EqYNn05EjdbBmyTv4JRScSPyKJ2FvjjKPlwLx5v5x0iVv4lQB2URKzLv7umfGCBKo5Aw69Vf/6atxoPb000/HL5Qubr7xjW/EuYFbWt3aevz48ayc/O53v1ueeeaZm1teT5w4EWdtOkMw3B1xOjx4vT3fNqktV8jZ/KhDtDsAFJABqIAyrh8kjg9cdtfte0EVCae0MVww1wR5ClM4UCZpZm+5X2eb6OLCQryA96JXt9JRAp6duQZTXMA5wqtl6xJS/6GNcoVFg9v9HH88xEYfeoQlPIkvXL9S1jkUfnDQGfJKZPHLtA0DOaBGJA/hwbyzm/JQxzydaG0VIYNaVYkPBqCqLhexBSoycc8J4bkI3aGLTZKoUm9+q5eQSmRpKfBIr2hLbZ+imP9IWn4F1za9kkS3wcy2VijMZOTkRKImX3q9bs77YxwT+iceLyuchaHYoJKBT/KrTKEamtfEME6IOjCgN4f4xWgdC3FHJYKZBnfBj3UiZfptyrPO7VVLrU8yQ1ZSWycrdg/XPTNGW5ZLHhY4WeiLX/gijd6J87UlulkbdvTo0fLtb387TgPc661/2s985jPxPqgbHD2C/MEf/EE5depU+exnP5vw5557Li4+P/nJT970QWVe7WUP5KXZszIF724DgFHb2I3Q4lmiEKCVCXxfszQ8uQBBQ2UvgA/Gkob2bEEYLqmYvTJTzpw8VW7MzrOjrQ9T5ShHkB3J2OXc2XPl1MuvlrOvcNLS9kaZGpgo8ziGOP3yyXL1xrly9G37OYOuqyzOXgoxjeBFZXtLCW99VKcgeTYPdbBoUDOr0nqAcUdPN3q9u/RWXHrB2RXs6cjAtsODaohkb0bDPMYrc3JNy21KhZPm1UoaWrpaeIgnLwksPMFjE9RAindUTROxs/dwEb0rQ26XulBXl7Oszy2V5YF56jjMknWERKS6DEeeZBr/wAob4stwWu7CrMQzqsQbtYxf4Suc1TZimKBtwqZKexlErDQX+derMo5P1l2hIU69T+zU5xYtNInu+ueeGaMlVh0wf+J//0R05AWkqeGPPfoYrisfiaM1e4DPfe5z8Sz46quvxmGz/m1ljD/+4z8ur51/rZw8eTIeRH77t38bf1EvlE//v58uZz94NoySltj6NJr9wagYlqF/XIPrC4m7JfsEGj2E4K8fwSURCD3uEmZ3XO8SO7F8IUJEls6cT716uly8cBmiXigXT5/HlcxyuXF9kQWBI+Wpn30b6mBXeeWlVxg4M65A0ncx8bW4wTkVa4u4JR3jGDJ7nRVmuDk6meUgkaJUJCZeiMU66GsqvQbIdHmIK2CzhAPK6YehXHKxQm/lXoU1pke0UdniTrx2+Jf9GaTVFFuJHmjQ+wggeyFbl0E1bZdoJXpu4R4bW5vtjwRluMTvhOEqS9NlSCf/6vZeYtCFdtB7rbCUfZZNTh1XBspeBODQ+CTMrRGhjvUkZhmK3NIez0p3J6BHlq2yKcrlLB4PoFXMMw8vX7yUQ0Kn9+G8Lr0xLXRM0tTPepmdGPNKfYFdyzyGtmE1Rm1jS6dJlDgtztuQ1/+9Z8YwO5HgeECPHkooxxVeurbx0mOIatWhQ4fCJBcvXoyTBD0T6m1Qr4SnTp+KC54pzto2nc4VPMBFn1PtFYQBEJniW9/6VlQuGages0s9VCsgZv6bq4FmgCgjePnST8RV7cbzXAHqO94gKnfKIs6az50+Wy7SE5w5dYaebqmMuwgQlagLdWL62JTitpx84SQSE3Wmj2UfzHavc7LRHp7HBnHKNsAuOcy3XZsDZYkFeztYmdwg5KCyUepSF5EtETmPoNSVrkSmBCxzWvuuXliB8PWNbvZm04NAWA6iZY4O3nFLLCxVjs1sA2+ib1dKullObbq9EoVKafzYZtWqCAnGODKuy0c8xtgTlujIqLPvTUOJtKNLUy0+1Jc5jHNjkb3kc1dL//jeMnXoCD63pqgvahZxLcOezfseZtdX8Zv73A9+WF5+7seVKejp9Fwyi7vTGzPXy8TeKdKPx+fvY0++jfMNj8Ec1I/2xZxrO6m2EPTbvwgWn2xOeqsKgbyHiW+NO5JIiNWbf+f7TTFGm7eDaZlCRnGQ5mWYRKyD5j/8wz8s+5AEeqxojwMwjsyUHVuqD9wLfLvT3Df5GK+9HKzro0oVZh891Z//t/+PNDReWq/FUgeaLrZDgEhOw4GkxBZZ0cRr8wyQiSudGPEKvcNz3/9ROfPK6eIJQ6zgKxP7p1MvB8TtUV19EGHvKIREKtUNJeFYf2fZNz5cBllhOwjBuuK7bwd/sxCF3spTNysDnPxrblNV2dIPFEBd3E3nWEL93h1tWK2YFScbvBE65vDMi5VC7YA75l68k2jBEvbVY7kthcnITt29EkOAQJk8U+n0WHBGOg2AlzGHagplr6Ee26YBlnn0MVHpVl3hHMa1bvyhpDGrSBx6gc2ly2V+caYsXD1XhqcOlSMPP0HvOUpPBoPy14kxYZM8z546Vb7yhS+VV595uYzQe64yd7MMi41PjJSJ6RHOLEcYngRowMx2DbP7cZTzRxQcFW1U3HrwZP2pbZgvcAWmFYX0drxQ0bY3ahBrzF1dbwljOHvrR2do/no9//zz5Utf+lL5nd/5nbjGkVH0K6XLfy+RqDqkmx2PyLI3cVLKez9tPsZtu0N7J+N7zV43H5mpIixyF4AEt0CxJXTjCkoZh6h8GVBv1GMdXMtHMvUy9Tn545fLiz9Aog33lwH2RS/j3n8JBGYzDXpwByLUvdCqDPKe7XCN0hAMNDU2wIywa55kbhnR+QYGxdj81y0HShWp4VkqSkrCyC/EqySGGfInwVIrBw7kkxW49IoKjh6WoHcNIFBQTZyF9ozADcYivZs4R4gTNNc9VcYic9LbcFU3CQd2sSzab7vNz/IURsaVoDYwFW/AjAZ1u6tPJiYL02V8g6FBc3AgaHrS6DrUvmpjbb4svLZUTuONZBsHDLPLHJoJbDrgaB1Ie17KIsR/8PGDaesw9Xc/h3M29o2at4dhKAn9xR/9uOw7fKC8fexdUTM3glhbQMkNDr2vYxECwgT1VeoMTm2jUe/lelOMIYBVlxwvvPzyyxlcnz59Oh4J/8v//V/KBAfJOAbRc/n4+HgG5p/+9KfTk8gIqlMnTpxIr2Hv8k3cbspQ9i5Hjhz56fbQSpEpgUVKQ5QCROREXog8kSUikbyGc8ezRGrURqr4xL1hxpUonIG+hK576uXTbLhhzzJhHh/mnoBt9mBr2XL9krPOnlxUCQNpyE0XlDIy1FNGUbV0m+l4wYFlVtqSjxNz6icOSKuuzyOVU+pVyW1c0EwZts2KOYg1mX5qw04MzNMrQ2iOAcynG1VL1creY30NdQzLVy/bQxUwvQgRn1WNyEZ2tNDcVxOu4TKpsp8en/JlNLvY/n7OzcDMbCrD1FQpMvWi82q0A9ISGBWMd/YN/YwNgBCq1QWEzApHGKyU2YWVcuHsTDld1sqhIc5Ex4uKy1w87TXOFEihxxPs0MAYBpGR+L164UqZu3ENsFGOXEpdvCxPnFmfVMm6ER5tRcnnPx/pQEbPIs6k3N3XPTOGFREwuqnUPaemVmtlL2HvcGP2RnzYOvBWyv/Gb/xGHLDpffAv/uIv4pnwl3/5l2OeffTRR4tuOT2Axl5Fi9T+/fvTEsu4eaXd7bOt500kSZV8PuaS6AUS9bFHkX9kgwpMAey9qJRQ6HrpCZbnl8vVSzO4+F/PUWJZkRodrTJCk3GI0gw9zD3bQ93DDZEOQUz97O92MB6vI6SV2MN4lFN7izoITg2sLB8X3jlAho6DVKoDscog3tCj2T7+ZYbsDiS8rpiltwEHvb2acplrYLZ9fRlVT+MEPY+9kJLcuREZ1WwkarON3s+N4x1ySxnCWbVJtzoyhvWQmep2X8ogfeqhkNE4kN5OdQ1Jb89mCJFkfgfPLmzsxwXPwJ61MoxQnFpYKzeW2LqKitbZKQPJ7qRyHAUDp4fkWeanutSFOtOmDXrsjJ2UEtTXK+mErUziL3++86313XEZslUiRPzey3XPjNESrM6aNcVK+BKeEksi+PVf//Uq9aAMVSytU/7qtfCjH/0oBITzZwBmN24ed4anWQ3zvXHDIHoKbYlf9rAOgo6kFWjeNNLG28QRhEpH4mpuvvzaxfLKCy+Wazgb09ufr4yraqP65qXiY52VwFqNYA1UYZZuEEc/TUrYXs78djBO5mgwMAgqgvMQIi2WnSCxIlKJJmnUAyhBqswrx3DZw0kcN9WXGnyTeFyarh+m4J77bpw2u3R8CzVHl6Duv1AYuJhRpiBh2uqgWtzkQ7jOl1W7+lTBMlOvCmatJDLqZlzg0IE6ZlmOQ3qQ7ttYCrY1r9J2aTWz5DBgHEBE5SM1tCkz9aFiDgOH5SV6AudCqIo4N/+MR4kTvAhz6u5+EJeerDPVfg1BNXvteplmPZY4vmkKpi4KijA7X4LNNV6ivkV36FM4EXYv1z0zRluYY4FW72/D/q1fGcTP7ZeNeKPw2+P91H24QACLhAb5QonbAFvIiQIhxiUwlTJCUuJYxYp0ElPrCz94nt7iChK2k4HgVJCPok0+JIQxNkBYzKmOL+jy0RboolVjmPlFDVHr0BTZBcFkCQZECzWR3F6JMAghq4GsKHlG+vPGpRUdUhNhOh9wlhlS5L2qA4QpQ6kScm+zSGBo2qbBlgkM7qVAjkNjgrCk96gWpDhpS49n9qqAZilgZCgYTxWNQFVI113FC7plcAGaMEXrN0oGVRRss+Owlz0YW4xptlerSpeeTQaCSaySQsG6OmawLXEIB8w1uvRgwVJ1tA2+zew/jCPqopLBdN3sGV/f5DRcTNNnTp4uxx5HDd93EIHFDkGuqEgwjQ7eTBhG4KuBDLAiPIKAygCv4Dspd/f1phnD4tT7qVGuticRne0VQIgUrnR/zbu2+/y3wpPojb4EiB/z5hO886xk4YdnwA/C9B+7gPl3DauYE2jCTumvp/bvf/uH9BoMnhlXbLJ+aZWPvl9D/EoxytaDYDduJ/VeQa6sgxpg7kFCXiGCnv0gAAjNCpA145MG9VSrC/XELXqRZ0o166kko4Lq05sSJ5YmRa+DcVNKmEEwcWSupJHJbWa+IGzi19LIX+agPh30FCGGJo4WKC8ZIyxKemGe2ijtYUCZo+7xsBxpu9bPOnbRc7kcxQGy0rweDk4RluUSFYpVYLS9EIkrZq0HhCvsBVkXs/hqC/rv1RtIL+3tgqntRXcytmB5kO8x82rK62D3oirk8hJm81dOoqIOldHJ6TCre+JH0TQG6UW01rkiQNVSTaAiPaCs94JMrruH6y1hjBD4HeUHga9ToSBZxN1xvVH4HdF+4jFWlUYKS5B1gVwFjBJpmfM2FmGIJWbmz756ppw7dQ7pD7VDHMGgDM2tRxOLSD1qbEMAm54n4Tojeot4CcEVZlWhWKYBYnuQakpaXZC7260bxpC4pKwQFAQpYKPDo3NnYE0vYqsrY0B+wWNdZ6ZJ1tOXqqc/EC1z85c4DcIrxCyDhMnb/GqeNQoxaJe6P2xHs+ylaqqUya09VYQpFJ3O1IwgTsdIsbL5nOybvGEABUk2PUGEnuOn0+j17ZWoTbbZ6NZVOKZuFOAqX4m1E6KVeYTRAN3qAPM6S/P6jJJZeMENc/cIKY456B8Gjn1Y25hYpSd3jGQvM3P+Url46mJZpIdaoQ5DI4Pl/R96uuw7gHWSfEY5LdeDfDSK1CUnjH8kBl4qHG+206BdXG8JY+yivLc0qsTvvobouAChEgJSiZ5h9tpsee3c+XLyxVdxQ7kYIl2nN5Cw7cLjuAAE6lxZ1SWb/2EMiev/b+89AOw6qsP9s31XvVmyLBfJsuTee5GNGzaEFlMCJEBICMRAQnAILSFAIPyAhJZA+EMChN4Mpti4d7li3HGRbNmSLNmWrF5W2vr/vjPvrlayOhC0Zu/ue+/euVPOnDltzjQ7w2oBicV9lrSJ7aBLsKbXhTus0W3xeY/5A10hGSk9iaMQVU7gkyq4cs6SkZS6QJmCREbisdIcnRCcElytBHhJGGpDac5nfoyc6Q1QEJaSfK/m9D2BhEoZpXzlPwwGsWpaaYZoctg3sOOeTAzzF/u8aFlNIxnJshwI9Jw9O8TmLAHjqGNnQwSFwgBNlWegGz8v04oLtScsKhxoFnnAznTbUKaOrKYDrjBLQQJMahdwk44MKtHOIGCZUlTqpFdM7dnVtRohtzYWLXgqZt8+Wz9aTD5gYhx/4rExcc+JuaLQDv8oBgjzJF3qkfW1KjXoduRnwDKGDeAJpGtAVieT7Vajdtezt1MXM1xX4BF7ZNaj8cxTy1g8hPuybUja2PWcTtSdG57RbjSWKJeW7ezaVk58Sy8OhCPjaKzoGZLenMvjWIbapJ0ThtxLykPiJSSnf0v8SZTmZ3wAzE3XkJpQKRJS7QMRJIlBC5QvAXbjU0wChDG6JVjywbjKNEmgCYVNixQmKxmJ0gpziQSe1RKygGYXOfMM+ZNPeSY+8WQ6+yPmr3fLWOqUtPOtJu8zD8KTWclJPoYuEz9EKcQMEaNI6PtQASoqgVqn7DdlOXiTDAIu7qR5+TS1aqudfPpiLuVtbOIkWjS1gqCeKS9qpW4Ejq7nHqbZu2WQLmkFjkKrlUHTocwucNCzvYmzQcDXsqcXxvUXX4FZxUg7+B3NyPm+B0yPccxsVgOLtcfnzAG6U7jbsWvAMoa1Xr50cdx75z3pDVrORmZr2Yxg7Uq1AuqfqdaNnLfQADFLGJpErkkQWR7k4sCXc3W6kXzrmKrRQiPocbFBvSRuCcs/ibraJqa+rS5WdC5J5mhg/1cGuyE2GiHzTsqlbPz/MIET+KRmSa5sW8Mvf0rq9BZZBnEkHHnGdRYeEuYYSNoqls8H6LMORMu0CRyh/gmnzCAM5FL7SPKlDmrD9C4RJ3cdoZ5qGKfca+plbY0sc5uKADWVrledDjJtahEK0lQ1avYN0Apu7ZOwApjMLNPZN5AxVYf2gewL8YKjAUo6d1KxY93NasW6XnZIBG49XO1da5kHtiaZxnEhzahmNJQM00X7CEcP6XphnEbeO/1et7JzyRrpx6kRHfS96YobmOTYndqpbXhr3HTv1fF3b3sd8NQuK2wltnENWMaQfjs625l782tmuzKDiZVvbYwj9NKpsxFsVBtGv3oTrafkcZTZTvT6XgfuaHCa0P2gejAXmiDy7GNgGiUj2efABlCi2nj1dAhlOJmpjYHJssBfk0JirUhSBiQ9n2REkN/axCZk3WgyZt1qe+e4hMTuBzhzYEti0s2Jmaa7vis764Xh0gRSylOGDOK3BMjbLDjNpHwioURInOL1yqhZjs/FtUr5ivskXt6Th53oFALmbTiwC6OTCF1ABb+Qh9mKlxqjyoQMOMrUaZIZgXc6QVJZkFcG8SVjOwHRZzVAAzsrqmHFj2tQdFo4BcUR8vV4o2TCJs/twMGRzJ64TFCzyqkNaddqqn2T5wHSPwF94JjVj63csF+1gq8LvHulSZp32/81YBmjcD1IZOzANdNdHTAEUreLzWA7IXoPcXRgyHiuG3B6gy5WNwZzDEBGyukcNH5KJeLWseO3hAm5ZEPbUddzpNnQDJO0o2m0Y0e0jcJk8wRTu47+edWIgbuUvGThIqcW9pZqYpp4O+ZBI+aBZkE6DUhUmBUioVUtBzENM0JI/CbgydhyHZkZ35yhMJ54gEghtKQ4QuyslhcQK2XwlHFToxQAKZcyyNN40FvNlMzcUmtZhkwhXvJjpGRCfrk33yyXDHq4z76d3C3V8z7NUbMTFjLLPpoApCa0rwGchDsy38gCp3LeN/GMSzQPtMn+D2XaEXcXRIVMN7N87YM5JaUm7vLX6TlOIANrtCeDgXTQ7RO5MMuZxz1KrbyAv3aZRw2DVdBmf6uUm325qwdKJI3sVJEjqTSGnT0/fNnqIAzCpoadULuzW5VYLW0yCwhf53wjPCQQi8Swlv5KG/l59Jb9DIJ4RwMrHWmcFMZIfV2/bc1DCWauEvvS1rcoI+m7pNkh4UsXSR0w6LpY38OgX3BUFwzSU4+mAobq4Hi1EbEJM//CYmky2Hjk4ziHN9mQEJjTVEzhl+YQMcqDdzxnLyHzLMwqfpIDanknUxiX5yJFldwK/8yV3IoJJT7M3tCqlPRoEdmZto6tKHxyqovw8cmpOiKNRGYna5MLX77nLj/WRCbWRewyXcwgBI2d+gbHjcQdMOv8sN8nrsy3jFHZfmh8GGYdU/gdY0mWIn/bxHPQO7pZaw8DpcHaLKPaNjt3DVjGsMHAYvq+e0FYekCwNZtEKivelEw9qOZOpmrnQJhx6XSmgGvQrIE5sF27GbTS/m9nzhdkktM6tMslDlW+3h23odELo8Rzs4K15FmIRgIijo2vKcTIMxyQDZaEh+TqqGe7/Z6hMaR+WKztXQ0sSk5cixJfUoL1IAzvFwnzkr6gvXxMz4pEIlNIxZKTVEca4xVigoB4kB/N03iFKXgPfMJaMrMMEvshIKd7CLf3/Jm9o9uVOeV4kJeEr1mJQQnFEwaRGzfLMnOC5QYJOWe06hIHmDTbiJdtwW/VF0vTCu1pPjJFK5MH1zH9Y22utbFEtThtVMdmC0RTS9Qx3iGOGhAu0dtOx50lAHbagddjljthik4EF42emkqnhrPAvGoYeNZ9Bmzha8AyRlaWRtfcqdODxD3tgo8ddap5pCag9exD1DsOwZ9HZjuXyQl2vT1M/SCeo9dJDCBI5mhiturQ7FPQsCDdxswdORrpVxifgxtdF9JKPjJaPeVAijVik6goBFgMkglpMtybbmaAdwytQTcTeOws04YSYZIlcSG+MvERSiCW5p6aLWe0+kzcwkiEc5cDVzCZUtfisuMrgSaRF1qtBjpTgtq34B2F1uLICOVeJkumICNx5uh06WOYL6Vq2kCEiBYEDcLEYnhCCRdG8AkiT7gIT/c3cJmO3CiTbzhdt7cMnkIM/Kk1XCdfX2cfTEaHmImb54ljvqo5lPr2AcuESx0Cmkp05BkQ1C2s1enShewPUZoTB62VuG2iP+kli1SX9/0ZpQrf9HfAMkY2Mo2RpAUytVeVkiJWSWW4Az6pFbBRleN6oHL6gzYuKrke86ceCdRLZ9z0nWB5NYNLBDLNQxXPlAvFsIJIdILo+gb6JjAbLqw0m9yYTbcsMp/yaHRNNgimMnV839kAw9Uzjb1hWLTXOp2aa5pc9i/SJBB2iZc6CatmlKO6hbhkBl9JwBAkrCgPZBlSKWk0pKgCTCJhytSEJeEbBmFwby5+kgmM65PhxC3uXDv+eNQQNmlOgQcZw8FMmR+Zk/kXtrOe5mDdJcXMEBx4m6XkT+l8UwaE7icdxRI88dzszb5DNzODhcmvfIaoG8F/nuun9sn8HIUH1/w1MR+vpXUo01MYEISxPLwGgBNnOVhJx30IR6u5JWq5hGfHrgHLGOLRqxGp4fqHTqSnnVEn/enVcWpzHu0FwrpRsXVuNgAROJVcgknvEVJaqd+jCqZhzbMDrbGeBgumLdhIjbh73eZezeGU8l587+vaMdHQNNo08AIECdNZDg0riTjSnVpEgqRN3NXDLXCadE/2trI5GUuMCM+xEmDQw5WUIROag4/emZ8ETj4SexIy4YUGeSqF8QwcEFvOQwJO+yJmQCg0paAoZpbMBDC8K2VkRgSZTfZx4CyqkWVbfrqVEQAysaK4DsLUxBNM32d61VUCJGNL4JKuQTKiEJcEakSvbkwk50PVYxqpPVzZ54lMHQob6pCMSl11mDgVvoMp/91oTsRLOiUE3XPOnRLivXXmh3ZbR55M7Rk+Clctp9ayriPN0yy1QNt3K8jbuAYsY5R6WUMaDaTr+xb1dTRiE4t2uupAJNKalkikOqgFzUPsTr2QKGEc8KWWkYiVzLljIIi2I6eLK/skvG1yaSkEYiM7KGVnzwa2QSzfRpdoaDliaNYVwlHQJW/w21XHiaR2xPn0QBTZMTSdZpXVSIpU+3Bri9eISkKrCDEJHCiSEVJzFNltGdJnrx4ZGKkHs0dos3xBzCtJlFzVT8WYSDhJmFO3KbOsG6kBTxonROolsxKaR5pCmjXiuZC9UMowVqCEGpIFa1JypUalPHWczC3SckoNU891n9t36FDIKACAIaefIOTUnrn+hDTCR6aFCcCTHXYr7By2NO2Y0UAkXOlMc2eD6WZcuEBBW6tOd+76jRnDhvPyVyLLTl8Nluqdj1W4Yf5lWDaelS7p86b2VcXvH9b/3lQWbeVV9emNArk5Ic5GRG03whgaVTlWQVnSWzOdY/eM1SCRVFJq49nqZSFNUdT2S2AMJw6yMZqGgh1Ky5JcNQccj1ALmYMnlhaqhDBUHzRYwmI64JFpsrYwand9B2zTlh4q10wbnn0LaQhG7bIjTH2UpF6p2SAEnQNJVAkDROqveQOddSh0CRzCaa6ZxrdmUsM972QsK8Jt/lof32flZIz8K/EdJ6j2tU1mS/OHHIXNPM0dhjGv0pfx2dfUwTpD6760KA/RScmOc0JN26X3AKATN0QQDhmwi3cer9zMSLaZrXfOFJrDNtBEzBrTt3DDiPW0T+4uAqP20u8Yyuzb4Zz/18yxatnHAQd6qXb2+o0ZoyLg6rc/IFsKK+jqH1McisIdvUSVxA0x8muHS0ncCbKgm/zQRkj/WocO33mSDvFsNEdwuzspN1sPaUgDyrhupuwoa/taRnaxV5uUxDSGBJuSE+bo0I5BgtJNifXk70RCZmPnnCqsA0wBlVUhHKvmVIZOPVR25tmCs4F33aj+rDcEJnE7wp7aAi3XhyMJVhBRG9K1oEqZxvNebZFx6dsIX95nGhMZQcbkT0Azsfa9GgDS5pMuY/JIgZXxJWRyyUINyJepKRK/4BosJUzCnEyRzz7INLQHSRRI/iXz+gwOV7Gib8VSttwZMyRhNRO3TnX5L0AhOIQHXIJzxyAcoNNZIgxdanHi6MWyImoZzd6cgMkExaHs2jJkyAhiwkZ0hqht1pOfnbp2mjFEpMhzg4OFnBPtDhDu9OFS1orI3U5nEYt/XJDkYiTTuO538eLFOQ154sSJuWJPhLsS0LjuFOL6Dpe9VmVsrmZkBRJAEV/6xVXPuWgfxrAjydROXirRU4Zmg9mISi7VdD07Xdi5VhW7D2sSJTnamEyHyrt1TFHoJV7b8NF0xkG4jU4nuoWxCyckeu6e/i473L5zPlWaZBSvIlEvJYwAaUMRQx8VMMscSkU68ohWadBLCWrDG8sBPwnXMPsJZfqGEQmDgDKcp0Lcpqae2ui+J1pOxSdMVAiDZp5xU42QZ94bbP+E5ww3ns/+UZ8cwDMxOMMIBM8IEl2gcETG4VUuHTWuIRS/QSvVwrJwzB7ms61iyk4768KHNO0JXGpdzSKPPkDAYJripch137aT897cpM5BwmRI3suSuUkEgkMzah1bFjWznmPkqDF5RoeDjnrTsgOfbWyFNr1qyN40eJNn5elOXSLOSyL/2le/FmeecWZcfPHFSWiGu7x15syZccCBB4S7D3q5EcK3vvmt+PSnPh2f/exn4tprr814brz2rW99i7DPxsc+9rG45ZZb0r6UwapyMgO/SrG2PwQAUWJ6OOqZjUjraurYAReBSSDaqpK7TAEye/TnYf8qWTRdMv/ElX0OyqNxJUpnfTp9wTGMNFuor/LYfZb0kTdhI8tQua0/uUlO5RgySpNAKQ8SJR/LRp9ZluYIhNVNf8NyGiAEw4QBUs0qpnvUfgd10F1LNpleT1t6l2rtat1TAED5Ogb4SmIro+FkTkmZpUwl3UOIcEMSmi+sk0BYJzWnYysp0MxfUMzfOBCa2obpf8lMXXjwfGcJZZp31jwxgMGUZqTMQbUTn+WeWbNsjLCSbYnEim0jOOKG7GGQutxwYj0zC5wfpVbuwCXupE1Hv9U7qXtI53Y7wtVNm7srfSunxGo+qb3W04Ffn6Pkpc8BiLWrhrTqcTt+d1pjKLW83ILTDdRcgbeG9Q8VIc+bNy/uueee1BTGsyPlLoOPz308LrjggnhiwRO5tY7bes6aNSt3CXn3u98d999/f1xzzTWx3377bXabzqrcag8lF65p05exC6Q9Nq6g+bGTnTJO5SGjEFhUP0xA42rDV3Zu3tMAEmiuDhPx0gW/K9aszGnNTjLM8QQaTndvcwuHTDLY5BoOfe7d9iNoLD1l6KCMyxdxihSXfZxEkoQH4bR0o7Uwq9JRIKlBwUpimcP05iWFSWR1LJVNB4BoFzDCzKewnwTPC9+ZTdbD99RGQuqrq/UzyzQ8RUqJy3vHDnKk3cIgPJkui6r1oczTIj2D3MMrc7AROPxLjxaRJU4TAR0g2iak4NnfVWxet5rdC4XOLH1BCyhBC4wKIuC14+w0D81Uj2azvWRihRg+SECjfRi49TN02BAOxeQIZc/pII4Dsk4w7AI+lyinq92iBKJ2UdXtunaeMawWiJEhDjzwwCR6zSQ9F26L49617vbxtre+LRvG3UQeeuihcOOD/abtl94dzY45c+bkLiJu5ykzGHbDDTfkEcDV/rWWY+M6kOOuhZpcd999N7uRtMewEXaukXw0shJbKWZn2T8bs7QSDQRek2mRoPlHPCcXSnyaYIl2EKv8y0allV1r0MVmaZ10AtUCIlpJ3qXWwR3sBLheJjJ2MwnOg2I8ucgGyukhxHXqdHUKa1INZSpBO3tlOjxpcHUrzFFHp9SJjXqBtGqIIuTAT3rNMJ7z+K9kMN+Ij6wFESVXa2pd8ztxmCaWYeU1d8QhH5mzmGaWVdIV4qN+ErKF+8mY8ohOBOom8+gyzXGbokUsTU0tJAlkwiC8lJEftCfvnZm8GqG5ntFtGVXTyBo6cq3p04gXahgbJzj6jQEAHJy7MXRIuuHXsZWSe3LlKkLBU2N3M8CKd3A0ne3hjGeAnWjHtDWdn/SSgbTCyrwWvtrlnRjc1qUA+Y0vCU5b3UvNoNR3b6jTTjst+xdF7XP+A2EyUkXo9iMWP7M4F6a0MbvVtPYxnHIsE2x6iVCXo6ph1Eh6m0SUA265kN5apzhS4ui9gFlEA40qsdspT8kIvMW0kYkwI/g0YBbltA7iOCUbixpms+lhNqRaB43mIiVNJ1o2NZKr/BzUc8KiGkMilDFyvpNSOYnMWpAL912U0a1fnrgy3Ppe1pJQXj3M0cCkrtyaU8ogrY1ZTBvhwMyR9iQo8hEq62QDGy4DWY/Sb5BQy8e4wlrimCaTJeOoKRMv5KGBV0tB/uZaytJMNT3cjd3OIi1d1BCe+EjPW8JSYCh11SQELtshGQM8gw9Hq/Ui2QaWpvBz3lOagMZHiLinlOWofd3MzrqYrgO6SpcseNJkXr9uDQzDHgFoihbcs9Y+p9ekOamWJZ3MCB2oXcolQOWynttz7bTG6J+5DWhlXdcr8buRsx+3wrnxxhtzvym1h7Z/xUCm9944zdiSduLVNjKH4d5XVyEBTA+Yxu13NL9uuunmuPTSK+nUwQN23tbaOaNhMF5rJJNSzsZ34hs6GxhtDBSy/k4aKDc8BqGN7Nxtp1ITQwJ2A2M9U+bkJEUb1b1p1RBuvkwh5KmJAKyo9zQvZAw+SXA15KsVtIeV+kk4NBZ3EI5hNHrd2ixzSO9wVhKi+hvpjDM50flUaRrVapILdqhH0huQF1OLZ2HNQIChnGSWWjw1p2QhnABGWp6MY/mESYy2m9LdfHyTO3FkFFPKEBkdXPAEDjrZUbDT8SGJG1MrHRukrQFR6ijWyN881b565rroeKdjgHYQhHocJXUIrpynBqN14Bl09pmLi3QRO1bkBnXrGNV2jbiH59A8MA0zlCGLIXigmjxTnLzWMXfNkW/vFWK6mS1XAVUwZjjp8yr1rJ5qgZv9+c0Yo1ZCNjrZS9Qi+5hjjkkidv9ZPVPuci7jaBrddtttuSGbHXHfT50yNT0QVfj8+azLhjH0YvVdtXLMW+bzcncSK2xHGPlD7UEH5Uv42so5vUIEEaYEVoU3JjEQJtEjhdM8oMGzgU1IfONpMtGk5A7T0Bnsoly3jxyCJiveK5sASaXURfL10pmWoax/mnF4qcqcKX9pUWJzQ5kyaGkoc5Bgu2AQTuyKtm6YI1ohPBoaU8v4mjxCkqYB8BUNBuFZD97zKnNTS8oIeeqqTOhfpgdxpBM2+1olL5MUpqgIJDvBEJJ4kL8V7ElUmRd1rD1nXahDEhpl92mwjGdC/0vZ5qEpmlpADYnGLaZbwZOaQWWUGog2EDWuc3EWg/l0scovtQVay7EqzWVd4sM4+6+tbST9CVzecKyDmh7CY79QnDgoS/LESw5OcleeS5h4pQLbvHaaMSrE62a97rrr4pJLLkkGcAdBz8M46aSTkilkjIMOOig/mlE3s9vgV7/61eyoH3XUUXnAitO/Df/v//7vPGfD9PY5NnfZGDKZfnGlnQjWLHKTswzDJLFxiluWOxo7JQ7E4FyoXqSxIrBGo4nQzEdmMk/iE4EcJA3uZXa0kOfprVqzAh87HWuYQZPKkeJc9QdjeqqQrJplA1cjMPUo+fFsqXlqpJbtIqHaXGn6CBcDf/Wc8trSORQTDmnKrhrden9ggIwDyEpl61hG2CX48pGdk4izDErHjMg/8qVg2KFGyD578ZO3tUeFiQytZE/G4LeARzqQpN624y8OfJF9FfOhClkv8kn8yQlmTpwirYWd1Kn5qSPjDmJCeDvZe7fQD/CBd921qY15y2Oaxd1rmOIvc7iIif5pE4OC1VQQTV83bsstgBBw7kJinSzXPktqbQqSETe9kqk3DdzM804zRpWXUlxz6Lzzzsug/nvO2m8455xzcldzXzpu8drXvjYefvhhKjk0Dj/s8JxyrCZx90E754ceemhu5bmlcQzL88pf7p0OnZ1JiLBT16x0jzRRG+jq0+XXqefIRpVYdVXR3JXJo8lWNAyNRBxoL5kpvSAQA1ZTNrw3jsx22kisGFSsShg5rYFxCTt9FEi5lCEcvEXfQBwaCTIC30lY3mva2JCGkgfZ6cJlt02Yo41UMgdFkJeEJlM4amZ600mDeo304vjeGqlFytQJ3yVkxCWiKahUdh1q/YeEg2CFjP2h9KjxW7mZTaNZKdyNuLadRaAWTVd3lpbFZtZZN2HkXzgKwfuQNQPT4ABXsFCavzOhc/YAeNdJ0YBGbh5CH0v3twIGR4fODNiU8jCzNLHB50i2Nxo6dATxMGcpRy2yhn5oTvQEP87+dc6aOBSGBCiZldsazN5t77XTjFERqCbPueee+6zyBE6EHnHEEX3vJMJDDjkkP32B3GgebS68KqN/3I3uxT9lOP1YaVGvF0iNIiGJZhohj+piBq0axEaU8Ms64mJeyTwBUdoJVnImQmjUGrmRP0RmJ454luOUczt4qbIzjKWVxG5gYqDMl21i6RKGUhaC4javXAaaEQgA3vQCAWsSF9K5i5Fxw4vmYFViIFmZMp/qTaJK042s1Aoyh+WUrJMO5BhyzVDIHC1EzkaQaQzPMvnNRIQoKPKDuaJEpwwiSVmZR2EmbXZMG8w72VkNbLh1UoOZmTsuinIJVgal2BousqAsO8vnTm1vP20d5jKRowXzqT4H8mAezGIXQPXQjp4m1c76bgXOsKGsrXcGAkwhY7i+vgHG7WEpqwxsPuJSJ4xzuYpV4UwGJE5CKJy1q4BUPW3xd6cZY9McC5cSKsL8q1GDCPG5/1WkysZhvs9w4z77Vf/k/e5pWBBYjpVCEmGv68f2EPj1NVMrkUaTKcVVFmnbI23sNruUNQe+DJUoiJOSksa3P2LnXLzTmti4ECjb7VsXtUaLexnRiZRJJKZeGsmFMo1QjVMicrBQUpGxUmLDPKRNZoByirqX1CRmLmEjeg+LqJzt29zNtAkItBtNKKHle3FJ/pJ5MalIa1mElE4+98DjwJeX4VJxahIJGsYHgFyWKpMqUD1GTOmbk/cgLisMyCnlc+UcdVCoOAnSE59AS2rWLFiwKE9nQPapuE/tTbmUQkoHQPVY2oGGKfxDuHiwZX3LGly0wxNXgqsZ3MHSVJQIcNfjqcRjhxAa6ulVHAfQVI1VWL7xyds1GXBTarzcMIEK2a9w/6vS1xBx5reBMTZHjxlpk6/fCmP0McUmmW/tcYvMkc1ZKrTV9Ly0ut16JTA/JAgnqzlanRQmUdWYI/sNtWfTuFOFHfY0efCx2/Ai0o6gyqF4kWACKETClTDNy1m1rTSGxJ3uWdyGHawALB4k8qTBdBU65sBtprc/Yj9DKsxpHeYJkTofKStAI2ZjAb/P4qWr0c4k0yOYiVvHxx1HSnThFjfF5ZsmU6aDsAnLQczkfu7JJzvoRJfplaKOLfBFZSyRP56dJZxmIGXIcKlSNZ0sJeuCFUceeJktNhlBBleAFNPNQOoDLiRo6+2VcCbQ5CTH++FyN0I9fk3gJFf7CRcw6IFKdzbPK1ew48uqFXTGW5gYyBRzxjQaYIx1aLU0/+h7WLcyNR18Wle0VrPjSnBZDtBSln2fTS8ws2nQZp9/K4xRaYfNlbA5QLYUf0vhm8s3w0BIkgQSOccyJKCsOMSJutUfruYoFKc24I6GaUAqp42O1nDtsIODhivjSnrJQlKjPWGYlD5oZcdN3EShNY8jRsKxplt/vCTlLoKNSi+SmqeHxTtfSV99karmJyzAoImV0tvyuKQtpa4AqqWQzJ0cyuIU9aYevXAwAmklLWGVyCRsdY1hJEniEGY1nXknsZDO3zTxSknEzsj5W8wP4qIxkqzhANdykASYLRVGdMuVtJN8x70A805Nazy/ctMDwhIOX3KlOauUsU5kJtiG6Tkboos+vU+60OkDYlZpospoHcyRamcwcBij2qNGM6qN91GseTCPdK52M68W+5bCqo+C+VLoftoQoQIOnHDYrZmLZ31nr98KY+xs4b9JOtvKj0SoYZR9CBCHTy/NGzvZzv/phbg6IJYOpSQtV7xXxEdKuQmzHdhkBrAtgdu4SkolumaUJkKjHUM3PwDhbsvTKrGTrgsbuJ6NlDtgQnsnTS6+oaXS9EgpLflKYZRBfIWEMCdxwXDeJ+0QoPSWGKGeZKQeTALd9w2sL7evUO/eSZU2NE8ZlwwkejVaMgJ5JOHUioBSknEsUuZUgmY8CdU8eA+Fp81v2fkhrq80o/C5gQeksIwM8WVu4iejFEI0euZDYLpPzdP8+Vj3XoSJ3q7CIIgePFCOYbg5hXjIyYB4qST8PLEKk3UIRzrrgdJ8akKjatJ6cEy2n9xoe2bemoE1kw0t5Aq/guDSptZ1Z68ByxhWOT9IJN29dhybaQw70Eo2JatE4gQ1VS5D10kYJZGuW5rN2bAwR0Ug6VGqpDaZO1uTZkSqYXjZQRTR5LsOrwnOLspAetFgjXVDIQRmxdJBlVA1eOz3uNOF8dU6xWvEPfHJLglUWOApCIpnuLBOe4Ww7KBCEFhTkD/P7GgC25VdxhWbXDKvbEdGSYSGlT6ExME7PiYuG17zLgnVWLy2Tr5XAyQwQMxjwuMXV9kvijrb2UUjqxU0qdQyluyVphy3Er55mnPymvlyb0yli+vXe6mMOLEmRkqmIZ0dbDWGpmonwspjoodwBqN7eWlaZV+IOmsO6zXM8jNPkEZ+lqp5le0ubqhP4o8Sesg3rwJu7baCtbza0veAZYzSilSeNijrhiEsRk5L84AskJEzYdNkAYE8Szg99ShmiLWbuU6FbiXcoh3AKkROWv4KLlHNEqxMB3HrL9fv3sFimjwghTENN7vwZKNm1gTkjiJAoLbRLLAjKRHIpNKh+ftv3knUfNdIhDjY9Ul5wJpao2avYw40evSx60ZSa5AFGRQiITOCzUPCLiRb6ppS2hJTRRmJcD/8CU81hiJUQpP2voSXFZe5+VCuYzUFnpI2mUm4s2hiJVNYNh9w42968ozAO9uhxFHI+OdZHAguNJAb2Dm2lFvhUIEhnMvnbNlWcC0ODV9Lxx0lQ9VpM1J3oWl6WIDUlExt517zFQZAWxQh5jQdyiXvXHpg9ah+dVmL7bkGMGOAC5DugI70lJ1jJ/Ypyr1opHokiR3qbESQTSRUu7Y/BE7jdvFbT5hEq1lifyG3+idj0dfJr4cqtrRiVLCw3oV9a/Go5LwkJFOeted0FM0F4jY2SVVoFxpRAtGTVWb9ppxMqZ2tZOZQjH/e8pMEpFROIifvhIlcejCf3N2EDg3zqciX58K4xBRuJb7UJ6FK8JCHTgU9PUJjbFghw+UeGSJ5hVD/kiGyPPJW4vIpjAYMMjX05VhRN3GKaeLbgi9+uLdg6mFS05srTJ6MWstLMSPMAJqS3zlQDXw86NMjx7QnW1kb08L08bJqkjIcwEOD2GvsYpzIGsgcbvm5HuZQ8Ii9YkKCe71RtjE4zHlwwoNGL1diOW8rU7L2Yos/A5oxbJZevBk5ERDpLUFIjG7xqEmTHWdUsi5duSPlII2lxJXynGSYgkUGIjy9UqrlbGCZB+YS/eSlRPf8hkbUc27nQqO5BW4LXiqPyuqAONfibuxlfbg7pTdipnXRL1lPv8RTgqAu8rIxJTz+kp5sMIDhv3SqBas0NkUmsXdpN0MQ9pegEBhDEqPVJXA+iYPMNUmUMAnN12oBX/NFmAxE1aBBSy/BWbcEhDvykvgyS9LKYI5D2QdTYySl+978BI4wCdNL81CYipcMwuS1gsc8y84rHB0A8ef+vuJSsxBvnhsguNOH7UXOfHhX65MUjWc/US8Ti5LYZK2bCuWOLmiZZAraxDLdplNIFJJqJ8t3ZkKZjpMg7vDXAGaM0ii2k7Mo60BugzY/DZYdUgUU4Wkjq2ptcRpcBlAA2+ClvY2ISsZtq7TkiyZWlvuN5FPRoH1sYL1TrTTCejxT0pO+eTvkzR5dTJ8gp1HjmfKMB4Jg0h6Yhf1YnXyIrQ6/pP0rHDZeMog3/S6FP0VnHYgOMaHxgN2P88KYbYiUhbkldkjJXFJSA3vSbNazEH9xIxul4Cp3Zc80Fm4NjQeJiRo+apNcMUdYMkYXwiZjmHeBwfKyIH+JVxITX2QaFyDEntVQrKxu746lK/Hm0QfrRUhZcbULtE57NbCro4N27uoCPAoxuNdJnNatQ7NJ8yw3gEZroTl0xeaYFHHz6AXaxPahOoXxEYxqcNd717vWeCevAcwYpcbuVes2K/rqQWN6PYr0opkMhzhtqsIENhyNlmMSbH6A1Pc8OSWjDJDIpYGUnOaWZGODIYlyjERuwHRiJQc8BIPx7OGJ3TREPQzTAHN20YFei5RvRrrZ96jjeOD1jEukyYO5gHKRXwtN8ZNSH24A0iTMNFekKi+5BMCLDY0mwkOU2wA5w5Xy0/0J82YfIKGVmU2i7PWPGlRlSbfcJznXpKrPGd/ylRZyh9FIlH0LR47pCzgSnZrIl8YhkcKnMIjvCANONWuWamaEraPuy1gzsx5bEGNHnsi1L+s71jK4qjDBVcscjl6PY8YEVqPoMHGAzkJyY4XsCMI8umdpTxkw/7gvgsyidIDAyo6oc8qVi5h6mNavB2yjy8pu5zVwGUMsI3nWYb64dkN3XyMIygUy2poyBci185wX72QOMAth6v7DXat656Pd7kZscoZMZTolFo8psXJyIZrANR7p8aBccs5GyvQSFjAQnP2LTsyE1UyZdf6Oi3Da2d3QNmHHSS4cBIAHGEmkSVS+yzLNNx9qUpM64F3QW1bPQvTeDojLfmbagpp85AMe0oQxnRdh0oyFSKQlRwUCNaoRrtEyShK53CGR+W/9pXHwQnVdj9HANvsOmtVYLolT1CcTKN2FPPMhDs9KfugT4uyNpctWclbJ2hQ8mjlKe4cz3U6zGQ1iWlaiRgeqdAjMUA/DyxjtAOHSgBRPFJYznilTz5OOklzshCD0rPN63VG4ctQAADFUSURBVOlpYmH4OqXEcvgrRxRswhhUM01BEbCNa8AyRja5lItHu4ezFdw1Qq9Urq6DeLTJPag+O41I8TLSXEglpQ52u0ilrbJhdevaFKp/iQCdYJPnXzITkhmc14SUZpOkRfnQlR4RSUqTRqJR/WsTt9MZ18ulZPdMDrf5UbqrkZD9JX/epTYxYV6EQ2jVGIUdScdbisOAOuKdqlOK1yQ0mQATgNnocr7PmQ/5QvBJCBkGhIJr3nJlrSweuCNClcrE4MRDdnQ366Cwn6O71PwTI75PeC3PMH/45Ubz0X7MylWcfrRoOWYOHj3gb6Ke4tU4ve503sBkSehWr14dZmZnDq3DjbSAHj9dtWbsenSnv3ggkKJO3CF+UqvksQOEdyPYVG6Od2gFdDoyTh4yuJe1qy7hBwPV4xZ/Byxj0A550b1DgoB0p3Mgj3KagO6jZBpaUFKvJB6NJFp05el+deOuLu0aMisr0oibGkUGcXQc9pDoSaeE1G1r45ROKR18cvOEUTt8enfc1NmpIkowG2/NWlYCIvkkgHps33VOt6Zh2RejNBrRFP62n+UmQ0g45OcEOBktaTj7DxAe+eQyU4jG9eW2L9GT4CVPq1xMHmARZsNElHnmS7Wl+ZIoKdT4vOedf/57JTMCP8PL7GPiiHTJW3e3UZKwMl0tCe8zXGYl/7Uco/z0MytiFYvH3MURkZIj3a5faSCu22/WM3jXTZ+Qnkc001+gW8azgkMPHpqA4uX3gnGECWZROXPctkaTZfvpgZPhysCmB9LozXK6+pBhDA6y4GnTa3uYwjQDljGyJUQKUtHOd2/apapjTBVrBWahUZBpw0MMEh7IdD5T2vHaIXg8eGvkNIFyIpyuQOLLZhJmB43QwkdzytmyOS4A4UrgZdAL8qMsidBpKW5n6SlOMlM73rBGTaoUXBAz5luRhGoNgNQEEDwgkD9lThlQopWlJTuKSgkuB0ksai16slYJctN8SfLPPJxWn/2OrBQwpkAgYwvhkijsi5mlzGA/QqHhiLoaId3Q5iTjiSfw4xkfhTzFhwlJSlpzMU0G2QYCCn4dfX568bJY9MwqJDnEDz41gXITNhhDQVOH/a8N1UG6XvDVy+xn+3BqeTV3B1onZQuluB7fiYfpLAH/QJ1hModMlGNQan7M1y7dhGgMJxKqndN9WwBOuHfka+AyRjZzkmM2WL2+bkUqDZrLLmlZVb8bnJVFOMSVsmgAE+gqdAApz2oA8VJadvCcRM4UEJklmz3jkxcSUqeQxJUqOhu4DD4lYfPsYiY1l3so5S4bvFhLB9Qd0ZlMHq0SI5poXcJFXph+ZJZMWA9RZ/+IGP6TUUrD+mRUYDcYIk4tAnM4mtyjupFagS0Zivx9zj5C3hdSyLTUx3cSNLG4rAlBEFjeA0f2FcjLoCQywFMaC4tXCgPem0MKF8OSOdRgzjToieWr1sSTmFBr1iNsrB/lylzraQ+tpVIHGANN6/6162HybkytVszDYGMJGaAZyYZlDDOBa5il0XdCLrdyWw+Oc0Ik7Ul0MyVdMbvsy6SHDEnj2v28xFHtUnOWmlchm/8dwIxhQ1lh9hACAcpg7ecyH4hGwJxSYuQWnLR0te4g/eNJP0pDEOdW8bYJxNwEApE92KpORZOEJAJsWJBtp87FNG5Olv0XCKkbyScMpjGm/Q63i1yPyaR7Vi+JEq1ojrJeWabthBjWMs3DZmuBeOzPWBpNyXepl2MD5Y4SJFpjeDYEzFDXjRsVLtVb5JWpqLvkY8Nr8OQgl3nKIL6ROPx4S9y8T7yVHBQQmU7agwAdMFXbygCaK/6V9EVgWE5qa+OTnzS7YlV7PLl4RaxmflcPppI9NWHSddruGI/CBOGloEJP8E7tIXzOU1NIINwIV4vl6Lhrw41F+2WbUEidGgwmEHfm7Xf+qpXAvTDmSUy5M/3GxwCUOvQlzNRb+hqwjCE6VaVjR7iRr+YLPnFsymb84po9OCwgTjCIVGngdB28qTlFPFUwRFBsa8UNKFDFg1794jmXH7u4p2N0otzOeB0mQTNrN3IrSU01GlCNwEQF0mEuQSQ5gsxTEw3XjTR0gEkGasXbJQGwjQAzZUs8O66aHjJpuj3JC9pPmISrTA+XTaQBmJ18JQYVnu8b6RinGUM+ZXKfVZBACqn4U5iF9wZJ4IYYn0u+yNiZn88EIER8oYBxXXvqMbdkRJpLiyZNp4VxuSRMc8tlv2ivFWvWxVPPsAXnOhwTLR4ZBlOAK4VKA+7qoaOGYO6wA7mChblQDcyJkmebgVuHoIzAIo1UTs6d0lB0+yE3R+imvnoQ7az1sg+XJjENjqvc1lGb+1veaVo2seNI85CR0Tp0GPmMLPUTVv6SObjf1jVgGcOKdTJdY8nKOXwm8GRV2NSXTZMZ3gEBa3mW8DWLaFk6kRFL+KzkY+MO4WMa5yb78fLZd/N82OTanTfDQL/TzGmYzNe8kzxS5ScBs+dRKcvy62K3ejZxbmPiIUcH4FJijXsLK9I4mpcTZd0bqQWqaOUcQZdoWrTnYiftQYlCL6FaBDxW3gNjR4+T7BwzQQCwNWqJaDxiQ2ipOWFMtV12uolgrVLyCy4X5Es59pMg8SyIOJbPXlfNHUpatKTjAWgoTSt1ona/ccxC6AxzWseKleti7twlMXfeatavM5kSt7J7z9bBYK0wViebrS3qmE8qcc82/rTPMMYu7GwrcDilmM0zgIgp5p2MS61Zxa4sLm+lTzZkGKPiaF5n27TSF5K0uyD+RtZqtJFwDZu4LV/EUdYsHuMbqFkGyxnsoyeCMAYo0WPJnFkwXykEqoet/IruAXmpDIYMbWXp7JG5V5WjnZVHBjRTJ6WFl61emjJijwzx0RCJJa9aY/c99+7Fe2OUKyVx38sq1Hz9VFd1L9M4YDGq9sKEvisytjzRvFBYB5VwB5J1aI56VVytTOg1b0uRxWjQiiqXXrGeWLd6CYTeHa14X5Jaa28lXOFNTZT5UQ8D86JWdji40pXrr4+18nxleEM3TM19N46DxEJ+kWsmNQ/TSaLFhFpHp7duJLvAHDailhk/fbgxUWtMi0Or6mXe5b0F+94CyA0TyszHZJhELS5rwBEmw4vG3G0e79Pqlcti6ISmGDN5KMwLd9VtaHPpo6mhPabuOx1ztZhUZLbd14BlDGt4zjnPj9e85jW5VU8O/mTDba3uW4qQLd8v4fbG65dkC7dVzv1zzLDqxRbSbS7YJKUf1RtXXnllEtELXnAuElHmKVeVbf/yfGP45sJKqp3/rvIsTPPsfDaUW8Ws4lSQFtiq0Op3S7E1B9WuS5csjR9e+MM4l802pkzZNwd5N4YBxiWuWtVNwnf0GrCMoZ9+0qRJuaNI9iV2tOYDPP4js2dTg152VTlsgNdk58B3R0q3cj344ENi8uTJO5fJVlINWMaoBsTsqLlDYQ5obSwytlLtgflKCWi91Y7e+/Gq7rfXfh6YtS9QVzhQE1jf0lHH7AMnWxOQO4qbAcsY7lHlVp3VII4V39HKD1QCsZ4HHHBAH2P8IdW9ajP3HZsxY0butm9YeuV+i4KRcaGa2KlKHAC/gqyE8OOeVM9lhrCudqYrZ0B1r8S049CEe7q6Nm3KgYiXqg79Ya/Cqnr6LicsOnEUz5fCMfFUY4zNxa/Sbu/vgGSM7a3cczFefwJ4Ltbvd1EnhYoCZUeuAWdKKSkWL1ocjz3+GJKiMfbdd0qMHTt2R+q8y8etiN+d493O1K1lXNs8cfeJ1HffPK7Nc0K0qX32iDevp556Ko9HMHzKlCm5MXZ/yburV9wd7x9//PE86sHd8SfTqVYjeOKW4VW9rK90YPjcuXMzjnjwSDuvKr7WhHlstEH4diKh4UNc2xn39xqtIhYPp/nRj3+Ux5HdddedeXyAh9HkHqaaHXU7Jhl+r5XaQuFVXRcsWBDvfe9783xChYGbYg8fPjwuv/zyuOiii+LBBx/MDY+n0PiaVj/4wQ/yNCrDPbxHYtExUeW3heJ+78EVfO6A73F1H/6XDzMa3pi75lsP63r11VfHnXfemW5Z6yUT/eCHP4iZN87MQ4s8zct+lzvrf//7389Nwu+4446su8yR9LEDmmNAaAwRV12PPPJIEsTf/d3fpWT55je/mS5bT3V6LjBFVU9/9bjokn7zm9+cRG6YJ1Xdd9998c53vjP7WN/81rdi/+nTU2rKEH/1V3+VxPD5z38+CUtiGSiXTP/iF784DyZ94oknsu9gnR56+KF429velmevfPe734np1FftMevhWfE3f/M3ySRf+tKX4pRTTsnTuaQR6WPhwoXxs5/9LBnGvZF3xJwaEIxhw0r0DvsrRR2w2X3C7rnLumcAerqSBGCcSvoMFGLYGpzWR1OhOnxH88hjFzwZV0GgqTWa+ksAOiL23HPP8BgGtcfIkSND4vL4Ns2RXRkvVbt5kpY731s/29lwDz+dMH5CTJ3KOSq0/267jc/29p1HRUgLag/NJRlCi2IyGkKvpdrS3feffPLJZ20kvjW8+27AMIbA2uDa2yLQWbQix3sRtis3vLDvyFVJNon7pS99aR6w853vfCeOPuroWL5iOdtXDsu6m6cNL15c3utxDF7a3+JFgpFhZIxd/qpZwMJufWxP76txKjWEH+tlXW1761vF88gJDyLSpKrGtay39+a3o9cAwNiGKumWs6IygkgSKTLKc81lq0/eS6fC6173uiQGj4T++c9/ntLSE6uqSyIRL+JARvASN+JIpqnGear4u+yv1jLVFnZh9uPsZPsG1rFsi8M6Gu4NE0e2vfGzvuzGosCw3goPwxQKMtbOCIYBwxgygQ29++675/nhTgnQrPCjCaEEMc5z5bIuSjob2Mv6KUGtv6fWajb43vrrwZFYNLn0TBlP/Ghm7OpmVF971TSGdZKYZQC3XtXTZH3nzZ+XpqP1O/HEExMfdrx9p0mpCaW5pUa59bZbs/5PYI7Zed8N02xHrwHBGP2Jfr+p+2WH9L++8F952qsnMGl7V5dxnyvX47goL7300pR8nk142GGH5TFuMsC///u/p/a0U7n//vunhFVAfPGLX0xm8Bg3O+4D4VII2G4y8xVXXBE/+clP8mRe+0sHHHhA9iU+97nPJbMcfvjh2b+SeRQSOhm8xI39CkfEx9MPMb5M4eyIfWv0sSPjGQNugE/1KJHMmj0rVa2d7p2ZPTkQCEZp6NHQmgc2+PRp02PiHhOzU/3AAw8kA1T1l7jsqKtJ3KxBglKTVBpnV65vxRie12h9V6xYgVXFcte21mR6tYdHWMs8B+B0mIQmlA50usxmMqVaUWeEjKG2nDtvbsyeNTvNS4WG4Tt6DTjG2NEKPtfi74jUe67V/f+yPgPClNoUIUqY/tdzyXzqXy/vN1fXzYVtKe6m+e3qz5vWbXPwVu29adxthW8ury2FDWqMLWFmMPwPGgPF5fEHjYLByg9i4NkYGGSMZ+NkMGQQA30r1gdRMYiBQQz0w8CgxuiHjMHbQQxUGBhkjAoTg7+DGOiHgUHG6IeMwdtBDFQYGGSMChODv4MY6IeBQcboh4zB20EMVBgYZIwKE4O/gxjoh4FBxuiHjMHbQQxUGBhkjAoTg7+DGOiHgUHG6IeMwdtBDFQYGGSMChODv4MY6IeBQcboh4zB20EMVBgYMOsxPAW1WoXhvPtq7n1VkZ3/ZekP6ztc4pGngO5ERiV9gW5rsPXB36+M6mzwraXrF33w9v8IA9u1HuNZDQ9w5cSeskj/t0ek/0e13hWKkUueO8vTdwWM/lZh2CZjbF/7VbGK5E0Ilep9oNYkMmFe1cqrbTNUybeHs5uXLF4UqznHrqG5LcaNGRtDOMOOXHNtcFVMla/Pm8u7//sqTldHO5t6PROdHIe824Tx0cYhl1W8zeVRldX/d+WyZ2Lp8lXs/dIYI9nVYtQI9n2qoSTzot69Xe1x769ui/Ute8TRh7NzIBF8t3L5EtKuiZHUadTI4RzKaq3K1b/8Cibf9A+vRd3GT8F/FWnH01cp/3B+t9rHKG3by+F/C+L+e++O+1ioPv+pJZz/tjwefvCBuOfe+2L+wsV5SKEmAUfJZaMl4mngSqtopnj5U7stz/0fMmTjrypdN+c/33TFD+Od578hznjJu+KBR58u6S2w3OUieArvK99F8X3EJCw8C1f5lE3JTLp2xaL49uffH/u89oKYzSGHXtalXFX+tceNfjYQ24P33hT/8s8XxClHHhcXXX8bxyN6VQQu81Jex5q46bLPxCXX3BXrO8yXUGB66I4r2X5zSnz3qts9mJlrQ775yJewb7FuVaQt/IqD/u2ibKraZQtJBoPBwFYYwwYqhLFs4ex4/6uPjMMOPSZuf/jJaF+zOL7yLy+MIw4/LH41+4kkhDwBFKx3sqPFeg5alACr8+L6CJICJZK+Zx+2chnPq6GpLU570evjkx/7f3HuHh2xiqNzq0sYJT13w/DgXzfh4hjp8kz6JHJh4b2Hvbfz3vhu6GXaYWMmxR//6ZvilXv0ki8Hs3PVs8tGKXtrAMpkhdEPPPK0+MhHPxEfevfLYskyd7ioXcBR1aFxyOh40es/EX/2slOirdmEAtkYhx1/ZvzPp98VTy9aCVxceZJqYWAfDSt162b/pDUcDF9ODjLfqn2Mt/mLmlp3Pt1o3XY2JfNwSp+3nXbzOf6hhG6l8w0Cs1nqYsoRp8Y//+eP4+qXvDMm7zUxRo/x/Or947P/+8U49+TD8zDgVUuejJtm3hD3/voRDmZviekHHxmnnnJyjBvZGLfecFXMmrs0nvfCF8aY5u64kh2tl3cNj1NPOyWm7j0+G6kioM0h3nO1R7M36bCGybHH3mWr94wHcdlhhuLj0QfvihtuvJkD2NnCctweccKJM+KIQ6dzjjTH7nIs7wN33xE33Xx7LF61NsZN3CdOnnFqHLTf3jBIY+y+516x76QJeazu8sWPxJVX3xrL1jXEMeRx1P57FiKCmPoIvj+QwDBixCg+w2PvPSfHCo73rWDzZFafFs65Ny6/4a4YMXJsHHzYUXl+q7j1APm2EbvF5Kls7b+0Keoxt26deXXc9+jiGLPHtDj7jFNiBAeOzp91T1xz7bXxyILFMRRGnnHqGXHcEQdwBnYh8M3hTsI3vH35orjl1lvi3odmx6oV7bHn/kfE2WeeFnvuNmKbeO9fzT+0+61oDFCRkkWzoj6Oed6Z8fl/PCcuufjSuOoXl8T8tpPj5S85k3OcOcN6+cL4wf/8a/zpl66J/Y86KY46cK/4zif/PD75tYtiZXtnjGrtjje8/k/j/sefjEak/3BO4P38P3w2Hpj9VMG30nNrV+29+wu1r0OqA5eXkt/vOQ/cHK98wV/EPU/VxWmnnx7D1y2I4899R1x+8/0Z795br4xDj31tLKsfF2c875RYP/+Xcdib/jFufmBOvu9Ai3TUNXE+NSbbZd+KV73mdbGW866HDwFQLkspJebjs77S8OrqQFsVYyjj8lXS9FLn1hjD2d7f/cCb4sKr7o4uq9v3njOtOau7lS02Fz72QHzg9BfHJbfNieH0Uzz/euEjd8Y7zn9PzO8YHS9/xavj0D1a4vw3/1NcdlOpm8BsDX3tK5bE3XfcFeOmHBYvPPf0eOiyL8R3L74q1mudZdpt4N4CuGS0rWmZ3/R9KWXX+d6KxihAaiJp49Y3jIgXvuIt8bd//eb44A2L4hc3XR57jvYA+IgH7rk53vdfc+Pqa74cR0wtm1tNm7xHvOFFp8btZ86Js447Mz71/rdGhwTQOiTOeukfxwXzn9wqokvpte9CYTRkMQMqSqhvqOcA+JVx8f/8W5z21xfEh//+DTECkE46/ugY0vTR+OnPr45jp4yI67798fjXr3053vnn5+QJ4McccSi89Z740UWXxdEHvBVTrYXO8NL42PveFWMnHBB3P7wwDp9ebdIF4dQYcSOYNn0gjhI6CYR3SazArekyfq/p8dK99o36lU/Hg5win9lJaLU82oaPjgs//Zm4/cej43U/vCb++I9OieFtHCHWuTZuvvTCuKhpn7hgxgkxcfwohMwxcfL498d/f+97cfLxH0EDV2ZRDUmbwDVi9z3jpBknxuOLVseS5T3JgPPmPxIr13XGbkMoY2tc1ZdX0T7Vo0k2oMRalLrn+6pSfeBs/F78bE7DVXnvKr/bZAwBTZuU3wnTj4xXvfJlEUcNj1OO2XDuwuKVz8QBLz4rpu0tMdEJR8NM3nf/+KOzT4klK1YT1s0B5V3sr1orDkZzJ7kdvcoBhPQlapsei/vO9R3x+G2r4vSPHpZM0cFh7M0tbXH0ySfFzPn3xVNPL4UIuuKM4/ZPpujs6IrmoWPihGNOiQcum4OUj2hmJ7v6no646McXxinnvDHqaruDl0445fU18uYhztdEssE9vF41nExSI/0kDfo3nZ3UuY8xiJvZ1UVjc2PMvPqyfDr1lW8E/nKu3lqAe5K9aV8wtj1mXvmT+OlTi2LoyNGx25F/EcccehTtoq7ykPiNryLZzb0rbrvm4vjyf387jjr75TEaVT18tz1iTTObPW+rUn1ZFsLuYh/ZLjpvra0tiY8SaqRSC/uWuDfYNhTJ5Mu8NsRSKwdma7M0sCG4irjL/W7dlKqBq61crroYO3L32G+fvaK1RpyG7zZiXNz47Z/Hg/M0jdh9mu95jz4YF31lZowZ6db0XbFm1XLs+2JqrKKx777l/hiqVOTqw2M+bf2rkcMY6Tf3Xe7yve8Rw+OaW38Vy7EPJKqernVxJwesrO9tifG7j41hQzrjxtvujXboqAkiXI9X7fabr47WsbhnsZbqezrRimPi2rtmx4fedFx87MMfwOxbDAEU9GxZqBZjrsJOozt0N9aeUqxWZAO4aI6GBmDH9Kyugta66Fq9Ij7ypR/HQw/eF7N/9sH45s+uiw5gHdLaFqMBcORu+8dr33B+fPwTH4/3/P074k1/+cY4HsfHEPtXXn3tUx7VAgZ1rl0Sl13xg9j/3PPj/Le8Mc45k37VtMmhi6G+sSBxa7gvgoF+ysolceFXPh3v+aePx/1zFpZC0gspY0asXDw/vvrpj8Q/fvwL8dhTy7LSuTt5eR1PzXsoPv3h98Yn//Pb8fTyteX9lpFa8v89f2/zqLFK9S17em5ce/Wl8ePvfTd+dPcjMRKpOnzYqBg7ejhHyo6OfdoejZd87qI4jE7d/Idui4/+46vjuL//apx3xonYyg2xYPa98YZ3XxiH7Dsirr/q5/Gh//hiNI+fGkcecViMGso53dmYFYkVrFRlr1m2OK7+xS/i5l/eFj/80Mdi7YQ9Y/HCx+KJJetjGg09fspkzKR3xiIE8rCmzrjiwq/F+799T/zDO94SRx28Hx3cveJVL3txtIzbK+o7V8WPvvK5+Pz9XfGBv3tL7DO2Ja766Xfi7f/wv3HBh94TRx8xNb73jtfEOz56Sxx68kExaffxmB8bnwoqdBVsARP+ig7zNTfcEldd8t24fdbS6F2/Oh6YNTcmTt4nWijvqot/GrfceW9ce+n34qZZi6Jx3fJ48NGnYo/Je8eKhQ/Eh89/SYw/8fVx3tknw9TPxKtf+broBuYp+06L/aZMih9/6t9jQQ/Sno74/XfcGJ/+5CdjRcuEOOaIQ6IZDVQYYWPcqbHs4C9gf9cvX3pnTBraE1df+qP45L9/Kh54/OmYdsDBMWXPPaIJc7SvLgXtfd9V+NL5j8W7znl5XHjLdXHc2a+Ig6fvhZ4qbmCtiadm/yrOetWb4pbrLo8X//HrYl8cKsKk2BCOh+69Lv7kL/8+rr3iJ/Gqv/rrmDRm5GZh7it4F7jZ9gBfjWAXL3yEc9CujfX1w6KtoTuWr+6Jk089EySVHbXXLHsqZl57Zdz78PzoqG+OqQcdFWefdmKMHdGW1Vz+9Ly45vJLY9aitbH/wYfGqJZOPFXL4oznvyCmTRq92capGmb1kqfjip/9NBb3NMWoYUOjq2NdrFi1JvbY74h4wZknRgvC77GH7oxrrmcb/CVrOFBkdJx42hkQ+f55Mk4vrsqH7v5lXDfz1liCq3fUuN3j1NPPjMOm7ROrVyyOa66+MpZ2Do1zX3BujGvriJuuuy4efnR+jJh0QJz9vJNjLBRZwVK1Wd8z/YBbrr0s7n5kUYxgcK8Bs3EVB5jUt42Ll/7xC2N03dq45Gc/iQWremMkHWqJdRXnxNWP3ite8qKzYsW8++Ly6++Mo055fhx36L4xb9adcdMt98Tqzro4bsbz8YrtEfMe+hWesuuRthyawxkQ+0w7JI495qjYiz5HJfE3ZosNjLvsqblxxeWXxUNzF8fk6QfFwftPjiceui9i3OQ489STYLamZ9Vt0zp2rF0BTq6KOUt643lnnxFTdx+TaYwn4a+h73TDVVfFM53D8XidHruPG77R+2WL5sV1V10THcMn4WmbgSOidYtlVmX/vn+3yRjbBDAlQ0GQcXvpS3TXYVLUTC0JSL1eNZwNWd1vyHvzoRveb/2uVkRGcnt4z4rIqwZb//I7OX/Bgw+9+og7n2pfvxko/XPa8fv+FanAKejLp25gb6jBbsC2QO1fP/t0O3WIzGYK6Z/vZoHoV4+N4tbqNBB+doAxdNdtXCWlRXWJAF+rWr0q+7SK43svWWSDP8aADUyTEbbwVaXf9HXJfwNs+VyDxbgbnimfPoPQbchLVd/vuQZLvhdc3lXwm9eWrg35bRyjSrv195vALnYSV8K2GVzyTtPdN9X7jUvd+Kkq27jVfRVje9KXuBtgtOQaWFU2IjDbPgPEWULX77VvS/ML9CZvN8Tble52gDEEuz+CNtMw/RC0OaRXDVO9q9He9uGjX959CTZBcpW/76sy+uJys+X3pWE3NFmp5+by6J9fdZ+pq4avAvvB1r/c6nV/AvF9/7Kq+JsLy/T98u7Lbys3VX5JsslrO4T5Ws7bSrON97bfDsK9lSr9zl/tIGP8zuEZLGAQA7sEBoqxvYOgwPwKvL5LiVRJvf5Sri9C7cZ0lU7dWrxN0+3Kz9tb9125DsL2bK2yq0P8u4VvhzRGIQIAck51ErkMsukAmC/6cU0Ffy3JBobaQrwq/gD43VRAFKRspu4DoC79QRz4LdO/Njt3v2G0aRvpq3GGerxN9TCDMz5z1id04ODd43MeY8rBKvthKX1Ebt+VFER4z7p44M6b456HHoevJKC0zvui5Q1xN0ivjV9l/K28r6T3pqmq5+r9RrBVL7fjt0pvVO9l8jUcnTv3scfiGetunRK+zWfWP/3mY5TQjLe1CDvxrip707ob7rX8ybkx85bbY8nq9aVlauE7UdRzIsl2MMaGgZzlzyyMa6/8Rfzs4svil3fexUzaB2M1awuenPtQ/O3r/iR+cuOvcsq3ZlLVEGKpIv+e9aviW+84OT773ZsilyT4xgZIYir32UHrS78BxyU/PSLl0z//Kn31zuf+VxW3ep8saZn9I23lvqRXO5ay+yd8evZ9cf5r3xDfuPLW6DQP4mSN+8GwaflVflWR1fvq13Iso18WVdRn/VZpNvdr5Cq8gj19gtY9K1/9Rjx+9y0x46S3xSOLy5qU7Sr8WdA8dwK22cdwkYtDEk88/Mv43MfeE0+3HcEEuwnxjX/7TCzY5zXxpX/9YBw6/cA469wjYtkqBrZq4xeV2zYRnMQS0ThkbJz/lftjXeMoJu2JxBqh5d3GSE3ikHFqUrg829AuONJ8ywySRrPR+yevvTNIwpBYS+yy6Kdoun7p+6fdzH1VVt8rklY5Tpx2cJz7kuMYhV8VzBLKa0N8qW9DHWuvN8AObAl7P3g3xCl3wr8hv+ot9eLWGmzuXRVr07RqfdvF4kwvbqtZJdNOOCvuvu+I2Hv8iEy+tXyr/J/Lv1tlDDcgkIjWPLMgvvqxN0TT4RfEJ//8NTGBNRYPnHhgvPR9P4y1TOKrax4fB+x/SFz6wL1x4YXt8cSj82Iak/ROO/nYGNHamA244OFfxXW33cfCoN3jwMNG53yqJJrezrjv9hvj/nkrYsJuo+JptM/cZ7pjxpnnxnGH7ceag0LYy56cw8j7VYzgPh1NbSOZMXpWnHj0QQwkQuyst3iQke3rb74j1vU2se5hKKPME+OMM06NsaMYee/tjkd/fXdcdc0N8fTKVTF29ylxxplnxoFT9gC2wnyFTTZu6hpPxdrlT8eN118b97EoawjrLtqYpLjfIcfGcUceGG0jx8RBhxwYv77pgfjJj7rjsTlzYvLhJ8VZpxzPtHVYBUZeOOfBuH7mLfE0i5i6mL913Iwz4kTSNjGd4xnmEV1x9XXRtseBcdRh0+OJB38VM2+9J8ZPPTxe9IIzmYfWlrObNxAq8CKt6pmXtYLZBlddeV0MH79P7D6iLh58cBbzw1rj6BNPioOm7lmYhnlgD971y7iGtSpLVrfHhD2nx1lnnxlTJ43LynasXhk3Xn1FLFzTHVM4Q515fnlVjLcxRv5wnrZiStWkNbiY98hd8flfHxSvf9XLY/cxQ6OuoSX2P+L0+MoHXh8TR7pmoYtPb3yWyXcPLVwVuzEd/SVnvSuuufPhPkz2gvG67jXx6b97Qfz8pvtykMoSyCzqetbHZ151Xpz33n+LFXUjo3HF/DjlVR+MWQuWkL4ulix4IP71PW+PWx5YEaedcU7sP6E5Pv//3hc/v/6uzP/Jh++OC17//hgy8YA4/ZRj4ql7L4v/+Ox/xtKVZaXfg7dfFf/0F38Z61onxvPPOjsalz8YH/nYp+Lu2U9m/pszG4qmMfv1cdn3vxqf+P4v44TTz4iD9hoXF73pDXHtHQ+yms73LuntjS9/4iPxyzlLY9yo5vjAOafGzDtqdYcp59zLdJS75sRBR54Yew1rj/f92buYjOeESyecsg5k9bL4//7pbfFnf/3W+MHltzPzdX1cwxSKpbWVipWGkznUljKFVyM4XTjrjjjn9JPi3R/8TDzyBOeC3/LzeMvb3hM33Dkr49x57U/in//+7dE0bmo8/4znxboFt8eHPvFfMWv+M/le+JubmmP+r2fGh7/09XiK9edeWf9ajD/Eny1rjD6R0ROrFy+Jg485hjlIzGKDmLuZflzXPCxmPO8MBm1sJKZUr18Xr3nvJ+Nv3vIXMbqhPdY9OTsevW92dJ90MLNXu2MSEvDV+0yLuq6lMR9N5KVGqmMZ6YFHzYjz3viqaDr1T+Mtr39JtC85Ec3xlpi1cFkcvNfYuOvqn8anHq6Pq97+ojh46oTo3GtM3HX99+K88/8zVvz6f2Idc6eumFcfF0zYLfbcZ+942Wv/Jo48C+nIXKKutUvj2ku+FHHMy5hdekpMgLFHw8vf/IeT4lsHnhAHXvBKpqNv6EclYP2/kLhPLFkadaMmxIRxE2L4hHHxzp9dHG0T98uFRDJu57q18brzPxLveOubY3xbezSsfDLueGQWTHoos5Cb4oATTo2XNY/JiXejx02KIasvJc/FccQ0VkPuMTXOe80b48n7bo/H9z4z3v/2P0cjD4nVMMWQIS2xevniWMA6+8IMpVF6wP9QVgPuOXFcPP/5Z8SxH/hU/M37PhTnosW725fFt/7jvfGDS66NA/cYEjdd+8NoPerPmBd1fIwZ3sYqyI74AmbTL447Oab82ZnRNGR4zHjhS2Ia608Wfu5b8sngBQa2zBjaFjn3oD5aQOhjTKrr7CqTEXqRgo05Z6dILpmlk3XeRx9wAJPSVEJNEOik+PVapnPTlpVachlqb3q1arjXVuHq7eqM3taxsdfk/dLsamai4Lip0+U3/2PuE8/EKSPq4/brfxaXf//paB7O5LndTomPv30qawQiJmHn/+AL58UPv/HF+F5HZzoADjr+eUzMY310Bwt05j8KM+8TF33vf1lCuixGMBv4pHe+N47eb4JWVlkjUUARnLyKHS7ww+KlL31lrP3+hfGRD/wjfaPu6GoZE6947e5ZtsJbvOx92BRmCYu01hg/aa94dEXRVutXLIzvff1Lcfe87jj2qENiaN3qGH7g4WiF1JdZ325W/3WOmB6ve8WLY8KoYSmthw0bQl5d8RgzU8867VWx5/EnRRNlN5Fu5i0sqvr6f8X7Xn92dLW3x7Q3/3OccPg0l3pEA2vLT33Bq+OyL9wUC+Y8zvp7Vj0uZYXl1/87FrM2ZuTIkfHyd/xDTNuDiZs0p9UW6noeenq482Hw2gpjJIYKI+y299SYPvNP4sqbXh1/+bIZyRRd7avi4VmPxJBxe8eUSWNZwIIYZr1zwauTCBuipa2NhgTLqP+8WI+g+m9iqWeyVM2gbUCV17ewiq62VkHToZ4Yra3NGW/M0OZo2216vPK1fxl7jmmLDphwFVPRlzLDdxQr2BbNXxQNo6fHBz/6p8zcbI5F8+6ON/zV38fY6cfFG0+aABxjY7/pJ8Rb/uJF0drQy+zcjlj09JPR3TIKO7+AtsGGL8+lfwHwPe0xb9HSOPGFr43zD5oaDbicb7r4m3HuZ74Rsw6cFtMmjMAUYb12ak7T1lN3hEnbkFBGzMYM/fgls+LSb3wtDp0yKlYvfDDuveGn0dDS2icwXNzTNnRYtLbIDKALriwd5/rY64AT4uLbbiXbhuw4a/Z1dVPviXtn3HoE1IJfXhqzH3tDjD1k3+jtXB333nJNNLIqcMzuE6Ibxjhixmnx1tecFY1o7m76YwsXPBlNI8dn/0w8ezXRBk2tTdHsAhUu2+AP+dqyxhA5ik2uifscFP/4w6/E8178plj5pX+O4/efGHdef2m884O/itsf/GaMe4aO8c+/Hlf0nhh/xMq5CS0r4pKf/zAuX3tsnHnWiTF1VEPceMPMWAYzXXn5VfHE0JUxsX4FK+lGxelMfV7+2F3x/c9+NmZMOiJmHDI5npn96/jGB/8jZsRBcfT0N8SJL3pF/HTm++PbP/5FnMNKvLUrnmHu/2WxftyRMf2g/eKpuY/Ey1/60vjiN38cx7DefNn8x2PZGjTQ2LZoHMY671ecH//06e/HxXsOi/3pIyxiaeeVV18dR77wL2IK6x3glSI5S3WzztVXb8/auOiH/198ZtaEuPyfXhe7DWuIRx6aF3/CWouRSPXlTMe/9rKL4t/nTovzzjkx9h6yNq646H/jJ2sPixedenKMGcPGDD03xbXXXB5PTRrCmo0fxL9946roOfCS2H/iqKhnbcb1V1wVP//JT2PVqInx+D4srNp9csw47vBcTz9q/F5xLJ8tXfUImy46129//7/EW195Vqx5anb87bs/Gj+5/pexD+s5jj/tlfGuL3wvpo1vicm7DY8nH384Lr36xjj7T/+W9RjjWStxW9yPU2HFgofjwp9eGPseekjsicaeftjRLCmYkvtcpRtrSwA8R8O3OfKtB8SlpF0da+PeO26Ja665KVZ0dOPdmBInnDAjjj5sasx/+J6YqUeorjWOOeYk1jSsjstuuCO6e+rj2OedHfuPa4vLfvrjmLuyI8aNHoXK746lrOJr2W1KnPdHZ8XSOXfSWf11NEEYJ5xwcqzBU/PL+3+NFhkZp7NGYvJuI2MuHeyr8d7MW7Qihgwfjqm2Xxx99NGxP4S98LFZcT2Mt2Y9GwusXR1YcHEUdv2ME47MDdTcl+reO26NK6+7LdoxGYZjik1nbcLRRx9Ov4FdR5DAmzMhcgVfb3vcduPMeHD23GhH06xbhVsWj9fzX/D8mD55dxZl3R0zf3l3rOtqiMNPZP1JW1fccOWNrElpiiM05w6YlBL8ChYyuZbl6OOOjTY69I+wkOmkF54T9aueiivYU2rs+LHRs749lq5YGZMOPD5eePpxrFtvwBR1weimHEufCJAbWGT065k/jS//4M4471XnxJInZsVTK3riiGOPj6MO3Z+dXBpZZ78q7rztprjuhl9FBxp52IjRccjBh8SRRx4Zu40aGnfdem3ceMvdMXT0mBjKstV1a1YBQ3ucfNa5cQxesgY0lG7dmox8jrLBs6u1TcYwSX9/eMe6drwxLKrHTGqkYfI9reSGCRpeDah8XaDdthyXGxY42dv1AJU9m0tlQbgmQwMqW69ObiqW8VHtae9KrKR1zALGlDR63ImDNd31eHJaXVtcu3owEWRgry76K5odLSx59Sod/AKnDoIOmKCpuYV13jUbKmNt/auHdRDC7L5UnXRqTN9Xd2DtlrG4yn5UwJl1BWb7U9RP2NeBN2Lkmmnj2idrEIZa3SvzyXf2xcTLFi/T8FKNfvsvvh5fvvCx+NdPvSd2G9kC3ntZb1LqVo35mE8Hde8EzmZgr95n2VX5RqpRP0EFbp5rQb79g7q2izHESOW+62+LS3QS7+8aecqsorkKkVXwlAbcVJqW9usPr/f+yWS1tzyhBZHQC+Y+FsvWdkDoG7bmpFLUCYcC+9yMn7RP7Il3Cwzw2VBW5i/h1HLc0k9/OIxTcGb+20q5pRxtizLIuXTR4/Glf/vn+N7Vj8eRhx8Qhxx9Dv2olzB+wrp3GMTB1k3L3yEYNq7ylgF6Dr7ZbsbIuieBbcBCX+NuGk6UIr+5qRFP1UAbUpe7zKNfep83ituP+DYKz6xrxNUvfV/+/dJlWL845qMkb1+xNC7/8XfijjmLc9lpF5ohLxioEY/QkrW9ce7LXhMzjpqaXps0KWoFbL7uhaHIvu/atH59L/JG+PtF7veyL/9+YdWt8Pt+3dpVsWDBQjx3deEuHA3Nw2PqvvvgDKgEQC1Fv7pnSD/cbIrTqowiHDY8/aHd7RhjPOewUzTR5kmzVFYC3BqR/r5QIvMB2uD1O8LAHzhj/I6w+n+WLYytNujjbPs0g9zy20D/IGNsamZsgtVdUVtsAuLg4+8AA1sdx/gdlLfrZdnP3t71gBuE6PeFgU16ab8vMAbLHcTAroWBQcbYtdpjEJpdBAP/P3+ittC+RzazAAAAAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": { "image/jpeg": { "height": 200, "width": 200 } }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "You look like a ... \n", "in/050.Chinese_shar-pei\n", "\n", "\n" ] } ], "source": [ "## TODO: 在你的电脑上,在步骤6中,至少在6张图片上运行你的算法。\n", "## 自由地使用所需的代码单元数吧\n", "for i in range(1, 7):\n", " filename = 'images/' + str(i) + '.jpg'\n", " print('filename = ' + filename)\n", " dog_breed_algorithm(filename)\n", " print('\\n')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**注意: 当你写完了所有的代码,并且回答了所有的问题。你就可以把你的 iPython Notebook 导出成 HTML 文件。你可以在菜单栏,这样导出File -> Download as -> HTML (.html)把这个 HTML 和这个 iPython notebook 一起做为你的作业提交。**" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
ES-DOC/esdoc-jupyterhub
notebooks/uhh/cmip6/models/sandbox-1/seaice.ipynb
1
99801
{ "nbformat_minor": 0, "nbformat": 4, "cells": [ { "source": [ "# ES-DOC CMIP6 Model Properties - Seaice \n", "**MIP Era**: CMIP6 \n", "**Institute**: UHH \n", "**Source ID**: SANDBOX-1 \n", "**Topic**: Seaice \n", "**Sub-Topics**: Dynamics, Thermodynamics, Radiative Processes. \n", "**Properties**: 80 (63 required) \n", "**Model descriptions**: [Model description details](https://specializations.es-doc.org/cmip6/seaice?client=jupyter-notebook) \n", "**Initialized From**: -- \n", "\n", "**Notebook Help**: [Goto notebook help page](https://es-doc.org/cmip6-models-documenting-with-ipython) \n", "**Notebook Initialised**: 2018-02-15 16:54:41" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### Document Setup \n", "**IMPORTANT: to be executed each time you run the notebook** " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# DO NOT EDIT ! \n", "from pyesdoc.ipython.model_topic import NotebookOutput \n", "\n", "# DO NOT EDIT ! \n", "DOC = NotebookOutput('cmip6', 'uhh', 'sandbox-1', 'seaice')" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Authors \n", "*Set document authors*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_author(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Contributors \n", "*Specify document contributors* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_contributor(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Publication \n", "*Specify document publication status* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set publication status: \n", "# 0=do not publish, 1=publish. \n", "DOC.set_publication_status(0)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Table of Contents \n", "[1. Key Properties --&gt; Model](#1.-Key-Properties---&gt;-Model) \n", "[2. Key Properties --&gt; Variables](#2.-Key-Properties---&gt;-Variables) \n", "[3. Key Properties --&gt; Seawater Properties](#3.-Key-Properties---&gt;-Seawater-Properties) \n", "[4. Key Properties --&gt; Resolution](#4.-Key-Properties---&gt;-Resolution) \n", "[5. Key Properties --&gt; Tuning Applied](#5.-Key-Properties---&gt;-Tuning-Applied) \n", "[6. Key Properties --&gt; Key Parameter Values](#6.-Key-Properties---&gt;-Key-Parameter-Values) \n", "[7. Key Properties --&gt; Assumptions](#7.-Key-Properties---&gt;-Assumptions) \n", "[8. Key Properties --&gt; Conservation](#8.-Key-Properties---&gt;-Conservation) \n", "[9. Grid --&gt; Discretisation --&gt; Horizontal](#9.-Grid---&gt;-Discretisation---&gt;-Horizontal) \n", "[10. Grid --&gt; Discretisation --&gt; Vertical](#10.-Grid---&gt;-Discretisation---&gt;-Vertical) \n", "[11. Grid --&gt; Seaice Categories](#11.-Grid---&gt;-Seaice-Categories) \n", "[12. Grid --&gt; Snow On Seaice](#12.-Grid---&gt;-Snow-On-Seaice) \n", "[13. Dynamics](#13.-Dynamics) \n", "[14. Thermodynamics --&gt; Energy](#14.-Thermodynamics---&gt;-Energy) \n", "[15. Thermodynamics --&gt; Mass](#15.-Thermodynamics---&gt;-Mass) \n", "[16. Thermodynamics --&gt; Salt](#16.-Thermodynamics---&gt;-Salt) \n", "[17. Thermodynamics --&gt; Salt --&gt; Mass Transport](#17.-Thermodynamics---&gt;-Salt---&gt;-Mass-Transport) \n", "[18. Thermodynamics --&gt; Salt --&gt; Thermodynamics](#18.-Thermodynamics---&gt;-Salt---&gt;-Thermodynamics) \n", "[19. Thermodynamics --&gt; Ice Thickness Distribution](#19.-Thermodynamics---&gt;-Ice-Thickness-Distribution) \n", "[20. Thermodynamics --&gt; Ice Floe Size Distribution](#20.-Thermodynamics---&gt;-Ice-Floe-Size-Distribution) \n", "[21. Thermodynamics --&gt; Melt Ponds](#21.-Thermodynamics---&gt;-Melt-Ponds) \n", "[22. Thermodynamics --&gt; Snow Processes](#22.-Thermodynamics---&gt;-Snow-Processes) \n", "[23. Radiative Processes](#23.-Radiative-Processes) \n", "\n" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "# 1. Key Properties --&gt; Model \n", "*Name of seaice model used.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 1.1. Model Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of sea ice model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.model.model_overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.2. Model Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Name of sea ice model code (e.g. CICE 4.2, LIM 2.1, etc.)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.model.model_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 2. Key Properties --&gt; Variables \n", "*List of prognostic variable in the sea ice model.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 2.1. Prognostic\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *List of prognostic variables in the sea ice component.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.variables.prognostic') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Sea ice temperature\" \n", "# \"Sea ice concentration\" \n", "# \"Sea ice thickness\" \n", "# \"Sea ice volume per grid cell area\" \n", "# \"Sea ice u-velocity\" \n", "# \"Sea ice v-velocity\" \n", "# \"Sea ice enthalpy\" \n", "# \"Internal ice stress\" \n", "# \"Salinity\" \n", "# \"Snow temperature\" \n", "# \"Snow depth\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 3. Key Properties --&gt; Seawater Properties \n", "*Properties of seawater relevant to sea ice*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 3.1. Ocean Freezing Point\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Equation used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"TEOS-10\" \n", "# \"Constant\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.2. Ocean Freezing Point Value\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If using a constant seawater freezing point, specify this value.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point_value') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 4. Key Properties --&gt; Resolution \n", "*Resolution of the sea ice grid*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 4.1. Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *This is a string usually used by the modelling group to describe the resolution of this grid e.g. N512L180, T512L70, ORCA025 etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.resolution.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 4.2. Canonical Horizontal Resolution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.resolution.canonical_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 4.3. Number Of Horizontal Gridpoints\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Total number of horizontal (XY) points (or degrees of freedom) on computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.resolution.number_of_horizontal_gridpoints') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 5. Key Properties --&gt; Tuning Applied \n", "*Tuning applied to sea ice model component*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 5.1. Description\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.tuning_applied.description') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.2. Target\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What was the aim of tuning, e.g. correct sea ice minima, correct seasonal cycle.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.tuning_applied.target') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.3. Simulations\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Which simulations had tuning applied, e.g. all, not historical, only pi-control? *" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.tuning_applied.simulations') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.4. Metrics Used\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *List any observed metrics used in tuning model/parameters*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.tuning_applied.metrics_used') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.5. Variables\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Which variables were changed during the tuning process?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.tuning_applied.variables') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 6. Key Properties --&gt; Key Parameter Values \n", "*Values of key parameters*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 6.1. Typical Parameters\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *What values were specificed for the following parameters if used?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.typical_parameters') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Ice strength (P*) in units of N m{-2}\" \n", "# \"Snow conductivity (ks) in units of W m{-1} K{-1} \" \n", "# \"Minimum thickness of ice created in leads (h0) in units of m\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.2. Additional Parameters\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *If you have any additional paramterised values that you have used (e.g. minimum open water fraction or bare ice albedo), please provide them here as a comma separated list*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.additional_parameters') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 7. Key Properties --&gt; Assumptions \n", "*Assumptions made in the sea ice model*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 7.1. Description\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General overview description of any *key* assumptions made in this model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.assumptions.description') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.2. On Diagnostic Variables\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Note any assumptions that specifically affect the CMIP6 diagnostic sea ice variables.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.assumptions.on_diagnostic_variables') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.3. Missing Processes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *List any *key* processes missing in this model configuration? Provide full details where this affects the CMIP6 diagnostic sea ice variables?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.assumptions.missing_processes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 8. Key Properties --&gt; Conservation \n", "*Conservation in the sea ice component*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 8.1. Description\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Provide a general description of conservation methodology.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.conservation.description') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.2. Properties\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Properties conserved in sea ice by the numerical schemes.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.conservation.properties') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Energy\" \n", "# \"Mass\" \n", "# \"Salt\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.3. Budget\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *For each conserved property, specify the output variables which close the related budgets. as a comma separated list. For example: Conserved property, variable1, variable2, variable3*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.conservation.budget') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.4. Was Flux Correction Used\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does conservation involved flux correction?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.conservation.was_flux_correction_used') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.5. Corrected Conserved Prognostic Variables\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *List any variables which are conserved by *more* than the numerical scheme alone.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.conservation.corrected_conserved_prognostic_variables') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 9. Grid --&gt; Discretisation --&gt; Horizontal \n", "*Sea ice discretisation in the horizontal*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 9.1. Grid\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Grid on which sea ice is horizontal discretised?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Ocean grid\" \n", "# \"Atmosphere Grid\" \n", "# \"Own Grid\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.2. Grid Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the type of sea ice grid?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Structured grid\" \n", "# \"Unstructured grid\" \n", "# \"Adaptive grid\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.3. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the advection scheme?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Finite differences\" \n", "# \"Finite elements\" \n", "# \"Finite volumes\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.4. Thermodynamics Time Step\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the time step in the sea ice model thermodynamic component in seconds.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.thermodynamics_time_step') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.5. Dynamics Time Step\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the time step in the sea ice model dynamic component in seconds.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.dynamics_time_step') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.6. Additional Details\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Specify any additional horizontal discretisation details.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.additional_details') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 10. Grid --&gt; Discretisation --&gt; Vertical \n", "*Sea ice vertical properties*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 10.1. Layering\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *What type of sea ice vertical layers are implemented for purposes of thermodynamic calculations?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.vertical.layering') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Zero-layer\" \n", "# \"Two-layers\" \n", "# \"Multi-layers\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 10.2. Number Of Layers\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *If using multi-layers specify how many.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.vertical.number_of_layers') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 10.3. Additional Details\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Specify any additional vertical grid details.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.vertical.additional_details') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 11. Grid --&gt; Seaice Categories \n", "*What method is used to represent sea ice categories ?*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 11.1. Has Mulitple Categories\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Set to true if the sea ice model has multiple sea ice categories.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.seaice_categories.has_mulitple_categories') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.2. Number Of Categories\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *If using sea ice categories specify how many.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.seaice_categories.number_of_categories') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.3. Category Limits\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *If using sea ice categories specify each of the category limits.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.seaice_categories.category_limits') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.4. Ice Thickness Distribution Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe the sea ice thickness distribution scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.seaice_categories.ice_thickness_distribution_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.5. Other\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If the sea ice model does not use sea ice categories specify any additional details. For example models that paramterise the ice thickness distribution ITD (i.e there is no explicit ITD) but there is assumed distribution and fluxes are computed accordingly.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.seaice_categories.other') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 12. Grid --&gt; Snow On Seaice \n", "*Snow on sea ice details*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 12.1. Has Snow On Ice\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is snow on ice represented in this model?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.snow_on_seaice.has_snow_on_ice') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.2. Number Of Snow Levels\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of vertical levels of snow on ice?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.snow_on_seaice.number_of_snow_levels') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.3. Snow Fraction\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe how the snow fraction on sea ice is determined*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.snow_on_seaice.snow_fraction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.4. Additional Details\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Specify any additional details related to snow on ice.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.snow_on_seaice.additional_details') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 13. Dynamics \n", "*Sea Ice Dynamics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 13.1. Horizontal Transport\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the method of horizontal advection of sea ice?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.dynamics.horizontal_transport') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Incremental Re-mapping\" \n", "# \"Prather\" \n", "# \"Eulerian\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.2. Transport In Thickness Space\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the method of sea ice transport in thickness space (i.e. in thickness categories)?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.dynamics.transport_in_thickness_space') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Incremental Re-mapping\" \n", "# \"Prather\" \n", "# \"Eulerian\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.3. Ice Strength Formulation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Which method of sea ice strength formulation is used?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.dynamics.ice_strength_formulation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Hibler 1979\" \n", "# \"Rothrock 1975\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.4. Redistribution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Which processes can redistribute sea ice (including thickness)?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.dynamics.redistribution') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Rafting\" \n", "# \"Ridging\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.5. Rheology\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Rheology, what is the ice deformation formulation?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.dynamics.rheology') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Free-drift\" \n", "# \"Mohr-Coloumb\" \n", "# \"Visco-plastic\" \n", "# \"Elastic-visco-plastic\" \n", "# \"Elastic-anisotropic-plastic\" \n", "# \"Granular\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 14. Thermodynamics --&gt; Energy \n", "*Processes related to energy in sea ice thermodynamics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 14.1. Enthalpy Formulation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the energy formulation?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.enthalpy_formulation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Pure ice latent heat (Semtner 0-layer)\" \n", "# \"Pure ice latent and sensible heat\" \n", "# \"Pure ice latent and sensible heat + brine heat reservoir (Semtner 3-layer)\" \n", "# \"Pure ice latent and sensible heat + explicit brine inclusions (Bitz and Lipscomb)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.2. Thermal Conductivity\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What type of thermal conductivity is used?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.thermal_conductivity') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Pure ice\" \n", "# \"Saline ice\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.3. Heat Diffusion\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the method of heat diffusion?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_diffusion') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Conduction fluxes\" \n", "# \"Conduction and radiation heat fluxes\" \n", "# \"Conduction, radiation and latent heat transport\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.4. Basal Heat Flux\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Method by which basal ocean heat flux is handled?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.basal_heat_flux') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Heat Reservoir\" \n", "# \"Thermal Fixed Salinity\" \n", "# \"Thermal Varying Salinity\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.5. Fixed Salinity Value\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If you have selected {Thermal properties depend on S-T (with fixed salinity)}, supply fixed salinity value for each sea ice layer.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.fixed_salinity_value') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.6. Heat Content Of Precipitation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe the method by which the heat content of precipitation is handled.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_content_of_precipitation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.7. Precipitation Effects On Salinity\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If precipitation (freshwater) that falls on sea ice affects the ocean surface salinity please provide further details.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.precipitation_effects_on_salinity') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 15. Thermodynamics --&gt; Mass \n", "*Processes related to mass in sea ice thermodynamics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 15.1. New Ice Formation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe the method by which new sea ice is formed in open water.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.mass.new_ice_formation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.2. Ice Vertical Growth And Melt\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe the method that governs the vertical growth and melt of sea ice.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_vertical_growth_and_melt') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.3. Ice Lateral Melting\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the method of sea ice lateral melting?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_lateral_melting') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Floe-size dependent (Bitz et al 2001)\" \n", "# \"Virtual thin ice melting (for single-category)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.4. Ice Surface Sublimation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe the method that governs sea ice surface sublimation.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_surface_sublimation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.5. Frazil Ice\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe the method of frazil ice formation.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.mass.frazil_ice') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 16. Thermodynamics --&gt; Salt \n", "*Processes related to salt in sea ice thermodynamics.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 16.1. Has Multiple Sea Ice Salinities\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does the sea ice model use two different salinities: one for thermodynamic calculations; and one for the salt budget?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.has_multiple_sea_ice_salinities') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.2. Sea Ice Salinity Thermal Impacts\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does sea ice salinity impact the thermal properties of sea ice?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.sea_ice_salinity_thermal_impacts') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 17. Thermodynamics --&gt; Salt --&gt; Mass Transport \n", "*Mass transport of salt*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 17.1. Salinity Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *How is salinity determined in the mass transport of salt calculation?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.salinity_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant\" \n", "# \"Prescribed salinity profile\" \n", "# \"Prognostic salinity profile\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 17.2. Constant Salinity Value\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If using a constant salinity value specify this value in PSU?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.constant_salinity_value') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 17.3. Additional Details\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe the salinity profile used.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.additional_details') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics \n", "*Salt thermodynamics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 18.1. Salinity Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *How is salinity determined in the thermodynamic calculation?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.salinity_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant\" \n", "# \"Prescribed salinity profile\" \n", "# \"Prognostic salinity profile\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.2. Constant Salinity Value\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If using a constant salinity value specify this value in PSU?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.constant_salinity_value') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.3. Additional Details\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe the salinity profile used.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.additional_details') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 19. Thermodynamics --&gt; Ice Thickness Distribution \n", "*Ice thickness distribution details.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 19.1. Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *How is the sea ice thickness distribution represented?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.ice_thickness_distribution.representation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Explicit\" \n", "# \"Virtual (enhancement of thermal conductivity, thin ice melting)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 20. Thermodynamics --&gt; Ice Floe Size Distribution \n", "*Ice floe-size distribution details.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 20.1. Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *How is the sea ice floe-size represented?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.representation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Explicit\" \n", "# \"Parameterised\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 20.2. Additional Details\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Please provide further details on any parameterisation of floe-size.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.additional_details') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 21. Thermodynamics --&gt; Melt Ponds \n", "*Characteristics of melt ponds.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 21.1. Are Included\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Are melt ponds included in the sea ice model?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.are_included') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 21.2. Formulation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What method of melt pond formulation is used?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.formulation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Flocco and Feltham (2010)\" \n", "# \"Level-ice melt ponds\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 21.3. Impacts\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *What do melt ponds have an impact on?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.impacts') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Albedo\" \n", "# \"Freshwater\" \n", "# \"Heat\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 22. Thermodynamics --&gt; Snow Processes \n", "*Thermodynamic processes in snow on sea ice*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 22.1. Has Snow Aging\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Set to True if the sea ice model has a snow aging scheme.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_aging') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.2. Snow Aging Scheme\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe the snow aging scheme.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_aging_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.3. Has Snow Ice Formation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Set to True if the sea ice model has snow ice formation.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_ice_formation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.4. Snow Ice Formation Scheme\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe the snow ice formation scheme.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_ice_formation_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.5. Redistribution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the impact of ridging on snow cover?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.redistribution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.6. Heat Diffusion\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the heat diffusion through snow methodology in sea ice thermodynamics?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.heat_diffusion') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Single-layered heat diffusion\" \n", "# \"Multi-layered heat diffusion\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 23. Radiative Processes \n", "*Sea Ice Radiative Processes*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 23.1. Surface Albedo\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Method used to handle surface albedo.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.radiative_processes.surface_albedo') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Delta-Eddington\" \n", "# \"Parameterized\" \n", "# \"Multi-band albedo\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.2. Ice Radiation Transmission\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Method by which solar radiation through sea ice is handled.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.radiative_processes.ice_radiation_transmission') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Delta-Eddington\" \n", "# \"Exponential attenuation\" \n", "# \"Ice radiation transmission per category\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### \u00a92017 [ES-DOC](https://es-doc.org) \n" ], "cell_type": "markdown", "metadata": {} } ], "metadata": { "kernelspec": { "display_name": "Python 2", "name": "python2", "language": "python" }, "language_info": { "mimetype": "text/x-python", "nbconvert_exporter": "python", "name": "python", "file_extension": ".py", "version": "2.7.10", "pygments_lexer": "ipython2", "codemirror_mode": { "version": 2, "name": "ipython" } } } }
gpl-3.0
caganze/wisps
notebooks/manjavacas data.ipynb
1
2151175
null
mit
MartinThoma/LaTeX-examples
presentations/causality-presentation/pynb/Interventions.ipynb
1
15400
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from scipy.stats import bernoulli\n", "import matplotlib.pyplot as plt; plt.rcdefaults()\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sympy import latex" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def generate_data(n):\n", " \"\"\"\n", " Generate n datapoints for 3 variables A, H, B\n", " with the model\n", " A -> H -> B\n", " \"\"\"\n", "\n", " data = []\n", " for i in range(n):\n", " N_A = bernoulli.rvs(1./20)\n", " N_H = bernoulli.rvs(1./3)\n", " N_B = bernoulli.rvs(1./2)\n", " A = N_A\n", " H = (A + N_H) % 2\n", " B = (H + N_B) % 2\n", " data.append((A, H, B))\n", " return data" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEZCAYAAABvpam5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu0nXWd3/H3JxjpjEGPWRlDEjBJp54zGY9W0DmhKnQj\nBBAMQmdAmQjpTJFpO9OZUlcq06ySnGKHi21pp8EuRRtjBWfiKJcDFROMGxlXzcFRlDAkEZeJuRFE\nQMM4MwnJt3/s3w47O/vyPDv7cvY5n9dae+W5/J7f7/s8O+d8z3P7/RQRmJmZ5TGt1wGYmVn/cfIw\nM7PcnDzMzCw3Jw8zM8vNycPMzHJz8jAzs9ycPMxykPRZSTe1uO0ySV9td0xmveDkYZOCpB2SfiHp\nQMXnTzvQVKRP/g0j7oqIC9scj1lPvKrXAZi1SQDvi4hNjQpJOikiDp9gWzrB7c36ns88bFKT9M8l\nfVPSf5P0HLBK0kxJY5J+Jmlc0sckPVqxza9J2ijpp5K2SrqiqtpZkjZI+rmkoqQ3Vmx7RNLvSdou\n6QVJa6pieTRNS9LtkvanOL4v6c1p3cWSnkz175b0kYo63ifp8VT3NyW9pVPHzqwRJw+bTOqdEYwA\nPwTeAPwJ8AngADAbWA5cQ7oUJek1wEbg88CvAB8EPiFpUUUby4D/BMwCHgfuqmrvEuAdwFuBKyXV\nulR1AXA28KaIeB1wBfDTtO4zwHUR8VrgzcCmFNsZad2HgZnAJ4H7Jb26yXExazsnD5ssBNyb/iIv\nf65N6/ZGxB0RcQQ4BPwzYFVE/F1EPAWs45XE8z7gRxGxLiKORMTjwJcp/XIveyAi/jIiDgIrgX8i\naV7F+lsi4ucRsQv4OvC2GvEeAk4BFkmaFhHbIuKZtO4g8GZJr42In0XEd9Py64BPRsRjUfI54O+B\ns1o9aGatcvKwySKA90fE6ys+n07rdlWU+xVK9/oql+2umJ4PLK5MQsBvUzpLKbdztHxE/A3wPDC3\noo5nKqZ/AbzmuGBL92bWAHcA+yV9UtIpafVvAhcDO9JlsXJymA98pCq204A5DY6LWUc4edhUUPl0\n1E+Al4HTK5ZVTv8YeKQqCZ0SEb9fq7ykGZQuIe3NHVTE/4yIdwC/DgwCK9Lyb0fEZZQS3b3A+orY\n/nNVbDMi4s/ztm12opw8bDJp+hRUetLqy8BqSb8k6deAq3klwTwIDEr6kKTp6fMbqVy5jYslvSvd\na7gJ+H8RsadBTMfFJekdkhZLmk7p7OTvgMOpvWWSXpdiPQCUnw67E/iXkkbSDffXSLokJTCzrnLy\nsMlkrOo9jy9T+72MPwBeR+ny0jrgC5TuMxARByjdzP4gsAfYB9wMlG9KB6Ub5Kso3eA+A/hQRd3V\nbVW2Xzn9WuBTlC557QCeAz6e1n0I+JGkn1G6z7EsxfZXlG6Wr0nb/YDSzX6zrpMHg7KpTtKtwBsi\n4nd6HYtZv/CZh005koYkvTVd+hkBfhe4p9dxmfUTv2FuU9EplC5VzQX2A/8lIu7vbUhm/cWXrczM\nLDdftjIzs9z66rKVJJ8mmZnlFBFt78yz7848IqIvP6tWrep5DI6/93E4/v789HP8ndJ3ycPMzHrP\nycPMzHJz8uiSQqHQ6xBOiOPvLcffW/0efyf01aO6kqKf4jUz6zVJhG+Ym5nZRODkYWZmuTl5mJlZ\nbk4eZmaWm5OHmZnl5uRhZma5OXmYmVluTh5mZpZbX/WqC7By5ada3nZgAFasuK6N0ZiZTU19lzzm\nz2/9l//Ona0nHjMze4UvW5mZWW5OHmZmlpuTh5mZ5ebkYWZmuTVNHpJOlvSIpGmSHpL0gqSxBuWv\nkPSkpMOSzmxQrmZdktZLWphvN8zMrJuynHksAx6IiCPAbcDVTco/AVwOfKNJuXp13QlcnyGu3MbH\nhztRrZnZlJMleVwF3AcQEZuAlxoVjoitEbG9WaUN6ioCF2eIK7dt2xZ0olozsymnYfKQdBIwnCUZ\ntEtEHAL2SFrUrTbNzCyfZi8JzgIOdCOQKnuBBcBT1SvGxlYfnR4cLDA0VOhWTGZmE16xWKRYLHa8\nnSxvmFePfdvOQcTr1SXgSK0VS5eubmPzZmaTS6FQoFAoHJ0fHR3tSDvN7nk8B8yoWnbcQOqSbpZ0\nWY3tVVFmnqSHm9WVzAF2NonNzMx6pGHyiIjDwBZJQwCSHgXWA+dJ2iVpSSo6DOxLZS6XtAs4C3hQ\n0ldSmTnAy+W669UlaTpwWkRsbddOlg0N7Wh3lWZmU1KWy1Z3AZcBt0bE2XXKTI+IzQARcQ9wT40y\ni4E15ZkGdZ0LPJAhrtxGRrYA7+xE1WZmU0qWR3XvBi6RVO8SExFxUbNKIuKOiMiSFK4Fbs9QzszM\neqTpmUdEHATO6UIs5fau7FZbZmbWGvdtZWZmuTl5mJlZbk4eZmaWW98NQ3siQ8kODLQxEDOzKUwR\n7XxhvLMkRT/Fa2bWa5KIiLpPy7bKl63MzCw3Jw8zM8vNycPMzHLruxvmK1ee2A3zFSuua2M0ZmZT\nU98lj/nzW//lfyJPapmZ2St82crMzHJz8jAzs9ycPMzMLDcnDzMzy61p8pB0sqRHJE2T9JCkFySN\nNSh/haQnJR2WdGaDcsslbU+fayqWr5e0MP+umJlZt2Q581gGPBARR4DbgKublH8CuBz4Rr0CkmYC\nNwIj6bNKUrnnqTuB6zPEldv4+HAnqjUzm3KyJI+rgPsAImIT8FKjwhGxNSK2N6nzQmBDRLwYES8C\nG4HyaIRF4OIMceW2bduCTlRrZjblNEwekk4ChjMkg7zmArsr5ncD8wAi4hCwR9KiNrdpZmZt0uwl\nwVnAgW4EUmUvsAB4qnrF2Njqo9ODgwWGhgrdisnMbMIrFosUi8WOt5PlDfPqrnzb0Sf6HqBQMX86\nsKmqzSO1Nly6dHUbmjczm5wKhQKFQuHo/OjoaEfaaXbP4zlgRtWy4/qFl3SzpMtqbK+KMvMkPZxm\nNwAXSBqQ9HpgCfDViu3mADubBW9mZr3RMHlExGFgi6QhAEmPAuuB8yTtkrQkFR0G9qUyl0vaBZwF\nPCjpK6nMHODlVO/zwE3AY8A4MJpunCNpOnBaRGxt326WDA3taHeVZmZTUpbLVncBlwG3RsTZdcpM\nj4jNABFxD3BPjTKLgTXlmYhYC6ytUe5c4IEMceU2MrIFeGcnqjYzm1KyPKp7N3CJpLrDGEbERfXW\nVZS5IyKyJIVrgdszlDMzsx5peuYREQeBc7oQS7m9K7vVlpmZtcZ9W5mZWW5OHmZmlpuTh5mZ5dZ3\nw9CeyFCyAwPNy5iZWXOKaMcL490hKfopXjOzXpNERNR9WrZVvmxlZma5OXmYmVluTh5mZpZb390w\nX7my9g3zgQFYseK6LkdjZjY19V3ymD+/doI4kaewzMwsH1+2MjOz3Jw8zMwsNycPMzPLzcnDzMxy\na5o8JJ0s6RFJ0yQ9JOkFSWMNys+UtFHSdkkbJNXsFKReXZLWS1qYf1fMzKxbspx5LAMeiIgjwG3A\n1U3K3wBsjIhB4GtpvpZ6dd0JXJ8hrmPs3DmHYjHvVmZm1oosyeMq4D6AiNgEvNSk/KXAujS9jtIQ\ntsdpUFcRuDhDXMfYuXOuk4eZWZc0TB6STgKGI2J7jjpnR8T+NL0fmJ0noIg4BOyRtCjPdmZm1j3N\nXhKcBRxotfKICEmtdIO7F1gAPFW9Ymxs9dHpwcECQ0MFwJetzMwAisUixS78Mszyhnl1V77NksF+\nSadGxDOS5gDPNihbry4BR2qtWLp0dc0N5s/fR6Ewt0loZmaTW6FQoFAoHJ0fHR3tSDvN7nk8B8yo\nWnZcv/CSbpZUvrdxP7A8TS8H7k1l5kl6uFldyRxgZ5PYzMysRxomj4g4DGyRNAQg6VFgPXCepF2S\nlqSiw8C+NH0LsETSduA9aR5KCeHlct316pI0HTgtIrbm2ZH58/dSkWzNzKyDsly2uovSE1O3RsTZ\ndcpMj4jNABHxPHB+jTKLgTXlmQZ1nQs8kCGuY5QuW+XdyszMWpHlUd27gUsk1R3GMCIualZJRNwR\nEVmSwrXA7RnKmZlZjzQ984iIg8A5XYil3N6V3WrLzMxa476tzMwsNycPMzPLzcnDzMxy67thaOsN\nNztQs+9eMzPrBEW00ntIb0iKforXzKzXJBERdZ+WbZUvW5mZWW5OHmZmlpuTh5mZ5dZ3N8xXrqx/\nw3zFiuu6HI2Z2dTUd8lj/vzaCaLeU1hmZtZ+vmxlZma5OXmYmVluTh5mZpZb0+Qh6WRJj0iaJukh\nSS9IGmtQfqakjZK2S9ogqea735KWpzLbJV1TsXy9pIWt7Y6ZmXVDljOPZcADEXEEuA24ukn5G4CN\nETEIfC3NH0PSTOBGYCR9VlUkmTuB67OFb2ZmvZAleVwF3AcQEZuAl5qUvxRYl6bXURqFsNqFwIaI\neDEiXgQ2AuUBpYrAxRniOsb4+HDeTczMrEUNk4ekk4DhiNieo87ZEbE/Te8HZtcoMxfYXTG/G5gH\nEBGHgD2SFuVok23bFuQpbmZmJ6DZmccs4ECrladeDFvpyXAvsKDVds3MrLOyvCRY3Rtjs2SwX9Kp\nEfGMpDnAszXK7AEKFfOnA5uq2jxSq/KxsdVHpwcHCwwNFWoVMzObkorFIsVisePtNOySPV222h0R\ncyqWFYCPRMTSimU3A5sj4l5JtwE/jYhbJd0ADETEDZLmAesi4vx0w/zbwJmUEsVfAWem+x9IegT4\nvYjYWhVPfPKTteP92Mf28uMfz23hEJiZTV496ZI9Ig4DWyQNpSAeBdYD50naJWlJKjoM7EvTtwBL\nJG0H3pPmAeYAL6d6nwduAh4DxoHRisQxHTitOnGYmdnEkeWy1V2Unpi6NSLOrlNmekRshqOJ4fwa\nZRYDa8ozEbEWWFuj3LnAAxniOsbQ0A5K9+HNzKzTsjyqezdwiaS6pz0RcVG9dRVl7oiILEnhWuD2\nDOWOMTKyJe8mZmbWoqZnHhFxEDinC7GU27uyW22ZmVlr3LeVmZnl5uRhZma5OXmYmVluTh5mZpZb\n3w1DW2+42YGaHb+bmVknNHzDfKKRFP0Ur5lZr/XkDXMzM7NanDzMzCw3Jw8zM8ut726Yr1xZ+4a5\nWTsMDMCKFdf1OgyzCa/vksf8+f7Bts6p9zSfmR3Ll63MzCw3Jw8zM8vNycPMzHJrmjwknSzpEUnT\nJC2XtD19rqlT/gpJT0o6LOnMBvU+JOkFSWNVy9dLWph/V8zMrFuynHksozSy3wBwIzCSPqsk1eoU\n5AngcuAbTeq9Dbi6xvI7geszxGVmZj2SJXlcBdwHXAhsiIgX03jjG4HjRhCMiK0Rsb1ZpRGxCXip\nxqoicHGGuMzabnx8uNchmPWFhslD0knAcEoG84DdFat3p2VtFRGHgD2SFrW7brNmtm1b0OsQzPpC\nszOPWcCBNN3NHgn3Agu62J6ZmeWQ5SXBcm+Me4BCxfLTgU0n2H69hCTgSK0VY2Orj04PDhYYGirU\nKmZmNiUVi0WKxWLH22mWPJ4DZqTpDcCfpJvkApYAHwWQdDOwOSLurdr+aDfAkuYB6yLi/Frrq8wB\ndtZasXTp6iYhm5lNXYVCgUKhcHR+dHS0I+00vGwVEYeBLZKGIuJ54CbgMWAcGE03zgGGgX0Aki6X\ntAs4C3hQ0ldSmTnAy+W6JT0KrAfOk7RL0pK0fDpwWkRsbddOmplZe2W5bHUXcBlwa0SsBdbWKDM9\nIjYDRMQ9wD01yiwG1pRnIuLsOu2dS+nRYLOuGxraAcztcRRmE1+WR3XvBi6RVHckqog47pHdGmXu\niIgsSeFa4PYM5czabmRkS69DMOsLTc88IuIgcE4XYim3d2W32jIzs9a4byszM8vNycPMzHJz8jAz\ns9ycPMzMLLe+G4bWw4RaJw3U6ifazI6jiG52WXViJEU/xWtm1muSiIi6r1q0ypetzMwsNycPMzPL\nre/ueaxc6Xse1l4DA7BixXW9DsOsr/Rd8pg/3z/k1l5+CMMsP1+2MjOz3Jw8zMwsNycPMzPLzcnD\nzMxya5o8JJ0s6RFJ0yQtl7Q9fa6pU/4KSU9KOizpzAb11qxL0npJC1vbHTMz64YsZx7LKI3sNwDc\nCIykz6o0nnm1J4DLgW/Uq1DSzAZ13Qlcn3UHzE7U+Phwr0Mw6ztZksdVwH3AhcCGiHgxjV2+EThu\nBMGI2BoR25vU2aiuInBxxvjNTti2bQt6HYJZ32mYPCSdBAynZDAP2F2xenda1oq59eqKiEPAHkmL\nWqzbzMw6rNlLgrOAA2m6mz0S7gUWAE9VrxgbW310enCwwNBQoVsxmZlNeMVikWKx2PF2srxhXu6N\ncQ9QqFh+OrCpxXab1SXgSK0Nly5d3WKTZmaTX6FQoFAoHJ0fHR3tSDvN7nk8B8xI0xuACyQNSHo9\nsAT4KoCkmyVdVmP7o90AS5on6eFmdSVzgJ2598bMzLqiYfKIiMPAFklDEfE8cBPwGDAOjKab3QDD\nwD4ASZdL2gWcBTwo6SupzBzg5VRv3bokTQdOi4it7dtNs/qGhnb0OgSzvpPlstVdwGXArRGxFlhb\no8z0iNgMEBH3APfUKLMYWFOeaVDXuZQeDTbripGRLcA7ex2GWV/J8qju3cAlkuqORBURxz2yW6PM\nHRGRJSlcC9yeoZyZmfVI0zOPiDgInNOFWMrtXdmttszMrDXu28rMzHJz8jAzs9ycPMzMLLe+G4bW\nQ4Zauw3U6t7TzBpSRDd7HTkxkqKf4jUz6zVJRETdp2Vb5ctWZmaWm5OHmZnl5uRhZma59d0N85Ur\nfcPczPrLwACsWHFdr8Noq75LHvPnT64vwMwmv8n4lKgvW5mZWW5OHmZmlpuTh5mZ5ebkYWZmuTVN\nHpJOlvSIpGmSlkvanj7X1Ck/U9LGVGaDpJqdP0h6SNILksaqlq+XtLC13TEzs27IcuaxjNLIfgPA\njcBI+qyqkxhuADZGxCDwtTRfy23A1TWW3wlcnyEuM7O+MD4+3OsQ2i5L8rgKuA+4ENgQES+m8cY3\nArVGELwUWJem11EawvY4EbEJeKnGqiJwcYa4zMz6wrZtC3odQts1TB6STgKGI2I7MA/YXbF6d1pW\nbXZE7E/T+4HZeQKKiEPAHkmL8mxnZmbd0+wlwVnAgTSduzvbiAhJrXSDuxdYADxVvWJsbPXR6cHB\nAkNDhRaqNzObnIrFIsVisePtZHnDvNyV7x6gULH8dGBTjfL7JZ0aEc9ImgM826DueolFwJFaK5Yu\nXd0wWDOzqaxQKFAoFI7Oj46OdqSdZvc8ngNmpOkNwAWSBiS9HlgCfBVA0s2Syvc27geWp+nlwL2p\nzDxJD1fVX6+P+TnAzsx7YWZmXdUweUTEYWCLpKGIeB64CXgMGAdG041zgGFgX5q+BVgiaTvwnjQP\npYTwcrluSY8C64HzJO2StCQtnw6cFhFb27GDZma9NjS0o9chtF2Wy1Z3UXpi6taIWAusrVFmekRs\nBkhJ5vwaZRYDa8ozEXF2nfbOpfRosJnZpDAysgV4Z6/DaKssj+reDVwiqe4whhFR65Hd6jJ3RESW\npHAtcHuGcmZm1iNNzzwi4iBwThdiKbd3ZbfaMjOz1rhvKzMzy83Jw8zMcnPyMDOz3PpuGNrJOJyj\nmU1uAzX7Fu9vimil95DekBT9FK+ZWa9JIiLqPi3bKl+2MjOz3Jw8zMwsNycPMzPLre9umK9c6Rvm\nZtY/BgZgxYrreh1G2/Vd8pg/f/J9CWY2eU3WJ0R92crMzHJz8jAzs9ycPMzMLDcnDzMzy61p8pB0\nsqRHJE2TtFzS9vS5pk75mZI2pjIbJNV8Mb9eXZLWS1rY+i6ZmVmnZTnzWEZpZL8B4EZgJH1W1UkM\nNwAbI2IQ+FqaP4akmQ3quhO4Pud+mJlNSOPjw70OoSOyJI+rgPuAC4ENEfFiGrt8I1BrBMFLgXVp\neh2lIWyrNaqrCFyceQ/MzCawbdsW9DqEjmiYPCSdBAxHxHZgHrC7YvXutKza7IjYn6b3A7NrlJlb\nr66IOATskbQo0x6YmVnXNXtJcBZwIE3n7s42IkJSK93g7gUWAE9VrxgbW310enCwwNBQoYXqzcwm\np2KxSLFY7Hg7Wd4wL3fluwcoVCw/HdhUo/x+SadGxDOS5gDP1ijTrC4BR2oFs3Tp6gwhm5lNTYVC\ngUKhcHR+dHS0I+00u+fxHDAjTW8ALpA0IOn1wBLgqwCSbpZUvrdxP7A8TS8H7k1l5kl6uFldyRxg\nZ+u7ZWZmndQweUTEYWCLpKGIeB64CXgMGAdG081ugGFgX5q+BVgiaTvwnjQPpYTwcqq3bl2SpgOn\nRcTW9uyimVnvDA3t6HUIHZHlstVdlJ6YujUi1gJra5SZHhGb4WhiOL9GmcXAmvJMg7rOpfRosJlZ\n3xsZ2QK8s9dhtF2WR3XvBi6RVHcYw4io9chudZk7IiJLUrgWuD1DOTMz65GmZx4RcRA4pwuxlNu7\nslttmZlZa9y3lZmZ5ebkYWZmuTl5mJlZbn03DO1kHdLRzCangZr9ivc/RbTSe0hvSIp+itfMrNck\nERF1n5ZtlS9bmZlZbk4eZmaWm5OHmZnl5uRhZma5OXmYmVluTh5mZpabk4eZmeXm5GFmZrk5eZiZ\nWW5OHl3SjQHpO8nx95bj761+j78TnDy6pN//8zn+3nL8vdXv8XeCk4eZmeXm5GFmZrn1Xa+6vY7B\nzKzfdKJX3b5KHmZmNjH4spWZmeXm5GFmZrn1RfKQdJGkrZJ+IOmjvY6nkqQdkr4v6buSxtOymZI2\nStouaYOkgYryf5z2Y6ukCyqWv13SE2nd/+hQrP9b0n5JT1Qsa1uskk6W9Odp+bckze9C/Ksl7U7H\n/7uS3juB4z9d0tclPSlpi6Q/TMv74jtoEP+E/w4k/QNJmyU9LumvJd2clvfLsa8Xf++OfURM6A9w\nEvA0sACYDjwOLOp1XBXx/QiYWbXsNuDfp+mPArek6V9P8U9P+/M0r9x3GgdG0vT/BS7qQKxnA2cA\nT3QiVuBfA59I0x8A/qwL8a8C/l2NshMx/lOBt6XpGcA2YFG/fAcN4u+L7wD45fTvq4BvAe/ul2Pf\nIP6eHft+OPMYAZ6OiB0RcQj4M+D9PY6pWvWTDJcC69L0OuCyNP1+4AsRcSgidlD6QhdLmgOcEhHj\nqdznKrZpm4h4FHihg7FW1vUl4LwuxA/HH3+YmPE/ExGPp+mXgKeAefTJd9AgfuiD7yAifpEmX03p\nj9IX6JNj3yB+6NGx74fkMQ/YVTG/m1f+w04EATws6duSPpyWzY6I/Wl6PzA7Tc+lFH9ZeV+ql++h\ne/vYzliPflcR8TLwM0kzOxR3pX8j6XuSPlNx2WFCxy9pAaWzqM304XdQEf+30qIJ/x1ImibpcUrH\n+OsR8SR9dOzrxA89Ovb9kDwm+rPE74qIM4D3Ar8v6ezKlVE6B5zo+wD0V6wV/hewEHgbsA/4r70N\npzlJMyj9ZfdHEXGgcl0/fAcp/r+gFP9L9Ml3EBFHIuJtwGnAOZLOrVo/oY99jfgL9PDY90Py2AOc\nXjF/Osdmzp6KiH3p358A91C6zLZf0qkA6TTx2VS8el9Oo7Qve9J05fI9nY38qHbEurtimzemul4F\nvC4inu9c6BARz0YCfJrS8S/HMuHilzSdUuL4PxFxb1rcN99BRfyfL8ffb99BRPwMeBB4O3107GvE\n/45eHvt+SB7fBt4kaYGkV1O6kXN/j2MCQNIvSzolTb8GuAB4glJ8y1Ox5UD5l8T9wAclvVrSQuBN\nwHhEPAP8XNJiSQKurtim09oR63016vot4GudDj79wJddTun4T8j4U3ufAf46Iv57xaq++A7qxd8P\n34GkWeVLOpJ+CVgCfJf+OfY14y8nvqS7x77ZHf6J8KF0SWgbpZs+f9zreCriWkjpiYbHgS3l2ICZ\nwMPAdmADMFCxzX9I+7EVuLBi+dvTF/808KcdivcLwF7gIKVrm7/TzliBk4H1wA8oXQtf0OH4f5fS\nDb/vA9+j9IM/ewLH/27gSPr/8t30uahfvoM68b+3H74D4C3Ad1Ls3wdWtPtntcPHvl78PTv27p7E\nzMxy64fLVmZmNsE4eZiZWW5OHmZmlpuTh5mZ5ebkYWZmuTl5mJlZbk4eNuFIukzSEUlDHaj7s5J+\ns8byBaro6r1q3cdV6oL81hNs++HyS6VpPtd+qtT9/8yK+YKksSbbLJD0typ11/24pG9KGkzr/rGk\nz7S6Pza1OXnYRHQV8ED6t91aebHpw8BbIiLTWDKpa4fqZe8BtsWxfVnl3c/q2LPuy9MRcUaU+kVa\nR+nlMSLie8CvSnpDxnrMjnLysAkldbq3GPgDSl3RlJcXJBUlfVHSU5I+n5a/Q68MhPOEpCNp+Ycl\njae/tv8idelQdk76C/yHtc5CquK5n9LYFd+RdKWktZXbSHqpIr5HJd0HPFmjqt/mlW4g6u5nlkNU\nZzqr1wGV/RV9BbiihXpsinPysInm/cBDEfFj4CeSzqxY9zbgjygNdPMPJb0rIr6d/qo+g9Ivwo+n\nsl+KiJH01/ZTwL9IywWcGhHvAt4H3NIomIi4FPjb1Mb6WkUqps8A/jAial2Gehelftqy7Gc9Ar5e\nTpbAnWQ7+/jVtM3TwL8Fbq9YNw6ck6EOs2M4edhEcxXwxTT9RY69pDMeEXuj1KfO45RGSANA0geA\nM4Eb0qK3pDOB7wPLKCUcKP2yLfcG+xSvjN/QDuMRsbPOurlxbA+ljfazngAKFcnyWrKdffwwbfOP\ngOuBT1Ws20fFcTTL6rhrs2a9km4GnwsMSwpKo6UFsCIV+fuK4odJ/38lDVMajvPseKWzts8Cl0bE\nE5KWA4WKbQ9WNpszzJdJf3RJmkZpVLeyv8lSQYb9zKqVy1ZjwNqqOtzBneXmMw+bSH4L+FxELIiI\nhRHxRuBHqhpgq1LqpvoLwNUR8dOKVTOAZ1Qaf+JDtO8X5A5KvZJCadjO6Rm321vxpFTD/ZS0NW9Q\nkkYkrWtekndT6k21bA5Q72zJrC4nD5tIPkhpQK1KX6J0SafWKG9B6Rf4G4FPp+v630nr/iOlIV7/\nktI9j+piAzOOAAAArUlEQVTtmk3XK38n8E9VGg70LOClDNuT4viNNF1vPz8oaVaDOmrtf3nZG4Ff\nUFv5nsfjwMcoXe4qGwG+0aBNs5rcJbtZF6g0ZOgHIuJfNSl3CbAwItbkrP82SmczW3JuVwSujIhn\nm5U1q+TkYdYlkh4GLq9616NnJL2V0tNh1zYtbFbFycPMzHLzPQ8zM8vNycPMzHJz8jAzs9ycPMzM\nLDcnDzMzy83Jw8zMcvv/FeE+zT68A9wAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc41c826cd0>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "p(H=0|A=0) = 0.67\n", "p(H=0|A=1) = 0.32\n", "p(H=0|B=0) = 0.65\n", "p(H=0|B=1) = 0.65\n" ] } ], "source": [ "%matplotlib inline\n", "\n", "\n", "data = generate_data(100000)\n", "\n", "# Example data\n", "people = ('(0,0,0)', '(0,0,1)', '(0,1,0)', '(0,1,1)', '(1,0,0)', '(1,0,1)', '(1,1,0)', '(1,1,1)')\n", "get_bin = lambda x, n: x >= 0 and str(bin(x))[2:].zfill(n) or \"-\" + str(bin(x))[3:].zfill(n)\n", "y_pos = np.arange(len(people))\n", "# ('(0,0,0)', '(0,0,1)', '(0,1,0)', '(0,1,1)', '(1,0,0)', '(1,0,1)', '(1,1,0)', '(1,1,1)')\n", "count = [sum([1 for d in data if map(int, list(get_bin(i, 3))) == list(d)]) for i in range(8)]\n", "\n", "error = np.random.rand(len(people))\n", "\n", "plt.barh(y_pos, count, xerr=error, align='center', alpha=0.4)\n", "plt.yticks(y_pos, people)\n", "plt.xlabel('Anzahl fur (A, H, B)')\n", "plt.title('Ergebnisse')\n", "\n", "plt.show()\n", "\n", "from sympy.interactive import printing\n", "printing.init_printing(use_latex=True)\n", "p_1 = (count[0] + count[1]) # h=0 and A=0\n", "p_2 = (count[4] + count[5]) # h=0 and A=1\n", "p_3 = (count[2] + count[3]) # h=1 and A=0\n", "p_4 = (count[6] + count[7]) # h=1 and A=1\n", "print(latex(\"p(H=0|A=0) = %0.2f\" % (p_1/float(p_1+p_3))))\n", "print(latex(\"p(H=0|A=1) = %0.2f\" % (p_2/float(p_2+p_4))))\n", "\n", "p_1 = (count[0] + count[4]) # h=0 and B=0\n", "p_2 = (count[1] + count[5]) # h=0 and B=1\n", "p_3 = (count[2] + count[6]) # h=1 and B=0\n", "p_4 = (count[3] + count[7]) # h=1 and B=1\n", "print(latex(\"p(H=0|B=0) = %0.2f\" % (p_1/float(p_1+p_3))))\n", "print(latex(\"p(H=0|B=1) = %0.2f\" % (p_2/float(p_2+p_4))))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.8" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
hanhanwu/Hanhan_Data_Science_Practice
sequencial_analysis/after_2020_practice/ts_1DCNN.ipynb
1
119915
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Time Series Forecast with 1D CNN\n", "\n", "* We can combine the speed and lightness of convnets with the order-sensitivity of RNNs is to use a 1D convnet as a preprocessing step before a RNN. \n", " * This is especially beneficial when dealing with sequences that are so long that they couldn't realistically be processed with RNNs, e.g. sequences with thousands of steps. The convnet will turn the long input sequence into much shorter (downsampled) sequences of higher-level features. This sequence of extracted features then becomes the input to the RNN part of the network.\n", "* 1D CNN means the kernel slides only need to move along 1 dimension\n", " * 2D means wdidth and height\n", " * 3D means wdidth, height and depth" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import datetime\n", "from matplotlib import pyplot as plt\n", "import seaborn as sns\n", "from sklearn.preprocessing import MinMaxScaler" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(43824, 13)\n" ] }, { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>No</th>\n", " <th>year</th>\n", " <th>month</th>\n", " <th>day</th>\n", " <th>hour</th>\n", " <th>pm2.5</th>\n", " <th>DEWP</th>\n", " <th>TEMP</th>\n", " <th>PRES</th>\n", " <th>cbwd</th>\n", " <th>Iws</th>\n", " <th>Is</th>\n", " <th>Ir</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>2010</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>NaN</td>\n", " <td>-21</td>\n", " <td>-11.0</td>\n", " <td>1021.0</td>\n", " <td>NW</td>\n", " <td>1.79</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>2010</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>NaN</td>\n", " <td>-21</td>\n", " <td>-12.0</td>\n", " <td>1020.0</td>\n", " <td>NW</td>\n", " <td>4.92</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>2010</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>NaN</td>\n", " <td>-21</td>\n", " <td>-11.0</td>\n", " <td>1019.0</td>\n", " <td>NW</td>\n", " <td>6.71</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>2010</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>NaN</td>\n", " <td>-21</td>\n", " <td>-14.0</td>\n", " <td>1019.0</td>\n", " <td>NW</td>\n", " <td>9.84</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>2010</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>NaN</td>\n", " <td>-20</td>\n", " <td>-12.0</td>\n", " <td>1018.0</td>\n", " <td>NW</td>\n", " <td>12.97</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " No year month day hour pm2.5 DEWP TEMP PRES cbwd Iws Is Ir\n", "0 1 2010 1 1 0 NaN -21 -11.0 1021.0 NW 1.79 0 0\n", "1 2 2010 1 1 1 NaN -21 -12.0 1020.0 NW 4.92 0 0\n", "2 3 2010 1 1 2 NaN -21 -11.0 1019.0 NW 6.71 0 0\n", "3 4 2010 1 1 3 NaN -21 -14.0 1019.0 NW 9.84 0 0\n", "4 5 2010 1 1 4 NaN -20 -12.0 1018.0 NW 12.97 0 0" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv('data/pm25.csv')\n", "\n", "print(df.shape)\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of train: (33096, 15)\n", "Shape of test: (8661, 15)\n" ] } ], "source": [ "df.dropna(subset=['pm2.5'], axis=0, inplace=True)\n", "df.reset_index(drop=True, inplace=True)\n", "\n", "df['datetime'] = df[['year', 'month', 'day', 'hour']].apply(\n", " lambda row: datetime.datetime(year=row['year'], \n", " month=row['month'], day=row['day'],hour=row['hour']), axis=1)\n", "df.sort_values('datetime', ascending=True, inplace=True)\n", "\n", "scaler = MinMaxScaler(feature_range=(0, 1))\n", "df['scaled_pm2.5'] = scaler.fit_transform(np.array(df['pm2.5']).reshape(-1, 1))\n", "\n", "split_date = datetime.datetime(year=2014, month=1, day=1, hour=0) \n", "df_train = df.loc[df['datetime']<split_date]\n", "df_val = df.loc[df['datetime']>=split_date]\n", "df_val.reset_index(drop=True, inplace=True)\n", "print('Shape of train:', df_train.shape)\n", "print('Shape of test:', df_val.shape)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def makeXy(ts, nb_timesteps):\n", " \"\"\"\n", " Input: \n", " ts: original time series\n", " nb_timesteps: number of time steps in the regressors\n", " Output: \n", " X: 2-D array of regressors\n", " y: 1-D array of target \n", " \"\"\"\n", " X = []\n", " y = []\n", " for i in range(nb_timesteps, ts.shape[0]):\n", " X.append(list(ts.loc[i-nb_timesteps:i-1]))\n", " y.append(ts.loc[i])\n", " \n", " X, y = np.array(X), np.array(y)\n", " return X, y" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of train arrays: (33089, 7) (33089,)\n", "Shape of validation arrays: (8654, 7) (8654,)\n" ] } ], "source": [ "X_train, y_train = makeXy(df_train['scaled_pm2.5'], 7)\n", "X_val, y_val = makeXy(df_val['scaled_pm2.5'], 7)\n", "\n", "print('Shape of train arrays:', X_train.shape, y_train.shape)\n", "print('Shape of validation arrays:', X_val.shape, y_val.shape)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Shape of arrays after reshaping: (33089, 7, 1) (8654, 7, 1)\n" ] } ], "source": [ "X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))\n", "X_val = X_val.reshape((X_val.shape[0], X_val.shape[1], 1))\n", "print('Shape of arrays after reshaping:', X_train.shape, X_val.shape)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "import tensorflow as tf\n", "from tensorflow.keras.models import Sequential\n", "from tensorflow.keras.optimizers import Adam\n", "from tensorflow.keras.layers import LSTM, Conv1D\n", "from tensorflow.keras.layers import Dense, Dropout, Input, ZeroPadding1D, AveragePooling1D, Flatten\n", "from tensorflow.keras.models import load_model\n", "from tensorflow.keras.callbacks import ModelCheckpoint\n", "\n", "from sklearn.metrics import mean_absolute_error\n", "\n", "tf.random.set_seed(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1D CNN Only\n", "\n", "* ZeroPadding1D layer is added next to add zeros at the begining and end of each series. \n", " * Zeropadding ensure that the downstream convolution layer does not reduce the dimension of the output sequences.\n", " * Pooling layer, added after the convolution layer is used to downsampling the input.\n", "* In Con1D\n", " * param 1 determines the number of features in the output\n", " * param 2 indicates length of the 1D convolution window, moving window size\n", " * param 3 is strides of the moving window, representing the number of places to shift the convolution window\n", " * `use_bias` as True, adds a bias value during computation of an output feature\n", " * 1D convolution can be thought of as generating local AR models over rolling window of three time units.\n", "* AveragePooling1D is added next to downsample the input by taking average over pool size of three with stride of one timesteps. \n", " * The average pooling in this case can be thought of as taking moving averages over a rolling window of three time units.\n", "* The Flatten layer reshapes the input to `(number of samples, number of timesteps*number of features per timestep)`, which is then fed to the output layer" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"sequential_11\"\n", "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", "zero_padding1d_7 (ZeroPaddin (None, 9, 1) 0 \n", "_________________________________________________________________\n", "conv1d_18 (Conv1D) (None, 7, 64) 256 \n", "_________________________________________________________________\n", "conv1d_19 (Conv1D) (None, 5, 32) 6176 \n", "_________________________________________________________________\n", "average_pooling1d_7 (Average (None, 3, 32) 0 \n", "_________________________________________________________________\n", "flatten_4 (Flatten) (None, 96) 0 \n", "_________________________________________________________________\n", "dense_12 (Dense) (None, 32) 3104 \n", "_________________________________________________________________\n", "dense_13 (Dense) (None, 16) 528 \n", "_________________________________________________________________\n", "dropout_4 (Dropout) (None, 16) 0 \n", "_________________________________________________________________\n", "dense_14 (Dense) (None, 1) 17 \n", "=================================================================\n", "Total params: 10,081\n", "Trainable params: 10,081\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "model = Sequential()\n", "model.add(ZeroPadding1D(padding=1,\n", " input_shape=(X_train.shape[1:])))\n", "model.add(Conv1D(64, 3, strides=1, use_bias=True))\n", "model.add(Conv1D(32, 3, strides=1, use_bias=True))\n", "model.add(AveragePooling1D(pool_size=3, strides=1))\n", "model.add(Flatten())\n", "model.add(Dense(32))\n", "model.add(Dense(16))\n", "model.add(Dropout(0.2))\n", "model.add(Dense(1, activation='tanh'))\n", "\n", "model.compile(optimizer=Adam(amsgrad=True), loss='mean_absolute_error', metrics='mae')\n", "model.summary()" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/50\n", "1655/1655 [==============================] - 16s 9ms/step - loss: 0.0144 - mae: 0.0144 - val_loss: 0.0129 - val_mae: 0.0129\n", "INFO:tensorflow:Assets written to: 1dcnn_model\\assets\n", "Epoch 2/50\n", "1655/1655 [==============================] - 16s 10ms/step - loss: 0.0144 - mae: 0.0144 - val_loss: 0.0126 - val_mae: 0.0126\n", "INFO:tensorflow:Assets written to: 1dcnn_model\\assets\n", "Epoch 3/50\n", "1655/1655 [==============================] - 19s 11ms/step - loss: 0.0144 - mae: 0.0144 - val_loss: 0.0124 - val_mae: 0.0124ss: 0.0145 - m - ETA: 0s - loss: 0.0145 - mae: \n", "INFO:tensorflow:Assets written to: 1dcnn_model\\assets\n", "Epoch 4/50\n", "1655/1655 [==============================] - 22s 13ms/step - loss: 0.0144 - mae: 0.0144 - val_loss: 0.0127 - val_mae: 0.0127\n", "Epoch 5/50\n", "1655/1655 [==============================] - 20s 12ms/step - loss: 0.0144 - mae: 0.0144 - val_loss: 0.0125 - val_mae: 0.0125\n", "Epoch 6/50\n", "1655/1655 [==============================] - 19s 11ms/step - loss: 0.0144 - mae: 0.0144 - val_loss: 0.0126 - val_mae: 0.0126\n", "Epoch 7/50\n", "1655/1655 [==============================] - 26s 16ms/step - loss: 0.0144 - mae: 0.0144 - val_loss: 0.0128 - val_mae: 0.0128\n", "Epoch 8/50\n", "1655/1655 [==============================] - 25s 15ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0130 - val_mae: 0.0130\n", "Epoch 9/50\n", "1655/1655 [==============================] - 28s 17ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0129 - val_mae: 0.0129\n", "Epoch 10/50\n", "1655/1655 [==============================] - 28s 17ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0126 - val_mae: 0.0126\n", "Epoch 11/50\n", "1655/1655 [==============================] - 27s 16ms/step - loss: 0.0144 - mae: 0.0144 - val_loss: 0.0124 - val_mae: 0.0124 mae\n", "INFO:tensorflow:Assets written to: 1dcnn_model\\assets\n", "Epoch 12/50\n", "1655/1655 [==============================] - 30s 18ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0124 - val_mae: 0.0124\n", "Epoch 13/50\n", "1655/1655 [==============================] - 30s 18ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0126 - val_mae: 0.0126\n", "Epoch 14/50\n", "1655/1655 [==============================] - 28s 17ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0129 - val_mae: 0.0129\n", "Epoch 15/50\n", "1655/1655 [==============================] - 28s 17ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0125 - val_mae: 0.0125\n", "Epoch 16/50\n", "1655/1655 [==============================] - 30s 18ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0125 - val_mae: 0.0125\n", "Epoch 17/50\n", "1655/1655 [==============================] - 29s 18ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0127 - val_mae: 0.0127\n", "Epoch 18/50\n", "1655/1655 [==============================] - 29s 17ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0128 - val_mae: 0.0128\n", "Epoch 19/50\n", "1655/1655 [==============================] - 28s 17ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0126 - val_mae: 0.0126\n", "Epoch 20/50\n", "1655/1655 [==============================] - 28s 17ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0124 - val_mae: 0.0124\n", "Epoch 21/50\n", "1655/1655 [==============================] - 29s 17ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0127 - val_mae: 0.0127\n", "Epoch 22/50\n", "1655/1655 [==============================] - 28s 17ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0130 - val_mae: 0.0130\n", "Epoch 23/50\n", "1655/1655 [==============================] - 29s 18ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0131 - val_mae: 0.0131\n", "Epoch 24/50\n", "1655/1655 [==============================] - 18s 11ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0131 - val_mae: 0.0131 1s - loss: 0.0143 - m - ETA: 0s - loss: 0.\n", "Epoch 25/50\n", "1655/1655 [==============================] - 28s 17ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0124 - val_mae: 0.0124\n", "INFO:tensorflow:Assets written to: 1dcnn_model\\assets\n", "Epoch 26/50\n", "1655/1655 [==============================] - 30s 18ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0125 - val_mae: 0.0125\n", "Epoch 27/50\n", "1655/1655 [==============================] - 29s 18ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0127 - val_mae: 0.0127\n", "Epoch 28/50\n", "1655/1655 [==============================] - 18s 11ms/step - loss: 0.0143 - mae: 0.0143 - val_loss: 0.0125 - val_mae: 0.0125\n", "Epoch 29/50\n", "1655/1655 [==============================] - 20s 12ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0133 - val_mae: 0.0133\n", "Epoch 30/50\n", "1655/1655 [==============================] - 20s 12ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0127 - val_mae: 0.0127\n", "Epoch 31/50\n", "1655/1655 [==============================] - 24s 14ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0135 - val_mae: 0.0135014 - ETA: 0s - loss: 0.0\n", "Epoch 32/50\n", "1655/1655 [==============================] - 24s 15ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0124 - val_mae: 0.0124\n", "Epoch 33/50\n", "1655/1655 [==============================] - 25s 15ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0129 - val_mae: 0.01290142 - \n", "Epoch 34/50\n", "1655/1655 [==============================] - 26s 15ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0126 - val_mae: 0.0126\n", "Epoch 35/50\n", "1655/1655 [==============================] - 26s 15ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0123 - val_mae: 0.0123\n", "INFO:tensorflow:Assets written to: 1dcnn_model\\assets\n", "Epoch 36/50\n", "1655/1655 [==============================] - 25s 15ms/step - loss: 0.0141 - mae: 0.0141 - val_loss: 0.0130 - val_mae: 0.0130\n", "Epoch 37/50\n", "1655/1655 [==============================] - 25s 15ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0125 - val_mae: 0.0125\n", "Epoch 38/50\n", "1655/1655 [==============================] - 25s 15ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0128 - val_mae: 0.0128\n", "Epoch 39/50\n", "1655/1655 [==============================] - 26s 16ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0124 - val_mae: 0.0124\n", "Epoch 40/50\n", "1655/1655 [==============================] - 25s 15ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0125 - val_mae: 0.0125ae: 0.01\n", "Epoch 41/50\n", "1655/1655 [==============================] - 25s 15ms/step - loss: 0.0141 - mae: 0.0141 - val_loss: 0.0129 - val_mae: 0.01290142 - mae: 0.0\n", "Epoch 42/50\n", "1655/1655 [==============================] - 22s 13ms/step - loss: 0.0141 - mae: 0.0141 - val_loss: 0.0124 - val_mae: 0.0124loss: 0.0\n", "Epoch 43/50\n", "1655/1655 [==============================] - 26s 16ms/step - loss: 0.0141 - mae: 0.0141 - val_loss: 0.0126 - val_mae: 0.0126s: 0.0141 - ETA: 0s - loss: 0.0141 - mae: 0.014\n", "Epoch 44/50\n", "1655/1655 [==============================] - 26s 16ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0135 - val_mae: 0.0135.0142 - mae - ETA: 2s - lo - ETA: 1s - loss:\n", "Epoch 45/50\n", "1655/1655 [==============================] - 26s 15ms/step - loss: 0.0142 - mae: 0.0142 - val_loss: 0.0130 - val_mae: 0.0130\n", "Epoch 46/50\n", "1655/1655 [==============================] - 26s 16ms/step - loss: 0.0141 - mae: 0.0141 - val_loss: 0.0128 - val_mae: 0.0128\n", "Epoch 47/50\n", "1655/1655 [==============================] - 26s 16ms/step - loss: 0.0141 - mae: 0.0141 - val_loss: 0.0124 - val_mae: 0.01240s - loss: 0.0141 - mae: 0.\n", "Epoch 48/50\n", "1655/1655 [==============================] - 26s 16ms/step - loss: 0.0141 - mae: 0.0141 - val_loss: 0.0125 - val_mae: 0.0125: 0.0140 - ETA: 3s - loss: 0.014\n", "Epoch 49/50\n", "1655/1655 [==============================] - 27s 16ms/step - loss: 0.0141 - mae: 0.0141 - val_loss: 0.0123 - val_mae: 0.0123\n", "Epoch 50/50\n", "1655/1655 [==============================] - 25s 15ms/step - loss: 0.0141 - mae: 0.0141 - val_loss: 0.0125 - val_mae: 0.0125\n" ] } ], "source": [ "save_weights_at = '1dcnn_model'\n", "save_best = ModelCheckpoint(save_weights_at, monitor='val_loss', verbose=0,\n", " save_best_only=True, save_weights_only=False, mode='min',\n", " save_freq='epoch')\n", "history = model.fit(x=X_train, y=y_train, batch_size=20, epochs=50,\n", " verbose=1, callbacks=[save_best], validation_data=(X_val, y_val),\n", " shuffle=True)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "MAE for the validation set: 12.2419\n", "MAE for the scaled validation set: 0.0123\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEICAYAAAC0+DhzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2deZgU1dXG38Mw7PuAoCAMIMo6ICBiRAMBUXABFFlEI3EhGokmJiYkxmgMuMQouBAVV4wI+KEo4q5AFBIRkEVAEcQB2YcdZJGZOd8fp+5MTXdVd1V1dfcs5/c8/XR39a2qW93V9733nHPPJWaGoiiKotiplO4KKIqiKKUPFQdFURQlChUHRVEUJQoVB0VRFCUKFQdFURQlChUHRVEUJQoVByVpEFEGER0mouZhlk0nRHQaESUl/jvy2ET0ARGNSkY9iOguInoq6P5K+UfFQSnCapzNo5CIjtreOzZSsWDmAmauxcybwyxbWiGij4norw7bryCirUTk6//GzP2ZeVoI9epHRLkRx/47M9+U6LEdznUDETER/SNi+1Br+7MR22sT0REimuNwrC0R9+BhIpoUdp0VZ1QclCKsxrkWM9cCsBnApbZtUY0UEVVOfS1LNS8CuMZh+zUAXmbmwtRWJ21sADCSiDJs234O4BuHssMAHAUwgIhOcvh8gP2+ZObfJKG+igMqDopniGg8Ec0koulEdAjA1UR0DhF9RkT7iWg7ET1GRJlW+cpWbzHbev+y9fm7RHSIiP5HRC39lrU+H0BE3xDRASJ6nIgWEdFol3p7qeMviWgDEe0josds+2YQ0UQi2kNE3wK4KMZX9DqAJkT0E9v+WQAGAnjJen8ZEa2wrmkzEd0V4/teaK4pXj2sHvtX1nG/JaIbrO11AbwFoLmt932S9Vu+aNt/MBGtsb6jeUR0hu2zLUR0OxF9aX3f04moaozvYSuAdQD6Wfs3BHAWgLcdyl4L4AkAXwG4KsYxlRSj4qD4ZQiAVwDUBTATQD6A2wA0BHAupNH6ZYz9rwJwF4AGkNHJ3/2WtXqYrwK4wzrvdwB6xDiOlzoOBNANwJkQ0etnbb8ZQH8Ana1zDHM7CTP/AGAWpJdsGAFgFTOvsd4fBnA15Pu7FMBtRHRJjLob4tVjJ4CLAdQBcCOAx4koh5kPWOfZbOt977LvSETtALwM4NcAGgH4CMBbRkAthgG4AEAryPfkNEKy8xKKv4erIML5Y8R5WwHoBbmfpqHk96akGRUHxS8LmfktZi5k5qPMvISZFzNzPjNvBDAFwE9j7D+LmZcy8wlIg9AlQNlLAKxg5jetzyYC2O12EI91vJ+ZDzBzLoAFtnMNAzCRmbcw8x4AD8SoLwBMBTDM1rP+ubXN1GUeM6+2vr+VAGY41MWJmPWwfpONLMwD8DGA8zwcFxABm2PV7YR17DoAzraVmcTMO6xzz0Xs3w0AXgPQj4hqQ76DlxzK/BzAF8y8DsB0AF2IqFNEmbnWaMY8fuHxmpQEUXFQ/PK9/Q0RtSWit4loBxEdBHAvpIfuxg7b6yMAagUoe4q9HizZI7e4HcRjHT2dC8CmGPUFgP8AOADgUiI6HTISmW6ryzlEtICI8ojoAIAbHOriRMx6ENElRLSYiPYS0X7IKMPLcc2xi45n+Ua2AGhqK+PndzOjqPchI7/azLw4or4EEYdpVvnNABZCzEx2LmHmerbHCx6vSUkQFQfFL5Hhk08DWA3gNGauA+CvACjJddgOoJl5YzU0Td2LJ1TH7QBOtb2PGWprCdW/IQ3fNQDeYWb7qGYGpFd9KjPXBfCsx7q41oOIqkPMWfcDaMzM9QB8YDtuvJDXbQBa2I5XCfL9bvVQr1i8BOD3cB41nAegJYC7LNHeATFXjYpwZCtpQsVBSZTakJ7yD5btOpa/ISzmAuhKRJeSREzdBrGVJ6OOrwL4DRE1tZzLf/Swz1SIX+M62ExKtrrsZeZjRNQTYtJJtB5VAVQBkAegwPJh9LV9vhNAQ8vE43bsy4iot+VnuAPAIQCLXcp7ZR7ET/Evh8+uBfAegPYQE1UXAJ0g5qz+CZ5XCQEVByVRfgf5ox+C9NBnJvuEzLwTwHAAjwDYA6A1gOUAjiehjk9C7PdfAlgC6aHHq9+3AD4HUA3RETo3A7ifJNrrz5CGOaF6MPN+AL8FMBvAXgBDIQJqPl8NGa3kWnb7EiGjlrP8WusceRBhu8zyPwTG8qt8zMz77NuJqAaAKwE8ZvkxzGMjxMxkNy29SyXnOfxfInVSvEO62I9S1rHMENsADGXmT9NdH0UpD+jIQSmTENFFRFTXigq6CxKu+nmaq6Uo5QYVB6Ws0gvARkgI60UABjOzm1lJURSfqFlJURRFiUJHDoqiKEoU5SJxWsOGDTk7Ozvd1VAURSlTLFu2bDczO4aBexIHIroIwKMAMgA8y8wPRHxeFTLRpRsktHA4M+da8dizIEm3XmTmsQ7HngOgFTN3tN7fA8kNk2cV+TMzvxOrftnZ2Vi6dKmXS1EURVEsiMh1xn9cs5IVJjgZwADIhJWRRNQ+otj1APYx82mQPDcPWtuPQSJJfu9y7MshicgimcjMXaxHTGFQFEVRwseLz6EHgA1WUq8fIdP/B0WUGYTimaCzAPQlImLmH5h5IUQkSkBEtQDcDmB84NoriqIoScGLODRFyYRfkQm5SpRh5nxIqoKsOMf9O4CHIUm8IhlLRKuI6Hkiqu+0MxGNIaKlRLQ0Ly/PqYiiKIoSEC/i4JQULDL+1UuZ4sJEXSBJ0GY7fPwkJB1CF0iysYedjsHMU5i5OzN3b9QoVlodRVEUxS9exGELSmaDbAZJVeBYxkqEVheS48WNcwB0I1nXdiGA04loASB5c6z1hAsBPIPYi7goiqIoScCLOCwB0IaIWhJRFVgLg0SUmYPiZFlDAczjGLPrmPlJZj6FmbMhM12/YebeAEBEJ9uKDoGkWg6dadOA7GygUiV5npbwMu5l49yKoiheiCsOlg9hLGThjq8AvMrMa4joXiK6zCr2HIAsItoAcTKPM/tbo4NHAIy21qKNjHSK5B/WWrWrAPSBZJsMlWnTgDFjgE2bAGZ5HjMmfiPt1qj7aeyDnltRFCWVlIv0Gd27d2c/8xyys6VRjqRFCyA313kf06gfsbnPa9QArr0WmDo1evuUKcCoUeGcW1EUJRkQ0TJm7u70WYVMn7F5s7/tAHDnnSUFAJD3U6Y4b7/zTucRRbxzq8lJUZTSQIUUh+YuCz2a7X4a9YIC5+3GXBRpPmrQwP3canJSFKW0UCHNSm4moilT5LXTZ9WrA3v2RB8rI8NZINy2Z2UBR486n/vOO9XkpChK6lCzUgSjRklj3KIFQCTPxkfgZj4CpBG3U6OGCInTdrcRxd697ucOYu5SFEVJBhVSHABpjHNzgcJCeTbOY7eG2K1R/9e/nLe3aOF8nObN3c8dz9wVBurTUBTFC+UiZXeYNG/ubNoxjbpTBJLbdifz1IQJ7ueeMMH/Pn6INKcZnwbgXH9FUSouFXbk4MaECc5mIr8NdCzTVZj7+MHNZHbnneEcX1GU8oOKQwRhNtBu5qMw9/FjJgrbp6EmKkUpv6g4OBCkUU82Tg2x39DXoD6NMM6tKEoZg5nL/KNbt25cnnn5ZeYaNZilGZZHjRrMWVklt5lHixayT4sWzETF792O8/LLxefxuo/fc3u5Rr/7JPM46T6HoqQCAEvZpV1Ne8MexqO8i0OLFs4NcayHmwi4NWx+RSDIud2IJ1peCes46T6HoqQKFYcyDpG/xjkjw3l7ixbu5wgiQH7P7SZMbueOVV8/1+D3OOk+B7OOTpTUEEsc1OdQBnDzCWRl+ZuAF8vx7Ncp7ffcbulE4uWbCtPhHoYDPRUTFdWfo5QK3FSjLD3K+8ghlinDqYcZpHfrtk9WVjjnjjWiCHJuP9dg6haGOag8jU4UBWpWKvv4MTMEaQj9CpDf47iZoYhS43APq8FNhc/BzYxIFN45FIVZxaFCUtoihuI1zk77xPK1+BWyWA2u3+tOtj9ARw5KqlBxUNJOkB53EBOV32P5NV2lglRFRKnTW1FxUEoFQXrofk1Ufo8V9nyNsAjz3EHmvCgVAxUHpcwSlsPd7VhBTFdliSCiqFQcYolDhVzsRynbxFqsyW+qE7c1vd0Wa0r3wkvTpkmixM2bJcR5woTY1+x2fW4QSdoYpWKgi/0o5YowkyO6ZeENMlck2cSa/+A2h8Nvfc1ytZpQUUm7SSiMh5qVlEQIy3SV7AixIE51v/vcfHPpNKfF+p7UsR4cqM9BUfzh12EbZlJDt3P4TaMSb/JfWRHFeNeQinxa5VV8VBwUJQBh9OpjNdB+ncJ+81+Z6C0/1+F3PkjYEy79frfJnhNS3qO6VBwUJcnEalSDNuqRpCLyyK8ZKsi54wmp14gyonAnN/qtK3PZH1WoOChKkonViAQxB7mR7DkLfgUoyKjFb/hwLAEKc3KjX2EqD6MKFQdFSTJB8jqFOTs72ZPmwvR3uDX2bjPf4yV/TGZeriDClO4JlH5QcVCUFODWIPh1CpdGUhEpFWsU4jdaKazRSazrS/cEyjDuHRUHRUkzZUUE3AgicH79AWE6l/3m5QoiTEFyf8XqQISRWsbvfaXioChKwvhtwPw29qnwnfgRhnjCFOQcfueW+BUmv0Kq4qAoSsoJGuaaTN9J2P4fP+dwG1EE8bWEteaHioOiKGmhtJnTUuH/CWvUEms0oyMHFQdFUUImFYIVxojC7RFmGG0scdCsrIqiKCnALZvwtdcCU6dGb69eHdizJ/o4JjOw3wy9TmhWVkVRlDTjlk34X/9y3v7oo84ZgydMKD5ebq6kWM/NDZaVOBY6clAURSmlhDE6iEWskUPl8E6jKIqihMmoUeGPCLyiZiVFURQlCk/iQEQXEdE6ItpAROMcPq9KRDOtzxcTUba1PYuI5hPRYSJ6wuXYc4hote19AyL6kIjWW8/1g12aoiiKEpS44kBEGQAmAxgAoD2AkUTUPqLY9QD2MfNpACYCeNDafgzAXQB+73LsywEcjtg8DsDHzNwGwMfWe0VRFCWFeBk59ACwgZk3MvOPAGYAGBRRZhCAqdbrWQD6EhEx8w/MvBAiEiUgoloAbgcwPsaxpgIY7OlKFEVRlNDwIg5NAXxve7/F2uZYhpnzARwAkBXnuH8H8DCAIxHbGzPzdutY2wGc5LQzEY0hoqVEtDQvL8/DZSiKoihe8SIO5LAtMv7VS5niwkRdAJzGzLM9nN8RZp7CzN2ZuXujRo2CHkZRFEVxwIs4bAFwqu19MwDb3MoQUWUAdQHsjXHMcwB0I6JcAAsBnE5EC6zPdhLRydaxTgawy0MdFUVRlBDxIg5LALQhopZEVAXACABzIsrMAXCt9XoogHkcY3YdMz/JzKcwczaAXgC+YebeDse6FsCbXi5EURRFCY+4k+CYOZ+IxgJ4H0AGgOeZeQ0R3QtJ2jQHwHMA/k1EGyAjhhFmf2t0UAdAFSIaDKA/M6+NccoHALxKRNcD2AzgymCXpiiKogRF02coiqJUUDTxnqIoiuILFQdFURQlChUHRVEUJQoVB0VRFCUKFQdFURQlChUHRVEUJQoVB0VRFCUKFQdFURQlChUHRVEUJQoVB0VRFCUKFQdFURQlChUHRVEUJQoVB0VRFCUKFQdFURQlChUHRVEUJQoVB0VRFCUKFQdFURQlChUHRVEUJQoVB0VRFCUKFQdFURQlChUHRVEUJQoVB0VRFCUKFQdFURQlChUHRVEUJQoVB0VRFCUKFQdFURQlChUHRVEUJQoVB0VRFCUKFQdFURQlChUHRVEUJQoVB0VRFCUKFQdFURQlChUHRVEUJQoVB0VRFCUKFQdFURQlChUHRVEUJYrK6a5Asjhx4gS2bNmCY8eOpbsqig+qVauGZs2aITMzM91VUZQKjSdxIKKLADwKIAPAs8z8QMTnVQG8BKAbgD0AhjNzLhFlAZgF4CwALzLzWNs+7wE42arDpwBuYeYCIroHwI0A8qyif2bmd/xe2JYtW1C7dm1kZ2eDiPzurqQBZsaePXuwZcsWtGzZMt3VUZQKTVyzEhFlAJgMYACA9gBGElH7iGLXA9jHzKcBmAjgQWv7MQB3Afi9w6GHMXNnAB0BNAJwpe2ziczcxXr4FgYAOHbsGLKyslQYyhBEhKysLB3tKaWOhQuBxo2BPXvSXZPU4cXn0APABmbeyMw/ApgBYFBEmUEAplqvZwHoS0TEzD8w80KISJSAmQ9aLysDqAKAg1xALFQYyh76m4XP4cNAu3bSwCnBWLEC2LULWLMm3TVJHV7EoSmA723vt1jbHMswcz6AAwCy4h2YiN4HsAvAIYioGMYS0Soiep6I6nuoY6ljz5496NKlC7p06YImTZqgadOmRe9//PFHT8f4xS9+gXXr1sUsM3nyZEybNi2MKqNXr15o1apViW2XXHIJ6tWrV2LbQw89hBo1auDQoUNF2z766CPUrVu36Bq7dOmC+fPnh1IvJTE2bgS+/hpYtizdNSm77Nsnz7m5aa1GSvEiDk5duchevpcy0QWYL4T4HaoC+Jm1+UkArQF0AbAdwMOOlSIaQ0RLiWhpXl6eUxFfTJsGZGcDlSrJc6LtbVZWFlasWIEVK1bgpptuwm9/+9ui91WqVAEgNvbCwkLXY7zwwgs444wzYp7nlltuwahRoxKrrI1atWrhs88+AwDs3bsXu3btiiozffp0dOvWDW+++WaJ7X369Cm6xhUrVqBPnz6h1UsJjvl77N+f3nqUZfbulWcVh5JsAXCq7X0zANvcyhBRZQB1Aez1UgFmPgZgDixTFTPvZOYCZi4E8AzErOW03xRm7s7M3Rs1auTlVK5MmwaMGQNs2gQwy/OYMYkLhBMbNmxAx44dcdNNN6Fr167Yvn07xowZg+7du6NDhw649957i8r26tULK1asQH5+PurVq4dx48ahc+fOOOecc4oa7b/85S+YNGlSUflx48ahR48eOOOMM/Df//4XAPDDDz/giiuuQOfOnTFy5Eh0794dK1ascKzfiBEjMGPGDADArFmzcMUVV5T4fN26dSgoKMA999yD6dOnh/79KOGj4pA4Kg7OLAHQhohaElEVACMgjbmdOQCutV4PBTCPmV1HDkRUi4hOtl5XBjAQwNfW+5NtRYcAWO3lQhLhzjuBI0dKbjtyRLYng7Vr1+L666/H8uXL0bRpUzzwwANYunQpVq5ciQ8//BBr166N2ufAgQP46U9/ipUrV+Kcc87B888/73hsZsbnn3+Ohx56qEhoHn/8cTRp0gQrV67EuHHjsHz5cte6XXDBBZg3bx4KCwsxc+ZMDB8+vMTn06dPx4gRI9CnTx98+eWX2GPz0M2fP7+EWSm3Iv2TSjEqDoljzEqbNqW3HqkkbigrM+cT0VgA70NCWZ9n5jVEdC+Apcw8B8BzAP5NRBsgI4YRZn8iygVQB0AVIhoMoD8k3HWOFQKbAWAegKesXf5BRF0gZqlcAL8M40JjsXmzv+2J0rp1a5x11llF76dPn47nnnsO+fn52LZtG9auXYv27UsGhFWvXh0DBgwAAHTr1g2ffvqp47Evv/zyojKmcV64cCH++Mc/AgA6d+6MDh06uNYtMzMTPXv2xMyZM1FQUIBmzZqV+HzGjBl49913UalSJQwePBizZs3CL38pP1GfPn3wxhtv+PgmlFRgLIMqDsGpiCMHT/McrHDSdyK2/dX2+hhKhqLay2W7HPYsp43MfI2XOoVJ8+bOPYLmzZNzvpo1axa9Xr9+PR599FF8/vnnqFevHq6++mrHUE7jpwCAjIwM5OfnOx67atWqUWViDOIcGTFiBK688kqMHz++xPYvvvgC3333XZEv4fjx41i1alWROCilEx05JI4Rh82bgYICICMjvfVJBZo+A8CECUCNGiW31agh25PNwYMHUbt2bdSpUwfbt2/H+++/H/o5evXqhVdffRUA8OWXXzqarez07t0b48aNczQpjR8/Hrm5ucjNzcW2bduwceNGbN26NfQ6K+Gh4pA4+/YBmZlAfj6wLdLjWk5RcQAwahQwZQrQogVAJM9Tpsj2ZNO1a1e0b98eHTt2xI033ohzzz039HP8+te/xtatW5GTk4OHH34YHTt2RN26dV3LV6pUCXfccQcaNGhQtI2ZMXPmTAwZMqRoGxFh8ODBRQ7sSJ/D7NmzQ78WxT8qDonBLCMHY42tKKYl8mtyKI10796dly5dWmLbV199hXbt2qWpRqWL/Px85Ofno1q1ali/fj369++P9evXo3Ll0plaS3+7cGnXTuY51KtX7FhVvHPkCFCzJnDddcDzzwMvvQRck3Ljd3IgomXM3N3ps9LZOiihcvjwYfTt2xf5+flgZjz99NOlVhiU8DEjhwMHgMJCmcujeMf4G7p0keeKMnLQFqICUK9ePSzT6bEVkvx8yQdUq5ak0Th8GKhTJ921KlsYcTjlFKBJk4ojDtqHUJRyjJmG0qaNPKvfwT/GFFe/vmRPUHFQFKXMY0xKKg7BMSOHBg1EHCrKRDgVB0Upx6g4JE6kOJi5DuUdFQdFKccYcTj9dHlWcfBPpFnpxAlg+/a0ViklqDgkid69e0dNaJs0aRJ+9atfxdyvVq1aAIBt27Zh6NChrseODN2NZNKkSThiSxg1cOBA7A+hZbjnnntARNiwYUPRtokTJ4KIStRp+fLlIKKo7yAjI6PEXIgHHiixqKASMjpySJy9e4HKlcWpn50t2yqC30HFIUmMHDmyaHKYYcaMGRg5cqSn/U855RTMmjUrfkEXIsXhnXfeiVqXISidOnUqcW2zZs2KygU1ffp09OrVKypza/Xq1Uuk9R43blwodVKc2bVLJna2bi3vVRz8s2+fmJTMBFlAxUFJgKFDh2Lu3Lk4fvw4ABSlm+jVq1fRvIOuXbuiU6dOUesimPIdO3YEABw9ehQjRoxATk4Ohg8fjqNHjxaVu/nmm4vSfd99990AgMceewzbtm1Dnz59ivIgZWdnY/fu3QCARx55BB07dkTHjh2L0n3n5uaiXbt2uPHGG9GhQwf079+/xHnsDB48uKjOGzduRN26dWFPm87MmDVrFl588UV88MEHuuxnGsnLk4bNTHZXcfDP3r1iUgIqljhUiHkOv/mNLPMXJl26AFa76khWVhZ69OiB9957D4MGDcKMGTMwfPhwEBGqVauG2bNno06dOti9ezd69uyJyy67zHWJzCeffBI1atTAqlWrsGrVKnTt2rXoswkTJqBBgwYoKChA3759sWrVKtx666145JFHMH/+fDRs2LDEsZYtW4YXXngBixcvBjPj7LPPxk9/+lPUr18f69evx/Tp0/HMM89g2LBheO2113D11VdH1adOnTo49dRTsXr1arz55psYPnw4XnjhhaLPFy1ahJYtW6J169bo3bs33nnnnaJssUePHkUXM5sIwJ/+9KeoHE5KeOTlAY0aFZtFVBz8s3dvsbhWry5rSVcEcdCRQxKxm5bsJiVmxp///Gfk5OSgX79+2Lp1K3bu3Ol6nE8++aSokc7JyUFOTk7RZ6+++iq6du2KM888E2vWrImbVG/hwoUYMmQIatasiVq1auHyyy8vSv/dsmXLoobbnvLbCbMo0BtvvFEi3xJQvOaDKWc3LUWalVQYkosRB0DSZ6g4+GffvuKRA1Bx5jpUiJFDrB5+Mhk8eDBuv/12fPHFFzh69GhRj3/atGnIy8vDsmXLkJmZiezs7LimF6dRxXfffYd//vOfWLJkCerXr4/Ro0fHPU6sXFom3TcgjmM3sxIAXHrppbjjjjvQvXt31LFNuS0oKMBrr72GOXPmYMKECWBm7NmzB4cOHULt2rVj1k0Jn7w8ya0EqDgEZe/e4u8QEHGIEw9SLtCRQxKpVasWevfujeuuu66EI/rAgQM46aSTkJmZifnz52NTnFk1559/PqZZa5auXr0aq1atAiDpvmvWrIm6deti586dePfdd4v2qV27Ng4dOuR4rDfeeANHjhzBDz/8gNmzZ+O8887zfW3Vq1fHgw8+iDsjlsv76KOP0LlzZ3z//ffIzc3Fpk2bcMUVV+giQGlCRw6JYzcrAcVzHWIs/14uUHFIMiNHjsTKlSuLzCwAMGrUKCxduhTdu3fHtGnT0LZt25jHuPnmm3H48GHk5OTgH//4B3r0kGW1O3fujDPPPBMdOnTAddddVyLd95gxYzBgwIAih7Sha9euGD16NHr06IGzzz4bN9xwA84888xA1zZixIgS/g9ATEqRZqYrrrgCr7zyCoBin4N5aLSSf/bs8dZzLSgAdu9WcUiEggJJWBhpVqoQcx2Yucw/unXrxpGsXbs2aptSNtDfLjbjxjFXr86cnx+73K5dzADzY4/J+6uvZm7ZMvn1K0/s3i3f4aOPFm97913ZtnBh+uoVFpClnh3bVR05KEoZY8sW4OjR+D1XMwFORw7BsafOMFSUiXAqDopSxjCNfrwEcJHiULdu8ZoOijfsqTMMZm15FQdFUUoVu3bJs19xqFdPhOHw4eTVrbzhNHKoUQM46SQVhzINl4MlUCsa+pvFx684nHSSPJvsKWpa8o7TyAGoGHMdyq04VKtWDXv27NHGpgzB1pyIatWqpbsqpRbm4kZ/8+bYZY2IZGXJsxGHAweSU7fyiNPIAagY4lBuJ8E1a9YMW7ZsQZ75JyllgmrVqqFZs2bprkap5eBB4Mcf5bWXkUP9+kBmprzXkYN/jDg4jRzeeKN8r8ldbsUhMzMTLVu2THc1FCVUTF+HyJs42PIhqjgEYN8+yUllBNaQnS0ivWOHrC1dHimnmqco5RNjKjrjDBGHWFZTFYfEiZwdbagI4awqDopShjDi0L078MMPxWYPJ1QcEseertuOioOiKKUKY1Y66yx5jmVa2rWrOFIJkHkOgIqDH8xCP5FUhHUdVBwUpQxhHzkA7uJQWCg5mOwjh8xMoGZNFQc/uJmVatSQ71bFQVGUUsGuXUCdOsDpp8t7N3HYt0+SxtnFAdAUGn5xMysB5T+cVcVBUXyyYwdw113AhAmpP7fxI2RlSe/VTRwiZ0cbVBy8w+xuVgJUHBRFsVi7FrjhBrE3jx8P3Hdf7GihZAwfAckAACAASURBVGD8CGaxe7eJcCoOiXP0KHD8eGxx2LSp/OaqUnFQlBgwAwsWAJdcAnToALzyigjEr34FHDmS+jxFeXnFTuYWLXTkkEzcUmcYzFyHGCv8lmlUHBTFhc2bgT595PH558Df/ibbJk8Gzj5byuzYkdo67dpV3OA3b+4uDsZxbY9WAlQc/OCWOsNQ3sNZVRwUxYE33gC6dAGWLQOeeEIa4b/+FWjYUD5v0kSeUykOhYXRI4fdu2W+QyRm5GDqa1Bx8I5b6gyDioOiVCCOHwduvRUYMgRo2RL44gvglluA6tVLlkuHOOzfLxFIdnEAnP0OeXkyr6FKlZLbjThoPsr4GLOS28ihvM91UHFQFItvvgHOOQd4/HHgN78B/vtfoE0b57LpEAdjKjJmJdM4OZmWImdHG3RNB+/EMyvVrFm+5zqoOJQRCguBrl2l4VLCZ8YMoFs3aWjnzAEmTgSqVnUvn5UFZGSkRxwiRw5+xQFInWkpPx+4/HIR2rJGPLMSIL9BhRYHIrqIiNYR0QYiGufweVUimml9vpiIsq3tWUQ0n4gOE9ETEfu8R0QriWgNET1FRBnW9gZE9CERrbeeY/w0FYeVK4Hly8Xurfn4w+XgQeCaa4COHYEVK4BLL42/T0aGNNKpFIfIxXtOOQWoXNmfOKQ6hca2bcDs2SK4ZY19++R3rl3bvUx5nusQVxysRnsygAEA2gMYSUTtI4pdD2AfM58GYCKAB63txwDcBeD3DocexsydAXQE0AjAldb2cQA+ZuY2AD623ld45s2T5/37gUcfTW9dyhurV0sP9847gVNP9b5fkybpNStlZADNmjmLQ2ReJUOqRw4mzHPjxtScL0xM6gwi9zLlea6Dl5FDDwAbmHkjM/8IYAaAQRFlBgGYar2eBaAvEREz/8DMCyEiUQJmPmi9rAygCgDjIrMfayqAwV4vpjwzb56kaR40CHjkEY04CZOVK+W5c2d/+6VaHJwikJwmwjFLFFMss1KqRp/m+ymL4rBvX2yTEiDicPx4+Zzr4EUcmgL43vZ+i7XNsQwz5wM4ACAr3oGJ6H0AuwAcgogKADRm5u3WsbYDcOj/AEQ0hoiWEtHS8r7a24kTwCefAD/7GXDPPfLHnjQp3bUqP6xaJY2m3wXo0jFysK/sBjjPddi/X0ZCpcHnYL6fb79NzfnCxC3pnh0Tzhpv4aWyiBdxcBpURQbCeSkTXYD5QgAnA6gK4Gce6mLfdwozd2fm7o2c/gXliGXLJLqkTx+JvR8yRBymJtROSYxVq4CcnNjmAyeaNJEeY6pMCk6mohYtgK1bpQNhcJsdDaTPrLR/f9m7X2Ml3TO0aiXPK1Ykvz6pxos4bAFgt8Q2A7DNrQwRVQZQF0CMZUiKYeZjAOag2FS1k4hOto51MmRkUaEx/obeveX5nnvEiTpxYrpqVH4oLCwWB780aSLzDvbsCb9eTtgnwBlatJBr2Lq1ZDmgdDik7SOrsmZaipV0z9C2rQQyPPVU+Zs74kUclgBoQ0QtiagKgBGQxtzOHADXWq+HApjH7P5VEVEtmwBUBjAQwNcOx7oWwJteLqQ8M2+eNF7mz56TA1xxhZiWYq0EpsQnN1dGZX79DUDq5zrYU2cYnMJZY4lDlSqSzTWV4lDZWqm+rJmWvJiViGTS5MqVwKefpqZeqSKuOFg+hLEA3gfwFYBXmXkNEd1LRJdZxZ4DkEVEGwDcDluEERHlAngEwGgi2mJFOtUEMIeIVgFYCRkdPGXt8gCAC4hoPYALrPdJI1W9vqAcPw4sWiT+Bjt33w0cOiTOaSU4q1bJc9CRA5A6Z6SbWQkoKQ5ueZUMqUyhsWMHcOaZ8jodI4eJEyWbrl8KCuQ7imdWAoBRo0REylsUoad5Dsz8DjOfzsytmXmCte2vzDzHen2Mma9k5tOYuQczb7Ttm83MDZi5FjM3Y+a1zLyTmc9i5hxm7sDMv7ZECMy8h5n7MnMb6zlpfeP77pM/0LGoWKrSw2efSf369Cm5vVMn4Mor5YYs7QJXmlm1Snp/HTr43zeVIwdjvops8Js3l2evIwfAmzj84Q/A8OHB6mpn506gdWupd6rFYfdu4PbbgWee8b+vieaKN3IAZCR2442Sj6s8OaYr9Azp008Xe22QnkWqmDcPqFQJOP/86M/uvluSrj38cOrrZXjkEVn4pqyycqWkyKhZ0/++qRSHPXvEph3Z4FerBjRuHC0OtWu7z/D2Ig4ffwy8/XbizvYdO+R7atUq9Walr76S5yCT1OKlzojkV7+STsbkyf7PVVqp0OJgTAkmzr00Mm+epHUwUSZ2OnQAhg2TlBq7d6e+bgDw9NPAc8+l59xhENQZDUgDXL16asQhcna0nci5Dm6zow1exGHjRul4JDL79/BheTRpIqOHVI8cTKfvu+/87+sldYad5s0livCZZ5yz5JZFKrQ4tG4tf25jdy5t/PADsHhxtL/Bzl//mr7Rw8GDkqxu+/aymdLj8GHpzQYVB6LUzXWI5UeIXPQnUXHYt6/489Wr/dfVYHwxZuSwebMsjpMq1qyR5+++8x9JFC8jqxO33irf28sv+ztXaaVCi0NGhoShlVZxWLRI4tcj/Q122rcHLrpI8tekmuXLi19//bV7udLK6tXSaAQVByD14uDU6DdvLg2vaQATFQd7D//LL/3X1WDEoXFjEYfCQvdlTZOBGTkcPOjfAe935AAAvXqJ8/2xx8pHWGuFFgdAQhhXriydP+a8eRIG2KtX7HLnnQesW5f6sNZly4pfl0VxMJ2CIGGshlSJQzyz0rFjxQLillfJEG9NByMOGRmJiYP5XoxZyX7sVLB2bXHj7te0FGTkYMJa164tnptUlqnw4pCTI86+7dvTXZNo5s0DevaM7yzt2VOeFy9Ofp3sLFsGnHyypHMwzr+yxKpV4jcw4aBBSOXIgci5sbKHszJ7GzkUFLjbxk0Dft55iZmV7OJgZhKnyim9b5/8py+8UN77FYcgIwcAGDFCvvvyENaq4mCZFEqbaenAAWl8Y/kbDGedJRFN//tf8utlZ9kyoEcPifYpqyOHIGkz7DRpIp2LZNvSd+2ShHsZGdGf2cXh4EExRcYTB8Dd1LJxo5zrJz+REWnQa9u5U+7LRo2kE1G1aupGDqazcvHF8uzXsb53r3TKIlfSi0e1asAvfwnMnVv2Jv1FouJQSsXhk0/ERhvL32CoVUvmPXz2WfLrZTDO6G7dJIVAWRMH5sQilQwmnHVXkpO8OKXOMNjFId4cB8CbOLRqJfdUfn7w33bHjmJBq1RJjpkqcTD+hp/8RK43iFnJj0nJzs03yzU/8UT8sqWZCi8O9etLDv/SJg7z5kkvxJiM4nHOOWJWSlUSuOXLpYHt1g1o1w7YsCG1kSiJsnmzjM4S8TcAqZvr4JQ6w1CvHlCnTvji0LGjvA9qWjJzHAxe5zo8+CAwdGiwcxrWrpVIxOxseQQxK/k1KRlOOUUmqD7/vGQxKKtUeHEApPdY2uY6zJsHnHuuCIQXevaU3nyqbP/GGW1GDgUFZWsYnUjaDDupEodYIwegOJzVizjESr6Xny/HadVK1g/JzAzulHYSh40b4wd/zJghK8fZM836Zc0a6bRUqgS0bBnMrBR05ACIY/rgQeDf/w5+jHSj4gBpIL7+WvIYlQZ275bGy4u/wXDOOfKcKtPSsmWy/kHjxiIOQPKEaf9+4MiRcI9pOgOmdxyUVI4c4onD5s3x8yoBsRf8+f57EfpWrUQY2rYNLg47d8r9YWjdWnrSsdK9/PCD3PsnTiRmglq7VsK8gWJx8BORmIhZCZDOWnY2sGBB8GOkGxUHiGkhEdtq2Jgbyou/wdCmjdzMqXJKL1smowagWByS8f2tXi1/7ptuCve4q1ZJYxVrfWAvmMYvmeJw4oQ0VrFGA35GDrHMSqZBNtFFHTsGMysxO48cgNgjzKVLi02jQTsbBw8CW7YUi0N2tnQu/PiFEjErGXJyEov2SjcqDih9Tul588TJ3L27932IpLeSipHDoUPFzmhA6tqsWfji8P33MsFv/35JahbmyC4MZzQgETj16ydXHExqlFijgebN5Xv69luJsqle3b1sLLNSpDh06lQcBeWHAwfk93ISh1gjAvv9G1QczH72kQPgz7SUqFkJkO/um29Kj0XCLyoOkF531aqlx+8wb54k2rMvB+mFnj1lOJ3sVBZ2Z7ShbdtwzUr79gEDBogQjR8vz//5TzjHPnIEWL8+HHEAkj/XIdbsaIOJWFq2LHY5QO716tXdxaFy5eIlUzt1kme/PWD7HAeDaaTjiUObNkDTpsE7GyZSyWTaNef16pQ+elQa9ETFoWNHMdGVFouEX1QcIH+GDh1Kx8hh61aJLffjbzD07CmN9uefh18vO3ZntKFdO/kThDHT/NgxYPBg6XXNni1pl6tXB956K/FjA+KsLCwse+IQz+cAiH/Ay6q5bik0Nm4UM4yZTxE0YsmeOsNQo4bMd3AzKzGLOPTsKfdT0M7G2rUigEYUzHfjVRyCToCLJKiwlhZUHCw6dy4d4vDSS/J8ySX+9+3RQ8xLyTYtLVsmPTv7H79tW0lkZ1+uMggFBcA118g8j5deEpGsXh3o318iWMIQnzDSZthJtjjESp1hMA1gQUHi4mDMP+a4tWv7d0o7jRyA2HMdvv9e9jv77MQ6G2vXyv1oBK5WLflOvJqVgqTOcOL00xOL9ko3Kg4WOTnS20nVql5OFBZKyt/evSWM0C9164qdNdlO6aVLS44aAPkzA4kNoZmB3/4WmDVLssyOGFH82aWXSjROGAK+apXY5U3PMlFKg1mpcePi2byxRMTgVRyIZPQQljjESt1tOjU9e0rjfuhQsM7GmjXF/gZDy5apHzmYaC8dOZRxSoNT+sMP5QZOJDLnnHPkT5asRIKRzmhDGBFLDz0ka1Pcfrs87FxyiTRUcyJXLw/AypUy5K8U0t3fpImEYB4+HM7xIsnLE9On05oehkqVileFCzpyOHBAGka7OADFEUt+7qkdO6RxjGxgW7WSSCInJ+1nn8m8npyc4s6GX9PS4cPiQI8UBz8T4fwu9BOLIMJaWlBxsCgN4vD00/LHHjIk+DF69pRh8TffhFcvO8YZHRlJ1aSJzNINaifetg0YN05mlj70UPTnjRuLuSFRv4NJmxGWSQlI/lwHMzs6npgZ01JQcTCNZ6Q4dOokcxP8XN/OnTKCiaxzq1byGziZeD77TO6rzMzgI1FT3mnksGmTtwwCYZmVAPnuNm/2H+1VGlBxsGjYUKa9p0sctm2TXvEvfuE/2ZedZE+Gc3JGA9KrN3biICxcKI3GHXe4N4KXXgosWSLfVVC2bpU/f1jOaCBxcdi0KfYkv1ipM+wkKg6RYawG41j10wOOnONgcEvdffw48MUXxeliGjeWOvrtbERGKhlatpT5Il7unbDMSkDiKUjSiYqDjZyc9InDc8+JM3HMmMSO07at9OCTKQ6Rzmj7uYOKw6JFEs3SpYt7mcsuk+e5c4OdAwgvbYadRMRh/35pQGKtwx0vdYYhiDjYTUVu4hCkgXMTB7eJcCtXikAYcTCdjSDikJlZLEKG7Gx59mJa2rtXnNl16vg7txNlOWJJxcFGTo7cXEFyugwcKIuMB6GgQBzRF1wQfVP7pVIlMb8kyyltnxkdSbt20jMLMs9i4UKpd6y5HR06SA8wEb+Dmcti/rRhkIg4vPyy2Mnffde9TLzUGQYjDl4d0vn5JUcsGzeKKcVMkjM0bCjX6GfksHOnszg0biydgMiRg90ZbQgyd2btWgnmqFy55HY/E+H27ZNRQyKp3A3Nm0u0lIpDGScnRzKLrlvnb7/9+4H33wemTg3mlHz3XQnj++Uv/e/rxDnnyB85bAfpoUPy3biJg3FK+/3+Dh+WRvvcc2OXI5LRw8cfB1/EfdUq6UVGNoCJkJUlPU2/4sAMTJkir7/6yj0yx6tZafBg4L77gK5d45d1SqERGalkp1Mn7+JQWBidV8lA5Jyd9bPPZOJd06bF29q1k+MYH4AX7DmV7PiZ6xBG6gxDpUpl1ymt4mDDOCn9mpY+/VT+EEeOBOvVPv209LKM2SRRevaU+ixZEs7xDCtWRM+MthM0Ad/ixTJ6iicOgPgdjh0DPvrI3zkMYaXNsJORIb11v+Lw+efSaNx8s7z/+OPoMseOiSh7GQ3UrQv86U/OCwJF4lccOnaUhregIP6x9+yRck4jB8B5rsPixdHp6f06pY8ckeM6iUPVquJT9CIOiSbdi8SIQ2lcijgWKg42TIpiv+Iwf77cfE2bAq+84m/fzZuBd94Brr/ef7oMN84+W57D9jssXSrPbuJgMnn69TssXCg9SuNMj8X550sjGESEjx2TUU3Y4gAEm+swZYqYWO6/X0YGTuLgJZFeECLFoaBATC6xRg5Hj3rLlOo2x8EQmbp71y55b+5bg99w1nXr5JhO4gB4T90d5sgBKI72SuccqiCoONjIzJQby2+OpQULpGG76ioxL5lEaV549lm5oW+80d85Y9GggQhd2H4H44x2+9NnZgKnneZfHBYtkj+QF1NPZqbkXHrrLW+9WDtffin7lAZxOHhQ1i0YOVKuu29fGQ1F9i69pM4IQqQ4bN0qvrZY4gB4M484pc6w07q19PJNObP2eeTIITtbOl1excEtUsngdSJcGEn37JTViCUVhwj8Rizt3Svmlj59RBzy82WGrxfy8yVK6aKLElvk3olkTIaL5Yw2+HUi5ueLiHkxKRkuu0x61H5zSH3wgTyff76//bzgVxxeeUUaSBOd1q+fOPMjhdVL6owgRIqDW6SSoX17Gd15aeC8jBzs5/zsM3EgR/pKMjIkBYUfcahcWTooTmRni28vXsBJ2GalIKHApQEVhwg6d5Y/qdfe/6efSgPcu7fs264dMH26t33nzpVzhb1WASC9sLw8/8sjuhHPGW1o106cjV4jvozjvFcv73W56CJpOPxOiJs7FzjrLPcebSI0aSI9Ya/LtE6ZIh2Rs86S9337ynOkL8VL6owgRKbtjicONWpIj99LAxdEHDp3lnNE4iecde1ayejqNk+oZUv5fbZscT9GQYF8J2GalRo1EnHXkUMZx5gcvKr8/Pky5f/ss6VnddVVkjTu++/j7/vUU2KmGTgweH3dMPb7sExL8ZzRhrZtZTTgdcnQRYvk2c/IoX596f378Tvk5Yn5IkhCQy80aSLXbSZQxWLZMplpPmZMcbhkdrY0vpHikKyRgxEHE3a8caMI7qmnuu/jNWJpxw5Jlui2kFJ2tlz3t99KY/z55+5rpbdrJx2cY8fin9ctUsngJXX3gQNyn4c5cgD8RXuVFlQcIjDi4NXvsGAB8JOfiG0UEBsyIPbkWHz3nZg5brghOiY7DDp0kORyYTml3WZGR+LXibhokQikyQvklcsukwRrXkXo3XflT3/xxf7O4xU/cx2mTJHGc9Soktv79ZPORn5+8bZdu+TeSnTFukiqVZOHfeTQokXse7FTJ1kHI15DbcJY3eYJVKsmv/nGjdKgHz4cWxyY46eDOX4c2LAhtjiYiXCxnNImbDbMkQMgfgeTKr6soOIQQePG0kvz4nfYu1fK2ZfzbN1aUmfHiloyaSIyM0UckkFGhtQjrJHDsmUSCuhmKjCYbLJendILF4pJye+Eo0svlWevpqW335a1BM480995vOJVHA4flntj2LDoRHr9+on5zh6CbOY4hDEhKxJ7Co1YYayGjh2lcYsn/G6zo+2YiCWnyW92vIZHr1sndYslDqeeKv+LWCOHMJPu2enYUXxMflajSzcqDg54XdvhP/8p9jfYueoqMcO43dCvvAK89hpw773FK24lg/PPF/NFGAnhliyJP2oApIfbtKm3kcPmzWL/9WNSMrRuLQ3Bm2/GL3viBPDee2K+CysTayRexWHGDBEIpzQpffqICNhNS15TZwTBrzh4dax6EYfWrWXUt3ixTCJ0ywxw+unyncS7n+JFKgEyKjr11PSIQ1l0Sqs4OJCTI0NA+/DeiQULxDzQo0fJ7cOGSSPk5JjesgUYO1ZMUb//fWhVdmTYMOlNzZyZ2HH+9z/pmfXv76281wR8CxfKsx9ntJ3hw+U32LAhdrlFiyR0NFn+BsC7OEyZIqLmNKcjK0siduzi4DV1RhCMOBw6JCIUTxxOO01MXPEcq26pM+y0agVs3y5mtJ493UdG1auLr8CLOFSqJGISi+zs9JiVzIimLDmlVRwcyMkRu2o8O+f8+dLrjYyOOPlkWcHslVdKhpIyA9ddJyk6pk71NpM1Edq3l0R206YldpyHH5aGZPRob+VNAr54YbSLFknemaB5jm68UXqDTz4Zu9zcufIb9esX7DxeqF1bGrJYE51WrJARmN0RHUm/fiLGJvWJ19QZQTDi4JaqO5LKlUX4Y/V+T5yQSL94EWH2iKXIyW+ReOlsrF1bLF6xiDfXIVkjh9q15dw6cijjnH++NNzPPuteZvdu+aHt/gY7V10lw2a7/fjJJ2VBn4cfdo/FDptRo6QO69cH2//bb2Ud55tvlobcC+3aSW80XnrkRYuk1xjUIX/yycDllwPPPx875fXbb4vpz2v9g0AUf67DM89I43XNNe5l+vWTBvbTT+V9KsxKJqTUy8p48aJu8vKkU+DFrGRw8zcY2rWTkWusSY/xIpUM2dlyX7o51ZM1cgCKF00qK6g4OJCdLX/gJ5+Uoa8T//mPPEf6GwxDhkhv1Tim168XJ/SFF4aXYM8LI0dKwxV09DBpkgjl2LHe9/GyKtyBA+LXCWpSMowdKw2cWwDAt99KPZIVpWQnljgcOSIZWIcOjd0rPfdcEZCPPpLkgkeOJH/kEG+Og50uXWQ2tZvwx5vjYDDnIoo2y0bStq1EI7mZg378Uf5fXsTBCODmzc6f79wp8y3ijUCC0KmTiNyPP4Z/7GSg4uDCX/4iPbgHHnD+fMECuYnMJKZI6tWTBmnmTLkZrr1WxOK555ITeeJG06YiYNOm+Z8tvXev9MpHjZJIJa94iTAxs7eDOKPt9Oolf7rJk52v7+235Tnd4vDvf4vfI17HoHp1uaaPPkreHAeDEYdvv5V5D156y8Y0Z2abR2LMavHEoWFDGcm1axc/bUq88OhVq8Q/6EccnExLBw7I/8Stw5coHTtKPf1mLXajsBD43e+Kw8zDRsXBhdatxcb+9NPOqZTnz5c/caxkeVddJY3F5ZeLHXny5JIpiVPF1VeL09ZvltannpKea+R6zvE4+WRZKCXWyGHRouK1JxKBCLjlFrHnO4Xtzp0rYpXoOhlecBOHwkIZgXXt6m2k1K+fNHjGfJNMcThxQoIvWrXy1mnp1En8CW7iYK4/ns+BCBg0qHheUCziicM998j95iVgItaiP488Ih2iv/89/nGCEHbE0pIlUuegS/PGw5M4ENFFRLSOiDYQ0TiHz6sS0Uzr88VElG1tzyKi+UR0mIiesJWvQURvE9HXRLSGiB6wfTaaiPKIaIX1SNJMgPj85S9i57z//pLbd+2SP5Sbv8Fw8cXiiHr7bVkb2csfIRlccYUMk/2Ylo4fBx5/XP5wfh3GRPFXhVu4UEwUYUzuGjVKGofJk0tuP3RIRnjJjFKy06SJ+KIiU4d8+KF8F7/5jbcG2KTSMBMpk2lWAiTc2YtJCZD69+8v1+Q0ocurOABiZvvLX+KXq19fjud0P73/vvy/7rrL2/d0yikygo80Ue3eLQ3t0KHe1sMIwumni38tLL/D66/L8ZJ1f8cVByLKADAZwAAA7QGMJKLIAdz1APYx82kAJgJ40Np+DMBdAJyCNv/JzG0BnAngXCIaYPtsJjN3sR4x3MLJJTtbooueeaZkOox4/gZD9eoiCKecAvzrX6k1J9mpW1duoBkz4ofnGl55Rf7oQcNt27YVJ6FTA3LihMS3J2pSMtSqJaO8//u/ktFCH30k50qFSQkoNqWYfEiGSZPks+HDvR2na1dpuM0cjmSOHAAxd3kVB0D8Zrt3i6hEsmOHCLVTnqREcMqxlJ8vo9rWrYFf/9rbcSpVkpngkSOHBx6QUfK994ZTXyeqVJH/hZs4LF4so3UvMIs49O0bPZkyLLyMHHoA2MDMG5n5RwAzAAyKKDMIwFTr9SwAfYmImPkHZl4IEYkimPkIM8+3Xv8I4AsASZwOFpw775Qf4r77irctWCANkpdJYU88IT2ehg2TVkVPjBoljZbTmgGRMEsvKicnePhnnz7izL/ssuhlQ1eulD9ios5oO7/6lQiBPcJs7lwRxrBEKB5Ocx2++kom4N1yi3tCuEgyMiQU2qx2l+yRA+BPHGL5HdxWgEsUk+3X7ld65hnpgDz0kD8HcnZ2SXHYulX+p9dcU2zCShZuq8LNng389KcSFehlZLFmjZiKhwwJv44GL+LQFIA9jdwWa5tjGWbOB3AAQJaXChBRPQCXArA3W1cQ0SoimkVEjqnAiGgMES0loqV5xnOXBJo3lxQXzz0HbNok27z4GwyZmeHnxQnCwIHSGHgxLX3wgdygv/td8NHOtdfKaOn998WvYHfCmclvYTbaZ5whjdZTT0mPsrBQFlG68MLwFlGKh5M4PPqoNFx+I9RMA1yjhuTISgZBxaFxYzEJOomDl9nRQWjXTpznZmS4f7+Yknr3luVR/RC56M/48XK/3H13WLV1p1MnOfehQ8XbnnpKzFmdOomZaOpU192LeP31Yr9NsvAiDk7NQ2RciJcy0QcmqgxgOoDHmNmsMfUWgGxmzgHwEYpHJCUPzjyFmbszc/dGyepaWfz5z/JDTJggN+dXX8X3N5Q2qlaVG3D27NhzAgDgn/8UU9iIEcHPRyS9oI8/Fidfjx7SkwfEGd2iRfjO+bFjZQb6W28BX3whDVWqTEpAtDjs2QO89JIEBPi9RY04JMukBAQXB0BEd9Gi6HXKkykOQLFpafx4ua8mTvTfgWnZUiLBDh+WSK1nn5UJvOnkfAAACfBJREFUlV7meSSKWfhnzRoZBd19t/xPBgwQi8TFF0tkWzzz7+uvS5aFZHzXBi/isAWAvffeDEBklHNRGavBrwvAQ/JiTAGwnpknmQ3MvIeZj1tvnwHgwXiTXJo1k1mtL7wgDyB54W7JZNQo+UPESnW9cqXY6m+91bsZJBbnny+hdm3aiIlp/PjiZHthc8klMtKbPFmclETyp0sVxpxixOGZZ2Rpzdtu83+s006Ta0lmv8eIQ6VK/rPi9u8vZrwFC0pu95I6Iwj29aTXrwcee0z8gV26+D+WPTvrPffIyNKLYzwMTHDHihUymrz3XuAXv5BOW82a4jvbuVNG3G5s3Cj/08svT3JlmTnmA0BlABsBtARQBcBKAB0iytwC4Cnr9QgAr0Z8PhrAExHbxgN4DUCliO0n214PAfBZvDp269aNk83WrcxVqzJXrsxcuzbziRNJP2XoFBQwN2vGfMkl7mWuuYa5Zk3mvXvDPfeRI8xXX80s/SXmf/0r3OMb7rtPjt+sGXPPnsk5Ryzq1WMeO5b5xx+ZmzZl7tcv+LHeeIP5zTfDq1skR4/Kd9Wihf99jx1jrlFDrjXyeOPHh1bFIgoLmWvVYv71r5kHDZLX27cHO9Znn0k9H3iAmYj5D38It66xKCiQ/1fNmlKHO++UazMcP87csCHz0KHux/jnP2XfjRsTrw+ApezW9rt9UKIQMBDANwC+BXCnte1eAJdZr6sB+D8AGwB8DqCVbd9cyCjiMGSE0R4y+mAAXwFYYT1usMrfD2CNJULzAbSNV79UiAMz8223yTc2cGBKTpcU7rhDBC4vr+T2HTuY//hH+ezWW5Nz7sJC5ocfZm7ePJwb24ldu5irVEleIxWPtm3lj/3KK1KHuXNTXwc/VK3K3KdPsH0HDmQ+/fTi97m5cs3PPhtO3SLp3p25SRM5x/33Bz/Ozp1yjGrVmOvUYd69O7w6eqFnTxGlxx93/vy22+Qe3rPH+fOf/IS5S5dw6pKwOJT2R6rEYft25vr1mZ96KiWnSworVpTsuefmMt9yi/xRiJiHDUv9nyVszAhl+fLUn7t3b+Zzz2U+6yzmNm2kp1iaOe006Y0HYdIk+Z6/+07emx55sgTxmmvk+NnZMkoJSmGhjHoA5r/9Lbz6eWXFCuZPPnH/fPlyqdvkydGfbdsm/9N77w2nLrHEIQlrkJVfmjSRnDLJyLuSKnJyJOf9lCkSVz1tmtjmf/5z4A9/iJ/yuCxw330SIdW5c+rP3aSJ2I+PH5fwyGStHxEWCxbIvIQgXHihPH/wgfjkvKbOCIpJj/GPf8hqckEhEufzzp3Ab38bTt38EO++7NJFyrz4ooRo23nzTTHMJt3fAE2f4Ztq1dI3mS0MiMQxvWIF8OqrEn9vIjbKgzAAsqDL2LHp+Z2aNBFhqFdPwnlLO02bBg+1PuMM+a5NSKuf2dFBuP56CfMcOjTxY02cKJMmS0OYuROjR0t6jDVrSm5//XUJ7vCSRypRVBwqILfeKiOH3FyZvRtrUXnFH6bXfOONyU0RXhowqTQ++khCL404JCv8tlEjGeGGIfoXXFC6Iw6vuip6zsO+fTLH6vLLU9PxUXGogNSsKY1XMmPoKypnnikruvlJcV6WufBCmQG/ZImIQ1ZWOCHQFZ2TToqe8zB3rrxOhUkJUHFQlFDp318mWPmdN1BW6dtXerEffJC81BkVldGjRXCN2e7118UM2L17as6v4qAoIVOWfVJ+adBA1jR5//3kzY6uqAwcKDnZXnxR8my9957kUkpVkIOKg6IoCXHhhRL5tn69ikOYVKkiwSNvvglMny5Lm6bKpASoOCiKkiD9+0viurw8FYewGT1aVpL83e/En3Peeak7t4qDoigJcfbZxSGh6nMIFzPn4eBByU1WOYUz01QcFEVJiMzM4tXrdOQQPqNHy3My125wQsVBUZSEMes368ghfG66STIZpDL9PABNn6EoSuKMHCkrk6XSJl5RqFZNJsWlGhUHRVESpl494OGH010LJUzUrKQoiqJEoeKgKIqiRKHioCiKokSh4qAoiqJEoeKgKIqiRKHioCiKokSh4qAoiqJEoeKgKIqiREHMnO46JAwR5QHYFHD3hgB2h1idskJFvW6g4l67XnfFwst1t2DmRk4flAtxSAQiWsrMKVpbqfRQUa8bqLjXrtddsUj0utWspCiKokSh4qAoiqJEoeIATEl3BdJERb1uoOJeu153xSKh667wPgdFURQlGh05KIqiKFGoOCiKoihRVGhxIKKLiGgdEW0gonHprk+yIKLniWgXEa22bWtARB8S0XrruX4665gMiOhUIppPRF8R0Roius3aXq6vnYiqEdHnRLTSuu6/WdtbEtFi67pnElGVdNc1GRBRBhEtJ6K51vtyf91ElEtEXxLRCiJaam1L6D6vsOJARBkAJgMYAKA9gJFE1D69tUoaLwK4KGLbOAAfM3MbAB9b78sb+QB+x8ztAPQEcIv1G5f3az8O4GfM3BlAFwAXEVFPAA8CmGhd9z4A16exjsnkNgBf2d5XlOvuw8xdbHMbErrPK6w4AOgBYAMzb2TmHwHMADAozXVKCsz8CYC9EZsHAZhqvZ4KYHBKK5UCmHk7M39hvT4EaTCaopxfOwuHrbeZ1oMB/AzALGt7ubtuACCiZgAuBvCs9Z5QAa7bhYTu84osDk0BfG97v8XaVlFozMzbAWlEAZyU5vokFSLKBnAmgMWoANdumVZWANgF4EMA3wLYz8z5VpHyer9PAvAHAIXW+yxUjOtmAB8Q0TIiGmNtS+g+rxxyBcsS5LBN43rLIURUC8BrAH7DzAelM1m+YeYCAF2IqB6A2QDaORVLba2SCxFdAmAXMy8jot5ms0PRcnXdFucy8zYiOgnAh0T0daIHrMgjhy0ATrW9bwZgW5rqkg52EtHJAGA970pzfZICEWVChGEaM79uba4Q1w4AzLwfwAKIz6UeEZkOYXm8388FcBkR5ULMxD+DjCTK+3WDmbdZz7sgnYEeSPA+r8jisARAGyuSoQqAEQDmpLlOqWQOgGut19cCeDONdUkKlr35OQBfMfMjto/K9bUTUSNrxAAiqg6gH8TfMh/AUKtYubtuZv4TMzdj5mzI/3keM49COb9uIqpJRLXNawD9AaxGgvd5hZ4hTUQDIT2LDADPM/OENFcpKRDRdAC9ISl8dwK4G8AbAF4F0BzAZgBXMnOk07pMQ0S9AHwK4EsU26D/DPE7lNtrJ6IciAMyA9IBfJWZ7yWiVpAedQMAywFczczH01fT5GGZlX7PzJeU9+u2rm+29bYygFeYeQIRZSGB+7xCi4OiKIriTEU2KymKoiguqDgoiqIoUag4KIqiKFGoOCiKoihRqDgoiqIoUag4KIqiKFGoOCiKoihR/D+fsHPgMz1z4QAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEICAYAAAC0+DhzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2dd5gUVfb3v4dhyNEBAUEYkhKGIYogrICwqCigLCoICK7K6srq6gZ5zbJgVhBlVYy4oujPyKIuBkCEXRFGggSV4IhDHIYcZWbO+8epYmq6q7qrqqu7J5zP8/TT3dVVt251V9/vveecey4xMxRFURTFSoVkV0BRFEUpeag4KIqiKGGoOCiKoihhqDgoiqIoYag4KIqiKGGoOCiKoihhqDgocYeIUojoMBE1DXLfZEJErYgoLnHgoWUT0adENCoe9SCie4joOb/HRyj3eiJaFHS5SuJQcVDCMBpn81FIRMcs720bqUgwcwEz12DmrUHuW1Ihoi+I6F6b7b8jom1E5Ol/x8wDmXl2APUaQETZIWX/g5lvjLVspeyh4qCEYTTONZi5BoCtAAZbtoU1UkRUMfG1LNG8CmCMzfYxAF5n5sLEVkdRvKPioHiGiCYT0VtE9CYRHQIwmoh6EtHXRLSfiHYQ0XQiSjX2r0hETETpxvvXjc8/IaJDRPQ/ImrudV/j84uJ6EciOkBETxPRUiIa51BvN3X8AxFtIqJ9RDTdcmwKEU0lojwi2gzgoghf0XsAGhLReZbj0wAMAvCa8X4IEa0yrmkrEd0T4fteYl5TtHoY5pwNRrmbieh6Y3ttAP8G0NQyCjzd+C1ftRx/GRGtM76jBUR0tuWzHCK6nYi+M77vN4mocoTvwVqv3kS0wjjuGyI61/LZdUSUbdR5CxGNMLafRUSLjWP2ENEbbs6lBAQz60Mfjg8A2QAGhGybDOBXAIMhHYyqAM4BcC6AigBaAPgRwARj/4oAGEC68f51AHsAdAOQCuAtSI/a676nAzgEYKjx2e0ATgIY53Atbur4IYDaANIB7DWvHcAEAOsANAGQBmCx/H0cv7dXADxneX8zgBWW9xcAyDC+v47GNV5qfNbKWjaAJeY1RauH8Zu0AEDGOY4ByDQ+GwAg2+a3fNV43RbAYeO4VAB3Gt9RqvF5DoCvATQ0zv0jgOsdrv96AIuM1/UAHAAw0vieRwPIA1AXQC3js9bGvo0AtDNe/x+AO4zvqAqAXsn+P5Snh44cFL8sYeZ/M3MhMx9j5uXMvIyZ85l5C4CZAPpEOP4dZl7BzCcBzAbQyce+lwJYxcwfGp9NhTSytris40PMfICZswEsspzrSgBTmTmHmfMAPByhvgAwC8CVlp71NcY2sy4LmHmt8f2tBjDHpi52RKyH8ZtsYWEBgC8A/MZFuQAwAsBco24njbJrQQTVZBoz7zTOPQ+RfzeTwQDWMfObxnf/OoAtAC4xqw0gg4iqMPMOZl5vbD8JEelGzHycmZe6vA4lAFQcFL/8Yn1DRG2I6CMi2klEBwFMgvQYndhpeX0UQA0f+55hrQczM6R3a4vLOro6F4CfI9QXAL6E9IgHE9FZADoDeNNSl55EtIiIconoAKSnHen7MolYDyK6lIiWEdFeItoPYKDLcs2yT5XH4hvJAdDYso+X3822XEu9GzPzQciI4mYAO4lonvF9AcBfICOYFYYpa6zL61ACQMVB8Uto+OTzANYCaMXMtQDcCzFtxJMdEPMKAICICMUbslBiqeMOAGda3kcMtTWE6l+QEcMYAB8zs3VUMwfAuwDOZObaAF50WRfHehBRVQDvAHgIQANmrgPgU0u50UJetwNoZimvAuT73eaiXq7LNWhqlsvMnzDzAIhJaRPkd4IxiriemRtBxGOm1d+kxBcVByUoakJ6ykeIqC2APyTgnPMAdCGiwSQRU7cCqB+nOr4N4M9E1NhwLt/h4phZEIfx72ExKVnqspeZjxNRD4hJJ9Z6VAZQCUAugAIiuhRAf8vnuwDUI6KaEcoeQkR9DUf93yA+nWUu6+bEPADtiegqw/F/NcSv8jERNTJ+v2oQP9YRAAUAQERXEpEp9vsh4lYQY10Ul6g4KEHxFwBjIY3J8xDHcVxh5l0ArgLwJMTB2RLASgAn4lDHZyH2++8ALIf00KPVbzOAbyDO1I9CPr4JwEMk0V53QhrmmOrBzPsB3AbgfYgzfTikYTY/XwsZrWQb0Uinh9R3HeT7eRYiMBcBGGL4H3zDzLkAhkCELM+o46XMvBdACkSEdhifnQdxugPi61hOREcgEWA3cyme/1LaIBn9Kkrph4hSICaM4cz8VbLroyilGR05KKUaIrqIiGobUUH3AMiH9NYVRYkBFQeltNMbEha5B2IGuYyZncxKiqK4RM1KiqIoShg6clAURVHCKBMJ0+rVq8fp6enJroaiKEqpIisraw8z24Z/uxIHIroIwFOQsLMXmfnhkM8rQxKKdYWEo13FzNlGHPY7kJw2rzLzBIRARHMBtGDmDOP9/QBugITSAcCdzPxxpPqlp6djxYoVbi5FURRFMSAix5n+Uc1KRnjgDAAXA2gHYCQRtQvZ7ToA+5i5FSS/zSPG9uOQCJK/OpQ9DJLoK5SpzNzJeEQUBkVRFCV43PgcugPYZCTz+hUy7X9oyD5DUTQD9B0A/YmImPkIMy+BiEQxiKgGJIvmZN+1VxRFUeKCG3FojOKJvkITcRXbh5nzISkK0qKU+w8AT0CSd4UygYjWENHLRFTX7mAiGm/kh1+Rm5trt4uiKIriEzfiYJcMLDT+1c0+RTsTdYIkP3vf5uNnIWkQOkGm1D9hVwYzz2TmbszcrX79SOl0FEVRFK+4EYccFM8C2QSSosB2HyMBWm1IbhcnegLoSrKe7RIAZ5GxGDkz72JZR7gQwAsQs5aiKIqSQNyIw3IArYmoORFVgrEgSMg+cyEJuwBJ9rWAI8yuY+ZnmfkMZk6HzHD9kZn7AgARNbLsejkkxXLgzJ4NpKcDFSrI8+yYl28vHedWFEVxQ1RxMHwIEwDMB7ABwNvMvI6IJhHREGO3lwCkEdEmiJN5onm8MTp4EsA4Yw3a0EinUB41FvZYA6AfJINjoMyeDYwfD/z8M8Asz+PHR2+knRp1L42933MriqIkkjKRPqNbt27sZZ5Dero0yqE0awZkZ9sfYzbqRy3u82rVgLFjgVmzwrfPnAmMGhXMuRVFUeIBEWUxcze7z8pl+oytDhnhnbYDwF13FRcAQN7PnGm//a677EcU0c6tJidFUUoC5VIcmjos8Ghu99KoFzisS2Wai0LNR6ed5nxuNTkpilJSKJdmJScT0cyZ8trus6pVgby88LJSUuwFwml7Whpw7Jj9ue+6S01OiqIkDjUrhTBqlDTGzZoBRPJs+giczEeANOJWqlUTIbHb7jSi2LvX+dx+zF2KoijxoFyKAyCNcXY2UFgoz6bz2KkhdmrU//lP++3NmtmX07Sp87mjmbuCQH0aiqK4oUyk7A6Spk3tTTtmo24XgeS03c48NWWK87mnTPF+jBdCzWmmTwOwr7+iKOWXcjtycGLKFHszkdcGOpLpKshjvOBkMrvrrmDKVxSl7KDiEEKQDbST+SjIY7yYiYL2aaiJSlHKLioONvhp1OONXUPsNfTVr08jiHMrilLKYOZS/+jatSuXZV5/nblaNWZphuVRrRpzWlrxbeajWTM5plkzZqKi907lvP560XncHuP13G6u0esx8Swn2edQlEQAYAU7tKtJb9iDeJR1cWjWzL4hjvRwEgGnhs2rCPg5txPRRMstQZWT7HMoSqJQcSjlEHlrnFNS7Lc3a+Z8Dj8C5PXcTsLkdO5I9fVyDV7LSfY5mHV0oiSGSOKgPodSgJNPIC3N2wS8SI5nr05pr+d2SicSLd9UkA73IBzoiZioqP4cpUTgpBql6VHWRw6RTBl2PUw/vVunY9LSgjl3pBGFn3N7uQazbkGYg8rS6ERRoGal0o8XM4OfhtCrAHktx8kMRZQYh3tQDW4ifA5OZkSi4M6hKMwqDuWSkhYxFK1xtjsmkq/Fq5BFanC9Xne8/QE6clAShYqDknT89Lj9mKi8luXVdJUIEhURpU5vRcVBKRH46aF7NVF5LSvo+RpBEeS5/cx5UcoHKg5KqSUoh7tTWX5MV6UJP6KolB8iiUO5XOxHKd1EWqzJa6oTpzW9nRZrSvbCS7NnS6LErVslxHnKlMjX7HR9ThBJ2hilfKCL/ShliiCTIzpl4fUzVyTeRJr/4DSHw2t9zeVqNaGiknSTUBAPNSspsRCU6SreEWJ+nOpej7npppJpTov0Palj3T9Qn4OieMOrwzbIpIZO5/CaRiXa5L/SIorRriER+bTKqvioOCiKD4Lo1UdqoL06hb3mvzKjt7xch9f5IEFPuPT63cZ7TkhZj+pScVCUOBOpUfXbqIeSiMgjr2YoP+eOJqRuI8qIgp3c6LWuzKV/VKHioChxJlIj4scc5ES85yx4FSA/oxav4cORBCjIyY1ehaksjCpUHBQlzvjJ6xTk7Ox4T5oL0t/h1Ng7zXyPlvwxnnm5/AhTsidQekHFQVESgFOD4NUpXBJJRKRUpFGI12iloEYnka4v2RMog7h3VBwUJcmUFhFwwo/AefUHBOlc9pqXy48w+cn9FakDEURqGa/3lYqDoigx47UB89rYJ8J34kUYogmTn3N4nVviVZi8CqmKg6IoCcdvmGs8fSdB+3+8nMNpROHH1xLUmh8qDoqiJIWSZk5LhP8nqFFLpNGMjhxUHBRFCZhECFYQIwqnR5BhtJHEQbOyKoqiJACnbMJjxwKzZoVvr1oVyMsLL8fMDOw1Q68dmpVVURQlyThlE/7nP+23P/WUfcbgKVOKysvOlhTr2dn+shJHQkcOiqIoJZQgRgeRiDRyqBjcaRRFUZQgGTUq+BGBW9SspCiKooThShyI6CIi+oGINhHRRJvPKxPRW8bny4go3dieRkQLiegwET3jUPZcIlpreX8aEX1GRBuN57r+Lk1RFEXxS1RxIKIUADMAXAygHYCRRNQuZLfrAOxj5lYApgJ4xNh+HMA9AP7qUPYwAIdDNk8E8AUztwbwhfFeURRFSSBuRg7dAWxi5i3M/CuAOQCGhuwzFMAs4/U7APoTETHzEWZeAhGJYhBRDQC3A5gcoaxZAC5zdSWKoihKYLgRh8YAfrG8zzG22e7DzPkADgBIi1LuPwA8AeBoyPYGzLzDKGsHgNPtDiai8US0gohW5ObmurgMRVEUxS1uxIFstoXGv7rZp2hnok4AWjHz+y7Obwszz2TmbszcrX79+n6LURRFUWxwIw45AM60vG8CYLvTPkRUEUBtAHsjlNkTQFciygawBMBZRLTI+GwXETUyymoEYLeLOiqKoigB4kYclgNoTUTNiagSgBEA5obsMxfAWOP1cAALOMLsOmZ+lpnPYOZ0AL0B/MjMfW3KGgvgQzcXoiiKogRH1ElwzJxPRBMAzAeQAuBlZl5HRJMgSZvmAngJwL+IaBNkxDDCPN4YHdQCUImILgMwkJnXRzjlwwDeJqLrAGwFcIW/S1MURVH8oukzFEVRyimaeE9RFEXxhIqDoiiKEoaKg6IoihKGioOiKIoShoqDoiiKEoaKg6IoihKGioOiKIoShoqDoiiKEoaKg6IoihKGioOiKIoShoqDoiiKEoaKg6IoihKGioOiKIoShoqDoiiKEoaKg6IoihKGioOiKIoShoqDoiiKEoaKg6IoihKGioOiKIoShoqDoiiKEoaKg6IoihKGioOiKIoShoqDoiiKEoaKg6IoihKGioOiKIoShoqDoiiKEoaKg6IoihKGioOiKIoShoqDoiiKEoaKg6IoihKGioOiKIoShoqDoiiKEoaKg6IoihKGioOiKIoShoqDoiiKEoaKg6IoihJGxWRXIF6cPHkSOTk5OH78eLKrorigSpUqaNKkCVJTU5NdFUVR4FIciOgiAE8BSAHwIjM/HPJ5ZQCvAegKIA/AVcycTURpAN4BcA6AV5l5guWY/wBoZNThKwA3M3MBEd0P4AYAucaudzLzx14vLCcnBzVr1kR6ejqIyOvhSgJhZuTl5SEnJwfNmzdPdnUURYELsxIRpQCYAeBiAO0AjCSidiG7XQdgHzO3AjAVwCPG9uMA7gHwV5uir2TmjgAyANQHcIXls6nM3Ml4eBYGADh+/DjS0tJUGEoBRIS0tDQd5SklliVLgAYNgLy8ZNckcbjxOXQHsImZtzDzrwDmABgass9QALOM1+8A6E9ExMxHmHkJRCSKwcwHjZcVAVQCwH4uIBIqDKUH/a3ix+HDQNu20sAp/li1Cti9G1i3Ltk1SRxuxKExgF8s73OMbbb7MHM+gAMA0qIVTETzAewGcAgiKiYTiGgNEb1MRHVd1LHEkZeXh06dOqFTp05o2LAhGjdufOr9r7/+6qqMa6+9Fj/88EPEfWbMmIHZs2cHUWX07t0bq1atCqQspeSwZQvw/fdAVlaya1J62bdPnrOzk1qNhOJGHOy6dKG9fDf7hO/AfCHE71AZwAXG5mcBtATQCcAOAE/YVopoPBGtIKIVubm5drt4YvZsID0dqFBBnmNtb9PS0rBq1SqsWrUKN954I2677bZT7ytVqgRAbO2FhYWOZbzyyis4++yzI57n5ptvxqhRo2KrrFKmMf8e+/cntx6lmb175VnFoTg5AM60vG8CYLvTPkRUEUBtAHvdVICZjwOYC8NUxcy7mLmAmQsBvAAxa9kdN5OZuzFzt/r167s5lSOzZwPjxwM//wwwy/P48bELhB2bNm1CRkYGbrzxRnTp0gU7duzA+PHj0a1bN7Rv3x6TJk06ta/Zk8/Pz0edOnUwceJEdOzYET179sTu3bsBAHfffTemTZt2av+JEyeie/fuOPvss/Hf//4XAHDkyBH87ne/Q8eOHTFy5Eh069Yt6gjh9ddfR4cOHZCRkYE777wTAJCfn48xY8ac2j59+nQAwNSpU9GuXTt07NgRo0ePDvw7U2JDxSF2VBzsWQ6gNRE1J6JKAEZAGnMrcwGMNV4PB7CAmR1HDkRUg4gaGa8rAhgE4HvjfSPLrpcDWOvmQmLhrruAo0eLbzt6VLbHg/Xr1+O6667DypUr0bhxYzz88MNYsWIFVq9ejc8++wzr168PO+bAgQPo06cPVq9ejZ49e+Lll1+2LZuZ8c033+Cxxx47JTRPP/00GjZsiNWrV2PixIlYuXJlxPrl5OTg7rvvxsKFC7Fy5UosXboU8+bNQ1ZWFvbs2YPvvvsOa9euxTXXXAMAePTRR7Fq1SqsXr0azzzzTIzfjhI0Kg6xY5qVfv45ufVIJFHFwfAhTAAwH8AGAG8z8zoimkREQ4zdXgKQRkSbANwOYKJ5PBFlA3gSwDgiyjEinaoDmEtEawCshvgdnjMOeZSIvjM+6wfgtgCuMyJbt3rbHistW7bEOeecc+r9m2++iS5duqBLly7YsGGDrThUrVoVF198MQCga9euyHbowgwbNixsnyVLlmDEiBEAgI4dO6J9+/YR67ds2TJccMEFqFevHlJTU3H11Vdj8eLFaNWqFX744QfceuutmD9/PmrXrg0AaN++PUaPHo3Zs2frPIUSiDHIVHGIgfI4cnA1z8EIJ/04ZNu9ltfHUTwU1bpfukOx59htZOYxbuoUJE2b2vcImjaNz/mqV69+6vXGjRvx1FNP4ZtvvkGdOnUwevRo25BO008BACkpKcjPz7ctu3LlymH7RBjE2eK0f1paGtasWYNPPvkE06dPx7vvvouZM2di/vz5+PLLL/Hhhx9i8uTJWLt2LVJSUjydU4kfOnKIHVMctm4FCgqA8nB7a/oMAFOmANWqFd9WrZpsjzcHDx5EzZo1UatWLezYsQPz588P/By9e/fG22+/DQD47rvvbEcmVnr06IGFCxciLy8P+fn5mDNnDvr06YPc3FwwM6644go88MAD+Pbbb1FQUICcnBxccMEFeOyxx5Cbm4ujoTY6JamoOMTOvn1AaiqQnw9sD/W4llHKbPoML5jBPnfdJT2Dpk1FGBIRBNSlSxe0a9cOGRkZaNGiBXr16hX4Of70pz/hmmuuQWZmJrp06YKMjIxTJiE7mjRpgkmTJqFv375gZgwePBiXXHIJvv32W1x33XVgZhARHnnkEeTn5+Pqq6/GoUOHUFhYiDvuuAM1a9YM/BoU/6g4xAazjBzat5f5DtnZwJlnRj2s1ENeTQ4lkW7duvGKFSuKbduwYQPatm2bpBqVLPLz85Gfn48qVapg48aNGDhwIDZu3IiKFUtW30B/s/jQtq3Mc6hTp8ixqrjn6FGgenXg978HXn4ZeO01YEzCjd/xgYiymLmb3Wclq3VQ4sLhw4fRv39/5Ofng5nx/PPPlzhhUOKHOXI4cAAoLJS5PIp7TH9Dp07yXF6c0tpClAPq1KmDLJ0eWy7Jz5d8QDVqSBqNw4eBWrWSXavShSkOZ5wBNGxYfsRB+xCKUoYxE8W1bi3P6nfwjmmKq1tXsieoOCiKUuoxTUoqDv4xRw6nnSbiUF4mwqk4KEoZRsUhdkLFwZzrUNZRcVCUMowpDmedJc8qDt4JNSudPAns2JHUKiUEFYc40bdv37AJbdOmTcMf//jHiMfVqFEDALB9+3YMHz7csezQ0N1Qpk2bVmwy2qBBg7A/gJbh/vvvx+OPPx5zOUpi0JFD7OzdC1SsKE799HTZVh78DioOcWLkyJGYM2dOsW1z5szByJEjXR1/xhln4J133om+owOh4vDxxx+jTp06vstTSie7dwNEQMuW8l7FwTv79olJiQho1ky2qTgovhk+fDjmzZuHEydOAACys7Oxfft29O7d+9S8gy5duqBDhw748MMPw47Pzs5GRkYGAODYsWMYMWIEMjMzcdVVV+HYsWOn9rvppptOpfu+7777AADTp0/H9u3b0a9fP/Tr1w8AkJ6ejj179gAAnnzySWRkZCAjI+NUuu/s7Gy0bdsWN9xwA9q3b4+BAwcWO48dq1atQo8ePZCZmYnLL78c+4zx9/Tp09GuXTtkZmaeSvj35ZdfnlrsqHPnzjh06JDv71ZxT26uNGynnSbvVRy8s3evmJSA8iUO5WKew5//LNPeg6RTJ8BoV21JS0tD9+7d8Z///AdDhw7FnDlzcNVVV4GIUKVKFbz//vuoVasW9uzZgx49emDIkCGOS2U+++yzqFatGtasWYM1a9agS5cupz6bMmUKTjvtNBQUFKB///5Ys2YNbrnlFjz55JNYuHAh6tWrV6ysrKwsvPLKK1i2bBmYGeeeey769OmDunXrYuPGjXjzzTfxwgsv4Morr8S7774bcX2Ga665Bk8//TT69OmDe++9Fw888ACmTZuGhx9+GD/99BMqV658ypT1+OOPY8aMGejVqxcOHz6MKlWqePi2Fb/k5gL16xeZRVQcvLN3b5G4Vq0qa0mXB3HQkUMcsZqWrCYlZsadd96JzMxMDBgwANu2bcOuXbscy1m8ePGpRjozMxOZmZmnPnv77bfRpUsXdO7cGevWrYuaVG/JkiW4/PLLUb16ddSoUQPDhg3DV199BQBo3rw5OhnTQCOlBQdkfYn9+/ejT58+AICxY8di8eLFp+o4atQovP7666dmYvfq1Qu33347pk+fjv379+sM7QRhigMg6TNUHLyzb1/RyAEoP3MdysU/NFIPP55cdtlluP322/Htt9/i2LFjp3r8s2fPRm5uLrKyspCamor09HTbNN1W7EYVP/30Ex5//HEsX74cdevWxbhx46KWEymXlpnuG5CU39HMSk589NFHWLx4MebOnYt//OMfWLduHSZOnIhLLrkEH3/8MXr06IHPP/8cbdq08VW+4p7cXMmtBKg4+GXv3qLvEBBxiBIPUibQkUMcqVGjBvr27Yvf//73xRzRBw4cwOmnn47U1FQsXLgQP0eZVXP++edjtrFm6dq1a7FmzRoAku67evXqqF27Nnbt2oVPPvnk1DE1a9a0teuff/75+OCDD3D06FEcOXIE77//Pn7zm994vrbatWujbt26p0Yd//rXv9CnTx8UFhbil19+Qb9+/fDoo49i//79OHz4MDZv3owOHTrgjjvuQLdu3fD99997PqfiHR05xI7VrAQUzXWIsPx7maBcjBySyciRIzFs2LBikUujRo3C4MGD0a1bN3Tq1ClqD/qmm27Ctddei8zMTHTq1Andu8uy2h07dkTnzp3Rvn37sHTf48ePx8UXX4xGjRph4cKFp7Z36dIF48aNO1XG9ddfj86dO0c0ITkxa9Ys3HjjjTh69ChatGiBV155BQUFBRg9ejQOHDgAZsZtt92GOnXq4J577sHChQuRkpKCdu3anVrVTvFOXh7w009AN9tcmkUUFAB79hQXh23b4l+/skRBgSQsDDUrmXMdGjdOWtXiDzOX+kfXrl05lPXr14dtU0o2+pu5Y+JE5qpVmfPzI++3ezczwDx9urwfPZq5efP4168ssWePfIdPPVW07ZNPZNuSJcmrV1AAWMEO7aqalRSllJGTAxw7Fn2WrjkBTs1K/rGmzjApLxPhVBwUpZRhNvrREsCFikPt2kVrOijusKbOMDHXlldxUBSlRLF7tzx7FYc6dUQYDh+OX93KGnYjh2rVgNNPV3Eo1XAZWAK1vKC/lXu8isPpp8uzmT1FTUvusRs5AOVjrkOZFYcqVaogLy9PG51SADMjLy9PZ027gLmo0d+6NfK+poikpcmzKQ4HDsSnbmURu5EDUD7EocyGsjZp0gQ5OTnINf9JSommSpUqaNKkSbKrUeI5eBD49Vd57WbkULcukJoq73Xk4B1THOxGDh98ULbX5C6z4pCamormzZsnuxqKEihmX4fInTiY/gZAxcEP+/ZJTipTYE3S00Wkd+6UtaXLImVU8xSlbGKais4+W8QhktVUxSF2QmdHm5SHcFYVB0UpRZji0K0bcORIkdnDDhWH2LGm67ai4qAoSonCNCudc448RzIt7d5dFKkEyDwHQMXBC+ZCP6GUh3UdVBwUpRRhHTkAzuJQWCg5mKwjh9RUoHp1FQcvOJmVqlWT71bFQVGUEsHu3UCtWsBZZ8l7J3HYt0+SxlnFAdAUGl5xMisBZTvUVfYAACAASURBVD+cVcVBUTyycydwzz3AlCmJP7fpR0hLk96rkziEzo42UXFwD7OzWQlQcVAUxWD9euD668XePHky8OCDkaOF4oHpRzAXu3eaCKfiEDvHjgEnTkQWh59/Lru5qlQcFCUCzMCiRcCllwLt2wNvvCEC8cc/AkePJj5PUW5ukZO5WTMdOcQTp9QZJuZchwgr/JZqVBwUxYGtW4F+/eTxzTfAAw/IthkzgHPPlX127kxsnXbvLmrwmzZ1FgfTcW2NVgJUHLzglDrDpKyHs6o4KIoNH3wAdOoEZGUBzzwjjfC99wL16snnDRvKcyLFobAwfOSwZ4/MdwjFHDmY9TVRcXCPU+oMExUHRSlHnDgB3HILcPnlQPPmwLffAjffDFStWny/ZIjD/v0SgWQVB8De75CbK/MaKlUqvt0UB81HGR3TrOQ0cijrcx1UHBTF4McfgZ49gaefBv78Z+C//wVat7bfNxniYJqKTLOS2TjZmZZCZ0eb6JoO7olmVqpevWzPdVBxKCUUFgJdukjDpQTPnDlA167S0M6dC0ydClSu7Lx/WhqQkpIccQgdOXgVByBxpqX8fGDYMBHa0kY0sxIgv0G5FgciuoiIfiCiTUQ00ebzykT0lvH5MiJKN7anEdFCIjpMRM+EHPMfIlpNROuI6DkiSjG2n0ZEnxHRRuM5wk9Tfli9Gli5Uuzemo8/WA4eBMaMATIygFWrgMGDox+TkiKNdCLFIXTxnjPOACpW9CYOiU6hsX078P77IriljX375HeuWdN5n7I81yGqOBiN9gwAFwNoB2AkEbUL2e06APuYuRWAqQAeMbYfB3APgL/aFH0lM3cEkAGgPoArjO0TAXzBzK0BfGG8L/csWCDP+/cDTz2V3LqUNdaulR7uXXcBZ57p/riGDZNrVkpJAZo0sReH0LxKJokeOZhhnlu2JOZ8QWKmziBy3qcsz3VwM3LoDmATM29h5l8BzAEwNGSfoQBmGa/fAdCfiIiZjzDzEohIFIOZDxovKwKoBMB0kVnLmgXgMrcXU5ZZsEDSNA8dCjz5pEacBMnq1fLcsaO34xItDnYRSHYT4ZgliimSWSlRo0/z+ymN4rBvX2STEiDicOJE2Zzr4EYcGgP4xfI+x9hmuw8z5wM4ACAtWsFENB/AbgCHIKICAA2YeYdR1g4ANv0fgIjGE9EKIlpR1ld7O3kSWLwYuOAC4P775Y89bVqya1V2WLNGGk2vC9ElY+RgXdkNsJ/rsH+/jIRKgs/B/H42b07M+YLEKemeFTOcNdrCS6URN+JgN6gKDYRzs0/4DswXAmgEoDKAC1zUxXrsTGbuxszd6tv9C8oQWVkSXdKvn8TeX365OEzNUDslNtasATIzI5sP7GjYUHqMiTIp2JmKmjUDtm2TDoSJ0+xoIHlmpf37S9/9GinpnkmLFvK8alX865No3IhDDgCrJbYJgO1O+xBRRQC1AURYhqQIZj4OYC6KTFW7iKiRUVYjyMiiXGP6G/r2lef77xcn6tSpyapR2aGwsEgcvNKwocw7yMsLvl52WCfAmTRrJtewbVvx/YCS4ZC2jqxKm2kpUtI9kzZtJJDhuefK3twRN+KwHEBrImpORJUAjIA05lbmAhhrvB4OYAGz81dFRDUsAlARwCAA39uUNRbAh24upCyzYIE0XuafPTMT+N3vxLQUaSUwJTrZ2TIq8+pvABI/18GaOsPELpw1kjhUqiTZXBMpDhWNlepLm2nJjVmJSCZNrl4NfPVVYuqVKKKKg+FDmABgPoANAN5m5nVENImIhhi7vQQgjYg2AbgdlggjIsoG8CSAcUSUY0Q6VQcwl4jWAFgNGR08ZxzyMIDfEtFGAL813seNRPX6/HLiBLB0qfgbrNx3H3DokDinFf+sWSPPfkcOQOKckU5mJaC4ODjlVTJJZAqNnTuBzp3ldTJGDlOnSjZdrxQUyHcUzawEAKNGiYiUtShCV/McmPljZj6LmVsy8xRj273MPNd4fZyZr2DmVszcnZm3WI5NZ+bTmLkGMzdh5vXMvIuZz2HmTGZuz8x/MkQIzJzHzP2ZubXxHLe+8YMPyh/oeFgsVcnh66+lfv36Fd/eoQNwxRVyQ5Z0gSvJrFkjvb/27b0fm8iRg2m+Cm3wmzaVZ7cjB8CdOPz978BVV/mrq5Vdu4CWLaXeiRaHPXuA228HXnjB+7FmNFe0kQMgI7EbbpB8XGXJMV2uZ0ifdZbYa/30LBLFggVAhQrA+eeHf3bffZJ07YknEl8vkyeflIVvSiurV0uKjOrVvR+bSHHIyxObdmiDX6UK0KBBuDjUrOk8w9uNOHzxBfDRR7E723fulO+pRYvEm5U2bJBnP5PUoqXOCOWPf5ROxowZ3s9VUinX4mCaEsw495LIggWS1sGMMrHSvj1w5ZWSUmPPnsTXDQCefx546aXknDsI/DqjAWmAq1ZNjDiEzo62EjrXwWl2tIkbcdiyRToescz+PXxYHg0byugh0SMHs9P300/ej3WTOsNK06YSRfjCC/ZZcksj5VocWraUP7dpdy5pHDkCLFsW7m+wcu+9yRs9HDwoyep27CidKT0OH5berF9xIErcXIdIfoTQRX9iFYd9+4o+X7vWe11NTF+MOXLYulUWx0kU69bJ808/eY8kipaR1Y5bbpHv7fXXvZ2rpFKuxSElRcLQSqo4LF0q8euh/gYr7doBF10k+WsSzcqVRa+//955v5LK2rXSaPgVByDx4mDX6DdtKg2v2QDGKg7WHv5333mvq4kpDg0aiDgUFjovaxoPzJHDwYPeHfBeRw4A0Lu3ON+nTy8bYa3lWhwACWFcvbpk/pgLFkgYYO/ekff7zW+AH35IfFhrVlbR69IoDmanwE8Yq0mixCGaWen48SIBccqrZBJtTQdTHFJSYhMH83sxzUrWshPB+vVFjbtX05KfkYMZ1rp+fdHcpNJMuReHzExx9u3YkeyahLNgAdCjR3RnaY8e8rxsWfzrZCUrC2jUSNI5mM6/0sSaNeI3MMNB/ZDIkQORfWNlDWdldjdyKChwto2bDfhvfhObWckqDuZM4kQ5pfftk//0hRfKe6/i4GfkAAAjRsh3XxbCWlUcDJNCSTMtHTggjW8kf4PJOedIRNP//hf/elnJygK6d5don9I6cvCTNsNKw4bSuYi3LX33bkm4l5IS/plVHA4eFFNkNHEAnE0tW7bIuc47T0akfq9t1y65L+vXl05E5cqJGzmYnZVLLpFnr471vXulUxa6kl40qlQB/vAHYN680jfpLxQVhxIqDosXi402kr/BpEYNmffw9dfxr5eJ6Yzu2lVSCJQ2cWCOLVLJxAxn3R3nJC92qTNMrOIQbY4D4E4cWrSQeyo/3/9vu3NnkaBVqCBlJkocTH/DeefJ9foxK3kxKVm56Sa55meeib5vSabci0PdupLDv6SJw4IF0gsxTUbR6NlTzEqJSgK3cqU0sF27Am3bAps2JTYSJVa2bpXRWSz+BiBxcx3sUmeY1KkD1KoVvDhkZMh7v6Ylc46Didu5Do88Agwf7u+cJuvXSyRiero8/JiVvJqUTM44QyaovvyyZDEorZR7cQCk91jS5josWAD06iUC4YYePaQ3nyjbv+mMNkcOBQWlaxgdS9oMK4kSh0gjB6AonNWNOERKvpefL+W0aCHrh6Sm+ndK24nDli3Rgz/mzJGV46yZZr2ybp10WipUAJo392dW8jtyAMQxffAg8K9/+S8j2ag4QBqI77+XPEYlgT17pPFy428w6dlTnhNlWsrKkvUPGjQQcQDiJ0z79wNHjwZbptkZMHvHfknkyCGaOGzdGj2vEhB5wZ9ffhGhb9FChKFNG//isGuX3B8mLVtKTzpSupcjR+TeP3kyNhPU+vUS5g0UiYOXiMRYzEqAdNbS04FFi/yXkWxUHCCmhVhsq0Fj3lBu/A0mrVvLzZwop3RWlowagCJxiMf3t3at/LlvvDHYcteskcYq0vrAbjAbv3iKw8mT0lhFGg14GTlEMiuZDbIZXZSR4c+sxGw/cgAijzBXrCgyjfrtbBw8COTkFIlDerp0Lrz4hWIxK5lkZsYW7ZVsVBxQ8pzSCxaIk7lbN/fHEElvJREjh0OHipzRgNS1SZPgxeGXX2SC3/79ktQsyJFdEM5oQCJw6taNrziYqVEijQaaNpXvafNmibKpWtV530hmpVBx6NChKArKCwcOyO9lJw6RRgTW+9evOJjHWUcOgDfTUqxmJUC+ux9/LDkWCa+oOEB63ZUrlxy/w4IFkmjPuhykG3r0kOF0vFNZWJ3RJm3aBGtW2rcPuPhiEaLJk+X5yy+DKfvoUWDjxmDEAYj/XIdIs6NNzIilrKzI+wFyr1et6iwOFSsWLZnaoYM8e+0BW+c4mJiNdDRxaN0aaNzYf2fDjFQyM+2a53XrlD52TBr0WMUhI0NMdCXFIuEVFQfIn6F9+5Ixcti2TWLLvfgbTHr0kEb7m2+Cr5cVqzPapG1b+RMEMdP8+HHgssuk1/X++5J2uWpV4N//jr1sQJyVhYWlTxyi+RwA8Q+4WTXXKYXGli1ihjHnU/iNWLKmzjCpVk3mOziZlZhFHHr0kPvJb2dj/XoRQFMUzO/GrTj4nQAXil9hLSmoOBh07FgyxOG11+T50ku9H9u9u5iX4m1aysqSnp31j9+mjSSysy5X6YeCAmDMGJnn8dprIpJVqwIDB0oESxDiE0TaDCvxFodIqTNMzAawoCB2cTDNP2a5NWt6d0rbjRyAyHMdfvlFjjv33Ng6G+vXy/1oClyNGvKduDUr+UmdYcdZZ8UW7ZVsVBwMMjOlt5OoVb3sKCyUlL99+0oYoVdq1xY7a7yd0itWFB81APJnBmIbQjMDt90GvPOOZJkdMaLos8GDJRonCAFfs0bs8mbPMlZKglmpQYOi2byRRMTErTgQyeghKHGIlLrb7NT06CGN+6FD/job69YV+RtMmjdP/MjBjPbSkUMppyQ4pT/7TG7gWCJzevaUP1m8EgmGOqNNgohYeuwxWZvi9tvlYeXSS6Whmhu6erkPVq+WIX+FgO7+hg0lBPPw4WDKCyU3V0yfdmt6mFSoULQqnN+Rw4ED0jBaxQEoiljyck/t3CmNY2gD26KFRBLZOWm//lrm9WRmFnU2vJqWDh8WB3qoOHiZCOd1oZ9I+BHWkoKKg0FJEIfnn5c/9uWX+y+jRw8ZFv/4Y3D1smI6o0MjqRo2lFm6fu3E27cDEyfKzNLHHgv/vEEDMTfE6ncw02YEZVIC4j/XwZwdHU3MTNOSX3EwG89QcejQQeYmeLm+XbtkBBNa5xYt5DewM/F8/bXcV6mp/kei5v52I4eff3aXQSAosxIg393Wrd6jvUoCKg4G9erJtPdkicP27dIrvvZa78m+rMR7MpydMxqQXr1pJ/bDkiXSaPztb86N4ODBwPLl8l35Zds2+fMH5YwGYheHn3+OPMkvUuoMK7GKQ2gYq4npWPXSAw6d42DilLr7xAng22+L0sU0aCB19NrZCI1UMmneXOaLuLl3gjIrAbGnIEkmKg4WMjOTJw4vvSTOxPHjYyunTRvpwcdTHEKd0dZz+xWHpUslmqVTJ+d9hgyR53nz/J0DCC5thpVYxGH/fmlAIq3DHS11hokfcbCaipzEwU8D5yQOThPhVq8WgTDFwexs+BGH1NQiETJJT5dnN6alvXvFmV2rlrdz21GaI5ZUHCxkZsrN5Seny6BBssi4HwoKxBH929+G39ReqVBBzC/xckpbZ0aH0rat9Mz8zLNYskTqHWluR/v20gOMxe9gzmUx/7RBEIs4vP662Mk/+cR5n2ipM0xMcXDrkM7PLz5i2bJFTCnmJDmTevXkGr2MHHbtsheHBg2kExA6crA6o038zJ1Zv16COSpWLL7dy0S4fftk1BBLKneTpk0lWkrFoZSTmSmZRX/4wdtx+/cD8+cDs2b5c0p+8omE8f3hD96PtaNnT/kjB+0gPXRIvhsncTCd0l6/v8OHpdHu1SvyfkQyevjiC/+LuK9ZI73I0AYwFtLSpKfpVRyYgZkz5fWGDc6ROW7NSpddBjz4INClS/R97VJohEYqWenQwb04FBaG51UyIbLPzvr11zLxrnHjom1t20o5pg/ADdacSla8zHUIInWGSYUKpdcpreJgwXRSejUtffWV/CGOHvXXq33+eellmWaTWOnRQ+qzfHkw5ZmsWhU+M9qK3wR8y5bJ6CmaOADidzh+HPj8c2/nMAkqbYaVlBTprXsVh2++kUbjppvk/RdfhO9z/LiIspvRQO3awP/7f/YLAoXiVRwyMqThLSiIXnZenuxnN3IA7Oc6LFsWnp7eq1P66FEp104cKlcWn6IbcYg16V4opjiUxKWII6HiYMFMUexVHBYulJuvcWPgjTe8Hbt1K/Dxx8B113lPl+HEuefKc9B+hxUr5NlJHMxMnl79DkuWSI/SdKZH4vzzpRH0I8LHj8uoJmhxAPzNdZg5U0wsDz0kIwM7cXCTSM8PoeJQUCAml0gjh2PH3GVKdZrjYBKaunv3bnlv3rcmXsNZf/hByrQTB8B96u4gRw5AUbRXMudQ+UHFwUJqqtxYXnMsLVokDdvVV4t5yUyU5oYXX5Qb+oYbvJ0zEqedJkIXtN/BdEY7/elTU4FWrbyLw9Kl8gdyY+pJTZWcS//+t7terJXvvpNjSoI4HDwo6xaMHCnX3b+/jIZCe5duUmf4IVQctm0TX1skcQDcmUfsUmdYadlSevnmfuba56Ejh/R06XS5FQenSCUTtxPhgki6Z6W0RiypOITgNWJp714xt/TrJ+KQny8zfN2Qny9RShddFNsi93bEYzJcJGe0iVcnYn6+iJgbk5LJkCHSo/aaQ+rTT+X5/PO9HecGr+LwxhvSQJrRaQMGiDM/VFjdpM7wQ6g4OEUqmbRrJ6M7Nw2cm5GD9Zxffy0O5FBfSUqKpKDwIg4VK0oHxY70dPHtRQs4Cdqs5CcUuCSg4hBCx47yJ3Xb+//qK2mA+/aVY9u2Bd58092x8+bJuYJeqwCQXlhurvflEZ2I5ow2adtWnI1uI75Mx3nv3u7rctFF0nB4nRA3bx5wzjnOPdpYaNhQesJul2mdOVM6IuecI+/795fnUF+Km9QZfghN2x1NHKpVkx6/mwbOjzh07CjnCMVLOOv69ZLR1WmeUPPm8vvk5DiXUVAg30mQZqX69UXcdeRQyjFNDm5VfuFCmfJ/7rnSs7r6akka98sv0Y997jkx0wwa5L++Tpj2+6BMS9Gc0SZt2showO2SoUuXyrOXkUPdutL79+J3yM0V84WfhIZuaNhQrtucQBWJrCyZaT5+fFG4ZHq6NL6h4hCvkYMpDmbY8ZYtIrhnnul8jNuIpZ07JVmi00JK6ely3Zs3S2P8zTfOa6W3bSsdnOPHo5/XKVLJxE3q7gMH5D4PcuQAeIv2KimoOIRgioNbv8OiRcB554ltFBAbMiD25Ej89JOYOa6/PjwmOwjat5fkckE5pZ1mRofi1Ym4dKkIpJkXyC1DhkiCNbci9Mkn8qe/5BJv53GLl7kOM2dK4zlqVPHtAwZIZyM/v2jb7t1yb8W6Yl0oVarIwzpyaNYs8r3YoYOsgxGtoTbDWJ3mCVSpIr/5li3SoB8+HFkcmKOngzlxAti0KbI4mBPhIjmlzbDZIEcOgPgdzFTxpQUVhxAaNJBemhu/w969sp91Oc+WLSV1dqSoJTNNRGqqiEM8SEmRegQ1csjKklBAJ1OBiZlN1q1TeskSMSl5nXA0eLA8uzUtffSRrCXQubO387jFrTgcPiz3xpVXhifSGzBAzHfWEGRzjkMQE7JCsabQiBTGapKRIY1bNOF3mh1txYxYspv8ZsVtePQPP0jdIonDmWfK/yLSyCHIpHtWMjLEx+RlNbpko+Jgg9u1Hb78ssjfYOXqq8UM43RDv/EG8O67wKRJRStuxYPzzxfzRRAJ4ZYvjz5qAKSH27ixu5HD1q1i//ViUjJp2VIagg8/jL7vyZPAf/4j5rugMrGG4lYc5swRgbBLk9Kvn4iA1bTkNnWGH7yKg1vHqhtxaNlSRn3LlskkQqfMAGedJd9JtPspWqQSIKOiM89MjjiURqe0ioMNmZkyBLQO7+1YtEjMA927F99+5ZXSCNk5pnNygAkTxBT1178GVmVbrrxSelNvvRVbOf/7n/TMBg50t7/bBHxLlsizF2e0lauukt9g06bI+y1dKqGj8fI3AO7FYeZMETW7OR1paRKxYxUHt6kz/GCKw6FDIkLRxKFVKzFxRXOsOqXOsNKiBbBjh5jRevRwHhlVrSq+AjfiUKGCiEkk0tOTY1YyRzSlySmt4mBDZqbYVaPZORculF5vaHREo0aygtkbbxQPJWUGfv97SdExa5a7mayx0K6dJLKbPTu2cp54QhqScePc7W8m4IsWRrt0qeSd8Zvn6IYbpDf47LOR95s3T36jAQP8nccNNWtKQxZpotOqVTICszqiQxkwQMTYTH3iNnWGH0xxcErVHUrFiiL8kXq/J09KpF+0iDBrxFLo5LdQ3HQ21q8vEq9IRJvrEK+RQ82acm4dOZRyzj9fGu4XX3TeZ88e+aGt/gYrV18tw2ar/fjZZ2VBnyeecI7FDppRo6QOGzf6O37zZlnH+aabpCF3Q9u20huNlh556VLpNfp1yDdqBAwbBrz8cuSU1x99JKY/t/X3A1H0uQ4vvCCN15gxzvsMGCAN7FdfyftEmJXMkFI3K+NFi7rJzZVOgRuzkomTv8GkbVsZuUaa9BgtUskkPV3uSyenerxGDkDRokmlBRUHG9LT5Q/87LMy9LXjyy/lOdTfYHL55dJbNR3TGzeKE/rCC4NLsOeGkSOl4fI7epg2TYRywgT3x7hZFe7AAfHr+DUpmUyYIA2cUwDA5s1Sj3hFKVmJJA5Hj0oG1uHDI/dKe/USAfn8c0kuePRo/EcO0eY4WOnUSWZTOwl/tDkOJua5iMLNsqG0aSPRSE7moF9/lf+XG3EwBXDrVvvPd+2S+RbRRiB+6NBBRO7XX4MvOx6oODhw993Sg3v4YfvPFy2Sm8icxBRKnTrSIL31ltwMY8eKWLz0UnwiT5xo3FgEbPZs77Ol9+6VXvmoURKp5BY3ESbm7G0/zmgrvXvLn27GDPvr++gjeU62OPzrX+L3iNYxqFpVrunzz+M3x8HEFIfNm2Xeg5vesmmaM2ebh2Ka1aKJQ716MpJr2zZ62pRo4dFr1oh/0Is42JmWDhyQ/4lThy9WMjKknl6zFjtRWAj85S9FYeZBo+LgQMuWYmN//nn7VMoLF8qfOFKyvKuvlsZi2DCxI8+YUTwlcaIYPVqctl6ztD73nPRcQ9dzjkajRrJQSqSRw9KlRWtPxAIRcPPNYs+3C9udN0/EKtZ1MtzgJA6FhTIC69LF3UhpwABp8EzzTTzF4eRJCb5o0cJdp6VDB/EnOImDef3RfA5EwNChRfOCIhFNHO6/X+43NwETkRb9efJJ6RD94x/Ry/FD0BFLy5dLnf0uzRsNV+JARBcR0Q9EtImIJtp8XpmI3jI+X0ZE6cb2NCJaSESHiegZy/7ViOgjIvqeiNYR0cOWz8YRUS4RrTIecZoJEJ277xY750MPFd++e7f8oZz8DSaXXCKOqI8+krWR3fwR4sHvfifDZC+mpRMngKeflj+cV4cxUfRV4ZYsERNFEJO7Ro2SxmHGjOLbDx2SEV48o5SsNGwovqjQ1CGffSbfxZ//7K4BNlNpmBMp42lWAiTc2Y1JCZD6Dxwo12Q3ocutOABiZrv77uj71a0r5dndT/Pny//rnnvcfU9nnCEj+FAT1Z490tAOH+5uPQw/nHWW+NeC8ju8956UF6/7O6o4EFEKgBkALgbQDsBIIgodwF0HYB8ztwIwFcAjxvbjAO4BYBe0+TgztwHQGUAvIrrY8tlbzNzJeERwC8eX9HSJLnrhheLpMKL5G0yqVhVBOOMM4J//TKw5yUrt2nIDzZkTPTzX5I035I/uN9y2TRtxEto1ICdPSnx7rCYlkxo1ZJT3f/9XPFro88/lXIkwKQFFphQzH5LJtGny2VVXuSunSxdpuM05HPEcOQBi7nIrDoD4zfbsEVEJZedOEWq7PEmxYJdjKT9fRrUtWwJ/+pO7cipUkJngoSOHhx+WUfKkScHU145KleR/4SQOy5bJaN0NzCIO/fuHT6YMCjcjh+4ANjHzFmb+FcAcAEND9hkKYJbx+h0A/YmImPkIMy+BiMQpmPkoMy80Xv8K4FsAcZwO5p+77pIf4sEHi7YtWiQNkptJYc88Iz2eevXiVkVXjBoljZbdmgGhMEsvKjPTf/hnv37izB8yJHzZ0NWr5Y8YqzPayh//KEJgjTCbN0+EMSgRiobdXIcNG2QC3s03OyeECyUlRUKhzdXu4j1yALyJQyS/g9MKcLFiZvu1+pVeeEE6II895s2BnJ5eXBy2bZP/6ZgxRSaseOG0Ktz77wN9+khUoJuRxbp1Yiq+/PLg62jiRhwaA7Cmkcsxttnuw8z5AA4ASHNTASKqA2AwAGuz9TsiWkNE7xCRbSowIhpPRCuIaEWu6bmLA02bSoqLl14Cfv5ZtrnxN5ikpgafF8cPgwZJY+DGtPTpp3KD/uUv/kc7Y8fKaGn+fPErWJ1w5uS3IBvts8+WRuu556RHWVgoiyhdeGFwiyhFw04cnnpKGi6vEWpmA1ytmuTIigd+xaFBAzEJ2omDm9nRfmjbVpzn5shw/34xJfXtK8ujeiF00Z/Jk+V+ue++oGrrTIcOcu5Dh4q2PfecmLM6dBAz0axZjoef4r33ivw28cKNONg1D6FxIW72CS+YqCKANwFMZ2Zzjal/A0hn5kwAn6NoRFK8cOaZzNyNmbvVj1fXyuDOO+WHmDJFbs4NG6L7G0oalSvLDfj++5HnBADA44+LKWzECP/nI5Je0BdfiJOve3fpyQPijG7WLHjnQcTUsQAACjtJREFU/IQJMgP93/8Gvv1WGqpEmZSAcHHIywNee00CArzeoqY4xMukBPgXB0BEd+nS8HXK4ykOQJFpafJkua+mTvXegWneXCLBDh+WSK0XX5QJlW7mecSKufDPunUyCrrvPvmfXHyxWCQuuUQi26KZf997T7IsxOO7NnEjDjkArL33JgBCo5xP7WM0+LUBuEhejJkANjLzNHMDM+cx8wnj7QsAXBhv4kuTJjKr9ZVX5AHEL9wtnowaJX+ISKmuV68WW/0tt7g3g0Ti/PMl1K51azExTZ5clGwvaC69VEZ6M2aIk5JI/nSJwjSnmOLwwguytOatt3ovq1UruZZ49ntMcahQwXtW3IEDxYy3aFHx7W5SZ/jBup70xo3A9OniD+zUyXtZ1uys998vI0s3jvEgMIM7Vq2S0eSkScC110qnrXp18Z3t2iUjbie2bJH/6bBhca4sM0d8AKgIYAuA5gAqAVgNoH3IPjcDeM54PQLA2yGfjwPwTMi2yQDeBVAhZHsjy+vLAXwdrY5du3bleLNtG3PlyswVKzLXrMl88mTcTxk4BQXMTZowX3qp8z5jxjBXr868d2+w5z56lHn0aGbpLzH/85/Blm/y4INSfpMmzD16xOcckahTh3nCBOZff2Vu3Jh5wAD/ZX3wAfOHHwZXt1COHZPvqlkz78ceP85crZpca2h5kycHVsVTFBYy16jB/Kc/MQ8dKq937PBX1tdfSz0ffpiZiPnvfw+2rpEoKJD/V/XqUoe77pJrMzlxgrlePebhw53LePxxOXbLltjrA2AFO7X9Th8U2wkYBOBHAJsB3GVsmwRgiPG6CoD/A7AJwDcAWliOzYaMIg5DRhjtIKMPBrABwCrjcb2x/0MA1hkitBBAm2j1S4Q4MDPfeqt8Y4MGJeR0ceFvfxOBy80tvn3nTuY77pDPbrklPucuLGR+4gnmpk2DubHt2L2buVKl+DVS0WjTRv7Yb7whdZg3L/F18ELlysz9+vk7dtAg5rPOKnqfnS3X/OKLwdQtlG7dmBs2lHM89JD/cnbtkjKqVGGuVYt5z57g6uiGHj1ElJ5+2v7zW2+Vezgvz/7z885j7tQpmLrELA4l/ZEocdixg7luXebnnkvI6eLCqlXFe+7Z2cw33yx/FCLmK69M/J8laMwRysqViT93377MvXoxn3MOc+vW0lMsybRqJb1xP0ybJt/zTz/Je7NHHi9BHDNGyk9Pl1GKXwoLZdQDMD/wQHD1c8uqVcyLFzt/vnKl1G3GjPDPtm+X/+mkScHUJZI4xGENsrJLw4aSUyYeeVcSRWam5LyfOVPiqmfPFtv8NdcAf/979JTHpYEHH5QIqY4dE3/uhg3FfnzihIRHxmv9iKBYtEjmJfjhwgvl+dNPxSfnNnWGX8z0GI8+KqvJ+YVInM+7dgG33RZM3bwQ7b7s1En2efVVCdG28uGHYpiNu78Bmj7DM1WqJG8yWxAQiWN61Srg7bcl/t6M2CgLwgDIgi4TJiTnd2rYUIShTh0J5y3pNG7sP9T67LPluzZDWr3MjvbDdddJmOfw4bGXNXWqTJosCWHmdowbJ+kx1q0rvv299yS4w00eqVhRcSiH3HKLjByys2X2bqRF5RVvmL3mG26Ib4rwkoCZSuPzzyX00hSHeIXf1q8vI9wgRP+3vy3ZEYdXXx0+52HfPpljNWxYYjo+Kg7lkOrVpfGKZwx9eaVzZ1nRzUuK89LMhRfKDPjly0Uc0tKCCYEu75x+evich3nz5HUiTEqAioOiBMrAgTLByuu8gdJK//7Si/300/ilziivjBsngmua7d57T8yA3bol5vwqDooSMKXZJ+WV006TNU3mz4/f7OjyyqBBkpPt1Vclz9Z//iO5lBIV5KDioChKTFx4oUS+bdyo4hAklSpJ8MiHHwJvvilLmybKpASoOCiKEiMDB0riutxcFYegGTdOVpL8y1/En/Ob3yTu3CoOiqLExLnnFoWEqs8hWMw5DwcPSm6yigmcmabioChKTKSmFq1epyOH4Bk3Tp7juXaDHSoOiqLEjLl+s44cgufGGyWTQSLTzwPQ9BmKosTOyJGyMlkibeLlhSpVZFJcolFxUBQlZurUAZ54Itm1UIJEzUqKoihKGCoOiqIoShgqDoqiKEoYKg6KoihKGCoOiqIoShgqDoqiKEoYKg6KoihKGCoOiqIoShjEzMmuQ8wQUS6An30eXg/AngCrU1oor9cNlN9r1+suX7i57mbMXN/ugzIhDrFARCuYOUFrK5Ucyut1A+X32vW6yxexXrealRRFUZQwVBwURVGUMFQcgJnJrkCSKK/XDZTfa9frLl/EdN3l3uegKIqihKMjB0VRFCUMFQdFURQljHItDkR0ERH9QESbiGhisusTL4joZSLaTURrLdtOI6LPiGij8Vw3mXWMB0R0JhEtJKINRLSOiG41tpfpayeiKkT0DRGtNq77AWN7cyJaZlz3W0RUKdl1jQdElEJEK4lonvG+zF83EWUT0XdEtIqIVhjbYrrPy604EFEKgBkALgbQDsBIImqX3FrFjVcBXBSybSKAL5i5NYAvjPdljXwAf2HmtgB6ALjZ+I3L+rWfAHABM3cE0AnARUTUA8AjAKYa170PwHVJrGM8uRXABsv78nLd/Zi5k2VuQ0z3ebkVBwDdAWxi5i3M/CuAOQCGJrlOcYGZFwPYG7J5KIBZxutZAC5LaKUSADPvYOZvjdeHIA1GY5Txa2fhsPE21XgwgAsAvGNsL3PXDQBE1ATAJQBeNN4TysF1OxDTfV6exaExgF8s73OMbeWFBsy8A5BGFMDpSa5PXCGidACdASxDObh2w7SyCsBuAJ8B2AxgPzPnG7uU1ft9GoC/Ayg03qehfFw3A/iUiLKIaLyxLab7vGLAFSxNkM02jestgxBRDQDvAvgzMx+UzmTZhpkLAHQiojoA3gfQ1m63xNYqvhDRpQB2M3MWEfU1N9vsWqau26AXM28notMBfEZE38daYHkeOeQAONPyvgmA7UmqSzLYRUSNAMB43p3k+sQFIkqFCMNsZn7P2Fwurh0AmHk/gEUQn0sdIjI7hGXxfu8FYAgRZUPMxBdARhJl/brBzNuN592QzkB3xHifl2dxWA6gtRHJUAnACABzk1ynRDIXwFjj9VgAHyaxLnHBsDe/BGADMz9p+ahMXzsR1TdGDCCiqgAGQPwtCwEMN3Yrc9fNzP+PmZswczrk/7yAmUehjF83EVUnoprmawADAaxFjPd5uZ4hTUSDID2LFAAvM/OUJFcpLhDRmwD6QlL47gJwH4APALwNoCmArQCuYOZQp3Wphoh6A/gKwHcoskHfCfE7lNlrJ6JMiAMyBdIBfJuZJxFRC0iP+jQAKwGMZuYTyatp/DDMSn9l5kvL+nUb1/e+8bYigDeYeQoRpSGG+7xci4OiKIpiT3k2KymKoigOqDgoiqIoYag4KIqiKGGoOCiKoihhqDgoiqIoYag4KIqiKGGoOCiKoihh/H/BlIah4r1ODQAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# load the best model\n", "best_model = load_model('1dcnn_model')\n", "\n", "# Compare the prediction with y_true\n", "preds = best_model.predict(X_val)\n", "pred_pm25 = scaler.inverse_transform(preds)\n", "pred_pm25 = np.squeeze(pred_pm25)\n", "\n", "# Measure MAE of y_pred and y_true\n", "mae = mean_absolute_error(df_val['pm2.5'].loc[7:], pred_pm25)\n", "print('MAE for the validation set:', round(mae, 4))\n", "\n", "mae = mean_absolute_error(df_val['scaled_pm2.5'].loc[7:], preds)\n", "print('MAE for the scaled validation set:', round(mae, 4))\n", "\n", "# Check the metrics and loss of each apoch\n", "mae = history.history['mae']\n", "val_mae = history.history['val_mae']\n", "loss = history.history['loss']\n", "val_loss = history.history['val_loss']\n", "\n", "epochs = range(len(mae))\n", "\n", "plt.plot(epochs, mae, 'bo', label='Training MAE')\n", "plt.plot(epochs, val_mae, 'b', label='Validation MAE')\n", "plt.title('Training and Validation MAE')\n", "plt.legend()\n", "\n", "plt.figure()\n", "\n", "# Here I was using MAE as loss too, that's why they lookedalmost the same...\n", "plt.plot(epochs, loss, 'bo', label='Training loss')\n", "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", "plt.title('Training and Validation loss')\n", "plt.legend()\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add LSTM after 1D CNN" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"sequential_13\"\n", "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", "zero_padding1d_9 (ZeroPaddin (None, 9, 1) 0 \n", "_________________________________________________________________\n", "conv1d_22 (Conv1D) (None, 7, 64) 256 \n", "_________________________________________________________________\n", "conv1d_23 (Conv1D) (None, 5, 32) 6176 \n", "_________________________________________________________________\n", "average_pooling1d_9 (Average (None, 3, 32) 0 \n", "_________________________________________________________________\n", "lstm (LSTM) (None, 32) 8320 \n", "_________________________________________________________________\n", "dense_15 (Dense) (None, 1) 33 \n", "=================================================================\n", "Total params: 14,785\n", "Trainable params: 14,785\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "model = Sequential()\n", "model.add(ZeroPadding1D(padding=1,\n", " input_shape=(X_train.shape[1:])))\n", "model.add(Conv1D(64, 3, strides=1, use_bias=True))\n", "model.add(Conv1D(32, 3, strides=1, use_bias=True))\n", "model.add(AveragePooling1D(pool_size=3, strides=1))\n", "model.add(LSTM(32, dropout=0.1, recurrent_dropout=0.5, activation='tanh'))\n", "model.add(Dense(1, activation='tanh'))\n", "\n", "model.compile(optimizer=Adam(amsgrad=True), loss='mean_absolute_error', metrics='mae')\n", "model.summary()" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/20\n", "2069/2069 [==============================] - 24s 9ms/step - loss: 0.0218 - mae: 0.0218 - val_loss: 0.0140 - val_mae: 0.0140\n", "INFO:tensorflow:Assets written to: 1dcnn_lstm_model\\assets\n", "Epoch 2/20\n", "2069/2069 [==============================] - 18s 9ms/step - loss: 0.0164 - mae: 0.0164 - val_loss: 0.0141 - val_mae: 0.0141\n", "Epoch 3/20\n", "2069/2069 [==============================] - 26s 13ms/step - loss: 0.0158 - mae: 0.0158 - val_loss: 0.0133 - val_mae: 0.0133 0.0158 \n", "INFO:tensorflow:Assets written to: 1dcnn_lstm_model\\assets\n", "Epoch 4/20\n", "2069/2069 [==============================] - 29s 14ms/step - loss: 0.0155 - mae: 0.0155 - val_loss: 0.0145 - val_mae: 0.0145\n", "Epoch 5/20\n", "2069/2069 [==============================] - 28s 14ms/step - loss: 0.0151 - mae: 0.0151 - val_loss: 0.0143 - val_mae: 0.0143\n", "Epoch 6/20\n", "2069/2069 [==============================] - 28s 13ms/step - loss: 0.0155 - mae: 0.0155 - val_loss: 0.0140 - val_mae: 0.0140\n", "Epoch 7/20\n", "2069/2069 [==============================] - 29s 14ms/step - loss: 0.0151 - mae: 0.0151 - val_loss: 0.0139 - val_mae: 0.0139\n", "Epoch 8/20\n", "2069/2069 [==============================] - 29s 14ms/step - loss: 0.0150 - mae: 0.0150 - val_loss: 0.0128 - val_mae: 0.0128\n", "INFO:tensorflow:Assets written to: 1dcnn_lstm_model\\assets\n", "Epoch 9/20\n", "2069/2069 [==============================] - 24s 12ms/step - loss: 0.0149 - mae: 0.0149 - val_loss: 0.0130 - val_mae: 0.0130\n", "Epoch 10/20\n", "2069/2069 [==============================] - 27s 13ms/step - loss: 0.0152 - mae: 0.0152 - val_loss: 0.0129 - val_mae: 0.0129\n", "Epoch 11/20\n", "2069/2069 [==============================] - 27s 13ms/step - loss: 0.0148 - mae: 0.0148 - val_loss: 0.0126 - val_mae: 0.0126\n", "INFO:tensorflow:Assets written to: 1dcnn_lstm_model\\assets\n", "Epoch 12/20\n", "2069/2069 [==============================] - 28s 13ms/step - loss: 0.0147 - mae: 0.0147 - val_loss: 0.0129 - val_mae: 0.0129\n", "Epoch 13/20\n", "2069/2069 [==============================] - 28s 14ms/step - loss: 0.0147 - mae: 0.0147 - val_loss: 0.0127 - val_mae: 0.0127\n", "Epoch 14/20\n", "2069/2069 [==============================] - 27s 13ms/step - loss: 0.0148 - mae: 0.0148 - val_loss: 0.0127 - val_mae: 0.0127\n", "Epoch 15/20\n", "2069/2069 [==============================] - 30s 14ms/step - loss: 0.0145 - mae: 0.0145 - val_loss: 0.0128 - val_mae: 0.0128\n", "Epoch 16/20\n", "2069/2069 [==============================] - 27s 13ms/step - loss: 0.0145 - mae: 0.0145 - val_loss: 0.0128 - val_mae: 0.0128\n", "Epoch 17/20\n", "2069/2069 [==============================] - 30s 15ms/step - loss: 0.0147 - mae: 0.0147 - val_loss: 0.0128 - val_mae: 0.0128\n", "Epoch 18/20\n", "2069/2069 [==============================] - 27s 13ms/step - loss: 0.0147 - mae: 0.0147 - val_loss: 0.0133 - val_mae: 0.0133s - ETA: 0s - loss: 0.0147 - mae: 0\n", "Epoch 19/20\n", "2069/2069 [==============================] - 26s 12ms/step - loss: 0.0146 - mae: 0.0146 - val_loss: 0.0126 - val_mae: 0.0126\n", "INFO:tensorflow:Assets written to: 1dcnn_lstm_model\\assets\n", "Epoch 20/20\n", "2069/2069 [==============================] - 27s 13ms/step - loss: 0.0146 - mae: 0.0146 - val_loss: 0.0126 - val_mae: 0.0126\n" ] } ], "source": [ "save_weights_at = '1dcnn_lstm_model'\n", "save_best = ModelCheckpoint(save_weights_at, monitor='val_loss', verbose=0,\n", " save_best_only=True, save_weights_only=False, mode='min',\n", " save_freq='epoch')\n", "history = model.fit(x=X_train, y=y_train, batch_size=16, epochs=20,\n", " verbose=1, callbacks=[save_best], validation_data=(X_val, y_val),\n", " shuffle=True)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "MAE for the validation set: 12.4811\n", "MAE for the scaled validation set: 0.0126\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXhU1fnA8e9LCCBb2F0ACW5VQJYQUSoqFKFqRVAoBFFBsSiC609b1Gqtiku1iCzaouKKLEURanFDsRarSJBFFpGIAQLIakEMi4H398e5CZNhZjLJzGQmmffzPPPMzL3n3nnnZnLfe8899xxRVYwxxiSfKvEOwBhjTHxYAjDGmCRlCcAYY5KUJQBjjElSlgCMMSZJWQIwxpgkZQnARExEUkRkr4icGM2y8SQip4hITNpI+69bRN4XkUGxiENE7hORv5V1eVO5WQJIQt4OuPBxWET2+bwPuCMKRVUPqWptVd0QzbKJSkQ+FJH7A0zvKyKbRKRU/1eq2lNVp0QhrgtFJNdv3Q+p6o2RrjvAZ10vIioif/Gb3s+b/rzf9Doiki8icwKsK8/vN7hXRMZGO2ZzNEsAScjbAddW1drABqCXz7SjdkQiUrX8o0xoLwFXB5h+NfCaqh4u33DiJgcYKCIpPtOuAb4JULY/sA+4WESaBJh/se/vUlVvi0G8xo8lAHMUEXlYRKaLyFQR+RG4SkQ6i8jnIvI/EdkiIuNEJNUrX9U76kv33r/mzX9HRH4Ukc9EpGVpy3rzLxaRb0Rkt4iMF5FPRWRIkLjDifEGEckRkR9EZJzPsiki8pSI7BSRb4GLQmyiN4HjROSXPss3BC4BXvHeXyYiS73vtEFE7guxvRcUfqeS4vCOvFd76/1WRK73pqcB/wRO9DmKbuL9LV/yWb6PiKz0ttFHIvILn3l5InKHiHzlbe+pIlI9xHbYBKwBLvSWbwScBfwrQNnBwARgNXBliHWacmQJwARzOfA6kAZMBwqAW4FGwLm4HdMNIZa/ErgPaIA7y3iotGW9I8UZwF3e534HdAqxnnBivAToCHTAJbYLvenDgZ5AO+8z+gf7EFX9CZiJO9otlAUsV9WV3vu9wFW47dcLuFVELg0Re6GS4tgK/AaoC/wOGC8ibVV1t/c5G3yOorf5LigiZwCvATcDjYF5wD8Lk6SnP9ADOAm3nQKd6fh6hSPb4Upccjzo97knAV1wv6cpFN9uJo4sAZhgFqjqP1X1sKruU9VFqrpQVQtUdR0wCbggxPIzVTVbVX/G/dO3L0PZS4Glqjrbm/cUsCPYSsKM8VFV3a2qucDHPp/VH3hKVfNUdSfwWIh4AV4G+vscIV/jTSuM5SNVXeFtv2XAtACxBBIyDu9vsk6dj4APgfPCWC+4JDXHi+1nb911gbN9yoxV1e+9z36b0H83gDeAC0WkDm4bvBKgzDXAl6q6BpgKtBeRM/3KvO2dlRQ+rg3zO5kIWAIwwWz0fSMip4vIv0TkexHZAzyIO9IO5nuf1/lA7TKUPcE3DnU9F+YFW0mYMYb1WcD6EPEC/BvYDfQSkdNwZxRTfWLpLCIfi8h2EdkNXB8glkBCxiEil4rIQhHZJSL/w50thLPewnUXrc+7VpEHNPUpU5q/W+HZ0Hu4M7g6qrrQL17BJYApXvkNwAJclZCvS1W1ns/jxTC/k4mAJQATjH/Tw78DK4BTVLUucD8gMY5hC9Cs8I23M2kavHhEMW4Bmvu8D9lM1UtGr+J2blcDc1XV9+xkGu7ouLmqpgHPhxlL0DhE5Bhc1dOjwLGqWg9432e9JTUX3Qy08FlfFdz23RRGXKG8AtxJ4KP/84CWwH1eYv4eV7U0yO/isYkDSwAmXHVwR7w/eXXJoer/o+VtIENEeolriXQrru46FjHOAG4TkabeBd0/hLHMy7jrDNfhU/3jE8suVd0vIufgql8ijaM6UA3YDhzyril095m/FWjkVccEW/dlItLVq/e/C/gRWBikfLg+wl03eCbAvMHAu0ArXHVSe+BMXNVTzwg/10TIEoAJ1//h/pl/xB1pT4/1B6rqVmAAMAbYCZwMLAEOxCDGZ3H16V8Bi3BH2iXF9y3wBVCDo1u+DAceFdeK6h7czjeiOFT1f8DtwCxgF9APlyQL56/AnXXkevXoxZpbeheoB3ufsR2XvC7zrgeUmXed40NV/cF3uojUBH4LjPOuKxQ+1uGqhHyrgd6R4vcB/COSmEx4xAaEMRWFV2WwGeinqv+JdzzGVHR2BmASmohcJCJpXmub+3BNPb+Ic1jGVAqWAEyi6wKswzX/vAjoo6rBqoCMMaVgVUDGGJOk7AzAGGOSVIXq5KtRo0aanp4e7zCMMaZCWbx48Q5VPaoJdYVKAOnp6WRnZ8c7DGOMqVBEJOCd7VYFZIwxScoSgDHGJClLAMYYk6Qq1DUAY0zs/fzzz+Tl5bF///54h2JKqUaNGjRr1ozU1NSSC2MJwBjjJy8vjzp16pCeno7rgNVUBKrKzp07ycvLo2XLliUvQBJUAU2ZAunpUKWKe54S8dDbxlRu+/fvp2HDhrbzr2BEhIYNG5bqzK1SnwFMmQLDhkF+vnu/fr17DzBoUPziMibR2c6/Yirt361SnwHce++RnX+h/Hw33Rhjkl2lTgAbNpRuujEm/nbu3En79u1p3749xx13HE2bNi16f/DgwZJXAFx77bWsWbMmZJmJEycyJUp1wl26dOGkk04qNu3SSy+lXr16xaY98cQT1KxZkx9//LFo2rx580hLSyv6ju3bt2f+/PlRiasklboK6MQTXbVPoOnGmOiYMsWdVW/Y4P63Ro+OrIq1YcOGLF26FIAHHniA2rVrc+eddxYro6qoKlWqBD6GffHFkocUHjFiRNmDDKB27dp8/vnnnHPOOezatYtt27YdVWbq1Kl07NiR2bNnc9VVVxVN79atG2+99VZU4wlHpT4DGD0aatYsPq1mTTfdGBO5wuts69eD6pHrbLFobJGTk0ObNm248cYbycjIYMuWLQwbNozMzExat27Ngw8+WFS2S5cuLF26lIKCAurVq8eoUaNo164dnTt3Ltox//GPf2Ts2LFF5UeNGkWnTp34xS9+wX//+18AfvrpJ/r27Uu7du0YOHAgmZmZRcnJX1ZWFtOmTQNg5syZ9O3bt9j8NWvWcOjQIR544AGmTp0a9e1TFpU6AQwaBJMmQYsWIOKeJ02yC8DGREt5X2dbtWoVQ4cOZcmSJTRt2pTHHnuM7Oxsli1bxgcffMCqVauOWmb37t1ccMEFLFu2jM6dOzN58uSA61ZVvvjiC5544omiZDJ+/HiOO+44li1bxqhRo1iyZEnQ2Hr06MFHH33E4cOHmT59OgMGDCg2f+rUqWRlZdGtWze++uordu7cWTRv/vz5xaqAcnNzy7B1Sq9SJwBwO/vcXDh82D3bzt+Y6Cnv62wnn3wyZ511VtH7qVOnkpGRQUZGBqtXrw6YAI455hguvvhiADp27Bh053rFFVccVWbBggVkZWUB0K5dO1q3bh00ttTUVM455xymT5/OoUOHaNasWbH506ZNIysriypVqtCnTx9mzjwy7HS3bt1YunRp0aO8ej2u1NcAjDGxVd7X2WrVqlX0eu3atTz99NN88cUX1KtXj6uuuipgG/hq1aoVvU5JSaGgoCDguqtXr35UmdIOmJWVlcVvf/tbHn744WLTv/zyS7777ju6desGwIEDB1i+fDk33HBDqdYfbZX+DMAYEzvxvM62Z88e6tSpQ926ddmyZQvvvfde1D+jS5cuzJgxA4Cvvvoq4BmGr65duzJq1KiA1T8PP/wwubm55ObmsnnzZtatW8emTZuiHnNpWAIwxpRZPK+zZWRk0KpVK9q0acPvfvc7zj333Kh/xs0338ymTZto27Ytf/3rX2nTpg1paWlBy1epUoW77rqLBg0aFE1TVaZPn87ll19eNE1E6NOnT9FFY/9rALNmzYr6dwmkQo0JnJmZqTYgjDGxtXr1as4444x4h5EQCgoKKCgooEaNGqxdu5aePXuydu1aqlZN3NrzQH8/EVmsqpn+ZRP3WxhjTJzt3buX7t27U1BQgKry97//PaF3/qVVeb6JMcZEWb169Vi8eHG8w4gZuwZgjDFJyhKAMcYkqbASgIhcJCJrRCRHREYFmF9dRKZ78xeKSLo3vaGIzBeRvSIywW+ZgSLylYgsF5F3RaRRNL6QMcaY8JSYAEQkBZgIXAy0AgaKSCu/YkOBH1T1FOAp4HFv+n7gPqBYT04iUhV4Guimqm2B5cDICL6HMcaYUgrnDKATkKOq61T1IDAN6O1Xpjfwsvd6JtBdRERVf1LVBbhE4Eu8Ry1xIxjUBTaX9UsYYyqPrl27HnVT19ixY7nppptCLle7dm0ANm/eTL9+/YKuu6Sm5GPHjiXfp4OjSy65hP/973/hhB7SAw88gIiQk5NTNO2pp55CRIrFtGTJEkTkqG2QkpJS7F6Bxx57LOKYwkkATYGNPu/zvGkBy6hqAbAbaBhshar6MzAc+Aq3428FvBCorIgME5FsEcnevn17GOEaYyqygQMHFt0gVWjatGkMHDgwrOVPOOGEYv3slJZ/Apg7d+5R/fqX1Zlnnlnsu82cOZNWrYpXqEydOpUuXboc1WPoMcccU6y/oFGjjqqNL7VwEkCgMcb87x4Lp8yRwiKpuATQATgBVwV0d6CyqjpJVTNVNbNx48ZhhGuMqcj69evH22+/zYEDBwCKuk7o0qVLUbv8jIwMzjzzTGbPnn3U8rm5ubRp0waAffv2kZWVRdu2bRkwYAD79u0rKjd8+PCirqT/9Kc/ATBu3Dg2b95Mt27divrtSU9PZ8eOHQCMGTOGNm3a0KZNm6KupHNzcznjjDP43e9+R+vWrenZs2exz/HVp0+fopjXrVtHWloavvs1VWXmzJm89NJLvP/++6Ua37cswrkPIA9o7vO+GUdX1xSWyfPq99OAXSHW2R5AVb8FEJEZQOTpzBgTVbfdBkG6vy+z9u3B23cG1LBhQzp16sS7775L7969mTZtGgMGDEBEqFGjBrNmzaJu3brs2LGDc845h8suuyzoWLjPPvssNWvWZPny5SxfvpyMjIyieaNHj6ZBgwYcOnSI7t27s3z5cm655RbGjBnD/PnzadSoeLuUxYsX8+KLL7Jw4UJUlbPPPpsLLriA+vXrs3btWqZOncpzzz1H//79eeONN4oN+FKobt26NG/enBUrVjB79mwGDBhQbPCaTz/9lJYtW3LyySfTtWtX5s6dW9RL6b59+2jfvn1R2bvvvvuoPodKK5wzgEXAqSLSUkSqAVnAHL8yc4DB3ut+wEcauo+JTUArESlMfT2A1eGHbYypzHyrgXyrf1SVe+65h7Zt23LhhReyadMmtm7dGnQ9n3zySdGOuG3btrRt27Zo3owZM8jIyKBDhw6sXLmyxI7eFixYwOWXX06tWrWoXbs2V1xxBf/5z38AaNmyZdHOOVSX03Bk4Ji33nqrWP9AcGTMgMJyvtVA/lVAke78IYwzAFUtEJGRwHtACjBZVVeKyINAtqrOwdXfvyoiObgj/6zC5UUkF3eRt5qI9AF6quoqEfkz8ImI/AysB4ZE/G2MMVEV6kg9lvr06cMdd9zBl19+yb59+4qO3KdMmcL27dtZvHgxqamppKenl1hNEujs4LvvvuPJJ59k0aJF1K9fnyFDhpS4nlDHtIVdSYO7WBusCgigV69e3HXXXWRmZlK3bt2i6YcOHeKNN95gzpw5jB49GlVl586d/Pjjj9SpUydkbGUV1n0AqjpXVU9T1ZNVdbQ37X5v54+q7lfV36rqKaraSVXX+SybrqoNVLW2qjZT1VXe9L+p6hmq2lZVe6nqzsCfboxJNrVr16Zr165cd911xS7+7t69myZNmpCamsr8+fNZH2gwAh/nn39+0cDvK1asYPny5YDrSrpWrVqkpaWxdetW3nnnnaJl6tSpU2zQdt91vfXWW+Tn5/PTTz8xa9YszjvvvFJ/t2OOOYbHH3+ce/2GTZs3bx7t2rVj48aN5Obmsn79evr27RvTsYLtTmBjTEIaOHAgy5YtK6oSARg0aBDZ2dlkZmYyZcoUTj/99JDrGD58OHv37qVt27b85S9/oVOnToAb3atDhw60bt2a6667rlhX0sOGDePiiy8uughcKCMjgyFDhtCpUyfOPvtsrr/+ejp06FCm75aVlVXsegS46h//KqG+ffvy+uuvA0euARQ+otEKyLqDNsYUY91BV2yl6Q7azgCMMSZJWQIwxpgkZQnAGHOUilQ1bI4o7d/NEoAxppgaNWqwc+dOSwIVTGGz0Ro1aoS9jI0IZowpplmzZuTl5WF9b1U8NWrUoFmzZmGXtwRgjCkmNTWVli1bxjsMUw6sCsgYY5KUJQBjjElSlgCMMSZJWQIwxpgkZQnAGGOSlCUAY4xJUpYAjDEmSVkCMMaYJGUJwBhjkpQlAGOMSVKWAIwxJklZAjDGmCRlCcAYY5KUJQBjjElSlgCMMSZJWQIwxpgkFVYCEJGLRGSNiOSIyKgA86uLyHRv/kIRSfemNxSR+SKyV0Qm+JSvIyJLfR47RGRstL6UMcaYkpU4IpiIpAATgR5AHrBIROao6iqfYkOBH1T1FBHJAh4HBgD7gfuANt4DAFX9EWjv8xmLgTcj/zrGGGPCFc4ZQCcgR1XXqepBYBrQ269Mb+Bl7/VMoLuIiKr+pKoLcIkgIBE5FWgC/KfU0RtjjCmzcBJAU2Cjz/s8b1rAMqpaAOwGGoYZw0BguqpqmOWNMcZEQTgJQAJM899Zh1MmmCxgatAPFxkmItkikr19+/YwV2mMMaYk4SSAPKC5z/tmwOZgZUSkKpAG7CppxSLSDqiqqouDlVHVSaqaqaqZjRs3DiNcY4wx4QgnASwCThWRliJSDXfEPsevzBxgsPe6H/BRmFU6Awlx9G+MMSZ2SmwFpKoFIjISeA9IASar6koReRDIVtU5wAvAqyKSgzvyzypcXkRygbpANRHpA/T0aUHUH7gkml/IGGNMeKQiXXvNzMzU7OzseIdhjDEViogsVtVM/+l2J7AxxiQpSwDGGJOkLAEYY0ySsgRgjDFJyhKAMcYkKUsAxhiTpCwBGGNMkrIEYIwxScoSgDHGJClLAMYYk6QsARhjTJKyBGCMMUnKEoAxxiQpSwDGGJOkLAEYY0ySsgRgjDFJyhJACaZMgfR0qFLFPU+ZEu+IjDEmOkocEjKZTZkCw4ZBfr57v369ew8waFD84jLGmGiwM4AQ7r33yM6/UH6+m26MMRWdJYAQNmwo3XRjjKlILAGEcOKJpZtujDEViSWAEEaPhpo1i0+rWdNNN8aYis4SQAiDBsGkSdCiBYi450mT7AKwMaZysFZAJRg0yHb4xpjKyc4AjDEmSYWVAETkIhFZIyI5IjIqwPzqIjLdm79QRNK96Q1FZL6I7BWRCX7LVBORSSLyjYh8LSJ9o/GFjDHGhKfEKiARSQEmAj2APGCRiMxR1VU+xYYCP6jqKSKSBTwODAD2A/cBbbyHr3uBbap6mohUARpE/G2MMcaELZwzgE5AjqquU9WDwDSgt1+Z3sDL3uuZQHcREVX9SVUX4BKBv+uARwFU9bCq7ijTNzDGGFMm4SSApsBGn/d53rSAZVS1ANgNNAy2QhGp5718SES+FJF/iMixQcoOE5FsEcnevn17GOEaY4wJRzgJQAJM0zKU8VUVaAZ8qqoZwGfAk4EKquokVc1U1czGjRuHEa4xxphwhJMA8oDmPu+bAZuDlRGRqkAasCvEOncC+cAs7/0/gIwwYjHGGBMl4SSARcCpItJSRKoBWcAcvzJzgMHe637AR6oa9AzAm/dPoKs3qTuwKlh5Y4wx0VdiKyBVLRCRkcB7QAowWVVXisiDQLaqzgFeAF4VkRzckX9W4fIikgvUBaqJSB+gp9eC6A/eMmOB7cC10f1qxhhjQpEQB+oJJzMzU7Ozs+MdhjHGVCgislhVM/2n253AxhiTpCwBGGNMkrIEEGM2prAxJlFZb6AxZGMKG2MSmZ0BxJCNKWyMSWSWAGLIxhQ2xiQySwAxZGMKG2MSmSWAGLIxhY0xicwSQAzZmMLGmERmrYBizMYUNsYkKjsDMMaYJGUJwBhjkpQlAGOMSVKWABKcdSVhjIkVuwicwKwrCWNMLNkZQAKzriSMMbFkCSCBJUJXElYFZUzlZQkggcW7K4nCKqj160H1SBWUJQFjKgdLAAksGl1JRHIEb1VQxlRulgASWKRdSUR6BJ8IVVDGmNixQeErsfR0t9P316IF5ObGfnljTGKwQeGTUKRH8NabqTGVmyWASizSi8jWm6kxlZslgEosGkfwgwa56p7Dh92z7fyNqTzCSgAicpGIrBGRHBEZFWB+dRGZ7s1fKCLp3vSGIjJfRPaKyAS/ZT721rnUezSJxhcyRyTCEbzdR2BM4iqxKwgRSQEmAj2APGCRiMxR1VU+xYYCP6jqKSKSBTwODAD2A/cBbbyHv0Gqald1Yyie4xFYVxbGJLZwzgA6ATmquk5VDwLTgN5+ZXoDL3uvZwLdRURU9SdVXYBLBCbJ2H0ExiS2cBJAU2Cjz/s8b1rAMqpaAOwGGoax7he96p/7REQCFRCRYSKSLSLZ27dvD2OVJlFE4z4Cq0IyJnbCSQCBdsz+Nw+EU8bfIFU9EzjPe1wdqJCqTlLVTFXNbNy4cYnBmsQRaSukaHRFYQnEmODCSQB5QHOf982AzcHKiEhVIA3YFWqlqrrJe/4ReB1X1WQqkUhbIUVahWQJxJjQwkkAi4BTRaSliFQDsoA5fmXmAIO91/2AjzTELcYiUlVEGnmvU4FLgRWlDd4ktkhbIUVahWQJxJjQwuoKQkQuAcYCKcBkVR0tIg8C2ao6R0RqAK8CHXBH/lmqus5bNheoC1QD/gf0BNYDnwCp3jrnAXeo6qFQcVhXEMkl0q4oqlRxO25/Iu6+hlh/vn8rKHBnQHYznSlvwbqCsL6ATMKKdAda0ROIMdFifQGZCifSKqRIr0FEehE7EVpBxXt5k+BUtcI8OnbsqMaUxmuvqbZooSrinl97rXTL1qyp6s4D3KNmzfDX0aJF8WULHy1alM/nx3t5kzhw1fVH7VPjvlMvzcMSgClvFTmBxHt5kziCJQCrAjImhEg6w4t3K6h4Lw9WBZXoLAEYE0ORJJBIr0HEe/lIm9EmQjPcSp+AAp0WJOrDqoBMMol3HX5Fr8KK9/ePhkiqIH1h1wCMqXgi3QHEc3mRwDtwkfJZPt4JSDW+15B8BUsAdh+AMSYm4j0mdaT3cUS6fLzvY/Fl9wEYY8pVpPdhxPs+jkiXj7QrkmhchC+JJQBjTExE2goq3jcCRrp8pDvwSBNQWALVCyXqw64BGGNKI57XQOJ9EdsXdg2g4nr2WfjuOxg5MsrZ3xgTM9HoDHDKFFdltGGD+98fPbpsHQlaZ3AV1M6d0LQpHDgAKSmQlQV33QXt2sU7MmNMSaK1A4+UXQSuoJ5/3u38586FW2+F2bOhfXv49a9h3rzArRSMMYkhkhsBy4MlgAR26BA88wx07QoXXwx//Sts3AiPPgrLl0OPHpCRAVOnQkFBvKM1xlQ0lgAS2Ntvu1PHm28+Mq1ePRg1yh1NPP887N8PV14Jp5wCTz8Ne/fGLVxjTAVjCSCBTZgAzZrBZZcdPa96dRg6FFaudNVCzZvDbbe5esY//hG2bi3/eI0xFYslgAS1erWr4x8+HKpWDV6uShWXIP7zH/jvf1110SOPuDbTN9wA33xTbiEbYyoYSwAJauJEqFYNrr8+/GU6d4Y334Svv4bBg+Hll+H00+Hyy2Hx4tjFaoypmCwBJKA9e9zOOysLmjQp/fKnnQZ//7vrR+Tee+Hf/4azzoIbb4Rdu6IfrzGmYrIEkIBeecVdzB05MrL1HHssPPSQu2B8663uovEvfgEvvhheZ1bGmMrNEkCCOXzYXfzt1MkdtUdD3brw1FOuGui00+C66+C882DZsuis3xhTMVkCSDAffghr1kR+9B9Iu3buYvHkye7icMeOcPvtrsrJGJN8LAEEsH07fPyxuwlrxAj41a9gzJjy+ewJE6BxY+jfPzbrr1IFrr3WJZnrr3f3Dpx+OkybZncVG5NskrYvIFXYtg1WrXJt6X2fd+w4Uq5uXXfz1aZNsGQJnHlmVD4+oNxcOOkkuOceePjh2H2Or0WLXFPTxYtdops40SUEY0zlEawvoBAtzIstfBHwNJACPK+qj/nNrw68AnQEdgIDVDVXRBoCM4GzgJdU9aiKDRGZA5ykqm1K+Z3C9v33gXf0O3ceKZOWBq1buyaTrVq5R+vWcMIJ8MMP7uLpjTe6KpQqMTpveuYZt+4bbojN+gM56yxYuND1UHjPPdC2Ldx5p2s9VKtW+cVhjCl/JZ4BiEgK8A3QA8gDFgEDVXWVT5mbgLaqeqOIZAGXq+oAEakFdADaAG38E4CIXAH085YtMQGU9Qzg5JNh3Tr3un59t2P33cm3agXHH+8GnQjm5ZdhyBB47rnStc0PV36+u+v3V7+CmTOjv/5wbNsGv/+9+64nnuiqh3r3Dr1djDGJL9gZQImDsACdgfd83t8N3O1X5j2gs/e6KrADL7l404YAE/yWqQ0sAFoBK0qKQyMYEGbOHNV581S3bFE9fLhMq9DDh1UvuEC1fn3VbdvKto5QXnjBDfjw8cfRX3dpffKJaps2Lp7f/Eb122/jHZExJhIEGRAmnCqgpsBGn/d5wNnByqhqgYjsBhp6iSCYh4C/AvkhyiAiw4BhACeWcTSUXr3KtJhfHG5glnbtXH/8L70U+ToLqcL48dCmDZx/fvTWW1bnnQdffuli+tOf3FlS375w3HHQsCE0anT0c4MGkJoa78iNMaURTgIIVAHgX28UTpkjhUXaA6eo6u0ikh7qw1V1EjAJXBVQyEhj7Iwz3M7/kUdcdVDXrtFZ72efwdKl8Le/JU51S2oq3HEHDBgAf/gDfPKJuzi+b1/wZdLSgieICy+Es/0PG4wxcRVOAsgDmvu8bwZsDlImT0SqAmlAqE4HOgMdRSTXi6GJiHysql3DjDtu7r3X9b8/fLi7kapatcjXOX6823km2v6F0V4AABG1SURBVGAR4EYje+21I+/z893F8507XUII9rxtm+vQbscOd1fz+PGua4rq1eP3XYwxxYWTABYBp4pIS2ATkAVc6VdmDjAY+Ax3Ufcjr94pIFV9FngWwDsDeLsi7PzBjek5YQL85jfw5JOu5UwktmxxF31HjoTataMTYyzVrOkezZuXXLbQu++6AW1mzICrr45dbMaY0imxQaOqFgAjcRd6VwMzVHWliDwoIoU91b8ANBSRHOAOYFTh8t5R/hhgiIjkiUirKH+HcnfJJdCvn+tnp7B1UVlNmuRG8xoxIjqxJaJf/9rdW/D003azmTGJJGlvBIvUpk1up9alixuvtyx19wcPun77O3Rw66jMnn0WbroJPv0UfvnLeEdjTHKxQeGjrGlTdwbw7rvwxhtlW8ebb7qb1GLR70+iufpqd51j3Lh4R2KMKWQJIAIjR0L79q6r5bJ0qDZhgrtJ7aKLoh9boqld291AN3Mm5OXFOxpjDFgCiEjVqq7p5pYtrr18aSxZ4qpDRoyIXdcSiWbECHcN4Jln4h2JMQYsAUTs7LNdH0HjxrmdergmTnStaYYMiVloCadlSzd+8aRJoe8nMMaUD0sAUfDII+5mpxtugEOHSi6/cydMmQJXXeX6Jkomt97qvv/rr8c7EmOMJYAoqFfPjbi1aJE7ui3J5Mmwf39yXPz1d8EFrsfRceOsSagx8WYJIEoGDoTu3eHuu13LnmAOHXJ14BdcENuxBRKVCNxyCyxf7garN8bEjyWAKBFxO/Z9++D//i94ublz3cAvyXj0X+jKK10fQU8/He9IjElulgCi6LTT3BnA66/DvHmBy0yY4O4h6N27fGNLJMccA8OGwZw58N138Y7GmORlCSDKRo2CU05xd73u31983po18P77rtVQsnedfNNN7qxp4sR4R2JM8rIEEGU1arid2tq18PjjxedNnOh6Dx02LD6xJZJmzdwYA88/73oLNcaUP0sAMdCzJ2Rlueaha9e6aT/+6AaR6d8fmjSJa3gJ49ZbYfduePXVeEdiTHKyBBAjY8a4s4GbbnLNHV991SWBZL74669zZ+jY0TUJPXw43tEYk3wsAcTI8ce7M4B589wAMhMmQGYmdOoU78gSh4g7C/j66+AXzY0xsWMJIIZuvNHt9K+/3o2OdfPNiTPkY6Lo3x+OPdaahBoTD5YAYiglxXUWd+CA6yqif/94R5R4qld3iXLu3CPXS4xJJBs3wuzZ8Y4iNiwBxFjHji4JPPusuyZgjlbYLHb8+HhHYkxxO3dCt27Qp49rwl3Z2IhgJiFcfTW89ZYbKyAtLd7RGONG7OvZEz77DI47znX/vmKFu5GxorERwUxCu+UWdz/ASy/FOxJjXMu9m25y/VVNnux+l+vWwcMPxzuy6LIEYBLCWWe5ZqHjx4fXpbYxsTR2LLzwAtx7Lwwa5KqBBg+Gv/wFVq6Md3TRYwnAJIxbb4Vvv4V33ol3JCaZ/etfrkPHvn3hwQePTH/ySVc9ecMNlee+FUsAJmFccYXrKM+ahJp4WbHC3cXfoQO8/HLx4VobNXJJ4NNP3dlBZWAJwCSM1FRX7zpvXuU6zTYVw7ZtcOmlUKeOa/ZZq9bRZQYPdmN5/P73sHVr+ccYbZYATEIZNszdG2BNQk15OnAALr/c7dRnz3adFQYi4pp15+eHHvejoggrAYjIRSKyRkRyRGRUgPnVRWS6N3+hiKR70xuKyHwR2SsiE/yWeVdElonIShH5m4ikROMLmYqtUSN30e2VV2DXruis84cfICfHhqA0gam6A4///tdV+5x1Vujyp5/uxv2YMgU++KB8YoyVEhOAt2OeCFwMtAIGikgrv2JDgR9U9RTgKaCwI+T9wH3AnQFW3V9V2wFtgMbAb8v0DUylc8stbmS1SOtZt26Fu+6C5s3h1FOhcWPo1QsefdQ178vPj068pmJ7/HF3wPHnP4d/t/6oUW4AqOHD3W+1ogrnDKATkKOq61T1IDAN8B/Pqjfwsvd6JtBdRERVf1LVBbhEUIyq7vFeVgWqAXZ8ZgBo187Vs06YAAUFpV9+82a4/XZo2dL1ytqnjzttv+wydyZwzz3Qtatr0ZGZ6RLOtGmwYYOdJSSbWbPc0XxWFtx3X/jL1ajhflPffgujR8cuvphT1ZAPoB/wvM/7q4EJfmVWAM183n8LNPJ5P8R/GW/6e8APwOtASpDPHwZkA9knnniimuTw5puqoDpzZvjLbNigOmKEavXqqikpqkOGqH7zzdHlduxQfftt1XvuUe3WTbVmTfdZoHrCCar9+qmOGaP6+eeqBw5E7zuZxPLll+5v36mTan5+2dZxzTWqqamqK1ZEN7ZoA7I10P410EQtvgP+bYAEMN6vzMoACaChz/uACcCbVwN4A+hRUiwdO3aM8WYyiaKgQLVFC9Xzzy+57Hffqd5wg/tHrFpV9frrVb/9NvzP+vlntzOYMEH1yitV09OPJITq1VXPPVf1scdU9+0r67cpu0OHVF99VfXhh1W//778P7+y2rxZtVkz99i8uezr2bZNtUED1S5d3N8qUUWSADoD7/m8vxu426/Me0Bn73VVYAdeP0NaQgLw5g8ONb/wYQkguTzxhPuFLlkSeH5OjurQoW6nX62a6vDhqrm50fnszZtV33hD9c47Vc8+28Vx8smq77wTnfWHY9kyl3wKk1GNGqo33+zOdEzZ5ee7o/6aNYP/tkpj8mT393nuucjXFSuRJICqwDqgJa6ufhnQ2q/MCOBv3ussYIbf/GIJAKgNHO+z/unAyJJisQSQXHbtcv+k115bfPqaNe7UOyXFHaHffLPqxo2xjeWDD1RPO839x/TtG9ud8J49qnfc4b5fw4ZuB7Nmjep117lkl5rqEt/atbGLobI6fFg1K0tVRHXWrOit8/zzVevVS9yztDInALcslwDfeFU793rTHgQu0yPVOP8AcoAvgJN8ls0FdgF7gTxcS6JjgUXAcq/6aDxQtaQ4LAEknxtvdDv5bdtUV650VTRVqqgec4zq7bdHdvpeWvv3q44e7Y7Ea9VyZygHD0Zv/YcPq86Y4a5DiKgOG+auV/hav1515Ei3TapUcdsj0eufE8mf/+z2eo89Ft31rl7tEvOgQdFdb7RElAAS5WEJIPmsWuV+pWec4XaKtWqp/v73qlu3xi+mdetUe/VycbVurfrvf0e+zjVrVHv0cOvs0EH1s89Cl9+yRfWuu1Rr13bLXH65anZ25HFUZtOnu211zTUu2Ubb/fe79b//fvTXHSlLAKbC6tVLtU4d12pn+/Z4R3PE7NnuQjWoXn112U7/8/NV77vPXcOoW1d13Dh3UTpcO3a4HU+9ei6OX/9a9ZNPSh9HZffFF+7M7dxz3ZlcLOzbp3rqqe5aUVlbFcVKsARgA8KYhHfggOsiumbNeEdytPx81w78iSdcfI884nqLTAnjvva5c2HkSPjuO3f385NPuoFHymLPHjfq3Jgxrk+b8893XRn36BH5ONSq7nv+/LN7HDwY+HWoeQUF7m94+PCR52CvA01TdR2zpaSU/hncvR/Vq8MXX7gbAmPlo4+ge3e37RNp7IBgA8JYAjAmCr7+2u3MP/zQDQP6zDPQqVPgshs2wG23uZuQTj/dle3WLTpx5OfD88+7hJSX5250++Mf3R3Qhw+7bjF27Try8H/v//jhB/eI5xgNhQkskl1VWhosWABt2kQnplCuucbdWLh0KbTy7zMhTiwBGBNjqjB9OtxxB3z/vTsTGD0aGjRw8w8ehKeecn3Mq8L997uy1apFP5YDB+DVV123F+vWuWEMQ3VZIAL16rlY69d3z76POnVcnKmp7uH7Opz3Vau6o3H/I/Rgr32n+SYA1aPPFMJ5btwY6taN/nYOZPt2l9hbtXJdjlRJgC43LQEYU0727IE//QnGjXM7zyeegBYtYMQIWL0aevd2Yx60aBH7WAoKYMYMyM4+smMPtINPSwuv2sqEZ/JkGDrUnY0NHRrvaCwBGFPuli514xt89pl7n57uurm+9NK4hmXKgarrb+qrr1z1YJMm8Y3HBoU3ppy1b+/qnV96yV0cXrnSdv7JonDcgL17E3vcgKrxDsCYyqxKFTeKlEk+Z5zhuo1+6CH3G7jwwvCXVT1y/aKwBVXt2pG36PJnVUDGGBMj+/fDmWe6prlNmrgdue9O3fe177RAra727XPdUJdFsCogOwMwxpgYqVED/vEP1xDg8OEjraF8W0WFOy0WF+ktARhjTAy1b++Gj0xEdhHYGGOSlCUAY4xJUpYAjDEmSVkCMMaYJGUJwBhjkpQlAGOMSVKWAIwxJklZAjDGmCRVobqCEJHtwPoyLt4I2BHFcKLN4ouMxRcZiy8yiR5fC1U9aiy0CpUAIiEi2YH6wkgUFl9kLL7IWHyRSfT4grEqIGOMSVKWAIwxJkklUwKYFO8ASmDxRcbii4zFF5lEjy+gpLkGYIwxprhkOgMwxhjjwxKAMcYkqUqXAETkIhFZIyI5IjIqwPzqIjLdm79QRNLLMbbmIjJfRFaLyEoRuTVAma4isltElnqP+8srPu/zc0XkK++zjxp/U5xx3vZbLiIZ5RjbL3y2y1IR2SMit/mVKdftJyKTRWSbiKzwmdZARD4QkbXec/0gyw72yqwVkZiMHBwkvidE5Gvv7zdLROoFWTbkbyGG8T0gIpt8/oaXBFk25P96DOOb7hNbrogsDbJszLdfxFS10jyAFOBb4CSgGrAMaOVX5ibgb97rLGB6OcZ3PJDhva4DfBMgvq7A23HchrlAoxDzLwHeAQQ4B1gYx7/197gbXOK2/YDzgQxghc+0vwCjvNejgMcDLNcAWOc91/de1y+n+HoCVb3XjweKL5zfQgzjewC4M4y/f8j/9VjF5zf/r8D98dp+kT4q2xlAJyBHVdep6kFgGtDbr0xv4GXv9Uygu4hIeQSnqltU9Uvv9Y/AaqBpeXx2FPUGXlHnc6CeiBwfhzi6A9+qalnvDI8KVf0E2OU32fc39jLQJ8CivwY+UNVdqvoD8AFwUXnEp6rvq2qB9/ZzoFm0PzdcQbZfOML5X49YqPi8/UZ/YGq0P7e8VLYE0BTY6PM+j6N3sEVlvH+C3UDDconOh1f11AFYGGB2ZxFZJiLviEjrcg0MFHhfRBaLyLAA88PZxuUhi+D/ePHcfgDHquoWcEkfaBKgTKJsx+twZ3SBlPRbiKWRXhXV5CBVaImw/c4Dtqrq2iDz47n9wlLZEkCgI3n/dq7hlIkpEakNvAHcpqp7/GZ/iavWaAeMB94qz9iAc1U1A7gYGCEi5/vNT4TtVw24DPhHgNnx3n7hSoTteC9QAAQbsryk30KsPAucDLQHtuCqWfzFffsBAwl99B+v7Re2ypYA8oDmPu+bAZuDlRGRqkAaZTsFLRMRScXt/Keo6pv+81V1j6ru9V7PBVJFpFF5xaeqm73nbcAs3Km2r3C2caxdDHypqlv9Z8R7+3m2FlaLec/bApSJ63b0LjpfCgxSr8LaXxi/hZhQ1a2qekhVDwPPBfnceG+/qsAVwPRgZeK1/UqjsiWARcCpItLSO0rMAub4lZkDFLa46Ad8FOwfINq8OsMXgNWqOiZImeMKr0mISCfc32hnOcVXS0TqFL7GXSxc4VdsDnCN1xroHGB3YXVHOQp65BXP7efD9zc2GJgdoMx7QE8Rqe9VcfT0psWciFwE/AG4TFXzg5QJ57cQq/h8ryldHuRzw/lfj6ULga9VNS/QzHhuv1KJ91XoaD9wrVS+wbUQuNeb9iDuxw5QA1d1kAN8AZxUjrF1wZ2mLgeWeo9LgBuBG70yI4GVuFYNnwO/LMf4TvI+d5kXQ+H2841PgIne9v0KyCznv29N3A49zWda3LYfLhFtAX7GHZUOxV1T+hBY6z038MpmAs/7LHud9zvMAa4tx/hycPXnhb/BwlZxJwBzQ/0Wyim+V73f1nLcTv14//i890f9r5dHfN70lwp/cz5ly337RfqwriCMMSZJVbYqIGOMMWGyBGCMMUnKEoAxxiQpSwDGGJOkLAEYY0ySsgRgjDFJyhKAMcYkqf8H1OATw3tb9XQAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXwUVbbA8d8hBJAdA4wKSlB0FCJLiCgjCooyuCAuDAZRQOEhCG48Z2Tcxg33QWRRBxVlkBEc1JHnoKgjyuA4SFhlEVmMEEGWsIkBMeS8P24Fmqa700l3pzvp8/18+pPuqlvVp6s7dapu3bpXVBVjjDHJp0q8AzDGGBMflgCMMSZJWQIwxpgkZQnAGGOSlCUAY4xJUpYAjDEmSVkCMFEhIikisldETopm2XgSkRYiEpN20v7rFpEPRaRvLOIQkftF5MWyLh9ivYNE5NNor9eUH0sAScrbARc/ikRkn8/rgDuiUFT1oKrWVtUN0SybqETkXyLyQIDp14jI9yJSqv8tVe2mqlOjENdFIpLrt+5HVHVIpOs2lY8lgCTl7YBrq2ptYAPQw2faUTsiEala/lEmtNeAGwJMvwF4XVWLyjccY0rPEoAJSEQeFZHpIvKGiPwIXC8iHUXkvyKyS0Q2i8hYEUn1ylcVERWRdO/1697890XkRxH5QkSal7asN/8SEflGRHaLyDgR+VxEBgSJO5wYbxaRtSKyU0TG+iybIiLPiki+iKwDuofYRG8Dx4nIb3yWTwMuBf7qvb5CRJZ4n2mDiNwfYnvPK/5MJcXhVb2s8ta7TkQGedPrAf8HnORzNtfY+y5f81n+ShFZ4W2jT0Tk1z7z8kRkhIh85W3vN0Skeojt4BtXJxHJ8Zb7UkTO9pk3UERyvZjXi0i2N/00EZnrLbNdRP4WznuZKFFVeyT5A8gFLvKb9ihwAOiBO1A4BjgLOBuoCpwMfAMM98pXBRRI916/DmwHsoBUYDruyLi0ZRsDPwI9vXkjgF+AAUE+SzgxvgvUA9KBHcWfHRgOrACaAmnAXPcvEnS7vQq86PN6GJDj8/pCIMPbfm28z3i5N6+F77qBecWfqaQ4vO/kZEC899gHtPbmXQTkBvguX/OenwHs9ZZLBe7xtlGqNz8P+C9wnPfe3wCDgnz+QcCn3vOGwG6gj7edrwfygQZAXW/eqV7Z44GW3vO/A3d726gGcG68/x+S6WFnACaUear6f6papKr7VHWBqs5X1UJVXQ9MBDqHWH6Gquao6i/AVKBtGcpeDixR1Xe9ec/idqQBhRnj46q6W1VzgU993qs38Kyq5qlqPvBEiHgBJgO9fY6Q+3nTimP5RFWXe9tvKTAtQCyBhIzD+07Wq/MJ8C/gvDDWC5ANzPRi+8Vbd11c0iw2RlV/8N77PUJ/b8V6ACtU9Q1v278OrAcuKw4byBCRGqq6WVVXetN/wSXi41V1v6p+HubnMFFgCcCEstH3hYicLiL/FJEfRGQP8DDuyC+YH3yeFwC1y1D2BN84VFVxR6kBhRljWO8FfBciXoDPcEe2PUTkNKAd8IZPLB1F5FMR2SYiu3FHzKG2V7GQcYjI5SIyX0R2iMguoFuY6y1e96H1qbtWkQc08SlTmu8t4Hp94m6iqntwZwbDgB9E5D1vewH8L+5MJMerduof5ucwUWAJwITi3/TwL8ByoIWq1gUewFVDxNJmXFUIACIiHLmz8hdJjJuBE31eh2ym6iWjKbgj/xuAWarqe3YyDXgLOFFV6wEvhxlL0DhE5BhgBvA48CtVrQ986LPekpqLbgKa+ayvCm77fh9GXGGv13NS8XpV9X1VvQhX/bMW9z3hnQ0MUtXjcQliou/1HxNblgBMadTBHfH+JCJnADeXw3u+B2SKSA9xLZFuBxrFKMY3gTtEpIl3QffuMJaZjLtIexM+1T8+sexQ1f0icg6u+iXSOKoD1YBtwEERuRzo6jN/C9BQROqEWPcVItLFuzj+e9w1lvlhxhbMe0ArEbnWu9h+He46xywROd77/mririv9BBwEEJHeIlKc0HfhEtjBCGMxYbIEYErjf4H+uB3GX3AXa2NKVbcA1wKjcRcVTwEWAz/HIMYXcPXpXwELcEfaJcW3DvgSdwHzn36zhwKPi2tFdQ9u5xtRHKq6C7gTeAd3AbsXbudbPH857qwj12vl09gv3hW47fMCLol0B67wrgeUmapuA67AJat8L8bLVXUHkIJLNJu9eb/BXegGd+1hgYj8hGtZNUwr8P0hFY24s1hjKgYRScFVN/RS1X/HOx5jKjI7AzAJT0S6i0g9r7XN/UAh7qjbGBMBSwCmIuiEa1K4HVdlcaWqBqsCMsaEyaqAjDEmSdkZgDHGJKkK1cFXw4YNNT09Pd5hGGNMhbJw4cLtqnpU8+kKlQDS09PJycmJdxjGGFOhiEjAu9qtCsgYY5KUJQBjjElSlgCMMSZJVahrAMaY8vXLL7+Ql5fH/v374x2KCUONGjVo2rQpqampYZW3BGCMCSovL486deqQnp6O64jVJCpVJT8/n7y8PJo3D69D1UpfBTR1KqSnQ5Uq7u/UiIfdNiZ57N+/n7S0NNv5VwAiQlpaWqnO1ir1GcDUqTB4MBQUuNfffedeA/TtG7+4jKlIbOdfcZT2u6rUZwD33nt451+soMBNN8aYZFepE8CGIL2KB5tujEks+fn5tG3blrZt23LcccfRpEmTQ68PHDgQ1jpuvPFGVq9eHbLMhAkTmBql+uFOnTqxZMmSqKwr1ip1FdBJJ7lqn0DTjTHRN3WqO8PesMH9n40aFVl1a1pa2qGd6YMPPkjt2rW56667jiijqqgqVaoEPp599dVXS3yfYcOGlT3ICqxSnwGMGgU1ax45rWZNN90YE13F19y++w5UD19zi0XDi7Vr15KRkcGQIUPIzMxk8+bNDB48mKysLFq1asXDDz98qGzxEXlhYSH169dn5MiRtGnTho4dO7J161YA7rvvPsaMGXOo/MiRI+nQoQO//vWv+c9//gPATz/9xDXXXEObNm3o06cPWVlZJR7pv/7665x55plkZGRwzz33AFBYWMgNN9xwaPrYsWMBePbZZ2nZsiVt2rTh+uuvj/o2C6RSJ4C+fWHiRGjWDETc34kT7QKwMbFQ3tfcVq5cycCBA1m8eDFNmjThiSeeICcnh6VLl/LRRx+xcuXKo5bZvXs3nTt3ZunSpXTs2JFJkyYFXLeq8uWXX/L0008fSibjxo3juOOOY+nSpYwcOZLFixeHjC8vL4/77ruPOXPmsHjxYj7//HPee+89Fi5cyPbt2/nqq69Yvnw5/fr1A+Cpp55iyZIlLF26lPHjx0e4dcJTqRMAuJ19bi4UFbm/tvM3JjbK+5rbKaecwllnnXXo9RtvvEFmZiaZmZmsWrUqYAI45phjuOSSSwBo3749ubm5Add99dVXH1Vm3rx5ZGdnA9CmTRtatWoVMr758+dz4YUX0rBhQ1JTU7nuuuuYO3cuLVq0YPXq1dx+++3Mnj2bevXqAdCqVSuuv/56pk6dGvaNXJGq9AnAGFM+gl1bi9U1t1q1ah16vmbNGp577jk++eQTli1bRvfu3QO2h69Wrdqh5ykpKRQWFgZcd/Xq1Y8qU9rBs4KVT0tLY9myZXTq1ImxY8dy8803AzB79myGDBnCl19+SVZWFgcPHizV+5WFJQBjTFTE85rbnj17qFOnDnXr1mXz5s3Mnj076u/RqVMn3nzzTQC++uqrgGcYvs455xzmzJlDfn4+hYWFTJs2jc6dO7Nt2zZUld/97nc89NBDLFq0iIMHD5KXl8eFF17I008/zbZt2yjwr0+LgUrdCsgYU36Kq1ej2QooXJmZmbRs2ZKMjAxOPvlkzj333Ki/x6233kq/fv1o3bo1mZmZZGRkHKq+CaRp06Y8/PDDdOnSBVWlR48eXHbZZSxatIiBAweiqogITz75JIWFhVx33XX8+OOPFBUVcffdd1OnTp2ofwZ/FWpM4KysLLUBYYwpP6tWreKMM86IdxgJobCwkMLCQmrUqMGaNWvo1q0ba9asoWrVxDqODvSdichCVc3yL5tYkRtjTILau3cvXbt2pbCwEFXlL3/5S8Lt/EurYkdvjDHlpH79+ixcuDDeYUSVXQQ2xpgkZQnAGGOSVFgJQES6i8hqEVkrIiMDzK8uItO9+fNFJN2bniYic0Rkr4iM91umj4h8JSLLROQDEWkYjQ9kjDEmPCUmABFJASYAlwAtgT4i0tKv2EBgp6q2AJ4FnvSm7wfuB47ovUlEqgLPAReoamtgGTA8gs9hjDGmlMI5A+gArFXV9ap6AJgG9PQr0xOY7D2fAXQVEVHVn1R1Hi4R+BLvUUvcCAZ1gU1l/RDGmMqpS5cuR93UNWbMGG655ZaQy9WuXRuATZs20atXr6DrLqlZ+ZgxY464IevSSy9l165d4YQe0oMPPsgzzzwT8XoiFU4CaAJs9Hmd500LWEZVC4HdQFqwFarqL8BQ4Cvcjr8l8EqgsiIyWERyRCRn27ZtYYRrjKks+vTpw7Rp046YNm3aNPr06RPW8ieccAIzZswo8/v7J4BZs2ZRv379Mq8v0YSTAAKNMeZ/91g4ZQ4XFknFJYB2wAm4KqA/BiqrqhNVNUtVsxo1ahRGuMaYyqJXr1689957/PzzzwDk5uayadMmOnXqdKhdfmZmJmeeeSbvvvvuUcvn5uaSkZEBwL59+8jOzqZ169Zce+217Nu371C5oUOHHupK+k9/+hMAY8eOZdOmTVxwwQVccMEFAKSnp7N9+3YARo8eTUZGBhkZGYe6ks7NzeWMM87gf/7nf2jVqhXdunU74n0CWbJkCeeccw6tW7fmqquuYufOnYfev2XLlrRu3fpQJ3SfffbZoQFx2rVrx48//ljmbQvh3QeQB5zo87opR1fXFJfJ8+r36wE7QqyzLYCqrgMQkTeBoy4uG2MSxx13QLQHumrbFrx9Z0BpaWl06NCBDz74gJ49ezJt2jSuvfZaRIQaNWrwzjvvULduXbZv384555zDFVdcEXRc3BdeeIGaNWuybNkyli1bRmZm5qF5o0aN4thjj+XgwYN07dqVZcuWcdtttzF69GjmzJlDw4ZHtlFZuHAhr776KvPnz0dVOfvss+ncuTMNGjRgzZo1vPHGG7z00kv07t2bt956K2T//v369WPcuHF07tyZBx54gIceeogxY8bwxBNP8O2331K9evVD1U7PPPMMEyZM4Nxzz2Xv3r3UqFGjFFv7aOGcASwAThWR5iJSDcgGZvqVmQn09573Aj7R0H1MfA+0FJHiQ/qLgVXhh22MSRa+1UC+1T+qyj333EPr1q256KKL+P7779myZUvQ9cydO/fQjrh169a0bt360Lw333yTzMxM2rVrx4oVK0rs6G3evHlcddVV1KpVi9q1a3P11Vfz73//G4DmzZvTtm1bIHSX0+DGJ9i1axedO3cGoH///sydO/dQjH379uX1118/dMfxueeey4gRIxg7diy7du2K+E7kEpdW1UIRGQ7MBlKASaq6QkQeBnJUdSau/n6KiKzFHflnFy8vIrm4i7zVRORKoJuqrhSRh4C5IvIL8B0wIKJPYoyJqVBH6rF05ZVXMmLECBYtWsS+ffsOHblPnTqVbdu2sXDhQlJTU0lPTw/YBbSvQGcH3377Lc888wwLFiygQYMGDBgwoMT1hDq+Le5KGlx30iVVAQXzz3/+k7lz5zJz5kweeeQRVqxYwciRI7nsssuYNWsW55xzDh9//DGnn356mdYPYd4HoKqzVPU0VT1FVUd50x7wdv6o6n5V/Z2qtlDVDqq63mfZdFU9VlVrq2pTVV3pTX9RVc9Q1daq2kNV88v8KYwxlVbt2rXp0qULN9100xEXf3fv3k3jxo1JTU1lzpw5fBdoAHAf559//qGB35cvX86yZcsA15V0rVq1qFevHlu2bOH9998/tEydOnUC1rOff/75/OMf/6CgoICffvqJd955h/POO6/Un61evXo0aNDg0NnDlClT6Ny5M0VFRWzcuJELLriAp556il27drF3717WrVvHmWeeyd13301WVhZff/11qd/Tl/UFZIxJeH369OHqq68+okVQ37596dGjB1lZWbRt27bEI+GhQ4dy44030rp1a9q2bUuHDh0AN7pXu3btaNWq1VFdSQ8ePJhLLrmE448/njlz5hyanpmZyYABAw6tY9CgQbRr1y5kdU8wkydPZsiQIRQUFHDyySfz6quvcvDgQa6//np2796NqnLnnXdSv3597r//fubMmUNKSgotW7Y8NLpZWVl30MaYoKw76IqnNN1BW19AxhiTpCwBGGNMkrIEYIwJqSJVEye70n5XlgCMMUHVqFGD/Px8SwIVgKqSn59fqpvDrBWQMSaopk2bkpeXh/XDVTHUqFGDpk2bhl3eEoAxJqjU1FSaN28e7zBMjFgVkDHGJClLAMYYk6QsARhjTJKyBGCMMUnKEoAxxiQpSwDGGJOkLAEYY0ySsgRgjDFJyhKAMcYkKUsAxhiTpCwBGGNMkrIEYIwxScoSgDHGJClLAMYYk6QsARhjTJKyBGCMMUkqrAQgIt1FZLWIrBWRkQHmVxeR6d78+SKS7k1PE5E5IrJXRMb7lK8jIkt8HttFZEy0PpQxxpiSlTgimIikABOAi4E8YIGIzFTVlT7FBgI7VbWFiGQDTwLXAvuB+4EM7wGAqv4ItPV5j4XA25F/HGOMMeEK5wygA7BWVder6gFgGtDTr0xPYLL3fAbQVUREVX9S1Xm4RBCQiJwKNAb+XerojTHGlFk4CaAJsNHndZ43LWAZVS0EdgNpYcbQB5iuqhpmeWOMMVEQTgKQANP8d9bhlAkmG3gj6JuLDBaRHBHJ2bZtW5irNMYYU5JwEkAecKLP66bApmBlRKQqUA/YUdKKRaQNUFVVFwYro6oTVTVLVbMaNWoURrjGGGPCEU4CWACcKiLNRaQa7oh9pl+ZmUB/73kv4JMwq3T6EOLo3xhjTOyU2ApIVQtFZDgwG0gBJqnqChF5GMhR1ZnAK8AUEVmLO/LPLl5eRHKBukA1EbkS6ObTgqg3cGk0P5AxxpjwSEW69pqVlaU5OTnxDsMYYyoUEVmoqln+0+1OYGOMSVKWAIwxJklZAjDGmCRlCcAYY5KUJQBjjElSlgCMMSZJWQIwxpgkZQnAGGOSlCUAY4xJUpYAjDEmSVkCMMaYJGUJwBhjkpQlAGOMSVKWAIwxJklZAjDGmCRlCcAYY5KUJYASTJ0K6elQpYr7O3VqvCMyxpjoKHFIyGQ2dSoMHgwFBe71d9+51wB9+8YvLmOMiQY7Awjh3nsP7/yLFRS46cYYU9FZAghhw4bSTTfGmIrEEkAIJ51UuunGGFORWAIIYdQoqFnzyGk1a7rpxhhT0VkCCKFvX5g4EZo1AxH3d+JEuwBsjKkcrBVQCfr2tR2+MaZysjMAY4xJUmElABHpLiKrRWStiIwMML+6iEz35s8XkXRvepqIzBGRvSIy3m+ZaiIyUUS+EZGvReSaaHwgY4wx4SmxCkhEUoAJwMVAHrBARGaq6kqfYgOBnaraQkSygSeBa4H9wP1AhvfwdS+wVVVPE5EqwLERfxpjjDFhC+cMoAOwVlXXq+oBYBrQ069MT2Cy93wG0FVERFV/UtV5uETg7ybgcQBVLVLV7WX6BMYYY8oknATQBNjo8zrPmxawjKoWAruBtGArFJH63tNHRGSRiPxdRH4VpOxgEckRkZxt27aFEa4xxphwhJMAJMA0LUMZX1WBpsDnqpoJfAE8E6igqk5U1SxVzWrUqFEY4RpjjAlHOAkgDzjR53VTYFOwMiJSFagH7AixznygAHjHe/13IDOMWIwxxkRJOAlgAXCqiDQXkWpANjDTr8xMoL/3vBfwiaoGPQPw5v0f0MWb1BVYGay8McaY6CuxFZCqForIcGA2kAJMUtUVIvIwkKOqM4FXgCkishZ35J9dvLyI5AJ1gWoiciXQzWtBdLe3zBhgG3BjdD+aMcaYUCTEgXrCycrK0pycnHiHYYwxFYqILFTVLP/pdiewMcYkKUsAxhiTpCwBxJiNKWyMSVTWG2gM2ZjCxphEZmcAMWRjChtjEpklgBiyMYWNMYnMEkAM2ZjCxphEZgkghmxMYWNMIrMEEEM2prAxJpFZK6AYszGFjTGJys4AjDEmSVkCMMaYJGUJwBhjkpQlgARnXUkYY2LFLgInMOtKwhgTS3YGkMCsKwljTCxZAkhgidCVhFVBGVN5WQJIYPHuSqK4Cuq770D1cBWUJQFjKgdLAAksGl1JRHIEb1VQxlRulgASWKRdSUR6BJ8IVVDGmNixQeErsfR0t9P316wZ5ObGfnljTGKwQeGTUKRH8NabqTGVmyWASizSi8jWm6kxlZslgEosGkfwffu66p6iIvfXdv7GVB5hJQAR6S4iq0VkrYiMDDC/uohM9+bPF5F0b3qaiMwRkb0iMt5vmU+9dS7xHo2j8YHMYYlwBG/3ERiTuErsCkJEUoAJwMVAHrBARGaq6kqfYgOBnaraQkSygSeBa4H9wP1Ahvfw11dV7apuDMVzPALrysKYxBbOGUAHYK2qrlfVA8A0oKdfmZ7AZO/5DKCriIiq/qSq83CJwCQZu4/AmMQWTgJoAmz0eZ3nTQtYRlULgd1AWhjrftWr/rlfRCRQAREZLCI5IpKzbdu2MFZpEkU07iOwKiRjYiecBBBox+x/80A4Zfz1VdUzgfO8xw2BCqnqRFXNUtWsRo0alRisSRyRtkKKRlcUlkCMCS6cBJAHnOjzuimwKVgZEakK1AN2hFqpqn7v/f0R+BuuqslUIpG2Qoq0CskSiDGhhZMAFgCnikhzEakGZAMz/crMBPp7z3sBn2iIW4xFpKqINPSepwKXA8tLG7xJbJG2Qoq0CskSiDGhhdUVhIhcCowBUoBJqjpKRB4GclR1pojUAKYA7XBH/tmqut5bNheoC1QDdgHdgO+AuUCqt86PgRGqejBUHNYVRHKJtCuKKlXcjtufiLuvIdbv798KCtwZkN1MZ8pbsK4grC8gk7Ai3YFW9ARiTLRYX0Cmwom0CinSaxCRXsROhFZQ8V7eJDhVrTCP9u3bqzGl8frrqs2aqYq4v6+/Xrpla9ZUdecB7lGzZvjraNbsyGWLH82alc/7x3t5kzhw1fVH7VPjvlMvzcMSgClvFTmBxHt5kziCJQCrAjImhEg6w4t3K6h4Lw9WBZXoLAEYE0ORJJBIr0HEe/lIm9EmQjPcSp+AAp0WJOrDqoBMMol3HX5Fr8KK9+ePhkiqIH1h1wCMqXgi3QHEc3mRwDtwkfJZPt4JSDW+15B8BUsAdh+AMSYm4j0mdaT3cUS6fLzvY/Fl9wEYY8pVpPdhxPs+jkiXj7QrkmhchC+JJQBjTExE2goq3jcCRrp8pDvwSBNQWALVCyXqw64BGGNKI57XQOJ9EdsXdg2g4nrhBfj2Wxg+PMrZ3xgTM9HoDHDqVFdltGGD+98fNapsHQlaZ3AVVH4+NGkCP/8MKSmQnQ2//z20aRPvyIwxJYnWDjxSdhG4gnr5ZbfznzULbr8d3n0X2raF3/4WPv44cCsFY0xiiORGwPJgCSCBHTwIzz8PXbrAJZfAn/8MGzfC44/DsmVw8cWQmQlvvAGFhfGO1hhT0VgCSGDvvedOHW+99fC0+vVh5Eh3NPHyy7B/P1x3HbRoAc89B3v3xi1cY0wFYwkggY0fD02bwhVXHD2venUYOBBWrHDVQieeCHfc4eoZ77sPtmwp/3iNMRWLJYAEtWqVq+MfOhSqVg1erkoVlyD+/W/4z39cddFjj7k20zffDN98U24hG2MqGEsACWrCBKhWDQYNCn+Zjh3h7bfh66+hf3+YPBlOPx2uugoWLoxdrMaYiskSQALas8ftvLOzoXHj0i9/2mnwl7+4fkTuvRc++wzOOguGDIEdO6IfrzGmYrIEkID++ld3MXf48MjW86tfwSOPuAvGt9/uLhr/+tfw6qvhdWZljKncLAEkmKIid/G3Qwd31B4NdevCs8+6aqDTToObboLzzoOlS6OzfmNMxWQJIMH861+wenXkR/+BtGnjLhZPmuQuDrdvD3fe6aqcjDHJxxJAANu2waefupuwhg2DCy+E0aPL573Hj4dGjaB379isv0oVuPFGl2QGDXL3Dpx+OkybZncVG5NskrYvIFXYuhVWrnRt6X3/bt9+uFzduu7mq++/h8WL4cwzo/L2AeXmwsknwz33wKOPxu59fC1Y4JqaLlzoEt2ECS4hGGMqj2B9AYVoYX7Ewt2B54AU4GVVfcJvfnXgr0B7IB+4VlVzRSQNmAGcBbymqkdVbIjITOBkVc0o5WcK2w8/BN7R5+cfLlOvHrRq5ZpMtmzpHq1awQknwM6d7uLpkCGuCqVKjM6bnn/erfvmm2Oz/kDOOgvmz3c9FN5zD7RuDXfd5VoP1apVfnEYY8pfiWcAIpICfANcDOQBC4A+qrrSp8wtQGtVHSIi2cBVqnqtiNQC2gEZQIZ/AhCRq4Fe3rIlJoCyngGccgqsX++eN2jgduy+O/mWLeH4492gE8FMngwDBsBLL5WubX64CgrcXb8XXggzZkR//eHYuhX+8Af3WU86yVUP9ewZersYYxJfsDOAEgdhAToCs31e/xH4o1+Z2UBH73lVYDtecvGmDQDG+y1TG5gHtASWlxSHRjAgzMyZqh9/rLp5s2pRUZlWoUVFqp07qzZooLp1a9nWEcorr7gBHz79NPrrLq25c1UzMlw8l12mum5dvCMyxkSCIAPChFMF1ATY6PM6Dzg7WBlVLRSR3UCalwiCeQT4M1AQogwiMhgYDHBSGUdD6dGjTIv5xeEGZmnTxvXH/9prka+zmCqMGwcZGXD++dFbb1mddx4sWuRi+tOf3FnSNdfAccdBWho0bHj032OPhdTUeEdujCmNcBJAoAoA/3qjcMocLizSFmihqneKSHqoN1fVicBEcFVAISONsTPOcDv/xx5z1UFdukRnvV98AUuWwIsvJk51S2oqjBgB114Ld98Nc+e6i+P79gVfpl694AnioovgbP/DBmNMXIWTAPKAE31eNwU2BSmTJyJVgXpAqE4HOgLtRbuiHM0AABHbSURBVCTXi6GxiHyqql3CjDtu7r3X9b8/dKi7kapatcjXOW6c23km2mAR4EYje/31w68LCtzF8/x8lxCC/d261XVot327u6t53DjXNUX16vH7LMaYI4WTABYAp4pIc+B7IBu4zq/MTKA/8AXuou4nXr1TQKr6AvACgHcG8F5F2PmDG9Nz/Hi47DJ45hnXciYSmze7i77Dh0Pt2tGJMZZq1nSPE08suWyxDz5wA9q8+SbccEPsYjPGlE6JDRpVtRAYjrvQuwp4U1VXiMjDIlLcU/0rQJqIrAVGACOLl/eO8kcDA0QkT0RaRvkzlLtLL4VevVw/O8Wti8pq4kQ3mtewYdGJLRH99rfu3oLnnrObzYxJJEl7I1ikvv/e7dQ6dXLj9Zal7v7AAddvf7t2bh2V2QsvwC23wOefw29+E+9ojEkuNih8lDVp4s4APvgA3nqrbOt4+213k1os+v1JNDfc4K5zjB0b70iMMcUsAURg+HBo29Z1tVyWDtXGj3c3qXXvHv3YEk3t2u4GuhkzIC8v3tEYY8ASQESqVnVNNzdvdu3lS2PxYlcdMmxY7LqWSDTDhrlrAM8/H+9IjDFgCSBiZ5/t+ggaO9bt1MM1YYJrTTNgQMxCSzjNm7vxiydODH0/gTGmfFgCiILHHnM3O918Mxw8WHL5/HyYOhWuv971TZRMbr/dff6//S3ekRhjLAFEQf36bsStBQvc0W1JJk2C/fuT4+Kvv86dXY+jY8dak1Bj4s0SQJT06QNdu8If/+ha9gRz8KCrA+/cObZjCyQqEbjtNli2zA1Wb4yJH0sAUSLiduz79sH//m/wcrNmuYFfkvHov9h117k+gp57Lt6RGJPcLAFE0WmnuTOAv/0NPv44cJnx4909BD17lm9sieSYY2DwYJg5E779Nt7RGJO8LAFE2ciR0KKFu+t1//4j561eDR9+6FoNJXvXybfc4s6aJkyIdyTGJC9LAFFWo4bbqa1ZA08+eeS8CRNc76GDB8cntkTStKkbY+Dll11vocaY8mcJIAa6dYPsbNc8dM0aN+3HH90gMr17Q+PGcQ0vYdx+O+zeDVOmxDsSY5KTJYAYGT3anQ3ccotr7jhliksCyXzx11/HjtC+vWsSWlQU72iMST6WAGLk+OPdGcDHH7sBZMaPh6ws6NAh3pElDhF3FvD118EvmhtjYscSQAwNGeJ2+oMGudGxbr01cYZ8TBS9e8OvfmVNQo2JB0sAMZSS4jqL+/ln11VE797xjijxVK/uEuWsWYevlxiTSDZuhHffjXcUsWEJIMbat3dJ4IUX3DUBc7TiZrHjxsU7EmOOlJ8PF1wAV17pmnBXNjYimEkIN9wA//iHGyugXr14R2OMG7GvWzf44gs47jjX/fvy5e5GxorGRgQzCe2229z9AK+9Fu9IjHEt9265xfVXNWmS+12uXw+PPhrvyKLLEoBJCGed5ZqFjhsXXpfaxsTSmDHwyitw773Qt6+rBurfH556ClasiHd00WMJwCSM22+Hdevg/ffjHYlJZv/8p+vQ8Zpr4OGHD09/5hlXPXnzzZXnvhVLACZhXH216yjPmoSaeFm+3N3F364dTJ585HCtDRu6JPD55+7soDKwBGASRmqqq3f9+OPKdZptKoatW+Hyy6FOHdfss1ato8v07+/G8vjDH2DLlvKPMdosAZiEMniwuzfAmoSa8vTzz3DVVW6n/u67rrPCQERcs+6CgtDjflQUYSUAEekuIqtFZK2IjAwwv7qITPfmzxeRdG96mojMEZG9IjLeb5kPRGSpiKwQkRdFJCUaH8hUbA0buotuf/0r7NgRnXXu3Alr19oQlCYwVXfg8Z//uGqfs84KXf700924H1OnwkcflU+MsVJiAvB2zBOAS4CWQB8RaelXbCCwU1VbAM8CxR0h7wfuB+4KsOreqtoGyAAaAb8r0ycwlc5tt7mR1SKtZ92yBX7/ezjxRDj1VGjUCHr0gMcfd837CgqiE6+p2J580h1wPPRQ+HfrjxzpBoAaOtT9ViuqcM4AOgBrVXW9qh4ApgH+41n1BCZ7z2cAXUVEVPUnVZ2HSwRHUNU93tOqQDXAjs8MAG3auHrW8eOhsLD0y2/aBHfeCc2bu15Zr7zSnbZfcYU7E7jnHujSxbXoyMpyCWfaNNiwwc4Sks0777ij+exsuP/+8JerUcP9ptatg1GjYhdfzKlqyAfQC3jZ5/UNwHi/MsuBpj6v1wENfV4P8F/Gmz4b2An8DUgJ8v6DgRwg56STTlKTHN5+WxVUZ8wIf5kNG1SHDVOtXl01JUV1wADVb745utz27arvvad6zz2qF1ygWrOmey9QPeEE1V69VEePVv3vf1V//jl6n8kklkWL3HffoYNqQUHZ1tGvn2pqqury5dGNLdqAHA20fw00UY/cAf8uQAIY51dmRYAEkObzOmAC8ObVAN4CLi4plvbt28d4M5lEUVio2qyZ6vnnl1z2229Vb77Z/SNWrao6aJDqunXhv9cvv7idwfjxqtddp5qefjghVK+ueu65qk88obpvX1k/TdkdPKg6ZYrqo4+q/vBD+b9/ZbVpk2rTpu6xaVPZ17N1q+qxx6p26uS+q0QVSQLoCMz2ef1H4I9+ZWYDHb3nVYHteP0MaQkJwJvfP9T84oclgOTy9NPuF7p4ceD5a9eqDhzodvrVqqkOHaqamxud9960SfWtt1Tvukv17LNdHKecovr++9FZfziWLnXJpzgZ1aiheuut7kzHlF1BgTvqr1kz+G+rNCZNct/PSy9Fvq5YiSQBVAXWA81xdfVLgVZ+ZYYBL3rPs4E3/eYfkQCA2sDxPuufDgwvKRZLAMllxw73T3rjjUdOX73anXqnpLgj9FtvVd24MbaxfPSR6mmnuf+Ya66J7U54zx7VESPc50tLczuY1atVb7rJJbvUVJf41qyJXQyVVVGRana2qojqO+9Eb53nn69av37inqWVOQG4ZbkU+Mar2rnXm/YwcIUersb5O7AW+BI42WfZXGAHsBfIw7Uk+hWwAFjmVR+NA6qWFIclgOQzZIjbyW/dqrpihauiqVJF9ZhjVO+8M7LT99Lav1911Ch3JF6rljtDOXAgeusvKlJ98013HUJEdfBgd73C13ffqQ4f7rZJlSpueyR6/XMieeght9d74onornfVKpeY+/aN7nqjJaIEkCgPSwDJZ+VK9ys94wy3U6xVS/UPf1DdsiV+Ma1fr9qjh4urVSvVzz6LfJ2rV6tefLFbZ7t2ql98Ebr85s2qv/+9au3abpmrrlLNyYk8jsps+nS3rfr1c8k22h54wK3/ww+jv+5IWQIwFVaPHqp16rhWO9u2xTuaw959112oBtUbbijb6X9Bger997trGHXrqo4d6y5Kh2v7drfjqV/fxfHb36rOnVv6OCq7L790Z27nnuvO5GJh3z7VU09114rK2qooVoIlABsQxiS8n392XUTXrBnvSI5WUODagT/9tIvvscdcb5EpYdzXPmsWDB8O337r7n5+5hk38EhZ7NnjRp0bPdr1aXP++a4r44svjnwcalX3OX/5xT0OHAj8PNS8wkL3HRYVHf4b7HmgaaquY7aUlNL/BXfvR/Xq8OWX7obAWPnkE+ja1W37RBo7INiAMJYAjImCr792O/N//csNA/r889ChQ+CyGzbAHXe4m5BOP92VveCC6MRRUAAvv+wSUl6eu9HtvvvcHdBFRa5bjB07Dj/8X/s/du50j3iO0VCcwCLZVdWrB/PmQUZGdGIKpV8/d2PhkiXQ0r/PhDixBGBMjKnC9OkwYgT88IM7Exg1Co491s0/cACefdb1Ma8KDzzgylarFv1Yfv4Zpkxx3V6sX++GMQzVZYEI1K/vYm3QwP31fdSp4+JMTXUP3+fhvK5a1R2N+x+hB3vuO803AagefaYQzt9GjaBu3ehv50C2bXOJvWVL1+VIlQToctMSgDHlZM8e+NOfYOxYt/N8+mlo1gyGDYNVq6BnTzfmQbNmsY+lsBDefBNycg7v2APt4OvVC6/ayoRn0iQYONCdjQ0cGO9oLAEYU+6WLHHjG3zxhXudnu66ub788riGZcqBqutv6quvXPVg48bxjccGhTemnLVt6+qdX3vNXRxescJ2/smieNyAvXsTe9yAqvEOwJjKrEoVN4qUST5nnOG6jX7kEfcbuOii8JdVPXz9orgFVe3akbfo8mdVQMYYEyP798OZZ7qmuY0bux25707d97nvtECtrvbtc91Ql0WwKiA7AzDGmBipUQP+/nfXEKCo6HBrKN9WUeFOi8VFeksAxhgTQ23buuEjE5FdBDbGmCRlCcAYY5KUJQBjjElSlgCMMSZJWQIwxpgkZQnAGGOSlCUAY4xJUpYAjDEmSVWoriBEZBvwXRkXbwhsj2I40WbxRcbii4zFF5lEj6+Zqh41FlqFSgCREJGcQH1hJAqLLzIWX2QsvsgkenzBWBWQMcYkKUsAxhiTpJIpAUyMdwAlsPgiY/FFxuKLTKLHF1DSXAMwxhhzpGQ6AzDGGOPDEoAxxiSpSpcARKS7iKwWkbUiMjLA/OoiMt2bP19E0ssxthNFZI6IrBKRFSJye4AyXURkt4gs8R4PlFd83vvnishX3nsfNf6mOGO97bdMRDLLMbZf+2yXJSKyR0Tu8CtTrttPRCaJyFYRWe4z7VgR+UhE1nh/GwRZtr9XZo2IxGTk4CDxPS0iX3vf3zsiUj/IsiF/CzGM70ER+d7nO7w0yLIh/9djGN90n9hyRWRJkGVjvv0ipqqV5gGkAOuAk4FqwFKgpV+ZW4AXvefZwPRyjO94INN7Xgf4JkB8XYD34rgNc4GGIeZfCrwPCHAOMD+O3/UPuBtc4rb9gPOBTGC5z7SngJHe85HAkwGWOxZY7/1t4D1vUE7xdQOqes+fDBRfOL+FGMb3IHBXGN9/yP/1WMXnN//PwAPx2n6RPirbGUAHYK2qrlfVA8A0oKdfmZ7AZO/5DKCriEh5BKeqm1V1kff8R2AV0KQ83juKegJ/Vee/QH0ROT4OcXQF1qlqWe8MjwpVnQvs8Jvs+xubDFwZYNHfAh+p6g5V3Ql8BHQvj/hU9UNVLfRe/hdoGu33DVeQ7ReOcP7XIxYqPm+/0Rt4I9rvW14qWwJoAmz0eZ3H0TvYQ2W8f4LdQFq5ROfDq3pqB8wPMLujiCwVkfdFpFW5BgYKfCgiC0VkcID54Wzj8pBN8H+8eG4/gF+p6mZwSR9oHKBMomzHm3BndIGU9FuIpeFeFdWkIFVoibD9zgO2qOqaIPPjuf3CUtkSQKAjef92ruGUiSkRqQ28Bdyhqnv8Zi/CVWu0AcYB/yjP2IBzVTUTuAQYJiLn+81PhO1XDbgC+HuA2fHefuFKhO14L1AIBBuyvKTfQqy8AJwCtAU246pZ/MV9+wF9CH30H6/tF7bKlgDygBN9XjcFNgUrIyJVgXqU7RS0TEQkFbfzn6qqb/vPV9U9qrrXez4LSBWRhuUVn6pu8v5uBd7BnWr7Cmcbx9olwCJV3eI/I97bz7OluFrM+7s1QJm4bkfvovPlQF/1Kqz9hfFbiAlV3aKqB1W1CHgpyPvGe/tVBa4GpgcrE6/tVxqVLQEsAE4VkebeUWI2MNOvzEyguMVFL+CTYP8A0ebVGb4CrFLV0UHKHFd8TUJEOuC+o/xyiq+WiNQpfo67WLjcr9hMoJ/XGugcYHdxdUc5CnrkFc/t58P3N9YfeDdAmdlANxFp4FVxdPOmxZyIdAfuBq5Q1YIgZcL5LcQqPt9rSlcFed9w/tdj6SLga1XNCzQzntuvVOJ9FTraD1wrlW9wLQTu9aY9jPuxA9TAVR2sBb4ETi7H2DrhTlOXAUu8x6XAEGCIV2Y4sALXquG/wG/KMb6Tvfdd6sVQvP184xNggrd9vwKyyvn7rYnbodfzmRa37YdLRJuBX3BHpQNx15T+Bazx/h7rlc0CXvZZ9ibvd7gWuLEc41uLqz8v/g0Wt4o7AZgV6rdQTvFN8X5by3A79eP94/NeH/W/Xh7xedNfK/7N+ZQt9+0X6cO6gjDGmCRV2aqAjDHGhMkSgDHGJClLAMYYk6QsARhjTJKyBGCMMUnKEoAxxiQpSwDGGJOk/h9iqxFMzCDFyQAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# load the best model\n", "best_model = load_model('1dcnn_lstm_model')\n", "\n", "# Compare the prediction with y_true\n", "preds = best_model.predict(X_val)\n", "pred_pm25 = scaler.inverse_transform(preds)\n", "pred_pm25 = np.squeeze(pred_pm25)\n", "\n", "# Measure MAE of y_pred and y_true\n", "mae = mean_absolute_error(df_val['pm2.5'].loc[7:], pred_pm25)\n", "print('MAE for the validation set:', round(mae, 4))\n", "\n", "mae = mean_absolute_error(df_val['scaled_pm2.5'].loc[7:], preds)\n", "print('MAE for the scaled validation set:', round(mae, 4))\n", "\n", "# Check the metrics and loss of each apoch\n", "mae = history.history['mae']\n", "val_mae = history.history['val_mae']\n", "loss = history.history['loss']\n", "val_loss = history.history['val_loss']\n", "\n", "epochs = range(len(mae))\n", "\n", "plt.plot(epochs, mae, 'bo', label='Training MAE')\n", "plt.plot(epochs, val_mae, 'b', label='Validation MAE')\n", "plt.title('Training and Validation MAE')\n", "plt.legend()\n", "\n", "plt.figure()\n", "\n", "# Here I was using MAE as loss too, that's why they lookedalmost the same...\n", "plt.plot(epochs, loss, 'bo', label='Training loss')\n", "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", "plt.title('Training and Validation loss')\n", "plt.legend()\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Note\n", "\n", "* 1D CNN only is faster when there is same amount of epoches and batch_size\n", " * In this case, both experiments got same performance whe epoch and batch_size were the same\n", "* Both experiments appear to be a little bit underfitting" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }
mit
zklgame/CatEyeNets
test/two_layer_net.ipynb
1
628786
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Implementing a Neural Network\n", "In this exercise we will develop a neural network with fully-connected layers to perform classification, and test it out on the CIFAR-10 dataset." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import os\n", "os.chdir(os.getcwd() + '/..')\n", "\n", "# Run some setup code for this notebook\n", "import random\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "from utils.data_utils import load_CIFAR10\n", "\n", "%matplotlib inline\n", "plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots\n", "plt.rcParams['image.interpolation'] = 'nearest'\n", "plt.rcParams['image.cmap'] = 'gray'\n", "\n", "# Some more magic so that the notebook will reload external python modules;\n", "# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython\n", "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from classifiers.neural_net import TwoLayerNet\n", "\n", "def rel_error(x, y):\n", " \"\"\" returns relative error \"\"\"\n", " return np.max(np.abs(x - y) / np.maximum(1e-8, np.abs(x) + np.abs(y)))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create a small net and toy data to check implementations.\n", "# set random seed for repeatable experiments.\n", "input_size = 4\n", "hidden_size = 10\n", "num_classes = 3\n", "num_inputs = 5\n", "\n", "def init_toy_model():\n", " np.random.seed(0)\n", " return TwoLayerNet(input_size, hidden_size, num_classes, std=1e-1)\n", "\n", "def init_toy_data():\n", " np.random.seed(1)\n", " X = 10 * np.random.randn(num_inputs, input_size)\n", " y = np.array([0, 1, 2, 2, 1])\n", " return X, y\n", "\n", "net = init_toy_model()\n", "X, y = init_toy_data()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Forward pass: compute scores" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "scores: \n", "[[-0.81233741 -1.27654624 -0.70335995]\n", " [-0.17129677 -1.18803311 -0.47310444]\n", " [-0.51590475 -1.01354314 -0.8504215 ]\n", " [-0.15419291 -0.48629638 -0.52901952]\n", " [-0.00618733 -0.12435261 -0.15226949]]\n", "\n", "correct scores:\n", "[[-0.81233741 -1.27654624 -0.70335995]\n", " [-0.17129677 -1.18803311 -0.47310444]\n", " [-0.51590475 -1.01354314 -0.8504215 ]\n", " [-0.15419291 -0.48629638 -0.52901952]\n", " [-0.00618733 -0.12435261 -0.15226949]]\n", "\n", "Difference between your scores and correct scores:\n", "3.68027204961e-08\n" ] } ], "source": [ "scores = net.loss(X)\n", "print('scores: ')\n", "print(scores)\n", "print\n", "\n", "print('correct scores:')\n", "correct_scores = np.asarray([\n", " [-0.81233741, -1.27654624, -0.70335995],\n", " [-0.17129677, -1.18803311, -0.47310444],\n", " [-0.51590475, -1.01354314, -0.8504215 ],\n", " [-0.15419291, -0.48629638, -0.52901952],\n", " [-0.00618733, -0.12435261, -0.15226949]])\n", "print(correct_scores)\n", "print\n", "\n", "# The difference should be very small, get < 1e-7\n", "print('Difference between your scores and correct scores:')\n", "print(np.sum(np.abs(scores - correct_scores)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Forward pass: compute loss" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Difference between your loss and correct loss:\n", "1.79412040779e-13\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "classifiers/neural_net.py:74: FutureWarning: comparison to `None` will result in an elementwise object comparison in the future.\n", " if y == None:\n" ] } ], "source": [ "loss, _ = net.loss(X, y, reg=0.05)\n", "corrent_loss = 1.30378789133\n", "\n", "# should be very small, get < 1e-12\n", "print('Difference between your loss and correct loss:')\n", "print(np.sum(np.abs(loss - corrent_loss)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Backward pass\n", "Implement the rest of the function. This will compute the gradient of the loss with respect to the variables `W1`, `b1`, `W2`, and `b2`. Now that you (hopefully!) have a correctly implemented forward pass, you can debug your backward pass using a numeric gradient check:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "b2 max relative error: 4.447687e-11\n", "b1 max relative error: 1.555470e-09\n", "W1 max relative error: 3.669858e-09\n", "W2 max relative error: 3.440708e-09\n" ] } ], "source": [ "from utils.gradient_check import eval_numerical_gradient\n", "\n", "loss, grads = net.loss(X, y, reg=0.05)\n", "\n", "# these should all be less than 1e-8 or so\n", "for param_name in grads:\n", " f = lambda W: net.loss(X, y, reg=0.05)[0]\n", " param_grad_num = eval_numerical_gradient(f, net.params[param_name], verbose=False)\n", " print('%s max relative error: %e' % (param_name, rel_error(param_grad_num, grads[param_name])))" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Train the network\n", "Once you have implemented the method, run the code below to train a two-layer network on toy data. You should achieve a training loss less than 0.2." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "('Final training loss: ', 0.017149607938731846)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAHwCAYAAAAIDnN0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4ZGd55/3fXVWqKlWVdvWi3tzesN3YYKBxbELClmA3\nITFkYSfAwGs8QOLJJAGSmYRkmHdC3rxJIBPAeIAQwmIIIeCAwSQmYIKNcRuMwXihaS+9t3rRvtR2\nzx/nSFa3tZTUdepUSd/PddUl1alTVbd01K2fnuc59zF3FwAAAOKTiLsAAACAtY5ABgAAEDMCGQAA\nQMwIZAAAADEjkAEAAMSMQAYAABAzAhmASJlZ0szGzGxbPfdtFWaWMjM3s+0LPP46M/tKY6sC0GyM\nPmQA5jKzsTl3c5KmJVXC+2929082vqozZ2b/U9IWd399g983Jakk6Wx3f+QMXucTkva4+5/UqTQA\nTSQVdwEAmou7F2Y+N7NHJL3J3f9tof3NLOXu5UbUhpUzs6S7V5beE0AcmLIEsCxm9j/N7DNm9mkz\nG5X0GjO7wsy+Y2ZDZnbIzP7GzNrC/U+ZsjOzT4SPf8XMRs3sDjM7e7n7ho/vMrOHzGzYzP63mX3b\nzF6/gq/pyWb2zbD+H5rZL8157MVmdn/4/vvN7HfC7evN7ObwOSfM7LYl3uZKM9tjZifN7G/mvP6b\nzOwb4eeJ8Os9Gn5N95rZDjN7i6SXS/rDcEr3n2uo+xNm9n4z+6qZjUt6u5kdNLPEnH1eZmZ3L/f7\nBaD+CGQAVuKlkj4lqUvSZySVJV0nqV/Sz0q6StKbF3n+qyT9kaReSY9Jevdy9zWz9ZI+K+n3w/d9\nWNJly/1CzCwt6UuSvixpnaTfkfQZMzsv3OXvJL3R3TskPUXSN8Ptvy9pb/icjZL++xJv9SJJz5D0\nNAUh9hfm2WeXpMslnS+pR9IrJJ1w9w8o+D7/L3cvuPtLa6hbCr53fyqpQ9JfSRqV9II5j79W0seX\nqBtAAxDIAKzEf7j7v7h71d0n3f0ud7/T3cvuvlfSDZKes8jzP+fuu929JOmTki5dwb4vlnSPu38x\nfOyvJR1bwdfys5LSkv7C3Uvh9OxXFIQhKVj/tcPMOtz9hLt/b872TZK2uXvR3ZcaIfszdx8O15F9\nQ/N/zSVJnZIulCR3/7G7H15h3ZL0z+5+R3icphWEr9dIkpn1Kwhnn16ibgANQCADsBL75t4xswvN\n7MtmdtjMRiT9DwWjVguZGzImJBUW2nGRfTfNrcODM5T211D76TZJesxPPcPpUUmbw89fKulXJD1m\nZt8ws58Jt78n3O9WM/upmf3+Eu+z5Nfs7l+TdL2kD0o6YmbXm1nHCuuWTjtOkv5B0tVm1q4guP27\nux9dom4ADUAgA7ASp5+e/SFJP5J0nrt3SvpjSRZxDYckbZm5Y2amU8NIrQ5K2ho+f8Y2SQckKRz5\n+xVJ6xVMEd4Ybh9x999x9+2SXiLpHWa22KhgTdz9ve7+dEkXS9oh6b/OPLScuud7jrs/JunusN7X\nKghoAJoAgQxAPXRIGpY0bmYXafH1Y/XyJUlPN7NfDltLXKdgLdVikmaWnXPLSLpdwRq43zWzNjN7\nvoL1Xp8xs3Yze5WZdYbToqOSqpIUvu+5YSAaVtAapHomX5CZXRbeUpLGJRXnvOYRSefM2X3Bupd4\nm49L+gMF06JfPJN6AdQPgQxAPfyupNcpCCwf0tKh4Iy5+xEFZx7+laTjks6V9H0FfdMW8hpJk3Nu\nD4Zrq35Z0tUK1qD9jaRXuftPwue8TtKj4VTsG8PXkKQLJH1d0pikb0t6n7t/6wy/rG5JH5E0JOkR\nBaOAfxU+9mFJTw3P0vxcDXUv5J8UBLvPufvkGdYLoE5oDAtgVTCzpIJpvF+vQzBatcIRvYclvd7d\nvxFzOQBCjJABaFlmdpWZdYdTj3+k4CzF78ZcVrN7mYJRxG8utSOAxqFTP4BW9mwF/dBSku6T9NJw\nKg/zMLP/UNDj7NXO9AjQVJiyBAAAiBlTlgAAADEjkAEAAMSs5daQ9ff3+/bt2+MuAwAAYEl33333\nMXdfqkdi6wWy7du3a/fu3XGXAQAAsCQze7SW/ZiyBAAAiBmBDAAAIGYEMgAAgJgRyAAAAGJGIAMA\nAIgZgQwAACBmBDIAAICYEcgAAABiRiADAACIGYEMAAAgZgQyAACAmBHIAAAAYkYgAwAAiBmBDAAA\nIGYEMgAAgJgRyAAAAGJGIDtNteoanixpulyJuxQAALBGEMhOc9/BET31T7+m2x46FncpAABgjSCQ\nnSaXSUqSJorlmCsBAABrBYHsNPl0SpI0Nk0gAwAAjUEgO01+ZoRsmjVkAACgMQhkp8mFI2TjTFkC\nAIAGIZCdJpkwZdsSGmfKEgAANAiBbB6FTErjRaYsAQBAYxDI5pFLpzTBCBkAAGgQAtk8cumkxljU\nDwAAGoRANo9CJkUfMgAA0DCRBTIz+6iZHTWzHy3w+KvN7F4z+6GZ3W5mT42qluXKsYYMAAA0UJQj\nZB+TdNUijz8s6Tnufomkd0u6IcJaliWfTnKWJQAAaJhUVC/s7reZ2fZFHr99zt3vSNoSVS3Llc+w\nqB8AADROs6whe6Okr8RdxIx8OsmUJQAAaJjIRshqZWbPUxDInr3IPtdIukaStm3bFnlNuUxK49Nl\nubvMLPL3AwAAa1usI2Rm9hRJH5Z0tbsfX2g/d7/B3Xe6+85169ZFXlchk1K56ipWqpG/FwAAQGyB\nzMy2Sfq8pNe6+0Nx1TGfXJoLjAMAgMaJbMrSzD4t6bmS+s1sv6R3SWqTJHe/XtIfS+qT9IFwWrDs\n7jujqmc58nMuMN6TT8dcDQAAWO2iPMvylUs8/iZJb4rq/c9EPhMGMkbIAABAAzTLWZZNJZcJpizH\n6dYPAAAagEA2j5kpS9aQAQCARiCQzSMfjpCN0RwWAAA0AIFsHrMjZExZAgCABiCQzePxNWRMWQIA\ngOgRyOYx2/aCKUsAANAABLJ5tLclZSYuMA4AABqCQDaPRMKUa+MC4wAAoDEIZAuYucA4AABA1Ahk\nCyhkUoyQAQCAhiCQLSCXTrKGDAAANASBbAH5dIrGsAAAoCEIZAvIZ5KaYMoSAAA0AIFsAblMiouL\nAwCAhiCQLSCfTnKWJQAAaAgC2QLymZQmppmyBAAA0SOQLSCfDqYs3T3uUgAAwCpHIFtALpNU1aWp\nUjXuUgAAwCpHIFtAIRNeYJyF/QAAIGIEsgXk0kEgYx0ZAACIGoFsAfl0UpJoDgsAACJHIFtAPpyy\nnGDKEgAARIxAtoB8Jhgh4wLjAAAgagSyBcysIaM5LAAAiBqBbAGzZ1kSyAAAQMQIZAvIhYv6ucA4\nAACIGoFsAXn6kAEAgAYhkC0gk0ooYUxZAgCA6BHIFmBmymdSGqcxLAAAiBiBbBH5dIo+ZAAAIHIE\nskXkMklGyAAAQOQIZIsoZFIs6gcAAJEjkC0il05ycXEAABA5Atki8ukUFxcHAACRI5AtIp9hUT8A\nAIgegWwR+UySi4sDAIDIEcgWkUunaAwLAAAiRyBbRDBlWVG16nGXAgAAVjEC2SLy4QXGJ0tMWwIA\ngOgQyBaRm7nAONOWAAAgQgSyRRQywQgZC/sBAECUCGSLyKUZIQMAANEjkC0iTyADAAANQCBbRD6c\nspxgyhIAAESIQLaI/Myifrr1AwCACBHIFpEL214wZQkAAKJEIFtEYbbtBVOWAAAgOgSyRcycZckF\nxgEAQJQIZItIpxJqS5rGGCEDAAARIpAtIZdOMUIGAAAiRSBbQiGTYg0ZAACIFIFsCbl0krMsAQBA\npAhkS8hlUvQhAwAAkSKQLaGQSdKpHwAARIpAtoRcOsWUJQAAiBSBbAn5dJIpSwAAEKnIApmZfdTM\njprZjxZ43Mzsb8xsj5nda2ZPj6qWM5HPpDTBWZYAACBCUY6QfUzSVYs8vkvS+eHtGkkfjLCWFcuz\nqB8AAEQsskDm7rdJOrHILldL+rgHviOp28wGoqpnpXLppKZKVZUr1bhLAQAAq1Sca8g2S9o35/7+\ncFtTmbnA+ESJaUsAABCNlljUb2bXmNluM9s9ODjY0PeevcA468gAAEBE4gxkByRtnXN/S7jtCdz9\nBnff6e47161b15DiZuQzSUnSGK0vAABAROIMZDdJ+s3wbMvLJQ27+6EY65lXfmaEjIX9AAAgIqmo\nXtjMPi3puZL6zWy/pHdJapMkd79e0s2SXiRpj6QJSW+IqpYzkQtHyLjAOAAAiEpkgczdX7nE4y7p\nrVG9f73MjJDRrR8AAESlJRb1xykfnmVJLzIAABAVAtkSZhb1c4FxAAAQFQLZEnJMWQIAgIgRyJaQ\nT7OoHwAARItAtoRUMqFMKkHbCwAAEBkCWQ3ymRSNYQEAQGQIZDXIpZMs6gcAAJEhkNWgkEmxqB8A\nAESGQFaDXDpJHzIAABAZAlkN8pkUZ1kCAIDIEMhqkE+nOMsSAABEhkBWg1wmyQgZAACIDIGsBvl0\nijVkAAAgMgSyGuQzKU0wQgYAACJCIKtBPp1UsVJVsVyNuxQAALAKEchqkMsEFxhnYT8AAIgCgawG\nhUx4gXG69QMAgAgQyGqQS4cjZHTrBwAAESCQ1SAfjpBxgXEAABAFAlkN8jMjZExZAgCACBDIapAP\nF/VzgXEAABAFAlkNcumZRf0EMgAAUH8EshoUZkfImLIEAAD1RyCrQUe2TZI0PFmKuRIAALAaEchq\n0J5OKpdO6sR4Me5SAADAKkQgq1FfIa1jY9NxlwEAAFYhAlmN+vIZHR9jhAwAANQfgaxG/YUMI2QA\nACASBLIa9RfSOs4aMgAAEAECWY36CmmdGC+qWvW4SwEAAKsMgaxG/YWMKlXXEK0vAABAnRHIatRX\nyEiSjrOODAAA1BmBrEb9+bQk6RhnWgIAgDojkNVoZoSMMy0BAEC9Echq1F8IRsiYsgQAAPVGIKtR\ndy6thInWFwAAoO4IZDVKJky9+TRryAAAQN0RyJahL0+3fgAAUH8EsmXo70izhgwAANQdgWwZ+vIZ\n1pABAIC6I5AtQ18hreOsIQMAAHVGIFuG/kJGY9NlTZUqcZcCAABWEQLZMsz0ImNhPwAAqCcC2TL0\n5WeuZ8m0JQAAqB8C2TL0zXTrH2eEDAAA1A+BbBn6Z69nyQgZAACoHwLZMvSxhgwAAESAQLYMuXRK\nuXSSNWQAAKCuCGTLFPQiY4QMAADUD4FsmejWDwAA6o1Atkz9hYwGRxkhAwAA9UMgW6b+QpoRMgAA\nUFcEsmXqK6R1YryoatXjLgUAAKwSBLJl6stnVKm6hidLcZcCAABWCQLZMvV3zDSHZR0ZAACoj0gD\nmZldZWYPmtkeM3vnPI93mdm/mNkPzOw+M3tDlPXUQ39+pjks68gAAEB9RBbIzCwp6f2SdknaIemV\nZrbjtN3eKunH7v5USc+V9Jdmlo6qpnroCy+fxPUsAQBAvUQ5QnaZpD3uvtfdi5JulHT1afu4pA4z\nM0kFSScklSOs6YzNXmCcETIAAFAnUQayzZL2zbm/P9w2199KukjSQUk/lHSdu1cjrOmM9eTSShhr\nyAAAQP3Evaj/Skn3SNok6VJJf2tmnafvZGbXmNluM9s9ODjY6BpPkUyYevNp1pABAIC6iTKQHZC0\ndc79LeG2ud4g6fMe2CPpYUkXnv5C7n6Du+90953r1q2LrOBa9eUzXM8SAADUTZSB7C5J55vZ2eFC\n/VdIuum0fR6T9AJJMrMNki6QtDfCmuqij279AACgjiILZO5elvQ2SbdIul/SZ939PjO71syuDXd7\nt6RnmdkPJd0q6R3ufiyqmuqlv5BhDRkAAKibVJQv7u43S7r5tG3Xz/n8oKQXRllDFPoKac6yBAAA\ndRP3ov6W1F/IaGy6rKlSJe5SAADAKkAgW4G+sFs/68gAAEA9EMhWoD/s1n9slHVkAADgzBHIVmC2\nWz+XTwIAAHVAIFuB2REyFvYDAIA6IJCtANezBAAA9UQgW4FcOqVcOkm3fgAAUBcEshXqK6RpDgsA\nAOqCQLZCffkMbS8AAEBdEMhWKLh8EoEMAACcOQLZCvUX0qwhAwAAdUEgW6G+QlrHx4uqVj3uUgAA\nQIsjkK1QXz6jStU1PFmKuxQAANDiCGQr1N8RNIelWz8AADhTBLIV6g8vMM7CfgAAcKYIZCvUN3v5\nJEbIAADAmSGQrRCXTwIAAPVCIFuhnlxaCROtLwAAwBkjkK1QMmHqK2R0ZIRABgAAzgyB7Axs6srq\n4PBk3GUAAIAWRyA7AwNd7To0PBV3GQAAoMUtGcjM7P8zs04zazOzW81s0Mxe04jimt1Ad1aHhibl\nTrd+AACwcrWMkL3Q3UckvVjSI5LOk/T7URbVKjZ1tWu8WNHIVDnuUgAAQAurJZClwo+/JOkf3X04\nwnpaykB3VpJ0iHVkAADgDNQSyL5kZg9IeoakW81snSQWTilYQyZJh4b4dgAAgJVbMpC5+zslPUvS\nTncvSRqXdHXUhbWCTeEIGWdaAgCAM1HLov7fkFRy94qZ/XdJn5C0KfLKWsD6jqySCWOEDAAAnJFa\npiz/yN1HzezZkn5B0kckfTDaslpDMmHa0JFhhAwAAJyRWgJZJfz4S5JucPcvS0pHV1JrGehu18Eh\nAhkAAFi5WgLZATP7kKSXS7rZzDI1Pm9N2NRNc1gAAHBmaglWL5N0i6Qr3X1IUq/oQzZrU1dWh4an\naA4LAABWrJazLCck/VTSlWb2Nknr3f1rkVfWIga6siqWqzo+Xoy7FAAA0KJqOcvyOkmflLQ+vH3C\nzH4r6sJaxUA3vcgAAMCZSS29i94o6WfcfVySzOzPJd0h6X9HWVir2BQ2hz04PKlLtnTFXA0AAGhF\ntawhMz1+pqXCzy2aclrP7OWTONMSAACsUC0jZH8n6U4z++fw/ksU9CKDpL58WulUgjMtAQDAii0Z\nyNz9r8zsG5KeHW56g7t/P9KqWoiZaaArq4MEMgAAsEILBjIz651z95HwNvuYu5+IrqzWMtCVZcoS\nAACs2GIjZHdLcj2+Xmym0ZaFn58TYV0tZVNXu+58mHwKAABWZsFA5u5nN7KQVrapu12HR6ZUqbqS\nCc53AAAAy8MlkOpgoDurStV1dJR1ZAAAYPkIZHUw24uM5rAAAGAFCGR1MNuLbJiF/QAAYPmWbHtx\n2tmWM0bdvRRBPS1poIvLJwEAgJWrZYTse5IGJT0k6Sfh54+Y2ffM7BlRFtcqOrMp5dNJHWSEDAAA\nrEAtgexfJb3I3fvdvU/SLklfkvQWSR+IsrhWYWYa6G5nhAwAAKxILYHscne/ZeaOu39N0hXu/h1J\nmcgqazEDXVnWkAEAgBWpJZAdMrN3mNlZ4e3tko6YWVJSNeL6WsamrnYunwQAAFaklkD2KklbJH0h\nvG0LtyUlvSy60lrLQHdWx8amVSyTUQEAwPLUcnHxY5J+a4GH99S3nNa1qbtd7tKRkSlt7c3FXQ4A\nAGghtbS9eJKk35O0fe7+7v786MpqPTPNYQ8MTRLIAADAsiwZyCT9o6TrJX1YUiXacloXzWEBAMBK\n1RLIyu7+wcgraXFcPgkAAKxULYv6/8XM3mJmA2bWO3OLvLIW055OqjvXxggZAABYtlpGyF4Xfvz9\nOdtc0jn1L6e1DXTRHBYAACxfLWdZnt2IQlaDTV1ZepEBAIBlWzCQmdnz3f3rZvar8z3u7p9f6sXN\n7CpJ71PQs+zD7v6eefZ5rqT3SmqTdMzdn1Nj7U1noDurux87GXcZAACgxSw2QvYcSV+X9MvzPOaS\nFg1kYSf/90v6RUn7Jd1lZje5+4/n7NOt4HqYV7n7Y2a2fpn1N5WBrnYNTZQ0WayoPZ2MuxwAANAi\nFgxk7v6u8OMbVvjal0na4+57JcnMbpR0taQfz9nnVZI+7+6Phe91dIXv1RQ2ha0vDg5P6tx1hZir\nAQAAraKWxrAZSb+mJzaG/R9LPHWzpH1z7u+X9DOn7fMkSW1m9g1JHZLe5+4fn6eGayRdI0nbtm1b\nquTYzLS+ODQ0RSADAAA1q+Usyy9KGpZ0t6TpCN7/GZJeIKld0h1m9h13f2juTu5+g6QbJGnnzp1e\n5xrqZlN32IuM1hcAAGAZaglkW9z9qhW89gFJW+e+Trhtrv2Sjrv7uKRxM7tN0lMlPaQWtKEzKzPp\n4BCBDAAA1K6WxrC3m9klK3jtuySdb2Znm1la0isk3XTaPl+U9GwzS5lZTsGU5v0reK+mkE4l1F/I\n0IsMAAAsSy0jZM+W9Hoze1jBlKVJcnd/ymJPcveymb1N0i0K2l581N3vM7Nrw8evd/f7zeyrku6V\nVFXQGuNHZ/D1xC7oRcYIGQAAqF0tgWzXSl/c3W+WdPNp264/7f5fSPqLlb5Hs9nYldXDx8bjLgMA\nALSQBacszawz/HR0gRvmMdDVrkN06wcAAMuw2AjZpyS9WMHZla5gqnIG17JcwEBXVqNTZY1Nl1XI\n1DIACQAA1rrFGsO+OPzItSyXYWNX0Bz28PCkzlvfEXM1AACgFdQ0hGNmPZLOl5Sd2ebut0VVVCsb\nmGkOOzxFIAMAADWppVP/myRdp6CP2D2SLpd0h6TnR1taaxoIR8hYRwYAAGpVSx+y6yQ9U9Kj7v48\nSU+TNBRpVS1sQ2cYyOhFBgAAalRLIJty9ykpuK6luz8g6YJoy2pdM81hD4/QiwwAANSmljVk+82s\nW9IXJP2rmZ2U9Gi0ZbW2ga4sU5YAAKBmSwYyd39p+OmfmNm/S+qS9NVIq2pxG7uy2ndiIu4yAABA\ni1h0ytLMkmb2wMx9d/+mu9/k7sXoS2tdjJABAIDlWDSQuXtF0oNmtq1B9awKA13tGp4saaJYjrsU\nAADQAmpZQ9Yj6T4z+66k2Ys0uvuvRFZVi5vb+uLcdYWYqwEAAM2ulkD2R5FXsco83q2fQAYAAJZW\nSyB7kbu/Y+4GM/tzSd+MpqTWR3NYAACwHLX0IfvFebbtqnchq8lMc9jDw/QiAwAAS1twhMzM/rOk\nt0g6x8zunfNQh6RvR11YK8u2JdWXT+sgI2QAAKAGi01ZfkrSVyT9maR3ztk+6u4nIq1qFdjYldVh\nAhkAAKjBgoHM3YclDUt6ZePKWT0GurI6wPUsAQBADWpZQ4YVCEbIWEMGAACWRiCLyEBXu05OlDRV\nqsRdCgAAaHIEsohs7KT1BQAAqA2BLCID3TOBjGlLAACwOAJZRAa62iWJMy0BAMCSCGQRYcoSAADU\nikAWkfZ0Ut25NkbIAADAkghkEdrYmWUNGQAAWBKBLEKbutuZsgQAAEsikEWIyycBAIBaEMgiNNCZ\n1fHxIs1hAQDAoghkEdrYFZxpeXRkOuZKAABAMyOQRWimF9lBFvYDAIBFEMgiNNOtn3VkAABgMQSy\nCNEcFgAA1IJAFqF8JqXObEqHmbIEAACLIJBFbKCLXmQAAGBxBLKIbezKEsgAAMCiCGQR29RNIAMA\nAIsjkEVsY2e7jo1Nq1iuxl0KAABoUgSyiA2EzWGPjDBKBgAA5kcgi9hMt/7DBDIAALAAAlnEZkbI\nDg7R+gIAAMyPQBaxge7g8kl06wcAAAshkEWskEmpI5PiTEsAALAgAlkDbOzKMkIGAAAWRCBrgKA5\nLGvIAADA/AhkDbClJ6f9JwlkAABgfgSyBtja267j40WNT5fjLgUAADQhAlkDbO3JSZL2nZyIuRIA\nANCMCGQNsK03DGQnmLYEAABPRCBrgK1hIHvsBCNkAADgiQhkDdCTa1M+ndQ+AhkAAJgHgawBzExb\ne3MEMgAAMC8CWYNs7c2xqB8AAMyLQNYgW3ty2ndiUu4edykAAKDJEMgaZFtvuyZLFR0bK8ZdCgAA\naDKRBjIzu8rMHjSzPWb2zkX2e6aZlc3s16OsJ04zZ1oybQkAAE4XWSAzs6Sk90vaJWmHpFea2Y4F\n9vtzSV+LqpZm8HgvMgIZAAA4VZQjZJdJ2uPue929KOlGSVfPs99vSfonSUcjrCV2W3oIZAAAYH5R\nBrLNkvbNub8/3DbLzDZLeqmkD0ZYR1NoTyfVX8jQrR8AADxB3Iv63yvpHe5eXWwnM7vGzHab2e7B\nwcEGlVZ/23rbWUMGAACeIMpAdkDS1jn3t4Tb5top6UYze0TSr0v6gJm95PQXcvcb3H2nu+9ct25d\nVPVGbmtvjssnAQCAJ4gykN0l6XwzO9vM0pJeIemmuTu4+9nuvt3dt0v6nKS3uPsXIqwpVlt7cjo0\nPKVSZdEBQQAAsMZEFsjcvSzpbZJukXS/pM+6+31mdq2ZXRvV+zazbb05VaquQ0NTcZcCAACaSCrK\nF3f3myXdfNq26xfY9/VR1tIMtvS2Swp6kW3ry8VcDQAAaBZxL+pfU7bS+gIAAMyDQNZAA11ZpRLG\nwn4AAHAKAlkDpZIJbepu176T9CIDAACPI5A12NbedqYsAQDAKQhkDbatN0cgAwAApyCQNdiWnpyO\njxc1Pl2OuxQAANAkCGQNtrU3ONNyP+vIAABAiEDWYNvCQMaZlgAAYAaBrMG29oTNYQlkAAAgRCBr\nsN58Wrl0UvtOEsgAAECAQNZgZsaZlgAA4BQEshhs6clp3wkW9QMAgACBLAZbe9v12IkJuXvcpQAA\ngCZAIIvBtt6cJksVHR8vxl0KAABoAgSyGGztCVpfsI4MAABIBLJYbOujFxkAAHgcgSwGW8JeZHTr\nBwAAEoEsFrl0Sv2FNFOWAABAEoEsNlt7c0xZAgAASQSy2GztydGtHwAASCKQxWZ7f14HTk5qqlSJ\nuxQAABAzAllMLtzYoapLe46OxV0KAACIGYEsJk/a0CFJevDwaMyVAACAuBHIYrK9L6d0KqEHjxDI\nAABY6whkMUklEzpvXYERMgAAQCCL0wUbOwhkAACAQBanCzZ26PDIlIYnSnGXAgAAYkQgi9EFMwv7\nWUcGAMCaRiCL0QUbCWQAAIBAFquBrqw6sik9eHgk7lIAAECMCGQxMjNdsKFDDx2mOSwAAGsZgSxm\nT9rYoQcOj8jd4y4FAADEhEAWsws3dmhkqqwjI9NxlwIAAGJCIIvZkzjTEgCANY9AFrPZ1hcs7AcA\nYM0ikMVtMR8ZAAAaKElEQVSsJ5/W+o6MHmRhPwAAaxaBrAlcsLFDDx5hhAwAgLWKQNYELtjQoZ8c\nGVOlypmWAACsRQSyJnDBxg5Nl6t69Ph43KUAAIAYEMiawMwllB7iTEsAANYkAlkTOH99h8ykBw4T\nyAAAWIsIZE2gPZ3UWb05RsgAAFijCGRN4oKNHYyQAQCwRhHImsQFGzr0yLFxTZUqcZcCAAAajEDW\nJC7Y2KmqSz8dpEEsAABrDYGsSVywsSBJepBpSwAA1hwCWZM4qy+vdDLBRcYBAFiDCGRNoi2Z0Lnr\nC4yQAQCwBhHImsgFGwp6iEAGAMCaQyBrIhcNdOrg8JQODE3GXQoAAGggAlkTedElA0qY9Kk7H427\nFAAA0EAEsiaytTenF1y0QZ/+7j76kQEAsIYQyJrM667YrhPjRX353kNxlwIAABqEQNZkfva8Pp27\nLq+P3/FI3KUAAIAGIZA1GTPT6561XT/YP6x79g3FXQ4AAGiASAOZmV1lZg+a2R4ze+c8j7/azO41\nsx+a2e1m9tQo62kVv/r0LSpkUvr72x+JuxQAANAAkQUyM0tKer+kXZJ2SHqlme04bbeHJT3H3S+R\n9G5JN0RVTyspZFL6tadv1pfvPaTB0em4ywEAABGLcoTsMkl73H2vuxcl3Sjp6rk7uPvt7n4yvPsd\nSVsirKelvPaK7SpWqvrMXY/FXQoAAIhYlIFss6R9c+7vD7ct5I2SvhJhPS3lvPUF/dz5/frEdx5T\nqVKNuxwAABChpljUb2bPUxDI3rHA49eY2W4z2z04ONjY4mL0m1ds1+GRKf3rj4/EXQoAAIhQlIHs\ngKStc+5vCbedwsyeIunDkq529+PzvZC73+DuO91957p16yIpthk9/8L12tLTzuJ+AABWuSgD2V2S\nzjezs80sLekVkm6au4OZbZP0eUmvdfeHIqylJSUTptdefpbufPiE9hzlouMAAKxWkQUydy9Lepuk\nWyTdL+mz7n6fmV1rZteGu/2xpD5JHzCze8xsd1T1tKqXPC1YdnfzDw/HXAkAAIiKuXvcNSzLzp07\nfffutZXbfu2Dt2uiWNFXrvu5uEsBAADLYGZ3u/vOpfZrikX9WNyuizfq/kMjevT4eNylAACACBDI\nWsCVT94oSfrqj5i2BABgNSKQtYCtvTldvLlTXyGQAQCwKhHIWsSuiwd0z74hHRqejLsUAABQZwSy\nFjEzbXkLo2QAAKw6BLIWcd76gs5fX2DaEgCAVYhA1kJ2XbxRdz1yQsfGpuMuBQAA1BGBrIVcefFG\nVV1c2xIAgFWGQNZCdgx0altvjvYXAACsMgSyFmJm2nXxRt3+02ManizFXQ4AAKgTAlmLufLijSpV\nXLfez7QlAACrBYGsxVy6pVsbO7NMWwIAsIoQyFpMImG66uKN+uZDgxqfLsddDgAAqAMCWQvadfFG\nTZer+vC3Ho67FAAAUAcEshZ02dm9eunTNuu9tz6krz/AWjIAAFodgawFmZn+10sv0Y6BTl336Xu0\nd3As7pIAAMAZIJC1qPZ0Uh967TOUSpre/A93a4z1ZAAAtCwCWQvb0pPT+1/1dO09Nq7f/ew9qlY9\n7pIAAMAKEMha3LPO69cf7LpQt9x3RB/4xp64ywEAACtAIFsF3vjss/WSSzfpL//1IX17z7G4ywEA\nAMtEIFsFzEx/9qtP0bbenN79pR8zdQkAQIshkK0S7emkfveFF+iBw6P64g8OxF0OAABYBgLZKvLi\nSwb05E2d+suvPaTpciXucgAAQI0IZKtIImF6+1UXav/JSX3qzsfiLgcAANSIQLbK/Pz5/brinD79\n7df30JsMAIAWQSBbZcxM79h1oY6PF/V/btsbdzkAAKAGBLJV6NKt3dp18UZ9+Ft7dWxsOu5yAADA\nEghkq9TvXXmBpspV/e3XaRYLAECzI5CtUueuK+hlO7fok3c+qn0nJuIuBwAALIJAtopd94InKZkw\nveWT39PJ8WLc5QAAgAUQyFaxjV1ZfeDVT9eDR0b18hvu0NGRqbhLAgAA8yCQrXLPv3CDPvaGZ+rA\nyUn9xofuYPoSAIAmRCBbA551br8+8aaf0dBESb9x/R3ac3Qs7pIAAMAcBLI14mnbenTjNZerXHW9\n7EN36Fs/GeQi5AAANAkC2Rpy0UCn/vHaK9TeltRrP/JdXf5nt+pPbrpP3334BOEMAIAYmXtr/SLe\nuXOn7969O+4yWtr4dFm3PnBUN997SP/+4FFNl6va0JnRSy7drNc9a7s2dbfHXSIAAKuCmd3t7juX\n3I9AtraNTZd16/1H9OV7D+nWB47KJP3KUzfp//n5c3TRQGfc5QEA0NIIZFi2/Scn9JH/eFifuWuf\nJooV/dz5/Xrr887T5ef0xV0aAAAtiUCGFRueKOkTdz6qj93+iAZHp/XKy7bpv/3SRSpkUnGXBgBA\nS6k1kLGoH0/QlWvTW593nr719ufpzT9/jm686zFd+de36fafHou7NAAAViUCGRaUbUvqD150kT53\n7RVKpxJ61f+5U+/64o80USzHXRoAAKsKgQxLesZZvbr5t39Ob/jZ7fr7Ox7VVe/9lr5232G12nQ3\nAADNikCGmrSnk3rXLz9ZN15zudKphK75h7v1mo/cqfsPjcRdGgAALY9F/Vi2UqWqT935mP763x7S\nyGRJr7hsm/7rLz5J6VRCg6PTs7fhyZJ2bOrUUzZ3KZUk+wMA1h7OskTkhiaKet+tP9E/3PGoyot0\n+s+nk3rm2b264pw+XXFuny7e1KVEwhpYKQAA8SCQoWH2HB3TTfccUEe2Tes6MrO39rakfrB/SHf8\n9Lju2HtcewfHJUlbetr1a0/fol9/xhZt7c3FXD0AANEhkKHpHBmZ0rd+ckxf+P4Bffunx+QuXX5O\nr379GVt1yeYuFbIpFTLBLckIGgBgFSCQoakdGJrUP39vvz539349cnziCY/n0kmlUwmZJDMLP0o9\nubQu3twV3DZ1asemTnVk2xpePwAAtSCQoSW4u36wf1gHhyY1NlXWyFRJY9NljU6VVapU5S65XO5S\n1aWjI1P60cFhHRmZnn2N7X05XTTQqQs3durCgQ5dtLFTm7qzOjFe1NHwBIOjo1Mam67owo0dumRL\nlzoJcQCABqg1kHEtHMTKzHTp1m5durV7Wc87Ojql+w6O6L4Dw7rv4IgeODyqr953WLX+fXHOurye\nuqVbOwY6VXHX6FRJo1NBEJwolnXJ5i698Mkbdf76gsyYPgUARIsRMqwa49NlPXRkVA8cHtXh4Sn1\nF9Ja15HV+s6M1hUyak8n9eODI7p3/5B+sH9YP9g3pKOjwUhbMmHqyKbUkU2pLZmYPQHhrL6cXrhj\ng37hog3KtCX12IkJ7Qtvj52YULFcVaYtoUwqqWz4MZ9JqjefUV8+rd58OvhYSKs3l1ZPPq02WoAA\nwJrBlCVQg6GJotKphNrbkqeMhB0ZmdK/3X9EX7vviO746XEVK9VTntdfyGhrb7ty6aSmSlVNlyua\nLlU1Va5obKqsocnSgqN1HdnUbFDb0pPTlp52be0NPq7vyKpYrmq8WNZksTL70aUnrKdLmMksCJMJ\nMyVMSiUSSqeCW1syoUz4MZU0pcOPqURCmbaEcm3JefvDubumy1WNTpXDrzXNKCEArBCBDKiT0amS\nbv/pcSXNtK0vCE659OKz/eVKVUOTJZ0YL857OzlR1NGRaR0YmtTBoclF+7hFKZ1MqD2dVC6dVMJM\nY9NljU2XVZlTT0c2pXPXFXTe+oLOXVfQlp52TZerGg/3HZsOQmMyYWpLJtSWtNkQWCxXNVWqaqpU\n0XS5oqlSVb35tLb15rStL6ezenPa3NOuTCopSapUXaVKVeWqK50MguVi3F1V16Jn5Varrj2DY3rw\n8KjakongTN5sSoVMUoVM2+zXv9DIZaXqmipVlErabJ0LmS5XNF2uKmk2G5SDj1oy1A5NFHVgaFLJ\nhCmbSs6OvKZTiSCch9/r0amyxqfLak8n1ZMLRmF78m1L1iZJE8Wy9g6Oa2SqpM5sm7ra29SZbVMh\ny5nNraJUqerIyJQKmZS6c+m4y0ENWEMG1ElHtk1XPnnjsp6TSibUX8iov5BZct9ypaojo9Paf2JC\ng2PTyqaCgJDLpJRLJ9Xe9vgv2rknObiCsDATSipVV7laValS1XS5qmJ4K4chp1RxlStVlaqu6VJF\nE8XgNlksa6JYUcVdHZmU8rOBJaVK1bV3cFw/HRzTbQ8N6nN373/i15owtaeTcpeKleA952pLBgEj\nm04qnUzo+Pi0pkqP72MmtSUTKleqOj2X9uXT2tCZ1YbOjDZ0ZpVJJXR0dDq8TWlwdFrFclVbe3M6\npz+vs/sLOntdXr25tO47OKx79g3p3v3DGpsuL3kc5obTchjCpkoVlSp+yj4zU9szZ/eOhieijEyV\nn/C1z/0erO94/OvY0JlVRzalfScm9MjxCT1yfFxDE6Ula1xMIZNST75NvbMhLRiFnShW9PCxce0d\nHNfhkakFn9/V3qaBrqw2dmWDj53t6sm3aWSypJMTJZ0M/5AYmy6rM9umnnBKvjefVme2TUOTRR0e\nntKh4SkdHp7SkZEpdefatK03r+19OZ3Vn9dZvTmZ6ZQ/To6PFyVJPbk29eTSsyHT5TpwclL7T05q\n/9CkDpyc1MhUSR2zQTKlrvY2FTKp2bA7k3kTJhUybepsT6kz26bO9jYVMkmNTVc0NFEMv5aShidL\nSiZMuXRS2bbw3134+dxlCNm2hFya/ZmYLFY1WaqoXKkGo9Nh6E6YqVip6vhYUcfGpnV8bFrHxooa\nniwpkTClEkFATyVMqWRC+XQy+PeWSSmfSc7+oVeqVFWuuErVqkpl1+DYtA6Gf7wdGZma/XfSm0/r\nnP68zlmX17nrCsqkEhocC05kOjZW1ODotEqVqrraw+9tvk3dubS629vUnWtTV3ta3bng87ZkQoeG\nprT/5ETwPT85MfvzkkokZutPJUzduTb15jPqLzz+szZZrOj4eFHHx6Znj2shnTplBmBrb07JhOn4\nWLDf4Ni0jo8VNVEsn3IMTaZkIvh/4fTR/kzq8T9UMqmEsm3J2Z/D+f6oqFZdJyeKs9/DuT9T+09O\n6oU7NuitzzvvjP7t1QsjZABqNjxZ0qHhSbW3JcNfIillUolTRn/cPQyHrrZk4gn/Sbq7Bken9diJ\nCT16fEKPnpjQdLkSTKkmgpG1tqRpsljV4ZEpHR2Z0pHRKR0entZ0uaL1HRmtD9cGru/IqC2Z0KPH\nJ7T32LgePjY2G/ZSCdOFAx3hSSM9evKmTlXdNTZV1nixrLHpYHp5IpwWnihVNDEdhNNU0pRtC34x\nZ8NfyOWqB2cBhyd/jE6V5AoC+0xI68y2KZNKqFJ1VdxVrboqVWmyVJnzdUzp6Mi0xoplbepq1/b+\nnM7qy+vsvrw297RL0uwU+HQ5mA5vb0uGIblN+UxS+XRKk6WKTo4XdSIMGMfHixqaKOn4eHB/JvCk\nUwmdsy6vs/vz4S/vgrpzbRqdKmtksqSR8OPJiSBQHR4JQtXg6ONnMufTSXWHv9ALmZRGp8qz7zk9\nJ4TOhLoNnVmt78hoaLKkR4+P69HjE6fsNyMRtrKRpKHJ0ikjszPSyYQ2dWe1uaddXe1h3TO1TwZh\n2KXgL5RQJfwZXEpHJqWquyZKlZpPCKpVe1tS/R1p9Rcy6mpvk8/5o6lcCf5IGp8z8jk+XT7lD5KE\nBX/YtSVM6zoy2tTdHty6shrobtfoVEl7B4OgvffYmI6NBcE2mTD1F4L3XRf++xieCI7vyYmShiaK\nS47IJxOmTd1ZbezMysxm/z1XwoA4NBn8bM39Y2WurvY29ebTGpsun/JzFKWEBQG1v5CZ/fkeHJ3W\n8fHiE34W0qmENne3a3N3u3ZdslGv/pmzIq2NETIAddfVHoxOLMbMgrVqC8ygmZnWd2a1vjOrndt7\n61pfteo6Mjql42NFnbe+oGzb0tN4calUvamnCYvlqoYnS+psTy04HerumixVNDxZUnd7Wu3p+fer\nVl1HR6f16PHgZJm+Qlq9+SCozHwPqlXX6HR5diTOJW3pbld/IbPsS625u6ZKVY1MlcLQGZxFPTPN\n15MLfo5n1lDOrJsMRo3Lmi5Xw9Gwx9eHyoKQ1d6WVHs6COqppKnqM215wulzM/UV0spnlvfrdabm\nREJqC0eklmN4sqRypaqeXHrR57q7xovBMRuaKGo4HCmcKlc00BWMYm3oyCx5/WF318hUeTb459JJ\n9eWfeOLSVKkyO+K27+SkqlVXfyGjvkJ6Njjm0qnZkf/gtYNQXSpXZ0fdTxn5r1TDP1gqmixVZkck\nj41Na3C0qKGJojZ0ZnXxpq7ZK8f0FzIa6M5qS0+7+vPL/5lqhEhHyMzsKknvk5SU9GF3f89pj1v4\n+IskTUh6vbt/b7HXZIQMAAC0ilpHyCI7/97MkpLeL2mXpB2SXmlmO07bbZek88PbNZI+GFU9AAAA\nzSrKhkiXSdrj7nvdvSjpRklXn7bP1ZI+7oHvSOo2s4EIawIAAGg6UQayzZL2zbm/P9y23H1kZteY\n2W4z2z04OFj3QgEAAOLUEi3D3f0Gd9/p7jvXrVsXdzkAAAB1FWUgOyBp65z7W8Jty90HAABgVYsy\nkN0l6XwzO9vM0pJeIemm0/a5SdJvWuByScPufijCmgAAAJpOZH3I3L1sZm+TdIuCthcfdff7zOza\n8PHrJd2soOXFHgVtL94QVT0AAADNKtLGsO5+s4LQNXfb9XM+d0lvjbIGAACAZtcSi/oBAABWMwIZ\nAABAzAhkAAAAMSOQAQAAxIxABgAAEDMCGQAAQMwIZAAAADEjkAEAAMSMQAYAABAzAhkAAEDMLLh6\nUesws0FJjzbgrfolHWvA+2B5OC7Ni2PTnDguzYnj0rzqfWzOcvd1S+3UcoGsUcxst7vvjLsOnIrj\n0rw4Ns2J49KcOC7NK65jw5QlAABAzAhkAAAAMSOQLeyGuAvAvDguzYtj05w4Ls2J49K8Yjk2rCED\nAACIGSNkAAAAMSOQncbMrjKzB81sj5m9M+561ioz22pm/25mPzaz+8zsunB7r5n9q5n9JPzYE3et\na5WZJc3s+2b2pfA+xyZmZtZtZp8zswfM7H4zu4Lj0hzM7HfC/8t+ZGafNrMsxyYeZvZRMztqZj+a\ns23BY2FmfxBmggfN7Mqo6iKQzWFmSUnvl7RL0g5JrzSzHfFWtWaVJf2uu++QdLmkt4bH4p2SbnX3\n8yXdGt5HPK6TdP+c+xyb+L1P0lfd/UJJT1VwfDguMTOzzZJ+W9JOd79YUlLSK8SxicvHJF112rZ5\nj0X4e+cVkp4cPucDYVaoOwLZqS6TtMfd97p7UdKNkq6OuaY1yd0Pufv3ws9HFfxi2azgePx9uNvf\nS3pJPBWubWa2RdIvSfrwnM0cmxiZWZekn5f0EUly96K7D4nj0ixSktrNLCUpJ+mgODaxcPfbJJ04\nbfNCx+JqSTe6+7S7Pyxpj4KsUHcEslNtlrRvzv394TbEyMy2S3qapDslbXD3Q+FDhyVtiKmste69\nkt4uqTpnG8cmXmdLGpT0d+FU8ofNLC+OS+zc/YCk/1/SY5IOSRp296+JY9NMFjoWDcsFBDI0NTMr\nSPonSf/F3UfmPubBKcKcJtxgZvZiSUfd/e6F9uHYxCIl6emSPujuT5M0rtOmwDgu8QjXI12tIDRv\nkpQ3s9fM3Ydj0zziOhYEslMdkLR1zv0t4TbEwMzaFISxT7r758PNR8xsIHx8QNLRuOpbw35W0q+Y\n2SMKpvWfb2afEMcmbvsl7Xf3O8P7n1MQ0Dgu8fsFSQ+7+6C7lyR9XtKzxLFpJgsdi4blAgLZqe6S\ndL6ZnW1maQUL+W6KuaY1ycxMwVqY+939r+Y8dJOk14Wfv07SFxtd21rn7n/g7lvcfbuCfyNfd/fX\niGMTK3c/LGmfmV0QbnqBpB+L49IMHpN0uZnlwv/bXqBgXSzHpnksdCxukvQKM8uY2dmSzpf03SgK\noDHsaczsRQrWxyQlfdTd/9+YS1qTzOzZkr4l6Yd6fJ3SHypYR/ZZSdskPSrpZe5++uJMNIiZPVfS\n77n7i82sTxybWJnZpQpOtEhL2ivpDQr+8Oa4xMzM/lTSyxWcQf59SW+SVBDHpuHM7NOSniupX9IR\nSe+S9AUtcCzM7L9J+k8Kjt1/cfevRFIXgQwAACBeTFkCAADEjEAGAAAQMwIZAABAzAhkAAAAMSOQ\nAQAAxIxABqAlmdnt4cftZvaqOr/2H873XgAQFdpeAGhpc3uhLeM5KXcvL/L4mLsX6lEfANSCETIA\nLcnMxsJP3yPp58zsHjP7HTNLmtlfmNldZnavmb053P+5ZvYtM7tJQQd7mdkXzOxuM7vPzK4Jt71H\nUnv4ep+c+14W+Asz+5GZ/dDMXj7ntb9hZp8zswfM7JNhR3YAqEkq7gIA4Ay9U3NGyMJgNezuzzSz\njKRvm9nXwn2fLulid384vP+f3P2EmbVLusvM/snd32lmb3P3S+d5r1+VdKmkpyro8n2Xmd0WPvY0\nSU+WdFDStxVc8/M/6v/lAliNGCEDsNq8UNJvmtk9Ci611afg+nOS9N05YUySftvMfiDpOwouIHy+\nFvdsSZ9294q7H5H0TUnPnPPa+929KukeSdvr8tUAWBMYIQOw2pik33L3W07ZGKw1Gz/t/i9IusLd\nJ8zsG5KyZ/C+03M+r4j/XwEsAyNkAFrdqKSOOfdvkfSfzaxNkszsSWaWn+d5XZJOhmHsQkmXz3ms\nNPP803xL0svDdWrrJP28pO/W5asAsKbxFxyAVnevpEo49fgxSe9TMF34vXBh/aCkl8zzvK9KutbM\n7pf0oIJpyxk3SLrXzL7n7q+es/2fJV0h6QeSXNLb3f1wGOgAYMVoewEAABAzpiwBAABiRiADAACI\nGYEMAAAgZgQyAACAmBHIAAAAYkYgAwAAiBmBDAAAIGYEMgAAgJj9XzrSrfnr1RRgAAAAAElFTkSu\nQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10e936550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "net = init_toy_model()\n", "stats = net.train(X, y, X, y, learning_rate=1e-1, reg=5e-6, num_iters=100, verbose=False)\n", "print('Final training loss: ', stats['loss_history'][-1])\n", "\n", "# plot the loss history\n", "plt.plot(stats['loss_history'])\n", "plt.xlabel('iteration')\n", "plt.ylabel('training loss')\n", "plt.title('Training Loss history')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Load the data\n", "Now that you have implemented a two-layer network that passes gradient checks and works on toy data, it's time to load up our favorite CIFAR-10 data so we can use it to train a classifier on a real dataset." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "((49000, 3072), (1000, 3072), (1000, 3072))\n" ] } ], "source": [ "# Load the raw CIFAR-10 data\n", "cifar10_dir = 'datasets/cifar-10-batches-py'\n", "X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)\n", "\n", "# Split the data\n", "num_training = 49000\n", "num_validation = 1000\n", "num_test = 1000\n", "\n", "mask = range(num_training, num_training+num_validation)\n", "X_val = X_train[mask]\n", "y_val = y_train[mask]\n", "\n", "mask = range(num_training)\n", "X_train = X_train[mask]\n", "y_train = y_train[mask]\n", "\n", "mask = xrange(num_test)\n", "X_test = X_test[mask]\n", "y_test = y_test[mask]\n", "\n", "# Preprocessing: reshape the image data into rows\n", "X_train = X_train.reshape(X_train.shape[0], -1)\n", "X_val = X_val.reshape(X_val.shape[0], -1)\n", "X_test = X_test.reshape(X_test.shape[0], -1)\n", "\n", "# Normalize the data: subtract the mean rows\n", "mean_image = np.mean(X_train, axis=0)\n", "X_train -= mean_image\n", "X_val -= mean_image\n", "X_test -= mean_image\n", "\n", "print(X_train.shape, X_val.shape, X_test.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Train a network\n", "To train our network we will use SGD with momentum. In addition, we will adjust the learning rate with an exponential learning rate schedule as optimization proceeds; after each epoch, we will reduce the learning rate by multiplying it by a decay rate." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "iteration 1 / 1000: loss 2.302957\n", "iteration 101 / 1000: loss 2.302440\n", "iteration 201 / 1000: loss 2.298435\n", "iteration 301 / 1000: loss 2.262676\n", "iteration 401 / 1000: loss 2.200829\n", "iteration 501 / 1000: loss 2.114582\n", "iteration 601 / 1000: loss 2.080862\n", "iteration 701 / 1000: loss 2.099089\n", "iteration 801 / 1000: loss 1.999965\n", "iteration 901 / 1000: loss 1.961439\n", "('Validation accuracy: ', 0.28599999999999998)\n" ] } ], "source": [ "input_size = 32 * 32 * 3\n", "hidden_size = 50\n", "num_classes = 10\n", "net = TwoLayerNet(input_size, hidden_size, num_classes)\n", "\n", "# Train the network\n", "stats = net.train(X_train, y_train, X_val, y_val,\n", " learning_rate=1e-4, learning_rate_decay=0.95,\n", " reg=0.25, num_iters=1000, batch_size=200, verbose=True)\n", "\n", "# Predict on the validation set\n", "val_acc = (net.predict(X_val) == y_val).mean()\n", "print('Validation accuracy: ', val_acc)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Debug the training\n", "With the default parameters we provided above, you should get a validation accuracy of about 0.29 on the validation set. This isn't very good.\n", "\n", "### One strategy for getting insight into what's wrong is to plot the loss function and the accuracies on the training and validation sets during optimization.\n", "\n", "### Another strategy is to visualize the weights that were learned in the first layer of the network. In most neural networks trained on visual data, the first layer weights typically show some visible structure when visualized." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAHwCAYAAAD5BSj5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4HNXZxc+d2aIuucjdxr3hAsbYpvdmSOikQPLRQkJI\nIZSEGkhCC6QSWggkEFpCwBCCAVMNxgZXjHHvvVu2urbe74+dO3tn5s7srLSSVtb74/Fj7eydmbsr\n4T06b2OccxAEQRAEQRD5idbeGyAIgiAIgiDcIbFGEARBEASRx5BYIwiCIAiCyGNIrBEEQRAEQeQx\nJNYIgiAIgiDyGBJrBEEQBEEQeQyJNYIgCAnG2OWMsU89nn+bMfZ/bbkngiA6NyTWCILISxhjGxlj\np7b3Puxwzs/inD+baR1jjDPGhrbFngiCOLghsUYQBJFnMMYC7b0HgiDyBxJrBEF0OBhj32OMrWWM\nVTHG3mCM9TGOM8bYHxljuxljNYyxrxhjY4znpjLGljPGahlj2xhjN2W4x+8YY/sZYxsYY2dJx2cy\nxq42vh7KGPuYMVbNGNvLGPu3cfwTY/mXjLE6xtg3vPZtPMcZY9cxxtYAWMMYe5Qx9nvbnt5gjP2s\n5e8gQRAdCRJrBEF0KBhjJwO4H8AlAHoD2ATgX8bTpwM4HsBwAOXGmn3Gc08D+D7nvBTAGAAfetxm\nMoBVALoDeBDA04wxplj3GwDvAugCoB+AvwAA5/x44/nxnPMSzvm/M+xbcJ5x79EAngXwLcaYZrzu\n7gBOBfCix74JgjgIIbFGEERH41IAf+ecL+KcRwDcCuAoxthAADEApQBGAmCc8xWc8x3GeTEAoxlj\nZZzz/ZzzRR732MQ5/xvnPIGUaOoNoKdiXQzAIQD6cM6bOOeuhQkZ9i24n3NexTlv5JzPA1AN4BTj\nuW8CmMk53+VxD4IgDkJIrBEE0dHog5QrBQDgnNch5Z715Zx/COARAI8C2M0Ye5IxVmYsvRDAVACb\njNDlUR732Cldv8H4skSx7ucAGIB5jLFljLErm7Nvac0W2znPArjM+PoyAM95XJ8giIMUEmsEQXQ0\ntiPlZgEAGGPFALoB2AYAnPOHOedHIBVKHA7gZuP4fM75uQB6AHgdwMst3QjnfCfn/Huc8z4Avg/g\nMY8KUM99i0vaznkewLmMsfEARhn7Jgiik0FijSCIfCbIGCuQ/gQAvATgCsbYYYyxMID7AMzlnG9k\njB3JGJvMGAsCqAfQBCDJGAsxxi5ljJVzzmMAagAkW7o5xtjFjLF+xsP9SIktcd1dAAZLy1337XZ9\nzvlWAPORctRe5Zw3tnTPBEF0PEisEQSRz7wFoFH6czfn/H0AdwJ4FcAOAEOQyucCgDIAf0NKOG1C\nKsz4kPHcdwBsZIzVAPgBUjlkLeVIAHMZY3UA3gDwU875euO5uwE8yxg7wBi7JMO+vXgWwFhQCJQg\nOi2Mc7vrThAEQeQLjLHjkQqHHsLpH2yC6JSQs0YQBJGnGOHcnwJ4ioQaQXReSKwRBEHkIYyxUQAO\nINU25E/tvB2CINoRCoMSBEEQBEHkMeSsEQRBEARB5DEk1giCIAiCIPKYQHtvIJd0796dDxw4sL23\nQRAEQRAEkZGFCxfu5ZxXZlp3UIm1gQMHYsGCBe29DYIgCIIgiIwwxjZlXkVhUIIgCIIgiLyGxBpB\nEARBEEQeQ2KNIAiCIAgijyGxRhAEQRAEkce0uVhjjPVnjH3EGFvOGFvGGPupYs25jLEljLHFjLEF\njLFj23qfBEEQBEEQ+UB7VIPGAdzIOV/EGCsFsJAx9h7nfLm05gMAb3DOOWNsHICXAYxsh70SBEEQ\nBEG0K20u1jjnOwDsML6uZYytANAXwHJpTZ10SjGAvJiJdc0/F2DdnrqM6xhjYObXxt/GEfFYrEs9\nl17LWGpt6u/UQc34WlzXssb1a3mt/JhJx2znGmt0jUFnzHzTi0I6OICQrpnnaMY5TbEkSgsCKC0I\nIhTQkExyRBNJdCsOoXtJGEnOkUimrhTUNZQVBlEY1BEOaigM6uheEkYooKG2KYZ4kmNndRPG9C0H\n59x8fwiCIAiiM9OufdYYYwMBHA5gruK58wHcD6AHgLPbdGMuDOpejGAgQ+SYA9yQOWLsqvk3uPS1\n9TkYz3EAnHPjb+kxT58vf51MAhxJ9bmW66TPTfL0/rj9vsbz8SQHY6k11Y0xhAMaIvGk8frS1wCA\nhmii+W8qgIDGEE+mrxcKaNAY0LeiEDurm9CrvADhgI4jB3bB8h01mDCgC04a2QM1jTE0xhIY3bsM\n4YCOfl0Ksbc+gsqSMAk9giAI4qCh3Qa5M8ZKAHwM4F7O+TSPdccD+CXn/FSX568BcA0ADBgw4IhN\nm3z1lyNySEM0DgaGA41RhHQNxeEA9tVHsbWqAaGAhnBAR5JzJDlHTWMcjbEEIvEEquqj2FndBA6g\ntimGknAQX2zej24lIZSEA9iwtx7zN+4372MKRhfE873KCrCzpgmnjuqJQ/uUYcGmKsQTHA9eNA49\nywpQENTb4F0hCIIgCG8YYws55xMzrmsPscYYCwJ4E8AMzvkffKxfD2AS53yv17qJEydymmBwcLGl\nqgGlBQHsqolgeM8SAMC++ijmbahCUyyBT9fsxdo9deheEsamffU4bXQvfLJ6D5bvqFFeL6RrOGlk\nJboWh3FY/3JMW7QNTbEEKkvDuP+CcbjmuQW4ZGJ/fGvSAADAuj11eHbORtw2dRSJPIIgCCKn5K1Y\nY6n41LMAqjjn17usGQpgnVFgMAHA/wD04xk2S2KNAFLh3FW7ajGsRym2H2jElqoG3DLtK2yuakDX\n4hCq6qMZr/HO9cfh83X7cPf/UqmU1586DBdP7I/ikI6KolBrvwSCIAiiE5DPYu1YALMAfAVAxLRu\nAzAAADjnTzDGfgHguwBiABoB3Mw5/zTTtUmsEW5E4gk0xZKobYph2fYa9CgNY9aavfjmkf3x5pId\nKCkI4OevLMl4nROGV+LZKye1wY4JgiCIg528FWutCYk1oiX8+f01+OP7q1FRFER1Ywwl4QBqm+Jm\noYXg2SsnoT4Sx8kje/gKje6obsSBhhhG9S5rxd0TBEEQHQ0SawSRJdyogg3qGnbXNqE4lCpy6FEa\nxh2vL8WSrdXYWdNkrq8oCuKvlx2BgK7hRy8uwo7q1HO/vXAsepcX4vjhleCcY/gdbyOW4Fh/31Tc\nM30FQgENT3y8DveePwaXTj6kvV4uQRAE0c6QWCOIHBONJzFj2U7sqmnC1v2NeHHeZkQ9qlMvP3og\nPlu3D6t21QIAZt50Ik783Uzz+cGVxXj7p8dhxB3v4JfnjMaVxw5q7ZdAEARB5BF+xVq79lkjiI5E\nKKDha+P7mI8j8QRemrcFAHDmob1wzLDuuPP1pebzz8zZaDl/xrKdlscl4QCWbqsGADw1az2JNYIg\nCEIJiTWCaCY3nT4CW/c3YsWOGtx0xnAM7VGKDXvq8ffZG1AU0h3Ngu9/e6XlcVFIx8JNqT5y/boU\nWZ5riMYR0jUE9DYf30sQBEHkGSTWCKKZdCsJ47mrJluO3XnOKHzv+EF47YttePCdVZ7n1zbFsWFv\nPQAgnrSGU0f/cgbOHtsbj146IbebJgiCIDoc9Gs7QeQQxhh6lxdiQNeijGuXba8xw6i7aiIAgPeX\n78Kxv/0QADD9qx3N2sPW/Q1Zn/PXj9dh7e7aZt2PIAiCaF1IrBFEK3DWmN64bepI8/H5h/fF2L7l\nrut31zbhyHvfx9X/XICt+xubfd/P1u3Dsb/9CG98ud33OdF4Eve/vRIXPDan2fclCIIgWg8SawTR\nCugawzXHD0HfikIAwJ3njMYr1x6F9284Xrk+luDYUxtp8X2XbU8VLCzefMD3OYlkqiK8pine4vsT\nBEEQuYfEGkG0Is9fPRmv/OAodC0OIRzQMbRHKZ67ahL+dc0Uc83XpQpTO/FEEk2xVKFCMsmxZpd3\nqFJ04tGY/z3a8+UIgiCI/ILEGkG0IoO6F2PiwK6WY8cNq8ToPqlpBmcc2hO/v2S86/k3/udLjLzz\nHeyqacJjM9fitD9+gpU71UPqASBhqDXdUGuLtxzAByt2ee5ROGsEQRBEfkLVoATRDpQVBPHpL05C\nz7ICBHUNPcvCZpHBz04djsmDu+LKZ+bjv4tTuWcXP/EZNlelCgd21UQwspf6ukJ4aYZYO+/R2QCA\njQ+c7bqXOIk1giCIvIacNYJoJ/p1KULQ6KP26rVHgxmhywsm9MWUwd3Qx8h3A2AKNQCOqQmb9zXg\nV/9bhpqmGMREEp35j4PGEyTWCIIg8hly1ggiD+jXpQiLf3k61uyqRX+j7Ue34hDWKtbub4gCSM0y\nraqP4sTffYQkB8b0KUfC0HFaFklrlLNGEASR35CzRhB5Qnlh0JLfVl4YBAB8//jBCEji64Ah1ibd\n9wGOuOd9iCjmjf/5EnvqUsPks3HWKGeNIAgivyGxRhB5ihhXNbJ3KU4Z1cM8XlUfQyKZbvXRpSiI\ncf1SPdzmrq8C4HTLRHhUBeWsEQRB5Dck1ggiT6lujAEA+ncpQkk4aB7fXx/FEfe8Zz4+rH8FHjPG\nUomGupF40pLbdttrS3HdC4uU96GcNYIgiPyGxBpB5Ck3nDYcXYqCGNm7zBIG/XTtXhxoiJmPB1eW\noFtxGADQaPRki8aTeO2Lreaal+ZtNsdXLd1WjVcWpp7bWxfBvA37Wv21EARBEM2HCgwIIk85aWQP\nfPHL0wEATfGUCDu0TxmWbbf2WasoDKIwpKMwqJtibcaynXhmzkbldc/5y6cAgIuO6IfzH5uNLVXp\n8Va3TluC+84fC5ZFzhtBEATRupCzRhAdAJG/dtywSsdzp4zqCQDoWhwyj+2obsp4zXgiaRFqAPDS\nvC2IGiWln67Z26yh8ARBEERuIbFGEB0AEQU9rL91GPyfvnGYOQ2hW0nIfpqDpFRMUOsyCzQaT6Km\nKYbLnp6La/65sJk7JgiCIHIFhUEJogPw63PHYEDXIpxquGgCOVrZp7wQS7ZWe15HhFOBdAGDnWg8\nic/Wp/LYqAcbQRBE+0POGkF0AHqWFeD2s0cjoGt49dqj8Oq1R+F7xw3CmWPSc6euOWFwxus0xdLi\nq6bJRaxJ4dHVu+pw/9srWrh7giAIoiWQWCOIDsYRh3TFEYd0xe1nj0Y4oJvHJwzogvX3TfU8tynm\nz1mLSA7cXz9e73tvDdE4GqLq8CpBEATRPEisEcRBRKYxU7JYcwuZRuNJiwMneGrWeny0arfn9cf/\n6l2c9odPfOyUIAiC8AuJNYI4yDh7bG8cahQdAKkWHRMGVACwhkEfmrFKeX7E5qwJ7pm+Alf8Y77r\nfb/YvB+xBMe2A42uawiCIIjsIbFGEAcZj146AdN/chwumNAXY/qW4XcXj8dPThkGAJj68KyM50cT\namdNJhJPYNqireYYq/8u3obzH5vT8s0TBEEQDqgalCAOUv5wyWHm14VB3fJcaUHAtXVHJJZEJOZ0\n1mT+9P4aPD5zHUoLgjhtdE+8umib5/rqhhjKCgPUbJcgCKIZkLNGEJ2AAptY614Sdl378AdrMHdD\nlevzv31nJR6fuQ5Aak4pAKzYUeO6fsPeeoz/9bt4/vNN2WyZIAiCMCCxRhCdALtYk6cd2Pls/T5H\n3pkIdwIwhRoAJIzj1Q3WytIX524289427qsHALy3wrs4gSAIglBDYo0gOgH25rbdPMSaikaXsGjS\nEGtJScwBwG2vfYVHPlwLANCN0Kc8PYEgCILwD4k1gugEjO5dZhYZAP5GU8nsq4sqjwsBluBOIbal\nKjVXVDfaidA0BIIgiOZBYo0gOgGMMdxw2nDzcbdi95w1Fcc9+JH5tS71clu5sxab9tVDodVMN06s\nbo5W27Sv3nXSAkEQRGehzcUaY6w/Y+wjxthyxtgyxthPFWsuZYwtYYx9xRibwxgb39b7JIiDGa+c\ntUycOLzS/PqFuZtxwkMzlesajfYfkUTqb5X7lokTHpqJ8x+dnf0mCYIgDiLaw1mLA7iRcz4awBQA\n1zHGRtvWbABwAud8LIDfAHiyjfdIEAc12YZBZfpUFPpa1xRNOWvReEqsNcUSuPuNZfh0zd6s7rdu\nT73jGOcc27NovvvIh2vwwxcWZnVfgiCIfKHNxRrnfAfnfJHxdS2AFQD62tbM4ZzvNx5+DqBf2+6S\nIA5uVGHQD288wde5Xm0/ZPbURQCkxdqy7TV4Zs5GXPb0XOyti7So4OC5zzfh6Ac+9GwZIvO7d1fj\nra92Nvt+BEEQ7Um75qwxxgYCOBzAXI9lVwF4uy32QxCdheKw7jg2sFuxr3P9unIb99WjPhJHJO5M\nVpt4z/v44/urPc/nHmHTGctSwmtPbcTXXgiCIDoy7SbWGGMlAF4FcD3nXPnrMWPsJKTE2i88rnMN\nY2wBY2zBnj17WmezBHGQYe+7BliHwI/uXeZ4XjCyV6mve3AOrNxZYzprdqYt2oYNe+uxbk8d/rNg\ni+P5WMJdrInq1OIwDWEhCOLgp13+pWOMBZESai9wzqe5rBkH4CkAZ3HO97ldi3P+JIyctokTJ1Ij\nJ4LwYOZNJ2Lr/kaEA96/p/3zqklIco7/fbkDv3lzuXn85jNGYMKALr7vd+Hjn+HiI9RZDNsONOKk\n381EUUhHQzSBi47oZxlHFUs4Rd6SrQfQpSiE/Q0psZag3m0EQXQC2qMalAF4GsAKzvkfXNYMADAN\nwHc4596xEoIgfDOwezGOHdYdYYWzBqRds5JwAD1KC3DVsYMszx85sKvFgVMx4/rj8fL3jzIf/2fh\nVs/1DUYhgj1cKou15dtT5vvXH5mN4x78CFXGmCuVoCMIgjjYaA9n7RgA3wHwFWNssXHsNgADAIBz\n/gSAXwLoBuAx4zftOOd8YjvslSAOSkK6+ve0f10zBYu3HFCGSQEglMGRA4ARvUoRdxFRQZ25hjfr\nI3EENIaapji6FocQla4x9eFZ2PjA2eZjcQ0SawRBdAbaoxr0U84545yP45wfZvx5i3P+hCHUwDm/\nmnPeRXqehBpB5JCKoiAGdS/GgxeNsx0P4cQRPSzHXvreFJQWpH6v05m3qyYIuIjBXuUFruc0RBO4\nddpXmPCb9xBPJD1z1gR+1si8u2wnGqLxrM4hCIJob2iCAUF0QoK6ho9uOhHnH57qmnORS14ZABw1\npBsGd09VirZ0ZFS/iiLX5xqiCTNkWtsUdxQmqCYZuDl4blzz3EL88b22y6zYUxvBtiz6wREEQaig\nUiqC6MQEdQ3zbz8VXYqCnusqS1O91TSfzpobZYXu/+TUS47X4b95D4cPqLA8P+7udx3niFDp7pom\nXPfiIjx+2RFmHzhuDpm3nuM2lL41OPLe9wHAEsIlCILIFnLWCKKTU1kadg1bCh66aDzuPGc0xvUr\nBwAs//UZuNpWfOCHUECdCwcADRGriPpi84GM14sbYdBn5mzE/I378bLUAuTcR2dj3N3voskmzvbX\nx/BqhqIHgiCIfILEGkEQGelSHMJVxw4yW2sUhQK4+cwROGZoNwDAi1dPdpzz3s+Oxy1njfR9j/pm\n5JLFEkks216N9cZIKrmP7pKt1aiNxM1qU8H0r3bgxv98mfW9WsLqXbWYu961AxFBEIQnFAYlCKJZ\nhAM6Xrh6Cjbva8CAbs5ctGE9SxEKaHjg7ZXmsWSS41uT+uOlec4muM1J/I8lOc5++FPL9e3YnbXW\npCmWUFbSnv7HTwBQOJQgiOZBzhpBEC1CJdQEh3Qrxl++dThOGZmqME0kOe6/IF2BKjtvdgdM5vap\no1CoEEE1jdaiA1WP3H1GT7bWZs2uWhx61wys21PXJvcjCKLzQGKNIIhW5Wvj++Drh/UBACRt8z4H\nSkKvtsndWQsFNByiEIXLtldbHtuvDwDnPTo7q/02l501TUgkObZT9SdBEDmGwqAEQeSEr+4+HW5d\nz0RoUDhfD1wwFm8u2YGiUPqfIDlcaiegM8soKsGGvQ2Wxyqx5kYiyaFL0xhSPdgSeHPJdvztuxOV\n98t0PQCus1AJgiCaC4k1giByQmmBe/sP0UxXiKlvThqAb04a4DvpPqhpUEmnvXURy+NsxNrCTfux\naPN+nD66J/p2KcQ1zy00n6uNxFHm8XpUiHuTWCMIItdQGJQgiFZHOFj2wetuM0rtBHQGTfGv1Z5a\nu1gDtu5v8DWG6pK/foYH3l6Jk3//sdkCRHCg3tmANxPilvYZp+3NXz9eh7vfWNbe2yAIogWQWCMI\notUREUW781UQ9PdPUEDXwJTempUPVuzCsb/9CG8s3p7V/uzTEaoasi9KyNcw6P1vr8Qzcza29zYI\ngmgBJNYIgmh1xOD4gGYVXGGjSW73kpDn+UGNwU8K2epdqUpMex+1TOc+99kmy+P9LhWkW6oacPN/\nvlQ6d0KIRuJt1yqEIIjOAYk1giBancmDu+H7xw/GAxdaB8eHA6l/gjKlmgV0LeuEf8v5mve5j81c\nZ3m8vyGKaYu2YsxdMyxO2c2vfIn/LNyK+RuqHNcQzppXGJRnkVNHEAQhILFGEESro2sMt04dhZ5l\nBZbjQcNxk8OjF0zo6zg/oPsJgjoRM0+zPbuqPoqbX1mCukgc9ZF0SxEhyHSF+DMLDDzy5ew5ex2F\nVTtrccO/FyPuIxeQIIjcQ2KNIIh2Q4RHuxnD1wHgupOGYnjPEse6bI213144FlcfNxhA5jCrnQMN\nMVNYxZJpgeJHrEVi7oLmqU83ZLUPQVMsgYWbnG5eW/Gzfy/GtC+2YeXO2nbbA0F0ZkisEQTRbpQX\nBXHf+WPx7JWTzGNFId3hQAW07J21oT1KzDDrqN5leP26Y3yfK4+okitFvcSaMJ28nDWvXnJe3P7a\nUlz4+GfYUtWQeXErUFKQ6vJkL8QgCKJtoD5rBEG0K9+ePMDyuCgYcOSwNSdnTdc0hAyxxhhwWP8K\n3+c2SUUCcjFBgns4a8nMzlpzWbotNamhLpLd/NRHP1qbk/uXGWLNa8oEQRCtB4k1giDygpCuIZpI\noiCkmaJIENQZMtQIOAhozAyzIktfrkkSXLJYEy6bKvUsYeasJfDusp1ozOEAeW7MhtCyFKwPzViV\nk/uLhsck1giifSCxRhBEXjDth0fj3eW7EA7ojn5sAc29z1phUFcKo4DOTGfNje4lIeytc7bpkK8X\nU4RBVYUCCclZk6chePH0pxtw9tje6FVe4LlO3E5jwL3Tl2NErzJcdEQ/X/fIBSXh1EdFHYVBCaJd\noJw1giDygjF9y3HDacMBACKnXzhjjMHVHCsOq3/nDGjMrDZ1c+WOH1apPC47SKowqEqscR/VoAAw\n8JbpeGfpTmzaV4/fvLkcP3g+s7AT4pUx4G+zNuAmo49cbVMMf3xvdatXaZZQGJQg2hUSawRB5B1C\nnAT1lMpiDLhkYn/lWrdKz4CmWc5XEXaZoFArOUiyWBN5afGkUxxlM8HgqVnrzXW1PtyqtNFofSEP\nvL0Sf/5gDd5aujPjNVqCEL21WebMEQSRG0isEQSRdwjhI3K0GBguOqIfNj5wNipLw5a1Rw/pjqf/\nbyLOPLSX5biuMVPkuIVQ0zltVmQHKRpPu2hxY18KrQYRLfUzG1RjzHTpAtLQ09W7avHkJ+sc64Vr\nZw8Pix5wCdWGcogQqTWN7RMGfXnBFgy8Zbql511n5KlZ6zF/Y/u1cCHaDxJrBEHkHWcYwkuEOGVn\nzC6wgjrDKaN6OnqzBXQGIW3cnDW3kKXsdsWTSTw+cx0+XbPXFJGyszZz1W7M31hlChqVs+YIw7J0\nsYJcWXruI7Nx31srHWFW8dDteLaFB5lYuq0a9721whSJQljWR9tnlNbjxoSJnTVN7XL/fOGe6Stw\n8ROftfc2iHaAxBpBEHnHXV8bjXm3n4ITR6RyysoLg+ZzIrRZGEzNFQ3oaqES0DTTibKLmR6GO1fb\nFHe0DhHHBbFEEr99ZyUue3oudlSnxIIsmi7/x3xc/MRnpqBRzQaV3TMgFcwU1+BI5bE9NnOtWdhg\nnz2adMmVS+ey5VasXfzEZ3jyk/VmVawQog3t5GwJPdtRJ0AQREshsUYQRN4R0DX0KC3Ar849FO9c\nf5xlTFXAcNYKgmI4vPHPmE2wWOaBGl9OGdwVAHD/BWMBpETZveeNcdy/QXKQrnxmgeN5r2pQlbMW\nVAjKeNIq7h58J91mwy7WRPRTDoNuqWowj2fb1sQvomWI2Gt9tL3EWuoFduYwKAnVzg2JNYIg8pZw\nQMfIXmWWYyLZXYg2IYSG9rCGQXWdoTiUCqNWGuOsXrh6Clbfc5bUNyzWLFdKfHDK4VKzKa5CrAVs\nodt5G6vM3DTVh3AswVHdGMOctXsBpHPW5LXHPfiRI7cvVzCbkyX+ro+0Txg0Ldba5/75gMqxJToP\nJNYIguhQhAxxJpwz3XDWvjauN1774dHmuqCm4cQRlbj3/DH4xZkjjbWp3mtiwHtRqHmtJuNJjrW7\n6zD27nfNY0JHqZy1gM364hyYsWwXADexlsSPXlyEbz81F/vro+a17QUG6TBvs16GK0Icib0leTs7\na8YLzHaCQz4ya80e/Gve5qzPa2qFyRhEx4Ga4hIE0aEQzprQLen2HAyHD+hirtM1BsYYLp18iOMa\nQ3uU4NfnHuqoIPVLknOc+oePLcfSOWuKth72+VnytRRi7ePVe/DZun0AgIZYwgxH2ushxKm5zlkT\nV4vbnLWGdnPWUn8fDGHQ7zw9DwDwzUnOXEkvmnI4EYPoeJCzRhBEh0KINVGRaXetBG7HgZS4+e5R\nA9GjzHtygBvycHeBVxhUJcgEKiH381eWpHPaYglTlNn7u72/IuXOeWhBk0c/Wotqv603bGHQXDpr\nS7dVZ93EV1TM2u//ztIdWLhpf4v31BEQP1deP9fEwQuJNYIgOhRBY4SUCDfa88EEWit+qCkLDAxB\no3JAvHLDM+mWhmgi3WfNZa2f5POHZqzCzFW7M64D0mFQu7NWH4mbe2kOO6obcc5fPsUVz8zP6jyx\nH3sY9IG3V+Lvszc0ez8dCfFzlWmEGnFwQt91giA6FCXhVMsOexg0V8htQtxQuWHCPVPlVXmJKXse\nmp2UWHMAiOl2AAAgAElEQVS/L2B13Oojcdz22lfKyQiNPvukiahqemJDeoC9n6a/buyvT+1p1pq9\nZvGEH4RAtIdBG6IJxFqwn44EibXODX3XCYLoUPz63DG4+thBON7owWbvYdYcZIE2omepcs09543B\nvNtPAZAWLzJegmyYrWGv3/OAVOgv3WdNLUzkazw1awNenLsZz87Z6FjXGEtg3oYqvDx/i+c97c6a\nHMZtbpL/gYYopj48y3y8ZX+D73NFcr29GrQxlug0LS3Ee+A2dYM4uGnz7zpjrD9j7CPG2HLG2DLG\n2E8Va0Yyxj5jjEUYYze19R4JgshfupeEccc5oxE0wpw50Gp488fH4opjBgIABnQrUq4J6swUhglF\n7LLJ1lphcPdi8+v+XYvwwtWTldf1ymcDUkn9Ysknq9VulCweawxHLRzQHesaYwlc8tfP8PNXl3je\nU3iVQhzKKXrNdda+2HLA8jie5NhZ3eQr56whlhKIdqHYFEsg1knEmmjdQc5a56Q9vutxADdyzkcD\nmALgOsbYaNuaKgA/AfC7tt4cQRAdixakUJn071qECyf0A+D+YRjUNTPRXVFfYGmkCwCFId3zsUDl\n0lmvm3bWnlG4ZQBQ3ZAOedYZ0xcKFPfz2/6BeThrfgbVqxATJwTJZKqi9sLH52Q8tzEqnDXrZIlY\ngmddrNBa+C7eaCbkrHVuWvxdZ4wNYYyFja9PZIz9hDFW4baec76Dc77I+LoWwAoAfW1rdnPO5wNo\nn6nBBEHkPbluVxEOiIkI6uvKYk0lEOxtLQ7rb/1n0O1D1qutB2CIwAyC9N63VuCrrdUAgDqjYrJA\nITr9tn8Qb4GoepVDjfbpCn6xi7VEkvsOqUaMfcvrxWuZs24ffvTiombtKVf8d/E2jP/Vu1i6rbrV\n7kHOWucmF9/1VwEkGGNDATwJoD+AF/2cyBgbCOBwAHNzsA+CIDohuXDWAKDAEBO6q1hjppD7YKWz\nqtLeVmLK4G645axUM14G9xmmQvy4iTk5Z82Lrwyh4NWLLNsCg4StwABovrNmf19V7qQbsaTTWWuU\nhOebS3Y0a0+54uNVewAAK3fWtto9IsJZI7HWKcnFdz3JOY8DOB/AXzjnNwPonekkxlgJUkLves55\nTXNvzhi7hjG2gDG2YM+ePc29DEEQHYxcN+ZQOWvv/ux4lBakeofLztq8DVWO8+1h0FBAQ+/yVB83\nxpil7UYvqb+b0GElBeoe5Uu2VKPeh8gSAkuEQaMKB6zRp7PGIMK91j5rgHfO2updtRh4y3Rs3Fvv\neM5eCCC7fJlCmcLhkwsMmqL2+am26Q5Jjte/2NYmYVJx52x+Jr1aoHDOMfCW6Xj0o7XmMZETGaQw\naKckF9/1GGPsWwD+D8CbxjHP2nfGWBApofYC53xaS27OOX+Scz6Rcz6xsrKyJZciCKIjYXwy5iq9\nXCTkB3QNt01NOWKDuheb80WDugbdI/Rqd7TsTtkh3YrQt6IQL35vMj6/7RTH+UUuOW3vLNvp/0Ug\nHSp8aMYqx3M1PvOqZGettimGj1enfxG2O2s//dcXuPP1pQCAfxtVpqo9291BeX9eApBzbjp7dS7O\nGgAMuvUtrJKcrWlfbMP1/17cJn3YhPDKJjLv3c4l9bf8Hon33c35ba7jSXQMciHWrgBwFIB7Oecb\nGGODADzntpilEk2eBrCCc/6HHNyfIIhOiHB/WtKkVSYcTDtr1xw/BBsfOBtBXTPztwI6g6Yx1w9k\newjMHq4qDgcw+5aTcfSQ7gCAxy6dYHm+pSl44m0QguZAg1OY7axpkta7v29m644Ex/X/WmwRFnbH\n7r+Lt+O5zzcBSId0w4pQnVco10usySFYOdSscgkXbEo7nlX1EQDA7pqI67VzhemsZfE99CosEe+3\nfD2vObD/+3I7ht/xNtbubr0wLNG+tFiscc6Xc85/wjl/iTHWBUAp5/y3HqccA+A7AE5mjC02/kxl\njP2AMfYDAGCM9WKMbQVwA4A7GGNbGWNlLd0rQRAHH7lz1jT0KA2jd3mh5bgoZBBOmd9xP3K4SnXG\n1LG9MayHe/+1TJw4whlJeHPJdmzd3+h6jixcYh5JY7KzttomANwcnMZownxOlVflFY2MxN3DsyIE\nypgtZ00RGhZVq5+u2Ys5xmzVTD8fT81aj/Mene25ZsnWA9hX5y76hA5lWQRCs22ULMSdplCE7y5P\njR1btr3ZGUVEntPiQe6MsZkAvm5cayGA3Yyx2ZzzG1TrOeefIkNon3O+E0C/lu6NIIiDl8JQShDk\naoIBYwyzfnESgrbGbcx01lLHUx+WmSWin0TwlgwmP2lED8xcZc3T/dGLX3ieU1UfNb+OJ5MIufy+\nLl5zPJl0CBC3atD1e+tMsSa/h8kkx4vzNqNfl0LleUA6ed7Ol1sO4K+frAMAVBQGsb8hhkg8gXBA\nV1a2CgF02dPpmrVMxus901d4LwDw9Udmo29FIWbfcrLnuqycNQ+xrBJrSYXbRnQeWizWAJRzzmsY\nY1cD+Cfn/C7GmHfHRYIgiBby8zNHoqIwhHPG9cnZNVWNZIWTIURhQGPwE1jzIyJlcyWRRXnkAxeM\nbdbsUzmE6emsiQKDJHeIAzdnLRJPImJcPyLd54OVu3HH60sxsld6MoTGrK/dLQz63b/PM/uXVRSF\nsL8hhvpISqypwqCq0CLPkfe67YC7Y9mcO8TdBr1CCoNajqX+VjlrMi8v2ILiUABnj8tY50d0IHKR\nsxZgjPUGcAnSBQYEQRCtSllBEDedMcJRHec3TOkX8dkowqB++7uFA1pGV0fusaaq3nRD0xgmDOiC\nSYO6msey7X9mr5JsjCaw3RAkaWfN+QLcxFo0njSfi0hCShzbJoVn7UnybmFQOVQo+rSJfavCoDVN\nccdEiJamNLrl9u2sbsKdry9FPJFsVt6knwID63rvIgzBz19Zguvaoe/cgo1VGHjLdOyodhe1HYFE\nkuN7/1yA+RudFd/tSS7E2q8BzACwjnM+nzE2GMCaHFyXIAgiaxbfdTq+uvv0nF1POBlCpKlCVLca\n/dRkLDlrLvpOfGAfN6y7aygQAC6dPMDyWGcMQ3uU4OXvH2Ueu+uNZa7nq7ALsav/OR9HP/AhgPRr\nTia5I2cl4iIKZbEmhyhFsYEoDnj12qMd7pCbsya7T6IARAhclbNW0xjDAVvFq5uQ+mjVbktrDDfx\n5OZA3jptCZ77fBNmr9snFRj4/0XBq8BANYJM1UbFTq4bRWfDC3M3AwA+M3IFOyr76iJ4b/kuXPt8\n+zZatpOLAoP/cM7Hcc6vNR6v55xf2PKtEQRBZE9JOIDSAs/uQVmR/vxzNogVqEZJ+clZEwLh0skD\nTMHy4vcm47mrJlnWHTO0u+WxW/uGbBDCqrohhjW7ajF7rZGQz7nFWbMLKy9nTQgoWUgFjfdBvG26\nxhzup5tQlQWUEH3imCpnraYxhj211iD19K92KnutXfGP+ZbWGMKZrGmKYcWOGsdxx96MrcniKZvv\nipezljBbgaSvKLbhYbDlBblqUt1u2P5/zxdyMW6qH2PsNcbYbuPPq4wxKg4gCOKgQPzbLT6EVK6H\nqlVFUNcy5kuJD+xQQDPDoGP6lmO8bVRVRaFVfDYnX82OEJ0XPTEHp/3xE/N4LMGlQe7coUBk8SKL\noGgiaYY/5RmkdqGkMef+I/EEtlQ1OIRg3CLWUoJYiBV7E2IgJbTsVZt76yJ4RHLQ3BBi+TtPz8NZ\nf55lHncTa5bPdFENmqPWHUllzlpqH36mWXRUIvEExt09A9PbcSJFuiVQu21BSS7CoP8A8AaAPsaf\n/xnHCIIgOjx3nDMaPUrD6N+1CIB6lqeqZYPsrLl9hoswX1DXzEkJxaEAygqCltBqmV2s5SDaJUTU\nmt11luOxRDLdZ00RBpUFlRwijMaTiCacrpddgGmMOZzB/Q0xHPfgR7jlVWttmvxWm86aRxi0KZZU\nirjFWw44jtkRouxLY60In6pyCVfsqDEdPG78B1h/Dr7ccsDzvl45aOqcNRj7cj6XZ7qi2Ww/0ISa\npjgeeCdzhW5rIQR3vr2nuRBrlZzzf3DO48afZwDQKAGCIA4KThrRA/NuP9WcHar+sHQedJv1KSM+\nr0O6htd+eAzuPX+MKWS+f8IQ9K1ItbsoDlsL970mKdxx9qiM9wXcc7FiiaTUZy1pCcVpzCq+ZCET\njSdNASictaXbqjHXNppL15hj/7VNqTwzrxmfYeP9F26kqsBADsXKzFy1B7PX7nW9NuB00My5qIr3\n6aw/z8JyI1TKufpn4txHZ3v2b/Nsiqu4oBB3SrfW7PPWfuTi3qKVjZga0h6knfT8kmu5EGv7GGOX\nMcZ0489lADp2hiFBEIQLKhE2opezZ3dQ918NGgpoGNqjBJdOPsTy/P8dnXpcWRq2HPcKg148sb/3\nTQ3cWkdE4+neanZnLRTQ8OaS7Rh4y3Tsq4tYhFskkTQFT1MsgWXbq3HOXz7FM3M2WvfOmENuiA/p\naCLpyDkThM3cN/ectUg84Tr/dOGm/crjArcQbKYqW1msZdMmxLPPmqKnWrrAwOOarZTQ9txnG7Fy\np7+Guy2ROKIPoNvotbaA2/7OF3Ih1q5Eqm3HTgA7AFwE4PIcXJcgCCLvEFWJlx89EHecPQrzbj8F\nh0k5Zhoz3CONYVy/cgDAGYf2Ul5LzllTIcZelWThrJW5DIS3E0twZf5dVHLWkrY+ayFdw8Z9DQCA\ntbvrsGV/Q/q8eNJ0695bvgtnP/yp8r66BsRswqhOGtB+7fMLlefZCwxUoiwSTypFHJASXSc89BGW\nu3T5d3PWMoo1pEWal5Cy8/HqPa57FYJUDquaBQYevwE0eVQUt4Q7/7sMZ/5pVuaFLWR/gxBr7ees\nmcI7z9RaLqpBN3HOv845r+Sc9+CcnweAqkEJgjgoEeHQE4ZX4urjBqNHaYHl+XBAN923oT1Ksfbe\ns3DWWO8GpX5CpjKax3J7+wa3yQHxRBI1Tc75obEEN6/xxMfrsXpXOqdNFpUBneGCx+ZI5yXNsKhX\nzziNMUf7D3mSg1vzWVFgkDEMqjgOpOZnbtrXgMdmqosNonHrp7NwsuzH7eKNc+5ZfOLGQzNW4Tdv\nLlc+p6oUTRcYuF8z4iL+2pKWhEP31aXEmqq6uq0Q4c+DMQyqQjlqiiAIoqNTYDhrdjdsSGUxxvcr\nRyigWaYXBHwIMT9tPmTcutg/cdkEx7ErjhmkXBtPctQ2OcddReNJs4DBLpzkD1HdphjlnDUvdI05\nxEidJNbs+XkC4WgmPQoMIi45awCw1xACbk2T7QJTTJQQ4kzkEtoLGORX4tWOQ8VaW3GHQOWepQsM\nPJw1l7Yq2bBw03788b3V5uNsRUtLJI5w1lTV1W1BYzRhivT8kmqtJ9ZoehlBEAclBYbDYxdYH9x4\nIv77o2MRCmgIKcZWeZGtWFP1WdMYcOYYp4Pndu1YQl05KRcY2PFK/JbDoF5ozFusCTFsRw6DNsUS\nlnMEbjlr4YBmrncTz3bHzJ6zJkLP9tAl5+kP9ly11TDfHiYfc2+KK8Kwbq5iNlz4+Bz8+YN0X3vf\nArQZn/pPfLwOVz0z33wsfnlw6+XXmlQ3xjDql+/g4Q8M5zXP1FprBYbz7GUSBEHkBhEGdWtMGw5o\nWYXDgOzDoHLO2me3noz6SMJRhGDux+Xam/Y1mBWNMtGEc3i7QM6ds7toUSkM6oWqOEIOg9Y0qofb\nm33WOMfIO99RronEk2hSCJYeZWFsqUq5hG4zW+15dEKkiNckjES7wE0kpTCoGTr1JzbcfkpUAkmI\nR68aAjdXsSV4Va2qyMaJe+DtlZbHZvFIO4i1BmPCxkvzNrf5vf3QbLHGGKuF+meNAVAnSRAEQXRw\nhPPj9oEcao5Yy9JZk/PSepd7/3MbtjlVQZ0hluCu46nkMKh9j3KI0u6ipZw163vy9fF98MaX2y3H\nVMURwvUaXFmMHQea1K/DdNaUTwNIOTObqxocxytL0mIt4JLwZ8+jiyeTmL12Ly59ai6AdOhZfKjL\n68RHobiEfU22qAa5i58pL/euXuE2tpRsQ7u5uJdb4UVrYv8FJd8cp2aHQTnnpZzzMsWfUs55+5Vy\nEARBtCJdikIA3D/EwgHdMVw+E9muz2bclN21G9O33HO9W/XjBzecYHXWbBZPYzRhqaDTGFAcdrqQ\nKq0kxFq34hAaYwnle2vOBs0gHj5atcdxrGtx2nUM6EyZW9cUTeBrf0lXsCaSHPOkHnFCZNpDjfGE\n01lThZf9Ek8klYLMT1uO5tx37vp9eNbWXgVIO2Ryz7cNe+szXq8l80nF61YVSrz11Q5Mvu/9jNW5\nzcX+/ubbpIj2yeIjCILooNx/wVj86KShmDK4m/L5VIFBdv+0Zh0GzWK5cO3G9yvHn795GO47f6xj\njdzXKpZIKisO+3ctMsWXWCdTZ3OTikMB08UqDKbPUxVHCEeozJjpqs47s1aDAsCo3s7+diq6FYfM\nr4O6pgyzbd3fiK+2VZuP40lu2YcI39r3lkhyR86aLJpu+Pdi943Z3udIPIGht7+NB99Jzyy9+Ik5\neOPL7b5ad9Qqqnsz8Y0nP1e6rOJtTkgO6ul//Djj9VpSRRk3J2A4vz93vL4Uu2oiqGnM/jX6wa6F\n80yrkVgjCILIhm4lYdx0xgj3nDVdy766M8v5UW7VoCqEcAzoGs49rK+jZxsA9KlIh1Kj8aTDvbps\nygAAQEk4PfbKHga1h+CKwrr5HlmqSKW9v3rtURjWowR1RmK5GKulSpQX4WfZATl8QAUunZzam1uV\nJwBUFKf3XdMYw++kAe6CHdXW8GsyyS37cKsGjUn7Ee+bHAad9sU2133ZaYqmrvWpMW0hEk9i/sb9\n+MlLX0gFBs7zhLCoboGQqW2KYeAt083H5gQH6YZeBSRueY7ZkDBz1tSFL4B7GDtX9xZk0+C4LaBw\nJUEQRA45aWSPVgvVNAehjYSYKQg6K1V7lxeYbSSiCW5xb4ZUFuOe81JuXImLsza4ezE+X58aXKOx\nlKAoCgXMe8qtGGRhGtJ1hIMa6g0BJBr6qsSacNbkfKaglp6GEA5oiLuEAYVjBwD/mr9FuebvszdY\nHseT3CLMNM8wqMhZyy4M6lcQlIQD6QIDD8unJWLNPuEhaXtNflGtbojGkeRQ/qJguadHzlrCx+tv\nCV6zWvMBctYIgiByyLUnDsFPThnma+2/r5mCG08b7mvttyalx0hl83ElPmuFw6b6wOxZlm7sG4sn\nLSEgOaQrFxhMW5RyjK47aQhKCgJm6Eq09ygK6dCNyks5zCsbYMEAM0UYAJQaokrVGFcIPlkIBXTN\nMnTejUwiQUUiydEYSztkdZEYIvGEORJJEJfCoPdMX4FIPOEq1jOFCN2ESHlh0BQy8pJEkuOrrenQ\nrRBrzelTtsw22UGII9Wc0myobYph9C9nYMxdM1zXpPPjUo9VYVARIm09sWbfU6vcptmQWCMIgmgn\nJg/uhh/7FHb3nDfWzP3K5oNEOAYBXThrmiOEW16Ydp6iiaTlA1r+4C+RRll9uHI3gFRz3F+cOdI8\nXmS4b8WSsyaHhXWLs6ZZrl9WmLr+t/72uUPYiHU3vPyleSygM1OsebUNaY5YsztrTbEkrvjHfIeo\niSes4vb1L7Y5hKMQWplcKjfBWVEUVDpLf3hvFb72yKdYubMWAHCgISXWsilAEazfYy0eED8DCR+9\n82Tsdx5797sZz0m3JTEKDFRhUB8THFqC/XtDYo0gCILIGl1jGNm71Hjk/5NE5BmJXB/GGIpt43yK\nHQUG6evLQmu0IqE/oDGL4yactXBQM6ccBC3OWvrjPGgTa7JojNiKAMKK8G1Qyl/y+nAt9TkvVSaR\ndDYNnrNuH5Zuq7YULKgEln1I+6y1e/HJ6j0OoWHfs5uYs4u16Ut24NBfvoNZa1K5baLzv3jPsu2N\nBjjzxLjx9turJAfeMl05pkwwe+1eDLxluut0BhUJm5hVRSTtFbe5pi1blDQHEmsEQRAdBCF0svlc\nEcIhFEiLJLvTVCCJtWg8aekTJ4u1cf0qYEfXmKWaVDhrIV0znTXZ6ZG/Dgc0ZRgUcOZ9qSYbBHRm\n5n0N6l7seF5Q4iHWRvYqVR6vaYyjMepsNrxhbz1G90mL1njCmnmmMWdrkP/7+zx89+/zHELD/m10\nCzmWFwbN57ZUNeK6FxehPprAGmNuqz3sKb5/v/rfMvzhXWcxhYqILfQo7qcSR7trIubXK3fWYEd1\no5kb+friVF+9ZdurHee5IcLGXvcU7KmN4D8L1HmHkXgCry7cmjHczDnH619ss+TG5XuBAYk1giCI\nDoKQOdmYC91LUi7QiJ5pgSE7YQGNoUhyrSJxa+sOOd9M1xje/PGxlusHdWZpzSGctaCeDrfKUTmH\nsyaJMLkQwF5dqqoCDGjMfC++cWR/9C4vcKwBYBGEfrnimfmoqo/iyIFdMHVsL/N4NJG0CMN4MmkR\nB7rGXJ2tTO6NW8hRY+prijYi9urjBOfYVdOEf8zeiIc/tA6uj8aTuOXVJdhRbc0LtIceVdWgAllM\nnfmnWTjq/g8da4o8RpPZMfPRfOTJ/filL3DzK0uweZ+z+fEjH67Fjf/5EjOW7fK839wNVbj+34vx\nmzeXm8fs35t8M9pIrBEEQXQQhM7JppfV5MHd8O9rpuBHJw81j1nEms4srTVmrdlj+eCyC4HBlVYH\nS9c0y/nCZQsG1M6aLNxCAXXOGuB01lR5WPKcz4DGXBv+Hta/Ar84c6QlfCnwauK67UAjCoMBxwe5\nLNZiUlNcAHjti2143aVdR6ZkfbfGt/EE95yKYW/lwrn7kPiPV+/Bv+ZvwZ2vW3ur2Z01IcjsIV3A\nX8hQNcVh4C3TsWjzfsfxuE2kce7+M76rJtViRdXeQzh+e+sijucEBxqi2GJMudgkCb58D4NS6w6C\nIIgOghAs2X6sTLY18JWb2wY1zdLO4/P1VZa19qH09oa/AUcY1HDWNCY5a2kxwRw5a+lzLc6a7cNe\nNaYq5ayl3g1dY8o14rlrTxyCaYu2Yp9RzcmY06EM6ZqjUKEopDtaYgyUxNqzczZaGuWKPDIV3KUG\n4uUFW3DKyB6ugiGedPa+k1E9J49Du/uNZdhTF8Gj356Q3ovtxdvFj1frDj/Cpj6ibl/y0tzNmDCg\ni+WYEKnydRNJbhbFyDDpeTtivWpChWDiPe+b4lB2E50FBvkl3shZIwiC6CD8/pLD8N2jDsGRA7u2\n6DpyaDMghTEP6+/MSbMPPrc3n9U1hgJJcIXMJrzMXOvWxDeoM4zpmw7PyoUAFzw2x7JW1Qs1qGum\ncNUYy1gFKQvNoOKCZVKBg6AopDtyqIb3TOe5ZTM83ZEXxTnW7anDz19Zghte/tLVeYsluEVM2Asm\nVK6bLDqfmbMR05fsAJB2NjmsgsTe28yrdYcqp8z+zmczH1XVliOTC6kSa+L7W+/R504O68pFLJny\nCdsbEmsEQRAdhL4Vhfj1uWOa1ZpBxhI+1NNhzESSO0Zf2ZPX7WHDgMYsjW6FMAvqGnTjWm77ZYzh\na+P7mI9VYkmgDoOmc9Y0pp4E8e7Pjje/loWncGHkM8oLncGm/l2LLMLgxtOGOwSsXxzuDdLtNqob\nY8qQozhPFi9dikIolULZsQzOmowcSpcFnb23mYjI5tpZUyEElPz65YiwPFnBfF4h5oT4svfCc0MW\nqPbcvDwz1kisEQRBdDbOPSwtkOQwZiyRdAiRTHNL7SJKFDQEpWpQr+lYciJ6QGP4wyXj1fdRXMTi\njjEGu4bqWhyyuGCys6a6nqof22H9KyzCoDCkK105P6ia/QoHavGWA/jmk58rz4slrBW6xeEAupWE\nLM/bUU0zeGfpTlMQcaTHWwGKmaceOWt+2mdk56yJHmpOZ80ejhS/LKgEo5gbus8jZ03G4qzlec4a\niTWCIIhOxjnj+uAfVxwJIOUwiZy1aCJpcd0Aa1sPFfa8ovKilDsW1NNhSb9OIPMIZapcM7l1B5B5\nZqq8V00SkhMGVCjvUV4YxIhepRZhUBDUlblUfjjv0dmOY7IDVRdRC5x4klucn+KQjn5diszHMUl0\nCHF9x+tLHdf5wfML8fCHawCknCM5T80+RstrvJPXjFD5tfhN2hfXs+esAe4941SHhUCtbfInFOWi\nCiowIAiCIPKO/saHfVDTzJw12VnTNYZEkuPCCf08r2NvqSEcCtlZa87geTsqJ0zXmPmhrQqD2s+Q\nry1f7vmrJ6OmMY7vP7/Qsv7Lu04HYP0gLwzqrnvMFs6dLUpUxBPWAoPicAB9KqQRYZbndEQb3BPs\nRcsLDqsQsjtrwtFSiSU/s29fmLsZXYqc1bcq0vlx6WPi58gezvUqMBBize+ILLnAoDmNhNsSEmsE\nQRAHGfNvPxU7q5vQtcT9w/KQbkU4YXglrj91mDkdIJ7gphD5zpRDcMPpwy0VmirsBQdTjMrTE4ZX\nYqfRZsEu1t788bFm+wTx+AujpYP9egKVs2YRX3CvBlWtF5/njKVCsUWhgMWhkrGHQd322BxqPaYB\nCOwFBiXhgNVZk8RTcTiA/Q3u1xTX4dzaDsQufsxxU4p2Iku31eDJT9bjoiPSQl711j/y0VrHMZUk\nMkdJSXtYvOUAThrZwyEMaw1xa6/4TCY5NuytV74WN7wKDPINEmsEQRAHGZWlYUfnfTtBXcOzV04C\nAOyuTYmqWCJpFhvoGsso1MQ6APjwxhMQ1DX071qEtfeehYCumRWIdiNqTN9yS080+bFbiFFZYCA1\nxQXSgk64gnYBoSoMYJL/5jZf1OKshfQWF3jI1PgI2cWT1nmtxWEdkwalK4Ll96A4QzPauIdAk1mw\ncT9eWbDV0fYFAH77zkoA1jYlfrWOveoUSOfFyfu54pn5WH/fVNdCCXtRxdb9jWYY2a/w8iowyDfa\nPGeNMdafMfYRY2w5Y2wZY+ynijWMMfYwY2wtY2wJY2yC6loEQRBEyxHhqptOH2Emz3sJkmOGpj/A\nhd15SIIAACAASURBVLgaXFmC/l2LjGPWj5ZswqCqSQWAS4GBrkF4NRpLi8K0KLNVrlqcNf8VlHJ4\nrjCoezbSzZYaRSGAnXiSWxymwqCOIwd2VRZjyD30VESlZH6vcOEdry/FU59uyKo1iR/szY4BdYEB\nAKzeXeuax2d3QVftSg2zDwU0386avIwKDJzEAdzIOR8NYAqA6xhjo21rzgIwzPhzDYDH23aLBEEQ\nnYegrmHjA2fjm5MGmKFCLz3yzBWTzFmdukdlpBADqhCmG27Omuo2muSsMWZtG6JCbkOi+mh2E2tJ\nW86azN8vn4hRigH3fli9qxYvu8y5lFm/p95s8QGkp0qo5qEWKypaZXiWAsVPmBbw/nmRUVWJmhMM\nbPs580+z8MMXFimvY5/2IERleWGwWcUC+V5g0OZijXO+g3O+yPi6FsAKAH1ty84F8E+e4nMAFYyx\n3m28VYIgiE6HEEteblhQ1zDxkFQYzuszWrhXreWsMVjFh12s2U+RpyX0Kksl6J8+uqd5zE8Y1D5+\n6+SRPfH2T49TnpeJhmjCVxjUjtiDyv30W/zAub9E/JrG7Pfnpc1VTpk5wUCxn5U7a5XXidoqUkVu\nXUj376xZzyex5gpjbCCAwwHMtT3VF4D868ZWOAUdQRAEkWPEh32mZH2zuarHGvEBmE2ni2xy1lL3\n58Z+0m0/goqGt4DVWetZVoAv7jwN152Unpnq6qzZBrW3F5cfPRAAENJTolMlgv1uL8m5L4Hi11mT\nKfdobrxsew1W2QTYgo378erCrVmFIu0FBuJhOKCZYetkMlVE0RRL4P63VriGVAH/FaTtRbsVGDDG\nSgC8CuB6znlNC65zDVKhUgwYMCBHuyMIguic+O2NJoSCVzJ3uq1GNs6a+7QDFWYYFJDEmqa8r30a\nQxfbYHc3sSYnnxcEvHPCWhPxeoSzpnpf/ebTfb6+Cos2H8i4TtVcV4Wss8oLg8qK1AFdi7C5qgEf\nrtyNEb3SzYofm7kOANC/a6FZHJIJe5Wo6awFNFP0HfXABwhoGr533CD89ZP1ynA85xyM+btne9Iu\nzhpjLIiUUHuBcz5NsWQbgP7S437GMQec8yc55xM55xMrKytzv1mCIIhOhBAmRRma4ZozJr3EWrIZ\nOWtSGPSbR/b3WGncX/pa6BQh1kRencAu1uzIYVBZNApB+sMTh2BAtyLHeW1BSsSkBQmgzuPLxvd7\n0Kjq9MJvmFYW7W5jwypLwxjUvRiLjDYtdhIJ7nuUl70xr/i5DUph0F01EWw70IjGmLM1iP08Ems2\nWEr2Pw1gBef8Dy7L3gDwXaMqdAqAas75jjbbJEEQRCdFhJcKM4o1w1nz6I8qPsAzhVRl5A/rX517\naMb16QKD9HniGgW2YoCw9PiyKe6RmMuPHojXrzvGfCw+5OW+Yq9eexRm3nRixv3lCl1jZrsKM2dN\n8b56hSDt5DIMKmt21dguILXfMX3LsXKnOpiW4Nx3zp3dWUtK743d7U16FLqIXmv5LtbaIwx6DIDv\nAPiKMbbYOHYbgAEAwDl/AsBbAKYCWAugAcAV7bBPgiCITofoeWUXOnaYjzBokfGh3aU4hLm3neKr\nW78cfvWTN2fmrEnHxQe+3UkTo5iuOGYgzhzjXrP2y3NGWz7YRT6TvLcjDunqOK81CWrMbFcRFmFe\nhfjoWuxvagDgr7eYaC1ywYS+mLZIGeACYGsc7PKzo2sM/boU4n9fbscpv5/peH5XTQTdfO7fPrNU\nvJaQrqHG9rrEWtXPUySWQEk4QE1x7XDOP0UGp5anfPXr2mZHBEEQhEB0k3f7wBX0Lk9VU3q1ijhn\nbG9U1UXwzUkDMoo/gWXYeobwaa+yAjMOKn8OixBm2JZfJooX3FyUv313Il7/YptDBB03rBIvzt2c\nlWvll8mDumLuhqqM63SNmYLEq2L34on98NdP1vu6tx83SYRBKwq9RZR8rXDQpaJXY+hbUQgAWLen\nXrnGr7Nmr9wV9w8GNEexgFfxgHDW8r0pLk0wIAiCIEzEh14msXb72aMwvn8Fjh7i7HAv0DSGy48Z\nlNX95WpQr2T5D248AUMqS8ycNXmpEFt20SBEnJtIOW10T5wmtfIQ/Orrh+LaE4agwuesy2ywtwJx\nQ9OYGfoLuFTs/vDEIRjaoxS/+vqhuOuNZQBSIUm3KkhfYs1w1twEmEDWQ3aRLL+GHtJkjaDOHLln\nwYC/kPlDM1ahIKjjqmMHYW9dBPdMXwEg5aztq4taCiNErh9X1C6LKQb5HgZt19YdBEEQRH4hQkaZ\nctYKgjouOqJfTrv5A/5bYwypLAEA3Dp1JC6c0A9njent6CNiFw1aBrHmhhij5cVrPzw6q2vK1/YD\n5+nvTdB4HfJb//uLx+PnZ44EYBWAw3qWNGtfglrDWctUBSuHEUMur0lnsMw0Vb32bPIbf/PmcgDA\nna8vNY+FAxqqG2MY/6t3zWPCNVN924WzRhMMCIIgiA6DcG/8hi1zTdBjIoKKHqUF+P0l4y37jcTE\na8jOWWsJw3uWZl6kIFP1o3gNnHOzeazprEnCVg7RymKpooWhWzEZwP5e2pHFmpsLpzGG0X3KcPzw\nSpSGA0ph1pxwpOwcqt5P8fOgykuLxJN4+6sd+P17q7O+b1tCYo0gCIIw8RsGbS10D/HyyLcPx/HD\nK/HItw/3vEYkLgSG9TWI0Vit0QC1uc1yMzlrXY3QK+fpdhWqnLXyIkmsSc6afU5rc9A1llG8yxor\n02sa1asUsWRSKZ6aI6Tl/niqsLJwB1UdnCOxBK51GWmVT1DOGkEQBGES89m6o7WwO2tnj+2Ns8b2\nAgCcM64PzhnXJ+M1RGjLXg0qNERrOGvZNP6VcQsZnjOuN95csgNdS0LYXt2EJE8PcxfvkfxWlRWk\nxZosltyunw0FAc11soRArvR1WylC5kFdSwlPxY9Yc5w1uY2HalZtXSSVv6b6vkfiSQyuLMZ6l4KH\nfIHEGkEQBGESb2dnzS4KHr10QtbXaIqpQ7nig7w1Kv9kY+2m04djZ00Tnv98c8bz3FyoxmjKHexi\nOGsJztM5a8Z7JIcRZWEatjhrLc8pDAd118kSgjnr9mW8jty0OJHkSlGXjZAW15OLFFRvp3DWmgzH\nVaYplsCInqV5L9YoDEoQBEGYmGKtnZw1IQpG9so+B0x8ZJeEU3sXw9rt126NZHI5DPrdowdiYLdi\nAMC3JnmPQVSJqZW/ORMNNrGW5Ol2FUHFuCn5OhaxlmUOoIpwQMvqOplMRlHxqRLN9pmfXhQZYtzi\nrCluLnLahIiXicSTOQkVtzbkrBEEQRAm5gSDdnLWGGP41zVTmp2wDwCXHNkf3YpDuHBCP8txIaha\nw1mTq2IDGsNlUw7B7toIrj91GE4/tCeu+Md85XmqvK2CoG4m9osmt3KBQToMmr6nHO6UhXbIZysM\nL8I+wqAybhXC4qhXaDab741ouiz3XFM1Cq4znDXxnspE48m8rwQFyFkjCIIgJF783hRcOKGf7xmN\nrcGUwd2y6sRvR2cM3zhygMMxGd27DEAqD641EQn5t00dhaJQwLMLfMRleLwIg4r3ISm17kgXGKTX\ny6+1KJT2YfwUPmT6XocDelbO2vmH91UeFxrOq7dcNmJNOIiZnLX6qOGsRZ1iLZ5MmiI4nyGxRhAE\nQZhMGdwNv79kfM77p+UD/bsWYd19U3Gei5jIFfYiCftopHm3n4JrTxwCwJpvNaSy2PxaCIwupljj\n+NlpwxHUGQ4xhsnLQkx2vookZ81P4YNbE1vz+aC7szZlsHPs1qjeZbjnvDGO4wzpAgM3sslZE+1K\nYnE5Z825TyF8VTlrsQRHFpHXdoPEGkEQBNFpaG6LjWywh+LsblGP0gKM6VMOAOa8TwCY9sNj8O7P\njgeQFhjditOtO844tBfW3DvVdM5kIRayOGuZxdqRA7ukz3VxugZ1T4nHgoDu6r4dNbi78rhqvVxg\n4IZfsTayVykqjHYlsQxh0Hoh1hQ5a4kkR5JzjO5dhmnNbGzcFpBYIwiCIA4KeJ4O41aF2UKKEF55\nYdDM1RP5VRVF7k1tNVuenEAOg7oZa3JOoL3Fif14OKiZlbRBnWHjA2eba2IutpSqhUZarLVcMJcX\nBk3HMpohDCoEYKMiDBqJJ9AQjSMY0CxTGi4/emCL95hLSKwRBEEQBxX5FsFVCRohWKKJJA7tU+Z4\nXogFrwHqsokkO4bytAE3Z00Wd27OmnDAwgHNHHFld77cxJq4emlYEo7GUa8Cg7u+NtpxLBzQ8Pmt\np1j3rzNzL3JTXJWzJli+o8b8uqwgta/73lqJz9dXIaAxS9+6q4/LbqZta0PVoARBEATRiqhywoRg\niSWSePn7R1kGjwPAz88ciZvPGIH1e937f8kCTc4xlL920y6yqHHroSby1MIB3byXPUoZdRFr4vhZ\nY3shoGt4ce5mU8G5hUEP6VaEE4ZXWo4VhXTcf8FYx+vQGDMnUciC0a9OrygKoaYp3chXZ8ziyuVb\nziY5awRBEATRipx5aC/ceY7VMRJtJwqDOorDAfSpKHScxxjzdKH8CAo3p0kWJm7iSRRKpFp3WNc8\n+Z0j8PZPj3MUTwiE2xUKaDisX0Vqv8ZzspM3dWwvi7Nozyn86KYTce5hfR2vNaClnLWFm6osAtJv\nINweXtY063vVBqmNWUFijSAIgiBaEU1juOpYa1htfL9y/OLMkXjwovGe57rlk/m+tyFyLj6iH6b/\n5FjzuDyDVVV0oWss7awFnQUGpx/aC6N6lznCoLN+fhKAtNsV0nVTBMnjpgQTD+lqaRxsD9uKvdn3\nqBti7cLHP7Mc95u3WBK2BhYDmmYRsM0dH9ZaUBiUIAiCOCjI0/oCJYwxs32HF149yfwgNM6ArkU4\n1KhABazOmkqsDa0sMd20cEBzraKN2Zy1/l1TbUUikrMmTk07a9Z7y8LI7gSaDYBttxdizY6qybCK\nYptY0zRmDSv7ukrbQc4aQRAEcVDB8u6jNkVpQfb+SEvFmhBldl0j56nZhdi1Jw7Bc1dPMteEg5pr\nqNStwEA4XIVB3Sz4cGvdIT+0V3MKd88ZBtWUDXT9aLWgznD9qcNs12MWoZhvOWvkrBEEQRBEGzD7\nlpMtlYt+8MpZ8+LRb08AY8CqnbUA0o7TvNtPQUMkgdcXbzPX2gsMzh7bGz1KC0w3qyDgPsjdTaxd\nfswg7KxpwtXHDcKMZTsBpN0q2UmraYyhMFRgPm/v+CGEpKPAQGPKe/tp0zbnllNQWRq2Xs9RYJD5\nOm0JiTWCIAjioEC4UG3R+LY5lBW490xzo7lDxs8elxqptWZXHYC0WOtRWgCUWgXa/gZrJaoQU1Ej\nxFkSDriOm5LdwkmD0tMMSsIB3HPeWABpt4uZ102LrH31UfSWiivszppw4ezf04DGUB+Jw46fnDWV\nANaYVShSzhpBEARBtALXnTQU8STHtycPyLy4g9GtmbNShS6x53LJIb9t+xtt5xiiyhjPVBwOuI6b\nuvOc0RjZqwyXHz3Qs8cZkHbWDu9fgXH9yrFkazWq6qPWMKjtGuKhXTxpjGFvXdRxDz85a6rXwgFb\ngUHGy7QplLNGEARBHBQUhwO4beooFAS9Z112NJ6/ajLelCo5s0G4WfaIoSxMxLQE8zlDGYgigeKw\n7irWSguCuPLYQZ5CzZRPZu4aw6/PTc0O7VkWtggxOd/wl+eMNvdvN7rcwrJ+ctaUYo3b+tblWd4j\niTWCIAiCyGOOHdYdvcudfdj8IISQPTwoC5PrThqCYmmeqBmuNMRaUcg9DOoH4XbJAuiw/hV47qpJ\nuPH0EZZkfm5Iu7KCAK6U2p3Yw6Nu4tBPzlpQ+Vq4JeTM8kwd5dl2CIIgCILIFULT2MODsli7+YyR\nWPbrM9PPGcLIdNZC7s5aNtjdseOGVaIgqFuEmJhret1JQy1r7WFQV2fNR1tcldDj3JrLRjlrBEEQ\nBEG0CUJ0eLXusCOEXETOWWtJEpcoMHDdo/E8YwgFNMugeIFdO7kVkTS31x6HdcB8fkk1ctYIgiAI\n4qBFDHW3O2NeOWaaZg2DFof13IRBXW7pp6eZ15pnr5xkfm0P9/rVmJxz20zV/JJr5KwRBEEQxEHK\nJUf2x9YDjfjxydYmsPYcMNVz1py1HIRBXfyq5rRaiSfTFRMl4XS+nd1B9Gu02dflmVYjsUYQBEEQ\nueDVa482nax8IRzQcetZoxzHvQSSeCpdDRrI2JbDCyGE3ARQcy4tD5Af168CvzhzJPp2KcTc9fus\n9/ap1uwiL9/EWn79VBEEQRBEB+WIQ7pY5m/mM55izXjuqMHdAABFoZa1QskUBm1OyFHMJP3thWMR\n1DVce+IQfH18H1cn7W/fneh5PWf4NL/UGjlrBEEQBNFB+cflRzpGJ/nBS6yJMOgj356AbQcaXeeC\n+oXbG63ZEOLQrzx672fH45GP1gJwzk698phBeHHuZsc5vcoKfF4dWe2lrSBnjSAIgiA6KCeN7IEx\nfbN38/w4a4UhHUN7lJjHywuD+JGtpUYuyCYM2rU4hGE9S80h7nYhObRHCd740TGO88b0LfO8rj1c\nSs4aQRAEQRDtileBgZt4+vKu05t1L6GD3K7rtReZV35wFAZ0LQIAxI2RDKrCh4rC9Giud392PBJJ\nnrHi1N6fLc+0WvuINcbY3wGcA2A353yM4vkuAP4OYAiAJgBXcs6Xtu0uCYIgCOLgxDMMmuPBmDwH\nrTsA4P/Zu+/4quvr8eOvkxAyICRkMJMQIAl7ioBMF7hH1YqKdlm1jjqqVuuvrV1fa1u3Fa21Wltx\nUHetAzdb2YKMDEwgYWWQEAgh6/z++HySXDCEG7g39yY5z8eDR3I/656bN5Lje5z3uNTGjeLrFxg0\nVVIktktYw/cZPaMbvv9/Zw+haP/BI8R4bDG1lkD1rP0T+CvwryOcvwdYo6rfEZHBwBPAaa0UmzHG\nGNOuNb8a1LeJSv0w7aSBCUd4v5Y/s34YtKmdFaLDm05trpk24IjPO9Ziuq0lIHPWVHUBUNLMJUOB\nT9xrNwGpItKzNWIzxhhj2rvW7Fkbm9KdNb+ewdkjevvs/errrDXVs+Ztr9jcH0/gnJFOTN5sUxVI\nwbrAYC1wEYCIjAf6AUkBjcgYY4xpJ+oTpKbmfHk7h6wlYqM6H/FcQ3LVgretL91xPHuWTk5L4MoJ\n/QDvNoAPpGBN1u4HYkVkDfBTYDVQ29SFInKtiKwQkRWFhYWtGaMxxhjTJjUka00kO609XevYiuI6\nPWthzSRrMZFhRzxXr+GzBnmyFpSrQVV1L/BDAHFS7m+ALUe49mngaYBx48YF+Y/bGGOMCbz63rOw\n4xhG9Fksx5Ct3X/xSB6cv5kRfWObPL/hd2cccXsrT425WnCnD0GZrIlILFChqlXAj4EFbgJnjDHG\nmONUnyCFdQr8ANuxLGjI6BnN36468q4EUZ29S2/qE9NgX2AQqNIdLwEnAwkikg/cC4QBqOpTwBDg\neRFR4Gvg6kDEaYwxxrRHzc1Za23HMGXN5+8d5LlaYJI1Vb38KOeXAhmtFI4xxhjToTT0rB3nVlK+\n4OvVpy1R/9b1+5dOSUtgUXZRwOI5kqAcBjXGGGOM/zQma42J0pzZY3l//c5WjyWQWzulxncB4PIT\nUwD4xw/GcaCqyfWMAWXJmjHGGNPBNK4GbexZO3tE7yPWQvOnQA7ExncNJ/f+cxpeh3cKJbxTaAAj\nalrg+z+NMcYY06pq63cACII5a+boLFkzxhhjOpj6orLBMGetXrDtxxlMgqeVjDHGGNMqvCkqa4KH\nJWvGGGNMB5MSFwXArBOTAxyJ8YYtMDDGGGM6mB7dIvjmj2cHxdBjsNc4CwbWs2aMMcZ0QMGQqBnv\nWLJmjDHGGBPELFkzxhhjTMBERzgzskYlNb0pu7E5a8YYY4wJoN4xkbx902QyekYHOpSgZcmaMcYY\nYwJqpPWqNcuGQY0xxhhjgpgla8YYY4wxQcySNWOMMcaYIGbJmjHGGGNMELNkzRhjjDEmiFmyZowx\nxhgTxCxZM8YYY4wJYqLafrZQFZFCIM/Pb5MAFPn5PUzLWJsEJ2uX4GTtEnysTYJTa7RLP1VNPNpF\n7SpZaw0iskJVxwU6DtPI2iQ4WbsEJ2uX4GNtEpyCqV1sGNQYY4wxJohZsmaMMcYYE8QsWWu5pwMd\ngPkWa5PgZO0SnKxdgo+1SXAKmnaxOWvGGGOMMUHMetaMMcYYY4KYJWteEpEzRWSziGSLyN2Bjqcj\nEZFkEflURDaIyNcicot7PE5EPhSRLPdrd497fuG21WYROSNw0bdvIhIqIqtF5B33tbVJgIlIrIi8\nKiKbRGSjiJxk7RJYInKb+2/XehF5SUQirE1an4g8KyK7RWS9x7EWt4OInCAi69xzj4mI+Dt2S9a8\nICKhwBPAWcBQ4HIRGRrYqDqUGuB2VR0KTARudH/+dwMfq2o68LH7GvfcZcAw4ExgjtuGxvduATZ6\nvLY2CbxHgfdVdTAwCqd9rF0CRET6AjcD41R1OBCK8zO3Nml9/8T5mXo6lnZ4ErgGSHf/HP5Mn7Nk\nzTvjgWxV3aKqVcDLwAUBjqnDUNUdqrrK/b4c55dPX5w2eN697HngQvf7C4CXVfWgqn4DZOO0ofEh\nEUkCzgGe8ThsbRJAIhIDTAP+AaCqVapairVLoHUCIkWkExAFbMfapNWp6gKg5LDDLWoHEekNdFPV\nZepM+v+Xxz1+Y8mad/oC2zxe57vHTCsTkVRgDPAF0FNVd7indgI93e+tvVrHI8DPgTqPY9YmgdUf\nKASec4ennxGRLli7BIyqFgAPAFuBHUCZqs7H2iRYtLQd+rrfH37cryxZM22GiHQFXgNuVdW9nufc\n/8Oxpc2tRETOBXar6sojXWNtEhCdgLHAk6o6BtiPO6xTz9qldblzoC7ASaT7AF1E5ErPa6xNgkMw\nt4Mla94pAJI9Xie5x0wrEZEwnERtrqq+7h7e5XZJ437d7R639vK/ycD5IpKLMy3gVBF5AWuTQMsH\n8lX1C/f1qzjJm7VL4JwOfKOqhapaDbwOTMLaJFi0tB0K3O8PP+5Xlqx5ZzmQLiL9RaQzzqTDtwMc\nU4fhrrT5B7BRVR/yOPU28H33++8Db3kcv0xEwkWkP84E0C9bK96OQFV/oapJqpqK89/DJ6p6JdYm\nAaWqO4FtIjLIPXQasAFrl0DaCkwUkSj337LTcObdWpsEhxa1gztkuldEJrrt+T2Pe/ymk7/foD1Q\n1RoRuQn4AGclz7Oq+nWAw+pIJgNXAetEZI177B7gfmCeiFwN5AGXAqjq1yIyD+eXVA1wo6rWtn7Y\nHZK1SeD9FJjr/o/lFuCHOP9jbu0SAKr6hYi8CqzC+RmvxqmM3xVrk1YlIi8BJwMJIpIP3Mux/Zt1\nA87K0kjgPfePf2O3HQyMMcYYY4KXDYMaY4wxxgQxS9aMMcYYY4KYJWvGGGOMMUHMkjVjjDHGmCBm\nyZoxxhhjTBCzZM0Y066IyD73a6qIXOHjZ99z2Oslvny+McY0xZI1Y0x7lQq0KFlzN9puziHJmqpO\namFMxhjTYpasGdNOichv3C2g/PX8r0XkZPd7EZHnRGSPiHwpIlNFZLMf3jNFRPaJSKgXl98PTBWR\nNSJym4iEishfRGS5iHwlIte5zzxZRBaKyNs4BTARkTdFZKX7Ga91j90PRLrPm+seq+/FE/fZ60Vk\nnYjM8nj2ZyLyqohsEpG5btXzgBGRXBE5/Qjn/NJuxpjjYzsYGNOGucN8PwMGA+XAGuD/VHWRv99b\nVYd5vJwCzACSVHW/e2zQt+9qGXfv0R+r6kfue27FqfzujbuBO1T1XPdZ1wJlqnqiiIQDi0Vkvnvt\nWGC4qn7jvv6RqpaISCSwXEReU9W7ReQmVR3dxHtdBIwGRgEJ7j0L3HNjgGHAdmAxzo4cfm+fY6Gq\nC/Gi3UTkN0Cau8WYMcbPrGfNmDZKRH4GPALcB/QEUoAngPMDEE4/INcjUQtGM4HvuVuWfQHE4+z3\nB86ef994XHuziKwFluFs5pxO86YAL6lqraruAj4HTvR4dr6q1uEk06mH3+zF8Gu70tE+rzHHy5I1\nY9ogEYkBfoezX93rqrpfVatV9R1V/fkR7vmPiOwUkTIRWSAiwzzOnS0iG0SkXEQKROQO93iCiLwj\nIqUiUuIOF4a453JF5HR3T71ngJPcIcrfusN/+R7PTxaR10WkUESKReSv7vGBIvKJe6zIHSaMdc/9\nGycB/a/73J+7iwa0/pe9iPQRkbfd2LJF5BqPj/wDYKyI/EtEynGStcdUdbT7p7+q1ves7ReRR0Vk\nm4jsB+4AblfVUTh7OUa5iwui3J/RShFJdmMYhtOz9piI7JLGRQi3AFcDB93rTsbZ47Y+9lwRuUtE\nvnLfv5OI3C0iOe57bBCR7xzWhteIyEaP82NF5E4Ree2w6x4TkUeb/tsDwGh3KLhMRF4RkYj6GA9r\nt7vcvw/lIrJZRE4TkTNx5u7Ncttl7dHaQpwh+VdF5AUR2QvcLSIVIhLvcc1Y9+9HWDNxG9MhWbJm\nTNt0EhABvNGCe97D6SHqgbOp9FyPc/8ArlPVaGA48Il7/HYgH0jE6b27BzhkQ2FV/QfwE2CpqnZV\n1Xs9z4szv+wdnE2SU4G+wMv1p4E/An2AITi9WL9xn3sVsBU4z33un5v4TC+78fUBLsHpZayfz3YQ\n6OVeE4szBPm7+mRARDJEpIvHs5bjDGVe6cb6goiMBCYC3wUuxxlqjgN+BFS4930EfAosBTKAlcA0\noKiJeA93OXAOEKuqNUAOMBWIAX7rxtDbjfe77s/me0A3nB7UYuAF4EyPJLcTcBnwr2be91LgTKA/\nMBInsT2EiAwCbgJOdP9enIHTe/o+zs/5FbddRrm3fKstRORUj0deALyK0xYPAp+5cdS7CnhZVaub\niduYDsmSNWPapnigyP0F7xVVfVZVy1X1IM4v/VFuDx1ANTBURLqp6h5VXeVxvDfQz+25W6iqXzDJ\nSwAAIABJREFU+u2nN2s8zi/wO90ewMr6OXWqmq2qH6rqQVUtBB4CpnvzULdnazJwl/vMNTg9fPVD\nbLuAUpxk8Gac3rJoYJWIrAf+5nEtqvqCqhYD7+IkiYk4w8zLcBKqXwJPAV8BP3ev7QTsBH6IM8S5\nGHgA+DlwwIuP8ZiqblPVA24M/1HV7apap6qvAFnuzw/gx8CfVXW5OrJVNU9VdwALcBJKcJKwIlVd\neZT33a6qJcB/cZLUw9UC4Th/L8JUNVdVc5p6WDNt8T2Py5aq6pvuZzsAPI+TGNcn9JcD/272p2VM\nB2XJmjFtUzGQ4O3cH3FWQt7vDrHtBXLdUwnu14uBs4E8EflcRE5yj/8FyAbmi8gWEbn7GGJNBvKa\nSixFpKeIvOwOte3F6SVK+NYTmtYHKFHVco9jeTg9NgB1wLuqOkpVHwb24yRXY1R1uKqeoqplqvqZ\nqp4rIneIyEZgN07PpeAs1jjZjSlHVe9S1SGqOtt9j1+7x1VV73SfO8JNtHA/97ke8ZWq6j89Xm87\n7OfxPXFWm5aKSClOL2f9zyMZp+etKQ2Jj/v1aEnPTo/vK2hi0YaqZgO34iT2u9126nOE5x2pLfp6\nvN526C28hZMI9sdZnFKmql8eJW5jOiRL1oxpm5biDPNd6OX1V+AMQ52OM8SW6h4XALe35gKcIdI3\ngXnu8XJVvV1VB+AMu/1MRE5rYazbgJQjJJb34QyrjlDVbjiJhmdpi+Z68bYDcSIS7XEsBShoYXyI\nyFSc3rBLge6qGguUecSyDRjYxK3bgAFHeOx+IMrjda8mrmn4fCLSD/g7ztBjvBvDei9iAKfNRorI\ncOBcDh3iPmaq+qKqTsFZQKLAnw6P2+VNWxw+fF6J8/fsSpwhUOtVM+YILFkzpg1S1TKcXp0nRORC\nEYkSkTAROUtEmprbFY2T3BXjJBD31Z8Qkc4iMltEYtz5QntxeqUQkXNFJE1EBCd5qa0/1wJfAjuA\n+0Wki4hEiMhkj7j2AWUi0he487B7d3GEZEhVtwFLgD+6zxyJM6H/WGrLRQM1QCHQSUR+jTMvrN4z\nwO9FJF0cI93J8e8AvUXkVhEJF5FoEZng3rMGOFtE4kSkF04vVXO64CQ0hQAi8kOcnjXPGO4QkRPc\nGNLcBK8+8XkVeBFn9enWY/gZHEJEBonIqeKUOanEGdatb/tdQKq4i02Ooy3+hTNf7nwsWTPmiCxZ\nM6aNUtUHcWqs/RLnF/w2nF6ZN5u4/F84w1IFOIVflx12/iog1x2K/AlQP8yXjjOBfh9Ob94cVf20\nhXHWAucBaThzwfKBWe7p3+LUOCsD/ge8ftjtfwR+6Q4L3tHE4y/H6SXcjrPY4l51a7K10AfA+0Am\nzs+pkkOH7R7C6QWaj5PM/gOIdIf9ZrifbyfOHLNT3Hv+DazFGXKeD7xCM1R1A87E+6U4ydAInDlw\n9ef/A/wfTkJWjtPOcR6PeN69x1dJTzhOYeEinM/WA/iFe+4/7tdiEamf39jitlDVxTgJ4CpVzfNR\n3Ma0O9LyucLGGGOCjYikAJuAXqq6N9DxeEtEPgFeVNVnAh2LMcHKkjVjjGnj3OHIh4BuqvqjQMfj\nLRE5EfgQSD5scYIxxoNVkTbGmDbMrRW3C2f49swAh+M1EXkeZ4HMLZaoGdM861kzxhhjjAlitsDA\nGGOMMSaIWbJmjDHGGBPE2tWctYSEBE1NTQ10GMYYY4wxR7Vy5coiVU082nXtKllLTU1lxYoVgQ7D\nGGOMMeaoRMSr+oI2DGqMMcYYE8QsWTPGGGOMCWKWrBljjDHGBLF2NWetKdXV1eTn51NZWRnoUPwq\nIiKCpKQkwsLCAh2KMcYYY3yo3Sdr+fn5REdHk5qaiogEOhy/UFWKi4vJz8+nf//+gQ7HGGOMMT7U\n7odBKysriY+Pb7eJGoCIEB8f3+57D40xxpiOqN0na0C7TtTqdYTPaIwxxvhTbZ3y2sp87vzP2kCH\ncogOkawFUmlpKXPmzGnxfWeffTalpaV+iMgYY4wxnurqlP99tYOZD3/O7f9Zy4Ydeyk7UB3osBpY\nsuZnR0rWampqmr3v3XffJTY21l9hGWOMMR2eqvLJpl2c+/gibnxxFSLCk7PH8t+bphATGTwL9tr9\nAoNAu/vuu8nJyWH06NGEhYURERFB9+7d2bRpE5mZmVx44YVs27aNyspKbrnlFq699lqgcTeGffv2\ncdZZZzFlyhSWLFlC3759eeutt4iMjAzwJzPGGGPariXZRTwwfzOrtpaSEhfFQ5eO4oLRfQkNCb5p\nRZas+dn999/P+vXrWbNmDZ999hnnnHMO69evb1i1+eyzzxIXF8eBAwc48cQTufjii4mPjz/kGVlZ\nWbz00kv8/e9/59JLL+W1117jyiuvDMTHMcYYY9q0lXl7eHD+ZpbkFNM7JoL7vjOC745LIiw0eAcb\nO1Sy9tv/fs2G7Xt9+syhfbpx73nDvL5+/Pjxh5TXeOyxx3jjjTcA2LZtG1lZWd9K1vr378/o0aMB\nOOGEE8jNzT3+wI0xxpgO5OvtZTw4P5NPNu0mvktnfnXuUGZPSCEiLDTQoR1Vh0rWgkGXLl0avv/s\ns8/46KOPWLp0KVFRUZx88slNlt8IDw9v+D40NJQDBw60SqzGGGNMW5e9u5yHP8zif+t20C2iE3ee\nMYgfTEqlS3jbSYHaTqQ+0JIeMF+Jjo6mvLy8yXNlZWV0796dqKgoNm3axLJly1o5OmOMMaZ92lpc\nwSMfZ/Lm6gIiw0K5+dQ0rp46IKgWDnirQyVrgRAfH8/kyZMZPnw4kZGR9OzZs+HcmWeeyVNPPcWQ\nIUMYNGgQEydODGCkxhhjTNu3o+wAj3+Szbzl2wgNEa6e0p+fTB9IfNfwo98cpERVAx2Dz4wbN05X\nrFhxyLGNGzcyZMiQAEXUujrSZzXGGGM8Fe07yJOf5fDvZXmoKpedmMJNp6bRs1tEoEM7IhFZqarj\njnad9awZY4wxps0qq6jm6YU5PLc4l8rqWi4em8TNp6WTHBcV6NB8xpI1Y4wxxrQ5+w/W8Nzib3h6\nwRb2VtZw7sje3DYjg4GJXQMdms9ZsmaMMcaYNqOyupYXluUx57McSvZXcfqQHvxsxiCG9ukW6ND8\nxpI1Y4wxxgS9qpo65q3YxuOfZLFr70GmpCVw+8wMxqR0D3RofmfJmjHGGGOCVm2d8sbqAh79OJNt\nJQc4oV93Hpk1hpMGxh/95nbCr8maiJwJPAqEAs+o6v2Hnb8A+D1QB9QAt6rqIm/uNcYYY0z7VVen\nvLt+Bw9/mElO4X6G9+3G7344nJMzEhEJvv07/clvyZqIhAJPADOAfGC5iLytqhs8LvsYeFtVVURG\nAvOAwV7e2y517dqVffv2BToMY4wxJiBUlU827ebB+Zls2LGX9B5deXL2WM4c3qvDJWn1/NmzNh7I\nVtUtACLyMnAB0JBwqapnVtIFUG/vNcYYY0z7sji7iAfmb2b11lJS4qJ4eNYozh/Vl9CQjpmk1fNn\nstYX2ObxOh+YcPhFIvId4I9AD+CcltzbFtx9990kJydz4403AvCb3/yGTp068emnn7Jnzx6qq6v5\nwx/+wAUXXBDgSI0xxpjAWJm3hwc+2MzSLcX0jongjxeN4JITkggLDQl0aEEh4AsMVPUN4A0RmYYz\nf+30ltwvItcC1wKkpKT4PsDjNGvWLG699daGZG3evHl88MEH3HzzzXTr1o2ioiImTpzI+eef32G7\nd40xxnRM6wvKeHD+Zj7dXEhC1878+tyhXDEhhYiw0ECHFlT8mawVAMker5PcY01S1QUiMkBEElpy\nr6o+DTwNznZTzUb03t2wc51XwXut1wg468hrH8aMGcPu3bvZvn07hYWFdO/enV69enHbbbexYMEC\nQkJCKCgoYNeuXfTq1cu3sRljjDFBKGtXOQ9/lMm763YSExnGz88cxA8mpRLVOeB9SEHJnz+V5UC6\niPTHSbQuA67wvEBE0oAcd4HBWCAcKAZKj3ZvW/Ld736XV199lZ07dzJr1izmzp1LYWEhK1euJCws\njNTUVCorKwMdpjHGGONXW4sreOSjTN5cU0BkWCg3n5rG1VMHEBMZFujQgprfkjVVrRGRm4APcMpv\nPKuqX4vIT9zzTwEXA98TkWrgADBLnZ3lm7z3uINqpgfMn2bNmsU111xDUVERn3/+OfPmzaNHjx6E\nhYXx6aefkpeXF5C4jDHGmNawo+wAj3+Szbzl2wgNEX48dQDXTRtAfNfwQIfWJvi1v1FV3wXePezY\nUx7f/wn4k7f3tlXDhg2jvLycvn370rt3b2bPns15553HiBEjGDduHIMHDw50iMYYY4zPFe07yJxP\nc3jhizxUlcvHp3DTqWn07BYR6NDaFBscbiXr1jXOlUtISGDp0qVNXmc11owxxrR1ZRXVPL0wh+cW\n51JZXcvFY5O4+bR0kuOiAh1am2TJmjHGGGN8Yt/BGp5b9A1PL9xCeWUN543qw62npzMwsWugQ2vT\nLFkzxhhjzHGprK7l30vzePLzHEr2V3H6kJ7cPjODIb27BTq0dsGSNWOMMcYck6qaOl5ZsY2/fpLF\nrr0HmZqewO0zBzE6OTbQobUrHSJZU9V2X3DWWURrjDHG+F9NbR1vrC7g0Y+zyN9zgHH9uvPoZWOY\nOCA+0KEdnz15kDUfinMCVkGiKe0+WYuIiKC4uJj4+Ph2m7CpKsXFxURE2OoaY4wx/lNXp7y7fgcP\nfZjJlsL9jOgbwx8uHM70jMS2+Tu2thq2LnUStKwPoXCTczxuAJz2a+gcHAsi2n2ylpSURH5+PoWF\nhYEOxa8iIiJISkoKdBjGGGPaIVXl4427efDDTDbu2Et6j648deVYzhjWq+0laeU7ncQsaz5s+QwO\n7oWQMEidDGO/B+kzIT4NguhztftkLSwsjP79+wc6DGNMG/TOV9v58/ubSYmLYmp6AtMyEhncK7rt\n/XIy5hipKouzi3lg/mbWbCulX3wUj8wazXmj+hAa0kb+O6irhYJVkPWBk6DtWOscj+4Dw77jJGcD\npkN4dGDjbIa0p7lO48aN0xUrVgQ6DGNMG3ewppb7/reR55fmMbR3N2rrlM27ygHoER3O1PREpmUk\nMCUtwSqwm3ZrZV4Jf/lgM8u2lNA7JoKbT0vnkhOSCAsNCXRoR1dRAjmfQOYHkP0RHCgBCYHkCZA+\nw0nQeg4PeO+ZiKxU1XFHu67d96wZY0xLbCup4KYXV7E2v4wfT+nPXWcNJiw0hJ1llSzIKmRBZiEf\nb9rFa6vyEYHhfWKYlpHAtPRExvbr3jZ+kRnTjPUFZTw4fzOfbi4koWtn7j1vKJePTyEiLDTQoR2Z\nKuxc5/aefQj5y0HrICreSczSZ8DAUyEqLtCRHhPrWTPGGNdHG3bxs3lrUOAvl4zizOG9mryutk5Z\nX1DGgsxCFmQVsmprKbV1SpfOoZw0MIHpGc6Qab/4Lq37AYw5Dlm7ynnow0zeW7+TmMgwrps+gB9M\nSiWqc5D26xwsd+ac1feele9wjvcZ4yZoM53vQ4I3yfS2Z+2oyZqInAf8T1XrfBWcv1iyZow5FjW1\ndfxl/mb+9vkWhvXpxpzZY1uUaO2trGZpTnFD8rat5AAA/eLduW7piUxKS6BreJD+0jMdWl7xfh75\nKIs31xQQFRbK1VMH8OOp/ekWERbo0A6lCkVZ7srN+ZC3BOqqIbyb02uWPhPSTofonoGO1Gu+TNZe\nAE4CXgOeVdVNvgnR9yxZM8a01M6ySm5+aTVf5pZwxYQUfn3u0OMa7lFVcosrWOgOmS7JKaaiqpZO\nIcLYft2Z5i5UGN4nhpC2MkHbtEvbSw/w+CfZ/GfFNjqFCt8/KZXrpg8krkvnQIfWqPoA5C5qTND2\n5DrHE4dAhtt7ljwBQoMssfSSz5I192HdgMuBHwIKPAe8pKrlxxuoL1myZoxpiUVZRdzy8moOVNdy\n33dGcOGYvj5/j6qaOlbm7WmY7/b19r0AxHXpzJQ0J3Gbmp5Az25WJ9G0jsLyg8z5LJu5X2xFVbl8\nfAo3nZJGj2D5O1hfmDbrQ/hmAdQcgE6RzorN+vlnsSmBjtInfJqsuQ+MB64CbgU2AmnAY6r6+PEE\n6kuWrBljvFFbpzz+SRaPfpxFWmJXnrxyLGk9WmfZftG+gyzKKnKHTIso2ncQgMG9opmWkci09ETG\npXYP7sncpk0qq6jmbwtyeG5xLgdrarnkhCR+emo6yXEBLvx6pMK03VMh/QynB63fFAgLkmTSh3w5\nDHo+To9aGvAv4HlV3S0iUcAGVU31Qbw+YcmaMeZoivcd5NZX1rAwq4iLxvTlD98ZHrAJ1HV1yqad\n5Q29bity91BVW0dEWAgT+sczLSOR6RkJDEzsarXdzDHbd7CGZxd9w98XbqG8sobzRvXhttPTGZDY\nNXBBeRamzfkUqsobC9Omz3SStPiBAS+t4W++TNaeB/6hqguaOHeaqn587GH6liVrxpjmLM8t4acv\nrqakoorfnj+My05MDqokqKKqhmVbilmQWcSCrEK2FO4HoE9MhFvbLZEpaQnERLXN+TmmdVVW1/Lv\npXk8+XkOJfurmDG0Jz+bkcGQ3t1aP5jmCtOmz4CMM6D/tKAuTOsPvkzW+gM7VLXSfR0J9FTVXF8E\n6kuWrBljmqKq/H3hFv70/maSukcyZ/ZYhvWJCXRYR5W/p8JJ3DILWZxTRHllDSECo5JjmZru9LqN\nSoqlk9V2Mx6qaup4ZflWHv8km93lB5mansDtMwcxOjm2dQM5amHaM6DnsHbfe9YcXyZrK4BJqlrl\nvu4MLFbVE30SqQ9ZsmaMOVxZRTV3vLqWDzfs4qzhvfjTJSODrySBF2pq61ibX8rnbvL2VX4pdQrd\nIjoxOS2hYVeFpO7BsfG0aX01tXW8vrqARz/KoqD0ACemdueOmYOYMCC+dQJorjBt2ow2X5jWH3yZ\nrK1R1dGHHVurqqOOM0afs2TNGONpXX4ZN7y4kh2lldxz9hB+ODk1qIY9j0dpRRWLsxtru+0oqwRg\nQGIXpqUnMj0jkQkD4oK3oKnxmbo65X/rdvDwR5lsKdzPiL4x3D4zg+kZif7/+94OCtMGki+3myoU\nkfNV9W33wRcARccboDHG+Iuq8sIXW/n9fzeQ0LUz835yEmNTugc6LJ+KjerMOSN7c87I3qgq2bv3\nscBdZfry8q38c0kunUNDGJfavWGV6ZDetgl9e6KqfLRxNw/O38ymneVk9OzKU1eewBnDevqvnQ8p\nTPsB5C39dmHa9BnQtYd/3r+D8qZnbSAwF+gDCLAN+J6qZvs/vJaxnjVjzL6DNdzz+jreXrudkwcl\n8vClo+keTEU+W0FldS3Lc0tY6CZvm3Y6JTETo8OZ6tZ2m5KeQIJtQt8mqSqLs4t5YP5m1mwrpV98\nFLednsF5o/oQ6o9Cy+28MG0g+aPOWlcAVd13nLH5jSVrxnRsm3eWc/3cleQW7ef2mYO4fvpA2yUA\n2LW3sqGu26KsQvZUVAMwvG83pqUnMjU9kRP6dadzJ1uoEOxW5Jbwlw8288U3JfSJieDm09K5+IQk\nwny9yKSpwrRhUdB/urs4oP0Upg0kX+9gcA4wDGioSKeqvzuuCP3AkjVjOq5XV+bzyzfX0TU8jMcu\nH82kgQmBDiko1dYpX293N6HPLGLV1j3UNGxCH+/uqJBIanyUDZkGkXX5ZTz44WY+21xIQtdwbjpl\nIJdPSCG8k4/mgh2xMG1/p6xG+ox2W5g2kHy5wOApIAo4BXgGuAT4UlWv9kWgvmTJmjEdT2V1Lfe+\n9TWvrNjGxAFxPHb5GHpE2y8Ub5VXVrMkp9jdy7SIrSUVACTHRTLNre02aWA80W1wBW17kLmrnIfm\nZ/L+1zuJiQzjJ9MH8v1J/XyzcKTZwrRnOMObHaAwbSD5Mln7SlVHenztCrynqlN9FayvWLJmTMfy\nTdF+rn9hJZt2lnPjKQO57fQMqzl2nHKL9rs7KhSxNKeI/VW1hIYIY1NiG5K34X1j/DM3yjTILdrP\nox9n8eaaArp07sTVU/pz9dT+x1d2prnCtPVzz/pPh/AA7mzQwfgyWftSVceLyDLgIqAY+FpV03wT\nqu9YsmZMx/Huuh38/NWv6BQqPDxrNKcMstVnvlZVU8eqrXsayoOsL3A2oe8eFcZkd6HCtPREesVY\nT6avbC89wOOfZDFvRT5hocL3T0rluukDiTvWRTLNFqZ1E7QOXpg2kHxZuuO/IhIL/AVYBSjw9+OM\nzxhjjklVTR33vbuRfy7JZUxKLH+9Yix9YyMDHVa71LlTCBMHxDNxQDw/P3MwRfsOsji7iM8zC1mY\nVcQ7Xzk1tQb1jGZahlOYd3z/ONuE/hgUlh9kzmfZzF22FUW5ckIKN56SRo9uLUyEmytMmz7T6UEb\neCpEtq9SNu1dsz1rIhICTFTVJe7rcCBCVctaKb4WsZ41Y9q3/D0V3PjiatZuK+VHk/tz91mDbQVj\ngKgqG3eUO3PdsgpZ/o2zCX14pxAmDIhnWrrT85bewzahb05pRRV/W7CFfy7Opaq2jkvGJvHT09Ja\nthPFUQvTnuEWprX/VoKNL4dBV6vqGJ9F5keWrBnTfn2yaRe3vbKWujrlz5eM5KwRvQMdkvFQUVXD\nF1tK3PluheS4m9D3jolgqpu4TR6Y0OFq3h1JeWU1zy7K5ZmFW9hXVcN5I/tw6+npDEj0Yr6YFaZt\nN3yZrD0ALAVeV2+LsgWIJWvGtD81tXU89GEmcz7LYWjvbsyZPZbUhC6BDsscRf6eioaivIuynU3o\nRWBkUizT3eRtdHLH24S+srqWfy3N5cnPcthTUc2MoT25fWYGg3t1a/5Gz8K0mR9AaZ5zvMdQt+6Z\nFaZti3yZrJUDXYAaoBJnFwNV1aP8zWp9lqwZ077s3lvJT19azRfflHD5+GTuPW+YzYdqg5xN6Msa\nFiqs3eZsQh8d3olJafENCxWS49rvJvRVNXW8vHwrf/0km93lB5mansAdMwcxKjn2yDdZYdp2z+c7\nGLQFlqwZ034syS7i5pdXs/9gLf/3neFcNDYp0CEZHymtqGJJjrsJfWYh2+s3oU/o0jBkOnFAPF3C\n2/4m9DW1dby+uoBHP8qioPQAJ6Z2546Zg5gwIP7bF1th2g7Hlz1r05o6rqoLjjE2v7FkzZi2r65O\neeLTbB7+KJMBiV2ZM3ssGT2jAx2W8RNVJadwH59nFrEwq5BlW4qprK4jLFQY1y/O3VEhgaG9u7Wp\nrcPq6pR31u3gkQ8z2VK0n5FJMdw+cxDT0hMOXXDRVGHa0M7Qb3JjaY2EoKuUZXzEl8nafz1eRgDj\ngZWqeurxheh7lqwZ07aV7K/i1lfWsCCzkAtG9+G+74xoF70rxnuV1bWsyN3TsFChfhP6hK7hbq9b\nAlPSEkmMDs5N6FWVDzfs4qEPM9m0s5xBPaP52cwMZg7t6SRpdbVQsLJxU/T6wrTd+jbOPbPCtB2G\n34ZBRSQZeERVL/bi2jOBR4FQ4BlVvf+w87OBu3DmwZUD16vqWvdcrnusFqjx5sNYsmZM27Uyr4Sb\nXlxN8b4q7j1/KFeMT7GSD4bdeytZ4LFQoWR/FQBDe3dz5rplJDCuX1zAS7ioKouyi3hgfiZrt5WS\nGh/FbTMyOHdkH0Ir90D2x05y1lCYNtQtTDvDCtN2YP5M1gRnB4OhR7kuFMgEZgD5wHLgclXd4HHN\nJGCjqu4RkbOA36jqBPdcLjBOVYu8jc2SNWPaHlXlH4u+4f73NtEnNpI5s8cyvG9MoMMyQaiuTlm/\nvYyFWU5h3lV5zib0UZ1DOWlAfMN8t/4JXVo10V+eW8JfPtjMl9+U0CcmgltOS+OivqWE5cw/rDBt\nQuPCACtMa/DhDgYi8jjOrgUAIcBonJ0MjmY8kK2qW9znvAxcADQka/XFdl3LAJtBbEwHUnagmp+/\nupYPvt7FGcN68udLRhETaaUHTNNCQoSRSbGMTIrlxlPSKK+sZmlOsVMiJKuQjzftBiCpe6S7wjSB\nSWkJx7efZjPW5ZfxwPzNfJ5ZSEqXOp6dsJvpsorQhR8fWph22s+d3jMrTGuOkTeTQTy7qmqAl1R1\nsRf39QW2ebzOByY0c/3VwHserxX4SERqgb+p6tNN3SQi1wLXAqSk2BJmY9qK9QVl3DB3FdtLD/DL\nc4Zw9ZT+NuxpWiQ6IoyZw3oxc1gvAPKK97Mgs5DPM4t4a3UBL36xldAQYUxybMNChZFJsce9CX3m\nrnIe+mAzWRtXcVbEOv6v10b67l2DrK2G8BgYeIqzejPtdCtMa3zCmwUGXYBKVa11X4cC4apacZT7\nLgHOVNUfu6+vAiao6k1NXHsKMAeYoqrF7rG+qlogIj2AD4GfHm0Fqg2DGhP8VJUXv9zKb/+7gfgu\nnfnrFWM4oV9coMMy7Ux1bR2r8uoXKhSxrsDZJTHW3YR+enoiUzMS6B3j/b6yeTuLeP+dV4nM+4hT\nQtaSLE5PXmNh2jMgebwVpjVe8+VG7h8DpwP73NeRwHxg0lHuKwCSPV4nuccOD3Qk8AxwVn2iBqCq\nBe7X3SLyBs6watCVCzHGeG//wRr+3xvreHPNdqZlJPLIrNHE2fZDxg/CQp09SicMiOfOM6B430EW\nZRexINMZMv2fuwl9eo+u7kKFRCY0tQn9njxKv/ofO1e8RerelVwn1VSFRTgrNgef4QxvxiY3EYEx\nvuNNshahqvWJGqq6T0S8KTO9HEgXkf44SdplwBWeF4hICvA6cJWqZnoc7wKEqGq5+/1M4HdevKcx\nJkhl7Srn+rmr2FK4j9tnZHDjKWltqm6Wadviu4Zzwei+XDC6L6rKpp3lLMgsZGFWEf9emseri9aR\n3mkXp/UoZ3y3UtI77SKqZCOdSjKJBcq0J2t6XMjgqZcQO+RkK0xrWpU3ydp+ERmrqqsAROQE4MDR\nblLVGhG5CfgAp3THs6r6tYj8xD3/FPBrIB6Y485VqS/R0RN4wz3WCXhRVd9v8aczxgSg1tjmAAAg\nAElEQVSFN1bnc8/r6+kSHsoLV09gUlpCoEMyHVHlXijJQYpzGFKyhSHF2VynOWi3HOTAHueaEqgt\nFgo0gRXal8V6FeFDzuKKs09hYvf2ux2WCW7ezFk7EXgZ2I5TD60XMEtVV/o/vJaxOWvGBJfK6lp+\n+98NvPTlVsb3j+Ovl4+hRzfrkTB+VLUfSrZAcQ6U5EDxFijOdr7fX3jotd2SIH4AxA2E+IEQnwZx\nAymQHizcspfc4gpmnZhM/4Qugfkspt3z2Zw1VV0uIoOBQe6hzapafbwBGmPat9yi/dwwdxUbduzl\n+pMHcvuMDDqFWtkC4wPVlbDnG4+ELMdN0LIbS2bU69rLScQyznS+xtUnZf0hrOnFBX2ByxKa2WDd\nmFbmTZ21G4G5qrrefd1dRC5X1Tl+j84Y0ya9v34Hd/7nK0JChGd/MI5TB/cMdEimrampgtK8wxIy\nt6esbBuN5T9xis3GD4QBpxzaUxY3AMJtX1nT9nkzZ+0aVX2i/oW728A1OKU2jDGmQVVNHfe/t4ln\nF3/DqORYnrhiDEk2z8ccSW2Nk3h9KyHLgdKt4FSMckTEOD1iKRMhfrabkLmJWaT1gpn2zZtkLVRE\nRN3JbW6dNVtrb4w5REHpAW56cRWrt5byg0mp3HP2kIDv12iCQF0d7C1onDdWvKUxIduTC3Ues2o6\nd3V6xPqMgRGXePSQDYSoONs703RY3iRr7wOviMjf3NfXuceMMQaATzfv5rZX1lBTqzxxxVjOGdk7\n0CGZ1qQK5TvdJCzbYw5ZjjO3rKay8dpOkU4C1mMIDDn30ISsaw9LyIxpgjfJ2l04Cdr17usPcYrY\nGmM6uJraOh75KIu/fprN4F7RzJk9lgGJXQMdlvEHVdhf1NgrdkhP2Rao3t94bWhn6N7fGbZMP/3Q\nhCy6t+2PaUwLebMatA540v1jjDEA7C6v5OaXVrNsSwmzxiXz2wuGfbv6u2l7KkoOK33h0VN2cG/j\ndSGdILafk4T1n+pM5q9PyGKSIMT+LhjjK96sBk0H/ggMBRoKJKnqAD/GZYwJYktzirn55dWUV1bz\nwHdHcckJSYEOybSEWxz2kOHK+p6y+uKwABICMclOEpZ0otNTVr/KMjbF9sA0ppV4Mwz6HHAv8DBw\nCvBDwPqwjemA6uqUJz/P4cH5m0lN6MILV09gUC8rjRCUmioOW99TdqTisEMv9EjIBkL3ftApPDDx\nG2MaeJOsRarqx+6K0DzgNyKyEmerKGNMB7FnfxW3zVvDZ5sLOW9UH/540Qi6hnvzT4jxmyMWh82B\n8u2HXnt4cVi3Wn9zxWGNMcHBm39pD4pICJDl7vVZANgMYmM6kFVb93DT3FUU7avi9xcO58oJKYit\n2msdx1Qc9mSP4rBpbnFY+2fbmLbKm2TtFiAKuBn4Pc5Q6Pf9GZQxJjioKs8tzuW+dzfSKyaCV68/\niZFJVoDU51pUHDbWScgOKQ7rziOz4rDGtEte7Q3qfrsPZ76aMaYD2FtZzV2vfsV763cyY2hPHrhk\nFDFRNqH8mNUXh21YYdlccdhop2fs8OKw8WlOcVhjTIdiE06MMd/y9fYybpy7im17DnDP2YO5ZuoA\nG/b0xiHFYetXWFpxWGPM8bFkzRjTQFV5efk27n37a+KiOvPKtRMZl2o9OYc4vDjsIT1lTRSHjXPn\njllxWGPMMbJkzRgDQEVVDb98Yz2vry5ganoCj8waTXzXDl62oXQrbP0CirMO7SlrsjhsmhWHNcb4\nhTdFcROBa4BUz+tV9Uf+C8sY05qyd5dz/QuryC7cx22nZ3DTqWmEhnTAYbg9eZC7CPIWQ+5CJ1mD\nQ4vDJo8/dFJ/bD8Itf/vNcb4jzf/wrwFLAQ+AmqPcq0xpo15a00Bv3h9HZFhofz7RxOYkp4Q6JBa\nh6pTEiN3kftnMZS5yVlkHKROhpNugn6TICHDisMaYwLGm2QtSlXv8nskxphWVVldy+/f2cDcL7Zy\nYmp3Hr98LL1iIo5+Y1ul6qy6rE/O8ha7dcqAqHjoNxkm/RRSp0DiYJtPZowJGt4ka++IyNmq+q7f\nozHGtIqtxRXc8OJK1hfs5brpA7hz5iA6hbaz5ETVWYHZ0HO2yCmdAU7x2NTJMPkWJzlLGGTJmTEm\naHlbFPceEakC6gsBqap2819Yxhh/+eDrndzxn7UI8PfvjWPG0J6BDsk3VJ3J/57JWf2WS10SnaSs\n32RInQqJg6w0hjGmzfCmKK7t0mxMO1BdW8ef3tvEM4u+YWRSDE9cMZbkuKhAh3XsVJ0VmrkL3QUB\ni6B8h3OuSw8nOav/k5BhyZkxps3yagmTiJwPTHNffqaq7/gvJGOMr20vPcBNL65i1dZSvndSP/7f\nOUMI79TGSkqoOqUzchc6iwFyF8G+nc65rj09krOpThkNS86MMe2EN6U77gdOBOa6h24Rkcmq+gu/\nRmaM8YnPMwu59eXVVNXU8fjlYzhvVJ9Ah+QdVSjKcpMzd0HAvl3Oua69DkvOBlpyZoxpt7zpWTsb\nGK2qdQAi8jywGrBkzZggVlunPPpRJo9/ms2gntE8MXssAxO7BjqsI1OFoszG5Cx3Mezf7ZyL7g39\npzUmZ3EDLDkzxnQY3lZyjAVK3O9j/BSLMcZHCssPcsvLq1mSU8x3T0jidxcMJ7JzkA17qkLhpkNL\naewvdM5F94GBp7gLAqZYcmaM6dC8Sdb+CKwWkU8BwZm7drdfozLGHLMvthTz05dWU3agmj9fMpJL\nxyUHOiRHXZ2TnNXvDpC7GCqKnHPd+sLA09yes8nQvb8lZ8YY4/JmNehLIvIZzrw1gLtUdadfozLG\ntFhdnfK3BVt4YP5m+sVF8fyPxjOkdwAr7NTVQeHGQ3vOKoqdczHJkD6jsZxG91RLzowx5giOmKyJ\nyGBV3SQiY91D+e7XPiLSR1VX+T88Y4w3SiuquH3eWj7etJtzRvbm/otGEB0R1rpB1NXB7g1ucrYQ\n8pbAAXf2REwKpJ/RuCige7/Wjc0YY9qw5nrWfgZcCzzYxDkFTvVLRMaYFlmzrZQb565id3klvz1/\nGN87qR/SGr1UdXWw++tDe84O7HHOxfaDQWd59JxZcmaMMcfqiMmaql7rfnuWqlZ6nhORdryBoDFt\ng6ry/JJc/u/djfSIjuDVn0xiVHKs/96wrg52rT80Oassdc51T4XB50A/d85ZbIr/4jDGmA7GmwUG\nS4CxXhwzxrSS8spq7n5tHf9bt4PTBvfgwUtHERvV2bdvUlcLO9c17g6Qtxgqy5xz3fvDkPMae85i\ng2QRgzHGtEPNzVnrBfQFIkVkDM5KUIBuQBveo8aYtm3D9r3c+OIqtpZUcPdZg7l26gBCQnww7FlX\nCzu/aqxxlrcEDrrJWdwAGHqBU+Os32SI6Xv872eMMcYrzfWsnQH8AEgCHvI4Xg7c48eYjDFHMG/5\nNn711npiIsN48ccTmDAg/tgfVlvjkZwtgq1L4eBe51zcQBh2oZOcpU6Gbm1k1wNjjGmHmpuz9jzw\nvIhcrKqvtWJMxpjDHKiq5VdvrefVlflMTovn0cvGkNA1vGUPqa2BnWs9krNljclZfDoMv6ix56xb\nb99/CGOMMcfEmzprr4nIOcAwIMLj+O+Odq+InAk8CoQCz6jq/Yednw3chTPEWg5cr6prvbnXmI4i\ne/c+bpy7iszd5dx8Wjq3nJZOqDfDnrU1sGNt4/ZNW5dBVblzLiEDhl/cWEojupd/P4Qxxphj5s1G\n7k/hzFE7BXgGuAT40ov7QoEngBk4NdqWi8jbqrrB47JvgOmqukdEzgKeBiZ4ea8x7d7ba7fzi9e+\nIjwslOd/OJ5pGYlHvri2GravgTyPnrOqfc65hEEw8lJnSLPfFIju2TofwBhjzHHzZjXoJFUdKSJf\nqepvReRB4D0v7hsPZKvqFgAReRm4AGhIuFR1icf1y3Dmx3l1rzHt2cGaWv7wzkb+vSyPcf268/gV\nY+gdE3noRbXVsH1149ZNW5dB9X7nXOJgGHVZ42rNrj1a/0MYY4zxCW+StQPu1woR6QMUA95MaOkL\nbPN4nQ9MaOb6q2lMAr2+V0SuxSneS0qK1XYybd+2kgpumLuKdQVlXDttAHeeMYiw0BCoqWpMzvIW\nw9YvPJKzITD6Co/krJkeOGOMMW2KN8naOyISC/wFWIWze8EzvgxCRE7BSdamtPReVX0aZ/iUcePG\nqS/jMqa1fbhhF7fPW4MCf589ghkx22Hxg07P2bYvoLrCubDHUBgzuzE565IQ0LiNMcb4jzcLDH7v\nfvuaiLwDRKhqmRfPLgA8K2UmuccOISIjcZK/s1S1uCX3GtNeVNfW8fB76/hy8UfcGfsN343PJeKt\nFVDjdmz3HA5jrvJIzo6jZIcxxpg2xZsFBjcCc1W1VFUPikiUiNygqnOOcutyIF1E+uMkWpcBVxz2\n7BTgdeAqVc1syb3GtHk1ByF/BeWbPyd35fvcfHADEeHVzsSD6hFwwg/cBQGTISou0NEaY4wJEG+G\nQa9R1SfqX7grN68Bmk3WVLVGRG4CPsApv/Gsqn4tIj9xzz8F/BqIB+a4G0/XqOq4I917DJ/PmOBR\nXQkFK5whzdyFkL8cairpgtBJ+1GQdjkDx50B/SZZcmaMMaaBqDY/zUtE1gEj1b3QLavxlaoOa4X4\nWmTcuHG6YsWKQIdhjKO60knI6vfV3PYl1B4EBO01glUhw3kqrzfF8Sfw5yunk9aja6AjNsYY04pE\nZKWqjjvadd70rL0PvCIif3NfX+ceM8Z4qj7QmJzlLna+rz0IEgK9RsD4ayB1CsXxY7nlzVwWZRdx\n0di+PHrhcKI6e/OfojHGmI7Im98Qd+EkaNe7rz/Ex6tBjWmTqio8krNFzhBnbZWTnPUe5SZnUyFl\nIkTGArA8t4Sbnl5FaUU1f7p4BJeOS8adAmCMMcY0yZvVoHXAk+4fYzquqgrI/7IxOctfAXXVbnI2\nGib8xFmtmTIRImIOuVVVeXrBFv78wWaSu0fy3A3jGdqnW4A+iDHGmLbkiMmaiMxT1UvdOWvfmtim\nqiP9GpkxwWLL57DwQchb4iZnodBnNJx0g7N1U8pEiDhy4lVWUc3t/1nDRxt3c/aIXvzp4pFER4S1\n4gcwxhjTljXXs3ar+/Xc1gjEmKCTtwQ+vc9ZuRndx0nOUqdC8oRmkzNPX+WXcsPcVezaW8m95w3l\nB5NSbdjTGGNMizSXrL0DjAX+oKpXtVI8xgRe/gr45A+w5VPo0gPO/JNT8ywswutHqCovLMvj9+9s\nJDE6nHnXncSYlO7+i9kYY0y71Vyy1llErgAmichFh59U1df9F5YxAbB9jdOTlvUBRMXDjN/DiT+G\nzlEtesy+gzX84vV1/Hftdk4ZlMhDl46me5fOfgraGGNMe9dcsvYTYDYQC5x32DnF2XnAmLZv19dO\nkrbpHYiIhVN/BROug/DoFj9q08693PDCKnKL93PnGYO4fvpAQkJs2NMYY8yxO2KypqqLgEUiskJV\n/9GKMRnTOgoz4bM/wtdvOInZ9LudeWmHreT01n9WbONXb60nOiKMF6+ZyMQBtn+nMcaY49fcatBT\nVfUTYI8Ng5p2pTgHPv8zrJsHnSJhym0w6afHvMXTgapa7n17PfNW5DNpYDyPXjaGxOhwHwdtjDGm\no2puGHQ68AnfHgIFGwY1bVHpVidJW/MihIbBxBucRK1LwjE/ckvhPm6Yu4pNO8v56alp3Hp6BqE2\n7GmMMcaHmhsGvdf9+sPWC8cYP9i7HRY8AKv+BSLOooGpP4PoXsf12He+2s5dr35F504h/POHJ3Ly\noB4+CtgYY4xpdNQdDETkFuA5oBz4O045j7tVdb6fYzPm+JTvgkUPw4pnQWthzFUw7Q6ISTquxx6s\nqeW+/23k+aV5jE2J5a9XjKVPbKSPgjbGGGMO5c3eoD9S1UdF5AwgHrgK+DdgyZoJTvuLYPGj8OXf\nnb06R18O034O3fsd96O3lVRw04urWJtfxtVT+nP3WYMJCw3xQdDGGGNM07xJ1uon4JwN/EtVvxYr\nwW6C0YE9sORx+OJvULUfRl4K0++C+IE+efzHG3fxs3lrqatTnrryBM4cfnzDqMYYY4w3vEnWVorI\nfKA/8AsRiQbq/BuWMS1QWQbLnoSlT8DBvTDsO3DyLyBx0HE/urZO+Sq/lDdXF/D80jyG9enGnNlj\n6RffxQeBG2OMMUfnTbJ2NTAa2KKqFSISB9iiAxN4B/fBl3+DxY9BZSkMPtdJ0noNP67H7ig7wILM\nQhZkFrEou4iyA9WIwOwJKfzq3KFEhIX66AMYY4wxR+dNsnYSsEZV94vIlTgLDB71b1jGNKOqAlb8\nAxY9AhVFkD4TTrkH+ow5psdVVteybEsxC7OKWJBZSNbufQD07BbOjKE9mZaRyJS0BOJsyyhjjDEB\n4E2y9iQwSkRGAbcDzwD/wqnDZkzrqTkIK/8JCx+EfbtgwMlwyv+D5PEteoyqkrlrn9N7llXIF9+U\nUFVTR+dOIUzoH8el45KZlpFIRs+u2PRMY4wxgeZNslajqioiFwB/VdV/iMjV/g7MmAY1VbDmBadW\n2t4C6DcZLnkOUid7/Yg9+6tYmO30nC3MKmTX3oMApPfoylUT+zEtI5HxqXFEdrYhTmOMMcHFm2St\nXER+AVwJTBORECDMv2EZA9TWwFcvw+d/cnYfSDoRLnjC6VE7So9XdW0dq7eWNiRnXxWUoQoxkWFM\nSU9gWnoCU9MTrT6aMcaYoOdNsjYLuAK4WlV3ikgK8Bf/hmU6tLpaWP8afHY/lORA79FwzkOQdnqz\nSdrW4go+zypkYWYhS3P+f3t3Hl5lYeVx/HsSwr4Ecq8IhLAmouCGQZElgG2tVq2tTpWutqN1bMep\nOp3aaueZmc7j0rFTy2jr41a3adWn7VintastkbCJLEIRxCQgq2AWtiCQ7Z754760mTQhN8hd8t7f\n53nuw3vf982953gQDu926mlobCE3xzh3dD63fqCEspIIZxXmaxyUiIj0KF02a+6+B7i/zfvtxK9Z\nEzm5YjF483+h/F6oewuGT4H5z8JpH+mwSTvU2MKrm+upqKqlorKWrfWHARiV34/Lzx7JnJIIF06I\nMKSfDgSLiEjPlci4qenAg8DpQG8gFzjk7kOSHJtkC3fY9Ct45V549w2InAafeApOvxJy/jIdIBZz\nNu4+yKLKeHO2Zvs+mludfnm5XDihgM/PGEtZSZRxkQG6MUBEREIjkdOg3wfmAz8FSoHPASXJDEqy\nhDtUvQzld8PutTBsPFz1GEy5GnLiF/rXNBxlcWUdFVW1LKmqo/69JgDOGDGY62eNp6wkwnljhtKn\nl24MEBGRcEqkWcPdq80s191bgSfN7HXgjuSGJqHlDltegfJ7YOdrkF8Uv3HgrPk0urFqyz4qKmtZ\nVFnLpj0NAEQG9qasJMrs4giziiOcMqhvenMQERFJkUSatcNm1htYa2b3AbsBTa6WE7N1afxI2ral\nMHgUftn32Fz4MSo2H2DxM2t4dctejjS3kpdrnDdmKLdfchplxVHOGDGYHN0YICIiWSiRZu2zxK9T\nuxm4DRgNXJ3MoCSEdqyE8rtgyyvEBpzCprO/yXOt81j4xwZ27V8OwLjIAK4pLaSsJMr08QUM6JPQ\ngV8REZFQS+Ru0G3B4hHgW8kNR0Lnndfxhfdg1b/ncK98fjLwBu6rn8nhFX0Y1GcvMyYW8OV5Eygr\njjJ6WP90RysiIpJxOm3WzGw94J1td/ezkhKRhEJN1Wqa/nAXhe8u5CADeKT5Wp5u/DATh57KDfMi\nzC6Jcs7ofPJydUZdRETkeI53ZO3ylEUhPd6RplZefbuejetWMrnyIea2LOGg9+OxXteyo+Q6pk0a\nx5KJEYZqGLqIiEi3HK9ZywOGu/vStivNbCawJ6lRScZzdzbtaWBxVS0VlXXs2bqRL9vPuClnKc05\nfVg79noGzruVG4pG65lnIiIi78PxmrUFdPx4joPBtiuSEpFkrPpDjSyprqOiso7FVbXUNDRSaLX8\n88BfcnGvcjw3D592M31n38o5AyLpDldERCQUjtesDXf39e1Xuvt6MxubtIgkYzS3xlizbV8wzqmO\nN96JD0PP75/H5WOcz8deZMKOF7BYLlxwI8y6DQYNT3fYIiIioXK8Zi3/ONv6JfLhZnYJ8F/EH/3x\nuLt/u932ScCTwFTgm+7+n222bQUagFagxd1LE/lOeX+21b9HRWUtFVV1LN9cz6FgGPrUonxu+2AJ\nFxXGOGPz4+Ssfir+cNup18Hsr8KQUekOXUREJJSO16ytMrMvuvtjbVea2Q3A6q4+2MxygR8AHwJ2\nAivN7BfuvrHNbnuBrwAf6+Rj5rl7XVffJSfuUGMLy6rrWFwVH+m0LRiGXji0Hx89ZyRlxVFmTCxg\ncOsBWPI9+OkPobUJzvkUlH0Nho5JcwYiIiLhdrxm7Vbg52b2af7SnJUSH+b+8QQ++3yg2t23AJjZ\n88CVwJ+bNXevAWrM7LITiF1OQCzmbHjnIBVV8XFOa7btoyXm9O+dy4XjC/jbmeMoK4kytqB//MaA\nw3thyT2w4hFoOQJnXgNzboeCCelORUREJCt02qy5+7vADDObB0wJVv/K3Rcm+NmjgB1t3u8ELuhG\nbA78wcxagUfc/dFu/Ky0UXPwKBVVdVRU1rKkuo69wTD0ySMH88Wy8ZQVRzlvzFB692rzzLOjB2D5\nQ/DqQ9B4ECZfBXPvgGhJmrIQERHJTolMMCgHylMQS3uz3H2XmZ0CvGxmm9y9ov1OZnYjcCNAUVFR\nqmPMSEebW1m19diNAW2HofdhbkmUspIoMydGiA7q89c/3HgIVjwMyx6Eo/th0uUw704YPjnFWYiI\niAgkNhv0RO0iPkf0mMJgXULcfVfwa42Z/Zz4adW/ataCI26PApSWlnY6cSHM3J3NtYdYVBk/erbi\n7XqONsfonZtD6dihfOPSScwujnD6qccZht50GFY+DksXwOF6KP5wvEkbeU5qkxEREZH/J5nN2kqg\n2MzGEW/S5gOfSuQHzWwAkOPuDcHyxcC/Jy3SHujA4WaWVNcFD6Wt5Z0DRwEYHxnA/GlFlJVEmD6+\ngP69uyhx81FY/RQsuR8OvQsTLoK5d8LoaclPQkRERLqUtGbN3VvM7Gbgd8Qf3fGEu28ws5uC7Q+b\n2anAKmAwEDOzW4EzgAjxmxuOxfisu/82WbH2BC2tMdbtPBA8VqOWdTv2E3MY1LcXMydEuPmiKLOL\nI4kPQ29pgtf/GxZ/Fw7ugjGz4BNPwZgZSc1DREREusfcw3PmsLS01FetWpXuME6aXfuPxJuzylqW\nVtdx8GgLOQZnFeZTVhJlTkmEswvz6dWdYeitLbDuOai4D/Zvh9EXwLxvwrgy0FgoERGRlDGz1Yk8\nRzaZp0Glmw43tbBiy14WVdayuKqWzbXvATBiSF8unTKC2SURZk2MkN//BIahx1ph/c9g0bdh7xYY\neS5c9j2Y+AE1aSIiIhlMzVoauTtv7m6goirenK18ex9NrTH69Mph+vgCPnl+EXNKokw8ZeCJD0OP\nxWDji/DKvVBXCcPPhPnPwWmXqkkTERHpAdSspVjdoUaWVtcFR8/qqG1oBOC04YO4bsYYykqiTBs7\njL55ue/vi9xh00tQfi/UbIDoJPjE03D6RyGnG6dNRUREJK3UrCVZU0uMNdv3/fnGgDd2HQRgaP88\nZhVHKSuOUFYSZfjgvifnC92h6vdQfjfsXgfDJsBVj8OUqyDnfTaAIiIiknJq1pJga917f34g7fLN\n9bzX1EqvHGNq0VD+6eISZhdHmTJqCLmdPfPsRLjDlnIovwd2roT8MXDlQ3DWtZCrMouIiPRU+lv8\nJGg42syyzfVUBKc2t++ND0MfPawfHzt3FGUlUWZMKGBQ37zkBLB1CSy8G7Yvg8GFcPkCOPczkJuk\n7xMREZGUUbN2AmIxZ/2uA8EDaetYsz0+DH1A71wunFDADbPHUVYcZWxkQHID2fEaLLwL3l4EA0+F\nS78D510HvToYIyUiIiI9kpq1bnhhzU7K36plSVUt+w43AzBl1GBuLBtPWUmUqUXthqEny6418dOd\n1S9D/whcfDdMux7y+iX/u0VERCSl1Kx1w9PLt/HO/iPMm3QKc4Jh6JGBKTyKtWd9/O7Ot34F/YbC\nB/8Npn0R+gxMXQwiIiKSUmrWuuGJ60oZNqD3iT/z7ETVbIo/J23ji9BnSHziwAU3Qd/BqY1DRERE\nUk7NWjcUpPIoGkBdNSz6D1j/U+g9AMq+Bhf+ffyomoiIiGQFNWuZaN9WWHQfrHsecnvDzK/AjFtg\nQEG6IxMREZEUU7OWSQ7shIrvwOs/AsuFC/4OZt0GA09Jd2QiIiKSJmrWMkHDHlj8XVj9VPzhtud9\nHmZ/FQaPTHdkIiIikmZq1tLpUC0sXQArH4fWZjj30/Hr0vKL0h2ZiIiIZAg1a+lweC8sewBWPAot\nR+IjoebcDsPGpzsyERERyTBq1lLpyH549SFY/hA0HYIpV8Ocr0O0JN2RiYiISIZSs5YKjQ2w4mFY\n9iAcPQCnXwFz74ThZ6Q7MhEREclwataSqekwrHwMliyAI3uh5FKYdweMODvdkYmIiEgPoWYtGZqP\nwuonYfH98F4NTPhAfOpA4XnpjkxERER6GDVrJ1NLE7z+DFR8FxregbGz4ZpnYMyF6Y5MREREeig1\naydDazOsfTb+QNsDO2D0dLjqERhXlu7IREREpIdTs/Z+xFrhTz+Jz+/c9zaMnApXLIif9kz1sHcR\nEREJJTVrJyIWgw0vwCvfhvoqOPVM+OTzUHKJmjQRERE5qdSsdYc7vPlLeOVeqNkI0dPj16RNugJy\nctIdnYiIiISQmrVExWLw5CWwYwUUTISrfwiTPw45uemOTEREREJMzVqicnJg0mXxIetnXgO5+k8n\nIiIiyaeOoztm3pLuCERERCTL6EIrERERkQymZk1EREQkg6lZExEREclgatZERHVbCpAAAAXQSURB\nVEREMpiaNREREZEMpmZNREREJIOpWRMRERHJYObu6Y7hpDGzWmBbkr8mAtQl+TsyVTbnDtmdfzbn\nDtmdv3LPXtmcf6pyH+Pu0a52ClWzlgpmtsrdS9MdRzpkc+6Q3flnc+6Q3fkr9+zMHbI7/0zLXadB\nRURERDKYmjURERGRDKZmrfseTXcAaZTNuUN255/NuUN256/cs1c2559RueuaNREREZEMpiNrIiIi\nIhlMzVonzOwSM3vLzKrN7BsdbDczeyDY/iczm5qOOJMhgdznmtkBM1sbvP4lHXEmg5k9YWY1ZvZG\nJ9vDXPeucg9z3UebWbmZbTSzDWZ2Swf7hLn2ieQfyvqbWV8ze83M1gW5f6uDfcJc+0TyD2XtjzGz\nXDN73cxe6mBbZtTe3fVq9wJygc3AeKA3sA44o90+HwF+AxgwHViR7rhTmPtc4KV0x5qk/MuAqcAb\nnWwPZd0TzD3MdR8BTA2WBwGV2fL/fDfyD2X9g3oODJbzgBXA9CyqfSL5h7L2bfL7R+DZjnLMlNrr\nyFrHzgeq3X2LuzcBzwNXttvnSuAZj3sVyDezEakONAkSyT203L0C2HucXcJa90RyDy133+3ua4Ll\nBuBNYFS73cJc+0TyD6WgnoeCt3nBq/3F3GGufSL5h5aZFQKXAY93sktG1F7NWsdGATvavN/JX//B\nlcg+PVGiec0IDgn/xswmpya0jBDWuicq9HU3s7HAucSPMLSVFbU/Tv4Q0voHp8HWAjXAy+6eVbVP\nIH8Iae2BBcDtQKyT7RlRezVrciLWAEXufhbwIPBimuOR1Ah93c1sIPA/wK3ufjDd8aRaF/mHtv7u\n3uru5wCFwPlmNiXdMaVSAvmHsvZmdjlQ4+6r0x1LV9SsdWwXMLrN+8JgXXf36Ym6zMvdDx47bO7u\nvwbyzCySuhDTKqx171LY625mecQblR+7+wsd7BLq2neVf9jrD+Du+4Fy4JJ2m0Jd+2M6yz/EtZ8J\nfNTMthK/5OciM/tRu30yovZq1jq2Eig2s3Fm1huYD/yi3T6/AD4X3CkyHTjg7rtTHWgSdJm7mZ1q\nZhYsn0/891F9yiNNj7DWvUthrnuQ1w+BN939/k52C23tE8k/rPU3s6iZ5QfL/YAPAZva7Rbm2neZ\nf1hr7+53uHuhu48l/nfdQnf/TLvdMqL2vVL9hT2Bu7eY2c3A74jfHfmEu28ws5uC7Q8DvyZ+l0g1\ncBj4QrriPZkSzP1vgC+ZWQtwBJjvwW0zPZ2ZPUf8zqeIme0E/pX4BbehrjsklHto6078X9ifBdYH\n1+4A3AkUQfhrT2L5h7X+I4CnzSyXeBPyE3d/KRv+vA8kkn9Ya9+hTKy9JhiIiIiIZDCdBhURERHJ\nYGrWRERERDKYmjURERGRDKZmTURERCSDqVkTERERyWBq1kQkK5hZq5mtbfP6xkn87LFm9sbJ+jwR\nkbb0nDURyRZHgpE6IiI9io6siUhWM7OtZnafma03s9fMbGKwfqyZLQyGV//RzIqC9cPN7Odmti54\nzQg+KtfMHjOzDWb2++Bp8CIi75uaNRHJFv3anQa9ts22A+5+JvB9YEGw7kHg6WB49Y+BB4L1DwCL\n3P1sYCqwIVhfDPzA3ScD+4Grk5yPiGQJTTAQkaxgZofcfWAH67cCF7n7lmCY+R53LzCzOmCEuzcH\n63e7e8TMaoFCd29s8xljgZfdvTh4/3Ugz93vSn5mIhJ2OrImIgLeyXJ3NLZZbkXXBIvISaJmTUQE\nrm3z6/JgeRkwP1j+NLA4WP4j8CUAM8s1syGpClJEspP+5Sci2aKfma1t8/637n7s8R1DzexPxI+O\nfTJY9w/Ak2b2NaAW+EKw/hbgUTO7nvgRtC8Bu5MevYhkLV2zJiJZLbhmrdTd69Idi4hIR3QaVERE\nRCSD6ciaiIiISAbTkTURERGRDKZmTURERCSDqVkTERERyWBq1kREREQymJo1ERERkQymZk1EREQk\ng/0fk9+DmzNM6UMAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x117e3d150>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the loss function and train / validation accuracies\n", "plt.subplot(2, 1, 1)\n", "plt.plot(stats['loss_history'])\n", "plt.title('Loss history')\n", "plt.xlabel('Iteration')\n", "plt.ylabel('Loss')\n", "\n", "plt.subplot(2, 1, 2)\n", "plt.plot(stats['train_acc_history'], label='train')\n", "plt.plot(stats['val_acc_history'], label='val')\n", "plt.title('Classification accuracy history')\n", "plt.legend()\n", "plt.xlabel('Epoch')\n", "plt.ylabel('Classification accuracy')\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAHVCAYAAABfWZoAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXeQ5Fdy3/kp731XezvT0z0O44EBMPAYYBdY78glxQ2K\nouxJpzvFhU7ShXQ66U5xPLlTXIjHlaEkkrtL7nLJ9cACWHg3A2C865n2rrq7uqq6vDf3x/dBIXEa\n/0KIuMp/uqO76vd7mS8zX+b35ctn6XQ6dKlLXepSl7rUpY+HrP+tB9ClLnWpS13q0v+fqLvwdqlL\nXepSl7r0MVJ34e1Sl7rUpS516WOk7sLbpS51qUtd6tLHSN2Ft0td6lKXutSlj5G6C2+XutSlLnWp\nSx8jdRfeLnWpS13qUpc+RuouvF3qUpe61KUufYzUXXi71KUudalLXfoYyf7fegAAX/2N/9gBCPI2\njz+tv51/LcBGYwyAziE3PbUhAOqr1wAIPPo5Vnc+AGB/cYvF/BMAZDb+DfvuOw2Ar7IDQLTt593t\nOgDzY6Mcq24AYHMcwGl/EQDLCw8A4P5ba9y4oTH8RUZZiy4AELkwwGasCsCbeS8A1hb0LL0PwMie\n4/zWP/nVu3j7h7+zCcDiD94jNahxTf3aVfrffk1jDJzi3yx+GoA9qe8D0I6H8PVlAfhcIcbt+mUA\n1vs+z0j1jwAIWh4D4Hsjg0xeWQKg130Dry8KwMxGgxHPMACpouKrnt5FmvcfAKD4Sp6B6aMArPAT\nAknJhMgoAIdefYnSA78uWbus/PW/8fm7ePvdv/9jZh9wArC9tgVA9vrDDDjfAqDvfh/V2zHx33Dg\ncRcAKN/aBuCBfVu8gebNP+Qnfj4JQIg5ltuG5+AXAbjXUyK7VzLp/b005YljALwa2WaikAGg5NC8\nRL3r1OYeBaD6+Tl6Em3J2h4i02qI/05EYxyf4rd/bfgu3j77l96m2uPR2Jxl/Qx5yWTEr8s/x2hR\nv1fjLdqLA5J1PS8enHYargoALWeTTsOh9xXDZHrFpzWpMWBvsOl267mVHeodjXG41qYeHNd465KZ\nLxbC6i4C0E4F6Y2q81ytGSEflr7b/Hps/ZqX7/yLQ3fx9j98fhhrUPawuaL5tvdu0G6I39D+bbK3\nwgDstJ2MZyW/2p4mANPrcHFCz4rvuIlE9Kz8xjI2dxwAS6QEwFp1H6G8xliOFInNSGb+owlYsYm3\nrH5WTnYYveIDYGt4ifrqPRrPqSSdjX7xFE9INqkaf/u7+bt4+62/9GlSXvkNl0Oye7OV49NDewC4\ntPBjxob3A5CKL/PAzSAAC3np/3BnnrXRLwGQqBV4qF/vbayPYBv6DgDLy9KzE6ey3KnKpq3nt3Hd\nmwPg5lyE+NmXARi4+QUAXqs5iOSkswHLG1gmNR7/8wN46u8B0Lq/w0Pb4v+Jf/ZP7+Lte3/yAXGn\nbDmbuU2nPQjATn8AgGC0TqesOVrLwGSzV3PRtBCqaWzFgAWAdNWGd1h61CjbiGT1/2rTRy1kdLwq\nnbNaK7gaktOc24/Nq/+PZ9tU7dLrbFS6M9AukSlLfy2NIBsBPWO4YMUSkJ195VN77uLtpYU67uVF\nAFaGKoRrel6+49L3HaMsNcyzOhtkcnpWT/0yWy49z+bVvBTTWaYcWtpKmw06fo3RY/cR9Ij/5YZ0\n1tsLm5v6fX9vhkWZEGHPMLWtmuQ7JR++Pz9GviR/ZoltUN2RnmUra4QqkuUzX95vuYu5Xaib8Xap\nS13qUpe69DHSJyLjbboV1YwXD/GHG4ou9tROEj6cAmD47QqrTy8BcGZYmenLtSuUTRTmWavhyq8A\n8Nijf4Fz198E4FhNEWYy8DJTrscBaFsWqC7dC0Ci5yX29X8VgGcmlKW9c73MzoX7AVgbzfPCjCL4\nUDVMK6EMZnhAYitb7dgfV4AzX1vYlbdJr8a99GyEcPgiAAPPlwgdU6Z3+YOjjFYU8e69R1FnqLFC\nZUS8Ld4IcCo0DoDXmSLt7gFgJ6e/TW3/c4qJT+lZB9x85oCieVvu5yRq+wA40bmp/58dxpVQdrHX\nWmPhgt53T/kw56zTADj7WwDcCZ9mM6fo27tv937elwZjRK8q41/jKQD2tO2setKSz0sHqJ5RBD5+\n+Q7v5hXnDe6TTG/fcTE9rsxo9o+XyMUV5W4daDCREHrQV/gWAOcLw/SmvwxA82uv4w5fBeDB/+0I\ntz+lMLVoouvF1H08PiK5b22cZsz7EgDJdyLkDiq63VuVvpS25nbl7cBklK2aIndvUGhLYO4OrTFF\nvK76OHMRzX0obSNtl074JpXV1260cIwpW0pszuJzKqPN2lzM5jWGwT591rsZpRNS9taa3KFzrQ+A\n9ZiXSFM2YIvo+6GVGu/HNB9n2m3utKUnTfcajoTGORLWs8J7irvy1iydIGmRTtTGNAbnfIrxiXEA\n5i/52WuTTHtbA5R90hl7QHY6O+GhP6L/B5pOqmHZxXg5QLk9AsCWhk05l2QgrDFOhPNsH5R+pRas\n5A8rYzg8L4gpmxvgyoR495Sr+Po1n7ZND+m2spb2tnTnZmYU+PldvLVTLt6qyUZO7H9Bcrh1Cvfw\nFQAiz4YZuXgGgIfyF1jo3SuZ7chWridLVH1CtgYPB/jdKelHpVPgK3X5impsBoCNXBzrmhCota9/\nhdN/8C4A9536NJs/VEa2tlc2dCRv5eaU/h+4VWDKZNr2yR/wo6n7AOh75VUCj7jv4ulDarmirDZk\nW5nmQeK9knt0Sz9dDajuSA/7Gkk2hqSf7rkCJZdQG6dDcsx0YlSLJqOtWSmUxbO92CZXNnptEL7a\n1ghtn9HZToWLiVU919MiGghpcGual3rETs0qnn12Gz1LysaTsRrt2dWP5C2fqRDyCAEqpgL4knqf\nY798QnnhHJ3wlF5VttHnlm1W6lPMbywDcK9F4910VLm6JeQvMDXA6twsAEOeAEW3ZDVkMtvCaoxQ\nU2hdOllk64TWF/u1O1T90on1m8qkd0LbOB23AYit7yEb+GPJum+aqwapeOYjOfyv6ROx8IY9ErJn\nrIVnYQ2A0r5JtpPzAESjPTSeF6SzMCi4sdgM4ypLCa8e6aPVlEDn6nPMhgT71UtStgPVL3PTowVi\n/NZhgga6tbanaM9rAp8vyBBiyTC/XpFBzx46SfOKnjG0kaJVl2Ortp4HYDr4JI1NQXJXrKFdeftp\nVpMaLd7ktkMTGW8XuXxN45085iAzp8XycEuK859sOQ7Ma4yXDt9P7+9rjN/+uy56rkiR72losR7c\nPMXbTwmi+Zv+Qd58TUq4eOIsv/rKCQByHSnOI/+iwO0vCjbMxuGc/4J4Xu3wsEt/X/TJcfawl2Rr\nEoAjs3c7OIClnSsEtuQoJ0Y1b85WnWJAQY5z4x3CMzL028E4e69okR31C2q9c3CZ/k0Z+WqxQvle\nOfjmrcMkBzT3/UNyzj3bIcoHfgJA5eUod0Kar9H/dY3gS5JfsK2FYYo6M8OCnw/n36S0KWc2P/Q2\nXzPQ1cygIOzi6uKuvGEt0q4K1txelYPy9D1Nc0fzGbAHCA7r99h6lHp7XfJLiZ+4t0lwU7o64g6S\nLor3YrjJQE1z2NjWuHZ6VomFtEjnb/kZNNB2ubpJ0Ca9yrQ1hxt9Ke4JavFPbucZ82mFW5kfxj+s\nxbTs1Ly10qldWfMP3aA/JNPfKGlc1XsG6MlKZu5gCJtdY5sZCdODZORoywl6Sg2qZcGchPMMlwVp\nzgW8OPUrEQMvny6PseLW2BvrR3BOSU4TsSVubWvRz4xpvAczVXIdyc8ytkOwqe2N2voWnrjmu7Gh\nRXpnbPdAt/rQEc7U5RfmlyW7LzxV5J9WZEP/y48WWG99D4CfDoVxjugzJ4fkUKfvmSZxUfwGLjzB\ng6uSk6e+yUZwSWO4IPlv7bvJWvMUAKd+7OJc7isATH3rVW7/ZelZT1WLyc7ibTpnzFZLIUTknBbv\nS946UwW9rz62D3++tCtfAGu1GQ5WJR+PNwAbel6jLbvZSQcIFGRbW70xelJmQXa0WEkLHnabbTZH\nZwd3SbbbCbTZcmt/wtdI4qho7lIZyczZeA1XxwQS0SbxqvyYI7pDtqUVrGzG6EmGsZtgsGLL4ShI\nBz22HE5b8CN5q2wtkciKN2fIxU5cMo7WpC8726M4XZJNaa2PmkW/J+vb9Lv0jta2vtO+34ZlSb40\nd2WTVlCfLXS8jHekG/k9ChTWMzcZTMnn7Vih5/1XAFga78VWkK4NZ/XZ3t4eqiGtVcs7q+wJSSZb\nm1H2Dzg+krfdqAs1d6lLXepSl7r0MdInIuOtJgwMt9PBdliFRsHEGtlFRYLOyL14P/0OAPH3TwJw\noC9JZK8iukPP+fiDzymqrsy8zdm0oszFryhSaf+sytNOZcGvNq5T8guaLa9eIGKirEj1EQDcX25S\nvanvWV8Z5OFHFEHOBgqUoz8DYOC7yr4vPPVTJuNH9I63Lu3K28EJQWtXfnSSR4KKzK6Mj7PfL9Ff\nzt8k4hEUsnS/ILCT7/bjCymKvV1J8ItBRV5fCR/H3VHByfamItjI+pv8naAi15+FXiUX+j8ln5vn\nyIxJZuFbeteLv9GP9Q3BXVOTIZ6KnjC8b/HufmWYGzMa48HDLnrOCxpfXt09mpscqlKsCYqbOX8Q\ngCf3tRi7+bsAbE4eZnhZsmxsNugcGgfgekWZYuKql5sHlU0PnTiLd07vs/ROcy0omWQKKpLqaVzG\nlVBUPlafwm2ys9h3L5I8ex6AtTc1x6d9+zj9C8mvfMzBsk2ZWvRAjJ/9kT771B5BjNZKa1feFhsF\n2g3BVU67gcsKl2mY4rWtepbaLfFG3wbOqqL5fpti2VKtTM6njNmfDDJiMshyBVbdyoSbNRW6Re1e\ntu4IFvaPTeMs6/+duJ/8psk6ipqXajyEJyn4/mqfiz2LQlwqzhyBZaWbRZu+X41N7MpbyzZGYlvb\nDMdreu67Q/fSGrolmazbKMUE6x1pZCjkvwHAvVlBa1m/j3JF2VbRbicbVdZ4KOljaU1yCAwZBCXa\noJLUZ48PLfPixLjkNOekv6DMqt1S5nBjtEigJN4Cxb1Udq6Lj6AT56rk2h7Qd/zb0V15S7/Voj6q\n7HXwuGzzu7daHAwKfj8/+AxFU6TzbmKbU3+qjK0xp3H5v3oD/8PyBY0Xlpndq/EcDY2w41Rh55mk\ntqre9cWY8goFWyu8TfWw/MK1h3twrWsrw2UK8OoPunHc1vzsreR5eVs5Yv9BC0mPMv74i/NsHa7s\nyheAw2lhqSm9tuSbOGLyeeWs5juQd1Csajz2dJms2aZIOT30HdL7stel7wF/no2OgZ/nXPhdekZ9\nIkQmo79vF6R7EV8v/rayxljRT8wj3UnnLFQDQqSGmuKTcIVsQdl8vuplj09I2FJtGF+/6yN562nl\nyadkT+FAHXdbtrO8rAw161rCtyIfQ8pJosfA1iUL1qp07Y2mfELwpyl8/ZJTKxugjnxbbrbKmxH5\nCO8l6cAe/w455N86gzGW6tqm8CaDpBtCDyc95rWJDIUV6XJwYJT0rGQZKl6lWNJzOdL3kTz+l/SJ\nWHgf8WpCtoN7ON2S8N4tOxj+siDLneodwjk5mJUhGaCveIfE/G8AsHr2MgdqrwKQnJrEMS9luP+b\n2i9eO/0Q1x6WIez5hZvNtJzc/vEayaYcxfuB3wPgcP5eBn5VlZ7t717CsanxHAr2Y3v3L+p9n9L+\n4uitX6Y1r+rFnfHBXXnb9x0Z0sKQjwsWKexY6wqxvBbQo4UC2ZYMub0sh7Gc/xc8eudZAHrsO+x9\nUvvByz/O8ZpFC8e+Z7UgHX7pODODUnR76wTtmJRlz9urtHulyD+/R0HBoXcmuHpKRl7enGBPRgvd\nL0oJStvjAMTtguTHbnjJxOQo3JXeXXmr2/dTQwtKJ6UxNGohWpNyQG1vL9Wg+N/yJNjXKyfmWZZM\n7fsrXDn+JACpGTf7g1oMh35qZ+2sDKA1KeebszzIoS397hhbpnNEjuCd92M4TOX0k/erSvulynU8\nB6Unw7kpyhUZcWduggGxzwWfxuDK7j5vDlsdu1UOqDCh4MxW99IJKGgIXw3RGJVT2Mk5sQWln6sZ\nLQzTFClZZfwptxW8Wrx3KDPVo4WqUjLBTnaa6JCCzJ1KE7RdRKxSp+WWfqYMzGvJW3CW5CgeaNTJ\nF2X8zqE8AYcc0M6AxtvZ3n2Pt22pYOmVzJYiciRDjWssZ7SYDQ1uYssJfsuVihyZlk5cD6hmotJO\n4Z7XvIb6pvHGBAcGczHccTnE/qjG1bw9QSGuQPh6ZowDt5fET2GUhhlDpCneexJx0g7VZwzlJlg2\n9QaFppNYXPM10pCOVI504Ed385Y4+Rxeu6nnKMuOT2xAMq4ALzdkZTohB95c2eDY1+V7ymvSra2w\njcZtLSLnfnOFL17Wrl158Rx/fltz+6/aevGxrRMkC5LxwX37CXgk/+SFFk+HxfNSXnPl3fkyPzR7\n1s+9fZ7wZzXe+C8q+AZlF/vGAzz3qPwJ/+5u3qLXSuS8km+f9QAbS5JJxaF3eTsJPKZWwJ620+eX\n/vkqy5TMFlVfUItpwmYh7pNOJYc81HakdNHFBDGzEFXMPmottUOjIztv5UtUB2Sb1fwmjpZs5HZc\nS8l4LUQmqgC5nC+wmFJQFWksY1mO3M2UoURrh4WIAgl3egUv0sWDWen/7HwBR9xU9keTFJvyc8G+\nCVZmpCf1kvxrqRqlE5Xv79hyNNLivTjQIpKTL9h0KygppvdhnTS6eqvAfuPqQtVNaqOSzw1TPO8p\n2bG7pRubczOEQvpedU8Q5+odw8nxj+Txv6Qu1NylLnWpS13q0sdIn4iMt+3QRvj3h11MBQSVRAv3\n0jOnLHV2YhxLXsVGwWuKhL49FeVvBRThNBMdnq/9DQD+3J4V3jst2GRxVVnRfZt/Qu73lSHWUrMc\n/U1FQzdf7yW4R5WPZ5YV+Qc2tjniUgT/fw9O8uwrgqISf3UfxQVFWcc8+smpHEurgmtPjQ9xnr9/\nF28/2K+ss5rqZfpDSH0DKr+pCOnaa3+NdlS8jV1WpLjX8kXOH1CVcci5RnlJEJdvusPghiLIs25F\n8J3Il7EG9X8vJzg+I2h86QujZDvKzB9+XWnezh0bh1zKmE+ubPNGn2DiqWMH6Eko1FvtE9Q/175B\n4T1lF4GHvfC7d7HG9vMuUiPKUKY/r4IL33N2ZlkC4NBCH5Uz+r06s5cX1hWx/sYx8fBBbpm+9zSG\nh3b6+INeZZ/Or9Y5UVFGtXxD8z348C3SBUXlaf8Q6ZyKa0af2EthQZB6aUWZU78jintd7zh+5Of8\nzrgy4XvfH2DrPmUt43+q7KQ41XM3Y0BtvYUVZWTNlsbdsdjJbeu5zjEnLasKLfriDdZMoV/Ya6L9\noBd/Qs/eGrPhMecr3c1eFpJ6d39d2cK4z0LJLqhqwNskYNd7U8UkZQNzxSzKqFvxZTIOZaNr5Syu\nE+InvBoiXdN4QouK8Dvh3YurWkUffQPSk45VY6xlLTxQkA0sF44QCwvqb9TtFLP6TKyuDKi/OE7B\nLX7tjSyNOfFWHYgylFS2nSnpZ3BsDbuput0/2EM1aKD6xX76a9LbkkOFZbW+NSIW6ep200plSxlS\nK9IilFWOEOlVlpda3d11DQWeZmRG8ssfFnQeO9si9oHsdCOf5laPzv9/fXiR37soWW1VBMv/9d4g\n521CiH75J48zn1N2+0jwfi6ZIp2v+FRQNRZu8sMFTdAr92U5+KJSI8vEBEsxFS62LLL/+dsdvhD7\nJgDP/YVHsb2s89VTx0f51rTmojxvZ1/mw/Py//Iu3trVEsVe2amzvUF9W3J3xfUz5WzSZ5c+ZJ1t\nKmHpQ22jynpH8hoo6fuNSprb6/KfkeEm9ZT8XMXpYcNszVj80gdLM06zrN/dDhcVg5TlK/0MWIQY\nWKyal51yA6s5IzsebpKr6e9pS5SwvX4XTx9SZMPNQZPFdtwuVpLKJi9XVY1ufcKJ96KyzZp9iLWa\nMuE+223SRn/84/Lb9vQ2hYQ547yvTue69C8Y3GSuIl3uMQVpzejbWNPaVlnxJPFcU8bacyZPJKUM\nPBnW+hSt+aFXPEQaDqypLTN2L5lA+CN5240+EQvvC/uWAPiGpcqFJRnmftcdNn1y/NwYorxtoJsh\nLVjPtvew8McyXMuvH6bHHO6/9vJhKuOq7kyflEK/55/k2Ys6/J4c2of1ihb3cKRCdeMwAO4j4wCk\n/It87wMZxYMTeeazeu/gezO4wzK8RlZQtuUlL7fu0b7vA29/ZlfewhmJODEG5etyXPEjSWZfPgtA\nz1uvkZ0U9FgL673e8A8ZHVD1YX6mh/IvySl4M8scd0rhkud/GYAtq417vYKtz2/dZtQpw7u87OBA\n6EEAqmbf4thDc9wpS8m27gszouFwJVTCf0OyCrQEM6Uvxhl7Sov05I6b/7QLbw3nVWwXtXjcGdE7\nXvz8+zyxZo4FTFbI/Uzv69hznJ1UQPTjdwVLHwz8KhVziP+FlSJHxuTMC9UqtstaLPc+oTm++OIg\n7qIMc3ogBA7JZDp1gUyfjGUzrQDm+FCQnz8uw0rnTvMr6Lnv1Ur0rGkMlw5rYTlw4e4GEwDlUoG2\ngQ59DulkpV1k2Cb5bBU89HnEe6vqwd00gVtTQV2xMoZ3TIvplK9AvT6uBzt36DcQasScuSlFa1jr\nBvJ0DWO3acuhVnNhu2HguWOan+pKh6DZo4zYnLSbcgSVfAVrTU5+dUSfHcjvvjcf2btNwConNluW\nLUyUt3n3qKDkoZUm3i0TwB22Ec7ps3faCnz6XYu0bFpYT9ZGuRBXsFHPFvD2SalCCzXDby/WwZTh\n18O7JjCZdsyQM4vsYXNsazE5hN0nO+6NlKlZFHj3hawEzTgbGTk4lznS82fpQYuVhT7Ny+Id2et3\nSw3+CoKdL99awdWWX0k97mQPppHCXrMfupnDZ6rNz42d53hdevh6T52Rsn6/eo8W2BdnYeC05mpy\n9jHWAlrQz5Jl6are158cB+Dg9E9wzuuY4uidHvaeV8C680UHj65IP/utx/jOuY9enHbcOXqz8ifp\nRhxHyFRJp2RDrZqP1V7J3VsPkl3RvMUsAby9+uxOQWO3ZtJ0wtqPtFULWHrEf9o6THDD7Pc2taAt\nuyBgkUw3q25cNtlFy9FmsaqFdXRb9ua0bWMb03NXVrP4baaGopqnafF/JG9LW71kJuTzBpfbjJqG\nFNv7JPPBd19jvSXdsLfX8W4rEPPXXOSyCsILdgUMARrYfPqbc8fPQES2VSkVcG9LJ8rTpvHM+TjB\nvVpT9vSPkWprobes17C6pGvhlH4mkgliphFOgQGifbLvq50yzbWP3pvfjbpQc5e61KUudalLHyN9\nIjLe6Q3BQCsn3qbPbOK/MjHCp9qKrN5ffIOvTyurecds/N9TfocbXxLkEw1B/NYvALB+vYP/A0FN\nzogi6tn4BD/3K7MdLk9wFUW86eF1PvO84JZzwypasN/w848MjPk7w01aPmUcBz+X5vJVZW+V95YA\neO+ZLP6bimxvr+3Om/0xRXzBd99j+xllFPkbR5jdVHR2KrCG5ZRanqXuqOLYaXuIyPvnABg6Xib7\n24LJN89sMbqo7Li6paze+hsu3phThHp07SQ8och0cHGGxqai0EZTsNct+37c/YruXvve+9xzVNN/\nfOgR7jykSLj/A8ErGX+LSEUw3Fvju1fHtt9MMfw1c07RFDac+WGc80+YKtZbP6E4InTg8VwfyzdN\n5r5H0WGt48c/r4j5vsdm6bR1DtK3ssq5vcoIoi5lpF+LVni7oneFZzxknhI0tnj5MMGmdMYdFgx8\nazrElzb0jteXisz4BB1GR4Zp1xWlPmtV9J3qi+/KW8feS7MlmSSryq6szUl8FelGMHgUl12yTjvj\nuCPK+O3b0ln/uIWcgWa9zggjUY3njsXOJMoulkalh8VaiYhbcxVy9JMoKFPpsTpxnVYBlsUipKMT\nKtNoSweapTSlHRWLOEfbuLbM393mZ3j3jDdfc9D2iH9vUfrQmfRj+Zkyr9bBGHci0tsBb4B2VnYU\n2BbvOVcIp0Ow3pVRO9WUsmOvz0LetJ0cP27OIhceIOrSVkDW1sPB85JP7p4jVL3KzlY3ld3kthoU\n8yZjPunFF1SGWHcUsZjzouuL4mk4PgYs38Xbc+l5KkHZzj0BoULudIulkgz08fxePjgqmb1S2MND\nTmUzWZNpbkdS1OvyFSONDWqXhfocHz5LLa2tjN6A/MvJnmEWL2nLp2dijMMG9Xhpe5396+Izc1DI\nQDH9JEuHZW/tK3Nc/ceSU+3dS/yS6zcBeL55m3+0V2fSH72LMyjWoW3Oiw8PtUjMCYEI9ip/qhZt\npH2m2M6Rw1LW32fKabw5Qa/1moG12zHsEcn69pIHd1O26QpssZ7UOK1D2qqyuHpwlGR7HXeFuGnM\nU2m3cUQE5zfWZOf5CQfWGc3nuGWQtMNsOdTXyQXbu3AlaoxdY3jLFIa50yyXlW0PWmR72cYEjagy\n17XkbSxu00L0eol2n0Eizbnk8VSZWzZtxzTLZQpl04o2XMflFlpU39Znc+E8zYrGaM/cYWJcUHxg\nZZSNsGyv6DSnIqJt1lqa48mcm4UZ6a/naJVoqfGRvO1G3Yy3S13qUpe61KWPkT4RGW/KdE0aWXYT\nuKb2ab6nL/L8trKvvZ17eSGk6KLWr8hse+s4C3EdAdhfKuFFEdnG4Bn8JqNw5PXcwNUq9weVMf+s\nvEj8fT2r/0eL7KwpA9p4XRnbdOQh/vDY7wPQG/8V7l83Z1n/sZN6+E8AeMn1EAD7almibWWxoX8J\nf3Lkbt6e+LGyxp+NrtP7c0Vba2fu5WC/ortA6THGLyhjPRdTZnZp70m+MKSo+lpwi/4HlY0PjJ5m\n3qfM/lMDjwHw+s02T4VMW8FP1fngnGlFV+mnaNoUrh43lwcU+/GEtScV/8IpFm4qUty/8xyZbWU1\nFociwa+5inzfdG56Zu0G37mbNbyfCnPVadrD5cXbMyOTVGf1+9wDF7jvprmoYXyTpnleT1gFXIHq\nHdqnzXl+x5KTAAAgAElEQVTMpWE265pP+kcIWr4GwLRPWUZozxOMNTWK9aFpdjaVfd07VaG4oMj0\ncp8i7dOXzpDumE5E23niPunUxQ03fU1ldSmPvnN7sLYLZ9BxJ0nblMUGLYqIfY4Vsh1lyIOuDPai\nsghL2UYgov0pp1OZpDXtp8+muZ/r2cSR1Pd8owMUW3pno6osYbS8Ripg9DuTZo/R20osTS6haLsR\nUabjJUpPTXtd64MtBm9qD6w83aIzoc/G1lWw1hlf2p23ziTjmxrPWlV6aOvMcvgRYy+3baRNlD+5\n4iFX1Tlyt19zvWcsz6xpEL+RusxIS7Zn90foK2k+C1nxPpg7x7opEAs93ObGLWVRfeWj+CriOeiT\nfHsOOqhZDKq0fZ5yj7KP6kKeeatQIZfLQEumif6fpUf6R3FckY946T5lIatzWb5usv/Ep8d4Mqei\nmKvzLzIbl/0/OCh7q7ifIZnU8anhXwxh/erfAyD51jskJ2VPU0vmTHEgA5M6Clj7foeNPUaWeTs7\nUWXd5VnT5Wno2xwq6ffivRHeXpAsH3b+A15OCumardd5fuK5XfkC8DhatJ2Sw/pmla1B2W98QbzV\nvEW8daElzUYejykYswcCxEyr2ExWGX46msN+W9mxmwbRmuZt3eGnGDGteK2a156dOmse2XQ4O0jb\nFElZI2288/pMwykflm3sZXJEe/PZFrg3NMd1ewTL6t2XWnxIa9UKgy0tR1seB5gzys1N6XIyVqWZ\nkG6Eln2Ui5rD7VFob4g3dyxreGgRLchnFtZHaEaV8e4sj2A7oXlevigEKlbeBFOcFU5aaG0KWdm2\nWQkENYYsZk/bUye+IplnfW3GTXHl5rKD7Nju58o/ij4RC281LYE10j8n8qa5YeJQL597QWn99555\nlTMF3RjyyHVVIX/TdpbTAxL4kn0Ua0Gw0+y/q3O6ow3yzhkZxSMLLopWLWqt5tfYOPnPAdj/dx7H\n/oic2NklwUtrA7dYvqCerJ59CxRiggM377ezlTS9ZZsSfqoTo9dUvL76nQ+bpv3XdDUoqCTk/jS9\npuVZca2B3cBDQ8srZOJSVGdIBVf3v//HVA+bZhAb0xQf0IJy37fe4IWTOlf4QkpOZV+0RlziY2uu\nhdWpRbjW1+FMTmebb049rDG8a+X1lBziE748rUP6vb7zWex5LYreohzC8/0zHKvrjO2lzH3A/3sX\nb6sBO8EpGf1kQsVKs8E6zo4W7/9u8St80/R4tR9ysPeGDMdZVBHU87YiX35Pck998V5G3tJcvNFZ\noqephea86Uk96f4DfuQWDPff2wpkZ1XE5PpMDFu/5HfkhoKrvOU5tgoyplVbnul+jWfVkyK4onla\nM2eTD8fz/OAuzqDR9NKq6B0xv8bQ3o4ScoufaqvM+6Zxwf0jw5Tn5fCCFjnXNdsGsXtlsMFkGOuI\nnPZw8go7bhnpkYh0Zz4Zpmn6xYabDja8mm97o4XbNEzI1+Tg9kSLdNZNL928nfk+Lfh9+QYF0+Kv\nGjONOeYPAn/rLt5iYzY26pLvwIICkepkiOCVD/tJLzDUIwedHHIS2VAhyrxT43I3vKQqstPApBur\nVwFKfClGGgVE431m+2htAbdfRX4782Df1mfrrQ2IqXK/VtTCU93xsNMv6NbqOoI9IV0e89koW+U8\n+yway+327u0HrxUuc2pD8n3s52ZOvnqAlxYUQGd6PmAiJZ0drDzKqmkhuDYt27z49ms8iHirnrbR\n/ImC8M6BHGf5HAAXqloM6tkbuG/LXpwRqDs1Rw/2vE27pluJ7jQV4AV6j3E7ot87qzX+tldj+NaN\nf8+Df1l2OHzpaRrR/YaTu9u0Ds+VWIkJbg0O2LHkFIS4w/IlneYA5pIhvAk3zZB0I9yxsG1g53JA\nMulv23D2K3jZ2fFT82lubYM9RJJ6h7MqfbK5awxsSDdyI1VawaKR3zBrYS2ssbbpO56foz5jzr1H\nEiTsZgul3SQY2d1HAoQTCa7Fza1FFTsWt/TTt60laj4VwNtU8VqyHiAW1tjbgSvETMvH0rLR2cEe\nQvk7RjYeMmVzO9G2m5V3ZbN9Bc3xsifEcVN82RwKkDKNZSwu6DNV46NhjWGTFF4UWEfeb5Afl3wG\nalaSjZsfydtu1IWau9SlLnWpS136GOkTkfH2H1QUvFz+84zcL4hgtpjnxmFFMEPLf5FYUxHMz3zm\nDtmJlzieU8QRuzrFtb/7SwAMr13h3KQynL/8kqLjd/qz1E1Xn37rH3IsL4gw//ASb15Qm8YvnVQE\nVMgucPx/Ujxy7h+2SH/DQJbrjxL5krIS/38wjcztVymZM31/LzjBbgeK0g51nTq4vcFre02Bx+gh\nkj9UwVPEvclyQNlBvawM6NDEQW7cUHZ9/nNVHrgkPr73xEOEnjJHFn5bkEg6fw/ftinLeuDzY/T+\nRON17M8wZroovfRTjffle5b42i/0t+KjefwhRe775z5FoE/ZhctAjK0jkxQ2FN05ondnuwD9ASfl\nP5RMZqySwyG7lUa/soufrYwQP6qIeOv2FRwxwTwbBmL9tUt2POYO2Z2Xe/BGBCUfmDhGekXR5mkU\ngW7cfphfSihaXW59gPNxja35QZa0XXD2YFNFPDPDjzNlqt2q9w1x7I6Kjd6pX6L0pPRnLKn3zqxl\nduUtb2tS6yirMqddGLUkmPErG+jYrDwQElyb6WwzeUjdkBqeJQCiK16c5taU/vj9LAb0nlwxTl9N\n4902DfG9o3lcHvG72s7iRRlDO+Og2i9djC+bLkMH0rhr5uhCxc4Bg7hUM300POZ4kjmmZNu/e1zd\na9nGVTb6ExWyMlOuc98evaPY3kthW/Ma6mzTiWje/HllPZWdFoMTOttY2HYTrAoZyAfLuHs09tlZ\n2etEfwSX2VZZCBUYM03+U3UfA6uCY2eO6Pme/gYH3tOxoYtTI3QmdZSsvGAjYrpxVTY170NF7668\n3Td6mtWo3r1eVzb6mauvcXS/ulltpW6zHdOzkse9VH8snq9a3gBgryXDC2eVIYV/kaXxOU3+fdcH\neaGgzHx8n7LG+bk+yg3p1sBoi/hr5s7vg9MMFfTchGkV+kTnA1577c8BMH3gBqzqs1+YaJF/SXtU\nzz3sYV9m99uyAFYDbexWA4W2bXSQ/rUSshHfQTfL63pfY2SbSFJjzzdCuGqmsMvc4NOxtlh3SOes\n/hxur2QVS5Xo+MTfhk0oWHMzit0cU40WAxSqsulifpvIiJ5X8ZrbhJp+Dg3pWTd8FXpnDLw8biGT\n++iLBHztBp0ZbWk0vA6ypvDQWZcu95c36KybI1ojEZaaSwAsv/s00xXNS+uw/Lq/aSMSFerRLFmY\nCOlZa+ECjk3p2nhNKFklPsBcXhn8Pe29rA5KNw7OOnnPLSh+X1hoywc3vTxbMa18ww06bfGW2/Jx\ntW77SN52o0/EwhsKmcP6V0dJH5BztVkm8JlWfQMjf8QrNgls7OY4AF+NHqUnJahqhd/hge8LWvx9\n1xh/5ZIUbj4mwRy7/w4vf8ecAfvyDq6E/u+vHOLwHjlox7reezEepPdfSUGcgxcYfkGOemPwZ3jN\nRe2eXv0tm3ySs706x/vBRzQrqGQEcf+2610ej8tQau/f5uYeQTOOyhnSxuF9ysBol5xD5Ibl4M/O\nvUKv42kA2lsbzP8bwbUlq/g9dujbtLZMY4kfFTgQl/K966zyo1/I8XoOCVb94mY/4adN0FBM0BNX\nqPCW9RZH3frs5X2Sc3G1xcEBOYEX33wa+J/v4q09u0rTqkV0/6RgNPfCMKW4Fpb5hpdem/4/lYhg\nK2ohix6QHFf2/zKBbS1ODt95Rr3aL/flrKwGBU9eXZRTH/hslJvmEH9kIcrRhulHfHgPXgOBWmri\nZ6T8PO/4tSB5S0dZM60kxy4NsTOrKsxWS7C0pbd6F18AJyMxltY1zpI5v/r+sJu9dv3eKBRohgSd\nRWz91AN6zuKWFoS+RgnbgHgvNFOEiiaIsSWwmm2GkKlsT7ZSlLz6fX+rSMWquXfEK2Ty5izhuMZS\nW02QKmg/PtLepOCSTGZ9VfwGydtjNftNxY1deSvXvWyuaZ7DRwXpjTYjJDbMLS/eMUIDcq6Rhp3b\nZbOHFhTvN30ZYttGvtkB3B45sbm2H9/rmot4SDy2Si02ywoUrgetHKkISl3xJsn2a5FYM8OczFW4\nOWGg1Py7tP0KSO1TJWzr0gNLW7rcF94dtty2g+uK5mBsVby5D/VivarF+OrhAEcTsvl7rAVWTL/t\n6ilteTQ2wjx+RX7np3sXcRv9q0dcOAta9M5nNNefj/fwWkrOuWWbZOFTmgu7JcHqc6pX2PsrWpB2\nqiP82oh8wUxhhH/Wp9vFnrhyhPojgpofSb/EmU8LNv3mLrxVylA30G287KWVMK1B+41fSdWIVDS2\npt9K0eyRh2oxSr1anANpsx3R6OEen3Sr1iyStWvevJ7e//yOPrfsuG4t0rCKz46lQawuO64HkgRy\n4i9uFrr2RpYZcxOUbcRG2ZzjrRas2Nc/+naiWzstaqZ9aV/eRfy8OfsdUMKUJkpuSD58q/welrLG\ndmjyHLaKfs+bm7bG2nYWbdK5o/4qixbZljUTZM+w5jNo0bO8mVmmvB/q0nMMLGpfPDdUxNaQzS5l\nZAvHso7/fP1rj+0g234DS0+WOVAe+0jedqMu1NylLnWpS13q0sdIn4iMd+eiIot0s0xiQlnP6OUE\nxUOmGu1VGLYIqmuYi7Sjk3ECpiqy6LLzYr+gsYnAfv7w24poT35BkeSL7wahrCKnHZeHWFNFEBMr\nHVzmbtjlk4rmB+eus3Fc30/eGYRpReC+zsMs/kfdw9t6VBH1QYosDAvCWi94gR/fxVvRqkj7G40p\n6puKyCJ9dmy3VfB05ZH3Kbyls6rvTSr7e8oS5vy4oOjN2pN4YjpLuOq9j96CYPTjL6iA7JV3PBz6\nqqCUx4rv89ZePTeedVI0BSg+l6Jg2+GfYJ2TrFcSa7x2VbyfOeOinjDnQa8rKo+Mu3D+QJ/1TO2u\nJr17AmxZlUEW9wtqfdUTxuMUVPVr8R3GJiST2YGvMZdRFLrnmim4sPycqlfRcTRzmhsGwqsuv8Wj\nOUW/B8uK5hfTSc7M6Pv5zgDrMWX2Hcdb7E1KZ9I1jSUQuY/HxlUN3em3smRX5t73QILAdxSZhyfF\n78vp3SPV7XaJlrncPmIyalulTLEhnWp7KpBTMchkcJX1qxrPQYei55J9AuvWh92Q2owMaA5aA6MU\n/aZ4ypwLHbW52NpaAiBRD2AZVSYTuL2CzWPmsCY9zNQ6WCraTijkyngyQnXGDnqgV1Dc1paykP7W\n7u0wbY0CwaOyp8Q18e9qQDBgznC7z7FlWvItFNeZvi3EoDip1DTWdtMx5zpT6RQ3jilzLaVaeMYF\nvaZ7Jd8bC36CVo0xnnax7VVhXU+2g6Wm9w1Z9HMuvMVEQKjP5pKLIQNhZwliXzHj3Sf5Fyxbu/L2\n6AtDzA4LIVr8lC4c+FHpOlFz0uH2t4bYt9dUYW/bCT6sLNZp7v5ujD/JhbeUzd/ndvGwOTf7o7Ew\nT85pPDtT0tO5G03cj0i3hucKvHrYdH+6NcFnH30NgNnnZI8Fh5Or0/rsgTNrxLKC+NuDMwwENLdH\n1+/j1nsffR9vO1ihuWQqhiP3ULVo7G1zkYC9bWdQ4iOTGMJnCriqhTIOm/xbJWpOOGyl2THbOCPR\nATB6bfd7sZmuUK4e/XS0PGSCelZsa46KQ37XYunQMsVe5ZRpiRqo4vOZc/WJCjvmMgL3rIPS4EfD\nsX3py5R2dPOctz/BVshktxXZq2U6xd5lIT03e8PYmrKh8tIEblPNH21ornIE8Jtsfr3Yz54e043P\n1mA7J6QwuV9+x745Q9PcQlbxjtAwBZOtGRdxr/xN56D5bMSFzZToeytpYhnxaa/naTl3R84+ij4R\nC2/9oBxGsLCO86oUq/FIkWO3BQem699mbUSCHFsQLP3G5lcJtrRwjK95OLytZ+ysX+eZAUFUzauC\nKeJ2K422IBzPd07jHFGl4vvjVvbfK4P+6WtyUmebQVZK4wD0nNomGVLF28h35nDcq2Mwk8klAM71\nxjhjLi33Hbm1K29fcmnvc+ata5wel7PYHErwUF5KWLDdy+aQeLKOS5nm5i8yGNMNP/vnaixeFO8N\nLlJvaGwXpgWz73/iJjs1GVW+cg/vvqfF+ysTDgq/IiXaKmmaQ97jNDe1oFWGTrO/LtiknPLyA4+e\nET8lB8T8KM7Py2hOpRu8tAtvjbkop/ulcOt/oLmYjo0xeUSy3srZWVwVtHh4xcqRPv3dtU9w+WD4\nMiW7qj8p12isacFwFY5y7gGNp5SQkW93knxp1FwxeM9tFla10Nnu7KfiMP2r92m+3/vuRbzjWhQX\nNmo8uiydemOohS2qGoL1fgVMZ9evcW4X3gplPyPm4qLShmQyPBSi19wwtTY1QCkvx75RPsWYX07K\nalpu5vOzxC2meUpgmJVeGW9fcoPAJTm/zT3m6FGoxMCiuejeFWNjTYtWuzBGr0e/LyTNbSrBGI5+\nM4fbPVRPSO7uVIP1nGTlN804OunOLpyBx+En9bzeVzutxaRg8WDNmOYKkTHSP9YzYqfiJM0+Xq9T\ngUJlaxSm5KhzrTb2eXPpuG2GqDkFEE2Y226yMTxJ01Pd6WE1blp5+nIcMLKsN7VY+2/voTgtHtYr\nPQy7TNu/dAfHhPZ+Q27xTnIf8NZdvL3VmKU9poUzvSC41723w8iPpXtfOlHG9aDqOpau3mDV6KfH\nBIA9F3ycGlZFcXOul9IJHWs7+PZ5bvfJ8a+smUB2f5mr++TIew5B8f9Qw4/Y2QXmTyhY8U/8UDJb\nPYhzWO9aKEdprkgnR8aO07iixXb0C3Xe+vn6XTx9SDvpBH2mQUmmXeSwVz5vsSA7j0WD5O0mkGjl\n8JkjlsGRKq6afEjKIxsL90Txm62QeqWEy7QbTVY32RuRHmzGFeS3Wl7uMVsaW6EH6Ktq7HvtFjKm\n8j/dkP7beybpbJikoemltKb5LnmTDPo/GmDNBdzUzRWtmXUPHp+CCW/bwMCzbq5HZVvxbInWsukR\n7V7EfmMcgMCw5iLts3DcNLdIx51Y7mgMlX43A6OySU9W47Z7J7G/rXfshFcxt37SsN+hFdX2Q99l\no7+xHH0D0vvEXJods39vu9XEf/Q1w8k/+Ege/0vqQs1d6lKXutSlLn2M9InIeH0fKArZGoDSEUUR\nD55PsW0u254+cZjLs4ogz35BVb2FeQvxN5W9zEztI7Bfz9j+sZPzR3Wmqj+sqkh76SANv4Fl2tfx\nOgQhOO4cYd8VQatDbUGlgdgmo48J5nj/5kHi7+nAf/OpALPfU8S/+mW9d++rY2y1Bb/NbJyFXW4n\n+r5fsJT7G3XObz0AQPi1ZXofVXYb8STYsigaP3ZR2cL52B0en1HR1utLacZtf0HfeybG0bdV+Tfh\nU2b7r18+wf1xRYcXj20RzqloJlO6xcCbgswXH1DR0eb8Ta6a20medVS4HTKZQdFJ3DR7KNgViz1l\na3H9+4p4k4/sfvNGZTKBI6HPhJ9UpD50oE1nRXMRXlklYCqCa7YdJg7oHZfaijYrt4bxf+bfAjD9\n/oOs3FDEGv3GBNWGgaisgueKwVFm25rD079/lNWv6taYlu3rtJz6zG8LOODLo/dzriWI33bkBM2y\ngX8Xe7Dep7m1ufWdW+bGoz9L/TTINnbMGMxtNwPj7NxRUYznco24Q2hGY6JDqqrxOgsGnuvtUC8o\nk7H2rTO2qPS51GpTMeeOWzcV4ecG8qSnlX30p1bZrkreocFVEhZlNeED5qaerVt0Zj+8uHuG+pay\nWnszSrugMXRCmpPM9u4Xj6/5enGclG7k6tJ7b/kCNnMDUu6tJkOHzQXxSSh4ZC9F9H9nMY7lsjn7\nWJpgu/C2xntihKC5FGT1kLlJJgEBU9yXt5Vwma2DQVyU+syNS9dlQ65gjURdMhmNbpDfFO/FyBCl\not4xbhPS44vtns3vm/DRTshelo//B/Fw5RJvRJQVFvccZ3RT/mEn0aJ/VDL7YFVz3O77gNV/+4jG\n/uv/Gs8t+ZDvxfqwvKnPTP9fQlg8/2CBQyXB6JXNRYb7TLOIuetUml/U373KtortXobbmvcH02vc\nGlb2vJg5SGLqJxq87QE+f0gIxz/chbeBip+kuZzClVkj2ZKuNU0PmLq7hnNc/2/V4nRqssOYJUbd\n3Dg00pH8bP5b5IuS4d6+HvLGRsY6PpIFfaanrv/HGi0qMflln2Wd8JY5/5tpMeeSrvX2Sh9sqRTt\njua7p2LFHtczSo4m26u7zxmALTGE26NTCd494/hvm4YnrSU9y+/Gl5bNWhwuTo6ZiztSU4T3SwDW\nsmn9WPKwZXaQ+gJ5Qk5zEqHiwRLWVkd2+8MmIUVCE/KlXmeVnbBBTgsW3Muykc1JIVMjyy2ujouH\noexBesY1nkI0Q3TO/ZG87UbdjLdLXepSl7rUpY+RPhEZ75UBZREHvz7F6L/TPsjMvkn2nFM2On9f\niKdNVnPnJZN9dV5jeUwZ1IPH2/zRt5VdOI+UsCZVuFD+ubKe6jNRXBVFacHECK/vVca6v7XAt1cV\nLe08onQp506z/arikb/pm+f3o4pM29cThI7+KQDhW4qom46XSe/RXqK3vr0rb/YJZegLuYf59cq3\nAdiYimAx2a1tYoHjYe1lWY5rH+v41mMEsto/DNhH2HQpqt64nqLk1v5L5rb2M62PDHG7qgsF7p8L\n09ejvbtzvr3ko4o87e5/CoD/vYfoGVf0ligP4C+aKPetPdT3KyN7Pa6sc7uwl+gxI5PW7pHq+tz9\nHJlSd6wPVnWW+NPOG7xQ+hQAzidP0lxWJGgdWGBjTVlUsKOoMvVghmHzvZ9e6SH2mKL9wjsBzg1o\nX+WxlP4fLwxxaEC7sanDRRwfaD9tYDRAaV4R7cGDGudWNkt9xTRMb19hflvRc+v4IJaqxpArmo5Q\nw7vHnvNtB4N+fc+alfzDV+/giWk/cjEYY2BeWX5y0UskqHcX8tLJiGWTpF86Zy81aHxYhLZep+NQ\nPUFvn2nZl6mz8oLG1ezLgzlW4V6zM2yOReWTGkNPxMVOXBnoRqpNT11j9Dbm6A1KpywBZXdN995d\neRtZr5Kz6XlBi/avB3u8ZCzmSrmqm2xb+mAfukY4ref4Z4X4JG0ZktOmmOZmCvsxZeOZ7RaeU9Kp\noNFv79gCGy3plD1rx2MKjJqWERKrGqd/VDqyQ4NTRRVBztpG8ZkrAuO1c9gfUobiektZzcrw7q5r\necrLrYy5PnJN9jSaGWPthDrebb0BYyeULWWDbzF7QBn4Z16WX5nJT1L8K5qrG9kzDEY09gfnC2DV\nu6N/qr3j5EN9RNbF7417D5K4Kl/w96acJELyXVc2lT32JReZrOhd2/1T7JTlC9wbK/yy59cBqPM+\nb0z9VcPJP7+Lt4K1Q8SieWtHBrB4pHO9JtPrq9UprMnmfa0cO0Yna51pGqYuIOrUT099gFZH+71D\nhSYdU1zlbboJDcn2dsxZ+tyEG2tROjvccdO2aY7avUM82dZnN82Z/7R1h1BJ792xtqgaxK8/NUI9\n17yLpw8pxjotm2x2a22aiEe+u6cjn5B3DdBnjuxUa+eZ6VEhVmg0Sa9b+reaMxcyTDtxmtaY/SVo\nm/uK92S9RFZUO3MhLl1vs0DJqU5v5fYG/S7V/NSSfVTNRSIxrxCZSqjK9Kyy4Ja1Samhvf5wI8SG\nI/mRvO1Gn4iFd+8Z9T5uf8fKc21V8B6xwze/IBjoS4nHKd2SUOdN9fJht5tcSjBw7o3jnLLps9m1\nNBfLrwEQOqw2k6m3r7CKIMXD1MisSVniA1cojur3+9bV6OJOvEChJiX8f77iZ+iP5Rx+drzDwef+\nRwAiR2V4SwMREi8LYjnZs/vNG4U9Ohd2z++9wps9gpfZehR/+HUARq49zXuf1zP8W4JgT67+Ebmy\nFGS5PcbQARVo9F6xMH5Ebet2xkwFb+0We82F6w3/IIUx0yP2dgsvMsLjv6W7TvKfqVFdF8z2/rSX\n4WXJvfmZHTzbcqqNAfGW78zgymoM9xfs/PtdeDvV8x6dnJ7RZxzYv754kzN5KeEDlW1Gj0ipz332\nBFM/0Jhf33gFgC+8vZ93fkkL2anL75O+JMOzT2Z4xBQxjHhleFuzBS7/whTAPNiheEhGaF+6QPAh\njWG0KENYqXyT6oAcVH1miPoxBTYHlnNsmNuvRsyF4Udb1l0Lx+LFAoW2FrWcxEjBWmZ8R4tlqVTF\nMiCd8u+kaezouQGfwdZ7eimlFQRZ2hv0bWlh7fONkNuWHjT6zAJAHdeAdKDXUqW4Jl2nv5fcqhxI\nxyKZ1pd9dPxaeMdTe1j2S+9SsR6COQWcfaYl5axzdRfOoF5zY6+JKa9FsrFmWvQgKHUg6uPdWQUN\nA7YITb8cUOZR4/guBBksKuhoRxZwmvuenc0CuasKaHID2hLJu2OcvC0n9/o+OwevS6Ztbx1LRe5n\ntCw5jJ4NkTPbBRM1G+seLXrV9hbWtPTE0S+Z71zb/TaYwkQdf+SfAJB8Q1sByYgf58VvAOD7a99m\n6TvGue59jAf+VAvjlZOyvaFKmty6tn6+uHODhZi5LH7hDtX7dLb8BcsSAMdIEO+YM6/LCTIRLQCz\nYxssXRBv8QcUZLrfjJJ4Vt8bnnmemkf9wz2jX+R6UIFC3lnG2vhLu/IF4K8PYGmYG7EKfkyXRvym\nSK3QSVIrStZhvw97TsGPK7xA/LbGwX7JL9RJ4guKz+WWj0BbAVEkHqHmku0xIh0obbZpNKRLbqsL\nR494215OsjEo/XMmzTlgu5tCSOPZLmbxbMgGyqkEmPP9u9ELsQCP7eh7ztQFSqZKuNqS//RXw9RN\nVX2wcg+ZTS2A/vgESy35aLdN8u8rL1GzPwZAc2CBalr87Dye5dpbGvvRuuR42+Uiau7Y7fcFaRRN\nKwiIwdIAACAASURBVN8hG8lrBoKelz2NDAS5Oa/vd7J5MiFTMOmNMWDv3sfbpS51qUtd6tInlj4R\nGW99TccCTo334+1RdB289SbfWFKRw0LVRu8eRRf79ylSubaYZ95E6NHFNVYHFMU2w0lq6ccA6Cv8\nJwDa/RPETAWCDT9hBJXUHn+GwKvKEn5cUcbxmysZbh8TvLnwQxeZEdN+cvUG2WcU3S6adm9PrLe5\n9ajO4NouvbIrb8FvK+Lb3nIw2GNuFkmP8VBD0eiP9hd4aEY8Wcy5y8To/TRaamFXOlAje05w407P\n/TRQO0bbO6aQ474K6bKprph9m4RdY/98rgfvirKwRdMi786+LPc/r8x0Plog71e036g3sAcE7Tzr\nM03sj1uotZTVvGi6Ef1ZmnUfIV9TpuDc0M9n0yUuHNd559Hxe1kaEMxTfsPCFXORQOWsotjskpWH\nNxRtXqjbcewTfDTkTJLYUQSZM8eunopu8uKWKXyobPDsgqLb7KKFN5//PgBPNM3Z0wdiHLv8LADL\no29y1ISXr2U2SdwrPer/hbKp7KMDu/JmtzqwmQ48PU5F9aFymbRf7xiz1phfUMrR05Ontq7neAcU\nlTuqMNQv+aXrHXLmbGS1d4NQQ9l2Iq0MoN/lJW3T39bqPUSsQh1qGRepqJAcb0cZQDDVweWWbNK9\nG7TNTUVDhQqOgrLCpMmA+p3Tu/IW6KnTXlQUnzdFdUuWLL1RvSNZbNH7gJ5RpsXAovhvOmRvkQkX\nWxbxkxsf5LEdvSd5ZImiuQe53yb5tqdrLNYMymDL4T4sexnbDBAdNjpcF4pVK5a4bgqGHulYCfrk\nnoZaXmo56eDNhp51YHp3aC/7rbc4+NCXxednBffOFixcv6DtrOj3DuHu6JhIfGWY5/areGra3Fcb\neruA+7AyKGvn09R9uqmoNNCH64COyXzGZE1Xhly81i89a73d4dj/rvPVS1em2XN5HIBOTIjC0NMj\ntK6Zloa1Dv/WK/v/Vc9zvBmSzd5zI4v38P2Gk1fv4i0T2iZekXyilSvkl7QN1tynzDRrixLOS/7L\n1f+PvfcOtjQ77sN+N+ec48txwnuTZ2c2zGZuwGJ3QRAECYKkKJqUyCJNUVZZJZZMl4qyJdmSLRoC\ngw2CACkQgQAX2BxnZ3Z28syb8HK6772bc87Bf/zO0mXOHZdULq3XVbf/mVtv7v2+0326+3T36eCE\n1U6ZriUMUIqBHKY4ebpmMKFd5X5LjFFoVKIUp7mORpqyVe4Ir9KqRzlD2S3Ek+h1qK967S7iCa5H\nKaYzlEpNdJRcQ95QgzFD/i14zTDI759c5XF2Ua1ybd2OEvU8rwkCBq4h5ZKhIDp16bQpSLkcKGFH\nR81ImllMGSqn6tAbz/ILun0onWP0ZWjch2BXrEEjrlqScnTNlIFWqYxShOdPamIHignqpmqLe1jO\nmdDIcO/LUEJW5nsVlUnk3P8/bBnZDjHstR5U4XKGB+iD3QzKBoY/hlwFKNRUukuvU5lJOzt4LMow\nZnc0A1udhepYiiN3OAQAiAjl3OsmUAm+AACIJ2XwfMBwzsXHF+FNM1va4/l3AICs/IvQJBneNFv2\noXmODSBeCwYhC/H+OeDk6K5r5aMwgO+Cun8GqanCUGHxeaC2wzrgkdmzCIl+xfvT67i0QCX4uUe4\n3ruxf4K5fWwCUEqqULCQMU7EZWhcJ6OviWktkch+pKbZq/RR6RyOXuMBIJMosdxj2Fk5ysPisQ89\n6J4hYz1WuYmLp8h8+Ys2uLo8kENp4qPZteBzdh4MpUr/9nyJXRU+7yX9/n2MSkd+oAJthHfgRsUN\nVMWov/TaNmwONro4eo7h2ktzI/iSjo1AgvM2tKrE40rNDLkY8Tfb5b6/riniQJ5K8rI6jLOLfJbR\nm8BsnTSJGmg8qTb8aOq4h51cB/oNGhON0Ri8d34WAFCY5R16b71/wwK5L4tukgeZ1iRCzpkuqqAi\n0I55oJjhIVusB+EZ5rvNZtI3Uu/AkKKQdyVyxPyktSXnQdXOsLNKRQXVSmpQEMI9ZlChrSCfaQth\nzIts1FyTSiXt2ENdjOdztGrQW4hbqSeDZkK01BR1s4Vo/zFskXwb0oNiULteNLHI5wE9DSJHNoJS\nnMalzFqAzzsMAFiMEHev0wVEuIdjY1bEK5TJeFmCx+fJq2sNfldZG4G6R5rUjBKYpDTQKiUZchLy\npeMM+X8r1cUhK/kwX9PCJ3ICuh09xsTh0i6TvxUJD4A37sFN/UtPYOcc98KxRO3cesQMp4zPnTwa\nwQ0bcZ9/dwvRINfw/ts0/n/h793AiThD1EvmJRiqNGzC7QMYFrkEb8RpuPvSKZx88i8AAAtzj8Lf\nIs99K/0khn+TWdiabfYUULxeR+SnWb8+2XoPv5onbvWSE2YTjYKk/IvIf3D/Ot5gT4Z1iP7KcRcs\nBtFvXNRfj1esKPe4nyp3AqaQmD7mLyEt5e9UceoYszWCeJz8J6nkIbNRxuMdM7pV7r23yD0uxKOQ\nJEi/oioLVYvv6G4vQtGmIdTI8mCXu9vIifyJXlwB6xRlyKUPomQM3xe3ya04ah3yQaubQnmN79h0\nkeZT+iqGNDyYzZpJdER701ZzDyMdhsxvOLmv1uk5uFQ05pyxOuZcPLBvXZDAbSD/pZNct0IthVn0\nZQhrkjCVyKvl7R3kRUWBIkRd9I58F245/2avdVEocz8z23JExaH/nwqDUPMABjCAAQxgAJ8ifCY8\n3uDDDOfe/KAAT4cWaFH6PDpnRKbw3+whI+aD+iu03BR4CIUArZcy3GgURZeaiBH6OkMwUhetxwWV\nHD43rbvZCwW89RzR/s2/tmLjBN8xmmfyRXQjAuUxenEh2UX4Xx7m727aMPICk7niaTEzM93D3q4I\nmyr6e4XpFxiO8PxgP3zDDFtFw2oMBWhV9mJTGP81evnXCvSQThcfx2KI9ZWj4QuQiNB2xaZDZY70\nmZmmdWh5LYxJMz3/tKyM9xSkg8FfwvAOQ1s1NX9zWxeFXyT/LJQexNAyLdCR9iZuK2k1ntay5jd9\ncxt/JEJg5YPrwF/fi9tQ9iJ+cIzPPmYnfe2baiiepTe5umBE7SwtU9v4Y1jRM4O2tMiQ8uHZLax+\nl5atfWYN9Rb3Ld7cxdz1MwAAuZHJdp0esDbBtc8vPIm9MWbhnD0fQvsorepTYtarbGYB6hQt0EhE\njdcepgUuq9yBrcc98NYZ6osZN+9FDEA3qkdDTS9LJeiv8NXgcXG/W6EkfGaGXiuNdYTFsIg9UTvp\nLHexZCCfjNevAaIzWE+2hj0xxGBcQd5rSqTQyRj1abaykLXEjNjhNpoJWuDKKusPa71ZTHfp4eRj\nBijcwiuXZtBJci/yduK2d5/5pxp9Ge0y5SmY4rNSXTssba7HKJHDFOAae70JbCgoZ9NG0S3swDZm\n2uSNnUIYJiVpYlGHIVMyjOuL0Psue7RQgr8vzI6gc5PPaD4eg6pHnrPv0SN5zLSFmBiqoVgLQXuM\n+7YVNqKq4PMkVtKhKzvQFzf5GxdweIZZ9XceIO+Fkl0c3kePzTBSxYt/yb9fOfoEJmv8bPpVMaXp\n0gxUBe6bVf5jpNYYKXME/xeolU8CAA5KuZbGb/wKtj+iZ+ubUsKnJs99+WAHltv8bJijF2Y2S7Cv\nwYhNdGsaE5MMKXcyXSQaDIlPZi/DlR/uixcAFDw6SBaEp2zbwGKM+20W9eIbEjPcWnp6BZ0aHYjB\nGnk1tHEReXOTJyIr4zCqGFJXqoBUjjxeUKXhbTLR8o7Qo1VZFA5RTVGJlaEXfHXbIkVxlUlXbQuf\nr9iKIikT1RIdK5I3GM5WuKTQGu+f+evyaxHL0AstZWyoimqD4SL3LRFooCpky9jZRrtLvSGvpfC+\nnLxwREzb6KlXUFwTwy+UDSz7+FwLUoiKARpKii5uFGSYlPHKIxxTQTpL2audMyErImklLSOvmcRR\nlMSgBpXSBLmBESX3w1J4aq774tYPPhMHb/YiM21P2NSY+Mci5PE1DV7NUrjVLkApsg4d36WgXPJK\nYBZ3l4eWgZtjZPTJbgMbKhLszSCZ6ekrh5CskZkMY1/GS/MUlqXmJJ7OU5mfbYr2dWE9HjvBw/JZ\ndx7lItvLeXEFl/6QQhiZY1j1t/JOLBygEI7k+mdZNhYYprCdSiI9KiaLbOjwdpMMKZ1dxMx3xbi1\nk28DAELyINpiWkhioguPi7+zq2/gQpthT/nHVFBnJrLY7ImJQvZRzC4wDGY5NgR1k3c8KTGKrZto\nIjlLYXtwdAcrTYa+c8dWcOy2UI5LNC5UXynjWIZj+n5cHOmLW8H0LFxW3kWr/0LQse2GY4330F7f\nHKJiGki49Q4KZhoWDwV5J3ghl8fMHllw1XASp4eEgjeNw9vgfuxoeRjEcl0oblBp52VbMH0kDo6u\nErYan9sS9yythaexVXgXAOA3d7ElWm4eDz4HR5L79Y0OQ7vTvf79jA2KNDR2hupkoimBpOdBW/xe\nbdMgJkJuFdhgEndDZSeFVKbTIVgQofyeDdqGmE6UqUNygHuQifHQrOgNGNKJu7lMGVYlhVhSlUOV\nFA0RxLB5nyWGapyfNRMd7DiJe3B9FmsTpJUsKiav6PrfOxkUdkjrNDgSWR6w0gNVBHI0NCRGA4p+\nGgKNmhSjWSp4o4N/C93VoXGYSnCva8JMj+FL5/UMXIzSIi5GUnqaMkROUR7NdRW0IivZXzuA1Rrv\nMZXmYT4324EFPKi2psZwVIQvDb08umX+riuyR+XFTF/cJk49hV0L8T+6zANJ5XFB0ePovfG3Irj8\nzBMAAKssC6cI908tUgf96IMD2PcE19CMDcP/Ig/LJfkfwHeVOualrwhFvbSOj8ZopEdMC6iUKZvP\nN2JYPMbDW9nh/WLqYxvaVCXYtcwieJN8tPbSNl6Ikc/OzlvhOirw+pf34mZpyLBT5h7JSj5oFNQR\nEYiM+koCq+JayKdWYq9BPlJpK2iUyXOVHe6LUaqAVJSlFWsFNAsMobZUMdRT/9eQeQDI2zroJhny\nTbR7SKdEuVqyhVJb3JlGyU9JiQztBOmXs6RhdQ8DABT+HhTGffciJcDYOI6rOepoS70JR4/Pc/ZI\n89XYMvJtVi94U3uAnXuslOugVlBP7Zp5XqTvmOAUqRsy6QrsMZEdr3FhU09nTCUj7RQ1F5JynhPq\nfBJ74mAOyMKIFJnVXGpwL2u1MBSXiZv9mTZaC6S722tBcbb/tc79YBBqHsAABjCAAQzgU4TPhMdb\nXWWo4P3Td4D/mp+tk8t42CKmXMyF0Nym1dKYZ6jl7+e+issmJjZEustQHqdFtmM8jetFem2/I6Y3\nL0/PARvMSOyMZbH/bVqVI97zuNlg8oNKeKzmfTa0REP23k0XdEO0TFVDJ/Hydb47L6Z2nBtR4Pgu\nLafLKlNf3GzTDMWY9k5h9SKTL0b3pxCMMdR0bDWOnYeYGTlWoGdpssphFmGgUGQCRjF4uivpwpGn\nxfXQFK3kWw0rTrRp5X4U7kHyZXq/NxMNeB3MovabibtDMYabqxwOUNN9D+E0PdOZVSkiQ6Rf4yjD\nNfV3vdB7RQbv6ibO98HN1SzgwFVaiOs+tsM7oZ6BXSRl7cRjCCi4B0atBndX+d2VNBPWDL6TKIhs\n1US8isUsk6u8s04sahlibi6KpvvxVURl9Ignj3VwO0wLs6FVorQipkkVmUyjsf85VFcYnTDPfoBC\nlfuZm30YqQDX8N9UiPu3qv1nhCZlo+iU+DyFjlcB7pwbeToDkMslUMUpPnJbAE0v99kiknhSUiO6\nwRAAQF9SwlXkvkWmdLBVSROZaAIhi6gQEfN4J90lRCqiPtDYgNvCv8dER7qKzAyTaL2Z38tgX4X/\nv6JSwBXnejNVeiEqdf+JKWFjHY0YIyZ6E9d1JNxC6oygU6qK4ylGTgoKBQw+hoTjKnoAMtUIVBHu\n96G2Fr0ZhkoznuegbXNt6lnSTNEqIneL3tSQ3QvVMPfw43QM/hJlTysXw861arRFOFHZtsC2y703\nKi7h4ynKnIVOGFqK7b64NYwGlD6id7wn2kQekyexnhVe0VeGsfG6GFYypEWgx6sZp4r7NveVd5FS\ncXDHidAalq5Q9oL783gwzSSobx1kffuMbwEvP0Des74+gw8P0sOOO3qY8FNX3G5zr59M+pB9idEh\nzd0GpFHK26nQEs5OPk5a/kkVByb1ffECgJ4+AMyI9p2X05BW6Kk1tCJBMFJHWs8IyUYzjUNigo8m\nokYiTE9vVEavc8+ZgrlLWhelbchb9OxRbaMq5X7bUoyY9XYDqJjFXGHtAjpx8knnVhp7oulKwEpa\nJ0t6JERjDr3ZDJdFJEF1RiGTKu6LW2VYBvVqUay9hFiV+tTooK5u1F3wdqibGsUmZEoKRErZAJqU\nI8kyo1jDziD2jHyvakeNskiOjBdvwSYlf1bEtK9uLoNmnrwcK1pR1bO/wutZHT6J8+UalKMxaxbL\nNupX3aUsXEIOlRM+uIy+++LWDwYe7wAGMIABDGAAnyJ8Jjze7n7emTrPSpA4Q+ui5GhiV0NPbX/W\nCo2LPldJQTvk2+VteFZ5oWT4BTkSH9Makjg38WKTXvNVLa0TzUIe+yZ5wbKyfQNbbt5Vue0BWNaZ\nEn7LwnvdRycaqIt5psb9Fri+yWdc/fUdGL5KO8V5k8lMPxXbxaqJFuq4oX+NWiHIO6COZhUPFemd\nHPp+G6nfpRXWPD+J0BIt6QeXue760CVIH+Z95nQ5DcmsKKUwbMAm7jY/KLLG2R6o4OJdWp3yahWV\nCC3tCbkBcZfwMLfZlcscXsXpQ/QkL2w+hGMPiEb32wm4HuS9oeI1Wm4rky50PqRX4RsP9cVN6jIg\ntJ8deJ7M8fdnbygRzdOrhv0fwVFm6daCpAOpaAF6wsv/t95V4BtiuMADbi0y6/RUUm9cwhUdvYA5\nMaLsrqoMhYV7ET9XQTrM+5ye+i2Yarz7GT3K727FjkDzND8vWY4jnud+FmNLCLXpRZXmeP85tF7o\ni1sy0cIpUQCsbA4DAKqSGFSia1Si2UNpiHSfrsrRc9JLqHboZZjibdg0vFdcaqTRq/F9GkcCmk9m\n+op5s+qiA10pPU+bEtCIe8zlmBqFAKMZfjF2zdxxYrsh5vWaZ5Ct0ZPRQo+sGJbRLdHbXEv258lK\nVgWzgZGcapfvTXlsaF8VNbTDFaRt3ItEzgenmMXq9XLdrlIbraQYrtDdRQdniIdOC2RJzyMOMYBD\nr8bohLhP262iKyJDM9Zt2MRQhqyVdDJXzmPWR4/sbHsXZ7uU/4DZCWdMeNUVrquqH0G/Wtf9shSu\nHqZMntQxqvTNyBqeNYoynT8I47EvU+broS7aafLGovPnSBvbDzEXZuLe+a39mHyI99drphTWf49e\n1mFRK+txHUfiFu9w8/PTmNDRQ6yWY6iH+N2VIHEzjD+FD0Vp0q8r9vDuJHXX86oJyBP0wDu/mME7\nf3X/7k5aqxzzm9z7txxtOELkP52B+qE34oBGlL5oNjSIiIQ063QGZjEiMjQpOlt1Wmh0qHerqSNQ\nK6k35I0A0hV68U4rPeK0KoLMh2KIitsLiOEqaUUJUNNLvZHjunL6AjwG6q6qUoJKkXQw9pxQTd9/\nkICsVMWMlx326r115C2MRIzc4rq+q3RBIUb6+SwKZES5kD8Wxq4YaTgtoX5YbOeBTfKWs9FAWSe6\nbuXKuCb7pBSPus1bk6C1S9lUjuZQVZA/vXtKFM3UTRIdaXcnoYJadOraHErD02PkwzxqQHepvx65\nH3wmDt666BmsOvgMJBG6+s2JZ3DgR6LO7KkKDuaZKBDTiwy1d19H/BCXf2MngLkRJokU7ihwU8ub\n9U+GX08GgnilTQF5yDgDm2YYAJAevYZwk0L24honB7VyOqhEqKT7ogo7p8m8z1qHoCnxwv+8SJJa\n9Klwe0+EOc8f64vb7F/QILj4eR+OGWlUvPHgGay+QwVjeOA6VK/y85XfYYJHcNSFwPtUgnpFFeUL\n/N2FfXMIqhi2i06y0aH0h25MSUkzzSk7VuQMZzdqR1C8wGkfPjEgvVsZxXfAw/ih5gWMv0WaNQ48\ngNfPkQ7mCJkpPfweFArRDlP5AoB/dw9uO70ibHEqxA+qIiR8uAfteSpE88QB/O8ZhsG+kG4AFiqV\ncw6GdubGXsOzNoY8owmgWuMeDQ+/BN86pzN5E8RH23karhk+62u21zEFCn9ppIFqnSFqS5IHWTw0\nCusBHhbO3SLa2/w8Iu1AcYIh1IqoU71o6p8UYZ+Oo6ajgVZvkQ8tVhuqm1RsXp8SzTBDwjfG5JgS\n/YGbJZH8NizDbkH0cvVlYZLRMOmF3EgJY63VEyFsuQxZCcPEMZ0f3TbxcNWVsDAPELkZGmWJtQxs\ns9y3dg1ImcQVTC4CXZbKcUPMiB7rGdAvIDtqjSJVo6JQJ5joVrAnMS/wXGmNY9QsJr5IFVC1aFSU\nQlTUMy4z0nGRiHVgFHtV8onbWIRMzb1tVmjAFe80Yffw8DKpZUhJSJPhjSkUVGKWcJQ0HbP6sSjk\n8VBTh2Edjexb9TtoiPaRFhvpKxH9if8u/MdQDP6mqDndZAb7gSE1/spAhXvkYBfHlMRtSp7EbTBz\nd2abvOVu25EUvYYbv9hGxkZaP3DuLHaHaDDartN41ZXN0BaJ2/ajDtxtUxf8VmIUF36OeuqFjRAA\noJ37U4zGqbTXKh10R0iHrfIyRiOUi72CEf7P8fv4nXtxM0vVyJp4MAzl53FXQt0SbpL37KUU9CIk\nrKyWUa/wfTs3DDCaRHZxhYdQya6C4SafFR1dwVBHZPv60+ic5x7ecVFvVJNFNKfJG7pcEzti6L1c\n0UWxIOphhcHpbNjRM1BmIbWj4CB9HX5A57x/r2aFLIiuhdxqyuxiWsVD9I6GPPKyqYPNFe5RsmmF\n0suDd9U0Dr9oM6rQiEYv0jqUap4NNVUXLTn5s5XrYshA+XfZuK6NwgqqIkFO1cqhss7DPWSpwQTq\nBq1oWONQWlCvi79JH4BWRRnY2KrjwETwvrj1g0GoeQADGMAABjCATxE+Ex6vepMhMol5Gz07LYre\nXhjSaZZmuGyTuGKgFb+7zISh2rQFT2b4u1Qyj+jPCO+3EcM/3BUdXUboJZcnV/BQhN/teZZhF9M3\nrv/eLJ47wUv2yBC92JTlHA74OEvze70LOOJnB6n0bhGu6/zuZodhkPJYFc6rIQCA9sB7fXFbeoqW\nefriDWSP0CvWKPTwnmQCWPhOGw++KDoviTZ+2bNaXJxkaMyoU+LpOVroj0UaiJ7muIKnRb3fWnAK\nm+MMqU20FlFunwEADK2EkIyRVh01PYCxXwSiYRFeLh/CKyMiZLawg/wp0qRepNX+pdIB3DpO6++j\n6lZf3BypG9DOkG7XSvSGhuVSjKoZin8/34a/QW/+evktBIu0xjtN4nvle8+jPUNPb907BkeadI01\nVqC0MlT07aBIToudg6PA6IOydAzjRvLDt5bNmGuI7lYxWt2+wxXYyrS6ryVHEHycVu6WxYf8DUY2\n/KJm0DDbP/y1kTJCVaOFbtWSZnFbEKogk0gKLSmsDq5hMt6CWUKPIa4Rs0gzJbRsot1deBhds6Cv\nVA2jgXSFjLRrZLUo2EWt8LYRLVEGJFGUseegp+bK0fJPj6fQFcMbalsyuGf5Oa3tQETEoKjzb9ul\nXF/ckDRA0qNs2PUiAatyCGExp9qVz6PX43pb+iHkRPKTYoweUmzXC/mkuNopeTAjSHilosNTojwr\nLhJ38kFgn6g13stVEBQTxZKqFvTg584c+f7u1V3IRM1lZSOMdT3DtM6OB81t0apPQ5pK2sq+qH3O\nOIn49psAgMQTXwQAzGu/D/MOIzLDD5uwfUOkzZhfxYc6XlMcKv8hAOB270swaoVXJHXA3yT9Db/0\ne8B7nB1teJQekiaphMZB+T7Y/gaGauStxoFDqBY4lawQ5bucTiXsK6SpwiTDg6I+PVfuIaUXod2c\nGRuv9i9LBACdwgSHmmHcXUMGPtERVJMVbXajMSzZ6Smaywaks5SXmiEElZX7XWiQf1WFHmDl2tyx\nDMoK6raCPQajiMg06/R8G1k5emrK7EY8ioaNvK7XKCDPcx+UTcpgw53FkILvMvTssDoYEbC5TbAl\nbffFzWSTwJIRrVDnR6FdpvxaRcShYWvBWqCM1EoJZIzkh7FcCXvz9F5zTdZ4t2WjcHREwpSqjM71\nT8rvutBHGb1Zkoo2vWNGyBepu2KJOmw2yp55WA802G8gEyNtrE0plFZeCw5NKpFRcD2PBpTQuSz3\nxa0ffCYOXss0GXlpN47HjpGRi8VVnNQwXPWTb7SR+jwzIPdt/xEAwP2kAaUM7xcfCBbgDDEMfGCn\niAsHKNAKNUMTM1Iv8hFuZG98CAvneAA+eVCHn+wX0yY6jOn5mxac/3OGMVW/rUNMyVGA+R85sHxS\njIkS4W7Jh0osRjmxRDpiBvD6Pbh1t7gGe+9hlEIMj9yZj8C4xI36ouFx7OR5CLeKZLL6aB6OVdLh\nvbFZHKsRt+WiGZb8GQBAKcGs3GahAG2MApY31OH5dggAMPYFGaJfprK2vUXG+2Axi8dbNGwy0lHs\nrhIP0+GL2HeNBsa1Z/n/f7RyGdY7VJ6qTn82iZlnUbhN4+hoS9yb7cYBKY2G8ZYSS7VvAwAc2iOY\nNIhs8BYV0MhIEWFR+2hJ3YErQVqmCnHMjrHd5f4ShepK1oQj4q6mdkeF9cMMx84um2GKMdX1S08y\nHLt9pYZbYa79icfP4p00n1GZkEGR5b2hLyvuofKxvrj1Si3EtdyDRo+/HylGkDfTgPNKb6OwTj6T\nWi1QiCYG3gaVUslThanJA6dkbsNl56koiyuQFwaIRLS6a87l4E3SuNq25TEhyF1SuSERGe0VA/dK\nE6mjoxPhxDkNcls0CrQGYEstWlQm+K9DHka/9iB75RJsNYF3h8bZ6L4YdBry0c3sFB408X3yyFyt\nvwAAIABJREFUIGBcEMPnLXxaS15FWbzLkC2grKeiPdXYRqvF8FtnmDJ0OOdETtzXzXd8iKfJA6OJ\nInLikD0sD3FdI14UV7mXJYUWJtHzt9XbRVMY0Zk4FWPyPg1raq0y/EZeXxTWmLeR0ZShFm06LW+M\nI3WK8lC9eBK/7+NB96NzNBaH/9EmFjdpeNu9/wI+UQUQvvDn2HyGa5j4LqeFJQ0H4TVTXhYTbRwd\n5qHWjV7GiQ3y9ZUms4U99jBUVsq/fftxBIbIW99RbUFz+3cBAGOz70K/2X/KGQA4naa/vQbbNhaR\nep/PcGuE3pjRQL1BfCS2HEwOfjZpNGgUuJ6Gkv9aq0WkndSJWxIr3An+vR5ToC4mA8niNCKV6k2U\n49R9ZvUotC0xmlQNOEV1hVXc7cenJWiAPKD32WHJ8bkmpxzWB/rXzAOAddIGWYr0ta6Ecb0ndI9d\ntBOFFpouaakf78GiYY5HvlGEpkheq4h6XZOmjJJajNxUjcHiJK+Xskq0jDyQpeuU6V69jGiAe9gZ\n1cCQpsx2alqY66Je2cZnSZXrMGrYnEWaTWBiH/McupYypN3BdKIBDGAAAxjAAD6z8JnweM9/zI5N\nJ16Ko61itl8r4cYPRdbntKeIoSot8/rhLwMAIjedGJumV1SIurF9h6EkhUmLp7f43ZKZVohXW8EP\nj9OSeWw7B12JluBV1ZtoL4pJQ05atsn0Ik79PL2MvQ03lpL05BxfvYvzWVqCwRyzF83jQ3Dn+Y6Q\npH87tF6LXkQ7WMPBFYaEI8ltzNroKd5yRbEtZTi2eUw09n5dD1+MYZlxaxjbfnoGsXgVh0MM7bx/\nnLWGjqYStjq7NLV8w/jxCeLTVigwdZ00sRf53ItSH/69yBx+rnAFCoewlIPTkKkYQqmv0Cp1K09A\nqaX1Xb2PEZ7DGqJx0nrf40yyCt6tI9Rh20B32ACFgQkToXM+dM4weWq5zKQi2agS+p/Qi3rnZ8bw\nqAjFKaFFfUkkdnQZPj4TPIILNxjycc8uIWIWQ96dfhiFJf3BztcAAHn/szh1gB5tJXIC7nwIAFCo\nd7Eyz/0cPs99GUq2sNAHt7qiClmW1ro9T8t31y6DqSRCvqpplFUMRZs0BeyJkHpTS89KUsmhrOW+\nOTMlVGNcY21+DLUdet1mhUgQ2lIiaSdvecp23Cjxs6+QQsVMXpU36NlaFXZURFjaKWkjLOoHs84u\n6neJZ9VIzyFVcvbBDOh5/JCLhJT2SfLTQqmHYJQRA/9TXaTr9GSKqznMHSPO15P8m8a4AYeTnn0+\nEYc6JtoNKpVQOblHTiW9HoUVKBa5DqdhGKk8bf3EhBGVNvlAL7LOS5EUtC7KqacTRafJvb/ReQAB\n8bknQogq0U3o70Jlw43z8UMAgKeO8Irk6vUX8OBJvmPPu4hrIe69LnUS/t9kba0hKHRGbA3dOqNf\nt5PTmC4ziVF1agTjX6NXnHMxBJ73z8F3lTrqBdMzqE8xcnVr1YkpOwl88hD5+9W7wziR4u9vPNHA\nyi1m7esCWfz2yDcBAG+vOuGd2u2LFwCUG3po7aSZL2FH0cfoS1xMEypotuCwkF/y0EOrEgPtMw60\n3YzIaPOiS546iHiSfD2uMSM8Qa/P0zKjHaC+kK3yNy3lENzHqedSxR5qYt7zbL2MLaloAerjv+5U\nEUox81cj02DoBPlrZnQcGqnmvrjpslLcsojackcLsxDVLTv8vVWTQmGaSWjmrBRbZfLDqNWNnSRx\ntkkYBelIm9jukda+1l1UR/m7XrKFGTN5MSpm/7YyVbi69OZNVgWiQRFZibXgbhOnhJrJa2bVHPRm\n8o4JUuhNot1tXYWmtf/Vx/3gM3Hw+o9RgU1tmLEupYI6vvQKzs/w/mVVXYf+Dg9D12gIABDffAd3\nD/GOQrp0FeXHSVCrz4273xej3xRkgNioCSfOMUy5E34Y0X08AB6VSeCeYhZv9Q1RbuCtIrxJYYk4\n3Rh18hm6v5DB9Ct8XzvE3791tYcHxxgam7nqwWt9cIsPM8M6eGUaF02vAgCGFU00lQxnxX84gvI8\nlVVgRmRTepK45SZjWWe6kLzNO7boy7P4OCRGi21TQNds4zgQIp0aOzkc6IhQ0o1pSMeIx7sGCui+\nrArVR6mMEu0ATrsoQOVvrEM/y++ebnC9F+s5ZKcYznG+3f/eSR0bg8pGgXznHYbvfbLbOOIXJSru\nBrpdCtDBQwuo96gQXU4qqOK7GVx4lgbG3EejSIkxeqZcGjcVFIbAPt6bxd54B51RPvembD8Md8Q0\nIGzBXxNt9FQ8/OQbK9hy0siJH4shmKewaEItBIxUtOF5XlPsu2Lti5s0VUbLw31Z0nNfXFoD0goK\nmKS0hylB13LejZw43CsKHk5HJHqEVGJAvFOGlI3PsKZW0dXxuS2hPNI9JRol/r9JC2iSpGnbb4Uk\nRkU706Ko3jH0oE6RJzfkSci7POhzdxVotUjrTS33WCfT9sVN205gZ4KH/gOiwQOMNTRniY8hnEOm\nxTCaxe7C5TBlZ0bgk+4asBLiweIynUK8xjXY8hVEwqLVpJ4HY8feQEkMF18tmZDLUtkPWw3QuPj3\n2DJxc7kSKGS4xz82BNARVxaemgFVcd/ecDKsqFT3V+LxxzZw6G/E/bNoxtF96XvYajwPAFDtjKPr\nJU3HZuIo/JjPiTppDD24OQSjlYbjpGcHF975KgDg8d5bSJj5XKmdeiBnGYZLRXm5kXkVknPkP7Up\njA+2SIejd0izn7G4sRkTTSwSOeydZvPz0YwbK+CBk1J+DNnfVkd85x7cvIfr2LjNKzeD8yomFXyf\nJsa9uLYpgXVaNOBIy9Bui3LKg3IoE6LJhIpOQ3e4iOkww/b1ShoHRcJxsWmAXeRM5EfFHXHFiJYw\nrtwqCWQS4t/T5v42k9gneuzLh52wOykjKscwggYxqlKvh03kbfQD7z4TSirKwEZVD1mbxo21wQqJ\n7O4DkHd5ZVE0Z2F1cY8Mhl1oV4mHXLRwleiMGFdzXe7UQVRF+ddeQIlwjTxR94qyP6MRLhEmLpmM\nUIgxp8d9eehyLEFtuHjwWrQqGLQ8hyzyR5D101gL+KTwlO9vVPSDQah5AAMYwAAGMIBPET4THm9a\nDMpeuWtD+i4zzDa+asbQB7SW1jw9WG1iYotIuKiPuzB2i1ZYXmVF4m2GNCuyBrTCsrKURfJLaRn1\nR5mhFj/4A0xdpzXVKU2g8H2RrDFMq0b96AgW3xSNMsbeRXiVFmbkUA+694YBAL3FXwIAnDnx+4gW\nSMK06sW+uB2p8FmvxnbxeIvW1kXjCAKTDOOM/NL72A3RstrJ0FuV6TpIjtKy+pUPulip0Ss7oK7j\npkFMO0qz0bu2+x7KEj5X1t0PvZPW/LcnMpit8R2lEq27qTkz4nri4FqqYqciQohjLsy+znfo/xm9\n0fr1h2E2nQUAyFX9PafA2ArkG/TelCnRPu2EG6Uf0/dfPfEI6kbi5oqs4q5UZIhmmDWaNZ3G1LsM\na3mmoqhKmMRz6YFXYEjQQ7m28RYA4IHTXjwlGui/EYljXiRPLBv9WBVNDGIQ2Yf+A9huh/jc8Cji\nRSZd+MYUQJ61nUtyWs9hV/9wbN3fQqZFD8e3QQt/ezYBL50AKHUuXK4xOUWGMiwWvrteZ7jrrqaB\nSl0t/iaFU0VejVZrsHYYGtTVxMQYWQeyMumfVCvgsIkO79sJSEXLvJtmhoHbiShUUpGA2PCirKAX\n1bY1IZxFmDfo9Ti8Zez1wU3fzkIORk52VihjY4fU8HELsbjZgEcknEgqGXRAnNYsXJeloIStKqYI\nSeJwkFWRdEuh2KU8lMz0rOxxDZxm/n69vQwVRNu/qxbIp/m5LDwV7OmxpuR+7LtyG5UhPmtDtwCJ\njPQJhxmp8Mj71/HmUru4kOPzTkYZNjz5cBDtN0nz66owZpZJlf09K37S5vtGEtQ7e40MgnLyyOI1\nP/a5ucZQ6ygOVui9Bk3vAwD+x3QUC35RRx1QwiT4EJOTGNmhB9gykH/DilFgkh6SqgA8nif91/Yi\naIzyfeOzR+E+Ilo3/s/34tarTUA/Sn6QNzQoRER9tIUb8LIjiIsmyrp7qABVi7qgsudBZ1p4oaIp\nRvSCAg0RrfIZmtAZxZSrNKD1MirxSWhYWlNj1MpkJFlWCq3yk2NjGh7RiEIqrh7cThWUojbaJjfA\nKScd9G0nyq3+7VkBIBP2Q1+hcMncXjhFTX7dyEEuwxNpyLTUH1tKD9p3iGe5PIaguHVI5KlLKhLt\n385Hz/XyUA5Rdhz5BsZcTEqtacQc64waOTG9zWgw4liGfKWY3ELdSN091+T/K3WjsNgoW9JKFfOi\nnfDUsArxav+BJPeDgcc7gAEMYAADGMCnCJ8Jj1ezS6speTwOzQKTZs43HJhy0II82rTiTo11spNZ\nelCtOvBXLlpmT7YimH+Ud3q33+hBnhXNyjP06OzuSeRFosDkeR02PfxdTLOB+AzvMadrvOOpvF3B\n6AwTcKR3h5HX8r3PRV7AuRJraB3H6DGXb/ux4+O92kTpJ31x2wqJ4QmpOmYP0aO9q1hHtk3LSn0h\ng6Ce767WacHG81qMrdNb+o42j5cm6Gms52x47j0mfrxj+S7XIn8eGZ3AZ+1b6Bxmss3U2Sn0bLx7\ni4yKObU772NGpOHvf9OAb2uZgKAeu4Gbp2lBzvw5k9vawT2Yl3mP0jjyGvDje3FTjWugaIuRW8Ib\njS2FkcGv8X35G+i2aY2vmY7A2GKHrWqYdcUz1hpW9tGa/Dimh89NPJ+JP4m7b5LGI+C+7c35sBTk\nfg47ilgSrQcdyy3kXLTs5QHinrgSw0NHeRe4tp2Hb4j4Xwn7MSLlep+t0iJePh3B1vfuxa18xwar\ngXuUDfL5xngXNSk9h468gNqqqEuerqBaokem6zBpo1JWotalt5T3GyBd4T151NRDN0meaQgveace\nh0aMsjRIJYiXaD1nzBa4inx3psBn2bpFbGrpjcpKVWhb5KlwEvCNkZarZdK8nO5ff91TB6Bpk9dU\nOnoJeykPduKiq5dlEkrRxWpEZYBZeFSGRdEJaX4PQSX5ZCt6FmYL7wRtPT8yTdak+uT0JEvuFYzm\nGDGINNKQ6sl/yfEeyh3yuEouaom9HcwmmLtw11aDzUP5N6mn0GXuHp7Qktf3qp2+uFnXh/DcT9Mz\nmrpGml/4V0eB5xmd+PV0FrEg+cTueACPxFnzG68T322TGu9cJc2/5Hcg/zyTIO1/lsFHL7GloSFG\nuRqr26EdIfPc2HwQw1p62IHIJqKfJ57SVXroMesqbH56ys3yS/j66+TDCc9VPNJg9GCncxmLQjb6\ngV3bQUl0XDO39VDvZ+7HdoK0ThtUOC6nl9pK38S6UdTQyvMoSPi+/VHyTvBhE2Jp7r3WMI6Gg3Q1\n1cyoivnTtlHKmyvhgmGU9BlPGZDqkW8lHS1UPnrxEOMlO442ps2iBaPegYoY0ShR1WHE/VtGys1d\nzIjhNPWtDRSdTIgqiOEOjrwfRXG3rJIoUJ7hmeEpRrEsIa0tQeL+TFeOUo173zguR3ybPDl0fBT5\n3YcAAKNe/r6sHkfWzf1uVguYPMQ9bLlGUJSLsaBN5pkEAha0V+mJH94fRKXM98ZWIlDP3xe1/vj+\n5339vwwc1nIZ2SU7YnoS4cA3gX1eKpXQ6TzyPx4GACTniXhHfwkv3joDAEgln8Gfb54FAPyvkhr+\nUhyc09v82/ncl3Byj+HPUrWG4Sg3VfaMFa0GN3b/Ry8DAK73riGrpJDu6UN48iqznX/gyGFyggq8\neInZ1GsPBCE7zMMkvj7RFzeLjs8qTspxZ4PvfVjaRFUjcPaexC3RclbzeYbkHgo3EFshEylPN7G2\nTHyi6W9iRfXbAACVgQZBRfsqwk3WQT8Q8GKjxHDt3ZNBHA3z3b96gYz3Hd0JtCwUqlvzy6gXeYgH\nNl/CpIKfvznD8OcL23toOCh45e7zAL5+D26SDSekddJvKMy9an1BBWgZtp8oebGQYo9t3XwG2RIP\nl6JcTEXxODFR5zuU8iKi13lQGMYkODbNzx+vM7QWrfhh/KQV4EINK8cY5rk13cXsXQ4oP5CmIvpB\n4g4SOkrC9G4ZAS3xn3Vt4O0iBS8cpEJovxa4By8AkMijCIuWj0Nh7nvUnkUA/Ly0mYfMwoNOescM\nnZINE+QdGo5Zax4mFY0G+boPO3LutyHRwpaGys++LQ5IaKAd5YG9sTOKXpU8DvUa7uaojBRNKsmy\nrwPVJsN6Kk8d9TINAbmujuwu39dVMoypLPfv1WxYb2F3jPjPiZBbbU+H659nss7RtTwUop5x1byN\ngAix6kyiIUe4gLNlJhUO1QLIisQx2fYuemIYfLrMKwvljhM3REMKXU2GUFcoZV0WngXBD0J3JzMS\nJIRB6u2OIbdFeWhnUmi1qXTvilr6xkf966+n7bt45SoNhBGPuEaa1sCaYbLYezYFborkn8/tfB07\nRtavz7nIx6s/7GF2ijJQKhmhF5UBht+VYGGT+/Vig/KW2UngzfDnAAAPH9nDy9epqP+0vIboHvfQ\nc/qXAQCmN29C/RXKdO4nHTh9TIgKHnwCr39Aw/v0806MrN5/yk0xY4LfxcNrdUQFy20xD1YMoTfW\nslC2GEZveccwlhENT4wFqHQiuWof99iV7WJ4lsZ2aC8Hn4vxWrmii4iIgw4Fua95nxFd0UTGaFdA\nIZINaxIdrFLRJ95DmhrgQVXDvzntNuxT8L3r9Q70jvtn/up1FlwS5RP2rhe9BnnNYOC+7Taq0PvF\nXPJCEhlxHeNqjEEnZpsrRK2x3lBATMwBlqaX0XuQeleTHkHQSEOr66B+sGiTeMROw3HNrIa8QD7Q\nSL3Qg7wYFWHrdFqHIT9xkPmdMEa4Xq/KDUn3P69X8yDUPIABDGAAAxjApwifCY/XIKa4bEW3MLKP\n3lKxewDfnqRV7i7tIXOaAwRsS7QabXI/3s/S+hh9+U8wukTL6H0DIFGyZOTrIpnhSd0Woila4pPz\nTlyX0HqrvZ9B9wGGaZbwBgAgP2OE8pLwFFwBXDnFkIR5p4P4upjxqKblVTiXwckk176qXeqL26Uy\nQzgn7xxFZI5eXNJRg3GZYbS25iEMFRhH236F4fL3oIBSTS/t57otvDb0TQDAcM+LUuh/AwD49fQw\nk+/2cMhDr/tPKzbMjxB3bc+BtIu1uf9hnh6h7AcpbB6kpzgescDuoTXftWXgstN7e2aT6/14toWj\nbdLfcjneF7dOLYDFJCMU3S/SAjWGrqBSYAh7QZbDswfpfS1tx3AjxPKGp8UsTbSuY1MtapQlQ3hq\njuHhhkmPy++L0oAOaS1rm3HVw5KnbLcMzTKtefOoBE5RS53uMUHG/egstO9zXZfnRpB2iKbtveNI\niyksh7fonejNKdzsg5tVWkK2x3enlfQi8nEjCl3Sz+hvoblDj6znSCGRoVfYzYshFWkXomJakF67\nAnmVUYvd6hLkFtJEJ+pitd0sFsNiifEFqA30RAqRALolhjoVXUYq0jt26Jrkw0ozB1+O7+iYG2gm\n6QW2aqRH3tXsgxmwIK/DvUk6ZN1UATpfB0fP0Q7f1jvg0dKj7UWfRNtOXq3VyC9Lhh1kRQ2yJ9VA\nI0E+CXX0mA4R/1KEODS9WtTFFKJ2VYOJOD2KyEQPS0bucXmP3y1Jy2jKxcxWVwbyJH+nNCUR6HC9\nt0RkxWPqP8XnvFKDI0GRKNVlzf9MKIPgFNfVTbQhVAxudAM47eB+rmbIL48/7gS65LPgx3r80X6G\nvk/+1iieePKvAABXk+Tvmn0M+xt8V6kXxB07+eVWyYefH+bar1+nXjmV/wXsXf/XAABZ0IPTkR8B\nADalJrjHGS3bevco9p24t/vdJxDwl3BRtHOcKWjROkp5Um1SPiXGUai0pGky30bHRP7yuzQoiwEN\nkhZ1ZkFjRmOcnukjjklk1eQdp9QOn190vMpTDxZMOsh19CqlhmEYFAxhy2tZNIyiI5iY4FXZ62DW\nI6Zn5UooiJJO27wEjfL9hySoLFs44+Derqct8BrJa1tRJuk9GLBgrUQcag4NHpZS/uumMHYrYiDK\nOGle1zthURPP8Y0TqIn8yaxLgpqPSZvWGPENzqiRl/FsOJVJo2RjEq5KJkc+IFr11vmseBHoOviO\nns0DTVO0uO0ehUHHPbh/wdT/HSS9Xv9w1KcJEonk//tFDGAAAxjAAAbw/wJ6vV7/dPu/A4NQ8wAG\nMIABDGAAnyIMDt4BDGAAAxjAAD5FGBy8AxjAAAYwgAF8ijA4eAcwgAEMYAAD+BThM5HV/MvPMzvP\noKgj6GOeVS8uQ32IWXCOClDSM1MzGxatzTwOyESzgnG9HOui9ZtMU4ctx+zYpkTMOPUMwb7ArLz0\nvjpUWdZl2XoqtEUhflvDbMFwdhtSmWhKINfitFG0ziv6UUQIAFBRMgvOpihiYYeZoy5nD3/4J/l7\ncPuDX/3vAADnonV4RFP9hTEnXhLvLXgt8GeXxTr53B98rMZzZmZvr47cxYti2komdwc/GRNDJO4w\nNbPuOY2dcdYBBjVHkbtE3A63s4h6mZ1YHWeN6a07Enw+z1aTLUsCqQbpo/S3YRWZtpIwszQVtZNo\n3GKGdPagB9/4t//gHtz+9W8/geg+ZlEGaqzVbK8qcfcE97NzTYUn2iysz9pyMNmJ0x0T/3byQhzd\ngGhS3+yg6WDt5wQ6uJPgeg6WuS8R/0coG0kHxbIb+aeYsZ7+UQQKGzPPv1BgXsNHSid8HtIp0lpB\nV8q6S6fs+6hffwYAsGtiXez0iS7+4a+9cw9u/+x3/znuDDG7dXrpS/zj4rew8/PMXixfOIhnn2AO\n46XvNOHcz8L7yIMh4haawc0d1lqPWdVIFomnxTCFVJGZsmr2TcDh8BHczjC79qdeHsGlvz4LAEh8\nLg9Llfj7brL+stQOYsXKzGA/FpGZYUMZ80YYsuAwAEB6h9OqOldb+O/f/eN7cPsnf08LvZdyVBBz\ngi1ZGfRK0ZijLkdSSlr7JU1cEjNlH06wgX9Xfw4XRdP8casFqpxoWaqcRLvItbUeojzuReLodll/\nPanRIAo+K5Q14qCBMh3Xi3aGZTsaRpHVnFiFX8/M5dJGBhgifc1d1r8mStP4n/5s5R7czvz+d6Fs\ncW3yNH8j1zjQa1CXyIJ7kEvIs6m9HWhVrJu1iMYcRZUTzSh1RVRhwoyCdebFpgxtBf/eipDPtAEl\nDCnKdNKwDb+We5Wq+lBOiCxh0ZaxanbC0RZtDuUu9ErUUbWSBtpxZvZnUMGBMJ/39T959B7c/s2/\n/HlM1UTd7Eoc6ZeYtRxMMLP4h095UPwDyv/ofA4qCTOKVaEuLEJGlnTM6j2yfxM9kVV/ZbuJbIzv\n/YXZHTSPcD9jGfJD+XIDO8eHAQBffd+B26OU04jpQez+DXsaWOaZhSwffQ8BxRcAALsjUax/h3vY\nMdYxKmOm/P/wLz68B7c//ufz0CrE9CHDGuJ+CofhJitQIg9YYFEQ9+JPyrCfZAa5JCpHI8XqApWP\n58GV2AQOBsVErLMVNHzkqfK+NtZvcb3zTuqE7VQCRr+YH9wpIwtWx9gttxBJ8rk2F78brqwimBUz\nf11xxPZYyVGYUEGzFboHp/8nGHi8AxjAAAYwgAF8ivCZ8HiHA5+0GLOi1uWSTP4ijMICShtU0Hbp\n4diO0dpqZmpQiObq9aEARnO0QnuWOpIddiJpiq5yoztNFE/SsnekbQiI+ja5tYNwlp5PTzS09+53\nwRPnD61qLVxipNmCvACNnxbX5DZr/lZadkxZxVgs43Zf3DqH2XbxSHAb18QIt1+QHsPCJj1L/0ga\nV9O0ivfr2Fz80QNvoX75pwEAj/g28NYDtOQs4QfxdJm1wFHRem9nPIsj26RNMRhG1sF60dvuTXib\ntEI71/n75x2/inydNalueQuJDC29TrCNYoEWuHGN9Fj+jRiOlNhc3Pj0AvBv78WtOKrEyC0+T+ql\nhdqZH0dwlV5JNtBGtUua2ZRNlDohAMCZa1xXaqYJn0GMzisbsLVFL8xrAyJW0ueVCdaQPnPtKdQn\n6Rk1zlzB/Mesb8V8FIu3ONoxrCF9dfUWbu7wXccU24jpac3n5vQ4Impdw/O0gnU/6G97WnM/j30P\nsKZScuvP+N2nn0Bgje9wHl/G8DW2A1T/3Bbe+eZlfpawI87RCQtuz9BTXvjL83j+MdLyWu9DWJS/\nQbp+m5b/1s8BDcEPty+uIefhmEfTlQaaZfKGeop1n6Fjp+G7Tb7vvDIG5xVGNfYO3cLB89zPqwHy\nd3t/Hnj3Xtzaeg1a2WEAgP066Wt9PIhNNfkP22GkYrT2x3tbmFLTY+3ILwIAFN0ZHPCTflslPw4M\nkwfSil3oCsS/K2Yuj6rHEXGS/yYKWWQ26DUf9aWQUFFmXQ16VnqvAg4pvdVs8SgURf7d4XWh1SPf\nhzT8/VC2//xrF4xou0mzrpoeaKURQ8kvatJbelj2+N6a4SQsataJhoX8SwuAzMz3quBDJ0Z5MIzk\n0S5SlvXDrAmuycaQ91PuFXkLamIgSquWgW+C8qCqEnd5swOdGBaRTChhUTBaYgqoUIhTRlR6FxDs\nX3sNALLNBv7Dlxkt+dk5G0LrjCzlRNM822UVNubZie2XjU38H0p688euTaN7nDhbhNjEztcRnOd6\nvC87sf9b1LU/ebOASop8ENiih+88mYA5QU+v9MKbuCo85UAvjpOT9OIlD7H93n98cx8O9Bj12Gv2\n8BLIO2MPf4y3vme7L24O+y52Vfz/htkNaZvRptYkdYJxxYuEGAhy5Og8LsVZyz5qVKPkpAx09pMn\nZxdXYU3xb+ovTqCwxfrrwsZD+PsjjBx9oBV8ZpiEw01ekn6vDfeL1BX19GEECpR/Y48d4dYUsxh5\nke8oxVuYtfDz2l4J9aDnvrj1g8/EwdtoUkAU9RZMNgqAWtKDSclQSUaWgCXOUJCiSAH7UzDvAAAg\nAElEQVRKSr1QiEkRYbTgUoih5VIdZn3cwCoo/F7FLLbl3CijG8jL+LkdG4JfTGSpqfnd9l4ATbWY\nzuGRIdvkxu9LVZES1dF1FX80rc1hQ0vG2+noANzbNqy0y8YaVsULWNV/BADQbmpgOELjQBlIoxBh\nm8cbcm7wVP4hbKj5rIvtkwjc5EHW615BqsZ3GztUcCcLV7A5SUX8NwsevHSM3zXcOQCJg0La03Gm\naKu5jtYBCti1jwCDj2tTf28/bJ9j6PquhIe47kYBNx8j7qqPjt+DFwAYG204zvAgu/4jhvVODe1B\nIua6SiodpHaoME+7JvF+mofW0jQZfbx7Ch91OC3ktMQJmZvvW4EahhYP5/EUn7tgLGEqwr2vLh3E\nqofKyqyp4lERfl/u8XAbGvsYCFHwcnI/vGWGnVp/lcN5K/nLdIO0Th8OAa/ei5v00I/hdJOWhVnR\nDvP2H2Fx6L/l57oUr8hDAICnrAokR9l68FCQRfVXFUZ8IcAD6VpwCmk9lcbRsAU/OsyD/AuqMwCA\nj2/9CbpfYH/rh9t3sfwO9+LPHsnjySsMV3+w9LMAgDnZNkyrVKKbJ+rQbYnnjsxgr8EpN6NLNESm\nTt/GX96LGkxjQyiJHthWCxWRpFiEo0t83EYV6jpeByg0AcwoKA/rSww/txwRKCvcq2Pju7CJUaSl\n7ix0bX7XpaAh5697sZenHCerHkxOiTaFih7mCtzjWIcKPhgzIaGnAZKcvQ39TbaJXCzLcXiSiv9g\niAfhYrD/pJt8r4BGjA0etFnSxietIacXzThyLeyRXWDvhGFqcvHxLnmrp7ICaoY3pyJFVDU8yCqN\nNJxCAUc6fJbHuIOcQ0yKknlhrvAg0xsU0Nqo2DN+HtKV6hCqNa5ZFpCi2Ob/Wxa16Fj5vkC+h3yp\n/yQwAFhxXcN0kUbZ4vstqF+iLGf0pNMj33sDs/+Yoeb4xxX81B020DF7W6hfp4Og7LGF60Z1Gvsm\neCgWPtTCfIy6qXjUAGmOLWVmKjRgQnU9zII3Mn/TgsfzFQCAY/cHmJPTuHzlVf7+36gtWDk5DABI\nfqeI8ecYXv7JO6/j80f/KwDAP/3GvbhVunNwKshzhUYPag0dCE2HOsqwfxHdMum+lezgWQNl6wNJ\nGyNBbmjou5TT6YAeld6EWHsHZlD+lVNevBP7ZMYwW+ROKfegrZ/ie4/aYRXNadQH1uCxngEAyHbo\niI0YelhdEZPFNmJISOnMqZp34ZL9p7bOIAxCzQMYwAAGMIABfIrwmfB4PW56ITJDHT0NLcF63QO5\nlNbxfvNJlDX03uoZWscutQ5VNb87W3WgIKGl12z3YFOIpKI2rcfwuAqdnAjzaIegaou5t/uayMYY\n5vZLaDW1DraxG+FzA94xKOMMeRTMciiTI+IzrSZNfQSTXVr2e+VQX9ziO5xsEX+yjN/5mO+6XN1G\n4i5DVLnSGA55aJ311mihX5JnMDpMy0u3O42Qllb+r5mO4qyPf687xfCFWgOOAi3Ff/DyNnp6esKe\nTA1hkTBySkw/+uZ7fnyhQc/++L4VvDZDS3C4ZIR+hHtwxkCWWCjJoLpG+hWOnO+Lm2VqAuVtrnls\nhHTI2oxwbPK5qr0G1AHi9v0jSrje4fOG1fSAGvU9HNqlB58c18ClEck29hgkKYaVR0q0NhWGEeQS\n3Hs7Uugw9wpJxSh2FfSkvUquQf2hDi0TQ32RYgdjKtIq8lAcwTYt/7SPv3HoHwFw7xSfyGoBM2ZG\nVEofMWTnKY7gkS/wWe/dieCInolapq+Hcehp8tfW2xzCoPDcRWSXuD+p38V5FSMc64kafvo68diU\nngUAzJ9W4NZZek5f69gx3maoMx0bw+U6+XLWS89MkvHi/cfoFZ58bRrx42xfaFztwmDgO979GeIz\ncy19D14A4KgaYKiS1gotvbimzomqlOGycHcXVj0jESn9achv09u0HyMf6jIh1JScU90INBBO0js5\n4axgOcboTesZXgklr+mRE3NNdS0d0CT/FRIOVOX0WjwP8fnRW1U49CJ5MuOGbph85IiWURSDI0Kt\nYQBAvd1/OlG7bIerJaaTSSnnm+oadBl+X53xwmalfFecZhRa3AtTnJGbjmsL0gbpUByVoiamFmVL\nXWi1lLNGhXopUx6DRkF8NFY3qn7Km/N6Hho1195p8bu+fA+ZLve4bUrCIUK3d+0VOFrc4xVfCQH1\n/RsfjeEESjuUi9MTc7jw9rcBAOmkmFs+/Qx2rzNKM6uZwHnRjvXz81W8omHk5J+GuVd113Mw/ZB0\nGr2ZhuJz9PgPDGVhLZHGm79E3KUJOaTL1HnXqifQfpD8l/4LA0xiKEPdzsjAezIzvrfD5/7W3EV0\nlkmz8unP4/vlN++LW7dbxGMS6p4/7qxh3xrD3fv30WMOaw4DMupf2aYRb4F8NmPoQnmRfG6YIx0/\nzG5idoh7eLwjxfYI2/qmpXmcEkmprREmUa3JFbBbqIsXQh14k4wabe7sR9rH900+Sp0RSm5h3w5l\nM+RvYqRN+ZYpr2KvdeS+uPWDz8TB61VxGUXdGAwNHqARyx5UWSroQq8DrZYbMWSigKQbMhQNFKa4\ns4uhHTJyVRdGNU/mHdIxlCUt5ZFyi4zDrhxDFYaiQ9IcXE5q8FqGB3tHJcO0mcxZyuXRKDB8mTAl\nEZRTWfvDFCbt/hI2OnyWO6kEcPce3EIOhkqOLtqQsVA5O3/qEJ5bIG5nVRKoxsmoW1Eyw5enlpEp\ni7B1YRLzs2SyZO8CsEEmaFZE+ERlhy1K4VfbxmCScA3X1k9iRkOa3ZA8DABwPP7X+EGJB4c89ygc\nH4i+rvuXsPQ1MmdgmoyZjUsxcowHmeaS/h68AGBGtY4baoZYZU2Gj92dGrZVXE/N0YNZT0Z1bXeR\nucM1W8ao7CTaDvwh7uftnBvjGoa+Rv9P9t4zRtLsuhI84b33GS69z6zKyrJdXV3Vpprt2IbejIYS\nJWEXM8DuihrNzC4gYBbYxWA5s6ud5QiSRhJHIEeiyKZtS7LZ7K6u6vJVWVXpfWRGZkSG997tj/Ma\n2GVHLbB/iB4g369AZsT3vfvefffdc95990Y70Fr5+QBcFA+kBdg87FtuzYmTZhqVhW0d5GZu/p0W\naemWr4KZojimGJ5DqCBoxnIfcirKcjxHinVXOA6/2ZqtYWwpQgCAa39ASun0tyNobtMQTKRfQmOH\n/bmcPcBwm+NneplGKX37CIpR6tRm6CbCL4sKKdVHEQXPSpdrHAff9j9Br5LvuqMMQC3yPg/KajhP\nZguhs3TajN8JwH2BBr5j8OBmnBHZyvpZzE1QNz67wHGYfsjqVmYVaHRoVANWOqkH1V2Mlnik0FD4\noEiIfM+hfRhnebYZEqU1VUefxsllPrw+r0O8jxvZTRfwyADlWLvOdeGoadBR0Qjq02EkRzgv01ot\n9A6uI0+Ist2sGFCXUQZjMYiKnkZ9Xb4KWZrR+H1+bgByuQHAnY/J5mgbkBoS0dmbXG8+hRO7RdFf\nyx7MalbikZmraAjHryjj2s4nB2BrM3G2seWCvsk5MluUyGdEGb0KdcjjbCETFccYfim0e1xPGVMU\nB3bSxwZRND4VKqIuAIGpCNQhSlzqthEXUd/jOS/CisjHZPqovWKxYP4kHfn16IcYP0rDr/8Vx+F2\n+gM8M8YN1LnWg5NH3gcA/GjvZXzeybiC115nacLCZyOIXaD+nmya8COTqC5UbGJEz3kpVzjW+fuj\nOJ2iI5byevB+iO+TSOz48CIjy4/cGxdjfQnDMdquNzqT6DjoMKVDwFnNE0KS9Y/Jpnvajjfeof4N\nqo9AfYzr8t4Cj758j9axeYPjZDquQN8GbaLF0EJewffpFdTPx/pHUQD1d3engDr3Twzf1yM2SQeh\nOc7N+vivy4iO8NhqSK8DGjxO8Q/0QlUKAQDWQjwieEzvBxrcmPNLOqiGuNYPGi/ipL17PvuHtUOq\n+bAdtsN22A7bYfsttk8E4i176KFLNBVUDuj99kYHke/QY623alB46HkWRCSuVCKBKUd07FfJke2n\nh+QP9SDaR28yLe7u6XY0kPcSEatqBjT1EfEMPUxxERltIVXQlu2gaiU9YiuEEQvwvZNrNhSN9ACb\nYH8jEQXCg/xbIN892CPgpmc1l3Pj8Ta9osK1bbxaI9I7qahg9woR2UiQHvHKLTc2g+K77uvw54kS\n+upnMNtDCm/BQu/uRO4ZLPTyu7E3a/B9mt6b98XLiN4nWu8xsIq9SypDtcmo0Ph0GNE36fkHggVo\n/URnIT/RiWGujvbj9ziOgzNdZbuZP40BD+doVwRGqOt15M1EiDMHZcz38h2GexlMvsQ5UmeIMhLo\nQ36WkM6grCAlKvTst/LQK4jcA5v0gm0TcngFbb2dNWOvwrvPLn0BBhHIsqUOAQBkuzqoBymzZ/MC\nGlreHV1J2DDY6gUA3JfwN7Onutc/1ZQb+OUV0tX/fISeduzZE2hkGESyNC/H8L/mXEjfayMUZuen\nUvyN78t/j+W3WKv1tc/9LvzfoZfvvqBGdYfLbjhBFLeTfANRG/s1JG/BLio9PVe7DckmkePoAnU2\neqSJ+U0RENUrw0yE46Mp7WLqLf49pSQqjz3avfZI1VqArUNkuaEictDJwrDVSFEr7FLUrhFpVINj\nKIg7qeeMXEPNuhbtYerZfqaJkoEIcCJiRK7BObZXifA3BuZhTfG7KY0GpgrX5FajH8oi2aZIlmMz\nGdQjJIKOJAo1mmVSxTachuRporDkpqiSU9vrKlurnEPjDtGbO0gafrGziRlRQzYHK1RmylNMeuBU\nE8VWnbQrRgWwmqV+PtqSoyFo6fDyAFSzRNLNFJ9V31HBZBX1gZs70GrFXW25E0kuZcS1nL9xUxoR\ncY83UDNh3cgvNKTHIBHF61OtNpzxfFe5AOBPpp34ww3qdVA/hsQBx0A//L8DADy1V3FbIPCIXoqX\n2mQqOss2LFj5jvjzfO9sq46mqP6U0WTwWJV/v5a9jJhYn7HXeZwgH3iAbyloH6ffex3Xs7QH//bR\ndXzwDtnB+yVR9cgyidrzrMgkXTXiswdEmIkXr6G2VHiobJWCBv0zZAfzWQmKCj637aCO3NEtwzzI\nkOzB+1rY/GTCtosaJKWcg3qdejYGKyQ2siW/zkswvklbqRt1YQH8+/gqYXAmGMeOOL44MVVBLkI5\ngs1fYzNARjVbZEBbw7qEgmA9zc+cAlK0UUOdd5Cs/1cY1dzsUClk8SAUmqsAgHK5F1JxjufwFVC/\nTYNmG6DBSDftGDWRzulkFVBXuBhS/QVYhfK1TJzoqtGNTpWbV09xFxUtlcxVV6LHQ1o0WhBl3UoG\nBFQ0BNeadhjv8X0yWwUFIzf6niAn0ph3oVPl31qG7tcAHt/mEH/gl+F2mgr72XQU3zlKgz9fBsz7\npGnU97jRXR6Koc/KzV39gQLDR0kJrTmiUK6TPjdPcaO72vkRBtPc3FJH07h9j8Y339RBISIClQc0\nokX9HO70c/P66uttlCY4fvm7x3D3OA1i8CqvV1RfWETtGssUZgt3u8rWW0ugFuWm5m6IKERpGyNy\njvWNoA/HNrmIU6PzWLLQQVDu8hxa6rmFR2s0rvXELPI1bmpnRk5g4RqNvNLJxaZaM6Cze4Gf/beg\n04mNIbGD5RwpdXOBFJh/ZwJLcT5X5QuhFqE+jA9tobnP5+pUpNFDv7Z0le2o1gzpc9TF7RuMeiyE\nt+H3UA9f+Pou/nbuOD+Pfhd2cKziOv6m+s4/RTryQwCAcdqBzh/yuY0fr6I8yHfa9KT9Ou4ZaI2k\ny6KuQcjNoiTfm1UcH6Ox/vUq5yU3MI4Xt3gNaSc8C8VJynmzGsTzNRq8VTc3HHV7tKtsVkUV9TQN\nhS5A0ktV6ceqnUa/J+OD5AlSdf3NKDbqXC8dNc8S++Qt3BaOrFOmQFXD+W5BAkeBjrPUKKI85ZMw\nD4ryicMKyN4mVTpRV0Amzk+viSLq04k82m1RaNw6h7iPBrWc8cAVEskV8GMAQH2ip6tsNUkKJSWf\n0QxxzE4FDNgq8fjJbpejleCYNg0l5Iu0PcolkbgnGIdXzvUIXQ2SDjf63v49tKqifB+XHtSWNEwZ\nrqGMuge1GJ3spM+N5hY39HqJ/191aaAWm/FWfQ/NFm1IVmqBNUnZyu086u1gV7kA4AuGLD44oK7X\nQ7/CmdPUucrf8az3pkOJKS/pz+n3prDyHOczb72PE3VRJs/KzTS6GMaInvYhXjyOhlhDGvWvsHDu\n9wAAbp/YCKV9OCcSvNzoexafnqauhjZGceRPOa6teyEAQPiyG9EPGel8qryMFZco5XlzDPu1YSHJ\nP3xMNrfCDLmVtrJWvYexNN+3JqP9KH34KEY73GylT+yiucikFqWJXbjStN3WBN+1XynDtE476J2Q\nYSfN9TIVc2L4DO39zoG40dE4hzN1OrU721t41Pt5AMB2fhvmA+r4Ude3AACB+WeQHCZwqWb0kJio\nG5XSMzD+/9t3D6nmw3bYDtthO2yH7bfZPhGIV+RegCRaQU5OakJitMOuI9JTbftR4p+hEAFKydwe\n7KLIclRSx5RWUFDxKipe4YEX6fHZB8xou4XXHjdAWebfjcYO5iP0qJx+otzUbh/kJdLGjp4a5Ep6\n7kX7PEoZoou8g8/PGxrQtPgsbSPRVbZrZpHMQPoaWgFSvwszSjwW4dAnnS5oRRBDUkdvzHWlH71/\nSO/6husejrXpjbttTeSiDKzZWCNaGDDZIFkmstH4NzAU5R3Rgd7z+Mkg3+fLccxu67w4vUivfPHr\ncly8SQR6+fkUfv86+5D10HW7f+kpVIIMJOh9yOVwgzQNjZZe7IaUVPVKWAlZL2mckV9L0OkjtVOq\n70G1TSSWFIEI52wzuHyLlPHmF3+OyXXKHL2ah13J7/Qo6Ykn2w0kRFKGgKUf0jADlKLVDlo5opZN\nPRkFi6qAUpDjK6n50bnAqOy+zSOoD3Es5psMzmp7P57mEwAy6veR3CbSPRkg6r4daKI+H6I8KSe+\nVmHSjPn3L6L/KGmnyk0qqmvwGt7tJztxbs2IQJ3Micr7PpZnLvAlMREd38xBWqBuud/6AZQv0Fvv\noI77a0RGs+OkuxSqIlp5jrn78wXIE6Qblb6LuKvn+O69QfYikUl3la2c7UMDZGhyy+L++0gVo4KZ\n3i02MJqknsQGfICcyDPS5BGOuViBMk3UYzUvw7JNxLHn7MW+hkyNW1CBE3o3YhGyE7h5HQ4p4aLq\nWBgLgkg5lSf7E/LsYnCf341oTTCniER81bsYXW6J73Cuo9XulGxJZsRQh4g2L/q9Hs9j0Mc+5jVK\nmNMCWalKUGmJ4nUGzkWqo0SvlLon102g5uX69eSBfIEDNCHiHvNqLeoe/l6dVsI4SvRXXC4i7uP6\n9EEg6nIH1ZwYYNsAlCE+pKqpoi3SUlaTSlj6uh99AMCRqBIP1vi7noYL8z9m37yfI5194j9XsP6l\nCwCAYGkZ61IyQFP+P0buCJHw2i+o731ONR6skDUwf2kZ9j8nC/Po0H+PmXmyWN8WFHixJMX4EbJG\n1our+PXfEK8Vh5KofIcMx0aMLEFjwoBgkmv6rNGLJSefu1mdw0sSyvkfu8gmaQ0jd5dHN+qaBgk5\nEW2uh6jTbdvD2E4vAKBS68GKl+v/zBUpNqrcJ9RjXNPXnVXYfsk1+2jejffzfwAAKL+whMZtfsdt\nCgEAFPsD2BrkOGqGBrA0R9kzQ25ohziu+cV/xnEMbkJWpX6HDQnYYpz7+8dkCG+Q4bjQRbZu7RDx\nHrbDdtgO22E7bL/F9olAvJvX6Fnoe8KQ7wkP09hBuCoSxAdLCMvoTVpFZpd+B1AS+dR72jmkUgKZ\ntlSQ0ymBN0XvuRlooLNCzywyWoE/wvdppGWY++iF5sXDHI44oiWiZ4VUg6iSCAkFB6YK9Ir3JfT+\n9BINAhJ6oKWqHcDax2RLivMx47IJqxkR9HHehFSN9+pyK6/Ar+T73OK+Y995DWwNplN65IgJe1d6\nAQDrlhpmJezvBbwPAIhXH8V955sAgI0jp2E3MWT/HYMHo68The6f5Tg+GVHjbQXH5PidJZTLRMre\nN9/Hlp9BNpoZjv+Y5OeYczGgYkWcU/1mqxfSSI6LBONq/l5iuIO+JFHfvYAeNRU9yLGmAgkr5fSH\nOKat/evQtInenrobRFWc79Wm3kNeThqkESZStPU1UDKRlSiGdGiK7EEaXREDRqI+aUvc+X1ZhWOv\nEXHtTO+j/69YSKDm28LcAOfZVxE0i7u7bMXk1zFpYHGJkpnerGW/B1Yj78oe/MSEseM8J5ocfgSp\n7xNlNf6IKDP0Uy3+5SC99fueON6T8BneyCt47uf07G9IOWYegxWl60y55+0dRUJClHBx5gz+8qPM\narcY+HT8lSqWVERTwcZp1K5Sv9ZOVDGxwy8/+SWi5EKo+51QR78a0iRZnaE+moB2QQOdm7qlhgWF\nIf7dv1nA7AN+t3ZasDSlJppVohqlswVlL9fWaC2MTIPzUhMxD8lFORSDnHftQi+UgwyAkb4PDHoo\nR85AeT0pN1LimpinJEGiwPepM/0ojpI52QoTEY7P+wHc+5hsMmUbUQEa2xGBjo1SWJsMqGoUXUjm\nOS8nXHXExVVGpZHfVbQlKBaFTdBvI1ilPBK00ZGyn6pJZnZyZpwoFajL2gBQFNfDckEzzlTJ+uxL\nibxiJgfUJepnOymHxi6CujI2lAXadvRrEDF+/KrNR+07qjTaA5SjpJ/BXIXMm1EUKJk878VUhuzO\npVwQI+rnAQA9U5fR2OagRMuU81OtDVx7WmRhut6DpUmRLjT1KhphFlJ4zMdAotBzLVy6Spy62v8Z\nPGfg2sp7KzAWGa8R05ElOD8QQfUS18C7IzYkvRy/seRT+JbnzYfKdjQcg2Sctn0legKJDm3BhRjj\nPu7uTmFfzQIH+94W6teJiA8sVhSmGFeR+y7X5jPn92CepW4t3jNjoI8xE+p2APZBynTVwTv4cm8T\nVjnXUDoFZI5yjrSNBBxboiiDicj2/cazGNCRadn2fwBLi4Eb5vQSPHblQ2Xr1j4RG69jjIreaI7D\nIwxhqW2ERS9SBEYtMMup4JmOuI9nb2CiKtLP7RlRsZFCsVkc8CyTJlvpcEDthQYUEiq3K+uEpkzF\nSOn7oBSRhkY1/1+U+tFM0aBWNA04CzQgcXkTzX4qp26LtHKnVUPEIi7Tj3UP0vlAz6jTk0olfk/F\ndyxv98EAbjgTn1Fg7XXmy11vkRrWtpexV6MBGu98Dio3F9ZwVArIKX/5LI1hOqaAr8SNVTO/gBt6\nbjJf3NrB3bOk1wxBKltj+CxGfk5+b3Eoh6CdhqL1zhmc1NOIXYqSrqzXMhjcYr+O6nu73JgEIn2z\nsM9zvpI+Pje59DvovEIK9uBSAzPibuP24DTGYtwgo3YumnJ1HQOTpJ9WFTWc3KMBDzVPQL4t7mtq\naLhmdsdQmKBj06uyIJ7ngraqiogt0Kise2jMmpcS0NtpEAwHMkh6GQC3MvEM+kKkz/emGalcW7B2\nkQxYOv9NjGhJfdvfo4GTzC6gpvr37Lv/f8bKNqnt4aUfwvcCgy4exDlXlbO/gyvGVwEAmn/oh+0l\nUVmpkMcDHfVd9gH19MqXfKhdoLOyVH8Vjuu8G/2z9j24vQx0WX2Cc5mSROEunAcA3D2Iw+Hi+KtC\neUBCZ+6W+kUAgP6Ks6tsbbMJ9hzXVmmNjk3T2oItQUNTNe+gM08a8sMeH3ofoVGR2Llhae9egtdJ\nanEl2sQZOZ+hqMrRnuV6ad+hfuZNUQy0OVflHjXiWeqv1VsGMnR+Qhrq+p6hhq+nuKEvKi0oevmM\non4du2k6jNoxOhM3b3W/f51Rl2GMsA9Wca9zRNtELsM+Zht7GBWR+Nt6I3okdHZTOhpX/0Eeqd5e\nAMBYKYKaiKxuynLoSEVCkhSPECTqNGAVNqphRafATc1byaESpP7qyrQLzj2g7WK/DjIJGESwk9y1\nj3pdVPDJNODNPDyBxqQkjX0VdXLk0mX0mhkItLclgr7Oj8BR5uY054tD5xe5y6+08d1jXwAAfHWI\nm9A/1vah2qWTXjWt4nc8XOELm5O4F+QGeU7k09X9tRsnTExDevxBD745xbE8+/YijGN0Ir94jOkg\n/8O1NzHyDdq2l/7OBhzQYVw1DeMPS9wYX+si221TE+MHtBUL1SU8ZmGa200LKfLe+SrsJ6nriTvT\nyEto71OWDdRDnLu4h5viY1I57m9yXRuOVLF2n07BlHIJG8JJPL3KMW9qTZC3ae9b5QDOXOW8bD/p\nQbQhkvgIB/FG9B1M36POBod7ENNRkmQpCFu+u/1/WDukmg/bYTtsh+2wHbbfYvtEIN52kp6Mol+K\n2EdZ7iQZFBv0C9SVA0gV9DokWqIbc7WOxSa9l/ZEGeoc/9/qlLBmoqfsN9CTbqUL6DhF2rp9NdJD\noh5nMQpLjV6dqkwvNoZVtIsi/aRSg7SNVHLRIEVbQcRl7ScaMKQVWJfR03GEu3uqT88QAekvD2FX\nxee6JiUIJXmH0/bru5AHSDn2bjClvenZ00jdIx1+tSeOY8eIAsx7dih+SRR/XWR0KtvOoQ/0yo8M\nHmBEhMBntkPQieo6gR/8PgDgcu1n0DxGpDJdUmEnyRRuO84AnHUG71Q0If7e5IXlgB5qbqd7AJJ7\nQ47OCaKHgXvM3KSa+hC1TSIcbX4DaxNEBLm7K5DZ6TXHdskYeGHHQZvv6Lm3jqVeopjF1AbGRaDU\nxjGisOgvilCsE/WYz7uRVtOLTdR08JnJOmwXOZeOwSJyi4L2m1SibuJ3DeUc2rOkAE+WOYdh95Wu\nsvnbs5DfJXuQNdGzfd5/Ad9c/3cAgKc39Lgcp/6tDAXRY+Pc6rNE83Xj93H8fSKKtfF59LfZx2sV\nFZzi3UvfoJ5qUnaUL1PPPoULWLjIkkIryS/gsR2Or7RHULuLX0BGxTrJvpwb9nxHaVUAACAASURB\nVHNkVCpv30fNTYpwvEy6cnN8B+jC7snWMril4xpQCzrc315DTCST348oUIO4Ohfbg0NcxUt4icr1\nrscQDXNMp+t+zA2T/hwdaaKxqhSfiSjerN2Bd6sXAGCaiEFap5z5uBb1Y2RqbG8Q1RwdseK6jPqp\nU66jmmMfNY0XEdOTfXm6I46aTjSBv/64bM4GoBF3tWtV9mu3pobeSPRbhROJjrha2AAiHa4dtaiE\n1HHGMbgvzGJBjXw/GZkDvQn2Vf694wsBAHIHXvQUiWyltRAq4qhIorQhmqD8oyIzWqN3Hztqzrsv\nm0VGSjm0e0Z4hf7eaeng0zk+LpRokvek6BGpYrW/58b1bR6FNMWVsKD9f8Tq+h8BAM6+vYvhl8nC\nSMILuOB+n9/dozzaR19E4oe0N4o//iy+/12yVEXtSUyqiGgfyMiySEZ+juS1ZwAAc3+8jd/997RN\nv/rdFE6+yit1i42/AAAMjo3D8edE4Lon34O/QB33qdI4CCseKptRMYmKqH0+HtJj6z5t7UiQfdlX\njOIXUc7h6WYZzSoR7aY7BbuCa6RPQpp44WYI6haz9bU678PVR7sRbydhjPFus0scsby9U4ddSnas\nqtrB6qfE3uGMQ7rEPSF5j3N83tDG/WHuVY5/HEFdZK7qMa6j0nvmobJ1a5+IjddY5yIvKnMomoVy\nbuzCICqkHATLcEaoqGURjRY+0KPXQOXeWm5C5xFl/1oS7GlIOWazvQAAlTIOdZUUgckdRXGDG4Or\nkQREPtOwl4ZEUlUjlhZnXZk26qIwt3azjLaTnyNZsYGOSoEE+5isdI+ylDzg5GSbfZA3SLWGLmnQ\n76dS11e2cCrIhXNthEanuHgaX1FxQ/hFwwrlAimqPWsM2q/yGfJNGvjhyxsovsLFtPHqUVi/TKNd\n2dHAqaZCTfh4n/SyRQ2vyGfcuPcoVI9wQ53ODeG1FW4uZ810AnKWMgrUURRXN7vK1turxd6uyIks\nEo00dk2INkkvdRwbsJUp04bPAmebtJTeQ0q9uL0F7zo3y92gBLIezotqRYJikGd6pncou29Ciswg\nqbxrmw9gXeNiqmnVCFm50fSIMmie1/owP8hzOG27F9khftdUW0F5W2zkHRo4baZ7qrfMthY4wV3r\nIEYnQGO8g15QP+dPptC3zQ1wwiSBRxwNvCbnwnzsnRTWTvBzsRPCfFyUR7M8j586SMvL3+XGMOa+\nghfkzPF8ZUqNjTLpQEXwdVwe+RoA4DPbPOZ4tfRtTE7RaTty+S7CTjoSGscZ2C183rXvU+fkI093\nlU3nMEG9yQ1SKxJRbA5G0RAR1B6fBQaRyCHXMiB2lA7GsQek6V3GIFSj4t5x0oKRHOc+M6/Dtpzj\nuQs6iNa6CW0/+xWrTKGcY1WYVKOB6TKp0IQ4W77aSEI5SsNXf8OOtkyc+fs2MNzg+G44ROKMuKur\nbCWZFRJxw8BooiHWZKrYadNWDCvCaA18lOymCqWgfN0GOs71SC8qbsoQhhGmfa5vT66MapBOJCJ0\nGFqdLGIiXak+2gt7jOswN1JFn8gGk57h2l47sMBcJqpISWTQygTlbtlFNUuq1NnWQFl/eMrI5gtB\nvL3AmIkn589hyMJNqSbKbTrn/h2qRlFJ6g/MsITZH88JG0bXubHetHFDaywacGSA94AX3vwFFDaO\n53r7B6ipSWH7rLwXnrOPQF7jOyr/WxM7j1Gmnk0v6l/l50yM46ea30fNQRC08sMy9j5PivtE6QeQ\naR5/qGybgSLk21zzd9wNnNXxufsqAptU6y5c7wogdkSKR3W0j6/enMT2EY7DVIeOiGYEeMP9twCA\ns5HHMaPoBQD83F6FLErb/SBC/ZYOV7C9SNmPbbWwIO7Nr7xtx5CFx29Sx6c4zu0EWiKf/PhQGXeO\ni9KsmynUHmL/H9YOqebDdtgO22E7bIftt9g+EYg35ST14942Qy3q7WZdaqS1olh8vI1FFWmwvii9\nY61Ri70qPTpFGejk6XXvqAF1iSjKYiRSq8YVCDdEFit5A+ZBernxpBHpA3qACb3I5JPLYEhQwjvq\nFFoWerdNrQKNXQ7X+DgR3dqOFo1tIj5dn6qrbDsZ0j1juqsY6CNyWvAWcL/IYAarr4lshmioHuM4\n2EcUeEtLr1v3nh7FING+qu3GHRH0cnaY3qFhvwH/e/SS29Emtr/N/gxMLGPnp/QEb3+WHr7i9a9i\nyUl02L74j+hdJU2kMUtwRk5EIBV3DdsqLVp6IofJmhHf7yJbPajByk2RUcnIfo3LbsG2Lqq4zH4d\nVRsDF/piJjiiHDeTCDKRZ5X4qYWfR3J7aK0SsT5mUmKzzWw81wLfAADIHDlE71POEzIr4h2yGtvS\nCJQeUl/WB/zbml2ByCCR9oWdEvKz/F1uT43eANFbbJlotNHojpyOu0rQZsUzwIjjnRu98Gfoq+5W\n+vCPScr5x6UF7NUZTaopfA4AkPR6kEyyP/62HdlePiNl2cBTfymihE9Rf9X3XkTkHPV3IOHDF9PM\nLnRvZwdGDVH1B2Git5efHcDeFaKeO6enERGRy6qjNyA3Cl08Rz1yCGruN9tm2w3zGc7zXolrLJM9\nivEWn2XL11A0EY0abG3YBTKN9ol+l1Vo3aPnb2zYELFwbWVSMnj87EN7lcyCTC3Flji+UJgBl44o\nIZ3dxrUt9kGT5prX2uvoLIn79oMTKH/ERrR6oDdRT8oiOrdk/njtawBoNdpQWvjc/ZagDdtV+EWK\n1VrNhXKY75MZC5CLu7lZFVFnsVBH9iOaXZaCzkJboS5lUCiL4uo1rseSXIlam7pnNq8hLI4Q0tEY\n7EpS+PsF9lOZViLf5H1TS7wOiZMIPrerh8khik+0q8h2Hk417zcDeK71MwDAu32zuPBtjsnci6y7\nmzWOwbzGPvhXYiiKqlE3kr9EdZZUqCRE5uTG0TfQH2YfLjoGkHuLet37FTfmlxigJVWJowvXrxC1\nciz/yfBTWL9BXV8NtLG5zvWjW+fYPC6pY3NUjOV+Hw4eUH+/I03iyeruQ2Xr299CpMa5OFoPI7/O\nY6mUOCsJqQegi3LeFPok7umoBxaXCfoKx08ZIzpODlUw42fEsctyCXd3OJ/ZqwmcPCcqf21zPxlK\ntKH18RjjbtOEgjUEAND3F9EsU+YbKcoQHBhFapuI+Cf6KCaj7KMsYAc2ow+VrVv7RGy8Wgk5+n1L\nG2E5B8kcyyEnIVWKwDJMIlQ/LPK7SvIxfBRkaG5r0C4JBS+XIBPnnGlR1k3qL0ObFSHjhhqqIioZ\nqjoMZhqK0j4XxV6lhbqOG/dBs4I+KT9HSxJYdKIQdkhU/rYCHbcodG3sHk7ud9GY1cpO3F4mFYKw\nAQOjpHmehg435KKMW5QKu65XQaZn3/vNasy1SKusVz+HF9VU3swdGt9deLFS5gY7ds6FiqDBbimr\naGh5znF6jcqbkbyLuE8knkidwLqBm/CRmysIp/9bAEBvgPTKoMGKvTUavhXFTlfZ8ttVNHtIdfqV\n4iy3cgbbPo6TufwGmnEa4FHNKG7puOlp17kZ95pMmN3n3+JGFwoiEcaKooqeDs9XvqqlvLczZchC\njEbfLHrgc3He1KEOZGPcGFwj/H05VsHYCqnm9pGLmNnkprVo20e7wE1JauPCMw92p9HvGtMYMlO2\nuE4kKNkbR2eclN1jqys4+ymO78qbDdjHKMceuwJ1vYWF7/2An7/yPFx/xUUaefQAm8PUqVr5SQDA\nxVAZ5SnOy2WtEXPzPFsebpYh8dMg1qVcFx9+WMfYtIjKD7QwNE6ju3rjf4Fk9JcAgLMK6uK1se5n\n837lFm5e5jo6BnFU4o8j1SM2lvk0QoM0bMq1NpoWLjSHg8cj63sJaB3iuMV1E5oMjyeOqFJYVtOI\n+YOcv03kYS2JzWRDi9slsfkUmhgZEwkyRqjLf708jtkmN4Zb5gNMixKghYkYHoQ4sM8rGHXfUlzq\nKlvd1kA7yTUwLDbKkDOHcYlIXWo2QSelfqodEuQEnV0t00kqq3Pwi7PubKuBzYSI0bClod7nUchd\nEVNhtSuhrfC5knYD8TjjLppOBTYFBW1NiNSlzTDCInmISRMBxG2JjlqJRFmcoZsKCIi4lG7tuDaG\nv7PymMGxmcPVM3zfyTI3yMXAdfTdoC2IDO2gUeEmMf/ECOIH/PwVMW996zZcNXJewjdG4BHB/dFL\nG/AbCRBWrnH895+oon6dOjnnWISmxCOH6fwYFt7m3A2K8/pthRy/SlG2M4kinn2Z77hvUmF5/uEV\nfA7sEhgF/R7dOAODOC4Mi+ua2JFA+3naydyNx6HM8bgmakpDZ6eu3TFTP7ULcczcYWrRPelTqPVR\njhmzGvObHJ+gSD1csOmwdcC+X9lfxIslApBYRYtNPWMaRiLUNWUBcFl4bFXwlDEnbjCMl2SoqPoe\nKlu3dkg1H7bDdtgO22E7bL/F9olAvDtZeswu9Q1IU/Qgy6YKOjl6jYVtDcoGeo5yUWPT6NcgryfN\no1TloN4lzSDpUaLt5XfkIkOb5CANpbgkba2qEdcQhTmsJWRTpAisTT7LJncjEicilvXYsbtGT9sy\n0I+MlKjOXxJVXOJBuEQwyN3NYlfZcrukNpwdPU6f4DvSpZegMjPQ6L0DGVoCjfeI+sHy1usIWOjZ\nX29EEbtH5PKSdw3JMKdMIdJiDhtdsG4R0TmuziM6Q3rpgVcKl4KRsCtrRFsbRzIYShC9tUczsIcY\nEXtgHYAmLqIdRZDaLU0OyiV6nQXnqa6yLceWYWwRHewe0DOtm9s4I+Wz7hbMkGiInN5S3MXpfc5h\nwsvgqiu1Ocy6QwCAiqQHLQ//r9NuY0ukUKwLFJxOKuERQXiK2QPsF38BAChVTuPsMtFmUVSNcVnU\nWPOTAsuWq0g4iXDKDjPsolB7rYdUc3rJ1FW2560B/FDFqPDpB88BACzDIYQvcZ6/az6G33+VjIFy\n9x7uTLFvx29zHNY0Nbxw9LOUt/MBMic57vdUbbiL1C+X6acAgP/prAlWM3Xy8ZWfoXKCz1iOnMHY\nInWmfpGo849rdnxTMCCW7/cgNkPqVnXyexiq837vooW60WvXdJVNuRXClIn9XStSfkU7iuQGf6eq\n2RCpU+8D+mn0Z6lfSSXpZZuthEeKRH+35/VoniSTs3rrGDwaoofdBNeIq+pCuM21qZzIYVjCNRTa\nUCAd4XzdbzBFZruVQd5BRsEmD6K8RbbIaJCg4xW0aps2YUDyFICVj8nmKzggVBLFKNeVu9lG2UMd\nqSar0LlCAABdXYpGQTBVgq5smKoop0RQnEmGqkCNlqQZ1TzHROsTDN2GERZRBKANJYoiPaIsn4Y+\nyXlRjxDhy+UrsK8yIDKqycHa5jFGrLODgSZt3p65BWX04cFV+kIBj4tI4+kRO75Z51hnsrQxfRtG\nRM9QtvL0n0BxmbS0ORqEYu//BADcnGfEpPmcDxU5503SvIsVx0sAgNCWAkY9de3WMFHh40UJvDaG\nkMf2/gj6APVqT+bAuVe4Tt+REIHaf97Cy3/ECOg9vIXYnf8GAHDjyzo8UhLRml0OrpyJUbTCpHRL\nE2uw7BJtKreYtlXtuoqsqGGutoTRAPtoVQ5i/xqLjeQf4c2M5tt5hI/wtsR6Tx6fkZDduVy/C1+R\nR4rLd7jG5F+SwfwO4f6Jo05kkjxGuBXqwJ0n2xY7QXsl1ZqhMXGsPZka5AWyltDMwS90FRc/JlrX\ndoh4D9thO2yH7bAdtt9i+0Qg3sAUA4XqCQ/sZZ4DtOUdFEVGkWpzBKpdnmtpffTUt5o1aCv8nc7k\nhEIE2NxvxzDeItrRKOhdNwatSO/Sx9Bo5ChERZaq7QzMI/RS1WqeRWyojahI6Nkqc2o4TfT6crIS\naqJEWESgY3tNhfw+kcqgr3s93uPP8L03Wh5o7vNdinoNFjnlaR9MQeukl7++RGT7uMODxctEIs12\nFFUdZf5xfAstCb1xv5mosrVhQFrLQC2nTAcPj9jQydQhbmDAoeCZ92T2Km7WiaQfv30WqVP0iI2x\ncfRsEqHs3iKScV+YQ3CW5zqL3+p+xuvudSOUJir+KDOYoZRHUsvzDmkpAus2kcpSuYpNI+U3p3lG\n1Cc7g806g3vG20BYFCC4+bQV56tEpndMHBNZxIcPrEQfUxv92J/m/2cK69hdIVpJOokA3HYj1HNE\nBsGxCJYMVPPAgRR3dCxmMFjqBQCkVONdZQvVEzBUPgMAkNQZQCa/GsL2Cufe98+VaE9xDk2yL8JX\nIPpdGOBVoMaVU0g8znG7tfcIDMviQq3tHIoiFeqt14jYXnp0FbdX2I8fxeOYlRAZnIjGIRVpAdUf\nEL3dHBrEeIvXhFojY9CJuc0tXMX7vdS16WXq/9Kzoa6ybQ74UcpROfoaQrZyCjEp0cB2FUjFOG/e\n2lXMm4kCrGk+L2E14MOEKL2n74Okxnn1B5LYCDMwrG+CcxUp5GCR9QIA4tvvIN4kkhk2S7AmdNhb\nYr8NVTcMIs3jQX8Lhgl+N6a0wLLFMRtwEB0qt7unVkxiC4YKz+l0BiJ0TbOEzh4/OzR6NHM8pyvl\n09BVqF8lNRFxLeKBPidqYXeakFSZOS2f1yDXpJydPFF3WppARVxrMqg60BSIVjt2GwoVLsSOCGAy\ndkZR7ic6dK7okSiR8bJW9Sgd4xqalvWhqO9eQxkA/j7sxfEaYzD+c9SOf5kh2o7NUDfeW5Ci54Cf\nk5K/h+8mr6jph/8CHR9jIowhrgtPsYjIIv+/Z/bCoiGLInnsKOxP0cb0XmPa2ntzs9iTEsWOHv8e\nPF4iyNXIfYRv8Uzeb6Uelp58gO03xVjHvoH0K/8rAOBi5Av4TJ1r9htdZKtaOmjc7QUAmKZuYCfC\neVH5uIYSngkU73MuNKZtPBbhHC9bkthWkFUbXOXYKC4akFRy3EcSKrxW5Fn4qO4UKhMcayPNINaX\nldCe5jsyIT0OhhkzMXBkCp7rZASvVZjvQDuoRmqV61ERLUP9HJ+ri5oQH+ki1P9H+0RsvCpBFe4o\nm9BZuAhXNR4YslzcNlMeigKh/LycG501okPdJajmghmlBhfiiMQNuYI0RFslaoPW9ZDaqXhWZRJV\nkfe5OgO08lwMezpOdKzYgcnCBVbTFBA9ENWFyhkYlRwum5RUU8kmxbqMvz9Vy3SVrdymAswm5qH0\ncpGqvvshdBe4wIYDBuyHaXTls3Qk9jLbQILKW5so4UyOfV/L/whbRt6FM5QZkRwy70CnJhWaLr0N\nmaBVptzvQpZkRLXKQUPiqj0BdZJjWj9bxdC7NLR3PEV4LnBBduyk3i9UnsQvRGTqyEuBbmlx0amV\nMSKSnERzfG6oPgRZnuOfGzXB20v5R+d7UWhSpjMKJtu4G1UiEhZ1W48ZMHyehisCD6J6bkoSCymj\nTm4PLyg4F+HxEUzfI9WcLcrh93LRR2zc/PMtN+CnM7LrGoMXNJQKxSxaRo77gyp146Tj43QlAOxs\nlnDEQdkUp0TO676nsfcB+3BsrgKzl9RurnkZ+V1xfDFLIyCLFfChyOMb8DcwZ+RdwLqhjGjhJwCA\nPx1iLuw12VG4RO3cf/NkHj/6OY2D7rwKiSY3opqODqBx2Iw1UI8UQTUmFkVgjmcWpgU6fy0NdXFS\npOv7zWZNOGGsiDvlYmMv2OuYzlG/bwfqmAE3uuhgApI99qEtoe4FihGgj3PZvuOGvca1lx3TQ36E\nNPqOSLYx/gslEmoqT875NEbXSK8fmB5FY586kw7QgamkcsiJ65CxlSaGT3FNGu6nYarQOEZFnnWj\n2JR/s6nqNhjipMaLfaKIvbyJHhG93JFJUO/QUavk69DlSTkWRJ5vy7QG20r+zfNBE+tizUMqg0JU\n12nTd0OfrQ2poM7DjjbUYi1YiiVUI6Jm9wDHV5kvQi3GN2LUQ27id7W7KkRFsK9KAtQlDw+uujiy\njuwaadHhwG28f5d2qqQIUZ6WC8mjXFvexD4OHNzc3Sk7HK+L1Jd/Sj0t/7kK73toF76QbaHtol4H\nby3i+nd62Z9XqN8GyWV8uZebUDr3JBJv0nGeOnESy15+t1GiEzB1oMQ7Burf7MBNvN9glP/vG3X4\nLz0Pz2e8iy30iFrE629N4BE7wUZEScq++MGHKLkZbKuLqHFjgfrQb7JCIVI6JoIc66GwFm017cpk\nYA26qEh56utD9hbnRWbn2B1tXke9wzWr8fbj997lOvsLfxktA8fPUKZz0TmIYVzc6S+flWAgxrla\nqD7AmdzUQ2Xr1g6p5sN22A7bYTtsh+232D4RiDfXQwpXc6CCrCnu6Sb34XhAr2XvERfkI0Qz1jpp\nIr0tDLdCeHzqPNRK0qL7njTGNPReC0V6JM6yESo9PRmLBti1ihq8LQvKRlIzeQEOXKYdOERmqlAk\nAKWKXq5peBCtXXpy2T56nf6QEg2V8CBF6snfbNIb9LDS3joicXqYM3+gxsglyta2L2PQLq4RlShb\ntL0C1wuMEDFlcyhtMIPMiOXLqKl57aQSp+e/sxBEfx//5s48i6Mn+N1W8STuqxh00BYBRd4jbURm\n6BX2/VgO3X/HdzS//S62tETH1m3KsaVoYkBkFLLdH+4q21HtIKJ5yiQTVZ7CuwrEhog0Zi4XsfQk\n4YG7BaAiEtLH6aFmNGpYzxNpyzbDSEXo8U4fLyGRItIdEogkUnHi3iBR2GD1R4g8xYCv0XtL+MBN\n3TC2KedUbg3LeuqGt7KESofXfqT9UYxUSVFdNhKFtebNXWX70pgGv7rNsdKkmfrRJ7+Pl7c5R3KD\nFzeOc3w160a0y5xDS4n6VJtaRM97vPrRaf0Yj0noEb+9s4beb/wLAMDKz3nEMKu24tI7nMPvNWYg\nO0+vWmr/AFMgklCUGZiz1sggOk+dOvYuMD/JTFBG+QZ2x3hccjxOvb+333153xqQY3CLiN8nUMha\nfh81B9eNecCAxjrH348WJBpSzUUdEbzOWEZmj1ydPJAFrJwL60YeV/3iqCJLNmWjv4CqlzDWu1/A\n3jGyO+a1JvJq6kk2SRkjjR74bOzzeXkTy29zbQWVZWBAFGXYFmh0SdZVtqYGKIrjIWeb61iWc6Jk\nIarWd5Sol7im/bIIrsqELfCIrEgZQCNyCSxk21CKu81ZiwIZP9F8ucp+OSUmeIrvAwB6TE8jlSO9\n3pR0YHbyuZuigISq5sHQMHUD+1KkBLTPB8ywtIm4qvV9JKXda18DQOXtUQQf5/ieeOMv8c0R2oCJ\nci8AIPSiAyOv80oZkmYYJ8mMLAYnMZonQ6R/nbYr9JIaX89QZwfkWuyHKJtcdQzVac6z+bbIQjY7\ni/xV6kDSXkPP08ymlrOl0HuN86APkMkoeo4h4OaYvZrS4MUor/X9qnkRXzh466GyNZI9CIvUuAPZ\nKCoNMhoVwRptvejF6Ju0v82RMGxtyhYqRCDTUIdnxVKOqAsIiGDXuawVKg9tW8r+DmwvkbWR7tBO\nRgxnUEvQdgWyCbx7kuMwnNBgd5Pv0w+SRdQfHEH/s9S/xLUCGs+LeudhYLUgsl89VML/d/tEbLwl\nYaxkyGC/yMVvkvahdYaU27ixgXiGi1RV4+RoTSXUROSqoapGURQaHy0noRLpxpoFGg+FqwCNlHRj\nqaPEkKhEUtUDSRGMZhjigLqkkwh7adiCqzmkm9wMOrICjC5SmvUWv1vrbGJAxk1pVdXsKpu0xb8P\n5J7AKQf7fr8ygo1eLoTdvBcDHW6AJ9usZnNr24Erx1hpxv/hOPQa0kRz7gw2lkUe1DapQlOwgcBR\n/m3orXvYqvN88HpBi6ciIsL5BRqBPpUavn2R/3ZAh/nLpBDNU4/Co+eYbNV5NmU68GH1FKlf4+3u\nm1O89SEuL9C4+c5yofRaU1jb5UaYPa6GaY2bbH2gH60QqcO5SRqMpPI+vPf4bKNbAXi5cZT6NOjV\n89337/UCAJTGOlzFfwAAZHYn8agoS7fg8uHTazyn3HTSaMkLUuwPiVR+qSE4NNQdfbUHZSmjLwd/\nyok3ne5+OLPYOIqyS+hEilxg/e1TGM2Tir88+UOMXOZY6w6aKMZJ81aUIQCAzeVCvcBz3X39GE7J\nWbpMeV6DP1zkufZ7B9y8MvW3cfIUS7glGwYMiM3UnHkZ19xcD7oe6uSzPzTCM8M5rF55DYPqLwIA\nUrosBr9HuvqHL1I3Hst2N+K9t4GkSBJTFSXprAPTWBaXkI0NOfTiknyo7Ia1KZyjGMe5XB2AboCb\nj6+lRQ0iJ7p+FcchCs63ef5lVBtR3KR+1lVpGOU01NvBGHqEQyiycMISl2KXouHupg7P9nOOHjRU\naIQ5b0fcXI93Pd3vXzviNSjNXP/xDt9l8u8hKHI8Y1kPtbhPXuiUMSioZHlB3FnP1tAw8btKbwj5\nHOfVYGlCMc/fjQ2KCmlzNeQCNOpGWRgdrYjeLihh9tIeVStcu+ZgDtkmn6VuyiHXirvAJTlKOq7D\nRCWAUXCer3WRzfX4Mn64QCr5iac/i+M3OH4bPq5dw1v/BleffJlD+tOfYVJF51KTOYGMk6kbVUo+\nubzdhExDu3vLeBEBpchLrNCifJzRxZWdYTE2j2Cpww3dYksgrHofADA014Fxik5MyMS1MHCgwUEP\nZfvqYAHtcdrMsTdsiJ5NdJGKbTh7BftgH/zxSVzNMM2t+TMMEz5624mkl3o9WHchoaZulJtGjCa4\n1r3XGQGtcOWQFgmT8p/SY+gez22tH55AcZJ21VondR6P2BExMbq7oi5goUFb6R4zwFrmd1qTpJxl\nc3X8tNILABjVd+BfIVp7oG/juPE9IcnXHirj/7MdUs2H7bAdtsN22A7bb7F9IhBvS9TPVGhdmGnQ\nk922pdCWExnlclIoXQIZZYhyq80qpNui4LdfhnJHpBMzjiBoo8daERmdqqUO5D7+TpZOIuKgh27d\nAvx6oqy4mZRGs5nCqJy0VjiwBn9Q3CfNFuES1W8acpEY3NALeVMUsU92znGq+QAAIABJREFUr7yR\nCpPa2crPwyNnVF7tM2vQrBPlvuvzYLRI9PBmm2ndeo5pYXyHMuS+eBS+vxXjNGTAs7fpNW8E6ZVK\n13rRvsLfz005kX1dVPB4fBg7DiK18SwDiGJRB0ZrDBS4dtKA0RVxL7HVRNbMvw/rOQ47th64fkDU\n+Qt7dzXZy/fh6FF6xektIhy1OYyalaiklmvDpCVtapDo0fLxO3IVKRrHfRVyAc7xrgFwinqmtmoc\n8YooqP4M+/NYSIXXQK/961Y1QoLhiLvbqAm0qFAyMrOVsWKkQ50aLN9B2U0vVBFZhs7NoLRbj1DP\nJKnVrrL9/EEKk6Oc77iBfXHIG8gJqtp5x427LxIx+GM6RJ7+DwAAXZ60oX69gf0/IaI985MfQeZk\nBGnPdgU3ymQVbpdJVTd+8Fn87ldJPf7Nqcu4n2cWsXvv3cXnFfS6MUKknX/iQ5Suc44DvqfR8tJb\nt5X82AnSA/ebiYr0c93T2FWVcZiV7FtbxZsDtbur8I8SmSp2WtgRwVySUBVKgcI6k0RYFfTCui8C\nAT0F1KT87LL6YBWpTreWyID0ybZQHOCYKcJLGJ8mgrdfnsEvB6ifvjK/uzYeRnBLFAwwKjEPpi48\n4h7EYpAUf3GJ/XrGZMSfdZEtjCJcovCJyinqWCddCEs5hyX/MpSSXgDAQb4DlYyUZMdGNKurpGAp\ncE3H81pk+kQhgmgDDXG/9SArisb3JeEV8ULt2Cia4hlRawE5DRGZpkb7UpVKYGjz/4pAFjNpcXRQ\nyMHS5jqrdmSQVrozZwBwN+rG1B1GzZv0TrzXpA6fXidDsvHov4bvXcrsO/0UVjepn4PTCbxqIloc\nsVIPX7lmRvgE7Qb+7EPEnmTwX9o2h+Amg/6CamalWpgexOxTtFf+hWvYuU3btPzpFPzVfwUAGLjD\nyN/oZBFfm6c+/NTxOP6pqJz0l8NzuFCwP1S2fO4J1KQhjm9AjpaefRj4kLZH1ihh30lEO7exhJFh\nslHaug6RKm8fIClSGdZnMe7lOOiybWzd5Lg7XiohouKxk8UtItSXc5BW+HlbpsfTl8XaOmfFpoXv\n9h5wPW1NtfFohqjd75CgpuY4eHp8UO6uPVS2bu0TsfHKNFR+U16PLSMnZ6jiRcdHGiNvtEPaEAWn\nfaQr1ZkhGPykGKSFQShEdLFKkUV2h5x9v46rIuWrogYadbUyCHuVNJvFu4i4iKQbEec2mY4FqTo3\nCFdNCbmgorPtfmyLqy0OkdYSBgnycfYr6OieQEM3JarSDPSgtE/6o7ZmRvU4jcqTBi0uXScd29Pi\nhn+gv4kzw1SGg7/ZRFXQH6OmGuQHXAyyEVHIfSwN7wqN1ZrECNcL7Ec18i56JmjwaoIeyd6SIj3O\njSH25hKmgoKCPq7F1l0a4Amxmez+4/+FRJEbwFnlq7jcRbbbgV6Mr/H7bSMXm8yiwSkVDZ+pP4W5\nVW6cxT0d0iIN4fg++7h59mUcqfKcM9JxQCXyp0olLUiNIs1bkvpQ6tjweQfnaF7xAMYON/yBaA0u\nPQ1PXlCrw9o8XB0eM6zMXIDIbYGyehBb/VycT+/wXXMfhZT+Rhs7sogRE894zd9i/EDn5V9AF+Bi\nuyPdw8kIabCdI1twmmjY+/6cjkTqmWfxR7s8TpiPvYLQy9TVXGETv47R+H1tkjSc25LG60b+bvKO\nHVUTx1T6TA7boM59McgrRH93aRsZE42KoZ5ETZT3W2qVcfY85R9fIy17xdhdNqOuBomL/6ulhCOB\nXqzVeY3krPM+TDEaG0kwg5SP/VHtU0eMtSqMs3xXUlVC732evWePZyGZ55o7Ns2zfXWtDL+Bc1Hz\nPYGl1RAAQHu2hTMGOhvNKGW3GK0wPkJDHUk3YdcxivWWTApVhpuTUuRgCGXrXWWzGZyQtgVdWKLT\nsuPYR0MiEtmUnMiJxCKWAw2adjoC5U32UW9MotoWeZ2tDgzp+J5EuQ6ZuBZlKIooWZ0b6hbHZi+Q\nx0SVxuKgFkApykhvjZJ6rCgCsnHOVaAxAYlwcPVyN+R26kbfgRuLje7XpADAvpqC5RTf/ffGOmYr\ndFhcTtqPwuolaE+R8pRGRjFm4nlmZcWIF8We98g9ztXOU3cQWeHm9VygDx9epj6U/laH9nd5xJcs\ncMzOn3oNhT/jRnj/CS8mvHTaLPdXsb0kSPFHaLuazjyulhjb0BftwVtJcS5r/x4WzusfKlvbmYW/\nLo4GY9fhq/YCAHpEJPllmx2+cXHsstXEyAad96tuNaatdJ4/cPJd4+ocloXOue9ewsQXqA9zO1Ko\nvkDn1PgO94ilWg79bs7LsVoWmXP83a86GfgGCXJyEur9WOY5GDyk3O+pg+i7K870r1yH7OmHn813\na4dU82E7bIftsB22w/ZbbJ8IxFtQ0uOV6fSwCm8zZejALBdFDuJ+GFWMSqx36AEdd8WBMKmxRW8Z\nrjxRlnpYgfGESP5tJ0LqWdMjTaYKI/0a3BXJ9lWyaQy2+Tkn0k8adDFYEkRTSmsD6jZRqswphaxG\n6NRuinuWtRI64t7d9kOqilQMjORbi5xFwElUVE04YDLRY9PpwmgIqk6hZV/GYzHU7PS2hr4yh9Sr\ngs59exwZcQl/Wk6q+VrrFB5M0NMzHWRgsrwIAPB6LuHOHXpvI0+QBpF8PYNqkZT7Y6nLuO9+FgCQ\nScwiYCINfv09kX5SexJ7T7BGrzL2OIBvfUy2ryzlcTNOr887QQS5t2dFx8tIRmlkFP1l0jzLk/s4\nkyZcWbUT5QayOgQrohBGexNbF+mNttaOw2UW9XgdRP5LhQVYDEIfNBdh0hHVNUoGWNepByUHxyYZ\nGYYqSC9V3TpAOklGQFbeRTEn+gD2q2WzAPjex2RLd07Dkeby+OUFcZxw1IHFN/muad84bouECuZs\nDrZdxjNe/08cD/9b7+M7DaLGmSf/CqerfK97zo59B1GLSkN0kzoIYibFI4nKqa9h4TxpwUdffwY7\nQaL5uJTje/HcA3wnRlrQlE1Dt0lEbG+fRFgExeB96v1TWhv+7cckA4xaM6oSIjVdi+NU75FjGEzd\nWG49gmySSK/q0sMQYfRTW+S4tzuMyKeIspSSfrikRKOKNQe2tWSATgvKfSNcxPgkn/XTtgpn5aRp\nY+kqZH0hAED2MnXO36tHPko9lI0pUb/PeTOWdSiLIlIqcQQhkXVnmA6SKQSn5GLMuC6GlANINdlH\nqbkMo0qYPb8RQRGQlxIFzks1DRLirqzD4kFljXPhm/QhOMd+5tVcp1aVCZUJjv/pNJAyUuaApIOy\nmmjUoKI9a7UG0ZFSP2XyGtaN7Nugu4rtXdLOkUoOtZa3q1wA4PLn0FCT+fh6sQ+Kf8bx+9kHlGFS\n2ofxGJHptn0Bu1c5F4FPvQ256hUAwI0oqWqn6QbMPyQiftOmxokXOUe7H1QReI/0eulf0Wju/R8q\nbMxQZyff6sG7z3LsX7RHUf8fRIDrCtd0Lr2CZ2aIeP+j6TbOXWLwmUfvwO7W8kNlO10s4KaPjMHm\nnAryU7SrvxB3rmflFly/z7lonFLi8g7nSzUjR1rkeHh2l2usqWpBlhH3zDt+ZGKCWTIoUHpDJMzR\nESUPJzxQHeU4Vdd12NhggNfRV+6jJHIe6Hc4J9YBDQri7vnkSABzWtLOvYNBNOvd8zg8rB0i3sN2\n2A7bYTtsh+232D4RiFeaJd+uk+6iLEpDTZcjOBgnupAqViCvEG3mRcj5vrWCgaxAIvIapu2Cs5c5\nUQHPLtpJev5ShwOtKs8rEmU1xl30utcaB7CIYAYJiFh7y/uIlulNqfUOfORXaxT7aCfo+TTEFYFG\n1YhCje+SSrsHRchfY+Juo86GHZvIenSiDoMIxFDc6IP7Wb773F+zX42JKNDPc4eF6BF4LrDs15p/\nGfMZeoCKbaLVpwoarATZy5rHg7SJsESxOoSh0/TMkyWiscB+FPsiVVrPiRkM/UQEDzxSx36eXndb\nT49Y96s9mHUMRKjudC/Blo9uo9KgHJ0a0bWs5w4GQsx4U1LsozDA/8/sDaFSCAEADCJjky0sw5yf\nKKJffgLe+zwXtOYiWPCLdGx7RFutih+5Fv1Eb3gbmwP0fjuyMVh6xflKP1GwTWGG0sDxqytzyJQ4\nZlOek+jZptedMhJBFhKprrI5ZItIOogKP53jsxK/6uCemO/doBqzZYFuzTLccfEQbfBHPEPeT7rx\nuYvs1/xbx7H4HnVR9RUPTv+awVUyD4OVOs8/hbW7RN1NtxbxBV4D2R4KwLhNvX2vzpiAs74q+urM\n2tNIJtESdaALw1swvs3JbXyaKKyS7c7CJFYy2HTyXLGnyvPOliMApzoEAJBrJKiIYRmo+5AQhTNk\nR8SYDRnQCHEcy/kRbAwJ9Ht9F5YhrtlOlA/o6ZnGHQlRu7dXiViM+mBr7yC0y/V0MM71JE1YYQ+w\nz75VCQ5KZJtGNX7cDhN9lQVBYpV0xwwdXQXlPOUP9BPBp4wdWNeJoDSBEhpFPjfo6kFIpIw0bnD+\nqgY/rBoiPkUjDrOT46uSNhE7wrVlKorAnE4b0Qbn0NNYh0PDcWgGZfBSrVE30F6p9WFU9rnGCoMl\neA44TtWGFBUT0WI7roBa372GMgAsJm5j3Mh1djf4AM/8Pcct0CN04GtzeHuV46J/0IfgeWZv2+i8\njLbI+Nd6mdeNpFs6NL9GtPrl0gLezlBvd2R9cH6BtuzITa7H9UEdNKMsoqA41od/AZ4Hv6u9h+x9\n9kdjFPXFS8N4VQDbc76L0KtoO66EAzhq+QjNv/4x2a7oOrD83+y9aZBc2XUe+GW+XF7u+1KZVVn7\nChR2NNAN9MLe2AtJiSIpyiZFW9ZIlkxbsscKj2c8MRGembAiZMWExaDDUowkaqFEiaRIqpvNZi/o\nRgPdQAONQqNQKNSCWrK23Pc9873MnB/fbUXMIKGwY2J6+kfeP0Bk5ct3z7nnnnvOd89SJv8eDVjw\noTgHAmvUYYtDkzjnJ0qYX9pA8BQ919sXMvCIe2/jkrhPP1mDs8k1Ttpd2NSIu+PQItx13q1v3BA5\n6eNDqCaJ+miPzGPaQC+2UvZDMnB/T7mJBmxF0sjEiDhUpGEYrYy3qdUasHwo7uafuo+0nuMTcfB6\nRJEKf/kIzAOEmnYNbuCu6LoxewTVAUZovlhhwMuOLYzkPDfLTC2KbT8FTptzIzvI/3cz/N3CvR3M\njHHR4vI2sgUydFo7g60O4SyzhcK0rZdxwsSAkx1tG60iBdLWkDEoDteFIJ/v7GhgrxISret6B3sU\nh7lZh5xpDJ0iPesJD1p5CqFdu4IZUa5u6Usip7LmwtIbfJdjoIi3898GABxtjOGQykOrtcaDaeW5\nAGYuUXkU/F0suAjHnjiZQS0vSmo2qKhrhhn47rA+80rxNM49TOGLN65iuE7hrNYI967lQxht8v/V\nidmetMmKE3MhrlfVJjoH7TmQr3E+sXAXjjWugVQahOFnGMjmf48K497MFk5mqNSLkgpfk/xpWbXw\niybepQIP2E/p9XhD5qHnH9vEqQwjwLetWfhELWVphfS+bzLh0VHCS5G39rE1zf+X8pvQ6kUpTpC2\nZ0Z696zNGrxIxXjQjIm+xZcfy+JrFwijyW9dx7f+ESFJ3esV2CXO5+E5rmFdvoZ7V6iUh04ex9Yv\niQDCN1/C2SkeyO85CY3VCpdw4iuUAeu7XaDxVf7G499F3EYFPabyEPngsx/i7B+S59ul5zCUp9JY\nVy4gqCEMe0lEPR+O96YtY7HBLfZRcIS/q8CDpkr4rdgcQ/g0D/9WOQhjhWukE32UrTvnkNaSp3Ln\nBnR2wqou1YSomwdnNsW1qs6XYFrn39VuGpUkZc7n7sBbIkSo84mCNHodtnZF4ZiTccxXKcu30zFY\nCtzThQ1hGNqHe9KmsRtRE1cESo1yHzilg1FPmdtLueEQQYWle004w+SvoqfStrjjMKX4fLOuhcPB\nfdFppxAQ/ZkdKg+xnK8KIU4ojZnhinO+hlIV7RIPNa+G614wDMAp8k2NfieSIDRpSZSh1qjHKo48\ntBvRnnQBgNv628gcZ5eh3ZIK3RcI46LB5w9dDeL95ylHptwNpG5wjQpHOpAzXNsjLkLuXpcWL3S5\nt/7E/CxyL/O9n3nSiAj4ecL7zwEAY+pLiImucbnb21g8JoqXXHPhC0dI0yXL/8ipvJuAfYh8n373\nPZTGuW5nB3JYfau3jgSAptaIygFl5+DhEp65xn10/QXKw1zMA4gOc5XR40glGe4ZGHoEExFR/vR5\nziWRncOQmfrDH2qhsU/aMxYzcqIiZ93ChetaJvDsPs+G7bl3MX5Ao2shNACvcPY2x/iZoZrB0xHS\nsHR1HZnDNMjDwQKsPx5/IG29Rh9q7o/+6I/+6I/++BjHJ8LjrTRofe8auzA3aVUa56rQbNGy3Gps\nYbJBL6HcFvl2DQPc4N8LZj+6ooNKQSngeI7WpDRCD2iz00WxSC9ArtYR8NA6STiqmO+QBeYDWt9b\n0GLbSXjDF3TBSGMc+oqCNRDS8K4ICzV7C14XveN1VQbw+n206cHf2h4wIbxCc+vZaT++3+V7H9I9\njt23+f91Oy2s47UfYapJeDmXkjAqLMigFMfyW/R08/+GqRIPv2zG6w/Rsp3fN+FxhRbtWl6Fp0Fr\n3XaVsN/cYwo2OoRKzjVu41aMlp7xaAnZBD3/CRs9fMuwilSK87lpVu6jCwA+HPPBMM/fVkXf4kH5\nGKqnCZ1N6sahOUFr0dQoIFEkj8c9Ip2rokPORc9lxlyFWaWH+NdtL6aaRDi0h+nNptN2PJbgd5cG\ntMhOirQdYxYahdiW5Tpl5zOzJVRFYM61z/ngepvvzXd8UIIiNaZMOUraeqc4ZF5aRWtc9CO2iu5O\n79ixfpr5ipuXHsfkAqHtZtCBzwps9m9TTPWZlFrIf5Gfdf/oNk7tcg7vHf4n+M4SvbbDg4TyFuod\nnLxNjMqsK+HlDhO3Td6v4USdBelXRZW2p741hm6NcNju6AJ0KTZcmLv7LNqPETb+xQLRkrL9dE/a\nxoYNuKujbGirlM+Yso5DBvK/qm8DLlbBGmzYsOdmoJ8rTS827ndgglsWhWgVioneidU7iGPv0KON\nznCPaOJNTNdF/mtxEiGJtn7LJMPmIFqkLNOL2JlrwC7QL2fbh8k60aILOwE4nFEAwKEsafww1/uK\noBavIyAqYblFJ7NWHsjbOYdRaRgtMZ/mkA8oCHhY5P625DasZsqsJ3wYtTLluuNywJ6i11efFp3O\nDFVkcqJaVbONhlVAnrILKSvXS1tg1aMKKtAG6fmXd1To2yIlyWqCLk6kx96WsOE41JMuALjh/wsE\n3mTO+lz1VXxTpJI9PEpv/n3lMpT3qCd3pk8hEiKdz69uQN1ncNWWlR5zWx5FXWZOu0WVMPMUUZTX\nrTMoFlgi9bMKZf1CcQJDvosAgIjjBN68Tcj8XDONt0vUTc+liZD8eGwfRS+FI4NjWOrS47+WWcFT\nx3tXwAMAXa0G1xj3jqurw2sqEUjt90W1sK+koBMlLs36InbbvAYraD4ArovKaoPk3ZmRMDZEqc+0\nZgOTw7xqCyvX0DBQoRvPcy4LxQKuniZM7v1bOzpHqWPk8hKsomLbQIrymayEkZykd90414VBx31x\n640RdDTcp72L6/ag97/ye/+fDnFuYL1cR9NJWMu+rkAf4p3nYEJFeUS49S1uckfDAl1LlEob3EVR\nT4FzZfdQ84gotgI37oRtFMURKgTj/gAaligA4HB1AJui9Jg6QGFRdCUoJTJflyrDZSNzUyk9XGYK\nmWmYMHHX68f2HQq3IVjsSVtA5KgvVBWc8RBK+dt6B8YU89+a1Vlog1yuh+u8M2gdnsCdLcIjX7QF\ncaATykZywTpIRfDrN6gw/mh6DTNH+PwdScFZE+HLtnoWndZ/5HNHeB+S0U3CK7MU2xJOY0Qc/u0V\nFw40FK56mryz6rS4UBF1cW/13jBheQuJRc4tLJE3HbkGg5F3vGlpB0+KRuJ3kyPQeHiQtf2ixGBJ\nxREjIb5yaguJMSq0+bVhJKe4zpEWlUop4EVN5d+/0qlhV6HS1kgD0Ih6uxA505VYFlZQmc28NYKy\nNwoA6A5VUbrHg8bS4AbcDvQufHIu/HX86DAbdvsNNFD02k1c2BNRmg+/hHicv3vunYewPE2lUXRS\n4UbmPEiIkntnHrmMnTd5wB8xXsbeMA+9O0M83I5e8UESUdrrT0r40iKh7eVYB3ERsX0qyUjxAiy4\notCIfMwE5I5/nfxNv4bD738FALC//S0AQPM5S0/a5NIl1Dq8LM1ZCbnPWVxoDfC9lp3zsNup8Ap1\nDQIKjSDvGOV+rNLGnogatU25YNjne9pmF8pTND6tYP3mlqpCL/LpDcEqSn7+Vu2mCeNmUSdalBJ0\nXbUjfJKyGnjlDq6f5npGpmooV8V3VfJ3LN87pqLi3kUzRQW8ZaFsObxW6NrUFblSFoYh/t+aM6Jq\nFjEaVn53pDiKtpuyE62mIXt5CA8pIaRkwrjixgNppw02UeS9rNQw7OV6V9pGRHI0IFp+cdju5TEo\nOjrVPSp209RnxmoW6QHRWH53E+regw+nUdNxeP08yB+KHIfFSTnKLlNfSbIfL6ZpmIcvOPCXD1G3\nnf6KFv/hTb7j0T3mnhebAdzS8LBNz8TRtVPX/sxcCU9+g8bupd/kXglejuCNDRq6cx495F/mgXz1\nLy2wpMlrgyhEEzhyGIUCnRFV/d+gHGJk/+BlCba7dx5IW1U9QMLGNUiUpzEqk7bbj1BHrVyrQ5ol\nDZLSwlEP5aGpPg6rAG7347wK2XFV4NIyV15x7cL/l+JqwKpH5itcz7uLvDI6N7SHFT91+DOj57Ea\n4Zlh/okdrrOidKgsunMdD2BNFHsy7pWRXaEM+r+wjNvxB3de6jX6UHN/9Ed/9Ed/9MfHOD4RHu/d\njPBY6nEY3bS8dI4awnVajeqADv76R1YzvaVA0YLMEC2ZnZIHU1VaXLGIH9a8iOYVUXSWjh4+E62p\nTQ8wfpcW7+YJA4JlWi2qTkQIlg8hKyKDi7YmdDcIJUV8JizpRWRgjJ5bop5FdZAesbrbO0dtw0JY\n5kTlEpa1Iuhl/tNI6Fj+TH4fyGs4X9lEO2g7Cdg/xcCYty/4sHuE8MZTjThUAZ/9lSS6KlUVnHiD\nc4yXPsTSKM3x4/aXYYz9JtmqY2lC32gSp9Msqv/27X1cH6MlNxEfh+40PZHr20QOmq5dzC7R8p8Y\nbOKve9BWHbZgaJ8BDa0qIbDWfAePLXMOP7Y4cHtINGXwlxB205ov79CLK7U2kDTTsxq4dRJKml7z\n8lATI8KrsLZouerUXZSP0LuILgxhvcO5e08mkJXIy8ldWuIdbQQVN3mqZGWoR+hR1V8KIjdE+Ehd\np2yN2HoHfDTlGj5/gbKxGf/PAAB5fBqfGeHab932InienvCKz4xBUb60fZ7yuRBzwN7gfH8clDDx\nCGl3m5t46CJhtE3RRWfA7MMVUSWo+OeHgbP/FAAQ8Hwb+/azAICUnYiN42gdgxcoG3m3B3t1zl/t\n/gaUIOG++Sr7M//7P631pG1LexbHhYzrmvS6m/YBaAtci6Cji9QO+avX3oFHz3mu2EbIB0saR230\nchcWk2iKHM/gxeuI2vh7J3yi+049D9EDBScOtrHppKed9C2gJKrGjcUpI6mRCcQWRF79U250iwzq\nczcWkbYKCFCJknfoTZt+zYi8QEuaRe5pXy0DgygTm/OaYBCV6xquItp66oJQjvOtt6rYEvUDJk1N\nKAIZyek1kFSuccfBgB9LcAvoUJ7CWRnJLoXWVbWhFCDPRA8KaOUR3DPwHU5LGdUG56OpauFeIYpV\n2bNj353pSRcAxJxtSI/xucXveXHwFHkwpjJgsqI8if89x3X9lXP3IKvE3K9truLLomTkT1eJRKhf\n8GAq/e8AAOf+7LeweJR66mj2Gv6Xo1ywT7/K66zI09s4IQpU6YO3EfhbcVU3eRchB+dzbYVIRfe7\nN9ARzeSXzo/imfe4hredi8iZmw+kTe8ahbpI2r1OHYZnKSeZ9hucY+Mh7Aj90e1kobFxjh6PAYgK\n/1Hk6zun7Khf5VoUjWZon+bvjtjMKG9yPR8XPbory3ZMCNnYtG2iwZs6VJ4CHBKfa+QZUe/Ox3F1\nk7JzZsgFQ5v7e/ogCsVx5IG09RqfiINXo6NilKxBuAQk5PP7UBSRhpqqHwhSKasiYlaRAN0dwk6T\nMzXEWkKBRzX4QNSZjRjIGMPeAHQWQhfGVhIbE0IANu1oTEYBAPq7VB6ZoykYRdJ7M+qE20KBjWUL\n6Nq4+bMaCryrXYe69ZEC6Pak7XCBcE45FEJAtFW78fJPkA9xoQxPrGL7BptFF2dYbCPQPooV0QB+\n9l/HoRfZPO1cEbtJzvPYHAXv7PY/RnpWlNHUGeGNi2bcchgHKote+CbIm6F1ExY+FHDvYzm8UKPB\n80eNAzh3KHH+Cu/5JHUP++fIp9U7vVseziSKOBCVSQxjhEIHkmewPM51M64mkD6gUTDh0EARZ1xb\nwM+TEQPqS4Sw9hx5zDb4W/nKDTzv4eFxxU/+2W4WUF4jhF0v3ML4GPlQXjDjGTNLM3YMVLSNphaX\nIMofPlqFZl9UXxj342aL7w6IiG6p1Lus4p3SGiziznT4dZaMVMbzsLZEwYTjn8Jry1EAwJlDU1hx\nsHjF+Q8J1bsevoqfLHBzD20+ibUQDyT9ygE2nifNgwIu33PVkR7g5j/l6yJboyJO3upg5C6hxdtf\n+GUAwOXrP8VElfNacKygpiWc+PTlHSx6xSF8lnP4BfsYXvv2/bRZcIBIh/KaMZMfWnMHVQvVQVnT\nAmTuyeHuMXRENLMrzv3krRmwtUs5Oz4cwc0r5HVzYASRZfG7Jcpc57iKgplzvBgbhksUrBnx2HFT\nwK0zDdLbtNyEw0LDr1sA0iZevYQ066huEHa+p/D5gNtzP2EAmuZgJ9rrAAAgAElEQVQYDGnyQQ7y\nt/aCXfhbNLQ0MTfkIOVEl+hAK5PmqpY8bTUbmCjz+VR1BAZRulRvS6IdEh2ohAzIu3pApGPVw210\nszRG9vV5uBo0+suSSFcyJ+Ha5ymcrbQgy5SN7YMuNG0e9DnbHhT5welEDnUTpktR/p7XgNIFFstp\nemkg6uJ/g88ZuX8NplkEJO6L95bcSLt4aD1zhPu09EYYqa/9GwDAzkAWg1XeUf6O/Aq+7Pu3AIDd\nMA+91stfgH2GnbZS21Mwi1aSZzJG/HaVRu+zzxGGDygPYSPFDkAn44/hSoq0FZUkJqXcA2kbytxE\nocI7Z38oht06ZeZxlTKSfTwL/Qr5N9rwY0+0tYx2F5ANMR5mVKQTarJdNAVif3jPioxoep/OpnHc\nxX12wchD1W2QoCwy5VOzn4f7JPWqvmKFU0tn5I6G6z63GsXDInOg6lzDZJoZJrc3VzHxESGTDyTx\n/zb6UHN/9Ed/9Ed/9MfHOD4RHm+xS09HktNw1emBZHcl2AOiT29gF/VtWrzKGL+r1nMoy/yuUhtH\nuUGLq1XL4biezxViojFCwIhKlTCcOeuCQdRbcLqXUNijZZX08HlbLIKWRlid603shGib+IzDKMVo\nperrIkCk3UZHRCJDcwjAm/fRtm1hsEPU1MR8gdao7UU7jm7QSg3qwsg8zIIKtjyj7+7Ul/Ez64w+\n1l27AZ+LHvy9g2nknyGc6i8xiGr/2XfwpR/Tessf0yB1hNbdhzU3qpO0NvXLnOMHWglfGmVf2Ljd\nj9cK/Pxpk4IR0Ux7TUC8jZ1huEUw01uH795HFwBkZRk1Nz3lE6Iw/UFyBS1R329kehStDueQvXcL\n1hZhOdMu+Xd3W4NpEbDSsDSx+SijobUXTiM1yHcaF+kxTDgc6PiJCHRqBlSrhNFGn13CYpK86O6S\np8sBCS/u8e9rtRKsoryhYk9CD3r8a2byzD8U7Elb59QmnrlNT64iul2pzQI+sNGjCywV8IgoGflB\n7r/ghYlfJV+1pPH3fj+KJ/4lg0ymfxhHo8LApXz1IQw2RSDghyyKcWXej6/EKLM/MmRx5m3yT/Oo\nCdFBzu/cu/8TAKBg/VmMDxK+00bfgq9BT2X7UR2KTgb3XHmZwTEDG6s9aTPIwHsHRG8mjojgsk0V\nVq2IJA26ESwxKOiG+x7CVlr8g0bSfmukgYd89AoP6nrknVxj3WYD2rPk9ViKVz/Jmw8jP8K959oI\nQhFedcVcRrPNtb0zIIIgl19EYIp8Wkq0gCb34fI9L1InuBZDIhGzVOn0pM2T8KIxTI+sYyA9kS0J\nu6NcC2e3iMZNoihweaBPcw5h0YmmZJYQS9NzNdtrKHUonyMpFXbRxzctvNx024iqCM7UZTRQRC9m\n10EERRMRulKdPLOafdgVXqVB9UMvAhd1VQ9200QSZJ0e+YyrJ10A8EQ9h80Cvbt08Dq8Oj6n/yvK\n3LEBO5ad9Ao/KP4Uhy1EBc5kExjV0Jv8szz1qK25jPg3yeufzQKY5br9nO4zSBQYgOm7xUBC/cBt\nVOqkx7+XxuvTlFWX5pfwaPpHAIDuDuVhOzAM3xjh7NWX70I+TxfwsfppXL71EYy+fB9tBUMXBoF8\nWituyJ/hO1brXO9DuS5qou/z9cNXYXzvswCA8JFPYaTGPV1pMNCrMV2EVRGo20oM+SGu27GVAcgz\nDPAa2iBt69P3EKnTX/UViqhURcMO/T3cbHPfj4eIOn1g1WGgQf6VOz/EnU3Ot9OsQ4n0aiPz4NH3\nePujP/qjP/qjPz7G8YnweG0aWn/GKoBRWm8WqYzSLi/CNTEdJvT0ZpoxWk2dtgZmUVTbkLXD6qZF\nlpsqoFqileoWgQ8fZHMYEUE8kieOikiVsOxH0BRVWgIDtIg1iznEB2mlukIGGETf13hDA12e74jJ\ntOICtQMgy3dVZnvnFa526PF212fRcYhyg+/soGhh3matrMXTLt71vefne0+9PIK/CdIbOmboIn5M\ntMuz78B6me9e79DaClvn8ZoIvqq/boMyLCzTBR/Kv+AWvPoeACAU/lXE47xbflN6DU9s845iyR6G\nXdxXvjpIa/8JjYyGkZ5TPtc7j7esLyIAemfvVilKpk4HzSa9KUcTiN3jnVJkeApSle8YmaB3XNQn\n0F2gx5Fuu2GM0mtM6K+glaEFbnlyBABwYSOLgV1ao/6wE7JKeXj52nk8a+XvRYu0pKdqOrxm4/20\nLtqBRWHcwOFsB+UP+HnjPPMA3bvv96Ttq+8quHKUVrN5lV6ECzaYRFDHpm8fPjPX0LpcxpsG3ocd\ncdGi/uJX/iM2X2OTiYy/i1thBp88sbiExcsCiZgmbcPeH+JPFoXVjRvQnmLx+tvVETjdXMNbV2ih\nW4plXP4MPcjU6ixCojmFVLoJxwb3hv7nKBs696PAI/fTpstYMOohTwpRyqT3/AhsMcq6tKTD0nH+\nlmu4CKNoYoA93ltqbljRPENZbVT34RRpHq5MFVZx93ZP4nyNcgMeAZiM6RRsu8nLG/YOppZ5v7xs\nFVXl5l5BTMhTI+9AxEP+q20v9le4v1YVyvoRy+H7CQPQclShaYkC+QLN2gjUIO+Iu0KpCK+IQYhs\nORFzi/KvJsqQTllCS+gV5UYNIVHCcsNQhEnlfHVm0lsstNDOiaYNQ1q0i+TJqkbFYFPkB1u5nyqd\nbSgSUYRMGTDliCKU5BTsTc5hW1uGy0v6e4WOXd2dhd8kvPjKGVxc4ToffJ7ojjXzHLY69ED30v8C\nzvpF8t2UxoU478v/yRPcN6+sGPCkmffeK9UZdGX2su7In8KhCb691HkVAJBKDiOZ47z+4cA+ruSo\nV/esXTiXSJ8lzPXZmbYi+AMGmsZP5dE+4P5fGPs8xj/Hu198837a5o1H8U6bfJDbANKiWlqTv/9D\naxdPeLn2odKz2BOyYdG/ibVbzwEAzhwlbZWGglKUcQOup0fR1lLHfDiuonGd8RqlCBGZ+e8bYJ//\nUwBAzPA0tGYieGU1BX3m1wEAdhORONtGFkYX32Ed/jqKnigAwB9bwC0jgyBP3E9az/GJOHglDSFc\ntT2EusrIv+2lHLQBFkTwzu1hX08F1GqIQKFaCvkGBa5WeRMFUSZOq9PDIKISa3sCqp5OYk+lgqrE\nGnCL/qGh4S1Eb4uUZw2Z626YUUtwk8KXQkPUD00gilEB3ZY+5BybIxYMdPj3WKz34ZTSU0F8TjuL\niwoX2906Dd0botPOWSNu53hgNO5SyGLjSRhSPIwT0mFc/wGh2eGmAd45Cl/SQ8hJib+M1CKhR+sj\neYQy5IM7GEf0OpWccYRRiJeWX4N9lX//SmQKq3bOfaITx20QippsMCAj1R6GVwTgzGdfxDb+8D7a\nsp0xtI2ETRtrfwUACIROQ3YR4px+o4H0i1TswfgibjVpNMQFPG/xnIP2MfJdrbQxV6XSqGsn4LhK\npRKP8plaSIVH1FW+NiGjHePfxzJ3UCiMAADu+Xi4Ha+VcDzL+sChegNVH+Xku84Mjp4XyfYFwn7a\n7NB9dAFAyjeA4iZpG0nxQFKnVrC/IaInwmboktykheI6XCKiUp8kJByX9vBsmc/95LoW/2yScNgr\n7jGM/Tx7pv7NVfL/ufVTSNhFsQ33KG74qbgeq72IV97m58d+nsrDf9GOeIv0OGduIaTywHii/AS+\n42foaWabBRDGlt7tSds1jx4/n6VyTQxT1i3XtqAOUal0xyqw1kSE6B0dMhbCn80ID2D13i628zRg\n1EYW1p+KurkZM+ZsDKCpT0cBAJ6UHYsf1Tt2rCKap4ERaVih7RCenBR7rGJzoB2nQs26G9i8Qsh4\nwraNccMIACCv54F1s5DuSdumvonBNOfWCfDQNJV9yLs4L1vSDOMB53ZNrsKuoZFYECUVPVYD4kJp\nhxxJtJOiN63RDb+b8yyt8d3BgBsHOdExp5LAQY0AoqaSgqheCnOee7ft16Jo5P7u7G5DNYq61+oB\ndKJ/ta6jg7Hw4C43hndUrP4jHvQ+mwNfmKSR9+4S1yWjJODJ0jhqPfsDhHb53eVj85h4izrr1S7n\n88jmFjKW4wCAyvR7kDa5hgVzGUNOGn6pOULZm1ENnhnkofmt+acQFgFKrffXUBonXyt2GvHJKyYM\nTlMfmWILiNtF9HBShfbGjx5I22Ikg0+VqG9SjmnU3qPctxXyqXmmiOyKKPZyeBf6LcrB2sAxZIZp\niC5kqOcq+hBMfspvsWoG2uSpsVyFVQQgFlPkTTPQwJ1V0n4CZtwUNUAfHjqP7QJz0l+fFMVQJioY\naFNOjLsNQBJ5vufOYW6999XHg0Yfau6P/uiP/uiP/vgYxyfC422ptLBaph0kk7S6R0Y6UNO0cN5p\nt/GQKLpuLhCOeC8UxOiCKOc2WoTSpufSLLWQd/K7viCDKFJJC+SmgNG6WTgthIwuxo0wufmdZpSs\naOgtUA4Is5X2TXAN0kIarAZRttEC3LbS4jPHGqgV6YnERT7v/3PMgJ7w4vAbGL4mOvgElpF/htbq\nZMoKo7DOLCKJ7JW3T+GpQ3zvKwdv4VPCUs5oW9ircm7aZXrqRdMKXBHO3dBZRHKTnvBd0zYOd+gZ\nbaXp/Z0zPYu908z5a93+HNaa9Ay621soOegdpF8SZe/+QQ1LcVrHfk3vwAHj6jKMKqH0k7qvAQCG\ntq/icpvzfeVEFdhncNCSzQNHlmiFLIs0hd06lkq0PGc67+KWQDDk+jISU/TIikWmMZiyDrRCtGi7\nV6JAjnw/N/MoYrZN8lL6Afm09yw8wkqNZzXI5mhf/qrGgDiBBIRkykPhIWNP2pLrSzBPMh/x5gTh\n+YjzLHy6iwAAZeIEUtss/Sid18PRFgXVJ/89ACD2jg0vDQo0ZSCG7wYIpw4e1GH5T5SVF54j/Ld5\nzwqpRT6FD+fgfY1Q53eDFZTOMkXC+m3yZup3Arj8u/QKjxZGUPb8FwDAojSLuTS9N7fINy/OnQLw\nrftoc+pk7I6JMo/bwgM4Z0NwW8hhtYZ9URVODoSRDIjeyBoiMxXZi7UEvaUXqjexZeeVhDKoQ6pG\nJEcVAUP35A7sIqhwvz4BR5L7zSJJ+HCYcjLT5O/nl0uY1TN/M5hq4Kft7/J3C8/DoJJmnCTPzCu9\nOy+1WzW0ZaIamQPqErlVRj3G52tqByU9/26o7aDaFA0RRJpiJe5DRDTFuKKtY6ApujcpSRS6Avmw\nj/Df8jWky6ShKUuQRK0BJduA2qL81vPkrznWQFqktajbdViDDNhpqSEYtMJrLmmxZZR60gUArqOr\n6Ao4O+SL4cBBmRgSgWYdZxrJIcLHkUtubAwSgn1q8TsIZ7gHFhd5xbL8G+fw4U+pC8KyCzFRDjT8\naA0v/QlRr88+z+fXbt/AO27qPO/iNB6XeYXyhy/PY+RFev9n7Px9R1yHxTXuPbv1Q3TOEfF7Jvs2\nDj746N7jx/fRlvowhLdkytwZpQ7FQr5HJCIO/kwcEDn3QakKaZZolNZiRspBnrVy3DeV2TW4XheI\nWXYMNtG4Y+/QAeZESlzou6L86ecPITInenO/V0bYwHW7F9VAZDfisRQRqDcPAjCe5Z7ff30YelFT\nYddawzHs3UfT3zc03W7v/NOPc2g0mv//J9Ef/dEf/dEf/fH/YnS7Xc1/zff6UHN/9Ed/9Ed/9MfH\nOPoHb3/0R3/0R3/0x8c4+gdvf/RHf/RHf/THxzj6B29/9Ed/9Ed/9MfHOD4RUc0vvcloNUN5F+qk\nKMtWCWMwxQjmuisDNceIX9XMSNH6ug7uo0zOLmcGUdXnxG9ooBNlv+wm5mS17THYdMxT3VzeRPUs\nowut+SrG3Mx70+aYe2ptaXHPxSg4R7GKO6Jk5JCiwKQyiq0wwug7w10DZAujjANZG85//v7C7f/s\nf2WBBovNhFSBOWCNrBMjDkbtLXermBR5jjvXuBy2wSqqgyKacq2OcoWRk5PhReTLfIfcYjxa3mGB\nRRI5zvYkzEnOt2irw5hmURCzm0n3rS2gOsToRJ9HQmedOZWtThQ1HyPEbQo/G/HvYVc0OHBNOvF/\n/Ksz99F2/j9cwMQa1y7eYk7bIIqQJjj3W0oAHpV5fI12FhqTyO9TGcVZaJjgFQVKNIoeyDHSsBvU\nIj/AvENzlPxN2X3w1Eh7WdIioGeOd8N+F/Us+eewMVrVGD9AeYAxDtKOAxYf6S9a9ZBLlJ9QnXK2\nZVHw+jcfuo+2f/dHR3F4WXSj6bBDUkJpQTtG/tnWtpAziZKHM1HMqezukhTdT4YKH6DlYxS7pvgh\nfKLI/6FTetyTmDfolRh5eWXWjPkN0aEnYcbeFL/rH7kC3feYx9hwjPD3R+/gnJvysLV9F9vg30eN\nw8jp2YVKMpKeYbMR/92vvXwfbV/7vS10RSeoPQ35NGgZhq/JKOC82YRCm1HP5noDUpslHbMqv9vO\nd6DKojuM0Q41zeeMnSryg+L/otSfq5NAEqSno9VgzMQo9tRWFqUxRpDq0ly34WAbyQbfYWxUoY3w\n73vZCdgTlGvPGGkPGhL4nf/hmfto+9nf+hGaen5HJyKAZaMJTQvlqaOa4JUpL3lfDrp1fmdNNDUf\nRg5tDddQ2wG6Wsq3ki7APsDPsyXRpUxrgFNmtHQr2ULbJPKV5Q7gFCUwCvz9ts2FOigv1oIRelH+\nsGIpIdxlhK7a0kE3xr3xZ7/58/fR9vX/+V/jMyHK8p9Ha5g4wb1R3yK9thETlDcYga8uL8DyRUbK\nD2+pcNeY6yqfYImHn+xewq6PBWB8+QzmzzASeSv1HWS3mCFiC3AfD/xxBl9+jNHJv5c4hrsnmD0w\na5Tg2aH+HBI9mWfnCrha4d5q7FuQfVr0T2/akdwjj7/5n/78Ptp+6wuH4RyjTHWjJkiiPVmxxDNg\nQFnHvXvUQSefbOFylXz61OIwti3ksVPhHjp4MoXDXZHnmx6C70PqIOmwDfUl6mBLlnKYnrGj5GMU\nuxkzWHNSHx1TyrBHRV0FUT9gctSFTpk82TLdQFtPfRaw7mAt+eBSn73GJ+Lgjcs8VH0JDYyLZN6o\nXMa2ws1ibDuwP8XDbmJXdB45lsNBjQeLoi9CzlEIk4odxjAVmkbHzVqNGmHQsbiAcdANwy5/d92o\ngWuf4eUlUbJXVwAsoqnzUteL8QPRnWTLj9Q5KmLjJpmvcerQEMqo3LvkL9pGKqJSvQlZw/l6PDbc\njHMx7boS7spMwRgUtanTsg3OBabptHxOaEuiiEcrhHaRtNWMomKOoQFFYTpNeG8MB07+v5ZRUJMo\nUDoNhaLoLkHqiqo0GQkm+QYAoFnwoinAD4+gI1uzQAkzMb9ULPekbdzSxd48aZJ3qIxqZQl1A9OQ\npkp1yDUq1fhgDR0dFbh3UxyQEwW07nHTmBwtZKyi5q8RaOZJp2zjZnNnu9g1cu5HKkVonVw3DRzo\nikbrjQY3Y3k6CNs6DQnlTAtKnESZO0bU21wPaYBKMjKW7Emb/+AElieYdua5Qnqcj0uw3eb/h848\njMsq6TmvmuF+i/QbPsdnDOUxHE7xkI/PG+DyMhVKGQ/hoPV/AgBeO8r0iqk7SWylyWvzUwkMp5gS\nYvyGD0szVIInypSHUccO3higcXTMHkFkncph2SvDW+Lhjx3KutKd70nbyD0TDnQ8sN1hprXZ4wHk\nRM1kQ2UG+jZThIrOMOQCD86m4H/AV4emzYOjnJRRH+K+qOXd6Iq0PZNoAVdMD8NoolwXaxJ2wO8W\nIoDZwjnYinzvXjEAq8LfrdpaGN+ncVXzVxAws1CIXqaBXLKHetJmlR3olMXaGzjvtlKGXk8+1pU9\nZOvcD91tC2wOKuVpIQbWoSE0M9zzJX8BqAil7raiJFKLPCahl7QmxMukQR88gEmlbjKVrJDaoqiF\nmf+2DQqGa9yzLW0ILZ1oVad3QjW0xdzcaETHetIFAIafVvDOWRqf3vAiTDfIn/i84OOlEtrJEb7j\nG+/C9B3ycuzuFH40wwPsxCrX+4UXv4S3/pi15ZORp5FepIPgTX8Rj5+k3P7E+vvkzRNh/CTPAhmH\nP3sNmnV283nSrYNO6IjvDFNe3vGfwNRtykA5cAHh978AAPjGuAOHte89kLbKUwF89i/Ik02rFzrR\nMtPr4972vO+FwU7+7e0VYD7JIjFqJwVL7qMm9JQj90oIGS/LpT3kcqFuJO01pwGmL4qCPDf4d+2I\nhON7lBNrrgFtiHrhhVYRS0dFXfYu+bGS6GDqCOU6mXgEjxwwhcjanMfgfuKBtPUafai5P/qjP/qj\nP/rjYxyfCI/XnRR1dU0SIFz5tL8O+2Vank1vFdWPap6Ker82rQ0uF5/bW0jDY6XVk9Vo4LXQEmmL\nUmq2hhlvisbUwXwSDTstxEMbWVz3EdLw36KlaRvKo2zg33WlJJoJWkAHjgo6t2kBdRq0bjJGN6yi\nxKV+rncDa7NIuk/Wt2GWCMuslYoIOzg3SzeAtTK9sJboBmRrZ5D3iUT6qh5tO81xV8qCgpdzS5WE\ndxKX4NPRst0wrMMpSlcaHRIKReXveAIACUmLsCgk0HAZobUROquZnLCaRSEQUXJ6MttCIyw8g1is\nJ23JrQbMIfJa4yYiketW0K3TQuw4Cziw0EO0yga4NKQpOcjvBqMd6K3k/1bQBdMmvZqWtoxQm3S6\nbPQgsyYV4SrnK3XsqLvpORWzMVQs9GgNdsqOHUU0Q6RT3h6EIvo6lyU77EfIy73LooCGPNKTNm/O\nCa2woO2iZ3NaN4vVGL2Md040MWymFzD1ZhmvnOO1R2iJlr/1Zx7GdpIeYn4VuNcgitIeOsDZ3yOs\nl63Qq584CKIV5LtCF6dRHKRMrb6YxNPiCuVOnLDqiZYGTx5wL4y+VETrWfJBv9bFtpe8PnWEHol2\nu7dMliJL6OaFl7BHlCEp7yNc4LzyuRjaYo10lQBcHa5Rp0DkQ63tAD4WxdCbNYgXxHssdcjZj+ST\n8u1DF3UX5a/WNsPyDlEJY0SCp8X9uxsgAoJMC7U2v2vvBpEWe1bbaGJfFInweigjho3e6ZItOYWC\nTtRiFz14E/kIjnQ4932lC9lKnuVtTpTr9JwVLb/blZpoayhH3WYImg55Why0Qd7LCjroQbXRgt7G\ntTC6A2h3RW1pkwrFwL3ubtFLq1S3UdBSHoyWRbQVFjupFHLoSIRF9ZooDM7eva8B4FNn3oM+9BsA\ngI2fa2Dtt+lhj4rOV9ZaDjhLSFj949Oo2Vh85ftfiuEfXuL1xrdECVepMQ2bh97+4ZwDhh2iJZYJ\nI1bucI887/o1AMDV0R/Ctsum4LX3n4Y1xIISu54ASl3+Xkjoiie2XsZPj7Fz0NglP8xzPGJ+d6eF\nN3y969kDwOD1LNKfJ39uLW0hsEE6PKJIReaRUZg6nNfwzjSG7PTQK1MF2Fos5lIUyKAXJtT8RIW2\nFMA9S32kt2xA2uS1kTzFeQUHhiGnWLZ2+XE9xkUf3+XtQ5gUtb4/EGdLZKKBO4u8ovn08RlUddyn\nyc4p1A7d33Hp7xt9j7c/+qM/+qM/+uNjHJ8Ij7eioeV77x4QHqBVFCqVcGucFtB414T5Ku9+2yo/\ni5YsaG/QOmxb8qhqaBEfr2Wws0uLVyvTi4OiwLNAr1ANauG08p5jsSVjRPRc7Rynpb7fMWK8RXuk\nudvE3hgtLqfBhK6RXkm1RU9Sr9uHKUuLOfOetSdtJY0oPJ8qoG4mDY5CCelp/m79XRM8TwuPNyYC\nT5ot+BUuTcK3DmeM1vO+oQatlt5d18JnLNk8boU5H0uxhTkNLfu44oJb3LMZsqR9YiCGjOgtC0mD\nVonelMeYgCFFj78g7otv+hwoVOjpnhl7QO9TsxXlPREwIrpH2ewqNhV6QDqDAXqFv6uPxlAUd7Fy\nlfNZdZYha0VQQqeAhp8eQ72bg17H76aEs+3U+JE18e/asBOyid5i06DCsSd6yoper41SDLKNz/uL\nZWRc/BF93oVd0eAiNExr1pbtfcd7azKLn3XSM7pjmCH/VtxoHKMMzJe2kdugHN06NIz2JD2KSRFr\nsPqOGV1xN+41ROA4T094+IoHxV/mfa/vGvnaHV2DWeI90yuNFn5unLIxgMegLjCYJnSaZTZza8O4\nU7hIOs+MYNrMvs2Z8+9j9k0Gc90YITJzzHAOwAf30ZbMudFtcu1zWu4Vs66BdT15Yw8B+hZ52smu\nI93iPf5+mB6WR5lBa5ceotWiQcNO2fclfGgNkz/OKL3G5qwBhQ/p/Qbb+1BGuPbasBsaUWYzrJIP\nOksG0SzXUPV34SiJUoCKF3ZROnAP9A6Drdx9dAGAMeWHXjRSqUrcx8OhBBIK5xjUO2EUZQHrGjec\ndiI2pSa9/UKljWEdZbrgMKDVoBy1EzoYQc9cMZC/iluHgbZonGAG7OLuWKNvQRLNU+DkHtQkzNBZ\nSWexGoBOBLIpLgOUFOfjNntQTT242H5o4uv48y7LLd7983nMPUdPd6TCWIGLxjqe2VwAADQP5ZF3\nsrxhrfmL+N6/ZAeep1P0RpUPLmKvQZ4U37iKi9/kHD6zLqF5lXJQf4j34q5lCcXzLEWbr13B1hmW\n9fwH2QLeFWs3Lu51M1+fwelXWNbzztjnMC26WF01/hBTm4UH0jZk8yKh4xpIHfvfNaTZ3+PvyqoV\nzWPUTUMBBaktdr+yB+/CkyDqMDD1AgBgZ/EibKPCY24bkTlLOdvbVDExI5CyBuUsVSnj7DSRK5/x\nA4Ty9PzvGoywmEVsi4UyO6voUfDRu9Yv6xHLMZAt8bU9jN98QJDPA8Yn4uDNS9yYHqsWm0UqroRW\nDzcIM67YBqGtkGGGLBdStWXhCvLQNBrSKIo6yFcOpWCti7rJexQQ1XMbZqH01WYZu6JmsCanxbKb\nC3hUJiyjSYWxLokAnIgbAcH02r00tOJwkcIiujNhQEdE7XZHAj1pq0Q5R43/CAYL3IzJ0RzKdykM\ntZkcSptc4MNJQqndoSLSeio+adOJkiTmq2nBrlCBl2KiocCmbY8AACAASURBVPioHqNpHqZa5AET\nIUBHSwtbVkA7fm7+OE7D2CZ0Jndr0Dr5u+u7Xky5KeBtPQ9/d7GG0QSf2yhFetJ2K1PCgJZCr6kI\nharvwCXgdaWrwqvQKGjP1pHPCANDTxo8BQP0kwKqj+vRGeK7bXkD9CucZ/Mk393Yt0Bj4QG65rJh\nTiK/y8oheCOEuzRdKvuGtQ5skb/bsgRNkwpR0urgGRTt5HY5r4ajd7VSydjGlV1GLZ61UulvBAso\nJ/hcqPQQyidIh72kQyDH/28epqHhLN7BuouH8VTzDAoFykzSqkVRIiwVqVAmY84gDiSu52RuBde9\nnOP47fewbRCw5weiQbfjNMyiadxCswZdlrWPx16V8O405efMdRoK8aMHvWmz72Jnm3yfdDKidqNk\nRKjLoKSUOwJ/jTKpt5jgcDAiNifg40rHh6iN6x3U6BARxlwllYHa5jxVDedoylhg81Hhdpruv2vz\nVjE3oRH1kbOipaS7nIBUZzPzdgWoyYSlJ9It5EUd30iachEfn+hJW8Wsg4uvQBVc20zBgZqJ+0mt\n1VETNaJNuTQyEmXOL6L62ykt4i3yxJzehuyn7NjqWnR0NPRDbRog5WoTjazIZHA20BU0q7KKhjDa\ndKJ+cM3rQFWlXmq2UxgxcV21LRuyYRoItUoZJvnB0bHfjt3CQy6uwYGygPBfUT6bX4kCAM6GVrCr\nZ/DQ5VoY5yq/BAAID/wQtb/4VwCAtedpaKxNr+OFJvdW+FPD8L5Co1YXHsbW/LfEPEX3t8O/huEB\nBiMdtOOY2iRN9eA+5A9oMI6cInSe+oEfhhXqUnNjH1sF8uSZ6hMoR64LSpbuoy2brsEJBgMeDV6C\nIUpHKDJLeTBvbMCyzD29friMoGj5GjJ9DncbNIBlF/XrfNePxKBo97jawFyS++wRZwjdAuWn6iH/\nl+o2pDwM+nKrX4ZxhXrlS8ZlXI9w/wzd4KG65h3A+DAh7ltnojj8U8qO/oaE5VjxPpr+vtGHmvuj\nP/qjP/qjPz7G8YnweEWrTJQ0TWhttFrMewkUpgix2mq7KDVpoafEZftcWUFeoDnJkhdWPy0ZT8KO\nZdEZZaJAi6VV96I0QSs1X2/BJyza5GAb5lVelt+o0Wr32AqwjBNG296twLZDD0Z5NAjbKt8hiX69\nebmBSouQyMRCsydtui69vL3oXZSMAlq8lwIUWlaG1BjmRKPmbpBzcRQApcbn2h4N2sKzz98z4cMM\nrfjjg3wmWZmAt06rMuM4Cq9LdJ3Jy0gK61ht0mNzZxOoQqRHDRugiDw1kysNxUmPwrrF99btO9gN\n0iqccWz2pK0w1MXRKr2AbQ29E0fNCV9QpJ+0M0hX6CHO7M6jGiIdHmHvSaUDVPPkr2ytoSqRJld9\nFp1jXPt6g3Ms+/cwPC+6zqyY0NaJjixdBZo0abbRSEbTakRGEik5DiO0HUKlVU8UFi3n6z0kenvu\nmHrSNhNKwpSk/HQG6Wm3Lv4ivvgUrfby8tsIZ5gT2fXasCtgMn+ciM1cYAB3BLLyfuQnONalzNTK\nHrgF3y16se5jQcwvcj5Hn3Pi7QV6c9V7Vfy6kZ70q0cJh+VTu3jkLOk9eNeDAwu927F/HMXzKvnu\nFh2+op3e0J52twirgPjvCa9QluuIy/TeNO195IOco8tuw3ZFpK5FRdqQUcGwn56Vt7aHRoIeUMHt\nQiDDucldesQ7ZSsGHdy7BX0VhQ6/q10twmwS+fLCO8w4Q/C6iHKl2nZU21zvu4N5eBqE3Asl7l3d\n9lZv2rpGtMvcpxovPUyLRYeIlrJXsgXgqYk0OYsD+g7npnYob40G4J+gjjF3p6Cte8R3S7CIPN2C\nlWupr5XgN1GWkxYLKiLFSpcvoyV6MZtF4FRb6cIt0l7aFqDkFd7SahYt0XHMrvMgY671pAsABh7R\nQNp+HADwZF6PzafZ11nf5loaDp7C+yKn9TH9GiaCPwQAxC/74PqqSFVscY7+2j9FeZo8/cPJ72I+\nRg/R3dDhxtSLAICvaznHrvYtlF7j8y+0p7F7iOhAfucY9v97bjrNSyLAS7OF5pf53OG1MlJLvHpY\nrRbhWXlWUPLafbRpjg/COsQ9oEtOIXeS6+HP05OMnTChsEkd60/40PZyPuvWOIKMJYQKro/huXl8\ndpue/U71MSzMEhXqZGoYzVBup0S6UTFbR3zzNwEA9dPvoxnkHPYGTGhb+Xv+ElP5sNVB2sfnz98p\noKaINKQqMCv/t/X5+UQcvJsVLqSz04TeTbc+t5+HKUqFlwsbIIu7n25WQMbDa8jcFQrKmkNNHHAN\nVY9xPZV5fI4b2pTUQ+GfUVvVoy5xE5o1M6hoeQc2bRSHhZqBJsONG8nOQgpzI+Su7aAKoWAMPGR8\ntXE4xIbenVV60pbO8M7FbD8Fg4iGLppM6Bzi5p+800XawM0AAxW1UmmhHqZCaLTG4dVSGSVcJszV\nxN1mkfyYsCeh1XJz55p5xOPchNp2CbtCkQZ1PDjzZhNcHSqKTsGKhjiopHQX5SANE4eP89IcaDEq\ncz6m/d6tyk7sGJEycJ6OCtdCb28i3yGdRsWPsRHyJamxo1SmUBtBi8nkmIGYOvTVDsIG3ilVQtuw\nG3iQdZLkb0BnQ7pEPgXkEZSEUWWvb6M2QkL2tDyk5JthaAUCqNEmYRNR4Uo0hEaLm2hN3Bercu+2\ngC9ctOBPPk3odlsRUP+pS7iZ5WdTT3hReY/zKZhLOHOL37k9Q/5vb4cQGeBm9J0OwnyBkaB1cxdy\nghCe5QkaOydvzSJg5fPdKws4e5e0bR+J4A/qhPAiCc57xLaJG8ssriBLmxjqiHgFzzI6lwg9PjPI\nORY00z1py2qGEBtllPXUIudQd6lQ6twvvqAD2jg3jDNTQ7NN46RkFVcBFTukBte97C2gqXK/ebQF\ndAa4j+riDtMfbSLm4SHkrrhRMlMeImkXSiIfdkqhci1bWkiLqw5HzoKcsGXtQQOyCg/hlsgDtoV7\ng3XN7j5aMo0rjWhMr9O7oVhpEDQ1BUDmHL21OnL7PMirVuogi9kCR00Up7G4ofO3xXvdMOWoCzRd\nTkzx1lER+fShugVZshK1nBEelbpLkfhet9mNVoGfOTQ2VIUh0XAokBzibjhlRsjeOxIdAHIzecg/\n5IFimBuCQ/s0AGD9D/4zAOD4U0fwJSfft/rSUbyvoRz5zk/hCy/zvvevT5K2p+UtXNzhPv1segav\nj1OObKmjGNzh/rycpd5xP1TH5Ff53OL31nFsl/yrDL+Kf+Flru+ORSyW4ShK18hL1ZhGeoQbcTh3\nActnRST9n95Pm10/A3eJVxrv5oLwtcgffZN7ZXJEi63jnJehPICxKg9OR7WNpVFC5qc6fCZe1+D2\n1BMAgDu6OzDeoZKZCj+OfJv6/rUKDVnT+Br8adYzUMoDcDj4juiKFp1HKHOpUa6PLGvhd3MvZHYe\ng0em4SPPdxF9578NPO5Dzf3RH/3RH/3RHx/j+ER4vF0B/UTUGNrCu0pZG0gI61dT1EInyutZPPSE\nFmJzqEu0pI/mi1jz06qxlxK41qGlZt+ktZT2FmCIiohaZwj5Ni0cGXrIAo7arxNqiXT8aOnoMfil\nKg6KImcvVIMhR8t+QDyjjcWQF1GL7kpvqNlUpjWWaN6Fy8EouCZS0F+nFXXHG4fiFJWcIpx3K9GE\nrcHPZN0msE3oJ2JeQm5IQMHLDAqDK4M9UfkmVG8gNSgg96QBx1UR9NJl7mmnk0OxSJ5JIQ10Rnrw\nadmM41fJ94NZWvXOjhn39AK69PW2wrVqCx3wOdXA70yghrRRlDmsJZFx0eJVmiswVgVsbOG6NgfK\n8H1UAcnvg3aT/28OuxEokceVaUJYuU0PTBlC8QFrDV0L6Riue5AWOZoO8UwkYodhnFb35YMJaLbo\n8es9ZZQEpDYg8vWscgA3etD2I98YnrpLOHO/TM+xpo/CZRIR5n9wFPY5NmrPwAbdGL23oSS9iObk\nLHw2cQ1xOY41id6odvcWUk5W41LzlIFppPFtEXDimbSjbCI9k8NNeFZfBQAk/c/z+cu/gqnn6RlE\nWg1cbpGnnsUTGNIxmGv/Avnk/wVnD8oAXbUO0yW6Z1lh4es1gzCLnHSbVkZcXHXoPHYk9fxOzsn5\nDusTKNSIkIQ6J5EWsH7TJKMoms9rLJzXcY2EqkC8ux4/xquUr2KgDF2H3ykWuafNyT10/Hw+l5Yw\nMUY6y4UI9quUM6uZ+9hu6k1bpaJCN0Sv2rRN76RiSfxdPr3OGIBL6IeyswOjKEs5IKpcafwlZNoC\nBlZyfxfJrFU7MIvsASXN7+rNVuh13HvVoAvBNn+rcKiKWp5IikjdhWxqoz4kyuHq8zBWyf9WswtL\nk+td1Glhiw30pAsAzL/vwMAEPbZ2vYXXRBW6sd+h/6R/tYjc1j8HADw2/Q18/2F6gBavFq+tU/7O\nvEeVXzx6HfEIS0ZWT5sx94a4AnDmcCrAdWk9wX08cW0RrYLI5W4NQfWNAACGXHNY+QHzig3dr/Kz\nwG3cuXkJALA1+BnMhPnd0Y4Gi3/54Khm7U4cy/OMGO5YDyBZ+F1tguiFpeTHcECU3/TcQs1M/Wdq\nJTAhcokrAhXd+KAB2c7PIp+pINPgb5T3NjBlY+ng4iOigtqVEMYnuWcbO20siGDGuH4P4wnKYlUg\nB3LxZ5GX+f9JNQF9kLogsWuBMdIb8XzQ+EQcvJ17hOGSYR9KGREB6YmhW+Ims8KMkpsK3LnPZGdn\newgBAxmzL4+jsEulUDMsAVUyTxoieVqnHzYRQVlMLsA+yYNIVazQxAhDtgXjysEE3AUKf7rig11P\ngUzlDqCt8d2aCg90r1VFXBaFGPbcPWlTjCKFSDJDF+RGcFYbMM9zY1aSQKvKg6GR4IY3ulRUReqB\nnB5BUhSpsOoDMOp4wH908OQ6KrRhHu7dzD1YhbJx63RoWEWhj+YI3yuXYBUwm7ZaRj0p7nA1DVSG\nKdTlEmkzyBUEhilk9c3eSs4yqqCyz7kFdSLlxKaBLs5Dr2pwYFikU1U7egzpCe+UjVSo7a4TSSfn\nPupIIStRyQU1VmhEcRSrhodJZqwBJS7gYWkIUptrUW2b0PKKdIJ9GmdRk4xQlBtvOKHCFfIL2jKw\nDXA+uzXKi0nqfad2PeWG5mv87vzrNAje8spoy5yXfewaWh4elp+vPIvX/HxHR2JE8s8kLyB5i8n6\nK8ddGHcQZl/aGcNAm6X65vI0xG5PJjAYJVQfen8ZxtOcW35VQb4wAgDwixSW/ZO/hUubXwYAfG5T\nwYiIXE6MBFEqEH7TiQOgfqd3NHrNV8OAMAo6qkjJ07ZQ9HAPhLUJdCR+vpPOwBDmPbJtn0ZQdzCI\nqSb3Zs6uwGxjepRZLkF1kmeOA/IpO1NCYZuy6qrUkAnzkFE6HXhEvMGOuDO1h/xwggd6J1RHThSZ\ngCphyib0gk2k5BR7F2PQWAbQEJG0EQ/3VRkTEMH3sHRyKIhCC+HAJIpGHpzpFhVxKarFIR95nTMM\nwlwT1yyDCXS6XCN/R1zLODNILHEP1fQqqhp+bmlLMOq4jyrgPBWDATbwsNXUuiiJE1nra0LWcL9I\nJRui0oOLTHx6cAvfeI5z+OxbtxBZZWGI4+/yek6N6ND2/y4AYM/1JdiuRwEAPw4v4d/uk86N54RB\nu/o4HrFRP1y1NvG5J3gPqnvfjWiM+/DzJ1j7+2/dLeyVuHfPuRax1H0JAGAty/irFRqRXx2h4R1L\nJnDEyJSli7GfYv2A10fbwQyOfFXI4zv303asuImFJPdQyCGhkX+YvBLpaalMHg6zML5KbuyNvQsA\n6KpHkFulbMzO8l0zzyTw/javA0/c6mB6kHK9WMhDm+CePXyY+qpiiWIrLyLMJRM0KfLp1NQ4bjnI\nk8gieeb1vgX9GuVv67QFlgrPiaPbftw9vnY/UX/P6EPN/dEf/dEf/dEfH+P4RHi8TlEmrp5R4PEJ\nODI1hK6eVmFHzsMaozVTKhL2k9oa3AvSepYsKfhdogB/dAZpUVxBVHBDM15AIUSP2WfQISusFr03\nhZSF0ON4jl+uZk1ID9F609oLMBTIIpNRhslLa7NRpDe1XamjciBgqXbvhH51mtasddmIuOjkM4oR\ntDKkrabTwSsibZN62kFy/SQ0RgZiNOYrCBX5uaqvwVzmfBshWrk1swmprOhOYvdhtE2rsChpsdil\nd+sSeZTW2iAaNXqofqcHVpF6rKy14CjTKpzV0+KOGYDAJt+Vf0AgSyLdgcZHr6QVJ9wIwzhqAl3w\nGlaRztJ7sxgHkRoV+XIZEQBmLSFsJuy3u6+B30bvzejroCWge6OWPB807yGr0PKM2/fQbTG6sF2V\nUBVlRi2jwrPSGmAWnYzWg2ZIt+jBFAMKWiV6NmaVv1/ttnrS9isv3Mbru5S5tkTZekjSYb9Ii1kT\nBJQq8yQvFtvYrZBXFtArXGmdgLFEK3hgOIqdVxkBfSoMFIy8sti5Qw81eGoKTwQJgd0q2qAxsfxk\noxbCkJee04hXeLa7Z/FYTsC5+hlcLRC9mZJacGrFfhjnep3f6e3NV2taNOuUS53oBjQ6ZMNAh57r\nXmETNZl8sjoCqKv0HI0DorFC04S8V0DRRhlSnjKVs1thrNMTrjkpezoUMTPL64+7/xd7bxok2XWd\niX35MvO93Petsvatu6p3dAMNNDYCIEASJEUNQWqhZInUjCZGtkMOe8YRtmU7wvvYMbId4dB4hhOy\nRElDUhqJFEWRIggBxL6j0Xt39VJ7Ve77/jLf4h/faYRHzFb4FwM/6v6pjKrK9+4599xzzzn3nO/k\nTEzsc60yPgvmFNclc0UAG5xddCU5aNaVRr4utdaZFoLVOQCAu0L5HGiJsbTBr8BZ45qu6fQwT6wa\nyEtVRH8Qw5RApbbrDQwU0h8TLzbum8VOgvs73fbBlPCwa6hCCzBiZbgZYmwV0sBh8X6LNTRDkhns\nDMGwqE+iCa5Fq+v9qFtayXSjtUk6I4qCZkKSq8J9eALjI2cAkD/7RTyT/x4AoHj/CZy9ySsFn/UL\nAICt7vcxkOujE8U1pDc436XGM5h8hu8eCijR+f07OCkJoQ+f1hB/+dMAgO92fNCnGZG59MZXAQDH\nN/8tnjtH7/ft7pNQztJz7Tjfwb/UKH9v7WwBAJIzh/Bvcn8DAHjW+zXseJkUaFdvIzhzbz+vObeI\nuo9ygkAVxiXReV8lrz2pJqxd6uLc9gjqFQJ67DxUw4Lo5Qs5huF/oWkhE6M+MtVZbO2R5hcCSaQ+\nwbOhsE3P9tgHn8O3zrwFAPiNmTKWJQFutzqDE7vcA5djlLXUMARnkGeD//2LGEn293XXHyBdH19X\nfq9x4PEejINxMA7GwTgYP8PxsfB416KcxmS5C8sW+MNIFDVN0vY7k8i6aPErcmda80xD8QuyTSyM\nZp8eYDtQg9NNKzUo6CSdPtCNyd3RIAzvFP/e0ZuY89AyaoJeY8rpQleSdTyNx+AXkP+WPwfXvpTi\nSIJX0HsNftCzurHTH0ub8i7f21qowmUTjqxsNaE4ON9AchuWQa8mJDWO3UQPI4Xe29ylCIyz0m93\nx4m+JJn5QGvWawUQyNAyU3QNpRh5lmgEMNcif2IlqT8MzSCUo/WnH+mgVyft7dkleIfSms3DO++J\nzVlYUhNst8YnjoXrJvqSGNcOcV2KuxcRCbDW0FnTEdC5nq2HgCWp+R1Jva5vR4GWJT3TAT/KJp/R\nGmqYkPq9SZUWaNHTR3BV+qhuZ+DT6MEoMQNzA97FrKe4Fg/kS7htcc6z3igGabF+9z0YpBiZSPi5\nXh7XeKhPdQuYfYglGCfiXwQA/O0rlxEISz/jWgmxMj2chr0P9RF+L/sWn/vNkwv41YyUye0+hPcH\nfG+jkMChGba2q6Xo+fZ/UkAxwIsv5RdvQpfyh2VjD+/fptd97Qx/RorrcCcoUz3XZShheh/hkAO2\n3EdWqpzMh9nx8IO1ho4TDvLy2rzcdzY30FTprTZVwGdJsojDQgzkkdqjF9ezFWiaNLSwu/DM0etx\nbZYRi0pinZT9uEw3hoJqFrdNKBOkrT1bRegW99PODOlZdCjw3ua+sHw9DN1S4lPQUHLRu4tIQhbc\n4/ebNXTBKZCuISnv2dofoS6NE2bDNvoG5+YJashKolC9yeeaRgNBqXUNm0PcrUPsN0JoSO1o/Cpl\nvjfTB0xJPIwkEVKkRt6pQwtQp+V1RsSiZRMlKS3ylW1Meig7jl4PoyrlPtBWYJj3RkAa5Uf4myqL\nVr+4vonYl8j3ArjOufUFnMnyWVdfPQr/GSY8xW/+Mb75Ot995FXSMPdEAab7a+TPzntwCgLfpL+G\nc6okga6xFLL65BP4UFrj9Qa38LagSk31Mrh2mBGg1/ivUF69hn84ZOLTaxMdpL7MMqVr3z+G2J/e\n+/7a9mvw+/iQ1etPovJpfm4XGdma39lH72W5hz89C22ZCFLW1SnceYS19e53qFcG9y/hkpQe+uNb\n6AeoQx7OzODQe+RZPc4IVOTUS/gPkuSf1o3j2if4++p6EZrA3R6pU/+aE3ewJn2xl4fAMCeJudYJ\nLFfm70nbuPGxOHhDZSbbVPU0Rks81Lq1KtJObsLS7gb2Tkt4TXplTjhVBPO8IHcXy0g4JNSXMdGU\nLDavgHEMAh48sM4w2t7iNkpNKuXJRQdcAuAQlE4p3qANrciNZeEifDWGw4bNJpQEF7DbFkzgYhNG\nnO94wK3jW2Noc0mN6eiOifgxHuI+XUHVzw07ND0I+qhg0hZDTq2EB4MmlZ12tAXfVT5DfyoEr+C6\ntkdUFIOlCpz7VL5zUFEVhdR2FXEoyWe4pZFzVysDPQpRxKnD8jCE4rD2MNBJ86Tg3I70PJx5ClZY\n2xpDGaBrIZgNqfs1qLQj2SwCczxYHGsxuNzkVUTLoxWggRFxUDnkm4OPlFXF40UYVDrRYgBToCK4\nKv87mVIQavHvdrSNocKNVUz6EduVetgceVrtWPB1+L3KcBthB+efCHnhu8b59BcZIncOymNpe++S\nD/4oZfG6+g0AwOcGftxIM9lr+JADtT0qHd/FIoz3mDV6VWpdn2wVkP++dIqafRrBGcLwOfxHsOOm\nrD21QJ61dxbR3RGlcfERRO/wkH7rnIGIzH3zBSrOzv0GJOkZF5xZ/FqXBkg5PoLrguCNR3mgTejj\nDaYJo4O8yF90nclg1bSBvkEDJqUuwuGnkkNqhIz0nN6QEC5CCWRNrts+vNip8hD3eJcQkIQUd4Fy\naHmdsHx3Q7BDmHXZOwML3iGfsWxxj2l6BiGfXOM0Q4j6+TmoGOiPaDyFmjSuShiPjeuvl+Dzcm+U\npePQrOaH3aUsO/Q9ODXKodV3o1sXaMwIjVSfFUNfMIz3S12oceqdqCeE4DXKemOWRq9Tc2B0i2s4\nMdtGrkGjNaksoBOkXC0KfnMnUMeExfB72bEOzcm16RteGF5et9RSUaij8YAuAGCoLQTvZ+i2cP5p\n/Mj6Bt/9MpN86u4yircoA5Or17D5JmnaGbqgOqTH+K9SNqqv2ph6m1n5vuM5FH001r781Ax+IEmK\nSx1CP+70A0hKwupS5hTMEPdmI+SFdoX68/NZ6jA3HsFLj5Dvqau3kXmdRvgDj9Xx3T1m6OOFn6bt\nquc61ItM4Go+fQGlPPfn6Dxp6ByfRdjB/TTlPYXWFq83+q4W1B3Kl2uFxsGlxgDDCNdo9vgc3G8J\nf+I5jN6iUWBWuJbbD2rIuxjOTnR6OPETyucNO4grs5R3xcPzaaoXw+mbrIEoPjSNdID8qbiPI/Dm\nAWTkwTgYB+NgHIyD8bEdHwuPt+uiNeo0XRhuS+1u5gY2i/S+nIEZzIoFsy2WbisVQHCPdZZrth/p\nOVonQctGdZ4WdLBIryi7NI2KgL5nrjmBk7RSs8V5dPJS4ymp6vWuH5UQLfiFfBYOBy3MicJR7Km0\nuCLrTH5pakBbUGzyzvF1XLUyv69OAjWp7bOsINoOziGmtdBq0hIeRTjfR80ybgu6k8OTgLZI78O+\nGYItkVFHSkKe+2dwXqOlnch54ArQIzikRjBq0fKsBMiPdLAOuOgdd60ulKH0t1Sd2JekDFeJnuIo\naaLlkeYDa+OB2wtaFTPSvckrocuGPgWjSes34WvClSRflN059ASh57J4fLMYwFT4uVeowSUoWNnW\nEtbd/F6yR4u3WwxjmJU+qmsDzCcm5XtbGE6SPrVCkHWY76MrNY6OTgGmn9ZztFlBY5Ueq98nyUMS\nkvq7Y+ac56PesM5dRlb+NjmLWJbr+eKfZhHI8LMy14VaptcSDEuf1fp7uPIb5F9m7yWkVIbMfOkG\nNiXp740t8r9dW4RyH8ujPMYidkRWF0YNXA9wDkcWGaloXh7CK+Hs3/ndVVx7RRITd7owZrcAANM6\n55ULG2Npq2aSWG7S4i+q9G7U8BCxOj3Fyj7QFeSvdKCHpkCsemf495CyD83N/RYYLCDW5T40nH7U\nO4LANaRMR7xleKVnbV2tw6NzHyda7o+gFyNSh9k2+6g1uO6dRA3ZosDw6aGPErtqXc677mmNpS3i\n9MGjSCShRy/NcHVgS+RFNyPwq1K+o9YQqDNZsyQds8LeAHw5gUQM9jFoMhJRH01jWkoHXSLfujEB\ny8G/7+ZseJe4Obtbu9AGlPV2RzqaNfOQCizA00PbIIPtZAXBHvdOq92G2xUfSxcAzI66eOxV8n3v\nS2/hsXfp4TXEAy3uWPB9mrze/uEAy9OUr62ZIkrzTwEA/LuMurk3p3BKSsaarlt4L8ZrlSv2k+iu\nMZHK+WlJ5OydRXta6uJfewsntS8AACorRRxWJNRc4/pcWK/iCy9RBlpPHcX2HufgNrpIHfm0UPIn\nP0VboKujL8lV1ctL2HD8NQDg8TAjScWbAxgBynPJex2dFUa5wk1gWcrn3lilH7n1bQNLT0u9cnGA\njni0S20d3RMMUZ8oUw5vqI8jeZV7F751lIKSfDm7/gfJkwAAIABJREFUjJM3qHvWNc5BXSrjxi7l\nunqrhbUIv3dq4wY2l++NODZufCwO3kSXG6yVHmDUEaxhTxRuFzdhz2ug/CrDQ4uzkj1c1NA89gQA\nYLp4A7Ma78C6fgcWpCVZZlEAKbomhpJx2Ey5EanzGWYqBteIIWi3WzpmVFJYtgSj9HgJ7hoPKmum\ng4UdCl8+yfCKz2oDLd5huIPhsbSZIdIW0lfgmJHG3mUHYkJGZiaLloBPKAo37q2qHydneWdQcltQ\n5L5XzXRgSkG/lSONw+kWviLhKWPVi57cn1Z7HWhDhkrdI9KeLdq4GeTdicftgVeyj9GehJqiArZa\nEvYqjxAJCLhCYLyS808A+RwVV0Kj8qy617Ba5RzrKQWzeSqVgdmGx8eM30RZspB9E5BrXzyqtbEm\nV0CK810YGhXIntwrxrJOdBhdwqI1gzsxbjb1dhLBLjdc3U+mOtBDW7JV06U4OosCyqB24TUZCq3V\nyZu0LzSWtoI7gYk3yIvLJ9ghRcnuYWNPcJBjbcw2JTv71goSOifvXmR9oXMAZHYZ1qpec6F29tsA\ngODVT8Hq8X+ddSrO5blN7HZ5MF+fuoJVD5Vrfi2EmyppC25LrgGAh75E5fzNF65Cy/DviZIDwTUa\npZOfpMJ4ff6XAXz/p2iLOzRsuaX2WaASffkE2lJ7OvLWkJQuQ+mNAQoLpDnTET5bFrZi5N/cSAF8\nlPEdJYxZCe/uSD2v0x2CtcX3Jld66N/pyd8PYa7HqxtLgHDMlAEIVvi0p4eCAMNYvQ46XVn8KGuK\nD3d2cbfXzf93tJMh6JtU/NlFOdxcVRzr8o54yzcPzSPN6YMKGl2usWaQhqJjC5kg5+jux+BucF8r\nnk3kezQSo1F+v9/dhyJ5GZ5mFdZ1/q9qldGQ/TAUrHEHqghUpDtR1w1N8M91dQ59B+Uh6I5hFLi3\nAu++lYbyJPWRo/kDfMPk3vuVHHmzfOwI1n5CZp/O3EZjmvLQibcR+gHnvj/JA/Lo499A4xrvgDd+\n5MTb/znxin/rm3+C1iFCUbq6b/M7jhvw/BnvfSNPbSJ2mZx/unwGL58jTOuLXtLwW7e9+BcJHtx+\n/UF8Rq7B0qMtjAbde9JWv53Fqo+H9G19F2GDtP24zGzh5NQmsjb3CPQ2Ju6IzotU8Po05ejQe2cB\nAFsrPnQsytHJnSb+OsCD8z5nGZuHqQsfSlBGnu7ZeGH1FfJ0P4LeLI3Bwl4e7hDPhrsdsXz9dXgP\nCeDKqzG80yQvKygg0V65J23jxkGo+WAcjINxMA7GwfgZjo+Fx7vdpnWYNCwMJKu2nVuAv0xrMZ2+\nCXOVFnZpm95A1B9FtEEraza2DMu+DADI2segH6cFGDRo1ZiahbhAE+ZSKVT6tFK9VQvuCK0WZ47W\njappcHrpmSl7DpTaUocb6MNOkF2ZgnQv6rVgGAwt1ra3xtIWz0nf3VgFPQHYT84aCHb4+33VgUVT\nkH/anFdnNYtygSGqdlZD1kXPyR2uojhgRMBw0buLDgIoeWilDeJdZDfpJXhdzY/68KYMetJVj4Gj\nYnWHVzzYyUvmX6gDe4u8qqr8zkp0iL6Ea6u+8WIyaZ5GISrQbCE+Sw0G0XdIpvLaLBo+1qr6J230\nWqTfd4ZeRtHagydHb/q8J4qEQjqu2NOI35b+y27yeq/bxFHJrt1Pt9HI0UtaOD1E6zKt30Sf87S6\nwFyIdOxEokg1+YwqFqGZfJ/nGOd9e/Nu/O/fH45YFrFzgtx1h1a794oXfoki3I8buBWlu6727mDw\nS1w7XbJgo80o1Pc5381T65gyvwIAeK3egTJNT9kVl4S/RguR3X8LAHjosoZbZ+gJd384hPIl8uqR\nV/kdY2UZf9bhO5LnbyH1xG8CAJzRbwDLrJM2Hfy+f2ccGCbg6+/CNki/Wmd4Pu/ZhSYISpmJJtpV\n8vfNQAjHJQHOcsl32jaiOv/eGvUwkO44UxMl2DXa8hmBUuwX28hMSQLdXhzWHL3F6VYFpvRMdVUY\nyvftdjAxQT5u2oCvxfkMgzHog7sdgxix2PCNjzDBWYQmnm7F4BzSozCaYLjc4ymitSP/O+OEJold\nDkF0c1p5FGx6ig2zAI80g+h2VOjSRax+h3tQ83nh8khfYstEUWqMK6obDrmm6SncV349jBzkeih5\nFeWW1OE3Skh5GAptKypqw/F15QDQ+FwLw3fJS9u5gs9pnPvGMe7pqXer+PATnO+e/XksNlif6ruQ\nwduCzPfFsnj2wSR2H/ljAED81Ofw+ItsdhA+O4P+LN9xzcv9VN6LIXM/E6MeGJzDi4ktAMD8iobA\nxjMAgDPSne0vvlrCP7/I6o3/6cdB3DzHddIv68h9+YhQ8uJP0ZZOr2BTMqNv/7yGQol765NyJRRd\nCqO0LZ2kFC/Kkk2+4goi/gMmhg0PMUIXUtqYlAjGS9oRfE7qcW9YIZzJ8py4aDL03sQODIlqrtbd\nSOUoyxvhEZrS6EIaTWFqR8XbUofuvQ9w7pJPhWkX2tKj+P/v+FgcvKdnuQH3duegyT3KnENHU1oA\ntgZxSPcuKPMUskgrByVDpVntVuCC4MgadcQUbv47grkcb/pwyU3mp0wTczaFIe+24JSC6b4AbGi3\nGshL5m9UVbEU5997ZRttAa9Yd3CO3YaNkEKB9qXG06YlSEN5M4OUhEQO702gKgAEaBpILVJo1we8\nKzvidKImKe4RzwQcQ4Z2uo4ApuOcQydMRWHu9j5qPN/fa8MIc/M3aicRnhaM0asU4oh5HbagPxbr\nNtot/r4RbUIRWLVAiyJRt8LoNvgu53B8YETx5aFI+VKpKELfKWGyTyXXjuQwm+bhY1dUtCsCJXlB\n7uAGPrji/N9O7QM43ZyPs5ZHY8TwzkDhWnluKdg8RmMjpCxAEl4xuu1G0yvPldIgXxCISbbqHAxs\nu/jZ63Ng6OAGSV7h/+ZG4xfuSO992G4pJdkWmMhHgGSLRt0PyjFkJFS66PRC/SZlxn6aB+Vo1MPt\nz/8FAGDprT7eqzHcdcQdR97munT3GRJe2XNi7TmGyRqjt3DhVR7uJ58Z4rN18v6SX9rsjf5XZKLE\nbX78ky3ULr3CCadXsGhT1ko3uG4L0eRY2sySH5otEKEuhgqTsSwMyQoPOOyP5GTV8sAaku894ZVn\npMMU2EWX5UJQYsnWdS/aKR4cubbg/IZttE3K51CLwC1Z5K5IF4bNtdAKckXgvIpGk4ewI+1CTuQu\noTSQCIqqGs4BAPJGYSxtno0IHBkekEGVc3EYQ4w60tXI9MOULOJk0wPT4Bq3bYaia1UDHks6gEWq\ncKyJQp3uIlyiolU0ycy2d+Hp8QC9YQ0BJ+cbCfZQECjOWI+nvCeQxoSTQrtjpDAcSOefQA9dhes2\n6kUxM/p7Dt73nsfpyD8AALxQ28XIEBjNT/IQ2a4V8VSP+ScbM3+IQ03K5L/Lmpio00HwLTJkHC0+\nBM8W73W/WQ/jayPO4bXcC6gFmF18v0B9PvNuD7uRXwUArH2lCrUiNH/4DaRmaDSYs3xXdhP4Yf8U\nAOBQ+QYmP+BeX9E0TH6L/Pv6GNr2bBPKo/z7aPgWHl3mYbjkohy98VoQh5e4VtX8Tfg+Q6fA+HeH\nMJQUlE2dRk783FHs6oQhDi/XURagkYh/C/kX/yF5dopXi9qogTM16pjvRNSPYHIjl23MeLgnXaPn\nAQBdVwqLFvXrXj2JTldyfq6EES+OB1C61zgINR+Mg3EwDsbBOBg/w/Gx8HivG5xGamIHtljHtXYc\nqoCOq80elDg9lMUevYG+vgWzQKtnqv8wWiF6rPXpEVxDuRQHQ4z7Ix0qaGF63A4MyrTsy24LyWnp\nxlOl5TY8C+gf0vLyh/LYH9B7QDSFRJFu99I857XdSiCkMjR+2RqfjdgN03NbyPQxmJ+U720DAYbB\n5jsxFMvS9Bm0GtWpNmb3pZNJMwfvrHRDuaCjnOAcrCQ9jnDXA12awg+GCgZe0j4KFhC8JbWUPfJO\nnxhCovNwXyzBHeHvM0MPbpr06lTxDFLhOqo7UlMdGoylbdtswivdm+4mqdWtTeT95E+q5UddAOu9\nSzegtem19UoCKpDpoy+F+8NSEOtOfobixUqd88kZ5F87FYB7jZ7Ijt+PSfE6OhUdmTCjILb0D3X4\nvFjvS/anbeNBkZk9pxsBCYk3G9IAfnh9LG2bsyfgkq4kMPn8o8Mf488FrGA+HUC6wOc2rRF6YXoM\nV9foxc7aaSznCOUXXT2PWoTh3/0r6zgp/UxrHcrA+1oSmYvSTGP1l+COMzmlfySCNzeZZFJ5kjB8\n/sF/hNXb/P4Vq4anHQwvXwn8HNbqtNCrR8i7+wWu7++OoamjX5YoyLxk1zvysJ0u+bsXzn3ObTqQ\nQ0kTMAypnfZbQ7glUaaod1CcZDJdVsmhN6DHGhHQgnLXgfBNyrI+fxPTTen+suGEd56RiFJIOmYN\nkxh1JYy7q2BFpWyVHD442lzbsosCnM2kcGkcbfMeeCQMPlQkOSsMtKXuOKC10LFJ+2C4gVFLei1L\nP+RotIdykbLj3m2hL6Ainl0PmtJ7exgUIIyWEzFpXN+1uvBJc2l/3YOwZNqaAjSSb7TgsbjGtmLA\nLZUGGCbhn+S+r+kGnPZ40BMAuBCaR3j2r/i/zk8hviRRpj+hR/Yfzw/x7RXWZbsuTePNhlRRTPwI\niSF1nn6NURiPKw2Pk2vxa1od2Qi9WL1zHNHLlLk71/n9xcgdXJogtx2lGWznmPj59OgQBtOSMKlS\ndq7/3hsfJQf+1WMRrF5l0W79WBhT/wOTUvF//zRtJ966inefoEzF12Pol6lP3gtwjrp2GS+obJww\nFa/g6NfJ19LhHlJT0rlOeo0vfngR9eyTAID+DQMfCkzsUzM+GI+QD/kII21O5xw2PfSOzwxPQ99i\neP61rIpT7zD7Oi+wuBuObahR6sxW+A5S71K+/A93se9I/zRRf8848HgPxsE4GAfjYByMn+H4WHi8\nHrmu6aomXA5aES27j4iPVvN9syb0Oi2cTo0ekK4mkR1w+i53HzMavRNfPott5RUAgOakZTY3G0ZT\n7oY8PR0QOLz43hB6iJ+NopSZVIaI+HmX4Hf0YGxzDgip2BTYud4t8ZZ8QxRADzTlHm/DOAV2bF93\nYfIa73iUbAjqNp+1GTYwLbWqRU2Qpn6yi8wxaQ4QGWKtS4suHgjBEljFmINWdyuiwFDpiYx8KqZa\nRI1y1nSsDWmBL3h5x4G2CWee3mY5VsCE1C5W212Ybi7CqEna9GYEVoi07UvJxU+Nfgcti1ZoOEFL\nMZVbQNZJS/nCdB9T0r4teHkGl8UDiyalH+rIhe0G+TOvNGG7OZ9y7RZ2EvSc1CEt3mppFqrN6ELA\n30DNpoXpCARhN7fI1ySt/U6rhaxYvwl/DDdNSZJSE+iIV/KJIaMht7L2WNImX61gzc07tGicMndz\ny4WQj9GJUxfvYOMBwjzu9n8ZSlfKQCakDOdqE1tuAtpv3zqEtotJHaeeXMarNygH3UneF59bcsA5\nz8STzZc6uNSdAwAs/tGbODVFD+h69bMAAO9j25j8gDRY5xS8XpUEQnsAz1eZtPLI80xuaZnj66/9\nmTuoC0xpW5L8al0fekHyRCk2IEY+bvQiUCv0sG1pRNJQpxGSZCWjX0fQ5rqt92NYBvfvrjQSmchl\nUY7ze/6cik0fZTHrstAs8BmRJu/H9voaElLLqd+J4uYqPV5lpwV1lh6Z3+bedBvje7squoWyLZ6T\nNK6o+WOYc3GP9SJeJMv0yNrOGIY2n9OTqIavDgyG5IlRBhxu3tF2+x4MJMqUbdObLSCOWof0dAMm\nBh7qqO5+AOmIoNwNZK3mKrBLvC8OmQryHilFC3oxlN7H6YkU+rfHo40BwIN7PgyNhwAARxd+jFdf\n4t55IMH8gX90sYPDXYlOhd+Fb8C9vpQ6jWO7c6Q5RxQmTHoxanDv7jxzB+X3yYeHB4+gtsR74lKP\nd597R7OYrv/PAAD3S1/GocPst7s/+kXoUe7lTw+YAPr6Shq9PuX6jOXG4U9SR/93nov4+e/cIxEG\nwAuTM0CVc/cp02gNrgEAkmkm/9U7aRyXfrzGy4/jVppzTGbiMEoCmzpNXbM/G8J0nXkfmlKFFZKI\nX8ODrpP7dPkCPfWAcwX7NyjsV5VrsDtSHxy4jsuHOd8ZF3XQs5EQzr9BPp45XoL5Oerg8xcbCDvv\n3JO2ceNjcfAGLRJeMd5DVGNox7c7hOrm5n3LBUx4WEupTZHYVKWK1oCbsaDdQHifysZhdDGdJaOu\nSHLMzOUOrCw3UM3phN7gAeA1JlG+xsXua5Jx2MzDvE1FcCvkRuluN6CrXZg+LlpXNmmgOYB3lZtx\nNzWela4h3xWfiGLo4zv2zDewKoaAr7wIJUxFMTngpqs/nEC7Kb9rTcHb5+eBa4hIipu3uSWJI842\n5i0eLKOkhlKDAmd20phwSaJGiwJZrRahDCXxJGKgO+Sm0QteqLrgJKd42DrNFuqS8T2ndXF5DG2h\nRhpqgM9W78JozllY2xac5YiBli39TuM2YvyIbS/5d3hfR2nE5B6to0E1OIdkKgyrIwlj0vVpaiaE\n0ZCKTStkYUyQl13PLhZGAsUn9eBRfYgZUep6RoEevAtD6oTpoUy8d7eRenG8ostNRBAWTJRAnYfU\nOl6EP8B3eR8Kw/cAa8ezX7cRilEuT7gFH3w5BGuCSVCPtBuoZKgcl27bsPOUoyee5rx++MYjqHxI\n4yod2Mch6TLk+fUnUfg2E+4WV6jgZy+bePEY534isIbkh0x60Y6/BmxQAb38Wam7vTb+ikAfzmHO\n5no1ApLQ0nJiECRPZ71O9OTASA5LKBRZXeC2BRZUaaGUpMw57SSUa9LLNZKBx+Z6+nwMnxZjuwj5\n+A5nuYS4kzzbq4+ghKQ2VxNs5WIRdUmIVLURgmLvtZIqMlKXaWj8ZX9wjy4+jhEyAqBhGZSdJcuD\nfpQGitr1oRwSrIDhAHXRFVM1/u52p4dJg2vRQgdXBKc87HWjWxZoTIVyZidGyEtnsUMNPxx96W2s\nbqM/oiz3ZE8P16PwCp3wxxBrCK6z3sJMjLy+Xa7DjJvj6QJQ+p0mKl9lWHTmhc9A/xoPJ1NwwA+t\nHIdz9J8BAFz1/xEhF/9eDc3itXkeuNFJrqWv7kHL9Ud8sNuNo58mz179syP4+Tl2ynpd5d+P7pxA\n0fnb/N4vtqD+U9b51r5jYyD1tD+eYbj75KvzmFyV6o+AjR8uMOv5ydp3EfD770lb330eWocGzbTq\nwZUMM5V7b3BejpQN8zLls//cHrRbNDoKBR0zgt9dj1K3tW/auDxPPfYr76Uw8Tj30A1o6DQpqw/H\nGMq+M+lGtMe/Z+q3oT9E/Zp414UdkXeU+a7LnddhfY5rWNm8jG05sJOOk2gsjTdy7zUOQs0H42Ac\njINxMA7Gz3B8LDxefU7qcZUHcf4GrY9jniouCQzh0WICRQGqTgpQdqUTwUyblqflSyGfIYJUdhhD\nQwDRVYXWtzuWQE7qRRO9OAI52hu77g4ifr5bE7D5/ZaOLbGY1XebCIUILt70AqUuk0iWpfNKPZPG\nlQ1a3mdu18cTl2bIuFW6BWOdHonTmoIpHVlG/QpKbb4vLj1468Eq5nz05jcafUyK4eWwI9gT6zhh\nStjPmsHbEOSrwjwSggxU1ZqI+eltb0qHlHgtjasOhhPV1iLSNj2OQroFzy7nb7uk1AdeOKRxQq09\nPnFs1G8jPqRlb6RJj9PhxKx0xdnXJ5EWb3OoX4f0QIBD5XsbZgbuOJ+dt++g0mWYJ2IuAkN6Hc4k\nvQi7nIfbRa9nd7KH+QLXRQmv4k6NYaMlKWkYXptC5ZP0AmpNDcEW5Wg568a6YCGaFf4upp4fS1sj\nehmlnzDaEZ9iqGpVKyHo5xq+rcVgSe1e8FEfjHfoMe2foqetbYQwAXo1t6Ma5qWRgJkrwT3D8Nno\nImX2iHoFGyl6gmeMFbwi4dapD3voHWFphls6oZiT1/CgypDy5sCH0qnvAAC+3P1VdF8mzYVXybsT\nk86xtNXrKno25ScgkY62u4ZhhWvY8KjQq5SjslJH3Ef5cYU4h53+NuZMQSfzb8DQ+dmrF7Gpkr/D\nCvfISLUg0Wykm25sWJS/jqnD3uDes6WNUEQNw9ij19KZDgI2+eAsLqKyQG/HuSulXcvjZVLPV4Ao\n/5aVfQxjhK5Au87ZITTCpGfQKSPeoVAOTK5xNNxBu0YvrhxWsSjXXf1BB15V4Dl1qk2z54Eakvr3\noBdzAeqmZsdCXZL3/NN8VqAxREHqvld9FhqSpOdQ59FoUR9l3RvYbY5HUgOAa787ROUf07sbPnYb\no+dJh9pjX1g7ksfMy5SttvI64lVJ6FvdgOtbvHa7/9f4/GvBGhyD/woAsJR6Aef/lrKzfN9F/GCL\n/PuVmyy9aSjvoSlRmMkXPaj/L7wG6v+uiftnOfd/keFcnv38CTz8POX6nz9xFI/UuL8C6j/D1oZc\neeG1n6LNGcrgVI779+LhLjSp2R1KUtcxzxJyJuVh+oaBkp8NCpJT98Mn/XaHb/D7h84C7TL1w99E\nHsRncuT77IIfV6XHdukcnx/9k3W0n6CO3pzOY16ahrwXbSJQpcw0JOkzYTjgchPNq1x5Fp4Z0rOT\nM3D4ynh0v3uNj8XB67yL89vZhE/wVTspDxIObt79nQaM0N16TyqK2WNulAskvOPrwF0hk25mdGTK\nVMQ+g4fXza0cIGGDDzMuJAu8H2j75+GSRvddQ5p5j1bhLfO5uruC83In6NzahSEJh1uHOMf+nQqO\nnqTSKdfG4+LWN/n7kXsJ3kUekEf2/LizKSFOu4/ggMqmsSr3TecnEH2Kgr5jFOG3qHQqDgve17m5\nS0uct3t7D21peZjurWHbQ14m9k2UMlQUjpu8G22GVYT6JKJt7uB6gXPzxAroyH2gb0tqXrMK7LI0\nNV+8xx2vnUJsXoTeyVD/KKFip0rcYXVYRL4u7fuiEZgDCrDeWBaeFBGS+bon4gh1BPRC2UNCQo7V\nkmQOmiW0wfutuagBPUy+F/N1HAbXqCV1lvpkGdkm6xXDKQBebsJyNwj0OZ+gZCFf0ce3BYzt1LC4\nTGXVTTNkl37rOQwfJQ3B9+bRGFLZtMwfY/oLlMv9LX4/euYCwnHKn+tdBfkJvrfo6kOJ8z78oufX\nAQC1Nwu4/wjn3ny9i7ksQ/ytk3twf4tXGZl/QCPgg81VfFmyjG9dXsSJKGu8lUNFeIpcz99KUb63\n4p8aS1s4bUHJSKb8O/yOPRdEyCVZ4Rs+hFTOx+twYTNApRwr8hCqKDOwN6kQg4em0Zb7bZfHQqDA\nA8eUbl/2yESvIPCJMS+akmE6Ed5G00H+KRISdqg++GZE1rsjaL64zHeAgipN300aco3u+G4w7aQJ\nQV5F2OY+dSU9mJduXy20ES0K9GUrAI+0etJFHmLDGLqCJXDYFUBF7vfU3gBdMd57khbgiwOmg8/q\nt6qoiYExiJmIC9hO1eLBfHTRRMAhh3vcRqRD+c17hshKS9K3OxPQXbmxdAHAz7mc2MlxDwRfehm6\nyVDnW9Il59AohOD7Uu3wm+v4Xo06M/6Ta5j4bx8DALz2OuX3hFWC50WGrWc/fw3nszx89J0R7CUa\nZTvPkdDE11u4E+NVX/MhG5aL4drMahl7S4Sd/C8v/EsAgHN6Cd/7BRpUybffx6kKr2levu821Mq9\n73j3izYWD1NvDB54Fkv/F+WreD/D3oN4C06Te+D6+ruwHmarTnW3gm8e5z57eIcGZ7RRRrVB/j6R\nLGFTY16GcrOKabmTv/VDrk9o9TA8VA9YXJuH9igNw9H7bgyVLQDAZJ175XZ8EnMXmPHtdyfRbpN/\nx4Yu6Jt796Rt3DgINR+Mg3EwDsbBOBg/w/Hx8HhDDN+VHQXMGLR418xNoMAQVLVaQ3hPQjcZehaX\nr8cxIw2294INZB0CqVfoINehB7QoDcMHegVqiuGR4OYHGIboyWz126hLA4FFqdezCnfQktDtOhoY\nSDOCQV+FIrV3Sw3+77GVIQZRWsGuxPJY2uyIgPyXDLQl0WLHdkFr8Lmav4Khyrk3KoJ2YyrovCuW\n+LSFC12a0hOuNgY5WsSDEC3bgCsKb5Pv2En0EZReovndNdQkkmCn6CV7mwE4dHocQ0cffoGCrIZb\nGJr0MD0Cjq8kQxi2yb/s6PBY2sqjJkp+EaG7jec3bLiD0g1oOgR7SDqadhlNkxb4pEZrtDUXwDBH\nj0s/lIBnl/Q/MGjAP6DF+6GD3oCdnoEKekZOM4XA3QxztYWCl89dCdIq73R2AEGV8YwSsD1ZoTOC\nkZsWr1/A77P+8R5veXkE55u0/FMam2PnUpcwtU5P+sHom/jQ5tzO9x9D6jWu55kU53hTfwyxLfJk\nPtSD2uLvz3iOoS/dh94acg7Pzf3v+OsSk0kOZSJwmKTNtTeP7melHlm6RhXDJfzgYe6X6XYfiwI7\nWXLuItyjF7iVoSyG1PGh5rYahCodKawTlJGIHUS3SdlyLGjolBjWMxxZxHRBxBpJxyzXJpTRHADA\na9fQi5K/XsMFq0I6W4u8ugjeSiEYFeSrkuejLOId9wloe/wfNSEesbuDsjQBOT4XhMemB77XcmBC\nmtMrs9wrdWN8NrreiWKUlYRJiYREAlX0utyzroEXyiF+NnI2opL9rjkke74/hDHFv2tKD7Em16ht\neBBMiiwOGEka+L1AU+p85xxw2+R32m9BD/LzvDSNH2hAQmqYlR5gSlSjb3dhSiVBKNrHvVvFA6XH\nvopOg2mO9dBX4Bfsy7l1RvjmPvUo6r9MsP76jefQSf8QAPBFdQGX/pp75DnnSwCAYryN2mP8/JdG\nEg+tC+Sr7kJ6jzpt5x0iWOk/70BoTypINkyUO0w26q66cVL9W/JyhXK6HvgAN6Sm9dixGL4tlQFf\nuf5JNI/8xT1pe+g+H4o9ym33vfdRmOQ6OywV3AGUAAAgAElEQVTybO2iB+ohepX3H3sINUkc7GlD\nfEY6wFWucL++9Mxp/Ifulzmf27MoG9R5K1EN+XPUMWc36CXHq3X8pUL53TtzHu7rrApxBX4bQemf\njiuUz6WHq8i+Rz5e2LoKX5vnSMvI471znPs/vSeF//74WBy8mrSWmuyfwVXJigziGNYFjjGqKWiL\nEmlUBcbPU8VFjZ8TWzZ23RTZgBmBWwqq39njppm121BiXEAzb8PlpPItGSP4pcHzhrQKe7c7wFmd\nQjTs1eDvcGN5XX7UetJarE9BH8RPweOgEDoFD/jvDq/AthlqH2Za7pYKXZQ8XODZ7Dw0jcIZyfFd\n+/4t6DWBc/SH4O1ScMJDP3YeJE2OGxS8Rqj2EXyfuRmCvch3OF0qok7Oc3RVumj4bsLWJSzricKS\nMo5kawajFBVQe4X0BPJ7UPwCyzYenQ9GuAB0eKeUFaMkEOkhIdCFG+UeHJLtnbgVhrFK48csM9zl\nVYBAioZPwe5jsslwvxkOQ3uMQr3wvBwmVhoZuRs24kk0Tb53ARqcJd7/6xkqDLMXxEC6jxi6G6sm\nN5kvABQ9XO9cmyFs2xxPXHP0LBSTa1BfYMehdi8Nh5Q8bD00ieNvkD/KQhNZS0Agjr4PAEjlz8Gw\nacRczjrx3AT5s/38Ov7oNO/kVheoGL/9/nM4N095OJQ7jZd87GQ0+9azWMtw8080qOzrx2J4+AJ/\nt5G0sOHhc09rJ3Fp8hUAQKgq+MOO8VjN/koVbqe03NTJfzsURrXFzOtRYw+KGCvF4QQiDSq8TJyH\nf8OaRvwow2yl3QxGUp7X9hpwaZQvxZD74oyOUYV88E914G4y7KcrTUQTnKf7bkZ9rgXvHL9f1C24\nBcPYSpRg7HFv1P1872Q3MpY2O7CDsBjkEQmfhnpOVOLcY0bFC4+U8k0rKswUD/c7Da5fMrmEZYGX\nrZoROFXKamAugWZOGsu3BWyjPcBERgAe9AEaSSl1agaQlVwCS7qTeRxZOH08kEYhCxAc6VnNgaqH\nc7AsFa3q+DaVAGDvvY9gigfv3pqCsE7dcr3GPfaT7dv4tQ8I2hI78yfYneLB+XpmCyc07o0/HXJd\nv3g5geTv8Arl8R+ewTsp6t3Eq8+g8uh3AQApgyHste//PgJO3n1OPfgMHvlT8n7+dAjvmARw0W7z\n4HnggRrU1H0AgNL+a0j1n+McPRdwdOfetI2+W8DOw+TPwqsxXP0vGN5NX6QTFNYW4YhQpoxCHLEn\n+dlfPoLKBumfatIgTW3V8W+kA9XR+zyo1NgJqmF+Cvo17omflHlezNc80I/9JQCgGZrC6pChbcfy\n8xisC+Sqn/ps+HwI61JqemLext+eZz7SCecyHkyN32v3Ggeh5oNxMA7GwTgYB+NnOD4WHq/bwczN\nYqKCmQwtwZ39IPxOWp6FkB8z67Q8OylaxF7VRL9KC6ncGcAfo2dkD51QMwwJ6Q5ax6NiFO2BJJFo\nd+CQxvO90D70PL0aX0DCS50G1iVBWSsnMTpEi7Vq3UCsx5Cj+ahAvEX7iF7jHOfPLI6lrSnhxNVg\nDftVqQENujHv4TP8BS+u++mxWQIu7u8uoCL9LQNDwFVhCPDDtg6PeDgDJ/kw0ddQESusoxYQvcqw\niwonjBr50PZK1rOjjaoqIdbWBiyPNFTwTcAWEPWwU1q3mFGYYUk887XH0ubFDEYNWtK3pFH5qeEI\n7iY9GK/ewdSQlmB1aQqIkLG9BsEiYuYuVJUW+EL7OvZOiTe+dgJGkd56N0HP4UFPGDvSJzU58qAZ\noRU7WUvgsljKM1dI52BuGkcrnNdGrIhchNZv93oFPoGPjKqMsty87R1L2zIuYmuCa5tZZ+LYmjmE\ntk4vYS6+gp0oLfjORAIuST1vrTOJ5WTVxHBSrgPeuYLteWZT4qFn8d+3+O4/fImewWr2DjoSCvzf\nqtfx1aefAAAUD/fg3CDP+h162ou+GazMktfFSx3ct8k5XFaqOLnD9e7PUkZcq0tjadP6c7BWJWmt\nRU/aZxeREBAYPZ5F5hYjAVokCj3OvTfQxEuuN9DeYUhYjZmYGnFu9YaGQpJRlBSkm1j5Olp3G2Vs\nDWF2meiHMNDsHZX3cS1HwTAS4okPCxXoCYbqzagFt1OuinzSjN453uN1jSxYHvKhKpnVSjCKWent\nm5sKIiiNC2wtioHAmKY1n/BDhalKNrUrCtN912vuIKjxmsEWoHwtZUL38V3OngqfJfCbuoV9qT5I\nqtLdyKFg5OY+9psWulIhUek5MJC5KdsDhBz39gofuXYBP3aT/s8047ixSH3x6fs4n35rEcufZMRl\n7c6D8EtJsDpp4MI6vbPYzBwAwPufLuLH3xNI3ftCePYF6sGd9ItYv/zzAIBsnpFBp/E0HNNcT9+t\nl6D+KvXY+tWn4ZZa9OdnSPuDoymof0465076kdYZLYqEPNj/f+62hfrp0V6ZRHiXumv9rAP188zI\n/uSC4ASsvAS19CAAoBZLwdPkPvT85CgC57jOO5/gvmh4P8Djb9ADv1zexnyQsvNS6h0cf55MmZgm\nVGxRzyBSI9Tqkz8cwj4tV4slBYdrjJyuWaTx+MkYNqrk2atvTsD/IP/X8b19GPOZe9I2bhx4vAfj\nYByMg3EwDsbPcHwsPN7lCK3usDnAtSl6gqZ6A3aN1mKgGEBzTpBBJIHB1XOhmaEn1r1eQ0RQjaJ2\nH7Ud2hPBMr27O7ERRlKadNhI4A5owfdcPdg2rZq9Ei2WxKgPPUXvo5wooiN3gSdcT0Hx8S6m1eZc\ndH8CwUdpKRea49t5uV20NG9lkwiNOF9XyYONLr+nKxtId+gR7CV4V5bpWegM6S3587sYJWndx7IG\nGl0p03CQT4VRD3tu3tMlR060InxfsRVCRMDMdfEAXN44Qgo9kjvlBFqCJJPqDpF2kNe7Ki31ProI\nB2iVoz++5ZXlHKDWo0d2vM37lX5AR7lDq9AfBnZAT89MDjGZnwMAdJe2OIf9Plak1vp60wdIskLy\nhAGzyAjClFQgWKYHxkgA6ff7OOXjeu+6LUTzvHsbeeidJPfy2Ne4RtnQEG2dFvj6nB/TguLVyMm9\n4/T4PppbG1MISPOF/iz5/9lL7wJfliS+tUvoPM37tIfffQGxWULmveen7L1x9kl8ocvklbZ1Ftrj\n9CC3//U+3lukLC6FSWN+/RQmzzJi83jYjc0LfEfyUAwPf55ypfXYDm730tfxVpXzymhZ/HiWf//C\nMScuvcioRWede+R0ZDyMXf1QBx5JNrKk53Kj78HILchBTQO3V4R/N0ooSQvKlEbamtky+vZdqMkA\nIkHKh9uvwTtN+dz6gL/zReYR2aVcj0JFaKp4o/UEHGl6Z4pFOXOUdLRVenQebxhHJRpyrdKH3ec+\nNKSPbXNQGUvbMD8D+KV8bp5zybhtXBfvL9JTUBHYTy90KHLv6htxjoNmA2ZIICNzPXSnObcpZLHr\nJH8c6l2ZcWDYFGhCO4KQoGv5V4Zw73GNS1KWG3WYaHQ4r6A9i6yDcqgPgKYkPFreFmqD8QlxAPCH\nXxwh8O5vAABe8T2Pk2/SI20lGWXZDVyA5yw9vdfzDSx/wIifZy6Go1Ey4FCZd8Qf/J6GcIL5HMrz\nBWwLEtnuYgeP32DtbVPu27defA4TsX8FACgPDMz/zWcAAC/mf4Bff5C6sneGfNj7q4cwdT/L5cxC\nAoEL3NP7KwPY//hrJOSfvfNTtKm7u4gsSnJVpY2noiyJu9rkHgl55/GJPvX5IHQV7SLlM/2ZBmqb\n1DeayPRcMwwjLDXTmo2eSR2ULGxj8nHu+w9U6t/cWgefkMTFrfgIt1XqkE/fehmvkTTMS8/x8+8s\nQSvSaz/+8B3Ed9mI4YOZiwiNzvwUTX/f+FgcvMoMs2btDQ1TWQpk7dohxAJczPPKVTgNKr+0NJPf\niZaQk843C0EPDFOST7xV+EV4N4NUSkd9C6g7GN77cHMRlbhgpm4a0OsUvkGfzK2pGlak04aNNA4F\nGP64deM8Yp9jgsEpW0KiaQsJhf87szI+1ODISF/dUQKV61RG+uEuLINCorcSqElXooAkCe0vrKC7\nzo2y7ZpGXOptA8oIuyMqrmCSoRLfMIPkiIdmYSeNSojhMKORx7TgOSPC0GM+BAS3pGfonAt6kWGt\nQTsKHJcOSdv8zvZqEqbC53r18VBv+b0dIEsBLzj5v7NQYczREOgOhxjWJRx7ewgFUtP8PtflgXAG\n1SA3UzRQhUvWrWOVoYYp1KqHSqB9tYHwJN+FyQAaLtIR7rqxVxaQgqMCHvLBEN5TlJ2N6gRSXc5/\nTnfiypBKriGZkGgmxtIWa61BcTMUOlrj/2783EkYX6cyt07oeEI6G93oh1C+SPqPz1K2TlYuYcZJ\no+7/8MXw9GsSkozfwZfOMrRVb9EgmD8yxM0G+f/ozXexLZB9evIilA3yshFg6D0eegqNMD+re32c\nOUX5fWv/D5EvUWkEj/BZ35qfGUubtzKCT7LRB22Gic2RA5YlWe4jE0n5XI+YCEglwUiatPd7HoSl\nTnJu3o2S8H+0GoVzj/soGOW6ZiwDBS8Tx7KuFeQ95NOyY4CqIj2wB1xXwzLgmuAB6NxVcMsl+OEZ\nBwICcOFSyVNPPDuWtoprHZqT/3tUQBgaAcAZJv8dagUV6dY1bwHmgEq7GWA4ciIcQaNPozceGcAj\nxrbmGiFuUOaSYtSZvT46Gveuo9aDEeCBPXBE0XFQTnz75Jml6Qj7mLxm9zy42pI6aWsLzraENzUn\nfLv3xmpO/qsUIk+ym63xwSReP821rzsp657md/Dg2v8JAOjrmwgneWgNbvqQivwAALA7x0PakXgd\ny1uUQ2tVwy37awCAB1K/h9x/wz177LfJs9CDb2PWfpjPXXgbGwJWdOTW/fjjN5hcdegIdczJ2Tew\nf4XzcUwE8PtHud/+iXMbS8r4CgIAqD91GKUy9eMMVlFcY7h/R7rHGbkiJrO86ktvRtCRm5tI04Xd\nCGWtKUBMc7stXI3xs/JBHAFFzoNAFM4hDY9zO9wrH5x1obdB/hvONk7u0Fi+kzqKYI17uTYlXaDO\nvonFH5EPfz4ycSbGQ7ipfhn6jd170jZuHISaD8bBOBgH42AcjJ/h+Fh4vEaeVo3PZaC9RyvDc9oH\nV5dWy9Stc3AusK5TlxIit+2GJklSAyuIcJcW0iDYRVkSFDQJH7e0TXQEAF4JdeEUsvUFP3xdSdgJ\n87mDVyOwW/yd7fSg5qfVmPpEB1qDllN3ih7vbNyE10WrU3er44lz0TPob+7BAc6h3azDLRf24X4V\nBYNWbsTHUIuz1kckQQ+/1qzALWUDjfAInop0bEne7ZUbwqzkB5XbLcSLCXluGfkJ0qFZjJnE9ruA\n8M/RA8w5QaTqdZETeMjEnNSI5lqwsvydSx+fXBUzNKQjtAaN/BYAoGTHYdZp+TvTTfjFg5ntxlAT\nFvXi9BjcoQUkqgyHVi0dloeelSOZQu+qlDcIH4bpJOIdWpXrywkc3WUkYbe3C+UI3+GQRCHHpB95\nmxZ4WilD7/N92702sk3ypGhwjnut8ZWTPvMUypKblHqbDE795QYiMVrXrSDQ+AGt+fuO6BgluEaW\nhx7Z5jc3UPhNyt+58mFsj+hZDRK7WPtAah+95HV0Jw7/s/QU98KfQyXwYwCAq+KBdYuykThES73y\nVASzrz7KORz5HnyChvSF3i/g/RlC8Lym8ju3SuNrXQM20JfuQaEsw9PGYA+70hDAGRwACvk74zBh\nqZSTuiJXLLuAY4l7oaQ7EO5zPzkrLTQm+Nxojt/vmjZGktCWTzUQkuhD1arAK71qdU1CiFYD8Qq/\nZ6ym0avzc0hxw5rkFcpQQs0eazzCk6PYAkA6CimuW7ibhjLgvDzJANKSzNROumFLAwhPXzpmhUOI\nCZxj3z2BgZThDEY+DKMMb9vSCzq03UPVz/0YDsQxyov8jepIBKX0yiH9sT13kJCGSoXYPkbSTGOQ\ncyJYY0g41/ABiXugxAE499ldXHzjk5zDyauISRnX/YIiNjcfwe+O+PnB00lMTv0xef32p+CRTm23\n11kiNLeUwkURD//3FHh/g57y/CsLaP0i+ZN5kdGm+NkjmHYwAe673x3iRpLz/aorhPDZLwEAdtcJ\nYzqVDiAR+hoAoBvex+fyRFbbP/l9fL987zD69CsXEXiGG27o/BBHZG+sLkqkyFOEkZNk2aMKam65\npnHsIeMmHxZuSLTvWBN4R2TumZeQvk7P9P7uNOz2U/z9kvR6L9nYSXPvRhPbCEgzjf7FHawu8vcv\nCpJhQI9iN0WPOKncj8558sedu4PGs+/ek7Zx42Nx8KblnrTzPQ/0GBm9UBigtc/DdHh/B+4eN5zD\nKzWtowDMRyROf6mG0aSEtkZetEQgMwtU6pGCD4qAVNy0iwinuCiRfSdcPkrfaJ8C77nfQliRzT1y\nQDGo2JzJXYTKcgcp91BB5wJCMYaM2q3xhxPqki0ZdaETkJpMLKGrMXy5GxthyqIC6kvjan2wg4KE\nsOeyDYxucJPWOzGocQHscJNPtXYHzm2eaEroOuxZfh7VJzDboXCV0nxv2D+HRoUh92Ffh/M23+dd\n8AMTpN+V5z3U3tkwMjs8sJW53ljSdn13oNZ50Iem+az6/iEcCfCQGFoRFPbI95yrgtMDXtgaCcaJ\n8sqHsAyuxcB1GLPz3Fi3c0n4M3LP7qEicXeicM9SyWXzbuSW5V47GEK9Rf5ciJBnR9UgNuqko9M3\nMMpSYcZ39nG5ySCPKvXgcauJcbeFFW8Ih3WGOkOH+b9mp4d3MpS/E94gFp5gdvbWnT4mNrn+iQif\nf8f3EIJVYtImrBEeGjH8VplawssCSLLaZsh4J1nB51/6JQDAlew3YczSoNzqJuA/zbXrC/jK4iUd\nb04x1FcLLuGfDHgX9tf1KBISsp2PUUkecmbwB2NoK5pNDAUiVJGQJ0w/zCF56mx6cThDroxmfSjJ\nlYQ2oNybsRQ6I75jK5jFmS6NL60TR0dwVS2/GGS7TjiXpROPy0TNIh+USAraLsO7gwT36exUBMMd\nGkKVkQ6lQ5kcOZLIOeXOWQBK2oXx2b8uw4kg+L81F59lDrzQ+tK5qg/0+1zPXqGPiTjn2ZB2cKqz\nDEtqsoNeFUm5W25hHzmpyc+4ZC2VKWgOKuVK34IvKPjU190oLYgxaHGtjFYUmosyOaja0KV1Xt9Q\nUC4JnOUQsDvj764B4F/fOIVf+QyfoWsOTL9Gxf/9Ca77/s1/hPinedD91xcfwS+1eDh99XoH6/Pc\nG5uHGO7eKNRx7jY/V/+TbXReIYBL8vBF6H9AqNGbT3KNe/sO/H6fB9aho6fwWIJ78rszGgIR8ip1\njvvY8/tRvH/8R/zd0ghL67yuOXn9LThyBPf41hjaNhYm0X2Fz3gw5kf2NA3u/kUa4KWzWRyXO/S9\ni0fRi9OQdZ2uwbjCta34aFSU3wxi8UHpONQ7icC6XF/aQPoss6HdLeqgaZeFikU+tlIDOKTbUsiV\nwOtyd/yJCKsa0FhHS2QD3m2sz1O3PzbXxg3j6Biq7j0OQs0H42AcjINxMA7Gz3B8LDze+h1alcWV\nKGw/LcX+j2ron2TyxSO5Ia4MaW3GJUGnlsrB2aDdMFw2cNii91HM3cT9Pj6jEWMYOD8wEJ+k9byg\nL8Ic0BN0DdzQjjDxoyQN60/1/HC6OZ8tVf8IXSfTXEZrRrrVrNAbW9rvoyqe+PGz47sTuab4nVxR\nR0dCyW1rD1Xp3RnwqtjP0/PxLPB3g5IbLkU8ncsedIO0whIOA1aU1vFQFwu+G0E1RMs0MFqCZdGC\nzweAmpceeshBK9qr9hHP3M1a9sAOCYxe1ANnTeA1hc/hvgpVPD6jNz6M7m9H0S8Lukuda5EKbeCt\nOOd4/E4XuQCfN3/YxkWb4ahilaHSmcQcbkpv5EfcDdy8zjCPL9zHwJBOJh2uRbXxJrpeJldE9yuo\nm1sAAEfvLIwwPWVzl9/fLo/glc5V4WgR6yPJrG57MCFXC9IjHaV7hL+m7TYC3+Sabp2VJgHeM8jZ\n9GDqb2cxfPh1ztexi4sPE7w+cJ21ufHFBt4vMAHoK91lfD9G79fvtTCRl1psP3l30rWN73jpB8wq\nQYR2ye/p+Lfgv/Z5AEDmqCTxXDRxyMc9cP3oCG/WGEUI9l34sUHEq6dnHgcA1N642w3m74zoBELy\nJ3ecnnTLU0dGQvKuTBP7NUYyLN0H20X57GlS/76nwaCzijRUVCJyJdGuoKGz/jIxZNh7LzCNpPSe\n1WFClY5BSqmJ7hGGf1M5rsFWN4KwdB9TGh2oU+Rff1DG7JARnvxt/pwQGNW/O0aw0O9xjVtNaRgy\nsw89J9cNhgFFGtb7vF1s7tNLNaVXrhsBJCzKr2lV4RGsAMtqYDZNOjdK3CtxqwVXil5P1G+jKNvE\nZ7bgqkvCmEDD/r/svWeQZNd1Jvhl5nvpva/KMlnedLWp7kY7mAa6CRCGBCiCRqRIitTITWhWmp0Z\njXalCO3OyuyuZnZWK2k00ogxIiWKFiAIgAAJ3wCaaLR3VV3VZbNMeu8zX7r98V1od7azN2JiI7D4\nkfdPVWRlvXfPveece853j8l1csi3iFYlq3VoHVwTlcOKgl1cQ7Sr0MTaXekCgIeHSvjzZ9gLd/7k\nGq4e5vPkzme4JrsrWF6njHzd3sQ9LUKvbw4H8OA8+Wv+fRFM+KAOiVgIAKDZSSKX5LO+9bYHj36W\nDQ+2Fggjn7LlsXeCSNm3zl6G+0l6jfc/Pw7dp+k1v/0edbXK28IpkWu9dOmLSD31PwAAXnvOifb7\nd+81PFkKo7mH+spYXsWrImB0UgTNpqVBxJxECZIBEwZt1GmFjRGsbZMvbePU5VPJSRRXRGe60GvY\nsB4HAOzod7G98yDXqp/0lC7GEBTBoBnjMZQk6l2rN4dTo9QbOxGhgyznECxS9+9uj8AQI7KnHllA\ndmrfXWnrNj4SB69KlExs5AbR7DCs3TTfB3uEDL6aL2N6mgJX9nAj4sYWbDkyfaBgR6zNjW/2DaAo\nWpO1RMMgt9GALR9TTgzVClCistr3uIxUhYxjHGAyOhq3UG7xEJ6IF6EX1VPd40G4fVwufUd0JDlo\nAkT7tOxu90IMzTKVirM6gI6WMJHcasArijpEN+uIinSVAVHcwtkuQGfkHBcmIwjsUlhi1l2YKvxO\no0pmcWjV0JZ5NxJzVuCqUdkMyDrUS7wHa5SoJctJLeT9orxkAbCIJt6q7SxqMhWMLkgFXw3VEBEF\nFfY0u7OJJlFAIsA96G9SsZVuZdD0CKiv3w1NlcJQu9SCsp/v8Imay770AgwZzm1VW4bkE/de21pU\nBaSoPkd6VFMDiKR5EJZabuh2OCetegVhAcPKIip6SddCf4qGVimrhbLNva82Szh7k59bDpO2mrc7\njC5pd7Eq6sWmg6LLTWgTfhEFfzhhQbjMDinFtWsw2hlJrHEyMr1lK+JYhzy17YuhkiHs524UkfJQ\nqTwYY8nI+pNHMfeGgE6NAdRCvC+6Z+hLKD7Cz1fKQpEcPA7ta7y7G6scQdIrIlt3X8W+cULY1SXR\nftLX/eCVW0WoRA3xqjjQVB0TVKJLTlydQj1L4RkulJEJUp4sEG04gyk0RNEbfSmNqqiv3mzYYPDy\nkM4Kg0x25hHWk+f6ohW0B0SLQdkAK6jQwqJ8YkOfQ0K03Byy2hFSswWbhD0Iiq5aFSP3q6ruzpNb\nnToaH/SbL1NX7Cw1YdTxHY6BIpK7hCENRjtaooSor0Fdo09WsOESl59KA349113VdKK9Q2VfanHt\nNM0apDB/L1glyBC6oCmh0+Rdv1LiFYTJ5EKpQV6u1otohzmfVjKElJB7Xb2JSPvuh1M2VsB+UWzk\n5E4QMSch+sDiPwcA7Bp+A05ZRBQbOpBuM8WtOvQODjTJE98RZVudUQkngrQUvvdtPTz7ede/PPI6\n/kFhtPOnHyU/XNiIYfV18vfcx+1of19EsZ+yIFJ+AQAwH+G+Xlbtg36KOlxz9TvQXKOR3V5RcOmX\nRXnWf34nbfWdTyHUEKV8hxxwLNJJsXh5EBYvpJC7h+vvPHcdg32iHakuD8sBnh8rizyYt/t2sZVn\nsY2Oew8OiDv5ewb1aGRZw7mspk7VH5vGK0JPDl1axtScqKGfBKox8m34Op+vte9DWRjsqtwGmico\nx1ejXsy+K/T/z99JW7fRg5p7ozd6ozd6ozc+xPGR8HhbbVHIQZ9DWXiIir4F3R5aZyfaekSGCCea\nVugJql2jsDlpqbTiwLCdnmnaNAuNWpSdjBDG1O1XYyZEb6t/3oeiaHpftA/AkaTtYWzSE0rU++EV\nReY1HjUcMi17i1+GIyZK54m8xmZ5BAYBh9si1a60JTZpXXuHq7BG+Y4mzCiK3LuyK4z5LP+3aKLn\nkOw0YSyKEm/WIXREVxjvmoSEhxZ2x/pBucI62irh/RXUkERUqN1eQGEPLdpSkZakp+1H+jbXoWAy\nYFTDNVMGZEgiR7HjpkXtVAagNQl4036XaES9BTaFz6626DHUfRJcq5xbrpOAQOqgFMooXObcDCZ6\nIgvyIHwQ/S8jDWgbhPgSqhYcZhGRepBexFaritENzjGh7GLdK5CEZgLZXZqhJivnMLJjR7nJPb7d\n8mEsSku45mrCM8m9U0TjCcnQvaG6oeZAJ8/nDosGBSltFoE0eav2UBs7DSIYKfMIDlbJn6Oi+0n7\nphUhJ4M9cooNI2V6oxu6Moaq3PtvWf8bAID37BokAXXOLNcQ6yNtjUYW4z8SzUEOE5bdU1zEwl7R\nMeewBXNvEcJ+a6yIIxfIt9l5zmvrAzz9/zGikhr9oj91VMP1GKqlURKRwqaUA1bRP7iiUcG4w7WS\nnYTZdEoWWj/XLRmPw2kSczSrIIkI+rqFKIS3BjQKosGBswFJ9OstlTTIC+/VmyOkp5cj2Gnz6qae\n24VfeNVKxYSQQ3TamiCErd7urrp0uiD9pVQAACAASURBVDKkqChmI+DorKUARVxRFS4MwiDy2lul\nNhRRQGSnTN7LO5LwiTKSarUGqwI2Lfu08CrcN3uH619qJJCJct90Jiva4ndtfQM7Buo0k0CgooUc\nWgbKsTpdR6sqckQtaiBL77iuWKBR7t6fyFyT8PgRAbe+lEZ5hrpAmiS9P7t9Dr+lp6e4OVrCTflP\nAQAfCxzA6te5rsNOIlDnghuwz57kfL/oRjlE/v0d7z/FCzXybfxHjK7H/kl4T3I/JzbVuHyaa2/Z\nmMbKMD3h+x8i/Pz0Hyh47yFe+8Vsk9jO8rnj9iAqunfvStvQ8AJCVsr3SKEPl+e4L60CFciOuY2J\nDH9v7d2DfInrlGiqML7IK4lokLxn385gyM+/1/bXkLvGc0B1exqvGsnLx67RQ497K3g8SnoiUhWh\nSRb3sEr3AykGkbn3c79zuiZq18mr9bkM9FdY1yEyIiOvrN+Vtm6j5/H2Rm/0Rm/0Rm98iOMj4fH2\nSZxGabQflqbwGK4V4RSh+slAFUENLTmXhXcVF5zrsH+QEuHRwtQQ/SQVGwb19JTdJ0V/20gKxVla\nYZJnBYYbIiDCvAmtuJuL9NGiO5TvgyyaC+gMHZQG6HndoxjwumjxZTUGAQByoIzBG7Q282PdC9Ib\nRPWYrBJBUwQ2ORFDRVhZBqMJug4v5msd5pupnRboFd5BdHQmmIfpfejGW3DXaVVnW+LuyO1EK8w7\nTLnjQdlP6y9V3IFDIU06EQCWlIGyKADvVNmQqot0i6wWgSCDYipVWt/hlhEzoi1gvNrdPstoQtCl\nuCZ5cQdvkIzIRZjSoBQccNZp2Uf1CtRl3tEootnEoOU61o2k02kqoRajV1dBCqkbYg/tAgXIhVEQ\neanl+QY8q5zTjskMe4meyOIigzNkXxTqlrgLVG5jwyZSE+IyXCImJyySiEy57iJwWZ2EqyoqNt3D\nefW9rIZzmihA4dxFRA6xis1DchJ7stz/C99mJR9lZAqIkTd8rgDiGXoauxO3YE9+AQBwKkcPU5rf\nwtJ3REOKOTVy7SAAYPacCj/rp7c49CqtdtdcEMeq3NfLLy+iKnIQ7bf60TnB+br66X1Ml8bxr7vQ\nZq90AJGa4amQJ7PaFFrCq2wl6xg2c81WsquAnd5tpsx790BfAHifnufE9BCKUfKR0TsDS4PBZ7ug\nl5CqKeibEnEJF/qQcvDOtOMIQbPMe8WERJ7TrLRw3cc18ZQGMGAWrdv0cSyIXOCRBcr0bWO0C2UA\nSkBBSxmxtikXhXoblQJ5x6lZxXKN8jRQL6BjpHzqDfQkzfkWwmWiaqVKGbpREXexu4mQmXvU90Ej\ng7oGS6AcmpfSaLRFg4iShKKBv2fEfbOrLGNLXB1bzFpIDeGBb6igt/APzVoK2Xr3EqYAcDHqQ+tp\n3jf2d4bgvUW+73T+Jee7/R7e2OS+zKUNkNJEPF7e1uCTR/iO6yNM6bknMgbte9QV3vp3cU0ij788\n44V7kfJ7zU7emjfGUThAROCF5604coNyVnqqjuFngqRjid78ld9+Dz+okOhftsWxrOVaZu9/C7Va\n92pjAHBbWkFcT72wbHkVwQr1UV6hnM/c0CA2w73aN1+AIu7Qp759A51P8T7X/zrfm7pvEx4tU4DK\n6V2EQP1qkTrIRYg6Rn2MRbA5B7EiSnaaFRnRZ/mOkDcFlUyP1lCmF+xuzKC+IlBAhwGwEm1qr47B\nEeyOLt1tqDqd7kn2H+ZQqVT//0+iN3qjN3qjN3rj/8PodDp3t5z+b6MHNfdGb/RGb/RGb3yIo3fw\n9kZv9EZv9EZvfIijd/D2Rm/0Rm/0Rm98iKN38PZGb/RGb/RGb3yI4yMR1fxXP2THh4BVwo6OkW+e\nvAFxK6Mah1ItOERT+7DI1x00JhErMfJS75ER64jKSbt2uDrMHVP7GDno1+mRECXjJG8aCDPidWBy\nAOedzHncd4E5YKVGA9kg7ZFgoomoj1GlpkYVnRxjwIaKnOPN0TY0G4yucx67iY/v//IdtP3Rl1jO\n7d3tPOyieb1t4XuQpz4NAFjfNOHjx5gbqrcwSjFxZh3OKVaPuTUhw2xmVGmfxoCilmUXD6kZ5fne\n7ccwffrrAIDz3/RB+5vMF/We2YF5h7+n51lFqO+Pvo7USfa5Xd0fwbROVLnZCGDbwSjMtomRuJub\nKjx2g2uSmPsu/vC5O/OUf/tzKkRUjOZz1xm9aFMlUHKSraS0Gx/EzeVNDgRECcrtAc69b6UFlchL\nrml24DBzj1tbTmj2Mje0cp1R5SNDKlwrMiK2nTfAJYqz5xt+yBZGZKrSIh+yYYek8L1aF9AWAYd1\nxGGoMWrR2BTlJa0Z/M3X7yxM//QvfhZr/awMtOcco4gT/hysW6LRwy0XavdxrR5Wj+CKhVHdaxX2\nPXX+2AD/nMg7tszhtIMxF6+0VJBHGb3uqZMPx6Z/HuuXWfGqsXYLq4WvAAD2HbuAhIvPMFVFc4AH\nNHj9r7iv/6R6Fen7RPeclSD6O8wxNErMv3xlUMLCny3dQdvvf+cKlJLI2xaND6y2BtqivKEJG8jK\njISvGAqAiI6VFX631lFBYyfvGNdGUJJFibihEtQVfifdZH62QzOERolzHzdqsFYTDQrkcdhFVThI\nXN9OKQezTnQvMnjhTTLatGnVw9gRTTzUXP+G04zf+7WRO2i7/o1nkLGKCkkN/r2pryEveuzm1Ycw\n8IDocJbMoX6TUck2FXmn3a/BhmCHgN2ENTDroerNYmqNfJsxi2j0pAWnB0jnhetapPcy79itSyAW\nJh0uDzMzdmpxjIsc+kiogCOP87nJsILOCfZ1zm/YIatZcvSJh2fuoO1v/0U/VJJoDDPcgi3DSHdj\ngRHAbX8VxaKowtTwIGykPCnNAhQ/s0EKWRI3bLfDkeL6RzbqkC3kRUu/DIPora0tU8/tyhlIojyv\nyqJGQUO+b8U8kPXkZamf363FMtDoGQGt1bpRV/MdlkIDWht16S/9zp0R6b/6h8cwtUE9JzmTUC1Q\nL3hHyWfvaICHkuStuGsMN73cL497DsO3WOntpsiNdnpnMRI5AwCQ14/ioiiLes99xxD/6bOkQ5Sf\nLZ5wwvATRspnHLswzZFXs5EKdKPU16M/ZnT8Wb8BBwdJT0z1aeTW+N6seRwHTvzX5fF+JA5eRXQe\n0XnzmL7OKUUbKfiiFJb+mA3rh8kYgSaVQ6jSh+qwUK43GvCZhQLSJ6Dd5AbECkyPCJsb8BRZfi53\nUYb1JAVgZakJS4WH93WfSP3QdaCouek3M9fRNPIZ9p1xNI7yHenLorF6OYeoUEbhi8NdaVuUgwCA\nrz6ax/t/ynJlJ5+04o3iYwCAe6f/F7yW4xx+ZfGrAIDVvf8TfnadtD3V+A7O2/m52TYGk51FPM7b\nKeSeqe/gp39AwRv8xBBa36Qh4fSo8X6EynzWRkHY+VdPQGlRmSnrUUT1PLAWXCroRb3YwPd52OoP\nWfBGgIeUrvAkgO/dQZvKMI5RUU5Sped8C60anKKjS0I2I+ChgNhzBWhqVODiVdjdb8RIhIzeMHjQ\nTHHd1dMSSqIIB0a4lxF3Fj6rOFgCelSEEFobNaDGNALFR8GdjtmwNcD5mDoV2LdEbWPVAAx6vu+6\nmsI4mOjenFt7/T08uMU9mtv3DADgby+dQFG0IAx+1QHPBA+ny39cRG6Vwhmc4HpM/9osOlnyS/zc\nNl4wkY/MpTGU36FyPDVDGla2rsHl3wsAOFcs4X9Us23gay/PonyUaUhPjPFdz55x4KtBpmD9xBbA\nEz9i2tWbX7iFwCW++3qD/DkT0mKhC22GWg4drejQJVrzVas5lMUBGVGNw6qmgvZLMrb1VOBtUbRA\nrSugusv3+rGEiADO2lE33CYWfjFXxaFYySKv4aF5veyEBvzdZQ1DZaZ8JxT+HLBOoGoVbRDXbqHh\nI81VSxt5hfwwpHAvlWT3bmAFqwmVVaYeLo6RtqCygWaTfA1lAfY3yFOJ/El0Jn8K4P9KzxvVHEWu\nynedvfESpsD0m/6vhVFycY+9opZ2QcnifQ3X2q5Vo9NgSpKyWIU8SzpVCvl/JKdDvkU5rz0aQewe\npv08tz6GY8ssq+jQNtG4eLkrXQAwFDRC0YsStgUDYi52xGnURN12rQc6R5Bz6OwgsIc6rZO0oCpk\nSwrygKyU4/CruK+dIxJk0UJRF1MjU6MO0fZz7q7YBAqDpDkgReAuc+9TvhzSDq7PkRrXZts5gEqL\n/BBoV1HV8PBqDntQjmcEJXcevA84C7hZ5ncPLhrwn9zUp6MDTPtxV9so5Fgb+c3IfpwaFnXtNU3k\n06Jc8BiNlQAaWDnJbktNlwsmFff4zPkm7tlH3ri0Rd1o2p1F6TjrNtfP3Yu+ZcpmVCtB2+CaLHip\nd6oDGci1QwCAcvo5DOX43sGBbajfFcXL/8UdpHUdPai5N3qjN3qjN3rjQxwfCY/XUKAVm76ihToR\nAgCo9AZ0rLS41kZMSCq0kiQLIcLdkBr5Eq2sfb4SFjK0gKZUI8iN02pRLdGbicfGYK6IJOnhJWxk\naJkezY7jmrDmAylao+HYT6AJiYYJsgGmKmFaZcoNJGjFagdprTo6wNsCYgkUCl1p8w4xyfp9qw/y\nU+xg86q+hkuJf+AcSsexv0No7I0aoc3bT/4KtINMlN+6/lmUhfe25AnBs8W5Te68BwB40fcoPvZb\n9IIjV7Pol1k0f+PqNSzPkLYjKVEW7/t6XPgaaf/CdhrRT34JAHDP+TbCDpaJOzxIL+Md25vIn6R1\nHfc/Bbxxp8dr9mhR3eCz/aIhuN5kgaHMuXesesiihGBODZg8LNZg3UOvaDzTj6IoMOLMNhA/xrUe\nS3ZQHROlJEVhlGDFjhui/J7UKMF3iHyQ3UmiLNHD7ssShqwEVdCLJhINXQkbXlrSY+ooMka+YzZP\nyM4yqgJeSNxB25rFA6vC/fhf0+xusjezgLXXWDRjOmvH2v8hynMeM2NslPtvbPw+ACD59o9w+VHS\nFvAnsfcXyeNWZQ2uv2bx+sgYe5zOvJHDC/wIX26MYHuUexF5tIahMtGMF/6ONKbuVdCQOa+PLdWx\n9Bj/cf9SGLokeeIxx2e5Tpld/AAX7qBN3ZCRqxACrZS4jkmNBg5RIEJubGK3SXnIJJqwFvl5QyJv\ntApFNJqUsUjTBKuG3mIRFcRyXOuSVhR6QAMeIXuRhh8+iZ83G3Vk4nxeR5QrjbSWoTJwPlLfIMpq\nIjLV3SZsZXrCIT9hdoulezMBRVrD7rTosSuuhGrFNh600ov7cesWKqvUC65DKagM9GZqPyRf5Gau\nwv4gf/+FTj/+02EWT5h/xY0LdvJfn2CXow/JOHNVdDXb+xLaEnVQa/442tmzAABdk3PQVFU46mVT\njDeKo0i+T6/7RDaJqlo0aGiVMT033ZUuAAi1H4TKQ494tNWAc4D8pytS/hu5eXhV5OukbgbFXe7L\nHtmMNT11qTUnrt8GTMhq6SG25ZvQpzgfz4AOcokweEvhZ46xPPQhQtWKyQPTPN+rT/TDbyDft2P0\n/C3qMThS1GcpvR6yh3OwS/n/1+Igt2IBBIYo6683qwiEWQTGdVY0dTnlR17NrlvDsz68uUO9c1rR\nYdjG4jWRcaI4ysKPsTfDq7olbxTGKvXum3Y/Tk/yeQ94SM/Vn4XROHg/AEB16DVUclz/A7oFZCLk\ntcF+7vvB/h3UX6YX/Mn9s/jrDvXYvZoWAtJ/XQGNnsfbG73RG73RG73xIY6PhMdrd9Ea1UdtKPp5\nFxFXD8AwzuCBVqSMwVVa0nEbral9KRd+ILyzxuYG5nS0qq9EV/BB9S6dJOq1tS9idZQWVCBch6Sm\nlfueZQutGC3ANyXeKRwPTMAYF71pDTpoVmnhrLluYkrcK6oTtNy2DBUMufmyaGqzK215sBB56/UX\nMD33KQDA6tUFHJmn53nowrt4fowBT58ZZqBC+S8qmPlFmtVLxX34Iq8asflyApYB3gdpHuddw8m4\njEaU1pu5L4YLW7wH0Y1O4nOn/hgAcHvhvyPtg5fxqRjvBzdPPA2TCCgpztaRv0FW2EnyM2l+FL7/\nKDzM0jtdabPEWigP8juFqmikYGoiqjoMAPC0G9C1iBIMDRWQlWnRWkXPVn2rCtlNz0qlU8EnmmXU\nzHroarz3z1loMcc6HbhEr9aq0QpvnPtS7ZRhEZ6TVifaCtr1sFr5f9mGC+oc51ayHkVrQxQ+7+M6\nFBIf3Dv9l2Padxibe/gM59v0vCaecGHuIn9vhWrYa6FnunLhNzF8H++J8pZvAgD2ze3DoSUGX5yf\nO4bmOdF2LbmGAYX3tuP1nwAAXnpiHh1xX1SePws59LsAgMHY11CSPgcAcDwimnzkLkISjQ0CJ6zY\nyrLwvCaYQGnsSQDAm5d4fzV4/hSAH95BW/xaHm4zvT5Z9L9OdNTIpikLNp0Mf4FyWPJ7kQIte7tK\ntO+rdaCyc1/b9QrWm/ScPKEMtAbKiE2hR5wI+GAyc9/19SRSBcpOs3T7H8t3ZvLcd/ibcOjpbZYR\nAcTnfW4HVpuUySGL0A/xyB10AUB+RIa+RH44liFvqY23cMZI/m76+nBtLETaL5Tg1XFdEw8RRYjn\n9uKhN+iZ/qX/Pjz4ukDCZi/i56+QrxUX3+163QmH9wzX5N97kHiCCNGAJY3OFoN3kk6WEG1YI1iN\nMnBqdHoT7jU+43vHj2JGJq97bqbwqvPufV3dhbehoopAXTagbaWnJw2Qt1xKFnUH99OdMECtcL9K\nVhX2yaIUopX7o42robNSZ82UxpG3ca01mWUobiJTGtF8xV6eRXOYeqFTV0Nb5nxb7QKKeerjnEwv\nebAt4fY0Ebp+jQllEQC73snDp9fflbY+jYLC2/RiDw7psd/Geb4pfxIAYFrcxKLwmPvKt3DiKPdC\ne8aMtpnBaYG3GJcgjz+JfJQIabA1gHY/vfL5+Tbks5Sz1EnR7/y4GlMZ/l4w3gOlTnmKHp/FvjR5\nLnOFAYq3qo+g/zhl69ncPJwprvVc04J/sBGRefquFP6X4yNx8LY6hAi3VE3EhcA6ojtob1MotgfC\ncEtBfp7gZ7dGovAti6jHmQ5WxX29RtPCtlh0Wx+hH/twHbXbIlpaX0YhIwJ+HD5kVYyaGxFKO5IM\nYyhHjVAz69ESsPWBW33Y8lJhaufFARE3o71MyG7UfKgrbbOJ5wEAmeAnUdglzHYso0Km/TgA4O0T\nXpy8xYPt5c9TUE65nka5RGV3cPoc0s8/AQC4YroEb4YK4pFl9oJVu34br4T5++MHv4v5MdYBvpWK\nQrn66wAAy3SI871ZQHSOStIfuYGsEMziu23EHyEjR8CDKWAq4axoVO4eXQD++E7aan4nhpoUkISL\nCtFp92LoNg8sw3gHq3UKnr3lgFvE29RFRyiVqQ2X6KG7645guk1op2xbR6lCiHpWIzo3yVZYdHxW\nKB5DQUuhsIzUUPFSmPJV0SlKlUdbw/1W1S4hMExFUVEUzHoo/GsBGkzt1fqdhAHwyXGEztM4OmIT\ntXv1s0hNih6y0ZOYcXMtW82/xbX9hKAbohtLs7KN/R7Weh17IQndo9z78ayE15+iIhjbYGS7PbaA\nmXFGbL+uG8PHnqLi133jMRwS8Nl641Wuc+djMElcs7X3N2HcdxoAsHXzm/iKn8bl7j4qTmU9CoTu\npE3R7CDloWyoO6Jer1RFNEOt3qn50NCSx2Wlho6oe50tiR6yViuqde6LtdmBvU15SzgrMIu+tnab\n6NRjzGA7RTXjbqnREbW5y5omLFXRyN3Lz7T1MMI5zl0fsMClJp3RxQiG69yvRTWfu9dsvZMwAEOS\nCusRGqIzbsqrXLThRpxynmvL6KuKnrSN/ZBqlLPdMwxUmry3hktjrPP72IUN3NzD6xr19XFcEYa8\n0Uj4vtn/OYxlGM1qPOmAeZEHYGXwZ1BE1P1rZ7i+J04p2G0SEr69dj9MBgZajifsqILP3Xb1Q6Vs\ndKULAHL7h+FIkyfHfFZcXuS6my3UXZn2GFTiHS6TDXonDala24iKRPmcYIwU9MfCaO9wbjsWDdIF\nOjYjpik4drmHxv3k33AkBbuDxkzGJgNxzrdh8sLtowG3tcUHxx1mBPVc/2x1G5os9/awRYvM3bqc\nAdjdOou2lgGGzc5+vBTmFYrjGKH+SsWPUxny3Ms7c/jSC5SzhV+z4mFR9liv498v1bLYKwLELuhj\nsNQINR91teCfosGYS/IQ73ccRGmazoqk8uLSM5TJh9ZWENlhaKJpjMZQIvEOBtSs+e/RrGL2QfLv\nq1t5TMrlu9LWbfSg5t7ojd7ojd7ojQ9xfCQ83hshhowP1CSMS6L/qlkDWcDOLr0dm3FaOOEEIY0p\nUxsehRZ6490GOj5afYbcDrIqeigQ3qxx3YN8gFbaa0oZ3hVaZAnrLkKiA83eAOdgSfrQPk3LXn0z\ng+YSn5Vo7yDTpPfhUQhtWCodFI/RM9vdvDMXFADyNlrX6sr72DpIiNV8bxCal2k173Ptge0BBgLk\nf4PWbvrPnkM7S4jRsBmHXON8BvsHseujBX5j+AwA4N4ffh4h0Yd2KfkwlsHAr1HNV3Bo/7cBAOUa\nvbp06gHgkEi1Cn0VIwKiGX4gA/8lrlXmCa5zvfAJfG6U7zgfvhfAT+6gTfYHIGUJ1UrCq5GVPOJW\nrrVZZYO/w8+L1jqkAn/Xie4v8NZQEN7b3OYhKH6uoVQMoCkCGvQKn59vSuiIoI3pKT3WihbxiCom\nRP7phpFepUGuI2/lZy5pDokNkatpbiBiF12kmqTX7BsFcOc1gTrshsVA2DPrE15uNYFgh/PyHPpL\ntF96BABgPB3EySq9nY3rtGUveKv4RpXoxJf/nQnz36cX9bprB7+wTQu8eor7ti/qwO11/n20nsTG\nzb/gWjY/jRcVoiHBBnnvtf0pBMX1iNUwhns1RGTK+/xYSlN21KsiwOYzEeDf3UEaJFMGKQ09//4C\nPe282gGbyKHfbFfgq9LDgVKHz8D9iusojwvrLRyTyddx1S5KAsb12z3Qr4tuUiZelWjzOrhEFyxJ\nqiJa5lq6jUa0VOTFWpp/r+v80GvosXlSTuglPqvlN6IU5d66ivQk29nuHsbNK/3wWkhTdI17tT1Z\nRVkmD+hapxFeJPy7pNuAK0/+Mx5nyolr3QWscx2XAsexHeYejaWicMbodSedhG705WUs3CYfTu57\nC3GZV1jhwT1wNQXs/CmiLeFyFfVJ8tM9Ny7jVo5rejhoxhU953t7yoOR5a5k8Vk6FdR9lP9orAOj\nYOX2CpEetbuIaEukP1kjiGdFLnHLhWpJoBkTAr6PDkC1S9q9UhlDcggAkDVaYe6nvsgJVMPrMAFq\n8vWoZgkJLdGGtjIOlwiqkkb5LO2GhKiRfNJYt2FE5GjfHGxBSbTvSpvK/nk4R8jj5p8loHrkbwAA\nUzI930LldVzL0au+fzCA6iHC9tYrebxxiHtrEQjJcDWBip4IxpHjGbSi/HzTnkFL6IgJEYhpK24g\nIRBOfT2Brz1C3ZW37cdGjsG7LdHBzFrfj5W95M/hhV9CcZtzNBvaGLCcvitt3cZH4uC1pCmAqlQd\nO3vI9O5sGdUyFyxzrYy+Mbr1GjuZXyftYrculP2BNsoXyJDWe/RQFgjH3LhA+Nd7WI/U+lX+n0GN\nsorv6GQ6OLhKBVPWkbH0G2WoinzWeikJyzAXut4qw2FiDlgjRIWw2gxiLsrDQjNxZ6ECAPixikJx\nejWB9jqZMDClxsJ+XtxuvrWDEdEA+pf3kGEvv/jbODDPQgw3409gfOoiAKC6NIiTWsIq6eTbAICv\nzz6KxyqcY6j8EIZVVPbq7PN48xLvR/ZoCHc3ZjT42LcJtdzsvIhohXQ8Mh+A1UVFcfI675C/u7aK\nW2DU7eP3XsU3u9BWUurwZymEWisVrUrbgspHeKlV6GCqj4rnVqsIV5WCpQvwsKhv+CAFxMP6yyiY\nqMTcShutLIW0LvIOJ7YTWBJFKvy1Gia0PHxS26NQfB9c6hP2zzb7IO1SaWRbYThACBuOEqrbFKx+\nE4U4Wap1oQyYnKhgc5W0PV7nu8prRfx0gMq1vTiOT8nUki+MPYAXvs6o7z3/hHdpn3lnDNZ+rsOz\nf3Uc0QEaQZPpBxGfOwMAyMcZEdsKHUCr+rcAgKnX5pD9lT8BALgOXYJxicr6hRr56NfqOzCaqfgX\n/UPIagkvN2sBhMJczHGZe7x9Pd+VtrRiRbBCPlpUeEj7iw0UJK75hFVBRE2lY08YsdVHSDMWpXEx\nYMwjXuZeFXX9kLXk33rdjPIQjaNSgnvVL9dxW8iTwViDRsvfC4UlBDziwAiTDwtzVZgL3JdisYyU\nlfPXxXVQTDxo6xq+q1mydaUtcCQF92XO/VaZ36ltpWBtcC8rE+8h8AFMnTmPsjAmTBIVcawqI2Ym\nnUr9EubD5J11OQ+1T0RW13jl0dzUQz1GQ3fj6mFoh0X8wLvbyHVoYMxOMGI2b7yCi9+n/lCbVLDs\n58Hxo9ArePpjDwIANt+Ko3Vf9z0DgNFMA1eMfMZwogiVhXTUfSL6WAnBI4pX3HJ48TE951uVsrgg\nosUnDVxfrQqQRYvROkpQqYUcKw3UbdyXKdGaVNK9jzU7DcN6LIW2igedNKUgWhKHc4Hf3TUrMIgU\n68aUCiF3EAAwcSmHvPPuAGtHVqB5nTx1fa4N7yplLq4hT1o6QYwNCSj/igZSnXpuamgW15ycw9Ek\n/z8c/DR0N2hIxdd/ERk3ZeTwxSwqD5G2jRUaKNrUMkriWsTvtOKnCa6To/oWgjMfBwBczdMw159w\nAzcfBADMF78BRSE8/6ohBaN67a60dRs9qLk3eqM3eqM3euNDHB8Jj9dcpDVbnrShqqJnu2uahHuB\nnszYTAznt0XenkxIOBUfQ8BOz3b1BpCaCQEAotsuoCFyc+dYXnH7hg0TFkIPieYGJAFtmQ1OJH30\n1CZTtARTY16YnDTZ2ok+DIqmVTHtxgAAIABJREFU49paHnk/52Yy0ktQrZfQOkroohXt3pjbnSMU\nvXmggjkd/++KNg/tKwwa2Ht/PxLn6am9/UlaUJqlv8H7N2jxeaf+N6RXmb82NmmGqc2ouuithwEA\n6n+1i9Vn+NxP9F/Fvyky4GfEU4Bt9vsAgEiOkdUTgwpeGmCk7QOZPbi8Qi/9TXkD9Xf4f+kWoV3d\n/r14+n3+/vzFO0vzAcBhpYrkKD2y0aII8GhYMFjnmmXaXiwJeNjt88Co5vq10rTKW3tS0OXoGRVM\ngLZMyzMnN+Hx0iaUCvTe1Bo3hoy0bONFCxxD3C9zoYZmm88r5ujx9WnDiFXoySj6/ZD03GN5xwC9\nl3yULtLjG/Z3z78+H+rD7ASt5mdFBSplKwD3PsJSM7eyeFkEqpivRvH4HCPTNc9wLsuP+nHpCtfv\ncXkBfzLN9Z1UNqA20rta+zN6ek+d+iE27+c6/uTCefxqi171M85B7LO/DAA4VGPgSUZdxeoyEZu+\n/v8dF1/hd+/7pxI0r9PzSX+WcuFL7QCv3UlbLe1GVKYV36cm4lPqWAGBBKUyDVgc5EVF7cBmlmt5\nQKKc7hhsSAr4XUk54G2HAADZVgvWNp/nmuL/bC+r4ZwQgVbhAGSZ79BpZ1HVkjc0HvKvLbcGXYOe\nU1rWoS6LqnG+4j9mHzTdnENxsHvepD7XQFoEYu5MENKX9eeg1RJqXcgWMZmkR9w2ViBn6b1WnyGP\nrA9l4dwgvOyxj8Ggpkc7ZiohISJ3R4W+2hnLw56kR3xNuoCxFOXEabwAu4XrsBbm9VHGqeCIiIhd\nLzwMv/USAKAABbFVzk2JZZDK3dOVLgAo+qYR7HAto0HA5qHMDSf4WckwhaKRKMxYyoWk0IONTj/2\nirxqV4D/ozVqMaslWrfWTiMrk5ldlg4c8aRYN/LTxqQR7rPkF++eftysU3Ysaj1WNsknZiGvhZIC\nnfBsLXo1ag0+IzXih9+wc1faLMcLKMbJrIeNQ8gEiLZZ/p77PPF0H8orfO/osTSuuClDwUYC4zqi\naq8cIYIUeGYTDi892vgrZ5E6xNxn39ceR/T7lJfgF+kd2761i8Ag51VSAxMrDJ5qan2IvEeUdIqi\njWj8Oh4rMih20T6MZ/1c0181JaFfDN+Vtm7jI3HwrrqpUPvcdRi3udCesTJGylTKK2U/pArhVrte\nFGTQxrGVJ8OqVH7sVfPOKXY+hBSvTBFTuPiTjiquZMnoJfMk5v18X7i9AJOJYf/LRTJIPVtEx0Zh\nsTW9qDioKK6GJtFa5sY7DTw09TYNylvcyAHVYFfaPNsU6FZ4G5phEU1Zl7GZ4LOqszYMZynojiwN\ngs+bPoFolfV2z/sHoTbwsCw7nChuUpn4x8lMk39xABrBOIlQCZ/Vk7Yfqe/FF+O8U67uUqhiqhCm\n7RSUxZcm0D5KRRJrXcbEacJkUy9S6FbzQez+gqg/enmoK205jR4qkUYUkUQ9aM0iChIh5Vk0kNdT\nkSareXQ6ZPa2SEsJNNpo1Pl7WyNDEQaNsRpDVSYfqMX/WNt6DNmpfFXaJqQSIagtWQdJpASNjIg7\nwR0dTDbOS+NQoFSpYOKpPnjbXOtmn7iLNBi70hb/7D5ob4n7++TvAAD2948gmaACKlqcmDvOqM93\n1nfxFwdpxNw7RQPveiQLzy1ewtX/UI1Hv8m/jz8wioVN3q3v/QxTkFZwAposI5m/PHsM58Qc55/f\nA09GREYfIBT4Y70MtyjHWF+5jK0AoUz/zbMo/5YoafhDKuLW8buIt7GCxhr3tCLq2Fp9MmqiqHWk\nYka/lodLwqKFRy+Kd+T5d6+zjVqVstnW11ETsQ9Wixdyh/+Xj4qoaX0UclVAov5ttPT8vK9iQ6lB\nGWhZKHuZzgDqZVE4xT0Ju458rbdKaOWoXB0lvjdi7G4wRWJDqEu8yniwSsP7vZ0JbMbIAyO3gfZD\nPNAHC8PY3cu9WHmP0G9ybBFWUfO6lovhNcFzUzULyhlxwA3ws85zDkQf/g4AILA+iqJIu2q1clg8\nQuP94VukcSvvRaqf8xpZuonOQfJG/roH5gPkxY1DekzpuhcGAYCUnIFG5loaDVlIy5SB7X18x0RY\nB6NeQMKtFCDuta0WC3KdEADAVaf8W3LAiqjLbs+4YPCSV1oLRRTVPMBc4vpo7F0rws4gACARicIq\n7m3VbSAorgsaGh5COmzDpaHcJA3z0JaZcmcuurFduTtt3v+gwnY/9eOiewDTy9zv61/5EQDAjaNo\nmsj3m4ZnYJ5jpPHrb9XwORsdF4+dOjH0oAzHLdI5+fAuNNs0WsNv6eFepvxmX+YetuoGXHqXf3/s\nSAp6mXNPuYowuMhrcxvcH3najGcLjA3p17yBL5p5XXg2eQj3yncv9dlt9KDm3uiN3uiN3uiND3F8\nJDze7XXmXFl1MzglohXfvaHDqpaBBtbUEiyiW0oiIoryaxOwN0RuWT2ENRHBZ3nIA8cuPbmAgxfe\nO7UoBt0M0slls0gM8Rnl2D4oBULEATODYiq6DdjyDDCqN29ASdFCN9RVCKwR9izPBwEAqY6EgkKo\nylyJd6XNO0Qv5CHvZ/BnJRYzeMzy2+h8hSXlYhdWcP8wvZpci3NZvPgzXDjOvNBg4n0oLlp6lXM/\nRtv5KABg8xKh5uGH3kCrQo/PZZ7EikToy3frBYTaDA4oTtAaPb1TwM80hGgCx/2ILtOTbjvW8LyB\nnnRjD79rTN+COctghuFa94jtkk4Hq5aIwHSFsFZKcqEp8rJvGNsIBuhdBHNF7KTphbqc9IJv6bcw\n0Ob7tIoZtgAt4trtWagleg+ylV6WSZdArkSLWMk0oNfyua5WDc05WqHlNRE0Z1UjI8oNqhMytDLX\nb1AqoWIk1CbipaAvdi9j1/+d16Gd454Ot2jZhs0VTK5yjsc+U8HPXuM7jvV7cPUG+eeIlZ5tWn8D\njs+TtshKENUhogeL55pIH+Q8DUX+fe18C1KQXuMP7BM4ZXgTAHDTeRMxN2keHiMvZ94ZRP8Qr1tC\njuN4TKZX0jSOY/d7XKumm8Q1klsAFu+gTSpU0XETGmua6N3J4TwqMtGSpqRFZ5PyYnOpUBPRxbY4\nkROHoYlOjTJUsGghuemdWDMx5HL8rlkWmQEWO3Jq/p9XJSG9y8/X+uMYTFPWVaLkp7FkRUuhJ563\nl+AQDRVCMRfmDKJzV1kUdSh2L8ZgHk7BK6KSi0eIwnS+/yM8RFFAfHIPzgodM6pIkDbpLZaHyeOP\n7VawNv4iAEBzzQNjhJBnKaPG5Bz3YPclenx1TRy1/0g5dX3pMjJvCGj3U3aMv8d3T06T5wt1C/IF\nUfRhjx/SddL54PgWNl4nna0BP8qeWFe6AMCccMPlppeayJign+GzR9rkkYKvg3KKiFW1LMFl496W\nVEUU3fTkiuvUjdGBdXjsoniKPYeRGPdw6+gUpJtEF5NmBnIZXQPIigwIra8D1TXyl1qq4HqD+zJh\noP5tWT2IHOTeWC4vw6QTubuOJnzhzl1pW9wzhgdErnbiXQXhI3zer+aISIViNWT9RC1j5TYK3yNs\n/+i8Hy+JxiUnvkPduLPPjObH/xoAUC8egt0oGm+4SmiN0ZtXpoSuSMURkJmvezY6hvv76bk+vy3j\n/jHO97nTjDq//4V5NIapu9S1L8JSphy2d7ToOE/clbZuo+fx9kZv9EZv9EZvfIjjI+HxHhmmFyJt\nrOOagb/nKlsYE63JrPVJlF30gCxL9HJrHy8j/zr/HmwPQ5+l1RjV66FV8fNdEeBwZcuL8b2873CE\n81BVaNnX5BUU7LRUDkXp+awWJKT6RRnBNlDfoaXXdyQGlVrcy5ZpCVp1aVgK9CgSJ/zAn99J24zM\nAvsvvpyG/X7ex4XqF2H6ZhAAoP4NFzo36HlCxcvp6B+dwdZ/S09m55NTeMTFexuP9wzOJmj1Ff+U\nFt/Jr5iQ+fJX+X/FZ1A8zL9/fvMgIj6WP9ut8K77275lGC20jvuMb2F7moEY0xuH8asrtN5++uhv\nAQCmai9hYJPvsM+fBl58/g7arFkJ2UHeOYWFV1Rq6zCR4/qG4ibENbRGZeihddHKLNVJe2ClD50h\nEdiwW0MzxTurii+EQJ4ebb5MbynttiNZFb2Pj2iQEgFPqh0N4kvkmUqQP52NOkwJeh9aWwVrIv3D\nNgTURTOLiki98bm6V0AyaSKIp7jfxXnRxGNuEvd+gx7HP6jNePBr5LPtn7Tg8zB46ntRBrKtzb+I\n+QLXN2M14MD1pwAAQV8Sr4teowY31+YR31WkCmx+cTb9DG57iT6MD95GxEmadpbIc5bBIcTFXWwn\ndAmFDu+3BrxA3Ur+0TnZLOHQ2nKXgpFATlVHwMZnGNv06gs2HxxNehdV8wp2LEQt7JoarLwug0Z4\nNbGcF5VBytuUpQAlxGel3B7YJXoH9Q49A1tcD4uR6+huqtHy0/PqhNMo2ull2Tz0QKulNOxx0Uau\n3kR1l/MxGRXERWlLVYEoQ1nunnbzyLs+/InMgCjtWZGK8oX9iP4d/35+YheaFcr0tmkOZoX8Zdvg\nz+9l3Pi4XqSJHHRhpkDvL6NL468TTE98LE90wqX6GUynKafJ3XswpWI1qjduNHB0m23pzsuM2zAN\nTME8SRlbaSRxYIW6KWxuwvAkaVuRgU/YZrvSBQCdegNZEfxY3DOHRodrsLtLpGxU60JO3MeblBra\nDq5DztyG4wzpi0xwv4fQwE6W+zYq29AB90WztQlzH73xelqgGt4V2FUCRYlp0Hbw/1aTbfjNfK4q\nTH4xW9rwvkMvd7uoR93JYMNwWsLJQeWutE2cjKIqqpZZM06UNogUnvFSL2/ObmK6xHvxsdAaqi56\nrqrCFdguUMeemiGqJKurcF6hrr18QMEJUeegfc2NKyepx6Qac/Bnxu2YHxP53iOr2MoR7TQ7U3j3\nGs+GfT8QcR0HytDfZMDVtfVZJPYwx372wCNo5Lq3F73b+EgcvGURNWluatCgboa0CsRtIm9Lu4OV\nIqE867SIjIv5oRols+SVGOIiz8+o1iBW4++BC9yck3MFKMsUlprGAX2QwuDzmqHJEj5KVgRM5yuj\nI/rxtlrbMDipqKPyHLIiEvQ+vyjx1rqBvJEwsf+t7sEe75U4X+kTR3DowhkAgDvwSZz7lzwgn/pG\nAj/9DJXyQ2YG26y+fALzv0uFmnvrIAZkKoq36/fD/+tUJidfJjwS/k096n7CI0NXpqFtcY7f25vF\n10SAS2yJwvpbpqP4t5vsXKM1/QaOWnlIXP0FPTrP8aB6PEnF+aLlR8hVuX52fXeBKU9qMFwh1JSM\ncl59bhdyDbKVZziNnQoV8Igpj0qS8FtM+wYAYG+zH0ahXNvjddRiDNQommvY7HA9HWo+qx4xY0Ao\nleiOCd40D6RSeQv5Ee6XNkyFmTG20YQIAKmo4Fb43FK6CleT3xnwk0fU+vGutO26VegXhpbKwUNV\ne34Kpc9T0Xzi9/5nbPRTSQaenEZuSQR2GZlULwVGoL3C72bDA1gVUKmhr4bDUa5JSsDzGOzHczmu\n332Zx+CQmaN962IMrn2EfNcPUCH83PYrOG/nZ2seCdYEfx8rWuEDDZNzLvLk1u2TAP7gDtpkuwa7\n3GZo9VzffpsKEXEIjfv2QpsR698ywKKmbNysco4BTQHVAg2XYsqJD9SIrLSg7tDIM0E0m5+QUBbB\nYvGmFT4hmyp3EzFQWamb3CtfxYC4gXulzy/C6OV787kiXKLec73N72bNjTvoAoDnDoXh11EvWLeo\nUDWhGKIjnPtQfAbVpmiyvhnFu9YgAGBQBPaNOqLYSXN/jvy4jYSPBo9N08HhOuH558uc16QWsFyn\nbF7SDKDY4DvG3A7oC/y8KWjTJG9B3SKvyad1qNgp35Z+D+I3CDwevMeBM0vf7koXAGgPJzC8yQO7\nsr6FtkRDyLpEudC7o9AYeBhnFBtuR/jce71GZGYpL40Q96Va0cDoIm3lShFZO/lTpXMgGSF9dbuA\nvev9qIsrJY89BwcoF3FYoBNBVQkb97WieFAx0sDQdvxYcIjCG0YjzhcG7krbK+/68fh+0tHU2nG/\nk2utJOgI6E/8PSZ+yPW9cOQ0dNcYOBo+MYGpW+Sv12zUL1brIt6PUXdN56N4KUBe/ngoiJqK58Cg\niEw/94aE+08Rkne+X8aymnrZ0XgEW17m5rvSNLh2vlVFeD/fsW8kj/gVZpvUT+gRM98dRu82elBz\nb/RGb/RGb/TGhzg+Eh5vRxTd3g3dgrKXXm51tAW/CK4Y0GvQLy7eizFRnN2zgriGFpROW8K+KuHE\n5YEsBjP0UBwH6VGYJ1WIm+n1OaJWlJu0iPsbRdzM00uYFgFBq4ofJtEX16nzwX4gCACQb6cQFJZ0\n/iatWWd1AlqLgJpMpq60XZ36KgDglwo38doM6Zm79m28FxX5aT83iyfstEavNxhUc3XhD/H4Bi0o\nTf0iLgY4h/lWBjvvMyXh70TVlH2rbWS3CLEsP7CA1CV2QPpc+CDOpenWBGY43/+wMwbNAfaLPXbx\nMxhRcT7rSSva898FAKTM9Fg+/sKX8FM1IXDn9rWutBkLGkTahIdKVrJSuxiHpcW1UG/WIBv4joLH\nDkkhBGVvMxUg42wgGWdKmLzrRFFLJMKdsMAs0olqTVroBo0GG6L6kJRqYE30cA33aWEVgT5ZJ386\nbmsQHSUMbN5Wwx0QwXtmExI7onuLi5Zvq9qVNBgnfJAbnM/iGdLzoO4tqETO4HP//TQOnKfH8Gox\nhIcl8uK6nelpvp/MIaFhOstcRYeC4Kn31g9Dzv4brsNe7uGlyBdw1M6c4UGPDVc9ogKVuoidBuc7\n9v43AADb+haaSa7pfcoMXm2xytVa8EEUzYTl7t2gx5s+vQKcuZM2Wy2GHR3X16nmHLL6JgwiuKqR\nVEFt5OeqfA4x0bBiPkivcFcjoe+Dko2SDLOZHoXWbEetyO84NJyLLleCSSbyklQc6LToAdoGfDBm\n6ZEuVUUQpUYLf5PrFNU6oKuT1421PG5fpbdj9NEjNkS6q65B1TbieXooZg+vp3JxHSZs9Jh/MFLD\nSFJ0x9JswL9J5Kg5LeYQ1eI1IrQ48HQT6g3K5kqsAslHfmgN0usZyk1h00Pv+KC7CO+7/NwWUuPm\n/Zz7nrNcx3T7bZjPEbWru/U4r1A2Z0xNOOuEVZdXjAhMPCAoubPWZz6xB+tOUX5zJ4yMl4iLfYTX\naAtNFVICeTowW0c7w/W9vlkCfPzcM8F1yySskBL0TJsOLfIR7v0RfweXy/xuf517GQs2MFCm9xuR\naojXCMHqlYvYFnUOilGRi+3VIyPz/zWtOvq3Kb/50ToG7HeQ9I/jE6oWJi6xWcGlfcvIhtnn58Y4\n7++0L4/j2b30RvsHnoKVKg31cytox7m3KQfRH7zZj9EJpmPWIscweJQyqV9bx2iIk7jppIf/pPcQ\nLmkpY1bPEDIZXtPs2xrGYB916ZUMS4y+PSzj8Rnu8bU3lzEjmiQEc6dwPblwd+K6jI/EwRsoi5ZT\nVj3yHlG6cCuI3TwXZDmggdwSRStEs2lVcQD+mqj1qtEjKpqsBzZHkByhohwV7auuLPqQaIv7TLMT\nA+JeLLwRgH+ICviCgEqGBixQbZNhVeUt7IguFhP6FNQKn1c38l3qTgXhPGEOs747eHDgu4Qe45+Q\ncfq8qA888q/xicM8ZD3hAuLbzKFdKHOj/9nkNZjTVIzfeNOJ9jgVfHAoitYWt+z+6/y77feT+Pwt\nRjI//+Y0DONBAECq8oc4kPpLAMCmOPzKE8/gAd/vcc06NfyVhULTd/snwDtU9s3jY2Id+hG8xnft\nHj0I4MU7aCsay7BWSH+lQfpll4RSi4JXc+6iWid8qVRq0Ie4xnYt4bL4SBINcE0nMjW0RBETZbCE\nnIjehJ5rvZgJYaDG55Y6TmhkQlymTB5pUU7RYiDvGEdqcNSoMFNqJ5QCf7fKTWj6REGUnFgTTfe7\nmbGrVdzUUUHf42ME+h69F2VQOVx/ZwzXyiEAgGSaxHkTjZT7xF3v7dsXEZshtLjnB2dxeZTQl/aT\nWxhY5/1T4QYhrvTtVTxwijDbDcNlqH/EO7b+fX3wiIh1lTjYm84IQiHmCv/noBtP1L8MAJittrFV\nFofhELXSyIXuOcpbKQn9op62BMHLGIS1TNpgH4WzIwwXqxvNNuemKVBpTTXbsFEMkdUY/nEP69UC\nxNmMhkLDUbGrURdFM0ymADorVFY1bRYmM+8m94vynzp1C5mkyEk1VpCy8lBT5RQ4TOIOapEHRN3Z\nPRrdv+MBCucAAO1TvGddfnUTuzpxR+xehkG0BXXYzZCKos75MucwIb2IJ46w1GpxZRWSX9C+roPl\nJnlOJXJ70+HzuGnj+v1xq4mLAl4v7Mzg9vPCUTBxbe6f/AoyUzwg0so2DghIfd+iDv0PcV31Vwo4\nsu7oShcAZDc30dRxvuWWAcomDUpJFLrQdICGheu7eG0OviFG2O+my+jzUaetiNiJCaRRF3KYUa/C\n7eKBEork0RCR9MttrrURBZxXBP9uZtCy0BBvG08i1OJh6BkV7TLzt5AXWRi6ih41cb86tKnHmv+u\npGEwN4WfnKD89//QiMS9rGXfCFEGY9pbGFziwTpd/RautX8NAFDpyOg3cJ6Vvm8AAEqB47jt4b2v\ndmMVfT+lTltQ7cVUkAZPbpvrf/WeS8iIaHNVpIxYUtTCPv1dHEpTfu2DdA6eVAbhHCDPlj8+g6VF\nniOqgWu4J2m4O3FdRg9q7o3e6I3e6I3e+BDHR8Lj7VhpNdY2BmF+mRbS7uw2GhK9h4aUxqTEoKHr\nwkKf8hexIJoV+Bx2+Dr0JtUDQYxn+flig17u0LgbrTVaOKp+GWXRfCE32kSgIKw6o6hOciEDS+SD\nQJgmdkV7TGnMj0qVHsVuWOS6pnQoico/RU2lK23947RG2+7T2JknfJLL/RWGt2lB3rY9AVOVHm/w\nMi3Jm/r7kbJxXnu+0IS2xeovt1f8COwlJP69MXph+965gVSJgTcZnQVqhX1btQsfg97ybwEAb07Q\nEjeG5uESwSB//rsLeOrXvwoAWEi8g0eOsafvs8OM4mw7P4d7/fQ43t9d70qbWS1jW3SYGRFVclZX\n1Cj2i7J0W2MwiuAoxSfDKqAmxUtLXC4OAxLX8h2NGeOiYYJaXYVFeNAtYXUb1B7s5Gnhd2xVmEv0\nVLXRGjp7iHB0CtzXYjsOSc15TVrDWDPxxXLbgpZalDrUiQjqRLErbRjJYWaRlr9KxSjjzblNKAXC\nVif2lNDJk2cuVpfQEv1/E19g4I6+qYVnndb69oFrmJcYAJf79+MICmjQHmXgXfE31fjht/mOzwzn\ncNlKqzy0tR9aiwim6+c6ns9qERay8ItFA2pFRtWf2XwE7/ezscbn8+wpGh1c7UqaXa1FukrPZ1L0\nbw3LgMNBC7/UKcEropptpiLaZn53WEQ9y4Ys8pJYU62MmrgC8Hv1kEWCtMrAv2dNHczmeB1TKreg\n8/BZRY0RrQ+aGMjkr3LBDJXoMINWAj7RaGHVoIKuLBCKEc7BdZciSO2DA6jd4nfT4grG84gPkp66\nwL84jHyHsrp6rwl60U0qtkUX3hP5eVwXiELN7ML+21zrnCTjpkJkrrVBXaKbsCNZ5l7+ZHMH0SlW\nQNp2bGP/FvlB9KCAekuN0ZP8bGR4F6llzvG9YAp9GXp6wQNW/HRhqzthAMyNBnICwk/ommg2xN6J\nwnK2d1swWTk3szGHiijNajTIUNeInLh19Ng2c3a4BwiHt9RGNMXV15onj4LC/QwK2cimvCjYiCa5\n8jUURP9f+/Y1TBjJn6sRyrHGMQgpwf02VVuwin2qjvXBneze2AIArkxfQv9Z1iYIeL6PkQsiYKpF\nfnj6i0P4+3Wuv+ndp/DpSXrEK2EjXjtBlCD4LPdSMcVw8iB1ddppR2uMlQY99Xvx/Cb3WTNBZMCy\nlIXcJNITvc+EvjO8Z2hcfgAr4+S/LbGJJxMmJIxcx4F/MOOqaIIim9tojd1937qNj8TBu5viIhks\ntyDvZUpE6M0xZGapaA9uAIUGlZHuKCNx1VEF0zLhI3VNC9lDqETjXMWmaGulFtjGYLSE+giV4JAr\nj8UNcsNBuYzwgChtt0gmPTZWxzkDF3S9GYc5wL9nWxHkd0IAgOl7RPh5ooSJMoXpQrF7m7Kml8rZ\noYxhZYHM8nNfHkT8Mg/e56u/g39W453Uf97PJva2kwlErlIJHtIU8X+y955Bkl3XmeCX+dJ7V+nK\nZvmqrq6u9miDbgCEIQwpkKAZGlEU5angaDSj3dmRtDKrkXZjYrUjx1iSS4lDgRYiCAIkARC2Gw20\nt1XV5U1WZZn03me+zP3xXSiC7OzY2dgILH7k+dMdlZnv3XPuuecefxDnxRt9KonrC/zdbzXpXr4Q\n9cB9gYyT/8w48qLF4OrDe7ESJKNPiWHzXusovi4EzUc/l0DxOC9ZV/MbqHU9BwDoD9P1fmPzmzic\nZZPSUWXr5iB22YKM6Hs7L/HA151JNEXooDYsIz4vJjKpJGyZKYxdUQoatbGCgszD7VNIqKmEq86g\ngnKHdJc7yKK+mh2JMt2QIXUMBhP3W2/KI5/lJVGvUNA6m17ky/w8plDBpBNKUaoGs5s8Y8wLV7bf\n3BK3ZUsXbm2TT+7/BNdtfv1BTIJ1KdOqKeRS3M+HHnkUb26SRpW/Y6xnfmACnud5YMt/2I/SV0if\nouNn8I+Tx394jAKs77/MQvEF7nfu8jaGTtA1tnPhfug7/g4A8Kfz7OH71PAh/E6d7/1Jaha6MSqn\n7nt/jPu+ygt3e4D0T0itm0zUlXVoYow9lvcI+qsUaMYplHWwoljjXox2qKDIK8V3eQkloh44OkQ4\nIdcJ1S6/67JUkK+TZm4T990dKiBn4h66ylpUtHxfM6GG18492FkSpSi+KMKrPHuSo4lskQJcW3VD\n3+DvYiKzXVdItsTt8qwoOEWyAAAgAElEQVSMKVEaY4lR8aj61ags82IJlpcxuMvfnrt4FJnL5EXP\nEBUqHHgVph8HAQDx4UUEy6IaItSD5j6630+qSf9XFx+D9RQFeGgtB8nG/IgvrGzjhRrXEOji2WsU\nzdi9xn3pVFjQa6VQz1eSaKTp+g5nVdAZelviBQAqswll0XTFV8kilOMFaZzjXij664ht8ILcSAMq\n+7uNdczobfDCnklTDpYlJRrbNDC6vBXYQfmlKgxgTckzERXNZmzlDFQK0brVtwrrOjXkndECtkX4\nrSHyVMwbHlRVvLzsFhWkLf7dKuWxXWq9ZwAgXdZjYz9DBIGNOt7ZQ7ruDTEs8+xCA49LpNml35zH\ntR+LsIdGiUKMezg1xdF8P+rXQ5NkpYiu/FOE3hFhSnsKe4xU5Jti31/wWHCqyTvFlzuPiV2W9f2v\nn+jH8RqV2sA54v7S+AZUYtTsyceP4SkfP9fc8EGZvnsZWCtou5rb0IY2tKENbXgP4X1h8Zbr1MyT\na6fgqLOW1TU1AJNLZD1ub+EDHlowjg0G8RfyemjF1JOJMJBy8v/DGSO6hAUUtdOdEzbeA12Orr5i\n2QJJJNTYrnqQP8HAeUPPrL1YYxTDLmbEOVdNsIj0uSXlMDxmkQKbEQlX8xEs93I9k/ui+OlP7sRN\no6E2W3Vs4ODD1Ph+fNGBSSsTPz6hfwbTVlqvgdep5W32ZPCQgp9/7/EX8Im/pLbuQglVDTXiVOSv\nAQCG/F4UP8rkq/0jVjTL/O7NV56FZz9pWcvRWlrQLEB+nFp3x+ZpyE5mkBY3grgmsnw7V4mj9349\nzv6Y1tS6s7U1vxzLw+eh9psRySuauBYqJfFUVTvgEe+oGntRF1NYyqKxeq6hgSpAfMw1GfoMNUtd\nWYXCIPdeJep51eEwksJadcmdUCVoLdV0OvgMtMS0XcQ9XDfBUuHee8sOlEHttmbxoGyiZRp9N7u2\n3HrKzVG1GYnf5t761dSYtw+kEF3+LABg9OFn8fQ3PsZ3/OgsAlZaTHkdWwwevPYajPuZcLXzT8dg\nH2QzkzX5KH5QI32GLxHHyCkb9pzju36y34yxDC2GZvV7CHXyucYR7svmxjRupfoAAJ5PNrDvVVqA\na7FjsH3gBwAAk+JLAIDX9lWBb92Jm1xRwK3h8yTRBtLm3EakRG9Jj28X8IohFMkGlA5aVupFWi+S\nwQRdVtTCK4Koj3MNjmYGUAvPh0g6NBsNkKt0aaqrdRRk4llRmxBTkfbOKVoR+UgdnWJWuqJZQrjJ\nNWrrYWSMtCDNSVqdTrSu49UESnjlGs9yn4LWpjkI7HhFUmbNhrkJekaG34lg6TTpe7BJvljQNKC0\nk099uiFUGrRu+zXzWEszNHBbR5ey6fAZWJdpoQcbB6HZooWd6DPDpqJ701ejNyujMCOQ4r7vhsdg\nr5I+hoF+FOpcp8thhFG+0RIvACgFsigs0+qr56rwiLm4t8qinjcrIdcgAU22VRhNpJnabMMLoirk\nmI5rjDmMKC2LiWJqF7b7+LlK2Q2jhjLCHRUeqA4LvBLXLs92Iy+ujWa2DGS5BgkivNSYhzJH+Rsc\nVcCcp9dRUVZAaYreFbeifxMKO9d7ITcEn4LvyAkvzFMP6nH2Cvmh46Ie2h2+o+ehDD5xjGtYydNa\nlVGBNU8PXqGyi34/cbs8UMZ9K7SUVScpEyfnz+LQFAcxfOO796M3QNx/49IOzlu4LwNh8q/KcT8+\nHyV9Z/J2IMmQRKG7BlvlLiGru0Db4m1DG9rQhja04T2E94XFq+pg7K7HG0EtL2a5VpZgfp3aUpfu\nMJbHqXkaV5jw4neaUBXj9BqlMtQrfMaaSotDfmqAKQuf1aeRES0zxT0av4nhVVrYO929MGqoAe4o\nxZiuuVdg0FA7jktlVNLUgPJaM8Ki/tewLDrsW0LwbVILyxlajwUMdfBz9dnbyN6iNbR1z09gHv0n\nrm31USREDLb/FC0k82wT07qvAQAee2sbsSnGKPsTJ6AUjdpTs58BAIwfLmN8glr3q8lrsNtotcgH\nTAgVSasPX2Iru2dO/Rv8ci/jtm+Gb0MScdk9574Lufv3AQCDokH/0g800Ctp7Xv9rZMiTE01kqLV\nWCgrEip0TajV9E50xyrY0pOuTSkNjYhHFjXcK0uiipqYwVu3OVGr07JyVJPQG2i1yBHGzbIBM4Ya\nLF2INPwwaUSrP3sV+SwtmHrKIX5fQfrd5J+uPPJzXJsjYP3XoRdQCMtLat16cPFbCRy+l/GrhEvU\nZxrmoTWSFu/8bw/gvmHGYref2oV2mmuX17jG29YBHE+R/laPGc6L9Ax4p66jpmYz91zyDABgz8SD\nWK8w+ccdUUC/Rm1cc3IUj2lYV5iZ5t9Ue62I9gsvwuwIrnyMSXZvnQW0wrPx2FW6XjSOsZa4aXN2\n1AZo4YVT5OWypgMWC62LnLIIzRYzdkqHw+jcESVASu6VWSujJEpnzDJQE2UpmbIKYdA7MMijB5Wp\njKKos652lyGneB6U9QoUCdJX3qEVkZIBQ6doqbVlRUU4mIqlIVhEYlPWwGctKT0tcfMrc+gzsE5c\n2UEeWc5XkBdzYXt130XdyjNS2rMAtZFnQH2DMmEg78JObx8AoGYPQjnH+avrHUuo7WHc0JjkHqPm\nxvC95KerMTO8tQHxux30zRwFAMw+zLaCU+UmtI/SM6BYTqHxINfmu5SB00FaLqpWcHvQ1RIvAJDW\nbciJ7nmakgdh27s5E6RNpZ6DwSpmZ+u3UZgR8faDdbh6KGO2tsnv2oYf6jHRnrOUwB4VZVu2Oo2m\nmnioJ2jlxjcqUIf53eJwBrFlnt96RQeTKMfKZkTHMZUKVTU337lmxLafcVC5MoZ6obXnDACUgSTi\nb1NWTMibCPdznwc/LOLxb8owfJqtc3vyq9g0kE71rShefYuyd7ub523yyo9R6GDMNV8vQu8lrYfS\n+7E4xHtEtUiZKMUtmE7yWcddZ3FZtKg8kz+CI8ZvAwDeaPw6AOCYtIy5IHN6Cg/OIBUTHpmgEhvr\nlAufvSuGPw/vi4vXr+PBvlqqoyqSOo4VLJgfZPJPZrEE9SyXOiQuQq3LhO4Gs/oKfgvMem72oOzF\nDdEiUCHTLVWNXodZJGfUU13YEnVozVoV5at8n7PMTNtoTxE7SQpJc0yN7RxdoTPpECxiaHpJLya3\nqN2YcfL3w6XWpDzaEM0dFCpIn6CQPGirwLTGA+Jfvo76EWY7D25QYSh2mPF7B+mM+NNjJ6D+Otce\nflWH7qoYrP0ZuilH49exe5sMmX0zjEk/Bd9Z/35YVnhhfO8+ZswarhzE/I0vAwBs934EnxRJU397\njx/R5H8FALgTLI5XjPcir+SFpn072BK3dZ8ONiEdB2oU1JJcQocovA/aEzDmRKPfShUdYl6uM8SD\nsHSwjKlduowqqggKJh5iV20QVVEHqi3S7ZfQZ6ErUNjaK2loxXcLVhesFrrqVTHSLNdRg1OkvXpV\nbpSHSIddqQpjlUJelRNNPhStW33qf7uBvxM9iH8VHEYv3VIjOcGDab/PgeJ+0Xzh2SOY6qcr2bZE\n/vzqwwa8Ie70tQEV+uusFTxuGoacpACa8xLHm7su6I8x/NEM/wFcfu63Zs9P8cYV7seS6L/8YeOD\n0O7w99fN5+B/i7/79fIxrGt4IXQHeBZGr4Xw9Ra4WfUVpJIiG70uphNt7EBrpJBTN7tR8DBhr+u2\nE1E7aWWQRbvHYgcqIis87MjBkKFb3xHtRI9oz6cQ83xrKcBoEK66RR+aPgoolX0Z4SzPhrHC9Sry\nRYTEZbsrJ9CdJv2rhg00y+QdjUXslyS1wAxYWCphv7jIzOC7inuyGDnDNZyxdEI5RLeot3gSOh3P\nZEy0Wi2cCKBzl8I5opqAfUBMWSr2wdjgJTpbFGGQgX3YPk883Ycb8HlFBUPIgh7q2Cj6eHHX5rT/\nGh4ZMmlhPEP3um6PG+dFMxifQYnfvs7n/VkL3LIqNTrSVHKyVRlx0dq2Y4AKTPFtCTbhJg43DHD4\nqRTPzqThEMqjM8l/q8MywqLFpaOkwXYvQwf5ogvdTVFRIMIFWrmT830BRGMmKDv5XEXegbqoGy6I\nNrE77joGOsUEuY0mPLt05btNKYRNd89q3r39KB7xU9l+o9qBATH3eslIxfv+D9pR/wnPxZX7JOQk\nhmPeKcu4z0gZ7def4eeqYVRE4p4iZsPMecogv/sFOP3km0oPz82HGxo0UkxY+47Oj18WrV81D1Zg\nSDOUJAtFd80dgHOSvG5evQGDiXuVrp7Ahui18N8LbVdzG9rQhja0oQ3vIbwvLN71Ei1IpWMBzhi1\n7u1LJthEUke1Zw72HXYiUeioma3u1jAnmpnfO5bC5qLQuPYvwZxhgkIySW2rpqrDWKMbrRqTILlp\n0Y6H4rjqo3a8qheDEcpjUBdYvrOZVkAXo6Y3oNzFpW1qm4eFcpPXuGAWnZl0oln4L4Ks4pe/ovgh\nvlhjGcnx2U5c/S5rd3N/MYxvCQ09vkU96AGDH/9RWEWH/mgTXg9LiFzDCcRFc/X7rNTalcZxbGxS\nA/X856dg/K/0EhzwaDCmofuyskRr9J3jNzCcEjNBr1Tw0r8jLX/1hhmXjlKzN9Wo0dnrTlgidLX4\nlu5tjduNDaicfQCAXSPpZNPYUDWS1h2+QTTSohC61o9mVJT12LhXRzJmREa4x5k1G/rctADz1S2o\nQWunMUCLWBM1IN1FLdaRjKEgupLVc01oXHy31U4XoqaegkZYaYm1PCQTP9fFAyh28/8qUdrQTLZ2\nWdrONPGUi9q2ZYgt425qHkaXms+trBmwkaML+8nAH2J9h1lMK4NMqnn4eSXKnyMO9yYBl4t4hOTH\ncT3GMEJ/mBp15pOXoLj1BADgUfnLiB4gHcwv7INLTNLSHaGGHklbsFqhe3P/she3P0iPgHn+G5gO\nsyyicYSuVkfhReC7d+KWd2WgzNIrsSCJ4SKlOmQl+c+bjcKQ4XtvG/ToMPMdQ02+d1kxg8Ya1+ON\nOBCKkr8U/TnoRV18pEgc0lkluhu0MqLNRUgrwmUpNWBO04q/beT5V+wWEdpgQqDU6cCCOAP9UgWb\n4hmuBr/bSLSeW9vVWUfYzDOy8wpd433NDML7ue8d52UUFLSQZOccNCnyX+CjLEWppq4jV6AF/njp\nDaQmSMu5zAbSTr77twaI41u3fbCMiLBUIQlPP5OvCm4JkQJpOQHySF8ggPmk8BwcqKFXhFXKlxI4\nKJINK/kooqm7z+PNh3agctDabjgcmJDEEAk33+GedKBkIM6FhRSMPcS5d6IHurKoyZXJh26tFvUI\nz1BG6weylJk+SYUFMSUsH6E3ZMi2izU9rVW9NobFOP9/uBpF1Ee39EQ3QwR1VT+826Rf0ahCzEh8\nVAYlUqrW3cYAYGpUi9wW5cITALJ2fnejm7L6yuIMDuySpr2vdaKk5N9N2gQSIdLkZk6U55ld2GOk\nHHzr4CDumxHTvB5wovSnxG08T/4//8dK+H5GXn6ksoV3tmnxHjAsw3CF8uTWJGnT17QhHuLvK+bP\nYj1Ar9A4tvCg/P/O4n1fXLwOExmyFvdBboqWXYMbSBt5MdjK41g00xXsLXCj9VU94koK8uDtFZQ6\n6d8PZXToN9C/r7Twc+d0FrKJB8RVS2MmwkNcVUqQQ/x7QaY7wdK5hZyTxK3dKmI7xc02WG2w68m8\n6ZioO65VoHxUOA2irVsP7gZ+CgA4ouyE0suDe8u7g+wHmRFnn1fhk3ZxcRh5icfCcTi66DIav3cU\nyV1eXvNv5TH0OF2P5RAvjrctS/hcmq7Wl9ZSWOkNAgAmcz48M/A4AGA7RFfpHyv2IWwmbeSHfobz\nf0iBOnAfoPqH/wAAuD1K11u8fglTOsZ9XhyyARfvxG3QpMaWi7SwiOYVXk0VJgg3bsoAqU7BVdU2\nUbMLF52I+ZUcOvjEoOvBviDyBrrBjKkeqEWzDanI73aOyagIP2TC2wNnhsqKx5JGqSji92J/rKoC\n1CGuS6oaEBrjenp3EoiKIfEIiQks5fidiAEYM07jwjr5x6VgXNylbaCyh8LqqPImhiN9/O7gU4gp\n2FIzraVy1Ty2js0w91D5uBvpH1Eg6k69hsfzVKSuPkehNBEaxzcM/O4p5yhmHCJenngTE3/JePD4\nIunUnEljVU3eeeXg2+hP8vN9nV/Bk0kKgn/IU/Hp1rbYNAAVvQ3lJOnqFRevrm5BMknfeERRg164\nMcvZHZgz5PE5Jc9evRMohPl5cyAKm4Pvi4WsUGkpuGrb/FzhNWArShrLPiAdEzXh1W10lES2uZK1\n4IVyFQ01ecS2qUTOzL2K2XXw1oWLX8SkQ6Jv+i9C/fAoVNdFY4gAv1vY1EFV4b51No6gx8gQ1XXf\nDuzL/HuuV1zSfaewJvilNL0J6wD5ZGrpNOQUleXSLcbOBw8rkBPvChzqhi/FZ6ln9Zj9XdIh8wbp\nMLfsh0LD31vf6sBrB0iHw/4pnKlRUbinX4l49DGByf9yB24KnQMlO98nrUuIWfhss4LnYkNWQ6/k\n2v0uFxQ58llDqYYmIuh+D+WdVlmH1U53rqlsgC7CcFXSVIVR7OGglvKhmLXAIUKAClUVI2LaVM3p\ngCymL5VWyZ/KrjIqbv6uqg1AGaJCH624YE/fPfP3J8HbGNovKjLKeey5LJSGRfKWZkTCmp78p3Jl\nkZnlGQnudeKIV7SBFU1zBorXkG6QP/bOJhDZYLx97/cHkT/Fe+T5E2Ii1IUU5BHKncXpBBLi/tR9\nqxcvnyQtn7LR6AslrkNr/Q3SXP08htYogzV1J742wb39zbti+PPQdjW3oQ1taEMb2vAewvvC4vVN\nUStauaqEbBLThzZ00BnpOlvUbaJ4W1gMp+nSCL+hgfEoNZUbCiPyF6nRHRs5gqSfGlkyQg3e3kwB\nLrp2irMmdIhG12m5juUwO7n0+UTQPWRCao4aW8ScRK1KS3ZjpYlx0WA71kOrRmWV8YTIHHTVNS1x\n232F1tKvDDjwxmVmUGeaLpwsiZZno3lUJX5n7iiTmX7pn/U4lqA2uvwxF/asCJen6ibKn+czFD+k\nRvdZtwPmED8/uZlCovxhAMCsw4D7+l4FAEjd1Pie77iI//SdFwAAlzufxId81DAXvrOK/SeZrJDd\nKxqD37yJytO00P1Pp4Cn78QtqbJAD9LSKFxDHTk3IqLVZD2thGSgpmx0S9BVueYuJy29XbMVuh0x\nkKIyBVUX9cBOo4xcmt9xBbgvctaFqofuS2/FAHmZexy7xwKlgZq/R+ZepD1HYM2Qfs1oHWNhelEi\nCg3qVXpRqgXh1ja2dn89M/QF7PMwqztZ5Bq6BjXo2hUZ0mEDAhLp/rNMEKZjrJ099DrrxaO2dYx2\n0groek2GVk+eCf37HyD4R7Q6fJMMXbhdb+D3qvQ4VDJvoEe8I/WxpyB9ldbZtE/MOG5WMRDkvN7h\nMSe8VU6VWo99Hq4KJxztdQYBAN+N/RqA/+EO3DT6GlJaWk7REq36hsqJYTFZaKa0CpVKzLLVJyHn\nqfnHavyN1miCrUaah6uAQUyK0ardqEp098kOkVB1y4JcHz931tJQhngmYwYtYlrulxzkHpi1JeRE\nlzFHJQ9rSbw3qYVO5nNToyJjVrSAvQO36xIawqNyO09L2n+8jr7b9LxU9tpRW6UHyV0fxgq4t31R\nuiZvK8zw5biuc5NVjF6n66WoL8Mrsp2VnZRF/QU7TMN0QwbxecyKhKDAwE088Np+0hd0V9YefBO6\nDdbmZ7o3sF/m343+LQwJ127nVRdiR1rXJwNAuaRBd4ihkTlXFS5R965U0e3a1xNGfpPuYW1jDVUx\nvN7UVCM3So+gRfBywpxGj5V7vFzVQicFAQA+WYNSifiHqqK9askHhYZWub1gQUzU6dfTCmi9fIbp\nIJ+f3zSirOZ+hgoq+Kp0be8aclDWd+6K26cu92JrijLU/MY6yjqB0xb3+0rOA1lNuXzI6oXfRD6p\nrzQhiwqF/WX+TWnej1qBVrtWE4djhFPC3pB2cDDEffngEte4nK1Bd4DrskcOItlPy7V8xoSDJd4p\nup+QjxodR6HuowczYZuEPkJZqm/48TvV1vL/bvC+uHjjFlEiFN3FayEKxKbbC/stcXCcLpRHuAGR\nSzzlbv0YalcYV12RtnGqm+7W6fxtGG+JGM6wiH9VNYiFKMAyqMPc4O9uW2VoN+lqCy6S4bfTETS7\nuREjDRUWnSSoIa9HWuJzA2Eyr5RUov4QGSRWA/DCnbhFXqJ75ftfjGHIQhehcv4yRi2Mi+WRxWyO\nF05Xikya+sA8loucIvThC9ehapKxrIEJDPxREADww/v4m76XpnDzA2Sivs0ysqd5MEcXZpF9htnM\n1zuZxX2iOIAlP11KW+Y3cOs48XSeegJfWWOP599MUNi9eU8TzTRdZ64LC3ciBqBuzaBjnSxkMFEw\nFiwaOJMU4EZbAcYeXu72kIxVK91HmgYP60StE5oeHpZUygyzxPXkTQ3ExCg5Y0aMr5MsQJ77Vu1s\nQnOCAlHSqLGb4AHpMQghkN1EVcR4t+UGeioUFA1zBhbR/rBuYrG9rRZriVtenoWzxtTUzl7GHePZ\nqwidoWIS+5VeTBbplj/Q6MbtSdHj+p/E9BL/Aeh9xG0mWUP8KOO6nSNaDMzwGbNqXtIzuf8JVh0P\n9J7YXvhHeQaGEcW3h6hgHFrjxXH9kWkcuEDh+rNkHvN1utk/9+EX8TdXxeDz3McBAA/cDOF8C9xy\n2zr4M6IPtRjpl9mOIYh3e912IRcWCq63F9YMz07Ww7XIJQe0DZEZPF1GpEYhpx9bgULEyGIR0WZT\ntwupJJTXrSzQ4IUZKUXhCTGfIG4lf2VXO5HoFlNeQhVAZKCql2sIGsjj/UKpa3a1bmM6EHsTi3rK\nAnUvFSNzvIakGHEZuNyBqCxCHfck8LBHxP/DfQCA1JwRThHm+WWzFQs+MYZwTxbeF4mbYZBypdmf\nwuI5vkOaTKG3zvc2yjLUPsqNwG3KrUuWIYyIyy2jKCKfFvJsvoSF/SJc4+6BvnL38XIGXRwRs4gT\n1/TQijaPEJ1BDXEHjGYqrFueATiDPC9OYwVZA79rGuSXpTUDcjGuISTXYReN0rXNJiohKn7NOvct\nmdqB1czfrzgkdOS4tw2FGwNi1l8pST6qudKopfk3h24TStEcyVyoQmtuPS0LAKr7ghh9ned0yxGA\nu4Pnv5mjYnPQmMS6gcprOWtFQ7TiDdsKGNdRoSnnibvBchYBG/F5Ld+Ff+cTeSRX82gsUenSDlM2\nLtlvY/gc5ZxUVOB8hQ1P7K4sFL3cwxtGyoou2wLKl8iHndoc7k8+CgB4pnEVF3XkqY/dFcOfh7ar\nuQ1taEMb2tCG9xDeFxavvUQt1naiC6deoNsl7VpDoZOaVzyfABLUYDRVauqyzYe0mY0CLKUenBfD\nkA/5o9gyilm109RONj1KZA20MGuGJsJBUQvcUUNE1F2GfXSlTNk7ICkYxL8cK8GVoTZeOOKC2U9L\nJCVm5Wq6OyFphXWtae0iuke0HQxpJHTOfZ/vdf4adldZwH1tXwkVLTV7/x4xaWbhd/Ah27MAAKUD\nKOTpKv2uagkfn6A2+ZCHOtO/r1fwu9eYhb0+6YOxm+7LQOxNlE9QqzN+j5rvGaUSXg/dT2v+SRwT\nBf9jL1vRs48u97l1ZmZOLNbxUpGJCGUEWuKWiZSQsvF9tk5aL/1GGRqRRFGzSjCJJhKp8Tz60tTW\ndV19AIBsKYdBMd1EWa9gq07N02fII2BkGCGiJ4sWNzSoacTw+qqMqF1YLRvb6NFynxNGYS3JKgym\nSFOVOojyqmh8Yk5D0pMW+TJd9tdjrXXPvkYDTg018J0ZWnpLztMYpeEJczaK50RTfKyvovzfyBPd\njBqgZ8ECxS7XZfTWMH6bPJ43+eAVDeVTIyJzfX0FtyIcgL49UYCcIZ3iY7eR3aKX5HI38Xko68Cb\nvQwdDEjvoCo6Xp77JyUmHbTE3A1ag6+MvdQSN61WjYZbDDkwkObVug6FvLAifWlggXzWtbmDHS/3\nQimmfiWlOtxiylNWF4Y+T7fpzloNlgytKH0f+SjakKDfpFWpaAC1nGhDKJXRFAlepaxoiaqTocmL\npK2ODDSizWHJLEM7LmbEJkTNsEjU+0XIKzXQXiD/nTbTbfi2Dxjrvg8AsPqQCrpzbBLjSrvRXOdz\n14VFWDugQOpFnumK7jb2lbmemUQZ8glagAmwMiB/OYXOPno1qpEhVHzvtkTsx7pI4jOKGcan3euQ\nG3wX0oPYzNIzYi7r8UtN4llMb2OreZexSwB2SlXYxZB5N8qo9ZA38ttBPstmRVkW7WzzQKKX8qqk\nlVCRReb4DN/r0VkgC/foKUmFmpj+tL6ig0NBCzFmYwb6QNcimrvC8leroWjSA6LuXoMmQS/dlps8\n3VlvIl/i52XZAKfIsu4o2lHVtk5kBAB/rICdL9ANnLzWRKeTMm9uhLQOLr6FLxr6AABhbxRVkRR3\nT7wblyfpKesRobyZ5McxI2YRd1kLeHuFNdNBtxoP9tHb9IqFf/NdMSA9TBmQ1QDDj9ILVXj2AzBV\n+B3vUXoMh2JOFExco+FcHk+LXgJy2YsPl+6OWytoW7xtaEMb2tCGNryH8L6wePvFPM8FbQ3+XvrY\nzYk6zumo1egqm9gV3W90EWF1ys+he+8nAQCNd25C0cvPV3IqWA3iO11Ez5xXI1FkrCDc143emNBS\nE3mMWvgO0w6tzcKgHfUotXbvoXXUZ7m2esyJ7m1q2ep+Juh0uTqgkqmtWtSt4xeKLuanV9I/QmGK\nVrft6jou+T8NAPB/8z9D/2m2+tu3Qq17n+kmHDZqmKmXD+BcF62HT3f2wOYQ2tn1IADgd02/ikKU\nXZPiuyk88ewzAIAXCh5Yz5KWNob8cPTLt6B5kNbABzUF/GBJDCV4/DuofZtr8D1BTfH6rX1QaUi/\nk7UUnmuBm7+ShTiLH1IAACAASURBVMZA/JWi5VytrIRs59/MahvQEHTRaFARdboqJdfg6XWimKHW\n7dJvwKQhreNpF2oVxvcDgg7b9W0oK7QejFUD9ApRh+uRIDUYX9LmGftMO1eREg3epbwNhg5aufZC\nE8siCS5JZRYBS+sjoN9U4ft99HYczNKKGA1UUZsSa5x14hhIv2JgGMZeWlGZFZZ7afIDeKDvvwAA\n6rlhzDhYJzqcLSM5zjKfD8TpZZjV76CUEMkZ/TO4X0OL9+qmhE/0MG51s8jY1JZ2DNEYI7dPSO/g\nLTFSbzl2GMduUQNf7mIyyQnjAF7Fa3fg5tYpIVXJRzsFWlD+7ixWxdjl4mYekkG0Y9VoUE1zL3wq\n7oXRYEN6h4lEGWUXrFaenZzNi4KCFlsjzn/tZS02RHvJznIJC2LO8nA0iWw3LchGll6TOaUMaYsW\n5k6vATbRFa4/5QIqtCgqwgozVhx34AUA0ZgRpcPco2Q3LXTT0houXKQl8xllFRXzfQCAsE6Dphi5\naT0uBqcgBft+WvjzudNo6phTspyahK/M+Gv8XsoB/c0KEjsiNnpoGb4a6eTOfQCvb9BKGuwn/6f3\n7IX270mz/g9HADF3uHyfAbeW+X8dClCWW/cDAACrRgeRL4VlgxmBRBAA0CuRd6SeLUhR8kPNUoIh\nTzmnU1hgTRGnaECU5JXVcAm7K6OoobRGHldXw7DUeSYyIgFPVXBDqed3k/kCtF5ao3UlcFW0h7VW\niUMoU0WPvo+01IeQFv0GkqEkNJnWewYA3+8zwHqGe/zLG/fglWMcXGBT0Kp/eOKDWBPJlc03rmFN\nDD5Z6jPiuI40UzlZ5nUg0ET0Ii3lj3SfR30/96iZLiIk+i1Y/oX4PHjwEGZ76H0cVufgeIbevTOp\nb0AKPAIA2PdDeir+8YgJe8yUr9aH96H0ffKDYfLf4KyJ/3+3GOz/Cd4XF28MFJymTBPxAA/8XFYN\ng4vJCi61BpU0XSFzXuGWrRmwInoQayZqmNDT3RVfTSORonu34ONh0scNsNXIAJXqqxiyclOulwrY\nEs07csfpQnAlh5Ht5qE5MNOJn7nJqFMGJTJK1sWpbGQAn86MhsjajaonWuLmFS7NSNCJbSUTmz51\n+i1ohcBrPDAFXZAC+upDrBHTBqLwfpnC46zhWRi87BH78qEKOmeoFPR/iPW4qovfh3mAzNQ1/lt4\nOvcVAICkGEGqzISp0//Ca/PWl3rhGeBBWWiewM6PKcxHlCMofIRCSl38XQCAbDqPPTfIcD2iycgv\nQtnhwFaTysRYhi57KWsDusSs3A4V8mqR4JFxwiaSqmyi3eBWvooOBw/8ds0DhSjydyADtRi2vS72\nrUdrxK6fQsWnTyItEiRrCj9yev69UaCrzxa1QNIE+XnTi7yWPKXcLsJkIh/VC2IerXarJW4JrR2/\ndoP8szTE31gtF3BxmZn2ew0qaM08/MXGOpxv8VLacvLi2Aicw+Q4M8w7ijMonyUfvD4YBbapEK03\nebGbZmsYDnAdOwoTVqMUbFnZhHMP8mw8rhatS1++BsNZCoTnJ8qw7iMe97rLyC+SlkURVnGJzPhf\nBI1LD4jMXUk0otgqG6BoiLrQmhdpcD+9GjVyUSpSm3V+DncM2m4xfT2fQEnLNcobGphVFCl1Lc/N\nWqn4r5Nb1goSJInPmLbJsGeowErgeXJrbEiLZGVZWUBnivSN+rTwxXiBmQZ4LvTa1q7m7GIf0n4y\nx8RFvmu/u4KwhWf3ypk69ELeVI9pgD7yqm1JKAHbU2g8ztab5oUoGgXKkhNyCpKSi/Nd5brs96iw\nusQQ1T7EUbpJ5XVjfBulAe5huo/7qnoujhsHyPe5V4/ClWbymiGVR6aHdHhy8BBuRu4+wcfm1iM2\nS43xgZ4hrKioTCScTDqymXXQb5PXpVod5grPdDHWB88R8kY6RnzNphJULnEWiinY7DzrjjkT9AH+\n/Yho0JFU9UOlZxjCrVaikSXv2HaSsHYFAQDyjpgNrFEh7aCrWRdRACbKDpWqjq3+u2dsD3tyOHWW\nyvvffTSOvSnWp+8xkoej03OQE/x89hEFTl0kfdc8FWx6qYTrH7gPALAVvIrDXsqdBa0NlmtcW/rw\nDWif553y8Q9RSZ8eeBryD36PNPNu4PlZKpGPDu3Dboa/m9NwD3v+sQsHPsowz4938xg+zXtks/I2\nPqy03xW3VtB2NbehDW1oQxva8B7C+8LiHfDR1ZTXP4yr03Sr+jwmQEzdMKKIdIwa7okRajq1ZBqJ\nXmp37lsTWDXw7za/E+ow3aXaiKjZbGxDKzx5tu3TWNTRZTlWsWJlPzUc52IfAMBgB9wGWhG3ev3o\nFLNec8FudOwTJRQT1AibeRUGBA5lfb4lbkHRdPtUI4uXFlkyIi9OIOKnReDatMPuphvS99d0C2qO\n2TATIj72R/txQnR/+enODRxUM0ln42lqY9MDy/CLTkh7vvZ/QXIHAQArajUCXmrC4S8wyX3k0gUk\no3R9nzn7ErqnqKHXnnNg4eNc594rtPYPW49i5WHOJd7ZbD1IoCjZ0KGlZlmTaTF4DnbDGKc+VzaV\n0UyQxdRuHaqibjBY4ueaZhGKqijRaJRRt1M7TlstcMWEC1RMKSppAO82N1GpkZDT0x2rz2zDp6VL\nrSQm0KjLZWSrYmfMdcSEeSzZ7TAIF2teKWpSVcWWuH1kdAWNQdJ4/DY713yvz4hGDzXlnXAQxQ3W\n0CqlPtzq4H6NiWSzY9WLCC3x2TfUY/BUaOHsNp1oDtNyCr3KNZ5UrWJtnp6ck/4cglXuwWjHb2J5\ni0l257dZZ91o7MVjWpEAUp2F/grjCM9UfopA9kkAQJef7/q2wgjgziHRkmxBUsH9qrhoyVgSPuTV\ntBxCBQ1cKtI6U1OhLMTEzgjX6N5Qogy6YOsKNxo6ngtDpgm9hVZSVrj61aoUdjV8VymXA0TZmVYL\n1Ko8h/kyv5tpNmBQ8Byp81rsisb++egO/BN0yxvKPAuiouUOGD74GlavPETcfEEAQHAhAFWS/JRU\nZ9DxEdK9+drbqO2ntX29QyR4qTawE+TZtBurUN9i6ACdb8Jb4NkJ3kcreL2exOggE/7OZDPoU4tE\nTJUB+0QI5UCFa1l1voIDftEmtvEiFNv0fu0dXkM8QTm1vjKPWv7uruZMLAeFGDSyvjcK/w0mCkFN\nOVgPZdBQUj4YJQlbImSh8VXQzIsOZaIMTJs3oCrO0OCQEcELxF/fI+Oam9bvvUukQ8NSgUopks80\nBphEMpi2K4+cSARUmfkbtW4dlSrlkdMaQkW0Zmz0Z2GJ372cSG5osHYvefHeqz68M0Ivnf0C3cfH\nk1rMHhMySvVnCB6hV0L933Zx4DHybX6FdNA/kYd3Qcw7DvRjVpStyf6PoDrJ8zDdeBgAUP1BAQGR\nLLYwfBv376MVe9W1jKtfZ6vYro9RDoxI38RPVskDRy0JLLpIB39oCi/e4izsE3fF8OfhfXHxOnrI\n/NB64HYx0FS5bkFJL1qT2fUwiZaQexok8gVLLwJlDqRefuIGurd4QZZyEbhM9NMnrSQYsjLyFj6r\nWbEhk+L75HEnfNN0Met7yFhyZwLY5YU16ngVyVN0RU+acki4yFCDHh6q4x1G5GpkJmtn62kphv+T\nzHT+yTL29/ECiw/ZoVLwAqgtH8GFG2eI20kKl5lRJfaJ0WVXI2ewWefvHrsKaCbotnOf5NZNLncA\ncba7nJy6H19tUCirJSsqAQqC2Fmu2zGugfoqhfpkbwpSXtQ5fyiL46/R/bnVR6VDqj6LlIUXzjFV\nHsD378DNFGvCKmI/fg9pXojoYRMXqNFiBOKklZxMQSWGZttFb96EoYYKeLFmrQY4xVD6ZjKHLdBN\nWGjQjdxXbsLo42W5ZdOgeU4IKKcTVZl7ENdSIKpSeqjN/H890YBKIk6WfAwZ4e2q9gt3+PLmHXgB\nwD+Y4nhinYe+cJgF2kc9B5E8Qxfr6OkMFtXEuW9rAooMlZQNkZk9q5jCA0dIm+CbeVT95K+OQi/i\nC2xscriHbsXD86NYPUo+2fDfB0WF2eixSA3xOV6m9uzfkObDdpz9fUH/n3agt5N/f8h9DMkFKpzz\nF8gPpzsHca0Fbll9DTpx5CxphiwkZRBJcWm6NArAzMsyv+aC0sVL1iXOTbHDDI1oTagu+ZCR6W4t\n1iXoRQ/sVJ40VxiNcNToHt0y+nBA4jO2U2loVaLNqJ6bUtT3IKdiKMWtlqHTU1HzD/gg1ajYaFXM\nypVqgy0wA+KhY4C4cA29jMFvuhvQu+nqf2jpIIJnGSNX3GNH7Tr5rEtPmu8fnsWrZp4X+Z0dbJ8g\nTQ8VjmKuQBmS3iR9O00jOCd6f/fVXWh0cL/10zuYFC1hp18XceGAHckz5KfhQzLGPX0AgJuFGHbN\nVAqc3hpM0t0vJ2WjBEuKNHFuFlHRUf4pBZ086Sa2nOR7c8OFfhMVjJxBAf086epy8bzVsmFslqhU\nVGt6WCyUu46sGzoLcaoN0/Cxpmwoi6lRLp0WCQPlilndDf2aiFV3UK4k5TE001QSC80e6HIMZ1VU\nbsgrG3fF7V8iGnwxSbovn0xiUv8/c21u5kOE9qThUFOp3bj8CopNtked+F0jlubZ51zn5EWZX30U\nm6P/DADQX9VhUydas/7zHGIiJHjNzz70e1xezNeY/6NKj+LsLuu9bWd68JSInaueJ8/JnqM4aeHe\n38yXYLzGOv6lkgFjT7bmx7tB29Xchja0oQ1taMN7CO8Li1edpHa9mViFeZIWgyW5iLkCtQiDoh/a\nfjGAeJMa0AQauBGhFndCvhfv5Dgr06fZC6+W1sWQQbSi7LQBYeoYJo0dvnFaHIrNQUgicSavoIvh\n4WISc/tpYfbmhrGVolswMNwNhZrPUIKa75rcgcAQk23MvtWWuPX8BS2DSdsIri1Ts5WmAth6jm7I\n+9zn0XWE1vzObVoJh/asoBB5nbg198Igsb1kMGTDoIKupMA9dJFvDD+CezZpCb5VfAuPDnOS0LX1\n24jm+dyHlqmBvqk/gLjnGwCAnG0MH1XSPXLd8CvYNHyT776f6335RT1SfynccH/WEjVoR0poKrjm\n0Ca1WclnhrFO91tjWQe4hAW07cW4yMjOv1u7W1FhXUerz5xuICMzecJdtsPt5v91GWrz89IixIAp\nLMVi6LWTDgllFTk18dfnqKEqehxIz4uZoe4g6jL9knWrG/qbIsNZdMxqqPUtcRv+mh/BCVpM9gLd\ny7JuGxk7QyHhG2EYTtCxFI+cR6aL3hWXne7Eey50IX6D9CtYBpFfYlJH/ISMsSXyZbzJouCYU43H\nI+TZr4+soneJa7qoX8ZAL/cDeVpLl8JFjKXInx7tGJbjDwIAOhSvI95PAt0bpmVg3bmF/6MFbtWG\nCdUsn7Ek09rssehR3+nj34bi6BXzq5W5BHJWJnZZ0mIDqk0oyzyPBkUYyooIEajMiIpZzG6RgChL\nWYRF83pXRYG0GHxgUnih0ov51u8O7nCsQL3A9dS7xjBc4O/WGlr0iK5HUSXXqM22TtTRIImNYZ7P\ncZGYJ2uCyG7SMvtK/zSecPFz6/YSQho+zyASlRY2tfCK1oQv52Uc26oLPOJYGhUdmZQiYz67hoFF\n8nchuQ92j8j01vRieYZW480n+ax7f2yG8hhlSfZiBlf9Z/hdix6dEVrzm4sbcLqGW+IFAKaYD0VR\nNxxSGGGr89kODfenmDDDUCV/RlxAKUZPQ7fHhIjoaNUJWpUZyQyHilZqLdKLxgB5PCGvInKRXh2l\nmKs7nE5Ba+Z+b9fyGBbdyeJjSVRFhzmLlr/XKNYRdfJvimwJIZUYgFNMoiG1HmwBAB+BATkxsanz\nnWU8biB9nvkNWrHO273QbVEONvrfxsNLHwEArK1vYy1A97G/k7LoxMxZXF8RCYyut+G9QfpEPzUI\nzZuiiuIq31XSRZG1iDCmq4b0Li3ihH0Le4M8W8WjTFJ9LX8KB+doHesyAzAZ+Kz67ltQD3nvilsr\neF9cvLoCD8Ww6RjMYboxwgOTeHKWAjwduIXpa3RZ+Ayi92fSgCMuMQKrv4RHw3SrpJpaOMZIkNli\nHwCgeyiOYj+ZwZ1IoWYUfVR9ZozleBgKYkazU+OBRc8Dr+kqwfhuK8SyhKO7PHAdXWSgzGA3NAq6\nPLTTIy1xC95imUnq8Adxso9xnUu3X8CRwT8AALy9/RoCwk2u6iXDN2b8OGWiMnJ5/yrmk3zvh9Iq\n1Cd4gJ57hrGG7uM/wwvSUwCAHvsKlmVR/nQpgbdnecjqj4pYj/Fr2K9mVt7KlSi+G/wV0lepwWkb\nL8Pdp4XgOzKE2gjjKOmbrfvilsIARHzVJxpaSBUXFCW6qLakGPqFcqQrS5hrilFeC4ypGL0mmCQe\naCTWoBRx0hV1AeoEhXKswWe5rQVsJkTzALsP7jAvr4RrCyrRBGNDKEadiSQkhbj0MhUgzz0MhmNQ\nTFBQqqJ0MWYSupa4dR2YxK0KS01my+yK8ZntRcxts/fxkOPP8bz6OwCAh+ePw7rMves8Rvr/xLiI\nwTpdtz3OFYTFoPvDo07AItyw36aSWfnMdbwl+PCl74zhD+6hsLm43Yk9G+TF3X4Knfr1caRipInq\nUwOwzTPjMv+OGf49VGLeXuAlPflUoVWIF2ZjETsiNt9fIm3yzRjKeq4rkFXCYeR5mbPloLHxu7oa\nBVS5LkFTFMPrTR4UwBhln0KFhI90VRW4r+mMEvYu0sFdjaPWw/cplipwifal60n+ppi1wt5FOjo0\nm9gyiLahshuyjYqJukg66UTM8RehVlVgYIdK9OVtUS0xbIdmhr7S41Yfojtce7p6Eup0EADQ7COd\nreoK0rsUtI+f/CzcKp631UtBjCh58XpVVAK84dvYzDLc0Bg1QOURmcNWM1bEoPuuTREyUX8UATNl\nQeXUIAwdwuV7Xg+bGLdY6OlBPdm6FSYAlPSbaNS5BkvZAllNnDKX2dLUYBtCTVx0jVIAJh8v/3hU\nA48osQz56HL3rdSRVFNmKpQllFd4JhtuF2wy+chSotsa6nGYq/zbcDiNuIgd17eUsAS4X6EgL/yx\n4VFoMvz/Zq4Od030dVZJyHQ274qbJlBBbYDyoRacxXOHmA9j+hZ5svIpJ8KbVLYnEv8RCyW2aN3d\nE0BFSblgEXkU/7tiBJO9dPUf+uEcqkepMGZ+6saChhdrzz7xt8r96NhiOeb5v9lCry0IANj3KRXm\nhBJtmREx4t7z0BUZotoZj+OozPU0rqexOitCBPvviuLPQdvV3IY2tKENbWjDewjvC4u33EftUL6V\nQ2CAmoPzdheyJ6hZuTWP4HEXg94rMbpiOvUzsNhoEW+k1LB+jhbnSGQLazItxHua1Co3Kx4MqWlV\nBi096K1TaxlwdsHdSYst7aMGnVSk8EE9XV+JtQ54dvj3HvMpFD9O10xYFM1rlFrUHNTA0+nOlrjt\nsTHwr78mYfagcIV6D2L5aToBD36sGx1f53qmDnG6zNWDBXzJy8bcH5vN44s3aJk+53oJA9+kdVF+\njBbF6vxBjEWZ+bq+dQoVH7Vg/eds+Ldv0CrOynTPpxa8WBFzUvWNE/iQgwlBycOfhLxBr8NOk9bd\nU+8s4Sd/Tvex6UzrGjVZV4VBTSt1q0bN16oIQx0WySJdamzuMFzg7ikjWU6I3/E3CVMKzTkx7Sfg\ngXOX2nhFm4GiTDd5TnhasWOHvc7f786FELOLua/GOHRimL1FNG/YquRRU9CqaSiAhpiqo7CmUFml\n5Vnu4F40fK2PQNh0FX2HWIdbEXXh2aVVPKL/DADgxeo6TrxDC/DGYxMYXP8y37FfJJucPYGYle5a\nre0okht0URX/oYpmgRbk5EPkycj5L8G7/08AAD7TXsRvEZ+Hlmdw8TPcw0duitnIY2H0mcjXw3N/\njWuvCU/LRApZNWlS/wCtpv5bcy1x0xWtcAq0a07R7KQ0jpKwgi0GFSpNMRzEP4j6Bi2YhpLrcgbK\nyLq4x2aFEqokeT/XlQPEgHLZSuvvYIcJkQa/m3F1oXtFZFO766ip+D7ZTi/WgMoEpY57qFGPQK0g\nr5osOkTi7ybmcS80gdbWU+LwLuRpeh06hHdDaY6g3nESAHBiOoHrbjKVt/sNZBI866Ymk2Z2k2Wc\n9fBvR6+UMeund0GRsmOfnnKqpuCeXNt/Pzqmue99M6PYVHOPehQZjPczvHOjxgRF45HLKIRpve0z\nqfGSmK98wF3A+UoQAPBQ1oa48e4tI7U94wgL97HHnIRc5vOKom2tsa5Esy7qnUs5pPN0qTtUKayn\neOZ8asrGWrWJnTzPkz3vQtFAT0RXchdJYdFmFJRLacs5WLe4R3mbAfUYf2fRWCHv0kNZ76CrORid\nhU8MwojaU9hpcu9dG0BOStwVt95aGSED5dEBzzBuXiCf3H6QrVQP/P3zsE3RM6B+sYDoF/new3ET\nkgla9psxhv0Oa3bQuE3rd/W0Fpsl8vjvDNdRigov1hxx9PTuIuGmF9Dw4CLeEvt9+saXsGf3HwEA\n3zlJ2n1wsQA8Sprbv3UJ/6mTZ68v0IlccPuuuLWCtsXbhja0oQ1taMN7CO8PizdDbUn3ATUSontJ\n9qErsK1TQ8qkOmExs8THoWUSU9UwAWuBGm1gSImIlpZVLrcN+4CIf1pp6Ry45IELYhzZ/qNI5sUM\n2fI0dKKtZK3JYHx3JoeGjdpLhzwMvY1aY/f+ArYq1KS1ev7rrWygnODa6+Ot6++uj4gu9mEzxgq0\nIJ07vVANM2YXX6/hxqPU2F62MSbrij6HoXPU7qY+V8Jf3WR971gBsEwy7rC1QYuwnNAg8kHWATeD\n38NYlbEN9bQd18oshdgESyXMuduoiG5JxRs7KD/B97qe/g52zKR7eZga6vKmBY4k/3Zs9S6JLDUr\nEgXqbrLoANXQl+ASrSZXDDp4DNQwUelFM85kkLBISlBlzNDm+Ox8aAuJmjBv1WVktmmBuEQXrFp4\nBRlRstRwBtEoivFwYS2SIlnGWORz03k1bA1aRtp4GEtGWuyGjAqQaDkhQs+AR9/acvp2RI9Plbn2\nkV56F54O9OHoAnGTH7iKd25wP/eUlQhdovX6ejcTMv7HLSNWXiF/bnj/Ar39vy/+/yJSfsZgpTK9\nKfadH6Ih4vRPKv8YLwWYOHJ7wY5TX6G34vWHqGl/aB3YFePKpq0PYvjJIADgrWoAJ9PUzGfj3ON1\nzxEAZ+7ArV4soFLju/W7pK9siiGgEXNYzW4YFIyPdi2nUT5IK7Yquhc5VvWQukR9ZqyEWiet28PN\nIWxKYrasLKwQrRcWUS7TnSojNsJ31NMGpJt8h8XOf9NKM3wV0recjaHuID4VWYVu0Ya0Igp4Y5XW\n3dQm9U/g1XGOYOxP8UzHFqcwKlrKRncyCFXEDO1sN8r389wOzhOfyGgKR0Pcn9TUVRzTkue0xTxw\nQczCnaCXxl1xYD3+OGl2fAX2LcqgiBTDgoKeOWmX5yO0ocaROnkueGgLozE+y2yScO8Av7P5dhYd\ntbsnIBW1KTjUtHh1di9iok+BVcHnplFHb5G8mlduQG0mrbaWHbB105sUnKbc0PVlUBLDNKrqGuSU\nSDizdSKZ5340hVmmMSpQEsaq0pRCNMOz5w0XUfaSFytRytSOqgq7btHnQN9ENU6+7bQ1kCmG74pb\nrJLCweuMv8YeyiAc4Zl9LEpvy63xJFAT8vOpNfRdIB5XvHUMNsjLpw1MSP0X1wicb9NyreoD+LyD\niXP/cPUgKm7yzYFj786bLuDcNO+LZtiCMRs9FaH1P8dymWfZM8P3WjdWsJtjPP3l3lF8epQyxvJi\nHVfu/+274tYKFM3m3QPe7xUoFIr//xfRhja0oQ1taMP/B2g2m4r/nu+1Xc1taEMb2tCGNryH0L54\n29CGNrShDW14D6F98bahDW1oQxva8B5C++JtQxva0IY2tOE9hPdFVvO//TXWMCaM21AGWVe75Spi\n5zlmMp98PIZoQmTz9YgG+80lWDSso9LNyNB8gJl9ZsmA5bj4/zYz7QzWPuRrzNRLFg7DMsL2kmN5\nHeIG1gruVpiJl0t3oc/MDL+U3I29CWa/XTLnMRBlFpt+nFnPt5UKOMTgHv9CHn/3szvbBP3Vb7A2\n7e2R8/j0O+xIJPd240dHmEnXs12Duo9dudR/y0y+176wF/evMt/MlQwj6GbmoNEwhWgvW0Xe8zIz\nPl+OVjD4BFMOx0d38Nxl0s8mjyKVYR2nsZMZloWZMUiT/N2nI29DO0TcwytrOF9nw/QOC7MIJ4xG\nrJ1llmamO4S//9s/ugO3P/m9boyILl8VGzOWs7c6YRDNxdf13Rhwc982YhIGxeQVaZhEcywMInwf\nM5mbryWwPSzaPMad6EiwbtBoYobuBY2EU2AGLhoudDbZfP6GfwfTF1kr6TpNOhiWb0LjZwuZcn0A\nkoL0NcbqOCUGAbxmZp2fJ9SJX/3n+Ttw++r3LiAm6oJ9bmZel7dyMJaZKWrSaxD0UW9NJEoYzjJb\nsiDaNTYHayiKpvp2XQqbTvKRYikNS5VZwko9M8H92wYkDzDDtJadglQknVLNJqp8BLwe8p7apUB1\nQQwf9zQQTrN216LcgFQZBQDkteQdlb2JL31izx24ffubyzCOM4N+YYvZrk7dAGpgZnaXxo+LSQ4S\n8JsOwFchv+/ExWxVSwaqFfKvonsLOT3XI2UN0JWZAfruAHSU1fA5SL/UWgMLbu7rYXUU+jhpEhFN\n+XdlE3S7/NzQL8EkMzPV7rYiHWFWcsXKrF9bxonPf9ZyB25/9R/+BPcoyePXbGL+874b0KXIpxuZ\nGvQ1tlWVLVnIi8xSzfezbnQq0gvnJPnomVAOj4lEe2UtjtI862Vro5RB88YwnAX+3lWYhMZEPJaq\nGTjTzIYuiVnDDo8XiVtiQtXeGPZquIaIYRWVOVZc6LUd8HeeAQB8+lefuQO3P/nas6hXib+pew3Z\nVdE5SU8xOvF9uQAAIABJREFU7rAWUFnj2ZKm9sIQI18rkw0EdvmOhQqrBYxGB8qTzDi2XisjU2EH\nvlJmENVBgbRNTN/JbwJq8r3KrEJmhudUM3AMG9IFvruTZ35PyILNPj6rGjuN3Ry73w1P7sNbopLg\n27/8yJ24/boW+jm2UO0bTuPqlOiWtsspQlL1Mrxi344rnsXFk+wbkNrRwBPj2iI9lDXa4CEkQ5Rj\nipEwVLvcrzH3NtbTlLEDL7DiwLC/F+dTLwEAlj//CVivsuphovkWrjjYS+H4PJ/V/aEK5i+R53Id\nVrjPie56D7jQGWrdufBu8L64eGMJCrhaoROeMQqSgVAUmgEy7dJmEcNOFrUbhVDR17cwuksG2ei1\nQL/D9PJwrYy9DUqrs0Uy6XjBAkUfy3MO+UvYKLHHbiithKrCS7i/g4y5ualFVExeGS5mUNNyM5u7\nCnjNfQCA8g6FgF/RgVExPm3Z17qcaH4vG39Ygjsw/BKHO89uvI4vzVMovOBUYe8sC7+TTxJ3f/41\ndNa46cfCC/gbD5nh7NEGHn+F5SU/6GGpRJfvHGzv8NK8eWUav3WUz03MKlB4ihfu9VfYYGN0oB/7\nZ5kiP/0RA7IrFI6B4sOYHPkRACAS/RDXG7uEyLAQvpGelrgVFVrYvGTEyjuiccSJDniCotHAQAwr\nIQqbiteIfJjCWtVkq8DtAcB6iWVV1hP3w7lNQTtsU2JBXJDbEi+OEU0GxSr33qRJ4UoP/564lYH3\nIC+RITUVrdyhUSSucM1m103o9BTmYYUVi3qWgihEY4+EItUSN60JcC9TGC/WeeEMWCWU6yxdWNuy\nwJFlCcpIQ0JETNIydPDzSi2F6i6FfSono9JB/vA2upEWfZJ7lRTUyxozrBkK9Xw4DGVZ9JFWaSB7\nuJ91BfcqdMkIZ5do6LGbh36YvytHreg0U0lpxPnduih1+0VQFYuor4oSCQVxm0stYVC0ENxoKGBV\nc48a4SjeVvUBADzqIABATm9DMrH0ox7xwKble1MeD7JhihSNaM7Q3ZPFqigX1NQasGzzPCw5zehO\nk34Kg0rgWIZT+OB05htYW2IZHJJhbDopKK0l0lnd23oaWP+YGVdFO8n94jJZ2VKgsEA8PcfLyFxg\nSaJhcggTB9g84Vbqea6rJkMDlhMd611GVDShCJvMcFqI03aC7QpL2h50ayiXZmQDRktUUAb8BxFS\nc4/rTX6+6F2FXc/9NseaSHaR713TbuweoGCXti9jcdTTEi8A8O/qYRaNOZYvqtE38H+z997BlWfX\nmdj3cs4J7+EBeMihge5G5+me0JMzySEpUhJFiVpptdqVqmSrbK8s727J2lp7LXnLZZXWlpWWK5GU\nKFLkDDlJE3s6TAd0I3QDaGQ8vJxzjv7ju+Pyal5X2f9MzR+4/wAFvPf73XPvueee77vnnsPn7Ss4\nfidvdbH8JW7G2atBlD3UDUc4hx93hM6NiQ00lULiA46JesiCVIr2RndhFcbbXC9JB9fQXkQN8yid\n17zSBHdZ5D6v3IGySCeyU+Imv3xqGPJFJis5ostDV6Yz2ChGYPQrHyibzT6Juo1jvW9RwdCgszap\npEO64XDAFiOQeEvlgvw+N/FyuIrmDEGT+wbtff9j+0iBTu16WYq+s34AgH77EbgNvFr07jdpK764\nsQfN12k/zmty0IryrivJ38TTTgKlew/TiZJflyA8QBncyiqUv8o1ovW/g+x+/oGy9WqHVPNhO2yH\n7bAdtsP2GbbPBeL1PEZPZ+MDH1Y94lJ4bgKmR0ljDIQriEXp3R3fo3cSPfoNLIta50XFNvp8RIuV\nt5oIikvdLz9PL+/jW0E4NUQBi24N5tbpLSkmLCgtk5K0GURSjUYZ99NEVqZiH0qD9FhPTcRwa4Go\n2KoRCQWiNVyf8vH72WkAf/Ep2Z78PhHq6td/Df9bncj1y/0z2Ph3/xUAwHn+z3HZS+/snIqyf6se\nwkGLaOntYwYYQI9r7kYO2uxFAMDDVV5Gn156Aplv/iEAoN75ZdzKk0pRWRxY+ZD9fDjNdIWq1Qt4\n4xV6kNrX34KrRIo/pP7f4WwSue6L6idju31YH+WY6aL6T8kFADajF9XrRKn5eY6D17+NdT1R2uR9\nN4bGKbP/jhZ5L9895iKl5Lj3PirDHN/mkgRKgXKLmhaUJ+m5h2Ls+1hhDJEY9UHZMWNAQ7Tk83wZ\nmQwRzlCBzMmifQjzL5GViEYHcKQkqsZ02lipUs7zDzGl5O1iqKdsgfRdyAbIkniyRAApjQyNOmXr\nc/tRqlNPSjoZPGGOVW6YY5VaKMOvZ9/P1Cww5kl3FSVFGCbYz701+r05WxrNoigGX5JC1SYKN3tU\nqGQ4rsmaSIEpbyKV5npR6yTwVIjgo2UNwnn2c2+Pa0U11jvxyXbDjkaNS9+s4Dja7WXEAnyW2RCG\nwkhdb6bz6BdJKzRyyhuJ9EMqZOsarWiwazgoFjEgiB+/qKsrNRdRCHMucvIO3CnBjLiK2BIJRPTb\npKq7dh1SZpGQPqDCgI6/75brkNfJQrVLnJOkSNr/j1tG24RWTfRh3SMCcrjdKM5y3jKbr2Hm+CfH\nWesIhUVaRSkLKxjGV7AjI3Ltr56HdpQ6F1wehNsskvtY2Jd6fQyqFpOsTFi34IrxaOxq+ABPlviO\nj9zUf3nWAZ+E63FP0kL9OtfCsnURZ0pkrzChh/RNe0+5ACBZOED2Pm2B7UgDixke70zVueY/PF9F\nw09WrTb4BmY0pNz10j08M8w+v1bkZ/ukcaQ6otpUTo67IuPtWPxxKD1Ehaq8SCTk1OHOFhki5WQH\nUSPnQLlTgfEcx/Xpfdrft969Ab2BdYJ3ylnoaiI140oKxRHzA2WLHDfCdoz6deRaFH8ausg+pMnE\nucYvwGmnXk/eV+Ptp4mwj7dehkok27BMkTKej/fhDwa4zodPTcH8bX6221mGo0P25VtpMij/K17B\nzDaTEqmkAzgwsfb2s2fNqFxmf886yU74+l2IiXSYgxkp8BaLK8Rl04g/u/NA2Xq1Q8R72A7bYTts\nh+2wfYbtc4F4QwUiksmTIcSXmS4vkdnFC9P0hFdNxzDzHL2ZhXtEgr5sEM0DejUm/ThUafoQQy4H\ndqv0ziIxIshhTQZzQXpTKW0LKbNI87hahus4PXBZiwf3XUsYsr7TAAB9/TJa4kzqcrQL2zEGI+ht\nPLdwbiiw5mPhBPetaE/ZFs7ynMX9xpsYvkhP8PqNU3jq5/4PAEApaIGhQS8qXaK8P7YfoH+CLqiz\nZUQoyKCtCwe/gZsOTtnPjXDMop1+rJS/DAB4cSqB7RWmj9S+/ce4O/w8AKB64QUAwJGNXdxZo7f6\n+4+/grWf8Nxms3Ye2wqOz1iE4/Hm0h1cfJIefG3X2VO2sjaHgwmOtcFGqNMtKqA4RkQbjuvQjTKA\n69wxNfZL9H5NAwwQ60aeRcfJ88ET3gTW1eJMtNyCJ0okOmURtX0TSsDCd53WxvBnouCC16JH18Wx\n3wwQdT7a6kNpgf+vusM4KPIsRjKaxpxAerUQz571OAngrU/JVt/vg05P1BIVx8CqPT2sFurZnqIB\nRY1ovWFIIK6kxzsW47ykq1movRy/nLIAiUhhmW3UEEhxvqdFoIe83YGuj+NXlMlQFqkz+9MeGOri\n3FpFNkBv6qCS4xx6NZNYusuxHDUkEdRy/LxOeuqdxtan5AIAs/w2al2Bhho8xytUWqiLhPZFeQfm\nKNGmXTKHop063l4gurGfkCDZ4Gc1y1soHyX1ZPAn4TeKWsFmzntq5Qyawr23afeQsIlatlop+nRE\nvJ+kB1R1AuhoBKtkbiMX4pi49QmopKKGsZlIeifR6SmbrS8EXYiBLh0JEVKjHkNEx9/jUy9AXmZq\nwe7BMNwpnhuuVEVBDEcHVTAWIRt9D/0pyjaiBZbblOmUhYzaViaGSJa/HzM+i4iT4z9eD+GHKaLj\nr08SUV+6lYHfRNk8JjkqNcrsgBP+Ap87qlX9P4UYejX981p0MkShoWoL1XscE8UJ6kZgv4AZB9Gd\nZtyB0Bs8Ox7yKXDjLnUqI2HwX9/EKrSTooxmaweuHVEGstKExEtb0PIRFWr8JjxVI7P1UV2DkSdo\nB1UfKZCLUz+3zVx7lmIDEQ3jB/JKG1RKkXJX44ZL1ruUIwCcWlhA4GGO2d3HS/hGjN9b1TAVo+Ug\njOWMKAJiHsH4R7Sr90r7UDzH8Ttbpp36UXYeF72U/d6HBbjsIpBNXYFdxCnsTjF+4Gtzy2hG+L2s\nYxet/Z8HACRWttB1cy6SORZqqCpXYBcFPypGPZJPMajzjGQNP4z1Li/6oPa52HhlDgbKDPzEh5Vf\nYuCD8s0yLgVpaFcTC7igpTF/Ns+FfW1IgqfXaJQ/lFXxFR+pp82SCp4CjXa6Q9om8agKqmUqS9SU\nxdwIlX7XvgZjnAMp8XGil4oVjJ5irtelAy8KshMAgNPFBJJWBjZs7NGoTziH0Sdqfr6t6h04sOX8\nIvvlLqE4TgP/9P4UfnidBuixry7h+1dY8ea/uU1ay2A+j9aXGRii27yIspx5fDPf/deY/zqVaCn8\nNQCAc/I+xguc9LU9CzptBov9/W/rcPaAMr3i+BEA4O5jx/DbTm7ob12+i0kVHYgTxtdxdZ+U+3yS\nG8Sd9Dl8mGbA2rdEpPM/bqOVFqIgjVi5J2r+6udhPOAmVIodhbaP1Fi3mES/iQEcrT0a1HK1idZR\nGv6DXQc0BR4BKAe3UVFTNZ0hzs+t2gaMNgZ+LagXMNbhc/u815GS8HeHl/R76voqkgEao1blZ1A+\nyc1wthZDrEUDYxbGdaTvZk/ZWroS2iku7vocDUm13kJtk/StW6mE0sTnZhINANzs7lRpfFXVMpwx\njlur3Eapnw5NebUFw4gfAJATub8T1SQseX6vaVJBZaJx3G4VIRMVegxVGq2a1oGWk+O0Fj6A0Uvj\nUGnJURepcKsiWrood/SUrVpxoB3kMzIWGvKWtQlrmY6GVG2GTkkdDzX8kN/nXMTNfIHkoAtpgX8r\nKD2IhdgHX8uAfVEZrC50R+fZha9C/Qx2tSjaKUdjVY+Oj4Z/VNS8XdX3wSgq9eQ3TkBepi7m9UcR\nVTL62hzl+JsMlZ6ynawYsCqOD2ptUogR08M4paWjcXUvhEqda7bTLCPcpfH0Nkhp6vbnsDbJ44JS\n/jRaJsqTShsxLaGN8au5MeXkSRyviEpl976DxIwPADBe0EHvYT//5ibn4KgkjPpd9jlw4ij03TcB\nAMVmPxR1PjdYOYnaF4Ud+d1Py7b+8TYGhdPvyRThmWI/sqBunZE5gBAd2UCiDm2T67/cHIXZzjHW\nbJA2hfoCZOc4L3cOInCK+sDdoAbGqqjcFeM4vhds4WkfN6dapo3iO7SDjrE69hO0wUEdx6nh6UKf\nZH+OpVVYPs0N268bwO1I7dNCiZbX9yEvqsJ19vKIa6mfU4KS3xs2w2MTDqliEyEP3zernoZjkWvY\nYPhFAIDE4cdeiM629MQ9hO/wmOfUQ7sIpAi6Chtcm5orQ7BMUt6L7xnwrpc0+4S9jZ/k6SgNTfgB\nAIshJxzvC/txNIy5Mud415bD6Wrv6nQPaodU82E7bIftsB22w/YZts8F4vUu0nPbnU/j/LfpeeXd\nj8N3kZSQadeNdoOeyo6dHpBzdwcf9JH60pvlKF/hFYDcyRwkFn7GXiP9MZCKwCauhHQKbvhBOmYk\nchoZBb2z5Q16x+eKVujv87PVBSnkE0QfH5SjOKYjQrGJIIm79Qy8eVLj/9R1G7/ZQ7anuwxCSZXb\nePyPSFtd+2YRZwbo3YV+MIwn/0c/ACB2mf19SFvGj7O8YtTfv4NHLLwreP/5f42ql9TO16b+AADQ\n/csXoPiXvB61+dYCDr5GxuC5dyw4YWLQxvs7pOeOD9uRSRP5O/QtpM7wGlKsdg//rMLx/VMlAzZG\ntn04/iYR+vpXTD0kAwYrpyEZ4ecNBr4j6ijgqIRoR9pJQ5Xh+zJPWmBd5bhH1WQiRmxS2G/TgzTI\nY7itpx9o3j8KvYlIYcPG7/h8owjoiXrU7ecxbGaofzA1gy6IoKUNBt7FXV3AwTGTTF7HUIx6ou1U\n0C3zXuA9Ja9YzXdtADKfkk2RBNouUvFo0NMe8JdR6jAYKZTIwlihx6tRa1DKU2c8AgFdM8VwvEEZ\nYg0ptCVSnUpvA7UqZVY7iUg08j4EtOyjM6hBKcv3Zgeb6GY4L4Pg98vqJORpLtuqPoJqhjrlbpRh\nbbIPXSufW8yUPiUXALSru6j6eOzR1BLV1ONNdJt8bi4ZBAwcy4S3hGqe69O3T3RTs7XxrqBEx6o5\nNBVEBmVswFAge1URpxNGRQd+nUDtEiC9y8/C0ERJBBMeFIm8tIpdhMM85sm5ojjqoN7V1Os4us01\nfdDP8fUke1cn0gbaqGbJdnzgIH08ZbiBbI7v7Ytuo7BPhsTiy0E7zDE6aPHqnd2ghnGT1HrnjA07\nabJuxnwNCSXHurPmZ78GJEgZuWYbp14CKtSj+8jCs0mmxnmB/79nM+NRM5HV1ZIaXxHfyyiDuNFh\nYNdTqSwu5R4cgNRnewwlE+1UIlCBWVx9OdgigzdUHUTWRySnmrGguC7qIO9okBKBTUdmGey1hwTS\nN7hmJ41rKEspm+OJFtyCOVndpf6OD1fQFHPkMnRRFZWOkmkNJEc5D620qN0blkJ+hCyK1N2FQlSQ\ne3a5gFqXtvanPWTrPjYC82u8ojZiuoHMPJ9XqHAuhw5i6I7y+9Xaw5gX96fX7gNH5RcBANc0RPOS\nwuPQJjjWJtMajC1ei7xqrmF8l+tX5xABfV0TamaO35Z+C94Sj4eKjndwSka0vhHg858assH68DsA\ngBvlGew9xL5N6pbwgfRED6ke3D4XG2+fWKU/nNViQiqMh/w97KZowEttN6Q6nmVp7vv5c8iLAkSJ\nsYge956nKI2CC6kclavfyr9l0nHsinNbZ7GL1Crfl3esIJfj4j8jaNdQXAtTgAo9fdSDlJ7nqzPj\nfVi/yQkaEQWiS2NhyFrs15WHTMB/+rRsmuO8QD6zNIyFx38HAODI/A7qKRacT1Z+jGd+i4Z9+8Vv\nAQDeW7mNRyw0OkldAOdspJVjswloxi8BAJZyvISe+a0KfmaVSpjxjeHobbHJFC145+YbAAC5ickm\ndiZkMNzgIpf+zxncFBfAj5an8MOzdARO/D4Vdu7X1xFfE2X4QqPoJVzEl0RD3If1KEm73vcPIO7g\ngi5ADaNPJI4IVyCboyEY3CS1tv4FD6R5bsyndE24IlywCrMFpiYdDKVIYLI7HYFVy7+dWAR2REHv\nk2MB3LKyD6YIn/9+UAu7ixvAw5U7uFyl0RjMHEdDQQrfbaKjdk1SB7D9KdmK0haqWVLM4y06Xzlt\nGTkbDbgxbIAqTz0LNRVw2vh7wMJNxtuoIX2H1GJlqILUXfZ3aNqAmDBG7Sqfa5HLoZGQgt2V5DCg\n4//7VUbkrHXxd+qkF1nY5ZyXDNSwNTj3zaoNMu7n6DT5Xq2798YbNxkhSVPvNUE6LUNKL9Y9fEBf\nVoZGVdx3DphhsPI4YbdEo2XQ2HE+T0NesCkwJUr0LUqHoFWLZCMiyULNY0S2+UnktQWjIko4F3Oh\neqAQf/cBAOaqG9gB+2XTlZE+4JhIdBVkZXTKFKLoeT7WO/r3atWAEb2Iwm9QnzR3qlgysj/P1kex\nYqHOKU9toLsuzst1nFeZ9SbaSdL++u/0Qf8Y+5jPWKEV9zobftoBjKkRmaGjm848BUOCtkCum0PY\nysQ5jW3amvl8CVmRbMa4soDL/VzfE08a8WKQ/Vma9+OZHX7+f+khm317C8kcz0HH21pEMxzXwVlu\nSKHaJiwd6tTwTgjXpfzd5N3EqJry39PSoRotV2EviKh85wl07lNv/SNGVGXimOthrivV/QK8Se7G\nGZ0B5gz1b1HbwNgBv5cVxxoGTQuFAx4R3GiHcDzDeVs/50Y+2DsOBgCy71fhmaOtbXcfw+4mAYtD\nxA+MxnWQp0gDS1SjuBKmHs2EHIgNcC13q7ThhbksVDscX1urjSaoK8+sAJcV7G+fSRxZWPKIphmZ\nvpx1Y/55rqeht17Eq19i3w0yjnNsaRMhHY8mkpoVVEz8e+Stl/ANr4g5+OIDRfwv2iHVfNgO22E7\nbIftsH2G7XOBeG+N00M6Gm2gukEP32qRIpIhndV6wgdzgB6M2UDvZTPTj4SB3ugxaRR4S0TMjVXx\niO5pAMDdDqkHb+EL2B4kIsknpDgeZgDCwZmTkEXpmUoHGAE63xnAtqCwY/seSE1ETnelE9D1kfaU\ny+j5SvJGOIfZh/LSp9PXAUDqfXrHlX/eROPP/z0A4KOWAzOOqwCA3L8axus/4Hd1Z+nRudU/Rc7L\nSLpy/VF8F0Sur6zt46aIRkWSwVAztTdxW9xFbE8H8N1VymFQ/CICL9NLffk26Urr5aex9zzRlPo/\njOIXjtO7ezWRx/Cb9IQ7ema2qn78BpIxIqaabrGnbEZzAbIYvWK/mQhoEmVsWynzqW4FarI1MMkN\nCKpEEfoEEejsxhRSWSIGg9yOp8eoB3/xvgdeB+/IafsZGPFKdxLhEulRo20do2rOS6cah3eDNKE/\nRIR6tq+JlIxjci/4EJomIoJoJ4H+EY7f3Rypy2OfzhbJ/ki2gH0ikaKb86OUS9BOM+ijVS8jLBFF\n2RtdBLqUyZEngrQ6tCjOkD2QdGuwzJEiTcTjUBsYtNUQdG04WkXGRTTkackQqfC99qwa7jrXg6JF\nVkRV6YeqTfSi0DlRFmNZUyQgE7+nRSYjTbnaUzblRgiVfv7PDKKEujQDe5yTVUqZ0RYF60u1Koxx\nogRbm4hX2c5BOcF3lQttLGeIHvS1FtQujpXH5QcAtA8GEOunPHPrDiiXyTwpn1DDuEJ02x2hnhYT\nZmQ1fK81nkPDSeQqlVawJ9JL9oli8jD1vltuqSewaKMtUEr4/Ij9UTgXSdEuTo+jtvMB///eACpe\njm94mqjeviLFkVkWt48nQkgts2/V+WvYkfPGQJ+d3x+8ZUBFRQT62NR38X6MyEumbcEYZmT1O8Ku\nnPJLUHITFT0+MInAPhHb2I86iNk4n/VuHQHzak+5AGA9lUf/JPXkulSFEZs4ZqjRzjXzLthGOP4H\n6RFU5HxWXXEBziXOrdVLrLXabaLvmEjLGNZDf8C13mw4kfzk1odgFD16KVb6ON72AzmaXq6nx+Rq\nZIp8Rn2WY96p6uGOcq5sMTsqYxzXhj+MCduDI39NUwpEKqR5B0oRTA18nf2t/g0A4NrsSZz8D1z/\n2efjGFHxpoZzXo/+HAM0U2GybtoTdYS7nPujzoewYKYtaJSDsPRT35MVjn9pR4/ETernk496sBFm\n3/HlIPqbHBPrd5iJS310F3tNyt5/TIVHFWRkPzh3G7dEVPPsAyX8L9vnYuMdCdCobGhLmDomlFDd\ngDNJYaYMy9hvceJrfQKkFxoYNZHGtcX7UBcJHCyFCoItKqK6zHRwuuQy5tLiYv7jT6D9tkjnFilj\n7AKNYzzGBfR3srv4RoMTsZU7QM7NaGr14ipyIg3cU12+yy81IPcO6RHlxHM9ZdNv85zJ871VXBVJ\nFDTd+yiLfM+jKwPQz3KjknxEynOznYXlfU7w+suv4uk73Nyb5UlozlGRD5JvAwD6PFrcFckK0pc1\nmHU9AQCYf+K7SKQZuatWc3zL9g2UjdycTsnr2H5DLLaXnoe8TUW0fcCIxcDRRUwO0cn5d+O9r240\no0cRGeW5X1ScDZ9wWjG/ysXv91jgcXPMGo0BdBqk4tSjpKq0thWczbDvyTEtFjcY4n9m5BqcXo7x\ntooquq8xo77Gd9yw2OAYJL2ZjjwBa4XnlKPiLPb2TgFOH8+vDa670CY5rkX9EGJtGu6ZBGVrOnvT\nsf7KERjtfgCAssEz1wSccLaoG9XRDpqi742EFpYmz+wU4pwvaxqGLc++10tAVsE+jNiOIO8gXeoV\n+S2CGg/kVcojkWngnWBUuGK9i4BIo2cYYL81YQkiAyKZxoEWMimdSLvTgYO4oKhldAjGAkr8WQ/Z\n2t0UihXqhq1JZ6iSlaA6Qeqx7clCkeY7XMlBFEDZKlYamqLWDlOAG5kuWsO+m2tIj2FEBc2dT3BT\n8Mya8Ii4clKUFlGTcrzlQQMcU5TZL6cTJFX1w+QX18BKVhiaHCCpVg+diuu+5eHGY8p/3EMyoGL2\nwWTiWN9PUIap2p8iOcv12YwvYtJH5yu/3YcDOedotCrSNiqtGE7SAf54oAxVlxuLLzWCjo39HB2m\ncU61AlBkOD/L+VNQzHANqXYU0MS4eT19nvofUPZhIO3nO0z9UBt5OyE5E8e6k/0Zy76DevrBplu9\noYfiGDen8frH0AaoRyWhk8qRHIpLIie9dxS+Dh2BNX0UdQEmtD7aEl/Aju6OoIddKui+yHFvvNOG\n1MvNKZriuvKf0sC8J5KG17poCIcuJp+FKs3PqIL8qQnKEApRdsWxbZQbpGZTO/uw5PoeKJu3qcKs\nmbT/u+kQVNeZwnPiacavqGISqJ/ncYCtZELMQT3YL+WxLtZIpZ96dq4+g7yO/78WPcBcnvKobDGY\nV2j/rnydfXQpZRhb57q5PReE9l3qrXw7gfTHnBflr1LX9aE92ELcJ7b2+3Brks6MqzKJcvrFB8rW\nqx1SzYftsB22w3bYDttn2D4XiDdkFPezzG3UtERLWtsRbOboSSc3pDAXWK3DKKWnfsFiQDbzywCA\ncOc+FEV6O1GVDiovvbqDDXrFhcekcIbobaX++j0o7PR2TN0GJEv0hopq0mi/2BpAoEiPV+tu4dHv\nsz9XTLsYFbUC3lLSEx+RF9F4lIj2lqs3KjSIlGob8/1ovS3udZ5sQFamZ5v4u0HUfo/vkGX52emS\nEt2vMRH7TtyLL/URwdx/bwn6TaKE211SvLbuMn5VS2r9D+sBlN30zmo7WjxX5fP+skZ5jIrnYb9K\n73jjNKhYAAAgAElEQVRzTIN+NZHVcH4Vmn2iGukrRNShm4/gYw+p33/5zk7PYI+mxAiPuNP8jI0y\nrMYS0Cjp/Y7HnsNel/09MfgOglnSw8oDeooKsxsdBam4TPkUtCKJfN7kQ1JUgurkSdmpvHfQHOFc\nnalJ8c67RKEqVwoOgcg3q/Tg9YY8yiWR0nBvHQ0b0a/csoZBEUyzYSI1VjRoe0gGDFSWUdYy0GVX\nQ9Rj0MWRjJEy1oQOoNFTb91GNWQFzldzSlR0SpVgtpFKlrclMBsZYS5tZ9GIcg7iII0pr8vR1lNe\nFxpIgPPWsNYwICcbUsyw312HDM17RI0tyFEXQWS6WglqGfVeLYLJdkzJnrI1VBroWnxfzcbn7raL\nUCqpk8p6ADoRSLUzlAKUpMbNASJJaymGuo7IKmWfhtMg2CRzEUMhyrRlJHJo5ePIDxI55OoSdOIc\nk5MlA9Ix9hcKylDy7cPXJL0ZlbsRbxKxWkp5KCTUy5ZATUFVb/RkNezAJyLBFTNE80G5CvYt6mfT\nO4X2Du3CinMPj4WoqxvLHHNHrYa/eYx9bEjmEQiy79Nfm8ZTaZEiMMb76MFUGg9Z2d9iJAm11QcA\n8HRbWHuI/XtCwzH7oV+G/jL1c8/RhHKAqWTTxafg2OYayL3yW7BLV3rKBQAHXxqAr/4hAEBdG0VM\nz/4osgJV7ptg9XE96lfNyL9IhukVvw5LglE5FSeTdqerRzZA/ZD5qtjcoPzHp0KojJLSdeyzj9g4\ngZyaqPLo3DJ2Exxfy/YG+o5zbd0RAa2G+hrOitSPf+/X4+zD4kin6Ia+/GDZauV+HJzhuc+TbRu8\nIa71pU3mJRj2SnDfxADQiS0ptEHql+SJ2zCdElW1PiaL9dfXM/iVR6mTN0IaDFq41v/MqcGFe+LI\ncpHrartVRPy/JkvzTNyF5TEeI3yvOY5feYp25aOP+P+IEphwcV71wQQMokBENROFevaTJDy/8EAZ\n/9/tEPEetsN22A7bYTtsn2H7XCDeRoteSCjfRZ+4k2mqbOLUIj3h1sW72PaIGo736d0Uixnk+3kj\nTFsbQMpAFGFrR7B7h0hEoxTBIO/sITZMRGyZGERzgx5MYzSGdYjUjCp6dFeCbRy7KO7rFTTIG3jf\n01B+Eh0708v15XjebGkDS0p6ei926rjUQ7b/K8NrOL+r0GHZzfdOXtGiIKXHdfqfv42rC/TuBvfo\nHbdNEmwuEdH9WmMa2jLPO46qjXjXyows/6SPQWGla9/CRye+DwDwWCN4tE1vdHldj3dP0XM1PSHq\ndfYXMfIGvcLSrSxMx3nOfPeKB888Qpnvi/+/WH8d4YdE7c/MTA/JgJa2CRhF1qwmZbAXt+A/yTFV\nX70D3zDR0pL5Eehr9F5nj34VANC17SEWJWLoGiSQZXmGezKhwQcjlNMxx5D9BCYwHxLXH6JSzBjJ\nOiTaJxFdFAnKpznvxdgq5DkizFH313A1zHmTSqZRHRJ3/UxEd+Ox3kUS7EUDskaiQluBKKFtBnzl\ndwEA68oBqBOCnbHGYVUxwGulIs472zLElETMaUsEPlD/UnIVannKlB6mfg4ldejKxJl1sQNZhOdT\nEokCsUGeP025xDnrTyQwnOYZm77TREqgW4UkB4+R5+0HLY5jVq/oKZtK0UC+TaSb7vCM2KfrwNTi\n93PbRUTE3dtxhQU5pThLhHiv3AKYqVse2Q5uiQIkozE5MMl16Nkm8vJ3h6EWV1lSnQ5mRerLgGMT\nBhFsY44TPRv8KmyIu83GegwSvR8A4JBYkQ5SL50aBvrdsfYuVdm0nMU1vTBreaIt2Y4aWQvfMdLq\nIgyer2qHbuP6LaLQZwaJin6sVgNqHwCgpT2A202E03h1B3/soh5MpxkQeOT0KLZXBGtRU0Mqztj/\nXq3ECQUZkEsWPv+p1RYC57jGagEtVOKamKXTwbaHzx1KZmEKjfWUCwDOLwRxfU4EpDlVOL5CHQ6K\n6z8mtxvJllTI1sapOGMpDgbqKIuyku+P0b7qFx3wzlP/NMvDOG0m6l4Nj8CqZ1CWW9zlztrTkGzS\n5oWaTnja1M+qZxtJFVk85xnGr+jvGLAp4jKeM5jQvkkUu1YIozL94O0mH1Bh+Ls+AEDheAeXL4gi\nHXmOmcqlhG2LssuPylB0cL1crCRw903KuWVgzM+TpqchydJm9eUDCFtFmmHdDOaslN8V4bPe6JvF\nxC5lf0PTgm6BCP5FQwiVr3E9xK9Sf3/+qyF8W9zTP1Pox7kVBsh+e7KK2cTUA2Xr1T4XG++RYT8A\n4HYxCk+CytDcnUVjkgNiumdDycKNyAFu0oZ2DvWKKHStiSMcp6GVNTYxquUilVX43IIrjIgIZLFV\nBlGZ4KJI3jZBdkzc1Spw0Ti9RqxJuEh1GxcwGObhfuFsE1tlBpfYRXVyvdkNrZ2/h7K9k0z4LKSi\nN+9ewy+9zHf9yTeLeMgqPnALkB8XhaNnSG20OkmcGWP1olAtg+Ux0q3KNS/ibhrKyE8oY7mUxDE5\n+7t/xIegCJiY9EfgdHIB6cN87qvyh6HWkz5KXIzgOzf4vecGC0iLu3lzY6RM3jW0YFVdAgAUj/x8\nT9nkQaBl5cKyGESyg8kyjJuksCb7ZLiXIkWoTrSg7WewxxURLa2RVDHSx/n2ROtY1lDR0yfUOLLG\nNHArDR4tnCvcwdV+bsZTShkO+nwAgMFbebQk1IOyuH+d7Y5jwyUSeyRqKJtoHI/mxjHu4kW7doXG\nc8ffOw/1rl4PQ4SJFCRj1C29v4UDBzfbPoUGRXADLcjdkDa5SevEPdbBtBk7SjoVZ4oPI5wRdTzd\naTR9NFKye9wYclMZXDDQaQiacrDVucHpBhoorlDOhopBIYnhNPQ59rkSL0A5R+fIVEsinaRM2TCN\nknPW1lM2u8wHjSgyny+KQCODE8H3Rf7l2TxKEr43d0cHk5Wf0RhF/mVYYShzXsN6L06LCOOsrA1N\nWgRB6vmsr7ryKMRFdCyUiIr1Mp48guIQ5U/tc9PTjTTgqHHj8WpDaAsH96BSh7TOcQ0VqPeDzVhP\n2TrIwWlnP60HXDd7Z7aRjnGurrRlGJRRtyYu53EZ7OcVEcDosJWRboro44Yb6yN02rK1Mczu8xkG\nPZ0sLC0isEydlpzUQd+gUXcMSqDcoMyatzmO3+6v4eUtzqHM1YeLIofxH2xexa+LSNtgw49Y34NT\nD2aPF+Cuc53GAzl0bDTfLjM34K7EAHmbzvt8dBf7TTo2nVoRqmX2Q2OjHpq9NbR2aY9Sg0okFdxc\n+j1ALkGdGmywLzvmS5B4aR8LzVOopqk748fsCFRpyHI3OWb9lX2MiWQlt2tSaMTa8aqOILOZfqBs\n56bbKMbpHGiiw5BJaIdOBS4CAO50r8EvAsfw+MM4muZYf29iDOfEcZRBTz3NDheg0XH852vz+MmT\n1NXHP9LCeYxz8MaHon7u3KvYvvxrAIAzD78Nv4Fy7p80ofQ/UefOjDBIN+XX4Mw6b4LUp3z4znk6\nZbZ/OAZt9cGy9WqHVPNhO2yH7bAdtsP2GbbPBeKNhIgiXnyojlsyHwAg3n8Nc4LiKznycJrp6UbF\nPTTPshnNOr1GxUYctTbRjkNbxFCcqPDjDD1muUILZY4oIq6pQ/a4SI3nrWLmPj0cv5Re7PkTVShv\nEIUN+PLY9dDLbclUeK4m6oPK+Nz1zRv4mW0isj+Y6D2UzzVICR/xTuHuf+Z1gy//0iDe2Plr/l36\n21iSEjV2zHzuf79ZwfqV/xYAYHzxJXz4DqmSh4fKsN6iN6+rkAbKWZcR/1vSMfZ/k0X/Jj251sN1\n3LGQqp+wsN9f+lEZmfOCoildhfk4r1jo430wOxiA9W6V1xUqwx9j/jTTK5b+U6CnbLveCqb2RBaf\nSY5ZONyBy0DPdPUgCa+S4xqYMeJYi59Z89DrNLfaSN0i0iv4yqj0ifurKzIEVPQyrXWyHjcqjwJB\nMhXZC49DeZ1BEJBdRK6fMtkkHMe55kNo3SPavzSfRzvoAwCUVRosN0WgWZBjmu8+AuDbn5Kt1NlB\ny0QPXB7jcYJMWUJJpLXMH3RhVNGzN5daaI3Rwx6ViHqxAwpoxHGCbHQTxj7OVymjxHSV85x8RFCt\n1QYkBa6BoU4GIR0RvFKhR+m8qIms5WcN0eMYt3P8MmoHjDWixrVuG4YkUZvBQZ3OLPWuBrMRjaJQ\n4RxVTpCytdyLY/wUGZ27NRv60qIW8XgR2hzp+MAe9ax/IIedGaILb0SOTEkEGClasIoCD7IWKci4\nzYaWivonDVRhGuA6LtzLY01kKpseIoJv3u1g+ixZht0lExT9IhivFUBLFP9opHl0UTb3Doo76LRx\nrMkjiataBkk5G2UY2hwbaSaHlpWI7qczFzGyyaOkmlQcVRVCuNegbtQ0MeREqkQNNlE3U+ZAhRRj\nccmMEy9yriqvLcAwR7Zp624GWpFh6pRJzEVbBomS34/GQ/jzp9ifIzIldsW969i+DMYH1xGAphlG\nqegDAIz3WSG1keHwijukiVgdcjfH7JrtAF4R4CZrBjHwDNmkrpXHMpF9GfTiaGbI4MemmkyDL72H\npS6DOcMarr1HCjNYsXHdeFpdFEWGtOyOB80abfBUkLp2+/hpTImUkbaPa1CG/QAAnTSDaOMTmu/T\nbaU5iayJeu2yxlF3c51dj/BoqGEx4/lfoC35h3QHmTpR98RbVrjGKVO7Tqq5FPwXyGnZr5/a7+P0\nNa7DfOkO9kRgWLrCPr7w91YEL/AYKPNmBs85ac+/l4xj7BtkByrajwAAq6sBzJ3jvAV3VxFvC4Zy\nLAhnf/iBsvVqn4uNV2EmPVJtPozzGlHA/JgVpTbPkfSpAEZmubiDb1DwzY4SzSQHZulnW5C9TQrg\nKwcuXDVwozgQ9JLF50FjgsbZrUlh8QYNyQmFHSEvc2xKcqSftpMa1Pp5/qK/ZoZbLLbMbBD6US7o\nxggV/eTtU/iJkcbKp76KhR6ymQ54v+tv7SUM+kndrHnO4VeMNHivOwp48q9oRFyjlwAAxe44PH2U\nfenNZ/DMie8CACrvfxEGOw3b5ccYtev5hxY+NIoo4b/qh22ERn3BdBSlNBN9pFP8/9jeUdyf/gEA\nwHnSg2aUtFX71S20vkADIrVwM3lkdwrNRzjWvzGewF/0kO1kt4Swj8YtnaahKcsyUGZEWUZrPxp6\nblrVjfeweJoJCJR5kR84ZYR1XOT5DaYwIIxUtPs0HgHP8hbWxTnUsRS6Nb6jfXcNdXGOFJP6MbhL\nPVB3OT+ZiS0kx0nnmgoNlPs5Zva9FhJdbmSDShqX4NHe1YnMpTQ6dX7PPMAFVmoCujAN2DgaiNto\nJRuyFEbDPsph5MYyWlei3RFpE/OjmB7jvDSbRXS8NI7aGPO+aqwu1AZF2cClMYzY+LtW2oKjLu5a\nd2nUNeYi8kXOiyYrQdEjit6nlWiXaaxE5T1kjRs9ZbO04iiIaj3eEp8fH3MgKyJfp1Q6qHV0VP2x\nNhwDNFYeB39WR5SYK3ONwCiDWybOcdqAZJgG2Bbn39QqE7DITd7kVWFfxfn0agwwdbjhtsuc18zD\nUdxbpAwOuwzSIa7jVgpoNLnhtgSNLN3pfYvgyLAUP0xzfT4lpS2JJE0o5ajfbcUCZB5xq2H1TVT3\nufmcHKejsKc/DruUOn1poQb7DPVMqqggmaXMTQs3tIQni6CC8p7+lh7vfyhoXJcaFjP15K7IG+07\nsoawn7qhzB2Dc4fUpKxchGaS43B86Bruxp7vKRcA1JQq9EvomGTWVDBMi0QsTXGe/vwQ9ClulgOb\nadSdPJoZc/oQDPDdW3aCmVfcDax32Udj1Y+LIkamYZHjosgpff8mv7PrScLcpb2SJCLoN1Jn9Eor\ndkSFLcUjdAJcljjaFa6xulYKhUIkr8iaIR/sPlC2e7IuHm0zfmfzsgtzIj9K5kU6Qfcv51AS56vj\n2MIdUR1ratSMj3Wcl6PSnwMA5OavQrdL29YYmkY9w42zKZ3F7CI38pOjIv2pzIOfbNCpmOnX4fsp\nRrwfyR1D0CY21g2OQ6dhRFkjUmdqC1BsMhmMw5qAWhz/4P/jdd5DqvmwHbbDdtgO22H7DNvnAvFe\ntxF19imM6I/S614Z7kKyQk9mcHAS22/So9KHiITyhnk486QmvvxhFt8r0PN/RyLHhqAh7F6imkCy\ni2qOd8iWp1J4bope7rvuY3CUGDzxgp3vDdeNUHbpxYXmdjDQpleo6cujsUN0O6gi1/KOroBHhAel\nsFfwgx6yrdf/BAAwVvkV3HqC9WQlnR8gH2VAhdpyB65XeC9wpZ+e/+i1FRTBGrzevtdgEQg8nPs2\n5jssmBDY5nvNv2BA8T/TUwyq5Mh26FUeG3wVehH5aW8TYf3h79bxs9dJL6f/qouEqGQke2kXWSOD\nRBCkt/vsfh7vrTEt5e233u8hGXA/bUfaQU/Z4Bd1Xe0dbG+R8q3q3Tg3SA/xo3IBHj/HurPBe8dd\ndwBbM6K2aa6ByQT1YPx8EFkRAe5ziSjsZAU1jZ8v1h2HaYVIojHlw6ZwHw0tqvPem9sYEJVKlD43\nxleJpBt9SmQXiLDTw6Kg9X7vzFW5pAUZQX1PRIiANE4PNF0inAOVClNJUlib02bIMkRibiOZmeRU\nHeMi1WLQ4oKxxL5J5F0kShyTh7Scl0t5OSZEdKjLZkSkKMY0XcE9syj4EWUfbLYGwsJfjiml6Fcw\neMXe2UHRTSYhpCBitu/29qtXWjtoFATqs4ti6Z0BtAKEGY2JGtTi/+4BLwZNfHe1Qz0cOCiio+Ya\nCZsVcIisXfV+GxDlfKrEMVGtHQYG+LfqkBPFuIicNiVgqxGV+OXUwwtRKz4aIdJWh3PoXuH7cvI4\nGjrOV1MEqY00e0dsB1XTeKRFyvGaqOmsi1ah9fC50nsapIs8hjhTLSA0KopwiEjyhqII9yBtid6T\nQ7JI1uPjrAROH59RWeL8DHnkaBwQLb2md6B2zM/37asR9TP4p3teRJ0Hy7BJ+I6kRYKGiDKWPDsP\n/59S1we+Mg0j4j3lAgB7SAbNIJmPVLYJSZZ2KCYCDUdTJkja/L/Xs4ugl0GbKM2iX+itLcf+5Fw2\nTL5JOUpTdii32IfuaAU6B/VncJpMxX13CxPbZA8SCh80gi3K1lbQbdBGaBvUhy+oApCtEZn+SX8Q\n2jWOmasShtI990DZ1Pk0ahbKU5pUwCyy/JXEXe6RyTquHYja6QY39MPUqdRmF3pRJz3a5f+NxQkM\nahmMe/dGAa0RjonTXYFRSzsVqdK+SuprUIpdsJRrwKBnVHNqoYWFEdqQIzraaqX8AOqPqLOJIzGc\n7yOaT6CJVjX/QNl6tc/FxvvCWzQu1i+0cLVOxfOFbWhYyenvFJahavHvr0/xby8bFYjZ+b36YgkT\notLLwtBtWJc4OFUjL5CnEMVck8pQvv4VLJ7luY5V/RGMUUbEXXVws9DYtZgKUAFcgw3si2g+2fUR\nxEsi2k9HJXWZz6Ou4f8Tud4p7CZL/xQA8JO7dvR56TTsJSeh9dEwPfLTOlK/wcR+qgMuim3Pk3BK\n/wcAgPHeb+PtAI3NhZldpOKkTeoybpQbH0ageowOwYvFa6h8xKsS2cwcjvp4drHSoRLPXt3ArT4u\nwLG5EZgypBu7uSJecnLMwk5eyr+VNONPL/8+AOAXnzEB73xaNoUkCqdYhMV9qtKkzoi74szVoN7F\njQTHUlt4EjfHxJWOOI3m/rgT8/c4DseHMojscBMIRzU4v8Cxznq4UGptG/pcYlGESugf5Fi9lq1D\nVeAGM1TnBmGaHUV7i/Oyd+CFzMxDgDSGMaImFacVaeSeG3Th9z4tGur6Dhx7dOBaUzQqjXwTdrco\nK5bRIKHkxmrO6qCdJP2oaIkz2XoHalFgeyipgwnUmUWnBfoS+1at01BM21roqNkfRf8KhrL8nlKX\nx9kb3BiWbNwUVcocPOIKl223ippIf11RlyEXzqfewnMqeHqf8Q5GTiFo4cag2adzpjS1oHDTabBU\nnaha+T6DaQ2yonASxbFBu21CdoRz6C11ERUF1zWxDmyiGk1kkPLOQo5cTeR9bmRxIkhatDQiRfWT\nkm8RGtd9QwfDAY5NuqOC2kr6bnAJqPVz06roOX/1kqGnbCn5AiYL/N+QnGd/aucIWi5R3cg7A/1N\nHkEl3WVoMhzfTTXtxwVnEh/tcnytOT2MUvZ31tjE5ev8zGkDKXzT9iBSJ7luag0tzqxSHv+ZGuoy\n6ozGxs0t5CsiXhPXWuITaEgph7S+i8Ep9qe9akTF+OCo5jXtKNY+Itj42YFJKJR0ZAcPuAZ3R8bR\n3ef/1WklvBrqQX1LhuY05y6h5Hy7girULrAP8B9D2EKdm75dR98JOkLFAdqNszktSl3S2hJHHIoA\n16xFNgK1i3Y5L6pK3ekOQlGjczWv3EDCS5AT3rSgHHtw5K9Zu4R0i/rq3E/gh1LGRDQrnLeXjHK4\ngtTvZn8DXiUd8rSxjG2pcDSrdKq1tiRUIhbm5EtfQfUO7VHWvoKihPb+QMfjsNjt9+D4KufVE5jG\nzuVPEjhF0GlQj5bKItajM4fsBXF9TCPFygZtU0l3BnLX6w+UrVc7pJoP22E7bIftsB22z7B9LhBv\n/BHu/31lEybUPLDe0/4AqiIR0PCAF61lek6ejEDBoY8QHaanGHdLoCkwQGusVUXgcSKV+dfosWzO\n1qDSi4Trij+Ad41erub2FKJP0psZcfO9mj0tihP01gvJs3C6RAo7dQu2E/Scoiv0zE54NiExkt6T\nTjwH/PHvfUq2O+eJtvp/dBpHLpACGwoN4XUP+/BVlxe7NcrWXKGnPT5xF3d+9M8AANaTC7CqSavE\n99S4uUDKPPksT/HHOibolulpZ9RuxMyUXR76EP+nn4jK1qXne/bkMbzvY+rNg2ADiiZR2st2B75d\nYj8fFRV3QpZ1POf8LQBAJfvap+QCAI2yjoSUHnRdoKGiqwxvjaiwsduBoUAafHt4Eopl0pdy4ak/\nXHMhf5Yq+Hrah2c8pMYyFhNWY/Sap88S9ewsdBETdV/1Cg1CohDAdNcPyRTH7bJgeww7GshcRGmt\n6H2olY+xv20bttWMSK3JiD5yrd7RsaM2HZJdethyENUoFGUc5IjaJ1shdLUcV03FgVyQ424StV69\niiTKTUH1GxIoNij7uWYZKREY0hSBe7ZAF/mjpPKSKQfMGQYVKS0qFEWClqmuQCxrRtT7yGRkTRUU\nZAIllIsISenFa9apv00RkPiPm9kLqCqU3yznupHuu6AYI3VuquehUpKek8KLapc6PtEms1LW9aNZ\nEnVq5RV4RLUlaTMBpYc6d06k0wyGtWhPcR3KF8toiMQcaoUM8gTHYUvcN/U20oCUz1KoU/DvkhKu\neGzwNDkmU2H2YUnbO1DnxKVRLM7xe7mmKD4SUcMtUiIWzDEAHEujNIP7iyzMYXuMa/Pgng2OQbJf\n+pIZrRXOUelLaliD4q6rg0GCd6dfRfV9IsUjL89hdVmsvZwUzVnaldYwbdjc5klsn+SYLcvzeKIl\nKu1cViKiFyyfZQgK2YOjY63aHZwd4jMkM07kr5LGTX5BMC/+APQGHwAggCPweShTM2iBS9RXlsvZ\nL3d4CRjhvATGo3ioJOjji2dww8+FpO9Qt1QRNcoKvsvWsGNwiKg6taBFU9zh1laoRzKTB/dVnKuZ\n0ghyXf59SDGIbqR3QBwAFOszOFJhf6MnT2DWxRsgoR8Sjb5n6kCZ4DipRs/DHyOVfN6igm6byZUS\nZ7guXHeO41EjUfnCWhVNUSt3ZDeLK+PUy+fWRJ3g0XncuCaqWOWXoHqeTFDqO49Cs0XbYKyQSQta\nQ+huc2xMfYBhnPen9zRBrCyeeqBsvdoh4j1sh+2wHbbDdtg+w/a5QLx9c/Qorsr1uCClZ3pGM4yD\nUXoqBz8yoj1MdPZFCzn25e0pDK/7AADXVB7Ukzw/bZaXMTwuSkZ5+VnJuhm3xV3WQlWCi3YGtQQv\n3MVAmwh67ya97umHkhg3MGDF6gRe15HzP3WsDGmMCMJl53tll/aw9Dw9UL0IHPrHLbNBtHXyW/ew\n+eYrAIAv/WIbP/gx012+/vg4DKJowHCLaLZ/8jj2nqT3d2V7CsNneZ4xlFzEXz/x2wCA+ZvM7GJ+\neRVT2Z8FAGxYt+Hc5Via8U9wMsqrB6FZopdgCMiKM8hfV+1j+RhlvnPfCI24orKmYBnEuckKFrTf\nAQA4b470lG2+O4IrIaIHvUNkGYp2caRE73jCbMTOJufziakIClYROLNNtHJrMAf3Ov9/3mdD6gTH\n2p2SwTtDD3xvl/015XWwjBNxXM0t4Asii9hutoFEgChzKslx2rN9gB0Dv++GDPUJ9tG3tAW1nnoQ\nKtA7PlVL9JQtVlSj3SBiMt+n97zpymHGQvSbq0jQb2V/otYozCKJfEWcm2v0aajE+TbMWpTzouxa\nJwlln3iunAg+qNZj6Kq4wjacREFcD6v4TaiJBO810U+luguNjGdZeWsVZhGAmFLWkesQfamOiNJ6\ntd7Z1O4VSpDmOQ6pCZ4pGmJKlCWiD04rTua4dvJqKyCKDmTdokiCtohWhGfw6G9BcZ9zmBipYUjO\ntZdWct68BSWSd/i9sKwJT4eyqSJqqCt8n1bLdZVutVDv8PdyMA6dUmT7KsiQqHM+F91ELJVOqqds\nG6cT2P+QY3ZRZKWrlNZRG+a7nttzYWeaen+z9RCOneC8fRKUWM7ch3eQa+HWuBH+EZ45f2lZBViJ\ngBZFFr2u5BXUv8q/dTZvQvkM+6g42Yfyjuj7x4wzOZBfQhsMojylaqOd52fPjpexUSLbJitI4Dhx\ntqdcAJCWDEEiAqmqW5toujh33Ssc36Yd0LdENjWjBzsBntE2jyaRuSuy7uk5NpIXvAgtMk7EV2pD\nLqf91CRTcIpA02bIDwC4Lt/A2Y5IMarMIS8lwtw+8QGkfpFeUjA998tt5Nv8Xr3TgFlKHdysFyI+\nT+8AACAASURBVCBXSR4oW/N+CCujLwEA4rdu4tHztNGNIY7NQPX7CH6Z6HdjKQT943zf669uwTcg\nAuPCnNdly6toRshKGKfKyC1xDsKTI5hZIQOx5WQfZR0PpvZ5FXVl0gf9334TAJAbfwsNlQjuU3Ls\nPJouSqLQhe7+HlxnONaZ3T7o1f//Mld9Ljbe7s4nkbGjCH1R5B29GcLwPhf0xDEJimDkWjLAwVW6\nE/ipgYMwNH4X2QqNejXiQax7CQDgXiMVMPOEBlWJyIUbNsGs4uLXRV/AnijUfEItLsoX5iACDvFB\nw4pfytJAl8/sICkWyH6Td2inpr8K8yYjfs2h3vmMbaf/HADgis1i5AIN7t0/eh8PidzTA7nrGG+T\nQnn7GSrLztp/xNb+lwEAk18wop2kAbnzXgQnz4qAnOc4dXevHMXDRibpuGc+AN4mPfzCb97BWoFO\nhXmJ9PJV+3P4ZbGHNpMNDL3K/vx09B4erTEtZMboBwCsXJ/Eua/zXXrzU0CPyq43m1dxYCdV17/I\n7xkmy4hVmWazVfkhNi7SiXHns5BqSIX2z/G5R2olGFOct3onjZEwDV5k0I52h5TOXpSBLKe8UiSv\ncWN+8lgeKyLXKoxyJGPUk2Kai8q7dQLdSW4sYx0N9or83SYbwi0RwDEvqHG99CyA9z4lm8zchrYr\n7hDq6QRNpmUoiZqhum4JN1PUqcG8FCozdVHVZr/2klqY3aQAa40qWiLPiCujhDZOYx1RCHo6kkDM\nSD2MRevoBx2IVriNTh8NvyZGHSgqO0jcp+HfrIYwKO5c1mJW5IbpdMm2uTlNOXrTsR57Fx0LjUZ2\nhX2MWGWYCXCD1VhDuKsS9YG3dLAN85hGmWJwW1SzikofN0hbRoqChvS7IqVBWsH+lILsb1W+hrac\n890J6bAk6NZj16o4EHfOby/R6PugRuCAzqdiyIBmkrrRluahrlDf5TLS3nJl70wTI/YmTI9T7/V1\nyrhikGLOyvV9SRKB7w3SguefrGHLzaMQT4nOzNK8F9UGg4sUl+bw9JGfAAC2n6zDGOK8OPL8/n09\nML3z7wEAo7v/Bgop83gf3ygibaLDvTFNnbVX7ZjJ0ZBHh45jVEJj7w93gQk6MenoNJyi9nOvNmuW\nIRvgWOeV0+gOig3lEufZnjSgKzbN9OwShrboRGePW2E6wjv9lQLXa+Qf5HBq6byXh5RQrlNB7xsv\nY1jKeSklua76Ri3YTnMTt1Y30bjP90o0dayKDVmrFHd7/6yMSS8d1RVNBl4D50lRm4Jx4IMHyjb8\nQhHhKzwG6iq7uCZyc09qeVfkksQJdYDHEK6hDLZvsA9KtQQaC99x4ZP7zOYLqFsYROXvj6Isgs+m\ng0lkDJxblYdz2AxfwZKTDtGRUgAHM7/L31Uv4QdqEUkv5zg8XHRjf4q/T+bSWFVwf5kY+im2y8MP\nlK1XO6SaD9thO2yH7bAdts+wfS4Qr1ZUqNEO7sPlJyKpznhQMTHzSiC1AlNCZBw6Q+9FGZZBGqeX\n2novgZNdoocNox1dEchy70v0rkuOLhqC8jlhfgLtfgbu5D1B9Evo7diSpDEs8weotHmf9LxSj62u\nQB/FfUiPE6nI1ulNTQ5VsCMSlkRe6001J0QFm93HdFB+l8gz8/M6mAqXAAC5ZB+uuEixqAf/IwCg\nfe+L+OYMPajYn4WR++/IAhjvtjB85XsAgO5zRI/RkccRfYpo9Py//RoU8h8DAMrvv4I1kTrP8zUf\nAOB4XY+9qqBKO2k0/xU9yMdr9/DV1+hp/926uDN8LoxVKQOU5PLeFJFKNQOnnvJ5zAyo+HB5COfM\nzAYVb89hRmS22RpUYyhEVPe+jXP4rfenkbLyexrNIMpeUrfK9TqUg6LmsZZ0Wq4th0akAPyb9RM4\nssLvaeeLUO4SHXueoB41t5egvynqr07oodlgwMRWrYLTMiJoW5X0kWp4oKdsxoYFqbC4WyuC03ac\n92CK8L3XoiqMiTrA/noYJVEVymnikupvm5BQUYZ8poBjSs5FvWpAuSLqoHYoz4Jej7EqkUM9o0Kk\nTTSeriphOCDCSXeJJA/Cy1BG+LupYUDOTuS0ZT+BmTR1tSFo746kdz3ewYEGNt+l/igGOBfjkhCK\nQbJKaVUXdj1ZKHMpBkmDup1IM1hMPVaFV4DpVnQM2w6iiOmUCw0P9ccusjy9U9ZhWEUkomoW0L9E\nZLRTUCC2ybF0hfjZe80S6klRqCGRhVZO5BTXWRETQVnH1ojodsd6m665DxrYkHC+d9187vCYDIUN\nzk+fz4zaGAOY/E0NrOvUmdxJ6svIVhtROxGo8XQT0iNknmy7b6Opot1QObkez2QnUJ77BgDg+vOb\ncN+kPXpvdAyWGmUevytSGZ1Iopok6j5/I4FbPhoOjU8HxxL7I9NHUVvoXS0LAEpXCtge+yQz2Apy\nFBMNUfXHWgsiJqjd4VYD91L8wNHwArb3ycj16xkYJd0YhUikh6MpGz6ocw1NpCdxKcI1MmoS13QW\nrfBLqJMSxTqCNcrZjdRxXsztVWFzhx49QGeNYxpSjqPPzzkIDfsxU+ldkAQA9otfRcfOO4veogG6\n11jMpf0i5ZGFEqiLeseQyTAWEfvAhA3DOb57WzCV6ugHuBsg29H3+hS8UjKKf6c04fkwr3d2krw2\n2Z68g0E16xl3tGqEdbQLpUUNRr20j77iXwEAbubGMGelDftQDRy5wt//smDB6bOeB8rWq30uNt6a\ng/RS3fEMHG0a333HGDb2qCQ/Z6pg38Ucwn5RdNtX2ENqSpTWCgwi2yVVMlHaws1tGo3H+mmI/MEC\nwvOMIhy9J0VMzc1HL4tDIu7NtaqiMkb8CEp2Tpr2zk1of/ZLAICNpAvPVEgnokGDeSUQwc3iwwCA\nh7K973FZ93lmc6+ZxrO/x43sxh8F4BLl6SZnfweePUYN33yPMvgdT+BfqHh28vGUGcGf8r3FiTAc\nGk7wUomGYnDhLVRfo4MiV2uwd4L5lY/3Z/H0LKd3JcfzkosLryNi/L/Ze7MgSa/sPOzLfd/3zFqy\n9rWrurp6b6DRwAAYAIOZ4cxwJyWSpkTLpG154YMshcN+MC3TVki0QmJIpMQRPeKIHHJWYAAOMNgb\njV6qeql9z8yqyn3f90w/fHcUQXY2Qw6HYTzkeemM6sz/v+fec84957vnnsPz4PBQF2d+hdmba1NT\nuOYjn0Mbv893zXbh2aShCC73zkaUrt2HXU3o5W6UhvzFJScKHZ7HGyUxiL0LWpcEGwf8zgUlm3n/\n0FnHjFE0li4eI6WnQs/4TnAnzc3OY6VRGklZkQtxI3v+ggypgsgQjUzC7eZ9TdkHdIgqbR8sGhr1\nhkcJ+ds04AM31NjL0KlaFufNlUqzJ29tbQopTjE0Oo4hutJCyUEnxGntoHBCOegaFMjkOIawXNQ7\nlhSBT7huY8MqvCvqEs91FdDY+OBjE42W9nYDO4vic82CsChGgPYeEjnKZafIza9ar6NjJu/1bBg1\nsSEPxGLYTfHdtmvcrDXp3vBXJeDG8AL16FaQRynynAT1DjcWU7yBeIjjydkNMHwi2mAaOGenK02k\nPi/uspY7sD6iEdxbjMGyQZ28I86kK7IRREVm+4DegdAm/19t3kNR8JZt0Kh3y0rUB7nxKE8NyIuu\nSPXkCVxeboYdE423upvtyVsgrsb2U9QHXYZQqiZkR1zc35441eKTa+Ku9WYLnatCvgKE0e+7AxgT\ntQJk7+XRBI3vNfOX8H2RY6D8kOfL1uExlGU8CnCcyKDy0cC3Gk1I5Byv4hJtGOpmhPW0RxOvBLDz\nUGS2J1aR9hMSNrcskGt6O4IA4JemsRHhBppEDeOKIADgMErbuKU7wtwnHNu2J46Ujef01dplqHVU\nxO0ofzNqSqDeoF4chVtwXKVcv6uNY+kDOlJBJ2XAFDZjaozj3e5kIIlQvsLLWuh2KXNKA9/1cVaK\nyyDPkzkPAm7+/RV5ESWF8Ym81TZuARHax4OXM1h6juvx5iYdrgsOI+yitWY9nUF4yg8AUDQK2HAS\n4h/O0Ba3pGfhE52vav4Gtht0QF/Z8aNsYJtWU4fOaS47hLyDsvFm145Xb9G5/KB7iDMe2seQkjb3\nS9o0HraFDbt9hOo5rucVmx4TM71vRzyJ+lBzn/rUpz71qU+fIn0mIt5gmpHKM7kUTq8Qw7Kmk/h7\nDkZTj2RX8Pkjemd/4abntvPTszjzx8zKi85+gIDoppLJfx7TL9HbceaYBDVQvoi8gZHBI10LZ0V3\nom7uDMoiy1J6mQf7dftZ/GqR5cRem34HVVGqrn0wh9wAYZ7tEr2bk4IW12KEczbqnp68vTpBOML8\nl15UnubnEVcdXZGokqjXsNMlfFadYA/ef/Dd38XaRZZiO7B8B2fsLP4taVpw2mVUaNqn9/3l8ymk\nRIWieytteGVMZmpf/n3k1hhBj7zCJICbaS8uWDlPl1dzkL3AZDFn5O/jz2cYRcmuES0YfyuBYFEk\njKW+3pO3SHQEogkNhqdEpZlOC4ciec1/UEHlJXGXdE2C8atBAEDGzEQu2/rHMI8Tztpt2uFYoyct\nV0mgcvG7riHykzn4CD8aJs+tPHBVR2/coXejEBDZq1dFwtROFFrR8SYoyUM9Qj7UyY8xoKTMtDP0\nYpPxhz1568KOaVGVMHTECEDp8+EkQm9eWTTBZeDY1aUOVCYmNKn3GNFV9UboleShGrXC6qXnfkva\nhrVMlCXykNGSSpuD6QFRgvxQFO09RpAxTxuqoKhEJBKYynUltlWMID05DWplzsOexoChRUbvHnDd\nB92tnrw17RaEDwX8ayXigFoYybSoOqWOwVHguul193HYYER1VsnIt6LNIL5FfRrUbuDOoOjmtWFC\n3MHn1kUyWNNVRiRKfUvZd2CWMKqulZtoRYkSpFSMKruRY3QNfMd2SQppnOs5ddWGYoXPHRgnCqOV\n9+41vLechrfKqO9FGdf9o/E6TB9QPk8lu5iSM3LfmbBAVuG8H3Y5z6OzamTT5L37swYsZRkNfds1\nisETZg/LzzI6NJ2moCnyXQHjIgx2jlHx8BmMzVCuohU/fzNbwPKGQE4CeQxf5NiO1Xvw79HmKVUd\nrCt6Z6IDQHjUhzkNx7Bf6yIb5Fxkm0QMdaEK1p1EMnQFI0pu0YHqdAvrRpEUpGaEeiIdgsXL46Wt\n0D3gLudT0coiOUL+D9/jPBnOzCF2xDU88MgwkKEe5lcfQFmlXZY3yM+IpYpKWpS1PBuCaoMRZPNi\nB6eDqifyZrYDyVPOjzVUQ6xDfXKsk98fTWTxqoGQcMDUhXNX3N6oZtDd4TykBIKUN9cxXeF7zSc7\naHaIcMRO3oBqmehC4zUB718cRrvIeVCGDQjO0HYZb43A+h7lLz5I9M2p/w4GL/NZO85pzO4yAu/4\n8iiu+snItSey+FfoM7Hxyj6ksf/456ehPybjEvccGm4K9cT3q9ibJQS19C7D+9zLXayd4WZ5fmgc\nWw2eT8mdt2EX3UlUokZsymlA4gEF6+LnogiKNHnbnSZmP0cD0nD9OgCgpd7H6yVOqHNQDRzReM2+\nakaLdgILoh9zIdrFgZW/X7Cn8Kc9eLtTIyTX/FsmJJoUaHXdhWFR8i688mNMiDqy4RCVf+vCF9Aq\nErqO/51lKP6EG7bCMYart94HALz3Fc7D1vQAKvcpIK5RF+xpGvjj+2cwNMcNOf51Gp0XxuLoHBM+\nKWk0eNfJEU/FrmP/kGfg1je5IRmnbmBGzq5IcvvfBfAHj/F2OOzAsDBiKiOhm83CAexHNOaJeRmG\nm9xEWq02fBAKoGem6JzLhocNrovdXId+jnzu/EiFoFAWq7i4vxOVY0J0sfF4dYhLaWAUK+vQ6Pm+\n0sfceLrmHKpJwqxKsxZhfxAAYI5NQZnjphSq0WPwmHoXmRirDeOmUnTVEWd+sGxCIlr6GfbbUJto\nlOP6YeROROGMc4TWOokogk5uSGMhJcJlcf5cVKJgYpa0yUyj31prYG+EULL6SANNjWVBTVEDElVx\nTSlIfqvTStiPaJwjcsAXJJ+OM3I4H4qyiOLcNvls7423EgHMNcp4S8P5iGrNcCZ5/FE+OoOSV7RK\n61qhz1FmUgqulaVegNzJOT+MSjC5QR1ISU+QO+R3ah06v/psBbU69diRt+NRjobUogbiEvKv36XO\np816mIM0nu2yDLUBOk+N4xJsw5TrroTPt9V6w5YW6Xk0LnKuvnFIeZpqDWBAy6ObtNEJt4qyFVKk\noGnTEdOfp+4VJU68qKFzsPrjJEJMAoY5E4ZaZEZnJNQV//VRhD6hgR82HCNn5maBXzhB6ER0esrT\nBpVWDaiIUrMZRwK7IervsucStDZuSCf11yERxzS9KNSZwrIofJIIptEY4fvm2lyLWPkQ0hFuEs38\nCUwprm3B0sKzW5zjYy+dyFLHhuY69aU+Ngijks992NxCeJP8Wxe5gSazBZSL5MMhX4N2nO8oSEYR\nP6KsacpcY8WoCSu7XJt5WwzVC7R/OyoLOgrXE3nbrzqgFm32Zs+pEPlQFOSYY1D2240t/Msk5/Ry\n+T2oOnQgHI1ZPPJwbE/XOC7FyTswuTkuFA5xJ/U8AOAZSxev57kG2jnuF43gNn5N1O43nT3AzSD1\n7SXrPiIX+by8uC3xrnoJ5m8GAQAT+0BwmceIw5mHOGkon8hbL+pDzX3qU5/61Kc+fYr0mYh4WzP0\nKC75OnAe0IOMOW5j/4DRjuKLUjhMhEVT15g0k10ZhL8qDvmjdZiMhMMW48u4WyQUV69dBwDMqKxQ\nGJmJaFYs4JyAIYt5CdwjvM+V3uH/SzEIwzyTMzbkYSyuiALbqzEMJAlJnLQZQXZdQfgn6JkF9non\n6dQ8wvOPz2JqW3QeSaeQLdCD11y8BGeL4304xSQBd/klHG7S0/u5/VP8aISe9lDXgMYEn7HU+RJ5\n+Msf4tmnmAzynsSAspQec7h+Apm47H1jmWiBOr6EgyHyEA2GMTz2XwMAHLlvQhEkRqIfY2QQ2/v3\nuPj3+I73vnW/J2/PTqTRKTACCQhoqKBuwDFJb368rkBhTSTT2JooSoMAAHmViW6FrA5nRSGEeMmG\ngOhsc8agwotaimZwn3dsHbExxEb4+/s5KxxtPtc80UbNzvmTnTKJDAMu2E4pU9MyE1YD4l6hwYtx\nDSObYYF6rVw8C+DxxLgTqwSeLqHgSppee/xICZOWkUF3qoqwjuFQKRiHQvSvbW0yqUhjHUA0zSgj\nWbbBKEo7ZqwStPcpP/uiAMcZRxnKfUbSx5U4kjp63bAewaBklBBTkofOsQqlBsfjUQ6gMOHnPKi6\nKPoY6ZkE7K1PyR7jCwDMZjPSEkbKA6I7kXLfiKSBkVPRmYStLYrB532oWChHlYbo/jSsgPl9UULQ\n68RpR0Cag0BN3APXB/j7encIup/0B85EoBARa6gVg70smsi7OW5XQo110TDBaAKcctFQweiDO0d9\nKao4Nz5ZsSdvsWIamo9Ef1UTo5B24gHuuSjfQ7UoDiZpQyazBqxnGBXOiqxzX7eEzTWiUdZzK9Ae\n0R45jS2UBEpizfs5lrADI6KDj9w7jPQjyotfP4gpcUe5JjqoBU8tUG9TBhQXvLhcE9nqyRJQ4Hrt\nt57Fc87eCAwAuF0f41GG8qC70kXiIY+jyjuU3+pZD+LivvN0AMjJqeurshnszzFClAsblBrXQznH\ns5Tk8RaeCbKGwJzNhgM3593ZpDzEL3wEd4y/P7/hxbfUtJWTjwYx0yUa8q6Fi9zZa6Am4+fYoR4y\nLeVs2F1Eeq+3PALA7GELjnFGyvc/XsFcWmRhK6gj68UF/IyHaFxMdhWpZ0WBnA9WMXSJ9iQnMsLT\nBSfMKb43H8pCKiWsvDrUwFSCdjWtpfzsF2vYStB2V6OXoC6zdG6pocTDb1KGr36NSVuyH6SgkXMN\n5S8Ow9Vgkmi7NovI0oMn8taL+hFvn/rUpz71qU+fIn0mIt5xL72wg70QjF56f6ddC5qi/dlUx4LC\nPj2NoSbT7Y3uNI6L9MS7R0k8rWAFqfTQMzCLM5N2lNFJc2EP+qeI15tiISDItHXMv4k7oo/s5Ra9\nx7ZBCW+dUWwrW4b6KSZ+hJR3oG5zPLPiPNnSnMKbYlzuTKAnb5klRqNDR2WsP+KZ00vXtAgY+Y6d\nnSaOLjLqHmwxknl38CGufoVe52HgBKYMPc+HzT1ofEz8Om1y3IYXZ3HnX/Mu59lny8hu0UtLvBLD\n6AEjrtIBrwop3THIfplRgDo6B8s/YTWbs5NzeOtZRosPU4w+5ip+fPy/MxFB8+XVnrzFj6VoankW\naN+kN+s2GxFHEADQ1bkw5WOEU7aV0Cpy/sZEss2j8wpANAxY7maREPcSP7haw7MiwUXWYUKFpq6F\nXcEvWG9roBatB4eyLeRa9IS3C4yGJmIxxOcZVX4rUsBihdHMq6oI0os8d3XdIeqx/FrvyElmO0Ip\nQVmUDlPmvB0j1tc51/psBgU9nzuga+GkzPXQ2RmR3A2m4HXxHSfVEOw2RnLN8ChOdCKpqsnnB9Ny\nHIozcku5gmaYa1/JySDxEBHY0fEM2S49QF1cgas7pRjaYRSmdtigc1HuVQquhUav6cmbwiWHW0KZ\nOhbXKmoTOmjFeXstVEBVyrUKyRoQ7aARHRQtMHcMaAwR1YjkP4a5w2dJ4nY0W6IVnWjZKY97EddR\nX6yKGvbFPV2nXYs9sS7SFqPKXWsA7q6oUDVgQFfc0DAWijgFvzPaYqSY7Pa+dqNaXkNphTq3t0Xe\n5NY4VJN8bnXFjOQKx26pGWDSU18sI5xfo3YYjQajrDCs8HpEr2GrDzo17YnxHqOpo0t1eJPUscAD\nOa5ZqENFRJEQfW9XfIx8J2VSaAZEkln0BAkTkytdjSLiZ3lFZbD9CNlgT7YAAObOBHxyRoKB9r+G\nVzQ0kY+9DADQ1jcxohP3pzuDmBNlFesbWshFS73qnEhEDOSgrAp5adjQlDJBK54ywFDl2WXZwmjW\n/C0pMqIk4oHLAU2Gz304bsaDMhGDRXGfN1do4sKAHwCwZvPCVmMkuHfsxxcvEEn8l//2cd4ygS00\nlUykvGazIakVaJE4q7Vo2tiqs8zuQquN7irHvlZ7ClLRYlFxjiiM+UiPHx3yuxNX56EviCSpN9PY\nB/ujmxYpp5+PF7DffAUA4Pqpb+PyBt8XKp2gfYPzWh0XPeCzdVifon7PS6SIHhMFcF1ewYgYD154\nnLde9JnYeDethJGV6mNk2hTuS+2bKJh+BgDQPsohoaXgdKUCupQU0e5wkqYvOFE/4CbRSicxNMy/\n19LMfNMGlDB0CGPccbrxyjThhKz3Ghoi4WHjZhAA4JKa0Sjyb+pRD4rvE3q1TxbROuQ7Hvg5yaea\nAHw/IrS4r9H35O3db3ADmBjagNVIQ/zjwQfQ6+g0DNaXkH5N9Kk10WCGvRPQiOQh75lBWEXBDu1I\nHPqugOUPCCnv/DgO1fOck3RtCf/HHDfv/0a1BMkSnYKHEl4Wl89Hkf09bmRPV9eguva7AIAPY7+B\nWVEX1yj6wmdSQUwN/zEAYC/7UU/ebKYmIhL+oCmMhzbYgV800pZNKvBIQNGehz5ol6gY91KcP124\njAEBZ2U1bQw6OQ++0y6SCY5dLaPyb8sf4YyaZfjCc22MyggHfpybxPA0HTdviOt9XLegmePvvxxw\nYX2c74vmi8htUL7aHTo+J4pIT94GFNeAQSp0MkkeDNkwBvN8VnLSC1WOv43IxtA00gEpdkWvZt0p\nii0afqNNi2CBvE10ymjW6UBIXPw3k5aheMDNyewwICd6uVorLrTEhq4XJS5zKRlMKm5YuogGGBIb\nmVyB4jbXoLhIWXTYel/qdy4qUHvId/ialOlmfhXBIo2yQbaAoBBnZ6KBoJnyJQlwnnW2ASgLIoms\n7cNhjcbXYjLjyCAKFyRFwZvOHsJ57qBdA1DL8HfF+jgaRjqrHQON7GRBg45R1DvWtnCqJIQoj53A\nfpEylQnyb4PzvW8RqO+ooPBz01OfEJ62YAytEI9xsprn8GUtodIPKlZ4J7mJqr5NOd6auw9rkZv8\n5TNnsLvNLjlD2TTSI1zv8DWaTU8xioMpyoNLvouwj/O3/KiLf6fm54t3CVOqv5pH5oTJoJoXP4fs\n79OZlfhNKId+yDF05Eg4LvTkCwD0bTsSwtGNF38NGfNfAADSd5kUtzDsxq7A9edtKUi+R/lye6ex\n3qH8qG/T7jhGkzgWvYgXWgmsNESSlG4MeR17i0/+mEl87VEXyhLOaS0hR8tOB2wu2YJU1FWQbYtu\nVfNdREB5OesIoRjijQqN3Yx46uCJvL30t+eQl3PzD0TlOMjRwZhNUwfXRrRwr3Oz9H/1CK5PyGdA\nk8bgOouUnJrIYyu0jVEd9dy+m0RO3K33LmWR2xPlOUUXqOLCVwATC/5IH1WQuMz5mQlPAKvC9ivp\nUE3/L5vwfYe69wf7EbimKPfe9BhUpdATeetFfai5T33qU5/61KdPkT4TEa8jSE/HUp1D6BK9N21t\nAIZDEXGM6qHP0csyduiF3S8NYnCSnzd/rEJihh72pO4jKCSEbueeYxLF6h0tVCKUG7WoUT5i5FXa\nriI8z7+/2ma02fUkod8jnLD1iRaNOXrohqHrOLbSY5W9TX9Fr6pht0wvLJb4i568/broS1rFLppf\nJXTxcuwV5G//KgBgO1dC2yhK8RkF3KuIQTpL3l7+3iIMJ/TI1L85hA/fJszz4nMCrjRrURgnv6v/\nIovfUTMSXD2NYMHJKyq6Er2/pbf+Pj4+8yEAIJNYQKDFhgr5ghU1UTrPZSKMOTMyjoKT117Gv/EP\nAfz0Y7ypVGZUwqwE9VSbiQaJ7nPISNi0wSJZhjLDCMihsyFTo0e6MMxwyhdpQCNjlBqJzKMUESVA\nr1qQzRAGbykoos7hC+i0GJU7unKsNbluM3Mx3L3F71iG6eGnT/QYEz7lyUQcOgGratV5yBkRDQAA\nIABJREFUjOeJnKSeFw0b3og9xhcAuGothIx8n/WYc7on86C5SB4MuyUY7fSkt4wJKFcYeVaHOI8q\nmR0NNcdYbpcgl/C7O+kyjEZGgBui0YPf2IVLQvizILHAbqQ3n5FXoJXwecYCIxKVxw696Jily8qg\nldIDjyotmL7Iv4ctjA5t8t4lI7OdLka05HuvzEim2tbA0hL35sei0IsIB902JsJ8blzK8qrKZAG5\nDKNJo94Bp41z7bDoYBRXWA5FVaRSvYCql8/abTTgEkX12+NpjGY5D8eilGBdn4S8KK7WdR1YHCXv\nFocKDTePfOxlvtcgyhn+dWoEVYi3xV3rYcrycHgI6QHy5nfs4KaLa/GVrARvSqmf2WeJJJ1PmnBT\ndEKSpbeh0jHpSO5JYLNEPmxHoq+0RwbHLtdK5qvBJsp+vrf0Ohw5og3aUV7fcXziRUUkIDaLVZTH\nOTad8y7yKR5z2Qu76Np7rxkAyJfTsOxwDWTS2xi5w4Qx8wsCCm2WMZnlnO2aBxG3kqdzETVGBYqy\nPUt56TbMkIjSmqVBB7yiyUGuvoX8/8WItfM8eXg4mcZMnPIJww4mweg2HZRBKZINs/PUMWepBLW4\n6bWypcPcNOfa2Q0jLntyz9pSu4DCMdd0pP4lKMS99c0mbcJCdgglF+fyUew6TMPcG1aKLbwb45z9\nd+JO8eHIMQKnvCY2rdrGmp4yFd+fg1/05vXWOXdhTxAep+jylHWg+503AAC1F38FdtHkxLtCpEMV\nW8SHXc7T8GwNYzFxfXFcg7rl7BN560WfiY1XaqNAyq1rmHvEBUzemEI5wVD/yvYw8ucIczU2RYPu\nzkOkVwmTee0DMOzxu82GBE4JJ+xhlptXt6qCpEV4qRvXIxRltq7rfBYzURqKP/NwQS6E1vDqCbPj\nUg4fGmqeF7U/OYVPtJ9bdYiL5RdKeH6fSr6CUbzdi7cXRXnKuxnEfkw48f7l17ClZRb24UUpLoum\n4gePqNivBr6JmyPkbeX8ChwublT6QBsvXiYEs7NK3g67axg9IqR5qTyMza9yHhK1MZTHuaFnlISv\n1n73t/F5HZ2K1xJ+VBcIt/zazAC+J0pR/tEb/wEA8K/8Jvyvok1c7hKAHmjzmjSICyKLNSO6O92r\n7+CMnNnkzWgEl9Wie47mBE6RHZsUd38lmxK0P0fHZbj6PpqBG5zX0DZKCvKsVBMydhwqMaQjz98y\n3cO5Os+D5JkiZnWUja6EMOS0rYZsg46J1GyHQ8rNP3eYQTBG+Rr4gMqa+EkBib9GUX8HxqbI1Jyk\noR1MyrF/LM78vErI5TRy7aAWM1Mc56lUlApMRaFpU73STgMgYHDlyDSO2j9xiLjxyNUuxMqi7Z+q\nDKVwEtv6IWhCnL/yBN/laWshE7WYpYYElFaucVWhgupYyIGBG2G72htq9iXdCBYIiSvEJu3PjeNg\nhI7AUlyGdJljV3QsUNo5v26n2Pz30rit4v+PWjrIDIiiA+04hsrUl422uDd6XorxCI19zgOYhAy0\no3JkRWbyFG0kcjkftEbqoQUNiBLQkM8Mwa7inMh9lJeasXeGrOLpIvw3eQyjaMTF79OQiHVZt+uh\nEgXWNyYS8EXpgHQHuLHEYqeoi2z27mkYtTY/f/ThMCa/xB0lI2SyUhnGXJFzfjN5BL2SdkP6xZcw\nn+XvNsD/dy3moD+mnqckRRhbHP/QwQwqA5SDetcB60m0J18A0NHb0LTTIbWeamC5EAQA5MXRWC3q\nhVcjntvKQTlFG5Oo72K4zvFk63Rg1HkVJFmuS9V68h8LYCjlZjz/S+Tjfpi/WXqwj65wak2BSQRl\nXKPU8xksKrgemvdp2+pjI1CLYkLL8yE8leLmtOeTYsTdO+cAABKHYSRb3AwNV29C16ajNFShcGwk\nQxisct3GGkl8e41jeEY/iMoM332rRHk3K8Zw3kG9Wc+M4ZFMOIY/K8PMj7keyQT1cWZkBMk4j51i\nTQn8w3SCcg+OcNqmvN8r0k5qRxQ4t8e9pRncxKGUdZ8T06tQfqe3A/8k6kPNfepTn/rUpz59ivSZ\niHizx4T/RtIa5OUcUvxPf4jhC4QA/kVzCxfWbgAAvGbC0hj1o71C79CsyaAZ8gMA2iMqrEuYEDGs\n57PaKjeMZkarUUMbagejC3koiEuiCH+uTihVodjDvxXJA0prDrrMcwCAYm4Tx3ifr87Rq3z4PQXe\nFOUeh2S9Gwmo6sy2vrWaxUvDTC5o/fga/tjJzMEv7pqw4P7HAICNp1lhRfnR/4Tf+GdMAGtOKrA2\nQTgnt67C+HmGnk/n+d7G1/4rFP+EHvjNZ76HL5gYTY5GzqGyx/ddHWZPy/vPvYq3Shy7LXkbXykz\nMn2tU8ZMhXMy+D9zDB987x7GC0zE+rnDTTzTg7e20oaog8/LTHCtllZiMKfpQT48N4pqi+MZTF9E\n84Rl9Kzi/uC6dxyGd5g8pTHY4ZDz87ru23AJ2D1WJiRcURSxp+W9xPlEEzLR1UiaKqLoYRQl2aFs\nxLxG6KqcM40ihx2TiChqbWR3OR6pgxHUmLgn+NdJrnKi0aZ8hfOcX02jDqef72rlfdBWGLnqPVMo\nQaRk2whLFRXnIcsSZXG1KkhOEHIzdFIYVYvMX5HpfNKWoynqU3qOzCi3GDEM+tJoTdDLt3QYhdib\nF9As0rs221xo5Ahvnl02ojIsEB6tSITJqnvyZnbmYS6KBgoGzmN67hQtBWVqXO2GWsmIoBQGWgJy\nV6TJY3ZoBud0/P+2swrph6LNzaAMRTcRlSsy8qPKB7EnoLzB2jGq4h6u0qmE3UY+XeI4wWqvoiXn\nmD2WbaRKnOsJqCB3EpmqCt78CUNP3nwPRhF/SUTxK5yPu0UFRutMZvIbn4FeynUrbKhQt4nyhwn+\n21DrMWji592wBOMCbSr7jyA5JaIyLLLrj11vYV/Fcq56eRLva5gsduU1QDHC8V7dpS7kHDNo1sjn\n0EkWXXFEsGtoYVXo8ufsHdSlT65cpd61Yl30OXa2Whi0M/rKWpnAlNTFURKlApJaLS6eiCTQVg2h\nLhE0q5rrHU1UoRxgBDoruYRbZc6PSe1EuEb50pYop2eGXIjmaQt0i2FoGoxiawkLMi7qRvdzjJhH\nYyXIXeRHZ51DREOoeMhVx3rvJmcAgGW1DH/QIXpY3zHBJkqWmiYp9/5sBHI/5eXdhwEsTNEufxh6\nhHlR3e1wV6x7KAn5VUbBFfwtTNSCAIDgtwr41rmnAQALSoGsmD/GVISIa6v2LF4283d/igW4L7Bb\nkl/09u6Ulcg4OE9jk7+EcJhHj5OrFjjdfwNzPegzsfEejVFJu6oUDKdUNsvyIDopMnP1rBuFGg2a\nNEfDaXn3A5zYCaXslktoiy4YHp8G3ZvcyE9yhI/W9Hv42X0KTrJzhI6c0mn0O3G6xkXLvsTMQmuk\nCJOahjqk1aLZ4t910iKG0nxfZJcLYW3GYEgTLssMpHryVt6kgZCMzOGmm4rQkH6Mr/mCAICp22oc\nh5i1fPrTVFLpUhfzESp/2TOHTIl8FOv7sEY5tn9+g4L+pX/0mwi89FsAgF8pDyAooWLWwjHg7X8H\nAND8HbYdnAk/D6WC568xXR2/Y2AGtKazjoN1GpXZv6SgR+KTONFwY/j+ZO8rN9PmOMoBjt2zwU1x\nxNPF9i7XTX2viaqPBuao3kXtSLSta9Egnmt2UZqgYdutmZBQ8N2mo2dx6hUt9QTk6W/WMVsS128k\nMsRb5DMwr8ZLK6L82zzh55ztGKmcn/O3dQeugV/hgA/fRvUi35fSct1jW71LvXWabWjihOV8RpGx\naPCiLI7gxgwqJCp8n3tgF+06HRArCE8FjSaMeLnZyipmNCV05lyKOhRJQpZKI43LVLeLXJcQLUab\nGBQ3ZVrFGWgEKHW1Q372C10ohqkjRosVjSiNfXrICYtoQ9g00cnUGuo9eTsNjiGq47WoTo5roS3r\nobfwWdV2Aqo0eZ+WrWO3zbHVNXyvUrIChyh0kx40QP2cyO5u+zHboSOb0NCoT4XOYGyMcl9oSDG2\nwc9N4ykiWY4T0zTUAwotAnWOuZJegs5BnitdNQxhzsPoCPW/a+jtVETNAbgDvLay4qIcXjyzisM/\n5uY/0IkhNsz11GAQclFL2asXDeYtCpxukQfzU9OIhei8FqILkGhpiM3OlwAAtUgFC2U6+blqEblp\nOokG1Q4CDepTRso1sWYvwd6hDOTjJzDMk/e5ASlih5SZIWUL28VcT74AIJCWwt7lZlsbM+FRTkD4\ndlFXuziK8bMcr79pxNqROKZwqeBpi+zjJDfTqc+pIbvPsUmHT7EginGsadagcfCq07V58nNQksG2\nw2fddPswE6ZTcXGgCn+Zm51OXEW7N24HRLvW5yRpRKv87D4qQOnpfS4PAH9pGoTcIG6mmFswlhhg\n7B1wneXSMhZEqVRlqAmvi8/6rmIPS106p1ZRMKVw5RUUbczM1tS/jTNG8lNKneCLafJ8r0FbG98a\nRVt4K86xFdy2CieyvQN/kzJ+rBLHGlEJSqAt7cQqMIAOj6JVwWGzt/1/EvWh5j71qU996lOfPkX6\nTES8gxl6ub6mCm1RvmtKb8AthYBYI/uYyjDSu5fjZecfulbxy2VGYjFrEYOH9P6axRHoxF3fpHju\nF2SPsDdIT9D48Aa6ogPFTjAMk4semeNdQq1Z7zA6xSAAoNswYlHAjZHIWayd8O/XGvQ6N4wPEbMz\n8rxSluB7PXjb0xM+db7lwuIUPd57ARnOl5lIcEsvQ1FNj+u33mUU9pvGI1T+e5aBM/7ZLAanmACk\njEYRd/4cAGAyQ35WXvp5lJocw327GpeL3wQAXNU1cP8FemwTGXpx7xj/KcpOQow+xXO47P1DAMD0\nuy/j5ggj1jNG3onLvlpBapsRZrdd7cEZENtZwuJ1etJRMf8Haiuabmb4GapH8PjoLUpqFWy7OJfX\n4+RzazoL6Jk1atr8AIuiyPmjbAQeBSOCIQnvQZvMWrRF0lBSY8foA0ZJw/Nl/Fh0hZnaYiQz5nSj\ndoURl7lihWycZScP9DoEmSCOGwL6bXt7Q0QqTQa2EXHntM15VJ5mYLIyYgt17ZjQUI5SxQGYf5Ig\nZ6QnfiVjQtXFSLFU6WIyRznLazuY8jNiWClzbvxKOQZaHE9LFoNNJD5lbIPoOEXmaZiybDU5AQfH\nJckZIJ/lIYBOWodWRkRhKMnIoCMygP86dV3AYodIRShJ2cufU+JSlJFXxGbBKKhbq8FpWHVEbZwi\n2e5B7SnohhkVdrpmBNzkY3RDBo2FfFwuUGYNpgMYRRnDTGcE0pdFD+1wFxWRva1Kce6KXQOGjPws\nN9nRljfFe5vAGa5nPiNKBdbMPXmLedWQ1xjNnDNRDktvWXFf9DhWzalQeUB9cHvkOBCwslNEZlZH\nFEUX+R3d3sbxPHXg4ukaokrKQfQwCACQauYQS4tmHueNaO1zLs1ZKapLPGLSKjnP8aO7MAcYvUUu\nTENbYcax6aiBSS2F8uTtL+Kcs3ckDwBZvwmtOhGb3EoUbScLAU1ayEOqpEFJoE364SJ8ecKpXdkU\n4naiFTY/5Wk/1MbBGerslLeCgQzRmy/JvJBrKTf3Jnh0M743AsMQdeyVZgFHLdFNraRBw8MjoYiR\nMjnTsaI4wc+xshlT88w+3t/1Q5XsXYgHALI2KZyrlCmfLIVbk0QMnh74S36h+TRODbyR4TH70Ukx\n8265a0ftEyIcpWnq5kj7fdyqs5HFQLyJvQPaHf3EBE5tHLtRKxqJrOVx/DwjZm/6Doo+Qv3Lb9xC\n2SUylcuUjZKqDv8wj1hUqi6CGq5V+49LkF4pPZG3XtSPePvUpz71qU99+hTpMxHxVkTf02AyDu9l\nRoj3jucwZmCEmNI4cCSSribwZwCAn6sGsC8X99+KKrylpCdnwBrGbouGBc/xwbHgEj7p0NN2mbPQ\nHdCD6aZ3UajQg4GNGH0L+6ie4SF+bS2F1/P87gX9BrROevbvirtcsy4z6vdE8fb5gZ68SbfoNVk+\nt4XCgfDwP38W7xXJpyL0pzBuMNL7zn/gGBder0H27X/EuRn5NmTHjMbrz8Qxs0VvXilKnj0I3cSV\nLPvlyn5Rj/eyPMu2at6A6LCGc5O86BTLvoDqDXrHvj8cxaU1ju0bP3UOXdEbdv+YyRfa4h5e2P0i\nAGBy6SqAHzzGm3tUjVvb5MNauAEAOJVZoPcwEuzI1Sj9kGswMruH66IYfiLNKMK6Pg21+jYA4HDH\nhcAiPezhiRg+6jBavDHOc8fdj2Zg8PO9yvt76H6ZUUn8ew1c8jPqCGfo7cev7yMa5xpKa6Po/oDJ\nNCNuOXQjoi3YDs/09ofWH+MLAKwlNUJKgYZo6UmX8hrUtFznQYcFigFxRahogVrGKMonrgI5MgrI\n85zT4kQDKgvP4Zz3lgBRLa0ppaftMrYhcVJmM4UBNCuUA72qgnEN3xeZY/QyXTjE0SCjl4GmCp0m\n57c6ooVOLu4SZxg5JBu927AZFftox+jZSy+QR81+Dno/0QVHToK0lPo06UoiOsi5asV5+Dxn1CCa\n5rvmTt1YsHCu5bMBRONct+YCZaB1MIpShZG4Xh/BZIORcM1qwYioJpfSMCLJG2xo+Si01lQeCTPP\n7FpVPcwlxghFBdf96CdG46/RtHQMrTQRlUCOkaS8bsZzolTifuUUGjPn5bSzC4NoJFG7zkSZ/eIy\nHFqu6930ANwJ5g8cDegxUSUfKT3XylfbQWq+LX7nwfiY6NUql6H6prjr7+BZo7a9jOA1RrlTj8ZR\nl1GnH9kXMN7iXHYurOF15ZWefAHA3E4Khgt8buzpJoqiLeWJlBGf/n4dqqeIDGoCRczpKYvrUmBE\nzySoqpn/Xk874B4VzVMCz2DYTp0MGQ9hEG02v9qizQ3ZVBisMwKNJR7CPUa7kavGYQpzDA4nZWcQ\nNkQPuW5VSxy5hzy3NcmyOHjCFTAAGH2khsxH25NpNSE75hzv3mcSVfmMHyNt5qR8OFDCcpi6Xiwr\nUbvBz79wi7Jxe1aL5VUmr5rdakSuc667J+fQPXmfn4Mc44C8g1yY15DUnhegeYMlLmXKZaws0dZe\nfEeUgzwso2YlwpS6eROuc34AQOWrLdz/G5CKXiTpdrv/j37w/wVJJJL//wfRpz71qU996tP/C+p2\nu/9J6c19qLlPfepTn/rUp0+R+htvn/rUpz71qU+fIvU33j71qU996lOfPkXqb7x96lOf+tSnPn2K\n9JnIav7yVWZpOtVqnFSYYTY0eQeWGDN3pc4aalE/AKAmY6ZiXmdDVxRCGXSfx9QK73gdL7dwKmUW\nmlqUnOuUjHANMaMuvtiE9w4zNn9UsGBRw/tejSYzFjuRDmQSZrx1hzrQFpntV2rLUG1JxBiYAe1S\nS4BlZrOlXm/gz++fPMbb/3mDdyrhqmIzzXuA2sUo5BVmDrbyWqQdfJ63KO68arqoVfi74lQTalES\n7YLBhI0MM2LlOWaNRgvP4JyEWXvR4V3Ek7wjqs5XYPeIykD7zAANOxPQ7/MdTUUEV3+R83P8QwmS\nMdFSZIx5bqaKBM0FZiy2b53B7771ePbv+Ss/j5i4H311k+t2yxJG64D+nNunRV3OjNWOrA2/QjQx\nuMxswUfvDGN6hRmmulcPsWngHWNloIWimZnIJdHUXR42wDrMdyijQNDDNbycGUQ1wO8WZ5jFWWya\ngSrXsNQxItdgZvTkdhsRhbjr6uSdy7Z3Ht/96E8e4+3f/NN38EmE2ab6ZY5hMZLDoGhsXnpzAj8c\nYkcmp8KFgpJ8dEMcS1mqh/4S11uxuou86JC07Y3iquhlm/dy/g0FGyotZvMaTRcQ/R6zks+/rEd4\njR2ifB5mDn/QMuBGnhmkJ8ZDZC9xfqVHV2DJM4PWMMBMUpnqCP/w7/7sY7z9bz96CO8uZSpjFn1a\nC6NQVPmsqkSCkujMUko6odCIzNU6zUUnb0dD9FyNV61QOkTGdnwNYTd5tkJknR7XYVzgPNbjJRil\nlElVuorqGcp4NcDuOibjEvKzogPVZhYdA/W43m2jGaV86vWULasmhJ/+zx/vmPVH/8PzuCP6/Eq2\neNfTaJmBzytuQKjfwUeRrwAAgt0MnhNVnyK3ON7xxXcRSF8GAOT0ETyzS908GOpAJmFGq9VF3nfa\nejzbZQb0a9oUmjLaCuOmDF8Y4z39tRJvA5zzlvB7efL2RecMMgdsZnImMYuAljcD7hcysFp5n/af\n/95rj/H2zkoatQbHqYIBFdEsQ7LPDOCSVwKjlLreyeeRHRSVy4JpeMzMNpcbDsScOwFxjxotDboy\nZq43MlZUxikT3RhlwKMcQLnKO7h1hRfOLH9XUKuhMjCTu1wQJVrn1IhVmS3tqXhQrDPTWBGPwzVP\n/b08/3j+0df/x0UUsszgV+k7cDj5bisvBuCWsgpjizcHwkYVHBvMgA7MxPEoyjKQv6ZmZTF98jw2\nXfz/otsNh4rzENzRQD3AbP4L698GADxSDmCow/cadWFEj3jvWjJ+imyMG8wZL/ehfEcKeZC2VrYA\n6OKUycjiMN4o3nqMp7+JPhMbr3OEwlYOP8K0NwgAqOw4kBpgUQdXegkRHQV1PEcF6kiSmBMl9zJF\nK2LnuagKyT4WHBT6opQGrpbtQikumdtLLWyLNmRPdZsINSgYKrnY9EbmYBulQMeVbSg3aTTsdQe2\nfNx8PMdcqJwuCuV9GoeMo3c6eU20wJOrddA3KKSqwjLsKkpUIVdDS0tBr3nJg1feRj3CDaL2qIwB\nJ41NqNbCgJQbRnWWF9cdlUeQ1Vjeb7gwAbm4stNqGjDg4iXxgI78OGNjsC1SwWwKCfZ2aQSd+gOo\nrlO4yi1Ru7phR/s+Dbx0uDcw0tzcwLiBYw7qKdzXDUrkJ6jk0eFVTOR4yd+Sm8BB8k0AwJvbFO7B\nnBOpX+YmXD6ZxUCByna0YMPzD1iW7/YEr3loJ0ywivJ7IYUcT12iHGyfngKiKIC1zHdJ1txQu8ib\ndeAOfEV2ONE5NpGlX4LZHP92on7cWQKAwgsDqH6LRtW2/5OSmVX8TpZXKQblYZRqdBSqh3IonHSE\nRs9zrt8+UuFaQTgu3X0U23zfNVUBuVManvYAyw1+ov8qBiIsguIxNRDVcy2CG0HIGixLV1igsbuT\nOoDexA1S98FlXC3wfQazFH80TtlQZ7jJL9ztLZP64wqSY5SDZpSGSJbfRMDDyRnaSUNrp5HTdJJQ\nigIXUXElRSHZQ3lI1Ep+GII1xv9PWEZRF7Wqm0eigIm1hu4pdagJIwot6qzM14E0wE2gU6acBRxl\nODa5lpKaEV0j3xFpp2AR7RHXqtSbcwO9Tdfdigv2A67p9CLrKO8UW6iLAg/F5BJ8WersT9mBe/vk\nyfM5OgEH0lfR1XIDdQ4rsVKjrTA0HRjIUf9XLfzu3K4OifNcN114DZMdrtXupQx2RenHUw15P9ud\nxK/tsxDNSTUDA0T935eD+PB98n/B7UHh2NSTLwBobB2gZOD1r5wiCZlosagUnXiUjSQ6FTpzBWUO\nppyoK25tI3HAdUFZXIEb16LTCQIAqvFRWGRci1BMgU6W+qkb5NWkanAXwQHythg+QFa0eTxsl6E7\nom0wXBZFX+LzQIPOe7nbQUt0DnO4W8gE2k/kzXHBjmaEm1pDZkYsSpuWPuZa5kbHsCyuzmmQRvpX\n6aheO3DA7OAmK0mzzrzdVYY7RR4u1g/xjmg3Ono5A22IY7i3SOfLXwliv8Z1UVT2MPMy5/9kX4Po\njKhDr6Ts/O2ICW8tsr79lPQRZCPcbKe7p7ALx+4/lfpQc5/61Kc+9alPnyJ9JiJef5pe7K7ZgUyB\nnrjdqkZeRa/boZFi1UH4rBKiBzQ2pURHFKSQ6MqwmujhKPNFFETnCTT4//JxC9JZeodGex0mh+jb\nmIuiKeVFa5dBRM+tKNy7jKz0WgsCM/R2vIdpLIhewNVlRhmOlgFrJUKMxth+T95aVr7XEFChWaAX\nN6YP4ED0eDx3ZhLGGD1IaYPeqCU5hCM13/W5dhVRUUavWSpgRsr37ca4dAZHBskUI8zgWS3m3iPv\nHpMWwbYfAOCL0VPvOk+hnWHj+lhqAL4kPUzpyDgiD+lByn2i6YHjEWJDhFqyq62evFkmrmPSTU/3\nw44oXtFMQjsrmlAEJbBEyVt2toWk96cAAO44I0HXZAiFNot0ZP15OI/vcl5rBmzeoEy4HfRi22tJ\nmEXRhOJ4DrW8KGp/6oFa8ywAoKxnJFh6+hjFBufkUl6Pkmi8kZAYYFMSgbhX53hN3d6X+rXfX4UM\n/G7SwDnTBOYwsy66k7xyHnuieMrk9XV8L8oxDIgOS89XVnD0sTiyuN6BK8vfnayl4DOSJ5mAteYc\nn+B4l3K427mHa8LrrmdfQlB0fyqssNPRVf0MGnHKzuh0BbFT0W2pbcFLO4yUd7QsN+q+MQf84eO8\n7ctOMXxI3UrXWCBCp9XDnKNct+bUkIapZ/lBI/J58feYaM4wU4FmheU5O14VujlGRq3cPrqi086R\n6ABmCcjgkzO6KzuV0Iqyiy3tHtQBRovi8ejGW/8ROToyl+FrcP400g4aEcKXzjFC7kcHva/+v9q+\nB9MLbGbyWpYy4jzTxfU3uN4bM360B4mkOataNEcZmdt3GIMMD8pRCvL4SZUGKleJAmQfNdE4wzm7\nWmTEfPtZIy4mGSkuTJZRW+QaKVdMqN0WxwVTRPNSmhock0SF1NEMpOJoqx3345fPUc+kDyeR/C+D\nZORPH+ctX7dDYqfed8sJSIwcs1x0E8oOD0IdI7xuL6jQKPHvKbUBBR3f4aiI0pvRBCQyImIufRKx\nFG1PQWPGlJVHKJUDymRWvobmCe3DqcyH44wozaiUo6zi+xorfJZm+AQWcZU1t5FF0s7PEn8XmtYH\njzMlyH5Ph+owv7vd9SGqJGJVs1Kmf33gBNsl2mWVy4vRY6IECWUE5gRt99I8/79GYPNFAAAgAElE\nQVTwYBMZA9dKPqzB1RjHdng4jw0Hy8eeb1AOdwpafElCROv9gRcwJPooR1/IYaFG1E3VoPy+Z76J\nto5yPx56F8nTrwEAIo73UFsXZXV/6Yks/hXqR7x96lOf+tSnPn2K9JmIeDM6ejdj2RNoLIxG4+Ya\nJpr0NO5b3ZiV00cYstNTOYxl4THw/GViaBWpCs/3GsUvwFZh6cHaHCMHSXMIMh09cXfTDa1CJKS8\naIBjlRGFKkfv2KtXQTrO6Nooj8AkEqLSxSgUbrrm9jjHW8o1cdXF35U0HnwXp4/xpokwWgobVzBl\nYskziWIM/hv0yEKxOOxNRrESUYw+WdDghptnT2mPDPJbPMSfmFAiLlr1eeqMnnVNE8xaRgb6YwUa\n0xzP7Ywdy6KpQNTK6E+iHoZBRHjG7V1UJvncSqoLf0ecZxjptRfqOuRLTDK5JrmPrz/GGZBqJJHz\n8B2zadFSblGHxreE93vOgW6TnvJQtIaKmd6k3kMPVZX04GyK0cXufAvRIUZUU+FtYI+JLNEMz2+e\nUnrRKdCjLXotkD+gN/9luxY3K4w8fV7OQ2WtgLrs+wCAw5IP2nPinD7tRuNDzuumjZ660ujowRmw\ntjMMaZl5BbJxJu7lR9Xo/gxl7sHKLQyLyDMScuFSi+877RL5kHXPQ17iO0rr/y3aBSGL+jvIapgg\naCxT1tdUz2Naw9KZtYMX8ZYo1/jC6AZeDfJ9N8HvysoxlC5Q1tN792C2+AEAB60N7BRElJAQCXaV\nSE/epvNa3E5QVs/7uVa1cgP5LOc3VT2BscZnFZIKVEWzEhcov6rTQZQEGtJOe5HZoUxWLyjRjnC9\na0k+19rsIqAlD8nSKaRhJp9ZjS7kPdRvU0eUOZQUIBU9a6UVBzarfO68pYKOlfprFrpdlvZuAFF/\nfgG1BqMSZ5G/8WpmkHCRt9O5PHxh5mg8DCkwXWL0+8Z1RtrP3Mpg4lXy/vbNDnQlcQ7tGoM7wihr\n20g7MJYJYlokXx4rRlG+S/1dKrWwf4bzMFqkvGUG6oiLZhtomBA+YOR54lHD/QOeQdrGE/D9+97N\nHwBA5cigExRtU6fNKGsp18eHHI8NOTQq1P81jRmeHPXNoNKhc8h533ATMdBoG5hao67vymZhlfMZ\nHYsUtz/gesxIKac1vQWFMUZ01vwGlFHOn34yD6no1VzpEo2qpU9wnBK5AvY89jRExNpHZui07ify\ntjupxbCESNBW/jXYFyhzZ/0fAwAiuauIK5mE5zHpcJhlzkT9gQXNFt+XMfNd7yw9D/ceZd/XHUN9\nims4ZMnDCOZl6O5x3LNTMciXqG+/cGcWXxe91r9oDeA0QnmfbdLGfTN/ATUZEaL6IyNUfsqURPIF\naM/En8hbL/pMbLwxk2gs3WhgRMBDRZcaSSM3hnO7GXTb3Kh0A1T4Mekw6g4KrGzfhfEFCn1aXUM8\nQuHVi0xd/3wVyW2RteuTYfoKlezk6BzG/FS8+CGTB3wnMewomMloCXShHBLZnaOzGI7w7/VBCryp\naMXdEjeRGVmmJ2+JYTZ/d9cBt5GLvpVUIL/J3424PNCLUqCnokPN0HQenYhoGA4rml+gkOiOZOgW\nyXNSLjK2vTW06xyPO3UM6QKV21BsIXxXNE/vkt+iIo3dJH83aNKhKeOLk14HbCLzt1wQyTYeCYaK\n9wAAO6OdnryNXC4j929oeDa+yI3h0kELjYsU+pG6F4ciySbtP8b4DL9TjlMBLctXcbBN5ZeWjLiu\npqE98l7BxBKhSidLp6Jrr2NfKLEj34Vuks7K5kEE7TFuau6QHwAwYPVgX0o5GVClUA5TKdJBG8q/\nQIhyIH0DAKDNPUSvas3ZlzOYzxNuDXyfSTqF9hpqHa5LN2lC9RwNVKlzjKCCkNjXglSp48497DzL\nTlLe5A9RHyHPp1sKLAmFzYt5OPfWIdLn+NmcehfKImHIDx5MY3eQCWmu5D8AALQubKN9zHXNRJ5C\nRiE2dPv76Eq4wSkU5DFe6t0jdCMdxviM6JMc4Hjt8hqUKqEXskHUdPz/bqEIW4L62XXz/+OpEGom\nUd82kUFiVOhbXg6d6AftHuTGkw8M4MhEmVSX2zAKuNUiq6KcJh8KGZ3IY5UUrQrfazZ1MaYn/NmO\nV5E107iqFKJ7UUHXk7f5H6zhmyMcz8HGDQBAwXwCtZMbTvj1MKpixe3XFmAVEOH1T8ijZkiDN26T\nz4vzVTSPfoO/q/0FHip4NPB0hbzdKsvwvujjawqsIhmlPu0/84v49ZJo3DzA7yYjF/CjDA350mgM\n/inKsvT1X0FtnNm4tcgADi8LXftXj/NWzgLxSdqr4dMOknw1Yl3ycKxPYDxLe9UsSZAVdejr3TSU\nFtoQ9wn53MrUYbGK7jrtMIoy2qPuVhBjGn73kYbfPd8wobNHXYiPnEFVHC/dbaSgMFO/ZcdCBio6\nmNvCiW+eYkBPu5wySOCoP3lzKty7iR8sMSC6onsOqxLyaYkzK/9S5FtIP/erAACJooy39zmvX3nx\nQ7gfXgAA2EVv76m7b8N+hu/VBTJoBnkMpLHvIiN67xbF0WTtZAJV9/sAgLfuh7E0TTk7uW1Gsk0H\nbDPNvafhl8PjoEF6yz+PepsO3lWFB5I/F7r2XzyRxb9Cfai5T33qU5/61KdPkT4TEe+wSK5QnJFC\nLlLGVbsGdFyEG7qaY5y2GV2cb9Jzzcn1UPj4w4pWhXqOnl6sVsXYPKNChZmw3/YjHzTj4wAAfWMf\nKpHMNLodQniKnpHJR09oxyCFwyr60EakGLQyihhKFLBrEV6Nhh58WR3DrJ3eermlBLDxGG+LJsKC\niUQMt3L0c3zqEwxPit6yWSuUJo5Bn+HfTCdpyJyMZHQGNaRpes+NgWWMJxhN6sC/FbMR1KYJZ/n9\n/xms93hvcEvnwKLoIrKqIj+GzDomRujRRSpJVAuESsdWlLBfoZfaktODzVSVyFc5Z7pOEkD4Md6q\nRRMcv0j4TbXHhKkD4xTOHBNiDWVd8L0qEmsyNjgTjGbSM1w39XoUo+I6TNXVgSrEJAef/XVYpujF\nnoxx/kI7MtjUnB/FOTPSMkLQqtAyzqYIiWVaRBQKmjYuV8lHoNtEXEvZKS/rYI9xDArRi7R7qze0\nJ/uGHWXR71Q7Q3hzy7yLxSy94I2UFE/ZmQx2nPspbKUpB29HGb24YIXjhGjH0TKgDJHPK9NpHJQp\nP9UWIxXZrgmWlrjzeyUA7y7Vsmp9D2dSXIP7ut8nv/JRJHOMTiTqOxi/xUj5zgtNXGgwgWtbx/XW\nb/aOMBo5Oeo3+Qz5DKMaRdyFwjBRm2cPatiwE6bVqexIWyhfkjDnP60sQ6nnnKqMGrTL/KwuyFEc\n5HhSaeqj3J6DfoORiGHOikaTEW8qmUZWQMyyBtdAOZuCMcfIytUMIw123ZFJcpA1GA0di0QZvWyv\nJ28f/NLnMSHUUP8cP0wmRxFsEk16yqlGJ86IbmMziqyDEeZTEsrOe442ru2JHtPyJiQZrr02Ow31\nPO9+Ft8TvWJnNbjvJXoRXV+G8/J5AMDPvPUId36G61b/iEiSz3aAZ+3kt5NWoFIgihKXv4mpMvVU\n6l2D5dtfEZw8nhVXqycRTVCO/MU6mqBt8vtpE+SlJipFJnPpVBVUxdGMvmbBbp0Iks/J744GBpFv\ni2TFvBRyO6PYoraKSJtrqCpTNj7JxwEJEcNx4wEkTa6nLNZFR9xdNieJXDVkUoTc1JGpahUBcde1\nIH0EpZj3XmT77VeR+wbX2GD/LsaKvBK6MkOZfM/ph22XNu84mcY5J/8+89p1TN4ggnF8xKOxKcky\nfpAmFP185YfIjnIfiKhLGLEz0vWmCBfcHZFhb53zv/hqFO8HqYdeoxFqK6Htcol6/mrjCvYCtINL\npotInqONiZcbmPi5sSfy1os+ExtvxUyYrruexDOzhAhPnPM4tfD8rx67gNFJMtwADaYxE4evxskN\nlA5gMxCem50sICvasWGdZwYXJ8MI1bmohboMCg+FTDZggqbJDUdZo6LYDGpETrh5KZ1D0DnFObO/\nBdctCrokxTFKJEUUU/z/mtzXk7dIi0JqsnnhcXNjmb+rx0lH3HXLjqOhFGdk56mkzcw8igLOgjML\nT5eCoe6e4laFyj02xTNO20YZijg37lPnKjRuClZKFoFK3FeclHDu7NE07oiWc2q1EfNdKta6dxxl\n0ZpMI1pvnc8pkTdw7HBNo5dTccmuRbJG5a1oKMjGZhrqn+a6pMJhBNb4PpO1jbBdGOAdnjm3y3cQ\ne+4G33faRO0Z/q5xakN7ld/VTbAVne3qLdQTokjFug3LRp5Z3ddUIa8xO/ZwlGexZzNurEtpEOwG\nP3TC4YG1hdMKDcFUQtyHVD3uUABA59w8lA0qdELA8zV5F7Bz3ucUanwYpzFvTz7EszsfAQDkds7H\nj8LncGGAm49fLUMQlL+T+iI0j9gkfVycA55cU0Eq4/9Xog7c1/O5p8My3D/gujwto3zKWnvQtbn5\njHZ9sM7QSGZSeZwm6aw9/Rz5/f6qpidvbnkKXeHsSuuUl6yhCo3Ic9hpjqLa5njQSCClpnz5bFzL\ndusCihJu6tawAUoLxxixqtFO08Ar5TS+1YwGZ1x0MB5kG/C6KXO5Sgc5Cd8tl3EelutdBFKEsLPt\nKiaGqMfHSTuCZm7IzhJ11+PubbqU2yl0ztN4KnOU/2zoAENbdDTCv1WBPMONcyK0AEXmuwCAm3aO\ne3lThpaKzqnGOoLgIZ2OC1+uIvHoVc7109y8AulBHFnZqP3a1zLobvMu54OnkpgIc65sn/+/2Xuv\nIEmzKz3sS++99+V9dbXv6enu8RZ2ASy4XCyXa0hRCq4WoZAe+CAXlCL0IFIkIxRikBuIxXIdYQbA\nwAwwGO+6e3q6u9qVN2kqK7PSe2/18N3ZINDZEasHIeah7ktVVGX+/73nnnPuOd89hu+N3M0ioaMh\nN9edQF9P3dbMuGAyMhI+NqtFRUNlj4frZ0A1HMAqjPPNpgSOOvVQQUbdV5I2YbKR5yyZCvpdrumw\nFYO1T34/6NNx6c0OYGrTeFUOgNyAOlhZdsPkpA7IiJxrT0kBnYO6qQcvkOFzy2odPBHuXcFDXtNI\nDagXyQ/b7QE6Ax7+9oYX+cyjj5vFXSmaFylbMcfnoUpTloMZykLc4IfRQIN+YkKH7gZ5tfV7Z/H9\nXdLybI7FZlxmD/7BNvVD1HoOGjXfe2XvZzgxz/n8QP8/AAD8T9xE+eeU2a09O2aC1OcdqQX9HdLn\nkvsy6Tg/hOdbjGTev6CBQ0OouRTU4uMPKC/PPHKFvzqOoebjcTyOx/E4HsfjNzg+Ex6vSuSC6Rbs\neG9Iy0FW3kcPhO8kljdh6jLfM+6mpWNw2BHv0xpdcChRL9HCLLR1WNynRRr10LppZuSYmabXkk/c\nQ1jADAGTE8YJwh/FML9f7NgQMNOj6DgGOErQSg2qK4hP87PdXWH9uTVQ1Oi5ulvRkWsb69C2qa0U\noUjQOymflEGrpKdlVcnRW+Q6rGEBvUla6MromRlKU+gKGFzWPYUnLjHKr7ZNq7wSnEQmRKvTtWPG\n0MeACmuni4ST8zS+NgYAUIxXofFwvhVoYI3RUwydyaIoIozUUuba7l3+JQ4jtASNrlsj19Z4rYfi\nEmH73pB7NT3dg+MD7mdFNYmqlfDQKX0Ar32f8/T8NiH7Ke8UqgcM4KrazMhH6Bl5+1PIfEqf9+gN\n5JfcUGfoEeunDvBOn17zZFeHvQy/Nx1k3qFOtQGHyHfc2q3DbOd+K+7HoNLx77stNhzXzs0CP3t4\nbbb738QbAUa3d84S6UBuGoYUUQvZlBPQcd8S9RZ2l+iR7twg3Bv8egdhkb9a3PPBKnLAB+47UH6B\nCMbgQ6IkLvuHGEyMAQA+NuzixY/ptSSTwAnh9TWj5Mns5mMIekgz1S9uIywCWVbO+WEI0Zt5/Q73\nfaxjxt2Hl4ZKwghDiHMf1hnxaUx7kJ8hb0jbd2HO0/PU6ZuoBuk5btym5xvyVtHp0WXeN9fhHKO3\nM2gOUZASskWL+9fq9xEWOZWD8g5KUSIYHjugqtCL7Qm491raiOkeZUy7IsNeijJplbfhr1COqj7u\ndb0/2md4R7eDr/2Icp83k8+UVQmKF+ml3V+dxO+YvgcAkBzs4/UVesfPj4v6ARI7ftQjbQ7eyWPp\nLOdQMzhR6/Ezuj4DfxqnjFg6IgLlboSQlJPuz9924uZj/H0ggte2Z4zQZ7nefcUnUKq+CgA4MdhG\nVk2aRbM6rJQf3Sw+32tBXqRekMsLOBTlT+eHoiqXrgFJjYK8E5mB5Aw9Vk1UgaKFcnooUABXJINk\nl2sfaOoYhkVu/RkLalfJR0mTKDlpvou2kt+XF5NwiEJuRjOQT3Lv1VoiHMVWDHI35UVdzkCAcbCX\njXA4VI9c225lFrsG6sf+h/s4fYLozUBKnbj0oI61fT7XfqqHnSh108rEt+BT0CNtGVhJ6n3fj1Cp\n/ykAwOos4s44q98953saRTXlqffmK6TpdSNMKaIMDf8c9rQCwh5akLFSNha2HwcASJp5fPe8eO+i\nEvr3Rd72c3MwFhuPXNuo8Zk4eJEV97qKAcylp/i3+SLka9xh76XPIVnkZ8bCPFjkJiUSEjJZz3ka\nunEydULrwIaNsIp2gVDA7ocSPHlEhWhUu6EwkokUCjO0ohZwWE9hPdNR4wMNDzVdR49pHYWtf9RE\nTcbvaUBm6Lv8UO3x/qC8Uh+5NLOIYN1frSLQ4bO2ZQ7YZ6mM3GMfQ7pO7mz5qZwTSwV49gi1Nuth\nOPaoiNXSATbKVIizs1ybQtlHIEaoJa0bR79KIXaUlajoqXiMszw4M24V2jlueWdTg088ZJwTvSeg\ntfE+vThOhTr9oQ6doDgItxYARB9a24NLZ5F0vAcAmBB1tbPxNejVIj0i0UY5yN9vWCWY/mMaEJPr\nvIfq2LYwHRwDAKxXjiDzU7BasQPMKUjjBx0heBsNVKY4X3nXBEeAkKV62MXiEaGxo20Ka2M4RFtB\niEruvg/pbc5h/6QBp0WxlmSZ+9Jrjy4Z+fZJBYJXSXddku+dfUGLwwKfmz5Xx9ovaJT9icWJeJh0\nUExQSD/qtmDe58F7LnYNOae4L5fKYFoTht8UFd+/bI3jhR9SUaue9+JgyL1tO5MwX+fd0fUZGiDP\nS76OfIsGzLdekOCPBiJaOl+A+i94zE68SAV3OLk8cm3dp5toRcj3Wg0P9PJcGfk84XnLhANZkRkn\na/XgzohSfW7uxVFOA6VIqbH77kN1QCMmbC7D0+LdcE/PtYVUJZSt5C29ygttT1yLxAbQidRAdGls\n22VHUC6JMpyRJKwlMR97DahS9k5k+Pzd9mjVdblxGn/+JU7+zFuEsvPjFShVPPBfSNxB7hwPC2vG\ngEaRUaq7CT7vQeVnmPyauOZwKDHZZwzD2tGHqD/N+ervka6W9SN0q3xH4fEIjPdoNLxd78CeJY+X\n9TQqHK1NDOTk75jjSzi3L1JgnvfB+B1Cmhcvj0E1/WgFnkcD/SzhZZVOjqGCcr3dpU7I7dSgk5M+\nNds9NK6SD9xmJepF8rlhnP8vto2QxigDtpIOBVH0ZifcxfAZ6rTgGvd72JyHvkGatqwq6MRhaM3K\n0RZGU73De9Cu3AVVi58NNzQIyUnXsrwKQ3XjkWsr+mX4wyR54/pcEskPeJB/MUiav2Juw9EVteXH\nbmN6hvWZN6YeQH/9HQDAQEo5d9S80C5TZuPRAE7LSJ/UQQ/hu5TJUzEaF0ePX8cVNY2Z26EC0mnS\nLB57DVdd/y2fp+XZUT1lwn+3zfTQ/6dwFadXuIeSQQv1/qMNplHjGGo+HsfjeByP43E8foPjM+Hx\nZn20BAP6JFIJWmFG/QASKz2K1dYhzvejAIDuOK+vg4MKenr+P55Nw+InfOeKbCDVpZWqvE3I2W3W\nYE9KT8UkTWKySGt9R9KHsigCnmy0dJqdbSw2aaGX4ykU+oRbKmMLWLjGueECraZsw46uXwQM5UwA\nHoZktxO0UE0LNlSj/KzFKINeJ7yIwyexbqN19oToNrK2XoRSQYuvV5uB1kdoMTrMwaujdSa7y/VE\nPEEk0pzvKUcF8j4TvKFowGHg9mqzhIFViRrUQVqr0lYW2rrI2W19COME6RffoWeVNswjKOB7RWh0\neT5n9jX4lYS7nAP+zEp/CxbPmwCADa8PPYFaTOmSUE0RCr4v8t9UCheUEUKA7vwQXRXRjIYng/I6\nbcIxUXRfumhHucD9lnbb0B1wnenUywidIY31N5ivt7b8AXx3RB7g6fPIrNCj+rw6hrsNrlnXEFHc\n1hMAvv/Q2gJHeZS7zO1eFi1Stn7ZwqxbFGL4n3dwyUNavm34GO5dIhilSQZZzYf/BWbmvwsA2M/N\nwH2WHkX9YBGlEhEKh5XXBk/1ZpA/R49u/FYSBz5a9tOrFQw1pN+pCi38dfOfQdLgXv3pThv7mr8A\nAMxd/gZa3yAfJAS0Xi588tC6AEC91kRbxc+qE/QwO0MlAlIBY7YKKHoJU+rLBoRL5KOxHr2xpr4C\na50yWzZfQE1O2WmVbciqxwAAMhnhz4LeisE2vxdaUKGwTxTBLW1jKCdNQmXy54OcC00tryaM3TPQ\nSOnZp7p52KX0rIZNvssjG53HWzVu4KuvEnU4EM1Bxh37SDXpga5bp6B5j+jUqmEVIT29FnmPXtrF\npUW8/re8KpEbvZCOce9nrvegChAdKOXoAW2fm8Ks6B6VNaoxcZL7UpRnIU8Qfeh6Sd9kaxrzVcK5\nTyq9cLfogf5kX4mXA6RlppjD3vbSyHUBwLBwD1oHr1hUsjiKIiOgVSQyZYYeRy1RurWhgHlImiXK\nh8ipiUi5RMcmV6KDroeypVcvoyiaQZgaLkgPRaOVNmmtUGSRbYp3OEooCfi8FtSjZyWvalLMQjD1\n1lBzUbfZhxHURV43DpeQtowO9gOAK7eu4a8t9MZDhxpcdFAnphe+DABYSESQFgWKxtQSyES54Plo\nB4kKS4QOrnBf5PevYLVM/fiSJQPtK5T521MeSAPk8chMFABQlXvxTpt/m//lFhZD9PbvlE5gSSo6\nNi2Qzt17bvx1gmUv5yoGvDLgXlQkNVw8Qd118ZEr/NVx7PEej+NxPI7H8Tgev8HxmfB4n60xEOPt\nlg3zHVr+yvUuig5aSCupCgpOWptFpaiwNOzBkhf3oMoF1KsCu0/rUK/To0p6+R2p2gLTvChYf8+M\nowGtJYXfinFRMu/NOi1xlXSAzRStJa2tjLQosaitNdEZpxW/IIIv/qaYw1MOWuW14miMP23mvePk\nfgY2Iz2kO9Uk/GVab3u985gccg43W3yu2jaEWuTYFnRB6BsiICIcgv4JenKpAL3QoOJd+By0n7S6\nAh6s8/7JZdYiFKEFnplgcEGqVsTNIr0B9/0opt209Lareuw5adEua+g92rVKRGK09guiIPmvD436\nT6DS0HLPSaKk78lbWFsXlbKCQPACvRrPmBNrH3PvXGfoBRxe68I1zfuttGwMKi09AtV9FVoS7n1N\n3IW3IwZs+ehtBqv7yNREE4RSC7ku6ZMeZ8qTVR9E08WUHdsDYGGF1nw7eg4tGb14u4lzvL81uvTg\nTMKO6IxoAPGA75U6bOiIylQwriA1YJlHRzKIdS89/k52jGuf/gH6RwwGUwQSKO/SGvc7voRbId5J\nJxL0SJTuNOZeJ5+sP+HDXIZ7nHAZkD5gikpZ9hoA4OKZFXxSotX97oUT0L5JT07y3o+RcYg85iPe\n+z7VXMX9EWsrq1V4skJ5+MjA/ZEaDGhVeAenVgQg3aCMHM30YFeTvpUInysbqFE2kTcGMg00fnqf\nM/UyYhnuwaTocZq1WaHWc987ySZqUtHCzmFEpsVn7OqZK6uq+qFvUUYimgrOg/+XthxomUirsGgu\nopLWRqwMKCh/D3NBkb9s551fv93Gifx7AIDDrS7ic+TngPUppOoMyPHkyW+/NJdhfJx3goHyOiTX\n6Skm9QuYE2URO9PPAwAuJNJozBGRkGZTiI1RDqfDEhSWuff2A+7AbXkQj7vFXWOkhKYInpxrWPCh\nqMC3vN0FviFiRf7NiLVFHVCLFqLllhxStaigdyTKe9ryyItgT4tMgo5SlPVUT8BwSGSpLcqytusF\nDCXk5YiyCGOX8SCl8SrcmTEAQHPI4CKpqQ+rhvzpz0oQE40ljCotdG3qsY6OHp9KXoKsIqpC9bqw\n5D9FwiLo7GsfXpQY3635MLPIZxkjp9HTsmJV53tM14o+1UO4LlIhr06jJFoaFn//FL7yQ66jtcn7\netnAAN0aA6YOf2cLYyvk335tFm4NUxL7og9zfW8OC6fIs4Z1Dep+BsvVTFY8W3sPALDa/5d8bu//\nwOmTpENR70S9JEoWl97HT/YYLPcPH7nCXx2fiYM3ZiIx7OkyUlIyb8+mg0LUut3ujcNTIxMZe9z0\nlFmKMbnIYTR00dsWSd3TXWQO+IxLMn5nvReA5BP+XrHaYS3x92oqgohoSN8skXGGxRg8OR4mytMD\nDGu83M+GtyE1E7JYl5J5L/SjiDepnNVn7SPXlstRAA3OPnZlVDpG42O4ISfc2FvLQisKftjX+TOq\nOoRnwH672eQn2BMRwxpfEsM7pFVPSybNyRWwiOAX2cTz8LgoQM1MEzfHuCbJR9xmlfckVnI8aGLO\nSTh8hPUitUNMFEjXoYsKc6Plh/OUiDDNfNqP9leHxriHUo2KYspFkKWf82PYp8LMG5uI7TOoxXwz\nAb+S67j/E84h6H4d2Xs8OOSGNHL3OU+rVIsdUcxB/gkVyaDzAH5x2Cq9Xqj0nO/bkzGcEEUt9Ad8\nbqmRREvDYKbYRAlQUlha2ji0Qimk1Tz8vhGo4uaIte2HLqB8hwecJEhjJWIzwpUlFB/oj6NVIm/s\nGS34ip5w9Yf+fwoAuJ2uwJVkYQ9LyABVhDB4yrMKZ4Pw5n7/PQCALncWhwjoMDcAACAASURBVF8j\nT17ePY+YPiHWqYNUxUPJViXv9UoppD6mcfVVXRgbTpELXDLA2KBic3hJh+xUfsTKAElhgFsiwFQq\nJQwvl5jhE9cFFWkOIYdb0MyEjImGhzZCnjs9ZoJBdNeJFXXQSHiwthVTkIveyDpR3jPQcyA+R/5U\ntzU4tcl92/RIoRZ5vI4Y+T5h6KPvpgE7vxVH2yBg1UYS7YyoeSzj9315xci1zWZfw26e+x2WcH9e\naGuREzmknW/WoL1D+dY31OhMUZ7MosjMpPYQ6es80OK6eRjO8P/+ghQZoSM0dznH3LNapNN8l8Hv\nR/xI9CKeNuPS90WpWQWN6vGJEFZL5J2VCx30k3xW3t+HUsoDrh9xYrB5NHJdAGDoVtFv8nmnNXZ8\nIqHR2pPxvWa5G3kD5T9QUGGjwDXnTRY8MWAgarZCeaz0nDAqqMdckgqiTdGzVlbEUNTmdor/l/ID\nNEXAarGZhrVPXk1mFLAOaEzYlVxP2qSHUi16bOfUUAxpIHn9KaQapUeuTekcx6BFY7hyYQ+xOzxk\nn/7n1EdVzVk8f0jI927wJ+il+dmZe3dwe4pzCH1CY/Fg4hbGXyJ/mt/7Im5UKYfjX2pjsC46rdXI\nszNPl9C6z0P4TkqPfpo0e2Ihh0MQws5nGAWvn6vi1QEFR/+aDIvLfO5U+CvYEPUR/r7jGGo+Hsfj\neByP43E8foPjM+HxqgT0W57xwNqkJdLKjcFmZnCIdOBDXhT/botOPP6hAUXRsUS2pkJXQah0u13D\n2DKtnY17tLDGnDG0WrR+Y4kc4gHaG5qhFruiE4zFSQu9IJ9D002L96gbR1VLC0emew7yXXphCr9I\na3E6ocnQUm7dH+0VhgL8rMIyg/Ecoby2vghtRJSa9FSR3KOH050RHrHEhLUELVRdQIFVMceZIw2S\nflq3jQMRULRyCd0mg5na6gGyWobJ1/QTaIlOMVMiAEpSBxICUtZVU/hFhXDXefkk1oUHU+oRdjky\nqeCTkebrhtFNElJnpDDdo9W3J7xus62OmlLkRG7PYjIkcp7XrcAk9ysgF3m+tRdQk/41AKATOQGp\nyKV88PECnLcZtHJ2np5/QjuLaJfzWdJvotgkBD1zdw9/s0jL/AsrXPvO5gWoTYSBX45ZsD/gvnWN\nEmyXaPF/ySnQlIPRvYYdcSO8IVr5rws4/Vm0cLPHnMF8dQ/uAD0Y48EFVOuEeUNOloxUKiaQn6P3\nst2Zx8Q0YfSFnSBeadBTedlByNMYBtZL3IufWdMwbdCjtUbySFXpUT15QUDyGy2szJIHbjzYgULL\nnqHT9jC+C37mdz8hbdYso+1qTV+CpCh/upQgzRudPmIJejqWGR+aGtKl0T/CkigteKQQOe9QotSh\nB6ob6tEfJ/2dhiaQ/NSLopecNMmhTpPX1bYipI+Tl1UtDbx9fkbWF9113FqYypQjm9EDpZXrKbUk\naFT5WU+NHl9zfPTaguVF5OfIJ54h0ZLvFtL43w4IC/77e2r03yPPdis+DD6t1vUueUT59S6MdqI3\njbd+AMnX+fe94DJiVnq/Ti/leLk6jpaVPKc+TGAo6POVaBn/zkB04Dk5r73SFg0iopRq5Y15nAyQ\npyYqGvTlTKMpeZM4r3l0AFJVVkW+RPppkzK47HzfkYtIhyQXhrvM7x+6G9DX6cnNDfcQlZFvzRLu\nu9zThX7Az3r6A0isRGF6h0q4gtQb0T7paNBnYepwXwaxJox26p7YjBSSmgiItIggy4oEElG+t2tJ\nIxUmOvAgu4xlb+yRa1PXItg74NzGC+NwXxQpgP+aMnblhWtoNvj95WYL35Pw6kZ38Y/g/Qvqz0iQ\nCJ4WSnRfJ7+8MS3BsoZ8bf73Dqx+lbw8E+d6M9+eQVaUKe74UzDn+dyA67egCVB3vXmdsvtidgVz\nUnq23cebSKnYQe2Xa9fx0heef+TaRo3PxsEbp1AUlFG442Tk1rCMXoWKKaXegG+Wisld4Ua/6W3h\nc+Juo79YgdpIgsQaToQEXGBmoB3u3DTCPM8ow07hJBIxMup58wZaRiq2jIwHr0WTxFBAljbpLH4p\n5jjvyMNgJsPlcqI2rVGBRIv3cSqtYeTapgtUOtL2LlZrFFxfs4YcyGTqig0mKwVEusXDRlY6AfsY\nIZqq3I2aaAA9NNqxY6YABNJUQLLNI5REyzhdqQOIiMO8ZhUGDRmqayFt3rJ08ViWgnDkckKephDf\ndObRTlHRyqUCysqosB3kfEOFUTeFgPXAAlmPeW2GCR4y6pgNBp+oNaxswl+hwZOaeYBsi3vY2+N3\nhsursI7z99VXqli6wQPDgqt4oKWwRDxc73Q9jHKdG7r+1gFkU1yHzBDCC+KuyizyUD/XzGBC1PT+\n5IlD+A8J07rkEgxf5GcLN2iAWGTTI9e2Eb6FEwsUaMs18tmDl4ew1K9zvWonmjYWIMkjBn2ABsJW\nn3dLTrkbdjsjVD/IbmOrwf0MBXdw9oA8t6WgsCo6D6A9S772/O0h7E+OAQCiljGceov3Vj8/Ejnt\naj/6PyeU5xjMovc0I6P1B16c7LK28ZaW75p+9ku48dZPHlqbBkNYRfC7ysA1VDxlKEXnK32vA42E\ndCk2uugaowAAn4LPdyvXceRgXVx5uwmNnutRZSsYLlABa6TkPWUpjGUjeapR7qHa5Tp+SxLCVlsY\n2UZRq7jbwpSFSq5a6WI/ImoNey2wDnlQ5SuiYEPZ9NC6ACDSriCq5YGrzPC64U+iVnzPQsh+c/MI\nv3+BmREf5eeh2yHM2z7L+I1ybgwZ6/8KAKg9cxFnrpM+8hfX8Mw25b/8HuX12kthnLgp7pGDdigi\nlCHLixp8+adjAIDoGnVJ3tjF8wbS9FKgiKtq6jxNN4hig899+lQL7/dGt6kEgKykAJPIfGjX+yip\nyePIkRaWoRUFKXlWP1RB1uDfc6oesEJD3iOuszxWOVQFARlrzVgq8b1Rbwf5YhQAMAY6HaWGDTUd\noV3ZRROSdV7r2ffL6AUoG4UIaV7MllDhY2GZMWHoEi1YjQkUUqOvBwCgq5Zh7pAHp6UsR+wB1+G0\n0hH49lYOfcd/AwA4rfs+dHXGPqh/vIqKjPo4OMP6zmu2Lsx73KOGZYjbOWZD3P8DH+bF4V6c+jwA\nwBb4Lm5HKbuargvaJ3nmfPizMKrqdwEA3yi/yOdOS6G2UX/YnB5UYuSZf2osYjPytljJ36890THU\nfDyOx/E4HsfjePwGx2fC4+3peP47Byo05IRoPHoduiAc4LgZwpGMMENrlpbixLoGvSlaL4mhCjYZ\nPaTFxBDqkwLSkRMOm/HrkBNQqtEcgSNECye6LUcySE/j9IcM5IhqNmDTMGcyNTiEqy4Cdzo7qLc4\nT72YV2+rBLWLHptfvT9ybQUdLb5DTRCDDr3jfDyOeICQ50yygW2Rn2a1Ea5UTfVRE5V5lJo0xkRT\ncpe5+ncl1HbUohqQzgx1SgSsxFPo2AmNzWpmcKtJ2EQrGpH3t4Cshr8f5XJwy+lFmMonUVRzDvMP\nRGDJuTzmw/RAh+ZTAK4/tLbzil2URFeXvaToP6oDFHZaynbtNrIbohTncAJeGWm0dYp0yN7xI9+m\n5xmc12HjKr0zl/UZ6EPMhw0dcu0f7xixvETvxFlJoNgl3VuhDLRrtNZjp6MAgBNbXvxAQ2/zqfV1\n7C7RExl7L4dzIrCutcl551+KPrQuAJhZUONqn5Ggy1Z6LZ2/tqJ5ljxgdHZRb9G77ZedSBzQo5B8\nkcF046tt7Ag47IT0D2DdJ3ZS787hpWla84dq/swG9QiWuYbb/ygO96rIG9QnUJmil+CRCiSoewdT\nLfLOtrqEuTrRjuuJBpyiEXhunnTeeX90qc9yaR8ZL5/XlQlPPGyA3kYvoVqRQDZDOj1TlyNZEM3D\nl7j2ls0JnWg+7pMeIlnhHrWcViyoyZ+HIhjqjNyN/JC86vcq0Ckx4rhZiUFmpuwZ2qLsqmaAio5I\nxjDvwYRVoDdFA7IV8uXAQi+4nRsd1Vz35OAuMjLVUSXNN/rTiI2Tz05Z27h/m0jPxZk67r1AODv+\nYwY7ZtVZzKpeBgBIbfvILhCWtsZL2G7Tg5bPEVlJFNIYz5COZbkCUgH1//znalSnGbL39Ev0mH0b\n88icJKz9nf1ruKCiDlK167AvUPZePZTAPzs+cl0AoMxWMLAQNdpUt2EfkC8VKeqYrc4Q3WV6o/49\nL8bURBfiTgMmxTVNVVSHM9XysPiIaBVMGbRF8wlfQY1egChVI0V+ULu0MK0TiWj4KzDnCXHXAn2I\nX+ESAVmK4BAmEQAmU+wgHuU+6WxN1OWPDhzr9NehXKS3ufmGBT495/7agN7qH+jv4Z5MQMmVABw1\n0lJmn4W09XMAwJ+vsuOTdfEA85OUIWs5g/MbRLwSd27i8BL5J/Efud6T/7UfnRT/9vm9H+DqOPcz\n41vG5fZ3AAD3SuT1bnMPTg3PCYn7fRQq5Ie/UVRxWfv/LbjqM3HwSkTNZeNOA8kZQhrI62Dqk9Ce\naQXKMyRe8SYFRBq8hPqeCD+XWqGsRQEA26ct8NW58fF9Cpst04HmIhlPKl2EVrTWypqmYd3mgRK3\nUckOJWrcH/Jg0Kk1ULeoxA6KdsjGxZ1IkwqoUNqD1ym6rSRGF5k4HFIp2VsxtJuEo1P1Fcy3RVpF\n5SqmRCu1+hgFt9F/Gv17ouF624BaR9y3yftAk4xhdoi7VVUfi1ZGh3aghSVNhkr0nQjFKaT7bn7f\nb3diqCcdFlQVpMOMtN1LqWEaE6H6TtJBWyghPi3SYfY6I9d2veWBl6+AWURT5jQhTKp4B9aRvwyp\naEO2ELmP6z7SSBsldOMzv4rqEVlwsAl4bXxYOHMHQ3FnJEkREx07a0azLrpRnVqGd+vHAABT7xlI\nXKIN5F2uPTsZheIE+agpOQnpW6T7B5M6BEUZzGqXynMqO3rfys08uhoqzfsiovOF/joKs9zvE3/l\nwiuXqTxdEwlEwuSN0/t83ttWYKXH9TiWX8X1Ht93ue7AD5NUUioZUyVMOIvDf0PY9e4/uIwXLSy8\nUS15oKqSN6YE3J+YtiA/w2ctquS4vkqeeeyxDlI//jbpIOG8ai7PyLUN7GpMgzwh3abSccy2kZHy\nbyqtHs4a+SSikkIvIn5bfdK3VzbAKSL0Vc4xnDBTQccHRiwWqDDtBhpfXUsX+iP+3zowYxigwXQY\njWJuSCg0Nk/eG26XoBapfGl3E/4Geaeom4ZMdNXJyCl7Dm145NoCgytITdKgqcWoV9bQhs3AuZuv\njmHby2e8I/8EjjvkW/sCdcbMY1q8e5OfXepN4LrotvQF32WoSkw90qa4hopShto4DZRaSwurXNxt\nZbrY61JvVEUBnoz0VSii5Onxxkn0uG1Qn1MiLbDZ2dJlaA4iI9cFAHHtEKEC+W+x60QBNFKah6K0\n6eNxqGqEWweWDRQhSlxmc5D2xwAAvp5oy6jSQ5Mjr/pKUnQ1jCuQS7fQL1N2TCJlzKLUoOqkEW5s\n5XAgCt1osxL4yqRPz0Bj0NfuI50j7BpxuiGt8HAvuaRwtlyPXJt9uQ/JD3j18ji+A5OKB+svXeTP\nddlFDA6YFrkR9cEkOmKlWh/hTJJxDpdAnWA5GkdVlOp8cVjC1S/RadP8YguBO4xUrp3lftvLOzjt\no3Hw5jefgPpfkA4TF/8CYbA/gCXOgx1/NImJW7zauXprApeCoiCSZgn6xKPrUI8ax1Dz8Tgex+N4\nHI/j8RscnwmPN2sinDY0jkH1IfMrlefd0NVp0UUmBjjapzW+YKe16VaHMaRxDElbCbOS3pAzNkBH\nlHabOkULqxtvQrJDS6b1fBnyEuEwfzGDlii8rRjSypV6bNApaBUGUlo8GIgepOY6drO0Yq0N2itN\nRQDZO/w9cSY3cm3TIkgxst5CIUDLSzk/AdsWLbq9kw4YRCSiRKC5g24SNQGPXmnncNgUxQOO9DCq\n6AVkztMDmM4soXvEeSlWDMgN+VxbM4KOnXQw6Bi8MhzehkrAdwXF56DvEg7zzVewVSatwiUBQSqs\nGB4QqgzpLo1c29R0EUcKWpDGXVrXKycGKEoJfxq2+9Dp6AENvzCGM0l6b5tNWtqpwyAWvEQwwjI/\nNDnR4GG+gW6e1m1J9MLUFxvoaujB5IazmHickJmhmcSRaG5dsdFS1+8t4WKGSEOu0od0ilazJl2D\nXsl99lsJez0QBQB+fTSGh5gIi77NdiIvP1W/ANN9RnyGTtXhkXA/A+0ADB1a/j+tc70LY3YEN0nr\nvckFaGT0uo8kf4VQh4xbmKMXcTOSxeWv06u8pPpLJJtEIlwH76HQ494ZBbQ6LPbRucA5hFMWPHGP\ncPbRy13Iz7Ikp0Hkwu/89PMA/u+H1tY2jMFyQOiw7aY3fzSUwhImn9VmOlCJ6M2+zIK6KDZgzZM3\ngoEctgz8vj85gaaatFSqdEgJcMSr5hzShxIMbaIASWoPqgT3yOcJoZt5i/QV+cc94yRCou1zM7QP\naAg9DltluCz0sNUCxhzIKw+tCwCq7TtQvyZKNxb4fY3iNtxpyn/UqseKk57RD9/S4vzJzwEAkinC\n0p0fRTAxQd5K9ULQiYIUhfw2HFVC0D+8R5753Zkgrg0JQ07Ysngnyb9PLJdga/C5vQkWPukezQIu\n6rOle0W8bqDX6M6fR0M8A74M1P3nxEq+9dDavJYCSh1CnaXOAZb6TwAAyuMiIC1pg1nPgJ+KWQtL\nXtRE0DgRFQFPM2byjqytR1kU97EPF9EXSJdaUUZmj7KsqdP7zqr0gCYKAKiZ9DAXyCftohFFoWOU\nTeqSIULodCmzusYGbGOUh/SBEdpQ96E1fTrSuwUsTJHnbqsNCLxHhPMf+olebNyR4+YZetUr7jZ2\nNwlB25HAt0Xg7ISK35EMVBjUiZT9mXsSzo/FFaHGh7Bo9uKzULa1wSrupscAAIv/9iKcl6l3/oPa\nhWdvce91X/9DAMC99/8KNR9z+uWOAT7Scd9eqlZxWD3O4z0ex+N4HI/jcTw+s+Mz4fHWbDRzp7an\nEFmm1eJubkLeF/e9UjeWlMJa0tMK6UnGYVTz/zFpB/IgPURvvwmLjhZrtSZ6Lw7n0L3I391pO3Si\nVZX7MSnWRds53KUNcqCVYTpPa3TfWceUklbqes6GBZPImxvSinNa1cjs8r0T9woj19YrMgDH/pgS\nLZHC4Wy1cWTg/YDtRAuJsEhtOcUQeV9aA39XlExUXofZSg9JPVDjSEVP7lSKnnpdugvtSdKkUzRD\n3qf3UTXPwVmj59kb0CK0yCcR69GClBej6M0QaTBJuvBIaBKbF2nBSmxG5ETpx3519NpKOQVsNhFU\nNE+PbjfWw4qMlumaK4+vRhjAtek+iw9FmTxzXXgrPg+KIm/RgTQO9bQam7m7KPeZI1fX08OfX7fA\nAtJs/spd7JXoLd7fH8eTY/TITENawWqzBXvCqz5ti6EscmRPzsgQu8nnFZbo4avDzwB49aG1KVOz\nmBApatu75IcnJ/eRj3LvMy+68fHHDBQ66zPhdT89kecs9Aobr+jwgVv0Rv7BLpyinGNB34ZZFKw3\ndfn8S7JVaNv00qr3lKhdEP1ejacRbDEvuCd6q9YlA3zwIdd2KfAJkk/S61G25cjouIeNJPf4T5f+\nT/wvVx9aGky1AhpuWuu7O0RqLtatSHdEDm6si+IMPWybRgV1i+/uD0WZ044BqgNRetAaQ7hDz8kq\nXQeU5M9MiPStR4zQZolUNOtm+BSiQUl4Ax0d90sxZK6mtLKPrJaf1QwK2OpRJqfSXeyLsrJtucjt\nF63wfn2cHG7g/iS9vvppztG3O45kkDIUb68iHWY60akXNxDPEs044eBcftKpoJ+kPK5MrWFFK8qq\nnjHh6DY9vd+6SG/pfrgB2xx5UpEbwir+vvJeAK0r1Gk5NVEe/Xoe3Rjf8ZbZjsfcolduJo2Ymh5m\n8YUjuN55a+S6AEBd10MvgtakUhN2coTIAnLGDNgCdmgEGmfQKJAviyp23R4cIji1MqS+Uw3zUNs4\nt1RtFZ0i4xkCWg/aOq6/LFAa31YMCQ/3VZUoI18mOhNI1dEQ+eB9JT+7ud7FnJrf342nYVkQlb1k\nOiSUj/YKtfUpvHGGwUz29QTuqKh75kWJ23LAiBM1yp5fewkux18CAN71zOC0CAKti3kfhoqYKjIl\n7LLtexhIuObw1CGeuM3Au3U9EY7a1ZfRqXAv9hZ+gXiFvGi4/hw0Il/+6h3GV+guXEFbVNRyqN0Y\nf5p32bsxB8rB0bEijxqfiYM3uErm3TGYcCJNAeuZpUi5ucGemAIGteiY0ScD2Kan0K4z0GBhLIFq\nn4ei87QX2TAPioyHh/h5VR/1PpVdRnsT6hwhqJ0I4JUzHzE5IOTpRQqDFSrJwdYGdhyMXFNZ6zjs\n8KCaMhKe6zajaJ/lpXpnd3ReYV7GgIr+uhXtCoU86R3HuO8X/P/ti7A1CPOUy4y4sM4uol0SNVud\nMzBKKCDtuBQaEdWpUJEek+ZnUExTAAfTLTx7U/T21VZRC3J7d6a4HsndFHylBUFfoKMlHeSZDE5e\n4truhJk3OvHRENOCPa5ZRhfQUNasaHf5viURIOP1y9GZIxMuvi3DJ1e+DgA4sdvD/bhoHB3kvrmV\nUgze5b5NjHdQFb2Rd7QzODmkAZFK8v+Fs1egsIvyfp4qFo64/s0/cMN2TwSfPcODTv90Gwu3KLi5\nohPOHv/+UaiIYJcHXFtKK6jVmxy5tpS8BaWBdC3MngAA6IYRKJ4l/a8fuvH7Nir/XxTv4eiQ9NsQ\nnWZql/8MX9Lye1uNWUgnaYBEe4/jXO8HAIDuDUZhHhi9GDQJ63tcZhQzLP4xXXsMhfMCbn2FCvVO\nax8v+Umnd3pTeMZLXl/brCEjJ48rReTrtdboXsOuYQ+NNJ/hNlAhJ4wDuOtUUBVVHYMq5axU3YBd\nQHhVIw+Wqd0oJBOE9+ONDDRDwrh2rR77OfLK2AMe0o2CBBUT9zuTsUMpGpE7qlpEEjRc9DJ+J9so\nQ5OlsquXmkhXaID0ZTrURR6ppMRcYr2xPHJtNwqTUJtEWcQb5BH9i3EMMz8DAFzWLyMtuhbJGiZY\n/ZzDvTiVtml+D974PwYA5O5/DKeUPHfWtIG2njzp0fP57xvuwNnj716jCpeSX+P7nt3BUATtjfXI\nF+VLJnRTDDrML7WwL4LFxhN22CY4hydXp/BJoT9yXQBgzPggSl1ju7EGRYJ64e4ZyqB9v42auH5b\nSg0hznYUuzJoRP6/1Sy6StVNaEpEve0jOzpD7pFkOIRESbp1jshH91U52MShpy30UBpSN+2frCAT\npy6U7vFnPZFAao66QKlwIr/FuclcaYzHR9c6AIAzmiySRepSXWYFwy+Q13S7DGwayi5iuC/mYH0f\nq0/+TwCAx+7cQM7HbIdnZ2nQ/6uMASGDKGQTrkIyx8P23A++DtsC515v8Drnlu8uFCbWWuiMafDS\nGp0f5bkdvDlF43Rxh/t++b3biD/3FdKpfgjFLyn/cyoD+sFH79uocQw1H4/jcTyOx/E4Hr/B8Znw\neNfMwgtz17GbIyx6dvJ3YRM9U4PSOvRukX4jqtKU6knMuOjJZGOnYRHVmWSowiiscUdelFeU1DEU\nlXQ8tRCGFnqYnpABqghD8e1LAq71XkRfpBPIpk4gFGfwSrrmx3ibENaOkfCoWzYGFET/YM9oGOVI\nycCnC9EuVM+PAQDk2RQiEYaqe85sYY2GMC6pCPOaNr0If+pB9o1IipKRXdshgnZ6bA05IWx9ZQwq\nYeb2lTK846Y179YYgQHn68vS6y5Kj6BaoKfXr3wZ9TZxSJXLhdo+PR93kRb+0aQTSVFoZio5uri5\nfeMIpaf5vTUBjYfkBgSyhNQqj1/B4C73MzWZwFiHlqXMSg88rYnA/5xoZBFuYlqUu/S2x1Fucu+l\ns7QkJ5WbaDiJKtgqO9hR0Ttb2LkCU5BwV1BU/k+HpgHRUMlS0CDcpmX/xd7HKLrpvVV2OIeIqJT0\n60P7dSD8SwaVhQZ876Eyg1yDHs7JGw9w8wLREN97frx0idb4vpVQ1eO6MXy/Qj7yluLYVxHtcN3K\nwWGlVX1z8Lek41EHXTfXvrf/MWzrYwCAki4DWYIVl1pKwmnjphCu7xHGXPRLsaOjBV+65oX1Rc4H\nGZHzrhvtYRwoTSjLP206wqDEZjWDrEB9plNB9DJEoYYhE3JlemQmUa5RXtpGPct90ToCSEgIj3ZM\n0zCpuAcfhckzS508mmtcW18RRlYEYknKHejV5MXKhuDPfgd1nWgukNxEXjQ50KmNyOf5WYeJzzqS\nja6CpHhxEfk01+2appwXY1NIn2W1L+duBymBeE0/k4KhSvqZHJSrzdQYtnSUree+IUPqmoCMn/xj\n+P+WiE2lwO9c8NsQXOMe//nXOwh8h577wuAA95IMAh2fIJ8u1hp4d5G55YFoA1ZxPaIw9JF9lfM5\nfCqHtMY3cl0AUG92UBZ1DkxZH/Z9osTiPn8qtWNQdqg39A0ronbOtzDoIJTk3kW0lAWXwgNThc9q\n2YGuhjJbzUlRa1Fv1jqipGc3g20JERDIm7B3RUreTQmkMtGNqkAZua8qoZSPcj4SH2p+8pmuYUOl\nMxo5A4B3bM9h9oiBtbHTPmzeI43lC7zC8d3qofc00Y7t2H/E3k/p5Taf2sGlJOn6VpG0+5Ppt3En\nzTNgqaYGbEQSLed9kGrIG8sCUFTtb6O5xLXtdBXY7tFrPq0cgz3KPdrv8zvX/tkc6juU44n2M8Bz\nRJQ+Gr6Gswd/3068HJ+Jg9en4kbGD7JwT7J4hbzeR56oCDKqAbKzgqEeULmMTw2hi4hG0I485EpG\ndLbaEViGhKXCUzyslwp61ESptab6DAp1wtmQtqAXNV91B4TptBkt1i0Uft/1NrrnCaGYizYk97kB\nJ0QN5JsxOSzcX/Qa9ZFr03+aV/ucH7p1bmrebEZHybn1WxNYMlMApcoBRgAAIABJREFUDkU9aZyL\nwZTjYToI2jErGLasXYCqTRjIY/0t0qyVwLydh0hDuQujhPCIXbeMZJrvM2WpiCdsZ3DfwjtZuSSD\n5QIJfNjwYFIc+tEOy6SFvLeRiZAmhsroYgV7p5WYEt1owveoaEyLFuykeNgWdVFYQqSlVz0Of4gC\n0FFSGSnkL6H/LudYvGDGtIp7vHrNiLldRlQqZxg1LZuIwCxKfdpPfAFTVwVk9JINEQGZXdgV+aCy\nGSw0KfBvn91FICk622S/iaOYiIAc5/MP7vTw/oi1jX/Qw50Av2de4xq3DlqYPENYOzZhxew1KvbE\nsgq39nig+CXkvQ2vGjPv8KpEN1/H8D/xWXZ5Df9BzjWdrhHKK3iMyP6U8PKF39ahWORB9BdbNXxj\njwdNU8OoUc2kB4te0UJwqY3OG6TJ1BMRzNVo/ESaPJTePrMIvPbw2iyaDkqiebpGGwUA3G9JMTWk\nOghXwujZqXz9YR1iIZHDWaDSadkdsBRE0QZVDXpR81u6UcKDRdLdm+K+X6s1oRMRyO1BB5CSPnF1\nDs0CeTXv475JdqPI50gzrWUaxTQV8TAowUSba6pa+Cx5bXSpT0U0C80tGpwqkG+zxgKsRcpsO23H\nyTkeSPqoA69kaAD/oUd0sNFn0R7SMKqk5agaRZ7vj4uQeEgzbUJAqbov4+YC3/XlbBK1AOV42fok\nHM0PSMvaUwCA4kk7/PfIcxaPFjYleaqzMYOMhnOT9pdwzpQduS4A6C/L4bjPQ2bNU8FknPQpSnlo\ntlUZ6IWRvT8Io6ChoeuwSbAp49yREPTVbePOUNyTK5UIlKKkr0KGmKgD71KS1/OmAUxCv8kPWihb\nxcGr2Ydzn0bDbRkN2JhniLk0D7K6q4dAUkSxO7pwuEa3FwUA3Y9+hvLXGNehKzdgVTHH3X5I+tk/\niuNDA3Xx5sI/wwklD/xtpxOxjznPZx57BwBQ+XAKz6t4h/vGUQAX/TSWN472MT2kYWgUMRO3Y9+E\nJ/EeAMBZrUI6K9ZRsKEhZV7xE6JmdU7iwFSS+vHd3vfRNNMwd97wQN8YXav/UeMYaj4ex+N4HI/j\ncTx+g+Mz4fEe+WiFDXZNcKrpVfZ1Svjq9PTsc17IUsJiuygi7vLzaAdo/daUEoy3+PfsVBdWUW4s\n0KBXudWXY+WQkMWevwC9S1z41xTQGmlJy20CTlTfxmk9n5VoyJAxEELQ1+7DIZoZoCuCoPQytDfo\nNQZcoy3VcVGEfqdWgXaacLYZJtgMtKKmaz3s2+nl6y2E9NTQwiU6ZtSkSWgFqlaW+lDUEro2VkQQ\nmk0CkdoI3eAZHDUJqQVNBQw/Rb+l9EZ1vvuY09NiPh2x4A0vn2WW51AdMFAjIB0DANyUzUGn4//3\np0ZXZVkrDFC9xmo9L4fo9VS1cbj0hKgMFQPGlFw/ejrUOrTQj9pfFf//zxiI5hdLOQ0qTlra0nOn\noBkn1Kx2ifxVlRONJq35RGobnWVGrM5Vu5jx0FLuOOilPWa/hsMY9/BseBGbZV5J1CNxaOQkyvtb\n9BTL8eTItaF3Di9k/4bvy3Euk0tfgD3B6kU7Wht8JwkDaw0+nFMTmvWt0cuotbdwdZ4bo/BU8NUi\n33vviRr+iYxBW39FJxf5zE1cuUAP7tvdKj4v493Dszo9Gsv0jI6U5K/Dwgtwyemx+W5KYAzRmi9H\n9fjugO9+UsrSmxfKnb9r8vFfDo1ZgaGd69fnSUd7VIH6DD2yOMpQrnPuOXsBZ7vcT8mQ3nch0cG6\nAGemDraQE3uRj1pRPqCMdLr04no9wNqmjOSHOZRUpGXjUIuBnvJr3Odnt5p2BNVRfj/ZRrlPmiKr\nRk7Pvbc1+K6iZzTCZN8q4IZooDHZIs1943OQiJKRxnQbIS092s3Nd/CHBuqCxOOs9qVcy+P5ARdX\nrX0HBjCqtuGPY0LPYLnvGkj/09ocSiXui7zsw0XRlOTd+IeARHTrmiQaYztUwOLkfBo2F0R1Tsif\nu4EjDdG6sX97C7d/d3TQGADYOzrk5PTATYlthLv0JodG6hLZ4RB1L3VIvmDFpIJ6KrLvhHmRe+AZ\nkG57WwPAR3nU19WImEQ+rqKJqQHRwXiW85WW+jjwU3ep9UY080Qqkr09VPqMMu+ruFfWsgIFLf+/\n1c9h0cfnnnBW0HE8uiqX3GvB4z3K079a+xgvKkn3nIf0uPk/XsbnjDwn5q9+Cz/3kBfnU5dhcdDT\nlTcZ4Z95MorNPPfTrOxg6yZ14sneLHZO8zplZpPngedcDNpNXj/lrdexICp4XbVJMW3lfIxdXj38\n7fbvIDdPfXcyVsHWFvnszOTH+GGBqMNvP3KFv7bev+fn/n8dTyapaNZ6AVQqnFKwrIFGyoO3oinD\nqOEGWBtsnK7GLro9wrhzWjNUfgqmXWWF+oEoeWbj4dQwWVGaI5HkTTMsn4h6r4r7KDh4p6kVEZTm\niBUqjYAsQ1rM3xZwy0oRmTQ/21fzILO7NpD6kEK4G5oGcPuhtd35NN0oKMGqaIP2pKkIqYC+76v0\nsIq2gP0lMpNc4kFQRG22l/pw3iJN6p1DmOqEE2fcInJTmkRQ4BbVrVWkdDQ25FEt7DIBr4MCJvlo\niKEQzIohCOUNUbd1eYCYlL8PKxQgV+0qJkQk4y2D9aF1AYD9aBeheUI+h4uM9mvuFCAZZ6S42WxE\nW8u9OJzzIVQiNGMXKSFl1QK8n/CuZrXphbfHA76q7+JZDe/cVgsUFGPLivTXCLfObl7C4QoVW77d\ngKXOd6yLK02pRYdZUQv3YHMPgxkKjk6zjFqeimCuxvuZe3LzyLVFFj7A3be4jv4K+WHFcQ0dUZ95\n3GTDToVwv9oZQWWH0eCLizxAf5qw41KOSvc2+vjxJJX51I8foGDgfeXFMo0KuVuHm6L03uwDFzJ2\n8kxvLoV7onBEaOuPAACq+XdgizN9JOsOwBwX93ReJ67Y+NxpK9/leas58uD1VI0Yik5ZYYcofFAv\nYvixMJICW3BTl6NW1uJNqSgOI+DI581ODNapgGL2JPQ/E1HLbh1UCh6ipU+ht6oGmQEPeaVvgPY+\n16ywRtEu8jPbIvK3rhzgsCfqM6t0MBHFRc+sg1mkiqTk5GmffDRsGZ+K4bIwsiNOHha5/VsYyDhH\n/5sapJdES7iBHj0b5b4UJg8tSuvYbzBNZCJ3Aq0XSX/zz41I2AkfazqUwbo/jswEjR2LVoPiKu/3\nn5o5h4GXh4zsVRp9Ee8iHKLijzm0gcJ1ITdLp/DULa7tjQtmnBdGyqhhrfaRdZE+ns5ZlMzcb2ue\nBnJeE4S5xPk2hwOUjfyst5ZGTk4dsCoZ49/kBkhEHIWuXoZZQv1pOegg6RLpYxYedDGUYb8j7svT\nQ8iD1Ne+nAJVNeWnkBEHs0GGgUj9CkECW5v/36i7cKkzOvMDAH7qyUH1E8rTmXNXMPciOfeD71Ko\n/7RwDz8fimh07X+PM7d5ZeR7OYLhBGWuGhWlTTsXYVASMp4OKtGocV8SFRue6PCap/g052h9bRNV\nB+kwLvvnSBz97wAA/eAFaDLcl7UxxkH8I6kTh0pe1e3MrGL8QzorB3Er/CHdI9c2ahxDzcfjeByP\n43E8jsdvcHwmPN63q3TTNYM9jLvoXcllMihu0wpr7xkh0dKqkRzRQxo43FAv0uOV9B+HNksvKrf7\n+N91wfEoGIg1UBkxSEf5juwAmXG+z5AZQ6NOr6QdoDXqMFRhjNAyk2vqyIgcRMWuAxazgF6G9Ehk\n2zNohPi7NTba4rFM0CPRHDkwdZ5BKrrKJhJJwl1TwSZK47QmT9r4rGqsh76bn83dDqKmo1dSzHUx\nHyR9dkVjCW8FKDtJh0rAjRA432zTjKGMz5UVaJm5Z7rQaWmBNxPfx5jrKf5fZkBpiwFYQz/dDHmx\njnu2MdIvO5pNjAoNigN+RhGlizTsuHChQEvR4LGirede1GtFbEppeT4pGkrs65YRttNzmZDqYBCY\nub7Txx2nKJhgoPcmUw3wXJwl+6oGJyp5PuOEaRuHEAVYRLcWz1oVOgcRA8c5O+42mC87cH4E6dui\ng0+T3paipR25tlBKDxHjBJlXdAuqAzfrvBYY1DZhOsWE/2p0EqHSlwAA10V+9eOBPmKVtHjWWbTC\nhLv6aQ9ui56yvSfoSa5c1UPzNL2+HuLItejlDxo+mOQMnIvP8Fmatyfw/gny2sLRHm6IZE2vwgVJ\ng173Xx4y4k8yHoEAO35llKGHTkuI1FamLLSCR9BLuW/qthINKz3XrGSIfpUeoqFDT3v3MI2ckfmV\nLWMDFjPRiU7xAAbhcfVE9oEnIEOsTe9EddDGlpIenf/aAVoN4VnN8bm1o11kRN9ijcaCilpkNVid\nOOxwD8wOepiuT9vi/NqYlV3B+2Pc+55oyD6YtMLWJ1JWn1tDPcu1LZ0KoinkyKMTuuaoCvPLDKoJ\n35LAdof5v/qZp5E5pPf1RVH68PC9Aygc9JSnnTlIXJTfVws7+L2fMAI3OkloPNncwLP+LwAAXklc\nhXmZOb9D9wBN0THrbD+FNwxnRq4LAFTWcYynuG+RXhEeUahiVUoZ0nUG0ARI03ahB80dPrc0WYZm\ng1dMFqX4m0sNdZO836wYILVT7o9MEnRqRBplGnrt9v1JNNvUG0VZBTIZ91Y1TKEsIUonsfI7ibQa\nJi39uaVxJcwNURxl6RTihUc3EvhtawfXXmaWxVT4eYR/xOcaQ6JfukqLMVGAYzOehv0p8oZ9SwKl\nmzyl0FCehqYynCJLQ90zQeUlWtSL3sWmqP2Q6xAx3LrSx8IbPAOM1p8grCfs31cMsW0UmQTz5Lm9\nXyTxfCQKAFhfcULroV6V5qUYmB+NVIwaxx7v8Tgex+N4HI/j8RscnwmPd2Di3Wiv7ER1m96AfvYA\ng8v83dR2wNcktm50sApJV11GOUm7YTDIoO2kt9SdlaF7SMvqfoWW7ZniPB54eKdnNTpRiRP/z89M\nI2yiV/i7WVp8N4p51B0idUluR1b0O3XOteESDRE2RRH6ZjqMnFaUIzOOzgf1J3nXuD/dxUstWoVb\nBj+cy7Rc9zNBnHTSozgQRdRVWjnMRc53yqhDS6TGtP06dKT0gLRFpnN41cvoljn3QiOF6QE9uptn\nbPB8Qk9Cs0ALtbhmQERBq3De+xJKfXoRB5lNuJcY5HR7izRXDE6j06O7FEqPvpu5U6zhxL7Iq5xg\nqP/5xQ3cFjmW47omxjK0tOWxQwSMTwEA1p/nfGZ+dAMNOemjV0dwo0jv4JJJCp1WVK7J06qUvJ2C\n6Y9p2aczcYwtcO73wlPo6/g82yG9JYt7GQ+qpF/+qhJaP+/sFCk7Djv0JmGj19jQjO6jnFVloT3B\nuRs+FrncNi1sl3kHLrk7jaM27/dPePcAUSzeVeYevrEmxfg87xqlvTK0ZqIv+3M1nMnROs61yQN3\nrnwRFjBAJN03IFdmVR7P1n+CYo5F23V9erE1XQCTq6Ii0+NmdGT0shyKITbXRNu5r5D+K29p8H+N\nWFvdZII0QG8wf52eQTcFVIzk5dqtOtLibrnVU2FCpId1FZxDtNFERVRF08qMaKS5jq7GhLyG+2Kw\n0ItIxWXQbpB/r1tSmOjx90R3A/uT9DrMZcqFEW1oFJStvl4Fn/hsQ7GPocjx1iToseQXLSNWBqwX\nNjFn4jredzAw0t96Den36Zk+88IFrFkoL/Y9I6ynuZ+9m/RuEistTIse0OHeK0grROnSmQKcovzj\n2i+E/J9ahEfNvtGVahKry0SxntOkcO+KaHUqAsg+p/fixgnqldKrA3gFehZQZnFfpH/1J+X46hoD\nov71iLU5JpuoN3kP35Vto1NkrMlYgPzZNqthq3NfVM0kciIOpLOqhOtzlO/ijtAx0SRKQeo2pdOO\ntNAxToUbZrtogpDnvD5xSOCTEk3RDizo1wUUJO/DqiefJEQzFG9FBvMUZaGmskJpZCzBRHsacveI\nRYmRrX4Bj7cZuCg/k0eJwCY8m+T/X0o/h9BFojMW8/eh1xABlSuNiAq9YZUzqHBwbx7NLj1/zxUD\nfmH5MwCAce6/QnuD/O46II+YLRqYUjwnfjjtwB+LSoNpxzbkVuqK139Gmv7jx/o46HMOkqQcMQf1\n42J2Hpuq0eltjxqfiYNXMiCjj3UGaExRqbRzWvhbhHTStj1ktWP8sIMX+82Ds1A6qJwVY2o08iTY\nWC0GiUSUUBMl7nZa11DyUNnVU3kYRG5poL4Gj4SMUw5z89SdEpxKvqub16MVJDOotmRYd1FIO3vc\n1J7dBO0qiT8wPAEI5flfjqRGdHbRSPEzDd971jEJRYLKzOFwIOHjcycfMMLWpe1BX+XBsG/TYlwu\nIjpVKmTl/MyEhofNvVoUchPpZJHaEBWdiPzRt+EYsiZtQZSfzM2loIsQyqrV9jF4kfPRvy5BR0lo\n16yl0OgMW7gjosI9zdG1micVPZyd5tyvrTIbtmHwYkGEbN5tNpESRpXXu4SXDsj06atku/dtQVhU\nNHyykiJeLkYBANHBIpybFPqw6Hc6fjGKq8JQkLs8yEap0Op9Ly7LCQeGm1Se0bwJ6gzp1/t/23vz\nIMmu68zvy33fKrfKzFqy1q6q7qreG72gsZDERoAkQEIgJFH2aGbs8Yyl8W5P2ArZDoXCNidmQooY\nhUOSRzMiKY1IigQFUiCxNxpAN3pfqquqa8/ac63c981/fI8OS0hETGscyY7w+f1DsCvz5T33vXfP\nPd8999yJPZSrykHuzRJ61UwKKt3igBkbeATAv/uUbUH1MeS2KGFfG+JLmg6VcXKXCS3+IQcqd5h0\nsbQ1gFEdN8y6nmXyxjPnq3gtSdtaYQfC+1zKcBTScO/SWdZHOAjW0zew12R7F8ujGJliYknj2Ekk\nNTxrNJykrO31VHDvZ5TfQ7UgWkneN/O5dUwe40A7+SH7bPe/DgAdajWb4IUqzTYYlZrHjcAt1FLM\n4tzt90C3T8cQtuYx7+Iz0avnvdb4PNBtKXu7bZvYyLE9RnUCWiXzNJ/iu1drVLFr5LV8GjN2s3w2\n9KGj8Mwr0qBSttGqd2GjQccabvSjPM3kttZuHUFl54NqkE7P/v+k7P9NnLoJ3CvT6ECT77S9dhBD\nj9KZbN93wn2eA+p9nxNeJflx6DhPA+pfVaEwxHucMT8O8wnaYXojCr+HA/T+V5gF68x9G+5pSpOW\n7YN4eo+TvXnjF/GEmmPBSorP7O6ZBgrb/LeDI09D0+Lz12yW0aOjM7UvbOLUxGeXVUR9Gs0wk8GC\n1T6UlMz93W06t2ivAQFlz3op4MP+Ip8v17kkarO8d0k3HaTDagZK7MPVUByhIr2ipmlH/Tqf+61+\nvjeHortInOAk0hGtI27meGMxjKKllJfsW2Gws3OihkCd/61S1aDXsK+qbiu89s5JmgBwp5bF8R6e\nzDR99RLUbkrxvkkGGA1DDkO3uOT25189hye+xQlK7OQRGNP894z2N/hbT7wG7/vcn/3R7ApeOMhs\n5/nCJkpKjQfPMCeL+etWaJ7jMtGB+D7yE7zH/YlXcSnBYG/sN3gP/T+6jv1tPhtZvAKDl2277I5g\nzPjz07L+/mfa+P9GpGZBEARB6CIPRcRrLPxcUi4Byoy4kfKjaOdsqlg+graZs3gblP1X6graLYb9\n2nQKUbWyp7c4iqCZ1ygoZSCLs1U4V5RkG28Ce3XO7op5NZIOzmiLbkYn1oFRLMwrJ1DUE/CV+e+3\np44DFzlbLLuZMGWvbKKk7HG1VTrvvzONMcqbdloRtVMeG6kVkKlRxiyuXYBDSY4oZxkVGfSD2OpR\nEqN066hWGMnN+RbQr0jxBeX0GMv1J2Ee40w7t6OBQymSnm6GEM1Sau7NRwAAa7kEmr2c0ZXjIbje\nojweVDewu6wcOGHnd6rzQzhgZkSy46h0tK0YyGHlEmW7585QamlFdtDMMrHEo1+CO0Q7D5R2cLPE\nmaO5oewhbVeQHWQkMpQehDmubDuZvo63KkyIesTAGX5jeADH6rRzrfQEoldp/1HXGu4e4iy2cUIp\nnTkfR32IbT/abOFOhDLlwuBVNDbZhnw/ZcGt8l91tM1b2IBaQ4l9wMe+cS5OotZD9WFpLYGxg+yX\nNW0UjR7OsGMVRm9Xs3lMRMK0vX0M3y1SMnvK1Y9ygKpFYpMRQLnvPrwRRp4h9X28OcF7/KJqHDsf\nctad9FN9iG32I/hMBACw8q0MBr9BBWM7o0Fmk/f2siKRvfJbxzrbFtBjR0mYyxmUpLq6Dnst9t9Q\nNYYNl5LUUt+Hy8SIt9zie7WnzkLdZsTR2DNgWMWoMe0LwZRSDgJpKCVY1RVoArxXoW0/yj5F0SpY\nUZpWyrUqCV5NoxpqnTIWtNqwJdjvDe9ZaGb4HLjgV67befkjnmlh+iRlfVOJ96JeHEfByf4dN/wA\nmR+zz44+so/BSUbF35tk1Onv90P1h7w/3kNrWFlmBFpzezAcpFzrvkSVITH6BM4t8bc+0UdxMEUF\n5LB1HtfO8LfX/nd+/6Qujz5Far2dX4LTyv2iSESh36dqZsjb8U1TuaNdAKA5UMG5HcZKH2xvwqvi\nfTEpW3o0hX206vx7u6RG3wifh93SAIxhpdJblcqBtlGGU1nGKUONiLJ3N2RuwXuK906rJL81Bmuw\n3lG2YJpUMOb574aRDHJmjhe+GY6j7oQfTfBaQ00/ykoE+UTOiw1HZ+UMAJ7oVcOlJGKVDh5ATUMF\nrb7D93jE48eVfl5r9NsDmPk6k732dtYQ0dJml5vj2YFyD+r/Pcfj6//LGC6EefqYbdCKvdtcqqzd\nocrlCL2E4TyfuXBuC7t1RujXDW9jssF3/drbfC9+nF1H7wrfm9ovv4GBNMe8pf7rMPyAS2147DNN\n/Bs8FI63T7npt1wquBt8iM54nViw0ZmG0zuoFCijqVT8t6ymifG7Skk+ex4tZc0p5VlFos7P9r7H\nwUozlIJZyQbcb/XCPMSBuJg2QVugk3Um6UxbrWtoVdjha+UdTAcoTdrW3EgrGcrb25Stqy0tekp8\nUeYt8Y62ZZf5Yi5pyvAfZdujhiFUHRysAppBNPfpOPROVlTYLrfRq+zzXeppInidL7HZboJZqfIW\nW1UmD6a7SChrey1HBqUi22OtlNGocLDa9PLhrWm9GF7kQ1r3Xca+gQNzM7oHQ0ApF6gUBMBwHiNz\nfFlVn7E4M+gJwqysVb21QcfydHgAB9ocHNumLbivsj2FkwW0NErJNxUHrqP6ABbuKIP5S0XEMmyn\n7mMjDunYF5p5DgKpI23k71L6qo/8DEeVjOuosY7gHWU/XZwDddGqRT3EjMz55BOIKVno+Vk1BnWU\n0a63OImaLNRxoYNtO6WnsHec13h0j797zVvBppWOo0cdRtpIGd12dB/lDJ85k5vOtL+nilMeOrXX\ndD4c2qckuZ4pY3mI7fTblfKHuSdwQcdB/enj9zBxn05tYs2IiI/PuFfFAcEVNGBIKZe4fayCsI6T\nkeuFCRiVk7ZGfJTsbp16F1j4tG21WAo9italnmG7S/G30Yqw7ZreJvrLfB4SPUFowAmRq6Ks266q\nYa2zT8rjLpRS7Id2MYY5Fx3Z0SoHs9uBHA7FObFMegvI9XAJwR0LwdyiVOdSijdkVGUM2Om81M4s\n4OCk1j+wgaKy9jZYo3xqGuyc1Wx1vYbvfp8D5ZOvcpCdLpSgS3CJ6i6+jvIY1+YP26/hVoV99fX0\nEwCApddvY+Qfc7K49L2LUFU42Lv6/PiEiiYck5xAW0y7MNeVNW1dArE43+M7SQteLPL0G+uTfIa2\nA2qYlPHq155v4QcrvMfZqSy2N5U9tJrDKEfTHe0CAG9tECstJUAw+7FjpbNLGNge72oJuXE+66bF\nFgJjyrpjugyYOWYFU8yuL9fdMAf5/JW0RfRblElrehmRSpjfU05xqkd60bAp9etNSfiCfN8q+jrG\ndXw/E8ryXN+BOko1tqfcHsF5P9/pWUMQI47Pzmq2RmYxUecELNZ7E+06J0d7jlcAAO11Cw6MsP/a\nxQX8TDmpyKdywnCRgUnhv2Abtn4vjn0rn+UzZ97E+23uRBjLhtHSs+Sjb5g7JIpI4CMjr3Xi8a9j\nNXABAKD+519D9AwnsIYs+8FxpgqDQ1nK+/AmNH72pW2/iROP3fpM2zohUrMgCIIgdJGHIuIt6ZWD\nnN06qDeZ4JEOF2HZZoTUM6NFeY8zT1OOssz22T4sKKXdVJ45BPco3eR1VkyZKX8WFMm5HHcil2Vy\ngStYgmONBbj1mIDdTqkzWeRMMe60oGBXDps2AB8pBxQMeKNYUs4whRLd5jebqFT592M96/izDraF\nPBG2O3sKuwV+75AmDrWas/3VpgdjGs48jTWWpFvuzaK/wH8b3ulDO8R+2CouQ69jpNEoK/tmdQ0M\nJZUycOo2VMr5oWXzGno9jKJSRsouR2MB5A9zdl2OFWFYYBu0PfcRV6oH5ZOMOHa1b0FnYRZrXjmV\n6W8zv7yDATM/P27jbHXZP4Ba/jX277gBW3r22aOjOVxRDvF2DlMF+PAqcPAoI9D7t+xoJygfmnxe\nwMDzNCtFzg3vLQzgUF2phqQ+gYxVOaR6bRYhRaGwxJVM3JkqdDH2U679Hip19t9AKoYbZkY49iqT\nWxKlzudo6iwqBJX9iD/eY4T0SmgU8SSjv8XjGeg+4P6+NecghpXM6tg9tuv4ySZ+ZmE0OWjZRNxA\ntUTbO4LAOmW78Shn4qXVPMK67wIAsu1JvPAy79sPqtcw434UAJBSEpjsxijmy0qR+tMD2LBwZu+0\nD6NuYKH/0gLbcjI03rlkZMiKfIT3+7xSEe5CegCPTjPyvKOrwbv+84MNtPAUOOOPWRlx9A1okNtX\nqmu5Uth2fh4A4M/s4liEkVFliPfCZHahUmOfTI3YYTbQjoKqDredkWXAxO/0W4xobivyp38QahXH\nhXYqjRMTXBowJ1aVv/d3sAxAdRzHh/icZX/EiKSg20HyWUZsE8dnAAAgAElEQVSgnvs/hkPF+7r3\ncQCZCeUM4ot8DovhO7iywWhdazHCYwgDAJLlKNIDfP7Gpvi/9dfNWFGk73KfFTvHqTBVd/z4IEQl\nohxje2uxHrTG+c6+m1LBoOw+GLhWxFyYn/Gn7uJRz9nOdgFwBXIIKSd/oTQL6xQjSOsi35t22AJ3\nmvfe21+FSnl+za09qM0c/0ZnlLOVEym0BpXD280+OJK0eatZQr9TGf+UM6YtPhW2HXzHDsWdqNt4\n3cJkEtqykp2dUpLdjCr0WflMqcx5bCmSem+fHaafv78dWDWN4q6Zz/LpymPYUvYgvxSkOvS+PQPN\nBvtao0njlJfjrmohg6V/QMVlZZ5K2uFD49h0sMKcafPz+LKBCVEfe67g+XvKsxxiP+t6A4i5qUxd\n/PMrMB/hu9k+8W3cH+Yywa/EqPQ0Vr6M6CTHtnVPCyPK+cE98UdwwfjHAIBzn2nh3+ShcLzJLB+A\n/jkX2kr28R4K0Ed4gzf1y7AoCyRvF5jeP/GjfaTDytF5kTCyQQ5G+mYdS6uUKStmDgjjI1mUxnjd\nuWQMNSdllYk24L5IaWdVyT42zavgGeILv7sfQi3HI8+SpWEYsnww2j1KNrUlAaOTa85rKj2AS5+y\nLV9VUvo1MeiVurAb5Sb8BWrGI1ofMvq3AQAFFz+rzyewZqZ8kmrWMKKmnUcNh5C8zAnISphtPBiN\n41Kd/afz56BRjnOzeCy4lWI/eFp8qWK5W8hVOdD42gcB3Q9pW88UrIrE7FJOR+lvpbCrYp9Wy52P\nBTzhriPv5URJHaOsd3MpgZSy5tT6oIHP2TgA3/mohW3l5Bqtks2qN8aRvMRHMFrWoDZA5xQqhZDb\n5P0eUAaMEX0UFQv77MjlW/hLrzIQ9HoRVykZ4Hna1ki8j+ksr7VkyGJZORYwm1qF/ToHv/wQ5bBC\nf62jbQnDHKZrEQBAZoov+e28GjmltvRYvoFFpVb4K4fViPyIfbwzwcGhVUnAVKC8vHktBYOaE8Z+\n7R56auyfnPoCACByxg+n59cAADHTNha/zd87Zz6NtXkOVi0/+652agr93+dk5ujGHj44yslRn/E6\nXDEuoegNtOl6tPOpUiWzH70DHGyW59l3Q73jcClZ487iGdRddEQTajX2AnzWQvcVyX5sBWEL35el\n2iTUI3xOtA0V1Mf5boWUiUg548bMWV53DzUM1fh7u74SBowc4PuadByJ7TCMj7PNjpwNJmX90O0N\no53hc9AMKRPPXOf7tt48j1aNSzPuUf7WjnkShgKfuUr4DNTXuRa4GdRjYJdr6H8yRof2fPU5TLY4\nCfqXja/gbIsS9aDaiVxJyfd4kw7pyIQdmRzfsUf9Ory7zefPokli4SY/U/Fw0tcXGYbhaxw/0vdX\nYY1w0lsLbSKnoUR9aSsEjbKdqBOtih01nVJ/2juFkrKG3bD+vG8aKCryc3u2BaPyzDmMzyHg4Xu9\nuUP5NNB3EEsqJYNXrUJFeU8D9hNwZvhcl4eVLGRPAs4m74XRYECql+Oy0+BGC/w922E+/31pLYwN\nviNxnQczSgnRckGPlM30mbZ5fNsIK6e0Nf7qURwZYHve9HLp4lHt28grR8NGP87AVWQ/RIYcOKvi\nZ9xJ+oY/nlnFzCrv/d7+LLS9tFmVfxaxa7zfRSUbvZyew+Mf8Nm45N2DZ4UTk8vGIxhWisy8FlGy\n2DM5tHNcNhkIFRBZ4N/Vunm4Qv/pZ9rWCZGaBUEQBKGLPBQRb61XOXu2nYLLw+iqULJDc4izmqwJ\nUO9z9nXAy9nLbiIMu57RwGbZhtIWowDvYA7qEuVPVYYzvnczdgR9nCEPVAqYXeaMbHPoZ2hUOdO1\ngjOhkOsAZpcjbFgBMClnSG65NHCnKUPE55XZY98wWi6lcP9G532FkSLb9YWeDeyuc48nVHWUHZzx\nlk0tqBtPAAACC5zBRnq1CJUoG9rrNqT7Gf2VGmY4VWyb+7YikU30oG9LOZQ8XsGil7LLwWgB2hVK\noZYJzq+izTWsJRhJa67fQf4FzuQy0V4047TJY2Q0UNEHkVBOaUJ/58dk5eM8KudZAMPspp0VRxnN\nPUajgeg6YgbO/FuH99B4h7JT9gAjhw3vNuLbnMVOl/LoByOqxZoFRz+g/Db/eUao2evHEXKyr3+M\nACqZMD/b+NeoVp4BAOytcde99TFgx8RnwFlbhq9Fqdy0OYSPlPKa9jb3UbuXOu8tHFHHMetn9Fq6\nx8+YVPdQVkp5bsZ10B9mCmOseAGlZ3n/zR9Q1urPfg6ul5k5afOOwPwW72Ei3EDmnFIm8zaj7l7f\nIoIatr3/ihZ7BxjB3CqO4LqKNr9QYQSZc69gbJwS7Y5jGx4tZ/vo/SIiVb4b5R1GUOpACXjt07Zp\nMyVsKyfihJ5h6cf9HSOSZiouZz7cRmJMkSSbTbTWKRW3zvF56KsMYMXIPpkuDUKj57u1P74Ie8mu\n/AgjpCG9FkqNBQxbKmgrGagHGqMY62V0t11RloHsJYR3ORYkx6votTASLuTqUI3yMzrl8BBrNvVp\nwwAETCrUlHfZ18MIaM16DfbrvFZosIT1X+VSR/iDyyhZmc38nJFjReqRQzi8zGj/lx45hWxFSfza\na+DIGp/rbINtWRzRw3iA783d909D5eB4NOjdxWBZScpc4ni28OIoVNdY4KEaPY/bB/meHS08jS+8\nR1vuPFbDVGRIseTTe8tVtTxco3yfcntmNPOUOofH2MGbWhMMMUZv5bAVVg3vRSMeg67N701Nc7xL\nZ9V4xEmFJGsD+o181vWz91C28HttP9+VhnkcuqJSUte3D59VyRZPutDQ8dmwu/n8Fxwu9DT5bJzQ\nuVBXyn76Eka07J2VMwDwVU5Cvcl7YDlcRTJB2T7iZFtO3zmMapVt3A2N4frgBQBAVDOC5Bafv97H\nWSin9/IpVAx8tnxVAyJK0mDduofIWT7De1EqddBU0ZPnMkZg+G3sBXhvB27OobXCZ2ZkkPc1WduG\n6zzVgPhPdrFh4/PwxeEmbv5bxbZnP9PEv8FD4Xin8xx0fgYbPCbKseqSH04lwe/4RhERP1/k+C5v\n8AziWFqmI/SrHGhY+fdsLAZthdl8pUHeENfiJm5tccDcG0nBEKfMVquFkdayC26us8rNolmNoHKS\nSdmWRyvD33NvGBHf5YOYAh+GkZ4s8sp62p1a5/WLz5UoebwTHsKocqSfa2MAq3m+CMFACvVhtiGT\n5wPSM2rD4iXKcGuuz8NeoIRdHNiBKkoneyDM30tnLdiPK5V4yhbo1sIAgHx4GWkzX4rYoiITjZhx\nZo1S3tVTPhxY5JrIgeoC5vL8b42a0lh+O4pWmi90n7IG/7fpdYXRXKF8pPKyDerpBJx15Ti8vh0k\nlbVsOzS4qEwmvnCTDqfeX4Izx3v40+gSjlX5262VNm6c52/mrvIFslWyWL/BZyPj2sFokP1Q7xlH\nUU1HPnRMGRijWUT2ObCt9DYxuMiBbW5MhWM1ys4lZW16zdl5i4N6aAQm5dDwF2Zo41yuhKwiWYYK\nGnysFPw43aphN8Vn4vZTyppsSYX6Og8Ja1bUcJ/m/QpnYtD9PNO4nwNfurcK5zqdpfdAGPkk71sz\n/CZe+PkJU1b+bs+HOrz9JJ37K995Dts6ruL2euuwGSjF37Py+R2f7Zxpr23ZoPfTuVSaYQDAMV0G\n2wX+btLvRUtZW2+r13B2iE64ohz3uKorYSjJQVBV24S/xn7fd/TDP6qsFZY4aB0qNxA4qRSyuV2G\nM0+bmz156Hc4ATnYw8H5fr8BRgN/w20yoKanY3Fl3dBk+NzWssq2DctnZNofLCJ5U1m317OfStoK\nZoJ8/3/q8GJkic57r2bCqOL057Nsi3HZjj81Pg0A8Nt28GEPpfyBfBp7Vk5qT6xwWSV/OwlDgfbc\n00Vgy3P9+soBDyxtfvaYnX+vvPYXsL9E56Xtm8cZJX8ifmsF2z7lpK37j+NP8589JI+O2XF9Qcmw\nDSZgrNGJtvR0BgcSFVRdbENwcBfVOCcYxkAOvYPK7oJZjmfb/Q64PfwtZzuIpWU6U+fIEfQrp/Wk\ndvkOtixVVEf5G6poE+0q21sebsOh4TPXZ+Z9j9dNUCtLCAaDH2plB0Ozpx81W+szbduZu4Rinv0T\ntO2h/iwnLj0/4TO5MWqHVSnEcnDwAlKLvIfD7jiqA+zjyDscg/oH52G6pmz181ehD/4UALC68fuY\nyXHsMTk5yS/XFrFzlE4423agcoHtrYwE4KlxS1Nwlt60Fr6F/HdZ99lvKOO2k8sQzVof5s9ufKZt\nnRCpWRAEQRC6iKrdbv+i2wCVSvWLb4QgCIIg/AfQbrc7y4N/C4l4BUEQBKGLiOMVBEEQhC4ijlcQ\nBEEQuog4XkEQBEHoIg/FdqLf/l//AADQZyzhu6sRAMCI7uvoL7Hs2upX19F/manxe8qeKvtmFjfn\nmPauHiugUVGq6xQtWDrJwuS6eaann26l8MY2i24/Gf4ZItl/BACY9vxzJJIslr03yTlIcGMAzRxT\n1W+2HJgBt8C8cngabzS5radlZwq9540SGkpFrXCuH7/5F5/7lG3f/B+4/cGWHYWjlyn9SysB1AeV\nE0kafoxsXQUANAe4PUDdbGGnzC05hmgV+iz3JeaPH4UpRZv3lEMUzuqKuOjm1gTT/AacPdweo9Y4\noC1zG01OKV3Y7NlCKsetIYF8AQ4dt2jkdWpAKRe4dI3ffww+LKyxH+yPqvDP/qf5T9kmCIIgPDgP\nheMtJ7nH7r6tBXuZpR1v6OZQt3Gv1Re+cwTfepmFBA7vvAQAWIjNI/AKv6d+fQetL3Ef2fHbYyhu\n0UE+t8h9Xa1TDRzL0XHctE3jTJD7we7n/iFckzycWpPmPspRvwWXJ9iG46Y47lx+AQDw77b/EFuP\ncf9ecYs1YA9aAxh0K6XJnG91tK1+jxv0QyEtckoJv+GZfrSaTOSuVtehbfEzuj7uJdzbWoO9l3sR\nvY1DqA2EAQBa8zacLR651+viHsVaqwWbivtt3QMOtFtsT8rei7O3aX9shPs62+kphJUap1FbDskK\nfxeaCjDHvdSOPp5YtBf9BPvHuDdVb/B1tE0QBEF4cERqFgRBEIQu8lBEvI4yi2MvqndQeJTy8Fby\neTw7xqpF/8elJKJrjAa3S5R5xzy7mL3Faipfacbx9l2WI6ysvInsOVZLujoUBgAEY2fgt/I0mmJq\nBNsxRoLOTBHVMqPmE25GenOW76N2l5H2dvBJTEY+BgBoHV48FmNFrModVjf5JDyJ3DYrq5w2PtLR\nNt0J5WCEmgpmDaVkT+YOIgaWfPT62zDVWXow3aD8bLTaMdymlGyaqmF+llVl+q1WVPrZ9ugw+6kd\nr+CUjtH6bluLPuVsU9OHBewcZqSqD1Ke1vXZUGldAABMLZ3A7TYjWmMojzE1T0ZKb7KyS0rXj6BS\npF6V0nW0TRAEQXhwHgrHu7pAybNh2YIlGgEAnLW9hhuTlHZfnFjE7hKdi+7LrHca+Z3HcP486+1G\n7S4Ed+gAy3370FafBwBkwTq0zi0NFp+l0/xixIZ7M1xrjSxocPI4Hc7+m6xzWzx0DiOTrH+76VtE\ny8jSgsEeA+7lWGbvYFWpgWyK4ZHzLHF3/eN6R9t6x1kuzzfXj/QA154zmyWY+/gbtnk/DvXR5ru9\nnFTYKg0sWyklWzU9mHmC5fdyOxnotlgb9jEXnWq8OY76JTpbx2NamDMsSxkJheEoUNAo7rG2r8p2\nCdlp1os2+mo4u8A14PTycyia2a/xquKsAwP4eVmTVDXR0TZBEAThwRGpWRAEQRC6yEMR8Vb+PiO6\n+g9s8GwxC/jmZAWnPvkRAKC6OoO1X1YOI/4pI8VnXv4Qn3zEkEx/2AJnlDLt9Ywbr1SZTPS6jtm+\nqskwevQsmn07UoI6QVn4RHMdeeUEihU9C71PXUmgnmOE96ihF99TDq/Pm9OomRgdF5Vs68q6Gne0\n/KyzWe5oW/sGJeF1fwu2IKPJftVhrOcpZ++dqOOgUuTccYNJX6tnBzG+yoOa90cKSGwy+r0fOIYv\nT1Aaj2eZqLVtS6D384y2fRUPPi5RtnaMFdC/pZzgEqI03rfkgnOLEjeKDSRzlJINj/xLuAtfZXvU\n/Kx32YqccoDEo5Y8fq+jdYIgCMKDIhGvIAiCIHSRhyLi7flDbvXZeC6GopEJP447ZaTDvwIACB3Z\nx7nbjHjfVXGtd25hCid63gcArCceBVTcRjPkzGJpn2Y9/+UwAGDtvRvQaRhJuz16lA5wbfinN604\n9CqTmBb/mNGzq93CmdNca13wteG4wc/61CqYSjy2z1dghBo0voOx6hMAgEvPGYHvfNq29hSjSrdq\nHfqbbM/WuQSsNxiNGsyjyCrH7hlGOA8Kp1qoh2jPQX8L6QITv15wGeHSc5vRRov95MuZ0edkVJ5W\nDeOki8lXmrIRhkFeb9hGBSAR7EOxzeu2mxE4BniWbjtux16bn9Ep+6HLh+8inOTfdyJDAG592jhB\nEAThgXkoHO/sWR5YPRIbhn2YZyAmrk9Cd4Ly7YePXcTxP+A5iJ/7Gg87Ll4r4bZyqPsx0xW8pWdW\nc7+qhoKVhSza7/FMzHbJCU2DZ0S2Qn7kSjT76ZU4sv+CTuvMVyj9zm6swpSig51704ryaTovs+sc\nfK/xejceY2GJcmECK1VKvu6bpo62qRt0dBbLFHbDlKhNejccZsrO5nwLu0WeCapWjqssWdII5fl/\nCosqNN1hAIBu/RPkpymTjzSZqJXLm3CpSHusljrGLPyN+/EmahvjAACjnZnKM+o9lO102PvoR0rD\n/h00t2CKUjLXKJnOa7sBTGp5tqez89GngiAIwt8BkZoFQRAEoYs8FBFv2fJ/AQBuhmPoW2Hyj/Pl\nE7jbw0Sf8HuD8Iy9CQD4g98yAABeOjmNooUR2RvZa3i+9WMAwJXyL8H9DSUynWMi1uE5B5oulprc\nbuTw+VusPPWTXzmGg0OMVO1bTGzaKibhjvGzI0fymIs9AQCYSesQeYqh3+DuUba7voZ0H6XqgHa7\no206JyNJb3ATsV1K2I4dJ+w0A2vLJQSbjLpzY9xv69zuhWGAt6Za1sCj+gQAUNJPY2udEfaUEuWm\n/Q70l1h16mDfAIrJF/l3dR6ZAe7/jdp53Q/3TTiUZDJZ0LqDrJllNJcjVez3s6/sXvZH73Yb2haT\nunbV0x1tEwRBEB6ch8LxTvXSoZU2gmjssq7wgZfXcer1pwAAV4wZXPiP1gAA/0zD8oiXq02ERilL\n33l9Askn/0sAQDDwJsof/OcAgCHPAr9vScG3TieeXZ9BIsQM5kzRjL41Fof40zz3AQfTR1Ed5Wet\nESeesHHNU5+LAW46bFWFa9ILpUfg2WDJSXdtpqNt5jU627TWg7aK67pWzxLKNdpxtm8IWxau2x7R\nc/16J2qDs87CG23nHrIlZmR7DEsI1bhWvWxltrTduA61gQ50fe02ql6u8Rqs/Yip+T3LG3SmB061\nkKWSjC30oq4UEglp+tFr5WdiV9jG8UoDlxyc2PTpdzraJgiCIDw4IjULgiAIQhd5KCLetIsZxfHL\naTx53g8AqMWqeDf8fwIARssuNHYZFe/OMKHK9NYsXAvMum19uReX32cE+Yzxa1g1MUN3P8eSk5Nn\nishusAKV/8kAGu8yen75V+343mUmKZ2dYCTpvTuPhZHzAIB2zYidApOjAvp3MDz4KABgZfXfAgD0\nxX6sBXjdY62ljrbpVNxju942Y7zIpKx0ywY4hmhPBQBo8/ZEGgCQbMWh2WIWsXb0HKK7LJeZHMug\namRUHFSzQpUK6yhvMXlK3zOF3jL7IQ0zTuYYSd/9dcr3W9fr8KmYyFXRlmBwUSbvSejQzCbZZzOM\nfOdXVQjp2d6iJtPRNkEQBOHBeSgcbznLwLtVP4LIBQ7ysVEbhnroWCupPNbXuDbpGOBn455NJIdZ\narK4ncYB5Zg8fG0Qw+/SKe1/kc76/oUiXq4ww/dfma5DM85rRA3fwxEbs4Rtd3j03vyoD7hDJ/T2\niSi+vEZZ2dc8j2v3uV47tsFjBXWGLWR3ueaaPt/5BB+tjscZDmpbyCvZ1PZSHbky11+bhjFklKP8\n7Bd5DdNUFeoSHWS29h52BsMAAK/2MML7dMi6HtqQiozB4KSkbF/XozlCJ2vO1DE/yKzlQoN/H600\n0TjEddvye0PwqWjzlquA+71cZ+7b4m+1HZvI71Emd3unALze0T5BEAThwRCpWRAEQRC6yEMR8b54\nleUe1w/bEDfwAIKy71sI7lOCNVRfhX/q+wCA/QUedtDj+Y9xfJyy8839d2DMMxFo5a93cfgAozfP\nApOHMvYZvJFnYtT5DR3qSnRcrh9HQ0XZeXGYBwlMGluotZXDEL7lxO4JRsT5/A68MUab+QBPGSq3\n0wicpDS7s7PZ0baRo5zb3Fpfw8hZZg4nCvswbYcBAEnEkU3xkIOcnwleoYYTS1FGm0d77IjZmEil\nTm1j38eD7HvytK3PWcdGmnt+zWd0SF7j7/kPJTCyz2usbDNqTzhVSNzntcL9ekTHmLzmfX8VY6Ad\nbiMj5kouiOok1YfSHXtH2wRBEIQHRyJeQRAEQegiD0XEu/QoK1eZ3t3E/gTXdXs3evDOIvePBgM/\nQ/QiE4h8LkZmauttbLzLKFMdB5LjGwCAdvYT/KzO7TVqByO6w6ZF2AuMFB8f6cP37zMCPD2/ghvL\nyvVGWbnqfjuFwqpSfrJvAioTo9zBKw5ctYXZYPNPAAArV56Ef45RefHUOQDf/JRtN/cYPasiGujA\nKDW3HULBxrXhAWsBKRv3EI8nmDi12rJj/DhVgHvVcdQs1wAAk7u9aCWV5Ck1I1PTQAuNMG/jxp4a\nfmVrUiJlxZyefXJogvYUtoDyPteT19Q59N7kf++6m0haGR2v3lPWrK0RaK5z/+/hL5WA3/mUaYIg\nCMLfgYfC8fbrmdU8+8JjGNAz4Sf+28D5s0xA2mgHMOinQ3DpKSPP3+vDok7Jup0HfH+PWcm49Rw+\nH6Aje2+LmcblggX2nj8FAHyrMI5TayyQcduwhryR8u908zQA4Hv1S3h2kM646vs+rK9Tbm2cnUCP\nlY685z6FgoHTA6hvcJ/vfGSuo21bDmY9O4x38VGbUrKl34KVHO3JmA0wtfjfC449AIAuvY+7i5Sf\ng4fjMHzCBK1YOIndLZ7vG57mtdKVz8GnyM51Wx07k0wsSy0G4CrRThh4LWutjmEXHfNHFTXUGV7D\niiPYjrCvHZvMrA4+cxqlJouC9Kx2NE0QBEH4OyBSsyAIgiB0kYci4r21wajyGcv3cX2bUvPEiwex\nXGXyVG7qbQSus6mBEf5vq1BArcntRM3fWkH49xnJxV4dx5UkSywG57glZ896CpYrTMrymnqQHWNy\n1em4D3ePcO5RTFHafcK/j5CJZ+Gmr/fD8TI/67+hQjz+bQBAcpTR9UBtETfrjJhDI82Oto3VGFWu\nHRiAK8EIdLGniEAvTziqX1ahaGfE71fzd4vOT1DrZQWvG61tmIYYjY4tGNE3zt+5VaAMf6byPjbb\nTCzrMahQilMyrjmMSDEYh/cvaOP2cyUYrOwHdeQeSjb2tc5xHeEWK3jZjvN3YxVAV2akfMu60tE2\nQRAE4cF5KBzvzgd0vN8aqcF3mOUcb+6uQW9jxvGXL5/Fuw7Kxh4VnXH+/SLy5+jUfHdCeNdNpzZ1\nI4HeKwEAwPVJljp8Jf5tXDPRUemH76F4j8fszX8jjsgNFrh4epdy7cLWGXyyS0fnetWMnY+/BQC4\nWDmLsX46OF2NbdwyFLBu4KlHLw580tG2WoHXMvvdSDnopDW3C2hZuVa7OxRHSMV14nUbr2WbH0Fd\nOWXI422hWmGmd/64Gdt6OkFbjmvSCc8I0hWu92ZcVbQvcq9xfXgfZisLb+w9yTKQzWIV0HB9OzBp\nxEqEUvKzmX402nwU7gaZwdwu7uOElk641bQD+HFH+wRBEIQHQ6RmQRAEQegiD0XEO3WAEWrpfgvr\nBkaOo6Mz6MswCr018FMM/IAlFitfZ3SYcX+IonIG75feKSB/lElZlb8cxvCvM8q8u889qz/FDEx6\nXld/xYz8ESZCjVwywFqgzLu9wUh64NgqmmomOZl+twe2334eAGBd8GH3piJdH2HUeSLuwtERlpy8\nPDfQ0TaHmRHk3rIRGGVUXmk1YbFRMnbPH8HOQeVggm1G8MlhPYIN7hVOF9YwUOc1NhbK6HdTEra7\n2TdF1RjCGkb2nuVTaPSxbXu1MIIV7l3ebjOS3kkasONl1D2UzENjppR839UPgy4CADi6ySzslmoG\nm0WqDGa9o6NtgiAIwoPzUDjet9eZSav5ag4vV7kVqPqdDcyO0MlMHTyF6tNcay1cuQwAqJ8p4ykd\nj/+7VVWhtnMYALD5eAT3VhnIezU8e8+lm8V3N1hk4rilAauKWc+2w2bc+mO2oedzlHbt+hh8en42\ner6KwY/okP1r/dhK0KGHl1lS8rXzDbxYOAAAqMQXO9q2Z+O1ptx5bC1y0oD+dewscnuU7ZEC7AU6\n9GEN5ePlXBFhJ52paiMH1zgdX6+rgtlltkcb4nVzG2o0DnCrVNVmgcvIa6TTJew3+e8qLbcN1dxJ\n6LXK6UY6F0bMShY17qNRp/1RB2VtV7uEaVC2ft8d7GibIAiC8OCI1CwIgiAIXeShiHjPOxgJ/tVS\nDtEjlDqdp3WYSDLSmt/NQWOi3Go/xiITgdQ8ommegftjTy+eu8eTjKIBNYzKCT13lGIRjx8o41hG\nOXTAaYSVdSHQvN/Eo09Rsq2auD82MjeBQ0mehasaX8frhxlBZnr+BM/sc3+v0cLDB569eBq//494\nsel6taNtW0V+33nbiUKB8xxbXI+EgRHmRPYkVJ4rtFOJnkO9Dng3mXCW9o5hwcCM65NWD7RTbINl\nhxHvwaMa1HfYnh3DJqI9lLP12VPo80YAALMandJnwwN4WYQAABAiSURBVKjllGIbmftYrFJ21vot\n6IvTfluA169v7iDqZhLZka2FjrYJgiAID45EvIIgCILQRR6KiHdnlAlOz/cOIP5DrpWqR08hco7R\n25ijiGrsPQCA6p1XAADBA8N4wxgBAITis7D3MgIsTp9B/hajxRMnWBEqUmxgMc6o73lbEL5dlmLa\nbZdxHcoe2SkmagVUNayk3gUAXOsbwSPr1wEAxqIK+snnAADbmywjGbPl8MgPGblm9PWOtg3fZaQ+\nO9HExD0mO633FjBe4VYfbdWItOEoAKBuZoTeqpmwPB4GAFjKbtir/Kym7obWS5t69hlpRzObGDZz\nvXivXcRRP2/pxVIUqrZS7SvBdd22vgKbjeu2w74AgjaWktyt1mCwMTnMX2YbPh7uhaHANXK7bauj\nbYIgCMKD81A43mMqZt3+2SdGHAxREq6q5qGZpbPMv2eC/TeUE4HGPwIAJJpGTCvx+qVQEWuGXwYA\nvHLvm7i+8gwAoBTk/tbxj0poHWZyVj29i2UVndZHgRkcX+dZtZu32RXTE68jdeCf8nv3Urg5zWuc\nDfRjfoFOdMTNtlhW5zFv4zm/zrX7HW0rmej8TItGJI9ycjC+PYWanclThokQ3LO0OeTgRGO53kAt\nSenX6tAAKjrOjG8Lp7YpXe8b6TQdhRxmnfxvd9aNyByrZvQ0xtEKMtP7Rp79+FxCh4tpyvqB88C+\nUuUyq63hVIN9smegvO9oLKJxh9L3nn0MwDsd7RMEQRAeDJGaBUEQBKGLPBQR7xvK9pzHbwcR+F1W\nlVr4N3sIn+K8wPGlLPbTlFOnm0ycuhyMY66H0Zn/+pfR8PwFAGBF+5/g/nN/AgB46XthAMDt40ew\nvcwEpGa4gPFj3Df7fCqHqu3XAAD9o5SyI4v/Lcb1TCba9ukx9Akl5KhrHvg6E7ve+vNfAgCMzMTQ\nWmAkHXGYOtqWNTAa1ehbMGcYPesHfSjeYWJTyamC9hBPEVK29sKza4LGxS1E6u1R2HvY3tbqKAxj\nrOaVTjJ6dp8egOMtfjFt3oGqrEjGEzEgT2n8bJ37cfcGXTgRZAReaGaRtDMSdljcuFK+CQBwllhS\nMtDogytMST2+1NPRNkEQBOHBeSgc72iGhRzU/9SODzZY6OK/8wcx56ATLoUySLXpfC6omIVsvDqM\n8ZdYvMJbW8Ngjg5nf2YZZ1Z4qP3Wq3TM+2kHDg2wSMcTawnodXSA69FhjNjokK+Eucb7hcFrSH7C\na5nbKZRG6ThH2yfQfovZzvYkj+mrVtyIPskuHEgYOtqmU4pimGamoFfsTGmWMDjgAwAkDB7oS3Te\nUXUYADBky8Oco22zAT08vdyPqxvZQ+mnnKTYHJS4s1cdCBxi0QzfvgdbR+iYk6Uaartc6zZVWfrR\nVV3EVoltGFYdRTvOvkwc3IHDy9/WLHGfcMp4BbO9dP4DOtnHKwiC8P8VIjULgiAIQhd5KCLeo2Nv\nAAD+aP+/wbNKjtK/ObuAwD6TmWKaHbTjjPpeiHKf7/tfHcXTjscBACnnh3irxvKQx9cmoPYyc1eT\nokysjy9iSJGti9aX8OEey1W5Qj7Meu4AAK6/ya6of76OA8ETAIDIwAReWqLc+lY4C8sqE5uMh5TT\nhKrfx9oWI8/G+50j3iM+Jk7ditng7v2Q/2gZQb3BCF6fOoKqjlLwxBQjy3R9H1uFIwCAQGMO9RCT\nzx65WsXaKVboCu4wmrXX5hCPK4qBzYjoLE84OuVcQ2WcdmwuMFM5enAcwz9hMtl6aA2BRynbezZC\niAf4GcMgs8oH5ixoOqgGpMuljrYJgiAID85D4Xh/skanet6+Av0BOgvv/TrGVbcBAP3NSRTUlHez\nLzHTNvFHW7jno7OwnAhgqHgXAJBbH8Oohw73UpzO65C7giNX6IwvWd5E0doLAEht/xCPx/4JAODp\n6Qi/nziIrJYTgfa7fkQ8dNi/ebGJ79gpNUPHCYG1MgDbxj9ge+x/1dG2JTdlZHNxHfomyzFqbvdC\ndYJrwlHLRzjawyzsrQQdrM7ZC095EwCgggnqKGXn6/YWLPt0goEAHf36/gD0OsrDZk0M4XacP+yq\nQ5tm/4VLbK+j8DEwTkm9t28EOxGW3DTaCjC8x2tsGvj9PrMNaR2LgvSYNR1tEwRBEB4ckZoFQRAE\noYs8FBFvT5AFIsrv1uA4xOhu3WTGhP8kAKA6UsHOX1LS1Xq5p/XwSQOqLp4tu6rrR1tLqbn6XBHW\nW0wmqg6z8INzw4y1M2EAwNO3d+FqvwgA8B7xIHLvKgBg73vM5j3/623cc54DABwKxTB6ZxQAcPvI\nBoxmRqEre/ytwUEd+lOMUrXBwx1tq60z+s64cmi7KAmbvlRERMeDISbnPdhfYSRdO8fo+OD6BnYH\nqAIES3rUvMymNt1aRf0xJmVt6CkDV5JGZFXMat7ei8HhZv/oGjqk6+xXXVApKXn/KfTZeAbvWHQV\nln3u+TXa9EjbmOE85mLflWM7mJjl41GcL3a0TRAEQXhwJOIVBEEQhC7yUES8qw2WUgw8FcRailFY\n+FgWuwWuidrW7+DxGW59iW1yi1FzLoLoP/nHAABn7ScwNxiNVt7wwsJ8JniLTEBqnMhh+FsvAADu\nnflrONWXAADVbBaNMzznd/ApJTJdW4NLWSZt+6NInWBCVT7+DQzN/zUAoNDiFqObN4+jYviHbLv6\nKx1t23VyD+yEyQt7imvS5pIW7SLXmQMHG8gd4FpqTjlQQXMwCFOGkWlixA//NvtHY7WieoG/bfEx\nKewQnoIxfwEAsBQ+BEfQqLQtgWkNI2ydhvOrmekiPmzw+5uaPgy2mdS1q6tB1ea2p5qy77gQV2N/\ngpH45lEj8IOO5gmCIAgPyEPheHVWFseoWlxouVm8wuQYh2+Fe1avXbWj9RybulmjMx44Po69u38J\nAHjl2jj2zjDTOO8L4U4mCwBoFr4IAHBs/Dm0R94HAISGR/HBRgQAMGKfwqAizW6tMss4v2KFt50D\nANybnMa7e3SKJyPzWD7JLOC+HJ2poZLDtvPvAQAynlxH2yb6+dmo/z68+5So3eMptDZZyCJTP4ae\nMjOJtXVOOq5saXBigA7UsxHEgpkJVeb2GIoTnBWEVAcBAHNzbfg8TLQqxcsw1+hAH2/qEJtgm0wR\n/j1SHIQ6RyfuLiSR9VBeNpdc0Co23W0x63lYtYsWVW1oI51tEwRBEB4ckZoFQRAEoYs8FBFv0M+q\nUu1dE/pUTCqy7Vfwzj7LKhoONuCNMyL7aIMJSAXvJg5rmHx11a5GO0qZtpKdhW+cnw0c+gAAMKee\nhKvEBKHspQy+6uU5s1c9Rhy4TWm11I4AADbG7NAuMlnJfK+Acx8z6n7/RBK/uUrp9qc73F5T9H+C\ntQ8ZmQZDnW3Lp3mteuo4tgOsKqW+MYOtaR5W8FRpCRsbvK7FyUh9asKO1VlG4NvhVYRVlNFTVjum\ntiifxw7wszq/Dem9SfbfiR0U41QEss4Cdq/xGt4go3qvbRf7WiZaJV19mPGzL5PX1MhYGdX25qk4\nqM1H0Yrx+5v2SmfjBEEQhAfmoXC80f+NUuhTMwlUvsEF2vjFNejtDMib/g9w763/CgBw/jzXJW/t\nG1BqfwwAMPZ9DgMtSrcGfQh30k8CAG6s0znNPLmAjI/7f6uqq7jt4jrx8vYsCtYIAMBWoDNtRy9i\n10gJ1mTsgeUxyryvvreKt/5HZj5Xfo9/r/RFcfgc98hmFAf+tzFmmKV9QL2K2s552uPIIbjLwhz3\nkv2o1mhnLkdHNxINIHuev3vwfhKJHk4kCuodLOooRzvucR+wNR0F7PyNvY0p5LXM0lY7nOj18TMD\nVfbZBxE/Aia2U2e4i+Vt/q7R7IKzTIk61kMbD6WBhQxrSJ92OjvaJgiCIDw4IjULgiAIQhd5KCLe\n1vOsE/mhNgz7JrOLDSUTZjYocV5OfQEr4zyrtlWjZNxbX0cszT22tq1buPcI98Um05Mo6JlI1UNV\nFckPgtAf+jMAwETwFD6+wbNwnzsSwHv7lKPVs68CAGrtJeyYmFU01TRgQP0aAOB3XngVv3qN0qwm\n8D8DAH5S+Q2EP17lv/k/7GxcH2XthEaD8TJ/t5FRoVriQQ7t3AbSasrkR8KU1ueWorCt87csY4No\n1Bm561VpuHbCvO4RSsObml1kqpSXHfWb0CxRVs4fKqGYomyfned+51ZfFCsuSt+uKxWYTzJzWrXm\nR+0IFYHJDUbHS9YsduJcAtDFy51tEwRBEB6Yh8LxOlp0SL7VftQaPBHnhaIJ74d56o63Norx0SsA\ngOQNOouY+im8M/ZHAIBz/pcwfYUOey7/MfLGxwAAtleYwet4fQXpO5RYf/eJe/jKIcqpr/3wRwi7\nKW1Xfd8EAAxrUqi9Tyf8r9119B9hicVHL3pgzHN99cb0f8b2XluGp8DCGdcSVQAffcq23UV+p1/n\nx5xS9OKMw4aSag8AcM+QQNhAR98qsuCHseHDrIcSti27h0ZNyfTWDWHRwn5YuT0DADiyZYF7nNL3\n7bIRXiuPCzTHW0DhAgAg3uYC9EjqOiJKAZKqKwRDgv1g1N7H3Tz7fbvJ/ji2PwuXn9nmK6Yjn7JL\nEARB+LshUrMgCIIgdBFVu93+RbcBKpXqF98IQRAEQfgPoN1uq/59PicRryAIgiB0EXG8giAIgtBF\nxPEKgiAIQhcRxysIgiAIXUQcryAIgiB0EXG8giAIgtBFxPEKgiAIQhcRxysIgiAIXUQcryAIgiB0\nEXG8giAIgtBFxPEKgiAIQhcRxysIgiAIXUQcryAIgiB0EXG8giAIgtBFxPEKgiAIQhcRxysIgiAI\nXUQcryAIgiB0EXG8giAIgtBFxPEKgiAIQhcRxysIgiAIXUQcryAIgiB0EXG8giAIgtBFxPEKgiAI\nQhcRxysIgiAIXUQcryAIgiB0EXG8giAIgtBFxPEKgiAIQhcRxysIgiAIXUQcryAIgiB0EXG8giAI\ngtBFxPEKgiAIQhcRxysIgiAIXUQcryAIgiB0EXG8giAIgtBFxPEKgiAIQhcRxysIgiAIXUQcryAI\ngiB0EXG8giAIgtBFxPEKgiAIQhcRxysIgiAIXUQcryAIgiB0EXG8giAIgtBFxPEKgiAIQhcRxysI\ngiAIXUQcryAIgiB0EXG8giAIgtBFxPEKgiAIQhcRxysIgiAIXUQcryAIgiB0EXG8giAIgtBFxPEK\ngiAIQhcRxysIgiAIXUQcryAIgiB0EXG8giAIgtBFVO12+xfdBkEQBEH4/w0S8QqCIAhCFxHHKwiC\nIAhdRByvIAiCIHQRcbyCIAiC0EXE8QqCIAhCFxHHKwiCIAhdRByvIAiCIHQRcbyCIAiC0EXE8QqC\nIAhCFxHHKwiCIAhdRByvIAiCIHQRcbyCIAiC0EXE8QqCIAhCFxHHKwiCIAhdRByvIAiCIHQRcbyC\nIAiC0EXE8QqCIAhCFxHHKwiCIAhdRByvIAiCIHQRcbyCIAiC0EXE8QqCIAhCFxHHKwiCIAhdRByv\nIAiCIHSR/xv2e/g+JkInXQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11a0fb190>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from utils.vis_utils import visualize_grid\n", "\n", "# Visualize the weights of the network\n", "def show_net_weights(net):\n", " W1 = net.params['W1']\n", " W1 = W1.reshape(32, 32, 3, -1).transpose(3, 0, 1, 2)\n", " plt.imshow(visualize_grid(W1, padding=3).astype('uint8'))\n", " plt.gca().axis('off')\n", " plt.show()\n", " \n", "show_net_weights(net)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Tune your hyperparameters\n", "\n", "**What's wrong?**. Looking at the visualizations above, we see that the loss is decreasing more or less linearly, which seems to suggest that the learning rate may be too low. Moreover, there is no gap between the training and validation accuracy, suggesting that the model we used has low capacity, and that we should increase its size. On the other hand, with a very large model we would expect to see more overfitting, which would manifest itself as a very large gap between the training and validation accuracy.\n", "\n", "**Tuning**. Tuning the hyperparameters and developing intuition for how they affect the final performance is a large part of using Neural Networks, so we want you to get a lot of practice. Below, you should experiment with different values of the various hyperparameters, including **hidden layer size, learning rate, numer of training epochs, and regularization strength**. You might also consider tuning the learning rate decay, but you should be able to get good performance using the default value.\n", "\n", "**Approximate results**. You should be aim to achieve a classification accuracy of greater than 48% on the validation set. Our best network gets over 52% on the validation set.\n", "\n", "**Experiment**: You goal in this exercise is to get as good of a result on CIFAR-10 as you can, with a fully-connected Neural Network. For every 1% above 52% on the Test set we will award you with one extra bonus point. Feel free implement your own techniques (e.g. PCA to reduce dimensionality, or adding dropout, or adding features to the solver, etc.)." ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "iteration 1 / 5000: loss 2.409961\n", "iteration 101 / 5000: loss 2.158140\n", "iteration 201 / 5000: loss 2.009294\n", "iteration 301 / 5000: loss 1.979639\n", "iteration 401 / 5000: loss 1.942002\n", "iteration 501 / 5000: loss 1.827258\n", "iteration 601 / 5000: loss 1.835251\n", "iteration 701 / 5000: loss 1.704696\n", "iteration 801 / 5000: loss 1.769029\n", "iteration 901 / 5000: loss 1.675095\n", "iteration 1001 / 5000: loss 1.689062\n", "iteration 1101 / 5000: loss 1.786561\n", "iteration 1201 / 5000: loss 1.822278\n", "iteration 1301 / 5000: loss 1.721067\n", "iteration 1401 / 5000: loss 1.730675\n", "iteration 1501 / 5000: loss 1.686564\n", "iteration 1601 / 5000: loss 1.544546\n", "iteration 1701 / 5000: loss 1.619521\n", "iteration 1801 / 5000: loss 1.678234\n", "iteration 1901 / 5000: loss 1.666344\n", "iteration 2001 / 5000: loss 1.637763\n", "iteration 2101 / 5000: loss 1.687455\n", "iteration 2201 / 5000: loss 1.479651\n", "iteration 2301 / 5000: loss 1.572565\n", "iteration 2401 / 5000: loss 1.578272\n", "iteration 2501 / 5000: loss 1.612838\n", "iteration 2601 / 5000: loss 1.767758\n", "iteration 2701 / 5000: loss 1.624772\n", "iteration 2801 / 5000: loss 1.643853\n", "iteration 2901 / 5000: loss 1.544022\n", "iteration 3001 / 5000: loss 1.699063\n", "iteration 3101 / 5000: loss 1.603541\n", "iteration 3201 / 5000: loss 1.684917\n", "iteration 3301 / 5000: loss 1.572763\n", "iteration 3401 / 5000: loss 1.582653\n", "iteration 3501 / 5000: loss 1.643857\n", "iteration 3601 / 5000: loss 1.476511\n", "iteration 3701 / 5000: loss 1.603652\n", "iteration 3801 / 5000: loss 1.518479\n", "iteration 3901 / 5000: loss 1.536813\n", "iteration 4001 / 5000: loss 1.643620\n", "iteration 4101 / 5000: loss 1.576849\n", "iteration 4201 / 5000: loss 1.540096\n", "iteration 4301 / 5000: loss 1.607825\n", "iteration 4401 / 5000: loss 1.680330\n", "iteration 4501 / 5000: loss 1.610213\n", "iteration 4601 / 5000: loss 1.581618\n", "iteration 4701 / 5000: loss 1.662318\n", "iteration 4801 / 5000: loss 1.509553\n", "iteration 4901 / 5000: loss 1.609396\n", "hidden_layer_size: 50, lr: 3.000000e-04, reg: 7.000000e-01, train_acc: 0.500429, val_acc: 0.485000\n", "iteration 1 / 5000: loss 2.425271\n", "iteration 101 / 5000: loss 2.220153\n", "iteration 201 / 5000: loss 2.081063\n", "iteration 301 / 5000: loss 2.018277\n", "iteration 401 / 5000: loss 2.017465\n", "iteration 501 / 5000: loss 1.872938\n", "iteration 601 / 5000: loss 1.929252\n", "iteration 701 / 5000: loss 1.849218\n", "iteration 801 / 5000: loss 1.740892\n", "iteration 901 / 5000: loss 1.737878\n", "iteration 1001 / 5000: loss 1.716343\n", "iteration 1101 / 5000: loss 1.695569\n", "iteration 1201 / 5000: loss 1.672084\n", "iteration 1301 / 5000: loss 1.605759\n", "iteration 1401 / 5000: loss 1.706853\n", "iteration 1501 / 5000: loss 1.750231\n", "iteration 1601 / 5000: loss 1.675886\n", "iteration 1701 / 5000: loss 1.770472\n", "iteration 1801 / 5000: loss 1.569446\n", "iteration 1901 / 5000: loss 1.675889\n", "iteration 2001 / 5000: loss 1.638305\n", "iteration 2101 / 5000: loss 1.671673\n", "iteration 2201 / 5000: loss 1.654543\n", "iteration 2301 / 5000: loss 1.702525\n", "iteration 2401 / 5000: loss 1.690901\n", "iteration 2501 / 5000: loss 1.532892\n", "iteration 2601 / 5000: loss 1.648299\n", "iteration 2701 / 5000: loss 1.546824\n", "iteration 2801 / 5000: loss 1.630912\n", "iteration 2901 / 5000: loss 1.652404\n", "iteration 3001 / 5000: loss 1.697700\n", "iteration 3101 / 5000: loss 1.789114\n", "iteration 3201 / 5000: loss 1.567175\n", "iteration 3301 / 5000: loss 1.560006\n", "iteration 3401 / 5000: loss 1.616820\n", "iteration 3501 / 5000: loss 1.643663\n", "iteration 3601 / 5000: loss 1.477822\n", "iteration 3701 / 5000: loss 1.558004\n", "iteration 3801 / 5000: loss 1.466781\n", "iteration 3901 / 5000: loss 1.585170\n", "iteration 4001 / 5000: loss 1.608458\n", "iteration 4101 / 5000: loss 1.599268\n", "iteration 4201 / 5000: loss 1.595368\n", "iteration 4301 / 5000: loss 1.653542\n", "iteration 4401 / 5000: loss 1.599541\n", "iteration 4501 / 5000: loss 1.607244\n", "iteration 4601 / 5000: loss 1.539681\n", "iteration 4701 / 5000: loss 1.644408\n", "iteration 4801 / 5000: loss 1.582699\n", "iteration 4901 / 5000: loss 1.567336\n", "hidden_layer_size: 50, lr: 3.000000e-04, reg: 8.000000e-01, train_acc: 0.500510, val_acc: 0.482000\n", "iteration 1 / 5000: loss 2.442235\n", "iteration 101 / 5000: loss 2.223433\n", "iteration 201 / 5000: loss 2.065532\n", "iteration 301 / 5000: loss 1.950631\n", "iteration 401 / 5000: loss 1.967382\n", "iteration 501 / 5000: loss 1.950207\n", "iteration 601 / 5000: loss 1.775823\n", "iteration 701 / 5000: loss 1.811384\n", "iteration 801 / 5000: loss 1.819327\n", "iteration 901 / 5000: loss 1.787936\n", "iteration 1001 / 5000: loss 1.745111\n", "iteration 1101 / 5000: loss 1.883332\n", "iteration 1201 / 5000: loss 1.634129\n", "iteration 1301 / 5000: loss 1.784145\n", "iteration 1401 / 5000: loss 1.632121\n", "iteration 1501 / 5000: loss 1.620308\n", "iteration 1601 / 5000: loss 1.775527\n", "iteration 1701 / 5000: loss 1.613225\n", "iteration 1801 / 5000: loss 1.639705\n", "iteration 1901 / 5000: loss 1.618770\n", "iteration 2001 / 5000: loss 1.705976\n", "iteration 2101 / 5000: loss 1.555351\n", "iteration 2201 / 5000: loss 1.697385\n", "iteration 2301 / 5000: loss 1.576147\n", "iteration 2401 / 5000: loss 1.687958\n", "iteration 2501 / 5000: loss 1.703212\n", "iteration 2601 / 5000: loss 1.544348\n", "iteration 2701 / 5000: loss 1.566488\n", "iteration 2801 / 5000: loss 1.756422\n", "iteration 2901 / 5000: loss 1.624771\n", "iteration 3001 / 5000: loss 1.647981\n", "iteration 3101 / 5000: loss 1.624651\n", "iteration 3201 / 5000: loss 1.580691\n", "iteration 3301 / 5000: loss 1.627093\n", "iteration 3401 / 5000: loss 1.659882\n", "iteration 3501 / 5000: loss 1.602352\n", "iteration 3601 / 5000: loss 1.719313\n", "iteration 3701 / 5000: loss 1.575136\n", "iteration 3801 / 5000: loss 1.690630\n", "iteration 3901 / 5000: loss 1.640411\n", "iteration 4001 / 5000: loss 1.526751\n", "iteration 4101 / 5000: loss 1.596954\n", "iteration 4201 / 5000: loss 1.591691\n", "iteration 4301 / 5000: loss 1.680037\n", "iteration 4401 / 5000: loss 1.493575\n", "iteration 4501 / 5000: loss 1.588050\n", "iteration 4601 / 5000: loss 1.638900\n", "iteration 4701 / 5000: loss 1.598790\n", "iteration 4801 / 5000: loss 1.601114\n", "iteration 4901 / 5000: loss 1.551229\n", "hidden_layer_size: 50, lr: 3.000000e-04, reg: 9.000000e-01, train_acc: 0.494612, val_acc: 0.486000\n", "iteration 1 / 5000: loss 2.449321\n", "iteration 101 / 5000: loss 2.215104\n", "iteration 201 / 5000: loss 2.079319\n", "iteration 301 / 5000: loss 1.974501\n", "iteration 401 / 5000: loss 1.853118\n", "iteration 501 / 5000: loss 1.874310\n", "iteration 601 / 5000: loss 1.799037\n", "iteration 701 / 5000: loss 1.848519\n", "iteration 801 / 5000: loss 1.956783\n", "iteration 901 / 5000: loss 1.733930\n", "iteration 1001 / 5000: loss 1.770525\n", "iteration 1101 / 5000: loss 1.722408\n", "iteration 1201 / 5000: loss 1.725642\n", "iteration 1301 / 5000: loss 1.690206\n", "iteration 1401 / 5000: loss 1.756073\n", "iteration 1501 / 5000: loss 1.789380\n", "iteration 1601 / 5000: loss 1.661055\n", "iteration 1701 / 5000: loss 1.624347\n", "iteration 1801 / 5000: loss 1.680973\n", "iteration 1901 / 5000: loss 1.764589\n", "iteration 2001 / 5000: loss 1.673944\n", "iteration 2101 / 5000: loss 1.685413\n", "iteration 2201 / 5000: loss 1.623023\n", "iteration 2301 / 5000: loss 1.768487\n", "iteration 2401 / 5000: loss 1.712108\n", "iteration 2501 / 5000: loss 1.585581\n", "iteration 2601 / 5000: loss 1.695190\n", "iteration 2701 / 5000: loss 1.647915\n", "iteration 2801 / 5000: loss 1.768477\n", "iteration 2901 / 5000: loss 1.615983\n", "iteration 3001 / 5000: loss 1.590348\n", "iteration 3101 / 5000: loss 1.737815\n", "iteration 3201 / 5000: loss 1.647073\n", "iteration 3301 / 5000: loss 1.657719\n", "iteration 3401 / 5000: loss 1.529472\n", "iteration 3501 / 5000: loss 1.615249\n", "iteration 3601 / 5000: loss 1.716291\n", "iteration 3701 / 5000: loss 1.642936\n", "iteration 3801 / 5000: loss 1.667776\n", "iteration 3901 / 5000: loss 1.521122\n", "iteration 4001 / 5000: loss 1.672603\n", "iteration 4101 / 5000: loss 1.609479\n", "iteration 4201 / 5000: loss 1.666670\n", "iteration 4301 / 5000: loss 1.571400\n", "iteration 4401 / 5000: loss 1.579785\n", "iteration 4501 / 5000: loss 1.515378\n", "iteration 4601 / 5000: loss 1.615027\n", "iteration 4701 / 5000: loss 1.557653\n", "iteration 4801 / 5000: loss 1.600093\n", "iteration 4901 / 5000: loss 1.632438\n", "hidden_layer_size: 50, lr: 3.000000e-04, reg: 1.000000e+00, train_acc: 0.494184, val_acc: 0.487000\n", "iteration 1 / 5000: loss 2.410356\n", "iteration 101 / 5000: loss 1.912126\n", "iteration 201 / 5000: loss 1.902933\n", "iteration 301 / 5000: loss 1.852738\n", "iteration 401 / 5000: loss 1.754910\n", "iteration 501 / 5000: loss 1.609960\n", "iteration 601 / 5000: loss 1.635343\n", "iteration 701 / 5000: loss 1.696662\n", "iteration 801 / 5000: loss 1.704251\n", "iteration 901 / 5000: loss 1.737743\n", "iteration 1001 / 5000: loss 1.612900\n", "iteration 1101 / 5000: loss 1.595094\n", "iteration 1201 / 5000: loss 1.616778\n", "iteration 1301 / 5000: loss 1.578644\n", "iteration 1401 / 5000: loss 1.614397\n", "iteration 1501 / 5000: loss 1.473924\n", "iteration 1601 / 5000: loss 1.535307\n", "iteration 1701 / 5000: loss 1.582054\n", "iteration 1801 / 5000: loss 1.618429\n", "iteration 1901 / 5000: loss 1.609618\n", "iteration 2001 / 5000: loss 1.555397\n", "iteration 2101 / 5000: loss 1.608955\n", "iteration 2201 / 5000: loss 1.678534\n", "iteration 2301 / 5000: loss 1.545709\n", "iteration 2401 / 5000: loss 1.505825\n", "iteration 2501 / 5000: loss 1.505607\n", "iteration 2601 / 5000: loss 1.578869\n", "iteration 2701 / 5000: loss 1.458720\n", "iteration 2801 / 5000: loss 1.557589\n", "iteration 2901 / 5000: loss 1.502304\n", "iteration 3001 / 5000: loss 1.656756\n", "iteration 3101 / 5000: loss 1.495635\n", "iteration 3201 / 5000: loss 1.645036\n", "iteration 3301 / 5000: loss 1.432810\n", "iteration 3401 / 5000: loss 1.487877\n", "iteration 3501 / 5000: loss 1.545028\n", "iteration 3601 / 5000: loss 1.632838\n", "iteration 3701 / 5000: loss 1.575399\n", "iteration 3801 / 5000: loss 1.698916\n", "iteration 3901 / 5000: loss 1.474102\n", "iteration 4001 / 5000: loss 1.461715\n", "iteration 4101 / 5000: loss 1.566870\n", "iteration 4201 / 5000: loss 1.454293\n", "iteration 4301 / 5000: loss 1.568163\n", "iteration 4401 / 5000: loss 1.572119\n", "iteration 4501 / 5000: loss 1.446309\n", "iteration 4601 / 5000: loss 1.510652\n", "iteration 4701 / 5000: loss 1.459831\n", "iteration 4801 / 5000: loss 1.495238\n", "iteration 4901 / 5000: loss 1.502663\n", "hidden_layer_size: 50, lr: 9.000000e-04, reg: 7.000000e-01, train_acc: 0.533082, val_acc: 0.495000\n", "iteration 1 / 5000: loss 2.427359\n", "iteration 101 / 5000: loss 2.002654\n", "iteration 201 / 5000: loss 1.759198\n", "iteration 301 / 5000: loss 1.711776\n", "iteration 401 / 5000: loss 1.843849\n", "iteration 501 / 5000: loss 1.729990\n", "iteration 601 / 5000: loss 1.746596\n", "iteration 701 / 5000: loss 1.643138\n", "iteration 801 / 5000: loss 1.671120\n", "iteration 901 / 5000: loss 1.708569\n", "iteration 1001 / 5000: loss 1.626997\n", "iteration 1101 / 5000: loss 1.703050\n", "iteration 1201 / 5000: loss 1.610826\n", "iteration 1301 / 5000: loss 1.621018\n", "iteration 1401 / 5000: loss 1.545155\n", "iteration 1501 / 5000: loss 1.830826\n", "iteration 1601 / 5000: loss 1.542515\n", "iteration 1701 / 5000: loss 1.629082\n", "iteration 1801 / 5000: loss 1.520701\n", "iteration 1901 / 5000: loss 1.639636\n", "iteration 2001 / 5000: loss 1.542157\n", "iteration 2101 / 5000: loss 1.621997\n", "iteration 2201 / 5000: loss 1.606738\n", "iteration 2301 / 5000: loss 1.569742\n", "iteration 2401 / 5000: loss 1.580212\n", "iteration 2501 / 5000: loss 1.442048\n", "iteration 2601 / 5000: loss 1.664999\n", "iteration 2701 / 5000: loss 1.646400\n", "iteration 2801 / 5000: loss 1.524228\n", "iteration 2901 / 5000: loss 1.654324\n", "iteration 3001 / 5000: loss 1.589383\n", "iteration 3101 / 5000: loss 1.675237\n", "iteration 3201 / 5000: loss 1.589844\n", "iteration 3301 / 5000: loss 1.569137\n", "iteration 3401 / 5000: loss 1.456047\n", "iteration 3501 / 5000: loss 1.595992\n", "iteration 3601 / 5000: loss 1.572865\n", "iteration 3701 / 5000: loss 1.543767\n", "iteration 3801 / 5000: loss 1.577963\n", "iteration 3901 / 5000: loss 1.614468\n", "iteration 4001 / 5000: loss 1.486841\n", "iteration 4101 / 5000: loss 1.659688\n", "iteration 4201 / 5000: loss 1.482823\n", "iteration 4301 / 5000: loss 1.567118\n", "iteration 4401 / 5000: loss 1.627538\n", "iteration 4501 / 5000: loss 1.524613\n", "iteration 4601 / 5000: loss 1.511288\n", "iteration 4701 / 5000: loss 1.576008\n", "iteration 4801 / 5000: loss 1.585694\n", "iteration 4901 / 5000: loss 1.530811\n", "hidden_layer_size: 50, lr: 9.000000e-04, reg: 8.000000e-01, train_acc: 0.529490, val_acc: 0.499000\n", "iteration 1 / 5000: loss 2.442946\n", "iteration 101 / 5000: loss 2.006257\n", "iteration 201 / 5000: loss 1.779370\n", "iteration 301 / 5000: loss 1.765025\n", "iteration 401 / 5000: loss 1.731169\n", "iteration 501 / 5000: loss 1.761445\n", "iteration 601 / 5000: loss 1.510700\n", "iteration 701 / 5000: loss 1.616954\n", "iteration 801 / 5000: loss 1.586672\n", "iteration 901 / 5000: loss 1.653583\n", "iteration 1001 / 5000: loss 1.803018\n", "iteration 1101 / 5000: loss 1.706154\n", "iteration 1201 / 5000: loss 1.696805\n", "iteration 1301 / 5000: loss 1.683088\n", "iteration 1401 / 5000: loss 1.600967\n", "iteration 1501 / 5000: loss 1.638499\n", "iteration 1601 / 5000: loss 1.578823\n", "iteration 1701 / 5000: loss 1.582748\n", "iteration 1801 / 5000: loss 1.643480\n", "iteration 1901 / 5000: loss 1.614718\n", "iteration 2001 / 5000: loss 1.581021\n", "iteration 2101 / 5000: loss 1.674719\n", "iteration 2201 / 5000: loss 1.651773\n", "iteration 2301 / 5000: loss 1.638304\n", "iteration 2401 / 5000: loss 1.688920\n", "iteration 2501 / 5000: loss 1.632117\n", "iteration 2601 / 5000: loss 1.692494\n", "iteration 2701 / 5000: loss 1.540684\n", "iteration 2801 / 5000: loss 1.597368\n", "iteration 2901 / 5000: loss 1.679163\n", "iteration 3001 / 5000: loss 1.645066\n", "iteration 3101 / 5000: loss 1.567624\n", "iteration 3201 / 5000: loss 1.619583\n", "iteration 3301 / 5000: loss 1.576671\n", "iteration 3401 / 5000: loss 1.620777\n", "iteration 3501 / 5000: loss 1.632127\n", "iteration 3601 / 5000: loss 1.573995\n", "iteration 3701 / 5000: loss 1.616885\n", "iteration 3801 / 5000: loss 1.588414\n", "iteration 3901 / 5000: loss 1.692021\n", "iteration 4001 / 5000: loss 1.594353\n", "iteration 4101 / 5000: loss 1.607120\n", "iteration 4201 / 5000: loss 1.559214\n", "iteration 4301 / 5000: loss 1.683575\n", "iteration 4401 / 5000: loss 1.687762\n", "iteration 4501 / 5000: loss 1.712059\n", "iteration 4601 / 5000: loss 1.561996\n", "iteration 4701 / 5000: loss 1.653669\n", "iteration 4801 / 5000: loss 1.635627\n", "iteration 4901 / 5000: loss 1.570240\n", "hidden_layer_size: 50, lr: 9.000000e-04, reg: 9.000000e-01, train_acc: 0.523714, val_acc: 0.489000\n", "iteration 1 / 5000: loss 2.456239\n", "iteration 101 / 5000: loss 2.075234\n", "iteration 201 / 5000: loss 1.839561\n", "iteration 301 / 5000: loss 1.795984\n", "iteration 401 / 5000: loss 1.743414\n", "iteration 501 / 5000: loss 1.670168\n", "iteration 601 / 5000: loss 1.567970\n", "iteration 701 / 5000: loss 1.678423\n", "iteration 801 / 5000: loss 1.745050\n", "iteration 901 / 5000: loss 1.806679\n", "iteration 1001 / 5000: loss 1.702558\n", "iteration 1101 / 5000: loss 1.659625\n", "iteration 1201 / 5000: loss 1.707160\n", "iteration 1301 / 5000: loss 1.561432\n", "iteration 1401 / 5000: loss 1.653963\n", "iteration 1501 / 5000: loss 1.605561\n", "iteration 1601 / 5000: loss 1.629088\n", "iteration 1701 / 5000: loss 1.598716\n", "iteration 1801 / 5000: loss 1.605527\n", "iteration 1901 / 5000: loss 1.560287\n", "iteration 2001 / 5000: loss 1.590624\n", "iteration 2101 / 5000: loss 1.572512\n", "iteration 2201 / 5000: loss 1.636139\n", "iteration 2301 / 5000: loss 1.669273\n", "iteration 2401 / 5000: loss 1.628409\n", "iteration 2501 / 5000: loss 1.622587\n", "iteration 2601 / 5000: loss 1.624992\n", "iteration 2701 / 5000: loss 1.702408\n", "iteration 2801 / 5000: loss 1.630381\n", "iteration 2901 / 5000: loss 1.533254\n", "iteration 3001 / 5000: loss 1.606394\n", "iteration 3101 / 5000: loss 1.613779\n", "iteration 3201 / 5000: loss 1.763971\n", "iteration 3301 / 5000: loss 1.626917\n", "iteration 3401 / 5000: loss 1.618677\n", "iteration 3501 / 5000: loss 1.489478\n", "iteration 3601 / 5000: loss 1.592777\n", "iteration 3701 / 5000: loss 1.710834\n", "iteration 3801 / 5000: loss 1.655450\n", "iteration 3901 / 5000: loss 1.703332\n", "iteration 4001 / 5000: loss 1.489270\n", "iteration 4101 / 5000: loss 1.683961\n", "iteration 4201 / 5000: loss 1.675000\n", "iteration 4301 / 5000: loss 1.507502\n", "iteration 4401 / 5000: loss 1.634462\n", "iteration 4501 / 5000: loss 1.682081\n", "iteration 4601 / 5000: loss 1.656801\n", "iteration 4701 / 5000: loss 1.622829\n", "iteration 4801 / 5000: loss 1.520234\n", "iteration 4901 / 5000: loss 1.563238\n", "hidden_layer_size: 50, lr: 9.000000e-04, reg: 1.000000e+00, train_acc: 0.514755, val_acc: 0.487000\n", "iteration 1 / 5000: loss 2.410724\n", "iteration 101 / 5000: loss 1.946099\n", "iteration 201 / 5000: loss 1.656245\n", "iteration 301 / 5000: loss 1.713223\n", "iteration 401 / 5000: loss 1.612764\n", "iteration 501 / 5000: loss 1.724715\n", "iteration 601 / 5000: loss 1.764600\n", "iteration 701 / 5000: loss 1.664367\n", "iteration 801 / 5000: loss 1.649581\n", "iteration 901 / 5000: loss 1.554899\n", "iteration 1001 / 5000: loss 1.672089\n", "iteration 1101 / 5000: loss 1.513489\n", "iteration 1201 / 5000: loss 1.646212\n", "iteration 1301 / 5000: loss 1.496682\n", "iteration 1401 / 5000: loss 1.494121\n", "iteration 1501 / 5000: loss 1.542276\n", "iteration 1601 / 5000: loss 1.605371\n", "iteration 1701 / 5000: loss 1.468398\n", "iteration 1801 / 5000: loss 1.430812\n", "iteration 1901 / 5000: loss 1.695256\n", "iteration 2001 / 5000: loss 1.441603\n", "iteration 2101 / 5000: loss 1.562543\n", "iteration 2201 / 5000: loss 1.609819\n", "iteration 2301 / 5000: loss 1.558494\n", "iteration 2401 / 5000: loss 1.498648\n", "iteration 2501 / 5000: loss 1.561292\n", "iteration 2601 / 5000: loss 1.581410\n", "iteration 2701 / 5000: loss 1.615184\n", "iteration 2801 / 5000: loss 1.427294\n", "iteration 2901 / 5000: loss 1.620716\n", "iteration 3001 / 5000: loss 1.601757\n", "iteration 3101 / 5000: loss 1.516932\n", "iteration 3201 / 5000: loss 1.546777\n", "iteration 3301 / 5000: loss 1.480112\n", "iteration 3401 / 5000: loss 1.737246\n", "iteration 3501 / 5000: loss 1.541492\n", "iteration 3601 / 5000: loss 1.491249\n", "iteration 3701 / 5000: loss 1.572659\n", "iteration 3801 / 5000: loss 1.594898\n", "iteration 3901 / 5000: loss 1.474111\n", "iteration 4001 / 5000: loss 1.672391\n", "iteration 4101 / 5000: loss 1.582733\n", "iteration 4201 / 5000: loss 1.568035\n", "iteration 4301 / 5000: loss 1.491607\n", "iteration 4401 / 5000: loss 1.630314\n", "iteration 4501 / 5000: loss 1.486603\n", "iteration 4601 / 5000: loss 1.600044\n", "iteration 4701 / 5000: loss 1.490755\n", "iteration 4801 / 5000: loss 1.681420\n", "iteration 4901 / 5000: loss 1.615046\n", "hidden_layer_size: 50, lr: 1.000000e-03, reg: 7.000000e-01, train_acc: 0.530490, val_acc: 0.506000\n", "iteration 1 / 5000: loss 2.425752\n", "iteration 101 / 5000: loss 1.962657\n", "iteration 201 / 5000: loss 1.863897\n", "iteration 301 / 5000: loss 1.752351\n", "iteration 401 / 5000: loss 1.699809\n", "iteration 501 / 5000: loss 1.675494\n", "iteration 601 / 5000: loss 1.710208\n", "iteration 701 / 5000: loss 1.676544\n", "iteration 801 / 5000: loss 1.691680\n", "iteration 901 / 5000: loss 1.670570\n", "iteration 1001 / 5000: loss 1.625385\n", "iteration 1101 / 5000: loss 1.569421\n", "iteration 1201 / 5000: loss 1.571140\n", "iteration 1301 / 5000: loss 1.661030\n", "iteration 1401 / 5000: loss 1.626568\n", "iteration 1501 / 5000: loss 1.626132\n", "iteration 1601 / 5000: loss 1.615750\n", "iteration 1701 / 5000: loss 1.680352\n", "iteration 1801 / 5000: loss 1.654851\n", "iteration 1901 / 5000: loss 1.610617\n", "iteration 2001 / 5000: loss 1.530851\n", "iteration 2101 / 5000: loss 1.394799\n", "iteration 2201 / 5000: loss 1.521879\n", "iteration 2301 / 5000: loss 1.612318\n", "iteration 2401 / 5000: loss 1.575531\n", "iteration 2501 / 5000: loss 1.626266\n", "iteration 2601 / 5000: loss 1.575153\n", "iteration 2701 / 5000: loss 1.630251\n", "iteration 2801 / 5000: loss 1.587398\n", "iteration 2901 / 5000: loss 1.653894\n", "iteration 3001 / 5000: loss 1.669521\n", "iteration 3101 / 5000: loss 1.684621\n", "iteration 3201 / 5000: loss 1.497962\n", "iteration 3301 / 5000: loss 1.603073\n", "iteration 3401 / 5000: loss 1.650218\n", "iteration 3501 / 5000: loss 1.576033\n", "iteration 3601 / 5000: loss 1.583862\n", "iteration 3701 / 5000: loss 1.640827\n", "iteration 3801 / 5000: loss 1.561770\n", "iteration 3901 / 5000: loss 1.506129\n", "iteration 4001 / 5000: loss 1.635286\n", "iteration 4101 / 5000: loss 1.565186\n", "iteration 4201 / 5000: loss 1.652229\n", "iteration 4301 / 5000: loss 1.712574\n", "iteration 4401 / 5000: loss 1.530746\n", "iteration 4501 / 5000: loss 1.451661\n", "iteration 4601 / 5000: loss 1.600384\n", "iteration 4701 / 5000: loss 1.590342\n", "iteration 4801 / 5000: loss 1.544466\n", "iteration 4901 / 5000: loss 1.576054\n", "hidden_layer_size: 50, lr: 1.000000e-03, reg: 8.000000e-01, train_acc: 0.527694, val_acc: 0.496000\n", "iteration 1 / 5000: loss 2.442707\n", "iteration 101 / 5000: loss 1.937146\n", "iteration 201 / 5000: loss 1.815597\n", "iteration 301 / 5000: loss 1.765431\n", "iteration 401 / 5000: loss 1.700788\n", "iteration 501 / 5000: loss 1.679822\n", "iteration 601 / 5000: loss 1.764963\n", "iteration 701 / 5000: loss 1.636598\n", "iteration 801 / 5000: loss 1.673494\n", "iteration 901 / 5000: loss 1.534676\n", "iteration 1001 / 5000: loss 1.613225\n", "iteration 1101 / 5000: loss 1.733771\n", "iteration 1201 / 5000: loss 1.726583\n", "iteration 1301 / 5000: loss 1.586051\n", "iteration 1401 / 5000: loss 1.656604\n", "iteration 1501 / 5000: loss 1.534998\n", "iteration 1601 / 5000: loss 1.679995\n", "iteration 1701 / 5000: loss 1.552681\n", "iteration 1801 / 5000: loss 1.733442\n", "iteration 1901 / 5000: loss 1.617446\n", "iteration 2001 / 5000: loss 1.626044\n", "iteration 2101 / 5000: loss 1.551818\n", "iteration 2201 / 5000: loss 1.470854\n", "iteration 2301 / 5000: loss 1.661086\n", "iteration 2401 / 5000: loss 1.577598\n", "iteration 2501 / 5000: loss 1.546606\n", "iteration 2601 / 5000: loss 1.561523\n", "iteration 2701 / 5000: loss 1.469055\n", "iteration 2801 / 5000: loss 1.648482\n", "iteration 2901 / 5000: loss 1.641542\n", "iteration 3001 / 5000: loss 1.614564\n", "iteration 3101 / 5000: loss 1.584410\n", "iteration 3201 / 5000: loss 1.588124\n", "iteration 3301 / 5000: loss 1.681532\n", "iteration 3401 / 5000: loss 1.615463\n", "iteration 3501 / 5000: loss 1.584807\n", "iteration 3601 / 5000: loss 1.603297\n", "iteration 3701 / 5000: loss 1.724373\n", "iteration 3801 / 5000: loss 1.591655\n", "iteration 3901 / 5000: loss 1.702534\n", "iteration 4001 / 5000: loss 1.623340\n", "iteration 4101 / 5000: loss 1.641294\n", "iteration 4201 / 5000: loss 1.635042\n", "iteration 4301 / 5000: loss 1.673128\n", "iteration 4401 / 5000: loss 1.682140\n", "iteration 4501 / 5000: loss 1.449161\n", "iteration 4601 / 5000: loss 1.525111\n", "iteration 4701 / 5000: loss 1.530529\n", "iteration 4801 / 5000: loss 1.569994\n", "iteration 4901 / 5000: loss 1.574141\n", "hidden_layer_size: 50, lr: 1.000000e-03, reg: 9.000000e-01, train_acc: 0.517122, val_acc: 0.496000\n", "iteration 1 / 5000: loss 2.456708\n", "iteration 101 / 5000: loss 1.896568\n", "iteration 201 / 5000: loss 1.965177\n", "iteration 301 / 5000: loss 1.785737\n", "iteration 401 / 5000: loss 1.873589\n", "iteration 501 / 5000: loss 1.683588\n", "iteration 601 / 5000: loss 1.735273\n", "iteration 701 / 5000: loss 1.556873\n", "iteration 801 / 5000: loss 1.671576\n", "iteration 901 / 5000: loss 1.675479\n", "iteration 1001 / 5000: loss 1.471181\n", "iteration 1101 / 5000: loss 1.700672\n", "iteration 1201 / 5000: loss 1.671824\n", "iteration 1301 / 5000: loss 1.694444\n", "iteration 1401 / 5000: loss 1.547663\n", "iteration 1501 / 5000: loss 1.646269\n", "iteration 1601 / 5000: loss 1.638506\n", "iteration 1701 / 5000: loss 1.623645\n", "iteration 1801 / 5000: loss 1.585266\n", "iteration 1901 / 5000: loss 1.620095\n", "iteration 2001 / 5000: loss 1.686716\n", "iteration 2101 / 5000: loss 1.747354\n", "iteration 2201 / 5000: loss 1.792917\n", "iteration 2301 / 5000: loss 1.599611\n", "iteration 2401 / 5000: loss 1.595990\n", "iteration 2501 / 5000: loss 1.489155\n", "iteration 2601 / 5000: loss 1.591050\n", "iteration 2701 / 5000: loss 1.603958\n", "iteration 2801 / 5000: loss 1.606772\n", "iteration 2901 / 5000: loss 1.634377\n", "iteration 3001 / 5000: loss 1.589244\n", "iteration 3101 / 5000: loss 1.650553\n", "iteration 3201 / 5000: loss 1.686622\n", "iteration 3301 / 5000: loss 1.570713\n", "iteration 3401 / 5000: loss 1.649472\n", "iteration 3501 / 5000: loss 1.607949\n", "iteration 3601 / 5000: loss 1.601935\n", "iteration 3701 / 5000: loss 1.697594\n", "iteration 3801 / 5000: loss 1.547300\n", "iteration 3901 / 5000: loss 1.733764\n", "iteration 4001 / 5000: loss 1.576811\n", "iteration 4101 / 5000: loss 1.677788\n", "iteration 4201 / 5000: loss 1.686394\n", "iteration 4301 / 5000: loss 1.681963\n", "iteration 4401 / 5000: loss 1.499082\n", "iteration 4501 / 5000: loss 1.595599\n", "iteration 4601 / 5000: loss 1.554476\n", "iteration 4701 / 5000: loss 1.489696\n", "iteration 4801 / 5000: loss 1.696233\n", "iteration 4901 / 5000: loss 1.677301\n", "hidden_layer_size: 50, lr: 1.000000e-03, reg: 1.000000e+00, train_acc: 0.520612, val_acc: 0.472000\n", "iteration 1 / 5000: loss 2.411576\n", "iteration 101 / 5000: loss 1.836156\n", "iteration 201 / 5000: loss 1.885800\n", "iteration 301 / 5000: loss 1.893541\n", "iteration 401 / 5000: loss 1.844543\n", "iteration 501 / 5000: loss 1.809642\n", "iteration 601 / 5000: loss 1.657675\n", "iteration 701 / 5000: loss 1.780945\n", "iteration 801 / 5000: loss 1.601904\n", "iteration 901 / 5000: loss 1.706981\n", "iteration 1001 / 5000: loss 1.979295\n", "iteration 1101 / 5000: loss 1.751661\n", "iteration 1201 / 5000: loss 1.847542\n", "iteration 1301 / 5000: loss 1.618903\n", "iteration 1401 / 5000: loss 1.765442\n", "iteration 1501 / 5000: loss 1.753777\n", "iteration 1601 / 5000: loss 1.637120\n", "iteration 1701 / 5000: loss 1.785420\n", "iteration 1801 / 5000: loss 1.653437\n", "iteration 1901 / 5000: loss 1.630546\n", "iteration 2001 / 5000: loss 1.709852\n", "iteration 2101 / 5000: loss 1.664592\n", "iteration 2201 / 5000: loss 1.682222\n", "iteration 2301 / 5000: loss 1.654162\n", "iteration 2401 / 5000: loss 1.686332\n", "iteration 2501 / 5000: loss 1.668635\n", "iteration 2601 / 5000: loss 1.597970\n", "iteration 2701 / 5000: loss 1.636637\n", "iteration 2801 / 5000: loss 1.716199\n", "iteration 2901 / 5000: loss 1.690445\n", "iteration 3001 / 5000: loss 1.691788\n", "iteration 3101 / 5000: loss 1.625525\n", "iteration 3201 / 5000: loss 1.589346\n", "iteration 3301 / 5000: loss 1.723794\n", "iteration 3401 / 5000: loss 1.549846\n", "iteration 3501 / 5000: loss 1.510103\n", "iteration 3601 / 5000: loss 1.698321\n", "iteration 3701 / 5000: loss 1.548404\n", "iteration 3801 / 5000: loss 1.663732\n", "iteration 3901 / 5000: loss 1.621197\n", "iteration 4001 / 5000: loss 1.578743\n", "iteration 4101 / 5000: loss 1.630511\n", "iteration 4201 / 5000: loss 1.765611\n", "iteration 4301 / 5000: loss 1.462404\n", "iteration 4401 / 5000: loss 1.696718\n", "iteration 4501 / 5000: loss 1.513799\n", "iteration 4601 / 5000: loss 1.560826\n", "iteration 4701 / 5000: loss 1.564488\n", "iteration 4801 / 5000: loss 1.531402\n", "iteration 4901 / 5000: loss 1.761563\n", "hidden_layer_size: 50, lr: 3.000000e-03, reg: 7.000000e-01, train_acc: 0.518082, val_acc: 0.511000\n", "iteration 1 / 5000: loss 2.422039\n", "iteration 101 / 5000: loss 1.813170\n", "iteration 201 / 5000: loss 1.715150\n", "iteration 301 / 5000: loss 1.841663\n", "iteration 401 / 5000: loss 1.744498\n", "iteration 501 / 5000: loss 1.957277\n", "iteration 601 / 5000: loss 1.639745\n", "iteration 701 / 5000: loss 1.949596\n", "iteration 801 / 5000: loss 1.731423\n", "iteration 901 / 5000: loss 1.869320\n", "iteration 1001 / 5000: loss 1.769447\n", "iteration 1101 / 5000: loss 1.705494\n", "iteration 1201 / 5000: loss 1.691169\n", "iteration 1301 / 5000: loss 1.641915\n", "iteration 1401 / 5000: loss 1.882545\n", "iteration 1501 / 5000: loss 1.602276\n", "iteration 1601 / 5000: loss 1.633667\n", "iteration 1701 / 5000: loss 1.775711\n", "iteration 1801 / 5000: loss 1.687100\n", "iteration 1901 / 5000: loss 1.759698\n", "iteration 2001 / 5000: loss 1.492900\n", "iteration 2101 / 5000: loss 1.765351\n", "iteration 2201 / 5000: loss 1.636466\n", "iteration 2301 / 5000: loss 1.638094\n", "iteration 2401 / 5000: loss 1.716062\n", "iteration 2501 / 5000: loss 1.716907\n", "iteration 2601 / 5000: loss 1.639567\n", "iteration 2701 / 5000: loss 1.677390\n", "iteration 2801 / 5000: loss 1.637646\n", "iteration 2901 / 5000: loss 1.690357\n", "iteration 3001 / 5000: loss 1.692102\n", "iteration 3101 / 5000: loss 1.615892\n", "iteration 3201 / 5000: loss 1.634743\n", "iteration 3301 / 5000: loss 1.611996\n", "iteration 3401 / 5000: loss 1.741204\n", "iteration 3501 / 5000: loss 1.522721\n", "iteration 3601 / 5000: loss 1.635729\n", "iteration 3701 / 5000: loss 1.594717\n", "iteration 3801 / 5000: loss 1.655441\n", "iteration 3901 / 5000: loss 1.693226\n", "iteration 4001 / 5000: loss 1.596081\n", "iteration 4101 / 5000: loss 1.652881\n", "iteration 4201 / 5000: loss 1.635261\n", "iteration 4301 / 5000: loss 1.625867\n", "iteration 4401 / 5000: loss 1.620940\n", "iteration 4501 / 5000: loss 1.665441\n", "iteration 4601 / 5000: loss 1.638988\n", "iteration 4701 / 5000: loss 1.672426\n", "iteration 4801 / 5000: loss 1.552613\n", "iteration 4901 / 5000: loss 1.530297\n", "hidden_layer_size: 50, lr: 3.000000e-03, reg: 8.000000e-01, train_acc: 0.516796, val_acc: 0.491000\n", "iteration 1 / 5000: loss 2.440985\n", "iteration 101 / 5000: loss 1.837533\n", "iteration 201 / 5000: loss 1.787138\n", "iteration 301 / 5000: loss 2.088714\n", "iteration 401 / 5000: loss 2.037268\n", "iteration 501 / 5000: loss 1.827009\n", "iteration 601 / 5000: loss 1.823490\n", "iteration 701 / 5000: loss 1.760280\n", "iteration 801 / 5000: loss 1.723934\n", "iteration 901 / 5000: loss 1.710038\n", "iteration 1001 / 5000: loss 1.744794\n", "iteration 1101 / 5000: loss 1.754833\n", "iteration 1201 / 5000: loss 1.781314\n", "iteration 1301 / 5000: loss 1.631397\n", "iteration 1401 / 5000: loss 1.755319\n", "iteration 1501 / 5000: loss 1.883567\n", "iteration 1601 / 5000: loss 1.663161\n", "iteration 1701 / 5000: loss 1.632734\n", "iteration 1801 / 5000: loss 1.799940\n", "iteration 1901 / 5000: loss 1.711048\n", "iteration 2001 / 5000: loss 1.580237\n", "iteration 2101 / 5000: loss 1.699291\n", "iteration 2201 / 5000: loss 1.651983\n", "iteration 2301 / 5000: loss 1.758508\n", "iteration 2401 / 5000: loss 1.776575\n", "iteration 2501 / 5000: loss 1.845505\n", "iteration 2601 / 5000: loss 1.715325\n", "iteration 2701 / 5000: loss 1.668014\n", "iteration 2801 / 5000: loss 1.744954\n", "iteration 2901 / 5000: loss 1.803629\n", "iteration 3001 / 5000: loss 1.680518\n", "iteration 3101 / 5000: loss 1.809398\n", "iteration 3201 / 5000: loss 1.740159\n", "iteration 3301 / 5000: loss 1.544197\n", "iteration 3401 / 5000: loss 1.554805\n", "iteration 3501 / 5000: loss 1.705149\n", "iteration 3601 / 5000: loss 1.691910\n", "iteration 3701 / 5000: loss 1.652844\n", "iteration 3801 / 5000: loss 1.580678\n", "iteration 3901 / 5000: loss 1.690269\n", "iteration 4001 / 5000: loss 1.672617\n", "iteration 4101 / 5000: loss 1.611390\n", "iteration 4201 / 5000: loss 1.625859\n", "iteration 4301 / 5000: loss 1.542807\n", "iteration 4401 / 5000: loss 1.655772\n", "iteration 4501 / 5000: loss 1.594376\n", "iteration 4601 / 5000: loss 1.667600\n", "iteration 4701 / 5000: loss 1.565942\n", "iteration 4801 / 5000: loss 1.672305\n", "iteration 4901 / 5000: loss 1.493342\n", "hidden_layer_size: 50, lr: 3.000000e-03, reg: 9.000000e-01, train_acc: 0.505898, val_acc: 0.487000\n", "iteration 1 / 5000: loss 2.456797\n", "iteration 101 / 5000: loss 1.892806\n", "iteration 201 / 5000: loss 1.875345\n", "iteration 301 / 5000: loss 1.734931\n", "iteration 401 / 5000: loss 1.842772\n", "iteration 501 / 5000: loss 1.926247\n", "iteration 601 / 5000: loss 1.714435\n", "iteration 701 / 5000: loss 1.814758\n", "iteration 801 / 5000: loss 1.879241\n", "iteration 901 / 5000: loss 1.780312\n", "iteration 1001 / 5000: loss 1.981747\n", "iteration 1101 / 5000: loss 1.807644\n", "iteration 1201 / 5000: loss 1.800673\n", "iteration 1301 / 5000: loss 1.689968\n", "iteration 1401 / 5000: loss 1.852438\n", "iteration 1501 / 5000: loss 1.660521\n", "iteration 1601 / 5000: loss 1.636540\n", "iteration 1701 / 5000: loss 1.687910\n", "iteration 1801 / 5000: loss 1.714870\n", "iteration 1901 / 5000: loss 1.805553\n", "iteration 2001 / 5000: loss 1.642245\n", "iteration 2101 / 5000: loss 1.780806\n", "iteration 2201 / 5000: loss 1.850754\n", "iteration 2301 / 5000: loss 1.685324\n", "iteration 2401 / 5000: loss 1.897079\n", "iteration 2501 / 5000: loss 1.597512\n", "iteration 2601 / 5000: loss 1.614858\n", "iteration 2701 / 5000: loss 1.699866\n", "iteration 2801 / 5000: loss 1.777578\n", "iteration 2901 / 5000: loss 1.667910\n", "iteration 3001 / 5000: loss 1.707668\n", "iteration 3101 / 5000: loss 1.805310\n", "iteration 3201 / 5000: loss 1.640255\n", "iteration 3301 / 5000: loss 1.815660\n", "iteration 3401 / 5000: loss 1.677882\n", "iteration 3501 / 5000: loss 1.697069\n", "iteration 3601 / 5000: loss 1.677437\n", "iteration 3701 / 5000: loss 1.651822\n", "iteration 3801 / 5000: loss 1.526709\n", "iteration 3901 / 5000: loss 1.713597\n", "iteration 4001 / 5000: loss 1.560245\n", "iteration 4101 / 5000: loss 1.570371\n", "iteration 4201 / 5000: loss 1.623433\n", "iteration 4301 / 5000: loss 1.589593\n", "iteration 4401 / 5000: loss 1.700008\n", "iteration 4501 / 5000: loss 1.610730\n", "iteration 4601 / 5000: loss 1.647724\n", "iteration 4701 / 5000: loss 1.635629\n", "iteration 4801 / 5000: loss 1.684117\n", "iteration 4901 / 5000: loss 1.735978\n", "hidden_layer_size: 50, lr: 3.000000e-03, reg: 1.000000e+00, train_acc: 0.496857, val_acc: 0.477000\n", "\n", "\n", "best val_acc: 0.511000\n", "\n", "hidden_layer_size: 50, lr: 3.000000e-04, reg: 7.000000e-01, train_acc: 0.500429, val_acc: 0.485000\n", "hidden_layer_size: 50, lr: 3.000000e-04, reg: 8.000000e-01, train_acc: 0.500510, val_acc: 0.482000\n", "hidden_layer_size: 50, lr: 3.000000e-04, reg: 9.000000e-01, train_acc: 0.494612, val_acc: 0.486000\n", "hidden_layer_size: 50, lr: 3.000000e-04, reg: 1.000000e+00, train_acc: 0.494184, val_acc: 0.487000\n", "\n", "hidden_layer_size: 50, lr: 9.000000e-04, reg: 7.000000e-01, train_acc: 0.533082, val_acc: 0.495000\n", "hidden_layer_size: 50, lr: 9.000000e-04, reg: 8.000000e-01, train_acc: 0.529490, val_acc: 0.499000\n", "hidden_layer_size: 50, lr: 9.000000e-04, reg: 9.000000e-01, train_acc: 0.523714, val_acc: 0.489000\n", "hidden_layer_size: 50, lr: 9.000000e-04, reg: 1.000000e+00, train_acc: 0.514755, val_acc: 0.487000\n", "\n", "hidden_layer_size: 50, lr: 1.000000e-03, reg: 7.000000e-01, train_acc: 0.530490, val_acc: 0.506000\n", "hidden_layer_size: 50, lr: 1.000000e-03, reg: 8.000000e-01, train_acc: 0.527694, val_acc: 0.496000\n", "hidden_layer_size: 50, lr: 1.000000e-03, reg: 9.000000e-01, train_acc: 0.517122, val_acc: 0.496000\n", "hidden_layer_size: 50, lr: 1.000000e-03, reg: 1.000000e+00, train_acc: 0.520612, val_acc: 0.472000\n", "\n", "hidden_layer_size: 50, lr: 3.000000e-03, reg: 7.000000e-01, train_acc: 0.518082, val_acc: 0.511000\n", "hidden_layer_size: 50, lr: 3.000000e-03, reg: 8.000000e-01, train_acc: 0.516796, val_acc: 0.491000\n", "hidden_layer_size: 50, lr: 3.000000e-03, reg: 9.000000e-01, train_acc: 0.505898, val_acc: 0.487000\n", "hidden_layer_size: 50, lr: 3.000000e-03, reg: 1.000000e+00, train_acc: 0.496857, val_acc: 0.477000\n" ] } ], "source": [ "input_size = 32 * 32 * 3\n", "num_classes = 10\n", "\n", "hidden_layer_size = [50]\n", "learning_rates = [3e-4, 9e-4, 1e-3, 3e-3]\n", "regularization_strengths = [7e-1, 8e-1, 9e-1, 1]\n", "\n", "results = {}\n", "\n", "best_model = None\n", "best_val = -1\n", "\n", "for hidden_size in hidden_layer_size:\n", " for lr in learning_rates:\n", " for reg in regularization_strengths:\n", " model = TwoLayerNet(input_size, hidden_size, num_classes, std=1e-3)\n", " stats = model.train(X_train, y_train, X_val, y_val,\n", " learning_rate=lr, learning_rate_decay=0.95,\n", " reg=reg, num_iters=5000, batch_size=200, verbose=True)\n", " \n", " train_acc = (model.predict(X_train) == y_train).mean()\n", " val_acc = (model.predict(X_val) == y_val).mean()\n", " print('hidden_layer_size: %d, lr: %e, reg: %e, train_acc: %f, val_acc: %f' % (hidden_size, lr, reg, train_acc, val_acc))\n", " \n", " results[(hidden_size, lr, reg)] = (train_acc, val_acc)\n", " if val_acc > best_val:\n", " best_val = val_acc\n", " best_model = model\n", " print\n", "print\n", " \n", "print('best val_acc: %f' % (best_val))\n", " \n", "old_lr = -1\n", "for hidden_size, lr, reg in sorted(results):\n", " if old_lr != lr:\n", " old_lr = lr\n", " print\n", " \n", " train_acc, val_acc = results[(hidden_size, lr, reg)]\n", " print('hidden_layer_size: %d, lr: %e, reg: %e, train_acc: %f, val_acc: %f' % (hidden_size, lr, reg, train_acc, val_acc))" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "hidden_layer_size: 50, lr: 3.000000e-04, reg: 7.000000e-01, train_acc: 0.500429, val_acc: 0.485000\n", "hidden_layer_size: 50, lr: 3.000000e-04, reg: 8.000000e-01, train_acc: 0.500510, val_acc: 0.482000\n", "hidden_layer_size: 50, lr: 3.000000e-04, reg: 9.000000e-01, train_acc: 0.494612, val_acc: 0.486000\n", "hidden_layer_size: 50, lr: 3.000000e-04, reg: 1.000000e+00, train_acc: 0.494184, val_acc: 0.487000\n", "hidden_layer_size: 50, lr: 9.000000e-04, reg: 7.000000e-01, train_acc: 0.533082, val_acc: 0.495000\n", "hidden_layer_size: 50, lr: 9.000000e-04, reg: 8.000000e-01, train_acc: 0.529490, val_acc: 0.499000\n", "hidden_layer_size: 50, lr: 9.000000e-04, reg: 9.000000e-01, train_acc: 0.523714, val_acc: 0.489000\n", "hidden_layer_size: 50, lr: 9.000000e-04, reg: 1.000000e+00, train_acc: 0.514755, val_acc: 0.487000\n", "hidden_layer_size: 50, lr: 1.000000e-03, reg: 7.000000e-01, train_acc: 0.530490, val_acc: 0.506000\n", "hidden_layer_size: 50, lr: 1.000000e-03, reg: 8.000000e-01, train_acc: 0.527694, val_acc: 0.496000\n", "hidden_layer_size: 50, lr: 1.000000e-03, reg: 9.000000e-01, train_acc: 0.517122, val_acc: 0.496000\n", "hidden_layer_size: 50, lr: 1.000000e-03, reg: 1.000000e+00, train_acc: 0.520612, val_acc: 0.472000\n", "hidden_layer_size: 50, lr: 3.000000e-03, reg: 7.000000e-01, train_acc: 0.518082, val_acc: 0.511000\n", "hidden_layer_size: 50, lr: 3.000000e-03, reg: 8.000000e-01, train_acc: 0.516796, val_acc: 0.491000\n", "hidden_layer_size: 50, lr: 3.000000e-03, reg: 9.000000e-01, train_acc: 0.505898, val_acc: 0.487000\n", "hidden_layer_size: 50, lr: 3.000000e-03, reg: 1.000000e+00, train_acc: 0.496857, val_acc: 0.477000\n" ] } ], "source": [ "for hidden_size, lr, reg in sorted(results):\n", " train_acc, val_acc = results[(hidden_size, lr, reg)]\n", " print('hidden_layer_size: %d, lr: %e, reg: %e, train_acc: %f, val_acc: %f' % (hidden_size, lr, reg, train_acc, val_acc))" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAHVCAYAAABfWZoAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvUmvbGmWJbRO3x/r7Xbvvs77isjIrCxlDWAEQmKE+AuM\nkJjXEOWApkYwQ5QKIUYpJogJfwCkAoRIVVFRmRkeHt695nZ2rT99fxjsZTeV7vZCUQO8XML25F3d\nd83O+Zrznb3XXnttpe97nOxkJzvZyU52sp/G1H/TN3Cyk53sZCc72f+f7PTiPdnJTnayk53sJ7TT\ni/dkJzvZyU52sp/QTi/ek53sZCc72cl+Qju9eE92spOd7GQn+wnt9OI92clOdrKTnewntNOL92Qn\nO9nJTnayn9BOL96TnexkJzvZyX5CO714T3ayk53sZCf7CU3/N30DAPBP/vF/2wNAVZXY7SIAQF2X\nCIceACDOCnR1DgBQmhIA4AcBqlL+FoaO0A0AAOPhCG/ffQ8AGAxmAIDh5Ax5tgcABJaGpjEAAMt9\nCQ3yfbquAAD2MeAYvtxDFsMwNbmuY0FROwDAw/sFAKBTTHSmK/eYFvjv/uK/+NHY/t1/6z8FAFw+\nv4JpyHRvVks446mMYzTFPk/lflaPAADHAMKhI/dQ1LAcuUbTpVguVwAAyzABAGfzKVzHlnEGQ7Sd\nKJHlXYtvvv5Wvk+X8Tx79gyeK77W+nGH/W4n32V2sPgdXdny/zdYbeRaKBP87//8f/jR2P6T//o/\nQ/Qg3zHjXDuujzptAACaUqDqawBAUbZwrZHc5yiUObVV6K7cW5kWyLaxzIk/wWor62V4slbjuQOH\nazWzLOS5jHOfZU/jUOhHegMPs7HcT1U3WMaZzEmdo1fkftJE7rEuG/yTP/9HPxrbP/2P/xyT6RgA\nYDtyLUNrUWlyjZtVhKLq+HsHjinroSsFACAIAzi+7N/VaoG3Nw8ydt/DfCprr4Yy9t1qiSyRsWu6\nDb2v5DuCARrI/mu5R/q6RVbKXo2zGgNZNqhVgyiRce73WwDAaDLGP/qL/+ZHY/v3Xv4HMC0LAJ6u\na9kmpvMzAEAR5XB12avj2RCWLRcJHBmP73lAL/dQZAUCS9Zov9sgWq8BAE0u+6hVbeiOPJuG6eLi\nfAgAqLIV4r08vxqfIdNxoEDmr822uHn7HgCwySrUily7U3TO6RL/LPtffzS2//y/+qd4e/cWAJDm\ncmY4wQhnvqxlutqhjOW6L57PkfRynyrHOwt9VIrMedkDbSv7Rdd9qNxf5VbuUSkBbzgBAOyaCrNL\n2XNB4GBgy5htXfZ6mcWoW/ncdDZD0cn8bfMStcpnzx3i2+9vAAD/+D/67Edj+x//4gHr9zK2ZZwh\nLWWf9K2se1FmKNWW99tiwnVJkhWgdfwW2feqZqKr5XlS1RKeLeO3bAfeUNaoN+XfxTJCV8vnTaWF\n1srP8X6PuJRrV51cVzM0zKcyD74TIEtlf51fvcTrz/8IAPAf/vvXPxrbf/nf/zl2G9njumairmRs\noSVzbpY1mkzut2xq9K08k7btY3z+DADgefJcGUaAqJbPZ7WCJEnkc8kGTSXXMLjGvW7A4luw2W1w\nt9zwcym0XvZPyX2kKQrKWtbNG40QDOX57Zoajw/yuf/5f/pflB8N7oidIt6TnexkJzvZyX5C+1lE\nvGUuHkkQjuC6EunFWYZeE6/GhQJbZwSYyt+6poXOmsvfFjmaUjy5vq5g9OKRJWuJTNsihaLI5yrV\ngKKLN6o2KlxHPJ9wNJDvb3N4NqMBpNAMRjVuh6YW7242FS827Wx0rnxu39wfHZuhiddpQUO6Fu+v\nSkt0kPvpKgubQrywvJRrObBRpeI4RWkLn99ley5cn15WId5ztN0j2Ut0uF09QFfkepmi4WEpEfR4\nIP7VJSwUlcxTMBnC8CXSyNIVYt5DspHoMYpTVI3Mf7zJj45NSbfwNdlCA0ZF+yQGGCUEoYO+kJ9N\nU8PVlUQHmiXRYV5VGDHS1sMAD/xere1w7sj3qqbc+0hVMbv6WH4eDJDtZf68XQxLlTFHa5kHu1Vh\nE10o4gJI5P7VvoIbytomqcxfmVVHxxZYCgKufZXJnDW2jrwlMpLWKIkuOK6GppfrJbzWxLIQ2HJf\nt2mG+1K8dQyGCOxDRCWR102+wmYv899WOvpG5uzVSxuqKferK4zmXRMmUQtTibDdSXSbRylWj4JQ\n+AOJ7oreODq2z/7k30abyN9uFoIOKXWCKaPnzgwwmclaTS+HKEoZU5PKXDmB/xTt6532FNk7vgnX\nl7V1+Yxp3gSFKnPT1TUGrvycbSsYhsxlI8ESqrrBZCyoiO6bqLh37KJF1cs1oMk5EHpT/LMvfxzx\n1lmMqpA93DES1HsNmyUjna5FlklUnmwqmA7v15HnOHuMkMll0aJDlsnYbddHxzXQWlmT+WiG+Vju\nx4eFVpMPVlWDiM9nb8u/at+gZRRW184TiuDpFhpTxlapOkaT8EdjOtg33/8GyXYJANjmLVLq7Jvc\np12fQOllr0a7BKUiPytajSqTuRiGPPs8oNfk3rJ0iyqTRbADG52e8mf5nesbKDgPnt4DLVFCpYHO\nfRvl8l1FZaDMZI1Dz8Q+kfst31co2/aDY8uLAny0oKoV0lzW0Ghkzs8mU+iMMOMohtrIH+uaC8+V\n9XC49/ROgarL2ea6Osac0yYN0PG574gW6FoLQ5XxLPM1ikC+K98keFjJs9Vz3bo8gnKIZ5UKni/z\nr+odWiX+4NiO2c/ixbtay+I0UKFzEvM6xzaSzVJmBcbDw0TK5JaqgrqRDafYDhqVL6q2gjuQzbVd\n81DaPsIyuFk0G31HeKTqsOPnCkIxRhAg58Z6u1/A5QvAqi2okAfL4cu2r1qopkx+yQ3/Q/NswjZl\ngyqS+1FRoY7lenVawp7IQVl2PLzTBG0v46zRo+V3102FtJQN2RTyIFStgvFcDsmyrpETzopaFR0P\nUncgh4M1MBFt5cA9u5ii3BOi2sXYROI4RLzHMmsxHlw93fsxc3sdHSFLy+TDZtpQOnlYdEOBZ8vD\nMnF9mKbMddLKJm3aCkVC6DfNkG7lRTR1RzijU9DUTD0sN0gJucMwYBAyLrI1kkdxMPRK5swPLTSx\nHAjF8hEl4U94CjRHDnZLpgRpVhwdW5ZGcJh+yPhyVh0TmSrX6BoD60zGoVQ5+oZ7qpW/VSYqdrn8\nHBkGtnQiiyLF8l6uadhyEGVtj70u35vWQMqXWnS/gcNUh0Eob2CZMHjgGk2LlBDgJkuQMfVyNhTo\nbcW1/KEp7gCBIy/ltpF7LNa3KHkoOf4QNh0i1XIwP5f9le/EsSnyHmnFZ7MGGvGB0LcNcqYqNoTn\nhnaFaSiTnacFVDpq0+kEUAQa3HKtlrsYKV9uA3eA8YXcY7crUFTy+6yW+VBd7+jYujiFxfM9598u\n7h5R7eQmR74Nj+mCLt1iNLwAAASm7PG7hztYqnxOM3wo3PuO1gGKzIkbCpR65l0g7GVsXR3hcSWO\nvunYUDQ5gyDbDaqlPZ1tld6g6mXMg9kLJL1c73GdoMGHm9ZskxUyPv+lCmS1DDTOZN3VpkQ4kJeM\nNzBg0fHqNBu9JntZI/w8mHgwTTnHtg+Ao8s+mk0cZBWfiYbpjUpBGguUqoQ2HF/GUbcVql72gUEH\npiwMGNzrXROjYoqv71rEq+CDY4v3MTqGGIqqQjcY/NBhXUQpRkx1qB3gmDIOx3PhevJ705e10HoL\nI0uu1akuFFvuLYv3sJm60elc1fkOSSQpDZxNURmyT96sH5B3fB7oQGuqgtVKzs860qDxXWs6GuJq\n/8GxHbMT1Hyyk53sZCc72U9oP4uIt6E336sqSv78uIsQF+LJKVAwYqJf88Qr6tEgoYdZNi3GI/Ge\nW1XFthIvqXUY1tg2eoVEBMOApZBo0LZP3nbWi3dzNp7hcUVPz9TgDcSbapsMOhPyTU1IqW4Q8R4e\nFu+Pjm0wFcKKgRQmYQxb12Cb4pnWlQGXEe+ZKZFFvF2hY2TQ5QlaEsvSKgG5E9D4/21XYDQUj8zQ\nR3ADmYd1XuEzTTy985FA8lWbo1hKFLTfA6sHIXIk6zUcepjbXnyxCg28gbjrgTPDX/76x2N7WO0w\n8GVdEpIs/EkI1+JaNCUMwpCBGaBvJXoYOvIZRVWxXouHuS5yRDtZN60v4JgSXbRZygF3iB4FjN5G\nMRp65ev3d3j87k6+jxFvvFnDcGSNJ8MJzqckMVUrtCRleIS7m+BAOvm79riLUDJlkRJGq3c9VoV8\nXrFHULgXdT9ElRNSJ5Go0C3kOclOeY1dJ/+vOgpywpAG95HpjqBzr+4f1yDfB61modNkThLCz3XW\nAoyIvaZFEErUgqzE6Fx+NEOSlZQP8DxUD4YnnwsIZhhdD5Mowng0gkLyVJkWsIk+mK6s2z7ew7bk\nd21XQSN03hQFDljcPpVBNNkGhipr2DUNmpr7S+sxmVwCAFyFz3QSo9X4OdvCdivjzE0PCtfLZSql\nzY6PzSgLDBXZyyZTRptigyHJQ67WIuDvA9+HS5jXIgyqxCWurl4CACbjc3z1jZCZulzDmDA4DHl2\nu6zDjtDvrtygISlOaTQEcyI9AaM8T4Mzl+fCGVjYkfBjTnxEsfwc1Rkq/fcdySlcnSkLpYcTyL2n\nMaNZ3cbkkM5RFWQR0a9ki46wMx9vKCiw5b5eZCuMuf/aVQKoRNjAFANsaLZcw/Wsp3RXmWVPZ2zG\nPdnqClKicWm0Q8vUoN4raJkCOGa6oqDlnkMD6ETNNJ5LcdUijeXzbtuhsWWvKraNjimxEUmx/niO\nyZApi95CzmfH91w0RAnahHNTJNhwSmt7DO9SzsrXhoHsX8q9G52sa66ryIiWKtUG7SNJV5oC9PYH\nx3Z0vP9af/3/kW0e5cEcD1vkzDX2XYupL4Mp6hZRSgYeH3jTUqB7sujJfou2k0kaTGZQyCjcEjrL\nogx5zdxm4GMTC/ToBwNMz+S0MphzSdEChCzCqytopmyobLNDQ+jGVGVT7LIIe0IhRbk5OjZ/THaj\nUiPjBjE1DS4f/rZ3nvJ44zN5aM6mIXI6D9qDCofwUKtPkXMj54QV23KHaEk2sOfg8vKC82ChKWUu\na96jYujoIQfY5mENn7BLOJ6g4th2O5mzYTjG7OojAMBqcTx/sdgvoQeyHiFhtHB8huFADpiiSGHx\nUJ4FUwz4QugtecCW+wy1Kt9tuAPoZHeqRYPtVjZ4wJzeZOKjNeRl8f5hjTdfy4FYxhHevxEHYjYS\nJ0dTG2iGPGCvrl5Bd+TB2642GI3k4cyY0yqq49DeJi+gDpmG4P0mhYpFTiYuTKTMfdZxBoeQu2sx\nDxW3uLt/J/NuqmgdplCUGk3F/LR1gMYdaJ2M03VMDMayD/xeA2qBsCruhyjdw1HlwNUcGyZzdqGq\nwFFl3m2mWg4v1x+arnvIDhD/nmzUzsXZubxQwpGHjulh3VJQHJwfTlUWb5BG8jtVU2A6Ar0aIwMb\nwtE7eg950iNhHnA8GaJJZV2nYQCtlL2x3ch8tHmJmlDzYxHj9pFQvuFD1wgz6mSjktX/Q2uyDHvm\n+le7BecUGBAu9E0Pnivf4Qc2HFfGPKCT9YvrS8zH4gg3fY0JPV1vMobt8uwZy7y6/hhZLI7s+i5C\nwsN87CnYL2VPvqEDMpiPUB+c/8YTLgSA+XiKrsk5V1sUrXZ0XABQb28Qcl0G0xl25Jw4jlzDH/mA\nztRB18IMZY6qrEDZyX2+mEr6yAhUaHSC9FBDRzg26jK0hayHRqjVCy8QkOFvKMB+L+dn1TcwhjJ/\nKtnLjtZgwHnK4xImzxvTVaHgw3BslxeIWQ1RZFs8mxMyp3O7TVK4TMfYtg2NVQTeYIiAVRKTkTiG\n52cTXDI90lYqVqyUiTIFBl/kqSX3ollTOL7M+b5pcb9lesayMD6Xs3R7L0HV4y59ymVXbY4okXNB\nqVqEZIL/oXaCmk92spOd7GQn+wntZxHxOmSg+roO++DZoodqi4utFxpiuuAV4VNFb6B44r0otYuc\nhIhUraHTgznAZbbiIC/kd7f7BNFWPPBra4y2YuRD7zivW/SEgTvFRUzSq6k7cA/1imtG5Vr/5IEH\nwYF7/HdNY5FYnZWICUtPQusJ+ikaC7OpeGcWYbZOU4BDvZhtYRTI/SR1j/G5RHXbQrzdt9/9NSrC\nx5qtYBWL99x2EQoyVx16+KHmQWdtWlPsEZCgokDHLb/Dhlx3Oggw8MWz32yPk6uCgQeDrHCHkVen\nqHBIdhiMQgw98X5HwQihI3PUQCZVcxokucDE7759g4bsQbXX8fi9zNUWMidGCdicy/6hQH17qN3t\nMVElWnxJWG8yCdARNm33W2R7smN1BzYJMnknHu/XX39zdGyTsyE0m1Az64sRDhAYB/a7goqkq8V2\nCz+Q3xcbIanVjo2ik89fXM4xfy7R6GjkIL29BQCUjJ5ry0Syl+/yDBcW91kWFU+/TzZyv05VwmUK\nQDN9tGR9FpUClVF308n8h8HxqLDNWnTlYU7IPtZLqIasZd6mMIlkLKIID4+CLjy7JuNWKVDWEvVc\nzS/QGYL2tIYCw5MxpbcyDwVU6AzT4m6H8Uy+Q3dM5PUbGT8RRnvgPTF0y96ERRKPqfvICvmOhoSp\ngIStH9p2v0FElr/SEDLNUjSmzNk2bqFz33vaCD3Pm8G5rN/FfISGpMzv3r+BSnRMtxy0JJSBeyuK\nNlD5zPZdg5osd9vSMOLcu74MznBUJIxy065FSzg3Xu+g6axv90aomuOpDwDQ+z3GrP2eXLhAJNez\nIHN6eTlDXPH5d8Incl9dm1hz33fUB9g0JaJc7qdQWwSB/H5+dYkqknOjWZOZXdeISXxUDQMla/MV\nz0BL8lnDqL3c7zAi8mLpgMmz2PF19Kx2OGb7TYo0ZTVKtkbyKFHm8xevAABVZ6InocoKLCgNo193\nhKEne9gkqhkvblCTYZcXCsA0kN3piPksJ7HsEdf1EB7SgckWy62sd98CHs+/ncE94PkYXzAduFwA\nJPx5poWKdfZ/qP0sXryWKRukylcYEMaJ4xSPOzLmRpewyMIsyR7TfR2mzjxAZqNgTnBRdHhcy8bR\nyCgejybYPkguZpXFKFvZqMtIhX4QHSBkVLctAub9fLeDYhH2s+eYeHK9fCsvC8/UQYIp6mB0dGwK\n88KGPUINOcz2SYaGOQzVM1B3smhNwfHYFkBRgenMw+5RFv5hs8eA4gtRLUv39m2O6xcCA/nzK+xI\n+9/c3ACNbLLphcxDkSSIHuXeh4YDrRP4ssoSaOUBcvzbe6/I4DXD42Mbnk3gk82oE/Ya2DOcEfJR\nWwWz4DB/NiqWo7SE7+bDAZa+MJJNrUVNJqyBEC8vhJm7fpR1e/PbBTTI31ZliXF7oPIr+PiZPDje\ngam8XQKEhzf1DnvCYMGra9jM6Tl06tQPkEhnkwlyOinDqey9PgxQL2WcbaVhOiT8VuZoCJEqzDgE\ntocEcq196qFZyP+77hgVc543W0KhaoINofVqmyGkMzP3QmSEA0uuz/kwAP1UGIoF1Mxj3t3APpN5\nt+cUm1CPO0xnro+ecCC3CzSzh6LKAWUYHaxDTtVSUWSsDigoajA08KcfiwjC/OI5/q+/+Q0AYLl7\nhMYqgN6TLzbtAB2h/qLLMXohed39Yot8x0NOEUjPsHwodKBNZ4QX3iG1M8ebG7KoWx6+B4b7D6ze\nbjBlekMjI7zVTND3RN4WKFgtESGDZ4gDZz6TuVttdsh5FuTxFsVOeAWm68EkfF7whbcvOwQ+c8dt\nh4+vZc9agQ03IHt4JOtz8WKO27XM315p4BHa1QGkDAQCzYFmfDhXWGQbJIk8s2E6hEGn1D4EIGoP\nnWOuDRU7ltw1toXw8gUAIIb87TpOUFCkwndVGJ6MqdI65MRBDxUk6T4HbxeqY6LiCzSvU1RNwfHJ\nubTravh8EDUNUOmMDAMPlnF8zQAAXQubZT2Oo+H+vZzz2VjmZjT1oTEdpnY2enJcbCuACfn90DuU\nmunoUjLl70soLC0a+CbKA0eDVSVqV/8tJ6I3cBFKjldpFKwo2GOeyX5xzRJRInN2k6xhk0swHk6e\nUoN/qJ2g5pOd7GQnO9nJfkL7WUS8G3r+fmDAauSWDFdDYIsHs0i3UGuKLrTijaa6h55eja2HqCB/\nu9sXSBXxXl1NIrVlUiOm898ZDsKJwDWW68MjJGQM5LrbfYyeHpKiGoiTQ22jh4rMvT3rQsMgxIAQ\njdoe93iGE4n4UGpwCF3sH9aoKGQxCcYo+VmlpiCD6kPX5B5s08OIcoyKGmBDmTeF9bFf/PJX8CZy\n7/vGhkFyhuNdoG9lHpaReL5KEyFkDXJTVahrGdvIszChXOBDIZFibw9gM+II2uNCDMNp+ATzHKLc\n1xczXJBh3kQt+kg8RAMGPELNSUd4KsswJtHo5ShApclcLb6JMPQFlQiIgDwUt/jqt38DAKjSLZ4z\nCndMAxOybiuyhLMsgUb2a44eO0Y48d0jMCK5jCQfUz8e8taVgop+6eyM0UJTABS9yIsMjiVz/XLs\nYEF4suVaevock6F8btW2WPMe7m4L1NyMq3vCy8UGDvdh5xpPMoSGoiLfCeTWc56ccAKzJRKh6xiS\nQDWwXfgknIyoI5nnx+t4LcPENhL0oGDKYhw6yEnGc0wNISHSwA1RpXI/gzGZq80OjsO6WmWB1JLr\nxPUGq0M0yejluadAJ6O4KUt8u/xO7i0qUBXyNz3lIP3WxjmRo4vpEFuSLj0DGJDwmPeswzaPE8fa\nugRL8xFRktKZDJDz+dc0YMxn1g0cdKT5HmDgydDDJpaf96aNlszrcjTFljB3e5Dx7BuoJIPajocD\nL0ozO9Q6qemerMUmSdFQSETtGiQk8VjOBAUlT4vYhTM4/qwBgKpZKCnFuVnvUFFDQCPZ7uvdLSqK\nkmSujZwEtAg2FPXA5JZ5s3UbSCQdYKl7RLmghPubDTKigBrXx9ZMhHzGNDNHxXSW2RYYUF/h7FJI\nqmGjQqECSd92MFmjfDEZwrE/XMdbVVu0RLx0VUUwFfTAGcj8h+MZTKaUmkrB5EJIYqY1QEoSbdMJ\nOhZt9afxfvnNHioJXh+/nKMkkS96lPmvXCBeyh7YNz3CM7leOzRRM/24V2SeAseGqQnKpTwrYVK+\nWKs7eOGH1+2YnSLek53sZCc72cl+QvtZRLzOIa+hW/DPJN/j2ApiCoI3uwS6QmUU1oIWSY0tFYAs\nQ0dliffXmz1Syok9fxL+3wOkpRuugY5KUJ3rIKGii0pFI9ccQIV8ro5jFIl4o5nRo6X3GtIrvZx6\nT2VBq+3N0bFVjIoUWNCYk1Y1HRUkerBcHS3LDLRC7mvsmaiZf/VdH1UvnmKrOdhQQcZj7e/Hn1zh\nYSHX3m42mI1YN3sxw4aedL6lQlKcQWddcrx/B/UQ1Tg2qD3/pOhkDQyoVPsyrOPbZHX/DvMvfgUA\nMFkbrWYZXNapxkn6lJ8eXl5DYW1ttaKSlJLji4MkouPjngHaPgceSUAyKHV3YVVoTBlHEgOXunxO\nUzQoLI2JM65VvcNsIrmawcuX6H3JF7W2jg0bJkQ7mceeEd8PbTAeoKcqkcHcka8YmLIJgvq4elIy\nG6oWvKlc75a/2+Qamkb2S2O1KEuWZkyvULPW95ylCcFQhRVQ7UdRYfRUA8sKBIfkmsISjap8qpkc\n2gOMKAf6R5+dI2SuahjSn26PR/O96UNRZA08kqgUvUPL6K1tgUlICdB0jeFEooQreTSx3K6wjGT+\nttF7ZAeFL69BlMv3aiO5xybo0DMEfdxFKN/K70duCJNkOIUyQlqXQ2VNbxMtUSey3qUZYGTLfp+P\nJLds2x+IeLse+4XsA89jztsawdblmfV8G198LtKjejjDezYd+ZvvfwsA+OWLcxSUfnSGHjyiHUVv\nQmd+NKAof7bewO8pRWtreOwOkRfQEL2akmj0/ZsbZNRE9CdDGCyLNDQN3qFEaB6iUj98JFuqgZ5l\nT4ppPs1bynB+GbcoSADo+xaNJ9frnDFMzkVrSFTpuj7YKwJZ28Njntg2DSgkRLYkek0GQxQk47VJ\njoAlWJ6h45Kb4qADYHomVpF8sd5Z6KgMpzYKquS49CwAaEoNhfVqjj+Eqcm8rdaMKu0aL1/LvOut\nhmAsEbaiO7h/WHFMsme1RoXlCkr4frFFwzNkuXgADvfDRiNFEWNGbkQ4HyMlStK3NUKbJEWH4x3p\nSDPmvdd3qFmn35c9jN+Tmz9mP4sX7zPWrw5mF+jIKE76Cg1rIg1PFZ0wSI0nALRVifuVQEJt22B4\nSb1Ox0XFhP6KCfSxNYBGWCbNC4AQSqCbT2zUOJYF2e5W0G3Wm+7WmGjy4hzoFhTCvOesXTO7Hg6Z\noNYB3/qBFXzBTkc+gtFB4KFEtJPNEj9qMMmqO7z9ts0az6+fAwCGQw0rdtQwVRUKiQS7JQ9ONUDJ\nzfLp2RwV52mXbJHXrJGl1JqmqljEJPQoJvyRzHuGGCUlI7d7ws9dj7YgM7A+ToqwNBseCRNjwvNq\nUuD+K2EKb+8esHukjvRvvsOfsDtJ9ij1rYuH7/DJKxJrshrqg/ztvG9R8wVm1WSg2x10Oj6ZAgT2\nQatVgUGS0+VrOZS/efgSo48FMpp99hLhnvW2qoItJSgbrmWZHx/bJ6/neBexhpYSg47rY0L2a3Y2\nhcEXs2tO8bCTa8S5QLjbNH8iyjRtjpIHcWeYTwf3zVshJV2NLuBSaKTOdzzegWAwgU2md0PtWvQ5\nJhO5hz/++ApaTn3qrsSL19LRxh7IN4w+AH9t4gIGySk191ZZ72CxpjoIx6hZP7xL36N32N2JB2Nt\n1Pibb8TZ6yYXWBPqvIsi6KGsyxM0nO2xouhAN3WhtdSZdj1kGR2xVMYWWuGTFGgXbzGEHL75NkNO\nZ9ph5sb8wMkVqD0sEusUlWS+dAeP2tPX0yE8h4ITToWulH1/sxISVaWmSB/lGZmZHiyDKayiQUV5\nzcCRedpEW7Qq9TL1IXgmw7VVZKzr3+/EgbTsCkXKF08D2D5rn9UGyqFe1taB4sPMX9uonyorDA3Y\nJmSA8/+gWZtyAAAgAElEQVQ7GCg5T4HtoeVZ0KsJamoIKNQUHswdvPojOXf0zMGADpgx8rGlJkIR\nsbtTZz7VX6uGAo3nq6IBpsFOZJRMtVQgICnLNwI0xqF7UY2YKa+jlsawFabtOhM9ybINCW1ZAfR0\ntr3BCNZgcphK+GMZx4hw+Psv32DJdODyYYdyJWvxrupw+05SN9OQqSzPQcU9qfQW6hXJu4GGi5m8\nkH3vUxmDluP2Rsa+Mx1sGrmGbbowjQ9rbB+zE9R8spOd7GQnO9lPaD+LiJdBJbpOwZ50+cZToZJA\n1CJ9UlF5NhEv2HR9bAih5voIg7lAD5apYnfHEpSFeJupoyMkyanVHbiEfNJdiWHIbin06LaPK3is\nlXOaChrjD7VsUTBqsekhZX0L12X9TXcc1lOrAzlLgcUSFs1qYLJuZ333NUJFMFZ3KGPY7g1cXkv0\n1jkdFJ+qW3qI175A4t89sK6uCzAJZU4820aZ0RttG/SQv4kb1vmaDQxCTWqRI2O0VPc7xJF4bwUh\nmPDZC1SEj3X9eG3h68//FC9f/4ncG0uh9u+X8ElAenx7h/Vafg4UF79N5d6i+9/JPdZbFAd1sixH\nFwsKUC1zDEMhT1yGMifZ8gbfPrDkqypxMZbrffrxZ+gYWXokiP3ZZ2Nk51QGm4zwyXMqXr1/B5Vk\nmo7NDA41zj803+xh1uKh2y67YJU1eq6nXaQYM+p+fnWG0KdiEGFvzfTRkTB14fq4ZqOKoWVBZx3z\nBQXth2aAqS7eddzUsNiDVKsKnJ8L8vFy8gsAwHp3gzlrMT9/cYk3bwh16i5GAxmnyfuqi+MRb5Jk\nsBmh9K1EvK6TwLPlvgZu+/Qdg6ENrZb5/ertVwCAXb7D4LlEbFvDwWLBSC504U8FPs65n3zPwnDC\nco7BBPGKJYKdA5UlN/WOymxJCsuW/W2XJcZMQyStja/vD1GY7Nlffvbp0bGZfYueJW5Vxx7eaoOK\nCmi9pyAhHFuVNSZzWduCKaGiy7A7EDEVFdNDSZLeoT+QK9nVZ9mlqJpDGd0Evcd0mN3D4dn17lHO\noFfXU7zmGbXe7eDassZtUyFhpxy1qmCox5s/yB9XaFhW1tY5rAMyp8qchb6LAWUea7NExog/Tbaw\nKe1oE1mxpwEa1uvePT4g12Qvjs8t2CQ0ljw/siiDyjNgcjmBQWJoXQAW0xv7+wPi0z5JOJbKDiXV\n3VbbDo+L3xPxKsBgKuiXZs2hUCL4mhKYXWsg2xItMUN0ncxv0etoqNfwuJHx/vo3W9xtBJFpyhIG\n52y53OH+hsjRtdy37vtYbWQ/mEqDspF3hzMx4FqCpPXUjqibGoEtZ8xH17/CkB3zbNd9elf9ofaz\nePFGrO9EGqNj/eB9lKIma2zqVDho2IWs553MRtjEzAG5EyjmgfFW4iUlxO4zMkF7DQXZydPLITRC\nqPvVEt0d866qLIRnXzzVrJnowBQuqjqBRckyhYxZpS7Qs35L+YDSW8Sc4mxgIOdB7vkqDBa0r/c5\nWsJSGlufff7Lf4CQtalpr6DgSz0ulphOXgMADF8Ky9O8wJrtBO/3W8Q7Nu52THhkQwem3OPAzDBu\n5N7vvmvw9r1Avma9hE1Ip6OgwuLxEbPnclDo1nEYpSlr7LZ8sB7Z/WnbIaXu7WbXYLGQg/0xifHP\n/7d/BQCYqnJ4/jv/4HNYLEKvohwsCUQQjAEyMmP6M7FhoR3JeDpoaHSZv0pxsKVMYcS98/rV59iS\nOQ199KTv7XvxE8OxYw69iY8zf+fPrlFwH6yfclM9hpTGHHgDeIS+zHqLP57JXJ1ZX8hnVB8JD7Ob\nxxX88BMAgOa48NiVaD+SsftuAJPO4MbV4Y5ZD6r2mOgyKV+cyc0s7wJUtRwejg74zLdlaoaiYuca\nHnwwjqc/dNcGEtkHc+ZZ+3aPinW6dw9LHKSQe7tFwXrFB+ak3+xWeHEhh7069tDw96VWI2FrNuuQ\nbzMVtIf6zNBEtJVn4HGzwOtPJfWwpyBDdLvADWv3y8pESoa4aXyCgnlMm5KpfXU8XxhttmjJ7u4o\nbqE5Ckrq9X5/d4eFKi+WygieOidVLaH3rsWArHzD8pBSMjYIA/hk2ueNPOybpEHHNIQ9MbHcSI38\nYlPgiumEgizktMowdeQgHxQOLNZ99zDhMofYFgVc45Bo+LGNQ++JuW9beJJrLSgCUtUp1EocnnS7\nfcrxemaDjz6S/ZlTWGKV3iCjOEhktVju5CzAr9/h9Sdytrgqu5c1CeinwrVduENqTish/KHM5fJe\n+DjbKELA+uJ0v4eSy15sFQe6dlz0BACaWoVJjXfdPkNI+Fgh3yFdR9ht5H4e3n2HxYT1184Ay62k\nCRqetTffbhBTJldtCujkRwSzl/BydrFjV6+wtaDxDPr2dguDzoqWpkgonXlOKVU31AG+O+ajS9jM\n8Rp6B8X/PTXKR+wENZ/sZCc72clO9hPazyLiXa7FY1FdExml/BZZgSGF5dE3COllWYz++qzGgJHY\nNi1QsetEklQYeuJZvvhTiTLqosAdyRPY73A5FQ9x3A7xsJCIZ0Y29fTiCjnht6LeYRBS5H9gQ6NX\nHJABXWw30MiW1O3jIe9B5ixWVSCU686sGTIKxy/rBporUUfFqPOvv/4KcxKCOm2MCeuZyyTFiopX\nzkCINFod4fOPxEM1keLLXwuMu96vcXlJBuhBvq5MYNATtDwLNVmRvtJjRKatMxRo05qe4eUnEl3H\nxfFtYikttvdvZEwGm01YJtb3ZC2rGqpIrnH/5QM8euuqS8hedWFQ+s1UPPy9T4VBussV7BL5m4e3\nUvfZNDnOX8j/N0qPeCMw2Fo3ED6TtbPH4nVuGwOPVHzy9ip2oJRcmqB15R52kRBo1nf3R8emeFOY\nLrtjsZPM2PXx+QuyOOsct+/ls3oJmFTzecY96bcNMlfWUzdbJI/yt8PhGC+oqJawYX0wGCBJZD/s\nHzpsb2Wv/uLVFZ4PZEzRSqCz9WoD3Waj96bAPl0+zfVDLJ+b8HunL86Ojs3xALM9dPDh89RZKNnd\nKakrqKzl9PwQS5JsGhJeRs+foSSsGgx0zAn1+9fXAOHughHU/uZ7ZOy+MxsMcHnOSFlNoRIK1hlO\nBb6B9N2BYDeETcUrKJlQrQEkW5nHb7/+8ujYVrf3cMjItkZyrf0mw/nlS7muGSAjuXIwGD2lW7Yb\ngV1LNcGEMJfhFVCZiuhsFbkr0VK+kzOj02KEzwSqVo0GOmt3p5cz2EyhvKTk4TzMYZH93ZsO9ney\nVrrV4MKWZ2fxuMIyP74fAcD3h0iZ6tjvdlCIRKxZx/r1978FPDKdEWH6kSBEmqPj7Y0QHivKoHaB\njpySp0bgY0V5WbNRnzptPTunDsCqeuqj/LjbII0OTGUV+YpRPiH1OEtgUq1O7bUn1LKugPL3RLwD\nx4ZOyNh1/Ce1qYiylaER4qMrOZvyRsWGCMamquCwKxFcOWtfX2pP9fm39/dY8Cw1bAUKo3GVpMJQ\ny3E+O+gkhND5HPdagdGUvaN5bo+MEvdkeo+GQ8xqnle7B2gfQJc+ZD+LF69JaFj1HGi6HJJXoYMR\noZl6v4d5gCRZ8pCle0CTjeFAQ86DWm11lMwTH0QJqjRHxcLpoi1QbIR5arc1mMKBqciCTEIPSSnf\nldQeWPuP0TDAkg3XwQqUukgR8wDfLI+3BaxdGc+2yVGSURjHK7SNPPDWWAGJymi5mX73/rdoyN6+\nfmk/afCGqomsIJN7I9d75oWYBzI3y5sFJhpzuEYObS9/c5DIm41NlIecs21iyhxbv0zRMe/VMa87\nmfs4v5YHSF8fz/GaLVBR77Uk/N6lQLKUhzBfLVDt5YHGPsGQ7cRGY1nvXdFD28vnw9kMNZnneZFg\nSUGDdSX/1j1g8+B7/dGn2LBzzWA0QzgnG9KUsU8+GaIl/Llpajh8sLaVDYtOjBeRHuveHh1b69kY\n8HMaNYPVtId6SFNsdk+64vPROfI9Jewo9NIXGcZsA+mEY7zZylpcGDbwKC9Og1Cqb4dPus/RzQLF\nYX6vTRgUlOnIqLU9HTuu4e4xwors+KzsoAYsT5rL2LzxcalPu+mR8UW/IJwWDBuodB6j/QY2u9zY\nYYVoLy/98Yz7RQMKCmhYFx5+SZb1Q5eh5Bp9/ou/DwB4/y9blDdyOE8u5mgpijENTTRk3W8S6uYq\nDn7xkRxmF6mPkFB9ZdgwyTbNKeG4vTmevx75Y/Qs26vJO2hNFW19SFWN4VCgxDI6lGRcX8ypc62p\nKNhY3rCsp3n3PAsxWd0dc8ju0MZqL2mizWqHKb93OJ6gpU50qcm/pmfjgv//zWaNJmNHMXuMmhUK\n2d0Ge8o4HrN93T91UbM6PHUqixPmp3vlCYqOigR+ytajqo2IsrTZjl2RzAnWdED0zkBBERPDt5/E\nRr77RtYtXmdoG5mf5WKJfCFrMfZHmCgyf4v3ske0VsNKFedhZgRwSeBRlAi/p/ESXl1O4A7kPN9U\nJUyWwrHJGFTo0CjqbXcKPAoM9a4JfyBfHLM166LNn8o8X19OMQjJnu9aaJwHpWHntiqDRmndiR8i\nIVN8l2W4clk/x250pWLCGpKN7iroqaOuYY2e3eL+UDtBzSc72clOdrKT/YT2s4h4l6l4fGNljJ51\nbM9mzzByxWNvLRcG69dSkqyiqofBKNXtPQRk7a3LAlkmLlvGwuk+b56gs3CoYDCjbOJmCZMeqa2L\nB+R7QxgsEuzjBh1lFX33AjUT6MXuIHbgISaBK42Okz06k3KF1Ro9iRowVNwdGLpmj5j9Q68J87qj\nISwKZExmQ2Rb+f9ivcE//EIiiQMCsE9vYC6F2GDffInXnXjVd30GnV5YQ+alrmkodxK1x7sE2/cC\nS186PUCykWEehDty7LbfAgB20XGm5bCrsSUstaQge7GKcU8I1kKPbUoob7XEnE2+ewqURGWO52wO\nPpqE+Oq9SEIaUHA5IfuYjSVWeYM9PdNv37/By+lLjn+FupV98upjiZb6qQM1kc/HiwgPDCHts2t0\nmUSIPgUYLthz84eWGwV0l/1KSc5Qqhbf/06EFhy1hU9Y+buvv8NySfLeWL6vqYFhTYnQ1QbtRv7/\nq4fvEbGD0YgdrdY3ORRCt3pqI2NTgsf3Syh7+f36ThjFhRqjDw4dcTo4THu0jo6UNacLku0mH9Ar\nqLfpk1CAQx2KPEswGrA5iNFivxEIe9tkqMjiHZzJ/f7qi1f4V0R/Htb3eEGxkpt338CZS0Qw/IIE\nnM+e4x2fwyRLgZLM1q59kjf1eBPVssfDRsauty2ylmIRzgA9BRx0Q+7F7I7Xu+pZDZckHYUQIZTi\nicA0dgcACUzJ7gEqkaezGVMt52O8f2RXqrx4kolVlvfo2SXMJJQ9PPexYvOVgRtAZ+qmiLdPcG0a\nM+WR+9CXEq1rmofLS0njoB0iZvrso9fX+N2bb4+OCwB2eYYp02hqq0IjQUvnueJPRiipG7DY7XG3\nZJ9ex0XNWn43kHs3LAcgmrJOKrz5jmmKoQ8QIdMLWeM8yWAbEo2u9xsUmZwRbdth7LPPMSPU5e07\nGJSYnYzOMLqiBGO5Rn6ACo9Yvl3BtWVPmlUP7Flna8q6ZIsdHqjL0Cg29gXlSxUNCgWNaoq3qE2C\nHVOLGoDXV5JyvN1uMH8hz7LLM8g0G4CpxdW7DR6JCORODf1L+Y7AkmudXT8HQTk8bhMgknmYTc+Q\nZb+HsX3EThHvyU52spOd7GQ/of0sIt6OeYmJH+D1tXhIZ/Pn2NyJB9NAxeUziQazVryiu/UKLXvy\n1U2Pe7YYU/snRw56w7KLEPj8T4RolOQpbEa8idOjogj9xKRiTnQDT5PvDYIeDSPZ8iHChBFORNJX\n3qhP8nK1djwq9LSD124iK8Tbej37ArolXlZS73HLuuMsFW9/MDAwIzGnffgdln8tkeDADhBciAc4\ndiWyTRZf4+7/YX4lT5CmrEk7m2M8k+grZTT7uFggowRmWipQHbmGOXLx6RdSF/n8Y/n36voC94dc\n+fG2rriaT1AXMu9xcuhR3GHL/KytGHi/Yt0cYvTsaxmRcDFULEyvKM9Z7BGRHKRqCgyTJUAjGc9t\nu8aGUbVhGVBHzDe2FuwLmfuWZUM3aYGU4uxFa2AfCaoRej7qSO5nv5P8TK8cL994/7hASuKVSUJb\nl/VIFpLTm+gGbpby/w+LCBVzZM8u5Ptdd4pbthD87ttbqEQoklbHu3tZr+FQoojAekB4LlGjP7/C\nKCPC8e4dfl1Q4SyRfeqNDCS3MteT8RzDc0rnOUNsUub3KhlTieMlDtnje4B18Zoqe9rqTRjMZzZK\nhwdyDCpdhT6VqLriXOlmgHAoa7hSYtTMw6NuYJAguKOqXLovMCHJL79fQaPS29Dxkd3L38aR/Lvd\nZKhZujWazpGxptwvO5xfyl5estzoIMn4QyvWtzg/k6hwPJH7/XvPnuE55Qa37MMKAB0KdKpc7x31\nSh1jhJbP/2DmYLGRPZurBVw2R9Dqg/JdjYafN3odOde472OYlezrlrKX2yaD68icvvr0DHrHCPJ9\nC4MNHxo7RNl+OBaqOhUZa1Ln8yEc1vFWRPiS2whD1oBHuQOXiIptK3DZOENl7XjXFPAO5ZFmiaF7\nkEf1UWtsM2jL3ypVBZt13bOzKZYdI1PFREA1ucklS+DqBkbK5hd9CYsSmO5khvYDawYANnpMeK6a\nRQ+wt+6GLT2LuII7lvudTcYw2Ns8q0ts7in/yraWn3zyHO/ffS3jbAvMBiQQ9ioc6gKYJL22jQGF\nJV9xHsEm6Wd8PkRCNb899QW83sB8Ku+hZJejIsnM7Eukyd/uqz/Efh4v3kYWfXUT4dojE9PPcBVS\nj9e2oXey8NtbEjGyGBVr+ZxgioxEDSR/WwtXsG626jIEhImcNMOGheMDtYJF7WdjK5N4v9lDI5Q3\nDxUMWE92PZkjIQHm9sDqU4domXhXnOMH+KGD0vPXz5BN5PMzz0ShyuaN9kuYlF3MH+V3s5GNy6l8\n31DRMfxY4LuJFuDdl78GAOx4uXK3Rc2XQds3aFmn1gUWHlYyr8GhXnQ6wJpkKGto4Wr2EQAgtHQE\nl3LwpySbPKzusFoTPoqPj80/m0J5JNTeUlQgrpF1ct0kLuFRAlS77FCfMV1wLg/rUqtwR7KY5Vso\nKFpbtxVMnb2CCcoougaFTs7rTy5w/bk8QAO1gTGRQ+wt2bMFCJkBmFg1KmpHQ9fg84DJ+a/yAcGC\nNquwuheHqOdBYqJHQ6dit62wec9erVCeGp5HrCms2x476ne/+/YOHz8Th+Y8cHB/R8b2g9zvbbLC\nVSWP4jCvkW+EyT261LAiO/jlx7I+WqBj+UYgwMxaYdTLPNS1hpIQ83ol3/ubb74/OrbXry7xwGeg\n6EnqSivsY3EaRlMDFlnucZkidOVF9vozYejuuxotHSMbCUiMxvlggncLzs/mLwEA8/EYf//jz2Ue\nlhVKko6U1kZ30J5RKDvoaBiNyYh157CG1EZWPZSl/OwTehxPL4+ODboKjyIR56z7/vj1p1CoN767\n38EgAczIaiQJe13fyyGbP7iYUsZ0OLShstH7/CLAnjDk3RuZuxfPrjClVGAU1+jsQ09bBWXCl+GS\nEoSeDpekQj/YAKy57lMbqkktAcWEztrjY7bY7aFSW/7TT+YwCRu/HIpjdD5rsE/poPkfQaXkbqwD\no0tZw5js5NUugm6z+5jtALXMmRmE6Cgbq7Ln90U4Q820haoHuJrK915YNvREzp6SZ/HV+XPo7L5V\n7RMYPB8HvoN18mHi2Hh6jcmYDPG0QUn53JKpvrSocebL2idphICMdzsw8YaytLMpBWQMB3NqU8No\n0SqyLp6tIWQ3r4PWQAcbMJgOGHfwCclXRgrdIEmR5MHXLz5CxGoUXetRMqDJ0h3C4Uky8mQnO9nJ\nTnayn639LCLebC9eZ+IPsH8g0Uot4bH8JNnXOIgnzend7asaO6pR1VECVyV0oGVQCQ0o9GqsvoDX\niEfWqyZMQtRWliCll1+yiCMwDCj83pcXI3z+CaPNwMZX78TD+ZLkgt4qkbLFxy4+zmRRScwZnb8C\nuUEotBr6FckiwynQMeIl7B23Nrb0NqEZMAj5oNPx3Vv5m3IvUEubxU+QctOWaCg0btgGzs4lWh/O\n6cUpe/RsPvDlzR325Dqcf/wK2x2bRBBeUQwTZXa47PnRsUU1oJO0EgwEBlo0GUaUe6u1DLor4/Bm\nBsasK5y/kn/HwzFWVFmaWyauPhPCSZQmqNh/VqNyTVh7KKlQtXu8x/qKkc/LKVKVJT6Eu6vexRVL\ngOZ2ixVlHG1FgaXIevv+IQVwvMahqhR0rCUcUUJPTZb4zXuJIu/e3cFjf9HxYIC2E6jyQITTogqW\nK/PW9ibeMHpu2wV+95XAYCP2GkWWQk1k3e42O4D3mGQ1oMmmiVaECpMeKlWusmiL27dC9lo5l0hV\nmfeK0fz9oQn1D8ybX8AigfC77/8KAGDpDQyqlo2GHnT2ZR71NupC9vaWykDrKkWlMbXgKqi4kWaG\niwXRgSXLxD4//wQKoyk9uMa/+D8kmveKDC8H0iUobeX7932PdStzPtVc6IQ8G8vD+yWJgpWMzQmP\nR4amH8AjulURAXj3zQNKqmOVWochZJyG6yNgCZVjyrkSdSn8Q2nctsSIxC91W8IimjQj0WhqX8Cj\nOtS2ucO37Lpl2iryncyvxZImy5tiOJL1rusQux2RouUSLtNOgVFguzqOUgCAWpfQDh2kokzyagBm\nRKuU80t0veyTs/kAPcexbSJMKZu6UWW8v23uoBEmdsMRnk3l973pIGft/e697J8L10RH2F93p2iJ\n4j3TLNh7GV/IDj9T1YXdyvzev4+epHGjKMO7t8sPji08n2B6JqS49d0tUkpNGoT9DbtDlsjntabH\nkA1A+rqCztLBfsPU2dkcA9bVOqMBEsLWnmOjLOQ5VYhe1iiAnsRGtUFRUCZzv8LsjL2uCdnHZYtb\nkhLDgQt/Lv8f6jU09VAE+IfZz+LFm/KEV1ULes+8VKag5qSHvg92+MOIMNIysWDmZMcqPYZk14XP\nP8L7928A4OkldTYZ4KNnov1bGz5StoRTVznUoWzaLXVtFd1AYMlCjfoOJvF/1WqQs7tGRBbyvosQ\nkbGZ58fBgzvmby/ud1gQarl/fIuGDD/dVNF48iIKrylbF2V45Dqu4hyv2ckkq3IYpoz/lu/5JFaR\nk5n9sF3j8pm8vF4EUzy/Fnjzk18JRLhOFgA7+TxaA6iETWozREao/B1bMY6CKa6fCRSdF8dbXtVl\nDp3QdF+x9V65g9MdNJkfYLAF48XzOc4I4XVErsOrC0xfyDWW63eIWLyuuSq2ZAkuHuSgvrvdY8jW\nNJtqi+KtCCi8GLxCzgN6X8h1RxcvwLMVjmHBaQ+13wnK5sAFoJzo6Hg9aNaYUFhX2FE45c033+Ab\n5qw1x8BwRviuBkq2QpsTLlusVmgpo1mrATYbmZ+HuwUUds/5/B/K2D1VwWwic/zmuxgGm5WbQw1a\nxdralaxLVJc4ZJN+8We/eHpGNvs1enYlqjX5fK0cb533L/76W2TEeXO+YFVLha5Sk7bWoTuskfdD\nrAtx8u6/kbkL58GTvrDVARNf7rFpNThbWcOzVsajP7a4X0utdNtb8NlIHFmJjNqsPg+2dBsBZJvX\nmv1UwaBrBhJKgN69kXmYj54fHZtzMUVLIO/+rTiR/SKCMZIXdng5QcrWcLqhw6I0qdWz609hwNjJ\nMx+EHkYjcZ6+/v4eXiBr21bc32+XeNgeBC/UpxpaV1UwGbJjDrWr+x4wGD2slhF2e3kBDEdTlKw+\nqKM3QHtcwhQAPrk+x0u+nCZ+AJdN6Ft28DL1Fi6rOxQtxGAi96DqNbqhzMnvKJH6ycUZWkLNUVlh\ndMEzaD5FRy3mNxpTY4oDlflZU/FQUUgF6y3O2PXpF8/INdgUcHX5Ll3ZosopFHT/gGT9YVZzWuwR\nbSkMo6hItnRi2AFsoivIH8UpyeMKBaWDe92CQw2CkI6ErWVoKBQyCgeYct2++u33qBjQ7OnEa16I\nkNB5Wreo6KT3aYU0lXUpOvne37y9Q8T05aQeY8DOVteDArb1r/fiPUHNJzvZyU52spP9hPaziHiz\nSrzuOO+xYuODqsrwypPobqg1cNmA3LMYhQQWHBJS3iZ7FGTg6lWN+SEKIFFBb3ss3ojX3nVvMaCi\nlWGr2MYCiW2pqBOOJpi8FE/x5vuvcH8nXs/5R6/xlixV/dA5oWzRqeINdR/gRKgU0o4WD9hSGnOz\nXWCVyM/Xz+aYj8WL3e4PRJc9Kvb5/NUnv8TVjASO77/H+HOp4y0t8TT/8v/+P1GR8BMpJixGMr86\nm6GiasyhiUKlu2ip+OIEIdaEBW+zEhf0XAdsznA2u8bZXOpi728PzOS/a3pfQCVLOl6QaNSX6CjR\niHoPlWL5duggZJealHXF+3yPl2zA3eYOHnk/LTL0bCSgjynFFunYVfI7JYpQH1iEozEqwsopyTpm\ntcC3N7LeXqGjZ7eDvK2Qk0zjBvK9ZX4cal7cxyg1uc9b1lzvNwlalyQUW4UWsOOQqqIkhF9EKb/B\nQEQCk9IDBsX042SLy7kwQEec83j9gCXREGc0wuU1o/DuDgrrQQ/M4odtBJP1m3boIqOKlVKnaCmD\n1/Uyj655nBT3sNghpCrX+VQYx6ju8fnnEoH7MxN/9eZveL+PWO7J4qWE3tlsiDFJPlV8B5ZtIs3X\neMkGBSNfIlu36HD/yJrK2sLnhCG/X5dwCM/VZFOPVQ9aKdeYf/QcJpsRaJXyRJhUOabF/XFpxen1\nBWyqk/Uk1eW6hiGfsdnZDCmRkSTPMCXj9SKU+012Ld6wsTqMR3zMelE1rtER/jykc+J0h3gn+7/V\ngR2Z4qZ1AY2oRpazi5hu4v5B5uHdd7eYjigX+pGLjvBxlSVPpKtjZnY1GkpbFgbgkiRmUx3PCRwc\nuvl1TKwAACAASURBVPO2molZKJHe4MzHQyHz5TJ1EV5dIKJylWtV8Bihd3aAPSsVzp7J8x/CQ7w4\nfN7AlIjMrpK+ygAAiw1M7AQ5nylFN+GEsh+GZYfh4PHDY7NU5EwvVU2FiiS8nmphRbyFd6h0mMxR\nHeDj0RDBFc8I1ojv7hcw2Q968ZhAWco47SLHZ69fAgC+AcmQRQmNSGayXENnIwzF1dEQrm75vHWG\niQHHOz0P4WxZc673aKoPk+KO2c/ixduQ+bZrWtwTdvanAXLCS31SomTnFNXgS2YZIezloZgPx/j6\nW9kYrdViNJZJfzllI+22Q7mSDeuoHTKWPOiqgfFADp4sk802sB10qVy3qQNYOqHt+wpdJ9PluIfD\nxYI2koMk4ov0h/bHH70EALieiYolBkmsYk2aPGIHKrsI+YH867wcwOYGGF6coyH0ffUnv0A0FJi8\nYYnL7Pvf4M07KbrXQxf2nA3pZyo2JUUOficbJJyFsKyDlNrf5m2/vtth+Sh/czUY8V4c6HyhGQfh\njx+YUxWw+ADofLmHuoa4k7EZloLpJQUeNBU+Wzr2lEpsdRW7mlC9reDiz6T1XW4k2N1KHrR9L9+l\ntwGIWGLzsIbnMS+uWqgJkXrMbUYPG3Rs53g1v0bRsCPLZovlTg65AfNf5+5xOHYdN7B9WW+NDkw4\n9lEUco2uzKCy607ouVjcyzimI3mp+tocSSk3rNYtXr4WaLRTC+w5V7/9K+nW5FoNatDxc3sMAtmT\nb7/7CipbNpUKW2RaNgY8cJP/l70397UsX7OE1p7nfaZ7zp1izum9V/VeCWgVUreEi8NfgBASUhsY\nIGG0icDAQGqDdvDwsJDw2kHCREJCaqmhqt6UY0RGxB3PvOd5t/GtfbJe5omnaiElgXQ+JzIj7jl3\n/4b9+33D+tba3CEl+tMOLaSsV/tncqiHZ7OjY8vLFk4/lHHEkdVaBS3Ty3nX4GEp/z67foaFyZRm\nJe/Y3ZdvYExkzkeXF2iJkxjlLf76pZQ6HEX+fbONYLO96c33G5TMpF7qc7xiKjSh05wZU5QJywZJ\ngy4flGJqJCTAyfnnffL26Njc8QwVa3b2uexxxxkjuGYd1FaQ7OQy7FQDpiXr7w4qQ2qMOpfPF9BQ\n1KQ5nZ+jhqw9y4NY3qewNBlDqfcIWqJrx+d4Sl7h776SUkkwHuP8kg72toRpyLmS7EvULFd1VYaC\nbZHHrKsTbJkGN00Hi7m8WxnLGEqVwjDYFlkrWL0T57PsS2xZbtmxA8JNCoQTmZOZ6yBnOSXNDTjg\nBefQSdc9WNxnfpFDS0mv+/wlJkR16yRvqUwTeSr7QXVNlOSfNHwP56xFH7PQd+AxVdyYCVS2P7Wc\n8916DXsia9UHF8j3MmZndIbrp/IMRSpnfB1vodoyv7eZDZ0thGPkcBiUPb2Qd+NvfvdHpLm8j27o\nIiOF6lloH+rWHfmdTV9HyX9X0CIk2nli2VDy8oNjO2anVPPJTnayk53sZD+jfRQRb03VilWa4Qkp\nvVrVwONaPJUoz2BpQ0+qgKQ0bwSDDeSGpeNXtngwU0NDpTL6In3du4dHlERsNkWBnETZneHAccUL\nfcLeUkXRkdNjNnwXHaPjh5s9cvaZFh71OOMWBQFBFkWTf2zPCJrpHQV/+Fb6Ootsh8tz9isXDYqH\nQe2Euo/nL+CH4m01ugYtJN3d/Br7ndA8PkLARcaTVyh34m397u47aJ/If58/3kJ16J0Redzv7pGy\nj9cZ++ioCXy1uEJEbc6c0X7ibLFgOmz6AQKNrgdipuJyplq2qxX27COtVAOVLnP15vYNzN/LGly8\nEjTrfDpGTURrbxQ4e0Jtz3aPJpPIp9ox0tvE8M/keXebBDojd9voERDsoROIsY9KjKj4pFQ2Ls8o\nMh/luCEBQ0xVqVl4XDGlbHuAqf+G/Zu+0sIjZ9z1xQIG+wPPJ1MoRFQ7TMOtkxpnc6aigxAKSSae\nPvXhMsKzbQpMVBGuPiW1XrNBbxA5eTE9kKsUQ9JB0VDyvVB2e5T8fd1oBuozoE9lTrPl8XRs3PTo\nSbZhVjIPI2eGhGWeiWrgFy9FV1gxSlRM+b57L9FbHUWwFHlviraGyY6Cq8VLtGsiQNlRoPUhHr96\nzc/1qEgis8oSOL7s+0U4KFv5yBqJBZq6gRcwY1WXMCbyOX8sg5yZNvD1T8fmn12hZ++tyTW+2xXY\nbGTO8lUJagtgPJ5gwnKVwvJRrnsISIE5H3vICKxRGgtDTLNkb25R6NhvKagwNaExQmzqFgq1mmdz\nIteVBi4R1C+eXh2Urd7/9h0sCpPML6f47NNf/nRQtLhI0QwP0SuI9rKGCRWWtLEGn73PWdEgIyCv\nf3yDm1h+X0qFJFU34LgSIV4sRti2ss/2jQpmVlEQ3dzUCoKR7OUztYNP7XLVUfH6QaLqgCQgXRRj\n9VoWJi8MgPPnm4Bmfvi6mZ5NoJH0RjNUNIa8e1we9JMR7glq87oCEcsqRbxDRRGXOcFmTd9iRwGd\n+0xBGpHWEx06ciUoKhXLDOewT3TbgMHBl1WGIJCMQk6N3seHd1izXDjOAIfKdU+fTeAFxzs/PmSn\niPdkJzvZyU52sp/RPoqId3opXmG0rfH1zSApp6CvxTvpDQ2vSDv3h9dS29HKHM9InzjzHXjX4mnf\nrvbYEpZus2fN98ZQSAlZZxlm7NlToKPJyDZDfVfoFvZsC0iKDNHAnKKYaC3xhN8NPXhZC5W0a412\nnJ5vEoiLGvc1TNYEX5zPMCXF2m4bY02C/RZsbQgm6CypUTSmjkIXb/PLmxS6I1FAN5XIvzrvoezY\nw1z7cK7+XQCAN/sLbJtBCpFk6bZ76Fcu9ykYzMO1fMxZU3EtmY+zcIyQIhRpfbwNQDd0JKy9JwSp\n1XkFlWIIZ+cuPHrKQehgzJqjyt4+Q2tRs2Y3XzioqRmaY4WO8mjBhJF/4WFFL3d6PUFD6rw6T/Hk\nWubi66/Es13fbOHM2eISVeifDfVMC5dzArwI1jM+wBQUdQ0aCkposfwZ5e+xuZf92ecuLkaUTZzP\n4DLSqNjaZSga5orsI2NiIt3L86i9hus5owC2PCzXKnSd8695iJkxyIsGLltuJmxtimogz0nplxWo\nWpm/u30N65L9063U8aLt8T7ePIugZfL7skwilcCxMHblHeqbDKYi79bj/RIKG5iu5pKl0XoHCvu1\nglbDxJOMytXiBTK2GeUEnrhoMFLlc7bTY0NQyzKK8P61zOv0l/IuqF4AwjpgeCN0rDV2pgeL1KE6\nCYlM53iLm2GEsDzScxJ0mBsqCvZ6epMpLs7lPY4flthuWVvnmli2A43tRm1a4z1FEBx/hXPS2Wq6\nzLkV1higeY1vIONZsC9jPD7KORWSCanYxdi8H4j9VTg+Gdn2e7Rk5RuHn8Jtj58j8ntHUBg1p6WK\n+HtZ55T12+2bDSy2lCmWh550jY2eIOOeKPju3W5iVFyrV9eX6AaBjWiDvqfmty3rdrfaYTRltspx\nEdqSCVutv0HDHu7zUM7UPknw3d8Iu17bqLi4kHP7ySJEVsYfHJtnnyFO5BxbbhOU7JkeNMw110Qw\nZEDKFDHbAdXOhEpazslE2hVrzcI370TSMKk03N7Kf2tosHgh3zFi++ln/96vUDL7c/fmy0N0DEPB\nzb1kKHNq+z5s7pESn3I1mmF6xp7z2RmKYvPBsR2zj+LiDc7l4Nzu3+Irpi5KX4NZyWWYFyVMoiiD\nXl6KJkqx28ome3EVwmVfV9676Nj7mJOcwehrDLx2SdlAafjyb/eIMnlZsrUcFHm0RM8G+cYy0PkU\nB1dUPDxKOnaVU/f1LMT9gyxqrh6/nOakdVveP0Jhv51u2divSftXA5tcHIWQJBRpvoFOlOz5+SvU\nhjz7m+/+CJXAHI0Hsjcd4+KlqG/cpxXCsaQ8XHuCmhtqypfxyYszrNbyuffvb1BSOcjWNEzG8uJp\nvKy13QZ+KIeyExxPx5quhslcDsfFlWzoTanDJ+pzPDYPdGzqKEBDCjuVSOZ9WWHzXlR3XmkLOMyj\ntU0KhYfCfkMkuXIOm/q2+22Mkin+tNGwXsk+GWj/1EaDxQNKV9VDf2Bv1rBcAkbYw1h9gPjk602M\n6EbWdmLInDyxdTS8TDfRCjPOGZwcowsZ29099ZI7wJkyoeR2hzR4q/vISW1ZExF+t9zgHfVMf/XZ\nDDu+lsv1Gt6g0kRaxtVmhTFBKLo3wgO1fa3FBRwqeD0QQGMTnf9jGwUhzqZShvGIEv7mq9doKwqC\nmypKHpJNWiAmkvbZM4JfjAA1gb/TZ2dImPJc3jVQRrJn3hLwM68AHXLR1bqJcSDrYj18iZhr2zFH\nHnhn2JfD/PZoOD9mY0EfwGW8TOL6uDqRb+oYBQPYRr5f6xq4BI5dnV1iQVT5XrOw+l4uyJZlgeuL\n5yiboZ+5xRVBOqFjYU7n54xKUlm2h/FE5izSXWyJ1jddA9Fevtfv5b1AayDhBZErxQHkg2QH1xcH\nroxjxNGHkb+uNwZ4ce6LAhURvz3To3f3NXLSkC6eeMhJGnS/u4NKLXB1SLGiQ88SzXbV4u2NOL37\nPMLlE5mfTJV99Prb76HwPd5MF7gI5Xfc3z9idycbISBA1gYQMRWvdAo0hcBEq4Y/Oo6yB4D9LkdB\ngFev27i9kzS5Rh7qRvHg0vHruw7g/E0WEzj83RG7Ip49e4ZtKn/3+vUdFuSntpwapkeALAGIy7xE\nSnKVm7zG668FqPpq7kKjzm/4VNb46YszZHTKZqENn7S0RVMhSk7qRCc72clOdrKTfbT2UUS8n/9K\nelPTTEHFKFVDhH4A7Nwk+P6Wab9EItM+TaCTbSaKrzElEOj8fIae7SMlCcGLrIbO9om7TQ6fcjvr\nskdFsEFi0cs1HaT0Xmx1BoORyi5rUOjifXVUWFFHHkJL0k8XExv4lz8dm8XcmatIDxwgCilxKuNZ\nZwm2BOacz+QZLoIQrcnesv1bhAQNvL75/YHO7QnTtk+enWP9IG0pY7vC7k4oBL+sH2HR838ZyjPq\n5QqOIvPXFo9IduKtGn0JlfSIz9mKNXEAm+mcD6X1tnmNmh54b1CVpiswojd59skLvPleUrM6VOzJ\n+uTOJYqw9QaGJ5+PuxyWJfOaJSU6pgbNSqKIukhQUxmiK3QE7KfrDRtLzok1kujCUk2YI0bi4wXS\njczv25tbDOIvLoFlbX/cU32/zwAmEs+mVDTRc5w9Y7ow36F3hpYmA2AE3TnUNbY6RGTtOdcy+FP5\n2d7XEDGFXzPNeX5uY5CXjeoEW2oJq4538MzvmX6uqx4Ov6tu1QM9omG7UPi8AxtTWRxPo1/Nx5jx\ne5nlRFMW+J5p1fPrBRZziVK9iY49e6qNjiWWbYac7XBvax0GFV08NYddUB2LbGfbXYaYbFaZoqBh\nBJQkOpSGa8hkkaP6UPiOrVcRDPb0bvcxAptZpqnsAbc/fnRNbBMl20fyrURshq4hIQ1svNnBY4Rp\neDZ6ZsrSmmpVbY+WoE3YJgJyCXz6dA6H7WUN+0W323s0PakUdRchAZ5Z36AjveEy2nJuRj/oUBcZ\nopJMb02PjudVnkTYEax1zPK2hsboLskStGyBqtk6t9wANQkFHD9Fxv9OYwV1Ri1bZhT2TYmO7G7b\nuw2+fcN0rAV0ZNWrO4L08gohS2nxNsaMFLfP/DlA6lCHKk0zJ8RMH0oEJsYEiZpeiHB0PHMGAK3i\nIGMWQzMtWAHfF4fgN9/Ath/awGoYoZznzsjGiCWSFYFT396ukBBg547cw7pNAgO2x5Yutox9e7NB\nxcxAbbiYvpJedneMQwvahCpioWvh3VsyyD0+4oGsfZXRYvwBkOaH7KO4eH/9xV8BAJTKxJffCiIu\nXm+hsM7XosfjViYnovjw/vE9upg105WCX/5KDqBtneHmPeXlmCK9fnqJ1b28hPc3O0zZD5bWQMXU\nqkLB69U6wfckjBiPe4Q8NPK2gXEhdYwd0xx+2cENpK4wY4/ej823eVGea3hLWkotD3AWUnh7VeI3\nfylIxslMvt8KVLR0BCzPRc8aazDzYFvs0+tlPpabBNFWUKPzSQ+HaVE7GEMfy6HgUhXIDCtcMtXS\nZhrWlBAzzQ66QpRgxAOhswCmybvm+OWkNDo09vflpXx+PA0xJzGEaphoiNj0PQNn7DscEUVoahUC\n8nH3vYKKt4BtuCiYvmxLOTCttoNNR2vsjTE7kwNR0XVEJJl4+WvZR+lug9fs21b0AC25taM4gkfl\nqZoSbpZ5nDLSchy8eP5r/m7ZOzff/REzorRN04czl17Nwgzx7Xeyb5taxvvk6XPYpJfb5wlsSw6S\n8fkE5kxSV/tHORzKZYqA/ZCwDGRMIbq2htm57BN7NEgt6jCpKHSz3iPQ2BvuBcgoTejyIHL94z3K\nll6iKWWP6+xjfv7pKyRUmFK7FmeuHOafXf0C2Ubeo7fvZYympqMpyRWedHh6KevaLCPsiX8Ysf69\ng3c4ZUwV8Eh5+ptPf4OH91Ia2BFfkb55BzjyPjmKiR3JKQIjwBmVfWpSc+bxcYq+2eUI79/Ju9Fy\nf+dFjCjL+TuSA2VkGIQIqXjz9deC2E7SDAYVksxggoalrbRqMSaBw5a9tokCvPpM+pZb3cY3t+Jk\nmm2Hml0UOUlYyiyDwd7xPt+jIZp/vniCZrggiwLxnyFi0HQXDfeGHurCQwkgJif3NomxoVzedw9v\noVAxp1c1LNgZsY/lPX2zrZBuZB89mQcwNCrx2BaqjAENHcf52SVekqpSL2ponHpTV/GSxCRnY8r/\n6f6BWz6tGzgWLyS1xzY7XtYBAL1TkVMScrdP0DEZWzbybvuOhZbc1LrioKSD8vabr9GzC8W05Vmq\nhwzLBwls8nyLkHvZVGco8x/KAQAQWg52WcwxTNGSXMkfN5g8lYu3S2WeuqxAQ97yvlEQk7vcm7hI\nPyy8dNROqeaTnexkJzvZyX5G+ygiXmWAKio2MjILbR9T9JF4lkpbYMsIZUqSf0ye4c1SvNR8t8eG\nRXH8/nuoZM0ZUV0idVUQq4ObpMG6kahO7U0EZPsZB1SamJW4pGeLTkWryweLNoaqMs1FFOdsfg7N\nFa8omB0Hslyfk7Q8iWF9K1GYqRiwyExl2teYPpcxpdng8VUwJvJ9vgNUFYXjF1NkEE9v+0686916\nAyuUqGc0GmMyo+7wZIKOqdtVLMAdb+SipYakM3Yw6eRnm6yBwR66mvR1eZPAYDqyLY8DWVzFgF6S\nQSsUb1MJz6AY8jxFlcEkInBkKqAziZbpuX0C5GQnspQOYApWySs8ficea8l0ziJQ4TDFb4QaLkYS\nQe6KFgUBZ54q36sFHt6/eQMAeF28wVgdejFb+ATpWYyGvPHxFJGqqdCpSbt+Ld+FrMLLl0S2tiV2\nOTMfNdAQhGNM5M91pyBkGjjq9niTrPi5BiDaPiMiOWszfPLkBQBgujiDy15hPYvgePLftiNrYfUq\nGqrD+KqFjIoTRaWjYB9uzTE22fGosG0ymL18xyQgu1VhI6UOq1F1UNjPfX+zREdw2u5O9t6+ruDa\nkn63HOCC1IRFkmHH9Dkz2Ki7MSIq9LimioIp3043MaHQQc00b7rKYbhMteYd7FbW9Wziw2dfdkEC\nfzM/DmYMzicYDYx2NlPD2wcYnWy+aB+jJPm9FYxgOVRAqyX6TqoSDilPyzqByhIKtBQxEfw9yyPG\nKMSG9JwaTOwZjbdpdkAqn1/LfnFqFTuWC0JvBJ/CJ5pqIi+YVWsazC6O8wEAgOsusN4M6XMFzDof\nMmJnMw+biIpsgQWV78g3N0voFlP//F2V4SLgGfTq5QssQhFU0RUFQ8w9BKuoajyn5nWz3yPnGrRF\nBYcI8qfM+FmKi2bIvBQdRmT52yQ7rPYfjng1pYE68O7WNXaP8r7cUv0tWN4jGAvoy7EDtKQPS9oE\nOwrZzAYuhlbFlF0Gpe/BZJfFsycXeMb5vd8QhOYbcPlY8+kMjSb7LDzT4PPZd4mctVG2Qd3K59q+\nRcZ+5kTREbj/P0w1d6wJjEYXeEaEM+IlctZB0qyDR2k2g6jUbVvDfSoLUTkmviGFWBmVuGC9N2Mq\nZbl/wIw1q2UWIQQbpisFGmRDlUTUurNrjDw5PNa7DVxezI6vQGN6oiVvbO+EMJnCafrjddAyl1rP\nbv0eLevT6DWsMyokuSPk96xtsIUoylqkiWw43bWh8xhr9QKPkWyCJJeNaY89KJTeK7sMu2agLrxA\nOCaPaiGp9/h+DZdEAaNwgiYll222R8F0y5gX0jh0YfNnO+V4+ktpDHQl23Z4sJV1g4AXflHUB0o+\n0w5RNGyfoVj6ZDSGw5T68mGJit3y5b5EHJl/MteV6x4KkpZpQSXl3rl3jjKTtU+GQ99U4bPeaygq\nGvIZV22OrpEXxCQBR6cfT/oUZY6q4Py1A7mKjV0mPz8bB5iQqk5zHPiW7MVHyobtNyvMSE6R5ilC\npl7LLEfMvdqREGAdZzB5wJSeipkn70PZbPF3X5Ink4pDTy+ewCB2YZ3s8Ehlm8dCQ6myTY48wWl+\nvF7o6g7AulaykgvHChZ4NpMxBGqFmjzH67TAmIdR19GRTRq4lvyd74RISYqhaSNkqTh56aBeFMzQ\nsBRwu9pBZao0KSLMeOm7TMOX2x4V03eO6UKHzP9+XSAlJmLm0ikxjq9b2zlQ2JVgspNhNNER8tzQ\n3A2iO560Sg83lL+/eMa0Yu9hyRquHToIiBXoHODNTtZiQPtfnj9BQtTt7373Ne7v6SymLS7OJWWu\nZfLuLO9ukJZyxsxePcOzT6TNZr9N0PM7LKWG432ArQaApXtwLHJ6u0BJh9hiq+T1cxfmRPZ1Um6x\nId/xLz59jicLeZ6El9+u7A/dCn/x8hpn4UCH62DKktArdiqs3tygpnTrpm9gESXcNgUURZ5n4vJd\nKIGYilcNgKxm/bQsAOJ3jllvOlBZ39f7Cmd8NpVOaF7nyG5lr9qTBgGdYj+Ywi7kcwXLXY5pYhoQ\nc9G7aFq2JnoaNGWgC5bvbZIt6J9hF8fo+T/arsW7r4j03rN0qZZoCBKpqxIVcQZRUuKMcrX/UDul\nmk92spOd7GQn+xnto4h4bQI8wsU1gpl4zONki4SeTKvP4MwkZWN5DOm7B0SZeJht26Ni+rLRgHIg\nX6BcTZVFeMbPVZaKggAYrVHRMZoc0SP2p1OMDEmjddMFVKatJr6FlsorO2ZeFdUGKJyQJ8eFBL78\n4/8jn6li9LVEOmE4h0X2irTZImcvqUY1jMurMRIqhyBZHpCKZrfHmS8/u3guz6JpBtKtRCcjx4VG\nlPbUq7CgF1bF7J/rEjyleLPnuigjefbdroRKxEQ3EFNULSyiWX1G9T+2ttVhMUqvKwF1FHl28Cb3\neQeD6fk80ZAxwlZsRtXPpjhfyHd339YocskCZEWHpJTvSNmTPV2MYCpUFNkvEYxkvkezEQydRCtM\n3U68M3SMSnxLR7GXrEMz9aEwoleJMN9vjjf175YrJOwbNkkusKuAPxD9+Ve/eYWeY8/6FqM5aSmZ\n7l7nJd4xa3F1eXlARt69uUVKgEa8JelI1+KeChCdVcJ0ZN/X8QolZJwmU61/WMYwGO3lvYVtTeBY\n1qAhkUIcyzzGmnd0bKY9AjCA3uipmxZCUuQ5SoG6IxlHU2NH6sm6ln83lQ4mo1G1CfDNtxTuUBqE\n1Ja+ZMSXVAqGxLNi2NCYBjdRoqiZGWEZSNFcBKGUWBazOfJ0UKupsSdRw76WPWlrx2OG0fgaPekG\n84a92qqOuy2JETrADCWKzVQVmsk0OOlgq7zCnOQWzsQ+IF5f325RE+jTspSVf/MWERH1m7tHGBzn\neD6H7w2EKSzteDoa9ou6noOSpPrL5QaGP0SQLdL1oLb8UwsCFy3nL6tzmIwKjSH97liImOOvUhUT\nkrlMz6/wCXv9Y37/alvCYj94aOjQuCc1S4XOjGBL+k5oJnKm/RXTgK7J+KfTMXJG8RVLRnWSoGrl\n37dpiWGfRXGJrvnwdWPaEzjsvff9AD5LV094VsRthzhir7AZomuZBaxr2BRxSVgmS+IaNYUcRmMP\nJs/tvNzjkeWStiW6fnOHhNmmqtUQEMRXLDOA0bzFM8zQLBg8CzWlhcPzeuGbaD+cRT9qp4j3ZCc7\n2clOdrKf0T6KiDcvqN9oBmhI6N+FcxiX4rVcGg50AnZaRn/2rMOEbSl13xzk7pqiQ8JIQ6E3q4Vj\nFK5464ZpISH5fa/0cH2Jbkcz8dBXTQt9oGscj9G1jD5MBQHrdCZBK70WQDEksho8qB9brYlHqBgN\nxoFEcYrdoCNheNUqSOj/pGznMJUcM39ggklhW/Kz72/fot8JI85QQ6q7CpYr0cB05B5ALenuPe4y\nqQOfj+UZx36IKWvWafoAk/J9M1tDSa855O+aThxcEhg29YKjY0uz5aH21jHaHHk2WtbLNcWETnCV\n0pew2IYVEICUFXssV4xSp96B7D2Na4xdGX9GgYKxoyMY2pCgHxiQ9vu3qCC184p9gOlDgoJAltbS\n0OZSnxp7Ojh8KATnhObxdZssrqDYBNlxXfxJCI21bOg27u7Fw1ZRwC/kOQd6zrwukNQyXnObYktN\n2q5ooZEtyvJktc4WLjpGUVXeY31HJjPbRTiWCDLvZM7eb5dIKM6gwIbSyRrVdXGooWusW1rq8UxF\nkhYwKDqiGiSCr3ukZP5J6wwqAYRRXKMrZR40R/AXrjU+UBcmRYeSUWhnaqgIrIlb2XOKZSPh/Luu\nc2iB6c0cCv9bYUvUeH6NjGoQD5sY4YiANaVHR9and/cSfQfW8ZghK1RopN80Kb6gQUNGRjwoCqxA\nvreEij0FJVJK8/WaCX9C4GMYQuV6132FjjXVd+x3dg0XKWXvOtSwrQELkCNiFFWnssa71RY6+23v\nH2JsIjJIFTU2dwISrdIEWv/hWCiLl8jzITtmweb5tmDWqNY0gC3ITqRgaHV2xgEatrYFIcUbMcLn\n+AAAIABJREFUZnOUrMMbZQmdosqe4eCBWtaPd7Jn87SEysgfZQGVPfC2bWJLOdGUADzUBVTiXZK0\nhc1+XF03YTgfZq6qqhY1s20dTNRDTMho07ZdNGQty+PywPGw2+4wOSenwQuC/NL4ILWoaipsMnTd\n39wc5Pt8ttyFrgWjpURjUaHN2AIYb+CyDcnmWZ3lJUbEX4zHPsyOspVlh6YeTt5/mH0UF+/te9Kk\nGR3MkFR2TQs7JPhC66FyIQqCPs6vFxj26D7bIifhwmaXwstkcgz2mC43WwzMgEpWQWU/nROEeCQn\naE9EqGkYaOrm8O8BU9StpSNph4tefnGrjpA2PES146AIl6i/PJW+NwBQdQA2e2TrDgtykO6Yzmmq\nBAb/HX0Ll6pFr86nCKly0zakCjQ9BOxpTfMEOi+SptdQMzU78AgXZY4NkZerxzfYbORA7AoFNjVn\nRyTrGE9CRDs5YLpse3Rsdze/O+h7arz0ZqNrtAR12LWCnH2QOqpDmnHgiK5yEwlLBFGeoaeeqedo\nCJjS6dmvPPEagM6BYTRQSXxRZBv4JFXQiEAPLB0eAUh5VyEnQ8N8Eh4uWoMkE+0HFFNMw0BPzeOK\n/cOGO8MZnYakrlDGvFhtQOOeKir2QasWdAJOoqJGw9SXqZhw6ESOF0MKrEVOTdAwGAGkJkyUGo8J\nyy1EnTdOiIZsG1FSHfR00fuoE6ZxKequD6fwjyzZxLhYyOf27CIoFAt7XrxdlcOldrTtTOCcyYGW\nE2Bz4enwCTT88qs/oO6GtP4I6y2JPojcns58GJpc7p7uHBDFSqdBpwMyvxAnUrUDrNeSyi+yHIPE\nadV2iFbynAMRhPqBg67sbXgE/xg5ATZqidGIjmqeoOXFoRsOFNKb1s1AMWohT2R+d8kKIIhPVzWU\ndMJbrok1VmGQOKU2PFQ8g/L1DiCStqFy03qTQWHaucED9GHfaQ1ilmBQ9zD7P3OA9w1UlhNGMw8O\ne9AbOoaarSPkeBxFxY6pehsW8t0PXOoAcDG/hs3zbObb8ElUYeoqbJbXqqGvW6mxZfnCsyzQ/8Xd\nzf1BH7knhWtVFAeFHwMGCipx9YoGx/swD3WUNug1lnasEC7LATY1wdO0RujL54u+OJTndNvGk4Wc\nn5Nz2Web7QarAegW5cjrYewFPJ5zCkF6tqoi4XnfVTUMQ+YhtPyB7RYWObhVVUfNM0hVVAQcT58X\nMKwPOxXH7JRqPtnJTnayk53sZ7SPIuKNIvFIsiI6kHHrmg2NMPnA0aCRDk8fWnk0wKFXNMUUbSde\nWtn3UAm8aJlueFwu0TLtVxU1aqZYqlaFM5LoICR4RW8N9ISM64YNh2mrYDw9pNR0g5R9vYW2Eg/V\n+EBbSpqy7ceycUlVlFr1UDG9BgNo6R3P3cELNqBQkQh1D4MpGFO1MZ9IRmATSTpou9vhbHHNH7XR\n8zl808B8OqTXyZjT92DnBkbBGDa9tCTvMGLqcURPXNcNRPRmGxxvJ5qNFFi1fEdLxZyRZx00aaOi\nRsJIQjE0VITyh2NGnZ4N6ARGNB3uqJm6OJsiIBjpL31qo84m2K8lWnpydX1IsylKjpjb2CfYxNN6\njBcy9uV2jXrAqbURdEYULiMDtT/uqSpKB4V7SlNZetB6xBxPU7fI2ILVagk2BPKY3L+GM4NBGs5s\nnxzaFLZxjKgSb/2TCxlb8rDCiimuTdcjYfSxW8dI2f6hDe0PdQ8GfdiWLbxU9tHj3R4J2zi8/aCC\nc/z1/tvffo36C/mctpF3zJ6ew2QEqmoh8phZIc2DSQrFjPSnSdUd+kL96eco2RvaoQfYepRW8pmR\neolPfyHAyDLeI2FPpGH3sMhathkUwuISTS2f6zoN6X5IPSooM7Ka6RLNVu1xqqDVOsaOkefjUqK0\nPM3hUmTBCn3U/VAu8OASVDm/IBOa9UPZqlMU9ENblNaj4btlPXsBALiYzcCkCHS1R7SSzNDN2/eo\nGNNEDGZn5yPYPLvOJmdQmRFwfRMp0WV1p6Iqj4M0AeDlp6/wuBTwqRH6UAlc6nKy7xk6DPYgB56B\nhlPkqB1GBA1pTNeG0xHUVuZ9atkYs+e3rxo0zLjsSb15WxVwh0zYaIqcmRGj62Cw5VAjADGzLCgE\nzbnu9MBGVzQtevXDrVL39wUsdWCTCmA5cobYFIMZKSVUavvWho+cEWsc5lA5JoPiFufeBVqHLXV9\ngbKhsE5roh5KHQQeNp0BzSRNrulgQSYu6B2KQZmOUbuCHj1RVB0UpEx3670Gtf23SzUrff/h3qqf\nyxRF+f/+IU52spOd7GQn+39hff/nagU/2CnVfLKTnexkJzvZz2ini/dkJzvZyU52sp/RThfvyU52\nspOd7GQ/o50u3pOd7GQnO9nJfkb7KFDNv/3fBZVnoIOnEqlXNKgIGfQWE3QWe+R6Qe31vQ6LdBF5\nnIL62miaHo/sLa3ZWxnFGUZU8Dkfe6gGAXjDPKCAeyIO06qGSmq4vKwwGVBuqnWgKaspMP7u7g4V\nySJefn6Nf/wfXv5kbP/b//y/ymegYkuUoNJWqAfCf9+H6wsCt2PH+26zhs5+MtNQUFGT9mG1g0k0\nqeOSrmwyQUZU4+Nyg4xIO6XvEbDvTWVPq61psMyBrMQ6kGZURYGQShwdwXa6ZkBhz6AfaPiP/uN/\n+pOx/af/CLi+EMTqxVSUZrJMRd0OmqEe9tR9TdMCn3/x1wCAPefv9dtb9IrMtWMZ2EfsCTQcOBy/\n57PndTTCMxIbeLqCWzb3pwAeiV6viDLWdQuvXsrzuKaFx5X8fVqk6BR5noxC5YEP/PP/6W9/Mra/\n27/Fu2+ErGGzEbSqogO794LKbfYVKgqYJ0mNfcbeTxKCuEFwoDHVex3k68fN7T3e3r+RuWb/ZjiZ\nwyPJidKWOJ8J8cPUVdDzfUh6QeXOrsa4PCehRdujJKVmC+CzL2QtXnwiKPd9VuIf//LVT8b23/8P\n/xLxRsYWk0hEVXRY7EndRSlsk1Sqvo6O5POrG+mxhYIDIt4NfFIDAor6g0ZsVcme1A0LjinrpmoG\nNCLkNVU59N4Pe9Yfj2A77Kvtajjc601cYbeWNbBIgxqMpvjv/tv/5Cdj+1/+G+DXf/2PAAA55yZL\nTaREqDeKgp5zWVT94YzQLOEMiIoSOVHnVbnHYiII36qJYBIDOvakE6KsOvT98L51SDiXadvDpHSQ\npcs8Bf45QmrWNsUO+U7OqGT/gCqT+W3LCDnfl//qn/+0k+C//hf/4+F9UaBggFSrpTzv08UUNmk/\nFVXBcivnXK9p0ChEYxryZ7zfIiLpRVs1GPh/NMNEUsg4dqRatWwTXcc+/9EcAXW6yzqFqsgZMuK5\noukOSvYBu8EEKkld0DRouM7/7D//z34ytv/iv/wX2KyXh2c32LVgkJYxGPuHjpeyrLFdUxM5LqEM\n3Saky1WUFjopYXVVh04EeaepMF1BM7d8RgX1gTjGDXzYzsDR0ELj2ilDP39Tom0HlLsLc+ieKXtc\nXj39yZj+nJ0i3pOd7GQnO9nJfkb7KCLe+6/+NQCgQQOLkUHbm9AoG6YUG3js/YzJXFW0NTR6scU+\nhgrq5tY5cjKR6Dp7czsVbx6kB/TN+xgg602wuEA59GKRKUrVACUR9iFb09Cp8rl3d8tDL3HPyHQb\npYfoLhgf779TKGoZLTdoSvb8au4hct3EBRJKZxmeeNebxoZKFquJZiEnK1TcqBjzOb2QAghKj0aj\njJxWImOfWdsBNanQXLK11FWBgfc8DAPojKbyrDmwBOmMjoushEG6x5De449t4QWwqHVbsIc0biwM\nvWF9UkNjH15bFgB7qQ1GRV1bIwelzeYhvJBE9VkDjfO6ozRkto3QdLIfekXB9lH6GRtDhXdGL5/b\nWVFVeOeDxnENhTRvXZeDLc3IyCS1WqZHx3Z3e4Ovv/9enofMV2WVQqce5/XlObqBRS+9ganJ903G\n7FVUAHBvfXI+R0imJ8/qcD6X57z55p2M3Z9AJz3i1fwKr86fAwC2D++x299x/mSBbr6+hdFIZDsa\nnUMdmHY8DxMyNmUR2bM+IMOWFxsYgzYyKRMN0zxEo57RYkQCfbXL0ZIucDLmWpcZXI2RPXooluwj\ny3EPPfQrkvFXrXoQ7ijLFj4lI23DREdmJIeRtq5lGJFisO3Ug9xjXVUA6U0rvkPx7nhv+eL5P4Hq\nScQfjGRfhHMX9yuJ7uJaRSxLCMM24LBH2XYls+VDx5oZpu9vvkPvSK9138TYMUKcn/1Cxj4NsFvL\nGi4fHwBbfnafF3iyIBUtmZcsO8R4Js+jqjXaSxnb5vZbtLFEplXyHsvN0Fd++5OxGYYBO5QzLdok\niHfs361kLWa+i7qW79J1AzozWjA06KRrJXkcbEU7UJdWMKAzErQcC3cUxVBInRuEPkpm+8q6Q8ZG\nctPzYdrMAjIr0lUVXAocqJqBhk30aqcceoiP2W59A5VMe7pqHaiBu3pgwdMOEqKG1sO0ZM+4Sg+f\nfbihQyavukBD9rwsrw/UpJ1SomA2U6VwQt+2sHnuOLYORWFmpO2g6C3/W8aQpTFq0obWeg2VGZAy\nqdA2x/fjh+yjuHg1vthpmUGl2Lni2GggL3q0K/H2gRt1L8QRZZmg64YX3kBek1KuTfH8mpyytlzG\nbdEjMGQhvnt8jT03ZGAVsGzZyGYjfxpJhpDphKSuEW2FeuybP34Hg7SQliN/pkUOjwdmOUgW/cg2\nPHw3eY09hcaVTsd4yt/rj6AYTIlT93XbprB4gNmqhUrl5jUsJBQN1ymGbtk2NKbytBAIqCi0jyvk\npBmsEvmMjR6WLZu0KBWU6UDnqEMhV/BuUBnJOywoEl/jOMnEp0+fIe/k4BrmRvFcGNqQ4tbg+jI2\nX12i43NovKQu5g7eMr2smAUsOk9dnsF2xQlxmXrcbDZ4zfmL+gafPpeDTckzhD7Fq005+J4+eYH5\nuajc/N//6m8PeqdjDRhTnD5Q5Xft7o9fTq+/fos3t0xnKdTPrUtMmVIzzQLldlCSSVEyzbhZ0fGp\ne5RU18pvv8RnL+R5lLI+0GwWVCeyVQ/7WNJs/UaDR7H43X4FfdBHJv1k3XVQmaqvrQ4pKRizpsH7\ne+raknrzbDY/OrYk3sKgUo7e8fJDA43HQYsKLRW++r5C3w17m4e3qsGxBxq9FhYPX7QZah54qirz\nYBsONHCNu/LAaa4bATSmKYfyRtVUwKB6pOrwyQdtQYdG0fG0Higji6Njs/0FdPKn6yS/sbQAWi/j\nGQcTXF3IxZBUHfJM3i3Pkr2jqxZq6sI+ezpHT+eggQvjTJy5ype0YtkAvSVjg1bgxUu5kM8bBR6p\nZs+m5Co2XFR0nqDUmDqyH/TMhDeTuYqWATZr/syRi3cUBn+PzEZHM5S+SJ9Yxgl6XrBlA1jWQIKi\noiJ9ZMuLQ8tLoM44TxbGdLTqroNLr6xx5NmD0QhqHh9+F0V7oBsmvECcWoeEFZ6uYpuQDCaqUBYD\nVaqKSXhcLQsAAteAOtDuKio6KiuB422rGHHc8Xk96LrsDc/yhE0JgObJ9/dFi4qc1p1awxkuadM5\n8OF3mgzC9UI0vOR7NDCpLtaVHZqCc8aLt4tzFIxQKjOHQS/GUk309XGVsw/ZKdV8spOd7GQnO9nP\naB9FxPv9rSjuVGoB3SKRfmYjLSXlkSYx0ooao41EenmZwA0k0pl5Z9j14uUbeoWYQgIqAUP+KIDD\nFMM0NJFuxdOLogdYJC5XUoK21iss+Xmt7RHH4iGVSQnifBAl1B9FBstienhzPOLtCN5I6hrFADpS\nVTxQrMBXNZgUUigM+Q4ztFAzfVSiRANGykYNlWodG9JsGkUNh0o+aVHDYMYAqoKGVH4tvV1NrZAS\n9FHXPfKUYKQecMCUOB14yxwjpdKOmh/3z5LcwJZe4Wgm3rEXTuEaEhmYXQOF61lNLGQRqeaYZfjN\nFy/Qf/87AMA6ixCtJZXnOQEMpuKnnmzRT6/+ArcET32/22J+LvNuKFeoh7VjZK72Bm5u5Lum7hU0\nXZ5xu77F5kZScbO5RJCzi+NR4e1qD5vZgWQtn5k4LgKC8OK8RJLLGj58+RWi3ZbzSqCQf3YQTtjs\nE7y5l2eYBCNY1A/VmBrTbSB/J2AxJWpww6ixgIoxgVZPSDe6vXuN7VKiY8fUkA96r9Mr5KU8T17I\ns/wQqf6pmX0FS5XnHDISeZYcCO9104JOakZd1VAz0rUGgnlVgU5QYt21yAlUMU0DOhn0bU3Wx7Y8\nmKRHNUwbNXkMbd+FzailqqjfvI0QRZJlaJoWIalZu7JDX8k4R/agbHVcAPXmbYRtSj1dhynyiYmC\n+9vVA5ikY9WbFjrXqGNZpqlL+FTRmS8u4DNaut/f4C6WZ1OZrbp/fQOXxP7+2ROYJhVvxjbQURCB\ndJBdFyLKuDdMC1FMXd0kOIiKmPoV5jPmwfH7n4zN9x3sY9nXmq7CJ82jybnW+h5ghFkVHVw+Txun\naEl9mTLjYCk4gEg7NAKMA9A0GUqCjXpm3bqmRUsgnK0CLjMRs5kHl1mxvqE+blGgZvaxV3toPIOb\nsv3gmgGAaanoWXZSNOWgXVzynOz+HkUw6hYqhWp6RTsIFGx5zsW7FUyWNyzXgUtq0rYpYTDWbHj1\ndW2PlucyNKBhRiVPUyhcw5I6v0Vcwh1EMZryQB1s6h2U/t9OkPejuHj/z3/1fwAAnv7y6lBruN/W\nyMj52WU7PK6k3haRs3Z6FuCcvMJv7pdYUZ4ucBoUTKdcMYXV+hWWG/n3qq8PMk/rXYIpuYDLvVzc\n+X6DkNzJabTHai2LeeZ42KdEInLz24GK6EEugz0RhD+2hDzLJQyY5EDtFA0pN7LWdVL/BPCwomB7\nW2AQkC4MDTumNA1Dw3xC9CufsSx7tER67/db2KxROK6LgELuuiovh6W4cJjW7voeCtO4edYgp0h1\n2Qy19BIp62kt1XR+bGZwjWeveHiyzgzlCvuIyNWigsLDRgnOcP2SSi/8vGZ6cKw38ndtBoUXkeUY\neHIl6cCnl7I+i9kIZ2uZ6+lyhV88F9SyYi6w4UHR0kHIN1uAB+qnr56hS4mA3rTwyDn7kqnqdLc7\nOrYkq9GQf1nLZZ7S/RbWWMZQdzn0Up7Hg3rglgZxAJ4/PyQF94YCjchKmAbCmXyfQsHwUehirMvz\nuG2OVy9fAADuogS3RL8q3RMAQLyLsI7lYrWNGlYo3+HtTCxYR+6Gg6I5jjvo8gw2nT2Lc96XLUyq\nO9V9iY5gADP00fBiHS4IpS0AKrbYhoGhvFXrKjTWaFk+hGfb2FMZRzENePx9htHCogRlRmTwFh2W\nj/IO6IYC1SfytNIA7vGmIYL9A6nm1V7H2By4mLkmpYeIuI4ysdFrA292hYIOrE4Ud2OaMImo9RQH\nSUp8RVyDaqBoV/KuPzze4GIqjptqhUgGdEPVHJDcw9yU2/wgw9f0QB5RYephi4AYgutzF9DPj44L\nADStPJTUdFPDSBsceb5RVX3gDLY0GwrVqfq6hc29wPsMumFAoZPkqS7UWP7BtSxodBZMOs11UiDl\nGla9Cp0c5L2Kv+fok/c9K4ejC5rSYtj2RdZA0Y5LcALAevcAbywOzTSYYkM1qjRhgGGb6PgeRts1\nVPI6a0EIcC93vBsqzUReUS3NMqBzLbo+xQByMXg+9HULpSMPelUhSYeySAdtkN/k3J2FLnx2xzws\nH2BCviNw7IMj+g+1U6r5ZCc72clOdrKf0T6KiHdDvVc389AVA9BKPaDjvHCEOGL0q4sn84tXV1A7\n8Tju6hINw/6oSmCwf/KCKaXdLsVmSz3JkYXpgHjVWmwjRrFUvnF6HSbRc2nTQWdqtmkKRDumwQhI\nyfMW725ExLqOjqf1IuqdWs4YpieoRssdwWFP78WZBYNAAnMlntU+qpAkMg950QytkRjNzuHPJQK0\n6Wk2lYKa3t1laCEkMERDjYYeWUVAkNWrBwRg3TXwCDgzzQ5JLq55wD7JLEqg0T0e9Ch/bKr/CoUq\nHmJGxZd4FaPdiMfsAKCWNC7OPIxm8ux3dxLVbO8fYHjyA1dnC2SMch1jgqiWZ79hmDG7mKKiJz71\n5vBdQTh3uo/P57+Sebvj3inewPCJdLRdRCsZx1jVsZhLFDSilmaVDWCWP7Vyt0FPlGXTyjO+fb3C\nzmWEhBRhIHvj/PISHdfrfCrfP53OkVQE5lzP0TJtp/Y6UMjvXOfcM+0Wk0uiiAsFny/k9/3lywD/\n19+9ljEtmbFRgXJYjr6GyWxGsstx3xN42LDn1RsdHZupdjAYj/v01I1QRctU/Tou0PQDqMhEp8ga\nm45sxKwukbEPfTKZQR36UNsGmi8Pp/lUEWp6ZJzHvqthEqFvpDV2O5ZxGHHUNRBR9zUMPdQqAWVo\n4dpMLTI6NozjoLjNvofOyN/mHqj2CrbU0NXsCgpVz3pdPURLg0hVr6owDabD9Ry//eobAMDN6g4m\n9V41Q9bPdC2YE9mH48UcGoE5elPh6lwAWJut7IusvIPG9H7Xe9izzJOXDXyWzPZFDdv7KRfAYKqp\nHDRt430KsPTSEGip5C0WFoGWmg6FwM4q69ARUFoze1b1KryxZKkUy8DyUb7DCAKMCK5Sma5tFB0Y\nybtpT2cYMXNnGRXyjaxXzwiyqbSDEpxmdFCpltSoJbo/E/H2agV1QBE3OSzO5WIqe7hrKrTsNjGb\nFvOFnOG1amDJEok6dHx4iwO/QmfYyKmZDsNBGDBKZQlh83CLthp62Tv4Pvt8iwI1O2gGwJWnKxgT\ncNaNxxhQZmoTYxcfP/8/ZB/FxfuWi/f+XydQ2KpjBSHCGVO6SgebZBAK5IJMV++hmUTJeS5yZaiZ\nNMhr+RmrlRTjszDAku0Eq22DJ6+Y4ioq3N7KYXXJjeUZBjSVclB5goKOgKFZB/muBiRkSHeI93Ig\nFslxmbKqYJO1ZSJl2spuM2hE0hV5CsUiErSTze+oPSqmwxUdmM4oSj724LA9AdWWz9XD5IZL4xQZ\n09ZdU6Nmjcf1iNSre6REkNdli4ppVssZQWXtsuIlrmoqKkrV1fnxQ67wHOx5Md6thhasEZ4/eSnf\ntc8R8GJtexubnYxzzVTo1tijt4go7Fs4dEw0dYaCqNo/fiWOjWcYiHhJZnkDFG8AAL/6/FfwbOYA\n6VREhYr7lVxYjmWh3sh6ue4MLGshSUkqYk6Ojs3zvENavlJ5aBkm+kjm5P67P8J+KW095391hT3l\n3Ib1CUIFn19d8O/O8LuvBceQP67x6Rfy99FUnvd3v/8DmkLSl16vwNVk/85Gl3g+4bqM5AAyz3w0\nW/lc65qHFLam2rijDF4wZftYMdQL/9TUOkZGROvUHwhiaqyIBFUsGwX3uq820B2mKSkEr1sWNFMu\ni1VeYc/STjAJUROZOgiG69DRUTIuTxMUROXHyQ4a62Ie5RyDwEXXDMQxgMNaeFtUGPKXCqUO1Q+0\nuE2CMVLWjCtKKl5eXsBl94E2XmBVDoQoDUbBD2hxALB8Ayr7xPb79wiISp4aPr6jJN95K2sxv56h\nIer8+9UDwDNooQEx643059G3gDmgwnUFGlu/QqVEQyzFvlYQus7RcckztvA8+VyRtOh6+R0Opfkc\ns4PD/ZBvU9R0BnfrBE0u72exEgKYia4jTMVp2LcRolTGP/98hDmRyrO5rHHvqGh4CVd6CNWRv4/3\n99gs95xLOYPapkdGAg7NwyFtr+vKgZjkqNk9ikrOBVM14Q7dLRzPwzaCprB2r+tQebE2VQmfRBdV\nxo4PW4VKRqUuBVo6dqpro2KqORsIVRoVLR1hva1g8dzd7lco2SLFjj0UZYaMOWLTUmExqtjtd0jT\n4+/ah+yUaj7ZyU52spOd7Ge0jyLifaCnvXy7xPWFgAt83Ua2I4VglsBh72yRSWSQxxFsog/dF68O\npAzvb5b47MnnAABbZZqiVcGMKPZlhN8338rvvX2AxnSsaYmXp+clHgnt/e7Ne6SVeEaeFyAgwUVO\nINZqu0PJyKwoPxBd6PIM20JBy7R1mexgEZ2tZT32Cns/CWIpyx7jiUQivd6gGhCFfYvd26/keQz5\nu9F4hB+wFTGGXktFt9EdhNCJTjYBZRDKtlwU9GJbxYDJCEYhmUetW0hUeca4Oi4xefHFcxTfEHBz\nL9Fzr9noQono6vwOGSOTLgXmRF/PSMSgdQpqTcacKgouz2SuFu4YOnu4ywuJAM6vx7jbSviwvdvD\nGSKqErC59kVJyr59hNW99EH2lgqPfcWeOUddDiA68XK15vjYNFWDR++3b+T3mlWKkSvPNX/2CWym\n5LrMRDgV8FNA8JWqF+iYlehKDXOCd26KLbb39MwJUvniixeISM+nxlsU7HvdZxGeXMme2xKh7ExD\nNLqs/X2ZIY9lPK6tIuV7ZLbyGecDgI8i2YBZWOiMSKKsR839klQlUnr7etEPuBk0JHWpFP1ARNK0\nJXqm7UqtQ88UdU+QX1p1yLknDd/GyCF6OH1AnfAdIEhI7TP4HhHUaouQYudNmsBians6lb21S44T\nFjy7eoZ+xJR5xnVzAWL8UBhA0xMApnZoiVwdortW69GyLzaqFKyZ0dGdDLMZs3Ec+/nlFOFYOAN+\n990bfP3d1wCAN3V1IHiYOvIej9QpehKaGGoMi6Qjzz59ind/ZLmqb/DmLjo6LgBI0xQ6AWkKDKCX\nRSTmDXZgoCwYyRk6HM51krXYDyA9lk3Qddi+ldJZqbSwLwWsOFpcY3rOkg/pKduuQlkPpS0LNiPi\nHSw0fAZwb2RFjmTIloQj6EQUN8UPhEfHTOtbGARMjf0RKgLY0qGDpMyHXwHXcWGyD79ogMlIIncv\nlGzAbr9HzvMhjip4LIM1RYH7TNa2IM2mq/e4ZDbE0Q3UkbyHKAqgJVkG/4SqoO18rkUGZ8KOCCPC\naHwcgPohO0W8JzvZyU52spP9jPZRRLx3S6Fd63sfCWnixnMPZ5fi3fZVjds30k6Usa9Fx3n/AAAg\nAElEQVR2Ng5hlSx0Rz2qmPn4zsL7N9L/+4LE57uyQ/y9fK9updimZBwqSpTsxfx6Jx7U5egSPT2k\ntrfRkDS7Cs6QsG7QEp6+zDUQ3Q+rNQEMbCs/WM1+AkNToBFc4No+DHqFWpmgAkm6Z/K8Z/MAKmtH\n62QDDKAEQ0VChiPdk78rCutApG/YJmoyUJWdgpy1VJsRhWPa6IYAz9QQkCZvt9nCJD3klH2ty6hC\nNdRkgqFV5k+t1QosCAqqE9lKUQZ4U/EKfXeMza1EnmNnCjXns5fyZ9guEV7K825cHcVSIobL30yQ\nsp/T0sTjfeG7eDGS782nJupY5rotEhRLiSz3j7KWWh/j/BOhXTRtHxOC5TI0uF0KWMZkrXHiHh/b\n2y//CP/VZwCAhJH23d0KzoWAZi4vrmCRuSYqCyjsn7lglKmZJjpG85uH9zC4V41eQ8a9umAv8Yur\ncyiQyOn7r34Pfy77YDQZYflO5i97ECyCd/ESY+ID1nmOjLgB3dLgsMZdENAT5x+oO3UqFNYjFRaw\nFMtEkQ898hVMRvtZmRz6IJ1AMhL7bYmO/ZnoFRTEBRRQ8APmidFz22KbyP72TWC0GGrqJSzWJgdq\nS6Vu0LL3vKgz+GwdCl0VAalXQ0/m9OHx/ujQ5i9eoDcpvnAnUVOUJbCYQXJDCxpb8UamDYW19fGM\nQM3NHdaN7L2q11GxB7zOltAYcqmujCGKFHgWAX9+jLHH+esUnF0QxEdifzOt4TMDFy8jFIyq69CD\n5cu7nO4zQD9euwaEPrEgBWO0LeGw9c8OJEtozl3kQ3+/1sNhBGmnKfxU1vCGQhd5WiAklWrV7PEZ\ncSLX4QK2wR75fgBcmbAmMuaHNMXXt1InTosU20dmugymFEwbCrEaiheiH6gZ6wyq9tPzcTC1rA4M\naOl2j4ItmwUzL5ahHo7XrutQUBjFUkPYbOFzKOTQND067jkDNsaQZ0iKCjrZ7/JI1t3xTPhsgQtt\nFwU5BhqjQksgoE4A3nQ6gc13DJUGc9hHfnBgkPuH2kdx8dYEO1w9vYDLg6DrS3RMezqeh8/+UujY\n+lrUVhbhGHYnK/GwXcNiw//FxQzZUiZ1UN+Zz64wGhBoWgS1kkXVqwpTTw65OJaFqjMN188EHNQ5\nHm6YmrAmY4DEBBjL5fTc/3ewJ6q5T3bAm69+MrY1AQ5WYMJk/6A3nmA8UOCtb9H1VBwi0KXrO9S8\n9ALXhcFL2B6HuDZeAAB8k4AA00BC6sesbtEz7xztIuhEM1eKHHANNGTsJaz1Di03S9f2qJiKihSC\ns/QAHg9a9wPUg1VbodflMJrN5WW7di5xNmH/dGEiz2RdHuIKo5ls6nNXniHar+G25Iaua2gd00fZ\nPSZzueCGpvugNhBM5IB5VEqUPV/MWsW7Bx54REKXrYPvtvJdhrbFLy55YYce6guZv4RgsFY9jtj+\nm99+jYJ8wNljwueyD/3KpeVBIeiqMVU8eyrPq5GyU3EV+ETP7+PXWBD9GhYFtEbm+D/4J/++fFde\n4YHKLE8++xwWX/QnT58gZrllfCa/d7mMcP9GQD7B7ByaQtWZ2kJPWsSETsvjw09pBwFg7DkwmAqt\nO5l/XTdQ80J3whF6jq3VGmTsHliu2VvZ2AiIpl7vYmxJ2lDua1hEH9v6sK4K9uyvfuKHyPmeRuUO\nBUs6A92oWnaYObKPfFtFS2CNaSjoOGfJjvSI+XGKvlq1DyCeV5//Wv7OnKC3ZC/3boiWB3WbxVjG\nRLResMf8fIb7lVzqo2mA6VP52ftv32NNIObAc63rc2StnAnbIoI/IqrWDPHpL76Q8RNNna6BhBzH\nb9crBAPKfb3CeiNAwHyTYuQfdwQBYL1JDu90lsVQ+N8BiV46y8PsieyHfpsiX8mzzc489CyFvVYH\nUGeOLYGCtuJjeyMg0e33N3j1K4+fk2dRxi5WRJM3KKBoA41jioaIYG4B9KoBzZa1z5sWoKPQ1eWB\nHOmY6ZYFl9SvrupAIzHM/kbeU0vXMb+Wd6jJGqCWRQgsF9mS4+hIjNKZ8Pi8vjtG6LFsV6/wdCS/\nI6CH6Jv/hr037ZHkyrLEju27+Rp7ZGQyk0uxWFXdmG4MpPmm3y1AkCBII426p3umpmslmUusHr6b\n277qwz3mhNgehS4IIDiAvy9MxuJhz+zZe/eee+45HWySBuukxJRs/DbPUZCcOBzIe3x6dYGaAjBd\n7iBwST6rK3TOX6fVfISaj+M4juM4juM4fsLxs8h4zy8EZpucTqEw+t2mOZy+tcVsMGTP2TAQ+LmJ\nS5hUwXk3PMeqoYSdBqjMvtSKcUXb4oLR74fHe9S5ZAITp8XZWHpLPU0irHmZAlQUOr+4gkL5SDgu\nDGasKqGJs1bBjJJ7D3/+9uDcVoVEU1bX4HQi17OLlojoutHWFXT2y9aUJuwcEwFJJtVui1bpKfkZ\npkPJXjXCmLsiw2Qgka/flWhrCnvrO/jMWAuq/hhhgLDvQ1MUeOy5VDogZvQb7dgyVafI2Mc23xyG\nvwajz5DEkl35ZNvkpY6Y80maAsse0tQM/Imyije+fK7R2TAoin8zUTG4kPacx7sFOlWeyw39fk3X\nwhPdWNzwBAZJHetVjoe5XEPOBtePz0t8YtvZq5spupAReBVjQKH7is4renO4j/fDwxOIQsImYvvm\n6hSvLyXqfvv2BPePso7artubWkzZJ5ztllAoJ2iNxrhd0WknMDFmVL0lsSnJGhjs/z2/utmXCFoj\nwORSSC/U/Uf87RyGLp+1mZUoIxLLtBxmSCKQRiKWebhvsq1KlCQ8zdnvog1tgFlhBXMvJu+HYyiU\nadyxTSR3Q6i2oA87Z4gN+5UXmwiXrqAjWU9m6mo0LqFU3cF3NAFoSwtFKs9rSBehPFtBIwIxDHzY\nLBHoeYyE/sEqmUSWfnjrWi5iaI78vdFU7t2mrFGxZ70ycyjMllZphHkvm8i+WtU30PtVqXUG35L3\nZXA2hsH7MAT7X7MIKxLd0q5CQbJiXmSo+PWSZhH38x3eXQha558MkT1LhqmpASz23rdatHeFOjRs\nw0bNdTY6C+GRIacqNIOwfJxeyPqO1Sd0NOkwagcx35HRmTyfh9UOt+8ls//i/CvMnmRNjR6e8Ku/\n+wYAcHYlPcWJBnw3k3LgMouh8Rq6IsWAzj69e9Yqj2ARti62O+SlPCdfN4D25eNG0VsYzIg1TYFR\nytwmY1lnlm3BcPrfL1As5bnFeYo6p9wlTXEmvo+OJhWmHmA6lDPD0DSsMtmDnJ78F82hkzCpqfqe\n0Kt3Ki6vBcVqaQii6w4UvrNZFsNlplxmOZoX5FlfGj+Lg3dC2TU3HCDVuJjsCiYby9++uUa8lQ1C\nZTPzdr2GSp3kt1evYbCOuUyXyHngPm/J8GsTfJxRtzUY4nwkn2tXK5wPhY1KlBIf/vhPAC3Prr56\nh4szeZhrdCgT2Ym3G16L56DUehbxC5Mj0y7rSuwIf3jZDgpFPgzDgKXKQ/N5iCdNhZpMXSOwYdLF\nJV8/YVnScYQbcZ7ukFPHNrRcWLQ5S+wSBmtdLGfCCrq96Ei6jdC0Ms+6MaGRIW5QHCQqamy4+Rov\nSA+qxgUc9j9HhOxaQ9kf9InRYXAjz3Z7t8T2SWpDOp+3nXco+ub3OIVVsnZ+N0P0Uba/6FIO4FvT\nRcKD9e9/PcVQp2VkNUO8lE35fiETXag2NAZqF998iY4u9M3jE3o1QSugqEh6GPSpkwy7mPW/gVyD\nq9WghgQ+G59gwI2g1XQ8zmRuG5dBR5XA72tLmokta+hKEKI+l41gRUGR3CrgshygGiFM9mJvd0tU\nFETYzOVgyAsVvin3/P77R8yeZEM1jQbjV6zvkyWfcZP58XB0HRnLNAmZxa1toKVZuq7Z8C3Z8LZl\nAtWUNbVhcJt2LhYrmc/zTkGryGKswwDVWILogj3gRZHAIja7qQp8ZB1+6nuweLCqtLjUOgMRXZ6e\n5jlKo7fGbKHxnXap4a29wNg2TQM6YcTVTMoRhaogp5xgHKug1DJaFZhcy/VWltyH+WaBB/JMzixA\noxhMne6gU0KwIVP/Oc0w28p7bHoeNuwjtQIfDsst/bsZ5VvMKHgRtRkasnIrrYbDnl7fd2D9hRrv\ndjODzYNI102UfM/QQ7+WubdjRK7ADlne0A3MPkiQuKNOfduZKCmYUmkO8q7XLjZRsosh54Eedzks\n9g/Hz3fIKI+7mz2gUuQ5qwyELE3bJweWa0DpxX9sB3rzMqu5aiu07Nuuuhot2du9RKupa3sXIcU0\nUXKf2q4i2B1tPzPuk2UCjRKhg+kJXIV94voAitsHDXL/t8USvYT0wLcRszOgbhtMr+Re51xru3gH\nte8tb3JEqbzrZZMAf6F+fWgcoebjOI7jOI7jOI6fcPwsMt6za8k6FceHTieT6G4JAxK1XJyHWJoS\nOu1WEkGeuENMCTtfjs/xsBVyECoLjiaRysWI8HNt4Gkhkdn5+A2+/kIgFLVewEwlY2iojBNOBvie\n8nwL6PjqP7wDABRqg+cNI0SaByTVFjUJLTYzrB+Pmv3BRbXFmoQQy1JxSTjctV3EZPu2hFqsWsEr\nyieeTDysVwIJpcoOdzMh1rRk3J17FjZkabdKgII9u4Zp7RnVOu9jVRUoyNjeRDHSLWHi0Q0GA7mX\nbSn3qdV1eI5EuePzq4NzU0wNBps8dUK/tm5DYf9vVxhocvnbj9UC1zdvAAAejR5s3cE///P/CgAI\nSx0t+5UHirNXkHkgHNadXsNgVvi7//ZH7MhOnHrXOL0kfLYR5vvd0wr+RK55kXRQmUVEqoaKxBqN\nJYShftgjdNh1OCcK8Le/kr5wPd8iXvWmGDFObmQdOeEEPmG/XS1r5+2vfwV7SmMD6xQnr2R9rtod\n5pRyfCJ8mm1y/PIzkb080wx8+0//CABQ0wymwSyU7jmOmoFCZ7i0FCjyiLDL13imZOaK92G1fjw4\nNxUNTKtn6Mv71ikedD7LKGuRFlRc01ygojIaBfgXaQuCN/iw3GF4KvPURhN8yGl0ofbwfoMzl6L6\nZgNLlXXf6Spch8xTEr3MoQ7PljkMlBY6U5G2aUDjGjghPYeZGf94hJ6BhqWZ2dOMn+vgcSfPJVHH\nUC97Y4MaO3pd5/RTjdFiRYepar7CnMpMA7XAu0uBcXtVr11lYv4s19g5HbxTeWfPXp9iFlEGl1n9\nm6+vsCaTeZYvEBrynt1HNSzCtGfTk71L0KGxfL7FGZEaJ5giY996yqz6s+E1TKqIZWmJJdEMuC5U\n7kNdJZ/vaAYCGtIstxsMhzI3y9ORMZNe8h53ox8Oirpr8fgs6E5axeDHou1dp9DCyOR5Xp5cwCfb\nP09iONbLMLrhOQCdfxTd3jPs47yX3NWQkZzmdBYMm5KkSgKPqnsWyxTb1QYW17LvVYhX8izqpkTV\n9kYfskbOTy/QcnGtlkuk7HLJmwzZPXt66SNcKglalqYqtUFrklRYp7C0v+4o/VkcvJMLYumKBtAJ\nx8AAl2yruLt7REEs1zRl07o+/Qw351LDcXQDFiFPYznHhvJdDsUxbh/muLmUjfjNm68wINRsFCZU\nHlQl4d5Xn73Bjm4hSTdHocjvtXYIizXI9E4+X1dbnL4WBjSGp8D/8j//68mRvZylz3vd0sZzAdYK\nVFuFw5YWrbcFzBJcsI0pevqEjoxOAzHGBltRCOeMsIGi8aBrNeQFJeMSAzsurj6oMAYxCtqjzZcb\naJREdAHkfMmKhKw9tYbCTaPSDr8w94sPezejXkLQCYewqYW73K2wIavbvT7BL38h91JfyoGfViWa\nQJ5xVlf4tGJ9er1Ay9r4MqVl3LzBr95RGGUwxXsGUuXiCQvC3DYDjLenFkpCP7ffPyI5k2vTbA1n\n53JYXpqfAwCCzWEZO3NT7q3oSrJ5JxMX55QurYoGDzO5hhNrvG9fencq62HVtLglO9aYvkFCzO1j\nk6ClXZ3BYPLj4yO6HQVMxq9Rm734gg+dLOrZUmpsm3yFNzdy0J0OLmA/yvO8WzzidimH+2YnB+92\nc9jBpzVqgJuV6cizXaxjqGwvaToVS7pyVaig1BRMKMni9DwkvXTjyEJJh69KD1BR+KThBgZ1hJIi\nFCO1g8kSiq7ryPg+RCwITx0bJqFLxyj3giiabsHm4b2jLnREFv6PRxKvsdzKZ8xjipKcudCm1ODV\ngJgdDoOhjQcGP//pd78FAGS6jx0dcW6fb3HC9qXh5QWGXOO3n+QQf/zwDN2UIL81bVyfyP7QpFts\nyKxuGNhtExdLdk4YZrtn+3aFggFZs6rhIN2+LKs4chScBixBuTVUvS+pyb1olQj+CTXr4wJrCrGU\nmwQaW7dCdhak9QaTKQU4EsCkWIkeKghPZI/1JvLcc2OLMqUdoWOg4oG92VZwmHjseEAmaYJwQN32\n5yU0Mq4NU4PhvgywqrYF1egt+1qsKX6S0QHM1n9olUzjBF7JTpDAg7fX5KdGuWkh417wsFrsD9vW\n1JCQ1b0gp+XsbISmlb/xuExQmX1gM0TNls0Y8kx0o0NLK8u8bqGxbmUNfejGYT7Fi/P9q376OI7j\nOI7jOI7jOP5/jZ9FxntyIxkvFB27lFKAvo0sl6inzGqMpgKF1mRxLtY7GDaNyL+7xy+/kr65sePh\nT98Jw3g6lgg0yzss7j8AABr4MIK/BwBUswxGJNG4Rybku5vPcXomEV+sFTDfSibzMVdxQbJXTOGD\nMttCIfMX4eHs4orw6snIhMvIauoqKGKBwdy22ZvFN5Rom88/wCkEzpnf3yKcMivMljCYOe0YEZbl\nGg5JZkXVIMvlb3TdAFkhP9uRAY22Altl4XkBJvzcXZRimcr1tB19LisdCT1P0/Jwj1ppdVh28vcK\nZiIju4VJQYTFboM1/S1PDRczwnbPH6VvMfp4h/FY7uU0KKEyshy+ucbjk0TxFd1qnm7f43oimUHo\nT3DOfs/nuwc8PUoG/e4rQUA+Px9hQbeq/zJPkdAF6Op0igklBwMSZPTqMAHJKFqUDTMuMmkHVoAv\nXkt2t8sSPO0kal6nCT6HwJeDK8lGN5s7/PbjH+VvNSuYrwSRSfQCZ2NmBHSu+livcPcv/yD/Hjzh\nf3oj7NfdwzNckl7cM/m7n24fUEeS/T4/5ah7Mo5pwXEoXEIylH9ygU/zf+0Tbfs6Mpp/r9cyh7jy\nYdKfuUAL02Xfq6ZgqxKOdmm6Mb3AjpKNumUhJQrVGC50ssWN3sCk2ELlum6rHGnvZlPWAEUxerQl\ni1awWXbZGg0UErQGRgOvz94WUmoxmp57/P8dedugYA9oaxEtqRO8Zrmk1YcYX8i698cB0gdZiymR\nnpObAdKNrNPVusQJRWaywsYfPspa//BHWTNabsJwZG2EYwtaLH8vMwMoRNAWhbyn94sG336Sd+ys\nS/aSh8PxEC6h3cX330KrX96SJ56LoSd7UKUDYJ+pQvlY0wPArFFRdYyZSSf3CyxZPsspf9opCTRe\nw+DyEuNrWb/+1QAtTTEaEpiKIkG0ludS7DZoKBxjDEwYNh3OSBatVAsKryGNN2jowvbuy7co6pez\n+cHAg0ECYrRL0fL+lVoP51ZoewspQ+8tf1GUFXL2rRskV52OpntjDs22sOI50mQ15rHcs4xErUat\n9iTUzlTQevJumpcBQHMZmz9b5QXitC8t6ChJ4tMtfS8H/G8dx4z3OI7jOI7jOI7jJxw/i4zXGEoE\n2uUlVLZSbLY/GCO8OZ3ihP6rBgvafmOgyRjN5yvUO6mnFVUJjeSIgqQF3zdRsyUmW3/A3Z8kgl/e\nv8eUCkjDMaMpP4A1kWwqcE/xvJJMePG8wq6SqHHFjMNwFFwyYwvcw+Qqy6dEXrKAx57ArtxCrWi1\ntnqA55PiTvJKWma4/yg2ckPTxIRknPvtAgp75JZz1tDSFG/fSBZXpqXUyQG4no0JI8ia4uRNukMW\ny7/1UoOnSZTbOCZKtjoUJF8kio0d7QC19eHs4hf//m/xnlKGtx/lv3GeQKGv5qfZA97/WTL3X59W\nGM2k9lhCItTOSKHxeXYKAD6vvI3h0zDhkqSN1zchFGb7Hx4+YPcsGZBnqrj6Qu69cULym6XsSVRt\nWUJlr5in6ljcy32NaEjxJf1Nfzw+u7nAZCCIyeev3wAAbL1CFlPtS2kxPZXv146JB7b7fPu//zMA\nYFNvoZ+xHuxkSBtZq8/RAsmztHY8Mgv5/nkFW2F/cfRnmJnM+TPTwzdszzEV1lfVW8StrNlg4sNk\nxrtaLRE4sn5OBn29yQfm/3puSbxFlNPgwZcMPQyu9h7ILVoM2e+cmjZitsmEzGx1c4wFM07H9OB5\nso46b4SMMpUBs606sREQTXKrNTL2tg0NCyVr889rySCTbIEpE3jdMuFoVE7yFCQxe91bWf9BeLim\npuo1QvYLuczg25EJL6DdW7HFggTN23mLKpc1dX0m98F2PbhUJLp6/Q3GpzK3p+dnZDnrla68b7an\nI/RlnqNxiDXVx+ZFjtc3JDOxdzUvEpQ0tCiNEhZrsZaRwaQdqNUliLaH+8oBQDEMaOQFzLczbKn8\nVXNfuX1+xq5XtFNahB5vpmfgQyRrLm/lGhxTRUT4S7UbdJSthKlDYRa7jWR9booIGbUN5ts11vQ2\nH55M0ary7BpKO4ZBCMOngldTw+H7Gy2fkJYv53lNW2O5kj0kK4EtPdpb8lBgaFDYe+6FPnp/vqYr\nsCOfwGD9dnP/AZsdVdiCIabMYvMkxQOtUFUSJwO3wckp29o8E7OIzyisYTFrNqnbUBYFmrpvaTJQ\n93aDhgXdOqyA99L4WRy8y0RuRhPvEBMWfFg+44bCGp51svfNfPdWFv3I1PD//MN/ku8HJbJEFn2u\nOujYt/XpQYgTXbXDDR035h/nWL2XTfc8BG4CNtPXcg2booCdseH/8QlPdPvIywwNGcFtzxZ2POhU\nNjDtw4uqIpmkrhrUZM+pqgqbRXxfB3QuXpNksM520Krywr+5nKJmo3antBheCDloUJAtvbL3ko6K\n20FTBeL7tEgRkxBhW+zRNQf4+p0cFrcfnhFTNGC2ilASlk7ITt4ZBjZ8UdLZYRhd01O0mmy0m1pe\nxvWqwJisZXSA58nG5E5t2FNZbm/eyPfTuyW2d7IhWG9eY/eBL/zizxjyPLzs+/icIUZkXjvDIR4+\nyiE+XzxAdeV5/NOHPwAAWnOEKSHfs5G671lNoxn8U5nnI2XmzNXhDfz07RhnNPxu6Hv6vNghJdvy\n8rNTXJIgd59leKLBeE3/3GUNvOK9Lo0U758kMPz9wyOm9Ch+eOZztyx8+ZXAy18Op/iMVOUzjLF6\nlmt/pDZxpii4IemwWCywpavROGwRkEE6PRON6baMgN//x381t6qqMGOgMHalzFPnBaye+QoN0ZqE\nkzZDZvbManYJKBU8Gp8bdQ2L63Mxf0adEpKkaEaZ1ntiVI4CFg/vMPSRt9y0+QxcZ4gB9bgvR0OU\nLDNEyQJKSjYuYXQnONw3OXAMJOwpdU7ksyqtxpYSoYra4m4jB8rd0yOGQ4Hw//5v/kcAwHK3xPv3\nsiYDe4ScHQyOe4ahIc9F8eT37cDFOUsXi2SNGQ+O52iNwGEnAHUHsrTBlMz3M8fE9ZW8s1aRII3k\ncCp1A2X3sqxi3VYIel0ArYPO/mcuETwscsRkq18PXSh0TivtGsZAnt3wXO7/8mOJJQ9e3+3Q+Qz6\nqwgV+/s19MI9QMYDtNCBKcsmaCLsqHGfrliyO7MwZKDldBaqJUmbaQZDD16cW5atcfcgZYROM5Gz\nvHVCUmyjamjIctctFRX3ymi7RaNQ5IiEts06wftPsrZ0x8KbcyY/rYIF5XWzJdd/AGQq9yg1wJzw\n+uphiUEhv+cVhPeTEjrPAKXVUfNZ7bIKV8OX53ZoHKHm4ziO4ziO4ziOn3D8LDLe+YMYDUSLGT5n\nu8eVnuC6FHjus26CX31JB45eOaQsEJxI9BEOL9EVEk2WUQVdk6hFZT+p6esYMHOyNRM+TQd+MTXw\nm68kevuQS6T+n5+X0JghmRpwTYF90zax3EnG+lzJ71i+B5sknuHoMNQwpztPcneLjCQI/WwIkDRT\ntwrAtoCCRK2n2Qw+XTCSbQSVRXzbcRBSRL3sRdYxwopQS9WaqNjykHYFlIDQ2JDOLNMTWI5Ed96J\nhjXJCJVh7ZWr2t63eFNCNeVZ6M7pwbk93X2Pp2eB3U/ZgtCVNV6Fcg2D1+e4uiQ85LvQ6Gf66jds\nK3r9Ob7/BzGWUHUducaWD3sCjfP8+uvfAAAUVcE6EhgtVYBf/J1kiMXvFvjtoyAb/lSyN10PUDIL\n8yZDFCTsKVqBQdjD+vLcLscviNKPWlQW2z98WXNu7aGkEHtbh7i7lfWpnk8xoAlC4svf8mEhiiRj\n040KFUsLlxeXuLiWZ9CwHaGFApfyp+7oFBWh/ac4wSNb1wxG+LmlYbllP3jTYkGY1h85+5YQm5lZ\naB0uf/iui9GALisFSx75FjW9Wp+SHGv6UBfeBBYVtiy2keRNjorZVKdo2D5RKUu3oWj955FQlXdY\n7uQ+5fECI0L7Xd5gzBYMn73ERl4g45rclCuYLVtyCgVNIl93WD6pysOQbFd2YHcJ1jv2XG9rGCTK\nqEaMjP29TVRik8vaiV7Ls1IVA7/88lcy90pHRJccOypx2sm6bplRj1wfOa+3awJ8/kYQju7b32Hx\nnczZP5X3wqgbNEav1GWjYyvVeOiituRz1+kW0/O/kDmZLlr2suv+AC5RsynNYIpugC6hZ3LTQnHl\nRlTGDh1JbyoIpaYtPEqXDk5G8E/l+6OrEcCWmQmz68DUcMsS4MXVORS2Y20WOZRS1nKpybMq4xbR\nTq5Bszq4vAbFMFC+oIAHAJajo/cN19QOAaUoLZMKU3m2N71Jmi0sSpPurAqZzjZMtivt/A71tHfH\nKvBfd7JHDd0Aa3rrxvR1/5gX+MT2xzdTFZNrmbOpKnujqITIS5tlMLlH6cYAOe3LNucAACAASURB\nVNdkhwKa+te1E/0sDt6bCzlU74sI3H/wt59d4kxnPaeuUDwK+9C+YJ/a4hl2K7XC8eAMj+ypvF9+\ngjmSh/16TJjIsWC5sjBOrsc444vuZk9obVmIF+zz+/uJgdmaDh4nwR6S1PUWU27aOsUFVsUWJjdl\nxz3s4NOyvlpbGjJy8ZK23osG5MYQIzavJ7G85Ag7eKwdN2qBmJsrdAdlRuiqZz8aLiZTuScPd0uw\nLIvAm8Lhymn6Q7qskBFeassGQ/akeuMRyoZuNR8lADkfDjAv6FxjH94M5vcrrBdyzd70Bym2EYU3\n1LyCrsgh4gXeHvq+vZPnZhc2Ekq7bedPyHlY+uEFVnRT+cc//w4AoNQlPJc2er/5NdYlod3pFAoP\nD5cSebZ1gjlrPI1vwmEvoaVnyNlX7LFHTx8dfgVW0RxqIPckZOP/m4vPMAyFOR2YOh5odB9vI2g2\n/zY3w7/9m8/xh5nYHOZqASWTufsjD8lWXvr3f/ovAABNN6GzPHJb32O5lo1g9z6ClsrffktBEP/E\nRUwpyHJXwwvogBStUUZyr59jeVe++c2bg3PTuw6jgazXZcG6eFXicSv1+NzwUJKZPj610VCytEhY\niy0LtGR6Xr5+h5I9k/lsjo7CBRcM9rxzH/fvWdvXFZyFMk/f1uFwExywhtbUOVZ3cigWaHFB3sXI\nM6Hw0D+xej7IYYbsOivRUWoy5wFRlzV0umjZZgOVbOCJG2DKGm65ESj/06ZDOGWgYRhQKQs4MX3o\nhIQDUyDI9G6NNUsP7tkUAeQ9CZ0xVjyo1IYBabKERUlYIxzuXY1gaXAIv7dKBagvS0YWVY2HT3KI\nJGYHOOxPZwCjqDk0/v5mtdtbHWZth9lKImoSeJHtMkzIKr/0Pejkl9x+dwuT7GH7ray9P8+ecM97\nZgxN5Pz3rigQZXJf+4DechuU7MHPVQ2DAeev1Fh9uH1xbq7lYjJhUtEAHd+5TmegYbVQKCO5y1Ns\neUhb51OoTH5sdmRE9jMcajVoqJCVTMAGQ0xrPoNIrne1eoD7uZSlBl9cY3rC2nGWwmKv+poyp46j\nwyXHpgJgsTPC1RVE0eFy3EvjCDUfx3Ecx3Ecx3H8hONnkfGekfmrTk5wfiLw5vl4CvRSX52GZ8JD\nLlVyJiML8Vzgpv/r//jfUJIBWeo+SrqljIbMKj0LtUnizvYj3LFE40+bBzSELy8CySjKqkRwRg/Z\njw+IWbBff/wEgzCuTreLKF4jGFN1Z/zZwbnNGWmiMzEc0gg7r6DSwSf0QiypuHJ7L3NU2gImI76i\na1DQ09Mf+aiZ0naMmZJEBRh5xYUHlybditqhpa6fSzawlRbQAsoyuipsZvBRVWPHrEWjD6uuFNjM\nJVOxu8HBuYX+OXxGvA4F9gu3wiOvUTWHSFIaP8xLnA4ka/n4rWSr99//N5xwniMrwOiKxBvNACrJ\nEONIWMjP9084HTBb/3iPOzoDPeY77AbMguhsNf/unzFhFIxYh6oSPYCGXKNx+Zncp7I+HHsmTQ2b\n0JhL1r3pazijJ6hr6HuVrzSN8HAn13tKBbU6vcWAEXq0LfHtbyW7Nc89TE4F4Rn0zk1QET8IYedf\n/niLr8+kJ11pOtiKrJ94Jpn/1BpBp6tUPtsgpAJVML7GnMz+eUNy4Avm3GWZIq0lCyha3ifDhjeS\nf5tOCJ9bgzvwMCPc2rcq+oYGnXCrmjwjpwqQkyQYkx2s7ATC3c5zGJQ3HQxM+AbXGaq9TGPQZ2yW\njpimI8MwxHQsGZmrV1AUuTaVPa9lcVhNrVUbqDQK0Vi6CfUEZt9LXKv73uXl8y2u2dNvkJ18Mwhh\ns4e5Vg28fStOPVewUNNRSEmoaFQ0qEiqUzYRYsoGNp2NyYVIzbbsQz09tbBLqFjWGGg0KiBlKhR6\nkGdphjp9OXNydQ01+1BrpUZI2DOla1eNEi73pqbtYNJ1Jzw/wclrqu5R7tKfTmByD7LRoKY5QBOG\n0MeyxtdEL2IAOhE6TVWRJ3Qi2kRYkoV9wv5iNMn+vakVFQp7fpW6ha68TBxDpaBMiPRUNVzuJ3HP\nZld1aDQlcUc+GrqsOZaPdijvg0HVNH0S4JXa8toL6HQX8o0WCo1LKppuLB7vcXYq9+zm9Snail7u\nWxM2OyMcX65FzUqofVa9q+Cxbz5wVejOf4esZq+UDcIdORjxJoWWjTElAkPLRk5t3XsKYbx9fY7B\niYhbYFzttWOzuEZFebQl78W2SHDNzzXMDE+8uR8f7vBIGvwbwnR5Z2CnU3pvHmFMc/rx1SlMWgJt\naD6+U4ofWhZwuH6hsn4TujqGniwiLV1AZzuL6YfQqccb8FqyzSMUsiEXqwxDQqi6bSKnLvOW9cNd\n2aGhLGVeezD4IoSBh7zXfd3Kxpl1NYq6169W0MTyGQVU+BfChH397g0A4O4pQ7ihG4txeJlcnYxQ\nkKmd8OUPgyEuL+Ulf5g9I6I9n29pGE3kAPxwx+Z41YDr9azwIQYXcq9v3n6OzZ0cNPmTLP5x6MMc\nyIF1G+v47VJg0RVaWNS9Ric/+2k1hxnKPf3ll3+DKKGMYVyicyRAU6nzXauHN/Czqxs4kM/dsuXE\nUws4K9l8q1JFUhN6rWNo3OS++4OItywWv8fFW5Gl/PThz1hR9/Xc0FGRAe6zLjQeTqCz5h/VOyy+\nE87DqXYGmz9zwhe73W5hkXn+xdd/A4WlkA/3D7C5UYa9gTw32R8Pw9VQUZpQI+Q+GF3A1n4I9ra0\nlFOqBOlcrt0l4/h0PMVyJ8/Vysq9pKna5LAibq48hCxVQ0v509VuA5dymCpMVDyIQIu2wDLgcA0g\n36GhWEFrdajSvuQjL3roHNbYjqIUDTcDnm3YzmcwVdk/BmdjqNQz9jqg3y5dXrZvujBp72cFE4wo\nwXqRG+hYeniiIINh66jPaEzvqLinqI3eKfBZJx1eyJqvAPzjf5XgS9mpaAh9XxsGdL6TxS5Hk/2F\nOmilwWKJSbcMqKxzOzwgQt/DeCLv0yrOcHEma32jR7ijVaTiyhyKgYOYe16k5rikfKQytlFT/xsj\n+dmRfYWOXSOL5Wyv8Tzxgz0Mm7MN0dKBun9fPB06YWtF1TAcnb04N7UFDEK7tmXskxR0LGGZFkCd\n6rRLoAWyVk1DB5hgGdzvwrGC0YW8u3Xww6Go5gkqLrloJf84O38Fn6Uxy+hQV71ksYluJ+vaoVWj\nquzQu/81joaGTG/NDAFagP5bxxFqPo7jOI7jOI7j+AnHzyLjHTIidpQQKqNJZdOgY59UtCvQqnQj\nZ5/Vh++/R21LdPzNN59jTWHzcrlES7H3pGFRvMphE8IZWyUGY4nYnnwFi7XAc29eMatsNCjsIRtp\nGhT2T0IpMRwKEUNnKD3fZWhLgQLvP3w4OLeGMJrhhrDpxhL6GhxFrs0LLUQ7yZwuTgVG74YWakV+\ndno+RhhQSCDdoeL13lwJyUeDupdo2+QKnL6vOHCwIalgQ+gnLQp4bi9E3iGNydq1bXhkURuEjFa5\nhWBM6IzkpB8PU433mcfyvcDk4VkAj+IKxdMzbErm5eUOz1u5xx6j1ctf3ECLJPKcb7cAs6/89hMG\nzESfN2Re6y7MicCYpalg+hVNBbIcEV2N0p6cljkwTijt2LroQoERuy7Fek1C3qnMqaF04r+am2XB\nNSUS3sVkVmohHJJQBoEPn2IlaaaiIKS4ZXlE1WoM6P7UpUucsYez2yZoe0F5yuldaCpCSm+eWj4M\noiT3//IRIdGOt78S+HmZb5GSSds0FWyaimiKBs9lxkD4+XR8mBTnOhZMCqkYId1jUP1gPK8DGxLh\nUFUYsyThUErQyhbwWYIxNQ8uBQoc00ZaCCKjGfzbqoE47t/DCjZRgsDwoFLS0SAk3NYluBXAshXk\nG4GrDc8ESLzTuNYt73DG+zjfwnOE3a51NKOHhjHX9dQP8Isr9oaOW3zzRpAeenHgabXGJzLJYSY4\nB4VAShOXVp9lSTYVGQVUm++IVmA0IGT8NEc5F1RDCZnBqirOR/L7uRYjpdNON75AQGLS1Pf3pa1D\nw1Nt1EQiwiBAUhPG5buiqh7apn+GGj58J/dvOVtgRcGdguiFbpkIL6Ws1w487CD3ylcr3C+kjNPz\nxjPdxDOz+bzOMKBzWFuVaJl13zN7vjifQqOwxPxuBSdm1jwdoypezvO0tsGA7kRq20Hvs0ky82so\n6EjoO5uEiLge2rbCdEq5S8LhSlXg/At5/5WpDZVoJ6Idnh/knVQhn2+4PpRGPletUuQkbam+i6Kk\nBChRJaupYDOzHTk21pHcyzjWgBfQpZfGMeM9juM4juM4juP4CcfPIuO9eis9mWq6Q8cMc7u+xbef\nhFhjKgPYtkQU776RrOd5tcFqLlnW6ELFbilEoGSzQZEywjFI/7c6aPTCbRrguz/I52ZpBJ81P6OR\nn52Mhiie5Pt5FCEE6xnjAVBLdrteyjW62RIVyVNF9nxwbg2voUSDkzc0g8iWKNmrudtFeL6Ta5/0\nAt1Ng4LRXaICjcr+TMWFOxHSRkOiQpJFCJiBZ2WGgjWR8iFGwAjbP5H7O5vNkG3o11l2MClkP5xc\nomBP2px+vE+bFmvWwqDtDs7Nd1XkNDNQGDE7RonlQu6frcbICvm+dxJAcWROY87zwh7iD/+nmAOk\nOw0R68W2paPz2Q7A9gjNcvDte1G2qWHC1iWzH9qn+OqNZAyf3ktPsLLcYGiylrvNkOv09M0zWFTa\nSh9l7Zy8+Q8H52bXFXyqL3W8hqLWsaI5wHJ+D8MmQe5mipotN69sySIs4xltInO/cHRsHrn+tAZf\nvJUI/TPKKp4NFKw/sZWnDMB2T7wKO1g0B5jPezk9Ddtcvjb78AGrD5KZ5lmKd19RvvCaXs5vD7e4\n2aaHQdDXlCXDUurVvt2lMS2MWc9drhNYJEQZFK4PbRss1SItY+jMAB3bxBMRjphykJ7r4YakLc8K\ngIaSsM+30IjElLQFVNUOCdu9xp6z51QoegUKzMEjstC1h5GKVRQhZ/351ZWs79PTz3BGtTAvdFGA\nazZP4Khyna4tf+vh4wxaL0eYt1Bsok3WEHOaOczXRLk2EZJOMvhPqw+YXMo847xGl1KacUny2zDE\nmGS7p2yFnKSsxJtgFfeEnxadcpjICIgPsO3JZ/jWAC39ZxNK5HaNiZp+yMi7Pe9kNy9QkxS0IsI0\n0ky0VB+zfB8afY5L08Sasp4ZzQcu3325b/N0vBA21fjCyRKTLevpS7bLaTZC9vG3SY6UpC07aaA3\nh5EzufgSNteZquhocsmka9a/87ZDRv6Ka57BopTk8y7HhG2jec8ZqDLEEc0g1AIO68W+rqEryS8h\nZ8BodIDtT03VImVromba+/tj8IWs8hoqj8y266BSKa5ocoDkvX/r+FkcvAlh1V3ygNCQm3D2aoq3\nnkB9J+4J1iS1aITDxtdnSO/lBWrqGAZ9PLU8xtlUyD1JLoshfbxDR3boStMwe5ZN0FN1XJ8KlDel\ndqppVXANuZ7JRMdn/KyT6Sn+9K30R2o8nMaeiY56qJ13eFEVCv1+lRI54Y3ri1M0/Bt6uYDP392w\nP841f9CLrVoFpiUbalbGqEjaCMk8fLq7x4wszTzX9pvONBhiu5MXJK0oATe+gW7TY3PxBJdiBop3\ngodHuZeLTu75otQQkyWoaod7C3fLHcqdvJwOCQ53y0cU1JA16g5Pz0JkC/UCHgUIPn0iqWtwhgnh\n+6qIYNIFyMwTFIReE5q55xsdc74sN1c3CAin2sMRBteEjXOZm52c4NwmcWkywceFHFqOZ0MjfG5R\nZEVvDzsv2QMNv/haIMl6JZ//+z9v9r2CCpw9UShJO9gjeUYXr+lmEzm4pTa1FowwJvwZb++gkehu\nk7xyczLBpJND4j/+33+CPZT7PvAmiBaU9ZzJfdCMUxBhRGuqKOlsVSodCooOODTu/rR6Ojg3zQiQ\nxvREJomvcxoUO4XX2MALZbMKzkKUFC5YUGqxiDWkFARx/CkUugGVcYopuweup+zlVnUMCbNvFzO0\nLB8NtRIq9cGbipKeZQaDRD7T95BFJCNWKVTuC3kPgRuHN7q772cYtOy3V8mS//IaayKB6bqG55AF\nDx1VTNcjrtnNfImzs18CALLSxcOtrB3z1MO710LmXCVyH8psjS3ZOgosVOyQqPMNhhc9aVACsSqv\n0WRce62NgIeF0mnIc/l3XfnYZi9rNXtmB4ss4TbaQSF7W2nkc6sqAyga5KJFQ9h0OnCQDWRNbVnm\nsdDCZ8nNURvYOpnyrYqA8rw6YfS2zrGjEJAfhCgZ3Bdluz/sLI3s+MpCwL7/rGpAeWWcnlzBal8+\nbhzPwpbdG3UNBKFcT8d3TCtL+DzojBawes36uETCrhCFTP1ouUDOIBGhCduT74e2gtmjPLuMTPws\nzlHTJ3kQjJGRGBblKTIGjyG1BvRc2Xd9xEWGgqTgq+sxmu5wIPjSOELNx3Ecx3Ecx3EcP+H4WWS8\nd70rRbxCRbUlpVQxuuxbPep93+CMotsrpUNHN5akiLFm5Hl1FeLzX0gW9e2dFL+fixbZllJplYWb\nS8k+rkcjqOwxtFV6T1Y1Ts8kexkb6p7sYVom7L6fi4QCb3wCjUL6qnO4R+32XiDE7sTGhzvJQOxq\nhJYkH+RrWFSgaWyJNFvV3ssNatAR0be1NWpAYTsQyRmrWsdoKDT9oVZjRznBxvKxpOJVSfKK69vw\n6S/amQnmVOVZL3NsK4km1VDms11ssWCf6sA/PLey3mHAjN8nHPvdx2dYtkR/geliWUq2U5c5ojuZ\nh0pJTm0Q4PStPIvWfIRKEo7WRmhIhqs7uU+7bQWbvZx6ukVN4tzl6QjR9oHzeM95FhgTEfjs7StY\nJBndPz6hTAh3X8v3Nf2w1Ft4OkFNWDOhe0yu7TCLJWK+Hl/DJ5T/8fkRFjPAz95IKeDNqy8AkkkS\n00IVys/e/f4PWLBn+pUn7UabxxZ3f5Lnna8aDIYkcLk2tgWhuqE8HytwAV3eATU38MVXkpV/e/sd\nVoQ3p4SMfe9wq5RlObB6GVJOP6kjFIzw07KE0cln2Za3VwbT2e6mqzacUq4xRIEdHV18x8arzyQr\nzAnfreMEu7mUCLLNDCFV2gxPhcn2LzBrr3Vz78+cxyniQu51q1UYDuTrNltZHOMwUrFdL9FxbirL\nCuPQRH8nDMWAP+E7UJmoCSsv6Vv8aRbBDuQdWq5yfHqUa/OsCd7pQmj02Oc/VQLYHTUItBGqRO7P\nuTqA1ZtlEDrPlBwrvk+tpmB0IZ+VVj6SBdumVAWgB/ShYUBFQ0WxOIqBts94mW11BZax3GvfUrDj\n8yoUYL2Ue9mXFgxdwYAoQpVtYbdn/HeGjj7TJsts7dMzukeaXyQNyC9EnmZoiGCUZKcZKrBasIXQ\nVjGZyHvWNiXmz5sX5xZnOrKmd2xyAMLSHduUHMNAwvWdRxk0qvEFjoaO0HiTsuwXJ0jXJIPFgMl3\n/LmIkXHPq/kstKzYk2lz1UJBlDBOir17VkBNgLZUUFey92sq4PBz1Qb/fUpGmoR+yjTCw+MH+dro\nBqsNNxgPeGK97A+3soDM6RAjuk6ssxIdrfXSdIPvPki/3I4blH/i7R+k3fr73tG81dEQuvo0Fzmz\nUjNR0KknUhSodGTxxx16rYUNWbvLeYuQsms2Dh9OSx4m4UBHxg3s4+0zTNbCQs9GzdpPSpjJVt29\nuEWbpPsaTt0pUPh3loSGHzY7MW0GsFvtkBJCgQUormxyrSUbRW242Gx6URIdMSX7ULZwT6R2XtNg\n3ossaBEPyIMzA87PA3Sm3L/ZkzyXV5MBLgnfp8kSO/bWtaqGgsHPgA4qprtFxiW4K+ZIGYxklYUh\nbcr8AXtELQ0a4aw4W+KK0FnZPEFT5N9U/4NvGMgozvB+e4+C80zyR5HlA6B1EmB4xuGNbuD4mLNH\nUS9lE/36l2/xtCHzWlew6y3uPBenI7nHBsUF1DrBFUUZFq2JTKGmcmdhTMhdW9OMPkrw+IkHbDfE\nlA5TTtLC5TMoTLnO2/knbAmNuWmK00Am7douAtbO+5daUw+/3vE2gkqBgYz2a9u6heXL3/XNDpR9\nRpun2LJHu+8B97xLsOUSWpVA7VnJSrcXYrDUXm5TxeNS1urA0uGQK2ugRdvI2tF7K0vDhsnnFkdz\nGBRR0VoVbclDphfuUA/3TQ5HNnSdhug8rPWiQ8tVrNkOGqK5nmUAPMj6joUvvgz3uu6N0sAkbHo9\ntqFbMs/hGfWiDRs31BTXDRsxDx9VTxGVcu0f/vO/yP0INZywUK3aPvp6QZZnaHrJU6vDwH95S7Yt\nDQZZvro+gO7K3y56DkLX4fFJShLzxQw6OyqyFqhY87QIKQ8nAS6upJfdc20MaWtqZB0mZIBb/HxP\n0ZF6cjDHZYuQ90c5fwOtkt/bmrInGmoHlfVZ33X2wcjDZoZsedheFACK3IJnCxPZgIr+dHcINTd6\nh20vDLPJ9tKs3jhE28j96xndruKj2rJuayqoeEi3WQeFUHJNVv8gGKFgZ8pulfc0How1D02/xmLZ\ntyzLg8f7pGjYd550BaB2f93Be4Saj+M4juM4juM4fsLxs8h4Z0uJkuNljh17ptLoFhkhgNOTCb6j\nOPjzWiLJX399CpcC914JrLcSqjRtiseFRPGdLV9zNBsdmb+moSKcSPScpAWm7wQamzFqXz7PEDLS\nWyfpnrgQKiMkZMRFFEBPUCKbfwDwg6Taj0cU09BZGaMg0yBucpyNJYLsPAfPW7pfUC4vb2v4dCwy\nw7A37QDQYMnPy2s6clgq8kTmGa1iaOy5bW0bBbPjUcBeuC5HtJKs0rJtMZQGoLoDxITco0qi0rLM\n4bBfb71YHJzb9HSMhxX9YMkcvDh5B5CM8zFZwKFgvWPbaCh4fnMlke2n2RIFjdPPrs4APs8y2oGB\nKWJGvk2T4eRC5rbclTi5kc/49uPvYRHu/+LLL3n/dri/l2terGdw2VP69u1rJHS8en0pvzMZHoZj\n9VxHQUbO9TVZ984Yt/QPLrUaVwGVeDoLA2YSS/YJPudPCAa9vKSCry8pxP53/wN0ssVzqhCluYpm\nR4JMEuNWl88YjgOYDnvHyWDdrpeYLyUCv/Yn2BJeUzsVAyq2nVxSsJ6yej8eZd5Bb8kgJXRmdhp0\nroHhwMNwxMhe0TEaCQpyP5N3L3ANJMzS5rMFfBo1hF6IrmAWQGRByWN4RAbatIDJDNN3FNhk0lZE\ndLJ0B7NX39IqdISgq6JBTIiwJ9voxuHnNhl6mF6f7+8fIC5CNTNMw5rA4l6gNUC5kQzbJ+v5TThF\nb0ujBho8kubOPAeW0mdyfK/sEXrJvKwz0FCGcLaeo9Foksue68HEQjikTGlnIiCxsbI6/P6jKJX5\ntoLwLxiqj3wfLeQ6y7rZM8Rd9n2j6jBgRpZvNyhi+X4HIKThTEjjiYFpYjWTua/1HFUuXzfdADrJ\nU2r/X8OCQ5Rw+TRHmss7ZFoWhiNZ1xYIzz98Qss1VcQArZhR5hncv0BqjtcpbFfmXlQNMrpbndEd\nbhAEoMkYDLWBH9D1yXbQsQ83y5lH1jXiBVFCtYVDSnaZAPGqz7ppINGoexneNNrC1+TvNXWGlsin\nTlKYYeoAvdibuoNGhbO4KJF3LyuOHRo/i4P3I+GRJi4wopRfvF7hac5mZ9vGhAIXCu33/ImHEnJg\nP8wf9/UM2zXgsyE9JwTx9vNvcH8vB1a6TdHQnm9w4u3dfJbUd1YHHkYX8rcMnGG1lEWUGy2eqFnb\nG9MnBfbyf3l3uIFa6eR3qmqNlvqjhu8hY30gb1vs2EbTUI9Mqzt0bBfyTBNF0UN5QN5rvPIa1K5F\nTlGRxjURtb0FXoeSXw/IuFPaFnrPmJ2e7K0JkwJ7ODatC15vAY0Wb3m2PTi3ui6RMyhQLcrT5SXA\ndpeiVGBRT3Y6GEPV5L42FP2N1nNMp7JpuK4F15eXP6obJC3bWR7veU9qVJQm/Hd/9xYta6qD3ELN\nr+eEJsPpEDXht3aZoGTdu9btvQCLRqnPKD4sWGDqY1QWtZg5nzRucNK7RtUdljyIrBa4JYxuEYaL\nNw3uP0qw6AUh7JFc7zbKofCmFWxTeF5uULD85bpTPG8JQSs1bF3u69MfhSE9320wonvO4OwSPm3y\nlvefsNmxfsdWlZuzi4NzKxp7L7Yx5uZabTbQSgZ7lYOAkGYHfW9Abjf9gdUhpE5t5XXQGFBqdYWa\nQWRNV64q3yEksz8p4t5xDlUN2GRfg8xypW3RMWjT2g6BLd+vTBW227vNyIiTwxvd2cTG9IIQKeuL\nhucgZfte1+TI6P50MhpDUWUeKT/PD1zYGuUTtQoNg6S02iJiy8xkSA1ps8XtUvauTafDoHiNY2hY\nM0E4HzEovL5CSZ3polJRMaizdRue3sOq+otlHUBa6xIeSNtdAXazQS1kHW12NaJe61nxYPZBSlej\noEBOwcBIV220DGqTvMZw3NdSbeQM7CqyrY2Bvoeik7Dcs9s7pUO8oktYIfNxBiPU7D5UVWUvjWuo\nOqbjwzaVABBFMRS6PmmKg5qH6bp/bpYLg3aXmgl0tdypYtui5F6Q0FUu3lQA98+ma2EbtIzNS6Qb\nCpdwH7ArA1M6KHm+gZTM6rxo4ZoSNfjc2+qyApjM2JYFg89tk8XY99f9G8cRaj6O4ziO4ziO4/gJ\nx88i462LnsHaoWHPqGGZqBi1PC7muKCJutpKxLbebqAQHiq8APawl8fLoOoSobuGZM+po8GmcP/V\nVwO0lDerswYaDb1PTthsPzrBJd0q2tbCqzeSIS62W3QWzcEJWw3TBu/nzKRfyJw8CntXiPcs7Fxr\n944ZaDJkXe8iI9GWa1tQ6cRheAZ0MmKLVkVOd5KKLEVbUWEPJDJLlRYZJeVOJwNUJGvlhCOjvEJB\n8frl4zMs+hLXFVCbhJ35tSB0kPJ61MP6Gfj47e+xY+9ia1K2MokxMHohhXdBCwAAIABJREFUgRYF\nobZlu0HDfuWM8mpx3uKMou13z3dAwl7sokRDcwqP6MNvfvFrDLlaT0YeVH7GcOhAIbmqz7xOwhF8\nsiSK1QqRKddouQZMSg4mW7nnD9v1wblVpo3hlayZzULWyyxa4e2X4lazmSd4nEl2d2YPEdP822Ff\nbJSZIIiCj6s11r9lP2hQ4fO3ZLRSBOI5SnB1Jb2jr968RtPIfbh92uL+WeahQJ7PL375JQyaYqit\nhgl9R8fDIRr6z/qDXlDlcFZYK9ZefN7iswrcChsScCK0cBjte8EI2Yprjhk1OgNFx+waKpqMzzPO\noPfuQ+w3zbPNPtOptBplLhmSWumwid7YvWKIaqJhOSfbpdAJj5qdDp1iGxpzhaY6TGbM4zV2a/l7\nZxeCDJgGYNIkYGQpaAx518u8gEpWrgWZb7apYKmyTrVCQ0lf522zg8k+0iURkI3eYNObs1gGbN5L\nxaiR0uygYjZf1TUMrv+qaaFavQynjjH9tNGm6PSXpQfzJINOBy69U1CTgduQHFSVLVpm6FWVoaFu\ngNJW8HmPLcK1vqLD59oxHB9OKNnmbrWBz/WV5itOroKik+FcAxqRsnS7hdFrBLAelgN7Gcm4rPao\n0SBUMKbf7qExmUxg8/4UWQuT54DCkshuG6OjSE2lVNASZvOug7rtPYgpxAIbPgmcbaOg7dGRUsHp\nSNaEyi4YTWlgEIHTrWBPDuxsHRZLYxkRnyxNMKBEblkoKLL+/raw/soc9pjxHsdxHMdxHMdx/ITj\nZ5Hxjs8kCkFbw2wlvVLMGhnrFW1ZYEdpsl7WbhPdAVRZysoFMiqojCcuUvZaBpSqy7IYS9Z1HE1B\nX5hczbZ7IXWFnrWRau6FyJO4hEMShGYaCKh25CiUEBua2PEaGu1wX2EQyvfDyQQ1s81SAUxaVVXJ\nTqytAAQ9GaZr0DJ7K9oSGxLH8mLvoAatD+KqDCxhoqhK6Kz5ZbsVMmbhek91rzXkJKzZtoey9w+F\nshcSz5K+l7NDOJYItVVUfDowt4tTE7kqn2dSbF/XBlBorXV+/gaLxw9yL9MFZmWfHdN/1awwWwo5\nyzJLKDXbR9R6Xw/zmL2FQQWkbE34/hF2K1/fFVtcvZYMckA1m7GRY55IhumrJVSbCEca4YJzCin4\nP/QOx56m4cBkBtN35ehqjoRZbAoVZd8E6xlIaDjBEjm+vV9Ao6C6HYxgnjJTsXIYoaz3fCdzH12d\n74lQ4dCDxhrj+++foZOMFAwkIzH0ANGzRNqjs9Fe4WyzK6D3dpgbGhVkh71dk7KBQ4SiY1TfKQYs\nEmgsz8GSrXzrdQGNRBSbaIihG6hYazR0DQnbR5TOgNL2ymr0ha6qfc+50mowWOS1dAsUAYJLZSul\nAbqaxKYugsY6ntrqqKli1bGPqSwPK1d5FlDRh1gn38FRB3CprFYXKhre37QucX0ufdABSUuWPURO\nX9jV8zPUWn42rjSsiTadnvm8hhI52w2nwyEKyjEm1RJjevqGzJJVzYHGerJlAqotv/e8mqEjSuC7\nLtTiZc/aMkvRaCQu7WphhwHIaBCTVS1MkvziuIDCvVTvfjDTUEigK8sCLvkKvqsj5DupoQESeQ/H\nJ0LsU/Riz8twdRslr9eDhjTjcyE/RSlLRJHsv+HAg9bKWvV0Aw2V+Q4NVVdQNz/IOfYEOJ/vRdXU\nKNmDXOcJOqqABYYNELX0yddRVBUmOQZN3UAlEdUumn3WPOS7kmYbKCSUVpUOm+1qg8BHx/7ojFn3\n+GQEpepbLBVoFtUOuw7VCxKmL42fxcFbadwYqwIj9q9OxhNET0KuaostUjaWK+xxDAMXikvShlvC\nVn5oqB5S53fEhTM9f40//k50fJ+fH2D25t+WCZ0EjrrsvSkr1GQqqo6FlAQtFOmeZFRUZB93DirC\nLs7oMIO05eaRJxWWK9kQaseExcPW6ICSD7PkZqipGkqCEbtlih0DEF239rCcNyRs0zhwCEvbXY2M\nh1teZPBIIzTZx9sUFRzC94YfICebtKwb8H1EQaJCVpYwuQib6rCM3c31GLrXr3YyEpMWLaMD11Wh\ndbIBbVsNCnuXNW4CW6+ES8itTFd7uLrpWoQu3UcIn0bLB9h0T+3aFOuUjkFpgpB91dwP0GgxbI8H\nd17B4aaQJBE6HhKnF/K8BtPD/aBN1MIcyGecs2d4OrhGS6lKvWr2kG7QJJj37HVV7nVXqSh5XWZj\nwmVZJAx8zGeyrmck67y6vITPvlo1LaBxMx80HgxGWNOhEKWC4Rge5+CZFjSWA7ROhUmpRAV87i8Q\nPvK8RoeescoNWfPhmX0g1sEks7cuS3BJwOAhYlrGnpntGhp0CnXYRijGqgAcvZf8C6DwfXIcCynJ\nPZ4zBLkp6JeXqtqwfcLOXQeDJYRsV4FqonthjvyFoMJzRsh5iN7dSmDjhRpcCm+kRYuYxJrw9AQ5\n5VgNEse6whUBBwjLuGSQ3qYRdgwSxz0nDA2iBXvPZ3MUvLY432I8pugCpS3XUYqU3y/TFqMbas7P\nF0g3QiAsAh1d+XKvq+aq6EFK3ej2MrhD7mFGocDog+lUg861qnTGvqfbo+hLAwUOOyCS7RqMQ2Gq\nQMty3o4iPnpl4eKCQWRZQGUJS1dqzGp5p/syhaFZIFkdjlVhEPB/9AJF/bLzUl0niDd0sdJ02JTD\nbCjL2LQdHJt7l6Kho5+xmifoCeQBYfoGLUBCqaZ2cKnr7NseEh7+fVlKR7sPQpOqRMQsxq2LPSlL\nJ/nV0vU9abCsKvAMR6lU0I/kquM4juM4juM4jp/v+FlkvK7FdKvJMWLkYHapwIsAUrVAzZaELfsw\n7XYM6mjjV798hYbqJFkRo+XP+oF8lmdW+OaNwHtPizU2jxL1hNNrBCRl3X+SXrr5agbjhMQTM4BF\nGn5aJNixj28eSVSkWQMw+YBmHs6cdEZbLVTsdpR+rAs0jLoN1KhS+ZAF/VmbvILJzFaFipwF/zLP\n0TE77tMEz7YwGbBBrin2RICybtDSp1Nh5FZXOXRmIq1iIutdOWBAYQuWQeq8oRsoCDlF28NSb0ZX\n4IRtBg2l3Uqr3sNSqtWgI2yvNC0mFGjvF93IHiOgUs/sMcVmS4F8xYVr9VkUH7KioiSZwR86aCiC\nblk+5lRWqiv5b1dtMCXUWdYKtisSdtIYBp2eHinlmcSHY8+xaUEngcukT6gVjNAQSjWyFiVh9s1i\ng5KRdGsSWrNqJHxueuti8ST3cL3UULO8sVqyRpCtEFLmcPupg8bMPqsUrAnlVSv2Se4KnLqC5CRJ\nihlLKJevTqH0kBr7ls+uD7sT5WmFgpKPNmFeQ/ORUGVIMzQEhNFqw0BOlljvFKU2gE3yy8Dz0Tly\nT3TNRUmsvaWfats2qAmnFFkivSAQh6mGLXEdiVMqOmSEifOigkNUSLVMZGwzSpmB9j2zPx63d9v/\nl70355VlS9uEnpjniBz2zj2d6dZc9VXTEjQWJkLCBQkbqQUY4ABGg4SBQGobCXD4AVgICQkHCbfx\nEE13VX1d471n2lOOMc+xoo31RF64N3fr+wyuDlIu55yzz87IWBFret/3GeAtZHbAoHRp06U4EHhT\nDR4yfrRSS6TPUsbVZ0pZq/ewWZpp2gG2Icf3YZ8j3k/C+vI5BYslwLn1vL7HnhSiMHJRUcFsR09m\nxbfQkXebbPNjSjhUNbikybRZge3h5XRsEHnY8Tt0tQVpr3CZJYh6BQrLAkvnAmCkpogeFaPUnrNv\nHIBJ5VY3LRALB1VT0U7vrmRK2TDg8L3WWYolfZR1BbCvZUbLnqJRy4Z+K/vTVBlMgpw6MR4pPqfa\n65s58pKGM+0AlWneqQynaBoMe8romGhJHx1RYkZDj5RE37brIJgB1UYDASN73dSR6ZQGZklNd21E\nnAOiz1BwHmpKB5V0q5oeySnao1Rl3QmAa4Fpj5jPTmc8X2rK+Ld0Vfj/oilTgfXczu3czu3czu3/\np20cx5dPF/+Pdk41n9u5ndu5ndu5/YDtvPGe27md27md27n9gO288Z7buZ3buZ3buf2A7bzxntu5\nndu5ndu5/YDti0A1/0f/njQP13QDBdG6Xd9gGRJpKFroE+qQfNH15uGI4JutLgHy0PpRQTiXcoMD\nUWlN1yPeSXRh3bVwafbu2jrmrkQj+ySQ51mGwZS8ODdc4n4rUYS7bIPLubwHj4hEtVcwKvIeklTB\nf/s//O/f69u/+2//Z/K+BOARDWi6I2yipS3PR0e+7P4g0XNPj3vMFxJlHHkmLq4kOjUvU6zJbbYo\n4aarOiJKv6k6kGXSPSf0TAgiTzWL3FMFyClib9kOBOUc8zRDSpSfF1Bg3rbRUfjccwP8w//mP/1e\n3/6L/+q/hO9KSceOnMv4kMHz5d/XuwQVfZTtQMVXb6TLj03eXC26o8SloQkYfD7+LIDJd2dTZH0o\nc4xE626zDqKdzM5NgIIIEbl/TZFi0KZr+ehJbt/vDmgIJgyvpBykZjr4T/6df+N7ffuP/8N/Hd6M\nPsY0wBiGATnHkadrCD35rKL5EjXR5oKI2Gi5xEDOX5KkEPxeQweCSPZjJHd097QGyCu0XRM6Ob+K\nArTTc3CJFK1bbPeUAC0HLOb0li4OUIjryPdyDGw3H/G//K9/+l7f/oP//P9ES8k8055k8Qrs9wf+\nbDwqteTpAaqYpPgoGDKOoNUrTBNHLraujkfgqqLI6/aiOxp+lB1Q0EHGdyOM5CAnHHuHOEVH3ny4\nXCCgn24YzeGSn/qOYil3t6/w9//N7+NY/rX/+r9HndL7OOIcsTyIVKJZr3wTCrnWtVCODAiH89Ee\nBDLyScsyR0V5SAyQyhcAFH3i0gIgj1VRWwyUWry6egOFiPfnWLIwVBWYe3JOa6OJ+7U0VxgN6fIF\nAK5uoaF4x//0D/7+9/r23/3P/whtQ2nGqjm6kml877t9DNFI9LupCYm6BrCPN+goodoTDezaHppG\njoH5bHHk/+ZVCZ3iFTpFQDJVw0BBG62v0U1m8nmJqiR/15PPera6AiahoKaDynHtzOaw6V3+D//9\nf+t7ffvr/+1/xB9+/w0AyW2exFw6zvPDNofD9ezm7h0a6icM7QiDa/fTdsPnUKHmnE+qFMpkKNPq\nqGhu7xISbmk9bolIruoSD2v6lQsdb95K6eBJlGioO9zQha0TNWbX8v9tT4dqvSz1eap9ERtvJeRC\n5Ok2VJU6y2oNjcT7yItgaXJwThqetu1A9JwIjgWVFBaRNdAzkvepkjOOAjbh8Nluj5qbu+MNCAJC\n+UnIjzc5nLlcNLKuAKgk8/bqGibk77QHDnhNR0yLrB7e6c41tPzrAcGFFoaFif6f9c1RpCMp5At+\nznMcKIQxcy1oNChXdAvJpP0ay+t2RY3+o7zaYunCILWj8+bIqUfs+3Kw6Jp63ACGvsGWk1+0DSyH\nz4FKM33Zoa/oIpTuTnatrJsjfcSnHm+vKWhIa1HQgHMYSidgcKIHnIBDeUASy3vPhMAwDfBPn6Bx\n07+lwXzkelB5MaPopOcYAKEC3lJuotPETKsERsjNTTcwUkc2WCwgKEYycHEQpwWQ4M5W6EkdsDxu\nwEKBJnjoMi3Yc3kgspdzVLFc0A5r2sypS+i0tROVBkHFsHrUYGlUDKKJ+ky7Ql/LdzWKGu5MjvWi\nqlCSYjZywc2qARVpDJplAaT4WN4MM19eNyC1Q/7z+xvv4/0foVAgQ2Ef267Bw8NnAIDnKwAX2jpL\nj8Iahin7XhQ5Rh4qIHr4dDoydB0j3VsSCiroan+khOn+DA3nQJ3oMJyJ7ib/tKwO8VaO60FpYFu0\nSrRMbEiHUSl3pb2Qq4vTLRzjW51o+V0bWBSWqzUPdS4XaFW3Ybvyu9tEKp3leQlQB7orCrTcWJRe\nQOUz8zi2HA9oK7lQW76BXqOb1VMLMW0MFKPQIx/rjXy+Yy0gqIak6f5xM1XK+nggP9XyPIbrSJqc\naY1QGG3oPNio8NFyPu2fPyPifHoTetjsZD+KhqIbgQeF89C3FIxcb0y1hjqdnibnMagIqBfvOy5S\nqpoNQYiSjDjdl5uXM3MhSFJpWw0dk6qja6LIXxYHed72+Kd/LQ+MeV9B5QtzA9nfuDfh8zBnCBU7\nbqBt3sHg+Nqncmw87zNUXD/8uXcUDxGDh5IWigXH96WtoCF1rhhNdNZEnTPRU3TFJQ2yjjPsSI1T\nNRXmtHYMOgz8jcDMx3ZONZ/buZ3buZ3buf2A7YuIeHumj4XlYmDKLjQNdJ08pe2KGktfnoBmSxll\nBNfXOGzlqWaf9DCYTu2bGOsHyj+S+N+gQ00t3XYY4FC2LhIuqpQnMuryjkYIdfKuHFqETHdfXkco\nKKGmUSfUc02ABPFDe9pJc9ICbpsBXS2Ph6oYsVzSe9Jx8ZcneQKfTserC+doUo+xwTidwkwT4ZLX\nI9G7QXs0k7d0BTrJ4oqvo6MwQUWptlB3js9XUQCL6bDFKkJOMY1dLqNb0/TRdnSKMk6fz3zbhcFT\ns01/W7OtkGZbfm8Jy6KLiDaip3ZuUVBbNk1RHuTfhTuHQbGCfZzD5anbpqCKNoyoMqYADwcICi0o\ngQWTetp7vteszqEz+n3KHuHTAcmzbQw82U/3YKiTq9X/uwndhkLxE3BsGZqPQKEGr2vDooOP6y/Q\nDnJsNMWkReyiGShEMPoQ9Bd13AAt9Yg3tDkeeg2hLcdDaGuwfPl3VevQtyxJUBf6kMXoB9kHw7LQ\n00nHDy7gsmxiUqBjQHmyb7rIkdF3dCpDDIpy1P4dxw4KIwLD6I6m9mUp+5ju17A0Rqm6dpQLTasK\nczplBa2MNsuiQcq55asyayA7px/T0XXC0EEzMWnBtG2O8vDEl9EeZVoVSoguo9PersvQ+TbdzXSj\nYwkglw/bRAuVQjh2X8CmSERJoYvN+2eMg5zfM8cBFWzhWe6xHJXuZeSqt9ox/Rw5Fp43MmrexzlM\nvk+Tso2B7cBm5qAWFXb0TNa1AY4zCaaMCLyXI94s3qCi2I5q6Bg6RtjMBijNgIift30DLTWIzXrA\ngvfp9ozidAU3t68BAEMr0JdyDXEiHZoi+7llVNkdtkfNanUVHTMc5dhjmMYaTeOr3QiNGo6Oa2Oi\ntbZNh7o8LT0LACUsbHs5Th5jAY3CGUtTzk9rHkBh+aOCibRnxmvoYFAsI51cmgzl6KXr+S5Sysse\nOgEvktmkrpDPf1/u0TF7ltc1VEau11dLpMzq7GK5VgxViTkjcNtyIOhfHfQq5ubLXsOn2jniPbdz\nO7dzO7dz+wHbFxHxXi3piuKa8Hji0IcG6gRYUUYMPIW1vTwreFYAxZQnkX5UUGQyiujEDKUqfzcu\nWTtRNbTj5GbTIojk9wljjvcPdFnx5XVt9xLOTEbVTb7DxWsJ1ILZQevk6fX2R7KmaOomjL2M7uKH\n06a1A6MmQxO4ur4CALihg9WNvK5qu7ACeqqu5SlsPg9hz+XJKk03iFkbVQwNHkXo9UH+bmD16FiX\n9U0NNfsZ7/boGUGP9OUc1OHoednVGVyXXqQGYFD6UWHNy7Z9FCVBJPppAXBbM6GyPp0R2JDF8dE6\nyRACjkfDBN9DVsooqBomGckBryYXG3+OdSVPrIbjoOXpeDokO3qNYi8/bylAq9BVCsA8ksM4oxvT\nLLRgTV6jTQOF0WbbdSjp+TuyXjxYp/tm2T4EI5RRZ01a89BOEni6hU3GSMNr4AXy+TW5vK/79Rr1\nBOpQDdh0KhLDCNBxaJvJe8myBD+5k0CYy2CBjON2d6gRJwRl8XTteFfoMcmCNrBsOZYXyxXmjvyd\n51RGXv1wenq7RgnBaKmjnyosF2HAWpjSYCQoRowdSvpltxXHuCjgEEtwczmDRnzFpq/QMiskiEFQ\nRw0GM0iuYqAioMrwgiMuw5qE/YU41m77tkaWSJebbmxgOPJ91nSiSZKHk32bh97R1UxhXNF3Feas\nI7u9ANUI4Yw9TEpyIqcjjyjwtJHZFHdxiRXdxSJNwZJ9fj9Fq8JGRaMRr7VwQ3Cfs7ChU3q1oCfy\nUJSoafRiRS4ce3JbiiGYMdB1FZr+AlYEgD1kR1Bh149oJ8lX+oN7tguLhim3/lv0rHO2aQabLlTv\nXk0Rm4GO2YdhEMeMjAoTI7E1FfEFom2OY0lRNSxCuXb17R6WI8e9yWxLXFdHidG6TdFOpgK6d5SV\nPdXKTgX8S96vApPA2ZLYCN0csS/kGqMIEyV9tA1FgzCYhboidmIc0NOxqW0OaOhkFV5ewzJZuCYo\nrs53SPfyfR7SBK9fyyxAjQYH4jZUro2qY6ImOG2mqlgwteLrOsQLa+RL7YvYeJuERtuVDZeLqKgy\n+ASnWK6PQCf4h/Z/j+UacU5N5ugGXUp0Zlqiphl5Q6s7bVRQ8qWpto4xkhtg5njYPMsJbHGTv9YN\nhMNkWxeiojZsvN+gZ0qnpTOGaHpUKS37ytOm4wVTY7qjwOPiao4CFQFehgHMCVywaRt2tVyimYyr\nrSU6psnKskNM4/nJNF5vGjR0ihn1BgaRoLaqYuZPaS6mIA0Ni6W8h/sPNdRRTnLbtqEy5ehOyO0g\nwG4rv6PtTzvBqN2IgHqxOa3AfM2AQZR2OnRwOCE1X0WR8ACQy0F/7Tq4vpR9702BmpNh9AGPh7H5\njKlUpUVGazjf9OHfSj3eQgBJKp/Pek9za89HU8kDUS4Amy5NluWgK+WEbUbZt7Q8ja6qhYGRgLmm\nkGPDcgeUE1I+6+Cx72lTYxy5UNAur2hrZLSJczUNHT+nWhZcvqO+kmPLUDQMBPd9/OYjdrl8Tlne\noObCfXkl35tqD9AIGqyzHo3Fw1XfY7+fNL25uLxQ/mjS92gaHuAIHBuGGBpTykI0AA9zplLjwE1p\n4AFQVxoseDg1LB0tN+ZlEKHaEVld0wpQAUamMQ8PjxgmB6SiOqKd57Sng6qi52FFoD1unLbpwrLo\nbCPkfBPd6Q3KNirEg/w+hfdwHdpYMCWPsgV4v4FpwOJYnRNJfjE3sRzJoBhaRExvXisa+oNcdAeW\nR3RlxNWdPBA0cYZ4TU3zxSVgTiCw/vi7S4ojh6GJuUM0utrDoJ+dJRRExum5BgDFw/0xVapoCnRM\n9y6vpSoDBq4FTmgD1CXPDi3SvUylR5bcNINoiYZG96qiwqfw/aAKZNRETwQP/LaD8JLuWNEcYuSB\nRjWh067SDsgOae3jfNRHAcEyVzO0UE4PR/m9HRAFUk9/NrOgEym/vJB9820bA3XQHbXGWNP60vHQ\n0E70cSPXoNXchsMDcjvU8OgFoGs7LIhKFnQy2q4H2Cv5vdftDD3Lc11XQYwTSFGOz6yvJ/IMPE1F\nzxJcNQh41BL/m7Zzqvnczu3czu3czu0HbF9ExGvyHOE5FiJ/SjGMcJnia1oLB57864JQfwxQLEYk\no4Mt+VdFKnDYyJNpRo7oPIoAyJPePkngvJKnxlE1UQqebhnVJXEKg4bqo6ujeZLXUsweIXmd63sZ\nTQ1Zg46OGIY9O9k3g6mfVgBbcgnnugqfoCtLBwSBLHN6+s4cB2vy+foO0Cfj7ryG5srvacnB/eNv\nfwuNaY4f+TaWnoyaDd/E3VvZ5/ml/MzY1ggYrV+Zr47ggLHvcSCQQqO350U0QzcZzz+fpgGIoUJD\n4MJE/SjaBhnBMqPmotflCbOCipwAD42ANXfpQ6PX7eN+i8f7P8vPGTbe/fpXAIA3r2REkW6ekQ8y\n0qjLDnHL9HI7oCEFrRLy1O05QLOT7+gpKXDzWp5o9axATqqT6ZFu1Jz257jfpoiu+U6ZpvNMFy4j\noLYZUBTyOwxVgc78ZcM0smWYyBoZZWiKiqaeONEOVIKY7GaKHEZ0dLwyTQM5sxl11aFm2rllmnPo\nLGDyxTV0GOSUiqHHdi2zOg19n039tGMWxhQqKTddJ8dkDxXWRPsRAg3pQKYqsOA7UsF0epFgYFbp\nabuGSsNekfUo9vSOBt2Nmgq6xkhaGZBzvAxKCY19Gmfy+prtYhnKyF5LDwhCORYdR0WWyWhGYcQc\n709HGGLI4LvyukfvX92Gx4xOmdcI+Fz0uoTBy5iDHJOr+QoWHdDWj3tc3MnU4+1shj/9RlKzvIY+\nzKMJl5mK5JDi8CAjL0fxJWkZgO/L350FF+gIkBvqBg7NiDVNgcZ0/9j1+Lj9fLJfAKBigMMM2sKP\nkDINq7Js0DcdirrmtWp0E/+8r45c1IoAz23aYCQ1ZhxGzC7lmthgxIFAM9DdLIyuj9TC3VOOgqno\nVlGO72PH51COPdwl15uqhEo6pjVqR5rWqTZUHS4imUXR/Hd4piNayb6ZlqQGAkBWJygE12XRYqjl\ndZVx8m9Xsc+YotYNfPVaRuVNk8Im5csJmL1MUug0Iw59B1+/l9cw/Bl0Uo8qcqB120VO56ZSqPAN\n7j+KBT9cvNi3U+2L2Hh//lbWTJPsgDsaSB9EgM+PcvLnfYc1B8PtSoowlEKg5OZUpAnGmjXeSgAg\nYpjphrgWWLEukbch6lw+0CDy4cymdMx7AIDtGtjm8kHP/TkOXEi8UEe4kAuTwXqdqjYwbdYBX+Df\nGeS3WTBhUgQh8g0som9TOxa5xA7rjnmaoyjlfY0YULO2qWQ1WtYjnj/Jnz3cF4iYKsmqATkRendX\nS8yYqr9gyt1bBjBpRu9ezpGwJvr4tIPVy0lmsAZsGiNcT/atH05vvEV5QMoalxXJyVa1BRQu4NfX\nNxinBa8rYTjyWVzeTJzhElsKGGzbFutBvs/V1SXe/vJnss+dTIfVyoDLV6ytjyYGlgOyfQKToh8z\nTlzRdLAG2Z98UDCP5LsXdYuOJunmhJYMTh+YMJoYevkdDhHbujOHS2uyqtzi8CyfZZ+W6AL5OzW5\n01WWYc4Ut40RNtN+6ljAYF08ov1fnhXwOO5NSz+iyIVrYaCV3LSJOLqNlpu4oqsw+G7HroU5LYhE\nPev26eld9iV0HtB0YgZ8xzia2KMfUPBQECcFhErkbsRN0XZRTEhsLODeAAAgAElEQVRaVTmixoe2\nR8v3qVny+pqjYzGbTOh12EyTq54Nk+nN5bWcr0XXweVmqxoCpjGhrGvYGtPDUy29Os0t32Yp3t5+\nJe/Hkoc+T7fQcZMp8xgOs9bNIUe8k+NrRcP2y9sZfFvOoeDdLX79M2lYP2YqbrmhvH11BwBI2gP2\nTOE22y3mQo45pALDtKP38s8MByhcnLMhQz4hqwP9KChTVAXuN5uT/ZI30aAmsnweashY7yZNFbPl\nCsjIoy4P0E0iwc0RApwPRPuLcUTP8aKqKmpeIy5iFC2tCQf5u4c0hUksRFpXyFn/X154R8s9g/Oo\nSpLjYbAaB2g8oIWag6J72YRuyFR03GSDIEDGuv/js9QaODzvcHcl+7C6sABFzt/LVYSnnTyUzTw5\nz8uiQE2rUDcA7n4m363IKzw/ykPVjuWuYD7i0E02rybCaznGR9tCx8P0gTX/8CpAwZJR/mmLjmu0\nchtBM05bcL7Uzqnmczu3czu3czu3H7B9ERFvncpTXuSpcHR5Elx3NRoW5r3ZDHMeEQ65TCmn/QDD\nlCCph+cH1KnsylX4GiqlBWOm3HTDRkK0oBH48IiQHEcFFsFchst090KBpsuTYFLGaCnf4qg60oO8\nT0slutNsofME3+rVyb6ZjEgsZ4b5QkqMjUONXUZeoTMij+Wp2SfyEu0InbKVkeYCHkFkgwa9ppF7\nKT+jKzZMhVKJdYeE0fHf/cVrrKiMZJM3ujIMgMpLrajREZTQiAweQQc1T+gPhxQ7IgM9/3Q0PzoW\nBDW4DpTpU00b3kyePBVDw+pSvqOxTTE68nctXZ5Gk1xgOgNvNRs1I1b71TVSAn36SkbbSZl9a0Du\nBLCoNhMtHDwy7e6w9GApHTDxwa0Bdca0VCtgM0K3dZnVUHE6Hdt1I0pGlpOCleYpSHcEcn3+fATk\nZWUOQcCOweehKR0MzeO1OggqfEXuiJAG7TVRzb4tsLqQWYDnLINKEFPozmBTPUdRp8hWQcuTuGo4\nyJj1adPqqBClUoWsGk7zeFXNgEM5wIZm6Y5roGfauS5qMChHBxUqr9tTJ9JxZyhG+b7rp0c0fIta\nPSBilqnndbO+R1EQdW9bsPm9o+fAuWDUzVWo1xQYjHgVUSMnVzsMHUSUW9TJETWt0++tLjOMjPi1\nkaUNO4CgRGaZ1xg28rk0SQOXJawNM0W2a0OhNGbomNCYlq6g4d1P/yUAgOCa8Pi7Pd7/UUZkVZ5h\nGcq0tDA1CPLbqSiL0bChu3Ld6TQPORWxOgVHqdQ0TRAR5X+qDUOLiuDS9XMLiwpn3oy823SNLSO9\nXbHH8kZmwgzbgerxvRBEdmhLSWcA4JkO1kxbd7oNOPL5VbWcN5rZoiMYaS8OaJmpmdsRbCIMWyri\neYaFntmFoRMwiZwOTRWj9oJMHID15oCv9+QSL7cQ5pR5k/+v6QoWBGJaRguDafu72xBCl1mA+51E\n8+/6FvaK5RFH4HMq39HS0RHOZd/ml3Kt6cSAdEOmg6oj8uU72qwPMEDJUqLVh77H2JMp03aoEvl8\nNpqG9+72xb6dal/ExuubUz0oRU46hmaoqKlHpntLvHkr0ztff6S0274FwWZonR5JJl+83nXohZzQ\nh0pOqoXuIa7kAOnGEYII5KYusLqivuormVJyVy3SR/kdg1CxXMhNJGvW0ClIEE7oOkOFrcsX/ER9\n1++257W81sWdj8dnuVkqbYXAlwNy6VooM6Y6WEtzvQAEFOL65g6LuXzZ6+ct0lSKCriB/L75hYDK\nWraW9RhNfjArMCPU36CsIAoBEBT9m9/+BptGbrzB/NVRKGTNtM0mj9Gy9jzzT9cv8grIqBvsz1mP\nszwYpAKIrofGemY0txFz82nFRE1woFIO86vlJa6u5Qu9vfIQFx8BAMPAdK5ZQ2G9DLaCPQ8FQjjQ\nSaF6/iwR6lczBzppDKHewaHUoSLGI20i5Mh/ik9PGEtVMXDhUQIe2swQmsYN1LbhEC059joUVS5o\nk/xfWxfoWeM1LQMa0bjWoCBiqYIKj9A0GyVf+CFZHzXIo5mGnAjSkjVDTddgE/uQVDXGXPYzcG1o\nx9Qy017N6TFZ5Qdo3JwnqkQPBSPpPYplomadWXNtMLsG05Tjc+k7cCnO0KYmxr18F5tvvoE/bVQD\nSymajY4UQEO30BSklNUZKqKPBVOte9HDYY1cU8cj5anIR2R8fsFUJ31B6zPbvEdMpLbSyL7V+wx6\nSyEWd4beluO6zwYMPGzcbz4BAFaRjhsODrsbEBjyWm7g4TVRtyVR2h+VACuWNDpVwOaGXbUFMjI1\ngkDOnUNaYojkO/YvXkEE8gCSdzmKTh7mBmhQ1JfTsWjbI57j8mKJ6E4eajsi1A+bAwKWNxrFg8Ua\npToqGDnxa1LChrZCzZqrEunf1lJnHtQLsiw81pNvrlGx5FGsdfikP81XS1gO5zrxK66t4kC6ldpW\nR015q2vR7E5TwACgRIOskhuoY3oAa8dhyFJVoSCO5WHv6+QePYMG85s9ynrN32GKXDOh8gA4Bia+\nYb04FQK3C1I3Z3JsxHmHiOhlMQAj6+2h18FiuaDiYSVrGygs361+8QY1RWiafkCyPz3XXmrnVPO5\nndu5ndu5ndsP2L6IiFcQqFG1NQRTF/ukxJpmBLleQBCFZl3KCNRSWuxJHLdfvUNEEBOaGaLZLwAA\nO6LciqzGLXmHcZEgrunKcXcDay5PPuvkL/LjWoGe6TttGCEUonXTFu1I4wLicfpii54ycmN9+gyT\nkUs4ZhkGmg14GrBlhL4uNFxQ/q4kh0wVJi4oKamqOhoS5bNkwP0HGUGvecLaHip0sUyB//JHf4VX\nV+TVwYbONI83iaE7FnqCHYq4As2QoHgWSqZbnrbyumoQQPCUS7rp95quClzSxMAi4ntULRhEGXvK\nCLQkvesabPVb5CMAFH2DgOS+n/7yBgfyJMehwsD0pEX3Hc3q0R3ke7HNBQZyItVeR03+as90YTTz\nUDOV31cxDCJBPS8A8RBQ6Ho0pY6/21TVQX0k/MtTu+nPsKI8ZWILjJl8F0rfoSM6+lBOgJcAGoFG\n0eUCGuXwXHtEuJTX64kc3ictdMremaaLkRFMMfQYiJyZMLwDBBKiqTUzgMbyhBouoPjydzWNGaT+\n9ItzLfVbzi4F7Z+SCjWRqb5hH407dMuCoGiAoJFDnbZQGaHbKGEYzALcLXB4kO+7ohi/6XgwRsqx\nViUyptFn7+4gGFGkzZQJGVAeiAp3LKAmV11RYVA0ROe1xAvcct9yoY6TaYDsf5HtoBI8eOmF6Dz2\nZ7uFSj5owMxM9vQJX7myJOSPGvpniTJ+9/ZfRruT9xPfy+j4cqxQEoB4MD0kjJaavITHSPeCoDnL\n0OHdUa7QN49siM7QYY6MmlsDYnjZ5ebtdQSH8pvL+QJCMBvCKPbV0kPK7I9SWqh72bdmAALeJyn9\n0BQTBlMus2gBy55ke018fpRZNZ+6AqqmAzSyCYMe6VaO+yzZYiAAa+QariuAO8r7sfURfcuUemei\nSU/PNQBoR8B0mdIVAyyWYxY3dGaLFTw9/U7eo6bBYkf+9OkbBBHLR8xMtbDgck01VjbMgK5w+oiP\nzNC1royCVZhHUSFDDbD9JMdvj/aIxt88vQcAOOYCMy069m0ydYnCEJer5Yt9O9XOEe+5ndu5ndu5\nndsP2L6IiPdx/QEAYPs+OmoE9oqG1WtZd33OFNzvyEljZKv5S1Ql6z32EsNAIMswRzfIWszlj38O\nAIiMAFXGSGT7GYpBSz1dwaajN2whT1Dr3RNuJmOE+RJtPyn45EfovMuTkCJSKPTrdOhH+902qZ9s\nnz5CnaDoQw+fdb42U+EwuqgUeUpzOxvv7iQlImlH1AQz2IoKYrngsH5zsXDQs57hzWZ480ZG+9er\nAEkq7z1nrTIse+iMXpbL1dGbd394OKrRbOnJuvTuYLDO0lanT6q6YcEjFaon/F8xNNTdpP5fQu0o\nLJ8D5iV5b5QFXa4u4BBYkjRb7AsZXTw+PR2f9dyU0YdqKhisSUx/gMbIs0oGVJTPLCmRmWUjFqTL\noNbQs/Zj+BbyYnomtDabPGa/09Zlg4r3KQpmLT5toOqsbbY1OipMtYctDIKfTAL3glkAe4rShvbo\ngxqtQmist1kUgk+rAu5kyGAA5iTfqWuISZtKatbomgEdx6TmyYgJAPJWgUNeYU2qStad5rqOXYlD\nJk/2E54vqSoUVEVrDQc5MwbtpoJHr9VOlc+/qkd4BFwZjg6TtJZwVKCQJudRtjW6usCOGRtV1+F4\n8gtnd3NQkRQZ56Y29OgUZksCHzUzTEUTw1XkNWICBePk9Jh889WPMbuWlMM96YiqouAmlPVQZ3TQ\nMBOUf/yAvpTjYCnkdevnPQ60K3RXtzC4RF4HBj5QmWq9vZdfNuTY8Dk+NQpY8oMdOsiIHSg+y3H8\n+l/9FRqVFCytRuQT1LVeQ3CcdKKA/i+wl1v4MzTd5DGuIbqUY00hxU2pK4zMKFR9c/Qo38cZbHrH\nNjQJ0ZQOAeuzz4ePCAiYUbFAR4636ZFOlNUYQJ7z5SUEI/saAjWjWLefZD815ClpSoYBqjWi6Bs0\n4mXpqmJooHLONw1gDqTUEaRnRzaWncx2akZ+5LrrZoSK1owz9ketK5TkHV/5PkKuj0MrsGaGazWX\nact56EEj4G+3awHqLtR5iYJGChYxCGNTYb5Y8fkZ2BLs+fbVTxAy8/c3bV/Exht5RCp6CiqCCwbV\nwpx6xYOqYdPIyf8Yc/D6IQ6C/EDdQicofYc7tHsinOec5Iu30JjCjjMVI11Ryv0GOje9lS8RiWrV\noRqJyBQq5tTCdZwWxkCTefI6HWUOhSnCz+QDfrdV5MoJtUdLF6FFEKDi30WnoWnk9QqmHod9g4x8\n5dnFW2AxFf9N/NUgF+UKcvI/mTk8XQLPgtUC85t3AAB7aWMyV28pGvG832D9x38MAGiUFgNTsJts\ng57Q0gM1UIU1wOPm1lL797ttEV0BYuI0y3vs1Qo6Dxt13aLdUthEF7giKtGms4jZ9ahp3L3fHiCY\nGhuyDgMRuZtW/v/csbGi0IJalXh4kEjFtvUwu5CTaDK8HpQWIzcJ0fVoCqa4ewfDVv68YxliAjJ9\nt5muBduS42+cOIUPD7AM6r5aI1QeEgNVR0YBjMZkOcKzsaT8prLvccjk+Ci2CaJQjimXghSRbUHw\n+dtixIqCJ2k7ouHBRSMAsSxa+HSuykYTAx14LmwDI4U1nnKOrfF0Quuw/4g9JVgjncA800ZAQ3BH\nMTFQJGLz+XB8tw7l+wJFwJhEH0QNMcjFXtWtI0LX1eSftwHgRPIZ36cJ/Enb16wRTz60TCteLmco\nuskX9oCr13JjWX/eoClZTuCmOQGcvtvizRaKKxfHikA6wzGPJay2VfEQyw30fl+gYmnljkvhpRjw\n8ETf6KWPpJVrzDoR0MhjXr77qfzZxxKg4Mf+8wNaComkY4syJQ+fO0/wq3ewr+XGcXt3DdWV99bY\nNVJyczWRYfvp9FwDAAU2+nFyJbOxo860Q8CPbQ+IeBCLy+Io0uGMKQzI+yyo297UMdbkpxaDhTUZ\nG/34DVyyITbcvA5JC9uVaXLbvwToImZ4FnSCnED3t6zsUVHQwh5V2NrkX21gXJ0OTgBAtzy0k8a2\nY2J/4BpB0R3fHuHZE6regWvI/lRNgz8yFVy1ciOsRA+bWthh4sLjuy/rCgPlMMsdwY5VDp18/XxX\nomUJyl3M0fFAaHL+V8LAhiU+2zMwskz2eXNAEPztttJzqvnczu3czu3czu0HbF9ExOsy1WLCgWZT\nkFp3sH1ikd64hA55+nUZ9j93AvFI4IkeHqUUh1aDoAISJiGZsUZP+bSDaDEKgl6uL2EHTIMJCobb\nF7BDKrPcGvAJeNLUDgNVVCYR+qU9h+/LL2m0HkD8vb5FLLoPRguDspV61aMQMhX1+qfXsBm1JJMI\ne2/hm9/L73rzoyW8KxnRRqGJ1aXLn8sowg9zzOko9Pf+zlcISJXIixQDuaUNuX3Z7gH372VavxEt\nFBoQxG2DXS8jwIrpFZH06FqmuE/7P6CqOqSkDkxOSNErD0sCov74zz4AjJrdhY4FFbD0TkbB8fP+\naFYw9gepngQgnK/QTQxfSlF6fYtrbfJ93WNMJypUiPmFPI1fhcyQFE8IKO1otz1UUsK0YYGG6dT9\nXo6HEafpG6OoEYVUZCLfse37I6gjNBU0Dv1OXQMpgUAjI2LL9lEyIll4IXqWC/bPMV6TyvOZ9IrW\njGAxNR5GAXSCskRRoWRqcSDwJLAujlHAh7hER5pMn+RIKwrSk+vt6O7Jvh22z8htOTZmC/m9ge/C\nJ/96KCr0mZxnrgkYfG9FIeeI77tHJ6SqzqHzHaVZhpgR0CUpPTUaKBS8b1AiYaQ6JDY6T76vjtGx\nghJuxNR6vIPWynuzHQvDOHGf6apUngYhNXmMeE8lo5mcN5ZpAjr59L6DkBmSD46LHf1yk618dneG\niyaT/QmKEZekbv3xOYZDWp1HBxtLq1B8lkAkJSpAW13ETY9oIUFBKlW9xkGBRrWlUQANHXzmroGr\nmUwD/1+fPyL59HiyX/JZd0eQndaV2K5ZQqJEpiNaLG7keuM7Bmxy8uE7yDhfJuewsVcw0FNZUww0\nzFq0ZYbhQLnQpbxfb3TQxVOJJkNF6qSnX0Ijp3ySlx06IGBG5nq+OBpKtIOCtjqtgAcAbQfUNCOp\nRYaW67HCdbuyRji2jFJdz4HCtV9THLyi69uWegiX1zdQF8wUqRp8W47rzeOfYTP7onCOlfEeIpPP\nZuwc5EyHL66u0U8lxYy0okRBTOCtJ1pUNCF5+Po9dP2FRfKF9kVsvAvWVOu2RE3N4CSusV3Ll+Y7\nLlSmlQemhuNGYM2a6eJqBdCQ2TQaLFkfVUw5UYRn4D11gBW7Qc2UUGdouKTzts9UteK0eM7fy59V\nIabSW+iqiJgCXPDlDWWO51jWJW26jXy3/fjNOwBAOSYwJ7nBfY6G3DNVrxFQbm2by3vZpcAtCe1l\nmiK6khP9brmCbsjf6ZmC/GBusaT4xd1XX6GraQmXVNjv5cJeM4Uz6trRGWe/+RomOzf2I1ZXcvJ/\nrOSk0owWr1hj918weY67DjuKFfREikfjHOFSLng3txn2tPrzDRUBD0QPj7LvrSmOkogGRqzJc37z\nboWQ8pK+w/ri/f2xdhzvGqisqddJjn3NDYwb4cxssbA5wTQHCVOLF8tbeNwkYmrWtuVp4ZPIWcAz\nKW1pyIn75taG2ib83hRQ5f8Lv4XZpfwd+bsLTcdAa7yhz+Bz4/zFu3e48Jj6p5tK1pgYp7ptO0Iw\ntdUYDnxu0jW5k0+7Fh3dc5z5NVS6IjV5ipwCBGB5A87peqGr6bjkffpUKCgOKQ65LF+oYsSoUgrU\n0/DqRm6QPjmib24WCIkgz0rtqENtOQ6iWynrmbGWuM3Lo7tRM/ZQeTgqDBUVEbwx+cZDVcNbyLHc\nmzY+7OTPl5qOkDxpjQdvYznHb0/0Tat6LJhuDbipDoqJhmbmXiBwsZIbitBUjNy0+ilVGESoaPTe\nugpS1pktzYdLTunAw+RuY+CZW2FpqIjJLqgHE6/fUq94xqRiMMIi/7/pGjREcheHFOBBKrRmCPyX\na4VJVx+lG8exgtZy7Fpyk79/zLBtKS8LC3NK1I6XFvbkKxf83lFoSPcUB7J1KLW8h2z9BDHJkxJf\n4FgGdLI30LTwGXho+wI+30ff8/3oCkDWwt1shprlhPefH5Bv7l/sW5wMWFN/e7B6vP1Kjs+QB910\n84QhkPdge92xDGZiiVaRY/EVNQGiN3fYtnItCVfXCHkw//Uswv5Zro8++9g9plA5t7LDgIC1frsX\nOPAAcr14I68VXMB+pPMSXPz+azl/4yzH/f3LJYJT7ZxqPrdzO7dzO7dz+wHbFxHx2uTz5UmLR3Lk\n7hMd0fU7AMBQjtDJyYtoGn9pabAGear0dB17pl2c4AJgGucw8R1tGyON091AgaVRStGqkFKCsheT\nU0eJjEhHcZ+jI6BnNDt0lBvUE0pKPj7AUOXnLxenEaR39JV9TrOjmoo9M5A+U7osMo5grTVdMDZJ\nAvFW9r3MUzx+lipON6/vcDcBjG5lH6yxRngjT3Rlm6Gg8hdqIKaRc0TD+2gRwbJkNFo6CbLJV7hs\n4Hnyeq9/ypOm5+GWAvGaOD1MHnZ7mExPOqH8vLAXcGcy6rm8KyG2MrWtIsH6kRxPqjCpQQCf0cl6\n26GmnKWqCBiMjju6DNlDjWxHBx8thOfQTP75EYed/A7Ql1RzPYQEvSwvlmh4clfTDt5UnpjS78+f\nTvYtKzU4TLWr+uTkI2Az8uprDRVTUI4ChN4ElGK0enjGwiTIrO1QMAJcVw1mBA0KS96jYs2gUgGt\nbYGcWY3a0mEw+jUYZVSHAv5KRjLLWQTTZ3o9nqMt5fcZjIoMnE7tBYPAZA0xC+T3ft7lSJiG10wX\nGoXubdeCxUjC5c+K/Q5Lopddx0TyTFDcaB4jthH0VtZ1RIyKBtGgo0e0HthHIEtfyPu0He34fOEF\nEJMimzIATNtf0Iwipwrad5tZ1JhThckiME+ZLSHIIgjtEQk5p66l4jqUkVPXTiWCAtGFjCDncx0q\nXXBU++r43BVmyepHHQ2BYQ/ZPTrynMfOwod7qQtwd/ljeV+Rjtm1/C5jMUPFaFNYHvJC3uft3R2+\n/vM3J/sFAH/4w+9weSHnWzQL0VJpbELJ73clTEab7tLCwHnmeg4u5vRzZt/X948oicq/mkcQFbMS\nWYWI/sCvqSSnCAM1n3dVtTAIPtWKzRFUZRH0dnn3VhKHAZjFCJ985jzI8fD4giAAgLoZ0VG+s+l6\nDK0c1w7V/IRqI97Itbarc9zcyPnmrVyozMj1LGE9Pe8RE5n9/GmLN+Qjz90AgkC0AzNXvu/AYbmw\n7lKEKU0mPsZQx0nBS46HavARhDQPeapQHiaUv4qxPy2r+1L7Ijbew1aG7EmiI6/lQ1pd3qLsmAJI\nWszv5OQP6WTUZgqimlKGnQGNBZZotsITF0TLZD1jSDAPmKIuCyyX8kH2RYp8J2s0LeXrLL3Aa6bW\nlDFFXsoBqRs2HErGHSh715oeXF1udI53WsLOJErb6hus75mKyhPYDhcgy0BDCoA2UAZNH6BYrEkn\nz0hYP7ycu1A0kto5yLT6gJGOJFmhIiHloatadFzEBK2w+rFHTflE7fISkUm7q5kPlRQKe6p5jgJx\nMlnVBSf71iZbrG5kGub2Sj6bNz9+jRWh9e4YYebLheJpnQDUcL27ls9/9rM32CUyRWPbwNM3RDLW\nO1xfyOtZrI365gLxEw26yxqCE35lBojeUQ96nKQxe9gZ3Yvi52N5Yls8oG+YAuRm3JUvkPoNCwPT\nvy7FIgxDObqtVKJDm0+CHeGRNvXxz3LBjcwGq9fykNPtWxTUbd50NiJNmop3F1x8hx4gheh5k+C5\nlO92VDS8eiX7dsUDjnjropw2J1s51qiTQUXOOuiPruT1LeUFU/VhRMAFKPTlPXjlt/d4n6aI6Cg0\nm5toKYJQstxjmQoKbprL2zdIClKadjtUTK/3HPcXl3OInp+vWxh0HPIcwGK5wByp0e2ZGHlosAIV\n0ch+ZgV09lOZbBnb0yWCy1mIy4Abvc5apR2iZVklqVIcemp+XxrwOA62rItXzQEhmQxzV0XbyHfR\nqAmSVvat2XNOhyNmC/ldjiPQ61MKOoW6levKV8Zfyf+P5uhY/8+7HLuJ6mWYR1rfpqqQvECTAgCl\n644StQvPh0EK0MMnuX6OeYLZ5FR2yFBQNjVLCixvZCkppKSnsFw0giWoIkdAjMbPbm7hMv2+JG7G\nFFJwAwAyS0dZsX7alQA3755I5nkLCB6gh2wAWOt3ZjeoxT95sW/NoBxLX2iBnGhzMNDwbf9YlqrK\nGm0ux1xSbZESYW/N5fceqh6KIw8au10FTWH9+crC2MrrTTrsz3EN4yCfn190CAYejhoDJhH4Me0e\na6VHfpgOLrujnv61v4Ll/O3oROdU87md27md27md2w/YvoiIt6cM3AATy4UERhmXv8CWB3bPGzAy\nok0J4tG0CBdMbw6Vhr4mcOfjByg+Sc5ES/ZNi7qSaEFVaXHYyVOsITrMSRIf6RXpWSY8chHHYYBD\nWbbF5QIGI5+mkd9lWC5I7cPNaxvAb77Xt6qSJ9++OyBNJQjIdT0YFFrQHAcqU9iLmTw1zhwXw8hi\n/WgdOZFVvUdJIYYP9zK9+rzZwWtJaBcC+Y7oxWGAQcGJlifb/TbBluCpxZsIA4XnNW2AsyQ3z//W\n0zKlFKPqnY54DTXCJT0wf3b1DgBg9j2canLFMTAQCDQkQDe5BNFBSRUCYGR0bdroEnlCnzvAguLz\nY8v3Uqm4XEhuc1Y1+MDotsod6ERDlhTY7wsFmip/Zlg2BhLdm0OMjrKINt/lS+IgKr7lBTcUvLeg\nQaFLS2C3UK7lPb795WuUOzmVHr6R71hzLTwf5Dv8tMlw+6tfAwAWwQ16Ois51wSsVCVKRtfbYoeO\naelocQWT795nhGqZNb7+IDMnxecHzFcyqh7UADs+B2tP8RH9NGI7zmO8plDDSNS+BQGb42ToWpTV\nxB2v0PC5KgTrXN9dYM/ITI8AmgBhvprBGqd0t3weqtJi+yDn25VnoqXIv6MocMmBFwQ7Hh6ej0wE\n37nB2E/lnw4RAUgmwTa5ebpvnagxUHTBpbarP3dxv6GP9WYLm89/9dUtPhzk+9o08pkuoUIwTZkM\nDXqm+EN0YNYfrkIBGGvEBXnbP359iT9QdrU9bDGj0cLk2pXlJWyCQYuq+9asw3cn21sU2wThvyBj\nqaoOFMrkhooFn/0A5VqdARhqOaYOT+VRFtXzNKSdjOoUmhYodYd5K+8xgg3TpQiH56Dku60+yT8j\nw0TALJY+WujpBmYqNhpmBO+I4v47P/0ZPn2Ua97+kMHgmGOYvNIAACAASURBVLF0FbZ9mjMPAKa+\nxIKRdoUUIqURxZ/ow6y2WL2SmYj7tMF6LZ+r7bRw6ChkE4ipRx5sSgsPj4/YfZ7YFA3mjMBdX5bR\nUFtQWJLbxwXu17K05XvXUEqOYYancVOCBBS8u1vAawm+hAfHP+2W9VI7R7zndm7ndm7ndm4/YPsi\nIl6LYJNlMMeuorKNocDhUWN9OGBPvujq5/8KAEBJBBrWLstKwQO9GLeVigVh5yqj2d7o4ESsqdYd\nVNaJqr7GXz69BwDMDNak3l4gP8jo2DHTCemP7W6HJpGnRk9jtFBkqOi/+jScBrJsSZVIxxrhSp7Y\nXt1dI84ptRaa8BkdjJSfm10tj1Ea+vJYP/nNb/8xoMqQYLOR/f3m/h43X/1K9s10oZCPl8UxNNaJ\nhZD3kMSP2DLiG9xbUBscw1igI7jC9GS2wLV9DCHrvu7p+sXbi1v4JUFvFH1XshSBkJFGFQMWayY/\n8n6MnrWfcuIMrzs4gXxHV4MKE3IcXDQWnGcqmPUTX1MByIlceSFsUn3WY49Hqu4Y7JAXWViSogXV\nhU1bxN//8Q+wyV10WP8MnNN8UFVRAda9nElyrmuxo2i+J2pcX1PaUdRomIlwKHvXtSVs+hjbCxd+\nKCOCuh6w38r7nShwtm8cfVtnyxCH/RQlFQhC8sj5fAPHP+IVxl5Fy8g9jGZ4HdAggypX6nAa8Hex\nCKGS41nR0q8+JLBpruANKhwC6vpmxII86HcXsk54uXDRpDIyyPYZbNa3Lj0HAQ/+E6/76f7r4zib\nLV3k5PSq2oDJ9Ndg/bYpK1yz1u2WLSzKcCpqjZu5vLDpU7Vre5o3qXnaESxj2qRTaQ1ur2Q05Hke\n2q18V//3b3+HjEBML5B9v3BmsFgHjR+3MMnd7bsRvaCSEQ0FyjjD9YWspydlDzzK97aITHAYwOIa\n1Q4CFeeKFhoAldXS9Sco48THHZE6LwOQRFNApdRpn7RI6Mk9KYuppY6RWIOo96AQU2EOPSrOb90i\nhWjscavJQXcNBTpVz+q2g8b5IrJp/AsI8rM9d4WYhiCGGLGgh/avfvIOAPAu8uGwnvy7CrB5b0qR\nAN3pujwA9PWAcpKrdQWyvax7x0x7Rhcurn4i8Q6z6A6//adfy/vRddwFEvcTt6QjIURIzvTD9gPi\nz6SSJSou33BO0sZ0pofQyCe/91T8KZbXtfbPeDMjuJLGFIe6h0M5Vt01pLMDgKLt4blXL/btVPsi\nNt77nRx4XWscBTS0sUY2Sf1VFVL6joonufl1Q4DHVCIAd40GwbTam6+uAU1uNBMfclQdaNQdFoN2\nRDCn9R6+9206GgAGVcHFXE4mx4wQP0n+r60CdS6va3BiK2WDNJM/c17QIU1SavsOOUxNDrw0NqFy\nNXIsE7cLObkNgqh2zxkq8upEVuPw9XsAwDZXjp6oU9Im36XYczHzotXROD3Jn2FSQMOnM0mwClCT\n9K2GKuZcNC6it9hTmzfj/frhAiqBLnl/epFbLD0EfK4OU/V38wg100RDnsEmsEGvK/iuHOAtU/XP\nwwERP//LhY9nIld3988o6D7TM2Wso0E2yMXe9C7xmaA4ZZzhEJNDPIF1PBMVBRb++OHx6H61TjJo\no3xfAbnYnnc6ReRGFxiIaLV8+S5uVzPMffKOuxoq052f/vw1ylwugr5LX2jThjbpQIsR8VY+E6UW\nsIgmn7iy17MIIQ8KsQv8M6J8n+MSbSs/l6xlfxRFh8F+hmEIhWA52xjRcSPvmPu9XF6c7NvlYjZh\nVtBRmnPm6hi5YdeaAZUHlLypELKeMgm5HIodLiJ5v0VTgNR76OgRUgM3Ztr10PVoKVhziAvoIRcz\nkaDgoSFO5QWqrEbHA7DpmzAsujgJ5chmmCQT4/XTyb5lbQHBPpUU2zjEBWahPFB2WYPkQS7qj/cf\nkXRyUVbp0uQ7IVaXsp/Jh4+YOTxEti0+Psi0dEMz+vJwgKLIZxYXI3aUjfVCDQ79tof+W/GRVSc3\nKaNRYPcsW4keKnWvTVOgLF82VPcjFQG16utWg09BmTqX13INW7o6AZjBOMrhbjcPSFiCmr+iuIXn\nQmP5YkxiaESLm7YDk2h8kVJUyHIRWPK6o6IiZfnNEiMWFPuOqBNebmNo1G2OrBAJxTaMQYHWv5xg\n/bRd4/BZ8nzNSwsrpqUXgezj3YUDDh10jokrprav/RJ/j+DKf/KNLL/F2/sj6PWdCgTUOVjNF7jQ\nJgAX0/Aw8J42bW3e4IZpa2cQMHk4N8jfdmwNIbfMxWKGJ6LRP376C4LFaR2Hl9o51Xxu53Zu53Zu\n5/YDti8i4u14amxHA4Kpn6pK0ZJHVUOBQaWSSfz+4tpDbTBSbsajMPeQPCFPmBYhreLtj3+OkmmX\nXh1QErCycAaYBA5NAJIWI8pSntJ83QBUeZJTDRM+U4capcTapkBLgNJL6ViD0aKhKZP6ISJbh86T\nq6WpsNXJJFb+7r5KkZfyeNe1Azqm7TZlg66QacrJpahTB5j0bN0VFUJVRjmtVmCkIPqg0UBCE6gM\nUmQcIFiE7KeJ7UY+szyRz9SzZ1B4LhuV06AIw3cwiklIXX7eUWzodGExlRJjJyOf9HmHhtzcmcW0\nrFogJl1jnbswIE+WRmeh3FFmkEL/Zl9gmNR3wjl+857gCmtARdWcz1RICrUYFTmpn3YFNIJ3DHXE\nNVVspgzIkJ2OMForhEFv04E8VGGoCCN5slUGA5vdFAFt4DKyL59J5xobtHwvedqhtmT0cHFxg5ES\nnzadnbRqgMVnln++h8p+XNsmfJYqFEbPTddDo/dztbWhTPzhdxYKeuAWVOVSl6c9Qi0/OjrXeB77\nWA+omS43awVQ5TixxQCPPOaQeeRNNuDhnhmHTkNNz2nfnuEzAXnrVt7jQ+egLKb3rWH/XnLSLTNA\nRQBdSv/hYRDoCcbLdnvYqhw7mmlDpwpVtZOZhbF7IWZQBEAeLyY1MDGg4TNLHp9weJbP9MJ3YLoy\ncto1TMWGAWLScGo/gMe0cu+6x9KBS49d4RlYf2aqehHgkjzfcmiPzlCC686lqiJkOrs67NAxAjWv\nljCYrROiP0b5p5oRLdGQYtXWCtJ88sCdUuoCFlPJ89kSITMji76DTvOJfiPHhl5XWLwhrW+2QEHt\ngnjfY85H6zKroRk2KjpQKfUBDqmHaqsgZgnwT7+X2UfD8WA5pIdZHnbMTMX7LZT6NPcaAD6un2Ea\npPiZGvwL+azuruSfs0CBacn3ErkC3Ure24XjQ6EtVMRSiTqOqAmmC6BBJwjtxnuNC77PSbkNYkRN\n8F/99Bf83Z9L3nVXlkeTEXNOMGQsYNMg4mJxCe+Jbl5FhsdPH17s26n2RWy8h1I+0MfP9wCJ3nov\nkDZyQOlOhOVMLpgD08fvP/wFzTGldo2UqcX7959QMOXT9PKBvrrU4NnygbWqB501DM+cwTQoQcei\nzG7zHkNFs/m4QUn9T+2gQm9kmnvXc2Hbf4bmyYc/iNPOG9ZA1xnbR8TN1nZDONzwl9G39dwD02eu\nZ6LmQhFD4PZn0t7w4DwjqybUrJysWVHiff2ZP4ug0dZq7hooWSf500cpEuFfzZAyvdk9PcEmT9pZ\nXeNmKQ8pzaRZrY1oKSrQ43TdyXAEVNYCU5qu31gmTKLCt48bGES52uEV1JyCBhMH1NSgjTRUty9R\nkps3v/oJTCIuC3L0kkftuPFW1hIWEauwbSgFay1r8vEiHxrt52zdx44ycYbo8bMrWQ96zZRoMNOA\nf/R/fL9z4RIeea2jkOPocIjhTIuSa0AhAMBQBUAhljaR42XmOoiYnlN0HVVG96JawRhRpMSSm3j2\nkGBHec9qv8GSGtFllqFL5POpWXdclw0q1s2M8AbdZIfZC9gsQDRMMR7omPTdZtshXC6eOg+ho5LB\nm9KJQ4eRfNGPSQzk8rBnDzKlN/dNbLaUTxwVgCjg0fNxYL12Q8GKvWKjmcaZfwmbEpVd1aAma0Ej\nL3keBlhey3G4sgUGzumsaLBey024YFlBMU6n9iJNx0yZyghcMJ0IPaUAP/zm92gy4hzqBnfUqjYv\neLhyNOy48aaqCiPiZvluBZViDg3lQdO6xubIIZ3h6p28968/f0ZKNPR0wNnuDtjSkm4GAyYPi002\noJs26VrBPnuBew1gvryFKOQ6NSrm8eIa5xP6FjvWr2vfwrYgTz+t4Gjyc3syCppBR0eLO+EY6HNa\n+RX98YAVUChk1HTYAQ+cig41Zp9NHQHr/i43tEPeIudmXOsNnikDm1UZMJzGUwBAL8ajk9PTNkY0\nEqGsyXVy12iIOvn8v/IuMeMhxtE19EL+fck5PeQFroj0rsYByUF+719d/xQrChqBIiDdUOLXr6Tb\nVNQaR7GXp80GJaV2Hbq4Xfsm9ixfJNsEImOKXwjsH16WwzzVzqnmczu3czu3czu3H7B9ERHvoFL4\n3yjgERCyixvoPLFGNwsUdGGxqaBiiBS6PQGUgIan1PmFhxsKtWOS4RsSlJRSzLIaPYFAvulhThWl\nhinPm+vgKKs2dinUXqYi9bGBwqjOIto6jC6wnBO4tLgD8Nff61vIYr1lKdCYlsaoQCN5z+p0KIxQ\npmigKnv0TO1EkQuFkprzlYmQz4r6/FioET4zoq3rDbwLCQyxhcB+JyPAXmWkWBvQCVoQ1YADUyz3\ntYKf/kzyp+e833/O3pvzWpKt20IjZvTt6nebmZVVp05zG+C5mCDh4GDiABIGBuKBhYGE+xBgYCAh\nIQR6BoKfgDDBQxgY997HPV1VZWXmzt2uNvo+ML4R63CrVl5dhFQU0vqcylp77xUxZ8w542vGN0Y+\nxNAYveREDf/Q2iqDMxGP1yHNYe/beCFAa91ZcO1R1EHDr/5CWK5+M5c5++7DN9BJVp5bIZIRixQP\n0MgC1DRyP3Ge4/lBosJ4ryFhtiNauQABE3ePMg/xusCb33wt19UKfMq/BwBchA56m6jmuQC9/sW/\n/JeA/+6f/mhs26xETQrPS4pbeDYQH2QubOVDH/tbyxbpg6yTYiTKn04xW8iApqYOh8+4TXbwRi3m\ngmAxz4HGNWfXCj77Ge+SFjrv1+BaThXQERzYVwVmK/HgF5M5bFJQviOQa7BON4VmVQvHkbXskd7P\n9yJU7PE01QDTZEamURiILh7Jlu6fdiiYHtZMCzrBOPs8OQof5KlkTla+DjeStTWYChmzFkHoQOky\nzu2OQLr0gPIg91DrLmr2tx+SAgXTlB3LFS+709G8a7og/goTAhgNY8AzGZZy+Og5nm7IkKzlGU/I\nzmYoEwZR7BeLN/B+KfspjXQgkM/zjdzDvioQM53tei5mN7K+rzUdKpH5SccU7ocP+FtNxna9eIMR\ncF7HMXRIhNj0Ndry87HQ6uoWn76VCBJ9A9ceGcMkin3aHjDwGsveOz6wUNePPfkm07GtYSJmOaDf\nNIiZSTBMB5eWRI6KNJBZ1WO6lP0SRj5CAlKrtINH8QSPANHN+3t8+PgHAMBL1eOFqk+6Z2DGs+mU\n+VGElKjwtMpREhCqwDPeMQECCdOmx4Lnyix0cXn7hXzOM8Fcr6HzjP7FNIJxI89iPjXgUQHt/kHW\nXBrXMFm2cHodMbMSZq/B5vpUBOCZaQOvk2xAkwIu+9DnfojS/rzW8Cn7Wbx4L25EfSdvFApOgmUE\nCFx52G0xYEYO2A1pF1FkGJgCzTY1OqYklvMV5ou3AICYQuV5+gCdjee+GqATVWr0OSJNFsb2IDWK\ndB8j5As9Tzboefi2BhBO5H4iTTbepRFhRZm+XX26od/xZDH4jg2dpAV9r6PmAz5kDcpY/q00KiUF\nDt7djS1NPR7uBFk9u5yjY4tEy/aK2fU1br6QdNnmsYDFF2ekTKRs3h+pGm07OCIW21bB4SYtsg4N\n63RjOjzwFKpnua8t5eB+aK5hoKGK0o61XMPTjvXr6a/+OYSjksuHe+zJy+z+Sl6KVldCi2X+142G\nmDXK+P4JPhHDDhvee3eOzJLf/etvH9EznXhdVegduca365Eo4wmPlCsLllNoY8pxYsAnrdxIMbq8\nujo5tto0cfdMlOqVvNxUeUD6KOvE7gKsArkHL9KwJ4/xgRiF+Js/wkvkMPr6yzd4YhvI/tMGNq9d\nJzzgbufoSH4RPz/BbMlDa1so+SJTRIq6hgGHL9RS0xFww6teR8sXis90ekcloB9aNejIWfd2eZjl\nHXBg7vdQKoBo6hrAzKGiUMaXSVJjt5PDfnG1QM2aalV16DHKbDKd2yl0pNbrTR+DIWOzfRcm0911\nK6WASV/BplNyeIqh83ANAweHg6zljOWKZHN6TZaZhoKlq4I0kPvtC95xLe/i+Niep2kWrpnarmOm\nWgcd2Vp+94vQhyKxRhn3mERyToVkuYh9G92M3NGag11J1aPoAjbR2TaR2wvLB5sasH7cYkGFpMjU\nj2l/aAp3/sii/WNbTC6QsFUy2WXoiQ3JWeN9SHN4E6q4leWxtdDwNWRE6I6C9p+gUFMl7Je3V8eU\neFHniEnHOWcJwLAstHSC7GbAnAj8D4ctHu5kfnqSUPzh/gHfUN60go4Ny2gz08TEPy1TCQBJtkNV\nilNh2TViykd+oEO7L1x8/Wsh0CnLHs+5rIOL8C2eSM9pT8nPvtCRPMn6sBodt3QanKFCsxWMQcdn\n/Nu/+gaEe0BpDQJD1m9j9mjYmqWxhXM59ZBzvO/WOzwmci68lD1M7/NjO2XnVPPZzna2s53tbD+h\n/SwiXpse1GQF5GyY9pQLjcCkMi7x9prF9hV7INGjYgvmNk0QUyjgz375JfRCPPD4XkBHXughpAIQ\nNA05QRuPmw3qTjwYj2oqZfIAbyVe4X77gp7N7aVVQSc6zgb7VC0DzyRDODSngQM9+1CbvoHPvtiq\nbdGSVrHsWqy34ulpBLe4iwmmK5kHrQE6Kl94gQGXSO2dQVEGpSEfifKbCj0VPLzZJaKImqtMr+hu\ngJaCDPvnA+KD3EO0uERbMX3O1CWcGhqFsIvNyaHh/mGDOVG1Y89voWrcvvmC171GROTu26tf4OVO\nosWYpPpecIMrn0TuRYlDKh542m3Qp3JvKXuR06HGCyPi5ySGFcl9br+/Q8w0bWsQqTyZ4sNe5uHC\nU5iuxOO9Wjq4eiPzp3HpF81Ib/l3rdY6uEu5xkBv1lcKBkFdvl3DrQmoqhM4DFpMNshO9AarEb1c\n5LAr8cA9lQIkEnn4SFpQ4xoG01amkR7Vhaq6PEZq3kyiWHu6gs1I0PR8aAQ2NZaFhqTuPdVa+uA0\nAOn54R7JSN+3lOcznQZwiOKcWQoHzrttmjCYqdizJ3Oo/7SWVZMcQUx12UEnp17Xy7pvTQsHZlz2\n23vEBJFpF9fQKWKSs3+9KRPUBKlZmokFNaLzOkHNUpEiin41WwJ3+x+NzUGHkmjfJhuJRkw0pFKM\n3BBrUiI2lYZ47IElcUfgRNhtCFqyFJaMRtNDjmHKvk4CGHXfhkWU/HqdIKZou7+4RMMMRj+i0jsD\ntpJ50jUd18wKGVaNhEQVvmvCrE/zAch39biIZE+GloOBAKGR/OO5aqGI/jb6DjFFTp6KHgZLdBqf\nW7BawmDvchhOwQYI2E4Hl0ApjZwBddMgq0eBBwNbkqfsihQPTKUfSC703cMLtowUD3mCnr3wZtHB\nCz4Prsr1DiYR9i1a5Fx/JcGbC9NHzUg6LhMMjHg3uouUa+PLvxAQ6uTtNdRErmUqhY/fSJTbJDF8\nXSL39Vr2o5bsAE/2SXx4wuRS5nc2u4Ai+YlFYNnusMHH72X9ts41hkjWzMPjE4rnz/dfn7JzxHu2\ns53tbGc7209oP4uId2qLN/8h3kAjHRmMAVU8MlrluPuDFOxH72abbOCyWH81ewOLvcBmaaCnt30T\nsp7kWJiR/L9Ajl0sIVzb14izsfdRPvNUg4oe+HI+QUSqv6fnP4KdB3hFfVKUGTrWduez+cmxJfQU\nk6qAzfYRrVUwWeuqYGF9ILWjEu975UZYUm8y3+yw21FWrVZwOoKfyDQ1s2y0BPkgLVARLJIc2iM8\nP7iUe6vR4sBoYHeo0e7l3zcLG2BPpWIawfF9DGxZMtVpIYGkKdHuxdMtGUnnVosn1ou/+vIvcPta\nWhYCS0HRrZ5N5H4mweLIOPZx+4C7hHrHb3U8fSI9JwOzsihQaOIRh9e3KAb53Vrr4TCyNNhO47o6\nBpLX646FyQV79iYW9uyD7NgXWwynfU8NOkyPNTtGCRdXl7AjMiulnzBhPeiQZGgteUbehAIHtgOd\npPhuD7ydMlLpGnwkCMwh649qC9jMHJjRBKO6YVu28MhEZvK/0XIFl5KJbRDBvJTsQh4s8Z41zZjU\nhvbkdP/14/MzHHuUl5Po+faLGVyNbSS9DUU6qsYASn4f2CL0vIkRkUmq0wxoGDWrLRTxn/q5AcBz\nQuwK1ju7CpeMju1hQJZRx3fkYettlGSQu7q6gc093XsWTOIfHErHDe3p6MnUTOgEEB3YitUoF001\nzrVCS4CM7rl4ZEvInHVoz7PhKakVdn6Amr3lh/iA8qNENSFxG7tNhgP3UB43CFgLnLjREQRWcZ43\n908YWJeOAh/7T+z/negAmbb6xsBntB8AAF+9WkEtx55fAxvqDY+tlG+74dg3rJcVdNZ4PRiIuJY1\nZoUsxzu21kyDCQ5stzJsoGXdv6KQS2uU0ChI8wKFlO1LKTpkes+5ZhZw0NAQl1BoNRZL9pmHCqtr\n7bNjW1xNMGE2M6xMLHT2KJONzew6XJL5zvIM5Fxzed6Dw8T2Ue7h7Zc+TGJ36rhGyvfIPPBgMgKf\nUMRi0XgIZ6Qh9ctjFmAydXDzRt5Ln5g9e1hn0CmGEOcJPvDZb/MU/vWrz47tlP0sXrw2VSCiPkTF\ndE3RdgiJmJsEIWoW6TXSCnZxh54N11mroNdssK9zQPuTCggAWDMbHWGEpqlhxp626dLFoJOz9pmp\nrLKFzXSWrky4nKJb14fJe3BCeRnHbQub1HoXszcA/rcfjY0643DCJZbUVNUaCxqvkWUJHCIC00Re\nNo9PnxByU7g+UDfsvat09Ozb9JiWDh0PNkFblV9jR+5dZwAKak7uH8l72nToCEoaagWXTamu76Km\nupNG1ZQsbvGJIvTx7nSuOS4LPDMlvGX/6r6tEW6ZWtwVyJ6kv20xm+KXryV1+MwUN7oW00vq47oT\n7Ep5IaWahYFkBS8Jv3e3Q0yR73wAMoIvVvMppmNpgNRvjqrgMBUNy8RsLtdwHMAjReScWqO1cbpH\nOastlOQzNnmI7v0Yl6Tpg7VATLSj5cwwcwjm4Hp6//AtBpYTpjczTFnqWCwj1DzYg5n0xcathpBk\nF4bWouH61S0DM75wS6aXB3eCBvQA9QDOXL6jsZcw+FLibcMaTm/vSlPHPkhFoFeaZzCJ3laeB9XK\n54f9/ihQDvLUVlWFHctAsFdwNJnLm1cXKMgh3sZSgnG9APowErnoR6RtUVRwmRr3+HLK6zUcg+Qr\npgubyHbdsvGcyOHX8WAcwWE/NE0DSvZf1kQya3qPNmGqdF8gIeGCshRCplVdzlW2fhl5bFDYPYY5\n18tiggPJZRLq51rmgJAvMs+xMBBomCQZdCJsR/rJD/sKzwSIQStRBvISWdkRhpH6sYhRd7uT45J5\nsmCQzKQoMmjsfLD53CZej80npuq9CNMrcdCsssOSAYQfyV4plYaXWJzFqmvR0hHd1h2MUZVrRz7u\nMseM6flkGx+Bn3nVQSdavyTq/P5pj5gEQ71vwFJy3ciLAOvzmrW/+MUt8k9MuXsTDLmchcVB7rE2\nTeQZAX+NjXlAAo3LK+klB3BBrfY0S/Ddd3+U+8oyTBcy1/Nffo33H1nuYvluUz0h0mQdzi9mx2Dl\n48sjbPJbf/gkz/u7Dw8YeK7U+oCBCeObtxe4evt5xPYpO6eaz3a2s53tbGf7Ce1nEfHut2NaUaFl\nKG+W3VFj19TVUfRzQri9reZ4Tph26WrckK4t3qTQxrRUJ56M09iICGgxOhfplr2YvouUqZlb9qMa\nUYjBE8+1bBrYJRUvkhotic3fvydDkhfCIym5NZymelPUD/b8CWrSGKZZjWj+mtdoofN+245UgG2F\nCaMXQ9mYz8WT03UHORlmKmq27ocYe3quhnKxvKRuZlsDTNvvRtakwYTujITfLi4mBNbMJ0gpbFBT\nyUO3BuwS6uZ2pwFIX9xe4W//KFFqTqBHbwAv628BAIf1O/zhb+QZfHn9JV5+LSpKPj3U5XIKa8PW\njLqAyzTuStNxYORYMlrKDw3A5+LZJt78UqjdJr4Dl2mFFenlJr6BOSNppYApWyz+/Jdf4nImHmu6\npRYxTqcsv10fYDHFaq5kDLu8g8feyQtvhupJvmNQLojnQ5WPjDgdPEfn2DLsc4lENNuGWpAqMmJE\nV9RombJzZisc2GJlRAZ2jN5sRr6262JwJAXY2HMkZPhKByBlm4zFn2tc8z+0ThnIGWUVTPOqIIBB\nMNah6rFl6aCAhpSKVg0zKIPRY09aVSPzcE8axzhNETmkXs1k7ZhVDJ0RfJxmMLU/tcNYVFnqxm4a\n0wKY+i/qCooZrzJpMDCMPxRsVRlO52S/ePMKiv3IPXvlTdMFh4OqbNCT1awBgJF5alTyMXBsrXF1\nEz3TuH1XwWBZSWMf9VA1ONxJNKSjQ03KzU3SomMqdIzLTdNHzNRwVRXQ2StbpDuYFkUisg2C8POx\n0OMmQ8G0ad/k6AmabMZWH6uD48tznU0jtOytf7lfIyXV7j4jRWtSih42gE1eIiNgqmkbWOxfvXuU\nNp2npzUu2TZVbg949/B0nD+DtKg9MxEv6w2mryTSXq0ucfNKztXbV1e4fP35iNcOXKz7MXIPUVPn\n1+ArapMm+O6DgGVf397AJ/DTtRU6Nermyhp52NyjMEh/ugCcpTyLQ5dhQ/pSn4DeN7/6AgHbR5Wy\nUVMAI/34Hh+fJVs3pvKzDoj5RHMAJoUlfnPxJbzZj8NchwAAIABJREFUaXrWz9nP4sV79ywb93oV\nocqJgjNtbJ9kwz/dPcGdyotq+Yo9WV0By6d482QCMA3pDt2flEvYs9p1OjxHNuP+/gVYywY4PCbo\nmdrSb6nacfMausl0w8c/IGIdLozeoCol3ZLyHl0jhMZF35SnJdiaTL4rN2tY7EVOsxr5wNTZoKPk\nS3ufyXiM6QQJX8JJDnQOe/tMGwumTYp7SZnUFVBlPNiKHAHTc+HUx6B4cNUyv5ttCp91m0E3UIyH\nWRmDGTcMrJ2a3YAV79f/jID1chohZA/tE9ORmt7AJLd0WRR4IpHC7uUJ33wn/civiQT9y7/4GmYy\n1goHTKgCdH2zwMA63PzVrwAAv/pHv0K2l++Ksw69LvPT9D0uLmXRb9nPN58FuBg3pmMjJLL6YuXD\n5TUOTI0X8WmnAmiPaWmXdVAVOMf1UpY7YJwrxwPI1V3zhWQ6PtqKfdBlAY8p3VYpdKyVDjwwGqWO\nhBTbosV2VE6ZTTHjOAZKkyVVAVijYH0HxXTqpo+R1mNPqfy8t06TTOjKhEY6TLgyd5tygMH+9kMB\nPJAWMCviIzG4Z9D5XYTQqf6i9A79qD60XUNNeAgSba1rPRy+eD1TwWeKEJoPjHPCl2ilN6goHVfD\nRMe91Q4axmbLMicRhHu633VoTTyP6Ouxt382gaJ0YacVcMcyjamg8RkYfNlcLBeoiJJ3vAn6Tj6v\n8wqKPL0H8pKXKVAmMobt9hEgSns6u0RPtTKb+7jqW7hETi9u5vCY6reNEhb7cdPBxHRyWlEKAAzD\nhj0qBykNGR0AxX0ezaawWQe1NQstzy7P89CVFHtn3buoUrSjk9N3uH+W9HHTdUcU+6e1vGC/++N3\n+IZSqIddjIFBQVUVcN2Re4DkFb4B02HPeeDAozLQ6vYVrq4/P7blNEJ9JT93sUfAdQl5hLh0TczY\nK6/7PUBlJc0Y8Eyk/PeP4vDbnobggpgfR+GJ50ZaVqgb1pm5joqmQUZipCDUweYCHJLDscS24+8m\nhXmUSlXKhUEyo4lvAvg8D/UpO6eaz3a2s53tbGf7Ce1nEfF6nng3nmPDYJHfchboU/YETjtYTA34\nRB8qrYdOlpwyjbHeUo3CCaEIeNCJzgsMAz3JwR9/9zvYTIddLmbQ2Bfn0Ttsyh4j3ub1fAnTHPtM\nNTgUYl+GErE5Vg+Xfb7B6aAQ2w2jDsuBa7G3sSxgEVBS9wpravqmjJqXugGbkWSvdJRkktEtAwHT\nqhMqhzxt9yhH9RcrPIqfJ7sDcuoZx0QcZocEIYW9TbtDQRWbuskQEKnpkSR8KBIYZEjyzNO9hdfL\nK9xNJDL6TonH3KkBvSYTWJTVUXvXdhTiTMa5Zu9f3OVYrGQcadVixt7Gr968wmwqz/nmF4IWHIYW\n2Vru8apTGDAq2uRYrZhJWI1esIF5JJ/NQh/DSE0Yb7AlSGfH8sb+/jQd5p//5it4jNpW/G+LBj37\nAGtTh8FU8SSIYIz9gfrIilbB1wmYGiq0ZDtL2g4NexMbUvZlRQMCwRH6OkpGZLPVFSKy8RyY7mqb\nHi7XrDtdQU0FXGV6VzBLWRt/9Ufx/MfI94d2ffUa4ULmvWXEdyg0NFwPFRzsmAno2vIY8dZEmOqz\nCRpGufl+h4ERvA0DNcUBurE5YRLAYDkm8hq0RHqX6I60qRqjKdsbjgo2gzGgJ3q26ABFkQibzGyW\ncXpNpnGJlnNVthLp9FmDhpErDAsW+3BNXTtSqI5sVHXXY8OzwgkceEzbQ7OQkGr2eUuQpWbBGTW/\nywIBz4WrxTXGRoOBZ5RlNLAZ2U6DCcAoK62Go0CLH92gt9OT4wIAx7WOdLdxDeScnywdEfwmMqLC\nPWs4nqXOxIc+YXmCWuXapkJKZj9V9cgJpe8MhZqZsIIZjsb1kDHFHw8DLgkGDSwH4Xh+8k2ymjiY\nriRynSzneH0j+/fN1TVmwelyHAC00KCYYdPUgIzgPJsiFZ19rDYi7VvcEaA5WAm+e5AU9KDJfdfb\nEod3LPHNPQTMjlxdvsbzjgI6BMoOQw+XkfSrVwO6Sr5jP3R44Rovub6tyQQ93z++GUIZMs5uAHTt\ndMbzc/azePFalF/TGwsZIdofi2fsiZitBx08y5EwBWa1JoZMFtnyYgrTlYGn2xJtQXpIHt4+bHSs\ntapaUl4A8GoSoGIdridKs983qE2mDbQeJikam7iE7Y9qNUzR7p9hR/L3j4+nkb8m38glKjy+SD3U\ng46QdaguzaGRC9lIxXmIGoWQ9emnXYaOG6TVOzxpUovJWevRywIm0Y3TKILB1NZhswMoJq8NMmeu\no2D0rOHWNbxArhE6LfJM0koe25yUBTR8iVuf4SHVGhxpMN98JXy8H+MXPLA2pHtzKEp5xU1z5K1V\nTHF1W4U3PJRNw4XJQ/nQdWhYczP53KqqQMFC3XK6xIztLGZ/wDXVVHqmZfMe0LhpqrLEdCU1p0OW\nYPsiGy8j129dnk7HWqYHhwd0z/aI5yRDQxrOaNjCZQ140LrjQXtg/TrVTezGzd00mJKoIuuKI1q6\n5ks6azuUPCT1vj9SN3bbHWzW6StSRlqLV+hN1ohVAI+ydoeyw3pHRCwRukN/GrHdDQ2enmUt1g9y\nD1How6ezUsGExrq+ofojOr5lffb5aY2CYyu7AQbRyY2ZwuMJ7NOJOiQHgMpdTdei5zj3VQGbKeaj\n5GGRwSYNrKb1aHjY95p+JNnRDb6s1elkXZmmGIiczng4a0GFjhKjtrJBXwNNPyAlgUbTUuqzbOAZ\nI6VkA481U6UBGpHRFuk/Da1C6LJV6u0Cl69uOXYfCTnI9ySx0OocAQ+xNolxT2KUMLLgsMUtsnoY\nf0870cN6ix2xCS+H/cjDgrod6SldlHzm+yyBx/q9Y1qw6CAYS3HkXusTZN/KGujaHjZ/3usdWmI7\nRlT5tTtHSwd6lh6wopzofDqFw1a7jvto5jq4vRBncLla4nIphDWmbkF1nx+c5izgTqhy1RsoqIhV\nNHLemV0Ng5zsQ17ieSeO/v1+h20mTrTD0lC238OndKNSJjJihT69e4cD2+TyXNZIZDu4oNRn+ZQg\nJfI8KRUyT+rTDemGlTWD6cvL1qkMNI3cT1a00P+e53bKzqnms53tbGc729l+QvtZRLwvj+JhdXmN\ntBUv4iUpkRaMDKoWfiEe1epSPA5rcI5e2sJewnQIiAgK+EwdmHRt4/sNNiSW2KclXCKgtVRDl46f\ny7U8w4Ri9FxrFewVC+j2HAW9vpwRQLIpcHiU6GQUef+hLZeMOowS/UgNpxkoqchS7BN4HYnhKUZQ\nvOQ4sIHcND2YoczJdrdHljA1RpTrwo/woRavMMvXsE35fLr0sCKpx6gY8+HTC3QCggK7ge9KRNHG\nf0RDMYiCIBRDczC2Stp6cHJs0fQCni+RfsjId6UZ8ElgYJkmnphGv9s+ICadZUnU7k6vMCcow9IS\ntBybOXRQJJk32R0/9M0xHWgOHf72n4kS1NzTEH4p6awR6W34Htp6TLknaNmTOpSDNAED0Knt6XwG\njf74dMCK6GNQj1NvGmxJDbpOY7R78bqXrokFFW16l0QtXoUkZ4Sjt2jYK5j2GgqSPwQmASlBgJaI\nzv2goCYSoW9LDRoYZbHvs9CnyDlPrm5BJ8Vq0Q/YkWZvYKQ+plx/aI1WI6Pwu8VUqzaUsLuxh9aB\n8ljGyXPUtawNk6WHuqyPBC7KCkDgOZJ0izkjAnPsuU4OUBQ7MQ3jmGq2rPpIulIm8ruapsMMSPs5\nDEeAlmvZMJkZGXte28/st8DXjnvAYXpf05ujupHW66hIH1mlHXwqDrkEymiRDscmIKqJsX4mkt6z\nYDBqjkjYYhkKDkNUWwtwcUGR+noLjeQg1iDXPRxeoPN5o+3RD/LzQTlQJC4xXA1de3pcAPD4FOOR\nmtONbsAiH4EiKM61FSySeHz4eI+E55RXxtDHlDgzJ21rHde1NgxQTINbpg7FyNFmNnCxXCJhD7Pv\n3uCWim5d0yJ05XfMcZ0aDhbMTlwtF1guuR4MDfrfE+d5zhIBNcpVG6CiUtuQyfniVFvUpZwlLWpo\nLD3shgHrmoj/kZDGcRDM5B41z8dv//h7AJIlnFP9LmfK3rAifNqx9JBpyFmucbwlFIFjY8Wm7C2A\naHVlGrCY3bKDCQz7tBLY5+wc8Z7tbGc729nO9hPazyLi/au//g4AcHU1h8c6UxiFR2LvQW+woNe8\nJOVck4xqscD20xPiWLzmyWyF5VQivedH1kPTFi8b8ZZ6XaEjDdynuwN6tg5pBBApXUOdiZfbKw3v\nfk+hhciDFcp0TQhwMsMF4kSi1MA7TUi/mvG7uhaKWHXVdChquR9HxTAC9sDpZOdSgMM6sx0FcNh7\n6rk9thuJGnXWwmzDwQ0pIeMsRlHI90aTFW6uxYO8u5dajtkfYBEw4eomLPa9qUFHYI0Si9K7Bs1E\nzzqarp/uv3P8ABOKBlSsi02WE1SlPKu6aY+aymZg4RUFHjIC4Ww0WJBofD6fwWcteTGNwHZj3JLO\nTQMQsparOx0CeuOO5eDpUb6vZsQXLeeYuJTpMmzkrOsOvQaNKKa+YH01Oc2AtN0djnJhHdgT2Gzh\ngDKSmwNiygbeGQomExsm64td0UFvRiAg8LKX6+x2OcD2Dz37U1/ylPNoag46Zn1qGPBIrJ8yUknW\nJcj9j6jJUOzv+TDcI6l9ToBNVpxucbi5WeLxZZSJk3vxjRaWIrBnSGGQDcnsS9Rk8EHDCclreOzK\ncEwTA7MAddug2DIDtB8ZjfYIe4Jtpotjn6Re9PApOxeR2N8JAli8H1sf0DJiU6qCTWCiRjWKsjl9\ndC1m/khACbcnjqIdMDCz0vZAStnAytfhMmKzSSGYFA0qYibqssCOtUt1dXWM+D3iC4a2QMuIdhlG\nWHoyjrzPoUi3OiNIcuVeo2ZWSLd1gNSvdZcdyfiV42HifD5yUprCwFPPsA0Y7HM2FFv5hvqIhfFc\nF6NSqUIPxfsMGM160RS3t2R00wwU5ChomxIJ2aI0YmFsfwomDHC5XGEWjbS18TE74Jujfq4Oi9Ho\nxWqB5VTOAjX0APEap+zpOcFywuxXb0KD/F3MTOf+MKCNyT6WFAg517qt8JzL3zkEiPUd8PED29LK\nLT48kfK2BxYUrxhrso84IGcmcjHzEE7leWlZi7KVebCJx3EDCx2vYbo+XLLrWeEc4Xz12bGdMm34\nTCP6T2mapv1/fxNnO9vZzna2s/2/sGEYPk9I/X+zc6r5bGc729nOdraf0M4v3rOd7WxnO9vZfkI7\nv3jPdrazne1sZ/sJ7fziPdvZzna2s53tJ7SfBar5v/zP/0cAwP3TAzT2EkZzH/GBNHu7AwqiRUHF\njUOSYEXGkaVnQScqeWgG1ERDHqjaU5Y5FNmxPEehImF4WTW4pF5mze9P0xQWRckdU0cTk+mptY5s\nSKNWruG5yGJBzK1fnvFP/5f/9kdj+0/+h38EAJgGlygKQcSl2x4tmx91z8UTmZ42a0Esv3r1Z3ha\nC5I06/vj2FSnwWUPoRsJks/WAY2MMEWr4fbtGwBA27V490BxBPbSNkWCJBaGqiBc4qsvhZkl0huk\ne0G0+j6Zg9odPCJJb7+Y49/9V/73H43tP/jv/wtkO5lLRQS67nqIiP68WK5QsD84zUtMSOAesN/O\nVEDXkn5vGFCRTQbKxjaTv0vYD2lYOq4vBTnouCZqwhKLskaejghd0uJpDSwS0vf9gA+khXRc9yiS\nUJAazjJN/Kf/6r/2o7H9z/+Gi8u3v5b7NKnBWfT4+Enmb7/r4NpE2r96g6s3Mu890bbaYBxZi4pO\nYUa2n32xQcM+5mpDsfRDg0ko11DKEuFgAPs8O+oju1wDgW0ARLw7xoCOilfb9UcEE7mfxwdBsf+f\nv/8/8E/ufzQ0/Ff/5l9i8ZX0Pq+WsgaKvME2lTWg6QPCiShiDfYEGzKqXbA3Mo9zPO8oAJEkWJJC\nUFkDXJtUpzVVj8oEeSL9zp6tIaaIhDOdIYrkdwKus5ltwiJC+nDI0bPf2bJdGGTNKkvZI4YJ/Mv/\n0f/6o7H96//evwNFNqWI+7ivS5SVrKenxx1sQ643XcwQUJc5ZJ+raxvI2bfsB3NERPDqunFkv3O4\n9uLdASUR6C10TNiD3Bcl7u6p2cs1GYUO1qQrDD0PAWlBs7JG1lLsxfOP9LD/9X/2T340tv/wvxmg\nNzL+zf4R272s633C9e+6MFwiufMEDrsW8qZBzX74OJU1WTYDAiK6PbOFSwrOoQeCUOZtTSrKp+0B\nHZn9Qs9HaI6awCk2iXxvXsk6jQIHV9fSh26aBkzSWr69usEVRRD+43/7qx+N7R//W/8+Zj77vXUL\n4L3Prik+0tQoyZa23xygkzJW12rkVM+az/k+WMywpziN5U5gkO2sajNU1NstOTat0RCyS0XTNNTU\nVHZsEwYFKRIyybUo4bAjYe6vUPEMedntkWSf778+ZT+LF29KarjNbgOwSdoyLpARPv6y2UAf5XMo\nZdUONVK+QCMHcNiE3qA/cvPqFtVlDAu6LYvJtnQ4fLl7RYkGclAUvUxuWmno+HPHt1HwUJ85Omzy\nGFc8ELZP2XHyXf90O1FD6sddYmBQPKBCHSEJBnpNhyIHbk5HId00mLoUkDY83FNt5THe4YYqOBrH\nu90cYJGwou5a1B+khaqtBlR0QHiu4cs3r7HZ8MWgeZh6Qu2W7lOUNRVOyJVhWD0abvLDy2keUtvo\noEhBp5HPFI6NgPPuuy6mlsxLUTewXFngOttdQsdCT3pDqx2QKjnMHcfGcinfcf9A2sWuw5Qvzdl8\ngZpO0NN6gzkVq8KlbPisTuBGcgBprQaTxAWa4yKp5fvSRl4yeXW65caP/hy7LUk8eF1dOWjYYvW8\n38LxZN6d1kOasaWB7T9VC3waObJhoNRl7Jv4T5KEVk0uZ9uHRTq8rmmRbSj2XmhHMpiKJCt7fYBH\n6UzD6NHRWfHCa7gU6Y743OeXXwP33/xobLoe4umJ88p5NODiwD6lx/0WniuOX7AIsKHDeChkjWiN\njX0pC+Wl7JFv5YCahjNsM5JLkIgl8GfguYWkOuDjhmQcNbCq5HtvFvLfxfUbJM98sVQP0DlnbVzB\nJM1oWcj9rm5O7zfL7GH5XFMOD2dHwSrl7z1jhluq5CjbhKfJtX0lY6iaHB1paR3Hh8F1rasesxmf\nUc0BhRYMknGYpgGHpDd1V2BB3nCDSj1FssVizvap0EFHApDQt+GRvAN+gP3u8w0e7z/8DlohBBpl\nHmOXyrmwjylfaTuoSRxT5ylMknu4U+9IONL1/H7dxpjwdBwX+7W8xPO8Am8dJddRmibHv9Ob9MiT\nbtgmJgFb2EpZL0ncHPfFYj7B87N8r9k3UPh8O1EUBnhzI0GQpduowHXCvrW6BBySfOgwoHMfer6J\ngqQjjiU/n8+nUCSPsS0PDtvVPt69YEsCEs9li2YYwqcD4oYhGtKXDt2ArhInZUm6V8edoUi4b6Cg\nsd8wmEUo2sNnx3bKzqnms53tbGc729l+QvtZRLxNS/3RyRwaPeW61jDKeE8CHzqj2JETYLG8ANj0\nvd89omfqtqkG6KT1moQSCemmjZyp5kEF0HvxosLQRJyQVo2pn+Xrr1GTanJfpKgUKQs1hZoqKjnF\nyT+9f8AT08PXr65Pjm2xkJTdfl1AY/qkGTRgpCzTNSwiiXy6G/ms70wY+p8ih+3ffC9/Z+joKdGR\nFySYD5YAiRPi50cctvSCn5/xiql4i9qVgWei6yTK7XKFnE7ah48ZFswIWCSY8L0FGp2eZHd6mThh\nAMOVVKVPZZF2qGHVo06ogkPCDqPrYJL0I6nECx5cHz69Y1V0mFK8Xu+Go+qLvqN+bpqh3Eo0nxpA\nzY7+Ni4Q8Tt6RtKuG8FiOruMMzikVKj7ARrTTsyEQmtO0yoOzg0SEugXu/GXB5S6jNe6uIFHWrte\n+cjrMeVIkYS6R9KxGd+b49sHeS7bpEHMqMbg70a+idYYBeLXcG15buHsFrZNkhNN/v55u8E9I+a+\nyXARyNpZXr/C4kr+XXI/eZsEwI8jXivw0HPrVyWVV9wINgktrq4WmJL4IEcAi9GHUvKMG32AO5fs\nwmVUIieJTKNcmKQXHZiG7+wW9oWM1zMuUU8kYmhadaQDvWXpZjZ5gy6W5x1GDSrqzfZDjZAp4cmM\nlLHBaeKT+8dHXJuyF6ekGO3qHBaVxSxbR8t4Y+p7mJGK0uB+HIoOjk2hB9eATu3ZzS5FTl1hmxGf\n1moIWfpq2xIVxRNadPAnknGpea3kJcOUGZ9dlmBJUpzAn2GfkaTDbvFUfF6dqFMNdgfZO2VZYxvL\nOVTmMk96pTDmpuKqPY7JVTkcpk1DktRYjnukC22aCg5T1KZuom5HhSlmxzocSTFM00JEAfg8S9GT\nAlRpVNwa1LEsuD1k2L7IIWP2PS6mp7MUALA/7JCS+GgShBgYHa/3TJHHKRqK02i6j4iZv94Pjs8o\nq2Ueh6rGppBnUe4SMGmE7dMjMmqpDzzvobxj1mvqmfB4Ftd1h4qCMyHJepRtw+W7IU9atDzPo2mE\n9f602Mrn7Bzxnu1sZzvb2c72E9rPIuI1R1Jz34QXksB8/4S+EW9nGrmwSELd0bOaTkM01He9u9ti\nQvCKAw0uicINekJtXSOyQn7moGFUl+2fURNQohghOdMLuIwgYQxoDqzRtCVikrnbjO4QRih28vdp\nd9qHMXq57u7xGbtMvNVg+haWIeMxdCCj7N8zZd3KroBGObi34RSKYBpTVwCjxoH3m3U1pi7lv2YO\n9gdqbDoavCk9NVLLrXcvx5pzlZkw+fgNY4qC3vN3rPUEVo2vvmI0tYoA/BhcVagKQchoxpP7ijcH\n2JwL1xiQrkn59rKHZcvv+hNGijCwT6lvGxcwKELR7XNc8XmGJMXXzBbf3wl9Z77fomb0EUxuUB9G\nbV75e2NiHuv8oTdBlcszcn0TxlFbllKCxuka7y5VSCEeekIt17ZXaE15nocuRccIe4IZcopsjFWs\n759fEKwoj3Z9iWDM5DwMeP/CqIau+KHOYVn8uQkYpnzvpniGQ8k3RQnCfVwhYUZBVwY64iDcXY1h\nSDivlHuc3p4cm2m6SIhN4JRDWQpFR4rWbkDPZ6jbAzpScZaVfJYWJQYCUi4uLuBxT8ZJgo7R8agF\nm8Y5phfyvWVeoWA0jk6hISimjuW7DtsDYn7W9gbanvvX9NCRenHcp4M6nakwhx46ZRcj7ou81VBR\nKMR3QviU+vN9H0rnvuV6SfYlApu1xs6CRqL8QW8w3roibWBTl2jJ0RhnJVLWXN3AhMHa8chf6U+m\niFayn7a7F7yQ+tWwfVSdRGHVPkacnNaHBgBXL3BoqJNctugJqhyIORl0B95Enr05MwDWZXcvT6gp\nhzcnwMnTTNikhCyyHANBRU1VoeE14nSUFVVYLuTep66DC4rMPH/6hIQYg76hjjIMZNQB/+79J/gU\n/5iHE8T56b0GAFlTIm4oA1kPqAnKzLmnW6XgUldXqQBw5J1RaCY6zvW+kjPh3X6HA4Fwnucea929\nb8MccT+XkrnK2w4ts2eRY0JjdjCvm6NueMe/L4sCVwQYOlMDG8onNn0DXf8HEVYd7Wfx4iUIEfHL\n9k8bRK+hWUyZzR0s5xQdbmSBXK8WUJ0shr48YFDy+cRU8JlCCSi8nLy8INPkoRq9Bncim/eps1Hz\n8ByBP4beII0ldaa6BsuJPKgkr/DyIg8CBHr1pkLHDdt8Ri1FDUT4Ti6OaEnlXKClCHhZxEcO2OW1\nLIa01/BxI4v3/T7B5Z+9BSDa2RXVhR4e3ssYl1P0A1O7egqdqjPXvoNffSlp7oyOxvuHHXRrFEDv\nkBExrOs2Fhfy+cffyfcato4gei1zurg8OTbfqmAb8hIJ7FHUvMcF16Bd7LD7JAdJ+njAYsH0YzmC\nwVwMdI4O2zUMnmzDSwyT6bfVjAosQw9FUIvaN5jNBJXrexeomLjxHb68qh4202TLyIGq5N+1DawI\nlJpS2WWv7U+OzfNuYFObONtRRUfZMANJh7n9AVNqpIcXC2ijlBP5uH2lo7ep5eoYCFbkxW1jGAcZ\n83onqHOzblGqEQijYLvyHX2hIaBmcs3yhhnXeHMpad6mb9H25AfWBvz2G64JHh4vn0l/2fMlzGoE\n99GJnF+hOMg1LKWj5Mv0kJToGzpS1Nh1oxnuCQR8fC6OHQGhsUDHA9wmuvnD+3cw57IOD52Ge6Kh\nXeXDC2UcqSZ7r99lGJNwdWMgo/NZKyBjSSggN/BkdI5/YFrRQC+oHsbOgKqoUVWyTu2ZDXdBp9fU\nj6pFoFPR1hq6iuChrsFkRF4HAaYUk0fPNH2WYvcs5Y/eNuGYch7Zbo+GLLij6ldl1Njkcq5ss/io\n9gPXwUBw5aFIsN5+OjkuAFD5GsVBwEG67mM+o8YzT3E/CNDzZVopDSnrcmWVYvsiyPJboicLmHCY\nircdFzXR87ZroiFQSo0OjBMelZ6GHujJQW5pwMxnCTCUNdc1HVyiosuswIznqutax71xyppeoWxH\n5TQbPdHQJsG0juegpMqYpWw4gTwLzXHQ8gzuegYd7iuAIKh9FcNnOaHvKlgcc8bgyfM8eAQYKs+B\nzjVeNwMGX55nRm3wLN8DnThMoTtBS+e0aBqUf4/W8Ck7p5rPdrazne1sZ/sJ7WcR8WqNeOYW2iMc\nPox8hCz427YOz6d3RnCRo1swdCoSWQbaMe2SVlCMAmYziTLcoEZFLc0BBqKQKkGtBcOmqoQSz9bo\nK1xdyHX7XodlSpTWD9cwP4rX2BD+vzUruM8StejqdMvNekuVltrC5RdfAAA+7nU8v5N+0NUc8Hz5\nnWglUb1utGjp0dV9C8sXb3LuO/j2e/GIP718AAB8fWlBI4zeVw0qpnyvZ/NjD6hJsNnri6+QEfDj\nhg12O7kHDCZAQEk4o/JK12LNCOi6G/Ve/q7I/XnFAAAgAElEQVTdzqKjYI3OVJOe7+GOwLCiQLeW\nHmU9q+Ay3Toq4Np5c0yzLQwLAXsmLW8Bi2muli05SfICnb13bTNAo2KQszRhMg3pcm1oQwdF9aHe\nKHHBNptCK6CYNjJ8WQOb+9NglngzoGf6yPcl9biLG1QERjn+HBqjoa1uomwkkjvqMvsKtsNexNcu\nPo4KKWGLr/55WXPt70SVq85KHLJR89ZAMJV14l/MYRM89cR+SWUouEu2ZQ0aDmu5/7oCSq7LsZRy\n+/o3AP6nH43taV+gDdlSw2gz9CeIDPl31/awCULr8wozKic5tvy3RH9Uo9ntd+ip3lI1Aw68T8OX\n73p1e4tLpljdATgwStDKGnP2SU/n8vyMZgsmJPCMZxTsoTdUf4ygNc5vEJwG6hgN4FKWxxgBiMqH\n5cracowAbGXF83aLgVmUgOPRGoU8o66zctE9SYTT6kBwI+PPGVFndYYd+5JtzYA7ArjcHrutRLe1\nYjbKNrFNN5z/HQYevU/bHXyCd6AZ6JrT5wgAZNuPUJV8r7twEb6STNSHP74DAFwEw3Fdp52NkgAj\nTTPgElTlUas57zuAwKiqLBBToWc6DRGMWR2HKmN5hexA3fKhRd6wnarNMTADGbljm2INm+WGX16H\nyDkPgVIw291nx/b61Zew2SJUx9lR+cedy5xnZY/1hnu1KzFxqTaFBjs+wx1T6/7lDcIVFd+2e7QG\ngV8qQMm0dMW1rAUeXJZxHtIMW5Y6Hh9SmKwTaCyb2IaHgu+Z+H6DxUrmybBtaOr/h328Nm/Dd1w8\n8wHvdjEUey4NLYPFnP3N5VsAQNUOcLi5X19fw+BD67MCGgXRbaIim6GHRdRzpykke5lcv2+OtYKx\nhuRaCjWbwZMG0NhfGUY2vmQ/2IF1ycPuI1yNSDsiGn9obLHDw7ZEHcvCK7oA4EHSmSHuNlK77Nk3\nN7sMMFnKNfZtiR1Ro2mvIXojC+ZfWH0JAHACC/tUXm6BAaxes1fYdPB+J2nerqGcmeXDYd9dEw9w\niTgelImch/X8Ujbzer3B/Vbm/OvqdP2iVy0UkeUNiTTcuj7K6X36/W/hlLJQl7M5wE3q8vDs4wQN\n6/iryxsoXscdpggo7v24JtFIamHhyAtrdh2hjFl/uV/j8pe/4fwxZWS0CJn6NoceqpbvvVwuoHzW\nkXc8MM3TB93EnONQM8VqyRp582qGmIdurjXYpHxZNiWgyTh6l5JyQ4dL9n2u1SesKf1WzA7HWvdl\nL88l3TVHJ6noa2xd9nWbFdKDrI0DnYrK17BlbcmfLqEoUWfpCjV7iTumvYNodnJsljWHciXNu6FM\nWpP8qcey6QoYakxF57AN1tZYSzR9hZ73EPg1ZkQcb7drJLE4p8vl1wCA+TLE417Wb1I32JME4Yvl\nAibTevfc83rbIKK8ZKE72Ch+rvXoKNVn8xAs6tMH3cIz4FEmb0HnIYcF3R5LFkDxzFSqMuFFdDyY\n3m/aDoqln6rS8O57ISOZXkTIUnEg9i+S7q0ywCESXHWAwTOkRoKGMnxjP7ljm8hIRKKpHiFLCI7j\nwuTZZVsKy9nn5eXyIkfIToW8KfDy8C0AoGf607fcY/0629cwiCNZvPoFvGv5XpM9zu6gYTIj8j9L\nwWMBnqMfsSbLBTs1LB8967alrqHkmdcPA0CH+zXLH+XzI9KdrIF80NAzbV8dGuz77WfHdnVzhWwr\ngcA0CqBGqUiilxtjgFuMOocaGpKYPK23iLk3Duyp3m87pNrYxXKFx1he2G05xXIpRDcZHZH1dguf\npCwqSTH3uE5UgJ77KOX7ZL5YwWKpr9JKDGD9X2lQlFX9h9o51Xy2s53tbGc7209oP4uId72VFMyH\nx2ccGDmFjgmf0dByCpikfNOZlm4bHSUL7xfzKxzW8h1xmcJl2uMpF08mjzNEM/FWZ76DfC+eZ97k\nqBi1OES7qcGETaYj3dZh0DPaFzm6Rrzxkn+z265xfy/er6+fLq4bkUQD3dMBu50AMS4uAzgX4k02\nvY0il3F2BJa9ia7gXYgH9d3v/hp5In83mS2ht+K9LS/FZ8qKPdQgn02mK4RE/u23JfYcf9uKt/ra\n9REQhak3DSYjzaPjIYVEEJNAIt6mbkHHHy8Eev3QLKvG0weJtsNa5jzSInTsf7XQYaA3r+UVel47\nYfahyiy0ZAlLGwXPEXDZhw/vUT5JVDKQ4csMNRik4FrNXFgTiS6yZsAbpo++JZimtwtoTLm3toEy\nkzVV5Aluf03BefbQzoLTIJ3p/A1Kev5rpsvc1yGKTp79Qe+hE8RkuA7qnFHsSiLQjy/v8EwaubQA\nfp/KOgmmLSymU40r+fnM63G7FCBblhb4m3eSgtbUGq7HtHQ/gn8UJuboaetQzAwo10TC550Qab/f\nno4wLq7eYGdLqjlnhFolOXR+l+UBNVnavEmA/aM8/5sL+ZtXr+ZoOA9l26AjNVWHEiHFzEcGtDI+\nYEzmPycFts/yf9vHFDv2aF6RnUirWvzqS4mUEwW0BOxEnoWGpYct0bn1/nTEqxk6KjIZjYDH2cXV\nMYLarjewCKyzbA8tGeuakXa1a1Ey5Z6lBQyCcFKl8LffSwZJJ0r+9eoGzkwivUNygMNnX2kmPK57\nnxFslyfoalkDkeMi8mX9RoYBLR9BbQEcfB4d2xQdPGZymqTAbiPngkEg0sMnA954tg09XEuurQwT\nXUVmP1IeLn0TdSzjmboK1kQ+j7M1nj4Jz2iWyT798tWvETkytm2eQGeXxFDWCAh+nFBA3q8nKDO5\nLx0mbKLCdaOBz1LSKSvKWiJoANNphJJzAgKmdGVBsX+670rcfZRo//39AfuGPcYznqlDjX3P7E9f\n42lD+t2khn+Qe3OYGXDaHJfMQNlFi4rIdGOwoTHDc7iTVL6ezfAFI/u6b1EQAGoGDhzn/xm46mfx\n4t2RS3j/soHPtp9VMMfckcUbTTS8fSWbPnRkkjfPG7z78HsAQHZ5jZzpY+UYuH4tm7cqZeOZboPb\nW5kwrczQkk7s7nmNZ27or0gIYGQlgpm8fB7WL+i50Kuix9MLW2O2sriLJMOO6DmPqOAfWsEXhxXo\nMJhqSvZ3CCJJCSdthheiHV2muzbrO5hsNm/jBwSWXHexCJDH4mB0pM5DmcDW5OeRYeFqKi+vhWvh\nji/0TSLz4PklDtvfyvyGrzELZZyfHrfwWGYaFOvbhoLDpvn+M10A7eEJEdt6IqJg2+0LlCmH1Wy1\nwIbUhPmhg05Uo0Fu2sU0hMsN3Wcaqq3cp7btEdVy7Y4H4uXFDHNP/m5ZDNDYTuJUHZK//mcAgCc6\nQXWkQ6/keS5/8SUGHrodjmBHBGwLipjy/6F5yyXMjPUplriLIkeWycstcwY4Efl2LR3DOP4jovgO\nwUoO8OekwV0qL1PPMmCT8GDJtRVeWbCmsgfamQWdL+z19h4XM7nGiqlhexVi5ckBo+UN8loOkkFp\nmLBtpx1kTJY6XZsPJj72RGr6Edt0dAuKiGHXFV5vANB7C45LJ4dtRd3TM3rW/etGAwzW2LIYL0+s\ny7ZsC2wbWKTcQ1tg2Mv6LW0NZSH3W9Nx6soSh9EpG3QYruwRfWKhZCp/E/9dXu4fWq/p0EhyEBIz\nYbo+yoxEOFUDjzze2yTFQPrNji2Idw9bOHyZDAjQcv/6rouilhduVdNBKUq8nsuz6LseLTXQ68pE\nkpC3mWj1qTfFhMQoQ5PAZmnB6guYRNV2WYYmO+3kAkBgKrS5zO/EcGETZd3yWSb7FAXLLdHFCrZO\ndLbbYwhJcMP121ftsXVGg4aBZCZFkaDjnn4mUYsT5jD4877KEPClVSUJmoLOJ18ldp5AoxPvKB0G\nnbnZanksc52yulWYMbVddEBBh3xD1LimQoBp6/3mE2KWEbs2RMGUcEmHYN9UiNmt4rgRat5jEtcw\nHJaoxtJj3yNXJCVKAYvkSkZbo96KY6LR2Xt57ODzZex7FhzOU5MWqM8EGmc729nOdraz/XztZxHx\nmgHRku0HlAeCMzwXFZvllRmiI/1Zb4pHlydPKFKJSJ6GGvFaPNPFzdcYBgGV2FOmOaIBiqnJ++++\nwRNBTN8850j470siGfU+R0KPLc8zICVoqzexfRBEccZoM/Q8fPlWEK+XswB/fPjx2N4/kurv4/MR\n9BX4DUbGMncoMWXUkRJuuUsaBDlp7WbO0dNbTAr8+hdMZx2+5eRpUK148IEFRL58x6bqcHstn/sT\necxlnaMhwi8zHezZIH6/fsYVQRslyeI/7LdI0xGQcjoqnEchOnqI9SeCc/IWQyCep+UvYLHPb/P+\nE35BQNjck2vpmoOVI//+wx/e4fAoGQHV6PjqlaReHVv+fuXoWDILkOdrPLGP2YBCqUuUELb01O/W\n2BPs0LaAOyXK+mIF9DInBvssu3IkJv27lmQJKqbo3RlBM1qJgAQviTbgjojX3tVw+YrEBUz7WTdL\nfLv5IwAg7hrkFsseho2LJak8SUKR7TPgkj3eg4tbS3qU7YcKNck7GvZnXkyv0KRy76FtYEphiKbI\n8dLLAozmsv4nRKf+0Mo6h066yyWj5LwxMHR/Aq+MhDWoGrwcBPTSEDX6dvIWFak2y7qB7pLEYxFg\ndy8RbfEgezOazXHDcoueA7MruadW9fj1V9Lf6xLZ/viU4YFo/aLqEY19s84MNSMci1HTxZvTveWz\nyMCKKPaWfeFlksCmutPlqyuYRH9nTxsUkI34uJW92VsRdNJedn2HETKTVQoDiX52jHS+/+Ye9zFL\nKV2BRciMQ1Pj/W+/BwAsbiTqtm/nuCCvgIkeOkGbvqahrwgOyk2AgJ1TpgwTLXleey2FwXS1yZ5m\nZfcYCCibTyO8u5Msi550mFD5ZzzD+sDHlApVgH0UfnDtAbOFzNtIg3j3/O0x7fWLV5eoC7mH7x+e\n8IqdGk0v87vdJugIfOudDtMJOQouAjR/D2LbGPaYEDzZDi0OzIys17L2lDfFfEJq3arBloC8pOnQ\nk7bWJuFK8pziQEBpYnawTNkjlmHgZirnSkR6yr7YYaFkbAUK6IyEHX1AwbT/m1cyxksP8HrJeqxM\nHSb7nO+2z8fy5T/UzhHv2c52trOd7Ww/of0sIt6IUUQ4UagJdii6wzFvXhUH2GSpShgpVnWJkLWn\nT99/AFhX/Pi8hnYntb7Xv5YIC3qOA4f6MclQGfJ30y9/AeMghfeCHnFk++hY5L95dXHsq/v+mw8w\nCvHiTXNkE8qwmMoN3a5ORxfxljqieQidEUXaD9jvpXbhL10sCA5oaolY9nWO6jsht7+KGpgmvVFr\nhz/7jdRB6h0j+LhDTyrL0Epxl0iUlbdT3DKKZfkRu7JGSvaXD3GGktFUpRyorXhyTU/ARteiGinc\nPlPk9b1rJAS5jGw3l4vXWI7epBpQkzJT/yLCkv+2U/GoLy8XmDvyu494xCO1gncPGa4H+d3pa4mK\nAhWiyCgNl3qIn5gF8BzUFetPRC21tYbnd3xWszlursSTftmU6ALxlCPW8ZazL06O7fmQY5/J83p9\nLRFbkm5QN5RddC1UJG03nRBbtr6NbUH6wjuS8deIoZMmM3gzxdWtPMMZa7DxEGPwGbUHCstraXlA\n+3isaTal7IV3795jyojMUg4mOjWOfQfvu+8BAB09ccM8XVPrhgGKPcoeWdi268OxBr/ZFnAI9MP+\ngAPBRK++FB1Vd+rjjv3rbZJiQeDi7S9vUBHEE+ijvFqPgcBIS+tw+Uqe98f7d3jeyT61GG3ptg6f\ncpBtmmObC8in2Fdw2Bseks0O/en2vb4f0JCVK15LtunVFxE01hp7rUVKoYGh11Czf/rxRdZvGE2P\nXAJdWoBkStgWMS5eURjiki0p2XswaQRXM/H4QeZEayvoBftlN7I2PxWP+OWKrUWWC4NUqDer1fHa\nbaPj/2LvvXZdy7IssbG93/Q8/tpwWZlVXUJBDQF6EfSL+pn+BUktdXVmZYW7cf0x9OTm9lYPc5Ct\njuIFqtBQKBrgfMmbJw559lp7mWnGHMPsj0+OCwB0pYEGthwGOkpd/v32SR5i1BvBYdS9WXxE3Ry0\nsis8/CKZBJXtWuPrW+gOaSLrFibbaAZujvGdfEdM4Y9P6xZlJWtueOnDVdgTPQBc1q0N0o36YYCc\n81soMXYbWbf9vo2y+3KNV6s3sEkKkFYaDMrDjvneLAfwLTlrwldfoR/xXF4m0CayLnVPsiBdoWNF\nvoKyHWLck/2WuxHGlFDtdwS9Fh3sUp53Yk6Q7uUdXvYdqGwPmxrM9IQqPGZcPdNASvDvZrfDTv23\nxbC/i4tX7WQAYWiiUtjfihjEDCBaZUAhqbrnL5iG0/pIyE1baRou7+Tnqn+FFy8l/fvv/v6PAICy\ny7EgIKpGd+TVvJiGmLDhPE1l8Suuh2GPhAF2h3vyA+e7z7DJ69vx4vZsEzaRzq5+OmX5fPxCPv+w\nQ92QaKBoMKNazcvLF/jmW9IFOvLSN8UOL9ivi3R2FATvWzVcovV6EznYPi4fUTSyOMssR97y2QMV\nERv2XT7vqGcg5uE625WIt/K5vjPAMpZLzzvojzY9KER32/7pw2B5H2G/IhiB721f2sCOtH49C+Cz\n++YQG16G+oqOQhbg+R9lUzy7vMPbH+UdWJqGj/dEzaoELdg2yob9rfEOeiPjnL+P8Ybv6JF/K/ds\naM/lv1//jYYlAT+tbSBeCwo7y4h4tU87Fbdf/QE6QRcT8rraPRObTzKn/zRfwBrIpef2DJQqdX6p\ny/n9L/8RK0V+d/rCRXAhh5Xfd47pd5UAMXNkIOLzhGqJMpXPXQwdDIZy+GVL+d/FIoVNNLqru9iS\nwOH5zVeYXMkB9OYnGaORnUb+PiUb5ArT/SQJGE6HyAme+vDze5QrWQ/TIMDkglSfJHqIywwKQY5K\nDpDuHOOBhz/eyaWUzuTSTIsYEbm0VS1H2JP1ctVXAOovGwQ4eWEfwd0hnejBJLVmrRjQmObt2M+7\nKU/3Tbq6DpsOTY8ArD4UFFsSjZTxEdynFRZU0lLmT6wTxTH6z2QMnmtjxW6JpqqQbmWNu5yz18Mh\niH0D0gYfZgSOJRXGQ/mOXJfnjHdPaDhnOToYDoE5vg6TFJRNsoStnHYoAGAyGcBsZX5GXn1UAVoR\nu1ZpFYz2APIpMSERkOt2yEkalFHBJ27mMFTZ14qjoGsI7ssX6Dm8ZFmqK4s5Ngn7p9MY01sZ2+XV\nDdKdfF+64JoNSxgsB3zYLRHt2Qsbx1CDL/coZ1mGmA5eFuXQGaSERNdfhtZROQiNg5djebcXvQL1\nmA6hL2fJFZ7AV4E4tRD6sn69yR1s9qcr5Jh2ejewdfJXI8Xi4T0AYNrTEdrkFahlb/eNFBodUtvy\nkZG7YTwaIFa/DIo7ZedU89nOdrazne1sv6H9LiLeju0EthegJINOliew2Uiq6A2iQrzjVU6d0F0F\nk6nFcDKATVrF/oWFXo/avIyIrdElSjIVxdkeClNfSt7BOChMUKcxdzRo1K5sqww51UJ0JUNFhpOO\nDEsX/ggrFtXr7HRx/Zbk+LvhELstv1crUREsst5sMWAPXFvLM764MvD6JZVM4hbre4nofC+ESi83\nYW/vMHQRERClVg4KpmPLNEbZEaBFisHFOhGWcwB2YKOmyope6PAvBXSgMeJdfp7DoA5vax1AGP+1\n6Wih8PuGA4kKy2WJuGR/5riPIdtA6ko5sgc1ZHGyawMKU3LPLl7h3/9Bfv7BWmFdi7d+fxByuM9h\nsDXDqFMUbA9J9i3Umuokv0iaPQ96GI8lpRl/2iJhPrB3GyJX5G88rX4CAIy+wDhTFTGy7AA+k/eu\nhQ3AqC/ab9Ew3RnrO7ShRM5ByNYFxcD7R0mluoMpyFgII9TRMUNxT8pOHwpcVdbA4yLB8l5+/j//\nD/9wFP9Q2U8eFjUsauh22xL+gYmsy6Dzj5j9wzo7DYpr9Q4Kx7Fhpmc12yMhC9nn7WfkbH2L0GBO\n0NqrobzjIqsQ/b8izoipUj2vcEuCfFWRZ+xP72CShm9ZRYjZs295Khy24BE/h8Vug09PZGyrUjjM\nYNi6iRvSVqpMiWrmIdT8r21gAsT24UAqWW8TuMzIIM4RkU70ygvxkiFrZct+yusOZsTxWD5ClhPK\nIsPynQD6bFcyCoPOhP+CvaN5B5fnggEX3928lj/HtpjMUHFLwZXAUNAxQ7ZfxsjYO+o2Ofrmf2EQ\n+7UVqoXGlve92j2gx1LS1Vjm5D+/eULL9eIEHa4nsqcnNwM0VzL++ZziDdUWn+eSgWoNDSrPnoml\nYUcwp0F+AF1tMCBIKi0SNB3PTwCuzjYtT35mocI1WzMHhYMl2zyV/g1y8/qLY/PDIeL0ANjb48Kj\niAEpTcd6CKs6ZFkUmKSMdJ0AUSpj1jWySm0jXLEVrXcxRncQirJwFGJpmZlS6gyTiUTieqehgaSr\n82QHjSVHm0DMoWMcORfSKsXDWva3brcIw/8O1YkG5I3NGxV8/1CMPTTIoo3aCgWp7XYf3gMA+sEI\n31zI5Fq6hYBpP81SEW/loNxxk8dxDptcz9PxEMmSKhZFhsVaUmIdhdejPMV8JRsrWcxQsx/MMk14\nRA/uSRvYbJbweBn47mk04k8//xkA8Dh7Ol5SSRvB8GTTlLMPKBs6CKQK7A0MvP0sm1wJHHREPZuD\nIQr27K7Yf+zYQ7RMHy/mJVzIIqrUABvKlmQz+d37h/VRWaROe0h3VBxpSrSex3lnfbA3gs4LbbU6\nnf7yNKCkzJ5DtHTdxWjYi1gXA4yH8jz5JkKzp8LOBVGYmoL397J4n3/1GiHr5f6VDouXiJXJ2Ayn\ng0XE4fXgNTbvhMrv6srHj+SqVT7If1eaJUqqvCzmIWxX1oajFFAVeQcaEYv75LQ6UVNk+EhykM0n\n+a4X/3CJlnzTWdoAVIXy71QUtnwvWwahBn089/4AABhcWtB12ejmwIXJ92l3chB16xgd6SPrzoJN\nofGPHz+i78oBM3akfNIb9REoPMC0BhqdCgMKNNIXHlRaVrzAf22u7yEj4cuCDlyi6NiT6iJSN+g9\nk73V+VeYL+S9DbjuL5/9HUYTea7P3/8VDqlbv72+RcgU4b6UMfoDF1Ei9cWnzw8IpkQBZw16vHxU\nQ+bx5/UT5pTO7A28Iw9whxxNyEvCJUqYvbi/tunVEHVM8gTWul3VRmiTZ7nI4VayrqdaDz22FzTX\n0vu/3O6QkOe11CsQXoFeo8MjYngUcG7WG1QfZe3pVoBXZA0JfR9D+gU7dkAYwyHGJs8SSz92FGjQ\noZEGE3mO0D0tdwgAy8UOQyLhdYSI2dMLIt6HIxeLHXOsqoLrKTnrfWDHunV/TJrYqsE9e2QbmLDY\nrN6fuGgotwpiBMYXPcxWlKpcPsIhEU7leoiJXldxKAs0R4S0qqpgph2ho2PRfBnVPHk+xe7zA5/X\nhcfb0oxZElIdBCyxoOyQsDZ/6Xp4zj1yUFhyAwfjK94HUFEwqGqyGCZT157HZyly+B0dKV+F5lK5\n7n6DwpbvW63kjKpXCQyqG1Vdjdw4XOIJjODLYztl51Tz2c52trOd7Wy/of0uIt6uFI9PqQyMRxIh\naY2F7VL60C5CCzuyL6Uk4DbC4Kjf2AUjONSM3S4jPK3Ec/rxM1F9noXbFxQ+jvdHDc6h1cH2CFpZ\niuc2HV+gI+PV5cUIK3r7u10OmxFvTUCV0uoYP5fCfqOHJ8emMSLM9RbAQcc3OIqk78otEgrdX78U\nFHaqbLEiI9HAcqFqEv1tOg06kYZqX9K/6zTHcinpj+2iOaY6Cy/AM6JQ376TFOzjvMR0JGMoqg47\njjlpFPz0/V8BADdjea7rqxv88E/yOZM6wb82u0zRUIAg7WSua0XBBcEXXn+EaMaUcFFB62QuNPYz\nN+0OO6KhYyXD+3vpTa51Ay+I/K0I1IrzLRwK4DYG8OpbGX+5nqMjG83dP0iE+eb+He634qU+vB/A\nJtVcNbLxeiKe8B+/k99VutXJsc3nMR5XLE+QAciY23CvxON9dnt79HhTpUFOIFPLn11fX2JNVH7b\nVEdWo09PM1zcyLMPB5IKNPQCs/d83/0xnn/zNQDg6e17uLV8h1tzqyoj5CmVW/TuIKqFJG4QE0BU\nkeoSu+jk2JKuh5J0qwojPss1sd7LXJujACqFD1rNgEYQ2OxRovZO+YQ/vfwGABD0LlBR5eZh3eCf\nfpZ3GFKHuhe1eJwRuLPL8DmmwMN4iHAhP291eX9u2MOzkbzj66kHk1SU+b5CyjGpIHUh38mvbZ1m\naHOCldgXfxUOELLroY4W0Nh7vnpaY0awUY8AnK+GI6yZjvxPHx4xe5Tz5pvXd5iOZB8YzDB1vRBt\nJ+Pp++ZRFarN9ojvqeHKnla9So4oYsUzoLJMZpo+apMMW2YJx/xyP+ikP8HdBcGMzRDxTjIJM5a7\nXoxtKNQdzusEbclyy0rDB5Y1TGr4mpaJkD3VaVMjz2UfhMMRBkOeWSwxtJZ3LB/d3Oi4Cjn+ZA9d\nO4CgiFiuImwfpCNjH8e4ub7jvH/G58cTRAe0xIiw5xmitMbxXGl5FpdFBIeshgUqpCwHTA0Lr5kF\neZpLtsRsE9wyBd52DQye8U1TQj1UKKhItFl+RPnEToVQgcUzRl3PsMoO4jRyXlV5iXQn720BDb9s\nnvg3NnhufpkO85T9Li7e3VoWf55EUMgBq3QRJkwfN+sdBozN00Ae2TQ6fGBqAmkFny+qS2NUFLVW\nmcKd9EyUTGHFmx1cpoeLKILPlJV5y/qY6cFgnbPvWtCGcjis4w3WH+Q7diTrmA5uAC7OA2r613b3\nUqTPto2JXcKDESl6E0nF1VWMDVtF/vyTpK2GbocSlEp0Wryg06DpBlpS2xlsWL+87UOpZBG6RovQ\nl8s2holPc6kNq92B0zo8CpXvtxtU5EPdpTkKosabmJRouYoxiRFc7XT6qx/2sE2I2tzzUFFCKK7U\np5cRMF+w9ml56B1aRZhSr/MSNokY9nzxauQAACAASURBVEqCjty8dmhBCVnP5RIt0cIaymGeFTHe\nEnXrByqmX5NaMJENuFJLLGeUZVtucE9ubcvV0ecmtF/J997ennYq2rZAb8QaJC/T8SCAZsmGvppY\n+Eh8wG65RMcxdVRFcXtAQ15xVXNwcSEH0CZZw+qkzNAjbWXe1LiYSirZ8yaomRa0VAs6W7rKgpKI\naYLNRxnb89ELWEyhrj7NYRgK55o4gOY0jV0E85jePZQ5on0JkBhC0Q2syW/rKQXGuuyRjunEDw8L\n2IaMYWT3YHjiLL/98Q3evJVn+7tL2buZskUey8HmGi5GPTn4t22J2YP8bv9G1sXdq2fYVbJHGiVB\nlMueynd7eGw703mxrKOnk2OzDAsJn1OlqlSjuliQ+9vsXFhE7TZqi5QUizppIO1RCJ3tSN88v8YV\n1XyeTacIXXnOLVOXmutDI+WppSl4fBQ61p7bg+WRqIVJxTxKUbAOoSQ1UjqD+ypHFchz6l4fg+A0\nzScA7FYRPJY3UG+QxOSOPvA3bz9ipMsFOq9jFIe5WmQomPOtDnzzVQ6V2JDV/DNqopq/f6/iK17O\nOpV4lDRDn/z3o8ErRFuZn+X8E+xM1vtgKOdSGs2haPJ3XTtFwHRtne8Qrb8snRfHe8REGmu6h5aB\nzDZicLB7hwXLNZNwihXbHweGiyXH9Ncf5MKvshT6RpwS3TJhMG2tdh12GR0TlkTMKka6kve2b/Yo\niWTGIMAjVY1WFe8TxUHtUKGuP0RK57LrEujuaZnKL9k51Xy2s53tbGc7229ov4uId7uQaCsYGlhR\n2NsBoNPLircxPDb6N4wS1o8zOFSjGAwH0BzxGrWgj6xgzxn1ZMu6hEZqwAI+Nk/Uv83WcEyKHAwk\nWtpvFzjgCuuVji3p8mabPcBnuHguqL0uMxBtxVP8ghwvfIvIa1c76m4muYKQCil13mK/k2jmA3tp\nN76F/+V//RMAwFBXWC7EU/z76QV8jYoYpNActiM0ROZ6lzr+8Foi3j//8IR/pGjAQVXJtfv4yyfx\nGj/8vMedL+MYDkcw++zn1CQyGI1aeFQLcrrTuq5VU6FID6kg8fB3UY2Sgteu5mI0kEgu1IDt03sA\nQMYIPJ0t8IzI1v7QRUwwlxFqKEgO4E/kez8mn7AgSOfb2ysYd/LuTVWD9ijv8NM/EpBmKXh9Lc/c\n2iPcM62k11s0REvXjXjok+HpiPfycoKKZYJVwVRpEePjDzIG9BywzRn5PoKqSMT7p9f/HgDwsP2E\nnCjX22CEYSDjdFodu19kjafUUX52eYW7a3lvu7jF00wimXSVHIUEpuxhzDMVt1Mh/Rh4l4iX8rt1\nlcKwuAcYAbVfEElYxxv41MLNDiQLbY7PPwtg7cdfnlCwpPE3t9dIVBImMA33N9/8CSOLaf/Gx25H\nEJMzxDdfS+/8DbFP/aBDMKGCT7FHrVB1qp6jYSfCxTX7O7sa65VEONHTGkOqBFkNjpSxy3tmMtan\no/nBYIJ4IZuxWMnafPfhPSauRMx34Qgq6Rq7vIGey793VK35vNnAH8tZ8Hzo4upW9qFqmdixc2HJ\n9Oc+KuEo8l5rpMe+4VFvgqZm1oy0l5/TDjG1iNXOxMdHAjiTEvYle5uHAzj900h0AHjz/Q8wXwUc\nZ3YUIAio2tWaCUKCpELrEgrBaUmUYvyKpRuCQJPNDGuO+en9B1zfSokp2cX457ns36lzEItQJIUD\nwOsPULCs0kQZ4r2s5beZfKbYL2Fwvwx7PVQEQW0X7/D0y0Gn6l9a4F8gdmQ8TQG8oTavSgS6X6tY\nzN7Ld5lP0Cn6PTNqvNnKz395I2UOY7+D9kTaUF3BnkDKrgW0gzob95OjtWhmkmk0kjVydrQYz6Yw\nuG4tRrw1dMTs9FhsctgE07k9D6PrLyO2T9k54j3b2c52trOd7Te030XEW3fyGJVioyRkfLeZHdsX\nnt+O0XPFE/yJdV1TUXAzIuOIM4BOHVrbH6Ij8flaoQxftEBHr11zA2gj+XtD/QpKJVFh74L6pJsI\niweJiJ3xFSrq05rw0B/QIzsIKhg6huwXTT6e1j5tqNkYPf4M9SDT1QW4Zs2qjj6iYL0i4Bi3yxne\nvpPo5dlLFwqjY73TAdIj5k8S6TyVFYxAvLe+A7z/538GACw+VLgjSf7Do3ijP76dISvIuuU5KIk0\n6Ps+Xgxkfp4xyxCMTGQ7+ffL0WnmqlW8wY6tQyFlDtvORMufjZ89w7eMwNPNDPmBKYe1k3S1QlSx\nhUqzofpsSTJKvN1KRNDrkRKxb8Aly1htV9AdiYDcwEZKWbCa71sts/9ClO8AKT3Wrtji0Cmx37IX\ntjjdBla1OtwhATn82efZHqUi72U4CvGZNfSqMrHeyr8vn2R9lvUeY2qx9vwLtOw7NuMayWepw/lk\nY7q8GWNqyfwpOWD3xJP+648/oqjlvaS6/PfF4x7dUMbWmi6WpOjZrD6jIjPaaitrUcFpjdD333/A\nhG1nEd/FZrtBwf329bSPrJJoX+8qPNy/BwBcNTJnF9a/wy2FJ9YLDRZl+Bx/AJ0MPkOdOIh+H1Ou\nqW32CKVHgZHoI7YG63QkoS/KGk7MPt49kDKN1CQJtuzxrNmGE+jPTo5t2HPwMZc9HTETUmctNGZQ\n7LCGx/fqWj5qAsMUUlKaXY27KTM9tgYQaJWpLdYEeB5aG6tSgUYAV4sUNkFb+zhFw+xWq8nv1k2L\niKxbyTZBWcq7We0rTMhCNxkOMLr8Mq1iU6SItw2/t0N30Ey2ZQ0H0wmiSFrfPn68h+5xzVkBOso8\n7veyR3bzR6SVnGPjwRh3FxIRG6GHlvXPLWu5KDuozID0w0v0OjKOTYdYlgcwl/wtRXdweSVnZpsV\niLju4yRGHn0ZOKY6HiyKe1iFAtOVzz0s5TObKILHaHXgKOjYmvRu/gRCZ5CQ2a6OF6gTiZj1IEBC\nqYsqr1BSK3xCcGvVFui5pL2N1zDJ1uV3JUyu5YLYh802wX0k/66vv4bC+r5m1ahxuq/8S/a7uHjv\nCeTo6w1aLvQODTxfLuFg4CMkKGNC4InfXcOjWkXoBUhqAqaKGrdUbHHYxL/WFWyIeHNsCxc3smnV\nIkJMpZfxoZdYc9BGkoJR7QrffiPoV/P9E7ZctDU3sWE1UDvqg3ZfEK1lOlJpa5js4/MtBd1eEH5q\nXsDm5vfZHO9bY3z6SYACUdw/puI2EwthI6tszN7Uh1mEbMGLG3usCGj1+3/E8lHmNSVl4uLjEv7t\n38o8TIMj8YRuq7i6kYX4jIjFddIiJ2en7p0+wHf7LXIiT/2AYDDdhqqz2X4+x549doWaIyKf8eOD\nHA6mpiA3ZAm+md0f+XQD18TDR9k4P34UoovXL6bwpkxZYo/ZipdscIOG6ksqD7Ag6yGkIzbfJWhI\nWFHsSvzwF5nXlrrDm+9Op9HvoxRzrgNryNR4kyIgAMxUckRsoO97PaimgKc+/yxjU5wCPi/pYp6j\nJWWfV/fhsDF/fFBVSUz0M6rVWD28IyhmOvgDBpq8l1FfUvZ6MgMMcZ4+zJ8QzWWeJr6JbUR0OwXO\nb3uniU9mqxTtSi5sciUgUVTcPpc9EEJBHDPlZveAsayDr24EKOg5HUqCoJarFUa9FzInXQWFtJN+\nSH7cpEbGvfnmfoVnfxIHYjSdImGZZv8kaycI+3hO0ofReIjZW3Ei6932CC6LC1JoFqcP8YvrAUaX\nss7Wn0k+0hSIdvL7xXqP3l7Ojd7gEg61mg8lId8oYfJQD3oXSJkq/fOf/xm7ij3TVAXyggA7UpC6\njoqA5a4sqSU/DiCdM6W82eMTUb2fZnv0yW+9TAoU5Bt4tu1j0n451Twc2KgItnv7cQHDlXVvGDKn\nZs+CMZXOiHarwrsUp/fq8gqPc1mXD58krbpbpwjHcq4MLq8AnyBT3z2Cxxa5PLtd2WjobNgPS+zI\n060nzTFoumW3AIoUA1/2/yreY9yXcU76Lt5+kHX08cTYNg+Px7PYcm+gEmTbWbJG+mMHXnM4jyzs\nH2VvrlZblHR4gpGMYXz1R0QL2QMfdjEMvpcgcJHZ1GLnHguMEndXcq7sww5Xd7IH9KEDDOXfP/5A\nB9sdwSTav3R9KFT4Mg0NrfJvu0rPqeazne1sZzvb2X5D+11EvEt6vrBLXPlMIY776DFCXC12aBgJ\nO4wKqxrImCoJmg46o4DR9R0sskItSfHoD66gUlEjKVMY6oGi0sN4INHvLaProkyOyjUvXl1Bpyf8\noLW4Y69wdRAlWC2QrQkW+YIHDkd8m8YyAbJC+UYJC/L716MRHlbiWc3ei2eloIYxIghoq2NHIv+H\n2R4RIwpzIJ7X5eAK958kvblbbPHunYy57plISK/5tJHnvfv6j3AnktZTOx1DKpWM+iEmZMRp2AP5\n+LRGspbnzS9OtwE0XQVNZ0qNbUpNnEElC1NVRrCYButdXeOR2Yp9JV43sgINvcZ8HyEYyb8LQ4U5\nZTR+oHsb6ujYKl1mNeyReKmz2kJuEyDDFGxRqOgI+/esGtZnmRPFtBF4Mm9TCmFMCKD4F2PTDSj2\nIfqQOdf1DsFYHqIzFWSlrI0sSWCTuSsja1J/7CKi6EO43+Or74RCcD17QkvQy9+NJCq8Ne8wrWUN\nRJUDdSV7YGRO8JxRS0I1q7Fr4uMvErVrVYsXE1nXY81GxkiXwkDo2tPE7YZmw1QOWq4yD8GFhyqT\n9VckOfKYakp2H3/827+R3zHkedMEaCk04o1vMOlJ5O61wLs9e3NdiaYspUOryvp58eorjMeyXvxh\ng5HD9hGCVFrLxYBAuDfLCJ4re2BvOGjYb73dkUg/+YI6kW6h5pqKDTKvJQUsthhVWQTlnUR0F8sG\n19R49i8INqtXeLOR93aV1kghz7DdK8hbeXb7wPJW1KiZMlikHUrloAYEqAHbThaS9q+TAou1/HuZ\nldiyPKK4FqpS5mwTLaFQ/OOUGW0OlWx+jqahZY/w/EH2/8R5BtWUudynJpI5meLGDmbs0d7II2J6\n+zUMijY0aoh1Ivv/c1rhhwfJotTbQyYyxH4vH9xmHSKyVblNgzH5PnVSeGpGi5JsfzoahB6FIeIC\njnqanhUA3CqDask7qMoWYFkjI2AwCB30AopUaBUahox7dYWO53m/J3uoZ7qoqX3cPc0QThnZmyra\ntcx1A9nHQ0vFiADPfKejZOReWDhq/m502WOXr75FR3W3ch1Bp0qd0++jN/jyeztlv4uLV2UOfr/b\n4jUl5bq6w55KPJqmwCaBgEZk8XgQQlXkUG/3GfRANtBiuUbEGuMmk9TbwBnBu2Vf4WqBpiJ9n2/i\nKiRamqkJo6rgsgevtW3cU4h5s1vh+YgvnqmLX9Y/Y0FlnHePp4kYTC5u3XYwI5IxGFjwxyT/aGso\nLFK8CFjPHAZYUHB5vY2hURUpGw6AWl7wNudLd00YlYzd6vm4fE6ihtzBp6UsnCHp8IajMa5vXsh3\n7bbYLiX11R9NkR/6ezfyt3arHDl5Vqvk9AFu6y509o6mRPBeTq8QGrLQ1x+X2B1qcmof055s7r+Q\ntjFVazhEWSrqGN63Mn712oc2l8Nkmsr7GTy/xuULcRo2sxnY+oyHfQaFhAbja7kYPM1Cx97dy9tL\nrBI5oH5Z7BBesZbK3tRDre3X1jQaVNb9VNDxKHUsSKjSOir2O/YC6hYOiukK6f/ieQd07M8Mp3j3\nH2XNVZmGP34t6f6p8h0AYKReIWzleYpchcX+QN0OUNVEVq/k4rU7wCBpgW0HiInuHRgGbqYkVZmR\njjA93X+9XeTwhjKvtzeydta7e6Qpyzy6A5v8tdboCoO7F/KcQ1lH9+9LzD/IPFiugYpSaeuixiMP\n4L7F2mmaoeVl+vLlCwRj4iPUDfyeOD1v97LHmjyBYh9S3BrGV/K+PdVCyJp9Re7vd+9PU/RN7q7Q\nu2W6+1HmqXHGqFgb3ZfpUah9pFn4xI6KlrzEg76BLelY18k7BDcy5v7wFpp2cP4ppbh4QpnK33j/\ncY67CykHaK6FnOvk8T3TtbYOM5T15Jj6UbDe7vn4hlKfr7+6xnR4uvQBAFaXY+jJ374bjpGwz7k1\nZTzTcAzNknU0GkR4onLQux++x24nl6VvyNq6HV8cJSyjzR5GQ6S35aAp5KLpsYZ5Oe2jT3pKr6yg\nh1R90k1MyT+tc29Hy+TY6fFsMD5yw29XC6A6jUQHgLbKUbNcV+s2LPYSh+wTdjTviE62LRN7m7ig\nwEKfznN1KJsUKdwrmYcrHwj5jIO2REjnPKFCWLXYYEZehwfTQMFAwdIVzCi7ZTPgUn0bFufMyAqY\nlLPV+y5q5d/G1XxONZ/tbGc729nO9hva7yLiDaiwUpY7NETdtq0OnXR2RqCjo7JNelBFaW1kZFky\n9RJFLBGSVVb4uBKqQ5dk84W9QzAi6raI8OmdUFFu7AwzQ7wwmyFLs99BscQfWRoGlkQrxUmOtMdI\ngl7ParPDIiFSMT2tKnKkuOxaZJF8vgoDqESCukqFP70QjyolUGnyzVe4JEPNT2/eYkYAxz/+n58w\nZTT+kIs39nXgIWbq++rF9dGVUhXtiKr1HfGiL6AiZBSUrTZ4fiGeom4ACZmnVFV+dxjU2GWSXqpw\nemy7bYR4zzQPU9Wm6aAmNWRcK1jRU9ZW7/Hpg6RIFTLiDIc9GCp/1zZRT2VsiaMhY8rH2DCycU18\notqP1hkwHVkng86EQUBKS1DH58cl0owiAGmOTj0oOq3xtJQ5flWLR93gNPVgqQAxx1FuZfy6HqBH\nNPU23+G7G4nIdtEGDlPYCQE4hdJiF8s7fniXQ2e/s2P04L+S8sZ6JnO2DQJ0RPOWsPCH278DAPw4\n3+Hpo2RUeqZ46k1b4NW3kn6O9gl2iqTXsjiB48q7GJDI/RCZ/NryzkTJCCc7pP/TDPdPzEMaNpJE\n/u6r1x6eJmRqcqhWM7yAThUx2++DojHIoiVe38r/+fa5PMPDhwj9OwFMhdMAqiGR12I2w2xDVqJD\nD2i9Q0skaW88QNbK/Gw2a3S1zN9BMabDaTR62O9jPJK1c3PNzIBR430k4ynVCimj21U5g8dsyS8z\nrvVPMfp9iUB1u8GnWMB9vcEFeozq5oyS4/X8mM5PqwY7suflaXKMMDdzCrpPbIRX8g7vLAsVzxjd\nN/HHvxf6zVevhggvv5yy9O3muM8CV0HOv+czIjMMBx3BTiNvAJ3R7WL1BLumcAEzcOlyi5ZgUS+w\n4bOvVctLfE1mr4oobmVbQieC2h/1MRxR3KIsUfAcOuh8m6Mr7JlFKrwQS2Yd46YDlC8LQBiOCYWo\n70pN0TGCfPacWrq1jRVFHWC5cEYyl51tolGoIMXzs/98Cpcp7nJjIqdQRa6ZiMiUt9OpmtTTYbEn\nvXWAiKUzRdVh3ck+q6l+tCtiKMx22NcjVBa1hvcLfCDt8b/WfhcX756N3J5VI97IQa3Ahka0b52m\nMAN5mRmRb7tFgZptIkYgih8AMAx9KKksKIe8xIPbAWy2NLxfbrAnYm6zjBAGMqm3F5IWrIoIFgkI\nXGeACYkGvGKNmhJqhzrr03qOxY6SZ4vTNd4+ZcXGioacdeTR9BJaIA3X6/U99pn8zuiZ1MpGFz38\nzZ3822wreCyJ3s9W2MfcsFyY/9ePb2FRLeVpucD7D0KCsK073H4lKNTBFblgFR3ze5IzxBlev5bU\n2C6JsPskn3vm8TJWOxQU5X5+exodi65BxHqY3spBs25naCgxZfkeOtItZmWJopV3d2jnGHouki2h\n/OjwQBrIuGigajLOQJP003r5iGIjm/zy7iu4TBW7lg+fpCr3pAVMaxUGyVWSJMOCG7oxSwyYahpQ\nO07B6TT628cHrImiHA6YRr8cQ2GaHB1wd8NUdLdFSc7fIVk10qxFB1k7Xevi+UTm2nV7yBM5FN78\nKOveqFT4pOVcbHb49u/l31FSI5rLe9HoVKRVAYuXk44aOZW0mizDiqnie5JqDIc3J8dWaCq2pLt8\nyVQzug5FwVaVvELJwya6f8J79S8AgGzNefRL5OTQvlADjIkgdw0F14GMf6iyZKEm6BMJ3qJFeoBR\n90aY8E/fsN5WJ1vUXDudZyGiU/tQ13hgXfHxXtZknZ++oPq9ETRDELwH+TrDrDC85FmhjlCOSSUZ\n5fhIQo6bKXmAuxw1yT/WdY54Rxm4psMDJfUUIvHHbgeXco2qqeGJyOH1Zo2KCj0aywK1YQI8gzRH\nh09ltXBgYMx3YIUWrN6X24kUvUPHi0G1NNgMWHrs7mig4wPxHounDV68lDQ5agVrtgYOSYO63yao\n85qft4+BwOLjRyyIWxmMxbHM9h3610SjX96g5oUfr55gsv0zZE1Vb4GaJD91gSNSebFLsfoCrS4A\n9Mb+EWLfFCp8m/V0nsXFPkfOdqK91mHB/WJch1DYytRQVSoe2rDpdBqo8bQnNenVNXQGKSrpNm8u\n76AR11K+XaItDtShQzRUEUt5BmmKgYalpH0FuAdFtipC9gUH/kt2TjWf7WxnO9vZzvYb2u8i4h0O\nxTvxzQA2PZI4ShFRQDscONiThozCQoiTChcTkuOrQM30b5Nn+OaZpFjHpBVcti0eZ+zjq1pcXh7E\njk04JPSO1uIBjcMQYPN7nVfoEbFZ7VPkK0aLRPZ0uopSp5C2auGU03P/T0JjWO/2GLJXbhvHePNe\nUtCb+RxbpqBT9vbqnYqSP4vmMV73ZBw9ZYA1o74BUbtmUeLpHTMGcYvFB/G6W7WFdimetFHLGDap\nC2YWcXX1CtHyQEjfIGQ/o8nm+VWUAQ0jtuY0cGBy0cf94wElKHPy6dP3QCce+OsX36Gs5YU9PnV4\n2lCrNRWv0QpUHPgrbq9ewbmRv/NPT/+MkqmxxiQ4I6uPPd73qxkspnxuxs+PxO9bppQzy0DBiFl1\nPGQfZZnrPRsgUl4jzeZ8Nj85tsdPG2iMPir2Nv/yMIfBvxvHOVxmBDxFQ0EwV8dFkKxzXN5JT6V3\ndQurlGcIDRchqfgOwhof3nzC0JfPuYMecvY7bz+/x/xeIl7rVtJeQc/HimoqTbFFzD7e694ENeHM\nzIxjzTT1ry3ebdESYDgLKCBh6Xh2IfvCtUIopMarih2MRlKrA02+eN9GcENJAfacBAMCGyfTF+io\n2LLdyl4p2z3SXJ7x7sXf4p493HH0hHBI5LpK7d66RcTsz3oRYb3mfoCKmhSMVSfvYl+cjjCy1kF4\nKfulf0dRko9LTC3S/1keuvYAkKlRUrO3YYTVKCbuCfZS3AFKRrQP+/iIXA/YP7tXG5RMsW7qGipR\n8FXgoCOy99lzyRaNLn1YE3nv3vUILfdv4NkIpjKXaROhLL/ABwCgaUskMdPDTofrMdG47Endxw02\nSwF5NnV77H0uqwoO0cHDULJfXd6iJPr79vV3iBtmKsIKVwTp+dTSzqIENrsztF0Oi2WVolWQZQfx\nDjnbtLZBSM3qtsqwjVgiMH08eyYZmL+uPvzLwekWFk8y74niwGZpcf7ILMI6gUbUc9HpaFhOKU0d\nBhH6KTtLyjI9KrapTQ6d3RK1pyDZy/s2eRbHio6KoC1zPILJEoBiG5hHsu5LXpOXfRfzA+C0UWHw\nc4ZWosd+5X+tnSPes53tbGc729l+Q/tdRLwmPcmiSOGQoHw0uUJGAu7B5Qhj9l1q9Nzefp5BbUkJ\nV0ZY7wlyyPZ4RULwfSy5/V0OVAdHMtqiJVCjqXN0lFDLSSW2blpcksmkKHKY9ISt/hRUlEP7+F6e\n2zZRqfKMWs8DNv9ybAWBSaNxgOWOkcxqhtKUn3udgfDAnJKItxrPU9SZeNo6eriYyNij/B4mI42Y\nz5slNRQQZGZ0+B//p3+QOQscaIyAXINenOEgZo3S77toWYfSK6Ajxda7JfuA0wZGy1q3ejq60LUO\nviOfsxSJZiu1wuiCZPE3PiICNKJNgs/vpf6kh6zPGX1s+I5NXUVAlqtOAUrKHuYq271qBQb7g5Ea\nMCjRtiuBLmffIKkth6qDjNJufU/HiyXbVt6t4XhsX+LcmLZ/cmyvn11jwIiiCGWul+kMSkcGn9DB\ngBHBfmHBVCidx3X26cNb7DiXVjhCxbqYgxoZSfoN1tUMU8MF2936oxHWDFmLfYKg5/I55R0+e36N\njBKO77//CTb7RT9GMT4/SG1utd9w7KdZkMokgu/K87x5K9HHt9+9wuuheO2upgGU1EsLDwGpPHXq\n5m43b+GHEhUN/B4uBgScaCoe2cJmtGxzujZhefLv5eZnPH78EYC0L62YbGi4j9U4wjZipsNSUGiM\nTIMpLIKKNLI8pdn25NiWuxwb0hQaASX7+ikath42LaDz2Ks36TGrUVPO0Qx7mHEe26RCx991XQcp\na4ydzcxCVaDl2tv7DgaXsh7s3IRekBFrLOvi1bc3mLwkMf84wBOpOte77FhT1dQC++LL4KrPv/wZ\nf/hO6rZKpcPVJNMwf5AsQ95acMi65TsGNLJcmWWGivVcg5KpdaUiZ29zWhmIOO9odHg8YwuyfdVJ\ngpxA1iLLMbkSsNygLvHL+/cAgA9PB8GPKVy2lI0up5gz0whNB9ov10FNo4eilndbayYemdUxGWmX\nvo6ctJfb+0cMSKsaXFyi414uD/tK0dAQn+EMPFimvPvZNkLK5J1GkYW4LsEpQesbGPEM2sd7lBXn\nkm2ehg4ErvwtNevgENTlWjb67n+HfbwH3UilaRDwMBv3h8iSg2rRAG5w6G+Tyf3jcIiHRyEf2yzn\nmJDnuDWBij1aCxJoKLoOh7q5tZ5AY3rJ7Uoc7pRD727g96CzCR1NgQGBGMO+A6tms32Pjf2qjftE\nkLrz/Wnk74B0j1pToq/KArArFxMqzNRlitVGUoKmJovFVFRcj8V5UC0VIbVTXc9Cxt7mds1ew3iP\n6bWkdny/h4ZkEqaq4YJzmXIB6WoKi+Afq40QDGWDRJGCjwQbrGdyEI8sF1+/lBT1lzRC70YjNLe8\nIAkYGg0CXN3JRRf2NGQ1Rc4bs0mH6QAAIABJREFUA885FzUdrTSLUbPP7/2HD1gT0LMoUwT9g0i3\nzGvfDaBTJ7lIcyjrgxqKfkS6Xr+Q7+90GyVF4FuUCHk5jQMHfQLcDPaemtrpLTC+sOH6siN7bLBX\ndymiSDa/1WkI+VnPC5FTPQfs7Ute3yAqZeyzDz8ctXetwR2ShFzKJGfp3AGYbUWSLNFSXev6woPK\nvsyYKlmbZYMylRtLb3K0JIloXQMq31PIy+R6fDr9ZYUaDrrltsX+2KTAnqWdxvDQo55ulVZwSQ7Q\n5/8O2hwjfrWOGVbUWa0qFTafQaWCT2uUsOkkLXcf0JBEwfAcaFSjeXgn6MF2M0NENZpIVeBOCBrS\nVZDBEinVlAz7NBnDX99+wj0VjlZE7ZZWh6olQjc00fJdtZ2Hkhf6Ad1d1A0iitSvV1vsyBnuuR4U\njb3LlawzwzDh+dxDSAESkGh1DLU6gMvkwZ9qF21ESlMlQ0Y61qposOUl3HYVsp9P6wwDwGo9Q5TK\n3750p8hbWV/039BWCsbsd96tFxjYMn/WqI89e2sdEp+4VoAB99jL22/x9ChOcVS22Mxkby1mkuZ1\nDP1I52oYCrpE3oGNClOSnFxfyXOFng9DZ4mqc+AQ+LnL9oi/0DMPAEFr4/VIzptFUUHjvKrsUQ4C\nE11DfoVugl0kzkpZZegHct6kNqkulxv0CLbdFnuYnJN5tEPP5cKnA+2GPRTkUdAaFRUpfv2LEMHB\n6WcnzW67RMV1baouAv2gW9zCrL6M2D5l51Tz2c52trOd7Wy/of0uIt6S7EeG5SNjRJZoCgbPJSqM\n4hjv3grI5EBMfT3pHzUQW0NFS8CE52vILfFKtiy2K2UHVxfPbPTsAgE9MqUqMT/qmYonpNgeYlKg\njIMQIGw9y3Mst1QaYsTcBj4UUljq1umpvBiKx7daPWF8KR5oVwM1VT1Us4XXZzorE48uW85Qs0XA\n8Yb4RBUcyzHxkmnaqiBd4fIRYDpba4F6dWjr6TDuS0roL9//IHPj+RiRGcd0A2SkwHv38xI2W1++\nuZMUYrxd4u6GIInydMvNuDfBlsCjyiTwAS7KkvD+NsPdMxnHblnAYy9gSZ3bSukQUid5W+6gu/Lf\nQ8U8KutopINT6xYWwRWb/Q6+Kd9hNDlU9gL7nsxj3hioSeoeJXu0ZKYZTzy8eiFjmpKFLCAT0K+t\nbPao6QmHBItZioYqI4iqrdEwr6yWOWxGtxbTkH/74gILpsYeowh9MnT1Axs1Sd0jpgLRhnCZDruY\nTlFSGajRGxhk6Pnw1/8sn7n/iI5sYNPx+AhsKtsO95/ldy4HstavwtNp9FbPUTJMypTDXolgMO1e\nwMIvPzMKRQWVe67Xk2e89l1cs/3GBhAxKkwbBc961F/mc/uOjSH7eM0amFfSFxvPlyg3EoUtCTJT\nqwKtIfsprRQozG4ttnu8IfBmTQL/tD1NGfmffvyEjmWPQxmhbhPEmfytSs1gMc2YZyW0sfw9m39X\nSVNcDLmX3QIqM4i6ZRx7vlWus1YB7Kl8bmz3cUmGpDqNoZMX4PaZRGOu56DgWeLaGlxGdM7YRf+K\npbFtgvX+C8LeANygd1Q92sVbaD7TAEzHbuMdNP53d2gjZsZvtsqhUn+6I6CyqxVULM9lcQGb+yyp\n6yPA0iWYUUeLCyo2FWV0VIhaLBZomG1q2Bce7zOk6SGCN1ASBJelJeLiNPUsANhKg1ekY1UXC6wJ\nVnTYNqnVNVrtUJqxoAaH7BYwpSiOrZP2N/sAy2F7WLpHUcgz+l4AVT2AvWQ+2raBx7LLpNdHwLNJ\nV/Vjmny7Ywo8y9AcWiI9HNsFozRH13w5mj9lv4uL12BqV3FCzIlqbB0NzGigUy0sifZ7Iiqys15i\nTAq3vZphu5ML9OXoEu6FvMDDxq2aGsWGDdNWB8s/pCwrtOxra8lFWiodDty8jWphzd7dtKxR8gDf\ncdriVkdvKJ/vuhp/OQHWu74k12tcozPl87laHQWkNU2HzovjoFjytJ3DpAB6tomhcVE7rY4dqQON\nllyk9QSbPYtlVQOFDfTDySVWlPVqmaL1fBs5L1EVA+yoapRuY6g8gEdEAG6bFD9/EFRpnp5OjOwz\nEw25bBOmkVq1Q58HdJJ0GJFe07Ba9C4Ojery3/O6gVfL4rVrD96YsnPaNSrWmbYLzv+HOTz2VJuX\nl7BZR7K1Pipuhg9zmYdKNVDzv5d7wGetNggb+OwzHQzI0ayd7pt8dTNCyv5AU5fv700HMHWmmpoG\nh2st2yVQyC2rEVmtayqcIXmqewOknJ/ldo/sKKUo63Rk2OgSWcvrdYyUm/jipo8e+b1d1herrEJI\nxzBP91AoWmjbDnz2TAfsHU2Txcmx5ckDDB5MPXIVP3v5HAFlIk3VAUjzqBgGhgOibilJ2bMNVFQn\nqqCjo0h6lytY8uJIG3E67uwL3C/lHe7qFjUxBsO+g3n0ic9AQoYqPF7+fdNHqpNYR3Ex6rPcQlKI\nR+UJDyfG9r//3z/g269J8xjyArE9+KzNoW/CYgpx9RRBVUlRy/7MtrVgEeH/4ptLbIilKMsK20gO\n4Jb81rptoRfK77q6gYDkFIltosf6cuceHJwatsNaZN2AWxK1oeBhLXs63aZ489NpJDoATCdT1Kzh\n7rMEShrwO6jKcxMiTcXBqPMYWXYofxkI+Z5LchAM3AAZSXp2iyfkPGwX8/ujA/sVeQVs18NkLGtg\nu1ERRTwrDQUtL6oVVZgcQ0FzcJYNFxW7EzzPhcJ9iLf/cmzL/R4DlvDaPEXOOcnX7C1XFPSIVq+y\nGgXHkXUN3ryXO8HjnlcUDRn/u6Jo6NGp6gwV85X8rsp97JkmQl+eV6ubo5JWp+pIDqpxAdHjXYeY\nznhd5yjID4BOw5bSrv9aO6eaz3a2s53tbGf7De13EfHahwJ8a+CJbDWr6B7XzwkkuAlQWkRUluIJ\nbfIRDKYQ0ipBw6hkl+9gkMFEIyn5Lsswp0e2Td8hCAkactyjMLJBAJLjmigJ6trvFhgwxdIbXx4F\nxj8/yDOURYuM2Z7OPp2y/Pwoad7l+gH+paBuzaGBgSUeZLOvUBCFCfZOOuEFTD5jXkbw2JP6w5v3\n+PmNPMMhdRRO+9AZ6aRVDscXz9a7+haH1+uz1+5hvkJCGkh3MsKUJPWGvYZ3oBu8kef6sPyEvxLx\nmjO992vbbhKkqXiWEVVjDMuBeSXPHscFntgnm+9zpMwYmCOmxnYbRPTQkyrGsCZBed+Q5mwAmwOQ\nI3DRUFQ82W5RMippfQMNU+ZNJ++9N/RxRUBFYnaIPlIBtDXRMDLtOH/1FzJ7ut7CJMhmOJSIwhsY\nGIZEwa8iONQdLt0+os+SlmqYZtstHzGYkpoprfDT9xLJxLWKS4pwPw9l/pN9hg+fDwxn5jFV59ol\nWuo9J1v2FJYJQpYbbLWCSsF5xW7gkMJueehNrk8DkKLFe7TMmFz5L2Rq9kPkhqwTy6sw6UskU7QV\n+gSZuc6BEnGLPJWxj8aXAOfJqlS0fBcmgYS1WWMXSWyqWh561uFdmbi6kP1dHChj9xEOEJVOUZDF\nhzntMGSWKmEGQNOnJyPexS7DgKjwmulez9VwqCh89eIVBj05b2b9JWYPpHakoL2p1bCJfDcdD0km\nkdFyt0fbyrp2+PlNFKNgT79nWHAPwMXAxjW1bktmTXbRHi0zCkEvREyhhiTKoBC9/fndJ/zlH/98\nYlRiV1c3KMjGVakGSs61R4Bd0VRYzGStu66BITtB+kGAARH/syfqMDctWmbHkuUWJfdxtkuhssPB\nCw8avR52TP3On1bHjgojtI/jy8mE1tg6amrTpuXmuAYdVUU4Pq0EBgBRlKLOmS3ZRkB1ONv5edeH\nQV6Btm6hs3d/HydHGliDnAqOocImEt+1zCNFbR7H0Ims7rNU5XkWHPZUl0UlLRUQBSrXphJZeWAv\n28JktsRXTWikqAxMD5V6+vz/kv0uLl6LB1C7L7DmZgssBQmpH4u4xldEyvYdWWTjoY8eW1na/hQ6\nL74sXaDHFoyEtZ5ktUZMFJzt92AReZl1NWw2YrtM9662K2hUDtF0Ax2pCYtGRcnUdcd6ZrzfIWHa\nr21OI3/LreRVkuUTvvpO6qeG4SAiCrrQA3Tc6PUh3RX0UVDovnE6ENUP27nCZCh/e8FWlbRIMbqV\nFHWSbLDJ5aLqJxkK8hU/3IujcBG4uLuTQ2MSDNFxcYeOj9GEVIdMT15MPCikTLu6Hp8cG9oKLblq\nO/Kw1nWN5UaOxFofISIfb503iA8tGx4v1WyNsuGF7XWwya9qqBUcIrkjolcH/RAtJyIpNpj05fLa\n7h+hdvLsh5S9mptQGlLKdRlQyjNcDUNckL86Jf1hi9NORVcX0HiQ9jyZX9M0kdXy+02j437Lz1Ya\nSh4EKUsIZafg3Qd5R5tdDiq/obbMo3i4wtRY1SqI2IYThDUakqfsu+hIIWiobKfxVWhsKavy6li+\niOIEZS1jKolOTjen018311MYdLTSPdth4gKdKRev2WQYelRx6nSAl79a8gI2TDRMYxZRBN2Uy/Dm\n5gZ5zcuAZBKuqaNkD4eKGjW5rDulg+6T1u9Qb9Zt+EzXWnCRrEgfaSVYkUjEYxljEAb4P06M7eFx\nBo21QPUbwYAUdYuIpZSruylYbYDmqdBDcUA879AyVaFPWtGbqxssV7yQN3vodBoOEnCrVYwt0fOm\n2sKlA6KUBQa2fO8u4gWRF9iQ0KLZRjBZ099u99gn8vN3Hx6x2ZxukwKAtgNMUiiGgx5UBhsVz8k8\nz2HTuXVMHRrT+ppew2BqNeR4V9sKJgkg2jyHwvdyNR4i5WJt+LPVroLBy7TTdATsAHEDDxlV4/Ys\nTey2Kxzo9BXVhkF8gG7pMIwvK/h0XY1kL/NQJAkq1oNdn9zx01s05E5HW6DvyqWYtgpa8qCrbCdS\nuhq7lcyjaRgISGeJSoHLtHyPNKeoFVSxfK9tWEcEc9226Oh0ZSn3hWId0dJao8DheTP0PLTWWZ3o\nbGc729nOdrbfrf0uIl7Pl4jiOuwwn4nHoaFARkDV432CZ2xOv6R4uKEC9cGzR4mGoIOiqBDiEAGJ\nB2RZATo2/yu6A9c7kIv30Wf0arAPq+0qjNj/Wu4LJPSmijZBTr5Ki55v2HNg6uJV1/FpxN6rWyKz\nlyV8elNVUkGlfm1g9/B2SVQoUa67uERtkDh+kaAgDZwPDR7Tm3XAPsF0DqVidOGP0WYSMaznK0TR\nIQISz+zi1Uv4TBvWaYOaqh1m6aDX0CskoGDga7AIHJlS/eTXlqURVtQrPvTGe66DIpWoOSrW2FBE\nIk1KOFOJoiwilh0nRUcyiDTZI03Eu73yL1Fn8h3ZVr4fmouWPbS2o8NzqYCSJyCrH1R63129BboD\nemUL15aIwLLqo5iFRVBVZ51u6m8KHR57aPdz+bv5TENeEoDk3qGOCbZRgY5UlK3KlFtewSYJiG8Y\nuJrK+0zaGvuZjCml5ujty5fYHKKWh0/oSHYQRSnKA4EA0Z27tsHDJ0lbrx/m8ImIL5sK9Vo+F/Bd\ndl/oLXz21Vfwh5LFUCg00qkqMiKFTcVETXDbYDjEhJSuCoGPimZgOJHsjTfw4ZC433dsXAdE4zMz\nFSUpQka0VbWHM2H6Uu8jZ9mjYybk8+MSc6r6wNXRo7B5UavwGYFnHSPt/PR+2+1zeOw+WBBQGXgK\nXFKEfn6co2UkmCcRaoKDDpSI/V4PrmMfn/dQxhn0+wcKAZgUfx+P++gTVa6iwWoh68G1QyzZNztn\n1N5qQEU63MXjGg51X+MsO0bVm7iEqlgnxyV/10bbEklf1yh5Hh0i/GnPh0dCoLZrkVFPttOB3UIy\nBo8Pst9MbwifmRwdKkZEqbu2gflc5tZgD21SFShyeXbPVNCypJOuNmiYztcPqlzREhmzHoPeCOYh\nKux5yPbRF8eWRBuAoMKy09Fj1sHry1ncqjocntWqZ6PkPHiZCodkGq4nn2nbDEuOIU9ypKTJ9TwP\nfAXYkgfB6HR4TIHYboic/deqokHjfgj5vh23hzJjN0qjwGa5q0wz1M2XyUFO2TniPdvZzna2s53t\nN7TfRcT7njVIw1agkslIUzroONTNMrxPpG6oMFIJPAsm2YfgO2g5lM0iR12RbowsJdtFis1GvDSr\nLDHw6MX2AoypcwqF1IWXr1HX7B9MZljO5Lt01wa7NKCTqL1rAJ21t1o7neO/vJSI97uvPLj0ckvH\nRE6vOyodJCQoV+lBWZaNZMVa4XqPlsAG1VBgsnWj70vkH2hT1KztWUoIfyCRwT4vkLcSRT3/9k/y\nMI6NfSpeuWGZuCEVpY1ruATW6Lp8fhgCCv0yxz9NPehYBoxGPtcxukMD1AevsWugq5SSa/ZoGfFT\nMQ49y4TN9pueq0FXxAttyz2cQKLBb24ko+DrNiwIuMV3XcTEAoSajwkl9yKCPuo4wfRAl+gNECls\nhdguEDMKGrJOenNxd3Jsf/3zZ9w+eyFfQUCV4vpHQvW00FC0Mn9NW6Nja0ahSHZgmZbwqCedNAZi\ngleaTkG6k+9490ZAUJPwBuOxRJBZusdyI+OYjvuoWF+ab2S8qaKiZa0w3zVw2Jfi2jYmZM3aMuNQ\nt6fZ1MZXL9GnwEhDrEEWbYCaAhDZf+myUjsLq4QRLetjjutim8sYlp9WuCbuoC1TKBQr0anrbJsa\nNLYFqaoKpeI7rlsMQoKrGCEVtQGSdkHzQlwS5zAM+xhP5Xdn7KlcEOj4a9ssdzAP1IFHcJyD0OXa\nUyqsF098hhoqe/otMr61TYCCKRTLttF2rBuqFgxiP1z27jeaioq0gV2joCUb1T5rseE6W60lmi3R\noiwOQKQcVUdqVnRYLQ+gohrr1Zf7eMPQQ0w97arVjvSnOs+etu1gGYe+5A42sQR50aE9tC8SwORY\nDvRE1p9tulCZ/SryCnoukanH1q02T1FsJDuh2CZK9qcXWYyGwKUDxsM3W+jE1lz2TDjBYX12qNLT\nYD8AmD1+Ro/AUNf14LDv3WTNukUFm8x+RZGhZYRto4DOvdfEMuemocJjLbbMcnRcc4ZioWF703pL\nbImqou7Yj7ufoWXbn+vZAEFVLXkb4raDwgi/bYEVhXu0poap/dtiWKXr/m2Nv/9fmKIo//8/xNnO\ndrazne1s/w3Wdd2/CmV1TjWf7WxnO9vZzvYb2vniPdvZzna2s53tN7TzxXu2s53tbGc7229o54v3\nbGc729nOdrbf0H4XqOb/8B/+NwBAFVeoqYsJVf1/2HuTXkmyNVtoWd+5uZu3p4suM2/3bt2iqp54\nAgFiwIQBSDBmzoAB0pPegOlDCDGDERL8AcSIX4FAqKCa2+bNJiIy4sRpvTO3vtv2Bt8yTyqvR+nW\n5CoGZ0/i6IQfc7Nt27Z93/rWtxZKCl3bpgGbfYwDa9J1XCj26apeQZFdlyYxTJrsppmw77Zxip4x\nhu2P4YXCzhz5wZHVmFIW0dVxdPiwghF8Oub4Woecn9HIonMsCwYozA0L/95/+l/9wbX99//FXwAA\nzHAMtANLu0fF/mDTsGCRhTkYq1eVBi+QHkZjPEJJtaT4EGNCFZY1/Wj32wQalZtGnoOAQuyBpdAV\nwoQ9VFSVKms4NI12gxF8OhU1vYmUPqgZTSG6roaulzzHAv/D//5//8G1/Wf/DvDjn/0cAFBWMv+H\nTYqSbMAo8mA7NK+Hj5YqXx7VicL5GD3v23qfo6GM3njU4TMKtGf83bv3G9QD49DQj+5FadOhpqyc\nH8p3jcZj7FKZsySO8TyS63SUOrqLoJe58UIL/+3/+vs/uLZ/+d/9f9hvZI4bOkmNXA02vZ7TOkdb\nyfpq8z0cyvZllBs1tBL+iKxTy8WBsqB6r+F8Icxni3KPWZnigezXPK+P7Hc/8GGyz3RPo4GsrNCT\nydwbBmyycT1nClMTRutsKmtnMZ3jX/+r/+APru2//k+Az39BQ/Vu8Gq2YVn0Ek4yNIb0eI4un8Pl\n+ZganajyCm0pc1LkCUwaYQQjFwFNDnxH+kJRd0cGKiwLpj48xwbAZ7qH3OO+BQ4HmT9dKUzo12uH\nChmlQ0v2tMe7G/yX/8sf9oU2v13jbiuMZ5vKdoajkNOY4m5zQE0DB62todfcKw4U5c+2UNrAvtXR\n0rc1jHwsaYjiUZVLVwCoppQUGTZUaYuzEh6Z0RX7ebWug8+/6zUXLjsFFNTxeJeX51jSgzj4t/7y\nD67t//if/hv87Cf/DADw8LjD26/FCzyn6Xup6dAomziybSypPJeWOUyqpMV7mo5UDRbLQZFNg889\nqKgVbEr4llRju7nZIqc8r233WM1pZqA32LBPXyPjGCrBy2fSceFaBtIt2cdmB43Py3/+L//nP7i2\n//Ff/2/oOzlWeVjDovlHELE7weyhm1w7pomule+ry+TYfTGO5P4URYn3H+hZ3VvH/TyYuPDHcm2H\njD3runFU+3JdCxrZ0EVRoSfbfnBYSosSLp+RkWkfxQvi7R6WNexzf9z4JF68dSM3vawbOBQtMEwT\n3dBQnaVI2VbhUYJMtT0U+1Isy0ZPW0BTM+FRIENje45mBSiHLmrThcdJ0pUBfdD5zQfLL0e63QE0\nlYGW9PzGNtGxjQhs0+iKFhpFPlz7tFbnbCUPSqY6xDVfoHUDzRpe/iE6vpBhyoOQ5wqbR4pMKB0I\n5MVxmxc4sFG7UfL3uWHBG8lLqjUtZBrbQ/oCPQOTD4lsKl2mYNPa7Lk/hc/va8oCdSl/l6Z0pWmb\no1TgdHZaDnO2+jFgSAtAONgNjnQUlVxnVqTA0N7gTZFQTGCf8l5NV7DpGpPs71EzoNFsH5uekoWU\nAm2CCXLK/j3uY0QTtoHZOrqKLkv8+75xoPF7vZEP9v6j7zv43Iwb2vgNMp0/HEn69iivV7JNwXX7\nowzf2K2Q1rKRNF0Ciy/ZMwpaZGkLQxv0f0tYppyj2+sY076sOIqEbFDGMu+90uFyc5hOLQynZ1AL\n1oor5BQP8MMILu3NNKUQ09GloEjKnhJ8Pxx//m//R3DGsubS7eB25QEMQs0QiLnRmvoEnkEBjcEm\nzunRW3TfUT7Cidx7zzFRU1ZyPJUXe9bG6Dq25Bk9UgpfFBUwcgY5TEoxhiEyOmG1bYPaGfR0DYx0\nCZTmdAYaT0MAf/0H19Z2B9guA01wzsdz2BQEsfoKFYUloGw07BFMDrI/7NMtPIfSj6aNtGWAZtlo\newZzLVtRXBeK7ly11qOhoM9i7MLlXKqxHMuGOr4AdkkDe0RRBtNETsebtMxhHD6+Jc9mL6FKeRbr\npEdAkZ1BEOjQlsfA0tYtqMFesjdhsT9M0+R8fV/HF59Lm+FkEiCl6Mh+mx/FU+KaLU+ahxFf4oaW\nQ2cTSpnniDw5B5svJN2co2Ew42kGjFp+r3UVoD7eTtTqzbHVB4YGwxh0PWUP36UxAgrOWKaHtJIA\nrDEAj3tExZam2uhgcn4dpWCw1cdwOuwLBrBcy7apo1Ay56HmoqW2dKkp2Ax6CyYVcVehYjth07Uw\n2FqkByb+id1ET1Dz03gaT+NpPI2n8accn0TG27PBXtkNOsIJuqFhHElUXRgKiiIRlZLINM9a9MbQ\n0N5DMSMuygq7gu5EFBTPOx1M5GC2DRJK/dmmjRkzp45+vI0mkmUAYHsmDEKzuu7C0GmYQJi4rjsU\nB8KQH0EaOo1QiaFDEQYaLxyoTo777OoKGt2DdAaEXlscYRUnCGBSsi/SDbQJZekIeRrjc5ihiED0\nRY2mpIyhwhHOCpV8rz5ucDGnLOPVJRpKCqbZW7Qt0QPOaRCMAZ57358W2681DxXk3pWUwFRwYQWM\nxN0WHqFmdzTFphQvTLREFLwLaITG/bMANU0QDoaGLmPESjH5Q2dDJyTXhSF6wsdtU2Hw154yu2ih\noDVDScKCacgxmrqCTqh+1NMRp4lPXlubvgXo4EOjE+gaUBE2TYsULbMLw29huDJ/2uDXazfQeGK2\nZuPqQtZZW3ZwfFnDFr14mlJBTeTcy0bBcCgIYBRo6P5ScP3DaOExm7ctC0x2kGzXqDK5FiqPIq1P\nozDB/AU6JR/SaSahKRtGL9nkbOxCo2+zAQ8enYYCn+4vkxnyWr7L1h8Rb2XNmbMJamYS14RYD/sC\nc57ky4sIBtfU+j5BzZLEAIPqzgiK0psdYlTMGvPOgk73MJSSK2T14Ib8D0dbx2iZ1ShL7s9mU8Hx\nBX4fhwHWiQhomDqQEfn4sBaBnq7cwaVpi+7bcHRmdKEjCwCAYco1ur6BHUszrVGhVvKzo7zho2gJ\nAx+yFA6lHQ1lQQ3OUZaNspG5un2sEeeTk9cl87PANpY5u7ldHwVpzp4JQhKYGjwaT6zTAiVh8kY/\nwGEWa9Mco9M8rDOZQ2e0QM29LVFbFBRV0U1ZD7VqEVHWt2ttbFORPPUcH2PKeuqDnqblQOfFH5I1\nilLOUWtL+MHH5TD3yRYmxXicpoHOFLLtBjcrdZThhFOho3Ro0zcoLULCLEN2bY2Khveqr8RdAgCM\n8LgmbPv/b+ZBSVPVQXETVqaGHUVHGgqfaIZ+FGVSXYNmKKm5I4y9j1/bqfGU8T6Np/E0nsbTeBp/\nwvFJZLwxiTCqbtCxhulPA7g8O0MDGKhguxYCQ98bcCkL6HsWdvtBbD+Dy+htIJ7Utg6fgv990x9r\ntVYPOPw+xSitzQrUmvydZDTy/5bhoGcG07DY3lT6kVxVfkS0/Y4+rXo0RqcoP9dYAMXQN7sCt9+J\ndaDGbD7wAijKVraNQkeJQMNxEFEIfIj4MtWjZwSuGTWaTuYyT2K4rPHGtC7zNEDXJTquygqbDW0X\nyxZly7oNCQVer0GnjZfqTi+TrDFg1gNBRgartwCAaDyBzmi0t20EM4maFbNqIwqwT+V+pqpCwTDQ\ncx34Z1K3tok+eEWGxUIicKWFsFkDiu/ucPtAv2GK7puWBYM2ZnM/QOALaU1zumMt3tEGiOL0tdnV\nBrqSNaXxGppWQ1rR1s7GAoFBAAAgAElEQVQ0MZ8N2UmPtpdzyCinp7clPEbtdZmipHRm0SiU9JSO\nKJHpuBZMRuVu4GI0lyzLHftwaSDQDz6sZo/JmOYBZYeOWW4VPxwJMiYzHdc4XZsPwktsDzLvJUks\nXV3Bd+W76qRGTH9lfxGiHsgrRAvKuDn6pJrKwtSRefBMDxkJNEzKkXUFDHIm/LTEjDKalWqwpzFE\nw6xG80YoiM5UtYvtlmYGnQ6fcpYgUlRrH7lvbY4J/W3tUE7i/cMGFWVXK8PDIJQXjE0YXF8BPYGd\n8RKfvRKZV8MZIS7lHC2zR6+Y8WqSVRq6g6ZklusbCEjaVGWLirKpg5GBBQPWYJrheGgpNampFmdT\nmb9t3R2NKk6N7WMCxec0qzQ4Q5ZKU/CybXBJG0nl9kiIIHVKh2HLZ3VT5qaoDWREng5qgkfyLu5y\nA4p1zMiTZ+Tq5SVqIoq7NENMi9UXF2dQ2iDVK/ddWQ0cEut2WwUH8nPoBmi6j1sedl0H1xxQLqBo\n5HiHB+FBKMPCmKRBZWrQSOKDrUHn/qdYIz60BRpaJpquDduSc3Q8AyOiKz55M10PeORctEmKmF7Y\nLcyjLSKo7mhZDgbShWXp0Fmzt70RdOOfJr74Sbx4K+LATVHCGmA0rUFDuNUzHfimbEaNOxgkN7DI\nKLQNF4vlBX9O0HP7NwijzSYjmNyoy7yFzRegqzr0JAJ0dFAxHR/mAASYFnQSn0zNgE044YYvrL7V\njl6wDaG5H45xJDrChWOi48u5Vg40i25ArYGGEJTi+bZFjoakhDxr8PDhVs535OPFjBsEIZFD3aEm\n49VqMkTc8NLDGp0ti/4IEWqAImR3++079FxEgR8i5fFqMvx2bQvQJacuTpN0lDUGbBJrfBLDWhMx\nAxQPLiwuyNsP99hu5TxH9DOtDB37A92CbBMaiRRVBejG9wQ4ABh5Y3hcrhpqGAyONMdGRUecigSk\nTu9h8H4auomGXslN2aJiEDMdDQSa6PS1ZVt0fCk5kTzkhyI9sikdf4zyQNa3WWLwJukJS7VdBY2a\nvkVbI4vpcNQp6GR1m+bgCdziQGLO5csvML+QDWaXFwChypyQpj+ak04LFHUG1RAGMzV4/D5wc7WD\n0y9eZQbQbRqf08UpWiwQjOUFUMQJvLEcaxSuMJlKEHQxl3m+vbtDwmuf2mP0fHn5poUZyWX3dBnK\nD/ewIc/uh7rDu0quo657WHQ1KvlStIwcEaHS2yTH/R0ZuGmDEV2CQjKou/Y0WGeoHh3DQHMIPLQe\nFZnMZmjDpfZuWeyPDk5jdi9oMKEZhN/NAuF0CO5dtDHLWWT7VkmNanhPmgZmV68AAH1eoOZa97lf\n9a2GMJKgV/U6euorG7YObnNQuy20fwSD3O4LKM67o0JofAZ6wuF5d4DmyvzNojEOJH4mWYf4Tq7f\nZ5AziVY4P5cSlT4KkdI5aNdXKLOBBCnXcH4WISahbJtX0DX5vl2qISLxsjM4p9UBfijPlOlE2D7I\nsZrGhW+fdjkDAM914fss8aFGuqb3di7nbXguCgbWbVODsRVCO4DHboaWzmpt30Cnj3pe5diRTNc2\nGQZr3oHktzpbwKJzVbKP4Tlyv3RNA6iFnXMfeFjv4HncUy0LJn0FukBDWp3e/z82nqDmp/E0nsbT\neBpP4084PomMVyOUGW9L2MzOyqqCwbaJy9UUU9LWNUuiDxs5HEITpuFiNJFo0jM7HBip9aZkA5Zh\noyfpw9VtmIRHVFVgSZeaEaGHvFY40LnCMG34zE48w8FhJ9FXV30fr1Ql3VY+cm0tSTymO0HFSPJx\nn0KxNzcaOegY//Sk5KseaAifmFaPsUP3IQdI6E5iEbILTAMdnXpsI8fZQrIWd3SGnnDqwpeofaJ7\nCAyZx8Q+YLBbKssWRSKQjkcv0mi+REH4vkpPwyiHVEM4HyAfOW6nOviE+MNojOIg/XRVUyMYnEqY\nidmujpDz89nzl8gquoDECUau3I9JIBFm6fjoC/pjujoUe1Y7u4U/on8oM4C4OBx9S20vOLYIFFWL\nkr3deSJr4Cc/uTh5bZZdw2ak65skGo09PB7oxtTtULH3uUQDnW094wFKbXq0hInzrkPH6Ni2LXgj\n9rqO6R8MG6El35GkOXAv6zdtFLYbIbJsHuX+RPMaFp1t0kOOkOWWrKlg0h1nEspxq/o0cex+mx3n\nekdXmnDso6A1UKdbuHj5Sj6suSg6eY7uSOzz5lNEbFsb9Toag6vf0MAqDO7uBaWBUtjv5e8WF8/R\ncS22qKHoGtPyXhpehBFbRqaaiXu2ABZtD51lk6kv2dRzkgR/OBpVo2YbnFYQxQoc5HSS8YwCkcHM\ntSoxXsrzMrbls9c37+AxY9sVDSruG5P5BE0qx3h3I/ekqEu4bGEbWy56tnF1ZYuOfxcNyEoLKFsy\nsqIBynrYu3SAbTtNl8N3TxPiAMDoeuhKnv9wPII1khJKTgRkuvBRsNTU9yE6EqkOaYP1g9yD5yt6\nn19MgECO9ZB8CYR8Zs9CeIWcw/29kNDK3RbRWO5LWRfw6AqnBSYOLZ/JFYlatYLJuuB0GuH6PYl3\nmovz5fKj12Y7NgbDnqooMOG+W4WDb7YBjaiHUgX8oc8uK1AQ+tc9PlfhDLpN4iN8KCJhbZZiVw9+\nxSzrNS74KOAu2x+zWMcdw/VZlmOm7Rg4Qsqma8IBHd1swBjsvP7I8Um8eAPm/3vngHwQltB8ODQ+\nznJAkXU79DO6jg53xJqWbaMhk7nOG4RjeXB6Xl4S75Gz0TsIRjAIcWk9oPFmDzBn3RTQ2bdo+0uM\nJvL7Ik1RcNN12X+YpBkq9nj5o9OsNp1weFO2aHmOnuui3MlGevPdd+jZsG+5cl4mGuh8AIt6D90l\n0653YUIWV0nI2HAnxxdoZxq4p1l802rwI5nXllhWXldw2RuJaI4312Ry9j1KYlwO4WVfd+BP5SG1\ntNNhxXx+iYZG6iVrvZrmIxzYi7qLmrVqw3YRLQYbPbnHOoDnC2GQ+k4Ak4GH02vIN7R2pJWYrgDG\nLWiyBgY3Fd1yZOUDqFmzqloLh7VsGv3YwsiT723SFkUxiDWwxqad7uPV+g6uL9fkBwy0NIVxQAjb\nVKhZbysaDT0DRp21J7ezsT7I/d6mJXy+DKeTEFziaHP2D04mmCzkIb+9WaNLCGcHHoJAjjfYkQWO\nDof2dOh8KELxadXC4qYx4doYzMJ/ONp9iQPrYY+0KwzqDhFrYd5ojA0FBg7xPUKumYr1sdF8dlyr\nVVUjWDKYa7b49s13AACb9eLPfvIZtmSHjkMHJdmvHVpsbsisNuQaYwRoDtxcTRt+xGCuro7G8RVo\noeme3ujer9fIS4G5W5Z/Ur1D08riMZ+9QEjj9ChwYXEdGRRyGeUTpGRT3xU57jcSQDS6Dodz/YYB\n6fub91hxzV6pZzhjh8R0PkNGCDtnR0DkO4gZpL99+wBT4/Pd5HApVPP5Z+ew/hFy7MVsiYa2oJVq\nsKcpu3IHfQGF67dfy/zMFgDvZ2PZsGa02ZvJF+R2gg/sH06KtzBoOG8GHg6ZvCzvDu8BAD0UNK77\nyqnw/u6dnG+go2QJZOQN4hYhAu6lUB2SjFyApkKenO6OAADbMVGVQ00ViCLZexIGda0DaBaDmLqC\nG8n1WKaGRh8Y7vJvrXocWIfWLQ37lM9TZ2J+IaU/n2vA93Q8XMt1tppxLHVWVQMMgRLLRyPPRchy\njDv2YYC8C9UeOxz+2PEENT+Np/E0nsbTeBp/wvFJZLwWowVfb48ZWVfmUOz5y7UeCVmW52R86tCh\nSJopGx0oBrN4B4dkYOsKzIlePxI4zE5hvJDorlEWDsyoMrIJlWYhJMMxnIxhEU4o8gIuMw2NxIjH\n5AYde8ds6zRJx2R2fUgS5DFJUP4SHQkpRZZiRnjYYT9zWxwwiyS6y/oS2wN7IvUKHdVZLEJj89UM\nY10y20ngH/tMd7stNPaWfmCK5WhASwZqnhvoaTTeaj1yKhj5NrMbrUXO3tw4Pq04Mw4XKJkp2GT4\nIStQkIzVlwUUM2Kj95BSFnFC+Kg9lNAIIep2g46R5dgFbLKPVc5eT8NBwOz4fv2AA6UDQ0tHS6A/\nTcmo7R0olgP2uwouoa++6zAifBTOBkj4tH1m1xooyUgtB6lP1WA+F+KT5TnYZ+zhzPbQmHVs2QNZ\ntjoM9o5G2ghaP1yHj5YQ9iOJMvfJFi7Vkrz5EosFCWuGwvZG7nfAfmbDNEGUDJ7ToB9UuboazpCR\nMon3/NPX5vYNIo9Izyv5Lj8K4JM4Mg5N1IQ/oR9gU3I0JDK1Te9w2NO8vcgQEWZ8/tkZ3IU8sxoR\nqh//fAU3+HMAwMN6i1/9XjKyTZFD2XLylyv5XtcC9KGnXe9wMcDAkyke7iSLHXo5UyI7Pxy3+xL3\n/KxNVn6n57CYeb7Jv8Lk2aXM6TjA5pu3AIAklux78uwz3JAl/Ha9g8YM+8OuwQVLA5fnko3VTYzI\nkfu+uFjAXQp5qGxqxKVkUQbZ347rwj+XskbxoUDyKOe4f7jDbEz28AsHGj5u5+roPkoSphp0KDr2\nlBPNc7UpCMLAtTU0Q/ocuKhZbnkfCxLknU2hV4K6jWclMkv2yvu6Rs7nxTqnmbzh4AZyvua8h9Vx\nr/NNhEQiXJZYdNPHqJffxevy2MkRJwnur+uPXlvXN6CIIKbLOXTC2WOH6KUD7Clvmu1TGCRHGZoN\nEIHUWLowXRM2ERHL7HG2kjUeWDZcMqMHuVwXNXRKjJa7GBlRAJXXsJjxbrnXLIIAY+oOFOUOFd8Z\npq4D6o+y4T2OT+LFW/KlaRuAIgyZFDUC1l87y0XKOubjUH9VBRQhxsnyAj61jXvNQMHdqK65GHQd\nzlx+tjQdCV9EZdnD5XzlxP79wB2QS1imCZ0FAL1WKMiIHep1etshy8iAXJ2eeI+BhA8HI9Yt6kpD\nx7aJaHWGcMydkr+bjn04nTwIKt/i5VQ2ppskhQFuOGSjhsYVRrOhTWkLhzKFCFq4hmz2STXAXh02\nCaUHzSmmz4SterdO0JIN2VO05P3hgD1l5HSKi/xwvHrxDCXraekAe1U9fNY7ddWgY1uF6irolHwM\nXHmY4iI+nluV7bHfyEbw4uoMLus5h5wvAMODxU2uRoGuYv257aGomVoSYoxGKyyWsrk+3Dwc62IX\nn788bqQt65btR168JWy0hKUZ66DzbFTGwGJ38MhTq7sec0rqzdkytc10lBQX0U0bqpL7ZZgTTPii\n0VmvL7oea2roVp0Nn5vVYZdAq+W4LmvvhyTGw9s3cl5dhpCiInOVIWK5YMpgqMxOt29YkX18MV4t\n5blplYNRINc2WwbY7+V5C60ZHELXGVuXNL3DgZt2rVWwuM5KPcBsxWum3KthN9BMeVl2egzPa/kd\nJpQn8zuaDHXzW0wmsjY+vH+EGcqL3nFNDJLf29ciwjKncMMPx+HQYZ9TfIZ8kNbUAAqQFPc7OI9y\nPtFiApstM2kmn03e3+C2knWUFQqWJfObaN/rwdusL4bB/CimUSgdj98JBIumR3tg7Zzs+utdjJ7i\nF1XfHp+XvsrRJnKM/UMMe/TxLdk3nWNpoNBL+Cy1DQImSawhWFAa03PQU7tnOR+jeH/LOaagB27R\n5tLGqALAnUpQG7wwsVtTvIKBVqv5qDO534ZRY7WSAKPvO8yeSRIz0lkXv36Pdk/N5T0QDW1aVoiL\n5em6PADsswIdSyOaXiIxuW/YfAZbGwcGGKqpULElrFcWwIQoY3eMObagmPAEngGLwcFdXsAh9H1g\nqa85bBFvOH+PGSJfPuvBw2R4ftkyamgWLNbTezToBsUjU0M1FIr/yPEENT+Np/E0nsbTeBp/wvFJ\nZLy9LZGVZuTwh6Zk08OYbj3rLDuKXqwHKK+uEM3IkExL7M3viSEuGXhNy8g13mEyIltyeok8kcgp\ny3YIWUy/mAoE2SgTCUlQyBXGxD+MzoNO9nXS0JlFASkF+tOB+fODYZlsHCsTjEiUUfBhhhRyCBZo\nSCqYLyXqnNkV1u9JRLDH0ChbeTEP4Y8olkGoOYgaTJgJGo2LlD20VmChIIzeMePTbQceWch52eEh\nluzhYXvAZiBlEfJEo6Mh8ej8Ynby2mo4KJhtuqHcK2ukH91s7m/vsd2x51m3MQkFOjwQfq4sDwXn\ndOL7WEUvAADjIECylnPbMIutVQidWX6bZzgjcayoMiiymV/86MfyXY2HziAT0S9Q0xVJC6bQ+LPN\nf4PwdK+r4Zpwe64jwne6puF+LfdZ71t0LSNhfYo371nqIOSmNB8JxSS6vMGIMpp9ZmFLp5yEoi3O\ndIqCiEsW79DTsKOMD5gyo834//t9goAmH9NoAofSeJ6nYcTsjBwU1OnpKLzWgJoZ4JziILpWYEUh\nh76rke7kHFfjAAbFOwxm1L6jwSEcOZ4tEFzKmsrMHtcURAmZkezyFsuZXGfW19C4vvLdHvtbIWJV\nFKGYB5cYsNKH7SN6lma2aQyHGVBZSqaSu6e3Lne8wDmZ09u1IAOdbsBgv/lqcYUDiXvn58+h+Gxl\n3Ctubh+wpRHBvjUATX7/7//Zf4joXFCU7c2Xct6HBuZQYdmu8W4je9N8OUdEdAudrJfZLMBvfveG\n16BhX0gGOvJajLg3abqJVp0m+wGiH7CmRK0dGZhFcr9qojdJ04BAEXTTgL+SLDRTBcJKnuENy1ax\nk2D2jP3V61+iU3IvFj/6q+O6vt28BQAoLcCc/czGfIw1e7R9WEgIv2/ZdxtvHhFs+EwVPgLuU8uz\nBWz749dWdRXaoSdddbApm1oX8ru4Vqho+lBXBRKWVUzXPJaripqGNjsDim5h22/vjr3RrWph0kDj\njloMgaoQkDxa5QaCETUG0gIav+98+QUAYBYa35urtDVcZvMwFOr6KeN9Gk/jaTyNp/E0PtnxSWS8\nIyqEdLWLJYs5HcbIWbCOHBMh1Xz29OssVYjlSmqU8X6PnMoqvWfCYF3VZOY7j0IY7KurHQcarQcd\nGNgzU42m8jfReAqD/YN5YWKYIssIYDG7iCZyjmWTQaOEypQZ2A+HTjJPnQO9S4WZooPOnlZr5CMr\nJALfbGnU4BTI2Alia+FR/N4Z1biay/FyFvbXh2ucvZSIzOp9PN7Iseqmgxew3kPbq9LQkLKtIqk6\n2MxAx2cmdolEgntKtU39AGPKzM2C01T5b28fj2oyKxKCNN3APVV7Pty8x/ZaatWz+Qwt6yOhxuNO\nzxCwNhpNepwvpPbZphk+UEZUHyQT6wblVuahTnYwQ9aZGhx7R8fMHJrChk3FoOXFJaiHjh4WHIuR\nNOufmjr9CISugQkD954kIHMU4nHIbJU6XnswGSOrWW9jrdb0amQU9Nda99hu8OZmc+yV7hgxt1kM\nh5m/Vbp49yg1p7at4J4NXrjsea0BrZf587QQgS0ZgWv26IZaPvtm9+lpNZ154GFJoo9PYs9+v4VJ\nxaZD1sIj0S9JMuQkrZlq6EvOj37HkzDAq3NBKqKX53jofwkAaB6k19XBUXwL/ijEYiFzEu+2CJck\n1tGP98PdW/jS7QHHLLArZK0aqseYtdTL5WBvdzrD2K/XgDOkfaxnliViPucvL2zYbP3zfQ/3W8k8\nFc+hLXpUJI51aGGMqGpU3GLZy/kuV2wxbEdwBq/rfQ7dkf3qm9tbzEke0Wn9eLMucPS5sCe4p9ZA\nYQCOK89hs07Q6x8n6ZRNiyF9cx0bIduteocE0Zs36Kg8Z5ojtC4lFMtHbHt5Dv0zomc/XcLnPPWP\nW9zthXT1mN0DVBq7XMq5WK5COCXapAfQzuT3L1avkK+prMb+4bJr0JGgdBa4CMmHeRaayPOPk6t0\no0ZIWdUq2R3lOVOSK+8OGTp7sJF0ULJenqh7VFy3nif8irY3QXoGHtcHgBmt5VhHJaztTu7xi6kH\n3ZcPbx8eQU4XIsvCfmjh4zVcTBfoBq+OuoXF9kWjb9F3/7SM95N48ZrsY+v7Cgb731Ck2G9lclUU\n4flnAvPM+RLIdRduKBt1kicouRkpYwRFjVyqhmEU+kej4k2hoSHj1VqN0FPgIfcH6FdHfnQA2SIm\nzjhqO8TUdR4gN9OwMKNLjvGRB2ZxJv9f+2MkJE/d/vorEDmD6WlwvYGdLfOwTQt4hCZNpY7yh/ao\nhyKZSee/lmZjt3sYZhIbsj47ZWBEKcV7bsQZFKa8hq73EU3kOyaLCPojfVnZEzyZj9Bt2ftonQZG\ndNuCw2vq+YJMtwkysoFn3hIT9swHYx+KLNPhaFEQYHUmgYTZHWCT0Wr0OSKSTNYFr6ytMSKhJm9b\npCRFabBxviBUR9zvIU6gyCbtHfcoUGK5FiwGShl7+wz/dOPkdBJCbyhvWMgLP6lKmNQM1voOJv1F\nD9s9Juw7bNj/qrIOOteO6nvUlAPd3cfoZxQjoF5yGEU4J1NWNTZuKIdoaCZUzfsRyXlObBvqgee1\nrTChRqiGHh37RAdHnO8VtP/h6JoGGk2KUwZw6aGG4fB504Ij5LZ/2KGlC441kUBObwzozhAA+rhd\ny0ab9XfwSESZnD0DAFRlg8NrWZ/ziwUWFxJolapE39B56l7WZ5rEyJtBkGEKjYIg3nRx1G0fGPzb\n+9OaxpuHO1S6vASmfHFEkQ2NgUS8v8F8yp7UbouaHtk1xTH+8s9/jO+47n/51e8wiQaJygxJLC/p\nu3fCzA5GwdGzNW52CBhkG/4EIKnQZ1+3pwM37wXONeoSEwZdd2++FVNZAPomxzT6uMjExWefYzqX\nOZtc+KBpFDRCuH4ZYsPe0rzZoOe6NUcxtDmhYHpI3x8SmCyLtG6Dyh9IYo8wbDnG82cUsZlPYNOb\nehvXaEkkcmca9rcSWOw31/K7voMXUGbXqnCxkKTgbHmFOPmYzBDQai10JedWNVu41HDo2CccOTbM\nmcxv2/Swenme1o85dnRA2nItV32AA6PxtqugDfuO2SJnqZKmX6g8IGdZYLp4BoMvUE1v4HA/GfS4\n728y9OygqNUBMbsSfM9Eaz65Ez2Np/E0nsbTeBqf7PgkMl59gNFUjutbSoxlJTb3dIdZvUDoyakO\nnAXDbaGx7eLs2TlsW7Kh1PBQ9ITGGvl/pduodYmgarPHjkQAsyrw2cVncg6Eia7XD7h+Iz14euUA\nOt01JgtYHUlZDftIbB0WYcNBzeoPro2R2cgNUatB5hBo2aNiqw7TOX2FGZUXSQeXuJTeWWiocjO9\nvELTyfxYbGt5NX2G726FiNRCQY2YYSuF330QMseGhIza9zGhR6+mh9gREsriFPVRyYnC6kUBk9nx\nZncaIhoFI7hU69EYCZb7CgYbTVeTBRJmespo4VMlqOlYFugKxMwQbQ14/1rm/SqycEaFnphro1Yt\nSorU55mGSklW4qoaBueid2SN3D7uUbBF7VBqeH4maEl7t0HB9qSJL1nCyv2I9GCnYbuhAlIssKnr\nTBFZbL9pGtiUiWvqBlMmlxEznNt1CpcpSW120AbDDquFRgj11VKyXK9TmLAlJDtkOONjeb++O4r4\nVw0NIspbnFPp7NnZBUaTKf/fRkmFskF6FN1p5arNOoFNlEXnPRlNZzDsoYe+REDCo30e4ev3hPL8\nwXLIwfnilXzW9/Fww1a/b+7w05cCO7tsTXrz7gMO7JF1PtwjOmfW4rlIDy2/W7K8L35xBY1Z+26T\noVc0BGgsKFM+M16KsP8+uTl5bW/eb+GRCxjN5RpM1cMlifLD9Wv8+it5Xv7mV7/F86mULGpmcW0D\nfL2WNXJoGmQf6KDkr5EQvzRojOL7Y2Qsn3xXNXj3d/+PzJPt49kXMj+tQZnJD1/h/sPv5Xy8GQxD\nvjfrerx9kPM5n+gIcZrICACa6cJgmSxOS4xpGNHqct8eqxa/parWYbfGX63EZeliZaGlLsCHO7kX\nt8kNFPtxL858LMbyvUVaIiYh8poKapXn4eUF+71Vixsafry9vkd6L0jZ+ruvAADPjTP89It/DgAY\nORdwQyE8zpZfIPw40gxlA20v69c98+Fyz3tmyf6rOQG6gChL1uKG5Te9LpF+kHPIOzqWVTY0e+gB\n96GoYDZeTI9qXkUpe1BXt+iVPKeqb6ETESvzAyYs1flE81yjR0cjhkOWwiVK4I0D9O5HDNk/Mj6J\nF2+d087N1OBRICMuDuiY6i+iKTJKGRasv3pjE480tE9HS+is/XRagI60zr//6lsAwPNnV7iYkurZ\n1oio66y3E9zv5LtT1pCSXYMCMuGqBoY2T79KcUmhgJUnm0DVu6ip1erYp9mxdSE37f31HmuDL70g\ngqnxgW4r7LjAQbcay2iRkZ283yXoaLjsdBasUDb+GSHsQhlo88Hqq0E3YNi6iYaBic2GvvOrBRw2\nhb9+8xq2NdTT3WP/Gijp9/76HhFfLGb/EcjS0PDh5gM/I0sp3Rdo6eCTehXSQu7X5DKETenFwOD8\nttpRbKM2e1SmnEPvR+hLqTkp9hBHwRxpPMiCFoNKJh4373FBKMnhQ5Ft98gJAWowoRF2/u7bOyTs\nJX5J4Yjb02R0tEaJ2YK16CVtxSofjsF7X3Uo2c+p9z1CjzKDdKGPlhYWdH8p6xYJ5UYPvgOf/enL\nc4pxtBUcXebp7esUB/YzLiIHc9bvZgwqbDOAzxfSWGVQ7Etse8AZDMFZr1QDnvaD0XUGHtd80ZDl\n+cWzc2SDBF5dISfkVhkWbshivWVwMJ5EgCkb4rfXWyzP5Nq9rkfyKOezu5fN+evXa7gU/zAPBTrI\n/GihCVWQFc7+TtMbY3/zFgBw//gIj7yMLgFAwZNw6AXtTge6+zo8wv42X/42WvTsPjjsWzw80uLO\nVbhwpZNgRc6AY3pYRbK4Xv1oha/eyAv+1dkFwhXtJTm/46mBHctDcBfYKJkft+7x+VDCINt1t1tj\nyZ7psjPx8EGOW6U5fDLAF1evMGPP/qmxi2Mc+KKzpy4OrUD4B+17p6ndTu7V1r7D6+/ku/twjFuy\nswfJSNc+g0fXqWnOndcAACAASURBVKrdYnsvULFdKZSlrJvZXK738fEDHlnOmsxD7NjzPPE8ZKnM\n8UFOC4ZfIeR+YaJHyXnvVIXt9rQeAABMzsawuJfOAhcG13WoaIOqu3hgXdaBhYR76czVkFGuMm4H\nDf4OvkOougIcvhQnboQVRVnqQc8/3wK8h7rdYcl7HJhzTMnDufTleueedrSMra8z+BFLjyMTVvBP\ne/E+Qc1P42k8jafxNJ7Gn3B8EhmvQ4jL0F28vJTIc+tZmDyX02v9JTbM6mwKmOtGgIHPNJvP8EBV\nqdYcYTmVqPgvfvEvAADeeILlRKLg8vHxaOpsmDqmoUQ7Qy9taM6gWrJCyx16Rn9v3rxGdpAoezIn\nuWrSIybsEn2EFKG78vtd/h7vciFntCNgRQ9Jp8Gx93ZzJ1GnozJ4VJDKTB9jSixumxYWe9YcwiBx\n0iAnLKvcHsVWyA627aEgG3f6uTBYI9/Bhgo2IytANxhDZCWiJUkkZPm+2caw+fcqOJ1dZNCxTWTe\naqrV2JYNj32UdaWOPYqWaQGa3DCb0mDJPgW/ApUqUZNM86s37xA27P9teL/dMcqe8LIfQrHmoPzm\naPLtEIYLJhp8ohoP1++wJRNeNy2MRjJXd1uJxJ8/909em++3mLMvdsz+wMibwCbb0pm50Alx15qO\nntDYmFlnpgxcnsu9dy3z6A6zXceYzeQ8z5gpurqOEV1svnFy3G4oPB+uMKcoe5VIxqKnCq5F4wTH\nQsJo/XB3B2s8mMWTrNicllXUXA8FSSstYeus79HXcu4jz4NJWdR4n6GrSBIbFJvOrhAz6+n6FF0r\na+ftTYI3oDE8+3WrbgVTyVr2+wbpLRXOMgOo5TPX3wjpaDxfDZ4zuLh4BtBHdeKMYNBbNz1QyYie\nsD8cWesBmkCoillPWZa4v6FbUjfCq1e/AAA0KkZFVK0j4pNbY/zi538BAPj2u+/QsFxVN0BD1MIj\nwuL5JtYkYrlGgMlcCGVffBbh8oLSton8zfznvzj6zb7fxQh9OvFMS1iUqJxEl+j+EZJO73qYXcqa\nml4tUPayX3QZkYEYmEzkO65+/AqxIWvu9w+3qKckPJGsN3KjI4Hpm7e/wfVXvwUArHoNdjcoNsk6\nS6FBV3I9C32JKTsRml2J80j2lvOf/BUAYBbvkKZMf/c1vEju6P/15ddo2tOyugAwOzMx0mWtj7QW\nAbUJ1IbOTX2Fz8ZyPtZ4giiQ474417G5kOvfxiTeFgqGI2tumzWYUqNhsYpALxc4/s/kGosd8kJQ\nuzAAXr2Q94+h9ShqWcvPIllzoVlhw/fErNJxYMns5voOc8L6f+z4JF68W+oEd0WOlC0j5SHFKBJo\nRjM7xKzNZTR9XvrLo4WWWTewWBOt2wPmtA6bj9iClNXYb9ie0hho6Bik6Rq23OxLGq9bjsImlnPY\nPn7AyxU3vqrFQy61PptN40HeoKTOZ4rTdPLVj6XGcVXa2L0Riba92h/hWwcKOeuRFutbI19DzePN\nXzzDfElHFttAbQ6MbbnRlkpxHsrmWbUNUkr1HQ4Jsjzn/MnfPFu+grmUB8VJO6yPte4SCSGsmPW4\nIjmgV7Lwgmxw//iHY7S6QMGNZ5tIfdafBOjpKFJkD8h72XgyzT86exRsXaiLDC7kfN69v8XsSqBZ\n25igZT08mMj9WdctqoDtAq3C5lHuhanM75vXCbmZlok1BSCSUkMOWRtRNIHryEY6ZuvBxWc/O3lt\nbXxAyRagc8rpLSczTLjpTkY6lhFdjzQHKQOWYj2ITYzQMyBoihjPl7IRqEWAjqbZ0YiyisqAIrv2\nz+ce/vxc/m4yWxzh9+LAF83Wge1xcx67yCq2mk28o+BJztqu0592g3mM1+gs+cyYm1nQNxiNCUPq\nOpB+L5V6RunAIdAwe8Aj3HrhBQhsgSxz10FFreGWEOOziwnev3kr/5+1AOtih8c15rQAzPkSh3XA\njG19y7MJAkteMlfRFCXrg2/v5f93m9P1azcIsdsILPr8haynbbyHQ8bxxZUFn0Hmmze/wzU1k7fU\ndY8QIPlKfv713/w9hg4YvQNMCtFcXsnmPHr5Csmt7EuOO8W/+NGPAAAvni/g0lBdowuUuQAObGma\nTCYICU0mToFaTgHzFz9HidO66ABQVA16CgmVRYW3D3KeAzPdcTt88VO55mJeIyM7fpN8wIzaxEON\n8je//go/k9NFt2tQJ3K+93GKA1vBzliG0UcWFnP58HZroWOJ6uu//Q0uc/n5P/6FBCv9jYkyG9Zd\njXko+1SVPULpHxfQqNMtWJWD64+Ocq2K7Vpjz8X5XHrNdC1CRAvLptKxZXmtJldGaS4W1GTeFi2i\nlfy8ulhBcX0Oz4qllegJ2Wtdhn0hwcou2SH0WMunWIdueUf7SHhXyG9Z5tlmMMx/mi3gE9T8NJ7G\n03gaT+Np/AnHJ5Hx1uw7fNjeoTiwry7r8NMvSEaqb5BT6qw05LNvaxMvX0gUFpQmPDI5xxMTh61A\nMO/fSWZlGC5qZiSVqR1dSxB30AhRuyTHOFYPy5KIzZ0AwYiGybqJgJDuy+cUeqg3aAn1adbpjHcQ\nxJ+ch5jVkjm1uw5pJlFl4PZ4cSUR2fJMzrGDwo7M4EYBNw8S0b7LE0wu5BjmRCJUuzYxInuzTHPU\npmRhumdhPJO5uk0oRLBPjv2bya6EyV43rapQMQvrmD3agY2EZKbN/nTmNI2muKVwvEYyU1HksE35\n3Wrm4P0thRTaDp4/uIRIpmM0FtYlM+y+hk+XJttyUe0k8qyawY2lxvRSoLzff/UlHu6ERemgR29K\nNvPFF4IumKaComC6buq4IHPd9kwoiidM54PryWkWaRHH8CmYYMppQekVvvhC1pwqcrRbsu57FwFh\n7t21wFb+KILp0Hy9zmFRYrG1DDTsc+wJp+/3BUoKUizGPkKfnr4w0PH3Z0Ov5tUZHklGfDgkSHmd\nE+cC7ZAt1fK9mX46rrZMFy7hQodC+54N5HtJvTTdgkkCXDRfIKTdkedRUnIyw3cfJEsIXs5g+pIB\ntod73D7SGYxGJJ4xRk2G4tvHNVoaI4xHHkIS8iyfkLznQmfDrjEKjp6/1mSMnKIWg6DC/d3m5LXF\nhwc41E3cPMi9bqoCOmVeDSi0FBYxjRDzSOZBkdjjwsT1WyE+3e8zTJ/JmrNnYxgxxWlY9vr1rx7R\nssRw/tkULYl7TdHhwE6CSSH3Pb1P8M23QvbMlAbLlGfhcKgQTSSTy6oOb69Ps7UBoGoUWiJIKq5x\nKGR+cpafXv5oiZ0u9+XBr6FnkoUtoyl8ZuA3W0Gm9ndrPFIUI9/dYUqTFMsJ0So598VKsufr727w\n7a2gdcnlHNEFZXafv0B4L2stIHGynYxRkwxat0BOvYH55QKb7cdh9EC3kdBDt0oKhOyyuCAxKnA8\n6CzJOUaDKSH5rncQXrDUxDXruiHmLDXdxDG0iZzvdBVAawdvc/k3z0oE7JhB1kAvBjLYFh593Uui\nkw/rA7wREUdzAZOOY57RwdSeyFVP42k8jafxNJ7GJzs+iYy3YoTU6T3G9E50jClM1gSdwERNckRO\nz1Z3aeCW9lW27UMx47iavIDG+mjTSIQ6GV+hPYq2J9iQoJGnBZYs4vsaM+3t4Wi9Z1kJ9hTpntot\n5kuJjgPa+D086kgGJahid/LatsxYqj5Hrw1C4jfQGIH/ZDHD2ZlEVvepnMvdboPVmUTBXdMiZh3P\nt0NorDfc3Ulk67U6NpQpzPseKaPxJmuhNPnsA4lPb25+C0dJVGhkwIwGB0WxR0YJRZ8+lq43hcUe\nXS87rcq1flzjgfV58FhzLzpKXD7er2FTr3E5D7FZi21a7ZIgZjk4sOVp2/X48juJxu1eg1uz/5dq\nQdPAAGiEUdV79Lbcz9t9BlXKmpmVcp6qrWGwznx2HuLqnCSpaYjSlsi+ppezMk/38UaTEMUt/XLv\nWTP1FF7fS1a4u9nCYLZutjV8T7L4O/ah68bu6I9rlQUaojoq8jBiZl/zena7Ah3bpuq9jog1ss5x\nECfyczSW8zWcHtfsL97sYoxDqZHvC4WOPeOp4vzbpxsnlZrAZo0xruS+//79DmC/488/u4IbyvVk\nhw5up3P+JItQzhJTKr2dn/8Mm0TWnB550NeCMr1m9rK7bmHqbO8xE3jMRru8RhVLFpvlNJ4wLlHo\nbAFaOPBKuQ7PGSHL5X6XtOHsm0Gd6x8OE0C2p0rYjRxX01PsH9nr3nS4fC69xoEJmLwHC17b+WqC\nzz+XLBehhejZTwGIReiu+52cD2Vb28qBZQ5qbAohUbfesY8aAz3l87Y50HIetbrCZivP7/bQ4IJt\nZ+N5AH1zWnoWAK6v38Nny6HrWzhQyrBfUP1tPEPk0RjFqPHL37KPv9nBpArg68ffAADy7h6Pf/0N\nAGCiWfjZuShMFV2DyZkgGN7sFQDghbHCb/9arv36cIPQkr74yB/BoPrVB/ZkmyrAs0vWdR9jrAe0\nrJ8gLU5LmAJAUyu07Hsv8+Lo2Z3xme72BW4KQTI9cw/dJGpmRkepSGXT2nVioCWXYDE9w54KXofD\nNbYkOTokD3b5HoeGan9ljGAu9zCwWuQHqnINvfT5HnrLzHZ8BlMbeuj32P8jqlynxifx4h0McWaL\n8ZHF2bcBdpRuXCclCkIPOnt0V+dTJGRc+LYNzaWuptsgpyPI+ecCyx7iGuDLYNwDE5JitirH+y//\nDgCOpCW7bKDbgx6qAZ8/N3mFPXsfQ/ZW1kWNeD9I153udc0GiLsrkcfyIBhqj8mEohiBgQPJIG8f\nZNPSTB0lX+Su6SJnU3wFBUWWZWsNenE6bBJkbh8fsSvpU6kDfAfDIsPPr2Jo7I20DB0tpTptv0Jy\nEEjYaOVYXVqhJKN4FH1+8tqm0RyLKwkQDJIgfNPAHef/MVHwyT7OVItCsa+UogN3aYkNGRW56tGn\ncp1z30NH+bjVM/bSGjU6jcITKx9nJG387ddvcOBcvX79Vv5+PMOrS3kYr376Y0x82cwm4xBrkjJe\nk13rf8TXdeyYiEcyb7exnO/uqx3++u/Zf1mVuGJPoKd1GDNAa7i5ZtsdCsL6tgJKwvofDm8wZvlh\n/lI2+BYWMkLyUV/jLOZGYJhHF5UJBRCUavCeggGe6WI8kev59mYLn/KGPj9725324339+gZ2xuO5\nAzGtwTOel9IUGurbhpMQHm/bkmz1pGgw12Vj9MoG4dBHnilYa/nOSS7Hv/m797gjpF6ggTcipBtq\nCFaEu6kZPNFdhAvZ1Msqw5br/vkkhE2dc4MbajQ/vdE9v/oChsHN3qI7FHQYfLFatgtrJfvCbrfD\niprVl5eyjtvtNd59KS+kutYQ09P78WaH1VzO7eLf/TkAMaB//07uW5lXmJPAVa5z6AxoSja4/vaX\nv8M5kwrT0HDL7oKy8OEFsh+lZYtuqGucGMluj5w93mFkHXW8bRLSGq1EReJok/f40cUrAIB6KND1\nMpctg8XQ9jAmk3vkmgATiL/88Z8hZQ9truQefvGjL2DF8hzefbPG5isJoM9//meIRvKcuZS4TeMt\n7g7s925juAykrNES+sfteLG+2cOhl7XvjvDwwHm7ln9H0DEnYepipqHmM9L0LeYsB7o+A2FHR1Ew\nGYGBmq5Hjgk0AxGT0qRWtkavDWW9EsmeiUtXoCSz7vFOAt3RNIBBYZm27RGQFR54c3j2aZb9x8YT\n1Pw0nsbTeBpP42n8CccnkfHaFpV4Ahc+SSTZfgOKLCGM5rBoW6Kb9F5Eg46ElbOzEa6+kKzMv5zh\nb38nsFJSSMSrzDGKoV3AC6ARrh71D3jGntzAkYjFURpqEnoWizk8BtYqNo9+kQ8PlFXMG1SD6NRH\nmPI1M4NaczBlsV5vWoSEW2fLBb767i0AYEN47tnz5ZFM9nZ3j4ww5UYHyE2BR9KBF/i4upSWmLIL\nMSPR4n63gSrk9s4I20A30bDFyFAKPaGf/c0NRq3MlU7/4fXDHXRbItDOOzt5bYYRYXkp864xwuwP\nG/ik4Y9GF1hvJEN8/eXvcEEzgw3h99vNHjWhuFIZ0Nlj2LYaYqqShZZ8t3INrGaSkaVFC5+Q8cvL\nCHUq13RGssjFagF/LtFxNA1g2xLFGm2OPB7cW2RuBsnFH44qO6Ds5KZ+fUN4eVtgs5YI3AkcfHYh\n93NkW9CJRKBkGSNLsCVRMLKDQcAIaVPCYoZY3cp66k0LLlWmpo6OBU08dpsHVFxgS8LT5e4BeSa/\nC8YLaI/y8839LZ5/LihAQFWfQ3sa2mviHfxzaQEaRzL/hnaAb9Kk4/4BCeU5I7eCqUmUn9O65eXy\nDF+MB7eaGR7ZdnW/+xJ7Zu5LQtVpZeL210LMqawMsyXJKRdjXP4zuUeTpdxjXe+giEy1vULoUPKx\nUkf/X7bC4iuSuH44CmMBk0pZKXvwHzcZPLaUGV6DlGvr6/d3+Ofsy16YstYfrg/47WuBNGPfxe7m\n/5XzsQK0tmS8/+cbtiB9uMZyIvN48aM/w5eUfmze/RbRXnqTQ/as90mOgmQ3S0sBKrblsYb7D3I+\ncaZhV348c7q8nBxNTCy7QdoLFGoSbHOdF/jmg8z/ffyAjES0+cTD5FwIhgXLCQ/7LaaEW898CyqV\ntd5+aNHS5KRNZR7ywsVlRHj5aowDkchJq+EZVcJW7PWfPXuBbsdjfXcD5ZG8GgBN/HHNyLk7wnxF\nGc2swS09k0vve0einrB2XHV4/0GuvYODZCHPwAvuqc3mBim9nG92axRsAwttHTP2di+oatZst8ds\nP2krGL7co9n5Eg0V+JqWsLQ1RkcyZrrfo4Uc4+zZFQ75aZW4j41P4sXbsim51oGAAgf+fAw/kAlZ\nzRfYsgbm0w1ob3p4Tdm1bfIO9S37cW87rPfy+7Qg1GctUBP6aSwfIV/eurFGCnmAXXfQdVXwqeNr\n9Rke1nwB2CY81ldYWsFum6KlMfLl2ele14ZORj0MgDCwntUIya7tDQvhjH2isXyXF7hweGu+u02h\n+DKtshYaxQzMSP7GmFzC8KVGNJ172LMmGKBFWwu8pMiwRFNi/cim+6aGTaEFVdfId/JmGBOyN6oO\nwUg2ME0/vUxu1gniDW3yMnlx1+vHAUnG/HKGjPWTso1R0uVmz3tZ5A38FW3iHh6wZd1LDxyYrMkX\nhHOqKMLrh7dyGU2HWBvEIgpMWGdzqcahBwqHkgzd1DkaYWuNhnKAWFkjyprT/aCdrhATPn7gi31f\nt7hPaK/WBahKubYqzZAeuGYYaJmOhqKSv3sW1igJcZt2D92U+/HInulSASOWNGw0OEtlnh4+3MMk\nKPUhlt8tRjr8QIKOxzQFUUoYUweVJudrUkvYsT4SDfaAruR+Gxkh8nqDXcq+4qlCzUCgGAH+SubK\npmWnprSjsIwXeai3stm3jxusPJ4QIU+rVViw375xOoTsSgiUjr7imuGGWXUltjcCYyYGMJ1TPjGa\nweBLq6N07CAh+8PhP/sxbIf3NKZATFqiPgh/oGkKGGTglvEG3/zqbwAAOvWZoY9gGxRcsAycR/Lz\n2c9/hsSjG5pGm81uj4cH2T/mywIXtOm7+80GI27aLeVaLX+FPWUXHb3C85cCVwdFAJ0OX2Fwhb1+\nWtAFAEzPhk/hnbJY4+ZaSlMOhR7gm2BDAS4W5/j6tbgo7R82ePdG7lFNEZoAwO2XEhA9xDF0Q+7b\nTXgHm+W8izn3YueAmLX1cevAoO549eED1nuZ68KUazM1D5FJDW4/lJ5wAHaToc0/os8KwNCAEXkD\nda1gUyAo4m2emBZy9kHn6QZ7SgevzlbQApmzHdesftji4VrKeneP75C2FD6BjoRCNclU/iaLC9ia\nBA+PaYrLzySQSm/3SNnxovHdsN1sYdFVyvdMWITX900HS50uNX5sPEHNT+NpPI2n8TSexp9wfBIZ\nr08VnMk0ALN3HLYZloRmF6sAU0LCRCMxn8+OalY3dw/47iuJ6Iq2hsOoek05Q3uU4eqFRDKzRYBz\n4lVtO4dGw/SeMpK+pWE2ZKNVB/T8WQE+fx76X8dTE33JvtDgdAzjBd/LGRaFhKPz0QghrznbPSIw\nJaKa0/1lZGhYriQKOwsjUAwJ6nev0ZJkZtFNZWJpcEgUWNkmTIv9barHlNHxa7I762qPgOSqqmph\n0onDMDV4kUS3FmUDC6UjZG/ffHYajv367bujClXAzPbMt3HG7w0nDqqaRgzOBfZ7QmP83suzCUqS\n0tp4CzMbVJ9cPGefrce5fvPld0epyfl8gclg8KDZ8EjOeUmlIhX4SMn8LeJ7uBTA990JzujC0lJm\nr+5OKwW1SqEg9N8xu6sbAERDGrvDnlHuKJxCo9tU1Q29lTVAxyq1XEClcgzbarGhlONjQeP5tMHI\no4So2SFjT7XrWQCvc0vFHdvy0TKTrbseJV1Waq1Fz+y9Zzbbf0RNzbR1WAPL/17u33pzjdWFzM2z\n1XN4NGdXykFI0tC/Ye9NemTb0iyhdfbpW+vNu9u9Fy+jycosuqy/wYgBEuOSgDmTQkJVQsAMhISE\nhESBhIoBEoMSSMwZMqBQFZmRES/ee/f69Xvd3Xo7fbsPg72OBcQzT0UK8bgD25Pr8utmp9tn7+9b\n3/rWisjSrqoKsh3m7w6//iuVWT28f48JVeOMSGUDwXyJq+4dAKDEM5a3gzxRgAMJMilLKdd313hF\nA5LnPIGkUUMvBdpafc6mGbprn++bfI6PMKlE9KuxehbhcoH/4/PASLYhKT/55u03cJkiNiQfTUIX\n9mCyoNUoWvX7f3Wm4eCpv10nJJCZEtuDepbxX/5z3C7Uu/5mEsJu1M8JyYpG0MAQ6ufI1DBeKOj2\n9eQODvUBEn2MMj/vMwwA8T5DSo9n4dqYvFI95X1PlvvjR8xeT/k7gfHPFbz8+SBRlGrNe9qozzdZ\nAiNV97LPldIaAAgZIKI3dECk68ac4PZOrZ/PmwwxfaRnixDzQV2QkH1XVLhjv/3SeoWaxMT8qUb9\nN2S8eVFhT8WsohIAjU2MZnB3M+FQatUe67A99fsWNVwa2RMYhOlJjKn211kRbCJtnga0fPdK1ux6\n3UbJDofZq7vT/pNoAseKxi/cR3TRwqVv82gxPXWbPD/v0NV/u4z3i9h4tw+qHmK4BlANBu8jjMfq\nYfeWgw8P6qHsKSWGXYEjodnA1eBSEKBoLLgujcQ3wyJYATrdjcoSD4Rj0bWQ1KoNI9Zis+wEYxjC\ng+EP0E6BPd1ZZnz5ryYekjXp6dp5WK/hIli2GRwew2hz5LU6By3tEYbqs69HlBhMtmgKtSC63ghB\noz732vZRCrJCyTpd+jp61h1XzytULDZvd+9hmIQyOSH7soPM1XHbfYqOLjeLQINFPDbhvZFFhx1l\nF1815zenCjWOMeX5XquXdRYBfakmdx4fEFLOzQ9t2C2p+mR6H9MEJkUZvnrzClpMTeBMg0PIdtCN\nPW4O6EFbxv0zviYk9OZnX+PAFwDUVtZtH7M5mbJBgA4On4GHpKPlXqw+48fnHVNk08Gj+XdEF5JG\nq9CwttwaFiQ3WalHsMmspCIfqiZFQFa0NlvCSNU9cW0NYq9e3sWCpZBDCXuwFQxceKY6ro32ZODe\n0TJNOhZKWpu5YxuC8pBVcURpqgd9bAi59+drvFlTYyqpP0tIL00dhINpu+udLA9FLdHTCBw5hVqk\nDttT1xbvMuh0bJktroBKzZXtTl1v21uwWEdviiOulwx8Ag+upf5mxtr/V69fo6vU5j7OfAi+s3qj\n4Ziq6zwyCtWK82IM9+tHLG1qcxNWLNJnPO8Ui1ikDeZzNU+Wt28x4n2wGAhXxSMqljFq08TDZ1Wa\nGf12hjd/8XcBABNDncNDssLTBxVM5hrg3qrrfHe3xJzyhjVRb6vW8Pyk/lYXOgxvzmchUVFg5OM+\nxiE5r68NANn2EV2j7tV0courV//S6foAYHW4x9ODus66iDFn+etnt0vkpQqIJpRd3b2/x7/yF8q+\nry1bfHxQEP+39wfsf1DvhHzmhpU/4Ot/mUIzUmC1Vv8/m9lYztV12FyPJiMDFmumjhihYTmrLgvs\n9ueFeACg6hokLFdJaUEjKWJCrsDV9Rw65TKbtENAIZGPz1s4Uj3Pm4m63jxpYFgq2NacANXQJdCk\nmJE5HVHCtUkqVFwgW63DOv19K5/gsYtMHev26hYGa9n3m+RURtytNqfy2R87LlDzZVzGZVzGZVzG\nTzi+iIw3I6SXbbe4DVUkYk+mMFwVwayTCgdGwiuKTJh1iY6sTSEkNGactmOho5jDeMoCveeemLa+\nYZwENOoixyxUx5iNBzm8CR4/q8g0LnO4zCIsIWH4FH6g6EaXpBhRck9251ltRxJzbl4voZOxWO1y\nWKHK2F4vr+ET9ntPwfW0aVCwly7d5NACBUvZuo4Ogyydig6Pzx9x/6yirY9PTygpXTma+ihydX9K\nwiNaWcIjbGjlGjz2DPqeDt0cRMmZ5QkNua3+f3c4nzmVnQadPbINGYe9KaALwq6HLSTJZ5u0hkUS\n1DWFOTxhwWTm9DkW2KVEM2wNO0L/D48K1iobgY5et54zQcUsK5ctdPZXtiPF6o3GFiI6q+gC+Lxh\n2hF42CXq/mxjzp3V+uy1GZ4PpGoe+ZScGy/HCHgvjjChcW5MghkEYfD1hkQjacGlJ6sXOdCm6jtm\nsxG6vXp2DkseVd5AIxyGqkCyJdRs+CdP1BXhro/bNUbsv3wznsCgU9FIRggGnXb2zd7d/Az4X358\nbWXSoS8pbPJKZSzh1D8JcDSQYFs72jrGhszpRaieddZbCDX1DDVHgxep+fvq62vsN+p+/u5fKOLO\nNtmiD9W5X1/NsCBZqXMlFrcqC/NYYtGr35dujLZEQOb5zJljRyejmkIa7QteAvo4gO2yHOCo5z59\ndYe/kyrmf98cYXdqTr0ZCTgDsebhPQDAcnoI+rs+73eY3jBztSb4y3+hCDvhRN2c8XSBqaee5RUy\nuDkFcj7V+ZLKJgAAIABJREFUJyb4IKAhRY+a8LzhB6hpArKve1gO0TrogPVyLqQ1LRahun9vX/0M\nDcse2V7d80B3UPG51F2LnknYjb/EM4mWwYQG8ZmD7Uf1u9vb1/BIDKubjzCIcDmURBwLHyElFi0h\nIa8VlKzlPT6ygySgXGk7FjA4T7o+hCGH/nNgefNyj3La67j/XhHgwmCOO2amGjPmpK5gEWmUAjBp\n3OGWDQS90A8UvKgbDRmJtYlhoeIapRsOtlyPA4p1pH19Kpu0VQaD+8QxS+Cag/gP+80NiQPv9SZN\nYNDdTWsb2PZ5P/aXxiXjvYzLuIzLuIzL+AnHF5HxDlGGbpgQYKSSrLEmhd0KZiepRIv12w41epOR\nsiOgM9P76/t7HNk+49LC6Ztf/AwN+wNj3UHPesQoDE6qRvFeZd3CDGCzRyPvCxxpbxbZHSYz9tjR\nvk/vKui0czsez0tGFqTeu0YHyQjeGi0xUEPSvIdwhqhYRbMVCqT8vkZKSMpZepaBcJCgY73586+f\n0bHWuP10j0aoyNPtr2GwfmUklOSsOgQT1mJ/eY095R6LpkHEqM5lU6B7LGGSYJNV57P5JC5h9+oZ\nVKy/JIWEwai91wxM50oZ6PuPjydSUFmo69F1B2NX3f/ACrCixGFyiNEk6ueSfXWhocNlm8Pi5ho9\njxFnO2isf+Y9PVfFFUxKE6ZZggNVlNJkg6eDmicbkp3c6nw2rwkTrqei2Fub6lbCQLgk8tIAGu/V\nJPThkkj15iuVwedNA4NZsG6F6DmvF3fXWJAY17HdqK/6k5cwmgIfviXnoWrx9pW6f85GzcMk34BA\nDka+BsnvdcMAtzTLaCuS29zzr7fju/ADZsqsr95ODBx3qg3PsmpMKITvXU3gsc7+iZ7AcVVgSYSk\n2DdIO3UdY9uD69GAwGOvvJZj/poWj5MQUlJWsa5BHxAk7OvO++PJwMTxIpgkPskSiNibO2OL2yfz\n/Pv2m4/fQr9Wz+hrkjOj8S1u71RmqhUxRmwhfPf2DquEtXPahnb1BsIiiS9YYPlOEZg628MP3/6f\nAICvKMHkdSZGvPZRZOGK2XzTSRSpWk/STJ3n8w/v0dHc4vbuHQTvf2f6WNf0r3Z9SPlyLhQXKf7s\nlt7aUYiHTL2/BxqKoM0QTdS579MW4Uy96826g0kjWqHTZCHNURBF8aChoK/4zxZL3FypY3hsC3J8\nAxrfvfR5h6VU68L2c4ZHKnO1XBvH9ggOTV9EEKAiEeuYHmHaL8sqSt1Hb6vjtYaDgu1iI6IXcZGg\n2qrrNGBCcB2s+vyk7iYpwwupA0RA9dEEDgUhkrJEwxbAcaXmZGNp6AZr2CJDx3UhLntk7Bu9narn\nGmcpHBp33ExGaLjumEaPkPfnjx1fxMZbcSHerDbwRupl8W9uT3q6eZ7DEvSn5YPIug4NIWXH1tCR\n/WbKAlP6nBIFho8Kks346/0WDcUeLMdGVtHomp6gmtFC0PnCNDVM2MsW2BKSRtgaj+s6FqoBts7P\nEwd6Nu7/cP8EZNRqTVusnhUk6XTAZDB4JmFghAj+mFBUmSChc8o4cFHyOMHQSG+YMDlBYt+GN6Kj\nU5vDZFDhDr6kqxUkSQui71FTcnO72aONyNQmFD0emZC2mh79CwzSvrNQ8YWuqFW6Sj+jEGpyh44J\njw+hFiaOMRv6owHidgHt90SgMWU0ZaXDjNSi8ZrEnM3qGSH5NLplIIi4+Ln6oFmB/SdFhNH6Fmao\njlt2EjUZm/u0QNGw5BCqc7iZnGdsN1V98qo16FzVdTYqBk+6bCEEn4EABP1tAwYrd/YCPf1r46KF\nSS3naD5Bs1GENJPs2nBiQyOhxxA+OpKiuiSHMHjPuPf/vX/tG7j0NS2TEg43fE0DJBcQh4Gcbr3w\nenstWjZb11ygmmMMSSJg5AV4c63ew1tvCdGo71nF9DUWI5T0kDasFF99peaZuYvRSHVtX/2Jmhcf\ndi2WN4QhmzVk7/N8a7RkhdeUMXz7aokF/aK3yQ4tNdyFCVgUe4j4bt8szkN7m2yHfa2uv9DY75yn\nqOlT3TU9UjJwD/c7HMkS3lBMZhr5ePtOQaleOEZP1q4+vcZrYrc9Wfll3mF0pfrpTcOEZEdBVafI\nV0P5jGTFOD455lyN55j9HUWMetJsVGs1d777dos+WJy9LgA4FAked4p0OeqvkcZDGUY995k/h89e\n9pHlIfLVuctag6cNc4ZM/Qx4c6WuM9JddPR9Hi8WCNiJUZG0aLkhlhTKefz0a6ypV14nBQLq/b59\nrco8VzczCJaosrrFgdBu20p48uWNty1yTAkfm4aNQYo743pl+xZ8EpuqosHTQW34nzbPcNlfXRHq\n90wbgc9n0RzQkqDY6h1seqlvqd+cthIev1f2FnKWuJquQS8GuVsGkaMQOtcry3ZhE2o2nBCGffHj\nvYzLuIzLuIzL+GLHF5Hxvqb83HQ5woiUcGkZOBwpaXiMsSQ5JSM13LQc2JQCE6UJk1nhn1xNMaW8\nnq8zY4OONSMZuy5gkuPf5gfsGPFmJCLZdoKOcI8ROghsCpsbFjqqX7WENJ439+iOKgJN0vOC9Pf0\nZ92sjliQgDQODDTMIrQWyJiBe4Iwm2ljEqkINL7fw2Amgl4g47FLQlyG3qMnseH13RTvvlJRbNKk\nSAeDBkLN1e4Ig1Fnud9DO/VJAoKwScToT0cGm9mzbp3PeLMyg0OvypjPxatyeIE6rhNNwNZlhPMr\nWDbhXUajQtORp/SkjffoeZwCPaKJyrhCErGy4wbjiHCOE6ChV67tOAjHbPmqVCSOcgeT7RpSBABb\nYwx0SNhGNKZMIY7nYfTA8eAEQ4uamluea2HCli8bEjmzvptxCIfnu+cFC91Ccep1TeGxBSgrTSSM\nzC2p/tZEgY7+teUhhUeI24k0BCSkxQUjf8fGjKTDxNqd5u3hWMJ3VUY1OMbExXkGUjTyEbJPOhnK\nJm2O6UhlHEXcoWDbTnNdw2bL3S/eqnu6jzVkJBjWjoaOpLjVYY2PmYLJwe+ahiGiCcX4J2Mctup+\nPz6/P3nr2jpb8XoNNWH4shCQ9OstTA3rR5XhxMygqvZ8v2upefiYqs/dJ2pu3jo6RjcqIxNVgc2T\nap3pLB2fKgUFPxHJ2LQVQppBhLdLbAmNL2YBfJIjf/cDP9+5uHqt3rcizfHMHvmiFijplaux/cyd\n6/CYmTn+HD1JUD0MzKjGN450PKQvt6V01REl3bqK/QwjthZKkviuFzN0Qn3+zZuvTmWpPDuiEgMJ\nVB1ruZxgynerr5qTi5jWOziuuV5QuU2TPsBy193rt7A0mmU8PiCMht5kdZ/SdYqpq44hYCKL2f7V\ntTi8QGQEAFc3MI8GSdgKSTr4J6t3XpgGOp0GJLKFMVHzKxRLhAHlfumCpVcNeva9510NkzLEjvDR\nD65kfFZWK2FQflczdIRTqpoVOYp8ME8YSmMWMvr1ruINbE8dr28Ac4Dd/sjxRWy8ITcZGB1ibkIN\nLJRkpnVNiqpVk6SoWA9KY1h8QcaBBZM3uu00mFwobUrVlXmFnpuPVdUoCbF2QsDmwjZijaJrO1Sa\n+p1md8j2ChI2cgMLstzGPutb/QaayHkN5xuoB2k9X5Mw+4ENOcX0RlmTybKEnavNW/Kh6ppAQhm+\nOMvhDrW7vkNEhw5dU/WOrowxHqkJG8BAPNSUyhgJy5cO+wRl1Z3g0dBxIXk+ZaNjTHZ3QPm1vK5w\noMtI25/vLWzyFTxnAE3UPTF9G40xsEITgL23wWyGllJ7R+oAJ20PzxgEOwxkO/YdpyVCwnKC/a9x\nlqBlQBReeycbw2g0wXKqNtE1mcph5MMizLpbrbHhhpzBh0bIsRkYqPvN+WtrGiy4UFqUCt1tN3AI\n0XphAGOAcusGFQ3p+8ERytdQknrrWzokhS5Q6vAptjGUIY77HCYbgH3Rw2Xxs04r5CBEyH8bw8SR\n9S+p5Si6QXayRG8ODjxqcck258sfXZmgYuBWslRidA1KbsKWrgMd52QX4t2NglO/e682nNU6gcV7\nUzYSj3SQebpf4XHQshaDRKuJfUdHMc9CxfnQGM2pDjpd0OFG9MhZR9alho66wnbkwGMQBM7Z9er8\nc5NdCE1XC3/PXs5VusNu0OsWOppQfVejSTzSvu+Z4hYjK8JvWTYpUomAAdXhsEPDvneHi/79U4aK\nloiRsGFSBzhFiZbvmc4ARXYt9uwHffyr38HakvkfXsNiwNTUOdLD9ux1AcDrpQmbQh99/owJJQvv\nvlJrwjwKIGnI/v2HB9z/s98CADTRQLLeLyjP+fr1W5Scs3Xbo6wGSc4UJlnmplTfpcPAhmUc4WkY\n8533ZxYcR83LigEtNBube8VOLl0bOTfQ5LBDRknYcyMtakyGckDXohwsN+kc1Bs9OpYIpG5CY3Ap\n/BoZn4tHNnUjc2gty0C2AVblkGV7bBJyA8iQnk8Wp0BLrzu4ZCdryyn4uNAwAKnaCs0gOuRaKmuC\n8qXL85d1qM+NC9R8GZdxGZdxGZfxE44vIuP97oPyv9TtMSJGOv61hKmxf9KWJ/ebmmxfQ7dPykB9\nUp4UUjzHgmCmXFIezNQNOCRqhLLHjL6lLXoYhC9ayhW2VQ6XWV9d5ZDMDKpSgzGlDB4TdKE36ClP\nGU7OK+lY9JX1QhMTZsxdd4RN6NGzAZfm8/sVVaU6AY0ycsF8ine/VD2/RS9RDlkqBfHrVEIwC+56\niTWZyrUeoOvU9/VUs3JnIQpG1CMvQEhZv9xwT/6rrT+QdWbYPCtYK0nOR+FF/ASNUeHtV+w1NgwU\nvJddL0FODJ4/fYag249NREFoGgQhsFqzkWSDmYNEQ3/flixX6AZSIhWBacOj41Kj6XikStKKbPZN\nUSMMVTT6eb1G55FxeXMFhypgMUkbRXOeHavpJrZ0iAKflXB9ZFROi8YWJOUmd3EMnbByR1MHw7Wx\n2ansLa+7E9xtFi2IEKJiv2TTtrDJ2q+7BhVD7S6r4VGg3R8E+PdHpGSZ25pEx9hZ1wS6wSpr8FLv\nzhOQsjRGvFWw3zUdYTzhQtB9aDpxMCLRJTkmqNj7GbP/ePu8hm1Tec0yUQ/ZvClhM+uYUQLz2NXY\nU+En7wGd78DsdgnXGDJs9fG02ELwc950Bn9gD3sOMjL0U2YW0fgFxnY4hUZy2SP9kOs4BggXjkcC\nBj1tXdPAiL7NVaaOa5oa+glJWYaJhueWJPHJl7XhfNjUKb5/olxrsMB8ykzattHS0QYs7WQwoZPg\nNDYDmFRTWz/HWBCKPxQdKrxgbAFgce1DJ3mqKhNMiIS9u1XPsEsO+EjjmHq/R0dVuaZtUbLsFrHE\ncNA3eOa5d6LHJKCJB4CO71kYqnszX7zCZq1KZvfff4uGMG0WHzEhzPvqTiF4cbrDngxpwzCx2lA1\nKi1hWy/3uqZ1ji31BsLQg08Ur+E7onU6bMqnCt1AwTJFHifwQ3VNkmp3o8USDq9X1yxkB7Keqxbm\nYD/NeZjGCXw+l2nggJ4O6DQdkuVLye4FIXT4VNpzTQeSc7EytZP3+R87voiNtyPFW6CHrytWnydz\nZHSVkJ0BDBOHEo66tOBQeML1PFhkMJZFCY21zZpYq+vqiMgEbboSoTm4E+kwyMrLuXFPvRFcLjp5\nfoTJhc0SEqMB7QIt08YeSjKRwc3kD4c9QLuTEIJSasd4jdX+O3U9eg+LkFrB+o6EgYCbRbCY4HGr\nXiANOLl2mFygsrrHJ8I8ruNgwxqZ3kuUdNfIWxW0yPoIEDbVRj50Mhkd4WJHEZPNmrDhLsOWeseO\ndX4xCAMXrqPute1TbzZNYFLcAroFjRuOKwtI1jT1fmC5VnigWEld9/Ao+QijRc7NJaQVYDCdYbtX\nm2SZtugoi7jd7mHqbFngQqtHU2xYkthlJRbzKx6jxGAiMqYcZPOCrGLvBuhYtzJt9a+m9WibAQ6T\n6LgAmYaAxXtEXQrlpMJn7zn64DwGSxioxOAepO5T3/ZwyJxOqgStHBi8ATw+Z53z18HvJSEPSQyX\ngZgPBybr3pKLtxeet5i7WSwx5YK5YI1u5I0QeTxupGFC1ngtDXh0DNvTwcdxIuRcnL//zV+dgoNw\nPMOKjktpm/HemVhwboTCxpF2bdHMh0G2fMf3Ke97iEZdj+h0CC6kq2OCOB2sOAmtN+dLO+Fkip76\n6xUlJ4O5C4OLqC4TZEfqeFctguVQ82Rgs13hIwVMRFUh/0GtTXZTo2droGBgHncdHlgK+fZxh5ul\n+tnXDVRb9bNN5vp+n8CkI9ariQmPpYVjKZESNt82OgzjvMsZAGxXOzhk/keLHrKlZCEtEuP1Mz7x\n5yCcIpoSMs9LTLimgeUeUQZwQFhVk7C5wQlDR0Lmc96q632qBL57rwRRZFfCY4fIfPwKt3dKYCQc\nxFWqR0wnipmeZAWCMeek5yEwxy9eW9OrOi4A2LaOhrZ9Lee6YetoOecsR0BwzfS1/tSa2bNUoukW\ner7oPSTKfEjKPLx7pfSrW65Fx7iAYCluFN0hYdeIplkY8YsLOouhzaENa1jbIWAG1ggbUr6ssX1u\nXKDmy7iMy7iMy7iMn3B8ERnvlDKRtezR5iraKjQbCUX1j5UBn4y3kCSL+JhCZ0YShmMYdNLomwIl\npSQNsjG7PB88EmC1LWKKlZuGhjn7OAO6/mhah25P2Dk5ntiohlaiJwHhSBJUudugp6H1SxH4wPbt\nLBuG+D1k0ZCRvcoOiGlerZMQsJzfoNAH9nKHgqSD5BAjmqgIUGOmbpk2avoZZ8kOBmX/bMuEq6kI\nM41VRNd7Ek4wZAMuVjRBSFugJax/YPZ8WB9PUaMdveARKjW0xOI+PbM/sMrgUtRBoINH+PLueoye\nsJvJjK6NE4zGFJkQBiJCCvv0iI4SnDUddizfg81sPolT6Lz+sjdQlYO0o7peczJDwuhYGDU6Msjz\nPMUhpScqPW2zF2LPXtcg+4EwQWk4XTuZjpfF8URUg6yxXfM5s5FeWPaJcBWE4an3u69itCynaMOx\nq+oktCJkj46wtTeenGTrYmZpFmosR+p8CqnDZq/hOFzAHEgiNI1/CbS8vn6LyZJ+ziy1VLXAkZdT\ndxLm0BFg29hnFArwVSYTtA1cOTCRx6jZE7ktcni2yuoadg4kuwrgO4CxgSJWz/DQZxhRCcQhmeew\n2yIhbB2MAJts03h/QM+1oKCoTvuCH6/u6TAd9jOzWwKNhZLuMZboYATqnS+LBDWzvsHvt9CNkyBD\n2NunuXU3irCg+1BGGdSxH8Ci5OnHxwM+bml+MZqgJADWEAGQnYDFspSW7zFjKcmaTdHx3QvsMUzr\n5X7Q9baAkaqyTylNMCE9ISeB76KhoE3e9Djw3ZTSRfx5ID+p3331zSssr9U5TCcuJLPFHhV8oi/H\nQV9hm2FFFGAeuifW8mS6QE/py5xSvpF3g9BRqKXWpbDIsm4qA3p7HhUEgMVsDJu9sB10NERy8oYE\npq6E5w5oXwCLxEQncJTXOXASH2lhnNy3dNOC5qg5KTvlOqauU40w8mCSqFUJG/XwTvcCOteeKXUH\ntM7AkSIehzyBRXEg6BZ6/Xx3xEvjkvFexmVcxmVcxmX8hOOLyHhtZ4j4fEQBZRN7Ax5rYXA9mIzU\n2phkJWHAYn9rcdjhQB9LKSUkCTsWsyLNtgFmja4ZwSKRpcxSNIzAXQqVJ1mCjkQOvZXomJlqfQWd\nyjQjlz6WtoFkMCCQL1jnNaSiH1bw9EFRyzjR5Ku+B6gwlWcqOjx0LfKakZljQFCysOtMpFSpev5B\nUfa7pj1JoumWcaq3mUJDyt7l4THX0FFSIrEtd2ikuh4dOlqSq2y290x85yQVKfvzijNl1aBhrWqQ\nRLQtiYT9wV3TIqOimJVnaEvWdklKkHmJ5KAyOSH0U0vXZrdGzMxb8D4Fng1tUDrqJFpmZPPr6xMq\noSfqWTRpieMgQ3gssRrUg2ChI9GnkiTK2OdJcWmaoqfl3lArlUKgYO9un9QI6Eqg6z1aoiA1fU/b\npkXG3lu9LWFSPjI77k6KYQPZpDrsEbNlwXQsGOxnjo8aCs6/nvX6smqg8xnJvjkJtfd6i21K27mC\n8747n2E8P9XoqQTn8xyO8TOkHDgTJv5S0nIzCjCl9KBjquyuaDQcNur+7Z6eoLG+9bR7wpEsE1oN\no6g6CDLsZsH+tOCMJyEE1bradKhZd4hJmtkcWhi6ug/5IcbweuWs17XV+X5X06qQ5QpBun8iilAd\nAKjnM/Y1mDyLVBeI+T2zscpmrcUUc16vZXlwElV/7WSG42BZyvpjts5OXIPx3EEnBjlbHT2fd0X0\nzdZtjCj8H8zGkHyGrdGhZv++tAQO5cu1wm9/9z1sKqAFhw0a1tFHI7U+WE6EijKk85mPhLyNw2qP\nhvaXNcmBthlgdKUyU7OvsKO96bc/fIuA7VbRWD3vH374hPcPfE/f3YAKvzgWexRlxXvFudaWcBzV\ny/3m9VtM+fun7Q77v6GdqG1a5CnvlTGCoIlBO7SG2joE52e83Z2uHXp/4j8k7PHePLUwieRYlv37\nVh/NwJG2i0PtGL3AlISzp/UTeiI5QRBC5/s/yM/qJlByfu72CQYnwKqsUaTDWvvHDa3v/3YGvv9f\nDE3T/v8/icu4jMu4jMu4jP8Xo+/7l/H0/9u4QM2XcRmXcRmXcRk/4bhsvJdxGZdxGZdxGT/huGy8\nl3EZl3EZl3EZP+G4bLyXcRmXcRmXcRk/4fgiWM1//z/5dwAAThTBowB530k0B/bjti0sqr5sj4qd\neP/wWyzplWtqBgQ9VyfzGaJQMdNqMtB6zf29E09foqO/om40cMhUdjR13CqL0UH9/831AiUVXR4T\nCUkVpogMyMVohJGvGHHPj3v8u//mv/2ja/uf/qv/Xn3+4z3A406vFzBAg4dohGoQ/6agepanaNkz\nXOXdyXA5Xa+g0Td08P99XH8CCZJYXF/jT16r/szQNLEhm09nf+fctaE1in1XdRWiQJ17J018Sxel\njvKSmi2gUeQ/tIF/4x/8ez+6tn/9H0W4+0odb0LDgCoHoqViSx7jAprOHjh3htmY8nwUKj9uD2DL\nKso0Q0b2qzv24HmUh6O6kdb3cNiM3dYdGvYYjv0ANZm9G5pyd0mG7aM6RmRGcIS6jryNUQ3SVfQa\nbbJn/NP/7EeXhv/gP/9P4dNhZzCOqMocLnvHA1egKKg+dEyxoalFT4aqAQPzuVL1gakj4bNoqxIT\nyj8Op9J3DUIKz1smIMkm9w0DJhXR1mR5t12NgmYQeSNRsZkzmM6gUb+z5+cf3q/wX/4X/+2Pru2/\n+R//I0TjMb+PDkC1hEnVpP3jDg3dVppOQqdU39ijeXtdAJRd9D0PPo3jm647OYo9DixYmWN+pY5V\ntSksstR1aCgydYyKbOGmzWGR0W06IT48KZb6rsjRcY5rlnom++0B//M/+Sc/urZ/9N+tsf2szBzs\nge1vtNBp3CE1gaZWbF9R708uNRnXisDSEIXqHFzHwHqlmLiO7sLmexRXihnbywYF+3w1y0fFPlUB\nDQE7FSTfoaapEdENSNg6GipIta0ByR7jXriYsjf03/+33vzo2v7jf/g/oCopg2s0J9N7i/Mzy3IE\nIb+3LFBQXtfxTLSDwRl/MB0fGXtkJQxYfIaGqQM0Asn5t0GwOLHq+zyHRuUq4TgnSdjHT8pUw7UF\nIhonNJU8sfWLrIbtqP7ff/gf/v0fXds//sf/NZyTUpyJPXu/y0K90/OrCCVdkdJKoKmpYFYVqHnf\nA3p361pzek/7sobO3lw7dHBg50jL7oS7q2vEyWDGEULne/h8eIRJH9+ezOpGlqg571/dvEJg8P4I\nAzfT5Y+u6W8aX8TGu6YU3cINULNBWasa2BQuWC4W0LmxCm5SmRfB7dk43TYYk+LfrDfYPVGCcehp\ncKeY033Ht4CEesZNf4TB3yc1tVM/7tDwhqI18bhSC0ir2/jqF78CAARcoPq6h7TUg9DE+Yb+9KAm\nXpbGMA01oe8/3GPk031HMyDZGhOO1MaU9Ro+r2mhVQM+G8d720U3tLjQGu7avjrJNY7GE1y9fcXv\nFXj6TKNsagqbhUDKBdz2DHS07Fo/b/C8oa0hm/Fr2cIVaqJf/fKbs9f29pd/CtunAw9bKVzbReBd\n8xxaZFwxOzOEa6tznpL+P7YibBMGAhOBuUOhCrSwKSQwpZ0bdAEtpXb0foOaQVDgB/CorTua0Gqx\nkTjO1Oav1zoMLrpJtkUQUnKP0pnPny38U3z80bX1TY+W4igN28tE20Dny6+1QMEWjeKYn3Soh5Yp\n6AYc/q0JAyZb3HrbgkG3nmGMwwCOrs7HNDsgoGygBNKdei4aW7osIXBgS40mG1hsCJBZAtMerCaH\nJoHzVmWmPYZJeU6fzmBaUULjAnY3nyLeD+IJT7AaWrsVajFcPX5GTcm+q6trFLq6Htm2qGrOh5qi\nGzowomhB07YQDGp1AYRsA6tN9Sy3xxIRA67pfHpymFonHsRgddiq33XteXmQ8vAtbhfU8WYrT1Fl\n0BnlhL6FgvrpTXaEyWPM7yjkgg4BN2zH6FB5lH5EhZBzJl3/Rv2t2cN2VFAhzBaloIa25aOn0opH\nPXTZaCexGMO2ULDVa3+sEQ+bgahRly/rGUeBPEmSyrpFz6ApYTBe1jVCio70kEBDvew6hs01JGRQ\nMQ58hNxQWmgwuAZ1KFEwmBs2VUPPkNKONIo8gKIujZCnVsP51eDk1aOnQExXFACD3vF0DKG9LA6i\n6y4E157DMcXDR7VGF6kKaPM8hh2qNdMwF3AYkKd5AZctqCO6lN3ffwebG6/edqdWUdnY2O7X/D71\nXK3oFhl1s6tdDZvz73knT65k2UF9Js22GFHAqS8lfFOtDzPbhT10k/7qxUv8f4wL1HwZl3EZl3EZ\nl/ETji8i4w0IYUX+5GQy74caOhp5W5aDkH8DRtTTX/0ZpozeNuv9yfGl2XdI2YhtsUl6EukIKEGm\nV8B8gLEfAAAgAElEQVSg5+aE/knEICEk0h52yNmcnXguBOXIplMfu8EjNxmcTkbIcspAviD11g5i\nEoaAYAaSpwdoicoiHCkhKPQhB5N7TaAtVJTVFBK2rqLJrmtQdHTwIAz6ze1b9BYhd8sBGNl2oofL\nCHv1XmWK2TaDQ79JQ7fweFTHSLZr7Fc0UmCUq9k+rBlN3ymZ9ofj1dvXKDN1PjNLRfal4cDq6Woy\nc3HI1H0texM9TdAtJmR+dI2CAiTz+RwGRTh0Q57OIz6oqFIYDuaugnOChQeH2bMmDLiUUNR2dACC\nDtdQEW2630HjM/x6tsCCWXG9U1muc/cKOJPxohXQKDXZMVuK/AA6T6xLK+iESN1eg2USUZmo+9A3\nAgu65FgwUJsU3ugELM6Vhj30E88DKE83Ck14E6Iwh+Q0TwaRielsiojCE4aWY01B+1YAI0JtHeUU\nj9l5FEazpnDpaOVQ6L1NEqzuCRc2FnoiFVWSoqQIzMfP6v8f338+ORId797AJvRo6yYWE/Xsaz63\nTkoc6FbTd0fogihC3yAYKVRC0jdb6/vBzAdVU6Fu1Ny4no5QcalKCLMP0n9/OETxhJBuNfDVNez7\nAgbrMV2dIc4UqtY3GXyTZhkYDNAT2IQTx9MIr16pc2zSEiG/oyn5vvYS9QDL1luU9BJOocN0FepT\nMrNyNGBkM8OsbNTMxlH1SOl7LU0Pkfuyr6vu6rCIZuwPRxwJebsLdY51L7HhOmZoBjqalVQwf29Q\nQiEiW2aD7wxEK3Gg81SrVychEJ2Il2sLxCxB5VKD79JJqyqQUaTDgvr+XnOgUYxHePrJKc42DEB7\nOZv3bQv5IH27foDeEJnT1O9EnkNjqUlYAglFcabzMdyRep8GISG7b3Bcqbnquy7yTH2XX4coBq9r\nOtsZ02v8/JXKlLfPK+R0OPONCBa9ixtDIbJT34Pg/d98uIc5VfPAXZpwuosf72VcxmVcxmVcxhc7\nvoiM99WSBgiOQEnRdxOAtFUEU3c6mlrFCFNGyYvIh1WriLjeluhIyhgt5zBa9R07EiOypz0OrOvY\nnnkSPj+mFbxU3YI4VtFocqhgeepYfZmfSD5FfEAM2kctmAU71+glba+a84IlB5KghKmDwRYMTUBm\nKuJdv/8ISUs5j1ZtzuwOUwp7a65ExlqMGzgwaXwwYlR/dXsDQXk6x/OR89rQtphSiD3RVMS2jY8o\nacHYHLb44Ye/BgDc3N7Cj9R3FLRPE7oEtdJhOueFxSaTG3yI1f9tj/QU3ZS4Xqh7Mbc8hINaW1Pj\n03sV2de8tqjV0GfqWc2mEV5fM3IXBT6vVZbeM1JPkgIiUtnUKJhizIgVtg7hquM1zPbbDChbdc1t\nItDmjJQ7iY5RtWuo44aT67PXpmkadGakFhEH3XUgWO9tshomUZaul5hO1LkPAvPr9RYZxfbtYASH\nWWhdFhAUpLdYK8uqEhVNPo7rBq9ek7SV5tgysjeY5XbVqWwGXegIWes3Ah89s5mcpCWB83KYjj+C\n1NV5Oqyb1bWBVzfqd90hxz//Qfm6vv+4R0c5zPRRPZNPv/sEk3VdtDF6jbKpncSzozKNOCXxxHUR\n2uo+vnlzhZoZQ1qXKDR1ngbrwdK00JCPEJcxBL1nnUBAJ9En5Hs2Hb9QL8w+oSRPRPfJASkLGC6N\nWJoGoldZobD1k6FKtqPNnClg0Q9uX2RoCaUVSXZ6N4wBAbFHeL9S82yTx2hY140mczjkjqAlwtRW\n0Cmt2csajhxejBaRO/i+Vpj6Lxu7Xr26QbwmYUzvcWR2C5rBmKaGgYWm6ebJA9qPjNOkKfkss16D\nQxJU3XTQhyy2E7A4hyeBet9kb0KzKWGrafAih/dBwOM0qIl8QTYwiCLqhjhJ30JI6MZ5lAIANFuH\nIIohdQmNU1dwi2ogYXP9zJL1CRETjQ+Pme79Z0UQXe33MDlfGqtHTiJm1eZIBkvOpSKv7XINAQmB\nVZoieVLoV5MXSA/qnh325L/UBWzaK/iihWjVemP0Jrz+/Lv20vgiNl6Hhtjbxx9w2KvFauy7MA21\ncXRZB4u+jhaNxuHo8Fy1+SyCEpLwZpY2qAjT2lJBb8U+xppwlxl4WL5Spu3HeI3f/EbpitZkH1od\n0BDCCUOHMCBwjI9wfLVhLEeEVdMCBgk4s/l5r8m33yh49Nvvt9ANuohoU0hCVOUxg0GZz4YQj+no\nkFyUHN9EfVAvrGF1mE3U9/3pm58BAPq+QkffUl2auJuqhfSw2+L794qgUBfquEUNyKP6rsOHJySE\nmt/dXuHtK/W9W7Ke+xa4IuQ59c9PKikcOHxhY55jOF7CofuLsEcIPUKPSYLrN2qiLj31/9BMdKU6\nx2t3gohMz22cwCWJbCDrGI2GDb17H6WJcaTmSdXV+Orn7wAAGYMOS7dhkJF42BdI6ePrGDVGDKpu\nloS9uvPXZnsmJN9ug45DtmGiGlxxOh0BGe2e08Oi72pbqsVw4gpYJDuJXqIhGcnoBDT6qNq9+t51\nXJxOo6gSrNfqRW+6GhbnwZSBkWu4Jw/h9JiipLexgxZZxc9xsXPEeUDLETZsEnMMXk+oe5BclJ6P\nMSpu3uPRFL99VPd98zywecUJxs6SJxiEyU3DQk6/6M4gq9fU4V+pOZlYM3z4xPd7OkNdqou2STzr\nCoklSyFmpwEDocw0UNUsU/CSppPzG6/WHlDz3B2y3c2+B+goZMOCwwAavURHo+SIc9Y1gZ4Y7LHK\nULNUVJYa+sEJyh4g8hE61k2MTsB11ecm0fz0uZwuTZ0u0HCDjEIf5QDB2jo6urMndQPbOu8PDQAN\nGvjUUYbWgTbbKCq1mbZljqpU72xZNPB9dS/9kYmKG25FcqWjeTAIs8OxYA7Epn2CHmoe3O/U32q9\nDjAwLKsMV1BBjIMGlsmgl8RIU9PQVmRp94AxBMi9Bd14ebvRHB0GiW5vw2/wgf6/2w3Z86MIBoOK\nOE3g8nvTfYsmVMfbsROkdq7QMrhNNjkM6j6b0BBzk+1zdgkcJQ7csI+bNTxQgFlK2FyvR0zqDMtC\nxPJFsX0+OYNF4Qyue977+qVxgZov4zIu4zIu4zJ+wvFFZLyPG0VaamoD+73KgALzBgFJR8dDjWik\nIrljrk7ZMiyMJypznU5HMGv1t3/5u38G/UhXiYIEkbjHEiqiTQ8N+jF9fN0lkqPKeHNGhLcz5+SE\nlBY1jMFJxjZwfacidw8qatpsC7R0+Gm987fy6p06x0/Hz8ifVZTl6kBP0kBR7TFl5tTyWMmnRzR0\nU5KLBRaEyYTs8XaqekOvJurfb//qr7EpVCZy8/YKU199rutaXC0IzboqQvc6DTUzisfsiAmz57rs\nIZ9VpDdZsj1CaAgYlzX5eceUz5sOsqWHJjN41w1RMZpP9B46I2Jh+RjfqGcQ0nVm5AfQSDir2hq0\nQcbj/ghJWKoi0U1oOu4fVH+m7EPE6Yg/9wDU/KlJAAnCHlqtsojr+QxrwoWyS08Z+mShnuV0ct5r\nWASjUw/mgVBVEDiweO6ZzFETcjSFiUoSCqa7ySz04RKq3j4+ntxQ+lpAMjJfTNU1BMJBx/7Wrjfx\ngf7Mlt3jF68UCWrGfvPAsBFdqTm1FiY2JOaUcQ7BzNEh1Ff/QdvSMFzNw5w9lRYJL9v0iKcHNT+/\n+3aDw1H9Pk1NvH9k73innvU3tzP88P17AMDD+hMCZpaTIEI0UfOHnX6oGgnJtqqndYqsVs/idjKH\nRXJkw+xQFxJdTTewTgM69bd92QIN233Y0x7Y54k6k7EGm8/bJFkv8AJYQ8ko6yHaweM4wXiqSg0j\nIkVpvEPJslaaW6jpsy1lBJ2IV805dCwq9KH62dJ3kGy3Kg4NambrukUkzXRRMfttm/rkNdzKBnU2\neLn2OOyfz14XAJTZAQaJbk0RwyLZqGMvixAaynYoaeRwiT5oVYmMLZQDwo1ghjBU60PvKFcsACil\nhlXMHlqiTW1WYDxA502Oh++IwGkm5gNSwDkQuB5iEo2KrofQ6E7m+TCM8/MRAA51gYxIY7Z6RpNQ\ng4HvYJEUyA7qvJJPR+gzRYhK9QD7TGWsOXve3331S3i0UFo9PGP1kU5b1gxvrwcfbrZMtRUkHcvK\nuMcd2xBFVYIVQExvl7zeHhVb62IJeFxvBDTsir+dO9EXsfGWbE4LwznqSt28UpjI2fel+T62e9pP\n9QN8JxDt1c29CX4Gk5DZn/+qg/VO4fcffngAAPy2bBAa6uXfZAdYrCV8/rw69QpXZD0fkwwTwnqh\nP8I4VAsfPAHDGW6XOtZi7EOHmpBVfb5nMib06HkBPh9U/SAcTZCzaTs7bPF6qr5DEk779LsHSMLs\n0WSKMSGju6ubk6Xh4716QfVKQBZqAvzu20fstmTgTXxE7F8bQb3kcPe4L9Xn7GiBvlWTcJu2QKw+\nd8MFfr5YQmf9MMnOb7yP6wKSPblSqBdQNjrGjjp3z56gy4Y+ZxsRe5eHGlmti1MP57FtISiOYI58\nPO/UMTvWeEcTH3e2CjayWmJLO0FL+Hj//r26FxQE0ToLE/Z93iwWKBkUdL0LuoVhT8Q4tM9DllL3\nYNqsmZJJvsormAP7tWnR0Oi+zw5waIhuk8lcZPmp71XGGW6HEsCxQLxXnws99Tvd1OEy2DvWLWQ+\n2Ab6sFmLtVmTdi0frT5AXwVMVx2jlz1sh+fAQC5+PJ69tkjYuPLV30rCn7XpngLSTfCMhw9c+GrA\nJmzfkL1cGDZssrd9WZ+g3cI0AVpmFgcVyCZlicWYm7xj4vpKLWJlWaNlTdSNaEPnWzBaddy8TDBd\nqmO8no2wIuRoMbiQ1vmAqeiO0FiHD2wGrDrgUZxGbxuYvOaJP8aRAdGWm02WlUi51my2MXRCrK41\nw5ZrT1+p74/THGLof80Eqp265vkYCHh/PE6v2SSAx3PuyvzEPIfQ4NDAvSszZPXLtoBm3yBLFb7c\no0bPkoPLdcmZjFCzzDB3BQIGlYfDGks+F5094pbtI8mH/nRA4/rl+Qa+marALuNm0tUSNXtzm7KC\nPlA++t8/D5esZl+TqIaNzLTQs7Zc9TVqnO+9BoCsLnHgWrGLK3wzV3oEjafmw+rpEfGGVqFFhpj9\n7Y/xHu47suKpxjNatvh7f/cvAAD76xL/a/K/AQCC8Sss36q94X6vNut9/IgNYe2obqGTjR9vdyh6\n2pcWFGcKHTyuVABjTyzotGCNixZFdf5de2lcoObLuIzLuIzLuIyfcHwRGe+eKjnLxQh7KkAVcJAM\nWU/ZYsyIbTQiLGuPUPRUJLF8gLDSaHKNhObrLZmgy+X1qf9ynx/xxH7FT9sNDk8qc0o6Fa1qtxGc\nkcpEisqARqlKZ+whIeR6faey4OlohjIhhIjzrOYhuq7SHRpCwlmrIXlShJW+OCLeqfPRWhqDH/eQ\nujofs72DXqnHZKKHRjLIaq2+y9NdNITn8q6BYBTcJikqlcQiJ4ysHzd4uldw7eciw/S1imz1sQuN\nEVtCYoRrCsBSGUPgnO/jNccO9jScp3AT3FEAbaRgIGM0R0TGapU3qAj/FjSW/vj4iHZgptcFtJG6\nVzfvZtgxMy9JjDI0G+/evAMAHGSOzf+urqORAgazdJfnoGcNyg3ZmyJHNFfzxJvOcdwrtu6ng4p4\n4Z+9NFRpismNuo6huTQrK0gap7uWASukOpNnQpAoJTCw3AWEVF/u2Rosxrh6p1SHAOCZzG3L1uGQ\nWFI0FSyqMzlWhHCpzmHMnuwkLwFmx3rgQwwkKd1BQbnKziFLOHiBOKZVkIT1NoTv8koiOajfHY7P\nyBM1J9ebFD0RgxEJhB1aeHMFybWOi/WG2bHv45F97ZavYMxxZCNl5qT3PSLCtV3VoyXN36fSVJrH\ncFlimI0iCKJFYd+g1clE5rtQNeeZ9tvkiN7hWuEPz6JFSXUnXRhw2S1hmgbyWJ3bxweVyZheCEmS\nH5oGXjAoMgXIC3XMqlLn+PB0QLxT7/EismBwnozqBj1h2kGVLi9bWISEuy5HSQP5fZKdzNU12WK+\nmJy9LgCQZYKW73o0cnGkfK5PdMcxDchCvcehb2E6o8qaDAAiMq6nnmHZVRCBmkdFkSHh+zKe+HCZ\n5Yd8Vouf3SIhGteUMQoe97jPT1KcZTIsNlss7xTxUyuAplfPQLN0mITXzw2tSTGLqOcgDAyNFCaz\n5NnMR7lhX60QuLpRyInmWWiJOo4oDamtjhDPqqPl6+k18Od/qs4371BxfayJpJV1B7MiwtR2qAjJ\n202OLRWrPhMZWFsCPZGn66vXsClZnFQHaMXLbPRz44vYeANCMEWcwefEcMcTrJ/URjdfXOH29msA\ngGGoTdEUU2jcjDVLnBZEIUvckrWcPKqbf72cI6c04boBDg9qUanLGIcNax9sSelkh04n7Fd28FP1\nOcf3kQw1s716wElxhMdJH4bnoa++H2rEDmyyY5uihM9JZkxM5FwwczKDdVtiv1Ubw/1vf4OZ82cA\ngHi9R+OQcg/10I9pCYNCDpM+QfukFvNN3kOyVSd5UpvY5uO3qHmsfQXYd6q+9dXNO7SsHWm6mmS7\ntkevqRdlcvv27LXJUKDgsQ3WO543n+Fq6twszcKakPpUD1AkapFPTUI4TY2uZYN8IGBzzRFmBQH1\nt7qgmMl+DZMiKsLs8Gqufs4LAyEZhQOT2UFzaoQ/pAe8uVUQtWxLSNac8oxiB8n55+a7QFOoxWSo\ni7mmgbwm69bzYEOduwcDHcmoLVs8bu8WqFaE72obPpvx7/dP0Din6kpdYzD24LPeeUz2GBP+vlmE\nsNmK05vq3+dkC8MjPGxoaNia9bzbIxsgVkL5jXm+DqqjQU8m7Jh1wLI4YnWvSjPHzRa+p+ZO2e+Q\nc9OyB7lCIXFcqXlmOwHmr9X88FwPOhfoiFKUXi8RMADOOqBgPTeyTGQU4Whrbm6yg8f6dGQ7OHBT\n3Oxy9HLY9CiX6Z9fxJ+fttApDhKA4is24HMzsU3AIhu1ygv4LEE57AzwnBFcrqGG7cFj8KkJA2vq\nB6dsiTI7B8jV++hNA4DlqjSuYGmDcASZ4psUVas2xVdXE2RPFHjZPCCP1T1zHBeV97KPuu/5MMk8\n9wMbZc1WxUH/uswRksE7Ho0xpTZ6r1nQ2J/TU6rS7CuAwd7V4g4HCrXokMgzimlw08vzHhaD7+k4\nAihCUy5bmHweqx/Ioyi2iBlQdm2L0YwvtaWjlucFXQAgLZKTXnmRbhBzIzdZT/ejETT2Lukm0DVq\nXYgmM5SdmsMOAybZNbi//x0A4F2v4/VM7Sm+nuKpUBC1l6i9AfkaOrtqTKODQ53zffyAJlG14ZOA\nkGFiNOM52BpMBraaZaDYv1wiODcuUPNlXMZlXMZlXMZPOL6IjHdCokd82EKMKdGWpSgSlWpMfR0t\n4eOxxSb0usJxo7KWXR3AoCzYzdTDFckc3s9Vlrz77lt8PBBK3T4jp/A2LAndITTbUGBDSPiM7iaz\nGXRiHk/rHWqSV/RMRbOH7RqvyHhzvPMRuOGoqFNYj+gJheRo4JIluJheoziqc8so2+i6wNsb9bn9\n8wNW36r4KC/Kk5nDKFLkA8N1cHxWEeZ8VKNjxHbcptg/DQQsde8qp4U5Jkxem/DYjyw7DTHF/XP2\nm44WoxPrdHo7O3ttz6stmgHipxtLmWRArqLJVZKjObBf2RyhZzYURIxinR4Zz023DGQUZ5dxBsnM\nu2Bf8THeoifZ6/lQQjJLaCWQM9PL2dO6WL6GTkqiNR8BhMMe1p8hbTV/asach/QFqbe+x2bHqJhM\nWs+2ATbK940FQQnBvssx8Qc4W0XXutFh4LTpjYTFaDyyPPz64bfqngxs8Zs7zP/8TwAAU0egYbPq\n1djGmyuWOogSJDMHe5J89kmJLUk6h7KDIOpQEBoLiar84Xi9nMNnYtXReejp42d8/KBIJl1ZwOE5\n1NUGWqVQoZzlGnvkoGSK/+bqDSQzgt02x5SkomtCpqv7X6PhXG+1CA0RDqTVyXFpekeTC7PC+lFl\nlV3qYnKn5ngrNcSEN4Wr0AvjhWz+ehrh7Y1CcgIiB2WVI9mqtWK0mGNCEl5ZSnTMEOuZeq5pIdER\nym+LFmBv9HQ5RS8G6FbNvZlrY8m1Zum5iIkMLOdLvL1RqJuUNNIQDUa+em6e7mBLgqYnJIpK3ZOy\nb+HkLzN/e9nBd9X5Oq6HMFTHbggvF4VExGfheGPYtvr5dhKhJ1HVnar1Nc1irHfq3CwzxDTiO1Qc\n4JMRvDmo/z92e0QU98k1wGJ/K9r2RPayWWIx3BDUQEEd59CJqNRdC9gv1HUAxEWMlmutG5pwSbTc\nrtVzOxxSjNhxkR/XSDI1J6fOAlVB0hvnsrTsUy9xvtri2KtzfN5sENCVy6PBCfI9zE4do+o6XL25\n5r38jOKZ2gTXv1TnNYtQ12qfKHpAEBWSPeDP/nYCGpeM9zIu4zIu4zIu4yccX0TG2w4C3r6PgrVG\nvRVYLlQ2KTUdVU4lo15h/2M3QsjWGqPNUVCM/KGsYbEWGw29Z/PJiTwRBR5cRp6lJWHSOqtm1Nkb\nHSqqJl0vJ9hU7IvrNHj8PoPZQC+8k19vlp1XnDHZL2mGM4xIlNk9bOGxNue6ESJf/Y3Px/Hxr7+D\nzpaSehfjMFHRWT5JoAmiAK26nmwD7I+qHmzY9smUIOsy7GpFDrgaq8h3Gc6QkQQU2j5qk6YMVgbP\nUxHrkXXJVmawWQ+9Hodnr63aF7h6rTLoiLWw1GlRs/ZUxBWsgv2BTo+WPYYTXd1HXWtPbVjVvsCs\nUt/x9asr5LGKQouUkoloUZBIVJYm9Erd9816hWIgShjqWX7/6YDXdyo7eX23RMF+0NYwYDAjGFNp\np6/P19Tc0AZC9bc9s3I0DUI+K9saQ5A4kqy3uJmp+7AgsayqGwTs+y66DVaf1PWYeoiaBKHtin3d\nhonxkb7Gb28QMmu+ebXEeK6O11aq3vTNN1/j1/Sp9fUOKTNwu3YxHVMyk7KYdXY4f226h4T1ygNr\nXWWeQqMGZl4f4FJ+cxxOYbJHc8+MzvIteF9TvWh5B3upzj3TVuq+ATDpq20VIyRUd/JmcyBT99KT\nGaZkw8X0/tV7DV6vMrNPhxS5TuOOMACFiE7tZWPn/NI19Swsx1wXKMlplhYE31O/F4hoRzj2IqSx\nmpOVYJ0PEi37eD13CsnWoaDqsWCP554yk22XnSzyJiMHsa/O/fZmgrdzNR8KZmaFbiCnp62WAwYb\nnV3Hgst69aGscSAP4two9k8IiFK1aYHBibQrhnYkgUan0tOVA5vTVugBWrauhSP1rKpSx+DTkMPE\n1VSdr1ZrSBr1fbeUnNW7AhpNFKoiQ8LnVdcVkuF82QblihKg/kKnGygK9mJrBjT3PCEOAF6/HoG8\nJWhlj3in3ssltQiOhyOqI1up9BwmyazF83vIjgjH3S8AAOOxi1tfrTFz3cU2JXrzsAcGguezQgM1\no8I4oBZBdQBK9Z4tJj7kn/5c/Z4tWCLyTzachzbDIVZcISN7Ps25P3Z8ERtvk1HSbxLA5OLZSR26\nTpNp0WH9WbFRKzLjioWE4MR4d3MFSXzDN0PECaFbQjD5egVBNqBn24hmlJfsMtzQ5ed+oza3VNPw\nkZJ98sMHOEtlTG1bFuYBzcpdMlTNESZk/rnG+R61D+/Vw2mlg+Wt6iGzNQ8aySK9Z57kIa+/UdD4\nalsgb6kzre1wv1Uvr7eY/1/svdmOJEmWJXZE911tdw93jyWzsqqrF05zQPCBD3zhT5H8AX4AX+YD\nCMy/zGAAYjjdtXRVZmy+2q77rsoHOWqFrjZvTGGAnHiw+5KREe5mqqKiInLvPQv0kMjnXE74h8cY\nUcWSu+MhIaiorGKo1FQ9CLkZ2/EWBcvk7nd/jZoHl9V3U7jcZEYyfq+0YPUI0S47e2++GUKnL2pC\nxyZbC1Dkf/IavZvIF97zXOgUFejYNtjGhxPoQx0aPHySYiaeyE5o3eWbDwCA3dMWu0PD8TNh01fX\ncidI2CbICZT5vE5QEU1a6jpKlsbc1TsoRAjx1rFf787e23G/QXgjN70ooT5zWiKxKCequgiIpna8\nW+g2ZTLHF35motyyhKhVeFhLsMfx04+4/ywPSqN839oAmo8Spf1XqynejPKjro6BQhGqIufpMS8w\nkEhZVBEch4bfvYeIG61O4Y7yJMzwz6ONKxDEjyqV9/ab3/0Ra6Ka17s9dvuP8t+Fjp5zu6ZkX53U\nuGFJ7u7Xv0BG3qaR59AIkIFFGcm5jyPbQFW8g0ehkdY2MbhyPvz4WbZKrgzgB5aJB0U7ORHdBFe4\nvn4LAIip1Vyk5+dkstni6MmxWhB1qokeAcuYfblDceDG6gwwRsnkjXxPl4qHBfXg95WKigcBQzi4\n4gY58luhehh4iFe0Hp0hn/3VYgaL/GCP5fneNPGc8nCfVviOHOO1qqEmubwSA9ry9Y23bQcUREPv\nNnvUHEtBBLXatgDLrVWUw6ds5yap0FNYp6Vc8pc/xigS6mlfr6C38j21DB0lufUiTfj51WlNDQML\nBtfg+80XvNCxqmLio9YJBL1w7UWAhAcX/83sX62vHo/PmM7l9263R+S5/LPPg83szQx7uka1po1+\nzHOUAQMPmjqFO/ZfIxx+lOvnrbvENuYzGAZsGpmMjJbrijeFuZCHkZVfY6BrWShMfPhbiYZ+5iE9\nNxoE5MiL/IAdN96F2WAYXtehPheXUvMlLnGJS1ziEj9jfBMZr8GTTJ+lsFmiqg0FliFPdLMwgDaV\nfybOBYc+gy1YfjY0eBT0N5sWXz/J03r0JOkRPgRa/ixMC9MrWQ70Fzoy1mvij/LE1hsWXDq2WGEI\nwfqHbqhQSU8wa7qtLJdQCPhJD+fLegEpMFXRIbiVtIuV6yMt5QkyuHawfZQn/qKWJ0nv9h1ulzLT\n3sxmeD7I9ORQ1qggqwO/2cqs6dPjHsGUZVPdxT39WSduiXc38lR9HLO6tsXimrSKoD+VUIRmnBKj\nkyoAACAASURBVMTO38zlf+3p6uTd+5EKYH8eumlB6JTRIx3h7vYdapYkm/yA22v5HZ6pIiHAbQQ2\nqaYOe3T1aHv89DsJOqo/PeHuWp5Cg1tZJbBFje4gM/tdlGBGkIQ/v4XNEp9Cys7fv/8lljfyutaH\nAxJmiIFnIWNm7hD0MZ2f503G0QHOlH6mpL1UVQNBekg9ROh57fY8xIEVjAml9xzThTvyJK0dcvKV\nf/uH3+F4lNWbmUceuuhRkrPaixYKszPDNKETIGSEFLHfrJFv5PVsnrZQR6cdDDB5DaO5gCjPZ7zd\n/hkDaV4xlc6+fvkR0fh3lYKEpfyqiqCyfOwRmGMFLu6+Z8b7/RwReaia+xaCAMKMmUOnAQHLhb7m\noacX9mS2gEleu071o6nWwiGAMU/3CJhNWkqHOVeq447uR/F5+kae9nh6IpCK1YehrE+lR1d0J76y\nWqq4oWyixrWmynJ80CmVGK8B/YZj2mD9h9/xPuQ9mpYOaymfYd2X6Mjz7R9zKKw6VBGpfNkOHQGD\n9mIKQWMEtwcmpFCVeYZ9dj6TB4BKcZEOco3YZCUqckdVvm9WW6JiNt9FKuKZ/Nys0FASJObO5Tv4\nh58+o2L162VawtRlxUV4BqqSP0vFNlEdENFreB96CAgk3D8miNYjQEt+rwILL+s9L7gD9vIz3vU1\nFt+fdwIDgEq0EKxUrL4PMLJ9Ng+yUjS5tjC9YVtL9xA9y+/N1vnJ1AaJrAyqaYb9blQG/CNSVuw+\n/N2v0LoEjn2W1TXrQ4jlG7kux22O4+Mn+RmosLr5AABw2DZwQgVFTEljW8cg5PWqojsBLf9r45vY\neH0iFDXHOmm8qoaOnmRnw2hwy0E/cuE07Dn8iXyZttEj9Gc5kNuvn7D/IgfH56YpwgXWLEcciwIl\n+6SWNzmZz9clZQzbDvM31AE2QuREvQarGRoi5QStoZpNjFzIh94059GxHcuUeZLDIt/s3d13KDt5\njZgosNgTOT7JF2H5wcSSIgC4vsHX38gX/pCWeDjKhecTkcwwNbh338kx+WGJwJPXcWUDGTeqiJNC\n9X3MKAvo3lnwl/JF8B0d1tgnVWm75llQ+TDq/vwiFyd7GIFcKCtKRx76Bib7xd7CgNDl+NS6ji1L\n4uVeLtQf3rzDwIUm38dYGnKzXEBB+4mOVVv5Bh62L+i50AxFhZERuEtigIjy6Xu5iM7nH9COrjGO\ngox9m3p9ODlEgb3uoTjfmxdFBZUazfogD1zhaoaaz74tdzDpvNRAPx3QRglNzXLQCrY68gdodJ2x\nbBXLa7nZn9oCaYGWcnlFUZ/wBoE/PaFu7w/y8POSFnjgYla3gD2M/FQVdUqJSl6jEOcXgybeoyaK\nPeKhzBxU2Iacc1UVwfPk4VQMArMlUcfv5DxL6xJHLnbHcoeSMoWDaqAnt75MqGHsDRA8wC2vPkCj\nTrWrOLB4+NHJm48fv0Dwc+u2R0DOqe2ZJzPzw4M8tDzyff/z6C0X8ys5r03yh1G08KnduLDUkwuW\nVgHzk9mU3EwqPUdITYB/swiwIU8XfYqBuAOfaP/As3HkASCrY2jk7LeaQE++fBvJ8RV1Aoutqnz7\niIdYzutiqNFReENr0pOj0LnYlCUq2jEeWyCiRKXOaxgOW5SpnCercIVBlWuM6G3YLP9Wmiy1/vHL\nHg1Vb7rmC0COreZagEat60Je44epiY4o9rT9isVSHkYM04BjycPYoMt/z+MUBbeVLGtP7cIr9FC0\n1+9NIMYxIsd7MUUzWhayFxDMNdhzct3NCeJOzofHL/+EkGIt2SiOURxO7+lvf/tP8Edeu1FgmMg1\nJmabB0kNzZDzxQiAdiXX/rw8IliQ+aAwmVE1DLSSa+oKCzJPzN6Erv9lG++l1HyJS1ziEpe4xM8Y\n30TG21ByTnTJyQSgUAdUwyjrlSKmd2fN0+p8OkVLhNp694w37Jar3p/AIGO5zGhq1KN83NUUPJii\nUgQ+U7lq4EkyTiPcP8syrm4CxajEM7WgUI1mR1WVar/HL/4HqSq1ZTn4z0Ol+o7RttB4IjOtGkFA\nZyBLwfqFRuOjZ7Bm4mHkr3oOWirxlMVnHHnS27Yyu5mFDvpAXtcfHj6iPomoe6dS42TFjMXzcPte\nfu98+QZ6IE+u6b7CkeAzfU4HJsfG3VxyJrv+PGKv1AT2nTxtC2bttdqjJ7c37XLEFIAPdff0PA4s\nb07dEBqvUQgLOoEoVdLDpsrX/islDdMeRi/vYwEfXi/HZF8MSDejQTnVrtQYiSPnw+RuDoOl27bY\nwaJK2njaL/PzajpeVWDCFsiE5cReHbBnFty3LZiwYjENcb36AAAnbmVSl8hzIrJtHQGN272FhYiK\nQE9bmQ0NCLEicjptWjxH8jt+bdsQ/Lz1QWYfx8GCQZT6rK0QrWUGWFYtjht5/+/f3fFnk7P3Fj1s\nkFN9Kaa0nqh7XE1l9pIfO9xv5TzSzBCOKbMEn4pP728myMWoPjYgpVpXgfaUmc5n8nc83UNEDq1l\n9LhbyTn1+GWH/Y689VDeY4n1SY7QsRxUNBpfR+pJTeqWyFVtOC/R57nmqRRqcHnrW+3kUIOZg3D0\nct3tsGW2GD1QuakZ4Djy2oXQsSPH3ncA0lsxjDJldQaX8zSJa5SlnNdNHaFh6Trv2aYYjugh58Cm\n6hCTpVEqNZQR9W3ryLvz7QEAUKY6BL8vzQs0rJL84f+TLZr4+RHLyS2vwUNFdKTe1vBZzo6oWLY/\n9rDoZw7FwOZZVtKy8hn+nCVU8up3n7YnBbWyzZHkcv4GgYq4kBm2TjU1zxkwZWnWNg2Acq2ZbiFp\nX89471YaaoNrgWLCDVk5opZDrqfoyIrYKB60uw8AgOGpRBTJdWPD1qLbZPB1WQ2ttR4RWQ2ffvpH\n7Ml4efurH/jNLb48y9/7xeQGNsGcWreH9Vauhe7osNYVaBWybsIOasjWzH6Drnr93s7FN7HxlpQd\n87Ue67Uk8S9//dcn26piAL5yQ5kRhdzVa6itnDhJHuPIXu0P737Apydqxxry72bLEB1J7+40BDnt\nOLQ1rm5l+YzVMnRWgIDliOm7K7SPvwcANNEXNIFcmGpOANudwKXEW9meJ4d7tAv0nRBBKCehIgQ8\nlmj3TY9H9klG/VYVHf6RL0JZdfBo+h3APgkfGHtKO6ZbbP4zbbpcFW9I6oZ+B51G6IYnJ9vdaoGb\n938tf9awUbFfqfkmGsL+PZ9ONNkBe1pyTZe/Ontvg+uhpYyb2ZOisfAwUNBi+9zjyH6423Rwid7U\nSU8qogQ9+76eO4M+yL/f7Hb4/gep97qgYMqv3tpIY/mQvux2eNiwNJsXWLKHqBPJfIxirPdEOus5\nVh/ks/E9CynLhUlO9OeoMftnoeoNQppeZzzsHOMGNhGvquUAlBmc3U7hUEavY4/3ZfcCjaVSY7LA\nkfQH5WoJlQc4je0CbWGj9eWY3WcHzITcXO7LHm4q55pBC0zdjWC1cvG0FAOGStpKUgAT9i5ZiO/L\n85vTdv2IiiXsL89y480HHYejfMcefv+MHcvdi9sJrii6ovAQpXcDrkhz0iYahMmesmnhyH7vgs9k\nNveQPFB4Ii6Qs69reiZWRNKqRANXkxusX34rr6dKsWGpWORHvKE29ISOO0EwO3tvWl1h90SbSJaP\n6+cIHccxq65wu5BzUqlS3B/ks003coHXGhNmKw8zVtfj/rMcn+l8BUEHL5X0k/IY4UBnpkapkDVy\nc0/TGIoYdYWJd+j2cGgDuW4EGpaiG1OFQUP6Ch361xUjJeK4JkbBsyAcziOK1wSLW8xnEv3t+Uvw\nRzExbHS5/J/9+LwrE31GKlXVIed72APwp+zJz+U6mOwVaKocn/fLCXpKpdZ1BY32ehZbLYEbILwm\nMn01x57v/IASrfo65WZ25SLpSFlCBm4JMGbyHtu5AkG2xMqfQu3lfOibEn/4j7IPHPOgnGQdnnZf\n+Fktbq8pvPEcn2Reg2t5LeEyhMLx+7JeI6H4z/zawKGVa8XsgxzTpT1DGMn3Ji4eoUL+bJ9+ghXc\nvnpv5+JSar7EJS5xiUtc4meMbyLjHZg12atr9JHM9CzHRULT4adjjJCOQVM6+Bhlimoj/93IG6xZ\nunn68gX/5XefAABvacp9e6sjJKdvPjXw048E26gC1kyCSDZHeXpxewO2T2F0Q4VujF7BHgxNDtf0\nWmYAV5MQPpG0trM4f29CZhFC1RDRUcUVU+yP8kj3dZdiSlGGiuWpp+MRBlG5SpwBRBfmyjM2GZ2M\n6F7UpNlJilHXQ7hMiW+WLnxm1WjkSd1dafAJHmijHi3BOHreIHApLEEgTF6UyBKZMS2C80hLuzVw\nQ/R1y2eVVQU6ShaKUqCjpJ5pLXE9IW/Qk98Vr1Pcjxmn6gC1vP+J4UDr5QmyJWFvGcywnMp7+6f1\nf8BuL0+jC8/EDeUJU3V0W+lO/NdaAEeWfFW7xIFgl+etvLf4y3k0uhaYEERL1+RfBmGInACRLOng\n07dZ04G8lvcRF8xQfR8NUa4vD1vkzN5a00LFzNG05Xwy3ApdI+ffPlohZ8ZaNCmUgob0LMlrtoqu\n4XeYGlxytS1Vxf6T/BmCdmHarxgJpBFKlkC70d+2NvF8LzPFLO2xpHjN9WyOkOYTNcVOHn58wY36\nQV6PZiFPybe9myGNeA3PsoUTaio6uo/VhwwunTC81VukBaVX6YGaN4BhsyrUNIi2siIwnbUwZvSW\nnoxgvvPmFrvD4eSuU/O92D5t4Bjye4vn5GSg4dU5VAprbD+TK68G6I5sLw09Hn6SbafHxzUCoplV\nX76bD48/nSQN794tQDVX9LaKiKC9tJQPw504yMlLjoWBeuSvCw0uQaINCnTG65KReieQUVDGdTR0\nBEou39JYZlhhonHNm13hhPc8FjCEzGKnnHNJoiKK5Xf9FO0w4Tz67hffYc51s9Hlc7lZ2ljZ9AR3\ne8SlHJNGK+BfSe2BkuskFIGQErO5ZyPh3FCGGuIVACoA+F6BmO9m0SnwWTEJPbkOGK5zAlQuvP7E\nwigKG0/3oyeynO+m4yAfaFAiGkwJkvL8Gd76bEFdUQ5yVsEmN78dtvCuWcHzaqjMeOMDZXGVBUJP\njsMgXDx9lNWZx48/Yfbr4NV7OxeXjPcSl7jEJS5xiZ8xvomMV+HppW4qCFWeKLb7IxRSAKbhBDNS\nDxzIk+LUmiMZZF+iGYCMKj3xvjyJcXdUFhJag76Vp7fj9oDrJY0CPBv/7xd5yqfbHlTTQlMQcPHc\nYBnIk7Ll+9iuKczPk9vS61CTphSX5yk3ZSNPfK61QNbJk/8uLeAQ3DObXUGwF/effiNPUNXMxd/+\nWynMvf3DR3z5L7JfsX7+ApMny7ul7HF8Lju0BG1YtQ5RylPf9j7Hzd/Ia79jz+XdfAIqniHKOrSx\nvA8DAwaCkVSCpXS1QUWJu2R7nrph9TYs0mci2r1F6QCvlc9zMZ1i4N93+YBQl5luk8ss03NWuKbM\n4Ux/j3oEeDUt6h/lmOgB+0xtiZxcxGln4fu/+Z8BAMdojYlJ3nUgv1ezBKpRrWs2hSAy5/P9J1QE\nApUtZeK08xlGo+jomTEKVV6DavgotuPpWEFBYMDXxx3evmfWwbnnWiEOX2UWu9vtoTCzNCwHJvvo\n9pWch5pSQKNSl9MLtOREl5sI1568tyiW3+vZS6x82e/dHh/x00bSQ3wFsNjf19lfLOrq7L25roKa\nafGEdphJMcAX8s/DYoJOk2M2CycwdJldjiCz+FOK7WfZBw2aCRQxKidZmBryeg0aU0xVByqBLmJi\nQ6PCXLXZ4P6rzJye16QQdS1WC1lBcTUV6U6+m60+wPLYt1ZklabpzwPHZvMJelYUKGQETQj0BGMd\nshxGz/EpU9wQvDYQOLbPa1QppTzrEnEv5/d+G59sHFVbzsPDUYB0XISZjl6l6p5e4XEvr71jj7Pr\nNOjs+VumDZ3UuZcoQTihtaCnIn3F/AEAXNXAQMWrDhVUZq8twVD6oGJBfvubMMSEPdXd0x7JTmaA\nb6/l+HZL50+VkamPnhSiX353jRUlQBtFjpkYCtywP70ySxiG/IznwxNUKqdlKr2G2xQ6gVh5q2Dh\nycxVFQYU5XV1pzRfwwlJt2pVODQdmC3l99algudHmYF+3m0xuebz7Et0lGu0FiM9rUZZ08Pc8dAz\nS00ETh7QK877tMoR06ZTU9b4+19KzM/3f/seMSlYf3yR3/uc/4gJgY3hbI5HfsfQunCt8xWY1+Kb\n2Hg98jD1rsZoR9llOTwKPFhBgIHlyzTlIhq3MOiNeqxaaBQjCAcTHTe7q8kIZgLu72UpMMo38CjJ\n9/Kyx8uGqE6W74IgwIEbwNBpJ6CVpwOVR99cusqkhYO6GGXgzksP5qWcTH2cIWn4AB9fsKQ2qhmk\nKKh9qvnyuvrQQUvfTcMMMeiUI9R9/PJKLroDzdKjZEBGgIjXDJgFlDTrFSTUofW/ky/KYnYDjxKX\nO8QICVTTyhxP93Ih7WoiQkWBkveWifPT5FAUsMgpLbiglscjAoIVrpYB+pylzDhCdRwl6OSYJMca\nTcyXTTTw6OSkqgPaUj6Dciv/+/LwjJL+mK7rY8DoEWtC6+U9m+QMunaLCTfUuOzgEVE8Ca8Q6fKe\nVpTIrMl1/PNI0wyPXz/J/2HFtjBaqARPTT0fBUulVV3j6VEiI+9u5Ph1pUBMxPQhSbBZU6quB+bk\nT0ccj+3zj+AaCiPrEK3lXM3jHMmBbQKT7keKg56e1Xm8hdrJa1DRwhyFHSgYkh3Pb06dmiNOyanm\nedFRFvB0+VmH4/rEM52+X0Bl+6KgrOpsvkIU0TB8UKCadDj64xN0sgOKlqW+YYDGv+ttC08sQQe+\nCYvI/pDARMUyTgex9dePiAkIWsxcrFM5fodPcrN2X0Fs/+LDm5Op+3onf6bsVCjqKPdqQKHecdr2\nuCf4r+dBNj/U2LEk7NszDCy7Pn38jKSR9+TyPc0tC6Eh7/0jBuicc+rQICcPv4Z8L5I4hlOPB8Ph\nJBRUVQMoB4+b6RxF93oR0hYDdEfOg1axsbLlNfuq3IyHpsHVXI7p0vJQP8q581fv3iH2mXgceG/T\n5cm/+rukQUZXsu/fXeP9X0kAZs4LS54/woa894VvnpzIOpEgozBMSdBc31WouWFFWQmHBynDMVHm\n55kfAFAeMijkEiuKjsOOoCy2aJTeBQhCM5wWnymS9HIUSIjE+uFXEgS1+8MDtNrlmL5F9CLnjjML\nUJMd05GD35kqHLY6m8FAyZbRoNzBo84+CgqC6AMG6h0UyRaT0UB8/g5987oO9bm4lJovcYlLXOIS\nl/gZ45vIeDXSQJJDAUG5tsVkdvJ4PDw8o2em21fyxHK0TFwtJDDK8R1UzM5MR8CayxPgimYGX3/6\nPZ5JMXAXV9jys7LygDaVmV7TyO+KjzoSKp0s5m8x6LJ0dtg9oSe4ZHnHU5wyQKdEnvKK4kz6JMvE\n5hCcFJCcNoVB+ThX6NgnI2yANIVawxNFvu3axOSHfyuvR2kQsIzjksrSaBYEuaVapeKG2dQPH77D\nJJQVg1s659hth56i+EpVwbdlhpNtP6N9kllzp8gxtWcW5lN5eta18+5EebyFrsqfHz2V8yaBOhC4\nU6sw6QNqdC1qgmxUEIiW9VhQFjCw5ggUmc0/fHlBdpSfsQpkRuH2PnZ0J9E1G+2I99IV6Lo8vTqk\nmthuhLKiMlDXoCTAY+FNoNNFafNAgF10HlzVVRmSiMYbfC6+paEaRsH1BppJsN3URslS5gtBer42\nwQglqQznRFlQs/zUqlhcy7kVLiaoyXEOpuEpYz0ej/BZwTDITVXSFIKf3FcFPGb5fZUClDTtydHt\nXhFuf0kO2GUE7BFAVwoVNmVXQ+HhqMnviKsB7wj+0wigK4tiNKPB49ctJpSSvPIC9MxSv5Kr/Zik\n6Ah6yzsFHYFNUaBAJTXrYS8zEkVTkR7lO7v79BGgH/LOmKOimtTSl++ZUM+bCXRdid1GgrL2CSsS\nnQmPlCUhBFJmrhVURNQCGFsi++KAmG2r29UNDJa4xdsJXFU+r5wUwWMi0Nsye9ZNHQX5O9eTBWo6\n4vTM4vq2QcVqiTBVCI7p9XyGqzvKWQYaFuL1zCnQVRxJ+zPtAJ5HKtmYFVYp3q3k54bCwNMzgYtt\niTcrOX9WVH+aTgOUDUFJUYWKZR3PAxQ6wKlsIVhWB50PXNFV7GiIYDkBDvxzXMqxNiZzCPpAO12C\nUUmxbDt06utcqbeeg96i61GSQxsoCfkgK0ldP0Ej5FhryoCM4KnDoOD676Ss7G0gM95OuFi8pzyn\n2qB25Htx581gEWRnLLl32IBOl6wfnwrsWQJ6ObawaPAQOGO5vETGsnS5OWBCoKW1mGLKEv9/bXwT\nG6/CjTc7xhhYKq+PEfaHEd0pcB3IDeUw9m1sA+DCJ9CiZT9SU1WUFJd4ZKm16Cu01N1N1A57ohZd\ny4BJg/EFN9P1bkDF5pDuaSeCvdnpWIUSYXfFDWnhKtDYB0mT88jfYStRyMHcQN6Oh4cO3BOxu39E\nSdm/dpylloPtRk7+9XOCu7dSECFTF1gu5Es27vNhlkHjYeRueo2BC+LQdwDL1feP8uVINB1dJkt1\nx/tnxJRlc9sagghcq2dfszEQuAve23k0ot7XMJtRolJew7YbYLEnWBXNyfh86syQsdy3eZabXh+p\n0MgnffdmgfKewhvrCjGt77wreaN3768R/lq+NL1nIxKU+rR6WCy/GdTjDRYqHl8+AQD2hy12LK8p\nV1MMuXwG6xHBuztfai7yHPXo5MRx6vMEZTs+IxMToqnztkTHXrdlsjyXrnHMuCgpLVqD/bK2hUXJ\nwY7Wj67hocvk70/CEKD+MpQSkyu52MfsJ0dpAseTf47zAg3dekSngHs3KlrQHM5rg2D9/AK2keFP\naZxuhMhHByRRY0GXm5u7t1jQoStey41QLxM4IxYjG7Ai39OzZ1C4pFQBD737IzqWmjVDYEpDdX+5\nQEuhm5nDcq9ooLJE/eb6Ghtq7+6POcCe3ERpeO/R2XszbF3CzAEYHrmak1ss2NrJ4xg1D6owBAb2\nXUet7MmHGSxKk3qeA5Pm645zi5RlfY2tF7NyTy2qvC7hKjSLr2OofHdclp8FBkzIMjCGGp4p790P\nLOjqqLfdw7df57rqmnJC0tcQMCe0Px3IgEgEeh7Kmq5FzJ60JYDwSn53y+Rhe/yKjBzkvKjRCnk9\nu0ML5J8AABVlELsswxW5vZu0REW0uGilLCQAOOw953kFm4flWaBj3ZAfbFjQ9PMOboDUm65LWdJt\nkhQ5D7h7ovpVaw57bNHUA6ypXBPvZgtMJ3I99mhluRiAjDoIfV1iNjI1kggrumpdfycPfZoQ+Iff\n/mf5ueUeFt/1h90ObUoGCQ/rutoh5pz8cOWftLebrsBk/v2r93YuLqXmS1ziEpe4xCV+xvgmMl53\nJk8sg5pioIFBWRV/khgzA1StzGpUnsR13YND7mycl+hYol5eL5Cx1PH8k5RSg2XCpPPFcdeit+Qp\ntlQbTK8lkMBkClofN9iPEndxAIsOFHovUDJDyV/kqaeaT3D9XmYDinZeuYoHKLRZAfTy921bA8hD\nDLwJSP3Ex+3IGdwiYgb0yw+/PDno2K6G5ZIC5nS5VmwHPsFgvtDx02+k8lfVl0hYfk8jmfFtOg09\ngVj7+yfEBLW9nS1xeyuzeZ2OO3G0g2LJU6dvnS81LzwdTFbQkkddF/3p7wxhoSFw7DnaY8joO0qF\nLtHixM9MqhafP8txf7rfIGApvWzld2fwYdG/tXY16ESsH/McXyiZV36Umcy7/2kBfc7M4Fjj84N0\nyvGyChYR1/VeliPb4hWpT02BR5SwYxD5m+9R2vLk7wYztByrvAaY8ILWqOhNC6rDbH/qoWFJvog2\nyHNZWjUos2nqAbasshSmiopVgjCPEfHP2Qj+c010LGtPJgts17JUnkdbiI4uVUToasr50p5uuvAW\ncr5//0Ge1KPWwDohVzjX4XoUpC/2eF6zFfQovys6blAwQxq8Cb5S3L4WBTRmwqUu3+msayGqsUwF\naGQn7I5rsGqK64BZtyXQMeNtehcK5ROr/IgJS3m31wRRVisA/+lf3FvghTANOb5XFLGf3b5HR+Ww\ntGuQsSTsTV0Ilpg9cmmDmX/KRgxDoCcIavpmhR2rHYGQ11DmKo6PlP1Metgs+/uw4XmjkQCBXIcI\nDuUep7qAUsk1ZDrVEZHL3msmDOM89xoAksMaOpkeHXREL1TbGpgVokJM9THLDtHRdPnpGAN0yrJU\n+ftD3SCnp3foWmioNqcNPb4+S1OWPcvLWlOjSMgccF3kZAZkVY+SVTyDvGRFDKiO8n5EaKHhvBZN\ndzK4ORc3yxA7yo0aSYN4zKQdOY9MVaCJWSlrB4A+ye40xJSVjZqVzt5qsPormdGiM2CzjThEAexR\ndUyX46TqBvY0ummNEhorEVH6EXrH6h/XTMXREbKCYXYG0Mq/d1ChOBBcu3r1Fv9ZfBMbb68TlRp6\nOKbyoX28vwfXViiGgDfjJBNyMCa2D4eDn7UDAvY7pt4ELeXuOi486gDkLDFu8wqzN/JnVbU/yf4N\n7NsI/YA3tA1cOTZUaiYPXTtWsNDR2qxvBYKJ/Nk1J+ufx8BexNPXH+GwzDabfw9Nk/fx9fmAf3yS\nD23dUl6uBwiAhnVjYkqt5LnuINvITUZ7IxeK7z4sYRKFqdUKNiyptULF7/8o+8stzer1QYPBxVUZ\nHGQF6VaqB8uQ9x/T/kt1KuxoDh7cnl8MDN2AxYVCJaLW940TUd4xJlC5WJkTEwQq43YuF6U2dfBu\nLg8uTTKBRkrC1d0tqj11YnP5++KxBJkJMPoB82u5IWuOAZU0o9AYF4EGGOTvLc0AK5bw7aaHRy3w\nnI4wlnG+N2O7LkL2V12K9HZtB4PiCVnTQxld+OoBmj46AvFAZNqwuAG+nS/xOaLLUpahPs2KdQAA\nIABJREFUINrYo3RkH06hsjxnXS/hOZSHXMzxE/VnF0T7TlwXfcm+oevD+V7SHz62OY4xe7u9nNN9\ne14ysmwVbKgLnhRSbk94Uxg0/NY1DXPqgz/tDthsPgEAZizl1a0JnbShdDDx8CTf2XA6gcF2woF6\n0+F0jjmpCqlWI+bcKOIdNPY/BZ/B9ilCw0NFY3ro2eu+up7CN+R3C5UIaPN8+0PTDNx8kGNyQuhb\nCjJuvOH1FIPOHV9oYPUYBtsV+sJAfJQbdxMGcG/IEpiY8EiHs9jCifcZBG36rj9MUXLDmQodd9/J\nvqNCfMTTRyCnUEitqFgS7TuI/E86v4aOAefvCwDyOsMVnaL6XkF1JL2J2t+ermIQ8t66NkfFMYr6\nGqaQz+PNQs6NwyaHwT8buoWAqHnL1hHzAGuTSbIMLOgsL6tpDZ3axyoGOFMeyllqNnQT9oS60GoL\nB8R79A1qtgnOhWv0aNgym5seIup4z+YTjmOA+xd5v9PpFDrxPf/wtEMHmZiMtEyt1vEDW4dFXMCq\nuTEnGvZb0tG48b69u8FbOt9tjQ67SGJ+9L7H1YzuQ1yXksMaPZ89LBMND4aGmuAwWiH+1au3+M/i\nUmq+xCUucYlLXOJnjG8i442IvtN1B/tnepTGNawZReahoKH4esmTa1baUMlntBsFBcvA2TGCQwGB\n6YQNdFUFRuGI7qeTkIVjhWhaWfJpyIu1AxMVUcZqr0EhYjBPXqC6FMimGfLt1TVAYFRZvnICJ8M+\nyXN4jsxSN+sUtpAZgxnOUX+Wp6/dVmauSVMioqh7vP2EmS//3lYTeAY9NImuK+o9FEOexB3TgW7K\n7+jrDiZLfC4l9CZugB7yfq6WIUJN/ux1aCOmqPhAs4k8q/D2zXe8i/Mly3rXY3svMyfbl2e4psxQ\nUdZOTHVY5NMVSYKczjPulXwuynwB1ZOn1U+/v8eanOore4VEEF1IV5ks1TBn9vzOX8GjKMNznUMn\ngf7qRgInPMvBOpMn0FvrCmJBRGzgYqAgQkxUrGacR6PPbA8OKzGjg8ZQ58jpF6sHAqZLhGPVo2X5\n0R0zJ91BprK0NmTwKRLjCgXKyEfs5KQcegXv30sz7uV8jpqAFEN0KCL5brwcWBp/3kBhibvtekxd\ngnRcA4dIfp7OzBTm+YxXDAPmlMMES8OHLEfPsXE0Fw3nn1u0qDNyiW/pses72Hby90zVx5j0NFEJ\nlfdpkBeKocWR1aZa09AzI+47gaaQ9zmwVCp6HQPF9g3HwCKQWctbW4XDHEEhR3+7ezp7b7ZvwqKH\nbkl2gm52COhKtZpMAZOZZwOEU7YAKEg4OA1gjo46At5SVjgqS4PCMmPospRvqwgsOdbpfg92w+B7\nPjxy/ktmRa1VQ+N7HNg+BNsYuyhCT9BRJxpMw9eFGIRl4JmViqoTsOoRWEdEvOfDJHCvbRS4RM2X\nSY2cK/1LJt+nfX6ES2BjZ6qo6bhU9x10Crxc0zTeHBQYzPT6JkMWS2CioyvIKLxhsr9kOyYSVjIO\nRYzkINdKTQM043XEdpn1OOxZAel9TPlOl0RLN6JD1ZNv22hYsDXYRh12ubynCcVHFNFivaYYTBOd\n+n2lamBPdLzBCl1cHnFIRmOEBVxm2PdPn/GV2fGCe0Cd1zjQgWoymyBJaQjiO+jKv0xA45LxXuIS\nl7jEJS7xM8Y3kfHWe5ndHJsCEX1tb26/B3gSnkznEFRnSci7Ey6gmvLcoBkGQodw+a4HXfvg0NMx\nSeJTj2IR+njmSaWKEmQJTQyo2lP3HXRyLstmOIGD0DkoKOK/DOS/Z1mKp89STvHpy+PZe9s+y35R\nXbdoC/lnKzVQU6R//v57jKKF78gtK4YO+w2tzb78I6JWgoPCDxMEBAesR0s5N0SW0Z5KDyBo71VG\nBYYRJGYROFZYCFz2rOoaOTOrh26Hl0//AABYUe1r9e4NAgI50J6XHvRcB64tP1snsATCgsJMa737\nCoWqW1Pz6sRdfMlkJp4UaxzJ103yGLUpT92tnqFQ5ZwoBGlFQoU9kSd4f66hobfjYqLAosFDDvks\n0+09MtqY9Y6NiU1jiLRASSCLShyA4ZzvXzvqFEM9ggzk6XjmhegoGWmoNTpFXsPEX8KhiUdBVbMv\nT3tYpMtMbAsLmkmoXYftXmYB0Y5er64LhQpHWXSETj5uo3ZoCMiraXkWbRPYkFnYfD7DMxWDHMPB\nlCAljfJ1x915b9elo6IlWGtNgE0LD2Uhv2synaBkNmUJYHMgqIp9Vu/qzYnCocA+qYy5GqCzh25R\nbjPLIxA+AF9V0QiF35tIYwzg9FwX1wEqckcVR8EV7Sy1PMNQyrEeaNHYi/P31vVAy/kqmKVZpkDD\nrLLoepSkHnZDDRA4qDMDbdHDI5jgUObYsXLieUvoCj+XUpyKsHAgIKisUuh8XUqlxS4jgM6hupGo\nEfLf314FiHM51x3fhTWq7lkadP18lUIOhI+E5guW50JlNt1QVeohe4FLDrelB1DJTzUGFQ37lHt6\n+KqGCZV0IX3qAJTZfIq26LgWKsRBvBQl5lP2/wcTJWlnVRFhGKiWRvvDsgG2rNJkyNDT/PyQlTDx\nelb4sgPu1/KzaiGgKnIuj/NJ2BaiXL43rqMi2sr1EX2DA411vOkonakgprHJbn/E3ZxUqP0GOelU\nfTmCQW2sNzt+l44wkP3erAG+PslnuCdwdqKoJ0MP82mHN0vylU0HTfE6VepcfBMbr04vV9F0eHst\n+VmG6+GF0nml2WNOxwuDNWOt0rD/if6XWQfTli/QzZs7NJxQKR2AuipFyw19OTERjm9I3eHHHcEc\nIyALAlP6j2ZFe3JLGQoFLVHWQUiUT1vgyJJXTL7un4fKF6nKspPvpmNZ0Dj02WYLj1zgmSM/3/ED\nvChyQU13CQyW5IxKxYKlZp1gm3awkQ/yPos0gU5Js6mmQrMJsqGIRdf9ybNWaB0Ef8+d+/j7q/9F\njmvN0vHERE9t1WE4X2qulAZ9Q+9j1k66poZGtG7TN+ioXVwJH71Kv1iKZvjzEAZLnX4/QBOjt68O\ng0i2OWUtUe4QE5zxu6cD3lBsw59OYF7J6/s0Hn7a7amUZ7vXMIjQRVagLeVYTunJ2nXnebx5WcAv\nqRVOL9iyqWCdeJnAhDreQrfhmfL71hSISNYbxFyUGtfE95Qp7Q0HMR229BHsOwzouOk1Rn+S7wsM\nAZuCESbBK7bmQWNbxLFcpBFLfYoDnWauuqBQi3FeQMPQWpQNub6l/K592+NI0/enz08Ay86G5yGk\n9+2UXE5Vc0DJWxhKfUKGx42AFxB4w7nnz6b47p3cpPPoBS8Uspk7GqpBPtuXSG5u1eNXaBzf+dKF\nSOU1mnUNmwbkyUa2RIrj+YNumg6Yzsl9HhH8yQ4q9brTMkeUyMNGpwA6UeN9SY9jXcAlH9zoVNQs\nb5Zwsd5QbIUH92W4QFqNLAMXVS7Xq0oDBJkTAQ9kw2LA4asEyt0/PKOnuIlhmfAcOtsoOnK8DkCK\nawGV71PTATUPKSE5020/YGCbodFtNASnNVp7YgEE1D4WjYaam/8WNWweQIU1hdbJ+ZPGcvxy20Le\ny3HyVA0VgYRNW8Olm1Ja0wHMBQyf804xUSYEuKo62ld00QHg8dMaHUvmw2BhvWVJl3Nn+SbEQJZF\npfR42cpkRBEOOko6/uFJAk9X/gR//+v/Uf674mO2kOu5rnbYH+X7/ngv58DkZgWX7/E2PsChbvbf\n/vpXuLoiAK6kWEvZYP0gk5wyq5DzYG04NkLzLyseX0rNl7jEJS5xiUv8jPFNZLyTGWWcagU9+WSW\n0uKOqjFF3kCjYLfLsmJ3LDCo8mQ280KUlTx9VLsCL1tZIvi4lqdi21MwIaXEUVTsP30CACi9BkGO\na+jTlKDvMLD8uQyv4IU0VHj4iLahElFMBZsqR7SWpzRbOQ+uWtDXdBsVKBRSLdoGGqUf54GLcCGz\n6gM5eMgPCFi6zdoewyi0M5jQSRVZEej1vK2xJjitagS0Tn5WX1eoqcoTUWi/LSPYdEUyph5ajmnv\nmZitJDDJ9uVpvtcjeDpViPrz5zNnNocgcKGlHKZlDOhIixqgox8Vl5ojulZ+9t1CVjWCqQeVpTGY\nA/bM1J7vn7BzecIe/S+PBWJ6EBeGizlpej9mn1G98IRO2a66bVAd5aC5loKA0qMzD0ioLNW0NMKo\nzksPQkuhk6KWJPK5v+w28FgWdRQDNhWiFB0QLAEumWmXSwePL7IiowoDBWUIB+gwqOQUkJqkNg1y\nnsQ7z0XHEqLWSN9kAOh53dbMQ0f6SHRM0LLioIgBNbPmfZzxHs/fGmwTWUagGzMyTQnx8ijdsT59\nesCcwMXrm3ew6RDVkxqndTlyztX77RH96Ozl2njDapA6lb8TzudoWEVRVWBBvqyVCmwiOfYxy+VV\nVqMi+ErRUrjkeNuWipDVIJMlyNY9f3NdZ8Jg9ctghyQtSxxZRYiqEg2zv6xpIMjx7DgfrL6AxTGp\nqhYlTRSUbMDjg3xGJeUwxXcOkkY+y2q/g8v5O9M9CFY1ClJcHH+GesKqRhqh5ucOLU6grV1aIG7O\nl9Dlv5fwLYWfWyAu5PjdrkjDmTooCE5rmwZmSNDlXEe8z/j38vM91cWe72OXpZhQV8Cz3bHqDIOV\nA29QUdBRrAHQjSVqxcEwGqgw+1NsgY6GAVnTQqXRjVIpKP8VH4E5OhyoHvYU5XimmUbHdpc1LxHQ\n7KQzBpQDv0+zAb5bX1NZfaz6GhnbLFXrYs3WQl9rKGL5PNqKa3HcYktaVpZvccWWZVcBb1jh6fl8\nnvZP8AheLeMaH6muZ5cVFu7rz+1cfBMbb81yT5qWSBM6Tbx/D1OXL2/ZFIgeZYlquZIDNrcdzFgy\nvrqe4djIv89qDS0ntc0BG5oC7miZNgiY7B0f9zFUlu3Mjjq1gYqO/bbH3/wOPRG4oWfAIYK0pRuG\nr5vISDKfTOZn701X5QIWpx+RkaOouANmodw47cCDSl1cy5U93kEAxb0sS9neBD5Ls32nQrWpu8xr\nWQ4dtpwAg2miInyxURsolEqzBvnSPHx9RKZw4St7FIWckFWuwK7k770nP7ZKW2RClppa7fw0GZQc\nOUbtaG7opoGEAgV90yGJ5csgxAwOeyV79mpgm/C4CFrugMkb2nB93iElyrTh+BpmhoAcRv/OxX0p\nS46lyDBzx0WDrkedfrJrVPUcozveYZCCGwCQsSTcbs9rNZdVgwN1h7OYJa58gMXSbxIPSMnNXdxq\nuL2Tc7XI5NzwDAUWLRxtUz85Wj2+rDFW7hUKKnRdj56beNyk8LzRAWmBlAueQaT++uEBQcjy22KF\nnvaGSl9B0+WGUI+tCft8aa9vnZNwhEGusecEeLeQc1gvW3jsixuGDs2k0w5R2ApqFIV8hpaqQCM/\nfbmanRbtiS3nvW9OsEvl/Nw8rdHWY1ukgcMe7El85RgBLNm70wUWvnyuvl5hYK/weiGvq7TOtz+e\n991poYwy+fsvSX7ibcOZwGbPr4rik30ciIgViomHPR1oKgUGNzoTDSz2STXiIFTPgk2HHyQxdKI1\nylrBy0Y+A51yq33ZQR3VVToVPZkGXStwHOdn0Z0EKc7FMS1gsdRs2w40JhOCB6KiBMT4uRCoOPE1\nTcXAuVBRoCQ0BwQB0d9Nh2lINLk64Mg+sEF9a5QNTOocxPHx9M5PggWq0cqTc7kRAh37TnWjAdQr\nsB0HavvaSRDYvTyiIRigqlQ4LN02PJw9/+ER4a18/6dvZ5jSwjLaHhF9ke9IH3GDfI5QPf1G3ru9\nwt/9Sh4g+krBx99v+DMyKcv2ChzqzC88F3taVXa9C1OTczhkz38vcihMfGxDO72bz1/WWP36deGT\nc3EpNV/iEpe4xCUu8TPGN5HxBjzFqWaLqJSX5A46TKb9b/7mO1SNzIY0gm6uJxNYzBJCx0BHruAh\nSuGzzBXQrSZNjrB7llDLBBaRtkMboSZKumJJyHI0lHTcaIsDSrqlhP77k1xYR36s6vmYkPNnj9zJ\nP4s0lVmT7zoYxhNqnZ9AHelxDZfcu6waBderE1rYc2ssrnjyNGrUBIFFPEmXuYaB5S4xWEjothMf\n97BohL2ke0zspSiI9gvmK0xmVCLSFOx3lL6j+HxR7+CE8mTrrWZn7y0/fsWe3LsP7yQPtTN8WKEc\nX3+iQDOokBQV0OmBu2UWmz19xruVPE0WRQOHp+N3v5pDfZEZabOX96N1CRJF/p6jqBiNdzSzwepW\nVgH2R3kPXdshZFbTihIVs6U4a3HcSiBGzmzWfAXMopYDFJaoDCp/Tb05QotlV11FzRN813RIya9s\nWS7zdeCGfEhjKIDRK9gxTxm4Qo5iW+coCHQZ9B42/WK7SodF4X2XfFFVKFBV+b2aoaIbHby2B3TG\naGxAQOAr52pDn9JvCRjTb0O0uCUI5Xr6BpYns+qXY4pDTFF8VkWapoRg9hYqOjRmqVldYfdAbnND\nLmwK7PY0/Hhco6k4Pm4IYwQVMluaLHxUbI98/+YKOrmlRRZjgHz2PmUxjf48cGzQfTRUkzqy6rGP\ne/SUuPQcByq5974bQKMpQUG09aAIfKWSnOMZ8Ggy3zc9KpoKJBmvZZZC4zXqSg0wC0uqDEUu3x2D\n+gPJLkY3+m53gEEjkbxokS1Z/hQCbf16Vlh2HZKGnF3bRMP1Ys8qS/GcICRo0AuD0zvy+PwEik2h\nYjaL1RQekf+maaI5qVE1cIhqjg50+IpThEQMD22LGd3OZsEMDw+y8nQkd1/TVIzdo64QKKkqN+gN\n+n+l1Pz50wNmd7LiNzED+KZsfcU0rMgeHqAMZGR0PfylXJOuhYVEId9ekFCut1jRK9dxbuBSGSza\nlrhW5RrU9JTsbDV8P5drl6bWSIiQTrIWLx9lVpyzzfH1nz6ijmnk0ChoCzk+k+UcofmX+fF+Exuv\nToGGwHTQ8mUc6g4WEbi2CtwspJawwvJy4Lho6DI0tBps9oa6cgeNC9DA0q4NEwPRh1XWwerHsoqL\n0KJzBUuBz3WCzYtEzJVNC5/w8rZosavY26W9VZrt4bKcGLziChX6cjL88ocPaGjDZakKdApEFIcc\nbcweD/uEvaZgQUm0QekQZSR99y0S9q9LlokN4aPh36mqC439svzlE+wpLbBcTtIrHT4XOUtJoHHR\n9lwfh9G+kDrX3ZDhiRJ4k+p8/2LmaVjT5sb15cRTFRUm9a1D34Xggmc6PXQeMH78UU5oUfanRlwe\nRfhhIWX2Ju9dPGTyxfB5nrEUCxVRu+HMPol0aFNDussDMGnZNKCDQfJ/V7aw2TpYH2LMWK52uIlc\nB28A/Id/cW+BaSJkLysXxBfoAj430KYtMPHl+FaDjoriIG0+Ol9ZuObcerj/Apc0ruupgyPLkCeH\nnbaEyx5Zpw3QuAgWWQ53Qm1yHqICT4PKFoIO9eSqo2gaBCVSDb43qn7+MKj0f3IJalgqrVRxwh2E\nwRWmtx/kpT2uUXyVz6JgGTT0AvybX/xKfpfQUBC9/WW7R0MBlv1W/k6aRHjeSspdkW7hEAW72z4g\n5c+O7k+2qZ10saPN5lSPM40BOWU203u5MDrm+Y1XmDp2pIxFREtrokeFsadao6Z+cNlmsLieKJZc\nkLOygD72OA0FCdeFKIpPpuw2Dxpt3qGjBGYcRVgRua5bOrIDbRf5nsbbDQwutxNvgo5yjF0NJKTX\n9Zr2r25O/nQBwRJ70ZcYOA9sn33UugIfBYq8Qs0+fhpH0Ck4Y5MqWQHouckHvo0tkd5aj5OLUM/7\n7VXjdNDXjAnyWn5vsc+Qdywrs+cqBgUO9am7rjlJqDaKiYQHhHNhODgdypQO6IljsNkWVHqBfs2E\nx1LhU2J1OnkHNZFj/Ls1Ee/R9kSrWrkGQmrWI2tg8Rn84jup0R/OFuh4GMmrEm8pAew3W+zWch84\nECwxbTvUpBAadYnVG3ltb5dAV+1evbdzcSk1X+ISl7jEJS7xM8Y3kfHuY/pGGhqgj0LvBZRWntjM\nXodZy59RWF4WfY+BZVMrMFES4eehhkbASAeeinUFLdG8aiPQ8DNMHTAIHBrLNtluB4cnYqUfUDGj\n0HQFDQFcDU95OhoIntDL+nxW6HmjCIWKnui7tixQEl2Y5B1Kwv3EWFp/dwXdlJ97dRXCZtZTVxl8\nAhB+cSWzrYk1xZzc7SLvQBwLJuobeBYNDHg/01sVARGfWgXUo6G16GDOibKe0AdzX+LmilzE6/Pp\nvO/7JwGCYSCwpMhPkohCceAEzOT8FjlL9BZLN+1QQfB+gtkEglnMS/yASqfIPlGRZVrBIMhnMFTs\niPzVOxU9EcFjxtYpOTaUnzQbAY3ycH1T4e2tHDcFRGy+4s1dtA32NJRwiBRFFyOLR7/TBg3LraoS\nnFyzRtRkosZQR9yO4p4cZOLdE5RR/pT81zQ7YjJhaUw3MPc5f7sEKkuvGsvd0A0cmP01bY/NRmZ1\ng9aip9jGZi//bjo73yKwNAvBTD6vZLTGgkBIMwNV9GhYUrPaDHdEk0bFKELjYMU5uXl6wsBs0u9L\nbChscNxTWlPpkbJ6UdUZEroS2KYCk/J8Qhu5qQ06GkdkdQmLftuK2yKmyEHPcq7jnxdjaPoMSSyf\nvUYeazgxT+5ELXKofC/yXYyM3OWO/O7BAAQrDuUeSJnli0HAoomESanFcr+D4L93VYYqY8XBsxAX\nvF5Ku7q2jgkzU1tV0ZIjbzsGBLn5jVCgqq9zXVVVQceUVneCsXuBnog22xpg8dfrtv6TUcjyGgPb\nOLoxZu0aRCfHPWpaCM7fvh7QFfKDR49dxXORsT+iWy4Sln+rvD7pEYwypb2m4si1tBwEjEC2LLr2\nTy2bc9EqHdJYzhltGOBR9GcYHbd6Fy4N6ZXCRPzItRQH8NHB7SjpaS0wJzDXamssKb7k+D4eKFqj\ndARy7ROECxpP1A3UVGblc7WD0OR93DPzDWwHE29st/RwKYGZVVsU7Xl/6Nfim9h4R0h6LwaoNi9J\nrU5KMbpSoqKVWpbKBcE0XGgsY27XLQouZu0hQT3wJRp1YVtgs5O/r4gULhF6M8dBQeK8wZqmObUw\nQPZEo7ZDyR5u6DswOHlB6gGGDKs7ubipryggTWdcRI8NsmisIxmwqMjSCQFrFLpgCcuzp1iyr1pp\ngDmjpmrboWPPxKCakjZY+PDul3KcVBMKGzuHpxfUiRyHI7VVW82ATjcmrRqgcUOxJgYEN+eYC26X\nAcac+sOr8Oy99Qgw9eSkVWm3V9QlnvbyWTy/PKNgKU7oKnSuCl0tn9v+UKKMpI2h3lbYm2O/rTkJ\nPOzvuYAVBbxRQ9ZQUFEDux8EcvZH1UY+y0Gr0LDknhzqEy6gaDI4XMxnpIzU+/MCGt5ihUGM84dC\nImJAxtJhWZbQMn7WNDyV1Ae+0GWvoKU6TtcIKEQRV1kLkMKS88AVFS38KRdP3YBCsYKq6TGe5xqW\nojVVPx0cj0kM7UTcV05lSpOLqGGfL2h9/XgPgyjekqIFnWFIXhRkn9nhn7W8xJR9bZ2bnt73p/aQ\nbRroiGNYOhaUN6TPUUTFc2wYuhQ7ybIj4r2ckzdXMzhUgIuzhHfQwuSYC00DuyJw7Rb2XJYAPZaG\nff38vakih05lko660VB7uDzg9Wih8IBXOB0arjFOQGs9U8dARS1dCHTsgct3hYd+0gKTKEFK2tpk\nomE2GVG5KSz2pFV+18L3YbP1MDQtTMHSd1ehJFbA0Ex41qn7/i+jVxC48ll4gYuC4z5qoCtKj4Ht\no7rqTqpRdT+gZcl3VBTrcgWCJ8O8KmHyOlWhomP/fFTP6/sBOg8dZZKcBHkUoUBhC2883NZDg3rU\nNu9UCLbJ2rJBX7xuC3g1vz715ttSg22QJVBxfVFcuKS1rRYr1DwIPO6OaFP53ccH2cJSmw7ONcdR\nc9GxLN0MAzIqssUsP3uOCY1J0DE+YCD1zfMMaBpd6Igaf958xQ0FSI77HUYeXS9q6PZ5zffX4lJq\nvsQlLnGJS1ziZwwxam3+d70IIf77X8QlLnGJS1ziEv8NMbymr/tnccl4L3GJS1ziEpf4GeOy8V7i\nEpe4xCUu8TPGZeO9xCUucYlLXOJnjMvGe4lLXOISl7jEzxjfBJ3o//h3/w4AkByPo1Y5dF1FQ/H0\nNjkgJ6eyaiS0+/7pGT1dMBardxjorjGIHg7pOSqF5euuPUHDDUtDlkrI+NA1J1qPQqPxvEygEBru\n2j4wUNmnHtDxZ1yqUbmOhYESbvtjjn//f/9f/+Le/tf/7X8HAHz3q+9xRSnAbJ/ACuVnTD4skGQS\nth/vJeXp5s0NFlOPnxvDp/eu6+l42MmfdUi7mi8XMMlvDS3zxDNN8wbPT1LlRyH94ebtOxwomfj4\n5QGCyjSO55+ccgZyAvdPW6TktO3vX/D//Pv/81/c2yUucYlLXOIvj29i48Vo8WSaqBvJ82uyEgMl\nFD1VoCJHszpIXqfVJEhTucnkhgl3IrmCoW2fuHA1zbxt28d8Qv6brSPlBtfUCUg/xfpFKk8Uxwqd\nSQK9o0JAbrYTz4dLFws/kFwu1zHRV6Pw7nnie0cno7YskHPz91wLBnmZIq+R7CS/rcjlpqc2DtpC\n/uzLOkFCHerJ3Maebh27tRyP3csWNo3eZ7aF41p+1sfHNfbcpO/eSinG6WKFhpxB3VRhkJtX1Bls\nUFuXB5w4j9CRzH//cn/23i5xiUtc4hJ/eVxKzZe4xCUucYlL/IzxTWS8CqXNHHeClv64fXNE1Uh1\nEUURMCCzW4OKREtTwOfla4aAbcoMcuFaCB2awVPaDaaFhrI+Q91hShN5IzQQUbYvopqZ0nWI6NGq\neS2mdGyZzD3kFMvOmMXqukASSUH2bpQV/LMIKCt2ZdS4pprPdOlgQ7WZ+PkAhbJzGr0tRV4AVJiq\nowSjnY1mdCcRdJfykq6mYErzgaaosKMwfFEXJyFxRcgM/uvXj4hieb2mJtAIqn3GDUuiAAAb3UlE\nQVT1KnYv8rtHWX1rKNBRClChqtUlLnGJS1zivz2+iY3XpNxYpwr0NKZu2h6C8odRFCOiVutuLSX+\nTEXAoEyfgIdalRsZ3AAeHTh8uvLA0LClTnLdNdBovl4VKXZbuZEf6FBRdD0MncPy/7d3Xz+SZMd6\nwL/0vlyb6ukxO2toBAJ80f//Kj1I0AUEEJfikpfjetqWyaqs9EYPETUPRK2EBhfJhvT9XmbQXSZP\n7WKiIvKciKGCqw1Rd/kOjbaMi0Ppq2tELvKVBKWhPD0tJXB0sHW1g6MjxvzQhqdl5X5bYpFIz1rv\nXK7XD3ykewnuh12BUFvNoaqxfZDPIdMSeWiUMHv5chAEZzB0CombOLi+1h6lOlJunZVY5VKqvjw7\nQ3e8B15acLQNXF1Lqf/h61dAx20Zw/+hjR0RET0LS81EREQjehEZ7y6X8udjmiPXYeZRl6LLpOS7\nfbzFoA3Bs5VkvL0fI1rIJie7zRFqKXqexJhPpcT6Sgc2150BP9D5o0aPtpMsN+1aWJo1Hxvh5/kB\nvSHZr9UBxU6y491hBx3Ac6wCA2mNSick2dbprDDRaRbLhQtXHzIMzbcm9abto9RK7lKnyTh2h/VW\nGn6jO2AaytCGfVHh7ousP/TldTu/x80n2b3cYYc60GkgyRWyXkrjQy+P9ZI5Wh0s37tzJI5uFvMj\nOFrDLla6u7sekBby2N1wOpsnIqLnY8ZLREQ0oheR8T6lklk1nYWqk4yr3j6h0o1Cd5+/wtNRfNVB\nMsy2MTHXjNY1bBi6SQrZFgtLRogtI0kxDSdGrzNiV/sVslJnbDYJCs0yd5nOUyxzFDpPsuoq1JXc\nG3YnCaBj1upGMmajN79t2srr7OTavIVkoIbrYNDHZJsSN4/y90MVIfJ1VuhBsn036THoMaYgsmFZ\nsvbV7R0inU8bz3VsVr6CoZmt63bYtXocaG+g7yVbr3Vz1PkywdmF3J92TQO9bmqzTSDXucPlIPeW\n+8BHoFWCjY4iJCKif96LCLy9blo6W8xgDxLUHtcG9rphaWgbpDpP15C4gObQYuNJEGmnDs51O+53\nsYX3OtA70CDkRjHe/CTnfB+eDHx9kJ9PvA6eziMttzrntqzwuNV5lEUN3fcF2zVh6sDq44ld3zEx\naHC/081f/+hrKutpWwtBr3NjAx+bUnYa/+7H7+FoDftWy8Bxb6PVM7TRxRIfdaj4p7t7xHMJ5E4k\n5edPtytc6yzgq8tLoJZge3+zx93xvRcSrM0gga9zLi/jGepGAm+RHuCY8jwrlg1V07Me61TW1jm/\nPMCaiIieh6VmIiKiEb2IjLfUzDRuMwytlFibwUYLycLcwMegR2KO51hn8RJRLKXmOIrgaNbcrDd4\n+HgLADBCyWajWYEgkteKAhdzbZVYZyXOtJ3iu4W8VuJYSLeygcmoanSVlISLg4W+kUzaGORaehjY\nZ1LmDcLTnav2xzO65QCjkpJvHM5g6fsdbBeO/meoNBv1vSksS14XWYbWkoxz8JZorTN5b0fK6f6i\ngzeTzDTtbGy38lkOfYg8k01raz2NZJYGlnN534f9gHIrGfHE8uDqueBikGsxjQq+KdfgO9xcRUT0\na3kRgTfQVopO3yPyJQCcTedotFTaRBGSUMql7U4ir9eH367esDpkep/4oTfw7voHAECnDS+MvEKb\nSpl39bQDMinz9mkFaNOKy6kE5nSTwijl3nK3e0RjSpC1Qw+NFpnXqdwPdqoC5V5eK5kuTq7t5wd5\n7O+/ewfLlCAchwnciZSK3bNLdL2sf6INL2xYqLS5heeHSHotOydAfPUWADDo5xSdAw1knYkVwA/l\neVOnw91Brm2dyxq61EepX1xwKDDo5/vb1zPU2gAk13vlmyxHqtdeZKfvXxMR0fOx1ExERDSiF5Hx\ntpqZ7rot6kJKzQNq2K7uPg58uJZ8RygL6bxU7TaYTqSGOl1EmBjye7Md0OgEI183KBk1sPssz7tf\nrXAx13OtrouD7pze7uTcbL9/QjjIzunIa5Drmd/95gldpOeG9Txu1FWwdRBDX+cn1+a7ksVaQYRg\nKq0si2HA7X98kAf0Bi7evQcAPD5o+8nsgOt3rwEAwVmCSnd0B0GEfSnZ54enB1mb3eJ6JtmvE83R\naQb/4dMHPHyWkvv5pVyDt61x2Omwid0jgk5KyEVRIYp1IpOnPxsKfFnJ+eB0szm5NiIier4XEXiT\nqZRCHcdBtpH7q2gbXL+S8nK5M9Dq/dW1tng8XyS4upAdvr7jfWuLaHcO/vJFHvPDj2/k926MTaoB\nvTHQark1r1uUx/FEx77Pgwtby65nZ1PY2q+46TrMEom47aD3dS0b8ULvuf5CAw27lYBW1YATyzWG\nsYWZJWsbHA87bWd50EYaIXzYnXyRuHz3Fj9rm0xndoE//PZ7AMCfP0pQnE5jTD15j0PX4knvI6+3\nwODIPWPbki8wzmGL+9sbAECWbuCY8jw/CeFGss7vX0vJvLM9HPSY0jpl4CUi+rWw1ExERDSiF5Hx\notFmEXGMTgccGE2BUkvQebXF+kE2R212ukFp6sI+kzmznQNUnZR855NraDUVX58kk+zLEssLeeww\neMh6KUUPtgED0opys5f32u5btK2UqB3PxzyWMm5ftfBszYqDWH8PDPqzpju9tL3uMp7VA8xKHnQ2\nuUCoZ41hBfiPT3JGefMomfp//uk3qAq9nlWKMpfPx0CFxJHvSnNtbrF9zLCtdaBCA3zU1zDtS1x+\nF+qaJQveZClqPT/sOCF63d1tRTFsQz60hxvJpNtmgKmbydqWu5qJiH4tzHiJiIhG9CIy3jiQy5hG\nLixIlmZhhlqzvnh+ib6VzLTRs72V62KjV//27DVmhmwgOvMv4fmy0Wn1KEeMyv2A3UGytkNbIprK\nvc3rqxiOHmWqjlmdn2Dx6pW872JArkd5Djdf0BzkeM35VO7nJlGAXSP3Rl339HeYdwtZT+RYKEtZ\nz2bT4CLU9pPVFueJPOZwvP+6/guWy+8AAA9//Rnmfq2fyQ4f/tvxHq5c98P9Iy6vrgAAzmBh1kt2\n/Cm9Q/z6jwCAN9fy+/z2IyIdzhBMAnRmr89rEBznCdc6PnHXwIrkej/quWYiIvrnvYjAe72Qsulk\nHqHVsvOmqZDvZVPPUNcIQgkMS182VPW2j0QHwL9anMPV+bVVlsLXFoymIct7TFPcfJWgZjgdJmcS\n6NzoFQZbz70udGh8YeLpIEE+uAwQayvFp2KPUqf0hKEEXgceYld+3zqnG2jUwz0A4MJfINQ1hF6L\nybm0ZkRVwoGUycO3slGrzXf4t//x3wEA8fQC8ULK7+ahw8PXz/KZPEng/t738du5XPv9/S0c3fVs\nRi1+dynrvJrIn4+PNpJI3ne2nOPz3f8CAHy9+YKlNuHwLLnG80mCaiM7wRd+hHVxcnlERPRMLDUT\nERGN6EVkvOmDZFZ1ZWD1JMMG9ukerZZCd7sdTN3wNIkk4w3dANZOsuPU+IK5J793vRjrRykJbzeS\nudqeByuWjU1ePGC+lOyuQYZm0A5RtnwH+Zpt8ZDL88vbDaBngqveQqWbmHaZvNfg+pi/khaMaX06\nJfz88O8AgD4BvEQy+7AtsN1LFhrEHhauvF6s67UNHx8+/RUAcLU04A2yzv2XvyEeJLu9OMgaQqPF\nm1qPFrlrLLRk/i6aYt7KRivrQcrh4aGApZOVmpsdhkxK2NezEJ4tWbelpepZkqCaSaZ9lkRY80QR\nEdGv4kUE3n0qgdewgGwtjSFc04avZdFH5HBsCU5hJH9OQxuG9jD+urmD80p6F59Nr3B3q8HblUCZ\n+A5M3X1szR0cLG0Ssc/Q6A7nVCcD5YYBM5GdzOt6BVRybbblo9ERgbut9jOe+vC0HF7/wq7mbK3X\nsiwR6+v+7v1bHEy9R7vPcLOS14gepEwctQb++Bs5g7zwI3ilnl0OQlh7ecwPS7lX++oqwEUs933t\ny3P8l//5ZwDA7a7DdC+fX7qVzzTsOlzOpZT899t7DNo8xJmEcCdS5n53KV9sLiYOUMlnczNhYYSI\n6NfCf1GJiIhG9CIy3kqzyr7zMNUdzo6XYHsnG5OKqoEZaHnXkiwsnlkII23+X/ow5vL3L22J1JfX\nKC0py9atAUPbVb2bzVHoBqSiSGH6kgHudVdyMF/AKzV9rR0M2hLSNnq4jk4M0hJutq1hGvozb3py\nbU4nmel8doHzpcwEfvPuNdJW1rGrDXz+ItfTZHINVxMf311IBym/ypHnskv7+uISjs4EfitVayzd\nDX5IJFutcMBGpxpddA3WK8loh17W88cf3yOt5fdF6OOQa/VgGiOcSenb7KRK8PD5E/b3ms3X6cm1\nERHR872IwGtYcl/RsRp0rQSZwTJgGvL3d2/nGCoJGJaOqHMDA7YGYSe0UFVSKratAZNXEpXagwSc\nIq/g9rLUzS6Frfc558sZHjK5DzxZSBnYNlsEel/XdU2YvQTvznaQD1Ienmrwa5sCni2P7YbDybUF\nlgRep27RVHLtNx+/omwlyOaHEo6pu6R1be9++AHLWIJievMJvgbOOYBBjwO1eo1GW8PRsnX6lGKh\nx4LaJkdoymMufyPNQ+yJhT/9TcrOUV/hXHtdB2aDRO8vbzbSzMNCgc36IwAgK3mciIjo18JSMxER\n0YheRMa72skGpCBwUFaS5dZlg9iXjKwbOni+lEIxSLa5y/ao9ejs2fk1+uP539UjOs0glxfSOGKd\ndvjLv/0MAJi4AyJ9qe1QIm90Hq+ede3sBp1eQ9+VCCPNeA0LQyolYV+HHdiDA9vWndfp6uTajuXp\nZewj0UEOjzf3SPfyvgcT8Eop7051Bm9bBdjrgIOvmxXe6hCEwDaw6yT73eR6Xrc1UHaPer0G0r28\nxtd1hql+DlfRjwCA+2KPstcpSnYLQz+zQ1bDn+tO704y96LJcHExBwB8/PMv7BwjIqJnY8ZLREQ0\noheR8fqJbEwahh566geOaaPU4yxVnWM203F1ndzDrPvhW/N/dxJiqCRjtbcmTP06YeuZ1HgoEOgw\nhPPpJZpeMsztwy3OZto1S++dZm2HspDfTxYT2Lqpa/e0haXZtunL/WC/q1Hv5T2K3fbk2i4W8rpJ\nUKPbS1bsRRNke8lSk5mHtzN5zJDKestshyzVc8G2BUPH823SNXxXMtP5XLLRu68/I29lE9VicYFS\n7z9Xjou/Psg83upPfwIArD0XW0d+v+rWuE3lGirYMM8ls686WY8JA6VuxHKcF/G/CRHR/xNexL+o\nhs6yNR0LjTaLeLp7gq3l1qpu0WlEPk4DMm0DXqhD5g0DljahGOwB+73skq4GCWQ2OoTnsgHJjjtM\nbQmcwa7F6wsJ+rH2X263FaZ63rYzexw3OJtujGQi52LLVq4h8nxUjQSvfVGdXNsf3suOY6fL0Ol0\nomHocDmVAPjq3MHv5xcAgN1KStGuM0HfSzD2zBpeKesJ5jHSjc4VduSxSC5wdy9tJLdFiuml9Jnu\nBwe7texG/tpIOXz+43doKvnZ1EjhZTohaXDg6mzes4UE9LousV/p+eHLOfDXk8sjIqJnYqmZiIho\nRC8i4+07PVtaV4BzzFwdtMeRtZ6DVo/ydJDHdsWAMJTyctk46LSjU9s0qA35PrHXYQd2f0BtSFl6\nX+6AY2tGN8GhkcdmGzkyk5cVqlI2IPlBiEbf13QCdPpxZQfJQM1DLe22AAyatf+jd3pMqQttVKY8\nv7JKTHWm73bzhEfNqpta3ityJkh0U9fm7hbrlRwBGq5/h72+z79/kjaRRtmjWMka0vTveF/Ie6w6\nG4Mn79Fru816leJ+J681mUX46Te/BwA8pSU2T3rmN5T1NE2BeSzVgOTiLYD/enJ9RET0PC8i8A4a\n/Ar0KBq9j2qG0GFA6GEhjOQeL2opH3tBCLuTgNIVHQ6p3Jc16w653m/tDYlondkj1PaTvu1+a4qx\nePMWle5qbrrjudoChY768zsLvn4RuN+s0RpSjq0aPfsbWnh1Ja0q618YFp/owPvp2ynudvrlwHJw\nGOQLRODZSHMJ5E9P8md4VmPWS+vGqs1wyOVLweOXAI4t64imElQfdis8prKGvPIRW/JlJL66Rqpj\nCO+19/TMTjDVyUpoMnSZ3EdutjmS6HimVz6HvuxwGcl7FOvh5NqIiOj5WGomIiIa0YvIeH0N/xYc\nFJqFmY2BbpAszHTcb0MSulqyL9v2EE5kg1HdFig0E078ALZ2OCxbyfhmy0sYgz6v62HrRqynIoOl\nn8CxpPzh7gl2J6Xm1nYQT6RUnOaA52pNuNOs259ioruLvcdfGN+jgxXy9SNy7ZLlLSzUxx3bRfat\nfWQyl2y2dUvkprze+bsFpgsdBvGlQLaX7Pf6jQxR6C8smKZMSPpwswOm8plYswiNDrAPQllkMLNQ\nbeS9ttsVNo+SYcdhiPfvJMN29HywEycIHdlBvi5OzxomIqLnexGB1xuk/NnVDezjfc7kAulegkRT\n1bj9IPcmHR1f1856DDrKzzbdb7uaD1WP7CCl11anEOVl9611Y+SF6HSX7+ZhB8eX16sHKVXDtFAb\n8rHsWxttLfdaDW8B19DHDMdjTi3uH+S6sqw8ubal7pqubBuJtp80QgNXunv4Zn2Dz4/Sk/o3738C\nAFioUfZyjau+xfkreY12VWC1lmCZ2trkI2mRbaS07kwsVJ487y79gkZbSb57/17WvgzgJPIFxIky\nuHqv+/3b9zi/lh3kjgbZ7pBi/SD3kbPd55NrIyKi52OpmYiIaEQvIuNttVmE5wW4nL6WHzo2Dpmc\nI60HF10jWbGhpeaiLjDkktEZpoW+lhLr0BvwXSkPF8cstrVh9JLJeVEMU3c9n09CbAp575WWZefB\nAr0nz2/7AH0nH9HMT+BIIo1BN0Y1eY0HHc6wWu9Prm35SsrAhe2g3kkNPLMamJ5kzRO3xjKWbHyt\nmWXvuugyud64PIOrO43P3iwQhrLJrNdsv+j3qE1579c/zTE7l/JwPpjY67zdNJdGGkuzx9m5rO3V\n/AIPsncK5lBiozunN7cfAADhMMCzj9WH02eUiYjo+ZjxEhERjehFZLwznVrQdRZCzTbrvoerY+0M\ny8ZUMz2zk7QzMIFJJPdJDT8AOsmIN/cr7DPJLI+t/e0owJsLyaSv4ggP95IJTqdneLr7OwDA04y6\nbXsMem/Y8eewtJWkWe/Rt7Lx6FDKNcSzEJUp2e9iMTu5tutrGdRQOQNWO7lnaloGFnPJJuvrBS6P\ns4Q167zJM4ThsS3lAU0m94DfL3+PopX3rg+ZfngGrk15/vWbM7iBfJdyGg+9tpcs8xsAwHaVY/pa\nBiYEiwRTnb37t58/AoNuqnLkMw9d81s7zZl/eXJtRET0fC8i8MaxBNWi6JDuJLA4fgRfewRvn3Y4\n3EkpeJpIIIznEUJT+zNbMZ42smO42tXwBwlEDeSxfWGh2UqAvLt7RAMp466HAmg1sGrLxDCeodcJ\nPdnDDp6eew1CD8lEgmhXagvGSYJSZ/u22obyH4V6jjewXVzqwPqsPmDhyNeCP3y/xN/vpe3kodCz\nxIODOJS///j6HEEgm7KWUxOrlQRIw5XPyY7nuPmoQRgHGDot6TKycRZp2Xkn15DYNVxd2/YhRaut\nKH2/wKC7vqeOfKaJYwG6Ia1uOJ2IiOjXwlIzERHRiF5ExnuuQwJyr0JfS/Y2DAGSWDK9bGIj30kJ\ndNAsLC9NPN7KWdcg7LB9kuM1VdYijLVM6x+zWQuHJ9lEVaUFHB2CkB9WeNzL5qhBz6yaiY+m1i5Y\nfQ9b598OtQvTldLrsao8mwawIDuUMu0S9Y+sXjLiKh+wmMrHvYiu4AR6ttYD8lreO7n8HgDwfY9v\nAxX++P4t0EkWW6crTM71PLIerT20B+wsKa3/p1dT2N5xzR1yLYk/1fJaPywDvF3K7z/8+TOeVl/l\nscUaWsFGZ8vvnXmEQLPnPuD3MyKiX8uLCLylBohDXmO7lQA5mBa8qQSkKIkRefKPf5Pp+dW6x2Yl\ngbeKevjaw3iwfUwjOfdaazvI0PHQFvI80zKx0FF/DXo0nnwErfZR3uUFBh3D55kWfO0EafbAoCXX\n8zMpjfv2gFanEg3V6ZaRO2144dgWoljeN5hFgCOPd8MA8PVLhZbRvYkHQHYyL8M5HG0E8nhzh6c7\nWXPbypeDoc1xdSaf2XJRw9De0dtDiTaXx/qmPLbKn7C6lS8C+9VnZBu551yXe/haYg49KYe3xR6m\nNgxJwtNrIyKi52MqQ0RENKIXkfHeP+nwAJhodVhBFPnfOkR1ZYlIN0RFhpRa+7qGrZunJpaD3pJM\nr7csNJrdpo+ye7mNYhi6x9lzHNSVbCoq+wpJKK9R6ESGOithakenviqRF5JtxnMgb+R5hg5LiEMP\nVSHX3pun2ypami3mdYNG67lW6aHTIfODHeLstWTQaVvo57DDJNJzyVih0jKwG1k4ey2Z6Wq1AgDY\n5R6OJ8/b5jcYbCl9P1UtVoWU0Y8zdgvUyO5kI9fD6jMqLYPDso8JNgZLh0YMBr7cyudndqe7chER\n0fO9iMC722lQDExEOg5vOom/7aoNHBu+DsgxPCk/d4UHRLJbt4eFujm2jzTQ6Vg/S8vHhmFie5Dg\nNJsH335eFjVsU9772DryYj5BdpDnl12PSsvLdlUDvrxf2eou37qCqTuvHfd04C0rCXT7vIJlyrXD\naTC/lPvahVFhMpN1TgMpl2dlB1NHJXb7Hc4nMgEp9yzY2vxjrj2kb5Cinsvr9maBVJ83fRVicqH3\nurX8fBbHcM7l77OogZ9Iv+du8GBV+lk18vyyrnF/KwF3v81Pro2IiJ6PpWYiIqIRGcfzm//SizCM\nf/1FEBER/ROGQcfc/V8w4yUiIhoRAy8REdGIGHiJiIhGxMBLREQ0IgZeIiKiETHwEhERjYiBl4iI\naEQMvERERCNi4CUiIhoRAy8REdGIGHiJiIhGxMBLREQ0IgZeIiKiETHwEhERjYiBl4iIaEQMvERE\nRCNi4CUiIhoRAy8REdGIGHiJiIhGxMBLREQ0IgZeIiKiETHwEhERjYiBl4iIaEQMvERERCNi4CUi\nIhoRAy8REdGIGHiJiIhGxMBLREQ0IgZeIiKiETHwEhERjYiBl4iIaEQMvERERCNi4CUiIhoRAy8R\nEdGIGHiJiIhGxMBLREQ0IgZeIiKiETHwEhERjYiBl4iIaEQMvERERCNi4CUiIhoRAy8REdGIGHiJ\niIhGxMBLREQ0IgZeIiKiETHwEhERjYiBl4iIaEQMvERERCNi4CUiIhoRAy8REdGIGHiJiIhGxMBL\nREQ0IgZeIiKiETHwEhERjcgYhuFffQ1ERET/32DGS0RENCIGXiIiohEx8BIREY2IgZeIiGhEDLxE\nREQjYuAlIiIaEQMvERHRiBh4iYiIRsTAS0RENCIGXiIiohEx8BIREY2IgZeIiGhEDLxEREQjYuAl\nIiIaEQMvERHRiBh4iYiIRsTAS0RENCIGXiIiohEx8BIREY2IgZeIiGhEDLxEREQjYuAlIiIaEQMv\nERHRiP43LVk4NZr8a48AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11e31cbd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# visualize the weights of the best network\n", "show_net_weights(best_model)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Run on the test set\n", "When you are done experimenting, you should evaluate your final trained network on the test set; you should get above 48%.\n", "\n", "**We will give you extra bonus point for every 1% of accuracy above 52%.**" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "('Test accuracy: ', 0.504)\n" ] } ], "source": [ "test_acc = (best_model.predict(X_test) == y_test).mean()\n", "print('Test accuracy: ', test_acc)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
sueiras/training
tensorflow_old/02-template_class/template_class.ipynb
1
8425
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Standar usage of TensoFlow with model class\n", "\n", "Tipically use 3 files:\n", " - data_utils.py: With the data access and batch generator functions\n", " - model.py: With the class model. A constructor with the graph definition and method to manage model needs\n", " - train.py: With parameters. Access to the data, instance the model and train it. Optionaly add a parameter to train or inference.\n", " \n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## data_utils.py" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#! /usr/bin/env python\n", "\n", "import tensorflow as tf\n", "\n", "# Access to the data\n", "def get_data(data_dir='/tmp/MNIST_data'):\n", " from tensorflow.examples.tutorials.mnist import input_data\n", " return input_data.read_data_sets(data_dir, one_hot=True)\n", "\n", "\n", "#Batch generator\n", "def batch_generator(mnist, batch_size=256, type='train'):\n", " if type=='train':\n", " return mnist.train.next_batch(batch_size)\n", " else:\n", " return mnist.test.next_batch(batch_size)\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## model_mnist_cnn.py" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#! /usr/bin/env python\n", "\n", "import tensorflow as tf\n", "\n", "class mnistCNN(object):\n", " \"\"\"\n", " A NN for mnist classification.\n", " \"\"\"\n", " def __init__(self, dense=500):\n", " \n", " # Placeholders for input, output and dropout\n", " self.input_x = tf.placeholder(tf.float32, [None, 784], name=\"input_x\")\n", " self.input_y = tf.placeholder(tf.float32, [None, 10], name=\"input_y\")\n", " \n", " # First layer\n", " self.dense_1 = self.dense_layer(self.input_x, input_dim=784, output_dim=dense)\n", "\n", " # Final layer\n", " self.dense_2 = self.dense_layer(self.dense_1, input_dim=dense, output_dim=10)\n", "\n", " self.predictions = tf.argmax(self.dense_2, 1, name=\"predictions\")\n", " \n", " # Loss function\n", " self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(self.dense_2, self.input_y))\n", " \n", " # Accuracy\n", " correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))\n", " self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, \"float\"), name=\"accuracy\")\n", " \n", "\n", " def dense_layer(self, x, input_dim=10, output_dim=10, name='dense'):\n", " '''\n", " Dense layer function\n", " Inputs:\n", " x: Input tensor\n", " input_dim: Dimmension of the input tensor.\n", " output_dim: dimmension of the output tensor\n", " name: Layer name\n", " '''\n", " W = tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=0.1), name='W_'+name)\n", " b = tf.Variable(tf.constant(0.1, shape=[output_dim]), name='b_'+name)\n", " dense_output = tf.nn.relu(tf.matmul(x, W) + b)\n", " return dense_output" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## train.py" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Parameters:\n", "BATCH_SIZE=256\n", "DATA_DIRECTORY=/tmp/MNIST_data\n", "DENSE_SIZE=500\n", "LEARNING_RATE=0.001\n", "LOG_DEVICE_PLACEMENT=False\n", "NUM_EPOCHS=20\n", "\n", "Extracting /tmp/MNIST_data/train-images-idx3-ubyte.gz\n", "Extracting /tmp/MNIST_data/train-labels-idx1-ubyte.gz\n", "Extracting /tmp/MNIST_data/t10k-images-idx3-ubyte.gz\n", "Extracting /tmp/MNIST_data/t10k-labels-idx1-ubyte.gz\n", "0 0.91909\n", "1 0.881748\n", "2 0.777025\n", "3 0.937195\n", "4 0.783779\n", "5 0.353136\n", "6 0.256104\n", "7 0.28514\n", "8 0.277642\n", "9 0.225344\n", "10 0.301154\n", "11 0.249453\n", "12 0.324219\n", "13 0.202852\n", "14 0.244397\n", "15 0.211011\n", "16 0.199964\n", "17 0.246017\n", "18 0.289519\n", "19 0.280718\n" ] } ], "source": [ "#! /usr/bin/env python\n", "\n", "from __future__ import print_function\n", "\n", "import tensorflow as tf\n", "\n", "#from data_utils import get_data, batch_generator\n", "#from model_mnist_cnn import mnistCNN\n", "\n", "\n", "# Parameters\n", "# ==================================================\n", "\n", "# Data loading params\n", "tf.flags.DEFINE_string(\"data_directory\", '/tmp/MNIST_data', \"Data dir (default /tmp/MNIST_data)\")\n", "\n", "# Model Hyperparameters\n", "tf.flags.DEFINE_integer(\"dense_size\", 500, \"dense_size (default 500)\")\n", "\n", "# Training parameters\n", "tf.flags.DEFINE_float(\"learning_rate\", 0.001, \"learning rate (default: 0.001)\")\n", "tf.flags.DEFINE_integer(\"batch_size\", 256, \"Batch Size (default: 256)\")\n", "tf.flags.DEFINE_integer(\"num_epochs\", 20, \"Number of training epochs (default: 20)\")\n", "\n", "# Misc Parameters\n", "tf.flags.DEFINE_boolean(\"log_device_placement\", False, \"Log placement of ops on devices\")\n", "\n", "FLAGS = tf.flags.FLAGS\n", "FLAGS._parse_flags()\n", "print(\"\\nParameters:\")\n", "for attr, value in sorted(FLAGS.__flags.items()):\n", " print(\"{}={}\".format(attr.upper(), value))\n", "print(\"\")\n", "\n", "\n", "# Data Preparation\n", "# ==================================================\n", "\n", "#Access to the data\n", "mnist_data = get_data(data_dir= FLAGS.data_directory)\n", "\n", "\n", "# Training\n", "# ==================================================\n", "\n", "gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333, allow_growth = True)\n", "with tf.Graph().as_default():\n", " session_conf = tf.ConfigProto(\n", " gpu_options=gpu_options,\n", " log_device_placement=FLAGS.log_device_placement)\n", " sess = tf.Session(config=session_conf)\n", " with sess.as_default():\n", " \n", " # Create model\n", " cnn = mnistCNN(dense=FLAGS.dense_size)\n", " \n", " # Trainer\n", " train_op = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(cnn.loss)\n", "\n", " # Saver\n", " saver = tf.train.Saver(max_to_keep=1)\n", "\n", " # Initialize all variables\n", " sess.run(tf.global_variables_initializer())\n", "\n", " # Train proccess\n", " for epoch in range(FLAGS.num_epochs):\n", " for n_batch in range(int(55000/FLAGS.batch_size)):\n", " batch = batch_generator(mnist_data, batch_size=FLAGS.batch_size, type='train')\n", " _, ce = sess.run([train_op, cnn.loss], feed_dict={cnn.input_x: batch[0], cnn.input_y: batch[1]})\n", "\n", " print(epoch, ce)\n", " model_file = saver.save(sess, '/tmp/mnist_model')\n", " print('Model saved in', model_file)\n", "\n", "\n" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda env:py27]", "language": "python", "name": "conda-env-py27-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
dariox2/CADL
session-1/.ipynb_checkpoints/session-1-checkpoint.ipynb
1
32768
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Session 1 - Introduction to Tensorflow\n", "<p class=\"lead\">\n", "Assignment: Creating a Dataset/Computing with Tensorflow\n", "</p>\n", "\n", "<p class=\"lead\">\n", "Parag K. Mital<br />\n", "<a href=\"https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow/info\">Creative Applications of Deep Learning w/ Tensorflow</a><br />\n", "<a href=\"https://www.kadenze.com/partners/kadenze-academy\">Kadenze Academy</a><br />\n", "<a href=\"https://twitter.com/hashtag/CADL\">#CADL</a>\n", "</p>\n", "\n", "This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by-nc-sa/4.0/\">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Learning Goals\n", "\n", "* Learn how to normalize a dataset by calculating the mean/std. deviation\n", "* Learn how to use convolution\n", "* Explore what representations exist in your dataset" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Outline\n", "\n", "<!-- MarkdownTOC autolink=true autoanchor=true bracket=round -->\n", "\n", "- [Assignment Synopsis](#assignment-synopsis)\n", "- [Part One - Create a Small Dataset](#part-one---create-a-small-dataset)\n", " - [Instructions](#instructions)\n", " - [Code](#code)\n", "- [Part Two - Compute the Mean](#part-two---compute-the-mean)\n", " - [Instructions](#instructions-1)\n", " - [Code](#code-1)\n", "- [Part Three - Compute the Standard Deviation](#part-three---compute-the-standard-deviation)\n", " - [Instructions](#instructions-2)\n", " - [Code](#code-2)\n", "- [Part Four - Normalize the Dataset](#part-four---normalize-the-dataset)\n", " - [Instructions](#instructions-3)\n", " - [Code](#code-3)\n", "- [Part Five - Convolve the Dataset](#part-five---convolve-the-dataset)\n", " - [Instructions](#instructions-4)\n", " - [Code](#code-4)\n", "- [Part Six - Sort the Dataset](#part-six---sort-the-dataset)\n", " - [Instructions](#instructions-5)\n", " - [Code](#code-5)\n", "- [Assignment Submission](#assignment-submission)\n", "\n", "<!-- /MarkdownTOC -->" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<h1>Notebook</h1>\n", "\n", "Everything you will need to do will be inside of this notebook, and I've marked which cells you will need to edit by saying <b><font color='red'>\"TODO! COMPLETE THIS SECTION!\"</font></b>. For you to work with this notebook, you'll either download the zip file from the resources section on Kadenze or clone the github repo (whichever you are more comfortable with), and then run notebook inside the same directory as wherever this file is located using the command line \"jupyter notebook\" or \"ipython notebook\" (using Terminal on Unix/Linux/OSX, or Command Line/Shell/Powershell on Windows). If you are unfamiliar with jupyter notebook, please look at [Installation Preliminaries](https://github.com/pkmital/CADL/blob/master/README.md#installation-preliminaries) and [Session 0](https://github.com/pkmital/CADL/blob/master/session-0/session-0.ipynb) before starting!\n", "\n", "Once you have launched notebook, this will launch a web browser with the contents of the zip files listed. Click the file \"session-1.ipynb\" and this document will open in an interactive notebook, allowing you to \"run\" the cells, computing them using python, and edit the text inside the cells." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"assignment-synopsis\"></a>\n", "# Assignment Synopsis\n", "\n", "This first homework assignment will guide you through working with a small dataset of images. For Part 1, you'll need to find 100 images and use the function I've provided to create a montage of your images, saving it to the file \"dataset.png\" (template code provided below). You can load an existing dataset of images, find your own images, or perhaps create your own images using a creative process such as painting, photography, or something along those lines. Each image will be reshaped to 100 x 100 pixels. There needs to be at least 100 images. For Parts 2 and 3, you'll then calculate the mean and deviation of it using a tensorflow session. In Part 4, you'll normalize your dataset using the mean and deviation. Then in Part 5, you will convolve your normalized dataset. For Part 6, you'll need to sort the entire convolved dataset. Finally, the last part will package everything for you in a zip file which you can upload to Kadenze to get assessed (only if you are a Kadenze Premium member, $10 p/m, free for the first month). Remember to complete the additional excercises online, including the Gallery participation and the Forum post. If you have any questions, be sure to enroll in the course and ask your peers in the \\#CADL community or me on the forums!\n", "\n", "https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow/info\n", "\n", "The following assignment breakdown gives more detailed instructions and includes template code for you to fill out. Good luck!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"part-one---create-a-small-dataset\"></a>\n", "# Part One - Create a Small Dataset\n", "\n", "<a name=\"instructions\"></a>\n", "## Instructions\n", "\n", "Use Python, Numpy, and Matplotlib to load a dataset of 100 images and create a montage of the dataset as a 10 x 10 image using the function below. You'll need to make sure you call the function using a 4-d array of `N x H x W x C` dimensions, meaning every image will need to be the same size! You can load an existing dataset of images, find your own images, or perhaps create your own images using a creative process such as painting, photography, or something along those lines.\n", "\n", "When you are creating your dataset, I want you to think about what representations might exist in the limited amount of data that you are organizing. It is only 100 images after all, not a whole lot for a computer to reason about and learn something meaningful. So <b>think about creating a *dataset* of images that could possibly reveal something fundamental about what is contained in the images</b>. Try to think about creating a set of images that represents something. For instance, this might be images of yourself over time. Or it might be every picture you've ever taken of your cat. Or perhaps the view from your room at different times of the day. Consider making the changes within each image as significant as possible. As \"representative\" of the thing you want to capture as possible. Hopefully by the end of this lesson, you'll understand a little better the difference between what a computer thinks is significant and what you yourself thought was significant.\n", "\n", "The code below will show you how to resize and/or crop your images so that they are 100 pixels x 100 pixels in height and width. Once you have 100 images loaded, we'll use a `montage` function to draw and save your dataset to the file <b>dataset.png</b>.\n", "\n", "<a name=\"code\"></a>\n", "## Code\n", "\n", "This next section will just make sure you have the right version of python and the libraries that we'll be using. Don't change the code here but make sure you \"run\" it (use \"shift+enter\")!" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# First check the Python version\n", "import sys\n", "if sys.version_info < (3,4):\n", " print('You are running an older version of Python!\\n\\n' \\\n", " 'You should consider updating to Python 3.4.0 or ' \\\n", " 'higher as the libraries built for this course ' \\\n", " 'have only been tested in Python 3.4 and higher.\\n')\n", " print('Try installing the Python 3.5 version of anaconda '\n", " 'and then restart `jupyter notebook`:\\n' \\\n", " 'https://www.continuum.io/downloads\\n\\n')\n", "\n", "# Now get necessary libraries\n", "try:\n", " import os\n", " import numpy as np\n", " import matplotlib.pyplot as plt\n", " from skimage.transform import resize\n", "except ImportError:\n", " print('You are missing some packages! ' \\\n", " 'We will try installing them before continuing!')\n", " !pip install \"numpy>=1.11.0\" \"matplotlib>=1.5.1\" \"scikit-image>=0.11.3\" \"scikit-learn>=0.17\"\n", " import os\n", " import numpy as np\n", " import matplotlib.pyplot as plt\n", " from skimage.transform import resize\n", " print('Done!')\n", "\n", "# Import Tensorflow\n", "try:\n", " import tensorflow as tf\n", "except ImportError:\n", " print(\"You do not have tensorflow installed!\")\n", " print(\"Follow the instructions on the following link\")\n", " print(\"to install tensorflow before continuing:\")\n", " print(\"\")\n", " print(\"https://github.com/pkmital/CADL#installation-preliminaries\")\n", "\n", "# This cell includes the provided libraries from the zip file\n", "try:\n", " from libs import utils\n", "except ImportError:\n", " print(\"Make sure you have started notebook in the same directory\" +\n", " \" as the provided zip file which includes the 'libs' folder\" +\n", " \" and the file 'utils.py' inside of it. You will NOT be able\"\n", " \" to complete this assignment unless you restart jupyter\"\n", " \" notebook inside the directory created by extracting\"\n", " \" the zip file or cloning the github repo.\")\n", "\n", "# We'll tell matplotlib to inline any drawn figures like so:\n", "%matplotlib inline\n", "plt.style.use('ggplot')" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<style> .rendered_html code { \n", " padding: 2px 4px;\n", " color: #c7254e;\n", " background-color: #f9f2f4;\n", " border-radius: 4px;\n", "} </style>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Bit of formatting because inline code is not styled very good by default:\n", "from IPython.core.display import HTML\n", "HTML(\"\"\"<style> .rendered_html code { \n", " padding: 2px 4px;\n", " color: #c7254e;\n", " background-color: #f9f2f4;\n", " border-radius: 4px;\n", "} </style>\"\"\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Places your images in a folder such as `dirname = '/Users/Someone/Desktop/ImagesFromTheInternet'`. We'll then use the `os` package to load them and crop/resize them to a standard size of 100 x 100 pixels.\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# You need to find 100 images from the web/create them yourself\n", "# or find a dataset that interests you (e.g. I used celeb faces\n", "# in the course lecture...)\n", "# then store them all in a single directory.\n", "# With all the images in a single directory, you can then\n", "# perform the following steps to create a 4-d array of:\n", "# N x H x W x C dimensions as 100 x 100 x 100 x 3.\n", "\n", "dirname = ...\n", "\n", "# Load every image file in the provided directory\n", "filenames = [os.path.join(dirname, fname)\n", " for fname in os.listdir(dirname)]\n", "\n", "# Make sure we have exactly 100 image files!\n", "filenames = filenames[:100]\n", "assert(len(filenames) == 100)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Read every filename as an RGB image\n", "imgs = [plt.imread(fname)[..., :3] for fname in filenames]\n", "\n", "# Crop every image to a square\n", "imgs = [utils.imcrop_tosquare(img_i) for img_i in imgs]\n", "\n", "# Then resize the square image to 100 x 100 pixels\n", "imgs = [resize(img_i, (100, 100)) for img_i in imgs]\n", "\n", "# Finally make our list of 3-D images a 4-D array with the first dimension the number of images:\n", "imgs = np.array(imgs).astype(np.float32)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Plot the resulting dataset:\n", "# Make sure you \"run\" this cell after you create your `imgs` variable as a 4-D array!\n", "# Make sure we have a 100 x 100 x 100 x 3 dimension array\n", "assert(imgs.shape == (100, 100, 100, 3))\n", "plt.figure(figsize=(10, 10))\n", "plt.imshow(utils.montage(imgs, saveto='dataset.png'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"part-two---compute-the-mean\"></a>\n", "# Part Two - Compute the Mean\n", "\n", "<a name=\"instructions-1\"></a>\n", "## Instructions\n", "\n", "First use Tensorflow to define a session. Then use Tensorflow to create an operation which takes your 4-d array and calculates the mean color image (100 x 100 x 3) using the function `tf.reduce_mean`. Have a look at the documentation for this function to see how it works in order to get the mean of every pixel and get an image of (100 x 100 x 3) as a result. You'll then calculate the mean image by running the operation you create with your session (e.g. <code>sess.run(...)</code>). Finally, plot the mean image, save it, and then include this image in your zip file as <b>mean.png</b>.\n", "\n", "<a name=\"code-1\"></a>\n", "## Code\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# First create a tensorflow session\n", "sess = ...\n", "\n", "# Now create an operation that will calculate the mean of your images\n", "mean_img_op = ..." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# And then run that operation using your session\n", "mean_img = sess.run(mean_img_op)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Then plot the resulting mean image:\n", "# Make sure the mean image is the right size!\n", "assert(mean_img.shape == (100, 100, 3))\n", "plt.figure(figsize=(10, 10))\n", "plt.imshow(mean_img)\n", "plt.imsave(arr=mean_img, fname='mean.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once you have seen the mean image of your dataset, how does it relate to your own expectations of the dataset? Did you expect something different? Was there something more \"regular\" or \"predictable\" about your dataset that the mean image did or did not reveal? If your mean image looks a lot like something recognizable, it's a good sign that there is a lot of predictability in your dataset. If your mean image looks like nothing at all, a gray blob where not much seems to stand out, then it's pretty likely that there isn't very much in common between your images. Neither is a bad scenario. Though, it is more likely that having some predictability in your mean image, e.g. something recognizable, that there are representations worth exploring with deeper networks capable of representing them. However, we're only using 100 images so it's a *very* small dataset to begin with.\n", "\n", "<a name=\"part-three---compute-the-standard-deviation\"></a>\n", "# Part Three - Compute the Standard Deviation\n", "\n", "<a name=\"instructions-2\"></a>\n", "## Instructions\n", "\n", "Now use tensorflow to calculate the standard deviation and upload the standard deviation image averaged across color channels as a \"jet\" heatmap of the 100 images. This will be a little more involved as there is no operation in tensorflow to do this for you. However, you can do this by calculating the mean image of your dataset as a 4-D array. To do this, you could write e.g. `mean_img_4d = tf.reduce_mean(imgs, reduction_indices=0, keep_dims=True)` to give you a `1 x H x W x C` dimension array calculated on the `N x H x W x C` images variable. The reduction_indices parameter is saying to calculate the mean over the 0th dimension, meaning for every possible `H`, `W`, `C`, or for every pixel, you will have a mean composed over the `N` possible values it could have had, or what that pixel was for every possible image. This way, you can write `images - mean_img_4d` to give you a `N x H x W x C` dimension variable, with every image in your images array having been subtracted by the `mean_img_4d`. If you calculate the square root of the sum of the squared differences of this resulting operation, you have your standard deviation!\n", "\n", "In summary, you'll need to write something like: `subtraction = imgs - tf.reduce_mean(imgs, reduction_indices=0, keep_dims=True)`, then reduce this operation using `tf.sqrt(tf.reduce_sum(subtraction * subtraction, reduction_indices=0))` to get your standard deviation then include this image in your zip file as <b>std.png</b>\n", "\n", "<a name=\"code-2\"></a>\n", "## Code\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create a tensorflow operation to give you the standard deviation\n", "\n", "# First compute the difference of every image with a\n", "# 4 dimensional mean image shaped 1 x H x W x C\n", "mean_img_4d = ..." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "subtraction = imgs - mean_img_4d\n", "\n", "# Now compute the standard deviation by calculating the\n", "# square root of the sum of squared differences\n", "std_img_op = tf.sqrt(tf.reduce_sum(subtraction * subtraction, reduction_indices=0))\n", "\n", "# Now calculate the standard deviation using your session\n", "std_img = sess.run(std_img_op)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Then plot the resulting standard deviation image:\n", "# Make sure the std image is the right size!\n", "assert(std_img.shape == (100, 100) or std_img.shape == (100, 100, 3))\n", "plt.figure(figsize=(10, 10))\n", "std_img_show = std_img / np.max(std_img)\n", "plt.imshow(std_img_show)\n", "plt.imsave(arr=std_img_show, fname='std.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once you have plotted your dataset's standard deviation per pixel, what does it reveal about your dataset? Like with the mean image, you should consider what is predictable and not predictable about this image.\n", "\n", "<a name=\"part-four---normalize-the-dataset\"></a>\n", "# Part Four - Normalize the Dataset\n", "\n", "<a name=\"instructions-3\"></a>\n", "## Instructions\n", "Using tensorflow, we'll attempt to normalize your dataset using the mean and standard deviation. \n", "\n", "<a name=\"code-3\"></a>\n", "## Code\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "norm_imgs_op = ..." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "norm_imgs = sess.run(norm_imgs_op)\n", "print(np.min(norm_imgs), np.max(norm_imgs))\n", "print(imgs.dtype)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Then plot the resulting normalized dataset montage:\n", "# Make sure we have a 100 x 100 x 100 x 3 dimension array\n", "assert(norm_imgs.shape == (100, 100, 100, 3))\n", "plt.figure(figsize=(10, 10))\n", "plt.imshow(utils.montage(norm_imgs, 'normalized.png'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We apply another type of normalization to 0-1 just for the purposes of plotting the image. If we didn't do this, the range of our values would be somewhere between -1 and 1, and matplotlib would not be able to interpret the entire range of values. By rescaling our -1 to 1 valued images to 0-1, we can visualize it better." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "norm_imgs_show = (norm_imgs - np.min(norm_imgs)) / (np.max(norm_imgs) - np.min(norm_imgs))\n", "plt.figure(figsize=(10, 10))\n", "plt.imshow(utils.montage(norm_imgs_show, 'normalized.png'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<a name=\"part-five---convolve-the-dataset\"></a>\n", "# Part Five - Convolve the Dataset\n", "\n", "<a name=\"instructions-4\"></a>\n", "## Instructions\n", "Using tensorflow, we'll attempt to convolve your dataset with one of the kernels we created during the lesson, and then in the next part, we'll take the sum of the convolved output to use for sorting. You should use the function `utils.gabor` to create an edge detector. You can also explore with the `utils.gauss2d` kernel. What you must figure out is how to reshape your kernel to be 4-dimensional: K_H, K_W, C_I, and C_O, corresponding to the kernel's height and width (e.g. 16), the number of input channels (RGB = 3 input channels), and the number of output channels, (1).\n", "\n", "<a name=\"code-4\"></a>\n", "## Code\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# First build 3 kernels for each input color channel\n", "ksize = ...\n", "kernel = np.concatenate([utils.gabor(ksize)[:, :, np.newaxis] for i in range(3)], axis=2)\n", " \n", "# Now make the kernels into the shape: [ksize, ksize, 3, 1]:\n", "kernel_4d = ...\n", "assert(kernel_4d.shape == (ksize, ksize, 3, 1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll Perform the convolution with the 4d tensor in `kernel_4d`. This is a `ksize` x `ksize` x 3 x 1 tensor, where each input color channel corresponds to one filter with 1 output. Each filter looks like:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "plt.figure(figsize=(5, 5))\n", "plt.imshow(kernel_4d[:, :, 0, 0], cmap='gray')\n", "plt.imsave(arr=kernel_4d[:, :, 0, 0], fname='kernel.png', cmap='gray')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Perform the convolution with the 4d tensors:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "convolved = utils.convolve(..." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "convolved_show = (convolved - np.min(convolved)) / (np.max(convolved) - np.min(convolved))\n", "print(convolved_show.shape)\n", "plt.figure(figsize=(10, 10))\n", "plt.imshow(utils.montage(convolved_show[..., 0], 'convolved.png'), cmap='gray')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What we've just done is build a \"hand-crafted\" feature detector: the Gabor Kernel. This kernel is built to respond to particular orientation: horizontal edges, and a particular scale. It also responds equally to R, G, and B color channels, as that is how we have told the convolve operation to work: use the same kernel for every input color channel. When we work with deep networks, we'll see how we can *learn* the convolution kernels for every color channel, and learn many more of them, in the order of 100s per color channel. That is really where the power of deep networks will start to become obvious. For now, we've seen just how difficult it is to get at any higher order features of the dataset. We've really only picked out some edges!\n", "\n", "<a name=\"part-six---sort-the-dataset\"></a>\n", "# Part Six - Sort the Dataset\n", "\n", "<a name=\"instructions-5\"></a>\n", "## Instructions\n", "Using tensorflow, we'll attempt to organize your dataset. We'll try sorting based on the mean value of each convolved image's output to use for sorting. To do this, we could calculate either the sum value (`tf.reduce_sum`) or the mean value (`tf.reduce_mean`) of each image in your dataset and then use those values, e.g. stored inside a variable `values` to sort your images using something like `tf.nn.top_k` and `sorted_imgs = np.array([imgs[idx_i] for idx_i in idxs])` prior to creating the montage image, `m = montage(sorted_imgs, \"sorted.png\")` and then include this image in your zip file as <b>sorted.png</b>\n", "\n", "<a name=\"code-5\"></a>\n", "## Code\n", "\n", "<h3><font color='red'>TODO! COMPLETE THIS SECTION!</font></h3>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create a set of operations using tensorflow which could\n", "# provide you for instance the sum or mean value of every\n", "# image in your dataset:\n", "\n", "# First flatten our convolved images so instead of many 3d images,\n", "# we have many 1d vectors.\n", "# This should convert our 4d representation of N x H x W x C to a\n", "# 2d representation of N x (H*W*C)\n", "flattened = tf.reshape(convolved...\n", "assert(flattened.get_shape().as_list() == [100, 10000])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Now calculate some statistics about each of our images\n", "values = tf.reduce_sum(flattened, reduction_indices=1)\n", "\n", "# Then create another operation which sorts those values\n", "# and then calculate the result:\n", "idxs_op = tf.nn.top_k(values, k=100)[1]\n", "idxs = sess.run(idxs_op)\n", "\n", "# Then finally use the sorted indices to sort your images:\n", "sorted_imgs = np.array([imgs[idx_i] for idx_i in idxs])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Then plot the resulting sorted dataset montage:\n", "# Make sure we have a 100 x 100 x 100 x 3 dimension array\n", "assert(sorted_imgs.shape == (100, 100, 100, 3))\n", "plt.figure(figsize=(10, 10))\n", "plt.imshow(utils.montage(sorted_imgs, 'sorted.png'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What does your sorting reveal? Could you imagine the same sorting over many more images reveal the thing your dataset sought to represent? It is likely that the representations that you wanted to find hidden within \"higher layers\", i.e., \"deeper features\" of the image, and that these \"low level\" features, edges essentially, are not very good at describing the really interesting aspects of your dataset. In later sessions, we'll see how we can combine the outputs of many more convolution kernels that have been assembled in a way that accentuate something very particular about each image, and build a sorting that is much more intelligent than this one!\n", "\n", "<a name=\"assignment-submission\"></a>\n", "# Assignment Submission\n", "\n", "Now that you've completed all 6 parts, we'll create a zip file of the current directory using the code below. This code will make sure you have included this completed ipython notebook and the following files named exactly as:\n", "\n", "<pre>\n", " session-1/\n", " session-1.ipynb\n", " dataset.png\n", " mean.png\n", " std.png\n", " normalized.png\n", " kernel.png\n", " convolved.png\n", " sorted.png\n", " libs/\n", " utils.py\n", "</pre>\n", "\n", "You'll then submit this zip file for your first assignment on Kadenze for \"Assignment 1: Datasets/Computing with Tensorflow\"! If you have any questions, remember to reach out on the forums and connect with your peers or with me.\n", "\n", "<b>To get assessed, you'll need to be a premium student which is free for a month!</b> If you aren't already enrolled as a student, register now at http://www.kadenze.com/ and join the #CADL community to see what your peers are doing! https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow/info\n", "\n", "Then remember to complete the remaining parts of Assignemnt 1 on Kadenze!:\n", "* Comment on 1 student's open-ended arrangement (Part 6) in the course gallery titled \"Creating a Dataset/ Computing with Tensorflow\". Think about what images they've used in their dataset and how the arrangement reflects what could be represented by that data.\n", "* Finally make a forum post in the forum for this assignment \"Creating a Dataset/ Computing with Tensorflow\".\n", " - Including a link to an artist making use of machine learning to organize data or finding representations within large datasets\n", " - Tell a little about their work (min 20 words).\n", " - Comment on at least 2 other student's forum posts (min 20 words)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Make sure your notebook is named \"session-1\" or else replace it with the correct name in the list of files below:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "utils.build_submission('session-1.zip',\n", " ('dataset.png',\n", " 'mean.png',\n", " 'std.png',\n", " 'normalized.png',\n", " 'kernel.png',\n", " 'convolved.png',\n", " 'sorted.png',\n", " 'session-1.ipynb'))" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
power-system-simulation-toolbox/psst
docs/notebooks/validation/Validation13-5Bus.ipynb
2
31982
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Validation 13 - 5 Bus" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "from psst.case import read_matpower" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "case = read_matpower('./../../psst/cases/case5.m')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>GEN_BUS</th>\n", " <th>PG</th>\n", " <th>QG</th>\n", " <th>QMAX</th>\n", " <th>QMIN</th>\n", " <th>VG</th>\n", " <th>MBASE</th>\n", " <th>GEN_STATUS</th>\n", " <th>PMAX</th>\n", " <th>PMIN</th>\n", " <th>PC1</th>\n", " <th>PC2</th>\n", " <th>QC1MIN</th>\n", " <th>QC1MAX</th>\n", " <th>QC2MIN</th>\n", " <th>QC2MAX</th>\n", " <th>RAMP_AGC</th>\n", " <th>RAMP_10</th>\n", " <th>RAMP_30</th>\n", " <th>RAMP_Q</th>\n", " <th>APF</th>\n", " <th>STARTUP_RAMP</th>\n", " <th>SHUTDOWN_RAMP</th>\n", " <th>MINIMUM_UP_TIME</th>\n", " <th>MINIMUM_DOWN_TIME</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>GenCo0</th>\n", " <td>Bus1</td>\n", " <td>40.00</td>\n", " <td>0</td>\n", " <td>30.0</td>\n", " <td>-30.0</td>\n", " <td>1</td>\n", " <td>100</td>\n", " <td>1</td>\n", " <td>40</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>40</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>40</td>\n", " <td>40</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>GenCo1</th>\n", " <td>Bus1</td>\n", " <td>170.00</td>\n", " <td>0</td>\n", " <td>127.5</td>\n", " <td>-127.5</td>\n", " <td>1</td>\n", " <td>100</td>\n", " <td>1</td>\n", " <td>170</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>170</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>170</td>\n", " <td>170</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>GenCo2</th>\n", " <td>Bus3</td>\n", " <td>323.49</td>\n", " <td>0</td>\n", " <td>390.0</td>\n", " <td>-390.0</td>\n", " <td>1</td>\n", " <td>100</td>\n", " <td>1</td>\n", " <td>520</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>520</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>520</td>\n", " <td>520</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>GenCo3</th>\n", " <td>Bus4</td>\n", " <td>0.00</td>\n", " <td>0</td>\n", " <td>150.0</td>\n", " <td>-150.0</td>\n", " <td>1</td>\n", " <td>100</td>\n", " <td>1</td>\n", " <td>200</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>200</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>200</td>\n", " <td>200</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>GenCo4</th>\n", " <td>Bus5</td>\n", " <td>466.51</td>\n", " <td>0</td>\n", " <td>450.0</td>\n", " <td>-450.0</td>\n", " <td>1</td>\n", " <td>100</td>\n", " <td>1</td>\n", " <td>600</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>600</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>600</td>\n", " <td>600</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " GEN_BUS PG QG QMAX QMIN VG MBASE GEN_STATUS PMAX PMIN \\\n", "GenCo0 Bus1 40.00 0 30.0 -30.0 1 100 1 40 0 \n", "GenCo1 Bus1 170.00 0 127.5 -127.5 1 100 1 170 0 \n", "GenCo2 Bus3 323.49 0 390.0 -390.0 1 100 1 520 0 \n", "GenCo3 Bus4 0.00 0 150.0 -150.0 1 100 1 200 0 \n", "GenCo4 Bus5 466.51 0 450.0 -450.0 1 100 1 600 0 \n", "\n", " PC1 PC2 QC1MIN QC1MAX QC2MIN QC2MAX RAMP_AGC RAMP_10 RAMP_30 \\\n", "GenCo0 0 0 0 0 0 0 0 40 0 \n", "GenCo1 0 0 0 0 0 0 0 170 0 \n", "GenCo2 0 0 0 0 0 0 0 520 0 \n", "GenCo3 0 0 0 0 0 0 0 200 0 \n", "GenCo4 0 0 0 0 0 0 0 600 0 \n", "\n", " RAMP_Q APF STARTUP_RAMP SHUTDOWN_RAMP MINIMUM_UP_TIME \\\n", "GenCo0 0 0 40 40 0 \n", "GenCo1 0 0 170 170 0 \n", "GenCo2 0 0 520 520 0 \n", "GenCo3 0 0 200 200 0 \n", "GenCo4 0 0 600 600 0 \n", "\n", " MINIMUM_DOWN_TIME \n", "GenCo0 0 \n", "GenCo1 0 \n", "GenCo2 0 \n", "GenCo3 0 \n", "GenCo4 0 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "case.gen" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>MODEL</th>\n", " <th>STARTUP</th>\n", " <th>SHUTDOWN</th>\n", " <th>NCOST</th>\n", " <th>COST_2</th>\n", " <th>COST_1</th>\n", " <th>COST_0</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>GenCo0</th>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>0.005</td>\n", " <td>14</td>\n", " <td>56.90</td>\n", " </tr>\n", " <tr>\n", " <th>GenCo1</th>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>0.006</td>\n", " <td>15</td>\n", " <td>0.11</td>\n", " </tr>\n", " <tr>\n", " <th>GenCo2</th>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>0.010</td>\n", " <td>25</td>\n", " <td>2267.53</td>\n", " </tr>\n", " <tr>\n", " <th>GenCo3</th>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>0.012</td>\n", " <td>30</td>\n", " <td>5.19</td>\n", " </tr>\n", " <tr>\n", " <th>GenCo4</th>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>0.007</td>\n", " <td>10</td>\n", " <td>1391.16</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " MODEL STARTUP SHUTDOWN NCOST COST_2 COST_1 COST_0\n", "GenCo0 2 0 0 3 0.005 14 56.90\n", "GenCo1 2 0 0 3 0.006 15 0.11\n", "GenCo2 2 0 0 3 0.010 25 2267.53\n", "GenCo3 2 0 0 3 0.012 30 5.19\n", "GenCo4 2 0 0 3 0.007 10 1391.16" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "case.gencost" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>F_BUS</th>\n", " <th>T_BUS</th>\n", " <th>BR_R</th>\n", " <th>BR_X</th>\n", " <th>BR_B</th>\n", " <th>RATE_A</th>\n", " <th>RATE_B</th>\n", " <th>RATE_C</th>\n", " <th>TAP</th>\n", " <th>SHIFT</th>\n", " <th>BR_STATUS</th>\n", " <th>ANGMIN</th>\n", " <th>ANGMAX</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Bus1</td>\n", " <td>Bus2</td>\n", " <td>0.00281</td>\n", " <td>0.0281</td>\n", " <td>0.00712</td>\n", " <td>400</td>\n", " <td>400</td>\n", " <td>400</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>-360</td>\n", " <td>360</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Bus1</td>\n", " <td>Bus4</td>\n", " <td>0.00304</td>\n", " <td>0.0304</td>\n", " <td>0.00658</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>-360</td>\n", " <td>360</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Bus1</td>\n", " <td>Bus5</td>\n", " <td>0.00064</td>\n", " <td>0.0064</td>\n", " <td>0.03126</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>-360</td>\n", " <td>360</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Bus2</td>\n", " <td>Bus3</td>\n", " <td>0.00108</td>\n", " <td>0.0108</td>\n", " <td>0.01852</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>-360</td>\n", " <td>360</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Bus3</td>\n", " <td>Bus4</td>\n", " <td>0.00297</td>\n", " <td>0.0297</td>\n", " <td>0.00674</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>-360</td>\n", " <td>360</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Bus4</td>\n", " <td>Bus5</td>\n", " <td>0.00297</td>\n", " <td>0.0297</td>\n", " <td>0.00674</td>\n", " <td>240</td>\n", " <td>240</td>\n", " <td>240</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>-360</td>\n", " <td>360</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " F_BUS T_BUS BR_R BR_X BR_B RATE_A RATE_B RATE_C TAP SHIFT \\\n", "0 Bus1 Bus2 0.00281 0.0281 0.00712 400 400 400 0 0 \n", "1 Bus1 Bus4 0.00304 0.0304 0.00658 0 0 0 0 0 \n", "2 Bus1 Bus5 0.00064 0.0064 0.03126 0 0 0 0 0 \n", "3 Bus2 Bus3 0.00108 0.0108 0.01852 0 0 0 0 0 \n", "4 Bus3 Bus4 0.00297 0.0297 0.00674 0 0 0 0 0 \n", "5 Bus4 Bus5 0.00297 0.0297 0.00674 240 240 240 0 0 \n", "\n", " BR_STATUS ANGMIN ANGMAX \n", "0 1 -360 360 \n", "1 1 -360 360 \n", "2 1 -360 360 \n", "3 1 -360 360 \n", "4 1 -360 360 \n", "5 1 -360 360 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "case.branch" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "from psst.case.utils import solve_pf\n", "\n", "results, _ = solve_pf(case)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " <th>1</th>\n", " <th>2</th>\n", " <th>3</th>\n", " <th>4</th>\n", " <th>5</th>\n", " <th>6</th>\n", " <th>7</th>\n", " <th>8</th>\n", " <th>9</th>\n", " <th>10</th>\n", " <th>11</th>\n", " <th>12</th>\n", " <th>13</th>\n", " <th>14</th>\n", " <th>15</th>\n", " <th>16</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.0</td>\n", " <td>2.0</td>\n", " <td>0.00281</td>\n", " <td>0.0281</td>\n", " <td>0.00712</td>\n", " <td>400.0</td>\n", " <td>400.0</td>\n", " <td>400.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>-360.0</td>\n", " <td>360.0</td>\n", " <td>249.773373</td>\n", " <td>21.599095</td>\n", " <td>-248.006760</td>\n", " <td>-4.637368</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.0</td>\n", " <td>4.0</td>\n", " <td>0.00304</td>\n", " <td>0.0304</td>\n", " <td>0.00658</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>-360.0</td>\n", " <td>360.0</td>\n", " <td>186.500142</td>\n", " <td>-13.612148</td>\n", " <td>-185.437396</td>\n", " <td>23.581606</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.0</td>\n", " <td>5.0</td>\n", " <td>0.00064</td>\n", " <td>0.0064</td>\n", " <td>0.03126</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>-360.0</td>\n", " <td>360.0</td>\n", " <td>-226.273515</td>\n", " <td>22.738212</td>\n", " <td>226.604972</td>\n", " <td>-22.549636</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2.0</td>\n", " <td>3.0</td>\n", " <td>0.00108</td>\n", " <td>0.0108</td>\n", " <td>0.01852</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>-360.0</td>\n", " <td>360.0</td>\n", " <td>-51.993240</td>\n", " <td>-93.972632</td>\n", " <td>52.118657</td>\n", " <td>93.394588</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>3.0</td>\n", " <td>4.0</td>\n", " <td>0.00297</td>\n", " <td>0.0297</td>\n", " <td>0.00674</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>-360.0</td>\n", " <td>360.0</td>\n", " <td>-28.628657</td>\n", " <td>2.650132</td>\n", " <td>28.653264</td>\n", " <td>-3.078060</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>4.0</td>\n", " <td>5.0</td>\n", " <td>0.00297</td>\n", " <td>0.0297</td>\n", " <td>0.00674</td>\n", " <td>240.0</td>\n", " <td>240.0</td>\n", " <td>240.0</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>-360.0</td>\n", " <td>360.0</td>\n", " <td>-238.188688</td>\n", " <td>32.149384</td>\n", " <td>239.905028</td>\n", " <td>-15.659987</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 0 1 2 3 4 5 6 7 8 9 10 \\\n", "0 1.0 2.0 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1.0 \n", "1 1.0 4.0 0.00304 0.0304 0.00658 0.0 0.0 0.0 0.0 0.0 1.0 \n", "2 1.0 5.0 0.00064 0.0064 0.03126 0.0 0.0 0.0 0.0 0.0 1.0 \n", "3 2.0 3.0 0.00108 0.0108 0.01852 0.0 0.0 0.0 0.0 0.0 1.0 \n", "4 3.0 4.0 0.00297 0.0297 0.00674 0.0 0.0 0.0 0.0 0.0 1.0 \n", "5 4.0 5.0 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1.0 \n", "\n", " 11 12 13 14 15 16 \n", "0 -360.0 360.0 249.773373 21.599095 -248.006760 -4.637368 \n", "1 -360.0 360.0 186.500142 -13.612148 -185.437396 23.581606 \n", "2 -360.0 360.0 -226.273515 22.738212 226.604972 -22.549636 \n", "3 -360.0 360.0 -51.993240 -93.972632 52.118657 93.394588 \n", "4 -360.0 360.0 -28.628657 2.650132 28.653264 -3.078060 \n", "5 -360.0 360.0 -238.188688 32.149384 239.905028 -15.659987 " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame(results['branch'])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " <th>1</th>\n", " <th>2</th>\n", " <th>3</th>\n", " <th>4</th>\n", " <th>5</th>\n", " <th>6</th>\n", " <th>7</th>\n", " <th>8</th>\n", " <th>9</th>\n", " <th>10</th>\n", " <th>11</th>\n", " <th>12</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.0</td>\n", " <td>2.0</td>\n", " <td>0.0</td>\n", " <td>0.00</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>1.000000</td>\n", " <td>3.273361</td>\n", " <td>230.0</td>\n", " <td>1.0</td>\n", " <td>1.1</td>\n", " <td>0.9</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2.0</td>\n", " <td>1.0</td>\n", " <td>300.0</td>\n", " <td>98.61</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>0.989261</td>\n", " <td>-0.759269</td>\n", " <td>230.0</td>\n", " <td>1.0</td>\n", " <td>1.1</td>\n", " <td>0.9</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3.0</td>\n", " <td>2.0</td>\n", " <td>300.0</td>\n", " <td>98.61</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>1.000000</td>\n", " <td>-0.492259</td>\n", " <td>230.0</td>\n", " <td>1.0</td>\n", " <td>1.1</td>\n", " <td>0.9</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4.0</td>\n", " <td>3.0</td>\n", " <td>400.0</td>\n", " <td>131.47</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>1.000000</td>\n", " <td>0.000000</td>\n", " <td>230.0</td>\n", " <td>1.0</td>\n", " <td>1.1</td>\n", " <td>0.9</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5.0</td>\n", " <td>2.0</td>\n", " <td>0.0</td>\n", " <td>0.00</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " <td>1.0</td>\n", " <td>1.000000</td>\n", " <td>4.112031</td>\n", " <td>230.0</td>\n", " <td>1.0</td>\n", " <td>1.1</td>\n", " <td>0.9</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 0 1 2 3 4 5 6 7 8 9 10 \\\n", "0 1.0 2.0 0.0 0.00 0.0 0.0 1.0 1.000000 3.273361 230.0 1.0 \n", "1 2.0 1.0 300.0 98.61 0.0 0.0 1.0 0.989261 -0.759269 230.0 1.0 \n", "2 3.0 2.0 300.0 98.61 0.0 0.0 1.0 1.000000 -0.492259 230.0 1.0 \n", "3 4.0 3.0 400.0 131.47 0.0 0.0 1.0 1.000000 0.000000 230.0 1.0 \n", "4 5.0 2.0 0.0 0.00 0.0 0.0 1.0 1.000000 4.112031 230.0 1.0 \n", "\n", " 11 12 \n", "0 1.1 0.9 \n", "1 1.1 0.9 \n", "2 1.1 0.9 \n", "3 1.1 0.9 \n", "4 1.1 0.9 " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame(results['bus'])" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "from psst.model import build_model" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "model = build_model(case)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FICO Xpress-Optimizer 64-bit v29.01.10 (Hyper capacity)\n", "(c) Copyright Fair Isaac Corporation 1983-2016. All rights reserved\n", "Using Xpress-Optimizer [/Users/dkrishna/opt/xpressmp/lib/libxprs.dylib]\n", "\n", "Reading Problem /tmpgRr1VC.pyomo\n", "Problem Statistics\n", " 106 ( 0 spare) rows\n", " 87 ( 0 spare) structural columns\n", " 239 ( 0 spare) non-zero elements\n", "Global Statistics\n", " 5 entities 0 sets 0 set members\n", "Minimizing MILP /tmpgRr1VC.pyomo\n", "Original problem has:\n", " 106 rows 87 cols 239 elements 5 globals\n", "Presolved problem has:\n", " 16 rows 31 cols 61 elements 5 globals\n", "Will try to keep branch and bound tree memory usage below 5.5Gb\n", "Starting concurrent solve with dual\n", "\n", " Concurrent-Solve, 0s\n", " Dual \n", " objective dual inf\n", " D 20013.800 .0000000\n", "------- optimal --------\n", "Concurrent statistics:\n", " Dual: 13 simplex iterations, 0.00s\n", "Optimal solution found\n", "\n", " Its Obj Value S Ninf Nneg Sum Dual Inf Time\n", " 13 20013.80036 D 0 0 .000000 0\n", "Dual solved problem\n", " 13 simplex iterations in 0s\n", "\n", "Final objective : 2.001380036213346e+04\n", " Max primal violation (abs / rel) : 2.274e-13 / 2.274e-13\n", " Max dual violation (abs / rel) : 0.0 / 0.0\n", " Max complementarity viol. (abs / rel) : 0.0 / 0.0\n", "All values within tolerances\n", "\n", "Starting root cutting & heuristics\n", "\n", " Its Type BestSoln BestBound Sols Add Del Gap GInf Time\n", "k 22255.36973 20013.80036 1 10.07% 0 0\n", " *** Search completed *** Time: 0 Nodes: 1\n", "Number of integer feasible solutions found is 1\n", "Best integer solution found is 22255.36973\n", "Best bound is 22255.36973\n", "Uncrunching matrix\n" ] } ], "source": [ "model.solve(solver='xpress', verbose=True)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "s1 = (model.results.angles / 2 / pd.np.pi * 360).T[0]" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [], "source": [ "case.gen['PG'] = model.results.power_generated.T[0]\n", "\n", "from psst.case.utils import solve_pf\n", "\n", "results, _ = solve_pf(case)\n", "\n", "s2 = pd.DataFrame(results['bus'])[8]" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": true }, "outputs": [], "source": [ "np = pd.np" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def rms(x):\n", " return np.sqrt(x.dot(x)/x.size)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.052620045089577835" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rms(s1.values - s2.values)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
arcyfelix/Courses
17-09-17-Python-for-Financial-Analysis-and-Algorithmic-Trading/04-Visualization-Matplotlib-Pandas/04b-Pandas Visualization/03 - Advanced Matplotlib Concepts.ipynb
2
854839
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Advanced Matplotlib Concepts Lecture\n", "\n", "In this lecture we cover some more advanced topics which you won't usually use as often. You can always reference the documentation for more resources!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Logarithmic scale" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is also possible to set a logarithmic scale for one or both axes. This functionality is in fact only one application of a more general transformation system in Matplotlib. Each of the axes' scales are set seperately using `set_xscale` and `set_yscale` methods which accept one parameter (with the value \"log\" in this case):" ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAEOCAYAAAC+btKoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FFX3wPHvoXekijQVBCkKiA1pRgERUamKiEpRbIj6\nE5SmL0FfAqIiKEhRwIIUfQ2gKEiNkNC7QGiCIIpI7yXl/P6YjYQYJJtsdnY35/M8+5CdmZ05m5Cb\ns/eee0dUFWOMMcYYkzmyuR2AMcYYY0wos2TLGGOMMSYTWbJljDHGGJOJLNkyxhhjjMlElmwZY4wx\nxmQiS7aMMcYYYzKRJVsmYIjIQhEZm9VjMMZcnojcKSIJIlL6MsdNEJE5mRRDfxHZlhnn9hVfvn8R\naS0i67w4XkRkk4g098X1g5klWyFERD4VkUQRGZxiexnP9oZuxWaMCS6ZmaT4SAxwlar+ASAi9Tzt\nXHk/xvAOUMeP13ONiGTHeb//Setr1FnIMxx4L5PCChqWbIUWBc4AL4pIuVT2ZYiI5MjoOYwxJqNE\nJIeqxqvqX8k344N2zhuqelpVD/vzmi5qDeQGvvPyddOBYiJyn+9DCh6WbIWeJcB6YFCK7XLRE5HK\nIvK9iJzwPL4VkYrJ9ncUkTgRCRORNSJyFmjk6TbfLiIPicg2ETklItNEpKCni3mLiBwXka9FpGCy\n890kIj+IyH7P9VaISFNv35yI9BWRX0TkrIj8JSKzRCR3sv2NRWSRJ66jnmHBazMSg4h0F5FYETkj\nIls9MWT3NnZjQomIFBCRMZ7fw7MislJEmqQ45iYRWer53YkVkVYisktE+iY75kURWev5ndwnIpNF\npFSy/Xd6eqzuE5HFInIaeDLZ9tIicjWwyPOSXz3bF6SIpauI/Coix0RkhoiUSLYvve1afxHZnuI6\nl2yDLvF9fEpENnu+R4dEJEqSDY2KyM2edu6Y53u0TERu9ey7RkS+EZHfPdfbICKPpeFn94jne37G\n8/N4T0TyXeZljwIzPb1ViMi14gzjXtSzJyINRSRePB/4VTUO+B64bFyhzJKt0KNAT6C9iNRO7QAR\nyQPMBXIBDYCGQAFgllzce5UNGAz8H1AFWOXZfhXwBNAKuBeoB/wP6AK09WxrAPRNdq5CwBTgTuAm\nYDYwQ0SuS+sbE5HWQC+gO3Ad0BiYlWx/Y895V+J07d8KfAokvSevYxCRcOAVz3WrAC8BT+NFV7ox\nIWoC0ATnj3BNnGG9mSJSGUBE8uL8kd0P3AJ0xGmbSqQ4jwI9gBuAlkA5YHIq13sXpz2qyoXelaSe\nrN+AFp6vbwFK4fTEJLkNCAPuA+4BbvScL7n0tGvJY0hLG3QRTxs9ChgIVMZpiz9Ptr868BNwyBN/\nTU/cSX+7CwDzgaY4378xwHgRuTO163nO2QkYiTMkWAV4HGjkiePf3Ams+PtNq+4C5gBdUxz3FPCj\nqv6WbNty4K7LnD+0qao9QuSB0/jN8XwdCSzwfF0GSAQaep4/CZwEiiR7bUngNPCY53lHIAGom+Ia\n/YHzKV47AogDiibbNgxYcZl41wF9kj1fCIz9l+NfBrYA2S+xfxEww8vv2SVjAPICp4B7UrzmceCI\n2z9ve9gjMx/J25NU9lX0tClNU2xfDXzi+borcBwokGz/9Z7X9f2X697kaXuu8jy/0/OaR1Mcd6fn\nuNKe5/U8z8un8j7+BHIk2/Ya8Huy5+lq1zyv25bsuVdtEE5yeST59yjF/i+AtV7+3KYDYy71cwR2\nAU+neE0Dz/e48CXOWfgSP+9WwImk+D3HnQIeTHHcA56fTV63/1+79bCerdDVC6gvIvensq8asFlV\njyRtUKf2YStQPcWxq/in35O/Fqch+1Mvrl34EyeBA0BEiovIR56hhCMicsITx9VevKevcHrj9ohT\nvPuYiBRItv9mnB67VKUjhuo4Cdc3cmG49QTOp8eCIlLMi9hNEBKRkiIS4xnamSciV7odU4CohtOj\nszjF9kVcaEOqArGqejJpp6puBY4mf4E4pQqzRWSPiBxPds7kv5eK01uUXltUNT7Z8z+AlD9Lr9u1\nVPxrG5SKuTjJz6+e4dOuKdqV2jg9V6kSkbwiMlhENnqGIE8AzbhEmyYixT37hqZo02bhfI8v1cuf\n1/Pv2RTbv8VJqDt4nj+O8/OdmeK4pNflJYuyZCtEqep2nKTgbS7RhZ0GCap6PpXtcSkvd4ltyf9/\nfYbzybMnUB+nO3w9TvKUJurMOroe6IwzNPE6sFVEyqTxFN7GkBR/W8+xSY8bcLr8s0phbFZ2QFXr\nqWoYTi/Dky7HE2z+tWDdU9fzPbATaIeTrDyIU2Oa8vfyVAbiSNmOKSnqWElfu5YhqnoK5z23xPmw\n+yywQ0RuSuMp3sUZxu3PhWHGWVy+TXuRi9u0GkAl4OdLvO4gznsvmiL+BGAcF4YSnwTGq2piitcX\nxfl7kmXbTEu2QtsAoDROjVHyRm8TUE1E/v7F8Xxiv55L/7JlVAPgI1X9XlU34SRLFbw9iarGqeoc\nVe2N00Dkw2mowBnCuMeHMWzC+URWUVV3pvLw68wn438pfsYFcf5PmAvfh5TLyTTkQhuyGaiaoqD8\neuCKZMffCuQB/k9Vl3o+JJYifbMKkxIqNyevXK4N+gd1RKtquKreDOzDSaCSztfoX17eAPhSVb9R\n1Z9xeskq/8u1/sKpb6tyiTYttQ/XeHoFN/LPkQ+AT4CaIvIMTi3cuFSOuRFY+y/vI+RZshXCVPUg\nTkHpyyl2TcL5pDJVnNlCN+MUjv+GM1SXGbYCHUTkBhGp5YnBq/9/ItLFM3Onhjhr6TyGUyCa1PC/\nBTQTkfdF5EZxZlx2FJFK6YnB86kzAogQkec956smIu0kxVpmJnSJSE0RWQZ0A9a4HY+fFfC8/+SP\n61V1J07x+Ecico+IXC8iw3H+GCcVnn+J0xv1hef38XacP8ynuZBMbfd83dMzs64l8EYqcaTshUpt\n+26cuqL7RKSEiBTKwPtOr8u1QRcRkQdF5GURqS0i5USkFVCWC23aEKCSiEwSZ1ZiBRFp6/legtOm\ntRCRW0WkGjAW5wP2v+mHszxQXxGp7omxpYiMvszrfsCpk7uIqu4BfgSGA/NU9ddUXhuG04OZZVmy\nFfqGcaELGABVPYszi+gczkyXhTjj7s1S1DX4Uiec/2/LcYr3Z/HPGozLfZo9gjOEuBDnU/PLQFdV\njQJQ1bk4s41uA5Z5rvUEF4YCvI5BVf+LMxvxKZxi+sWe6+66TKwmRKjqelWtg5MEpJyJFupux0kw\nkz+mefY9hfNH9guc3407gOaqug1AVc/g1A+VxJnF9jlOe3QKTw2PpzemO07v+yac37WXUonjUm1D\n8nbtL6AP0BunJmt6Ot5vhqShDUrpCE7x+CycxGkw8Jaqfuo530acRKU4EIXTO/QKTrE5ODPFdwML\ncOq/9gJfXybGicDDQHNPfCtwZlfvvczbGws0vETZxlggp+ffi4hIBZwezNR6vLIMSctIiIh0w/lD\ndSMwSVW7JNuXF2d12IdwaoPWe+obkva/jTOOq8A4z/CPMcYEPBHJqc46QYjIPTgzU3u6HFbQEmc9\nrF3AA6qapXs6gpGIfAycUNVXUmx/HufDSLmUH9hFZCTOaOkL/os08KS1cPp3nO7RpvxzNsHHOL0F\n1+Nk6bWSdnjGcB/ESdIA5onITlW1e88ZY4JBLRF5F4jH6Y3pcpnjTTIi0gHn78cu4BqcCTtJ6zOZ\n4NMXZ3QBABHJj7Mu2qvAiFQSLcEpT8nyf/PT1LP198EibwFlknq2PMWOy4Gyyaf3Jjs+Bpigqp94\nnnfGGfap64vgjTHGBC4ReRFn5ltpnNm70UBPVb3ckJUJAiIyAWiPkzw/pKrnXA4pYGW0Zus2nPHi\nN0XkgIisF2eV7yTVcabWJ1lP6rMZjDHGhBhV/UBVr1PVfKpaVlUfsUQrdKhqZ1XNo6oPWqL17zKa\nbJXFGSI8gnOrg+7AZ54eL3Bmih1LdvxxzzZjjPEbEekmzr37zorI+BT7iohzH7yT4twnrr1bcRpj\nQlN6F7tMcgZnbZP/etajWSQiC3HWGdmKc0uY5NNvC3u2/YOI2JpFxmRBqnqpaf2+9G91px/h1GOV\nwFmx+3sRWaeqsWk9ubVfxmRNaW2/MtqztcHzb/KLpVw8s2ay57X4l0UBfXkfIjcf/fv3dz0Gey+h\n+T5C7b34i6pOV9VvSbHqv4jkw7lh8euqekZVY4AZOLcd8fYaIfEIpf9f9l4C7xEq70PVu/YrTcmW\niGQXkTw4K/PmEJHcIpId5z5Ye4A+nmPq4awJ8qPnpZ8Dr4hIac/aHK/g3BTTGGMCQWUgTlV/SbYt\nXbWl4eHhREVF+SouY0yAioqKIjw83KvXpLVn63WcVX974dxw8jTQT51pni1xFkc7inMvvsf1wqJ2\nY4DvcG7fsB74VlU/9ipCY4zJPAVwakmTO45zax6vhIeHExYW5ouYjDEBLCwszOtkK001W6o6AOc+\ne6nt2wxccikHdRYxzVILmYZSgxsq7yVU3geE1nsJACnrSsGpLT3hQiwBIZT+f9l7CTyh8j685dU6\nW5lJRDRQYjHG+IeIoP4pkE+6Xsq1AvPh1HFVTxpKFJHPgb2qmuZb84iI9u/fn7CwsCz7x8SYrCIq\nKoqoqCgGDBiQ5vbLki1jjGv8lWx5akxz4twDrizQFYhX1QQRmYQzsacrzmzE74C66uVsRGu/jMla\nvGm/7EbUxpisINW6U8++bkA+4C9gIvCsN4mWMcZcTkbX2TLGmIB3mbrTI0CrjF4jqUDehhGNCW1J\nw4jesGFEY4xr/F2zlVms/TIm67FhRGOMMcaYAGHJljHGGGNMJrJkyxhjfMBWkDcma0jPCvJWs2WM\ncY3VbBljgpXVbBljjDHGBAhLtowxrnhu5nNuh2CMMX5hyZYxxu8OnznMlz9/6XYYPmU1W8ZkDVaz\nZYwJCp+t+4wZW2cw7ZFpVrNljAlKVrNljAlokVsiaV21tdthGGOMX1iyZYzxq5PnT7Jw10KaV2ru\ndijGGOMXlmwZY/xq9o7Z3FHuDorkLeJ2KMYY4xeWbBlj/CoyNpLWVWwI0RiTdViyZYzxm3Px55i1\nYxYtqrRwOxSfs9mIxmQNmTYbUUS6AZ2AG4FJqtollWP+A4QDjVV1QbLtbwNPAgqMU9Xel7iGzeYx\nJsTN2j6LgYsHEt0lGrAV5I0xwcub9itHGs/5O/AW0BTIm8oFKwBtgT9SbH8GeBAnSQOYJyI7VXVs\nGq9rjAkhkbE2C9EYk/WkaRhRVaer6rfA4UscMhJ4DYhLsf0J4D1V3aeq+4B3cXrIjDFZTEJiAjO2\nzqBVlVZuh2KMMX6V4ZotEXkIOKuqs1PZXR1Yn+z5es82Y0wWE70nmrKFynJtkWvdDsUYY/wqrcOI\nqRKRAsBAoNElDikAHEv2/LhnmzEmi5m2ZZr1ahljsqQMJVs4BfGfq+pvl9h/EiiU7Hlhz7bUT5as\nuj8sLIywsLAMhmeMCQSqSmRsJAOuGeD1LB5jjAl2GU22GgFlPLMVAUoAX4nI26r6DrAJqAms8uyv\n5dmWKmuEjQlNq/etJm/OvHRq2QlpdWHyzoABA1yMyrfCw8PtQ6IxWUBUVJTXy7ykdemH7EBO4D9A\nWaArEI/Ta5Uz2aGrgJeB2ap62jMb8UWgCSDAHGCYqn6cyjVs6rQxIarv/L6oKoMaD7pouy39YIwJ\nVplxI+rXgdNAL6CD5+t+qnpEVf9KeuAkYEdV9TSAqo4BvgN+ximO/za1RMsYE9qmbZlGq6pWr2WM\nyZrS1LPlD/bJ0JjQFHsglnsm3sPul3eTTS7+fGc9W8aYYJUZPVvGGJMukbGRtKrS6h+JljHGZBXW\n+hljMlXkFls13hiTtVmyZYzJNLuP7mbPsT3UL1/f7VCMMcY1lmwZYzLNtC3TeLDyg+TIltFVZowx\nJnhZsmWMyTR242ljjLFkyxiTSfaf3M+G/RtoVOFSd/MyxpiswZItY0ym+HbrtzSr1Iw8OfK4HYpf\nhIeHe72qtDEm+ERFRXl9xxtbZ8sYkymafdmMzrU683D1hy95jK2zZYwJVrbOljHGVcfOHiNmTwzN\nrmvmdijGGOM6S7aMMT73/fbvCbsmjIK5C7odijHGuM6SLWOMz9ksRGOMucCSLWOMT52OO83cnXN5\noPIDbodijDEBwVYaNMb41Jxf5nBL6Vsolq+Y26EYY4zPnTx/kjGrxnj1GuvZMsb41LQt02hdJTSG\nEEXkVhFZIiJRIvKliGR3OyZjjDsOnznMgKgBXDv8Wlb8scKr11qyZYzxmbiEOGZum0nLKi3dDsVX\n9gB3qWoYsBto4W44xhh/23diH6/OeZXrPriOPcf2ENMlhqltp3p1DhtGNMb4TNSvUVQqWokyhcq4\nHYpPqOr+ZE/PA4luxWKM8a9dR3bxzpJ3mLJxCo/VeIx1z66jfOHy6TqXJVvGGJ8J1VmIInI10AR4\ny+1YjDGZK/ZALIOiB/H99u955uZn2PLCFkrmL5mhc1qyZYzxiURNZPrW6SzqtMjtUHxKRAoCnwMd\nVTXB7XiMMZlj9R+riYiOIHpPNC/e9iIfNPuAK/Jc4ZNzp6lmS0S6ichKETkrIuOTbb9dROaIyCER\n2S8iU0WkVIrXvi0iB0XkgIgM9knUxpiAs2zvMkrkK0GlYpXcDsVnPAXxU4BwVd3hdjzGGN9btHsR\n9068l5ZTW9KwfEN2vriTfg37+SzRgrQXyP+O030+LsX2IsAY4GrP4yQwIWmniDwDPAjcCNQAHhCR\npzMYszEmAEXGRtKqSiu3w/C19sBtwBsiskBEHnI7IGNMxqkqs7bPosGEBnSZ0YW21dqyo/sOXqrz\nEvlz5ff59by6EbWIvAWUUdUul9h/ExClqoU9z2OACar6ied5Z6CrqtZN5bV2I1djgpSqUvGDikxr\nN42apWqm+XV2I2pjjD8lJCYQGRtJRHQE8Ynx9K3fl4eqP0SObN5XVXnTfvm6ZutOYFOy59WB9cme\nr/dsM8aEkA37NyAi1LiyhtuhGGPMP8QlxPHlz18yOHowV+S5gjfD3qR55eZkE/+sgOWzZEtEagBv\nAMnv0VEAOJbs+XHPtlSFh4f//XVYWBhhYWG+Cs8Yk4kiYyNpXaU1Iv/+IS8qKoqoqCj/BJWMiHQD\nOuGUNExK3jsvIkWA8TizDQ8AfVV1srfXsPbLmMBzJu4M49aO450l71CpaCU+av4Rd11z12XbqtRk\npP3yyTCiiFwHRAGvqeqkZNuPAo1VdZXn+c3AgqRhxhTnsG54Y4LUjaNuZMz9Y6hb7h8VAv/KX8OI\nItISZ42spkDeFMlWUmLVBagNfA/coaqxXpzf2i9jAsjxc8cZtXIUw5YP47Yyt9Gnfh/qlK3j02v4\ndRjRs/7MXGBA8kTLYxNQE1jleV6Li4cZjTFBbvuh7Rw8fdDnDZkvqep0cG6/A/y94qqI5ANaA9VU\n9QwQIyIzgMeBvm7EaoxJv4OnD/LB8g/4aOVHNL2uKXMem8ONV97odlhpS7Y8059zAtmBHCKSG4gH\nrgTmAx+q6sepvPRz4BURmQUI8AowzBeBG2MCw7Qt02hVpZXfah98rDIQp6q/JNu2Hqf+1Cvh4eE2\nfGiMS34//jtDlw5lwroJtK3WlmVPLeO6otdlyrXSM5yYpmFEEekP9AeSHzzA829/4FTSoYCqaqFk\nrx0MdPW89mNV7XOJa1g3vDFBqM4ndfjv3f+lcYXGXr/W37MRU5ZCiEh94CtVLZ3smKeAR1X1bi/O\na+2XMS745fAvDIkZwtebv6ZjzY70qNuDsoXK+uXaPh9GVNUBXEiuUnrzMq/tDfROy3WMMcFl7/G9\nbD+8nTuv9rojKFCcBAql2FYYOOFCLMaYNNr410YGRw9m9o7ZPHfLc2x9YSsl8pdwO6xLstv1GGPS\nbfqW6dxf+X5yZs/pdijptQ2nNKJisqHEmqSjttSGEY3JfCt+X0HE4giW7V3Gy3VeZuR9Iymc5x9z\n7jJVpg0j+oN1wxsTfBp93ogXb3uRFlVapOv1fpyNmFR3+h+gLE5pQ7yqJojIJJwyh644sxG/A+ra\nbERjAoOqEvVrFBHREWw9uJVX677Kk7WfJF/OfK7G5eaipsaYLOLg6YOs+mMV91S8x+1Q0uJ1Lq47\n7YBTGvEm0A1nna2/gIPAs94kWsaYzKGqfL/9eyIWR3DozCF61+tNhxodyJU9l9uhec2SLWNMuny3\n9TuaVGhC3px53Q7lsv6t7lRVjwAZvqmjDSMa4xsJiQl8vflrBkUPQhD6NuhLm6ptyJ4tu9uhATaM\naIzxowcmP0D7G9rz6I2Ppvscdm9EY0yS8wnn+WL9FwyOGUzJ/CXp16Afza5rlq7V3v3BhhGNMZnq\nxLkTLNq9iImtJrodijEmyJ2OO80naz7hnSXvUK1ENT554BMaXt0wYJOs9LBkyxjjtVk7ZlGvXD2/\nzwIyxoSOY2eP8dHKjxi+fDh1y9Ul8uFIbi1zq9thZQpLtowxXouMjaR11dZuhxFQrGbLmLQ5cOoA\nw5YNY8zqMTSr1Iz5T8ynesnqboeVZlazZYzJdGfjz1Lq3VJs676NkvlLZuhcVrNlTNbx27HfeG/p\ne3y+/nPaVW/Hq/VepUKRCm6HlW5Ws2WMyTTzd86nZqmaGU60jDFZw47DOxgcPZjI2Ei63NSFjc9v\npHTB0pd/YQixZMsY45XI2EhaV7EhRGPMv9uwfwODogcxb+c8ut3aje3dt1MsXzG3w3JFNrcDMMYE\nj/jEeL7d9i2tqmZ4WaqQEx4e7nUdhzGhaNneZTw4+UGaTmxK7VK12fniTsLDwkMm0YqKiiI8PNyr\n11jNljEmzRbuWsirc19l1dOrfHI+q9kyJjSoKgt2LWDg4oHsPLKT1+q9RudanYNi0eP0spotY0ym\nmLZlms1CNMb8LVET+W7rd0RER3D83HH61O9D+xvaB/PN6TOFJVvGmDRJ1EQiYyOZ98Q8t0Mxxrgs\nPjGerzZ9xaDoQeTKnou+9fvSqmorsolVJ6XGki1jTJqs+mMVhXIXokrxKm6HYoxxybn4c3y2/jPe\njnmbMgXL8G6Td7mn4j0htdp7ZrBkyxiTJpGxkbSqYoXxxmRFp86fYuzqsby39D1qXFmDT1t8SoOr\nG7gdVtBIU3+fiHQTkZUiclZExqfY10hEYkXkpIjMF5HyKfa/LSIHReSAiAz2ZfDGGP9QVVs1/jJs\nNqIJRUfOHOGtn97i2uHXsmTvEr5r/x0/dPghSydamTYbUURaAolAUyCvqnbxbC8G/AJ0AWYC/wUa\nqOodnv3PAC8Dd3tONQ8YrqpjU7mGzeYxJkBt+msT9026j19f+tWnwwU2G9GYwLT/5H7eX/Y+H6/5\nmAevf5Be9XpZCUEK3rRfaerZUtXpqvotcDjFrtbARlWNVNXzQDhQU0Qqe/Y/AbynqvtUdR/wLtAp\nLdc0xgSOpIVMrS7DmNC2++huXvjhBaqOrMrJ8ydZ8/QaJrSYYIlWBmV02kB1YH3SE1U9DezwbP/H\nfs/XwXO3SWMMAJFbIm0hU2NC2JaDW+g8ozO1x9amQK4CbO62mRH3jeDqK652O7SQkNEC+QLAXym2\nHQcKJtt/LMW+Ahm8pjHGj3Yd2cUfJ/6gXrl6bodijPGxtfvWEhEdwU+//kT327qzo/sOiuQt4nZY\nISejydZJoFCKbYWBE5fYX9izLVXJC87CwsIICwvLYHjGmIyatmUaLa5vQfZs2TN8rqioKCsiNyYA\nRO+JJmJxBOv3r6fnHT2Z0GICBXJZX0hm8ep2PSLyFlAmWYF8V6Cjqtb3PM8PHABqqup2EYkBxqvq\nOM/+J4EnVbVuKue2AlNjAlD98fV5veHr3HvdvT4/txXIG+M/qsqcX+YwcPFAfj/xO73q9aJjzY7k\nzpHb7dCCks9v1yMi2YGcQHYgh4jkBuKBacAQEWkF/AD0B9ap6nbPSz8HXhGRWYAArwDDvHkzxhj3\n/HnyTzYd2MTd1959+YOzuPDwcOuRNwEpUROZFjuNiOgIzsWfo0/9PrS7oR05stlSm+mRnh76tC79\n0B8nkUp+8ABVfVNE7gZGAuWB5UAnVd2T7LWDga6e136sqn0ucQ37ZGhMgBmzagyL9iziy9ZfZsr5\nrWfLmMwTlxDH5I2TGRQ9iIK5CtKvQT8euP4Bu6WOj3jTfnk1jJiZrLEyJvA0ndiUp2s/TZtqbTLl\n/JZsGeN7Z+PPMn7teIbEDKFCkQr0bdCXRtc2sqVbfMznw4jGmKznyJkjLNu7jMiHI90OxRiTBifO\nnWD0qtG8v+x9bi59M5PbTOaOcne4HVZIOX8efv4ZVq3y7nWWbBljUjVz20zuuuYu8ufK73Yoxph/\ncej0IT5c8SEjV46kcYXGzOowi5qlarodVtCLi4NNm2D1aie5WrXKeX7ddXDzzd6dy5ItY0yqpm2Z\nZvdCNCaA7Tuxj/eWvsf4teNpXbU1S7osoVKxSm6HFZTi42HLlgtJ1apVTg/W1VfDLbc4j8cfh1q1\nIF8+5zWffpr281vNljHmH06dP0XpoaXZ9dIuiuYtmmnXsZotY7y368guhsQMYeqmqTxR8wl63NGD\ncoXLuR1W0EhIgG3bLk6s1q+HMmUuJFa33OIkVgULXvo8VrNljMmQH3/5kdvL3J6piZYxxjubD2xm\ncPRgvt/+Pc/e/CxbXthCyfwl3Q4roCUmwo4dTkKVNBy4di2ULHkhqWrZEmrXhsKFMy8OS7aMMf8Q\nGRtJqyp2L0RjAsGqP1YRsTiCmN9ieOn2l/ig2QdckecKt8MKOKqwa9fFPVZr1kCRIk6N1S23wBtv\nOIlVUT9/jrRkyxhzkfMJ5/lh+w+80+Qdt0MJKraoqfElVWXR7kVEREew+cBmXq37KhNbTyRfznxu\nhxYwTpyAFSsgJsZ5rFwJ+fNf6LHq1ctJsooX9+11M21RU3+wmgdjAsOPO37kzUVvEtMlJtOvZTVb\nxlxMVZm1YxYRiyPYf2o/vev15vGaj5Mrey63Q3Pdb79dSKxiYmDrVrjpJqhXz3ncdhuUKuW/eKxm\nyxiTbpEsbXMmAAAgAElEQVSxkbSuYrMQjfGnhMQEImMjiYiOICExgb4N+vJQtYd8cgP4YBQfDxs2\nXJxcnTt3IbF69FFnODB3kNzW0Xq2jDF/S0hMoMzQMix5cgkVilTI9OtZz5bJ6uIS4pi4YSKDYwZT\nNG9R+jXoR/NKzbPcau/HjsGyZRcPCZYrdyG5qlcPKlaEQPq2WM+WMSZdlu5dSqkCpfySaBmTlZ2J\nO8O4teN4Z8k7VC5WmdHNRxN2TViWSLJU4ddfL+612rnTqbOqVw9eeQXuuMP/ReyZyZItY8zfImMj\nbSFTYzLR8XPHGbVyFMOWD+P2MrfzVduvuL3s7W6Hlani4pzlFmJiYMkS51+40GPVubNTe5Uzp7tx\nZiZLtowxgFOYGxkbycxHZ7odijEh5+DpgwxfNpxRq0Zx73X3MvfxudxQ8ga3w8oUJ0/C4sUQHe0k\nVqtXQ4UKTmLVsiUMGQLXXBNYQ4KZzZItYwwAa/9cS67suaheorrboQQMESkEzAWqAnVUdbPLIZkg\n8/vx33lv6Xt8uu5THqr2EMufWk7FohXdDsun4uKcGqt585zHmjXOkGDDhtCnD9Spk7kLhgYDS7aM\nMQBMi51GqyqtskTNiBdOAfcBtuiY8cqOwzsYEjOE/23+H51rdebn536mTKEyboflE6qwebOTWM2f\nD4sWOT1XjRpBv35Qv76z3pW5wJItYwyqyjex3zChxQS3QwkoqpoAHBLLQE0a/bz/ZwbHDObHHT/y\n/K3Ps637Norn8/Gqmi7Yu9dJrJJ6r/LkgSZN4LHHYNw4KFHC7QgDmyVbxhimb5lOzuw5ubXMrW6H\nYkxQWr53ORHRESzfu5z/q/N/jGo+ikK5C7kdVrodPQpRURcSrAMH4O67oXFjGDDA6ckyaWfJljFZ\n3PmE8/Sa14uR940km2RzOxxjgoaqsvDXhUQsjmD74e28Vvc1prSZQt6ced0OzWvnzsHSpRd6rjZt\ngrp1neRq0iSoWROyWfOQbj5JtkTkauAj4A7gLPAN8JKqJopII2AEUA5YDnRW1T2+uK4xJuNGrxpN\nxaIVaVKxiduhBDobSjQAJGoiM7fNJGJxBEfPHqV3/d50uLEDObMHz9oFiYmwfv2FnquYGKhWzUmu\nBg1y1rnKk8ftKEOHT1aQF5Hvgb+Ap4EiwDxgLDAZ+AXoAswE/gs0UNU7UjmHrcBsjJ8dPXuU60dc\nz/wn5rsyDT0YVpD3tG81gd3AGFX9PJVjrP3KAuIT4/l609cMih5Ejmw56NugL62qtAqaW+rs2nWh\n52rBAihWzClqb9wYwsKgSBG3Iwwu3rRfvkq2NgE9VHW25/kQoCCwBuioqvU92/MBB4FaqrotxTms\nsTLGz16d8yrHzh1j7ANjXbl+MCRbaWHtV2g7F3+OLzZ8weDowZQqUIp+Dfpx73X3BvzM3YQEp8dq\n+nT49ltn/avGjZ1Ho0bO7XBM+rlxu55hwCMi8hNQFGgGvA7cBaxPOkhVT4vIDqA6sC21Exlj/GPX\nkV1MWDeBjc9vdDsUYwLSqfOn+HjNx7y75F1uKHkDE1pMoMHVDdwO61+dOeP0XE2bBt995yRULVvC\nN99AjRpZayHRQOKrcrfFwA3AcWAPsFJVZwAFgGMpjj2O0+tljHFRn/l9eOn2lyhVoJTboWQ6Eekm\nIitF5KyIjE+xr4iITBORkyKyS0TauxWnCQxHzx5l4KKBVPigAov3LGbGIzOY/djsgE20jhyBiROh\nTRsoVQqGDnUK2leudBYY/c9/nOeWaLknwz1bnvVnZgOjcQrkCwATRORt4CSQcu5rYeBEaucKDw//\n++uwsDDCwsIyGp4xJhXL9i4jek8041uMv/zBPhQVFUVUVJRfr+nxO/AW0BRIOVXsI5yJPSWA2sD3\nIrJOVWO9uYC1X8Fv/8n9DFs2jLFrxnJ/5ftZ2HEh1UpUczusVO3d6wwPTp8OK1Y4yzK0bAljxkDx\n4F/WKyBlpP3KcM2WiBTDKY6/QlVPeLa1wGnYPgA6JavZyg8cwGq2jHGNqlJ/Qn261u5Kp1qdXI3F\n3zVbIvIWUEZVu3ie5wOOANVU9RfPts+A31W1rxfntfYriO05tod3l7zLxA0TeeSGR3it3mtcc8U1\nbod1kaRV25MSrJ074f77nQTrnntsxXY3+LVmS1UPicgu4FkRGYozRNgRp1ZrOvCOiLQCfgD6A+tS\nJlrGGP+JjI3kdNxpHq/xuNuhBILKQFxSouWxHrjTpXiMH207tI3B0YOZvmU6T970JJue38RVBa9y\nO6y/JSbCsmUXEqyzZy/cyLl+fcgZPCtNZHm+KpBvDQwH+gDxwALgFVU9KCJtgJHARJx1th7x0TWN\nMV5KWsB0zP1jgma6eiYrgFNHmly66krDw8Nt+DBIrPtzHYOiB7Fg1wJeuPUFdry4g6J5i7odFuAs\nLrpgwYUZhMWLQ6tWMGUK3HST1V0FgvQMJ/pk6QdfsG54YzLfsGXDmLdzHjMfnel2KEBADCPWAqJV\ntUCyY3oADVW1hRfntfYrCCz5bQkRiyNYs28NPe7owdM3P03B3O7P1zp2DGbNchKs2bPhxhudHqwW\nLeC669yOzlyKG0s/GGMC3OEzh4lYHEFUpyi3Qwkk24AcIlIx2VBiTWCTizEZH1JV5u2cx8DFA9l9\nbDe96vXifw//jzw53F0efd8+p+dq2jRYsgQaNnQSrOHD4corXQ3NZAJLtozJIgYuGkibqm0CdnZV\nZhKR7EBOIDtOcpUbiPes/RcJvCkiXXFmIz4A1PX2GjaMGFgSNZEZW2YQER3BqfOn6FO/D+1vbE+O\nbO792Tt71um9Gj8eVq2CZs3gySfh66+hoPsdbCaNbBjRGJOqXw7/wu2f3M6m5zdxZYHA+djsr2FE\nEemPM0EneSMzQFXfFJEiwHigCc4dLnqp6lQvz2/tV4CIT4xnysYpDIoeRN4ceenXoB8tqrRw9Sbr\na9Y4CdaUKVC7NnTp4vRi2b0Hg5vfb9fjC9ZYGZN5Hv76YWpeWZN+Dfu5HcpF7HY9xlfOxp/ls3Wf\n8XbM25QvXJ6+DfrSpEIT126pc+gQTJrkJFlHjkDnztCpE1x9tSvhmExgNVvGmL8t+W0Jy/Yu49OW\nn7odSkizYUR3nDx/kjGrxjB02VBqlarFF62+oF75eq7EkpAA8+fDuHHw44/QvDm8+y7cdRdkc69j\nzfiYDSMaYy6iqtQdX5fnbnmOJ2o+4XY4/2A9Wya9Dp85zIgVIxixYgR3XXsXfer3oVapWq7EsnMn\nfPqp8yhZ0hkmbN8eihRxJRzjJ9azZYwB4OvNX3Mu/hyP1XjM7VCM8Yk/T/7J0KVDGbd2HC2ub8Hi\nzou5vvj1fo/jzBmIjHSGCTdsgA4dnBs/16zp91BMELBky5gQdS7+HL3n9Wbcg+NcLQ42xhd2H93N\nkJghTN44mQ43dmDtM2spX7i8X2NQhdWrnWHCr76C226DZ5+FBx+E3Ln9GooJMpZsGROiRqwYwQ0l\nb+Cua+9yO5QswWq2MseWg1sYHD2Y77Z9x9O1nya2W6zfZ9QePAgTJzq9WKdOOcXu69ZBuXJ+DcME\nCKvZMsYAcOj0IaqMrMLizoupUryK2+FcktVsmUtZs28NEYsjWLR7ES/e/iLdbu1Gkbz+K4JKSIA5\nc5wEa+5cp/eqSxdn8VErdjdgSz8Yk+W9PPtl4hLiGNl8pNuh/CtLtkxKi3cvJiI6gp/3/0zPuj3p\nWrsr+XPl99v1d+yACRPgs8+gTBknwXrkEShc2G8hmCBhBfLGZGHbD21n4oaJbO622e1QjEkTVeXH\nX35k4OKB/HHiD3rX6830dtPJncM/hVBnzzo1WOPHw+bN8Nhjzj0Kb7jBL5c3WYAlW8aEmN7ze9Oz\nbk9K5i/pdihZitVseS9RE4mMjSRicQRxiXH0rd+Xh6o/5Ldb6pw+DWPHwjvvQI0a8OKLcP/9kCuX\nXy5vgpTVbBmTxUXviaZDZAe2dNtC3px53Q7nsmwYMWuKS4hj0s+TGBwzmEK5C9GvQT/ur3y/32bN\nnjoFo0c7C47ecQe88QbcdJNfLm1CiA0jGpMFJWoiPeb0IOLuiKBItEzWcybuDOPXjuedJe9QsWhF\nRjQbwd3X3u23W+qcPAmjRsF770GDBs5Qoa2LZfzBki1jQsRXm74iURNpf2N7t0Mx5iLHzx1n9KrR\nvL/sfW4rcxtT2k6hTtk6frv+iRMwciS8/z6EhcG8eVaPZfzLki1jQsDZ+LP0md+HT1t8aguYmoBx\n6PQhhi8fzkcrP+Keivfw42M/UuPKGn67/vHj8OGHMHw4NG4MCxdCtWp+u7wxf7Nky5gQ8OHyD6l5\nZU3uvOZOt0PJsqxA/oI/TvzBe0veY8K6CbSp2oZlTy3juqLX+e36R4/CBx84ida998KiRVAlcJeb\nM0HG1QJ5EXkE+A9QHtgHdFLVGBFpBIwAygHLgc6quieV11uBqTHpcPD0QaqOrEpMlxgqF6vsdjhe\nsQL50LLzyE7ejn6brzd/TceaHelRtwdlC5X12/WPHHF6sUaMcGYV9u0LlYPrV8IEEW/aL5+MN4hI\nE2AQ0FFVCwANgZ0iUgz4BugHFAVWA1N9cU1jjOPNn97kkeqPBF2iZULHxr828ljkY9z28W2UyF+C\nrS9s5f173/dbonXokDOjsFIl+O03WLYMPv3UEi0TOHw1jBgOvKmqKwFUdR+AiHQFNqpqpOd5OHBQ\nRCqr6jYfXduYLGvboW1M3jiZ2G6xbodisqCVv68kIjqCpb8t5eU6LzPyvpEUzuO/pdYPHoShQ2HM\nGGjdGlauhGuv9dvljUmzDPdsiUg24BagpIhsF5E9IvKBiOQBqgPrk45V1dPADs92Y0wG9ZrXi1fr\nvkrxfMXdDsVkEarKwl0LafJFE9p81Ya7r7mbnS/tpHf93n5LtA4cgF694Prr4fBhWLMGPv7YEi0T\nuHzRs3UlkBNoA9QD4oFvgdeBAsBfKY4/DhT0wXWNydJ++vUn1u5by+Q2k90OxWQBqsr3278nYnEE\nB08fpHf93jxW4zFyZfffcuv79zurvY8fD+3bw9q1UL683y5vTLr5Itk64/n3A1X9C0BEhuIkWz8B\nhVIcXxg4kdqJwsPD//7aZvUYc2mJmkjPuT0Z1GgQeXLkcTucNEvPLB7jroTEBP63+X9EREcgCH0b\n9KVN1TZkz5bdbzHs2+ckWZ9+Ch06wIYNUNZ/dffGZFiGky1VPSoie1Nu9jw2AZ2SNopIfqCiZ/s/\nJE+2jDGXNvnnyQhCuxvauR2KV1J+iBowYIB7wfhYqC39cD7hPF+s/4LBMYMpka8EEXdHcF+l+/y2\n2jvAH3/A22/DF1/AE0/Axo1QurTfLm9Mqlxb+kFEBgD3AvfjDCPOABbgLPmwHegC/AC8BdRX1bqp\nnMOmThuTBmfizlBlZBUmtppIg6sbuB1OhtjSD4HndNxpPlnzCe8ueZeqJarSt35fGl7d0K9J1r59\nEBEBX34JnTtDz55w1VV+u7wxaeLGvRHfAooD23CGFacCEap6XkTaACOBiTjrbD3io2sakyUNXz6c\nm6+6OegTLRNYjp09xkcrP2L48uHULVeXbx7+hlvL3Or3OL76Crp3h8ceg9hYuPJKv4dgjM/5bFHT\njAqlT4bGZJYDpw5QdWRVlj65lErFKrkdToZZz5b7Dpw6wLBlwxi9ejT3VbqP3vV6U72k/yeMHz3q\nJFkrVzrDhrf6P88zxit+X9TUGOMf4VHhdLixQ0gkWsZde4/v5eXZL3P9iOs5dOYQK7uu5ItWX7iS\naEVFQc2aULiws4yDJVom1Ni9EY0JElsObuGrzV+xpdsWt0MxQWzH4R28Hf0238R+Q5eburDx+Y2U\nLuhO1fnZs/D66zB5Mowb59zH0JhQZMmWMUHitbmv0ateL4rlK+Z2KCYIbdi/gUHRg5i3cx7P3/I8\n27tvd/X/0oYNTl1WpUqwfj0Ut3V5TQizZMuYILBw10I2/rWRrx/62u1QTJBZtncZEYsjWPnHSl6p\n8wpj7x9LwdzurSudkODcYmfIEHj3XWdJBz9OdDTGFZZsGRPgki9gmjtHbrfDMUFAVVmwawEDFw9k\n55GdvFbvNaa2nUrenHldjWv3bujYERITnUL4a65xNRxj/MaSLWMC3JcbviRntpw8XP1ht0MxAS5R\nE5m5bSYDFw/k+Lnj9Knfh/Y3tCdn9pyuxqUKEydCjx7Omlk9ekB2/y1Ab4zrLNkyJoCdjjtNvwX9\nmNJ2il8XlTTec3MF+fjEeL7a9BWDogeRM1tO+jXoR8sqLf16S51LOXQInnsONm+GOXOgVi23IzIm\nY1xbQd4XgnmdGmMyy8BFA1m3f13I1mrZOlsZcy7+HJ+v/5y3Y96mdMHS9G3Ql6YVmwZMYj5nDnTp\nAg8/7KwInyd4buNpzGW5sYK8McbH9p/cz9BlQ1nx1Aq3QzEB5tT5U4xdPZb3lr7HjVfeyIQWEwLq\njgKnT0OvXjBjBnz2GTRq5HZExrjLki1jAlT/qP50rNmRikUruh2KCRBHzx5lxIoRfLjiQxpe3ZBv\n239L7atqux3WRVavdpZ0qF3bWdKhSBG3IzLGfZZsGROAFu5aSGRsJFtesAVMjdPLOWzZMMauGcsD\nlR/gp04/UaV4FbfDukh8PAweDB984DwesbvgGvM3S7aMCTAxe2Jo9792TG07laJ5i7odjnHRnmN7\neCfmHb78+Uva39Ce1U+v5porrnE7rH/45Rd4/HHIl8+53U7Zsm5HZExgsXsjGhNAVvy+glZTWzGx\n9UTuuvYut8MxLtl6cCtdZnThpjE3kS9nPjZ328zI5iMDLtFShU8+gTp1oF07pyDeEi1j/sl6towJ\nEGv3reWByQ8wvsV47ql4j9vhGA8RGQzUBXYBXVQ1IbOute7PdUQsjiDq1yheuO0FdnTfQZG8gVn0\n9Ndf0LUr7Nnj3Ei6uv/vX21M0LCeLWMCwM/7f6bZl80Y1XwU91e+3+1wjIeI1ABKq2pDYCvQNjOu\nE7MnhuaTmtN8UnPqlK3Dzpd28p87/xOwidZ33znrZVWrBsuXW6JlzOVYz5YxLttycAtNJzZl2L3D\naF21tdvhmIvVBeZ4vp4NdAKm+uLEqsrcnXMZuHggvx37jV71evHNw9+QJ0fgLkZ18iS88grMnQtT\np0KDwFltwpiAZsmWMS7acXgHTb5owqBGg3jkBpu+FYCKAH94vj4GZHjGQqImMn3LdCIWR3Am/gx9\n6/el3Q3tyJEtsJvjpUudIvgGDZwlHQoVcjsiY4JHYP92GxPCfj36K40+b8QbDd+gY62ObodjUncU\nSEorCgOH03uiuIQ4pmycwqDoQeTPlZ/XG77Og9c/SDYJ/GqOd96B996Djz6C1tb5aozXfJZsiUgl\nYAPwtao+4dnWCBgBlAOWA51VdY+vrmlMsNp7fC+NPm9Ezzt68vTNT7sdjrm0JcD/AROBpkCMtyc4\nG3+WT9d9ypCYIVx9xdUMv3c4jSs0Dphb6lzO55/DqFHOkg6lS7sdjTHByZc9WyOAv+8rIiLFgW+A\nLsBM4L84tQ53+PCaxgSdfSf2cfdnd/PcLc/R/fbubodj/oWqrheRv0RkEbAbeCetrz15/iSjV41m\n6NKh1L6qNhNbT6RuubqZF2wmiI6Gnj1h4UJLtIzJCJ8kWyLyCHAE2Axc59ncCtioqpGeY8KBgyJS\nWVW3+eK6xgSbA6cO0PiLxnSs2ZGedXu6HY5JA1V9zZvjD585zIfLP2TEyhE0urYRP3T4gVqlamVW\neJlm1y546CGnZ8tmGxqTMRlOtkSkEDAAuAvommxXdWB90hNVPS0iOzzbLdkyWc7hM4dp8kUTWldp\nTb+G/dwOx/jYvhP7GLp0KOPWjqNVlVbEdImhcrHKboeVLsePwwMPQJ8+cO+9bkdjTPDzRWXmm8DH\nqvpHiu0FcGbvJHccKOiDaxoTVI6dPcY9X9xDkwpNePOuN90OJ8sRkW4islJEzorI+BT7iojINBE5\nKSK7RKR9eq5R/aPqnE84z7pn1zGuxbigTbQSEpz7GtavD91tlNsYn8hQz5aI1AIaA6n1kZ/kwiye\nJIWBE5c6X3h4+N9fh4WFERYWlpHwjAkIJ86doNmXzahbri5DmgwJmsLozBAVFUVUVJQbl/4deAun\nyD1vin0fAWeBEkBt4HsRWaeqsd5c4MljT5J/eX7GLx8f1O1Xz55w/jx8+CFk4f+qxvxDRtovUdV0\nX1hEXsIpfD8BCE5vVjYgFhgNdFLV+p5j8wMHgFqp1WyJiGYkFmMC0anzp7hv0n1UKVaF0fePztKJ\nVmpEBFX12zdFRN4CyqhqF8/zfDj1ptVU9RfPts+A31W1rxfnDYn2a+xYZ4mHZcugSGAuXm9MwPCm\n/croMOIYoCJOz1ZNnATre+AeYDpQXURaiUhuoD+wzorjTVZxJu4MLaa04NorrmXU/aMs0QpMlYG4\npETLYz1ObWmWsmABvPEGzJxpiZYxvpahYURVPYvT/Q6AiJwEzqrqYc/zNsBInDVqlgO2RLbJEs7F\nn6Pt120pkb8E4x4cFxQLV2ZRBXBqSZNLV21peHh40A4fbtsG7dvD5MlQqZLb0RgT2NIznJihYURf\nCpVueGPiEuJ46OuHyJ4tO1PaTCFn9pxuhxSwAmAYsRYQraoFkh3TA2ioqi28OG/Qtl9HjkCdOtCj\nBzxt6+sak2b+HEY0xiQTnxhPh8gOJGgCk9tMtkQr8G0DcohIxWTbagKbvD1ReHi4W8X/6RYXB23b\nwn33WaJlTFpFRUVdNKEvLaxnyxgfSUhMoNOMTvx16i9mPDKDPDnyuB1SwPNXz5aIZAdyAv8ByuKs\nCRivqgkiMglQz7bawHdAXW9mIwZj+6UKzz0Hv/0G334L2bO7HZExwcV6tozxs0RN5NmZz/L78d+Z\n1m6aJVqB53XgNNAL6OD5Omll2W5APuAvnPrSZ71d9iEYffihczueyZMt0TIms1nPljEZpKq88MML\nrN+/ntmPzaZArgKXf5EB/F+zlVmCrf2aNQu6dIElS+Daa92Oxpjg5E375csbURuT5agqPeb0YNW+\nVcx9fK4lWllYsMxG3LQJOnaEadMs0TImPWw2ojF+pKr0W9CP2TtmM/+J+RTJa4sTect6tvzrwAG4\n/XYID4cnnnA7GmOCm/VsGeMHby16i++2fcfCjgst0TIB79w5aN0a2rWzRMsYf7Nky5h0eDv6bSb9\nPImfOv1E8XzF3Q7HBIBAHkZUhWeegRIlYOBAt6MxJrjZMKIxfjB82XBGrBxBVMcoyhQq43Y4Qc2G\nEf1jyBCYMgUWL4b8+d2OxpjQYMOIxmSS0atGM2z5MH7q9JMlWiYoTJ8OH3zg3FzaEi1j3GHJljFp\nNH7teCIWRxDVKYryhcu7HY4xl7VuHXTtCj/8AGXLuh2NMVmXJVvGXMaZuDMMiRnCx2s+ZkHHBVQo\nUsHtkIy5rH374MEHYeRIuPVWt6MxJmuzFeSNuQRVZcaWGVT/qDobD2xkyZNLqFysstthmQAVSPdG\nPHMGWraEp56Chx92OxpjQovdG9EYH9l6cCsvzX6JPcf28GGzD2lUoZHbIYUkK5D3PVV49FHn60mT\nQIL+u2tMYLJ7IxqTTifOnaDX3F7Un1CfphWbsv7Z9ZZomaDy5puwaxeMH2+JljGBwmq2jMEZMpz0\n8yR6zetF4wqN+fm5nylVoJTbYYWkkyedGyAvWOB2JKFn6lQnyVq+HPLmdTsaY0wSS7ZMlrf+z/V0\nn9WdU3Gn+Pqhr7mj3B1uhxRSzp1z/vjPn+8kWGvXws03w913ux1ZaFmxAl54AebNg1L2OcGYgGLJ\nlsmyDp85zBsL3uB/sf/jrbve4smbniR7tuxuhxX0EhKchCopuVqyBKpUcZKrN96AevUurPfkZY1p\nQHNzBfnffoNWrWDcOKhZ0++XNyZLcWUFeRHJBXwENAaKAL8AfVV1tmd/I2AEUA5YDnRW1T2pnCdg\nCkxNaEtITGDc2nG8sfAN2lZty1t3v0XRvEXdDitoqUJs7IXk6qef4KqrnOSqUSO4804ocolbR1qB\nfMadPAkNGkD79vDaa66EYEyW5E375YtkKx/QE5igqr+JSHNgMnADcAon+eoCzAT+CzRQ1X+M01iy\nZfxh6W9L6T6rO3ly5GHEfSOoVaqW2yEFpV9/vZBcLVgAuXM7iVWjRnDXXU6ylRaWbGVMYiK0aeMk\ns+PGWUG8Mf7k12TrEgGsB8KB4kBHVa3v2Z4POAjUUtVtKV5jyZbJNH+e/JPe83ozd+dchjQewqM3\nPorYX6Y027//QmI1fz6cOnWh5+ruu6FCOtd5tWQrY/r0gZgYp04rVy6/X96YLM3VeyOKyJVAJWAT\n8DywPmmfqp4WkR1AdWBb6mcwxnfiEuIYsWIEAxcPpMtNXdjSbQsFcxd0O6yAd/SoMxyYlFzt3esM\nBzZqBC+9BNWrWy+K2z77DL76ypl8YImWMYHNp8mWiOQAJgKfquo2ESkA/JXisOOA/bUzmW7+zvm8\nOPtFyhYqS3SXaKoUr+J2SAHrxAnnRsVJyVVsLNSp4yRX48dD7dqQw6bTBIzoaHj1VYiKguLF3Y7G\nGHM5Pms+xRmTmQicA7p7Np8ECqU4tDBwIrVzJF/+3q1ZPSb47Tm2hx5zerDqj1W83/R9WlzfwoYM\nk1GFPXuc4aclS5x/t2+Hm25y6q2GDIE77nDqsHwtPbN4zD898wyMHQvVqrkdiTEmLXxWsyUi44Hy\nwH2qet6zrSsX12zlBw5gNVsmE5yNP8u7S95l2LJhdL+tO6/Ve428OW1lx7g4WL/eSaqSEqy4OGcJ\nhnr1oG5dp+cqM5Krywmlmq3+/fv77UNi+fJO71b58pl+KWNMCkkfGgcMGODfAnkRGQ3UABqr6ulk\n24sD23FmI/4AvAXUV9W6qZzDki2TLqrKzG0zefnHl6l5ZU2GNh3KNVdc43ZYrjlyxBkSTEquVq2C\na67S3j4AAA3iSURBVK5xkqqkBKtChcCouQqlZMuf7Ve5cs7P1pItY9zj1wJ5ESkPPA2cBfZ7hmsU\neEZVJ4tIG2AkzhDjcuCRjF7TmCTbD23npdkvsfPITkY1H8U9Fe9xOyS/UoVffrl4SHD3brj1Viep\neu01Z0jwiivcjtT4WiAky8aYtMlwsuVZoPSSN7RW1QVA1Yxex5jkTpw7QcTiCD5e8zG96/dm+iPT\nyZU99KdknTsHa9ZcPCSYM+eFHqunn4YaNZxtxhhjAoPNLzJB43TcaX7Y/gNfbfqKH3/5kRbXt2DD\ncxsoXbC026FlmgMHnIQqqddq3TqoXNlJrB5+GIYPt6GkrMgqLowJLpZsmYB2Lv4cs3fMZuqmqfyw\n/QduKX0L7aq3Y1TzURTLV8zt8Hzq+HHnnoJr1sDq1bByJfz5p7MEQ716MGAA3HYbFLSFUww2jGhM\nMMmUFeTTwwrkTZLzCeeZt3MeUzdN5but31Hjyho8XP1h2lRtw5UFrnQ7PJ84dsxJrFavvvDYu9cZ\nArz55guP6tUhewjfG9sK5NOnTBlnMdOyZf12SWNMCq7fric9LNnK2uIT41mwawFTN05l+tbpVCle\nhXbV29G2WtugHyY8evRCb1XSY98+qFnTSahq13b+rVo16y0caslW+pQpAytWOP8aY9xhyZYJCgmJ\n/9/encfGVV1xHP8e73a84iS243FwdhKXkDitaNkipAYKJQlEJU5FK7UUVW2jqlIrtRKlKKSRkLpI\n/aMLqAUhqAoOiJIWqkptpShtKijgQMAJQSFpsbM5cSaOl3Hi5fSPO+NZPIZ47PGbeT4f6em9eTNh\n7oiZ45/uve++Efb9bx+t7a28ePhFGisbaWlq4d6me1lYkZ0Tkc6fHx+surqiwSqyXXONv3usrpSF\nrdQsWOCGmS1sGeMdT++NaMxHGdVR9n+4n9b2Vl449AILyhbQ0tTCqw+8yuKqFO9m7JHu7vhQ1dYG\n587BmjUuUG3a5OZZLV9uwcpMP5uzZUz2sLBl0k5Vee3Ea7S+28rzh56nqriKlqYW9n11H8url3vd\nvI+l6iaqv/12fK9VMOhucbNuHWzZArt2uWCVM+FCKMbPduzYMWMryNsggDHeSeW2YzaMaNJCVXnz\n1Jvsbt/N7vbdFOUV0dLUQssnWlg1LzNv6Kbqhvza28dvOTlw7bXxQ4FLl1qwmiobRkxNXZ0L/Auy\nezqjMVnNhhGNJ1SVg2cO0treyu723ShKS1MLe7btYXXN6oy6GfTZs8lD1eiouwIwsm3d6vbz59uw\njcks9n00JntY2DIpU1WOBY/RdqqNN06+wZ4jewgNh2hpauG5LzzHurp1nges7u7koery5fhQtWWL\n29fW2h8xk/lsEMCY7GJhy1yRkdERjnQfoe1U29h24PQBKgoraK5rZm3tWp66+ymur7/ek4AVDCYP\nVaEQrFoVDVWbNrn9ggUWqkx2s++vMdnD5myZcS6PXKa9qz0arE638c6Zd6grqxsLVpH9vDnzZqxd\nw8PQ0eFuvHz0KBw54gLVu+9Cb298qIpsgYD9UcpkNmcrNTU17oKN2toZe0tjTAKbs2Wu2MDQAAfP\nHIzrrTp89jCLqhbRXNdMc20zW5u2sqZ2DRVFFWlvTygEx465QBXZjh51+44ON3dqyRK3rVgBGza4\nULVwoYUqM7vY992Y7GFhaxbpGezhrdNvceD0gbFw9UHwA1bOXemCVV0zDzQ/wOqa1ZTkl6StHcFg\nNEAlhqrubmhsjAaqZcvgjjvccWMjFBWlrVnGjCMi5cDfgJXAp1X1kMdNAmzOljHZxoYRfUhV6erv\nivZYnXbB6mTvSVbXrKa51gWrtXVraZrXRGFe4bS+/+ioux1NbK9U7DY87JZNiASq2C0QsAVAZ5NM\nH0YUkVygEvgp8LOJwtZM16/5893w+fz5M/aWxpgENozoY6rK+dB5Oi520Hmxk46ejuhxeN95sZPi\nvGJW16xmbe1a7lp2Fw/f8jAr5q4gL2fq/8sHB+HEiejW2en2keG/48ehvDwaoJYuhY0bo4/nzrUh\nEJMdVHUE6BavL6s1xmQ1C1sZRFUJDgYnDFEdPW5fkFtAQ0UDgfIADeUNNJQ3cGvjrWPnAuUBSgtK\nU3h/d9Pk2AAV2cce9/a6q/nq611PVH29mzO1fr0LU4sXQ+nk394Yc4VsEMCY7GJha4aoKj2XeuJD\nVE8Hnb3xwSovJy8uRAXKA6y/ev3YuUB5gLLCskm//8iIu+VMYnBKDFP5+fEhKhCA5mbXMxU5N3eu\nrZxu/ENEaoDngEiEkfDxNlXt8qxhH8P62ozJHmkPWyJSBTwJbADOAg+q6rPpft90UFX6h/oJhoJc\nGLxAcDC8Dz+OO5fwXHeomxzJcSGqooFAWYCGigZubLiRhqaGsV6p8sLyK25PKORufNzd7faJxydP\nRsNUVxdUV7uwFBumNmyIHtfXQ9nkc5wxWU1VzwC3XsFLMybeWM+WMdllJnq2fg0MAvOAZuAVEXlL\nVQ/PwHuPUVUujVxiYGiA0FAoLjQlC0eJoSmyFeQWUFVURWVRJZVFlVQVu+PIuYUVCynsKGTzTZvj\nnr+q+CrKCsqSLvipCgMDcO40HO2OD03JglRkPzrqepmqq8fvly6FW26JBqu6OtdrNVl79+6dkRvr\npptfPgf467NkAxF5BbgOWC4ij6vq0163CdLXs+Wn75d9lszjl88xWWkNWyJSAmwBVqlqCNgvInuA\nLwMPJr7+yLkjhIZDY4Eo9nhgaIDQcCjuONm5cc+H/zuhoRAFuQUU5xdTkl/CnPw5cWGostAdVxVX\nsbhqcdIwVVFUQUFuwbjPOTwMfX3Q3+/2P399B1ctv4f+fjjb58719o4PS7FBSsQFpWThacUKuOGG\n8c/NmZP+oQS//DD88jnAX58lG6jq571uQ6J09mz56ftlnyXz+OVzTFa6e7aWA0Oq+kHMubeB9cle\nvPHZjZTkl4wFouK84rjj2HPVJdXRc/nFCcclFOYWk08xBVJCvrjj0ZEchoddOLp8ORqOIlv/ebe/\n0AedfUmen+Dx0JCbEF5a6gJQby+89170ceS56mq3ynmyQFWSvmWtjDE+ZHO2jMke6Q5bpcDFhHMX\ngaQzgxa9/P5YGBochr7wcew2MjL+XLLX5ORAXl7yLTcXCgriA1Ky40Ag/nHi85HHRUXxhW/HDrcZ\nY2aOiGwHvgJcC/xBVe+Pec43c0eNMdknrYuaisga4F+qWhpz7nvALaq6OeG1NuXTmFlouhY1FZG7\ngVHgdqA4IWxFgtX9hOeOAp+ZrrmjVr+MmZ0yZVHT94E8EVkSM5R4HdCe+MJMXkXaGJP5VPUlABH5\nFFAfOT/ZuaMpvrfVL2PMhNK6WpKqDgAvAjtFpEREbgI2As+k832NMSbGRHNHmzxqjzFmlpmJpSm3\nAyVAF/B74BszveyDMWZWm9TcUWOMmW5pX2dLVYPAPel+H2OMmUAfkLhacAXQ60FbjDGzkOc3XRGR\nKhH5o4j0ichxEfmi121KhYhsF5HXRWRQRJ70uj1TISIFIvI7EfmviPSISJuIfM7rdqVCRJ4RkVMi\nckFE3hORr3ndpqkSkWUiEhKRjFhcMxUisjf8GS6KSK+IpLO3e2zuaMy5pHNHJ8sv9Qv8U8P8VL/A\nfzVsttYvz8MW8SvMfwn4jYis9LZJKTkB/Bh4wuuGTIM84EPgZlWtAH4E7BaRhd42KyWPAotUtRLY\nBOwSkbUet2mqfgn8x+tGTJEC31LVclUtU9Up/+ZFJFdEioBcXLgqFJHcNM8d9Uv9Av/UMD/VL/Bf\nDZuV9cvTsBVzldBDqhpS1f1A5CqhrKKqL6nqn4DzXrdlqlR1QFV3qmpH+PErwHFgnbctmzxVPaSq\ng+GHkRsML/mIf5LRRGQbEAT+4XVbpsF0X8H3EDAA/AC4L3z8w/Bz0z531E/1C/xTw/xUv8BfNWw2\n1y+ve7bsKqEsICI1wDKmYdjFCyLyKxHpBw4DJ4G/eNyklIhIOfAI8F0y6KbIU/CoiHSJyD9FJOld\nJSZDVR9R1RxVzY3ZdoafC6rqPapaqqqNqto69eZb/coG2V6/wB81bLbXL6/Dll0llOFEJA/XE/CU\nqr7vdXtSoarbcd+1m3DDSZe8bVHKdgK/VdWTXjdkGnwfWIxbD+u3wJ9FZJG3TZo0q18Zzg/1C3xT\nw2Z1/fI6bNlVQhlMRARXqC4B3/a4OVOizr+BBuCbXrdnssJ3Y/gs8Auv2zIdVPV1Ve1X1SFVfRrY\nD9zpdbsmyepXBvNT/YLsrmFWv2Zg6YePccUrzBtPPAHMBe5U1RGvGzNN8sjO+Q7rgauBD8N/REqB\nXBFZpaqf9LZp00LJvqEFq1+ZzY/1C7Kzhs36+uVpz5afVpif6Eoor9uVKhF5DLgG2KSql71uTypE\nZJ6ItIjIHBHJEZHbgW3A371uWwoexxXYNbg/6I8BLwO3edmoVIhIhYjcFvmNiMh9wM3AX71u22T4\nqX6Bv2qYH+oX+KqGzfr65fUwIvhnhfmPuhIqq4Qvkf467odxJryOyMUsXENIcd3tHbgrrH4CfCd8\ndVJWUdVBVe2KbLghrEFVzcYrx/KBXbjf/FlcDdisqkc9bVVq/FK/wCc1zEf1C3xSw6x+gajazeqN\nMcYYY9IlE3q2jDHGGGN8y8KWMcYYY0waWdgyxhhjjEkjC1vGGGOMMWlkYcsYY4wxJo0sbBljjDHG\npJGFLWOMMcaYNLKwZYwxxhiTRha2jDHGGGPS6P9tdWs8gzUXCQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10b54ab10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(1, 2, figsize=(10,4))\n", " \n", "axes[0].plot(x, x**2, x, np.exp(x))\n", "axes[0].set_title(\"Normal scale\")\n", "\n", "axes[1].plot(x, x**2, x, np.exp(x))\n", "axes[1].set_yscale(\"log\")\n", "axes[1].set_title(\"Logarithmic scale (y)\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Placement of ticks and custom tick labels" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can explicitly determine where we want the axis ticks with `set_xticks` and `set_yticks`, which both take a list of values for where on the axis the ticks are to be placed. We can also use the `set_xticklabels` and `set_yticklabels` methods to provide a list of custom text labels for each tick location:" ] }, { "cell_type": "code", "execution_count": 95, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAEOCAYAAADmEUGxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VNX9//HXyR4StiTsuyK4FWgBFVQMVAVcEKwLKkuK\nbV2q/X2l2m8riFCQLi791qUuVQuCaN2gUmRxIYrKJrKKsmmAsCcQyMJMkpnz+2MmIYQsM9luJnk/\nH4/7uDNn7rn3EwfDm3vuPddYaxERERGR0BLmdAEiIiIiEjyFOBEREZEQpBAnIiIiEoIU4kRERERC\nkEKciIiISAhSiBMREREJQQpxIiIiIiGo1kOcMaZHbR9DREREpLEJKsQZY1obY/5sjPlNOZ/3MMYU\nGmO8RQswqtQ2txhjXjDGPGiMecsYc3WQNVSrv4iIiEhDEBHohsaYYcDtwBhgajmb/Ra4H8j1v/cC\n80vs405gCtDTWusyxnQAvjHGXGOt/TKAGqrVX0RERKShCDjEWWuXGGO24wtxZzDGtAMSrbXPl/N5\nPPA48Jy11uXf5z5jzGLgGaBvRcevbn8RERGRhiTYa+I8FXw2EbjRGLPHGPOyMaZPqc+HAc2B1aXa\nVwF9jDHnV3Ls6vYXERERaTBq8saGDcBfgH3Az4E1/uHPIkWhbk+pfrsBA/SvZP/V7S8iIiLSYAQ8\nnFoZa+3rRa+NMYOAOcALxpgvrLXfAUn+j7NLdc3xr9tUcojq9hcRERFpMGplihFr7WfAUHw3Ntzq\nb3YXfVxqc69/nV/JbqvbX0RERKTBqLEzcaVZa78zxqwA2vqbDvrX8aU2LXq/r5JdVqm/MaZ06BMR\nERGpt6y1JpDtai3E+R0FDvlff43v2rVOwJYS23TGd3ZtQyX7qnJ/a5XjQtHUqVOZOnWq02VIFen7\nC236/kKXvrvQZkxA+Q2oxSc2GGMigJ8A//E3fQRkAheX2nQAsNZau6OSXVa3v4iIiEiDEWyIiymr\nnzHmCmPMe8aYa0o0Pwq8bq1dD2Ct9QDTgXHGmGh/v3bAdcC0Evv6vTFmkzEmseQxAu0vIiIi0hgE\n88SGIcC9+IYubzbGfAssstbmAFlAF+BdY8wHwA4g1Vq7pOQ+rLVPG2NcwEvGmC34Jugda61dXGKz\nBKA1pwJjsP2lgUhOTna6BKkGfX+hTd9f6NJ313iYhn69mDHGNvSfUURERBoGY0zANzbU2jVxIiIi\nIlJ7FOJEREREQpBCnIiIiEgIUogTERERCUEKcSIiIiIhSCFOREREJAQpxImIiIiEIIU4ERERkRCk\nECciIiISghTiREREREKQQpyIiIhICFKIExEREQlBCnEiIiIiIUghTkRERCQEKcSJiIiIhCCFOBER\nEZEQpBAnIiIiEoIU4kRERERCkEKciIiISAhSiBMREREJQQpxIiIiIiFIIU5EREQkBCnEiYiIiIQg\nhTgRERGREKQQJyIiIhKCFOJEREREQpBCnIiIiEgIUogTERERCUEKcSIiIiIhSCFOREREpB5YunNp\nUNsrxImIiIg47OWvX+baedcG1UchTkRERMQh1lr++Okf+eXCX+KxnqD6KsSJiIiIOKDQW8hd/72L\nR1MfJcyE8fy1zwfV31hra6m0+sEYYxv6zygiIiKhJa8gj9HvjGbh9oXERMTwxs/eYOS5IzHGYK01\ngewjoraLFBEREZFTMvIyuP6N61mVvoqWMS1ZeNtCLu18adD7UYgTERERqSNpWWkMnTuU7Znb6dy8\nM0vuWMJ5rc6r0r4U4kRERETqwPoD67lm3jUczDlIrza9WHzHYto3bV/l/enGBhEREZFa9tH3H3HF\nrCs4mHOQwV0H81nKZ9UKcKAQJyIiIlKrXt/0OsNfH052fjajLxzN4jsW0zymebX3qxAnIiIiUgus\ntTz+xeOMmT+GQm8hEy+ZyOs3vk50RHSN7F/XxImIiIjUMK/1MnHpRP6++u8APHn1k0wcMLFGj6EQ\nJyIiIlKDXIUuxs0fx9tb3yYyLJLXRr3G6AtH1/hxFOJEREREakiWK4uRb47k092f0iy6GfNvnc+Q\nbkNq5VgKcSIiIiI1IP1EOsNfH86Ww1toF9+OxXcspnfb3rV2PIU4ERERkWr65vA3DHt9GOkn0jk3\n6VyW3LGELi261OoxFeJEREREqmHF7hWMeHMEWa4sBnYayMLbFpIQm1Drx9UUIyIiIiJV9O7Wd7lq\nzlW+a+HOHclHYz+qkwAHCnEiIiIiVfLsmme5+e2bcXvc3NPvHt65+R1iI2Pr7PgKcSIiIiJBsNby\n8McPc//i+7FYZgyewXPXPEd4WHid1qFr4kREREQCVOAp4BcLf8FrG18j3ITz8oiXSemT4kgtCnEi\nIiIiAch2Z3PT2zexbNcymkQ24Z2b32H4OcMdq0chTkRERKQSh3IOce28a1l3YB2tmrRi0e2L6N+h\nv6M1KcSJiIiIVGBH5g6Gzh3KD1k/cHbLs1kyZgndE7o7XZZCnIiIiEh51uxbw7XzriUjL4N+7fux\n6PZFtI5r7XRZgO5OFRERESnTou2LGDx7MBl5GQzrPozl45fXmwAHCnEiIiIiZ3jl61e44c0byCvI\nI6VPCu+Pfp/4qHinyzqNQpyIiIiIn7WW6Z9O5xcLf4HHeph0+SReHfEqkeGRTpd2Bl0TJyIiIgIU\negu574P7eHHdixgMz17zLPf2v9fpssqlECciIiKNXl5BHre9exvvb3ufmIgY5t04j1HnjXK6rAop\nxImIiEijlpmXyfVvXM/K9JW0jGnJwtsWcmnnS50uq1IKcSIiItJopWWlMWzuMLZlbqNTs04sGbOE\n81ud73RZAVGIExERkUZpw8ENDH99OAdzDtKrTS8+uP0DOjTr4HRZAQsqxBljWgMTgf3W2qfL+PwW\nYAiwE7gIeNlauyzYbSqpoVr9RURERD7+/mNG/XsU2fnZJHdNZsGtC2ge09zpsoIScIgzxgwDbgfG\nAFPL+PxOYArQ01rrMsZ0AL4xxlxjrf0y0G0qqaFa/UVERETmbZ5HyoIUCrwF3HrBrcweOZvoiGin\nywpawPPEWWuXUEZ4AzDGxAOPA69Za13+7fcBi4FnAt2mItXtLyIiIo2btZYnvnyCO967gwJvAQ9c\n8gDzfjYvJAMcBD/Zr6ec9mFAc2B1qfZVQB9jzPkBblOR6vYXERGRRsprvUxcOpGHPnwIgCeueoKn\nhj5FmAnd5x7U1I0NffzrPaXad/vX/YFzKtjG+LfZWsVjBNJfREREGiF3oZtxC8bx1jdvERkWyeyR\ns7ntR7c5XVa11VSIS/Kvs0u15+ALWG0q2Qb/NlU9RiD9RUREpJHJcmUx6t+jSE1LpWlUUxaMXsCQ\nbkOcLqtG1FSIc/vXtlS717/OD3Cb6h6jTFOnTi1+nZycTHJyciWHEhERkVC378Q+hr8+nM2HN9Mu\nvh2L71hM77a9nS7rNKmpqaSmplapb02FuIP+dXyp9nh8oWsfEFvBNvi3qeoxKuxfMsSJiIhIw7f1\nyFaGzR3G3hN76ZnYkyVjltC1RVenyzpD6ZNL06ZNC7hvTV3N9zW+YdNOpdo7+9cbKtnG+rep6jEC\n6S8iIiKNwOd7PufSVy9l74m9DOw0kC8mfFEvA1x11VSI+wjIBC4u1T4AWGut3RHgNtU9hoiIiDRi\n7337Hle+diVZrixu6HkDH439iMQmiU6XVSuCDXExZfWz1nqA6cA4Y0w0gDGmHXAdMC3QbfxtvzfG\nbDLGJAZ7DBEREWm8/rH2H9z01k24PW7u6nsX79zyDrGRsZV3DFHBPLFhCHAvvqHLm40x3wKLrLU5\nANbap40xLuAlY8wWoC8w1lq7uGgfgWwDJACtORUYCbK/iIiINCLWWiZ9Mok/ff4nAKYPns6kyydh\njHG4stplrC19s2fDYoyxDf1nFBERaawKPAX8cuEvmb1xNuEmnJeuf4kJP57gdFlVZozBWhtQ+qyp\nu1NFRERE6lROfg43vXUTS3ctpUlkE96++W2uOecap8uqMwpxIiIiEnIO5Rzi2nnXsu7AOpKaJLHo\n9kVc1OEip8uqUwpxIiIiElJ2Ht3J0LlD+f7Y95zV8iyWjllK94TuTpdV5xTiREREJGSs2beG6+Zd\nx5G8I/Rt15dFty+iTXzjfPJmTc0TJyIiIlKrPtjxAYNnD+ZI3hGGnj2U1JTURhvgQCFOREREQsC/\n1v+LEW+MIK8gj3G9x7HwtoXER5V+EmfjohAnIiIi9Za1lhmfzWDC+xPwWA8PX/Yws26YRWR4pNOl\nOU7XxImIiEi95PF6uO+D+3hh3QsYDM8Mf4ZfX/Rrp8uqNxTiREREpN45WXCS2969jf9s+w/R4dHM\n+9k8bjzvRqfLqlcU4kRERKReyczLZMSbI/hy75e0iGnBwtsWclnny5wuq95RiBMREZF6Y9OhTdzy\n9i1sy9xGp2adWDJmCee3Ot/psuol3dggIiIijvN4PTz+xeP0/2d/tmVu48LWF/LlnV8qwFVAZ+JE\nRETEUWlZaYxfMJ7Pdn8GwN197+aJq58gLirO4crqN4U4ERERcYS1ljmb5nDfB/eRnZ9Nm7g2vDLi\nFa7tca3TpYUEhTgRERGpcxl5Gdz937t599t3ARh17ihevO5FWsW1criy0KEQJyIiInVq8Y7FTHh/\nAgdzDtI0qilPD3+a8b3HY4xxurSQohAnIiIidSI3P5cHlz3IC+teAODyzpcze+RsurXs5nBloUkh\nTkRERGrd6vTVjJ0/lh1HdxAZFsmMITP47YDfEh4W7nRpIUshTkRERGpNgaeAGZ/N4LEVj+GxHi5s\nfSFzR82ld9veTpcW8hTiREREpFZsy9jG2PljWbt/LQbDgwMeZPqQ6cRExDhdWoOgECciIiI1ylrL\n8189z4PLHuRk4Uk6N+/M7JGzSe6a7HRpDYpCnIiIiNSY/dn7mfCfCSzdtRSAsb3G8szwZ2ge09zh\nyhoehTgRERGpEe9sfYe7/nsXR08eJSE2gReufYGbL7jZ6bIaLIU4ERERqZbjruPcv/h+5myaA8DQ\ns4fy6g2v0r5pe4cra9gU4kRERKTKUtNSGb9gPHuO7yE2IpYnrn6Ce/rdo4l764BCnIiIiATNVehi\n8ieTeWrlU1gs/dv3Z86oOfRM6ul0aY2GQpyIiIgEZdOhTYx5bwybD28m3IQzedBkJl0+icjwSKdL\na1QU4kRERCQgHq+Hp1Y+xeTlk8n35HNOwjnMGTWHizte7HRpjZJCnIiIiFQqLSuN8QvG89nuzwC4\np989PH7V48RFxTlcWeOlECciIiLlstYye+NsfrP4N2TnZ9M2vi2vjniV4ecMd7q0Rk8hTkRERMp0\nJPcId/33LuZ/Nx+AG8+7kReve5GkJkkOVyagECciIiJlWLR9EXe+fyeHcg/RNKopz17zLGN7jdXU\nIfWIQpyIiIgUy83P5cFlD/LCuhcAGNRlELNHzqZri67OFiZnUIgTERERAFanr2bM/DHsPLqTqPAo\nHhvyGA9c8gDhYeFOlyZlUIgTERFp5Ao8Bcz4bAaPrXgMj/Xwo9Y/Yu6Nc+nVppfTpUkFFOJEREQa\nsW0Z2xgzfwxf7f8Kg+GhgQ8xffB0oiOinS5NKqEQJyIi0ghZa/nH2n/w0IcPcbLwJJ2bd+a1ka9x\nRdcrnC5NAqQQJyIi0sjsz97PhP9MYOmupQCM7z2evw/7O81jmjtcmQRDIU5ERKQRefubt7l70d0c\nPXmUxNhEXrzuRX52/s+cLkuqQCFORESkEchyZXH/4vuZu2kuAMO7D+eVEa/Qrmk7hyuTqlKIExER\naeBS01IZN38ce0/sJTYilievfpK7+92tiXtDnEKciIhIA+UqdDH5k8k8tfIpLJb+7fsz98a59Ejs\n4XRpUgMU4kRERBqgDQc3MHb+WLYc3kK4CeeRQY/w8OUPExke6XRpUkMU4kRERBoQj9fDE18+wSPL\nH6HAW8A5Cecw98a5XNThIqdLkxqmECciItJA/HDsB8YtGMfnez4H4N5+9/LXq/5KXFScw5VJbVCI\nExERCXHWWmZtmMVvlvyGnPwc2sa35V83/Ith3Yc5XZrUIoU4ERGREHYk9wh3/fcu5n83H4Cfnfcz\nXrzuRRKbJDpcmdQ2hTgREZEQtWj7Iu58/04O5R6iWXQznh3+LGN6jdHUIY2EQpyIiEiIycnP4cFl\nD/LiuhcBuKLLFcweOZsuLbo4XJnUJYU4ERGRELIqfRVj549l59GdRIVHMXPITB4Y8ABhJszp0qSO\nKcSJiIiEgAJPAdM/m85jKx7Da730atOLuaPm8qM2P3K6NHGIQpyIiEg9913Gd4x5bwzrDqzDYPjd\nwN/xx8F/JDoi2unSxEEKcSIiIvWUtZbn1j7HQx8+hKvQRZfmXXht1GsM6jLI6dKkHlCIExERqYc2\nH9rMb5f9lg+//xCAlD4p/H3Y32kW3czhyqS+UIgTERGpR3Ye3cmjqY/yxuY3sFgSYxN56fqXuPG8\nG50uTeoZhTgREZF6IP1EOtM/nc4r61/BYz1EhUdxd9+7mTRoEq3jWjtdntRDCnEiIiIOOpJ7hD9/\n/meeW/scbo+bMBPGhD4TmHLFFM37JhVSiBMREXHAcddxnlz5JH9b9Tdy8nMAuPWCW5mWPI2eST0d\nrk5CgUKciIhIHcoryOPZNc/y58//zDHXMQCuPedaZgyZQZ+2fRyuTkKJQpyIiEgdyPfk8891/2TG\nihkczDkI+B6XNfOnMxnYaaDD1UkoqvUQZ4zpYa3dXtvHERERqY88Xg9zN81l6qdTSctKA6Bf+37M\nHDKTK8+6Ug+rlyqr0RBnjOkBbAVKPsDtD8BfSmxzCzAE2AlcBLxsrV0WxDGq1V9ERKQueK2X9759\njynLp/BtxrcAnN/qfGYMnsHIc0cqvEm1GWttze3MmBeBDUCuv8kLzLfW5vo/vxOYAvS01rqMMR2A\nb4BrrLVfBrD/oPsbY2xN/owiIiIVsdaydNdSJn0yia8PfA1AtxbdmJY8jdt/dDvhYeEOVyj1mTEG\na21ACb/GQpwxph3wjLX2pnI+jwf2AM9Zax8p0f4G0MNa27eS/Vepv0KciIjUlRW7VzDpk0ms2LMC\ngHbx7ZhyxRQm/HgCUeFRDlcnoSCYEFeTw6kTgRuNMXuAZcCz1toNJT4fBjQHVpfqtwq4xRhzvrV2\nawX7r25/ERGRWvH1ga+Z9MkkluxcAkBibCK/v+z3/Lr/r4mNjHW4OmmoajLEbcB37Vsy8HNgnDHm\nHmvtK/7Pi+6b3lOq327AAP3xXU9Xnur2FxERqVHfHvmWKalTeGfrOwA0jWrKbwf8lgcGPKBnnEqt\nq7EQZ619vei1MWYQMAd4wRjzhbX2OyDJ/3F2qa45/nWbSg5R3f4iIiI1Ii0rjWmfTuO1ja/htV5i\nImK4r/99/O9l/0tSk6TKdyBSA2plihFr7WfGmKHARuBWYBrgLvq41OZe/zq/kt1Wuf/UqVOLXycn\nJ5OcnFzJoURERM50IPsAj614jJfWvUSBt4CIsAh+9ZNfMXnQZDo06+B0eRKCUlNTSU1NrVLfWpsn\nzlr7nTFmBdDW33TQv44vtWnR+32V7LLK/UuGOBERkWAdPXmUv37xV55e/TQnC09iMIztNZapyVM5\nq+VZTpcnIaz0yaVp06YF3Le2J/s9Chzyv/4a37VrnYAtJbbpjO/s2gYqVt3+IiIiQcl2Z/N/q/6P\nJ1Y+wQn3CQBGnTuK6YOnc0HrCxyuThq7WgtxxpgI4CfAn/xNHwGZwMXA4hKbDgDWWmt3VLLL6vYX\nEREJiKvQxfNrn2fm5zPJyMsA4Oqzr2bG4Bn079Df4epEfMIq36RyxpgrjDHvGWOuKdH8KPC6tXY9\ngLXWA0zHd9dqtL9fO+A6fNfMFe3r98aYTcaYxJLHCLS/iIhIVRV4Cnhp3Ut0f7o7E5dNJCMvg4Gd\nBrJ8/HKWjlmqACf1Sk2dicsCugDvGmM+AHYAqdbaJSU3stY+bYxxAS8ZY7YAfYGx1tqSZ9YSgNZA\nTOmDBNhfREQkKF7r5c0tbzJl+RR2HdsFQO82vZn505kM7z5cj8iSeqlGH7tVH+mJDSIiUh5rLQu3\nL2TyJ5PZfHgzAD0SezB98HRuOv8mwkyNDFiJBMypJzaIiIiEjI+//5iHP3mYNfvWANCpWSemJk9l\nXO9xRITpr0ep//SnVEREGpVV6auY9MkkPvnhEwBax7Vm8uWT+VXfXxEdEe1wdSKBU4gTEZFGYdOh\nTUz+ZDILty8EoEVMC3438Hf85uLfEBcV53B1IsFTiBMRkQZtR+YOHk19lDe3vInFEhcZx/9c8j88\nOPBBWsS0cLo8kSpTiBMRkQZp7/G9TP9sOq+ufxWP9RAVHsU9/e7hD5f9gTbxety2hD6FOBERaVAO\n5x7mTyv+xPNfPY/b4ybchHPnj+9kyhVT6Ny8s9PlidQYhTgREWkQslxZPPnlk/xt1d/ILcgFYPSF\no5mWPI0eiT0crk6k5inEiYhISMvNz+WZNc/w1y/+yjHXMQCu63Ed0wdPp0/bPg5XJ1J7FOJERCQk\nuQvd/PPrfzLjsxkcyj0EQHLXZGYOmcmATgMcrk6k9inEiYhISCn0FjJn4xymfjqVPcf3ANC/fX9m\n/nQmP+32Uz0iSxoNhTgREQkJXuvl3a3v8sjyR9iWuQ2AC1pdwIwhM7ih5w0Kb9LoKMSJiEi95vF6\nWLxzMVOWT2H9wfUAnNXyLP6Y/EdGXzia8LBwhysUcYZCnIiI1EvbM7cze8NsXtv0Gukn0gFo37Q9\nUwZNYcKPJxAZHulwhSLOUogTEZF6I8uVxVvfvMWsDbNYmb6yuP2slmdxb797ubf/vcRGxjpYoUj9\noRAnIiKO8ng9fPzDx8zaMIv5383HVegCID4qnlvOv4WUPilc1vkyXfMmUopCnIiIOOK7jO+YvWE2\nczbNYV/2vuL2Id2GkNI7hRvPu1EPphepgEKciIjUmSxXFv/e8m9mbZzFqvRVxe1ntzyb8b3HM673\nOLq06OJghSKhQyFORERqlcfr4aPvP2LWxlnM/3Y+bo8b8A2X3nrBraT0SeHSTpdquFQkSApxIiJS\nK7498i2zN/qGS/dn7wfAYPhpt5+S0ieFUeeO0nCpSDUoxImISI05dvIY//7m38zaMIvV+1YXt5/d\n8mxS+qQwttdYDZeK1BCFOBERqRaP18OH33/IrA2zWPDdguLh0qZRTYuHSwd2GqjhUpEaphAnIiJV\nsvXI1uK7Sw/kHAB8w6VXnnUlKb1TGHXeKJpENnG4SpGGSyFOREQCduzkMd7c8iazNs5izb41xe3n\nJJxTPFzaqXknBysUaTwU4kREpEKF3kKW7VrG7I2zWfDdAvI9+QA0i25WPFw6oOMADZeK1DGFOBER\nKdM3h78pvrv0YM5BwDdcetVZV5HSJ4WR547UcKmIgxTiRESk2NGTR33DpRtmsXb/2uL2Hok9GN97\nvIZLReoRhTgRkUau0FvI0p1LmbVxFu9ve/+04dLRF4wmpU8Kl3S8RMOlIvWMQpyISCO15fAWZm+Y\nzdzNc08bLr367KtJ6e0bLo2NjHW4ShEpj0KciEgjkpmXWXx36Vf7vypu75nYk5Q+KYzpNYaOzTo6\nWKGIBEohTkSkgSv0FrJk5xJmbZjFwu0Li4dLm0c3Z/SFvuHSiztcrOFSEQcUFsK+fZCW5luCoRAn\nItJAbT60mdkbZzN301wO5R4CIMyEMfTsoaT0SeGGnjdouFSklnk8sH+/L6D98MOpsFb0fu9e3zZV\noRAnItKAZOZl8saWN5i1YRbrDqwrbu+Z2JOf9/k5Y3qNoUOzDg5WKNKweL1w4MCZAa0opO3Z4zvb\nVpH27aFrV98yb17gxzbW2qrWHRKMMbah/4wi0rgVeAp8w6UbZ7Fw20IKvAWAb7j0tgtvI6VPChd1\nuEjDpSJV4PXCoUNln0VLS/OFtPz8ivfRtu2pkNat26nXXbtC584QE3NqW2MM1tqA/mfVmTgRkRC1\n6dCm4rtLD+ceBnzDpcO6DyOldwo3nHsDMRExlexFpHGz1hfSyjqLlpYGu3eD213xPlq3Lj+kdekC\nsbV01YJCnIhICMnIy+CNzW8wa+Msvj7wdXH7uUnnFg+Xtm/a3sEKReoXa+HIkbIDWtHiclW8j6Sk\nikNaXFwt/gAVUIgTEanHslxZrNi9gtS0VFJ3p7L+wHosvktEWsS0KB4u7d++v4ZLpVGyFjIzKw5p\neXkV7yMhofyQ1rUrxMfXXv3VoRAnIlKPHHcdZ8Uef2hLS2X9wfV4rbf488iwSK4860pS+qQwoucI\nDZdKg2ctHDtWfkBLS4OcnIr30aJFxSGtWbPaq782KcSJiDjouOs4n+/5vPhM29cHvj4jtA3sNJDk\nLskkd01mQKcBeui8NCj5+b4pONLTfdNtFK137z4V2rKzK95H06anwllZIa1Fi9r+KZyhECciUodO\nuE+cCm1pqaw7sO600BYRFsGAjgNI7uoLbQM7DVRok5BVXkAruT50yHe2rSJxceWHtG7dfCGtMV5N\noBAnIlKLst3Zp51pW7d/HR57ambPiLAILul4SfGZtoGdBhIX5dBV0iJBqKmAFhbmmyetY0fo1Mm3\n7tjRd8NAUUhLSGicIa0yCnEiIjUoJz/ntDNtX+3/6rTQFm7CuaTjJQzuOrg4tMVH1dOrpqXRqs2A\nVjKoderkm0MtMrJufq6GRiFORKQacvJz+GLPF8Vn2tbuW3tGaLu4w8XFoe3SzpcqtImj6iKgFa3b\ntYMIJY1ao/+0IiJByM3P5cu9X7I8bTmpaams3b+WQu+pZ+qEm3Au6nDRqdDW6VKaRjd1sGJpTGo6\noJU+a6aAVr/oP7+ISAXyCvJ8oe2H5aTuTmXNvjWnhbYwE0b/9v1J7prM4K6DubTzpTSLDtH5CqRe\nq62AVlZQU0ALDfqKRERKyCvIY+XelcVn2tbsW1P8LFLwhbZ+7fuR3CWZwd0Gc1nnyxTapFoKC33h\n68ABOHjQty75Oj29+gGt5LptWwW0hkJfo4g0aicLTrIyfWXxmbbV6avPCG192/UtPtN2WefLaB7T\n3MGKJVT0xxJAAAANU0lEQVTk5JQfzEq+zsioPJyBL6B16FD+8KYCWuOjr1pEGpWTBSdZlb6q+Ezb\n6n2ryffkF39uMPyk3U+Kp/y4vMvltIhpoDOFStC8Xt8jnioKZUWvK3uKQBFjoE0b3xBmu3a+IFby\ndYcOCmhSNv1xEJEGzVXoYlX6KlLTUlmetpxV6avOCG0/bvvj4sl1L+98OS1jWzpYsTjB7T4VwsoK\nZkXrQ4d8w5+BiIkpO5SVft2qlcKZVI3+2IhIg+IqdLE6ffVpoc3tcRd/bjD0adun+EzboC6DFNoa\nKGvh+PHKhzMPHPA9mzNQCQmVB7O2baF5c01QK7VLIU5EQpq70M3qfadC28q9K08LbQC92/QuPtM2\nqMsgEmITHKpWakJhIRw5UnEwK1q7XIHtMyLi1JBmRQGtbVuIjq7dn08kUApxIhIycvJz2J65nW0Z\n2/g241s+3/M5K9NX4io8/W/qXm16nXamLbFJokMVSyCshawsXzDLyPCty1qK7uA8csR3bVog4uMr\nPltW1JaY6LtxQCSUKMSJSL3i8XrYc3wP2zK3sS1jm2/tf70ve1+ZfS5sfWHx5LqDugwiqUlSHVct\nJXk8vov/ywtjpYNaRkbg15kVadWq4uHMotfxejiGNGAKcSLiiCxX1qmQViKs7cjcccZwaJGo8Ci6\nJ3SnZ2JPeiT2oF/7flzR5QpaxbWq4+obF7e78iBWcjl2LLApM0pq2tQXzEouSUmnvy8a7mzdWs/a\nFAGFOBGpRQWeAn7I+qHMsHY493C5/drFt6NnUk96JvoX/+suLboQEaZfW9VhrW/qi0DCWNFn2dnB\nHcMY3/BkWUGsrJCWlOS7k1NEgqPfhiJSLdZajuQdOS2obT/qu25t17Fdpz2iqqTYiFh6JPY4I6z1\nSOyhJyAEwev1nfkKJIwVLe6yT3SWKyKi/DBWVntCgqbMEKkL+t9MRALiKnSx8+jOM65T25a5jSxX\nVrn9OjfvfMYZtZ5JPenYrCNhRleSF/F6fdNhHD3qC2UVLSVDWWam7xq0YMTGVh7ESi6aKkOkflKI\nE5Fi1lr2Z+8v86aC3cd347Vl3xLYNKppmcOf5ySeQ5PIJnX8UzgnmCBWejl+PPjryIo0b155ECv5\neVxczf7cIuIMhTiRRig3P9c3VUepsLY9czs5+WU/KyjMhHF2y7PLDGtt49tiGsipGqeCGECzZtCy\nZdlLQsKp10XXmxWFs6iomvv5RSR0KMSJNFBe6/VN1VHGTQXpJ9LL7ZcQm3D60Kf/9dktzyY6IjRm\nOa1vQaxkACtvad5c15GJSHD0K0MkhHmtl2Mnj7Hr2K4zhj93HN1xxiS4RSLDIn1TdZRxVs3piXEL\nCnx3Q5444VsXLWW9z8qqmyAWSAhTEBORuqZfNyL1hLWW7PxsMvIyAl4yT2aWe50aQNv4tmXeVNC1\nRdcam6rDWt+jjSoKW+W9L+uzYO+cLE9REAs0gCmIiUioqfNfVcaYW4AhwE7gIuBla+2yuuovUldO\nFpwsN3wdyTtSZnuBtyDo4zSLbkbXFl3PCGs9EnvQPKZ5mX2K5gqrLFAFGr6CnW2/IuHhvolfi5Zm\nzcp+3bQptGhRdhBr0cK3HxGRhszY6ow5BHswY+4EpgA9rbUuY0wH4BvgGmvtl7XR3xhj6/JnlIYp\n35NPZl5m+WfFTp7ZlleQF/Rx4iLjSGqSdNrSMjqJZhFJNA1PIi4siTiSiPH6loj8RArckUGHr5yc\n6g03lhYdXX7wqiyIlX4fG6vpLESk8TLGYK0N6LdgnYU4Y0w8sAd4zlr7SIn2N4Ae1tq+tdFfIU5K\n83g9HD15NKhAdsJ9IujjRBBFfFgrmpBErE0i2pNEVGESEflJhLuTMCeTIC8Jb04SnuwkCo4n4s6N\nJS8PTp70LXl5NRu2SmrSpHphq+R73R0pIlIzgglxdTmcOgxoDqwu1b4KuMUYc761dmst9pcQk5qa\nSnJycvF7r/XiLnTj9rhxF7pxFbqKX+fmu8h1uzl8/BgHT2RwMDuDI7kZZORmkOnK4Jg7g+P5GRwv\nzCDPewxLkMnIG14cumyub13ZUpgfRxaG8qfBDUxUlC9wxcaeuS5agj0LFh9f+8ONpb8/CS36/kKX\nvrvGoy5DXB//ek+p9t2AAfoDFYWw6vaXAHk8kJ/vu0vQ7bbkuPLJdbnJcbnIcbnJc7vJdbvIc7vJ\ny3eTl+/iZL6bkwUuTha4cRX4Apar0B+2PC7yPb7wle91UeB1k+91U+B1UWDdFOKi0LopxPfaY9x4\njRv354cJGxSNN8yNN8wF4cFfL1Yma+BkYkBBrHhxN8PaU08XKDNYJUBsh7LDVlXXsbGhe22X/iIJ\nbfr+Qpe+u8ajLkNckn9d+lHKRTOLtqmt/q8uXYPXa/FYi9d7avF4Ld6ittJrr8Xj9eK1p7azZWxz\nWj//a2stHustbrdlbYP/s5Lt1uL1en3b21N9bYnX3lKvrS2xL+stbiv0FlBg3RTY04OSBzce4wtK\nHuMLR17jxoa5seEubLgbIlwQ7oYI/1JTDBDuXwIRAd7oUl93YbR/iQHP6a+NN5rwghZE5icRVdiK\nGK9vGDPOJBEf5ruurFlEEi1iWhIXG06TeIht1biClYiINBx1GeKK0kDpcayi+RHya6v/nasurrQ4\nx4TCoyM9kRhvNMYTQ5g32rfYGMJtNOE2hnCiiSCaCGKIMNFEmmgiTAxRJpqosBgiw6KJCo8mOjyG\n6PBoosOjiYmMISYimpiIGGIio4mNjCY2KoYmUdH+JYaFu55jwpA/EB8TQ1x0NHExUURHGyIjfWfC\noqIofq1QJSIijU1d3tjwB2AG0Ntau6VE+whgAXCrtfbtmu5vjNFdDSIiIhIy6uONDV/jG1DrBGwp\n0d4Z39m1DbXRP9D/ECIiIiKhpC4H8z4CMoHSY5sDgLXW2h213F9ERESkwaizEGet9QDTgXHGmGgA\nY0w74DpgWtF2xpjfG2M2GWMSq9JfREREpDGo08duWWufNsa4gJeMMVuAvsBYa+3iEpslAK2BmCr2\nFxEREWnw6vSxWyIiIiJSM+r0TJyINA7+Sx7uBrLwXbcaBtxtrfVW2FFEqsUY0wr4A9AFSAY+B8ZY\na0vPsSoNgM7EiUiNMsZEAouAX1prd/v/UjkE9LHWbnK2OpGGzRjzF+ARa22+MeZq4E1ggLV2m8Ol\nSS0IhalmRSS0TATWW2t3+99fCKQD250rSQJhjHnbGLPVGBPlf3+OMcZtjHnC6dokYIOAbgDW2mXW\n2gQFuIZLIU5Eaox/GHUiMM//vhXwP8D11lqXk7VJxfxnbeYBB4Af+5v/AuwCJjlVlwTtWWCVMWa8\n04VI7dM1cVKvGGNigUfwXUsVAXQHfgVsAz611k5wsDyp3A1AIXDAGLPM37bZWrvRwZokMOnW2q3G\nmI5ArDHmcuB64DJrbQ0+RFlqk7X2dWPMT4BXjTFD8V0Pp2tRQ4D//70HgKPAPmAk8Bdr7cry+uhM\nnNQbxpg2wHrgoLX2r9bamfie0PFPoD3wqJP1SUBGAB9aaw9ba68GxgIPGGNucbguqYS1dqv/5XHg\nBPAE8JS1drVzVUkwjDFXGmM+BD4ELgWGobOoIcEYkwCsBXZZax+z1s4CuuL7h3G5dCZO6pN/ARnW\n2qdLtG0F7gf+bq3d60xZEghjjAGGAv+vRHOsf9297iuSKooFrgCa4jsrLiHAGDMS3+/QftbaXf62\npfhCwHQna5OA9MU3R+7mEm0XWWvzK+qkECf1gjHmQnz/aryp1EdNgRxgZp0XJcHqB7TEdxagSF//\nesuZm0s9lQD8Ehhd2V8gUj/4n3D0L3z/2N1V4qNCINyZqiRIa4GNwLvGmI+BFtba4ZV1UoiT+mIw\nYIHUogZjTBPgWuD/rLVHHKpLAncVsKnUd3UHsBf4wJmSpAraA29Za9c4XYgE7FagGTCnVPulwPK6\nL0eC4b8W/HN8135fbq3NDbSvQpzUF/GAx1p7tETb74AkYLv/X5onrLUFjlQngRgKLC16Y4zpi+/C\n+JuttYWOVSUBM8aE45uior/TtUhQOgH5Jc/CGWOuBzoCT5fbS+qLm4DzgJuCCXCgGxuk/lgPhPun\npMAY0w+4Hfgvvhn/xynA1V/GmHjgEmCZ/30i8Bow2Vq7wMnaJCgpQFMNo4aczfh+fzYBMMYk4Qtv\nD+nO8JBQdPd3p6IGY8wA/3WOFdITG6TeMMY8hW9I4DPgAuBxfAHuFeA2a+3HDpYnFTDGjMA3x9hM\nfE9nuAyYZ639sMKOUm8YY8LwDeccstZe5nQ9Ejj/TUVPAYnAKnxnUt+x1i5ytDAJiP8M+HP4RjNW\n4Zur8SNrbaWXoSjEiUi1GWOeA7pZa69xuhapGmPMEOAjfNegTnS6HhGpnIZTRaQmXE2Jm1IkJLnx\nTTD6D6cLEZHA6EyciFSLMaY7vueiXmSt/crpekREGgudiROR6hoNpCnAiYjULZ2JExEREQlBOhMn\nIiIiEoIU4kRERERCkEKciIiISAhSiBMREREJQQpxIiIiIiFIIU5EREQkBCnEiYiIiIQghTgRERGR\nEPT/AT0NOs5Aq2cMAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10b3de690>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(10, 4))\n", "\n", "ax.plot(x, x**2, x, x**3, lw=2)\n", "\n", "ax.set_xticks([1, 2, 3, 4, 5])\n", "ax.set_xticklabels([r'$\\alpha$', r'$\\beta$', r'$\\gamma$', r'$\\delta$', r'$\\epsilon$'], fontsize=18)\n", "\n", "yticks = [0, 50, 100, 150]\n", "ax.set_yticks(yticks)\n", "ax.set_yticklabels([\"$%.1f$\" % y for y in yticks], fontsize=18); # use LaTeX formatted labels" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are a number of more advanced methods for controlling major and minor tick placement in matplotlib figures, such as automatic placement according to different policies. See http://matplotlib.org/api/ticker_api.html for details." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Scientific notation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With large numbers on axes, it is often better use scientific notation:" ] }, { "cell_type": "code", "execution_count": 96, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEUCAYAAADKnJaEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW9//HXh6yEhC0CAiJ7VARBtopICdRaW1ttsVRw\nAUVFK+qt2p/682rLVe9t7/1drVdBRFRcqHpFRXGrtIUoroRFQEBZDIsgi2whkI3k+/vjTGASskyW\nyZnJvJ+Px3nMzJlzznzOkLzz5Xu+5xxzziEiIk1bM78LEBGR8FPYi4jEAIW9iEgMUNiLiMQAhb2I\nSAxQ2IuIxACFvYhIDIiZsDezIWb2iZllmdlfzSzO75pERBpLzIQ9sBUY5ZzLBLYAl/hbjohI44n3\nu4DG4pzbFfSyCCj1qxYRkcYWSy17AMysK/Bj4C2/axERaSwxFfZmlgY8D0x0zpX4XY+ISGOJmbAP\nHJB9GZjqnNvodz2xxMy6mlmpmZ3bSJ830cyKKswbaWarzazIzBY2dk2Nycxmm9kCv+uQyGKxctVL\nM7sS+AuwOjBrhnNuro8lxQwzM6AdsLch/0dlZp2BbUCmc+7DoPlJQEvn3J6geWuBz4F/BY4AB8NR\nU12Y2d+Bbc65SbVc7wrgBedcswrz04BmzrmDDVimRLlYOkA7B5jjdx2xyHktit1h2LQBJ7RWnHOF\nwJ4Ks3sD/+6c2xE0Lxw1Naaq9v+QD7VIhIuZbhypHzM7z8w+MrPcwLTCzH4c9H67QPfBTjPLN7N1\nZnZ14L0TukzMrL2ZPWtmuwPbW2xmI4LeHxlY53wz+8DMDpvZGjO7MKisrYHHrMCy3wTWvdrMioO3\ng/ez/oKZlZjZhCpqqnIfqvhOZpvZ383sejPbbGYHzexNM2tXYbmJgdoLzWybmT1gZs3KtgH8CJgY\nqKfEzH4YeO9BM1sb2PetZjYj0GrHzEbiHX8iaL1nAq+frdiNY2a/N7NNgRo2mtm/VHg/x8z+zcwe\nMbO9ge/g4bI6pQlwzkXNBEwBsoEC4JlK3m8DzAPygBxgvN81N4UJiAP2Av8P6AH0xDtPYXjg/WRg\nHbAUGAV0DTyODbzfFSgBzg1afg3wCnB2YJv/F8gHTgssMxJveOwKvNFTPYFngANAq8AyAwLLXAK0\nB9ID8ycCRYHn8YH3SoEbA8+Tqqipyn2o4nuZHajnr0Af4AfAN8BzQctcBBwF7gR6AWOBfcC/Bd5v\nCXwAvITXrdQeiA+8dw9wLnBqoJa1wOzAewnATYF9KFsvLaiuBRV+bw4D1wa+x8mB7/qaoGVyAv/G\ndwaW+TXeEOVrqvvZ0BQ9k+8F1KpY+CVwMTCdysP+pcDUHBge+EU8w++6o30CWgdC5YdVvH8tXj94\nxyre7xoI27JgvRqvVd6swnL/BB4OPC8L+0uC3i8L7R8HXncOvP5hhe0cC/ugeaXA5dXUVO0+VLFf\ns4GdZeEcmHcnsD3o9YfASxXWuzUQvmWh/vfKfp4r+bxfAvlBr68ASqqoKzjstwJ/qrDMw8DGoNc5\nwBsVlnkX+KvfP3+aGmaKqP+imdkwM/tdhXmJZvaUmSU6595wzs3HaxlVXDcFGAPc65zLd859DLwJ\nXNUoxTdhzrkDwNPAAjN718zuMrOMoEUGAmudc9+FuMnBQEfgoJkdKpuA8/D61o99NLAyqI7deH90\nOtRjd6pS230o85Vz7mjQ6x2Ur+9MYHGFdT7A+59Ez+o2bGZjAl1Y2wPfz1+BRDM7OdTiAt0+p1RR\nQzczSw6a90WFZSrui0SxiAp7vC6aH5vZRIBAf+FfgRXOuaJq14QMoNg5tylo3kq8XzapJ+fcZLxA\nXIDX6v7SzK6v4+aa4XVJnAX0D5rOACpus7J/90j6ua1Yn8M7cFqTapcxs6F43VxZeC36s/G6oQAS\na1diyCrbl0j6rqUeIuofMtBCGgtca2YXA08Aa5xz00NYPRXIrTAvF0hr2Cpjl3NurXPuEefcz/Ba\n+pMDby0D+phZpxA3tRSvn/6Qc+6bCtPOWpRUFk4NcVG72u5DqNYAP6wwLxOvy6isYVLEiftwHrDH\nOfdH51y2884N6VJhmSI4NrS1Us4bmfNtFTXkOOcKQtsNiXYRFfYAzrkjeAfcngBaO+emhrhqHt7B\nrmCtAA1Dqycz62lmfzaz4WZ2qpkNA0bgBRl4x0m2APPN7Edm1s3MRpvZb6rY5F/x+ojfMbMfB0bG\nDDWzuwN/5I99dA2lfY/3736BmXUws9Z138ta70Oo/gRcGuj66h3Y3h+B/w7q/skBBplZDzNLN7N4\n4GugnZlNMrPuZjYB+G2FbecEHi8xs5PMrEU1NdxiZteZWS8zuwG4Afj3eu6bRJGIC/uAa4AlwGlm\n1j/EddYD8WYW3A/an+OBJHV3GK8v/SW8EJoLfATcAuCcyyfQtRNYZi0wDa9fusyx8eDOGwc/Eq+F\n/0xgm68BQ/AC94R1qtiOwxuR8hu8k6uWV7MPNW0rlH2oNefce8AkYALeCX0PBbZ7f9BiD+H94VqJ\nN/b/XOfcO3hh/O/AKrx9/H2FbS8F/gevYbQLeKyKGmYAf8Ab8bQG+D/AXc65Z4MXq8duShSIuDNo\nA/3144Bf4B3Amgv8yjm3ybxLHiTg/eCegte/e9QFzoA0sxfxfmivx+tffgvvF2ddo++IiEgEiaiW\nfaB74Fq8cD/qnPsar1U018wSgXvx+jrvwht2dgTv9PcyU4AUvNbRHOBGBb2ISIS17M0sAUhxFa7p\nYWYdXPnr0YuISC1EVNiLiEh4RFQ3joiIhEfEXPXSzPRfDBGROnDO1XgiX0S17P2+dkSkTH/84x99\nryFSJn0X+i70XVQ/hSqiwl5ERMJDYS8iEgMU9hEoMzPT7xIihr6L4/RdHKfvovYiZuilmblIqUVE\nJFqYGS7aDtCKiEh4KOxFRGJASGFvZlPMLNvMCspuahzCOlmBmzbnBu5EpGvUiIj4JNSW/XbgAbwb\nVoTKATc551o659Kcc2fUujoREWkQIZ1B65x7A8DMhuDd5DlUodyeTUREwizcffZ/MrPdZrbYzEaG\n+bNERKQK4Qz7O/HuM9oZmAW8ZWbdw/h5IiJShbCFvfNuknzYOVfsnHse+Bj4Wbg+T0REqtaYV710\n1NCHP3Xq1GPPMzMzdZaciEgFWVlZZGVl1Xq9kM6grener5Us3wr4AfABcBTvnrJPAGc75zZWsY7O\noBURCVFJaQljXhnD/PHzG/QM2irv/Wpm75rZ3RWWTwAexLsX7B68e8NeUlXQi4hI7byz4R125YV+\nt1ZdG0dEJApd8MIFTOg/gav6X6Vr44iINEVff/81q3atYmyfsSGvo7AXEYkyj2c/zrVnX0tSfFLI\n60TMPWhFRKRmhwoP8cKqF1h548paraeWvYhIFJmzag6juo+iS6sutVpPYS8iEiWcc0zLnsbNQ26u\n9boKexGRKJG1OQuAzG6ZtV5XYS8iEiXKWvVmtb+gsMJeRCQKbD24lUU5i7iq/1V1Wl9hLyISBWYu\nnclVZ11FamJqndbX0EsRkQhXcLSAp1Y8xYdXf1jnbahlLyIS4eaumcuAkwdw2kmn1XkbCnsRkQhX\n1+GWwRT2IiIRLHt7NrvydvGz3vW795PCXkQkgk3Pns5NQ24irllcvbajSxyLiESoPYf3kDEtg423\nbCQ9Jb3SZcxMlzgWEYlmT694ml+d/qsqg742NPRSRCQCHS09yoylM5h32bwG2Z5a9iIiEejt9W/T\nOa0zAzsObJDtKexFRCLQtCXTuHlo/YZbBlPYi4hEmHV71vHl7i/5dZ9fN9g2FfYiIhFmevZ0Jg+a\nTGJcYoNtUwdoRUQiSG5hLi+ufpHVv13doNtVy15EJII8v/J5zu9xPp1bdm7Q7SrsRUQihHOO6dnT\nG/TAbBmFvYhIhFiYs5D4ZvGMOHVEg29bYS8iEiHqc9vBmijsRUQiwJYDW/hwy4dccdYVYdm+wl5E\nJAI8sfQJJpw1oc63HayJhl6KiPis4GgBT694mo8nfRy2z1DLXkTEZ//75f8yqNMgeqf3DttnKOxF\nRHzknOOxJY/V+7aDNVHYi4j4aMn2Jewv2M+FvS4M6+co7EVEfDQtexo3Da7/bQdrotsSioj4ZFfe\nLk6ffjqbbt1E2+Zt67QN3ZZQRCTCPbX8KX59xq/rHPS1oaGXIiI+OFp6lCeWPcFb499qlM9Ty15E\nxAfzv55P11ZdGXDygEb5PIW9iIgPGvq2gzVR2IuINLI1u9fw1fdfMeaMMY32mQp7EZFGFo7bDtZE\nB2hFRBrRwYKDvPTlS6y5aU2jfq5a9iIijei5lc/xk54/oVNap0b9XIW9iEgjKXWlYbvtYE0U9iIi\njeQf3/yD5vHNGd5leKN/tsJeRKSRlA23DMdtB2uisBcRaQQ5+3P4ZNsnXN7vcl8+X2EvItIIZiyd\nwdUDriYlIcWXz9fQSxGRMMsvzmf2F7P57NrPfKtBLXsRkTB7+cuXGdp5KD3b9vStBoW9iEgYNdZt\nB2uisBcRCaPPvv2M3MJcftLrJ77WobAXEQmjadnTmDJkCs3M37hV2IuIhMnOvJ28u+Fdrh5wtd+l\nKOxFRMJl1rJZ/KbPb2jTvI3fpWjopYhIOBSXFPPEsid474r3/C4FUMteRCQs3vjqDXq17cVZHc7y\nuxRAYS8iEhbTsqf5PtwymMJeRKSBrdq1io37NvLL03/pdynHKOxFRBrY9CXTuWHQDSTEJfhdyjE6\nQCsi0oAOFBzglbWvsG7KOr9LKSeklr2ZTTGzbDMrMLNnQlynjZnNM7M8M8sxs/H1K1VEJPI9+8Wz\n/LTXTzk59WS/Sykn1Jb9duAB4CdA8xDXeRwoANoBA4F3zOwL51xk/bkTEWkgZbcdfO6Xz/ldyglC\natk7595wzs0H9oWyvJmlAGOAe51z+c65j4E3gavqXKmISIRbsGkBaYlpDDtlmN+lnCBcB2gzgGLn\n3KageSuBM8P0eSIivvPztoM1CVfYpwK5FeblAmlh+jwREV9t2reJz7d/zvi+kXl4MlyjcfKAlhXm\ntQIOVbfS1KlTjz3PzMwkMzOzoesSEQmLGUtncM2Aa2ieEOphzbrJysoiKyur1uuZcy70hc0eADo7\n5ybVsFwKXv/+mWVdOWb2PPCtc+6eKtZxtalFRCRSHCk+wql/OZXs67Pp3qZ7o362meGcq7HfKNSh\nl3FmlgzEAfFmlmRmcVUt75w7ArwO3G9mKWZ2HvAL4IXQyhcRiR4vrn6Rc7uc2+hBXxuh9tnfCxwB\n7gKuCDz/VwAze9fM7q5knSlACrAbmAPcqGGXItLUOOeOHZiNZLXqxgkndeOISDT6aOtHXDv/WtZN\nWefL3agatBtHREQqN23JNG4afJPvtx2sSWRXJyISwb479B3vb3qfiQMm+l1KjRT2IiJ19OSyJxl3\n5jhaJ7f2u5Qa6aqXIiJ1UFRSxMxlM1lw1QK/SwmJWvYiInUwb908TjvpNPq27+t3KSFR2IuI1EGk\n3XawJgp7EZFa+mLnF2w+sJlLTr/E71JCprAXEaml6Uumc+OgG4lvFj2HPaOnUhGRCLAvfx+vrnuV\nr2/+2u9SakUtexGRWpi9YjY/z/g57Vu097uUWlHLXkQkRCWlJTy+9HFeHPOi36XUmlr2IiIh+tvG\nv9G2eVuGdh7qdym1prAXEQnRtOxpTBkyJSJvO1gThb2ISAg27tvIsh3LuOzMy/wupU4U9iIiIXg8\n+3EmnT0p7LcdDBcdoBURqcGhwkM8t/I5lk1e5ncpdaaWvYhIDW5+72YuPeNSurXu5ncpdaaWvYhI\nNZ5f+TzZ27PJvj7b71LqRWEvIlKFr7//mjsW3MHCCQtpkdjC73LqRd04IiKVKDhawLjXxvHAqAfo\n16Gf3+XUm244LiJSiVvfu5Udh3Ywd+zciB5XH+oNx9WNIyJSwZtfvcn8r+ez4oYVER30taGwFxEJ\nsu3gNia/PZk3LnuDNs3b+F1Og1GfvYhIwNHSo1z++uXcds5tDOsyzO9yGpTCXkQk4P4P7ic5Ppk7\nh9/pdykNTt04IiLAopxFPLX8KZbfsJxm1vTawU1vj0REamnP4T1cNe8qnv3ls5ycerLf5YSFwl5E\nYlqpK2XiGxO58qwruaDnBX6XEzYKexGJaY989gj78vfxwKgH/C4lrNRnLyIxK3t7Nn/+6M8suX4J\nCXEJfpcTVmrZi0hMOlhwkHGvjePxix6P6qtZhkqXSxCRmOOcY/xr42mT3IYZP5/hdzn1ossliIhU\n4ZkVz7BmzxqWXLfE71IajcJeRGLK2j1rufufd/PB1R9E7S0G60J99iISM/KL87ns1cv484/+TJ92\nffwup1Gpz15EYsZv3/4tBwoP8OKYF5vM1SzVZy8iEuTVta+y4JsFLJ+8vMkEfW0o7EWkydt8YDM3\nvXMT71z+Dq2SW/ldji/UZy8iTVpxSTHjXxvPXcPvYkjnIX6X4xuFvYg0aX9Y9AfaJLfhtmG3+V2K\nr9SNIyJN1oJNC3hh1QtN9rLFtaGwF5EmaWfeTq5+42rmjJlD+xbt/S7Hd7H9p05EmqRSV8qEeRO4\nbuB1jO4+2u9yIoLCXkSanP/6+L/IP5rPH0b+we9SIoa6cUSkSfl026f85bO/sPT6pcQ3U8SVUcte\nRJqM/fn7Gf/aeJ78+ZN0adXF73Iiii6XICJNgnOOsXPH0imtE4/+9FG/y2k0ulyCiMSUmctmsmn/\nJuaMmeN3KRFJYS8iUW/VrlXct+g+PrrmI5Ljk/0uJyKpz15EotrhosOMe3UcD13wEKeddJrf5UQs\n9dmLSFS7bv51FJUU8fyvnve7FF+oz15EmryXVr/Eh1s+ZNnkZX6XEvEU9iISlTbt28Stf7uV9698\nn7SkNL/LiXjqsxeRqFNUUsS418Zx3w/vY2DHgX6XExUU9iISde755z10SuvELUNv8buUqKFuHBGJ\nKu+sf4dX1rzCihtWxOTtBetKYS8iUWN77naunX8tc8fOJT0l3e9yooq6cUQkKpSUlnDlvCuZMmQK\nI7qO8LucqKOwF5Go8B+L/wOAe0bc43Ml0UndOCIS8RZvWcz07Oksv2E5cc3i/C4nKoXUsjezNmY2\nz8zyzCzHzMaHsE6WmeWbWa6ZHTKzdfUvV0Rizd4je7ni9St4+uKn6ZTWye9yolao3TiPAwVAO+BK\nYIaZnVHDOg64yTnX0jmX5pyraXkRkXKcc0yaP4mxfcZyUcZFfpcT1WrsxjGzFGAM0Mc5lw98bGZv\nAlcBNXWeaVyUiNTZtCXT2J67nblj5/pdStQLpWWfARQ75zYFzVsJnBnCun8ys91mttjMRtapQhGJ\nSSu+W8H9H97Py79+mcS4RL/LiXqhhH0qkFthXi5Q08Uo7gR6AJ2BWcBbZta91hWKSMw5VHiIy169\njEcvfJRebXv5XU6TEMponDygZYV5rYBD1a3knMsOevl84KDuz4DpVa0zderUY88zMzPJzMwMoTwR\naWpufu9mRpw6gvH9ahwLEnOysrLIysqq9Xo1Xs8+0Ge/DzizrCvHzJ4HvnXOhTzg1czeBd51zk2r\n4n1dz14kxpW6Uh744AFeXvMyS69fSovEFn6XFPFCvZ59jd04zrkjwOvA/WaWYmbnAb8AXqjmw1uZ\n2QVmlmRmcWZ2BTAC+FvouyAiseRAwQEuefkSFnyzgH9O+KeCvoGFOvRyCpAC7AbmADc659aB12I3\ns7srLJ8APBhYfk9g/UuccxsbpGoRaVJW7lzJ4CcH06N1DxZNXKTx9GGg2xKKiK9eWPkCty+4nf+5\n8H+4vN/lfpcTdXRbQhGJaEUlRdz2t9tY8M0CFk5YSL8O/fwuqUlT2ItIo/s291vGzh1LhxYdWHr9\nUlolt/K7pCZPV70UkUa1KGcRQ2cN5eKMi3n9stcV9I1ELXsRaRTOOf77k//moU8fYs6YOZzf43y/\nS4opCnsRCbvcwlyuefMath7cypLrl3Bqq1P9LinmqBtHRMJq7Z61DJ01lJOan8TiaxYr6H2isBeR\nsHllzSuMfHYkdw2/i5m/mElyfLLfJcUsdeOISIMrLinm7n/czbyv5vH+le8zsONAv0uKeQp7EWlQ\nO/N2ctmrl5GSkMLSyUtp27yt3yUJ6sYRkQb08daPGfzkYEZ1G8Xb499W0EcQtexFpN6cczy25DEe\n/PBBZl8yW7cQjEAKexGpl8NFh5n89mTW7F7DZ9d9Ro82PfwuSSqhbhwRqbMNezdwztPnkNAsgU+u\n/URBH8EU9iJSJ29+9SbDnxnOlCFTmH3JbFISUvwuSaqhbhwRqZWS0hLuW3Qfc1bN4a3xb/GDU37g\nd0kSAoW9iIRsz+E9XP765ZS6UpZOXkr7Fu39LklCpG4cEQnJku1LGDxrMIM7Dub9K99X0EcZtexF\npFrOOWYtn8W9C+9l5s9n8qszfuV3SVIHCnsRqVJ+cT5T3p3C59s/56NJH5GRnuF3SVJH6sYRkUrl\n7M9h+DPDOVJ8hM+v+1xBH+UU9iJygvc2vMc5T5/DxP4TeenSl0hNTPW7JKkndeOIyDGlrpQHP3yQ\nmctm8urYVxnRdYTfJUkDUdiLCAD78/dz5bwryS3MZen1S+mY1tHvkqQBqRtHRFjx3QoGPTmIjLYZ\nLJywUEHfBKllLxLjnvviOX7/99/z2E8fY1zfcX6XI2GisBeJUUt3LOU/P/5PVu1aRdbELM5sf6bf\nJUkYqRtHJIaUulLe/OpNfjj7h1z6yqUMO2UYyyYvU9DHALXsRWLAkeIjPPvFszzy2SO0Tm7NHcPu\n4NI+lxLfTBEQK/QvLdKE7czbybQl05i5bCbDuwzn6Yuf5rxTz8PM/C5NGpnCXqQJWr1rNQ9/9jBv\nfPUGl/e9nE8mfULv9N5+lyUNoLgY1qyB5cvhiy9CX09hL9JEOOdYsGkBD336EF/u/pKbh97Mxls2\nkp6S7ndpUkeFhbB6tRfsy5fDsmVe0HfrBgMHelOozDkXtkJrw8xcpNQiEk0Kjxby4uoXefizhzGM\n24fdzvi+40mKT/K7NKmF/HxYubJ8sH/9NfTq5YX6oEHeY//+kBp09QozwzlXY7+cwl4kSu09spcZ\nS2cwPXs6/Tv0545hd3B+j/PVHx8F8vK8LpjgYN+0CU4/vXywn3UWNG9e/bYU9iJN1Pq96/nLp3/h\n5TUvM+b0Mdw27Db6tu/rd1lShYMHYcWK46G+fDls2QJ9+x4P9YEDvddJdfjPmMJepAlxzrF462Ie\n+vQhPt32KTcMuoEpQ6dwcurJfpcmQfbtK99aX74cvvvO63opC/VBg+CMMyAhoWE+U2Ev0gQUlxTz\n6tpXefizh8ktzOW2c25jQv8JpCSk+F1azNuz53iglz3u3Qtnn10+2E87DeLiwleHwl4kih0sOMis\n5bN49PNH6dGmB3cMu4OLMi6imemk98bmHGzbBqtWlQ/2vLzyoT5woHcwtVkj/xMp7EWi0OYDm3n0\n80d59otnubDXhdw+7HYGdxrsd1kxY+9eb6jjl18ef/zyS2jRAvr1Kx/s3btDJBwLV9iLRJEl25fw\n0KcP8Y9v/sGkAZO49Qe30qVVF7/LarIOH4a1a8uH+urV3vDHvn29YO/b9/iUHsGnKijsRSJcSWkJ\n87+ez8OfPcy2g9v43Tm/Y9LZk2iZ1NLv0pqM4mLYsOHE1vqOHV5felmolz2eckpktNZrQ2EvEqEO\nFx32Lkr2+SO0bd6WO4bdwZgzxuiiZPXgnDecsazbpSzUN2yALl1ObK336gXxTeTrVtiLRJhvc7/l\n8ezHmbV8FiNOHcEdw+7g3C7n6iSoWtqz58TulzVroGXL8qHer583xLGmk5KincJexGf78veRtTmL\nRTmLWLh5ITsO7eCKflfwu3N+R6+2vfwuL+Ll5XkhXvFgaWHhid0vfftCmzZ+V+wPhb1IIztUeIjF\nWxezMGchC3MWsnHfRoafOpzR3UYzuvtoBpw8gLhmYRxwHYWc8/rP16/3rgNT9rhuHeza5V0+IDjQ\n+/WDTp2ir189nBT2ImGWX5zPJ9s+8cJ980JW71rN0M5DGd3dC/chnYaQENdAp0lGudxcL8grhvqG\nDd6wxowM74Bp2ePpp0PPnuE9GampUNiLNLCikiKWbF/CwpyFLNq8iOzt2fQ/uT+ju41mVPdRDDtl\nGM0TmngHcTWKiyEnp3yYlz3m5npBXjHUe/eG1q39rjy6KexF6qmktITl3y1n0eZFLMxZyCfbPiEj\nPYNR3UYxuvtozjv1PNKS0vwus1E5Bzt3nhjm69d7o2E6dz4e5MGh3qlT459ZGisU9iK1VOpKWbN7\nzbFumQ+3fEjntM7HumVGdh1Jm+axcRQwL6/ybpf1670rMwYHedljz551u2qj1I/CXqQGzjk27Ntw\n7IBq1uYsWiW3OnZANbNbJh1SO/hdZtgUFMDWrV6/ecVQ37/fG4tesZWekQFt2/pduQRT2ItUYsuB\nLce6ZRbmLMTM+FH3HzG6+2hGdRvVpC5RUFzsXcBr82avL73ssez59997Z4z27Hlit0uXLup2iRYK\nexFgZ95Ob5x7oGsmryjvWLCP7j6anm16Ru1JTSUl3rDF4CAPfvzuOzj5ZO9+pd27H38se965s0a7\nNAUKe4kpJaUlbD24lfV717N+73rW7lnLB1s+YGfeTkZ2G3msa6ZPuz5RE+7OeWPNK2uV5+R4rfb0\n9PJBHhzop5wCiYn+7oOEn8JemhznHDvzdrJ+73o27NtwLNjX711PzoEc2qW0IyM9g4z0DE5LP40R\nXUfQv0P/iD2RyTnvkrqVtcpzcrzRLampJwZ52WPXrpCc7OceSCRQ2EvU2p+//4QwL3vdPL75sUDv\n3bb3sec92/aMuLs3FRR43Sw7dsD27d60ZUv5QI+PrzzIu3XzptRUX3dBooDCXiLakeIjbNy38YQw\nX793PYVHC70wT+9NRtuM4+Ge3pvWyf6fgVNa6l2Ma/v28kFe8fmhQ9Cxo9c33qmT99i1a/lA1wlF\nUl8Ke/FdcUkxOQdy2LA3qJW+z3v8/sj39GjTwwvytsfDPCM9gw4tOvjWr56Xd2JwV3y9cye0alU+\nxMum4NeDNedxAAAG3ElEQVTp6RrRIuGnsJdGUVRSxM68neUCvayVvvXgVjq37Hws0MvCPCM9gy4t\nuzRqX/rRo15I19QaLy6uPLiDn3fsqJOHJHIo7KVOSkpL2Ju/l92Hd7P78G72HN5z/PmRE58fLjpM\n+xbt6Z3eu1wfekZ6Bt1bdycpPnypWFTkjRXfs+f4FPw6OMi//x7atas+xDt18rpVomSwjgigsJeA\nUlfKgYIDIYf3/vz9tGnehvYt2tO+RXvapbSr/HkL73nr5NY0s/r3VTjndaFUDOyKr4OfHzkCJ53k\nTe3aHZ/KXgcHeYcOTefORCLBGjTszawN8AzwY2APcI9z7qWGXEdhHxrnHLmFueWDOhDglYX390e+\nJzUxNaTgbt+iPenN0xuke6W0FPbtqzmwg1/HxZUP64rhXfG1WuEiDR/2ZSE9CRgIvAMMc86ta6h1\nmmrYO+coOFrAoaJD5BXlcagw8Bh4XeW8KpY/UHCAxLjEkMP7pJSTSIyr25k1JSXepWkPHiw/VZx3\n4MCJAb5/v3ebuJoCO/h5SmSNnBSJCg0W9maWAuwH+jjnNgXmPQdsd87d04Dr+Br2JaUlFJYUUnC0\ngMKjhRSWFHKk+Ei5wK0uhKt7L6FZAmlJaaQmppKW6D2mJqZWPi8xjW9XfcuQ4UMqXb5lUsuQxpMX\nFoYW1NXNz8+HtDQvtFu1Kj8Fz2vd+sQwb9sWEhrgvh1ZWVlkZmbWf0NNgL6L4/RdHBdq2IfSi5kB\nFJeFdsBKYGQDr3NsjHVhSWG5x4KjBSfMq/K9oOfBwV3T9kpdKUnxSSTFJZEcn0xSfBIpCSnlAjct\nKY3UhOPB2zGtIxmJGVWGd1pSGi0SWlR5tyLnvFEi+fnlp0eWTaXzmb8hPx8O5MN3+d4JOvn5cPhw\naEFdUlJ5MAfPa9/eu3lEVSGemur/0EH9Uh+n7+I4fRe1F0rYpwK5FeblAtXdtaEu63DRixeRFJd0\nLHQrhm9SXNIJ7yfHJ5OamHrCOmXvBc9LjEsioVkS8SSRYMnEm/c8niTMxVNaapSUcGwqKjoxiAsK\nIP/g8ddlYVzpcpXMrziZQfPm5acDB7wbLCcnn/heixZeEHftWn2Lu3lz9WeLyHGhhH0e0LLCvFbA\noQZehx5vbygftiWQH/S6NlNpaeXzzLwDgaFMiYnlg7ay8C2b2rTxRn9Ut0xl26qsq2PqVG8SEWko\nofbZ7wPODOp/fx74toY++9qu0/SOzoqINIKGHI3zIuCA6/FG1rwFnFvDaJxaryMiIuER6uG3KUAK\nsBuYA9xYFtpm9q6Z3V2bdUREpHFFzBm0IiISPromn4hIDPA97M2sjZnNM7M8M8sxs/F+1+QHM5ti\nZtlmVmBmz/hdj5/MLNHMnjKzzWZ20MyWm9mFftflFzN7wcy+M7MDZvaVmV3rd01+MrPeZpYfGPQR\ns8wsK/A95JrZITOrtpvc97AHHgcKgHbAlcAMMzvD35J8sR14AHja70IiQDywFRjhnGsF3Ae8Yman\n+luWb/4EdHfOtQYuBh40s7N9rslP04AlfhcRARxwk3OupXMuzTlXbW76GvaBIZpjgHudc/nOuY+B\nN4Gr/KzLD865N5xz8/GGrMY059wR59z9zrltgdfvADnAIH8r84dzbq1zriDw0vB+yXv6WJJvzGwc\n3qVY/ul3LREi5FMn/W7ZV3VZhTN9qkcikJl1AHoDa/yuxS9mNt3MDgPrgB3Auz6X1OjMrCXwb8Dt\n1CLkmrg/mdluM1tsZtVejsbvsK/TZRUkdphZPN7Q3Wedc+v9rscvzrkpeL8v5wGvA4X+VuSL+4FZ\nzrkdfhcSIe4EegCdgVnAW2bWvaqF/Q77Ol1WQWKDeTeinYMXbLf4XI7vnOcToAvwW7/raUxmNgA4\nH3jE71oihXMu2zl32DlX7Jx7HvgY+FlVy/t97571QLyZ9QzqyulPDP93Xcp5GjgJ+JlzrsTvYiJI\nPLHXZz8S6ApsDTQCUoE4M+vjnBvsb2kRw1FN95avLXvn3BG8/5Leb2YpZnYe8AvgBT/r8oOZxZlZ\nMhCH9wcwycwa747cEcbMngBOBy52zhX5XY9fzKydmV1mZi3MrJmZ/QQYB/zD79oa2Uy8P3AD8BqE\nTwBvAxf4WZRfzKyVmV1QlhNmdgUwAvhbVev43Y0DuqxCmXuBI8BdwBWB5//qa0U+CQyxnIz3i70r\nMIY4N0bPwXB4XTbb8EZq/RfwL4ERSjHDOVfgnNtdNuF1ARc452J19FoC8CBebu7By9FLnHMbq1pB\nl0sQEYkBkdCyFxGRMFPYi4jEAIW9iEgMUNiLiMQAhb2ISAxQ2IuIxACFvYhIDFDYi4jEAIW9iEgM\n+P+EBLR7ohLfjwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10b7a0f10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1, 1)\n", " \n", "ax.plot(x, x**2, x, np.exp(x))\n", "ax.set_title(\"scientific notation\")\n", "\n", "ax.set_yticks([0, 50, 100, 150])\n", "\n", "from matplotlib import ticker\n", "formatter = ticker.ScalarFormatter(useMathText=True)\n", "formatter.set_scientific(True) \n", "formatter.set_powerlimits((-1,1)) \n", "ax.yaxis.set_major_formatter(formatter) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Axis number and axis label spacing" ] }, { "cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEhCAYAAABoTkdHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOXZx/HvTQJhRwyggmwqsQgKKlhxjbZq7aJVXxWk\nKO5WaLX4drOLVLu3bhXccd/6uqOlVi3EBUHCIgKyLy4IspNASCDJ/f5xJskwJCQTkjkzk9/nuuaa\nOWdmztzniOeX53nOYu6OiIhIXTULuwAREUktCg4REYmLgkNEROKi4BARkbgoOEREJC4KDhERiYuC\nQ+JmZo+a2Ztxfmelmd3cAL/dIMup52/3NLNyMzuhkX/nVDMrM7Oujfk7ja0+/04kNWSGXYBIiknE\niU9TgYPcfV0Cfqsx/Rj9cZqWFBwi8bHG/gF3LwVSPTRw98Kwa5DGob8GZJ+Z2dFmNsnMvjKzQjOb\nYWZnVfPRVmb2kJltNbP1ZvaHmOVkmtlYM1thZjvMbJ6ZXVOPeh40s2VmVmRmy83sD2bWIur9W8xs\nqZmdY2YLzWybmU0xs8NilnNR5HM7zOx94Kh93RZmdmhk/W+Imtc3UsNVkelTI11iXaO2yx1m9rmZ\nFZvZl2b2TC11XGVmn0Rq32hmeVHLG2lmu8zsG2Y2P/KZ6WY2IOr7+5nZk2b2aWQ7LjKzMdX8zsVm\nNjOyjA1m9i8z6xB5b7euqsj0W2Z2tZmtimyHV82sc8wyb4ys6zYze93MLoneHhI+BYc0hPbAc8Cp\nwNHAG8CrsTti4EfAamAQcCNwg5n9KOr9h4HvA1cDXwNuBf5sZpfXtRAzM+ArYGhkGTcAI4Ffxnz0\nIOA6YBgwBGgHTIhaztHAM8A/CQLj78Dd1N5Vtddt4e7LgR8CfzGzgWaWFfmN19z94ajlRP/Oj4H/\nAS4BDgO+B0zfyzY4BrgP+AOQA5wCPBGz7GbAXyLbYDCwHng9Ug9AFjAPOAfoS/DfYqyZXRb1O5cD\nTwIvRdb1FGASkLGX7TMYyAW+DZwJHEmwbSuWeT7wt0htA4D/i0zr2kjJxN310COuB/Ao8GYtn/kI\n+GXU9ErgnZjP/AH4NPK6N1AG5MR85jfAnJjl3BxnvTcCi6OmbwF2AvtHzbsIKAVaRKafBN6LWc6o\nSI0nxPn7u22LyLwJwGLgEWA50C7qvVMjv9M1Mn0X8HYcv/d9YDPQtob3L4ssPzdq3n5AIXD5XpZ7\nF/CfqOlPgbvr+u8kMr0WyIya9zNgddT0+8DjMcv5U/T20CP8h8Y4ZJ+ZWSeCv0hPAw4kGDvLAnrG\nfHRazPRU4Bdm1hY4lmD8YGak1VAhE9gVZz1XA1cCvYA2kWXEjk186e6boqcjn+kCfAEcAbwd8533\nq1lO7G/XdVv8iOAv+hHAib738YBHgbfMbBnwVuTxmrvXtF3eIgjYVWb2FjAZeMndN8Z8rrLV4u5b\nzGwh0C+yHgb8HLgYOBhoCTQHVkXe7wx0j/xWPBZ5MIZT4UvggKjpI4CnY74T++9GQqauKmkIjwMn\nAv8LnETQxTAXaLG3L8VoRtAdMSTy/YpHv8hznZjZhcA44FngbGAgwY68ecxHd8ZMV3SF7Ov/E3Xd\nFn2ArpHf7bO3Bbr7XIIQvAkoIfjL/6NI4Fb3+e0EQfx9glbNdcCySPdbXf0vQXDcBXwzsh4PV7Me\n8apuu8eGsbqlkpyCQxrCycC97v4vd19AMMZwSDWfOz5m+kSCboptwKzIvJ7uviLmsTLOWma7+93u\nPseDMYXeca4PwCdA7PkaJ1H7Tq3WbWFmrQmC7RmCHfS9Zlbd9qrk7kXu/qq730gwTtCXoEurps+7\nu7/v7mPd/VhgDcEYSbTK/x5mtl9kmQui1uMNd3/c3ee6+wqC8ZKK5a8naJmdube66+ETgj8eosVO\nS8jUVSUNYTEw3MymEvyb+h3V/1Ey0Mx+S7DTHEww6PsrCAaNzexR4CEz+zlB90Qbgr+cO7v7X+Oo\n5QozOweYTzCQfF4dvxv9l++dwAwz+z1BK6I/sMdRRTX8fm3b4p7IvNHuvsPMzgCeM7Mh7l4WW4uZ\n/S9Bl85HQBFBAJQCS6pdiWDdDwHeJRj0HkTQ3bQg5qN/NbObgC0E400FBP9tKtbjB2aWS3BAw6XA\ncUB0997vCEJvHfACwaB4LvBsTDdgPG4n2Bb5wL8J/rgYEXlPLZEkoRaHNISRBP+WPiQ4wubfQH7M\nZ5xgh9kTmElwhNI/3P0fUZ+5mmCHfTPBTu5tgh3W8pjl7M0DBAPbjwCzCQLqljquR+Wy3X02wQ76\nYuBjgkHcG+uwjJHsZVtEutIuAS529x1R3zkI+GN1tRDs0H8CfBCp5VzgfHdfWkMNmwkC898EAfBn\n4DZ3fyzqM2UE2/kBYAbQGfi2uxdH3r8NeAd4JfK7+xH8N6sq0H1CpPYLgDlAHvAtglCrF3d/mWBb\n/zyyrsMIAgqguKbvSWKZu0JcpCmJHFL7kLvv63hFQkRaqaPdvUvYtUhAXVUikjTMLJPgIIBJwHbg\ndIJxoHvCrEt2p+AQkWTiBOMkYwhOylwJ/J6okwQlfOqqEhGRuGhwXERE4pKWXVVmpmaUiEg9uHut\nV4BO2xZH2NdySZbHLbfcEnoNyfLQttC20LbY+6Ou0jY4RESkcSg4REQkLgqONJebmxt2CUlD26KK\ntkUVbYv4peXhuGbm6bheIiKNyczwpjw4LiIijUPBISIicVFwiIhIXBIaHGY2yszyzazYzB6Jmt/T\nzMrNrMDMCiPPv4r57l/MbIOZrTezPyeybhERqZLoM8dXE1zn/yygVcx7DnSoblTbzK4FzgGOjMx6\n28xWuPuDjVmsiIjsKaEtDnd/xd0nsvtdxCrYXuq5FLjd3de4+xqCK2WObJwqRURkb5JpjMOBVWb2\nmZk9YmbZUe/1A+ZGTc+NzBMRkQRLluDYQHCLz54E95huBzwd9X5bYGvUdEFknoiIJFhSXB3X3bcT\n3B8aYL2ZjQbWmFmbyHvbgPZRX+kQmVejsWPHVr7Ozc3V2aEiIjHy8vLIy8uL+3tJERw1cKpaRAuA\nAcDMyPTAyLwaRQeHiIjsKfqP6tveuQ1+V7fvJfpw3AwzawlkAJlmlhWZd5yZ5VggG7gbmOLuhZGv\nPgGMMbOuZtaN4LaSjyaydhGRdLVt5zbu+vCuOn8+0WMcvwaKgJ8DwyOvfwUcArxBMHbxMVAMXFLx\nJXd/AHgNmEcwMD7R3R9KaOUiImnq6Y+f5pSep9T587rIoYhIE+buDLh/AHeedSffPPSbusihiIjs\n3Xufvceu8l2c3vv0On9HwSEi0oSNmzGO0YNHY1ZrQ6OSgkNEpIlaXbCat1e8zaUDLo3rewoOEZEm\n6oFZDzD8yOG0y2oX1/eS+TwOERFpJCWlJTw460GmXDYl7u+qxSEi0gS9uPBF+nfpT9/OfeP+roJD\nRKQJGjdjHKOPG12v7yo4RESamFlfzmJ14Wq+m/Pden1fwSEi0sSMzx/PDwf9kMxm9Rvm1uC4iEgT\nsrFoIy8vepklo5fUexlqcYiINCET5kzg3MPPpXObzvVehlocIiJNRFl5GffNvI/nL3x+n5ajFoeI\nSBMxaekkDmhzAIO6Dtqn5Sg4RESaiHH59T8EN5qCQ0SkCVi8YTFz187lwiMu3OdlKThERJqAe/Pv\n5cqjryQrM2ufl6XBcRGRNFdYUsiTHz/J3OvmNsjy1OIQEUlzT338FKf1Po3uHbo3yPIUHCIiaczd\ng0Hxwfs+KF5BwSEiksbyVuUBkNsrt8GWqeAQEUljFa2NeG4NWxsFh4hImvps62dMWTmFEQNGNOhy\nFRwiImnqgZkPMOKoEbRt0bZBl6vDcUVE0lBJaQkPz3mYd0e+2+DLVotDRCQNPf/J8ww8cCCHdzq8\nwZet4BARSUPjZjTsIbjRFBwiImkmf3U+a7et5dt9vt0oy1dwiIikmfH547l+8PVkNMtolOWbuzfK\ngsNkZp6O6yUiUpv129eTMy6HZT9aRnbr7Li+a2a4e60nfKjFISKSRibMmcB5Xzsv7tCIhw7HFRFJ\nE6Xlpdw38z5evvjlRv0dtThERNLE60tep1u7bhxz0DGN+jsKDhGRNDFuRsPcGrY2Cg4RkTSwcP1C\n5q+bz/8c8T+N/lsKDhGRNDA+fzzXHHsNLTJaNPpvaXBcRCTFFZQU8My8Z5j3w3kJ+T21OEREUtyT\nc5/km4d8k27tuyXk9xQcIiIprOLWsKMGj0rYbyo4RERS2OSVk8lslskpPU9J2G8qOEREUlhj3Bq2\nNgoOEZEU9emWT3n303cZftTwhP6ugkNEJEXdP/N+Lj3q0ga/NWxtdDiuiEgKKi4tZsKcCUy9YmrC\nf1stDhGRFPTP+f/k2K7H0ie7T8J/W8EhIpJi3J17ZtzTaLeGrY2CQ0QkxcxYPYPNxZv51mHfCuX3\nFRwiIilmfP54rh/UeLeGrY1uHSsikkLWbV/H4eMOZ/mPl7N/q/0bdNm6dayISBp6ePbDXND3ggYP\njXjocFwRkRRRcWvYiUMnhlqHWhwiIili4uKJ9OzQk6MPOjrUOhQcIiIpIlG3hq2NgkNEJAUsWLeA\nRRsWcX7f88MuRcEhIpIKEnlr2NpocFxEJMltLd7Ks/OfZcH1C8IuBVCLQ0Qk6T0+93HOOvQsurbr\nGnYpgIJDRCSplXs54/PHJ8WgeAUFh4hIEnt7xdu0ymzFid1PDLuUSgoOEZEkVtHaSOStYWuT0OAw\ns1Fmlm9mxWb2SMx73zCzhWa2zcz+a2Y9Yt7/i5ltMLP1ZvbnRNYtIhKGVVtWMfWzqVxy5CVhl7Kb\nRLc4VgO3AROiZ5pZNvAi8Ctgf2AW8M+o968FzgGOBI4Cvmdm1ySoZhGRUNyXfx+XDbiM1s1bh13K\nbhIaHO7+irtPBDbFvHU+MN/dX3L3ncBYYICZ5UTevxS43d3XuPsa4O/AyASVLSKScDt27eCRjx7h\nh4N/GHYpe0iWMY5+wNyKCXcvApZF5u/xfuR1P0RE0tRz85/juG7Hcdj+h4Vdyh6SJTjaAltj5hUA\n7Wp4vyAyT0Qk7YR9a9jaJMuZ49uA9jHzOgCFNbzfITKvRmPHjq18nZubS25u7r7WKCKSENO/mE5B\nSQFnHXZWo/5OXl4eeXl5cX8vlDsAmtltQDd3vyIyfTVwmbufFJluA6wHBrj7UjObCjzi7hMi718J\nXOnuJ9SwfN0BUERS1vCXhjPooEH8ZMhPEvq7SXkHQDPLMLOWQAaQaWZZZpYBvAz0M7PzzCwLuAX4\nyN2XRr76BDDGzLqaWTdgDPBoImsXEUmEtdvWMmnpJEYOHBl2KTVK9BjHr4Ei4OfA8MjrX7n7BuAC\n4I8ER1wNAoZWfMndHwBeA+YRDIxPdPeHElu6iEjje2jWQ1x0xEV0bNUx7FJqFEpXVWNTV5WIpKJd\nZbvodXcv/j383xx1wFEJ//2k7KoSEZGavbLoFQ7b/7BQQiMeCg4RkSQxPn88owaPCruMWik4RESS\nwLyv5rF001LO+9p5YZdSKwWHiEgSGJ8/nmuPvZbmGc3DLqVWyXICoIhIk7WleAv/XPBPFo5aGHYp\ndaIWh4hIyB776DHOPuxsDmx7YNil1ImCQ0QkRMl4a9jaKDhEREL05vI3adeiHUMOHhJ2KXWm4BAR\nCdG4GeOS7tawtVFwiIiEZPmm5Xy4+kOG9R8WdilxUXCIiITkvpn3cfnAy2nVvFXYpcRFh+OKiISg\naFcRj330GPlX54ddStzU4hARCcEz855hSPch9O7YO+xS4qbgEBFJMHcPDsFN0lvD1kbBISKSYB98\n/gHbd27njEPPCLuUelFwiIgk2N0f3s2owaNoZqm5C07NqkVEUtSri14l/8t8Lj/68rBLqTcdVSUi\nkiCfb/2ca16/hleHvkr7rPZhl1NvanGIiCRAaXkpw14cxpjjx3D8wceHXc4+UXCIiCTA7/J+R+vm\nrfnpiT8Nu5R9pq4qEZFGNnnlZCbMmcCca+ek7IB4tDqvgZndaWYDG7MYEZF0s277Oka8PILHv/84\nB7Q9IOxyGkQ80ZcB/MfM5pvZz83s4MYqSkQkHZR7OSNfGcmlR12asudsVKfOweHuPwa6Ar8ABgIL\nzextM7vUzNo2VoEiIqnqzml3srl4M7eedmvYpTQoc/f6fdGsH/AMcCRQBDwH3OLuqxuuvPoxM6/v\neomINIT81fl855nvMOPqGfTar1fY5dSJmeHutd4YJK5RGjNrb2ZXmtkU4F3gQ+BkoC+wDfh3fYoV\nEUknW4u3MvTFodz7nXtTJjTiUecWh5m9AJxFEBhPAK+4e0nU+82Are7erjEKjYdaHCISFndn2IvD\n6NiyI/d9976wy4lLXVsc8RyOOx0Y7e5rq3vT3cvNLD0OGRARqadH5jzCgvULmHHVjLBLaTT1HuNI\nZmpxiEgYPln/Cac+dirvjHyHIzofEXY5cWuUMQ4REanejl07uPiFi/nzN/6ckqERD7U4REQawHWv\nX0dBSQFPn/80ZrX+0Z6UGmOMQ0REqvH8gud5e8XbzL52dsqGRjwUHCIi+2Dl5pWMmjSKScMnpfSl\n0uOhMQ4RkXraVbaLYS8O4xcn/YJBXQeFXU7CKDhEROrpN1N+Q3brbG48/sawS0kodVWJiNTDm8vf\n5KmPn0qbS6XHQ8EhIhKntdvWMvKVkTx9/tN0btM57HISrmnFpIjIPir3cka8PIKrjrmK03qfFnY5\noVBwiIjE4a9T/0pxaTG/PfW3YZcSGnVViYjU0bTPp3Hn9DuZefVMMps13d2nWhwiInWwecdmhr04\njAe/+yDdO3QPu5xQ6ZIjIiK1cHcufP5Curbryj/O/kfY5TQaXXJERKSB3D/zflZsXsHT5z8ddilJ\nQcEhIrIXH3/1Mb/N+y1Tr5hKVmZW2OUkBY1xiIjUYPvO7Vz8wsXcceYd5GTnhF1O0tAYh4hIDa58\n9UpKvZTHv/942KUkhMY4RET2wTPznuH9z99n1jWzwi4l6Sg4RERiLNu0jBveuIE3f/AmbVu0Dbuc\npKMxDhGRKDvLdjL0haH89pTfcvRBR4ddTlJScIiIRPnl27+kW/tujD5udNilJC11VYmIRPxryb94\n/pPnmXPtnCZxC9j6UnCIiACrC1Zz5cQref7C58lunR12OUlNXVUi0uSVlZfxg5d/wKjBozi558lh\nl5P0FBwi0uT98b0/AnDzyTeHXElqUFeViDRp7336HvfOvJdZ18wio1lG2OWkBLU4RKTJ2li0keEv\nDWfCORPo2q5r2OWkDF1yRESaJHfn3OfOJSc7h7+f+fewy0kKuuSIiMhe3DPjHtZsW8MLF70Qdikp\nR8EhIk3O7DWzue3d25h+5XRaZLQIu5yUozEOEWlSCksKGfrCUO45+x4O3f/QsMtJSUkVHGaWZ2Y7\nzKzAzArNbGHUe98ws4Vmts3M/mtmPcKsVURS06hJozil5ykM7T807FJSVlIFB+DA9e7e3t3buXtf\nADPLBl4EfgXsD8wC/hlemSKSip6Y+wQzv5zJ3d+6O+xSUloyjnFUN6J/PjDf3V8CMLOxwAYzy3H3\nJYksTkRS0+INi7npzZuYfOlk2rRoE3Y5KS3ZWhwAfzKzdWb2npmdGpnXD5hb8QF3LwKWReaLiOxV\ncWkxQ18cym2n3caRBxwZdjkpL9laHD8DPgF2AsOAiWY2EGgLrIv5bAHQLrHliUgq+tlbP+PQjody\n7bHXhl1KWkiq4HD3/KjJJ8xsKPAdYBvQPubjHYDCmpY1duzYyte5ubnk5uY2WJ0ikjpeXfQqExdP\n1KXSq5GXl0deXl7c30vqM8fNbBIwCSgBLnP3kyLz2wDrgYHVjXHozHERAchblcdFz1/Eq0NfZUj3\nIWGXk/TqeuZ40oxxmFkHMzvTzLLMLMPMhgMnA/8GXgb6mdl5ZpYF3AJ8pIFxEamOu3P7B7cz9IWh\nPH3+0wqNBpZMXVXNgd8DhwNlwCLgXHdfDmBmFwDjgaeADwEdhC0ieygsKeSKiVewassqZlw9gx4d\ndMpXQ0vqrqr6UleVSNO0cP1Czv+/8zmlxyncffbdtMxsGXZJKSXluqpERPbF8wue55THTuGnJ/yU\nB773gEKjESVTV5WISNxKy0v5xdu/4MWFL/KfH/yHYw46JuyS0p6CQ0RS1lfbvuLiFy6mVfNWzLx6\nJtmts8MuqUlQV5WIpKQPPv+AQQ8N4tSep/L6sNcVGgmkFoeIpBR3Z3z+eG5951YeOfcRvpvz3bBL\nanIUHCKSMrbv3M61r1/L/HXzmXblNN1PIyTqqhKRlLBs0zKGTBhCRrMMPrjyA4VGiBQcIpL0Ji6e\nyAkTTuD6wdfz2LmP0bp567BLatLUVSUiSausvIxb8m7hiblP8Nqw1/j6wV8PuyRBwSEiSWpD0QYu\nefESSstLmXnNTLq06RJ2SRKhrioRSTr5q/M59sFjOeagY3hzxJsKjSSjFoeIJJWHZz/Mzf+9mfu/\nez/n9z0/7HKkGgoOEUkKO3btYPSk0UxfPZ33Ln+PwzsdHnZJUgN1VYlI6FZtWcVJj57E9l3b+fCq\nDxUaSU7BISKhemPZG3z94a8z4qgRPHvBs7Rt0TbskqQW6qoSkVCUezl/ePcP3D/rfl648AVO7nly\n2CVJHSk4RCThNu/YzIiXR7C1ZCszr57JQe0OCrskiYO6qkQkoeauncughwbRZ/8+TL50skIjBanF\nISIJ88TcJ7jpzZu45+x7GNp/aNjlSD0pOESk0e0s28lP3vgJb614iymXTaF/l/5hlyT7QMEhIo3q\ni4IvuPD5Czmw7YHkX51Ph5Ydwi5J9pHGOESk0UxZOYXjHjqO7x/+fV666CWFRppQi0NEGpy787cP\n/sad0+/kqfOe4huHfCPskqQBKThEpEEVlBRw+auX80XBF8y4agbdO3QPuyRpYOqqEpEG88n6Txj8\n0GC6tO7CuyPfVWikKbU4RGSffbXtK8bnj+e+mffxtzP+xsiBI8MuSRqRWhwiUm8L1i3gqolX0Xd8\nX9ZvX88HV3yg0GgC1OIQkbi4O/9d+V9un3Y7H639iOsHXc+SHy2hU+tOYZcmCWLuHnYNDc7MPB3X\nSyRMO8t28uy8Z7lj+h2UlZcxZsgYLjnyElpmtgy7NGkgZoa7W22fU4tDRPZq045N3D/zfsbNGEf/\nLv356zf/ypmHnolZrfsXSXLu8NlnMHt28KgrBYeIVGvZpmXcNf0unpn3DOd+7Vze+MEbHHXAUWGX\nJfXkDitWBAExa1ZVWDRvDsceC8ccU/dlqatKRCq5O1M/n8rt027n/c/e55pjrmH0caN1BdsUU14O\nS5fuHhJz5kC7dkFAHHNMVVgcFPWftq5dVQoOEaG0vJQXP3mRO6bfwaYdm/jJ8T/hsgGX0aZFm7BL\nk1qUlsLixbu3Ij76CDp12j0gjj4aunTZ+7IUHGm4XiINraCkgAmzJ3D3h3fTo0MPxgwZw/dyvkdG\ns4ywS5Nq7NoFn3yye0h8/DF07bpnSOy/f/zLV3Ck4XqJNJTPtn7GPz78B49+9ChnHHIGY4aM4bhu\nx4VdlkQpKYH586tCYtYsWLAAevWqCoiKkGjfvmF+U0dVicgeZn45kzum3cF/lv+HkQNGMvua2fTc\nr2fYZTV5O3bA3LlVrYhZs4Lupz59qgLi0kthwABokwS9h2pxiKS5ci/n9SWvc/u021m5eSU3fP0G\nrjrmKl3iPCRbtsC8ecFgdUVILF8Offvu3t105JHQqlVia1NXVRqul0g8inYV8fhHj3Pn9Dvp0LID\nNw25iQv6XkDzjOZhl9Yk7NgBixYFITF/ftXzli3Qr1/QxVQREv36QVZW2BUrOBQc0mSt3baWcTPG\n8eCsBzmh+wmMGTKGk3ucrBP2GklZGSxbtns4zJsXnFjXpw/07x+0Hiqee/SAZkl6lUAFRxqul8je\nzF83nzum3cHLi15mWP9h3Hj8jeRk54RdVtpwh9Wr9wyIRYuCcyGiw6F/f8jJCU6uSyUKjjRcL5FY\n7s5bK97i9mm38/FXHzN68GiuG3Qd2a2zwy4tpW3aFARDdEjMnx90J8UGxBFHQNu2YVfcMBQcabhe\nIhV27NrBc/Of447pdwBw05CbGNZ/GFmZSdBRnkKKimDhwt3DYd48KCzcs4upXz/o3DnsihuXgiMN\n10uarp1lO5mxegaTV05m8srJzPxyJif1OIkxQ8ZwxiFnaPyiFqWlwThE7ED1F18EXUr9++8eFD16\nQFPcpAqONFwvaTrKysuYvWZ2EBSrJjPt82nkZOdweu/TOb336ZzU4yTatkiT/pEGtHUrLFkSPBYv\nDp4XLQqeu3XbsxVx2GGpNw7RmBQcabhekr7KvZz56+YzeeVkpqyawrufvsvB7Q/m9F6nc1rv0zi1\n56l0bNUx7DKTwq5dwVVeK4Ih+nnbtqAFcfjhuz/37ZscJ84lOwVHGq6XpA93Z+mmpZVdT1NWTaFj\ny46c1us0Tu99Orm9cjmg7QFhlxkad1izZs9gWLIkOMz14IP3DIfDDw+u2dQUu5gaioIjDddLUtun\nWz6t7HqavHIyGZZR2fV0Wq/T6N6he9glJlxh4Z5dSxXPrVtX33o49FBo0SLsytOTgiMN10tSy5rC\nNUxZNaWyRbFt57YgKHoFYXFIx0OaxKD2rl2walX1XUtbtgQnycWGQ04OdFTPXMIpONJwvSS5bSza\nyDufvlPZ/bR221pye+VWtiiO6HxE2gZFeTl8+WX1Yw+rVgVdSNW1Hg4+OHnPom6KFBxpuF6SXApK\nCnjv0/cqu59WbF7Bid1PrOx+GnDAgLS5r4U7rFsHK1cGQRD9vHIlfP550ELo3XvPcDjsMGjZMuw1\nkLpQcKThekm4inYV8cHnH1S2KBasX8Bx3Y6r7Hoa1HVQyl5A0B02b64KgthwWLUqGHPo3Tu4H0T0\nc+/e0LNn4q/kKg1PwZGG6yWJ4e5sKNrAko1LWLppKYs3LGbaF9OY+eVMBh44sLJFcfzBx9MyM3X+\nlC4oqL61UPHarCoIYsOhV6/gftWS3hQcabhe0rAKSwpZumkpSzYuqXxUTAMcnn04Odk59Nm/D4O7\nDU76k+6XK54BAAAI00lEQVSKioIQqK61sHIlFBfXHAq9e2swWhQcCg4BoKS0hOWbl1cFw8alLNkU\nvC4oKaDP/n3ok92HnP1zyMkOHn2y+5DdKjupBrLLyoIxhtWrg0Ho1auD8xmiw2HLlqDLqKZw6NxZ\n5zjI3ik40nC9pHpl5WV8uvXTqmDYuKQyHNYUrqHnfj2DUNi/KhhysnPo2q4rzSzcQ3rcg3MZVq/e\nPRRiX69bF7QIunULHl27Qvfuu4fDgQfqCCXZNwqONFyvpszdWbNtTVUwRMJh6calrNyyki5tulSG\nQ0Uw5GTn0Gu/XmQ2ywyl5p07Ye3a2kMBqgKhIhRiXx94oE56k8an4EjD9Up35V7Oph2bWL5p+W7j\nDRWvWzdvXTnmUBEMOdk5HNrxUFo1T9whPe7B/Roqdvw1hcLmzdCly94DoVu3YNBZXUiSDBQcabhe\nqcbdKSgpYN32dazbvo71ReurXm9fz7qiqNfb17Fxx0batWjHIR0P2S0YKsYh9mu5X6PVWl4ehMGG\nDbB+fdWjYnrNmqpA+PLL4NDT2gKhSxfISI/TOKSJUHCk4Xolg+07t9c5CNYXrScrI4subbrQpU0X\nOrfpTJfWUa8r5rcOXndq3anBzoMoKana6dcUBtHTmzZB+/bBAHKnTsFzxaNTp+DWoBWh0LVrcE6D\nSLpRcKThejWG4tLiyh39HmEQGwzb1+E4B7Q5oNod/x6v23RukPMc3IPLZde2849+XVRUFQDVBUHs\ndHa27ssgknbBYWYdgUeAM4D1wM3u/mwNn03b4NhVtovCnYVs27mNwpLgedvObXvMq5je23sFJQWU\nlJbU2AKoLgjaNG9Tr8NU3WH79uBGO7GPgoLdpzds2DMIMjJq3/lHT3fooHEDkXilY3BUhMQVwDHA\nv4Ah7r6wms+GGhzlXs7Osp2UlJZQUlZCcWkxxaXFDbKzLysvo11WO9q2aEu7FsFz2xZtq5/Xoh2r\n561m0AmDqv18uxbtaJ/VvtYgKCsLdu6xO/jqdvo1zS8shKysYIfevn3wHP2Intep0+5B0KlTw3QN\n5eXlkZubu+8LSgPaFlW0LarUNTjCOU4xTmbWGjgfOMLddwBTzexVYARwc3XfWbZpWeWOO/a5uLQ4\nvvcir4tLi6v9Tux7u8p30SKjBVkZWWRlZpGVkUXLzJaVO+vKHX3zqp14x1Yd6dGhR41BUDGdlZFV\n446+rCw4O3jHjqrHHXPGcsiAS9ixIZjeFJlfXBx059Rlx19UBG3bVr+Tj57XrVvNgdC+ffhdQdpB\nVNG2qKJtEb+UCA4gB9jl7suj5s0FTq3pC2c9ddZuO+7oHXjlvGre75DVgaw21b+323czs2huWWRW\nPMiiubUkkywyaEF5uVFWRuWjtHT3HXrFo3jL7tObqvlMxY6+uvnRj9LS4CqkrVpVPQoKYM6c4HXs\ne61bVw0IH3ZYzYHQrp1OLBORKqkSHG2Bgph5BUCNl13rM2n5bjvusjIoLIMtMfPq8igvr36+WbBD\nzcio/ZGZuftOu7odecWjTZuge2Zvn6luWVlZe/brjx0bPEREGkpKjHGY2UDgfXdvGzXvJuAUdz+3\nms8n/0qJiCShtBnjAJYAmWZ2aFR31QBgQXUfrsuKi4hI/aREiwPAzJ4BHLia4Kiq14ATqjuqSkRE\nGk8qDXmOAloD64CngOsUGiIiiZcyLQ4REUkOqdTiEBGRJJBWwWFmHc3sZTPbZmYrzWxY2DWFxcxG\nmVm+mRWb2SNh1xMWM2thZg+b2Soz22pms83sW2HXFRYze9LM1pjZFjNbZGZXhl1T2Mysj5ntMLMn\nwq4lLGaWF9kGBWZWaGZ7HQZIq+AA7gWKgc7AD4D7zKxvuCWFZjVwGzAh7EJClgl8Bpzs7h2A3wD/\nZ2Y9wi0rNH8Cerv7fsA5wO/N7OiQawrbOGBG2EWEzIHr3b29u7dz973uN9MmOKIuS/Jrd9/h7lOB\nisuSNDnu/oq7TwQ2hV1LmNy9yN1vdffPI9P/AlYCx4ZbWTjc/RN3L45MGsEO49AQSwqVmQ0FNgP/\nDbuWJFDn0xjSJjio+bIk/UKqR5KQmR0A9KGGc4CaAjMbb2bbgYXAl8CkkEsKhZm1B34HjCGOnWYa\n+5OZrTOz98ysxss5QXoFR9yXJZGmxcwyCQ7lfszdl4RdT1jcfRTB/y8nAS8BJeFWFJpbgYfc/cuw\nC0kCPwMOAboBDwGvmVnvmj6cTsGxDWgfM68DUBhCLZJkLLik8FMEO8kfhVxO6DzwAdAd+GHY9SRa\n5DJG3wTuCruWZODu+e6+3d13ufsTwFTg2zV9PlUuOVIXcV2WRJqcCUAn4NvuXhZ2MUkkk6Y5xnEq\n0BP4LPJHRVsgw8yOcPdB4ZaWFJy9dN+lTYvD3YsImt23mllrMzsJ+B7wZLiVhcPMMsysJZBBEKhZ\nZpYRdl1hMLP7ga8B57j7zrDrCYuZdTazi82sjZk1M7OzgKHA22HXFoIHCAJzIMEfmPcDrwNnhllU\nGMysg5mdWbGPMLPhwMnAGzV9J22CI0KXJanya6AI+DkwPPL6V6FWFILIYbfXEOwgvooco17QRM/x\ncYJuqc8Jjrb7K3BD5EizJsXdi919XcWDoKu72N2b4lGIzYHfE+w31xPsR89192U1fUGXHBERkbik\nW4tDREQamYJDRETiouAQEZG4KDhERCQuCg4REYmLgkNEROKi4BARkbgoOEREJC4KDhERiYuCQ0RE\n4qLgEGlkZnaImW2MXMobM+sauWHOKWHXJlIfCg6RRubuKwhulPOUmbUCHgUedfd3w61MpH50kUOR\nBDGzVwjuslYODHb3XSGXJFIvanGIJM7DQD/gHoWGpDK1OEQSwMzaAHOBycDZwJHuviXcqkTqR8Eh\nkgBmNgFo5e6XmNkDwH7ufnHYdYnUh7qqRBqZmZ1DcEvS6yOzxgBHN9G7EEoaUItDRETiohaHiIjE\nRcEhIiJxUXCIiEhcFBwiIhIXBYeIiMRFwSEiInFRcIiISFwUHCIiEhcFh4iIxOX/ARfmBFJ+nvFL\nAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x106d4c710>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# distance between x and y axis and the numbers on the axes\n", "matplotlib.rcParams['xtick.major.pad'] = 5\n", "matplotlib.rcParams['ytick.major.pad'] = 5\n", "\n", "fig, ax = plt.subplots(1, 1)\n", " \n", "ax.plot(x, x**2, x, np.exp(x))\n", "ax.set_yticks([0, 50, 100, 150])\n", "\n", "ax.set_title(\"label and axis spacing\")\n", "\n", "# padding between axis label and axis numbers\n", "ax.xaxis.labelpad = 5\n", "ax.yaxis.labelpad = 5\n", "\n", "ax.set_xlabel(\"x\")\n", "ax.set_ylabel(\"y\");" ] }, { "cell_type": "code", "execution_count": 98, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# restore defaults\n", "matplotlib.rcParams['xtick.major.pad'] = 3\n", "matplotlib.rcParams['ytick.major.pad'] = 3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Axis position adjustments" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Unfortunately, when saving figures the labels are sometimes clipped, and it can be necessary to adjust the positions of axes a little bit. This can be done using `subplots_adjust`:" ] }, { "cell_type": "code", "execution_count": 99, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEmCAYAAABvd5dxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VfWd//HXhwQSQsKOYZWSALKIoIhApRo3rNW6VB0t\nFrTgNi7VwemmnZFf69COjtO6/KyyuotKiysqblHEDQhLkVAwoAgiOyQhZP/OH+feJCQhkOTmnru8\nn4/Hedx7z3Y/Nzz4fM75fs/3HHPOISIi8auV3wGIiIi/VAhEROKcCoGISJxTIRARiXMqBCIicU6F\nQEQkzqkQiDSSmVWa2YQjrHN6YL2e4YpLpKlUCEQaYGZvm9mcWrO7A/NrrFNmZpPq2VyDdCQqJPod\ngEi0cc7t8DsGkVDSGYHIYZjZXOAs4OpAM09FjSafCYF1NuH9P5obXKeB/WWa2Xwz22tme8zsLTM7\nPjy/RuTwVAhEDu82YDHwApAO9AA+rrXOKKAysG73wDp1mNkxwEfAd8CpwGhgHfC+mXVpieBFjpYK\ngchhOOfygVLgoHNup3Nuh3OurNY6uwJv8wPLD9ds9K/AJufcLc65tc65DcDtwH7gqpb6DSJHQ30E\nIuExCjjZzApqzU8GBvgQj0gVFQKR8GgFvAPcDFitZfvDH45INRUCkYaVAgkhWGcZcDWw1TlXGorA\nREJFfQQiDdsEjDSzDDPrYmb1HTxtAs4wsx61On5rHvk/jFcsXjGzcWbWN/B6j5mNacH4RY5IhUCk\nYfcDu4BVwA68K35qDxS7AxgJfBVYJ6hqvUAn8lhgJ/A3vCuGngKOBba1TOgiR8f0hDIRkfimMwIR\nkTinQiAiEudUCERE4lxMXT5qZurwEBEJcM7VHrNSr5g7I3DOxfV09913+x6D31O8/w3i/ffrb+BN\njRFzhUBERBpHhUBEJM6pEMSYrKwsv0PwXbz/DeL994P+Bo0VUwPKzMzF0u8REWkqM8PFa2exiIg0\njgqBiEicUyEQEYlzKgQiInEurIXAzG42s6VmVmxmc2rM72tmlWaWb2YFgde7am3732a2y8x2mtmf\nwhm3iEgsC/ctJrYCfwDOBdrWWuaADvVd9mNmNwAXAsMCs94xs43OuRktGayISDwI6xmBc+4l59wr\nwJ56FlsD8UwC7nfObXPObQP+B7imZaIUEYkvkdRH4ICvzGyzmc2p9ci/oXhPiApaFZgnIiLNFCmF\nYBcwCuiL98i/NOCZGstTgf01PucH5omISDNFxG2onXMHgJzAx51mdguwzczaBZYVAu1rbNIhMK+O\nadOmVb3PysrSUHMRiQvZ2dlkZ2c3aVtfbjFhZn8AejnnJh9meTrwLdDROVdgZkuAOc652YHlU4Ap\nzrnv19pOt5gQkbi3ZscahqUPi8xbTJhZgpklAwlAopklBeadYmYDzdMFeAB43zlXENj0SWCqmfU0\ns17AVGBuOGMXEYkW9318X6PWD3cfwe+AIuDXwFWB93cBGcCbeG3/q4FiYEJwI+fcY8CrwD/wOopf\ncc7NDGvkIiJRYO/Bvby87uVGbaO7j4qIxJCHP3+YxZsX88LlL0Rm05CIiLQc5xwzc2Zy/UnXN2o7\nFQIRkRix9NulFJYWcka/Mxq1nQqBiEiMmLl8JteeeC2trHGpPSLGEYiISPMUlBQwP3c+a29a2+ht\ndUYgIhIDnlvzHFnfy6JHWo9Gb6tCICISA2bmzOS6k65r0rYqBCIiUW7ldyvZXridczPPbdL2KgQi\nIlFu5vKZTDlxCgmtEpq0vTqLRUSiWFFZEfO+mMfKG1Y2eR86IxARiWIvfvEiY3qPoU+HPk3ehwqB\niEgUa04ncZAKgYhIlPpixxds3LuR8wec36z9qBCIiESpWTmz+PmIn9M6oXWz9qPOYhGRKFRcXszT\n/3iaz679rNn70hmBiEgUWpC7gBHdR5DRKaPZ+1IhEBGJQqHoJA5SIRARiTIbdm9gzY41XHTcRSHZ\nnwqBiEiUmZUzi6uHX01SYlJI9qfOYhGRKFJaUcoTq57gg2s+CNk+dUYgIhJFXv3nqxzX9TiO63pc\nyPapQiAiEkVC2UkcpEIgIhIlvtr3Fcu+Xcalgy8N6X5VCEREosScFXOYMGwCbVu3Del+1VksIhIF\nyivLmbNiDm9c9UbI960zAhGRKPDGhjfo06EPw9KHhXzfKgQiIlGgJTqJg1QIREQi3Nb8rXy0+SOu\nGHpFi+xfhUBEJMLNXTmXfxn6L7Rr065F9q9CICISwSpdJbNyZrVYsxCoEIiIRLS3896mS0oXRvYc\n2WLfoUIgIhLBWrKTOEiFQEQkQm0v3M67m95lwrAJLfo9KgQiIhHqiVVPcMmgS2if1L5Fv0eFQEQk\nAjnnWryTOEiFQEQkAn3w9QckJSYxpveYFv8uFQIRkQg0Y/kMrjvpOsysxb9LhUBEJMLsLtrNwg0L\n+dkJPwvL96kQiIhEmKdWP8UFAy+gc9vOYfk+FQIRkQjinAvL2IGaVAhERCLIJ1s+obyynNP6nha2\n71QhEBGJIMGzgXB0EgeZcy5sX9bSzMzF0u8Rkfiyv3g/33vge6y/ZT3d2nVr1r7MDOfcUVUTnRGI\niESIZ/7xDOdknNPsItBYKgQiIhHAj07iIBUCEZEIsHzbcvYX7+esjLPC/t0qBCIiEWDm8plMOXEK\nrSz8aTkx7N8oIiKHKCwt5MW1L7LmpjW+fL/OCEREfPb8muc5re9p9Ezr6cv3qxCIiPhsRs4MXzqJ\ng1QIRER8tHr7ar4t+JYf9v+hbzGoEIiI+Gjm8plMHjGZhFYJvsWgzmIREZ8cLDvIs2ueJef6HF/j\n0BmBiIhP5q+dz+heo+nbsa+vcagQiIj4xK+RxLWpEIiI+CB3Zy4b9mzggoEX+B2KCoGIiB9m5czi\nmuHX0Dqhtd+hqLNYRCTcSspLeGr1U3wy5RO/QwF0RiAiEnYvrXuJE9JPILNzpt+hACoEIiJhFymd\nxEEqBCIiYZS3J4/V21dz8aCL/Q6ligqBiEgYzcqZxcQTJpKUmOR3KFXUWSwiEiZlFWU8vupx3pv0\nnt+hHCKsZwRmdrOZLTWzYjObU2vZWWaWa2aFZvaumR1ba/l/m9kuM9tpZn8KZ9wiIqHw2vrX6N+5\nP4O7DfY7lEOEu2loK/AHYHbNmWbWBfgbcBfQGVgOPF9j+Q3AhcAw4ATgx2Z2fZhiFhEJiZk5M7n+\npMhLXWEtBM65l5xzrwB7ai36CbDGOfd351wpMA0YbmYDA8snAfc757Y557YB/wNcE6awRUSabfP+\nzXy+9XMuG3KZ36HUESmdxUOBVcEPzrki4MvA/DrLA++HIiISJeasmMNPj/8pbVu39TuUOiKlszgV\n2FFrXj6QVmP5/lrLUsMQl4hIs1VUVjB7xWxen/C636HUK1IKQSHQvta8DkDBYZZ3CMyrY9q0aVXv\ns7KyyMrKClWMIiJN8uaXb9IzrScnpJ/QYt+RnZ1NdnZ2k7Y151xoozmaLzX7A9DLOTc58Pk64Grn\n3LjA53bATmC4c26DmS0B5jjnZgeWTwGmOOe+X2u/zo/fIyLSkIvnXcwFAy/g2pOuDdt3mhnOOTua\ndcN9+WiCmSUDCUCimSWZWQKwABhqZpeYWRJwN7DSObchsOmTwFQz62lmvYCpwNxwxi4i0hTbCrbx\n4dcfcuXxV/odymGFu7P4d0AR8GvgqsD7u5xzu4BLgel4VxSdDFT91ZxzjwGvAv/A6yh+xTk3M7yh\ni4g03tyVc7l8yOWktoncbk1fmoZaipqGRCSSVLpK+j/Ynxcuf4GTe54c1u+O2KYhEZF48t6m9+iQ\n3IGRPUb6HUqDVAhERFrIjOUzuO6k6zA7qgNz36gQiIi0gJ0HdrIobxFXDbvK71COSIVARKQFPLHq\nCS4ZfAkdkjv4HcoRqRCIiISYc45ZObMi6ilkDVEhEBEJscWbF5PQKoGxvcf6HcpRUSEQEQmx4DOJ\nI72TOEjjCEREQmjPwT1kPJBB3i/y6JLSxbc4NI5ARMQnT69+mvMHnu9rEWgsFQIRkRBxzlU1C0UT\nFQIRkRD5bOtnlJSXcHrf0/0OpVFUCEREQmTm8plce9K1UdNJHBQpD6YREYlq+SX5/H3d31l38zq/\nQ2k0nRGIiITAs/94lrP6nUV6arrfoTSaCoGISAjMzJnJ9SOv9zuMJlEhEBFpppxtOew5uIezM872\nO5QmUSEQEWmGSlfJHYvu4LbRt9HKojOlRmfUIiIR4oFPH6CsooxbT7nV71CaTFcNiYg00dqda5n+\n0XQ+nfIpCa0S/A6nyXRGICLSBKUVpUxcMJHpZ04ns3Om3+E0iwqBiEgT3PPhPXRP7c61J13rdyjN\npqYhEZFG+mzLZ8xYPoMVN6yIulHE9TnqMwIz+7OZjWjJYEREIl1RWRGTXprEwz96mB5pPfwOJyQa\n0zSUALxlZmvM7Ndm1rulghIRiVS/fvvXjOo5isuGXOZ3KCFz1IXAOfcLoCfwG2AEkGtm75jZJDNL\nbakARUQixdt5b/PyP1/mofMe8juUkGryE8rMbCjwLDAMKALmAXc757aGLrxGx6QnlIlIi9h7cC/D\nHx3O7Atnc07mOX6Hc0Qt9oQyM2tvZlPM7H3gQ+Az4AfAYKAQeKOxwYqIRINb37iVi467KCqKQGMd\n9VVDZjYfOBevADwKvOScK6mxfCqwP+QRioj47MUvXmTpt0tZccMKv0NpEY25fPRT4Bbn3Hf1LXTO\nVZpZ9N1/VUSkAdsKtnHLG7fwypWvkNI6xe9wWkST+wgikfoIRCSUnHNc8NwFjOwxkt+f8Xu/w2mU\nFusjEBGJJ7NyZvFd4Xf87rTf+R1Ki9LIYhGReuTtyePO9+7kg2s+oE1CG7/DaVE6IxARqaWisoKr\nX7qaO8fdyZBuQ/wOp8WpEIiI1HL/J/eT2CqR28bc5ncoYaGmIRGRGlZvX819H9/HsuuWRe0Txxor\nPn6liMhRKCkvYeKCidx3zn307djX73DCRoVARCRgWvY0+nXsx9XDr/Y7lLBS05CICLBk8xIeX/U4\nq25cFRPPGGgMnRGISNwrLC1k0kuTePT8Rzmm3TF+hxN2GlksInHvxtdupKSihLkXzfU7lJBpzMhi\nNQ2JSFxbuGEhb375JqtuXOV3KL5RIRCRuLW7aDfXvXodz/zkGTokd/A7HN+oaUhE4pJzjivmX0Hv\n9r3533P/1+9wQk5NQyIiR/DcmudYs2MNT1z8hN+h+E6FQETizpb8Ldz+5u28cdUbtG3d1u9wfKfL\nR0UkrjjnmPzyZG495VZG9hzpdzgRQYVAROLKI0sfYX/Jfn77g9/6HUrEUNOQiMSN9bvXc3f23SyZ\nvITEVkp/QTojEJG4UF5ZzqQFk5iWNY3juh7ndzgRRYVAROLCnz76E2lJadw06ia/Q4k4OjcSkZiX\nsy2HBz97kJwbcuLmGQONob+IiMS04vJiJi6YyJ/P/TO92/f2O5yIpEIgIjHtrnfvYki3IUwYNsHv\nUCKWmoZEJGZlf5XNvC/mxeUzBhpDZwQiEpPyS/K55qVrmHHBDLqmdPU7nIimm86JSEya/PJkElsl\nMuPHM/wOxRe66ZyIxLWX173MB19/ENfPGGgMFQIRiSk7Duzgxtdv5MXLXyS1Tarf4UQF9RGISMxw\nznHDazcw6YRJjDt2nN/hRA2dEYhIzHhy1ZPk7clj3qXz/A4lqqgQiEhM+Hrf1/z72//OOxPfISkx\nye9wooqahkQk6lW6Sq55+RruGHsHw7sP9zucqBNRhcDMss3soJnlm1mBmeXWWHaWmeWaWaGZvWtm\nx/oZq4hEjgc/e5DSilJ++f1f+h1KVIqoQgA44CbnXHvnXJpzbjCAmXUB/gbcBXQGlgPP+xemiESK\ntTvXcs+H9/DkxU+S0CrB73CiUqQVAoD6BkD8BFjjnPu7c64UmAYMN7OBYY1MRCJKWUUZExdM5L/O\n/C8yO2f6HU7UisRC8Ecz22Fmi83s9MC8oUDVyBDnXBHwZWC+iMSpez68h/R26Vw/8nq/Q4lqkXbV\n0K+AtUAp8FPgFTMbAaQCO2qtmw+khTc8EYkUn2/9nEeXP8rKG1bqhnLNFFGFwDm3tMbHJ83sSuB8\noBBoX2v1DkBB7X1Mmzat6n1WVhZZWVkhj1NE/FVUVsTEBRN56LyH6JHWw+9wIkJ2djbZ2dlN2jai\nbzpnZguBhUAJcLVzblxgfjtgJzDCObe+xvq66ZxIjNtfvJ8r5l9Bt3bdeOqSp/wOJ2I15qZzEdNH\nYGYdzGy8mSWZWYKZXQX8AHgDWAAMNbNLzCwJuBtYWbMIiEjs+3LPl4yZPYYBnQcw96K5focTMyKm\nEACtgXvw+gJ2AjcDFznn8pxzu4BLgenAHuBk4Eq/AhWR8Ht/0/ucOudUfnHKL3joRw+R2CqiWraj\nWkQ3DTWWmoZEYtOM5TP4j/f/g2d/8ixnZZzldzhRQc8jEJGYUF5Zzh1v3cGbeW/y0c8/YkCXAX6H\nFJNUCEQkIu0r3seV86+k0lXy6ZRP6dS2k98hxaxI6iMQEQG8TuGxs8cyoPMAFl61UEWghakQiEhE\neX/T+4ybM47bRt+mTuEw0V9YRCJGsFP4uUuf48x+Z/odTtxQIRAR3wU7hd/Ke0udwj5QIRARXx3S\nKXztp3RM7uh3SHFHfQQi4ptgp/DALgNZeNVCFQGfqBCIiC+CI4VvG30bD573oDqFfaS/vIiE3WPL\nHuM/s/9TncIRQoVARMJGncKRSYVARMIi2CnscOoUjjDqIxCRFlezU/j1Ca+rCEQYFQIRaVHBkcK3\nj75dncIRSv8iItJiHlv2GHdn381zlz7HGf3O8DscOQwVAhEJufLKcqa+NZVFeYtY/PPF6hSOcCoE\nIhJS+4r3ccX8KwDUKRwl1EcgIiGzYfcGxs4ey6Aug9QpHEVUCEQkJN7b9B7j5nqdwg+c94A6haOI\n/qVEpNmCI4XnXTpPncJRSIVARJos2Cn89sa3WTJ5Cf079/c7JGkCFQIRaZJgp7BhfDLlE/UHRDH1\nEYhIo23YvYExs8YwqMsgXpvwmopAlFMhEJFGCXYKTx07VZ3CMUL/giJy1B5d9ijTsqepUzjGqBCI\nyBGVV5bzb2/+G+9seoePJn+kTuEYo6YhETmssooynlz1JMP+Ooy8vXl8MuUTFYEYpDMCEamjuLyY\nOSvmcO+Se8nsnMnD5z3Mmf3OxMz8Dk1agAqBiFQpKCng0WWP8udP/8zJPU9m3mXzGNN7jN9hSQtT\nIRARdhft5sHPHuSRZY9wdsbZvPmzNzkh/QS/w5IwUSEQiWPbCrZx/yf3M2fFHC4dfCkfT/5Yt4yO\nUhUVkJsLn3/uTY2hQiAShzbt3cS9S+7l+S+eZ9LwSay6cRV9OvTxOyw5Ss7B1197CX/pUu81Jwd6\n9IBTToFRoxq3P3POtUykPjAzF0u/RyTU1u5cyx8/+iMLNyzkxpE3cvuY2+nWrpvfYckR7NpVnfCD\nrwkJXtIPTiefDJ06VW9jZjjnjqp3X4VAJA4s+3YZ0xdPZ8k3S7h99O3cNOomOiR38DssqceBA7Bi\nRXUTz+efw+7dXqIfNao68ffqBQ1dxKVCICI45/jw6w+Z/tF01u5cyy+//0uuPelaUlqn+B2aBJSX\nw5o1hx7pb9gAxx9f3cRzyilw3HHQqpGjvlQIROKYc443vnyD6Yuns/3Adn5z6m+YOHwibRLa+B1a\nXHMONm6sPspfuhRWroQ+faqP8keNguHDISmp+d+nQiAShyoqK/hb7t+Yvng6Dsed4+7ksiGXkdAq\nwe/Q4tL27dVH+cHEn5JyaPPOyJHQoYVa6FQIROJIaUUpz6x+hj8t+ROd23bmrh/cxfkDztco4DDK\nz/eu2qmZ+PPzq5P+qFHe1LNn+GJSIRCJAwfLDjJ7xWzu+/g+BnYZyJ3j7iTre1kqAC0oeNnmypWw\napU3rVzpHf0PGwajR1cn/v79G9+uH0oqBCIxLL8kn0eWPsJfPv0LY/uM5bfjfsspvU7xO6yYU1wM\nX3xRneyDiT8lBUaM8Nryg68DBniXc0aSxhQCDSgTiRK7inbxwKcP8Ndlf+WH/X/IO5Pe4fhjjvc7\nrJiwY0d1sg++5uV5R/XBZH/hhd5rtxgcdqEzApEItzV/K/d/cj+Pr3ycy4dczq9O/RWZnTP9Disq\nVVTA+vV1m3aKiw89wh8xAoYMCc3VO35R05BIDPhyz5fcu+Re5q+dz89H/JypY6fSq30vv8OKGvn5\nsHr1oUf5X3zh3YahdtLv06fhwVnRSE1DIlHIOceaHWtYlLeIt/LeImdbDjeNuon1t66na0pXv8OL\nWM7B5s11m3a++84bmDV8OJx4Ilxzjdeh27693xFHHp0RiPhox4EdvJ33Nos2LmJR3iJSWqdwbua5\njM8cz1n9ziItKc3vECPK7t3eHTZzc70RuTU7cIcPj/wO3HBS05BIhCopL2HJN0tYlOcl/o17N3JG\nvzMYnzGe8Znj1faPd4S/dauX7NeurU78ublQUgKDB3vT0KHVST8WO3CbS4VAJEI451i3a52X+Dcu\nYvHXixnSbQjjM73EP7rXaFontPY7TF+Ul3u3XKiZ6HNzYd067wh/8GCvwzaY+AcP9tr3Y60tv6Wo\nEIj4aHfRbt7d9G7VUT9Q3dyTcRad23b2OcLwOngQ/vnPugk/L89L7DUTfXCqeTtlaRoVApEwKqso\n49Mtn/JW3lssylvEul3rOK3vaVXJf2CXgXEx2nffvrrJfu1a2LYNMjPrJvuBA70jf2kZKgQiLcg5\nR97ePN768i0WbVxE9lfZ9O/cvyrxj+09lqTEKL4AvQHOeYm9dsLPzYXCQhg06NBkP2QIZGRAoq5P\nDDsVApEQ21e8j/c2vVfV3FNSUeK182eM5+yMs2PqKV/Owc6dXtNNcNq40RuIlZsLbdrU35zTu7fa\n7yOJCoFIM5VXlrN069KqTt7V21dzap9Tqzp5h3YbGtXNPWVl3rX3NRN9zfdJSd6RfGZm9dS/v3eE\n36WL39HL0VAhEGmCr/Z9VXXE/96m9+jToQ/jM8Zzbv9zGXfsOJITk/0OsVEKCupP9Hl53uWZPXpU\nJ/maST8jAzp29Dt6aS4VApHDqHSVbMnfQu7OXNbtWse6XevI3eW9dzjOyTiH8ZnjOSfjHHqk9fA7\n3AYF2+trJ/ng5wMHqhN87aP7vn29Jh6JXSoEEveKy4vZsHtDnWT/z93/pGNyRwZ1HcSgLoMY3G2w\n977rIHql9Yq45p6SEu/+9/Ul+k2bIDW1bpIPfu7eXW328UyFQOLG7qLdhyT64LQlfwv9OvVjcNfq\nRB+c2idFxs1mKith1y745hvYsqXu61dfeffL6d27/kSfkQFpugOFHIYKgcSUisoKNu/fXCfZ5+7K\npbSitE6yH9x1MBmdMnwdsXukJL9li9dOn5rq3fmyd++6r337wrHH6tJLaRoVAolKRWVFrN+9vk5z\nzobdG+ia0vWQRB983z21e9ibcw6X5Gu+P1KSD05t24Y1dIkjKgQSkcory9l5YCfbD2xne+F2vt7/\ntddpu9tL/N8Vfkdmp0yv3b5L9RH+cV2PI7VNalhirJ3k6zuar53kD5foleTFTyoEEjZlFWXsOLCj\nKrkf8npgO98Vflf1eV/xPjq37Ux6u3TSU9Pp074Pg7sOruqw/V7H75HYKvTtIJWVsHev9zjCmtP2\n7Yd+3ratOsnXl9yV5CWaqBBIs5RWlNZN6jWS+/bCQII/sJ38kny6pnStSu7p7dKr3ndP7X7I/K4p\nXUloFZobxBcV1U3sh0v0u3Z5narHHFP/lJ5e/dq7t+5/I7FBhUAOUekqOVB6gD0H9zSY3INH8IWl\nhXRL6eYl8lrJveZr99TudEnpQitr1ewYKyq8h44c7mi99lRWVp3AG5rS06FrV10zL/EnJguBmXUC\n5gDnADuBO51zz9VaJ2YKQXllOQUlBRSUFlBQUkB+SX7V+4LSwOeay0vzD7v+gbIDJCcm0ym50yHJ\nvHu77nWSe3pqOp3bdm5ScnfOu/HYvn3etH9/9fv65tVM/Hv3eqNZjya5H3OMd4Sva+RFDi9WC0Ew\n6U8GTgJeB8Y653JrrBPWQuCco7yynJKKEorLiykuL6ak3HtfUlHCgdIDDSfyBhJ7SUUJqW1SaZ/U\nnrQ2aaQlpZHWJs37HHhf53NSGptWbGLcaeMOWT+1TepRNclUVnoP/G4okTeU4Pfvh+RkL6HXnjp0\nqDuvU6fqxN+lS+guk8zOziYrKys0O4tC8f77QX8DiMGH15tZCvATYIhz7iCwxMxeBiYCd9Zcd9V3\nq6oSce3kXHN+ffOOanmNRF9cXgxA28S2JCUmkZyYTHJiMkkJ3vu2rdtWJ/JAom6f1J70dun079y/\n3kQeXD+ldUqDl0WWl3sP/CgqqvFaBK++PY1hXUezraju8uDR+uESeUGB11HaUBLv08d7AHh9ib19\ne2gdAQ/bivckEO+/H/Q3aKyoKATAQKDMOZdXY94q4PTaK056aVJVIk5OTK5K0IfMq/E+LSmt7vJ6\nknpSYhJJCckkkkyiJdE68GoukYoKr427vJyq9xUVUFpaT7LeW/15axF8WXt5Pa/1zauo8K5cSUk5\n9HXXLu8Sx9rzU1KgXTtvRGp9SbxjR6+5JZ4f9i0Sr6KlEKQC+bXm5QN1Bth3X7CqKhEXV8CBwyTp\nwyXvhuY75yXK+qbExLrz2rSpm5DrS96dOkHPnvUn7/pe27b19l3fCcO0ad4kInK0oqKPwMxGAB85\n51JrzLsDOM05d1GNeZH/Y0REwiSm+giA9UCimWXWaB4aDnxRc6Wj/dEiIlItKs4IAMzsWcAB1+Fd\nNfQq8P2aVw2JiEjjNX8kUPjcDKQAO4CngRtVBEREmi9qzghERKRlRNMZwWGZWSczW2BmhWa2ycx+\n6ndM4WRmN5vZUjMrNrM5fsfjBzNrY2azzOwrM9tvZjlm9kO/4wo3M3vKzLaZ2T4zW2dmU/yOyQ9m\nNsDMDprZk37HEm5mlh347flmVmBmR2w5iYlCADwCFAPdgJ8BfzWzwf6GFFZbgT8As/0OxEeJwGbg\nB865DsDUTOOzAAADVElEQVR/AC+Y2bH+hhV2fwT6Oec6AhcC95jZiT7H5IeHgc/9DsInDrjJOdfe\nOZfmnDtiLoz6QlBj1PHvnHMHnXNLgOCo47jgnHvJOfcKsMfvWPzinCtyzv3eOfdN4PPrwCZgpL+R\nhZdzbq1zrjjw0fCSQqaPIYWdmV0J7AXe9TsWHzXqCsqoLwQcftTxUJ/ikQhgZunAAGpdYhwPzOz/\nm9kBIBf4Fljoc0hhY2btgf8HTKWRyTDG/NHMdpjZYjOrcweG2mKhEBz1qGOJD2aWiHdl2ePOufV+\nxxNuzrmb8f5fjAP+DpT4G1FY/R6Y6Zz71u9AfPQrIAPoBcwEXjWzfg1tEAuFoBBoX2teB6DAh1jE\nZ+bdqe9pvOR3q8/h+MZ5Pgb6AP/qdzzhELgDwdnAX/yOxU/OuaXOuQPOuTLn3JPAEuBHDW0TLSOL\nG3JUo44lbswGugI/cs5V+B1MBEgkfvoITgf6ApsDBwSpQIKZDXHOnexvaL5yHKGZLOrPCJxzRXin\nv783sxQzGwf8GHjK38jCx8wSzCwZSMAriklmFnf3ETWzR4FBwIXOuVK/4wk3M+tmZleYWTsza2Vm\n5wJXAu/4HVuYPIZX9EbgHQw+CrwGjPczqHAysw5mNj6YA8zsKuAHwJsNbRf1hSAg3kcd/w4oAn4N\nXBV4f5evEYVZ4DLR6/GSwPbA9dP5cTamxOE1A32DdwXZvcBtgSuoYp5zrtg5tyM44TUbFzvn4ulq\nutbAPXi5cCdebrzIOfdlQxtpZLGISJyLlTMCERFpIhUCEZE4p0IgIhLnVAhEROKcCoGISJxTIRAR\niXMqBCIicU6FQEQkzqkQiIjEORUCEZE4p0IgEgJmlmFmuwO3QsbMegYeDHKa37GJHIkKgUgIOOc2\n4j0Q5GkzawvMBeY65z70NzKRI9NN50RCyMxewns6VCUwyjlX5nNIIkekMwKR0JqF97zsh1QEJFro\njEAkRMysHbAKeA84DxjmnNvnb1QiR6ZCIBIiZjYbaOucm2BmjwEdnXNX+B2XyJGoaUgkBMzsQrxH\nIt4UmDUVODHOnpAmUUpnBCIicU5nBCIicU6FQEQkzqkQiIjEORUCEZE4p0IgIhLnVAhEROKcCoGI\nSJxTIRARiXP/B7XhPC7uO4akAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10b7b4950>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1, 1)\n", " \n", "ax.plot(x, x**2, x, np.exp(x))\n", "ax.set_yticks([0, 50, 100, 150])\n", "\n", "ax.set_title(\"title\")\n", "ax.set_xlabel(\"x\")\n", "ax.set_ylabel(\"y\")\n", "\n", "fig.subplots_adjust(left=0.15, right=.9, bottom=0.1, top=0.9);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Axis grid" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With the `grid` method in the axis object, we can turn on and off grid lines. We can also customize the appearance of the grid lines using the same keyword arguments as the `plot` function:" ] }, { "cell_type": "code", "execution_count": 100, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAADMCAYAAACr+w2dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4FFXWwOHfzQaBBELYQSFsLiwSFAUVEUQUQUFcGXE0\niCi4jIDLOKKo6KfjiLiMioiCOqiAsiuyiLSjbCIQBhBlkbBDICE7IUvf749KQmeDdFLdVV057/Pk\nIVVd3XUODadPV9++V2mtEUIIIYQQ5guyOgAhhBBCCKeSRksIIYQQwkek0RJCCCGE8BFptIQQQggh\nfEQaLSGEEEIIH5FGSwghhBDCR6TREkIIIYTwkQo1Wkqph5VS65VS2UqpaeUcM14p5VZKXVNi/2tK\nqeNKqWNKqX+aEbQQQlSU1C8hhJVCKnjcQeAl4HogvOSNSqnWwG3AoRL7HwQGAp0Kdn2vlPpTa/1h\npSMWQgjvSP0SQlimQle0tNbztdYLgeRyDnkPeArILbH/HuANrfVhrfVhYCIQV8lYhRDCa1K/hBBW\nqvIYLaXU7UC21npJGTd3ADZ7bG8u2CeEEJaT+iWE8LWKfnRYJqVUBPB/QJ9yDokAUj220wr2CSGE\npaR+CSH8oUqNFvAC8JnWen85t2cAdTy26xbsK0YpJStbC1ENaa2Vhad/AVPqVxMNNT32RBX8JAB7\ny3jYlkBMGfvleDlejrf/8XUx/n/vrXj90lpX+AdjQOk0j+1NQCJwuOAnDzgOPFlw+ypguMfxw4HV\nZTyudornn3/e6hBM45RcnJKH1s7KpeD/vVc1qCo/Ur/Ozkn/viQX+3FKHlp7V78qdEVLKRUMhALB\nQIhSqkZBUbqmYH+hX4HRQOF4h8+AsUqp7wAFjAXeqsg5hRDCDFK/hBBWquhHh88CzwOFH/ENBV7U\nWk/wPEgplQekaK2zALTWU5RSrYAtBfedqrWeakrkNpWQkGB1CKZxSi5OyQOclYsfSf0SQlimQo2W\n1vpF4MUKHNe6jH1PA097H1pgio2NtToE0zglF6fkAc7KxV+kflVcr169rA7BNJKL/TglD28p46NG\ni4NQStshDiGE/yilrB4MbwqpX0JUP97UL1nrUAghqqSl1QGYxkmfTEsu9uOUPLwljZbJXC6X1SGY\nxim5OCUPcFYuzhFjdQCmcdILoeRiP07Jw1vSaAkhhBBC+Ig0WiZz0mA/p+TilDzAWbkIIUR1II2W\nEEIIIYSPSKNlMieNoXFKLk7JA5yVixBCVAfSaAkhRJUkWB2AaWJirI7APJKL/TglD2/JPFpCCEvI\nPFpCiEAl82gJIYQQQtiANFomc9IYGqfk4pQ8wFm5CCFEdSCNlhDC7+SjNiFEoPK2fskYLSGEX6Wd\nSqPXJ73YNHKTjNESQgScRxc/yrsD3pUxWkIIe3pmxTNsOrLJ6jBMJGsd2pHkYj9OyGP1/tW8t/49\nr+5ToUZLKfWwUmq9UipbKTXNY383pdQypVSSUuqoUmqWUqpJifu+ppQ6rpQ6ppT6p1fRBSAnjaFx\nSi5OyQMCP5c1+9fw/vr3CQkK8ds5fV+/Ynwavz854YWwkORiP4GeR05+Dg8segCNd1ewK3pF6yDw\nEvBxif31gCkYb+laAhnA9MIblVIPAgOBTsBFwE1KqQe8ilAI4Qg5+Tk88I1RpJ684kl/nlrqlxCi\nyl5f9Trbjm2jbXRbr+5XoUZLaz1fa70QSC6xf4nWeo7WOkNrnQ28C1zhccg9wBta68Na68PARCDO\nqwgDjJPWonNKLk7JAwI7l4mrJ7I1cStt6rXhuZ7P+e28Ur+EEFW1I2kHL/33JQCm3DjFq/uaPUbr\namCbx3YHYLPH9uaCfUKIamRH0g4m/DgBMIpUeGi4xRGVSeqXEKIUrTUPfvMgp/JPERcbxzWtrvHq\n/qY1Wkqpi4DngCc8dkcAqR7baQX7HCvQx9B4ckouTskDAjMXzyJ1b+d76dO6j9UhlSL1SwhRnunx\n03EluGhYqyET+070+v6mjEhVSrUFFgOPaq1Xe9yUAdTx2K5bsK+UuLg4YgoWQoqKiiI2NrboY5LC\nFxfZ9u92IbvEU9nt+Ph4W8VT3baf/uhpXKtc1KlZh0Y5jYibH4edVL1+JREX90LRVmxsL2JjexET\nU/babgkJZQ8KtsPxR45A4X9/O8RTleNDynl1C5T4PY/3vJ8d4qns8TEx9oqnIscfzTjKE8uegD1w\nVfhVvPTMv0lJKX38mXg1j5ZS6iWgudb6Po99LQEX8IrWemqJ41cB07TWHxdsDweGa62vKHGczEMj\nhAMlZiZywbsXcCL7BDMGz2DoRUOLbvP3WodSv4QQ3rprzl18ufVLrm9zPd8N/Q6ljJJl+lqHSqlg\npVRNIBgIUUrVKNjXDFgB/LtkkSrwGTBWKdVMKdUcGIvHt3qEEM42ZukYTmSf4Lo213FXp7ssiUHq\nlxCiMr7b+R1fbv2S8JBwJg+YXNRkeauiY7SeBbKAvwNDC34fB9wPtAJeUEqlKaXSlVJphXfSWk8B\nFgFbMAaSLiynoDlGII6hKY9TcnFKHhBYuSzZtYQvtnxR5SJlAqlfQgivZOZkMurbUQBM6D2BVvVa\nVfqxKjRGS2v9IvBiOTdPOMt9nwae9jIuIUQA8yxSL/Z6kdb1WlsWi9QvIYS3xq8cz97UvcQ2iWV0\n99FVeixZ61AIYbonlj3BG2veILZJLOtHrC9zJnh/j9HyFalfQjjLhkMbuOyjywBYd/86ujbrWuoY\n08doCSFERW08vJE3175JkApi6k1T/brcjjVkrUM7klzsJxDyyHPnMWLRCNzazWPdHiuzyfKWNFom\nC6QxNGfjlFyckgfYPxdfFCn7i7E6ANMEwgthRUku9hMIeby99m02HdlEy7otmdD7jCMLKkwaLSGE\nad5Z9w4bD2+kRd0WphUpIYTwhz0n9jDeNR6A9we8T0SYOfMTS6NlskBei64kp+TilDzA3rkkpCTw\n3EpjDcPJAyabVqSEEMLXtNY8tPghsnKzGNJxCP3b9TftsaXREkJUmdaaUd+OIis3izs73GlqkRJC\nCF/7cuuXLNm1hKiaUbx1/VumPrY0Wiaz+xgabzglF6fkAfbNZebWmaeLVD9zi5QQQvhSUlYSo5cY\nUzhM7DuRxhGNTX18abSEEFWSfDKZx5Y8BsDrfV+nSUQTiyPytwSrAzBNWWvBBSrJxX7smseTy5/k\nWNYxrm55Nfd1ue/sd/CSzKMlhKiS4QuGMy1+Gle3vJqV966s8AzwMo+WEMJqP+z5gT6f9aFGcA3+\nN+p/nFf/vArdT+bREkL4xco9K5kWP42w4DCm3DjFymV2hBDCKydzT/LgNw8C8GzPZyvcZHlLGi2T\n2XUMTWU4JRen5AH2yiU7L/t0kbrqWc5vcL7FEQkhRMX930//x67kXbRv2J6nrnzKZ+eRRksIUSkv\n//dldibvpH3D9vy9x9+tDkcIISpsy9EtvLbqNQCm3jSVsOAwn51LxmgJIby2NXErXaZ0Ic+dx8/D\nfubKFld6/RgyRksIYYV8dz5XTruSdQfXMarrKN4f8L7XjyFjtIQQPuPWbkYsGkGeO4+Rl4ysVJPl\nLLLWoR1JLvZjlzw++PUD1h1cR9OIprza51Wfn69CjZZS6mGl1HqlVLZSalqJ2/oopbYrpTKUUiuU\nUi1K3P6aUuq4UuqYUuqfZgZvR3YaQ1NVTsnFKXmAPXL54NcPWHtgLU0jmvLPa+3/X9r39SvGZ7H7\nm11eCM0gudiPHfI4kHaAf6z4BwDv9n+XujXr+vycFb2idRB4CfjYc6dSqj4wBxgHRAMbgFketz8I\nDAQ6ARcBNymlHqh62EIIKxxMO8jT3z8N+K9ImUDqlxACgEe/e5T0nHRuvuBmbrnwFr+cs0KNltZ6\nvtZ6IZBc4qZbgK1a67la6xzgBaCzUqrwO5L3AG9orQ9rrQ8DE4E4UyK3KTuvRectp+TilDzA+lwK\ni9Sg8wcx+ILBlsZSUVK/hBAA87bPY/7v84kMi+TfN/zbb+et6hitDsDmwg2tdRawq2B/qdsLfu+A\nECLgzNs+j3m/zyMiLIJ3+7/rhDmzpH4JUU2kZqfy8OKHAXi1z6ucU+ccv527qo1WBJBaYl8aEFnO\n7WkF+xzLDmNozOKUXJySB1iXS2p2Ko989wjg/yLlQ1K/hKgm/rHiHxzOOEz3c7ozsutIv547pIr3\nzwDqlNhXF0gv5/a6BftKiYuLI6ZgIaSoqChiY2OLPiYpfHGRbf9uF7JLPJXdjo+Pt1U8gbj91pq3\nOJRziG7Nu3FhxoW4XK5K/XtyuVwk2GFErMGk+pVEXNwLRVuxsb2Ije1FTEzZa7slJJQ9KNgOxx85\nAoVPlx3iqcrxIeW8ugVK/J7He97PDvFU9viYGGvi2XJ0C5PXLCakfggf3vghwUHBXj++y+XC5XKR\nkgIpKaWPPxOv5tFSSr0ENNda31ewPQK4V2vdo2C7NnAM6Ky13qmUWgVM01p/XHD7cGC41vqKEo8r\n89AIYVOr96+mx7QeBAcFs/GBjXRq3MmUx/X3PFpSv4SofnLyc+gypQu/HfuNZ3o8w//1+T9THtf0\nebSUUsFKqZpAMBCilKqhlAoG5gEdlFKDlVI1gOeBeK31zoK7fgaMVUo1U0o1B8YC071NSAhhjZz8\nHB5Y9AAazVNXPGVak+VPUr+EqL7+tepf/HbsN9pFt+O5q5+zJIaKjtF6FsgC/g4MLfh9nNb6OHAr\n8ArGN3q6AkMK76S1ngIsArZgDCRdqLWealr0NlTyY7dA5pRcnJIH+D+Xf636F9uObaNtdFue7fms\nX89tIqlfQlRDfxz/g5f++xIAU26cQs2QmpbEUaExWlrrF4EXy7ntB+DCM9z3aeDpSkUnhLBMySIV\nHhpucUSVI/VLiOrHrd088M0D5OTnMCx2GL1b9bYsFlnrUAhRitaa3p/25se9PxIXG8f0QeZ/YiZr\nHQohfOXjjR9z/6L7aVirIdsf3k79WvVNfXxZ61AIUSXT46fz494faVCrARP7TrQ6HJuTtQ7tSHKx\nH3/lcTTjKE8sfwKAt/q9ZXqT5S1ptEwm44Hsxyl5gH9yOZpxlCeWFRSp660vUvYXY3UApnHKCzpI\nLnbkrzxGLx1NSnYK17e5nr90/It/TnoG0mgJIYoZs3QMJ7JPcH2b67mr011WhyOEEBW2eOdiZm6d\nSa3QWkweMNkWK1hIo2Uyq9eiM5NTcnFKHuD7XL7b+R1fbv2S8JBw2xQpIYSoiIycDEZ9OwqACb0m\n0KpeK4sjMkijJYQAShSp3vYpUkIIURHjV45nX+o+ujTpwmPdH7M6nCLSaJlMxgPZj1PyAN/m8vzK\n59mbupfYJrGM7j7aZ+cRQgiz/XroV95e9zZBKoipN00lJKiqKwyaRxotIQQbDm3grXVv2bJI2V+C\n1QGYpqy14wKV5GI/vsojz53HiEUjcGs3o7uN5pJml/jmRJUk82gJUc3lufO4bOplbDqyiTHdxzDp\n+kl+Oa/MoyWEMMPE1RN5cvmTtKzbkq0PbSUiLMLn55R5tIQQFfbSjy+x6cgmWtZtyYTeE6wORwgh\nKux/R//H+JXjAZg8YLJfmixvSaNlMhkPZD9OyQPMz2Xe9nlM+O+Eoo8M7VikhBCiLMezjjNo5iBO\n5p1kWOwwbmh3g9UhlUkaLSGqqS1Ht/DXeX8F4LVrX6Nvm74WRySEEBWTm5/L7V/dTkJKApc2u5T3\nB7xvdUjlkjFaQlRDSVlJXDr1Uvak7GFop6H8Z/B//D5nlozREkJU1qOLH+Xd9e/SJKIJv474leZ1\nmvv1/DJGSwhRrjx3Hnd8fQd7UvZwSdNLmHrTVJmYtEpkrUM7klzsx6w8Ptr4Ee+uf5ew4DDm3jHX\n702Wt0xptJRSLZVS3yqlkpVSh5RS/1ZKBRXc1kcptV0plaGUWqGUamHGOe1KxgPZj1PyAHNyeWLZ\nE/yw5wca127M/CHzCQ8Nr3pgAazq9SvGzxH7jlNe0EFysSMz8li9fzUPffsQAB8M+IDLz7286g/q\nY2Zd0XofSAQaA7HA1cBDSqn6wBxgHBANbABmmXROIYSXpm+aztvr3iY0KJQ5d8zhnDrnWB2SHUj9\nEiIA7E/dzy2zbiHXncvfLvsbw7oMszqkCjGr0YoBZmmtc7XWicASoANwC7BVaz1Xa50DvAB0Vkqd\nZ9J5bUfW1bMfp+QBVctlzf41jPx2JGB8DfrKFleaFFXAi0HqlxC2djL3JINnDeZo5lGuaXUNb1z/\nhtUhVZhZjdZbwBClVLhSqjlwA6eL1ebCg7TWWcCugv1CCD85mHaQW2bfQk5+Do9c+gjDLx5udUh2\nIvVLCBvTWjNi0Qg2HN5Aq6hWzL5tdkCtXmFWo/UT0BFIA/YB67XWC4AIILXEsWlApEnntR0ZD2Q/\nTskDKpdLdl42g2cN5kjGEXrF9PLbzO8BROqXEDb2xpo3+HzL59QOrc2CIQuoX6u+1SF5pcotoTK+\nrrQE+AC4HKM4TVdKvQZkAHVK3KUukF7yceLi4ogpWAgpKiqK2NjYoo9JCl9cZNu/24XsEk9lt+Pj\n420Vjz+3tdYMfHUg63evp2VsS766/StW/bTKkngKf0+w0chec+pXEnFxLxRtxcb2Ija2FzExZa/t\nlpBQ9qBgOxx/5AgUPl12iKcqx4eU8+oWKPF7Hu95PzvEU9njY2K8f/xPXT/y1KeLQV/NU70nkLS9\nE67t/o/f5XLhcrlISYGUlNLHn0mV59EqGDCaCERprdML9g0CXgLeAeK01j0K9tcGjgGxWusdHo8h\n89AI4QOT1kzi8WWPUyu0FqvvW03nJp2tDqmIHebRkvolhH3tSNrBZVMvI/VUKs9f/Twv9HrB6pCK\n+HUeLa11ErAHGKmUClZKRQH3YoxtmA90UEoNVkrVAJ4H4j2LlBDCN5btXsaTy58E4LObP7NVk2UX\nUr+EsKfU7FQGzRxE6qlUBl8wmPFXj7c6pEoza4zWLUB/jHd7O4AcYKzW+jhwK/AKkAx0BYaYdE5b\nqu7jgezIKXlAxXPZlbyLO7++E7d281zP57i1/a2+DSywSf0Swkby3fkMnTuU34//TsdGHfn05k8J\nUoE7v7opw/a11v8Depdz2w/AhWacRwhxdmmn0hj45UBSslMYeP5AW11utyOpX0LYy/iV4/l257dE\nh0ezYMgCImsE9vdPZK1DIRzErd0MnjWYhX8spH3D9qwZvoY6NUqO57YHO4zRMoPULyHMM2vrLIbM\nGUKwCmbp3Uvp07qP1SGVSdY6FKKaen7l8yz8YyH1atZjwZAFtm2ynEXWOrQjycV+zpbHpsObGLbA\nmO39jevesG2T5S1ptExWHccD2Z1T8oAz5/LVtq94+aeXCVJBzLptFm2j2/ovsGotxuoATOOUF3SQ\nXOzoTHkkZiZy86ybOZl3kmGxw/hbt7/5LS5fk0ZLCAfYfGQzcQviAJjYdyJ92/S1NiAhhKignPwc\nbpt9G/tS99H9nO5MHjAZY4o7Z5BGy2Syrp79OCUPKDuX41nHGTRzEFm5WdzT+R5Gdx/t/8CEEKKS\nRi8ZzU/7fqJZZDPm3jGXGiE1rA7JVNJoCRHAcvNzuf2r29mbupdLm13KlBunOOqdoBDC2ab8OoXJ\nv06mRnAN5t05j6aRTa0OyXTSaJmsuowHCiROyQNK5zJm6RhcCS6aRjRl3p3zqBlS05rAhBDCSz/t\n/YlHvnsEgA9v+pDLml9mcUS+IY2WEAFq6oapvLf+PcKCw5h751ya12ludUjVVILVAZimrLXgApXk\nYj+eeexL3cets28lz53H2O5juafzPZbF5Wsyj5YQAWjVvlX0/rQ3ue5cpg2cxrAuw6wOyWsyj5YQ\n1VNWbhY9pvVg05FN9G3dl8VDFxMSZMr86X4j82gJ4WD7U/dz6+xbyXXn8li3xwKyyRJCVE9aa4Yv\nHM6mI5toU68NM2+bGXBNlrek0TKZk8cDBSqn5AGw9PulDJ41mKOZR7mm1TVMvG6i1SEJIUSFvbbq\nNWZunUlEWAQLhiwgOjza6pB8ztltpBAOorXm9dWvs0FvoHW91sy+bbbj3wkKIZzj2x3f8syKZwCY\nMXgGHRp1sDgi/5AxWkIEiNdXvc5T3z9F7dDarL1/LR0bdbQ6pCqRMVpCVB+/H/+dbh91I+1UGi/1\nfolnez5rdUhVImO0hHCYJbuW8Pfv/w7Afwb/J+CbLGeRtQ7tSHKxj5TsFAbNHETakXrc1v42xl01\nzuqQ/Mq0RkspNUQp9ZtSKkMptVMpdWXB/j5Kqe0F+1copVqYdU47ctJ4IKfkEuh57EjawZCvh6DR\n3Fv3XgZfONjqkBynavUrxs/R+k6gv6B7klzsId+dz11z7mJH0g5aB/Vh+qDp1W5SZVMaLaVUX+BV\n4F6tdQTQE/hTKVUfmAOMA6KBDcAsM84pRHWQmp3KwC8HknoqlcEXDHb0XDNWkfolhO88s+IZvtv1\nHfXD6/Ny75eJCIuwOiS/M2sk7QvABK31egCt9WEApdQIYKvWem7B9gvAcaXUeVrrHSad21acvq5e\nIArUPPLd+QydO5Q/kv6gY6OOfDb4s2pZpPzgBaR+CWG6L7Z8wb9W/4tgFczXd3wNCc5bXqciqnxF\nSykVBHQFGhVcct+nlHpHKVUT6ABsLjxWa50F7CrYL4Q4g+dWPse3O78lOjyaBUMWSJPlA1K/hPCN\nDYc2MHzhcADe7vc2vWJ6WRuQhcz46LAxEArcClwJxAIXA88CEUBqiePTgEgTzmtLgT4eyJNTcgnE\nPGZtncWrP79KsApm9m2zaV2vNRCYudic1C8hTHY04yg3z7qZ7Lxs7u9yPw9d+pDVIVnKjI8OTxb8\n+Y7WOhFAKTUJo1D9CNQpcXxdIL3kg8TFxRFTsBBSVFQUsbGxRR/5FL64yLZ/twvZJZ7KbsfHx9sq\nnrNtT/l6Cn/77m/QAiZdP4ngfcG49rlsE19V/j25XC4S7DWy14T6lURc3AtFW7GxvYiN7UVMTNlr\n1CUklD242Q7HHzkChU+XHeKpyvEh5by6BUr8nsd73s8O8Zzp+Jz8HB5f+jIHcoK54qIreLf/u0WD\n32Ni7B9/ece7XC5cLhcpKZCSUvr4MzFlHi2l1D7gGa31jILtwRiFajIQp7XuUbC/NnAMiPUc4yDz\n0AhhWL1/NQO+GEBKdgrDYofx8cCPHfsNHbvMoyX1SwhzpJ1K4+aZN7MyYSXn1DmH9SPW0ySiidVh\n+YQV82hNBx5VSjVUStUDxgCLgPlAB6XUYKVUDeB5IF4GkgpR2pJdS7j2s2tJyU7h5gtuZvKAyY5t\nsmxG6pcQVXQs8xjXfHoNKxNW0iSiCYvvWuzYJstbZjVaLwG/AjuAbRhfg35Fa30cY+zDK0AyxqDT\nISad05acNIbGKbkEQh4zt87kpi9v4mTeSYbFDuOr27+iRkiNUscFQi4BSOqXEFWwL3UfV02/ig2H\njeXBVt23ik6NO1kdlm2YMr2D1joPeLjgp+RtPwAXmnEeIZxo8vrJPLz4YTSaxy9/nNf7vi5XsvxI\n6pcQlff78d/p+5++HEg7QKdGnVh691KaRlbPaRzKI2sdCmERrTUv//dlxrvGA/Bqn1f5+5V/rzZN\nll3GaFWV1C9RXf166Ff6zehH0skkrjz3Shb9ZRH1wutZHZZfyFqHQticW7sZs3QM413jUSim3DiF\np3s8XW2aLGeRtQ7tSHLxrR/2/EDvT3uTdDKJG9rewLK/Ljtrk2XHPPxBGi2TOWkMjVNysVseufm5\nxM2P4+11bxMWHMbs22fzwCUPVOi+dstFgKx1aE+Si+/M2z6PGz6/gYycDO7qdBcLhiygVmits97P\nbnn4i1lL8AghKuBk7knu/PpOFu1YRO3Q2swfMp9rW19rdVhCCFEh0zZNY8SiEbi1m0cufYS3b3ib\nICXXbM5EGi2TBeq6emVxSi52ySM1O5WbvryJn/b9RHR4NN8N/Y7Lml/m1WPYJRchRPUzcfVEnlz+\nJAAvXP0C468eL8MdKkAaLSH84GjGUfp93o/4I/E0j2zOsr8uo33D9laHJYQQZ6W15h8r/sFrq14D\n4J1+7/Bot0ctjipwyPU+kzlpDI1TcrE6j4SUBHpM70H8kXjaRbdj1X2rKt1kWZ2LEKJ6yXfn88Ci\nB3ht1WuEBIUwY/AMabK8JFe0hPChbYnbuG7GdRxKP0SXJl1YcvcSGtVuZHVYwlQJVgdgmrLWggtU\nkkvVnco7xdC5Q5mzfQ41Q2ry9e1fM+C8AZV+PCc9J96QebSE8JG1B9bS//P+nMg+Qc+WPVk4ZCF1\na9a1OizbkHm0hLCv9FPpDJ41mBV7VlC3Rl2+uesberToYXVYtuFN/ZIrWkL4wLLdyxg8azBZuVkM\nPH8gM2+dSXhouNVhCSHEWR3POk7/z/uz/tB6GtduzNK7l9K5SWerwwpYMkbLZE4aQ+OUXPydx+xt\ns7nxixvJys3ins73MOeOOaY1WU55ToQQ9nQg7QA9p/dk/aH1xETF8PN9P0uTVUXSaAlhoim/TmHI\n10PIdecyuttopg+aTkiQXDgWQtjfH8f/4MppV7L9+HY6NurIqvtW0Ta6rdVhBTwZoyWECbTWvPrz\nq4z7YRwAL/d+mWeuekbmmDkDGaMlhH1sPLyRfjP6cSzrGJefcznf3PUN0eHRVodlW7LWoRB+5NZu\nnlj2BON+GIdCMXnAZMb1HCdNVrUhax3akeRSca4EF70+6cWxrGNc3+Z6lv91uU+aLCc9J94wrdFS\nSrVTSp1USn3msa+PUmq7UipDKbVCKdXCrPPZlZPG0DglF1/mkefO474F9zFp7SRCg0KZedtMRnYd\n6bPzOeU5saPK17AYP0bpW056IZRcKmbB7wvoN6Mf6Tnp3NnhThb+ZSG1w2r75FxOek68YeYVrXeB\nXwo3lFINgDnAOCAa2ADMMvF8QlgqOy+b22bfxqebP6VWaC0W/WURd3S4w+qwROVJDRPVyqfxn3Lr\n7Fs5lX+KUV1H8fktnxMWHGZ1WI5jSqOllBoCnABWeOweDGzVWs/VWucALwCdlVLnmXFOu3LSWnRO\nycUXeaRU0hEyAAAeoUlEQVSdSqPfjH4s+GMB9WrWY8U9K7i+7fWmn6ckpzwndiM1TFQ3k9ZMIm5B\nHPk6n+d6Psd7/d8jOCjY6rAcqcqNllKqDvAiMBbwHJTSAdhcuKG1zgJ2FewXImAlZibS+9Pe/Lj3\nR5pGNOW/w/5L93O6Wx2WqCSpYaI60VozbsU4Hl/2OABvXf8WE3pPkDGlPmTGFa0JwFSt9aES+yOA\n1BL70oBIE85pW04aQ+OUXMzMY2/KXq6afhUbD2+kbXRbVt23io6NOpr2+GfjlOfEZqSGiWoh353P\nqG9H8crPrxCsgvns5s94rPtjVofleFWa4EcpFQtcC8SWcXMGUKfEvrpAelmPFRcXR0zBQkhRUVHE\nxsYWfUxS+OIi2/7dLmSXeCq7HR8fb8rjNe7QmOtmXMeBzQdoE92Gnx//mcYRjS3PL1C2C39PsNGI\nWHNqWBJxcS8UbcXG9iI2thcxMWWv7ZaQUPagYDscf+QIFD5ddoinKseHlPPqFijxex7veb/KPn5u\nfi6v/PwKrj2/Exrcl/fveoq/dr7WL/F77rPD32dljne5XLhcLlJSICWl9PFnUqV5tJRSjwEvYxQe\nhfEOMAjYDnwAxGmtexQcWxs4BsRqrXeUeByZh0bY2i8Hf6H/5/1JOplEjxY9WPSXRUTVjLI6rIBm\nh3m0zKhhUr+E3WXkZHDr7FtZtnsZdWrUYdFfFtGzZU+rwwpo3tSvqjZaNSn+ju9JjEllRmIUq53A\nfcBi4CWgh9b6ijIeRwqVsK2lu5Zy6+xbyczNZEC7Acy+fTa1QmtZHVbAs0mjVeUaJvVL2FliZiKD\nZg5i7YG1NKrdiCVDl9ClaRerwwp4fpuwVGudrbVOLPzBuNSerbVO1lofB24FXgGSga7AkKqcLxCU\n/NgtkDkll8rmkX4qnYe+fYh+n/cjMzeTuy+6m3l3zrO0yXLKc2IXUsOEU2mtmbl1Ju3fa8/aA2tp\nWbclPw/7WZosC5i6CJvW+sUS2z8AF5p5DiH84fs/v+f+hfezN3UvoUGhPNfzOcb1HEeQksUUnExq\nmHCCIxlHGPXtKOb/Ph+Aa1tfyyeDPqF5neYWR1Y9yVqHQnhIO5XGk8ue5MONHwJwcdOL+WTQJ3Rq\n3MniyJzHDh8dmkHql7ALrTVfbPmCR797lBPZJ4gMi2TS9ZMY3mW4TN9gMm/ql6lXtIQIZEt3LWXE\nohHsT9tPWHAYz1/9PE9e8SShwaFWhyZszVlrHZb1zaxAVN1yOZR+iJHfjGTRjkUA9Gvbjw9v/JBz\n657r8/gqyknPiTfkcxCTOWkMjVNyOVseKdkpDF8wnH6f92N/2n4ubXYpGx/YyDNXPWO7Jsspz4mz\nxFgdgGlsNPNGlVWXXLTWfBr/KR3e78CiHYuoW6Mu0wZOY/Fdi23VZIGznhNvyBUtUa19u+NbHvzm\nQQ6mH6RGcA0m9J7A2MvHEhIk/zWEEPZ2IO0ADyx6gO92fQfAgHYDmHLjFBmLZTPyamIyJ61F55Rc\nysrjxMkTjFk6hk83fwpA93O6M33QdC5ocIGfo/OOU54TIUTlaa2ZtmkaY5eNJe1UGlE1o3in3zvc\nfdHdMhbLhqTREtXOwj8WMvKbkRzOOEzNkJq83PtlRncfLQuqCiFsb1/qPkYsGsGy3csAGHj+QD4Y\n8AFNI5taHJkoj4zRMpmTxtA4JZfCPJKykrh77t0MmjmIwxmHufLcK9k8cjOPX/F4wDRZTnlOhBDe\n0Vrz4YYP6fh+R5btXkZ0eDSf3/I58++cL02WzckVLVEtzNs+j1HfjuJo5lHCQ8J5tc+rPHLZIwHT\nYAk7S7A6ANM46RthTsolJPoAff8Tx4o9KwC45cJbeL//+zSOaGxpXN5y0nPiDZlHSzjascxjPPrd\no8zaNguAni178vHAj2kb3dbiyITMoyXEmbm1mw9+/YCnlj9FZm4mDWo14L3+73F7+9tlLJbFZB4t\nIYCvtn3Fw4sf5ljWMWqH1uaf1/6Thy59SGZ3F0LY3p8n/mT4wuG4ElwA3NHhDt694V0a1m5obWDC\na/KKYzInjaEJ1FwSMxO5/avbuePrOziWdYzYk7FsGbWFRy57JOCbrEB9ToQQFePWbv697t90mtwJ\nV4KLRrUb8fXtXzPrtlnSZAUouaIlHENrzaxts3hk8SMknUwiIiyC1/u+znnp59GqXiurwxMekpKs\njkAI+9mZtJPhC4fz076fALir01283e9tGtRqYHFkwlNOjnfHyxgt4QhlLaL60U0f0TLKOcujBKr8\nfNi6FdasOf2zcyeAjNESAiDfnc87695h3A/jOJl3kiYRTfhgwAcMumCQ1aEJ4ODB4vVr40Y4dUrG\naIlqQmvN51s+52/f/U0WUbWJpCRYu/Z0UfrlF8jIKH5MeDicPGlNfOZzTjPvpLXoAiWXP47/wX0L\n72P1/tUA/PWiv/JWv7eIDo8uOiZQcjmbQMgjJwfi443atXq18ef+/VV7zCo3WkqpMOB94FqgHrAb\neEZrvaTg9j7Au8C5wDpgmNZ6X1XPa1cul8sxs3fbPZeKLqJq9zy8Ybdc8vNh27bi7/Z27Ch9XKtW\ncPnlp38uugjCwvwfb0nm1K8Y/wXsY4HwQlhRds8l353PpDWTGO8aT3ZeNs0imzHlxinceN6NpY61\ney4VZcc8Dh8uXr82bIDs7OLH1KkD3bqdrl/dukF0dNmPVxYzrmiFAPuAq7TW+5VSA4DZSqmOQCYw\nB7gP+AZ4GZgFXG7CeUU1pbXms82fMXrpaFKyU6hboy5v9XuLezvfK1exfCw5ufTVqvT04sfUrAmX\nXnq6KHXvDk2aWBNvBUj9En63/dh2hi0YxrqD6wAYFjuMSddPIqpmlMWROZvn1ao1a4xatndv6eMu\nuKD4G8MLL4TgKky56JMxWkqpzcALQAPgXq11j4L9tYDjQKzWeofH8TLGQZyV1poVe1bwz5//WTRx\nnyyi6jv5+fDbb8Xf7f3xR+njYmKKF6XOnSE09OyPb9d5tLyvX7201i4LIjWfywU2umBaJXbMZW/K\nXt5Z9w7vrX+PU/mnOKfOOUy9aSr92vY74/3smEtl+DuPI0eK169ffy19tSoysnJXqyydR0sp1Rho\nB2wDHgI2F96mtc5SSu0COgBlfMAgRGmn8k7xxZYveHPtm2xJ3AJAvZr1eLvf27KIqolOnCh+tWrd\nurKvVnXtWvxqVVMHrf4h9Uv4wroD65i0dhJzfptDvs4H4P4u9zPxuonUrVnX4uicITcXNm8u3lgl\nJJQ+7vzzi78xbN++alerKsLURkspFQLMAD7RWu9QSkUAiSUOSwMizTyvndhtDE1VWJ3LscxjTP51\nMu+vf5+jmUcBaBLRhEcufYSRXUdSv1b9Cj2O1XmYyaxc0tJg0ybj2zMbNxrv9H7/vfRxLVuWvlpl\nh7FVviD1S5gpz53H/N/nM2nNJNYcWANASFAIQzsOZUz3MVzS7BKLIwxceXlGvdqwwahfhX+W/IJN\nRETpq1X1K/ayYSrTGi1lXFaYAZwCHi3YnQHUKXFoXaDE+2SIi4sjpmCUXFRUFLGxsUUvKIWTNMq2\nf7cL+fv8n8z/hK+2fcUKvYJT+adgD7SJbsP4e8dzZ4c7WfPzGrb8sqXCjxcfH+/X+O22vXChi507\nIT+/Fxs3ws8/uzh4EMC4HYzja9ToRdeu0Ly5iw4d4P77e9Gs2enHu/TSqsVT+HtCWW8zLVa1+pVE\nXNwLRVuxsb2Ije1FTEzZA38TEsp+p22H448cMT7esUs8VTk+pJxXN1/Hs+WPdD74fglzts/haMYR\nIIyIsBu5u2cPnh14d6lhDhV5fM/zBMrff1nHx8R4//g7dsCPPxp/7thhTA2za5dxBauk886DTp2g\nRQvo0MF4vMKrVTExZTdZFY3H5XLhcrlISYGUlNLHn4lpY7SUUtOAFkB/rXVOwb4RFB/jUBs4hozR\nEiVorfn+z++ZtHYSS3YtKdp/43k3Mrb7WHrF9JKPCCsgMfH0VarCd3plFZGwMOObfxdffPrH31er\n7DRGS+qXqKqElATeWfcOH238iPQcoxdvG92WMd3HcG/ne6kdVtviCO0vOxu2bDl9hWrjRmO7rAlC\nW7cuXr+6dvXv1Spv6pcpjZZS6gPgIuBarXWWx/4GwE6Mb+0sBl4CemitryhxfylU1VR2XnbR+Kut\niVsBCA8JJy42jse6Pcb5Dc63OEJ70tr4WrLnZfONG+HAgdLHhocbTdQll5wuSu3bW/8RoF0aLalf\noirW7F/DpLWTmLt9Lm7tBqBXTC/GdB/DjefdGPDLfvlKZqYxpsqzhm3bZnwJp6TzzjPqVmEN69IF\n6tXzf8ye/NpoKaVaAAlANlD4V6SBB7XWXyqlrgHew3i3uA6IKzkPjZMKlYwHqpjEzEQmr5/M+7++\nT2KmMQymaURTHr3sUR645IEKj7+qiEB/TrSGffuMQjR3rovk5F5s2ABHj5Y+NiLCKEKeRen888v/\nGMVKdmi0pH6Jyshz5zF3+1zeXPsmaw+sBYzxV0M6DmFM9zFc3PRiiyO0l5JjQjduNMZYud3FjwsK\nMqZSKHxDeMklxpvEOiU/wLcBv37rsKDolNuya61/AC6s6nmEM2xL3Maba99kxv9mGOOvgC5NujD2\n8rHc0eEOwoIdOtK6gvLyjPEHJS+fl7U2YFRU8Uvnl1wCbdsaxUpUjNQv4Y3U7FQ+3vQxb697m32p\nRr9dr2Y9RnYdycOXPlztp5nR2ngDuHWr0VgV1jBjya3iQkKM8VSeV9o7d4Zatfwft6/JWofC57TW\nLNu9jElrJ7Fs9zIAFIqbzr+JMd3HcHXLq6vd+Cu32xg7tXWrcbl861bj5/ffyx6P0KBB8atUF19s\nzLYeyH9tdriiZQapX86358Qe3ln3Dh9v+rho/NV59c9jdLfR3NP5nmo5/iop6XTt8vyzrDeFnmNC\nC2tYx47GdDGBytJ5tIQolJ2XzYz/zeDNtW/y27HfAKgVWothscN4rNtjtKvfzuIIfU9rY9yUZzO1\nbZsxEWhWVtn3iYkxvjHjWZTOOSewmypnk7UO7aiquWitWXNgDZPWTGLe7/OKxl/1junN2MvH0r9d\nf7+Nv7LyeUlLM2pWyabqyJGyj4+KMupXbOzpGta+vTGJsZP+fXlDGi2TBfp4IE+VzeVoxtGi+a+O\nZR0DoFlks6LxV56LpfqDP54TrY1v/JW8QrVtm1GoytKsmfGurkOH03+2b2/MVFweJ/37co4YqwMw\njZNeCCubS547jzm/zWHS2kn8cvAXAEKDQrn7orsZ030MsU1iTY2zIvzxvGRlwfbtpa9Q7StnZeLa\ntY2aVVi/CmtYs2blvyl00r8vb0ijJUyzNXErb655kxlbZpCTb3z+dXHTixnbfSy3d7jdMeOvkpNL\nN1Nbt5Z9yRyMj/08G6rC363+1owQ4rSU7BQ+2vgR76x7h/1p+wGIDo9mVNdRPHTpQzSLbGZxhOY4\ndcqYj6pk/frzT+MNY0k1ahgD1Eu+KWzZUsaDVpQ0WiZz0tWGiuSSlZvFij9X8O9f/s3yP5cDxvir\nQecPYuzlY7mqxVWWj7+qzHPidsPBg8Ygzp07jbFThUXp8OGy71O3bvFCVNhUNWpUtfg9OenflxBW\n01qzJXELH2/8mGnx08jIyQDg/PrnM7q7Mf6qVmhgjs5OSTldv3bsOP3x344dZU+hEBJiTKPg+Waw\nY0djvio7fms5kMhfn/BKvjufTUc2sXz3cr7f8z0/7/u56OpVrdBa3Bd7H491f4y20W0tjvTstIZD\nh04XI8+f3btLLz5aqFat4pfMC/9s3lzGUQlhdwfTDrL8z+V8/+f3fP/n90XLewH0adWHMd3HcEO7\nGwJi/qu0tOJ1a9eu078fP172fZSCdu1KX2E/7zzr59ZzKmm0TOakMTSFuSSkJLB893KW/7mcFXtW\nkHwyuegYheKSppdwR4c7GHHxCOqF2+vzMK2NuacaNuxVqpnatav02lieGjUyClK7dqff6RUu62DV\nJXMn/fsSwh/ST6Xz494fi2rY9uPbi93eLLIZ/dv255HLHqFzk84WRVm+jAyjXiUmFm+kCveVp1Yt\nY7qXtm2LN1YXXGBMYiz8RxotUUpKdgor96zkkzWfMGLLCHYl7yp2e0xUDH1b96Vv675c0+oaUycX\nrYzCgehlXZnatcuYgbg8DRqcbqYKfwoLkx0nyRN2lGB1AKZxwkDlPHcevx76lYVHfmH89K9Zc2AN\nee68otsjwiLoFdOrqIZd0OACy4c3ZGaebqJKNlPlfbsPjOkRPJspz58zDUq3ihP+fVWGzKMlyMnP\nYe2BtUXv+NYfWl/0VWaAujXqck2ra4zC1KYvbeq18Xthys6G/fuNb8Ds22d8tOfZTKWXWqb8tOjo\nshupdu2MryILa8g8WsIMWmt2Je9i+Z9G/Vq5ZyWpp1KLbg9SQVzW/LKixqrbOd38/sUct9tomArr\nV0JC8Wbq0KHy7xsWBm3alG6k2rUzhivIgHRryDxa4oy01mw/vr2osXIluMjMPX3ZJyQohCvPvbKo\nserarCshQb77p6K1MZ6gsAjt2wd79xbfLmu5GU9RUWU3Uu3aGY2WEMI5krKSWLFnRVEN25u6t9jt\nbaPbFjVWvVv1Jqqmb99RZWYWfyNYsn7t3w+5ueXfPzTUGHReVjN1zjkQHOzT8IWPSaNlMruOoTmS\ncYTv//y+aBDoofTib6HaN2xfVJiujrmaiLAIXC4X3c/pXuVznzplTNpZsvh4FqTyBp4XCgkxCk6L\nFsZPTEzxYlS/fvmXye36nFSGk3IRoqKy87JZtW9VUf3aeHgjmtNXEeuH16dP6z70bd2Xa1tfS0xU\njGnndruNoQlnql/lTe3iqWHD0/WrRYvi9atFC2mmnEwaLYfKys3iv3v/W/SOb0vilmK3N67dmGtb\nX1tUmCq7RpfbbRQZz3dzJd/RnWmMQaGoqNMFqGXL4gWpRQto2lQKkRDVhVu72XJ0S9HHgT/t/YmT\neae/uRIWHEaPFj2K3hx2adqlUt8S1NoYbH7oUPn1a//+spfF8hQWBueeW3btatHCuM2Ja/iJipEx\nWgEuMyeT3Sd2szt5N7uSd7H7xG62H9/O2gNri6ZdAAgPCadny55FHwd2atSp3HFWbjecOGE0SEeP\nlv7T8/fExLLnZPEUHFz8alTJhurcc2XgeXUkY7REnjuP/an7i2rX7uTd7EzeyZoDa0jMLP6Vuosa\nX1TUWF3V8qozzm+VmXn22lX4Z3lLYXlq0KD8+tWihfENZRkrVb14U7+k0bI5rTXJJ5PZfaKgkUre\nffr3E7s5klH25SKF4pJmlxQVpsvPuYKTGTXKbZ48C9HRo5CXV+bDlqlePaORKu/dXLNmcjVKlOac\nRitGa51gdRim8MUSKdl52ew5saeoZnk2VXtS9hT7RqCn5pHN6dvGqF99WvWhTnDjs9auwt8zMioe\nX3i4ccW8vPrVooX1V6OcsnSNU/IAmw2GV0rVA6YBfYFjwDNa6y99fV6rVGYMjVu7OZx+uFgztevE\n6aYqJTul3PuGBoXRtEZrGoS0oZ67DRG5bQnLbENYYjdS1tdn+VH4zxHjytPZLn97ioqCyEgXrVv3\nonFjaNwYmjQp/WejRvaf5M5J45qclEugOHsNi7EkLl+o7AthanZqUfPk2UztSt7FwbSDxcZTldSw\nRnMahbYhmjbUyWtLeHYbQpMvImfrBeyap1h1FEYdLX/N0LLUqGHUsJYty69dhX9GRNhvGoSSnNKg\nOCUPb/ljjNb7QDbQELgY+FYpFa+13n7muwWm+Pj4Ml8Ic/Nz2Ze6r6gA7Uzaze9Hjd/3pe/mlLv8\n0eDBeRGEZbZFnWhD/vG25Bxug05uA8ltyU1rzj4dTDnrfhYTGXnmguPZPNWsCW+9Fc/o0aVzCTTl\nPSeByEm5BJCz1LDy3wgFmvj4sht5rTXHso4VvRHcmbyLPxKNOrYndRcpOeVMQw4oHUyNrBhC0trg\nTmpLzpE25B9rC8ltIKUVx3JrcawCsYWGnr12Ff5Zpw68/bbLEfULyn9eAo1T8vCWTxstpVQt4Bag\nvdb6JLBKKbUA+CvwjC/PbZbcXE1yejbHUtM5lpZOUno6SRnpnMhMJyUrndRs4yf9VDoZOensWL6S\nqcnrOZmfTrY7nVOkk62SyQrdB0FnGMyU2dAoPCeMBoqCRooTbcjPbMhJir/liogwPrKr19L4Myqq\nYLvgp1Gj04Wn8Mfby98pKc54AXFKHuCsXAJBxWqYfZ8TtxsysvJITDHq1/H0dJIzCn6y0knNOl2/\n0nPSiZ+1keknPiGroH5l63RySCMzdB/5wWf4PC43HE60Pl27POqYTm3BKXcopzwODwsrqFVtyq5f\n9euXbqDq1fPuylN8vAvoVbm/OJtxSi5OycNbvr6idR6Qq7Xe7bFvM3B1yQM/XvILeflucvPc5OW7\nyXcX/O52k5/vJi9fF/zpuc84ztjW5LsLtgv2F/8xbne73eTk55CVn05Wfjon3emc0sZPrkonNyid\n/OB08kPS0aHpUCP9zA1SSRoOBW+AkmOStILUc4s1ULVPtSFKt6VBUBsaRNYxikx9iGpTvOiULERR\nUbLIpxB+UqEaNm3peqM25Z2uUXkF9Ssv36hPRfUq//RP8Zqli9Uvd2Ft8/hxuzV57nyy8jLIyjPq\nV7Zn/VLp5BXUL3dIOoSlQ+hZ5k7xpFtyPGgplDWw+2RUsQYqLLMtdfONj/wahjclul6QUZ8uLL92\nFf7UrGn/j+uEMIuvX64jgJKfrKcBkSUPvH9dN/PPrjAanqoOxM4LQ+VGEpwXSXB+JCHuSMJ0JGFE\nUlNFUjMoklrBkdQKiWRP8jwuD3qYOjUiiQqvQ1R4JNG169K2YQsa169ZVHjq1LH/t1QSEhKsDsEU\nTskDnJVLgKhQDRu+9jLfnD2Ispseb7iDULkRBOUZNSzEHUmo26hfNVQdwlUk4QX1K8G9me48T2SN\nSOrUjKRuzUiiwiOJqd+cFg2ji5qmqCj7j80Uwi58+q1DpVQs8LPWOsJj3+NAT631II998pVDIaoh\nu3/rsCI1TOqXENWTXb51uAMIUUq18bj03hnY5nmQ3YutEKLaOmsNk/olhDgTn8+jpZT6AtDACIxv\n7CwCrnDqtw6FEM4iNUwIURX+GCX0MFALSARmACOlQAkhAojUMCFEpfm80dJan9BaD9ZaR2itY7TW\nswpvU0rVU0rNU0plKKX2KKX+4ut4fEEp9bBSar1SKlspNc3qeKpCKRWmlPpIKZWglEpVSm1USvWz\nOq7KUEr9Ryl1WCmVopT6XSk13OqYqkop1U4pdVIp9ZnVsVSWUspVkEOaUipdKWXrpqW8GuaU+gXO\nqWFOql/gvBpWXeuX1d9785wI8G5gslLqQmtDqpSDwEvAx1YHYoIQYB9wlda6LvAcMFsp1cLasCrl\nVaCV1joKGAi8rJTqYnFMVfUu8IvVQVSRBh7SWtfRWkdqrQPx/zw4p36Bc2qYk+oXOK+GVcv6ZVmj\n5TER4LNa65Na61VA4USAAUVrPV9rvRBItjqWqtJaZ2mtJ2it9xdsfwvsAS6xNjLvaa1/01oXTiKk\nMP6DtLEwpCpRSg0BTgArrI7FBAE9gNxJ9QucU8OcVL/AWTWsOtcvK69olTcRYAeL4hFlUEo1BtpR\n4puigUIp9Z5SKhPYDhwCFlscUqUopeoALwJjCfAmpcCrSqlEpdRPSqlSExgHAKlfASDQ6xc4o4ZV\n9/plZaNV4clMhTWUUiEYg38/0VrvsDqeytBaP4zxb60HMBeKrQQSSCYAU7XWh6wOxARPAa2B5sBU\nYJFSqpW1IXlN6pfNOaF+gWNqWLWuX1Y2WhlAnRL76gLpFsQiSlBKKYwidQp41OJwqkQbVgPnAqOs\njsdbBZNmXgu8ZXUsZtBar9daZ2qtc7XWnwGrgP5Wx+UlqV825qT6BYFdw6R++X7C0jOp0GSmwjIf\nAw2A/lprLxZ7tLUQAnN8w9VAS2BfwQtIBBCslGqvte5qbWim0ATexwlSv+zNifULArOGVfv6ZdkV\nLa11FsZl0AlKqVpKqR7ATcB/rIqpspRSwUqpmhirKoYopWoopaq6wqJllFIfABcAA7XWOVbHUxlK\nqYZKqTuVUrWVUkFKqeuBIcD3VsdWCVMwimssxov5B8A3wHVWBlUZSqm6SqnrCv+PKKWGAlcBS6yO\nzRtOql/grBrmhPoFjqph1b5+WT29g1MmAnwWyAL+Dgwt+H2cpRFVUsHXoB/A+E9xtGCekLQAnCNI\nY1xi34/xTap/AY8VfAspoGits7XWiYU/GB9bZWutA/EbYqHAyxj/549h1IBBWutdlkZVOU6pX+CQ\nGuag+gUOqWFSv/ywBI8QQgghRHVl9RUtIYQQQgjHkkZLCCGEEMJHpNESQgghhPARabSEEEIIIXxE\nGi0hhBBCCB+RRksIIYQQwkek0RJCCCGE8BFptIQQQgghfEQaLSGEEEIIH/l/2yHKsIcQa58AAAAA\nSUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1084dc3d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(1, 2, figsize=(10,3))\n", "\n", "# default grid appearance\n", "axes[0].plot(x, x**2, x, x**3, lw=2)\n", "axes[0].grid(True)\n", "\n", "# custom grid appearance\n", "axes[1].plot(x, x**2, x, x**3, lw=2)\n", "axes[1].grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Axis spines" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also change the properties of axis spines:" ] }, { "cell_type": "code", "execution_count": 101, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAACUCAYAAACQh5KRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADehJREFUeJzt3W2MXOV5xvH/hW1BVvZaG4LVJOuSyIoleyOBEtIgsOhg\nqwJVpaFUCXFqLBKEZMkfqNuIStSNF/OiEPHBEopRJCCycRCpKlzXwlFIApMKq1GgFU7lmtBSl2Qd\nx4Z67d2tcWviux/OGe9kmN098767z/WTRjBn77Nzz6PxtWeeOXMeRQRmZjb/XdLrBszMrDsc+GZm\niXDgm5klwoFvZpYIB76ZWSIc+GZmiXDgm5klolDgS9os6RVJ5yQ9NUPtFknHJZ2W9ISkRe1p1czM\nWlH0CP8Y8ADw5HRFkm4C7gVuBK4EVgD3t9KgmZm1R6HAj4i/j4h/AE7NULoReDIiXo+IM8B24Mst\n9mhmZm3Q7jn8IeBQ1f1DwDJJA21+HDMza1C7A38xcKbq/hggYMnFLVIg+QI+ZmZdtrDNv28C6K+6\nvxQIYLy6aAewRcNVoV/Kbykqk+5zr1XGY1FRxmNRUcZjUVEmoqRm9273Ef5h4Kqq+1cDJyJitLro\nNBAxXHUrEUGSt23byj3vYbbcPBYeC4/F9De4saWTYIqelrlA0mXAAmChpEslLahTuhu4S9KqfN5+\nK/DtVho0M7P2KHqEvxU4C/wV8Gf5//+1pOWSxiUNAkTE94FvAC8BR4E3geF2N21mZo0rNIcfEfcz\n9fn0S2pqd5BN00+pVORBE1EqlXrdwqzhsZjksZjksfgt5VZ2VtdXvKqcodPtxzUzm/ua/sAWfC0d\nM7NkOPDNzBLhwDczS4QD38wsEQ58M7NEOPDNzBLhwDczS4QD38wsEQ58M7NEOPDNzBLhwDczS4QD\n38wsEUWvhz8gaa+kCUlHJa2fpvZBSSOSRiW9KGl1+9o1M7NmFT3C3wmcA64ANgCPS1pVWyTpC8Cd\nwPXAB4GfAE+3pVMzM2vJjIEvqQ+4DdgaEe9GxEFgH3BHnfKPAS9HxFuRXXd5D/C+PwxmZtZ9RY7w\nVwLnI+LNqm2HgKE6tc8CKyR9QtIisqP977XcpZmZtazIileLgbGabWPUrHSVOw4cBH4OvAf8Eljb\nSoNmZtYeRQJ/Auiv2bYUGK9Tuw34DPBR4ATZtM9LklZHxLlKURkoDw9f3KlUKnkZMzOzDptxicN8\nDv8UMFSZ1pG0GxiJiPtqavcDL0TEY1XbRoF1EfEv+QYvcWhm1pzOLnEYEWeB54DtkvokrQFuof7Z\nN68An5e0TJk7yN5F/EcrTZqZWeuKTOkAbAaeAk4C7wCbIuKIpOXAYWB1RIwAj5Cduvka0EcW9LdF\nRO1nAGZm1mUzTum0/xE9pWNm1qTOTumYmdn84MA3M0uEA9/MLBEOfDOzRDjwzcwS4cA3M0uEA9/M\nLBEOfDOzRDjwzcwS4cA3M0uEA9/MLBEOfDOzRBQKfEkDkvZKmpB0VNL6aWo/Lmm/pDFJJyV9vX3t\nmplZs4oe4e8EzpFd+ngD8Lik9y1Onq9j+wPgh8AyYJBsIXMzM+uxoitejZJd876y4tUu4FidFa/u\nBjZExO9P8wt9eWQzs+Z0/PLIK4HzlbDPHQKG6tReC7wl6YCktyW9KOmTrTRoZmbtUSTwFwO1K1aN\nAUvq1A4CtwM7gA8DB4B9koqurGVmZh1SJIgngP6abUuB8Tq17wIvR8QL+f1HJW0FVgH/WikqA+Xh\n4Ys7lUolSqVS0Z7NzKwJRQL/DWChpBVV0zpXka1lW+tnwHUz/cISUKoKfDMz67wZp3Qi4izwHLBd\nUp+kNcAtwNN1yvcA10paK+kSSVuAt4Ej7WzazMwaV/S0zM1AH3CSLNQ3RcQRScvz8+0HASLiDbLT\nNr8FnCL7w/DHEfFe+1s3M7NGzHhaZvsf0adlmpk1qeOnZZqZ2TzgwDczS4QD38wsEQ58M7NEOPDN\nzBLhwDczS4QD38wsEQ58M7NEOPDNzBLhwDczS4QD38wsEQ58M7NEFAp8SQOS9kqakHRU0voC+/xI\n0gVJ/qNiZjYLFF16cCdwDrgC+BTwvKTXIqLude4lfSn/3b4kppnZLDHj5ZEl9QGjwOrKileSdgHH\nIuK+OvX9wE+BjcA/AYsi4kJVgS+PbGbWnI5fHnklcL5qeUOAQ8DQFPUPk70jONFKY2Zm1l5FAn8x\nMFazbQxYUlso6RqyNW0fa701MzNrpyJz+BNAf822pcB49QZJAr4J3BMRkd+vqwyUqxYxL5VKlEql\nQg2bmVlzis7hnwKGqubwdwMj1XP4kpYC/0227q2ABcCHgF8Dn4+Ig3mh5/DNzJrT0hx+oTVtJT1D\ndsbN3WRn6ewHrqs9S0fSsqq7v0v24e1HgHcuLmTuwDcza1ZX1rTdDPSRHb3vATZFxBFJyyWNSRoE\niIiTlRvwNtkfiZMXw97MzHqm0BF+ex/RR/hmZk3qyhG+mZnNcQ58M7NEOPDNzBLhwDczS4QD38ws\nEQ58M7NEOPDNzBLhwDczS4QD38wsEQ58M7NEOPDNzBLhwDczS0ShwJc0IGmvpAlJRyWtn6Juo6RX\nJZ2R9AtJj0jyHxUzs1mgaBjvBM4BVwAbgMclrapT9wHgHuBy4LPAOuCrbejTzMxaVHTFq1FgddWK\nV7uAY9UrXk2x7xagFBGfq9royyObmTWn45dHXgmcr4R97hAwVGDfG4DDzTRmZmbtVWQR88XAWM22\nMWDJdDtJ+grwaeCu5lozM7N2KhL4E0B/zbalwPhUO0i6FXgIWBcRp2p/XgbKw8MX75dKJUqlUoFW\nzMysWUXn8E8BQ1Vz+LuBkXpz+JJuBnYBfxgR/1znF3oO38ysOS3N4Rda01bSM2QLkt8NfArYD1wX\nEUdq6tYCfwvcGhEvT/HLHPhmZs3pypq2m4E+4CSwB9gUEUckLZc0Jmkwr9tKNv1zQNJ4/rPnW2nQ\nzMzao9ARfnsf0Uf4ZmZN6soRvpmZzXEOfDOzRDjwzcwS4cA3M0uEA9/MLBEOfDOzRDjwzcwS4cA3\nM0uEA9/MLBEOfDOzRDjwzcwS4cA3M0uEA9/MLBGFAl/SgKS9kiYkHZW0fpraLZKOSzot6QlJi9rX\nrpmZNavoEf5O4BxwBbABeFzSqtoiSTcB9wI3AlcCK4D7a+vKTTY7H5XL5V63MGt4LCZ5LCZ5LCZJ\nKrWy/4yBny9xeBuwNSLejYiDwD7gjjrlG4EnI+L1iDgDbAe+XFtUbqXjecYv5kkei0kei0kei99S\namXnIkf4K4HzlfVsc4eAoTq1Q/nPquuWSRpovkUzM2uHIoG/GBir2TYGLJmi9kxNnaaoNTOzLppx\niUNJVwMvR8Tiqm1/CdwQEZ+rqX0NeDAi/i6/fznZOrgfiojRvCh2AFvYVrVniRbfqcxhZdJ97rXK\neCwqyngsKsp4LCrKRJSaXuawSOD3AaeAocq0jqTdwEhE3FdT+x3gPyPib/L764CnI+IjzTZoZmbt\nMeOUTkScBZ4Dtkvqk7QGuAV4uk75buAuSavyefutwLfb2bCZmTWn6GmZm4E+sumZPcCmiDgiabmk\nMUmDABHxfeAbwEvAUeBNYLjtXZuZWcMKBX5EjEbEn0TE4oj4WER8N9/+y4joj4iRqtodwCqy0P8i\n8EbKX9Qq+qU1SRslvSrpjKRfSHpE0rz6JnQjX+Cr2udHki6kPBaSPi5pf35wdVLS17vZa6c1OBYP\nShqRNCrpRUmru9lrp0naLOkVSeckPTVDbcPZ2al/RG39otYcV2gsgA8A9wCXA58F1gFf7VaTXVJ0\nLACQ9CVgITD9B01zU9F/I4uAHwA/BJYBg2TvsueTomPxBeBO4Hrgg8BPqD+1PJcdAx4AnpyuqOns\njIi23simfv4XWFG1bRfwcJ3a75Cd1VO5fyNwvN099erWyFjU2XcLsK/Xz6FXYwH0A68Dvwf8Brik\n18+hF2MB3A38uNc9z5KxuBd4tur+auBsr59Dh8blAeCpaX7eVHZ24gjfX9Sa1MhY1LoBONyRrnqj\n0bF4mOzI70SnG+uBRsbiWuAtSQckvZ1PY3yyK112RyNj8SywQtIn8nc+dwLf63yLs1JT2dmJwPcX\ntSY1MhYXSfoK8Gng0Q711QuFx0LSNcB1wGNd6KsXGnldDAK3AzuADwMHgH2SFna0w+5pZCyOAweB\nnwP/A/wp8Bcd7W72aio7OxH4E2Rvx6stBcYL1C4lm6+tVzsXNTIWAEi6FXgIuDkiTnWwt24rNBaS\nBHwTuCey96pNf8lkFmvkdfEu2RcfX4iI9yLiUbLPeab87GOOaWQstgGfAT4KXEZ2ra6XJF3W0Q5n\np6aysxOB/wawUNKKqm1XUX964nD+s4qrgRNR+Vbu3NfIWCDpZuBbwB9FxL91ob9uKjoW/WTvbr4r\n6TjwU7LQH5F0fVc67bxGXhc/Y35+aF3RyFhcRTaHfzwiLkTELmCAbC4/Nc1lZ4c+cHiG7EOFPmAN\nMAqsqlN3E/ArsqOVAbJTOR/q9QcmPRqLtcA7wJpe9zwLxmJZ1e0a4ALwO8DCXj+HHozFSrKjubVk\nB2hbgH9PdCy+Bvxj/roQ2RV7x4H+Xj+HNo7FArJ3Lw+TfZH1UmBBnbqmsrNTTQ8Ae/MX6n8Bt+fb\nl5PNNQ1W1f458GvgNPAEsKjXg96LsQBeBP4v3zae//f5Xvffq9dF1T5XMs/O0ml0LIBb85A/nb9O\n3heGc/nWwL+RS8k+1/lVPhavAn/Q6/7bPBbbyA5wflN1+1o+FuOtZueM19IxM7P5YV59e9HMzKbm\nwDczS4QD38wsEQ58M7NEOPDNzBLhwDczS4QD38wsEQ58M7NEOPDNzBLx/+6ToKMaiwPUAAAAAElF\nTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10b7d5c90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(6,2))\n", "\n", "ax.spines['bottom'].set_color('blue')\n", "ax.spines['top'].set_color('blue')\n", "\n", "ax.spines['left'].set_color('red')\n", "ax.spines['left'].set_linewidth(2)\n", "\n", "# turn off axis spine to the right\n", "ax.spines['right'].set_color(\"none\")\n", "ax.yaxis.tick_left() # only ticks on the left side" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Twin axes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Sometimes it is useful to have dual x or y axes in a figure; for example, when plotting curves with different units together. Matplotlib supports this with the `twinx` and `twiny` functions:" ] }, { "cell_type": "code", "execution_count": 102, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAEECAYAAAC4HjrEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xmc1fP+wPHXu30PiYtL1ixZsmQtzRXZd7nZQq5cwkW6\n1rRZ0g/ZolKpdBFlKYTEUJFKhETq1k2KirapppqZ9++P95nmzNrMmXPm+z3nvJ+Px3nMOd9zzvd8\nZu513r0/38/n/RZVxTnnnEsn1YIegHPOOVfVPPg555xLOx78nHPOpR0Pfs4559KOBz/nnHNpx4Of\nc865tOPBzznnXNoJVfAToZYIQ0VYLMJaEWaLcEbkuWYi5ImwToT1kZ/3BT1m55xLWSJdEZmJSDYi\nw0t5zQOI5CFySpHjjyKyCpGViPSriuFWRI2gB1BEDWAJ0EaVX0Q4G3hNhEMjzyvQWBXfme+cc4n3\nK9AXOB2oW+xZkX2BS4BlRY7fAJwHHBY58hEi/0V1SCIHWxGhyvxU2ahKH1V+iTx+F1gEHB15iRCy\nMTvnXMpSfQvV8cCfpbxiIPBvYGuR452Ax1Fdjupy4DHgmoSNMwahDiQi7Ao0B76PHFJgsQhLRBgu\nQpPgRuecc2lMpAOQjer7JTzbApgT9XhO5FhohDb4iVADGA28qMrPwCqgFdAMywQbAv8JboTOOZem\nRBoADwG3lvKKBsDaqMfrIsdCI2zX/AAQQbDAtxm4BUCVDcDsyEtWinAzsFyE+pHnnHPOVY1ewChU\nfynl+SygUdTjxpFjoRHK4AcMA3YGzlIlt4zXKSVkryLiC2Kcc66CVFXK+dJ2wB6IdI08bgq8hsij\nqP4fMBc4ApgVeb5l5FhohG7aU4RBwEHAeapsiTp+rAjNRZDItb6ngE9UWV/SeVTVb6r07Nkz8DGE\n5eZ/C/87+N+i8G3YMAWU2rVLyRdEqiNSB6gO1ECkNiLVgVOAQ7EAdwS22rMLtgAGYBRwByK7I7IH\ncAfwYmXjQzyFKviJsBf2B2wJ/B61n+8yYF/gfWzu+FsgG7g8sME651wSmzkTbrzR7j//fKkvux/Y\nCNwFXBG5fx+qq1Fdse0GOcAaVDcCoDoYmAB8hy12GY/qCwn7ZWIQqmlPVZZQdkB+tarG4pxzqWrF\nCrjoItiyxQLgtddC584lvFC1N9B7uydU3beEY3cDd1d6sAkSqszPxV9GRkbQQwgN/1sY/zsUSMe/\nxdatcOmlsHQpnHgiPPlk0CMKhqim3toQEdFU/L2cc66ybr/dAt5uu8FXX9lPABFBy7/gJel55uec\nc2niP/+xwFezJowdWxD40pEHP+ecSwPffAPXX2/3n3rKpjzTmU97OudcivvjDzjmGFi82Ba2DB0K\nUmSCM92mPT34OedcCsvNhTPPhEmToFUr+OwzqFOn+OvSLfj5tKdzzqWw++6zwNe0KYwbV3LgS0ee\n+TnnXIoaOxY6dIDq1eGjj6CsnR2e+TnnnEt6c+fCNdfY/cceKzvwpSPP/JxzLsWsWWPX9xYsgMsv\nh9Gjiy9wKcozP+ecc0krLw+uusoC3xFHwAsvbD/wpSMPfs45l0L69IF33oGddoI334R69YIeUTj5\ntKdzzqWI8ePh/POhWjWYOBHaty//e33a0znnXNL56Seb7gR46KGKBb505Jmfc84lufXr4bjjYN48\nuOQSeO21il/n88zPOedc0lC1LQ3z5sEhh8Dw4b7ApTw8+DnnXBLr1w/eeAMaNbIFLg0bBj2i5ODT\nns45l6Q++MDqdqrChAlwzjmxn8unPZ1zzoXef/8Ll11mga9Xr8oFPn74IV7DShqe+TnnXJLZsMH6\n8X37LZx7Lrz1lm1viEleHrRti0yd6pmfc865cFK1prTffgvNm8NLL1Ui8AEMGwZTp8ZtfMnCMz/n\nnEsiAwbAHXdAgwbw5Ze2wjNmv/0GBx8Ma9Yg4Jmfc8658PnkE+je3e6PGFHJwAcWRdesgTPOKPl5\nka6IzEQkG5HhUcePQ+RDRP5A5HdExiDylyLvfRSRVYisRKRfJUcadx78nHMuCSxZApdeap3Z77kH\nLr64kid8/3145RWoWxeee660V/0K9AWGFTm+IzAYaBa5ZQEvbntW5AbgPOAw4HDgXES6VHLEceXT\nns45F3KbNkGbNvDVV3D66fDuu9agNmYbN8Khh8KiRdC/P3TvXvZWB5G+wB6odi7l+SOBTFQbRx5P\nA15EdWjk8bXA9aieWIlRx5Vnfs45F2KqcNNNFvj22QdefrmSgQ+s9cOiRXD44XDbbfEYZltgbtTj\nFsCcqMdzIsdCo0bQA3DOOVe655+363t161oFl512quQJv/sOHn/caqANGQI1a1bufCKHAz2Ac6OO\nNgDWRj1eFzkWGh78nHMupKZNg3/9y+4PHWrNaSslLw+6dIGcHDIvuIDMiROt91GsRPYH3gNuQfXz\nqGeygEZRjxtHjoWGBz/nnAuhZcusQ0NODtx+O1x+eRxOOngwTJ8Ou+9OxogRZDRuvO2p3r17V+xc\nIs2ASUBvVF8u8uxc4AhgVuRxSwpPiwbOr/k551zIbNlige+33yAjw9akVNqyZXD33Xb/6achKvCV\nSqQ6InWA6kANRGpHju0OTAaeQfWFEt45CrgDkd0R2QO4g+jVoCHgqz2dcy5kbrwRBg2CPfeEWbNg\nl13icNJLL4XXX7d6aG+/XazvUYmrPUV6Aj2B6C/U/BSxJ7Ah/5WAotoo6r39gOsj730B1Xvi8FvE\njQc/55wLkWHD4B//gNq1rerYMcfE4aTvvmuVr+vXtyLWe+1V7CXe1cE551wgZsywbQ1gqzzjEvg2\nbCg4ad++JQa+dOTBzznnQmDFCqvasmWLxaprr43TiXv2tPIwRx0Ft9wSp5MmP5/2dM65gG3dCqed\nBp9+CiedBB9/DLVqxeHEX38NrVrZTvkZM+Doo0t9qU97BkiEWiIMFWGxCGtFmC3CGVHPtxNhnghZ\nIkwWwfN351zS697dAt9uu9malLgEvtxc29OXm2sZXxmBLx2FKvhh+w6XAG1UaYxVDXhNhL1EaAKM\nA+4DdgK+AsYENlLnnIuD0aPhqaes0MrYsRYA42LgQFsq+te/2rU+V0jopz1FmAP0AnYGrlaldeR4\nPWAV0FKV+YXf49Oezrnw+/prm+bctMkWuPzzn3E68dKl1qcvK8vavJ9//nbf4tOeISLCrsABWGWA\nQoVSVdkILCBkxVKdc648/vgDLrrIAl/nznDDDXE8+S23WOC78MJyBb50FNrgJ0INYDQwIpLZFS2U\nClYstWFVj8055yojNxcuuwwWL7b1KAMHFttzHru33rJbw4bwzDNxOmnqCWVtTxEEC3ybgfy1uUUL\npYIVS11f0jl69eq17X5GRgYZGRnxHqZzzsXkvvtg0iRo2hTGjYM6deJ04vXrC7YzPPQQ7LFHnE6c\nekJ5zU+E4cBewFmqbIkcu57C1/zqAyvxa37OuSTy+utWaax6dZg8Gdq2jePJb7vNVs+0agVffFGh\nxn/pds0vdMFPhEFY2/tTI9f18o/vDPwMdMZaaPQFWqtSrDOwBz/nXBhNmwanngrZ2TBgQLz6yEbM\nmgXHHWfzp7NmQcuWFXp7ugW/UF3zi+zb64K1v/hdhPUirBPhMlVWARcDDwN/AscAHYMbrXPOld/c\nuVZeMzvbtt/l9+mLi5wcO2lenvU/qmDgS0ehy/ziwTM/51yYLF0KJ5xgP88/3/bz1YjniosnnoBu\n3aBZM4uy9etX+BTplvl58HPOuQRavRratLGYdNJJttClbt04fsD//geHHAIbN1r3hrPOiuk06Rb8\nQjXt6ZxzqWTTJjjvPAt8hxwC48fHOfCpws03W+Dr0CHmwJeOPPNzzrkEyMmxePTWW1Zh7PPPrTlt\nXI0dax/SqBH8+GOlaqN55uecc65SVKFrVwt8O+wA77+fgMC3di3ceqvd79cvjkVB04MHP+eci7O+\nfWHIENu8PmECtEhEEcZ774Xly+H44+NcGy09+LSnc87F0ZAhFouqVbPqLRdckIAPmT4dTjzRNrHP\nng2HHVbpU/q0p3POuZi8/TbceKPdf+65BAW+rVttT58q3HlnXAJfOvLg55xzcTBtGnTsaPvMe/ZM\n4EzkgAHw3Xewzz7Qo0eCPiT1+bSnc85V0ty50Lo1rFljSdmgQXHs0hBt0SK7gLhpk62iOf30uJ3a\npz2dc86V29KlcMYZFvjOPz/O7Ymiqdqc6qZN1g8pjoGvVCJdEZmJSDYiw4s81w6ReYhkITIZkb2K\nPP8oIqsQWYlIv8QPtmI8+DnnXIxWr7bAt3SpVW955ZU4ly2LNmYMfPCB7Z0YMCBBH1LMr1gTgWGF\njoo0AcYB9wE7AV8BY6KevwE4DzgMa1RwLiJdqmTE5eTBzznnYpDw6i3RVq8uaAHRvz/sumuCPqgI\n1bdQHY81E4h2EfA9qm+gugXoBRyBSPPI852Ax1Fdjupy4DHgmkqNRWQfRI5HpCUiDSp1Ljz4Oedc\nheXkwOWXw9SpVr3l/fdhp50S+IF33w2//24XFq+7LoEfVG4tgDnbHqluBBZEjhd/3u5XfLejyF8Q\neRyR3yLnn4ZlmWsQmYrIxTGNnpB2cnfOubCqkuot0aZNs82DNWvC4MG2gTB4DYAVRY6tAxpGPb+2\nyHMVy9ZEzgWeB74GhgLLgY1Y3NoROAB4FJGrgMsjAbjcPPg551wFVEn1lnxbttjyUYC77rL51TjJ\nzMwkMzMz1rdnAY2KHGsMrC/l+caRY+Uj0hX4K3AIquu289oOwEuIdER1a7k/IhW3BPhWB+dcIlRJ\n9ZZoDz0E998P++9ve/vq1EnYR5W51UGkL7AHqp0jj68Hrka1deRxfWAlcASqPyMyDRiO6rDI89cB\n16F6YjkGcjywN6qvVmDw+wMXo/poed8SivzZOefCrkqqt0RbsMDSTLCNgwkMfKUSqY5IHaA6UAOR\n2ohUB94EWiByISK1gZ7AN6j+HHnnKOAORHZHZA/gDuDFcn7qnxUKfACqCyJjKjcPfs45tx1VVr0l\nnyr885+weTN06gTt2iX4A0t1P3ad7S7gisj9+1BdBVwMPIytBD0G6LjtXaqDgQnAd9hil/GovlCu\nT1SdH9NIK/g+n/Z0zrkyVFn1lmijR8NVV0GTJjBvHjRtmuAPDFGFF5G6QDsgF/gY1c2J+BjP/Jxz\nrhRVVr0l2h9/wO232/3HHquSwBcokasR+RORrxA5BpgL3AmcDAxG5IBEfKyv9nTOuRJUafWWaP/+\nN6xaBRkZcPXVVfCBgXsAC3RLsWoyK4C/kT99Z1sZfi713THyzM8554qo0uot0T79FIYPh1q1qmh+\nNRQWovo9qmuA24GXKXzdap9EfKgHP+ecixJdvWWPPaqgeku+zZsLVtLcey8ceGAVfGgovIrI3wBQ\nzQEGbnvGaogmZHmRBz/nnIsoWr3lgw8SXL0lWr9+8NNPFvTuvruKPjQEVIcDKyJbJkA1N+rZzcCt\nifjYSq/2FGEfYFcgG1igWoFd/Aniqz2dc7Ho08e2MtSpA5Mm2SrPKvHTT3D44VbRJTMT2ratog8u\nEJrVnlUkpsxPhL+I8LgIxYqNijBVhJiLjTrnXBCGDLHAV62aLW6pssCXv6dvyxbo3DmQwBdqItUQ\nqVfkWGNETqrUaSuaIYkQXWx0DiUXG/0b8D1wuSoVKjYaD575Oecq4u234aKLbBP7oEFVsIk92ogR\ncO21sPPO8OOPtrcvAKHN/ES+Aw7GYs4HwPvAF0BboCaqH8Ry2got3BVhW7FRVcosNipCB+AlETqq\nUu5io845V5WqvHpLtJUroVs3uz9gQGCBL+TqAF2Ao7CqMvdiXSI+B/bEAmKFlTvzE+F4YG9Vyl1z\nTYT9gYtVKXex0XjwzM85Vx6BVG+J1qkTvPSSlS+bNCnQrQ0hzvwuAKqjOi7yeHfgVKANsAXVrjGd\ntgLBr7kqFa65Fuv7KsODn3Nue5YuhRNOsJ/nnw9jx1bRJvZ8kyfDqadC7drw/ffWuSFAoQ1+ACLn\nAbVRfT1up0zFIOHBzzlXltWroU0by/xOOsmSrirZxJ5v0yZb3blgATz4INx3XxV+eMlCG/xE+mHX\n/JYDW4EnUF1U2dOWudpThJYi/F2E/Yocv1CEhyv74c45V9UCq94S7eGHLfC1aAHdu1fxhyed67Cg\ndxJwE/ATIu8i0gWRfWM9aamZnwjdgEexFZ21gBnALapsFKE6kK1KzVg/OJE883POlSQnBzp0sE3s\ne+wBX3xRhZvY8/3wA7RsCVu3WhmZkyq1Yj9uQpz59Qb+g+r8SMWXU4H2wOnAbqhWj+m0ZQS/34Ab\nVHk78nh/4J/AE6osE2GrBz/nXLLI3043ZIhVb5k61RKvKpWdDSefDDNn2gqbwYOreAClC3Hwq4Z1\neXgV1SVFnjsS1a9jOW1Z0545wPj8B6osALoDl4pwMJCQ6CJCVxFmipAtwvCo481EyBNhnQjrIz+D\nnyh3ziWFvn0t8NWpAxMmBBD48munzZwJzZpZOTNXHk8BS4BzETm70DMxBj4oO/O7CViryn9KeK4T\nMCwRmZ8IFwB5WEpbV5XOkePNgP8CNVTLDrye+Tnnog0ZYvv3qlWDcePgggsCGMSzz8Itt9gFxs8/\nt6nPEAlx5jcFu96XB6wGFgMDsO7wMZfTLDXzU+U54OfI/r6iz40COsT6oWVR5S1VxgN/lvC04MW4\nnXMV8PbbcOONdv+55wIKfJmZcNttdn/48NAFvpB7H9gJ29f3BFZRbASwEpF3Yj1pmYFElRmqTC/l\nubdi/dBKUGCxCEtEGC6Cl0NwzpUq0Oot+ZYssVU2ubnWqLZjxwAGkdSeRXUNql+g+giqbYGmwDXA\nH7GeNOYsSoRqItQrcqyxCIlaurQKaAU0A44GGkLxKVnnnAOYPh3OPtvWmHTpYsGvym3caKnmqlXQ\nvr1tcXBlEzmu0GPVtcVeo7oW1TGoFrS6F2lVkY+pzBTiHGBdZHHKgyK0BrKA2iKcXonzlkiVDarM\nViVPlZXAzUB7EerH+7Occ8nts8/gtNNg7Vq4+GIYODCAymGqFnW//hr2289aRVSPaVV+utmCSI8K\nvUPkZOCYirylMsV8ElJstIKUUgJ4r169tt3PyMggIyOjCobjnAvapElWrmzTJuvIPnJkFZctyzdg\nAPznP1C/vm0srJJ28ClA9WtEWiIyFrgT1cWlvlZkR+B2oDmqFZpPjrm8WWRVZnVVxkUeFyo2qkps\nxUZtA31N4AGsg8T12LaLo4E1wM/Yxc+BwM6qnFr8HL7a07l0NGECXHKJtca77jrbRhdIsvXRR3D6\n6Xaxcdw465cUciWu9hRpBjwHnIA1LB8H/AvVPETaAc9iyc6XwLXF9uFVbkCXY+3zfga+BX4DtmCX\nvHYCDovcHkK1T4VPX5kgIcJ5QG1V4ldsVOgJ9KTwPsLewHzgYexC5zpgEvBvVVYUP4cHP+fSzeuv\nW6aXk2Pb6Z5+2rY2VLn//hdatYI//4QePaw9fBIoJfi9C6zAZvl2BD4ChgCvAAuBzsA7wINAG1RP\niPOgdsMyuwuhUJnN5ZHPfRrVuTGduhKZX7Fio6pUuthoPHjwcy69jB4NV19tidadd0L//gF1B8rK\nghNPhO++g3POsX0WgUTgiisl+M0FuqH6fuRxfyzzmg1cjWrryPF62KLElqgmpouPSH1gByCrxEUw\nFVSZ/1WKFRsV4V0RuogQc7FR55yriBdesLZ4eXnwwAMBBj5V68j+3Xdw4IEWkZMk8JXhSaAjInUR\n2QM4E9t31wJb9GhUNwILIscTQ3UDqr/GI/BB5YLfc8C9qhwG7AJchc3JPoDN0TrnXEI984wtqFSF\nRx6B3r0D7Afbr581BWzUyDK+xo0DGkhcTQEOxS41LQFmovo20AAoGoTWYVlhUqjMGqjewJ0ivKrK\nEmBM5IYIR8ZjcM45V5r+/eGuu+z+U0/BrbcGOJj33rOefCK2wvPAAwMcTPlkZmaSmZlZ+gtEBMvy\nBmELXhoALyLyKLatrVGRdzQG1idirIlQmWt+zwDTgCbAYlXejefAKsOv+TmXulQtw8vP8gYNsuwv\nMPPnw7HH2qbCvn3h/vsDHEzsil3zs/ZBK4AdUF0fOXY+0Bd4Grgm6ppffWAlibzmF2eVCX6lFhtV\nJeZio/Hgwc+51KQKd99tWV+1ajBiBFx1VYADWrcOjj8e5s2z7Qyvv5601/lKWfCyABiM1dRsCAwH\nNmArMH/GVnu+hwXE1qieWJVjrozK/K9UarFREWIuNuqccyXJy7Opzf79bdP6q68GHPjy8mylzbx5\n1h9pxIikDXxluAg4C8vq5mP77O5AdRVW3ORhrAnBMUBSFS2tTObXWLXwBU8RGgNnAGepcnXJ70w8\nz/ycSy25udaIduhQqFXLEqzzzgt4UL17Q69e1hl31iwrYZbEQtvSCECkNrAzsBLVLfE4Zbn/mSJC\noWKjRQNf/jFVxkQHPhEqVGzUOeei5eTYHr6hQ60V3oQJIQh8b71lga9aNUtBkzzwhZbIUYh8jC2k\nWQLkX2PcBZHJiBSr8FVeFcnRt4hQoWKjIlS42KhzzuXbssU6AOWXyJw40ZojBOqHHwrmW/v1szJm\nLv5EWmJbLfYDRhV6TnUFUBdin2Esd/BT5WtgqQhjRdi7rNeKsKMIfYCbVHk+1sE559JXdrZ1ZBg3\nzrbMTZoEbdsGPKg1a6xqdlaWReU77wx4QCmtD7AM2zh/N9bMPNpk4NhYT16hfX6qvCjCZmCOyPaL\njaom1wVQ51w4bNhgbfA++giaNIEPP4Sjjgp4ULm5Vjx0wQLrxD5sWIA76tNCG+ARVLMi1/yKWgLs\nHuvJK7zJXZWXRfiEsouNXq1KTMVGnXPpbf16a0I7ZQrsuqsFwEMPDXpUWJHqiRMtGr/5JtSrt/33\nuMqoQ/EqMtGKbrKvkJgqvKiyHPg38O9IM9kdgKySFsE451x5rV4NZ54JX34Je+wBkyeHpFjKa69Z\n/bTq1e3+3nsHPaJ0sBBrZVeaU4AfYj15pTelRDqs/+qBzzlXGStXwimnWODbe2/rxh6KwPftt1aw\nGuDxx22Qriq8DFxVZEWn7WET6YZtq3sp1pNXqp9fWPk+P+eSy2+/Qbt2tpBy//3h449hzz2DHhXw\nxx/Wm2/RIttv8eKLKXudL3T7/ERqAR8AJwM/AgcB32E9Xf+C9XQ9C9W8WE6fcuUInHPJ5Zdf4OST\nLfAdcohlfKEIfDk58Pe/W+Br1cqKiKZo4Asl28x+GnAnsAnrJN8c6xv4b+CcWAMfeObnnAvQokU2\ni7h4sS2g/PBDaNo06FFFdOsGTzwBu+wCX30Ff/1r0CNKqNBlfgnmmZ9zLhDz50ObNhb4jj3WpjpD\nE/hGj7bAV6OGbTRM8cCXjjz4Oeeq3Pff21Tnr79aAJw0CXbcMehRRXz1FVx/vd1/5hlo3TrY8aQz\nkcsRmYbICkRyS7jlxHrqyjSzdc65Cps920qU/fEHnHqqlcmsXz/oUUWsWAEXXmjlZa6/Hm64IegR\npS+R+7Gm6b8Dn2Ot8+J3+kp0dTgGOA7YkeIZpKrSt5Jji5lf83MunKZPhzPOsL6vZ58NY8dCnTpB\njypi61aLxp99BiecAJ98ArVLKiySmkJ3zU9kGTAPOAPVrfE+fYUzPxHqAm8A7bFaa0pBzTWNOhZY\n8HPOhc9nn1nAy8qymp0vv2ztiULjjjtskLvvbtf50ijwhVQj4LVEBD6I7ZrfA1jgewj4GxbsrgbO\nxCpwzwQOidcAnXPJb9Iky/iysqw85quvhizwDR8Ozz5rg3rjDdhtt6BH5OBrIGGbXmIJfpcAr6vy\nAPB95NivqnwAnArUAq6Jz/Ccc8luwgQ45xzYtAmuuw5GjbJFlKExfTrceKPdHzQIjjuu7Ne7qnI/\n8E9EjkzEyWP5v+CewBOR+7mRn7UAVMkR4RXgRuCeyg/POZfMXn/dMr2cHLj5ZnjqKev/GhrLl8NF\nF1njwJtvLihj5oKn+iki1wHTEZkOLKYg5mx7FarXxXL6WILf+qj3rQfyKNxWYi1WesY5l8ZGj7aK\nYHl50L07PPpoyAqkbN5sFx+XL7d9F088sf33uKojchwwEqiJtTdqU8KrFIgp+MXyb7CFWIkZVMkF\n5mJToYggwEXAL7EMxjmXGl54ATp1ssDXs2cIA5+qZXpffGG11F5/HWrWDHpUrrCnsF6x5wM7oVqt\nhFv1WE8eS/D7CLhYhPwPHQycIcJC4Gfsut+wWAfknEtuzzwDXbpYfOnXD3r1ClngAxg8GIYOtX0W\nb75pJcxc2BwOPIbqBFTXxPvksUx79sPaSAiAKs+JUAe4EpuPfQHoH7cROueSRv/+cNdddv+pp+DW\nW4MdT4mmTIFbbrH7Q4fC0WW1jHMBWoFlfglR4cxPlSxVflIlJ+rYE6ocpUorVR5VxXeYO5dGVC3D\nu+suy/IGDw5p4Fu6FC65xFbgdOsGV1wR9IjCT6QjIj8gkoXIz4icFDneDpF5keOTEdkrzp88HLgS\nkYSsDa5UVwcRagM7AytVExehK8orvDhXdbKzrQrYqFG2knPECLjqqqBHVYJNm2xhy6xZVsll4sSQ\n7bkIVokVXkROA4YAl6I6E5H8DZBbsPUfnYF3gAeBNqieEMcBnYLNNFYDngMWUXy1J6h+FtPpYwkS\nIhwFPAa0BqoDp6nysQi7AK8Aj6jyUSwDigcPfs5VjWXLrBTmjBlQr56t8LzwwqBHVQJVuOYai9D7\n7AMzZ0KTJkGPKlRKCX7TgKGovljk+PXA1ai2jjyuh/XZa4nq/DgNqGivvqJf6lZNLMZFL7GUN2uJ\nVXJZBYwCtm2MUWVFpPzZ1RBc8HPOJd706bZFbvly2HtvK1B9xBFBj6oUTz9tga9ePRuoB77tE6kG\nHAOMR+RnoDbwFtZItgUwZ9trVTcisiByPD7BLyq2JEIsOX8fYBlwJFAHS3ujTQYureS4nHMhNnKk\nrejcsgUyMmynwM47Bz2qUnz8sV3fA5uTPfzwQIeTRHbF9thdDJwE5ADjscorDbAFKdHWAQ3j9umq\nI+N2rhKRYp2NAAAbNUlEQVTEEvzaYNOaWZFrfkUtofCmd+dcisjJsQ3rTz5pj7t2hQEDQrxFbvFi\nuPRSyM2Fe+6BDh2CHlFoZGZmkpmZWdZLNkV+Po2qBTqRJ7Dg9ylWeDpaY6zwSVKIJfjVwaq4lKbo\nH6RCROiK1QY9DHhZtSCzFKEd8CxWYu1L4FpVllTm85xz5fPnn9CxoxWprlkTBg4s6PkaSitWwHnn\nWePAM8+Evt5oJlpGRgYZGRnbHvfu3bvwC1TXILK0yNs0cptLdA1nkfrAfpHjSSGW4LcQKGtjzCnA\nD7ENB4BfsXZIpwN18w+K0AQYR+HVRWOA+K0ucs6VaO5cOP98WLgQmja1xgehbnC+ZAmcdhrMnw8H\nHmj9k6rHXAwknb0I3ILIB9i05+3ABOza3/8hciHwHtAT+CZui10ARD4ux6sU1XaxnD6W4Pcy0EOE\n17CWEzYAQIRuwBnAv2IZDIAqb0XO1QrYI+qpi4DvVXkj8nwvYJUIzVXjdoHVOVfE+PG2HS4rC448\n0taL7BXvHV3x9NNPFvh++cVW4HzwAeywQ9CjSlZ9se1s87Fp0DHAw6huQeRiYCAwGpuJ6xjnz96X\n4is8awC7YdsfVgEbYj15LMHvMeA04APgx8jgBojQFCtoPQnbkxFvhVYXqbJRhHivLnLORajCQw9B\njx72+O9/t7Z39eoFO64yff01nH46rFwJJ50E77zjga8yVHOArpFb0ec+Bg5O4GfvXeJxkdrAHdhq\n0Laxnj6WCi9bsOB3J/YvgWys0PUqbAnsOaoU3Z8RDw0ofq0xvquLnHMAbNhgwa5HD6vY8sgj8Mor\nIQ98U6bY0tOVK61zrmd8qUl1M6qPYNlmzK04KpT5RfbwdQB+UmUAMCDWD45BFkm+usi5ZPC//9n1\nvTlzoFEju1x29tlBj2o73nvP2hNlZ9uKztGjQ9Yq3iXAVOCRWN9c0WnPzVjh6n9hUbcqzcU2zwMg\nQpmri3r16rXtftFVTc65kn32mcWQVavggAPg7bfh4MRNbMXHmDFw5ZW2D+Mf/7Bu7L64JR3sQ6SR\neiwqFPxUyRPhFyq5naEskVZJNbGyaTUiewlzgDeB/iIUWl1U2mKX6ODnnNu+QYOs2UFOjl02e+UV\n2HHHoEe1HYMHw4032gXKUHbMdTErvVD2TljrvFuBzJhPX9EamCL0wCq4HKPK5lg/uIzz98QCW/TA\neqvSR4RTsNVFe2GZ5zUl7fPz2p7Old+WLdaBYfBge3znndaHL/TJU79+tnEd7KLk3XcHO54kV2Jt\nzyBZbc/SvsgF+Ak4F9UFMZ0+huDXDlvxWQdb1fkzsLHo61SJqdJ2PHjwc658VqywDj9TpkDt2taB\nPZQdGaKpWtDLz/IGDrTsz1VKCINfL4oHPwX+xFb4f4RqzIsrYwl+5aq0rUpg/2704Ofc9n39NVxw\nge0H3313a2h+7LFBj2o7cnPhpptgyBBrRzRqFFx2WdCjSgmhC34JFss+v4RW2nbOJd6YMXDttdbi\n7vjjrWLLbrtt/32B2rIFOnWywdepA2PHJsEyVBdWlWpmG1ae+TlXsrw827v38MP2+Npr4fnnbcoz\n1DZutPnZiROhYUPbvH7yyUGPKqUEnvmJdIrpfaqjYvq4VAwSHvycK27dOtsRMGGCLWZ5/HFb6BL6\nxZFr18I558DUqdY36f334eiyygu7WIQg+OUvcKnIGKqumW0+EY4BjgN2pHilGFXFS6g7FxI//2wb\n1+fNs+0Lr70Gp54a9KjKYcUK23fxzTfw179aS4mDDgp6VC4x/laVHxbLgpe6wBtAe/LbyBdE6vz7\nvuDFuZD48EMrVbZmDbRoYRvX99sv6FGVQ3RnhgMOsMDXrFnQo0pZgWd+VazCtT2BB7DA9xAWqQWr\nvHImMAWYCRwSrwE652KjCk88Ya3s1qyxzO+LL5Ik8P30k/VMmj/fOjNMmeKBz8VVLMHvEuB1VR4A\nvo8c+1WVD7Bd97WIbnLonKty2dlwzTXQrVvBIpc33rC1IqE3eza0aWMtiU46CTIzYdddgx6VC4JI\nfUR6I/ItIlmR27eI9Io00I1ZLMFvT6yFPUBu5GctAFVygFeIf18n51w5LVsGbdvaFrh69eD116FP\nH6gWy3/tVW3KFPjb37wzgwORnYAZQA9gV6x/7NeR+w8AMyKviUks/zmsp2ChzHogD9g96vm1WF8/\n51wV+/JLOOYYmDHDZgk//9x2CCSF996D9u1tWWqHDnZxsn6l/nHvklsf4CDgZmB3VNug2gaLN12B\nA4FesZ48luC3EOvfhyq5WFeFSwBEEKzj+i+xDsg5F5uRI23r2/LllvnNnGmXy5LCq6/aRcnsbOvM\n8Mor3pLInQcMRfU5VHO3HVXNRfV5YDhwQawnjyX4fQRcHOm+ADAYOEOEhVidz1OBYbEOyDlXMTk5\ncPvtdo1vyxar/jVpEjRtGvTIymnwYLj8cvtFune30mWhr6rtqkD+VGdpZkdeE5NY9vn1A14isr1B\nledEqANciV0DfAHoH+uAnHPl9+ef0LGjBbsaNazGc5cuQY+qArwzgyvd78CRZTx/ZOQ1MfEKL84l\nqblzbaZw4ULL8saNs0WSSUHVAl3//t6ZISRCt89PZCBwA3Z974VtHRxEqgH/wNrbDUb15phOn4pB\nwoOfS3Xjx8MVV0BWFhx5JLz1FuxVWuvPsPHODKEUwuDXBPgC2A9YifXvA1vo0hRYAJyI6h+xnD4Z\nFj875yI2brTrexdcYIHv73+3kpdJE/i2bLGoPWSIdWZ46y0PfK5kFtSOwS61/QG0itxWAY8ArWIN\nfOCZn3NJY+pU6NzZ6nRWrw59+9rMYegLU+fzzgyhVmbmJ3IA8C3wOqqdIsfaAc9ie7+/BK5FdUkc\nB1S90CrPOPPMz7mQy8/2Tj7ZAt+hh8L06bZOJGkC35o1todv4kTrzPDJJx74ksuz2IZzI7IzMA64\nD9gJ+AoYE+fPXIbIE4gkZMOOBz/nQmzqVGjZEp580iq03HcfzJplG9mTxooVVrVl2jTrzDBlirck\nSiYiHYHVwOSooxcC36P6BqpbsM3mRyDSPI6f/F/gNmA2InMQuQORuNW58+DnXAiVlu09+GASNJ6N\ntmSJLUH95hvrzDB1qrckSiYijYDewB0U7rPXApiz7ZHqRmwBSou4fbbqCVhBlYeBhsBjwC+IvINI\nB0QqVQXBg59zIZMS2R7Ajz9aYWrvzJDM+mDbDJYVOd4AK2UZbR0WpOJHdQGqPVDdF+si9BLQGpti\n/Q2RQbGeOuZmts65+Nq40QLdU0/ZNrhDD4UXX0zCoAfWmeH002HVKguA77zjBapDJjMzk8zMzNJf\nINISq9jVsoRns4BGRY41xuo9J4bqp8CniHQFrgAeB64H/hnL6Xy1p3MhUHQl5913WxuipJrizPfZ\nZ3DuuVag+owzYOxYL1CdBIqt9hT5F/AgFtAEy/aqAfOAQcA1qLaOvLY+thevJarzEzjIU4BOWA3p\nBsAfqMZUyM+Dn3MBSqlsD6wzw8UXW4HqDh1g9GgvUJ0kSgh+dSic3XUHmmGZVjWslnNn4D2gL9Aa\n1RMTMLCDsIB3BfBXIAeYCIwE3kF1ayyn9WlP5wKSUtkeWGeGq66yAtX/+AcMGuQFqpOZajaQve2x\nSBaQjeqfkccXYyXGRmP7/OLbx1XkZizoHY1lnrOxqc6XUV1V6dOnYobkmZ8Ls5TL9rKy4K674Lnn\n7HH37vDoo0m0CdFBKMub5QG/YcF1JKpz43l6z/ycq0Ipl+1lZtovtGiR1ens1w+6dQt6VC41nAV8\nuK2gdZx55udcFUi5bG/DBovczz5rj1u2hBEjkqh7risqdJlfgvk+P+cSLGX27eX79FM4/HALfDVq\nQK9eMGOGBz6XVHza07kEScls75574Jln7PERR1i217KkbWDOhZtnfs4lQMple599ZsHumWcs2+vZ\n07I9D3wuSXnm51wcpWS2d++9FvRU4bDDYORI66DrXBLzzM+5OEm5bC//F3r6afuFevSwX8gDn0sB\nnvk5V0kpl+2V9AuNGOFtiFxK8czPuUpIuWxv2rSSfyEPfC7FJF3mJ0ImcBywFSt5s1SVgwMdlEs7\nKZftbdoE998PAwbYL9SihWV7SfsLOVe2ZMz8FLhJlUaqNPTA56paymV7n39uv9ATT1hJsnvuga++\nSuJfyLntS7rMLyJtqhC48EjJbO+BB+Dxx+0XOuQQy/ZatQp6ZM4lXDJmfgCPiLBChCkitA16MC71\npVy2N326rdp87DHL9u6+27I9D3wuTSRdbU8RWgE/AFuAy4BngSNUWVTwGq/t6eJjwwa7FJYy2V52\ndkG2l5cHBx9s2d6xxwY9MhewdKvtmXTBrygRJgLvqDKw4Jhoz549t70mIyODjIyMAEbnklV2Ngwe\nDA8/DCtWpEgHhi+/hGuugR9/tPS1e3ery1mnTtAjcyHgwS/JiPAe8J4qzxYc88zPxWbrVkuE+vaF\nX36xY8ceCwMHJnm217OnTXHm5cFBB1n6evzxQY/MhUi6Bb+kuuYnQmMR2otQW4TqIlwBtAHeD3ps\nLrnl5sLo0TYL2KWLBb7DD4e337bLY0kb+GbMgKOOgv797XH37jB7tgc+l/aSbbVnTeBB4EAgF/gR\nOF+VBYGOyiUtVXjzTbsMNjfSJ7p5c+jTBzp0sNnBpLR5s01p9u9v2V7z5pbSnnBC0CNzLhSSftqz\nJD7t6bZHFd5/3xazzJ5tx5o1s9nBq66yxgVJa+ZMu7b3ww+2kvOOO2wet27doEfmQizdpj2T+T9x\n52Ly6acW9KZOtcd/+Ys9/sc/kngxC1i216cPPPqozeMecIBd2zvppKBH5lzoePBzaWPGDAtykybZ\n4yZNbAXnTTdBvXrBjq3SvvrKsr3vv7ds7/bb4cEHU+AXcy4xPPi5lPftt7ZFYfx4e9yoEXTrBrfd\nZveT2ubNNqXZr59le/vvb9le69ZBj8y5UEvWy/nObddPP0HHjtaAfPx4S4LuvhsWLbIFLkkf+GbP\ntmWoDz1ki1puuw3mzPHA5+JDpBYiQxFZjMhaRGYjckbU8+0QmYdIFiKTEdkrwNFWmAc/l3IWL4bO\nna1U5ZgxUKsW/OtfsHAhPPII7LRT0COspKwsi97HHmvTnPvtZxcyBwzwaU4XTzWAJUAbVBsDPYDX\nENkLkSbAOOA+YCfgK2BMYCONga/2dClj2TJLgl54wTarV69uQbBHD9hzz6BHFwfLlsEzz1jpmdWr\n7ditt1oZmvr1gx2bS3rlWu0pMgfoBewMXI1q68jxesAqoCWq8xM70vjwa34u6a1aZQscn33WipmI\nwBVX2Da3/fcPenRxMGeOtRt65RWL6mD79fr1g5NPDnZsLn2I7AocAMwFbgLmbHtOdSMiC4AWgAc/\n5xJp7VqrzzxggM0EAlx0ka32b9Ei2LFVWv5GxMcfh8mT7Vi1anDJJbZvzzeru6okUgMYDYxAdT4i\nDYAVRV61DmhY5WOLkQc/l3Q2bLDZv/79C2b/zjzTFj0efXSwY6u07GyrszZggG1SB5vSvO46u3C5\n777Bjs+ljMzMTDIzM7f/QhHBAt9m4JbI0Syg6JKxxsD6+I0wsfyan0saRTstALRta9vZkn6B48qV\n8PzzVkE7/5fbYw+7ptelC+ywQ7Djcymv1Gt+IsOBvYCzUN0SOXY9ha/51QdWkkTX/Dz4udDL77TQ\npw8sXWrHjj3Wgt6pp9o1vqT144+W5Y0aZdEdrGtut25w6aW2VNW5KlBi8BMZBBwOnIrqxqjjOwM/\nA52B94C+QGtUT6yyAVeSBz8XWrm5tsajVy/bpgDWaaFvXzj33CQOeqqQmWmLWN55p+D42Wdb0MvI\nSOJfziWrYsHP9u0tBrKxRgIACtyA6iuInAIMxLLCL4FrUF1SpYOuBA9+LnRK67TQu7clQ0nbaWHr\nVnjtNQt6+dW0a9eGTp2sHNnBBwc7PpfWvLC1cwFJ2U4La9bY5sOnny6Yt23aFLp2hRtvhF12CXZ8\nzqWhZP06cSnk99/h5Zdh5Ejb0gYp0mlh0SJ46ikYNqxgL8ZBB9lWhSuv9BZDzgXIg58LxObNMGGC\nBbyJE+36HsDOO8NddyV5p4Xp021qc9w4q7kJcMopdj3vjDOSeN7WudThwc9VGVX48ksLeGPGFOzR\nq17dFrB06mQ/kzLTy82Ft9+2Temff27HatSAyy+3TO/II4Mdn3OuEA9+LuF++QVeeslW8//0U8Hx\nli3h6qstPiTtZa+sLNuH8eSTBUtSd9gBbrgBbrnF9uo550LHg59LiA0bbNZv1Cj4+GPL+gB23dXq\nbl59tW1bSFolFZneZx9rK9S5MzRoEOz4nHNl8uDn4iYvzzrrjBwJY8daAASbxjz/fAt47dsn8apN\nKL3IdLducMEFNofrnAu9ZP4aciHx88+W4b30EvzvfwXHTzzRruNdeinsuGNw46u00opMX3yxBT0v\nMu1c0vHg52KyZo0tWhk5Er74ouD4XntZwOvUCQ44ILjxVVpODsyaBZMmwauvepFp51KMBz9Xbjk5\n8MEHluW9/bZtVwCLB5dcYtOabdsm8Ur+RYvgww8t4E2ebBE+nxeZdi6lePBz2/Xtt5bh/ec/tiEd\nrPRku3YW8C66KEkbia9dC598UhDwFiwo/Px++9lFytNPt55JXmTauZThwc+VaMWKgqor33xTcLx5\ncwt4V15pU5xJJScHZsywQPfhh7bpMH93PVhG164dnHaa3Xxa07mU5cHPbVNa1ZUdd4SOHS3oHXts\nkjUcWLjQAt2HH9qei3XrCp6rUcMaAbZvb7ejj07ypajOufLy/9LTnKolQyNH2rqOpK+6snq1Bbn8\n7G7RosLPN29uge6006x1UKOizaidc+nAg18aUrWE6LXXUqDqytatNn2Zf91uxoyCepoAO+1kU5n5\nAa9Zs+DG6pwLDQ9+aWDDBpg507YkfPGF1V1eubLg+aSquqJqGwvzM7tPPoH16wuer1ED2rSxQNe+\nPRx1lG88d84V48EvxeRnddOnFwS7b78tvK4DrJ3cKafYtGboq678+adtPcjP7qJ30oO1CcrP7Nq2\nhYYNgxmncy5phPkrz5XD9rI6sMTnyCOtEEn+bd99Q7xwZcsW+2Xys7tZswqKgwI0aVKwIvO002DP\nPYMbq3MuKXnwSyIVyeqiA90xx4R0H56qZXULFhTcZs2yqcz8wqBg++tOOqkguzvyyCTeSe+cCwMP\nfiGWElmdKvz2W0FwW7iwcLBbu7bk97VoUXDd7uSTQxq9nXPJyoNfSORndflBLqmyutxcWLq05OC2\ncCFs3Fj6exs2hP33t2oq++8PhxxiFyO9D55zLoGSLviJsCMwHDgNWAncq8orwY6q4sqb1R11lAW5\n448POKvbuhUWLy4e4BYuhP/+167TlaZJk8IBLv+2334WzUOTpjrnChEp9n2LatJ935Yk6YIf8ByQ\nDTQFjgLeFeEbVeYFO6zSRWd1+YEulFndpk0WyErK3v73v+IDjrbbbsUD3H772S2p+xk5l9aKfd8i\n8g2qof2+LS/R6FV0ISdCPWA1cIgqCyPHRgK/qnJvwetEE/V7qUJWFvzxR/lvq1YV3ooGltUdcUSC\ns7rcXKZMnEibli1tANG3deusG3l0oFu6tPRziVgxz5Kyt333TYrO5ZmZmWRkZAQ9jMD536GA/y0K\niAiqKlEHtn3forowcmwk8Cuq95Z4kiSSbJlfc2BrfuCLmAO0jeVkOTm22LAigeyPPwoaeFdEubO6\nzZsLB6iSglbRY6Ud37CBNhUZZI0asPfexYPb/vvDPvskUY2zkvkXnfG/QwH/W5SpObB1W+AzMX/f\nhk2yBb8GwLoix9YBxXY1f/jgl6xbncf6tXmsW2M/16/NI2td5P46ZdPGPKpR8k1QqpFHbfL4K3ns\nFfVcnZp5NGigNKqfR4P6eTSsZz8b1MujQd086tfLo35dpX7dPOrXzaNenTzq6kZk/TqYvx6+KiNw\nxRJZy7C5Vi1qN2liC0saNbKf+bdddikc6PbaK+S73Z1zVajc37fJKNm+6bKAopWIGwPri76wfY/j\nEzeKrdhkwOoEnLtmzcIBqqSgVd7j9evzSJ8+9OrVKwEDdc6luHJ/3yajZLzm9yfQIuqa3yhgadFr\nfgEN0TnnklYJ1/z+BFpEXfMbBSxNhWt+SRX8AER4GVDgemz10QTgxDCv9nTOuaQkUuL3bSqs9kzG\nGlFdgXrACmA08E8PfM45lxDFvm9TIfBBEmZ+zjnnXGUlY+ZXKhHZUUTeFJEsEVkkIpcFPaYgiEhX\nEZkpItkiMjzo8QRJRGqJyFARWSwia0VktoicEfS4giIiL4nIchFZIyI/ish1QY8pSCJygIhsEruW\nlZZEJDPyN1gnIutFJCUyu+1JqeBH4WoEVwLPi8jBwQ4pEL8CfYFhQQ8kBGoAS4A2qtoY6AG8JiJ7\nBTuswDwC7KOqOwDnAQ+KyJEBjylIzwIzgh5EwBS4SVUbqWpDVU2L78yUCX5iK5MuAu5X1U2qOg14\nG7gq2JFVPVV9S1XHYyu10pqqblTVPqr6S+Txu8Ai4OhgRxYMVf1BVbMjDwX74tsvwCEFRkQ6YhuW\nJgc9lhBIuwK7KRP82Fb9pVg1ghYBjceFkIjsChwAzA16LEERkYEisgGYBywD3gt4SFVORBoBvYE7\nSMMv/hI8IiIrRGSKiKREBZftSaXgl9LVCFzliUgNbMXaCFWdH/R4gqKqXbH/XloDbwCbgx1RIPoA\nL6jqsqAHEgL/BvYF9gBeACaIyD7BDinxUin4pXQ1Alc5IiJY4NsM3BLwcAKn5nNgT+DGoMdTlUSk\nJXAq8GTQYwkDVZ2pqhtUdauqjgKmAWcFPa5ES7byZmWZD9QQkf2ipj6PII2nt1whw4CdgbNUtYze\nTGmnBul3za8t0AxYEvlHUQOguogcoqrHBDu0UFDSYCo4ZTI/Vd2ITeH0EZF6ItIaOBd4KdiRVT0R\nqS4idYDq2D8IaotI9aDHFRQRGQQcBJynqmV03U1tItJURP4uIvVFpJqInA50BD4KemxVbDAW8Fti\n/0AeBLwDtA9yUEEQkcYi0j7/O0JErgDaAO8HPbZES5ngF1FC9ZfUqEZQQfcDG4G7gCsi9+8LdEQB\niWxp6IJ90f0e2ce0Lk33gCo2xfkLthK4P/CvyArYtKGq2aq6Iv+GXTLJVtV0XB1dE3gQ+85ciX2H\nnq+qCwIdVRXwCi/OOefSTqplfs4559x2efBzzjmXdjz4OeecSzse/JxzzqUdD37OOefSjgc/55xz\naceDn3POubTjwc8551za8eDnnHMu7fw/C9Heuiu/ClcAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x109b88690>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax1 = plt.subplots()\n", "\n", "ax1.plot(x, x**2, lw=2, color=\"blue\")\n", "ax1.set_ylabel(r\"area $(m^2)$\", fontsize=18, color=\"blue\")\n", "for label in ax1.get_yticklabels():\n", " label.set_color(\"blue\")\n", " \n", "ax2 = ax1.twinx()\n", "ax2.plot(x, x**3, lw=2, color=\"red\")\n", "ax2.set_ylabel(r\"volume $(m^3)$\", fontsize=18, color=\"red\")\n", "for label in ax2.get_yticklabels():\n", " label.set_color(\"red\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Axes where x and y is zero" ] }, { "cell_type": "code", "execution_count": 103, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAADtCAYAAABAv+VSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHsBJREFUeJzt3Xl4VdW9//H3AVIZkpMAMkRUxCgyKOEWh5YoJPRWHJCp\nFBABi9BaaVF/yIUL2Ag1eEUFh4JSbFVAStUHMdLeC1JMiUhtQSCVBKWNRQICQQkZCIHkZP3+WE0M\nkJDhDPsMn9fz7Cc5h332+bKfcz4s1l57LZcxBhERCQ/NnC5ARER8R6EuIhJGFOoiImFEoS4iEkYU\n6iIiYUShLiISRlr48dgaKyk+5XK50BBciQAub16slrqISBhRqIuIhBGFuohIGFGoi4iEEYW6iEgY\nUaiLiIQRhbqISBhRqIuIhBGFuohIGFGoi4iEEYW6iEgYUaiLiIQRhbqISBhRqIuIhBGFuohIGFGo\ni4iEEYW6iEgYUaiLiIQRhbr4xdKlS7nhhhto2bIl99133wX3ffbZZ4mPjycuLo4pU6ZQXl4eoCpF\nwo9CXfyiS5cu/OIXv2Dy5MkX3G/jxo089dRTZGRk8MUXX5Cbm8tjjz0WoCpFwo9CXfxi+PDhDB06\nlHbt2l1wv5UrVzJ58mR69OhBbGwsqampvPrqqwGqUiT8KNTFUdnZ2SQmJlY/TkxMJD8/n4KCAger\nEgldCnVxVElJCbGxsdWP3W43xhiKi4sdrErEGUeOeH+MFt4fQqTpoqOjKSoqqn5cWFiIy+UiJiam\n1v3nzZtX/XtycjLJycl+rlAkMHJz4bvfhfx8746jUBdH9e7dm6ysLEaNGgXA7t276dSpE23btq11\n/5qhLhJOHn8cpk71/jjqfhG/8Hg8lJWV4fF4qKio4PTp03g8nvP2mzhxIr/97W/Zu3cvBQUFpKWl\nMWnSJAcqFnHOvn3wxz/Cww97fyyFuvhFWloarVu3ZuHChaxevZrWrVuzYMEC8vLyiImJ4eDBgwAM\nHjyYmTNnkpKSQrdu3UhISFBrXCLOL39pAz0uzvtjuYwx3h+ldn47sEQml8uFHz+vIo7YuxcGDrR9\n6v++lOTy5nhqqYuIOGjePHjkkepA95pa6hIy1FKXcPPJJ/D979tWeps21U+rpS4iEormzoVZs84K\ndK9pSKOIiAO2bYOsLHjzTd8eVy11EZEAMwbmzIHHHoOWLX17bIW6iEiAvfceHD0KEyf6/tgKdRGR\nAKqstK30xx+HFn7oAFeoi4gE0Nq14HLBD37gn+NrSKOEDA1plFBXXg69esGLL9qhjHXQkEYRkVCw\nfDkkJFww0L2mlrqEDLXUJZQVFUH37rBxI9RYF6Y2aqmLiAS7p5+GwYPrDXSvqaUuIUMtdQlVhw5B\nnz6waxdcfnm9u3vVUleoS8hQqEuomjIF2reHhQsbtLtXoa5pAkRE/CgrC9avh08/Dcz7qU9dRMRP\njIHp0+10AHWs0OhzCnURET9Zvx6OHIGf/CRw76nuFxERPzhzxi5+sWSJf6YDqIta6iIifrB0KVx9\ntR3GGEga/SIhQ6NfJFR89RX07AmZmfZnI2lIo0QGhbqEivvvt/OkP/98k16uIY0iIsHi448hPT1w\nQxjPpT51EREfqayEadNgwQKIi3OmBoW6iIiPvP46VFTApEnO1aA+dQkZ6lOXYFZUBD16wLp1cNNN\nXh1KF0olMijUJZhNnw4nTsArr3h9KF0oFRFxUlYWrF4Ne/Y4XYn61EVEvFJZCT/9KaSlQYcOTlej\nUBcR8cpvfmMXkp482elKLPWpS8hQn7oEm/x8uPZa2LTJpysa6UKpRAaFugSbH/3ILn6xaJFPD6sL\npSIigfanP0FGRnBcHK1JfeoiIo1UWmrnd3nxRYiJcbqas6n7RUKGul8kWMyaBQcOwJo1fjm8ul9E\nRAJl1y547TX45BOnK6mdul9ERBqoogKmTIGFC6FjR6erqZ1CXUSkgZ5+Gtq1g3vvdbqSuqlPXUKG\n+tTFSdnZkJwMO3ZA165+fSuv+tTVUhcRqUfVdLppaX4PdK8p1EVE6rFoEbjd8JOfOF1J/dT9IiFD\n3S/ihJwcGDgQtm+HK64IyFuq+0VExB/OnIEJE2y3S4AC3WsKdRGROjz+OMTHh0a3SxXdfCQiUouP\nPoKXX4bdu+3UuqFCLXURkXOcPGm7XZYuhc6dna6mcXShVEKGLpRKoPz0p3bSrpUrHXl7zf0iIuIr\n69bZRS927XK6kqZRS11Chlrq4m8HD0K/fpCeDt/5jmNlaEijiIi3PB4YPx4eesjRQPeaQl1EBHjy\nSTvKZdYspyvxjvrURSTiffAB/OpXdrKu5s2drsY7aqmLSETLz4dx4+DVV+HSS52uxnsKdfGLgoIC\nRowYQXR0NN26dWNNHet+rVixghYtWuB2u4mJicHtdpOZmRngaiVSVVba8ejjx8PttztdjW+o+0X8\nYurUqbRs2ZJjx46xc+dO7rzzTvr27UvPnj3P27d///4KcnHEE0/Y8eiPP+50Jb6jlrr4XGlpKW+/\n/TZpaWm0atWKpKQkhg0bxqpVq5wuTaTa++/DkiXw+99DizBq3irUxef27dtHVFQUCQkJ1c8lJiaS\nnZ1d6/67du2iY8eO9OjRg7S0NCorKwNVqkSoAwfgnntg9Wro0sXpanwrjP59kmBRUlKC2+0+6zm3\n201xcfF5+w4cOJA9e/bQtWtXsrOzGT16NFFRUcwK9XFlErTKymDUKJg+Hb73Paer8T2FuvhcdHQ0\nRUVFZz1XWFhITEzMefteUWOS6t69e5OamsozzzxTZ6jPmzev+vfk5GSSk5N9UbJEkGnT7JJ0M2Y4\nXYl/KNTF57p3705FRQW5ubnVXTBZWVn07t27Qa+/0FQANUNdpLGWL4dt2+y0uqE0nW5jqE9dfK51\n69aMHDmS1NRUSktL2bp1K+vXr2fChAnn7bthwwby8/MB+PTTT0lLS2P48OGBLlkiQGYm/OIX8M47\nUMt/GsOGQl38YunSpZSWltKxY0fGjx/PsmXL6NmzJ3l5ebjdbg4ePAjA5s2b6dOnDzExMQwZMoRR\no0Yxe/Zsh6uXcLN/P4wZA6+/Dldf7XQ1/qVZGiVkaJZGaYriYkhKgilT4MEHna6mQbzqGFKoS8hQ\nqEtjeTzwgx9Ahw62Pz1E+tG1SIaISG1mzICiInjzzZAJdK8p1EUkLC1ZAhs22NEu3/qW09UEjkJd\nRMLOH/5g53X58ENo29bpagJLoS4iYWX7drjvPli/Hrp1c7qawNOQRhEJG/v2wdCh8JvfwE03OV2N\nMxTqIhIWDh+G226z0+gOHep0Nc5RqItIyCsstItcTJ5sx6NHMo1Tl5ChcepSm5MnbQu9b1944YWw\nGLqom48kMijU5VynT8Ndd8Ell8Arr0Cz8Oh7UKhLZFCoS03l5TB6NDRvHnarF+mOUhGJLB4P/OhH\ntqX+zjthFehe06kQkZDi8cDEiZCfD+++G1l3izZEePRAiUhE8Hjg3nu/CfRWrZyuKPgo1EUkJFRU\n2C6XI0cgPV2BXhd1v4hI0DtzBu65x45Hf/ddaN3a6YqCl1rqIhLUTp2CESPsaJf16xXo9VGoi0jQ\nKi6GIUPA7Ya33oKLLnK6ouCnUBeRoJSfD4MGwZVX2rVFo6Kcrig0KNRFJOj8619w88329v/ly+0N\nRtIwCnURCSq7d8Mtt8BDD9kZF8NgLpeA0ugXEQka//u/dtjiiy/CqFFOVxOaFOoiEhRefNG2zNPT\n4bvfdbqa0KVQFxFHVVTAf/2XXST6ww/thVFpOoW6iDjm+HEYO9b+vm1b5C0S7Q+6UCoijsjOhhtv\nhOuus33pCnTfUKiLSMC99RYkJ0NqKixapKlzfUmnUkQC5swZmDnTzt+yYQP06+d0ReFHoS4iAZGX\nB2PGQPv28PHH6m7xF3W/iIjfrVsH118PQ4faIYsKdP9RS11E/ObUKXjkEdvVkp4O3/mO0xWFP7XU\nRcQvduywfeYFBbBrlwI9UNRSFxGfKi+HBQvgpZfguefsOHTN3xI4CnUR8ZmsLJg8GTp0sK3zSy5x\nuqLIo+4XEfFaWRnMnQvf/z5MnWpvJlKgO0MtdRHxyvvvwwMPQJ8+8Pe/Q+fOTlcU2RTqItIkhw7B\njBnwl7/A88/DsGFOVySg7hcRaaTTp+HppyExERISICdHgR5M1FIXkQYxBtautbf5X3utnVWxe3en\nq5JzKdRFpF5bt8Ls2VBUBC+/DN/7ntMVSV3U/SIidcrKgiFDYPx4O1Rx504FerBTqIvIebKy7Bqh\ngwfDrbfCZ5/ZtUObN3e6MqmPQl1Eqv3tbzB8ONx+OyQlQW4uPPggXHSR05VJQ6lPXSTCVVbam4We\nfhr277cTcK1ZA61aOV2ZNIVCXSRCFRfDypWwZAm0bGkXf/7hDyEqyunKxBsKdZEIs2cPLF8Or78O\ngwbBsmUwYIAm3QoXCnWRCFBcbNcFffllOHAAJk2yF0Mvu8zpysTXXMYYfx3bbweWyORyufDj5zXs\nVFTApk2wapXtMx84EKZMsRdBtdBzUPPq/0wKdQkZCvX6VVRARoZtla9bZ2/jnzDBrg168cVOVycN\n5FWo699rkRBXXAwbN8K779oW+ZVXwujRsH07XHGF09VJoKmlLiFDLXWrstJOcbtxI7z3ng3v/v3t\nos533aV+8jCg7heJDJEa6pWVkJ0NmZm2a2XLFoiLs3d7Dh4MKSkQHe10leJDCnWJDJES6seO2UWb\nt2+3MyF+9JFdHm7AAEhOthc8L7/c6SrFj7wKdb9NE/DnP//ZX4duMtXUML6oqaCggBEjRhAdHU23\nbt1Ys2ZNnfs+++yzxMfHExcXx5QpUygvL/f6/QPFm3NVUQH79tnpbB97zN6ef8UVcPXV8MwzcPKk\nXVFo3z74xz/gt7+1Fz3rC/Rw/Uz5WjDWBOByuZK9eb1C3WHhWtPUqVNp2bIlx44d4/XXX+eBBx5g\n79695+23ceNGnnrqKTIyMvjiiy/Izc3lscce8/r9A6W+c+XxQF6e7Tp55RWYM8fetXnddRATA7fd\nBq+9Zve75x7bR378OGzeDAsX2sUnOnb0bU1OUE2NkuzNizX6RXyutLSUt99+m5ycHFq1akVSUhLD\nhg1j1apVPPHEE2ftu3LlSiZPnkyPHj0ASE1NZdy4ceftF2wqKmz4Hjtm+7mPHrXbl1/CwYN2qbcD\nB+zP9u2/aYFfdRWMHAk9esA110Dr1k7/TSTcKNTF5/bt20dUVBQJCQmAvdB37bWJbNmyhZIS2yr1\neOzzWVnZJCcP58gR+9pOnRLJz88nJ6eAuLi25x37yy+/+d2Y2rfKSvuz6j08HhvCVduZM1Bebn+e\nPg1lZXY7dQpKS223R2mpHSpYtRUWwokTdisosItFtG1r3yc7Gzp1stsll9hVgS691G6XXWbnVREJ\nFL9dKHW5XOF/RUtExA+MMU2+WOq3lnokjFIIJZWVcPiw7RL44otvugYOHbKt3yNHID/ftmo7dLB3\nH7ZvD+3a2eFzcXEQGwtutx0+FxMDbdrY7oM2bWxrtGr77LPdDB16M199VUJUlF1YYdGiRWRmZpKe\nnn5WXX379uXRRx9l1KhRAHz99dd07NiRr776irZtz26pR8roF4l4uqNUvnH8OOzda7dPP7WjJv75\nT/j8cxvKXbva7fLLbT9vUhJ06QKdO9sLctHR3s/W17ZtdyoqKjh0KLe6CyYrK4vevXuft2/v3r3J\nysqqDvXdu3fTqVOn8wJdRBpG49RDVGWlXZVmxw7YtcveYfjJJ1BSAj172q1HD7vae0KC3dq0CVx9\n48aNw+Vy8fLLL7Nz507uuusutm3bRs+ePc/ab+PGjUyaNInNmzfTuXNnRo4cSf/+/VmwYMF5x1RL\nXSKEbj6KBMeP25tQ/vIXu+3YYbtErr8e/uM/IDER+vSxF+aCYV7sgoIC7rvvPjZt2sTFF1/MwoUL\nGTNmDHl5efTu3ZucnBwuvfRSAJ577jmefPJJysrKGDVqFC+99BJRtazUoFCXCOHdN9gY4/UGtAXW\nASXAv4C7zQXMnTvXdOnSxcTFxZmUlBSTnZ19od2b7Pjx42b48OGmTZs25oorrjC/+93vLrj/559/\nboYMGWJiYmJMhw4dzKxZsxyr6fhxY9auNWbaNGP69DGmefNBBlxmzhyP+eMfjcnPD3xNxhizYsUK\n069fP+N2u81ll11mZs6caTweT0DqsB9Xa/HixaZz584mNjbWTJ482Zw5c8YnNTS2pir+PC9Nramm\nQYMGGZfLFRQ1BeJ71pS6ApFLS5YsMddff7256KKLzKRJk+rarSpX/x9wGDgB/AaIMg3J44bsVO9B\nYM2/t1ZAEnAiJyen1mrfeOMN06VLF7N//35TWVlpZs+ebb797W97d6bqMHbsWDN27FhTWlpqtm7d\namJjY01ddZ05c8YkJCSY5557zpw6dcqcPn3afPLJJwGrqaLCmG3bjElNNeamm4yJjjbmttuMefJJ\nY+bPX21uuWWAadasmV++lI05T8uWLTNbt2415eXl5ssvvzT9+vUzCxcuDEgdVaG+YcMG07lzZ7N3\n715z4sQJk5ycbGbPnu2TGhpbUxV/npem1lRl9erVZsAA/31+GlNToL5nja0rULm0bt06k56ebqZO\nnXrBUAcG/zvQewCxQAbwhAlEqAOtgdNAQo3nVtT1JVu4cKEZM2ZM9ePs7GzTqlWrJp6iup08edJ8\n61vfMv/85z+rn5s4cWKdX/7ly5ebAQMG+LyOC9VUWmpMcvJEc911s03HjsZce60xM2cas3mzMWVl\n9jWFhYXmmmuuMX/961/98qVs7Hk61+LFi83QoUMDUkdVqI8bN87MnTu3+vn333/fdO7c2esamlJT\nXXx1Xrytyd+fn8bWFIjvWVPqClQuVXn00UfrC/XVQJr5JlNTgMOmAZnsi2kCugPlxpjcGs9lZWdn\n17rz2LFjyc3N5R//+Afl5eW89tpr3H777T4o42zn3gADkJiYSF11ffTRR3Tt2pU77riDDh06MGjQ\nIPbs2eOXmnbuTGDMGIiPh7y8RIzJ5qOP7IXOhQvtupEXXWRfM2fOHKZOnUqnTp18Wsu5NTX0PJ0r\nMzOz1lEt/qwjOzubxMTEs/bLz8+noKDA6zqaWtO5fHVevK3J35+fxtYUiO9ZU+oKVC41Qm8gq8bj\nLKCjy+Wqd1iYL0I9Gig657mi4uLiWneOj48nKSmJa665hjZt2rB27VoWL17sgzLOVlJSgtvtPus5\nt9tNXXUdPHiQN954g4cffpjDhw9zxx13MGzYMCoqKryuxeOBP/0J5swpobTUzfLl8J//aYcb/vd/\nu+nQoZhu3c5/3Y4dO9i2bRvTpk3zuoa6NPY81fTKK6/w8ccfM2PGjIDWUVJSQmxs7Fn7GWMaVLO/\naqrJl+fFm5oC8flpbE3+/J55U1egcqkRooHCGo+LsBdQY+p7Yb2h7nK5MlwuV6XL5fLUsmViL47G\nnvOy2JiY2t97/vz5bN++nUOHDlFWVkZqaiopKSmUlZXVV8pZUlJSaNasGc2bNz9vGzBgANHR0RQW\nFp71msLCQuqqq1WrVtx8883ceuuttGjRghkzZvD111/XOglVY2pq1qw5LVo0Z8SIAfTqFU3LloVs\n2gQ//rG9yaeumowx/OxnP+P555/3atSHr89TlXfeeYe5c+eyYcMG2rVr16TaaoqOjqao6Oy2QV11\nnLtvYWEhLper3pr9WVMVX5+Xptbkq8+PL2sC33zP/FGXr3LJh0qAmv8ixWJHFNbbcqk31I0xKcaY\nZsaY5rVsA4B9QHOXy5VQ42WJdf3XMysri7FjxxIfH0+zZs249957KSgoICcnp75SzpKRkUFlZSUe\nj+e8LTMzk+7du+PxeMjN/aZXqK4bYAD69OmDy8uxgBkZGZSXV5Ke7uHWWz20bevh5z/3sHu3h+Li\nTH75y+5UVjaspqKiIj7++GPGjBlDfHw8N954I8YYLr30Uj788MNG1eTL8wSwYcMG7r//fv7whz/Q\nq1evBtdyId272xuWGlJH1Q1LVfx1w1JjagL/nJem1uSrz48vawLffM/8UZevcsmHsoHEGo/7AkeN\nMfX3MTak472+DfgdtmO/NXAzUFDX1fj58+ebW265xRw9etRUVlaalStXmujoaFNYWNiY6wwNcvfd\nd5tx48aZkydPmg8++MDExcXVOUrgs88+M23atDGbN282Ho/HLF682Fx11VWmvLy8Qe914oQxTz9t\nTLduxtxwgzErVtgLod7UdPTo0ept+/btxuVymcOHDze4poZqTE2bN2827du3Nx988IFPa2hIHdQY\n/RIfH29ycnLM8ePHTXJyspkzZ47P62lITVX8eV6aWlOgPj+Nqcnb75m/6gpULlVUVJhTp06Z2bNn\nmwkTJpiysjJTUVFx7m5gR798CfTEDhnPABaYAA5prDlOfT9QfRn5wIEDJiYmxuTl5RljjCkrKzM/\n//nPTXx8vImNjTX9+vUz7733nk9PXJWaY1S7du1qfv/731f/2bl1GWOHG1111VUmNjbWpKSkXHCY\nWJUvvjBm+nRj2rUz5p57jPnrX31bU5X9+/f7bfRCY2pKSUkxUVFRJiYmxkRHR5uYmBhzxx13+LWO\nqhqoMU792WefNZ06dQroOPXaagrEeWlqTTX58/PT2Jqa8j3zd12ByqV58+YZl8tlmjVrVr3Nnz/f\nHDhwwERHR1fVU5WrDwNHaOQ4dd1R2kSffQb/8z+wfj3cdx88+KAW/PU33VEqEUITegVSTg48/rhd\nmebBB+38K3FxTlclImL5bTm7cPP55zBxol25vW9fG+aPPqpAF5HgolCvR34+/OxncMMNcOWVdmz5\nrFl2PnERkWCjUK9DWRk8+ST06gUtWtg+9Hnz7CIRIiLBSn3q5zAG1q2D6dPtlLbbttk5yUVEQoFC\nvYZ9+2DaNLsa/Kuv2v5zEZFQou4XbFdLair07w+DB8Pu3Qp0EQlNEd9S/+ADOw9Lr16QlWXX6xQR\nCVURG+rFxTBzpr156Fe/ghEjnK5IRMR7Edn9smWLXdPz9GnIzlagi0j4iKiWelkZzJ4Nb74Jv/41\nDBnidEUiIr4VMaGenQ133w3XXAN//zu0b+90RSIivhf23S/GwEsvwcCB8NBDtpWuQBeRcBXWLfWi\nIjuD4uefw4cf2la6iEg4C9uWelYW9OsHF19s7wpVoItIJAjLUF+xwi7sPG8eLFsGLVs6XZGISGCE\nVfdLeTnMmAH/93922KKflokUEQlaYRPqx47BmDG2Vf63v2mecxGJTGHR/ZKdDTfeCDfdZO8QVaCL\nSKQK+Zb6pk1wzz2waBFMmOB0NSIizgrplvry5TbI165VoIuIQIi21I2x64O+9RZs3QpXXeV0RSIi\nwSHkQr28HO6/H/bssTcUdejgdEUiIsEjpEL95EkYPdq21DMyoE0bpysSEQkuIdOnXlhoVyW6+GJI\nT1egi4jUJiRC/dgxGDTILgT96qsQFeV0RSIiwSnoQ/3LL+0Mi7fdBi+8AM2CvmIREecEdUQePGgD\nfeJEWLAAXC6nKxIRCW5Be6E0Lw9SUuCBB+CRR5yuRkQkNARlqFcF+tSpMH2609WIiISOoOt+OXRI\ngS4i0lRBFer5+XYe9B//WIEuItIUQRPqx4/DrbfCD38Is2Y5XY2ISGhyGWP8dewGH7i42LbQb74Z\nnnlGo1ykdi6XCz9+XkWChVcJ6Hionz4Nd94JV14Jv/61Al3qplCXCBG6oe7xwLhxUFEBb74JzZv7\nqxQJBwp1iRBehbpjQxqNgYcegqNHYcMGBbqIiC84FupLl9q50LdsseuKioiI9xzrfsnPh8pK6NzZ\nX28v4UbdLxIhQrdPXaQxFOoSIbwK9aAZpy4iIt5TqIuIhBGFuohIGFGoi88VFBQwYsQIoqOj6dat\nG2vWrKlz3xUrVtCiRQvcbjcxMTG43W4yMzMDWK1IeAnKqXcltE2dOpWWLVty7Ngxdu7cyZ133knf\nvn3p2bNnrfv3799fQS7iI2qpi0+Vlpby9ttvk5aWRqtWrUhKSmLYsGGsWrXK6dJEIoJCXXxq3759\nREVFkZCQUP1cYmIi2dnZdb5m165ddOzYkR49epCWlkZlZWUgShUJS+p+EZ8qKSnB7Xaf9Zzb7aa4\nuLjW/QcOHMiePXvo2rUr2dnZjB49mqioKGbVMf/yvHnzqn9PTk4mOTnZV6WLhAXdfCSNkpKSwpYt\nW3DVMp1mUlISL7zwAklJSZw8ebL6+UWLFpGZmUl6enq9x3/jjTd45pln2L59+3l/ppuPJEKE5oRe\nEpoyMjIu+OelpaV4PB5yc3Oru2CysrLo3bt3g99DwS3SdOpTF59q3bo1I0eOJDU1ldLSUrZu3cr6\n9euZMGFCrftv2LCB/Px8AD799FPS0tIYPnx4IEsWCSsKdfG5pUuXUlpaSseOHRk/fjzLli2rHs6Y\nl5eH2+3m4MGDAGzevJk+ffoQExPDkCFDGDVqFLNnz3ayfJGQpj51CRnqU5cIoQm9RETEUqiLiIQR\nhbqISBhRqIuIhBGFuohIGFGoi4iEEYW6iEgY8ec0AV6NtRSphUGfK5EL8ufNRyIiEmDqfhERCSMK\ndRGRMKJQFxEJIwp1EZEwolAXEQkj/x/k0lKLlR6mUwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1071d7110>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "\n", "ax.spines['right'].set_color('none')\n", "ax.spines['top'].set_color('none')\n", "\n", "ax.xaxis.set_ticks_position('bottom')\n", "ax.spines['bottom'].set_position(('data',0)) # set position of x spine to x=0\n", "\n", "ax.yaxis.set_ticks_position('left')\n", "ax.spines['left'].set_position(('data',0)) # set position of y spine to y=0\n", "\n", "xx = np.linspace(-0.75, 1., 100)\n", "ax.plot(xx, xx**3);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Other 2D plot styles" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In addition to the regular `plot` method, there are a number of other functions for generating different kind of plots. See the matplotlib plot gallery for a complete list of available plot types: http://matplotlib.org/gallery.html. Some of the more useful ones are show below:" ] }, { "cell_type": "code", "execution_count": 104, "metadata": { "collapsed": true }, "outputs": [], "source": [ "n = np.array([0,1,2,3,4,5])" ] }, { "cell_type": "code", "execution_count": 105, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAADVCAYAAACooB1jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8VPWd//HXJ+EOIdxFEIiXWhUtINrrrtJaxdqtu+r+\nWqtusd2V7da1LUbrUlwMUEvtirW1upbWC9Zqbasoa20jFYKV3hQlIgp4IYCiQEDCJYFc5vP745zA\nZJgkk+RMZiZ5Px+PPJg553vO+Q75MnzmO5/z+Zq7IyIiIiIircvLdAdERERERHKFgmcRERERkRQp\neBYRERERSZGCZxERERGRFCl4FhERERFJkYJnEREREZEUKXgWEZFuz8yWm9nCTPdDcpOZzTez98ys\nwcw2mtmGuH1Xmlld3POzzSxmZqNSPHfMzC5LR7+lfRQ85zgzm2VmG5Nsf93MZmeiTyIAZjY6fNM/\nK9N9ERFJFzP7MHAD8G/ASOBU4KNxTTz8IWFbp9H7cbR6ZLoD0mFGmv8RmlkPd69P5zWkS0r72BTJ\nZmbW093rWm8pOe5EoMHdn4zbtj9TnWmG3o8jpJnnTmBmf2dmz5nZnvDnJTM7N9w33MzuC7/uqTGz\n18zsyrhjF5rZG2ZWbWZvmtnNZtYz3DcNmAuMCz9RNpjZbDNbDhwP3BS3fWx4zAlm9hsze9/MdplZ\nqZmdGne9aWZWZ2ZTzOxFMzsAnNN5f1uSa5oZ3+cBm8MmZeE4fCvumHPDY6rN7G0zu9fMhsTtv8/M\nlprZN8P9+83sV2Y2uLNfn3QreeHX7zvMrMrMfmJmvQDM7NNhasdOM9ttZmVmdmb8weE4v8bMfmFm\nu4EHMvIqpNOY2X0Ev+e8uP9vbzKz1yO+1LDw/+594Xvi1xP60d/Mfhj3frnKzC6Ka3LE+7GZ9TGz\nA2Z2Ttx5VoTb+oTP+5rZwcaYJdx2TRir1JjZejP7tpnlx+3vYWYl4TVqzGyNmU1P6G/MzP7DzB4I\n/9/YYmb/FeVfWDopeE6zcEA9AfwZmAhMAkqA6nBwPgucBnwROAn4GuEnVjMzYBtwabjvG8CVwLfD\n0z8C3AK8DRwFHA3cClwMVAALCL5COhrYYmYjgD8C7wGfAD4CrAOWm9nQuG7nAd8DZoTXfSGqvw/p\nWloY3/vDxwZcRDAOzwyP+RTwOPAQwdeb/wiMAx5LOP2HgSnAecBnwvP/LI0vR+T/AUOAvwMuA/4J\nmB/uGwDcSfC++TFgA/D7JB/oZgMrCcb/jZ3QZ8msrwPfBBo4/P8wRD/LOxtYRvA+eAuwwMw+F7f/\nSYJY4v8B44H/BR42s0+G+08n4f3Y3Q8AfwU+BRDGJB8BdhP8GwA4K3wtfwzblADXEqSpNMYl08P+\nNfoZwb+dq8I2c4HvmdmXk7ymFcAEgn9n343rb3Zzd/2k8QcYRPCP6qwk+/4VqAaObsP5vgmsj3s+\nC3grSbvXgdkJ224C/pSwzYA3gK+Hz6eF/f14pv/u9JP9P62M79FALHEfsBz4bsK2sWHbD4XP7wP2\nAAPi2pwbXuu4TL9u/XS9n3BcvgVY3Larwvfovkna5wG7gC/GbYsBCzP9WvTT6WNnGlAb9/wmYEML\n+88O38tGpXj+GHB/wrZfACvCx1PCcVqQ0OYe4LHwcXPvxzcBfwkffzqMHX7c+B5NMJHWeJ2+BBMj\n5yWc41+A98PHx4av7cSENv8NvJTwmn6Q0OZV4OZM/z5T+VHOc5q5+24zuwd42syWEXzKWuzuGwg+\nCb7q7u82d7yZXUUQZBcB/Qny1K2d3TkTOMPM9iZs7wN8IGGbZpulVa2M7+acCXzEzK5JPB3BOHw5\nfP6qu++L27+SYOyfQhDkiETtbx7+Lx5aCfQGjjezfcA8ghvBRhAEz30JvjWJ93xndFS6nb8kPF9J\nMKMLcAbBON0afGF9SE+Cb0hashyYZWYFBDPQzwBlwHXh/k8Bvw0fjycY848mXCcf6BV+gz2Z4H36\nBWvaqAeQmP9fnvB8K8HsfdZT8NwJ3H26md1O8PXzecDcJIHDEczs/xF8AvwWQXrHHuDzwHfa2ZU8\n4A/A1RwZgFfFPW5w99p2XkO6mSTje56ZXQ081cwheQRfO/48yb730tNLkQ77LbCdILVuC1BLEMD0\nSmiXbTeKSdeXR5BqcQZH/t/e2v/lfw7bfJIgUL6NIKD+RXiv1CSgOO46AP9MMEOdaFfYxglSm2oS\n9iemsiT2zcmRdGIFz53E3V8l+EridjP7X4KvA+8CvmJmo9x9a5LD/h540d1/2LjBzI5NaFNL8Kkv\nUbLtLxB8ffSOgmOJUpLxPZ0grxmSj8Px7t7a7PHJZjYgbvb5EwRvrq9G1G2RRGeamcXNPn8COAjs\nBE4GrnX3pQBmdgzBDLRIZ/gocHfc809w+L3wBYIUur7he3Eyjf/nN3k/dvc6M/szQS70JGCZu+80\ns9cIcpIPEgTYAGuBA8Dx7l6a7CJmtip8OM7dm5tAyXk5EeHnMjM73sy+Z2afMLOxZvYxgqB4LfAw\nsAlYYmbnmFmRmX3KzD4fHr4eOM3MLjSz48zsGwQDPN5GYKSZfdTMhppZ37jtnzCzMXE3A/6Y4B/O\nEgsqJIwL//yOmX0UkTZqZXxXAvuA88zsKDMbFB42G/hHM1tgZhPCsX2+mf3MzHrHnd6BB8xsvAW1\nSX8MPJFC0C3SXkOBO83sJDP7LMHX4ncTfCOyA7jKzD4QjvOHCPJMRdqjremX/2BmV1tQMesaghsD\nbwVw92UE3yo/Zmb/aGbHmtnpZvafZvav4fHNvR9DcCPi5cA6d6+M2/YlYKWHpWrdfT/wXYIb+75m\nZiea2Slm9gUz+17Y5k2Ce1Z+amZXhP9HfMjMvmxm32rja85aCp7Tbz9BHufDBMHwr4HngGs8uNP1\nLOCVcP+rBAFCn/DYnxB8tX0v8CJBruhNCed/PDxn41eK14fbbyL4JLoe2G5mY919O8FXKTuARwkq\nbfyc4GatZvOuRVrQ0vh2gq+4P0/wNfeLAO5eRvD14GkE6UjlBJVh9tA0J+5v4bmWEqSAlBPk/4uk\ngwO/AfYSjLuHgCXAzHAs/zNBCdBygvfkH3Dk+6bq6Eqq2jJWnOCD3KcJxt9/Ade7+5K4NhcSVCy6\nDXiNoPrGBcCbAM29H4eWE0ysPRO3bVmSbbj7dwiqbfwbsJqgCsc3CSbsGl1F8O/j2wQTKX8gCMTf\nTHhNOcua3hvRgRMFtTDvIvjlDib4S/q2u/++mfYzCHJ5+xK8Yf2Hq5i8ZIGWxrKZjSN4k9jH4aLz\nt7j7zZnqb1dkQe3U0e5+Xqb7kis0biWbhfdBXEnwofkhd/9KkjazCUpdfjqcTW3cfgvBB2cH7nH3\nnKkHLF1TlDnPPQiKcP+9u28Jv/L6lZmd6u6b4xua2VSCwPmTBJ/cHwfmcLh+sUgmNTuWw/0OFHpU\nnzxFoqFxK9nsHYJqJVMJJs2aMLPjCGb3tyZs/3eCWdXTwk1/MLO33H1hersr0rzI0jbcvdrd57r7\nlvD5bwlmOiYnaf4lgk+P69y9iuDriMTi2SIZkcJYNpTyJFlG41aymbs/HqYZ7GqmyZ0Ek2qJ30B/\nCVjg7u+GZV1vJZjB7hLM7H/NbG8zP2sy3T9JLm3VNszsKIJcyLVJdo/n8J34EOTwjDCzwe7+frr6\nJNIe4Vg+kSA3HYIZvAozc4JcruvdfWem+tcVubs+THeQxq3kirAs64EwxShx93ia1gMuD7d1Ff8N\n/E8z+5TKmqXSEjybWQ/gQYIVcZIV6B5A07rCewhmRQqAQ8Fz+CYv0mHu3q6FZeLG8n3u/rqZ9Se4\ncXM1wZ35dxGs9HR+wnEau9JhnT1uw2M1dqXDUh27ZjYAuBk4p5kmyeKFAUnO0yXHbZIPE5JmqYzd\nyL/Cs+A3/SBBbcDmFgLZBwyMe15IMCuSuPJdpy+5eNNNN3WLa3an1xrlWHb3/e7+orvH3H0H8J8E\npX/6a+x2zWsGb02d/zozNW6jHrvp+H3pnO07dtq0m7jpJm/yc/bZR2676aagbXuv00YlwAMephsl\nkSxe2JesYdR/15n4/WbjNbvTa01VOvLf7gGGARe7e0MzbdYCE+KeTwS2uVI2JLukMpYhh1ZFkm5B\n41ZyyTnA183sXTN7FxhDcKNrY9nVZPFCsnRQkU4TadqGmd0NnERQZqalFeweAO4zs4cIis/fSFBU\nWyQrNDeWzezDBMugvg4MAX4ILHf3I741EelsGreSrcwsH+hJUDu4R7ggUj1BzfeecU1fIKgb3Fjm\n9gHgWjP7HUF657XA7Z3Vb5FkIpt1sGAN9OmEs8jhnaJ7zOyL4Sp3eyxYzhQPlnX8PkFh7o0E9UhL\noupLR0yZMqVbXDNT183Ua22LlsYycBzBm/oe4GWCpUovy1hn43SX32dmxlAmrtk22Tpu0/H70jmj\nU1QU7flacCPBiow3EKxmVw3Mcvf33X174w9BQL3b3asB3P0nwP8BawhuFlzi7j/trE63pPu8/3Wv\n15qKyBZJSQcz82zun+QGM8PbeeNVB66psdtFNN6v09m/zkyM2/C6Grtd1JVXllBUVJJS24qKEu6/\nP7W2ifSeK7kq1bGrfDcRERERkRQpeBYRERERSZGCZxERERGRFCl4FhERERFJkYJnEREREZEUKXgW\nEREREUmRgmcRERERkRQpeBYRERERSZGCZxERERGRFCl4FhERERFJkYJnEREREZEUKXgWERERkW7t\nYP3BlNsqeBYRERGRbu2el+5Jua2CZxERERHptiqrK3np3ZdSbh9p8GxmV5vZ82Z2wMzubaHdNDOr\nN7M9ZrY3/POsKPsiIiIi2aG5+MDMPmJmT5vZTjPbZmaPmNnIhGNvMbNKM9thZt/r/N5LV7dq6yp2\nVO9IuX3UM8/vAPOAVOa+/+TuA929IPzz2Yj7IiIiItmhufhgMPATYFz4sw+4r3Gnmf07cCFwGvAh\n4HNmNr0zOizdg7vzzFvP0DOvZ8rH9Ii4A48DmNmZwOgozy0iIiK5qbn4wN1/H9/OzH4MlMVt+hKw\nwN3fDfffClwFLExzl6Wb2FS1ie3V2xnYe2DKx2Qy53mSmW03s3VmdqOZKf9aRESkezsbWBv3fDxQ\nHve8PNwmEom/vP0XeuS1bS450pnnNlgBnOrum8xsPPAroA64JbFhSUnJocdTpkxhypQpndRFyVVl\nZWWUlZVluhsiItIGZvYh4L+Bz8VtHgBUxT3fE247guIFaas/PPMHbr3nVvr06MP+2v0pH5eR4Nnd\nK+IerzWzucB1tBI8i6Qi8U1zzpw5meuMiIi0ysxOAJ4CrnH3P8Xt2gfEf59eGG47guIFaauRp43k\ntM+fxrhB49hStYXVj6xO6bhsSpWwTHdAOqa0tJTzzruE8867hNLS0kx3R0REcoCZjQOWAnPc/aGE\n3WuBCXHPJ9I0rUOk3f64+Y/07tG7zcdFXaou38z6APlADzPrbWb5Sdqdb2YjwscnATcCj0fZF+lc\npaWlXHTRNJYuvZClSy/kooumKYAWERGg+fjAzEYBzwB3uPtPkxz6AHCtmY0ys9HAtcRV4xBpr/21\n+1m1dRXD+w1v87FRzzzfCFQDNwCXh49nmdmYsJ7zMWG7c4CXzWwv8CTwG2B+xH2RTrRgwUJqam4B\npgHTqKm5hQULdDO0iIgAzcQHwL8BxwIl8Ws/NB7k7j8B/g9YQ3Cz4JJmgmyRNlmzbQ31sXry846Y\n421VpMGzu89x9zx3z4/7mevuW8J6zm+H7a5395HhthPC4xqi7ItIe5lZLzP7mZlVmFmVmb1oZufH\n7T/HzF4zs31m9oyZjc1kf0VA41ayWwvxwdzw8cD4tR8Sjv0vdx/q7sPcfWamXoN0LcsqlrWpPF28\nbMp5lhxWXDydvn1vABYBi+jb9waKi3O2jn0PYDPw9+5eSHD396/MbKyZDQUeJZgxGQKsAh7JWE9F\nDtO4FRFJQWV1Ja/vfJ3BfQa36/hMlaqTLmbq1KksXrzoUKpGcfEipk6dmuFetY+7VwNz457/1sw2\nApOBYcAr7v4YgJmVAJVmdqK7b8hEf0VA41ZEJFWrtq7CMMzaV6tCwbNEZurUqTkbMLfEzI4CPkBw\nh/fXiCvY7+7VZvYGQdF+BSGSNTRuRUSO1Lgc95B+Q9p9DqVtiLTAzHoADwL3hzN0iQX7ISjaX9DZ\nfRNpjsatiEhym6o2saN6BwN6JV1rJyWaeRZphgXf5zwIHASuCTcnFuyHoGj/3sTjtdqVtEVUK2N2\ndNyCxq60jVZ1lVzy13f+2q4KG/HM3SPqTvTMzLO5f5IbzAx3b3Nik5ndC4wFLnD32nDbVcA0d/+7\n8Hl/YAcwMT53VGO362hMievsX2cmxm24T2O3i7ryyhKKikpSaltRUcL996fWNlF7x25HaNxKKuoa\n6vjG779BYe/CIxZH2VK1hXv/6d6Uxq7SNiStcnXVQTO7GzgJuLAxAAktBsab2UVm1hu4CVitm64k\nG2jciog0b8PODdTU1bRrVcF4Cp4lbXJ11cGw/u10gmVgtzUW7TezL7p7JXAJ8F1gF3AGcGnmeisS\n0LgVEWnZs5uf7XDgDMp5lg4qLS2NK083vUm1jaarDkJNTbAt2ytyuPtmWvhg6e7LgJM7r0cirdO4\nFRFpXuNy3EcPOLrD59LMs6QkWfpFrs4si4iISPfSkeW4E2nmWVrVGCQHs8jw3HPTDi2I0tLM8tln\nn84zz8wgFgvOE6w6uCgTL0FERES6sY4sx51IwbO0qrkguSWlpaXcfPMdxGJfAe4mL+91Zs2akfUp\nGyIiItK1VFZXsmHnBsYVjovkfErbkHYrLp5O3743AIuAReHM8nQgPuC+FfgzsdgCVqx4MYO9FRER\nke6oo8txJ1LwLK1qLkieOnUqixcv4txzl3DuuUtYvHhRCzPLa1i1qjznStaJiIhI7mpcjntov6GR\nnTPS4NnMrjaz583sQFiov6W2M8zsXTPbbWY/M7OeUfZFotFYTeOkk05g0qT7jgiSp06dytNPP8rT\nTz/aJHBuGnBfB/yUXbv+WzcWioh0Qy3FB2Z2jpm9Zmb7zOyZsOxi/P5bzKzSzHaY2fc6t+eS66JY\njjtR1DPP7wDzgHtaamRmU4FvAZ8ExgHHA3Mi7ot0UHw1jZdeuop169YdUY6uOfGz0kOGPA78iCBn\nOrjxsLWcaRER6VKSxgdmNhR4FJgFDAFWAY/E7f934ELgNOBDwOfMbHon9Vm6gCiW404UafDs7o+7\n+xKCIvwt+RJwj7uvc/cqYC7w5Sj7Ih3X9EbBtge9jbPSkydPSFsfRUQk+7UQH1wMvOLuj4WrYpYA\nE8zsxHD/l4AF7v6uu79LcCPNlZ3UbclxdQ11PFvxLMP7DY/0vJnKeR4PlMc9LwdGmNngDPVHOqil\nZbhburFQRES6tSbxgLtXA2+E24/YHz4ej0gKNuzcQHVddSSrCsbLVKm6AUBV3PM9gAEFwPvxDUtK\nSg49njJlClOmTEl/7wQIgt7nnptGTU3wvLk6zYl1oFesuJTx4ycwbNjQJjcWHl6JsKUbCzuurKyM\nsrKytJ1fREQiMwDYnrBtD0E80Lg/MV5ImryqeEES/XHzH1sMnCtWV1CxugKAqgNVzbZLlKngeR8Q\nX6m6EHBgb2LD+H8M0rlSDXqbpneUUlvbg5deCrJwGhdUmTp1aqfVeE5805wzR+n0IiJZKjEegCAm\n2NvM/sJw2xEUL0i8/bX7eWHrCy0ux100sYiiiUUAbKnawupHVqd07kwFz2uBCcBvwucTgW3u/n7z\nh0gmtD3oXUiQkpZ81UEREZE4a2n8DwMws/4ERQReids/AXghfD4x3CbSoiiX404Udam6fDPrA+QD\nPcyst5kl6/UDwL+a2clhnvONwH1R9kU6T9Oc5q2Z7o6IiGSZFuKDxcB4M7vIzHoDNwGr3f318NAH\ngGvNbJSZjQauRfGCpGB5xfLIluNOFPUNgzcC1cANwOXh41lmNsbM9prZMQDuXgp8H1gObATeJLjD\nVnJQfFm6SZPy6dXreoLazh8jL6+Ys88+PdNdFBGRzEoaH7h7JXAJ8F2CShxnAJc2HuTuPwH+D1hD\ncLPgEnf/aed2XXJNZXUl63euZ3Cf9NShiLpU3Rx3z3P3/Lifue6+xd0L3P3tuLa3u/tIdx/k7v/m\n7nVR9kXap6WqGS1pLEv34ovPMXv2N8jLuxf4KrHYAm6++Q4tiiIi0o01Fx+E+5a5+8nu3t/dP+Xu\nmxOO/S93H+ruw9x9ZmZegeSSqJfjTqTlueWQ+EVROrIS4IoVLxKL/YDD9aGv4LLLrtbS3CIiIpJW\n6ViOO5GCZzmko4uiJFcKLNLS3CIiIpJ2m6o2sb16O/179k/bNRQ8dzGppF20NzUjVU1vICzhcPUN\nLc0tIiIi6fPXd/5Kj7weaUvZAAXPXUrTtItjueCCyzn99ClNAuSWUjOiWgkw/gbCIUN2RPTqRERE\nRJqXruW4Eyl47kIOp12MBB4kFlvASy99uUmAPHPm/GZTM+KD3nPPXXJocZP2aLyB8KGH7tTS3CIi\nIpJ26VqOO1GmFkmRtFoINAbIhxcqASgvf6X5w2jPoigt6+yluUVERKR7am057qgoeO5Cioun89xz\n06ipOTbp/gULFhKLXUlQZjOQlzeD4uKHU75GaWlpXCA8PaVAuDOX5pau7bOfhaeeynQvREQk26Sy\nHHdUFDx3IY2zvDNnzqO8fAaxWLA9SJVonP09jSCFYiGwlQkTTgHgvPMuATiUUpEsQG7Mlw7SPuC5\n56Z1KLVDpK0yFThfcEFmrivd1+zZt7N58+6U2o4dO4i5c7+Z5h6JZLc129bQEGtIy3LciRQ8dzGN\ns7xNZ4gPB7jBzPQtwIX07XsDl1xyTZOAeMWKS4Ge1Nb+z6H2jQFy01J2UFOzhssuu5rJkyekPAst\nEgX3TPdAJL02b95NUVFJSm0rKlJrJ9JVuTvLKpZR0LugU66nGwa7qMYb9p5++tFDQW2yGwJXrHix\nyQ2EtbUnhYFzS6XlSoHxwM+6ZP1mM7vazJ43swNmdm/c9nFmFjOzPeFy83vMbFYm+yoST2NXRLqj\nzVWbWV+ZvuW4E2nmuZtJzD9uS83l4uLprFhxKbW1MYKh80OCILuUmppjueyyq3nooTu7wgz0O8A8\nYCrQN2GfA4XumvuUrKSxKyLdzlOvP0WfHn3SWts5noLnbqoxraOychu9el1PbW2wvVevdcDh5435\n0hAE3uPHT+Cllw7Gn4kggL6FXbvgootyPw/a3R8HMLMzgdEJu43gG5uGzu6XSGs0dkWku9m2bxt/\ne+dvjCkc02nXVPDcDSXe+Ner1zeZNOk+hg0bSnHxLwGaLS03bNhQYCvwCYKqHceSrCxeLgfPrXCg\nwswc+ANwvbvvzHCfRFKhsSsiXc7St5aSb/nkWedlIkcaPJvZYOBe4FxgB/Btdz+iDpqZTQPuAaoJ\nZkMc+Ad3fzbK/khyiTf+1dbCsGFLKC6e3mIZutLSUiort2H2Cu5vhMc/0rmdz6xK4ExgNTAUuAv4\nBXB+ssYlJSWHHk+ZMoUpU6akvYOSu8rKyigrK0vX6TV2JW2iGLtmNo5gXH4MOAA8CnzD3WNmdg7w\nY2AM8Ffgy+6+uUMXlC5h94HdLN+4nKML0l+eLl7UM893EQz64cDpwG/NbLW7v5ak7Z/c/ayIry/t\nVFm5rcUydE1nq9dgtpABA37NiBGD2bIleZpHV+Pu+4EXw6c7zOw/gXfNrH+4r4n4AESkNYlB6pw5\ncyI7t8aupFNEY/cuYDtwFDCY4NuRr5nZwwSB9FeAJ4HvEMzafKxDnZYuYfnG5ThOj7zOTaSI7Gpm\n1g+4GDjF3WuAlWb2BPAvwLejuo503OHFVILnwfLZJyWUoTucflFaWspll13dZL/7aXz0o0t4+ulH\nmy2L1004qlojuUljV7JJEXCHu9cB283s9wRlnS4GXnH3xwDMrASoNLMT3X1Dpjormbe/dj+/f+P3\nHNX/qE6/dpRvnCcCde7+Zty2coLBn8wkM9tuZuvM7EazTkxW6eaSlawLcpmP1DjjvGvX8BbPl1gW\nL5eZWb6Z9QHygR5m1jvc9mEzO9ECQwnKjSx3972Z7bFIQGNXctjtwKVm1tfMRgOfARoD6PLGRu5e\nDbxB87GFdBN/2vInDjYc7JTluBNFGbAOAPYkbNsDJKtYvQI41d1HAJcAXwSuj7AvkkRpaSnnnXdJ\n0tUEzz779HAGehGwKEy/mB6XH11CcINg0/1d1I0E+fg3AJeHj2cBxxG8me8BXiZIUbosQ30USUZj\nV3LVH4FTCcboZuB5d3+CILaoSmjbXGwh3URtQy1L1i/JyKwzRJvzvA8YmLCtEDhiZsPdK+IerzWz\nucB1BGUbmuiON640TYNoeuNeS/taOldl5TbWrt1waOXAI1cSvIFZs65hxYol4bkPryoYmEoQOJcw\nZMgOHnooe9MzOnrzirvPAZpL2vtlu08skmYau5KLLCjO+3vgboJc5gHAfWZ2C22ILbpjvNBdPf/O\n8+yt3cvQfsm/NU9VxeoKKlZXAFB1IPEzWvOiDJ43EHxNeHxc6sYEYG2KxyetbN3dblxJLCMXf+Ne\nS/taP9fdQOPKgVBbezfwVeJznFesCHKY4x2ZH70xqwNnSO+NVyIiErkhBJU07gxznt83s/sIFvz5\nEXBlY0Mz6w8cT5LYorvFC91VQ6yBxesWM7RvxwJngKKJRRRNLAJgS9UWVj+yOqXjIkvbCPOQHgPm\nmlk/M/s74HPAzxPbmtn5ZjYifHwSwVeNj0fVl1zWtIxc0+WxW9rX+rlGtas/yfKjszlwFhGR3BLW\nG98IfDXM0R9E8B9XOUFsMN7MLjKz3sBNwGrdLNh9rdm+hh37d1DQO3OZO1HX9riaoM7zdoK6ol91\n99fMbAzBp8RT3P1t4Bzg/vAT5DaCAHt+xH3JqLamV6TfdOCKQ89aWkkwUeKS3iIiIhG7mOBG1plA\nPbAMuNbdK83sEuBO4EGCOs+XZqyXklHuzmOvPcagPoMy2o9Ig2d3fx+4KMn2LcTlLLn79XThGwTb\nml4RL1k7GBmEAAAgAElEQVQZucagtqV9qZyrV696xo9PbSVBERGRzuLuLwOfbGbfMuDkzu2RZKP1\nO9ezafcmigYVZbQfWp47DRJX8GvLktWNaRLJgtqW9qV2rl8e0V4Bs4iIiGQ7d2fJ+iUM6DWA4B7T\nzFHwnIVaSpNoaV+yVJH2plxkX9qJiIiIdFebqzbz6o5XGVc4LtNdUfCcDm1Nr4hCR1JF0nkuERER\nkY566vWn6J3fO+OzzqClWdOiPRUq4hcwKS0tbfM1Z86c36ZKHC1pa1UPERERkXTZtm8bf3vnbxw1\nIDOLoiTSzHNEmkuZaK1N4/aOzPSWlpZSXv7KEdsrK7c1WU2wpfPF962ycmdK1xURERFJt9I3S8nP\nyyfPsmPOV8FzBFIJfltqk8oNhskC78Ztq1aVE4tdSbAib8DsP1m7ti+1tVc126fm+tar1zfp1Su1\nMnYiIiIi6fJ+zfuUVZQxqqB961Wkg4LnCKQS/HakAkeywHvWrGu4+eY7wm1bgdMIls9eCGxlwIDB\n7N07L6XrJfatthYmTfopw4Y1XapbREREpDOVVZQB0CMve0LW7OlJN9baDYbJAu/bbpsXbhsJ5APf\nBG4HLqRv3xs44YSTeOmlxjOUAnezatUOSktLUwqEhw076oilukVEREQ6y/7a/fz+jd8zcsDITHel\nCQXPEUilukZrbU466QQ2bZrHuHHHMH9+czO9pTTOLNfV1QJrCFI1bgkfz2DSpA8xf35w3mC2eg3B\njPSt7NoVbEtM38hEdRARERGRlqzcvJLahlp65ffKdFeaUPAcgVQWL2muTWJKRk3NDSQ6++zT+cMf\n/hP3PsCtYbtvYHYf7rfROCMNpzFs2JJD1168eBGXXXY1u3bdSkvpG21dfEVEREQknQ7WH2TJhiWM\n6D8i0105goLniKSyGEmyNq3lQpeWlnLzzXfgXgRcd6hdff0a8vPvp6Gh5etNnjyBpUuj6b+IiIhI\nZ3hh6wvsq93HsH7DMt2VIyh4znKHg+slcVtLgUU0NFxJEFAH2pMuIiIiIpJNGmINLF63mKF9h2a6\nK0llR8G8Lqy1xU+Ki6fTt+8NBHnJi8Lgdvqh41atKg9bTifIb14ElBCkb9wKPAjczZAh85KWomvP\ngi0iIiIimfLytpeprK6koHdBpruSlGae0yiV+s/J8o2BuOOOBb4O/Ai4gry8Yvr378/evYfOALzH\n5MlLmg2KlZIhIiIiucDdWbxuMYW9CzPdlWZFOvNsZoPNbLGZ7TOzjWb2xRbazjCzd81st5n9zMx6\nRtmXbNA0n3kkNTXHctllVzeZgU62+EnT424FrmLIkHmce+5GnnrqF/z61wuTzla3R0eXBRcREYmC\nmV1qZq+GMcTrZvaJcPs5ZvZauP0ZMxub6b5K+qzfuZ5NuzcxqM+gTHelWVHPPN8FHACGA6cDvzWz\n1e7+WnwjM5sKfAv4JPAu8DgwB/h2xP3JEqUEgfAtTcrFAUlnpo90GpMnb2xSdzmK6hgdXRZcREQk\nCmZ2LjAf+Ly7P29mR4fbhwKPAl8BngS+AzwCfCxTfZX0cXeWrF/CgF4DMLNMd6dZkQXPZtYPuBg4\nxd1rgJVm9gTwLxwZFH8JuMfd14XHzgUeStIupx2+We9YglrMTStqVFbuTFppI5Wb/FpKxUg2m51M\nR1Y9FBERiVAJMNfdnwdw93cBzOwq4BV3fyx8XgJUmtmJ7r4hQ32VNNlUtYlXd7zKuMJxme5Ki6JM\n2zgRqHP3N+O2lQPjk7QdH+6LbzfCzAZH2J+Ma8xnHjJkxxH7Kiu3UV7+SovHtecmv8bZ5KVLL2Tp\n0gu56KJplJaWtis9QykdIiKSbmaWB5xBEAe8bmabzexHZtaHhHjB3auBN0geW0iOe+r1p+id3zur\nZ50h2rSNAcCehG17gGS3Sg4AqhLaWdj2/Qj7lBGJM7/XXvtlZs+eQSwW7A/ylU8iFruSoIJGIC9v\nBsXFDwPtn1lONps8c+Y81q1744j0jJZmuJXSISIineQooCdwCfAJoJ6gPuuNBPHC9oT2zcUWksPe\n2/cez7/zPGMKx2S6K62KMnjeBwxM2FYI7E2hbSHgydqWlJQcejxlyhSmTJnSwW6mV2LQuWLFpUBP\nYrGvAHeTl/c6n//8P/DYY8uALxPc9BcsuT1hwimtBqftCWo3bXovaXrG008/2mzudC6ndJSVlVFW\nVtbu483sauBK4DTgIXf/Sty+c4AfA2OAvwJfdvfNHemvSFQ0diVHhVM4/MjdtwOY2W0EwfMKUowt\nci1ekKaefvNp8vPyybPOq6JcsbqCitUVAFQdqGq5cZwog+cNQA8zOz4udWMCsDZJ27Xhvt+EzycC\n29z9iFnn+H8MuSAx6KytvRv46qHnsdh1PPDAT3DPI1jg5FbgQnr1up7583/eZFb57LNPZ8WKF4Hm\nKnEcGdQmm00eN+4kdu1K3t+uWMYu8U1zzpw5bT3FO8A8gjqAfRs36sYVyQEau5Jz3H23mb2duDn8\nWUvwgRAAM+sPHE+S2CLX4gU5bNu+bZRVlDGqYFSnXrdoYhFFE4sA2FK1hdWPrE7puMiCZ3evNrPH\ngLlhgv/pwOeAjydp/gBwn5k9BLxH8Onyvqj6kt1W4n4qQUA9ksZZ5/HjTwTiq2+sYenS7wNXASt5\n5pnLmTt3Rqtnb7ludNAmlVUGu/PKhO7+OICZnQmMjtt1MbpxRbKYxq7ksPuAa8yslCBtYwbwfwTV\nuP7HzC4CngJuAlZr3HYd7s6DLz9Iz7ye9MjLjeVHou7l1cC9BPlJlcBX3f01MxtD8CnxFHd/291L\nzez7wHKgD8EMdEnEfcmIxKCzV691wPXU1gbP8/JeJxb7QNh6aviziGHDliTMKl9CEDg/CNxCLAaz\nZ89g7txinnvuhjZX4mhrabtkQXhXm6FuhyNuXDGzxhtX9EYu2UxjV7LdPGAYwXisIfhm5LvuXmtm\nlwB3EvyH+Ffg0oz1UiK3ausqyreVc+ygYzPdlZRFGjyHaRcXJdm+hYScJXe/Hbg9yutngyODzl8C\nxKVizGDu3Fuprb3u0DG9el1PcfHPmTlzfsLZVhJf4i4WgxUrlrQrqG1PekZXTOnoIN24IrlKY1ey\nmrvXE0zAXZ1k3zLg5E7vlKTdvtp9LCpfxIj+I7K+wka83JgfzwKp1k5url18+zPOOIOZM+exadM8\nxo07hvnzfw7A2rXlBHnQECzLvSzpNRTUZkxbborVzSvSJh290bUVGruSNmkeu9KFPbHuCfbX7Wdo\nv6GZ7kqbKHhOQaoVLlJtlyz4Pe+8S6itvZ34POijjx7Itm1NS9x1l7zjLLWWxq8BaPnGFdDNK9I2\nEdzo2hKNXUmbNI9d6aLeev8tnn7racYOzL3V1juvHkiOKi0t5bLLro7LRZ5GTc0VXHbZ1UcsHtI0\nZzkIohtnoVM3leCm+K9y6qln8NRTD7drsRRpPzPLD4vz5xNUkOltZvnAYmC8mV1kZr3RjSuSZTR2\nRSQX1Mfque+l+xjYayD5efmZ7k6baea5BYdnkuOT2EuBRezadStLlwazy7NmXcOKFS+yalU5cGG7\nrtVcdQulaGTEjQTBhYfPLwfmuPtc3bgiWU5jV0Sy3vKNy9lctZljB+fOTYLxFDy34PBM8tsEVXMA\n7iaozdxYZ3kNs2cvIBb7AUGe8tcPHd+WNAtVt8ge7j4HSPq9o25ckWymsSsi2a6yupJfvfqrTq/p\nHCUFz61aQzBRE6wQCOsT9q8MA+dD6YQMGTKPyZMntDkA1iyziIiIdFXuzkNrHgKH3j16Z7o77abg\nuQXFxdN55pnLicUWcDg4/mfgG4faBHWb4486jcmTN/L00492XkdFMuCzn4Wnnsp0L0REJFeUv1fO\nC++8kLPpGo0UPLdg6tSpTJhwKi+91LilFFgB/BtwN3l5r/OpT01i2bLGihhryMu7n8rKUyktLdUs\nsnRpmQqcL7ggM9cVacns2bezefPuVtuNHTuIuXO/2Qk9Esku1XXV3F9+P8P7D8+pms7JdLvgubEO\nc2XlNqAHw4YNbbFu8/z5M+OWtm6a7xyLXceyZfcSi30F+B6wlVjsR7z0UrAcdnPl7FKpFy2SK9xb\nbyPS1W3evJuiopJW21VUtN5GpCt6csOT7Dmwh7GDcq80XaJuFTwfrp5xBfAsQSAMK1ZcyvjxE5IG\n0vE38q1atYNdu+LPGJ/vvBH4Lw7fSBjccBh/rlTrQIuIiIh0FZt2b+Kp15/imIHHZLorkehWwfPh\n6hlLODyDXEptbQ9eeunLQPKAtvFGvsPBb7D9yHznVK/ffIAtIiIi0lU0xBq4f/X99O/Znx55XSPs\n7BqvokMW0rT0XPMBbWI5ubPPnsHNN98QBtPtL1MnIiIi0hX9cfMfefP9Nzl2UG7fJBivWwXPhxci\nuQK4Lty6tU3niC8nV1paykknncCmTfMYN+4YLrnkW6xYsSS81pHpGM0thCIiIiLS1bxf8z4Pv/Iw\nowpG5fxNgvG6VfAcP3NcWflB4D4gn7Vrr6e2NmiTakCbmL9cU3MDZ5wxk1mzZqV0fdBCKCIiItI1\nuTu/fOWXxGIx+vTok+nuRCqS4NnMBgP3AucCO4Bvu/vDzbSdBtwDVANGsIzsP7j7s1H0pTXJFiJp\nWgEjtYC2vfnLWghFREQkOTP7APAy8Gt3/1K47Rzgx8AYgqXlv+zumzPXS0nFqzte5c9v/5miQUWZ\n7krkopp5vgs4AAwHTgd+a2ar3f21Ztr/yd3PiujaHaaAVkREJCv8GPhb4xMzGwY8SrDM75PAd4BH\ngI9lpHeSkgP1B7j3pXsZ2ncoeZaX6e5ErsOvyMz6ARcDN7p7jbuvBJ4A/qWj545KaWkp5513Ceed\ndwmlpaWRtC8unk7fvjcAi4BFYbrH9Gg7LiIi0k2Y2aXA+8AzcZsvAl5x98fcvRYoASaY2YkZ6KKk\n6Hev/45dNbso7FOY6a6kRRQzzycCde7+Zty2cuDsFo6ZZGbbgV3Ag8B33b0NRd9S19bayqm2V/6y\niIhINMxsIDAH+CRwVdyu8QQxBQDuXm1mb4TbN3RqJyUl7+x5hyUbljCqYFSmu5I2UQTPA4A9Cdv2\nAAXNtF8BnOrum8xsPPAroA64JYK+HGHmzPkp5SY35j2vWlUeth8JLKSm5lhmzpzXbOk6BcwiIiId\nNhf4qbtvTajKMADYntC2pRhDMijmMRaVL6JPfh965vfMdHfSptXg2cyWE8wiJ1uEdyVBcePEeflC\nYG+y87l7RdzjtWY2l6BuXNLguaSk5NDjKVOmMGXKlNa6fEhpaSnl5a+k1O7wyoN/A9YANxzqUnn5\nDEpLSxUo54iysjLKysoy3Q0REUmBmU0EPg1MTLJ7HzAwYVvSGKMj8YJE409b/sT6yvU5c5NgxeoK\nKlZXAFB1oCrl41oNnt39ky3tD3Oe883s+LjUjQnA2pR7EVTdSCr+H0NbzZw5n1jsSoJAOJCXN4Pi\n4qaFQILKGVcQZJBcQVDC7jYaZ6tjMa0EmEsS3zTnzJmTuc6IiEhrzgbGAZstmHYeAOSZ2SnA3cCV\njQ3NrD9wPElijI7EC9JxVQeq+MWaX3DUgKNypqZz0cQiiiYWAbClagurH1md0nEdvmHQ3auBx4C5\nZtbPzP4O+Bzw82Ttzex8MxsRPj4JuBF4vKP9SHR41vk0gpv6lgB3M2HCKc0EwSsJZppvDY8RERGR\nTvATgoB4IsHk293Ab4HzCOKD8WZ2kZn1Bm4CVru78p2zzK9f/TW19bX069kv011Ju6jqh1wN9CPI\nS3oQ+GpjmTozG2Nme8zsmLDtOcDLZraXoOzMb4D5EfXjkAULFsbNOr8HXEhe3nrmz//vI9oWF08n\nL+/1uC0zCTJJVElDREQkndz9gLtvb/whSNU44O673L0SuAT4LkGRgTOASzPYXUli1dZVrNi0gtED\nR2e6K50ikjrP7v4+QTmZZPu2EJev5O7XA9dHcd3WNc46LwS2NjvrPHXqVObOncHs2TOIxdYAKzE7\nyHHH3c5xxx3X7koaTRdfma60DxERkVa4+5yE58uAkzPUHWnFW++/xV3P38XRA47ukjWdk+myr/Jw\nHeZg1rlv341JZ50bzZo1i7lzi8nLuxf4Ku53sHXru+0OehtvQly69EKWLr2Qiy6allKNaREREZFc\nsH3/dm77820U9C7oFukajaJaYTDrtKcO84oVLxKL/YC2LrmdTHuX7xYRERHJdnsP7uW2P99GQ6yB\nYf2GZbo7narLBs+gOswiIiIiUattqOXO5++ksrqSYwYe0/oBXUyXTdtIlGzJ7cRtrS253ZZlvrV8\nt4iIiHQ1MY+xaPUi1u1Yx+iC7nGDYKIuPfPcKNmS27NmXcPNN99xxDLczaV6tHWZby3fLSIiIl2J\nu/PEuid4dvOzHDvo2Jyp5xy1bhE8J8s/vu22eUlzkp9++tGkQW57cpiVNtI1mVkZ8BGCZeUNeNvd\ndSe4ZD2NXRHpiJVbVrJ43WLGFY7rNpU1kum+r1yk/Rz4mrsPdPcCBR+SQzR2RaRdXtvxGj978WeM\nKhhFj7xuMffarG7x6ouLp/Pcc9OoqQme9+17A9deew0333xDk23FxYvadI6W2kuX1z2/q5KuQGNX\nRNrk7T1v84O//IChfYfSp0efTHcn47rFzHNj/vG55y7h3HOXsHjxImbNmnXEttZSMNrSXrq8+Wa2\n3cz+aGZnZ7ozIm2gsSsiKXu/5n0W/GkBvfN7U9C7INPdyQrdYuYZkucftzUnWTnMEvoW8CpQC3wR\n+D8zm+DuG+MblZSUHHo8ZcoUpkyZ0oldlFxTVlZGWVlZui+jsSuR66SxKxlQU1fDD//6Q2rqahhZ\nMDLT3cka3SZ4FomKuz8f9/QBM/sicAFwZ3y7+ABEpDWJQeqcOXOab9xOGruSDp0xdqXz1cfqWbhq\nIZurNjO2cGymu5NVukXahkiaOcojldyksSsiR3B3frnml7z47ouMGTgm093JOgqeRdrAzArN7Dwz\n621m+WZ2OfD3wO8z3TeRlmjsikiqnn7zaUrfLGVs4dhuUcu5pq6GA/UHUm6vtA2RtukJfAf4INAA\nrAP+0d3fyGivRFqnsSsirVq1dRW/WPMLxhSOIT8vP9PdSZuYx9ixfwcH6g9Q0LuAL5z6BR7ioZSO\njWTm2cyuNrPnzeyAmd2bQvsZZvaume02s5+ZWc8o+gFtW0K7Pe2le3P3Snf/sLsXuvsQd/+4uy/L\ndL9EWqOxK9nKzHqFsUCFmVWZ2Ytmdn7c/nPM7DUz22dmz5iZEnDT5M1db3Ln83cycsBIeuX3ynR3\n0mJf7T427d7E23ve5pQRp3Ddx6/jtqm3ceEHL0z5HFHNPL8DzAOmAn1bamhmUwnu+P4k8C7wODAH\n+HZHO3F4Ce0rgJU888zlzJ07g1mzZrXSPrUlt0Wy1Wc/C089leleiIi0Sw9gM/D37r7FzD4L/MrM\nTgX2A48CXwGeJPj25BHgY5nqbFe1bd82fvCXHzCw90D69eyX6e5Eqj5Wz/Z926mL1TG8/3Cu+NAV\nTB41mUF9BrXrfJEEz+7+OICZnQmMbqX5l4B73H1deMxc4CEiCJ6DJbSvAB4EbiEWg9mzZ3DGGWc0\nCYhLS0tZsGAhq1aVt3nJbZFslKnA+YILMnNdkY6YPft2Nm/e3Wq7sWMHMXfuNzuhR92bu1cDc+Oe\n/9bMNgKTgWHAK+7+GICZlQCVZnaiu2/IRH+7oj0H9/CDv/yAWCzGoH7tCyizjbtTdbCK3Qd20zOv\nJx8f83HOGncWxw4+tsNLi2ci53k8wWxzo3JghJkNdvf3O376lcDhgDgWaxoQN51t3trxy4lkEfdM\n90Ak+23evJuiopJW21VUtN5GomdmRwEfANYCXyOIE4Ag0DazNwhiCQXPEdi0exM/+uuP2Fu7l1EF\nozLdnQ47WH+Q7fu3E/MY4waN4wvjv8CEkRMinU3PRPA8AKiKe76HoFRSAdCh4Lm4eDrPPHM5sVjz\nbYLZ6cbgeiRwxaF9WnJbREQkc8ysB8HXx/e7+wYzGwBsT2i2hyBmkA5wd57b/Bz3rb6PAb0G5HTg\nHPMYO6t3sr9uP3179OX8E87nY2M+xuiC0WmpFtJq8Gxmy4GzCeqBJlrp7me18Zr7gIFxzwvDc+9N\n1rgtK11NnTqVuXNnMHv2jEMBdMsB8VRgGkOGzGPy5AkUFyvfuSvQalciIrnHgijnQeAgcE24OTFm\ngCBuOCJm0MqYqTtQf4CH1zzM8o3LGTVwFH169Ml0l9os5jF2H9jN3oN7MTPGjxjPp4o+xfgR41O+\n2bG98UKrwbO7f7LNZ23ZWmAC8Jvw+URgW3MpG21d6WrWrFmcccYZLFiwEKBJQFxaWkpl5Tby8uKD\n6wd56CEFzV2JVrsSEclJ9xDkOF/g7g3htrU05mECZtYfOD7c3oRWxkzNtn3buPP5O9myZwtFg4s6\nnP/bmdyd3Qd2s+fgHgA+OOyDnH3q2YwfMZ6BvRM/Y7WuvfFCJGkbZpZPUEM0H+hhZr2B+rjBH+8B\n4D4zewh4D7gRuC+KfjSaOnXqEcFw01znNeTlFTNhwqnMn6/AWUREJJPM7G7gJODT7l4bt2sx8H0z\nuwh4CrgJWK2bBdun/L1y7nrhLvLIY1zhuEx3JyXuzp6De9h9ILjJ9/ghx/PPp/wzpx11WrurZXRU\nVDnPNxIM6MbUjssJys/NNbMxBJ8QT3H3t9291My+DywH+hDMQJdE1I9mNc11hljsNIYNW6LAWURE\nJIPCus3TgQPAtjBH1YF/d/eHzewS4E6ClI6/Apdmqq+5qj5Wz5L1S3hi3RMM7z+cAb0GZLpLLXJ3\n9tXuY1fNLgDGFI7hcx/8HBOOmsDQfkMz3LvoStXNIQiWk+3bQkK+krvfDtwexbXTqbGkHQQ3IyrQ\nFhERiZa7b6aFRdvCxXxO7rwedS1VB6pYuGohr2x/hTGFY+iRl72LS++v3c/Omp24O0cXHM0XT/0i\nE4+eyIj+IzLdtSay928wYsXF03nuuWnU1ATPW6usoQVUREREJJe9sesN7vjbHdTU1VA0qCgtlSc6\nojElo+pAFY4zrN8wLjn5EiYdPYmjBxyddf1t1G2C56lTp7J48aKkNxImk5jmoQVUREREJBe4O8s2\nLuPBlx+ksE9hVpWhq4/Vs6tmFzV1wWxm0eAiPnPCZzhlxClpKy0XtW4TPEPyGwlFREREuorqump+\nXv5zVm5eyeiBo+ndo3dG++Pu1NTXsLN6JzFi9MzrycSRE/nw6A/zgSEfoLBPYUb71x5dNnjuaL5y\nW9M8RERERDJp696t3PG3O9i2b1tGy9DFPEbVgapDJeWG9BvCZ074DB8a+SGOHXQsPfN7ZqRfUemS\nwXMU+cptTfMQERERyQR354WtL7Bw1UJ65fdibOHYTu9DbUMtu2p2cbD+IGbGB4Z8gH866Z84efjJ\nHNX/qJxIx0hVlwyeo8pXVpqHiIiIZLN39rzD717/Hc9ufpaRA0bSr2e/TrluXUMdVQer2F+7HzOj\nd35vzhx1JpNHTeaEISdkfTm8juiSwbOIiIhIV+XubNy9kSc3PMmL775Iz7yejCscR35eftquWR+r\nZ/eB3YeC5Z55PTll+ClMHDmR4wYfx6iCUWm9fjbpksGz8pVFRESkq4l5jHWV63h83eOs37mevj36\nMrZwbFpymxOD5R55PThl+ClMGjmp2wXLibpk8Kx8ZREREekq6mP1lL9XzuJ1i9lStYWC3gUUFUZb\nt7k+Vk/VgSr21e5rEiw3ziyPLhjdbYPlRF0yeAblK4uIiEhuO1h/kOe3Ps/i1xZTWV3J4L6DI1ns\nJOYx9tfuZ2/tXuob6sGgR14PThp2EpNGTuL4IcczqmBUVq9GmEn6WxERERHJIvtr97Ny80qWbFjC\nvoP7GNZ/GMcOPrZd53J39tftZ+/BvdQ21GJmGMbogaM5Y9QZnDDkBEYVjOKoAUcpWE6R/pZE0qQL\nVeUREZFO8H7N+5RVlPG7N35HXUMdI/qPYFi/YSkf37ggyd6DezlQfwAzw3GOHnA0Hx/zcT447IOM\nKhjFyAEj6ZXfK42vpGtT8CzSRVxwQaZ7IBK92bNvZ/Pm3a22Gzt2EHPnfrMTeiQSrZjHeHfvuyyv\nWM7yjctxPKXgtq6hjuq6aqrrqjnYcJA8y8PdGdZvGJNHTeaDQz/I6IGjGVUwij49+nTSq+keFDyL\npIl7pnsgkvs2b95NUVFJq+0qKlpvI5IN6mP1bN27lU27N/HytpdZu2MtNXU15Fs+Rxcc3SR1wt2p\nbahlf91+quuqaYg1kGd5xDxGn559OKbgGMYNGse4wnGMHDCSUQWj6N+rfwZfXfcQSfBsZlcDVwKn\nAQ+5+1daaDsNuAeoBgxw4B/c/dko+iKSbmY2GLgXOBfYAXzb3R/ObK9EWqexK7ko18dtbUMtb+95\nm7fef4vy98pZv3M99bF6HKdfj34M6jOI4f2GU1Nfw+4Du6muq8bdDwXJhX0KGVs49lDFi+H9hzOs\n3zAKehV0qVX7cklUhQHfAeYRBMWp+JO7D3T3gvDPrAmcy8rKusU1M3XdTL3WiN0FHACGA1cA/2tm\nJ2e2S93n99ldrpkmnT520/F3V1Ghc2br+dIkp95za+pqWF+5nt9u+C3f/eN3+Y8n/4PZy2dz9wt3\n88LWF6hrqCPmMQzjQP0B3tv3Hlv2bMEwTh52MpecfAnXfOQaSqaUcNdn7+L282/nuo9fx8UnX0zN\nGzUcN/g4BvYe2KmBs953m4pk5tndHwcwszOB0VGcM1PKysqYMmVKl79mpq6bqdcaFTPrB1wMnOLu\nNcBKM3sC+Bfg25nsW3f5fXaXa0YtU2M3HX93FRVlFBXpnNl4vqhl63uuu7P0maWcOPlEKqsr2bZv\nG+XvlVNRVcGeg3uoqauhLlZHr/xe9OnRh8F9BjOs3zCG9x/OyAEjGdF/BIW9CxnYeyCFfQop6FWQ\nUkmvcIIAAAg/SURBVA1lxQvZIVM5z5PMbDuwC3gQ+K67xzLUF5G2OBGoc/c347aVA2dnqD8iqdLY\nlVyUtnHr7jR4Aw2xBupj9VTXVbOzZic79u+gsrqSyupKdlTv4ED9gUMpFO6O48Q8xrObnqXhrw24\nB88bvIEThpzAh0Z8iMF9B1PYp/BQgNwzv2dHuytZJBPB8wrgVHffZGbjgV8BdcAtGeiLSFsNAPYk\nbNsDFGSgLyJtobEruSjlcXvT8ptwHA/v1nbCP8OAt7ntjY/zLO9QDWQzC55jDOw98FCecePP0L5D\nyV+Rz7xPz0vPq5asZt5KSQAzW07wCS9Zw5XuflZc23nA6JZuGExy/i8A17n7mUn2qV6BRMLdI0kO\nM7OJwHPuPiBuWzFwlrv/Y9w2jV3psKjGLWjsSufSe67kqlTGbqszz+7+yWi606KkHY3yPw6RiGwA\nepjZ8XFfI04A1sY30tiVLKSxK7lI41ayTiTVNsws38z6APkEg7y3mSXNfDez881sRPj4JOBG4PEo\n+iGSbu5eDTwGzDWzfmb2d8DngJ9ntmciLdPYlVykcSvZKKpSdTcS1G2+Abg8fDwLwMzGmNkeMzsm\nbHsO8LKZ7QWeBH4DzI+oHyKd4WqgH7Cd4IbXr7r7a5ntkkhKNHYlF2ncSlZpNedZREREREQCUc08\nR8LMrjaz583sgJndm0L7GWb2rpntNrOfmVmba8GY2WAzW2xm+8xso5l9sYW208ysPpxJ3xv+eVZz\n7TtwnQ6/rrZcsyOvK+E8Kf/+onqNbbluVK+zlb6k/HuO8Jpt+ncTwfV6hb+zCjOrMrMXzez8Trju\nz+PGzDoz+9d0XzPu2h+w/9/e2YRaVUVx/LdSa5BogumgNEyCyomSM7MoysCBkwKVoKhGFUIFObKv\nR+AgqKgEw8R4wwiKpGhQJIQOctRAi4wyCzUHqT0/stDVYO9nr8d93rPPWeu+e+5dP7i8d3jv7v9Z\ne//3upt7ztlL5LyIjPZIb0/WG/dqT79ls/CUx1yw9rqXl728aulDL4+JyAYROZjH/ZCIrLJo9wp6\nA59zs+ZQ5d1+z7l9tXimoFKhiDwAbAbuAW4ClgKv1NAsrVxUtzpiJR3DuCprZiyqPlYaP+MYK+tm\nvKtbTkclrNIKn02ZCRwBVqvqXOAF4AMRWeysuxVYoqrXAeuAV0VkhbPmOO8A3/RIC9LuRk9N8Gqv\nq6lZeMpjLlh73cvLXl619KG5x0TkflLsj+bdMe4CfmrabheGIefC8OXdvs65fbV4VtWPVfUTUvGU\nbjwC7FTV71X1NDACPFaiJ/9VLtqiqudVdS8wXrnIjEKdxnHV0DShYPxMYqyh68p09Dn0Pn5VPaeq\nI6r6az7+FPgZuMNZ96Cq/pUPhZTslnpqQvomDTgJfOmtNVm6x3qXaeopr7lg7XUvL3t41cmH1h57\nGRhR1f0AqnpMVY8Za1xmWHJu1hyavNuGnNtXi+dClpGqDI3zLbBAROYVtDFV5aJlV3jPChE5kS9f\nbBGRKn1YomMRV6km1IurLlYx1sEzzjp+aj0ishC4hUlbRzlpbRORs8B3wFHgM2e9OaSrIs/R+8Xs\n1uzVr0WkbVUAWzkXLL1s6VVHH5p5LOfSlaRcfkhEjojI2yJyjc2pdqSVPrNgUPNuW3JumxfPs4HT\nE47/JHV0SbWs0opb49URFwAPAhuB5411LOIq1awbV12sYizFO86hq+AmIjNJT7+/r6o/eOup6tOk\nfr6TtH3VBWfJEWCHqh511pnMZuBm4AZgB7BbRJb0+Bya0Lq5YO1lY696+NDaYwuBWaTcugpYDqwg\n7cblRet8ZsGA591W5NyeLZ5F5CsRuSQiFzu86tx3egaYM+F4LulywliB5pn8Pia1M0YHVPWwqv6S\nfz9AGuSHapzrlXS6xlWRypoN4qqLVYxF9CDOknFuPSIipAR+AdjUK11N7AMWAU966UiqbHYf8KaX\nxlSo6n5VPauq/6jqKLAXWGvRtkMu7kSr5oKXly286uVDB4+dzz/fUtUTqvoH8HrDNrvRKp9ZMMh5\nt005t2uFQcMTs65UeIBUZejDfLwc+F1VT1bVzPdLzZAulYu6UOWyQqUKSZmucVWkRLMTnpdLrGK0\nwDLOpn3eNnYC84G1qnpxGvRn4nvv3d2kB1qP5A+s2aR8cbuqrnTU7YRi5FWHXNyJts0Fby838Wqv\nfNjIY6p6SkR+69CmJ23zmQWDnHdbk3P76rYNKahUCIwCT4jIbfle2S3ArhI9LaxcJDWrIxbqNI6r\nVLNuXB3aqTp+JjGW6lrFORWlfrKicN5YaW4HbgXWqerfnlpZ73oRWS8i14rIVZJ2bNkAfOEo+y7p\nQ2I56QN5O6mw0xpHTURkroisGR9HEXkYWA187qk76RwaecprLnh43drLDl4196Gjx3YBm3IfzAOe\nBXY3bHNKhinnZt1Bz7vtybmq2jcv4CXgEnBxwuvF/LdFpHuZbpzw/88Ax4FTwHvArBqa84CPSJd/\nDgPrJ/ztf5rAa1lvDPgxn++MJjpecZVoNomryvhlvTGPGEt0reKs66fpmDdOeouz3rncl2PZTxsd\nNecDe0hPt58iPRT0uHffdujn0R7ozCdt0XQ6x7sPuHcaYm3kKY+5YO11Dy97e9XCh14eI30ruY20\nU8JR4A3gamevDnzOzZpDl3f7OedGhcEgCIIgCIIgqEhf3bYRBEEQBEEQBP1MLJ6DIAiCIAiCoCKx\neA6CIAiCIAiCisTiOQiCIAiCIAgqEovnIAiCIAiCIKhILJ6DIAiCIAiCoCKxeA6CIAiCIAiCisTi\nOQiCIAiCIAgq8i8ekPX0JG+NvQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10a72ed90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(1, 4, figsize=(12,3))\n", "\n", "axes[0].scatter(xx, xx + 0.25*np.random.randn(len(xx)))\n", "axes[0].set_title(\"scatter\")\n", "\n", "axes[1].step(n, n**2, lw=2)\n", "axes[1].set_title(\"step\")\n", "\n", "axes[2].bar(n, n**2, align=\"center\", width=0.5, alpha=0.5)\n", "axes[2].set_title(\"bar\")\n", "\n", "axes[3].fill_between(x, x**2, x**3, color=\"green\", alpha=0.5);\n", "axes[3].set_title(\"fill_between\");" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Text annotation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Annotating text in matplotlib figures can be done using the `text` function. It supports LaTeX formatting just like axis label texts and titles:" ] }, { "cell_type": "code", "execution_count": 108, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD9CAYAAAC4EtBTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcVfX/wPHXBxAVUURwa5orR47cIxNLc+QqNctdfm3Z\nN9N+37ZlZo6+bSv7mit3ZhpqKeXAnWkKTkyszA0OEFBkfX5/fNCAQIF77oL38/G4D+Xezz3nzeWc\n877nM5XWGiGEEOI6D2cHIIQQwrVIYhBCCJGJJAYhhBCZSGIQQgiRiSQGIYQQmUhiEEIIkYmXswO4\nGaWU9KUVQoh80Fqr/L7X5e8YtNYu9XjzzTedHoO7xCUxSUyFIS5XjMlWLp8YhBBCOJYkBiGEEJlI\nYsijoKAgZ4eQLVeMS2LKHYkp91wxLleMyVbKivooe1FKaVeOTwghXJFSCl2QG5+FEEI4liQGIYQQ\nmUhiEEIIkYkkBiGEEJlIYhBCCJGJJAYhhBCZSGIQQgiRiSQGIYQQmUhiEEIIkYkkBiGEEJlIYhBC\nCJGJJAYhhBCZSGIQQgiRiaWJQSk1Sim1SymVqJSafYuyY5RSZ5RSMUqpmUqpIlbGIoQQIn+svmM4\nBbwNzLpZIaVUF+BFoCNQDagJvGVxLEIIIfLB0sSgtf5Oa70SuHiLokOBWVrrCK11LDABeMzKWIQQ\nQuSPs9oYGgDhGX4OB8oppfydFI8QQoh0zkoMvkBshp8vAwoo6ZxwhBCiYPjj7K0qbG7Ny4I48iMe\nKJXhZz9AA3FZC44fP/7G/4OCggrk+qpCCGGL0NBQQkND0Ro+XBNs8/bssuazUuptoLLW+vEcXl8I\n/K61Hpf+833AfK11pSzlZM1nIYTIpRenRPJhXGtSJl1wnTWflVKeSqligCfgpZQqqpTyzKboPGCE\nUqpeervC68AcK2MRQojCZOtWmLZvAs+1es7mbVl6x6CUehN4E1MtdN1bmIv+IaCe1vpketnngZeB\nYsAy4GmtdXKW7ckdgxBC3EJ0NDTsGMHVR9vz1wuRlC5e2qY7BrtUJVlFEoMQQtxcaip06wanWg9k\ncOeGvNL+FZRSNiUGZzU+CyGEsMCECXDJ+wDnS63n2Zb/s2SbMleSEEK4qbVrYdYsqDDgLf6vzf9R\nsqg1Pf6lKkkIIdzQ8ePQqhVMnPUrb0T0JPK5SHyK+ADYXJUkiUEIIdzMtWvQvj08/DD8VKELfe7o\nw9Mtnr7xuq2JQaqShBDCzYweDVWrQrO+oURejGRE0xGWbl8an4UQwo3MmQObNsHPP2u6LnuFCUET\n8Pb0tnQfkhiEEMJN/PorvPgibN4Mm86uIiEpgUcbPmr5fiQxCCGEG7hwAfr1gy++gDp3pPLw/15j\n0r2T8FDWtwhIG4MQQri4lBQYMMA0NvftCwv2LcCvqB896vSwy/7kjkEIIVzcK6+AhwdMmgRXk68y\nbuM4vu73NUrlu+PRTUliEEIIF7Z4MXz7LezeDZ6e8MmOT2hRuQVtqrax2z5lHIMQQrio8HDo1AnW\nrYPGjeH8lfPU/bQu20dsp05AnRzfJ+MYhBCiADp/Hvr0gWnTTFIAmLh5IgMaDLhpUrCCVCUJIYSL\nSU6G/v3hkUfMA+DYxWPM3zefQ88csvv+5Y5BCCFczJgxUKIETJz493MvrXuJMa3HUN63vN33L3cM\nQgjhQr78Etavh59/No3NAJuPb2bX6V3Mf3C+Q2KQxCCEEC5i82Z4/XXYsgX8/MxzaTqNMSFjmHLf\nFIoXKe6QOKQqSQghXMAff5hBbAsWQJ0Mbcvzwufh7enNI3c+4rBY5I5BCCGc7PJl6NkTXnsNOnf+\n+/n4pHhe2/Aayx9ebrfBbNmRcQxCCOFEqammW2rlyjB9OmS8/o/bMI4/Yv5gwUML8rRNWfNZCCHc\n2EsvQUKCGa+QMSn8ful3pu+ezt4n9zo8JkkMQgjhJF9+CatWwY4dUKRI5tfGhoxlbJuxVPWr6vC4\nJDEIIYQTrF8P48aZHkhlymR+LSQyhANRB/i639dOiU0SgxBCOFhEBAwcCEuXQu3amV9LSk3iubXP\n8VHXjyjqVdQp8Ul3VSGEcKCoKHjgAZg6FTp0+OfrH//8MbXK1LLbWgu5IXcMQgjhIFevQq9eMGgQ\nDB/+z9dPXT7F1G1T2TFih8Njy0i6qwohhAOkpZkV2IoVg/nzM/dAuq7/N/2pF1iPCR0n2LQv6a4q\nhBBu4KWXIDoafvwx+6Sw5uga9pzZw7w+8xwfXBaSGIQQws6mTTPdUrdtg6LZtCdfTb7Ks2ue5bPu\nnzlsPqSbkcQghBB2tGIFTJkCW7dCQED2ZSZtmUSzis3oWqurY4PLgSQGIYSwk+3b4YknYO1auP32\n7MtEnI9g+u7phD8V7tjgbkK6qwohhB0cOQIPPQTz5kGzZtmXSdNpPLHqCd7o8AaVS1V2bIA3IYlB\nCCEsdvo0dO0KkydDt245l5u5ZyZJqUmMajHKccHlglQlCSGEhWJiTFJ44gl47LGcy52OO81rG15j\nw9ANeHp4Oi7AXJBxDEIIYZHERJMUGjaETz7JvlvqdX2X9qV+YH3evvdty+OQcQxCCOECUlLM/Efl\nysFHH908KXwX8R0How6y8KGFjgswDyQxCCGEjbSGp56CuDhYvRo8b1IzdPHqRUb9MIolfZdQzKuY\n44LMA0kMQghho1dfhf37zVTa2Q1gy2j02tH0q9eP9tXaOya4fJDEIIQQNnj/fQgOhs2bwdf35mVX\nHlnJ9hPb2ffUPscEl0+SGIQQIp++/BI+/dQsthMYePOyF69e5Onvn2bRQ4so4V3CMQHmk/RKEkKI\nfFiyBF54ATZtglq1bl1+6IqhlC5Wmk+6fWL32KRXkhBCONj338Pzz8NPP+UuKSw/vJwdJ3ew98m9\n9g/OApIYhBAiDzZsMAPXVq824xVu5Wz8WZ75/hm+e+Q7fL1v0QjhIiQxCCFELm3dCgMGwLJl0LLl\nrctrrfnXyn/xr6b/onWV1vYP0CKSGIQQIhd27TKT4i1cmP1azdmZuWcmp+NOs3zAcvsGZzFJDEII\ncQthYdCjB8yaBfffn7v3RF6M5NUNr7Jp+Ca8Pb3tG6DFZHZVIYS4if37zfxHn30GPXvm7j1JqUk8\n+u2jvNnhTeqXrW/fAO1AEoMQQuTg4EFzh/Dxx9CvX+7fN27DOCr6VnS56bRzy+2rkrS++WRVQgiR\nHxERJim8/75pcM6tdb+vY+H+hYQ9FYZy04uTW98xxMdDixZw+LCzIxFCFCSHD8N995m1mgcOzP37\nohOiGf7dcOb2mUugzy2GQrswt04Mvr7w3HPQqRMcOuTsaIQQBcHBgyYpTJ0KQ4bk/n1pOo0hK4Yw\nuNFgOtXoZL8AHcDtq5KGDjVT3HbqBD/+CHfe6eyIhBDu6sABU3303nt5u1MAmLJ1CvFJ8bzd0fqF\ndxzN0jsGpZS/UmqFUipeKfWHUurRHMoNU0qlKKUuK6Xi0v+9J7/7HTTI1AN27gzh4fmPXwhReIWF\nmWvI++/nPSls+nMTn+z8hCX9llDEs4h9AnQgq+8YPgcSgbJAU+B7pVSY1jq7VoDtWut8J4OsHn0U\nvLygSxczVL15c6u2LIQo6HbtMuMUPv8c+vbN23vPxZ9j0PJBzO0zlyqlqtgnQAez7I5BKeUDPAS8\nrrW+qrXeBgQDeails03//jBjBnTvDtu2OWqvQgh3tm0bPPAAzJyZ96SQkpbCoOWDGNp4KF1rdbVP\ngE5gZVVSHSBZa30sw3PhQIMcyt+llIpSSkUopV5XSlkSS69eMH8+9OljJrsSQoicbNgADz5orhm5\nHbyW0esbXgdgQscJFkfmXFYmBl/gcpbnLgMlsym7CbhTa10O6As8CvzHqkC6dIFvvoFHHoFVq6za\nqhCiIFm1ylwjvvnGXDPy6ttD37LkwBIW912Ml4fb9+PJxMrfJh4oleU5PyAua0Gt9Z8Z/n9QKTUB\n+D9gatay48ePv/H/oKAggoKCchVMUJBpa+jVCz780LRBCCEEmEV2nn/erKvQokXe3384+jBPff8U\nawatoWyJstYHmEehoaGEhoZatj3LVnBLb2O4CDS4Xp2klJoHnNRav3qL9w4A/qO1bp7leZtXcDtw\nwHwbeOMNePJJmzYlhCgAZsyACRNg7dr8dW+PTYyl1cxWvNTuJR676zHrA7SArSu4Wbq0p1JqEaCB\nkZheSauAtll7JSmlugJ7tNZRSqm6wDfA11rriVnKWbK0Z2Sk6Zs8ciS8/LJMoSFEYaQ1TJ5sZkgN\nCcndymtZpaal0nNxT2r41+DT7p9aH6RFbE0MVo98HgX4AFHAAuAprfVhpVTV9LEK1/ty3QfsU0rF\nAauBZcBki2O5oVYts8DGokVmjda0NHvtSQjhitLSzLm/ZIm5FuQnKQC8vO5lrqVe48MuH1oboIux\n9I7BalbdMVx36ZLpeVCjhvnWUMT9x6EIIW4hORlGjIBjx0y7o79//rbzVdhXvL35bX4Z+Qtlipex\nNkiLudodg0vz9zfTZly6ZBql4+OdHZEQwp7i482XwUuX4Kef8p8Utp/Yzn9++g8rH13p8knBCoUq\nMQD4+MCKFVCpEnTsCFFRzo5ICGEPUVHmHK9SxZzzPj75207kxUj6Lu3LvAfnueWiO/lR6BIDmKkz\nZs40I6TbtjWN00KIgiMyEtq1M+f4l1+acz4/Lly5QPeF3RnfYXyBGtl8KwVrVEYeKAVvvQWVK0P7\n9rB8ObRp4+yohBC22r4dHnrIdEl94on8b+dayjUe/PpB+tTtw5PNC1df90LV+JyTH36AYcPgiy/y\nPleKEMJ1fPstPPUUzJsH3brlfztpOo1ByweRnJrM0v5L8bBmxh6HsbXxudDeMWTUvbvp19yrF/z5\nJ4wdK2MdhHAnWsMHH5hZDkJCoGlTW7alGRsyllOXT/HjkB/dLilYQRJDuqZNzS1ojx7w22/w6afS\nnVUId5CcDKNGwc8/m3P4ttts2967295l/R/r2fLYFop5FbMmSDdT+FLhTdx2mxn8cvKkuQ29dMnZ\nEQkhbiYmxpyrp06Z6bNtTQpfhX3F9N3TWTtoLaWLlbYmSDckiSGLUqUgOBgaNDA9lo4edXZEQojs\nHD0KrVubczU4GEpmN49zHqw4vIKX17/M2sFrqVyqsjVBuilJDNnw8oKPPzazL959N6xf7+yIhBAZ\n/fSTOTfHjDHnan67o14XEhnCk6uf5PuB31M3sK41Qbox6ZV0C6GhZs72116DZ5+VRmkhnElr0/73\nzjtm3qNczsJ/U5uPb6bv0r4EPxJM26ptbd+gC3Cp2VWt5gqJAeD336F3b2jVCj77DIoWdXZEQhQ+\niYnwzDNmfebgYDPnma12ntxJz8U9WdR3EZ1qdLJ9gy5C5kpygBo1TG+HmBjo0ME0dAkhHOfUKXPu\nxcXBjh3WJoU5vecUqKRgBUkMuVSypFkCsHdvaNnS9F4SQtjfli3mnOvTB5YuBV9f27f5y6lfbiSF\nB+o8YPsGCxipSsqHtWvNSOlXXoHRo6XdQQh70Bo++gimToW5c6GrRVMVXU8Ks3rNokedHtZs1MVI\nVZITdO1qBtPMn28apuP+saq1EO5h82Zo0sR00+7SBU6ccHZERny8ObcWLDDnmlVJYfPxzfRY1KNA\nJwUrSGLIp9tvNwNqSpUyt7kHDjg7IiHyJjoaZs82F99ly+DIEbOgjbPt3w/Nm5vq223boHp1a7Yb\nEhlC36V9Wdx3sSSFW9Fau+zDhOf65s7VOjBQ6zlznB2JELm3ZInWly///fOcOVoXL+60cLTWWs+e\nbc6lr76ydrsrDq/QZd8tq7ce32rthl1U+rUz39demSvJAsOGmW84/fubcQ+ffQYlSjg7KiFubsCA\nzD9XqGD7lBL5FR9vxgn98gts2gT1LVwPZ+aemYzbOI41g9bQrFIz6zZcgElVkkUaNDAHtdbQrBmE\nhTk7IiHyZs8eM2W1o4WFmXNGKXMOWZUUtNZM3DyRSVsmsWn4JkkKeSCJwUK+vvDVV/D669C5M3zy\niUkUQri6K1dM3f5zzzlun1rDtGnmXHnjDZgzx5quqACpaan8e82/WXZoGdse30adgDrWbLiQkO6q\ndhIZCQMHQrlyMGsWlC/v7IiEyNlbb5lRxWXLOmZ/587B44+bdZkXL4ZatazbdnxSPAO/HUhCcgLL\nH16OXzE/6zbuJqS7qouqVcsMgmvc2HQHXL3a2REJkb0vv4TBg/9OCsnJ9t3f99+bc6JJEzOjgJVJ\n4XTcaTrM7UBZn7KsGbSmUCYFK0hisCNvbzPZ19KlpmHt6adNI5soXDZuNGsPV6wI//3v38/v3w+B\ngWbAZFYJCbl/JCZmv88XXoDSpc2qZgDHjkGLFnDffX+XmzsXiheHlBTTXXXTJvMN3h7i400bxqhR\n8PXX5tywcjGssLNhtJnVhn71+jGz10y8Pb2t23hhY0uXJns/cJPuqrkRE6P1sGFa16yp9ZYtzo5G\nOFpqqtYtW2pdp87fz8XHa92xo9YffPDP8krl/tGxY877bddO6+bNzfH30ktab96sdXCweW3tWq29\nvLT28Mj8OHrU2t9da3PM16ih9fDhJharfX3gax34bqBeemCp9Rt3Q9jYXVXaGBwsONjcOQweDBMm\nQLHCuXJgoTRvHjz2mLlTuN7zZskSMyFcy5aZy27fnvvt+vmZXnHZeest8818zBgYP97cHTjS1aum\nYXnhQvjiC7OuupXSdBrjNoxj4f6FfPfIdzSp0MTaHbgpW9sYZByDg/XuDe3amYa+Jk3MyNO2BWMK\neHELPXqYLpmrV/+dGCIjzdQPWVl1TLRta6qJGjVyfFLYts00MDdpAuHh1jdsX7x6kSErhhCfFM+u\nkbsoW8JBLeeFgLQxOEFgoGl3eOcd6NfPfJtLSHB2VMLeypQxF8lNm8zPx4/nPH10bGzuHzc7dmrW\nNP+eP2/t73IzCQnmmO7fHyZPNu0JVieF3ad302xGM+oG1GXdkHVulRTCzobRbnY7/Kf6c//8+7l4\n9aKzQ/oHSQxO1LevqVaIjoaGDSEkxNkRCXvr2BF27jT/nzPnn6OPr/P3N4nE3//Wj549c97fhx9C\nnTpm6mpHCAmBO++ECxfMsf3QQ9ZuX2vN9F3T6b6wO+/f/z7vd3mfIp4WtmDbWVJqEt8c/Ib1Q9dz\nauwp4pLi+GDHB84O6x+kKsnJAgLMJGZr15oeG+3awQcfmPEPouBp3978fRctgqZNwdMz+3J5We/D\nL4cemXPnmrYspcwdKsDFi6ZqyerjKyoKxo41bSP/+x/cf7+12wdTdTRy1UiOXTzG1se3uuWgtZjE\nGMYHjb+RzDpU64CHcr3v55IYXETXrmaG1jffNN+4Jk6Ef/0LPFzvmBE2aNPGjPhdtgyWL8+5XH7b\nGMLDYf16qF3bjGZu1cqsfvbpp2aa+IgIc2xZJS3NjIMYNw6GDjV3CfaYJ2zL8S0MXjGYB+s+yKKH\nFlHUyz3X1y1X4u+MfC3lGucSzvHB/a53x+D0Lqk3e1CAuqvmRViY1m3aaN2qldZ79jg7GmG1KlW0\nPnHCPtueO1drPz+tR4/++7m4OK1r1dK6RQutz5yxbl979mjdurXWbdtqHR5u3XYzSkxO1K+se0WX\n/295verIKvvsxAlWRqzUjac31lU/qKq3HLe+/zrSXbVgSkszVQGvvGLaIt5+21Q7Cfe2ezfs3Qsj\nRzo7kvy7cMHMB7ZihelA8dhj9rmz3XduH0NWDKF66erM6DGD8r4Fa16Z4zHHeXXDq2z7axt/Pv+n\npduWKTEKKA8P09Xv8GFTD12/PkyfbuqHhXuKjYV169w3KaSkmGOwfn3w8jLH5ogR1ieFpNQkJm6e\nSKd5nRjbeizfDfiuwCUFgGqlqzGr1yzOXznPhSsXnB1OJpIYXFyZMmYGyp9+Mg2Id91l/i/cw6FD\nZkDjzz/D+++baSrcUUiI6Wq7dCn8+KM5Jv39rd/PL6d+ofmM5uw4uYPdT+xmWJNhqAK8qHoxr2IE\n+ARQpngZZ4eSmS31UPZ+UEjbGHKSlqb1ihWmvrh7d60PHnR2ROJWgoO1DgjQeuRIrRMTnR1N3u3f\nb461WrXMsZeWZp/9xCbG6tFrRusK71XQi/Yt0mk27mjD7xv0yJUjdYX3Kuh3t7574/l9Z/fpgKkB\nes3RNf94T/y1+Fw/riZfzXafY9eO1X6T/fQH2808J5EXInXzGc31vV/dq7XW+sKVC5naSjb9uUm/\ntv41m37X7CBtDIVPUpJZJW7yZDPFwPjxUKWKs6MSBcnJk6aH3KpVpp1r1CgzKaTVtNYsPrCY//z0\nH7rV6saUTlMI9Am0ZNtpOo02s9oQkxjDkWePAJCQlEDPxT3pWacnY9qMyVTe463cV6AEVQ9iw7AN\n2b529+y7uZZ6jXVD1jF562QeqP0AlxIv0euOXvx6+lceWPQAdQPr0q9+P3y9fRneZHi+f8ec2NrG\nIInBjcXEwNSpMGOGqbd+8UVT9SREfl24AO++CzNnmhlhX3rJzNBqD2FnwxgTMoaYxBg+7/45baq2\nsXwf88Ln8VjwY+x/ej/1y5p5SJYcWEIN/xq0rJx5gqrtJ3I/QZVfUT8alMt+gqq3Qt/inS3vMKb1\nGMYHjad4EQfPRYLMlVSolS5t7hpGjTK9lurUMStwPf88lCrl7OiEO7l82YySnjbNTNMSHm6/u9Cz\n8Wd5fcPrrP5tNW92eJMnmj2Bp0cOI/1s1KNODxSK1b+tvpEYIi9G8sid/5ygqm1Vayaoalu1LSlp\nKTQq38gpScEK0vhcAFSpYkab7txpJmWrVQsmTTInuxA3c/myGfBWs6Y5dnbuNLOg2iMpxF2L463Q\nt7jz8zvxL+ZPxLMRPN3iabslBYAyxcvQpEITNh03E1QdjzlODf/sJ6iKTYzN9SMhKecJqmqWMRNU\nnb/iwAmqLCZ3DAVIzZpmaueICNO/vGZN+Pe/zcMePUiE+7p0ydwdTJtmRt1v3Qp33GGffSWmJDJ9\n13SmbJtC5xqd+WXkLzlenO2hY/WOzAmbA8CcsDmMu2dctuX8p/pfr4K55TZv1sbw4Y4PqRNQhy1/\nbWF069H5D9yJJDEUQHXrmukPjh41dw61apn+5s8/D5UqOTs64Uxnzpi5mmbPNh0Xtm0zVZD2cDX5\nKjP3zGTqtqk0rdiUdUPW0bB8Q/vs7CbaV2vPBz9/wKL9i2hasWmOdyhbH8/9BFV+RbOfoGpu2FwG\nNxqMUoqlB80EVRevXiQlLSXTdBiuThJDAVa7tpnB86+/TB/6O+80s12OHfv3egCicDh40LQhLF8O\nQ4aY0de33WaffcVdi+PLPV/y3vb3aFm5JcGPBNOsUjP77CwX2lRpg9aaZYeWsXxAzhNU5beNIfxs\nOOv/WE/tMrW5knyFVlVacSruFJ/+8inzw+cTcT6CifdaOEGVI9jS19XeD2Qcg6Wio7WeMEHr8uW1\n7tpV65AQ+/VLF86Xlmb+xl27mr/5hAnmGLCXM3Fn9CvrXtEBUwN0/6X99d4ze+23szyq8kEVfSLW\nPhNUzd07V/tN9tOj1/w9QVXctThd65NausWMFvpMnIUTVOUSMo5B5FViolnw/cMPITnZ9GoaNgxK\nlnR2ZMIKcXGmrWnaNDP2YPRoGDTIfsvI7jq1i093fcqqI6sY2HAgY1qPudEA6wp2n97N3jN7GdnM\nTeciyQcZxyDyTWuzgMu0aWaq5gEDTN/1u+5ydmQiP/buNb3Tli6Fe+81nQ7uucesx2C1K8lXWHZo\nGZ/v+pyz8Wd5psUzjLhrBAE+rjXTY2xiLNN3T+flu192digOJYlBWOLUKdMgOXMmlC9v1oJ4+GH7\nDW4S1oiJgSVLzN/u7Fkz0HHECPt0MtBaE3Y2jJl7ZrLk4BJaVW7FE82eoGednnbtcppXh6IPMW3n\nNIY1GcYPR39g3D3j3GqVNytIYhCWSk01E6bNmWMm6+ve3VQz3XefmVFTOF9Kipmldd48+OEH6NzZ\nTH3dpUvOK8LZ4kTsCRbuX8iCfQtISE5geOPhPH7X41T1q2r9ziyw8shKHg9+nIfqPcS0btPcdlEf\nW0hiEHZz4YJpi5g3zyxc//DDMHAgtG5tn+oJkbO0NDP4bNEiU1VUvbpZtnPgQPus03Hy8kmWHVrG\nN4e+IeJ8BP3q9WNI4yG0rdrWJZeiFJlJYhAOcfSoSRKLFpklI/v2NVMntGkjy4/aS1qama77m2/M\nUqClSpl2oIEDzdgUK2mtORB1gJVHVrLyt5VEXoyk1x296F+/P51qdMLb0w4z6Am7kcQgHEprs8bA\nsmXmER0NPXqYwVKdOoGPj7MjdG8JCbBhAwQHw+rVULasScD9+1s/9iQmMYb1v68n5FgIIcdC8FAe\n9KrTi1539KJ9tfaSDNyYJAbhVMeOmamZg4PNspVt25opFrp0gXr1pMrpVrQ2K6GFhMCaNbBjBzRr\nBr17m0cNC2eOuHT1EttPbCf0z1A2/rmRIxeO0K5qO7rW6kqXml2oG1i3QC+KU5hIYhAuIzbWfNtd\nu9Zc6K5dM90mO3aEDh1M9Udhv+5obarltmwxn9WGDWZ8QadO0K2b+deKmXFT0lI4GHWQ3ad3s/PU\nTrad2MZfsX/RsnJLgqoFEVQ9iJaVWxbKhtnCwKUSg1LKH5gNdAaigVe11otzKDsGeBEoDiwDntZa\nJ2cpI4nBjf3xx98Xv82bzQJDd99t2iVatoSmTcHX19lR2ld8POzZYxqOf/7ZzE3k7Q3t25uEee+9\ntt8VXLx6kUPRh9h3bh/hZ8MJPxfO/qj93OZ3G80rNadlpZa0u60djco3wstDupYVBq6WGK4ngceB\npsD3QBut9eEs5boAc4GOwBngO2CH1vrVLOUkMRQgf/1lvinv3Am//AL798Ptt5sBdU2aQOPGZj6n\n8uXd785CazOO4OBBs5bB3r0QFmaSY8OGJhG2amUSY7Vqed9+3LU4/oz5k98v/c7Ri0eJvBjJkQtH\nOBx9mITkBOoF1qNx+cY0Kt+IxhUa06RCE0oVlUU5CiuXSQxKKR/gElBfa30s/bmvgFPZXPAXAn9o\nrV9P/7mOGVx3AAAQDklEQVQjsEhrXTFLOUkMBVhSEhw4YC6kYWHmcfCgGUtRv76Z9bNWLfOoUcNM\n+la2rPN6QWkNUVGm6+6ff5r1C44eNY9Dh8wYgvr1oVEjk+zuusv8XDSH2hqtNQnJCZy/cp7ohGjO\nxp/lXMI5zsaf5dTlU5yMO8mpy6c4HnucxJREqvlVo4Z/DWqXqU2tMrWoHVCb+mXrU7lkZWkbEJm4\nUmJoAmzVWvtmeG4s0EFr3TtL2TDgHa31N+k/l8FUPQVqrS9lKCeJoRCKjjYX2qNHzcU3MhKO/a45\ncTKVuIRUKldNoVz5VMqWT6VcuTRKl0mjdGlNaX9NyZKa4j6aEiWgWDGNtzcUKQJeRUABZmpGM0gs\nOdm0gyRe08THaxISNHHxmksxmksxaVy6pIm+kEp0dBrRF9KIOp+Cj28KFSqmUL5SMpWqJlOhUhLl\nKiVRrmIiRUskcjXlKleTr3Il+QoJyQkkJCVw+dpl4pLiiEuKIyYx5sbjwpULeHp4EugTSFmfspT3\nLU+FEhUo71ueKqWqULlkZSqXqkw1v2oE+gTKxV/kmist7ekLZF0z7DKQ3dRsvkBslnIqveyljAXH\njx9/4/9BQUEEBQXZHqmwq9S0VC5cvcCFKxdu/Hsp8RKxibHEJMYQey2W+KR44pLiiE+KNxfRpASu\nJF8hMSWRa6nXSExJJCk1iaRSSSQ1TiKlYQoeygMvDy/O4MlZPFHaE7QHWnugYxX6kkJrBVqh0xRa\nw/VzI+v3i+vXWKWuPxQe6Q9PDw88PBWe5RRFKnriXcQTby8Panp7UtSrCF4eXlzz8OKUpzfRnt4U\nuVqE4ieKU8yrGEU9i+JTxIcSRUrgU8SHiiUrUiegDqWKlqJk0ZL4F/OndLHS+BXzI6B4gNsu/Shc\nS2hoKKGhoZZtz953DC8A9+RwxzBRa70s/ecAIAq5Y3B5CUkJHI89zvGY4xyPPc7Jyyc5HXeaU3Gn\nOBN3hnMJ57h49SJ+Rf0I9AkkwCeAgOIB+Bf3p3TR0pQuVvrGRbKkd0lKeJe4cRH1KeJDMa9i5gLr\nVZSinkXx9vTG29MbLw8v+cYsRC650h3Db4CXUqrm9TYGoDFwMJuyB9NfW5b+cxPgXMakIJwnJS2F\nYxePcfj8YSLOR3DkwhEiL0YSeTGSmMQYbvO7jWp+1ajmV42qflVpV7UdlUtVpqJvRcr7lifQJ1B6\nvwjhxqzulbQIU407EtMraRXQNodeSXOA+4CzwHJgu9b6tSzl5I7Bzi5fu8zeM3v59cyvppvjuf1E\nnI+gYsmK1AusR73AetwReAe1y9SmZpmaVCpZSebKEcLFuUzjc3owGccxnAde0lp/rZSqirlLqK+1\nPple9nngZaAYMo7BIdJ0GgejDrLj5A62n9jOzlM7ORF7gkblG9GsYjOaVGhCo/KNqF+2PiW8Szg7\nXCFEPrlUYrCaJAbbpOk0ws+Gs/HPjWw6voktx7cQ6BNI26ptaVOlDa2rtKZBuQZS7SNEASOJQWQS\nnRDNmsg1hBwL4adjP1G6WGk61ehEh2od6FC9AxV8Kzg7RCGEnUliEBw5f4QVEStY9dsqDkQd4L7b\n76NbrW50rtmZ6qWrOzs8IYSDSWIopA5HH2bpwaUsO7yMC1cu8GDdB+l1Ry+CqgfJxGhCFHKSGAqR\nM3FnWHxgMQv3L+RM3BkebvAw/ev3p03VNtJTSAhxgySGAi45NZkfjv7ArL2z2PLXFvrU7cPghoMJ\nqh7kUguwCyFchySGAurU5VP879f/MXPPTGr412DEXSPo36A/vt4FfJ5qIYTNXGnks7CR1prtJ7bz\n0c6PWP/7egY2HMi6oeuoX9biNR2FEOIm5I7BBaSmpfJdxHe8t+M9zl85z+hWoxnaeKjMpy+EyBe5\nY3BjyanJzN83n8lbJ1PWpywvtn2RXnf0krYDIYRTSWJwgqTUJGbvnc2UrVOoHVCbWb1mcU+1e5wd\nlhBCAJIYHCo1LZUF+xYwftN46gbWZUm/JbSu0trZYQkhRCaSGBxAa83KIyt5Zf0rBPgEMK/PPNpX\na+/ssIQQIluSGOxsz5k9vPDjC0QlRPHfzv+le+3usuCMEMKlSWKwk6iEKF5e9zJrItcwvsN4RjQd\nIbOYCiHcgsyjYLGUtBSm7ZxGg88bUKZ4GY48e4Qnmz8pSUEI4TbkamWh3ad3M3LVSPyL+bNp+CYZ\nmCaEcEuSGCyQkJTAuI3jWLR/Ee/d/x6DGg6SdgQhhNuSqiQbbfhjA3dOv5PzV85z4JkDDG40WJKC\nEMKtyR1DPiUkJfDSupcIPhLMjB4z6Fa7m7NDEkIIS8gdQz7sOLGDxl805vK1y+x7ap8kBSFEgSJ3\nDHmQkpbCpC2T+GzXZ3zxwBc8WO9BZ4ckhBCWk8SQS3/F/sWg5YPw9vRmzxN7qFyqsrNDEkIIu5Cq\npFxY/dtqWnzZggdqP8CPg3+UpCCEKNDkjuEmUtJSGLdhHAv2L2D5w8tpd1s7Z4ckhBB2J4khB1EJ\nUQxYNoAiHkXY88QeypYo6+yQhBDCIaQqKRu/nv6VFl+24O6qd7Nm0BpJCkKIQkXuGLJYsG8BY0LG\n8MUDX9C3fl9nhyOEEA4niSFdmk7j1fWv8s2hb9gwdAMNyzd0dkhCCOEUkhiAK8lXGLpiKFEJUez8\n104CfQKdHZIQQjhNoW9jOBt/lqC5QRQvUpyfhvwkSUEIUegV6sRw5PwR2sxqQ486PZjXZx5FvYo6\nOyQhhHC6QluVtPPkTnov6c2k+ybx+F2POzscIYRwGYUyMfxw9AeGfTeMOb3n0KNOD2eHI4QQLqXQ\nJYYlB5Yweu1oVj6ykjZV2zg7HCGEcDmFKjHM3DOTN0PfZN2QddIdVQghclBoEsOHOz7k450fEzos\nlNoBtZ0djhBCuKxCkRimbJ3C7L2z2fzYZm7zu83Z4QghhEsr8Ilh8pbJzA2fS+jwUCqVrOTscIQQ\nwuUV6MQwacsk5oXPY+OwjZIUhBAilwpsYpi6deqNpFCxZEVnhyOEEG6jQCaGaTunMWPPDDYP3yxJ\nQQgh8qjAJYbZe2fz3o732DR8kyzBKYQQ+VCgEsOSA0sYt3EcG4dtpHrp6s4ORwgh3FKBSQxrI9cy\neu1o1g1ZR52AOs4ORwgh3FaBSAw7T+5kyIohBD8SLCOahRDCRm4/7XbE+Qh6L+nNnN5zaFu1rbPD\nEUIIt+fWiSE+KZ6uC7oypdMUmSVVCCEsorTWzo4hR0opfav49p3bR6PyjRwUkRBCuD6lFFprle/3\nu3tiEEIIkZmticGtq5KEEEJYTxKDEEKITCQxCCGEyMSSxKCU8ldKrVBKxSul/lBKPXqTssOUUilK\nqctKqbj0f++xIg4hhBC2s2qA2+dAIlAWaAp8r5QK01ofzqH8dq21JAMhhHBBNt8xKKV8gIeA17XW\nV7XW24BgYIit2xZCCOF4VlQl1QGStdbHMjwXDjS4yXvuUkpFKaUilFKvK6WkrUMIIVyEFVVJvsDl\nLM9dBkrmUH4TcKfW+rhSqgGwFEgGpmZXePz48Tf+HxQURFBQkI3hCiFEwRIaGkpoaKhl27vlADel\n1EagA5BdwW3Ac8A2rXWJDO95AbhHa937lgEoNQD4P611i2xekwFuQgiRR7YOcLvlHYPWuuMtAvAB\nPJVSNTNUJzUGDuYhjnz/AkIIIaxlc92+1voKsByYoJTyUUrdDfQE5mdXXinVVSlVLv3/dYHXge9s\njUMIIYQ1rGr0HQX4AFHAAuCp611VlVJV08cqVEkvex+wTykVB6wGlgGTLYpDCCGEjWQSPSGEKGBk\nEj0hhBCWksQghBAiE0kMQgghMpHEkEdWDiKxkivGJTHljsSUe64YlyvGZCtJDHnkqgeBK8YlMeWO\nxJR7rhiXK8ZkK0kMQgghMpHEIIQQIhOXH8fg7BiEEMId2TKOwaUTgxBCCMeTqiQhhBCZSGIQQgiR\niUslBqWUv1JqhVIqXin1h1Lq0VuUn6iUOqmUuqSU2qCUqu8CMd2ulFqVPnFglFJqirNjyvC+9Uqp\nNHutmJeXuJRSQ5VSu5VSsUqpv5RSU62IK48xjFFKnVFKxSilZiqliti6f1tistdnYmtcWd7jSseQ\n3c+1fMRk92tS+n5GKaV2KaUSlVKzb1E278e51tplHsDi9EdxoB0QA9TLoezDwEmgGmY9h0nAr06O\nqQgQCYwGigHemNXqnBZThvcMxKyelwp4uMDf78n0Ml5ARWA38KKjYgC6AGeAuoAfsBGY5MzPxV6f\niVXHkSsdQ4461/IYk0OuSen76gP0Aj4DZt+kXL6Oc7sccPn8RX2Aa0DNDM99ldMvAbwILMnwc33g\nipNjGglscqXPKf31UkAE0NJeJ3V+4sry/jFAsKNiABYCEzP83BE440qfixWfiVVxudox5IhzLR8x\n2f2alM0+375FYsjXce5KVUl1gGT99ypwAOFAgxzKLwFqKqVqp98aDQfWODmm1sBxpdQPSqno9FvJ\nO50cE5hvLp8D5yyOxda4MrqHvK36Z2sMDdJfy1iunFLK38YYbIkpKys+k5zkNS5XO4Ycca7lNSZH\nXJPyKl/H+S2X9nQgX+BylucuAyVzKH8Gs+b0ESAFOAHc6+SYqgBBmBXsNgDPA8FKqTu01inOiEkp\n1RxoC/wbuM2iGGyOKyOl1ONAM2CEA2PwBWKzlFPpZS/ZGEd+Y7rBws/E5rhc9BhyxLmW15gccU3K\nq3wd5w67Y1BKbUxvtErN5rEZiMfUgWXkB8TlsMk3gRZAZUwd4wRgo1KqmBNjugps1Vr/qLVO0Vq/\nBwQA9ZwRk1JKYeogR2tzH5n/AS/Wf1bXt9sHeAfoqrW+mN/40sVjqjxyE0PWsn6AzqGso2ICLP9M\nbIrLymPIqpjS2Xyu2SEmm69JdpCv49xhiUFr3VFr7aG19szmcQ/wG+CplKqZ4W2NyflWujGmPu+M\n1jpNa/0V4I+p13NWTPswH3q+WRxTKcy3zq+VUmeAXzAn9kmlVDsnxgWY9b+B/wE9tNaH8hJPDn4D\nvHIZw8H0165rApzTWlt5t5DXmOzxmdgal2XHkIUxgQXnmh1isvmaZAf5O87t2TCSj4aURZjGEh/g\nbsytTk69Wt4ANgPlMAfqEEwWLOXEmOpgMvS9mKQ7BjgKeDkxpnIZHs2BNKCC1THlI657gfPA3c6I\nAdNb4zTmG6Y/prfGO848ru31mVgQl8sdQ4461/IYk0OuSen78sTclUwC5gFFAU+rjnO7H3x5/GX9\ngRXpf/A/gQEZXquKqR+rkv5zUWBa+i8dg+na19mZMaU/1yf9AI3B1H3etBupI2LK8Fo17NvVMC9/\nvw1AUvpzcen/fm+vGHL4Wz0PnE3/W80Eijjyc3HUZ2LFZ+XsY8hZ51oe/34OuSal7+tNTIJOzfB4\nIz2mOFuPc5krSQghRCau1F1VCCGEC5DEIIQQIhNJDEIIITKRxCCEECITSQxCCCEykcQghBAiE0kM\nQgghMpHEIIQQIhNJDEIIITL5f/mSKrvCXrVbAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x109b0aa50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "\n", "ax.plot(xx, xx**2, xx, xx**3)\n", "\n", "ax.text(0.15, 0.2, r\"$y=x^2$\", fontsize=20, color=\"blue\")\n", "ax.text(0.65, 0.1, r\"$y=x^3$\", fontsize=20, color=\"green\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Figures with multiple subplots and insets" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Axes can be added to a matplotlib Figure canvas manually using `fig.add_axes` or using a sub-figure layout manager such as `subplots`, `subplot2grid`, or `gridspec`:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### subplots" ] }, { "cell_type": "code", "execution_count": 109, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEWCAYAAAApTuNLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHc9JREFUeJzt3X2MXNV9xvHvg+1CLL/ITbGaxi6NrFi1jQRKSIuApotp\nBapKatEmiBRQEoSK5D+o24pKrRUvDlgh4g8kFFAkILJxCa0qXBfhKLSBTYXVKpAKN3JN0iCX1MSx\noX7Z3YJbCL/+ca83dyezO2dm79w5s34+0pU9d86cOTvzSL+5r0cRgZmZ2aCdN+gBmJmZgQuSmZll\nwgXJzMyy4IJkZmZZcEEyM7MsuCCZmVkWXJDMzCwLSQVJ0mZJL0o6I+mxDm23SDoq6ZSkRyQtqmeo\nNgycFeuG82JVqVtIrwNfAB6drZGka4G7gKuBi4A1wN1zGaANHWfFuuG82JSkghQRfxcRfw+c6ND0\nVuDRiHglIk4D24HPznGMNkScFeuG82JVdR9D2gAcqDw+AKyUtKLm97Hh56xYN5yXc0DdBWkJcLry\neBwQsLTm97Hh56xYN5yXc8DCmvubBJZVHi8HApioNpLkO7oOUERo0GMgMSvgvAya82LdmEte6t5C\nOghcUnl8KXAsIk62NoyIWpZt27a5ry6WjCRnBZwX58V5GYa+5ir1tO8Fki4AFgALJZ0vaUGbpruA\n2yStK/ftbgW+OudR2tBwVqwbzotVpW4hbQXeAv4c+MPy/38pabWkCUmrACLiG8CXgOeBw8CrwGjd\ng7asOSvWDefFpiQdQ4qIu5n5nP+lLW0fAB6Y47iSjYyMuK+M5JwVyPd7ybWvfnNe5ldfc6VB7CeW\nFJntnz5nSCLyOEidzHkZHOfFujHXvPhedmZmlgUXJDMzy4ILkpmZZcEFyczMsuCCZGZmWXBBMjOz\nLLggmZlZFlyQzMwsCy5IZmaWBRckMzPLQurdvldI2iNpUtJhSTfN0vYeSUcknZT0nKT19Q3XhoHz\nYqmcFatK3UJ6CDgDXAjcDDwsaV1rI0mfAj4DXAn8PPAvwOO1jNSGifNiqZwVm9KxIElaDNwAbI2I\ntyNiP7AXuKVN818BXoiI18q7G+4GfiZcNn85L5bKWbFWKVtIa4F3IuLVyroDwIY2bZ8E1kj6sKRF\nFL9ovj7nUdowcV4slbNi06TMh7QEGG9ZN07LXCWlo8B+4HvAu8B/ARvnMkAbOs6LpXJWbJqUgjQJ\nLGtZtxyYaNN2G/Ax4IPAMYpN7+clrY+IM9WGo6OjU/8fGRnJapKo+WRsbIyxsbEm39J5GWIN56Uv\nWQHnpSl156XjBH3lft4TwIazm9aSdgFHIuIvWto+DTwbEQ9W1p0EromIf62s8wRaA9LvCdecl/ml\nn3npR1bK9c7LgPR9gr6IeAt4CtguabGkq4DraX+Gy4vAJyWtVOEWiq2wH/Q6QBsuzoulclasVcou\nO4DNwGPAceBN4I6IOCRpNXAQWB8RR4D7KE7ffBlYTBGWGyKidT+xzW/Oi6VyVmxKx112fXlTb1IP\nTL932fWD8zI4zot1o++77MzMzJrggmRmZllwQTIzsyy4IJmZWRZckMzMLAsuSGZmlgUXJDMzy4IL\nkpmZZcEFyczMsuCCZGZmWXBBMjOzLCQVJEkrJO2RNCnpsKSbZmn7IUlPSxqXdFzSF+sbrg0D58VS\nOStWlbqF9BBwhuJuuzcDD0v6mfnsy6mF/wH4R2AlsArYXc9QbYg4L5bKWbEpqRP0naS4DfzZSbR2\nAq+3mUTrduDmiPjNDn36brwD0tAEfc7LPNHABH21ZqVs67wMSBN3+14LvHM2MKUDwIY2bS8HXpO0\nT9Ibkp6TdHGvg7Oh5LxYKmfFpkkpSEuA1kmwxoGlbdquAm4EHgA+AOwD9kpKnQjQhp/zYqmcFZsm\n5cucBJa1rFsOTLRp+zbwQkQ8Wz6+X9JWYB3w3WrD0dHRqf+PjIwwMjKSNmLrytjYGGNjY02+pfMy\nxBrOS1+yAs5LU+rOS+oxpBPAhsp+3l3AkTb7ebcDV0TEb1XWnQJ+IyK+W1nnfbwD0tAxJOdlnmjg\nGFKtWSnXOy8D0vdjSBHxFvAUsF3SYklXAdcDj7dpvhu4XNJGSedJ2gK8ARzqdYA2XJwXS+WsWKvU\n0743A4uB4xTBuCMiDklaXV4TsAogIr5PcermVyh++VwPfCIi3q1/6JYx58VSOSs2peMuu768qTep\nB6bfu+z6wXkZHOfFutHEad9mZmZ954JkZmZZcEEyM7MsuCCZmVkWXJDMzCwLLkhmZpYFFyQzM8uC\nC5KZmWXBBcnMzLLggmRmZllwQTIzsywkFSRJKyTtkTQp6bCkmxJe801J70ly0TvHOC+WylmxqtTZ\nFh8CzgAXAh8BnpH0ckS0vfW7pE+XffsOh+cm58VSOSs2JXWCvpPA+sokWjuB11sn0SqfWwZ8G7gV\n+GdgUUS819LGd+MdkIYm6HNe5okGJuirNStlO+dlQJq42/da4J2zgSkdADbM0H4Hxa+eY70Oyoaa\n82KpnBWbJqUgLQHGW9aNA0tbG0q6DLgCeHDuQ7Mh5bxYKmfFpkk5hjQJLGtZtxyYqK6QJODLwJ0R\nEeXjGY2Ojk79f2RkhJGRkYShWLfGxsYYGxtr8i2dlyHWcF76khVwXppSd15SjyGdADZU9vPuAo5U\n9/NKWg78N8VUxAIWAL8A/Bj4ZETsr7T1Pt4BaegYkvMyTzRwDKnWrJTtnZcBmWtekqYwl/QExVkt\nt1OcCfM0cEXrmTCSVlYe/jLFAchfAt6MiHcr7RyYAWliSmrnZf5o4AdMrVkp2zovA9LUFOabgcUU\nv1B2A3dExCFJqyWNS1oFEBHHzy7AGxRBO94aGJv3nBdL5azYlKQtpNrf1L9gBqaJLaS6OS+D47xY\nN5raQjIzM+srFyQzM8uCC5KZmWXBBcnMzLLggmRmZllwQTIzsyy4IJmZWRZckMzMLAsuSGZmlgUX\nJDMzy0JSQUqd917SrZJeknRa0g8l3ed57889zoulclasKvULrc57fzPwsKR1bdq9D7gTeD/w68A1\nwJ/VME4bLs6LpXJWbErqfEjJ8963vHYLMBIRv9ey3jc/HJCG5kNyXuaJBuZDqjUr5XPOy4A0cXPV\nbue9r/o4cLCXgdnQcl4slbNi06RMYZ48732VpM8BHwVu621oNqScF0vlrNg0KQUpad77KkmbgHuB\nayLiRLs2nvO+GXXPeZ/AeRliDeelL1kB56Updecl9RhSx3nvK+2vA3YCvxMR35mhT+/jHZCGjiE5\nL/NEA8eQas1K2c55GZC55iVpxtgu5r3fCPwNsCkiXpilPwdmQJqYAdR5mT8a+AFTa1bKts7LgDQ1\nY2zSvPfAVopN8H2SJsrnnul1cDa0nBdL5azYlKQtpNrf1L9gBqaJLaS6OS+D47xYN5raQjIzM+sr\nFyQzM8uCC5KZmWXBBcnMzLLggmRmZllwQTIzsyy4IJmZWRZckMzMLAsuSGZmlgUXJDMzy4ILkpmZ\nZSGpIElaIWmPpElJhyXdNEvbLZKOSjol6RFJi+obrg0D58VSOStWlbqF9BBwBrgQuBl4WNK61kaS\nrgXuAq4GLgLWAHfXM9T26pwc6lzoqyHOyzzpqwHZZgXy/V5y7WuuOhakchKtG4CtEfF2ROwH9gK3\ntGl+K/BoRLwSEaeB7cBn6xxwq1y/mFz76jfnZX711U+5ZwXy/V5y7WuuUraQ1gLvnJ3RsXQA2NCm\n7YbyuWq7lZJW9D5EGzLOi6VyVmyalIK0BBhvWTcOLJ2h7emWdpqhrc1PzoulclZsuoiYdQEuBSZb\n1v0psLdN25eBP6g8fj/wE2BFS7vwMril03c+l8V5mX/LMGXFeRn8MpdMLKSz7wMLJa2pbFpfAhxs\n0/Zg+dzflo8vBY5FxMlqo7nMKGjZc14sVe1ZAedlmHXcZRcRbwFPAdslLZZ0FXA98Hib5ruA2ySt\nK/ftbgW+WueALW/Oi6VyVqxV6mnfm4HFwHFgN3BHRByStFrSuKRVABHxDeBLwPPAYeBVYLT2UVvu\nnBdL5azYFJX7XM3MzAaqL7cOqvPq69S+JN0q6SVJpyX9UNJ9ks7rpa+W13xT0ntz6UvShyQ9Xf7i\nOy7pi3Po6x5JRySdlPScpPUtz2+W9KKkM5Ie6/C3ZXHlu/PyM304L7OPw3mZ3raRvDSSlT6dPfO1\ncnkfcCVwCljXpt21wFHgV4HlFJvjO3rs64/K5xcCHwBeAu7qpa9K+08D36I4m+e8Hse1CPgBcCdw\nAfBzwMU99vUp4AjFleoCdgDfaWmzCfgE8GXgsVn+to6ffVOL8+K8OC/556WJrPQjLIuB/wXWVNbt\nbDcg4K+AeyqPrwaO9tJXm763UDl9tNu+gGXAK8CvtQamy7/xduBbNX1edwFPVh6vB96aod8vdAjN\nrJ99U4vz4rw4L8OVl35mpR+77Oq8+rqbvlp9nOmnj3bb1w6K+2wda/NcN31dDrwmaZ+kN8rN4It7\n7OtJYI2kD5ebwJ8Bvj7D+DvJ5cp352U652V2zst0Oeal56z0oyDVefV1N31NkfQ54KPA/b2MS9Jl\nwBXAgzO8RTfjWgXcCDxAsam/D9gr6ew1YN30dRTYD3wP+B/g94E/mWGMneRy5bvzMp3z0nkczstP\n5ZiXnrPSj4I0SbE5WrUcmEhou5ziat+JGZ6frS8AJG0C7gWui4gT3Y5Lkij2kd4ZxfZmu4vsuhnX\n28ALEfFsRLwbEfdTXGV+9o7G3fS1DfgY8EGK/cXbgeclXdCmbSedPvumOC/TOS/djePsWJyXfPLS\nc1b6UZCmrr6urOt09fVZrVdfd9MXkq4DvgL8bkT8e4/jWkbx6+evJR0Fvk0RmiOSruxhXP9G8WXM\npJu+LqHYx3s0It6LiJ3ACop9vd3q9Nk3xXmZznmZnfMyXY556T0rKQeaul2AJygObC0GrgJOMvNZ\nMD+iqOYrKM7GuLfHvjYCbwJX1TCulZXlMuA94BeBhT30tZbiF8NGih8AW4D/6LGvzwP/VI5LFLfp\nnwCWVdosoPh1s4Pi6vbzgQW9fPZNLc6L8+K85J+XJrLSr8CsAPaUH9R/AjeW61dT7E9cVWn7x8CP\nKU5FfARY1EtfwHPA/5XrJsp/n+l1XJXXXET70zK7+Rs3lSE5VY5zXY9/4/kU+51/VPb1EvDbLX1t\nowj4TyrL58u+Jrr57JtanBfnxXnJPy9NZMV3ajAzsyz05U4NZmZm3XJBMjOzLLggmZlZFlyQzMws\nCy5IZmaWBRckMzPLgguSmZllwQXJzMyy4IJkZmZZcEEyM7MsuCCZmVkWXJDMzCwLLkhmZpYFFyQz\nM8tCUkGStFnSi5LOSHqsQ9stko5KOiXpEUmL6hmqDQNnxbrhvFhV6hbS68AXgEdnayTpWuAu4GqK\niafWAHfPZYA2dJwV64bzYlOSClJE/F1E/D1wokPTW4FHI+KViDgNbAc+O8cx2hBxVqwbzotV1X0M\naQNwoPL4ALBS0oqa38eGn7Ni3XBezgF1F6QlwOnK43FAwNKa38eGn7Ni3XBezgELa+5vElhWebwc\nCGCi2khS1Py+1oWI0KDHQGJWwHkZNOfFujGXvNS9hXQQuKTy+FLgWEScbG0YEbUs27Ztc19dLBlJ\nzgo4L86L8zIMfc1V6mnfCyRdACwAFko6X9KCNk13AbdJWlfu290KfHXOo7Sh4axYN5wXq0rdQtoK\nvAX8OfCH5f//UtJqSROSVgFExDeALwHPA4eBV4HRugdtWXNWrBvOi01JOoYUEXcz8zn/S1vaPgA8\nMMdxJRsZGXFfGck5K5Dv95JrX/3mvMyvvuZKg9hPLCky2z99zpBE5HGQOpnzMjjOi3VjrnnxvezM\nzCwLLkhmZpYFFyQzM8uCC5KZmWXBBcnMzLLggmRmZllwQTIzsyy4IJmZWRZckMzMLAsuSGZmloXU\nu32vkLRH0qSkw5JumqXtPZKOSDop6TlJ6+sbrg0D58VSOStWlbqF9BBwBrgQuBl4WNK61kaSPgV8\nBrgS+HngX4DHaxmpDRPnxVI5KzalY0GStBi4AdgaEW9HxH5gL3BLm+a/ArwQEa+VdzfcDfxMuGz+\ncl4slbNirVK2kNYC70TEq5V1B4ANbdo+CayR9GFJiyh+0Xx9zqO0YeK8WCpnxaZJmQ9pCTDesm6c\nlrlKSkeB/cD3gHeB/wI2zmWANnScF0vlrNg0KQVpEljWsm45MNGm7TbgY8AHgWMUm97PS1ofEWeq\nDUdHR6f+PzIyktUkUfPJ2NgYY2NjTb6l8zLEGs5LX7ICzktT6s5Lxwn6yv28J4ANZzetJe0CjkTE\nX7S0fRp4NiIerKw7CVwTEf9aWecJtAak3xOuOS/zSz/z0o+slOudlwHp+wR9EfEW8BSwXdJiSVcB\n19P+DJcXgU9KWqnCLRRbYT/odYA2XJwXS+WsWKuUXXYAm4HHgOPAm8AdEXFI0mrgILA+Io4A91Gc\nvvkysJgiLDdEROt+YpvfnBdL5azYlI677Prypt6kHph+77LrB+dlcJwX60bfd9mZmZk1wQXJzMyy\n4IJkZmZZcEEyM7MsuCCZmVkWXJDMzCwLLkhmZpYFFyQzM8uCC5KZmWXBBcnMzLKQVJC6nPf+Q5Ke\nljQu6bikL9Y3XBsGzoulclasKnULKXXe+0XAPwD/CKwEVlFMNWznFufFUjkrNiV1PqSTFHfdPTtn\nyU7g9TZzltwO3BwRv9mhT9/8cEAamg/JeZknGpgPqdaslG2dlwFp4uaq3cx7fznwmqR9kt6Q9Jyk\ni3sdnA0l58VSOSs2TUpB6mbe+1XAjcADwAeAfcBeSanzLtnwc14slbNi06R8md3Me/828EJEPFs+\nvl/SVmAd8N1qQ89534y657xP4LwMsYbz0pesgPPSlLrzknoMKXXe++3AFRHxW5V1p4DfiIjvVtZ5\nH++ANHQMyXmZJxo4hlRrVsr1zsuA9P0YUpfz3u8GLpe0UdJ5krYAbwCHeh2gDRfnxVI5K9Yq9bTv\nzRTz2B+nCMbUvPflNQGrACLi+xSnbn6F4pfP9cAnIuLd+oduGXNeLJWzYlM67rLry5t6k3pg+r3L\nrh+cl8FxXqwbTZz2bWZm1ncuSGZmlgUXJDMzy4ILkpmZZcEFyczMsuCCZGZmWXBBMjOzLLggmZlZ\nFlyQzMwsCy5IZmaWBRckMzPLQlJBkrRC0h5Jk5IOS7op4TXflPSeJBe9c4zzYqmcFatKnW3xIeAM\ncCHwEeAZSS9HRNtbv0v6dNm373B4bnJeLJWzYlNSJ+g7CayvTKK1E3i9dRKt8rllwLeBW4F/BhZF\nxHstbXw33gFpaII+52WeaGCCvlqzUrZzXgakibt9rwXeORuY0gFgwwztd1D86jnW66BsqDkvlspZ\nsWlSCtISYLxl3TiwtLWhpMuAK4AH5z40G1LOi6VyVmyalGNIk8CylnXLgYnqCkkCvgzcGRFRPp7R\n6Ojo1P9HRkYYGRlJGIp1a2xsjLGxsSbf0nkZYg3npS9ZAeelKXXnJfUY0glgQ2U/7y7gSHU/r6Tl\nwH9TTEUsYAHwC8CPgU9GxP5KW+/jHZCGjiE5L/NEA8eQas1K2d55GZC55iVpCnNJT1Cc1XI7xZkw\nTwNXtJ4JI2ll5eEvUxyA/CXgzYh4t9LOgRmQJqakdl7mjwZ+wNSalbKt8zIgTU1hvhlYTPELZTdw\nR0QckrRa0rikVQARcfzsArxBEbTjrYGxec95sVTOik1J2kKq/U39C2ZgmthCqpvzMjjOi3WjqS0k\nMzOzvnJBMjOzLLggmZlZFlyQzMwsCy5IZmaWBRckMzPLgguSmZllwQXJzMyy4IJkZmZZcEEyM7Ms\nuCCZmVkWkgqSpBWS9kialHRY0k0ztLtV0kuSTkv6oaT7JLnonWOcF0vlrFhV6hf6EHAGuBC4GXhY\n0ro27d4H3Am8H/h14Brgz2oYpw0X58VSOSs2JXWCvpPA+sokWjuB16uTaM3w2i3ASET8Xst63413\nQBqaoM95mScamKCv1qyUzzkvA9LE3b7XAu+cDUzpALAh4bUfBw72MjAbWs6LpXJWbJqFCW2WAOMt\n68aBpbO9SNLngI8Ct/U2NBtSzoulclZsmpSCNAksa1m3HJiY6QWSNgH3AtdExIl2bUZHR6f+PzIy\nwsjISMJQrFtjY2OMjY01+ZbOyxBrOC99yQo4L02pOy+px5BOABsq+3l3AUfa7eeVdB2wE/idiPjO\nDH16H++ANHQMyXmZJxo4hlRrVsp2zsuAzDUvSVOYS3qCYg7724GPAE8DV0TEoZZ2G4G/ATZFxAuz\n9OfADEgTU1I7L/NHAz9gas1K2dZ5GZCmpjDfDCwGjgO7gTsi4pCk1ZLGJa0q222l2ATfJ2mifO6Z\nXgdnQ8t5sVTOik1J2kKq/U39C2ZgmthCqpvzMjjOi3WjqS0kMzOzvnJBMjOzLLggmZlZFlyQzMws\nCy5IZmaWBRckMzPLgguSmZllwQXJzMyy4IJkZmZZcEEyM7MsuCCZmVkWkgqSpBWS9kialHRY0k2z\ntN0i6aikU5IekbSovuHaMHBeLJWzYlWpW0gPAWeAC4GbgYclrWttJOla4C7gauAiYA1wdz1Dba/O\nyaHOhb4a4rzMk74akG1WIN/vJde+5qpjQSon0boB2BoRb0fEfmAvcEub5rcCj0bEKxFxGtgOfLbO\nAbfK9YvJta9+c17mV1/9lHtWIN/vJde+5iplC2kt8M7ZGR1LB4ANbdpuKJ+rtlspaUXvQ7Qh47xY\nKmfFpkkpSEuA8ZZ148DSGdqebmmnGdra/OS8WCpnxaaLiFkX4FJgsmXdnwJ727R9GfiDyuP3Az8B\nVrS0Cy+DWzp953NZnJf5twxTVpyXwS9zycRCOvs+sFDSmsqm9SXAwTZtD5bP/W35+FLgWEScrDaa\ny4yClj3nxVLVnhVwXoZZx112EfEW8BSwXdJiSVcB1wOPt2m+C7hN0rpy3+5W4Kt1Dtjy5rxYKmfF\nWqWe9r0ZWAwcB3YDd0TEIUmrJY1LWgUQEd8AvgQ8DxwGXgVGax+15c55sVTOiv1Un/YNrwD2AJMU\n4blplrZbgKPAKeARYFEvfVGcFvoSxYHPHwL3Aef1Oq7Ka74JvDeXvoAPAU9THIg9DnxxDn3dAxwB\nTgLPAetbnt8MvEhxbcdjHf62WT/7phbnxXlxXvLPSxNZ6VdgvlYu7wOuLAe1rk27a8tB/yqwnOLX\nz44e+/qj8vmFwAfK8NzVS1+V9p8GvkVx8LQ1MKnjWgT8ALgTuAD4OeDiHvv6VBmWiyjOMNoBfKel\nzSbgE8CXZwtNymff1OK8OC/OS/55aSIr/QjLYuB/gTWVdTvbDQj4K+CeyuOrgaO99NWm7y1Uztbp\nti9gGfAK8Gutgenyb7wd+FZNn9ddwJOVx+uBt2bo9wsdQjPrZ9/U4rw4L87LcOWln1npx81V67zY\nrZu+Wn2c6WfrdNvXDorbmhxr81w3fV0OvCZpn6Q3JD0n6eIe+3oSWCPpw+V9vD4DfH2G8XeSy4WG\nzst0zsvsnJfpcsxLz1npR0Gq82K3bvqaIulzwEeB+3sZl6TLgCuAB2d4i27GtQq4EXiAYlN/H7BX\n0tlT7rvp6yiwH/ge8D/A7wN/MsMYO8nlQkPnZTrnpfM4nJefyjEvPWelHwVpkmJztGo5MJHQdjnF\nxVUTMzw/W18ASNoE3AtcFxEnuh2XJFHsI70ziu3Ndtc0dDOut4EXIuLZiHg3Iu6nuKjv7A0ku+lr\nG/Ax4IMU+4u3A89LuqBN2046ffZNcV6mc166G8fZsTgv+eSl56z0oyBNXexWWdfpYrezWi9266Yv\nJF0HfAX43Yj49x7HtYzi189fSzoKfJsiNEckXdnDuP6N4suYSTd9XUKxj/doRLwXETspzqBZP0v/\nM+n02TfFeZnOeZmd8zJdjnnpPSspB5q6XYAnKA5sLQauojiFcKazYH5EUc1XUJyNcW+PfW0E3gSu\nqmFcKyvLZRSnZf4isLCHvtZS/GLYSPEDYAvwHz329Xngn8pxieKuyBPAskqbBRS/bnZQXEx4PrCg\nl8++qcV5cV6cl/zz0kRW+hWY6nnv/wncWK5fTbE/cVWl7R8DPybtOoEZ+6I4Z/7/ynUT5b/P9Dqu\nymsuov1pmd38jZvKkJwqx7mux7/xfIr9zj8q+3oJ+O2WvrZRBPwnleXzZV8T3Xz2TS3Oi/PivOSf\nlyayovLFZmZmA9WPY0hmZmZdc0EyM7MsuCCZmVkWXJDMzCwLLkhmZpYFFyQzM8uCC5KZmWXBBcnM\nzLLggmRmZln4f3C9RZ+di7JUAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1070b7e50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(2, 3)\n", "fig.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### subplot2grid" ] }, { "cell_type": "code", "execution_count": 110, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEWCAYAAAApTuNLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+sHWW97/H3x7YHaKCkgo1IEUkD97SQQPhx5EDFUg6B\neAQrXuCI0PDjEr0259Sqp96rDS0FGiD8wQ1BQ8KPgIpgDFgbSkSh1UujF5CAHOSHEASKpQX7g2Jb\ntfR7/3hm1+li7b1n1pq11qy1P69k0q5Zz5793bO/e5418zzzHUUEZmZmvfaBXgdgZmYG7pDMzKwm\n3CGZmVktuEMyM7NacIdkZma14A7JzMxqwR2SmZnVQqEOSdI8SY9L2iHp9lHaLpC0TtJmSbdKmlBN\nqGZmNsiKniG9AVwF3DZSI0lnAAuBU4FDgWnAle0EaGZmY0OhDikifhwRPwE2jtJ0LnBbRDwfEVuA\npcAlbcZoZmZjQNVjSEcCT+dePw1MkTS54u9jZmYDpuoOaV9gS+71O4CA/Sr+PmZmNmDGV7y9d4FJ\nudf7AwFszTeS5IquZmYDKCLU6tdWfYb0LHB07vUxwPqI2NTYMCK8FFgWL17c8xj6ZfG+8r7yvurt\n0q6i077HSdobGAeMl7SXpHFNmt4FXCZpejZutAi4o+0ozcxs4BU9Q1oEbAO+AXwh+/+3JB0iaauk\nqQAR8VPgemAV8ArwMrCk6qDNzGzwFBpDiogrGf5+ov0a2t4I3NhmXJaZNWtWr0PoG95XxXlfFed9\n1T2q4rpf6W8qRS++r5mZdY4kokaTGszMzFpSdFLDZEn3S3pX0iuSPj9C26slrZW0SdIjkmZUF66Z\nmQ2qomdI3wZ2AB8CLgS+I2l6YyNJ5wEXAycDHwR+DXy3kkjNzGygjdohSZoInAMsiojtEbEGWA5c\n1KT5x4BHI+LVbJDoe8D7Oi4zM7NGRc6QjgD+FhEv59Y9Tapb1+geYJqkw7PHTlwMPNh2lGZmNvCK\nTPvel1STLu8dmtenWwesAV4AdgKvA7PbCdDMzMaGIh1SY306SDXqtjZpuxg4ATgYWE+6rLdK0oyI\n2JFvuGTJkt3/nzVrluf6m5n1mdWrV7N69erKtjfqfUjZGNJG4Mihy3aS7gLWRsQ3G9quAB6KiJty\n6zYBp0XEk7l1vg/JzGzAdPw+pIjYBtwHLJU0UdJM4Cyaz557HDhX0hQlF5HOwl5qNUAzMxsbij5+\nYh5wO7ABeBv4UkQ8J+kQUoXvGRGxFriONDX8KWAiqSM6JyIax6DMzMz24NJBZmZWCZcOMjOzgdCJ\n0kGHSVoh6R1JGyRdW124ZmY2qKouHTQB+Bnwc2AKMJVUrcHMzGxERad9byJNXBia9n0n8EaTad+X\nAxdGxCdH2abHkMzMBkw3xpDKlA46EXhV0kpJb2XVvo9qNTgzMxs7inRIZUoHTQXOJz0x9iBgJbBc\nUtHp5WZmNkYV6ZDKlA7aTqr2/VBE7IyIG4ADcMVvMzMbRZEzlxeB8ZKm5S7bHU26IbbRb4GTinxj\n17IzM+tvXa9lByDpbiCAy4FjgRXASRHxXEO7I4AngbOB1cB84MvA9IjYmWvnSQ1mZgOmWzfGziOV\nAtpAmsa9u3RQdr/RVICIeJE0LfwWUkHWs4Cz852RmZlZMy4dZGZmlXDpIDMzGwjukMzMrBYqr2WX\n+5qHJe2S5E7PzMxGVfSG1Xwtu2OBByQ91TjLboikC7Jte6DIzMwKqbSWXfbeJOAxYC7wK2BCROxq\naONJDWZmA6ZutewAlpHOqNa3GpSZmY09ldayk3Q8qVLDTe2HZmZmY0mRMaRCtewkCbgZmB8Rkb0e\nlksHmZn1t66XDsrGkDYCR+bGkO4C1ubHkCTtD/yJVM1BwDjgQOBN4NyIWJNr6zEkM7MB0+4YUtW1\n7KbkXn6UNLnhI8DbrmVnZjbY6lbLbsPQArxF6sQ2uJadmZmNxrXszMysEq5lZ2ZmA8EdkpmZ1UKl\ntewkzZX0hKQtkl6TdJ1r2ZmZWRFFO4t8LbsLge9Imt6k3T6kp8QeAHwcOA34egVxmpnZgKu8ll3D\n1y4AZkXEZxrWe1KDmdmAqWMtu7xTgGdbCczMzMaWIqWDCteyy5N0KXAccFlroZmZ2VhSWS27PElz\ngGuA0yJiY7M2rmVnZtbfalvLLtf+TOBO4FMR8ZthtukxJDOzAVO3WnazgR8CcyLi0RG25w7JzGzA\n1KqWHbCIdHlvpaSt2XsPtBqcmZmNHa5lZ2ZmlXAtOzMzGwiVlg7K2i6QtE7SZkm3SppQXbhmZjao\nKi0dJOkMYCFwKnAoMA24sppQx6Yqp1QOOu+r4ryvivO+6p5RO6Rs2vc5wKKI2J49inw5cFGT5nOB\n2yLi+YjYAiwFLqky4LHGfwzFeV8V531VnPdV91RdOujI7L18uymSJrceopmZjQVFOqQypYP2BbY0\ntNMwbc3MzHYrUqnhGODRiNg3t+5rwClNqng/BVwdET/KXh9AunfpwIjYlGvnOd9mZgOonWnfRWrZ\nvQiMlzQtd9nuaJpX8X42e+9H2etjgPX5zgjaC9jMzAbTqJfsImIbcB+wVNJESTOBs4DvNml+F3CZ\npOnZuNEi4I4qAzYzs8FUaemgiPgpcD2wCngFeBlYUnnUZmY2cHpSOsjMzKxRR0oHubJDcUX3laS5\nkp6QtEXSa5KukzSmSj+Vyavc1zwsaZf31Yh/g4dJWpFd7dgg6dpuxtprJffV1ZLWStok6RFJM7oZ\nay9JmifpcUk7JN0+StuWjuud+iN1ZYfiCu0rYB9gPnAA8HHgNODr3QqyJoruKwAkXUCauDMWLwMU\n/RucAPwM+DkwBZhKuiw/lhTdV+cBFwMnAx8Efk3zsfRB9QZwFXDbSI3aOq5HRKULaazpL8C03Lo7\ngWVN2n6fNE186PWpwLqqY6rrUmZfNfnaBcDyXv8Mdd1XpMegPA/8E/Ae8IFe/wx13FekZ5z9otcx\n98m+Wgjck3s9A9jW65+hB/vsKuD2Ed5v+bjeiTMkV3Yorsy+anQKzafeD6qy+2oZ6ZPv+k4HVkNl\n9tWJwKuSVkp6K7sMdVRXoqyHMvvqHmCapMOzM8uLgQc7H2Lfafm43okOyZUdiiuzr3aTdClwHHBD\nh+Kqo8L7StLxwEnATV2Iq47K5NVU4HzgRuAgYCWwXFKRexQHQZl9tQ5YA7wA/Bn4HPDVjkbXn1o+\nrneiQ3qXdLkkb39ga4G2+5Ou9zdrO4jK7CsAJM0BrgHOjIiNHYytbgrtK0kCbgbmR7peMBZvwi6T\nV9tJlVgeioidEXEDaZxy2LG5AVNmXy0GTgAOBvYmFY9eJWnvjkbYf1o+rneiQ9pd2SG3brTKDkOa\nVnYYYGX2FZLOBG4BPh0Rv+tCfHVSdF9NIp093itpHfAYqVNaK+nkrkTae2Xy6reMzUkfQ8rsq6NJ\nY0jrImJXRNwJTCaNJdnftX5c79Cg192kga2JwExgEzC9SbszgD+SPo1NJt1Qe02vB+26PEBYdF/N\nBt4GZvY65j7YV1Nyy/HALuDDwPhe/ww13FdHkD7RziZ9QF0A/N77qum+ugL4ZZZXIj2CZyswqdc/\nQ5f20zjSmeEyUlWevYBxTdq1fFzvVOCTgfuzRP8DcH62/hDS9cSpubZfAd4ENgO3AhN6veO7/Esu\ntK+AR4C/Zuu2Zv8+0Ov467ivGr7mUMbYLLuy+wqYk3VCm7M8e9/BeJCXEn+De5HGJf+Y7asngNN7\nHX8X99Ni0oe793LLFdl+2lrFcd2VGszMrBbG1N3rZmZWX+6QzMysFtwhmZlZLbhDMjOzWnCHZGZm\nteAOyczMasEdkpmZ1YI7JDMzqwV3SGZmVgvukMzMrBbcIZmZWS24QzIzs1pwh2RmZrXgDsnMzGqh\nUIckaZ6kxyXtkHT7KG0XSFonabOkWyVNqCZUMxs0PrZYXtEzpDeAq4DbRmok6QxgIXAq6cFo04Ar\n2wnQzAaajy22W6EOKSJ+HBE/ATaO0nQucFtEPB8RW4ClwCVtxmhmA8rHFsuregzpSODp3OungSmS\nJlf8fcxsbPGxZQyoukPaF9iSe/0OIGC/ir+PmY0tPraMAeMr3t67wKTc6/2BALbmG0mKir+vmXVI\nRKjXMVDw2AI+vvRaO/lS9RnSs8DRudfHAOsjYlNjw4joy2Xx4sU9j8Gx99fSz7HXSOFjC1R3fKny\ndzcWttWuotO+x0naGxgHjJe0l6RxTZreBVwmaXp2bXcRcEfbUZrZQPKxxfKKniEtArYB3wC+kP3/\nW5IOkbRV0lSAiPgpcD2wCngFeBlYUnXQZjYwfGyx3QqNIUXElQw/53+/hrY3Aje2GVdtzZo1q9ch\ntMyx90Y/x95pdT+2VPm7Gwvbapd6cZ1YUtTs+rSZNSGJqMekhsJ8fOmddvPFtezMzKwWik5qmCzp\nfknvSnpF0udHaHu1pLWSNkl6RNKM6sI1M7NBVfQM6dvADuBDwIXAdyRNb2wk6TzgYuBk4IPAr4Hv\nVhKpmZkNtFE7JEkTgXOARRGxPSLWAMuBi5o0/xjwaES8ml3E/R7wvo7LzMysUZEzpCOAv0XEy7l1\nT5NqSzW6B5gm6fCsNPzFwINtR2lmZgOvyLTvfUl1o/LeoXkNqXXAGuAFYCfwOjC7nQDNzGxsKNIh\nNdaQglRH6n01pIDFwAnAwcB60mW9VZJmRMSOfMMlS5bs/v+sWbNqNRfebKxavXo1q1ev7nUYNkaN\neh9SNoa0EThy6LKdpLuAtRHxzYa2K4CHIuKm3LpNwGkR8WRune8TMOsDvg/Jyuj4fUgRsQ24D1gq\naaKkmcBZNJ899zhwrqQpSi4inYW91GqAZmY2NhR9/MQ84HZgA/A28KWIeE7SIaQqvDMiYi1wHWlq\n+FPARFJHdE5ENI5BmZmZ7cGlg8xsWL5kZ2W4dJCZmQ2ETpQOOkzSCknvSNog6drqwjUzs0FVdemg\nCcDPgJ8DU4CppGoNZmZmIyo67XsTaeLC0LTvO4E3mkz7vhy4MCI+Oco2fY3XrA94DMnK6MYYUpnS\nQScCr0paKemtrNr3Ua0GZ2ZmY0eRDqlM6aCpwPmkpzoeBKwElksqOr3czMzGqKpLB20nVft+KHt9\ng6RFpIrfz+QbunSQWf24dJD1UtWlg5YCJ0XEv+TWbQY+ERHP5Nb5Gq9ZH/AYkpVRt9JB3wNOlDRb\n0gckLQDeAp5rNUAzG1x+GrXlFZ32PY9UCmgDqdPZXToou99oKkBEvEiaFn4L6azqLODsiNhZfehm\nNgD8NGrbzaWDzGxYnbxkV/KWkoXAsRHxb9nrGcATETGxyXZ9fOkRlw4ys37lp1HbHjwd28x6xU+j\ntj0U6pAkTSY9fuJ00iSFb0bED0b5moeBU4HxEbGr3UDNbOB05GnU4NtKuqXq2wQKjSFJGup8LgWO\nBR4A/jkims6ek3QB8EVgJjChsUPyNV6z/tCFMaRKn0adrffxpUc6PoaUJc05wKKI2B4Ra4DlpE8o\nzdpPAq4A/rPVoMxs8Plp1NaoyCW74QYehyuguow0lXN9m7GZ2eDz06httyIdUuGBR0nHAycB/w58\ntO3ozGygRcQm4LNN1r9ObnwpIv5COq78e/eis26rrJadJAE3A/MjIrLXw/Kgo1n9uJad9VJltewk\n7Q/8iXTqLWAccCDwJnBuNvY01NaDjmZ9wLXsrIx286XoLLu7gQAuJ82yW0EqovpcQ7spuZcfBR4D\nPgK8nS8f5IQx6w/ukKyMblVqKFrLbsPQQrpfKYANrmVnZmajcS07MxuWz5CsDNeyMzOzgVCoQyr6\nzBJJcyU9IWmLpNckXSfJnZ6ZmY2qaGdR6JklwD7AfOAA4OPAacDXK4jTzMwGXNFp34WeWdLkaxcA\nsyLiMw3rfY3XrA94DMnK6MYYUplnljQ6hVT+w8zMbESVlg7Kk3QpcBxwWWuhmZnZWFJZ6aA8SXOA\na0il4Tc2a+PSQWb149JB1kuVlQ7KtT8TuBP4VET8Zpht+hqvWR/wGJKVUbfSQbOBHwJzIuLREbbn\nhDHrA+6QrIxalQ4CFpEu762UtDV774FWgzMzs7HDpYPMbFg+Q7IyXDrIzMwGgjskMzOrhUpr2WVt\nF0haJ2mzpFslTaguXDMzG1SV1rKTdAawEDgVOBSYBlxZTaj10M/3aDj23ujn2M26adQOKbsP6Rxg\nUURszx5Fvhy4qEnzucBtEfF8RGwBlgKXVBlwr/XzwcWx90Y/x95pJa++HCZpRTZ7d4Oka7sZq3Ve\n1bXsjszey7ebImly6yGa2QArevVlAvAz4OfAFGAq6RYUGyBFOqQytez2BbY0tNMwbc1sDCt59eVi\n0hMG/k9E7IiIv0bEf3UxXOuCIqWDjgEejYh9c+u+BpzS5LESTwFXR8SPstcHkG6mPTAiNuXa+SYB\nsz7RqfuQhjm2fBX4ZJNjy23ABOBA4ATgGeA/mnVKvg+pd9q9D6lIcdUXgfGSpuUu2x1N88dKPJu9\n96Ps9THA+nxnBJ1LcDPrK2WuvkwFZgFnAY8AXwGWS/pvEbGzk0Fa94zaIUXENkn3AUslDdWyOws4\nqUnzu4A7stp3b5JKCd1RYbxmNjjKPElgO+ls6qHs9Q2SFgHTSWdLe/DTBLqj6urwRYurTgZuB04H\n3ga+ERH3SjqEdFY0IyLWZm2/AvwvYG/SmdL/jIi/VRaxmQ2EMk8SkLSUVND5X3LrNgOfiIhnGtr6\nkl2PdKXat5lZJ5R4ksARwJPA2cBqYD7wZWB64yU7d0i9U8tadv1c2aFo7JLmSnpC0hZJr0m6TlJP\nSzGV2e+5r3lY0q5+ir1u96OUjP1qSWslbZL0iKQZ3Yy1STzzJD0uaYek20dp24m/1UJPEoiIF0nT\nwm8hnVWdBZzt8aMBExGVL8APsmUf4GRgM+mTTGO7M4B1wD+Srh2vApZ1IqYOxP7F7P3xwEHAE8DC\nfog91/4C4BfAe8AH+iF20kyrl0ifkPcG/gE4qk9iPw9YS6piImAZ8Jsexz6HdNZxM3D7CO1q97c6\nQqxhvZHt+5Z/d5VfssuuC28ijSsNXRe+k3QPQeN14e8Dr0TEouz1qcDdEXFQpUEVVCb2Jl+7AJgV\nDdNVu6Vs7JImAY+Rqmv8CpgQEbu6GHI+ljI5czlwYUR8svuRvl/J2BcCx0bEv2WvZwBPRMTELof9\nPpKuAg6OiEuHeb9Wf6sj8SW73qnjJbt+ruxQJvZGp9B8Kny3lI19Geku+fWdDqyAMrGfCLwqaaWk\nt7LLXkd1JcrmysR+DzBN0uHZ5a6LgQc7H2Il6va3agOoEx1SP1d2KBP7bpIuBY4DbuhQXEUUjl3S\n8aRp+zd1Ia4iyt6Pcj5wI+lS6UrS/ShF7qnrhDKxrwPWAC8AfwY+B3y1o9FVp25/qzaAOtEhlbm3\noLHt/qQZN83adkOZ2AGQNAe4BjgzIjZ2MLbRFIpdkkjjBfOz6xp1uEm5pftRImJnRNwAHEC6H6UX\nysS+mFRl4GDS+NdSYJWkvTsaYTXq9rdqA6gTHdLuyg65daNVdhjStLJDF5WJHUlnkmb9fDoifteF\n+EZSNPZJpLO5eyWtI40jCVgr6eSuRPp+Zfb7b0kHwrooE/vRwD0RsS4idkXEncBkoKcz7Qqq29+q\nDaJ2ZkQMtwB3A98nTeecSRr0HW6W3R9Jn24nk2buXNOJmDoQ+2zSTcIzexlvi7FPyS3HA7uADwPj\n+yD2I0if1meTPlAtAH7fJ7FfAfwy2+8iFRHdCkzqYezjSGdry0iVVvYCxjVpV7u/1RF+prDeoM1Z\ndp1KiMnA/dmB4w/A+dn6Q0jXnqfm2n6FVGZoM3ArabZXL5O5UOykelp/zdZtzf59oB9ib/iaQ6nH\ntO8yOTMn64Q2Z7+HYae21yn27GB/U3Zg30y6VeD0Hse+mPSB5L3cckUW+9Y6/62O8DOF9Ua7HZIr\nNZjZQPG0796p47RvMzOz0twhmZlZLbhDMjOzWnCHZGZmteAOyczMasEdkpmZ1YI7JDMzqwV3SGZm\nVgvukMzMrBbcIZmZWS24QzIzs1pwh2RmZrXgDsnMekbSZEn3S3pX0iuSPl/gax6WtEuSj18DpleP\nfTYzA/g2sAP4EHAs8ICkpyLiuWaNJV1AOm65nPcAKvQJQ9I8SY9L2iHp9lHaLpC0TtJmSbdKmlBN\nqNYPnCtWlKSJwDnAoojYHhFrgOWkBxc2az+J9Kym/+xelNZNRU953wCuAm4bqZGkM4CFwKmkB79N\nA65sJ0DrO84VK+oI4G8R8XJu3dPAkcO0X0Y6o1rf6cCsNwp1SBHx44j4CbBxlKZzgdsi4vmI2AIs\nBS5pM0brI84VK2Ff0hN1894B9mtsKOl44CTSE3dtQFU9hnQk8OPc66eBKZImR8Smir+X9Tfnir0L\nTGpYtz/p0em7SRJwMzA/IiJ7PaIlS5bs/v+sWbOYNWtWu7FaE6tXr2b16tWVba/UI8wlXQUcHBGX\nDvP+S8CXI+Kh7PV44K/AxyLitQritT7hXLHRZGNIG4Ejhy7bSboLWBsR38y12x/4E7ABEDAOOBB4\nEzg3G3vKb9ePMO+Rdh9hXvUZUuMnnv1Js2EaP/E4W3qonYSpUKFcAedLr3UqXyJim6T7gKWSLifN\nsjuLdGku326LpI/kVn0UeCxr/3YnYrPeqHoe/7PA0bnXxwDrm12CiYhKlsWLF3tbJZYaKZwr4HwZ\n4HyZB0wknf18D/hSRDwn6RBJ70iamv3+NwwtwFukDy8bImJnN4K07ih0hiRpHDCBdKo8XtJewM6I\neK+h6V3AHZLuJp1OLwLuqDBeqznnipWRfQD5bJP1r/P+8aWh914l5ZcNmKJnSIuAbcA3gC9k//9W\n9ilma+5TzE+B64FVwCvAy8CSqoO2WnOumFlLCp0hRcSVDH+PyH4NbW8EbmwzrsKqnD0zFrbVaXXO\nFajv76Wu2zLrplKz7Cr7pp4F0zPtzoLpBedL7zhfrIx286Vo6aDCBRAlXS1praRNkh6RNKPV4Kw/\nOV/MrBVFx5DyBRAvBL4jaXpjI0nnARcDJwMfBH4NfLeSSK2fOF/MrLRRO6SSBRA/BjwaEa9m58zf\nA953ILLB5Xwxs1YVOUMqUwDxHmCapMOzys0XAw+2HaX1E+eLmbWkyCy7wgUQgXXAGuAFYCfwOjC7\nnQCt7zhfzKwlRTqkQgUQM4uBE4CDSSXiLwJWSZoRETvyDV38sDuqLn5YgPOlj/UgX8x2G3Xad9EC\niNn6FcBDEXFTbt0m4LSIeDK3ztMye6TT03idL4PF076tjI5P+46IbcBQAcSJkmaSCiA2mw31OHCu\npClKLiKdhb3UaoDWX5wvZtaqotW+5wG3kwogvk2uACKpSOaMiFgLXEea6vsUqWDiS8A5EdE4pmCD\nzfliZqW5UsMY40swVobzxcroSqUGMzOzTnOHZGZmtdCJWnaHSVqRPVxrg6RrqwvX+oHzxcxaUXUt\nuwnAz4CfA1OAqaRyMDa2OF/MrLSi9yFtIs2MGrqv5E7gjSb3lVwOXBgRnxxlmx507JEu3YfkfBkQ\nntRgZXRjUkOZ2mQnAq9KWinprexxAke1Gpz1JeeLmbWkSIdUpjbZVOB80lNADwJWAsslFb3fyfqf\n88XMWlJ1LbvtpMcJPJS9vkHSItIjBZ7JN3Rtsu6oeS0750vNdDtfJE0m3UR9OvAW8M2I+EGTdnOB\n/wAOB7YAPwD+d0Ts6lqw1nFV17JbCpwUEf+SW7cZ+EREPJNb52u8PVKzWnbOl5rrQr4MdT6XAscC\nDwD/HBHPNbT7IvBfwP8jTZZZAfwwIq5vsk3nS4+0my+FKjVIuhsI4HJS0qwgHUgak+YI4EngbGA1\nMB/4MjA9Inbm2jlheqQbg9TOl8HRyXwpMwGmydcuAGZFxGeavOd86ZFuVWqYR6o1toE0LXd3bbLs\n/pGpABHxImma7y2kT8lnAWfnDy42JjhfrIgyE2AanUKqi2gDxLXsxhhP47UyOnyGNJN02e0juXX/\nA7ggIoZ9UKOkS4ElwDERsbHJ+86XHmk3Xzybycx6pcwEGAAkzQGuIT0z632d0RBPgumOqifBFB1D\nKjQTpuFrHgZOBcY3zoTxJ5je6dIYkvNlQHRhDKnQBJjsvTOBO4FPRcRvRtiu86VHujWGVKgUTC6o\nC0hnX86Kscn5YqMq8zBHSbNJ45GfG6kzsv5Waemg7L1JwGPAXOBXwAR/4q2POpUOyt5zvtRYF/Il\nfzb9NvCNiLhXDQ9zlPQIMJP0QUekDy//NyL+tck2nS890o0xpOFmwgxXf2wZ6RPy+laDsr7mfLHC\nImIT8Nkm618nN7400iQHGxyVlg6SdDxwEnBT+6FZn3K+mFlLinRIhWbCSBJwMzA/O1/uq6nFVhnn\ni5m1pMgluxeB8ZKm5S7DHM37b0qbBBwH3JsdbMaRDjJrJZ0bEWvyjT0tszt6UMvO+dLHepAvZrtV\nXTpoSu7lR0mD1R8B3nYpmHqoWekg50vN+UZqK6NupYM2DC2k+08C2OBSMGOO88XMSnPpoDHGn3it\nDOeLldGtMyQzM7OOcodkZma1UKhDkjRZ0v2S3pX0iqTPD9NurqQnJG2R9Jqk6yS50xtjnC9m1oqq\na9ntQ3rI2gHAx4HTgK9XEKf1F+eLmZVWeS27hq9t+lRHDzr2Tt1q2TV8rfOlZjypwcroxqQGP9XR\nynC+mFlLilRqKFybLC97quNxwGWthWZ9yvliZi0p0iF15KmOLgXTHT0oBeN86WMuHWS9VHQMqdKn\nOvoab+90aQzJ+TIgPIZkZbSbL1XXspsN/BCYExGPjrA9J0yP1KyWnfOl5twhWRm1qmUHLCJdrlkp\naWv23gOtBmd9y/liZqW5lt0Y40+8VobzxcpwLTszMxsI7pDMzKwWKq1ll7VdIGmdpM2SbpU0obpw\nrR84X6wo54rlVVrLTtIZwELgVOBQYBpwZTWhNlflPRNjYVtd4nwZkG11QW1zBer7e6nrtto1aoeU\n3VdyDrAoIrZHxBpgOXBRk+Zzgdsi4vmI2AIsBS6pMuBGdf3F1HVbneZ8GaxtdVLdcwXq+3up67ba\nVXUtuyNWrWZFAAAEgElEQVSz9/Ltpkia3HqI1mecL1aUc8X2UKRDKlObbF9gS0M7DdPWBpPzxYpy\nrtieImLEBTgGeLdh3deA5U3aPgX899zrA4D3gMkN7cJL75bRfuftLM6XwVv6KVecL71f2smJIsVV\nXwTGS5qWO7U+muaPCXg2e+9H2etjgPURsSnfqJ0bp6z2nC9WVOW5As6XfjbqJbuI2AbcByyVNFHS\nTOAs4LtNmt8FXCZpenZtdxFwR5UBW705X6wo54o1qrSWXUT8FLgeWAW8ArwMLKk8aqs754sV5Vyx\nv+vQteHJwP2kZ+O8Anx+hLYLgHXAZuBWYEIr2yJNC32CNPD5GnAd8IFW48p9zcPArna2BRxGqnj9\nDukP79o2tnU1sJb0mPBHSI8Kz78/D3icdG/H7aP8bCPu+24tzhfni/Ol/vnSjVzpVML8IFv2AU7O\ngprepN0ZWdD/SHqI2ypgWYvb+mL2/njgoCx5FrayrVz7C4BfkAZPGxOmaFwTgJeA+cDewD8AR7W4\nrfOyZDmUNMNoGfCbhjZzgLOBm0dKmiL7vluL88X54nypf750I1c6kSwTgb8A03Lr7mwWEPB94Orc\n61OBda1sq8m2F5CbrVN2W6THIjwP/FNjwpT8GS8HflHR/loI3JN7PQPYNsx2rxolaUbc991anC/O\nF+dLf+VLJ3OlE8VVq7zZrcy2Gp3CnrN1ym5rGamsyfom75XZ1onAq5JWSnpL0iOSjmpxW/cA0yQd\nntXxuhh4cJj4R1OXGw2dL3tyvozM+bKnOuZLy7nSiQ6pypvdymxrN0mXAscBN7QSl6TjgZOAm4b5\nFmXimgqcD9xIOtVfCSyXNDTlvsy21gFrgBeAPwOfA746TIyjqcuNhs6XPTlfRo/D+fJ3dcyXlnOl\nEx3Su6TT0bz9ga0F2u5Purlq6zDvj7QtACTNAa4BzoyIjWXjkiTSNdL5kc43m93TUCau7cCjEfFQ\nROyMiBtIN/UNFZAss63FwAnAwaTrxUuBVZL2btJ2NKPt+25xvuzJ+VIujqFYnC/1yZeWc6UTHdLu\nm91y60a72W1I481uZbaFpDOBW4BPR8TvWoxrEunTz72S1gGPkZJmraSTW4jrt6RfxnDKbOto0jXe\ndRGxKyLuJM2gmTHC9ocz2r7vFufLnpwvI3O+7KmO+dJ6rhQZaCq7AHeTBrYmAjNJUwiHmwXzR1Jv\nPpk0G+OaFrc1G3gbmFlBXFNyy/GkaZkfBsa3sK0jSJ8YZpM+ACwAft/itq4AfpnFJVJV5K3ApFyb\ncaRPN8tINxPuBYxrZd93a3G+OF+cL/XPl27kSqcSJj/v/Q/A+dn6Q0jXE6fm2n4FeJNi9wkMuy3S\nnPm/Zuu2Zv8+0Gpcua85lObTMsv8jHOyJNmcxTm9xZ9xL9J15z9m23oCOL1hW4tJCf5ebrki29bW\nMvu+W4vzxfnifKl/vnQjV5R9sZmZWU91YgzJzMysNHdIZmZWC+6QzMysFtwhmZlZLbhDMjOzWnCH\nZGZmteAOyczMasEdkpmZ1YI7JDMzq4X/D+G9BA2wwBRtAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10a08ce10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure()\n", "ax1 = plt.subplot2grid((3,3), (0,0), colspan=3)\n", "ax2 = plt.subplot2grid((3,3), (1,0), colspan=2)\n", "ax3 = plt.subplot2grid((3,3), (1,2), rowspan=2)\n", "ax4 = plt.subplot2grid((3,3), (2,0))\n", "ax5 = plt.subplot2grid((3,3), (2,1))\n", "fig.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### gridspec" ] }, { "cell_type": "code", "execution_count": 111, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import matplotlib.gridspec as gridspec" ] }, { "cell_type": "code", "execution_count": 112, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEWCAYAAAApTuNLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+sHNV5xvHvk2sDcY1dh2KVxpRGblBtI4ES0iAg6QVa\ngaqSurQJIgWUQFGR/Ad1W1EptWLjAAoRUpFQQJGAFEMJadMQiiAKNOamArXiRwWl1IRCXVITY5vY\nYDs2CYa3f8xcZ7zZvTs7O7P3jPf5SCt71+fcc3be1/PuzM6cq4jAzMxstr1ntidgZmYGLkhmZpYI\nFyQzM0uCC5KZmSXBBcnMzJLggmRmZklwQTIzsySUKkiSVkl6UtJbku7o03a1pK2S3pB0m6S59UzV\n6uBY2jhxvrdL2SOkV4EvALfP1EjSucDVwFnACcBS4JphJmi1cyxtnDjfW6RUQYqIb0XEPwE7+zS9\nFLg9Il6IiDeB9cBnh5yj1cixtHHifG+Xur9DWgE8W3j+LLBY0qKax7HmOZY2TpzvCai7IM0H3iw8\n3w0IOLrmcax5jqWNE+d7AubU/PP2AgsKzxcCAewpNpLkFV1nEBGa7TlQMpbgeNpw2pTvzvX+holn\n3UdIzwMnF56fAmyLiF2dDSNi4MfatWsr9Rum76j7JaR0LKFaPId5DJMLbRhvXN5jQhrddw2zfdvS\nr454lr3se0LSUcAEMEfSkZImujTdAFwuaVl+7nUN8NWhZ2m1cSxtnDjf26XsEdIaYB/wV8Af53//\na0nHS9ojaQlARHwH+BLwKLAZeBlYV/ekbSiOpY0T53uLlPoOKSKuofc1+Ud3tL0JuGnIeXU1OTk5\n8r6j7te0VGI5rFFv39mI5zi8x6allO9t2QfNZh5oNs7jSorEzh8nQxKRxpe8pTmeVlXb8t25PrNh\n4+m17MzMLAkuSGZmlgQXJDMzS4ILkpmZJcEFyczMkuCCZGZmSXBBMjOzJLggmZlZElyQzMwsCS5I\nZmaWBBckMzNLgguSmZklwQXJzMyS4IJkZmZJcEEyM7MkuCCZmVkSXJDMzCwJpQqSpEWS7pO0V9Jm\nSRfN0PZaSVsk7ZK0UdLy+qZrdXA8bVw419ul7BHSLcBbwLHAxcCtkpZ1NpL0KeAzwBnA+4B/A+6q\nZaZWJ8fTxoVzvUX6FiRJ84ALgDURsT8iHgfuBy7p0vzXgMci4pX8F8/fDfxc8G32OJ42Lpzr7VPm\nCOlE4O2IeLnw2rPAii5t7wWWSvqgpLlknzi+PfQsrU6Op40L53rLzCnRZj6wu+O13cDRXdpuBR4H\nvg8cAP4POHuYCVrtHE8bF871lilTkPYCCzpeWwjs6dJ2LfAR4P3ANrJD40clLY+It4oN161bd/Dv\nk5OTTE5Olp704WRqaoqpqalRDul42qwZcb471xtWdzyVnS6doUF2HnYnsGL60FfSBmBLRHyuo+0D\nwMMRcXPhtV3AORHx74XXot+440oSEaEGf77jacloMt+d66M3bDz7focUEfuAbwLrJc2TdCZwPt2v\nQHkS+KSkxcpcQnYU9lLVCVq9HE8bF8719ilzyg5gFXAHsB14HbgyIjZJOh54HlgeEVuAG8gur3wG\nmEcWzAsiovM8rs0ux9PGhXO9RfqesmtkUB/29tT0KbsmOJ5WVdvy3bk+s8ZP2ZmZmY2CC5KZmSXB\nBcnMzJLggmRmZklwQTIzsyS4IJmZWRJckMzMLAkuSGZmlgQXJDMzS4ILkpmZJcEFyczMkuCCZGZm\nSXBBMjOzJLggmZlZElyQzMwsCS5IZmaWBBckMzNLgguSmZkloVRBkrRI0n2S9kraLOmiGdp+QNID\nknZL2i7pi/VN1+rgeNq4cK63S9kjpFuAt4BjgYuBWyUt62wkaS7wCPDPwGJgCXB3PVO1GjmeNi6c\n6y2iiJi5gTQP2AUsj4iX89fuBF6NiM91tL0CuDgifqvPz4x+444rSUSEGvz5jqclo8l8d66P3rDx\nLHOEdCLw9nRAc88CK7q0PQ14RdJDknZI2ijppKqTs0Y4njYunOstU6YgzQd2d7y2Gzi6S9slwIXA\nTcBxwEPA/ZLmDDNJq5XjaePCud4yZTb2XmBBx2sLgT1d2u4HHouIh/PnN0paAywDnis2XLdu3cG/\nT05OMjk5WW7Gh5mpqSmmpqZGOaTjabNmxPnuXG9Y3fEs+x3STmBF4TzsBmBLl/Ow64HTI+K3C6+9\nAXwsIp4rvObzsD2M6Dskx9OSMILvkJzrI9T4d0gRsQ/4JrBe0jxJZwLnA3d1aX43cJqksyW9R9Jq\nYAewqeoErV6Op40L53r7lL3sexUwD9hOFrgrI2KTpOPza/aXAETEi2SXVn6F7JPJ+cAnIuJA/VO3\nITieNi6c6y3S95RdI4P6sLenpk/ZNcHxtKralu/O9ZmN4rJvMzOzxrkgmZlZElyQzMwsCS5IZmaW\nBBckMzNLgguSmZklwQXJzMyS4IJkZmZJcEEyM7MkuCCZmVkSXJDMzCwJLkhmZpYEFyQzM0uCC5KZ\nmSXBBcnMzJLggmRmZklwQTIzsySUKkiSFkm6T9JeSZslXVSiz3clvSvJRS8xjqeNC+d6u8wp2e4W\n4C3gWOBDwIOSnomITd0aS/p0/rP9u37T5HjauHCut4j6/X54SfOAXcDyiHg5f+1O4NWI+FyX9guA\nJ4BLgX8F5kbEux1t/Hvpexj2d9KX+PmOpyWjyXx3ro/esPEsc0h6IvD2dEBzzwIrerS/nuxTybaq\nk7JGOZ42LpzrLVOmIM0Hdne8ths4urOhpFOB04Gbh5+aNcTxtHHhXG+ZMt8h7QUWdLy2ENhTfEGS\ngC8DV0VE5M97Wrdu3cG/T05OMjk5WWIqh5+pqSmmpqZGOaTjabNmxPnuXG9Y3fEs+x3STmBF4Tzs\nBmBL8TyspIXAj4DtgIAJ4JeA14BPRsTjhbY+D9vDiL5DcjwtCSP4Dsm5PkLDxrNvQcoHuYfsqpMr\nyK5UeQA4vfNKFUmLC09/lewLwl8BXo+IA4V2DmoPTRekfAzH05Iwgg9gzvURGsVFDQCrgHlknyDu\nBq6MiE2Sjpe0W9ISgIjYPv0AdpAlwvZiQC0JjqeNC+d6i5Q6Qqp9UH/K6GkUR0h1czytqrblu3N9\nZqM6QjIzM2uUC5KZmSXBBcnMzJLggmRmZklwQTIzsyS4IJmZWRJckMzMLAkuSGZmlgQXJDMzS4IL\nkpmZJcEFyczMkuCCZGZmSXBBMjOzJLggmZlZElyQzMwsCS5IZmaWBBckMzNLgguSmZkloVRBkrRI\n0n2S9kraLOmiHu0ulfSUpDcl/UDSDZJc9BLjeNq4cK63S9kNfgvwFnAscDFwq6RlXdq9F7gKOAb4\nKHAO8Jc1zNPq5XjauHCut4giYuYG0jxgF7A8Il7OX7sTeDUiPten72pgMiJ+v+P16DfuuJJERKjB\nn+94WjKazHfn+ugNG88yR0gnAm9PBzT3LLCiRN+PA89XmZg1xvG0ceFcb5k5JdrMB3Z3vLYbOHqm\nTpIuAz4MXF5tatYQx9PGhXO9ZcoUpL3Ago7XFgJ7enWQtBK4DjgnInZ2a7Nu3bqDf5+cnGRycrLE\nVA4/U1NTTE1NjXJIx9NmzYjz3bnesLrjWfY7pJ3AisJ52A3Alm7nYSWdB9wJ/G5EPN3jZ/o8bA8j\n+g7J8bQkjOA7JOf6CA0bz74FKR/kHiCAK4APAQ8Ap0fEpo52ZwN/D6yMiMdm+HkOag9NF6R8DMfT\nkjCCD2DO9REaxUUNAKuAecB24G7gyojYJOl4SbslLcnbrSE7RH5I0p783x6sOjlrjONp48K53iKl\njpBqH9SfMnoaxRFS3RxPq6pt+e5cn9mojpDMzMwa5YJkZmZJcEEyM7MkuCCZmVkSXJDMzCwJLkhm\nZpYEFyQzM0uCC5KZmSXBBcnMzJLggmRmZklwQTIzsyS4IJmZWRJckMzMLAkuSGZmlgQXJDMzS4IL\nkpmZJcEFyczMkuCCZGZmSShVkCQtknSfpL2SNku6aIa2qyVtlfSGpNskza1vulYHx9PGhXO9Xcoe\nId0CvAUcC1wM3CppWWcjSecCVwNnAScAS4Fr6pkqTE1NjbzvqPuNSBLxHMaot+9sxHMc3uMIJJPr\nbdkHzWYe9C1IkuYBFwBrImJ/RDwO3A9c0qX5pcDtEfFCRLwJrAc+W9dkXZCGl1I8hzEOO+txeI9N\nSi3X27IPSrogAScCb0fEy4XXngVWdGm7Iv+3YrvFkhZVn6LVzPG0ceFcb5kyBWk+sLvjtd3A0T3a\nvtnRTj3a2uxwPG1cONfbJiJmfACnAHs7XvsL4P4ubZ8B/qjw/BjgHWBRR7vwo/ejX0yGeTiefqT2\ncK4fXo9hYjaH/l4E5khaWjj0PRl4vkvb5/N/+0b+/BRgW0TsKjaKCJUY15rheNq4cK63TN9TdhGx\nD/gmsF7SPElnAucDd3VpvgG4XNKy/NzrGuCrdU7YhuN42rhwrrdP2cu+VwHzgO3A3cCVEbFJ0vGS\ndktaAhAR3wG+BDwKbAZeBtbVPmsbluNp48K53iYNnbtdBNwH7CUL7kUztF0NbAXeAG4ju1+gb1+y\nyzSfIvsi8gfATWXHLPyM7wLvDjDXDwAPkH3huYPslECZftcCW4BdwPeB58jujbijz/w6t83cps63\nNxjPSnMuO2aXPLgBeE+T77FL/gw8XoXtWsy97cAXGx6vmLMbgeUVxlsFPNmmXK+wnYrz3gB8qwX7\nru3A31TIhX15/580Fc+mAvq1/PFe4Ix8Usu6tDs3n/RvAAvJPp08X7Lvn+b/Pgc4DvgR2ReTM/Yr\n9P808L08qGXGmwu8BFwFHAV8HXioRL9P5cE8geyqnW/kP+fLMwW1x7a5fpb+gw4Tz0pzHmDMzjx4\nCri6qfG65M87VC9IZd9jZ+4dAZzU4HidOXs98HSF8VYCn2hTrg+Z79vI9l+p77uOINt3DZoLK4F/\nICtojcSziWDOI6ugSwuv3dltQsDfAdcWnp9HdqVG375dxjwAPFKmH7AAeAH4WD7er5eY6xXA9yq8\nx6uBewvPl5N90vhCn6B2bpuzgK1N/2esOZ6V5jzImF36rqbLVVR1jlfIn9+kYkEacLsezL0RxbFr\nzg4xdityvcJ2OjjvvN9Pge2D5Oyo91015cLbTcWzicVVh7kZbV/+584SfTvHhOz0QJl+15MtKTI/\nf/4/JfqdBrwi6SGyTwwTZJ8u+vW7F1gq6YP52lifAb7d8538TCo36s3GzYWDjNnp43S/iqrO8abz\nZ9uA41Qd82DuSdohaaOkkxocr2rOVpVKrkP1fD+RrCAdU5h3cvsuSTuAKeCdIXLhpZ7vJlM5nk0U\npGFuRpu+pLLYtlffogvzP2/s10/SqcDpwM1knxQ69RpvST7OTcAfAD8G7pc0p0+/rcDjZN8d/Rj4\nQ+DPZ347QDo36s3GzYWDjHmQpMuAD3NoHtQ6Xkf+DGOQ91jMvePITrcUc6/u8armbFWp5Pr0XKrk\n+3S/4rxT3HcdBzwBHNGRP4PkwiO93w4wRDybKEh7yQ4rixYCe0q2paNtr74ASFoJ/Anwk4goHln9\nXD9JIjuffVVkx5L7u/zIXuPtBx6LiIfJNvYE2c1zy/r0Wwt8BHg/2fnb9WTnVCd6vadc57ZZSHaI\n3nNbNGSYeFad8yBjAgfz4DrgvI48qG28LvkzzD0pg7zHg7kXEQci4kYOzb26x+uas5KOGmC8QaSS\n693mAuXyffrvxXknt++KiANkFxlMcGj+DJILlzDz/qtyPJsoSAdvRiu81u9mtGm/kP/5vhJ9kXQe\n8BWyL9smSoy5gOwT9NclbQX+Nn99q6Qz+oz3H2QbFfL3yKHbr1e/k8nOwW6NiHcj4k6yq3iO7fae\nCjq3Tdcb9UZgmHhWnfMgYxbz4Pci4r8GHGuQ8Trz5wmyorSlkD91jwmH5l5Vg4zXK2eXDzmHXlLJ\ndaie7y+SXSzwemHeKe67pucK2ZHTTGNOv96ZC0cBv9jtfeWqx7OhLwbvIftiax5wJtmlo72uUvkh\nWaVeRHbk8J8l+54NvA6cOeCYiwuPU8kC9Y9kh5Mz9TuRrPKfTVaInuZnh7kz9fs88C/5eCK75HMP\n2SH6BuBIYKLktrmuiXg1HM9Kcx5gzEPyYATvsTN/3gV+GZjT4Jidubca+O9BxxxgvM6cvSTP2QUD\njjdBtvO6vi25PmS+byPbf6W+71pNtu+6Z8BcmAAuI7sg4mtNxLOpgBav4/9f4ML89ePzDbGk0PbP\ngNfofh9Sz75k90b8NH9tT/7na2XGLIx9AtlVUmXnupJsR/BGHqRHSszzSLJzvj/M+71KthN7p/D4\nfN5vT59tk8J9SIPGs477kAbNgwebfI9d8qeO+5AGyb2NzHBZcA3btDNnnwJ+p8J4a9uW60Pme/E+\npEFzdpT7ro3ARyvkwn6yIthYPJV3NjMzm1VNfIdkZmY2MBckMzNLgguSmZklwQXJzMyS4IJkZmZJ\ncEEyM7MkuCCZmVkSXJDMzCwJLkhmZpYEFyQzM0uCC5KZmSXBBcnMzJLggmRmZklwQTIzsySUKkiS\nVkl6UtJbku7o03a1pK2S3pB0m6S59UzV6uBY2jhxvrdL2SOkV4EvALfP1EjSucDVwFlkv0BqKXDN\nMBO02jmWNk6c7y1SqiBFxLci4p+AnX2aXgrcHhEvRMSbwHrgs0PO0WrkWNo4cb63S93fIa0Ani08\nfxZYLGlRzeNY8xxLGyfO9wTUXZDmA28Wnu8GBBxd8zjWPMfSxonzPQFzav55e4EFhecLgQD2FBtJ\niprHPaxEhGZ7DpSMJTieNpw25btzvb9h4ln3EdLzwMmF56cA2yJiV2fDiBj4sXbt2kr9huk76n4J\nKR1LqBbPYR7D5EIbxhuX95iQRvddw2zftvSrI55lL/uekHQUMAHMkXSkpIkuTTcAl0talp97XQN8\ndehZWm0cSxsnzvd2KXuEtAbYB/wV8Mf53/9a0vGS9khaAhAR3wG+BDwKbAZeBtbVPWkbimNp48T5\n3iKlvkOKiGvofU3+0R1tbwJuGnJeXU1OTo6876j7NS2VWA5r1Nt3NuI5Du+xaSnle1v2QbOZB5qN\n87iSIrHzx8mQRKTxJW9pjqdV1bZ8d67PbNh4ei07MzNLgguSmZklwQXJzMySUPay70WS7pO0V9Jm\nSRfN0PZaSVsk7ZK0UdLy+qZrdXA8bVw419ul7BHSLcBbwLHAxcCtkpZ1NpL0KeAzwBnA+4B/A+6q\nZaZWJ8fTxoVzvUX6FiRJ84ALgDURsT8iHgfuBy7p0vzXgMci4pX8UpS7gZ8Lvs0ex9PGhXO9fcoc\nIZ0IvB0RLxdee5ZsddxO9wJLJX0w/+VWnwG+PfQsrU6Op40L53rLlLkxdj7ZyrdFu+m+Cu5W4HHg\n+8AB4P+As4eZoNXO8bRx4VxvmTIFqXMVXMhWwv25VZ+BtcBHgPcD28gOjR+VtDwi3io2XLdu3cG/\nT05OHpZ3iZcxNTXF1NTUKId0PG3WjDjfnesNqzuefVdqyM/D7gRWTB/6StoAbImIz3W0fQB4OCJu\nLry2CzgnIv698Jrvdu6h6TvXHU9LSZP57lwfvcZXaoiIfcA3gfWS5kk6Ezif7legPAl8UtJiZS4h\nOwp7qeoErV6Op40L53r7lP0FfauAO4DtwOvAlRGxSdLxZL9HZHlEbAFuILu88hlgHlkwL4iIzvO4\nNrscTxsXzvUW8eKqiWnbYpPgeFp1bct35/rMvLiqmZkdFlyQzMwsCS5IZmaWBBckMzNLQhOrfX9A\n0gOSdkvaLumL9U3X6uB42rhwrrdL3at9zwUeAf4ZWAwsIVuk0NLieNq4cK63SNmVGnaRXa8/fbfz\nncCrXe52vgK4OCJ+q8/P9KWTPYxopQbH05IwgpUanOsjNIrLvgdZMfc04BVJD0nakf+Sq5OqTs4a\n4XjauHCut0yZgjTIirlLgAuBm4DjgIeA+yWVXRHCmud42rhwrrdM3at97yf7JVcP589vlLSG7Bdd\nPVds6BVzM4mv9u14Wq0SXu3buV5B6qt9rwdOj4jfLrz2BvCxiHiu8JrPw/aQ2Grfjqc1KqHVvp3r\nNUhtte+7gdMknS3pPZJWAzuATVUnaPVyPG1cONfbp+xl36vIVsDdTha4gyvm5tfsLwGIiBfJLq38\nCtknk/OBT0TEgfqnbkNwPG1cONdbxKt9J6Ztqx+D42nVtS3fnesz82rfZmZ2WHBBMjOzJLggmZlZ\nElyQzMwsCbWv9l3o811J70py0UuM42njwrneLmWXxSiumPsh4EFJz0RE12v0JX06/9m+HCVNjqeN\nC+d6i9S62nf+bwuAJ4BLgX8F5kbEux1tfOlkDymt9p3/m+NpjUllte/835zrQ0pttW+A68k+lWyr\nOilrlONp48K53jK1rvYt6VTgdODm4admDXE8bVw411umttW+JQn4MnBVRET+vCevmJtJdbVvx9Oa\nkOJq38716pJd7VvSQuBHZGtGCZgAfgl4DfhkRDxeaOvzsD2kstq342mjkMJq3871+gwbz1Jr2Um6\nh+yqkyvIrlR5gGyp9k0d7RYXnv4q2ReEvwK8Xlyk0EHtbRRrezmelooRfABzro/QqNayK7ti7vbp\nB9nS7QFs94q5yXE8bVw411vEq30npm2rH4PjadW1Ld+d6zPzat9mZnZYcEEyM7MkuCCZmVkSXJDM\nzCwJta72LelSSU9JelPSDyTd4BVz0+N42rhwrrdL2Q1eXDH3YuBWScu6tHsvcBVwDPBR4BzgL2uY\np9XL8bRx4VxvkdpX++7ouxqYjIjf73jdl072kNpq3x19HU+rVUqrfXf0da5XkOJq30UfB56vMjFr\njONp48K53jJlFlctvWJukaTLgA8Dl1ebmjXE8bRx4VxvmdpW+y6StBK4DjgnInZ2a+MVczOprvZd\n5HhaXVJc7bvIuT6YZFf7LrQ/D7gT+N2IeLrHz/R52B5SWe270N7xtMaksNp3ob1zfUiprfZ9NvD3\nwMqIeGyGn+eg9pDYat+OpzUqodW+nes1SGq1b2AN2SHyQ5L25P/2YNXJWWMcTxsXzvUW8WrfiWnb\n6sfgeFp1bct35/rMvNq3mZkdFlyQzMwsCS5IZmaWBBckMzNLQq2rfedtV0vaKukNSbdJmlvfdK0O\njqeNC+d6u9S62rekc4GrgbOAE4ClwDX1TJWh7giu2nfU/UYkiXgOY9TbdzbiOQ7vcQSSyfW27INm\nMw/6FqT8bucLgDURsT8iHgfuBy7p0vxS4PaIeCEi3gTWA5+ta7IuSMNLKZ7DGIed9Ti8xyallutt\n2QclXZAYbMXcFfm/FdstlrSo+hStZo6njQvnesuUKUiDrJg7H3izo516tLXZ4XjauHCut01EzPgA\nTgH2drz2F8D9Xdo+A/xR4fkxwDvAoo524UfvR7+YDPNwPP1I7eFcP7wew8SszK+feBGYI2lp4dD3\nZLr/8qrn83/7Rv78FGBbROwqNmrTUiGHIcfTxoVzvWX6nrKLiH3AN4H1kuZJOhM4H7irS/MNwOWS\nluXnXtcAX61zwjYcx9PGhXO9fWpd7TsivgN8CXgU2Ay8DKyrfdY2LMfTxoVzvU0aOne7CLiP7Dc2\nbgYumqHtamAr8AZwG9n9An37kl2m+RTZF5E/AG4qO2bhZ3wXeHeAuX6A7Pep7AZ2kJ0SKNPvWmAL\nsAv4PvAc2b0Rd/SZX+e2mdvU+fYG41lpzmXH7JIHNwDvafI9dsmfgcersF2Lubcd+GLD4xVzdiOw\nvMJ4q4An25TrFbZTcd4bgG+1YN+1HfibCrmwL+//k6bi2VRAv5Y/3guckU9qWZd25+aT/g2yXy38\nKNm53DJ9/zT/9znAccCPyL6YnLFfof+nge/lQS0z3lzgJeAq4Cjg68BDJfp9Kg/mCWRX7Xwj/zlf\nnimoPbbN9bP0H3SYeFaa8wBjdubBU8DVTY3XJX/eoXpBKvseO3PvCOCkBsfrzNnrgacrjLcS+ESb\ncn3IfN9Gtv9Kfd91BNm+a9BcWAn8A1lBaySeTQRzHlkFXVp47c5uEwL+Dri28Pw8sis1+vbtMuYB\n4JEy/ch+EdcLwMfy8X69xFyvAL5X4T1eDdxbeL6c7JPGF/oEtXPbnAVsbfo/Y83xrDTnQcbs0nc1\nXa6iqnO8Qv78JhUL0oDb9WDujSiOXXN2iLFbkesVttPBeef9fgpsHyRnR73vqikX3m4qnk0srjrM\nzWj78j93lujbOSZkpwfK9LuebEmR+fnz/ynR7zTgFUkPkX1imCD7dNGv373AUkkfzNfG+gzw7Z7v\n5GdSuVFvNm4uHGTMTh+n+1VUdY43nT/bBhyn6pgHc0/SDkkbJZ3U4HhVc7aqVHIdquf7iWQF6ZjC\nvJPbd0naAUwB7wyRCy/1fDeZyvFsoiANczPa9CWVxba9+hZdmP95Y79+kk4FTgduJvuk0KnXeEvy\ncW4C/gD4MXC/pDl9+m0FHif77ujHwB8Cfz7z2wHSuVFvNm4uHGTMgyRdBnyYQ/Og1vE68mcYg7zH\nYu4dR3a6pZh7dY9XNWerSiXXp+dSJd+n+xXnneK+6zjgCeCIjvwZJBce6f12gCHi2URB2kt2WFm0\nENhTsi0dbXv1BUDSSuBPgJ9ERPHI6uf6SRLZ+eyrIjuW3N/lR/Yabz/wWEQ8TLaxJ8hunlvWp99a\n4CPA+8nO364nO6c60es95Tq3zUKyQ/Se26Ihw8Sz6pwHGRM4mAfXAed15EFt43XJn2HuSRnkPR7M\nvYg4EBE3cmju1T1e15yVdNQA4w0ilVzvNhcol+/Tfy/OO7l9V0QcILvIYIJD82eQXLiEmfdflePZ\nREE6eDNa4bV+N6NN+4X8z/eV6Iuk84CvkH3ZNlFizAVkn6C/Lmkr8Lf561slndFnvP8g26iQv0cO\n3X69+p1Mdg52a0S8GxF3kl3Fc2y391TQuW263qg3AsPEs+qcBxmzmAe/FxH/NeBYg4zXmT9PkBWl\nLYX8qXtMODT3qhpkvF45u3zIOfSSSq5D9Xx/kexigdcL805x3zU9V8iOnGYac/r1zlw4CvjFbu8r\nVz2eDX0CDqGOAAABhUlEQVQxeA/ZF1vzgDPJLh3tdZXKD8kq9SKyI4f/LNn3bOB14MwBx1xceJxK\nFqh/JDucnKnfiWSV/2yyQvQ0PzvMnanf54F/yccT2SWfe8gO0TcARwITJbfNdU3Eq+F4VprzAGMe\nkgcjeI+d+fMu8MvAnAbH7My91cB/DzrmAON15uwlec4uGHC8CbKd1/VtyfUh830b2f4r9X3XarJ9\n1z0D5sIEcBnZBRFfayKeTQW0eB3//wIX5q8fn2+IJYW2fwa8Rvf7kHr2Jbs34qf5a3vyP18rM2Zh\n7BPIrpIqO9eVZDuCN/IgPVJinkeSnfP9Yd7vVbKd2DuFx+fzfnv6bJsU7kMaNJ513Ic0aB482OR7\n7JI/ddyHNEjubWSGy4Jr2KadOfsU8DsVxlvbtlwfMt+L9yENmrOj3HdtBD5aIRf2kxXBxuKpvLOZ\nmdmsauI7JDMzs4G5IJmZWRJckMzMLAkuSGZmlgQXJDMzS4ILkpmZJcEFyczMkuCCZGZmSXBBMjOz\nJPw/GteI52gW45oAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10a341c50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure()\n", "\n", "gs = gridspec.GridSpec(2, 3, height_ratios=[2,1], width_ratios=[1,2,1])\n", "for g in gs:\n", " ax = fig.add_subplot(g)\n", " \n", "fig.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### add_axes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Manually adding axes with `add_axes` is useful for adding insets to figures:" ] }, { "cell_type": "code", "execution_count": 113, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEVCAYAAACv2pHlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdcFNcWB/DfLE3piArYFTsq9hILWNI1lsSoqFgwGkue\niYkv1idqqinGVHuPvWANGgXsBTWiLqiAgh0QkN6WPe+Pq4QqbZfZZc/385mP7HLnzgGHOTt3bpGI\nCIwxxpjcFHIHwBhjjAGckBhjjOkITkiMMcZ0AickxhhjOoETEmOMMZ1gLHcALyNJEncBZIwxPUFE\nUnn21/k7JCLS6W3BggWyx6DP8ckZY0BAABQKBR4+fFiq+CRJwp9//in7700XfoeVJT59iFHX49ME\nnb5DYkybunfvjsePH6NmzZql2u/JkyewtbXVUlSMGS5OSEwvvPgUplBo5qZepVLB2Ni41MkIQJn2\nYYwVT+eb7HSdu7t7mfc9ceIEFAoFjIyM8vzbqFGjnDLnz5+Hm5sbzM3NUa1aNYwcORIxMTF56tmw\nYQNcXFxgZmaGunXrYv78+cjOzs6Jr3fv3pgwYQLmz58PBwcH2NnZYf78+SAiLFq0CI6OjqhZsybm\nzZtXoniPHTsGNzc3WFhYwMXFBb6+vnnKRUdHY+zYsahZsyasra3Rs2dPnDp1Kk+ZiRMnonHjxjA3\nN8eqVaswd+5cZGZm5nx/4cKFaNKkCXbs2IEWLVrAzMwMoaGhhcb15MkTDB8+HHZ2djA3N0fv3r1x\n+fLlAnEfPnwYPXv2hLm5OdasWZPz/qNHj3LKHj9+HG3atEHVqlXRvn17nD59GosWLcKWLVtyyigU\nigKv//jjD3h6esLa2hp169bFN99889LfpaaV5zysCLoeH6D7Mep6fBohd7tjMW2SVJllZWVRVFRU\nzhYcHEy1a9cmLy8vIiJ6/PgxWVtb06hRo0ipVNKZM2eoTZs25ObmllPHwYMHycjIiL799lsKDQ2l\nHTt2kJ2dHf3vf//LKePu7k62trY0a9YsCg0NpXXr1pEkSfTmm2/S559/TqGhobRhwwaSJIl8fX2L\njDcgIIAkSaK2bdvS0aNHKSwsjMaNG0c2Njb07NkzIiJKS0ujli1b0tChQ+nKlSsUHh5OX331FVWp\nUoVu3rxJRERqtZrmzZtHgYGBFBkZSQcOHKBatWqRt7d3zrG8vb3J3Nyc3N3d6eLFixQaGkrJycmF\nxtW5c2dq164dnT17lm7cuEHDhg0jOzs7io2NzRN3ixYt6ODBgxQREUEPHz6kgIAAUigU9PDhQyIi\nevjwIZmbm9PEiRMpJCSE/Pz8qEOHDqRQKOjPP//MOZ4kSQVeOzo60urVq+nOnTv022+/kSRJ5Ofn\nV6LzgLHK4Pn1unzX/PJWoM2tsiek3LKyssjd3Z3c3NwoMzOTiIjmzZtHdevWpaysrJxyQUFBJEkS\nnTp1ioiIevbsScOHD89T17Jly8jc3DxnP3d3d2rXrl2eMi4uLtSmTZs877m6utLMmTOLjPHFhd3H\nxyfnvaioKJIkiY4ePUpEROvWraO6detSdnZ2nn379OlDn3zySZF1L126lJo2bZrz2tvbm4yMjOjB\ngwdF7kNEdOzYMVIoFDnJjogoIyODnJycaPHixXnizp1EXryfOyHNmTOHGjZsSGq1OqeMr69voQko\n/+uPP/44T90tWrSgOXPmvDR2xioTTSQkfoakIz788EM8fPgQFy5cgImJCQAgODgYXbt2hbHxv/9N\nbdq0gY2NDZRKJXr06AGlUonhw4fnqcvNzQ3p6ekIDw9Hs2bNAACurq55yjg6OsLJyanAe9HR0S+N\nU5KkPHXVrFkTRkZGiIqKAgBcunQJjx8/ho2NTZ79MjMzYW5unvN61apVWLNmDSIiIpCSkgKVSlWg\np46DgwNq16790niCg4Nhb2+f83MCgKmpKbp06QKlUpkn7k6dOr20rpCQEHTq1AmS9G/P1W7dur10\nnxfy/35r1aqV8zthjJUMJyQdsGTJEvj4+OD8+fOws7PTSJ35L+4vktwLkiQV+p5arS62blNT0wLv\nvdhPrVajZcuW8PHxKRDDi4S0c+dOTJs2DUuWLEGvXr1gbW2NHTt2FHiGZWFhUWwspVGS+nIno9LI\n/zsp6e+SMfYv7tQgMx8fH3h7e2Pv3r1o3Lhxnu+5uLjg/PnzUKlUOe8FBQUhISEBrVu3zilz8uTJ\nPPsFBATA3Nwczs7O2v8B8unYsSPu3LkDKysrNGrUKM/m6OgIADh16hTat2+P6dOno127dnB2dsbd\nu3fLdDwXFxfExsbi5s2bOe9lZGTgwoULOb+jkmrZsiUCAwPzJNJz586VKS7GWOlxQpJRcHAwRo8e\nDW9vbzRt2hRRUVGIiorC06dPAQDTpk1DYmIixo4dC6VSidOnT8PT0xNubm545ZVXAACzZ8/G7t27\n8e233yI0NBQ7duzAwoUL8dlnn+Vp6tOU/Hc9+Y0cORINGzbE22+/jb///huRkZG4ePEivvnmG+zf\nvx8A0KxZM1y/fh379+/HnTt3sGzZMuzdu7dM8fTp0wedOnWCh4cHzp49ixs3bsDT0xMZGRn48MMP\ni4079/tTpkxBVFQUPvzwQ9y8eRP+/v6YN28eJEkq850TY6zkOCHJKDAwEKmpqZg9ezZq1aqVs3Xu\n3BmAeD5z9OhRPHjwAJ07d8Y777yDNm3aYOfOnTl1vPnmm1i7di02btyI1q1b49NPP8W0adPwv//9\nL6eMJi+mhdWV+z0zMzOcOHECHTt2xPjx49GsWTO8++67CAwMRP369QEAkyZNwujRozF+/Hi0b98e\ngYGBWLhwYZlj2rdvH5o3b47+/fujS5cuiI6OxrFjx1CtWrWXxp3//Vq1amH//v04d+4c2rVrh08+\n+QRffPEFiAhVqlQpsi5OVoxpSHl7RWhzQxG97OLi4mjQoEFkYWFBDRo0oC1bthTZ8+PHH38kR0dH\nsrGxIS8vr5webEREv/76K3Xs2JHMzMxo3LhxBfY9duwYNW/enCwsLKhPnz4UGRlZ5HFY5XTixAlS\nKBR048YNuUNhTKdBA73s9PIOacqUKahSpQpiYmKwefNmTJ48GSEhIQXKHTlyBEuWLIG/vz8iIyMR\nHh6OBQsW5Hy/du3amD9/Pry8vArsGxsbi3fffRdffvkl4uLi0KFDBwwbNkyrPxeT3/Lly3Hu3DlE\nRkbi8OHDmDhxIrp27QoXFxe5Q2Os8itvRtPmhkLukFJSUsjU1JTCwsJy3vP09KTZs2cXKOvh4UFz\n587Nee3n50eOjo4Fys2bN6/AHdLKlSupe/fueY5btWpVunXrVoH9WeUxa9YsqlevHlWpUoUaNGhA\nEydOpLi4OLnDYkznwRDvkG7fvg0TE5M8PchcXV3zjDl5QalU5hkf4urqiujoaMTHxxd7nPz7mpub\no3HjxoUeh1UeX3/9NSIjI5GWloa7d+9ixYoVGuuKzxh7Ob0bh5ScnAxra+s871lbWyMpKanQsrkH\naFpbW4OIkJSUVOxFJjk5ucAkmoUdhx9oM22jYno2MlZZ6N0dkqWlJRITE/O8l5CQACsrq2LLJiQk\nQJKkQsuW5zjlvU3V9KZWEywtFyA0VP5Y8m+6tqbLw4cEOzvC/Pm6FdeLjTFDoncJqWnTplCpVAgP\nD895LygoqNCHzi4uLggKCsp5ffXq1ZzZrovj4uKCq1ev5rxOSUlBeHi4XjzcliSgUSPg2DG5I9F9\nR48CffoAGlrVgjFWDnr3Z2hubo4hQ4bgf//7H1JTU3H69GkcOHAAo0ePLlDW09MTa9asQUhICOLj\n4/HFF19g3LhxOd/Pzs5Geno6srOzoVKpkJGRkbNsw+DBg6FUKrF3715kZGRg4cKFaNu2LZo2bVph\nP2t5ODsDf/8tdxS6b+9eYNAguaNgjAHQveamfM0VVJjc45Dq169P27ZtIyKie/fukZWVFd2/fz+n\n7NKlS8nBwaHQcUje3t4kSRIpFIqcbeHChTnfP378ODVv3pzMzc2pd+/ehY5DKipGue3a5U92dkQq\nldyR5OXv7y93CDmSk4msrIji4nQrrtx09fxiLD9ooJedRDrcTi1JEulyfIDo1KCrMbZuDaxcCZRw\nwmqDs3cv8Pvvun0nqcvnF2O5PT9Xy9XLS++a7FjJDRwoLrqscNxcx5hu0WhCkiRpqiRJgZIkpUuS\ntLaYsp9IkvRYkqRnkiStliTJ5GXlWem9+y6wZw/AH7ALysoCDh0SSZsxphs0fYf0EMBiAGteVkiS\npNcB/BdAbwD1ATgDKPvsmqxQbdsCajVw7ZrckeieU6dEx486deSOhDH2gkYTEhH5ENF+AHHFFPUE\nsIaIbhJRAoBFAMYVsw8rJUkChgwBdu+WOxLdw811jOkeuZ4huQAIyvU6CEBNSZJ4jhYNe9Fsx/5F\nBPj4cEJiTNfIlZAsASTkep0IQAJQ/BQKrFS6dAHi44Fbt+SORHdcuQKYmwMtWsgdycvFpxU/5yJj\nuiAxOUsj9cg1l10ygNwT0tkAIAAFJqTz9vbO+drd3R3u7u5aDq1yUSiAwYNFs92cOXJHoxteNNfp\n+jSEyy4skzsExooUEBCAgIAAAMA63ysaqVMr45AkSVoMoDYRjS/i+38CuENE85+/7gtgExHVyleO\nxyFpgL8/MHMmcOmS3JHohlatgFWrdHt8VmJGIhota4TYz2N1/vxihm3z1kyMu9IMqu8jdGsckiRJ\nRpIkVQFgBMBYkiQzSZKMCim6EYCXJEktnj83mgdgnSZjYf/q2RO4dw+IiJA7EvmFhgKxsaIpU5f9\nevFXvNnkTbnDYOylwsKAycs3okODxhqpT9PPkOYBSAXwOYCRz7+eK0lSXUmSkiRJqgMARHQEwBIA\n/gDuAggH4K3hWNhzxsbAO+9w5wZAdGYYOFC3J1NNzkzGsgvLMLfnXLlDYaxIGRnA0GFZMOv3Jb4f\nsKD4HUpA092+FxKRgoiMcm2LiOg+EVkR0YNcZX8iIkcisiWiCUSkmadirFDc207Qh951yy8th3sD\ndzSv3lzuUBgr0mefAYp2G9GufmP0qNdDI3XyXHblpA/PkAAgMxNwdASUSsDJSe5o5PHkiehZFxUF\nmJrKHU3hUrNS4fyzM46OOorWDq315vxihmXnTuDz2VnIntoUf767CT3q9eC57FjJmZoCb71l2HPb\n7d8PvPGG7iYjAFh1eRW61umK1g6t5Q6FsUKFhgJTpgAjv9uIptU1d3cEcEIyKIbebKfrzXXpqnR8\nd/Y7zO81X+5QGCtUWhowdCgwzzsDmyIXw9vNW6P1c0IyIK+/DgQGil5mhiYxETh9GnhThzuurftn\nHdo6tkV7p/Zyh8JYoT7+GGjeHDDqtBota7RE93rdNVq/XANjmQzMzYFXXwX27QPGFzpCrPL66y+g\nRw/A2rr4snLIzM7EN2e+wY73dsgdCmOF2rxZjGk8eS4VHTZ8hQMjDmj8GHyHZGAMtdlO15vrNgZt\nRDP7ZuhSR8cHSDGDdP068MknYsaXzbd+R7c63bRyJ8+97MpJ33pBJSaKJRcePNDduwVNS00FatcG\nQkJET0Ndk65KR8vfWmLDoA3oWb9nnu/p2/nFKp/ERKBTJ2DePGDg+4lo8ksT+Hn6waWmS55y3MuO\nlZq1NdCrF3DwoNyRVJzdu8U0QbqYjADg+7Pfo61j2wLJiDG5EYnm/d69gdGjgWXnl+E159cKJCNN\n4WdIBuhFs52Hh9yRVIzVq4Hp0+WOonD3Eu7hp/M/4dJEnmiQ6Z6ffhJTjm3eDMSlxWHZhWU4P+G8\n1o7HTXblpI9NKrGxYrXUu3cBu0q+AtXt2+KO8N493Rx/9P7O9+FSwwUL3AufekUfzy9WOZw8Kbp4\nX7gANGgA/Pfv/yIhPQErBqwotDw32bEysbcXg2Q3bpQ7Eu1bswbw9NTNZHT8znEEPgrEf7v/V+5Q\nGMvj0SNg+HBxjWjQALifcB9r/llT5AcnTeGEZKA+/BBYvly0EVdWWVnAhg2Al5fckRSUlZ2F//j+\nBz++9iOqmlSVOxzGcmRmAu+9J2ZjeP118Z53gDcmdZiEWla1Xr5zOellQoqPj8fgwYNhaWmJhg0b\nYuvWrUWWXbp0KZycnGBra4sJEyYgKyurRPVERkZCoVDA2toaVlZWsLa2xpdffqnVn6si9ewpFqg7\ndUruSLTn4EGgaVOgWTO5Iynot8DfUNuqNgY11+G+6MwgffopUL36vwt6BscE48DtAxVzJ09EOruJ\n8AoaPnw4DR8+nFJTU+n06dNkY2NDwcHBBcr5+vqSo6MjhYSE0LNnz8jd3Z1mz55donoiIiJIoVCQ\nWq0uNIYXiopRH/z0E9GIEXJHoT1vvUW0YYPcURT0JOkJVV9SnUJiQootq8/nF9M/GzcSNW5MFB//\n73sDtw6k7898X+y+z8/V8l3zy1uBNrfC/hhTUlLI1NSUwsLCct7z9PTMk2he8PDwoLlz5+a89vPz\nI0dHxxLVExERQZIkkUqlKlBvbvp8wYiLI7KxIYqOljsSzbt3j8jOjiglRe5IChrrM5Y+O/JZicrq\n8/nF9MulS0TVqxNdv/7ve6cjT1O9pfUoLSut2P01kZD0rsnu9u3bMDExgbOzc857rq6uUCqVBcoq\nlUq4urrmKRcdHY34+PgS1SNJEho0aIB69eph/PjxiK1kk8DZ2QGDBwPr18sdieatXy8eypqbyx1J\nXucfnMfR8KOY78YTqDLdERMDDBkiniu3aiXeIyJ8fuxzLHRfiCrGVSokDr1LSMnJybDON8WAtbU1\nkpKSCi1rY2OTpxwRISkpqdh6qlevjsDAQERGRuLy5ctISkrCyJEjtfATyWvSJGDFCkCtljsSzVGr\nRe+6CRPkjiSvbHU2ph2ehm/7fQtrMwOZJoPpvKws4P33gZEjxRjFF/aE7EFSZhJGtxldYbHo3cBY\nS0tLJCYm5nkvISEBVlZWxZZNSEiAJEmwsrIqth4LCwu0by/maqpRowZ+/fVXODk5ISUlBRYWFnn2\n8/b2zvna3d0d7u7u5fkRK1SXLoClJXD8uJh4tTI4fhyoVg1or2OTZq++shpVjKtgZOuiP9gEBAQg\nICCg4oJiBm/mTKBqVWDx4n/fy8zOxOfHPsfy/sthpDCqsFj0LiE1bdoUKpUK4eHhOc1tQUFBcHEp\nOJWFi4sLgoKC8N577wEArl69CgcHB9jZ2cHMzKzE9bwgSRLUhdxK5E5I+kaSRBfwFSsqT0JavVr3\n7o5uPb2Fef7z4D/GH5JU9NjB/B9oFi5cWAHRMUO1fj1w6BBw8SJglCvv/HbxNzS1b4p+jfpVbEDl\nfQilzQ1FPNAdMWIEeXh4UEpKCp06dYpsbW2L7GXn5OREwcHBFBcXR+7u7jRnzpyX1hMSIno+Xbhw\ngW7dukVqtZqePn1Kw4YNo759+xb1IE+vJSQQ2doSPXwodyTlFx0tOmrk7iUkt/SsdGq7vC39EfhH\nqfetDOcX003nzhHVqEGU/9IZmxpLNZbUoBtRN0pVHwyxlx0RUVxcHA0aNIgsLCyofv36tG3bNiIi\nunfvHllZWdH9+/dzyi5dupQcHBzIxsaGvLy8KDMzs9h6iIi2bt1KDRs2JEtLS6pVqxaNGTOGoqKi\nivpP0HsTJxItXix3FOX3ww9Eo0fLHUVe0/+aTkO2Dyl2CEFhKsv5xXTLgwdEtWoR7d9f8Huf+H5C\nkw5MKnWdmkhIPJddOVWWucb++UesF3TnTt5bd31CBLi4iJ5CvXrJHY1w8PZBTD08Ff9M+gfVqlYr\n9f6V5fxiuiMtDXBzE3/vLwa/vhAeF44uq7tAOUUJB0uHUtXLc9kxjWnXDnBwAHx95Y6k7M6dA7Kz\nxSwUuuBR0iNM2D8Bfw75s0zJiDFNIwImTgQaNQJmzy74/c/+/gyfdvu01MlIUzghsRwv5rfTV3/8\nIeate0mfgQqTrc7GqD2jMKXTFPSo10PucBgDAHzzjViocu3agn8nx+4cw7Woa/ik2yfyBAdefqLc\nKlOTSkoKUK+eaL6rV0/uaErn5k3RTBcaCuQaeiabr059hSPhR+Dn6VeubrOV6fxi8vLxAaZNE8tJ\n1K6d93sqtQptl7fFF32+KPP8itxkxzTKwkIs2qePd0ne3sCMGbqRjM7dP4dlF5bhzyF/VugYDsaK\nEhQEfPABsHdvwWQEAMsvLYejpSMGNhtY8cHlwndI5VTZPsFGRAAdOgBKpe4u+Z1fUBDwxhtAWJhI\nqnKKT4tH+5Xt8dPrP2Fg8/L/cVe284tVvCdPgK5dRXPd8OEFvx+bGosWv7WA3xg/tKrZqszH0cQd\nEiekcqqMF4wZM4D0dOD33+WOpGQGDgT69JF/mfLUrFS8tuk1dK3TFd+/9r1G6qyM5xerOGlpQO/e\n4gNbUeP3px2eBgkSfnnrl3IdixOSDqiMF4zYWLGG0JkzurmWUG4XLojFxEJDgSoVM/9jobKyszB4\n+2DYVbXDhkEboJA00xpeGc8vVjHUamDECDGM488/C+/sc/XJVby++XUETwmGvbl9uY7Hz5CYVtjb\nA599VnCMgi6aNw+YP1/eZKQmNcbvHw8AWPvOWo0lI8bKY8EC4P79wnvUAeK8nXp4Kr7o/UW5k5Gm\n8F8OK9T06WJ+q3Pn5I6kaAEBYiDvuHHyxUBEmHFkBiKeRWDH0B0wMTKRLxjGntu4Edi8WfSsK+rD\n2sagjVCpVfBq71Wxwb0EJyRWqKpVgYULgf/+Vwym0zVE4u7I2xswkTEHfHXqK/hH+OPAiAMwN9Gx\nxZeYQQoIEC0cBw8CNWsWXiY+LR6zjs3C72/9rlN39LoTCdM5Y8YA8fHAgQNyR1LQkSNAXJzopi6X\nFZdWYO3VtfAd6QvbKrbyBcLYcyEhwLBhwNatYhqtoszzm4chLYagQ60OFRdcCXBCYkUyMhJdRWfN\nAlQquaP514u7o0WL5Jt3b6dyJxadXISjo47CycpJniAYyyUqCnjrLeDbb4G+fYsud+XxFewO2Y0v\n+nxRccGVECck9lJvvy1u+3VpmfO9e0UPoiFD5Dn+iksrMO2vaTjscRjO1ZzlCYKxXFJTgQEDAE9P\nYOzYostlq7Mx6eAkfN33a52cX5G7fZeTIXTLvXhRXPxv3wbMZX5Mkp0NuLqKT4Fvv12xx1apVZhx\nZAaOhh/FgREH0MS+idaPaQjnFysflUosPW5jA2zY8PK5HH++8DP2hOwpdqHIsuBu36xCdO4MvPIK\n8NNPckciVra1sRFNExXpWfozvL3lbdyKvYXzE85XSDJirDhEwEcfiTuk1atfnoweJD7AohOLsLz/\nco0nI03hO6RyMpRPsGFhYvqR4OCie+5o26VLIhGdPg00bVpxxw2LC8OArQPQr2E/LH1jKYwVxhV2\nbEM5v1jZfP01sH07cPIkYG398rKDtw+Gq4MrvN29tRIL3yGxCtO4MTBpkujBk5VV8cePiwOGDhVL\nTFRkMvK/648ea3tgepfp+OWtXyo0GTH2Mps2iRaDw4eLT0Y+N30QHBOMWT1mVUxwZcR3SOVkSJ9g\ns7PFvHH16lXsPHdqNfDOOyIR/fhjxRwzW52NXy7+gq9Pf40tQ7agb6OXdFvSIkM6v1jJHTkiOjD4\n+wMtW768bGJGIlr93gobB2+EewN3rcXEc9npAEO7YCQmAt26AVOnAlOmVMwxv/pKfAr096+YQbCX\nH13Gh4c+hLmJOVYPWC3r8yJDO79Y8QIDRYceHx/xbLc4Uw5NQYYqA2sGrtFqXJpISNz+wErF2hrY\nvx/o3h1o3lzMsq1Nfn7AL7+I50faTkYJ6QmY7z8fO5Q78G2/b+Hp6qmzD3+ZYbp9W7QWrF5dsmR0\nIuIE9t/ajxtTbmg/OA3gZ0is1JydgS1bxEzC4eHaO87Dh8CoUWJOrsIWFdMUIsL2G9vR8veWSFel\nQzlFiTFtx3AyYjrl8WOxjMQXX4ikVJzUrFRMODABv731m97MJMJNduVkyE0qv/8O/PorcP588Q9V\nSysrS9x9vfEGMHeuZuvO7crjK5h9fDYeJz3G8v7L8UrdEnzsrECGfH6xf8XHA25uolNRSf8eZh6d\nifuJ97HtvW3aDe45foakAwz9gjF5spjift8+zU7j8+mnwM2bYh49hYbv47Oys7D35l78fOFn3E+8\njxldZ2BKpyk6OVO3oZ9fTIwxevVVoEsX4IcfXj7W6IXAh4EYsHUArk++jhoWNbQfJDgh6QRDv2Bk\nZQGvvQa0bw989135k8fTp6KzhFIpxlbYa3CZlpiUGKy8vBJ/XPoDjas1xn+6/AfvNHtHp7tyG/r5\nZegyM4FBg4AaNYB160r295WuSkfHlR0xp+cceLSuuNmHDXYcUnx8PAYPHgxLS0s0bNgQW7duLbLs\n0qVL4eTkBFtbW0yYMAFZuQbRFFfP8ePH0aJFC1haWqJv3764d++e1n4mfWViAuzaBZw9K3rfXbxY\n9rr27gVatwbq1xedGDSRjBLSE7AnZA/G+IxB01+b4k78HRz0OIiAsQEY0mKITicjZtjUajEvnbGx\n6MRQ0g97C/wXoFn1ZhjRaoRW49MKItLZTYRX0PDhw2n48OGUmppKp0+fJhsbGwoODi5QztfXlxwd\nHSkkJISePXtG7u7uNHv27BLV8/TpU7KxsaHdu3dTRkYGzZw5k7p27VrgGEXFaGiys4nWrydyciIa\nO5bo8eOS7xsbS+ThQdSkCdHp0+WLQ5WtogsPLtCigEXUfU13svzKkl7f9DotPbeUYlJiyle5DPj8\nMkxqNdGkSURubkSpqSXf78y9M+T4vSNFJUdpLbaiPD9Xy3fNL28F2twK+2NMSUkhU1NTCgsLy3nP\n09MzT6J5wcPDg+bOnZvz2s/PjxwdHUtUz8qVK6l79+55jlu1alW6detWnmPwBSOvhASimTOJ7O2J\nliwhysh4efn9+4lq1SL6+GOilJRSHis9gS4+uEgbrm6g2cdm08CtA8n+W3ty+c2FZvjOoCNhRyg1\nsxR/zTqIzy/Do1YTffYZUefORImJJd8vOSOZGv/cmHYH79ZecC+hiYSkd+0Vt2/fhomJCZyd/532\n39XVFScCSF/mAAAgAElEQVROnChQVqlUYtCgQXnKRUdHIz4+HpGRkS+tR6lUwtXVNed75ubmaNy4\nMZRKJZpW5Nw1esbaGliyBPDyInwyQ40Va1TwHJONzEwgJZWQkvz83xQg5inh4WMVft+QhY6dsxCd\nmYXMtExkZWchIzsD8WnxiE2LRVxaHGJTY3O+fpj0ECExIYhPj0cz+2ZoUaMFmts3x8jWI/HrW7+i\njnUduX8NjJXZl18Cvr7AiROAlVXJ95t1bBa61umKIS1kWpdFA/QuISUnJ8M6Xx9ja2trJCUlFVrW\nxsYmTzkiQlJSUrH1JCcno2a+WUSLOo63t3fO1+7u7nB3dy/tj6WzkjKSEBYXhtC4UITFhSEmJQbP\nMp7hWbrY4tPi8Sz9GRIzEpGlzoJKrcrZFF0UUHQxxqIMBSRIkMwByVwCJIjXEmBmYowJ/5jAJMgE\nJkYmMDUyhYlC/FutajVUq1oN9lXtYW9uj9pWtdG6Zms4WTmhRfUWqGtTV6eWX9aEgIAABAQEyB0G\nk8myZWIJiVOngGqlWK7o2J1j8Lnlg2sfXtNecBVA7xKSpaUlEhMT87yXkJAAq0I+SuQvm5CQAEmS\nYGVlVWw9pTlO7oSkr4gIt2Nvw++uHy49uoTQuFCExoUiIT0Bjas1RhP7Jmhs1xj1bOqhTZU2sK1i\nm7PZVbWDtZk1TBQmMFYYw1hhDCOFUaVLFhUh/weahQsXyhcMq1DLlwNLl4o7I0fHku8XmxqLsT5j\nsX7QethVtdNegBVA7xJS06ZNoVKpEB4entPcFhQUBJdCFpB3cXFBUFAQ3nvvPQDA1atX4eDgADs7\nO5iZmb20HhcXF2zYsCGnrpSUFISHhxd6HH0V+SwSfnf94BfhB7+7fjCSjNC3UV90rd0Vo9qMQhP7\nJqhlVYsTC2Natn69aKoLCBC9TEuKiPDBgQ8wzGUY+jXqp63wKk55H0Jpc0MRD3RHjBhBHh4elJKS\nQqdOnSJbW9sie9k5OTlRcHAwxcXFkbu7O82ZM6dE9cTExJCtrS3t2bOH0tPTaebMmdStW7eiHuTp\njQcJD8jb35uclzlTjSU1aNjOYbTy0koKiw0jtVotd3gsH307v1jpbdkiOvbcvFn6fVdfXk1t/mhD\n6Vnpmg+slGCIveyIiOLi4mjQoEFkYWFBdevWp4kTtxER0b1798jKyoru37+fU3bp0qXk4OBANjY2\n5OXlRZmZmYXWU79+fdq2bVue4xw/fpyaN29O5ubm1Lt3b4qMjCzqP0GnZauzyTfUlwZtG0R239jR\n5IOT6dLDS5yA9IA+nF+s7HbtInJwILp+vfT73n56m6ovqU43om5oPrAy0ERC0vuZGqKigN69AQ8P\nYN68CgosF10eSR+TEoO1/6zFyisrYW1mjckdJ2NEqxGwMitF1x0mK10+v1j57N0rpt7y9QXati3d\nvpnZmeixtgdGtxmNj7p8pJ0AS4mXnwDg4CCWKOjdW8zxpM2JOPVFhioDP577Ed+f+x4Dmw3E1ne3\nolOtTjx7NWM6Yt8+kYz++qv0yQgAZh+bDUdLR0zrPE3zwclI7xMSIHqkvEhKCgUwe7bcEcnn4O2D\n+Nj3Y7Sq2QoXJ1yEczXn4ndijFWYAweAiRPFopPt2pV+/4O3D2Jn8E78M+mfSvchs1IkJABwchIr\nirq7A0TAnDlyR1SxbsfexidHPkF4XDh+fetXvNH4DblDYozls2+fSEaHDgEdOpR+/weJD+C13wu7\n398Ne3MNzjysIzTan1eSJDtJkvZKkpQsSdJdSZIKnd1PkqQxkiSpJElKlCQp6fm/vcp7fCcn0W1y\n0yZg0aLy1qYfkjOT8fnfn+OVNa+gd4PeuDb5GicjxnTQnj3ApEnizqhjx9Lvr1Kr4LHbA9O7TEeP\nej00H6AO0PQd0u8A0gHUANAewCFJkq4SUUghZc8SUbmTUH4vklKfPoBKBSxcWLL1Q/TRrae3MGj7\nIHRw6oDrk6/DycpJ7pAYY4XYuRP46CPxzKgszXSAmMXbzNgMs3rM0mxwOkRjCUmSJHMAQwC0JKI0\nAGckSdoHYDSACm1Ac3AQzXf9+omk9OWXlS8pHbh1AF77vfBV368wof0EucNhjBVh61ZgxgzgyBEg\n1/SYpXLg1gFsurYJlyZeqtQD1TV5h9QUQBYRhed6LwiAWxHl20mSFA0gDsBmAF8RkVpTwdSsKTo6\nvPoqkJYG/Phj5UhKalLji5NfYOXlldg/Yj+61ukqd0iMsSKsXQvMnw/8/TfQqlXZ6rgTfwde+72w\nb/g+1LSoWfwOekyTqdYSQGK+9xIBFDbo5QSAVkRUE8C7AEYAmKnBWAAA1auLpHTuHPDhh2LBK32W\nmJGId3e8iyPhRxD4QSAnI8Z02K+/At7eorWmrMkoLSsN7+54F/N7zUe3ut00Gp8u0uQdUjIA63zv\n2QAoMD02EUXk+lopSdIiAJ8B+DZ/2fLOpG1nJz6dDBgAjBkjlgE21sO+hbdjb2PgtoFwq++G7e9t\nh6mRqdwhMcaK8N13wB9/iIlSGzYsWx1EhGmHp6F59eY6Od5IGzPTa2ymhufPkOIAuLxotpMkaSOA\nB0T00mdIkiQNAzCTiDrme7/YmRpKKjUVGDIEsLAAtmwBzMw0Um2FjKQ/d/8cBm4biC/6fIGJHSZq\n9VhMt/BMDfqFSDTR7doFHDsG1CnH0lx/BP6BXwN/xYUJF2Bpaqm5ILVEEzM1aKzJjohSAewBsEiS\nJHNJknoAGABgU/6ykiS9IUlSzedfNwcwD4CPpmIpjLm5GAMgSeJuKSVFm0fTnH8e/4OB2wZiw6AN\nnIwY02FqNfCf/4hu3adOlS8ZnYw8Ce8T3tg3fJ9eJCNN0XR3jakAzAFEQ3RU+JCIQiRJqvt8rNGL\n/6K+AK5JkpQE4CCAXQC+1nAsBZiZAdu2iRPl1VeB+HhtH7F8gmOC8daWt7C8/3K82eRNucNhjBVB\npQLGjgWuXhXPjGrUKHtd9xLuYdiuYdg0eBMaV2ussRj1gd5PrloWajXw2WfA8eNiYkOncgzf0VaT\nSnhcONzWu+Gbft9gVJtRGq+f6QdustN9aWnA8OFAZiawe7dojSmr1KxU9FzXEyNajcBnr3ymuSAr\ngE412ekThQL44Qdg6FCgRw8gLEzuiPK6n3Af/Tb1w/xe8zkZMabDnj0DXn9dPJvet698yYiI4LXf\nC82rN8en3T7VXJB6RA/7m2mGJInlKhwcgF69gIMHgfbt5Y4KeJL8BH039sVHnT/CpI6T5A6HMVaE\nx4+BN94A3NyAn34SH3TLY+GJhYh4FgE/T79KN2lqSRnkHVJuH3wA/PabOLH8/OSNJTY1Fq9uehWj\n2ozCjG4z5A2GMVak27dF68r77wPLlpU/GW25vgUbgjbAZ5gPqppU1UyQesggnyEV5sSJf0+u4cNL\nvp+m2vgzVBlwW+8Gt/riuZGhfkJiefEzJN1z4QIwaBCweDEwQQOzdp29fxaDtg2C3xg/tKpZxhG0\nOoAX6NMgNzcxbuDtt4EHD4BPP63YqYZm/j0TTlZOnIwY02EHDwLjxokB9v37l7++8LhwvLvjXWwY\ntEGvk5GmcELKpXVr4MwZ4M03gfv3xfx3RkbaP+7u4N04ePsgLk+8zMmIMR21ciWwYIFISl26lL++\nmJQYvPHnG/hfr//xsI7nuMmuEM+eAYMHi2mHNm9+ec+Z8japhMeFo9uabjjkcQidancqcz2scuIm\nO/mp1WLBz927xaDXJk3KX2dqVir6bOiDvg374su+X5a/Qh3A3b61xNZWjE+ytBTLokdFaec4GaoM\nvL/rfczrNY+TEWM6KD0dGDFCzLxw7pxmkpFKrcLwXcPRrHozfNHni/JXWIlwQiqCmRmwYQPw1ltA\n165AcLDmj/Hp0U/RwLYBPur8keYrZ4yVS0wM0LeveJZ8/LhYPaC8iAhTD01Fuiodqwas4ib6fDgh\nvYQkiTbjRYsAd3fg6FHN1b1DuQN/hf2FNe+s4ZOSMR0THCw+iLq5icmYq1TRTL1z/ebiypMr2PX+\nLp6xvxCckEpg9GjRfuzpKdY4Ka+wuDBMPTwVO97bAdsqtuWvkDGmMUeOiA+gCxYAX31V/jFGL3x3\n5jv43PTBXyP/grVZ/pV6GMAJqcR69gTOnhVrnEydCmRlla2edFU6hu4cigVuC9ChVgfNBpmLptcp\n0RSOi+kqIjFIfuxYYM8e8QFUU1ZdXoXfL/2Oo6OPorq5Btr+KilOSKXQqJFISnfuiJkdYmNLX8fc\n43PhbOeMqZ2maj7AXHT1AstxMV2UmQlMmiQ+cJ45I2Zh0JTtN7ZjQcACHB11FHWsy7EmhQHghFRK\nNjb/znvXuXPp9g16EoRN1zbhj7f/4OdGjOmI6GjReSEqSvSka9RIc3XvDt6N6b7TcWTUETSx10AX\nvUqOE1IZGBmJJYpzra5eLDWpMeXwFCzuvRg1LMqxWApjTGP++Ud8sHR3B/buBaysNFf3vpv7MOXw\nFPiO8kVrh9aaq7gS44Gx5cR3OkzbdP1vQF9t2gTMmCGeG73/vmbrPhx6GOP2jcNhj8NafVasS3gu\nOx1ARIiKEie0hQXw559ihgfGmG7KyhILdB46JGb4b63hm5cDtw7Aa78X9o/YbzDJSFO4yU4DHBzE\nxKzNmgGdOgHXrskdEWOsME+eAP36iUU5AwM1n4x2B+/GhAMTcMjjELrW6arZyg0AJyQNMTEBli4V\ng2j79hWzPDDGdMeJE0CHDmI6sAMHNN+SsfX6Vkz7axqOjDrCU4GVET9D0gKlEnj3XTF26ZdfNDfK\nmzFWekTA998DP/wgPii+/rrmj7Hun3WY6zcXR0cfNdhlJHhyVR3l4iKaA5KSgFdeEc0D2hYfH4/B\ngwfD0tISDRs2xNatW4ssq1Qq8cYbb6BGjRow0vD6GqWJY+nSpXBycoKtrS0mTJiArLKONtZgXNr8\n3bCKFxcnFtPbtQu4eFE7yej7s99j4YmF8B/jb7DJSFM4IWmJlRWwdSvg5QV06wZs367d402ZMgVV\nqlRBTEwMNm/ejMmTJyMkJKTQsiYmJhg2bBjWrl0rWxxHjhzBkiVL4O/vj8jISISHh2PBggUaj6e0\ncWnzd8Mq1rlzYrxgo0Zitu569TRbPxFh1rFZWPPPGpwadwrNqjfT7AEMERHp7CbC03+XLxM1bkw0\ncSJRaqrm609JSSFTU1MKCwvLec/T05Nmz5790v3CwsJIoVDIEoeHhwfNnTs357Wfnx85OjpqLJay\nxvWCpn83rOJkZxN99x1RjRpEPj7aOUZWdhZN2DeBOq3sRDEpMdo5iJ55fr0u1zWf75AqQPv2wOXL\nQGKiGIR344Zm6799+zZMTEzg7Oyc856rqyuUSqVmD6TBOJRKJVxdXfOUi46ORnx8vKxxMf325IlY\nMmb3btFsPnCg5o+RnJmMQdsGITIhEsc9j/PcdBrECamCWFuLaexnzBC9fH77TTxs1YTk5GRYW+ed\nPdja2hpJSUmaOYAW4khOToaNjU2eckSklZh15ffDtOuvv4B27cTQi5Mngfr1NX+MJ8lP4L7eHTUt\nauKQxyFYmWlwagfGCakiSRIwbpyYvHHdOuCdd8QiYMXp3bs3FAoFjIyMCmy9evWCpaUlEhIS8uyT\nkJAAK03Og1IClpaWSExMLFEc+csmJCRAkiStxFyauJj+SUsDPv5YTI66bRuweLEYhqFpITEh6Lam\nGwY2G4g176yBiZEWDmLgOCHJoGlTMWt4y5aAq6uYrPVl/P39oVarkZ2dXWA7efIkmjZtiuzsbISH\nh+fsExQUBBcXFy3/JHk1bdoUKpWqRHG4uLggKCgo5/XVq1fh4OAAOy1Mc1GauJh++ecfoGNH4NEj\n4OpVsaCeNviG+cJtvRu83bwx320+TxmmLeV9CKXNDZWkU8PLnDhB1KAB0QcfECUllb2eESNGkIeH\nB6WkpNCpU6fI1taWgoODiyyfnp5OSqWSJEmi9PR0ysjIKPvByxCHr68vOTk5UXBwMMXFxZG7uzvN\nmTNHIzGUJy4i7f1umOaoVERff01UvTrRpk1EarV2jqNWq2npuaXk+L0jnYo8pZ2DVBLQQKcG2ZPO\nS4MzgIRERJSQQDRuHJGzs0hQZREXF0eDBg0iCwsLql+/Pm3bti3ne/fu3SMrKyu6f/8+ERFFRESQ\nJEmkUChIoVCQJEnUsGFDTfwoRcaRPwYioqVLl5KDgwPZ2NiQl5cXZWZmaiSG8sSlzd8N04xbt4i6\ndSNydyeKiNDecdKz0mnCvgnU+vfWdDf+rvYOVEloIiHxTA06ZP9+YPJkYOhQsXSyubncETGmO9Rq\nMfPJ4sViefGpUzW3vHh+DxIf4L0d78HJygmbBm+Cpamldg5UifBMDZXMO++IiVljYsSzpVOn5I6I\nMd0QGip6p+7YIQa8fvSR9pKR/11/dFrVCYObD8ae9/dwMqpAnJB0jL29WMJiyRJg+HDxKTBfBzHG\nDIZKJf4WunUDBg8W3bmbaGnhVTWp8d2Z7+CxxwObBm/C5z0+584LFYwTko4aPFgMoM3IAFq1Emu3\nMGZIgoKArl2Bo0fFPHQffyxWa9aGmJQY9N/SH3tu7sGFCRfQr1E/7RyIvRQnJB1mZwesXi3GLP3n\nP8CwYcDjx3JHxZh2paQAM2cCr74qnqn+/beYj05bAiIC0G5FO7RxaIOTY0+ino2GJ71jJcYJSQ/0\n7Qtcvw44OwNt2gB//CEe8DJW2Rw+LGbLf/JEtBB4eYkB5dqQlZ2FeX7zMGL3CKx5Zw2+6fcND3aV\nGfey0zNKpRiRnpUlph/q2FHuiBgrv8hI0SR34wbw++/i7kibQmJCMHrvaDhaOmL1O6vhaOmo3QMa\nAO5lZ4BcXMSD3cmTgQEDgA8/BGJj5Y6KsbLJyBBDHDp0ENv169pNRmpS45cLv6Dnup74oP0HODDi\nACcjHcIJSQ8pFMDYsUBICGBqKqYg+v130SOJMX1AJMbdubgAFy6ImbnnzdPu6sqhsaFwX++OrTe2\n4qzXWUzqOIl70ekYbrKrBIKCgE8+EeOXli4F+nEHIabDlEpxvj54IM5Xbazimlu2Ohs/nf8JX5/+\nGvN7zce0ztNgpODVgDVNE012nJAqCSLAxwf47DPRTXzJEqAZL2DJdEh0NODtDezcCcyfL5qdtTEr\nd26XHl3Chwc/hLWZNVYNWAXnas7F78TKhJ8hsRySJMYuKZVAjx5imzIFiIqSOzJm6FJTxXOili0B\nMzPg5k0xjEGbyehZ+jNMOzwNA7YOwH+6/AfHPY9zMtIDnJAqmSpVxBiOmzfFH3/LlsDChQCvRccq\nmkoFrFolllv55x/xrGjpUjEbibaoSY11/6xDy99aIis7C8opSni6evKzIj3BTXaVXHi4mIjy77+B\nWbNEM4k2HxwzplYDu3aJTgp16wJffw107qz94565dwbTfafDxMgEy95Yhs61K+CgLAc/Q2Ildv26\nuEBcuQLMmQOMHy/uoBjTFCJg3z7xAcjUVCSiiuhgExYXhrl+c3H2/ll80/cbeLT24DsiGXBCYqV2\n4YJ4sKxU/puYTE3ljorpMyLgwAFxXgGiibh/f+3NsPBCVHIUFp9cjG03tuHjrh/jk66fwMLUQrsH\nZUXihMTK7Px5cQEJDhY98yZM4PWXWOlkZ4umua++EsnH2xsYOFD7iSg2NRY/nPsBKy6vgGcbT8zt\nNRfVzatr96CsWJyQWLkFBoqmlbNngenTxTMmW1u5o2K6LCMD2LxZDC2wtwfmzgXeeqtiEtGP537E\n8svLMbTlUMzuMRv1betr96CsxLjbNyu3Tp2APXuA48fF3VKjRmLQYmSk3JExXfPsGfDNN0DDhmIs\n0R9/AGfOAG+/rd1k9CDxAT498ima/NIET1Of4srEK1jefzkno0qIExIDIKZw2bRJzPpgZAS0aweM\nGCGa9vgm1bCFhooVWhs1Eh9afH3F1qePdhORMlqJ8fvGo80fbQAA1yZfw4oBKzgRVWLcZMcKlZAA\nrF0L/PILUL26aM577z3umWco1GoxVOCXX8TieB98IAZa166t3eNmq7NxKPQQfr7wM4JjgjGl0xRM\n6TQF1apW0+6BWbnxMySmddnZYo2an38Grl0Dxo0DJk7U7oJpTD5Pn4oFIVesAKysgKlTgZEjgapV\ntXvcqOQorLu6Disvr0R18+qY3mU6hroMhakRdwHVF5yQWIW6fRtYuRLYsEE06Xl5iV5VPNBWv6nV\n4hnimjWiKW7QILGsSZcu2m2Sy1Zn4/jd41h9ZTX+vvM3hjQfgokdJqJz7c48jkgPcUJiskhPFx0h\n1q0TU8KMGAGMGSPWs+HriP4ICxO95davB6pVE2PSPDzE19qkjFZiQ9AG/Hn9T9SyqoWxrmMxqs0o\n2FSx0e6BmVZxQmKyi4gQd0ybNgHGxqJ5Z+RIbtLTVTExoofc5s1iWqnhw8XaWu3aafe4obGh2K7c\nju3K7YhPi8eoNqMwus1ouNR00e6BWYXhhMR0BpGYBWLzZmDHDqBBA+D994GhQ4H63ClKVrGxwN69\n4v/lwgUxZmjUKOC117Q34zYRISgqCD43fbDv1j48SX6C91q8h/dd3kf3et2hkLiDb2XDCYnpJJUK\nCAgQF8C9e0VyGjhQPJtwceFmvYpw/75YH8vHRwx+fv118QHh7be1NyNHcmYy/O/646+wv3A49DCM\nFcYY2GwgBjYfiO51u/OieJUcJySm81Qq4NSpfy+OxsbiovjWW4Cbm/Z7bxmK7Gxx93P4sNju3RPz\nyQ0aJO6EtJGEsrKzEPgoEP53/XH87nEEPgpE59qd8WbjN/Fm4zfRskZL7pxgQDghMb1CJAbeHj4M\n/PWX+Lp7d6BvX7G5ugIKbskpESLgzh3g2DGx+fuLMUIvkn3XriL5a1JyZjIuPLiA0/dO48z9Mzj/\n4DycqzmjT4M+6N2wN9wbuMPS1FKzB2V6gxMS02vx8YCfn+hyfOwYEBcH9OoF9OwptrZtNX9R1VdE\notv9yZP/bpmZYnmHV18VCV2Tg1bTstJwI/oGLj++jMCHgbj46CLuxN9BO8d26F63O7rX647udbvD\n3lyLq+0xvaJzCUmSJDsAawG8CiAGwBwi2lpE2U8A/BdAVQC7AEwmoqx8ZTghGZD798WF9tQpsd27\nJ7qSd+kito4dxYJvhtAKFB397yqr58+Lfy0t/03YvXoBzZqV/3ehUqtwJ/4OgmOCERwTjBvRNxAU\nFYQ78XfQzL4Z2ju1R6dandC5dme0dmjNA1VZkXQxIb1IPuMBtAdwCEA3IgrJV+51AOsB9AbwGIAP\ngHNENCdfOU5IBiwuTjyQv3BBbJcvA1lZ4s6pbVugVSvRSaJlS3Gx1keZmcCtW8CNG2KNqmvXxCKK\nycmiK3bnzqL5rUsXoFatsh0jKSMJkQmRiHgWgYhnEQiPC0doXChC40IR+SwSta1ro2WNlmhZvSVa\n1miJto5t0aJGC04+rFR0KiFJkmQOIB5ASyIKf/7eBgAPC0k0fwK4S0Tznr/uDWALETnlK8cJieXx\n5Alw9aq4ewgOFhfxmzfFMghNmgCNG4utQQPR3bxePcDBQb5nU0SiaTIyUmwREeLZT2ioaIJ7+FDM\nnu3iIhJs69YiETVs+PK7n3RVOmJTY/E09Smepj5FTGoMopKj8CT5CZ6kPMHjpMd4kPgADxIfIDM7\nEw1sG+RsDW0bool9EzSp1gTO1ZxRxZin2mDlp2sJqS2A00Rkmeu9GQDciGhgvrJXAXxJRDufv64G\n0cRXnYjic5XjhMSKlZ0tmvdCQwm3w7JxKywTkfdVuP9QhQePVHiWmI3qNbJRo6Ya1Wtkw85eDRsb\ngo2tGlZWBAsLoKo5wdycYFZFjM0xMRbPryTp39nOVdmErCxxl5aRSUhLBZJTCKlpQHISIT5BjWfP\nCM8S1IiNy8bTWDVi47NhYpYNBycVajqqUNNBheqOWXBwyoR9zUzY2mdChXSkq8SWlpWGlKwUpGSm\nIFWViqSMJCRlJiExIxGJGYl4lv4M8WnxIBCqm1fPszlYOMDR0jFnq2tdF3Ws68C2ii33dmNap4mE\npMlHxpYAEvO9lwjAqoiyCfnKSc/Lxucu6P1iXWQA7u7ucHd3L3+kTCcQEZIzk/E09Sli08Sn/fi0\neDxLf5azJWWKC3JyZjKSM5ORmpWas724iKer0pGhykBmdiYkSYJJNROY1jCFcUdjGCmMYC8ZgcgI\n0WojRKkVUGcrQGoF1FkS1E8lqKMlkBpQqyWQWgJBJKHcn4Ve/JVJkgRJEolKoZBgpBD/KhSAibkC\nxlYKmDSUYGpiBAdTI9QzVcDE2AgmRiYwVhgjS2GMGIUxEo3MEJlsCpM0E1Q1rooqxlVyNgcLB1jY\nWcDcxBxWplawNrOGlZn4166KHWyr2KKqCfeXZ/IKCAhAQECARuvU9h3SpwB6FXGH9AUR7Xr+2h5A\nNPgOqdLIzM7E/YT7iHgWgfuJ9/Ew8SEeJD7Ao+RHeJL8BFHJUYhKiYJCUqCGeQ3Ym9vDvqo9qlWt\nBtsqtrCtYgsbM5uci7GVqRUsTS1hbmIOcxNzVDWpmudCbmpkClMjUx58yZhMdO0O6TYAY0mSnF88\nQwLgCkBZSFnl8+/tev66LYCo3MmI6b6s7CyEx4cjJCYEt2NvIywuDGHxYQiLC0N0SjScLJ3QwLYB\n6trURR2rOnCp6YLXnF+Do6UjHCwdxJ2AqYXcPwZjTEdoupfdFgAE4AOIXnYHALxSRC+7dQD6AngC\nYA+As0Q0N185vkPSEY+SHuHqk6sIehKEa9HXcD3qOsLjw1HbqjZa1GiBZvbN0Lha45wH5XWs68BY\nwYOIGDMUOtWpASgwDukpgM+JaLskSXUh7opaEtGD52U/BjALQBXwOCSdkpiRiPMPzuPCgwsIfBSI\nS48uITM7E+2c2sHVwRVtHNqgjUMbNLNvxs8yGGMAdDAhaRonpIoRnRKNExEnEBARgNP3TyM8Lhwd\naktKT1YAAAziSURBVHVA19pd0al2J3Ss1RH1bepzTy3GWJE4IbEySc1KRUBEAI6EHcHxu8fxIPEB\netbvCff67uhRrwfaObXjQZGMsVLhhMRKLOJZBPbf2o8Dtw/g/IPz6ODUAa87v45XnV9FO8d23DuN\nMVYunJDYSymjldgZvBN7b+7F46TH6N+0PwY0HYC+jfrC2sxa7vAYY5UIJyRWwO3Y29hyfQt2KHcg\nOTMZQ1sOxZAWQ9C1Tle+C2KMaQ0nJAYAeJr6FNtvbMfGaxsR+SwSw1sNxzCXYehSpwsvFc0YqxCc\nkAyYmtTwv+uPVVdWwTfMF282eROebTzxqvOrPP6HMVbhOCEZoLi0OKy5sgYrLq+AuYk5JnaYiJGt\nR8Kuqp3coTHGDJiuTR3EtOhG9A38fOFn7Azeif5N+2PzkM3oUrsLjw1ijFUanJB0GBEhICIAS84u\nQdCTIEzuOBk3p96Eg6WD3KExxpjGcZOdDlKTGvtu7sPXp79GYkYiZr4yE6PajIKZsZncoTHGWKG4\nya6SUZMae0L2YPHJxTBWGGNez3kY2Hwg95RjjBkETkg6gIiw/9Z+zPOfhyrGVfBlny/xdpO3+fkQ\nY8ygcEKS2cnIk5h1bBaSM5Pxdd+vORExxgwWJySZ3Hx6E58d/QzKGCUW916MEa1G8EwKjDGDxg8n\nKlhcWhym/zUdPdf1RJ+GfXBz6k2MajOKkxFjzOBxQqog2epsLL+0HM1/bQ6VWoXgKcGY0W0G95xj\njLHnuMmuAlx+dBmTD02GmbEZjnseR2uH1nKHxBhjOocTkhYlZiRizvE52BW8C9/2+xaerp7cYYEx\nxorATXZacjj0MFr93grpqnQETw3GmLZjOBkxxthL8B2ShsWmxuLjIx/jzL0zWDdwHfo26it3SIwx\nphf4DkmDDoceRpvlbVCtSjVcn3ydkxFjjJUC3yFpQHJmMj498il8w32xefBm9G7YW+6QGGNM7/Ad\nUjkFPgxE2+VtkZGdgWsfXuNkxBhjZcR3SGWkJjV+PPcjlpxZgt/e+g1DXYbKHRJjjOk1TkhlEJ0S\njTE+Y/As/RkufnARDWwbyB0SY4zpPW6yK6Wz98+iw8oOcHVwxcmxJzkZMcaYhvAdUgkREX69+CsW\nn1yMtQPXon/T/nKHxBhjlQonpBJIyUzBBwc+QMjTEJyfcB6N7BrJHRJjjFU63GRXjHsJ99BjXQ8Y\nK4xxdvxZTkaMMaYlnJBe4sy9M+i6uitGtxmNDYM2oKpJVblDYoyxSoub7Iqw/up6/Pfv/2LDoA14\ns8mbcofDGGOVHiekfIgI8/3nY9uNbTg57iSaV28ud0iMMWYQOCHlkqHKwPj943En/g7OeZ1DDYsa\ncofEGGMGg58hPRefFo/XNr+GDFUG/Dz9OBkxxlgF44QE4GHiQ/Rc1xMdnDpgx9Ad3HmBMcZkYPAJ\n6XbsbfRY1wOerp744bUfoJAM/lfCGGOyMOhnSJcfXUb/rf3xZZ8vMb7deLnDYYwxg2awCen0vdMY\nsn0IVg1YhYHNB8odDmOMGTyDTEjH7xzHiN0jsOXdLejXqJ/c4TDGGIMBJqTDoYcx1mcsdr2/C73q\n95I7HMYYY88ZVELad3MfPjjwAfaP2I+udbrKHQ5jjLFcDCYhHbh1ABMPTsThkYfRsVZHucNhjDGW\nj0EkpMOhh+G13wuHPA5xMmKMMR1V6QfdHAk7grE+Y3FgxAF0qt1J7nAYY4wVoVInpICIAIzeOxo+\nw33QpU4XucNhjDH2EpU2IQU+DMT7O9/H9ve245W6r8gdDmOMsWJUyoSkjFZiwNYBWPPOGvRu2Fvu\ncBhjjJVApUtId+Lv4PXNr+PH13/EgGYD5A6HMcZYCVWqhBSdEo3XNr2GOT3nwKO1h9zhMMYYK4VK\nk5CSM5Px9pa34dHaA1M6TZE7HMYYY6UkEZHcMRRJkiQqSXxZ2Vl4Z9s7qGVZC6vfWQ1JkiogOsYY\nYy9IkgQiKtfFV+/vkIgIEw9OhEJSYHn/5ZyMGGNMT+n9TA2hcaG4l3AP+4fvh4mRidzhMMYYK6NK\n0WRHRHxnxBhjMuImu+c4GTHGmP6rFAmJMcaY/uOExBhjTCdwQmKMMaYTNJKQJEmykyRpryRJyZIk\n3ZUkacRLyo6RJEklSVKiJElJz//ltcQZY8zAaarb9+8A0gHUANAewCFJkq4SUUgR5c8SESchxhhj\nOcp9hyRJkjmAIQDmEVEaEZ0BsA/A6PLWzRhjzHBoosmuKYAsIgrP9d7/27u30DiqAIzj/8+kXkJt\nCEJQbBUpXmoKKlYRW2qsiH1Q6ZOioIgiCqK2oH0Q0VK1WvBNFIRS8H5BvOANBJtU7IvWhxYqXvEW\njK3SxqTUW9vjw0xkWHabndmZ2VP7/WDp7uyZ3W/PnDNn5+xkug0YOsQ650naJekLSfdL8m9ZZmZH\nuDKm7GYDkw3LJoHjW5TfDCwMIfwgaQh4FfgHWF9CFjMzO0zNOCBJGgEuAZpdMmELcBfQ37C8H5hq\n9nohhO8z93dIWgvcQ4sBac2aNf/dHx4eZnh4eKbIZmZWsdHRUUZHR0t9zY4vHZT+hrQbGJqetpP0\nLDAWQrivjfWvBe4NISxq8lxblw4yM7PuiuLSQSGEfcDrwFpJfZKWAFcBzzUrL2m5pMH0/lnA/cCb\nneYwM7PDW1knE9wB9AG7gOeB26dP+ZY0L/1bo7lp2cuA7ZKmgHeA14BHS8phZmaHqf/F1b7NzKy7\nopiyMzMzK4MHJDMzi4IHJDMzi4IHJDMzi4IHJDMzi4IHpA6V/ZfKZYs9H8SfMfZ8EH/G2PNB/Blj\nz1cGD0gdir2RxJ4P4s8Yez6IP2Ps+SD+jLHnK4MHJDMzi4IHJDMzi0L0V2rodgYzM2tPp1dqiHpA\nMjOzI4en7MzMLAoekMzMLAoekMzMLApRDUiSBiS9IWmvpO8kXTdD+YcljUnaI2mTpLMjy3eapLfT\n/w9ql6THqsxXJGNmvQ8lHZRUaZvIk0/SjZK2Svpd0o+S1leRL2emVZLGJU1I2iBpVtl5OslYV50V\nzdewTi1trkjG2Ptu3fu+9D3vkPSppD8lbZyhbLF+EkKI5ga8lN6OAxYDE8CCFmWvAcaAUwEB64DP\nIso3C/gGuBs4FjgaWBhTHWbWuR7YDBwAjoolH3BbWqYXOAnYCqzuVibgCmAcOAvoB0aAdVVv05wZ\na6mzTttdnW2uQB1G3Xe7se9L33cFcDXwJLDxEOUK95PKG0GOD9sH/AXMzyx7ptUHAVYDL2cenw3s\niyjfrcDmmOswfX4O8AVwYdU7hyL5GtZfBbzVrUzAC8DDmceXAuMxbtcq66zTfHW2uYLbOeq+W/e+\nr8n7PzTDgFS4n8Q0ZXcG8E8I4dvMsm3AUIvyLwPzJZ2eHg7eBLwfUb6LgB8kvSfp1/SwemGF+Ypk\nhOTb1VPAziqDpYrky1oK7OhipqH0uWy5QUkDJWdq1Em9VVFnjfLmq7PNTcuTMfa+W/e+L6/C/aS3\nskj5zQYmG5ZNAse3KD8ObAG+BPYDPwHLKkuXP99cYBi4CtgErATeknRmCGF/DBklLQIuBu4ETqko\nU1beOvyPpJuB84FbuphpNvB7QzmlZfeUnKvxfXPXW4V11qjtfF1oc9Py1GHsfbfufV9ehftJbUdI\nkkbSHzAPNLl9BOwlmW/M6gemWrzkg8AFwMkk87xrgRFJx0aS7w/g4xDCByGE/SGEx4ETgAVF8pWd\nUZJI5oLvDslxdUd/YV12vobXXQE8AiwPIezuNGeDvSRTSO1kaizbD4QWZcuUJyNQeZ01aitfFW0u\nhzx1WHrfLTlfqfu+ChTuJ7UNSCGES0MIR4UQeprclgJfAT2S5mdWO4fW0w3nkMyjjocQDoYQngEG\nSOZTY8i3nWQjlKbkjHNIvj2/Imkc+IRkBzEmaXEE+QCQtBx4GrgyhPB5kVwz+ArobTPTjvS5aecC\nO0MIVR4dQb6MddRZ0Xylt7kKMkIFfbcNefKVuu+rQPF+UtcPYW3+WPYiyQ9ifcASksO7VmdgPQB8\nBAySNOobSEbgOZHkO4Pkm8IykoF/FfA10BtRHQ5mbouAg8CJVWbMmW8Z8BuwJIY6Izl76GeSb8oD\nJGcPPVJltgIZa6mzDvLV3uYKZIy673Zj35e+bw/JEdk64FngGKCnSbnC/aS2BtvmBx4A3kgbw/fA\ntZnn5pHMRc5NHx8DPJF+8AmS01svjyVfumxF2pAnSOaiD3n6dTcyZp47lXpO+86zjTcBf6fLptJ/\n360rU4ttuhL4Jd2mG4BZVW/TPBnrqrNO6rDuNldwO0fTd5ts49r3fen7PkjyBeJA5vZAmm+qjH7i\ni6uamVkUYjrt28zMjmAekMzMLAoekMzMLAoekMzMLAoekMzMLAoekMzMLAoekMzMLAoekMzMLAr/\nAkUxzZTnHxOFAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10a0a39d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "\n", "ax.plot(xx, xx**2, xx, xx**3)\n", "fig.tight_layout()\n", "\n", "# inset\n", "inset_ax = fig.add_axes([0.2, 0.55, 0.35, 0.35]) # X, Y, width, height\n", "\n", "inset_ax.plot(xx, xx**2, xx, xx**3)\n", "inset_ax.set_title('zoom near origin')\n", "\n", "# set axis range\n", "inset_ax.set_xlim(-.2, .2)\n", "inset_ax.set_ylim(-.005, .01)\n", "\n", "# set axis tick locations\n", "inset_ax.set_yticks([0, 0.005, 0.01])\n", "inset_ax.set_xticks([-0.1,0,.1]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Colormap and contour figures" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Colormaps and contour figures are useful for plotting functions of two variables. In most of these functions we will use a colormap to encode one dimension of the data. There are a number of predefined colormaps. It is relatively straightforward to define custom colormaps. For a list of pre-defined colormaps, see: http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps" ] }, { "cell_type": "code", "execution_count": 114, "metadata": { "collapsed": true }, "outputs": [], "source": [ "alpha = 0.7\n", "phi_ext = 2 * np.pi * 0.5\n", "\n", "def flux_qubit_potential(phi_m, phi_p):\n", " return 2 + alpha - 2 * np.cos(phi_p) * np.cos(phi_m) - alpha * np.cos(phi_ext - 2*phi_p)" ] }, { "cell_type": "code", "execution_count": 115, "metadata": { "collapsed": true }, "outputs": [], "source": [ "phi_m = np.linspace(0, 2*np.pi, 100)\n", "phi_p = np.linspace(0, 2*np.pi, 100)\n", "X,Y = np.meshgrid(phi_p, phi_m)\n", "Z = flux_qubit_potential(X, Y).T" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### pcolor" ] }, { "cell_type": "code", "execution_count": 116, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWIAAAEECAYAAAAS8T49AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXuwLUldJvr9qtZae6999jmnD49GpRGdFqS7uTYPHxOK\n3fIwIBz1KhOOMiPozL3OwCUcBkO4EdwetVsUYYwbTPgYudK0AqIiw+My4NW5IzYC4xUEm7EfoNg0\n3dB00/Tpc84++7EelfePzFz55apfrqq19tpn7XN2fhE7dq6srKqsrKyqL39PMcYgIyMjI2N1KFbd\ngYyMjIyjjvwizsjIyFgx8os4IyMjY8XIL+KMjIyMFSO/iDMyMjJWjPwizsjIyFgx8os4IyMjY8Vo\n9SIWkZeLyMdFZFdE3tLQ9pUicr+IPCIibxaR7nK6mpGRkXFpoi0j/iKAXwRw86xGIvJ8AK8G8GwA\nTwRwJYAb99PBjIyMjEsdrV7Expj3GmP+bwAPNzR9CYCbjTF3GWPOALgJwL/cZx8zMjIyLmksW0Z8\nDYDb6PdtAC4XkVNLPk9GRkbGJYNlv4g3AZyh32cBCIDjSz5PRkZGxiWDZb+ItwCcoN8nARgA55Z8\nnoyMjIxLBp0lH+92ANcCeJf7/TQADxhjTnMjEckh3zIyMlrDGCP72V96xw2GW22b32OM+Yb9nG9e\ntHoRi0gJoAugBNARkTUAI2PMeKrpWwHcIiLvAPBlADcAuEU75g1r/yj6PU68msdKmE5u67drdbOO\nOwsl3fJeIbUy1x0rw6Liw6OH8X3rjwEAnOwW7n852d6/bG1S3nj0ht3/cRvhWJcHCc7G1zwaALB5\nxWPD+R/3tZNy53FPmJSLx1wBAKg2HzOpGx2/fFJ+ZNfepod3wu267+zupPzFc6F8z1e3o/9/85/f\nhEdf/+OT7WdP7wAAts/sTerOn92elPfOfAUAMDgfJFTD7bOhvBMehmo0AACYanoaWUhhx67o9CZ1\n3f5mKG+ExVfv2EkAwNrJMF7HToSx3Thpx/7EqT4A4B/++C24/sU/Pdn+RHc//H8AePzx9Un5ihOh\n/Ki+7ddl6+Heds49OCkXWw/Z63vovknd6IF7J+XBA/cDALbu+8qkbvvLX52Uzz8YFpDnH7Bju/3V\nMMY7j4SxPzMcu/8VPrj7EL5v/THYGlVh/3EoDyoT/Z8u7/dZKUVq9VpdvL/+fuW2r937h/k7No3h\nFnrP+F9bNR188s1P3P8J50NbRnwDgJ+HFTMAwL8AcKOI3ALgDgBXGWPuM8b8iYi8AcCHAKzDMuNf\n0A5YvwGpWWDbaS/k+Hj1ffi4bSaZNnn0dvv6OF8QSNN4FfyAiFqvoVCu3b8wp8tN27W22n5t9tHa\nMrR+M/x1zzMWTWN8GBDP1Xp/te1Nz0rTy3eefqX2OYhnrGm+rRKtXsTGmBuRtgc+PtX2jQDeuM9+\nZWRkZCwVF/2LOKMdntTZaG50keFrrnomhqvuxAHg1Dc9fdVdWDouxfm3TBTdXnOjFWFlL+KauUZy\nKeLXSfoSyC+j4uUU/xClToe2HIqXXrOXSxf0QaiC7E+MK5tKbeq7zd1PrbonS3T3//FP/Tbc89D5\ncCxXX3TCHSzoYBO5Lk16GeyEcklihqqlaIL3Kei8fA5/XuoL99H32/9/1Dc/IxbPKAPCVZIoT2CU\n+1Hp9+Og0DT/NHEAi/zC/G4SA+rPYpOMOD7G7O0HEQSnyIw4IyMjY7XIogkFvUIiFpsaIv9lTH3F\ndcZbV0DwlzeljNC1uuk+TR9X+7qzkojZXFsY0nojYV2g7xj282ctEuylqzDDHrFJLpeuHDFPshzx\nFg486dnqoezUBR1mnLCacEy4pP35WNo5or7wdbl+J6/Lte0mlJg8dpO9EisQFXTvonvaEtFKYI6V\nW6Eq6PQynU3tQ5PVg8aOU4y5UOoOGvlFnJGRkbFiLEKELhRWyogZaTvi+vaYkda3a+WIfTd8hFNf\n8Z5m4pRgF01fepnH1kdBZHs7kRGHixSWWYqTtUYyYmInbCvtWGJ03SxrdfUF9b/s1OW2zGIrkuUW\nznY4upaiyY44RFJluXDElCfnpb5QH32/IxasXGPE9Hk1E8mInbyZzeh5lebGPmUfPQ+a5klgnizr\nrW8HgJ679AER8h49TP4ZWfT50OrTq8d6Xeocy0JmxBkZGRkrRn4RK+iXRdJJI2bHdYeOMXk7Bs+6\nUDds8Kybx4OIv8yavLrpi74o8zVO456UESuMWKpRrQ4ACseII7kw9aurMGJmjmtU7jgKxcyzLHm7\n9WAb9/qTujGx4JLq/YNRjXQDOc+Ei4SMmI/lz8t9KZV+ryVkxL7MY8FjpMqLedWhjX3ifvl7aha0\nquA5VY7q22PmWX8WUs5P8zBh7VzdOTzrdAul2effL7L5WkZGRsaKkRlxRkZGxoqRX8QK+qWAl0VN\nYgpNHMH1HLykjJR1ddHGPEsgTdnQRlmnHquhQdVg1hSZedGy1vilvdHFGGXRrfWvSxrkLi3nff1G\nL0zaniKG6FAwow61Lfac6GItiA26qaA+ZT2oT9P27noI+sPn8GZr3Bfuo+83Xwtfo79ubSyAxH3W\nFKag+8H3KGGi59F075vmThulcVvzzGQfGo6pK7Zn9+VCxprIDh0ZGRkZK0ZmxAr6tU+h7nChh7ms\nl2OHj9nKvHnCZGpf9F4qcplSbmIyKXiFTpViwWNFEUQKI1YelR3HThKKqDVigeuOMfaJLfZ7YZps\nrNvyYC8cf7hHSq+1jutSCPmZMuMaO9fnKrHdMxhWyjEL9go6Pm+nS4x2LVyD7zdfC1+jv24ei0hZ\npzi9yIg0Zaysc9eTWsH4e7qIYwcwZTrYsEpj8zSP1LOkYR4nDS187H7DZC4T+3kRi8ifA/gOAEPY\nl9V9xpirEm1fCZtEuQ8bgfJlxpiZIVsOr4VzRkZGxhIhRdnqLwED4H8zxpwwxhyf8RJeKJP9yhjx\nsU7661RFjHV24HcvG2aWGm9vZ/7WBhojYMYRM+XWh52JyMQpZQ41tOZhEsmIiRG7frNpVofK64qp\nGrPFzTVixK5+i+SvXdo+dixvPOapFYLRaLGFmwLDp1gwn7frgrRzHcuIfb/5Wvga/XXzWPAYqa7P\nvAJhGbG7H8n7tcRgQH6epeY/Pze+zXzmm7NZLM9/rW169Viva4oZvV+kdBFzoE0HJ5nsAUBEbgLw\nDgCvmdm3/fYsIyMj42KAlGWrvxl4nYg8KCJ/ISLXJ9oslMl+ZYx47WT8daoSn2nj6seDca0OAHqO\nXfDubEHRK3x6mLB9rFhV2HK78H/zuHgKyRybnDtMJAOuO3QwczTsBOH3I5mkjANbK5wrbmw1QTJi\nZsSuv32FTQLA5rq1wDi3Ho4/Gobzeiaciocj7ELsGEojI2aWSv1a6wfXZ8+EWS7cXw/T2/ebr4Wv\n0V83j0U3scLx48ljDEUezPfIaA4d0b2dzZJ57vCc0l2cdcaqh4yto8kqKMVytRUhW55Ejii9slbH\niHQr98/ub1vsU1n3athsRAMALwLwfhG51hhz91S7WZnsTyOBbDWRkZFxJJB6Ee/efzt2779j5r7G\nmI/Tz7eKyIsAfB+A35hqulAm+/wizsjIOBJIvYj7j/8W9B//LZPfZz71n9sczkCXGbfKZD+N1Ykm\nTqxFv1k0ES3ZXH1Fy0xexnWczIFFFz3KYuvFDalstYtksU0vx+qKh9TSy9ebxEkrJdZEtHyl+A3G\nlYsxRTYbh2WxN2XrFGEpTyvwSEG14ZbrG10WR9ASf9eWj1PdYMR99P/16+JYEONJzAV9GnoxRhzL\ngpWEJFpwogcWV3AfvZKOr4Wv0ZdjZR2oTKKByo0tjzGNvc9OHd0jRexUJcQRPCe0+cN1hWK+ppms\nASx6a3IOmS1uSCrg2PGn500POUtKPTJeSuSyqNnnLHBkvXkgIidhTdduBTAC8GMAvhvAv1Wat85k\nz8iMOCMj40hAFnwRA+gCeC2AbwYwBnAXgP/ZGPP3IvIEWBZ89byZ7BmHiBHr7KAaVLXt4yEx4nXP\niHl7YMeVY8pd2j4kJqKZ/SyaTjxiCo4JFIkvflswk6oGI7V+ohRSWDAAiKvvUfSpHvWlRz7hnhmy\nIuskscwdN547NMZ7vAJxZWPCPpGCjsbDr4KqBHv2DIb3YUbcY/M1x46Z8Z7cCNd72Ua3di19hRHH\n48Jluo9DO55RxDUae38/2ty7tkixRT/PenuJFUjC0WlW25SyzivemOUWdD9Kdil3bSLFYpevwT0f\nCfpeLPCsNKFc8JjGmIcAfHti272IZcILZbLPjDgjI+NIYB+M+MCxshfx+qn1pIsny8g8a2KWy9u9\nbJhlxMyYRzuWiRQ9CoJDbVk27dlcUwCipPkaZ7JwX19NLpZCLBuvrwRSMmJ4BjbSZZYY7gIAOr1j\nkyoiJxHb88zwODGdnWFdXnzZIDDLscJozyVY8IhYU+XGu0qMt5d/FpH5Wt2dGgCOO8b76M2w0rqM\n2K/vN8uF+RoDI2YnjtCXDt86N548xpE5oS8nZMSVZr42R9AfKerzrOyQyWakI0Gt3BRoJ5XlxLNf\nZr6dfrgHzHiDjJgceJjJu2PEK8aDfVHmF3FGRkbGinHQnnv7weoY8WX9pKxMs5pgRhyxX281kdju\nv9LMkquIPdePxeePrTnqzC3SYCtf98WD/tQDw0RyxiHJJPd23P/dcP4+s2Mn0xztTep6JcuL6+7O\nmxQcZ5vGaOhYJltKjNjyxJU5SM4WMaxBtBrx1gNNMmJiwT3dmuP4el0GfHIjlE+5+k3en67RXzeP\nRSQXprHz4wl22KCxn9wPukfRvZsw4sVy2jXPM2K0NGe7U/vUj1WXATP7DYyYVijMiBV5cXQsZXvK\nauIgkBlxRkZGxoqRX8QZGRkZK0bZyS/iGtZOHY9+x+KIeqQqXtqNh6HsxQzD3XodAAzdcojFFV6B\nBwDFkJdLTvE31JV5KecLD00ZES29IgVWfRnGx59c95Cvm02k6ooiMwjLY3bu8EolVi711tYn5XUy\nXxu4yRo5dNASfujECMOEOGFy/ETy0W26D168oSn7gCDeSGXV8PEjgOCw8ejNIHJ51LFebTtfC1/j\nmrvu9Ug0QUqxvdnjWdHYT+4H3SO+d/6exk4eCfHMROmrK7VYdBD6136eFpoCLRIh1MUQLGLoknio\nUOrjY3FbW44Vj6zYW76YQrKMOCMjI2O1WNSz7kJgdYz4ss3ktkhB5dhDkhE7plHuEPvYDezDf8WZ\nBQ/pK60xZWbJ3Bd2GmlCcOGsG7G3gRqhSxkXACgcG2NGzGXpOnOrYagrO5TdogzM0jPCESlZhuSC\n7E3NUgo2jyhtPV13v8eM2K1AGhmxHjEtcmF2ZWbBJ8m8zZdP0j7H6Br9dbOCrhyTgo7GzpdT4+3L\nfI+0+zhPho6irJus2Xo/dsSMw+1UEbkdKw4XKQWcZ7mxyRoxXlqhdPr2PhTdLrWtM+KC6rKyLiMj\nI+MSR34RK+g/+mT0OzYZmy0jHu2SbM6xjnKdGXFgMiPHlMtuYMkst2Km7L/+XBeZwvUcG0wEKGL4\nr/s8ButVA2uK5MU0BqXLCOHNpgDA7JyflIs1myEjMsGi8tp6YMfeyo9lwMdZRuzNCROE2NtqslyX\nM2HsDOqu0U2MeC1xLC6fcGzsuFIHBNkwX8sa5+3zOevYKWdXHy9frmiMo7F392OszFMgcW8b2HFK\nrgsf17dhHvJ+Erni150zUg4bnhFrzNfWh3nUWfeMuFOrA3QZcXHAMuJsR5yRkZGxYmRGrKB36rK4\nIsrpVWfEzC66ETu27KTcZUbMX2lbPzofGEvRIzZJWuGRs7xgof5YkSfHLtjsgkzhCxVnBEZbdszy\n8DHLyQdkQaHIiFmLL3vb9j/JhYXkwgU5d6y7NmND4Sop3cZl/fqU4UvpuOvlDMh7a2F/Dha0iNVE\nlFWD6gPj1a09fL/XyISpT/d+3dUXLAsebKtl48azapAR8z0aKzqOJhYM6POEGasUjl23sM7xxyob\nrCI6JEfvkIOMZ7SdY/1aHQCUVJ60JZZc0P3wbSOrCY4XvL9sGirYdfuwoVXPROSUiLxHRLZE5G4X\nnT7V9rUicp+InBaRPxORq5fX3YyMjIzFICKt/laBtp+I3wSwC+CxAH4cwH8SkVo6aRH5ZwB+EsB3\nAXgUgL8E8Lal9DQjIyNjH5Ci3d8q0CiaEJENAC+EDXy8A+CjIvI+AC9GPUX0NwD4iDHmHrfv2wH8\nO+245anHpuOyKlGrivUd2k7maXtWNMGiiyGJIbzIIjKd4e1dElM4kUVk0sPOIUpWjVRSUw+ZQ1nH\nog0zydBBziWR2V5dcVf0aXnMiqSedd7wSjsAkGEYA6E04z23JByT4mSsLenYhIk2e4UIJ97coyU4\nO1EMW5pvdekEWqJTPu5xytpxnMzX+m6/Pu0fOW8YO54yJHEEjxEp67ySLhpjEk34+5G6X5M4IpUu\n1tKQTLLpuVSpt9Win6WcMHrHrBgiJW7oOpFE51hwBuoo23m/co3ijncoRvWabcuiCew/3f1MHGY7\n4jbv/ycDGBpjPkd1t8GmjZ7GHwC4UkSeJCJdWHb8x/vuZUZGRsY+IYW0+lsF2ijrNmFTQjPOwqaH\nnsb9AD4K4DOwuZ3uBfAc7aDFyUfHFRE7oKhU3l2UzYM47q5jIiWxE/6Kj87b7UNmxFQebpNyxruT\nEtMa7dC5HKNgxw5mHykl3uS8DSY5mllcxKoSJnwdV+5wBLDdMB6Vc2eWncBkhBR0UtJqo7Bjs74W\nbm9M1urXUJAHgc/iwLnfdilSG5vFeUbcFI+YGTEz7aZce5FibsKIaX9erbj5JQNiwcPAgs1OSMJb\nubHlMeboa54RR2aWgzo7TkX508Bzp0J9/mlKOUDPmjGPMq67EeZM1zFhZr7Mjpn9St/GvpYezTmF\nEUcsOVLWHU4XZxF5EoBPA/gjY8xLlO0/AeBmANsABDbJ6PcbYz4867htXsTT6aEBmyJaSw/98wC+\nDcDjATwAK774kIhcbYzZ5YY3/V+/Pylf/8yn4vqnawQ7IyPjqOHWv/5b3Pqp25d+3CWJJn4dwF81\ntPmYMea6eQ7a5kX8WQAdEbmSxBPXwibMm8a1AP7AGHO/+/27IvJGAFcD+CQ3vPF/f0VkssZgxuuN\n41kuHJkNeXkdf3mJqXj2y6YzknIXLeqMODY4t+VhSe7FxD5YXqxlaY6M8t2kYCbEHMDvF7lYEzsu\nNRO+7cDmOsw03NhUNEYlldnQvXLaioK0FhuU2cPPZd5eCuUQdLLldTKLGozCNe6RzHvYlBzQgU3h\n1kh23SN2612TewnG3FeC+hSDME9kz5aLva1QR9vHLA92ZXboGNHY+/uRcssPDh2JDN48J/w8oe0F\n6uy3SDhpaIF4Ug4Z3Y26DLhL5d4JOw86xJKLfpgbsk5lN7+Ethc05zwTFsqj6Bnzc573bDznec+e\n1L/2zX+AZaCzT/M1EfkxAKcB3AHgm5bRJ4/GnhljtgG8G8BNIrIhIs8C8APQrSE+DuBHRORysXgx\n7Mv+75fZ6YyMjIx5URbS6k+DiJwAcCOAn4EVOczC00XkQRG5S0RuEGm2xWjr0PFyAG8B8CCAhwC8\n1Bhz53QqaQCvhzVx+xsAG7Av4BcaY6ZlzKjWYxGzkNMAy4vFsWYOOSjMiD3b4zpig14T2+0Q+1Fy\nfnE5xYg1DBP1PhShKdoHdtFcXplJFRRKka1ERo7td9jteZ2cO3adJQBppVkeV0Rle70VsWQegXXH\njiWV6dddd7egHGoUZrNfsaOIG6MEMfaniPICUmdYXuyZcE9xWwaANVeMWXBgv8XAltlSojr3SCif\nZxmxHU/NUgIIsuHYxZnuneLQ0Zizjl8QUUjMuiu9xoKBwIS7EeOty3sjFnw8MNrOpg3UFbHcdbLE\nORYkmIXCiFlebLyOguaeoWfNHIAdWeol2xI3AfhtY8yXGmTNtwJ4qjHmHhG5BsA7YV8Tr5+1U6sX\nsTHmNIAfVuqjVNLGmD0AP+3+MjIyMg4NUi/ihz7zSTz0mU+q2wBARJ4G4HkAntZ0DmPM56l8u4jc\nBOBnsYwXcUZGRsbFjtSL+HFXPROPu+qZk9+fef/N002uB/BEAF8QS4c3AZTOCOFbW5y6kYqv7EVc\nrcfR12LRBCm9Km/qQ6KJDikLfGQxNi9SRBMsruikRBP7NJkZK4o7zmo/T/xZb+DP2UaqLil/qFy4\nJfAwiqdBUbMKKxnipV9FSi82IfJKuEisRbKDwt2n9S4Z73OELSeS6LGZGl02Jxr1ZmsplZ0fTVYm\nduhhitLdK6KJrgljNDFP2yPRBDtvOLO16nyQolXbYU6Z7VBvXJsRmT7y2HuRxDhheujvaZMTRwqR\nw1HPJ/ysJ+YEYsVck/lZ77h9lrxSDgDKYyFueOFED6yUK44FEWOkuOvbekNmktFz6epNQa8gFlMc\ngGiis7ho4k0Afp9+vwr2xfzS6YYi8gIAnzTGPCgiTwFwA4A/bOzboj3LyMjIuJiwqIzYmd5Ovroi\nsgVg1xjzsKIney6A3xGRY7AmvG8D8Lqmc6zsRWz6U/GIGxgxuz1P0pkDkJHLPkFf1jIyIrdf3qrb\nkLYAwDIdLL0JEhGCiB1riB1CbFkK3XwtipXrFTYJN27P9Dup6FbKSqCg+8H3pvLlKvSl2w0Km46L\n6jZipxhifmNDpnLGH19nhl4pws9PFOmNNnScgVek1FUYb8F1xI49E662HqnV2XJgx95UjVnwSFXW\nhXsUsWPvyNIiH6IWl1fLsNHEgm25bp7mWTAQmLDGggGgOG4jJhYbVEeM2NAqqerZsumwgk5ZqSYY\n8UEEfeBML/uBMeZGKk/ryV4Fy5jnQmbEGRkZRwL7tJo4UKzsRbxj4q+TCDFa6pW32ZcO0ckxO3zY\nr2yR+LJOTLPmkP92oxjDs7NmxIFbQrn05md03KKsM15GVDeoO7sUZagbF8SOS8u8Rg2y74hdNY0H\nXUtBK5RiErCGHBQ4SFPXySFpKdAlJmTo5hrHeJvM14QaCJ2XnXwmmZU5njBn1Rh4F2ZmwaRXcDLg\n2GQtMOLxTmDSngkPz4dzjc6zKZsLRKXIhQFgPKxqdc0uznWTNSDEEy6iTBscFzi4HXvX/5T5mmfC\nGgsGgGLzstp2ZsGmF9h15eu7OiP2smPy9YmyvqRWSftBfhFnZGRkrBj5RaxgayojMg8S20t7o/1O\nQaEaKbhI4b6yFTEtlhd7B4ViDplTJ8Fy1VxjyvaoLYe2ZKN7v3+Dm6tELs66S7hHylFFQ6M8vErI\n7I+5sKTMiCmUqHGrlYj9FOxeTlPO35PUvfHyaNYfjGklQH3wegOvMwCmgvY0WEVMZMTMgs8Hh4/B\n2cCkB+csO2YWPFLyJHI2cb53RpERpxCyges567y1RBy6ss6CgYTVxGZdHqyxYC6bHsuCw/5c75ly\nRVlhBnS9I0eFOQgUk+BU1pb9oMw56zIyMjJWi8yIMzIyMlaM/CJWsDWsIhFEQc4nvKr2ywk21B9V\nHHXLKSDWWBwRyj5mAjsoFIm4FpMyLcW7lbKkTGReqJSYx6VikmaPVRczaA4fsUPIbGXfomDlZEcZ\ng0kEPACFU5AJxRiIDPk7dokeiSY48wLdh8h0aQYiBR3dO9FMGpVMGgBgXHwIFj1EMZud4m60FcQR\nbJ7mxREAxbim7cNIWWf7MtzVlXWVElmPoYmVYgUdKaN9dEGae5GDTb+eQaO7mXDI8KKJyDwtlKs1\nu5+haHxmLYgmKlLcDZ3wbUDePCya8OUxySN4OKqkm8/iWDvEyUMzI87IyDgSyIxYwSO7o0h4zm6s\nHH/WG+0PxvXYs0DIwsBxZtc5fq5ybnZQYNMszwKZAQqZSJUuPx7HY9XSpANA6SNscfQ06qPGhSpN\nQRExcn0ipSLATSPFwDQTPF4J8Bj4WNFFIpX8JA7tWmBHBbu2Fmy+1k5ZF7u/s9kcxah2LsxRWvvd\nwGIneeZ263GFAWC4Zcspljs8S4zYKeY0FgwEJhyZrDEjblBElYrfQWy+xso6H287jHGU1p7m6iSF\nfSKGcLFh2XHkpLFG7Nc9VxELpmdtlxjvrptre6M6CwaCkm4UZWypu78vE/lFnJGRkbFi5BexgtM7\nMY9LMWKfZSHK/hvFtPVOARTQhj6mPrtEEbnpUhCbKPaxM81SGCAAlC5LckfJoDxd9vLi2LGizmqM\n4rgB6C6vY2YMdJGlInPsKE4nqazZqtkdH4vGoHCrBWaeBeUTVHORRWWSF08cTXTXUzXbMTuPUL+0\n3IYVMWJfz3VsftbkpDHcrjNlzmc4Inmwz2kYm6y1z9LMYy+O8YoSgxggXQTLhZkR98mUre8CZEVB\ne4IM2McTjhkvm6dtuLqw/3aUfSWUd1yewt2IEYfr2nZjE+UzzIw4IyMj49JGfhEreGh7GAVwKaLw\nhiwDtmyJv5zMjsfOVZpZcEXs2B8qkhtzQBuSORZjxSJAkYWWVFdGhvSUPdqxY2YqVYL9To6vZIFO\nB4OpZ48246JWBwSnEo35AlMBaRTZ9ngQmF+n7zJGb9C4KIxYEow4yhKSYMLTiCxMEozYaNm+6T75\nkJWjnb1aHRBY7lBxVZ6u9+x3tMNjpLgwR+Ndv4+RkwZrM5QXRhFZTbCDjB3D1DzkspcNx3nmKMOG\nc8ioyFU5dt6w++1GzLfOgrl8nsZle8hlL0OmHIaVvuJbFnrZaiIjIyNjtciMOCMjI2PFyC9iBQ/v\nxMF5e7T0ikUTfgkTtu+N6oo3Y/RLmWScoHQOnF2iotgF3nuCl26RaZYzdyqitPQkpujVjerHDTEf\nUgjihrq4AoiXqhX8UpjqeJnnjpGKf1uSCZ4XA3BGiRHdKx+vgJf4nT6LaqwyLDJZYzFFqcRELhIi\nCm9CF5nwsZiCzNdcOUriSX0cT7KYpBJ+tjNJs8e1ZVbGReZpg7pSNHXvJpgjVK4oYopo7pEpG8/V\niWlhwhnHxxBmxwyOrrbnRH6aCAII4gYA2HLz5wyN2zyiicEc2WzaIseayMjIyFgxivwiruMrZ/ei\n37xs6FMisZ/hAAAgAElEQVRsVV/eG7H5Gmd8cP/pA8qxjf1hWTFYdsntkxUTzj2WWYBojGKtbiQP\nTGXI6Cnma4mYsh6acodZFzPa8ZAZltT2Z1Y27o3rxyIG1+F6p6Qbrwe22KFoXX57pJjcrisvyy6z\nMo6MV48Ql4oU1xT/uYqcaeqMOHK2cfVRJg0lw8ZIYb5AzIg9++Uxju5dVV+BRNfltpdEg3n/squN\nUcJ8rae4OLOCbk2Zv5zWntmvy6bBcYWHFPVwz825FCNm9ntmz5a36B5s7YXyeTfndmgecvlgoq/t\n/xgi8iQAnwbwR8aYlyTavBLAqwH0AbwLwMuMMTP9rg6vGjEjIyNjiSgKafXXgF8H8FepjSLyfNiX\n8LNhE4xeCeDGVHuPlTHiB8/FjJhlxGxmsuEY8c566GqTmUuUiAKWmZVCMtEilDsUL9Wb6hiKaRvJ\ni50zALvJFkqgH4CyYswRI5ih5zXTzaE0aRpnbCiGjjEP9P3HiitubI5FbNCxrSJyIKD40BpDOyBG\nHGXA8GZ3LNsm8zO/PWLEikNGZJJGq4643jFivgcNpokSubf7uUGrmgZOlMo27svJeUjst1DM16qu\nMv/pmdhTTNV2hqHu3F6dBQPAWSdf57ozNN5bbry3adwGxK4PQkbc3WeWdhH5MQCnAdwB4JsSzV4C\n4GZjzF1un5sAvAPAa2YdOzPijIyMI4FS2v1pEJETsMz2ZwDMos3XALiNft8G4HIROTWrb6tjxGd3\no98coo4Z8abLSMtfyyb5EQ+m/wpyAtdeFECIz+tkZB1dhqbJ2CSyoAjus4USjEUavsiaE0Yqr1kk\nK3X1HBiG5cH+vGVvrG7nsIqeBY6JPbPctLNuWU2nH66L5bKBEVMQmsgBYf4VQjtHFNuvKhGEybNf\nzRWZ6zXma9uOa/ulXMa1+yFk0eJzFxaKU04KPHeKXl3+zpYSqfnpy5pcmMtD4mfMTH0gH7Z+YLnw\nWbIy8Uz44fNhbpzZDts9k96iffgZZ8uoZaGF2GEWbgLw28aYL8lspd8mgDP0+yzsi/s4LJtWka0m\nMjIyjgQWtZoQkacBeB6Ap7VovgXgBP0+CcAAOKc3t8gv4oyMjCOBlNjhbz/+Mdz+8f8+a9frYRVv\nXxBLhzcBlCJytTHmW6fa3g7gWlhrCcC+vB8wxiTZMLDCF/GZrdiho0yIJrwwf7BB5lKKaIK/dh1a\n8q51Ru5/qNslJQnHNu46JQUrKyJnBGcKJGT+xmUtS0KREEcUDbY0mhNGKprXJHNI4lheBDAeUhxb\nWpZrIgteipek+PNL9w4tSXm7F3OwsjBaViuiiXmUdVXSlK1uosfXEJwwKn27ux5NBDF9XKNEu1P7\nH10rz1kXH2WO5KFRHY1nqWToSM3PiSlbh7OnrNXKHDd4NxIX2PpzJP45R+PFZS+S+Co956yse2Tb\n1u8klHXjgxBNJBjxt3z7d+Fbvv27Jr//6Lf+z+kmbwLw+/T7VbAv5pcqh3srgFtE5B0AvgzgBgC3\nNPUtM+KMjIwjgUVdnI0xuwAmSi0R2QKwa4x5WESeAMuCrzbG3GeM+RMReQOADwFYh2XGv9B0jpW9\niHe2BlGMVRakD8mgfTByrsLsxKGarM2OZ7zeCV/xHuVT46//mmMwvS4pMAbEeDVlXSfhuKCwPdW1\nlaCxXI31AVNMuYE9FOIyXbAJVWSeRozWx9JNMGLPeIcNjLjs6Uq5SIHl7llqXCYR6BR3bWBKcafE\nANbcjpsUcCmnF809vClmbtmhuNccac3Hom6IzsbQVhJcjuZeZ7biriopJjTN9ZHPM0f9YvM175yx\nRePCDhuntwP79UyYlXWP0HZvvjYk87YRrVYOIvpad0mxJowxN1L5XsQyYRhj3gjgjfMcMzPijIyM\nI4Hs4qxgbypDB8uIRwPKwOHkUinW55kwy4DZRXq9rGf42OzpebR8ucsZiIk9+HIqvm4RBbepM+J5\nHDqMIiNOseBBVc+Iq6Eks73IxI/NuErnwswst8cyyboMmF1y/X5xXjVyLlFYSZOMmMFMiRntxCVc\niQsMpGTIdXkxM9MhO4/Q0DaOs888Hs1ZCsikBHRqQmoeTRhxKuZzpz6X4zldXx1qzwQQAvWwq3Lk\n0EHmaV4ezCyY9ULDvbH7T+aC44OVEefoaxkZGRkrxiF+D7fzrBORUyLyHhHZEpG7ReRFM9p+o4i8\nX0TOisiDIvIry+tuRkZGxmIoRVr9rQJtGfFvwmoNHwvgGQA+ICJ/Y4y5kxuJSBfAfwXwawB+BNai\n6snaAXe3h5HMhhV3HVoKh3jD5N9Obf1yo5cQTRxzS+k4Fmoo91kk4lMK9fSlm4+bG0W06tS3AyH6\nWMqbzl9vHDe4vhwzDeIILvOSWVv1RvE2aOwHFO/Xiy94WV0OWNlml5KFoqADghijSUFn69uJarTI\nZra+rrhLmZx50cQ84p2UOEIfW73sEY2ncoAoch5do2iinMh8zc0/mnuimFxyG5MQvY3c2MXiiPpz\nE3nWkTjiEcU87RxtH5CCd7CnKOsG+n1eFi5qGbGIbAB4Iax5xg6Aj4rI+wC8GPVAFj8J4IvGmP9I\ndX+7pL5mZGRkLIwFczRcELRhxE8GMDTGfI7qboP1NpnGPwZwj4h8EMC3AfgfAP6tMab2Mh7sDOMU\n4fS1Go/D193n+eQvJLfdcox2o0eRndbCZZ3fqH/F2Y+dI7l53Q7lQ0SPFB+m45V1CYP57vKUdZXi\nNMCsbB5G7MsxU2N2DCo7RsyrDuqDr9cUfICurIsZsc6UZ6EpxgagK+s0xdtAiWXN9U3Ml+tTLFi7\nLK4zSmS9JjQp66K5R3MSyvzlOp7rfv7zM7EXZeCwY3uenqUtYrkcN8LX71HsDlbQe2XdIGLEdO8a\nFKKLYL/R1w4SbXq2CRu4gnEWNojFNK4A8KOwNnRfC+CDAN4nHKk9IyMjYwUoRFr9rQJtXpDTQSwA\nG8hCC2KxA+Ajxpg/db9/VURuAHAVLDueYHD+XJS/rKCvdDUO3dJkRSUxsN2OHbhzJLPcXOevtC0f\nJ5bM7JiN10dV4f6Hc3YLGiJXlkQ+tkhOt8A6iK/VM79IppmQWQY2h1pdG2hsjvdnduzrexTTmc3i\nvCw0kv8n2HHYPof5WiLvntclxIy3/RhNMr20YMQaohWEk8XzpY4NOdP41U61f5noZOw47x/LiNl8\nzc1fQ3Oa57ov8zOhyYiZBbP52jmq33Xsl2XAngUDgR1H5msjiqY3ikMgLAMXu2jiswA6InIliSeu\nhXXrm8anAXxnmxOfue29E9HE2tdchY0rrm2zW0ZGxiWO3ftvx84X/0dzwzlxUSvrjDHbIvJuADeJ\nyE/BWk38APQX7tsB/IyIPAfAnwN4BYCvALhzuuGxb34ehL7iw/MhhGe11qeWNn9WrG1nCwt7DP5K\na3mwWNa1mygPFdbETGPCJIQzJChZiUEZOhKZFdoisppIyIh9E01uzEg5IrAFRWBzdRbM9REjprae\nGUYse6w/AG1ziKVltbPHIB6v9D5c38Zxo8nEyY9BvKrQmXxbpDK9TOqjuUdzkubqZP7Sdu6Kn/+p\n58M/Q6k8c/wMendllgEPInbsrCZ2Qwzv8Z7NIVieuALHNr92Un/2tvdiGTjE7+HWGTpeDvtGfBD2\nZftSY8ydIvIEZy98BQAYYz4L4MdhoxU9DPvC/kFjzChx3IyMjIwLggLS6m8VaKVEc7E0f1ip1wJe\nvBfAcj5hGRkZGUvCYWbEK7NmGO5uRUuoks1syMHAQ4qQ8LCkpdmgZ8l2dy0c6xyZ0ZzbtcqKHTZf\nI2XEUFn6c3Q3du6YGMQXiUhXyvKxrdPCNCbxiBtM0oCwBE6JJppiI8SmbF60oIsefP2gYnFEvS+a\nSdx0/SJocrJIK+Nmix40ZV0adfGNBt7O5/X3dB7zNYYa05nnnqKgczvaOnLiiBxgXL/4meBnxT9D\nrJTjZ23ESvCJw0aoixR3TiQx2tma1LGCbpyVdRkZGRmXHlYldmiDlb2IvWDeoyJGXJKyzrPmERuh\nk0utNwJn98go6r/7onP0f/7iRxG2Jgqd0C9DrMZ4xQcpQJBS1imf38hcT9muOigYndlqzC7Fgiul\nLoWhqbO9ooExs2lW2A6q0891EMq6JoWmNi7T9U2YjI2iDLTb/TGZEdfvTWR+l7jIYuIYVKrbVfO1\nlLLOlU2CqY8nDh36s+KfITZv42eNn8HJcznk7YE9++d/NNip1QEHY76WRRMZGRkZK8Zhjr62OkY8\n2I1kxJpcGAAK14YdPkaUOtybyUTyqVH9i81f7tQXX5MRc7ksO77AHaRynbUsYrKWwjzyzeHC8k+L\nFKMN7Frvl2b+xuw5Pke7JyPV73nMz7RVwTwxhhl+PFKM3jPh+FzLewuoc6pIzEmeq+XsbDeajJif\nFe1Z4mctYr/Kc8mMd+yYsFYHxM4uy8J+7oCIvA02k3MfNhfdfzDG3Ky0+wkANwPYdqc0AL7fGPPh\nWcfPjDgjI+NIYJ8OHa8D8FPGmF0ReTKAW0Xkk8aYTyltP2aMuW6eg6/sRTza24nkXmw1wUzZa0/L\nSKNKgV9cORXdfzBywUWSMuI6O4hkxNzpiYyNtdZ6tuJlMeE2oRh9fSzzrG+fL8vE7LLGkvkc7eTC\ns60PtD42yYtTct8mF+a2WTcsfFvdGiSMd0pGPPNUc2HiOFToc5Ln6mT+0v6xjNgxYg6EpcmIR8Ry\nOfPyWHkuo2e1bhXBddVoWNu+TOzHYscYcwf99Ez3SgDai3huHGKDjoyMjIzlQURa/c3Y/zdE5Dys\np/CXYIOaaXi6S4pxl4jcICKN79n8Is7IyDgSKKTdXwrGmJfDRqN8FoB3A9hTmt0K4KnGmMsB/FMA\nLwLwqqa+rUw0UY0GkCphkkOiiWqoLWFoiTPuujqOU8smaXUFHDtJRA4TlbY96lj6ggBdWbegFbkW\neSwFfdldN+OaZ0nM+zeJJrRyqvdN2S1SffBIH3d+h439jgc7ssTnbbcGnuceM9Q5pcy9+o52P57T\nzfNfEd0lsspUipgi9dyG51oXR/jty8QyzNeMDZT8MRF5MYCXAfj1qe2fp/LtInITgJ8F8PpZx83K\nuoyMjCOBFCX66F98GB/7yF/Me7gOrIy4DRo/ASt7EU+bq/EXsGJGPOrW2sdlp6Thr7QSY5Xjrg4U\nxgxQfjzup6bESTl0RE2Ww47b5VBrp9Sax0QrxmxFlcYWkw4dCi2p5ujXPNHTtP0WNVljeMVd87l0\n87VFzpuaO9o8Szl0ePCc5p74+zBOPCvas5R67vxzmXpuK01ZR++AlDnrfpCS/z7ruuvxrOuun/z+\n1de/bnq/xwJ4DoD/Ahtz/XsB/Jj7m277AgCfNMY8KCJPAXADgD9s6luWEWdkZBwJ7ENGbGDFEPfC\nRpV8A4BXGGM+MB2BEsBzAXxaRM7BvrjfBWv6NhOHhhEzKuUrGtWN6cvqv7z8lSfRmybXis7VwCx5\nN9Os/FwpmnKstWmrIxKU1+r04DbaPtP182OezMrLlBHH5mnpOgDoHlIPLqPIiBkTE8CUA43yLPGz\nxs/g5LmMntWG5zpRXhYWNV8zxjwE4HsS26IIlMaYV6GFcm4aWUackZFxJDDLNG3VWOmLmL96qqwr\n0Xaer6XGhFPsuDVSzLiN5voiR2CUOsvVnDPilUZ9e9pqYtb5m/q3HHnwRYPU3NvnKm6/z8+iz+1B\nMOIcayIjIyNjxTjE7+H8Is7IyDgauKiTh2ZkZGRcCjjE7+H8Is7IyDgakEOsJ1jpi7hJQZdqO89+\npSKh1+rmgkm4ph6AguGwQc/A0T532zwmRHrb2Y4RepS0sN8lq7RLzb3UXG2J/T4/iz6387Rtfczq\n8CaTz4w4IyPjaGCfH6WDxMpexFKUya9lodRHdZz7zX2d2UaQLXb81zv1FS8itlZvw7vJAWQNWCaa\nYgDHmTTmOW6d0aZYsLZ9HvbcjNmOIvE1znbNXtS5RBu7/WanvhAQ9yJKhcr245VSamnPUhTumPMc\n+ueybP9cVwdt/nmIV0OZEWdkZBwNZEZcxzQjLrohQwfnp/PlFHsW9+UtivrXGAA6rtyhuh4FUOGv\nu2cCcYwahR3wDU3I5jSD9EXCHrZhlr48VILvAOySuxht086b7svsc2lkbJ4MHUiMR3BhTu1fd83e\nr2VpegUi0f/ptovch9TcUR0fuE55+USrR6r3879MPCvas5R67vxzmVz1uue66IQwmAUHBTqIMJj5\nRZyRkZGxYuQXcUZGRsaKkV/EdRSdXjJ5aNHphnK3N2nP+072c0unohOWUIUietBEENNlv1u8nTrd\ndCOXJI4A5otd3KQg85kkFk2WOY9oolDqtL6mzsWYJ2pcOK/eVhddcHn+8dDEQ9N9mIWlZm9pYzrp\nlXXUv+b5z9uVZ4mugZ/B8FwmRI7+uaZ4xOVBm3+Os/laRkZGxkqRZcTaidf6U4J8/rIS4+3UGXHZ\nqX+FS2bBtL3XKd3/UNclytItlC8+m6xxp92N5BvK8VYNmbeZJZm6pZVi9YhnBXRlXVMMYf28sxlx\n0dC2DUNsVlrNdsJoYrxxH9P7TJeboK0KtPFoUmguA36eRXOP5mT08vHzN+orld3852eCnxX/DPln\nCoiftVJhx/GzWn+uK6qbJxrjQsgv4oyMjIwVI9sR11H21qPf0ddyrU/t+rW6TrekclGrY/bb75XR\nfwDoFjo7LhXzncgRxMuYiHGgmm3KtixmbPvH5To7bpLLLsL6gGa21yuUMWxhrtWWGaayIms54eLs\n1dzW/tdYMm9vg2WuChaBOqeqxJzkuermb2p++/7GK8bZzxI/a03P5Yie4UnOuoRcmHPZLQ37YMQi\n8jYAzwPQB/BlAP/BGHNzou0rAbzatX0XgJcZY4ZaW4/DnfsnIyMjY0kQU7X6S+B1AL7RGHMZgB8E\n8FoReXrtHCLPh30JPxvAE2EzPd/Y1LfVMeIpGXGZsopwX9FOL1hSRF9e93Xu9OpfbiAYpKdlxGxh\n4f6zjJgY1uQmpRw6orx69Rsa5e9Sthd0Yik1p4DZMmIagogN+iVZm3isizhsxIw4/p/af1E0yXiZ\nPfMYhczKUqvj+nmCAqXHoGkMnbMDNSgSA+PnCc8dxmSeJeYhz1WZ6Dh0XYKf/6kV40RGXOrP2jZN\nwMlzGT2r4RmuRn3XvdBXdnceHzJGbIy5g34KrMLlSgCfmmr6EgA3G2PuAgARuQnAOwC8ZtbxMyPO\nyMg4GqhG7f4SEJHfEJHzAO4E8CUAH1SaXQPgNvp9G4DLReTUrK61ehGLyCkReY+IbInI3SLyohb7\n/DcRqUQOeerjjIyMI4F9iiZgjHk5gE0AzwLwbgB7SrNNAGfo91lYBn18Vt/aiiZ+E8AugMcCeAaA\nD4jI3xhj7tQai8g/d8dOrvO665tJP3RWzHXXN+z/tdDV7hqJHlw9L4GOr3epbLf3afta2V5ZJ2Na\nIrllFMc1rUZBBh+bEFVul8WWQ36pWiTNyEK5VzSt92cvu+dRNGliEG2JvlxlXaq+nih0QIktY1FN\nfQw0MUVKdBH3u95xvgf6GISyv6cpcUQTeE75eRbNvRHHbxjxjgDiOV0W4VnRlHX8rPhnyD9Tthz2\nP7Mdzuufy9EgiB7G47CfqTZq1zXe2wn9JvHk0rAExbkxxgD4mIi8GMDLAPz6VJMtACfo90nY9+C5\nWcdtfBGLyAaAFwK42hizA+CjIvI+AC+GIvcQkRMAfg5WVvLfm46fkZGRcUGQ+LD++V9+Arf+5Sfm\nPVoHVkY8jdsBXAtrLQEATwPwgDHmdNPBmvBkAENjzOeo7jYA1yfa/zIsg35g5onXN+NYpZGxN7Nf\nW+4RI+ayN5PZpK80KxB8eY2UdeuJcldhMqz4mDBhduhIKeu8oT2zlwW+yKzQKce6csgzt7bMeBpN\nLsyaMk5TTnE9M/kmpVTK1VdTeFZEjw2VKzcGzIhjU7Y6443bzmbMTZhnjGQBJqyttqL6VNp6Vtb5\n+UvbmRH7+Z96PvwzpD1fQPwMDvfsufhZje7dZOwDM+Z3wIU0X/ue73gGvuc7njH5/Yv/8U3RdhF5\nLIDnAPgvAHYAfC+AH3N/03grgFtE5B2wZm43ALilqWtt5LebsHIOxlkoMg8R+VYA3wng11ocNyMj\nI+OCYR8yYgMrhrgXwMMA3gDgFcaYD4jIE0TkrIhcAQDGmD9x2z8E4G4AnwPwC019a8OIp2UegJV7\nRDIPsUFOf8N10IgayDegd+z4JGap2z90qleXAbNcmOXF6337RY/kVrTdf6U3SEbM5aZ4qzJiGZst\nswwOXG4wX2tCNB7OhKgo60zLlpmF2v/jyCyJGXN9f4YuA9bP25u4wYZxi1i7u3cpFhy5srdkhjGT\nqvR6Vy4H41odAPTcfrEMuc6O27g9a+Opryr0MfTXzWMhjasZHar5Gustovlp5y/rODodeu5cH/iZ\n0J6bzcSztkX1OwP7XI5HtMJQngm+7tEgnNeQqdvSsGDOOmPMQwC+J7HtXky9H40xbwTwxnnO0eZF\n/FkAHRG5ksQT18LKQhgnADwTwB+6l3AJuxa+T0R+xBjzUW788Cf+cPLy7X/dNdi44n+ap98ZGRmX\nKLa/+LfY+eLfLv/Ahzi5b+OL2BizLSLvBnCTiPwUrNXED8CKILjdGRH5Oqr6egB/5do/NH3cr/nu\nH4/liJxVg9Tdmox4rV9nvJukveUv9jH3Fecv+5oiF7Zld34mJySrEl+mOjPkMjGRsSIjnoMlT1gT\nBzNSWDCjic21cbJQGXGnzmILWrWUNLal6xj3O2bEzJTbWTZGVgLEaGNGbNuMyZNlPCRZqGPKPdpn\nPAptAyOuW2LMqp8cv3FVwTLi+mqnCal5NJlnPPc4u0XD/O2shaZ+/vMzwc+Kf4aOdXW58OZeeAa3\n3XiPaIwNO0dNMniE8/ugQWvf9HRc9o+eNqk//Yl3YhlYZriBZaOt+drLAbwFwIOwL9WXGmPuFJEn\nwDLjq40x9xljHvQ7iEgfVrbyoDGHOOxRRkbG0cDFzIgBwJle/LBSX5OP0LZ7YMUTGRkZGavHxf4i\nPgisb8TC+FRc066irDtO+162YU1eLuuHupO0fUMRTcTKurqygg3eZVxXxpm93UmVSSjrxm6pmFoO\n+SV20bBUjxRhHGd5VD9uUwSxlDhCU7yVvbq4AQhiiFg0QdsVZR0fq1CUUnOZr7HJmaKY47rxkBR7\nrp7FFSzG8KILVvAN6d61cfSYHKtBvKOZr0WZLmg/FsWEOha/uPnHimJW1tFclWPeoSNs57necaZs\n/Exozw3X8bO2Q2M/cPNzzKIkKnv9EIsnO126LmV+7xepeB2HATkecUZGxtHAJSAjXjrW+t1YccPK\num6dEbNSwLNgADjpmDB/mSPztTVvvkZskiNKKWUZ6ozBl6vIfC1sj9yd96ms86ypSJiBsQl4YMe6\n8sezjpRJmaZ4i1iwsr1o2M77NynuUkq7SeSxBgUdENhtzHgp2l3Ddm1/NoXTTOWqJmasKDm5PI9j\nR5Oyjuce54GL3J3d/E2t+Houj1zq+fDP0CY9X7vUlx16BvcURszY6rjYyKQZH/EKJrHffmAOwklk\nSciMOCMj42ggM+I6+ptxUI84z1w93qnGggHg0e44p2j7Zo8Ysduf69YSX/wO3I0aklyN2IMZ7Eb/\ngZhxVINgMK4x4qYAQMyQPIuMHCCIeQoxtCYzqMmxWG6rmJzZsosjSyuQUpEHd/qp7XUZcuzEUWfK\nTTLi1BhGzh2qDDiURzsjt73St++67eRUMKYx4uN6Rty0wpFSlwv78Uht16AF+uFyNPd4ZcZz1ZVl\njZghzfVO1wbb4meCnxX/DO2S/HZ3RG7NGyS/Vxitlhlkh571AR33QGTEWVmXkZGRsWLkF3EdJ6cY\n8VqCEXtHDZb7sjz4UcfscY4TA4vLHXf88DXmQCb89ZeRYwwjCjOqaKBjJw6SEQ8DKxm7cpVYDlUN\nJg6FIiNma0BTMkvU2gZ4BtYk9wUC040ZMbmBu/oOrUrKbmhbuPEuuvp2URhxE1Ly0TGNd+Xk+swM\nefto3W73zBeYsppw4+GZMwCMe8yui9p+KYsYf2+bXLvbOHRo86Sq6mPAcy81P/38lT7pQGiu+3Kv\nE8LQ8rPinV6O0+pyj5jriFcux+phLDl0gH/Gt3ZDX5gR7x0AI86iiYyMjIwVI5uvZWRkZKwaWTRR\nx+Un1qPfHPGJRRMbXtlGS2VW1p10IosTFGviJLX1xufrpS6O6CIsV4JogpR1w5A1oNKUdVQeD+qK\nu2qgZ/DQIJppV6Sg4yU6K97qx+L9/BJYE0HY+qJWz6IJFkN01u2SsyBxQ2c9BCwIogkWbZBootif\nsi5yZhiwaMKPN4kjdsOyu7M+cnVhqT7aCffGi194LFixp4ksWGxQkeJPux+6IrZ9jOJYMVmfZzz3\nUvPTlwua09IN987P+y4FoOBnxT9DI7o+ftYaHYoU0QRnzmHRxGDBzDazEDlfHTJkRpyRkXE0kBlx\nHZcfX4t+89dSywAQRXxihw3Htk5SHSv2+l0XarOjm+RE7HdgmYIMA5Oqds7XyswyqmGdlQGUoSOR\nWaEJ3swrcmYAs0lu6yNZ6e7S3vmCFXTdiPEyu/WMOChbOsf6tN3Wl7SdGa+vL0lZVxwQI44Vc5bt\njInxdgZh1eXrS9pedgMzLHtuO40Rs+DIGcYp7ipS9lXEpP09Sylkg7KufV7d1Bj4cmoeFjxX3fyV\n9ZAVQ7rh3k7mfyeM2xop7sbuGWJ374peIdr0LqLohvVnnN2iuZxyBNkX8os4IyMjY7W4FMJgLh2P\nPREzYpYRx/FQfaARPWuAl1Gxw0afHUJcOYpBXJGL52A7lL2MWJELA+TQQYFUmIFFrMSxtdj0SnfP\n9WCGZEqXcQLsGFGpbSd1DeZpzHyZEZckX+8es2yI5b7Mfv12ruv0622LDgkSqcx5CuEzd1MG7wie\nwbpeEKUAACAASURBVESZT/RMFN7FdxzJgMPKxtcX58O9Y7O60smT4+3kHqww5di8re5OzbJidsgo\nFAebFDsOqwJ97kx0EWw6yax/T5m/NKc1eTE/E126N2supxwTfSauhueUu5w4uFT9ud7rhnEb9inH\n4AHIiA8zI26/NsrIyMi4mFGN2/1NQUR6IvJmEfm8iJwRkU+KyAu0U4jIT4jIyOWxO+f+X9fUtZUx\n4kf1e3Eer4QsqYkRH3NMRWPBtmyPtSZkHTEILIAZQeHqWS5sdgM78EyiSlhKjBVngkVy1wG6Fr0k\nNqmxKS0cJaBbQnhmCwAlsV9fz9s7G1R27JfrpEflNStTFGbBETsOTDpixzMQs2A9oI24crEe7mdn\nI9yn0bYtM5P3dQBQnO/U+jTukbNDSW3d2I929KBVY+dswyxYxvX7uUg2Z0B3aonmXmRVwToQx4hp\nTld07wpvLVFSNuWSQgM43YshfUtldC4n4qxnhJ9lzghtr2FvFOqGiZCZy8I+7Ig7AL4A4LuNMfeK\nyD8B8E4Reaox5gtK+48ZYxpfvtMnyMjIyLj0saD5mjFmG8BN9PsDInI3bI5O7UU8N7JoIiMj40jA\nVONWf00QkccBeBLqCZQ9ni4iD4rIXSJyg4g0vmdXxogfM5Whg5cwXTYid8uZOKtGQdu9eRoteyIj\ndGcqtLc1qWPRBCsmjKuPlm4spnBlVoakyn4ZFMVDmCP6WuG/kYnVuxZJTYsJAQSHDBY3dDfIJI3r\nJ6IJfXvhTJ+8CILrovqEaEJINIFJFDL9IidLSTbXSogmPNsxe6RopfvY7dn6cj3UlZSy3TugsCPK\n6HwqRoZT6iYcMqSsxzY2Dd4O80Rf4zlV+nnWYk4WPTt/WRzBYiXjxUqkZZSC4oi498n62vHQL7qs\ngt43fmg4KwzHrVjv2H7vsmiCHWQaYj0vgmVYTYiVubwdwO8YYz6rNLkVwFONMfeIyDUA3glgCOD1\ns46bRRMZGRlHAil9zV/c+Xn8xV2fb9xfbH6ntwPYA/DT6jmM+TyVbxeRmwD8LA7ri/hUvxt9LVOM\n2EdsYgVeFC/VMeJ1hQUDQDFwRuzEfIsBsWNiytX5s9F/ADC7gRGPd+wx2CyKXWbHilF9bIhfz/IQ\nOTPQskjNa8bxXNmF2ZXnMUnrntiobbdly4q6m8dCX/pUXrflIqojRuwYFjPmSFlHDMt4BpVYuYlL\n/i2cBLxKxN11TJhNs7gPE2eGbmDkRSfcW825JOVoMoknXLACj5hdOXJ1pMBj87YGRRSfdxL7uEqY\nr3llHUeaY/M1mqtF185fWQv3u1JWLgVHiqNyNckzxyEIwjzgdIR+NV5K6Hf8DDt3abquA2fEiRfx\ns5789XjWk79+8vtX3ntr6hA3A3gMgO8zxsyj+WvUymYZcUZGxpGAqapWfxpE5LcAPAXADxpjkjmX\nROQFInK5Kz8FwA0A3tvUt5Ux4svWOyASjII+GkxEJhlxG/LMcfCegp00HOOVAbGfPXJbPn8ulLdt\nmVmwIRmxl7ex2VPk0KGYsrFssDEGcUOG41SeOc+ENRZsy5YZsqy3d3yjth0AOpub9vjHghzQs2Bb\nf8LVhf2ZHcOZQBmSM1YsFyY2ZYp200+IBYPYsYxY/umugeLrarJQZoCGyt5xIXLBLhKMuKVrckpH\nLy0zfDC0nHlAmGcFOZ9ETi00V71MvGS9B41B5VcL5MRRUFnTOXHNOrlLl27sugU7adTLnBGbh6PC\nhWPETRCRrwfwrwHsAnjAZaA2AP4NgI8AuAPAVcaY+wA8F8DviMgxAA8AeBuA1zWdI8uIMzIyjgTY\nvnoeOFvhWV/f49T2VQBeNe85VvYi3uzG18VBf5gpe7lSJyEjLhwDYrfkyGFjsFWrYxlwtX22Vs8s\nebgV2MPwvD3GaGe2XJjLsea8fY4zjzZZNTwT1lgwEJgws+DeicBiy2Obk7JnvP4/ABQbxI49I+6F\n4xsKpWhcwBhmxBHzJQcBNMiIPfs1LCMeUyCeLpVdNmIO4lRQOEejOJpUXbbgcG7gSlCiZWCsyIvH\nyQVuHbETR12XoGWHAeK5WrggRxKFE9Bczum6WV7s7hPfD5blFrRy6Tl23KG50SF23HMu/OzEwWLh\ngwj6k2NNZGRkZKwYi4omLgTyizgjI+NIIL+IFWz24mWfkDyCLbe8WzuntZc9kvUMlawDrKxz9ZE4\nYuuRUD5HZddmtBVM2rw4wpbtuWKD+YQp26CexWEuxZ2PMUzLSE0cAQCdvl1is3mapphrEkcAQHH8\nMvt/g+pIcWecuVLFogkWAXS9aIKW/QkxhXH3PGWp5KeEUANW3JkxxZpw80OGHOmN4lq48xbRspuX\n5bPFEPVUmDFS8YI1hOSizfNh0lapA8I8k5KeD1bw0nUNNRM92t5pGIPJMY+RYjyKjczOS7bMEezW\neR44Be6IYhvzEJhD6tBxUMiMOCMj40igybN1lVjZi7gvU/bQkUKGlBH+K0umSsJMyMcQZrdljifs\nFG+RUk5hwQAwPm+ZsMaCATJfYxa8w+ZrFJ92WM8u0ZYFA8E8jSOqsclanBXDRURTXJVt2bLXsk8m\nZwoLBoBi87LadrMWmHTVtccwkbIuHNcr6UbE4dhofzyqG+2n2I9MHAhCXUmpSTodcuN2rJyzS8iQ\nVkaeEZe6aVYTI2Y3666PEZzIvuLT3adYcqm9ENjhQ5knXMe5C/1eRRn2HxX0rCjKx2GCEbdWTtK1\nFMfoOSaHJK+441ULr4y8q3uXVkiR4rA5PMPc4Iwuhw2ZEWdkZBwJZNGEAtk5E/+O3FgVRswy4lFd\nNmh2gsnZeKfusMFOGhoLBoDBWdtmcC4wqRExYs+UY5ZMhvSKqdp4oLOmSf8jl1qOMVzPaxZllGB5\n8Hov+g9Mma+5AD8s640Y8WadEVfEgiPG6+oNGe8PJfTLG+qPaNJTMuSIHU8YMXT40WD3904Ut9rU\n6nsluXFHjNf2sSKmJVI3zYpQ6XOy48qp/Hmqe3uUVcPvT/oDVow0ZHJhszcvBue5t180ysOH5FrO\nTjXk2DNhxGVYPbLziO94ZNpI98scACPOyrqMjIyMFSO/iBUUu7MYcZ2JsNWEUTLTRrnl2ELChUJk\nV2W2ihicY4cNewyNBfN2ZsHDXc5TV5fzLexW6RheEQX3IUYcsWMnb4tYMMlKvRPGhu6kEcmDnezX\nUDAXsxYsLCpXv0eXtUeU1zPiAQdzYRkxqwImMmKo8ESYg0OxGDMKIuPKo4oDQnF2CXu9EfOl43on\nBbYI4EDiJtJb2DYdYsmVkp0lYsl07wq/fcG5ETl3DHxde4ucxuPT89ejc3VcvUThR/WwpIXLlccB\nowoOuekYsSTk9AfBiKssmsjIyMhYLQ4zI2712RGRUyLyHhHZEpG7ReRFiXYvEZFPuAR7XxCR17eJ\nTp+RkZFx0DDjcau/VaAtI/5N2MhDjwXwDAAfEJG/McbcOdWuD+AVAP4/1/b9sEGR3zB9wGL3XDK9\ndRRndjio1UViCCdyYHFFpJhz2zkKlVfKAbHizYskhttBHBHFlXAiiZQ4Qos5y0vGSBnXGGnNJwSl\nJW03KDuidPauzHWcecFn0IiUdWSyxoq3qmfFEJo4AgB23fXskBna7ohEE+66o0hb1HaPJvqw5RKa\n41OvkflZj5JYDl2bYZVwEPBxqzl+Lp3DKw7ZQSEaI56rbjnO2UDK9TBP/P3QxBUAUHa96IJjRkS9\nwTQqJZY1AMhknukhb5vC3GgmeCklo2/bIXFEZFbKz62PS03PJYsmfAYXjg8dZXJp6Pci4Hgchw2N\nL2IR2QDwQgBXG2N2AHxURN4H4MUAXsNtjTFvop/3i8jvAfie5XU3IyMjYzEcZtFEG0b8ZABDY8zn\nqO42ANe32Pc6JBLsjU8/GFdErpLMPuq5yCLG7FOEc9zgPXK48Cw34aQx3GZG7KKrcTzXnXCu0a5P\nXa5HwooVJvWbXhAH81u7Pf3bL6qLM7FjUv541+YO5aGLMmj061k1WBlXEfv15mnMgreJ0XomvEMs\neI+2b7vx2KZxYcY8jDIyuLTzCW2dN1vrRtHCwnE5B5rPaci5DcdRlLDC/Q/Hj7JLGN8XYsQcWaxP\nKy435wpie51RPR5wlCmD7t144mqs33t27BkO6yuraG654TA0RsyeS8UUrpNwNPHbq4SjymQ7Mf0O\nM/09yo7i5hozYjZfU3MbzuNgswAuds+6TQBnp+rOgmJwahCRfwWbbvp/WaxrGRkZGcvDxe7QsQXg\nxFTdSQDnlLYAABH5IQC/BOC5xpiHtTY3/trNE7ul677lm3HdtU8JG9kkxruLEiNmsyLPfjkQD7Nf\nz0pSJmlRNgNXHpxneTTJNHfrWTdYLqxl6mXWU5Hsr1QyFxdRJmDLCIokCw6yNS8b5lxkUVYNV5Y+\nZd/lGMKRu7It747rLNiWq+g/AJzbG1G5zoj3xsyeiR23ZCjMiNeibN2h7Fn3kB624+r0rmcaBoC+\nl5NHQYXYWYHk6475GWaAxPzKdTu/+B5F2ZTdPU1lX9FGpYqYaV1ezHOL51w0V4ei1M2WEXPWGS0/\nXofc/dl8snTPZbkW5hkURhxlQXFuzx++7S58+NOfwbJxsYsmPgugIyJXknjiWiREDiLyAgBvgk2w\nd0fqoP/+JT90qL9QGRkZq8F11z4lIma/9Pb3L+W4GlFqAxHpwRosPA/AKQCfA/AaY8z/k2j/SgCv\nhjVeeBeAlxljZupNG1/ExphtEXk3gJtE5KdgrSZ+AMB3Kh14Dmy66R8yxvz1rOOOT38lriC5sInK\nzlU4yg3HGWv33H+2bqiz3JHCkgFdBjzaYW03G88719SEvI5dVicOGXPkZxXOUuIzBXOQmsiCou7Q\nwZYSosiI43CVetCegXNXZrnujlJ+hMZoi+7HOTdGXMcseIeY8sDVp7Ix+KwtPWLBfZIBMzv2sucq\nkQMN/fpUL4u6/L3H7tyRswJZByjyTyFLHX8/UvfL39M4P95sOwGNBQNh/kVzb6wzYs+Uua6MVnTe\nLZ/cudWsM/R8EOvn5yq43Yc5FzkkrbuM0tEYKNlCloh9yIg7AL4A4LuNMfeKyD8B8E4ReapLozSB\niDwf9iX8bAD3wyYOvRFThg3TaPuWeDmADQAPwr5oX2qMuVNEniAiZ0XkCtfuBlgxxgdF5Jzb9oGW\n58jIyMg4MIyHVau/aRhjto0xNxlj7nW/PwDgblgd2DReAuBmY8xdxpgzAG4C8C+b+tbKjtgYcxrA\nDyv194Lkx8aY57Q5XkZGRsaFxrJkxCLyOABPgi6evQaWBXvcBuByETnl3qMqVubiPDj9SPQ7jttb\nF03E4ggSU7hl0iiVNcM5ZKTiQ8RiiHG9jpdufvnbEB0LCIoYXjJ2KHFmk7xKc+iIYhD3SPHhjefZ\niYPFFGt2uV31aNlN5aob2u4607ydISvYQl+9SOIMKejO0th60QTX7dAYcnmvpWiCRRB9ir3BZe8c\nMuI4DMphiz45xQgpT52pXIfHbUzjRXF1fcLaokdp6Xk/Vy57IYpfqcQJKVrE/9XmCZtMNsU00RSC\nPKc5Ia03e4vNM+tR48bsqNJnpXEQQ3iRxbBLJn4kxvBiChZNcKzoZSZu9VhURswQkQ6sVOB3jDGf\nVZpsAuBAOmdh/VOOAzh8L+KMjIyMC4lUMKRPPPQw/vqryXfkBGIzFbwdwB6An040m7YyOwkb6TVp\nZQas8EW889UzyW0RO1YiWcUp7C1T0VyRbds6y2VGzOzAt9FMemzb9kubST4yYhxtWTAQGEHEaBQF\nHRDcRCdG8oiVdV5JFynrqLwXOWfY8h719dygrphjxsvs+OHz9j5s0Rifo3KsrHMMq1FZRyyYlHXH\n1ykOsut3dUyPpustuthduuTsEG5/SoiCfmK8fDlSiG7T2HfrLuexsk65tw0MMBVdrVJyI8aoz9mS\n8kVqyugOKTYj9u23Ux0/a+zm7Zkyu+WPFFNMbVwOCqlVwzNPXYZnngru7L/9d3enDnEzgMfAWoSl\nglLcDmtV9i73+2kAHpgllgAyI87IyDgiqBIf/DYQkd8C8BQAzzPGDGY0fSuAW0TkHQC+DGvAcEvT\n8Vf2It57ZCv6HbtSzpYRR4zYfaVTgXiGE7fkOvO1x1JkYIoMzvZr9o2MXVadiVIk+27PqDXWlGLH\nmoyYy14GbEgWPKZMFgMaG+/IcZ7Y/xkaW89+NRYMAF/dcoyYtm8Ra9oe7M98bYNWGIOEo4gGH2SJ\ns310owzG7lx0j3u9MEZCY+fHsUiMty+n2J52b5tQKa7Gtt7JdROu9hq8Ywcw5UjiVhv8THDORP8M\nlTQfurQqKbje3fMoz6LCiOOceYdTRiwiXw/gX8MGPnvA5VI0AP4NgI/AsuCrjTH3GWP+RETeAOBD\nANZhmfEvNJ0jM+KMjIwjASZj88DZCs/6MkSex8aYNwJ44zznWB0jPn0u6VlnFHdO/uKPo9CT1czt\nmtw3zrZcP1Yq83KTC3OhBHHhOrag0NgxH8szhUgu3K1nwbVlF1JQyYDAZa5jNsnuzN5Cgl2U2TnD\nM12NBXP9OWLBLC8eRFlMfJCZRNAfx1J3iB3tEMNiFjxoYMQ+mwdn9eAAQT6A0G5JjJjGqGwYz4gR\n+/tB94jv3cTFOWKDukOH5rARuyg7GXEiC/Q8c9bP/5JXhBxEyT1DGksGYgsM/9yxPLqM2HFZ68vB\ny4j3bzVxUMiMOCMj40jgYo++lpGRkXHRw+xDWXfQWNmLePeRnaQ5iWaqk1JGjCdG5ixuCMcNoom6\nGQ4fHwDGXnmUiI/rm/IqsjS8pKSlpo+KtaiCwMcjYAUdOQVIV4lktVbPgAAAprRlNsEakDKOs2n4\nGBOROILG67SLzXFmm8zXKF7HI9tONEHbB6S4G7GIyJucNcQjLkhZN6L7OCJxhFf4lSR66HByUXcM\njuS20R1R2Y73GmX94HFZJ8WdH884mhg70Lj7weKInma+tlg8BU30oM1jIJ7Lk/nLjx2FovFOLeWA\nzerCGHnFW6mIK2x9XQzB4ggWQ/hjxBEHDyIvR8B+k6oeJDIjzsjIOBK42MNgHgh2T+9Gv1Pym8ox\nN96uOVyksmYEt0zOEqG7wXr20PThjBgxlXvERPyXnhWSTV9kzcQpcvJQYrfaslcOBQZWkSIJztyK\nPJXBsU2Y+Xkl3TliwZHizineHiEW/NWt4FJ+xinuBqygY0asrEaalHXMmjrskssrJ+UYzI69O/Tm\nWpjyfI2bPVvuE6vjMeKx63lzwAE5bNDYT5gyK1QjV97ZpokaIhasZNAYK3kDAZ0Rp1CKW1Vwhg+a\n313/LPZ0ZTczZa+kizPM1Meg6OnX3cb9e15kZV1GRkbGisEfjcOG1Zmvnd2LfqcC6WgyMGYEE/M1\nlhErMrKYJYTzptjDLJTkFJD4oKNw/Sp6zQGCZiFiUixnZNMnz8BKkguT+66XaUaZlceVWvbsl12R\nYxmwlxEHkzU2Txu6DB17tI+vA2JGPFZMsxg+Rm/J+diieUCxdt092eqEvqx1Qh+9azQHCmLzNX/d\nx8fsMCJquetl7jTGPPYT87UW964tUiaVfv7zPE6VF5vfNAYuTniPnr+S7m3Z0WTEJN+PVgU+J6Nu\nvqaZgu4XWUackZGRsWJk0YSCWYyYMXHoSOSG8/LeJpabYsSajDiFiVZZEi659BH3lgCpm+/rk5l8\nC0WOmJARe8cBdjDQ2PFoGPrC/g+cjUPLwsyM1zt0cCAfZr97zpGDWTBvZ6sHv3KJsnYTfMYGZlrj\nVLjHYuj+h7pztN/m+qh2Ldv9uhycx+IYMeYRO1R4Jxse47J+P1Iy4on8P8GMUznntLpqotdow4hR\na6uBp+RAkRczS47YM7d149nd0Z1WPGNuk8l6WcjKuoyMjIwVI4smMjIyMlaMLJpQsHcmHUkuSgCp\nmJRpy7D09nrdPOIIhl8tpczXxuTcMZ6IJvQ06Bq05WssmiDjeDaX8vuRg4ChbCCVuKhaFEJ1SMvI\nKB7x2GfooGX7gMUUVgSwoyjobNnWx8o6Nl8LIqnxnk3o2iSaqCjOsqnWEm3tf1bs7XTrEeC2KUMH\nX6O/bh6LYUKc5cezKFlZx4kv3b1jh4+iHlksKXZSYBLK7LbPB7dpnvMsjmAxhD9maNkr+Fz1try9\nJIWnF13w8Tky3kEg5Th0GJAZcUZGxpHAILs413F+lLbpa3Ky0NhtWhnXbv8UNPYbm/Tw9nCwXkN6\n9LaImFIi3bjPCGFYU0WmVf56meGx8mlXydDBueU4trBnx6x0Y8Y73B0rdSF3m2fBADAe2HKVYMSF\nu0ZmzDF7DjnlPBMuySW3u0bmaa7ffC1a/jweCx6joaIA7rCJII29vx/J+7WA+VoK2vznOakpsRdx\n8rDlurI6ZsH1+R8r++qMWas7KMyz+r3QyIw4IyPjSOAQi4hXmLNualSaAu3Mx4hny8XmMWLh82pf\n7FhGXO/j4kF/vItzXfZotytsixkaM2LPhJjhcQxijk2sMOIdCgC07WTDkZMG+QJ7d2ZNFgwAw92Q\nmaUaWT0BZ2RhVO4aU4yZ5a4DN17sAs199P3ma+Fr3J3k6iMZMTtOVPVy5NARlb1pln7vCiWg0zyI\nHDoU87UmU7Z5ngWyeEThZMcxi9UZrxogSymnTUGXT48PMyM+2EjMGRkZGYcEY9Pubxoi8nIR+biI\n7IrIW1LHF5GfEJGRiJwVkXPu/3Vt+pZFExkZGUcC+2DEXwTwiwCeD6Df0PZjxphWL1/GSkUTTeKI\nuK69Mm6YWKbNOn4KmjgiPn99OZZCk5iiKeJUaqnrzaRiZR3FjFXEOxyBbsjLcVevJfkEgmdbFBdY\nSX+UEkdwvRdNVCMKikvwEc1SogsWTVQuXjD3JfLic/3ia+Fr9NetjQUAjE19PCNlnNTvR1KUpKDp\n3jfNnTbeohOl7RzKOoZ/Fnh/FiF0IzFdezHG9PEtli9GGMwjkyQYY94LACLybQAev8QuTZBFExkZ\nGUcCY2Na/e0TTxeRB0XkLhG5QURavWNXyIjjz1Pqy9xkflYpdYvEGGbEX+a6eU3aIaTOjhdO4a3E\nmkiZQ3k2FimP6P57Ysd9ZUUUm2Z5xjhQTNoAYOSj3Sks2W63SjpvmgYE5luvt0w45dDh63k7M0s+\n1mhgV4xjijc8VvqdSjjqy8OEQjOacxNGHMZYHfuU+Zp36FjQjC3KUDPH6rFS6uYxZfNIOjQpjLdI\nOofUGXPqHMvCBbCauBXAU40x94jINQDeCZsD5fVNO2YZcUZGxpFAiu3+/WgbnxvvqNvmgTHm81S+\nXURuAvCzOMwv4kFlWn2hJmZgSp0tp+um67XtDI3xcrxhL2NiIpOSETctcfbr9y6afJLYBcuLjXe3\nZnbEDE9hxJEJFDFHf6xUjrRqOHB1g1odEMuDxw3ma5pclY817tTPMR4FXUoUu9hH4Uvkc/P1PBY8\nRjx2k/HkVSczO/GMd7GcdIymeaKvGOvbAd18TfM2m+f5aDZPC3XxM1zfftBIXdc3lhv4xjI4B/3p\n8OFlnrbVFWYZcUZGxpHAojJiESlFZB1ACaAjImsiUvvKisgLRORyV34KgBsAvLdN31bKiBkphWaT\njLetC3M7IXz946V9/dPsvC4vjlhVNb/aNikjbtyRZMTw2ZLD5kherDgraPJTILDfiDly9gjPckmu\nG8mIFaacDPpT1a+3GFEMYOUcUV/4uhTZd3Rdrq3mygzEYzfZq50exnW8LiOeB1HuQ3WVl+i3cqwU\ne9b21/aL5bq6jiTU1wNh2WOk+wccDEPcxyL0BgA/j3BR/wLAjSJyC4A7AFxljLkPwHMB/I6IHAPw\nAIC3AXhdmxNkGXFGRsaRwLAVGavDGHMjgBsTm49Tu1cBeNUi58gv4oyMjCOBw+zi3OpFLCKnALwF\nwPcC+AqA1xhjfj/R9pUAXg3rgfIuAC8zxtQs9qeXJM2xJhZTxs1nvlY3qdHPewE1DCmw6dREWacv\n6PwlxMo6/bBaXAqjlKuRLgLw4gJWqsXp3+uR1FKiCX2fumIwOi+LTFjJ6ONDKGKY6fJk/0hBp5cn\nEOV+LDHK2jKgxaXQtzcdqUkcoSvjdLPQxMkOJNbE0g+5NLSdKb8JYBfAYwH8OID/JCJXTTcSkefD\nvoSfDeCJAK5EmtJnZGRkXDBcIIeOhdDIiEVkA8ALAVxtjNkB8FEReR+AFwN4zVTzlwC42Rhzl9v3\nJgDvUNrVLrhJGdeE/Rqpx211I3S9T2H734228aTORq39KmAaGMU4oZSaZoZfvuMTwOXhm6spitLx\ngmdvb82IG47f5ljT/T79d5/CEx7zrMnvsWLapbHk6JwHnFFiXmjzr+n5WeRZidvpz0KTWVo4b6rh\n8l+IFzsjfjKAoTHmc1R3G4BrlLbXuG3c7nIn2rjk8Xej7eZGFxm+fOdfr7oLB4LTf/+pVXdh6bgU\n598ycVEzYgCbAM5O1Z0FaQun2p6Zaieu7elFOuixaJ65VeEwfX0XyRAzrrzJm4nkrm3RxHKXgUXO\n4a/FmHCNcx/jEN3bwzTPNKRWjxfSkSP05cKfsy3avIi3AJyYqjsJ4FyLtidh1xha24yMjIwLhsOc\ns05MA7t0MuKHAVzjxRMi8lYA9xljXjPV9vcA/IMx5t+7388F8DZjzNdNtTu8I5KRkXHoYIzZF4cW\nkc/DGhC0wT3GmG/Yz/nmReOLGABE5B2wzPanADwDwPsBfKcx5s6pds8HcAush8mXAbwbNlDy/7Hk\nfmdkZGRcMmhrvvZy2JS5DwJ4O4CXGmPuFJEnuHQgVwCAMeZPALwBwIcA3A3gcwB+Yem9zsjIyLiE\n0IoRZ2RkZGQcHA7E9UdETonIe0RkS0TuFpEXzWj7ShG5X0QeEZE3i0g31XbVaHtdIvISEfmEiJwR\nkS+IyOvbRupfBea5X7TPfxOR6rBe15xz8BtF5P1udfegiPzKhezrPJjzul4rIveJyGkR+TMReQmt\nvQAAA4dJREFUufpC9rUt2ibndG0vmvfFPDioh+hS9cRrdV2w7t2vAPBoAN8BKzP/2QvVyQXQ9roA\nACLyz2Etbg7zcqrtHOwC+K8A/l8AlwO4Alb8dljR9rr+GYCfBPBdAB4F4C9ho4EdRvjknDfPanQR\nvi/awxiz1D9YWfIegCup7ncB/LLS9vcAvJZ+PxvA/cvu04W+LmXfVwJ436qvYRnXBWueeBeAbwcw\nBlCs+hr2c02wCuhbV93nA7iuVwP4A/p9NYDtVV9Dw/X9IoC3zNh+0bwv5v07CEZ8qXrizXNd07gO\nwO0H0qv9Y97r+mVYVvbAQXdsH5jnmv4xgHtE5IMi8hW3hH/qBenl/Jjnuv4AwJUi8iTH+n8SwB8f\nfBcPFBfT+2IuHMSLeFmeeIcN81zXBCLyrwA8E8CvHlC/9ovW1yUi3wrgOwH82gXo134wz726AsCP\nAngjgK8F8EEA7xORwxgidp7ruh/ARwF8BsB5AP8UwM8caO8OHhfT+2IuHMSL+FL1xJvnugAAIvJD\nAH4JwAuMMUtNhLVEtLouEREAvwHgFcauCw9XxJsY89yrHQAfMcb8qTFmZIz5VVjZflJGvkLMc10/\nD+DbADwewDqAmwB8yKX8uVhxMb0v5sJBvIg/C5vX6Uqquxb60vx2t83jaQAeMMbsKy7FAWGe64KI\nvADAmwB8vzHmjgvQv0XR9rpOwDL7PxSR+wH8FezL+D4R+a4L0tP2mOdefRqHW+nImOe6roWVEd9v\njKmMMb8L4BSsrPhixcX0vpgPByR0fwesYH0DwLNgA/5cpbR7PoAvwbKPU7COIL+0asH5Eq7rOQAe\nAvCsVfd5ydd1Of19K2x8/68B0Fn1Nezjmp4My7SeA0tMXgng7w7jNc15XT8H4MPuXgls2NpzAE6s\n+hqUvpawrP2XAbwVwBqAUml3Ub0v5hqDAxrYUwDe4yb45wH8qKt/Aqxc5wpq++9g3aEfAfBmAN1V\nD8p+rwvAnwEYuLpz7v8HVt3/Zdwv2ueJOKRWEwvMwR9yL99H3L2rvdgOy98cc3ANVpb/JXddnwDw\nvavuf+Kafh72oz6mv59z13TuYn1fzPOXPesyMjIyVoxD6RWVkZGRcZSQX8QZGRkZK0Z+EWdkZGSs\nGPlFnJGRkbFi5BdxRkZGxoqRX8QZGRkZK0Z+EWdkZGSsGPlFnJGRkbFi5BdxRkZGxorx/wM80rqu\num5ZRQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x107305f90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "\n", "p = ax.pcolor(X/(2*np.pi), Y/(2*np.pi), Z, cmap=matplotlib.cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max())\n", "cb = fig.colorbar(p, ax=ax)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### imshow" ] }, { "cell_type": "code", "execution_count": 117, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAATUAAAEECAYAAABJOaMMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXvMbdtVH/YbY679nXOur42oElIJEGl52xEGB2gLKuA2\naaqqUVSktERtCJWKREobBanQilgtdknTRlVF2zRKlBg3EEGAJIJEtCKtSkEhlWLVYBrziEITHokD\nsZzaXN9zzrfXHKN/jMccc+21v/Ode77jc23tqbvufnzrrL0ec/7mb/zGY5Kq4tIu7dIu7ZOl8Ys+\ngUu7tEu7tLtsF1C7tEu7tE+qdgG1S7u0S/ukahdQu7RLu7RPqnYBtUu7tEv7pGoXULu0S7u0T6p2\nAbVLu7RL+6RqtwI1IvpmInovET0iou9+wr7fQkQfJKL/j4j+PBEd7uZUL+3SLu3Sntxuy9T+IYD/\nEsC7b9qJiH4PgG8D8HYAnwXgswG881lO8NIu7dIu7WnarUBNVX9YVf8agA8/YdevB/BuVf0FVf0I\ngHcB+Pef8Rwv7dIu7dJu3e5aU3sLgPeXz+8H8GlE9Kl3/DuXdmmXdmm77a5B7WUAHymfPwqAALzx\njn/n0i7t0i5tt901qL0C4E3l86cAUAC/ece/c2mXdmmXttuWOz7eBwC8FcBf9s9fDODXVfWf1p2I\n6FIa5NIu7QU1VaVn+fd09UbF8ZXb7v7Lqvrbn+X3nrbdCtSIqAE4AGgAFiK6B2BV1b7Z9XsAvIeI\nvg/APwbwDgDv2TvmH7v65wEAqgqF0bloqoD43+B/UwDiO6n/TXxfhe9/m4up1+UXxAQ0IjQC2F8b\nEQ4EXDHhwIT//fhh/L77vwVXTLhi4B4z7jXCcq9hub9gub/g8GDB4aUDDg8OWF464PCGKxxeusLh\nDfdxeOk+Di8/wOGND7C89Aa0N7wB/NLL4De8CfzSG0EPXgYevAy9egA9vAQ9PIBcPcBKBzxaFY+6\n4NGqeNwVrzxe8cr1ileuO1657vjoo9W3Iz7y8IiPPjzivT/wZ/AZ/9ofwuNHK64frTg+7jherzg+\nXrFerzg+PqJfP8R6/RBy/Rj9+AhyvEY/XkPWa0i/hqxHQAUq3Z7FtkwVEYgIxA0gBi8HcLsCH67Q\nFn893Adf3cNy9QDt6gEO9w5Y7i04XPl2r+Hq/oJ79xf82t/4C/iyf+eb8CkPDnjTgwPedP+AN91f\n8Kb7C16+ar4tePnegvuNcG8h3G+M+wth0SP4+iHo+BB0fBV0/RB4+Ar04SuQV38T8rGPQj72Cvqr\nH8P6sY/h+MpD2159hOPHHuH46mMcP3bE8dVrrA9XHF894vhwxfpwxfp4xfq443FXPBbBtQDXorhW\nxY8++hDevvwzuBbFUYGuiq6A+GtXhSjQX2P/ZH8l8vdECERi8r/l4yDfZz4G+d8A4I9f/79PeRY7\n7fgKrt72H9xq1+v3/fnPevYffLp2W/PzHQBeBfCfAvh3/f0fI6LPJKLfJKLPAABV/TEAfxLAjwP4\n+wB+CcB3vNaToxg08Af8hPnlaaaf1zRVUbzQ1HE+Hq123pv+mG+f9mYQ+faaT3H+0ac+HsV/81fb\nLzafPs6PAVRv9FP/27vbtwJajJOzx3oON4m43Wp7Ee1WTE1V34nz8WZv3Oz7XQC+60nHHLPLYGD1\nj6w4YXC7xyDbicu+T5oRqW6bgbT924tstHmd/kBk4Ipt5z7dl6bp3P5HDjrkfxx/ju8ZRAyF+m+d\n3ldK4Ir9Kc8rjzX9FmO6mu25leNWRhJnuLfv9l69qEYEkJ4CbbIsfY39M45923+z2Xdzx++svSjA\nuk27a03t1m268WeADcXcPHcMAiCbffcG4PZ3b5rlgxXWv39Oe3Bm79OmN3Xbp7RBbjrHuAgiP99C\n0X7L579t2nmAXUzxXECp/JKDj8bf1D9D7L66CXoCVPXzif1Dp7+1A2j1nLlcE5Xz37sfTx60z0/C\n/WzvF9FnTvqxtzjHp+2fYXbe1LaAVgnDTf38WRofrp7DUe+mvTBQG6YkQXQ2LRWmQyQLo9DRCrMj\ncianYB3AdhNj286A+R2dfr9tn7u89AxXe0NTTb2KENP5Vrvy/7l/hUDgiaUZaAwgIHzaF7wNv/lw\nHaYJAcTkAFHYEwKIGMT2OgCKAGdrhAC2gS4BYMHSps9+LCI/09ynngOm7z7tC96W1zHY2ngijMJO\nCX7cuI/+Px33UFWhKuN2PofR/dntJRw3SHbCsnSA2dP0z6GjAfVOpOlJm9/Jv9F0zCfJNq+l8YWp\nnbZ6n2ln6spZz/8W41rGV8N5QJiA7abf3AOu7BQbVvBxaaqAir/6VeUrBrEqHTgZzOYamGgDCuXf\n+WfmjTlYAI2ogXg18BOGEvuItF9Kc9SPl2fk4AcikCOrHascvwAl8845kp1/fD8zZZqeUb3o00dV\n7qFvGkD3cfC5byfIrZ//pq51HtC2GtrM3vb2iba1OO6qXczPncbeO4NpVSezggorUzOFYH0y9hU3\ng5jIgU1PgG2axDF3Ckzf0aQ9UPn+pJOWa0imsTnmk5pisDOFese/WXHZnntlORUgmMKDSw4SNDE0\n5OfwXDqbIgbK+/Fd2PUCVcWIxhlMjnb/XfnMhaVNNmUAWNl4MM4AuXg/AHpmLnnfdHsPK/PVcd9v\n2RJE81w3z6I8E1Iypl2el7Ey+37qHzcA3Smg0QRWXPpb7a9739fjbe/Ws7YLqO20RsOk3EbNJAsD\nvEto7ptmJg39orK6CpBpspZjb2e5HCylw07MIP5NdJYTVMPJFHm2AwVrkMEgzkbsBVuDbowJRRhh\nY+DTBGaNPSyFKdnb5EkOYGPOLc3D9FwJiMUeAsNu6saUS3OTmzOzslXA840TTDGdE8c5M/L8B0iX\na6jIUu7IEymYYoSkFHP/ic2fbU4IZbZMp0C8z+8GuGX3AE2/F314ryvFz+51rWp2VhYXky9vjoOd\n491VI379Vi17oUxNCwurbQCa+nsa4Kdq4yu7s1p/obFPztO+b20xqOM9R2coM2IyHwxGcDIz0/Y9\nzT9yro2Tw4DvPWaBYpLOvzNMti2wGdNp7K+0BTUka2MGhBhMDcKFbTE7MPXRcQWmpxFNoAYE02sF\nvNrJd5zv9/W0eq4BxHUb1zsPYnuMPjHomXtY73Hsc5NEUWa3Wb8r56ClnxQgIyKQap4jAITBzjR4\nHN+iX56C13nGVuPXzpmb9fh30S5Mbac1fyImd8z+wjA9FQRx+NoyN7lhn+y7/gzrsbezIWN42uK9\nza7lewpBfSJkc4vZ/Gn7TWEQk9hdWNrN29DKmIfelqZc+S7NzvKKCYAaSMUBzdjaOE9nG8X8BA2n\nwGmM0vgOaX5uz6HcYx4AxgQ0Dv3PmM6kKW22LXDRRlMb9/aW7YZnOU1sGpOKWn/R4dQCrC+ivI/T\nqHNDHHN6ncCsABiGI+AmwKvYVfvIXbYLqO20VmbEyCCINrpoKBKpmTsAUoJY3UemfWbDbdtOZjyM\nzIIqxE+duLKkOEj5jScFQWZH3jIGjbMtgKbjKrBlKwlcs/ZUdbTK2GYNbaOncQO1Bur+KjLMzybj\nGgPUZvvTQK3xKZi1tgE7zt/mCmw8n2tlaJHhccKUypa3X9VZUmVk8wRhX0WvOd/OPcctoBHpFJsW\nQJO9UAfgDAtj7jP7x59ZVwJZ+a5mD2z3qaceLO6u2yWkY++Hy2xlAQP2bjbGKNOflIydqbM7IXUw\nNEgbzC3hAU/svCidsXac6BwbdpbfYQDDrZhZ0XEiLeyUSZQBKIrJI6rwXx4scgIwGlpUCO2tAh6X\njQbQMTO4NWhvkLaApINaB6mDmsZUIoB2QGS+ri3L225tAfMCbg3sbI0LsM3nNc65cTVDUUBuZiRx\nbwdLExdXDeAU5f4VU151fiZPbAHAQsX81Kn/hKOAQTnRMsWznhnc7k+gPONyjXn9CNCkXSCrZufo\nljPI3SW0XZja3g9TMRX9bgcYVSgSin5pZqYBHCBK6QXtCKO0hIHU493QcZPGB4UvJlDqbdlbKmMY\nwvuTmo2dMojifWFmNLGLOcSj6nonGloFLiqOgrJNbC3C0BgORguodbCs0L6Y6UkCbg4ARFAWaCco\n+hR8m4yMDNS4LQXkFvvcmv0Gc/ntADZOPW17vhMY12vemlr+pMcEIAlUNN1znNx/2/zfn+0ghT2R\nszP/3kl0mp0Rg0awqD5Vj+6Lfc/2QSrXYm2wtMJYy/fxt5khnj/edp9nbRdQ2/thogSolJLggEZD\nVDV2hvR8xsQrgGtp9gCl7AOUCdrnzXNtq0lkAnHOcjuOgs0Bzpqdk/mz+T6YhYdKqApIgg3pMKdC\neC4Das/0TLbWCEtjNOYJ0JgJ3PxzY3BXCGvxgi7gJggPp3S7F0IEiDkJVHgwGzdf4SDGwczawbdl\nNjudGVJj0/maA2wxPxszlsZYeHhwt9c4m6Iu0KuCEszU7qF0qN9bqCBLHlTTf+54O30jfnB+tif9\ngcJBEGzNDseOfnTLPlhZVWVmY4ItgL7D2uLc4lcDfHf77TO2S/DtTmvlDs+qxwC0AC+FTuxM1Wa/\n7pTfwGgwt3o8UcL5uIkBWlNnqQMHpYOU8xoHmHac91KFyplBUxgDqfhADFCpoKcFzAzYtuZYeg8Z\nWJiwMKO1wtKIQM2BpRG4z6afMkNbA2Tx4WcD0zI9CEoCKEN5L6RjOAq4HUDLAloO4GWYnbwBVW5D\nT0vvJ1dAPg1XqV7RADSO3rJlaXv385ypqfBntHlIFNdIZ9Fg9A1NszTMTPZjmyQSdsS5Rid9bqv1\nJmPDTp8t/z7Oa9s177pdmNreD5fZLxgbME+kFiKlqa1x2be7riGgwuDs8zBRzTMV5aP2utUejTfN\nqsyMlcWVzgefYYc9st+GqYl5gG3NIakD0AYkQUBobnoFoPkru/5Eo1xSY8LSKMFtafZ5ZYY0gTQG\nNwU1AguDRaHCUFmgTcEOEnm/haFkrCfNOQwWE6YncQMtS2FpoaexgVnjAWwtQNeZWbNzPTAVlmZx\na0tohRNjozG4FdY7tDAxv5fpFDinXWJcz34j/z85wJWJTzH3GSU0z4dSu0FhoU4B5KdHP7UWBmAN\nL2cFtsrqRmkiyvdxzPiN1xuoEdH/CeBfAHCEnd6vqeoXntn3W2CLOT2A1Wn8w6p6vOn4Lw7U+PRW\nq8IcAv4+IrIFI+tgqExuglKYqAZeM8D5LFm+27baceI1GdAemKGYQU8xDQ4NpzoNxM2m7aDcsAsa\nHTfioZjVwYywOLgtvh0a41DBojHWppDG6E3BvqkoWMysFAE4fs/1NAGA7lcdrHGmau79NG0tAI2L\nnjZAzc1e31ozQDu0Cr5+3gFuDmwBchaecioLbCeCibGliS9j8nAtbQDaDcBWGFtao/G1g5tgMLQI\nLkpAwzBAz/W9c0BWwc6ALUBtcw71OAl0tLWa77Q9I1NTAP+hqr7nxt+YV6f7IIAfhlUL+vab/t0L\nA7XDGVBLa+0sWI3AXCHy/Z2h3fhv9nWNOkCGOLthBdNrELPXwOvzAvfZg4qBHPmA1AIkwzypTC1Y\nDaOxOLAxFhYsjXDIjXFsgt4Y3ATczNRTMbZm4AZA22AxPkKUVvc4nyaHZyJ7W1xPawlonIDGCWyt\nUQJcc9A9OLDFFkDc6rXRcB5U05MJE6CFBok811M2XJ/BjRbhfkeZ4xeVIDQ8ngPKxqRr35zve6dB\ntDNrC0YawNaqxnvm3+RxnyOo8fLMIR23ObtcnQ4AiOhdAL4Pn1ig5mCEYG3FUQB7LzA6L96RBIA6\nuMmGnQ2AM8F7z9LY0vRq3jDGq1XIJZ8Vb+f1PL3AGF8bM6jqQIWxEWKr5zY7CZKhEWMhLYDGOCy2\nLatgaYwji2tcDmzCTmQULV3Ri/1YZxBWmziIQCm6x40LpsrJzhLY2pJsLF5bMDYeXs8wPfM8C0tb\nmO2aijlar31iTBhgBmzu5Z6ZH9bnU7btBNh88gzQCicXMIcY4Ya+dx6UZscAl324gOsEYttjPkdU\no/bMmtqfIKL/GsAvAniHqv7Ezj5vgbGzaLk63XaJgNpenPnZTm+4up2YbE3nSGxVL5cM8rg1moBP\ntJijGOys7nOunc5+lfbP4R20/Yc3tjh5N38nplA2j01TifAOB7YAty2gAZOOllsrYJFmKKM1SabU\nmrEzAzP3amYkhN8JItOBuiPIGaYGotnc5GUCsub62RbcWrAyP8dgbHHu03VtAG0GtnK/JueM3HCf\nSw7LjZra6TNOwNHxHLLIAshM+KKn6c4xtsfaAlM1N+s+AWzx3Gnzff2M58zUntH8/DYAPwfgGsAf\nAPDXieitqvr3N/vdtDrd6w/U2lW5KVP/cv0sdA8Z+oeodaCmFcg0gSzM0WBsjBH3lkG8N5zTvo4R\nna5oHb4fYmCd6UAa9HJrAlWPndgaAKmtYehA8dm8kSOco3pBQ1cLAFjIN+bUqoYJyliaQptCRN1J\n4INSbb2GGHxEzcI5iEHShjlXm2tqFs7hr8xoi5uci2/FWTC0NJ5A10xOLlpacRgQzVpaDF5EBsHp\nPUstTfoJY6tFBcIEOMek8tlu2SFhBNyS3z8aweA2qZ5vlZFthf+UOrAHcCPYup7fNq8WVVN7DuB2\nDtQeffADePTBn7vx36rqe8vH7yGiPwDg3wDwP212fU2r071uQE1rob0ANSnbwAADrtEfbaGL0pGE\nCF1DyzBz1PS1EqC7aZWh1dky31MRZLPz2Idtleq4BhRBeludI0xOi08r+lnRhzQ9oDU+bfaCtgjj\noPAcmr62uBc0zNCrrjiujLUJpBG6DPOzBQ12qCAA0gkgAZFCdZmEdgDj2rO6R2QoOHgtZFsxQQdD\nc2BbGFdL1dIC0Hi6poUj26CYXQkw/tQnp0uYmWaGav2+ekjLtquxUUxeQ3JIxqyubSK87PlP0rlF\ncVs3bdJHUYFyhG3EPoOlzqDGFcR4DpHJvkiYP99hOwdqDz79i/Dg078oP3/kp//KbQ4XnW/bbrU6\n3ba9OPPznv30KOBXZktV74MV1Gw/EWMZKm6mqjGOarJ2tVlciYoWN4eGnLTNLBx6RgNG2lTS/O2s\n6Ic4x/cd0Cq4JfMRMQdBxFUls+gg7WVAGgew83JAKywtPZ9seuWhMa4a49pfj01wWBhrZ8hiKx3F\n+AYUquyDWoydkVihyDxvSkCr11tzSi1kg9PEbQlu7FvDsrhjIF6drV0VE/QQQB2xdrTJngBl6Ene\nG+35HhHELN2YmhQP6OY5nDM/52odBTwS3Czvk90ctOcMwDVcIjrByHHs6m2ftbQIzwksCidJyCF5\nn5kG4BZAo5ICQ6PT3rm+xjua+G0aEX0KLJzjJwCsAL4OwL8M4I/s7P49uOXqdLW9LpiaTgwmJlJN\ns6C+py5uNjmwidP+kFComKhw3CBFVw8Nwc0mKApDi+XzqtdzYmocXbHMiP6sh6ge17RhbaoFzPrY\nNPIsbTBSOg8EDJ7Mj8Y6AK0Rlo6MSwvguOqMY2yrYF0YXRVrTiQKKI+xTQDITHqaWPKpiXZi/vCI\nQQvz08BsANuyBEObtwC5vJYMJJ5rrY1nYQyNaiaG9AnQMgBXZOpjU0hHTqTlc5qblBdq8mFh6lrD\nOEanImCuwLwz9of2FcysxqONsI1kZAFiZePGBlo8JtnpfbK06Kd3257hmAcA3wng82ErB/4CgN+n\nqn+PiD4Txs7erKq/pqo/RkSxOt19GGP7jif9wAsEtcGXUnvCrKUN0RcJYtRosLfuLE2CrYVGpGmi\nippDgT0ExEAO82+XRrVDoXQ82nSsnAGBk557DjUDnH1LljYBXPXcDYAjEZCHN9j5uKbGikYY8Wld\ncWBx9qM4LgXUDg2r36cuyGBa1QxNS1AjGvc8Qa1e28RgBshvmZqZogZmSwGxe5vtKtgaEw484tVq\nscsEc/J4vYnZbu+Z3Vu73wPYNLWLG6e2kz6RJiiTMzSfazKEw+6Z9bUdS7Z0kRoTuR86ZPc0qhZn\nvyuZGLUvwieVZG0VkIPR3XFr7bVlkqrqhwB8+Zm//SpmDQ23XZ2uttcHU9sIXVs9LcxO7WKidmVq\nAWxdk8GJCCI4vwuGZ9SZXJipCt0v1ldMguho5nFChiSAq66E2+kWMa07iKWnM9N6+gnDGOaVgEmh\nbADUlNBET8zPCIe4aop1YazCWHvD2hVrV/TOEFWsYiZn93COlNQI6YQQP0eJc45r8BtleD5MIcvt\npNn8LJraodEEaFdLK1sJxN1cT9z7YGzMAAvm9LKTrZf7F/0lHAY4RZ29RvMzzlzV6EA5oXlVDmBK\n69vrV5XQV62s5T0MFhaTxPxKrUyonqURoDZNuNGeE6g9D/Z3V+3Fgdo9B7XUdgqoVR0tPHSiJl5r\nAb2uoG7vuQvE31NHMjgiDxwFGZNLcIsYo9NWPVLD/ByzI7xz2yuGSnzSnGVuxWkZupoW8Npla2WQ\nErfJHG5swDb0NN8aYRVnao1xtSjWbnpal2Yrh2c43Kg60X0QC4klu4uxYsowiLlNoFa0nmRrG4Z2\nzwHs3qHh6sC4d3Dm1ghXLRiam85b05M3cWqhnU1aWjU3qwe0srbZOaD1Ge210Kn8h4OpkZA/9lFU\nQWEMWnZih1K6iAmzAJpliGBoZY0HkE3vZyuBWxQLwDA9o4/m6RcUvcN2AbW9H763wARqzLoGYsBr\nBoZqV3cIjPiqyfzsVhqHuhjQMdlrMUvhYnc6GjDSp5A/bx8qU4vOt19fH8Ms2aFrQ7cZutoJuOkw\nj8jDO1BCPMbgFYuBQnH1pzmmGcZxaIqDGBM7igHEVWOsC+MoxsykeDGBYaoQETqLMZJq2uvmOYXw\n5IOTmIapVGPSFsLBWdi9Q8P9A+P+YcfkdFMzHQe1WgcBDQXQEAHR6nrafI+0OAe0gNu29FM6pooT\nasa1WXifn7sOodxN0AA18eKR0Y/GPS4MjWkS+uu9q2AWQJbgVQsBFFY2vvdnyQ6zlJeyL5M8Q+Pn\nQf/uqL04ULvfvFON73LWLNqTFFCrmkiwMmNrlK+yCogV2gqLS9YHYyFUrJDSkcMCTq0ImDxOWy1t\nKhS5xbS01WZAS6aQr8Njp66djfc+QHUAHbt2M0rShAkKAwUhXAljFcWhq5uh6t81A/XNdUcjBzRh\ngrCMWLYCapP+Xe/DlqV52MYMaMbSjKE119doxwtqTG3EqA2vJ3kYxcTU/N5oMd+1OF7m0KAxmQzJ\nY8cezWdKE5ilScrDi06CjIOsZYbqwM9usiNhDPF/mJgR35egVgAPG1CrVU9Q+2jtkDzres/aLkxt\n74fvHWbvE8rATyYDcB8dUvowIWgLaqKg1R5sfh+AWPW5Th4XVnHHBi1rchAAmNzoNXQhOk/SuSe0\nel1A0Xf6DGCQDu1rvk/G5oNXfQBbjBQPnUmHzjbYGuGwELqat9N+TiHSMhQmAprjWhsTViKsJAZs\nPZwvOq6jtGB4XAZXpj8tA9RSRwuWdmjO1hzY2jBBr7a5n7HFLY9MAbGQF6r3qNxDyFpCOipz2zyL\nTR/cbUWHIKaBgWT6XvQjVQWIhgO1sHkUUAstbGJcLUxPBy8PXE5P50ZbAxcGl/+uTrQbbY0wf37G\ndgG1ndbuL4MueZtAbeMMMFOToV2SfdXvpUt2AHEzNMynADbbR6FCI3zEvQcBolMrLMQ6djVB6Kk6\nyQhXqdcYWk+H9g70FdQD2FbXi+YwD5IVRAsaAZ2omKFmgh6Y0NlKDa1NR7DyAnRtWQAg2JdomNjA\ndbneLorOxTFzxls44rfMI9Yc1A6ulUX4RgCZmZ/NWNvCuNdaiVHj1AVHyaGy0hTBvZ5r3o+8N2r3\nT/sKdLuf2h3kAtAmHe38NZ29zsLM1ddDJdfPrMLJ3B8mZs809aetWVk9nMnQgq3l9xUEz3zP50Ht\nLqlaWy6gdvrD967S3Axb6JSpDd1MHahUJD2h5KAWbI0aQdfB3Ox7gbIBILF1RimAGTOvikJ5R2uq\nWspW19iyOBr/Bn5Zk+kj4tfh265ToAPdt60nzwcxQcDcnKkBi5qW01VHaIcoroTQG0GUIO7p1IPC\nE6IQJ9rWkpq0ClYmrCLobM4VKWEdtcU1Zynx8F66l/NQmNr9Q8ODqz1dzXU/pgwaNgeBlXy3skpj\n/QIq5nqN55vuXfV8FseB3feeE+Nkkha7+kQ7ZQJE87kDAHulP3UvKG2Ck6d/W0GNKyPb6GbJxpyl\nVYALR0GyPM7PU7/cY2p75ugztueZLP+s7QUytYO92bCXEag6m2nWKS1cwzydBF7dSSAAdQKvDGGZ\nQW01fSgYmnn1ijnrwENM+bvblh10MgGQ7vJIkzpJSdEBBvV6RDp4F9jcXHLGRsW7p9UkbS29n4sC\nwjAvKBE6W0XgAxPWxpYu5oysL5UYEyz2UYcndbUBd1wFTQidNR0LabL6M4tBH3pXJtPzDGgRxmGA\n1pKpBUOrzoLweEaKVHg9c1EZ8iKWxaSkyLxwQNO+TibnDGjiYSoyeUHTgVBuzWBYppkpE0gV3GjO\n6Sxy3OwYOGVpNzGzBDFnYbwwaAk2h2kfAzZOYESL6sMzm5zA7Y4x6LVmFHw82gsM6Sj1mFKIHh0s\nO54MQNMuYLGOyatAmmQoBwtBoqJrHyYoMaUjwbS4AEdN/S3B54yZZaJ40dM2zIxu6jh7Hk8Z36Wo\n3TvITVB0G6QajI1XkCwJesQdrJFhgElbS9ZWAC1AzUqd16BJhaJZXbZV/dVA5dgVK4uBocz6WzSm\nocUxIYs+Zr5pM0fAlZudCWjuIAhAu+fbVQG2WtGXybydXLSz0NOq6a6yOstd8/uRJjVuxEi7i23n\nuW2eLfky7BqTWOym4fvc/PNilmffKbrZbFbuMLOFwUtlcwF0Dmi+3kMA21gLgguQFU3vjttFU9tp\nE6gBAAqw1dk1wK0wGxKFLt2Abe0OVARqCl5cX1vdFG1k77fMrbu5KeN3pd8AaoB3zsHM8o+Em2fC\nwkZD0xnsTdyU7qkHQVaQ60PUV4AXgAtTEwG4O0tiZ0oBaIAo49AGdorCc195Hr9qF9BIbCusaGHB\nsVkITJcGngJEAAAgAElEQVTQ3+Z7E4UIYy2EQ+hpwdIS2Bj3F8b9CO/I4FsqjoII7eBNetRgaMHK\nprSyALRemFq+rnMfKnpaeKJvdBJsn+0EaJRhEruY6I6TDAc5w8zSKdCcmU1eTxrVgpcGWtjLO1EB\ntQFmlIyNB6DdNUWL67uA2mlr909BbQTW7gBaMSFYBNIZ2sRmrrVDutgKSQ5o3Jy5hUe0K5RlYm7S\nJTu2maDnPX0ARgfdeELTkbC9nnynsHplmuEqqEDdC1uTNQdnAltbQbqa2i8rIA2QBnIQUvaSS2GO\nOlvTxqWgJicxAcp4DSbkLK0xYemEtTMW1y9vD2pzHbcwP8PTeS+cBoWhDa/nbH6GxzO2yPGkcJZI\n93sSzoGjez0ryFUNTcZ9r1LHBEmbZ17ByLXXcBhlYBrmR58xf5u+Ub2YBlJDD8sSTctgZFM4x9LA\nrfkrz4DWZpaWn9NyeD7gc4lT2/vh+1elY2zMT9FTcOsCWT24sguoN2jroG4rIVHv0FUs4b05g4tA\nUib79x6gm3FtweA2ovFgVjsnXjxYcwzTKbCFSRsBmpUhBBsVZ2mmodkgpL76wDyC+iHDE+x1yfdM\nDFCDkiWAK8xEXBS5AI0oG2MrlbrnawlA83JFnbB0xtoFB2EHNUlNbboVrqm1qGSbTG2U6b4qbK2a\nmgFsVzxi0yKRvTEyob0RoaXpuRaWVu5Jej3XoqlZX5FVXIoIPa2anT7ZBFvfPup4pmHKBUtT+AJl\nmwdetbjNpBfgNTOwAmLB0paW7IwWdjDjGdSar961FBCrYDZ5QHfO8w7ahanttPbgnr+rIDIArepq\n4jOuMbIGFbH3rYF7hyS4uRm39gQzmyEVstIwU7t6kC6l9jYCM+1caA/cNp12U9hrblq3TZiKexTT\nWbDaa8ZZpbPAGAj6YjoRL8bknKmBOxgNjaxenAS4xSkrIO79VBDUX2N0Vj0ukuOXRjh09ZxRcUcB\nZ4pZMr0AxAi3cEAbVTachaWH09hbglmJS4tg24mpUTA1A7SMSRMPd5HQH+MerYOppdY2M7X9CUzn\nZxWtmJ4BUBrXrXS2X+REVwNrT8I0tmZogJoDVTIzAzMzPVuyNtPZ/H0r7K1MtKjvnwOwteW1JbR/\nPNqtQI2IPhXAdwP43QD+CYBvV9XvP7PvdwL4BgBvAPDTAP4jVT0phdnu3xsfJu+nurcvQjpCM2vQ\ng4GZdoEsHbR26NpA8b51cxJYIp0zNWd2bnbKqgDb4rzCAniYx+jsxRsr6h0YiB48e7TG7E24gbEB\nKXCFOZ0e3dyCdRRnwboCyzoAjo8At2F+dmNqse6nsAMYm6koDBzcDJ2ekWcltB6gJGAyHW0VwtrM\n5Fw7eeDuxvuJGL80TFcaa3bWVa0C0IKNXTnY3Vtm50CEbUyrSJGlaJE4e5U1mZkB2RG6Ojtb/ft1\n6JJaY9SqFz0CsUNjm2/OeI4w9ktsQEZkUSIzAIYYj5m9l0k1ASx0swCxKv43AzQ+NPCyGPNaDNAS\n4OJ9Abdkda0Vc3d2FjwXR8Engfn5pwE8AvBbAbwNwI8S0c+o6s/XnYjo34YB2lcC+BUAfxzA9wL4\nndsD7oFaAlqAShdIn8MfJMzMtYPbYGnUGLo06GreQjBDuXvsmoEbdTKgWy1pOxLThUO7q46D8IyG\nzhdayQxsIxZoHgxTK04BbEJUxoAbXjysHVgcyNYVaCu0HUHc7NqoudlppbYNXBbX10z4kQBjDsCt\nz0ltQWMQGOIpV2Z+rq6hraLoi8W2hfdzQ05SX6ylt0MPC2DLckKhsbGxs3vNnQXMZmpSrcxhn9M5\n4GBGDu6UwFaBLBwEw1lgXuTQLkd4kJVuEZyTGOI5Ko2JjJsBGpGztDP9YRtge6qlFVOzOADCvGyH\nBj4szsIGkCVbq/t7OIcBpu0/wIwHoD0X7+edH/LO2hNBjYheAvC1sMJtDwH8FBH9CIA/iNOlqn47\ngL+pqr/s//YvAviju8e99xJSZwLsvRiojVcBZ2S4DX5281J8oy7gdc3P6g+7txV6ZNDKEO42u6XO\n5sxthcWtuSNBqHjJREsHRrKvYPJzHuhppzFyN8dBzTFrGw9vFwPk1nPQajGvaF0M0Bb3jkoDhKHS\nYOsEuNOAAHXGM3QiNfPTGZsxNfHBa1VuWdhi3SqoqZYE+NPxPxwN50EtAC2qb5iOVh0DKGBWSjxB\nwRm2sRazszgD1hW6HtPTiR6OA+sjWtiwBGsL77PsPJ/9/u93j4zVi79v8ffSF3i8n9KbXEcL83Js\nBbiWBjo0tGVxUCvfx2r38W/c7KSwSFr5TDzYGhddhMr7O2if6HFqnwfgqKq/VL57P4Cv3tn3LwH4\n/UT0uQD+AYy1/a97B6X7DwY7iyZRNNHiiihikGrlBTfLwuMpa4ccGdQKc2sEHAmaAYqUaVS2nwWp\nWocUW4hkVYCATJ4PT2gfs3MI5acBjueBbawDosMEVQsipt7B0lzE7uAMSxjOAqxHoC1AO6b3k4ih\n3cDMWBu700CshDlTLhVYzwVpIguoh2QklkcqitXzQw3UxECtej3POE5Gvbk5b3Px0uKhr4UZugto\nLYJtzewM5wAVhoZMHwsz9DjuUd+ytW6svjqaSqpUhnREhaK9S3O2RtgAm8aaEaUfbCL6q5mZWQIH\nRjtshP8Ar8MCWha0w1LArOXfuGpqi63cZRJLA7j55xadOgGvXMydMrZPdEfBy7ClqWr7KGyZqm37\nIICfgq3ltwL4VQD/yt5B+d6DdMelZiVaFiHxcjzuzYo6Y9pXaFuhSwfW1UGKB3NbO+hoD1Xa6u9X\n0NohTG56dtgA7/ZZBnNJU1TdHKURz0Tb3L4toO06C2aPagQRD3M62GeDtA5eRowVVtfQ2pLARm0B\nwCBqsKXtmq3R6QugMDUs7OW5o+Z0nG8xHikDd8kBTdP07GLlz7uztRHOdcrVCKUEUuphe2yt1Evj\nsg5BbDRM0OEYGOwr2FqAmO5tGZvmrN0dBbIJCbKJSzZM7eTS8hkHoCmMvVOh7ZOXs80sjRfyYFkq\n4MUzYAVoHQK8lgFihanZ/gZmBmqLV8t0YIvPZH3Bl7NHan64Y1C7g2M5+flZAD+kql+/8/c/BODd\nAF4FMlbi31TVn7zpuLcBte0yVYAtVbW3TNV/AeDLAHw6gF+Hmag/TkRvVtVHdcfv/N6/li66r/qS\nt+CrvuTNqaklsHlEOPU1QQ7dNCb0Fa016LJC1wZeV/S1g47rcHEHoEUMD7Mt+wYCqPv3ZsLacnCS\nJoaKA1oE6Yb7fxvWwOe9n6NkzzA5JeumaXo+pQmodQuuXDvgwIZ1tWyCFmytWSCu5c2AhC1Hisi8\nurBUJeYGTTDT05PzwcjipYtEcRR7DVCTMD2ByfycNDUM8zOAjTegFh7NUdUWONAG0CrAEaxGWpjd\nElthZ0ff1mMBuJLMvq6QHhKFFFN0PIMadI2bgI1hxTId0PJPYW4GM2tzWaBJP6va2ZZ9VUA7LPP3\nAWRLMxBzMJtAjdjeO1NLQHNN7Sd/+ufwkz/9AX/oOyP2NbY7Mj//FIC//YR9/paqftXTHPQ2oPZ3\nASxE9NnFBH0rbIGEbXsrgL+kqh/0z3+BiL4LwJsBvK/u+J9/8zeMuION53Oq9lpM0NBSqLm3q62D\nubUGtNUDElfQcRsnxCUEg4CVoNRNWOUOIkFEO2RgrpsfydxI58Rlx4t9r6ciaodPKTnheUtg69DO\ntq0O0r2B1gbQEWgNurYJ1IbDIEvvTp4uYkYDD5bmKT7RgsBZNoKBWZtYWgAbBlPb0ZyMtaAAGs6y\ntQpaob3lAiuhxcGqghgrMzCbHAIO9LpeQ8PzuRYTdB1MzcJkirZWPJ81TU0ntC5XWBi4ehXgyt6q\nrlpL/5w6BSJEg2dz8tDM1ExQO5wytsUBLEDMAQ0tQG1jevLQ2QLUvuZf+lJ8zVd8GQLUvvPdP3hu\nnD9VW54xpIOIvg62IPHPAficuzinaE8ENVV9lYj+KoB3EdE3wryfvxfAV+zs/l6YpvYDsNCPf89/\n4+9td6R7LxVNzZYbG2anB6Juga127lY8Xx7qMAITy7bxBmXOJpOzs26sxgFOmKAOcMbWDF/TWaD+\nXmEgF8cvXrDwf1BhSekgwAjr0C7Q5npPBOE62wRbjh/WZmC2uo7SFqA32+KaYKupk/MnJUKjAD8q\nA9avXZCLh6QWRpoJ7AZqA9DkjIgOv7rK1BYeIR7DeVDNUxRnQlmzlBQs4l7OI8hDNuK1hnFMJmgf\nr7IeIcfhNJLiKDB9dCeRffT0EZzsgJZgBgc2DDBLUONNHbQImq3ezXAGHCqo2RbeTr46TN8bmB2c\nmR1mMAtw42Uf0LgNM7SanndofrZnYGpE9CYA7wTwdgDf+ITdv4SIfgPAhwH8RQD/lepJkbCp3Tak\n45thcWq/AeBDAL5JVX+eNktaAfhvYGEfPwPgJRiYfa2qbjU50NX9MVPGd1Efy8vGkHus0uwsonCk\nEBk7a9B2hK6hMWwBzcXT6TOF7WRex7BKyb317jQQUitUCWdu1SuqG5aWzzlm/w2gZXyUQKM2XAE0\nXRnaujNPhnIz09OZmgbAcTPAooiRIqBHcKi9R4OxtWAXbKpQhHeY6QmwWDnwKDMUYFb1tKcBtUxv\n4lEDLRLeR/zZALRGwOKOAegW0FZna0egXxdT89oZmpugydpi23EWZEqcjGeREw1S/0y2RkjHQDC5\nyTHAEYtWq2uU4o7Vq5kMzczJVk3NQ0O7OoCvlsHWlgVYDg5mB3tfAA0OdIOxhWPAJ7pgamXBYXod\ngRqAdwH4c6r6j56gzf0EgN+hqr9MRG8B8IMAjjCcOdtuBWpqKyL/WzvfT0taqepjAP+xbzcfs10h\nB390pFjgtzoKojJDMrTFOnfxiClXcdRTSILFuMlJdBwiEBWzgYKx2c0VIOtYCCRX4AbYHBmEEaek\nRTDdeTZ2KT7bix9IxExNntOkZPVg4dDWMlG7DTDfmBY2CbuuEozQNcMglUwLFm45QAkA63hlsrAt\nVtgi0ORrprKVMNLi/TyjpY8c0NTXaMckhQf4YmZvpGDpCWjoR0COBdxCR7uGHh/7dp3AVsM5aqiP\nrJ5W55NGDaEZlTORz0X3ULuamwFqPADipPJG5mzyRhdrp46AMD+vDmhXC+hwAB8OoIOzsuUAagfg\ncAAtVxvz83Bqhk5aWrr280KUygXdQTsHah/6xffhQ7/4vt2/+b38YgC/C7ba+o1NVf9Bef8BInoX\ngP8EdwFqz6PpMpceSpsNY9k4KuboZHa2pZgh63iYq70ysdW/YjMnK6OZ2FpqbPU8HNj8uwS2YGJh\nfhJOvKHzBdr/1IEhWYEn1ks3ukTcLYWLLRPC4ukauHXPbfVrpCNADN0EVXIzxmZnTsMc9dMNxkZM\ntgISa0bH9zBDC7CFp1N0rG5/LqIjrj5vJeK11lnDxNiMmQ3WZhVj17PmZgCbrDOoTc6C8Hj2Euaz\njnjG8IBGAYMM28nYQb+6KqltJqs0PdP8nE3PPYbWHMwoHQDB0gzg2pWbnVcV0BzMgqUdrgzUEsQO\n6TDYgpo6oMXEhun1bts5UPttX/g78du+cMTa/+Jff/d2l68G8FkAfoXsJr8MoLkz8Utv8dNPvJgX\nBmpYNhkFCWoRS1QqwnIHyEXyFnra4uwlGExoC/6+l/itoilQBbK925NgZoMcwDBBI7wjnBuipyN9\nr6mDmyiUvMAlk7MHTsaG1YOEjys6c2ZGEK6tKgJFpHuY0wxlzpMO01ODtxUxnHhJ9ooCOuykhWkA\nWJKYOG8f8EUoAOJXKGK2/HgYzK0uBB1pUKbjKRhWfCA1NKlANsxOXY/A8bEztWsHtOtka3I8Qo8r\n+nE1PW1XUxvBztN3aXLeooXJGQythHHEClqzdraADgsoAKzqaFdL0dEO4Ksr0OHKQC1Aa/HvlgJw\nboZa+IaBmTbLLkH0hXzG/FxBbXnt5uefBVBTLL8VBnLftN2RiP51AO9T1d8goi8A8A4AP/DEc3ut\nZ/asTZea0F7NzxF8q2TVYEkbQKG3LcDSQRHD5fqSOqApM4iPgAenatHSRhoT5U/vglKAGSLUxwBN\nugwgFP8eZ46xPVw4HUjAQh5j5loPE5TNYWFm6ByKwglkFdh8ZuYiCPMwQ40lRq0Ou8fcFjfNCQIy\n8xO2TmVLIJs3uz7C6fh3p0MwGAxtLV8TPIsJarkNmc9JUjQ0iTzX4wjfWAeYbQHNXo8DzI7dtqKp\nhZ6GAm4Z0iHntcKp5a3fmpybqhsOaM0BbevJNEA7DIY2AdqVsbLmpmcytApqV8Cy+AQfJmdzhuYT\nuveN4RkPS+Ruge21amoe2pXhXUT0CoBHqvrhHY3+XwXwPxPRG2AhYt8L4E886Tded+Yn6Rx8i+oR\nrYtthJbkgBYR1imQrkfUBxmm0Uk7x9i8mcYm/kpZRcgaD8ZWDjeuy8xOcqeBKqw0dGprnoNKBGR4\nCVsdtDU8uWsCGYrpSdUULVCGFnkEztIAAzZVEASqC9RzRwHzVA5mRiegFpd7U5pU1dYmUHNmZiap\nhWuw9imwNhgaFVDDem2OgeM19PqxbZWtrdfQozsNNuwswjgmbW0DbJDiEyhmaF4Xzdd6jqGdAFrE\nlR2GhjYztMPG5ByARod7bmoeBqgdrtIUhYMd2iEBTB3cEsSKplb7xvNgaldLe/JOt2iq+s7yfqvR\nfyuMyT1Vex0wNRRQ894WMRQJalGSOSq/dgADwIibmaPV/GT2MAdr4cTaP5nTP9bJTUBgdFuoVnRG\nSGds5w5LfllEPpgIINfWhARM3cLZgq11TramHnYSzgxOs5lyVq6ueopTIQfT5gK/v8/vWNBYTXsk\nC0gWUHo6Ixk+/Oa6ATdgY8FT3OMwOytbi6q14fTxJQAroMma2hmJs7P1OsFMK5its+kZLE2P66Sh\nDZY2NDXtwxwfVVN2OkYBamOkBcxibuEAtKiusaAt7ZSh3RLQ6Ope6mc4HOy75apkkywAG7gpB5gV\ncAtQA2ffR5Ve7rg9o/fzubYXBmqdCtJTYRNqg268ej4oe/4nxcYeEDlArIZv5Cy16bE1ZDB9emlD\nalIS0RCx4Z8NEFidt4mW49M+YgZTcmCLa7X0KwHEi1cSuW5ogcAoi2ikl41RgM1NTu+wuvlNggJN\nxv1skYDqJ9J8eUKPQCf3njKsLpuSOzcwjr0nPwW+5nsE2KknpLupGbJCJKf3SHsa4TkjBu1YzE1j\naaGpGVM7psmp6wpZi+lZChuIl3qXEs4xKqOUrQZ+A8NBUPumg1iCWVnJiZOlleDacBRECMfVYiEb\nNwLavdkMXa7M3AxHQFugfADYQa21wbh56yTglCv21k+4i3YBtZ22FngJX93wonkHgwfgckcURRyZ\nBUMQJVqTsXB5wDnglaZHy8AYpbW2VtpZCmhDFIuMjVVtfYPweqq6huEH3AKbg2UkTMcVK5UikQQH\nN8twkDXMS7sD1bnRaLX9s/PG/au47FraMkAsvchsnlfSbmWZuAFkcU7hRGBybsXDLi+W2tRO/S1+\nrxCszN+LwJLQR7lyKqCWYRvrNWQt4HU0QJsYW5iexyP6sSegbR0FtujKHMqRSyPGOrBTdsFOJ3WU\nrgHbI+DWtc+oPttagluYoTVDwMzQHZMzAO3qngGc/02bhW4YiC0D1ApTAzV3DjhzSwU1ChrkU9m5\nuGdrF1DbaWvVMBCx8MYUQoshsLM1hpKAtIGoQ6mbptRdWxL2gokunNtBp6YT74ADldiaolPKjCaY\ncdTAVgCeDxmR+AJJYpcazJ4nTe23USpB2DJ/ZopKt1pm0REDKUJDC4aQcWkw025P39KMN3GWlufk\nANesPpnqAmJxhiuAuLlLUb6mISjKxNQmFqMToNlvBZCO5etGrOEovz1Xrj2mjhamZTgHUlOrJuix\nOgbc65mM7ZStqa82NlXqkLH261lA82cxs+VwDozijNwGM6NkazU+zTMEDhaLNjO0qxnQru6l+Ylg\nZe7pNGA72KvryOksCpbmfWhclp71hT1ra8/BpL2r9sJA7boXgIGDGI3ZfwCbsQciWz42tQMxc1O9\nQoUS2doDgF0VBVSWVjyfBloWPsInoBbBmWr1ykStGGOwNbWYL1suzRgewSrO7g6SYGyGDK6t2epV\nZszaP2AASh1KXkmEg7EVYbu0k+y7ZJmDgRhjE2BxM7AtCOeLajP2xA2qVvnDEuRraMAQmE7uZ3AA\nHfJBOnZcCyVPdRuOnqGpDYZ2nLQyTJ7OAWhyvIZcHyHXR/TrFf36eBLGoZHA7rmfxtp8pTBx1lzv\n0xMYWpif8Zl5OAeikGOU1E6A2ySo0w5Doy1Dc01NmwNaOzigHQZTawdjaWSglutQgMyXhlFRJWIj\n9yTDu2gXprbTjhXUqIBafA6x2bWe5gNciT3EY4WZrMHUhn5QU0Ly1gdjSp3HBiBX0biCmzM4dlM0\nTFJRWwyZmEzwjzLPiPI0GMeoTeNs1HQ1svfilWczmc0j1qW4FSdA2/SlGdjqYB0aYQKOAxwFQwvB\nWZsVneRwwFABNvtRigeVJzB0KDM7UcDM2aFUxjYKPm7XF5hCNALMCridANrRAe26MLUwO9cIwh3l\nh6TrRkuLUz0d7snMJsY89LRgaxxAdqKnhYPgFNiqZoYAtwJopqEdBitrh8kE1eav/mwsnVWTnY1F\npwPYHNSeA6pdQG2nHV1oT/2sMDQDOV/v0cFNoLBCCeSL+C6+rmKJx3FPVZThCe4dABZm2FhYRZx9\n2TklmHnCOYktfkysNiOLgIRBzQYxRbiGD45d61M3Hxy9RMXEZi9Vy+NPcMN7als8GccEqu4XzgHN\nUk0OLstqK1N5IjRagFvkDI6QGE0nBE8TxAmiIm/cYGnFMRAea8rV0runQXm1jWBpHm9mpucRuj5O\nU3OYnDsMbesoCMZ2HKxNdkFthHGkq2dnjFZP52R6FkfB2NrQ1WqS+lVlaAZcdDj9Ds02dUYGZ2za\nhnNAqEHA7p22Ap5dDMy6ziAmaX4SwmF1l+3eJ/rCK8+jXXczWZKQhNfMgYsc0KK8syggmRjNHlLB\nYG6WwB2Dr8fop+Kd80FeWAypAmJMbV69Sryel60vqhXMmA3gohx4I/fSErTb79S2NRlVFBFzoWqA\nZnFiNqKYCrC5JhYqWR69MDb7bJoVV7NP5KRqMHWr00ZySMY2VXdwkyY9q6HbZajADS0KEMRFV2+n\nFkALhrYp7pgaWk1YT4ZWnALXhaGtawnn6KdmqKdFma42a2gjm2Dczn1gi3AOjMq2AW6bVdFHVVov\nv52OgRpIO1jaYGtXbnaa6RmAlq/O2oRsNYmuo3qKFR0YoFa1tBE4rcMcvfkpPlW7MLWddt1lDglI\ndlbNT0AcpwLYGnuNM2dwDQzmJYV0gwxrGv+X6g0culkWo3Qg4xrfFGsiuLBsuloFOEtUJ/d+kp/T\nlkVNgblhdhaKYEG97ngAZsbmwMLleKgmk0/J7JfFxUur29zZul5mXy3Ik0fVj1H5wxlbaGkWS1Lu\n6rYNlkaBugFidTX1AFgvE4Qo7Lg6mB3H9zIB2gq5NkbWr9cBbGsfzoGaGlUZWgW0furlriz6ZEHq\nIKjp/aQEsNlhUCpxHKoHdMnEdMsIiPizAXC0nIIYNsCmzs66UoJXT0CbQa0oKb6I9bjGC6h9HNrj\nVYpjYIRzNBosjXfAbYHFawlZPXv7hwuauREw44qzsrbRlnzgadF70DuoreDWoL7MeZTe5ubmKO+w\nNSZzFsgW0XDSk9QHvYb47O0E2DaMrV6LyjBSAzRVFSzBPMOM3oJZVP04gBb/zG2umlrzZ/eCN89p\nan5PI70tflsLoMWanIOdjVpotXptAJxcX09ezgCvfn1Evz6mE2ALarsMLVftwvl8Xa3TIfJ6J/Mz\nQW1sY62BxRZN8UVSzBwdddGy2kYN53CzU3mHofmrgLEmkCGZ2ure+AC1KbUt2ZwOL2h5XHfRLqC2\n0x6vkuPFtLRRsmYqXeOJ0OIWp6q9t6Ky7mFw/YdpAVoA2wAxDWe3KmjRaeCNhW87qC8g6cZ0RHxp\nPlsYhZqFjZieIsnSBjIPczEIS3igTpp/T2GCKkOaur4WrKseDDkN0zLKSs9evBlkhtcxyofbSlWo\nxTZrifA2AI24jYj09IBWba2cU3FIqGuUdYX0XIMzSikFqPXQ1NZiinpAretnFdCmOLTjpszQcSSw\nW/nuWpEDU67nWbqiZEHSQVBTxahMrWhpUVFlu+CwV+UwlhYFHn2rZqjncmqkQLUlY9OMoS3J0AzE\njJ2tGq8G2GmOylzUc7wO8/MuqdoF1HbaQzc/geH9zNW+HcwWJjS1EtCitoK4uhmqXMY7AcqERoyF\nD2bdhVbmuZAjB9PBLhhEVNftw0NHXcCLrTFKvVlF2u4dWtjWBiAGcpm5MEMd1raz4hbcKvoJMqCX\n2R0IYUcsPghTBypODVQw2WxuSnMV6OVg3s1lBeRgOhs3aIsKuaPSiWYFVQ+qmQCuXpeZnbphv6ig\nluBmC+ggmVrUQRtluaV6Mo9bB4B7Oq9LPNox8jyj3FDkeXo5dsFwEER/8OeRj2LjZR4Zb6UAQtmS\npVVHQVl/IFd78lJCAV5hbqb30zW0BDGO8A37zsCMcqnCVeCL43gRT/WCng5wsWjOADffUOa6px6l\n59sF1Hbao9VXdMKYGZOdkdWsX9kW7hBmNFUsSsnSoqnGAr7wyHhYYKkuJdg2Bp/rTJDUeDLMoEcK\nz2IeT+ngtVm57da8Ii27NzTyAIuQvJGd6kIeJ6WjCzARUTI2uDeUhJIEBdvj/FAOMHnyZIBfrvHg\nTo8A7bZYjmywtVLn3iqcREnolqAWMYCTGToustxbzd+EjMlCCyOOxWQGUxurq+vxiL6ODAENENs6\nAbaeTi8GKVVHcztMqsfzBtsrikDa0ndhahfv56SpUbK0jE1rYxX1UX7byghl9dpDgJuDWGQM5OvB\nQ4wQ7cMAACAASURBVDYs/akrcoWvALKjGJCtWtZmdbA7iozVwApTiy6jtePdQbu6eD9P26OjDC0a\n1ezUBLWFCZ1tObXGBmhLC5bma3GG+enxX6TG2LgdnKHZ/4jV8yE9zGBZjL30AWrafcm9pQO9QZdY\nYs0WQqFmCyHnjN3YEtzLohy1Rdno7FWub0TfMnY32FhXT8FpHrkWLC03YGZkI/xE+2L630GgskC7\noh3Mi0uLXRP5ZizVTc4EthnMRk6hs5UMwq2amr2mGZxFB3YYWy8maB+ltyXKb6+reTjXPZbWB6Dl\n62BnZm7qhqWpg36ZVGJMu46bDE3UZYutpoacbcPkjOyC0NKmtTtbSwfBBG65leT0zBQY7Ez5gO7x\nZxXQ8n35/tgHOwtAi202P11T80d2V+3C1Hbaw7UPB0E6Ckb551UqsCmWxl4ax1YaVzdBs5HZpTbu\nPO0ndTVb4IRULOi0dSuJ3MpydEssIOwVJBZbK9SixTt0aTb4nL1QFvmn4iUr51NY2uQFLaZoMLVY\npQoe1GuxZ15UUtj1tQAOTn3NHBndAE0czOJ7BzfuAuoMdXOUpTC0VrW0wday5n2EdtATZuVShl0L\nW5scBtVZ0Cs4rcOE3Jibc6K6+H7xXTAzHWanX3uCWtz3jfk/TSZ+aaFn1u4Uz5TiOTP5sw+mFov9\ntJJh0Ea5IC8VlNVsM0vATc143wLclgFougGxAnDHLjgmsIn/TdNUjZXAgqmFF/Quo9UuoLbTHq1D\nU9s6CRrbsmkr26reXQmLKjozpNXVx7c31oN53SRUj2PjSA1qztLUgW05uJ42C+falgymJO5FRwl3\nvrliT5fFO9MCz3YGWFxGfMeNXVezpGnJRXfZsGMZniwLN2mTZjQW7W0GeK7xBOvUZTEwbw0ci9aw\nDcpchSiKAtTyRmmWFQEqXytTc2DzUBLt8RqLoHRg7ZC+YgTJzkGzUj9PmQJS9nHwWkdwrZQqHNJl\n3Psz9zwmkCHunnl+FNobZR21yQtagm+RfWewtQFwA8wyp7MtEE95MkCDa2TA2nUCrKMorruB2nUv\nDM3fh74WAbnVWVC64Z20S+7nTnu0jtCEtgdqTFiU0HUsdNsbMt8tMkOtlVkYFmJBSlhiJfNWotw5\n2NrBNKe2WodLb5wtHqvdBv92yT3kZ+/kt0C1NDmL+RgxG8rzIrmiptmx8qgIojScB+osVQW6NF9W\nbghwYxXyBlnZg0AD5GwV+PDYIZnFRk/brIMwNp7v+CagOc8hAE0GsGUIRo84slLMMTyadX2BLjNT\n69XcLOws8joLmKWnM8613O9kZtgA2tyNpkYIJ8FpSMfwhDqgLc6Al1lbC90sWJoBmgOcx6JZ6MYA\ntGqCHsXypa+74HGAWq9m53i/BbV+g574WhtfQO20vXrdAUQ4h82Escht41jolrCwYmHGodlMhhL2\noApoKzX5CbampZuztjEIEbYQmo/HZIWm5AyNPLRBeTA1bgxZGOSVaNkXSBn12zyOqbj/g+bXhXKT\nTZXQAlX1xPgU2awKiA5wIyGoeLJ+0wwEtiX2nLmJg5yIMS8HNl7apLvJKqatrQZu7AUOo2pwAvdU\nm47yuiwYuGpqRU/T8rmU/LEKv2EuVoArQLcN0YjFUtYOOc6ezdTQgqHJYGnwOLSpAkeeqqZDAF5L\nsS6gU50EI/8TGZQbIR2Y2NlwGCRTi77Dy9S3wsxXX1egOgWEOINqU0PTwc6ODmYnoCaSJmiCWy9O\nBH8eN0WyvNbW7gDTiOhzAfwsgB9S1a8/s8+3APg2AA8A/GUAf1hVjzcd98Vpao9Xe0OUcWoJZI2w\nCGFpjMUdBaJRBWNUaNXSQ5kIkKHtRtJ5LgLCzta4A22F6mKBt20sEqzFfFBf5IWW5l7Qdaz2tC3g\nmGEdGwdhMLMCaOL5LKm1OaCNhZAVIoRIbCc2QOPGUCGr7BHMZCnOAl9HlFpUe108fzUWHDEhW9dm\nDJQZujAk9KBN6g/KdcHDVSZzO0y6AmxT7mypY2YBsV45Q8bnytZ0Y3oGCMtxgFndEqi3Hs5wDHgs\nQw3jiMWnVZ2wbYAt2iCmw+sZqS41TSq8n6Gl5eLCMUkWk3TEofkE60nqkhkDAWYBbFae61iA7PEq\nk/l5LZL6mgHaMEfjNddsvWO2xnejqf0pAH/73B+J6PfAAO3tAD4I4IdhiyB/+00HfeFMDbAbxAS0\nTliYDdQa49AVh0boTSHKUDc/zbKIHhnMTNOaoJhZnfXY4GSPBerW+bi7OB4u9RXUDtB2xFgJe5hn\n02Cv25bNAKcmTQG3ALTwyqYZSgDI1wglHYPKNxUd4LbxfkoXcGfbljA1DVhIjNnQ0qGtTSDGa2Ua\nhaXVwVyA7YmgVsA7F5WJFZz6eI1UtBNT9DhM1AnAum6Y2mxmzonq9dwwBnN6btXWiQhdbeMgSL2t\nhLFsQzoQeb8ZqzYyCCJM49TkHECWGzEEZEAWm2wZmk6AZq/i+pq/78bYjiIGaM7e0mEgdwtoAHB4\nUj7wExoRfR2Afwrg5wB8zpndvh7Au1X1F/zfvAvA9+H1CmoPr52pIbIGfHVvFmdogmNjXC08AgvV\nGZvXMDS/qWcLeKdlcM60DGBFxJF5jih31zS8LHjrgBiI6XIArQZwtrVTLa12cqqd/gkXPGlqcDAo\nr27YRSHGTM+hAaTs4MYeeZyAtrB7QiuDc3N0Fehkco6AUXG2IZM2xBOYbYFtvqZTQMv3vTC1ujRd\nSWXaNUU3jCydAaIJZidJ6pNpH6dWdFbvG+T+cEBPwWynxeSIzTPP7IJJWyvOgVi3M+PQljGB8gC5\nNDsjiLY6BYq5eb1qAtpjBzL73B3UFNerFKZmgJYxaxId8O7as5ifRPQmGON6O4BvvGHXt8DYWbT3\nA/g0IvpUX2B9t70umJotn2aD1vQ0MR1t8QezsDnWFOYFjH84pKjUz9hZDhOwwqMuFL7ICErnMoAj\ndq/ncgCtR/MOrsNcmJja5PXaMLUbHAZTTFk1i1Jrq5fj5mgxP8Ps0QYPzHVtzStHzKaouCnKrqEJ\npDPYnR4azMLXGBUeptQA71PzehvbVWPuRjxeYWpbMCum6FgIpYDWJm8zQzW24Rqbz3k/E9h2HoD5\nOLzwgE0cSgqQO2q2zy46GM3gPjsKyFhtK06CWEE9FhteBqCplw/K16y6oZnLGcB2TE+nm53O1Or7\n6zXYW3fQExxXMX2tR3bBCPG46/aM5ue7APw5Vf1HJ2tCzO1lAB8pnz8K64FvhLG83fbiQO2xOwoo\nPJ62MRMOjXBo/mAWRVeBaBtBhCgQUvTskZEwYt66WDBvU6CTBeZm4nZrUCmmqM+26sIuxWKx3E5n\n5ioan8O0ZGexVUdBMUOleEjjmtIMHYI1SZiiMI+um0HhQDBWxMbgWEHN8ld5Nf2MW3NQk6Kj2UAV\nd4IgwHvjIEhQmy5vmHjVFM0E8gpocX6TKdpn4OrDoRGOgOlvEp7OCmqa93YyO+M+wrRY0ogJdIBz\nfTbM1bOezz1WNnk+HdCy4slYPT0+65S5YYDWXUYZFTeww9RkBrY+wOzx2u312G3f1ePXnLlJMDUZ\nie132V6r95OIvhjA7wLwxbfY/RWUJfMAfArsSf3mTf/oBZqfztTolKmtjbA2RV8UXQRdOIHB/0m2\nwdIsG6GxgInRSNHJgcw7DxOBUEAt1gvV2Qs6glPNizWzNfaYrqGxoQz8KVWqRts7i5hArQ5IKR46\nKg4EIAN8WRyERKGdT0BNGqH5YCc24NJVoIszt2am6hxzNwap5OfhKJi0wjNt11GQmlc1Q4dZmusH\nVE+m7yOroE9aWgGwTSyaTQo6s/fi7VQP7zFv1Hg+KiZLJBBPkbexuYYRz7l6PZkTyALYspRTGwA3\neT2j2KOtT5810BLYSsqTaWlazM0Z0B4dHdiOHdfrMEED1E6Y2h2D2jnz8++892/hA+/9v276p18N\nW5H9V8g61ssAGhG9WVW/dLPvBwC8Feb1BAwIf/0m0xN4oVU6SkiHeykT1LqB2iqKq4VrGBbq0wl2\nZknwgoU8CZ4UC6snBZtmUc1QW0HJ9TVaASogVxa2GFUr5pikaQk7vwgaHorTi1Wg1sYPNnMCbGHS\nlUMQkWUaEJlGlt5QNz99tXczRznDGoyBCWThZGu0DOdAlqUuQLb1fJ4wtc21VTH+Zg9olACqXstR\nTUO6umfUwWpVBzU5YWaTt7N6kSsVCXM+MjVIAfbFpJt9HCbzzvPKa4/PRQrYBmLX5H8v3xR9KCsK\nU0geztwwQjh6lhMaJYWOfWZdydhWwaO149HRQe3obM3N0aOD2khu95Qp0bvGtLNM7Yu+/CvxRV/+\nlfn5h/7Mf7fd5c8C+P7y+VthIPdNO4f7HgDvIaLvA/CPAbwDwHuedG4vrkjkcYgf5N5PdsbWmHBs\niqvtw1H1U/YwEA4zU9DIshAWVgc1oLFXMnBAa0oQJoBs1gSt2fGI6swa0fSjw85MjebBH9dxhtWM\n3MjtoC8aFLA7mwbIzR44YxonzM0ZWxO2kBAmcFerGLwoaA2m5vmlzfJpQ09LpwTtARsm1jYY6A5T\nK69DV8OUwlS9mjVoFgL04vU8YWa9MN6iTe42svtn60mETunamijAOoPhmedI8Puxrc7ReKevlPhH\nKgwt+hw390g6iOkQ9FdBYVynwBYM7dFR8PB6dfPTQe3Ycd2Lk0Bj3GD0rztsrzVNSlUfAXgUn4no\nFQCPVPXDRPSZMHb2ZlX9NVX9MSL6kwB+HMB9GGP7jif9xotbIs/qeQOIWdAASiIVSkenVY+1sf43\nGB4RgUATWzNtDli6rUI1ShqZOdrUCkxS1daYLacz49Ui3qhlpP2ec6AO9i1Dm3I+gxlsTNBtvfy9\nzkf+vwQ0N5uMoamdl5DF4Ql5TqgkkwjtTbqYp3P1V7Y1EriRva/sk4EtU4sVlaaUghDmT5ha1Q8D\ntPQEnE60MncwTMnpqZ1JMUHL8ZPhnrYMilYgMgnUn5dy+bfJOLcHGGJtOktOnAZDxog+Q+kcmMFO\nYxk7Z2WTyVlBTDbBtqskmD06djy8DvNT0vwM07N3tU3ExlBYCNi5vmdoh7uJU4OqvrO8/1XMGhpU\n9bsAfNfTHPPFgdrRFiC2QRtiOKOzogmhKZ9U85Qyq6bkQc7uAtC6v5KMv7kp6kQAAjN3tZgHqY+4\nFytmVaINsBXGtO3w21ZBeRvSsY2tUrGwhdOBFcxhlA/PJdsCzDpDG4HFPKHGJNWZWCzp5voSk2lr\njUEMSHh0m+Sxq+dzDGScmtZ10CSAF/DWLSChgNUpoNV9E8z8u/hcf7NWLtm7b6zkLGr8UZmcYdJ4\nHjGxbA+yZak10HpyFsXkuIz+E8BGvqXHk3Ipu2FyjiDbaxmvxy54vKoztF4ArePhseP6WEzPbiEd\nfTVgk5hQUh4A7hLVLmlSO21dZZOWAjCb2K3CSZunZG0UMGM3V7kbiDUHNBq5oosIVrXsBOGhXYgC\nhJhFtysqjZlXuWV82iicWB0DhcnclANawGwvZUrDVNjTPvyL8ZMBbp5ixQ5gnaCxOEiAWjoS7Hvh\nALMAtmAckuY08ymgDQ/zzNSma9oAW6x+XsH7XI7meUdA+bd1AtD5dW+wBo4xZIAxDb3xLBjmAVAm\n3M0zZwJRaGhFT6sVTzZ9a2Zpox/2TGCPyhsjoDYALnSzR2tPgHt8HCztGDFq3UJhepkYqt54l8ra\npUrHTuur56cAmcqkbl5pUzRVIMIT/KFUx0A1N5cmWPpgZUdRLF1xYAeLNlbbsU7lZus2ids7X+po\n/qphXjCb2RqzddWZzrA1IC21mbUVMzQ0w65j35MjEMDQBBfTFD19ydmVJKARuElqQMnW2Nlaq2DH\ng/mxH6OYoYinFKZcPSvF7HmczE5NgDOTu1TT2AJaYWnz58H6quAdYHYupjQfhQ/qCH6Paxos73Sl\n++2BpjzQ/Dx01hruk1IG8QbYbEuPp2jGpwnsuqaSQqIj8DZA7Ti262J2Pj52rO4h7l3Qu8zOlMnC\nuUumdmeHuvN2K1Ajok8F8N0AfjeAfwLg21X1+8/s+88B+B9grttHAL5bVf+z7X49HAVkGhdXETwr\nUVh6lDGrweqIaLC0FsG65I4CwpEFB7aabCnEEtCZrIIBKYSsTpimk6BlZw0vaI1RG2C3MUNqQOoc\nz1G2otlsRO5wgIQpUnefmuGaLyHoAK8Wg2d1K/18ut/DZo4D+2w16Ay0NM1RAzvd0YqKrpbPFTm4\n4ec4zJr4TiewrprXXO9so7WJlr/JiSNAtBQ81FofbKf/lQ2ePQBFLkij4trj3rPR7ZFQzP8iO3CY\ntQXMIrQjF64Z7F99LVXx9QYGS9OpHHcCW+R3roOlZVzaOoDt+ig4HgPI3OzsMt3DjFHbcYg8S/tk\nKD30p2EA9VsBvA3AjxLRz6jqz9ediOgA4H8D8D8C+P2wyfTz9g64HsUHirMMMuYxTAPAyuxYBdij\n78vOUsJLunAf5iZb4O4qVJJ8FSsrGpN5Uslmy0aU5mYKurHmZemksRYmslMXM5QHoKWvIITpjVkG\nzBpbmJuR/pUlmFHH2dwRyYxmSw3TYLhagE7R1EDOqiwNAFauzoNhpmoBNbiuOXS1YnKOMW7XgvKm\nmp+FqdXv95wCGoNP6/eSbMb+qU6aaoxPOXN/4lQ5T46GA4asAnIyZsS5l2eG6JNhtfoV11i18BSn\nDlKqvnh/CSDTIm1otRakBNz2kUVg/bYytO5beZ8hHN01tC2oFR1yejZ7I/G1tU9oTY2IXgLwtTA3\n60MAP0VEPwLgD+I0sfQbAPxDVf3vy3d/Z++4fe0zrQecORiQDa3Go76dKYSpalqa62dNcGiCQyNc\nCeMoikPpJIducWvCVEocR89lZCwRzbNvOAiGF2vj+QpzBEV38uurpmYoGttBLxtAC6YW/oIwtcaz\ngCfo++3w92Y9KhiwUA8faxlg6gyDu56AmsRSf3nQrcMAxk5uaJOHd4rHg5ufhYkV03JeYBgO9DKW\nfcMAeHGAm0BtujeEKIzEiHseMwxZ1Raa2SNivzLZBCPOCSqOnc6B82wtmVr2pfqeHKDHGgK9ANqU\nTSCawbZjK17OtZuO5lsAWYCbVBM0+yLuFNXas+WzP9d2G6b2eQCOqvpL5bv3w8zLbfsXAfwyEf0v\nAL4MwP8D4I+o6gmw9VXGoEF4Pz2v0c1P+HtoLMJOWL0vLSvhujGW1QDtahGsnae6UmurC1HERjlb\npllbzYgMlqxmhP/dO2g1R1CB7ayophn6ECBXZ+0AtNTUMAObHwIMxXCvDMYWZimTmTeNAIKA1Tyi\n5Os+aJj3vYDzNiUqck4DzJ4EapUJVGawE2w8i/5ILTFYmDgAVlN8AvhyL4LBpQ+g3AfVeBIOaP5k\nOLCsgO3Zge7PdErur5payhaM6mCKibHqa+EgiK1eb4R2ZJ/t4/0EbBG/5kDWfZNdpnYKatVhcBft\nWat0PM92G1B7GZZIWttHYUml2/YZAL4GwO8F8H8A+KMAfoSIPl9V17pjX23mNECwXshMyczsQQS4\nWR/rBKwM0MporGirsbPQH46Lu7aZsXIsVqG5GGxoM17Xw0tpeXhHNT2Lq16L0DuZHRRgGFQJZzEt\nB1Hd/GtBWWkb4/zqPhXoaFC/oR8R2crsZOkrHc7KoJkL28hyIO1ai2620Qj3QO3EQ3ByfedBbTJH\ni1Zmwv8pS1UFOsYivToOPxmb8TnALFhakHomSgSzy6LCWgpzuWmcB9gnKysAV7ye1ak0POlhgpKH\ncYTJPPTBrlFyaGZpGa+29nw/AnLVQa1nOtkAtRHjJ8X7ibzumx/j07RPaPMTp0mlgCWW7iWVPgTw\nN1X1b/jn/5aI3gHgC2GsLZscH5cZ0Ew7Y2gBamzCUAxgH4DG8DpWJhyZcN0omVqUYTmy4Oja2toZ\naxN0CZGWyhJi5NoLZydEmhkjjIMcCGqnvlVTnMRUhbZRV9U2cEPxfqoD3DC5gMDM8dtDP7IBbQI6\njUolHhPFznSb+tiEeoyb3VMu+tlJbBrG591LTGCopicmMy8YmMS9QHgAh5lpmGf3qJf3e6w1bm69\nLzY5DfNc4zWPbb/FNT4tQffk4GdbxidmX+CTSVB9krQbyOMcdExgg6FJ1j87ypxBENkFmQK1Cta1\nJ3ilt9OBrXuGhoSe5qXe1ZcwvEum9olufv5dAAsRfXYxQd8KS2fYtp8F8BW3+eEP/98/mJ7D+//s\nW/Dg03+HibjMo5MpI8rZ9oynAkDm4WyNcOzss1rZ2MGsK45NDNzEa7dzNUFtQLU0KYrGVtiZEk8d\nOWPVsp0b8GOGjOVGR4DqAKwKbFoGYAzGzVGnX2UycA4tSaBgkOe5ahbJZFVzxmjocGpLNZBXrjhh\nav8/e28fc9221YX9xphrP+deBPUmoImpaEpLQGhRbGI1cFHEaEQbNW1iTNWmDQpBS2yKSS1p9DZK\n1f5Bk/qV5goVxEgJxVSM/tHoBaG2wSs0wiU0RD5s8V4pVjT3nvfda87RP8bnnGvt53ne9zyH9xzz\nznPWu/dez9prr7nWmL/5Gx9zDIqQDqCAGs2XMQ2UAuBYwHx1hLjH121jCWzJ0ALM3L52jzyx29uI\noo8D8GWfeq+FUu0cPuE8nsWs8WouC7myIB1OKDKlE1ZOYkNyJYEvYL+a6hmsrATVujd033uqnkXd\n7H2gW665bqDm624/8X//Q7z5T37AzB5PB2rvaqYmIh8nom8D8AEi+jKo9/O34hy8vgnAf0ZEXwzg\n7wD4KmgIyEfWAz/lc740ZjoiRt+fW9yYeZEmiqZZJwYbuJHOUnsnBbGNp4d/HWlbi2R5w13o7iyg\ncBgkC+Oj0IZXNFWR8IyZaubOjts30V8kmFoFtGBlMbiLA+HwPPK9Og70fjioEVIVZRvQPrAHFNwc\nr5hgS8a8KxnY6/2CdTP+mUBN/P+8NgfsCtxnoIYMbXD7WLLT3Cfl+LXvx1vspgwDcbPVDoEtIHBg\nKwP8nnGezzlvRF1NQpQglunOZ1kSMpMKZkDrk2wWu9rQ9ZvXnq8eXNstHKaPtJ35sigFNKu41bUs\n4Rgdd5/2b+Dyqf86vNj1v/g//9rtDr9Aewdj2qNDOr4SGqf2MQA/BeDLReQjJwtQf5iI/kPoSvxP\nA/BhAP/eak8DgNGvANLwShbkyrzZ6NhitBEhAY0Fg1WdvHbGFuvluNRHdFtaVteZcksNX/tnwm6q\nJ02zrKFWtZ8tzoHZePyIuzipPVUlqWpYfu4yj7mxfCZjY+EFXQCOQfa3VEEdzAhqf6ugpmM1S6uA\n0she/lk6VFRDQ50AogXUvD+VkVV2egvIKmub+z5dCdKiZqAs+pmhk1iCrdwLZvkjOH3OVQ5CRhZZ\nmcI6fMIyO+KQOtHiIK8uw/MKA1vPOVz1rE6BtKtp5a0dY1jRaFMTROIpPUnjRwn8q2mPAjXR/EW/\n/WT/2QLUb8ecgve0jf0a4ABiW6htFZ8gkRHGJ8ph6uewqHe3KYSauUvaHbZMvxILhyf6XzxRoUb4\nbOvu9wJm9rfJphYbbPA/8JAXQIvBiiNDq6rZWIBiGthwZwe0Tug9AEdI5sZwVZXQoXYmQjK4nIUl\nCk1HJ9ZuFWZV903hGMh+hZrpoAU8AGTyYN+B2THgwOYOlEEUwPsiwEaYn/Hx2btXPFmZ749ldcbU\n3OuZkxkm2UwPaDWlSDC0Xpha9XBmpuCObmUeR78aW1tA7Qltav8qMLUnbxXUdNE4R2k4EaDBhJag\nDgLWEJDBgsE6U7HNXnukaKlJ8jS5ZAiNz5SyeNSIoKEaAxr97aysLHFZGNw0cz8CzBzQQvUUiYHu\nwLaGdlQ7jF+vn84b2Q4dd1LUzzMGZ3Y06Gf2zwX8aliEgzR5JfMHWl5fuWZgAqsKZqsqujKylbXd\n33cD1QXYvC9x3phQaHomD7fFQzzZ1IqcID2eNU7N+5N9LOEcBdD6WFMOeWpuB7CyWc45/azFoWW/\nou9XSL9a8G0HxoBIf3JQe7c7Ct6WNvYr3KtIPECjYbQBkqYswhkQZdDjoIHRnakRxiCMzhOoafGJ\ncbCp1aDHYfYWZ+QCKqCVAEbO4Ng/ryEdlcXgBN+MZU2AVrYq6HCvWALaGtZwswV4FVUStxlcs0Bd\nBk2xbsHUCtC9iMaSk8UcOOtbDWW4xcgOzoEH2ZQH26ba6ddMlM9ZqKqgyGcfwCbHE/tbV72nSa2s\nQplCfdzraYwNFM/5YC8VObGpjQXUxsLOxpGpGaiNfjWmtkO8iLSofQ3OTp+ovevVz7ejjb7rc4d7\nNTtINlALiQzGpNlEU+0ckZPfItBNBQ0A862C2JBp8IgB22SIr8xrBa9FBS2Gp8nONhnSY9BkJHsM\neBRgwwwAwdAEh7/dkstQx0QmdpYMLgFOQMbYbIG8sxo/B9Ku9gjFelI/67VW1pWDujLQ+9XPe/vr\nt1oQXt1hV0Oubgo8w1C8d9tdqqBFFRW/UZifqTtIihqqMkEHOSknmO6PmxkqC11ltMqvB+J6brRp\nFUqXWH0xg1pu4sA2hr7isaz0ce21+nnS1FGgwkOjg7jp4mqx4FibDQc3UO9g9gSSBbSGP3Qr5Nrn\nmW9eTZCzZA4YCc+Uy/NRODELcmVnRdBpfW/nx8gBdGZPm4V9VkNzoOcx45ZgFpbmRvRkZ3afIRaE\nKpNn1Bla2OfsfICxvAeeZV6XxOdb1+7xeMlA1+VQMn3/VgugJg3hGOTeUZ2oXO0U0VCWgQJ0vo0F\n2FBlwMVgmcD4RAWtMuPfwYkdb3rGJV5N5sk4mJvJdIJY2bpkUejRIQFmHbLvkLEnYwtHwdO1d32W\njrejSffMtzbqjMEwgNE1IHSQlrATZozBoHigQ1XPQRhmNxuStRO9EGwWn8BkUwsnwYEJmS0NqVq4\n1zNZGgq4FWb3ov0vgyttaoutza8TMxjfPinSjiRa+s3XQVZAE1HDejI4WxQf7C5P6Ha6+39W4gOV\n3AAAIABJREFUJrDNezpfd3UWnNvSZub20P1TdlmYJ9lvkNvsNFFCfc4v97jOJrPKzo3n1hCPCqLI\nZ5mTa5FFl9uem5tMQssYRe0McDNnQAE0BbI9XqNOxFMztbfyXaJvhFaUei+09sCfFpEPnhz3ewF8\nEMDH7ScFwG8Rke+87/yvENT2EAyBgGSUxH4UUdnCXpuyaYk3S4a4zl61aEWsn5uYWlHpCpjE68El\nfzYblw7U2fxF+w4fwDIBwDoIJkaDxw32BDF1FkgJzNXhbzFTkMLgnPm47S07pcfc/6t+D/Pz8Zpl\nArOZvfn9mNXQ+1uCN5BFivV5pNppTJzK/X2J4UgFxKYLOMiHT4gu1zTbFl3uFnCbVheMIruxyD+3\nqSJXH6lq9m6vRQUduwV7P7338y0G334tgC8TkTeJ6DMBfIiIPiwi/+Dk2O8Rkfe/yMlfHaiNPQVB\nhnqRKpgNjgBCstlmqo5TtgncDurnHCrhr+IGZNT3KvRUZl7y5VOgfB8A92IPNtQRt6mgDurKGGV6\nXVmMn2ttPpXp1VMytBj8FJH35H3FvGaSoAe7zHpU/i0ZruYo/4zDtT+OmZ3Z1M76CCQr8+VR8Rzr\n86TCkqj+Jt04+/wbp38ott75vTsH6MjSING3M1nskiXyquw+JOsS46Kb/exsG5BcOnGzzy/a3kqF\ndhH5wfLRH8ZnADgDtRdur9RRQAZgxBy6gRDZUqk2GzoljaVun4q1hCKREO8gFCdCVNWg8IICqEIZ\ns/PE4IrK8VbVTn/vAFdALoBXZtAb0/fO28rKHsPc6jHOZQLg/Lwyk9Wz66je3HrMY5nZesyt/pEB\nlNt1FNwUNMjYkYPYACBUGJvcf//ub+erBqqMBOOPuzmD9dGehqk+5+rsqrLua2gjSYCMeYyMgSEF\n0LqPm5Fs7Ynao9c/3/7+n4GmKnsvNEj/b9w49FcQ0ccA/DR0xdKfEJF7ifwrZmoM0ADQTFoHhDRq\nmqhDpAKbb1bDwNZR5msKwTjdiqNAVMiTDqS6BGBmYf6+zMQV514I2wo7qVv8vsx/W6PsK7u5JZ+u\nfq2szMMe7mNutSse7lFvST3mHNT0HuPkmHNmtjoJHtc/kgRc74+nZIr7J6J20OCrM1M+XPh9bX3e\n1ZGE1SxR+l5P7mAqcnj1ymlVXmt2E5fxTKg5lnHRC8At42UK6XhIqX98e6uOAhH5SiL6AwB+NTSz\nz7OTwz4E4HNF5MeI6HMAfAuAK4A/ee+1vbVLe/k2P5geN19GByp9ljH97VhabpnRQmBWG5qziFm1\nmwbQLZQipIs/dzwe1fz3Hz4s2I5fu7MNj+3qZd/pJvOxkTpaapqf+45J72sv+86PWTe5eczxt+Tm\nMS/Sv1w3W1nYI+/1Dcp23DU/b53nbi2Pq8cWVo5F9qRMstEHCTnNzCYLO4utjJsCaBgF3KRjZXJP\n1W45gA8O4XuaaPseAL8YwFec/P1HReTH7P0PAPgAgH//oWt7ZUxN6bBNu9FM/Ry6DvQwI4lvRYCH\nxGsKxgxsOUjq38hJGsrLCVDVGXn+W3jEYva+0VX/54x+VNbiYIZ5Sztg2tTu/S179UItImrYJRvw\n7vU8MrfSL3F+k7elHnOYEKZ9Mn2uzGz6jOIIkXTcPKZ/gF+fPoPD/fLfoxvFVezge39uYuVFGV/D\nOA7IlqonsACug1ZhpC63Y5Lds1ffRqiVcgpii03NmNrDlPTx7RYb+u7v+k58z9/9rhc93Qa1qT2m\nPcgiXp36KUMNrAIFuAEQHR8UDJwMuQKsfL8CRlHfygyYtjOJwTIBRhlch7Z6Pelkv31+rH1hGrzL\nVlPr5OvMOF5ILAURlIrFBtXFuyTFoZDYvC4WB2ZAq9ezfl7tftnno73taFN7fP/8mv19OgrK+cvv\nh9MAL3AfC0PXzyfsnHCUieU68xoX2ZPZeTCxtyrb9jlk3sZCjI3iNAhGVmxpDmhPqX7ekvkveP8X\n4Qve/0Xx+b/9k1+7fu/TAHwxgL8Ozb/4GwD8TtvWY38TgA+LyMeI6LMAfA2Av/rQtb1CpiYQKLDJ\nGABJxIKpzYxB/mDcKOoPFjP7qQ9/nu2KGooyU+K2sAGYZ+BqX/O36wN9LN9GuY76uzLvK7doUlvv\nBeGlsf1YApuEtzAuWWBQ4AvZ6fTYx7aHbGbe13rsCmiPGXbk5yE7j0B7sdiz4r7Scd/DP1LZ+bJ/\nArYqI0XtXLbYV55pjU+cg7NtEo5nL/5/kXUDqRgb7gWdzTUToD2q449rb8GmJlBV889Bxe7HAHyV\niHzHmvUHwK8H8A1E9HMAfBTAN0LDQe5tr5CpuWM9GZuIgOyBkeTDAtIlvc5Y8fDL6xq5rw9Vppm7\nIkM+60fayB591Iu36frr/hc9T3lTGRvy5fSYcYOpPfY3b7GvtS8PHfPY35vYmjhYntm6Ht/e+rM1\nOZKUNZ+EHcwcnEJCZfZ6r7J9XNblJ0+zzDo+VkB7Su/ny4Z0iMhPQR0DZ3+bsv6IyFcD+OoX/Y1X\nzNSwAJs+HKpxNROAmTgsU38IjguNC0f9OUynPIDbhGtvG2Q9rpko5ns5hjk8RjwFZ4xN/3YfsIGS\nCb1Ie6uA9hhgq9ftoRyepioA7ZW2mTHGa7k3KwPXPy9OgiLT9SYlaM2mmNwc4Mx3voDdk/XyLYZ0\nvJ3t1YEaUICNDuIoVSRsRopZ6+xUcEGX6RwHxvbgRRUj78H++3gm96pbThi5Q0FLzMaWymWVTynH\nUrmX1YkAIGb904ljvZYycYTnrxz7WEB7R7VihghZofrHkybHjxPpwnwfTqXV728ZE7ek2727Tw1o\nwOu1n/c3EdV3zgShMDSd2eR81OjB0yxouwqNv/Hzt67rbElMucZ30wC8xcaA4133W8Unj+TWsfFZ\nbtvE7mNo77T2uGsqzoNDFN/jf2iSVyAn7vtAaNFe7getpwc04J09tb96UHtse5RN4PyYF36khxn3\nBgK8i1rFqBtTyM3jX+Q3XuSYdyKgPbqdOYx8/wu0w8SABwDNjpK3Cawe297VhVdet9Le1aPwdXvd\nnq69gzHtXQRqj4oHOz/mhe//Abze/WhGN94/5vgX+Y2H7lQ95jHHv2Ob69Jn+1+grUqrEsBHyPlZ\nuMnPYqNXyBIfaq8e1O4zvlOmTtaIbo8HOz24hIulujhF/Z9+60ZbXaOLYe4dPFEdWlh8KAur3Lol\n9diHgPCwz+x1Z7YyWo4ZBdHeacPjcc/WL744tF4C0SZ5BUzmHwC2GBdLivn7fuSJQYjGoUDcO6a9\nWlAr6+fWh1h8c/bAOB/42alsq7nTqQLdctbbTeJ8h0F3n8fhHdaqNXAGtCxIcut7fr/us5v486pH\nDPOshocujs1zDyEDNjkA27uKuRWmRkgkv/f6TxwvhwUqqM/u3GZHwDQmqnTP992jCnxJ4BPe3Sdc\nnfDU7dWBWgCaFbEAYcpNVZ52nZVyekNIxbQAgKwMHM0isQpQ2HmLMAHImIZX2PSydIhXQKqxag8r\nKI9jaLeO8dqgL9I8x9l9bOwWY2O82F2PayzX+Zh6Cm9/kwJ2yNcic4e1pPAJ2Kp+FZmmOsv45F+1\nl0mocwxpDkBbsYPx9BPGa/Xz2I6AthYw8Qc3ZxM9FhNGMrjDa5nDqKSvXkZ2fH4BJvZ2PVK95qzy\nFPtf9DzIvr4soL0MQLwVYKvHPKadT1pLha+XaG/92ZocBatagA3HeztNxrUf02eb7iZ6xzlO7BhP\ndCpEehkF2J6svWZqJ60AmheEJW4gaiBmMLd8WDzbDkIo/KHH+VahMDCjReiBmxuAAm5yZG5nBuI1\ngvK+bvt1yAwqdV+5RQpwok78s2Me+p0EK5rYV/49VXq6cWw959Tt9bN40ROLtaLMcRYL2sm/SwZ+\ncmBsj2mpruUENvUd5b6e7HuwTSH9y/5p8qsyMrO0Va7inhdZ9a1O0hOg+TeLDOekXseGjpnBWsRI\nZIC4wRe2O7A9VaPXoHZssyrJBdi8JJ6+YqreM1PuoPAOVJOw5MxXq4yfCtrZBR7WVJ3st8+PXVM3\nAc2y+T5Mr+eJGh/1W3SbfSXI0+Fvt35rZXoB+zJ/KUCX8phhfRHkAnfgflb3YP8O10rT9dV7Wq+9\n3vsHm2AObD0AWrkJD0xqp5OoTSourw5o7MAGoDK1qqHMtWnJxouPHa2fC4gSKitIrWPuidprUDtp\nwby8GGyzB9ImxpYAlzS7sm8tWVZeF6bmwhLFe8vfqhqaQr6qoJW1zX+bVis8INA5zS5/cyAgLUfn\ntrMJ8OwEdRnMrV/zX/Aq6zOIzcxsPaaewxlb3bc6F0ZhXnpNnqSApmNUC5IpO60zNyKK81DhEo/t\nXwXker8qMJwCmP3hXnCLZUaY12pOIHZmsljYWpVXn3gdhMu1JrjdY04h5DiYgMzHzDBQs+tzHHvq\nMnmvQe3YHKRAVB5IM3ZWH9QKeJSbAxfTiVAUQKuCUWb0KnQAbs+2ZcaW3PF4G1ydeY+nroeZOiVh\nOPcF6US2XpPkXgxNVkILmJ0xs0U1L+e56Wgp170SK62eNANvgFi59pW5nR3zIv071BTG+b2ezgNn\nP+d/m9v8vFVr9mwy9x2bshXP1ryRVaPIPizOAjbZdlmvss+FDJQxAlH1M0DN604KPS0Q9dchHYdG\nvC1M7WzmWZhabATVVutrPvxqp6j0fp0JcxpfZvRqR/P3S4aQF8G07HQV7PLzvo9IK6yXv/ngTTjN\nSkk3fmJSL48q6Mre5mP8HGdMbQW1I6fNpJP1GK/67na0c+Y2H3Nf/077M92zOonkv/WeHhD7vnYg\nZrX3ciT20ynNhLAwtfoasrrIbk7esPf2vTpG1rEhDeABEgaE9UJise3TqZ+vbWonjdsGR5YENX1Q\nfFA9HeBWhlZmNyY0IjQum7G4CmgV2Bg5oBO8LH9qFV6ZN3kL8WrJJuxVUu30qumqgup+IFN4R1k4\nOv/1yjyPauYZezs/xq9zPefZD84mxwpolZUli7vN3I7H3Oqj3wu/tmTkxZaKooaWfvr9f7m2pvoZ\ns4wsZorj85CQwUZQeSWAQ3YRsss+UbsMc7K3ADyq4GZjZwyMqn6KX4U87SqA16B2bMQKasnW6PCA\niJt6QW0WUoAqrIyTovv+BDUTkBNAi+rkZaZPtaYI6GluqpEj+QWBbWZfEiAWntB4T6WcndUQMAbz\nUMqXF2Fm5yqp7lvPd1+npuwc5PanTBPuSptxlnuYG6ZjHrqXsz2N5tcF9Bjz/bhPQb35VH2ii7x/\n9b3KBVVA8+fggIbFgVUBjumw3ZR120aMiwaJMTOsMLjJ8GAQPX0x49dxaieNWlNQq0ytbeC2gWJr\nsY+b0etm6mebH3BjwsaEi71uzNicrR3sbXVQu+qyzsBzosoEMmtFDX3hvqMOLg/VoPI+wStsT/cw\ntPXcDzEzHeCzkX1lNN58/31NLP13fs5C0ZFtmMgKoqQz4SHm9vA9nB0Gq31wYmjx34s3nb+Why04\nkY+SpdlgfYoRDEZZgU23VmR2W9ha3YhJx0AXcGPI2DRkY3SQbCARsEnJABTQ3K38DmFqRPSNAL4E\nWvPznwD40yLywRvH/iEAf9iO/VYAXyEi1/vO/wpBTX861q9xU0DjDdwaqLUEON7A3PLhNgazb6li\nNiZsjXCxrZW/VWCLAVCFTQDCKIKZm6zAJjXn1cupolUNrWoni7O0HKQjoO3+alIzO0nGMjMyY6+4\nbVfLgX8er7Y2BSjEfVAQg8atBXOznPxEUeLu6CwgDJEA7/vG4H12w4kR1Xv9MogGhMkhrqcAmqee\nX2UmbKP1uqYJJeUxJuQiu1vVMphU1pvo1gXMBOGGwQJqA2zlJFkGhkhxenabDZ+WWb1Fm9rXAvgy\nEXmTiD4TwIeI6MMiMlVoJ6LfCAW0XwfgJwF8O4A/BuCP3HfyV2tTg9sHiu3MgMwBjbkZyPGBnbEx\nto0JW+OY4RzM3K4WtouFnaRHtAzc1VW/zMgp3MWYNH0lhT9iiKhuCaK2VqI4CFxNAWCq2TA11Uu9\n3RqXNPXrfptac3CP752poHbeR7AbBTG9umpjmxxvAquaLgHUAgkGV4+Jc9wzFs/6O01YoYZS3mf/\nnm/s5g8KlTtZmT/TytAlanBSkYlJZgKNZ5uaTipSmFq1q83MzGV4a4ytDewnqic3whgMHg0yGqRt\nAWgEAF1/Q4YVBH8HMTUR+cHy0cn6ZwD4B8uhvwfAB0XkhwCAiD4A4JvxzgW1SwhThmxwMLTcWmFm\nqXa6jaExozVlaK3NgjHZ0JhOhX0asNUBsDoHxqqOxpcy3KPuN4mOQePgBtJ6nHBwW9RO2B/goQOI\nx05+3pN220Z2VEFbGVgx8LAAIL2oquZV0JNRsjMuEIS8XKGed5jN0MFPAU7VUDF2V8sG3vzV2jcD\niQlMMKuhHJ8XQPMvxSRVnuk0gVWZOAG3aZbzO1PvqRR1eZbROiFvLdXQ1hjMI4GtEbgre5MmClyy\nIR0Xfs8bhDqE+eltam8xSwcR/RkA/xFUrfwwgL9xctjnQNmZt+8H8AuI6H0i8s9unftRoEZE7wPw\nF6E1+v4pgD8iIn/lge/8r1DauMlJwUHeKqgxwGV5VLuA22UGtWZq52HTGe1StrCn8Wx0bRXkUFVA\nSYEo9jQJMPPPqyoqs5wcZIb8XhjALZvZkRTMCM2DnhwbDYSrgiuHs88qztExsNrSVvVsZqv+XQT4\n3/eUS9fLNQfzQuLAgAKaL6MaoZqeARwM4Ga29lDfmz1XZUCYvNsBbGXLSaee8Xijk5lXtu7Ogazk\nRFLkyGSKSIpajMNEuzoHNjYZbozLxrjuDG7DZN3Uz5GvImyglvLIUDUfY4CGFQd/Yqb2VkM6ROQr\niegPAPjV0OpSz04O+2QA/7x8/hnog/oUAG8N1AD8WQBvAvg0AJ8P4DuI6PtE5CNnBxPR77Jz37yL\nAWoggG35EzuIXQzY/DOBNwZvNks5K2vK1NSOVoHN9i8qaMQAocziIYgdkK5qoAPb6LbNjoNaU/RB\nLrEMHldFVMAl2FmCgNMFHc0OKj6414Fd2cgZkFWACzDD4oErALZ6O6s38aylqpgUVUEs/zYcxMx+\n5uA2DuzMAQ5hp3MGd1/f/ToT0BbHASqA0wmgPdRS7TxUbxoD6CYnWIGuA6LQWq/XJ1iXSbepKaCp\nLN+ZHG8boQWwmfwPexW2ibfF5TTYcrPOENohzKAxnl79HG89pEN0AH0PEf1uaC3Q/3455F+ilMwD\n8POgYvAv7jvvg6BGRJ8E4HdAC4x+AsB3E9FfA/C7caLbEtHPBfBfQfXh/+3Weav6GWs62wZmUzu3\nDbw1BbPGBmJcWJvS8uZMbSNcNp3dJvsaWXhHFXRnKcHSVDjrTEuhVo6D6nnqOHgEuKVdbVY3iQgs\nal8KQLPXytBWCL3FyCprqx5eZ6j+ndnOSHFfYpwXVS5+MD4lygQYh+qDqDiunlsFtB5qqNvXkpkN\nwLyoK8DNDK5eygxqOIbv+L2tx5fn8BCgKUHLZ3x89rZYvDA1lxmyiukg84JS8bpTMkuXzcaEjQzY\ntqJ1NEZrA60xRhsYjcCDwZugiSgLK4CfoTUM6aTXwz97IR1/5+99Lz709773Rc+2QW1qa/sBAJ8H\n9XoCwC8H8NH7VE8/2UPtMwFcReRHyr7vB/BFN47/E1Bm99H7Tprqp2fi4IhLc5WzLaqmszNmRrNZ\n7c7ZGS8hHeRCchb7UwAGYnE91XtV7CMLmB2LKS+2tPvaAmxhS3EAE4Hb08iAbSzfr7J0C8hmdSdZ\nXFuOd1Yzq2cLk0HFsgIEoZIV1djug94imfCgCzIrrqmjXdxJIAZwVNTPM4Cb+z7JE3AwL4Sn14H7\nBQDNOnT6nCfGBjmRFfeA2gadtJkAZpnsZ1uVV7OlXbh68ZW19TYwmNFZVc9maiXXKnkiACyofXQI\nN2DMxY6frN1QP3/tr/p8/Npf9fnx+b/+7/7C9Hci+jQAXwzgrwP4BNSk9TttW9tfAvD1RPTN0NCP\nrwHw9Q9d2mNA7ZOhumxtPwPVa9cL/ncA/BoAfxDAp993Ut4uyBxQ83IoZkYrDK2ytMapfrrd4RJ2\nNXvlI5hltHadzZUL0ajCmMLpVeKr3UTVkFmQUhW90chfKFVQs5Yx2WAnHdRcgM3tWmfn8rdnzoGV\nkbnq5QO82tcC1Hyw8/y+PNv5952l1X6PMuAHJbAZoLWilg5x20+CVzI4KeqnsT1jeTflyftZGdoE\n7AncoHJn7zlnPmcpn1UGsNjV6BTYVIaIi12NCI1lkckF4Kost6G2tc7YTQVtgyCNwUPBTZHfH5YK\nGA1Oz2exCT9Vews2NYGqmn8O+nh+DMBXich3ENEvhrKzXyYi/1hE/hYR/SkAfxvAe6CM7Y8+9AOP\nAbVVrwVUt530WlKp/zN2gUI1LP2k8XZXZk1fUeBxZwzeHNAquCnYbRvjsrWwn10a485Uz7vNabvN\ndFNA4wxoTKT1LSdAM1vIGCoQiz0tRuQEYuddrcwncl0yAcNU0AJsPsiFEFk7FLRSsaXlt1w1rLaw\n1QlQDdQV1GKZmXtl/VrZgZf0mgs7Wx9pra8KiN0mYzNhg9J9NERNk7ZvGNBNqujE2CxjCZS3+gL/\n8uuLo3kNU1nU8wA066NmuprZ6YNtZu7eETFZoT6ANmZZsn4oi5QJ2ALEmHHhEbbhu01Clp/vBmyN\nsW8NPQDV7nHo5cOEDKABjEEQY3Mea/mkWTpe0vspIj8FdQyc/e0nsGCNiHwdgK97kd94DKj9MICN\niD6jqKCfB0XU2n4ugF8J4K8aoDWoPP1jIvoPROS768E/8/3fHoPlk37R5+K9/9rnlpANdQokoLkq\nqvu2rRmw6YO/26oqak4DNi9oU6FJhwGK0wCWZaGqCxKAhjGMvh/V0LndEBbygbMaqB1cM9WQ40ek\n4REPiaBQQX2gYvk8G6ATxFTFLLFpvn7QDDtUQY1TLfNF1OAEgnub+ODKwRZqmoPbEPDQzooowDVT\nSz0Y1/s6yFRTZLYS3/KOp71xWsw+sdPyvgD6bAYw8H6UOopgaSkLaj9LmenT8inImFkaAY0k7WjM\nuDRRVtZFAWykLN9tjOdd/7YPQR8MGYIxBG1waoEEgEzVHQB1wSDCJ37yH+Lj/88/jOt/sjb6E57s\naduDoCYiHyeibwPwASL6Mqj387dC1cx63D8nol9Udn06gP/Djv+p9byf+u/+zhxExgZmUEvnQGv2\n2cHMWNhdMagmc+OI8UnbmhuRc7BzbHLi8ZyF1Dc5ANxQIU896bw5Q6ib+TldLYQZp4iW0AYf2FJs\nZkVzWhmJA3cshHZ1kzy+D/N6wlbjtWBA5uySyrXfkg/7J9iZsTV7H+p5N4CzAUkDIIvzYvvOMMDr\norF8U2Buub36c7l0TO/FGp9XPKGosWt1gqH7wcyBa4h5wHNSE5MRlxddqlT2lUnS2XaCrE5oHnoS\n9jRWzeLCBnJbw2UX3DXGvgn2PtAbQzYJZaGplSJZKIbeW1J2/Mm/5N/Gz/kl/1Y8i//vw//TPR1+\nfJMn8H6+Xe2xIR1fCY1T+xgUoL5cRD5yogN/zL9ARO+FyuHHzuLU2sYxWMJIfQPUuBHaVlVPY2gG\nbPp+AbMavBjMbI46D5uaVGHsM7jJCKH1v82G4xracYuxORtwEHe2Vr9FcJWqrvMMUuhAlaeJ+7Z6\nODXzAweIucpVwYybARoXUPNj7X1lbve1mZkh70uwNwO0LhhdB5sMfeWRNrhBgjHG0f6GBLIEfIo1\njpjuyQzw07N2DKtq6P1oXexntiFNFCJdgUz6LDtFfshV0OU6XB43Kva0RtiGbq55XN2e1gf2jdGH\nYIig+/0WASxxKiwmzkGNfZJBTjBP1t7NTA0AzIX620/2H3Tg8rcfg6qgp61tbVEFUCKm5zAOVTnN\nKbC1BLLpvcX2VIMrpydJPZ8pTEqOig2tCKQs7MzBzZmGuB2lApqTN+tf9bLpsKFiqzJgEdJBY4AG\nU7/8k5hKpuc7shF2oCsTg9proPbJljYyZpqSAThL48ZxXaF6cmFu/jfrwvyQ41lH/8OZUoAOAow+\nIF0H2jDWxn1gGNMVEVB3BmfOgsLIRMyhgDlA18dpvT8J8AXYKjstDI3sy/G8/Nwy9y/YWXfmJkUu\ndEG5dFc/+4lcubPAbZupgq4yu7EDmuDaHdSaqZ9mdywMudNIUCOAOkBcnVrl+TxVe7eD2tvywxfz\n1hT1yBPhnYGag9kbG+ONS7OtvHe2xgpslwJovjjYga0ZQ/MZlcaYwzpGB3pPcKuBt6FimGSF4JeB\nUPTCaQCVwcNMcHceFWBLQAOA9Pil+pRhGQnS5dzlHoZ6WYGsgN0KajXFzcrQDupaqJb5TAPIKvjb\ngKJOoYJSd+M62XtlccQC6tAwheJoGGVTUpcBuvX+oNwjZ2qer6zmJ6sAlqpb2YqFIR6wXYAYaw8z\nhDF8dRSkvKQs2STJHQSO56UeT8GlEfZBk8xezM72xibYhwJaH4IuLeP/KlBFHwzUKO/hkHwGT9mk\nvwa1Q2uXtM6GR66oRtU5sG2Mu4uxsYsB28Z4Y2vxPu1rZEul0qaWMWolQBMVyAp4FSH1SHEpaijK\nYE11xHtVJGcaKDR9JibQoGBZIFc8c0lU0TrjTWVnBOR61mrsdxBzZnYANQWy3M8ZxrGymSWkY63b\nEaqmN/durqA2DNQcvPowz5xMoCZ9gBpN9jcRY3dCanMDAugq5tT7ReVeHao1MZ17FnzL3sXLFKt2\ng6X5JEiT2cJXqaicqf2U0cwL2pjQBhaWpoB2NxhdRBnaRdCHAtswoBp23wUKZJ0IRAPd5MPvH0tN\nC/WU6ue736b25K1tbr5NNuMqgjoGPEtB2tCckSlDs80Ymm5ltjNgYyYTpsyE2whgERPACmgqgBLA\nVt73ooZKsoiwqd0zG8bYsUEl5u4koxkMKJuxQYtFrYLbHGl5Xexks62MCxtbAO1kP5nmJhD0AAAg\nAElEQVTBJwESRQXN361Mbb4H9lqADQXceJCqnV3Ag1UdHUUd7QINJh1he6vgmPa3/N34fbcZxf1C\ngj4fwaw6C1aNemrLs833Jgfd1E5j71TsaFJkyjdmzky3UpxXbippjMsQ7IPQG6EPcxAMtaX1wQFo\ndS5hIuw8sNvk1GmEQwbmiLG79OC4fGyT/fmTneup26tTPzeXsHWQWkyaLXfyGLQ3jKW959Lwxtbw\nnsrSGuGO65o5t62xMTUES3NBiiVR4e2chdDtIxgryBXdpDoL7hOY6KMYUwNoOJ3Qv7NPfCtFO4AZ\nTcyKHcBasaPFvoWlmROGmr9fjp0cBBQhHeEt5AUCFpBx3SgcBtX+2GcAo7Gqow5sZGzOvwdlQ36M\nORVqYG+1f9V7zqZuhxYQzgEcQXptwQSPTiHvk8sExcTXc6JcZEtXFshBDt1D6/bfu2YAJkB3gNsc\n1FqxNVo3QyYoAI2Y1OGy2NReM7W3+4cvFsYWDMbDDjKV0NZStXRb2nsuDe+901cHuDcc/Ewo7mKB\nO2HjYluhGsbh2ULNsDs60HeIbRh7qqERzlFYWhh4qtDMbbLfuOppgBGqnFu9Sd38h3MA5R4V4HFW\ntTCvUC19f2Fv/rcJ2IqtbY1VQ1x7MrepyezhRNwXTINfBidL6+bh7BzOA6qsrFOoqKMThBXoiKuj\nppxfBBA6Ha5T2cRgoTg8jwyzOemfP9vye+40cEBLtbOn/PQd4M2cBuZA4AG2EJ0ANCZcRDAaowvU\nGeDA1hh3oW5WQ7/as3IVhT6anYCdCcwDY2jCTRlvD6jJa0fByQ/f5U+7sOUC9FwqMqmcG+O9d2yA\nxnjPJUEvgMwMrZHlgA3Y2EM7LAnjErZBYyg767vaR3qytTAOT8bvqppMEqd9msChDB5bE1WSWqjN\nSXBkQshjVkdAgNTCtthCX3z1gh/DG8/AFt+FgRxPMz6C1VA8owA5YAYx3RFAn3FqaidTEBO75Qlo\ntFNhcB7zx+j7AHa9V9IU+KRRgKDGuRngPWQEX22Ofv9oBXAcWVs4A/J3ZpthAprLDvVuk6I6oMRt\nsbKyNVsmJYLN1sAOB7Mh2Jva1IZw2lnF9QHdM7F3uP1woDOhi55HFZIn9hIAr72fZ+1usyUdriZQ\nxpRFKqESrvGeYGoOZm1eQdAybm1iaFzsaWZLUxDblaWNXWdZ6crOitqZzgG1n+RWbEYFzG4tRZnU\nuaEeuyhQP2A5/atOsX73xJBf1cfmaiejbQZgNoVz85RNDLL1tLSAYaiwnN/LgFzX1aBMptrUXEdb\n1DNMg34UVdLsYn0oQO36OnYBdYrvOSBLsDX9LliBjIYsE8zisCj3sarOU58WkK5tfY4C79MIh4Zv\nLh/VyQSfHDdncDswNmDskLGBzQuqcikYZmPbRL2hXRTQ9BUBbmPzrqmWQ9ThnvTGhOs+cO2EvUsB\nNQ9qfqHh+XB7rX4e2xsXC2EjpAGfnaWZGunLn8JJ0ALQqoOgAlvmd6ewXTROO4YGS+4GXDtQ1ANl\nZTsyTi0Db8WBLfYVwQ+7zpGxeR/djiZhtzJ7MxEgxjxEJtUI/mJM9sDMqtppTKxtHKDm3s/Y1/xv\nBdjiffmOD3h/rWC2tgC3wtQMuBzYuBema+/HPiCbvvY2wDXkgwmdB6QTaB8YFcyKGjr6gFisX6iO\nggC5yf5YVGoHs5vLowKgSx/D+VFlQUIenI2JyVXa1sqEacBGtKExY5B6PofIbFtrpKEcBdCOvijy\neVJXJTDhOROag5rHtA0FuNchHT8L7b13M6jVugIXpsgpdbcpYIUa6oBWQO2NxnijUXg/ffF6lsjz\ntDuioRyjMLReZtZePruNbeymihZhjhlaUAKHYkB5I1Smo+pUxH6J9j2iSYs3dAqGrSwtDP7HWLMD\nqBU1k2NfS6bmQFZZWgW3xaYWTK20U6Y2OQfqhCDT/aPW7VU3Vy2lj2CLGrtGGgLSHcgoAMU9yemF\nTftRBeLZlpYq6ARwtW+p7+mzKWEcwdI84YGHcqzyEzJkMWqFsXHThVONCL3Y1lIVNe+nEGQBtIpN\nPvcxE9pumT92wt4KoL1NoPZa/Txpn/RGLjaohYdzyYipnwZsd63NToOWWzK2TOVdA24D2OBLopKZ\n0UinAKqToB9j1W5uZ943oBijkaERztJEQUyGWHLI5atuCwrWhFMQc7tZZAY2AHPw4q0lQ2u+v83A\nxrafGXAGNzEaBwhT5WKMzHam6h2E2dJmYPOtgzoHqPE2MPYe6qY7McbuoFZi3PaBwVCQ42IID3X0\n9r2cHDXO3hwZbjBRBcyz5y42ufnk58G3KkPkzoK2g/oG4SJz3NCgC84bAd0Bjc22JoxLm+fLVb70\nkjVJQdsZjUaMnX1haf1tsKnJfm+VulfaXh2oOVPzB0OpfjaLMYsQjc29mg1v2Ps3moMbBbDFKoIC\njm63iGDbwtKogFkA2r5D9vRgzSxNZqEuToP7psIABoHlaFNHgQgCJOqxAFAzaHj8mNvQwui/pROg\nMrIEtqZ2tK0FkCVTS2DjytIWh8HqPMhWbFnFK1gdBGxANhZAk96MffUANG6M0TtoHyAuW6NwKAwr\nPkK7qqPDbXAjwdRXGVebWEwo5XUKMj48MO/iyj5lArZkbsrUXH5oW4CNd9BooX5iNIBHOAw2Iggr\nKdycFIrmTPOQDCmR0A5oao+2rB9M2Lqqrb2PUD+7iJm/nhjYXjO1Y3tv8X56Ntoo6No8A+ics92B\n666V+DR/nbydNUmkqZ4yTKB2YFwndoa+68yzXyH9Gm55VS1MgB3YStzSFLv0kMwEa1MUy3rlOdgO\namd1DHCyMtqosDFagIwtDXoDXxpoM5Vzy1KDDmrB5iaWlkztENbhAOBsbfEC1zRDKIDGBmgjQE33\njd4hewe1BmkdtDOIu24eb7eTOQ3UmTD2ASJSgPPYtgo8ixoaD6YC2mK3vNVk6eP0zGNi8wkvZQn7\nFdSukP2q9W15B1oBNNuYNzRqGAwMkBb1CFVTs8mJeI4PXxVs9Q4gMWYaD2ydcB1qT9s7Yx/D2Bpi\n9cGTttegdmxuU1NZU2GLrLUtVVAPStQ4tAzduGsUaqjHpk3LTQixZVzaHhvq1q9AV0BTwbwmqAVT\nK6ygsLQa1lEdB9EqmLGxs5g5KZciFeP1GmA7B9nSCSNj8KXY0raGZjUe6KIA56AWwMZ0BLqwp/HR\nUXDCaoKZHRwFi5PAAIz3DhlbfKa9QzZ7veo1wOPn9oHBtjV1KNCu1zAswFTGwOD5eeRSrcWjLPU5\nFJa2glsFRSyAVhnh5AWtIR1XoG+Qfo33FdCogBoRg4mxEUNIIoGt12UgsIaETCzNa4dqfjo3sexN\nsHVCb4K9C65DM3sk03va9q9C6qEnb5/0RmVqSBd3BaYAKo4stndF3ZwYGgEb22beIFU7BSx9BrLe\nUzUo4OUOAwnbiDKJ0bvFURWv12THSbYmC6DFGkoBwIjstp5iYopqn8I2kCqng5mrnBMrc2bGysxa\nS6bmYHZp4G2bbGzO1HhrxtIynToc1KqT46B+uiqdtS/rIu9kuN28nX1iarTrb499BzFr1SNjnqM1\nBbtrV0fC3idHCTdlbKOr80XGCFVU3LBvlboASpA6UT0ncLMW89TEPK2PDmZDmSc5WG8qY9LTaeAy\n5bJG1KxugKqiRDuYNMSnEUHYikGzRKzsaMrOtCcEsowcmi/Nxs0Y2IdgI7Wn7Sy4DEHffFnVkw5d\nba+Z2rGlTW3ORMuEGdiK4T8Y2qKOKpiV4hUlhINlWDyaGnKpLmWZPJ/p6QxAczCrW3HhR4xUqD1z\nfBMRQSxzApjCy+nxac7UKgO6uUazOghC/TQw2zYFrgXUqDH4sum25d8ovpsAB6sRoeUKp1zX0+Ze\nQmdnx0rlGXCa62a7qps2Qcju3s9uDHHH0Adv19Mh3ZljT/ti18sSU0ndKzo6xaqE0YfOF+bYACy8\nY9g9rpmI3QFSVVJUlROYV0iUEJ8iEw5uukwqZSgnzuIF7R3akV07w6xrk9G0TgMDAgU3sBNMt2+O\n8igE3NWetg/CPgZ2lkN6Ig0Jeeeon0R0By3M9CUA3gfgR6B1hP/mybG/F8AHAXwcYfTAbxGR77zv\nN14ZqL1n45gcj5WqM2bHWVpkBW1lKZQzs4nZufG1AJqplGpLux5UTtmvZlNz+1rH5CSoHrziKIDI\nIxcJE+DrPr3XHtGyqEATmBWGRsHMKOxlYSvbmoGXA9qWwHYpny+qbmLbjKm1BLTGADeAjK2RLZiF\ng5v3w67bqUTYrSzEJSLoPcdYyTVmqia2XQFu76DWza7XdF/roLZj7AVYmRTcdh3Yg3rYyIR0OYZ4\ngkniADfYJZJQqUs63/NDKMdJq+r1QQ6CwafMkDuc2lVVz7aBelMGzE2RazDQDayaJ4xs6glntbnm\nJYmvIYCzNobGtu1DcO0e5ybYWNDNjqbAVjN6PF17C3FqG4AfB/CFIvITRPSlAL6FiD5XRH785Pjv\nEZH3v+gPvJL2HsvSQSZYDmjkTI2SrV24qqA1tRAywV6rjM1ZmhhD22Pm1PfXMOjCAK06B6pKehRi\nVUFS3XpEZ22OCeZWwg4Oy6mcpa3hGtWW5uqkq50BalthbQly1NrM2HhTdbPZKyuwwVVPZ22Vrd0b\nfVtY2shsFZ65QoIl75Ctqz3puqtaed3BG2O4unndjaHtGXbBhBErHvaM3SMNzAUNDBrgobap0RXc\nnEUf4gerGl27dW8Xq/opR2BzprbvkLY6DTa7vw1oV9BgoOsEgq52NWqaNFXMPiERyFgvj2LtaCPR\nQFsaha0JdikrCVxrhrHOp4S1lwzpEJGPA/hA+fwdRPSPoPVNzkDthdurcxRsLSZ+BzUiSjf3LRW0\n2tqosDTKXO9saZbJwWsUMBuuEiRLQ78mwPVr2NKk2IBGDe2I2gQeToBQV6I5o/EB5HY1lNcYnBYM\nWlVPVzcrS7u47awwr2BhBcw2BbB2aaAAv83ebwZmm7G0LVnaCmjcitez2p0MpY2tpS1tTt2Uy4bG\nZMuUvoN5B7VdPZ97B7cdnQ3Q2g661qBgY29unyDStCaeUdKBrw9lZIR06lBxGNT7bv25laljeqbV\nQSQJZKN3cG8RpiJ7N0C7gvYNaFegNchuk0fXTagB1DRWz4BNA4ChjgPWiutRfQdBTI0EsKqfJGgD\naEPVTt8612zBBmpV7p6gPdWCdiL6hQD+TRwLOXn7FUT0MQA/DeCbAPwJeaDW36tjap75Fpl3/8xh\n4CytsRv/c8VA2tFmcEtAu4KGbglmrmLuoXbG1q+QfcfYd3UO7F0N0ns6DCYPX0819ExgwuPpltpV\n3bFjqoczgG2NPXNQm8CrMDAHuPK+XRrocgG1Bcy2i6mgm4HYAmiFtemgj0RkcwcNzAhmX5zYWU3N\n40HMzo71N8XUX2k7pJH+XttBV05wa2zszUHOHRe7DnROjygIGEgVVLo6DA7l3acHkOc4NAc2X97V\nBiCp3lKoy02Bd2Ng38Gtqeq5N1U/2dRQA3IYqIHYUlARxDTqxhcwNwhTuQgD3uFlFS0+bQDbaNjH\nwHUI2hBsHpsmlv7cuv+0yufTeD+JaIMC1TeIyA+fHPIhAJ8rIj9GRJ8D4FsAXAH8yfvO+wrVzxrS\nYQ+02NZiHWiAWNraWgGyxsnQGrRoB0axo5UwjdhnrAzXI6CFKroP83oW72ddw1i9nsNn9uyfq5qu\ndh7axNLcs4eZpW3p3UwvZgJZC0CrKuc2sTVlZxegKbhh+qyDjgLQit2nqJ/pBeW5D1EkV0p+Ossf\nVjNYjJEG82YMxuyX1K4aZNrYBr2pmOGh5LhPFVSHCQ7tfdKQiWDOg6Esrau9LcNvlsfg56TlOaVG\nHdlA5iVgHaNzOp86g3cD6J0hrQGtAbtNHGa7lGZgRqz2s6Lak8ehMaOBg6WB1NHhR5rZDUyETgIm\nBrMB2khbWrdQjsdaSV6kST8Hte/6yI/iu37oRx/8PunN/iYAz6DFz4+/IfKj5f0PENEHAPzneMeC\nWuNCp/WBzsVRslZlzTUf1Xfc9mag1kjAQ9UcZ2YUHiiPGXoOXJ9Drs8hu27Yn6vaebVtV0eBsrNR\n1NB5RUGNTZvi1YDJ8O+fD8DmDMHDNooNbQ7ZKGBm4NbuLguwVUC7gO8UuBzQFMS26TXeN7en+XtW\nFuUgVtGiqqDhKLAKnIYAJIKomepeQE+g2HfI7ral3dR9NjC9gs1hUYFsArQCbL5/uDpKHbDPYqxN\nl6DppcC3e0b3bDo8xiFmDN6A2DIv6SYjraldcGcI7xC+ThOFlMmiBjOLe5SJINZv6UCjzb5L7mNK\nQLNUVQyJwPVtUKid7iToFkMYwPaU6ucNUPuCz/x0fMFnfnp8/m++/UO3TvFBAJ8K4DeLyIvosrcs\nn9FeraMgQM2WfExe0LrNtrbIwBGhG4IGAcSDHx3EDND2a4KXgZkC2+z5lH2HXPdUN0sIwrygXWJ1\nQQkBryabWQrXFoCGjEFzj+eUUePo2XSjfwLbwtDu7sCXC1BADQZi1Mr77VIYxNFhQDbIJrXzTP2M\nV6+dKpEJFlXt9AXepgJjvxqTUUALdZeLt3UBs5gYRFQ943pteanD3ksXDNLElAJjbuOcthww2zTX\nOfjWwIyHpUMayuhbB/cO2dkcGgThpsul9t36V5wxxtRM8tWrSf7erqFB2ZpfENvRZmajAXQDuAZz\nqHpeNge24V7TkxjKt9jeivpJRH8ewGcB+BIRuZkXnIh+E4APi8jHiOizAHwNgL/60PlfXeqhwtQA\nm4EmcNN9jdzO5uEeFq5hf2sQsBe4KIAW74cxtP055PpMwezqLM1BLT2fo3eM645utrW0pZ0saK4B\nn2cSQwRMoQSwwWmvEbpRAK0sRJ8cAq5SOlO7m9VPulOWRpc70OVOwatdQJcFyHy/gRqCqZkB28I6\nQDiytdNW9TQDDPb06B1oXQNNHdT8NwPQ/Df9/dUcRvqQZ7aWvzr2WR319zX+fmDoYiOB7h0aM3ju\n2Dnpn9jKhMPaTw450JURhMF7gKw+114AzdhvCWwOALXj0fP3HdgEAFPDRi2cSSwAiaqiTfRrGo9m\nvhoDNBHSmDcBYHFvPxtM7aFGRJ8O4PcBeBPAR22iEgC/H8DfBfCDAD5bRP4xgF8P4BuI6OcA+CiA\nbwTwtQ/9xitNElmJTJ2cE9xmUMuKUJSphGSEqokCZiu4jYWlwdTNDOswB4E5BsY12docr1aWARX1\n5NS7ZIxs+uz7aFY9zxha8/WbxU7WLpsCWgCbOgMqoNF2lwB2uQPscwU21DADZsCj3T3wFlZ+zgJE\n720Wl5YqacapQUwVbZahojXQvkF4U4bIWwKpxaaxq2VEGJSe4QOI3WCOA2mOCmBzXDZvptTsw/Zs\n5nMZuHgQbmVrY0A8eSV3jJ0ycJk9WUAPRwd2hlAzO1oNatZkAnp/aWL6wdgYaI1A1NSGJnpNjQh9\nKMgNyVefV5SQ0kSmn9Ku1p+/dEjHjyPnnbP2KeXYrwbw1S/6G68O1BqAINyphoaJBHNJO1c1CQBD\nM0CwZJ4q8uBacwhQV5VTdrWjrZsC3DOM63PI9YpxvWJc97CpyV6WRk0LlwtLsxTV4QFdGtEsSMe0\n0rliYGZoFoJx2TR4dnEKtLsL2t0GNhU0wMyBbTMguxiYFeaGzYCkXcIpIMGUFFQmtTOYmj6vuVnv\nWIHM10t6zUu1PZYVHGPAQ0XIGBu1VuxNrTAZ3TgM6vv867fIY4AZoopSqKBkS55KMG0AyNm5IqSj\nOBzIPKFME2tzb6g6PTT8pK6dDebJ2TfA+gYVlFB9UeyUTe8t+zNyu5trNKOCmhigUcSlScS8PW17\nvfbzpF04B4qyM4TNZLKl2WfPiwbxep0WTFsWpafK6Z5PVzt9uypLm/Y9x3j+HOO5gtq4VnZWnQTF\nltYXcLuH2s/kYlU5y4qBAmjNAG1WO08A7e4CDkC7AxzQKmMLkDMgcxsabwpmoXayDRoHMgUXt/dk\nZ3LoVRpQnQXiqigbkLHnruv6O8NWMXS/lgQ08WVazMFs0ku4tMXjPO1HYWy+4qCPvPyBMA3cVKwl\nj1NP6tAF54Nm2xoThDuECWNPu2DKs67rDEDCfI9DtWab5N2r3KR83sBNQLRpYDGxekChoRsNKPa0\nvH61jNzq4cu3l1U/fzbaqwO1ljda5ywb9Pl84aScSMyWIKHSaOyTOgMc2KrqiX5VRvb8mdnSngHX\nZ+n9DJDbDcwc0HIJj5Q4tbHXANwM5agrC6oH9Nzb6RtFap0J0HzpUixIv4ehLYBGlzcCzHAAtIsB\nmhrpxbydYUPjpuysqp8V1IBpLWU2yeVSQLGtec5+raAkw9Y7cgcGa6YKmpnH6hRY7XguI4dW1crY\nZAY2DHsljdmKGYhugKLH8yvLITFPKsMYmy3VYoJ7XYk6BpGpoFTAitLjacwsvJ1LNwAAbYCazNfC\nmkzTVXtfGM9mmGNzNgyiKPIc8dA47+Jbba9B7aQ5U3M7mspm2tJMBGKgeJVrV2XChjbqigEL53D7\nmQPacwW0BDhjaNfnoXYegK3PWSVyZUEajRHAZoB2Kx1CdDJXD2TpuhaptmnTtZy08ewgeASg0V0B\ntRuAJs0ZmrOjbWJqZ4zNexSkqODBYf4PZ4EyNGILvuWs/6Cd3+dBv7x31VcBQFtdkHFoZRSLDJA0\nnQDtewMERscQAg2xc9tzqW7rej4UYBsAkZkaSGuXMg0IdWVw3G21Q9cqWNEnfe7EhGGaR81y7Fg8\niYnpwmHPa1Yc2cJl9JnppMHuRbUJaJgxp9rWFox/svZa/TxplzLthl0Nuq7NBZIg4UUjs8+EGhN2\ntAS0WP4UTOw2oB1Ymodw7LvFp43ct2TrGEX1TKZ2G9A8h5dXU4+6m1F8ODPVxoL0WAK1GZgVT2d1\nCgSgvXFUQ7e7iaEFoLUCbKSgJsYohGx1YWVpKD4A75ZZsiuf8gSYuuRHo+/V2OMsrVkWizoYczvG\no63D3mSkOmcws+QIsDXKMuz4IQxqAhbGEHMeQP+Rh4DNCCgoHQ9CMGbW7Xq72boGxgLabksNVXoW\nj/mnXZXX9U8KaP5q9kqRpsBNZo80xu0WaoaCaExIpwbDt9bGa6Z29sPzTXGbDJkhgwpDy7qJlp8q\nKvZ49g1bQLw/x9g9wPYaKucthtYrO1tUz6PXs+bsqra0Mi2uzRlaAbQIsp0Kndg2xaWtgbW25Oly\nSdXy8gbggHb3hgKcAZs0Z2iXZGjtYq/b5CAQYpvlydQVMmdmmph9xp+6V9gaRXd12TUza3JOiIKn\n+OoCG4xD1zxGzJY7Btg9hA6sACQZm6c6ItFceSiTSxj23Qng8sSSgGYpwgFMwHYvYxMYihmMksaA\nsXtBqWs67gBkFJva4hygoxpN+VPJNjdjvc0cL836yCPCYoQs6SR3yMj7qGtDXcU9TgxP0cbz/cnP\n+VTtlYFam4KIq5pZ7DKewsbtMwtTyyVQvp7zuQHZNbyep4D2/BqOgX61UI7rAmiLPS1YWnhDUV6t\nD6XVqPEzj2ctSZcpuEvA7XbuKFBv5gW4FIeAA9rdG+EoALvKeQl2BlaAS5saB6AN0BSNLsZy4gmd\njHnH7HzvwaEUYThavJdB4mqtqqDUKRZzTyyNOWxOVT48jNQ9q87WPNNtDZKNXG7SANF1kApuALFl\nSbHOOOMU6+ShbmsY2e1AiGYE6YZzDrdEIJhdzUHNqKxXrqo9Ogc2ndBdjSeRDFgWs6uJ9ytj+2Rk\nuihnwI+LMXz59lr9PGm0P8sPFgqgD7Iams9AzdRQX8Pp9QWK2ulBtbg+vwlo/fmO/jztaX2vrM2B\nzhmbFFsaCqCVgeT9in/yfZRj46KSRBhHFkXx974cikLdtMDaYiurbK3a1KTdAe0uVExxe5qDnDkI\nBimPiih0SPGe5XIb4LZdptpDgcVrTaJ2JLgXW4GLuQy27suCzL5K6lV0/IihGGxYEKUJRdVKJWK2\n/nSIpg+3sns0BDSaAq2BGwZZdXftGLGE+KU81o+uzpZeU7GtYRTwl6Mzg2YRr+1wrPcvCmr3WAWi\nZhhTSUexfVbnTqzXTab7toHaa/Xz2Gj31REuQcnQVrbmDM09apCuC6L353PBlApqfZ88nROgXQ3Q\nni9M7dptmVQFNHMO9EX19Ni1RVgFhWS4Pc1GvjnAVB1hLiwtGRqVDLVVFXWG5mCGYk9zQMPlDWNj\nCWCqfl4KqDUMra2l1b99ATRmMIvI9PKIbqqf7tihdashOawhOcRgeICvq0tmu3N1zc6ZL87Einwg\ngQ0eFOuVnUbTdcAFDIfYigLWsAwSI2Fh0C+q9krWhhil47goMfuh2thoMqYQMH2eZGTBlxnYJJeX\nufx70PJ2yTHiNrTq2GHWtVLG0sJmeWC9T9Neg9pJu8XUTJ9Q4Y1I9VIc1mty9kzwGMudCktTkLue\nq5zP92RjB4bWE9B2dQqcgpqczPC3+gqUxetZ4MSBbWVpnpp7BrS7BdBKfJo7BIyZhT2tfBbeMIi1\nUK4xMwU1WEYHX15joIZcbuN2pZmPWhocj/VyIAOWJW4KbgPJ3DQbS9NUS8EklMHl+scEJM/R5mtL\na10EcsYWy9c2eKogGgLqFiIxGFp2j0Hspg6oTe6hBxjzrgRaDbHyfZY7nKUCGR3Vy0qYiqosdv3k\nWkq7aIYT11S2ZG3B3Fp6rtEM3IYtmndV3jMWv02gNl6rnyftDNSqs8DVTmNnWYfTUiW7p3Pf035W\nWdu+G6BdJ5XTASzVzR3igFbsau7lVHtaqTEp6SR4tP3V4+/YPZ7VQZD7VnbWzJ52ZGgzW8OWbExa\nsrPplZpqNiLYBcHSHMxqCmiBv6q9KoI584Fpt+w1V4FIhuOQrkv0lSBDgOEB1A5gVuwlgmtj/aM9\n/yaBA+S1ISZgG+ClJsIcHD10whgj7jezAGx2Nksi+agHKZWxEXSZlarTw+xuTH0MsYwAACAASURB\nVAXYJE30I0+RYl6cG8o4rW/bSBDz6u/e9941u0nNjSdlmVlhavNk8ZqpHRoRvQ/AXwTwGwD8U2ih\nhL9yctzvAfCfQjNZ/nMAfwXAf3GWqZL686J2+mtRO2OZzQJqe4IZxl5A7RrsbVhetPFc2VqAmaub\ni8pZHQQTQ6uA1ucQDq8MXvNx2T0on6lEKJjDoKbp9qpOWw24LVWerJ4AfL1mhHKYHW2bvZw4ATSh\nDQOM7oBWXp2huQraJ/Wz2ti0S2c2NeBE5bT3CWb5XhgW26WLxRsxmDagIUAgWJr/pgx1gFRGHxl2\njc30bskZG2RLUIM5dtguZIyhC8KHO3FskTvIdFLrq8ydjmfNcZGqLcK9qCriE2MjD7EoADbmEKDq\nrdX08wO89WkcwFJqRWhOt+VuEarTJptaepNd/UR5fZr2FmoUvO3tsUztz0JX1X8agM8H8B1E9H0i\n8pHluPcC+CoA/7sd+79Ak7r9qfWEtD8PgIgWsWj5MD03V4LaNRlbMLeaQsgWp193Y2nuEEg21le7\n2RTGcQvQRjgIPC5Ky66tQFb6GIYmpF62hHLkms/FtuYJHH1bQjl8BQFKuIaGbMwMbYCNmXm6Z33v\nIOd5typj07/LBHK3uIx2sSQaMABrDAwDNsHxvUABDgDADS3UTqhcWFQ9iWjM1sVY2zTQbbCPzTLP\nenptD5bW5JPcGFGdqqltTUMj8rnQmRoaGJrPGlbEpebLPADbwtiyZujM0KL8XrENcpF5zSJs4NxV\nDqRtwLYrsAWoeU666jCwzyGLT8vYxvVdHNJBRJ8E4HcA+GUi8gkA301Efw3A7wbwR+qxIvIXysef\nJKK/DODXnp74+ZtL0KoUZmbsrOS6l57MbAK1fZ+z1ha1UtmZAlqv+zwm7Zr50rwu5fDAWw+w7Shh\nHFJUB1XTIkCLES78oPz2cQrrsBnUwzm8klJ4QTevK6Ab3PvVPMtGZuBAZWSFpVWGtgthr4A2LI99\ngJkCmRfscGDbXxLUPBsxj8xc3MSYGhe2BltozWlPc8bmAaji5ohqX6uqWe82wBXQtMjO0G1voG0U\nb6iGkSiTGZlcgGwxlDkNXBYdzKI4sjMrEhCTqb+mggpjtAwVUY8sAhTJGBrK61khbHc+VUDz0o7Y\nFNCobUDflJ1yC1CTNRW7VwUrTpjTDMwv2d7t6udnAriKyI+Ufd8P4Ise8d3340ZBhfHs45PamQ84\nH6oMX16TjoIz25pYgsdTw/91ZWnpEIhMHBGTZmDm6aAH0kEgMrE0+KVbKggNEzDBjkkxhWjK5OqA\nxskeDja1kvcs8p9tqWLOgHZ834XQJSsM7QPYuwRY7YKpWIfXi0ygq2mh075WmxcL8UwqmXiAMh07\nEzaxV8BrONtcZk4IAoRVFd34gsj2YQ4KoNQXbW5X8pTtF/3cLglivUM2K4hSHTONFfDKsyi90aVQ\nBJwC2kCkZ6/qJwY0oFc0A+1w7+wQYDMglhZqZxTCngBtTKDmle25mx1t6wZkReXsOzw9uCf3TGCr\nXtC0rz3luvZ3+4qCTwbwM8u+n0HJe3TWiOg/hpa9+k/O/i7PPmFvzkFNwpZmgCbJ2BzIEtQ0IV/f\nqwfzBjOrzoCJoUmCmhmSwutZBXsd2CW1C8k8SNJOG4Y1RPoZXypVY9U2DnUzbGmtpOZul5JxY96E\nzVFgcWh9Aq0FwERwHdCCHQZ0VwO0fajK7cU7qlfUx7P1LuLUpiSeFovmdSUuTOhMGI0gwmZTq4JA\niBxBzOpo4C2ZWTPkiBAHy+ZbWJqyeFsXvGmZOtpY2Vob8Nqi1N3rnM8jMmTEJFQmrJBLxKv+Se1r\nbmdzxqb6tcXBlYgSHgJs7VD4eQYyf91Ufb4Mq76l4E2bMrRaQCfUzNbK5xqvRvP2hO3dHnz7LwH8\n3GXfzwPwL259gYh+G4A/DuDXi8hPnx3zgT//TfH+/Z/3WXj/L//stJN4bi5b/lRtDMHMuq3T7B5b\nVoz91Wa2ejXjmAJoXQzgJNVOWcI4ilCXfkKGGZDbehOSnaEwtBrSQVGMOLN00OZ5xkrRlOIowKWE\na3CCmS+H6sQY9wDa1bcuuBqoXe9ha66CmvK1dDG9fsHO7HU3YOsGbMMysY5maXimc9ln0omhEYPb\nhqhSpcgA4qH3AW6WyLJ7+nmD9F3v6W4Og61j9Aat9G6eZmYI54JzUGFptTmeVmCLP+kkV1eLiORz\ntpw/Blxkzoq2AJo7NLYEtT4gFwO2rYG3Abo00G4OhH3PSS3qtG6ZwdgdBPa3D33fR/Cd3/9Dt4bq\nS7d3u/r5wwA2IvqMooJ+Hm6olZZX/C9ACyr84K2T/pe/6zdXPUSZWyxvsWkubGml5FrvBmplwbkB\nWKqRi4fTlzqVmgOqhiYzC0DbSwyROQmmWRsJVmKxWoJ56U3eDExsgKiys+ooaJF+iBzQSoGUs6y1\nU+bYulIAReUs4HY1gLsO4HkXPO8D1z7wvEuUWHObmzK2kY6Eyk4rVbPWJpsaT6rnhYHOGh83GiCr\n+zAFB1oCzu9Zg/BFmZoMXd/IyrqAYaqn1T6ISlV73Du2KvC0NXDvkefMc9jRzjnZEB1DO5yVLUxt\nlQOQ2lg9Zi3OJwIR1hi6TpDm32vB3g4V3/sGudhkunWMrYEvHdw3BbRuK096Fswht6e5bS1stgpq\nX/jZvxRf+Nm/NMD7j/+P//OtIflCTfotK+v9jYjuoI7HLwHwPgA/Ao2m+Js3jv9DAP4w1An5rQC+\nQkTuTbv7IKiJyMeJ6NsAfICIvgzq/fytAH7NyQV8MbTs1W8Tkb9/73nf/ASK5Oirs7QhcJe9J2uM\nOKRei6K4PWxRKW3Zk5RwjQRB824GU0tGNvaaK63YVDwuDe4Ak3AMBLCJBHOJ+wFk4HxRe3S5kDkI\n+MRZ4OpE22Y7Gm8AlUwbvllgbQdHQG0vNjTfHMyeDwc1wdXAbWVr+6i2tTX4tvTP1U720oUSgNZZ\nK6uPNlAXFImIlsQ73C+rAVscKsybej/FCiV7Lj3P3tt2vUd9Nw+h3z+7l9wnu6V4bQNnVK6pnUQo\nnAJaOIlcDVXHgdtXwwEB2zc0jKcmE+UukI0V2Dqn/PWBNjwTDJsnVxnnqKE+W48YP3AxX4SDwNbV\nuvczVM8n9H6+PFPboJXYv1BEfoKIvhTAtxDR51qq72hE9BuhgPbrAPwkgG8H8MewOCjPfuAx7Suh\ncWofA/BTAL5cRD5CRL8Yyth+mRVK+Bqoqvo3iGLq+y4R+dL1hPLs4+XD0XAKEUyV0T1TRvFW1opP\nDlxi6md35ubH9+IMqPazXlTO4hSYvJyicWkAEszGEdimB6JPZVFBqye0MAd/9VAO9grqydimmKRQ\nPTOD7TCW1kVK+EaqoFcDsmfGzq5D8HxPQHvex01Q6w70BdhSc0unQHo/KYpLj4ZYXypgNYpblgyy\nFQR+VgdIXxRP1GwB+gZhTV9EvAGcVanIAa3ki9P4PgWB4YyYG4R7AE4sMp+M6cd2CmiLPEB0oiNJ\ncwSZyklM4MGmgqpMyVYcAq2F2kmbzkZyGaDeMPZuZokB3hiyNQzPt1cmRGf5mQr97bWnAUC/vhyo\nicjHAXygfP4OIvpHUPv7jy+H/x4AHxSRHwIA0rqf34ynADUR+WcAfvvJ/p9AsbeJyBc/5nwA0N9c\nVhSsLm5buBy5zMravgpSMoGaA547ByoIevxZqpmjJ7CtlaEm54Bfo8++4dZ3MwahqiYrwOXgsdkz\ngCzBLZhF2+IV7jAw+1qmEJoTPqraifRyOlMTA6+egPZsV1B7bva0qoZeDdh6gOFQpjY8c4csoGaB\ntkxozAFkoXo2VmdDYyu7KRjMqOmlpcECXzUMZKdcfqUg14wBdUgr63/9nrhXcN+CoQX4t1ZCZ8ju\ns227ZwYpjynleHYMiDqNMAEbAIja0WAT3HBVFgrGw2xtQ8CDZ+bvdQ82AQ2GNKtba5oKdWVjXhl+\ndFWjeVdQG54EwUwY0qxGaKnxQG8jqD2VTY2IfiE0WP/MnPU5UHbm7fsB/AIiep9h0ml7ZcukVlCb\nAS1fvahFBTMZYwnHyPfSe6qZe8fYjfFNzEwyuLaCmsygtnq9tKospTnIouOJzXC8Hu9fAyLk3o3V\nAWyxVCrrbyqQVdtaDeNIW5qnERrEoXIGSxONN6sMzQHtmX2+FkBT1qbOg1Bb+5g8oSKYqFp6PgnM\nA1szYGuEC7OprlxWKTCkAR6qGvfHKkjtJKBht3ioF5XLvSEZGjTbOiAbMC6gTdXOYGrbBnQLXOa9\n3ON6z031dDWxtjI5OYRH0PU4kwt1MNCwoNxQbYsTYZA5cDWnGxzUmhiAiTo1Rgt5Z4uzk66Fkqk3\nrSu6NdDVmJplTJbGGOYICbV6BbYnbi9rU6uNiDaoueobROSHTw75ZOjKJG8/Ax1OnwLg3QBqmEBt\n9g6NACa3qyWIjVBB45hqP5tAzVVaOQLa4uU8AycgWVquERLgppPAtxKfNuVVq2qnB05q3FGEdbRZ\n9ZRQPZsxNLaYtFntrF7O52V7trsKaq+7vg9Q6wpqDm5jCLplIxn2rLR/FHUlmoHP1gYuzNgaYW+C\nfVDxonL6hQQAWNkYBEy6ZbCyzQFCYFFLG7PlEHOA481i1jxA+Wql97LuQobL9AnMYgsmU55VPOjc\n0sY6xytOcuHe23AKld8ZydZkCMScRQFqLT2kMlqAHPUOMS8u9Y7RGnhXBje4R0nFUc0YHjZUTB5v\nB6iNG6D2vT/10/j7/+9NvIlm5qlvAvAMwB+8cdgaefHzoHf+ZuQF8ApBbf/EWpi52iuKulld3ZNt\nbRxsZsnCHOAkVwgMyX2LLc3tZ7FqADjEowEpsM7SiGZVhZaYADVvqDE6qM0S2sHuJPDK6JxOgoxH\nmmsK+Ht1DixLoEz93HsBtJEg9qyA2bN94Nneg6mFja07WxvFpobIr+aNbdCkt5NxbQOXxtg3QR/G\n0tzRUr9eNCPumn+NADBUpd0JiAXy5nFpbk9jcxTQPtkfI+LeCgcTa7iM7GpbY2atJVDVMnbHxFFG\nD1H/ZxPf3KVInV3BEwRNitnUSyqNwZtABmtONnvvmjVvKqt6rMp2MLfG6vxorB7dyj4r+w/V+ukB\nDbitfv7K9/18/Mr3/fz4/D/8X//o1ik+COBToVEStxaS/gA00uJb7fMvB/DR+1RP4JUytSOoOVu7\nF9Q8rfZqW1sZmNvMdmd49rdpCZQJKZDBtmdg5lcYICU5i5ugT0WLp2+pMwGujgQNKUzN7DxU7EFk\nDITcdkbGzpylWQWoLmRqJ4otTELtfN5T5ZzU0H3gzb3jzWuytWsBtr3Y1x4PaqqC7s2+t/krT3gm\nSDZGRFrHlVwNlWlxfFcCpPU/C6CD92BsFdAkbGmqllGxPVXvszO0Wf08UUUXFu8milrrVdYvwfpl\nuZcUk81x0MkcBVozwfe7PKrKyRhWaWy0Ae6sS72crZkJo4YGraAWLO1tArUxXl79JKI/D+CzAHyJ\niKxAUNtfAvD1RPTNAP4J1BH59Q+d/9WB2rPSl6J+yjQr1hgeKaBW1mfex8IWL6e7zc8zbyBn4aWF\nJ5NzT/h263bWTK2pRls1hBcvaMuVBNVJkKEdrTC0NqmeQ3IB+hRkG4BmoLVLgJkztDevuvnfr72C\nmiyglimIvDkoTUuiRl1DKhibZZxdwnfJ/MZkhUwcyDzmzbdujohh+0G5LMidAbqgfct4LVPdad9m\nO9rkiU4WdbOtz1bSvjYV3jl77EQazuHmB1ND2UHMAI2aOQy6YGwKYKMNNf5vpKrpPvRvO4O2svSr\nOECqfRZTP/GOsqkR0acD+H3QBBkftaVqAuD3A/i7KNEUIvK3iOhPAfjbAN4DZWx/9KHfeEeAWgWW\n6nlUO0ZhbN1rBFTAKmDl6mYFrxXUCpiNPmI2XgMra6OY9fyzTtIklNd6wwYXX6gDqapApiZ5MKWD\nmKuhWsE8gcxL2nnCx5o+yIHtuqibCW5SAG3gzevAJ573sKc5oD3fVe3cuzkJivdzvS/h/SR1EGyd\nCkNTe1wfvtyC4l8q4BW3ggiNtfRbIy1f0EUXxA8QBjGa2db8Xvi9C6Y2sd26wDt+ZLGn3QC26jDw\nSW9VQ+sSulOZMTZo4MnDVjKY5zNALRwGFGAnm2B0AjfBYALvA7LpovxhqyKUmZH18wy4kY6DJ279\n+culHrJYtDWHZm3T6iUR+ToAX/civ/EKQe06eZBQhSaYUzHkBzAtoOWz3FiYmaubKzPrWRVqArRx\nFNBpXWCRiwFYDUcBmDDV/pzsRoWRheG4CGSoRb4VJ0FLAIt6nM7UQCVlkBviUbJxuJNgTIztWe+m\ncvYAtDP1M+xp3fKqjTKop+6R4bIWWtmH2tV2AzRla7wwPFfPMDGyRtAwkEFopAG8bQCdRNnaMGwC\nqdPAK7p7UWRXO2ulrLBTlnguNsM6z89mmrXKs/TFLeqxRNaqqB7zExtbfeZunuhDPZTcyVRjAo9U\nP6kRBhtLG5JJEhpBGplXlEE8LP6OJmBz22Blo2FX8/1P1J7C+/l2tVfnKHjzObCAwARqLjAOXCFI\nVZWcWddZmMbKzA4BtubWO2VbHsLB5vVUP5xe6xCbdUUTHp54Td1RcPR4tiOgUQJbqptlXymyIeRq\nJyIubTfG5qrndYitHEiv55v7KAxt11dTP6+Fre3d4tP6UIZ2Qy3XPprjw5jIzoLNgKwPUYdBfFeg\nIkdRccqLtDALtqHOjcaCTQS7kEZwOPCJ2taAek/O7t16T2tGlJYAUFhbjPdgaIWpOagXhubpqOqE\nOMkyZRCux7A5sLjc3MfcRndbmu4PG5uV+Ms4Ry+KXSbOCmrxoPCkaui7PUvH29L6s/3gGj8ytTIj\nhkCNeH8KarsJnLOz5Rxuf6skEVWIkaRMDeFp+AVhAi89Pk3N981d8+xZ7GnO0KblPWYXchZChaXx\nBvE6AyKxdVu4nqEcydKe9a5q57Xj2d7t1T47UzMw2+11jLx/bhQ+Y2qA2byYwENVJR/kw1mawMI/\nAKauzgVTN91+3xi4MuHKqsLuLGhWkaqLAloXVXOFNxDtC9jnvZOWgbiejmeyN+Fk0D/QZlVUJ8Ia\nTFvVc5chfdSiWTHNu0sEZYwLkA2PyWvFS7ra3lqdHCXeD/v7KVOLh4UnVUM9SuCd2F4hU9uPs9vE\nnmQGrxorNHCuYvbF0zk5A2ADdKQ6hXBgAUjvntt8RErO/RovSkDkuX7Es1Xhonw1NRQtVc6Iv2o1\nbEM9nP9/e9cWK11Slb9V+xwHR4WMRuJlCJKJRBgMXvASICRAzPDAA9FE4g2RxMSEB8QAD4ogV8Xw\nYELUmHARCAR8EAkRIyoEIsYomUQTYBBGwIyODAQGBmfm/3tXLR/WpVbV3t2n+/zdp8/82evP/k/3\n7urdtWuv+upbl6pyf5p2YF+yPvjS4kT0mJdmgYIrYwWyB8eCK6saBb2ibG3MBVmjyCWY6TbIINyu\nWzUEFGNrSZYpFz9fTdqVNggmmQNa1pVyLdDAehScFnLTMxOQk/rWUhKEDD5GkK38WiPHtgM9UWeG\nRke6BXzO6utcn3cfCXXgd32qgYOKIeyuOyLIUkReF1TQcoDTaVGZPWjgwDckCVilutBlCmBXc9Qw\nBbW9MrUF1CYyXhlDcEBPMiSJsQDMZRJpmhx9RDMm1wYwLCEQUIxFdHjE9ttQvw3qxhlJwczTzZga\n82Q2Amq93jJKrTOZueN/zUyquWr2mqk1s3wndWbdp5Ob6OfKc9P62QKWhybM7Mqq+tWuuPmZkUdW\nUAttGMyv6f1VEzuRmkhmVoUle0Jx96UNKeu0quRAtkqEq0mWKhoHAThhpOQ7XDHLxsvJVqKgCv7k\nvjT5rL7uTE2LTqToMO06vD/TNlgQk3GNzcYJ/yXoUeFg8XFVg8JA4qLTqhTUsjKxLCAlexZzZW4B\n8HqXRvHX0DaBstH6rPYdBX2oLz10EBkfDGucd4sv1vlx7NNLmmglc2BpnZ8jBAPkqKOnKx/LPMTI\n0mJ/TcSQOX0WpmFdOwtAE/GkRul72taaAvV1m1IQzVCNhKZqcgpTS76skFo9ThQzYpCg6Bpptvgj\nMMZAgaVzqF9NzM8sJudYkMeWpbXmZ9tefn+oHSsVYRs+GMm63Y1Z5ru3J5mBcJILTrPME11lBbeB\nsMp1UnwGo266bIRZttmrS1dHxjZdBbYJCMToYPSpNX3erAO07onw2gAtknZGTH1hUGgzIsgMCdKt\n/YhqJDgB7CkfSXy12RgaV7+ZMbEETeA2hmb+29IwMiu7b1kCBTOSr9SQMJsdyPa+pfkGbA2oRTYW\n/srk4+ImQSlc97BEUL4wovZSuGa4i6LKKyoCeL6zhi79NkngcqEwaobO5GZCajteEwm1NXFaNmId\nyBzxuSCkclS2ZmkdNltAGFr1q10da4AgjwV5JaZnzl2ajLYheNpaQkbVF0TQOYiEgSugmdREXfjK\nuCdDEVNzSDjNBScJOMkk9R8Yp25WiylaEvm9S2cNPkdq242U2dprS76d5HE5o1nDYgzYukHWAK36\nNqdMbaINDmhK3MG64bMMkFxkwn/ioqkb7Kal+9OGal4ag/PE7piuYrcUgyB7lLx66O8mtXfJV42+\nsofMgRB5so4U/GGNsz+anwEAHch8BK0jqbGzKadqhcC+0VCFNnKtpSwmQJ1Cc8YF64VD7lD17zTR\nux7Y9DDTs9jE9aL5aTzda8CW6TaT0w5jaldH8beZqZkN2Ox9ZL3W9mtAzaN5JG2dUlI2297zqEA+\njIxEanquCk5TxukgJqcsKlkwltTczwkH/6ECGyFVE7Q/mvy0VM3+mGm/TUfnOuCKjsJ9stb2DbDh\nLDerAJr71kB1BkWBznctMudVmX3J5IEYGmyCvwJdrvOQTZeSvTckSwZq+0W2xac2IzF5rybfsitS\nTXSEg5uxhiYCGv8CnupQfTDw3ciNrfVmVCPK1guTbummgGZMDZD56yXUtVfjdfqjfpxqMoQpLc4y\nAvNwBiJzGZkRHPDwrP02laM0U6Tc5BxrlPPqmCtD01kYOZv5qaBmbazPwEEtghWMIcDTF3hAA2pE\nQCYC6fIbV0k67MlQcDJkSdgdCk6HgpNMOB1IJ9MTxiE5mMlOVCT3q+4w9nSXrr0o+tVI/7arc2xP\nXzgAWzuweuKz+zbV/IzttEYNjK0NqCZpgkaFSwxQkd8DZSi4JWfH1YUhFy4BtOuKIfunaov5OSMO\nasztaBjOTaajGAsrAeSib0O+6opmBCqyNCszEeukLKDlbggbWaEdKYAul0rRmoABTKHqhc1v02R8\nxzy0kCwaX9scT2jowk1Pbk3P0X1oNk2KPZk2HqvgP4uHzZGdRD99QDG/YWiy4BskYwkM2GL/BNt0\n3TqaDBSrBKnbQDgdCr5lKLh6UnCak9/LaqgM1E3QVH1rMnHcTMy4PVxsw5in1voyq48zPH97r8+x\n3m8A9kDOG1cAqr+vUYUZXTNfbQFL0APsC2NmZgxkTA7QDeWRSvHBI2Vu9lhoAyFwwI6f71uWQMGM\njFdCoGCiRMHk6ZJlbes2drrfjZIKXNmARy9fla2fw6gszJSLSJy7hm4ajk/QiCdxC2zhWusSVJ2h\nGaCpP03OT2cVGNvgjrW5ozwyNW7nfa4KfAmhGAU1kFtlVlDLAdTY/WnZF89UE9RBrVQ2jcACbA9T\nImWTRfxplv9CBKA4exgTkMaEq4OAmNXzdBRwW+WE0QAtM/JQc/FiFLS4n9LM80HbNDXARspyYTuX\nx+ewgbH5s+wGMdGpEO2EMmetU/XZcjeAVjdGUjZHINmVHdUkHUgAMulgOhCQNKiQsoIaySICPlgG\nX1sEsGZGzJ5lMT9npJk7ZvqjQ1vPhiKA9BvsRl9GZWrcjZghj2hSE+2kbIYmC4DpZ+IrUjDRqKgp\nbWsid5cNTtpmdY6mQ1lHk7/xvG2gYQzNzOZ6vzbnE2FvT5trWdnbSlM6VmH1jaxR4+pDU2AzU3S0\nhQN0CaeS9V670VnrnGyeJQ/qjQTcI0kCaFmjc3lkjKlgHAmroWA1JKxOuN2TtKhfjW3By+hSUODw\n5ynDEXSmhQ0WZO2obct2PgRtzpwDytGnxuEZKMvi6kMTtmbWQLUKJkoeosgSARVwI9U95hpUMTaX\nGNUcpZoW4tUu7KvuVpwOAYIDgNpifs7I3IRYU6A62nWAFEGtO+8MBlHRWhN002NwExPym6RKYb4P\n1ghVIRlF2dnllLH5NU0LbRi2zhajoammIxiI9T4iWcuCKkMIgG4+tri1nax6WwQcAlsbc0ywDWZm\nWO7c/Gql6DaEeUQpsox2m7YSgWNA4hNZkppPqgkOMT/N91NSQdacrFUmZ2k35KJrt5XJ3gjN5i+w\ndBpSlmQglSproyRcyCOfgwNa8wzct1ZdA3P62Oan1YHRdNN0q7cO1g+irc4lCJjJa0nZSQ5kJIyN\nKgAawBWvvgJjJsflFAbUQ0m/DNVlkuOZnzNIbwoUWVYPTNH8ioA3ATrU8PomX5o9eFMGdmUSVtAy\ntVqvWumz7jR0HnsdndUUz4WIqI3dRNqZWx+O+9V6QMusQMYdmHHD0JpIp7M12wd11EU3R5QyomRL\nlC4R06oJPcjmw8Qs85lkL3YplmQ2AKWCrOkcJSfkHOsacutywZhTXemjxMBIe8izkDbSdXibtpy0\nMXXPwhTgrM7P7cuqh+3r3iUSQW2d7jlomfsDdSB1hubvLaAgvjcfL9GOnRIz0KXFDyRXy5mKfzQ5\nGqitZholUvd1oFQBi8U5G5Rp03cMHHuROevkHg9PtiXSEZTEb6L+j1lg21a8X4UO1vmGNIwFUAC0\ncG8TYDNTk5WZuempk9Rt1Q1PqNW/AdxyMEXLOCo7k79sh5qfbjoR1NwTPxcPjBTpDE7cxJMpPWp+\n6gYjpSQHsJWax7YwpaWljEwYS5oAW8OYEIDN2zPmrLWAVk3O3R+fMDTWY9qwtgAAEhlJREFUwVT1\nD+ZPa90CDVvboHu2exYRdwAHDyDIQprAoK6RYn44B7AAjmzvBQAPJXkOpS+JXDpQi5TeaH6fX8Zo\n0zbmgawdLe1cL2LA1C12lV/AvDUEZWwI/pxa2d1k1q8WO1yqYObmpy6lGDuI3bszmbrs9qh7C6ya\nw5iamZyVtRU3RXUV4Tyi5JX+NVDLHiiwm2bYfSSQsTRnavB7Kjp9pySJXqbAFkcNFMiRlKnZMuKp\n3hunMB2JQtAAGMKgwMG8JG3HidnZmZ5biypRO7j0uZDhr+vuZt0rHTuzBN2ewclWGIHNhSP1Sb1c\nWduh5BK71I5ofgZQizQdkY0h+CgQR+g2k3sdkEWwA+YxKAYGCLXLmoFikwfi/irOFnYAtmZdNaqA\n0PjP3D/UMQxro+BLkwntZn52S3m72VkTcVtfWl3+XI4c/GejAxuPI7hkOdZEP6Xe0iDFGoMIyHKf\nRRlaSYyUCkqWhNKcSU3P5EBspqgFCeK9ZYZM5E/Bt2YBnViXNUcMIMT0GtOCtcJ2ezaYtANltBCq\nS2BLK0GVPbIzAs8CnOnhABuI4T65onuOJq2HNIlee/PdnVsWpjYjY2iUyqTQnkMAJqBhK+aY7ac/\nxQRbO78JeZrVOBhqdkKVTRiBJdw2wGrKbih8xm+oI2fCziKLkKk98XyCGnUTf42nsmjk03LzbMXa\nMbA2WR+t+s+KrmDSBAvKCO4AreSVglqBBwr0uZm5x5RAXEBcNFpX76cUCQpQYpRUUAby38s5IVlw\nQIHNdomvq46gCRS0aR3kIM+Ig0JlvaQsd461WXff7HeyIY4Ntydg5r5OVDCbn5a3AQR0Wp5HNCFB\nA7Mgir4fdICuZeQzsu8jAFhga4cBtfN/l4heCOD5AH4YwLuZ+QVryv0qZIOW+1E5x7OZ+WObrn+8\n6Gcc8YDA0FqwW2eG9mH1PoweWd0mfTK/GcMiUaoo5jujjkn2EhlbU6j6cGaHy8Ykij4gZWmor1mj\nYo3p6Z0ddW9OS+9QALONiJtMeAc0DpP+bQObETwGQNPIp4Ca/Q23pzMgEidlanAzvuh9URpAJfzm\nwHWebql1yIU1eFDqfXH1pUVgY7aVSsjN4NZHud6nNqMAXXAmKN8ZbNz1C+0gWoFuai3MCYUFFKwG\nidl9YzH6LoNv/UxAi1136215KKQxVfcl18jU/hvAawDcBuBbzyj7T8z8tF0uflSm1kckK62vJzdF\nQu1cz9g2Xa8VNTHN3FQ2Rt13Bdhoiluwyk2z7eXyM53FzgdTk8wUtaTRGCiguMxRxw4CY3PTpwRm\nZqDWABrCXg/2WRGWVtSfNq6ctZnpydnMUNZbIAGsgVFY/GqeckvkqSpc4pS2As6EMiQFNvjyRsLM\narDA5lf29xjbwJ+NMcaQ0CxrqYUctRgdBUIvXzPomN4EdjrRq6gj4X1rkrIPSOvEfLdmIQBt1HMA\ndGCr4GXsrAYGonqtud7aGuwuPnX7HMLMfwUARPQTAL5/T1VyOSKoVYCog2Ed9eRd9GH0eWmVmfUh\n9P5660R8GpJ7RhDTRrLByKewWLTTkI6NwXFNyDxLzH/TLz1UO5mlJVjhwDACmDYdxY8aNKjg0B4+\ntcwYG0MBRcBM/GmSwsGlgDl7kKBE87N0K6toC1NKmgIj0Twumg6SBqR0Ah5GcDkBF93QWOtSNApq\ndYz19Q1fAmuL9xzbJJqdlemiMznNDYBq7tMWuVyuc9wMLPbgqw7qwKq6YQxtMm1q9jcUgMxXpjpG\nMCZIDXNr2RmFVT/09jC9XuFLxdR2kR8lonsAfBWy+fHrmfss8FaOCmom5i+q79cBWR0V58CuiRBi\ngxKh+iQMrMTkrIBm8MZMjQnamBsbTJP2x2JwIILXzAGa5lmBaucC1J/YdnL3PRV7jxbwcgW2EkEl\nZ020DUEBPcTPlnX58zb6CfVpUUnAkCQQQLIWmHw/CbANIygPspmwg2o0fSsrszq3frRgbhvric/W\nnUZmdraDhX8e25/smWCeSfcSgLj+6wdRC2ix60lklhGI16oJLLJZg1R27eLgFdI8WHTWdDkGEKzi\ndn7fckHRz48CeAIzf5GIbgXwFwBWAN6w6UtH9KkplwoKYRJHtuiTWB/lrEATTVq7arx2HMGYbF6d\n0nsfgmtwoFFcmyZlF+T26nOTvqO4akUTyN9X/5DlXXkB6xzd0ZugDdAF1jNZftrApZQWyHJe834e\n1AQo9BxDFrQsg343gVO8/uCm5sTPFxllZJ2R/WC+DfRxubkOCwxYu4agQGxr04M5mT7Hqkf+25im\nGdkzMT9gBLfI2KpmdmrgtaopRjLmVnOSUc1Vv3VY9J7RgpoFEqrK7UvWMbXPjffjzvzAXn6Dmb8Q\nXn+SiF4N4CW4vKBWGVUvPeva7FfrAa92uzki5fQe2h8pfEFf+xqQHCJZhAlr6yu9S4pHrVBrIrnj\nGxXomo4zOfT+i/jLqqM6mm5ozL5m1Q0HthJALoKRmKNclCNFTJPlDT0607A0GvwasInxkzoEYC7s\nACaBAfheEv1Mkf6ooFUHhWke4A7PZMOzbAY5RDbZ+dKA5nwJl9ukl4DopalmnLZnzK1PQ0peovri\n+lobu9uXrGNqjxluxGOGG/39h1Zf3dtvqpx5E0cDtcqupsDmox5aJrctW+PuOlFI2Zl9LiN7vZ5k\nyKuikJqgPbBw/Z04cjc3sE46dtawCARTysqYf8gZC9ffdFCYZ2jml+qXoRZwgUxa5wBonDtgs3MZ\nYEY/TSpuIQj30SkrS/UahTOSBQxiHQJ7NJbZpm9UoGvaHJExy0BTqUjXhh3gnSXN6hxodaqtQ+sC\nMV2urhAzR+szMpmbsiekN0C0gRPpjIOqrXIbzF7GmFxkd821IXpN/Y9eg1yLT42IBgCnkBjICRHd\nAGBk5tyVexaA25n5HiL6IQAvB/Des65/VKYGoFEak3guJi6252eUi9GZn+1f0jclPPUaIKgMzsZG\nMTkreHDl/3rhmcqgA7go5ltrZhWsaaCGrbV3Ip267/w1BcJXxXX2MwW24uZnafLQGvOTK1ubTGhn\n7VGkq3IkY2rK0PhEvhN+owIsmjrVAAc6IEYANm0Fjm1Ru/pGIbRBmrQdwIHRAHFzHq0+NoBrxXzg\nWecz9uopA6uPPqmeFYbvSuWvVYeNkfXMLd5ZA5B7lGv0qb0cwCtRm+CXALyKiN4G4FMAHsfMdwF4\nJoA/J6JvA/AlAO8E8PtnXfyoTM3EcKG+74IBM6NcBbQ5FtcqzUTCBzFA0ICn1WMSKAiXsc6J6ci7\nSSiYRzTLLOarHH/H2sXZQTDdan6XAkJEfW7NT/OXMRc1E8MRTFIooMWUDubYW0h8aJzBPLTXcvPT\n6sL+oCbgXOZTOSKw9aDg7UZ9G8a2DbM5thSOjc5d23fPZOIXhpmjU/3odSmCWxx4BdhYwUzqXZgd\n9Px7Gi418IqBAQPBtQPtOWV1DUyNmV8F4FVrPv6OUO6lAF666/WPBmqxSaK/wT5r+iGmLM3KbQK0\nTc0eVduuaUSM+wKHlJkUjvq31m9i9qxrsw7kKpNg9135OnBig1ZGxdmd99VGDRAfzE8GS14Y0JSt\nqxRXBogwG8Ejn30dA4hFM67+Wi0Xb3r6jDvTnWxGATYrxJ4k3k//jIDt9bMFtjYlw81MmgPB9jKR\n6e1TLvM0qXR2EYCIbiKi9xHRN4no80T0CxvKvpiI7iaie4nozUR0OleujsA2ms3kIQUQM4dr9r/B\nsRzLYr3COCiEzyfAuU2D7FMoMog1rI31vwAoNXVA2y+2XQMWweRrfFoKMqjgVkFIQcmBr/07fy68\nd3anTA3swDbx7TXnelBun0ZxTbFnFumK/hcGB09q3kyC9y4NcIUq7qqfUbdjSotPx+J28I9liz1b\ncNPX9iWWgnPWcQzZCtQA/AmABwF8N4BfBvCnRPS4vhAR3QbgZQCeDuDRAG7BGprZdEi0bqkeaNaJ\nK0BX9qzvxN9fe91ZFrCdbMwL2qljrTcaDOfApsjGYrgv5WXqGzTsCfF7AZyqydlOZpdiXMvaD8Tv\nxioEEI0A7SRwRmrUtgJef3fdXW6QODgcRs7SmfPqp4PVGd/py7Z9irGhqc8lvpjCGccx5ExQI6Ib\nAfwsgJcz8wPM/HEA7wfwKzPFnwfgLcx8BzN/HcCrAfza3HUjgM0B2lkPEqFs892zbij+bvj+XL3i\nM/nseP8WV96vrO0EBhQNW6sAAABf/sztXrYBDwWVaA5G8GRUcIrg1kwZmjnH0cTUq1ntJgAY7iPW\nzeocZ2vUgzeC4HG6D3BnFr1Yx/bndPQsafQzfP+s78y5YPq+tS95qDO1xwJYMfOd4dy/Abh1puyt\n+lks90giumndxTeBea/cm+jzrg9t1/b+XH7Av+Qd7AJl4/2FD+3lV+64fceL8+aHsfWF7CVv1xvD\nd79yx+1t8UmVGP27i+43HBsa2DrRdN/62YDVjKneXOsAjXSZmdo2gYJvB/CN7tw3EKIUXdmvd+VI\ny37tPBXsR5xji/CQPrdjWmbDBQ4rDgS8NU5VdrYPYENzrW2ibnyuOu9UoZ1Kr7+Kc8+j6qL9dgwC\nXFRcy+ShvkjkNwE8vDv3CAD3bVH2EZBnMFd2azkS4E+kjowXBbC7q6qP3PZm52/vS3a8Fte6u/RJ\nV9cqe7jWxT377YR5u5S7fctl3qOANtFWwH1qXwVwq5mgRPQOAHcx8293Zd8F4D+Z+Xf1/TMBvJOZ\nv68rd3lbZJFFrnNh5muCQSL6AiQQuI18kZl/4Fp+b1c5E9QAgIjeDRmgfh3AjwH4AIAnM/Onu3K3\nAXgbJBP4fwH8JWSRt9/Zc70XWWSRRWZl25SOFwK4EcA9kDWNfoOZP01EjyKibxDRzQDAzH8L4A8B\nfATA5wHcCeD39l7rRRZZZJE1shVTW2SRRRZ5qMi2TG0nOcQMhEPLtnUmoucR0SeI6OtE9F9E9Aby\n+UIXK7u0c/jOPxBROUadd9SLxxDRB9QSuIeI/uAi6xrqsUudX0tEdxHR14jow0T0+Iusq9bhhUT0\nr0T0IBG99Yyyl6Lv7VsOpdh7n4FwAbJVnSEbRbwIwHcB+CmI//AlF1XJTratMwCAiH4Rcfv0i5dt\n9eIUwN8B+HsAjwRwM8TtcQzZts4/D9kh6SkAvhPAP0NWlbhosU1N3rKp0CXre/uVdlmaaz8gvrcr\nAG4J594OWVu8L/suAK8N758O4O5912mfdZ757osBvP+y1xmSanMHgJ8EkAGky1pfSEDqoxfdptdY\n55cBeE94/3gA9x+x7q8B8NYNn1+KvneI4xBM7aAzEA4ku9S5l6cB+ORBarVZdq3z6yGs40uHrtga\n2aW+Pw3gi0T0QSL6sppyT7iQWrayS53fA+AWIvpBZZrPB/A3h6/iueWy9L29yyFAbV8zEC5Sdqmz\nCxG9AMCPA3jjgeq1SbauMxE9CcCTAbzpAuq1TnZp45sBPBfAHwH4XgAfBPB+IrropbJ2qfPdAD4O\n4DMA/g/AzwH4rYPW7trksvS9vcshQO3oMxDOIbvUGQBARM8B8DoAz2LmvS/EvoVsVWeSNY3+GMCL\nWOyMI+SfA9itjR8A8I/M/CFmHpn5jRAf5lp/4YFklzq/EoDtY/kwyGIOHyGihx20hueXy9L39i6H\nALX/gKw7fks490TMm2if1M9MfgTAl5j5XPNEr0F2qbOtnf5nAJ7NzJ+6gPrNybZ1fjiETb6XiO4G\n8C8QYLuLiJ5yITUV2aWN/x2XYzbSLnV+IsSndjczF2Z+O4CbIL61yyiXpe/tXw7kpHw3xBF5I4Cn\nQiazP26m3G0A/gcyAt8ESdp93ZEcq9vW+RkAvgLgqcd2iO5Q50eG40mQVWq+B8DJJa3vYyFM4hmQ\ngffFAD570fXdsc6vAPAxbWOCLM11H4CHX3B9BwhTfD2AdwC4AcAwU+7S9L29t8GBGvYmAO9TxfwC\ngOfq+UdBbPebQ9nfhEypuhfAmwGcHqUhtqwzgA8DuKrn7tO/f32Z69x959E4QvTzHHrxHAWye7XN\nJ0Bymeqs4PEmBYp7AXwCwM8cob6vhC4OHY5XaH3vu4x9b9/HMqNgkUUWua7kKJnwiyyyyCKHkgXU\nFllkketKFlBbZJFFritZQG2RRRa5rmQBtUUWWeS6kgXUFllkketKFlBbZJFFritZQG2RRRa5rmQB\ntUUWWeS6kv8HUacFWVNPEqAAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10a083b10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "\n", "im = ax.imshow(Z, cmap=matplotlib.cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max(), extent=[0, 1, 0, 1])\n", "im.set_interpolation('bilinear')\n", "\n", "cb = fig.colorbar(im, ax=ax)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### contour" ] }, { "cell_type": "code", "execution_count": 118, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEECAYAAAArlo9mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXeYJFd19/+p6px7evLM5pyTtNqkTRJCEkECScZggsmv\nDQ7g9/fiRPKLsV9jDNhggw0GRBCgAJZIAgmtdldhc855d2Yn9kznVOn+/qiZZb3elaq6e2Zndvvz\nPPNoZ1T3VnV11feee+4550pCCGrUqFGjxo2PfL0voEaNGjVqjA41wa9Ro0aNm4Sa4NeoUaPGTUJN\n8GvUqFHjJqEm+DVq1Khxk1AT/Bo1atS4SagJfo0aNWrcJFgSfEmSPixJ0k5JkoqSJH3zVY79qCRJ\n3ZIkJSVJ+oYkSa7qXGqNGjVq1KgEqxb+ReAzwH++0kGSJN0NfAzYCEwGpgN/U8kF1qhRo0aN6mBJ\n8IUQ/yWEeAoYfJVD3wX8pxDimBAiBfxf4D0VXmONGjVq1KgC1fbhzwf2X/b7fqBJkqS6Kp+nRo0a\nNWrYpNqCHwRSl/2eBiQgVOXz1KhRo0YNm1Rb8LNA+LLfI4AAMlU+T40aNWrUsImzyv0dBhYDjw/9\nvgToFUIkLj9IkqRaic4aNWrUKAMhhFRuW6thmQ5JkryAA3BKkuSRJMlxlUO/A7xPkqS5Q377jwPf\nusZF136E4FOf+pSl4zp+9ASHP/GZss6h59LE//0Tlo83VAXtwkFLx5ZUjY7BjMVjdb645ZSte7Hj\ndJz3f33bdf+eRuLn8z8/wre3nLb1XDyyt4PzgzlL/fem82QKiqVjtZ7TGLmk5WtP/uTfKZ09Utbn\n7vjh4xz51GctH2/1HbkZfirFqkvn40Ae+HPg7UP//mtJkiZKkpSRJGnCkIj/CvgcsAk4C5wGPl3x\nVdZA6DqSs8wJmewAYVg/XpLA4sMlSxKGxefQ5ZDQDIFh48GtC7gZyJYsHz+eGMwq1AXcttqUNAOP\n09prK4T5VVo72ADJhodXGOZzVQaSLCMMG89jjaphSUGEEH/DtePpQ1cc+yXgSxVeV40rELqOXLbg\nywhDt368JIPFF9IUfGsCLkkSXqdMUTXwu62JRXPES2+qiBACybJ6jQ96UgVaoz5bbYqagddl7d4Z\nQiBbvWfCsDE6DBkg5Qq+04nQtLLa1qiMWmmF68yGDRssHSdUFclZ5gvmcIJu4wWTJEAgLMwKhicD\nVqebAbeTrHL1a7navQh5XbidMv3pG8vKF0JwPp5jYsx/1f9/tXthCEFe0QlYHCx1QyDLFkXcsGmx\n6xo4ynweXU4M1frzaPUdqfHq1AT/OmP1YTYUFdnjKe8ksgOEsGzlS5JktrFwvCRJOGQJ3aJfJ+x1\nki5aF3yAOW1hjnWnLfU/XujPlNANQXPEe9X/f7V7kVN0vC4Zp2zttdUNgdOy4Ou2BF/oKpKzvKop\nstuDoSiWj68JfvWoCf44QS+WkF3lvWCSJCE53QhNtd5IdoJubYBwyKZv3gpRn4tEwfrLDjCvPcLB\njqStNmOdQx1J5rVHbLmpEgWFqNfaMyCEsOzSEUKAodkTfFWFMgXf4XFjlG6sGdt4oSb44wS9UMAR\nCJTfgcuNUGy8ZA6nKQIWcMoymkWff0PATTxnT/BXTG9g++m4rTZjnW2nBlgxvd5Wm3hOocHiIq82\nZN1bGlCEAUi2fPJCLSG5yptxOvw+9EKhrLY1KqMm+OMEPZ/H4bv69N8KksuDUK0LvuRwWZ4RuBwy\nmm5N8BsDHvpsCv6SyVHO9GVJ2Gw3VhFC8PKpflbObLDVrj9rXfBV3cDpsPh666o5wNtAKCUkd7mC\n70fP5ctqW6MyaoI/TtDSGVzh8itUyB4fomTDqnK6QLcmsC6HjGJR8JuCbhJ5xfLxAG6ng9tnN/Hs\noR7LbcYyhztTyJLEzGZ73+fFdJH2sLVBX9UM3FYFX1PBaT08VOg66FrZFr4zFELL1JLvrwc1wR8n\naJkMzlD5gi95fIiiHcF3g2ZN8N0OGVWzJuBOWaYx6KErXbR+LcC9i1r56d6LttqMVX629yL3Lm6z\n5b8vqDqZkkpj0JrIKrqOy6LgC01Bclj3x4tSHsnjLTtM1hUOoaZrgn89qAn+OEFJJHHVRctuL/sC\nGMWc5eMlpwehWrTwnTKqbliOx59S5+PcoL0p/ZpZjSRyJface7UK3WObwVyJXx7o5oFbJ9pqdy6R\nZ2LUZzmu3kzQsuiT10pgw1o3CjlkX/nrSc5QED2Xx6jF4o86NcEfJ6iJJO4KBF/yBRGFrPUGLg+o\n1qxwWZJwOWUUi1b+9PoApwesDz4ATofMe9ZN5+ubTtlqN9b4/ovneO3CFpquEY55LU4P5Jheb01k\nDSHQdAO31YxctYTksn49opBD8gUtH38lksOBMxxCTaZe/eAaVaUm+OMAYRgogwlcsfK3FZD9QYy8\njWm00w2GZjl23+t0ULSYTNMc9KAagn6bJRPeuLSdjoE8206Nz4idnmSBJ3Z08J510221U3WDM4N5\npsesCX5J1XE7ZesuF6Vo08LPIlcg+ADu+hjKwPierY1HaoI/DlATSZzBAI5yE68AORDGyFkXfEmS\nwOU1xcACXpeDomo9sWtuU5Ajffb8uC6nzJ/dO4d//PlRy1FBY4l//tVxfmfFJNrq7JVTOD2QoyXo\nIeixFklTUHV8LmvHCsMwF+dtWPhGLoUcCL/6ga+Ap6mRUl9/RX3UsE9N8McBxd4+PE2NFfUhByIY\nWXvJS5Lbh1Cs+dq9LidFTbfsx5/fHOJIb8Zyhu4wG+c10xT28N0Xz9pqd73ZdirOvgsJ3rt+mu22\nh3oyzLMR0VNQNcv1dlAK4LK3AGvk0siBiOXjr4anuYlSb19FfdSwT03wxwHFrm687W0V9SGHougZ\nm9mqngCUrAm+Q5ZwO6xb+Q0BD1Gfi1M2ffmSJPGJNy3gO1vPcqxrfPiAEzmFT//4IJ980wJ8bnvx\n7omCQm+2xOxGay4UzTDQdOsF1oSSR/JcvZ7PtdDTCeRwZbuW+tpaKVzsrqiPGvapCf44oNDZha+9\ntaI+HKE6jGzSUkG0YSSPH1GyLsgBt5N8yXrkxdK2CHsu2i+Z0Fbn5y/vm8//fmQv8czYTtFXNJ0/\n/+Fe7l3UyqqZ9mdpey+mWNASshximS9p+FxO6xZ7MQdue4JvZBI4QpUJvre9jULnjRFmO56oCf44\nIH/uPP4pkyvqQ3K5kb1+jKwNq9jlBUO3nHHr9zjJKZrlypmzGoNkShqdSftp9q9d2Mp9S9v5k+/s\nImdjkBlNDEPwqScOEvK6+KPXzrbdPq/oHO7NcEu79eisXEkjYNHXL4RAFLNIXnsLsHoyjiNiryzE\nlQSmTCJ//kJFfdSwT03wxwG5s+cITK1M8AHkSAN60nqEiyRJ4A0iitYWV10OGZdDJq9Yc+vIksTK\nSTFePD9Y1m4+H7xjBnPbIvx/j+yhZNGVNFoIIfjC08foSRX57FsW47BatfIydnQkmNMUtLxYq+kG\niq7jt+o2UksgSbYyZo1Swcyy9ZefBAjgnzKZ/NnzVdnFqYZ1aoI/xhFCkD1xmsAMe6F8V8NR14Se\nsBcZIXlDULAeTRPyusiWrNe8md8cIqfotn35YA5If3nfPMI+Nx9+eBfJ/NiotaNqBp/5r0PsOTvI\nl96xzPoC6mUk8gqHetKsmhSz3CZTVAl4XJbdOaKQRvLZi7bRE33I0caKN6NxRcI4Q8GaW2eUuW6C\nbyhKbZszCxS7upE9bjwNlU2hAZyxJvREr602kj+MKKStb3DicVJUdcthkw5Z4o4ZDWw6HUctI9TS\n6ZD5u7csZuGECO/66suc7r2+KfuDuRJ/+O2dDGYVvvH+FUT89rYwBHOQf+50nOUT6yxb90IIMiWV\nsMXyyTAs+PYsdX2wF2esyVabaxGaM4vssRNV6etGRgiBoajo+corjJa5Z17lbFq+HqFpSA4HjkAA\nVziIIxjEHavD09SIp6kRb3MTvokT8E2agLe1pfwt/sYx6YOHCc+fW5W+HLFmlLNHbLWRnG5wuKCU\nAwu+XlmSCHpcpIsKsYC12O4pdX5aQl5eOj/I+mn2KkiCOWj86T1zmNoU5P3f2M5H7pnDfcvaR31L\nxF1nB/j4Ywd43eI2PnzXrLLcOADH+7Mkiyr3z7e+UJ9TNJyyjNtiOQWha2YEVpN9wXfEmm21uRbh\nBfNIHThM0113VKW/8YQQglJfP4ULHeQvdFLs6UXp66fUH0eJD6BmsmiZDFo2d2m3O6nM/TAu57op\n6J37XzYXjTQdPZdDzWTQ0hmUwQSl/jilvn4yx07Q++vfULjQiTIwiG/yREKzZhCcNZPQ3NmEF8zD\nFaksAWSsk9yzn+gtS6vSl7OhDS3eZXt/WCkQReSSlhf3wj43XckcUZ/H8hZ7d85o4Nu7OpjVEKTV\nYkXIK7lv2QTmtkX4+GP7+dnei/zFG+cx3WZFynIYyJb40tPH2XE6zsfftIC1s8u3gPOKzm9OxXnz\nglbLu1UJIUjlFeoC1n3xIp8CX8j2vrRafxe+JWtttbkW0WVLOP3lr1Wlr7GMXiiSOXKM9NFjZE+c\nInviFLlTZ3D4ffgmTcQ/aQLetlZC8+fS0NiAu74eVySEMxjEGQoiuS5z01VoxFxXk1mSJCSXEzka\nwRV95UQOvVgkd+bc0A07ydmvf4vM4WO462OEF8wlsmQR0WVLCM6acUPNBBI7dzP3b/66Kn1J/hBI\nMkY2aSusTgpEMXpOIWLWrGaXQ8bndpIqKtT5rYlQwO3kzhkN/PxYL+9cNhGPxTowVzKzJcT3P7Sa\nx3d08P5vbOc1C1p499pptF9j79hKSOUVfrTtAo+8dI77b5nAjz+yznKEzNUQQvCrE33Mbw7RZmPQ\nK6g6AvDZWCsQuSRS0Pr6wPD1afEuHA2V5YQME1m0gOyJU2i5PM5A9b+f64EQgvy58yT3HiC1dz/p\nQ0fIX+ggOH0aoQXzCM+bQ9ub3khw5nScocrKU5TDuFFGh9dLeN4cwvPmXPqb0HXy5y6QOniY1L4D\nXHz0xxR7+oguWUjdytuIrbqN0OyZSBb3AB1rFLt6KPXHq+bSkSQJZ/MktN4Oe4Lv8oLDbS7e+q3N\nqOr8HrqSecJeFw6L939OU4gLyQK/ONbLm+a3lO2ScTpk3rpqMvcubuXbW87wjq++xPwJUX7ntonc\nPrupbFcLmC/0gY4kj+/oYPPRXtbPbea7f7iKiRYLm70SL59PkFd17pvXYut6ErkSdX639cVaTQEl\nj+Sfauv6jEwCSZaRg5Vl2Q7j8PuILF7A4LYdNN25oSp9jjZCCAoXOhncvpPBbTtJ7NyNw+Mhumwx\nkaWLmfDWhwjOnI7str+WMxJI1yMsSpIkMVLnVZJJkjv3MLhtJ4Pbd6ImU8RW3kb9mhXEVq3A21Id\n/+No0PHIo6QOHmbB3/9N1frM73gGoRQJ3P5GW+2MTBxRyOBosi4S8WwRCagPWrdWdUPwo/0XmRT1\ncfvUyheqAYqqzq8PdvP4jgt0Dha4dWqMW6fGWDY1xqR6/yv6vTXdoCdVZN/5BLvODrLzzAAOWeKh\n2ybxxqXt1FncgerVONGf5bnTcd6xbAJBG9m4maJKpqjQGvFbFnwj2Quagtxgr0Rz6cReSif2EX7D\ne2y1eyUufOcRsidPM+8zn6hanyONmkozuH0Xgy9tY+Cl7RiKQmzlcmIrzB9vm/UB2y6SJCGEKNti\nueEE/0qKXT0MvLydwZe2MfjyTjzNjTSsW0PDutuJLFmI5LAfMjda7Hz7+5jygXfTuKE6PlMApeMU\n+Zd/QfQtf2KrnTB0jM4jyG2zzYVcC+iGQWciT2vEZ3kxEcwFyEf2XWT5hChL2qpjTQ7TnSyw6+wg\nu88MsPd8gu5kgYjfTVud779FxJQ0g+5kgf50kVjQw8KJUXOgmBZjWmOwqgvCnckCTx7p4aGFbTSH\nbMTEG4LOZI6mkM96KQUhzO+xaartkgrZTU8gR+rxL9tgq90rUezpZfsDb+f2536Gw1v+Fp4jiRCC\n3MnTxDe/QHzLi2SOnSC6bDGx1SupX30bgRnTRy1AoFLBHzcunXLxtrXQ/uD9tD94P0LXSR04RHzL\nixz77Oco9fZRv3Y1jRvWUr9m1XXxqV2L5N795vWtWVXVfl2tk9EGujGUIrLb+gsmyQ6kQB0iE0eq\ns+bDdcgydX438WyJ1ojP8ksRcDt5aGEbP9jXic/lsFxHxgqtUR9vXNrOG5e2A+aMoj9dpCtZIF/6\nbfKW2ynTGvXSEvHhKnM9wQq9mRJPHunh9XOabYk9QCJfwudy2ovzz6fA6bYt9gDqxdME591mu90r\n4W1pJrJkIV1PPMXEt7+lqn1XgqEoJHbuof/5rcSf3wqSRMO6NUz54LupW37LmB2cXo0b3sJ/JYrd\nPcQ3v0D/81tJ7tlPZNF8Gjeup2HjWnxtldWuqQSh6+x423uY+Pbfpe3+11e9/9SPv4p3yVo80xbY\nuy61hNF9AnnCPMvRHUIIulN5gh4XYZ8990dftsTjB7u4fUqMRa3VtfTHAh3JAk8d6eGumY3Msjmo\nFVWdvkyB9qjf8hqJEML8/iLNSAF7m+nomQTJH3yB2Pv/puprYpljJ9j7wT9m5ZM/qmiTn0pRkyni\nW16kf9MWBl/eTmD6NBo23E7jxnUEpk8b9TDfq1Fz6VQJLZdn8OXt9D+3mfiWF/E0NdJ4x3oaN64j\nNG/OqH7ZHd9/lN5nfsMt3/raiJw3v2cTRmqA4MaHbLc1+s+Dy4Mcte6nVDSd7lSBtqjfchGwYRJ5\nhccOdrG4NcJtE6Nj4qWrBqfiOZ4+0csb5rYwpc5m8TIhuJjIEQt4CHhsJFrl0xiJLtMtZ/M+Fg9t\nQ+08Reied9hqZ5Xj/+8LaJkM8z/7qRHp/1rkL3TS/9xm+p/fQubocWIrltO4cS0N627HXW8vimk0\nqAn+CCB0ndS+g/Rv2kz/pi3ohSINa1fTsP52Yitvw+G3t4GFHVIHDrPvQx/h1of/g8B0e1EUVtEG\ne0n/5GvUvfcTSJI9ARZqEaP7JHL7XCSHdY9guqCQKaq0Rv2W92UdJlPSePxgF21hL3fOaMA5TqOu\nwLSyd3Um2dmZ5E3zW22FXw637x9aDG8MWX8Oh617KdKEHLBf6TL11DfwzFqKd84ttttaQcvl2P7g\nO5j6B++j7U1vGJFzABiqRmrfftMfv/lF1HSaxg1rabxjPXUrbh3zrpqa4I8CubPniG9+kfiWF0gf\nPEJkyULqb19Nw+2r8E+bUjWrM3fuPHve+yHmfPxjNN6xvip9XovE9/+R4MYHcbXZ35DDiHeA7ECO\nWY/HFkLQnykiSRKNIfsvlaIZPH2ij0RB4b65LdSVUbLgelNQdZ4+3kdW0bhvXgsRG2UQhil34DRy\nCUSqD7l1lu3n1SgVSHzzM9S995PInpETxNzps+x69/9iwf/7v9SvWVm1fou9fQy88DIDL7zM4LYd\n+CZOMAM31t9OeP7ccRW2XRP8UUbLZhnctpOBF14mvvUlEIK65cuoW34L0VuW4J88yfYDpKbSnPvG\nw3Q98SQz/vcf0/7g/SN09b8lv+MZjFya4MYHbbcVmorRdcwUDzuVFoW4FJtv158P5qCxvzvNC+cG\nWDulnkWt4XHj4jmXyPP08T5mNQRYP62hrFyAgqrRly7ado0JwzC/r/qJtmvnABQPb0c5e6Sq4ZjX\nIrFzN4c+9gnqbruF6X/8B/gmtNvuo9jbR3LPPhI795DYuRt1IEFs9W3Ur1lF/e2r8DTaL98xVqgJ\n/nVkOOkisXM3iZ27Se7eh5bLmQliC+bhnzoF/1AtIHdD/SVxErpO/kIH2eMnSR86Std//ZSmOzcw\n9UMfwNtcncJUr4aeHiT5wy8Se++nkMrITDZSvYhiFrnJ3mKWqht0J/M0hLzWy/heQTxX4hfH+nDK\nEnfObKQ5WP5evyNNpqSx+UyczlSRu2c1MbXMjF9FM+hJ5WkMeW3vmmUkukEtITdNKevcycf/Fd/S\ndXimLyyrvV20XI4LDz9Cx/d+RONrNhBdtoTQ7JkEpk+9lMAkhEBLZyh0dJLv6CR/7gLpw0dJHzqC\nUFUiSxdTt/wW6m67hdCsGWM6/NoONcEfYygDg6QPHSF9+Cj58xcodFwk39GJOphAcjiQHA6EEHia\nGgnNmUVw9kxa7n0tgWlTRv1aU0/8G95Fa/DMXGy7rRAGRtcJpGizbZ9wUdXpTRdoDnvxWtxs+0oM\nITjQnebFc4PMbAiwekrMVsLSSKPoBns6k+zqTLK4LcKKSXW4bS5YD6PqpthH/R5CNt1AQili9JxE\nbpuD5LTvQtKTcZKP/gux933S1ppNNVAGBul68udkjh4ne/wEhY6LIEkITUPoOo5gwDSoJk7AP2kC\noSFDy9vWOm5mfnYZt4Kf+uk3QTYFUHJ7kbx+JI8P2R9CDkZwBKPIwUhZD+lYRAiB0HWEZu7ONBYW\nh0on9lI8+DKRBz9UVntRymH0nh1KxrL3PRUUjb5MsSLRB9Mv/vL5QQ71ZpjdGOS2CdHr6t/PKzp7\nLibZ151iUtTP2qn11PnKf4Y13aA7lSfscxOx6Qa7tFAbqkcOlefGyG59CkmSbGdmjwSGoiJ0Hcnp\nNKtH3iCiLgwdI5fGyCYxMimMfBqjWECUhn50FQwDoetE73//+BT84qkDoJsjtVAKiGIBo1RA5DPo\n2ZT54XNp5EAYR10TjrpGnPWtOBvbcdS3jLq1cSMidJ3Et/+W8P0fwFlmQSwj0Y1QCmbmps0XMK9o\n9FdB9MHMzt3blWJ/V5q2sJcFLSGmxgKWK05WghCCzlSRI30ZTvRnmd0Y5NYJUWIVDjzDln05Yg/D\n303ettttGKGWGPzW3xJ960dxhMdeiOJ4QwgDPRlH7+tEi3ejJ3rRE/3o6UFkbwA5GEEORpEDISSv\nH9njR/J4TWNKdoDswDt9wfgUfCvnFYaOkR5ET/SjDfaix7vR+jvR04M4Yy0426biGvqRK9xy7WYl\nv+s5tPhFwve8s6z2QhgY3aeQAlHkiP31h2FLvyFoL6b8Wii6wdHeDEf7MvTnFGY2BJhWH2BSxHr5\nASuoukFXusiZwTzH+7N4nDJzm4IsaAlXxbVUUnV6MwUiZYq9KKQx4heQW+3PvobJ79mE1tNB+HXv\nKqv9zY6hFNG6z6N2nUHrOovW14nkC+BsbDcN17om8yfaYPk7GhWXjiRJdcA3gbuAfuCvhBA/uMax\nfwu8GwgAe4E/EkIcueKYinz4QlXQ+jpRu86idp9F6zqLHI7hnjwb16TZuNqm1mYAFhFKicGH/47I\nA3+Is768ok9CUzC6TiA3TbG9ITZASTN9+mGvi4jPetXHVyNT0jjWl+FcosDFdIGYz82EiJeGgIeG\ngJuY34XHIb/q+VTdYLCgMpBTiOdKdKVL9GSKNAY9TI76mN0UpNFGLfpXI1fSiGfLHwQvfR+Nk8uK\nyoEh6/7hvyfy5v+Fs/76ZZ2PJ4Qw0Psvopw/jnL+OHr/RRyN7ZeMUmfLZGRvZWWgR0vwh8X9vcAy\n4OfAKiHE0SuOewvwBWANcAH4LHC3EOKWK46r6qKtMHS0ngsoF46jnj+GnozjnjIH97SFuCfPQXKP\n3SiOsUB+9ya07rOE3/Desvu4ZFG2zLQVqjmMphv0pgu4nDINQa/t5KxXQzcE3ekiF9NF4nmFgZzC\nYF5BAH6XA5/Lgcsh/bfj86pOQdXRDUGdz019wE2D301zyMPEiA93lWvsCCFIDsXZN4d8eMqYkQhD\nx+g5hRSoK2vGNUx++6/RBnsJ31vezO9mQeg66sXTKKcPopw5jOR245o8B/ek2bjapyO5qrueNOKC\nL0mSH0gA84QQp4f+9jBwUQjxV1cc+zFgmRDirUO/zwN2CSH8Vxw3olE6Ri5N6cwhlNMH0Xou4J4y\nF8/sZbgmzb5hwrOqidBUEt/7HME7fwf3xFll92Ok44h0P3LrzLJmWIYQDGSLlDSdxpAPj40Km+Wi\n6AYFVSev6GjGb59JWTIHAr/bgdvCLKBSNN2gP1sEAY0hL84yInqEEBh9Z5EcTqT6iWVfs55NkXzk\n8zXf/TUQQqD1nKd0fA+lk/txhGO4py/APX0hzrqRDaseDcFfArwghAhe9rc/A9YLIe6/4thJwBPA\n7wHnMC386UKIB684btTCMo1CltLJ/ZSO7UZPDeCdeyve+Stx1DWOyvnHC6VTB8hv+xXRt320IneY\nMdiFKGWRm6fb3j5vmGxJZSBbIuKrrotnrDL8ecM+F9EyP68QAjHQgdBU5ObKCn2ln/4ujnA9gdWv\nK7uPGxEjn6F4ZCfFw9uRZAnP7FvwzF6GI1KdfRusMBrlkYNA+oq/pYGrOQe7gReB44AGdADXdYdi\n2RfEt2gNvkVr0JP9FA9vJ/n4V3DGmvEuXI17+tiuiT9auKcvpHhkJ4Xdm/DfdlfZ/Uh1rTDQidF7\nZkj07VuqQY8Lj9NBPFskV8pTH/RWdcF1rKDqBoO5IqouaAmX58KBIbEf7ESopYrFXjl7BK23g9Cd\nv1t2HzcSQgjUztMUD76IeuEE7hmLCL3293C2TBqXhogVwc8CV+5rFwEyVzn2U8ByoB3oBd4JbJIk\naZ4Qonj5gZ/+9Kcv/XvDhg1s2LDB8kWXiyPaSGDNG/CvvAfl9CEKB14k98JTeBffjnfBKmTPyBVF\nG+tIkkRw4wMkf/BF3NPmlx2mKUkS1E+A+AWMvjNmuGYZlr7LIdMS9pErafRlCvhcTmIBt+VSwGMZ\nQwhSBYV0QSXic9EUKn8Wc0nsSwXklvJnVQBGMU920xME73pr1X3P4w2haZRO7qWwdzPoBt7Fawje\n+ZZR14jnn3+e559/vmr9WfXhDwLzL/PhfwfovIoP/6fAr4UQX77sbwngTiHEnsv+NmYybbW+Tgp7\nt6CcP4p3/gp8S9ff1CGexWO7Kex4hshbP2Jrg5QrMV0MnWYcePM0JEf5IZeGIUgUSmSLKiGvm4jP\n+j65YwlDCDJFlVRBwet0UBfw2C4XfTlCGIj+CwhDK3tg/W1fgszPvokcaSC4buRrOY1VhKpQPLyN\nwu7nccRxxASTAAAgAElEQVSa8S1dj2uy/XLSI8VoRek8AgjgA5hROj8FVl8lSueTwGuAhzDDN98B\n/BvQLoRIX3bcmBH8YfT0IIXdmyid2Itn7nL8t95x0wp/5tkfITSF0N3vqOhBF0Igkj2IXNIU/TKi\ndy5H0w2SBYVcyRT+sNdV1uLmaKMbgmzJFHqP00HU7654QVoYOkbfWbNqacPkiis+5vdsQjl5gMhD\nH74pQ5qFqlA48CKFvZtxtU7Bv/w1OJsmXO/L+h9cjzj8OPDnQogfSZI0ETiMGcHTKUmSB/g88CDg\nB04BfymEeOaK/oRRyIIkmT+yExwO27XZRwI9mzKF//huvItux7dsfUWW7nhEqAqpJ/4V94xF+G+9\ns+L+jHQckeypKC78cjTdIFVQyJZUvC4nIa8Ln2vspdqXNJ10QSWvqPhcTiJVEHoYqo/TfxbJG0KK\ntVf8uZVzR8k8+yOib/mTmy4qRxg6pSM7yW//Nc6WyfhXvBZnw/XPOxBCgKGBroMwQAhAIPtC4zPT\nVus6bn4IYYChg66BJIPDBS43ktNj7r3p9oHbN+pWh54aIL/tVygdJ/Avfw3ehasqmjKPN/RsitSj\n/0xg/ZurUiVRFDIY8fNI4UakcFNVxNkQpuWcKajoQhD0OAm4XbidIx9GeS1U3SBXUsmVNHQhCHtd\nBL2uqm3aIvIpjHgHUl0rcqjy6BBtoIfUj79K+A3vxtU6MhvujEWEEChnDpN/6WfI/jD+NW/A1TJp\ndK/B0EEpIJQiaCWEpoBaAl01NVF2mMawLAOmcexsmzU+Bf/K85ojmm5+WE259OGFUgClYH5oTwDJ\nEzCzOd3WN8WuBK3/IrmtT2EUcgQ3vBlX+/QRP+dYQevrIPXkNwjd8w7cE2dW3J/QFIy+c+BwIjdM\nqtogLoRA1Q2yJY1cSUUAPpcTn9tMqBpJf79hCIqaTkHRKKg6hiHwe5wEPE68VSzwJQwDkew23WNN\nU5A8gYr71JNxUj/+N/xr3oB39rIqXOX4QE/0k938E4xMksDaN+KaPPJbmAohTD0rZaGYQ5RyppHr\n8phGrcuL5HTD8I989Wdn3FbLtHNeIYQ5CJTyUMohillzYPAGkXxhJH+4okVBK+dXTh0gt/VJXO3T\nCay976bx76udp0n/4mHTAixjd6wrEcJAJHoQuUFzQw5/dTcnHxb/gqpTVHWKqoYsSbidDjxOGbfD\ngdMh4XTItrJ5hRBohtm3qhsomk5JM9B0A89Qpq7X5cQzArMLUcpjxC+YewnXT6zKQKmnB0n9+Kv4\nbtmIb+HqKlzl2EdoKvkdz1A89DK+W+/Et3jtiIZkC0OHQgZRSCMKaZBkc6D2BpE8flPkbT4rN4Xg\nXw2hqb+9kcWsafEHokj+6Ii5f4RSIr/j1xSP7iKw7n48s5aOOb/xSKBcOE7m6e+blv6k8jNxL0cU\nsxjxC+aMLdY+ct/Z0ACgaAaKrqNoBpoh0HQDSZJwyBKyBLIk/bfvUgiBIUy3kSEEuiFwyuZA4XLI\n5uDhHNksXCEMRLIXkRlAirUhBeqqci490U/qyf/At3gtvqXrqnClYx+1+yyZZ36Is6GdwLr7cQSr\na2gMIwwDCmmMXAIKGdMr4Q+bhmmFQQtwEwv+5fyPm+wLmfW/vcEReRnV3gtkf/1DHLFmghsfRPbb\nLxg23lAvnib9i+8QXP9mPLOWVKVPYehmFE82gVTXghSsH7UBVAiBLgSG8Vthv/yZlKTfDgTy0MAw\nmoO7yKcxBjvB7UOOTajavhBaXwepp/6TwMp78C6o3r6xYxWhqeS3PU3x2G6CGx7AM2PRyJynlEdk\nBhD55JDxWYfkj1TdkKkJ/hUIQ0dkE4hMHISBFGpACtVXfcF1+EEqHd9D8K63Vc3yHcto8S7ST34D\n79J1+Jaur55/WilgDHSCMJBj7WVV3LxREGoRY7DL3JIw1o7kvzLnsXyUs0fIPPsjgnc8NGrbFV5P\ntEQfmV98B0e0geDGh6pumAkhELkkIt0PumrqTDBm+uJHiJrgXwMhBJTyiHQ/ophFCjeY4l/lEVfp\nOEn214/gXbga3/I7x0Ro6UiipwdJ/+xbOBvaCN7xUNUsz0svT7IbnB7kaAuSt/KFyfGCUEuIVC8i\nn0KKNJvPa5WeJSEEhd3PUdz/AqHX/T6u1ilV6XcsUzqxj+zzPyaw+l4881dWdXYmDAORHUSk+8Dh\nMquS+sKjMgOsCb4FhFpEpPrMlynUgBRpqqrFr2dTZJ7+LpLLQ+ied9zwJRqEWiLz7I8w0glCr3sX\njpC9PW1fsW8x9DIle013RqTJ9IPeoGsl/+PZDDdW1SgRSonMc49iJAcIvf7dOELRqvU9FhGGTu6F\nn6GcOUz4de+qavKUEMJ026R++2yO9my0Jvg2EJpi+ozzaaRoszkFq5YVpevktj6J2nmK8H3vv+ET\nWEyrcROFvZsJbnyw6r5RIQxEZsiKkh1m7H4gekMIvxACilmMdD+U8uZzWGWhB1B7O8j86nu42qYR\n3PDADbM/9LUwlCKZp78Hukbo3ndVvNnIMEIIyKcwEt3gdCHXtZlRNteBmuCXgVAKpp9UV8wFsSpk\nfw5T2LeFwu5NhF7/nlFP5LgeqD3nyTz9fVwTZxBce3/VN5sRQpgL8ul+UItIgZjpJx2H2c9CUxG5\nBCI7AEimyAfqKi6L8D/OYxgU9j5PYc/mqi6yj2X0bIr0U9/A2TyR4IYHqxZuKZSiuXiua8ixNvCG\nrqvRMW4FfzBbHKqsYEZAOIb+azc+ulwuCclAJ5IvhFTXVjULq3T6ENnfPEr4db+Pa8KNn6hllIrk\ntvwE9eJZgnc8NGIL2EIpIrIDiFwCHO6hMNxIVcLdRgqha4h8yozeKOXN6w3GRsxNpQ30kH3uMZBk\nQq992w0/0wQzKz71k6/hnb8S3613VOW+CmGYrrZ0P1K0xXS3jZIuaYZANwx0wwwHNoRAYBYmqA96\nx6/gmx9CXPpg2tCHdMgSLod8KVnGO4LZksLQEYluRD5Z1UQgpeMkmV9+l9A9b8c9aXZV+hzrKOeO\nkt30xFBy2huRfSPj3zQH68yQkKbA6TLjnH0h8Piv68K5EMJMly9mzRyRUh58ITM/xB8esfIcQtPI\n73qW4oGX8K+82ywFcoMHEADoyX5SP/4avlvvwLdoTVX6vJTo5nQj108YsagbwxCUNJ2iZuaHqLqZ\nyOeQh4xgWb6UJyIhIUlQFxingn+t8w6PcIqmo+gGJVWnpOnIkoTP7cTvduJ1Oao+C7iUCOQLIdW1\nV2WarV48Q/rn3yb8+t+/aUoyCKVEbihc1b/ybrzzV4xoDSIzGis3lISXMWuReAJIHr/pZ/X4RzYL\n29DNaLBSHqHkzSRA2Wk+R76Q6QIYwdIOQgjUc0fJbX0KR6yZwIYHRiypaKyhZxKkHvsK/tvuqkpO\ngRDCjOpL9VU10e3y/kuaQV7RKCgaqm7gdjrwuhy4nTJuh/yqHo5x69KxW1pB1c0blVd0FF3H73IS\nrHKVRGHoiHgHQi2a9UpclfuJlQvHyfzqESIP/AHO+utfhW+00PovktvyJEYhR2Dtfbgnj84sR+ia\nOQAMiTBKHpDMmiUuL7jc4HCZg4DDNVSgSjbT3q/ItDWL++lgGKCrCF0FbajWk1oCtWjWf3L7zMHF\n7UfyBkY0DvtytHg3ua1PYmRT5j2eMndUzjsWMIp5Uo99Be8Ccw+LShG6Zlr1umZWda2Sm3BY5LND\nBfUcsoTf7cTvduApo9bSTSH4V6IbBrmSRrakouqCoNdJ2OuuaDOJYS6FXiV7zAJfVUh8KR7bTf6l\nXxD93T9FDlQvkWasY1YkPETuhZ/hiDYQWHUPzqaJo34N6BqoRVOkNbMaodBU8+/GcPlZA7j8PRLm\n77JsDgoO528HCqd7aPAYqug6yot4enqQ/I5nUM4eGbJuV91U23QKXSP1k3/H1TyRwNr7Ku9PKWL0\nnTHdgrG2qrjCdEOQKSpkiiqSZG7bGfC4Ktaom1LwL0fVjUs3tqo1x4tZjL5zSNEW5HBDxf3ltv0K\nteMEkQf+8KbbYELoGsVD2yjs+s1QzfG7x0TN8cu5ZNEPI41uKQUr6NkUhZ3PUjq5D++CVfiWbaha\n6OF4IrvpcYxsmtAb3l2xOItCBqP/PFKsDTlY+QK3qhukh/Zq8LudhLzuqhbUu+kFfxjDGNo+rqjg\ndsjUBTyV7yqkljB6z5iLbXVtFe7+ZJD52beQQ3UENzxQ0XWNV4SmUjzwEvk9m3C1TsF3yx03Rehq\npejJOIW9mymd2Gtuw7ls401Rv+lqFA9vp7BnE5G3fATZU5nL1cgOIga7TPdthQlUmm6QyCvkFZWQ\n10XY6x6R3dhqgn8FQgjSRZVkXsHvdlDn91R044WumaLv9iHVT6hI9I1SgeQPvkBw/ZtxT51Xdj/j\nHXPf0O0U9m5GDsfwLV2Pe8rcEV3cHG8IIdB6L1DYuxm146Rp0S9Ze9OU5b4aejJO8tF/JvLgh3HW\nt1TUl5GOI1K9yM3TK8rpMIyhDemLytB+y24c8sjNDGuCfw0MQ5AsmK6eqN/c/7RcsRaGboq+y4NU\nP7Ei0Vc7T5P51feI/t7/HrGwxfGC0HVKp/ZT3LcFo5DDu3AV3nkrkH03Tw2dKxGaSunEXooHXsIo\n5vAtvh3P/BU33TabVyIMg9QT/4pnxuKKSzob6X5Eut8U+woWZ3MllYFcCa/LQaxCw9IqNcF/FVTd\nIJ4tIoSgIejFXaabZ3jTaMnpqdjSz255ElHKE7rrbWX3caOh9lygeOAFlDOHcU2eg3feclwTZ90U\nVr8QAq2vk9KRHZRO7sPZPAnfojXmTkw3wee3QmHfVkqnDxJ54A8q8tsb6Tgi3YfcMqPsaCrdMBjI\nllB0nfqgF59r9NbkaoJvASFM/34ir1DndxMq09oXho7RcxrJF0KuK3/R0VCKJL/3OUJ3v/2mic+3\nilHMUzq+h9LRnRj5DJ5ZS/HMWoKjsbJBdiyiJ+OUTu2ndHwvQi3hnbscz9xbb4rsWDvo2RTJR/6J\nyEMfxhlrLrsfkUtiDF40xb5Myz6vaMSzRYIeJ1G/Z1SqAlzOuBX83Z0JXLKM2ykTdDuIeF0E3NWL\nqb8aqm7Qly7gcsg0hLxlfVlC1zC6TyJFmiraRLp0cj/5Hc8Q/b0/uykyIstBi3dTOrGX0sl9IMAz\ncxHuqfNwtkwelxvKCyHQB3pQzh5BOX0APZPEM2MRnplLcLZPrT0H1yDz6x8gByMEVr+u7D5EMYfR\ndxa5eVpZhc+EECTzCpmSSmPQi889cla9EIKiZpAqqqRL2tBubeZObSsmxcan4D9zos/cek43yJQ0\nUkUNRTeI+V20hLy0hby0hb3E/OX73q+GIQQD2SIlzaA57CsrLlaoRYzuU8hNU8uu2S6EIPXov+Bb\nshbPTbSBdDkIIdD7L1I6fRDl7BGMbBL35Dm4Js7ENWHGmLaIjUIW9eIZ1I6TKOeOgiThnjoP97T5\nuNqnj8uBazTRBnpI/fir1L3rL8uOyhGagtF90iyTUEbpFMMQ9GUKGAKaw96ql3nJlDQ6UwW600V6\nMiX6cyUkJCI+J2GPC49TxuWQcMkyG2c0jk/Bv9p5Fd0gnlPoyRTpTpfoTBWQJJheH2BmfYAJUV9V\nplDDLp5kXqE57MPjsv/SiXwaY+ACcuvsssvOKh0nyD73BHXv/POar9YGeiaBcu4YaudJ1M7TSC4P\nrvapOFsm42qZjKO+5boIqRACIxVH7T6P1nMetfssRjqBs3UKrgkzcE+ZiyPWfMO5pkaS9C8extk8\nCf8tG8tqL4SB0X0KyR9Bjtp3B2m6QU+6gNfloD7gqVJhNkFfTuFkPMupeI5sSWNC1EdryEtLyENT\n0IPvGpo0bl06Vs4rhCCeUzg1kONEPEdR1VnUGmZhS5igp/IpVa5k+uOaQuVN0YxkD6KYNVf7y3wQ\nko99Gd+SdXhmLi6r/c2OEAJ9sAe16xxa73m07gvomQTOWBOO+hbzJ9KII1KPIxyrSvlmoanomQRG\nahA9FUcf7EEb6EEf6EFye3E2T8LVMhln6xScTRNuqizYaqIn+0k++mVi7/nrsn3uxuBFhFoyZ+M2\n31FVN+hJ5Ql5XUR8lWdUK5rBkb4M+7tTlDSDWQ1BZjQEaAtbdy/f0IJ/Jb2ZIvu60xzvzzK1zs/q\nyTHqA5XVLSkoGn2ZIo0hL36boi+EwOg5heQPI0fKW0wqnTlEYcczRH73IzXLr0oYShF9oBd9oBtt\nsAc9GcdID6KnE0gOB7I/aC68+wJmqK3LjeRymyUUhhEGQlXMTXMUxfQBF7IY+SxCKSIHIzjC9eZA\nUt+Mo74VZ6zlpk2IGgkyv3kMORAmsPLustqLQgYjfgG5bbbt7HZF0+lJF4j63IR9lWlMTtHYfiHB\nod4Mk6I+FrdGmFLnK+t9v6kEf5iSZrCvK8WuziTTYn5WT4kR8ZZfEbGkml9uOZa+0BSMruPILTPL\nSuAQwiDx3X8gdNfbruteo3qphJpIoqUzqOk0AO5YDFcsiiscviFcTkIIRDGPUcgi8lnzv2rJFHZV\nGaqnM4x0aSCQXG4kbwDZH0T2h8wCaTfI/dCzOZTBBEoigVFScIZDuCJhXJEIzsD1K9tgFPMkHv47\n6t75F2UNosLQMS4eM+th2dzgSNUNulN56vweQhXoSlHT2dmRZF9XinnNIW6bWEeoQs/ETSn4w5Qu\nu6FL26OsmFSHs8wst4Kq0Zcu0hLx2S7JYKT7EbmkGe5Vxqid3/M8eryb0GtHNy5fTaboe+Y5+n7z\nPMlde3GGguYLHw6bFUoTCZTBBEaxhH/KZIKzphOcMZ3wogVEFs7H4b+x9+69kTBUjcyx46T2HSB7\n8jTZk6fJnToDgLu+DlddHbLbhZbOoqbTqKkUodkzabxzI833vAZf2+jWPirs24LWe4HQ3e8oq70x\n0AnCQG6wV7pDNwy6knkiFVj2QggO92bYfGaA6fWmJyJcwcBxOTe14A+TLqr85lScZEHl3jlNtITK\nW80fzpxri/htZc2Zrp2TSMH6skI1jUKWxMN/T917PlFxfRArCCHo/MFjnP7y14itWkHTXRtpWLsa\nZ/DqlpReKJI7c5bsiVNkT54ite8gmRMnCU6bSvSWpcRW3UbdrctqA8AYwlA10gcOMbBtB8mde0gf\nPoq3vZXo0sWEZs8kOHMGgRnTcEWuXr3VUFQSO3bR9+wm+p55jubX3c2sj30UeZSSjBKPfJ7Aujfh\nnjDDdltRymP0nUFum2PLlWMIQU8qj8/lpC5Q3ppBuqjyqxP9FFSdu2c10lymFl2LmuAPIYTgWH+W\n507FWdYeYeWk8jYvSOZL5EoarVG/rYigSw9Z+9yyIkRST30Dz8wleOfearutHQxF5fjf/SPJvftZ\n/OV/wj9pQln96MUi6cNHSezcw+DL28kcPkZowVwabl9Nw7o1BGaWv5BdozyKXT3Et75IfMuLJHbt\nwT9xArGVt1G34hYiixfhCpdXh0fLZDn4sY9jFEss/OLf445Gq3zlV5xvoIf0f/0Hde/9uO3chEvr\nasGYLeNLCEF/tggCGkPesp7dY30Znj3Vzy3tUW6bWDciNXVqgn8F2ZLGU0d68Lpk3jCnBbfT/gPT\nny0iAY0hexarEb8ADldZWbjFY7spndhL5L73225rFUPTOPCnHwMhWPC5z1zToi8HLZcnuWsP8a0v\nEd/yIkLXaFh3O40b11G34lYcnrG77+x4Reg6qf2H6N+0hfjmrSiDCepvX0XD2jXEVt2GO1ZX1XOd\n+uJX6N/8Ard+9+sjKvq5bU8jlBLBdffbbitySYxUL3LrLFuinSooZIuqbUMPzJnBljMDnIhnuX9e\nS9Wt+supCf5V0A3Bs6f66UoXeWBBq+0FXUMIupI5on4PQY/1tpcWcNvn2o4KMIp5Et/6W2Lv/7QZ\nMTICnPjcF8mdOsPif/3iiE7NhRDkz54nvnkr/Zu2kjl+gtiK5TRuXEvDuttx14/dRKmxjpbLM/jS\nNvqf30p8y4t4GhrM+7phLeH5c0c8BPTk5/+Z9KGjLPvWV0dsBpf4wRcIrrvfdtkRIYT5/tW12dq4\nSNF0ulMF2qJ+24mYJc3g50d7UHTB/fNbrhk/Xy1qgn8NhBDsuZhiR0eC31nUToPN8M2SptOTKtAe\ntefPNwY6QZKQY+12L5nUE/+Gd+l6PNPm2277amRPnWH3e/6AVT99dMSn5FeiJJPEN79I/PmtDL68\nncC0qTRsXEvTHRvwT5tSc/28CsXePuKbttC/aQvJvQeILF5Aw4a1NG5Yi6+9bVSvReg6O972Hib/\n/ttpeX154ZKvhFk35/Om4WPTNWpkE4hMvxkxZ/GZMo07c5HWbkROQdV57EAXzSEPr5nROKJlkYep\nCf6rcLg3w5Yzcd6yuJ16vz3RT+RLlFSd5rD1mNlLVv6EebYf2Pyu32DkMgTXv8lWOysc+otPEpw+\njSkfeHfV+7aDoSgkdu6hf9MW+jdtxuHx0jBk+UeXLRm1RcGxjBCCzNHjxDe/QPz5reQvdNKwbjWN\nd6ynfs3KqrriymHgxW2c+NwXWfmTH1Q9PLV4dCfK2aOEX/cuW+2EEBjdJ5CjLbbKJyRyJRTdoMmm\n376o6Ty6v4tJUR/rp9WPmtFSqeBft7frP58/TcjrJOx3Mb0pxNTGwIjUk57fHEIIwaP7L/LWJe3U\n2Qi1ivrcXCzlySmaZdeO5HQj+cKIzABSpMnWtbomziT76x/aamOFwsUuBra+xJy//ljV+7aL7HZT\nv2Yl9WtWMvuv/w+ZI8fof34rp/7pX8h3dBJbeRsN61ZTf/tqPI2Vby05XtCyWQZf3nFpDcQZ8NOw\n7nZmfPTDRG9ZNqYGwtjqFchuN/Hnt9J4R+UbiF+O2nES18SZ9hsWs2Yehc+eKyddVGmP+m0JtqIZ\nPH6giwkR74iJvRCCzsE8J3syDObMfT1yRb3ifi09RZIk1QHfBO4C+oG/EkL84BrHTgX+BVgPFIFv\nCiH+4srjciWNnlSBRE7h33tP0ZMqMqM5yC1TY7xmfgvzJ0SqdiMXtITRDMHjB7p5+7IJ+C362SRJ\noiHopS9TwO92Wk9/Djdg9J9HhBttfQZn4wSMXAojn6nqzkZdP36KljfcizM0trJAJUkiPH8u4flz\nmf7hD1KKDzCw9SXiW1/ixOe+hG9CO/VrVhJbtYLo0kXI7pFZ27geCF0nc/Q4gy/vYOCl7aQPHSG6\ndBH1a1cz5X3vwj957G79KEkSk975Njof+0lVBV8Igdp5Cv9td9lua2TiSCHr75sQgoFciTq/va0I\nDSF48kg3jUEPG6c3VFXsz8dzPHu4h20n4xzrThP0OJnVEqIh5CXkc1aUBDaMJZeOJEnD4v5eYBnw\nc2CVEOLoFce5gKPAl4F/BwxglhDi0BXH/Q+XTq6kcbw7zcsn4zx7qIeipvPaBa387srJtNVVJ757\n85k43ekSv7OozZa/rS9dwOWUqfNbizS5NL2sa0WyYXEApJ78Ot75K/DMWGSr3TWvxTB48Z43s+hL\n/0B43pyq9DkaGKpGav8BBl7czuC2HeROnSGyZCHRW5ZSt3wZkYXzx9UAIHSdzIlTJHftIbFrD8md\ne3HXx4itvo3YqhXEbrt1XOUxaLk8L9z5elb97HE8DeWXCb8cPT1I8tF/Ifa+T9kSUqGpGF3HbLlR\n84rGYK5k27p/7lQ/A3mVBxe2VqWQY6ag8vjOC/xyXzeJnMId85tZO7uJeRPCxK6SCzDiPnxJkvxA\nApgnhDg99LeHgYtCiL+64tgPAO8QQrzisP9qPnwhBGf6sjy15yJP7u7kNQtaeO/66RULvyEETxzs\npjnoZt006+4CVTfoSuaYUBe0PFAY6TgUs8hNU2xdY37ns4hinsDa+2y1uxapg4c5/JefYtVPHxvX\ni6NqKk1i916Su/eS3LmH3JlzhObOJrJkEZGli4gsnD+mXEBqKk36yFFS+w6S2neA1IFDuOtj1N26\njOitS6lbfgveZnsuv7HGwf/zceqWL2PCWx6oSn+l43sonTpA+PXvttXOSPWBWrScVSuGFmqjfg8B\nG6UOjvdn2XwmzruWTcRbYTROpqDy/ZfO8aNt51kzq5EHl09k8aQ65FfRl9EQ/CXAC0KI4GV/+zNg\nvRDi/iuO/U/ABTQAy4GDwJ9YsfCvRTKv8L0XzvH4jgs8sHwiH7xjRkU3O6dofGd3B/fOaWZKnfVa\nIf2ZIg5ZuuqoezWErmF0HkGeON/W4q1y/jiFXb8h8uCHLLd5Jc7829fRsllmfeyjVelvrKBls6QO\nHia19wCpfQdIHz6K5HAQmjub0JxZ+KdOITBtCv4pk8tOOLKCXiiSP3+B3Nlz5M+eJ3P8BJmjJ1AT\nSUJzZhFZvNAckBYvrJolPFbo/tkv6fvVb1j85c9Xpb/s1qeQfQH8t95pq51+8RhyrN1yzZxcSSVZ\nUGiLWLfuU0WV7+3p5IEFrbSGK9v0/Ce7OvjKMydYP6eJ922YzsR663tqjMaibRBIX/G3NHC1uzsB\n2AC8EXgO+AjwpCRJs4UQWjkXGPW7+aPXzuKtqybzuZ8d4W1feZHPvmUx89rtb2QAEHA7uXdOM788\n1st7bp1kefCI+t1mbL7P/aqjMGDG4XuDiHwKKWg97tzZNAGt/yJCiKpY5AMvbmPahz9YcT9jDWcw\nSP2qFdSvWgGYVlupp5fM0eNkjp9k8OXtdDzyKPmz55GcTnztrXjb2/C2NOOuj+GO1eGK1eH0+3D4\nzB/J+dvXQRg6er6IXiigFwqoyRTKYAJ1cJBiTx/Frm4KF7vQMll8E9sJTJ2Cf+pkmu++ixkf+TD+\nSRNv+LLI9WtWcewz/4ChalVZVNb6OvEvtyf2QimCoYPX2vqUEIJkQSFqo9yxEIJfHOtl+cRoRWLf\nmyrwyccPklc0vv7+FcxoHjlD5FpY+ZaywJWO6AiQucqxBczZwK+Hfv+8JEkfB+ZiWvtl0xDy8Lm3\nLcZ1ujoAACAASURBVOWX+7v4o4d38b710/i91eXFcE+p8zOjIcjmswPcPcvatNrlkPG5nGRKKhGL\nkT6SP4LIp8CG4Jsle90YmUTFOzkZikLm2HGiS6qzHjCWkSQJb2sL3taW/7aQaBaBS1K42EWxq5ti\ndy9qIkGqoxNlMIGeL1wSdaHrl/Un4/B5kYcGBHc0iisW5f9n773j5Kru++/3vXf6zM7MVm1R7wUh\nCQkBQghBjB1cYuOGjeO4pDiJEzvNye+XOAmpz5PyJM8T+5fys7F/TmzjhhOMYxxsQKiAqEJCva+0\nTdumz9x6zvPH3QVZkeDemVlptZr367WvFcs9Z+60z/me7/mWUEsLiWVLiPb0EOnpItzeNiMqZ1ZD\nqDlNpHMWxaPHSK5aUdNcUkqc0QECbf7yCmQ5hxLzHuBh2A5SSl+l0PcO5hESNsyuPn9lx5Fh7n/o\nFT5wyzw+tmXhlEQkesHLsz4KBBRFWTTpwwfWAAcucu0+YJOXB77//vtf/ffWrVvZunWrl2Hcvaab\nNXPTfPrfXqQvU+Ezb13hyeK+kNsWtPCl588wVNA9F1tLRkOMFCokPTZBV2Ip5Hg/UghfoqC1dmGP\nDtYs+MUTp4jO7rmqDgPrjaIohFqaCbU0k1pd/4S2a53kyhUUDh2pWfBFKQ+q5js6TZZzvkqZ5CoW\nyYh3675iOew6Pc77ru+u+pD2u8+f5Z9+fIz/50M3sHaev3IX27ZtY9u2bVU97sXwGqXzdUACv4gb\npfMIsOkiUTpLgZeAnwG2AZ8GfhVYcb5Lpx6JVwXd4te/8gILOxL8wTuvqyrLbe9gjsPDRd5/fben\nD8DkYU9LPOy5br4zMBmt4/2DXNz+MGoiSeyG6tq6TTL4yA8YfWonq//2L2uap0GDS3H6gX/FHB1j\n6e/VdkZknj1G+dnHSL/3k57HvHpONvc6T0XWHCHoy5SY05zwbCRuOzGK6Qje7NETcCHfeKaXr+w8\nyb98fCNzffjqL0WtPnyvZucngRgwDHwV+GUp5SFFUeYoipJXFGU2gJTyKPCzuCGZ47i+/J+p1n//\nejRFgvzjR2/k7FiZP35oH0L4X0BWdyYpGDanMxVP1yuKQiISpGBYnh9DiTYh9Yt5vy6Nlm7HyYz4\nGnMxSidPE1+4oOZ5GjS4FPGF8ymdPFXzPE52BK253d8gvQiRhOeKmkXDdvNpPIp9wbB5ZSjPpnnV\n7bS/tusUX3v6FA/8wk11Eft64OmVklJmpJT3SCkTUsr5UspvTvz9rJQyKaXsO+/a/5BSLpFSpqWU\nd164C6gnsXCAf/i5DZwdL/Pl7Sd9j1cVhVvnt7D7zLjnMYlwgIppIzzuUJRIAqkXfd2Xlm5F5MZ8\njbkY5d6z0zqBp8HVT2z+XMq9Z2ueR+TG0FL+opikXkTxeFgLbnRO3EcxxOfPZriuyv7ZO44M8687\nT/GFn7+Jbh/RgFPNVX/aFA1p/M0H1vGN3b3sPj7qe/yy9gQFw6Y/583K11SVUECjYnrctITjYOpI\nId742snHSLbg5L0vQpdC7+snOsd/EbcGDbwS6e5CHzr3Ewfe1eDkx32fWbmC781yth2B5UjP1Swr\nlsOBc4WqDmr7x8vc/9Ar/N/3rqUzPb3Oz656wQfoSEX4i/et4Q+/s49s2fQ1VlUU1vekebE/53lM\nLBSg7FHwFVWFYBjMsvd7SjQjijmk9L5IXIzKwCCRrs6a5mjQ4PXQwmFCzWmMc7W5IEUhg9rk/UBT\nCgdsE0LeBLVs2sRCmufD2n2DeRa1xn33oHWE5Pe/vZePblnIuvnTrwz4jBB8gI2LWnnL6i7++vsH\nfY9d1dnE6fEyZcublRILBahYbniXF5RQDGl620EAKIEASjiKLPtzBZ2PYxjYhWKj9nyDKSc8qwN9\neLimOUQxh5rwkVtjViAY8ey/L5u250ALKSWvDOVZ2+0/1+drT58mqKl8aNN832MvBzNG8AE+eddS\nDvTl2HXUn7URCWgsbI1xeNjb4WpQU1FwSy54IhwDw7uFD6DGk4iS913HhZgjo9d0jHiDy0d4VntN\nFr4UDqJSRPXRtESaFRSP1r2UEt12iHpMDhvIux3vupr8dWkbyFT48lMn+ON7rqsqVPxyMKPUIBrS\n+PU3L+Mff3zMs/U9ybL2BMdGS56vjwQ1dI87AiUYQVq6r/tR40lEDRa+OTZOaIal8jeYnoRaWzHH\nqz9zknoZJRzzl5ls6hDylj9j2oKgqnoO3T42WmJZe8J3UucD207w7hvn+CqVcLmZUYIPcOfKWViO\nYMcRfxbH/OYY5woGFY8iHglq6LbHg6pQBCzD1yKkRhOIsr9wzvMxx8br2tO0QYNLEWppxhyrXvBF\nuYAa9Ve6W1o6StCb4Ou2Q9jjYa2UkqOjRZa0+bufgUyFxw8M8eHN0zsMesYJvqoqfOS2BXzjmV5f\n44KayuxUhDNZb772cEDDtL25dBRVA1UFx0f8fiSG0L3vOC7EyuUIpqurN9SggR+C6RRWtnr3o6iU\nUaI+rWLLAI+Cb9gO4YA3wc/qNraQdCT8ld7+znNnePu6HtI+u+pdbmac4AO8aVUnhwfz9Ppw0QDM\nbY5xOuPN1x7UVGxHeI7HJxB2P6QeUaNxpO79oPdCrFyBYKoh+A2mnmAqiZ2/sL6id6ReQo14j1WX\nwnG7W2nefPKmLQgHvEldb6bMvGa/HbAcHn6xj/fdNP1zXmak4IeDGm9d082jewd8jZuTitKf8+Zr\nVxSFoKZiebXyAyGkHws/HEX6POg9H7tQmHYdrhrMTAJNTViF6s+bpFFBCfuIV7dNCHirZyWlxHYE\nQY/FyvpzOnNS/ipiPn1slPntcea1TV/f/SQzUvAB3nRdJz/eP+RrTFs8RF63PLtqgprqPVInEATb\nh+CHIkjT+47gQuxiCS0+/T+ADa5+AvEYTql640SaBorHA1jA/R5p3lwnliPQVMWzxe6nmOIkjx84\nx13XeS/gdiWZsYJ//Zw02bJJ/7j3D6KmKrTGQwyXvAmtL8HXgv58+KGwW+u7SpxymcA1XCWzweVD\ni8exS9WfNwlTRwl5D4GUjuX2m/CA5UjP1r3lCPKGTVvcux9eCMnOI8PcsfLq6F42YwVfVRXWL2jh\nxdP+ogdaYyHGy96EWdMUbK9F29QAON5ryCmBENLylzV8Po5uoEUbgt9g6tEiEYRR/W4U20QJ+jjs\nFLZrQHnAEcJz7fnxikU6GvRVBvnEcJGmaJBZqavjuzZjBR/ghvkt7Dmd8TWmJRokU/EmtAFVxfFY\nI0fRAkjhQ/CDwZoEX+g6asRf4kiDBtWgRSI4leoDDKRlogR8CL7jgMeYfVtIz/H3mbJJc9R7cTWA\nPb3j3OCzxv2VZEYL/pLOJk4M+ztMaooEKBjehFlTFBzPFr7qtmLziKIFkT52BBciTBM1NL1DxBrM\nDJRQEGlV/1mVju3ZRQO43yPFm+A7QqJ5tNgLhk3SZ+2ck8MlFnde/laF1TKjBX9ua5yzY/58i4lQ\ngKLhTZhVVfEelqlo4KNiJlrAtWSqRJgWasiftdKgQTWowSDCrH43imN7DrEEQDquAeUBIb1b+EXT\nIe6j9SHAmdES86ZxZu2FzGjBb4mHKOi294NVIBJQMTwKraqA574rqurGDntEUTWkrF7wpePM+Cba\nDaYHSkBDes06vwhSCF+fVSml56Jp7rXe+91Gg/4kcbRg0FFDY/PLzYwWfFVVXBdNxXt0TEhTMbzG\n1rvtxjzOrICf+j6K4m9HcAHScdwM3wYNphhF1Xz1e/hvCAEeBRxwDSePIi6k50sxbEHIZ3PxXMUk\nFbt6dtIzWvABoqEAFdO79aGp3v3yCm6jX28X+7ravb6mvr/S3YI0aDDVqEptgo8PVZ643Pv1EgXv\ni4Pf3ti6JYiErh7DasYLvt9G834r5E0Z0+U+GjR4A6bNd+YKcTU9+xkv+PZEpp1XhA+fnz/726e1\nLn1aPXV4yAYNqkEKUbvo+93N+rrc+8V+b0NV8J6LMw2Y8YKfK1u+fGym492PJ/14TaScMj/lxXD9\nqrX1GW3QwAvSEeDT9/0TKP4CGvy4R91zNm/ThjQV00eAB0AqFiLnMVFzOjCjBX+y0XjEYy1scCvr\nhTSPFr6P3YBfi10KUVu3Kk11v4gNGkw1QtQUIKCoqr8zAEXx3O9ZAc+h06GAf8FPx4JkSjWEpF5m\nZrTgnx0v09Pir9RpyUcsrpDSexq2cPxZ+I7tlmOoEjUYRFpXj+XR4OpF2Daqx/aBF0XT/JUdUb3n\ntGiq4jl0Oh7SKPkI8ACY3RKjz0e9rivNjBb8U8P+kyKKpk0iXP8sPqQAH1aQ7+zDC6g5GaZBA4/U\nmtXtZpX7EFrFe9a6qigIj4rfFPKeZT/J/LY4p0aqLw19uZnRgr/vbIZVc/w1AclULNIRr4WZvGfx\nuRa7D8G3LbekcpWokUhD8BtcFoRuoIZrqNvks3Q4WsCz4Guqgu3R/ZOKBsj6yNkBWDk7xb6zWV9j\nriQzWvBfOpVh/fwWX2PGyyYtHtuU2UKgefX3C8efxW5b/ioIXoAWDuNUqi+v3KCBV5waC/UpwRDS\n9mGcqJpbMdMDAVXFcbxZ+C3REOMeCydOsmZuM4cH8ugee2FfaWas4A/ndAayFVb1eLfwpZSMlEzP\n9bBtIQl6PVh1LF/1QqRp1Cb4sShOufoKhg0aeMUpl2sqxa0EQ0gf7T/9FBYMaCqWR39/PKSBhKIP\nt048HGB5d5LnT455HnMlmbGC/8TBc2xZ3kHQYy9LcIsnSYnninmWj9Zpfrr0AEhT99cF6AK0eAy7\nXH1TigYNvOKUygQS1RcQc7u7+diNat5dQJNNiryUQFEUhVlNEYYK/mr7v2lVJ4/77K53pZixgv+D\nvf28+bpOX2MG8jpdTWHPvTJN27vgS8dE8eGTFzUKfqApgV1Dn9EGDbxil0oEaminqYQiCMPHbjQQ\ndPvaekBTFRS8l0vpSobpz/vbGf/UqllsOzT8ahj4dGZGCv7B/hwjBYNNS9t9jevNlJnbHPN07eQH\nyPOhrWVCwEcbN72MGq3+SxRMJrHzharHN2jgFSuXJ5Csvia8GokhdR8iqwVBOp4TC8M+4uvnpWOc\nyfoT/FmpKGvnNfPo3kFf464EM1LwH3yml/dunOurpIKUktOZMvPS3nyRpiMIBVTPuwEcE3x09ZF6\nCSXsbfG5GMFUEiuXr3p8gwZesXI5gil/0XDno0TiSN27+1FRFNd48uj3DwU0DI/lm7uTEcbLJmWf\nh7Dvv3ku33im13MI6JVixgn+mbESO48M8/6Nc32NG5nIlvN6YKtbDpGAxzBL2wAt6CtzVpSLqLGE\n5+svJNjcjDnur59vgwbVYI1nCbVW3+ZPjSUQFX/nTUow4vmgNxzQMDwKuKYqzG+OccJn46RbFrcR\n0BSePHTO17jLzYwT/H9+/BgfuHkeTT57Ux4dLbKkLeE5K1e3HO8lG0wdgv788aJSm+CHWlswxxqC\n32DqMcfHCbX4C38+HzWaQJQLPnpLAKEIWN5cL5Ggim47nudf0pbgqM9kKkVR+MSdi/mnHx/z1XDp\ncjOjBH/H4WFeOZvlw5sX+BonpeTguQIrOrwJrBAS03EIexR8aVZQQv7C1kQpjxpL+hpzPuH2NoyR\n0arHN2jgFWN4lHBHW9XjlWAIRQsgfRzcKsEI0vR2vaaqBFXvjY0Wt8bpz+uUfB7CblnewaxUhC89\ndcLXuMvJjBH8XNnkzx/ezx/fs5qYz0bEZ7IVgprKrIS3Q9WKZRMOaJ7r6Eiz7MsfL6VAFHOoier9\nooFkE9K2sUtXT52PBlcnxvAw4Y6OmuZQEylEMed9QDgGRsWz1e42QvIm4KGAypLWOAfO+Qt6UBSF\nP7rnOr7xTC9HBqbn+ZknwVcUpVlRlH9XFKWoKMopRVE+6GHM44qiCMVr88kaEELyh9/Zx12ru9iw\nsNX3+Bf7sqzrTnl255RNh5jHAmtSSjDKEPIh+OUiSijiK4zzQhRFIdI5C33w6ogPbnB1IqVEHzpH\neFatgp9GFDLeB2gT3w2P4ZnRkEbZh8W+tjvFnv6c53DOSWalovzO21bwe998mYI+/YoXehXjfwR0\noB34WeCfFEVZcamLFUW5DwhwmVpwPPDUCQq6zaffssz32JGSwWDBYNUsb2FlUkrKpu29u71lgKr5\nEm8nn0FLVe8TnSQ6uwe9f6DmeRo0uBTm6BiBeJxAvPqIMgAt2YKT937mpCgKROJIw9vhaiSg4Qjp\n2b/elYyQigQ5XEVhtLet7eHGhS3c/9Ar/s4lLgNvKPiKosSAdwOflVJWpJS7gIeBD1/i+iTwR8Bn\n6nmjl+K7z5/loefP8lcfWOs96/U8dvdmWN+T8jy2YjkENYWA14Qro4gS9hdP7+THUJN1EPw5symf\nOVvzPA0aXIrymbNEZ/fUPI/qU/ABlEgCPIZzKopCLBygaHi3um+a28zuM+Oe6+mfz2fetoKxosFf\nPXJwWoVqelGtpYAlpTz/JGIvsOoS1/8l7o5gyuOTvrm7ly9sO86/fHwjHUn/WannCgZncxVumJ32\nPKaoWyTC3q11WSlA1F9SipMZQUv7Sxq7GPEF8ymdPF3zPA0aXIrSiVPEFs6veR6tuR2RHfE1Rokk\nkLp3P3tTOEhRtzxb3fObo8SCGgeG/CcwhgIan/vIBg4P5vnzh/dPG9H3IvgJ4MITiDzw31RMUZQN\nwCbgc7Xf2qWRUvLAthP8685TfPHnb2Jem/+MVCklT50c5ea5zZ5bGjpCULFs4h4FX0oJehEl4lPw\ns8P1EfxF8ymdOFXzPA0aXIrSydPEF/qLirsYWrodJ+NP8AlGQArP8fiTiZJeK1sqisKWBa3s6h33\n3QkLoCkS5H999EbOjJX5g2/vxfSY/DWVeHFEF4EL4wNTwE8se4p74vm/gE9LKaUyRa3s8xWLv3h4\nP2dGy3z5l26uyrIHODpaomQ5rO32HglT0C1ioaD3DF69CIGQ78NXZ2yIwA13+BpzMRJLl1A8eqz2\ndokzCKdcwRgbwxrPYI5ncMoVnEoFR9eR530hFVVBjUTQYlG0WIxQKkWwtZlQSwuBJu/5GjOd4uGj\ntN22qeZ5tHQbTiGDtC3P3xdFUVCiKWQ5h5J640NjRVFIRoLkdYuoxzO4nlSU2akIz/SOc/tC/6Gn\n8XCAz39kA5/99l5+/gvP8hfvX8Ncn02Z6omXZ30UCCiKsug8t84a4MAF1yWB9cA3J8Rew20p2aco\nyvsmfP+vcv/997/6761bt7J169Y3vJHdx0f5k+++wtaVs/iT91zvq1ft+VQsh8ePj/AzKzu9h1ZK\nSV636Ex6j6eX5RxKzF9opXRsnOwoWsssX+MuRqilmWAqSenkKRKLF9U839WAlBJzbJzyqdOUTvVS\nPtVLpX+ASv8A+sAgwjQJtbYSak4TbE4TiMdQo1G0aBQ18NrXQQoHp6K7P+UyVjaHOZ7BHB9HOg7R\nri4iPV1Ee7qJzZ9LfMF8YgvmEenqvGYWV2HZ5A8eJrnqkvEbnlG0gCv64+cIdMz2Pi6WQuTOgQfB\nB0hEgmTKpq9Kt1sXtfGVF86yvD3BrCb/BmYkqPHXH1jHN3b38pF/foZfu2sp92yYg+rBcNy2bRvb\ntm3z/ZiXQvFYNvTruBE3vwjcADwCbJJSHrrguvNf9bnAc0A3MCqltM+7Tvo5vT4zVuJfHj/Ont4M\nf/DOVdzqsyja+Ugp+Y8DQ6SjQe5Y5H3FzldMyqZNZ8pbNIKUEtF3AHXWYl9VL+3hPgqPPUjzz9bn\nzPvgH/05icULmftz99VlvumGMTJKds8+CgcOUjh0hMLhowjLJr5wPvGF84nNn0d0dg/R2d1Ee7oJ\npJI1W+d2qYQ+MEilf5DK2T7Kp89QOnWa8qle7HKZpmVLaVqxlKaVK0ivvZ7o3NkzckeQeeEljv7V\n33PTt/+tLvMVHvs6wZ5FRFbd5HmMlAJx9gBq9zIUj7WqxksGQkjafIj3oeECu06P83Pr53h2AV+M\n4+cK3P/QK4SDKp96yzLWzPVXkkJRFKSUVX+YvAp+M/Al4C5gFPg9KeU3FUWZg2vpr5RS9l0wZh5w\nEgjKC1rMexX80yNFvvTUSXYcGeYDN8/jw5sX+E6qupCX+rPsHyrwoXWzPbtmpJSczZToaIp63lXI\nSgGRGUDr9hcqqu/fjTV4iqa73jDVwRPDP3qCvm99lxu+8Pm6zHclkVJSPt1L5vmXyL7wEtmXX8Ep\nlkitXU3yupU0LV9K04plhDtnXTGBNTNZCoePUDh0lPz+g+T27kMYJqm119O84Qaab7yBxLIlP7Gb\nuFo5/vefB1Vj8ad/pS7zVV7egZM5R+KO9/oaJ0bPQjCEmvK2K3aEpC9TpDsd9xXZ9+hhNw7l7uW1\n7b4dIXn4xT6+uO0E89pi/OIdi1k3r9nTZ/ayCH69eT3BH8iU+fGBczx+YIizY2XuvXku990y33dt\nnIvRl6vw8IEh7lvbQ7PHNoYAuYpJxYd1DyBGTkM4jpr0txsp/PgbBDrmEL3+Vl/jLoVdKrHzp97O\nph/+O6G092ik6YI+MMTY7ucYf/pZMs+9gBIM0rxhHc03rid9w1pi8+dOexeKPjhE9uV9ry5U+rlh\nmtevo+XmG2m5ZSPxxYuuuh2AlJKn3/oervurPyN1/aUC9vxhDfVSfOI7NN/32/7uRS8iRs+i9iz3\n/DpmSga2ELQ3eXfRmo7gqy+d5YaetK+zv0th2YJH9vTzf3acJKAq/NSqTt60qpOlXU2XfB61Cv4V\nMzP6x8vkKxbZssmxc0UOD+Q4PJAnUzK5Y+UsfumOxWxc2OqrY9XrkalYfO/gEHcv6/Al9o6QZMsm\nXSkfvnvHRpbzqC3efZGTWP2niK693fe4SxGIx2ndvIlzj/6IOR98X93mnSqEaZJ5cQ9j259mdMcu\nrGyOlps30nLLRhb/5ieJ9nRf6Vv0TaSrk86uTjrvfjMA5niGzPMvMv70s5z56jcRpknbbZtove1W\nWjdtJJCovmje5SK/b797CLp6Zd3mDLT3IHJjCKOCGvZReyocB0UBowQRb69dKhqiL1PCsB3CHqve\nhjSVe1Z18fWX+0lHg8z32DvjUgQDKu++cQ7vWj+b/X1ZHj9wjt/6+ks4QrKyO8Xy7iTLuppoawqT\niARJ1sHovWIW/t1//STJaIBUNMTCWQlWdCdZ3p1kYXvCc1KTV/K6xTf29rNxTrPvlXm06LZea0t4\n9/eJ7DmwdNT2eb4eyynmyH7tb2j5pT+lnhUpxnY+w7G/+xw3PfS1aWlJ6ueGGdu+i9Htuxh/7gXi\nCxfQtuVW2m7bRNPK5dPegq+Vcu8ZRnc8zehTu8i9vI/kqhW03X4rbVs2E1s4f1q+Zwc++6fE5s5h\nwS99rK7z5r77T0TX3U5ogb+FRORHkHoRrcN7iGhBNynoFl2pmK/X+Gy2wvcODvGuVZ30+DAEvSCl\n5MxYmSODeQ4N5Dk66BrBBd2iqNts++xdM8ulU28Khs039vaztivJjXP8HZDols1wQacnHffh7xeI\nvkOosxb6rpCpH3oB8+R+km/7qK9xb3hPQrD73fex5Lc/VZcQuprvR0qKR44x8sRTjDy5nUrfAK23\n3kzb1s203noLoearz/VUL5yKzvizzzP61E5Gt+9EDYZov2ML7XduIbVuzbTw/etD59h9z33c+uh3\nCaZrd22cT/n5HyMqRRJb3uVrnBQOou8gatdSlKC3IohSSgZzFeJh1/D0w6nxEj84PMy7r+uiq8rQ\n8GqYcT78epLTLb69b4DVnUlu8nkaLqRkIFuiORb2nGgFIApjyFIGrXOx39ul8NjXCXTOJ3p9/UV5\n8PuP0vfgt9nw1QeuiMUoTIvMCy8x8uR2RrftQFEV2u64nfY7byd9w/QQsumGlJLi4aOMPLmd4ce3\nYQydo3XLrbRv3ULrrTddMdfP4T//a9RQkKW/+5t1n9sa6qX4429VFaUmxgdACtRW765U03YYzFXo\nTsd8l2Y5MVbih0eGeeeqTmbX2dK/FA3BvwR9OXfbddOcZtb7KJ0wyUhBB6SvQx0pBaL/MGrbXLfO\nhw+kEIx/8X7SH/gNtDrU0flv8zsOz33go/S8553M/oC/KIhqsbI5RnfsYnTbDsaefpb4gvm03XEb\n7VtvuyoPKq80+sAQI0/tYHTbDrJ79pFas5r2O26jfesWIt2dl+Uesnv2svdTn+GW731rSnZiUgjG\nH/gT0vd+2vf3QDqW+/3zEaIJblBGyfDv2oHXLP3bF7ZyXWf1/Su80hD8i/DKYJ7tp8a4e1kHC6vI\naisZFuMlg5503FNyxCQiP4os59A6/Sc5WYOnKD7xEM0f+h3fY71SOt3Lix/5BMv+4HeZ9eY76z7/\npKtmdMcuxnY8Q+HIUVo2bqDtji20bbmVcJv/0tUNLo5dKjG261lGt21ndPsuwu3ttN52C223bya1\nZvWU7JgKh46w5xOfYuVf/BFtt9Uniuyij/OjB91ItTWbfY8VmQFwHNS2OZ7HSCk5l68QCmi0xL25\ng85ntGTy3f0DLG1LsGVhq+dkzmpoCP556LbDE8dHGSzovGtlF60e+9Oez+QWrzMZ9dzRCiZ8iP2H\nUDsWVtV8vLj9P1BCUeI3v8X3WD/kDx5m76//Nj3vezcLPvHxmq1sY3SMzO7nGXvmWcafeQ41FKRt\ny2Zab7uF5hvXo0Uun3/zWkU6Drl9+xnd/jRjO5+m0jdA88b1tG66iZabN9Yl8evcY09w+E//L5b/\n0f+cEmPhfIyT+6m89BTp937S91jp2K6V37nI1xmaIwT92TKtcX8u3EnKlsP3Dw3hCMndy2aRrkNE\nzcVoCP4EJ8dKPHZshEWtMW5f2FZVNpwjBAPZMs3xsK+KmABivB+Eg9rmr3k6uNvYzJf/jOS7f4VA\nc22NJLxgDI+w91OfIdTSzJwPf4DmDetRg29sEUrHoXzmLLmXXyG7Zy/ZPXsxR8dovnE9LbdsF9+T\nUQAAIABJREFUpHXTTUTnzmm4aq4wxsgo47ufY/zp5xh75lkUTSW9bg3pdWtJ3bCGxKIFqKE3Noak\nlBQOHqb/oYcZfWonaz73tyRXLp/y+5e2zfiX/oT0B38Lrcl/c3SRH0GWc6iz/LkNDdthKFehMxX1\nHKr5E48rJS/0ZXnubIZN81p8NVXyyjUv+JmKxY5TYwwVdN6ytIN5VcbGCiEZzJWJhQI0+9zWSbOC\nGDox4Tv0v7Kbpw9R3v1fpD/wG77HVotjGPR/67sMPfKoaxHefCPxRQsIppIEk0mklFiZDOZYBmNk\nhNKJU5ROnSbU0kLq+lWviceSRY0D12mMlJLKmbNkX3IX6NyefVT6B4j2dBNfsohIZwehlhaCLc1o\noRBWPo+VL2AMjzC2fRdKMMisn76LuT97L6HW+p8tXYriE99BTaSIbbzL91gpJWLgCEqqAzXh755L\nhsVYyaAr5f8Qd5KxsskPjwwjpeTOxe101zGK55oV/KJh83TvOEdHitzQk+bGOemq3yAx4cMLaiqt\n8bCvVVlKiRg8itLUhtpUnY86/8gDhBZe56uGSD3RB4cYf/YFKmf7sPIF7LxbDdsVgjThtlbiixYS\nX7Sw5s5G0xHp2EjLBHFeBRBFQQmGQAvMuB2LME1Kp3opHTuBPjziVg7NZBCGQSCZJJhKEmpOX9Es\nYHu4j/z3v0zzR/+gqjwMaZQR50662beaP4Mkr5vkyiZdqVjVOUFSSvYPFdjVO86sRJjN81to99gz\n+/W45gR/qKCzdyDP0dHiq+GW0SqrZsJrYq8pCu1NEd8fbpEdQupF39vHSZzcGNlv/r+0fOyznuOH\nG3hDOg5OdgQnO4rIj+PkxxHFLKJcQFSKyErp1VrqSiAE6nmfIymQtgXCQQmGUSIx1GgCNZZAjadQ\nky1oqVa0VAta8yx3cWhQV7Lf+gei6+8gvGh1VePF+ADSNlDb/SevZcsGBd2iswZLH8AWgpcH8jx7\nJkN3MsLa7iTzm/1HA01yTQh+0bQ5Plpi32CeiuWwpivJ6q6k976yl8ARknP5MkFNoy3hz7IHkHoJ\nMXwKtXuprzCw8yk++RBKOEp801urGt/ARdoW9kg/9lAv9rmz2GODONlR1KY0WrodLdmClmxFbUqj\nxhIosSbUSBwlFH5dC1AKB2mZyEoJUSm6i0Ux5y4e+XGc3ChOZgQ1kSbQ2kmgYzaBznkEZs3xVx6g\nwX/DOL6PyotPknr/p6oSSCkFYvAYSlMrapP/Wva5ikmuYtKZjBKqwqd/PqYjODRc4OWBPIbtsLoz\nybL2BC0+yrzADBV80xGcKxj05SqcGCsxXrFY0Bxj1awm5rfE6hL2ZDuCoXyFaNANxfIt9o6NGDiC\n2tKDEq8uHlmU8mS++tc0f/j3UGP+umJd60jLxBo8jdV3HKv/BPbIAFpzO8EJsQ20daO1zKrqTMX3\nvTiOK/yjA9jDfVhDvdgj/WjJVoKzFxGcvZhgzyLUyMxzh00lUggyX/0rEne8j9Ac/4mMANLUEUPH\n3B14FdFzBd0iUzLoSHqvlPu69yMlQwWDV4byHB8rEQ6oLGqJMzcdpTMZIfYGj3HVCv65go7lCExH\nUDBscrpNTrcYKZnkKhZt8RDdyQgLW+LMSUe9d5nyQMWyGSnopCIhktGgf7GXEjF0HCUSR22uvphX\ncdt3QdVIbHln1XNcSzj5ccxTBzFPH8IeOIXW1uWK6exFBDvnTyu3inQc7JE+rL4TWH3HsQdPo7V2\nElqwitCClWitnTPubGAq0A+9gL7/GVLv/bWqXy9ZyiLG+92duFZFyKXp6kVLPExTpH4GxKT4nxgv\n0Z/TGSoYRIMqsxJhUpEgqUiQZCRAOKASVFWCmkJrPHx1Cv6Xnu8lqCoENZVkOEAyEiQVCdAaC9GR\nCNdV4CeZ7FqVLZu0N0WIVeESklIix/uQtoXasaDqD6GTHyf7jb+n+Wd/t2Hdvw5Obgzj+F7MY3tx\n8uOE5q8gtGAVwblLryqXibRtrP4TmKcPYp46CCiEl6whvGQNWntPQ/wvgRSC7Nf/lvitb/ddUO18\nRGbQPWvrXFRVYULTdhgu6EQmPAJTkVwlpWS8bDFcMsjrNlndIq/bmI7AcgS2kPziTfOvTsG/3I9r\nC8FYUccWko6maPURPdlzyFIGtWsJilr9Fi//yJcIzJpTVdjZTEcYFcxjL6MffB4nO0p48WpCS9YQ\n7FlU02s+XZBS4oz0Yxx7GePYXhRNI7z8RsIrNqAl6luMbCZgnj5E8al/p/lDn6naRSelRIycRkFB\naZ9X1QIrhGSkqGM7gvamSM1+/Wq4al06l+txpZSUDJuxkkFTJEhzLFS1NSUKo8jcMGrnkpp8w8bJ\n/ZR3fZ/0B38HpRHDDrjvkz14Cv2V3ZinDhCcs4TIyo0E5y5D0a5+kb8UUkrsoV70g89jHt9LoHMe\nketuJrRg5YxY3OpF/j//D1prJ/Gbf7rqOaQQiOGTKIEwSmt12cdSSoqGxXjJJBkNko5WryfV0BD8\n18FyXrPq2xMRX6USLkTkR5G5c6idi2sKnxR6mezX/pbEm++r+iBqJiFtC+PIS1T27kTaJtHVmwgv\nX48anf5NQOqNtEyM4/vQX3kaUcwRWb2JyKqbUGPX3mtxIU4hS/bBvyN1zycItPdUPY8UDmLoBEo4\nitJSfckJ2xGMTmhLayJM1EOmej1oCP5FcIQgUzYpGTapaIhUFQez5yPyI8j8iHvSX2OsfP6H/4Ya\nbSJxu7963zMNUSmi73uayr5dBGbNJbpmM8G5S+ra+OVqxh7uo7JvJ+aJ/YSXriO67na0tP/QwpmE\nfugFKi89Sfre36xpZyyFgzh30s2vaK2+FIiUkpJpM14yCAc0mmNhQnXq0HcpGoJ/Ho4Q5CsWed0k\nEQ6SjoXQauiWJKVEZodcn33n4qpj7SfRDz5H5cUnSX/wty5LuOB0RJTylF98EuPQ84QWrSZ6w1YC\nLbU1hZ7JiHKByt6d6K88TXDuUmIb33zNvl5SSgo/+ApqPEli67trm0s4iOFToGqobfNq6qompCRf\ncaMLYyG3mcpUCX9D8AHTFuR1t6Z1PBwkFQ3VlB0Hrr9Pjp5BOqYbjVNFONf5WENnyD/yAKn3/Oo1\n+YUVlSKVF59EP/As4eUbiK6/o3FA6QNh6uj7dlHZs53Q3GXEbnrzNWnxC6NC7pv/H9ENdxJZubGm\nuaQUyNGzSMtwv+M1GmGOcIU/r1tEghqpaJBwQKurj/+aFXwh3O1UUbcwHUFyoslvLRb9JNK2ECOn\nULQQStvcmnuqOoUsuW//A/Hb76k6TfxqRdoWlT1PUdnzFOEla4hueBNa05VpYSilANsE20I6Fjg2\nCMf9kQLO/0wqCigqqCoomltTJxAELQiB0BU7UBWGjv7ydip7dxBevIbYzW+55sJ67bEhcg/9I8l3\nfIxgl/cethdDSonMnUMWxlzRryI560KElBR1i1zFRFEUmsJB4pEAgTpo0zUl+I4QlE2HimlTsWwi\nQY1EOEgsVL8CV7KSR4yeQWlqQ0nNqnleYVTIfefzhJevJ7Z+auuITyeklBhH91B++gcEOuYQv/Vt\nl80ilVKCY4FRRhplpKWDpYNtwYRovyreqjYh7Jor8q9N4i4CwnGLqjmTi4TlLhpqAIJhlGAEwjGU\nUMz978sUsSH0MuXnfoRx+AWi6+8gumbLNRXxZZ4+TOHH3yD17l+py45ZlrKIsbMo6S6Upta6vI9S\nSnTLoWhYlE2bUEAjFgoQCwWq9kDMaMG3hcCwHAzbQbccTEcQDQYmXjStLtb8JFIKZGbCX982FyVa\nu9UkLYPcw18k0NFD/LZ3XjPJNfbIAMUnvwPCIX7bzxDs8d8BzC/SMpB6ESoF9ze4QhyOuaIcjEAw\nVJdDYSmlK/qW4S4mRhlplt0dQySOEmlyPz9B/8X4/OJkRijtfAR7bIjE1nsIzV8xpY83ndAPvUB5\n9w9JvfeTVdXNvxBp6Yjh0xAMo7bO8V1l8/UQUlIxbcqmTdl00FSFSFAjEtAIBzUCquLps3LVCr5l\nO0gmklDEaz+WEFi2W3IBJOGJFyQS0IgE6+sPm0QaZcTYWdCCqG1zavbXg+tzzX/vAbRUC4k33XtN\nRJ9I26L87GPoB58jfsvdhFdtnLLnLaUEs4IsZ5GlHEgHJdIEkYTbTzhweeOjwa2vhF5E6gVkpeje\nUyyFEku79zWF92P2HqH45EMEOueQ2PKua8bNU9njurdS9/wyWqr2FppSCGRmwG2g0jobJVb/cyYp\nJaYt0G0Hw3LQbQchJSFNJTjxo6kqmqqgqQqqoqDgbkADmnZ1Cn7vWGHiSSivPjFNUQho6qtPXPO4\n6lWLFMKNwimOozR3oSRa6vJ4wqiQf/gLaK1dJO58zzUh9lb/SQo//iaBjh5XcOJT09BZWgayOI4s\njoOiosQnBDUUnXY7KGkZry1ItoESS6MkWtydx1QYLpZJ+dn/Qj/0AvHN7yC8fP20e02mgsrenVRe\n2kbqXZ9Aa26vy5yyUnBdPKEYSkvPlEfVOUJiOa4Xw3YkjnBLKThCuucMuF7G+W1NV6fgX4nHnURK\nCeUcYrwfJRJ339A6WPXg1sjJP/xFgvOWEb/tHTNe7KXjUH7uMfQDz5K4472EF11X/8eQElnKIguj\nYBkoiWZ3cfbRs/RKI20TWcxMLFSK6ydOtEzJ4a893EfhsQfRWjtJ3Pneq6rmULXoB5+j9PQPSL71\n5wh2L6zLnFIIZG4IWRhzz/OSbVf8+3zVunSulOBLvYTI9IMQbmnjOvjqJ7GGzlD4zy8TXX8n0bW3\n1W3e6YqTG6Pww6+iRGI03fWBursRpGMji2PI/KjrV21qg1j9+4ReTqSUYJSQ+VGkXnBFv6mt7s1v\npG1R2vkI5qmDNL3lQwS7a4tmuRowe49QeOzrJLa8k/CyG+o2rzR1VzMsw/UExNJX7DPYEHyPSKOE\nyJ4Ds+K+afHmur5p+sHnKO38Pok33Ut44aq6zTtdMXsPU3jsQWLr7ySy7ra6Wj7SsZH5EWRhFCWa\nREm21yVcbrohbdMV/uKY6+tPzaq78BsnD1B8/FvENr6JyPWbr+rF0gv26CD5Rx4gvHQtsVvurusO\nSlYKiMwAoKCmZ0E0edlfz4bgvw5SStCLiNw5d3VOdaAkWmuOq/+Jx7Atitu+iz14mqa3foRAa2fd\n5p6OSCmp7NlG5aWnSN79cwR76rN9honuUhNlLKZKAKcjP7HAxdIo6Vk1Z3Wfj5MbI//9LxOYNYfE\n1vfM+PBNUS5SeOxrSMch+dM/W9fzpFfdwblzIKWrKXU2Hl+PhuBfBCkc92CvMOY+3hS9KfbYIIX/\n+hpayyya7nw/Smhmi5N0HIpPfht7ZIDk2z9Wl1A4mPTRZ5CZQZRIAiXdeU0I/YVIx0bmhl2LP9mO\nkuyom3EiTYPCjx5ElAsk3/HzM777lhSCyvM/Qt+/m8RP3Uto/vL6zi8l6AVEbtg1JifPZOq4UF+M\nhuBPMPkGyFIWWc65sdBNrVMSDieFoPLSNiovbSO+6a2EV90047fK0jLJP/qvACTv/nDdBFmaFcRY\nH0iB2jIbJRKvy7xXM9IyXNeBWXFfk1h9LFQpBeWd38fsPUzynb90xTKeLyfm2WMUf/xNQvOWEdv8\nDtRQpO6PIc0KsjCGLGUgHHeDCqKpunoSJrmmBV8KAUYRWc4jS1kIBF1LPt48ZWFU9tgQxce/hRII\nknjTvWjJlil5nOmEMCrkv/dFtFQbiZ96f13q00spkFk3pV1p7nRdbVMZgisltpCYtoMtJLbzWtib\nkO7PT1RWAFRVQVVAnQgXDqju7+BE6PBUL/KykkeM9aGEJyPJ6uOKKb/4JPq+XXUNY5zOCKNCacf3\nsPqOk7jzfYTmLp2Sx5HCcQ3OUhaM0kQORgqiTXU7S7imBP/VZBujhKwUQC+68dfRJEo8PaVuAGka\nlJ//EfqB54jd/BYiq2+54iFalwNh6uT/438T6JhN/PZ31SdT1awgRs+4iW6tc6ZkcRYTae0V08aw\nBabjoCnKq4ktkwKuTuR/qIry3yoruAuB+9tdIASWI912c44gGFAJTyQERoP1zfx+9T6Eg8wMTiQC\nzambta/v3035uR+Res+v1iVh6WrAPH3ITU7rmkd8889MafE+6VjIUg5ZyYFecnMvIk3uDjYUq9r6\nn7GCL4UA20CaFTB197dRcq34cNx11USTdU1/vuh9SIl5bC+lnd8jOHsx8VvfPmVJRdMNaVvkH/4C\narqNxJ3vrVnspZTu1jc7iNLcXbdEt0ksR1A2bEqmjek4hAOuEIcDGqGAVtc+yWIiW3Ky7Idu2QRU\nlWgoQDwcqPsOQFYKbo2neNqNMqvDwlvZt8tNWHrPJ68J9w5MJKe98Dj6K08T3XAn0TW3Tb2GCOG6\nm/WiW/bDMlxDNRSd+O2W/vCyC7gsgq8oSjPwJeAuYAT4fSnlgxe57ueATwFLgBzwIPA/pZTiguuk\nkx+9oECVA47tFqiyDXAct/ZJ8LwXJRyf8jfnfKz+E5R2/SfStkjcfk9dI1KmO1IKCj/8KigKTW/+\nUM3+SCkEcuws0qygdsx369vUASHclnNFw8JyJLEJwY0EtSlpNH0ppJQYtqBsWpQMG0WBeDhIUzhI\noMZS3a8+hmO7OyPhoLbPr8vOqPzCExhH95B+76/N+KCD83GyIxS3P4wzPkx8092Elqy5bDt2KZyJ\n+ksV12Nh6e4ioCgQCE1UYw2AFnituJ+igKKgNbVeFsGfFPePAzcA/wncIqU8dMF1nwD2A88C7cAj\nwLeklH99wXXSGekF3Cfx6hPTAm7GayDkVjS8Qgeh9uggpad/gDM2SOyWuwkvW3dNuG/Op7T7v7DO\nHCH17l+pWVikbSKGT73WYagO/kzTdsjrFiXDIhIM0BQJEp2iWkt+mayVUjBeu79kJFiXWlA/Wc53\nvrvbrXG+4uPfQlZKNL39o9fc59w8e5zy099HCkF809sIzl16RT5DUkrX6LUNt3y3sF8r3z1ZultK\ntI75Uyv4iqLEgAywUkp5YuJvXwH6pZS//wZjfxPYKqV85wV/v6KlFS6FPdxH+fnHsQZPuQlFqzfN\n+Jjli2GceIXS9odJ3/vpmrNnpVlx28kl29wwwxq/TIbtkC2bGLZDU6S+FvRUMLkDyesWigLNsXBd\nFiZZziFGz7iVXWss8CUdm9y//wvB2YtqahJ+tSKlxDy+j/Izj6JE48RufBPBecunhfFwIVPu0lEU\nZS2wU0qZOO9vvwXcfqGQX2TsvwOHLlwYppPgSymxB05SfvFJnJF+ojdsJXLdzddkHDi4STrZb/0D\nyXd8nGDnvJrmknoRMXwapaUHNVFbzL5pO2QmhD4VDdEUCV5Wl02tSCkpmzaZsok6Kfyh2owJaZQR\nwydR0l2oTbUdvIpygeyDf0firg9OWRTLdEcKgXl8L+XnfowSCBBdfyehRdddsWY3F+NyCP5mXLdM\n93l/+wXgPinlJTt6KIryceB+YK2UcvyC/3fFBV86Nsaxvegv70CYFaLrbiey4sZrttcsuB/43Lc/\nR3jJWqI33F7bXJU8YuQMavtclGj1h9xCSDJlg6Jhk45dfUJ/IZONrzMlg1BAoyUerqkdp7R0xNAJ\nlGQ7aqqjpnszzx6n+NjXSH/wt1FjiTceMEORUmCePEDlpW2IUp7o9ZsJr9o4LYrQ1Sr4XkyMInDh\nNzYFFF7npt4F/AXwUxeK/ST333//q//eunUrW7du9XArteNkR9D370Y/9AKB1k6iG99EaMHKa853\neTH0vTtQgiEi67bUNI+sFFyx71hQdSLVpDCOlwyiwQCzm2NTEvZ4uVEU5dUubbmKyUC2TCrq9mGu\nxoWgBCOoXUsQQ8cRioKarD6uPjRnMaGl6yjt+B5Nb7mv6nmudhRFJbxoNeFFq7EGe6ns3U75uccI\nLV5N5LpbCMyae9ncPdu2bWPbtm11m8+rD38cWHWeD/9fgb6L+fAVRflp4CvAW6WUL15izstq4QtD\nxzyxD+Pwi9hjQ0RWbCCy6uZrIunEK05+nOw3/p70+z9dUytCqZcQw6fcA8VIdVaiIyRjRR3TEbQl\nIkSC02dLXW8sRzBa1JFS0t4Urdral5aBGDqOku6syb0jLYPM1/6WxNb31L0cwdWMKBfQDz6PfmA3\nSiBEeMUGwkvXTWks/8W4XGGZXwck8Iu4UTqPAJsuEqVzJ/At4F1Syp2vM9+UC740DczewxjH92L1\nHiE4exHhZesJLVh1TR7EvhH5H3yFQFs3sY13VT2HtAzE4LGJg8Tq3Di6ZTNc0ImHAjTHw1e1+8Yr\nUkoKukWmbNISD9MUqc6tKC0dMXi8ptcf3ASl0o6HSd/3mbpkVc8kpBRYfScxjryAeWI/gY7ZhJes\nJbRw1WXpMnYl4vBHgd+TUn5TUZQ5wAHcCJ4+RVGeADYDOm52ugR2SCnfdsF8UyL4TiGLdeYI5sn9\nWH0nCHTOI7R4NeHFa1CjjRotl8LqP0nhv75G84d/DyVYXfEn6diIwaMoqVlVWZhSSvK6Ra5s0tYU\nIVbjgeal0G2H0ZLJaMlkvGxSthzKpkPZcnDO+0yqikI0oBELacSCGs3RIK3xEG3xEPEpCv80bYfh\ngk4koNGaqK4h+qs7rM5FVTeIkVKSf/gLhOYvJ7q2NvfeTEbaFubJAxjH92GdOYLW1k144XUE5y1D\na5k1JZ+RGZtp6wVRKWINnMbqP4F15giiXCA4ZymhBSsJzV8x4ysC1gMpJbnvfJ7I6k1Elq+veg5x\n7iRKKILa0lPV+LGSgWE5dCSrd2tcDN1y6M1WOJOtcCZTpmDatMVc4W6OhkiEXUGPBTUC550ROFJS\nsdyFoGQ6ZCoWYyWDkZJJQFWYm44xrznKvOYYTeE6NrsWkpGijpCSjqZoVdnBophBZgdRu5ZWnaho\njw2R++4/0fKR37+mErKqRdoW1tljGCcPYJ05AlISnLuU4OzFBLsX1K3m1jUj+MKo4IwOYI/0uz9D\nZxClPIHOeQS7FxCcu4xAx+wpqVA3kzHPHKX01HdJf+h3q37tRGYQqRdROxf7tmqEkAwXKgB0NEVR\n61D+wHQEx0dLHBou0JfT6UlGmNscZV46SkeVlvMkUkqyukVv5rVFpDkWYkVHgmXtCeJ12JlIKRkv\nGVQsh1lVLoBirA9pm+7BeZXPN//ovxHo6CG2/pLBeA0ugpQSJzuC1XsEq/8k1sBJFC1AoHMegfae\niZ9ulFiT7/dmRgi+tC2kUUEYFUS5gCjmEIUsopDByQxjZ4aRpkGgtZNAx2z3BeuYjdbW3RD4Gsk9\n9I+EV24ksmJDVeMna7yoXUt9h7QKIRnMlwkHNFrjtQkxQE63eKEvy4FzBXqSEZZ3NLGkNU4oMHWf\nEUdIejNlDg0XOTFWYn5LjI1z0nQ21V46Il8xyVZMulIx36IvpXAPcWPpqsM1X7XyP/bZazpcuVak\nlIjcKNbQGeyRfpwJoxVAa+5wf5ItqIkUaiKNGk+ihKOokahbZuG878XlCMucEsb+9x+C47h1JaR8\n9Qkq0QRaIo3alEZr7SS0eDVacwdqItUInawz9uggTnaE8NJ1VY2XwnHFvoqKl0JIhvJlIhOx6LWI\n/UjJ4NkzGU6Nl7m+K8nHN8wlUUc3y+uhqQoLW+MsbI1j2oJ9Q3n+48AQzdEgN89tZl5z9W7FZDSE\nosBgruxb9BVFRW2bhxg8iowm3VpUPgm0dhJo78E4trdqg6CBK9Jauh0t3Q4TblMpJbJSxMmM4GSG\ncQoZrIGTrrFbyrsGsF52tVELgKa55WdqvZcrZeE75QKo2sSTCUzLNOZaMEZGKZ/upXy2n8rZPqzx\nDMK2kY6DoqjEFs6jadlSEsuWEJlVW8JMtRSf+A5qPEnspjdXNV6MngVAbZvjb5yUDOXKhGq07MuW\nw45TYxwfLbFhdpq13SnCU2jNe8URkkPDBZ45k6E5GuTORW20xKrvhJTXTbLl6ix9URhFFsZRu5ZU\n9Tqbpw5Sfu4x0vf+hu+x9cDK5igcOUbxyFGKx08iDANF01ACAYLJJqKze4jOmU1s3hwiPd0zTkek\nbSMna+oIBy2RuvpdOlc7jmGQf+UA2RdfJr//IPn9BxGmSWzBfGJzZhOd00OorRUlEEANBBC2TenE\nSYqHj1I4dJTEsiUs/q1fI7X68jU/l7bF+AN/Qvq+36mqNK7US4iR06g9y32lnkspOZevoKkKbYlI\ndZEoUvLyYJ6nT4+zvCPBrfNapmWsviMkL/VnefZMhtVdSTbNa6n6QDpXMSnoFl2pmK+DXCml69qJ\nN6Mm/edXSCHIfPnPSL7rE5e1X3Olf4ATn/tnRp7YTmLJIpqWLSGxbAlaLIq0bYRlY+fyVPr6KZ/t\no9x7BqdcIblqBcnVq0ivvZ70DWsJNM2sjOEZ4cO/2pBCUDh4mNEdT5N59gXy+w8SX7yQ9Pq1pFav\nInndSs/WhrBtBv/9EU7+4xdIrVvDsv/xW4Q7pj4hzDi6B/3As6Tu+WXfY6WUiIEjbgimzxo5kwlV\nncloVWJfNGx+cPgcpiN4y9IO2hPTP4KkaNg8cWKUkZLB25d3Mqupunuu9rWTZgUxdNxdnDX/vvjS\nru+DlMQ3v8P3WL845QonPv/PDP7HfzL7Q+9n3kc/RCDuLaTaGB2jcOAQuVcOkNuzl9y+A8QWzKNl\n43paN99C+oa1qKGp7Tk71TQE/zJh5fKM7drN6PadjO3aTSidpnXzLbRs2kh63RoCidosCaeic/oL\nX2bwkUe58cEvE26b2i5E+Ue+RGjx9VX5ZkVhDFkc9x2VU9QtMmWD7nS8qnDDU+NlHj1yjjVdKW6Z\n13zVJWUdPFfgiRMj3Dq/lbVdSd8L3uTuKBRQaYn788mL8X6QErV1tq9xAPbYIPmHv0jzx/5gSs/R\nhGmx55d+nVBbC0v/x2/X/B0Qpkn+lYOM7X6OsZ3PUDp5iuYNN9B2+2battxKpHNWne4GJPhMAAAY\nx0lEQVT88tEQ/Cmk3HuGkSeeYmTbDgqHjtK8YR1tt2+mdfMtRHu633iCKjjxuX9mfPdz3PClf0IL\nT431KgydzJf/jOaPfdZ3QSgpBKL/kO9a7KbtMJir0JmKEg74c79IKXn2bIY9/TnetmIWc9NXb35F\npmzyvUNDtMXCvGVZBwGfC58jJAPZEi3xMPGwd2tdOrb7vnUt9V0JVkpJ9qt/Q+JN9xLsqq2C6us9\nxuH7/xJjdIw1//A3U5Lha2azjO961jXadjxDuLODtttvo/3OLSRXrbgqIv4agl9HpOOQ27ufkSe3\nM7JtO3ahSPvW22i/YwvNN21Ai9S/4/1/uwch2Pupz9C0bAmLft2/u8ULxtE96IdfJPUzv+B7rMgN\nI40SWscC72OknCgSFvJdNkBKyePHR+nP67znuq7LFn0zlViO4AeHz6HbgntWdfkOGzUsh6F8hZ50\nzFcvAJEdAstAbfcv2qVnHgXhEL/17b7HemH48W0c//vPs/GbX/HswqkFYdvk9+5nZNsORp58CqdU\npu387/oUGVu10hD8GrFLZcafeZaRbTsYfWon4bY2942/gqu+fm6YZ999Hxu+9gDx+fW3qAo/epBA\nxxyiazb7Gveadb8AJezdyh4vGViOoKPJ3yGtIySPHjlH0bC557ruaRGBUy+ElPzo2AjDRYP3rO4m\n5vPQOVs20CcSs7y+plI4iL6DVVn51uBpik98h+YP/Y6vcV6wS2V2v/NeVv7l/bRsrC7bu1ZKp3sZ\nfXI7I0/uoHDkKC03b6R96220bbmVUGt9smTrQUPwq6DSP8DoUzsZfWon2T37SP3/7Z17cFzVfcc/\n5+57tVpp9bRlWZYfGBs/ZBsbG5s3aUiYhCQNCYEQGjplkkwyk0A6TJsHtIUwLWWaTJomTUNCwmtI\nMiSFEAINIQQwjgE/5AC28VuWJUuWdqXVvnfvPf1jJSyMbJ+z2tXqcT8zOxqtzrl79uje7/3d3/n9\nfmflsrzIX3Yxvmb90gCl4MhPHyHy6uus+v63i3pcKWU+OufaL2lXxbSG+pGJARyNC5X7pHMmxweT\n2uWNLSl58q3jWFLy4aWzilpuYbIgpeSlQ/0cCCe4vm2OVqSRHH5qCmo+NVmRbrByGLV6obTSsgjf\nf2c+qqvIFSIPfO+HJDuOsvzeu4t63ELJRAbe0Yfwlq1ULJhP3WUXU3fpRQQW62eTFxNb8BUw02kG\nd7TTP+y/y4Qj1F20kbpLN1F70YXjXnAtBWY6zeb3f4TzH/hvKha0Fu24uXAP0Sd+RM3N39DqNxKZ\nY9TMQfjUqgJKKekeTBDwugh61aMjpJQ8t/8E4USWa1c0FbTAeyaypsXuY4PsPBLhaDhBVyRJ90CS\nRMZ8p43bYTCr2ktTyM+ckI8Vc6tpa6ke9y5VpyKl5I8H+uiJpfnEyqZ31fM5G+msSU80yZyQ+iK4\nzGWxuvZgzFmqXWcn+tQDuM9pw3vuGq1+Z8LKZHjp8qtZ9+gD+Ofp3YQmAiuTIfLadk688BL9L76M\nlTOpu2QTtZs2ELpgLa5g6StkjsYW/DGQlkVs7z7CW18j/MpWBnbsIrB4ITUXrqfukk15V80UKPv6\n9r3fxuHzFdWXn3pjC9muQ1S+X2+DC5mKYfUfxWhS3+tzKJUlmsrQVOXXsoq2dkTY3TvE9auai+bG\nSWZMnt3Vxe/fOE57R4Q5IT9r5tfQWldBU7WP2SHfu9YH0jmL7oEkXZEkR8MJ2o9E2NMdZfGsSi5b\n2sg158+hpqI4fl4pJb/Z3QPAh5fqVVnsi6UQQG1AfX3JOnEE3D7tkgvJHS9iRnoIXPEJrX5novf5\nP9Hx4KOs/ekPi3bMUiGlJHHwMH0vbaZ/81YGdw7rysYN1GxYR9WK5Rju0pagsAUfsLI5YnvfZmD7\nTgZ27CLy2jZcwSA1G9YR2nABNRvWTfiduBgMbNvJnnv+nQ2PP1K0Yw499xjOxhZ8KzZq9dMVCSkl\nnZE49ZVevC51S/Jgf5xn3+7lxjVzi1KF8vCJGL/Y2sHTO7toa6nmQ2vmsG5BLdUFZL4mMybtHRGe\nae/i+bd62LS4nk+ub2F16/h9vDnL4rGdxzinLsD6FvXcBtOy6IzEaaquUHZ75W/enRhN52rdXLLH\nO4g9/0tCN3xVuc/ZeOubdxE49xxabvxU0Y45UZjpNAPbdhLe8irhra+RONxB9aoVVJ+/mqrVbVSt\nWIbDV9xAjylbS6dQrFyOZEcnQ2/tYXA4qzW2dx/epllUr1lF/eWXsPj2r+CdPXFZgaUi2LacdHcP\nqeM9RYsZzh0/im+l7mKtiUwMYtSoh6JGU1lcDkNL7AdTWX63t5ePLJs1brEPx9J87/dv88LuXj6+\nbi6PfnETTaHx7UnqczvYsKiODYvquO3qLE/tOMYdj++ipbaC265ewsKGwo0Kp2HwkWWzeXj7URor\nPbQq1uBxGAZBr5uBRJr6SsXv56kAaUEmCRqL7866JsyBE8hsWnvRdyykZdH3p5dpveXmcR+rHDg8\nHmo3rqd243ogXwYi8vp2Bna0s//b3yO2bz8VrfPy2b/Lz6Ny+XlULGgtawTQpBR8aVlkwhHSx3tI\nHO0k2ZFPnY7tP0j84CE8dXVULllMcMUyFn7pc1Set2RKWvBnw3A6CW1YR+TVbcy+5upxH0/mspjR\nfhyaKfIyEQVvQDlLU0rJYDJDY1BdYKWUPLO3l7XN1TRXFS7MpiX5xdYj/M/z+/nQ6jn8762XEPQV\n/zE76HNxw8ZWPnFBC798tYO/+9FWPrymmc9fsQh/gTerSo+TD57byDN7e7l57VzlfIUqn5ujkThZ\n01Ky8oUQiIoQMh7RirYSTieOUCO5vm5cs1uV+52O+MHDOHxe/C36yWCTEVd1FQ3vu5yG910OgJlK\nEdu7j+gbuxnY3k7HIz8n2dGJr7mJwOJF+Oe14GuZi7+lGe/sWbhrazE0DKRCKJvg77n73uGaGFly\nsTi5oSFyQzEy4TCZvjDOygCehnr8LXPxtTRTvWYVzdd9nIpFCyYkTneyUL2mjYFtO4oi+Ln+4ziq\n67UX62RiAFGhXm8nls7hdhhaCVbt3VGypsW6ufp1fUYIx9J8/ZftpLIW99+yflwWtyoup8ENG1u5\nauVs/uPpPdz4g1e49/rVLGos7LNba/zMr/HzwoF+rjpXzX1mGIJKr4toMqPsyxcV1Vg9B5EhvYJj\nzvrZRRP8ge07qV5TWKXWqYDD66WqbQVVbSveec/KZIgfPExs334SR44S3ryFzkePkurpJRuJ4Kqq\nwl1bi7OqEmcggLMygMPtRjidCNf4DZeyCb5//jyM4S/hDARwBQP5n6FqPPV1U77mRbGoaltB1+NP\nFOVYZn83ztrZWn2kZUFyCKEYxielJJrMENJY0Ixncrx8uJ9Ptc0puFzC3q4oX3lkG1e3NfGFK8/R\nSkgqBrUBD9/6ZBtPbu/klvu3csfHVnD5eYW54S5bUMcDr3fQOZhUftoJ+lwci8QJ+T1qm8i4vCAM\nfbdO7WzM/m7l9mdisP0vVK1eWZRjTRUMt5vKJYupXLL4PX+zcjmy4Qjp/jC5oVjeCI4OYWWzyGwO\nK5cb9+eXTfBbPn1duT56ShFYvIjEkaOY6fS4fX9muAdHjWYp5lQM3D7lp4J0zsKSEp9GTPmLh/pZ\n3hikrsCol5f29HLH47v4x2uW8f4Veje0YnPNmmYWNgS47ZHtHO2Pc9PFC7SP4XEaXLqglj/s7+Mz\na5qVboJOw8DnchJLZwn6zm4sCSEQ/iAyGdVy6zhCjWQOvaXc/kwM7d5L86euLcqxpgOG04mnof7M\nxRM/++nxfca4etuUHIfHg3/eXOIHDo37WLlwL46QnuDLZBThDyq3H0plqPS6ld0EPUNpDoUTXDiv\nsEiXP+/v485f/YXv3rS27GI/wrLmah78/IX8+vVOHt5c2P9tSX0AlyF48/iQcp9Kr4uhVFa5vfAF\nkUn14wM4ahowI71afcbCymRJHO4gcI56Ep/N+LEFfwpQsaCVxMHD4z6ONdiHI6RXelmmYgivmj/a\nkpJEJqdV72ZLR5j1c0MFxdvvPjbI137Rzn03rGbFOHz/paCxysf3b17Hw5sP88yuLu3+QggumV/L\nlo4wlmIIs9flwJSSTM48e2PIR+tkkvld5xQxKquxUglkNq3cZyySncfwNNRPSH0qm5PYgj8F8M9v\nJX7o8LiOIS0LMxrGUaVeTkGaWchlwK3mR05mcridDmX/eV88w7HBFCtnqz9BjNAzmOTLD23ja9cs\nY00R4uBLwexqH9+96XzufWo32w+Htfs3V/sIepzs6Y0ptRdCEPA4iaXVfL3CMPL/21RceUxCGDiq\najEH+5X7jEX80GH880tTedPm9NiCPwXwzW0m2XlsXMew4lGEx6e392w6AZ4KZfdMPJOjQqP0wPZj\nA6xqqtKuk5MzLW5/bCfXXTiP9y2f3PkWi2cFuevalfzDYzsJx/St4rXNIbYfG1Bu73e7SGTUF/eE\ntwKZVhd8ACNYgxnVv4GNJnn02LQJx5xK2II/BfDNmU2yU98tMBprKIKjUm93KpmOKy/oSSlJZnL4\nFQU/nTPZcyJGWwHW/c9ePoTP5eDmAhZEy8GmxfVcvaqJe558U7vvglo/iaxJdzSl1N7jNLAsSda0\nlNoLTwUyndAak6MyhDUU0epzKqmu7pLtKWFzemzBnwJ4ZzWSOt4zrmNYsUGMgJ6fW6aTyoKfzlk4\nDEPZnbP3RIyWap92ffuuSJKHXjrEHR9boRZ+OEn4wpXn8PbxIV7Zd0KrnyEEK2cFeaMnqtReCIHP\n7SCpauW7/ZBJoFPqxAhUY8UGlduPRep4D55Zk/vpbDpiC/4UwNNQT6avPx8TXyBWPIoR0LSmM0ll\n/30qm9MKxXyrJ8Z5BSQnfeeZPVx/4bxxl0mYaDwuB1/94BLu++1uZet7hKWNleztjWFaqou3TpJZ\nxYXYkXBbU90NZFRUYsXVbkCnI917Am9j6fdutnk3tuBPAQy3G2dFBdmBwq0qKxHF8KsLrDRz+Xor\niuUUUllTuZ57PJOjN55mQY1exvSbnYO0d0QKim2fDFyypIGGoJcnt3Vq9avyugj53XQMqLlefC4H\n6aypZLULIfI39WxSeTxGRXD8gn+iD3eJ9222eS+24E8RXDXVZMKF+02tZAzDp1H3P5sCl9oOVVJK\n0jkLj6LgHwwnaA35tfdz/fELB/ibixfgc0/+0tZjIYTgc1cs4oEXD5LTtPIX1VZwoF9N8Edq4+cU\nnwiEy6MVZmn4AlhJvYXe0UgpyUYGcNdMzuiq6Ywt+FMEdyhENlK44MtkHOFTt6h1KiLmLIkQKG/e\ncbA/zoIavY3ID5+I0d4R4WNrJ98mGTqsbq2hscrLc28e1+q3oMbPwbCayAoh8LgM9Xh8pwc0BF/4\nKpBJtVDRsbCSKRAUvXSwzdmxBX+K4AxWkh0ax0WWSmB4NUQ2lwGnWj2jTM7CrVqLXUo6B1PMrdbz\nwf92ZxdXr2qastb9aK69oIWnduhFXdVVuMnkLIYUY+xdDgeZnGKkjtONzGWUx2J4/FhpdRfQqWSj\nUVxVxd0m0UYNW/CnCM5gJbnBwv2mMp3SqpmCmVUW/Kxp4lbMlB1M5TAEBDWic6SUPLurmw+2TY8w\nvsuWNtDeESESVxdZIQRNVV6ODaoJrdtpkFF1Gznd+Ru8Ki43WCaywGJeuaEhnJWTb1vRmYAt+FME\nZ0UFZqJwq0pmUgi3enEymcsq17/PmlI5HLMnlmZWpdrawAgd/QnSOZOlTfox+5MRn9vJ+a01bD3Q\np9WvMeClN6YmzC6Hob5O4HTlb/CKCCEQbi8yq5YbcCq5WBxnYOaUOJ9M2II/RXD4feQS41goy6YR\nbg2fqZk9GbJ3FnKWhUvRf38inqauQq/09ZZ9fVy4qE7rJjHZ2bCoji379AS/vsJNX1zN1+40DLKW\npRZfbzjzFrtGLL5weZCZwurpmIkkDt/UCqudLtiCP0VweL35xa4CkdkMQtFFA4Blqgu+mU+6UiGS\nyFKjuZ9se0eENfOnV0TH+fNr2NWhXjIBoNbvJpxUs8RHInVUNFwIAYYDLI2SDC49v/9ozFQKwy6a\nVhaUrlIhREgI8WshREwIcUgIcf0Z2t4qhOgWQgwIIe4XQpR2G/cZguF2Y2XUH7tHIy0LLAscGgue\nlpkXAQVMSyqHWA6mslR59bJr93RFWTJN3DkjtNZXcHwwSUJxERYg6HUSTeWULXGHEJiqVrvhBFO9\naqZwupC5ws5HK53B4bE3OCoHqhb+94EUUA/cCPxACLH01EZCiKuA24HLgXnAQuCfizPUmY3hdmFl\nC7Oo8guwTmWXiJQyn3Qlzn56jJTuVfW2DKVzWgu2WdPiWCTB/Prptcjnchi01gU4dEI98srlMHA7\nBQnFLFqHITBVs7MNB0h1wcfhhAIXba1MBmHvaFcWznpFCyH8wF8D35BSJqWUm4EngM+M0fwm4MdS\nyj1SykHgX4CpuSX9BPHCCy8otRNOJ1I1rvoUpGUhFK314Q4gDOWkKyGEcttk1jptCYax5uJENEVt\nwKNdUXMqMKvaS/fA2G66050XPpeDZFZNxA0hUMy9yt+xNUp3CIdTq47+aKRpYjjVb/qq14jN2VG5\nihYDWSnlgVHvtQPLxmi7bPhvo9s1CCH0yjTOIPQEv8A9LU0TFH3sQP7CV7DuASwJqgmzI5mfpxPv\nseaiN5qmoWp6+nsbg156T1MF83TnhdfpIKV4488LvqpLx1Bz+I9ur+ECGo00zXwtfkVswS8eKrMe\nAE4NAI8CYxVmCQCDp7QTp2lro4EQQiuK4t1IZQE/2V7d/aPqKjItidOhF2kTT+vV2J9K+D1Okhk9\n0XQaQrlkAkJHwwWgcX4JQ6/9aHTXk2yKhsqVFANOXTGrAsbaDPPUtlXkzwq9jTNt3oOrJoR3VmNh\nnYXAWaeTtCSUq2QKIdSzbIHGgN5G5R6nwYKG6eW/H2FOyKfuchmm1u9WXiB3GQYOxZuxcHm0jAJH\ndb1WXse7xhWqxjfbLo1cDsTZrMZhH34YWDbi1hFCPAh0Sim/dkrbR4CDUspvDv9+JfCQlLLplHaF\nmqo2NjY2MxopZcEJKWcVfAAhxKPkDbRbgDXAb4CNUsrdp7S7CngAuBI4DvwKeEVK+fVCB2hjY2Nj\nUxxUn+G+CPiBXuBh4PNSyt1CiLlCiKgQohlASvkscC/wR+AQcAD4p6KP2sbGxsZGGyUL38bGxsZm\n6lOS4GY7M/ckqnMhhLhJCPG6EGJQCNEhhPg3IbRCayY9OufFqD5/EEJYM3kuhBDzhRC/GX6a7hVC\n/OtEjrXUaM7F3UKITiFERAjxvBDivIkca6kRQnxRCPGaECIlhPjJWdpqa2epLiI7M/ckSnMB+IAv\nA7XAevLrIH8/UYOcIFTnAgAhxA3kI8mm42Oo6jXiAn4PPAc0AM3k3arTCdW5+CTwWWATUAP8GXho\n4oY5IRwD7gJ+fKZGBWunlLKoL/K+/jSwcNR7PwPuGaPtI8Ddo36/HOgu9pjK9dKZizH63go8Ue7v\nUK65IB/euwe4ADABo9zfoRxzQT5Q4k/lHvMkmYvbgcdG/X4ekCj3dyjRvNwF/OQMfy9IO0th4duZ\nuSfRmYtTuQR4sySjKg+6c3EPecuvp9QDKwM6c7EBOCKEeFoIcWLYjbF8QkY5MejMxWPAQiHEOcNP\nPp8Fflf6IU5KCtLOUgi+nZl7Ep25eAchxN8C5wP3lWhc5UB5LoQQa4GNwH9OwLjKgc550QxcB3wH\nmA08DTwhhJgu6cc6c9ENbAb2AnHg48BtJR3d5KUg7SyF4NuZuSfRmQsAhBAfBb4FfEBKGS7h2CYa\npbkQ+ToN/wV8WeafVafPricn0TkvksDLUsr/k1LmpJT3kV/nOe3axxRDZy7uBNYBcwAv+eKMfxRC\nTM9iS2emIO0sheC/DTiFEAtHvdfG2O6JN4f/NsIqoEdKGSnBuMqBzlwghPgA8EPgQ1LKtyZgfBOJ\n6lwEyT/d/FwI0Q28Sl70O4UQmyZkpKVH57zYxfRctB5BZy7ayPvwu6WUlpTyZ0CIvC9/plGYdpZo\nweFR8osKfuAiIAIsHaPdVUAXeWslRD5h61vlXjAp01xcAfQBF5V7zJNgLhpGvdYCFjALcJb7O5Rh\nLhaTt+auIG+g3Qrsm6FzcQfw4vB5IciXaB8CguX+DkWcCwf5p5d7gAcBD+AYo11B2lmqQYeAXw+f\nqIeB64bfn0ve19Q8qu1XyJdhGADuB1zlnvRyzAXwPJAZfm9o+Odvyz3+cp0Xo/rMY5pF6ejOBfDR\nYZEfGD5P3iOGU/mlcY14yK/rdA3PxevAX5V7/EWeizvJGzjmqNcdw3MxNF7ttDNtbWxsbGYI0yp7\n0cbGxsbm9NiCb2NjYzNDsAXfxsbGZoZgC76NjY3NDMEWfBsbG5sZgi34NjY2NjMEW/BtbGxsZgi2\n4NvY2NjMEGzBt7GxsZkh/D+WpbYbPfKvGwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10b038c10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "\n", "cnt = ax.contour(Z, cmap=matplotlib.cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max(), extent=[0, 1, 0, 1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3D figures" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To use 3D graphics in matplotlib, we first need to create an instance of the `Axes3D` class. 3D axes can be added to a matplotlib figure canvas in exactly the same way as 2D axes; or, more conveniently, by passing a `projection='3d'` keyword argument to the `add_axes` or `add_subplot` methods." ] }, { "cell_type": "code", "execution_count": 119, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from mpl_toolkits.mplot3d.axes3d import Axes3D" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Surface plots" ] }, { "cell_type": "code", "execution_count": 121, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwQAAAFdCAYAAAC95ar0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmYZHV97/8+a+1V07O0wDCbDM7AICOyiCAyMURNAleT\nmJ/3/n65/G4eQ6JochEfvWIIqJcYA9clT5ToNQtyI2gEjIk/EAgo4AwwMMwwazP7zkzP0t21nao6\ny/f3R/Xn1PecOqf26q7u/r6ep5+Z7q4+dc6pqs/3+9neH4kxBoFAIBAIBAKBQDA3kaf7BAQCgUAg\nEAgEAsH0IRwCgUAgEAgEAoFgDiMcAoFAIBAIBAKBYA4jHAKBQCAQCAQCgWAOIxwCgUAgEAgEAoFg\nDiMcAoFAIBAIBAKBYA6jNvm90CQVCASC6Uea7hMYYMQ6JRAIpopZa4tFhkAgEAgEAoFAIJjDCIdA\nIBAIBAKBQCCYwwiHQCAQCAQCgUAgmMMIh0AgEAgEAoFAIJjDCIdAIBAIBAKBQCCYwwiHQCAQCAQC\ngUAgmMMIh0AgEAgEAoFAIJjDCIdAIBAIBAKBQCCYwwiHQCAQCAQCgUAgmMMIh0AgEAgEAoFAIJjD\nCIdAIBAIBAKBQCCYwwiHQCAQCAQCgUAgmMMIh0AgEAgEAoFAIJjDCIdAIBAIBAKBQCCYwwiHQCAQ\nCAQCgUAgmMMIh0AgEAgEAoFAIJjDCIdAIBAIBAKBQCCYwwiHQCAQCAQCgUAgmMMIh0AgEAgEAoFA\nIJjDCIdAIBAIBAKBQCCYw6jTfQKC2Y/jOCiXy1BVFYqiQJaFHyoQCASCYEzThG3b0DQNsixDkqTp\nPiWBYNYjHAJB32CMwbIsWJaFUqnkGnXHcRCJRKDrOhRFgSRJwuALBALBHIfWjHK5jEqlAkmSwBhD\nLBaDpmnueiEQCHqPcAgEfcFxHBiGgXK5jFgs5hpyxhgMw4AkSTBNEwAgSRI0TfNkEITRFwgEgrkD\nYwylUgmFQgHxeNxdMwqFAiRJQrlchiRJUFXVDSaJbLNA0DuEQyDoKYwx2Lbtpnxt2wYA2Lbtie7w\nDgIAVCoVVCoVAHCNPn0JB0EgEAhmL4wxVCoVd81wHAeO40BRFADe9cI0TTeYpCgKdF0X64RA0AMk\n2pCF0PCXAgGP4zgwTROO40CSJFiWhWKx6G76HceBLMtuyVBYhIcx5n4RiqJ4sgjC8AvmGOINH45Y\np2YwjuOgUqmAMQbHcZDL5Ty/Z4whEolAVVWP3fevE5IkQdd1UVok6Dez9o0lHAJB1/BZAQCuIc7n\n8zBNE4lEwn0slRIpigLbtiFJEhRFcb+C+gnI6JOjAdQcBPo7kToWzHJm7SLUA8Q6NUMhwQkAkGUZ\nhmHAMAwkEgnX3heLRTeQpChKqDgFrRGEpmluEEmsD4IeMmttsSgZEnQFpXrJeFNmgOo+KaVLDWKU\nAo5GowCqCwKlialkiIw9308gSZJr1Mnwl0ol9zxkWYaqqp7okIgQCQQCwWBiWRZM03TtdLFYdNcJ\nVVVhmqZr/6PRqLu22LaNcrnsrhF8uRCtL1RaxK875CCI0iKBIBjhEAg6grIClmWBMeYaWMMwUCqV\nEI/HIUkSDMMIPQafHaBj0nEp48AY82QQeAeBPxfGGMrlMrLZrLt4iEZlgUAgGCx49TmyyYVCAbZt\nI5FIoFAoBP4d2XRN09ygECnYAfBkD/zOgeM4yGazkGXZPQatD2JdEAiqCIdA0DYUfaGSH1mWYdu2\na8jT6TQURYFlWYF/T81hfkPMZwI0TQMAt7mMokLUhxBUZkTHVRTFzVzwjcr+MiOxEAgEAsHU4V87\nGGPI5/OQZRnpdNpT8tMIPpgUiURc58A0TZRKpbrSIn5tkSTJszZQZpmyBwLBXEU4BIK24BvAaENd\nKpVgGAZisRgikUhPN9qyLLvlQAA8GQQqVeLLiwg+QsT/He+kiEZlgUAgmBr85aXUQKzrOmKxmCeo\n0y6yLEPXdfd5gkqLKJPszx7QumAYhnscsSYI5iLCIRC0hD/NS01ehUIBjuO4WYF+w0uS0nlRBoE2\n+4VCITSDwF8PNTjzjcp0bNGoLBAIBL3BH0iyLAv5fB6xWMztJ+PpZiMeVlrES5ryG356LnIYqASJ\nP44oLRLMBYRDIGiKbdsoFouuUaSUa6FQQCQSQTKZnDZjyaeOGWMoFAqIRqOug8A3KtMmv1Gjcrlc\n9qheiEZlgUAg6Byq8yf7Wy6XUSwWkUgk3Kh+v/CvD2Tv+dIif2My4S87FTMPBLMd4RAIQqGsgGma\nyOfzmD9/vpsVsCwLqVTKjdQH0Wn6t1saNSpTlKqVRmWgOjCNHASan8BL2YlFQSAQCIKhUhzDMJBO\np93p9c3Wjn5BUX+gvlwIQN0wTH9jsmEY7poSi8XEzAPBrEI4BIJA/EPGgGpUpVAoQNM0ZDKZGWEE\nwxqVKXVMjcq81Kl/ojJBzW9UmiQalQUCgaAef4kpZW9t20Y6nR6Icky+/JQvLaI1gcqK+Mw4UF0/\naDZCuVx2j6Pruig1FcxohEMg8BA0ZIyi5YVCAYlEwt1Yz1SobIho1Kjs3+jzf8vfK//ANNGUJhAI\n5iJ+JSGguolmjCGdTrdtE6ci0+yXwOb70qgxmXceAHiyB6ZpumummHkgmKkIh0Dg4s8K8M1fAAYm\nstNrGjUqU60pGXXbtgGg5YFpolFZIBDMFYKUhEiOupVes+kqM/VDgR9qTPaXFgHVcqiwmQelUsld\nN0RjsmCmIBwCQWBWAKhOjiyXy4jH4+7k4V4wKEY/jKCBaVQ/GtSo3EzJKKhRWQxMEwgEswl/QMm2\nbeRyOUQiEXdi8EzEX1pk2zZKpZLr+ISVFgH1jcli5oFgkBEOwRzHH9EhQ0718plMBrIsh06PbMSg\nb/xbhY8AkUReLxqV6fe02IhGZYFAMBPhZUVlWXZV6BKJBBRFcTfEMx1+uFk8Hg8tLeLXAP/MAyox\nFaVFgkFDOARzFD4NOlVDxmYLjRqV6Z5SozLfrBzUqEz1p36VCz6LIF4DgUAwqJASHdlFwzBQKpVc\nJSEqs5yNBJUWUQYBgGvD+SyyLMtu9jifz3vU60RpkWA6EQ7BHMTf9CXLMmzbdrMAUzVkbDbBLwxA\n643KFCmybduNroU1KvMOhkAgEEwnfiUhoFpmalmWZw2ZLZniZvDZXl3X3SAR2X8qK/JnDyg7H1Za\nJObfCKYK4RDMMWizyWcFaFBMNBpFNBoNND5k1Ds1THPNoAU1KpPUKTUqkxNBQ3Po7xo1KlNpkl/J\naK7dX4FAMH0EOQP5fB6MMaRSqTkftOD70HRdd++Xbdue0iIA7rrqLy2yLAvFYtEzEE1kjAX9RDgE\ncwTqFSgUCojH45Bl2VWAcBynr4NiKpUKDMPwbH7nQsSIhxwEglcyooWCft6sUZkxJhqVBQLBtMAY\n85S6MMaQy+Wgqiri8XhPbI9hGDBN023k7dV6MV3rDq82xGePScijVCoFBnjo2ikgxB9HZIsFvUY4\nBHMAavjiaz3JOYhEIi3JwXUKYwyGYbhREiqN4cfGz8VNrF/JiAw+lQ9R6pgvMxKNygKBYDqhDCf1\nnpEARSQSCc0ud4JlWdA0zZ1fUC6XYdt2VwMgB8UG8vaZRDyoETustIjwqxbx2QNh5wXdIhyCWYw/\nrUv1ioVCAaZpIplMtjxkrN06UJpqDFR7Emi6r6ZpKBaL7vPyJUxz3UHgoz9A40Zl/z0KalSm6BMA\nt7+BIktz6d4KBILuCVISyuVyiMfjiEQiDf+2lbWDmmwBIJFIuD1ulmW5AaUwqc+ZCtl9XddDS4vo\nOoNUi0gOm46lqioikYiw8YKOEA7BLCVoyBhtEBljyGQyfTEYlBHwzy/w9x+Q8fJvfkm3v9Hmd67Q\nqFGZ7lGjRmWCXpNKpeKWLYlGZYFA0Cp8dlmWZTdLkEqlmgaVWrHblGlQVdXTl0B/T3aOb9YlqU+y\nYbRpnsn4S4scx4FlWZ4MclhpET2OXidaX2fDfRFMDcIhmGU0GzIGVCdG9gP//AJJkgLnFwQtELT5\nJVrd/M4lwhqV+YnKdI/4f3kngXo4/BOVqQ+BzyDMtfsrEAi8NFIS0nW95QxzIyzLQi6XQywWQzQa\nddcpwp+dbjRFmOzcbCih4W12JBJxnQOy9UGOEN+nZ5qmOxBOzDwQtIJwCGYRQVkBy7JQKBQgyzLS\n6TQmJiZ6/rxU4+mfX0BGvJNGrkab3zAZz7lG0D3yR8/4UjFqUAtrVOZrUylSJRqVBYK5SSMloWg0\nCsdxun4O0zSRz+eRSCSg63rbf8/bQD6iXi6X3TJUsmEzHVmW3XsU5Ajx2YKw0qJSqeTJQsz0kitB\nbxEOwSwgLCtABiAej3dkbHnCegh4pSL//IJeGppWZTyBasRprmYQeOeIFgJaJGnD306jMu8giEZl\ngWBu4J9gT0pCiqIgmUyiUql0PXCM5K7b6WVrhN/++SPqVHpEwaSZTJAjRK9JoVCoG2zpl7LmRSj4\nmQcz/b4IukM4BDMcv+Em1YKgIWN8xL4Xm7lWlYrovHr1vHRMv4wnTYgM0vmfi3Xy/AJpmiZ0XXcH\nn7XSzO3vQ6DFlQiahyAQCGY2/jXFcRzkcjnouo5YLNb259wfuSaVuXK5HDgEkx7T7Xrhj6iXSiUw\nxlAsFt0SydmQ/eTLpKhBmS8j9ZcW+bMHfKaB7pmw6XMT4RDMUPgPMm84S6VSXekO0asPNxnVdpWK\n+glv5GKxWMPyGX8D7lyBokSdNir7swiUhiYnlFe4mIsOmEAw0/ErCVFJTytKQq3AGEOhUIBt20in\n0w1tRK8zzLQZ1jTNtXnUR0Ub4NmwCW7UYwGgLsvLO2wkQAFUewLj8bgoLZpDCIdgBkINQyTLNhVD\nxihqY1mWqwbRL6WiXtCofIbX+R8UB4EW4H4eP4h2ezVosfGnoel++pv/RKOyQDAz8CsJNSrpCSsh\nbQQ5A0A1cz1dtoC3ebzUp38OwFRsgnuZNQ86VqMeiyD5Vn4/US6XPWWjftUiYctnH8IhmGGQkg8A\nNwMwFUPGqHHYNM2OG8CmE95BoMiJf/MLBA8Cmy20ci2NGpV5JzRI7YnuHf2daFQWCAYfsoNjY2Ou\nAl2xWESlUgks6emUdqYZT5VdoE0wzQHwZ5X5KfAzPeMZ1GMRdq3k7AWVFlGZqSgtmn0Ih2CGwCs+\nkLoDRVxID7qVrEAntfy0aQaATCbTlmHsJJI0FfDRkKBBYEH19XORsEyL35Hi1Ys6aVSeLel6gWAm\nwa8rNDyy1ZKeVuGHUnbSgzCVtFJuI8vyQK5p7dLsWum9ETTzgHoygJod13VdlIrOcIRDMAPg6zrp\ng2lZFrLZLDRN6+uQsUql4jZhxWKxnnzYB9VJ8NfX8yVGpI1tGMacjnAHOQhUd8o37olGZYFgsPE3\nDwPVKD5JVDf77LViw6kHAQCi0eiM+jyHldtQQKNUKs0aO+W/Vl6VLqiMyh/sMU3TteN89mAurpEz\nGeEQDDB+HWiKTJC8WDKZ7Kh0p9Ux8nxPAkUN5hLkIJCRLBQKroJDq8PSXn65gp/+tIDxcYbrrovg\nox+NQ5Znj4HkG44pQuR3pDptVAbgWYhE9Ekg6A1BSkIAelrSw/cgkFPQCoMYMPKXnFKQjFfyCbJR\nz8+/wnOc9559dapPvW34LG88Hg8tLeKDPUEzD+hYNMBuNjhOsx3hEAwoYUPG8vm8p+axXVr5QE5F\nT8JMpdUGXEDB175m4pvfPINSqbq4/fM/F/DAA3k88MBCnHvu1JYg9bJ5rRm8I0XP3UmjMi0utLFg\njLmRJ9GoLBB0RpiSEICelPTwsqL9ELgYBGgNBrz19bRhVhQFG5e+p/Z4rXpP1y++Ctce2zgt59wp\nQaVFjRSa/EGecrmMQqEASZIQjUY9jcmCwWL2fVJnOHxWAICbFeCHjNGHsh/P3Q850amK9vA1jlOx\nSQxT6HEcB5//vI1HH605A8SLL1bwe793Ck8+OYxUavYYxEb3vNNGZX5xoawDUOtDoA0N7yCIFLVA\nEE6YklAikXCd7m6gNcSyrK57EPgS2UHLGPAElRa9suo9kFUJDgBZ9dqjfjkFU7HutarQ5M8emKbp\nOp+VSsX9OT8QTdjt6Uc4BANEUFaAVIVkWXYbemkseyeEGVdeTjTIkHdqlOfSh5yM5Te/CRw+nMXF\nFydgGBZ27SqBr7javt3EX/zFCXz96+d4ouFz5V612qjMZxDovcenp+lv+fpVfqERjcoCQRV+mj19\nHgzD8ETxi8Viy8cLWg8YY8jn82CMIZVKedaQTtaPmfi5lSQJr73jvXAsBkmTofhiasysCYIM8vW1\ncn5+hSZyDqhUlC8t4iVO6fhUWkRTpMk5EDMPpg/hEAwAvLEGaoaw0ZCxXj53qVRysw+6rvf8eSht\nSJu1QY72dMvIiITnnnPwzDOUwVGxZEkKiUQFIyPVxuQrr2T4x3/cgiuuWI3f+Z23eOruB32h6Adh\njcq8g0D3pVKpeKJPQQ4Cpe8J0agsmMv4e9EAhEbxO7XNNM1YUZSelJnS534Q14tm5+NY9b9XYjJs\nw6k6CTEZGy++Fm/f9B8AalUAM90u8Zt6f2kRBW4AeDLAfEAsaOYBZQ8EU4NwCKYZf3MXZQUKhQIY\nYw1Hu3cLPQ+AnupN8zDG3IWCjAJt+EiNZrakC196Cfiv/1XHOeec8fz8yBGGWEzDqlVAqWRi27bt\nAIAvfekAfvu3FyOZlN0F0DTNng9Lm4oFtZcLWpAkLDUnk3NJ6Wm+F6FRozLVuwKiUVkwd/CvLxTF\nlySpTkmo08+vbdvI5XLQdb1nPQjFYhGKorjnTvZlUBz6sHN47arroMSC7Qk5BYSu66hUKm5U3T9B\neCbDlxZFIhEUi0VIkhTahO1vTOYlUGVZFjMPpgjhEEwT/kEf9Canms5oNNoXmTZaFPr9PLwUZTwe\nd6PgkiS5KjJUItVIpnKmcOIE8NGP6li4sILXXzfrfm8YwJkzOt761jdx6FA1e3DyZBnf+c5h3HHH\nhbAsyzV4/sh4r+7NTLunfkjODmjeqNzMQSiXy66ULD+QZ6a+/wQCP0FKQlQW2oqSUCNoHaGG5Fgs\nhmg02vU5UzksnR+/XjRT9BkEHIt5Nv0AXAfBNhxoKcV93Lbr3oeLf/m0ez28Kpt/gvBsgMo4g0qL\n6Fr9M2yCZh6I0qL+IRyCaYAv0yFtf7/MZzNlhk6jvrRRb/V5iHayEnzmgZft5I9FZRxA84FgM2GD\n9qEPqRgbk7FqVQF79gQ/ZulSp64Z/DvfOYhPfWoFVLUm99bOsLSZcG/6QbNGZapLDbpXfgcBqDYq\n5/N5T/Zgw4YN+I3f+I1puT6BoBscx0E2m3VLLyzLQi6Xa1p+2s66QtmGVibXt7J+UE8DbRBJRIBf\nLxrVqU+3LXz9PddDiyvVZmKLuc3EfAkRZQn0ebV1l7dTQdOS6XfNlHlIZKEX9LOEyV9aRPMdyBnk\nHb4ge12pVNyMlKqqeOmll4Sd7hGD5V7PAciQ8WoPlUoFExMTUBQF6XS66Sa90w8qr+iSyWT6IgdX\nLpeRzWah6zpSqVTgufoXB9oAR6NRJBIJxONx11iQZJlhGO78hUGrKf3Wt2Ts2qUgnbbx+uvl0McV\nCsexaVMel1++wP3Z2JiJv//7Q6F/MxPuDd/wO13QokplC4lEAtFoFLIsu6nnQqGAUqnkfg54FROK\nXNEiZJomvvSlL03b9QgEncKvMfwGij4TYZ/Tdj6/tHlLpVIdyV/zUIlQpVIJXTP4c+TtITWzlkol\nFItFlMvlabODarR+PZUUCUqkus2KLqhX7du5rn4jSzaf7JimaXAcB8VicdqvsdeQ7Y1EIojH426A\n1DRNz9rmdw4pI+w4Dr74xS9O70XMIkSGYIrwN3bRm7pQKPRc5jPouSn6Qh++fpQIFQoFWJbVtfZ0\nIx17vn58EKLktg3ce68KQMIllxSxYUPw497+dmDbtrMAgNFRQJYlOE7VoH/3u4dwyy3nopWXv5V7\n4y+dmQ20G/1qtVGZv0+8Y2NZVt8+jwJBP/ArCZEzYJpmz+YB8NLUlKXr9nh8ZrzdzzgvgclHmqns\nZqrqzne+/wZYJQuSLEHRZSg6IMkS7ElVIXIKACC6MALHtOHYDJFU88xK0LRkKqHho+mDTKsZB+oX\noL/hewn8Np2ONxcz5P1CZAimAKpZJmeANhy0SclkMm1tPtop37EsC9lsFrZtu7KlnRL2nKZpYmJi\nom+ZBzKKFEWgqElQlLzRefaDu+6SMT5evadjY+HTnCORs+7/jxwp48orF7rfHz9ewtNPn+7IsAXd\nGzKoNGCOpkbSe24uwjcp89kWWmgp4lkul/HUU0/h6aefRjKZnO7TFghaggJOvKwo9Wi1knUGmq8r\ntHm3bbsnnw0SnAiSKW0Xf6Q5Ho/XRZqpObkfMId5MgTS5DR6f9ZA0XtzjYlEwo2mk52nYAdF02c6\ntLZFo1HE43FEIhEAcNf5gwcP4sc//nHT9/a6desQi8WQTqeRSqVw0UUXBT7u+9//viu7nkqlkE6n\n8fzzz/f2ogYc4RD0EWq64psXAbipPwB9mwRMadRcLudOHOYlvtol6Bwp85DP593N6FR4640cBKB6\nf6eijMYwgO98p2qMFi+uwDSBNWsU+DPoixZJ2Lz5uOdnJ0444G/Vgw96f98pYfcGgLs4UtrZsqye\nLB5TIZnXj+cgB4HuFVBtfNu/fz++9rWv4cknn8TVV1+Nz372s/jlL38ZeAyx2AimG1pneFlRmgcQ\ni8V6Ej0mWVEAXW/e6XjZbLZnMqV+KNJMZTeqqroOEpUn9WrjvPP9N0CNVu+xGlWhxb3BPTWqQo2q\nkDXv6xCbV93g7r3xtzp6XrpGfu3lS4u6Wf8GTQaVd4ZisRgAIJvN4oc//CFefPFFvO9978PXv/51\nnDlzJvBv77//fmSzWeRyOezatSv0ea655hr3cdlsFu9973v7dk2DiHAI+gSNh/dnBSha36xWshHN\nIjmkJlEul5FOpz11o736kJPUnGmayGQyDetI+x2V5jfBAELr7Pm62l7w3/+7AtOUsXatg1WrTOzd\nq2DHDgWapuOaa2r3Y9WqMmzb+5yHDpU9vQS/+MVZHDkSnmHoFF6qjxZHKhmjxZGvrZ8t0aVOUVUV\nH//4x/Gd73wHH/3oR/HVr34V6XQaW7duDXy8WGwE0wmVBVFvGGMM2WzWrbXvBbZtuw3KnQZ9+DWL\njkebWf/xgr7vxmbTvaAGayovMgyjJzX50Ux13aGsAFB1AiSlfnulxTUomlznHHQLnwEN662Yzgxx\nLx0MOtbatWvxwAMP4D3veQ8+/elPY2RkxCMv7f8bQXNED0GP4XsFgNrQEZrIR8O/6LF+TNPB3/zN\nYfzoRyegKBL+03+aj1tuWYJFi1qTdKP0IWUF+uHltyNZOh1RhiAFmlYkKtthYgJ49FEV553nYOtW\nFatWVdzfFQrAhg3ANddEsGFDGcePnww8hm3XPn6OAzz22AncfvvKDq64dYJq63lVC/+U4F7NQuiW\nqTbohUIB6XQa69atw7p16xo+Viw2gumAgk60QaKp9pFIBNFoNHDy8H8kLwUASJoEWZUgaTLWHX+t\n+rOAjTevTsTLina6Safj8SUgQfTrM9VOTX6rNs806mWmAUBPVO17pWBBiyowSzYUXYZdcRBJ6XDM\nquIcORTdwosk+Hsr+LVvNkmalkolpFIp3HTTTbjppptCH3fHHXfg85//PFatWoV77rkH119/feDj\nNm/ejOHhYcyfPx9/8Ad/gC984QsDJ23bT+bOlU4B/qyALMueSHo6nW7Y0JvPW/jN33wNd965F9u2\n5bFlSw5f/vIh/PEf78DWrWPu44KMMUnAFYtFJJPJUJ3pTg05r2NtGAZSqVRPhtBMBa3U2bcbRfnC\nFxSYJsOJEyqGhy288UZ9ZH3DBoYbblCxf/944DFef72AxYtj7vePPvpmh1fYmEbRGb86Dyk90DwE\niqL51XlaPX4v6edz+K+pUCggkUi09Ld33HEHhoeHcd111+G5554LfRwtNqtXr8Y999wz57Mxgs4h\nEQEAbq08bdzD7DLvDABVOUxmOnh+6eWBz+FXJ+oWcgYoSzndNKvJNwzDlXoO4+h/+12okdbiquQg\nTCW8fafeCkVRYFlWoIrPTMMwjKbvzXvvvRf79+/HsWPHcMstt+Cmm27CgQMH6h53/fXXY/v27Rgd\nHcWjjz6Khx9+GPfdd1+/Tn0gEQ5BD6CsAKkbkDEmCU5N05BKpTy1nPQYMjaMMXzyk0cBxKBpXmP+\nxBNj+Iu/2Ief/exo4PP7m3r7oY5Czk4/JUunim4dBMaAn/1MmaxLlXDBBWWErRnlcgWrVgU34DkO\nsGJFxv1+27Yc9uzJ9+YiO8TffOt3EEql0kBInfYL+lwWi8WWHAKx2AimElpryBZLkuR+JpPJpGej\nzQd/nhlaC0mT6qboSpoMx2J1TgEdsxeyogDcaeG9Ol4/4GvySXCg2cbZsWxosep6q8U194uHMgDk\nOERSuls2FBuqBoT2//5v9/vyAIRLmvrLp/h9TLf0en3gA1DlcrmpQ3DllVe613rzzTfj2muvxeOP\nP173uOXLl2PZsmUAgDVr1uCuu+7CI4880tNzH3SEQ9AlvLQbbaYoWk8GsJVI+ne/exo/+tE4fvUr\nE5dcch7icW+N4VNPjePP/3wXlix5DHv3Zt3nLhaLfW3q5SVLu6khDTruoNCuUs93vythYkKGZZFR\nqoQe++jRMdh2BIoSfM/27vX+7U9+0p8sQac0UuehRb5UKrkOY78chH5nIfzHNwyjJYdALDaCqSJI\nSYiyd+l0umEgSFYld1AW/avEFPd7SZOw4/ob3KZUOma3AzJp/XAcB7FYbMYEkhrNAiB79+Yf/z4A\nwCpbkFXveu0vA1K4LIL/sdNFmIoPBcLoq1f2vB/22zAMt8m4nfNo9ZoGaZ8yFQiHoEPIESANZYrW\ntDNkjN6YJ0+auPvu2kZw8+Yy3va2czwqNIwBZ8/qGB+3ccUVT2L79gmPnGirUZd2Pgx8uVMkEumo\nlo6ejzd0pU5zAAAgAElEQVQGg15m1MhBME0TDz0kwXGqRl3THOzaZQUeZ+lS4MCBHPbureBd71oQ\n+JgTJypYs6aaJVi9OoGnnjrY+wvqMX4HgcrggmRgZ6rUaTslQzxisRH0A354F68kZFkW0ul0oJIQ\nvRcp+i9pMiStasPJGQCqpUNKTIZddtzgVtgx+WO3c87NpuwOMvzGmVdt65ZoevrLpgi/bCv1F/Cy\nrYMiOsHvJ5o5BBMTE3jqqafczMcPfvADvPDCC/jgBz9Y99if//znGB0dBQCMjIzgnnvuwYc//OH+\nXMSAMjM/odMMLydaLBY9WYFmNfxB/PVfn8TEhPeDtmVLGe95z3men506ZeKqq85HpQL87u9uBGOK\nR060l1QqldByp04YdCegEWQsAWBiIoadO2uG/G1vMxDQuwcAWLKk1my2d6+NSCT4dcpkYli4UMPp\n02exceNpHDrU27KhqVB5kmU5UAa20x4NP1OdIaDPcSPEYiOYCuhzVCwWXS19UhJqVQJUTatuuZCa\nVt0sgZZSoM+vBq1kVcLI+z6AdDrd9ZpC66Ft20in0219dgd5raC1QJZlmMVadjeS1KHFNLd8CIDn\ne/o3Pj/uOZ6iyZBkGdFMe1HuIHpp5+k6edlW27Y7kjTtp+0ulUoNHQLTNHHnnXdieHgYixYtwre/\n/W389Kc/xcqVK3HkyBGk02kcPVotxX7mmWdw6aWXIpVK4cYbb8RHPvIR3HHHHX0570FFOARtQs1c\ntm27RtM0TddAt1PDL0kSjh+v4B//sV47FwA2bKhg1aq052evvlrEvHk6cjmG3/u9DX0pEaINXC8b\nh2d6NJTO/ytfUVGp1D42Q0PB2QEAmJioNROPjlq44or5gY8bGSlh6VIJp09XlS4ef/xYL07Zw1Qu\nsv1o4p5qisWiO5sgDLHYCPoNDbWkLDTp95O8ZLPP9ebLrvf0DfD/1+erkDQJzKx9/mRFws7fvqHr\nc87lcq7DMsgb/E4p/I+PQY16N/sE/z1fHqTotWqB2FDc/V00U62BP/5HH+n6vHot7UnH5DPCgyRp\nWiqVGvYQLFy4EBs3bsTExATOnj2LDRs24H3vex8AYMmSJchmszj//PMBAPfddx9OnDiBXC6HvXv3\n4u677x74CdC9ZmYU9A0AvJwoRURJziufz3s2Pe3wv//3GZRKwR8k2wYikRSALGQZuOqqCE6ePIul\nS2N45ZUJrF9v46mnjuH971/c8vM1KmmwLAv5fB6qqiKTycxKQ94NjiPhZz/zfmROnQqWnEsmgZER\nr7rQ3r0WZLnaTMyzZImOSmXC/f6JJ47hE59Y1ZuTHgCCZGDps2OaJkqlkisDy/9LTMVCE6Qy1CxD\nQItNELTYEPfdd59oIha0BTkD/HpDze6tqPTw9luJybCNmuGRtHrbriU0yIqE0kS5pfMLKgelMlNS\nLet0DRnEIAGPVa4GgtSoBrviDQopmgxFk105Ur/DoEZm7iZzECRN+fdcswyBoD1EhqAFyDD7h4zl\n89XSjnZq+HkqFYaHHw6WpCS2bi3jyivn49JLbbz00n4cODCOl146BUWxAIzjU59a38kleaDGL5Kt\nC5pf0M1wGL7xup/j4/vNN78ZwenTtY9MOm1jz57gmspVqxxYlvc6T5608Y53ZOoeWyrlkEzWFvj1\n609hYiK8UXnQaDcl7Jc65fsQLMsKHZbWbwfVXzLUSQ+BQNALSLWO1hvKSkej0bYkO9Wk4m7+lZjs\nfunzaoGNyJAGPVn7Xosq2PFbv97ROedyObdJ1d831o7d5weuDeJ6ocWq671dsaDoKtSoBj2h+x6j\nBf6fpxelQtNFM0lTvrSoX7a7k6ZiQTjCIWgA3ysAwI1a0uaZhnJ1Wm/5xBMmCoU4rr12XsPHpVIO\ntmw54X5fLju45JJFAIDDh0/jzjtfaut5eQNL6V1+TkKvKZVKrmGg5iRSyxiEJqVW+dGPYgBqhu1t\nbyvXRfuJSCR46rBleReNSy+N4Y03xnHwYG3Comk6eP754GFms5EgByEajUKWZViW5So88Q5CP6Xs\nAOEQCKYHWnP8SkKGYUDTtLbWmtevXQcA0DjFOoXrY1J8PU3MduBMTlS3y+GlkEHwcxC6nVnAKxP1\nS/GmG/J/8cdgk4Zfi3vXS79TANScAT2hQ9FVRFK1+yOrChRN8Uw5nqn4lZkog0Alb91OhCb8GYJe\nzMgQVBEOQQj+IWM0CTKbzcI0TWQyGUQika7e3D/8YQlnzzpYv97GddcF15e/610qnn32MC6//C2e\nn+/YkYeuV1++++/fhmefDZ5R4Iff9JAiUq8ah/3QwibLshsFjsfj0DTNvZ+GYQRGgweNxx+XMTbm\n/bhEIo3kRoMzP1u3lrB8ea02XZKqjsCJE2VccEHK/fnPf36kZ/dkqgaH9Qq/g0ARoKBhaf2KIgqH\nQDDVkDNAaw5QLV2jYE03jb6RjO46AFpcgTwpgxzJ1G9gbdOBrCl443c+0NKxK5UK8vl83RyETqCJ\n6fwcFOrJo/4jsoudihP0G3ISZFVpmCWQVe/rGRtKYOyz/2/H19ZLul0zeGUmCpwCcIVYSqVSTxy8\nUqnUtNdL0DrCIfDBZwUcx3GNcKlUQjabRSQSqVN26ORNffKkheefr9Wfv/CCWZcpSKdl7Nt3BABQ\nLntr17NZC5dddi4AoFg0ceutv4Rtt7Zx5BuHk8lkzycO8/MRqNaQb1CiDV/Q4KtBdRD++q81FAo1\nh+mKK2xYlo10WsLb3ibj2msV0FvinHOAw4cLocc6//zqRnPZsghef/20+/NzzqnVrD/33Gk3Qh5W\nQjMo9NvhoPdM0LA0moXQ7bA0kSEQTCd8iQyV1+RyOTDGPM5AO+9rNapCT2ie7/l/6XeSUj12dF4U\nkZSOaCYCNaLAseyGx+eHoqVSqa7lOEmcQ1EUN2hEz6MoSuik3am2iWahGsTRE+HOjz9z4EeNqJ5y\nodhQzdb4S25avbZBDvxIkuQGBGkidC8kTUWGoLcIh4DDnxWgRq5cLodyuYx0Ou3xdrv58P3kJwXY\nPnu7aZONt761FrFZuxY4fbpaLrF9exYXX+zNIuRytcXh6NEc/uzPnm/6vHSNjLG2FZFaWYwoi0Lz\nEYKiWvyxwibjDtJmeGIC2L1bAWMSZJnhqqss7N7N8MorDNmshN27gfXrGS66SEE6DSxf3ngh3bu3\nmo4//3zvvTlzppamP3y4gEOHSnUlNGFO03RHlKaSZsPS/LMQOnEQOp1DIBC0S5iSkKqqnn6uTtcb\ncgCCoExBdF5tU2WbNRu7//++MfDvSBigUqm0NMCs2fpBWYZEItEwU+0vSwmSw+z3GkHqQhTh1xMR\n96uVoWO82lAQ/pIbsve9KrmZDvj3Lk2E7lTS1D+HQGQIeodwCFBTEOKNMlBNb1FJTbPhL+3yyCP1\nWvOlEqDr1U3I0JCCzZsPeX4/b55X9WTnzgksWVKVJbUshoce2okTJ4Ij01SXWSqVoChKYONwt5TL\nZTeL0ul8BNrshdWTT4eD8OUvq6j6TQxve5uNjRsVrFxp1vUP7NjBsGSJAlkOzw4AwIkTFtauzWBk\n5LTn57t355DhUvjPPFPtG+FLaMKyKpSGnY0OQiuRL79Tyc9C4B2EMIk8//etTioWCLqBnAHGmGvj\nstlsYGMu0HqGYNv710FPVDeeiiZDi1bXrti8WuRamRxS5p+qCwDMYVB01VXT8Z9DoVC1cc028K1A\nn89UKuWKc7RynUFymLSBDtpY9mK9m/jCx6rHmlzb1Ih3c8/3EOiJ2mwC+nlikVdGHABiC9KQFG8f\ngX+KMEXBSeqzVyU3043/NaQy7Favs1wuiwxBD5nzDgGvgEObUTJ4hmH0VIufOH3axoYNpcDfjYxY\nuPrqDC65REI+75W03LIli1TKG9FfvryWNTAMB7fe+mzdMfnGYdpI9hIaQkP3y59F6cZoNWs49TsI\n/eCxxxSYpgRVtTAyUr138Xjwc+3YwRCNNlcImj9fx5kz3veA4wCrVtXKxsIai8OyKo0chH4yiKnq\noFkI/lpkv4Y2fw2O48w5DWrB1MIrCcmy7ImSB21y2v2MSbIMLR6cAY7Nj/keW39sx7LrNrx8KZMs\ny11/7kulEgzDaCnL0Aj/Btq/saRgX6820I1KgvSE7jpbYUTS1ai2v48gCH6KcCKRcDPoZMeo5KaX\nzsF02HT/tOSw6+SDtkJ2tLfMWYeAsgITExMolUpunTI12tKQsW5ToUE88UQhVJ0GAI4ckXDw4Jt1\nPy8WbVx66bDnZ2+8keO+k/H44/tw/HjtZ3Q9qqq6jcOdGI6w66R7CKCl+9UtzRwEAD0dljIyAoyN\nyTAMBsuqbRDHxoJVON7yFuDZZ0u47LLGaUzLMqEo9QaX34T+6lejcJzWImWNHARqVJypGYReLE6N\nhqXxqlebN2/Gv/7rv7oyqAJBr6Eg1NjYmPszcuL5KHnY37YLOQWUJeA3q7GhqFs2BADRdATRdASR\nVNStcT/2J78HAG4pUy8yzNRnViqVei5o4d9YUoCKGpa7ia6rUZ+0aCIKLR6BlgiOUjdyHBS93lmL\nDiVhfOWTDc+BMujUU6Gqqrv2kdDCIPWZdWK/+UoBstd0nTT34OGHH27aQ7Bu3TrEYjGk02mkUilc\ndNFFoY/9xje+gXPPPRfz5s3DH/3RH/UtwDjIzEmHgJd24zdHfKNtK1MgO+VnP2tcUnLeeRKWLQse\ninTmjPeDPjpawiWX8E6CjE984tm6xuGg9HM3UPSl0ewCnn7dS7+DAMDdzFHTUjcOwl/+pYZUygHA\nQJKjmuZg375gg7tsWfXnJ07IiEaDrzkalbB58ylccslQ3e/27Su6/x8fr2DbtrG6xzTD7yBomuYO\njAnKIMzUutRu4B0Ecp5UVcWZM2fwwAMPYMOGDXj729+OW2+9Ff/yL/8SeAyx2AjahdYe2pwCcMtb\nmkXJu7Whii/aL2veTXg0Xdu8kqymGtVglS23N0zTtI7XErIxtDaRelKYM9ALm8SvD2QH+ahzO4pF\nxlf/tJo1iVXvE/1L8E4B7who8QjUqO5xJmSt+lpEMo2HHzaD76kA4PZRUT3+TO474KHSIrLVsizj\n1Vdfxb/927/hQx/6ED7zmc/gtddeC/y7+++/H9lsFrlcDrt27Qo8/pNPPol7770Xv/jFL3Do0CHs\n27cPd999d1+v6S2SxiRJavZ1sK8n4WPOOQS2bbsfEto42baNiYkJV9GhHbWEdjIE1dIaA7/4RbBG\nfe1xWRw4EBxBHhnJY/nylOdn6TSfMlPw9NMHsGfPiY6upxUcx0E+n3cbrfsxu6AbwoZedeIgvPCC\ngqozUFu0LrjARCm44guqWp1Z8eabDq64IhX4mEsuiSCft5EIUKkYHS1j2bLa373wwmjji20Bv0oP\npZ3JQaC0eqdNuINYMtQJiqLghhtuwE9+8hNcfvnleOCBB7By5UqsXx88/G+QFxvB4OFXEgKAfD4P\nx3G6lhXln2PkQ7/hfk/ZAMoSKBEVelJvaVquY9WCHmN3/GFoX0Mr0N9QealfPSnosf1AkqTQQVrd\nKhZJsuRxEvzZAWo4ji2o7yMAgMhQ8HrRDv56fACesqnZ0HcAVK/za1/7Gq677jr83d/9HdLpNLZv\n3x742Fau98EHH8THPvYxrF69GplMBnfddRf+6Z/+qden7WEUFv6/2KqGXwCW9fUkfMwZh4AiM5VK\ntb6bDBH9LB6Pd9QI26pDQHX8GzYUkc2GP35oSMbmzSdx7FgZV101HPiYJUu88qQ7dkxAUei8JTgO\nw+c//zISiUTd9XRb089LwzWK7vBMtQHiny+oxKhVB2HjRgnj4xKyWe89XLAgPLo7OlqL8G/bZiOd\nrn8/qWr17/fuDfYqFi+uNbP2a0CZX6UnFou50aVeyHj2kumqZ73iiitw++2342/+5m9CHzeoi41g\nsAhSEgKqn8NWy2+a2W4qwwHgNrM2gjICkiwhNi/m6SNgk6WK1EdQnijUlWa0u5ZQ/4EkSX0RtWgX\nv2KRpmkNFYskSYIaj0CSZUiK7N6juuNObvyViD75b+PXQVYVyKpSvR89cArpXIPKplrNjPTS5vbT\nfpdKJVx11VW4++67cfPNNwc+5o477sDw8DCuu+46PPfcc4GP2bFjB9auXet+v3btWoyOjnrK+vqB\nElMafk01c8Ih4CceUrSU1BwYY9B1vWHdZrfwA8A2bWr8wbj4YsCenBZ55kzwY44c8TatTkyYuPTS\nRdxPVDz99GGUSu1Nm2yGbdvI5/NudKXVRWyQaMdB+Na3ZEQiNhjzfkxMM1hWNJUC9u2rlYNNTDC8\n/e3elLCiACMjZwEAo6MVrF6dqTtOhXt5N2w41fJ8iTDaVenxy3gOmoPQD/zTu1sNDAzyYiMYDPxK\nQlR+I0mSR4ChGyjybk9qWUsB719yEPhGYX/TMA/1ENim01Qqs5XzK5fLUBSlr+W4ncI3JQcpFpXL\nZfdxhJ4M7h+gciCgVlakRLQ6x0BPxdym4kimf4pm/Jo3KLMcuoG31c0Gk917773Yv38/jh07hltu\nuQU33XQTDhw4UPe4fD6PTKa2FqfTadeB7SdKTG74NdXMaoeAHzIG1LIChmEgl8shGo12Xe7SKEpC\nRpqaxWKxGJ580sI73xnHOecEe3+53IT7/927i1i9el7dYw4eLOLCC70bSZ0z2KqqwjRt3H33hk4u\nqQ6KmtDsgm6dp26zFM2O3e7jwxyEX/1KQVBJ79GjwQ7BW9/K4L+s3btt6HrtnFavjmB8vLbjX7Cg\n3pjt3VtzKrJZE9u3B0897iftOAizRcWInqNQKLSkXDHoi41g+glSEsrlcu6muJ33dZjdpGZfSZKQ\nSnnLTsgJoA19JMnVsU9GsvkBWQAQG4ojNlS1S3xz8enPBUdgm0FNoDRcrJVrns6AQ5BikXT/Fzzn\npCW994wvD1J0zc0O+OGdArlBKa99/x2dnn5TWpnlwBgb6KAPvYcqlUrDkugrr7zSzf7cfPPNuPba\na/H444/XPS6ZTCKbzbrfk7CM//PUa2RVavg11cxah8A/ZIxUBkh+k2rfexWd8WOaZp1aUT7v4NVX\nK3jtNRuAhuXLvU7B0JCM7du92vTz5wdHDhYt8kae9+41QJdiWdVI1EMPjdT9Xbub8Uql4g7JkWW5\nJ3Wugww5CLt36zh7VoJled8fCxaYOH48+P6lUvWlRKdOMVx2We01HBpivt/XZ3HGx01ceGGtznTD\nhlNtXUM/CHIQSOefIqAzOYPAn2+rU4oHfbERTB+8cAWtP/xUX5re3u3nhG/2JSeDyoXc/gGudIgc\ng6Apu5IsI74guMlVieh1Q7daOX/KxKuqClVV215vKRgwXfaE1gOeUEUhzknw3yu/A8FnXHRfdiAy\nvz5r3C/8vWW6rrv3ulQq9aQpuZ8BnV451WvWrMHrr7/ufr9lyxa85S1vwdBQvfBHLxEZgj7DZwX4\n1D8NzdI0zSNz1q2x8b8ZqY6TSmv49Oj69WVMCkvgxAmGSkVFJsNHj6U6mcktW/JIp+s94KNHvWVD\nZ86UsWZNrWxIVTWcPl3Ej39c7xS0Aq9SRLMF5hL/63+pcBwFhuF9fZcvDy/DyuWKgT8fG6sd48QJ\nb1R4z54iFi6sX5yHh2uLxEsvTb9D4EeWZVelh2pVgwaBzSQHgT6nxWKxI23rQVtsBNMDrUEUjALg\n1m13o7fvf38FDTHb959/y/09TdQNQtGr65+erNr1ID18UhpyrGpG1C63p4xlmqabDWn3mtvd6PUb\nWVHqVIWC8G/8/a9BK5OMO6EXw9d45TUA7r9kzwdlGJrfwQi75omJCTz11FOuU/ODH/wAL7zwAj74\nwQ/WPfbmm2/GP/zDP2DXrl0YGxvDPffcgz/8wz/s2zUQkiI1/JpqZpVD4M8KyLLsKuKQ3rF/yFgv\nHAL6e4rW2LYdWFrz/PNlz/fHjwMrVuhcZL9+enGx6OCSSxbU/fzw4VKd2tDChQm3J6lSqZ7T3/7t\nlrq/bXa9dB2kBNHtbIHpNiCdsH69PFku5P2IxGLBDoEkAQcOBMvJ7t5t48ILI1i0SMXevVnP7xgD\nVq6sjwiVSrV71m2GoN8lN3T8oEFgvXAQpqJkiD+fQqHQNEMwExYbwdQTpiRk23adCEM3aw9feuQP\n1kRS7QVvXPWbofryRWqcZbYNJaJh4st/0vL55fN5JJPJjkpMB2nNkP7PX7r/VxMxz//peylgo69O\nlhFROZES1d1SIj1dy8TImgZpsrE4umAeIA3GtoxvSo7H45Bl2e2zG4S+g2ZlTaZp4s4778Tw8DAW\nLVqEb3/72/jpT3+KlStX4siRI0in0zh69CgA4AMf+AA+97nP4dd+7dewYsUKXHDBBfjiF7/Y92tQ\nNLnh11TT3ylSUwRjzB3ABNSiC9RRH4lE+qpqQJr8hmEgFouFliKtX18/wXbLFuDd747i1VdL2LUr\neOOXr/cTAACLF6dx8GAO73znfBQKBvbvH4MkUX27PHn8UeRyZaRSk4oSDe4Bbd4Mw0A8HnfT2t0w\nneneTnn2WQknT8pIJh3k894PZT4f3D+wdClw6FDw7wBg4UId8+dXcCrgJbbt+sVk//6ac3HyZAn7\n9uVwwQWDW2Lif5+Qg0DOJH1GSfaXJgHTVy+mnnYLH81t5hDQYvPGG29AURSsXr3as9isWbMGO3fu\nxPnnn+9ZbEqlEj7ykY9MyWIjmFooIMWXueRyuZ4M8gJqtpTWmlQqVRes8UtdUoSaV8SJL0jCNKpr\nkRpRYZXDs56RTAJmoSaTbZeaT2FvdH6tMN12wI8zqTEtKQqccsXdwBNaKg5JkmEWq/dJjUXg2OFr\nQSsETY6eTmhIGFAb6kr9MZQtprJiP9RM3ytazRAsXLgQGzduDPzdkiVLPGWcAHDbbbfhtttu69l5\ntoKkDIbzR8x4h4AiMiTnRpJuhUIBlmUhmUw2bDrpxYaVmsYayXAaBsOmTcHGdM8e4LLLNGzcGGyY\nt20r4JxzojhxwitTeeqUjeuuW4QXXjji/mzp0hQOH84CsAHIqFRs/NVfvYSvfOX6htdAw0yCIlnd\nQq+RaZpQVXXgHYTvfU8B3Ts/Bw8GG/pzz7Vx6FD4MXfscLB6dTnwd/v21c+lGBszsWJFEgcO5BGP\nK9i8+cxAOwTNaNVBkGXZdRJ47fJ+9q7434+GYTR1CGbCYiOYOnhngKam5/N5RCKRUCWhTmQ7qam/\nmY3WE7q70Q+Tx0wsSsGuVB8TG0rAsezJjagMPVWLhOupOBRdRSVfckuMgs6fMeZmAYPOr91rpXV1\n2pFlKLEI7HIFaiIGp9L4vjajJkeqQ5+XgmNWj6cPZcA4R8K+/w4ot/5Vlyffe6jvgDLANGTPMCYd\nIs456PfrNxDvjy6YjixAIwbrbNqAvNR8Pu8qLJB0JH2fyWSaDuXqNm3bijMAAK+8UkHYcNLTpxnm\nzw+PKDAGrFhRP8xkaEjFnj1ebdJly+rLTx57bK/7/6Dr5e9Z2HV0ep/8Sk90z2gjOAg1iX42bSKH\nwPvz886rQNeB886r/xtZbhw5y2YZJCk4vXr2rIkLLqhv5jv33CQ0TcbKlXE899zxVk9/RhBWYgTA\nzeyR3B8/Tbzf5wS0liEQCAjLsjA+Po5SqeSWVdAEd3+JaqdQZoDKOJsFbPhadWoq5puLtZhe9/hG\n9e2O5SA6OTir+PVPB55fsVgMnT7czj0gZ4A2m1SCNd0lKs3Q4jHIk9etxasOlRKLVkuLYhH3ZwAg\nh6gQeY43v15hcCpopx/Br8hE5WvlchnFYhGlUqmn9nvQ9grdIitSw68pP58pf8YeQRtNfqNaKBQC\nm3kb0clGl2+4pZHozZ7rpZeCo8PE0aMGFi4Md178pSbnnx/F1q0ncMEF8z0/z+V4x0ICwHDsWB4v\nvngs8DoMw2j7nrUKL7lHyhok40YRX9r8DUoD6pNPSjh5UpncvNc+HldfbWHlyjJGRyUcPy5h8WIJ\nV11V+/2ZM42nTy9bpqLRWjY8XF+/a1nAVVcNYevWM9i4cfAai4le1PgHOQiUoqboa7+mbfqP1arK\nkEDAr0NAtVyGauebSVq3uvbQUEv6m7Bs2Yk//ajne15JKMgpCIPXxGeOUxtSZppQYvX9CbQeUna5\nm2weL1FK2RUqXW00NKxfyD/8a5Dh5q9djcegJeN1pT18j0GY9KiWrg/+6EPeQJ46b+qUhnoFKTKR\nDY/FYm4fZ6VScfsOemG7qRJkpmcIZE1p+OVHkqRfSpJkSJKUlSQpJ0nSrrBjS5L0aUmS3pQkaVyS\npL+XJKnph3/GOgSUEaA3BjXB9kInvxGWZWFiYsLTcNvKG/zll8MjyENDEnbsGMdFFwWPNAeqsqJL\nl9YMyfz5DIZho+zzM3buHEMiwb/uEkzTwe23P+t5HC0ypmn2/J6Ro5HL5aBpWp3cHL1u/WhA7ZaH\nHlLAmIxo1AEgQdMY3vUuCy+9JHsGkh07BmzcyHD11RKiUW/NfxCLF0vYtq2EZDI4CpfPB0nXOli/\n/k0AwMjIOM6eNTrO0sw0w8k7CLTI0HvUn0HohYPA3x+RIRC0Cr9Br1QqbjlPs8w0/W2rAg+qqjYc\nwEToCa8dp8Fj1FvgzwIouor4wlopYisDspxyxT1/WkcYY0ilUl3ZGZIFVxTFE2Sje+wfGjYVzgGr\nVCD7mrbVZO11UOMxqHGfpGiD6D//O3XSMZA1FVAUSKoCidQPJ99Trdq1QbTx1HdA9ltVVc8wtG5f\nt3K53PUcqelGkqWGXwEwALcyxtKMsRRj7KLA40rSBwB8DsCvAVgG4AIAX2p2PjPWISAotUjGot3o\nRKtRGn6TG4vFkEwm23qujRvDHYILL5TAGLBpUxnz5oW3dSxbVnUYrrhiHrZurZYK7do1AV2vGflK\nxcHFFy/k/koG4ODgwSy2bDnhXi9NTk6lUi1dRzvRrHw+79aRBjWV+Y/VT4Wadtm4sXovTdMBwPCO\nd0YPFCYAACAASURBVFh4+eXq/cnl6o3XSy8BV19twzSb6XFXUCoxrFkT7PTt3m0gEqm9DrIM5PMl\nnHNOdbFhDHjxxTcHKpsylTTKIHTrIAT1ECSTwXrsAkEQVM7Sy/6rIFnRZkiy7Gks9jsA1GQcpqVf\nPYZUN+mYJEiZZUOO6Ch/+3+4ZUy9aJqma43FYg2DbHyJCq+bbxgGCoVCT3TzecgZkKkEKB4gRxyy\nfpKjoDSQ7JYCHEe+VGgqB0D2E+o7oGFomqZ5nLpWXzf+9yTiMpPpUGWolQ/azQD+gTE2whibAPBl\nAE2l7WasQ8AYcyU+AXQ9ZKzRG5EfaJbJZDxeaSsb5X37LJw6Ff5h1vWqs1AsMlx0UXiE5tQpG5IE\njI/XtOwLBQtr1nhlSXXdmyEAgFyugk9/+hkUi1Wt/GQy2bP6VoJ6ERRF6Wph9G/+/FNyqTaRFuFe\nGf/t24Hjx6vnbFkSFi2y8cortWs4fDj4eSoVC9dc0zh6t39/tcnUNIM/cuUy80yfvvLKIezZk8WS\nJTUHYsuW7EBlU4ipkjXlCXIQyAaQNF47DoI/Q9BKNFYgoHUIADRNaytI1GjtCJIVbae81ZW61FX3\n/34FIlmrD9b4HYjoUAqRyS8eu1wViWh1+nCjc+fnFbSzjvttAN0nWiN64Rw4k41/TqkMWVPBLNvT\n+EsoiZirPKTw0qScU6C0MMfAT/pn367bPPfb1vfangepAvFOHe2n+Netkc2mYxmGMePnI0my3PAr\nhL+SJGlUkqQXJEkKU4tZA+B17vvXAQxLktRw+M2MVRmSJAnxeByKomB8fLyr44RB6jg0qCjIWLVi\npF95pXHDKT+s6vBhBllGYL35yEgR69YtxC9/edDz82TS+6E4fNivUyrBshxs2nQSb76Zw/z5etez\nBXgoUlQqlTyR215BE5IpDe84jqtQU5ns/CVlmm6M5Pe+p4Ix+hAynDpVe60XL7Zw7Fjwe4WxCjZv\ntrFihYYDB+o7x5ctU3HoUPU8d+woIR5XUCzWLyrz5k1Go2Tg+PHqe0Lj6gg3bhztSM5zLkD1q+SE\nkiILNSNSwyd/b3gVI55isSgyBIKWoHWIZBh7Acl2NlPI86MlYrCMsrup56fh8qhRDWpUh1WqQE/F\nYVdMSIqMaCYBZtXsUnRBxrMQaekkHNOCY1qILJgHy1fa0wmU3Wt0ra2ssfznn0qKyCYyxjoKTimP\nfQMOAMgSlEQczK8y4UOO6G45lb9pmMo/1HSy9hhdh1OpQM2kXcdDmZcBfA4H2Xve1pcmpVD5tWAm\nEva6UUZEVVUoihI45bpcLs+KDEGbfA7ATgAVAP8FwL9LkrSWMXbA97gkgAnu+yyq0eEUgLGwg8/Y\n3YIkSR6d/G42gkEGxz/QLEw6rhVefTXckMybB+zdW3MIjh2z8c53hjcUKUr9dR45UvR9X8CSJXxE\np/oyq6qCv/zLV1s869boZy9CGOQcUCo9FotBURQ3W2QYhieD0CrPP181rKpKBrn2ep97bvhif/q0\niVIJSKWCr33x4tpxymWGNWuC5UPHx6vnevnlQzhyJD957FqTyGuvna57nwZlUyiDUCqV3GY/+pqJ\nJUadnDMtNLquu2nqsAyC7VuARVOxoB06ndcSJNtJ2c+gPoRW1jq+FKjVqbiK3tzpoMZiJaJDz6Tg\nlCuI/fhrLR0/DMpwplKpthyfZvCffb65leQx25m4K/s2nHI8BiWRgByPuWVE7u801XUE3GxBQFZA\njuhQU60FHJRMrXwoLCNCs4NIeXEm2nig/nWjgC/fd2ByUo2zI0Pg7Rl45cw47n/jgPvlhzH2CmOs\nwBgzGWMPAlgP4LfqHgjkAfD1yRlU+w9yAY91mbEOAdEPh8A0TUxMTECW5aaTeluJXjRyCJYvr/9b\n2w5+vgsuiOHMmXq1ooMHCzj3XO8GZunSmiGJTSpLGIaFxx/f2/EGC0DgfVJVtWEvQj8NFDWckYMA\nwFUxsiwLxWLRrS1tZCzPngUOHqTocnWGA08kEuwQ6DrDwYNVI7V1q4Urr6yPWNi2N2sgy8EL9Z49\nRUQiMorF2ryJ/fvziMWq74eJCRNvvDER+Le1Y8vuopFIJNx0PpVb9brEqB2Jum7ohYpRmINg2zYc\nx8GBAwdw2223YXx83NXUbsaePXsQi8Vw8803B/7++9//PlRVRTqdRiqVQjqdxvPPP9/VtQgGj27k\nq4GaUk+YbGczznz+v7n/9/cHKBENSkSDOrk51biSFnkyixDJeDeo/hIhAG6pDLNtyNEopICSo1Yx\nDAOGYTRdX3sBNbeSwEXQxN2g106SZYCxOqfA/b0kQ/EFDqgMS+YCY0osUteYXHeOkw6RJMuAogAt\nlGDxij5kyyjj0o7T0286LUGidZ3sNZUNM8bw2GOP4aGHHmppDRtkG01yv/R19bkL8advv9D9agGG\n4J6CHQDWct+/A8BJxlhodgCYBQ4B0LvNCBllSmH2QobTshhKpfA3bCwWNL3YwDnn1Eebzz1Xxo4d\nWaRS9dGUFSu8msXlci0ybhg2ZLnauDwxYeIHP3ijnUuogyJZJK/XqIZ0qpUPyEHgN36U3WlUW/63\nf6vAtiUoigPbrn+9isXgTMOKFZZnvsTx44B/fTt61OuUj4xUoKr196VcdvDudy/Cjh21z6xlMaxc\nWcsYvfpqe/KjNBxG13XXQeD7MQahB2E64B0ETdOgKAoSiQSWLFmC7du346abbsKaNWtw66234syZ\nM6HH+dSnPoWrrrqq4XNdc801yGazyOVyyGazeO9739vryxFMM504BPQ3jDFXqaeZbGe7z6P6ItS8\nyo2eru+TkVQF0YXzagonDc6lWQmN57jctZL9TaVSPR2A2ep58GuDX/mmkSymHJI1VBLxwH4MfwOy\nHI16HAUAUNIpd8FQ53t7AZV5Dcu9vceetPN8ZL0VpyeIQVQsoqZkKlFbtmwZTp8+jUceeQQXXngh\nPvvZz4ZWAwyyjW5HZUiSpIwkSe+XJCkiSZIiSdL/A+A6AD8POPSDAD4mSdJFk30DdwL4p2bnM6Md\nAl6WrNsMAakckFJEqynMZs+9a5eFLVsYLr88gkym/kM2Nlas+xljEi680BuhiURkbNs2CtNkuPji\n+XV/Y1neY4+MjEPm3lCOU/1/LKbj7/9+e8f3i0qELMtqafDbdNNq6cgTT1QXpnicIRarf52OHg02\nNgsWeMtNjh1zcMUVtYV2eFjBsWPeCdMTEzZWrw5OGQc5CplMbVF/9dXTIVfaGnw2pZmDMFUDwZox\nVU3Lw8PD+MxnPoMlS5Zg9+7dePDBB7Fy5crQfoIf/vCHGBoawq//+q/37dwEsxtqSu5WqUdLRD0b\nCC0RDdyk8vjlMeWwzTm30XLVhiajIPpj32j5HMkZaCULMhV2x698o6oqbNtGoVCA9vQ/QuI273Is\nRGRg8p7TYyVVg9Kkrp13CoJUhgBAnjefTrLVy6n9bUBkna5rKmc49AtZlnH55Zfj93//93Hbbbfh\nxz/+Md761rcGOtKDbqP9GQL/lw8NwD0ARgGcAvBJAB9ijO2VJGmJVJ1NcD4AMMaeBHAvgF8AOABg\nH4AvNj2fnl3ZNNKNQ8BHLaLRaNtyos2e+7XXqoZz0yYb8+apWMgpgup6tSQkiMOHvRvNtWsTmJgw\nJ5+z3tDv2ZPzLCb5vIVVq3jHgbSybezePYbR0ca6+WFks9m25EoHjSAHoVKJ4NAhBYCDXE6GYXiN\n8MKFdt1gOIKx+ibi48eZG1hbtix40eM3+UQkIiObrS8JM4ya8e7EIWj0/mzkIBiG0VTRaRCjSZ3A\nX4NhGMhkMrj88stx++23B2pdZ7NZ3H333fj617/e1PZs3rwZw8PDWL16Ne65554ZvRgL6pEm56q0\nuwaRaAXVTLckK9rgefhSIM/PJ9WFSHLUj55JuKVDgb8fykDPpKAPZaBlamXJkq5Xy1tagG+IbSUL\nMtWQc0B2kJBjMUiKCmaZ7qZfTiTqSoWAqjMQBJUcyYnOlMu0J77b0d8B9ddFjbtk26ciM9yvNaJU\nKiEej+Oyyy7DJz7xibrfzwQb3Y7sKGPsNGPsKsZYhjE2nzF2DWPs2cnfHWHV2QRHucd/kzF2DmNs\nHmPsj1jQZsXHzNvRBdCpQ0ByooyxUBWhbtm8uVZ7fugQw/CwDtpfrFypoFIJPu9Dh0ysWVOLTDJW\nS8++8Uau7jzHxioe2UoAWLiQN1rVx1fLYST8z/+5vuVrIIcJABKJRMdypfzfDELkGaie0/e+p6FQ\nkKEoDLJsw1+St3hxeGr8zJn6z9jhww4uv7y6COh6cO/BiRP1P1+7Nolt27JQVe/H8tChmvO2Y8cY\nisX21Uxafb38DgLfsN2Kg9BrpuJ94n8O2qQ14q677sItt9yC8847r+Hjrr/+emzfvh2jo6N49NFH\n8fDDD+O+++7r+pwFg0c771VSvlIUpafyzzrXC6Alom4/Ae8UKBHvxlXmotSRed7MND9B120s5jbD\nrZQNkcABgLaGl01XoMHzvJLXFvOZAn8Jkb+nQo5GAvsPpIgOyZ+dSYUPJe0VvNwn9R3Qa9MrmdZ+\nwzsXzeYQzAQb3aHsaN+Y0Q5BNxvMcrnsRru7kWds5IwwxrBpkzfiu3OngyuuqBpnf7mJn6GhqjFP\nJhVs3VoLUY+NmVi9ul6JaHjYW9qQzfo3jtX7lU5H8NhjIw2fm6BJmaTE0m4DWND9GbSI8r//e/Wa\nHEcJjAwkEsHRAkVhrpyoH8oynD0b3Jy6b18F55zjjTzbtgnDsHHhhd7F4fTpMs47LzH5GIbNm7sr\nG1q/voQ77xzDj340gQMHmkjpNVB0IjUnxljfHYSpblpuZA+2bNmC//iP/8Btt93W9LjLly/HsmXL\nAABr1qzBXXfdhUceeaS7kxUMHO28P8vlMvL5PKLRaE8Gafq/V0MyBQDcSbhaqnG0WgqL/LOqLVSS\nCTDTgqTrcB79euhxqMSUersGzfaHYnvXTjnObf5ZbT0I6yuoUyCKBqgNBSgNSaoGeWhB3c/b4fn5\nV7hf6xcH1877m5J5xSKy6YPSlBxGI4dgpthoWZUbfk01M1fAlqMdI0MDPizLQiqVcuvrulWICHqe\nfL6A7dvrN/3r19u49FINlUpwuRCxe3cFsgxcckkcL73kbWxcsCAOwDt/IZ/3blx37x6HriuoVOgc\nZAA2ymUH5XIFL754FO9+9/mhz0+KBdFoFNFotKt5D4OKbQOHDsmIxx0UiyqqTfteLCvYIVi61MSB\nemUwAMD27TZWr9axd2/45n3FigROnKg6jJmMgq1bzwIAFiyIwf/ann9+AsePVzMFr712Btdee06T\nK6vn+HELN9xwFkePVlBVH2OQJOCTn5yPe+55i6fnJAgqjSAngRYNSjv7Z0KQ1v+M2QS0yHPPPYdD\nhw5h6dKlYIwhn8/Dtm3s3LkTr77aXNZ3kBdZQWe0kqWmaCw11JIj3Q2MMRjfuL3u59Q/oER1WAUD\nSiwK2yjVPc7TZDyZHZABOJaNyIJ51ayAbzAOs21IqgIlnQazrVDngZwBVVWhaZqbJRh0tOf+GYhE\nAaO1slolnYZTqD5WjscCB5cRUjQCSdPqMytUbkR/K0sA1KpjkmneXMwYw5aL3weLCwKq6ep7YMPy\nq6GlFFy5LbgqwD/DpVKpDp1rZRZAK+fVS/jjlctlzJs3L/BxM8VGT0cWoBGDdTYd0mrJEE3SlSQJ\nmUzGjXZ304MQ9AGh59m7lyFMvXB83DuQLIjRURuXXJIKrFM/fbr+Z2+8kYWu14yzYdhYvbq+j6Bc\ndhCJqPjSl34V+LyktkQDmiil3W3z9iDy0EMySqXqV5X613N0NNghGB5uXGc4PKzBNMPvl2nWnmvV\nqhhMs3o8w6j/Gz4zs2lTexmC48cZvvKVMq69dmLSGciCHB/GgG996yz+/M9PtnVMAJ6oX1gGwV9i\n1C5T0aPAP0crMqp/8id/gn379mHLli14/fXX8fGPfxw33ngjnnrqqbrH/vznP8fo6CgAYGRkBPfc\ncw8+/OEP9+EqBIMMlV1WKpWupDZ5G0wbbqA+KyBzswXod0osCiXqLVXR0rUodViDq4vv88tsq1pC\nE1A7T5nldvojBo5oNYsixQOyAFLvtk7ygkW1b9K+zH+mXkAkDGY6kDQJkiYhvjwKfb4KLaVAS7Wn\n5ESDQBvNAmjXlvfy9adjlUql0DkEM8VGt9lU3P/zmfJn7APNNqq8TGY8Hu+JnGjQc/ifZ8+ecAOb\nzwNLlzYf4pVOR7BjR/0GcPfuPDIZ7/ENw8aqVd5oQiYTnBq2LODll4/Btr0fbDLk7aottcIgOhMP\nP6xA1xkcRwbgwO8QRKMOjhwJPm9VbVzLb1k2YrHwj9ju3WUoSvX5KpWag7dvX31kamysFlF67bXW\nHYKvftXEu94Vxb33RnDmTAZr1mjIZKrnNDys4NprVZx3XgGPPXYETz4ZLq/ZCv6ZEEEOAmlkd+og\n9IN235fRaBTDw8PuVzKZRDQaxfz583HkyBGk02kcPVrt7XrmmWdw6aWXIpVK4cYbb8RHPvIR3HHH\nHf24DME00SxYQhFKsqlUJtRNgIWcAYrqSrLscQpkTa3b/BNKVK9XGPLZeW0ofDgmAM9EY1QqYM98\n3/3WsizkcjlEo9GO+yOmda2QpGqkJOhX8QSkRKrOSZATCdehcpuIY/Ha12RpkZysZmGkdgZ4tuB8\nvLzsGjhW7ZyViAwlIkPPqFBiMpSYjK3vXdf6c04SplhULBanXbHIMAzE48H7mxljoyWp8dcUM6NL\nhlrpIbBtG/l8HrIsI5PJBNZs9iJDQB8SAO7zvP56eAZg+XIJ27ebSCblulIfHsMACoX6jafjACtX\nZuqixfPmeT8g4+P+GnEJAIOuqzCMEr797U34sz+7EkA1BVcsFnveYM0Yc6UsqV9jUJyD7dtlLotT\n31C8bJmNN0LGNmSzjdP9lmXj0kuTePnlbMjfO7joogSOHDGwc2etRGh83MTy5SkcPFh7/+zfn4eq\nyrAsBwcP5nHmTAkLFjQedvPNb9r4ylcU7poK2LFDxapVC7BixQQOHz6D9etr74/PfnY/1q0bQiTS\nepyg0esYVGJEaiOWZaFcLnvS1UG9PFOlYtTNgMO7777b/f+SJUuQzdZe7/vuu080Ec8h/O9XfuPe\ni0AUDdIrFAqIRCKIRqPgk9BqPAarWP2JpCgNy1faRZ1fDTZJqganWA1asEqlujmuVMuByBmgptVO\noPW4UCi49mPagge08bdMSIlUraQHgJRMghVrwRspnnC/l2MxwPHaEn44maRVHQJmNujhygy5z6dt\n+BeY1/xfgQ975e3XQtJkyKjeo9QFcSi6AsdmkBUJktzeeyDM5vKzAHg7bhiGa8dp8BtvT3tpv/nj\nlcvlhk3FPINqo6cjC9CIWZMh8EP1mtlsFpFIpKGcaC9KYXK5XJ0c59at4RvGRMLB2JiDSy9t3NwV\nizGsWRNcQxik4zw25n3O3bsnEI3yfl/13EqlqpPxz/+83TW+hmEglUq5g7x6geM4sCwLjuN4JggD\nCBwQNpW8/LIE25ZQqdD9qV905s8PzwIcOdLYITh2rIhisfFHbN48DatWxVCpeJ/73HO974ty2cEF\nF9SajZuVDT3zDMPdd0uoOQMVANVrURQVyaSDs2e9i9HBgyU8+OCJhscNoh3VEH/EiRor+anSU51B\n4N97rSgMCQR+gj4DfNlMkDPQybpDkpGxWCw0+q76GlqVyY0o/VxNVje5lCWQIzrUTE1dSE2nIUnV\nibk024CcAWByUrF/NoeqwTRN5HI5d9ZLp9fqOA5M03QFP6jHr90BW52gvvpvgBYBopP3kGr9I1GP\nM0D4MwVu5N9pco569f6QYwCgpV4BPy9fdA3MnA1ZlaDEqvsBRVegRhVoUQWKJiOS1qEnNOgJDSO/\n+RttP0cQQYpFAKZUsahRydBMoZ3BZFPBrHEI+DdetaE3j3K5jHQ63dMNLg+lgoFgOc5t28I3k8Zk\ng9f27Q4S/z97bx5lx1Xei/52zXXGHjS1pJZkTZYlyxLGNh7AgRdfcmO4N9yE5CUvwH0syEtWyLuX\n3IEbB8cMyytwcZ6BPLh2IDyDSVZIFr7JNcRgVoyNsS3Llq3JraGlltRqqzX2dLrPWMN+f1Ttql1V\nu845PVot+rfWWT2cOlW7hvPt77e/7/t92fTbMDhYQqEgdlAGB5NFWsePl2CaIQGo1x1s3ZqsI/Au\nF8HJk2M4deoCKKWRugoRpjuBNRoNVKtVSJKEbDYb6P+zL7GoQdhCEoRHHpGDlB0PyWNKKasrq1Y5\nGB9Pd1i7uyWcO1fH4cM1rF6d7mCWSuJjUJp8Xr1iYw/NCMHwMMWHPuTG9uGtGq5ZQzA8XMKLL8rY\nuDG5uvKVr7wJ214YcibqCREnCLVaLXAQ5pMgsO9tuVxODUMvYQnNwNtHVkfWzHGfiT11HAeapkUc\nbubgi4p7AxLg/5Q5B0rSxXYpLp+pdAocVZeGyju2BdRrQef62RBq27YDOVbWRZzNE6KuwvO6aCDL\nYYRgumAr10LZUc6JzXOpWZLs1WPIMmjHctA2fBY1L0Pm0lKXva0DihE+B2rGS2Mi8vw5lyLFIkII\n6vU6qtXqnCoW8ftoJTu6GLBUQzCHEHUqbjQamJiYgCzLLbsh8vuZ7sNqWRYmJiaCtIj4cS5edHDx\nYrqxGhry0otKJYrdu8WdUHt7NQwNlXHmjDisePFiA+vXR3WjLcuNNSQDikUxi9Z1FZWKhUceOTyn\ndRWsloI1exPJzYmcQTaRMHUjlmY0XysNe/dKmJgIvwL8LczlKO6804GiuNi0CbjlFuDmm8MxrF7d\nPAwbNiQj2Lgx3cE8ebKBwcGk2lS8uzEQXaB6/fX0fP/f+R2gXOavtwXAASFAPl/D+LgDSolQoWFo\nqI4f/nB2sqYzheiZYK3q4xEEFnWaaywRgiVMF/HU1UajETjHM02biYN1EVcURbhoo+Siz6ySMRN1\nAnFIAse9ZWFxfHsWKdANdBz44axqzliEQdO0xHwa7yqsqur85rK3WzQsyYCZDQurTY5A8KTAaGFT\n0khUE//l0N3v5qIDXp2ApMhQTRWKrgRkQNEVqKYKNaMG/5sv8DacRQ4IIZE5fbZRHr6oeLETgqUI\nwTyAEALXdSPKONNRNpgOIWChS75AWZQT3yw6sHw5wcWLYX+C06ddKEpyrKyfxvBwHVu3ihuXrF2b\nT/wvn48SgPHxeGoLy+/z/vrpT4fmNEVocnIy6EgpmrzSehMoihKsMjCjTylFvV6PEIS50Lu/fBmY\nmiKglH0FXC9MDmDHDheFgouXXiLYv9/FwACwbx/w+usEu3YRdHYCptk8XSiTCSenZsRw82YTPT1J\nozY0VENnZ9SZOH8+zBbev/+K8Br8zd9Q7N/vNZ8L4ZGLO+4gOHYsJBqvv06EUYLHHms/bWg+c/xZ\nipEkSYkIgmVZgTMw26gSfw6VSiXSqXQJS2gXbFW0XC4jn8+3dI7blSplkTK2wBVJcfvG/cHvcq59\nIstHBxRfD5+oCuRCdD6RRdEBpsPv+isUzBmWZr6iaVkWpqamgsLVZuDTVfjuu3NBDqjM3bOIc5/1\nogXsFQef+qOnpLFkY3O1nzYkUmmKwyl0J54Vu+ZEogMAIt1tZU2BrHlkAIBHCkwVZz/0a02PNZc2\nnS0Gsjl9LqM81wQhkOWmr4XGNUEIWEoBS3uZ7ipFu4SAdTa2LAvFYrFpaPSNN9IJwbp10S/b8LCD\nt789GSXgvygrV4qdlHo9Oe54HcGZM5O4/voO6Lr3gOk6W4n39n/ixChOnRpLHS9Dq+vEojOqqjat\n2WgHcYKQyWSgKEqk7Xparnk79/Ib3+CLbQHAhW0T3Hyzg/5+iuFhglWrHJRi9cAHD1IUi4DrNlcY\nKpdDwnfihIX168WTRGcnQTYrfo42boySwKGhCvJ579m+dKmG/v7LkSiKbbv4kz9hdQMUXpG0DcDC\nihUEBw5MxI5AsHx5VE2kp0fDmTM1DA6m6OUuMPjJSRRBmOu0syVCsISZgBXMz1ZWNL7PSqUCy7La\njnbLuUzQgyD4n9k6ShFXGZoWFAXQTdAZnjMfUWFzarvf3TklB0ef946txWy1KbAHzVKJ4sSIjzbo\nRpIYAKC5MFrr5qMRfrvgNSrjc/MP3f1uyJoENSNDyXmv7m3ePhTdIwLeUDzbqWXnJlI1G8xFlIef\nD64JQjDDTsWEkC2EkCoh5PGU9/89IcQmhJQIIZP+z7tbjWdREwJ+9USWZeRyuXlbreQ7G/OFw4DY\nUX7jjfQVZH71mCHUwfcgScDx46GTfvmy2AHt759KNJTq7y/BMBSYpox3vasHrutA01TU696KTtio\nDCBEgmW5+OpXX00dbyuw+1AulyN9C7z9z03vAl7OktVriOQs2cTcCs8+K8Gy+GvuYMsWB2+8EfYH\n6OkRpwWdOePl+Jtm+rM2OFiJ/N3bKyYEFy9WcOWK+N5Gi8G9iM7GjaEDf/x4NRJF+ZM/sVEquX5d\nhArABCuU3rTJQaWSvC4HDkgoFGTceGMGW7cSnD8/itOnr+CJJ4ZTz+1qwVwRBH6SKZfLS4RgCdMC\nqyWjlAa67dP9fNo+WaSVn2/47eVsJjW1QMqYQcdc2dS9VyyKIGlaqgSm0tXtRU0lEnFqSbETyPuL\nFVxjNWI14Oz7oXBfafOAKKIy0zlcRA5YRL9SqbRMPSV0mivVGc6xV9RolAAI04TSIgY5cdQ/DfnT\nLwdRKOoXLbtOeD6KrkDRvTlDy2pQTRWypkAxfDlURYaa0aBmFk40Ie16pxE5Npe3U5R8TRACRW76\naoKvAXilxe5fopQWKKV5/+fzrcazqAmB67pwHGfWjU/a0ZBmCjyiAjHR5/v60leQ6/V64n8HD9bR\n2xuu0mzZYqDEdR08fryM5cuThqVUsrFtWzQXvNFwcfPNy9Hbm8XPf34O5bIdrCx750QAeKE8MP30\nVgAAIABJREFU0/SMw49/PJA63mZgKUK2bc8oOjNTxPXuWSoJEFU6EDmClAInTxJUq+HjrygUo6NA\noxHe22xWTAgyGYpXXrFw003iVZeeHhmjo1FCODycnGyWLVNw4sQkTp6soFBIrq6VSsnj5/OhMd+/\nfySIoui6ie98RwegwHFUhF/tKtasAfbuFUvg1usEd93VhTfeuIT+/nCbJ544L9w+joWSBW0HMyEI\n8WdjKUKwhOnCcZzg2ZvOdyFtW9d1gwaa+Xw+sp3oM1LseZV4lSGBMo5k6EGaEA+54DuospwoLA6O\nzyvh5AoAs/e+fCZpJqMZA7PT+Xx+TiIqPOIRZl3Xg+LWNIdTshsgfhqUq5te+lDcyQ829p21bIwU\nAB4BYFEFnhTwkYc0kuCD+vu3c9GULU3TcPrf/hsoRvJ6yZoCLWcEBABAkC4kKVLk/wuJVt+JuGIR\nEx0RzeP8/bomCMEMaggIIb8NYAzAM3M9nkVNCBRFQT6fT+RVThdphMC27aBwuJUCDw/HoTh6NJ0Q\nnDtXEfyXYMOG0LCvWBHXYwe2bBE3i+nujq76ZLMKslkV/f2htv3UlEAyjZCgO+7gYAmHD19KHbMI\nrLBaFDVZSPCOoCRJMAyjqSP49NOsfoB94ShyOYqRkegXkF2bONatc+C6wN69Dm69NUkK1qxJfpFP\nnbLQ2xvddtMmz/C5LrBpUzKMPDBQTkR/6vVwTHyDsvvvJ6jXCQB+VaEBwMGqVY14k9EAd96p4tSp\n5CR++PAkTp5MNkhbaMyGcLRDEKp+EwrHcYIJaIkQLGE64FMkpzsPxeceJlWqqmqq0IPoGIEzz/bL\nJEWDJllix0mOEYOguVYxKThARLKY3Co51QxQub05slqtBnURc00G4mB2gMmYihxOxwmJAIBoXn+r\nXg6CFKBUxNORALhZb16nqg67uDwsJJYUUEFxM1MRUgwleK24YXl0Gz2sHVB0JZEyNPLHH0od4lu5\nyMMrFvHKjawo2XXdIJJwNS1GzRTTrSEghBQAfA7Af0K8aVISbyOEXCKEHCOE3E9I60r5RU0IGOYq\nLYWBhRlZg5VWCjzx4w8MOKglRWIAAIUCESrIAEBfnwVVZcWNyShCNMUlxORk1GDdeGMBFy9Gc8AH\nBkqQZf7zElyXRsLbDz74gnjQPth58oXV8RShqwGtFIy++10KTePHa0ciAwxXroi96M7O8P+nT9Og\n8y+DYaQRieikTEhIGg3B6k2l4kR6DwDA0FB4X48f92oCKKX4279VkbQPNfT0ELz+urgeYPduGS+9\nNIrjx12sXZucqJ566qLwc4sVrZ6L3bt346GHHsJPfvIT/PjHP8bkZHpjQQA4ceIETNPERz7ykdRt\nvvzlL6OnpwcdHR34+Mc/DstqXoy+hF9c2LaNUqkUrJSmSZWmQeaILE8AeFIgNZEdJU2KW0lHika+\n60QcYmKlTHw+WHppvV4PFvNSjzkPc4pIIhPwyIHrFxTH5T5dIwtXN+GaueAFQKwAJKo3iIFqyUUk\nEZEKogPceE584FeF+zSKppcexKUNqRnvOEy+Us8b0LL6gtYTzNYvkyQpUCxi34nz589j8+bNGB8f\nx+OPP46RkXTFvavdRs+ghuDzAL5JKW2V0/szADdSSlcA+A0AvwPgv7Yaz6ImBHG5t9nsh32epcCw\nQq6ZaCr39zt4xztUiBY+1q9PN3Kjoy527cpBkoATJ8YT7x85MgVVTd6y48fD/99++zLs3XsRx49P\nRLYtl21s3cobdVaYY6Oz05swXnjhzZbXkb8+C5kiNBvEw8evvKKDnb+ieM57pRK9L4ri4uxZ8bWQ\npNCRv3KF4sYbo8/I5GSSzAHA6Gh0f6dOhQ5nWo3I8uVREnHhQhXLlunI5RQUCgpOnSrha1+TMD4u\nIfp1pgBq2LDBgeiWdnVJGBxkxyfo7U2mEPzwh60jRvO9SrMQKkZMBWP//v143/veh2w2iy9+8Yvo\n6enBk08+mfr5P/qjP8Jtt92W+v7TTz+NL33pS3j22WcxODiIgYGBSMfMJVxbmMnCFPsMk9zkndQ0\nNM2D55xUkawo4HXMTasbaBtxIYdMHsS2QFUD9us/So7LVwKcTpH0fC8yRcjBuYPCbVxD7ODH/0/N\nrDC9iPoRB+pvzwqvA1KganDV1g46ixQwZx+I1g/w72k5A1rOe4bUjO4pDcXIwUJiLhWLAK/T8KFD\nh2AYBp588kls3LgRP/pR8pkDrn4bHY8IvHDmPL74zKvBK7ItIbsB3APgK632Syk9Qykd9H/vg0ck\nPtjqc4uaEDDM9oFjRplXyWm1eiH6PMOBAzb27nVw/fVqIvWnUGheuESIjE2bovUDDOWyg+3bk6Hc\natXBtm2dKBZVnDgxCsBLLYkSAGDZMpEsnY5yeSVkOYORkSo+//l9cBzxGFmojqVqtZMiNNfRm9ni\n2DHg4kU56CBMqQNJSp5vb6+DtIWCiYloROaVV2ysWRM+K2fOiFLCgKNH61ixwiNQGzbouHQpJA6n\nTlVRKCTJleMkn+3164vYvLmAY8fG8cILo/jzP9ehadHnxTAc9PRQHDyY7HHgHd/F2Fh4HqOjyUnp\nlVfGcOHC1FvWSXqhwaIGH/rQh/Dcc8/h8uXLuOeee4Tbfu9730NnZyd++Zd/OXV/jz/+OD72sY9h\n27ZtKBaLeOCBB/DYY4/N1/CX8BZhNgIKLB2i3b4FkUWwf/pqsn6gGZloYq+l7mXh7yxdSJa9eoKO\nbvGH2Lk6Dn76rz6LZ+79Ap793+7Hc3f/NzzTuSu2KfU3ddqaO/h88YWcQyiRUklAHK22C8iAHi7q\nUNW7P1RJ3mc7K04JZjj3l4/CtT2brWZUaFkleAEIlIUABEXHPBgZULMG1Kwx970bFhBdXV0wDANP\nPPEEzp8/j3e/+92JbRaDjY4XEd99/Xr86b13Ba8YfgnAegBnCSHnAfwXAB8khOxr93CtNlj0hID4\njcFmYzCY8WEFTtNNgYkf/8gRzznr63MgSQQ9PeFltqzmco4HDtSxdm06ESkUxAa/o8PAjTcWMDIS\nOpldXdHV5WqVd2QVALcC+NdoNG6C49wG4G584Qsu8vm9uOeeA8H2LEWIdcmcbRE3w1vhZD76qOSv\nVklQFAeOIwtJ2vLl6XmjZ89GmYJlEaxd660OrV4tY2IirX6EYNOmjL9d1Pl3XWDLlqTqxPBwMgS/\nbJmOAwe8+oH//t9XolyW0YiVAdRqDWzfToSytLt3q3j99Wg6zPHjLlasiE5Srgs8//zYW9ZJeiEQ\nj0AwpSzAIwiiJmWlUgmf+cxn8PDDDze9Dn19fdi1K3SMdu3ahUuXLmFsrLXE7xJ+MeC6Lmq1Wlt9\nC9Ig8RKYshyu/vsLWpLpPcOSX8jKoghNowSixTCBE//cb/0/eOZ9X0z8n1o0IAVsbgXQFhl4K9JP\nXUmFq0XnS6dNYpDYl5FNSpciKWfqqgZcVTyfx4uJG5lO1Ca8uYCPEgDAsi0rICkyZF0NCocVU4es\nq97/fNlZxdSD3wGg9vk/DBSY+CLrqzk3X9S/KJPJJIqLF4uNZv5r2iuGvwKwCcBuALsAPArghwDe\nK9jvvyaErPB/3wbgfgD/1Go8i54Q8JiJk2LbdpArPJ3C4WZghAAALlygME0JrOYr3Vn0YFkAIenn\nMTwsVnEolSy89trlyP/ihcQDA0xUfzmA9wHYDiAHr/i0EwArcpXwwgt1rFv3Ct58s4KpqSlYlgVV\nVefk+ryVxua55xRkMt711TSvgVdO0Cha08QrJytW2CiVkvfnlVcsrFunYPXq5ufmFf4CjUYy/GCa\nSYdgaKgaaVC2aVMOly8zklDA0FAXvF4D8a9yw09dizq0sgyMj4uL2uP1CgDw3HNjTRV70tR65goL\nPTm1U1T8wAMP4Pd+7/ewmnUOTMHU1BSKxXDVr1AogFLasjZhCYsT01mYYk4ykypt164mjuGnkhCO\nFASFwXy9gBnaAcKIQZrkKF9LUEhGpAHALXbjhT/4H97mBQX6Sg36Sm9fYddcgufXvT2QZGXjXwxw\n9PajBEwRyDWycAVEIA7KkQDR9q6swiVysF8Gxe8j5MTELrR8eG/VbLRDdZAqlKIaxRSYgLDI2nGc\nOWn+CcyP/eYjcmlYLDZ6OrKjlNIapfQSewGYAlCjlI4SQnr9XgNr/c1/GcAhQsgkPNLwfQBfaDWe\n+S3vXyDwUYJ2Hz5KKWq1Gmq1GjKZDMrlmSuq8Ea60aA4eTLqiJ865eLWWxW8/rqNM2daH6dWS1+d\nHhioYNUqExcuRCMN+XxyRefEiRIkicD1w4djY3WsWdOLc+fugKdT7wI4D4AZvxy8Z8wjHZOTwO23\nH8DBgzvR1ZWf1TW6GvDmm8DZs7LfUd5BpeIbWEFaTqUiJgRr1lBcEqTWU+pFglS1eUHSkSN1mKaE\nkydLiffS6gg2bMhjbMyL/BgGwZkzLA3oPfCIgIVoNNDBzp0uDh92MDwMrF8vY3DQe6Zuu03Fnj1p\nEqRJ5+C550aC75Usy0EaHaUUjuMEEQPLsiBJEhRFgSzLQW7+1Y64zahUKsKoAMOBAwfwL//yLzhw\n4EDLfedyOZS4znZMsSyfn4YqyRIWBdgz1I4TRSkNFFPYd2VOIFjVl7JZgEsfkXi5S1UHrHqEFJCu\n5YDd3IbRQheIf55KQQmcf1mToHUoqJwNo5quTbF/x7tx1+lXMDERb4x4daA++EbgCLmaCcmqgdgN\nuKoOybHgmDmAUhDqghIJcnX2ziJVtYREK+uSTBxuHpBk1I1OXP7cZyNpQIouw6qGc5SsRxeTFJ8I\nwHWhGCqILMOpW34kwYgQNGbXWS+AWq0G27Zh2zZkWQ5s+tVkz5t9zxaVjW4t/JMKSunnuN+HABS4\nv/8r2igijmPRRwhm8pDGC4fZyudswB7QEycc2AK/7tVXXbznPYowhYPH6tUK9uyZwIoV6eHceAfb\njg4Vr78+kqgZmJqysGULv8Kj49Kld8AjA0CUDDBkAcgwzfMATuDKlZO47bZn8fLLV7DY8Y1vyLBt\n2S8gZvfBFTr4Fy6ICUFabwIAeO01B1NT4voBhloNuOOOAsbHk5PuyZMV5PNJjs46Gd96azf6+sYx\nOtrA8uU9ANb4W8SfKQuG4Y3TcQg6O73PK0q0kDmOY8coFCX6PXjzzRoGBpLnxAq12UTCNwJizYb4\nLsozXW262iIEP/vZzzA4OIh169ahp6cHf/EXf4Hvf//7uOWWWxLb7tixAwcPhsWKBw4cwMqVK9HZ\nmaLYsoRFjXaeU7b6SCkN0mem891oFoUgnLMvNeukG9s20MSPRwvyyegALXhddF/80J8DAIxuFXpR\ng6z5Ra8xfXwWLXh5++1Nx5OGhUhNlJ0GJBradeaYA4CjJeVanUx0/nXMPKjiXTtX9xYTXCMbqhP5\nNQSOGQ1FU64IuZEPZUMtM1lLwGoHgLC3gGqqQfMxLZ+BrPnpQhwZAMIUMZZClIY4OTBNE5IkBZKf\njCi8Vemi/HFZxoIIi8lGT1d2dL6x6AkBQ7vh2maFwzN90PmJgE8XiqNcpujqan6Te3tVUEpw/fXp\nXQxtO3rbdu4soFKxUSwmw48rVvATwy5YFks/mQIgIh0EgIZ6PSxGPXduHB/4wHP4n/+ztQpRYm+c\nVKlt229pEdMzz8gAKByHgun1Z7NOIkKQy7k4n9KXi+/yHIdtE3R0tBN0EzsOjkOFaTuTkw5kmeDS\npdAxr1bvhPf1dRP7y2QsHDgQ1pIcOECwdauKW29VcfFi+upfpQJs25bHsmUa7ryziOuuU7BmjYQX\nXric+hnmsMeVnFhr+rkmCHONOOGoVqtBDYEIv//7v4+BgQEcOHAABw8exB/8wR/g/e9/P37yk58k\ntv3IRz6Cb33rWzh69CjGxsbw4IMP4qMf/ei8nMcS3nq0moNYwzFZlpHL5WZPdM0skMlGIgNE1UDS\nmmnNBJLs1Q5IMtyCV1z86h99CVqHAqNbDZonqRkVkipDNWR031SEUlCgcM0WiUpw+t/822kdei5T\nV5rBVk3Yque0u8RvCKZzNkDUo6hJAXCifoBIYX8DeASiXdRMzzFlBcNqLK10+Q1rIn/Luho8V0o2\nSmYkRW5LZYjZxLjkpyRJQbporVaDZVkt7818pQxVKpXUpmSLykZLpPlrgfELQwhYmLZSqQi182dT\nmMw7vYcPiyUnAa8b7g03NF+5UVXP4RwdTXecjx+fCqSJJQkYGPAkSkWrzmEjq5UANnDvjCPaxIrB\ngiRNwHWXRf47MVHFH/7hy9i7d/qRAkopSqUSLMtCpVIJCswWcrWhWgVOnJD9HgHhMbu7xQpDacMa\nGUknfCtXSjhwwIJhNP8iNyMVLBrA49SpMm65pQuDg4ykqZiaWun/bvs1J1bw2rHDiikkERSLGs6e\nFSsO8VizpoBGo4qXXrqE06fLOHeuip/9LJ0QpCGNILCQNE8QFmLSbxflcrlphMAwDKxYsSJ45XI5\nGIaBrq4uDA0NoVAo4M033wQA/Mqv/Ao+9alP4T3veQ+uu+46bNq0CZ/97GcX6EyWcDWBNRyLizJM\nd97h55oAvPa9aNXUNMNXPHKg6qndeKmgroHX6NfzGogsQVYlL12Iqd3oCopck03XplAzMuxa8/o5\nHkyitF6vo1arBSmKb5WdIDQ5T9hGSBqEBciCz/A1A65qBJGFZhj9woOp7/HKQmz1XzENqH63aiVr\nQjY0KGZ4XCVrQs14L/svP9Xy+EDYD4DVk8myHHR9rlarbZGDuUSzLsWLyUZfbRGCa6KGAGhuWG3b\nxtTUFBRFQaFQEOZszoVSUblcxpEj6Suw1WoDr71Ww5YtOk6cEBOHkRGvNqCvr4pVq3RcuJDcbmLC\nwQ03dODo0XHs2lXE/v1ezkt/fwm6LqNeDx3O06eZE3hT8D9ZnoDjiPKkHQBX4LoGvOjBBIDw+Lbt\n4Ld/+6c4c+b/gK639+g0fPkbpq3N9KiZEanX65AkKchVnK/c8+9+V0KtJiOXs8A/9sWiV1jMo6ND\n7LB7vQnSJ7W1ayW89pqL22/P4uWX053vI0emsGGDiTNnkopTvBQow+SkjWqVNw63I+TyDih1EaaB\nWZiaEj2DcmrnZYY77jAxODiRkLx94YUrs17pYQSBFU+6rgvHceA4TtAtmIWrWb7qdOuCZgJRhGA6\nnYp5zere3t5IPioAfPKTn8QnP/nJ2Q90CVc1mqndMeEK0zRb9hhoB5RS4Cffar2hkRE6pdANL3+w\nHptbsgXAsQFFBc11AG5oB9x8Z7BSbnZ4UWYiE+h5DdSP+iq6EmjjqxnPHmlcxFRWJbx21zvx9heb\nN8BkkeRsNhssFrB6PwCBHZmLuWLi/CBM/zwtLQvZqsHSspCcqA219TyUejLd0uXSi1g/AUczITeq\ncPQs5Hp63Z0ja5CdRoQUNMyOxLFVU0Xdbz4qawpkLUwh0go52NUaZMPbB2tGSwX3XVJVSJoSST+a\nCQghUFU1iACzeoN6vR7Yb3Z/5hK8ra5Wq21/l65qGz3H12i2uLpGMwM0W2lhhoQZY9Zefq7hui4s\nywIhBCdPphuo4eEaKPVWa0XQdYKTJ5kjSbB5c3pocdkyjx3LcvjF93oPRPM+L1+uYdmyTQCKACoA\nHOi6uJskIZfBlIY8J3lZbAsVY2NT+M3fTIbe4mAEiRlxVqfB8hQBJLrFzmdqyQ9+4E1MXv1AeI9c\nV9QNVOw4N+tNAIQdipspll13nYbRURtr14oLV0+eLEPXo8/o7t1FZLP8yt9m/6cD71zC93I5G0eP\nJgdZqdjYsiXd0b3lFgN79oygv99CNhtdmbh4sY6BAfHENtP7I0kSVFWFYRhBi3pZlgOCUKlUgpXB\nhUwzo5TOi41YwrUP0RzUaDQwOTmJbDYrdGCmuxDFVsoTMLnUoUwWEHTDbQuCjrk8+j4d7YkkqxL0\nvBF2x+Xz2jkywIiCJDd34JnjzxaJ4s0D+c7CcbnMmUBxmxdQW3oejubZTZv7PTgvrqmYqNuwo2fh\naGaiFoGXG20Y0TRRV1ZBJRmVzDJQIqM+6c2hasavU4g59IwMSFx0SMmYkA0jeAGAzKcQNUlHmW7E\nSlXVYC5nUWCWCSB8VucA9Xp9Tsj1W42rLUJwzc58rHC4Xq8HhcPNMJMIAdPnZwZM0zIJhSGGXI4E\nkqH79jVw/fXJ8WzapMGywjFMTKSPZ3zcRUeHigMHom27OzpEYbT1/s8CgIrfiCtuCMdBaXxMeQDx\n/xn4yU/O4KmnzqSOjV1713Wb5mMDrVNLmGNoWdasHMMDB2RIEk0QgKGh5LZTU+LjdHc3N261mndN\njx+3sXmz2Fj19HiTRikpMgTAU6nasiVKBF3XAaVs3JvhRW8cePUD0a/w+vVJWdpNmwj6+uoYGBBP\nAuvXqzh6dNw/FsHWrcn82L1709vDz8UKPk8QmK60LMuRGoS5eA7iEEUgriY1jSUsXrDnNp/PN+14\n3+68w1I0pvV8GpnoTx66DuR8Z7RJ3YGbTxZYGh0mCEectawWSV8BgO5N0c8xlZy+e8WNonjVP9E5\nRjoLzxE5cIkMSwnnTItz+C1dvCBnc9tQIouJgKAYuVnfAcDvhSBF91X/WkulyIjMqGzqkM2kbyFx\n20iKDCWXhZLLQMmJF6ZmYgPZXM4WeZjIRKPRQKVSmVOBiWq1mpoytKhApOavBcY1Qwii0p9e4TBL\nEWqn4/B0CQGvVMQKbgYGxApDALBuXfQLls8nDXBXV3Sbvr4KurrEKzbHjk3hxhtzsO3omEuluKPf\njStXViEsIK5iaqob3qoyS1mh4FODoohHCbzxfOxjzwo7GluWFRRt53K51Gufdr3jRiW+clwul6fd\nHGvvXoKJCRm5nAP+kc/nHZRKScN37pzY4dS05oRgeDi8hmkqUY4vKXf0aDWxEs/Ak7reXhOHDo1x\nXY13g1dIioKiVEoqAnV3e9tfuADs3Bk1oooCKIqFcjncVyaTnLT27BkVjnU+wFYFVdUrkGOpFpIk\nwbbtYPVprpukXS11DEtYnODz+6vVKqrVKgqFQtMeA+06XpZlYXJyEoZheJ/J5kFzMQECMxs69nxd\nAU8KjHQnivqr3W6sYJaywmJCoBcMGL59MjuMCAnQ83oQIWBRgvA9DXpeg2LIcOo2jv+7X4kcgy2s\nxYU+APFcMZfkgFAXDTW8Xo6swUlx3KngfrmyFvzkIwYAYKv+tfedO1eK1ng4/mcdRUPNCK971fDI\nlNOwg+vJoGZ0qBkdK3ddB0lTIGlaEB1gq8qsBwUjB7JfU0BUFfI0UiJnirgKna7rQcbGXER2rhVC\nsBQhmGPwKUOu60YKh+eqo24czOlVFCUwYJRSHDuWnl/e2Rl98Pftq2PjxpjxiLEJ1yXYtk2sNmRZ\nVJgT3t8/CUXhb+tG/lPweg3A/2nC6zlwBWLFIbZdvFBNw9hYFZ/+9J7gP2wSnJqaEhZtzxTxlWM2\nIU6ne+4jjygAqF+IHY5p9eqkg9/V5WAkZTE82uk5io4OgvPnw9X5N96whcXFQ0Oew25ZnqKPCJOT\n4X1dv94zeoODFeh6FkAXgBo8Yha9/4ZhY2goOsZcDjh4MEwRy2ajz9w73mEkZEVHR5Pj3rMnPUIw\nn+B7IPBFbaImaTMhCEsRgiXMBdgzw9IlGo1GW4tR7SxENRqNwK7GIw000yQCa6Y4fnFSoOqgItUc\nSYFdDBeETn7h67G3Zeh5HbIadSOY86plNazauRK6v/jF0oZkXYFd9+Y61qCNRfLbWbyLY6bkYORi\nVErOJTJkJ7ThxG2iKBdPHfIde0rE42cqRgDgKAYsvXnkPA6mDsQTA15FSDZ0yEbUtjMSwEcMJFGk\n6v/77LTGMh2wFMxW96cdu82/36yoeFFhSWVofsDYJ6UUhUJh2m3g2zHMzHgx4xwnHEePphsQQuLv\nEaxaFf1yDg8nV3dZZ9s4enp0yIJ8zGrVwfXXszoCDcBa7t0riNaR5+B1uW123gRAXI/au7bf/OZR\nVKteCgfrZlwsFlOv/WwdrTTHEECglczqOfgJYO9eGYS4ifx/tnIOAMuXU9x1l4Pt223oOtDZCdx2\nG8G2beGYL15Mv7/r1kW/SqWSi5tuik4aK1cqkShCWmH2wEAFkkSgqgRHjngFCY5DkcncCu9emRDJ\njXZ3J9OFbrxRitQOHjniRQUAYO1aFfv2JQse+vttGEb0fE6cmMLoaHL/C9EnQOSwzxdBWMISZgNW\nLJ8mXjFd8GlHLGIW71RMOcefppEAAKE0nQxohvdKgSgNhgdPAvS8AcUISQAQOq5KzMZRh8K1Hciq\nFCwisX5Ac3G9mpEDlrLCzw22v2JPfVva0Np31HlS4CjJyACLDgRRAgEaerq8OHns4cjfsioHpAoI\nHX4g7E5NdC3sUM0Ki/3ohJzNgPgdi4ksQ85lg9dCgb8/LAOAEBKkFbXqdcDmglqtdk3UEHiyvk1e\nCz2cBT/iHIMRgUajAVmWkc1mZ2RYWhECJhvnOE7C6WWfbRYhmJxMOlP79jXQ3e3d9GJRwtmzSULw\nxhs1YWrJ5s0mLlwQF0R1dTFDsR5RadE0I58cWxQdkCJslUCWFZTLDfzH//h8oK3NGu0sFOLGP5vN\nBveCSVu+/nodFy543YkrscvLCMIdd7ioVChefFGC67qo173C4FdeoTh2jOLOOwk6OijOn0/PXS8I\n7Hq8X8T69VECODQkvn9TUw62bMlj9+6OiBM+OdmLsCtxNP0JABqNZLH4lSvRe1sqATfe6E1Qq1ZB\n2CjPcYDNm5Mn9OqrC5c2NB2ICAJbSWVEMS2HlSc0juMsFRQvYUZgkQEAyOfzbZPkZvNOu2lHAKJd\nimNpK9TXwI/r41NFvHCT9n8AMDszyHRlEnr2iq5EnH/Vb47FfgKAUYyO68QHfxWWZSXmjblSF4s7\nn2zOrtfrqFQqQc+BuiJ22C01A1sx0dBywQvwU6g4JMiAJnawbdWEzW3rpkiOVrXQ9sb6le0gAAAg\nAElEQVTrMuLgV/yJXycg+URBMk1IglV0KZuBZOghQYxhIZtB8r0OptMI7dqJEEjNXws9nAU/4hyj\nXq+jXq9D13UoijIvD3K9XkepVIKu60KlImbAjh9PX0E+dy7prDUawPbtnjFat07MBut1iu3bk87Z\n6GgVp05VsGxZsoAozAfvDf6n61UkuxID3iOwCumkwMKGDRSuG/3yOY5nXJ944hR03WiZnrUQq7RM\nxYh1zs1kMvjGN0y4LkWlIiO+on7lCnDXXQ727CEol0nqOF96ieKGG1w0sz+WlSSDBw/W0d0dGnRF\niRKKoSELa9eKVzmWLTNjCg1F2LaOUAUqfjyKy5ejz9jmzRJOnkyOyzBUbNumY9++ibTTQbGYPNlX\nXllYQsDuxXS/06JC9bQuyryme7lcvjYmmSUsOMrlckQudzZgkWhR2lEageCdfdY/IPI/rjEWr4VP\nVS3SMdfqWBH8bufCouA3v/ZNGFzjS6NoItOdg6z6XXB9x1UxtIAEKL76zcodq4LPaTkNet6AY7mQ\nZDJnkYF2wFJXmPMZR52rI2ikkIR4BKHBFR439Hxq7QEPW0nO2TwJcCQVLpFglZm6kLe9ljOg58MX\nUVTI+RyIqkaKhgF4Dj/3u5T1zkcy06MV84HpkIt4IzRZloOIb7VajaRUXzOEQJabv1JACNlCCKkS\nQh5vss0fE0LOE0LGCSF/TQhpmTaz6AmBYRiB0ZyN05kmWzo1NYVqtYp8Ph8WdAlAKUV/vzhC0NlJ\ncOWK+L3+fguyDBQK6V+a+OrQ8uUajhzxVGE2bkyShf7+EgjJw8s39yBJItnIUXjpJyrEaUMWgBLO\nnKkhSSa8R6dctvDQQwdSx/5W5mNLkoRXX1WRy1G/eVf4uKuqi54eGy++GP0KTEyIowCUOtiyRRX2\n/QHAFf2GcByCbdtCozUykiSF69aJV5Msi+DQIT6d56bYFvHnqYb4PVyxAkL09wOEpDfQA4CpqaRp\nEKUXLeRq0kzRrIuyFxGq46/+6q/w6KOPQtf1lipGH/7wh9HT04OOjg5s27YN3/qWWBP+O9/5TiBs\nkM/nUSgU8Pzzz8/HKS7hLQZLIZ0u4vMOk2u2bTs14lo89RJcQSMsKlAKorHtEl10U/7XdMxctFgx\nVCiGCllTAwKg+Dnr/E8+OkBdCqOgQ9YUnPu/fmNax54rDF+ZgkzFczJPDMTvTy//n4EvXLZl8TV3\n/BSm7BP/o+m+unZuTvxPzuXDdCEBCF8/4DucUiYLKd6s7ioAqx1kEV9FUYJ0vEcffRSHDh1CPd5H\ng8OisdEzVxn6GoBXUndLyK8A+BSA98BLFdkE4HOthrPoCQFbkZltY7H4523bxsSEt4JaLBZbKkW8\n+SZNpKQwrF2b7jBdvEhx00067CbNQo4fr0WiR1u3ZoJOuqIJY2rKRldX1GBEG1t5YLr5HlYhVB1i\nmEAoO6ohmn5EwFKQvv3t46ljfytx5gxw/ryESkXyG7WE9+GOOyy89FLyng4NiZ1BQhwcPEhx663J\n1R3DAM6eFfd2YAXKpinh5MnkA9JICcwYhgTbjt8fNl4XyS7T0ePLMnDsmHhMa9ZoqZ2YGU6fTj6P\nr78+BtdduHz8+Yoq8QRBkiQYhoHrrrsOp0+fxgsvvIAVK1bggx/8IH7wgx8IP3/ffffh9OnTGB8f\nx5NPPon7778f+/fvF2575513olQqYXJyEqVSCXffffe8nNMS3lowrfzZNrecmpoCpTSVDPDkmycF\nVFZB/ZVnquhCwsDD1YxoBCGtW7Gvic8Q7yPAS16qWa4bLlO30ZNypADg+IIYVrV5H4D5ggIbDRKO\nNy1tKA11NRc475aaCdSC4rAVE1ashoApDTFS4EjeZ21OgagxPglZV6GYOogsB9eTgXBpXfHoAABI\n2SwkMxO8gDA6QGTFIwIp5OFqq7niG6HJsoz169fj+PHj+NM//VO8613vwmOPPZb4zKKx0TOIEBBC\nfhvAGIBnmuz5IwC+RSk9RimdAPB5AB9tNZxFTwgY5ooQiJqZtbMCeuJE+rELhebjsm0pUJ8RYXTU\niaQN1WqhFzk4KHb6yuUe7q8Skv0E6qjVeIMQOvj+URGmp7D3mWGj/sszSsPDZfzgBwOp42dYaEPz\n1a/KkCTAcSTwq+f5vC2Uh1250sZkshklgLA3wUsvObj11qgBXr9eRlr/lWPHLKxZo2LzZg2Okzz/\n/v668Hs/MlJDby+b1FcgvPaAmBBEB7Bzp4zRUTG5kSQL3d3NVwVLJYp166IT2cSEjYGB9A7M84H5\njj4wFYz3vve9+MQnPoHf/M3fxIEDB/Brv/ZrqakM27dvDwraWIRkYKD187+EXwxMt7ETi1RNTk6C\nENLWnMPkLx0zqlRGBeko7YInBXa2IyAC49/1shIy3XnoxWyifkDLh3Yi4bj60YQVO0JxC9bZ2LUd\nyJqCC//3/z7jMc8UFvXmroYUtYO2lJ5VIZIcjaOhZtFQs0H9QXC8yO/eNbI5EsHIRUUN53nKLb7Q\n2AQjZbMgqgKi6SC6AaJ755FaN8A1qiOCnkzqD6MRibmyu3MZQWa2+ld/9Vfxzne+E48//jjuu+8+\nYY+PRWOjp1lUTAgpwFvp/0+I50BHsQPAQe7vgwBWEEKSTUX44Uz/DK4u8A/bbB1OtkLTbjMzfgwn\nTzZ7v7l+/dCQ6zcLS0dnpzcW05TQ1zce/P/8+TrWro2vBuVQq/HOnChdaALJ52kFvJXmBsQFyFko\niupvU4XXu8Dbx3/4Dz8T9iVohvkmCD//uYxagi9RP6KUPHZPT/r4z50LGUR/v4vu7vCr09Ul+kSI\nDRtMFIvi726p5CY6CK9apaOvbwJr17LQ9DZECYAoVBoNNWia+Fy2blVw8GAVly61NtI9PRns3l3A\nzp1Z5HJe4fSrr14JUmqutpWk2aJcLiObzWLt2rX48Ic/jPe9732p237iE59ANpvFDTfcgNWrV+Pe\ne+8Vbrd//36sWLEC27Ztw4MPPrigXZeXsLCYaTMnRgYURQmEEaYDnhTQlEi269cQJAiEZgTFrbYZ\nOqNxvfxMd/g5vZiFYuqQVAWy5r90X1UoqB9QoWT0oIsuHyUwiib0vLed07Bh1xY+SiATB4STbXYk\nJXDKZddGQzFRU3OoqdngFUeDW/nnfyc0/TtuKzECImuoamL5aR6KqUPWNSimHkQNguPxDjFzIn2C\nEBS++dsTTUvtRr2Y7HmtVkOxWMS9996L3/3d3xVusyhs9PSLij8P4JuU0uEWe87Bc/IYSvCctaYP\n26InBAyzZaGu6wZKRTPRQz57FrjrLhXLlyfHUSo1V/Hp7ZVx3XXNQ7zDw55DumNHDrValGCsXx+/\nx6tif4vCmaLzY2OfhPjRUGDb8Vx1F4CDsTELf/zHz4oHLzrSPK/8Xr4MXLlC0Giw82TnY6NUkjAl\nWOjOZsWGoKvLxShXTzsxAWzcyBf6NSd8Fy+6qFTSJz1G9hg2bfJVQSgbc0/sE/F9WeB7EpgmcPiw\nOHJUKHjbnTjhpDa987aTUSyaOHBgFIcPT2BqykapZGPfvpFIg7j5xELUJ/DHqFQqyLbZtOfrX/86\npqam8MILL+DXf/3XhYsHv/RLv4Q33ngDly5dwhNPPIG/+7u/w0MPPTSn41/C1YXpRqqZDCYrppzN\n8x4nA65uwtX0gAy4XGFxnBhEPpeifgOEK/5qRk9VwGESpAyqr5dvFE0YnFgBK5aNRxxmG+1vhTMX\no9F4N9Y7oObXCMQd+5qgdoDvLJyWNiSC1SSSk//ew5DUcL9aThzNJbFV/8TKPyMDphkSBF5ByswC\n2RyQyQKZbFC8C1yd5IC31e3Iji4KGz2NCAEhZDeAewB8pY09TwHgC0yL8By3lBwIfzjTG/3Vi5ka\nEb4xClMgmIlR7usDXnzRAaUEu3ZFDaVIYYhHLkdx6pSVpgIGABgYqGP1agOioEWjET9vnhBMwSsc\n5jGJaDoQjwzEZIEhPpHIAFzYto3vfOcIxsbidQjRe7NQhubhh2VYFoFHclwAEgixwSIfb76Z/Eza\nysCaNckxv/oqxY03evsaHW3uGJ88aWNyMp0QjI9Hjzs25j0v3nOzDMn7F51wZTl6zW+8UUG1mhzz\nqlUyXnuNRYsINm8W582uWqWio8PFwEDyuT14sBToe7OUmsWq+x8fJ4sQtAtCCO68804MDQ3hkUce\nSby/YcMGrF+/HgCwY8cOPPDAA/j+978/u0Ev4arETOYM27ZRrVaDbtxtf87IwTHyoLwzytUMOEY2\ntSYAAFw9/N6zqAAjAVRuIkQSO0fZCOsDtHwmiAYAgGx68wtLIZJS1Bi0rAbFUDHyJ/9n+nHnATZV\n0KA6aMwFqsnNv/8VLdrATVR70PDTg+pN+g8AgCU3z0BQMuL3O9++EwBATDOMDrDrqxuh88/AilMz\nWYBtLygkzmazwUJopVIJekTMti5mPhZ12lUZuuptNCGR1/OHjuPB7/6v4BXDL8ErED5LCDkP4L8A\n+CAhZJ9gz30AdnF/7wZwkVKaVAbh8AtNCBzHweTkJGzbDjRwZwqWMnTliteg7OabPUPZ2QmMjKT3\nJwCARsPBuXM2brqpeehw48YczpxJErxTp/gVDx0AnyYmyvkWpRAFo0FSwYaHWGHBkwQj+OhHfyx8\nfy7k+KaDf/kXCZOT7H66IIQGhbTd3Q5GRpJjScu5z+fF/280JMgy8OabzQlBb6+CFSvSjX9/fwP5\nvGeIV6zQcORICQAwNFSFouxENLWLkRoXXmSg6qdqhffZdcX3b9MmEismTk7SxaIMXXdw9mwNp041\nYJpRcnjo0Dhsm0KW5UDmd74agy0UsZhJhICHbdtt56cuFrK0hJmh3XnIsixMTk5GiPV04Wizk5BM\nk8hsmGEjyolvJ9VZJEUGUWTIajJCoJh60EGXFRxLmgIla2L5zg3BdjQmTuDU06Po7Ps5V98dh0av\nd514462R9q5nTc3B5VZvWS0ATw54UtBQTNSVDBqygZri2RfbLyTmSUFVzsOBArcR2m81m+L0alp0\ntR9IEoE0MDIgJyMzrFcDU/axbTuIHFiWddWkPE5XdvRqtdFUliOvd928A5/+6G8Erxj+Cp5a0G54\nzv6jAH4I4L2CXT8O4GOEkBv8uoH7ASSrr2NY9ISAGYvpEoJGo4FSqQRVVZHP52clWzo25uLKFX7f\nBH19Dq6/nqAnnu0hAJOsNM3mMrGNBsG5c8ni45ERCxs3MjKxMvau6BanrR5NwXP4u5HevVhDskBZ\n8cfn4Kc/PSuMEjQajUDCNa7/PtcYG/PShcJIh4t83g7+XrtWdFwXQ0Pi8VAqTgnq73dx991aUHCc\nhpUrCS5cSCdZXiMwz0jHV+0pXYUoIagjTBlS4EV6XHhRBAuSZOPQoeTKvmEQHD4cJYKnT0fPV5KA\ntWtlDA6ysDHhniv/6HUXx46VIv9rpzEYu+/xxmCtsJAksp0IweXLl/H3f//3QVfsp59+Gt/73vdw\nzz33JLb98Y9/jEuXLgEAjh07hgcffBAf+MAH5mXsS7h60Or5rtfrQbd71h9jpuBJgaNn4cZSURw9\nG/mZBstI75gLAHpHDkZnHubyaNd6tZALHH81F7VdSqa5w8aKi52GHUmRAUL51Wq1GqQmzvV8QZvW\nZLYPh4Rjb7XqzyAqXrahYMU/PgzZ1L0CWlmGa1lBdEXNGlCzRqR+ALmCRw546Vgz672MjPfSDcBI\nuRds21iHa0YOmD1XVRWO46BSqQQ9MhaaHPDRhmq1mkoIFpWNnobsKKW0Rim9xF7wHLYapXSUENJL\nCCkRQtb62z4N4EsAngVwGsAAgM+2Gs6iJwTA9JwGZmgqlQry+XzQOns2eYuihmT1OsH4OMHKlc3H\nlstJGBryVkcOHaohm02/JbouwzDE6TyrV7OV+1B83kuRiRppw6gi6dAzMEfeRFzGMjbq2N/emCgF\nGg0b//k/Pxe8wys3maYZ6L+z//ErD3Nl8L/+dQWWFb2OpVJ43XK5pCFbsyZdNnZiIr1GoFKhaNVE\nVNMIBgZs9Pamh/ENP++2XOZXyjbDdfn7TREWfBPufza8e1aB604EHZh57N6toFSKnvflyxQbNoTP\nwh135NDXF41AdXQkV50OHGgadWyq+x9vDDaX9326iIezq9UqcrnmGuOEEDzyyCPo7e1FV1cXPvWp\nT+GrX/0q3ve+92FoaAiFQgFv+vlozzzzDG666Sbk83m8//3vxwc/+EHcd99983pOS3hr0WouYjYv\nn89Hut23i/obzyX+F++cC0QJAE8KXFWHG+tk7KZEClxJhd6Rg97h59T79QNaR3SRQNK1iPSlbBgB\nGeB/j6cNkVhkhKUN8Q0JeQUZRg6cNEm3NjAwosGh4fWqU+9a1N3oNaiRDGpSNnjFUVOyARFgq/08\nGr6kaEPQb8CSwutvS2qUHPh1C2qMTEXUmwrRtKUAWe6+iGyqqoWOv6yAxkiAukecKsPsuWEYwWIP\n68zdjBzMp12v1+uphGAx2WgqyU1fTT9L6ecopR/xfx+ilBYopW9y73+FUrqKUtpBKf04pbRl9X4L\nV2bxgJcNTTPKLPwlyzKKxeKcrT6mdSi+eBF429uas+jrrlNw+LD3e6VCcfvtebz8sriDbLXawPXX\n53Hw4HjiPU9Nh8DLOffgyc/GDItSgzhC0Iht2yz8mAMwEvzlXXvvd13X8I//2I9HHvlXUFUJU371\nbi6Xg+u6gV43K6SjlMJxHDR8QX5ZliPpKDPBP/+zjHI5nGwUBbDtcF+2TRFXWFq50sG5c+L9DQ2l\nT0CKQnDrrVns2ZOehjUy4p3b+vXZgPzFMTxsI5+X0dfH3/tNoMHkReFJi8adCD7ysAyAoDgCwOio\n+Lg9PSbOnKlj+3YTL744kni/0UgS1P37x/HhD7efH8omFNbLgzWYcRwnKGJj912W5SCFYqGbnpXL\n5ZbNpZYtW4bnnntO+F5vby9KpTB68tBDDy0VEf+CoFWkmlIakGAWkW62/XRg6zkodc/OOloWcsOz\nRY6eDRzMyFiIDOoX8pKUSLCjaJDt0GbEnXc+XUhSVbiWFUQK4ulA3jYKiKrC7AydUCIREEkCkSW4\nlg01awZKfwBgmiZs24aqqrAsC7quw3Ec1Gq1iE2ZScpVg6rQSNQ/sqkCmdiowYSEWEGxlIVOo5Fv\nS9ahOl70gpECl8iQBBHlhmRAc9MX2SZRhMyko7nrJ5sGqKhHEZ8uxEcHuLQhqpsg9ar3s1GDa2Qh\n2Q1A1eAqGoiT9A9bPYv8dWdzt23bqFQqkCRJeE/mQ8K0WYRgUdno5s3HFhxX12hmgWYPHd9bgLHc\n+PazMcz9/ekO44ULDm6/Pd3J6OiIjkPkgAGe43ns2ASyWfHq/okTU/A6E/MOYzJNpVJJIygTiD4O\nXcLPAxQdHQDhwqSUUpj+Cka97qJabeDP//wlTExMQFXV1PoBFpY0DCNoJy9JUkDcZpKHPj4OnD9P\n4DjMkXZg21GmzSsGMWQy4uvS0+NicjL92NWqhbNn3dQogWkSnDzpTSSXL6eTw8FBC297W84nK4BH\n2rII055sePcnvmrAG3UHIrK3ebOM/n7xZGRZMlSVoFwWvz88nBxzqwhBK7AulPx9l2U5IAjlchm1\nWm3a6UXTRZxwzLSGYAlLaAYmXGFZVkLBbrrzjqXn0dCT6T2Uk5KkMZUg2y9uteMNsgQFxHWjGCjn\nVI2OxPuAV0OgdhSiUYFYcyyZNSZj0QH/Z8fWdeE4BcShVCpFyFJkn7IcRB11XQ9I1mxTWBwqQ/aV\n4ixoCTIAeOlFzWoMWLTAIhrqkneu8SiBqOeBTWNREy6KoqTVDygqaL7orfizFz9WPRN0qKa+shTf\nhC6hIiXwhdqBKHIQvyfzhenWEFy1mEFjsvnENUMIALFxdV030VsgzTmdqfNx7Fh6JOb8+QaOHXPQ\n1SW+ufEOxQcP1rBsWdJQb9qkYWrKSV1hnpiw0N29Bt7KfQle4bAD0wwdPVmuwXVFK/9hk7EQMpKE\nwAEwgfFxCkqj+4mq2kh47LHDyGazQUpWKxBCIElSJA+dyYRNJw/90Ufj99crdg7OSnZx9mzyc42G\neDJZtar5MzE8bOHcORdvf7t4sti4MWxIdvx4A6tXN5H0i8jf8cXEFrz700A8shG9RxMAOtHRES1y\nXrYs/RxOnHBx222Z1AZ3585ZKBajz0Zf30Ssi/LMwe47TxBYoSWLIiyUgtESIVjCbBGfR9iKt+M4\nKBQKsxKu4NHQoqltDqdvH3TCVcRRXpuvO5C1QC7TkbVI+ovyN1+NfI4ociR/XS3kgjQg5shKhhGQ\nAEYK+I64JJY2xOoImL6++s3PBFG6tHmD1SxNlxwcPGdCJjSIitRdDa5fYFx3Yw3VUiIndRhwuVVd\nUTpRGigkWERPJRZrf/gwgPC68VDz3nHyd7wjuV9VDyIDVBfvm6WfuEq0GNnN5L2XmYNrNk+XbIZ4\nmii7JwACieq5XOBxHCeIOC9mUEKavhYa1wQhSAvXWpaFUqkESZJa9haYCSFgRujYMXHBaD5PcPGi\njfFxiu3bxWz2ypWoI+Y4wLZtyS/m8uXel3hoqIb168VGqNHohpc2wnIMl6FazcLrOkzhOGIJWsOo\nQJxGxOeKUng1LMy4x88nfHg1TcOlSxW8/PIF4fGA1tc7bvRZHrrruqjVaqhUKqjVagnlg3/+Zw31\nOnusHcQd6N5einq9fYWhTCY9+lMsEly44JHBkWS2DYBkBOi668QGW5YBx+G3XYOQlLHnVkQ8w2fP\nNL3znpoK92MYwKFD6V2wTVPGhQvJIvAQBBs2RJ/HatXBiRNN5YxnDL5AWVXVYJIRKRjNdoJZihAs\nYa7B2zW++3A+n28ZxW4FO9ZevaGH9tmVVbiCgtZ4dCAeJQDSiQOD3lWE3t0BtSguPGaRAimmCx90\nzPVrD4iqQM4mj0+5hpZ2tTatFJPpkoOGo6DueHOpS6fn/rAiZIv6BIqGDqkNNVAriqNBxVH9quvf\nEz9KQLgoC1HkoNBa9TtBM1IQIBYZcFUjdPwFvScARMmAmW+Zpz4T8DYcQNAvgM3bM7XdvL1eaNXC\n+QKVlKavhcY1QQjiYAZhamoqcCbbfXjafUhZ5KFSaWBwULxNb294zD176ti4MdawRQXOnEk6Y+Pj\nyTFMToaRgXXrRPKkCiYneceN7ZfAKzQW1yUAQL2e5hAWEHbALSFajGwguVrtG0zLM8D33/986jGn\ni3h4kqWZsPzFSqWCc+fqOHtWRrUayo3Ge5csX550/L2ogfi+N1sJX7cu/PqcPOlg167kxNpoRCdx\n0b0FgG3bMjh6lNUhFOEVg0vwSA07Tvx6u/77XnO0atXwx5zHpk2eod+5U0alkv5Mr1snYeXK5qHX\nnKAxzv794wuS499MwSheoDxbglCpVFoWFS9hCe2AkQFZlpvOP+1+f5hMKQP1V6nrXFqP46eCOIrW\n0sm3tUxkm/j2Va0ArcN78VCLhWhaS9GbiyQjnBskriBWMvSAKEhaenQUgFeHYDTfphni5IAVvzJy\nIEsuJMK6rHNiArGoedU1UIu94oiTARHiRKBBw3OzaPI8qeXPFVwUSYlHC3iHXjO86AAAx1/dd/nU\nID9tyDWyXkdqrlcF/3tkDHNs0+P3ZK7IwTWDWB+CxGuBcU0RAlasOjk5CcuyUCwWIyoFrT7bLizL\nwsTEBGRZxpUrWdgpipIdXAqm4xB0dUXHsn69CstKfhHeeKOGFStCg6PrBMePh4UwU1OiL08nkg5j\nZDRIW2GmKSsY3v4oJEmkTESQLDz2xkyp50S++uoFjI1V56XzJEsz4dOL/uIvNN/QSzAMT6/fdaOP\nuKYlx9HbS5GW7jg6mh4hyCd4WXK1ZWgoGgE6cqQuTAnr6JAwMmJh8+Y8gG3wHH0X0eueni6kaVPc\n8QkI8c6zWYfkLVtUvPLKZEKRKY5aLfn+oUOzqyNoB6LJaS4VjJYiBEuYK/Arl47joFQqtd19uJV9\nZJLN03k2Z7LyW9NT1GtikE0zIhPKyICUzQRkIIwOSP42RkAklt3mNdYyOnPQi9lAxYih/rX/Nu2x\nx8EvIDFy0A6qjphIxUmDxeX+OzG736B6oFrESIGVKvUNVFwTFlU8wuRHM2SOVPG1Fm6uA1TVQGU1\ntflc0KROUFDOg39GHDMPx8xDPvly089MB3H7KiIHhBDU6/W20kLZ/uZTsnyhMRuVofnANUEI+MYl\n5XI56C0w3XzNVoaZjzxks1lkMhmcOJHuMMpy9Au5b5+FG24IHbzly9PGR7B1a+htbt2aQa0W7uvo\n0SmB/GgX97uLuNyoFyFYAW+ln0cJzTsTF+C6aecYX1nmcitrnjP26U/PXZQgDczQ/OQnql+HQ1Cr\nUciymyjSrlaTRnL5cvH5SRLF2bPp/QPi1+XgQQsbNoQTxYoVMi5ciDINSgm2bk1O7MPDXpRm1aoM\nwk7T/P75SAFDOLZ6rLHPwICCrVsl9PWlN01jhdSnTjWfOM6dS16DQ4eSSldvBeIEIZPJQFGUyMqg\nKLVMhKUIwRJmC5bSaBhG2/VTzcBILutZUFeTz6elhvbESmlWZvuNsiw/ZYjtx1aMoIaAR/7JbwII\npUYBgMheDQHxyQDrkkvacLZZ7QFRVRBNh9EZngelFJqfFuM2bLhNmpTNBIQQvHg6j4YTkpiao/k/\nucZgKWQgeN938plsqQM5QQbqtPk+GlSLkAn2+/U//39BqZtIuxKB7yZtZwpwNR2uagTRAcIRgXgf\nClfREpK0trHwNo+P/DJhCUIIGo1GYLNb1YxdCylD0+lDsBC4JggBIwKu686ZIY6DhYDjkYc0yVFA\nvDprGKFRUpT0h310NHyvoyPWXr3mYvv2uAJEN/f7FJKKsiyfvogwDQiAQFEhikaTbdKNF/O9/vEf\n+1vsf26wfz8wPCyjWiUwDAeAAklK3pvh4eRndV18D9eto6g3aUI8MhK/vwSrV0YTBEIAACAASURB\nVIcTzLp14lBypRKXPFVx+rSX53/+fA4hmeOjAxaSEQJ2/CQBpFRCb296DuINN6g4eLDsn4eL3t70\ne3nhgo3Ozuikf/jwBFzXnVejPJPwdbsKRowg8Pu3LKvtlcQlLCEO27aDZ8how7FjSFuIYmkVrGfB\nyJnjAIC6X1BMSdQZdQU5x7ZiBmSA/Wx5HgJdfcRlRwteKlGcFLDIgGRmvJduhNECAERRo4212Nht\nJ1DVkTQWaQ6vyWztjCa7kIkb1A/EUXHaayjG9zCwubShmmtEHP1WaLatzF0vOWNGXkB6uk8wRj0L\nRzNDMqCF+7M1X31IVmFzNShvRQErDyYowqsNMjERETm4JsgAliIE8wJGBmaqScyQZpgbjUYgoRmP\nPDSTHL14MbnSsX+/he3bPeNTKqWvhBw5UseaNWy7pFeayfBGW0O0WZhIMYZNUDpCQhDvPRBHA+Ja\nAQYFSeLBtOYBgGBioo4f/OBUk2PMDb7yFdkvypWgKB4bMc3ovSwUXFy44N07VaW45RYbt95qQZZt\n7NgB3HknsHNneK6iegMGRQEGB5P35eBBC/m8dwzDEBO+vr4aCoXwy75hQ3gvT59e4/8Wf45FY2Er\n9yUkVaKAsbF0wqkoUTKzZk0zB4Zg/focurs1vOMdXbjrrm7s2FHA4GB6sfLVgGYKRsx5sywLR44c\nwVNPPTWr3hdL+MUGUxPSNG3WSkIsEl2r1VAoFIRqKnU16hQ2lGRkwBIUEAOAzRUf1zTPKeSjBFU1\ndBSVjiKU7i6hEx+QAC3qTEt60pYQTQPJtE55kk0dTr2BzN9+MfHeXKeJuFSC5cqwXBkKCesLEttx\n81/NbY84MNRdLfI59tOmMiyOUIgkJqVYczJ5163B73y6EGssZ+s5uFr6fM43oLP0+Y8KzPR+8eQg\nk8kE5AAAzp07h3/6p39qKhDz4Q9/GD09Pejo6MC2bdvwrW99K3XbL3/5y8G2H//4x2GJunrOIzzN\nq/TXQuOaIATZbBa5XG7WhlgkGVepVIKQrSjykEYITNOTbBSP1zMEZ882d6g2bsxAVaP1Awxnz/LO\naGfs3fiXpYzoanM3CJmCF0lo9tBN+vtqlluanjYEyHBdikcf9Tqvzaez9bOfSZAkAkKAqSm/g6Qd\nPV5vr2fwb7nFRXe3i337JLz6qoxTp4C+PuCll4DDhyl27KBYtw7QtHSyt26dhEYjafDKZWDnTu+a\nTE6K779lATfcEBpkvvDYdZchqizEED+Wi5AkiI5Twuuv27j++iRR2LZNw+HDcXWr9HvT0aGgpyeL\niYk69u69jBdfvISXXrp01aQNtYt4gTJronPp0iX85V/+Jfbs2YN3vvOd+LM/+zP8/Oc/F+5jMU02\nS1g4EELQ0dHR1FFp9lk27/ANzETKePxKbk1NUZtTMhGnPw0WFzGwZB02RwrUrg6oXR1BZEDO5yB3\nROcBPr1FyuXbSneBTyIKt7498RZrwKXmc5EahdniBwdzcNzwutUdNVVhqO6oqNo6Ko6OmqMLIwc1\nV4frz3NVx4DlRm1snWreyycD7GdDEBWoOgZuOPRdAH6dhSx78q6i85dluIpXP2CZHXAVHa6Sfp/j\nylKWHx1IpIgRCbaWheW/5rqoeDbgyQEAjI2N4Zvf/Cb27t2L3/qt38I//MM/oFaLzmX33XcfTp8+\njfHxcTz55JO4//77sX///sS+n376aXzpS1/Cs88+i8HBQQwMDOAzn/nMrMY7XSypDM0DWPfbuSxe\nZcXJjuOgWCymtplPqyHo7ZWE3cMBYN++Bnbv1jE2lp6fDgAjIxRbt5qR+gGGs2er6O1lK0A8IXCR\ndNLjKkIElGrQ9Wa3n48eZCB2OoFk2lBoAFTVm8xOnBjD1FST3JtZ4kc/Ihgd9chHLhdeq0olen4d\nHS7uuMPBvn3AhQveOHXdTXQo7usjuHIFUNX0+7N8ebqhu3CBQpKAU6fS5TxZsbOqEpw4wdSFOpAs\n3mZo1n9ANBF717ujI/ncZrPJ5+n8efH57NiRgSzbuHSpkVBceuON8asuZWg6YBGEd7/73fjRj36E\nm2++GZ/73Odg2za+853vCD+zmCabJSwsZjMHsULJcrkMy7LaroGrqVk4vuNQU3PidJ82wD5nC+oJ\nGFj9gFcHII4OAAAyWW9FjL10AzCz0fd5cLU91HHgWnZEgnO2yOje/i3Xz/33FYYqdniMmqMFdQVM\nkIF/rx3UXD1w+tP6GABAw1VhcalLtJ7SwdiJ+haJhmI+LD0f6UNhK0ZSbpbvU8Htp6HlEj0trkaw\n79TOnTvxve99D3fccQfe+9734tvf/jbK5XJk2+3btwcpe2wOGRgYSOzz8ccfx8c+9jFs27YNxWIR\nDzzwAB577LH5PxkOriQ3fS00rglCwDBbQsA+32g0UCqVoKpq08jDyIiLK1fEx+vqEv4bgFdYmlSo\nSeLIkTp6etJzDdevZ5JwPCEoo3mRMIMJVW12rSbR3uMhcmCZ/Ki3/4mJBh5+eF8b+5oZHn1UAiCh\nWHQxOelNjl5Bdzj+bJZCVV3s2RN1MNetoxDVmlYqwOnTwO23i6+/LKdHD06dcnDXXRlMTqZvc+RI\nHYYh4frrTUxNse02Q1wrkOynwAiB10Mifg9CUnj8eDQavX69gtdem0qM5803HXR1Rc/15ptz6O8v\nYWTEwvBwkhAutghBHHHCIUkS7rnnHnzhC1/AX//1Xws/s5gmmyUsLGZKCNhnpqam4LpuagOzmtK+\nylBdYcXDGdTVDBqK4b+SKSVWLJqw6mePJ3foGxGpyNWuKSqQjTmTRno3X6halBgA0DoK0LuK0Io5\nECU2b/3DQ+n7miFqdntOVvzqV+yYNKltwHJ9ItZm/cFsYWvZSEGxKDqQJjfL8tEtLQvHb1yXVoA+\nV5gPJSBCCGq1GorFIj7+8Y/jqaeeQnd3d2K7T3ziE8hms7jhhhuwevVq3HvvvYlt+vr6sGvXruDv\nXbt24dKlSxgbm38FvQDTlB0lhHyXEHKeEDJOCDlGCPmYeLfk3xNCbEJIiRAy6f+8u9VwlghBDKyQ\nKy1FiEezgmJVbV6sS4iC7u7ZhYS87sAKog3E4ivxoogBAJTQaJhIpqIAnrMZNyxpDEZC0iFVYu8D\nTz0VrSOYq2iO6wIvveQdb4JrtaDr4fU3TYrrrnNw8WLyeN3d4ntoGBRDQxR79zq45ZYkKUhLB2Jo\nlTpQLlNs355FRwe/3XJ4jr+oeFhcUKxponFMgNUUjI8DO3b8/+y9eZAc130m+L086q5q3BdxEgQP\nQSQoiod4jCmFvUOH6J3w2grNKIKWJZOaoMJhD2cjRIUnbIq2uGOvNF7Z1nK0q9Py2ivbIXF2ZY+X\nGktDWSRAEQRJXMRB3GicjbO7q/J8x/6R+TJfZr7M6gYaEAH3F1FRVVlZmVmVme/9vt/x/dLzs3Rp\nubLVmjXpdbJhQxvbtl1MSN3Jk7TQsVgWFl8pCbir0edA3ddUcc1MNrO4ZuC6UTRxWAMz32zBNbNG\nuKcoD6mv/Vxdgexd4NmdAglIjsMoeotJjpyQXk7QQhbit3NzhCQHTQ2RMc1CjwOr1Uyanwk/APdK\nPOfTwHe3dGEaouD1d0OlIJhOLQLg0nLDX9YDyG3JqEJQEV1QowQynSDTw6HdhtFswmy3tA3dmEII\nmN0AUxqTDSskl6RAV7hqndo7Y2P6lRi/XdcdWrT//PPPo9/v45VXXsGv/MqvoF4vnrt+v4+RkTQN\nrtfrQQiR6fdxpcGJWfnQ4A8BrBFCzAHwrwA8Rwh5X8nmNwkhekKIbvw8VPLxuiAE6kV3qRcyYwyM\nscRDU5YipKKqoDjfkCoP32d4z3uqPT6EABcvlm9n9+4BLCsfisifUp3iEACImBAMNJ/ppEjbyKap\nqMjfnEpjlbggbu/e8zh2rFgLcbn48z8n8H0TlsWgFtbKNCvTFLjtNoadO6FtIFem9LRqVRQ5EILg\n7bcZ1q3L/q86j7kKSkXO2C+iXrcwNiYnvV58/BamU1CcNmFLIYuqJZrNWP97gYktW8oHu0bcFGjt\n2ib2758EY+p/ExUWqzh1ysPYmJvpHjxMKu7dBJVw+L6vnTR0uFYmm1lcfUzX0cE5B2MMhBB0Op1L\nNqDUVJ+8sU9K9OjzEQdtulHZ8SgNstDpRWlBEvVGSgbks7rMrgEtfZqKYCxR0xnWyGwqaNQEQmYg\noCa45rS4tHyez/9rXBgZUqCmEjFeHOtTadMafGanZCF+psLAe4//HYhlZ5SYAMDU9Jzgpg2/MQJm\n1sBNG8yqJ6RAKkyFVjNJAVKlZqlZzxSe5+sIfLuTpA8FtU7SzyUMw3fFeJ4fq5vN4YpZhBA88MAD\nGB0dxVe+8pXC551OBxMTqU0yPj6edBW/WhDEqHwU1hdilxBCGg1Royhg7Uwdz3VBCCQudTCVKUKG\nYaBer0+5OLmKEJw5U20wjo352Ls3hG2XH/ONN9axZUsfixfrDRXHYRgZWaQsESAkb5zrcvcZpEyl\nZekGZh2BICiXH813YE7/P5kGGYYcf/iHm2bcaHz+eVlAzKF60XlcRPaBDzC8+aaBFStEQe4TAAYD\n/W+aOzc9PtclcF0CKVG/aBHBuXPl5x4ATp/2ceut1V6MY8cYDhyQhGwtIq9/9ndEKCso9hCG+WuD\ngtKsN2nXLg7LAm65xQKl1VK3nY4JzwswGBR/X7db/D3vvOMkjeEAJFJxM9U9+GphMBhMq/HTtTDZ\nzOJng+l0u5+cnAQhBLVabVrzl2cON+YlMZCRgsAs3r+hUYdn6K97Y848GCNzQEbmFlWGGs3IsM9D\nozCUh4gjBo0Nd0bvNZa69JTX/+H/uCyj1DIFjFx0wA/T32IZSs1ZWINHI8PdobXSyIFq/NM4bShU\nlsnv6awItRdCyE2QyTSsbcS1FYZGjSl438PJa66kDamkINlOad+gSGFKKlTJKEEiY6vMO+12G5Zl\ngVJ6yeTgSo37U4kQqKCUatM6169fj23btiXvt27disWLF2Pu3LxIy5WDIGblQwdCyPOEkAGA3QBO\nAPiHks2/jxAyFqcW/S4hwxsbXHeEYLoXrPRudrtdrbxbFVxXYO7c4iBumsDoaHkRbaNBcOSIj7Ex\njve/v7ygZ+lSCwDBunXl6/i+qvwwgBD5i0h3iqV6EEBpG2qUoN12gdKuirqcwwHyaS5hyBNSFZ2O\n6LP/9t+OwjAMhGEIxhiCILis1uU7dwKHDpmwbV2OvYH3vY9i48boOBYv1m//xAk9Ich72Y8dA267\nLbo+li2rvm3qdYLDh0OcPl293tKlNdx2mwybL0JErHTHKX+biB8yUlMW3cnud3IS2LChgV27irUD\nKvbvZ7jttgaOH9eH6sOweK3v3Dle6EBZ1j1Yav9P9Vxf6ZQhdfuO4yRKFtPBu3mymcXVhawhmArU\nbsZTkbs9MHou857DhGek+eAMZkIK5DIVKikISbXn3RiZk60VAICReVFUwLIjzWVb46SqNYA4BUXU\nm7nn+N5SIwumfr4VsReJBwG4H2nQA7hsZ5IXqoa8ARoLOwTMhEf1x+KGxf8q4Om6VFErUo19APBY\nuT0RaiIKwvdArOGZCWoakDznodnIqEZJ+LIRnUaWFsimmKkghMC2bTSbzcsiBzM1fqtjteu6pRGC\nM2fO4G/+5m8SKfof/OAH+Ou//mv8wi/8QmHdj3/84/jGN76B3bt348KFC3juuefwyU9+ckaOd6oQ\nhFQ+tN8R4jcR6cw/BOAF6L2+/wTgvUKIRQB+FcDHAHxm2PH8syUEckAWQiRaz9MlFD/8YQjXFfgX\n/8LOFG6uWGGgSmFw1SorKWTt98tvGKnqMlGaaWOg31dyDo18X4M0EpBF/uDSgUvq/erRg9o9N5Iu\ntRGRi+zAybn6u6LL7PRpBy+9dCxpFiUJmM5onAqefdYApQbCkKPRUC9ljkZDYM+e9BgajeI2ez2O\n06f129YVBL/+usDdd9tot6uvkTVrLIShwKFDFLfdVh7aJISh260hqsGQ6UJ5MEQkIFRey3M09cF2\nZMTAhQvVUY277mqh3y9PUTt5svj9HTvGC8vKugfL5mDT6R58teA4ztAIwbU22czi6mMqcwilFBMT\nE5kmmlOZdzyhKQhWxl3ZNZcqEVtdVAAAQlLLfJfChiuUuUJ1JsrJrZslCUJJFRJKChBvxh5nSQZq\nisKN0lQr32BL5FR1zF4PxLIT4880TYRhWNqsKo//+9UuGCcIcvLTUmUIyNYSmCV9CHSkQCUC0riX\nUqYqYQBQ2gwt2mn83xIj6dMgaDo/G/GYpEYFqFkrRAUy+4sLySUZkIXkoVlPiAE17EzKWJWizUyR\ng5mC53mlhIAQgq985StYsWIF5s2bh6effhp/+qd/ikcffRSjo6Po9Xo4duwYAOCRRx7B008/jQ99\n6ENYs2YN1q5di2efffaq/Q6gWEPwyutv4QvPfy15lEFE2ARgBYBPaz4/LIQ4Er9+G8AfAPjIsOO5\n+kKnVwCSOU51YPV9H47joNlsol6vXxKLjQw+DkoJXn6Z4s47TezbxzAYAPPncxw+XP7defPS/e3c\nGWDt2joOHCiSPNmnYOdOF/Pn25rOuB2onK7VMtFXnMCGMQDXNlLJL5sL4DwAE6Fm8FO2iMgoNQFM\nQgh1OzVEDdHkoCrT20w0GiY8z4UQwBe/uBmPPHJjpmkUkObSysgBENUfmKYJ0zQL52hsDHjzTRPN\nJoPr2vB99XOGblfgzBkljOsJ5A3olSs5du7U/9Ljx/XG8+HDHDfdVF0fMm9eek7mzKmhKPsaYXTU\ni4nhWqTef5XYCKTkXx2wGaIoQZ7sBZplEc6frzxkLFxoYffuSdx+ex1R3YnueAO02xYGg/T379xZ\nJAR5GIaRnGspr0gpBaUUvu/DMIzkPKvn+mpHCIYRAjnZfPrTnwbnHKtWrcpMNuvXr8euXbuwfPny\nzGTjeR4+8pGPXPXJZhbvPoRhiH6/j1arNeWaFRWeaKJGhks4lxUNF9ZDDYaSCrpy6/eyK+QNRU0U\nPdMkq97MvDZ8NyEXZcQAiBqgEcMACAEbOBAhhQiCJH1GOhlqtRo456CUIgiCpCGpnCvU8UIn5Z91\nVBWhG244CFxqox4ryzFBwIQJ22AJGbByZMJnNghEEiVQSYFc955zfx8tqDeAnPQoqTei2UpwGO02\nvPoIauEAPI7+uHYXNvMRmvUk19y3WjBEcd4KzAZs5meKVH2rBZNH4zgnJkKjDmKKpN6kbCSU5ECO\n5eo4Lp18l+JcnQ48zytNGVqwYAF+/OMfaz9bsWJFJo0TAJ566ik89dRTM32IU0a+TuD+++7F/ffd\nm7z/357/P4dtwsLUawiGTqbXVYRgGKS0m+u66Ha7aDQamQFkOhfxwYMcVLELt27lWLYM6HSAer3a\nExtJYqZYtKg4eC9aZOHEiWiQ4By45RZd7nFWpcF1syNgq1X0eDQaPoqEgCAyMIc1KgMiwz/f6AyI\nPNw6DwuDaQKWFV1qu3efx/h4cULTdZQlhCQeIcdxMjnpn/kMcO6cGTcHYxBCPY8sQwYA4MSJ4pH1\nenqP0Lx5olRO9uxZoN2u/o+Y4unavj1Eu128zVasqOHEiRCnToWwrKVI/z+5rgAhHvSSowx6WdhJ\nzbrAmjXA1q0BbrutPO9y5UoTExMMvl81JBCsXp0NMe/bNwnXrSZImS3ERFA2B5P1B7pzDVy5PNQ8\n+v3+UEIgJ5vz58/j4sWL2LZtG37jN34DQDrZLF++PFn/qaeewqlTp3Dx4kV8/etfn5JQwSyubVTN\nIUEQJNeZSgamazz5Insf+4qog4wO8FzqaBA7b3wercsUX2CoaZgFADCKY4lotjPpQryVzkFcExHI\nLJfpRKYNEafGJA3QFJjdTqYxl/3SX2T+o7JOtjLyyBjDN17qQC0F9EJS6AvkhuVecR3UaAJQTPuJ\nUo+q73HOCQJmwgltGI4+9J90dM4Vg7t1fYPQMjnawGxkIkQhydaUAAAjlraG5Nzpk+U/Qh7nkMjB\nTEZ/VedNVYTgWgMnRuVDBSFkISHkXxNC2oQQgxDyCIB/A+CH+e0SQn6RELIofn0rgN8F8P8MO57r\nihBUDayUUozHupQjIyPaeoHpDMy6guJ9+whuvHH4Xzo5mTWgduwI0WplB9/Vq7MGd7+vu7nSwdg0\nPbBcziJjxWMxzTLv0lxMLQWlDn2fA1vz/ej9YEATg73fD/FHf/Rq5R7yHWXb7TZqtVqSk37y5AA/\n/CFBo8HBmI1uVz1nYSYCAwDdLsdJzfgmStQ3li8vvwaaTeDHP/axbl35wH/yZJp2NRgI3HFHccBd\nsUIJAdMmoltRPR43jsDoCowZ1NStFPprj9LonM+bp4/+3HlnE2+8EanfHDlSbdyPjGQne8YEdu0a\nHiUoQ9W5BiLP/ZUqUJ5uhGAWsxiGsjlEpkV2Oh3UNOo5072u/djA58o9T2EnaUMSgagnZCBQIrqS\nBLCYOJSSAg14vQmRmz+F3chEE2QEQJIBXm+Cx0RBjSiQWzdAB5kqI2hY8J5n1lPIQbPZhGEYkQpN\nI+6FE6cLcdmMLCYBeTLghiYGoQ0nsDKPPFRSIGsQgIgM6ODHtQl+SY1CorrRiA1cTUGxijI1Kfna\nM9oFIgAAvqGRLTWshCRcLnTkgHOOMAxnPK2oqobgWsM0VYYEovSgUUQpHV8A8O+EEP+VELIi7jUg\nPVI/D2A7IWQSwN8D+C4iydJKXBeEoCplSAgBz/MwOTmZXKwzkYZQpjC0fbtAr1d94eeLNvt9gdtv\nz17g9Xp2G7t3B+j18oNKSgja7Xw6EYPrFicexylj7QH0RqYKqW6jW4+gGDVQJghO0OnYEAL4/vcP\nTIt85XPSP/e5FiYnjaQOQxa7RpEXgvxlvXIlz0QQJMbH9f9Ft1vu2Vi1ygBjBPW6foDv9QwcPZqt\nwxgfL+47DOV/uAxqVCCCD333YfmZQL63hG2H0KcL+RgdjV7poiS1GsGZM2lK05kzHEuWlE8STDPx\n7dw5cw3K1NQAAJnJRfYImYn6g/y1N0sIZnG5KJtX5HXb7Xa1UaLpzEeqEoxKBvJRAyCNBuShEgMa\n6+dTYSWvMWc+xJx5ECPzIXrzouJfw4SwrKgxVq7wVdjRfnitkUYHpLNFpgvFz6zZSTrlCstOSEL0\nFeV+ZixV29F1Q9ZAJQdUmaL8sNrMcYLySMEglCmt2XOkkoGQmWAiu4+AmgkJCJRmaH4JcZgqqGHH\nj1pBWSooKAwW4ROlIDlHAgUIPNJKHpcKSQ4sy0qeGWOXVXMw1aLiaw3T6UMghDgrhPigEGKeEGKO\nEGKDEOKb8Wejca+BY/H7zwghlsQ9CG4SQvy+EJp8shyuC0IgkTcypYqQ7/vo9XpD6wWmY6Tu2VP+\n377yio/77ivLcTNw9mzRC3vhQva4zp3LevLDEHjPe9QUoSZUuU/G8tuU6j+ZrUBoJo4IHsqNUIlx\nAHUYRlnpiS4VKYJpGuj3QzSbFs6ccbB79zlcCs6eFXjhBQuNhgHfj1R5PC+6cep1CssiOHcue1mP\njOjP6eiofjlj5YamFInZuZPh7ruL/9eaNcX/ZteuMBPxMQxg715phC9GtpSHKu91EqQEhJxHXuq1\nVtPXKahpYIcOMdxwQ/Z799zTxPHjWQKzYkX5YHvmTPG637btynUslpOLTCWTBemMMTiOk9zfl6o+\nIseD6cqOzmIWOqhziBACruvC87xEuGLYd8rgaWrByrz6vqhPyeOvXWdOtuurIAS8PVKICLD2nJQI\naBSHWD2OENj6OYVbNXC7kem8G+1Q/z+MbP177XIdvvqjDkyjmPHkxcTADQxQBvjUwKCCDEjkIwVO\nkB5zPo0IKI8GJNECZuLB8f83iqg0lLG2kRt3m22g2cb5O38RzLDAiIXAyKaHSVIgyYA8pzIyFIh6\ngRhSYcPjceQmNgE90YSPRoZwXi6EEJlUYKk+d7nkYKp9CK4FCJDKx9XGdUMI8m3jZYoQIQS9Xm9o\n51i5jamnDOlTK5YsiTz+u3ZRLFlS3Ofy5frjeOcdhnXrohu3XifYv78oKZlNAerlPssPQjqZIx1J\nAFKPcw96BSvAsiikwc952c1YXpAc6d8T+D4DpQJ/9Eevla5bhU9/OiJHPM7fbDQYAAOdTgjHsbFk\nSdFgZay4bNkyhrIeUefPl5M9tePl2Fixxq5TohC7fHk6KN90UwMTE/L6kbUhUQF29CzPEUXxfDEI\nYaLVyl4fjqO7bgWyJI1g1ar0OObPN7F1azGPtSrX/dAhP6foBOzYMfPdd3UFxWohupxgdLUml0IQ\nZHfyWcxiJsA5T1Ldpjr/DINb4vGXaT860jAVUGEhFBZuPvpi9gMlZYE3u0XjHSkZkJ5+WlfUhmqR\nl5nVmuB2HayWep2FaWu75EZfjBwygoYgjVaUMlSRNqRDSAV8zRTIOWApu7UMAdPQjxNcGXsHmvSh\nPDxqaeVEtVDTVQmJ1IYojXo7NNuZ1CGWc8DlIwMhatlokeY6CYWdpJnlIZfrougzCRn9rSIHU4n6\nVhUVX2u4hE7FVxTXDSFQ4bruJacIDTMiZApSWcrQkiXR9ycngRtuKBrI3W75scgGZKtX23GxbBY7\nd7poteRFkhYZmyaD5+UHa92pLTN0JxF5pUnpOq2Wr2yzWbJeeR2BfM050OnUsHHj8KKlPLZu5fjh\nDy1YFkEQyD4KAqbJ4XnRfm64oTigXNDYqzriAACGITA6Wk4Izp9PZ5mjRznuvTdLjjxP/93du9Mm\ndIsWyXM4gtRgp4hInDoI6Iu0gTocp4dUDcjTRn46HQd5kjYYpNfFunU1bWO2soJqIJo0NmyYjwce\nWIB7752Le+6Zh1bLBNe1Ab3CKKs/AIY3SMsTDqk6NotZXA7UmpQwDNHtdoc2uhzmiHr7SKr65bJG\nxvjLk4Qk7SeGJAk+r8Hnl9f5lzfamXQhGhcU5yMErFZ+H3GzBlqbZiSuab+MowAAIABJREFUN6eQ\nplSGL/9DC5YJ1HINP72AoCLwm0QPnCGFxjJVyAkshLGDbqrFybIPQkHpqJn7P3KNxTyjDUaUInDU\nkuJxKRUbCjuJDhBSfi2FwoYfXxNUWKUk80qjjBzImrE8OcinDF1Kz5h3Iy6lD8GVxHVFCOSgKr0y\n05V1G0YcZArSsWOe1sgEgE4nvRnfeCPEBz6QveHS3PEitm8PUK8TLFyoH/xcV+C975WRgTRCQIiD\nrOHNoE//KZsQVFfKCIrNsTxMTKiDXtn/VF1HIL1kFy/6GAxC/PjHoyXb0ePf/lsDjAkYSuMd0wRM\nMwSN8zSDIHtshsFx9GjxeMuUoFasEHBLsm9MEzh8OOt2OnBAoNFIt1/WkO7cOYENG6KBPy0qvwHp\nLSjlXFXkZzCBKMrTiL9Xj7/naPfJWHFiePttilaLYPVqG6+9pi8GPnAgLEQBgCjKcc89XRgGsGnT\nGWzefB6vv34OL710GgcOlIRbLhGXmv6j1pqoDdI8z0v0y3WeKFnwOYtZXCpUw55zjl6vN+Wu92Vw\nNYORS7Nju8uKY73H6xkyAETpCb6oweN1BNyGxyrmR01T06oIAa13wezpE+qw1kZ4T9THwxyZA6M3\nEnVH7sbzGw2BwAfqDdTf/Luh2yMkSskMqQAhSKIEdTsdT7zcHDHw4wiLQgokMVCHoaooQZgT8HBD\nC25owaMmPGrCp4oHnxpRTUZOjalADBT4pAlKbDBYBdKnXT8mgB6vJ+ccQHLOmTAzESUOAy5vwGWN\n6HkGiMJUZaOryIFUnFPng+tKZUiYlY+rjeuGEMhmLwDQ6XQuKUQ7VZWikyfL2WleuebAAY5OJ70p\nzp8vb/w1MSFw552dStJAiIW0EdhF1GpurCLjodsdIEr5GaB4aove4ggcWfJQR6ORj7XqjNwycpFf\nTjSvCbrdOv70T98o2UYRX/saxZ49JiyLJ9EBAPB9gSBI93nsWPZ3r1olkuiBCloiprNwYfl/v2IF\nifsZpDh9mie1BIsXmxgbK1fpodRAvU6wd6804Ocpn0apT9XgyBr/LURRAt217mqLyikluPXWBubO\nFWXpumAMuPHG7OT0gQ+M4Nw5F6+/fgFCMyHt2DHzdQSXW/yvEoR2u41Wq5XUH3ielxD8733ve7NF\nxbO4bHDOMRnnIbZarSlfv2ViGDL9DUAhn9ilDVDFYAjje7LSyC+Bk/tO3jMprDS9J2yORPn/VkV6\naK0NarciYz9+TWttMLuBMI4OMLOGoBYRcG6YMPOdkQGQdlZqW1Q04wKA//RfGjBNgpBmxw7GUxLg\n5GSV3aB8zNV95oYmaOzhdwOzQAScwEyKlHWe+oCa+JdsOLGB4rDgMMCEmZGKdXgzjgpYSWQgb/wX\n9s1TQhcqYzgVppZU7j81vN/FTCNPDmTfiTAMQSnFiy++CN/3tSlDQRDgiSeewOrVqzEyMoK77roL\nL774omYvwLe//W1YloVer4dut4ter4ef/OQnV/rnFTBbQ3CFIMNIl+ORqZKMkylInU4He/eWxx4n\nJrIG5ZkzHO97X3TxWhZw6FB1LqTvExw+rPf4AsDu3R5Ms4PIWzwHQdBElO7TxuRkD5HXWPf9sv3K\ndCFlzYzR66Lo9Qeipmg6i7JKoSZd/+LFANu3ny1dV8XYGMfnP28BYOh08gW46aS4cCHHmTPZ879w\nof5cjY3preFardwzvXChfvmuXRzNJsHKldUkdNu2AO9/fxuexxGlV0kvB0OxR6CuoFhHGhrQn4ey\nImOg06njrbfKrzFANlSLPG4PPDCCn/70HFw3urZ1RfHbt898HcFMQ60/kLUH4+Pj+Ku/+it861vf\nwqc+9Sl89rOfxT/+4z8WOnZfi5PNLK4uwjBMmmNdDpmVZCAMQ/R6Pbh0uJHvsdRAl4afNEiD+LNQ\n0zFXNRIBgHbmgnbmxc9zi15sAEEzMt65WU8eABDUdb1y9AjtCvKtRu9kqlAYwAir585Gw8gUEvtB\naY0yAMCt7LkSr1NBGDLrhWkUQNO+oYg4LUjKs4p8dEBjxwRieilf8rzLpmhpJ2U7qXVgwkTIp5aO\ndbWhkgPZeO7FF1/EX/7lX+LJJ5/En/3Zn+GEIp1HKcXKlSvx8ssvY3x8HJ///Ofx0Y9+FEePHtVu\n/4EHHsDExAQmJycxMTGBn/u5n7taPy0Bh1H5uNq4bghBr9dL8odnSu8238hMpiCV1Q8AwPHjRWPp\n1VcDrFxpYdUqC2FYfWynTjFdM8gEExMMixcvRuqJF8h6+E1EnuNJ6A3FPHQe7TlIawTKvAQm9Dnu\nw+sIgGigFkLg7/9+f+XRCSHwq78aYnzcgGkSjI+rl2yWEKxcWTwe1cC3LIFbbhG45x6GRYuAm28m\nhXE3HwFQYVn6837+vMBddzWhkRfP/RaCVkue3OVIbz8OfbpQUSWq2ENSre2QKEsZi7/hD78uHCci\nA+9/fxubNmUVoQ4d8lGrZfe5bdvMEoIr3aUYiAjCsmXL8MILL+DRRx/F7/3e76HZbOIP/uAP4DhZ\nwnQtTjazuLqQkSjDMKY1B+WViQaDARhjmfoDHSnwaA1MKWKlPBpbpOGndsdVSUHAixNMyE3QztzM\nMmGYoPUOwmbRey/BcpECpqgKUauZeQ7sNDogwQ0riRRkNxSPtUrab1VU4osv1EGZQEizdUJARAyA\nbKpQPlJQhb6X61mgkARPI2nqxTLY8jPdOmUQrS5EqxOlD7W7GF3/S5nP1XQh6eV3WSND7HxmJwRR\nkkD1nFNFIjXkJliumHimiotncgyXghJ/8id/gl/8xV/Ek08+iTfeeAPf+17aWbvVauGZZ57BihUr\nAACPPvoo1qxZgzfemHomwtUGF0bl42rjuiEEEpdzAaoDM2MsSUHKNzLbu1dvGM6dy3H+fNEopZRg\n6VIbCxYM/7tXrqwV0jXycBz1cxdZ77JUDJqHKHUIKKYFYchyE4AH0wxR5fHvdHSfERTThtIB1VY6\nULouw9e+trV0+wDw67/u4J13GqjVKExTQCRSeT5MM/t/6tIKJyYE1qwRuP9+jmaTY+9egclJjtdf\nF3jnHYFuF3jwQYLFi6P1T5woJ3uTk+WRod27WaHhnA79vnT+yHADQ1ZZSEK3LV0n6Tqiuo++sqwY\n9ZG4884aXnvNwY03VueIjo5y3HdfF1u2FOsMGAPWrMlO4tu2XbhqXYWvBHzfxwc/+EE8++yzePnl\nlzFnTtYIuhYnm1lcXVzq3CPnHemA4pxri5EH4dTSgVTjz9dEBeQ66nrvHc9FsHI1BPn6gaCe1rD5\n9S7CXP1AaEdptQkpUBplSWLADTt5rYVMv1W85+Ttl0pXNw0CI3bP+xpRDssEKAMCSmAagGWm67i+\nAcczSqMGbmAkzc0AgLL0tUwbUg1/HSnwKUmW83qcdmyYEKZZmg414K04XcgEFSYc1kQoLFBuJQRQ\nwmc2PBrNvaqrCYiM/JCbmUiSXDf5jbQOj9XgsRpcWp9SZOpqQSUXlFI8+uij+Pa3v43f+q3fKv3O\n6dOnsW/fPqxfv177+VtvvYVFixbh1ltvxXPPPTejnZWnitmUoSuEquZk09mG7IY7MTGReHzyA31Z\nD4KlS8svqNdeC4c2LAMih8jBgxRVc8v4uGrMZT34zaaH1ACfC2ACETEoprM0m3kyoaIBxspkSiM4\njs5jI+UzVSgDqeLBCUOBffvKc88/8xkHP/6xAc/z4fsWZBaHaVIABoycbF2/n/1+tyswMiJw5AjH\nq68Ck5PRccydm56n8XFg40aBfh/4uZ+LagLKMDqqk3KNcPGiqFSQAoB228CWLT7e854RpE3EBPTG\nf/E4CMnXn8gCYyAigfK/LT+OwSDaxtKl1YP9rbc2MTpannY0MpI992fP+jh5snz96eJKRwjy259u\nH4JrYbKZxc8GlzIHSTIAAN1ut/Tad3JGnCpzqXp+dVEAIB1V0vQRzXqafYf1DrhhgSmGaz46AACh\n1URolRd8UkvviJh47wejF7r/jVGIehMGDWAExbSh//V7dZgmycwtEl4cDdUpDLk+gRcQuH729zpe\nRA7ycHyVBGRrFJL9DYkG/MvGj5N6jEKthiY9iwuj0H1aEoGQp+k+fi4S4BVkyLPfl2RARphcmk0r\nejdjKo3JKKV47LHH8IlPfAI333xz4fOHH34YO3fuxNjYGL73ve/hO9/5Dr74xS9eqUMuxWzK0BXG\n5RAC+T2ZIiTzjFV4nsDoaFmH22GSpcONggsXQhw/TnHHHWX5mPVcUWd2n5znjdZ5KKsfsO2q42li\n2OXBeR2Wle7ftqV0ZrmxmT81p0/38aMfHcqtI/Abv3ERX/uai4sXiSKpWYNhCDDGYVkCYU7u7ciR\n9FzddhvHmjUUL79clHnTFXsNBsCFCxx3321pIw1LlhCMj5ef31WrTOzdm1UcyuPmm2ugVODMmeWI\niFg25akaHMXIi0oQ2oiiBA7yXYxTTGDfvohAjusFhgAA997bxsaNF7F8eXnxPCFFz+Prr59GEATg\nnF9z0QLP86YsZXetTDaz+NngUuYgzjkIIeh0OpVEmAsDDq0laR5MpF5fqnj984adNBATwzF+T7mR\nvNZBGBa4aYEZNvxGXDtgWJm0Hwlq1hPt9ECmCcUEwI8jBr4VRw7MGjwlOsDzPQl6c/VKR7l82v/l\nr6Pfw5gAMYAgLM5pkot7iu/MU4ZOs2SaU6MF0uiXHZApI0lxcUiL5yuIl/lh9pnENgARPIkSyDqC\n6E3ROeSxeraAPNfrIGBW5nzLc+wyG378CLgFj5aoF4blqVi+7xckm6eKmXTqqNsaNlYLIfDYY4+h\nXq/jy1/+snad1atXY9WqVQCA9evX45lnnsF3v/vdGTnW6UAIUvm42pglBDEYY4lCRFVXyXfeYShz\n9hlGtcG/Y0eIO+4oZ7aWBezfH3lZm82yQp+8FzN7M/t+/hgIgCYsK08UBAaDKmO0D32NQHbbaV8E\nD2FIkCogFdctviYIQ4FvfnNHcs7+9m8v4qabxvDd71JwbiH1pDMANjj3AZiw7ew5vuEGnnR7vu8+\nigMHRGEdifFx/e/q9QRef51j9Wqr4O1ftkz7lQRLlpg4e1bg/e8v9zI3m9E2T5/uINuEbLiMXNRl\nWj1f+doRILo2ymo+sv/Frl0hOp3i7b9uXQNbt0ZsobwjNXDuXDFK9vbbk0lDJsdxEonPdyM5yE9W\nsqvmVL53rUw2s3j3g3OOwSBK7dRFo3+yR/+9slSgPBFQ16vyGksIxQjXpSxwZUzwal3QuKDY16T+\nSBIgSUFopo4iqkhHc2LCs+Lvj8wFRuYBQkB0RyBakWOM0DDpekwPvonf/Sbw+39pwjAIeCxWQUOB\nmm0kdXpCpGTAVWrD3Cn2OOOiWGsQKMa/SgTyUqYqVFJgaAz+qcCjtThNyIgjA1nPfsDMxOAnFbWD\nITOS7sohN+GEynkQ8W8Oa3CpDZfa2HayA8/zEsWrd0OkMwiCyuaZjz/+OM6ePYsXXnhhWmqTP4t5\nisGofORBCPm/CCEnCSEXCSF7CCGPl22bEPLvlXW/TnRevByuG0JwOUw0CIIkRWgYytKFAKDfL79Z\nej2C06dZ0mFXhxtvrMUKNMDWrT56Pd266sAbomgU5o3xEECnEE5ttz0wVnYsIt7OcK1fz4vqDQD1\nWiO590D2Usv2NPi7vzuIW255DUuWHMATT1AMBgwRIRlJ1yIEzaafbLfXy55v2ZDs/vsDvPaagSAg\naDZ154PjyJEyadlo/d27OW64wYDqhGg0qgcLGXXYt4+jXtdfi2NjISLjvw5CpLKQrv+ATk0ob+j3\nUfyPa2g0ys7pBNTIDecEt96a9bL0eiYGAz9pijc2Vn6tHzzoo17PHuP27eNoNBpotVpoNpswDAOU\n0kvqIHw1iorzmMr+rqXJZhY/G0zVKSVlSqXzqTRNKLQTI04FUxwE+XxyIM0Rd3PkQY0SFLzNrbnw\nm3PhthZAaBwCgd3WRgckQrOeRAGCuG5AvpfRg9Csg8WEgBp2lgwoIHFhMW8q3Y/tBghnsGsmjPj/\nsqz42VYJvl48wa0QjShDPqUoUz+Qiw4EIYEXFx1LIpAeEwGzGgmx0YE32uCNNlizAxb/bsoj2VHZ\nFC3Zd3zugngeN5SOyz61EFATPo0Lj8M0IpT8LuWaYtyAE9rJ+iparVYi8ymdPTIS/LNC2b3y5JNP\nYs+ePfj+97+fiMzo8OKLL2JsbAwAsGfPHjz33HP45V/+5StyrFW4hAjBHwJYI4SYA+BfAXiOEPK+\n/EqEkEcAPA3gQwBWAVgL4PeHHc91QwgkphMhkIoOjuMkKULDvIRVhOD06fLPVq2KbrSdO0Ns2KA3\ntBcsSAdnzxO4/XZd2lBKCBqNfE65i6KRKAuLu+h00hxvx6nK956It9NGNi2liCDg0Hu4p9I5GYjI\ng8D4uItajcA0x2OFl/mZ7/R6Blw33U/ee23bAg8+SPHqq2rRcnFvK1aIQq2BhOr13rNH4JZbrETx\nyXHKzy0AnDkTRWDGxvRRgjlzDBw4EAJYDMCCEBTRb9fVJej2lR98i54m2+5nejKkEND9/2qBNwCs\nW2fjxIn0fB84EKDd1hu9nAOrV2d/59at5wGkihBqB2FJtod1EL5aUAmHLOgchmttspnF1cV06tik\naIW8R6ZCRvMpH77i0FH18F1qV6YB6eC358Nvz88uq3fhNuYkxrtEoNQIuHY38fyrEQAdQhLdM5IY\nAAA1pialKSwbhIUwaACTejAIATEAxjgoje5lGgoEIS90TXcrVNUcL324fvSsgyQFlJEkSkAZyZCD\nINSfQ7n80bmvJMtYPVZcUtKF1NfJMoX0qdEeWUuinmc3tODTYmqQNPJ9ZirdlRXVIW5oCaeE7Agv\nGz7W63UIIYaSgyuVMlQm63v06FF89atfxdatW7F48eJE8vk73/kORkdH0e12cezYMQDAj370I9xx\nxx3odrv4pV/6JXzkIx/B7/zO78zIsU4H01UZEkLsEkLIqzQyniJjP4+PA/iGEGKPEGIcwB8A+OSw\n4/lnSwjkgCw7SqopQlXfL1MY6vXKte0BYCR1dpdGCfI1BsVuyFH6j0RRM1+XLpJu03E6kAaoqNA0\nthNPC0F12tAAQAvttu4ymqpmctzkxT2Eixc5GBOo1UwQkqpYjIw4GB9PB7klSzhOnszus1YT2Lgx\nu+zYseL5WLpUf45sOyo+VvHWWxz33hvt9/jx8oLiZpPExn6EgwcFarXsgHXTTfW4fmIuooiA/D26\n46kmH9E5KZJKISxw3kJKAiUmoDsfBw+m+7n//jbeeCPfbZjgppvKu/fOmZP1dJ044WJsrDij5icU\n2Y2Sc56Eo/MdhN9tEYJrcbKZxbsTMj210WgkZGCqpFgabrKGIGRGoTnWdLFebMu8F7ncfd9uQxAT\n1KyBxY4YmosShGYjIQ6B0YBvROOTjA7I9yGpIYzHIt9oZZptHb3pf4gPQBmH49ei1kiUjrhZAxcC\njAmYpgFCgDCuHZBflamznkIGQipgmQRBKOC4Ao4mWiBEShAAlKYHO7moQUAJcjxESxBIScoQaxbH\n2TdGHimNCgApGXBDK0MOJTwaLZPHJWvp1OuFcv31U5a/fqnkYKZQdZ+sXLkSnHM4joPJyclE8vlj\nH/sYVqxYgcnJSSxfvhwA8MUvfhGnTp3C5OQk9u/fj8997nOX1Mz2cnEpKkOEkOcJIQMAuwGcAPAP\nmtXWA1Bv7G0AFhFC5mrWTXDdEILpeGfUFKFOp5OJCgz7fr+v/yxWIyyF6rXYsSPE7bcXDbqTJ7MG\n/a5dAW68UV2vBfWUDQb5Y9Edm6L5zC10uxz6dBMJF2FG3q4sJz6ETHVhTHfhDiME6qVHAIxDEpog\nmB8PSBy93jjGxwnUGoQVK7IDzkMPhfjpT7PHsGABx+nTxeMqK6Res0Yg1Nj8mzYxPPywhTNnyge5\ntWutzMRx6hTH3Xdn/7fIoRylC0Xeffn7df9dnhBklYgI6SMflWm3HdBEgUQ9txxlt/np0xw33ljH\n6tV1vPnmhHadTqf8PDLNRPLWW+dL15fId6NsNptJB2HHcRId9itZnDxdwnEtTjazuPqQ3suqjvcT\nExNoNpuFbqtV17pqHPQDpeOsYiDqDMPEO0yt0jSSsv0AADMs8JgMJL/BqME1UwPWM6OxLkQNgRH9\nJp1wAwDweM4I87VvpFluAMVNvFQP+n94MJL7jSIEqRNBB0oFwnj4lNEC0xyeIpivNcinDknkyQGQ\n1hRIUpAnBwIEwrQgTLsyhcijdpIuROO0npAXOySr8KmRkAGfGgioiYCq6WUpCQiZkSEdg8BC37fg\nBOmjDHlyILsKS3IAYMbIQT6ie7WdRVcKTJDKhw5CiN9E1Bn2IQAvQO8J7iAyqiQmEBkbld0DpxdX\nvAZACCm9CCWTDYIA3W5XWzhcNZgzJvDSSxQ33WSi2wXeeis13ObMqTZcLl7MWpummd13r2fg8OFi\njssNNzRx8KBcrhqZAozljbX8+2KX4cnJLiJSWU4IsvtpgZDziv5/tG/TDMHiEKbnWSimFhmICINq\n3KrvDRSjD3sA3A1gDkxzAEIoJiYsdDrNTJqPKjf6gQ94OHUKmXQiICINZzWNkB1Hf57mzy8/f5OT\nwOrVJg4f1nvu58wp3riHDwvYNkkK3E6coIjShbLkRm+sC0SESxYdZ6+dZtNArm8WOKdIb+cu6vVJ\n+H4N0ThQXguybFkDp04NNMXoESbzQQMFp04V/4+33jqPRx4ZUoGdg2EYSRdhIQQ454m6xWAwgGEY\nSadKwzBmfDJgjM0a7LOYUejmkDAM0e/30W63MylnVdezG1po2tWFqLp1pEFoEGSMQYmgtH4shZra\n41stWDw7xodGeYqQzxuoGx4CUUeN+AhRg63MEVJK0wKFJ6LxySS58ST3HxosjJ+DJIohI8qZ3xZw\n2LYBxqNot06OVKJMYUjC8QTqSrTX85GmkXooNBF1/Yhs6MCJCVFrwQ7yEVyAsOI5ZtwAEwb8wERD\naYqZpv2YMGPi5YVm0iFZJWPS088FEDADlBPU4v4LbmjCiusOKDfAqFZxdkqQTh7LsiCEAGMMnufB\ndd1k/LYsa0rCDf+ckI/EvLn5Zby5+ZWStdXvCQFgEyHk1wB8GsD/nlulD6CnvB9BZFBUzOjXISEo\ngzQuCCHo9XqXdGEeOMARBMD+/ZHx9OCDFrZsofB9QIjylBLDAA4fzpK4rVsD3HprHXv2RMtXrzax\nfXvxu7t2BYphqRrq+UJeH0VC4CEiiiqkEpAOHDrJUCFYbl8DMKau14RtBxoPew0RwZAwoE+HsRAZ\nvSdBSAtCXIzJhoX58wnOncv+rtHR6Nw9+GCIjRst3H8/w/5cw+NWS2/glknGElLuyWi1gPFxA/U6\ng6/h4jpj+sQJjvvvb+HVVwdYuNDE4cMBog7QasG1rqDYj9dRr0/1P6NwnOw5IsSH66rLCIKAITqf\n1cICjYaVKFvpsG9fANMkYKw4qV64wHDffQuSoj4A2pSh6UB6nQzDgGmasCwLjDEwxhKVC7ncNM3S\nfNJhUL1Mg8FgypKjs5jFMOicSmVkIP8d3bU8CCy0atlx0w0t1Mx03JFeXj80UbejdY0p3BYBNbVD\nRF4jH4jSfkxlLKKKaEmSBiQaqJNoDAhEPfPsi9QTbsTjrScamW2qoL35ACEwnQmAhkDNBKs1QTgD\nj9OHTJOAhhyWHfdVCDlMgyRcwvN4Mj65nsiMVQAyaUPtZkkEwBVolXwm4XoodL1X8cjyHQWfGa21\nYbJ0Ia/FjhuNPLnqxQ+ZAVs594ESLfApQaNEXS9dn4DzqFEbADiBAcsUMImAEJdOCiTkGA5EylmM\nMVBK4TjOjJCD6yU6ABRVwe6852Hcec/Dyftv/uc/GrYJC/oagrcBbAAg5e3uBHBaCFFIRFdx3dE1\n3WAsU4Rs2y6kCE3l+xK7d2cHro0bGdauNdHrIVbG0WP5clPrme5204mh09Ff5OfOcdx5p4zy5BWG\nVBQNsWazyPdqNQ9RwW7RS1He4Ta/3/wMQjIKB8reNMt0kINbACFkQXOEW2/NhlOXLeM4ccLAAw8E\n2LhRhhCL/53rFgfVhQv1UQMAuHixnBC4LseBAwJ33aX/PUeP6guvjx6NPFRr1tQQ3Wp5T716zQik\nM0b++lTXc5BPMxJCt6yHbreq8RzwnvfU8U//NI5Op9xb6LoCN92UTX9ataqJe+8dQRhyeB7Hxo1n\nk8f3v398RtN8pOdJhqVbrVZCEmZK3tRxnGk1JZvFLKqQn0OCIEC/30en06ksRq/CwJ96BCufTiKj\nBZ4mUpDZR30uBo156Dfmo1+vTDUGANB4nA5RyzTPUg1/HfINl+R3XZ5+j3XT/dPOXMCKJTUZBYvl\nTP/9zx9I0oUiBwgglNRc1VEj1fskHFdk6guAiDDIZVVDiecLUJq+LoPrA34QPUi8QSI4wlpxrKH1\n8lotzgmcwALlJErxYSTtjhyf00DpguyFRvKQ3ZEDSuAGRbtnwi0ucwMDTmDAjR//385LHxvz6aEy\nrchxnGnVHEiyLPt1XC+YTg0BIWQhIeRfE0LahBAjVhL6NwB+qNn0XwB4nBByW1w38LsAvjXseK4b\nQqCrIRBCJBdep9OZkprDdAgBAOzaxbF4McGEPgUbALBkif5vfv11PzYWq1VsIj1+mX8ukT/GYt65\n7xddP0EgvcHVg3YWrbjpGBARj+Lv8bUt34fJ3hqa169n1hgbyxq0q1YBDzwQYtOm9LvHjxe3fPx4\n8TwvW6YPvRMiStOBom1FhvqrrzLcfnv2Ny1ebJSqSx0/znH33a04hCzThXRN5WSKkIyU5KEed/53\nMegbwQlUFYQTwjEx4SMMUZAfzWPBguhaaTYNPPDAXBw54mDz5osIAoFOJ7vvsTEPx49ffsfiMm+p\nTC2S8qZSGWy68qbq9h3HmY0QzGJGkL9mfd/HYDBAt9ut1E7XzTuF9t9wAAAgAElEQVQ/2JEd+/p+\n9r0TmInKjRtaaSpJEBMApXGjSgq8MHr41MB7O/sARGQAyNYQDOwRcGKCGTYYTDBYcEUrY/zLyEDI\nbYSiqIPv8xp8XoPHs+MEFVZmmXzNevPBelm1IwgB2uhkjGaT+omRHVIGyzIKRb3JtgtkoDguqtEU\nxysWHDuuACuZImRkPIjTQz2/SDYsVq7WR1WCoEQHmDCS5mdAluipxeRS9Uhn2kgJVPkcUpLUN9Dc\n75l0TQy08/j0oRu/Z4Ic+L4/JXn4awXTrCEQiNKDRgGcB/AFAP9OCPFfCSErCCEThJDlACCE+EH8\n+UsADgE4AODZYcdz3RACCTmwSo1nxhh6vV7lYDxVlEmOnj4NdDomyq7T8uuXYMmS6MMjR8oaSgFv\nveVizpyR3NK85zf/+9wSNSO5rIMozSz+tu2jiiSEIYVleRXr6LwIFoqXWFk/AiAydk9DGrLLl5vY\nty/9nbWaQK0WYtOm9EaZM0ckKUQS8+czbUFxWRRm5UpRyMlPt0Vw6pQcpAjOnydot4ny3Wqv26FD\nUqFoHtKagDx8pOdTd40xZb18lGEC+ijAJCYnWygjBUJM4Nix6Jora8In4boE69a1MW+ejU2bskXD\nA02g6Y03zlVub6YgQ9OXK286GAxmIwSzmDHIOUjmUFc1upwu3Fx39mCIwpCXW1/NKZdw6nO03+Uw\nMTB6heUObyfRASo0/Q94HYGw4fNsNCQQdmL4e3HKKRVm8hoA9i14UHsssrBYmBYM5iNo9GAzD5xH\nSkMAEAbp2Ol60WsvfqZUIAyFNnJchoGTIxIKSVANfjenZAQUiWFo1UGtdO6UUQJdtECi71uJMhCA\nJDoApMa82uvACwz4Ick8onWKHZcDSjJN1xyveB3xK9gpt4ocuK5bUJyTcF0Xzebw/kjXCqbTh0AI\ncVYI8UEhxDwhxBwhxAYhxDfjz0aFED0hxDFl/T8RQiyJ131CVOW1x7juCAEQVbaPj49PKUUoj+lG\nCIBIYWjHDoYNG/SWvxyUdNiyJcAddzRw4UJVhICg21UJAUXWK0xRNNR1Hom8QdmC9FI3m8M6KLZh\nmlUDhAXL0g22Vf0I1P9ZbpshKi4GVq9Of+O8eQK33BJgz57s9lavLh73ypX681d2HhYtquofkf3N\nx4/zzHkelgFg2waWLGkg+t/z/58sGK7llqlQPf35tDABfRRGnmcbrZZuDOhDvQ727avuNdFs2jh6\ndIDjx4tpaQcPFpdt2TJcaehKYLrypmoNwSwhmMVMgRACSik8z0O3251Swbpu3hn4RsFjyzgyqR+U\nkyS/XM0zzxcSe7FR6NPyMTzTpVgxRhzRzsiDSoTCRsgthDwag1zWKJAAHQI+tS7LRJNLz6wGuFnP\n5N5TyhGG6Rju+wycCVDKYVlGpm7AMDBkHsvCy0UKqFJLVfYaAPy4uaMfCHz4pr3J8jDu4WCyIKmD\n0OGf8PPR/qlUGCKgLDr3IZOGfpwiFBgZo19CnsOkniIgSSM1tX+C65OEKADRNeZ4BK5PMNAQhZlG\nnhzYtp0ozklyINdzXbegznUt41JUhq4krhtCIAdUWXg41RShsu3kwZgo7UEgewxs3sxw//3Fm1xt\n9pRHGAKLFg0fRMfG1HXyRpiukFN3avNu8DaiWgKOfn/Y/xQOLTYytQNc/rcN248BKZ97+nS0vTvu\n4LBtH5OTKHj+dfnvzab+PI2O6olCvmeAikajOClt2hRi/fro2KqIHACsWGFh+3ZddIBB3zAs/14S\nHoH8f9npeIVlEZxkO4xlB0/TZMifg3PnONat0w+yDz7YxcaN41i+XJ9SMzHBCg3Ktmy5/AjBTEjL\nlcmb0jgB2HVdfP3rX8ebb75ZGYYOggBPPPEEVq9ejZGREdx111148cUXS9f/0pe+hKVLl2LOnDl4\n4oknkgltFtc/1Dmo1+vNiHqVLvc70xArfh0wAp/G973U4y8hAEEFMeCkuD8/l/LjsNSh4DH9vROw\nGgJWg8dq8JmddE6WDbYot5JlEi7NbUuZi4nIjrXUqOF/fuRotK84OsCYSAqMk+PLOYI8j8MPOByX\nwXWjOijH5dpUojxUgkA1PjQ/UF+ndQMGT49BgCC0ozFTKicBQFDrIKx3EdajmkEuIhKgS+MJ4tQf\ntVOylFYNQoIgJPBDwNcMPap8al5K1fVJQSL1UkjBpY7fZeQAADZv3owXXnihNEJwLY7Tl9Cp+Iri\nuiEEaooQIeSyUoTyhEAIgT17XHglAiqmUvG/eTNPjEUA6HZJZVMrIBqwRkaqT4XvqwZb3gjVvdcN\n0rp9tAD0S5ulpduzEQTVUQTf14XFdeehTHaTIDJ8x7FiBYPnEXzgAyG2bw9w+jRwww3F4x8fLxr5\nujSWhQs54uaxmm2UG/X6YnGCwYCg0yHYv7/au04pgeeNoKjuxKEnCfnfKAD46HZ95P/Lfr94bI2G\nDzV9K7pu0px+xgbQpRgtXFi8Xu6/v42NGy8CABYvLg/TLl2aJQRvvXU+KfZ7N0HWH8gJpV6vw3Ec\nvPDCC/jjP/5jPPzww3juuedw6NChzPcopVi5ciVefvlljI+P4/Of/zw++tGP4ujRo4V9/OAHP8AX\nvvAFvPTSSzhy5AgOHDiAz33uc1fl983iZw/HcRIZ28uJTKu51EIUSUGo7f0CrVdRRgfyUQIdKcg3\nJctuOztHhDwdR1Svf8AteAVJ7PgztbOu0lGXCbNIBmLkIwU8luy2eACTUzAWRQKkElrgZaMFKtR6\nAkOn6OTwTFoR41F6kOpBl0SAUoEgntpDZWqUpEBKTqvQ/b/UahRShxjPHpua7+/kCEJAU8NfGvMy\nJUyI6DM3zkj2/PR4ZZ8FuW25DtMM3d/dUilff0WgCkoAkR328ssv42//9m/x4Q9/GH/+53+ekAXg\n2hynuSCVj6uN64YQEELQaDTQ6ZRX6091OyqEEBgMBti+vdzwm5xUBhBGMD5Oknz11auH546eOyew\nfn1VykINWWMyf9ryxryjWSeEXo++DX0hq4pIfSjqgluFBrJpQBypwav+D1KL34Bh2LnlUZ8B234T\nx475+OlP0xs+yE2Kpilw4EDxEj5ypHgj3XBDeUHxoUNVBcX6zw4fjroYB0F54SohwDvvUETnz0DW\n+A9QPG+6YxQAuuj3DViWGuFxoIsOeF6xFqXVkutNQk8Us122CQHuvbeNV19NK+XzofPMEeZC/Y7D\nsHPnxdL1p4Ir2XxGGl6maeK3f/u38alPfQr/8T/+R3z2s5/FuXPncOLEicz6rVYLzzzzDFbE3Qcf\nffRRrFmzBm+88UZh23/xF3+Bxx9/HLfeeitGRkbwzDPP4FvfGiruMIvrBLVa7ZIL1OV1KZ1beeQ9\ntSpJcDSEwdN0ytXuFwR9MoIBuhiIDgaskzQQ48IAEyYYDDisCSos0JgYUK6pH8gRAS8mADIqIJ/V\nhmqUG3BoeZQ8aM1F0IzqHKRHPbD186XvU+V1TqpVkzJaNsTkC5HV92pfAx6TEJUcZI4nEODERGA1\nE2KjHntQi+yVPOnpe0ZiqFMW5ftTFqkFUYYkMiCNeOncTslI+lpGKtTjyxc96zozqx2bf9YghOC+\n++7D008/jU9+8pP4tV/7Nbz++usZ0n0tjtOMk8rH1cZ1RQjq9ToMw7gs2UPVU8MYw/j4OAghOHKk\nfMA6dozm3nPccUdkeI3ka4FzqNWAAwcC7NnD0WiUXQB5Q149FoaiYagzYgfQp+t4mu2nMAw12tDQ\nptCkiDz80SBLERmzZnx86n8kJwMRd3Amyvejrs5HjuzNSL8ZBvDOO9njX7OGwXGyy1as4Lh4EVi3\nDnjoIeD++4G77xZYtozggQcI7rsPmK+IWKxaJbQRBQBYsoTg7NkqOVKCNWvKIytr19q4eHEEaTRA\nIkB5Q7I8OAAKIZqgdB6i88WhP8fj0BV9O04L0fkvJ6f79wdYvNhOyMDmzVnZrH37gtLJ89ix4kz4\n2mtXp7D4cqDWEMydOxcf/vCH8aUvfQkPPqgvbJQ4ffo09u3bh/Xr1xc+e/vtt7Fhw4bk/YYNGzA2\nNoYLFyrln2dxnaBWq12Svrq8FiUZKItwu7F3WE0ZorlogafJJ1chc89vX3QSAJLCYVVhyOFNTNCi\nV3hAo/GFcgshNxNS4LEaAoUg+MyGGxv/Miqgfi6jAyE3M2SACwObO49E67fmImil8qN+c27af4AF\nCKwmqGHjN//HaKxSi4pVYgBU1/GVQaYQyciDNP5DKuBqCEISoQh4Inn6y++LJPCI4PCtLFH07Wrn\n5cAzMkah2hHZDyIDnzLV8M8+A1AiGKnykZrqRGmRHHh+VmXpUojBTEpPq84h13UxMjKCj33sY3j+\n+ecrnUbXwjgtRPXjauO6IQR5XOoFqdYiyBbz7XYbb7+tNwznz4fWaNy0ieKuu2pDZbTWrq0hCATO\nnxe4666yKEFqsDcaIbKeZQ9FQ386ihYOom7WeqnITsfP7E9oCr2ysOMUKtUjXnU8AkXvOQNjfagq\nSDffHEVeVCxenL18Ox2B976XYdUqgX37BF55ReDVVwW2bAFOnuTYtEngtdeAixeBe+81sHYtsHhx\n+e9ZvryaoVNK0GjUSxvSLFpkImoQqJ4vSYB029YdC0P2HM+J3+uiC2VpcgKGQVF9uxOsXdvCPfd0\n8NprRQ3dyUmBdev0E9ixYz7mz8+S0p/+tKThw7sQrutOObJIKcVjjz2GT3ziE7j55psLn/f7fYwo\nXoBerwchhNbjO4vrE1XCFFXfYYxhYmICtVoN/+WtuZn8btUwzBaEGpnXYUltQF55RqYL9Q29x0oW\n+A5oMdqhiwxIBKxYFyCJhsyJVtOGMpECYSREQSUC6YZE4lGXsJkPC2GBDFiWAUp5/BAwlEJiz2Pw\nXAbXY9Hr+KFC14gx0KQAhVRk1s1HFqYDVa5VqgsNvKjgl7LIeFdTh+TxqJKpfiCSh3wf/Z70O1IV\nibL0NecCfUfArYgET/v3XIEIr+d5U1IZulbG6dmi4iuMy70IhRCglMJ1XXS73SR/7e239R6G5cvL\nt3XiBDA+Xp13P39+OiAeOoRCJ8UI6Q3AWN4bm92+aYYopoUw6KMAQllXN8iHmJjIqVywqnB4RFaK\nreKH1XOYSI1k+bAA/DRZY8GC4qUqw6SNhsBDD3GYJsPEhMCRI8U9HDqkpnVFtR6HDgELFhCURfht\nu3pwP3KEYvfuqCOxDhMTHFF0xII04AmR0YGp3Hpy//lzI/tSqNdCVQRgApHMbFVfAqDdtrB583jp\nOgsXlqk7EKxenZ2oX331zJQazpThSqcMqdueaqdiIQQee+wx1Ot1fPnLX9au0+l0MKE0JZERxm73\n6ufgzuLagZQprdfrGYPH9UnGMwyg1OjXQUpRTgc856zo0yaYYrirnn6HppEB1dAHUqWj5JlFz9LQ\nCbkJpigkuWHJ+KWQK0OwxLNucgqn1oMBDtM0wBgH1xQVS4QBQxiWj0mexwppRXmioBYeu7kO9bqa\nAYuEmY7OMkrg29nxRhADvt1JHkCUy89YmusPpE3RQipgxEwgTwKSfSmpQvLYZH1ASNO6h5BCm+4k\nxPRkWq8GfN8fqjJ0LY3Ts0XFVxC65mTTAWMMnudBCJHRjg5DgX379ISg2y3fz9mzHAsWVHvr1QHq\n5EmOe+7JeyoJVAO/OKBlT2G7rSMgupoCoNFwkBrrPRTVigaF71FaK0kbkilCNRRTX6baoIwor0MA\nB5M1Llwo3hyHDxPcfTfH/PkMr7wiMD5OcPZs8XzINKI8OAcOHGBYtMjEjTdqujhOlJO5ZcuMJO/+\nrbc4li3LeuzrdYLdu2XER0ZMOISwkK2tgLKOblm+VkBKijYRXRdhvE6Z1+QigAY4N9FolP0egXvu\naeC///dx9HrlKVBVzpNaLUtCT5xwsXfv2YzM57sVU40QPP744zh79ixeeOGFUvWY9evXY9u2bcn7\nrVu3YvHixZg7d3jn11lc+yCETHv+YYwhDENYllXq/XS8bAqB65O0KZlPCiShTIpSB9XwyEt/ymUh\nNyMDXkQymGFOhMJnZmLoB8yET+PagdxzwMyEIDBFJjXfXTmPfI69H+fhWzyuKQiy87NaP+C6ITw3\nHfvK/AyyENdx9OlGqqMrLzOajwyEoYDvc4QiGy2xmQ9mWDC5UutgtxEoBOHvjtxRKOx1PZHsU6b4\n+IHIkJAgFJmH/Iwr35PLKBXJ7wnD9DXjURO2gSPguNlGa9PtLDxTyKcMDYsQXEvjNOPVj6uN64oQ\nSFwKIQiCABMTE7BtG4ZhZPJA33mHoUyRqiqFZtUqEz/5iY9bbik3iPOSpKdPk9yA1UCqvuMCYHHa\nkIsopYZC9RS7ro646I/R89QflU9jCVDWhKz411JYliqhmb8JDc2yfBqNum4tPpY+gPNotwX27s1e\nqjfdxLFiBceWLSLpStxocBw4UDzeZcvK5EYFDh5kOHyY48wZgbvuSsmbaQIHDpQTAlXxyHGABQuy\nBvHNN1tgbA4ir738/6WKUNk5KhKC4nimfreOiGzpz2+93odKJimto0jWBAAHmzdPgjHgttvKDePd\nuz00Gvoh48IFhptv7uKOO+bgttt6WLiwjjff7MM0zURTejpdhK8k8hGCqXQqfvLJJ7Fnzx58//vf\nR62i+cTHP/5xfOMb38Du3btx4cIFPPfcc/jkJz85Y8c+i3c/pjP/UEoxMTEBy7JmpHmmnhzEhnqY\nfc5D5MYfLgzQmCD4zM6oDDmhnZAC6dkPqJm8Jtp6qDT1SY0GuKGV6aEwCKv/ByOWH2VG7LBDDb/1\nP6WCC76XjtsqEVBBjGrvq+dlGxn2+8o2FePf83ghMhAE0ee/ct9ZGPHYHBiNKAqg1BFQwy7UFQCR\no8rxougA5xH5YDJliMZN1uLD8YOUAKhIeg94HEGYjR7kj1/CcRl8n2vTpQDgL19dBM45XNedEjm4\nEhHeYYTgWhunBUjl42rjnz0hECJivoPBAJ1OB7VarXAh79xZXpB0/nz5DbFwYRT2YczUGHbAvHkm\nRkezTOPgQZqLEjTRbHpIG1h14Xl1ROpAFoC5iAx3F0AAXmj6UiZBGqDoVR5B2tDMRdnl4fvq9qKi\nV5qZhHQ3Yv641PXz/6E6iL+Gm28myfZtW+ChhxiWLmXIiwfcdJNeG1rfMC1aP4h/7uQksH07xX33\nRZPM6tUolZmNtpl9v307xwMPpP9n1B+hDhkZiB7DpF2zIISCZTS+XWT/R4GUuOV/eB++X4zuRBEG\nuf2IDKjnq0qKOQyB225LQ6qrVjXx4IPzsGpVC3v2uLhwgWH79kns3j3AmTMUr712HrZtJ5rS9Xod\nhJApdxG+UilDeTiOUxkhOHr0KL761a8mXqRut4ter4fvfOc7GB0dRa/Xw7FjUYPIRx55BE8//TQ+\n9KEPYc2aNVi7di2effbZq/I7ZvHuwrA5iFKKyclJtFotWJalXT/TUTg3HnlBmlPuaUTw1GV5UiDf\nA0CftjFB25gMW5gMW+iHLW2kwKOa5mSxZ7/QCC1+71ETHjXhUyPpkSARMANOkP2eE2S786owNH0I\ngCgtxyQMvkczkQKVGEi4bgjPo/BciiCuJfAUJ5pQ/nC9cy3+fZrPfJ9l5JZVUiRyc6kkAvnfJMF5\nlM/v+iLJ/2c8jVL4Pk88+2GYffgBRxCmhc0SlIpkGaUiIQOMCW3RtedxuH7Ur0Gi0Wig1WplOgtP\nJ3JwKVAdOL7vlxKCa3GcfrdFCGamn/q7BNM1IDjn6PejwtWRkREYhqH1Xu7Yob9pCRE4cqSqRiD6\nbP9+joceauGVV7KNwW680cb580WZyIsX08HDtutwXempd1HsUAxERmcPgAPLCsCY9LADkcGn8/Q7\niHoQqDAAUNRqBoKgKk+vjlYrgOMAkYGZN/ZrKBY729A3UJMwkRrFdaSRjyNoNqPL9K67OC5cYHjl\nFeD++4vnes4c/QR87px++dy52eWUEmzeTHHPPQSWRbTRBokzZ4rb3LqV44YbDBw/znHwYAvZiAlD\n9e1WjBDU6yE8Ty7L9ywAul0Pk5ON5HNCQghhgZB+LAVa/I8MoxZLyzFEZCJL3nbs8NDpmNoeBwDQ\nbNawfn0XhgHs2NHHkSPy+jVw440tnDmTXs8vvZQ2fpBdhE3TRK1WgxACjLEkTQ9A8vmlqLRMB7oa\ngipCsHLlysrJTs1FBYCnnnoKTz311OUf6CyuSUxlHgrDEP1+H+12G7VaDY6TnRukykujnt3WxECg\nVaJGJ73Grg8042nCC6IUmbxDfMPyKIdyMixe91wA/bABJgiaVtZD0A9sNKxobHACC7bJ4ce1ASYR\nCJmBkEVzo5cjCVJKUQjAttT0GwLLFHADE2Z8629kD+JBcyOI4BDEwKAxDwIEzTDKWzQ5BTNsBKQB\nQ3Gm0JBBjremmY4jvk9hmka5zKjLwIVAvZ495kGfotGMyY3HYCv1CTSUxjlLuh/7Pke9bhQkT6uQ\nj6aoJJAzATVLmLFIxY8yATBR6KXg+wx2zYDvc9RsA1QpemZcJMtkF2f5Wh4/4wJhEL3PRFEVUiD7\nA0gSyxgDpRSO48A0TViWdcXIged5pTUE1+I4PZ1gOCGkBuA/A/gFRJ7gAwD+gxCi0H2NEPLrwP/P\n3ptH21HVacPPruFMd8hISLhJSMicACEQpgxid6vYNgtph7bFV99GWu3vVV5tupuvHQCH0K+tLu3G\npgcn1CXL1u62+RRdsl5FJSEMAoGQeQ4hQCZC7j2nxj18f+zau3bVqTr33uTeAPE+a5116pxTp2rX\n9Nu/8fnhm5CKnkoxuUYI8WCnffzORgjiONah2p6eHq2EFP23LEIwYwaB55Xvx5TxGzcyTJ6cFTZl\nka8dOyguuUQJarPIJTuOfH5cdzcQhr0AKAhR6xY9IALlef3j4bohBusoLOlC8x5rhaL/DhYON5Vl\nhnTcHjzveVxwAcWTTzKonlEFvUbg++3XolYT2L27WEgUNc8SguCJJ0TH2pDeXlKYTuR5BL29NUye\nbOHQoV7IiUkp+upaqXqCtj23fTYjFJVKnlnIx8CAuZ0qLMvFpEkhhFBF2u3gvA4pI6KkniGLOAaW\nLClWjmfOrAKwsXlzE888005jK3KNi/bv97B3bxNFMJvO5LsI+75kvBpKetFIwPM8dHV16gMyhjEM\nDaYSVXbf5o0B9b+i9YtYX0xKSLPtiG8sp42qks8FlJRNKu95Uwrm0xRaUQWUW8mLyPoBI99fGQMx\nJfp7GXnsjJiSTB8Ftay8opnfauN1DYFXGYdWZbxOF7JBEYsKqHDw4Xe2y3Mas0ThHZqqM5giH5jp\nSAURCECmDL11RQAOC7EwCoqJnPADq7Os8X0u04WS08iYQBTLVB7l2aexAI0FoohnXgAQJ+8ySpCk\nV3Ghv0trIngmMpCPlgDAYKSCRZ2FKaWI41jXxoyk/PZ9/6T7fLwaMcw+BA6AZwGsFkKMA3ArgB8S\nQmaWbH69EKJXCNGTvHc0BoDfQYNAsTk0m000Gg00Go1BPTplBsHUqZ3HsX9/6l3p7xeYNy9r2fb3\nlwsfz7MBOIjjsoZkApxntxfr3NBuVCo2pPe+KF1oAGUKum2zQraEPILAKt2GRP63IiU1PR5CstNS\n8i0A4KmnHsEzz6RjmjYNum4gRXH9wNy5ojQN5sCBsnAtwe7dDEuXFh/f3LlOqWW/dStP6GNrSOsF\nGNJjL6oVaIdlmetxRJnQejvVbKUSgzEfx45xuG759XNdLxlDebQinypVq1lYubIXBw+GWL9+AHPm\nFE9oO3e2R4DMKEEnmF2EVUh4OOlFw0FRDcGpNjQcwxhMlM0pURSh2Wzq9FQTZfd1q8DplOmca4gx\nFSUocpQWGQUm8mlCnEvqw2aUlYOtyNHKf74HAiD7IBS9ZLO09gZq+S7MqsmaV58Irz6xbfuWYAjs\nrAxyCEWcS5fNpwwRku1VUAbPy04YeSXZdCSpZZkulBTpRlwbRQQCkShuBgkAgd2FwOlCaDcQOHKZ\nC8APOFoeg+dzrcwHQZqSlFKqylccyxel0kigMdfpT2HIQGP5ndlIzSyS9n2WqR1gTMDzqKZoLTIW\n8lDGQb1e17WYlFItv0/WODDl9VBpR18rGE4fAiGEJ4T4rBDiQPL5pwD2ArhkpMbzO2UQCCHQbDYR\nhiF6e3sLi07y/335ZYZZsyyMH98u+KrV8pu7r8/CiRNZqfzwwxEWL5bCwbKA3bvb04UUtm6Ncd55\nZsW7YvBRCDPsEJbFEIaGNyKsIlVG8ygfNyEBoqg+iJdHctp3NtTzXYsJ2o2E9PYrLs5W9JzZcMDM\nme3rnnceCpmEJkwodnFMmSLw/PPFv02cKNmHdu/mmDu3XXFuNDor9Lt39yBVuPPKd9E+240EztV1\nEzANilqNoV4nmD5dYMYMgUsuAe64w8Hv/34MFYmIYwLbzl/3EEB/YhzVkNaKtGPjRh+TJslrtXRp\nFyZNcvDQQyf0hDF1arFAPn6cYcGC3sx3DzxwqHQ/nWBZlu76qjxPnHMEQQDP80aUvYhSOiIFnWMY\ng0LRHKSM2+7u7rb7zTQgvv7Lgg7kueZRZpFoptGUwTefrpvdVp6eEsgyDQFo40D3ohylKLMQMank\nqyJmL7LaOiYXIaRWmxEAAJS3GwcmzNQaC1x73G0w+LwG10oYh4K4zRgIvBhR8l0UMYQhhR/E+sVz\n18o0ChjnbR2QTUNAr9ch6TtK2IYCo26vU6RADYcxmcITJAq7bHrGkmhBahAwxrXSL/8vfzfHx5kA\njeWxMMb1K/CZNhQYEx2V/8//R3mhbh6WZek+To7jaOMgCIKTjvwOhXb0tYRT6VRMCDkbwDwAm0tW\nWUYIOUwI2UYI+RQhZNCH84ysISgSxpRSNJtNuK6L7u7uUg9O/r8bN3KsW0fR3Q2sXu3gt7+l2oPa\nqeior8/GwYNtWwdjFixLdrHdubO4GZhCmh8OSIUu36E4RbDTuDcAACAASURBVL0eodXKPqzd3RU0\nm6rwVP2maCvbYVk+aNKJslr1EQRFD7+A9FBXQGlRUzS9tYLvXHRSROXvShCrYlwr+c9mALLjYBE/\n79SpAnv2tH2NVqtYSM+aBRwucV7Pnm3hpZeAZlMWG599toVDh9LtHD/e2VOyf38N2fSefAF1/tww\ntJ9Hk5lIGp9XXWXhve/twjXX1DLpYkII/MVfTMDevT4++clD2LCBg3Mb/f1hUmSn9qke9zyjVBZC\nEFxwQRc8j7Z1LAaAQ4fKj3/y5Aa2b0//8+tfH0Ic80zu7XBh5qwCsvZH5a2GYQjLsnT9gW3bg0b8\n8hGC0ex5MIYxAFKR8TwPPT09+j42Yc47iu6xUU/vScZlqlAlsSMYk+tVXALKBHiBTAzClKsekIZA\ntVJ+nw9EFTTcuLCgGECGCYhyAseS4/QjSzdntJPvinofCEHgOgJBRFBxBGIqqVNdR4AmhoVjq3z3\nkvlZcAiSyr4QNTigcAgDFTb+53U13P1f2XqMKKCDPt9hSFGtZq9LEFBUXINZyYt1jQFjwqgbkDUE\nlHKdYuNYFDF3YFtSVrokBoMNBxRUjhh2gbPunsfOBWdS4edCKvGMcXzq3TQ5hwK33i33a9kElkVA\nY64brwkB2Mm541zAti34Xqx/V30aKJXGg+NasJOLp+osAOjaBM4F4pihVhu+qmjqY67rwnVd3ecp\njmMEQaDleie5PVza0dcSTjbYTQhxAHwPwLeFEDsKVvkNgPOFEPsJIUsA/BBSufr7Tts9owyCMihh\n3Gg0dKOxwaBuwo0b5UPbbAJr11LMmkVQqxFs28Zx8GB5QXFZ9GD7doaVKxsAOHbu7DwG3zfHmhce\nWaHdalHkDYZm0zXWi5EW9hY/UJynVKPFxgAgqUDluKKoCqmslwlblUOvMJQGZUX5PQTAE1AGwf79\n7ROW9ODkWXzK6wccp1yprdfTa3fokMC8eQ4GBmJ4nkCjQbBjR/l1nzXLxb59ypBjyB8zIUVCoJiG\ndNIkgfPPt/DmN1fxv/5XDUIIcM71C5BeGCVw58938cMf9miF+cEHj+H66/chCIoec8U4lL/OAhMm\ncBw+HGPLluLGA7t2BZg+vYrnnmuPcL3wQvb69fdTrF9/FFddNaVwW0UYzHOkaIHVBMM5B6VUM10o\nw8BxHM0Lf7L7GsMYhoMip9RgxkAZPF+gnisgDgKBWkFRMedS+ZepICjtnm5GB4Qg6I9qMj0hkeH9\nYRVCSIW85rJk20TWD8RSkaeKOjSytAKvxxdZHaPLJiVqEBE4NhLDAHBsdSzSoPjlCxfgD6Y907YN\nFSmwwMBggyVyn3IHFuGgMYPNBVjMYDnWkOsHAl/KLreSziN+EKNSsdPC3FxaTR6Mc1x7FUHMXDgW\nRSgqqJAYoajCIem8UWQMADJnn3NZP3DL2wIt66NIaLm35v1K+ef4+Nc4iEXAmKRStW1LMy05jgW/\nFcFxbW1Y2LYFGnO9DACtZgjHtTPdnMOQglgpBXpZvcRwYRoHebk9FOPgTEsZOhkmISJPzvcgJ/Cb\nitYRQuwzljcTQj4L4K/xu2gQKGGsKEXjOB6yMM7fiE8/nX0Q9u0TqFYFXvc6Gw8+WH41W61yhXPL\nFoYlSwYdClqtsvFytNNP5hU7Hym7UA1S6YwL1pNwXQ9xbEYk6ujqGsiMgZAQItNoxUVXV4RWq+wI\n6pDNzdL126EiAUBxOo363wkAR3DeeWdhz552YXHgQDul55w5rJQp6PDhcgH30kvZa7dzJ8Py5RU8\n+WSIefMcPP10eZTDsnqQGiYU+RoOUeh9U7SkKapVC/ff38DMmdITbnpT1D3KGNOGAWMMhJCMt3zl\nyvFYv34J3vnO7QXnQa6bZtyI5PoSHD9u4/hxH4sWNbB1q5f/IwCCGTPqhQbBnj0BZsxo4MCB9H8/\n+9nzwzIIgKEzhpnsRQAyrBeqODlvIBRFBMYiBGMYSaj7LAgCBEGA3t7e0iZJ5vomhJBGQZ5piBni\nyYwatHeIl1GCvD68coHsRq6MgXR/2f00QweVnMLvRxZcw7uv+e4jktlPFBNUXKHfg4ig6krWI9cB\nIsMw8EP5HSBrEiKKtjETiNJEVyochLwCx6KZomhlDMQhRaUmT1IYUB01qZR4vaOAwq06OgUo8GK4\nSfQgZeeRv6llSqEjBq7FdGRACJLxl4WiCjsh/LAKjAIhBMKQ4aPXHEcYOqhUKlp5Vo4exph2BH3+\nQzZ838dtd7sgKlpApLHCVVpTQHX3ZjOtSaYZZVOKAj+CbRNtLAhR3sjtVKHSQhWFqTIOhBB6rssz\nzp1pRcV5f9S2p36N7U//erC/fRPAZABvEaKEt7YYg17JM6qGwPTOMMbQ398PzjnGjRs3LM+MKZyL\nKEfDEDh2LMLKleXb3L+/XGk8flwMGoKr12s5AW0q0yHMS+c4Mdptu7z47EJ5bwEZFswjyuRzMghB\nkb+nOrEsScVYFRMrGsz8OLP7KAaBNGbWYdq09l9nzeKF6T9nn108tkaDY+/e4t9qNYGdO9uNhccf\np1ixoore3s7P1Asv1JEaOfl1KfKF4fK4VI8C9bJw331VLFokmRt6e3tRq8kIge/7aLVaCEOpjCuB\nqrwqitlBCdaZM2vYsOFS/N3fnY1GQzWQU3AhGYdM1qFUaenuLo/oHDhQZlARzJyZbf/+k58cTFip\nRh8m60Wj0UC9Xs8Ut3mepw2psejAGEYTYRgiCAL09PR0NAYGg+dLJU7leetuszlxaX4OQ6EZhvI4\nEdZxIsx6WfOPp0pBCmKiIwIKvtHfJIhIRrkP4/JGaIr5KKYpO5LJjERZe6+FPFpWL1oG817e026m\nNQFAmDTfpJS1dTOOAqpfCroQt4NHXEUSAGRqC8wc/qEgEHVEooqQ1xCIOgJRh+8z3PYejp6eHriu\nizAM0Wq1EMexjoratq0dH0rO/90HBEIv0qxK0rBI+zLQmCMMqB6jWlZRjsCPM8fFGIffimRvh4Ai\n8GRdRhhQfPzrQ+tUPBwni1kzVq/XQQjRkTVVbyCP6UyrIci+5l34elzz3k/rVx6EkH8FsBDAtUKI\nUiWTEPJmQsiUZHkhgE8BuHew8ZxRBoGCDLFFqFarHesFyqAMgigS2LKlWEkdP97CQw9xrF7d7nGf\nNs3CsWPlD82ECRYeeCDGwoXl6UuTJqUFR5ZF0akwleZnBsRo7z0gAHTDbEyVYgBFkYM4bqBSUULC\nQ5GHX4g6LKtMsVL0psIYc6cGZfnf1e2pcuwPwfPar0dfXxm9X/Go5szhGS+bifnz7dL/rVtHUa2W\n30u1GoHvq/G31wVYlrlTBmkgSAPAxJIlBCtWmJGZlL2hp6cH3d3dukir2Wyi1WqBUqonDNd1QQjR\nSm8cx/iLvzgHe/deive+txsTJ/oABsC5lzRYyxoCCo8/3sTkycVGwXPPUSxeLJl5bJtg4cJurFgx\nAStWTAQhVVx88WQsXz4ZK1achenTu/Dkk8dLz1seI5XTryImlUpFF7dVq1U9mX75y1/GO97xDjDG\nsH379lID4a677sKll16KWq2G97///aX7+853vgPHcdDb26ub4jz44KBMb2M4w6DS2OI4HjQyoFBG\nhME1w0xW5ptFxp6fKv/54mMTqqvtYMjn7wcRQSuwMt8Xsgu1FS/Ld6X0q7Ep2RvFQKyYeWjWOGAc\nGDCCk017PDyrR6cL+aIBX6SeYpdQREzOYTf8yThEEUUUtAtyq6RDcVRgAEQB1V72ICkypgWOMz1m\nxvHG1XVwYSFkrk6dCng18y6Xi5Xa296TpoJWKhV0d3eju7sbtm1r44BSCtu2NZOPih586SYHoR8h\nDqkeZxxRBH6EOKJ6jOZyFMQZo0YVZBcZROI0OXVM40Ap/77v4/Wvfz1arRZ2795d+Ky8FuU0551f\nJhJ60Q8CuAjAIULIACGknxDybkLIjOTz9GT1PwCwkRAyAOA+AP8J4P8MNp4zyiBQKUJRFGkv4ako\nFlu2MN3JNg9lWa9dS7FqVVax7+vrfFrPO88F5wSWVS3N9TQLhFPGGYX8n/Kfi4p9FdXoePT0mIJS\nNXIpAkkKrVoopi8FABuVSvvDKWkzRcHYhlJHUDwWIMTGjQ9lvu3tlT0DVq8WuPxygfPP51iwgOOC\nCxiqVYZVqwgWLiSZvNZx48rvid7ecqFXqxE89BDHxRcXp11NmjQBad2Eg/ZjV9tWwlY1LMuO59JL\nO9+zpsDs6enRHhVFp+t5nvakVKtVrZA4jsCXvjQPW7ZcjiVLpMFJKUGtVkbRSzBxYnEkq6fHxvTp\nXbjkkgmoVivYti3E+vVNrF8/gHXrBuD7Ao8/3o/160/gkUf68f3vP9fxmE4H8s3R/uzP/gxvf/vb\ncfToUbzhDW/ArFmz8A//8A9t/+vr68Ott96KG2+8cdB9rFixAv39/RgYGEB/fz9e97rXjcahjOFV\nChXFE0Lo6NRw8Pf/aSMIeJsBAAB+ODTvc6wbZsn1/YAXMgvpMRvyJ69nUaYYT4BWINOElCdfUZyG\nkVyO4mQ5LjcGwkhoI4AaOfimT8sPhO6/0LTHo2mPz4zJlOVNlmXqcS3WFiXIIywwFOT38oBMvddU\nllsDYWZdlX4jve3yAFTTNgKBgA6dkacTLMvSzs2uri4QQnSkOAgCVCoV1GqSaOIf/rKKL37Eht8K\nEQWxVuLjiEpjITEGoiDWBhOnHIEnDQkA4MlxxSHVBoN+lRgLowXVqLLRaODLX/4yjh8/jne9611Y\nvHgxfvOb32TWfS3K6eEYBEKIZ4UQlhCikfQWUP0Fvi+EOJB8fi5Z92+EEFOT7+YKIT4zlPSiM8og\nUPl1JyOITShvzYYN5efPZFp56KEIl16aPvxlCpaCoq3csoXhssuKPQUvv1yWUsSQ9ebnowdAkVJd\nqaQMMwMDZqSgWfD/FM3m4Ocx7aabjjFNEVHUoQp5gyB/rsrOuYwyMLYdfX0Cq1ZxnH8+hefFePhh\nhrVrOR59lGPTJoHt2wV8X2DdOoZ16yi2baOYNo1j1SqCnp7OLEHHj5eEBwAsWODA9wm2bSNYuLDd\nsDl+vI5sx+U8rzcgr5fJ8tM+yS9ZMnQj1kyR6e7uRrVa1QVapkfJjB7Uai4efPBivPe9Z8mOogFH\naqRksWNHiK4ueRz1uoXly3uwbFkPfB944IEW9u8P4Xntx9Dbm72v/+M/Dg65e+dos/6o7U+aNAlv\netObsHjxYjz77LP4+c9/jlWrVrWtf9111+Haa6/FxIntnOhjGIMJFX0ya32GgqIIgdk0SqHlMV2I\nGARc1w2Yy6bhEOaMiHyPmROBixO+g4HAke++jWZgod+z2hQSIKe4h6ZRUEyLmt+frjkwIhlBmHLi\nd4pwFMEiHAGTzirbYoi4A9dmYLHh9U6iBdL7LeV7aCwDaSQmDIsjCwp+K9LOQL8V6RShwfobUGGD\n8aTjMR8asUkRbNvWTcCUgyOOY7RaLTDGdArpP/9tNwIvlClEcTofxyFFHKWUn1FEEUVGszVPGg3q\nHAguCiMDH/liaeGg/N8Iy3DLsnDJJZegu7sbe/bswd133425c+dm1nktymnGRcfX6cYZZRC4rqu7\nDp9KfrASzvmCYoVGQ+DZZ1MBIATBM89QLFokFeuBgc7C4fjxVNJu2WLjrLOyCvysWY1c8am5nGf1\nyY6xWjUpRhVaiKJ8Kk4DMg2oUz4egxAxenoGC3nX4boChIgkvSlPa2kaHO0pMp15+knm3bIiHDy4\nHevWMWzaJDBvHnDiRPuIpk7Nbuf552XKT1cXw6RJBEVR/EpFYM+eci9cT0/SMMcDDh+2MGuWOW4C\nz1PnuNjzL42a/Llpv0+HUnCehypgjONYe5J6enrQ1dUFy7J0QyTf98EYg+u6uOuuJXjiictw1VW9\nGD/eLO7OIoo4Fi/uAucEjz/uYcMGD5RK/vN584q5tJ94wsPkyel9+PLLMX70o+eHf2CjjFarpZsT\nLlq0CMuXLz+l7W3YsAFTpkzBwoULsWbNmhHpkzCG1w5s2z6pOagsZagoUpD9vXiuUalBSieLEsX1\n8sXpfNEfpHOCuWuepAY1fQutnLMnipGpTYhp6vEHpAGgjAHzPTKiBgqUStYkBd9XBAnJsYUCP900\nHUUgObnpsVTJptzCDe+ZqpXhTsgbBnosrdBY7kSVjWTMMh/ftbMRCgGSoXGNhQO7RM7OOmd84fd5\nqCiUbdtaztfrdd1nSUWovnH7RIReiDiM9YszhsALdbRARQOiIILfCjL7CPxIn58oiHXEoJPBdDpg\nWRauuOIK9PX1nfQ2Xi1yejiNyU4HziiDQKFTp+KhQgiB3/62WBDMnm215aAHAXDsmMCUKSTToTiP\nSgXYuTPdbn8/cN55ubCnaxZ8ZVN6envzmmy+oVXRjV1kqTuQzDKd8v+bAFwMDKgmZ2Ww4LoyJYUX\nhmvzEYjOdQSWlf5u21lvCucUwGP68+TJxSNqNouNuWnTgAcfjDBnDsF552XHumCBBb9DawgzKvTS\nS4DnOZg5U16Pnp6JyXGowuH8eVXfZ481W+Qrcf75w/OsqAmCUoquri6dIqQ8SNVqVRcnqxx6z/PQ\narUwY4aDe+9digMHXoePfvRsEEIBUBDCoAyYOLawbZuPsKD8ZMOGoDCtiFJg/vzsBPev/7rnVVHI\na3qvPM9DV1d5g6Dh4KqrrsKmTZtw+PBh/Nd//Re+//3v44tf/OKIbHsMrx2oe2uk7vVWrm5Kdqw1\n0m10lIBpxV95F+NYaC99ZBS8msaAibbiYg40PRkZYEy+R7EAZXK/mXqAIdQnRLFMCYpiAT8xduJY\n6MJpHeVIDIX8Kcw3JwNklEAes42QOsmywTZkkUENgyjo3EXXVIKjIE7Tagyl+i2/342IStkbMnl+\nB0sb8nlNv4YCJesB6FTRfI1ZtVoFYwytVgv/8qke/NunxoHFLFNbIIRA5EfaUFCIoxihHyH0Ux1F\nrRPli0ROE0Y62vBqktOMdX6dbowZBCU4caKFzZuLtzFhQvH3hw8L9PVZ2tNRhNmzbYRh9uZ+9FGG\nyy5LC6SOHDEVrKxi299v/pch712P4/wlbaE4b78fQBeEKDNe+pHWDVioVsuPyXE4fJ+UFuPK28w0\nZDrXEXBDmDOWF0IcwEuQxgpw7Fj7/6tVju3byxmGAGDHDoaDB2mmeHd8BwfN+PEEu3dnt3n4sIDv\nOzjvPBue142UJajtiJCmCmWRd3JMnQpMmjR04aeUeyGEjgaUQXFAm8XJKuQ8MDCAT3xiBv7t3+bC\nda1chIqUelCCQGD+/J7C3x5/vIVzzkknug0bTuD//t+SbnC5YzpdNKAjaRDMmjUL5557LgBgyZIl\nuO222/Cf//mfI7LtMby2cDJEFrITN0MQsLb5S/aZSeEbkQFFgWmCxqI9XSjiGAhkelARzEec8yxH\nehCKLItRlDIdtTxlcIi2VxhJgyQMedJlNzcmKtpqIzwdKRjeHE4TmeVYHK6t8uBThVelwsQh1fny\nJvKe78BL5x4uRKYYNzTy79W2HEuUEmyYhkHAqgh5BT4bPltOGIbgnOuoZh5KxjcaDfT29qJSqSCO\nY3z1b+sIvEAq9okhAMjzE3ohwiCtIYiCCHGURBWiOCmSF8ZvMu3oQ3cUhOYTjIYMV0xDp4pXk5zm\novPrdOOMMghG4gaM4xiUUuzYYeuOxHl0alHuOMDFF5fnCE6eXJx+s2ePhYkTLUyYYA9SP2D+P6+B\nR8heUg7HKdpf2lwM6EFPT144DiBfRBxFdRRFCapVDkpjCFEBIeXnxbZNI2CwOoKyJ0FdXwfAOkyc\nKLBtW/u6CxbwUk+/6eUPQ2D9+ggrVtioVNr7D5iYN88tzKk9cgQ4eLALjJmdlQHzOsk0qnZYFscL\nL2S/G050gHOOVqsFQkjpBNEJqljNpDZ9+9unYOPGC/HGNzbgZi5TUaqXxCOPtHDppeMwb14Dy5eP\nw4oVE3HllRNx8cUTMX/+JFxxxWRcccUkXHTReHzxizsQD4OabzRgTlatVmvEDIKyfY3hdw/DdUqF\nufCb7zP4fi4ykPusDAHGhF7mBUp01OF5U0PkgmDAI2h6pFARYUwaBS2PI6bSk2/WDdBc2pBMHeKI\n4tQIiKI0ChAmy2ZKlGkcyAZrAp7fLpNbtIEm7cIAbcCjUql2cnMP5QTvfufUtv+aMjIuqBcIvCiT\nQlRkOChEQ1yvDFaH+bIIYRgijuMhy3plHCj5/r0vnoPQC0BjChpTrewLIRCHMWhMESWRAcEFoiBK\nowhRakgVRRZGE3njYjScRa+UnOZMdHydbpzRjcmGA8Vx6/s+HMfBpk3ltpKpVObhusD69RwrVtSw\nfn27RZGPDigcPSqwbJkMAR4/bl6WPE9/p0uW3fa4cTFOnMgbBHGuIRUwMFBHteohDF2oNKE8hLDh\nOBSUmjz1PEnNUU2hys+ZEOY4nGSs5jUyi3F57vd8fnsEYB/mzRN49NH2ffX2Fo/h7LOBXbvar936\n9TGWLbPx3HPlAtp1y4UQpWqH6vhNwyAG56pDdBbnniuwd2/2u6HWDzDG4HkeXNdFtVo9ZSGpws6O\n42DmzBp+9KPx8P0I3/veIdx330s4dIji6FGa3Puq34eF7m5pKDzzjMDEifUkHS57HufPr2HHDuVN\nEvjAB7bixhun49xzq5gxo33sQohTIgUYDoZiEKjeDqrhWRiGuqOmiZ///Oe4+OKLMWXKFGzbtg1r\n1qzBu971rtEc/hjOAPi+jzAM8dWfZYshZV0QzXbO9Rnqdfk5pgKuo5oUCtg2kfn8VMDO0WuGoWxY\nBaSsQlzIOgHZmVjtE2j5ssiWcxkBqOayXsKQw7aJVuwrroUw4rAKZFAcyUZeKp0oTrjv3YqVYRlq\neQy2ReC4BIwLxJHch9k9t8m6dG8eQgSQLPu0qhuB2RZHSB24NocXOYijGNVa57SdKIjhVrLzahxS\nOK6d1AbwpNsvB2cclm3pNCF57jn+8M1nQwiKiNqou9I4CKiLis3gUxduMj6fVtuMl6EgiiKEYYju\n7u6Tko2EEFQqFfzXP88F5xxv+392yu8tAoskTcss2Z3YSuQaZwyEWCCWqt+zMrLarbp47//7AgZe\nehn//bWFpyWq22kfr0U5/UpEATrhjIoQANA5dcMxCIQQutmT4o1+4olipb+nB9i7txNLjXzYn3iC\nYf78rGJNCLBrV7lVvWEDQGl5/UBu1Mgq7lFmXcfhOHGiqDFWlEnJkbCSLsUn0Mng4LwLSml3nAjN\nJkP2FqqgzLvPOUF3txLMgzUoA8qPG3ofBw8+WfirWfBt4rzzyu8J2xZoNIDp04sfib17y4S4A8bU\ncasxM+NdfdcuyKZMObn6AdVkq1qtnjK1bhksy0JXVw0f+tC5+PGPL8LDD1+MzZsvwk9+Mgdvf/sk\nTJxYR7XqIopsNJuyhuaFFwTq9SoaDReTJ1fR11fH9Ol1hGEV8+adhWnTujFxYh0//vEx/NEf7cT5\n5+/B9OnbcN11e3HggH/avDT5GoLBOl+uWbMGjUYDf//3f4977rkHjUYDd9xxBw4cOICenh4895yk\nVP3lL3+JCy+8ED09Pbjmmmvwjne8Ax//+MdH/XjG8OrCcOYgZQz09PTA94vnhihJD1IpNKqIl7Ns\nWlCc61RMKc8wey1blJWpA56UdUopyRYWp589XyAIBRiTL86lYaIifZ7HQGOBKOKZF1UN1CjXUQo1\n3jjiOuJhHgONRVsk5IePTWujFwWyM0ZAK/BpOh96kTQKLGKBxiwtrI3Sl4koSNNoilh1yqIBUZI+\nU3FUEbdAxIrnLu8kaUhVp/rBUkKHCsuycO+/LcC9/7YAkR+CxnHyokmtQIgoSIqRowg0jMFiijiM\n5OckwuA3ZRi+2qjjbR/agT/+4HYwltYojEbKUKdtvhbltHqmyl6nG2QQofUqs18GRxRF4Jzj+PHj\nQ6KfYoyh2Wzqin1CCDzPw6pVIbZsaT/8pUuBp58uziVyHAHHYTrVqK+PoL8/xsCA3M6cOQ527y43\nJmwbcN3xCHSOZ4hU6Ze0m6liKYs+azUgCChk+pDqCkxgWTSX4kKR73Cc/a2FWk0krA/lQqery0Or\nVdQZWcHr8P8oeQEyEmF0noFl/KY+m0JbHUwF6XmpAfifmT3Mns2xd29x8dNllzE89ljxpLtihYX1\n6yNMnkwwcaKFHTvS6zR7tt3myU8xAZKxyayTiJLxKUrY4hqClStDPJRtq4D1620sXVou9OI4hu/7\nqNfrcN3BejqMHCil8DwPtVoNruuCUgpKKeKkcMRxHN0oR3VMNrsBCyF0N2XLsrBzp49nngnx4osx\nXv/6RlKozzQ7i+M4qFQqo2LsNJtN/ax/97vfheM4+NCHPjTi+xlhnJ6iitcmXlXzlHpGFeNXERQr\nmHJCWZaFv/16KpuqVUemcyRiz61YWkGglKNWd3RKgeMQnbKjPOo0lh52QHqBacxx+VIpL054KqIr\nX1zIlCD1mSZKvxCyLkCIRHHhcjzqmWZMKmhFNQxq+45DEEUcjmtlUiAYk5EDtR3HtTLjVmOPkkjB\n21a1jO0SCBAIQcAhi4mZIIi5DcYtuBZDQB34sQ3GgR/+YL/+LzEiJ4ILuFU3WU5SrriA48q5jTMG\n23V0NIBRlvmNJ//njOPaa/vQW6OwLAGLABWbgQkC12Jg3IJtyW04FodDuCbziJiDmiPnq0XT22sK\nVHFwo9GA44x8QofavqJqV13uVbqRanKpKN3VtVf9XN710X16Oyyi+N5Xput6mFqtNiJjVvI6DEO8\n613vwgMPPHDK2zxFjIgsJoSIO/69c6rZJ//UgVBhsdOAMzJlSGEwizKKIv0wmGkXrRYKc9OB8nQU\nAJg3z8HWrakiefCgwPLlNTzxhA8hgGnTOhsECxe62Ly5TJmOAQhUKi6iSK3jIAgA1+WIYzPHLkjY\nfhgAjhkzBCoVgRdfJGi1JHMMADgOg2X5SXtzK9lW8KzFQgAAIABJREFUmGyr6LzJEGLnwFIlGWvR\n/2XX4t7eKvr7LWQNgqHO6UrZjyGV7B0A5utfp09vT8MBJKXo5s3lD9/+/fK3o0cFfJ/hooscPPWU\n/K6vz8HevWX/rUEq/Hla19j4roiCFGg2zdQiWX+ycKEoXBeQ92sQBKM2OZRBKTjmftOeBjVwzkEp\nRRRFuoumSj9Sz5QyENTy7Nku5sypZjxeqsNrEATa2FDbUg1qThVqQjMjBOecc84pb3cMYxgqFFOM\n6mRcdF8HAUW1amc+u67x2aeoJKlEgc+0Qh0FLJNmA0iOfEKINgQ6YaDFpZGQpAxxIdOPlDGgDAPO\nBAhJ6+nyjkXBAce1dN2AinI4rpU29AqZNgoCn+pl9RswvHxxmwgwAM3IhZMU9zJOEIdxxhAAoA0B\nFRVwXDvl6o9i2Lalf7eNOrw4iuFWso6YN149HY7NETELNUt5yNvH51gcEXPgOBF86sIiaQOzi85t\nP05VI1av10dF3nPOM04eAJqVTqXftFot3cNGyXMlyznn+N6X+jKyWclw3/cRBAEsy9JzwanKb9/3\ndefiMwWvRK+BTjjjDAIVru0EJZCjKEJPT0/bw7ZxI0elgsKi4k680JMmtX/3+OMUq1fXsXatPygt\nW73uIqts20iVawtANemcrDrhSsjtymPu7ZUFtbZNMHu2iw9/uIb3vMfVxdKyZ0KMjRsj7NoV4cgR\nG48+2sTzz6sczyp6e2P09+cnDw+AQLNpw7JYCb0oknGFaE/54ahWKwhDgv7+ogiLSrlhxmcTZh2B\nWrYBPAHTIHjxxWKDa8kSYMOG4vM/ezbJpAS1WsCmTRRXXuni4YdjnDhRdt260V7foNbN91ZoP18v\nvpj9bs4cjjD0wJiTEcCqviWO4wyt6OmAMkLK9mt2/1WUpip6oPiw1YRQqciQufI0Ka8TkOanqslF\nRRvUOlHSMlwZByracKpQhs4YxjCSKEsZMo0B1a+gfR35HvgU1aoDxlUBblZpBqAbYxUhDJn2tHdC\nfzNNQQKkMaDGIDgQxjx5XpOUISbwl299GV/67159rObxqW1wHUngcBOlWnX+ZUzAcSxQKnP0bdvS\nkQY1TzqOlURS2mU6gdC1EGY9ASDZfkJqJUxDFq59x3z85Ec7M/9PDQEn+UxhGwZXHFK4VUevyxjT\nhkDoyQJw27URBRFMMRRRGxVHRigqTvFcFLB2tavZbGoni23b2hioVqujEglW7HSu62q5rGDWk9Vq\nNS1/wzCEZVmoVCp6TEo+KzmuZDMANBoN7SzyPK/QUTSUcSoEQYB6vd5h7dceRPnj+4rgjDMIFJRA\nzt94nHM0m5Kyssw78/DDHK4rsHy5g127OF58Mb0pyz3FQFkn1oceirFsWbXjf+W2TYWLoVq1kkJf\n+dk4CqQKd5pGVKkI/OxnDSxb1h7GqFQqWglbvjzGRRdVMsraHXe8iLvvPoZjxwT6+10AfrIPikoF\nRlQC4LwC6Z0vU0xdpEqyUoadJFdUbUd+l6VVVdtNi4lt2wFjIYqUbkIAIV7C3Ln7Ua32gRCOzZuL\nvfGNRrkx1tdntUUVKAUefjjGVVe5WL++LKrThey1AFQq12DNxyZM4Dh0KPvdhRfKtDXlbVdCVAnF\nRqNx2owBZYREUTQsI8QMNQPQE4LKg1WTjZr4gPbogZlqpLalPE/KcxUEgZ58lBExlEkmLxM8zytN\n6xjDGE4GZX0IlBJGKS00BqKAolKTU7LKY/eDWEcCAKlQVxNF1fdjrWiby2FItYc7DBmqVRtxjodf\nCGkIaMW/qI4g+RCG0oC//X8I4/+9uPX6WKfouq6L278jx2XbFiybIPBTT7sXRXBc9bynBoBKHWKM\ng1Ku17dtgsCnbdGO7HnOGgKALCpWHYEBWRTtOgBNOhcrA0AhDuPUKIhifd5t20YYRG3RgDiMtdyK\nI/lf25LRiSIEmYJit3S9er2e8circ1qtnnxX4zKo+1CxzHWCaRwoZ4+KGCs5rmQ9pTRjHJj6hdI9\n4jhGGIbDNg4IIWdmhOAVqBPohDOuqFihyENDKUV/fz8cxyn1zgDAo49yDAzIzrbHj3OsXu2gVgOm\nTweOHi036cpYajgnaLUIKpXyG3/WLBfHjtkwawXCUAoexzGV7yJlk6BWE7j33hqWLSu38fINTEwe\n+ptvHoctW+bh0KFFWLt2Dt70pipkDwMkUQkTFjpHMFX+vIpk5M9zNfcuIyNS0PLkmGTEQPYhUBGS\n7HaEkMbDrl2PYvNmhvHjGer1CBdcEOPKKynOOivJq7UEtm0rL+Y+frw8jSsILFx8cQXtcqiClC0p\nbxBkT07RdZ8+vbig2Gwk1tPTk+FebrVa8DwPURSNagFuvuvxqRghyqPUaDR0R01CCIIgQLPZRBAE\nEEJoT5U6XnPyUREF27ZRqVRQr9fR1dWlDYUgCOB5nh7zcM7NaNOOjuF3E0XMWZ2MgZu/Kgs0A7/d\naRR4Wdllds4NQ4qYMr1cBEo5LlicvcdVVMCEyl7wfdkLIfAZPI/itvfwjDGgjq9SqaC7uxvd3d0g\nhODW9wS49T0BooghChJO+4glKakAjRnCIOXyV8W5lHJ93DqdKFlPRS3uvi9XEB3V0B/V0IxqaEZV\ntKIKvCiVu3YSJXBsZPonqILYzPkp+Q6A5uMHkGnMxRPX7hv/cFbbeSxCQLOGRS6DSc/L3d3dWn6p\nlOaRlPdKXgohtCweKvI9DlxXZh40m00dPVAyWaUWpZkJQh9jV1cXHMfR5BgqRXSwYwzD8MyLEBjz\nXdHLBCGkQgj5BiFkHyHkBCHkSULIm8u2TQj5S0LIC4SQl5P/DRpq+p0wCNRDMDAwgEaj0ZHHVwiB\nxx7LctWvXRvjnHMIFi8uf3imTiV44YVyY+Gssyqo1aro6irexowZNaSKflb4ZWtKTC+7XJ47F9iw\noYGrrhpeaDHPQ1+tVmHbwNy5wHe+Mw/XXTcOMv2nHZS6aO+DAEhDQOXPl1kN6vsKUuNBgLH89swH\ngkAaEGq76pxUABwFcBj79lF4HvDMMxwPP8zw0ksRLrmEYvVqimPHioXNlCkEW7aUR244J3j0UYa+\nPgezZpnXpRep8aLGUnT9ORyn/ZqPG9e+7vnnm/vlOkLQ09ODnp4e7amP4xj9/f1aoR6KMB0qVEoD\nY+ykKe7KoAzSWq2G7u5u9PT0wHVdXdjWbDYRRRFqtRoqlQoqlYqOkKjJxTQQHMfR92+9Xodt23qS\n8TwPYRhmCuHU8eUjBGMGwRhGGvn5x/M8MMZKo9JAqpCHAdUKsYLXysrGsl44pnGgUnCUQg4AAy2B\ngVaxrPB9Bi/pisyFZAK67T2D5zRYlqWf6Xq9jjXvZwj8GH5LNrGiMUMcyRcgIyHKYOCU62Uay2XT\naAgD2mYkDURZ74zZvXgg14E5ogSuI/DWP1mU+V4ZAUrxF0KAqS6+qpYgjMFVrwcjwmIaD64DOLY0\nPpSSH8RJ1CZ2Mu+DQekplmWhp6cno3T39/fD87xhOzzyUHVeilThZKEMQuW4sm0bYRi2yXAzChxF\nkZbHqkGmmtOU8ZOfz0x5faZGCIbBMuQAeBbAaiHEOAC3AvghIWRmfkVCyNUAbgHwewDOBTAHwGcG\nG88ZZxDk8xnzlKL5fLk8Nm9mOFHQgG/PHtlF8sori5Xuc8/tfCoZA3btEli4sIEih+uhQ8rTbEEq\nmWaxZXpMXV3qe4Fx4wi+8Q0XTz/djZkzTy2VJN/FtqurC9/61vn4p3+ahd7eGO1pLyQJFarvY1Sr\nKpLhAnBh22WTiSrCVSlC5vd27nP+fypaoNaTkYhG47G2CA1jkv41ihguvlhg1qz2kcydSwoLwACg\nWgW2bJHb3L1b4PBhYNUqFRlQDDimUG1Po5o6VcDz2gVvUajwggvSAtxWq6U9KuqeNqMHyoBTCvzA\nwICOHpR1FR4M+a7Ho80rraIHJmOS6qzZbDbh+z445zo0rQrTzNQhSik459o7pSYZ9ZyHYYhWq6Xz\ntvPnZswgGMNoQs0/jDH09PQM65kKcjSkppEQBVR7z/PLCnmjocgQ4EL2AGi1TCcYQxQwfPp9w1M8\nzQj0nTc38OX/XZHNrCKKMIgTw4AaRcVURzU447oTMCCjIGHmWAQGojoGomIPsZ0UEduWgB/bCGJL\nFxZTJmU8ZwycMTBlBOgi4tTzn2+2ReNUOaUx1f9hMYPgAso2sIhAEGevLWUElLVfby924cUu/NjR\ny/J8ZLsQlyndAwMD8H1/2I4gVQcw0rJdORaV975SqWi5q0gmlPw2nTumcaActZZl6XTZvENHseud\nSVDMXmWv7LrCE0J8VghxIPn8UwB7AVxSsOn3AfimEGKbEOIEgM8CuGGw8ZxxBoGCor7q7+8HAN1f\nYDCsXVueWnLwIMPDD8dYvdpF/nnq1LgKAHbvVv0JOK64IquATJ5sY+dOIOtpTpfNAt5WK93f175W\nx7vfPfI5hqq4s1qt4oYbzsP+/Stx003jUanEqFY5ZFoMhRActh1B0WuqFKdkK7CsMuOLQBoDNtrr\nEPIGV9k1U4aHNC4870UAL7Wt1WgIPP10hCefjHDwYIhVqwiq1fRJO3GiPDqweLGtzzcAeB6wbh2D\n6/aCEAHZbC1tQFbUzffcc4sFdj5iMXGipKkdao+BvAFnpn8NDAwMO3pwql2PTxbKK0Yp1R7G7u5u\nbfCoSIkKnQPIRA/M0LTpgVLRAzXROI4DxpiedI8cOYKf/exnCIJgrIZgDCMONf+0Wi1wzgc1BsKk\na26+c66p4POcgk8zXmvW9h9OOQJPermLjIFmi6PlsUxhYxBQ3P4/xLCNgTyUfPqXv+0FjVmSLiSP\nT3W85ZSDU64/A9KI8VtpVJoxjtCL2s4LAFglzHRWkqfvhRaimMCxBRwbeNNblxgKvYoMJJ2R4xgs\nia7EiRwpghlVeNM18+DkpqcgJuCCgJlFzkkEASiPFgzWhVgp3WaKlnIEqYhuJzk/0r0M8lD3eqPR\nyDgV1ThVhEyRS6jCadM4AKDTS5UjTMn8DRs2YO/evaURgrvuuguXXnoparUa3v/+93cc61e+8hVM\nmzYN48ePx5//+Z9r6uxXAqrxXdmrEwghZwOYB2Bzwc9LADxtfH4awBRCyIRO2zxjDQLl7VQe1aEq\nOGvXFiuI48cDe/awZJ0Yl15qZ/LoX3yxXLE87zwXR46kF/ehhzhWr06ZTRYsqCPbyTeFZbU/5LYN\nfPvbFVxzzegXmEpB4uMzn5mH3/52OWbNsiANAJYUheVZdlKU05cCAIdtVyANAxPtkYjy3yyo+gOJ\nx9r2ctFFFjxPMSgB69YFmDqVYfFigmnTiI4AFKGY3cFBHLtJ1EbVC6i0IdOQU9soun4c+/dnvzv/\nfII4juF5Hur1+qCRrDzy6V+1Wm3I0QMlzPMRidFGp/SkooiVafCoCUZFBkx2jrLoQa1WQ7UqqU4P\nHz6Mf/zHf8TPf/5zvPvd78YXv/hFbNy4sW1Sfa1ONGN45WAWFQshhh0ZMMEYz9QGRDmvuTIEzGUA\nOtUFyKYMAbLpWLOVj5RReB5tW/dUwTnHl26y8E9/0wCLqY4ShEGMKIkWqJdpEOU/l4EYRbr5U2zq\nvYyjLXWTM5Y5T5wxbSAwIxpAc5FFIbhs5KUbxaXbVQ3KihDR4vn6slmB9twPRVlXKVqm0q1SLoMg\naJPxqqu9SqscaagomMk+BMiItkolazQaej1lJKv1zaivmqNU9FjRwW/duhVr1qzB17/+daxZswa7\nd+/OjKGvrw+33norbrzxxo5jvf/++/GFL3wBv/rVr7B//37s3r0bt99++4ifk6FC8M6vMhBCHADf\nA/BtIcSOglW6ITvNKvRDKic9ncZzRhoESlk4mU6u69YVC6B8asljj0mu+loNmDCBYPfucoPgnHPa\nH8K1awVWr26AEKC/P5siZCqVJvc0ILmfv/nNKq67bvSbUqnQnerTMHduN558ciV++tOlWLBARSYI\nHMcCKW3HXiaACOr1bshcfBODeabMa6mMAaWQHwOwL7P20aPt13P/fobt2wNccgnJTCgmGg1g8+ai\nY1KGnCoAB9LoQIEXrqB479xzBcJcacbixVxTYJ4qzVxR8bjjOFqZHhgY0F55SimazSYqlcqodT0u\nwnDTk/LpUspT5Pu+ngiBbPQASNvZmyFqy7KwZMkS3H///Vi6dCk++tGPYt++fbjpppva9vtanWjG\n8MpBKT4AtDe3Ez6wJhvZDL3ixor6d8NAMJdVGiJjAlEk8/jjiOLCpWmDzoEmLzQG5LYY7nj/yKkE\nitGvWq2iUqngm5+enOkYHAURAi/UdQaM8uR3GTFQhkIYxAg6nJOi05uQFcGxBWJKQKmkQjVZcBTM\nmgAzAsBiqiMJ5jIAXPWHi+HYRO87jJN+Csm7b7DyeVE6BxbNN77vn7TnXindirBBCIFms6kLfVXE\n2ew1MJJQclzJ5yKojAM1H9XrdX1vmNTUyqmjDANVL0EIwfXXX4/Pfe5z+JM/+RMcOnQIn/jEJzL7\nuO6663DttdcO2oz2u9/9Lm688UYsXLgQ48aNw2233Ya77757xM7HcME4z7z2bfs11v7kc/pVBCIF\nyvcgCzzbJy2JJrLK1ThIBWWg03jOOINA5dZVKpVhP2CbNlEcPlysIFYq7Z6Txx+nWLjQxYIFdmke\nOgAEQfGEsHatwGWX1bBrl8qLB/JFw6biSAjwjW+4eOc7R5ctVnluldciL0he//pJePLJlbj55plw\nHEnRWasRFCvzeRYeSTfqulU0mxy2PS63fj4Pv5jDX0JdE4K0W/BTUBGLCy4g2LGj2FBjDNi40cfC\nhTJVJ48LLqhm0oUklAGizj9B2o24GPlIwLhxAvPnc1x+ObBoEbBggcAll3AsXRpp9oWRhvK2KGVa\n5WH6vq/ThFSKw+mAUphONj3JLE5WBdeqe3Kz2dS5q/nogcpf5ZxrA8G2bbz1rW/FXXfdhd/85jdt\nY3mtTjRjeOXg+76+j07WwI6CGGHiHRdcZDzngMyxp0mKi8k6FPgxAr9YeR5oZp9vLgRaTSkfg4Di\n724cWWNApT6aiuJ37jgbNKY6V5/FDHEojYM4kt9xxjS7D2cpBfG/fPswgHYDYCBw0AwdDAQ2WqEN\nP7JQlG3hOgR/+PalANqZheIwTguMudDLXPDM98oosIjs4jwYvHhwj/xI0EnnnUDValUbA2U0uCOB\n4TIWFY1T1cwpp45inFN9aIQQmmp68eLF+OpXv4of/OAHJzXezZs3Y+nSpfrz0qVLcfjwYRw/fvyk\ntneqyBcRnzNnNS5/8yf0qwTfBDAZwNuEEGUhvc0AlhqfLwJwSAjR8UDPOINA3WhljWE64YEHysOT\nhw4Vn/ennooxfjxBo1H8MDgOsG1beRiWkEauMVI6ZjO12XEEvvWtKv70T4eXSjJcmIwYg/HPf+5z\nc/Hii6/DTTdNx1lnuTj7bJU+I1+WBdTrii7UQcoQZOnmM4wNpY6gTEk2pb4yJEIAj8h/lTSGAYAL\nLnDw7LMMW7bE6O+PcOml2d/DsOjRqCNb+K2iAsXsUNOmcRw/Ln8bP15g1SqOIBBoNgUefVRg61aB\n7duBJ54gOP/82mnpMaAEslKQVfRHKdMnW7A2VChFQXmMRiIiUUZtqlgvgiDINNBRaUNHjhzBrl27\nRuQ4X20TzRheOajCdmDoSlgUxJmiWtUDIDajAR3SZ/xWWJhzrNJe8sZAq0XhJ4xCo2UMlPHo3/OF\nPtzzhT74TR9ccFmcmyjkYRDpYxZCIPACHVHIn8sTQQX9fjpXmP6/ILIQRAkZgyXTbCkTsG2AGzyk\njLHMZ3OZGil/poGw8o2L4DgEtSpBTFMDJUiiAmq/RfAjG0Fsw4ts+LEDP3ZG3AmkZDwAnbM/kkxF\nCioCcbJFyp1oTJWhQSnV8lpFX08FzWYT48alTsje3l4IITAw0NFxPmoQXHR85UEI+VcACwFcK4To\nFEr8LoAbCSGLkrqBTwEY1EN1xhkEqkHRydygv/pVscAdP15gz55y7+nOnQxz57qFRsGiRZXCtBGF\nOHYzBaYpZ71AqyUvz8SJwD//M/DWt7JR9eKqMJ5lWUMOYdbrDj7/+fnYunUl9uxZhZtu6gMhNgAH\nnNvwfRUhsFFeT5DvFJtfL19HYArQlHVJptVZAF7AnDnHsWFD+fNi1iYNDAj89rcRLruMYMIEgnPO\nsbFxY96YqCKlPgWkMWL2HGDIP059ffJaLV8uYFkC69YRhCFpux8cB1iy5PQ9ilEU6fQklWJT1Ceg\nv79fM3SNxH1n1iqMVnpSntrUnGhU4fHNN9+Mf//3f8f111+PH/zgByNSZPdqm2jG8MrBsqyTuqc4\nF6VKv1L2oyClwoxL+g4A0Gk4QNYYEEIaA2p/soi4nX3rZGEaA4NRRP7gK+ci9AL4LQ9xFCHyI638\nh16YRhEY078pDITSMdZWN5Ck5KjUnCAi8AIgigHHJmAMeOPblkFwDk4ZRHLcZcssytYSAEDFTVOF\nCAHCEjvNTBvyIwutaPQdPkBK1ADI6IPZ1+ZUmYoUVIOxkWIsMhmVFAGMqoe45ZZb8LWvfQ39/f34\nzGcGZc7siO7ubk00AwAnTpwAIQQ9PR1T60cNwykqTuhFP4jE208IGSCE9BNC3k0ImZEsTwcAIcT9\nAL4A4FeQTES7AXx6sPGccQaBwnAjBGEo8JvfFD/ZCxZYpSlBkyfL+oGNGynmzHHb+gyMH18uBHp6\nCJ55Jrth1RG4t1fWLBAC3Hmni3e+U/K1Ky/uSPPPm7nkp+K5/fzn5+HRR5dh4cIa8n0EarWiJmVA\nu0GQn+iGNlnJcyG3/9xzD5bWNfT1WXjyyfb+Co89FsKyYixb5iI7PypWJNMQ4ZnPXV3t16FSoVi5\nkuHxx4GXXkrP54ED2XXnzQOq1dOTux+GoWabyHumOvUJMKMHJ+NhUts43bUKat+AnAyq1SrOOecc\n3HnnndiyZQtuvfVW3HHHHbp7+cni1TbRjOGVx8lEqQFoNh6liOaNBPOzmVsfJqlCcWgosTTr2FDG\nACAjA4B8PgYGBtBqtU7Je6yiy4rhayj4jzvPw3/ceZ5MI4oi0DBGHEagsUwZivxIUnwKGUXoDyro\nD4YWJVd1BPnAK2MCl/2BbPrCGdPnqmyZxbE2EK74gyU6HYkWBKA5BxiXdKOuIzIFxybyjclGEspz\nn0/H7MRUpKKoQwFjTDuURoOxCICODNRqNUyZMgV33nknNmzYgJtvvhl79uw56e0uWbIETz+dku88\n9dRTOPvsszFhQkfynVHDcCIEQohnhRCWEKIhhOhJXr1CiO8LIQ4ky88Z6/+DEGKqEGK8EOLPhRCD\nslyMGQQJHnwwhucV/1bOpw/MmZMqVc88QzF7tguT1vzIkfIxLF5cK+gCLKHqDj7wARd//MdumxcX\nQBuDzMkKclU8rLwJp4olS7rxxBPLsX//5bj99pl43evGo6+vhlrNxuTJFcyc2UBvbxVdXXXU6w1M\nmDAltwWGbNoQg5mOk1UmTWafbEO5ev23WL68fXznnmuhTPb193M89hjFkiUEF16oHo96sh81Eal9\npuNYsiQr4et1mTL10EPZR+yssziOHcvu88ILR185VnUhURQNuftwPhVHTTBhGGaiB4NR3qkc0Xw+\n8Wgjz2Jk2zaOHj2K+++/H/fccw+OHj2KT33qU3j55ZdPeVyvtolmDK8N/Nmth3ShLYCMEmB2xs1H\nA0yjIDJSjcy0IyEEFp6fytZmM/3NS7of/92NViZl42S9x6ouSBW5Dtfg/+9/mY///pf5iSGgIgUR\nWEwR+SEiP8wU9eZhNiczd630VdsCYipAqYDrEDQajmYUEoKn7EIsm06kwDUtpgXbajcGhEgby+UR\nlRgFo4EoihBF0aCee7OZXFdXl75+AwMDHSPCKgJUq9VGpd5NyWxCCKrVKoIgwC9+8Qv84he/wMMP\nP4xp06ZpKlITjDFt1FBK9byUx/ve9z5885vfxNatW3H8+HGsWbMGN9wwKD3/qGGYjclGHaNbnfoK\nYrgGwf33l6eX7NlTLohsO7uPTZso5s+3cfgwh+sSbN9ebnXHseLRz6JSAaJIYMoUF1/+crEXV3ly\nVYFkHMfwfT/TBESlT5XB5IAfrF7gZDB5cgW33DITt9zS/tvu3R7Wrz+Oyy7rxbx5XTj33B146aXU\na3/ZZRPw2GOH9edLLpmEJ544nIw7BiE20noaF4C8forCDKDwvAE8/vgOXHjhDDSbdezZA0yfbuHx\nx4u7L8v9NPDIIwJHjshrPn58Ff39Fjg3uyNTpKlDEgMD6Xnu7RWYOZNh27b2c3/OORRHjmS/Uw3J\nRgtKyHLOT5rNQjFFqHtE5Xeq0LF5XzqOo+87Sik8z9OdK08X8sdMCMH27dvxwQ9+EN/+9rexZMkS\nAMDVV1+Nq6++unQ7Jk+2mmhUDYaJ973vfbjhhhtw/fXXY+rUqa/4RDOGVx5DmYPikMKtOslyDMd1\nEAUR3Kp0iAReqJdDY9ncLmdcFt9yDiu5L03DACg3BsyxqvRBzrlOKwSyRZ5FUMqkUjJPJfr3/309\n21H4j/7sGQCAZREQYuErX3gcf3mL9PJYJKuEWySdTf2QoJaImzAScGw5JschCCPprLnyzRdh3X1P\nwHZscGNDKjWIWJZeth0bV77pAjgOQUwFerpJsm2g4gJ+CFQrMkXJddQYLDiJflAmct+wuHwuGi5O\npteAyQBUq9U0w08YhtohpHQJk150tGS56iXT3d0NSiluvPFGfPazn8XChQsBAJ/85CcL/7dmzRp8\n5jOf0ffePffcg9tvvx033HADFi9ejK1bt2L69Om4+uqrccstt+D3fu/3EAQB3vGOd+DTn/70qBzL\nUDAadXqngjPOIMh3Kh4q7r/fx8UXC8SxjWeeSb+fO5dg167yCEER3eiOHQKzZzuYPdvBAw8UGxMT\nJlh4+umSxioWgW07+NGP7EGFqwoDqq61ikq85ZJrAAAgAElEQVRS0d4p48BU0oA0vAsMjRpvJBHH\nMc46i+JP/3SKZjBasWIa7rtvn14nr3BZuRjr5ZefhUceeVFtUX/PuaIABaTifgAbN3bBdRtYtaoH\nQeDguedQiiNHTLYkgpdfriefVcSCIltILHsN7N4tP3d3C/T1MRw5Ahw92n5OizJI5s8PEAS2VjRH\n8lqY13kkO1SqgjDXdSGEAOdcK8wqbUB1nTyZvgqngqJj3rRpEz784Q/jnnvuwfz584e8rdfqRDOG\nVw4mw9BQ5qA4pLBdpci3R/WVoaCWTaXfsrOKH40pbKNblmkIAECrGYFYBIEXI+/UUFCKvWKAUYWe\nSkF0XTfDXON5HizLGpUeJj/99gWIokgrurZt4xdb2tc74SlHBXRKjxeknvwwEnAcAsYEbEuyzNnJ\nnMKoTA8ixhwjUzaY/o5RBkIIKBWo1SxEsTQAyhBEJNO0zA+tpJsyyUQwfN/XLGincu5Ur4FTYSwy\nnTpKl1CGoeM4uj/AaEV5lXNJNYr8+Mc/jre85S0dHTYKt99+eynNc76O62Mf+xg+9rGPnfqARwCD\nNR873TijU4aGAiEEHnmkhZ07OZ58UuCZZygWLRJYskReqGnTyv87d66FQ4eKL+jevQxhSLBgQfEp\nXry4Vpi2Uq8DQWDhjjtsLFs2vMtT1Mwpn+Kh+H2VgD/dXWnDMCzk21+1Knuin302m9O9a1d/ZpwD\nA6ZnJV9onE8h2ok4DuD7IV544QQuuqj4eC+9tK47SsttdiNND1LRnPbmY/PmCUQRQaMhMGsWw9at\nFqZPL1YE8v0HAOCSSyqFTcRO1XtwqvSeQ4XZ2VoV8ipjQBUon2ztwXBhGgPqmDds2ICPfOQj+OEP\nfzgsYwCQE41qmqNet912G2bMmIGBgQFMnz5dr/uxj30ML774Il5++WV84xvfGBXe7zGcOTBTGuJI\nFtMqNpvIoA41OxQzxrXRwCgzUo3SdfKUmgqtptxm4MX48k2DK3VFFJF5tholX0aroaGim+wUwW4G\nOecRKV4OQqGpQikVsG2CVddcon8vyt1Wn1e+5WK5PUv+10QYJQXMJc5+LzQjMdnfTjaP38RopPEo\nXUIV+ZpOn9GQ5fm6hG9961tgjBX2hjmTMFyWodHGGW0QDHbDKoXp3nv9zPdbtzJs3sxx2WWA55U/\noNOmlVvilQqwYQPB/v0OVq5sZ1s4dkxRV2bBuYO//msXN910apdGKWn5AlFVL6AafgyW/z1SyOew\n5wVX3iA4eLCF6dNT3tXjx0MsWDBef9627WVMmJBOanPnGoUbmaLkEACDZe3Eli3HcfAgxVNPHcdl\nl1FMmWIWXAFHjqSMRan3TNGm8mRbDvL0ohMnCriuwIIFHJs2yW00GsXn9NCh7PfTpgFTp7qZJmKq\nI29/f3+GNnM410kxRo0kvedQoVLY1H2nQthRFJ3SMQ2GIgPo0UcfxV/91V/hRz/6EWbPnj1i+xrD\nGAZDpzmIMYbr//q5QsVdfRdnOhRnU1oVG49aXzXzMjFr3ll6WRsD/uDdf8uORSmIiq1G1eeMVg8T\npXx28noP+PL7fJGuKe7SiI38HCcKvRBS6bri6mV6XVVPYNYVXPHmZbBtAtsmoEwgiuX3yhDIwwvS\nZT/sLHeL8vhVU7GhnNPTlcajOm6PJFORQt6gefDBB3Hffffhq1/96mmdt14JDIdl6HTgjDMIhhqu\nZYyhv78fQgj8+MfF6+zbR7F3b4grrigWRseOlRsLS5ZU4HlAEAAPPcSxbFkNM2fK7cyYYRXml1uW\njc9+1sZnPjPyl0WdD845Go2GbiVueqVHy4OrHnghBLq7uwvzG5cunYzx47MCbebMbH7NWWelbESM\nCSxcmBZs7ts3gEmTTMMrpW+1LAbOKXx/F1Sjvscea6LVOoHVq2VU5soru7Bvn6ISVQaB6jNQAxAk\n32XZhQAgioCLL2bYsCG9pp7Xfh67uzkOHMh+ly8oViFZ5ZlRqWCe5w35OilGH0X9dzqFqslipMLg\n+S7DRcd0qhERM49ZGUAPPvggPvnJT+Lee+/NePLHMIbTgbI5SLH6APK+jaMYLKEITSkuKbjgOmog\nufppZh0gayio9fMwjQEA+Ke/6W5bZ7jHpZr6qSj0UApShwNVe9RoNEq93ipNKDu2dNmcZpQ9oZR6\n2yaJbJJ/WP6Gpbpw2PTQLn/D0jYa84qbblgZBSpVKaaypiCKs4ZBJ+Q7+apULcX8VCYbT4bVabhQ\naTzKc28yFalrb3aLH26EQx2DMmhUh/d77rnntKaZvlJ4tUUIzrgaAoVOBoFKmanVanj6aRt79hTT\nC82dS7B+Pccjj4S48soqnnqKIamzwuTJBNu2lRcbS4rNdP8bNnBUKjYuvdTCxIkVPP88dMqQLCK2\ncfnlBB/5yMhzFZvFw6ZCrgStKkxW0QOzMPlUC41VbuNg3POWRbBy5TT89Kf7jf9mr59ZdAwAUWSE\nySnHokUTsW7d8+rfUAp9WlfAAeyBbPI3Ga1WBWvXvoxFi2pJh2oVBZiBNAogIAuWpbFRqXBEucYz\njYbAr3+dNXL278/WGQDArFkCmzZlj7sTw5CZpy/PB9N5neo6qZbvqoD8lSziDcNQRwbKitrKjsks\nild5rEPNq+Wc6/Oh7rFf/vKX+MIXvoAf//jHmDx58oge6xjGcLJQjijZjPJE5jezVkB9VkXEStG3\nmKUVBcux9HqCC/1ZRRiUIWDiK/+7c2+AwVBUrK8UUlWQGgSBboiVr10bCtSc8f+z9+XhUZRZ96eq\nekunE8IaCBCQHSQsCsgSRkYREUQRxQ0EBVRcRtRv/Eb93MZhxHH5Kc6ozKiIqAgubCKM48IgEQIo\noOwSlqCBYBIg6XR6q+X3R+VW19ZJp9PdkabP8/DQqV6qqqvrfd9z77nnpqWlmZKB0X38+OQ7vVV1\nCIyqDMzrlyAKEkRJnk+Iq/C8WEtsZHIgCiwGXTYQkgT4fTxsNg4WKwuOZcFxDARRgsUaOo9gUILV\nKluDh4tjWC3hi4nDH7u2NkttGELb6Tuhou94BX3UMh6zdQCZTKhrTSgoQ8daV3Gz3lGosrISt99+\nOxYuXHjOjNm/tRqCpCQE4W4OtYbd5XLBarXivfeqTF8LAFVVoQX/5s1+dO1qgSCwOHpURM+eFnz7\nrTkbZlngwAHjKBEIyF1p27RxQC6ElQudAgEWNhuDd96J/eWgxRLDMGGLh80Kk/XuMdEUPtHiNFK7\nyd/9LkdDCIqKtNdm//7TaNbMhspKeaLbtascmZlWVFXJk+XRo+rXS8jKsuHMGSIRPsj9DlgANQCq\nav+2Y98+HwAPABEM0xGSpF5IswjZjQJ9+1qwfXvo2VGjeAMZaNNGwK+/GgfCZs2Mv4n+/SP/PtUD\nsLqAnCRgHMeB5/kmKeJVu1U1xMUo3Dl5vV5IkqRxLjL7XLNmZ2vWrMFrr72G1atXp2w/U0g4wmWp\n1WTg5v8JORuoi4D5IK9ZfKmjhKIoQhRFpcu4EBTAciGCIAQFpTi5Y9dszTH5vMFaq9LoCQHd52oy\noD5ndUEqzR/qhWwk8wdZFDscjqhrcKpr5IU/ffUMy4AVJQiQyQILBiIkhQxQTQDHyU46jjRLrasR\nA4aViYSNY8AHtaRADZ9fJgiAnBlQFxT7a3mZ/JmR9yDQOz+pv1Ny/YmlUYQaDalL0Dsfqokhx3GG\nQnSC2lFIEATMmjULTzzxhOIAdy6gKbIAdSHpJEME/WBMkgK/3694LldXi1i2zDyv164dsGePNgNw\n6BCP8vIghgyxoKYmPLM7/3wLTp0yf27AABtKS6VaZsiA52U/+8mTGbRvH9vLQYOrxWKJuKiUIhR6\n73l159pAIFBvWpii2GlpaRGnMy++uL3m74oKH7p1C3V/lWVCLVT7ENGnT0vl719+qcbAgbJulmUZ\ntG5tQ79+bcFxWQBaAMgE0A5AZwBZkBf6EmRyJgJoBklSLyBrIJOG0PemXuhfdJFg2ruiQwfz78Ys\nGhCuwLk+6AvIbTYbeJ5XtL2kQ413jYje678xjWr056Sup3C73UpamjSr+q6oDMNg+fLleOONN1Jk\nIIXfBOjeU5MB/XjIB7WdgtVFweoeBern9Y+V/QSNQaoaTwC+mgBe+9/om+QRGRAEod5FKC1k9Q2w\n6P6NxOO+oQENOhy3J/xYR/IgAGA5Bnxtx2d6L32HRAbYWqkQyzJKtpoP1j2W+vza5711yIZuHBqm\n8ZEJ1FIdm82mjOsejyfqYuRw0Mt4GgIiB9TbQl2Irm58p+50DACPPfYYLr30UlxxxRUxO4+zAaIg\n1Pkv0UjKDAGgJQSkqeY4DpmZmcpg9sEHPrjd5jd4ly4STpwwbq+ulnDokB99+9rAshJE0cxakhaa\nZsdl1T3HoH174J//jO2loDRjY6Qjeu95chmgCK6ZZEUtHWlob4O+fVugVSsHystDo2jbtukoKlKn\n1vVRhtDk0rlzJtq0caJ//444dMiHgwdF9O5t1/UQ8EEmAFnQFgdzAIiQBAF4oScDHTtK+PlnecE7\nYIDsSjVkiPE89N2qCeXl2t9Es2ZA586mL20Q/H6/puGYmf0sXadoUvjhEC9LU4I+c0VpaZIsALKt\nrtvtht1ux5IlS7B8+XKsWrWqVpKRQgpNA7XunOd5uN1uDRmgJltcrUSIOuOq/4YAsBwHSRLBB+Ue\nA/qMAWC0GhX50JhY46ntXhwIL2+NBNT9tqH3eaQWpkQG7HZ7VPNVlQe1RhlaCQ/LAGrlKcMAfr8I\nQenkLEEUJYi1Jhu0ZpAkSfaTq5UaWWrlWBYrg0BQhM3Kwu8XYbOx8Pok2EwyBzU+SbE2jVVDX5L2\nUvAlGqlOXVDbyDa2LsFM/kS21AAUOdL7778Pj8eD+++/P+mLiPUQf2MZgqQkBOofVSAQgMfjUSLV\n9JwoSnj5ZXOGzjASjh4NP4D26mXFhg1+9O3LorSU0Sz0rFZgzx7zi5ydzWDnTgayvl3ODFgsDJYt\ni+0ijRqL1FWQFQ1oELfZbJoFGklWLBaLEqmIpgEWwzAYOTIHK1aEWpPrfbQPHDgDlmWUG6msrAaj\nRuXi6FEfjh6twbFjFejQIQvV1fKkuG9fJfLz26GgQG1jKgCoAMPYIUlpkG+D9pDJQgAyOWBht6dp\nbEJzcxn8/DPQu7eIgwdFBIMMKiqM17q62lg/YLeLOHpU+7p+/ZhGXfdwun31QEzN6/S1B5E2r6tr\n33p7z3hCnZYmgm+xWOB2u3HhhRciOzsbgiDgtddeS9l9pvCbABXf0sKHFlgT7zygvIaIAen/hdoC\nYsX/PshrnqMeBHwwqCEIQq3hPtUgEBEAAL83gDefCGVWGwqfz6cEeKJdaOplJXqPe0EQYLVao1qE\nVnnq27ccgvN6BaWGgGUAsbazmShIYBkGYphMKpGB+uDzS4pUyOeXoI+FNXaINNP0679TsmmlAJCZ\nVKfOc/D5IElSzMd0yhrRmG2xWDB//nwsXboU6enpeP/99885MgBoLYUjAcMw9wC4FUAegCWSJM0I\n87rpAN6CLHOgqporJUn6pq7PT1rJEMHj8cDlchkKb1atqkZOThBt2xrfM3Agh5KS8BeqokIexHfv\nFsEwEgYMCN35/fvbUVlp/r4ePdJqC4nlz2ZZBn/9axA9e/pi5jtfl7VnLKH3qHY6nRoph9frjcpx\nYtQorWxo//7TsNtDP9MzZ/zo3bsFevdugcGD26OkRIDPx+DoUXlxKopAx47aSWX79l/RubNxopEk\nP4AzkHsMUFbHCoBFr14O+P3aSFVNjYTu3QWUlIjweBg4HKGGZGroF/4AcN55Engdx2xI/YDx2KWI\nJupwLj8UkSPruIY4TCWqv4EZSAaXlpaG9PR0tGnTBo8++ih69+6NSZMm4U9/+hPatGmDkpKShB1T\nCimYQRRFJTCjXuiqe1oAsjsQH+RlGYgYymqrHYdCdQK8YocpBHmFUBD4II/WHUIySr83gBfvs0Tt\nIKfO9jZGDqiG2sKU9ONAKKsdifzl2kHyeB+ODLBsaAHuqRHg9Yu18h/z1wuiWDt3SZqorSBIirQo\nGBQRrM1I+/0iRFF+XhAkCKJcN8ALxj4FgEwQ6F80qE/Tr5b6kiRa3TMiEmvQQCAAnufjNqZTEInm\nojvuuAO9e/fGNddcg6lTp2Ly5Mkx3+dvHVG4DJUA+AvkxX592CRJUqYkSRm1/9dJBoAkzRCQBzsA\nZGRkGG4gnpfw+OMVKCoKguPkhlTV1Vbs2yc/L0nhB6ROnRjs3x9a5JaViSgvFzFihA0//MBDEMxH\nHIcD2L2bAzXLYhjg5psZ3H13msZJIFqHn0iKh+MFcoWw2WzKxBdtYfIll2gJgc8nYMCAlti5swwA\n0K1bM+TmNse6dSWQZT1AVZXWfWj79nI0b56G06dl7W1NjQCLxQ+Hg4HPp73JcnOzUF6ea6gFaNlS\nKznhOAmCwKKsTERVlXyNu3QRsHevNhrdoYOIX34xnl/LlsabO9r6ARpYyca1Idc6XPaAUrn1ZQ/M\ningTBXXBIWWpXn75Zezfvx8ffvghLBYLnn32WZw8eRJt2rRJ2HGlkIIeFAGvL+otCHI3XGXBD1V3\nXCH0WF1srC881suPCH5vAH5vAFZrmqbA12azRTS3+P1+pXNsrMiAGhTAosCSKIpKRj8S+YueDOjr\nBj01IiQJptF/hmEUG1eGBTiwEHTBq1CvHtmBjqvtCi2JVG+gHft8ftkkBIAmO+D1abMFNb6GkQIK\nwEQqpzIrRiaTBrr++rFd3QAunteaHIWqqqpw++23Y8GCBejXrx9eeOEFlJWVxXy/v3VEYdO6EgAY\nhhmMkMY5ZkjKDAFpFPX+wYT580+jqKi226MAbNvmxb59VRg8OIhhw4AdO4x2bYSOHY0cSpKAb78N\nICdHthA1WyNdeKEDp09LIELQvTuHBQuspr7ztPCJtPGHWkKR6Igt6RcdDoeyQNQXJpMvvM/n0/jO\nm2UPunRphs6dtcVvLpcVGRlW5Oe3x+HDXuzde0bz/L59lcjJSVP+9noF9O2r/YyiIjf69bOBYULf\nI8cxcLl6GsiAwwHs2qVd6F9wgYgjRyScORO6Zcxcg3JywhfM6TFwYHRSHaoLaKxuX509oA7DdWUP\nzIp4EwWqhyAHJVEU8cwzz6C4uBiLFi3SkP7s7OxGH1tGRgYyMzORmZmpBBXmzJnT2NNI4RyAJEmo\nrq5WFl5qXDljNyRR1PwTeUHTaVjkBdPHfDCoemzsRiwKgpI98HrkIMnbT7dWCnwb0jOAZKfxXCCS\nVp3mh7q8+Bua4XBXG8+LUZ2G369diAmiqBQOS4pFKbkPMQoZ0MMfMP/+fD4JgaBse9oY0HhPNq4N\nBa0vqEEkXX91gXd99qKxADkKOZ1OiKKIO+64A3/605/Qr18/APJcdC4GcURBrPNfIzGQYZhfGYbZ\nzzDMYwzD1HsjJyUhUHdH1Q8ie/f6MXeuuQXQtm1eCIIHI0dKpp1mnU5g9+7wtQWtWtmxZQvQsSOD\n/HwOnTuHCop+/tmK1q3lC2y3M1iyxFg3UJfDT7gGTmYL8kRAbeHqdDrDDlaUHaCOjCRl0jvHqN1w\nLrmkg+4zWKSnO1FQUAZRBIqLq9GpU6gzsSQBXbtqCcCOHWVo3ly7qN+6tRzDhqWDirqHD8/D3r3G\nY+7fPwNVVaHvcdiwINLSALdb+936/UZyyLLmvw99QbHLBfToYfrSsFB3H44H8dO7/NA95Pf7UVVV\nBbfbrUTuEgmyVk1LS4PVaoUoinjyySfhdruxYMGCuExibrcbVVVVqKqqQmlpKZxOJ66//vqY7yeF\n5APDMMjKyjKVdtQlC1Av/gVVEbD6cdAf0D6nkh4BQPPsFvB6/GBZBtWV2hA69emgIE24BTdZRjbU\nFCJSULQYgGkXdTP5S6Sdcd3VIqo9Yli9vt8vKmSAYRgEAgJ4Xi7aBgBRMH6u+nkAoU7FKlLh86kK\nub2hx+EsRmeM8po/oYI6qh6LuV1//Ym4UjAxXmRA7yj01FNPYcSIEbjqqqti8vlnc/CGrITD/WsE\nNgDoK0lSGwDXArgJwEP1vSkpJUNUfa9PIf76K4/Jk0/A6zUfTPr1s2DrVnkQzcmxoHv3NPzwQ+gm\nvOACGwoKzLMHLAscPSo3wjp2TMKxY/Jg4XIBgwbZsWWLAK9X3vbnP1vQu3fdXCycw49aWgRAYd2J\nXKSFa3QWCfSFyXovfavViosvbouFC/eB4xgMH94OBQVlyM7W+mfn5KShuDg04R075tY8X13NIz/f\nhYKC05rtmzadxKBBLSEILbFpUxrM4PPJ+8rMFNG7dxCbN4vo1Uvv321eP1BdrR1UMzNFdOkiID1d\nQnY2SQGA1q1lO7tIoY7Oq4vj4wX174/jOHg8HuWaUf2AukdAvI6Hfu9UIC+KIh566CFkZmbi+eef\nj0v0Uo+PP/4Ybdq0wYgRI+K+rxSSA5QpVc8/42/dpTymSD7DsIq9IMOwEGqLhQEYHtNrAJk8sCpn\nIUEQwEihe9BX48d7z+aEPbZwPQOolwk5lsUaZo3N6oJe/kKFyABw00V+fLAlVCxd5TbKL9SuQ96a\nuuUZRM6U/yFfJ7IrDQQECAIDq037vfh8stsQPdYPSdF+jZTBibWDG11/utbkTFdVVdWohnJmUGcf\nWJbFe++9h7KyMjz//PMxOyfq+g3INaPt2rU7a4I3emvRihPbUHFiW6M/V5Kko6rHexiGeRrAHwH8\nra73JSUhUEM9IL/1VhV+/dV8UHA4oDS8AoDjx3kcP+7G0KFO7NljQU0N6nQeGjTIga1bjUTD4wGO\nHrXAWxs1GD+ewx/+0PCvXb2QpnoBURSVDALP81E1D2so1O4yja1V0NuSEem56KKWaNHCjvbtM7Bx\no6wr7NKlGUpLQ1GVM2e03tzFxdXIy2uJXbtCcqLt28vQtm06Sku1NQb797vRrdt5uPBCHlu3clBr\nQTt0sKCoiEF+fhD79vHYsgVo3hz46SfteXbpAhw+rN3GcSIOH5ZdqgYNkmtVfvxRgs8H7NwJqO1m\nZ8+WFI1qfSAJWaQN3mIJImtq0qm+VlR7oCYHsVpI6MmAIAiYM2cOOnXqhCeeeCJh2bDFixdj2rRp\nCdlXCskDNSEgMkBEgEB/y/IUASzLKFIglmVkP3JRUoIHgiDULuBECEFRIQgMyyCrjVxMHPAFsOgv\nkckv1Atuv98Pn88HhmGUmrDGWFjqUVdjs0hgZmFKqPaIGvc5PXxe47zvr60hoPdQnYEkSuA4FgzL\nyI3LgiJETlJkQ6IgQWBkWRETlGCzseB5ERaLcdzz+kSlIZn+u6jr/AOBgFLMHc8CX5Jp0W9VTQ6J\nHES7ptAXQhcWFuKDDz7AunXr4hbIOduCN/rC4RbZg9Aie5Dyd9GO12O5u3ovYlISAvrx6n/EjzzS\nAnPmZGHZMjf+/vcz2Ls3RAAuuMCCTZuMlgWFhTVo29aC/HwX1q0Ln8KprraC3IPUuOgiOwoL5aKk\n885jsHRp475yIgMsyyopOCocIukNFYWG6+7amH3Hq6BUHZHu2NGOgQOz8dVXoUYQXq82M7N//xm0\nbevUkIT0dO2AXFMjIC/PYSAEffv2QWGhH4Af2dkWdO2apkRJMjKaY8MGPwoKQq/v3p3D1q3ac23b\nVsLhw5pN6NJFQrNmQEWFhG0KyWdg1oU9L49HVZVXuU7hJl69XCaR0C/ICeprVVd368ZkD/SyhWAw\niLvuugsDBgzAQw89lDAyUFxcjG+++QYLFy5MyP5SSE58tigPADBu+g+a7aISla51DhIBpnYcEHjB\n/LEg1C4yjeNFwBdAwBu+Bi4ciNzT/abuNhurqHG0vQz0UI8vgEwGwsHjMQbxWJaB16uqx6h1EZI0\n7kIiGImBJDJga2sIOI6BJELbvkYFnpc02QGv15gtILjd7rAdnONd4AvI10JvL1pXMTKRw0iDPfrm\nZseOHcPDDz+M1atXw+GIvlt2fTjbgjcNLSpmGIaDbIXIAbAwDGMHwEs6JxyGYcYC2C5J0q8Mw/QC\n8BiAZfV9flLWEBD0KVsAcDpZ3HZbM3z/fS6WLm2Hnj2tGDnSakoGCG63gO3bazB0qASz5qf9+zuw\nd69xUHI4gOJiCwAJzZszKCxsXLSF53lF70esnhZnpNEnDZ1aox+LjrW0b5vNZqr7jDUuuihb8/f+\n/VUa+1FJArp0cWles3NnBbKytLUMW7b8ivPPD9UXDB3aDYWFoXvn5Ekemza5sXHjGWzaVInt222G\nImNJMp6rviFdhw4SunQR8N13Eo4c0b5WMNGlDhsm6/StVqtSFK7XyFKPh0RLwgAoqflIelmEq32h\n2gPqEB6pJlJPBgKBAGbMmIFhw4YllAwAwLvvvov8/Hx06tQpYftM4eyHmWQIANa+0195HC6aTcXG\nADQFx5piY1GqHdNrpUe180rAG8CSFzqgIVBnAWnRr+42q9fwRzOXxMO+FGg4GQCgIQN6hLN7DAYE\nBAKh719dP+D1aRd1waCkqSMwQ7gOzokq8A0Gg3XWoemLkUkqWl8xOmB0FKqursbMmTPxr3/9C23N\nfN5jBAreTJ8+PW77iDWisB19DHJvgT8BmFL7+P8YhunIMIybYRi6+S8F8CPDMG4AawB8DGBefcdz\nzhEC9XMTJ7qwY0curr02Ay1ahL/5Bg504uRJAYWFNRDFGgwbJttQEnjefLE2eHAaTpyQ0LEjsGOH\nFS5X9Dc4NZVKS0urMzpP0iIzz/nq6uqIXIvq2neiJCtjxmgnNa9XQJ8+2uY6FRXayL/PJ6Bv32aG\nz/J4fHA4WOTmZmH37nTD84SBA1vi5En9VgmHDxuv79GjFFWRkJ8voKKCD9t/orRUO3hmZsoFxXSt\n9G5MXq9X8Y82cyqJN0g6kJ6e3uBeFnqCSgsKPekJ5xqi3jfHcfD5fJg2bRrGjh2Le++9N6FkAJAJ\nwa233prQfaaQPDD7ja99p79CDEJuQy6gEFsAACAASURBVDr9umpBIAqCojUWeUFDDOR9iHBmpDeK\nDKSlpYX1tyeXIlrE0lwSKcmPt2ORGTxh6gX0ZCAYULs41RIvchniRfBBQfMaICQ1kh9rn6PiYqo7\nCAeSP7lcLkOBb0Mi8Q0Fz/Pw+XyKpj8SqN2f1MXo1dXVpv2T9I5Cd955Jx588EEMGDAgHqek4GwM\n3tD9HO6fHpIk/VmSJFaSJE7172lJkn6u7TfwS+3rHpIkqW3ttm6176s3HXHOEgICy7KYNasZNm5s\ngylTXAatX+/eVmza5FP+rqyUsHmzBx06BDFsGIOhQx3Ys8c4KHbqxGH3bgY33ABs325B69bR3eCk\nu6RFUkMixXrXGLVrEUVuw9l/NnbfjcUFF7RCy5Za8uF0aiesAwcq0b69tl9AUdEZQ5r26NFqDBmS\nhbS0LkoHY3NkGbb06MGhokL7o8jJkVBayiA7W0K/fgIKCiR4vQxKS42f6HJJKC7WbhswwGiHS1E5\nu92ufM9q6z2KIjWUzDUUPp9PIx1oLGhBEUn2wO/3K031qJD55ptvxuTJkzFr1qyEk4FNmzbh+PHj\nuO666xK63xSSA/X9XtctJlIQWvjT/5IkKv8I6sfqzAFJhwI+bYCkPlD/mEjliLSIrc+lSI14y1/+\nMM5n2NYYMkDyIYJcR8CCD8qvDQTNswSAMVOgPl21C9G9V4SOWe3CB0BxUaOxMdqGcmag6x1t9kGf\nObLb7ZrmZ8FgUEP+AOAvf/kLBg0ahEmTJsXkHOrC2Ri8Ud/nZv8SjaSuIQDMIzRqUCOUDh1ceOut\nlrj11mrcc89x/PRTADk5FpSVAWbr5eLiIMrKeHToYMGwYQDAoapKdpDJyAAyMy3IzhbxxhvR6+X0\nDagaM6BG4lqk17KTG0S8GtOEg2xp6sPFF2dj+fJjyvaioirDa887LwMlJSGNT2mpD4MGtcZ332mt\nZQXBjszM8AQ5O9uOnTuNg2SbNhx++km7LTcXaN9exMGDguJC1ayZaFj4A3JdwY8/arddeKH5QkHt\n3pSRkaF855IkKUV0pOmkaxUrNwiykQ0Gg3G73uF+gxS1AmRtbWFhIfr374+ZM2di9uzZTdbBcvHi\nxbj22muVyS2FFBqCugJSFBH+5J894HQ6MXbKDgBG1xHN57GMdpEgshBFCWkuOwI+Pz7+R9eIj03d\n8buhgZ66XIrUunie5+H1euNmXwrIGUUgNMeGIwM1NVoyEPDxStO3oF8rgSL/dxG111CUwFpYSJIc\n+RcECQwjwWIJjZFerwCLVfW3TwDHhjojy4G48IE3cpBLS0tTtoX7XmNR4NtYqA1B1DWMoiji5MmT\nKC8vR3FxMUpKSvDss8/GPZhztgZvBJMsQFMi6TME4UCL7ZqaGmRkZMBms0EQBAwdakdh4Xl48snW\nsNs5lJeHZ2n9+rnw008CNm8OYPNmL/bs8WL/fi8cDg7Hj0v4f/8venkNec4zDBOX6IqZtEitE3S7\n3RBFsUGpxVhATYLGjeusee7kSS969dJG8UtLdYJ/ADU1Wu3ohRe2xrffStizpwxdu5r/Jnr0aAOz\nubiiQjuRZWRIyMzksW2biDNnQp/VpUvI3k4Ns+ZlgwYZv0/SXQqCYFiQ0wRMmR6KoAcCAVRVVTW6\nTkRNRBKZ1qeeBqS3djqdKC0txdNPP40+ffqguroaFRUVKDZjWgnAggULsGjRoibZdwpnN+qbe6qr\nqwEATqcTkiThs8X9jK9T1RLIf4dkRAwju+CkueQMaTRkwOFwNDrrayYpqqmpUfrmOByOuGrhZUIg\nw12tHfdpwW9GBgBtETFdr3B1HeFAPQrUZMCnyxTU91tQ9xpQv0f/verrDSKFvsA31qBxXJIk2O12\n/Pzzz4pMqFOnTigqKor5PvU4W4M3UdQQxBVJTwjMFkg0IPM8j8zMTHAcpzSCkAthWDzwQDN88EEW\nxo0z96q/8MJ0bNli3D5woB2nT7NYu9aBjIzoWHGiC3jV0iKaoGhRSCnhuqRFsQKRIJZl4XQ6cdll\nHQxazFattBmXoqIqdO+eqdm2d+9p9OsnE4fcXBd++kkeJGpqRJw+fQpddXMnywIHDxozOS1bAgcO\nhPY/YIAIlyuIffuM1yPcOOQ1KS4bNEj7fjUJisSBw6y7dbjuwvVBTUQSSQZo3+SM5XK5YLVa0blz\nZ6SlpWHRokWYM2cOvv32W0yYMCGuMqkUUogHzOYfNRmgYk2ad9a+G9JYa4mAqCEHkihBkkTY0hzg\ng3yDyIA6UhzrxSFJikgTb7FY4PV6Yy59AbRSJHc1byADBD0ZMHxOIBREITIgCCTFCvUfCPoFBP28\nrrCYN3yWzxfemtwMJJesr8A3XL2BmYZfDRrfac6IB9SEw+FwoFevXmjevDmWLVsGr9eLq666SkPc\n4oGzNXhD9UHh/iUaTD036Vk5C0uSpEQPSAJBIN0juaLQNrUvML2XXBe+/bYGc+dW4JtvZIvL7t0d\nOHHChupq7dfTu7cNvXvb8de/imjenFEkHQ1J85HDSlPaTKonC7W0iJqYqKVFsSIraq99m82mfO5l\nl32GTZtClb5dumTg8GGtdCg/vy0KCrTVwHl5LXDoUDVycjqhqEh7YzVrZkHXri2xfbs88A8c2Bw7\ndrQ2HNOwYRZs3mxDTo6Ejh0FbNkiIjsbOHnSGPHq31/EDz8YNqN16wDKykJ/Z2cDhw+HJmK1jWxj\nyZ+6P0AwGIQgCHXamqp7SsSj83F9x6pvUFRaWoopU6Zg3rx5GDVqVFz2u3TpUjz99NM4duwY2rVr\nh0WLFp0tntWJLaA4u/Cbm6dI4nf69Gm0aCGbIajJgMvl0gSh1LIRu92Oy2/8zvRzGVbODFjtNnBW\nKxY/3w5Wq1Xxi68LFHCJZz8TvRSJpC8UUGqs9AUwuiIBwDMfGmUwnmqj/arPyyvdg2lxL/d+CM0R\njKphJB0j2Y6yFhYcx0IQRFhqH1ssch8CrtaelK0NYpFkSJYLCXA45Ovzx2vk46KaqWgCMWT1HAgE\nwPN8WGtYdeY3Xv0MSMbqdDpRU1ODSZMm4aWXXsKgQYOU1yS6/ivOiMnJMAxzFEB9FdDFkiR1jsX+\nIkFS1hAQ9BEaqhcgpx66qQCZhasXKWrZxogRTqxb58SOHT589JEbX30ld8IlWK3A6NF23HFHBsaM\nsUal+VZruOOpuQwHv9+vIUGEcJ2FPR7ZplXd8yDam56+JzMSNG5croYQHD7sxnnnZeDIkVB3wn37\nzoDjoJH87Np1Cpde2hNffWWMEFVW8ti+/SSGD2+BI0cs4HljMTEAOBwMRoyQ5UHHj8vbOndmDE5E\nLCvi4EHj+3NyJOV9hCFDQt9RrLsPR9ofgMhBrIhIQ2FGBkpKSjB16lS89NJLGD58eFz2+8UXX+CR\nRx7Bhx9+iMGDB+PEiRP1vymFFGKAusgAAKW/C40D/1k2GGNuMHYsZWr7D/ABHp8u7KvMMx6PR5Fu\nqAMqBBprEkEG1FIkvbe9utNwNI3P1IXQdWnhw5EBQHYRUjeJD/pD9QQk1WBV9QFEBtSvVz/v9/NK\n0zLaD8cxCCJEKFiW0UiJaEyOtl5L39TTrN6AfhvxIgNAyFHI5XJBkiTMnj0bf/jDHxQyQMeaghGJ\nXOhHiqQmBAS1W47L5VK6ntKAzDCMMmByHBf2Bho40IGBA2VpSVmZgOPHRdhsQG4uh/R0o+abBixB\nEAxdXWkhTURELRlpCtkGRRHqIiLqQcjhcJh2q1WfVyQIR0QI48fn4rHHtBNjhw4uDSGoqPBh8ODW\n2LatXNmWn98BJSVByMFD8wFp06ZT6Nw5Axznx8iRIgSBBcPITeTKyoLYujULHo++G7Hxc7p1g6Hw\nGAA6dhQNhGDw4FBzoXhP0PpJg36HtBin5xMZwVFnJeg+O3r0KKZPn44FCxbgwgsvjNu+n3rqKTzx\nxBMYPHgwAKBdu3Zx21cK5zZoXgFCi3GgbjKgt5P+z7LBymM1OVj3XkhapA4AUMTY5/Npsgb67EM8\noCYc4aRI+k7D6sZnNE7VNQ5FWghtRgb08Pt5w74EQQTLMBAlCWJtxoBlGIiCCIFjaxf9IlgLC5EX\nEeDlxxYdOajrHB67KTQGx6o+z4x00XoiHjUDBDWpAYB58+YhLy8v5iYQZ3FW96xDUhMCWuhXV1dD\nFEU0a9ZM2aYmA5SC1MtV6kLr1lzEVqLqQVvtrELaPkmSwHFckxbwUuFSpNBHo/XnVZ+0KFIi0qNH\nM/To0Qw//RQy+S8pMTaRCwZDmtsBA1pj06YARDGAoUPboLDQWHhMaN8+B99+KwDQyooGDHAYyAAA\nHD1q/IzWrc0JgdVqVDIMGRL6vcVDxxsORFJZlkUwGFT6GwiCoGQPopG4NQRmEqWDBw9i1qxZWLhw\nIfLy8mK+T4Ioivjuu+9w1VVXoXv37vD7/bj66qvxwgsvJKy3RgrnJuojA9S3o657Tk0OzGDm+kLZ\naVoYxqtDbEOzD2YuRVQTEE5SRNJKtS2zGcKRAa8nqJECAVopC2UGBEiG1+kR8PGwWFgNGaAsgTqT\nYHY96Tzqy3BEC8oS+f1+JWhHdXmUkYnF2K5uoMayLD7++GMcOnQIS5YsienckcrqJhZJWVSs3OS1\nUVGGYZCZmQmGYTSZAQBKdJuabsU7UqpuRkWNO2hhFm3jsGigdzFq7HmrzyszM1ORZJHjhLrQlbZT\nIWt98qgJE7Qyu8OH3ejSRVtI/MMPFejYMR2dO2fg8GGLYhV75EglMjPNf+YulxU//mg+uaSnGye2\n9u2B48eNnxUImF+r8nLtdo4D8vJCjYASRQYI9BujYnW73a5pigbIVrPkEBLLQnKKUpKbEMMw2Lt3\nL2bNmoV33303rmQAAE6ePIlgMIhPPvkE3377LXbu3IkdO3Zg7ty5cd1vCucuaAyngEu0ZKChoAJS\nCvJQECCSItSGorHZB4pup6enh3XTiWQfj14fvpjX6wnJRv01AQR8QcXBJRjgIUqSUkgMyLajfFAA\nW3tN+GD4QmKfl6+tHzCfY/SvJ+IUr/pANeGw2+2KM526Z0Bji7z1Fqbbt2/HG2+8gYULF8Y8oGmW\n1U1lduOHpCQEABRdJS14ASgLbRp8vV6vUtST6AJe0lI6nU64XC6lRbi6cRgtymJNDuLtYqS2yXS5\nXIoMippRVVVVQZIkpKWlRTSATJzY2bCtfXutrY8kAV27ZoLnM1FVFRrAT570o29f82vbv39HuN2m\nT6GoyEhScnPNv6fDh43b0tIkFBVpr1vfvgDLyl0iE/17U+t79ZOqujmO2tY0GAxqmqI1xtaUNM70\ne9u5cyfuuusuLF26FL169YrVaYYFEZ777rsPbdq0QYsWLfDggw9i7dq1cd93Cuce6DcPQAn8JIIM\n6PdvsViU+UXfSKqxgSf1PmKRZTNz03G73aiqqlKIQ10wyw6oyYDexjHo55VtgiAq/wg8L0AQRDAs\ng2CAR8Bnbl+q/jxAJgE+L684Dvn9PLzeILzeYFxlWxRoI7kYgbJH5EpHGQQK1DXkd6C3MD1x4gQe\neOABfPDBB4pJS6xAWd1ff/0V3bt3R25uLv7whz/E3bHoXEZSEgL60dIPlOQsFC2hgYwiN4ks4KWC\nSurmpy6+ogmCBnCLxaIM4Gqv+cYgGAwmNCNC50XRClp8MgwDj8cT0WLzggtaoXNnl2ab3mkoLY1D\nVRWHU6eM38+mTRVK7UfouIBjx8y9Qnv3tuPkSbN0r/G1nTqJhk7GANClCw9eF7QaNEiWR8UjVVwX\nqAg80qyEma2pOttDXSkjmUQoE8VxnHL9t23bhgcffBDLly9HV70HbJyQlZWFDh06aLalit1SiBfU\nwSczMkCL33iSAfU+1IvCjIwMcBwXta897YNMCWJ9HuoAhbqRYXV1dYOIjJoMmIE+Q50BEAXRtBcB\nyzCGQmI1fLX2pmpbUjPEkwxEYi/amP4G6p4JdrsdNTU1uO222/D3v//dMLbGAqmsbuKRlISAYRg0\na9ZM0SgSGaB6gerqaqUFd6LdVWpqahQXo7qIiFnjMIryut1uRX/fEGbv8/mUzpGJjlDTotThcCA9\nPV2ZmOqSFqlx9dWdNX+XlNQgL0+287NYGPTp0w7bt1dh4MAM0/0fOXIG7dqFvu9Bg9rj55/Nv7uW\nLc0H1KIi42+lfXvz823e3PjaYcPio82vC2oCGM01V/eooCxWpE3R1C5KtGgoKCjAI488ghUrVqBj\nx46xOs2IQJNXWVkZTp8+jZdeegkTJkxI6DGkcG6AFl0kU9WTgXg5e6kX6uH2oZYUpaWlKaQ9UimJ\nuhYonudBi0+SE5EjTyQL2BqTbAFF+CVRgt9nzBwoHYoFUZENBQO8EvkP+nmIvDaLAITIAIFtgkAD\n9TNoyPVoaH8DchSiXkX33HMPZs+ejaFDh8bjlFJZ3SZAUhcVk+9xTU2Nkh3geb7J9NvkxNPQiEpd\nbjGRWpqG64KbCITrrRCJGxOd26RJ52H+/N2az3W5rGAYeXFfWChrf44cqTJYkALAmTM82rQRUFXF\nwuMR4fG0QDj78mPHjLdFt27mhIDmo+bNJXTrBjgcEgIBwG4XMWCABItFhNUK+P0sBg/m4Xb74tbL\nQQ8qLAzn4BQNIrE1peJlSl9TJmr9+vWYN28eVq1ahdatjX0f4o3HH38c5eXl6NGjB9LS0nDDDTfg\n0UcfTfhxpHBuQBRF2Gw2+Hw++P1+xTwi3mQAiGyhblbcq7auJOMB9efQXALEr3cJBa/UtsSA0aWI\n6iIoeDb3Nisee1tSyIBaHuzzytv0i/WALwCW4xD0hxb1nMUYqAsEtNaifFCQiURQAGtSPxAICLA7\ntGPuw5M9cLslpbg3VsqEQCCAQCDQYGMQgvp34HA4FLcqr9er9DcgW3RyFHr++efRvXt33HTTTTE5\nBzOksrqJR1I2JquqqsK8efNwxRVXYODAgRAEAV9//TWGDRumSIbqW0THEvF0lSFHCXL40TeioiIj\ndTFnoqBuENfQ3go0QdF5MQyDoUPX4ejRauU1GRlW9O+fjYICrXxIdhaq0n8kAKBv30zYbK2wfXsb\n0+e7dbOhqMiYZcjPZ1BQoB34s7Ml9O0r4PhxCfv3y3UMAMBxEhyOIDwqM6TcXAb79jk0PSoowxOP\n3yKRsET1tKCmaHRegiCAZVls374dnTt3xr59+zB//nysWLFCadSUQoOQmgnD4zc3T/33v//Fvn37\ncM0114DjOHz33XcYOHAgJEnSWILG6n7XN4hqzOeSdWUgEFAkJuROQ/LOeHrb+3w+paFofftQuxTx\nPI+n3jHWR3k9fsU5iGUYJTvAsAyEIA+W48AHeeXzCBZraDxmWKbWRYhV6grkJmQshKAAm8MKjmMQ\nCAjgOFbjVEQPn7/bptitBoNBxRGoob0Y1KC1RTzGeTVJFEUR5eXl+PXXX1FaWooVK1Zg2bJlcZ9b\nnnzySfz73//GmjVrYLFYcPXVV+OSSy7BU089Fdf91oOkHYuTMkOQlpaG4cOHY/HixZgzZw54nkdG\nRgY++eQTZGRkKAuXxvjnR4r6fPYbC0r/UsSWBkaK2MY7KhUOalvRaLISam9lWkRfe20nvPjintrn\ngby8VhAE43daUlJtmiUAgN27qzB6dFu0bSuhtNT4fbRr50BRkfF9VVXyay0WCQMHAjwv4swZEV99\nZXxtjx4S9u3TbhsxglXOK9KsSLS/RfrNJbLBHdWKADIZsdvtYFkW69atw/vvvw9RFDF9+nTs3r0b\nw4YNS7hkLYUUEom8vDzs2LEDEydOhMfjwXnnnYf33ntPcfyhxTuNcY2Zd2JJBoDw/QIomBZtJDoS\nqJtzRrIPvQc/UHcPAsoUMAyDoD8IlmUgCoIiF1Iv5Pkg1R0ygACIAqvqR6AFzwvg+foj2DQXUySe\n7FbDdRquC6Q6cDqdcRnnaa7y+Xyw2+0oLi7GnDlzUFFRgXvvvRfFxcXo0qVLzPerRiqrm1gkZQ2B\n1WrFhAkT8MADD8DtduP8889Hfn4+Jk2ahGnTpuGjjz5StPQZGRmwWq0aR5VYFO/SIE2pvEQUktLg\n6HQ6FW0ox3GKRjScPj/W0NdKNJZk0cB0yy2yGw3LMhg6tB02bapEebmxJ8HPP9dg0CDzguGePTPw\n5ZdAIFCJoUMF6IOLxcXG6+R0An4/kJ8vICtLwLZtAnbskJCTY368WVlGC7z8fPPvgOQ3LpcLmZmZ\nsNlsij1oQ10giITRby7R3a7VTkbUrXTgwIEYMmQIPvnkE2RmZuKBBx7A/PnzE3pcKaSQaLRs2RJ3\n3303srKyFKvEMWPG4JVXXsGZM2eQnp6uaLEbot/XQy2viXUGmMZdp9OpBGYYhlHmksbOkXqos8nR\nzBlm7/F6ZEcavcMQQRQlbVExb16TwLCsQRoUDPAIBkJjvWm9RpjLQTJgsunWO//U5+hGmX+y/owH\n1I5CDocDffr0QfPmzbFo0SKcOXMGo0aNUpy04gWLxYJXX30Vp0+fxvHjx/HSSy8lXO59LiEpJUOE\n//mf/0H//v0xbdo0APIP/ODBg1i5ciX+/e9/w2KxYOzYsRg3bpxS4EgSlWAwqAyIZo1S6kJTynSA\nkFyEshIk56DzEgQhblkRKiSNplYiElxyyRoAFmzZckbZ1rNnMxw4oB2YsrPtcLs51NRoB/hBg7rg\nu+9CA2i3bja0bevA8ePywnzfvgwAElq1kjsNp6eLsFoZrF9vXFwPGSJh61bjMQ4YEMDOndptO3fa\n0b175N+zulaEFgqUPTC7ZvpGb4muE9HL4iRJwuLFi7Fu3Tp8+OGHmqZIseqMPGrUKGzZskWprenQ\noQP26VMzyYOkTVPHAL/JeaqwsBCvvvoq3n77bVgsFng8Hnz88cd477334HQ6ccstt+Cyyy5T3OSo\n74daUlQX6J6Pt4TH7/cr9tzUM4eOl2QvkTb0DAfKmsQiq/nAKz4AgK9Gmy0I+AJgasfFoF9uVMYw\nDISgIMuHBAEsw0KUQnOG1WZVnrc77YrECAA4i0wSyIGIPsvmsCIY4GFzWDWE4Pm761/Iqr9btVxL\nPZ6TixRlG+IBfdbJ7/dj0qRJ+Otf/6p0CaYeSucgknYsTmpCUBckSUJZWRk+/fRTfPrppygvL8fF\nF1+MK6+8Enl5eYo7hH5BVp/WuzHFw7E4J1oU1pVGVJMDnufBcZyGHER7zBQhbkjH54bizTcPYs6c\n7zXbhg1rjc2bTxteO2xYS2zeHCIKPXtm4MCB8E1NRo5si+3bLeB5OSNAGDHCjm+/1Z4Lw0jIygJO\n63ZrsYiw23lN/UBODnDwYOMGbrNrRr9H0vbqi/ASBSIDVDQuSRLeeOMNFBQU4P3334+b1d7vf/97\nTJs2DbfddltcPv83hqSdhGKAs2qeosDU22+/jS+//BKjRo3C1KlT0a1bN0XOWt9im4o8I9XaRwsK\nLplleslUIBAIgOf5qGsjaPyIlaz2gVd8BjIAyIQAkKP9RAj4IK+QAMoi6DsVs4xcE8ByLFiWActx\n4Cws+NrFP8sw4HlBIQfq99PjVx5omEc/BYTou1XP0T6fL2bysHAgEuhyuSBJEu68805cfvnlSnD1\nHEfSjsXnLCHQw+Px4IsvvsCqVauwZ88eDBo0COPHj8eIESMUfSIVL4WLsFOUIx7Fw/WB0ns0UETK\n3GlQb2xWJFHnfuZMAN26rYLXG0rz2u0sXC47Kiq09m9WK4OcnEwUF8ur+379OuPHH82PjWGANm06\n4ORJ43Nt2zpQWqrd1quXXEisx/nni9izRysZuvFGDm+9FbvvRH/NKOJOMp1EEgIzMvDKK69gz549\nePvtt+NaK/D73/8et9xyC2bMmBG3ffyGkLSTUAxw1s5TPM9j3bp1WLRoEU6fPo0bb7wR11xzDZxO\nZ52LbSq8jWc2sCFRezWRaUhtBAWRorVFNsNdzxoNJXw1frkWALJ9KMPW1hBYWLAMK9cLsIxCCqjn\nAMvU1n6FIQQkI2Lp+RgRAjX0hdMMwyAtLS1uhih03YlovvTSS3C73Xj22Wdjur+zOMObtGPxOZnv\nMUN6ejomTpyIt99+G5s3b8ZNN92E9evXY+zYsbjtttuwfPlyxXbLrO7A4/EoUY5EkwGqESDP5oZM\nEHqfeYo6eL1epQlVfd2S1V2X433uWVk2TJyo9a/3+0X07GmsGQgGJTidEjgO6NcvKywZAIC8vAxT\nMtC9O2sgAwAQzjWzRQvj9/S738X2NqNrRhkoKkij3gAej0dxhognqMcBdV6WJAl/+9vfUFRUhHfe\neSchhcOPPPII2rRpg5EjR2LDhg1x318KKcQSFosFEyZMwCeffIIPPvgAlZWVmDBhAu677z7s3LlT\nGZfVjcQ8Ho9GwhMPNFTCQ+YW1KukPk97ICQvpUBGrPD6w5mav301xs626pqCYEAOqlBhsSRJEIIC\nhKAAPig7pgmCgGAgqLxebVPKhisUiBHU0iEAipUt9SOKZS2HIAjKXM6yLD777DN8//33eOaZZ2JO\nPhiGwWuvvYaqqiq43e6zhQwkNVKEwAQcx2HkyJF44YUXsHnzZjz11FMoKSnBjTfeiEmTJuHNN99E\nWVmZsgDes2ePwty9Xm+Dm4Y1BlSASov6xty06m7JGRkZSmEqdUvWLzRJokSFYInqwDtjhrG77Z49\nlUhPN05c+/ZVYfjwTHi9rer8TIfDPIKTnW1+TnqpEOHUKeMi/JJLYn+b0WTKcRycTqfSYIYK1NSF\nyfH4Pep7HIiiiKeeegoVFRV44403ElLQ/Nxzz+Hw4cMoKSnB7bffjgkTJuDIkSNx328KKcQD2dnZ\neOihh7Bp0ybMmDEDixcvxpgxY5RFk8vlwg8//KBkBeNlEkE9bqJ1ryFte0ZGBux2uzJ/qLsM0/hF\n8tJ4QU8G/L6ApkZAX0RM9qNmYBlWaVKmRtAfBB8UEPAF4a/9RwXHAV/d3ZIjBc/zinSLxnoiXh6P\nRzFDaUwQSE3QLBYLdu/ejZdf4fwM4gAAIABJREFUfhnvvPNO3MbzRKyRUogcKclQAyBJEk6ePInV\nq1fj008/RVlZGTweD3Jzc/HBBx+A47io6g6iBS3KYpluDQd1EyoiP4R42Z7VhcGD12LvXm1qOD+/\nDQoKThleO3x4W/j9bfH99+aDpcvFQhByUNtvR4Pu3R04eFC7LStLgtstQRC01zMzU0JNTRA8r34/\ng507HYglIi3crqswuTHSIn2PA1EU8fDDD8PhcOC5555rskKzK664AldeeSXuueeeJtl/nJG0aeoY\nIGnnKbfbjQ8//BBLliwBABw4cABfffUVOnToEFUhcn2Ih4QH0EqKACj9GOJVFHvXs1UGMiAXFcu3\nkVDrLMQwTFgSYLHKwSCGlWVAIk/9BzhY7RZFMsSyDBhV7R3DMoaswYJHmkV9LvVdE/XcHAwGo7Iw\nJWJBc8qvv/6KyZMnY9myZXGzFv3973+PvXv3QpIk9OzZE3PnzsXFF18cl33FGEk7FqcyBA0AwzBo\n27Yt7rjjDjzzzDMoLS1F79690bJlS4wePRp/+tOfsGnTJnAcp6ROOY6D3+9XIuw0gDcGVFBGUZxE\nSDPUNmnp6enKcQBQ5FKJsDQFZCI0c2Ynw/Zdu04jM1Mb0W/WzIoDB+zYv/9MWJeffv1amJIBuRjY\nuL17d9FABgCgZ09JQwYA4NJLY3uLERlQS4bCgeRE4TI+aovdSK+bngwIgoD7778fLVq0aFIyAEDp\nu5FCCsmCjIwMzJw5E9OmTcPevXtx1VVXYerUqXj66afxyy+/ID09XTESUEeKo7kP4kUGgJCkiOYO\nhmEQCASitlutDy/dX3fWgeZgNRmQ+xGE5DckF+KDvEYiJD9n3qFYX5AMNI4MkGOh3W4Pe00aa2FK\n2SaGYWC32+H3+zFjxgy8+OKLce0zkMrw/vaQIgRR4sknn8S8efPw4YcfYvHixdi0aROuu+46fP75\n5xgzZgxmzZqF1atXK5X6sep30BT9DdSgAcpisSAjIyOuxMcMVK8wdWo3tGqlda+prAyif3+tfrRv\n33aoqJDg8YgoK6tEr17Gn3xFhXkEv0uXcJOi+eBqsRjP99JLY5c5IRkQ+UI3NMKvnpQzMzNht9sV\ngkGTR12Ts9/v15ABnudx9913o2vXrvjzn/+cUDJQWVmJ//znP8o99P7772Pjxo0YO3Zswo4hhRQS\nAZ/Ph9dffx1ff/01XnvtNWzatAlDhw7F//3f/+Hqq6/Ghx9+CEmSFIkOz/MGiU59iJeeXw2auziO\n08gb9YvXxoI6AWu21ToMSaKkWdxLtfIhIgLh+hXoQZ9BmYagP6jUFggmBCIakFGIxWKJ2KmN6g1I\nUqQnimZzciAQgCAISl+M+++/H1OnTsXvfve7Rp9DXRg8eDDS09NhtVoxbdo0jBgxAmvXro3rPlOo\nGynJUJSoy0tdFEXs3bsXK1euxBdffIH09HSMHTsWV155JbKzswEY+x2QrKguZx9K6zVVfwNylKHO\nyGYge0w6N7U9ZmMsTSkrQsV0HMfhr3/dhWee2aN5ndPJITPTgdJSP/r1a44ff3RBneFzuVj06ZOF\nrVvlgbFnz3QcONDcdJ+9etmxf7/2eC0WuVCZOherjhCtWwdRVhba4nAAP//sgNPZ+Ouk9/mPJUjT\nS3IwMxctvatJIBDA7bffjhEjRmDOnDkJ/y2Wl5dj3LhxOHDgADiOQ69evTB37lxccsklCT2OBCJp\n09QxQNLPU2bzjSRJOHHiBN555x2sXLkSAwYMwLRp0zBgwADFmYYkOiQpMiPtRAZsNlvcLILr66Ys\niiICgUCd/vuRQF0MPevPsnyUyACBsgJCrbOQyItKXQG5ChEo4k//sxynzGPkUKR+jdLZWIW3nqq7\nfs0Msew+rbYwJUmR1WqF1WpV6kXIUeiVV15BeXk5XnjhhYSP6ePGjcO4ceNw7733JnS/USBpx+IU\nIYgzJEnC8ePHsXr1aqxZswZutxuXXnopxo8fj169ekXc76Ap+xsA0dUr0EBE2kYAykDUEEvTcE23\nTp3yo0+fT+F2a3U6gwe3xP79HmRmdkBJiXmWYtiwTBw6xKFLl3YoLDROOrm5DI4dM06O/ftL+OEH\nmRi0aSPB5ZJgs0nIzBRQXi4TBdmViMFll7FYubLxE6ze2jPeUJM6vlYDRaQhMzMTwWAQM2bMwOWX\nX47Zs2cn/Ld4jiL1JYfHOT9PiaKIgoICvPXWWygqKsKkSZNwww03oHnz5poxmOM4jb5cL0GMBxrS\nQM1s8RqpHt6sn8GU/y3RvIYi9wzLGAgBZQfUdRjqxT6RAQAKIRB00iGGZcAyLKz2UOY+GkKgnu9i\nOb7qLUwBeW5v3rw5vvjiCyxatAjLly+Pu/KgsrISW7ZswcUXXwyLxYKlS5di9uzZ2LFjB7p16xbX\nfccASTsWpwhBglFVVYV///vfWLVqFYqKijB06FCMGzcOw4YNg8Vi0ZADitRSRNbhcMQtghMOkiRp\nWspHW7RmFoUm0lNXt2R1fwWzwfGpp37E88/vNbxvzJju+M9/6k4/t2/vQOfOHeF2W/HTTwx8vtBn\n5+dbUVDAwW6XkJMjoHVrCTYb4HIx2L1bxIkTgDq7PWKEgG+/lTc4nUDXrgzuvNOCW29tHHnTu/kk\nEhSlIh/0l19+GQsWLEBOTg5GjhyJuXPnIisrK6HHdA4jaSehGCA1T6lQWVmJZcuWYcmSJWjVqhWm\nT5+OUaNGgWVZQyEyz/NxDzLpOx1HCnWWo77C6XD1D2pCEPDJRcYMw0KozRJQczIzUFExvY7lOIiC\nAEaVFWBZViEEyjZVluHtua0bPGfW1QwuVhBFEW63GxaLBfPmzcPHH38Mm82Gjz76CAMHDozLPtU4\nyzO8STsWpwhBEyIYDGLjxo1YuXIlCgsL0aNHD4wfPx6jR49Geno6RFFEcXExWrRoAQCaboWJcPUJ\nF5mPBerqlkznRvUKLMuGtVQ1yxKMGNEOBw9y4HmHqQ0oIT+/IwoK5HOyWICcHA4uFwOGAex2J375\nRUJZmQRJkvfLcUBWFouKCuNnde4cxNGjoduFYYAdO1i0aSNEfd1oYmgqMkBRPfKkdrvdmDVrFtq1\na4eff/4ZBQUFuOmmm/Cvf/0rocd2jiJpJ6EYIDVPmUCSJOzZswdvvfUWCgoKMGbMGEydOhW5ubnw\neDyorKxUFp3USCzWpCBWi1vKcph1cKY+PGZySiIERAYAmRAEAwGwDAtBECDyAlgLB5GXAzqsxZgh\nAOT5V5YF1XYurj0fNSHQS47+8Yizzo7TelCWozHBt/qgdxQqKyvDzJkz0bFjR6xduxaDBw/GmjVr\n4rLvJEHSjsUpQvAbgSiK2LVrF1auXIkvv/wSGRkZyMzMxJYtW1BYWAiXy2Ww/Yyk7iBa1BeZj/W+\n9OdmsViUlHF9/RWef34vnnrqRwDAgAEtsWsXB0EABg9uhm3bzLME6ekcrNaOOHPG+BM//3wb9uwx\nZmIGDGCxc6fxs7p0kXD4sLaIbNAgFhs2uMKeW32yKb/f3+isTLSgzIAoisq1P3PmDKZMmYL77rsP\n11xzDQDZXerYsWPo3bt3Qo/vHEXSTkIxQGqeqgeBQACrVq3C4sWL4fP54PV6cf755+PFF19UJDpm\nHZEbg4Y2N4sENJ6qj5fnecVowQyT7zscOiZ/UFnkEwHQFxJLkgiuNstAr6XjJ0IgCoLymLar5USA\nnGF455lsw/GGsyGPp8tT6Ny0tQnBYBDXXXcdHn30UVxyySUIBoPYv38/8vLy4rL/JEHSjsUpQvAb\nRE1NDW644Qbs27cPffr0QWVlJUaPHo3x48ejZ8+eABDXfgeRRObjBUoTkw0agHrPze8XMHDgWqSn\nW1FcbIfHE/rZjhzZEhs3GjtV5ue3R0GBedR96FAXCguN+xk6lENhofGWGDlSxMaN2rTzX/5ix4MP\nakmFXjYliqKhLwAVT6sLeBMJs2K2iooK3HzzzXj00UdxxRVXxHX/Bw8eRL9+/TB58mQsXrw4rvs6\ny5C0k1AMkJqnIgTP85g4cSKOHTsGp9OJCy64ANOmTUNeXl6DCpEj2U+8I920gCZQlkN/vOEIgRDg\nFZchAsOwkCRRWegD1IeA1WQAqDeBXj4kf0boVl3yQgflMY39wWAQoigqhdMcxymdneNZ2A2E5Fsu\nlxysmjNnDgYPHozZs2fHbZ9JiKQdi1OE4DeIBx98EKWlpVi4cCEcDgcqKyuxdu1arFq1CkeOHMHw\n4cMxfvx4XHTRRYZmaGYOMQ0BDbI0MDWVkxFFSdQLaNK7ql2LCGvXHsdttx1AdbXxJzt0aEsUFoZI\ngcvFwWbriFOnjK/NzGQQCKRr6gkAID0dkCQWNTXGY+7QIYhfftHKhfbudSE3t+7v3kw2RdubKjNQ\nU3uCRAZOnjyJKVOmJEzfefnll8Pn86FTp04pQqBF0k5CMUBqnooQb775JpYtW4Y1a9bAarViw4YN\nePPNN3Hs2DFce+21uP7669GsWbM6C5Hrg1lxb6xBYxXDMEhLS1NcioLBoCKBUjdfnHzfYY0VKGUH\nwtmc6guL1YRA6yqklQ8BIUKgJgN6qAunKRBksVjgdDqj/EbqBwXaSL71+uuvo7i4GPPnz4/5PJ/k\ngZ2kHYuTghCcPn0aM2bMwBdffIHWrVvjmWeewU033dTUhxU1PB5PWKuxQCCADRs2YOXKldi6dSv6\n9OmD8ePH45JLLoHT6YxImx8O8bS2jAT1aebN5DeUgmVZFrfcshsrVpQZ3seywEUXtcTmzTIpGDmy\nIzZuNF+sDx1qR2Gh8dyHDWOxebPx9eefL2HPHq1caOhQDl99lR7JKSugrAz5REcqLYoVzMjA8ePH\nMWXKFLz44ovIz8+P6/4BYOnSpVi5ciX69OmDoqKiZJxIGoOknYRigLNinvotgBai+g7BZ86cwZIl\nS7B06VLk5ORg+vTpGDlyJBiGaVBH5ETJXnw+H0RRNMyTakkRBcdsNhuuu+eQ5jP0hECicVcXQFNb\niCqLfwunIQby+xhNVgEAPpzfud5zUY/71L05Vpl+Nei60Nz65Zdf4p///CdWrVoVF9KW5IGdpB2L\nk4IQ0OJ/4cKF2L59O8aPH4/NmzcnvbZZFEXs3LkTK1euxNdff40WLVpg3LhxuOKKK9CqlWx1Fmnd\nQVMXsDbUyUhtaUrNdyorgfz8H1BebmwKwzDAiBEtcPQoi4qKbNPOxCwLtGuXgZIS43M9e3I4cMAs\n+yCgsFAbZfr73x2YMSNyQqXX7AOIypEpWlCRmVoiduzYMUybNg3/+Mc/MGTIkJjuzwxVVVUYPHgw\n1q9fjzfeeAOHDh1KxomkMUjaSSgGOCvmqbMBkiThxx9/xFtvvYXCwkKMHTsWU6dORfv27ZUxiQp7\n9VH4uop7YwnqiULe+eGgPl4AuOWPxwEAQq0FtqCrIWBYRnlMhcVECDTSoBgSAvW5AKGmapGQr0ih\nvy779+/HPffcg7Vr16J5c/MePI3BORDYSdqx+KwnBDU1NWjevDn27t2Lrl27AgCmT5+O9u3b45ln\nnmnio0scJElCcXExVq1ahc8++wzBYBCXXXYZxo8fr/j66usOKPpMC+umkqnEwsmIzu3LL8tx000H\nECYTjNGju+KXXxzYv9/43EUXpWHLFiMZ6t2bxb59xtc3ayZrbtUyIqcTOHQoA5mZkfdY0Efm9agr\n69OYZm+0f4/HA47jFOvBoqIizJw5E2+++Sb69+8f9Wc3BPfffz86dOiAP/7xj/jzn/+cIgRGJO0k\nFAM0+TyVbFlqQNabr1ixQrkPp0yZgnHjxsFmsxkKZS0WC3w+X51NK2MBdeAo0rmCgkfX3KEd9AVe\nUAgA1RLoawdCj1mwuiJifV0Bgau1K62PENTlwGTmqhRNoza9o9CpU6dw7bXXYvHixUo9YixxjgR2\nknYsTmzFYhzw008/wWq1KmQAAPr37489e/bU8a7kA8Mw6Ny5M+bMmYPPP/8cy5cvR25uLubOnYtL\nL70UTz75JL7//ntYrVZkZGQotqZerxeBQEAhBmatzeMFWgwLgtBoWzqO42C32zF+fHs8+WQX09cM\nGZKNL7/048CBSlx4YQAXXijB4aiNDjHAr7+aZ0ZcLvP7Py9PMtQUXHedtUFkIJLO0xSNS09PR2Zm\nJux2u9JQqLq6WukVUA+5N4AiR2oysG/fPsycOROLFy9OGBnYuXMnvvzyS9x///0J2V8KKcQad999\nt2Lh+N577+Guu+7CPrMowlkEu92OG2+8EZ999hlee+01HDx4EGPGjMHDDz+MgwcPwul0IiMjQ5lH\ngJBxQjwQDAaVLHZD5gqSX366sK+yTeAFiIIASRI1hcX6v00/r5YMhIMQ5OslAzzPw+fzhSU2NCZn\nZGTAbrdDEAS43W54PB4loFcfKPPMMAzsdjsCgQBmzJiBuXPnxoUMAMATTzyB22+/HTk5OXH5/BTi\ni7M+Q1BQUIDrr78ex48fV7a9+eabWLJkCb7++usmPLLfDvx+P/773/9i5cqV+O6775CXl4dLL70U\nCxYswPXXX49bb71VI79JRL+DeDsZ/e//HsSrr/6s/J2Tkwa3uxXcbu1P2m4HunWzo3PndFRVWZWe\nAwwjKc/X1AA8DwiCBEmSyYPNBtjtAniegcfDoriYwalTDAoL05GXV/93Rgv6xjQFMmv2FmlBubpD\nKRWP79q1C/feey+WLFmC7t27N/h4osX8+fPx2GOPISMjQ3HbEAQBffr0wXfffZew4/iNI2mjUjFA\nk85T51KWWhAErF+/Hm+++SZOnDiBiRMnYvny5Zg+fTomT56sFCI3pMNwJIhlofK4aT9AFMwtR9VZ\nASAkFSICoM8SyP/rMgQch09eC99tlwIxDa2zaEijNkDrKATIZiV5eXm49957I95nQ7Bz505MnToV\nO3fuhMViSeZMb9KOxYkVi8cBLpcLVVVVmm2VlZXIyMhooiP67cFut+Pyyy/H5ZdfDlEUsWbNGsyc\nORNdu3bF119/DbvdjiuuuEJpgEbyFL/fH5d+B7FYDNeH556TF7SvvvozMjIscDiycfy4sSOl3w8c\nPhxARUUaSkt9hueHDLFh61bj+0aMYPDf/4ZezzDADTc4G0QG1IvxaMAwDDiO07gT0bXzer3gOE7j\nyKTW+tL+ybv7+++/xx//+Ed89NFH6Ny5c1THEy3uvPNOjbzi+eefR3FxMRYsWJDQ40ghhWgQLku9\nYcOGJjyq+IDjOIwePRqjR49GWVkZLrvsMvh8Pqxfvx65ubkYPnw40tLSlPnD6/U2WgsvCILiPBc3\n1yJRBMOyGoLA6o6XNakTqCtTYLqf2qyw3W5vcNE1wzCKtSoF8CjDTPUcFASi75/qLN544w2wLIt7\n7rmnQftsCDZs2IDi4mLk5uZqAjt79+5NBXbOEpz1hKBHjx7geR6HDh1SBuQffvgB559/fhMf2W8T\nJSUluOuuu/DYY4/hvvvuw+HDh7F69WrMmDEDgiDg8ssvx/jx43HeeecBCGnzyZteXdwazUKW3A7i\nrTUFZFLQs2caFi4MYudOY6ExYcCADGzebAwy9u1rwbZtRjLgcgFFRQHNNkkCZs2q31konuev7jhK\nbhs8zyte3TRh+Hw+OBwOZf+bNm3CE088gRUrVjRJqtfhcGiaCrlcLjgcDoWgppDCbxnV1dXIzMzU\nbMvMzITb7W6iI0oM5s2bh1atWmHNmjXYvXs3Fi5ciMcffxzjx4/H1KlTkZ2drWQwybRAX4hcHyh4\n4XA4YuZatHZxf4ydsj1UP1ArcdI7DSnSIZGFJAqQWAYMKynEQBIlSKJgqDUIlx1Q6/kbO/ZTIIjk\nRFSPQHOzWo60fv16rFu3Dp9++mlc3epSgZ2zH2e9ZAgAbr75ZoUFb9++HRMmTMCmTZti4jL06quv\nYtGiRdi1axduvvlmLFy4MAZH3HSQJAnbtm0zOMdIkoRTp07hs88+w+rVq1FSUoKRI0fiyiuvxAUX\nXACWZRvd70DfYyBROHAggDlzTmLjRqO1UL9+TuzebYVe9mq3A+3acTh61HgL5OczKCjQZhPGjXPg\no49a1XkcRAYSbetK0qJAIKA4bmzcuBHl5eVo1aoV5s+fjxUrVqBNmzYJO6YUGoykTVPHAE06T+3c\nuRP5+fmorq5Wtr344ov45ptvsGrVqiY8svhiz549yM3N1WTja2pqsGLFCrz77ruwWq2YMmUKxo4d\nq3QUbkhH5Hg367r8pu8VEqAHkQLGxGWICoyV1+och1a9YVx3mDV8jDWoqaXf74ckSXjttdcwcOBA\nPPfcc1i7di1atmwZ833WhZRk6OxDUhACtcNDq1at8Le//Q033HBDTD575cqVYFkWn3/+Obxe71lP\nCCKF1+vF+vXrsXLlSuzYsQMDBgzA+PHjcfHFFytFrWbON+GcEJrS1hSQU6hffXUG774bwOef18Dr\nldCxow01NU5UVBh/5sOGWbF5s9GqqF8/Brt3+zQEwulksGVLNrp0CX9eTUWGCGoyYrFY8NVXX+HV\nV1/FN998g7y8PEycOBFXX301+vbtW/+HpdAUSNpJKAZo8hqCFi1aYM+ePUqWetq0aejQoUPS1RBE\nCkmScOTIESxcuBCff/458vPzccstt6Bnz54RdUQ2cz+LBwRBwBU3bzd9jlyEAGMtAWAuIVr9Vh/T\nz1Lr+eN1LuoMhCRJ+Mtf/oLFixcjOzsbs2fPxs0334zWrVvHZd/nGJJ2LE4KQpAIPP744ygpKTln\nCIEaoihi69atWLVqFTZs2IB27dph3LhxGDt2LLKysgCE73fAsqyiZ2wKW1PASEa8XhHbt/tw8KCE\nfftEnDolwuORwPNyLUD79izKavubybaoEqqqRPC8iOJiP0pLtbfF3/+ehRkzXGH3T5r+piIDZmTk\n008/xT//+U8sXboUP/74I9asWQO/34/XX3894ceXQkRI2kkoBmjyeSpWWepky0gD8vjzxRdfYOHC\nhSgvL8f111+PSZMmweVyaTr2UiEyx3GKO048DCcIen/+MTds0zxPhCAcGVBepyIFZoRA3yE4HtBn\nIHiex4033oh7770XDocD77zzDkaPHo1p06bFZf/nGJJ2LE4RgghxLhMCNSRJQlFREf5/e/ceFMWV\n/QH82zCEGWZAo4UKEt8Qxd2VKMomlA+IRmHQxAR3lZeLxkQlrsZs4roqiJC4iaYsHxgtA0GyKAq6\nDCCoEBXUVcsXGh8rPvDFsiiuAgOCw0z//sivJ4Aor+7poed8qlIVoey+g1X3cu659xyNRoOcnBww\nDINJkyZBrVajT58+ANCoYhFXgo77ZVTojrtNcSlUvoKRX3a+anH2bB2OHn2G7t2tsGSJ6rmLuxyx\nMyNNgwGWZZGWloYdO3YgLS1NsMv3oaGhyMvLw9OnT9GrVy98/vnnmD17tiDvshCSXYR4IPo6xVeW\nWuoZaa4sa2pqKtzc3BAaGgovL69GHZH1er2xFLNgl4h5OI40edalRsFA2neDnlvjuPlX6M2wpg3O\nvvjiC7i6ulIpZ2FIdi6mgKCVKCB4HsuyKC8vR1ZWFjIzM1FWVoYxY8YgICAAbm5u+Otf/4rFixfD\nycmpzWUx+RgbHw3PWnoHF/zo/r/7ZcNL11zdbLEyI80FA8nJycjIyEBqaioUCoVg775y5QoGDBgA\nuVyOoqIijB07FtnZ2XjjjTcEe6fESXYR4oHk1imprzcGgwGnT59GfHw8Ll68iClTpmDGjBn48ccf\n4eXlBU9PT+h0unZdRG4J38eRuAIOXDDDZToYhkF1dbXgmeGmGYiEhARcuHABW7du5XXdo00eI8nO\nxZ2+yhARD8MwcHR0RHh4OMLDw1FTU4O8vDx89913yM3NxZAhQ1BUVITevXtDpVI1WxazvR0YX4ZL\nnxoMBsGCAeDXhjdc+VSuokZdXZ2x+3BHyop2BPcz5nbZWJZFfHw88vPzsWfPHsErPLm7/5o6Z1kW\nDMPg5s2bFBAQQmBlZQUvLy94eXmhuroaaWlpmDJlCsrLy/Haa68Z51TuF+2m5UvbO6c2bNbF190E\n7oisjY2NcQ3g1h8he/kAv2TjuXneysrKeJF93759vK97S5cuxbZt2xpt8gwfPpzmdAnp9J2Kifmw\ns7ODh4cHzp07h+DgYMTExODEiRPw8/PDzJkzkZaWZpy8uI67er0eWq0WVVVVxh39tnbcbYjrfsyy\nrKDBQFNcTwBbW1tjSVa5XG7sMKnValFXVwe9/vmLynxrLhjYtGkTTp48iZSUFMGDAU5ERASUSiWG\nDBkCZ2dn+Pv7m+S9hJDOQ6lUolu3bigvL0diYiKKioowfvx4rFy5Erdv3zZ2RObuFnBzaXs6InN/\nT6hKP1xGg9ssYhgGWq22TR2GW6thSVaZTIZbt24hMjISO3bsEKSKnbu7u7E8dMNNHiIdlCFoAXck\nhCu5WVdXJ3jU35n95z//wccff4yFCxcCAEaPHg2WZVFUVIT09HQEBwdDJpMZ7x24uLgA+PXn3JF+\nB1wqWKjux615PxfUcOlbW1vb53oCcIuFjY0Nb83eONydBe6YEsuyWLt2LYqLi5GUlGTSewxxcXHY\ntGkTTpw4gSNHjpgsECGEdC63b9+GRqPBqFGjMHHiRMTExCAnJwfR0dF48uQJpk+fjqlTpza6iMzV\n3W9tR2Tu8rJSqRS00k9tba3xDgTDMMaqSnw1auPeU1NTY+w7U1FRgQ8//BAJCQmCVhKKiIhAYmIi\nnj59iuHDh9Mmj8TQHYIWREdHIzo6utEEEhUVhcjIyA4999mzZ5g/fz7y8vLw+PFjDBw4EF999RUm\nTZrU0SGbNZZl8eDBA2RmZiIzMxOPHj3CuHHjEBAQgN/85jfN9jvggoOXnSM1Rffjlj5Xw2NKL6ut\n3fDzsSzb6F5FR8bdNBgwGAyIjY3FkydPEBcXJ2oQO2/ePAwdOhSffPKJaGPo5CR7bpUHklunpH6H\noC3KysqQlJSEPXv2YOiYLFk5AAAVmklEQVTQoQgLC8OIESMaXUQ2GAwv/UWb22wS+j5XS+VFG/aD\naa7DcGs0rSik1+sRFBSEuXPnIiAggM+P88L3c5s8S5YsscTNUcnOxRQQiKSmpgZr165FeHg4Xnvt\nNezbtw8zZszApUuXjNV6LEF1dTUOHjwIjUaDK1euYOTIkVCr1fD29jaeyWyp30HD7r9cutaUuN0a\nAG1ORXNnTrkMApcVaesi0bSaksFgwPLly8EwDL799luTHZ16kTlz5kClUmHdunWijqMTk+wixAPJ\nrFNcpnTVqlW4f/8+tm3b1q6MtBQ3nAwGA06cOIGEhARcvXoV7733Hv74xz/C0dHR+HN79uzZcxeR\nufVB6EpvbSkvym0MNS252ppNoYbFMgBg2bJlcHFxwWeffWbStc+CN3kkOxdTQGBGhg0bhpUrV2Lq\n1KliD0UU9fX1+Ne//gWNRoPjx4+jX79+UKvVmDBhAhwcHIxHbxr2O7C2toZOp4NcLhflSAqfx5Sa\n+3xc5uBlR4u4knPcnQm9Xo/PPvsMjo6OiImJMXkw8PDhQxw6dAgBAQFQKBTIzc1FYGAgUlJSoFar\nTToWCZHsIsQDyaxTfGWkpb7hVFVVhd27d2PHjh3o2rUrQkND4evrC2tr60YdkWUyGerr66FQKATt\nDs9VdGtP0NGwUVtrMx1c0JGUlISTJ08iISHB5PO8BW/ySHYupoDATJSVlaF///4oLCyEm5ub2MMR\nHcuyuHr1KtLT03Hw4EHI5XL4+flBrVbDyckJAHD16lU4OzsbJ8L23DvoCIPBgJqaGkG6aTYsacpd\ntG76+bhW9Q2Dgfr6eixYsACurq5YtmyZKBWOysvLERgYiIsXL8JgMKBv375YuHAhZs2aZfKxSIhk\nFyEe0DrVClLccGJZFteuXUN8fDyOHDkCX19fhIaGon///nj8+DGqqqrw6quvtvt4TmtwDc74KC/a\nMGvQUqbj+PHjWL16NXJycgTfDKNNnkYkOxdTQGAG6uvr4efnB1dXV2zevFns4ZgdlmVRWlqKzMxM\nZGVl4cmTJ3B1dUVmZib279+PIUOGtOveQUdwdxZsbGxMUlq06efjqgcZDAbjbpFOp8NHH32EUaNG\nYfHixaIEA0Qw9I/5YrROtcASNpx0Oh2ysrKQmJgIrVaLiooKjBkzBjExMe0+ntMSPhqcvei5zWU6\nuEz47du3MXPmTGRlZaFnz568vfdFaJOnEcnOxRQQiIxlWcyYMQNarRYajcYSL+i02Zo1a/D3v/8d\n/v7+uHbtGry8vKBWq/Hmm2+2+t5BRzS8syDGMSWu9rTBYADLsvjiiy/Qt29fnD9/Hn5+foiIiKBg\nQHroH/TFaJ16CUvbcNLr9QgMDERxcTFsbW3h4eGBsLAweHh4AECrj+e0hLs7ZmVlJWghC269AX6p\n3FZdXY0TJ05gy5YtGDZsmCDvJC8l2bnYeuXKlS/7/ku/STpu9uzZKC0tRUZGhqDdDKUiLy8PMTEx\nOHbsGGbNmoXw8HCoVCpkZWVh9erVOH78OFiWRd++faFSqWBra2s8SlNbW4tnz54Zayhz/7WF2MEA\nV9aOZVnj57O2tkZGRgbOnDmD8+fPo7i4GE5OTujVq5fJx0cEEy32AMzYSrEHYK5YlkVwcDAMBgOS\nkpJELy5gCjt37sSRI0dQUFCAjz/+GF27dsX333+P9evXo7q6Gm5ubujSpQtkMhn0er3xDhbwSx+B\n1qwJDedhIUtcc++xsrKCUqmEUqnE7t27UVhYiAsXLuCVV17Bb3/7W0HeTV5IsnMxZQhENHfuXFy8\neBF5eXmws7Pj/flSbDXOsiwqKyvRpUuX575nMBhw+fJlpKenIzc3F/b29vDz84O/v78xrdrSufyX\n4S6OyeVyQS+ovUjTcnNc05uQkBD86U9/wvTp03Hp0iVkZGRQjWjpkeyuFA9onXqBWbNm4e7du8jO\nzhZlzhIDd6bfwcGh0dcrKiqQkpKCnTt3wtHREWFhYRg3bpxxw4g7ntOajsgtlRflS9OKQlFRUeje\nvTs+/fRTZGVl4fLly4iKihLs/aRZkp2LKSAQyd27d9GvXz/I5XJjupJhGGzduhUzZszg5R1XrlzB\ngAEDGrUaz87OtohW4yzLoqSkBBkZGcjKykJ1dTXefvttqNVqDB48GAAaHS1q6d4BFwzwcXGsvZ+n\naWnTiooKBAcHY/78+QgMDBTkvVIsX9hJSXYR4gGtU80QesOps2JZFpcvX0Z8fDyOHTuGd955ByEh\nIejTp0+jij8Amr2I3Jbyoh3R9D07duxAfn4+tm/fbhGZHjMm2bmYAgILce3aNfj4+GDDhg2C/fJo\nziorK5GTkwONRoObN2/izTffhFqthpeXF2Qy2UvvHXBn9oWuY/0iXDDAMIwxPf2///0PQUFBWLJk\niaBVHqRevrATkewixANap5rge8NJitlm4JcND41Gg6SkJDx79gxBQUGYPHkybG1tm72IzDBMu8uL\ntkXTikKnTp3CqlWrkJOTA7lczss7aLOn3SQ7F1NAIHFNW40XFBRY/G6RTqdDQUEB0tPTcerUKQwe\nPBhqtRq+vr5QKpWN+gFwZ0u5akKtPWPKl+b6HDx48ADBwcGIjo7G+PHjTTYWjhTLF3YCkl2EeEDr\nlMCknm1mWRb3799HYmIiMjMzMWLECMycOdN4Pl+n06Gurg4GgwEymaxRoMU37sgTdzT13r17CAkJ\nQUZGhrHkNh9os6fdJDsXU0BgAajV+IsZDAZcvHgR6enp+Omnn9C1a1f4+/vDz88PO3fuhEwmw5w5\nc4xlP9t676CjY2va5+C///0vgoKC8M0332DMmDGCvftFLKF8oZmS7CLEA1qnTEjq2WaDwYD8/Hx8\n//33uHv3Lj744AP4+/tj8eLF2LBhA7p06dJsnwA+cBtAXNCh1WoxdepUbNy4EcOHD+flHS9Dmz2t\nItm5mA6iWQCGYfDWW2/h3r17+O6778QejlmxsrKCh4cHVq5ciYKCAsTFxUGn0+Gdd97Bxo0bodVq\ncfv2bcjlcqhUKiiVSjAMg7q6OlRWVqKmpsZYuYhPXJ+DhsHAvXv3MGPGDKxfv16UYKC+vt54gZmC\nAUIsS0REBJRKJYYMGQJnZ2fJFi2wsrKCj48PkpOTkZmZCWtra/j4+KC6uhr//ve/YWtrC3t7e9ja\n2kKn0xnXAW7DqL24ohFWVlbGI0tz587FokWLTBIMlJWV4fr16xg6dKjg7yLmiQICC1JfX4+bN2+K\nPQyzxTAMXFxcUFxcDDs7Oxw5cgSvv/46Vq9ejbfffhuRkZE4ffo0bGxsoFKpYG9vD5lMZlwUtFqt\nMa3cEQ2bnnHBwK1btxASEoItW7bAy8uLp0/ceizLIiQkBLa2tti4caPJ308IEVdcXBy0Wi2OHTuG\n999/X5Syy6bWtWtXFBUVwd3dHWvWrMH+/fvh6+uLr7/+GmVlZbCzs4O9vT2sra3x9OnTDq0B3N9T\nKBQAgC+//BJvvPGGSbIwtNlDAAoIJOvhw4fYtWsXqqurYTAYcODAAaSkpPB+5vz69etQKBQICwvj\n9bli0ev1UCgUOHz4MNzc3BAUFIRdu3ahoKAAEydORFpaGnx9fREREYH9+/dDr9dDqVTCwcHBuKuj\n1WpRVVWF2tpa6PX6Nu0aNRcMXLt2DeHh4UhMTBTtzO7s2bNRXl6OvXv30pEzQiyUpWWb9Xo97O3t\nkZqaCk9PT2zYsAFHjx6Fu7s7Fi1ahGnTpkGj0QAAVCoVFAoF9Ho9qqqqUF1dDZ1O16r5n6tsxFWQ\nS01Nxd27d7Fs2TLB76zRZg/h0B0CiTJVq/GJEyeitrYWffv2RVJSEq/PNlcGgwHnzp2DRqPBoUOH\n4OjoCD8/P/j5+aF79+4A2tfvoLmmZ5cuXUJERASSk5NF27mh8oVmQbLnVnlA65SJzZkzByqVCuvW\nrRN7KKJhWRZ37txBYmIi9u3bh9///veYOXMmhgwZAqBxR2TurkFzmylNKwqdOXMGy5cvx4EDB4zZ\nAiFZYq+KDpLsXEwBAWm3lJQUpKenw93dHTdu3LCYgKAhlmVx+/ZtaDQaZGdno76+HhMmTIBarcbA\ngQMB/BJAcMHBi/odcItCw6Zn58+fx6effopdu3ahf//+onw+U/TLIK0i2UWIB7ROCejhw4c4dOgQ\nAgICoFAokJubi8DAQKSkpLS75PH169fxu9/9DtOmTZPEuqHX63Ho0CHEx8ejtLQUgYGBmDZtGhwc\nHBqVL216EblpRaGSkhIEBQUhPT0dvXv3FnzctNnTLpKdiykgIO1SWVmJkSNH4vDhw9i2bRtu3rwp\niYm9I1iWxePHj7Fv3z5kZGTg3r17GD16NAICAjB8+HBYW1s/1+9AJpPBysoKz549g0KhMAYDJ0+e\nxLJly5CamgoXFxeRPxkxA5JdhHhA65SAhMg2Szmz/OjRIyQnJ2P37t3o168fwsLC8NZbb4FhmOc6\nIuv1eshkMigUCtTU1GDq1Kn49ttvMWrUKMHHSZs97SbZuZgCAtIuixYtgouLC/7yl78gOjqaAoJm\n1NXV4dChQ0hPT8e5c+cwbNgw+Pv7Y9y4cZDL5WBZFqWlpca29IcPH8aFCxcwcOBA/PDDD/jnP/+J\nXr16ifwpiJmQ7CLEA1qnOhFLySyzLIuzZ88iISEBZ8+ehVqtRkhICHr27Am9Xo+ysjKoVCpkZ2ej\npKQEP//8Mz744ANMnz5d7KGTl5PsXGz6tquk0yssLEReXh4KCwvFHopZs7W1Nd4tMBgMOH36NDQa\nDdauXYuePXti2LBh2LRpEw4ePIjXX38dAwYMQE5ODrZt2wY7OzvExsbi3Xffxfjx403aDI0QQoRQ\nWVmJqKgoY2ZZyhiGgaenJzw9PVFTU4O9e/di3rx5eOWVV+Ds7IyrV68iOzsbgwYNQmpqKvLz86HX\n66FSqeDn50fFG4jJUUBA2iw/Px937txBnz59wLIstFot9Ho9rly5gjNnzog9PLNkZWUFLy8veHl5\ngWVZbN++HQsWLMDYsWPx+eefY+LEiVAqlbh//z5u3LiB0tJSaDQa/PDDD5gwYYLYwyeEkA6LjIzE\nnDlz4OzsLPZQTMrOzg4hISEIDg7G1q1bsWTJEnh4eGDFihVwdnaGvb09SktLkZaWhvj4ePj5+Yk9\nZGKB6MgQabPa2lpUVlYa/7xmzRrcuXMHW7ZsQbdu3UQcWedw5swZ+Pv7Y+/evfD29sajR4+QmZmJ\nzZs346effoKDg4Mg742Li0NiYiJ+/vlnBAUFISEhQZD3EEFQiujFaJ3qBAoLCxESEoLCwkLIZDKL\nPGpaXFyMUaNGIScnBx4eHsjNzUVkZCQOHz4MlUol9vBI60h2LqaAgHSYUBP7uHHjcOrUKdjY2IBl\nWbi4uODq1au8vkMM9fX1uHHjBgYPHmzS96anp8PKygoHDhzA06dPKSDoXCS7CPGA1qlOYP369Vi+\nfDns7e0bZZbd3d0tJrPMsiyuXLkiaDdg2vgRnGTnYgoIiNny8fFBWFgYwsPDxR6KpKxYsQIlJSW0\nUHQukl2EeEDrVCdAmWXToI0fwUl2LqY7BMSstaXLLyGEEPMkl8shl8uNf1apVJDL5R0KBqSaRe6I\n9957DwBw+vRplJSUiDwa0plYiT0AQl5m6dKl6NGjB0aPHo38/Hyxh0MIIYQHUVFRHT5myjAMNm/e\njMrKSlRVVVl8MEBIR1BAQMzWN998g1u3bqGkpARz5szB5MmTUVxcLPawCCGEmAnKIhPCDwoIiNka\nOXIklEolbGxsEBYWBm9vb2RnZ4s9LEIIIWaCssiE8IMCAtJpMAxDu0EdoNfrUVtbC71ej/r6etTV\n1UGv14s9LEIIaRfKIhPCHwoIiFmqqKjAwYMHjb+0Jicn4+jRo5g0aRKv70lJSYG7uztUKhVcXV1x\n/PhxXp9vTmJjY2FnZ4evv/4aycnJsLOzw5dffin2sAghpF0oi/w82vgh7UVlR4lZKi8vh7+/P65d\nuwZra2sMHjwYsbGx8PX15e0dubm5+Oijj7B7926MHDkSpaWlAAAnJyfe3kEITyRb6o4HtE4RAIC/\nvz/8/f3xySefiD0U0URHRyM6OhoM8+uUERUVhcjISBFHJSmSnYspICAWy9vbGx9++CH1OSCdgWQX\nIR7QOmWBKioqcOrUKYwdOxYymQwpKSmYO3cuzp8/j0GDBrXrmSkpKVi1ahXu3r0LJycnJCYmwtvb\nm+eRk05OsnMxHRkiFslgMODMmTN48OABXF1d0adPHyxYsAB1dXViD40QQkgLdDodli9fjh49esDR\n0RFxcXHQaDTtDgZyc3OxdOlSbN++HVqtFgUFBRgwYADPoybEfFGGgFik0tJS9O7dG56ensjKyoJM\nJsOUKVPg4+ODmJgYsYdHSFOS3ZXiAa1TpMMoY0xaSbJzMWUIiEVSKBQAgD//+c/o0aMHunXrhsWL\nF3eaC2mPHz/G1KlToVKp0L9/f+zcuVPsIRFCSKdEGWNCKCAgFqpr165wcXFp9LWGl7DM3fz58yGX\ny/Hw4UP84x//wLx586hLJyGEtENZWRl0Oh327NmD48ePo7CwEOfPn0dsbKzYQzOiTSAiNAoIiMUK\nDw/Hxo0b8fDhQzx+/Bjr1q3D5MmTxR5Wi2pqarB3717ExsZCoVDA29sb7777Ln788Uexh0YIIZ1O\nZ8gY0yYQERoFBMRirVixAp6ennBzc8PQoUMxYsQI/O1vf+Pt+fb29nBwcICDgwPs7e0hk8mwcOHC\nDj+3qKgINjY2GDhwoPFrw4YNw+XLlzv8bEIIsTTmnjGmTSBiCjKxB0CIWGQyGeLi4hAXFyfI86uq\nqoz/X11dDScnJ/zhD3/o8HO1Wi0cHBwafc3BwaHR+wghhLQelzGeOHEiZDKZWWWMX7QJlJ+fL+Ko\niNRQhoAQE0hLS0OPHj14qWmtUqlQWVnZ6GsVFRWwt7fv8LMJIcQS8Zkx5js7TJtAxBQoQ0CICSQl\nJSEsLIyXZ7m5uaG+vh43b9407hhduHABQ4cO5eX5hBBiafjMGPOdHaZNIGIKlCEgRGB37txBQUEB\nZs6cycvz7Ozs8P777yMyMhI1NTU4duwYMjMzERoaysvzCSGE8IOP7HDDTSAObQIRvrXUmIwQ0kEM\nwywH8DbLsj48PvNVAAkAJgAoB7CEZdldfD2fEEJIxzEM8xOAfJZlV3XwOTvwSxO+OQCGA8gE8BbL\nslRqiPCCAgJCBMYwzDUAX7Esu13ssRBCCDENhmH6ArgBYBDLsnc6+CzaBCKCooCAEAExDPMWgAMA\nerEsWy32eAghhJiGENlhQoRCdwgIEVYYgD0UDBBCiMUJBZAo9iAIaQ3KEBBCCCGE8Iiyw6SzoQwB\nIYQQQgi/KDtMOhXKEBBCCCGEEGLB/g9AJazGUaVqWAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10a0bd650>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(14,6))\n", "\n", "# `ax` is a 3D-aware axis instance because of the projection='3d' keyword argument to add_subplot\n", "ax = fig.add_subplot(1, 2, 1, projection='3d')\n", "\n", "p = ax.plot_surface(X, Y, Z, rstride=4, cstride=4, linewidth=0)\n", "\n", "# surface_plot with color grading and color bar\n", "ax = fig.add_subplot(1, 2, 2, projection='3d')\n", "p = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=matplotlib.cm.coolwarm, linewidth=0, antialiased=False)\n", "cb = fig.colorbar(p, shrink=0.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Wire-frame plot" ] }, { "cell_type": "code", "execution_count": 122, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAFdCAYAAACO4V1gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXecFPX5x99TttxeA1EiKMVYAoKIikqTplTpCEpQVAhR\nLAT9JSgWMLEkdkXFLgFFQEFEBaSpRxOwADYwCIqCBQtc2zbt98c4e7P19u72Cty8Xy9eCjc3Ozs7\n+32+T/s8gmEYODg4ODg4OKRGrO0LcHBwcHBwOBxwDKaDg4ODg0MaOAbTwcHBwcEhDRyD6eDg4ODg\nkAaOwXRwcHBwcEgDx2A6ODg4ODikgVzOz52eEwcHBweH+oaQ6B8dD9PBwcHBwSENHIPp4ODg4OCQ\nBo7BdHBwcHBwSAPHYDo4ODg4OKSBYzAdHBwcHBzSwDGYDg4ODg4OaeAYTAcHBwcHhzRwDKaDg4OD\ng0MaOAbTwcHBwcEhDRyD6eDg4ODgkAaOwXRwcHBwcEgDx2A6ODg4ODikgWMwHRwcHBwc0sAxmA4O\nDg4ODmngGEwHBwcHB4c0cAymg4ODg4NDGjgG08HBwcHBIQ0cg+ng4ODg4JAGjsF0cHBwcHBIA8dg\nOjg4ODg4pIFc2xfg4FAbGIaBqqpomoYkSUiShCAICIJQ25fm4OBQR3EMpkO9wjAMdF1HVVVUVSUU\nCiGKYuRngiDg8XiQZRlRFBFF0TGiDg4OgGMwHeoRuq6jKApFRUXk5OQgiiKSJEUMpqIoKIoCQDAY\njBhKURSRZTniiVreqIODQ/3CMZgORzyGYaAoCpqmAaCqKoIgoGkamqZFQrGWEZQkKep3DcMgHA5H\n/ZvdeDohXQeH+oFjMB2OWKw8paqqAFEGze/3Ew6HEQSBUCgU+Zn1O1YoNpERNAwDMA2vdQ7r/JIk\nRbxRJ6Tr4HBkIVhf/iSk/KGDQ13EMAw0TYuEV+3GMBgMEggEcLvdeL3eiLdpeaGWsdR1PeJJWoav\nPC/S8kZjv1OWB2rlRZ2QroNDnSfhF9TxMB2OGCxDqapqpIDHMoahUIhAIBAJt/p8vsjvWcdJkoSu\n62RlZQFmztP6o2ka4XAYwzCiDKjdi0zmjdp/38L6fbs36oR0HRzqNo7BdDjssbw6RVHQdR1BEKIK\nefx+PwDZ2dm4XC4OHjyY8lwWljGM/bllAC0v1nrNZN5ospCudW2CICDLshPSdXCo4zgG0+Gwxqp8\ntYyW9UdVVQKBAJqmkZWVhdvtTmh47P+WjmGyjFpsYZDdGw2Hw1GG2+6NxhYXWSFhyzBbHrIduxG1\nn8fBwaFmcQymw2FJsoIeXdcjBT1ZWVnk5OTEGRcrTJspo5PMiNq9UcuoWyFdy/BZ3qa9cCj2feq6\nTigUirrm2FaXRN6wg4NDZnEMpsNhRTJDaRgGfr+fUCiEx+MhPz+/Vg2IdV2WYbOw8qyWIbXeh6Zp\nSb3RREY0ttXFes1E/aKON+rgkBkcg+lwWGDlKMPhcJQhsFe+ulwu8vLyojy9dM5bkwbFMmoWoVAI\nAFmWo4xoorxobIFR7PsAp9XFwaE6cQymQ53GXvkaDocJh8Pk5uZGPCy/348oiuTm5kYZonSpC4bD\nHtJ1uVxAmRdpeaOW8II9L5qo1cWeD7XOE5sX1XUdURRxu91Oq4uDQwVwDKZDnSRR5au1oKuqit/v\nxzAMfD4fLperQou95ZnW5ZyfPaRrYc+LWnq49laXWG80WUjX3qPqtLo4OKSPYzAd6hzJKl+t/GVJ\nSUnKyteqUI6QR62SyIhCfF7UunexodxYbzS2SAmIhL2dkK6DQzyOwXSoM6RT+SoIAvn5+dWyYB+u\nRiA2LwqpW12s34mVAATi8r+JQrrWcU6ri0N9wzGYDrVOqsrXQCBAMBjE7Xbj8/kiuq+ZfO0jcaFP\n1epitajYW11SiS6kanWx47S6OBzpOAbTodZIV8rOqny1jqsq1mtY/1/b1FQY2C4BaBgGHo+n3Lxo\nRSQAnVYXhyMdx2A61DiJDKXliYTDYQKBAIIgRKTsHKqPVHnRRBKAqfKi5bW6hMNh3G535HddLpeT\nF3U4rHAMpkONElvQYy3UVuWrruuVqnw9XLF7u3WJTEoAWj8PBoOR8+m6TjAYjAqJO1NdHOo6jsF0\nqBGSVb5qmkYgEEBRFLKysvB4PEkXyUwal7popOo6FZUAjG1zsZ8nWV402VQXuyF1QroOtYVjMB2q\nFau4pLi4GJ/PF1X5GggEIlJ2DRo0qLFF0F5QFAqForwix5BWjGQSgIlGowEEAoEKSQCC0+riUHdw\nDKZDtWCvfLWKQbKzswGihjhXVPO1qgbN8mT8fj8ulytS+GIVvACUlpamDDE6lE+iCtmSkhLcbndU\nDrs8CUCoWKtLIuEFB4dM4RhMh4ySTkGPJEmVkrKr6uJnzZ/UdR2v14vX643yXAzDoLS0lKysrHJD\njE61Z+Ww7ptdAtDujSaSAEzkiaYb0rXO43a7nVYXhyrjGEyHjGAtWIqixBlKS4YtGAzWSuWrfTam\nz+eLKj5JhLWoWga9MpJ0DtEka+MpLy9qz31XVALQOoelDGV/TafVxaEyOAbTocokq3zVNA2/34+m\naQDk5ORUaJJILBXNMVp50tjZmJaxq8jrpiNJV17/okN6VEUCMJk3aj139lYXayNnbfCscK5VXOR8\nbg6xOAbTodJY3pZlEGMLesLhMF6vl5ycHA4dOlRji4818isYDFbrbMxUknSp+hed/FrlKE8CMDYv\nat1v65jYVpdE5wmFQgSDwcjPrUiD0+riAI7BdKgE6UjZxRqqmqhAtYqLYhWCapJ0+hdDoVDCCSxO\nfq3i2O93otFo1mYuEAgAxG1cysuLWs+UlRe1ctlOq0v9xDGYDmmTylBWZYhzZa4jdnGyCnqAcvOk\nyYy3vfgnk4tfqjydXde1vGIXh/Swh3RFUUTXdbKysjImAQjOoO76imMwHcolleZrukOcM+FhJlp8\n7HnS6hr5VR3Yc2uJdF2dCt3MkiovWlEJQOt89nMlanVRVTUypNtpdTkycAymQ1JSVb5WdYhzVUmU\nJ63M69elxSsdEYBMVOjWhjhDXZ0Kk04IPR0JwEQbGKsa2zqHRaKpLs4G6PDAMZgOCbFybaWlpeTk\n5ERVvqYrZWcnkzlMS6GnMsIHhyOJcptVrdCtL4tzZZ658lpdypMAtKtGxRYJWddjfV7JQrpOFKFu\n4hhMhyjsla/W/yeqfM3Ozq7RL7OV5wPTu61qnvRwl8BLp2I0WXixrnp71UUm3ms63n/sxgXM3Hoi\nLzLWGAMpB3U7rS51A8dgOgCJC3qs/Jp9iHNlPbqqeJj28C8Q5fFWhiN1wUlWMZoovAjmAp1MID0d\nioth/36Rli11vN6Mv53DgmTev7XBtDad6UgAOq0udR/HYNZzUlW+hkIhIDMeXWWwh399Ph9ut5vC\nwsKMeodHureVKLxoLb5WBWlFKnRVFf71Lzdz57ooLRU49liDH34QOO00nVtvDdGzp1Ybb7NOYc/1\ne3/fSWRSArC8VhcnpFt9OAaznpKs8hWiWzSAShfUVOXaanuSyZG80Fiftb31Jp0c3XffyQwalMeB\nAwLTp4e49loFSYJgEJYvl5k82Uv79hpPPRXEpkQXOX9tUFc+y4rmRSsqAQhEFYRpmhbRz3VaXTKH\nYzDrGfbJHImGONs1V10uFwcPHszIopNOSNbyaq1+zmTh30y0pxzuOcxMU16O7qOPBEaOzEVVYdmy\nXzjtNB1VldB1EZdLZOhQgwEDVK65xsuwYVnMnx+gQYP416gvpPN8JbvnlZEAtM4nimLUJri8qS5O\nSLdiOAazHpFM89Uad2VVvto9ypr4IlkFPen2c2YKe/jZWTASI4oiu3dLDBuWTTAI+fkGQ4YcTevW\nGr16hbn6aj/Z2WUL+vTpIS68sCGDBmWxZo0ft7v+3tfKPlPpFHTFbnjtHmTskPZE50k2qDu2X9T5\nXkRzZNfjOwBEij1iJdkMw8Dv91NYWIgoiuTn5+P1eqO+JJnyxpKdR1VViouL8fv9+Hy+So39qiya\nphEKhSL5JMfrjOeTTwQ6dcpGUeDCC1Xee8/Pzp0l3HlnmH37XHTufBQrVuSRnZ1NYaGX4cMb0r9/\niKOO0pg6VaS0tJRgMBjp5a3pe3ykfKZWSNflcuH1evH5fGRnZ5OVlYUsy1GbznA4HPVsW2Fe6zyW\ncbT3gUJZKqakpISioiKKioooKSmJfH7Od8TxMI9o6oqUXSJivdp0+zkhM0OkFUUhFAohy3JUiBog\nFApFFpL6HK7askXkwgt9tGypI8vw/PNB3G7zZ127anTtqvHRRyKXXprFvn0Cixa5GDpU5bbbNH77\nTaN792y6dhUYODAUCROWlpYm9Iqqs5e2Nj6/mohaJFIvsgqCrI1xuhKAUPFWl1jhhfqAUM7iU7+3\nE4cpqQyltYuUJCmyO01FYWEh2dnZVfb6/H4/giDg9XqjJol4vd4KLZZFRUVkZWVVaqamlSO1Qr95\neXlR+R5rQXe73VF5pNgFPpNG1FrMPB5PRs6XDqFQCEEQcFvWLwHbtokMGJBFw4YgCDBzZpBu3RJX\nwO7dK9ClSzYtWuisX+/HujWbN4uMHZvFli2l5OSYHo+l6WrdWys8mE6FbmWojfsLZdELn89Xo68L\nid+zPRRrr9ZNJgGYDCtKYP2JbXWxG9HDXFAk4U1wPMwjCGshsipc7bqqiqIQCAQwDKNWhjhb13bo\n0KFa8WqtjYJltO3N5RbWAm2vZrQWBmuhURQlqi0jE15SXQtz/fijwKhRWYiiwJAhYXbvlpIaS4Bv\nvhHJyjLbSzZskOja1Tz23HN1+vZVuesuD//+d2lUXi3WKzrSNHRr8zNN5N0mq9JNJQGYTIw+VauL\npclrrT2yLLNt2zbatWtHbm5ujbz/6sQxmEcAsZWv1qgoq0quKuLkmchhKooSKTCoao6yotdjf/9W\n5W8oFIqMfUp0/ti/p7PAV9ZLqmuLv6LAiBFZ+P1wySVhFi50sXBhIOXxN9zg5dFHg3g8MG6cl4IC\nP02amJ/R9Okhzj03m9GjJVq3VhKeo7wK3UQqOulq6NZmQVdd+2xjqWirSzLRBfsznqjy/tFHH+Xe\ne+91DKZD7RNb+WpvSC8tLa2yOHlVsBsrS5y9pgp6MiXOnohEC3yyhQaosBGtTW65xcPOnSJer0GL\nFgZnnKHTrp2e9Phnn3XRvLlO//4aggCXXqpw000e5swJAtCoEUyZEuaee7y8+GKwQteSSkXHGdCd\nnETRk3SpzObFfs/txUXWf4uLi8nPz6/6G6sDOAbzMMXKR1qeUmyeUlXVuCHOlaEyHmYiY5XKq8sk\n9l7OZFJ+1dGHWREjat+tJ8oH1RYFBRLPPOPihBN0rrtO4fHH3Tz5ZHIjV1oKDz3kZsmSQCRv+Y9/\nhOnYMZsVKyT69jU/78svV3j44Ww++kima9eqXWN5ocXYlgsg0ptYkwVcdeHzzCQV2byAqSa1atUq\nPB4P4XD4iPAuwTGYhx3lSdlZBS1ut5vs7OyMvWa6x1kFPdU1SSSVsQuHwwQCAQRBqNH2lGSku1u3\nogG1ma9TFLjkkiw6dNAoKhL49luBwkL45z/d+HzQvr3GqFEqrVqVeZvPPeeiSxeNNm3K/i0rCx58\nMMiNN3rp1q2UrCzweODGGwPcf382XbuGE718lbAb0VgNXcsTSic/d6RQU8Y60eYlGDQ3WJIksWvX\nLlauXMnWrVtp2bIlZ5xxBu3bt6d79+707t074Tl79OjB5s2bcblcGIbB8ccfz44dO+KOmz17NuPH\nj8fn80Xe71tvvUW3bt2q583+zmFdxlSfsAxlMBiMTBCxjFE4HKaoqIhQKERubm5EvzIZqgrr1gnM\nmSPywAMi33yT/Nh0vniWsS4sLIzozmZnZ9dYlZymaZFezqysrDphLFNhGVC3243L5UKW5UghltUK\nEAgEKC0txe/3Z7xXNNGCOmGCF0GAQ4cE/H54/nk3F1ygcvPNYcaPV9B16N8/i+uv93DokCmH9/jj\nbqZMiTeAF1yg0batxvPPlxWWjRkTZtcumQ8/rJlnwlrMBcGUAEzVt+j3+yNSjJZ3WtcKsQ4XrHXJ\n5XJx4403snz5ctq3b8/69esZP348oiiybdu2lL8/c+ZMioqKKC4uTmgsLTp37hw5rqioqNqNJTge\nZp0nlearNcVD1/WoIc7JQp+GAbNmidx5p8yxxxq0amWwfLnItGlw6qkGL72k0qpV9EJRXvjSrjub\nqvq2OsKgmchTVsd1VYZE+d1YibSqDo5Oxo4dAq+/LnPBBSpr1sjcd1+Iu+92M2NGKKIJe+GF8Le/\nhbnjDg/9+vkYM0ahbVs9yru0c+utYYYMyeKKKxRycsDlMpgwIcDMmR5eeKFiucxMUV4Bl70eoKr3\nuTZDsrX92olSICeccAInnHACw4YNS+scdRXHw6yj2ENK1hxIe+VrSUkJxcXFkdCnvfo1kREIBmHo\nUJlnnpFYuFDh/fcVZs1S+fHHMKtWKfz8M5x7rotnn03vkbCuobS0FK/XS15eXo20qgiCOZszGAxS\nWFgIQH5+PllZWWkvEuUZybryhbWMqNvtjswgzc7Ojog8WL1+lidaWUWWyy/P4qijDNaulbn99jA/\n/CBw8cVqnIB6w4bwyCMhLrlE4Y47PFx8ceKqV4A2bXS6dtV45pmyXs8xY4KsXi3z/fd1J/xpD5m7\n3W6ysrIi99n6TmmaRjAYrPJ9rg9kwlhPnTqVxo0bc95551FQUJD0uK1bt9K4cWNatWrFXXfdFcmf\nVieOwayD2KXs7F6lpY5TVFSEKIo0aNAgTsrOwv5FVhQYM0bmq68E9u4VWLxY5PfJXQB06WKwY4fC\n+efr/OMfMmee6WLpUhFNizcu9muQJIn8/Py0VHoy5clZi5dVSJDp0G9dz2VZoUbLiFqhRo/HgyiK\nFTai774r8eWXIooCjRoZXHttmPnzXVx2WbIWEOjYUScvz+CJJ9zYhtrEMXVqmMcfd1FSYv49L89g\n1CiF556ruR7gyi7gqTYrye6z1YdY20VcdangSFGUCqVH7rvvPvbs2cP+/fuZMGECgwYN4uuvv447\nrnv37nz22WccOHCARYsWMW/ePO6///5MXnpCHINZh7BLttnbRAACgUBkFmR+fj4+ny/plyL236dO\nlVAUgW3bFDZvDrNrl0DPni727Ck7xueDV19V6dpV56uvBP72N4kBA1z88IMQuTbLq7OuoSJeXVWx\n8pRWU3Rdz1PWJKmMqCRJcYu7FeLXNI1rrvEiinDmmTqTJoXZvFniqKMM2rZNvlt//nkXN9wQ5uST\ndSZN8pJsH/SnP+l06qQxb16ZgRwwQOGZZ1wEaycqWyXKu8/WsOfS0tJIpXo4HI6kU+oDsca6uLiY\nvLy8tH//7LPPjqR2xo4dS5cuXVi2bFnccS1btqRFixYAtGnThmnTprFw4cKqv4FycAxmHcAyRqWl\npXEFPZUpprF7c2+8IfLmmxKzZyu4XNC8OcyfrzJ6tE7v3m727i37PUmCRYtUTjvN4OBBgRNO0OnZ\nM4+PPjIoLCyskldXWQ/TqiAtKirC5XLhdrvrdY9duliLe6xYtxUNMAyDFSt09u8XGDeulK1bRUaN\n8jNvnpQy1HrwILz9tsyYMSqPPx5k+3aRJUuSb1yuuUbhySfd6Dq8/76L8eOzaNLE4K23jozNTrL7\nLMty5D6Hw2FKS0spLS2N5Nyrs7ioLnmYRUVFVWopqci6URObEsdg1iJW5WsoFCIYDBIKhSLGQFEU\nioqKCAaDZGdnk5ubW2EpuUOHYPJkmRdeUGjYsOzfBQGuv17jxhs1Bg508fPPZT/zeOCVVxRkGd56\nS+L224sZPTqPb7/NqVGvzu7RAgknqVSWulLoU9NYi7tVxXjddQ3IyTHIy5MZMSKMy6WzdKmL/v0L\nI1NGYj2kxYtd9Oyp0qiRgc8Hjz0W4qabPBw8mPg1O3fWyMkxeOYZD+PG5TFrVpApU8K8+GLNSjPW\nJNYzKssyHo8nqkLXapewpCotI5poskhlqO3nOtZYl5SUpO1hFhYWsnLlykjP9ty5c1m3bh39+vWL\nO/btt9/mwIEDAOzcuZO77rqLoUOHZuZNpMAxmLWA3VDaC3qgbNxVVYppLINwxx0yAwbodOmS+Et0\n7bUaQ4fqXHqpC3u+3OXS+fOfg5SUGPz3vz7+/vcAw4b5+OmnyhurdI2UtSMvLCxEUZSEXnVtLwpH\nAm+84eKXXwQeeCDEnDluJk7UWL/eR5s2OieemIXX60WSpDgP6aWXJEaODESMaMeOGgMGqEyfnljc\n3FT/CfOvf/l44IESevTQGDRIZft2kW+/rZlZq3XB27IXF3k8HrKysvD5fFHV7ZlsJ6or+dOKeJiK\nonDbbbfRuHFjjjnmGJ544gmWLFnCSSedxHfffUdeXh779u0DYM2aNRF92oEDB3LRRRcxderUanlP\ndo6MuMhhglUMkGiIs/XviYY4VxRBENi1S2ThQpHt21M3it9xh0bv3iKPPipx2WUqt90msGiRhy5d\nVJo2hU8+kdmxQ+aPfzS47DIXK1YoVFd7ZWybTKJpGvXVO8wkhgE33phNdrYZhm/bVueUU3TuvdfL\n8OFqUjWdPXsE9u6V6NkzjKLoERH6m28O0rlzI/7ylwBt2xKzuYF335URRWjTRgVceL0wYoTK3Lku\npk7NvJBBXSAdQ52ozcX63WTtRIlEF+oKib6XFclhHn300WzZsiXhz5o1a0ZRUVHk7/fff3+NFPnE\n4niYNUSyylfDMCLN04IgZCz0OH16Lu3a6ZSWpj5OkuCFFxTuvVekQwcXsqyzY0eQ1183WLVKwes1\nyM3VOe88nU2bBCZNqtweK5Whs/KUsW0y1Yl9woJ9F18fDPL8+R4OHhT4+99DzJnj4sorFUIhWLVK\nZvBgNeHvCILA4sVuhg5VycnxRNovsrKyaNRIZtIkP3fe6cXv90eFGV97TWDPHpFLLw3y8stlghpj\nxyq8/LIracFQfaYqFbp2ScDavH6Lihb91HUcg1nNpKp8DQaDHDp0CF3XI2HHTLRIfPmlyNatblq2\nhI4d3dx5p4SaeB1EURR+/rkEXYesLIEZM0SOPtr0LI47DiZPVtA0+O9/Jbp21Xn+eZGnn87MY2MY\nRqT6F9LLU2bKoBmGWchkLTLWAqSqasTTPxL77IJBuP32HGQZ+vZV2bFDZMAAlYICidatNf7wh+Tv\nd9EimREjyh4ke5jxqqsMPv/cxeef50VydaWlcNttWdx99yH+/OcS5s/3UFpqqum0bavi9Rps2VK9\nS1BdCclWlXQrdK0Rfvb8c030J0Lie+0YTIe0sAxlMik7e9VpTk5OJF+UCR58UGbChFKeeELho4/C\nbNwo0q+fi0OHyo6xcqX79/u57LKG3H+/ylFHwfz50Y/EddeFcblMT/RPfzLweuH//k/m3XcrvwjZ\n85Q1LaVnD/tmZ2fj8/miCjOscFemRAHqGnPmuAiFBPr0MUd3jR6t4nbD7Nkujj/eYMYMF2++GS8u\n8OWXIgcPCnTsmFhFyuuFm28Oc/fdnogRff75XM49V+f88120bStw3HE677zj+v17EWDwYD/z5wsZ\nK3ipS9SEoU5UoWttOK31xFLisnv9NSn/V1JScsQIr4NjMDOOvaDHbiitpH5xcTGBQACfzxdVdZop\nz+nHH+Gtt0SuuMKMxTZpAkuXKpx2msHw4S5KSsrCn7Ls4u9/b8TAgTqXX27w4IMqt98uRxrNAXw+\ngX/8w0/DhqBpAkuXKhgGDBvmYvfu9K/Len+J7kFNDJK2h31dLlekUjT2Gq3FJp1+xsPNiIZCcO+9\nbsJhmDIlwNy5Lk4+WaNPnyyWLpUpKoLvvxeZPdtFp07ZTJjg5euvzUV/yRIzXJtqT3PJJQq7dols\n2yby22/wxBMubrstFDEcY8YEmT/fFwnnXnIJvPmmF01LXvByJBnRmsLSz7WKi+wVukC1VujGbhKK\nioqOmNFe4BjMjGEl6mMrXy1preLiYoqLi/F4POTl5VV4kHO6PP+8xEUX6TRsWJaEF0V44AGF5s1V\nRo0yFXzy8/NZssTH118L3HOP6TV07Ghw3nk6Dz8cbcBGjQqi67Bggchxxxm88IKZ8+rXz4WSvGUv\nCuvLaOUprXtQUSq6sUjUnlKR103Vz3i4eaJz5rgQBGjcWOfaa3MIBuH++z1ccIHKKafovPpqkP/8\nJ8TChQE+/bSEP/5Rp1cvH2+9JfPmm8nzmxZuN0ycGGbGDDdPPunmwgtVTjqp7B4MHapQUCBHIh0n\nnwzHHWeweXNWUkm66hShr05qMxQc+7qJKnSt6EomK3QTHVdaWuqEZB2isQp6wmGz4s8ylPame1mW\nadCgQVIZuUx4mKpqGsyJE7XI+axJIsXFhTz8cBGqKjNzZh7FxSI33STz1FNmSM7i9ttVnnpKiixq\n5m7V4JZbzJDtvffKXHyxQdeuOj/8IDB+fOoiICtPWVxcDGS2n7I8rF7WWMGF2NeuTMl+JuXpagJF\nMWdXHjokEA7D11+LHHuswdq1pQSDAgMGRBvDvDxT2m7hwgB/+5uH3btFOnUqf57pFVcorF4t88wz\nbm64IboCNi/PoEcPlTffLHtmLrpIYeHCsr8nK3hJputa3sJ+pOQw06Uiz1d1aOgmymE6IVkHIHXl\na2wxS3kycpkwmCtWiDRvbtCmjXkeVVWjxA8aNszlhRdUZs6UuOEGmX79dM4+O/o1TzwR+vfXefzx\naC/zsst0wmF49VWRffvgP//RyMsz/75qVWItW3ue0vrS1ESe0vLoS0tLa2zcV2WNaE2FHBcvlsnJ\nMT/DBg10wmGBpUv9NGpkKvf075/YezzrLJ1x48ww/OLF5d/DvDxo107jqKOMKO/SYuRIlVdfLQuF\nDxmismyZnLQoDaomQl8fqcoGobIVurFDuy2Ki4uPqJCs04dZCey5OJfLFQlrWN5cIBBAkiTy8vIq\nnJ+ryo549myRyy/XIpWffr8/0s9onfP44+Gf/1S59lqZTz9N3AN3880a3bu7uP56jZwc83253aY6\n0KxZZs8xhMWjAAAgAElEQVTm/fdrdOmi8/XXAqNHu/jhB7M4CMoKawzDiBv5VdUdf6qNhbVRCYVC\ndWLcV7J+RvuUemu3bg3+ro4eO8OAxx5zs2+fiNdr4HLBBRcoNG4M+/cLfP+9QIcOySspN22SuP32\nEP/4h4dmzXTOPTf5sboO33wjcvAgBALETTzp00fl+uu9/PijwLHHGjRvbv7ZuFGiW7f0DVw699ZK\njQQCgRrvX6wtz7Y6Nl+p7rX1xxrQDeb9fu+99xAEgUAg4IRk6yuxla/WAyIIQtQQ58pI2Vlfrso+\n8D//DAUFIv37F0emmdh34XY++0zgxBMN5s1LfH0nnWTQt6/OU09JUQbkyis1fvpJYM4cid9+g9tv\n1/j5ZwHDgIkTpbh+ypoa+WVtVAoLC9F1vVyPvjZ7LWM9UbfbjSRJ1RrO3bBBYv9+gdJSyMmBhg0N\nRo82N0urV8v07KmR7FE9dAg+/lji8ssVZs4MMn58Frb+8ThWrTLF288+W+f11+P341lZcOGFKosW\nlf1s0CCVN96o+t499t5m/W6trXtc3oSRI4WaMNT23L5VZW4NQ5dlmT179jBjxgzWrl1Lq1atGDhw\nINOmTWP16tVJz9mjRw+ysrLIy8sjNzeX1q1bJz324YcfpkmTJjRo0IC//OUvkc1RdeMYzDQor/K1\nqKgIv98fCf9V1khU9kE3DIMFC3R69QqSm2uGgJPton/6CV5+WWLWLIWZMyW++SbxOSdP1nj6aYmw\nzQlt0ADGjNE4/niD55+XaNfO4PTTDUaN0nj5ZYlt24pTii9Uh6GyPH0r7JyTk1MjYd9MU5050Qcf\ndFFYaH4Wjz8e5H//k+nTx1xgVq2S6N07eTx0zRqZzp01srOhf3+Nnj1VbrstsQwewAsvuJkwIcz4\n8QqzZiWOLAwbpkQJtg8erPLWWzLV1S4oy3LCoq3YCSPJ9HMrSm0a39o2/Fb1+bXXXsuyZcs4/fTT\nWb9+PePGjcMwDD744IOkvysIAjNnzqSoqIji4mJ27NiR8LgVK1Zw33338e6777J37152797N9OnT\nq+stRXH4rSw1SHmVr6qqEgwGEw5xrgyVqQC18oSvvCIzerQQVdiS6FzPPCMxfLhOhw4waZLGTTcl\n3tm3a2dwyikGr70W3R967bUa+/cLzJwpEQ4bXHddkA0b4MQTNf7610b4fL5qNVjW+7J7s1blcWU2\nKnW1ICSdnGg6xS/ffSewbp2MYcAJJxjs3i3Sr18Ij8csBCookLngguSh0JUrZfr0KTOod98d4p13\nZFavjndJv/9e4P33JYYNU+nXT2XvXpHPP49/Frp319i5U+LHH817f8opOrm5Bh99VDPLUbLK52T6\nuZU1onWlSra2sDZJLVu2ZPjw4dx5553l6r2mc3/nzJnD+PHjadWqFfn5+UybNo1Zs2Zl6rJT4hjM\nJKSqfLUGKAuCgNfrrZUpGvZ+xt9+y+Hzz2WCQSkyGDrRuUIhs4r2uuvMBXLyZI0PPxT54IPE1379\n9RqPPy5HyZedeKI5QNjtNmjXTuaTTzRcLoGJEw2++ELknXdSFzZVFctYFhYWRrzZdAZY11Uqct2x\nRjRR8UusEb3nHvPzU1X4z3+CLFrkYtgwcxjlhx9KtGih07hxMslCWL062gPNy4MHHwwyZYo3rqVo\n7lwXw4Yp5OSAywVjxii89FL8JsbjMXOZ9mrZQYPUWh35lSjEaPUvJjKi9jFdte3V2anNquBkr12R\n65k6dSqNGzfmvPPOo6CgIOExn3/+Oaeffnrk76effjoHDhzgYLKRORnEMZgx2Ctf7VJ29n4+wzCq\nTe+0vC+fpmmUlJREeVZLl3ro0MHg2Wcl2rVzs2FD4gd00SKRNm0MWrc2X8NUZ1G5887EC1X//jpF\nRbBliytyXbqu8+c/lyLLGl6vwKZNPn75ReTFFyXOOcdg4sRoA1vR95cKa8HSdZ28vLxKe7NHkl5s\nKiOqqgKvvOJBEIzfZ6H6+fZbgU6dzGf7nXckevVKHo7dtk2kYUODli2j71WfPhrNm+s8/7w95Aov\nv+xizJgyKzp6tNkykqgCdsiQ6Lxlv34qb7+dWYOZiQIzK8QYa0RlWY7UNCQyovWR2O9URb9j9913\nH3v27GH//v1MmDCBQYMG8fXXX8cdV1JSElV5m5eXF+nxrm4cg/k7ds1XTdOipOysghJFUeL6+TK5\n8Kb6cluVlFZBj72n8/XXRSZP1li1SuHBB1XGjHHx2GNZcdf2wgsSEyZEh98uv1xn506B99+Pf21R\nhIkTdebMyY5qlenXT6O0VOa330SmTdN44AGV7dvNSst9+wSWLMnsDtdqE/H7/ZGwWXWqAx3uxtQy\nojNm5PyuEQydOmksW5bNoEFhZNnsUV29WqBz5+Th3FWrZHr3jg/XCoIZmr3vPndkDuaHH5rflbPP\nLktEnnyywfHHG7zzTvxndf75Klu3Svz6q/msnHWWzs8/C3zzTd2OFMQa0VglHWsdAWpFjq62+07t\nrx0MBiOFV+lw9tlnR6rqx44dS5cuXVi2bFnccTk5OVGTS6xoU030e9Z7g5lM81UQEg9xju3ny7TB\nTLRLs4u05+fn4/P5Ig/mTz/B558L9OplLlQDB+ps3Bjm5Zc9PPJImQf8v/8J7NolMGBAdGWF2w1T\np6r861+Jd/eXXKKyZo2Hr78uiui+5uX5uPxyjRNO0Hn6aYmRI3WuvFLjv/+VaNHC4MYbE3uZFd1g\n2MPfsiyTn59f7VW3h2toNxFPPOFCkqC4WOCqqxQWL3YzcqSOKIqEQh6+/NLFeecJScO5a9aI9OwZ\nTviZtWmjM2CAymOPmc/Y/PkuLrlEIfb2jR6tMH9+/Gfm80GPHirLl5vGVJKgb18t415mTRCrpGNt\nZBPJ0fn9/lrRdK0JYo11UVFRlVpKkq0Xbdq0Yfv27ZG/b9u2jT/84Q80bNiw0q+VLvXWYKaqfLU3\nvqca4pzpxdX+gFg5E7tSTaIK0KVLRXr31vHYChebNoXFi4uZPdvNs8+ax8+ZI/LnP2skiiJfeqnO\nrl0CW7dGvx9VVXG5iunTJ8iSJfmRVpndu03vc9s2kZdeEpk3T+Taa7XI4vzjjwLLl1dNnN3y6q3w\nt71N5EhZYKqTpUsliooEOnY09V9PPNFsAbLUejZscHH22RrZ2YnDuSUlIp9+KnHGGSVJC4v+7//C\nvPCCi19+gddflxk5Mr60f8QIlZUrTZ3a2O/LgAEqy5dXX1i2tuXpEg2Mrm5N19r2MO1URHi9sLCQ\nlStXRiJ8c+fOZd26dfTr1y/u2LFjx/L888+zY8cODh48yF133cWVV16Z6ctPSL0zmFblqzUHEZJL\n2ZVXUFIdIVm7KIK9VSWZUs3y5WKc1wjmaK6FC0v45z9ltmwRmD9fYsyYxHX7LpdZ/frII+ZuX9f1\nqDzppZcGmD3bzXffwaWXyvTo4ebAAYFmzQwaNTK4916Jvn3dHHuswbhxGoIAN9wQf73p3C/Lqw+F\nQlHhb/s5qkp9MLy33upFluGXXwROP11j+XIXgwerkX7LggI5oVCAFc7dtCmLc87ROeaY5HJpf/hD\nKb17h7nlFhfHH69zwgnxz1ejRgZdumgsXx7fitK3r0ZBgUzQrEGiVy+VzZslaiAVVStURdP1cPBE\nE3mY6RpMRVG47bbbaNy4MccccwxPPPEES5Ys4aSTTuK7774jLy+Pffv2AdC3b1+mTJlCz549OeGE\nEzjxxBO54447quMtxVGvDKa98tUwjKg8pJWfsyovy5Oyg8wbzDLd1+K0WlWCQVOsoE+f+IXKLOfW\neOwxlVGjXOTlGbRtm/xax43TWLVKZNcus7DJnift2FHD74dzz3Vz8skGX34Z5oknVKZO1Wja1CAn\nB1avVnC74YknJMaP19i7V2DNmvSNm2WkLa++JuTsrPttbZ4Oh0UpHb77TmDPHoERIxT+9z+JSy81\n+x6HDi0rRlm3zkX37smLU955R6JnT9OgptJ3nTw5wOLFHvr0Sb7IDx+usGRJvMFs1MigTRuNtWtN\nK75+vYTbbbBmzeEXlrVTUS8vHU3XdIXR61KVbEVmYR599NFs2bKFwsJCfvvtNzZu3EivXr0AaNas\nGUVFRRx//PGR4ydPnsyPP/7IoUOHeO6552pEIAXqicG0DGVRURGlpaVxla+HDh1C07QKV15mymBa\nBjscDqds/I9l7VqBtm0NGjVKfsywYTpHHWUkDMXaX9/rDTFypJ+nnnJH7oP1+ps2ufjtN4Ezz9SZ\nPl3D5zN/b8gQnV27RPbtE1AU2LjR9NiXLpXweGDcuOiFL1mO1tqsiKJYo159UVFRJBxv7ewVRYkK\n1R+ORnTKFNM4dehgGrzTT9fZv1+gc2cNw4Dly93s2SPy1FNuJkzw8vjjLnbsiH7m33tPomfP5AbV\nMqJ/+pOZrxZFV9JFvkePYjZvdvHrr3rc/ezfX2P5cpkXX5SZPNnLxRcrCYuE6hupNinJcs6KomAY\nRq08r4les6o5zLrIEW8wrVygVflqfbDJhjhXhKou3vZcnaZpeDweZFlO22CvWCHSr1/iMGtZeBcO\nHBD46Sch4dBnu0D7pEkwb56XYLDsPnz1lcBf/pLPzJlBPvxQxO8v+92cHLPIqE0bgzlzRFwuuPpq\njZNP1snOhp9+Epg/P7HhixVnjzXS1YWVnwYiu3mXyxX1//air9gcU103ouGwKabeoYPGq6+6OO44\nU6d10CCVggKJDh18TJ2aS7NmOj17qnTrprJnj8igQVmMHevlq69MbdlffxU47bTypXc2bJBo2VLn\nlVfcGEbiRb5RIxddu4ZZulSO85R69w7w+usyd93lYelSP+PHq6xenbo1KV1qU8+1Ol43mRG19+EC\nkeKi2piSY3/fR9rwaKgHBtPyJi3RZWvBTDTEuTLnruyDGFuBaxnsipxv5crE4Vj7ta1dK9CihcGM\nGSqTJskRYQN7P6dV2HTiiTKdOum88or5WAQCMGqUzJQppQwfrnHOOQZvvBH9yIwZo/HDDzBvnimj\nN3aszs6dYiSXed11roi8XmyONhAIVEp3tzJYnqyVnwYieaPY+yYIQlR4zMoxQXy1o31SQ11g9mwZ\nTYN77gmxbZvEkCEKixe7+P57geuv9/Lvf4fo0yfEFVeEGDNG5bLLVB56KMT27aW0b6/Tp4+PGTNc\ndOumpRwWbbFkicwll6jk5hqsWhX/GVqL/JAhId56yxfnKamqzsGDArfeWkjTpqW0aBFAEAy++OLI\nzjFnitg+XACfz1cnRs0daZNKoB4YTCAqhKFpWtQA45qUsgPKrcBN93xffw1FRQLt2qU+fvFiiWHD\ndAYN0mnVyuDRR8Wk/ZwAEyboPPusufDdcYdE69YGV1xhji8bM0Zj7tzoRbF7d4PCQoHjjzdYsULk\nlFPMRveOHQ2aNTMoKSEykDo2R1sZObuqyAdanmx5wuyxpKp2tNqS/H5/nVCA+c9/PDRoYLB3r4jX\nC2ecofHJJyKGIbBxYyl9+mhs3Oima9focGt2Ntx4Y5j58wPMmuVOy1jqOixdag6WvuqqME89lTzu\n37t3iM2bZX77rcyIgpuJE/Pp2lXjwIEs3G43oijQs2eYt982DsvCl9rEujepZBWrS4Q+kVd9pM3C\nhHpiMC0DYY33yfQA43QesnQqcCtyTatXi5x/vp50YTM3CQZvvSUyZIi50NxxR4BHHpH45RcjaQi0\nd2+dX38VmDtXZP58iUcfVSO9dYMG6XzwgcD335cdL0lw0UUaTZoYvPSSeTGXXqrx0ksiL79sLsp3\n3y3x7bdlerw1NUTa8qL9fn9GPdlk1Y52BZhMaJFWlN27BX7+WeCaaxQWLJBRFLj7bg9Nmxq8/HKA\n/HwzPP/zzyJt2yb2iM8+Wyc/32D9eolXX00dedm2TSQnx+CUU3RGjFD55BORr75K/JlmZxucd57K\nihVl53zwQTfNmhlMmhRm9Wo5Em7s3x8KCnwxnmjFq0ePtJBsuiSTp0ukn5spEfpE7zlWkedIoF4Y\nTJfLFVmkM0k6Xwp7UQukHiZdEe/pnXdMg5nq2rZtk8jLM2jZMvx7lZmfoUM1nnwy+ZxOSTLHeN18\ns8y//qVy9NFl1+XzweDBOgsWRP/uyJGmWtB774ns3m3+/Z13RE46yeDEE3UUBW691ZwbanoRVX/s\nUt0nuypSTQoeJJNRSyXonUmv6ZZbPAgCXH55mPXrZRo2NDh0SOCuu0KRWaXr10ucc46SdJzX11+b\nz+WSJQFuvtnDhg3JNxjLlskMGGDmzbxeGD1aTagdazFwYDiiF/vVVwJPP+3ioYeCnHeexqefShw6\nZB7XrZvKhx9KlJYKKatHD+cWjOqgooY6mRHNlAi942Eepljx/OrQEE12TntBjxUKjO0pTPdcsWia\n2U7Ss2fqvNnbb7vp2zcUFf697Tad2bMlvvsu+e8dfbTBb7+ZVbCxXHyxxquvRr+Hs84yMAyBVq0M\nzjrLzbhxMmecoTFvXpj/+78SRBFef93Lt99mZuZhMqx7bldFysTmpLIkM6LWgqTremSBr2p+SddN\nKbu2bTU2bZJxuw00DUIhIUo8fcMGiU6dEg8OB1i/XqZrV402bXSefDLIX/7i5ddfEx+7fLnMhReW\nnXvsWIW5c11xouwWffuqFBTI+P1w220eJk9WOO44g6ws6NhR4913zecjNxfat9cSGmt74Ut5RtQK\nM9a0ET2cjbXdiFZUhD6WirSVHC7UC4NpUVMGU1GUqBmNFQkFpnN927cLHHOMQdOmyc8RCoVYudJD\nv35KVPi3aVPTg3zggcTGS1HgkUckOnTQef11Me49du9usH+/wO7dZb8jCDBypBmWPe00g549g3z8\nscgDD/gYMcKD222Kc//jH75qW0zsczFzcnLq7FzM2F29tZlLlV9Kx4i+9JJZ7HPzzQqzZ7soLhYY\nPVqhe3c10gYEsHGjRMeOyQ3m2rVSRNCgTx+N4cNVrrkmK65q9bvvBPbvFzj77DLxg1NO0fnjH/Wo\nsKudo44yaN9eY+ZMN59/LjFxYtl19O6tsmpV2e/17FlmQMsjmRGVZTnOiGZKUSeda6ppqrM6tzwR\neqvwrbS0lGeffZa777478vweSdS9FaUGqC79VytnVlJSUqkZjek+7KtXixQXC8yYIWGfaGP3sPbt\ngx9+kOjePb6ncdIkjVdeEfnpp/hzz58v0qQJ3Hijzosvlhl56z3KMgwfrvPqq7FhWY0PPxTYs8eg\nR48wH38c4sABkaFD3YwYYS6qBQUuvvgis4+cfS5mZQuJaptU+aVElY6JGtcfesiNJME556i8+65E\nTk68B/jbb/DttyKnnZa4v9IwzJBtly5lP58+PcT+/QLz50cbr1WrzDmasfvAsWNNg52MCy9UefJJ\nFzffHIqSc+zTR2XVKilimHv1UqvUj2lVO0uSFGVEEynq1JQRPZKINaJutztyr0866ST8fj9ffPEF\nPXr0oEmTJgwcOJDHHnus3PPu2rWLrKwsxo4dm/Dns2fPRpZl8vLyyM3NJS8vj7Vr12b67SWlXhhM\ny2BUhySaJalnLyyKrTytyLnSubb16wWuvFLl448FOnRws3y5GNWmkpuby7p1OfToEUqYq/rDH2DU\nKJ3HHov+oa7Dgw9K3HSTyoABpr7s7t3xhnzkyOiwrKqqNGtWiM+n07WrzpIluTRrJnLxxWZR0qZN\nIpIEeXkGkyalP70gGdY9t8atQdUKiWILr+rCgpmq0jG2cf2bbwLs2SPSvbvCjTd68XgMFAW++Uak\nb98y47dpk0SHDhrJuqi++UZA0+Ckk8rev9sNjzwSZNo0T9TmbMUKOercFsOGmfJ2P/0U/TlY3s8x\nxxj8+qvARRdF/+4f/2jmyK0NVfv2Oj/9JPL995nzmJJ5opk2ovWx2MhSThNFkZ49e3L33XdzzDHH\ncODAATZt2sS4ceM45phjyj3PddddxznnnJPymM6dO1NUVERxcTFFRUV069YtU2+jXOqFwbSTyQXR\nMIyIh5NIJLw6rk1VTQM0caLOf/+r8txzISZPFpk2DTweM08pyzIrVkicf37ycMgNN6jMmiXxu70B\nYNkyEZ8Pzj/fnJ948cUaL74oxV1Xx45mK8mnnxqRXs6sLC8jRoDXK7BggYhhwOjRGoEADBigIwjg\n8Rh8/LHMF19U6vZEMAzzdS3RifJyw4moK4axIsQaUWvBf+SRPCQJ+vQJ8vbbEooi0K1biLPPVmjQ\noExoYeNGmc6d4/VjLTZskOjSRSP28e3QQWfgQJV//ct0CYNB0xNNNEvT5zNF1RcuTGyV58xx0bSp\nwccfx+/kevVSWbOmbHpJjx6mt1yd1JQRPdJJdi9EUaRFixYMHz6cSy65JOU55s+fT8OGDTn//POr\n4xIzQr0zmKIoVvlBt/f2GYaBx+Op1KIdSzqL+NatAs2bm6Lnfr+f9u0PsWpVCWvW+PjnP32AKVO3\ndq1It26JRzMBtGwJffuW9VwCPP64xKRJZQvm2LE6L70kEduTLwgGQ4eGmDtXjerlHDZM5/33JUIh\nge3bBbp3N9i3T+Cvf9Vo1crgwAGR5s11Jk6sXPGPpTcL4Ha7a0Rvtq5jGAILFniQZZg3z4eiCHi9\n4PMJDBigRKkVbdggcPbZwYh8WuyzsWGDWfCTiOnTQ7zxhsznn4ts3Chx6ql6UknGiy9WWLAgPiy7\ndavEV1+JjBqlRMZ62Tn/fC1KR7ZnT4133qn851tZjyuREU0mkJ5IAao+epgQHamp6LUUFRUxffp0\nHnrooTTWwK00btyYVq1acdddd9WoaEi9MJixH1xVDKZ9koj1Jcp0cUmq6ysoEOjcWY2qBG3e3Mvb\nbyu8957I/fdLfPCBwAknGBx9dOoH6brrNJ5+WkJV4YsvBHbuFBg+vOx3TjvNoEEDg82b5chCYG0U\nBg4M8vbbvqheztNOM3C5DHr0MNWCZNmstH39dYnXXlMwDMjN1diyRYwqGkrnftj1Zi0lnkwtDoez\np7B2rUQgAK1aaXz+uUTjxgbHHmuwfr2LwYONyIIPPnbskDnjDFNvNBgMxqkVbdgg0qVLYoPZoIEp\nbHDnnW7WrJE5//zkOrPdumn89JPAzp3R34snn3Rz9dVhBg6MHutV9nsqH3xgvh+Anj1V3nuvLK9Z\nVbZvF5k2zc2pp/po0iSHk07KZswYL6+/LsdtCmNJJJBuN6L2jYlVmVvXZRQzSSIDWRGjOW3aNCZM\nmEDTZJWMv9O9e3c+++wzDhw4wKJFi5g3bx73339/pa+7otQLg2mnsqE4+8ir2EkimfpClPdwKYrC\ne+/pnHNOIG4+5lFHwcKFCk89JfH00xIXXKCXe21nnmlw/PGmuMEzz0iMGxc/L/Pii3VefdUVef/W\nRqFbtyyKiwV27LDn/0yxd0EwWLDA9ExHjNBYtEikaVM45xyNzz4z9U0nTkyvMEdRlGrVm7WKQw5X\nHn3UVOXZuVOiSRODdu10TjnFnCLTvHnZZ79tm4tTT9Vp2NATEe+wqxV9+632u2JTcVK1ovHjFT79\nVOKNN2QuuCC5wZQkGDlSZcGCMqP4448iK1a4uOwyhTPPNOXw9uyJvu95eXDaaWXtJC1amJNwqloo\nVlQEf/ubh4suymLhQhfZ2TBlSohHHw0ycKDKww+7GTYsi19+qdhzkMyI1pYWcW17mHZ0XU/bkdi2\nbRurV69m8uTJ5R7bsmVLWrRoAZiDpKdNm8bChQurdK0VwTGY5WA1wdunadiLSzL9gCa6PktOr7i4\nlA8+cHP++Z6EocjjjoO5cxUWLRI59dTyDSaYczBnzJB45RWRK66I9y5GjlRZssRFaakSEYAwxQdg\n2DCNxYujH6Fhw3TWrxfJzzfYtEngvPPK2lD+9rcwHo/ZG7huncAvvyS/LruEoM/nixLHz8Qm5XDM\nYcZy6BCsW2duTKy1KRgEXRcYMCDaoG3cKEWGR0O8WtHWrdl06qSRnV3WKqAoSlTTuiiG+etfg+zf\nL3DGGaldslGjFF591RXxDl96KYuLLlJo2NC81r59Ew+L7tUrOizbo4fpZVaUUAhmzMjizDMb0KxZ\nDvPmuQiFYPRohU2b/Nxwg8KFF2r0769y3XVme0v37r6kPafpYhkJu6B/Mk/0cBH0T4dYY11cXExO\nTk5av1tQUMDevXtp3rw5TZo04YEHHmDhwoV06NAh7deuKeqFwaxMFWRsE3yy0V+ZXnjt54tVrNm3\nrwFHH23QpElyI33qqQaiCLNmlR9mAjNkumOHwJ/+ZNC8edm/W2G7/PxDnHyyxvr12XFVqEOH6nEG\n88wzDcJhge7dzdYTSTKPe+01ib59NWTZfG8+H/ztb/ELZqxIenkzQY8EKvv8vPqq6aXrOtxwQwhB\ngE8/ldixQ4xqJwGzQtZuMGPZuFGic2ctqlXALvlnNa37fAput0FBQTilBulpp+m43fDRRyKqCi+/\n7GPcuLK+y379tIT9mr16RRvIHj3MIdMV4eOPRU4+OZt77vHx448ivXurZGcbeL3m+/z1V4G9ewXG\njPHSpk0OCxa4aN5cp3FjnXHjstCS36ZKUZFwblWMaG1XydpfuyKTSq666ip2797Ntm3b2L59O1df\nfTUDBw5k5cqVcce+/fbbHDhwAICdO3dy1113MXTo0My8iTSoFwbTTjoGzmrRCIVC5Y7+qg5PxTJW\nsYo1GzeKdOmS+rU2bBDp3NkgFIIXXyxfKMDlgvx8A5+v7Djr/VtVqBdfrLFoUfwA4E6dDA4cEKL0\nQwUBBg82+/Nee01E08rCsi4XDBkSprDQXOSXLBGx+prt+VFrNmlVKo7TwdqQ2HN5uq7Xmckj5fHc\nc+YkmD/8wQAEzj1Xo0EDA12Hdu3K3oOuwwcfSJxzTnJL8P77iQ1qbL/dxo0+Bg1SeeKJvDgNUrvQ\ngq5rDB+u8NprLlaskGnaVIvSr+3e3cxX/l7DFeGMM3T27xcjbSndumls3CglVQ+KZcECmV69fPzx\nj4vRzFYAACAASURBVDqNGuk8/HApTZoYXHCBxhdflNKpk0anTj7OO8/HGWfo/O9/JSxcGOCxx0Ks\nWhVA0+Dhh1MMj02DdNaDmjKitUVFZPG8Xi+NGzeO/MnJycHr9XLUUUfx3XffkZeXx759+wBYs2YN\n7dq1Izc3l4EDB3LRRRcxderU6nwrUdQLg5muh2kPA2ZlZaVVhVkdBtPeMmHPU27cKNK5c+rF/N13\nBXr21HnmGZV7781OKYEHsG8fHDok8NFHIoWFpvCCJaVnvf9hw1RWr3ZRWhr9u5JkeqixXuagQTob\nN4o0bWqOF+va1QzLfvONwGWXBXG5zGN0He68U4oauWYfdZaMqt5zezsQmF9Yu2KJYRhR2pnVOQqp\nshuCHTvEiO7rf/8bYOlSmQYNDI4+2qB//zLBfICdO0UaNTJo3Djxezh0yOzZbN8+9bOl61BQIDFl\nSphPP5XYudOTchpG//5FvPaaxKxZIpde6o+6j3l5cNZZGmvXRn/Osgxdu5qzOwEaNTJo2VLn44/L\nX6qWLpW46iovV12lAAITJwZo1MigoEDmoYeCSJIpK6nr0Ly5wfXXh8nOjn7tmTODPP64i127qrZR\nq8znmsqIAuUa0brkYVZlePT06dOZM2cOAM2aNftdB/t4AO6//35+/PFHiouL+eqrr5g+fXq1jwa0\nUy8Mpp1Ei619kog9T5fOw5cpg2kZDV3Xk7ZMvP++6T2m4r33RHr0MEd5XXFFgOnTU++WFyyQGD5c\no1MnlZdeUiJ5WrvwwtFHw1lnqSxfHv+4DB6s8eab0f/epYvB3r0CF1ygs2iRGZYdOFDnzTddnHmm\nQna22SSfmwszZ0ocOlRUYyo91sBswzAii73dg7Let13vtbbmCaZi3jyZcFggJ8cs7tm3z5SqO3hQ\niAvHLlsm0aKFzpIlMh98UObVW2zZInHGGRrl3fpPPxXJz4eTTza49tpwlCeWSK3ozDM9+HywYYOb\ngQODcWpFvXqFWbEifgZsrCxejx4a772XeuO6ZYvIZZdlMWqUQigEzZrpXHmln5tv9vHII0FycmDK\nFA/vvSezZYuf44/Xueee+O9G8+YGN94Y5rbbMjuoobIkmoqTzIhqmoaqqrXiica+1pGoIwv1yGAm\nKtKxtytA5dRiqmow7SpBsixH/sRew7595kDnk09O/lq//moaojPPNI+5/voA69dLbNqU+P0YhsH8\n+QIDBxZx2WUB5s3LSViFKggCgwcHee21+Mele3eDXbuiR37JMvTvr+P1GixZYuawhg3TeOMNGUGA\nyy7T2LZN4JZbiggEYNmyhtU+7ssuoWcZw1Rh9vKk6iyVndqYkqFpMHu2C12HqVPDLFsm/z7nUuaX\nXwS6dtVQVZg1y0XXrj7uvdfD/v0CCxbI3HCDl9atj+Gqq3yR6tNNmyQ6diw/cVdQINGzp2mMr7hC\nYfVqOaUSjyCYPcPNmulkZxtxakW9egVZuVKmpCT6PnbvrkS1k3TvrsZ5onZ++UVgxIgsTjpJZ9Ag\n07g+8USQp5/20batRq9eGk8/7WL9eok33/RzzDEGM2aEmDvXxdat8c/0VVcpfPGFmHJSSyqq29NL\nNJ/V/r2NHXJeU+HcyuYwDyfqjcG0sGTVKjpJJNX5KvMQWnlKS/zArhKU6HybN4t07KjHqbDY2bBB\npGNHI+Ip5OSYDed//3t8AZCqqmzd6ufAAejVy82QIR5++EHkk08Sv0D//iFWrxbjck4ulymAsHRp\n9L0bPFhn/XqJRo0MOnRw8dlnIl9+KfL99zB8eNHvVZ1e8vNh6tSK5Ywqcs+t4i37pqiysoWJVHYS\nTcmo7kXq3XcliovN67/qKoVly2Tat9eQJIMLLlD59FORrl19LFwo8+9/hzjuOIM5c4K8/HKQ9ev9\nbN36M61b6wwenMUdd7h5//30DOZ778n06GEel58PI0cqPPdcarf0229FfvlFQNej9V3dbjft2rkQ\nRYF9+3Ij91HTNJo2NZWzPvssTCgUokOHIFu3Svj98fdR02DMGC+hkMCzzwaYMsXDY48F0TR45hkf\nd9wRYO1aiQcecDNvXgDL6Wnc2GD69BA33eSJ6/P0eOCmm0Lce2/Vcpk1hZVnFgQhUp1rH3IO1WtE\nE/1+VUKydZl6YzCtBVLXdVRVrdQkkUwRW1RjN9bJFvJNmwQ6dkz9YK9dK3DeeWWWURAERo1S0HUi\nk0fsntabb/oYMcLA63UhSXD55RqzZ8c/EoIg0LChTseORpKwrM4bb5Tdw99+Mz3idesEVBUKC2He\nPAG/H+68M5tTT5Vo2tTgv/91cffdKr/8Aps3Z35Hbp9gkug+Z6I1JZ2cU6xAQFVf9/HH3agqtG6t\n4ffDhx+a3pjHYxZwXXRRFn//e5i33grQqpU5ELxVq7LnIj/f4IYbQrz/vp/t2yXef1/ipJNSG8xw\nGDZvlujatSzce/XVYWbPdsWFeC0++0wkFIKGDQ22bYs3rIJgia6XDY/2er3k5GTTq5fG+vVZv4fH\nVVq3VigoUOIW+4cecvHVVyJXXx3mzjs9+HwGzz3nYsQIH/36hcjLMxg/3stzzwVp2TL6vo8ZoxII\nCCxZYoZ7f/sNXnlF5pprvCxbJvPRRxJbtlRsiazNML3ds41tG6oJIxrrYR5pw6OhHhlMK0dojZvJ\nVL6sIgtvOkVFqTzMc89NXZSxbp0YZzAFwWD6dI0775QoLY0WK3/jDTcjRpQdP2aMxiuvSISTTH+y\nql1j6dNHZ9MmgR9+gDvukDj1VDcbN4q0bm3QpYtGURG0axdCluH117MYMyaHMWN09uwR6NPHbD+Y\nMCFzEnf2TYE1NaamJPRSLVKJehsVRUkoU5eM4mIi+qqTJimsXGnK2VmC52vWyCxbFuCii8zCnw8+\nEDnrLI1EwZNjjjG45ZYQRx1lMGaML2Xj/ocfSpx4os5RR5X928knG5x+up5UN3bBAhejRikMHqyy\nbFninOAFF0T3XVr06KGxbp0rshnp0cNg8+bsqMX+s8/CPPKIm2AQZs+WefddmVGjwvTpo7Jzp8ik\nSSXcdJOPiy9WI56xHVGEW28N8e9/u3n4YRdnnpnNa6+Z3vqoUSrDhinMnFk5L7MutkFVlxFNFIJ2\ncpiHOX6/H1mWI1WnmXqg0zGYsXnKVEVFic4XCsFnnwmcdVby1zl0CHbvjj/GMAx69gzh82m8+qoQ\nCT9//bXIr78KdOpUdvyJJ8Ippxi8/XbiXtPBg3XWrIkPy+bkwFln6XTr5ubLLwU+/DDMSy+p/PWv\nYQ4e1GjVSmPkSJEvvgggigarV4s895wp0P7KKxJ/+YvG//4n8PXXKW9jyntkvdeqhl+ro682UeGG\nvbfRqspNp6jouedMMQBBgBEjVJYtkxkwQGXFChlRhJUr/bRuXbYJ2rxZ4txzk3uPW7ZIDB6s0q+f\nyuDBWRQXJz6uoKBsTqadCRPCPP98vFHRdVi0SGbkSJXBgxWWLfMmlLg77zyzvSS2ArtbN4316+VI\nT2T37hpr17oi99HrzWLKlIaA6Vkfd5zBv/9dzLXXHuKHHxR69w7xyScyn3wiccstyYcQtG2r8803\nIosXu1i1ys/8+UH++leFoUNV7r47xDvvyOzfX/eMXyIqkztN14ja26/sRjTZ61akreRwot4YTKuv\nLxPi63asBTbZAp4sT5mK2HNt3WoKC9gHAceyaZPIWWcZUdJ2lgHx+0uZNk3hwQdzMAzTO1myRGLg\nQD3O87j0Uo2XXkr8WDRsCOeea7BiRfTPv/hCYOtWs3Xh5ZdVmjY1ZfS6dy+moMDD8OGweLGLxo0F\nevUKc+utKsGgOUrq2WdFbrnFFHy/5prKe4Gpwq91DXtvo6maJCZsy0g0/3LGDHPu5SmnmPnsd96R\n+eUX8PvhhhvCNG0a/exs2ZK6/3LLFtOg3n57mLPO0rj6am9CwYt16yS6dYuXw+vTR+PHHwU++ST6\nXm/ZIpGba3DqqTqnn66jaWaINpa8PGjfXmP9+ui0yLHHGhx7rM727ebvnHOOxo4dYmS6zgsvyGzb\nJhEOC9x/fxBFERg3TsDjyeaFF3IYNy7Mbbfl8cgjheh6aVSbkBUW//RTkd69fQwZouD1GnEFdfn5\nMGKEwosvph+JqkvydJUl1SYv1oiWlpYSCoWiUl3geJhHDNXhQSQiVZ6youfbvFnkjDPKEywQIj2a\nVkN+OByOtIn06SPRqFFZLvONN0SGDIlfSEeM0CkoEKNk6+z3bOhQLXIOgG+/hUGDXPzznyrffCNQ\nVFQmkn7yybn86U8GTZuaerWKYhYPbdsm8umnZg/c3r1mKLdDB5333hMpKir3FkWRaIB0OuHXuiaN\nl6oy1yqG2b5d4ddfhf9n77yjoyq7Lv67ZWbSQ++gFJEivYnUQOi9idJFRH1FRRRUXrtYKKKoyKuI\nKCC9Fwk99JKQAAJKkyYdJD2ZmVu+Px5mMpPMJAEB/cS9lstFMrlz7507z3nOOfvsfUM9KYPoaDE+\nMWGCFVWFfv28p/udTti3T3hg+oJpZjJkJQkmTBCm3+PGeWeM6enCacSXsIGiCNPo6dO9g8rChSrd\nu2s3rg3atctgxQrfn0vLljrr12f/XbNmmSo/DgcUK2awfbswTX/11QDCw01eecXBRx/ZeOcdUfKP\nihJaxevXB9CihZ0mTZRsGb3D4WD//gy6dg3gnXdS+OyzZM6dk4mNzf7dGzRIBMzbrf5zJ3Ang3Vu\nlRKX2MIbb7zBAw88QHx8PNOnT2flypVcuHAhT++Rm3k0wKeffkrx4sXJly8fQ4YMwZlXRYvbhHs2\nYN4pObtbET/wdywXoqMlZs+W6ddP9ctiFU4Thpecn2t8QvQy4ZVXdD75ROHSJfjlF2G/lRVhYWIk\nZP787I+GaZp06mSwdq2Y5UtLg+7dLbzwgs7gwRmUK+dk2zbJSyS9fXuDmBiZChVMoqNlIiMz2LBB\nJjgYtm8XzdK2ba3uLPO11/IW7DyZzvDnDKT/rsjKzH3zzfxIkggeQ4ZksGSJyu+/Q9myGgULGhQr\nluFVKjt0SKZ0aQN/3IvffxdZvosMY7PBzJnpfPutxYvssmePsPPyV2EbMMDJokWZwhaGAcuXq3Tv\nLhYz0zRp29bOTz/5/mwjIzW/fczoaIVTpyQiIoIID4fNm1V69AgkONjk6lWJsWOtnDgh88wzgfzn\nPwF88YWFrl2dzJyp8uqrKe776Dlrm5oazIABhXjrLTvdu2soisnAgal8/bXsLou7BCuqV9dviB/c\nXWLgzeKv2Py57qvrv8DAQMaNG8fatWspVKgQAJ9//jkPPfQQkZGRuR4vN/PoNWvWMG7cODZt2sTp\n06c5ceIEb7/99m27nrzgngmYd0os3XVMXdfd4gd/RgPVV8A8dEhm7VonDz9s0qGDhdGjFez2zN/b\n7bB/v0TlyonukqSnQpAL7dsbpKfDp58qtGxpZHMmcaFvX525czMXCM9rKFpU2Hht3Cjz0ksqVasa\nPPFEAmlpaXToYLJxY7AX67hjR4NVqxS6dRN6sgUKGFSvbjJrlsy0aQqhoWJ+dPhwFVWF77+XefVV\nhWXL5Gx9LRdcwfL/Q/n1dkHXhcFzsWIGxYqZFC5sZcmSAJo10zl/XqV1axGcPEtl27cb1Knj9MvM\n3b1blGs9H9FixUwmTLDz9NOBpKWJn/krx7pQsqRJw4Y6S5ao7uMWLOhd4qxXz8m5c0LDNSuqVTNI\nTMStXORCo0Yau3crtGsXxFNPORk7NoOlSwV7NT1dol49nfvuM1i8OJ2YmFSCggx271ZYuFDlueec\nFC2avbbsdEKfPoH06uVk4EDdHUQHD5aIigokPT27YEWPHqnMni3nSbDiry7J/lXv7XpfWZYpW7Ys\nGRkZ7uB59epV5s+fn+Pf58U8esaMGTz55JNUqlSJ8PBw3nrrLaZPn35bryM3/LNXGT+4neU4V7bq\nMjbOa58yr+d26ZKwJ6pb12TYMJ3YWAdHjkh06WK5oclqsH17BuXKaRQq5M0IzXosWYaXXtL58UeF\n9u39M24jIkxOnZK8PCu9y7IGn38us2ULfPDBNSwWsUHo0kVi1Spv/8KqVcU/HnrIYOVKhSNHREnt\n+edVpkzJJHucPi1GUAxD9Gy//lqhenUrM2fK7p6aq/zqdDpRFOWusl//anzzjRAq0HWJyEiNzz+3\noGnw/vt2EhIkBg3Ss5XK4uKs1K3rxOFweDFzTdNE14UvqS9CUNeuGnXq6Lz7rtAP3rZN8Wss7UL/\n/k5mzRJl2aVLVbp08Q6wqioE11etyv55ybIoy3qq+4DYJOg6dO6s8cwzTkJCTC5ckAgNNQkNNenU\nSSN/fpGJFitmEh4uVILi48XGwhfGjrUSGmryxhveVPBChUxattRYssSWrSz+6KMma9ZYSUry31v+\nO5X37zZ8bRIMw/Bahwp40quzIK/m0YcOHaJGjRruf9eoUYPLly9z/fr1P3kFece/AfNPwCUWbpqZ\nRr23O9OJiZGpW9d0k3OKFoX58zUefNCgRQuVkyeT2LPHQqNGUp4Yod27G1y9ipdXYlaoKvTs6Z1l\numCaJk2aZLB5s8wnn6RQvHioe4NQtaqJaQoSkAuSJDLbuDiZgADo1KkgrVrpFCwI8+c7yZdPLJj5\n85vuwLhtm8xXXzn58Ufh79mvn0pSUmb51Waz+VRDuhnk9Az8HRe/CROsFChgcuWKxOOPOxg71ka3\nbk7WrrVgsYgesAuuUtnevRYaNpTdC7+rRA/i2d25U6J6dd/M3LFj7SxYoLJ3r8z+/TkzbUHMUx49\nKnP8uMSKFdkDJkDHjprfsmyLFhobNmQ+b7oOgwYF8tBDOqGh4tno1SsQgC5dnFSsaDB7toWRI4VL\ni67D7NkW0tLglVccvPOOjZ07LV7PyI4dCj/8YGHKlAyfAiB9+jiZPdu7FytJEsWLyzd67CE+e8ue\nqk8Oh8OtVXy3pen+Lu2Imz2XvJpHZ53tDAsLwzRNkv1Ru+8A7pmAmVcB9rzA1ad0mSnnJLN2s8h6\nbnv2SNSrl7kYiuzAwTvvXKN5cztDhhQiJsbmU2PW13Xu2SNRogTMmZPz+fbubTB3ruzOFl1qNsnJ\nyXz7rUyBAiZBQYFe1y1J0KGDzsqV3o9V69Y6X3yhIEkmrVo5+OgjnaAgGDTIwvz5TurXF9mBK4ib\nJjRsaCU6WqJmTZ24OJPGjYNISBDl1zu5MPxdFh1PnDsnceWKKEEGBsL8+VasVpOhQ50sWqRStaqe\nLQBcuyZx9WqmYIEnqUhcYyDHjlmoV0/2KfcXEpLBa6+l89xzAVSpopObtaHVCo8+KsyYbTa8hBJc\niIjQiI9XfHpORkTobNmiot2Is+PGWTFNGD3awZYtCqNH2zh/XqZ6dZ3oaAu1aumYpshaQZSNAwNN\nfv9dZuRIB19/ncF//pOPa9fEjUlNhWeeCeDzzzNuuLtkR4sWOmfPShw9mn1Z7NZNY+nSzIwpJ9Un\nIJvq092UTrzb8BUg8xo0b8Y8OiQkhCQPVmBiYiKSJN3V8ZV7JmB64lYDpj+R9ts5qpL13GJjRYYJ\n3oE6JCSY8eMVSpaE9euFbF5uxwJYu1amd29h/JyTWW79+ia6LhEfL3m5e5w8GcCSJYEMHmxkE10H\nkU16qgGZJixeLMqws2Y5iY62sXs3XL0qHEsaNzYZOlTn/HmJH390IsvibxISYNw4hYsXNcqXN7ly\nRaFatSA+/FBB1+8O0/nvghEjbMgynD0r88ADBqtXq+6s8sABxWc2l5NgAQjWa6VKBiEh/hf+Pn1S\nuXoV8uXT8jTE3revk6VLLXTs6PQK4K7XBgVB06ZC2ScrihY1KVPGYO9embg4mW+/tTB1agaNGuns\n368wZYqFgAAYOtTJ+fMS+/crvPCCw/0+8+dbkCR4+WVhUh4ZqdOlSzqjRgnBhAkTrNSpo9Ounf9M\nWVXFbKtLiME04dgxiTlzVNLTTdatU7PNILvgUn1SVdU9JhQcHOzeoNxp6cS/k1PJzeBmzKOrVq3K\n/v373f/et28fRYsWJX/+/Ld87jeLeyZg/pkM03OeErIzMm9nT9TzWKYJcXEStWtr7kBttVoJDw/H\nYrEgyzB6tHZD+i5vGe6aNTLduhl06mQwfXpOFlrQu7fOjz+aJCQkIEkSwcHBfPBBEC+/rPP440IO\nL+tlN2licviwxJUr4t/ffiuzd69Q9DlxQqZ0aZ2ePQUrds8ecf86dzYwTVizRuHNNzX3tTudEnFx\nNmrVktwzox9/rNCsWSgJCbdncXBZev1d+1CmCevWqdSurXPkiMyVKyIb69hR4+uvLaSkwMCB2an1\nMTH+x0lcv/c1n+kp9xcSEkixYrBvnxXDyF3ur1o1A4dDkIB8HRegXTud1av9lWV11q4V0nQffWSn\neHExeyxJEBpq0rmzxtWrMpIkLMuaN9fYtUth926ZpUtVUlIk+vfPZOaOHJlMbKzCjBkq06db+PBD\nu8/39USPHk4WLhSvr1YtmC5dglizRmXvXpVixUyf4y+eyCpPdzPSiVkFAW4Gf6dn1+l05llF7WbM\nowcMGMC0adP45ZdfuH79OmPGjOGJJ5643aefI+6ZgOmJvAY418xWYmIiTqfTr0j77Z7pcx3r+HEI\nCTEJCPA/OrFvn0yLFgbjxyvExWV3GfE8rzNn4MoVoQb0n//o/O9/irsElhWapt3wM1QJDg5FlmVi\nY1Xi4mSefVancmUTq9Vk/37v97TZoEULg6goESjfe09l/nyNzp1F5qlpog/78ss6iYnCfDokBOrX\nN5g1S6ZcuTT3sWQZiheHwoVh6lSNo0fF7ObJkzJ164a5g/KtwLXrd83KusqR6enp7uv/O5TQli8X\nn1H79kIT+L77TE6elDh7VuKjj6yEhoIvPkVsrEK9ejkFTDVHQQMQ7OsTJ2SqVTOYMSMwV7m/gwcz\nsFhM4uPxuwFp21Zj40bVp/xiixYac+daKFHCpFcv8WCuWqWQlgYOh8RLLzlYsEAlMNBE06BOnRBG\nj7YxZEgAqmrywgsOL+Z3UBB88IGdUaMCePllB8WL5/5ZBgUJb9CZM1WmTUvn8OFUvv8+g2++yWDY\nMIdP0tLNIK+qOq5n8Wb0h/8uGeadMo9u06YNo0aNIiIigrJly1K+fHneeeedO3FJfvFvwPQDV7/O\n1afMSaT9dmeYIL44W7dmULOmM8fRid27ZVq0MJk4UWPAAJUb673P89qwQQRXWYZatUxKlcoupu4p\nBFCjhkr+/BIxMaKs9PHHFl59VSMgQOz6O3c2WLYs+zm1ayfcS/7zH5WxYzUqVDBp21YE0eRkifPn\nJX7/XZRvV62SMQzhXXjmjMSoUaG88opYLB0OCAoyGTdO4dgxiWLFYO5cJ+HhJjabSc2aVm6FIOdS\n0tE0zb1geZbQXPf/Tgin3yzeflsIim/YIEqOL71kJy5OQZYl8uc3fbqM6Drs3at49b49YRgmMTE5\nB1QQZduKFQ3GjLEzYYLVLSrhb4h906YQ2rZ1snq1lYQEezYijK7rFC5s8MADRjZlH4By5Qx+/13i\nzTczSTnDhgVQoYKBqsLZsxLHjolnqHp1nd9+S2HjxjSqVBGZ7YAB2TNtRRFEtHz5cv/cFi5U6dgx\nkIgIjYgIPZt2s0uCMKdZ+ZstT+YkCOAyNc+qP+zrWfyrRd89kZSUdMt9xZzMowGGDx/OxYsXSUhI\n4Ntvv73j/rlZcc8EzLyWZLMqx7j6lLkd+3Y9sK6sRuzYA2nQQM5xdGL3bokGDQx69TKoWdPkww/9\nl1k3bJCJjMxcBIYM0fn2W/EI+Co722w2evUyWLhQIT5e5dAhmQEDMv++Uyfffcy2bUU2qetiPvTJ\nJ1U+/lghPR2eeCKdQoVMatWysm2bxPTpEgkJiSiKGCl59FGDt982sFhEOfLgQZmOHQ2efVbFNIX/\nZqtWGq1bO7HZoFEji0+NUl8wTeF/mpSUhCzLWK1Wry+cq4QG+Mykso5nuIbb79RilZICv/0m06uX\nk127RPD6738DKFHCZMqUdM6eld3iAJ44elTIFBYs6Pu8zp0Tz0hOTGkQ4ySNGuk89JBBRITO11/7\n/x5IksTq1RZ69dKpXdtg8+YwLw9Rl0xjamoqrVqlsXKllI2ZO368ldKlTc6eFec3daqFxEQJq1XM\nTw4YEEjx4gbt2mmcO6dgswkVog0bVPr1c2YTVtB1ePddG6NG2Rk/3pZjoPvxR5U337SxfHk6r77q\n8KlKVKKESdmyBjt33lkRg6xCC770h7M+i5rmamX8NYEza4b5T5TFg3soYHrCV4BzLaa3ohxzOwKm\nS87ORZEOCwtj3z41R8H11FQ4elRyy+ZNmKDx/fcKP/+cvbeq67Bpk0zLlpkBr0cPg9hYmePHNb8y\nfr16GSxZIvPFF0EMGyYIFS40aGBy+bLEb795n5eui+wwOVnozzZrZnDkiITNBp98Eky9ejqdO2sM\nH57M0aMyLVsW5qWXQqhVy2TVKhmLBQYPFtlPSoogKiUl4VYfev/9dKKirHz5pRiG798/9zKZS6rQ\nVVrPZIv6/zyy7v6zjmd4Drd7CqffrlLumDEiQFWubKLrEBxskpQk8c47djZsEGLrvlw4BFHMf/YY\nG2uhXr3szNqs2L5d4ZFHxHFGjXIwZYrFrzj79euwf79Cs2Y6vXs7mTfP4maTuogwrvvXoYOYa9S0\nTGZuXJxQAurXTyhBmabJmDFWmjfXSEwUikQWC9jtEqNGObh2TeLCBWHNZRgwYoR3NDRNk0WLgggP\nNxkxwknp0gaLFvl+TubPV3nvPRvLl6dRrZpB3boGSUkSx45lv0Ft2ogs824jaxDN+iy6MnjPZ/FO\nb+hc8FWS/Tdg/gPgi6Tj2af8M2bSt/pQejpsGIbhftB0HQ4ckKhd2/9x4+LE7KMriBUrBu+8o/Hc\nc6rbsNd1Xvv3SxQubOJR3cBmM+jZM4OpU00CAgJ8yvhVqGCSP7/J5s0W+vf3bjwpiii//vST9DoM\n3AAAIABJREFU94577FiVOnUMOnY0eO01nXbthIj29987yZ/fYNcumUWLVDp1EubTFy5IN3pSBqdP\nS1y8CAMGGAQGgqaJvl2FCgajR6ukpkL+/BJvv53KuHEqc+c6WbxYZt4835+XYQgh+JSUFLdUoUsu\n0FdJK7cNUk6ar67xDH9syJvFzJlWihc3mTLFiiSJgJGaKtGmjca8eSrBwb4JNrn1L+PirLmWY3Vd\nEIMaNhSZS8WKBk2b6j6dSUBkeY0aiXGhTp00duxQ3CMdWYkw1apJyLLEb78FuUvhEyaEMWxYOq1b\np7Nxo8LUqSJoOZ1CBahtW+cNPVmTOnUMmjTR2LJFYcoUK9WrG9lE5+12GD8+hPfeE0za4cOFFVjW\nr+muXQqvv25j6dJ0tzKRLEO7dr5nRkXA9J9h3k22quezqKoqFovFS8Tf34buTgfRf6pTCdxjAdMF\n12J5M33K3I53K/B02AgODiYkJMS9mB85IlGsmEm+fP7/PiZGpn5974X4iScMDAOvAGKaQsouIiJz\nk+DKpgcNcjBvXjCy7F/0IF8+KFPGt5Zo1rLs6dOwYIHM++/rbpuw8eMVevXSadUqA7tdYvr0RIKD\noVOnUHQdAgNhxw4nmzeLuc/vv5epXdt0L4IHD0J0tEK1agaTJ4vPp0cPB6mpgknbvbvBM8+obicL\n1zW6SsyyLJMvXz6fUoVCZ/fPLXD+5vJcWeytEDkOHJBIToZHH3Vy+rQoSz72mJPGjXVUFbZvV2nU\nyJux5XSKZyIqSuXoUZlJkyysX69k6/PGxVlyDZg//yxTooRBwYKZPxs50sGXX1rcknmeiIpSadtW\nnE9ICLRsmTm3mP1+icATFaXeuFaF2FiVZ54xqFXLit0u8/HHYTRr5mTrViuvv55CUJCGpkH//qk4\nHA4aNXKycaPC/v0yo0ZlZ7/++KOVBx/U3D3eyEjx/+jozO/3hQsSAwcGMGVKhpclGoh+pa+AWauW\nQUKClE3G76+G54Yvtw3d7VYr+jfD/IfC9aF6Bsu89ilzO+7NPGy+HDay9tL27s05uwSIiZGoV8/7\nNbIMY8dqvPmmSnp65kO8aZMg/GTNpmvVCqB8+ezkHxeSk+HQIYkLF2Sczuzn06KFQVyc5F6UP/pI\n5amndJo3N0lPl9i+XWLmTIVhwxJwODJo2dLBnj3BjB6tcf68RHS0TEqKxP33m2zZ4iQsDD75RGTI\n/fsbFCoEKSkSzZrpWCwwaZLC1q0y69ZZGDDA4M03FaZM0W64ZogFzpP9Ghoa6haCv5vwNVLgSeRw\n9aAyMjIwDCNb+eyNN8Ts5caNYoF/8kkH0dEqnTo52bhRJTzcdPtTXrok8d57VipWDGbYsACuXJEI\nDDS5cEHm00+tVK8ewtNPB3DokIzdDr/8IkySc4JnOdaFqlUN6tXT+fFHb6KFrsP69QqtW2cG8F69\nNL/G0iDYsq6AOX68lRdecLhHSCpW1Ll2TeLUKTEr+vzzEnv2iB5kkybiHjVokMZPPynYbCYtWqR6\n3T+HAyZOtDFiRKYYsSTB0087+fprce6aBgMHBjB4sJPWrbPfi6ZNdQ4fVrKZasuyGH/xJRYPf+08\npL/3zbqhy02t6GaEFnz9Pikp6d+A+U+AK7NKT0/HNM3b5nBxM2MqOc1zeh4vLk7ONWDu2SP7ZEI2\namRSv77B55+LbDUjw2T3bolatZJ8ZtMDB+p8/73vR2HOHBFoS5cW1kpZERQkepRr1sicOSNsw4YP\n129kETrvvQfduqVRurSFsLAwWrVyEhWl0KOHkOgrVcokNBS2bpXInx+mTHGSnAyDB6v06qVjt4uB\n8k2bFNavF73MJ54IYvr0AGbMkDl2TKJrVwtvv62xcaPMihV2kpOT/ZaY/yr460G5Nmqe5bPExDS2\nblUpV07n4EGF4GAxUL9xo0r79jrLlolrql9fZ/p0Cw8/HERCgsT69Wl88omdmjUNPvjAwccf21m1\nKp39+1OoVMmgc+dAXnjBRrlyOsHBOZ/vzp2+7bxefNHJl19aveyuYmNlSpQQrGsXIiM1Dh9W/Jov\nN2ki/C137pTZtUth8ODMHuSxYwqBgUKoYdKkDI4ckbl2TaZMGZMDBwKw2WzUqmUjOVmmYUMtW/lx\nxgyDcuU06tTx3oQ8+qiTnTtVzp6V+OwzKwEBImv2BZtNmFuvX5/9mRfuKn8v95KbzQ5zUyvy1VrI\nKYh6rmGpqan/Bsx/ApKTk92jBC5LmtuBvATMvMxzeh4vPl6mVi3/fa/z5yEjA8qV8/37MWM0Pv9c\n4epV2LrVSYUKTgoWVHxm0z16GOzYIXP+vPcxTBOmTlV46imdLl0cLF3qm8LdoYPBypUyU6Yo9O+v\nky+f6MvWr5/C9u0WRoxQ3BuD5s2d7N6tsGuXjNUKo0bppKbClCliAercWfRkd+yQmDZNoUoVoaOb\nkAAPPGDSsKEwI/7mm2RiYpzMm+fk8GGJDz5QyJfPYPjwYEJCwnPV1b3ds7O3AteiJUmS185/yRJR\nqk5JEeevqianTjmpXt1JYKCT1asVkpIkPvrIxg8/WFi1Kp2JE+2UL28SG5tdsKBAAWEuvWNHGgcO\nKFy4IHPxYk6EJ6G7mjXDBHj4YZ3ChU0vFunatapXdgki4HTs6GTxYt8bFpsNmjXTePddG0OHOt3m\n6CdPSly8KJGWBmXLGjRoYLB8uWBId+/udNtsnTghYRhQu7bhVX602YL54osQXn45zb1BdWVOqmqn\ne3c7EyZYmDzZwuTJGX6VkEBIOvoi+LRoobN1q+9Z0r8St2Pj76qK+Got+FIrcvlRen6X/i3J/kMQ\nFhbmzjput7Sav+Nl1Z119SlzgqYJS6+cTKNjY0V26e87UrasSbduTqZMCWHrVpWICMmvi0pwMHTr\nZvDjj97nFRsrkZIiERFh0rmzk5UrfRvptm8vPDK//15h6FCHuy977ZoQyy5aNPM9w8OhZk2dkSMV\nBgww2LBBZuxYjdWrZS5fFkSixo3FWMmyZTIpKWLcxGoVPafDh2UaNtSZNk1InrVrp1G2rMarr6Zi\ns0lcvCjz3Xd/j6zyViBJEhMninLspUsyJUuaNGumExUVSKdODjZtksifXwdMihRxsmpVAhUrOtzP\nX04M2aJFTR580KBBAwetWgX71EwFOH5cIjAQSpf2/fy98IKDSZMyCTTr1qk+y5o9e2osXOh/Tq5h\nQ42YGIUhQzIjz6uv2rBaRUBt314E4fnzVQoVMujbV2PLFvHZujRrz5zxfmaXL7dQrJhJ06Z4SdS5\nMqfevdOYOdPK668nUahQWo4Sda1bC5/OrOIehQqZlCtnEBvr25zgryjJ3qn3zU2tyDXOkpaWxrJl\ny3jvvfe4fPkyjr/bbuI24Z4KmHdCys7f8VxjIrfij3n8uErx4iY5bdJiYiS3xmxWuIL0sGFJzJkT\nRHS0zU348YdBg3R++CFTbB3gu+8UnnhC6JGWL29SrJjB1q3Zz79oUeE28uCDGgUKJN2QVQtj2jQr\nNWuabNjg/ZgVL26gaRJvvKGxZo1Mjx4GQUEwdKhYDIcP1zl1SqJNG4Nff5VQVVH6vXJFlHmtVpg6\nNYA//kgjOTmJl15ysHBhMDExIlN55RX/mp95wV+Zff72m8SZMzKyDKVKGRQtavDIIzrr1lnp1g0W\nLQrm4kUhlffpp+moamY/NC0tjZgYmVq17H5JHHv3Krz+ejKvvmqnS5dAn/6UO3eqPsuxLnTooPHH\nHxJ79shcuiRx6pTsUzWoSROdc+ckTpzwTaw6e1ZBknALu6emiuAbGiqkEmWZG2NLMkOGCIcSu12M\nUi1erNK8ucbWrZnyjKYJn39u5cUXHX4l6vbuDSIgAMqVs+QqUlG8uEHJkkLfNisiIjQ2bfp7lWXv\nFjxHrVyVnMDAQEqUKIGu68TGxtK3b19KlixJ165dmThxot9j9e/fn+LFi5MvXz4qVarEtGnTfL7u\nhx9+QFVVd9ITFhbGli1b7tQl+sU9FTBdcC2Id0b/VZQjExISMAzjlvwxDxyw5ErKEBmm9/l7isNb\nrVYqVQqha9cM4uNln24mnqhf30RVRSkUxOK1ZIlMv36Z59G5s4MlS7wXCVH2spOUZFK4sOHuy27c\nKJMvn8ljj2UVY5fYu1dB16FQIWjYUKj99O5tsHu3zNq1EpGRJooCs2crfP21i3kpSrUbNshs2qRQ\nsaLG++8HMGlSQbZvD+D0acEMnjvXiaZB797/P7PML74QvpeGAUlJMufPy1gsJlWq6Og6LF6sUrSo\nyfPPO7Favfuh164FYLdLlCrl9MmEvHDBJDFRolw5nX79nAwf7qBLlyCuXPF+Nnfs8N2/dEFR4Omn\nHUyZYmX9eoXmzTV8tYpVVXhZLl2anVCXng4LFqhUrJgpBDBpkuiNduig07ixzvbtKkuXioDYt6+G\nJAkyzuTJVlQVBg1yoqoiIwZBVEpOltwOJllx8aLEhAlWnn7awbx5Vr8SdZ7qOk2bZrBmjWipHD1q\nsnChwoQJVlJSJJ8s2n9ahpmX93W1t+rVq8e7775LhQoVOHjwINu2baNv374EBgb6/fvXX3+dkydP\nkpCQwPLly3njjTeIj4/3+dpHHnmEpKQkkpOTSUpKomnTpnfqsvzingqYnjvOOwHXcLzdbic0NJSQ\nkJBb6pPGxqqoquGTvg9iMY2Lk6hTR/Q4PWc5wZtM9MgjTkyTXDMuSYJ+/QxmzRKL17JlMg0aGLgs\n6iRJonNnB8uXZxo6uzLZjRt18ueH/futSJK43mnTFAYPFu4Qa9Zk/k1UlIWQEJFVHDwo8eijBvPn\ny3TpolOkiMmIESq//CLduA6Tfv0M2rQxuHZNonx5g4sXJerXt3PokIXvvgvANCUqVDCpUcNk9GiV\nd95ReeABMUazcKH/e/936GFmhd2Om4Hapo3G/feLEaHYWJX27TU6dQqkSBGT69elbONEou9tpW5d\ng8BA30zIHTt0atWyI8siADz5ZDrduzsYMCDASwXHH+HHE337CrbuihWqe2TDF3r21FiyJHvAXLDA\nQp06Bl27aqxeLXqUX3xhpVgx0Yd9/nkHBw/KTJ5spXRpgwMHZBISoHlzjRUrVDIyBHO6SROdzZtF\n4PriCyvDhjn89iXffNPGgAFOnnvOSVSUdxXCn0Rd69YmixcH0LZtGB07BrNggcy1axoZGTrHjslc\nv/73FO3/K5GUlER4eDhly5alV69ePPvss35fW6VKFQICRHvFFfRPeDrX/81wTwVMT9zOBdN1nJSU\nlNvCzoyPVzl8WKFsWSvvvquQmur9+2PHBKO0UKHMEYqMjAyfmrO//mqhWjWDL7/MvXz0+OM6S5fK\npKfDrFkK/fp5mxKXL69ToIDJjh24y81Wq5X588N49llBzhEjKBAdLbLG8uWF08S+fRKmCZ9+GsjL\nL2fQrp3IPDt3Nti2Teahh0wuXpQoWdKkQweVZ5/VOHNGIjUVpk51YrfD8eMyigIHD9owTVEmbtLE\nYNgwnQULhMZtz546ly+LMu7TT6tcvHjLH8Ndx4oVKg6HhCyLvnLFiqIcGxWlsm2bsDXr1ctJ4cK+\nZe/27vXuX2ZlQv78cxD162e+3ul0Mnz4dQICNF5/XcHhcHDunMH165JPP0tPhIdDz55ONm1SiYz0\no+CPIAldvy5z9Gjm8yfIZBaGDnXQtq0ImGvXyqSmwvPP20lJkThwQMHhEEL74eEm48dbeeihEJYs\nUbl6VXiDhoQIu7DNm4XWcGyszOOPZyehgJhP3bpVYeRIB4UKmTRooPs1s3bh1CmZCRMCOHVKZuhQ\njV9+SWPuXAdjxjj57LN06tVzsmWL6SUM4LLCu9tB9O+U2aanpxPkYnHlAc899xzBwcFUrlyZEiVK\n0L59e5+vi4+Pp0iRIlSqVIkxY8bckhjIn8W/AfNPIKucXlhYWK7szNyg63D8uMLy5anExDg4cUKi\nRg0r27dnHjM2VqJOHd09yxkQEEBYWJjPIL1jh4VnnnHw3XfZB9izomRJqFPH5IcfZOLihKVW1uvt\n1MnJvHmau9ycnh7A6tUyffrobvPoGTMUunUz3D1YV3DctUvi+nWJjh2dN2yeZEJDhdrPypVifEWS\nhPnxa6+JvuZnn4FpJtG+vR1dhwcfNDh/XuL++zXq1zf43//EQhwUBP366Vy5IrFrl1B3sdthyBA1\nV63Zv2puLis++0yUY/v0cbBunYrdDoUKGYSGmly5IpOQIFGggFjsfcEXQzbr712ZqYvEERoazLRp\ndtautbFypYVt20zq1rWTkZG7MkzjxhoOBxQo4P8GyzI3GNaZmop79sgkJUm0bKlTrZroS77wQgAB\nAXDwoILdLgyhIyJEGXbDhnR++imdn39OISlJfFb584v3bN5cGE//739WBg1y4ln9y5y7Ftnlf/9r\nd/dLe/Z0smCBf0LS6tUKERFBtG0rhNiDgkQp2lMYoHlzk127grNp5nr2lO9F82hXtp5XTJ48mZSU\nFLZt20b37t2xeepv3kCzZs04ePAgly9fZtGiRcyZM4fx48f/6fO/WdxTATOvAuy5wZec3u0aUTl6\nVKJIEYOwMIMyZWDGDI3JkzUee8zC1KniC7l7t0HVqqJe6xJJ97XoZ2TAgQMqHTs66dDBcI9u5IR+\n/XS++kqhUyfDa/FxiT20bZtCVFQgwcGi3Dx3rkzr1kIRpkMH0Y/84QdBFnLB5VQyZYrCk0+KkmCZ\nMiZ790p06qSye7fMK6+o7N4tsXmzTJ06JmPHyjRt6mTWLIXAwECeeUamcGGT48dlVBUuX1Y4dEhm\n1y6ZU6fE+wwdavDDDwrFisG4cRqmKchRM2f6/mz+TgvYL7/IHDwoPp9mzQxq1dKJiVE4cEDhjz9g\nyBAHFSsaHDvm28dS12HfPoU6dXwHTF0X7iNZfy9JEgUKyEydmsGoUSFs3x5E48a45dX8KcMYhsGR\nI2L+0p+ijwtdu9pZtszm3rhMn25l8GBROpUkMU964YJMly5Cg/axx5wsWpTOhQvis542zUKfPgE8\n/HAwMTEKigLr16ssXKhSooRJgQIGc+ZYePJJ3+rqUVEK169L9OmTmQl36KCxc6e4t1nx/fcWXngh\ngPnz03nxRSctWvgm+DRtKuT5PDN5FwHGk5mbk3n07cJfKZiQ9Txu5Xsl2kePcPbsWaZMmZLt9/ff\nfz/33XcfIIyk33rrLRYuXPinz/dmcU8FTE/casB0KQSlp6cTHBzsV5v0VhEfL1GjhveOvk0bg+ho\nB599pvDRRxp798o0bGjJVfM2JkaiYkWdkBCTkSN1pkxR/PZFXejc2eDECYlWrcTC6mL7pqWlIUkS\n9esHExAAe/eKL+esWQoDBojXNm5s8ssv4j54EpIaNzb59VeJqCiZxo11Bg4MIjJS9KsefNBkzhwn\nsixIGaYJV66YfP65SkCAwcmTCna7lYgIE8MQ5crwcKFic+qURGSkwXfficXM1ctcuFBm8GCDkBBI\nTpYYNcpbNg8yP3+73U5KSoqX1ubtJITlFRMniuyyRg2dFStUmjUTxuC7dyt8/nkGW7aodOsmZlh9\nZZi//ipTpIiJP/P5X36RKVrUdGdmWdGggUH//k4WL7bQsKHhU14tawBYt06md+80pk5Vc5T6q1NH\nIz1djARdvw6rVqn07ZsZvA4fFs/w+vUq999v8N57DgxD/NzphHXrFLp103j3XTv33y8+15o1dV59\n1cbGjQpFipjcf392PVkQI1pvvWXjnXfseE5zhYaKOdCsZdnvvrMwcaKV1avT3Nl4RITOxo3ZNwW1\naxucOiVz7Vrmz1yBK7dxjD/je/l3gr9A/WfkQvPaw/wr7tU9FTD/TIaZFzm72xUwa9b0DpiGYVC0\naAoLFlxjxowgDhxQqVs3949u2zaZRx4Ru+6KFU0aNDD48cec/+7CBSHyffq05CUK7wrOsizRtatw\nMDl2TOLcOck9smK1QpEiJg89ZHrNh1qtULy4SeHCJt27B1OzpsaRIw5GjtS5elUYWkdEGOTLZ1Kh\ngoaqmoSECJFwSYKnnhJZxWOP6dSoIUS5AwPFezidMGOG4iatDB2qM326gtUKzz0nSmlpafDqq94Z\ngq7rbkmwwMBAr4wKcI8Z3I2SWlqa5J5XnDQpneholYAAcW2lSpm0b6+zerVKRITG1au++4t5Kcd6\n6sf6WtCGDXOQnAynTvleAD0DgNMZzJEjFl54wcn58zJxcaZf6zNJgi5d7CxerDJ/voWWLTUKFRL3\n8tIlyT0Pmi+fyYsvCqWnVq0C0XUhodemjU6vXhrr16tUr27QsqXGoUMK332XwVNPBXDsmEzWKp5r\nIZ8/X6VAAdMnc7ZrV40lSzK/w0uXqowda2Xp0jQqVMj8rKtWNUhJgTNnvO+LxSKy4x078sZXyM33\n8lbt4/7KIOtrnC6vuHLlCvPmzSM1NRXDMFizZg1z584lMjIy22ujoqK4fPkyAL/++itjxoyha9eu\nf+7kbwH3VMD0xJ2Qs7s9AVOmevVM9qurRyrLMpUrh/Lpp6LUmHW20Re2b5d55JHML9yLL+pMmqSQ\nUyVo4UKFyEiduXMlL1F4z0y2WzeDpUtFObZnT909UuBwiLm5rFlsWppQcLlyRWLjxhRefDGD4GBR\nql23TsZuNzh61MRiMenfX6dxYxg/XuPsWeGwsnKlwpNPqnTtanD+vFAIysiQuHwZfvpJzI7WqWOh\nZk0LX32lEB8vsW6dxJAhYhSjVCmTWbMUDh+W3Blzeno6siwTFhaGoiheGZUsywQEBGTLqO6UmfTk\nyUHoumAOHzqk0rSpGPhPTxcuG1FRKrVq6Zw6JVO7to4v3YvcLL1iYnL+PQgR9CpVDN5+20ZCQs7n\nvGWLSv36OvnyqQwerDFzZkg2z0ZXKdfpdNKxYxqLF6vMnKkyYEDmUPubb1qRZQgMNDl3TqZRI43I\nyCDOnZOpVMng0Uc1Nm5USEyENWuEPnLbthrlyhlYraK0mpoqceSInE15R9Ng3Dgb//2vw6fAR9u2\nGrt2iWPv3i0zYoSNBQvSKVfO+3OVJDFTumWLr7Ksztat4ue3Ik+Xk2XXzbqN/B00bF0b0Lz+3ZQp\nUyhdujQFChRg1KhRTJo0iQ4dOnD27FnCwsL4/fffAdiwYQPVq1cnNDSUjh070rNnT15//fU7cj05\n4d+AmQNcYyK+fCJv5Xi5wTCES0WtWsLbzrNH6hIQP3dOolUrg2HDVA4c8P8F0TRhLv3ww5lfrsaN\nTcLDYdUq/z29+fPhiScSSUyUOXMm3J1Fe15frVomTqfEjBky3bsb7NwpsWCBzIcfKpQrZ7Jnj2Da\ngpi3i4iwuIW1Pe2oSpUyKV7c4MMPheBAaKhEuXIKq1crDBxo0K+fcEjRNLh0CV5+WcVqNalSxSQ8\nXGQuGRnC/is8HGbN0njxRZ3KlU1697YwerRKkyZiFKVIERg0SCExMRFd1933MyfBas+MKjcz6Vt1\nfDBN+OYbIezap4+DuXMttGihERcnAxI9ejiZP1/l0Ued7Nnju38JN59h+sLOnUJAvX17IVmXEzZu\nVGjZUpRVBwxwsmyZhaQk3wFAURRq1hQSiJcuSdStKzSNr1xxsGCBKEU3aqSRP7/JwIGBdO2qce2a\nRO/eTiIidLZtU1mwwEKTJhq7dytEROg0by76ileuSJQsaaCqJnv2eAe0BQtslChhuEXqsyI0FBo1\n0lmwwMKgQYFMnpzh3qxmRfPmOtHR2TPJRo00tm3zft8/E7jy4jbiSygd/ppMM2tJ9maE1wsVKkR0\ndDR//PEHCQkJ7N+/n8GDBwNQunRpkpKSKHXDj3D8+PFcvHiR5ORkjh8/zttvv31LzlJ/FvdUwMxr\nSdY1X5iamur2UMxtTOR2BMyTJ0V/Ligozb2oZ7Uci4sTJJuJEzUefdSSrTfnwv79EqVLm14MRkkS\nWeZnn2UXH3A4HMTHp3Dlikzr1kE89pjBnDm+H0hB1DC4fFmie3cLI0aoLFkipPFOnhQan++/L8qk\njz+ucu0avPeediOYivKT6x5HRGQwdWooH3xg0L+/wZYtMoGBYgxl1CidxESJgABRXq5ZU8xjXrli\nkpws+p2mKTYax49LhIebtGtn8M03GuHhQtotNlYYUj/yiJ2ff5bZtSv0lmzcss7pZc0GciLH5PRc\nzJ+vujVj+/d3cvCgwpw5FgICxMyhJMG2bSqdOmns2eO7f5mcLMYvqlXzvdgnJcGZMzJVq+ZMMtm9\nW+Hhh3XeftvOihUq+/f721gJ/8uWLcW5FC1q0ry5xvz52VmnmfdNkLHKlTMJDRX90ClTAtB1ofx0\n7ZrJpUsSjRs7qFlT9DAffVSjYEGT8uUNvv1WpUEDnRIljBvvp7N2rcqWLSpOp+hVL16c+Zk6HCYT\nJwYxenTOEm3t2zv54AMrffoI5rY/uMZXsn6UtWoZnD4t+yQP3S7kRSgd8EkquttB9J/shQn3WMCE\nnOXx/oyc3Z+FaZrs2uWkalUHiqIgy7JPy7G9e0XP79FHDSIjDYYP9x3It2+XadTIzHad3boZnDol\nsW+fuCZX4EpPT2ft2lC6djWxWGT69jWYN09xa8dmPY4kCTWePXsc7NzpZNo0jfR0+PlnB716GcyY\noVCxopXEREhKkujd26BtW4M1a1T37KjVaqVgQSsZGRAZadKnj86iRTJt2wq2bYUKYs7yoYeEys/K\nlQqlSpmcOiUTFGRSvryJxSL6vm3aZIouVK1qUrKkSePGBv/7XxrJybB6tZVmzQyeey7gdn1kfrOB\nmynlvveeKF+VKmWyYYOFKlV0Ll6UCQszad9eo3v3IOrX1wgKEixXX1lkfLxC1aqiROkLcXEK1asL\nezR/0DTX2IkQoRg92sFrr9myBQgQ8n0OB1691MGDnUyfbvH5elGeFUH9zBmROeu6ypdfBmKxCCuw\nQ4eshIaatG9v59tvLeTLZ1CgQAoZGRnUru3g5EmFjAxo1kxcf8OGOgcOCFLQiBFO+vTytDVjAAAg\nAElEQVRxsnBh5g1YvNhGyZIGjRvnnFWfPCnGdUaMyDmwli1rYrXCsWPeS6bFAnXr6uzcqd5Vpqpn\nBcRqtSLLsptUJEmSX7m/2x1A7yUvTLgHA6YLvuTsXASXW5Gzu9UM03NEZf9+hXr1FJ89UhDlzaNH\nJapVE+8zbpxGXJzEnDnZP8YdOyQaNTKynZfFAk8/rTN5suwlPhAWFsaKFRa6dhULTOXKJkWKmGze\nnH2DYZoiGwkMBIdD/H7NGiEWX6wYjBih43SCppkcPCgUg/Llg8hIO1FRYjRGjMMEsHKlIPScOwel\nS4tyb2hoZtl4+HCdCxckkpLgkUd0fv1V9DWdTiFcIEliZELXTWbOzMwA+vZ18t13Bs2bp/HUU4Kl\nWaWKyYULkl8rs9uBmynlbtumce6cYP727etg1iyVn3+Wue8+IR4wZoyN8+clBg1ycvCgTOnShk9D\n8dzKsTExik8bOE8cPOhtGD1woJPERInly7NvyDZuVGneXPfqCzZtqpOWJhET4/verl9vo1o1HZtN\n9OlnzxZqPUFBgsEbEGAyeLCTNWuC2LrVRps2ursfmpEhepybN0s8/LDo5cXGGjckEB088YSTDz+0\nk5go5icNAyZNCmTEiPQcrzk+XmbmTAs1axrZyqpZkVMfs3FjPde/vxtwVUD8PXsuub+bJRXlBF8B\n898M8x8IVwBwjYn4I7jc7PFuBllHVA4ftlGrlv9j/fyzxAMPmO75yKAg+OEHjVGjvBVtTBN27JB5\n5JHsi6RpmvTvn8Hy5TKXLmV6gp49K3HqlETTppnv+9hjBnPnZl8I9u2TsFhMevQQbFmARYtkevRw\nMUyFFN+XX2oULix6mhs2pFO5cgrXryucPy92xFu2SCQmCrcTl97sE0/o7Nghc+aMxNmz0KCByBZt\nNli7VmHxYifp6RIFCgink3z5xGK2bJmCxWKyc6dQIWrdOoFNm2xAKCNHiuzrm28Umjc3eOMNFci8\nx742J7dTZ9hfKXfkSLGwyDJUqpTG+fMSAwdmsGePECV/+207pgnt2+vs3p1T/1LOsT8ZE5NzQIXs\ncniKAh9/bOfNN23ZyDTR0QotWnir+8gyPPGEg+++853mzp1ro08fJ927i9GVMWNsKAqEhZls2KDy\n/vt2unTRWLJEJTDQpEMH/cZ9s7Bzpw27XSIuzkqzZnD0qIXHHw+lYEEDWdZIS0sjIMBO5co6r79u\nY/lyhZAQk6ZNfc9lgnhGn3oqgHHj7HTr5sxV9Qcy5y6zolEjnR07/rqAmdNohz9mblZiVl5IRXnB\nP9k8Gu7BgJmp/iF2XMnJydhstmxjIrdy3Lw+ZL5GVFTVwr59EjVrZs8KXRD6sd4/r1nTZNAgnZdf\nzvzCnzghYbVCmTLe5+UqvwYFpdGli868eZmCCytXyrRrZ3iJaPfqpbNihSDweB5n8WKZbt0MunTR\nWbZM/H7tWpkuXQzS02HAAJXISINNm4Tc2ZdfXmfQoDAuXMhHq1Y6a9eK+zxxosJLL+l06JAZMDt1\nMjh8WGTHP/0kfta5s1CDMQxo3txk5kwnFy4oFCggflakiInDAXXrakyfrmMYBmXLhtG4scGKFQql\nSkGTJuLaDh0S/aYZM/wvcHe6rCZJEhcuKBw6JBb24sV1Zs8OxWqFw4eFz+IXXyRw+LBOjx7pGIaD\n3bsln0HRNHPOMMXvcw6oALt2if6lJ5o21XngAYPvvsv8XmgabN0qMsys6NtXY9UqNRvD9to1ie3b\nVTp31ujeXWPOHCFvV7GiQUaG2Pj1769Rs6bBH39IpKZKNG4sAnJsrIwkifnUIkVMNE3l8cfDuO8+\nk6efdrJ1ayabuWfPdK5fl3jrLSvPP5+CYeh+y5DjxlmpWtWgZ09BcnLp2eYEVyaZ9XW1a+scPSqT\nlPT3EA/ICf6Yuf6EKnILov+WZP/hcI1qpN+gceaklHMzyEvAzEkk/fffxa6+eHH/x4qLk6ldO3vW\nOHq0zr59EitXio9z+3aJhg0N93kZhpGt/DpsmMk332TOLy5frtC5s/exS5QQJVJX4BLXAEuXynTt\natC0qcnJkxKzZ4tybJEiguzz0EMmw4fbWbxYomtXO927BzB2rE63blYaNdJYt87G8ePCJLtPH4NW\nrQy2bpVJSxM+iH36iMV4xQpRjps9WyYkRATHFStk2rUzqVNHzAxqmliQQZSFV64MRFVFlaB3b9GH\nBRg40KBQIZP77jMpVMjkrbd899vuFoYNC7hRTpZo3z6D9etVihUzOX1aITgYevRQWLQoiD59tBvq\nTirVqiV7sXKTk3XWr5dJSxMWW7/8ImfzKz11SmyePNnJWWGavgMmwDvv2JkwwUpysvh3XJxMyZKC\neJMVhQqZtGyZnfyzbJmNyEgnYWFipjExUWj9Xr0qPrfHHhOuI6mp4vMsWNB0l57nzhXKP2FhYLGY\n9O0bSKdOGmfPyjz3nCgbnztnwWq10qaNGDG6eFGhTRuRFvsqQx44YPLDDxbGjbMDQvAiJAT27ct5\nOSxTRrzuyBHv74PFIoQU9uz5axxy/mzv9FaZuXrWhw2hp/1vwPwHISUlBU3TCAoKctvS3A7kFjBz\nE0nfv1+mRg3vgf+sx/OVYQIEBsLkyRovvaSSlgY7d4pyrCuL1nXd3Zt1Bejq1U3uv99kxQqRce3d\nK1RzsuKxx3TmzpXdX8jDh8UMZJ06gnDTvr1Q2unaVScuTmLWLIUxYxJ56KFkrl6VadNGRlEU+vQx\n6NVLZ948C7t3q3z5pczAgToBAZA/v8iUN28W9+PJJw127RLas6+/rvDggybPPy9IK59+KgLgf/6T\nSvHiJklJor9VpIjB1asKlSqZREWJ43TsaLB7t5jX7NhRCB78/rtEiRIiyHrqm95NpKXBpk0qxYoZ\n2Gwme/ZYUBRR2tN14bW4caMIoNWry/zxRwApKTLVqwdgGAHMnBlE164hlC8fzrBhNiwWg3HjVPr0\nCeC++0Lo1y+ADRtEL0/0L3POLk+fltB1QWzJimrVDCIidL74QpRao6N9Z5cuDBrk5PvvvTcjCxfa\n6NVLBCcXYUhRRMAMDRWkH4CfflIpXNh0u404nbBkiRipuXJFbAry5TPJl8+kRw8noaFChWfTJhGo\nqlY1SE2VCAsz2bbNhqqq7jKki82saQYvvhjAyJHJhIZmbj7atnUSFZV7WfWRR3S++cbCs88GULt2\nMEWLhlC4cAjx8QrR0X99H/N2ITdmrqZpZGRkAGL28tChQ6xYsYI//vjj3x7mPwkhISHuMZHbyRjz\nFzA9y685iaQLhZ/MrDAr0tJEqbVqVd/n3Ly5ycMPG0yYoLBjh0T9+hopKSk4HA5kWfbZm33mGZ3/\n/U9hzRqZZs2E2HlWdO1qsHlzJm1+xQqZzp0zCR+dOhns3y/Rpo3OsGEyo0cnUbSoxG+/5SM4GM6e\nzXzPd9/V0XWJggUFo/WppzIXXs8+ZsWKYtaySBGT2bMVvvhCc4sQHDwoceIEtGhhJykJKlXSsFjg\n6lXxt8eO4SZBBQcL4fdFi2QCAqBXLwNNMxk2TENR4J13Mr/Yd5N+P3KkYJ8mJwuj6Ph4K02b6owZ\nY+fUKZnnn3cwfbqFwYNF+r9njwh6X39tpXbtMDZutPLsszqnT6fQo4fOM884WLo0mR07rrFz52Ua\nNUrjjTcsREQEsmJF7oIFu3aJ/qW/JGX0aDvffGPh2jXRv4yI8O9O0rSpTmqqcA4BIVjx22+ZPc9R\no2wEBQmRi7JlRandNSqzeLGFoCBhX3btmsTGjWKut2hRQR4zTRg61M6sWRYGDRL3pkULIWwAotyu\nquJnkyZlPsyeGdT8+aGoqsLQoZJXBhURkcqqVbLfsQzThGXLVNavV1i40EK1ajo//pjOqVMpXL6c\nwqRJGcTFqX9JSfZusXOzEtpcAgUWi4ULFy4wdepUvvzyS5566im6d+/ORx99xMaNG/0eL6/m0QCf\nfvqp+7VDhgxxz57ebdxzAdMVNG63H2LW4/lSCMqp9Lt/v0TNmp5jG97H279folIlM5sEmCc+/FDj\nq68Uzp+XKFMmEVVVCXHZM/hA164GR48Klm2HDr5ZlGFh0KqVweLFIstcuVLxeq3NZmKaMG+eE1U1\nGTxYJSgoiEWLFCIjDVatytx1qypMnWrn4kWF0FCTMmUy36d9e8Ot2gMwZIjOyZMSTid8+604RqNG\n4r2mTBEknh49nDRvLpGcLBEWhrvMt2GD7HZmeeyxzLJs3746pimxdavCoEEaly4J4tHdhGnCnDkW\nSpc2KF5clCctFpg3L52pUy3YbKL0t2OHSo8eYlH46SfBno2KUlm8OJ05czLo2FEjMBD27lVo0MB0\nL2KlSgXy9NMQHZ3MkCHp/PSTldhYg8TEzH6UOI/MZ8s1f+kPZcuadOmi8cknVvbtU2jUyP9rZVkw\nbH/4QZRlFy2y0KmTHYtFiEy4NFlNU5Rwu3XTkGVISBAOJRcvyjRrphEVpTB/voVevZysXatiGNCt\nm5O5c60UKGBSo4Z4Blu0EIICmib8MNu310hMlDh9WuHAAe+N6fXrMGaMlQkTMlAU7wyqeXMLp09b\n+OMPa7axjNOnM+je3cbYsRbeey8Di8Xk2WedVK4sNpmqCu3aaezfLxxm7iW4gmhkZCTLly+nd+/e\nTJ06lV69enHlyhWmTp3q92/zah69Zs0axo0bx6ZNmzh9+jQnTpzg7bffvpOX5Rf3XMB0wRWQ7kRm\n4akQFBYWlqtIOgiKuyvD9Dy/zN/7Lse6YJomRYs6iIjIIDDQpGDB3EdjrFYYMEAnOloQfvzBxZa9\ndEnm+HGJJk3EeRiGwcqVBuXKaUycGMLEiQZWq1jcFi1SGD5cZ8cOyd3/ArjvPsifX3hWem4SK1YU\nc24//yzO99o13ASkM2ck6tSxAiLLnDHDRkaGxIABBj/9pNCihTBaDg11kZtEnxWgRQuDI0dEj7hh\nQ7HhWLxY5v33NSwWk2eeubt9pw8+sKBpIMsSp08Lf8+nnkrFZoPp0y3Uq6czY4aFHj2chITA7Nkq\nCxao9OypsWxZupc4gdMp5Oxq1/bWiJVlGZvNQs+e4h4mJ1vo2bMg16+rbocMz37Ujh0KDz+c84ze\nyJEOpk+3UqWKQXBwztfYt6+T5cstJCXBggUq3buL0t3YsVYsFhEsFUWMk3TrJh6CVatUqlTRqVFD\np0sXjWXLVNauVenWTWPMGCs1a+o88YTGunUKAwZkPjjFipmUKmUQFaWwZo3KG2/Y2bFDZdCgNL76\nynt3+fHHNjp21NzB1hMWiyiFR0fbvMYy4uNDaN26INWqaaxefY3OnROx2Ux+/tnpNZYRFgYVKujs\n33/rxMFbxV/lVOLrfVNSUqhSpQqPP/44EydOZM6cOX7/Pq/m0TNmzODJJ5+kUqVKhIeH89ZbbzF9\n+vTbezF5xD0XMD2FC273cQ3DICUlxUshKC+KMleuiDGMsmW9f+65gO3dK1Orlu+gpus6KSkppKen\nU7KkQkaGREyM4j6vnBbChx4y0HVyXATbtBHM1QULAomM1FFVQV5KSEjkp58slC4tExwMdeuK1+/Z\nIxEaalK/vsnDD5usX5/5mMXHS1gsgojy2muZ90aSoEMHnVWrZBIT4YMPVIYOFeLpXbo42bPnD6pX\nd9yYuZRYtCiQmjVNgoOFcHuhQqKUZ7GIkYGvvhLHFnqjBkuXilGNvn3FYP7atQpDh6by228Shw/f\nubGSrJg0yUapUgZXrohens1mMmBAGocOyVy4INOzp5MZM0TJcfRoG2PH2lBVURbN+sgePChTpkym\n72hWHDgg9FgXL86gSROdjh3DuHxZLFCufpSQQJQoXz4lxyH3UqVMypUzkKTc70vRoibNmmlMmmQl\nOVm0B0A4gYSFic+sXDnRb3RtEhctslCokEnjxjpt2mhs3qxSp47Ozp0KZ8/KvPyygwoVDBISJJo0\n8S4Jt2ol3uvxx52ULy+OXbmyzrp1Fi5dEjft119lFixQefNN/wIFbdporFmTuYFavtzCgAFBTJ6c\nwXvv6YSHCzJMkyY6O3fasmm91q9vZ9cu9R/rfZkVvgJmcnIy4eHheT5GXsyjDx06RI0aNdz/rlGj\nBpcvX+Z6bga/dwD3XMD0xO0qy7rYr6ZpIsvyTSsE7dsnZSP8ZP1bX4SfrMpEYWFhxMerDB6s8/rr\ngiaf2zXGxAhFnblz/T8KVqso386bF0i7dg733OrJk2Eoikx8vExyMu4y6OLFQmNWkqBjR93N3gX4\n4QcLffqk0auXznffKdzQVgZEWXbVKpnPPlNo3dpg9GiNlBSYOdOkUCGFjz5SGDhQJz0d/vvfMOLj\nJfr1Mzh0SPQomzY13CXdn3+W2LcPzp6FLl1EHxPg8ccNEhNh3jyFUaNSbmR43pnIndqtf/215cZ4\njIRhCPeWhx/WKVNG59tvBfHH6ZQoU8bgiy+s7N0rM358BpUr+87qcpuv3LNH/F6W4a23xIB/u3bB\n/P674i6lxccHUKeOwf+xd9ZxVpXb/3/vvU9PEpISgijdSgzd3aWEqIggNspFQRDExEAUvQgoXJAe\nQLq7u4SRTskRmDqx6/fHwzlnzsyZIdT7vb/LXa+Xfzhn8+x69rOetdZnfT4xMa6wyhnpWwu8Xvj1\nV4WrV+/8fHr3FmnZjh1FynXTJgs3bwoC/sqVdR56SNz/xo0KiYkiLXzlikzt2jq5coHDYVKsmB6o\n99aurTNvnoWHHzYDm0G/xcXp7N6t0K+fcIYNG2rs3GmlfXs10BIzdKidN9/0kStX1t9Co0Yivauq\n8PPPFgYNsjN/vptGjUIjeOEwbZkQpdWqaezYYf3btS8z2v9VhBnO7rWt5G7Eo1NSUkKccHR0NKZp\nkpw+dfVvsgfOYf4Zia9w5mfp8UOs75UhCARCNn06NuO1paYKJGPp0kFmIv950zMTqaqgvBs8WOfW\nraxJ1tPbsmUy/fvrTJiQub8svbVrp3HqlEJcXLB3dMUKGzlymHTvrtOggXB2hgHz5il07Cjup2VL\nIR6taQK4FB+v0LWrm6eeEqw1gwcHd/S1apkcOybx/fcKgwd7sFiSaNvWy7JlDux28VyHDRPP2eUy\nadnSgdsNCxfK9OmjkxFLFRdno25dG888Y2HXLonPP5cpWtSkUCGT9etlUlMlunXTOHBA5tgx9S9h\nPsnOhg2zkyOHeVv3U0TZffuqpKZKzJ5tJSbGZPZsKz6foBNcsMDN0aNyloQFu3YpAc3GrH5Pj5B9\n+WWV/v29dOuWM9DSsWOHH/CTfX/epUuCxL5DhzS++EK6I19pvXo6f/whUaaMOP+oUU5y5BAI17Nn\nZc6cEdH03LlWliyxUqeORkKCuNfERAm3W2L9egsVKuiULi00MKdOtdKpk6hpprfjx0Wvpn9T0bix\nztq1Nvr08TJ5spVVqxSOH5fp2zd7oEjevCZFihh8/rmNESPsLF6cFjZ96ycq8N+2H1RUo4bO7t02\nnE6BKE1PU/ffoH2Z0cI5alVVw1J6ZmeSlL14dGRkJElJSYH/v3XrFpIk/Z+gcR84h5ne/ozD9JMA\npKWlBUjS79c2bZKYPVtm2DCF8+czX9v+/cJZ2mzB9GtaWlomZqL9+yWKFxciwh9+qPPeewqGESRq\nyGjHj0ukpUm88IJBSorEzp3hHb3P5+PGjTQsFrhxIyLQmvLLLzInT0q8/bZOu3ZC8mv3bomICDPg\n3AsVEiTo27ZJzJsn8+STBvnz69SqZeJ2C87bbdvEea1WQUJQvrxGrlzJOJ1ORowQKdb168UxBQoI\nSrzcuQ2qVNFZsEAmMtLkzBmJjRtlXC5RH/NT5i1f7uPMGR+1axv8/LNCqVI2ypUT0c3SpQ5ee+0G\nsgwDB0YHMgW6ruPz+QKR1V+RYhs/3oLbDamp4vmASMc2aqQxc6aTokUNypbVOXxY5qGHYNo0N04n\nWQpGw51bRvzo2vT20ks+2rTx0LGj83YLUtaAn/To0h07RCpy8GCDGTOcXL8uZ8tXun+/4MPdskUh\nNdVk714LyckSXbv6uHxZoFlfeUVlyRILc+daKF3aoFw5QbY/fLiNXLkMTpyQ8XgEYcC+fWKD89JL\nKuvXWwLsQ4YBEybYePJJnTVrROT5xBM6Fy8q5MghHOAbb9gZMcKbJdduenv0UYMxY2zEx7spUSL8\nOy9aVPAonzwZ+r34BbqPHpUzIUrvpH35Zxh2/pNqmPDXi0eXKVOGAwcOBP5///795M2blxxZqaX/\njfY/h3mPEzQrgvb7HQ/Ehzd6tIbHA9Wq2Rg0SCElJTiWn7Ag43kzMhNt3y5TrZr4N02bGsTEwKxZ\nWb/i5ctlmjY1UBSBSv3hh8wiy/5NwaZNkVSpojJnjrjXK1fg6FGJZ5/VyZtXpFM3bpSZM0cw/qT/\nZlq1Mli8WGbaNIWePcXibLUK9G3jxjqDB1swDJMzZ3z8/jsoiklsbCw2m42iRcVm4YMPglHFgAE6\nZ88qHD6s8M9/ajgcMHasQOXWr2/gcBDo5ata1UaJEjY2bBCApZIlDVavFv2Y8fFOSpeOoGxZg82b\nrSQni8hKURQsFkug5SBciu1e3rNhwJAhDmRZAF5KljSIiDB5+WUV04SJEyOIjTXZs0ehYEGDqVPd\n2GxBQoFwDjMxUeL6dYnHHw8fYV64IOH1kknbEWDQoBRKlDDo18/B/v137tME0U5St67Oww9Dx44a\nP/wQEcJXmtERzJ4NHTt6bosyu7BYxP088ohQJ2nfXqVAAZNSpQTt3++/S9y8KVGtWgSLFlnwekU/\n5bFjCnFxGlOnWuneXSVfPpNHHzXYskXM1eXLFWJjTbp00Vi1SswRiwXq1vWxapWVUqUMbt6Uads2\n61YYvyUkyKxerVCggJml8guIzVhcnM6WLaGRrmma1KihhqXJu5P25f2q3fwn2b1c572IR/fq1YtJ\nkyZx9OhRbty4wahRo3j22Wf/yku/a3vgHOb9pmTvhqD9fhxmUhJcuiTRoYPJZ5/p7Nnj48YNiQYN\nYtmzRxCV795tUrJk6h2J4bdvT8/wA++/rzFqlAVNC39dK1YIhwkCLbtkiei39LMhBWujMaxcaaFv\nXw9z5ggU7OzZogVk4ECx2MbGQo0aBrNnC4eZ3lq3Npg/X+HAAYkWLYLi2K1aGVy/LuHxwIwZXsaM\nUejWTWf3bitud/D+3ntPY8cOKVAjff55gYqtWVPj+ect2GyCvOHQIZl162RKlQreq88HPXvqXLvm\nw+GAunW9xMQIh759u41z5xQGDRJ9mW+/bQ+8R79ajL9p268EAZnZY+4UHQwZYsPngyJFBD1f3rwm\nHg889ZTKsmUWcuY02LlT4eZNiSVL0gKtQydPStjtIkLPaLt2yVSpEl5MGritnRm6cfGbJME333g4\nckREgXcqOZmmICxo0EC86zfe8DF5so3ExPCOwOWKYNEiJ716qdSqpTJtmgswqV7dx6ZNoseybVsV\n0zQpXNjEYoHZs61Ur66zYkUqPp9E3rwmAwaoXL8uUaGCzrx5Vp5+WqRUmzcXVHYA331n46WXfDRp\norF6tWgvAWjQwMOKFVZWrxbHnTuXfdSTmCjRpYuTDz/0kpgocfly9sdnRbherZoQpb4by45hxy/b\ndTf10P+kCDM7jdmMx92teHTTpk0ZNGgQ9evX55FHHqF48eK8//77f8ct3dEeOIeZ3u7Wwd0tQfv9\nOMwDByTKljUDC1/+/DBhgsawYWl07epi8mSVvXslqle3ZksML6IRmerVgx9TvXqCCm72bFem60pN\nFQ62QQNxfO7cIir9178EgbJfuNrpdPLbb8I5tmzpIyrKZMsWiR9+UKhd2yBfvuCY1aqZJCVJVK4c\neq7y5U1u3RItHk5n8GNq3Fhn40aZ1167yUcfRTJzppN33zWoXNlk7drgfbZpIwjn331XLH5CUkll\n82aFY8ckfvpJpX9/nZIlBeI3JkYswlWqiHsbN07h9GmNBg28REeLTUmLFgIgVL++jXr1dGw2k19+\nEc354SwciXV20YF/YUtMhHHjbNhscOaMzNChHtautdCtm0ZEBHz7rY08eXR8PpEuTf88s0vH+gE9\nWVl2YtMgNhht2mjcvCndkTj81CkJTYMSJcTzLFzYpHVrlX/+M3yOc/duBZdLsBQ1aiTS/TYb9Omj\nsmGDFavV5PHHUzh71s2iRQrJySIKd7lMPv1UjPnxx15KltQxTQEYqlRJD2wc/Nyvhw7JHD8u066d\nxsMPmxQqZAQAQfXre1m71kLJkgZPPy2Qx1mZrsNzzzlo21ajVy+NevW0QHo3K4uL09iyJbTub5om\n1aurbNt2/4w/4Rh2Mm7WMtZD/672uHs1wzDumjntXsSjAV5//XUuX77MzZs3mThx4p/i/f4z9j+H\nmc1EC0eSfqcXde8OUw4hLPCP0aKFm9mzExk5MoIzZxTKlcv+Izx/ntv0ZqF/Hz5c46uvIvB6Q8+x\nYYNM5crB6MIwDHr0SGHiRAWHw0lkZGSgJWb5ctGnKcsSnTurTJ6scOKExKhRoWkut1tcQ1pa+GuM\njQ1eg6qqyPItKlZUiYyMwOuVKV/e5OGHRUS6cGFwakoSdOmiM326zJdfypw7B8WKaSQmSrz0ks53\n31no3dvg0CGZkSM11q6VcTohb97guVu2dNCmjcmKFS7sdoUxYzQcDpNr1yRatbLTvbuKYcCXX9ru\nauNzJy1M/8LWvLlo48id26BQIYMSJQTh+Hvv+diyReHkSfk2jZvQdUxvWfG7gh/wc/8OE+DIEZn+\n/X08/7wjwMcbzvx0eOkDhzff9DFhQngB8wULrLRvL8Svly8XmxxNk8ibV0TMHTrojB0bS6VKeXC7\nJfLl04mONomK8rFkiRWPB+bOlTl8WCIy0uT776306BF8NqVLi83OJ5/Y6NNHDdQmmzbVAvR2Dofg\npW3VSqVXL5Xp062ZeHb99tlnNlRVqMOAaFPxR6ZZ2aOPCsL/jJFr8eJC+/NOEXKI19wAACAASURB\nVO29WFaKI/40uJ8k5a9SHLlbC0e8HnGnJt3/z+2Bc5h3k0LNjiT9bse+W9u3Twog8dKjXwHKl1f4\n4gsByx8/PnuHKeqXmVNw1aublCihMW1a6AKwcqVIx6ZnJKpZ08BikdmxI5SRyF/rBG4jG2Vy5IDK\nlUPPtWqVTNmyJitXhk4rPxBo3z45pHHe5XLRpo3MokUWkpLgzBn/IqezbFkokXiPHoJV5Z//VKha\n1cbcuUJ82GolQA5fsqQggG/c2CA1VVxPnTpCIuvaNZnVq61s3SqTlCTAQxUqqNjtglItIUHGbodJ\nk6xZOvw7WUagR3x8DAkJImX8++8yP/10g48/tlKunEZkpIchQ6wkJ4u+0po19UwtD1nVLzVNiEJn\nVXv0eIQzTE9okNEMA7Zts/DiiyqdOmm89JIjS5T0hg0KdeuGbo6KFTNp0kTnhx9Co0zThAULBOGA\naQpmH4fDJH9+g82bhQbmkiUK33xjp0YNjbZtNWrVMnG5oGlTQWYxb14y0dEGY8Y4yJ9f48gRhcaN\nU9OlI03q1RM1y2efDTrSZs2CfZTjx7soWVInIUGhbFmDPHnMsFyv69YpTJ5s5ccfPQGUdYMGOuvW\nKVk6WBCbuHBpWUkS4tZ/Jsq8k2VMg0uShNPpzFJx5O+qhz5oWpjwADpMCCUvyDiB/CTpXq83LEn6\nnca91wm5f79EpUpmJvSrP1I5f16mUyeDr79WshU+3r5donr18Od+6600Pv/cGqJruHKlTMOGvgAj\nkbhXFy+8YDBhQvBjT04WxOx16wrZsXz5hHBvRtWUc+cE0KR3b51580Kvc9YsmWeeMTh9Go4cEb1T\n0dHR2Gw2WrYUSNd69QyKFIGZM2WKFoX8+c0AehYES48gJRB/Gzo0lVy5TMaMUahQwWDwYMFNO3Gi\nwtdf+7Dbhch0zpwKDodwEDNmKDz2mBEgZ2/b1kuePCYvvKCxZYsFl8tA1yV+/tlx5xd3B/vjD3j9\ndWcggm/RQqNQIQcHD1oZONDLokU29u0TK7THA0OG3ApBmSYmCicbDnxy5IhMvnwGOXOGP/eBAzKP\nPZY9I8+xYzIxMSb585u8956XCxckpk7NnD3RddiwwUL9+pm9x8CBPr7/3kpKSvBvu3bJuFwmpUqJ\nurWqQp48BlevysyYYSE1VTiVXr1UbDaJ9u01rl8Xuqhvv+2gRAmD+vUlPvxQkFacPy8iQ7s9lK7O\n59OJiDCJjVUD31yVKoIQ4sABiUmTInjvPS9Ll4p+5B491Ez3l5go0a+fg/HjPeTLF/x2ChY0yZfP\nZO/e7L/7jMAfvwP5ux1mRvP3f2eX8dA07W/vD/1vVyqBB9Rh+i29g/Oz9PhJ0v0E7fc73t1YWpqo\nDxUtmpoJ/eofa+9e4ayWLlUZPtzCunXho9gdO0Lrl+ntySc1ihc3mDpVvO5jx0xSU00KF07KdK9P\nP62zcqXM1avi327YIPPEE0LWSJIkFi60IMsixZbeliyRadbMoF07g5UrhUYmiGho9myZNm2SaNzY\ny/r1MSEbkKJFhcNo3NhgyBCNTz8VO/vWrY0QwoMzZ6BUKZPkZHH8li1WSpTQMQwhYbVsmczChRKH\nD0NiYgpdu6o89JDJL79YUBSBnJRl4UzmzhXjtmzp4fp1iYMHZYYP9/DHH4KqbswYZwA8cr/WuLEL\nwxDXCvDDDx6GDRPUcLIs8/zzUeTJY1K1qk5srEnVqnIIynTjRo1KlVRMM3N6bedOhWrVsl7oshOb\n9tvWrUHBaJsNJkzwMHy4jTNnQt/rwYMyefIY5M+feV4//rhB7do6P/0UdES//GKlXTuRjv3wQztW\nK6SkyFSqpHHqlEyBAgZlyxoMHOhj925Byr5nj0KTJhp79yqBtOjx48Khx8YKQo/nnovG4RCoXIvF\nyfr1dlQVzpzRApGUz+ehUSOVoUPttGzppmlTcX+//irTsaPKmjVBrU7ThJdfttOlixZWfaVRIz2A\nus3K0keYHo/Y4Pz2m0yZMsa/TVA6u/UmXGtLVvVQv/TZvaRyM0aYSUlJ/4sw/5vNT2fnT0nKskxs\nbOx962Peq8Pct0/j0Uc1rFYjALDJGP36GX5KlDCZMkWld28rGVuV0tJEi0dGsE3663rnHR+jRyuk\npHhZuNBHgwYqsbGZCeFz5BCCzVOnig9+1SqZJk2Ci/PYsXbsdsE8lF4oeNEihVatDPLkEVJdq1YJ\nB7BihY/8+XVKlVLo0EFhyZLQXf7ixaLv8PRpibp1TXLlgvnzZVq3Npg3T2HkSIVy5aw0aGDj1Cmx\n0FWsaKKqEv36CYmn2FioWNFg7lyFP/6Q6No1F6VKybjdEpIkOFfz5xeyUbouzun1isinYkXjti6n\nStWqOmlpgm1n2bJ7a75ObyNH2jh+XKBYVRU++sjDlSsSCxZYyJHD5PnnnTgcMH26m337FJo29QRq\nVP7IYO9eJzVqaCFahP7IQIhJZ92Enx1YyG/btinUrBk8pnRpg9deU3nlldDU7J3kvN56y8fYsTbc\n7qCiR/v2Gm63cHoVKujExXnZt0/MJ6tVbB6WLbPQoIHGyZMyDz8sSOglCVq00APXV7y4QUyMyUsv\n+di1S2HoUDFXFy2yUaKEQYsWOmvWRIUQLFSr5mXLFguvv56Cx+OmaVMvixbJxMYa1KunMW+emH9T\npli5cEFm6NDwbOmNGmmsWZO9w7TZTK5ckYiLc1GkSCTNm+egR49IevZ0cuqUnCWA7O+wu12vsqqH\nKooSKEX9Tzw6a3sgHab/Jeu6jqqqAZJ0l8v1p+DZd+sw/f2Nu3bpVKpECMAm/Vi3bsHvv0s8/rgY\ns149kyFDNDp3Dq2z7dkjZL8cWWQSJUniiSd8FCyoMX06bN7sokWLrLVA/alNXRetJ02aGFy7Bt9/\nb+f4cZnSpUWfml9G69Yt2LUrqKfZsaPO7NmCkWPOHCvdu5s4HA6aNDHZvVvi5k058JzGjVN48UVB\nnydJMGiQzqhRCmPHCtq8EyckJk/WmDdPxeMR+oljx6qcOaOQmirxzDM6J0/CkiXXaNRIo3Ztg4sX\nBVuQqopFPE8eg0uXxIJcrJiJYUCnTpbAtebKZbJ4sZUlS9y3lTMkxo27v7Ts/v0yX3xho2BBg717\nFfLmFT2C3bo58fkEx66iwLffenjnHQdFi5rUqxe6aEuSxI4dFuLiCNEi9Gcetm+3UKFCatjIwDTv\n3mH6I0y/vfyyj+RkKaA0AqL/MjuHWa6cIJCYMsXK3r0yNptwvqNGiTFSUyV27bJRvLiYG2+8oeJy\nCZ3L9u01tm1TqFhR1DejosyALNi2bQrJyRI9eqg89ZSo469YoTBhgpXvv7fRv79K69YaixdbQgBY\nBw8KYW6XSyi4NG/uY+lSC263m44dU/j5Z5njxzVGjLAxfrw7S/WfGjV0EhKCsnbp7ehRmS5dnDRq\n5CJ/fpNmzTTOnk1h//7r7N6dzPnzKcTF6Wzf/n8jKH0vdieGp6zEo8PVQ/+Xkv0vNX+90Ov1Isvy\nXZOk38nu5DAz9jf+9puLKlWyHu/AAYVy5cwQyrcXXjAoV85k4MDgH/2An6zO6a9fDBrk4+uvI9my\nRQm0k4SzJ54wiY42mTZNJiUF3n7bQtmyNr75xoHFwm39SYm33rLQvbuF779XiIsT9GWGYdCwYRIr\nVyr4fBEsX26nUyfxTFwuqF/fYOVKsUodPixx4oTEG28IDcVDhyT27JE4flwIGvfpo/P44yYVKpgM\nGGDho480OnQwWLVKYcqUZN59107BgqncuiVx4kQs331n3KaSM3A6BZLRYoELFwRln6II9OLDD4sI\neM4cB23aiBra/PkWHA4YMMCHacLRowoHDtzb55GSAs2bu1AUUTM1TejSRaV8+UguXJADz+3xxw3S\n0iQMA86dk6lZM5QQ3OOBQ4dC20b86bUbN+zcuiVToYI9bGSQkOBFkkzy5fNlCfK4eFEmLS3YJuI3\niwW++87DiBE2Ll4U/bG7dinUqpV9flrMKxvz5llo105FkmDyZEEyf+qUTJMmXn79VaFIEZ2lSy0k\nJorWkyZNhMO8fl1CUaB7d42ffxaOdssWhYQEma5dNUqVEpHm0KFeRo2yc+6cRPPmGg0bijSuP5I7\nf15i/nwrdetqrFnjwGKxULu2zOnTFv74I4LmzWXOnLHwwguRvPRSKoULJ2cZSdntokbpF6cG0Yr1\n1lt2WrZ0Uq+extGjqfTr5+PqVSnTZtVPn/d329/Rg5kRAR5OPNp9u+bi9Xo5e/Ysy5Yt49q1a/9L\nyf43WlpaWkBU+W4bbe/GsnOYfvRr+v7GfftkKlXKOo26f78l0EsY/Dt8+63G5s1SgDBdEBZkHic9\n4lZEeFZsNnjoIZH6zPo+hLMaO1ZBlkVdc88eH263hK5LzJqlsnOnSnQ0lCpl8OmnYtG7cEEgi/Pn\nFy0rY8Y4qFDBpECB4Nht2xosXWrHNE2+/17h+ed1bDaIizNo3drK/v0Sn3yicfmyRNeugm5v3DiF\nmBiBlO3YUWfOHJnHHvMyfvxNhg0TO9qOHW1s3CgzapTGhQuCu7ZfP9HYL8sQFQW5cgkg0KVLErIM\nr74aw+nTEuXLG+zaZeHGDRgyxIcsC3DR99/ffVrWMKBhQxdut3BEN26IaOvgQYXoaIOWLTUMQzzb\nYcM8fPCBjb59fRQoYPDQQ6HveM8eAU4KJ2Xqp7tTlPCRwd69TqpV09B1LUvauh07bFkKRpcubdC3\nr8rbb9vZsUO57ayyv/fKlQ1KlTKYPt1K27Yax44JSbe8eQWjkc0m+mO//trL7t0yP/1ko2FDDZdL\nOMYtWxSKFDF45RUf8+dbOXNG4upVifr1NXLnNm+/X43Nmy2UKaPjdkvcuCHhckG9ekESg9GjbTz7\nrI+OHTWWLbNz+bJEx45OIiJEBsFuF2CoK1cU3nyTO0ZSDRr4WL1auV0akaldO4LkZIndu1N56SUV\nh0OQwm/e7Nf4DDqvGjX+PQ7z32UZ66Gu22rzFouFS5cu8e233zJ8+HDee++9gLTX5s2bw4KKfD4f\nffr0oWjRosTExFC5cmWWL18e9rxTpkwJCEtERUURHR3Nxo0b/9Z7zc4eSIcZFRWFy+VCluV7qjne\njWUcLz29XERERCCa9Xrht98kypXL3mGGq0tGRcHUqRpvv23h3DkB+EkfYWY8p39nKEl+4IyIbrKz\nbt2EuPTQoRo9eoj6YKVKGo8/rpM7t9iBd+pkoCiit650aQ+1akVw8GAsLpeLjh0F60/nzqHpvJYt\nBQ3d+fMQHy/z/PMCVbt8uYzDYTJ3rka/fgYnT4pm90uXJD7+WOHbbzXApGpVN5cumZw6ZaFBA5l1\n64Tjvn5d4l//khk8WNQJT5+W2LtXols3wQqUnCzEsEeM0NB14eAiI00aN3bw5JMGOXOaLF9uweWC\nVq18GAbMnWsJkJRnZ4YBPXrYSUiQyZVLRFUeD3z1lYdatUTD/aJFFooXN+jYUWP8eDs9e6pcuiRn\natcAAcjx1xcvXpSYPNnKyy/badbMycsv29m3T6ZZMyevvWbn558tgR5KSZLYtctKjRpmSH3KarUG\nAEVut5sdO6w88YQ3y/rUm2/6OHZMZsIEK/Xq3R36qWNHlVu3BPXg66/bURTYt89C//4+pk93YrNB\nvXoGPXsKBZH27TVOnpTweiUKFTLo3l2lYEGTKlV0vv9ebOzS91527qwSH2/h0CGFp55SGTBA1Frb\ntdOYP9/KqVMCkPbqqz6aNlVZt85O7douatbU+fJLDwsXWjh9WuLQIZH6l+U7R1J16rhZvVph8mSD\njh2d/OMfqYwbl0KOHMHnVaqUwY0bonSS3qpW1Tl6VA5BEP8d9n+tVGK1WqlevTpLlizh1Vdf5YMP\nPqB58+acOnWK4cOHh702TdMoXLgwmzZt4tatW3zwwQd06dKFc+fOhT1HzZo1SUpKIjk5maSkJOrU\nqfN331aW9kA6zOzaSv6KcSFz+jUj9+vhw4Io3enMeqwDByxZikZXrGjy8ss6PXtacTjg4YfvfE4Q\ndGsxMWagdzEr89d2zp2TbhNcy+TJY9KgQTB9+PTTGhMnShQurPHNNxrjx+v07Gln+nSZxo0NLlyQ\nAv2bfouNFajdDz6w0aSJABcNGmRhyRKVpCSJixdFyvfll0WEmzOnSfnyBkWLqiQnJ6PrPtq3N1i8\nWOxwq1Y1OXJEXNPu3SL1mpAgeFSnTBF1zIgI4dSOHpU4dixYa3W7RaQ5dqxwjAsX+pHCXiIiRGP6\npEnZE1X4fNCnj4OlS63IMiQny4DQdSxb1mDcOBsnTsjIMvzxh8QjjxhcuSJAWH5+1oy2dauCxWLS\nooWTGjUi2LRJtM4MGeKjYEGT99/3MmSIj5IlDVautFCxYgRPP+1g926ZHTtCyQ7Sgzz8vK/bt9uI\ni9PDAoo0TYDQxo71smyZ5Y5oW7+dPClToIDJtGlWtm4V9UiXCxYvtpIrl0nlykJmrFMnjYsXJWrU\n0Fi9WmwcL12S6dhROOZevVTi463ouknjxsFzFysmxAeqV9f48EPRBjNtmoVmzQQV3YgRdvr2VcmZ\nE+bNs6JpEs89p/LOOz4aNdI5fFjhxRcdvP22D6fTZOfO8PM/fSRVqpQNr1fmk0+iWbgwmXbtvJlk\nz3RdJS5OY9Om0PGcTihfXs8kRfZX2/8Vw09W4tFlypShV69efPvtt6xZsyasw3S5XAwbNoxChQoB\n0LJlSx555BH27Nnzb7n2P2MPpMP029/hMNOTD6RPv4bTt8wqHQuijy8xUc5SMQEEj+u1a5A7t4mq\nqpko7TJuDK5cES0Yw4bpfPpp9nJe27dLlChhMmOGwtq1Ek6n0EJs2FAN3OPjj98gJUWiShUJu91O\n06YmK1aI9pePP7aQKxdhF6aWLb0sXCg4aWfOlNmwwccTT5i0aBFk+Hn2WZ0VK2SuXJFITjYDbEtR\nUVF062YSH28LXH+uXFCzpskjj5jEx/t47z2NRo1EZPnzz3JI/+nPPyusWSPOoeuibidJ4PXCsmWi\nvla3rhr4+5dfWrOMxs+fl6hWzUV8vLiXIkVE+0XevILm7tlnndhsJo0bq6iqQJR+8YWNCRM8mKao\nD8bFBSM404RFiyysW6ewfr2Fvn1Vjh9PYdIkDy+8IFC8p04J51K7tk7//ipTpnj49dcU6tfX6d7d\nSUKCHBIBZbTERIlLlxQqVZIzAYog2GpQuLDol12+XLpjq4EfHfv2215GjLBjGKKdqFIlnchIkytX\nFLp3Fy9h716FggVN5s618vPPNooUMShfXqdgQfP23BA15Vq1QuXa3G7BuyxJog1GtOnYSU6WqFpV\nZ9UqoYc5aJCdCRNsvP56CidOiPdstwsVkt9/l3n5ZZWuXTVmzcp+I6Tr8PrrdqxWkx49VMqVkzOB\nYvzk/NWqeVi7VjgRVVUD/Y21aukBkvi/0/6TtDDvp4Z55coVjh8/TpkyZcL+vm/fPvLkyUPJkiUZ\nNWrU36oteid7IB1mxgn2VzlNP8AmveRXVmCi/ftlKlXK+sXv369QtqyWJbk2iMW+cmWDY8cgIcGN\n0+nMEnFrmoKftW5dg44dhYhyVj2dAKtXi9aOQoVMPvrIQqdOOhcvylSo4CMlJQW32337XJCcHByn\nVCnRSjJ7tqgX+Xse01tsrElqqsSpUxKrV6sULCj+LiTCxLVHR0NEhEnFij7OnpVJTo4NsC1Vr26S\nlgaHDwfHfucdjSNHJMqVg8GDDd58Uyc2NkiRBgQo1Gw2EcUCASQtiCj00UcjGTHCSdu2XqKjTdxu\niRkzQp9naio895ydcuUiOHNGvs1JqxETAzVqiB7EOXOsXL8uIqbNm62ULavz1Vc2xo3z8NhjgvP0\nsceEJiiItpp27ZwMGWKjYEGTjRvTaNdOC0Fx7t2r3FY6CX2e0dHwwgsqX37p4eGHTRo2dDF5sjXs\nhmj7dgtVq6ohzsgfVaVvNdi1K5KaNTUWLrSzc6eeLUoyIUG08PTqpZGaKsZ0uUQPZ/fuPlQVunUT\n6dX58y306ePju+9sHDokkzu3QefOwU2D2y3eQ0anP2eOlapVDbZts5CSAmXKGPTpozJwoJ2UFMiT\nB1591cGRIzIrVqTQs6eblSuFpNrFiyKzkCePQCh37qwyf74Qig5nug59+zo4cULm8889mWqRGfle\nGzVS2LYtiPrxbzoqV05l0ybpv0b/Mr2FizCTk5NDhJ7vxjRNo0ePHvTu3ZvHHnss0+9169bl8OHD\nXL16lfj4eGbMmMHo0aP/1LX/GXsgHabf/ICfPzuR/anQtNu9Huklv7KyvXuz7psUvwvnlN05PR4P\nR46YdOvm4913c2K12rLdba5eLciwhTKHzqefZg17X7NGHNutm87OnRLR0UIyCbRAEf70aRtWq8T6\n9aFRXO7cokZ04oSoTabTfgXgk09c2O3wyis66SXtGjUyOHBA4soVg7lzvbhcOgcP2mjWzGTBguC1\nyrKomc2dG3zGDRuKFODHHyu88YaFfv2sfPGFkP5KSPCRJ48ZcD6aJtRZZJnAf34HouswYYKTadMc\npKUJxzpokIMDByRmz7bQvLmTggUjWbrUGkDDduigoqoSZcvqyLJE0aIGy5ZZ6NFDJS1NSImJlKCP\n5s1FmnHdOoX69QV93E8/uahf30XDhhovvKDSpIkWFpCTnXYlCLBQ164qy5a5GT/eSr9+jkw0f1u2\nKFSvnvW8AvFdbNhgpWlTnZEjvQweHIvDEVTR8KMk/YCiefMkWrb0kZAgqO1kmYA494oVVgoV0gMI\n4b17Ffr1C7Lz/PqrhbZtg55r/HgbLhesWmXBe7vbxjRh3Dgrb7zho0YNnV9+ES/rrbd8HDwo0LRn\nzwpkdXy8m5gYkzx5TCpWFOQDb7zh4MUXVU6cEBmLRx4xKVHCYPXqzLtRXYf+/R1cvy4xd64gPzhw\nQAnLmeu3UqUMUlLgwgUlhCSgdm2FgwetuN1mplTuX8X3+p+kVHKvfZimadKjRw/sdjvffPNN2GOK\nFi1KkSJFAKGLOWzYMObOnXv/F/4n7YF0mH9Wkiu9pU+/3i3q1usVdbby5bM+7+7dMhUrqmGvzU/f\nl5iocvashc8/l7hyRWL69KzrMoYhIsyGDUVU262bwenTEtu3Z77W69eFuHS1aiISVBRYssSgbl0v\niqIE0r1Llsi0aWNQqlRoTXTRIpn69Q3i41V0HcaNC/720UcKJ08qDBzoCVDU+c1uN2nQQGPWLB8f\nfBDB55+b1KtnEBlpEh8femynTj7i422BdKkkCbagceMUzp6FXbt8dO9u0KWLoPrr3dugXz+dJ58U\niM1JkxTy5hVIUYtFaDSmf22C8EA4gORkiUaNXPTr5+DwYRmHQ0SmuXKZ1KkT5CsdOdLL3LkWNm9W\n6NnTx/XrMuPHW9E06NlTDSFXX7/eQuXKOk8/7WTWLCerVqXx6qsq27eHEgqkt3C9k+F+F5qfaWia\naHO5di14Y1u3WqhRI2vSA7+tXSvo8J5+WsPlMpk0yRaIqtLrYFqtVhYtstG8eVpATSY62sDng3fe\ncbNxo0KjRh6E4LiFRo00LBa4eVOISNeurYVQ/M2aZaFaNZ1y5YzAJmndOgVJgvr1dXr0UJk2zXp7\nvohyRFqaRMGCJvXq6SERebt2GmPHWjl3TmLwYB/Nm2vEx4sxu3TJnJY1TZGGvXhRYsYMIeDtckG1\najobNmS9uZQkgZbdsiW4YZUkiZgYmZIlDQ4dcoVN5WZE5d4PVd1/UtSampp6TynZ559/nuvXrzNv\n3rx7auv7v7znB9Jhprf7dZjpkajp0693M9avv0oUKyYioqxs715BJ5Z+vPTqKQ6Hg6NHo6lYUYzz\n3Xca775rCdtoLUkSR4+Khb54cfE3qxUGDtT47LNwhNQytWoZKIrB1KnQrJmHzZtttGgReuzSpTIt\nWxr06qXzr38Fp1J8vEzHjgZPPmny3HM6n30mrmvxYpmvvlJo29ZH794qy5cHKfT8z7N58zR++imK\nvHklmjUTwKY1a2SOH5c4ezZ47jJlDKKjTbZuFQvU5ctw8KCQoRo8WA+0QgwcqPHjjwo1awoO2QED\nVB57TNDRXbqkoGkiIrpwQaB0/WxADocZsvh6vWJst1uiSBGNHj1SSUmBfftk2rTx8vzzXtq0ceLx\nQLFiBv/6l+hLlGWT6tV1vv46SE5w65ZIJ//jHw6KFTNYuDCREiUE6UB6hGx603XRUpKVw/R6CRGD\njoiAiRM9NGqk0aSJizNnBBHGyZMKFStm7zBPn5ZISxMtJpIEX33l5ZNPbCEakf6G9zNnrFy/LlOl\nipW1a+23o0vhDBMSfCQlSXTtKtpa4uMVOnRQmT3bQs6c4n7LlAk6iAsXJM6ckenWTeXFF32MHy8y\nCOPG2RgwwIckCYL1336TOXlSYs0ahV9/lSlc2KBqVZ05c0IdYK1aAnTz2WcebDbREzt7tjimfXuV\n1astIdmP99+3cfiwwqxZ7pBvs3FjjZUrs1/Q69TR2LIlc1apdm2NTZuUwDPLKN0VTuEmvXTX3aRy\n/1MiTMMw7trx9evXj4SEBBYuXJhtNm758uVcvc3TmZCQwKhRo2jXrt39X/iftP85zHt0mOGQqP4X\nfrdj7dmTfTr28mVRyylcWA+cM6N6it1uD+GPrVrVpH17g/feC78TXr/eGogu/darl8HevTIHD4ZO\n/DVrJOrWVVm/Pg2vV6JrV9HXmD4S+OMP4aDq1TPo0MFg61aZS5fg5k3YvFk4UoAPP9TRdWjf3kq/\nfhYiI2HAAM/tlJnJihVS4HlarVZatrSTkCAxcKBIS9asaRIVJYi1588PfoySJNGpk5fp0xWuXIEm\nTaw8/bRBwYLwwQfB44oUEb2fW7cKBO4jjyRz6ZJC6dIwYEAakZFCzNk0hTM0DLDZDFJTpUBKMG9e\ncS8LFqQxerSH3LklJk+OwOcTrS+TJjmIi4vk0CGF0qU18ufXsVhMcuQwt7C0zAAAIABJREFUKVrU\n5N13Q1OgI0bY0TT49FMvH37oDdRWExJkoqIIAGDS26+/yjz0kEg1hrP9+2UefdQIEYOWJCEj1q+f\nj5YtXSxYYKFyZY07VAtYt05El/71sGRJg2eeUXnnncy0OAsXWmndWmPiRFEz9TP6NGum8f77ObBY\noEwZ0Vd76JBCtWq3+OorK1argSSZbN0abO2aOlWkuevU0WnaVOfaNYl58ywcOCAH6pw2G3TtqvHT\nT1Z69XJSvbrOkiVu1q2zcOKEqIv7F/PRo20UKmRy+bJY5urW1blwQZBl5MolyAUWLRLfy7ffWlm6\n1MLcuWmZ+l+bNNFYudKSLUiuTh2NzZvtmY7JSmjab+H4XtNLd90plfufEmHey3WcO3eOH374gf37\n95M3b95Af+WMGTM4f/48UVFRAfHoNWvWUL58eaKiomjVqhWdOnXinXfe+btu4472QDrM+03J3g36\nFe48ebZuldm7V+LHH2WSkzP/vmePTJUqJrIshYhXZ1RP2b5dDiEsGDFCY+lSOUTlw3+P69fbMjlM\npxNefVVn9OjgB61pOqtXS9SsmUp8fDTPPGNy9KhC4cImc+ZYAve2cqVMnToGDoeIZtq2NZg+XWHR\nIqE84l+4IyKgeXPjNn2fQd68JpUqCcBI+/Yqs2YZqKoaeJ5z5ijkyWMG+tokCQYM0ElMlDKlZTt3\n9jJvnky7dlY6dDAYMkTnhRc01q+X05Fsm7z2WhoTJijUqqWyf38s9esLIoFZs5x07ZpGly5uevb0\nBByEzycUN/x25Yo4b7t2Lv7xD0EP2KCBxrVrKQwa5CMlRcJqNcmVy+TyZYWtW6106uRhzpzrXLsm\nUaVKKqqq4vGIHsU5cyy89JKP1q1Dexw3bVKoUyd836OIPLPuidy61ZJlKvfFF1Vef93Hu+86KFPm\nzm0ia9eK+mp6GzRIkKVnFFb+5RcLbdpofPmlIJa/fFmiZUuN4cO97NihUL68qBUvX+6ieXOd3btj\ncDrh/HmFVq28nDkjM3myzpo1KhMmWIiONsmfX0eWTfr29TFypI3nnlNDmHS6dFH57jsbkmQyb56b\nhx8WfLOxsWYggly1ysbOnQr/+IeXmTPF3ywW6NBBC0SiXbuKiHPuXAvffWdj/nx3WEKPRx81AyCm\nrKxYMYENOH489JgaNXT27lUCJPx3suyo6sKlcv3O89+NHA0XYd4tCUzhwoUxDIO0tDSSk5MD/ZVP\nPfUUhQoVIjk5OSAePXr0aC5fvkxycjInTpxg+PDhfwkr2/3aA+kw09vdOMys0q/hxrobO3xYon17\noepRqpSNESOUEMe5a5dElSrCqaSmpgbEq9Orp4gUnRRCWBATAx9/rPH665YQLT+fT2LnTgv16mX+\nqF54QWfdOpnffhMMSPv3p2IYEqVLRzB/voXu3XVWrZLp3Vtn/Pgg8nLJEpkWLYLj+dOyc+YIOTK/\nmaZo6o6NhW3bZJo00QGxc27Y8BZr19pRFPE83W747DMLr7yiEx8ffL6dOxucPy/djiCC154vn6C+\ni4yE4cPFDT/7rDj3jz8qAQrE/PndtGmjYxgWli+XadtWZeNGmc8/97FihYuVKx3s2mXlscc08uYV\n46Slpd9UgdMZnCPXr0usXWshNjaSQYPs+HwC5JKYKFG9uk5CQirffKOza1cUTZpo2O0yly4ZtGrl\n5Px5gxw5DNq1c6Np6VtKTDZvVqhV6/7ql1u2KMTFZf37Cy+oxMaaLFxozZaMQddh48bMcl4uF3zx\nhYc333QE0ujnzkmcOyeh64IMwx+lv/OOD59P1L79n8m8eVbat1f5+msbjRoJlZl9+2xcvSrz7rux\nvP12DDduyJQvH5Twqls3hdOnZVq18ga+URGZi5aiZ58Nike/8orYuEyeLEStBw2KYuxYDx06aOza\npXD1qrjnrl1VZswQrULNm4vfBg60M2eOcLxZWdOmQa3N8GZSu7borRXPQaCpnU4BCtq58/4X+exS\nuSDWp/tJ5f4ZC+cw/1Oi3b/T/ucws3GY2aVf72c8EB/SiRMSb72lM3OmxoYNPs6dk6hY0caiReJ1\n7NoFpUoJihCXyxVWvProUYmHHjJ56KHQ8bt2FdHdxInBV7ttm8xjj4UiUv0WFQUvvujjo48MdF1n\n584YGjY0WbxYoUoVkQ49fFji5ZcN3G7RlqCqAnHbrFnQMdasKWjnNm8OdaTffCMWENMUtcJffpFJ\nShIpyuLFo6hSxWT5crGYTJyoUKWKwUsvGezaJXHtmhjD4YDevUWv3qxZwXrQhx86yZ1b1Br9j8ev\nlvL11zI3byYFEL1Dh+ps3iyzYYNg19myReHCBUGxlpQk8dxzHnbv9rF4sUpEBFSpEhR09jsCAI9H\n1DL9/YCSRAA4tHPnTaZOTSZHDkGGvnixhdatdQ4dctC8eU7q1TP5/HMfqakypUtrgXSbGNfL5s0K\nNWtmBnqZJtk6U10XhOtZRZggehhv3JDo1Emle/ccYTMbIGrnBQqEl/Nq0kSnYkWd0aPFN7BwoYWW\nLTWGDnUE0MYFC/q1MC1ERAjtzq1brSQkiKg9IUFm3Dix8frqKy8XLqSQO7dJ3rwmTz6p07ixGQAU\nzZ8fQcmSOjNmKKSmppKamsYrr1g4c0awAx0+HHRCLheMGuXljz8k+vaNoGFDH/Xq6URECC3SuXOF\ns6tc2cDlMtmyReHcOVFqaNdOC6mlhrOmTTWWLw/vMFVVpLGvXpX44AM7hQtHUqhQJMWLR5IvXyTH\nj8usWvXXRkX+VK4sy9hstntO5f7V5vP5MpGk/DfaA+kw7yYle7fp13BjZzcpDx4U6iP+FFPx4jBp\nksaPP6oMGqTQv7/B7t0yNWtaURQly3Nu2xZeMFqSYMwYjVGjLAGHs26dhbp1M8sY+TVAe/a8xcqV\nDhITo1i3TqFhQ8HA06OHiD5r1DCJiID+/TUmTYpg61YBzU/PEStJUKGCSe7cZqAGtG+fxGefKUyd\nqlKihMGjj+o8+qjKl18KBiJZlunaVWf2bAH++fJLhSFDhHBw06aCR9ZvffvqnD0rkMD+Rvl582ws\nXKiyZ4+oT4JAEPfunUJaGmzfHovzNpVS/vw6zz6r4nSajBwposJZs2SmTbtB3rwmCxY4kWWJUqVE\n7TEpSebcOQ+3brmx2YRz9KdpO3d20717Gq+8ksrixUm8+qqXF15QKVXKGljEEhNN9uxRuHjRoHNn\nJx9+mMa773rYsEHIZTmdwXQbwLFjViIiTHLlSsvEvHPsmCD3LlIk/Lw6fFgmb14jwLsafr4oVK6s\nM3y4hzJlNJ57Lrzm55o1Fho2zNrxfvqpl8mTrfz6q8wvv1ipXVvnyBGZ6GgTu92kZ08BKJozR5A5\nvPmmj3feiaFBA51evVy3naOoCzZooON0Qt++PnbsULh5U+LJJ3UkScLtlpk82c7o0V6mT3ehaRF8\n+WUMv/5qJSlJ4pNPbrJ/v8SRI77Ac+rcWSUiwmT9egvvv58auOZu3VSmTxdOWpIEYnnCBCudOzvp\n1893V2w8cXE6x4/LgUgVRKZh1CgbZcpE8OGHDkqV0tE02LUrhevXU7h8OYXff0/h4489bNv29yiX\n+CO9e03l/lkB6QdR2gseUIcJWdPj3W36Nbtxs3OY4QA/pmny5JNpLFt2jVOnLLjdEk6nJVsHvW1b\n1oLRZcqYdOumM2yY+EjXrlWoXTvoMP09nH4N0CJFonn+eZ3Roy1s3ChTurSoObZpY7BqlaC5A0F+\nvmWLjZkzQ6NIvyUmSly/LpGUJCLp3r0tjB6tkjevh7NnTf74Q+bbb2HmTDt79oip17atwbp1Mt98\no/DEEwYVK4pn06mTwZw5wedeqBA0aGCQmCixeLHEG284+PHHZAoXhvbtDX7+WQ7URNq0MdE0iS++\nsKLrOpqmkZIiopDr1yXWrJF5/fUUChUyadzYzqef+ti3T+aLLyxIEnTrpnP+vMTFixIWC/TurQXQ\ntKKf0Mb338PQoTqVKulMnWqjW7ebpKSk4PP5ME2TRYscREfDTz85WLo0ldathbbl6tVi85Jxx791\nq4P69fWwIr9r1+pUq+bNMlLILvoMHmOhVi0B5Pn00yR8Phg8ODOIZ+1aIeqcleXLZzJsmI++fR0c\nOyazeLEQFE9KEot2x44qR4/K/PGHRFyczoABPs6csbB0qaDBW706jQsXJF58MYjUTUkRTFKnT8uU\nKyfm1dSpVuLidOrUMWjcWOPll53MmWOjRQuNMmVMWrSw0aOHxtSpEYHndOVKGoYh3n1amhF4TnXr\n6ty6JbF/v5hzrVtrLFoklFXef9/HzZtSCAlGOLPbBTnFypWifDJypI0qVSJITJRYsMDNqlXJDBuW\nSvHiBmfOBOetzSaI448cydyP/Hfb34XKhfAOMzKcWsB/mT2wDtNvfgd3P+nX7MbLynbvlkMUSNJT\n2hUqFEXv3iKSqF/fyvnzWbepbN8uU7Nm1ucZOlRn2TKZtWslTp6UqFJFLFB+EJHX6w2Q0EuSxGuv\niUivQAGTVasU2rYVElkrVwYdZlQUdOqUxoIFSgAF67fERNi/X6JhQ4NZs2SGDlUoV86gRYubrF1r\nkjOnTHQ0nDkj89FHHl57LQJVFdyydeoYfPGFwrvvBhf9Zs0MDh+WuA2WA+Cll8TvAwZYefttHxUr\n+vlHvUyaJKGqOjExMeTObadFC51ff5XYvl0gIMuXd3H0qETPnm6uX5fp3x82bbKSkiLRsqWBLMOU\nKRZGjbLSoYN2u/dUuX0touYm9DhN1q8X0ZDVamXp0gjKlTOpUkUsRhaLhW3bJIYMsfPwwyrLliVS\nrJjvdgRgY+NGK40bmwHif/U23cz69TJxcb7Ajj89886uXS7q1DEzqWr4o9BNm+QQir1wtnGjQu3a\n4vlZrTBliuiRnDgxmEYT7S7Zp3bF81ZJTRVUgEuWWLBaxZjFixsUL24SH2+hQAGT2rU1Zs60oqri\nu+jb18fy5RYUhUCNVNeFc+zYUUWWRc3T54NvvrHx+usidR8XJ3Qvv/sujfHjbYwaJTZ/zz+vMmOG\nDVUVz2nkyJy0a6eRJ4/BO+9EBSTPPJ40nnrKzeTJFlTV4J137OTPb1K4sGgj8tc172TNmmlMnGjj\nyScjuHhRZtOmVL76ykvp0sFvoUEDLRMhgtMpUvzZoWXv1+41xfpnUblZ2f8izAfEJElwZd5P+jWr\n8e4UYT7xhBlIh6ampoZQ2u3eLdG7t0H//jqtW0dz6lTm67hyRbR1lCyZ9XliYuD99zVefdVCXJyB\n1WoGIrBwIKKHHhKRqc0G06bJ9Oih89tv4tz+80iSRMOGXm7dIhPH7YIFghmob1+dr79WmDdPZuTI\nROx2OzNnRtGnj87TTxtMm6bQqZNKvnwGY8aIBSRnTrHg+qNLEDv6Nm1Co8w6dYT4840b0LevGgBF\nPfZYEjExErt3R98maTDo1ElFliVatXKyZYtCfHwS48Yl8sUXXgwD/vUvOzVqGCxbpuBwCKf96qsq\nS5YofPmlFacTZs5UMAwYM8ZKbKx5m+BA1EzfeksssP/8p4V+/TQkSSI5WeHddyPo3TsG05SIj9fI\nkUOw4/h8PjZu9FCggEbOnN4AjaKqqlitDrZutVKnjiBETy9srmlioa1Tx8ikqmG1CvDK1q0WKldO\nDghKZ1zkbtwQ6E1/jyaIjcrMmW4++cTGxo3iGW/cKMjWsxIE8Jssi39/5Igc0P3Ml8+gc2cV04T4\neCupqWLu/OMfdpo08eDzCYq60aNtPPSQyY8/Wlm0yMKPP1rIm9ekQAGT2FiTGTMszJkjlF2qVjX4\n7TeZDz6wU6OGzsiRDjp00Hj8ceGgihYVxBFTp1pZssTC1q0WPvzQx+DBaSxb5sDncwUiqu7dhXTY\nwIEKiYkGn312iwkTLGiaTrduojc0XIrab9evixaX/ftlvv/ew/jxHgoXDs5Xf8TVsKHIImS0+vVD\ntTX/Svuzovf3m8pNf96kpKT/Ocz/ZvM7So/Hg6Zp95V+zWrcrBzmrVuiObtYMXcgHeqPZP2Tb/du\nmSeeEMCXN97w0KZNBGfOhI6zbZuQ85Lv8PZ69TK4eVMiMtK/mxcRWDgQEYid/bFjEikpEjVrmoF0\nbPpDjx61UqiQydSpoSefO1ehUyeDKlV8nD4t0b9/GkWLRpOc7GDVKpmnnjJ4+mmd+fNlPB6J0aNT\nGTNGISEBVq2S8Xrh999Dr6dbN51Zs4Ln2bpV9Ek6nbB6NQGUaWxsDM89ZzBpkoyqaixYIPHee3aS\nk0FRTIYOvcnjj/uIjIwkIsJOs2Y6n39upVEjLdDb2ayZzrZtCmvXeoiMFECO3btlRo8WIKdnnxUM\nOqdPy7edgoVt22SuX5eoXVvnm28sVKrkxOuFYcN81KljkCOHFOLktm6NpnFjsbD65x3Anj0m+fLp\n5M0LNpsNm82GxWJBURSOH5dQFJOHH/aFEHubponFYuH4cSe5c0OxYk4cDkfYKHTDBpMnntCwWkPn\nZbFiJpMmeXjuOQenT0usXq3QqNGd5byuXJE4eVLGbhcbGJGmlunQQePAAUGTeOWKcI4REWLOgEDK\nnjwpky+fyYEDMtOmWRk61MFvv8n89JOVJk1URo60M3q0jYEDfSQmSnTu7OSDD7y88oqoc772WmhP\n6yuv+Bg71sarr9r54Qfx7nr08BERYfL2245ARFWkiIV8+UyWL3cxfbqHJk1MNA3WrzcoWDCZAgV0\nli83MvHkAqxerVCjhovSpQ2qV9cDKOFwVqOGzokTciYkcoMGGmvX/j0R5t8lIJ1dKtefkTt79iyf\nf/45hw8fxpFRRfu/0B5Yh+lPvyqKEpgcf4Vl5zB37jQoW1bFMHwh6VC/+Xxw6FCwxvnccz4GDPDQ\nsqU1AOCBrAWjM5ppGsiyydq1CsnJEpGRkYEezox265ZwliVKCMSiLBNSv/TbqlV2+vTRGDs22Lpy\n9argxq1VK4kRIyRKlzY4ccKJLMtMm6bQqpUgGX/4YUGwsHixhSJFDF57Tefpp61UqCDID2bODF1Q\natc2uXpVIiFBIiUF+vSxMnasIPOeOFGAhiIiIpAkic6dfaxYodCggZOPPrLz+ec+evb0Ur68yrhx\nQf1TEI7Y5TKZMsXC8uUKXbrYmDJFYe5che7dbTgcJi1aCN3MUaOsNGumUa+extWrUoD4XJLguees\n5MtnUq6ckx07ZBYs8PDNNypr1ii0bZvZ8axapVC/vhtVVXG5XMTExBAdHc3WrS7q1hWo2ZSUlJBa\n6ObNNurWNbDZgiCw9FHo+vUQFycWsHDajlarlU2brMTFeQMRqGEYgSi0Th2Nt97y8dRTTlatstCo\n0Z37NBctsvDEE1qAdN/rhQoVdAoUMImPt/LYYzo+n9jY3LwpcfOmzOLFaXTqpCHL8MknHsaO9fLR\nRx5cLpN161K5cUNi61YLSUkS165JVKum06uXg3btVJ5+WuOHH2yUK2cE+iz9VqWKQXKyqJf6eXZF\n766befMsAXai+HgL165J5MhhkiOHjM1m5cUXNaZMEb3N3burzJrlQNd13G73bUYtN8OGKQwY4GDS\nJDcjR4re2SVLso4UbTbB7pMxLVu+vMGNG6IN5/9Hy5jKBSFKb5omly5dYtq0aXz66adUqFCBvn37\nMnHiRDxhmk/vRTwa4KuvviJ//vzExsbSp0+fQAnj/8oeWIcpyzLR0dH/ll2Rn9Ju61aNqlVNoqKi\nQtKhfjt4UFDm+Wvnou7jpVMngw4drAEliK1bZWrWzBrd5gf17NuXgsUCzZubjBkTlW2qeONGmapV\nBWHAsWMSJ06IiK5Bg+B5btyAgwfFQvPQQyYLF4o63Jw5Bg0aeDhxwsqCBS6mTdP45ReZ69fhxx+F\nSLTfnnlGZ9o0G6Zp0r+/zrFjErVrG/TooTNtmhzClKIo0KWLzvTpMu++K1oumja9QefOPjZssHPr\nlkgZXbyo8/bbglc2f36TjRuTqVbtJp07e7hyxcrixTbOn5c5elTi5ZdtvPKKjStXJI4fl1FVQRTh\nbxFZt05h5045IA0VESFaNnr3dnDpksSNG6IX0OeDc+dk6tbVWb/ew7RpPipUMElJEcCZ1q1DHc/F\nixonTkhUq6YRFRUVAPX4ic6bNCEgMG4YEZw8aWPvXpHqfvRRN7duib5NSZJCotDNm23Urq1mSONq\ngZSs/5gG/4+99w6Pquy+vz+nTM0kkQ7SIoKAKEoVEAi99yJdaYoUlSKgiCKKCAhILwoC0pFeQwlV\nqUpRehcQKdJSpp7y/nEzkwxJQH3U5/m9ftd1eXmFZM6cc+bMve+999prVZNCATQYdIM9vg4d7hET\no3HrlkTBgo/OMFeuVO9LCUK2bCa6DhUqiD7vkiUqO3aoWCxC/LxqVY2SJQNUqGBw9qwo4W7dKp79\nGTOsdOgQwDQlcuY02bfPTebMBm63RKFCLvx+GDLEz5o1Kr/+KvHllx4mTbKEaeOOG2clZ06Dc+fC\nn53XXvMgyzBokI34eIUBA2ysWuUhEJDYs0cEs6ZNA8THi2tp2VJn+3YrbrfYbCQnR9C6dSYOHVLZ\nvPkWJUsmkJycTM2ayaxbp+Lzhff1Umd6tWvrbNoU/v2WZahWLf1y7X+C/6aBtKIoxMTEMGbMGDp1\n6sTEiRP58ssvefbZZ9m1a1e61bo/Yh69ceNGRo0axbZt2/j55585d+4cQ4YM+ScuLUP8awNmsHz1\nd3liQlpJu59+cvLCC3KGD7gQIjDTHOvDD3WKFDF55RVhbXT0qETp0umfc1CY3e/3s29fNDVqmAwb\nprN4sYOTJzM+7/h4mXz5TAoUMOnaVad/f5VnnzVD9lMAGzcKYkpEBPTurTN2rExCQiLLlim0aCHR\nt6+LTz7RKFwY6tUz+OgjBUUhLBtu0MDg6FGZn3+WWbxYpnhxky+/VClZUgi9Hz4cfm/atTOYNUth\nzRqJIUPuERkZSb9+4m8WLbIydiyULesge3aTVas8fP+9RHKysDqrXFkE0dhYjXr1bNSrZydPHoM9\ne7yUKmVQsqQgNhUpYhIf76NXL41u3TSaNROjEg6HGD4/cEBh7Fg/r76q8dxzRshxBMRrn3gi5fri\n4hReeMEIyQiapugdb9hgEBurExUV3h93u4Vn6IkTMq1bWylY0EHBgi46dHDRt280u3dbmTbNRcGC\n2ahWLZoBAyxs2eIjISEJt9vP7t0KsbEmFosFi0WMtQT7uLquc/myxtWrEsWLiyxUlsXzZ7fbU/Wr\nrJQpI0TWP/tMCmWifr8/DeHj5k2JQ4cUTp+W8XoF0UdVhW3X3LkK164JwYJ587wcPKhw7pzM668n\nc+aMIJ89/7zBzJkWdu6UWbDAQpcuAfbvVyhbVmfdOpVs2QQJJzlZsGb79rUxcKCNMWN8FC1q0qaN\nxrBhohq0a5fC1KkWVqwQwXHtWjV0zyMjJTp0CLB6tUrHjnbmz/dSvLhBt25+pk618P33MvXrO8md\n22DSJCuZMkGNGkIF6IcfZKpWdfHCCwYrV/rIl08EUbvdzhNPSOTJo7N9uxHW10tdxq1dWyM+Pm1P\ntGZN7S+fx/xvIL31MikpiSxZslC2bFneeOMN5syZk+5c5h8xj/7666/p0qULRYoUITo6mg8++IBZ\ns2b99Rf0B/CvDZhB/F0BMzieEpS0czoj+P57mbJlM84M9+1L+3uxg4TJkzXu3pXo1UvhmWfSCrcH\nCTBBYfbIyJSZypw54c03k+nf30pGl7pli8T169CmjU7fvmL+8sFzWbdOplYtweSsVSuZW7dMNmxw\ncOKEhUuXVKKiRIAD6NZNZ/58hS5dwnugNptwipg3z8aoUSpjxmiULGnw+ecK7dqJLDP1NeXK5ebe\nPejUyU/evKLHXLCgRp48BsOGRREfr7J69W0GDLjFM8/cI39+nfj4FELTU0+ZbNggSnOrV3t55x2N\nPHlMmjfXKVbM4OOP/ezcKXPliuhjfvut2Dhkz27SooWGYYgFcPhwCzduiHLh3r1iI+BwmAwdGr4o\nLF+u0KyZWCkDgQCJiYlIksTOna4woYfERPjyS5UKFWwEAnD6tEzz5jrx8T5u3vRw+LCXadN8FChg\ncuGCl6tXPXz+uUbOnCrvv/8Y5ctnZ+hQF7lyGURGukMepQ9mobt326hUSUOWzdCITZBwlDoL3bnT\nxpAhPmbNcrFrl7jPhmGEstBgYFi5UiJnTtE/z5zZ5KefFCpW1IiJMXnzTQcul/CcNE1wuQRBKjbW\nz/z5FooUMahcWWfcOB8vv+ygdGmN/PlN9u8XhKQRI6w0aRJg82aVihU1GjfW2LtX4d49KaS0NHCg\nj7Vrhcl21652pk/3kjevybvvCoH41GOFNWtq+P1Cti5Yrm3QIEBcnErLlg4GDPCzYoWHhQst3Lol\n2L/jx1tp0cLBqFE+PvjAH1IqCvb1LBYLTZoYxMW5wvp6wXubnJxMpkwe8uXT2b07PLjUqKGza1eK\nbdl/iv+2sk7qjV9SUtIf9sKEh5tHHzt2jOeeey7083PPPceNGze4c+fOnzvhvwD/2oCZ0RzmX4Hg\nqEhqNurly2IRuW/tli7275fTZJhBWK2waFGAuDglzFw3SAW/d+8epmmGhNk1TWLnzhQ7r65dPVy5\nIoXUhFLjwgXRa9q7V8jaZc0qSpFnzoT3V0VPUyygpqnx9ts6w4c7qVbNYPRohYkTU3wcn3jCxOOB\nHDnS3tuOHTVmzXLwxBMm5cubfPqpxpQpClWr6ixZouD3p2TKH39spVgxg/PnRVZx65ZOr14Wbt8W\nBKBhwzSeekqUpWw2G926+Zg6VeXKlURatZK5cMEkIsLk7bf9jBiREtxq19bZuFGhWzedPHlMmja1\n8/zzomzYu7eVuXN9TJ0awOUSIgmlS4tS4Y0bgoTz5JMGgYDExYtSSLw+IUGUdOvXD4Ro+U6nE1V1\nEB+vULu2EP8eONDC00872LZNpkgRk4EDA0yb5qdlS52YGDN0D4VSNBt9AAAgAElEQVRnpljo7XYo\nV85g4ECNfft8zJvnZ9cuC5cuKSxcmAmnMyrkV5m6FxofL5SNgmQgXddDi7xhGGiaxt27Istr3NjH\n7NluevRwcPGiNSwLDb5mxQoLV6+Ke9+woRcwKVFC5/vvRUm0cmWNkiV1li+33O8l+tB1WLhQ/Fy2\nrE6DBmJDce2aKInv36+EBPCnTbMydaqXWbN8rFypcvWqxPDhPlq2dDBlioXoaKFr26aNg86dA1Sr\nJu5P3bo6iiLUh0CYbffsaadyZZ1z5xR27lSYM8dClSoRFCwotIRbtBCbp0aNAkydamXNGrGxGjvW\nFzrH9NCkSYA1a1R0PaWvp6oqFosFh8OBoijUqeNjzRo5bLMRFeWncGGxKfsr8U+XZDPywvwj1l7w\naPPoB4NwVFQUpmmSmJFM1T+Af23AfBB/RdD0+/14vd5Q4ErNRhW76PBsKzVu3BCjIk89lbYkG0TW\nrFC0qHB4+PFHKaSV6na7iYiICCP17Nsn8eSTJlmzitdarRKjR/vo319Nw/KLj5d58kmTF180yJYN\nLl4Uxsh79sh8+aXMjh0SCxdKFCigkzWrhtVqxeVy0b49XLwoceGCROfOOoULp5zrvHkK5cubfPVV\n2hLUU0+ZeL0SVaqIxS5/fjFjOX26SpEiJsuWiczsp58iWLXKwezZATZskJk3z6RMGQeqCocPe4iI\nMPn0U7Hzj4yMxG6306yZwuXLKrVrZydHDpkdOxIpUEAnf/5k9u6V2LlTCAA8+aSY+ztxQmLw4AC3\nbkHnzlZkWWQmJUqIwNWwoX7fv1F4Y+bLZ3LzpkSuXPDYY+Z9mzQRzNeuFQLpFksSkiRIVmIuUyZ3\nbpOhQ62UKydk5Hbv9rJggZ+zZ2Vq1Uq/6rB9u5Ku/i8IskuWLPDRR35WrFCIjXVw4kQKqzFY1di5\n00rFioIxq2laaP4zmIXabDb27LFTooRGZKRJmTJ+3nvPQ6tWDm7fDs9C7961cfCgGBmRZXA4JPx+\nidmzraiqQZ48Olu3WsiRQ2f1akHgadEiwJYtNvLmFSL+L7ygs2WLQq5cJrlymfTqZePyZZnZsy34\nfNw30NaJijJxuUxMU6JKFY34eDeLFlno2NHO9u0KERFiI5TyXYEPP/TxwQc24uNV2raNYvJkL2PH\nevH5TJo3d7BwocrixR5WrvSwerWF69fFl7Ft2wBjx1q5eFGmb1//I9msTz5pkju3mWauMvWIRuPG\nEBfnwOkMN96uUcPDmjX8JZqv/83+5YP4O8yjXS4XCanUHu7du4ckSX84MP+V+NcHzKCs1H8SMFOr\nA9lsNhRFScNGPXBAzF9mhP37Bekm9cvSqhAJL81PPgnw0ksKly4lhkQWHuwXxMfLadxJqlTRKV3a\nSOOBGR8vk5QEpUqZ9OypUr68leRkIWo+dKjK0KEy/fqp/PSTQuvWWfjqKwd37ghRgWDQeeedlL6e\nYQiD5qFDhazbg/Zhixap5Mun8913KefRt6/Ovn0SpUu7mTvXisMRzZtvOhg50k9kpEZEhMl779mY\nM8fPmDFe7PZkOnXysHmznUAgZWNy9Khg1EZHw8SJGlFRNtq3N4mLi+KDDwIMHhyJrpv4fF6qVPGw\ndq1GzZrJuN0SBw/KgBmaIQR4/XWNhAQYOtRPTIwZIl59951M27ZiYd+zR+bOHYPFi6FRI3dIC1WS\nhGB8nz5Wzp+XyJPH5McfPXz6aYC8eU2uXBEZa4kSaYOi1yvEKSpXTp+16nYLslKHDjrr1/t4/fUA\nDRvaGT1aSNJJksTp0wqKYpI/vx+n00lUVPpZ6IYNEjVrBkIlxy5dDKpW1ejc2YXfb4QIRcuXC59Q\nRRH6rCtWCKWgihV1nE6ZN97wkz+/zvr1Fmw2gy5dkgEf8+Y5qF3bR3S0KHVPmmSlVy8/X33l4cAB\nBYtFqP0ULWrQr58YGxk92sqTT5oMHuyjdWuhGbxxo5sTJ2S2blWZOtXD6NFWzp1L+ayqVROfR+fO\nUUyfnsSdOxIdOjhwOCAiwqRTpwAlSwrHnFatAkyaJGZQO3Z0UKSIQalSOq++GmDVKiHg/jA0axYI\nmVFDSvDyeoVIxLZtCrduSdSp46RuXRdNmkTz8suZOXfOztq1DlTV8l/RfP0rkF6g/qMl2d9jHl2s\nWDGOHDkS+jloB5YpPVHsfwj/2oD5Zy2+UiM9dSCLxZLusfbtk8OcRR7E3r1SGqm7B8/rxx8lcuUy\nadXqLjVq+OjXLwt2e/oiC1u2CCGBB481cqTGF18onD0rXqNpQs3n5EmJuXMVYmJMnn/eYPp0jcOH\nPdjtBgMGJPDYYxAfH6BLFy979yoULWqlQwdLSGc19cIVHy/hcpm8+KJJt246EyemfCECARg1ysKw\nYYkcOSJx7hz3CRPJvPdeAlu2ODh82MJ771mIiTFQVYPy5Z2UKSMEwUuVElJeFouFPn1EGS+Yxe7d\nK9O4sZ1x4wJcvSqFSsrNmwuyRcOGBqoqsXixC5fLRf36Ctu2OYiOlihQQEPTTF580cf69QrHj4uZ\nx5IlhbbtnDkqEyb48ftFNuNyCaF5XRfv0aOHzL59Fpo2VVFVlaNHJTp1slKtmp0bNyRWrPAyeHAg\nzFM0Pl6malWd9NaL3btlihY10hXMD/7+uecMIiPF+bz8ss5333mJi1No0sTG9es6GzboVKkSIDLS\nFWLHph47CWahmzfbqF7dh8fjCfVCP/5YiP+//74rVHJcvtzOnTvClaR1aw/Xr0s0bJiiA9uokcHl\nywo5cwoZxHr1TK5eVTl40EpERIBSpXz88IOf48clmjTx4HIZ1KkT4O5d4Q4zebKwWNu3T2bmTAuT\nJ3vp1i1A+fI6rVo5+OQTYSE2aJCP7t0dNG+u0amTMO3WdXj/fRvXrklomsTrr7tYvNjCJ5/42LrV\nTSAAQ4bYcLvF/evZ08/06RY6dbIzbZqXBQs8fPGFqDBUraqFLMEyQvPmGqtXW/B6RSl+8WIbrVu7\nKFDAxYcf2rh0SaZsWZ1cuUw+/NDPO+8I0/TixYU84fHj1jRCARkpOWWk+fq/lGEmJCT87szv95pH\nv/zyy8ycOZMTJ05w584dhg0bRqdOnf6qU/5TkB4RKP53tzn/IYKzaCBS/aCs2e9FUIdRlmWcTmdo\nlxT899S7LZ8PcuWycumSP405bRA1algYOFCjZs2UWx4kEURHR2MYBuPGGRw/LjF5sgZYqVHDSrNm\nBn36hGcht29D4cJWrlzxY7svF5qUlBRS8xg3TmHLFpk1awLs3y9Rt66F55832bQpgK5D3rxWDh1K\nxOl0s3JlJBMnikXp2LEAycniOPfu2Sha1IrXCxUrivLY8uWi79O8uUq9egZduhjcugXFilk5eNDP\n44/D7NkyCxbILFnyGyNGZEHXDQYNun1/vstJtWpWdN3kp59katfWOHpUYfp0P6VK+SlePIKvvkqg\nXDlLKINv1MjKsWMyc+f6adPGxhdf+Khd22DYMAu//ioxebLIWNq1s1K9usiwGza088MPHux2ePJJ\nB0uW+GjVykbRogZbtngoUsRBYqJE//7JvPJKEm+8kYkDByzMmOGhVy8nVqu4x16vRFSUgaKYXLmi\n0LSpTps2GlOnWjh6VKZXrwCVKum0b2/j5ElvmnJ8mzZWGjbUads2bRY5aJCFiAh47730587efddC\nZKTJoEHhvbZAwGTwYJnVqy08/ji88YZOkyYZz1YePSrx0ks2jh0T55eaEHTnjkG9etG0a+ehWTON\n0qUz4fcL6UbDEMo9+fIZ1K7t5+xZhbfe8vLOO07OnhVC77/+KlOnTgCfT1irPfuszg8/KDzxhMZb\nbyVhGAalSmXl+nWF557TyJoVPv/cQ/36LoYPT+kj6jpUrOjk/HmZffuSiYkx2bVLoXNnO9mymRQo\nIJjXt29LgETevBo5c5osW5bCrunTx8bOnYKQ1aKFRo8eYkyoalWNyZPF3/Xvb0OSoFEjjd69bRw4\n4M6whQJQtaqTqCiDQ4dUypb106JFgDp1UpjlBw/KdO7s4NCh5LDjvP++DYtFaPJmhCBxUNf1EOM5\nSDySZRlFUUIZqvNBBuDfjKBClSOVJFSdOnXYuXPnI4VfLl26RExMTGhKAcRmfvr06VSsWJFixYpx\n/PjxkB/muHHjGDFiBF6vlxYtWjB16tR/yhUl3U/+X5thpsYfyTAzkrRLfawHceiQxFNPmRkGy0BA\n/E3ZsuHnECRmBEdT9uyxULWq0Bi12STmzQvw+ecKu3eHv+fWrTIVKxqhYPkgevbU+fVXWLpUZtMm\nGZcL3ntPQ1Vh506DQoU0IiN9REVF8corKnfuSPeJNSnHOH1awuOB1asD5MxpsnGj6HdevCh6n61b\nix1xlizQrp3IMn0+GD5c5f33A/d7GAnMm6cCrvsCBDB8uI+DB8XIQubMsHu3h+efF3qgr7ziZ/78\ncPGFoUMD3Lwp0by5jRkzRLAEeP31AKtWKfzyizjp9u015s1TKV5cjCb07StUaIoXN2jf3sbkyX5O\nn5a5cUPh5ZcNmjfX2b7dyYsv5iBHDolr12Q+/dRKz56JDB9+h+RkITB/756ExSJIMOvWKYwYYaFV\nK40TJzz07auxfbtCgwZ6moXX74cdOxRq1kw/mAnVnYwD3ZYtShpRCU3T8HqTGDIkmXff1di3T0HX\nH/5cx8Up1KmTcn6ps9BcuZysXBngiy9cDBsWga6LEnyePH5u3YJcuQxKltQ5fdpCu3YG+/ZZQ2zW\nyZOTePVVkbWVLSvMpPPk0YmLs9Ctm47D4eDMGRdXryoMHuxm7dp7PP54gFKlIomJCVCzZorpdvfu\nNhwOYf7csqWDM2ckHn/coG3bAKdOyaxeLQwLxo/3cfp0EqtX3+HsWYUNG1K+lwMH+rlxQ7rvx+mg\ndesA27e7WbdODVVbBgzws3SpSubMQiIyo17md98pNGsmzuPKFZn9+5OZO/ceLVoEwsawSpQwMAxC\nou9BNGoUYNUqNUPGevBzSK0nHNR8Tc1eDopQ+Hy+dBWK/i5klNlmJIqSGo8yj05ISAgFS4DevXtz\n7do17t69y4wZM/7rFmL/2oD5R0uyDzp8PChp97Bj7dkjpwmGqXHkiERMjMmDLYDgF8Dr9eJyRbJ3\nr4VKlVKOkz8/TJum8fLLghYfxObNMjVqpA2+wfOyWMSYyoABKitWyOg6xMaKh3jtWoPatfWQTKAs\ni77VDz/IJCenHGfAAJVnnjGpXt1kzhyNzp113n5bpUMHC61b6yFFHIC33tKZPVth8mSZIkUMSpcW\nxKgCBSQqVzZZtMh2vxSlMWyY0EfNnNmkatUAppmEaZq4XC46dTJZuVINc31QVVGWzZ7dCAsgWbMK\nNu7IkaJqUKOGkLU7fVpiyJDA/axU4dIliZgYESAbNNBZulQEkP37Fdas8bFokQ+vV3h6fvuthcWL\nXUyZ4iIQkNB1YRx97pwceka2bEmiTZtAaLOyZo0ImA/iu+9knnrKSONnCsJw+9dfpTCR/tT45ReJ\n69clSpY0Qu/r9XpDPXSn08njj8PTT5v0729j1qyMd/0bNihhc6UPIn9+WL7cxzffWEOOLefPW3G7\nhY9ojx5JHDwoExt7l2+/lTl1SqFcOZ2CBRVy5zYpUEBj0KBoLl6U2bhRpX17LxERfnw+ncaNndhs\n0K+fgctlI08ehZgYgytXVOrUiWb8eAuxsU4SEgymTLlN1apeMmc2KFMmgrJlI5gyxUqpUjovvqhz\n86ZwyrHbhSvNuHFu+va1c+uWqPBs2iQClKqalChh8OqrAbJnN+nZM8DQoeLDypbN5J13/PTrZ6N7\ndz+TJ6eUC01T9Cbr1XPQvbudRo00Dh9O5ubNjJdQSYKXXgqweHH4Il+6tIHP92iHlPBjpRCKguzl\noN5rkFAUNN7+p0ykg/hfKg3/3fjXBszUeFTATC0GkJ6k3aOOFR8v3Rc0V9m4UebBdsSePeHOI8He\naFKS6CNFRUVx/rwFpxPy5Qt/bb16Bi1a6Lz6qlgQTFP0Lx/MPoLHDaJcOZNatQxOnpRo1SpAUtI9\nDMNg+3YH9euniCucPy+CQmyswciRYuE9dUrm8GGJzz9PKQeOHq2TLZvIlPfulbl2LeV98+UT5/np\npwpvvy3uI4gh5l69xEjJxYsm1ao52LVLYeFCLz4fjBunhhYHWZbJmVOIWC9cqN4/N4mmTW28+qrG\nxYsyFy6EfyZ9+gRYuVLlwgUJiwXattWYO1fF4YAvvvDx1ltWChY0uX5d9OVatdJYtEilZEmDGzck\nLl+WKFHCZNo0PzlzCnHwQYPu0qWLn1q1hIqNohBidPp8EgsXEto5nz7t5cIFKV1T6PXrRWBOD3Fx\nMtWrC3ZuetiyJaX3GWRK67qOy+UK9YQ2bVJo3lxj0yYvY8ZYGDkybUZz8yacOCFTufLDPRFTb34k\nSfTvAEaMCPDtty6aNNF57LEI9u+34HZLvPvuPZKSkvjiCwsDBngYNEiUe+fNs9G4sY6iKHTrJsre\ntWv77xOKJL76ysKKFcls3+4mZ0745BMXp0+rbNpko1y5rPTuHcGBAyrZsunkzKmTM6dBw4Y+Zs1y\n062bn7fftjF4sLj+F1/UePFFnerVnRQrFsGKFSoLF3p5/HGT06dl1qwRN7dnTz9HjighKbsuXQIk\nJYnn4ehRmaNH5VCgfOstO+3bBzh4MJmOHQNkzQqNGweYN8+SYdBo1SrA0qXhIgbiHgb45pv/XPUn\naCDtcDhCZLMgj+LvIhSld63/lqD5fwGTjANmUNIutRjAo/qcDx7LNOGnn2Q2bvQTG2vwwQcKxYtb\nWLw4JXDu3i1Rvrz4IRAIhDmnBLFzp0TFiukvbB9/rPPbbxLjxyucOCE8HB90E0nvYS5fXsiZxcR4\ncDqd3Ljh4s4dESSCWLVKaMGOGqUxc6bC6dMKb7whlHVefDHcXaR2beF0UaeOQaVK1pBqj2maZMoU\nwOeTKFpUDpEDdF3nhRcCaJpJhQpObt+WGDLES2zsPV5/3cvx4xZOnQonBXTvrjF1qsrVq9CokY13\n3tEYNSqAwwEffhi+k8+SBbp1E6IDAB06aCxYoKBpQsLt8cdNfvtNjEgcPy42BTduiHJzjRpiThPg\nxx9FlnLvnsQLL1hp3FjhjTc0bt5UiIwUXpC6LohO774bSVRUFE6nkw0b7NSu7cfvd5OQkJDKTURj\n/XqF+vUzCpgZB1MQwbBmzRRySDCrTF0S27RJoVYtnYIFTTZv9rJ8uUr//pawzdrGjQpVqugZlu6D\nmDVLuLbIsljs589XiYyEDh10FixQad9e5/hxEZDz5TN47rkA587ZOX/eQsOGGteumRQpEqBYsQAt\nWzqpXt3FqlVWSpTQqVTJZOdOG717O6lRw0/Tpk7y5XOxebNKbKzGRx95mT3bw9atbuLiPFy6lMTp\n026OHEli/PgkDh1SKFnSxapVKgUL6kyYYOWJJ7KSL99jHDwo4/FItGihsWKFh0qVdMaO9eH3Q79+\nNu7eFdno6NFe+va14/EIOcYJE7x8+KFwSGncWATKDh0CHDiQTNu2WthGpnPnALNmWUK6yg+iUCGT\nmBgzjcJPy5ZCVSij1/0ZBLPQYCn3Yc4jqQlFfzSAPhgc/5cZvX81/rUB82El2Qcl7YJiAL9nBxX8\nm+Dxzp8XZcPSpeHVVw327g0wcaLGxIkKlSpZOHxYYs8emfLl9VBvND3nlF275AwDpsUCX38dYMwY\nhRkz0jqMPHiNwetbutTgscdMJk2KxOezEhcnU6dOuAvKypUyTZvqPP44DBqk8+qrERw7ptCz54OK\nRCJTzpXLpFAhkxEjNBo0sLBhg8nPPyeycKGVGjV0vvwyJV25ezeZ995TQ0oujz+u0blzAk6nk4ED\nxXV99FF4EKxQQfRma9a00769RteuYgF7/XWN1asVfvst/LrfeCPAli0KR45IFClikj+/SffuFuLj\nFXbu9PLMMwZWqwgeQe3ahQvV+8IGMj6fj6FDZfr29RIRAdOm2ULncf26RKlSovzs94NpSty9K90/\nlsLatTZatIDIyEgiIyOxWoWG7qFDATTNIH/+hFD5LLjzD44lZNS/9PuFoEGFCvfCssrUz+b58xL3\n7kk895z4vHPlgo0bvRw+LNOtmzWU7axbp1Cv3qNX7C+/FJ+BCCY+bt+WqFlT49AhGU0TggqbNsl4\nPDBwYAIOh4Ovv3bRubNOVJSdvXvtnDljYf58P199lcSPPyo4nSbff6/wzjs2mjZ1cveuxIoVNnLn\nhgULPFy7do+lS5N4/XUPdet6efZZH08/7cfhCM6FKlSrJvPVVwGuXElm1So3I0Z4GDUqEUUBwzAZ\nODCB9evvsHy5yvLlYv60cmWd5s01HA6TQYOEjnStWjolS+p8+qkVj0fYlikKxMWpuN0Sixe70wTK\nIEqUMMie3WTz5rTtmSBeecXP7NnhG79nnjHImtVkx44/L5X3e7K6jJxHUhuUJycnP1QO8VHweDz/\nOPHov4V/LUsWCDlCeDweTNPE6XSi6/p9JRvzDzNng7hz5w7R0dHIsszXX8ts3iwzd244m9E0Ye5c\nmXfeEfZRx45dJyLCmqbce+fOHaKioilUyM7mzX6efDLj9121SuaVV1SmTNFo2zY8oHk8HgzDwG63\nk5ycjGGYFCiQjVdf1blzR8JmgwsXJLp21WnSRLz2yhUoU8bKzz/7sVrFYp09u2CxnjkTIGfOlONv\n3Srx9tsqEyZovPKKhUOHxAjByy9H8NxzBjExEr1768TGWjl4MBmvF155xU5EhEGPHgm0bJmFqVPv\n0ry5gaqK0Yzp01UGDLBy9qyH7NnF+3i9UKGCnaQkOHUqhXl6546wuOraVeOzz8KZpTNnqixZohAX\n5+O116ysWKFw5Igoz/34o0SjRnaSk6FgQZObN+HGDYmCBYWgd+vWHuLi7Jw44aVjRyunT8scOSJc\nGHr3trBtm8xvv8m4XIIocuGCRNasJt9+66N8eTvnznl4kDk/cqTKjRsSI0d6QkzIoNXXtm0OJkxw\nsnGjJ6R1nPLMmGzcqPPJJ3bi492hUZEHMXmyytGjMlOnhrMw3W5o08aGw2Eydaqfp592cPSohyxZ\nMn6mDh6UqFTJjiRBr14aO3fK/PijMBrPksWkUSOdAQN8PPOMg5s3Za5fd3Pvnsyzzzr4/ntRWi9e\n3E7WrCZ37kj4HyCG2u0mAwZ4eO01N4oignfQ2iz19RuGkYbUEnRoCWZWQSQkuOnd+zGWLbNSoIBB\nz57JfPJJBFOm3KVKFR2/X6Fatce4c0di4kQftWppbNyo0LWrA1U1KVvWIDZWY9w4K0WLGuTLZzJt\nWlrnjSCWLFGZOVNhwwZPusSX5GR4+mkXu3Ylh3loTp9uYc8ehdmzMz72wxBcv2yPKhE8AqZppmHl\nGoYRYuMG/x+cWfd6vaGZXYBr164xcOBAli9f/h+dx/8Y/o8lmxGCbFS3251G0u7PHi/4xc7IWUSS\noG1bP336JGO3G7Rrl42EhIh0SURnz4q/L1Dg4e9bo4aBrsOSJeHODUEEe7FWq5Vz56LxeqF7d53P\nPtPYsEHm22+lMLGD1atl6tY1Qgv+kiUyWbII9ZUHXXYmTFDo1UunYkWTypU1PvhAp0yZADNnamzd\nqpIzp0H+/AEaNNDo399GbKyTGjV0Zs68y5Ah0TRvHmD5cheSJOHz+e4z5+7y2GMmvXqp92XcTLp2\ntVK4sIGmSRw/nnKvMmWCFi10vvpKTTN03rGj0OHt00cEOIsF5s5VKFPGTosWNmrW1PB6oXBhg82b\nvRQpotOlSxIFChhs3mxHVaFsWTs5c5qcOyeFSEc1auicPy+CR48eAS5cEK4bN29KDB+uUr++niZY\ngnD7aNJEDyudRUVF4XK52LjRTp06QjEqISEhNBfp9XpJSkpi0yaVevXMdAlnQaxfn37m6HTCN9/4\nsFigTh0bzzxjPDRYArz7rrgARRECBUePyhQubLJli5fjx2U2bJA4csTLpUsKHTpoKIrMzJkqlSvr\nDBxooVw5O7oORYoIxqiqinJkzZri3uzY4WPgQIlMmcRcaHCTGrTZSq2RG+zXWa1WLBZLaLQiKKwQ\n9AtVFJMvvnBz6FAyWbOa9OsXidcr0b59Znr2jGbOHBvVqnlJSJDo0MFO3rwRIR1bVRUiB5MnW3nv\nPaHEtHatysmTGS+VTZtq/PyzwsGD6WeLmgb16gUYNszKoUMyx47JXL8u0bJlgK1bxebpz+Cv6hum\nRyhKLYf4IKHowc3Ln5HF+38V/xcwEb00v1+Iij/MYPn3InXA/PZbiYoVw6NX0MEiMTGRkyetDBpk\nULmyScWKVg4dSvu+O3cKYsajTmnHDply5URfLlwsIBCioActzSZNUsmRA2JihCpOly6inxlUsgFY\nuVKhaVMRQN1uGDJEJWtWg8aN/bz+uiUUlI8elThyRKZ1a42kpCQGDbrLN984+fnnSGbOVHnzzQAL\nF6qMGmUlZ0745huVoUPd9Ox5h5EjoyhQQGLqVI0jRxROnRKjOlFRUUREOBg50s2GDRbOn0+mVy+J\nmzcNpk1LpFs3H59/Hr6hGTQogGnCxInh/64oUL26zsyZKo0aCUHub74RDiSnT3uZMSPAiy8aHDwo\nM2SITKtWHg4ccFKhgoHXK3HihJd583wkJgoyyMsvW9F1OH9eBN8GDTR++kmIPng84kOaP1+ladO0\neqQXLkhcvSoYsBcuSOzeLSoQ69crbNumsnatlWrV5NA9sNlsodEBXTfYsMFKjRruDPtPCQnC+Dqo\nQfsgrFaYPduPzye8GR8sYaeGphHSPW3USGfgQCEc0LKlxvbtErGxfho18lGzptBfHDBAIzERRo+2\nsH27eP50XZTWNU0ic2aTMmUMfvpJ4coVic6dNZ55JlwKMlg+DLYlgs/rg+pEPp8vlGEGnVpkWQ7d\nE8MwyJvXz7p19zh1KoFWrQI4nbBsmZWJE52cPGmjXDkhSl6iZFIAACAASURBVJ8pk0n58n6OHBEZ\n8KFDEjt33qFjRw8LFrjRNJM338w4i7NYoHv3JEaNsnHmjMTXX1vo08dG9eqiH1ukiIvt21W++cZC\nr152OnWyU6GCk6JFXciyyZQp/91RifTwoP9lkFCkqmpoVvfKlSuUL1+eESNGcPPmTU6cOJGuwEJq\nTJ48mTJlymC32+ncuXOGfzdnzhxUVSUqKir0HOzcufOvvsw/jH91wDQMg8TERPx+P4qiPNRg+Y9C\nGKvC7dsSxYqlLApBofRgcN6zx0JsrMn77+uMHq3RsKElTCBdkiR27VKoVOnhDyII+606dQzmzQsw\nerTCd99BcnIySUlJISWRYF900yaZZs1SFtWLF8WIR9eughhy7ZoYdwmqBU2cqPDMMwaXL8uMHZtE\nYiKMHy+ONXaswmuv+fD5xMhNwYKRDBmi0batyuHDEu+952fFCi/jx1uYPVvh5Zc9bNmisGtXFGvW\nWJk82Y/DAb17pxB0gl/YNm1EX7Rx42wcO2ZjwQI3VqtB+/YJxMUpHD0qdr2BQID8+XUqV9aZMMFC\n0NDANOHzz1Xmz1exWsV4waxZPhISJCpUMELD+nXr+ihd2othyCxd6iQuTuW77xTsdlFqLVHCZPZs\nPxUr6uzcqVClio1p04ThsmmKrK5zZ42sWQVjVtPg1i0RPAMBOHBAZvx4ldatrfj9kCePg3r1bLz3\nnoUJEyzMmKHywQcWkpKgfn07MTEOXnrJyoQJMj//LPQzL18WZf7ixUVFJKgyFczCAoEAGzeKikZG\nM7/Be3L7tkSdOjq1atm5fDn9ndhHH4mNh9MpRi40TTiQVKrkZdYshY4dA/TrJ2GxCPeckiUdFCjg\nwO8Xgfn8eRGAqlTROXRICAvcvSvGevLkIUOd3NQIPgep1YmCWWjwHqTOwg3DCBFdgnZnWbMafPZZ\nMmfP3mbBgiRsNpOTJ2VMUyJvXrh+XWbXLhujRwc4fz6RZ54x+OCDCHw+P0WKJDJx4j3271eYNElO\nUxa+dk1iwQKVH36wsGmTSt26TnbsUChUyODjj3388EMyV68mceJEMi1aaDRtqrF/v5tz55I5fz6J\n0aO9zJtnSaPv/HvwTzJTU2ehQXu4nDlzMn78ePLmzcuVK1do0KABmTNnplatWly9ejXd4+TOnZv3\n33+fLl26PPI9K1SoQEJCQmhWs3Llyn/1Zf1h/KsDZnJyMqqq3h+a/+sevOCxvv1WLF6ynCJ44HYL\nrVGXy8Wvv8rcuyc8FQGaNjVYuTLAG2+ozJkT/GgkduyQH7m4mKYImLVrG+TPbzJpkof27VWuX5eI\njo4O+SSCEFe/dQv69xcBU9dhwwaZsWMDeDwwbJjCihWiHOtwCGH4CRMU8ucXGpwRETB3boCxYxWW\nL4cNGyTatUsMjdyAKDdfvizxwgs6168rtGljp1o1P5ky6UREyGzfbuPVVx3Mnu0PycW9+qogknz/\nffhjWamSzsWLEqNG+cmSRex4c+d20aWLxvTpUaHsIzExkT59RD32009l/H6d7t0tjBhh4bHHTObP\nFwzJqCghor5+vRLqWVet6uHbb+3Mnavx+uuiRHv9uiiFp3ZtGThQQ9PgmWeE80ihQgabN4sSpMVi\ncuOGFCJNvfGGhaZNbeTL56BnTysXL0okJkoMH+7n2jUPJ0542bbNx5o1PpYv91GxokG/fhpXr7qJ\nj79Ho0bJnDplpU6dLNSoIaTh6tbVsdnEPUgvA1uxwryvjeu+n5WmJXDs2iWTP7/B+PEBOnXSqFbN\nlsaHFGD8eLF5yZbNZMkSQc4KBMBmC3DxokrDhjI7dsgkJkq0aiXui8cDDgdYrSZHjogZ3y1bBDN5\nzBg/+/d7adBAv29198cpoqmz0OA9cDgc6LqOLMvIsozb7Q5loYZhhLJQu91G3boGP/yQSLduXo4d\nk6lY0U/btl7OnZNZsULBbpeZOdPHqVMWPvooE05nBM2aSfTp42HwYCcLFhisWaMxcKBC+fIOypRx\nsn69SoUKfgYP9lGwoMGMGV569AhQoYJOtmwpgh/9+/uZMsXC7dvi54gI0UYoVcpg7tz/vSzzUbBY\nLJQtW5ZSpUrRtm1bzp07x5kzZ3jzzTfJGnR9eABNmjShUaNGZE6tEfn/EP7VATMqKgqHwxFycPir\nECzJBpmt6QkegFi4XnwxnJVaurSQqPvkE5Xx4xXOnlWx2x/dvzx9WixmRYqIsmhsbBKvvKLz2mvR\n6LocVib+7DOFHDkIkXb27ZPInt3kqadgwYIAc+YoTJ+u0LKlCNLDh6u89JLO2rUKHTuKkle+fCYT\nJ7p59VULzZqleFUGCSwTJqiUKaOzYYNKpUo22rRJYvr0BOLifOzcacXjkYiKMsM8N+12eOedQNh4\nyOefq3z/vSh39u4dXhbr2VNjxQoLt28LJZSoqCgqVrRSrJjGV19ZeeEFO4sWqXTs6GbXrrvUqOFn\nwgQ/r79upXXrAFOnCvslq9XKs8/asdmEuH3z5joul/gcb98WmrCrVilcvw6VKxtYLLBrl8rbbwdY\nt07lxAmJ/PlFac3pNElMFCuk1yuRJYvBTz952L/fS8+eGh6PxMsvp+1tmqYogTduHMDtTiZHDj9t\n2yp88YXO+fMe+vUTqkGLFyuMH6+GNFFTZ2CqGsH27XaaNJFDfcBgXz4pKSk0i7dypUKjRiJYvfGG\nGMtp3NjO2rUpZfxFiwQD1uEQAbN0aY18+QJUqRJgyZIo2rfXsVjg7bdtKIrQ2s2WzeSppwx++cXD\n+PEB8ucXz1tUlMn8+X66dtWRZfGsRkeb5Mjx8Gf6UQi2Nnw+X8it52FZqNvtRtM0LBaJ/v0NDh50\nkz27xNatNlwuky+/tFKlip1Nm6BfPzebNys0buxgzBgHv/xiwW436dHjMQYPjiYqSuKzz5I4fvw3\npk37jfbtPXTvnkhCgrh36a0nTz1l0KiRxqhR4c/xO+/4GD3aGtYO+b3X/9+YfXzwfVM7lWTLlo0G\nDRo8VCP29+LQoUNkz56dIkWKMGzYsEeWe/8J/KsD5t/liRk83o4dEiVLJmYoeLBzp0xsbHpfLJP4\neD9ffCHz8cdOKlXK2JsvCOE44ScxMSFU+3//fZPISJO3305xogdYvTpcfWbNGpmGDcXDmCMHTJgQ\n4NQpwfY8c0Zi6VLhpJIvn0nRoqIklZCQQOHCXgxDYv9+K4mJhBh2587JTJpkpVw5A0kysdtNOnQw\ncbkiyJxZJlcuEXR0HaZPD+83duig8/PPElu3yowYoTJrlsr69T6++MLPyZMSa9emPLLZs8Mrr2iM\nGKGG7ruiKDRpYuDxSFy4oLJpk4dhwzQsFqGGU778HRo08LByJZw8KfPzz2IsQ5alkEfmiBEW6tTR\nyZrVpG9fMcg+Y4ZKqVKi5ChJohe5aJHwT/T7hRn0zZsSzz4rxl6aNhX3d8UKNTT4v3Sp0DJNT27z\nwAExWpM3bwIWi4WIiIhQ+VxVBSHJ6YRVq3zs2yfz/PN25s9XwuYqt28XSkqPPy6H9QEjIyNDTEq3\n28eqVTK1ayfgdrvx+/00auRn6VIvfftaGD5cuJ306mW7XxmBX34RJfpMmWRiY2HhQpWuXTXi4yVO\nnBCKR8OH+4mOho8+0nC7oW9fC8nJYnbzo4+0MBLSvn3C6u4/gaZpIWGPoI1aEOlloen1Qm22JAYM\nSOTw4XssWeKhdesAhw6p9OgRwfjxdnLn1jl+XGHOHJVnn/WxaFEyOXMKS7dt2yxkzWohMtIRqqpY\nrQpjxiQyeLCd8+c96c46Dh7s55tv1PvOOAIlShhUqKDz+ef/eZD5J5BewPwz5tEPQ2xsLEePHuXG\njRssW7aMhQsX8tlnn/2l7/Fn8K8OmEH8HSbSly4FuH4dSpdWMxQ82LFDDMunh7x5YdOmALt2iWD0\nMGiaxtq1JtWqeUNZs1g0YM4cjR07JGbOFFnbuXPw22/Qu7dYwExTsGGDAVP8jSAZtW5toU8fhT59\ndJYulencWQ9JbtlsNqZOjaZbN1FSattWOMmbpky3bjZiYnTWrpXYtu0u9esb9OoVgWHAgAEW/H6J\nH37wEBUF779v4eefU758YvYyQMeONpYuVdm0yUvu3MKrs3hxgx49bHhTsfD79hVqPmfPSmgavPWW\nhffesxIZKdiOui6HjH2DzL933knA7VYoWFBn0iSZhAQRPKpW9bJ8ucy8eSrDh/vp0kXjwgWZa9ck\n5s/3cfmyhwMHPJQqJQJ+//4Bjh/3sGqVD6dTyPldvCijqvDuu8Jv0+eDgQMFQWrhQpVWrdKWIQ3D\nYP58k6ZNPbhcEenO/K5YodC4sUbJkiYLFvj5+ms/06er1Kpl49gx6f7fqKFAnRqpGZCHD0eROzcU\nKyZ62kGB/8KF7xEXd5utWyXKlLHh8XBfFtGgSxcvd+8qnDypkJwMZcsabNsm06SJmGOMjTUoVEgI\nstevr/PxxxYCAe7Pa+p07Rq+4du/X0njzPN7kVoGMMjo/L3z0Rn1QsGgWLEkxoy5xb59t8iWzeTg\nQZU8eeDAATctWmhMmeLkzh2JGTMSuXpVMF1r1nTQpYuNI0ekkAZv+fIqXbpovPlmFkwzfNYxKSkZ\nSfLw7rtuOnWyc/myGRIu+OQTHzNmWB7Kxk3vXvwvqOskJSXheljT/E8gJiaG/PnzA8Lm64MPPmDp\n0qV/6Xv8GfyrA+bfkWH6/X78fj+7dqlUqmTidKYveHDlilCOefrpjN83Rw5QFJMjRxQ++yxtWhIs\nSV29msSRIxbq1bOlcQuIioJlywIMH24lPt7CZ58pZMoEhQqJ3588KeH1hqv7LFki8/bbOq1b62zb\nJlO8uM6+fTI1atwO9YSuXbPxzTcKb77pY+xYLy4XtGxpZ9AghePHJR5/XGPzZg9FitgZNSrA9esS\n1arZ2L1bYcECHzlywObNXjJlMqld2xZaOJKTYfFi0fNq21YLm/WcMMFPUhIhYhAINZ9evQL06WOh\nSBE7c+aoTJzoZ+ZMP1FR0Lu3GNQPZiSGYZA5cyQLFgS4dEll2TIHXq/IUMqW9fHTTwq9eiUQEZHE\nSy8lExcnnDe2blWQJKFodPSojCQJndjMmQV5RVWhWDGDM2ckGjUSEntdu2qYJsyaJSQRJYmwzCoo\nX3b3bhKrVtlp107O0O1h2bLwYFiunMG2bT5at9apV8/Oxx+rrF2rpBswU2P5coVmzYQ83YMjLXnz\nWli5MoGzZ8WyoOvw5JM6Fy+q1K2rER1tsnChhZs3xWdgGCJ41qunM3y4hYEDAxw+LDF9usi2CxQw\n6d49bXVEWN398f5lsN8cFGz4T4S4M8pCCxe28sMP9/jkkyQ2bFB44okIFi1SyZTJoHv3CJo0iSJb\nNjFq9fXXyRQqpNGuXQTVqmVhwACV6dMVHn9c4+ZNiRdfjKJdu8eoWTMLJUrkIF++HBQtmpWPPnJy\n9apM8eKRZM7sIiYmglat7BQoYNC0qeMPl2b/SQTXyb87w3zYe/838a8OmA/irzKRtlqt7N5tp2rV\njHfR27fLVKoU3r98EAcPSuTJY7BuXRKzZ8shViqEs23373+M8uVNXK70d5tPPgkLF/ro1SuapUvD\nJdmC2WXw+T99WuLKFYkqVUy++06mdWudNm0s1KrlIWtWZ6j8NHSoel/AGmw2mdmzfbjdBpMmWWna\n1MfChTrR0SKrDgaTH3+UadZMCzk6ZM4Me/Z4uX1bCmVKVarYiY6GdesEqzb12EOJEiZ16uhMmaJy\n+nSQwCTx/fcyW7cKI+Jjx7x06qRTr57OY48JxZfx4wkTJpdlmVy5YM0aH6YJAwbYsVqtLFwYRXQ0\n5M9vw2azkTmzSd26Xmw2jdWrxZzulCkSdepoxMbqfPutGI9QFOGkIcui57djh8K8eQoffxwIycn1\n6mWlXTstdJ+Dc78+n4/9+6PIn9+kYMH0n4PjxyVu3yaN0pOiQNeuGrt3e9m0SbjBpBamfxCBgJgB\nbd484yz066+dITasaUJCgsLy5RacTj9ZsmicOiXx5JPafTKZ6Nf6/WJspEABg2rVxNzlqlVerl6V\n0pRe796Fy5elsHGSRyG1LqrFYkkjA/hXIXUW+sYbCpcuedm2zU316mLjY7EYmCZcuSKITk2auJg0\nSWTjp0+rzJ5t54MPHPTu7eTMGZnLl2V27RKOMU89pVOpkk7p0jqRkaLX63KJ8q6imFy7JszGf/sN\nYmIiaNjQxmuv2Rg+3MrixSonTshherTB+/K/kGGm7mE+CkF5viDXIUhMexBxcXHcuHEDgJMnTzJs\n2DCaNGnyl573n8H/BUwIKVj8VSbSiqKyfbtK1aoZH2/rVplq1R5eloqPl6lSRSNXLoO4uABTpihM\nnSqFCAxBosOGDWqGuqRBlC9v8tprSSQlESZOsGKFHJaVLFgg89JLOqtWyfh8Jh9+eAvDgM2bHcTF\niZnAw4cl4uNlevRIDg2Of/mlzv79KuXKaWzcaA9pZyYkwEsv2Th3TmbHDi8zZqhMnpxSns6WTci2\n7d8vU7GinZ49A0yb5qdECZPWrTUGDAjv64weHUCSoF07G126WClb1s7WrYLEkiWLSa5cwR0wvPuu\nF7/fZNw4O1euRKYZ9n/qKZMvv/SxbJnCsGEqY8da6NEjwJYtaqiE+dZb8OOPVuLjbSQnK0yfbqN7\n97vUqZNM9uw6X3whstdmzTS2bVPo2zdwny0qsXmzwksvifnWX3+VKFFCDy3+SUlJoVGm+fOtdOiQ\n8ee3eLFKy5Z6hpur3LlNChc2qVdPp25dO5Mnp28dFR8vU7CgQUxM2l+K59jL4MHCEzIpSaJ+fZ0S\nJQysVolJkyL4/nsLFSsG2LhRZHavv57IpUswYYKKohjExtoxDLEJio4WRKgHE48DB2RKlBAl7d+D\n1BuL4LjIPzlKUaaMxPTpOvv3+7l61cevv7rZty+Jzz9PokYNL5omceuWjN0u+AIgSFJ162o0ahQg\nXz6dU6cUfvhBYf9+md27Fe7ckbh1S4zrOJ3CbPv2bZnkZBmQiIw0OXJEJTFR5+bNAHPnylSv7mD0\naOW/TnxJL0gnJSX97oA5bNgwnE4nI0eOZP78+TidTj755BMuX75MZGQkV65cASA+Pp7ixYsTGRlJ\ngwYNaNGiBe++++5ffj1/FP9qabzUJtJ3795No9/6KAT7P5IkhZE0jh7107Chk/PnUzKK1DBNKFDA\nypYtD5e6q1HDwptvuqleXZjEnjrlp169CAYO9PLaa0KqStchf34r333n537JP12YpslLL5ls3Ggn\na1bYuDGALJtUq2bl/Hk/iiLOq0gRK7Nm+Wjf3kL79m5On7bz448KhQqZ7NwplH6SkoQXYsGCOk6n\nzunTKj/+aKF8+QD9+we4fl1h2DAr2bKZ/PKLRKNGOqNGBbBY4NIliSZNbNSurfPOO8LJYdw4lago\nk2PHZOrV0/n6az+qKsQSXnjBzsiRAerW1Tl9WmLdOoWJE0XJL3Nmk9y5Tb780s/TT5vUrGmjQweN\nV17R7utiBmjQICvPPgs//iixbZsv3YW6Th0b330nU7OmzscfB6hVy86YMX5u3pRISoJ581Ru3xb6\nsaYJy5b5uXHD5Nlnnfc1UX9j716Fdu0ys2nTPdq1iyJLFjFi8u23XgoXdmCaEBNjsn//LQzDCJmO\n//YbFC/u4PhxT5iXYhC6DsWK2VmyxEfx4ul/Hd1uKFTIwQ8/eEhOlujSxcpjj8G0ab6wknbHjlYq\nVDB47bXwVCXIph0zJoLPPosgKkpkjj//7KFsWTt58wp7N0URG5FAgFBAVlWIjjZ54QU/cXE2Fi68\nQ7VqBjNmODl1SmXSpEDYAjtsmAW/X/SpHwVN03C73aHNy/9CNmWaZkgIJDjreeaMcJj59VeIjNSx\n2w1MU75vLi+jqtJ9kX+TIkU0cuY0sNnEpkGShNzjxYsqSUkSFovITLdtk/n+e7HxyZXLoHFjHz17\nJuNwaKFysqZpISPmf+re6LqOz+cL045t27YtM2fOJHtQv/L/H0j3hv7n/jL/P8EfNZEOimY7nc40\nmcu2bSpVqgQyfIhPnpSwWh8+KpKQAIcPS1SsqIcEFnLlMlm3TqV+fSeRkUIvds8eiVy5zIcGSxC9\nwc2b7TRurFO9uknt2haaNNFp1MhAUQQZaOJEsYDXqycYlUeOONm3T6Z5c43SpXWaNjWZMsXK1avC\nb7N4cR9Lljg4e1YhXz6DHDlMRoywcP68ErLHUhRYsEBl926Z/PmFqkrx4gZz5qhMmqRSqZLOxIl+\nqlQxGDVKZfRoC40bWxkyJMCNGzKxsTodOljJlMlElsUQfNmyBmvXKiQlSSxY4OOJJ8TnNmaMnyZN\nbFSunEDOnBKRkS4+/lijVy9h4/X++xZGjAhfqA0DNE0ce/duhXLlhAj7vHkqRYoYREYKFuOGDQob\nNwb7v3bq1DHIn18seuvXR7N6tUKlShrr1tno2NHDmTMSJ0866NdPxukU5I6LFyWWLbPToUOKfdr8\n+Sp16+rpBkvxLMlkzkyGwRKEaELJksb94GiyebOPTz+1UKGCg8mTfdSta5CQIBxMRo9OEXMNZrs+\nnw9FsTFuXAQOByQmSlSpojNvnpi9LFNGCIwrihirWblSYcCAAL/+KjF/vkqvXgE++sjGyJF+6ta1\noOs6e/cqVK/uISHBjaIoIX3Yffus9OjxcNZ3kNgTCARCdlX/CwhWk3RdD9sgFy4s/hNQME35fsnR\nF9JnhQc1coMbXlF1KFo0XGT3zTelkNdlyjpiD+m+BrWHg4pHQb3XoPbr31Gyzgh/pCT7/zr+L2Cm\nwu8xkfb7/aE+ZVBg/UGs/f/YO+/wqMpui/9OmZIKSBOpAl66FFEMTZCmqDRpwkdTQRHFT0SUJoog\nSEdEFKRKk6oIKEgJIiDSBUQ6Kr2nTT3l/vFyJjPJhBog98r6h+cZkpwzp7z73XuvvdZSG5JksHIl\n1K5tpstqVq0S5dirbQrj42WqVDGw2YRGpmUYmy2bxLJlfho2tKGqGjt2SDz77LXLNN99p+BwmLRu\nbfDMMyaxsRrt2qk89ZRBXJyNEyckYmJ06tTxsH69k7Vr/fz5p2DUjh7tRZbF0P2HH0qMG5fC6tUK\nH34YgySJXmT58gYXLqjs3StTpIhBnz5uqlf3cuqUyfr1Kjt32jl2TPy/zyfE3n0+0e9bt05BVQkQ\nf9atU2jYUCEuzqBMGYOaNXXOnBEL98KFKi1aaMyd66VzZztdu9pZvtyLJJmUKOGmVSud3r2zM3eu\nKN3WqmVQrJhJ9eo606YJr8uWLXVOnJCYOVNh/HiVpCSJBx4QJc1ChUw++shGYqIQGy9SRPTyChSI\nQFFg5043q1cr/PijwsmT0hX/RxuyLDF/vofOnR2sXu2hYsUImjTxEx9vQ5ZFiTYqyuStt6J5/vlL\nOBwqkqTw1Vcqkyf7MrxvX3+t0qHD1QPMzJkqbdum/ozNBu+/76dOHZ2XX7bzww86ZcoYPPGEjjVP\nbpU6AaKionj7bWcgczRN0Rvt0MERIC6dOyfxxBM6+/eLTVC3bhplyzopV07no4/sdOvmp1s3HRCL\n9tatNgYNMoiNVdE07Yo2rI8tW2IoVSoRl0sOBFIrMEBqtivLcqYqb90qgrPd6Ojoq2Z0Vi/UYsZb\nUn1W8LRkOK0AZ0nQBf+s9fPBsK6T1W/2+XxERUUF2iJWxUzX9UAWGiygnhlZaLiSrN/vz5S5y/8L\n+FcHzKtZfKVFsIvJ1Rh6Xi9s26bQubOHjz+OpHNnibZtdbp108mfX/zMypViRONq+PFHqFHDhWEY\nASKChVKlTL7/3s8zz9iQJFi06NrlrcmTFXw+YcB88qTMjz+Kcu7q1TLPPednxoxLVK+eh5w5hfpI\n8eIaL7/s4K23fMiy2OX276/yxBNeihTxs2FDJAUKmBQubNC+vRhij4kxqVTJIHdu66gOSpaEWrVM\ndN2HrrsDiyeIHff58yqffx7JjBk2ihY1qF7dYNs2md27ZbZvF72h/fvFaEe2bLB1qztQZnz+eZ2l\nS1U++0ymY8fLqKrKBx9AjRoK8+YZgRGOwYN9PPOMk5kzPbRs6WTyZJ29ewX7VZIkdu70cPEitGjh\nYPduD0WLGnTvbqdmTScVKxqULauTnCy0VUuViqBMGYP8+U1q1BCZ5+XL4jlq185BYqLE6NEqxYoZ\n7NsnelOKIgg6Xq8YfSlRIjsPPaRhGCaJiSZbtmhomkmlShIOR2pGcfasUMkZMybjgHrypCA9zZ6d\n/nmqVs3g11899Oxpp08fO+++6w8pKdrtdhwOBy6XxOTJKtmzmyQkCAH5115z8MADJsOH+3nggQgc\nDiFi362bg7ff9vP77xJnz0qcPy+YuZ98khqwjx+X8PkkHnzQDIxb2Gw2Dh2SuP9+KFgwIkD6CA4e\nIN4zp9N5VXH5OwnLCs/n8910tmsFr+B2jxXkrGsQPguVQrJQq38ZrN5kfRY8tpbWfUTTtBD3kVvJ\nQjMiGmWFe3UnkDW2b1kAGQXMYFKPzWYjNjb2qi/NL79IlClj8N57LuLj/axaJUgglSvb6dZN5ehR\n2LRJypDwI8qvyaxYIdOwoUxERETYnytb1uTTT/2cPQv791/9YT1yRPTwatTwMmiQyiOP2Dl4UOaF\nFzS2bLnAmTPQsGFuihc3WLJEoXdvLz//LHQ/GzUS12TpUmF6XLmyyQsvZEfTRMBatszHCy/oNG+u\n06BBcLAMvbaWM0faGbhcuTT69r3E77+f5v33k8iRw0/p0hpFixq43cL7sXt3P7t3ezh4UGLz5tRF\nZ+hQH1FRBoMH2zlwIOqKQLTMpEneK7Zg4roULmxSooRB69ZOsmUTYzq9evnYtUvhu+88FC5sUrGi\nUB0aP15k3X6/xIIFbgwDPv3UFkK48fvhxAmJU6ekkM/PnJFwueCzz2wcPw6HDgnXmJde8uN0igy6\nXDlhp/bWWwYpKSpPPKGza5eNN9+MoGDBSJ59VuXTYYkdCgAAIABJREFUT3X++cfH5MkyTZpo5MiR\n8b2dOVOhSROdjOwIs2WDnj3F8SdOVOnWTebMGZGZWH3BTp3smKYoxVo9teLFDfr397N4sUxSEkyd\n6uX99+3IspAwbN9eZBSNG4ueczA2bZJ5/HE9XQVl82aFKlWMdALrVpZkBU7LmcUSVrhRf8bMgmUg\nr2naLY+xpMX1auRa6kSSJAWcWqz+pWUKHezWYl2rq7mP+P1+XC5XwEj6Vq5xVhj1uJO4FzCvIFzA\n9Pv9JCQkoGlaiCDA1SD0XFMfvoceMhk2TGf3bh+xsSaPPmonZ04xfhCMYNPqP/9UUVWJcuXUqx5v\n3z6Zli0N+vZVmTYt41s5Y4Yw7N282cH58xJbt3q5fNmkVatEChWy8+OPYo7w999lcuQw2LRJYeBA\nO716+TEMP8eOJfP661EUKGDSr1/EFV1WX2Bs4kYRzpXivvtiqF1b4s03PQwenMAPP5xl0qTLOBwm\nAwbYGTlSYdYsL92729mwQcbv92OaSUydmghI/Oc/UQFbr4oVTfr29dOsmYPXXrNRunQEsbFC03Pm\nTB/t22v07Wtn0CAvFSqk3vOBA/0B4faqVXWeey6C6GhBLDpxwh3ovY0e7WfoUD/Dh/spVMikQgXj\nijatl//+14thQPXqfjRNIioKDh6U+e47L5JkLZTw9tt2kpMlJk/WmDhRZ8sWHwcPunnpJYMdOxw8\n+mgsw4c7KFbMRWJiqqxdMEtS12HKFJWXXrp6hWH6dJWOHb2sXXsOSZKoWTMX06Y58Pvhr78kli9X\nyJVL9FlNkwDhqXp1nS5d7Nx3nxilSEiQ6N/fT8eOoo9dqpTJzJnps18xZ5l+Q/jrr+nnL63F22az\nERMTE3BpsUhRFrEuKSkpYHIczqUls+H3+0lOTg5oTd/u0vD1qhNZQVSW5UDGawVRWZYDpdxguzNL\nMD7YfSQqKirEfcTr9ZKSkqpBbD1raa/zvz3D/FezZEE0zUEIsVsPodXf0TSNyMjIDI1608I0oVw5\nG9On+yha9DI5wqQGL76osmWLIP18+aVG5cpmoG9jOS2MHu3g+HGJsWO1wIIRbjA4Ls7GkCEa+fPD\nM8/YeOUVnR49Qnf2mgYPPWTn0iWYOfMydevK7Nih0a5ddv7804eiSOzcCc8+ayc6Gt5918/nn9vY\nu1eiWDGdiAiTQ4dUPB4hgjB4sI+2bcP7PGYmrJLSiRMG/fs7+P57JzExBh06uJk+PZKJEy/x5JNi\ngZk2TaFPHzuVK+u8957GmjUKCxcqnDghUaiQweLFPgoWNJk1S6F/fxuKAt27a4wYYWPiRC8NGqQu\n7u+9Z+PyZYmaNXVmzlQ4elRm7Fgf9esL4kz+/BGMHevjxRd1duyQaNzYicMhAvScORLz51+kdu3c\npKQIG6+YGFHm7NxZyPONH2/jnXd8DB9up2VLjalTwwe7qVMVxo0T2rQJCdC9u4fmzV3IshYora1e\n7WTYsAh+/tmT4fPpdpuUKhXBt99eoGxZB6pqOcgIMXi/X5R1TZNAz9fhEHZo8+crbN8u07Wrnxkz\nhJZq7twme/bI3H+/yZdf+gJuNsGoVk2wjNOq+Tz8sJO5c72ULm2GEHsiIyOv6T1rBQKrpG+JrVsl\nTMtc4FYX7hs9rzsFq9IV3C+0gmFwL9Qq+wb3QtOu8cG90LTHCO61Wpuz4FKu3y/IjJbUoq7rNGrU\nKEtYb2Uy7hlIh0Ow2o/lO5iQkIAkSQGh9Ot9CVNVc8KXKkxTOJjMmaPRq5dOs2Y2PvjA4OLFVP1X\nVVX54QfhFGKdV7i/9ddfYgC8enWThx4yWbvWx+zZMm+/rYQMOK9cKfqA9eoZVKvmxe128/330bRu\nbaIo4jt/9plghg4Z4qddOw2Hw+CzzxKYOjWZPHmkAAnk77/ddOp0+4Ol9b1VVaVwYTszZphs3Oim\nYkWdMWOiSEqCVq3u45lnInjlFYmVK4U7xurVCq1bO3C54MsvfRw75iZXLiHg/uefEtOmqfh8Qlz9\njTcEcahbNzv9+olRB4C+ff2sWSOTLZvJxo0KtWoZ1K8v7kVsLFSqZDBggJ2EBJElDhzoIyrKpHDh\nJE6eVNi6NRsdOuhomlDjcbuFvuwvv8isXKkSGQnjxtlRFKHeE07VxTBg/Hgbw4b5WL/ey4QJfr7/\n3klcXE6+/fY+7HaRfX3xhZ327ZMzzL40TWPOHI0yZTTKl09d/CtUMFm2zMuLL/o5cUIKjIg88IAo\nXe/ZI3HggMSlS6LkvGmTgssFiYkSf/whSvlJSVLYLDIpSYhfVKwY+n9nzgi7s5IlxUYoOTkZ0zQz\nlI1MC6vEGBGR6pdqGSdY2aB1HTLyCr0Wbua87gSCz8v63tfKQtM6tVxvFhqc5ab1wLSuqyU4sGTJ\nEvbs2RMyYvL/Hf/6gGnBYsB6PJ5AP+FGd6uWiLn1a2lf2D/+EP9RpozJ88/7WLnyAps2KbRokZvz\n50W59/x5YchsacxmFDAXL1Z47jlRSgXInx9Wr/Zz8KDMc8/ZuHBBfD55sgiYDRsKQdqIiCjmz7fT\nvLl4Uc6dM1i0SKVYMZNnn/Uze7aOz2fywgsyY8dGEx+vMHiwjzFj/Nyt9cMwDAoXdjFz5iWOHEkK\nOGVs3Wpnzx4b9ev7mDz5MvXqeXC5THLl8lGhggeHw6BvXx/z5qlUry5Gan791cPcuSq//ioTF2ew\naZOHP/+UqVrVycqVMjExMHKkn27dRFB7+mkNv1+Ij//1lxBoj442ad1amEi3aJHMU0+5WbUqmoED\nNXr3dhAba3LmjMT8+V66dfOzZ4/MqVMSffqIa+jxCLEBw4AGDdIbE3/7rUJEhEmdOuJZql7dYMkS\nL1On+pg9W6Vq1SimTYtk3z4b7dsL1qbdbg9kR4mJiSQmJpKSksLUqZF07aqHGTaH4cMt71FB2Dpz\nRmLKFJWTJ4XY/MGDgqS0c6cc8MOsW1enY0c9MHKTFlu2yJQvL7LUYPz2m8Jjj+n4fB5SUlICqks3\nmxGG64tbfcaMvEIzGvoPLkk6HI7rar3cKVgKR1b7Iu153Uov1GazhZCtrtYLte6XlckahsE333xD\n8+bN+eWXX2jcuDFDhw5l3bp1uDMw97xe82iA0aNHky9fPrJnz87LL78cmJe/27hXkvV6cblceDwe\nFEUhNjb2pl+WGjVsfPCBRp06JhcvXiRHjhwhf+uTTxROnYLBgxMDM5yqamfUKJVx4xQmTdI4cwaW\nL5eZO1ekiYZhkJCQkK68W7Omjf79NerVC71Fmgb9+yssWKDw8cdeXn9dLOyHDrlRFDcbN0by/vtO\nfvnFhSRJDB5sY9QoG6tXJ5Ivn4eaNXMxaZKPwYPtbN4s8803Xp566u6pi/j9ftxud7rh9fPn4Ysv\nVD77zIbLJTK/KlUMVqyQOHJEoXRpjUuXZGTZpEkTH/HxdsqVM/nsMx+rVqm89ZaNX37xkDu3yPyX\nLVPo08eG3Q7332+ybp2MwyH+T9Mge3YC85QnTohzyJ7d4OGHdYoUkVi5UmHvXg8NGzrYv18wRP/7\nX43nn9eJi3Pwxx9CUalcOZ0PPrCjqlCkiMHBgzLjx/vo2FEP3L9HH3UyYoQvRJHJgnnF9/TFFx3k\nyGEyd66XcuVSnwGLzS3LMtu2OejaNZoNG86hKISUL3v0cPLVV6nShV26aGzfLnP8uBiVqV9f4+BB\nmcOHZVwuwfItVsxg/Xovo0aJ+cwhQ9IvYoMHq5w/L9GsmWAWm6ZE3rwms2bJZM/uo0cP122Ttkt/\nrcx0ZVzxfUOZqJbxtBUQsgKszY/VFrqV87re6xCOkWvBKuF6vV5UVQ0QoPbu3cvYsWNp2rQpmzZt\nYtOmTUyYMIGKFSumO49vv/0WWZZZsWIFbrebKVOmhD3fFStW0LFjR9auXUu+fPlo0qQJcXFxfPzx\nxzd9DW4CYYPAvz5gnr8iVqqqYl4sJty2+Trw119QrZqdo0d92Gxw6dKldHOacXEqffsmUKuWmW7R\n2LBBon17G1FRJu+8o9OunXhgTdPk0qVLIYarf/8NcXF2jh3zhVWuMU2T77/X6dRJkF0qVYIFC/wk\nJSXx6qsxVKli8tprOpomU6BABHXqeJk0KZGRI7Oxe7eQ8XK5YM0aD2XK3J1HwDCMgOakVRYKB9OE\nr79W+PBD0ZssW9bg778l9u8XpcPx4z2Ypk5CgsbLL8eQmCjx5ZdJTJsWyZo1dl58UeP334Vs2ZEj\nwr/y5EkZWSagAzt5so9ChUzy5DGRZYOHH46kcmUfBw/aePddH3v3KsyYoaKq4HQKlZyOHYUZ9ief\n+Dl8WOLdd+14vaLc2qePjwED7NjtIEkmui6xY4eHokVNJkwQIupLl3oznNM9dkyiRg0nPXr4GTPG\nRqNGGv36+cieXYgQOJ1ObDYbbdo4qFXLoEsXf0gPcPVqhbZts6PrkD27+F4PPih6k14v9OnjZ9Ag\nO9HRJqdOSdhskC+fydq1HnLmhGefdfDaa6mWXYYhpB6//VZl1iwFux3KlTMCsngnTpj8/bfM9Okp\n1K2bOfOAN4PgHp1VWrRILDabLRBA7vbsp8VpUBTltmS7aXuV19sLteY8rdlZWZbZsmULP/zwA6NG\njbru4/fv358TJ05kGDDbtm3Lgw8+yKBBgwBYu3Ytbdq04dSpU7f+5a8f9wJmOFikH6sce7OKFaNH\nKxw4IDFhgsgMg6X2DMNg/343depk5/BhFxER4enpR45AuXJ2nnjCYNYsMU5gBczgbHXUKIWDB1OP\nFQwrw/D7oVKlnOi6EMd+6y0/jRp5qF07ml9/PU/27DojR0bz6afR/PHHRU6fjqB+/Qh8PihVymD1\nai+Z7NhzXQieE7wRSTRdh59+kpk2TWXdOlHSPHtWeHq2aKETEQGXLoke8uHDwjlE6H8avPqqm7g4\nnZMnbbz9diSTJnl5/HGDmTNV3n3XRunSBjabxJkzcP68KFNas5WmCQULmiQmSrjdJj6fhGGIzw1D\nCDp4PFLAfsxmE0FK0yQcDnGOhiH6hytXeqhVK4Iff/RQqlTGr17Xrnbuv99kwAA/ly7BkCEqc+ao\ndO3q4s03ISpKZv9+ifr1nfzxhzvgxwlw7hyULBmBxwMFCxqcOCGzePElWrXKgc1m0qGDl6NHFRwO\nWLTIhs0mzm31ag/58omRmgIFIvjzTzcxMTBrlsLYsSIzb9VKY+hQG3v3it6xRVRJSdEpXToPx46F\nnsvdQvBspfV8BQcPi+QSHEDvVJC31iFr03OnjnutLBQIzO4Gl3Hff/99Tp48yeLFi6/7WNcKmBUq\nVKBv3760aNECgIsXL5I7d27Onz8flkh5m3CP9BMO1s2/VYuvhQvlEBcIi0Tk8XhISEhg+XInzz5r\nZBgsQfSKatUyKV3apFo1O3v2SGGF4efNEwLpwQieF7Xb7cTHZ6NgQbFoL1/u5uhRiWrVYnA6Yc6c\nbHzzTQSffhrN44/76dMnkieeiLgSWN2sX59EZOSdL8MGC21bhIPrXTAUBZ56ymDuXB9//+1mwQIf\nH33kw+uV+OILlXXrxBjEhx9qTJnipXJlg8KF4f77JVaujGDqVCd9+zqZOfMCVasmYLO5ePnlFBo3\nFp6Yb7yRQu3aHipX1omP9/DAAyZnz7qpU8egQgWDli39eDwSe/Z4OHPGTaFCJtHRIrPq2dPPk0/q\nKArUqKFTtqxxpS8qBcaLTp4UTi0vvqhdNVj+8YcYA+neXYgQREX56NfvIitWJLF7t5NKlSKZNk2Y\nYHfr5g8JULoOdes68XpF9pySIlOnjs6RI1H4/VCypMHjj2v8+qvK4sXiOS1SROeHHxLJnVtkY9u3\nyzz4oPj38cedzJmjMnq0j02bPNSqpVOwoEmuXIJwlJSUhCRJHDgQS8mSRpYIltZspWURZvXyrB5g\n2pEWl8sV6Adb7NnbMdJiWfVZIvN3Wrgho16oxYz1XDGh3bNnD3379mXhwoV06dIFWZaZPXt2pp5L\ncnJyyFRAbGwspmmSdC1j4DuArEEDywK4lYfz4EGhm1qrVuiLZPWSYmJiWLLESd++V5c4s5xDXn7Z\n4JFHTJ56ysbIkRr166f+zIEDEqdPS9SsmXosa5ZNluVAGfjLLxUKFzYoX96kQgWTzz/389tvCo0b\nezh/3mTWrBgMA4oXl1izxoHNBj/+mEL58n78fi3wggT3vW7XTjut+sytkEFAZHGVKhlUqgT//a+b\n0aNVhg2z8e67MmXKGNSubfDiixpbt8osWqRw/rzMb78p/Pe/fooXjyQyUr8i5abx9NPJ/PZbNK+8\nEk1srMnrr3vZsEEmORn69rXx6KM648bZcLkUcuQwOX1aELAWLfJSq5YTWTbp0cOOJEHTphrffady\n6JCbOXNU+vcXJfj27TUmTLBx/rzETz/JtGsnvCTTXyfo08dOz55+smUzcLncgVGk0qUV5szxsXmz\nzHvv2di6VWbQIAOXi4CoQdOmDo4cEazYWrWEPdnUqT4eftiJ3S7ITg0aRCPL4li5c5usXZuM06nj\ndgvW5bJlMXi9Kt262Rk2zMtzz5mB0vGmTQqPP65fEb5PVcYRn99dlw1I7Yc7HI4MA1I4VZ7g8qXF\neQgeabnVLDS4BHst2b07BatnaWnWxsTEIEkSOXPmxG63M378eA4ePMh9993HuXPnqF69Oq+//nqm\nHDs6OprEIJ86a2rhZttlmYl7AfMKbiXDtCyxVDVUoNlilh07JnHkiHRVuy+XS4yAjBwpHtAXXjAo\nU8ZPq1Y21q2LZcQIk8hImDNHpnlz/Uo50AyooURFRQUa8Tt3CiPjkyclJk70IUkSP/9s4vcb9Ojh\nIjExgokTZXr3Fm4hp09LbNjgplQpGRBekGn7PZaEWXAAzQyXBIvJZy38mU26kCTo0UPjrbc0li6V\n+fJLlblzFS5eVJEkyJnTpEwZg/PnJUaOtDF8uO2KwIDIzmVZ/BsRYeJ2w0cfOXE4BDnn88+Fm4S4\n70JvtWZNJ9HRJnnzmuTKZXD4sEyNGjotWwrNVemKN+bcuT6io01ef93OgQMyOXKIkvGOHTKPPeak\nbl2dN9/UiIsLtmIT/psvvugmOdkddnNRpYpBvnwmL76osXGjzMiRETRvrnH6tMSaNUJ5KE8ek59/\nVujb18/EiQoXL0p06qRRt64TRTFJSZFwOmHuXB85cqTOEP36q8T48U7i4vxMnnwZp9NPcnJq+XLD\nBpU6dVyB7M3qBf76q0KbNlffLN5OBL+TNzNbafXrrPcrreyctblM2wO81rsRvFG05ACzCqwgbmWd\n1vq4Y8cONm/ezKxZsyhZsiQHDx5k06ZN/P3335l27DJlyrBr1y6aN28OwM6dO8mbN++dLMdmiH99\nDzO46R2OjXotGAYUKyYcGNq39+JwpATmliytzuHDFf7+W2LcuIwXjfnzZaZPV1i6NJR5ePkydOoE\nZ86oTJ+u8eyzdubO9VOmjDfwQFuLphXkrJGIdesUdu504/G46dw5iipVoHt3k1q1HBw+LEq9brcw\nUr6eDCDc8HjaReJ6CRPhNE3v5M7aNOHiRaF7mpIi4fWKILl9u8xvv0mcOmXidApHmT/+UChVyqRB\nAx23W1QUDhwQ7iYTJiQRG+sHZDZssDNsWBR58kBCAng84vqCsMCqX1/MOO7bJzNmjBA/ePRRB/v3\ny7z+ukZyMkybJhbzunV1Dh2SyZ/fpFcvP2XLGlSr5uSrrxKpXNmbIRFq0yaZDh3s7NrlISJC2Km9\n8oqdn38W98XhEDOrsizRrp2fzz4TGwRL/F5RBMHHsvey+rTjxqmMHGkjJQX273eTM2cqIURsqPyU\nL5+T7767wIMPEhAflySFwoUj2bLFE/AqvZO43QQaC1d7N8IJK6QN4lmJnWu9l8HauT6fj379+pGQ\nkMCECROIvgmCgzW2MnDgQI4fP86kSZNCeqQWVqxYQadOnVi9ejX3338/zZo1o2rVqgwePDhTvuN1\n4h7pJxyshzwcueZ6sHq1RLduKsWLa2zerBIXZ9C+vUmdOolERKg4HE4qVLDx+eca1aplfDlbtFBp\n1MgIsGODkZCQyIwZsQwaZCcy0mTXrksYhhbIKoOZbOfOSVSqFEn9+jolS2p07XqZCxfsVK+eg717\n3axZI9O+vYNs2UCWhbh269ZXF4LPCGmJAhZh4lrqK1ZWaZomERERWWqxCCaDWKSLxYsVpk5VWbLE\nG/hZXYfixSNYtUqItQsGoUaVKjGMGZPAI4/4URSFPXtsPPWU6McYBuTIYXLunLgeERHw8MMGu3fL\n2GwmTz9tsG2bxOHDMoYBLVtqPPWUwSef2Dh1Cp580sukSS4iIsIToTQNqld38vbbflq0EPd03DiF\n3r2FBmzFijr79imkpAgy0q5dgvxUu7ZgCvt8Ena7Sc+eGr/9JvP11z7cbpER79sn8957PgYNsvPb\nb57AMa17efiwxPPP38eff7owjNRn4o8/JDp2zMG2bQkhpf3bjWDrsruRvaXNQi0SjbWp9PvF83Gr\n7YfMREZB/Pjx43Tp0oUXXniBzp073/T9+/DDD/nwww9Dvu+AAQPo1KkTpUuXZt++fRQoUACAMWPG\nMHToUDweD82bN2fChAl32ubtXsAMB+uBBsLOTl4NpmnSurXC44+76NJFxzAi+f57henTFf78E7p0\n8REXJ/PGGyp79vgzHBO4eFEYNx865CMcSTcxMRGHw0HbthFs2SL6cJ9/blC4cGqgBFFWHjLExrFj\nEkuXKqxff4HChR0MHBhBcjJ06qRRrZoTpxNiY0369/fTocPNBcuMroeVcaR1JbF22lZ5925klVeD\n6Fm6kSQpoCBjISlJGDTv3+8mWKHwzTdtFC5s0qNHauVgyBCVCxckhg3zBp6t1q2jefppN5cuKcyc\nGck//8iBcq+uQ/XqOhs2KNSqpXP2rBhvsduFpF6JEgaVKvnZtUtB02SyZ4f33vNTv356e7gxY1RW\nrFBYvlwE9oED1UCJuWZNIe23Y4eM0ymCqxhrgYceMjh0SIzSbN7soV8/G08+qfPUUzqtWjkoXNhk\nwgQfEyaonDolMWKEqIIEz8jOnx/N6tUK06eHastOmqTw228Sn32WkuEzkdkGyFlxQ2a9G5ZOq1UR\nutkKTWYjXCZumiarV69m0KBBAdGBfxHusWTD4UYsvoKh6zqHDqUQH6/Qvr16hVkm0aaNwYoVfhYu\nTOLAAZlmzWwUKmRyxXowLObNk2nQwAgbLC2cP+9l/XqFdeu81KwpUbWqnQEDFC5fNgINercbJk1S\nyZvXwxNPaBQtGonLpTJ1qlDyqVnTiWkKUswnn2RusIRUwkQ4VxJLE9fr9QYWhbvlQhGMYJUXqyeY\ndtGKiYGqVQ1++il04W3SROfbb0M/a9FCZ+FCFcNIlXLr3BkWLIjhnXdMtm1LYMOGS9x3nwh42bKZ\nbNsm/sYvvyg0aKBhtwsZuooVdfbvl5k718HAgX62bvXSrZsQjq9Z08HixUrAQ3TvXonRo21MmODj\n/Hlo08bOyJE2TBNKlDA4c0aUmyMixDFtNnjtNT/Zs5vs3SvjcJj89ptg/65dq1CkiMGTTzqpV89g\n2jQfkZGwfr1CjRpGIBNxu90BNvPGjQrVqqWvjmzapFCtmhn2mUiryJMZLFRN00hOTkaW5dvSE78V\nWHPFlrRfOFm7xMTEAFv2Tr0flppQsPqSrut8/PHHTJkyhR9//PHfFiwzxL8+YAbjegJm8PjG1KlR\ntG5tkDNn+l5SmTImw4alYLdDVBSULWtn+nSRWaTF118rtG+fPnhZx9I0jSVLnNSoYVK4sMw77/jY\nsMHFP/9AuXJRDBhg5+BBk8mTDSpW9PHTT5G8/LIIpJ99phIVZTJsmA2/H3LkgJUrPSEjMLcLViC3\nylNOp5Po6OgAqciScbse+bLbgdSZVX9gxCCjTOe55zS+/z508a1Rw+Cvv2T+/jv1d4oXNylQwGDd\nutRXq0EDnaNHJQ4eFOML5co5mTjRT+HCBg88YODxwP336/j9MGaMjYoV/cTGGuzYoVCokE727CbN\nm0dQr56DunV1fvvNQ69eGp9+qlKhgpNhw1ReeMFB374+5sxRKFMmgqVLRTB1OoVjzqFDMqoKUVEm\nXq/EiBE+vvpK5fhxiUKFTPbt81CggMmOHTIxMSYdOjjp3dtP376iMuL3c0VO0B/QNY2Ojg70UTds\nkKlaNf0ztWmTTNWqqfc0I1cOS8zb6/WSmJhIUlLSDdl7Wc+Ty+UKaK1mleqFNWJjmWIHj7JlJGtn\nZXxpNxOZ+X5Y60vwKAvAuXPnaNmyJTExMSxatChENOXfjn99SdZSrwBBX7Ye2HCwsiQRBCIpXTqC\n+Hg/xYunv0wej4dJk1Q2bnQyZ47Gli0SPXuq6DqMHavxyCPid3bvlmjSxMaBAz6CN8PWsaygU79+\nNvr1M6hf3x9QJ5EkiaNHYdw4mYULbSQkyDz2mM6BAzIDBvjZuVNm8mQVp5MrbiMmBw547pgggVXm\nBDIsjWXUB72dg+PB/a2rjRgE4+xZqFAhgiNH3AR5edOtm50SJQy6d08ty44bp7Jnj8yXX6aWJz/8\n0EZSEoFypmlCzZoO3npLQ9dNevWyc/Zs6jnIMkRHGyQmysTFaVSsqPPllw50XUjUPfmkYMNu3y6z\ncqUSEI8P/v0BA3zUq2fQtKmDs2clIiPFM/DYYyKgX74s0aSJzsyZvkB5t0MHO0uXKsyb5w2R5vv1\nV4nu3W2sWnU+3VD9qVPw6KMR/P23O8Tu7fhxiWrVnBw75s6wHREOwaX94JZJ8DMRXMa9Wjn9biL4\nObtZ82nTNEOIRJn1flgzz5IkhfRRN2/eTK9evRg2bBi1a9e+4fP9f4R7PcxwsB5qEL3CcA928PhG\nZGQkdrudsWNVfv1VCmi+poXb7eXxxyMZM8YIjJMYBsyaJdOvn0qTJgYDB2r076+SJ49Jv3564FjW\nrs861saNXjp2jGb3bsFaDNZ9tALSwoUxTJydMEy5AAAgAElEQVRox+8XrhoXL4pRlnz5hKnz3r0y\nP/3kpVKl25/B3UxACv7dqy2WtzoPej1BPCM89ZSD7t1TJeFAqAsNGWJjzZpUQtCpU1C5cgQHD7oD\nM5DHj0s8/riTffvcAdHylStlevcWJBpJMlm61ODll6Nwu8V3e/RRnR07ZHw+YeycL59OUpJMUlJw\nG4GA20hUlBgJkSTIm9ckTx7hoKProldqs4mfdThMXC6JRx4xWLcu9bwnTFDp3Vu4pHTpkvodDcNg\nyBCJc+ckRo0y0gWk+fMV5s9XmDcvNGrPnauwZInC7NnpPTNvFMHPRDALVZIkNE3D4XBkqZ54cB81\nM7Vz074flg1X8EbCIttlhHDzqIZh8MUXX7BixQqmT5/OAw88kCnn+38Y93qY10K4kqzP5+Py5csA\nZMuWDYfDgcslMXq0Qt++GZc1f/pJxWYjRMxAlqFdO4MdO3xoGpQvb2fWLDkgvG0ZVhuGETgWwJQp\nTtq2TcHrTTV3FZJjou/mdEYxapSD11/XOH5cOGOULSvcJJo21fnzT5l33vHfkWCZtsx5o4tYcB/U\nMpcOdqFIq7xyvTZOwb1Km812U/2tRo3S9yxr1RIC6sePp37HfPng0UeNkBJugQImNWvqzJ2bWr2o\nV88ge3aTqVNlfvzRz59/ivKtNQO6ebOCpknExopAd+aMQs6cJhERZkBDWJbFSEjZsjoVKhiUKmWy\nfbubihUNjh8XP6PrEB1tUrq0uP/33SeEHXr1sgT+hQjDhAkqdjsh7QHLOmvDBjt16shhF/4NG2Sq\nV0//bG3YIIfta94MZFkOlHGjo6MDQ+xW4PT5fIEy7p3s/4VD2j5qZma84d6PmJiYgFtNcEnb7XaH\nlLStsrXVe7bezcTERDp27Mi5c+dYvnz5vWB5FfzrM0xI1ZNNTk4OWNkES2gFiwIADBmisHu3xOzZ\nGc9V1qmj8p//pNCpU3r7JgvvvKMwbZpCXJzB0KFJPPBAalZp7STPnDGpVCmSHTtc3Hefjs/nC5SQ\nrRGOefOczJrlJHduk1WrFKZM8bF9u8z27RLr1inUrq0zf76P21mpCh7JuNGs8kaRVjj6WvOgVqCF\nG88qg3H8uERcnJMjR9whovddu9opWdLgzTdTn4d58xRmzgwdRVm3Tubtt+388IOHtWsV1q1TWLVK\n5sQJicce06hYUYiWA/Tta6d6dZ3ly5XAjKSlUSvLguHatKlGZKTJ8uUqhiH0bEuW9LNvn43s2Q3O\nnhU+p7ouMlGbTTBs27TRqVLFyeHDbgwDunSxc/q0RJs2GkuXqixc6A0ZMZDlCIoWjeHPP92EG1Ou\nXNnJxIm+dBuySpWcTJnipUKFzF1GNE3D7XanY3SmnYW80czrVpEZJdjMOo/gTNyq0lh2XbquBzaN\ne/fu5fXXX6d37940btw4y2ToWQBhL8Q9pZ8gBOu/ut3uAEkl+CE6cQLGjlXYuDHjMtPatUK+rlEj\nDxA+YOo6LF0qM2+ei19+MahbN5Zu3XR69NBDnNKnTLHTpIlO7tzg8fgDdj8Wy9Dl0hg61Mn77yfy\n9tvZWLPmIqqq0rlzDJomUbiwwaxZtzdYWgQFi9Rwu3tIGSmvWCMrwX0eEFlSZpTsChQwKVrU4Oef\n5ZD+XvPmGh98YAsJmM89p9Ojh52TJyUeeMDkn38kduyQOXZMonTpCGrX1qla1UPbtl4++SSWunVN\n3ngj9fclyceYMTb++MPNiBE2Fi1SSUpKDZweD8yZowZcVTRNuIrs2iWIG6dPi+9uGIIV++qrbl5/\n3U+2bAqff27nmWd0Ll2CF15wUKiQyfffe3nzTTv16+shASk6OppfflH4n/8xwgbLc+eE3dnDD4cG\ny7NnhVZusPXYreJqs5XBknbW59eStMtoTvhmEFyCvRPvwNVgkYksLobFh7DaGT/++CNdu3alWLFi\nXLhwgffee49KlSrdtfP9v4R7GSai7GqaJsnJyYGB4nAlO9OEVq1U4uNl7r/fpGFDg+efN6hcOVVP\n0zShdm0bXbr4eOaZxBAR4WAsWgQjR8osXXqR6OgoTp2y8c47Kjt2SHzwgY8WLXQ8HrG4LlmSTJEi\n4oFPy/6bMEHM3hUtauBwmHz4oYvnn49k82aVmBiT9esvkTPn7Zl3y2jQ/27DIkp4PJ6QslxGpJEb\nwahRKkePSowbl6rIpGlCxGD1ag/FiqUe75VX7Hg8cPasxN69Ms89pxMZaXDggMTXX18IiH7v3y/T\noIGT7duFgo6FXr1sbN8u8913XiIjYedOiW++UZk3T+HcOelKpmnidks4HCKY+v0imyxUSMjz5c1r\n8vXXbgwjtSfcsOF9tGjhZfz4KDp08NG7tw5IFCvmZPnyRPLnD1V5GTTIhtcLH32U3v/y228Vpk9X\nWbzYG/L54sUKX3+tsmiRN93v3Awyoyd4NTGBW3kuLJH2rDZbHPx+Bt9Pt9tNr1690DSN//mf/2Hr\n1q1s3LiR/Pnzs3379kw7vqU/a52L2+2mW7dujB07NtOOcRtxj/STEYJNpFVVDbnRwZg9W2bECIUN\nG/zs2yexZInMggVi4LtTJ4MOHXRWrZIZOVJh/XoPLlcS2bNnD/kb4sHxUqNGJH37emnaVOwCraxy\n/XqFvn3t6LpExYoap0+bTJ9+OawUWkIClC8fwZQpXtq3d7B9u5uFC1V69bKRM6fJrl0uIiJSF0rL\n887afd5KAA3OKrMaMzGc5F5aIlHwtbiRct2xYxJPPCHKmcG3o0cPG3nzmrz7rsbFizBxosr48TY8\nHvjiCx/PPqtjt5tcvuyhYsXsLFni4uGHUzdkb78tZiZHjUoNSoYhyr0nT0rMm+cNOJsAnDol8fXX\nMsOG2SlSxOT++w2KFTN55hmd2rXFqErZsiKIB7O4Dx+GqlUjsNtNRo5M4emnXRiGwZ49Drp2jWXD\nhgvppNrq1nXQu7c/rKH122/bKFDA5K23tOv6/GZg9ewzOyBZfb2rPRdXExPIKCBlBWS0wThy5Aiv\nvvoqnTt3pn379iEB7ezZs+TNm/e2nE9KSgr58uXjhx9+oFq1arflGJmMewEzHEzT5Pz584ESniUC\nnha//y7RsKGNZcv8lC9vBv0+bNwo8dVXCsuXy2gaTJzop2lTPZ02rUWIWbbMxujRMWzerAGpaj1W\necgwTBYuNOncOYpcuQzeeEPj+ecNChQIvR19+ti4eNGSWTPx+yWmTlXImRN27w5VpbG+a/DicDNa\nsFk1q4RQIfdr6XOGuxZWue5a1+KJJxz07++nbt3UALJxo0y3bnaaNdOZOFGlYUOd7t39tGvn4LPP\nfDz2mC9Q5vz001j++ktmwoTUsv6FC2I0Y/58L488kvp3NU30GI8elfjmGy958ojPL18WVl3t2mkh\npWALo0ap7NolhyjvnDkDDRs6OHtWZu1aEUitMufQoSoJCQoDByaHXAu3W6FkyWwcPeoiKir9fX70\nUSdffOELOWeAxx5z8vnnPipXvnnSj0VS8fv9NyWafrPHvJ4xDos5D2QqCzYzYGW8wX6ypmmybNky\nRo8ezcSJEylXrtwdPafp06fz0UcfcejQoTt63FvAvR5mOEiSFDCNtth1aXH4MDRrZmPUKC0kWIrf\nh2rVTKpV0+jYUWXPHok33rCxYoXMa6/JARNoj8dzxRQ5gqFDYxgyRMMw9BBZOysTcrvdnDzpoFYt\njT59dCZPVhk50k7+/CaPPGJQooSB2w1ffaXSoIHG99+LWUtVNYmJgU2bPOmCpXUMm812zd5fWksv\nC1Zv6071Kq8XN2MPltG10HU9wCy0+mJp592aNdNZtEilbl0RjDQNfv9d5tAhid9/l1i/3kORIuI5\n6dDBz6RJEmXLugJ9t86dNcqXj+D99wWjFiBnTvj4Yx/dutlZv94TIBWpKnz1lY9Bg2zUru1k8mQf\nFSoYtG7toHZtPWT+04LbDZ99ZmPJEqH5quswe7bC++/b0XX4+mtvIFhaxJ74+Fj69xfM5uBr8fPP\nEuXL+9D1JFJSQjOv8+clTpyQKFdOZLQOh3gfzp+Hf/6RqFDh5oPlne6LWwj3XATLPQaX+S22albZ\nMGZEOgoWPF+xYkVgvbuTmDFjBu3bt7/jx81s/OszTCCgoGE9bMG+a7/8ItG+vY2+fTVeeinjBeDb\nb2V69VLZutWHrgvR6wkThL9l9+4J5M8vdqJTpthYsEBm6VIPkCpAEPyw+/12qlTJzrx5qcxDTYOt\nW2V27pQ5eFDi228VChY0r5CLNA4elImPV/jlFw9lytzcbbuaFqxFoLAW/ayySARnlRk5eNwM0rIu\ng+dBT5+28cQTsRw+7GbXLoXu3e3kyGHy4IMG2bPDxx+Lsqqu6/zzj4e4uJzs2eMiZ87URb9nTxuq\nCkOH+oOOCY0bO6hZU6dnz/SB8LvvFP77XzsxMSYlShh88014MteECaLPPnu2j2XLFIYMsRERYfLq\nqxrvv2/jjz88GEZqFpKU5KRChUiOHnXjSMNR69XLRq5cJj17ig3VmTMGq1YpbNpkY8MGO8ePKwHm\nrmEID81cuUxy5iSgaXuj193a/NxutvWNwqquWPPFwRuLu60Jm5Fw+unTp+ncuTONGjXijTfeuCub\n3L/++ovixYtz6NAhChcufMePf5O4V5LNCFZwsHolwTuwuDgbug5t2hg0bqzz4IPpf3/XLolnnrHx\n3Xf+gIKPaZocPnyZzz+PZs6cSDp2NOjYUaNOHQdLlrgpVy61BJt2mH7oUCcHD0pMmxaeiTtzpsKE\nCTY6dfIzfbpK6dImc+YoLF/uoXr1zGUlBrutW8gM8kxm4Hb1tjJCcB+0fv0Y8uQx2L7dxkcfuWnZ\nUufwYRvPPutk/343up4q3PDyyzFUq2bw6qupQfDkSYnHHnOybZub4LbRX38JT81vv/VQsWLovTRN\neP11GytWKLhcEs89JwTSH3/cIHduE1mGf/6BmjUjqFdPZ8MGQU57802Nxo11BgywYRgmffsm4ff7\nA1nI7NkKS5eGFxioXNnJ2LE+/vpLYuZMlZ07ZWrW1KlZUyc+XqZsWT/duycjSTqaJnPhgp3evaOo\nUsXknXe0G7onWdXyCkKVcdL27DMiE90J83XI2Lty/fr19O/fn7Fjx1K1atXbcuzrwaBBg1i9ejVr\n1669a+dwE7gXMDNCcC8rJSUlhNmamAg//yyzfLnM99/LPPigSbt2Oq1aCbH0HTuEtN2YMRpNm4ps\n0Ofz4XIJMkVMTAxnz9r4+GOFr79WeOQRnYULvWTLJoWdXfznH5nq1Z388ouHQoXSX/4TJySqVnXy\n5ZdeXnnFwcMP68THKyxY4KVBg8zVmbT6R8HlnauRZzLLVPpasEZ/dF3P1KzyRvDppyozZigsW5ZC\ntmypGXnDhrl4990katVKJYLEx8v07GlnyxZPiERcjx42nM7UjNTCvHkKgwfb2LAhVMZw+HCV+fNV\nVq704PeLsZL4eIVt22QuXRLlUIeDK8LqGg0baoGgaxhQurST6dMvUbasEbLot29vp04dPZ0Y/969\nliE2VKxo0KGDUDmystCKFZ1Mm+alfHkzJGhUrRrD6NGXqVBBu+6gEa7vllVwoxuzjGZCb4Zkdi34\nfL50BtS6rjN69Gg2b97MtGnTyJ079y0f51ZQokQJ+vTpQ4cOHe7qedwg7gXMjBDc5E9KSs9sTf05\nWLVKZvp0mfh4ISq9caPMF19oNG5sBHah1qyk2+0mKioKSZKYOVPmk0/sVKxo8PPPCq+84qVdu0Ry\n5EjdsZomtGxpp3Jlg3ffTV+SMwxo1MhBXJzOunUKR48KubJly7yZpqhiXQ+LoOJ0Oq9axskMItGN\nINhS6m4urGfOQKVKERw44CYqKrV/NH68zM6dDiZMSAoaW1CpUSMHI0d6qVXLDJzziRMSVaqIcRKL\nzGPh1VfteL0wZYrQeZ02TWHYMBurV3vDGjEbhuhdVq7sZNo0H1WqpD4PpmkSH2/Qs6eTTZtSQoha\nfj8UKRLBtm1u7r9f/PzlyzB2rI3x41Vy5TJZvNhLiRKhxzx5Ukj9HTsWqh9rXZe//nIhSdcOGkCW\nZZpmJukonNhGMF/gRjVhM8rGL168yGuvvcYjjzxCv3797nqWvnHjRho0aMDp06fDkimzMO5J42UE\n6yG9lluJqsJTTxnMmaOxdauPokVNTBPmzpX57TchaydJEtmyZQtxKt+yxaRPHwezZ3uZPt3Ld98l\n8OefJo8/nosPPsjOkSPioZ4/X+HIEZn//jc8FX/ECBWfD/bskfj1VxmPR2LLFnemBUvrJXS5BEHl\neth/FknCEnlIa1mUlJQUItN1s24LFivR4/EELKXuZhaSN6+Qv1u2TAlslHw+H23bKqxa5cAwUt0n\nbDaVl15y8/nnMklJSQFZv7x5/bRurTF0aPogMWqUj0OHJD75RGXJEoWBA+189134YAmih7hggULR\nomZIsLTO7ZtvVF54wUjXE9ywQaZ4cYP77wevV2TO5ctHcPq0RK1aOj17+tMFS4D4eFGaTft4rF+v\nUK2ajqqmupIES7ildSVJTEwMVFju9uIeDEvpyzCMEFeWm4UltBH8nlgbZauyZT0bXq/3qpKPuq6T\nnJwMEOJ+sn37dpo1a0a3bt14//33s8T1nDFjBs8///z/tWCZIe5lmKSaSJumyaVLl27IRDohQWfi\nRIPx4yOoWNGkXz+DSpWMgFns3r06LVrkYMiQJJ55Rij1WAIEx48rTJqkMmOGSoECQpP0iy+8NG2a\n3hx46VKZV191kCePwf79MvXq6SxY4COzqpFW5hZOHOFWcC1T6evp72SVrDIt5s5V+OYbmenTL4Sc\n2wsvCMWcTp1SS5zJyVCqVATr17vInz/1Wpw9a/DEE3n44YdESpSQQjLyU6cgLs6JxyPxww/pe5rB\n8PuhQgUnkyb5AnZa1nUzDDvlyuVg40YPBQuG/o133hEzuyVLmvTrZ6NkSZOPPvJRooTJgw9G8PPP\nHgoXTn/czp3tPPaYQefOoZu7N96wUaKEyeuvX33+0u/3B0qwllzbne79Xe3c0oqT3wlk1O4Izsot\nvkNa4fQpU6awePFiZsyYQcGCBe/I+f4/x72SbEYI1lu8ePHidQVMq/9oSeiBk6lTFUaMUHj4YYP3\n3vPh90u0a+dgwAAvzZolBcowaV8El0uhZs1IsmUzOX9e4tIlieLFDe67T2QOR45IHD4sJNYuX5aY\nONFLkyaZm1VqmnZHSmLh+juW83xaIlHwud2pObzrhZjf9fDwwznYvj2FfPlSd/M//igcTIKdQEAw\nTu12GDTIH/J3hg8XfcgpUxJCRnu2b7fTqlU0kmQydKiftm0zFvufPl1h/nyVpUu96UqJS5c6+PJL\nlR9+CD0f04SHHnKSN6+JpkkMHeqjdm3xXO3YIdGpk4OdOz3pjmWaULy4k5UrvSHKRgBlyzqZN89L\n6dLhl46rlTmvpQd7u3vkd2Pu81rnk9b6DsSGYtu2beTIkYNChQrx9ttvkydPHoYNGxYiF3gPt4R7\nc5gZIfgFtBbqq72UwV6VsbGxKIqCaZq88oqfdu28zJhho00bJ0lJEu+846FJkwQUxRboZwa/CG63\nj65doylVyseUKSmoqkJCgsrRoyqXL4t5toED7bzwgs7q1Qpr19782EhaBGduGakbZTYy0vy0FgWr\nbBu8schKM5+Q2uONilJ4+mmDb7910LVrakZVr55B9+4Su3eHaqm+9ppGjRpOevXyYxGxJUnijTcM\nKla0s21bDDVqiCCxY4dJmzZRjBt3iYIFdVq3vo/z53W6ddNRlNCsy+eDoUNtTJniCzAmFUUJ3NM5\ncxTatAnN+I4elejRw8aZMxL9+vlp104P8WNdtUqhbt3wAXrfPiHFV7Ro6HN49KiEyyVRqlTGpcS0\n5xaMq+nBWjOQaXt/aWeFbxbBnpp36l24FixNWFmWA9fNGmeJj4/nm2++4cyZM5QoUYKSJUuyfv16\nqlSpQvSdMrz9FyLrrEJZBFfrY1p9tKSkJBwOBzExMYFyklVCiYiQePVVnd9/d9G/fzKTJ9to2jQX\nK1ZEo+upvVJVVbHZnLz3Xg4uXLAzebIfRZGvCIUnU7LkZXLkcDN4sI2HHhK+iCtWZE6wtPpals3P\n3e4HprVusqy8rB1+UlISycnJuN3uTHedvxFYGUhwj7dtW42ZM0P3nYoiLLKmTQv9vEgRkyefFEIU\nwYiIgOHD/bz5ph2fT2L/fpWWLWMYM8ZPkyYOKlZ0snx5CrNn2+nQwcbJk0kh9mbTpwtx9EqVhOWb\nZf0kSRLnzom+YuPGIvj99ZcQ1njiCSc+H7z4okbHjqHBEmDlSoV69cIHzLVrFZ58Mn3bID5eplYt\nPd3nFiHKOrcbed6s3p/1bAT3/izrscTExFuy9fL7/QHbt+sRvbiTsL6jqqoB1ySbzUapUqXIly8f\nq1at4oMPPiA5OZkBAwbwySef3JbzmDt3LqVLlyY6OpqHHnqIDRs23JbjZHXcK8kSaiKdkJBAVFRU\nunKM9VJZwuyWPJb1ggYLEASrziiKg6VLVcaPF6LdbdvqNGumUaiQySuv2HG5JObO9RKklYBpmsye\nLfPWW04UxeTZZz0MHJhEtmzKLfd2smo/EMLbNkH40tTtcp3ICBlp5+o6lCnj5JtvvCEqUH//LVGt\nmpMDB9whGrA7d0o0b+5g715PiEiAxZAuUsRg8WKVQYP8tG4dGrDcblHW/eEHhf79PTRv7sbl0omL\ny8nkyZeoWFHD6XSGZF3jx6vs2CHz4osaX36psmaNwksvabzxhp/GjR18/LGfmjVDNyCXL0OJEhEc\nOxZ67haaNXPQtq3G88+Hnl/79nbq1tVD/DRvRK7wZnArZVxrA2S1I+52CTYYwSNnweVhr9dLnz59\ncLlcTJgwgUjLofw24qeffqJLly7MmzePRx99lFOnTgGQz5Kp+v+Jez3MjBAcMBMTE9PNHVoMz6io\nqBCvyrSydmkFCNIuDvv2SVc8EoXbRN68Jm3aaBQuLCTtXC6RAfz0k8zGjYJtOHSon/LljcD4xrX6\nfhkhK8wuZoSMZj6v9vO3SiS6kXMLtpQKp507aJCNy5dhxIjQecpmzRw0bqylm29s1MjB88+n/zw+\nXubZZx0MGODnnXcyJs389ptM7942Tp6UKFZMx+02mD8/ichI+YoAh0ZCgsLOnQ7efDMGSYJs2aBz\nZ43//EcjWzbh7Vm1qvD2TPsoLFoknEbSOpCAsBUrUiSCfftCvTF1XXz+668e8ucXy8bdmq1MG0DD\njTpZ1aK0m7OsgIyE0//55x+6dOlC27Zt6dy58x0752rVqvHyyy/TqVOnO3K8LIJ7ATMjBAdMq9xq\nt9sDZSSrXHi1rPJGzJNNEw4elNiyRWb3bplTpySSkyWiokzy5TOpUMGgalWdq6lIhWPUhdtVB2e8\nWT2rvNbMZ0a4ESLRjSDYePpqIzaWg8mBA6HScitXygwYYGfjxlDBgvXrZbp2tbNjR6pm7L59Es89\n56BOHZ3ff1eIj/ekk6lL+53XrPHRqlV2ChY0+PtvmagocDpNLl2SUFUoVkzj0CGFBQsuUq6chs2W\n+nxMmGDn998VJk5Mr+7zyit2KlQwQvqyFtaskRk0yMaaNaHBdOtWmVdftbN1qyfLuXhkRJ6xWgF3\ni40bDuGswkzT5KeffuLjjz/miy++uKPelZbk5MCBA/nqq6/wer00btyYESNGBEaE/p/iXsC8Grxe\nsQAkJyejKErg5bL6BsFZZXD5L6vYXGW0q7ay4KywcAXjdi+qt2LndTN6pg0bOnjppdAypWEINZwv\nvvARFxda9nzmGQctWoj+4a5dEs2aORg82E+rVjqtW9spXtxk8OD0/pOQuqiOHBnLyZM2Jk3y4/MJ\nuze3WyJHDlGx6NnTRo4c0KePL53ARJMm2enWzUPDhnrIBsswoGjRCOLjUwXkg9G7t43YWJPevUOD\n6dChKpcvS3z8sTfLunikZYQHX5M7ycbN6NzCCadrmsaQIUPYv38/kydPDnE/uhM4deoU+fPnp3Ll\nyixduhRVVWnUqBG1a9fmo48+uqPncodxT7jgWrCCopXxZMuWDVVVAwEoOFhaZcRgksXdXByCyRFR\nUVE4nc4Ao9Bi2WUF4gykDl7ruh4g+WQ2golEMTExxMbGphuaD3c9rKzS6/USFRV13Rq1HTtqTJkS\nWtuUZejSReOLL9KXv99/38/QoTZ+/lmmcWMnI0aInqUkwfjxPubPV1iyJK2BeSrpKDExkilTIujX\nTwQuux1y5xbG0TExonQ6b57Kf/4j9FyDr4fLFcO+fXbq1Uv9m9b12LDBT65cBoUKhSf8/PSTEmJr\nZmHVKoVatXwkJydjs9kCff6sguBh/5iYGGw2WzpRBavdEnw97sT7YpWH/X5/yPtw9uxZWrZsSY4c\nOViwYMEdD5YgNtoA3bt3J0+ePNx333306NGD5cuX3/FzyQrIOo2suwzDMAKLuBUA02aV1gIQXEbM\naiMPwSSLYBWQG7Xyuh24m16a12NtZm2EVFW94Q1Q48Y6775rZ/9+KUQZ5z//0RgyJIITJ6RAbw+g\nShUhmN68uYOZM73Ur5+6IOfKBXPn+mja1EHhwh7KlzdDxh6io6Pp29fBf/6jhRUVAOFsUr68Efb/\nv/9epV49nZgYGxB6PVautFG3rpekpKR0PpDHj4vee1rvy4sXTXbvlqhUKTlLzC8GI7hacLVnztpY\nXsv6Lpzd260gnHA6wKZNm3jvvfcYPnw4tWrVuqVj3AqyZ89OgQIFQj7LCqXru4Ws82TfRZimSVJS\nUqCfYb0saUk9N0pOuZO4liekNcpiLWbBYtnBjiRpDZQz6+W4W/6GGSH4elg7fF3XA1lGSkoKcP1E\nIocDOnTQ+OorleHDU0up2bJB27Ya48apIVZeM2cqHD0qY7MJib20qFTJYNQoH61aOVi6NJk8eVyB\n8vC+fTJLlqjs2OHO8PtNnaryyivhifCf/SAAACAASURBVEOLFikhzinB12PFCgdjx/qIjY1N5wP5\n3XcRPPmkjN/vDfSFDcNg2TKduDgbuXNHZ6nFNFhvNSoq6oYYuuHel+Dr8b/tnXd4U3X7h+/stJSy\npAzZo9CWDWV0CEXcIK9eOOBV/BXZVEAUFQUULLyiOAArQ9kgKIIogjLUpqUFCtKyZ0FAZI8umn1+\nf8TEpE1LgaYJ9HtfFxdtaHKeHpLznGd9HoPB4KiT304at6Ajd547/eKLL9iyZQvr1q2jpl3g14vE\nxsYya9YsHnnkEZRKJZ9++im9evXytlleQdQw/8FoNDocor15x37XCb49jlEarfvOF4SCqiJ30nnq\nzaiyJNjrgQUlAW+nkcg+SnL4sE2Q3c5ff9mEyvfty6dyZZg2TcnixUrWrDGQkKDC31/iww8L1yut\nViuffy6RkODPzz/n06iR7b3Yu7eGhx+2MGKEe4d49KiMRx6xrRkrKPxy4QK0betHZmbhkZGTJ2XE\nxGjJzMx3mcvMyYELF2QMHqyme3cjXbsaCQw0Ub26mQoVJEaPrkLHjhJDh1p95v/WWSTBU12wJenG\ndXdjWJRwelZWFnFxcQQHB/P+++/7TKRuNpsZNWoUX3/9NX5+fjz33HNMmzbtXlcVEk0/xWFPu9jv\nHv/dNGG7i5YkySejSnujQGnvhJQk6Y5HWZzTiN5siHLH7WQLCi6UdtdI9OyzGp54wsL//Z9rDXDw\nYNuMZWamnKNHZXz7rYFateDiRejQwY/Nm/UuqVznG7TFiwP47DMVK1caOH9exrhxatLS/u2wLcgb\nb6jw84NJkwo74XnzlGzbJmfhwsLdsbNmKdm3T87TT5vZvl3Bzp1yDh+WkZ0to3p1iTNnZLRtaxMs\nuHwZLlyQU62alevX5fz22xXq1DH5xCJl5zGgsryoFzUvXHCcxd2s8b59+xg5ciTjx4+nZ8+ePnPj\nUY4RDrMorFYrb731FuHh4URERFC5cmWsVisbN26kc+fOji5Z8L4wtLPN9m5EdzOfnjpmSUdZbja7\n6E1Kq7PZ3WqzrVu1TJhQke3bbTKH9tdOSpLRq5eWxx+3MH++Eed585kzlfz8s4INGwyAez3TNWsU\njB6tRqGQmDvX6FLzdObGDWje3I/kZPei6Q89pGH0aDNPPGH553eAI0dkrF+vYPp0FQaDrb4aGWml\nQwcLLVpI1K4tsX69gtmzlfz4Y55jtlKt1vLDDwomTVKzZ4/e7SJlu9ydJ9L8BSkqcvMW7rI2kiQh\nl8v5+++/uXTpEu3atWPNmjUsW7aMRYsW0ahRI6/aLHAgtGSL4/HHHycxMZF58+Zx9epVTCYTFouF\nhQsXEhYWBuAScdlTuM7Lk8vCgTo7o7LepmDvtLRTlM6nfUb1VutGnqa008PuGokeftjC5Mnwyy/Q\ntautcSYtTcOQIYE0aWKlY0cLBcVZhg838913CubPl/Pcc1lu67xPP21h61Yzy5crmTNHRdOmRho2\nLOwQV61SEB7uvtnn9GkZR47I6d7dwvbtcn76ScFPPynIz4eYGAsWCxw/nk/VqoV/1/Xr5TzyiK1D\n1zki37PnX9k957qfXfO0YB0UuOP5WHfYG/GUSiUBAb5RS7XfLMjlcvR6vSPTIkkSx44dY8qUKRw7\ndozAwED69evH/v37CQwM5L777vO26YIiEBGmExaLhZkzZzJlyhSeeeYZateuTWpqKtevX6d169ZE\nRkYSFRVFUFCQY62Ou4irtC8GzvYVpyTkTezOyGAwOOzy9DLpW8H53Hl6BOjrrxUsW6Zk3To9n32m\nZNYsFTNn5lCrlok+faqwc+d1KlWSu3QmZ2SYefLJiiQl5dCgQeEZ0T//lPHAA1p++03P2rUKPvtM\nRY8eFgYPNtOpkxWFwhYtdumiJT7eWGj048wZGW+/rWLPHjlZWTKCgiR69rTw5JNm2rSRmD9fSUqK\n+1StyWSlcWN/Nm68RrNmGpdz16GDloQE14XVxXEn87Hu8GYKtiTYM0EymcylES8zM5Nhw4YRGxtL\ngwYNSElJISUlhbNnz7J///5St6Nbt27s2LHDkS2rU6cOhw4dKvXj3EOIlOzNOHnyJMOHD2fmzJk0\nbdrU8bjJZOKPP/5Ap9ORnJzM5cuXCQsLIzIykujoaGrXru1woAVrXKUxDO3NqLIkFJUeLokGbFmM\nstyqCMGdYjRCSIiWevUk5HJYtMhI3bq2mnBsrJrgYDOjR+e5zPYCfP55JZKT1fz0k8Gl6UaS4D//\n0fDAAxZee83W6JOVBYsWKfn6ayV//y2jUycrWq1EcrKCMWNM6PW2Rp3MTDn798swm2UYDLZ50WHD\nCo+jPPGEhiFDzDz5pGvt1Wg08ttvFt57rxLbthlczt2JEzK6dy/cJHQruEtrl/Q9Yu9utvcX+NIN\nJLjfqylJEuvWrWPmzJnMmzePFi1auDznZpuSbpeYmBj69+9f3uTt7gThMEsLi8XCnj17SExMJCkp\niXPnztGsWTOHA61fv36RDtQ5hVsSB+rrUeWtOPKyrnF5Wvi7OD78UMnatQqSkgwuWq3Hjsno0UPL\n7t35BAaaHB26crkcg8HMc89VpmNHM++8Y3Ccl5UrlcyYoSI52X2jz99/y9i1S87kySpq1JBo0cKK\nVgs1akg0aGD7/soVeOEFDfv26Snofy5ehDZt/Dh+PN+RLnauB777bhVq1oQ33nDtyv3sMyXHj8v5\n/PPCUent4u49AoV7B+x1aF/sWi9KON1kMvHuu+9y8eJF5s6dS0XnjQseJiYmhhdffJEBAwaU2THv\ncoTD9BRWq5X9+/ej0+lISkri1KlTNGnShKioKCIjI2ncuLGjtufcdWpPWbpLR92qPm1ZUxpNR54a\nZYF/7+5Lu3u4pOTmQosWfmzYoC+0TPnVV1WYzWamTs0uJIR//rxEVJQfn32WR7du+Zw7J9GjR3VW\nrsymQwdZkWnt48dlPPiglkOH8gvVSOFfmbx33incOTt3rpIdO+QsWGBzfM4jGRqNH82a+bF+vcGl\nixege3cNb71lKrIBqTQoON5jb5wBHGo9ZS1jVxzOKVjnhrJz584xaNAgnn76aYYPH17mpYmYmBgO\nHjyIJEk0a9aM+Ph4unbtWqY23GUIh1lWWK1Wjhw5QmJiIjqdjhMnTlC/fn2ioqKIioqiWbNmLg7U\n+W7afkG0R1/eltwrSEGBBF8bZXGOjLy9leXjj5Xs3Stn8eJ/IzCz2czZs3oeeOA+1q/XUyAjB8D2\n7XKee07D99/rmTpVRViYhXHj8tyOKthvskaPVlO1Krz7bmGHaDBAcLBNH9Zdo9BDD2kYM8bEo49a\nCtUDt22T88orNlF1Z86dkxEebtt2UlZlQ+eMgVqtdjjS4m48y5KihNN1Oh3vvfceM2fOpHPnzmVu\nF8DOnTsJDQ1FrVazYsUK4uLi2LNnDw0bNvSKPXcBwmF6C6vVyokTJxwO9OjRo9SuXduRwg0NDUWh\nUKDX60lPTyc0NBS5XI7VanXUc7zdNGP/Pco6xVnSURbw3jqposjNhbAwP375RU/z5lYXsfn58/1Y\nt07BTz8ZCi1cBvjxRwVDhqi4/35ITdU7nJK7qPziRTldu97Hjh3Z1KpVOK29erWCBQuUrF9feF3X\n6dMyoqK0HD2ah8VSeKXUa6+pqF5d4q23XNOxX3yhZPduOV99VXrp2OIo7v/WuVZ+q3XQ0qAo4XSL\nxcLHH3/MH3/8wcKFC32q+/Wxxx6jZ8+ejBgxwtum+CpirMRbyOVymjRpQpMmTRg4cCCSJHHq1Cl0\nOh1z587l4MGDqNVqzp8/T926dVm1ahVarbZY/deydKA3k93zJCUZZbEPhNtXEflKp2RAAIwaZWLS\nJBVffXX1n8ds4yIDB5pZvFjJ118r+O9/CwudN25sxWqVcemSxJEjMlq2tN272mu+zo1V06YpeeYZ\nE1Wrmrlxw1CoW3vRIg0vveReFWjFCgVPPWXEaMwtlDEwm2HNGiVbtugLPW/1agVjx7rfplKalGSr\nza3IPnpiX6q98ch5FOjKlSsMGzaMTp06sXbtWp/qPQAc0a/g1hARppcxGAxMnjyZuXPn0rdvX/R6\nPfv376dy5cqOMZa2bds62sGdGyLKouvUm40zJcFeq3Re4u0royySJJGdbSI8vCLz5t2ga1fXi3RG\nhozevbVs356P8/L6nBzo1k3LqFEm/P3h9dfVLFxoICamcK3w8mWb1F1qqp66dW0fV+ebimPHJHr2\nrMLu3VcICHBNWVqtEq1ba5k16zpRUapC6etff5Xz3nsqkpNdI1N7VHr8uGfTsUUtUr5V3MkclkYH\ne1FR765du3j99deZMmUKPXr08HqmIysrix07dtC1a9d/mshWMnToUNLT02nSpIlXbfNhRITpi/zw\nww8cOHCAffv2Ueufq6YkSVy8eBGdTseqVat4++23qVChAhEREURFRdGhQwcqVKjgkp6z30k7d53e\nqQM1Go1eiSpLQkERAntU6QtbWex25OfnI5dbeO89DRMn+pOY6Jp+bdNGIjbWzOjRalauNCKT2XZo\nDhumpnNnK/372yLP++4z8PLLamJjLbz1lsml63bmTBVPP212OEtw3byxYoWK/v0tVKqkwWKxYDAY\nHCpHaWlK5HINkZGFnSXA8uVK+vYtHP2uWqWgVy+LR52lu3rg7eIclTuLnLvLVJTkRquoFKzVamX+\n/Pn8+OOPrFmzptCWD29hMpkYP348R44cQaFQ0Lx5c3744QfhLG8DEWF6Gfv5v1kjy9WrV0lKSkKn\n07Fr1y40Gg2dO3cmKiqKjh07otVqgcI1P7j1DSRWq9VxEfF244w7bkWj1htybQUjD0mS8cADGuLi\nzDz/vKsD0utt0eSAAWYGDzYTH69iyxY5v/xi4J//UgDOnYPBgzWcPy/jww+NxMRYOX8ewsNdo0tn\nbtyAkBDXZh/7xV6v1zNmTBWCg80MHZpTqJEoJ0dGSIg/e/bkU7268/mE8HAtM2YYiYws/e7YokYy\nPE1JZobt7xF38nu5ubmMHDmS2rVrM23aNJ/SnBbcFqLp515BkiSysrLYunUriYmJpKWloVAoCA8P\nJzo6mk6dOlHhn3UZBVvyofhaji9vZSkNAQdPjrIUV29LS5PTt6+t27TgHmD7SMigQSa+/lrJ77/r\nqVHD3evbmoHeecfWiBMQAE2bWvnkE/e1xK++UrJpk5xvvzU67MvPz8dstnDmTAViYirw3ntGsrJk\nnDtnm8fMybE52osX5WRny+nc2UyNGlC/PjRvLqFSSbz2mpr9+/Vum5XuBOdRJW93hxf1PrFrwdrT\nxEqlkkOHDhEXF8eYMWPo06ePT31mBLeNcJj3KpIkkZubS2pqKomJiWzfvh2LxUKHDh2IioqiS5cu\nBAYGOn7W7jztFwF7KsoeifnaEmBwrWeVpoBDaYyyQMkE3UePVmE2y9wO+o8bpyIhQckvv+iJiCj+\nY2c2w/z5St58U4Vabdud2aqVlebNrVSrBhUrSpjNMGKEmr59zVStCmfOSJw8KXH6tJJTpxTI5aBW\nSzz0kJW6dSVq1ZKoXl0iMFBCq5UYOVLNs88aadzYxPnzcOqUnGPHVKSlqRg2zMTEieZSdQzenpu9\nGQaDAb1e77gJWrhwIe+//z5hYWGcPXuW+Ph4+vTpg7+7IVjB3YhwmOUFe+fejh07SExMJDU1Fb1e\nT7t27YiKiiIiIoIqVao41IhOnTpFVSfFbU/q4d4OzrXUsriY3sooy61EvVlZ0L69loULjURH/5vO\nXLvWtonkySfN/PGHgl9+0XMzEZg+fTRERVkYONBMaqqcAwfkHDsm5+pVyM6WceUKnD4t57HHLFSt\naqZGDSMNGyoIDpZTv77EAw9omT3bSERE4bRqerqMvn01HDigd0jeWa1WcnIshIVVZPPmK9SubS6V\n2UdvpWBLin0NnNlsdknB6vV63n77ba5du0atWrXYsWMHe/fupXPnzmzZssVj79Fjx47RqlUrnnnm\nGZYsWeKRYwgA4TDLN3q9nh07dqDT6UhJSSEnJ4eQkBAuXLjAgQMH2LZtG4GBgbfkLDyNcy3Vmx26\nxS0KtivPlHQzy88/yxkzRk1qqi01u2CBgilTVKxebaB1a4m4ODV//mnbl+m8hLrga7z5ppqdO/Vo\nNIX/XZKga1cNr75q5KGHcgDXFOfGjXImTVKTkuI+rTpihJq6da2FZi+XL1ewerVt8XVxGrAl7U4u\nShXHV7BareTl5RXaXfnnn38ydOhQXnrpJQYMGOB4/MaNGxw7dozWrVt7zKZHHnkEvV5P/fr1hcP0\nLMJhOnPt2jUGDBjA5s2bqV69OlOnTqVv377eNqvM2LBhAwMGDCA4OJhKlSpx6dIlWrZs6RBTqFmz\nZqnp4d4Ovl5LtW9msc+z3cooy5gxKi5elFGzpsSWLQpWrzbQuLHto2Y227pkT56UsXq1gUqVXJ+b\nl2drupk1y8iDD7pvutm8Wc6bb6r47bdLaLWFo/LHHtPw4otm+vUr3AF76ZJNVzY9PZ+gINd/69ZN\nw+uvm+nZs/Dzihp5Kqq5yp0wuS9RlHD6pk2b+OCDD5gzZw5t27YtU5tWrlzJ2rVrCQ0N5fjx48Jh\nehbhMJ2xO8cFCxawe/dunnjiCbZt20ZISIiXLfM8aWlp9OnTh/nz5/PQQw8Bts7O9PR0x0aWCxcu\nEBIS4pgFrVu3ruOiUZQebmk4UHsKrOACZV/BnX23upUlP9+2FqtiRfj558JNQFYrvPGGCp1Owddf\nG2ja9N+P4euvq7h6VebQfS2I1SoRHa1h2LBcnn9eXuj87dwpp39/NXv3uhdy/+ADJadPy/niC9fX\nT0uTExtre15JAv2immbsIhP2rIGvdZMW9f4zm81MmTKFzMxMvvrqKypXrlymdmVnZxMeHs7vv//O\nl19+SWZmpnCYnkU4TDs3btygSpUqHDx4kMaNGwPw0ksvcf/99zN16lQvW+d57DXOCkXl/LA1sezb\nt8+xkeWvv/4iODjYoYfboEGDYvVwb6e2ZV8CXDAF5is4i5IXZ19JRllOnlTw0EN+zJ9voHv3wpGi\nJNkae95/X8UHHxh5/nkLSUlyXn5ZTVqa3u2SZ4vFwqpVFj79tAKpqUYUisL29emjoUcPC0OHFlb+\nsQvG//yznpAQ149+//5qOna0EhfnXjHoZtjPib0L1p698Fa63x1FpYgvXLjAkCFDeOSRR3j11Ve9\nkjoePXo0derU4fXXX2fSpEnCYXoeIVxg5+jRo6hUKoezBGjdujU6nc6LVpUdMpmsWGcJtkigTZs2\ntGnThtGjR2O1Wjl06BCJiYlMnjyZP//8k4YNGzocaNOmTQvJ+dmH5G+WriyJ/Jk3udUlxc5SbRqN\nxiXasg/KBwXBvHkmYmMrsn59PmFhrrO4MhkMHGimfXsLQ4dqmD9fSWamnHnzDIWcpV26MCtLz/vv\nV2fWLPfOMi3Nthtz+XL3Tu+rr5RER1sKOctjx2TodIo7WuNlvxlyTnEWJR7gDRH1ooQSUlJSeOed\nd/j444+Jjo4uE1sKkpGRwZYtW8jIyPDK8QX/Ui4dZm5urmPMwk5gYCA5OTlessj3kcvlhIWFERYW\nxogRI7BarRw7dgydTsf06dM5fvw4devWdaRwQ0JCSqSHC7aGJLlc7qLF6Ss4zwbern3u9F8lSaJr\nVzPx8Xk8+aQ/33xzldDQf+dB7dFW27YSiYl6OnbUkpsLc+eqkCQTMTFWVCrX7SwLF1YhNFSie/fC\niSFJggkTVLz1lslto1B2NsyYoeLHHwvrxn78sYohQ0wU+MiUiOJS7M6KRPaftUfkzopEntROLqpL\n12q1MmvWLHQ6HevWraOGu8HYMkKn03Hq1Cnq1avnGCGzWCwcPHiQXbt2ec2u8ki5dJgBAQFkZ2e7\nPJaVlVWmC13vduRyOc2aNaNZs2YMHjwYSZI4efIkiYmJfP755xw+fJiaNWs6ItAWLVq4OFCTyeSS\nnpPJZJjN5jKTrisJnpoNtP++arWaF18EpdLM889X45tv8ggLM2I0Gh3pSrlcwauvBhAcbGXbNiPf\nfKPkf/9T8fLLch54wEybNvm0bKlGrVYxa5aapCRXhydJNjWhlSsVXL4sIzzcyp49MkwmGZIEcjn4\n+Ul89ZWS7t0tDpF3O0ePytiwQUFGxq1Hl86zqRUrVrzp+ZPJZKhUKhcHak9tG43GUldpcp7tdb4Z\nun79OnFxcYSGhvLTTz95vY4+ZMgQl4bEjz76iFOnTjFnzhwvWlU+Kbc1zKpVq3LgwAFHWrZ///7U\nqVOnXNQwywJJkjhz5gw6nQ6dTsf+/fupVq0akZGRNGvWjE8++YRevXoxfPhwh7N0V+/zhgP1xk7N\ntWsVjBql5rPPjDz1lOWfFK6FcePU7Nih5NtvrxAY+G8j0alTVhITZezZ48fRo0rS0uRIkq1hSK22\nOUKTyfZHrbb9Xa2aRJUqoNGASiU5tGuzs2WcPClDoQB/f2jUyEpwsETbtlY2bVIQE2NhzJhbq13a\nZ2dLswu2NFWaikrB7tmzh9GjRzNx4kQef/xxn6ujA6KGWTaIph9n+vXrh0wm48svv2T37t306tWL\n1NRUj3XJJiQksGjRIvbt20e/fv1YsGCBR47jq0iSxN9//018fDyLFy8mOjoamUxGREQEkZGRtG/f\nHrVaXexF0VPar854s/EoI8MmGPDIIxbGjzcxYYKagwdlfP+9gSpV/u1ONhpt0Z49XfnhhxXYuVPJ\njz8asVjAaLRFlkqlzVmOGKFGpZKYObOwhJ4kQc+eGh5+2MLIkWauXoXMTDmHD8tYt05BWpqCw4fz\n8fMr2e/gfLPh6dlZdypNN2skKko4XZIkli5dyooVK1i8eDENGjTwmN2CuwLR9ONMQkICAwYMICgo\niPvuu485c+Z4dKTk/vvvZ8KECWzcuJH8/HyPHcdXkclkvPvuu6SlpbFt2zZatWrF5cuX0el0rF27\nlokTJ+Ln50eXLl2IiooiPDwcf3//QquZPLXb0Bcaj9q0kdi2Tc+4cWpat9bSsKHETz8ZsE0w/Du/\naI/arFYr338vY/lyFT/9dJm8PNt5Uan+PS8rVyrYulVOSkrh2iTA558ryc2FESPMyGRQrRpUq2al\nZUuYPl3FnDmGEjtL5y7igIAAj99sOKe2b7aFxH4+7DcbzinYGzduMGbMGAIDA9m0aRMad0VegYBy\nHGF6iwkTJnD27NlyF2ECpKenExoa6vaCJEkS169fd2xk2blzJyqVio4dOxIdHU3Hjh0dOp1F6eE6\np3Bv5WJ9K9tPyorffpMTH68iK0vGwIEmevfOIyDAtTHlt9/kxMZqWLtWT5s21kKjLH/8oeallyqz\ndm0urVvLCp2X5GQ5L7ygQafT06CB60f9lVdU5ObKWLiwZLVLewpWq9WiUql8JpVpf6+YTCZMJluE\nLZfLWbJkCdWrV6du3bpMmDCBuLg4+vbt6zN2C7yOiDAF3qU4ZRSZTEaVKlXo3bs3vXv3/mf5crZD\nUP6jjz4CIDw8nMjISLp06eKIYpxHNoxGY4nF0+3jGKVdaysNune3EhNj4PffYcECGZMmVaZ1a4mY\nGAtt2lg5cULOtGkqvv7aQNu2EuA6ypKaKiM2VsMXX+TRvLmRvDzXel96upoXXtCwZImhkLNcskRB\nYqKiyKjUGecUbEnlAcsSZ7ENe+bALrC/cOFC0tLSqF69Ops3b0av1/Pggw9Sv359j9jy4osvsmXL\nFvLz86lZsyZjx47l5Zdf9sixBJ5BRJhlTHmOMO8ESZLIy8tj27ZtJCYmsm3bNkwmE+3bt3cIyleq\nVMnFgRanh2u/0FutVq/q1BZFwdlPg0FFSoqC5GQF+/bJ2bVLRl6ejEqVbNtJ/PxsNUu5HCwWyMyU\ncd99kkOPViazbSfRaiX8/Kzs2KGkRw8DMTFmmjeXaNECqlZV8P33Sl57Tc3GjXqCg4v/+JdUyMFb\nFFVPNRqNTJw4katXr5KQkMCZM2dITk4mOTmZ9u3b89prr3nEnoMHD9KoUSO0Wi1Hjx6la9eubNiw\nocwl9gQlQjT9+ALCYZYe+fn5jo0sKSkp5OXl0a5dOyIjI4mMjKRatWpF6uGCLY2r0WjKdEC+JNjH\nHW7mzC0WuHIFcnNl5OXZvrePikgSqFS2r+0/azJBXp6M7GwZZ87YnnvyJBw5IufQIQVBQRasVjmL\nF+fSrp2sRJF5SYQcvEFRzvzs2bMMHjyYPn36MGzYMK+l348cOUJMTAwzZ86kT58+XrFBUCwiJSu4\nt/Dz86Nbt25069YNsO0s3LlzJzqdjiVLlpCVlUWrVq2IiIggKiqKSpUqOfYWtmzZ0tHoY7+welpQ\nviTYxx1UKhX+/v7F2qFQQFAQBAXdyn2tu5+1YDabOHpUol49MwqFGb3eVSfY/jfg0ylYKFo4/fff\nf2fy5MnMmjWLTp06ecW2ESNGsGjRIvLz82nXrh2PP/64V+wQ3B7CYZYR9mF9Z9k4+4VIUDpoNBqH\nUALYLpx//PEHOp2O2NhYDhw4QPPmzQkJCaF27drUrl3bpcZlsVi8JtHm7S5dpRJCQ2WA6p8/7pV3\nwNY044tLnp1VhZyducVi4aOPPiIjI4Off/6ZatWqec3GhIQEPv/8c0dpQXTk3l14vx2wnBAfH4+/\nvz/Tpk1j+fLl+Pv7M2XKFI8dz2g0MnDgQBo0aEClSpVo164dv/zyi8eO54uoVCo6deqEv78/Bw8e\n5H//+x8zZsxAr9czduxYYmJiGDp0KMuWLePs2bNoNBoCAgIIDAxEq9UCtqg1Ozub3Nxc8vPzMZlM\njpRuaWHfu2ixWAgICPAZLV278o5Go3HYpFarUalUmEwmcnJyyMnJIT8/36FO5C3s59BqtVKxYkWH\ns7x8+TLPPfccWq2W77//3qvO0o59/vjMmTPMnj3b2+YIbgFRw7xHuXHjBtOnTyc2Npa6deuyfv16\n+vbty/79+6lXr563zSszJEli5yzp9AAADXZJREFU3LhxvPzyyzRt2tTl36xWKwcOHHBsZDl9+jSN\nGzd26OE2btzYsZGlqPVdd6px6glFnNLEvtnGXT21JFtZPCkyYaeo3ZppaWmMHTuWDz74gO7du/vc\nuR00aBABAQF8+umn3jZFUBjR9FPead26Ne+99x5PPfWUt03xSaxWK0eOHHE40BMnTlCvXj1HmrdZ\ns2YuDrTgsuSi9l+6wxvye7eKcz21JEu8S1O6riQUJ5z+5Zdfsn79ehYvXsz9999fKse7Ey5dusRv\nv/1Gz5498fPzY/PmzfTp04eVK1fyxBNPeNs8QWGEwyzPXLhwgYYNG5KRkUFwcLC3zbkrsFqtnDhx\ngsTERHQ6HUePHqV27dpERkYSHR1NaGioY0TFeRb0Znq4d8M4hjv5uNt5nYLSdSWdkb0Zzltk/P39\nHec3JyeHV155hfr16zN16lSfSW9fvnyZPn36sHfvXqxWK/Xr12fUqFEMGDDA26YJ3CMcZnnFbDbz\n2GOP0bRpU7744gtvm3PXIkkSp06dcgjKHzx4kOrVqztSuK1atUKpVBYbadkdiFar9cmGD+cNHs6O\nqDRf/2YzsjdzoEUJpx88eJC4uDjeeOMNnnrqKZ+7ERHcVQiHWR6RJIm+ffuSm5vLDz/8ILpySxFJ\nkjh79iw6nY6kpCT27t1L5cqVHQ60TZs2DkH5S5cuYTAYqFSpkuP5nkpV3i63moItDZxnZO1p7qI6\nlIsTTl+5ciULFy5k0aJFNGnSxON2C+55hMMsjwwYMIDTp0+zYcMGnxwwv5eQJImLFy86ItD09HQq\nVKhAgwYNWLduHWPHjmXo0KEAhcQU4M70cO/Ubm8Lzzvb4hyB2h2oQqFwnKcKFSo4Il+9Xs+bb74J\nwMyZM/ErqVK8QFA8wmGWN4YOHcrevXvZsmWLQ7i8LBCamTYMBgNjx45l+fLl/Oc//+HIkSOo1Wo6\nd+7sEJS3R3IFa6ClVeu7GZ5Owd4pzqpC9u+XLVvGoUOHaNmyJStWrGDYsGH83//9n9cjdME9hXCY\n5YnTp0/ToEEDtFqtIw0rk8mYO3euy/Z2TyA0M23ExcVx8uRJFi1aRPXq1ZEkiaysLLZu3YpOpyMt\nLQ25XE54eDjR0dF06tSJChUqlFgP904dRFG1QF/BXQpWkiQOHjzI0qVL+fXXX/n777+pWrUqDzzw\nAN27d+fFF18sdTuMRiPDhw9ny5YtXLt2jcaNGzN16lQeffTRUj+WwGcQ0njliXr16nltkDw0NNTx\ntSRJyGQyMjMzy53DnDJlCoGBgQ5HJJPJqFy5Mj179qRnz55IkkRubq5jI8snn3yCxWKhQ4cOREVF\n0aVLF8fznVO4dp3Z25Xz86UUbFEUtQXFYrHw7bffcu7cOVJTU6lYsSKHDh0iKSmJw4cPe8QWs9lM\nvXr1SE5Odsw0P/vss+VuplkgIkyBhyiomZmUlFSmaeG7EbuT2L59O4mJiaSmpqLX62nbti1RUVFE\nRkZSpUoVFzk/d80yxTnQosYxfImixm7Onz/PkCFDeOKJJxg5cqRXbRczzfc8IiUrKFskSXJoZr75\n5puiQ/c20Ov1pKWlodPp2Lp1Kzk5ObRp08axkaV69eqF9HCdm2Wc07j26NRXU7DguojauUktOTmZ\n8ePH8+mnnzq0gr2FmGkuFwiHKfAOw4YNIywsjLi4OG+bctdjMpkcG1m2bt3K1atXadGihUNMoWbN\nmg4H6tyFa7FYANsoi1qt9rmVZnbhdLPZ7CLBZ7VamTFjBikpKSxatIigoCCv2ilmmssNooYp8A5m\ns5nMzExvm3FPoFKpiIiIICIiArCd2/T0dHQ6HWPGjOH8+fOEhIQ4HCjAmDFjmD59OrVr18ZqtWI0\nGrlx40ap6eHeKfY0sUwmIyAgwOHIr127xogRI2jdujXr1q3zeoZCkiReeOEFNBoNs2bN8qotAu8g\nIkxBqeJtzcxjx47RqlUrnnnmGZYsWeLx4/kaFouF/fv3k5iYyDfffMO+fft4+OGHefDBB4mOjqZh\nw4alpodbGhQlnJ6ens6rr77KpEmTePTRR30iGhYzzeUKEWEKPI9MJmP27NkMGzbMoZk5Y8aMMhOY\njouLo2PHjmVyLF9EoVAQGhrKsmXL+Ouvv1i/fj3VqlUjMTGR+Ph4/vzzTxo0aOAQlG/atCkajcZF\nzs8+91icHu6dUpxw+uLFi1m1ahWrVq2ifv36pXbMO2Ho0KEcPnyYLVu2CGdZjhEOU1Cq3HfffSQm\nJnrl2CtXrqRKlSqEhoZy/Phxr9jgKyiVStLT0x37H8PCwhgxYgRWq5Xjx4+TmJjI9OnTOXbsGHXr\n1nWkcENCQop0oPbXvdPVXQVTsHZHnJeXx6uvvkrVqlXZtGmTzzim06dPM2/ePLRaLTVq1ADKbqZZ\n4FuIlKzgniA7O5vw8HB+//13vvzySzIzM8tlSvZWkSSJkydPOuT8Dh8+TI0aNRxjLC1btiy0keVO\nVncVJZZw5MgRRowYwahRo3j22Wd9IgUrKNeIlKzg3mXixIkMGjSI2rVre9uUuwqZTEajRo1o1KgR\nsbGxSJLEX3/9RWJiIgsXLmT//v1UrVrVISjfunVrlwjU7jwNBgNQtB5uUSlYSZJYs2YNs2fPZv78\n+YSEhHjtXAgEN0NEmIK7noyMDF544QUyMjJQKpVMmjRJRJilhCRJnD9/3hGBZmRkEBgYSEREBFFR\nUbRv396ROi1KD9cunC5JkotwutFoZPz48WRlZTF79mwCAgK8+asKBM6IOUzBvcmMGTMYP348FStW\ndMjNWSwWQkND2bVrl7fNu6eQJIkrV644HOju3bvRarV06dKFyMhIh6A82Bzo+fPnHfq4kiSxZMkS\n8vLyaNmyJbNmzeK///0vgwYN8knFIUG5RjhMwb2JXq8nOzvb8f1HH33EqVOnmDNnDlWrVvWiZfc+\nkiRx/fp1kpKSSEpKYufOnSiVSsLDwzGZTCxdupSUlBTq1KmD1Wrl119/5ZtvvkGn03H9+nW6dOlC\n165defDBBx2zpaVNQkICixYtYt++ffTr148FCxZ45DiCewpRwxTcm2i1WkdUAxAQEIBWqy0zZ9mt\nWzd27Njh2KZRp04dDh06VCbH9jYymYwqVarQu3dvevfu7Viq3bdvX06cOEF4eDiDBg0iPDyciIgI\ntm3bRn5+Pvv27UMmkzk2tyxbtsxjDvP+++9nwoQJbNy4kfz8fI8cQ1A+EBGmQHCHxMTE0L9/f2Jj\nY71titcxGAy0a9eOyMhIZsyYgVar5caNG2zbto3vvvuOnJwcli5d6pUU7IQJEzh79qyIMAUlQUSY\nAoGnuMmNZ7lBo9Hw7bffEhYW5nisQoUK9OjRgx49enjRMoHgzhGVdoGgFBg3bhxBQUFER0ej0+m8\nbY5XcXaWAsG9hHCYAsEd8uGHH3LixAnOnj3LoEGD6NWrFydPnvS2WQKBoJQRDlMguEPCw8OpUKEC\nKpWK/v37ExkZyYYNG7xtlkAgKGWEwxQIShn7zKHAN7BYLOj1ehdVIvt+UIHgVhAOUyC4A7Kysti0\naZPjIrx8+XKSk5N59NFHvW2a4B/i4+Px9/dn2rRpLF++HH9/f6ZMmeJtswR3IWKsRCC4Ay5fvszj\njz/OkSNHUCgUNG/enPj4eLp3715mNqxcuZLJkydz+vRpatWqxaJFi4iMjCyz4wsE9yBC6UcguNfY\nvHkzgwcP5ttvvyU8PJxz584BUKtWLS9bJhDc1QiHKRDca0RGRjJw4EAhmiAQlC5uHaaoYQoEdylW\nq5Vdu3Zx8eJFmjZtSr169XjllVccq7YEAkHpIhymQHCXcuHCBUwmE6tXryYlJYWMjAzS09OJj4/3\ntmmlyrVr13jqqacICAigYcOGrFixwtsmCcopwmEKBHcpfn5+AIwcOZKgoCCqVq3KmDFj7rkZ0OHD\nh6PVarl06RLLli1j2LBh5UbcXuBbCIcpENylVK5cmTp16rg8JpO5Lb3ctdy4cYM1a9YQHx+Pn58f\nkZGR9O7dm6VLl3rbNEE5RDhMgeAuJjY2llmzZnHp0iWuXbvGp59+Sq9evTx+3IoVKxIYGEhgYCAV\nK1ZEqVQyatSoUj/O0aNHUalUNG7c2PFY69atOXDgQKkfSyC4GWJbiUBwFzNhwgQuX75McHAwfn5+\nPPfcc7z99tseP25OTo7j67y8PGrVqsWzzz5b6sfJzc0lMDDQ5bHAwECX4wsEZYVwmALBXYxSqSQh\nIYGEhASv2fDdd98RFBTkEbGEgIAAsrOzXR7LysqiYsWKpX4sgeBmiJSsQCC4I5YsWUL//v098trB\nwcGYzWYyMzMdj+3Zs0esEBN4BSFcIBAIbptTp07RpEkTjh8/Tv369T1yjH79+iGTyfjyyy/ZvXs3\nvXr1IjU1lZCQEI8cTyBACBcIBILSZunSpURFRXnMWQIkJCRw48YNgoKCeOGFF5gzZ45wlgKvICJM\ngUBw2zRr1oy3336bl156ydumCASlyW1pyQoEAoFbZDJZBLARqClJUp637REIPI1IyQoEgtulP7Ba\nOEtBeUFEmAKBQCAQlAARYQoEAoFAUAKEwxQIBAKBoAQIhykQCAQCQQkQDlMgEAgEghLw/46yn+C8\nQvpNAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x109e0e890>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(8,6))\n", "\n", "ax = fig.add_subplot(1, 1, 1, projection='3d')\n", "\n", "p = ax.plot_wireframe(X, Y, Z, rstride=4, cstride=4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Coutour plots with projections" ] }, { "cell_type": "code", "execution_count": 123, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAFdCAYAAACO4V1gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXd0HPW9v//M9qpd9V5cZMm9Y1ywAWNawIQQIISW3JCE\nhNSb5Jt2Q3LTCwmpJPklBNIuJAQIoWNjwNgUN2zLtlxkyZJsNcsq2/v8/ljPsuq70qp/nnN8fI6k\nnbYz8/q8uyTLMgKBQCAQCAZHNd4HIBAIBALBZEAIpkAgEAgECSAEUyAQCASCBBCCKRAIBAJBAgjB\nFAgEAoEgAYRgCgQCgUCQAJohfi9qTgQCgUAw3ZD6+6GwMAUCgUAgSAAhmAKBQCAQJIAQTIFAIBAI\nEkAIpkAgEAgECSAEUyAQCASCBBCCKRAIBAJBAgjBFAgEAoEgAYRgCgQCgUCQAEIwBQKBQCBIACGY\nAoFAIBAkgBBMgUAgEAgSQAimQCAQCAQJIARTIBAIBIIEEIIpEAgEAkECCMEUCAQCgSABhGAKBAKB\nQJAAQjAFAoFAIEgAIZgCgUAgECSAEEyBQCAQCBJACKZAIBAIBAmgGe8DEAjGA1mWCYVChMNh1Go1\narUaSZKQJGm8D00gEExQhGAKphWyLBOJRAiFQoRCIfx+PyrVu44WtVqNRqNBo9GgUqlQqVRCRAUC\nAQCSLMuD/X7QXwoEk4lIJEIwGCQSiSBJErIsEwgEYoIpy3KPf4pQqlQqNBpNzBJVrFGBQDBl6fcB\nFxamYMojyzLBYJBwOAwQc732Xiz255JVxDMQCPT4Wbx4CpeuQDA9EIIpmLIoccpQKAT0L4hDMZCI\nAoRCIQKBQOz3kiTFXLpqtVq4dAWCKYYQTMGUQ5ZlwuEwwWAQGJ5QDka8QMbHP5X9KgKtoFigSlxU\nuHQFgsmJEEzBlCFesJQY5FgK00DWaCQSIRwOEwgE8Pv96HS6HiKqWKPCpSsQTGyEYAomPUqcMT6h\nJ97yG096i2AkEokdWzAYFC5dgWASIQRTMKnpnfmaqJWmJPIEg8EebtKxECdlP2q1usfxAAO6dOOz\ndIWICgTjgxBMwaRkJAk9wWAQr9dLJBJBrVbHkndkWY6Jp2LdjZU4xVuZ8SguXb/fP2ipi3KsAoFg\n9BCCKZhUjEQow+EwHo+HcDiM0WhEo9EQCoVin1dioErMUbFc48VzrC28REtdlL/tr15UWKMCQWoQ\ngimYFIwkoScSieD1egkEAhgMBiwWC5IkEYlEelhtiuD03m8kEomJaCgU6hEn7W2NDoVS/zkSEROl\nLgLB+CA6/QgmNIpQer1eQqEQRqMx4Ze9LMv4fD58Ph86nQ6j0dhD1JT4Z7LioVh4ijWqiKkiovHW\naG9xc7vdfY5jNInvXBSPKHURCAZFdPoRTB56Z74qApVMQo/X60WtVpOWltYjwUZhuAKhiGDvGsz4\nEpKB4qL9iddokkipi4JynKLURSDoHyGYggnHcDNfIZrQ4/F4ADCbzWi12tE81BjxIhrv1u0dFwXw\ner0TMi4KPUtdlAWKTqcTLl2BACGYggnEUAk9g1lmvRN6dDrdhHip946Lut1uDAYDQL9x0d4x0bFy\n3SrXKt4SV0puRKmLQBBFCKZg3Ekk83Wgl/FACT3J7HusX/TxCUOKBRyfXKRY2L3jouPhJu2vCUR8\nqUs8otRFMNURgikYN0aS+Rqf0KPX67HZbMN6OU8Uq0ixLns3M4iPN8bHc8erXlQ5VlHqIpiOCMEU\njDn9CeVQYqeUY8iyjN/vx+v1otVqB0zomQokGheNTy6aiHHR/kpdVCoVWq1WxEUFkwohmIIxpXdC\nT6JWoSKWDocDSZKwWq19aianC8nWi453XLS/jOJIJILP5+vhEhelLoKJzvR84wjGnJFkvoZCITwe\nD5FIBIvFglarFS/SXsS7dFMVFx2t8pfhlLrEC6lw6QrGCyGYglFlpK3svF4vwWAQvV5PJBJBp9ON\n5uFOKUYaFx3LhKhES13iz0uUugjGGiGYglFhJEKpuOv8fj96vR673U4kEumTUCJInmTjon6/n1Ao\nNG5xUaBPjHqgQd2KkCrzRoWIClKNEExBShlp5mt8Qs9wM18FydNfXNTj8aDRaGJNDAaKi451rHEg\na1Qpc4kXUlHqIkglQjAFKUFx8wWDwYQzX+M/q3ToUavV/Sb0KFmygrEj3hIdKC4aCAR6JHCNZ72o\n8k+xSEWpiyDVCMEUjJjhZr7Cu7MpZVke01Z2guGRbFy0vwzdiRAXDYVCBIPB2M/i46JKcpFw6Qp6\nIwRTMGyUWCP0XOEnwnBa2QkLc2IyUFw03hLtr1401Qk7yraHOtb4/+M/q3Qv8vl8sd8r5yRKXQQg\nBFMwDOITelwuFyaTKWHLcLit7MRLavLRX7ww3hKNt0YnalxUcekqbl3FahalLtMTIZiChBlJ5mvv\n2ZTTNaFnusdiB3LpTuS4aDxiUPf0RgimYEhGmvmayGzKZI5FvISmFpMtLqr837t70UBTXfqbMSqY\nnAjBFAxIIpmvg1lMqZxNOVovGfHyGpjxtISHExdVjnc8rLtkuxf1NxpN3IsTHyGYgn4ZSebrRJ1N\nKUieifa9DRYXVXrT+v3+CR0XBWJCr7QqVAQ0XkiFiE48hGAKehCJRAiFQoTDYWDoOGW8hRmf0GM0\nGpOeTTkUyr7ES0QQT7wwarVaNBrNhI6Lwrvdi0KhUGz/gw3qFqUuEwMhmAJg5Ak9Xq93xLMpBROD\ncDg86b+/yRIXjc8JEKUuEx8hmNOckQqlYlVO1tmUwmLti8fjwe/zxTr8TJbvdKjvMpG4qNL+bzTr\nRfs7rsGON55ESl2ES3f0EII5TRlp5qvSoUeZIGI2m0f5iEVJxlhhtVoxmUw4urtxdHeTZrNN6Q5M\nydSL9rZCJ1JcVJS6jD5CMKcZyosgvpF2Mu63+NmUJpOJYDA46d13gr6o1Wr0BgMS0N3VRZrNNq1G\nqw2nXrS3KCUiTKnwcIyk1EW4dJNDCOY0YqSZr8psSqPRiF6vR5KkmIU6GVFeasItOzA6vR61RhOz\nNKeTaPZmsLioMhptoLjoeLhIky116a9eVDwXPRGCOQ1INvO192d7z6aM/+xYukmFS3Z80Ol0pNls\nOB0O7OnpEzamOR4Ln/i4aPxxxFujiqu0v7iosngd6+ONRwzqThwhmFOYkSb0JDqbUojY1Een02E8\nH9e0p6dP65fmUPQnotB/XBSIdcEaz7go0MdyBgZ16fbupTsdEII5BRmpUA41mzKesX5QhDiPHb2v\ntdFoJBgI4Ha7sVgs43RUk5f+XLoulwu9Xh8T01TERVN1rPH/KyjH6Xa7e2RQT5dB3UIwpxCKUPrO\nlwQk+4ANdzblWLpkU4nyglJeZCJm05fe7ndrWhodHR3o9foJlzk7WWPRvS3KyRAXlWU5Zl0ONah7\n//79LFq0CKvVOmbHOVoIwZwCxGe+hkIh3G436enpCX9+JK3sJuMLKt7drFarYw+7EmPqXcQ+Gc9x\nJDR3q9FrZHT9rINUKhUWsxmX0ylcsyNkoIXmSOOiY3XPxluhg5W6/OIXv+BHP/qREEzB+NNf5mui\nFt9wZ1P2ZrD9hUKhlMVkUpH0EwgE8Hg8qFQqrFZrbOWubFtZ1fdu7D2dRNQflDh5Vgeyhsr8IFmW\nntdcbzBER7V5vRhNpnE6yqlDIvfSYHHR+Ht2LOpFE3kG48XU6XRis9lSsu/xRgjmJEWJNQ6U+TqY\neyqVsykHewg9Hg/dXV1kZGai1+uHtf1UEW9FKwOvJUnq4UZSXEjx9E7UGO9V/VhQlhWiNDNE/dkQ\nVWesFNpDlOcEUU5PkiQsFgtdXV3oDYYpGauaLAx2z6ayXnSgfSeCy+WaEtYlCMGcdAyV0DPYTZzq\n2ZTx2+2Ny+nE5XKRlZ09rrGukTaEH6yAfaAuMEOJ6ERPXFLVHwStnhxzDrkz1Bw8Y+TgGRULC/wo\n2qjRatHr9Xg8ngmRADTRr2l/jFbMNdF6UWVSSn+W6FDvkWSOW4l3TgWmxllMA5SbXUlFT/amTuVs\nynj6OwaPxxMTy1Q+KMm4ZOPjlCO1ovs7jmRFVHkZTQbktBxU7Q1YG48QKaxkRUkF+08bqWrSs6jQ\nH7M0TWYznR0dmIxGVBPk3KaKlZ9qhhMXHSgMkcziRNnHVEEI5gRnOD1f438fCoXwer2jOpsy/oEI\nBoN0d3WRlZU1bqvK3nHKocpiUvFAD9VKTfkOlekToVCoz4ipiYKcnkc4PQ9vRxuWpsPoulpYUr6G\n3U02jrdqqciLLtrUajUGgyFqZU4Rl9tYMt5ZvcONi8YL51RODuwPIZgTFGVlNpxWdpIkxVrZjdZs\nyvh9xR9zx7lz0Wbd49BCbaA45XgRL6KKRe/xeGIlP/EiqvztRBLRiN5McO56NI2H0B/exrLKi3nj\ndAY2Y4Q8WzR2bjKZ6OjowGgyTRoLWjA4Q8VFlcW72+0e93rRsUYI5gSkd+Zrso0HZFmOFUSP9mzK\neAvN6XCg0WgwjVLm5EDWYKqyfccC5QWjjM6Cvkkafr+/j4iOW5NsSSJSthi0ekzHXmXp7MvYc8ZG\nmtGLSSejOm9ler3ecY1ljre1NtWJX/wp19lgMAwYF5UkiZ/+9KeUl5ej1WpjFupkZ/KfwRRCsSjj\nX5iJiqWS+drV1QVE45Qmk2nMblKl/rN3r9nRRDnn7u5uAGw2G0ajcdK9OJWXkfZ8Io3JZMJsNmMw\nGHrUibrdbtxuNz6fj0AgMOqN7+NFKFJYSSSziIy615iZ6afqjB5l10aTCd/5UW+CxJmsIh8fGlKp\nVLH71mg0YjabY8+gSqXi8ccf55133sFut7Nu3To+/elP8/bbbw9rv48++ijz5s3DYrFQXl7Ozp07\nU3xmQyMszAlAKlrZeb3eaCcWqxWPxzNmD6Ji9XV3d2OxWFCPctxSEYhk4pSTkUQyHQcqFxgtSzRS\nvAC1x8msrrdo01xEfYeGssxona1er8fr9Y7JXFTB+DLYIk15dxmNRr7+9a9TV1fHD3/4Q37961+z\nf/9+9u/f36cjUCJs2bKFr371q/zzn/9k5cqVNDc3j+QUhs3UestMMkYyxBn6zqaMj9mNZWZaOBwm\nFAySkZExqvuRJIlIJILT6ZwwccqxZLBMx3i3mM/n6ze2NGJvgyQRLl+J5uBWFuTV8dbZWeSlhTFo\nZYwmE11dXZhMpmnzfYyUyWphQnI1mGlpaWRkZHDppZdy6aWXDmt/3/rWt7j33ntZuXIlAPn5+cPa\nzkgRLtlxQLEo/X5/rEwkmSSPcDiMy+XC6XTGSibis1/H8iGUJIlgIIDVah3V/Spi4Pf70Wg0fc55\nujKYW0yr1fZopu92u/F6vbEsXaXLUVKotYTKL8TWuIuSNA9HW6LJXRqNBo1Gg8/nG4WzHJrJLD6T\njWSutcPhGHHTgkgkwp49e2hra6O8vJySkhI+/elP4/f7R7Td4SAszDFkJJmvMPRsSoVUlUokglK3\nZRolV1x8PaVKpYqJgmBg4i1RxVUdX3MXXyoA9Gm4MKSnw5JOpGAO5Z2v86r2cjrcKjLMUS+Hy+nE\nYDBMevEKnuui+419eI7XIYcjGGYUYVu9FENRXsr2MR1E3ul0kpaWNqJttLa2EgwGefzxx9m5cyca\njYbNmzfz3e9+l+985zspOtLEEBbmGKHEnPx+f9Lu1/jklkgkgs1mG9L1NVaC6XI6Ry1+GAgEcDgc\nBM5bsMKiHD7xAqosOkwmU8wShXen1SiWKDCgJRopqEAT8lJhOMPRFh2yTI/tTFa8tY1Uf+x/2L3i\nelr+9hRhl4dIIMC5515j38W3cugDn8N9pGa8D3NcSUboUyGYygL5M5/5DDk5OWRkZPDf//3fPPfc\ncyPa7nAQFuYoM5azKRXGSlSUziC6FPeJHaiecjRexMrU++lIf5Yo0KfZguJF6F3iEpq5gqKjOziV\ncSPN3WoK7GGMJhNejwfdONThjgQ5EuH0r/5C46/+StE9t1H+ky+jsfV0JYa9Plr+9hQHr7ubwntu\no/izd07LBVwyi/FUCKbdbqeoqKjHz8brugvBHCUUoVTqA5OtDRzubEoYO5esy+XCZDb3mPgxEoaq\np1SSflLJVGrblSriE4QU92p8nWhMRCUdprRc5oSqqGpbRI41iF6vx+1yEQ6Hx7SRwUjuv7Dby9GP\n/w+Btg6Wvfp3POZMntx+jkNHW2lpCyBJUJivZ/E8K5d+8AaWvecSDt/+RTxHT1Lx628iDdPDMpld\nsskk/RQWFo54fx/+8If51a9+xRVXXIFGo+H+++/n2muvHfF2k0W4ZFNMfEJPKBSKiVcyCT1OpxO3\n241eryctLW1YfV9HWwgikQgejyclZQRTpZ5yKqNYoTqdLpZYZDabiZQuJLe7GpPKT11btJORWqPB\n5XLFCtkn8qIk5HBR9f5PoU6zMOORB/jT1iAf/9IRmlr8XL4hk698egb/754yLlqVzuFjbv7r84f5\nz94I8/79O4LtXRz95LeQz08Mmi4km/STitFe3/jGN1ixYgVz5sxh/vz5LF++nK997Wsj3m6yCAsz\nRSgJFcFgMHZDKSv1RF4YqexWMxYWptfjQa/Txdq8DXd/istZqSGdavWUUxlJktAYTESK5zKv4x12\nh1czI0dCqw3gdDgI6XQx78NEnCka9vg4dPNnMS+Yg/uOu/nUvTWsXmHjwfvnk2bteR/OLDVx8ZoM\nmlp8/OahRt7a281Xf/V9znzsC9R9+9fM/N/PJr1/5bpMZdxu94hdshDNwv7Nb37Db37zmxQc1fCZ\n2t/WGKEk9CgFub1fBoOJiSzLeL3elFpXoy2YSh9J8whaocVb0kajMSGxHK3zmsgW0HiRzDWJ5M7C\n7m/CpvFyuita3qIspBRLVEnYCofD+Hw+3G43Ho8Hn8+XEks06ZFT4TDVH/kqhtICjm/6ED/+bT2f\n/3gp93y4pI9YxlOQZ+A7X57NskVpfOEH9WT+5Lu0P72N1seeH/axTzaU70mZDxs6byT0h9PpnDKz\nMEFYmCNCiefE90/s/dAO9BCP1mzK+O2PFkpJgjIUOhkhm0x9XwUJxqpUasIlC6k4s4tdoQ0Up4cw\nmkx4PJ5YDHSowdzJzhQdKXXf/jURr48D7/8CLz7fzn33zqEgz5DQZ1UqiVvfl4/NquHrD7Ty3V/9\ngNoPfYa0FQsxzigaegPnmYwxzEgkQsDvx3c+i1qlVoMsY09P7/fvnU5nSlyyEwUhmMMgmczX/sRk\ntGZTxu9zNPG43ZjM5uRW9KM4n3KyMRUtWjmziLQzR7Gp3Jzu1FGSIeNyOgmFQv16DgZq/TcWItr2\nxEu0P72Npi/fx5ad3dx37xwy0pN/Bq/ZlI3XF+aHz3Tyxc98iKMf/wZLnv8j0hSc2iLLMr7zJUcq\ntTo6kSiB95bD4UiJS3aiMD3fWMNEKfPw+XyxhJ6hHt54wQyFQjE3pMFgGHZCz1CMpktWcSHHTyQZ\nbH+NHRK7a6Ue9ZRms3lYYjmWDRlGi8lmUSSMJBEpXUi5axd17VpkWYpNMUl8E1ER1el0GAyGWBN6\nvV6PWq0mHA7j9/t7uHMDgUBS7lzvyQZOfvnHeD7/dZ7c6ef7XysfllgqvP+aXGbPMPFo+EJUei1N\nf/jnsLc1UZFlGafDgc/nw2a3ozufu5AIPp9v1KYXjQdCMBOgv8zXZFe5Sis7rVaLzWZDr9eP6stz\ntITF5/Oh0WqHfGAiMhxokDjWJJFndiYcpxRMXmRbLnatB7Pkoalbg8FoxO/zjehejJ/k0p+IKuPQ\nlOktg4loJBCk+q6vof/wh/jdTgPf+uJMcrJGVi8qSRL3fKiYxpYgzTd/kvr7/ojvdEtCn50MLtlI\nJBKbgGRPT489v8nUkk8lT9LUOZNRQGlqPdyer4o1BtEbzGazjUnbsNHcvsft7rNi7G35hcIRdtXI\ndLsjrCpzU5RjTlmXnlQvBCb6C2s8CA+31FWSiBQvoNy9h9p2LSpVVOj8Ke4v25+Ias8v4uJFtPc4\ntFM/+j1SZib3n1nE5z5awoyS1Fg+Op2Kr356Bg9tl7B+4H3UffMXKdnueCNHInR3daHRaLCmpSVd\nIjfZvUH9IQRzAIbKfB2M+NmUSqG90Wgcs5XWaLkulRfRQL1cowsEH/tqI4QiEqvLZayW1NVTCnEb\nfSIy/PRf8NCLEofrNYSSLDGUbTlkaF1oIz5aHWoMRiPeMWjIruQR9LZElZmizr2HaPnbf3h81gfY\nsMbGkvmGlM4ULS40cPN1efyfej2OXQfpfvOdIT8zkS1MWZbpPj8QPj4xbzjXaqKe43AQgtmL+J6v\n8UOcE0HJfI2P11ksloRrMSc6Xq8XvcHQR/glSSIUCuFwOKg9q8Id0nPhbNBqxO012VBJ8Lnr4YJK\nmapTWn75bzh8KrltyMXzKfe+Q227Fq1WR+R8i72xJpZYFJGp+/wPaLvhLoKWTO64qbDfwdxK9vZw\nRfS6q3LwylqcN36Ik/9z/6R+5l0uFxJg6WcKkbAwBbGEHr/fHysTScaqVBJ6PB5Pn3jdWCerjNb+\nvB4Ppl7WpZLN6Pf78clmGrtNrJoVRnM+UVCWZeSutpTsfyok/UwGdFqYXwof2ODlvWtg6z549FXw\nJTj3V7blkKPpJBwM0elRYzAYYmUIo8Vg1lr9fX8klF/IPzsq+NI9Zei0mtg4NMUSNRqNaDSa2Hug\nPxEdqi2jWiXxqQ+X8KemcsLBEO1Pbxv2MY8nPq83OrLvvBs2nmSO2efzTbnJQtNeMIeT+RrPULMp\nYWoIplKkrDdEa9WU1ngOhyPaNk1roOqMgcXFYUzn8yhkvwcObIW6/cjTtMH5ZCTS0YYsR7+vmfnw\nyc1gNsDvnoGzXYltQy6axyx/FbXtWgxGI74RJv8MF/eRGpofeoK/5byfe/6rhKyMvkk+g80UjRfR\nRGaKzp5hYvXKDKrXfIBT33sAeRws65EQCoWiQ58HKfuSZej2qmhxqGnuVuP29/+unGolJTCN6zCV\nhB7F/ZKM6xUSn00J42MZpXp/Pq83lrDk8/l61FN6vV6OnzWQaZHJt0f3K7u74OA2yJ8NpQuQpGm/\nNpsUyJEwvkd/i+zzIs1dRmTtJrRp6Vx7Iew9AX96AT54KRTnDLEdWw4F0hGOeWXcQS0arRa/34/B\nkFhzgFQgRyKc+O/vU3/JTZQtLmLtBf0X1/dH/CSX2Pb6mSka741SakVve38ed3+xhMo0O21PvETu\nTVf3PbYJ6CmRZRlHdzdmi6XfbHZvUKK2zUCzw4pBCyZdBEmCcCSMWd93YeByuaZUlx+YhoKp3PDK\n6rD3Q5HI55MtwB8PCzPVKPFLh8PRp+9rt09Dq1PDpXOjGSKyqytqWc5ejpQ7I2XHIFyyo4+kUmP6\n5DcJtTXh3/Uq3t99F+3SNWg3XMPycj1WI/x9G9xyCZTmDrYhCam4khmNR6lrr6QyK1qTGS+YPp+P\nmpo6dux4B4PBit1uJz3dRGlpFgUF+SMeEdby16dwu0M8p1vFb+9MvAPPQPQ3Dq0/EdVpIlx7RQZv\nvnoN/OQPZGy+FPV5r9Nw44FjgdvlQqPR9FnURGSoa9dy6pyWfKufFcUO7JbEmhZMNcGcVsv++MxX\npT4o2YSe7u5ugsHgiArwx4pUiUvwfBJUKBTqE5+VZTjWamROtg+dBmSfO2pZplgsBWOLKisPLrkO\n4yfvRXY78f7uO4QbTzKnCG64CB55BU63D74N2Z5HqXyKdoeKsGQgdN6jE4lEOHGilscff4NHH32T\nrq40Sko2YLcvxestZs8eN88/v4uGhoaE7+HesbXguS7qvvcAT8y4mU/fVYbFPDq2QbyAxg/mfv81\nBeyRZxGy2Gn51ws9BnMrz5Jy3BMB5RnvneTjD8HuUwY63GpWz/QyO8uDOdSFqqUGVcMhVI2HwdPd\n7zZTMQtzoqH+1re+NdjvB/3lZEGZIuJyuaIDj5OsCVSSAILBYCy2kYxQBoPBfvtpjhaSJOH1ekfc\nxF3p++p0OFCr1WRkZsaaais0dEg4vFCe7UOrluDAy1BQjlQ4JxWn0gNl0ZJKt55iGYzVwicUCsVc\ndxMZpVmH3mJFU7kEyZ6J/8mHkNRqsirLyLJJ/Gs7VBaDaaCvQ5JQabUEHV10ShlkmkO4XS62bNnJ\nK68cZ+vWF9FqDZjNerq72zEYzNhsmVgs6bS2drN16zZMJhUFBXlD3se9r+vJr/yEU/oiAhsu56bN\neSm+OoMTfdZVGAxq9jfpyHruUUo/fgtarTZ2nymNFRS3bu+ZsmNpecqyTHd3NxaLpUfnMZdfYtcp\nI7lpYRbk+dB31KI7uRvNudNIKhWotdEVs8EC+r7JPVVVVfh8PtatWzdm55JC/re/H055l6zyklVu\nxmRnU3o8HsLhMEajcdjF9+PhSkz2XOPp7XaWJKnf3rGhMBxtUrO40I0kASd2gdkGxXNTdBY9SeV1\njM+GVK6T0qtU+X8iucvGG03FYlQ5hfgefYBIx1kqr7wRt0/FX7fCx94TTQrqDzmjkBkNr7G9cybu\n5hqeeeoV/IEMvF4PCxdezAUXrMfv99Le3sru3a+RlmYlIyOXuroqli69iPp6D2r1QZYvX5Twosax\nu4q2F3fy5EX/yy9vG7krdrhcviGTfz1dyaqImnMvbCfr6otj56AsRo1GY9/B3L3GoanV6qRzLJLB\n43aj1mhiCX0ADp+KvfV65uQGKVK3oq7ag6zV4y9ZTMSahe784IXBmIoxzInrT0wR8XGHZGZTut1u\nHOcLd0faym48BTNZgsFgjzpSo9E4oFVXe1ZFpkXGbpJRtTdAdzvMWTXhhUYZLab0xDUajbEC9/gu\nMakcPzUVUKVnYfzwl4i0nsH/5MMsnx1mfmnUPTtggwNJQlc0g0Nb/sAP7/s3Dmc+paXzSU/P4tJL\nr8VuzyA3t5D585exceNNRCIann32r5SXzyM3t4D8/FnU1vo5dKg6oesvh8Oc+NKP2LHg/dz5oXJs\naeNnE2g0Ere8L59dc66m8ed/7nH88TNz+xvMHT8OTXHnejyeWNexVN2PoVAIr9eLJW5Un9svsbde\nT2VugGLlgI8lAAAgAElEQVTPEdTVOwgXzSU8bwMhS2bUukyAqTapBKaBYAI93BxjPZsykf1OBAaa\nT+nz+dDp9X1W98FQVDAr88MQ8KJrOAjz1iJpUt9MPp6RXMf4hZBOp4s1vx+qX2l/Tb+nq4hKBiOG\nWz8FXjf+Jx9m49IwRh08t2vgzzz49DZ2vLCHvLLruPjiyzlxYg/Llq1Ho+nplg4E3DgcLVx++Y0c\nP36I5uZ6JEkiL28m1dWd1Nc3DLgPRYCa//wknX4NrhUbuGRt4lmxo8WlazM4lL4Ed0sHjrcPJPQZ\nJXyjNKEfaqbocEVUlqMTZcxmc8yV7Q9K7Kk3MDs7QOG5XajaThFatBE5qwSS9FpNtVmYMA1cstDT\nPdnfDTXasymVfYwliYp0fHlMf/MpfefdRr2pPasiN03GYoDw8f0Es8vQWzNTeg69Ge7CRfl+PR5P\nrPm9sgAY6BrFj59S4jq9x0+Nh/tsIiBpdehvvhv/o78l9MzfeN+Vt/OH51TsOQ4reoWun3/+RZ59\n9iSrV11Nxqy5vLXvZTLSCzEazX22u3fvNkpKypk/fwm5uYXs2fMyWq2OrKx8srNnsmfPMex2G3a7\nvd/jCp7rou77v+Px5Z/nmx8pGV44wuch3FiL3N6C7HWDWoNkS0ddUIaUnZ/0NtVqiZuvL6Cq6Qrs\nv/wztguXJH1M8K6I9jjWQe7HRMah+f1+ZFnGcP75DkdgX6OeAluQsrM7IOQntOASGOYi2OVyTTkL\nc1oIpkJ/IjLasymV/Y41iVjTQ5XHKD1xbb1eUMEw1LWrWDcnhNx+GsnTTbBsGUNHNcaeUCiEx+NB\nluURT0uJF1GF6SqikkaL/qaP4/vbL1G99gS3XPJ+/vg85GVAUVb0b6qqqvjLX96ktHQ5aquK/Vt+\nzME2NysWzOLZZ/9MZmY2paUVlJRUcurUISKRIHPnLgIgOzuXRYvWsWfPdtavfw8mkwWjsZg9e45w\nySWr+l3Q1n/3AU6WXcjG21eQl5P43SjLEcInDhPas51wYw2q/BJUuYVIRguEgoRrjxJ87VnQaNAu\nX49m2TokXeLbv3RdBo/+80IWvvQknuOnMM0pS0mXn0Tux4FmikqShPt8g4LouwION+kwaiNUdO2A\ncIDw3ItA1fM6CwtzGtCfS1bx3YfD4di0g9F6oU00l6yySOhdT9kbv8+HVqvt83I61a4i2ypj1oSh\nZg/hmcuQx7AxQSIPrZJUEQgEMJlMKZuW0puBXlpK5mN8IocSIwWmhIhKOj2GWz6J9+GfYk97mc1r\nNvKPV+AT14LP08H99z+GwxGmpMSB0VxGWmY6l857LwsXzUfyn8XjdVFXd4gTJw7gdJ7j4ouv7bFo\nKywsobu7kr17X2Xt2qtJS0unpaWTI0eOsnDh/B7H4tx7mNbndrDvuu/z06uG6KoQR/jUcQJb/gUR\nGc2FG9G//yNIur7xelmWiZypI/jmywTf3ILuihtRz12W0Pen0Ui897oiak9fSu7v/o/yn30t4eNL\nlkRF1O/zoVKpYm7cZocBh0/FWtXbSEFvv2KZLFOxrGRaxDAVFOFyu909ZlOO1su0937Hkv72OVCc\nciC8Pl/MXRPbRgRq21SU54bhdDVY0pHtY5O2n8h3JMsyHo+HU6dO4XA4MBqNoz57tDfxMSglkSN+\nUaYkcng8nj5t1iYKiVoSktGM4YOfIvjWy1S49zGvDP7xaogf/ej3nDzZycqVq7nssluw221o0nJY\nliXR3KXGYDCSk1PA+vXXEg5LdHaew+3uW89XWbkESTJw7Ng7hEIhGhpO8+yz23E6ne8eazhM3Vd/\nxrby9/GJe+aiVidwn/g8+P/zV/xP/RntmssxfOxraBdf2K9YwnkhKpqJ4caPor/howRefQb/vx9G\nDiQ2ieWKS7J4LXMdrY+/RPBc15j2kVVEVImJ6vV6wuEwFosFtVpNt1ei5qyehVIV6q4zuMtWEAhH\n+o2JJmthCpfsJCV+NiWQUIeeVDHegjlUnLI/ZFnG5/WSlZ3d4+enOyRsJhmr2guNR2D5VRPGgna5\nXBw5cpQjRxo5frweg0FPXl4mBoOEzaZj/fr1pKePTyKI4hJTWqlptdpB26z1dudOZFS2DPQ3fwLf\n33/JxpvSueexPWx/eh/XXP1BNm7cDMCJE+8wp2IZNrMBlSOAXzYQ9nsIBDzIsp8rr/wAVVVvEImE\nKS19NxCqUqlYsmQNr732H5qaGjGZjMyZs4pDh46zevVyAJoffoI2p4r8j1xFxay+sdHehE/X4X/i\nQdSz5mG8+xtI+qhI+oNQ1wJN7dDlgkAI9DpIt0BxNpTlgVoF6pJZGD/6VQLPPYLv4Z+iv+UeVNb+\n46oKep2Ky66bTevpC2h66F8UfPbO4V7uEeNyuTCaTGh1OkJhqG4zMi/tLJlN1fjnX4xaa4i1DVW6\noSn3YzLPucvlmnIW5rQQTGXklhKfHMvZlDB+LlklBun1evskuwxFMBiMNaR+d3twsk3NouIwnKqC\nvJlIRiucH649FvRXXxqJRKiurmbnziosllkUFa2mpGQdTU0NVFfvw+PpRq+3snPnw6xdO4errtrU\no+3aeMWYE2mz5vP5JoWIqvOL0W++g32//i7H3giDbj7LV0fFsrm5jlAoRGFhGQBF507S2FVBic1D\ndfVbFBfPprCwFKPRzNtvb0Gn05OfXxrbtslkJhSSaGw8zh13fA5JkmhsPMbs2WexySpqvvs7tq77\nAt+7MX/I4wzufZ3AK/9Bf82taCqjCTj1rfBWNZw4A4VZUJQNpXmg00RF9JwjOrGlwwnLymHNPLCa\ndOg230Fw54v4HroPw+2fRZWePei+r7ksmy/93wby//grcu++BUk79q/fQCBAKBiMCVl1i450nY/i\nppcJV6xBbUpDDX0S3ZR/QCycE59U1N89qTSJmUpMC8FUq9Ux92NnZ+eEsIZShbehiXMv7cBVfZKw\nx4suw4Z1cSW6VYsJppl7nHsy+Hr1/QRoc0ioVJChdkLbKbgg+kIc7wXBqVOnePnlIzQ0dGAyuVCp\nNOTnl1JcPIOCghIOHtxNW1sdZWWLefnlY+zf/xvuued2srKyxvyYB2MwEVViooFAoM+qf6I0WnDl\nFPPjfd24miLc+pEb2HFEy3U2qK09wMyZC2KLNVuWlcauIA6Xl+ameq66+mYAMjKyWLHiEvbs2YbZ\nbCMtLWq1VVcfxGYzYrGU09h4ktLSciyWfA4cOEHuI89ysHANN316BSbjwPe4HIkQeOkxwrVHMX74\ni6gyc2k6By/ugU5XVAQ3rwbjILk8nU544wj8+ilYOx/WLpDQrbsSyWDE95efY7jj86jSB76nrBYN\ny69bTHdDAeee2krW+68cxlUePrIs43a5MJ/3MLU61HS6Vaz3bCVSNA85ra/gx8dElWYfJpOph5DG\n35MqlYpnnnkGu90+qnkh48W0aI0X/6UFAoEeLarGilTPhnMdqeHIPd+k9jsPoDbqscydiWlmCZFQ\nmLYXd1D/zV/iP1ZH1tIFGHKSL/fo7u7G0ktoq06rKc2MYGveA+n5SFnRLipK68GxmETh8/kwGAyx\n+aPt7e3s2XOGkpKVzJu3HK3WRFXVHhyOdrKzC9FoNOTnFxEKSRw6tJPMzCzeeOMwW7e+hNWqYebM\nmWMaT1LcromWLSkiqlar0WiicxyVRCxloRIMBmMzGxVhjf/scFBEOtGs8Ugkwl13fZ6jp9RcNHcR\nm7I0BApm8cpbB3G176awMGox6vUmJKMZ3blTvHGshpx0MyUlM2PHaTZbkGUVR4/upri4nHPnzlJd\nvYu1ay8jPT2bQ4d2UVY2B6PRxKnX3qbryedw3PUV3nNF1oAvaDngx/+vPyA7HRhv+zRBYzrP74aX\n34FVlXD9WijJgaEMPqMe5hRFZ4W+fRR2HYVZ+WCeUQYqNYEX/oFm/vJBM2hLCg387SUXxTv+Te4d\n141Zu0yIlpGEgkEsFguBsMTeBgNLVQcxa0NEShdBAvdKMBhEf74uu/c9qbTNfPrpp3nkkUfYvXs3\nDz74IK+//jo1NTUYjUYKCwuTPu4TJ05QVFTE8ePHuf7664dz6sOh39Z400IwgdhLxO/395v5Odp4\nB6hnTBZZlqn/+UNUf/rbFNy6mQUP/oDc912BdcVCtBVlaBdXkH/T1eTeeT3BpjaOf/a7BDu7SV+z\nDEmT2DkrM/FscSPLnD440apmcVY3qrp3YO46pPPXUClRGSvBjM88ffPN41itFbG6PpstnZKSchoa\nTlFff5j8/Bk0NNRSW1tFZ2c7HR2nWbCgguPHG/n3v5/n+PFjLFhQMWaxlmQFsz/iXbT9iWh8dq4i\noooHIFERTVYwf/KTn7FrV5C8vFw2ve8mju15ifaT2zjacoZQJINMu4aGhuOcPPkOPr+HdKuJ3VX7\nuGDlWrSanq7/zMwcWlqa6epqprb2KPPmLSQrKx+z2crZs214vQ4yLBnUfu9PvFK4lG/cdy0qKdKv\nYMoeF76//yoaZ73hLuo79Pz5JbBZ4NZLoxNXVEmuKYx6WDQz2rzjyR1QmAmZlWXIbifB7c+hWXhB\n7Nnojdmk5lCXlfRXniZjWQWm0uQFZDgoo7usVisqtYaDZ/RkqTop7d6XcEas0l+4Pzdr/MLuoosu\n4rbbbuPll1/miSeeID09nVOnThGJRFi6dGnSx/7BD36Q3Nxc7Ha7EMyxQHEfQNTC1Gg0YyqYkiTF\nRhuNxJKJBIMcufsbdO3cx/Jn/kDmZWuRNGr8fj8ulwuVSoXVakWn0yFr1FhXLabkzhto/vt/qP/l\nn8m4dDXa9KGFQYlRmEym2M+ON6vIMMvktO2BjAKkzILY70ajKXpvFPdrMBhEq9ViNBrZsmUHwWA+\n6b1iR2q1hqKimbS2trJt278Ih90sWXIBa9duQpZVyHKQTZuuxe3WceTIUd5+ew9FRZnDWv0mSyoE\nsz8GE1Ggj4jGDz7uT0STEcwdO3bwl7/sRafLJitLTSDoIG/eGio9bvxqB7pZH6F8dgUrFs8jM7OI\n1tYzvL7rJTI1MuaidZjU7j6ZzJmZebzyyrOYTDqWLXu3eXdaWjpVVW+jeqWK02c1FH9gHfMqLRgM\nhj6CGenuwPfXn6OZPR/N5Tfz6kEVL+2Lul7XLRjaohz8ekdnguZnwD+3g90CeUvmEK4/QfjoftRz\nlw74rBfkG3j25XMUHHuL3BsuH/5BJIHX4wEp2hO6uVtNW7eKZR3PEKlcE22engBKbD2ReyISifDo\no4/yxS9+kQULFrBp06ZhieWjjz5KfX09q1atoqOjY9wFc1qVlcD4xdtGul85HObwXV8n2N7J8ucf\nxFCc36fvq8Viibmalf3pczNZ9Mj9FNx2HXs23k7Xm+8MuS+f14sxTvxCYTjdqaLU4oRzp6GwIqXn\nNhjxY9VCoRCSJGEwGKirq+fw4U527XqV3btfxuNx9fhctM7WhUajw2JJIycnKoZLl64iHFbR2dnC\n+vWrmDlzOU6nip/85EGef/75UTmH8aJ3OUF8y7/BWqzFi+lQdHV18bvf/YdQKB+fr46Sktls2HAj\n8xat4tzchWR3d3FFyVneroa2LrDbM1i+fANGo5WwOkzjyXeIoCXgD/TacgSdTkMk0rPcxmazk+bT\nsn/rFvxXbmbpopkcPlwbi6HFPn22Gd9D96Fdto7g2vfy160Sp1rhk9dCRXEqrm6UWQVw5yZ47m04\nUCuh33w7ctc5gjtfGvAzpUVGghs20rFjH976M6k7mAGIRCJ4PB7MZjP+oMTRFh2L/TujE4UsGaOy\nT6fT2aM/7XBwOBx885vf5Gc/+9mEyTuZFoIZ/yBNVsE8/tX7CJw9x6JHfg56XY96SqPRTF2Dn527\nOnj9rQ4OH3Xi9b3bDVuSJEo+eSvzfv8dDnzgc7Rv2THgfpQgfvzkgtOd0SbrxpbD0dFd2rHp6aPU\njSoPu9VqRaVS4Xa7OXCgiQsuuJIrrvggOp2N1157ijNnTgJRkd21axtms4abb/4YXq+f6up9AEiS\niuXL11FXV4PVqsdmM+Fw+HC7LTz00Au88cYbY3Ju40VvEe3dp1Rp6OHz+WKN6HtbpPF8//s/paFB\nTzB4hvz8WWzadEPMM3H6bAOzrrkdyzvPs7aonZffAZcXzpw5QV5eERuvuh1/8152V53A7/f12P6R\nI/uYP38RFksmNTVVsZ9HfAFUT77FwZwSNl6Ri9lspaNDpr393eGc4dO1+P7yc7SXbKZt9kZ++zQU\nZMGdl4P1XadJysjPhA9dAS/tgUONWvQ3fYzQrlcIn6we8DObryvkSMkazvz+H6k/oF643W4MBgMa\njYYjLTqK1S3YVW4iBcmN4Esm1p+KSSX33nsvH/3oRykoKBj6j8eIaSGY8UyUmsFkaPr7U5zbsoOF\nf/sZ/kg4NkWly6HlF39s5IaP7OMHv6zh+W1n2bL9LL95+BS33XOY//lhLVu3txMKRVfoWZvWsfif\nv+TwR79O+0uv97svv9+PTqeL67Ua7exTZvdGM2OL+o7uSvU1VZoPKKVANputhxvo8OEaJCkfnU6P\nTqdn8eILWb58E1VVe6mpOcjhw3sJh50sX74BnU7HypWXUFt7gnPnWgGwWKxUVi6jqmoXmzZtYPHi\nVQQCLrq7Vdx//185ceJEys5lMhDfaEGrNVBdEyIia2Ou2mAw2O8A5B07drBvnwsIYLEYuOmmO2P3\nTXv7GSIRyK9YiG791eTt/xcLcly8uBdO1BympGQOaWk2LrnifbSeOkzdqRqC58uTuru7OHu2noqK\nJSxatIqTJ4/i80XbV9b9f/+iQ1fE6vddSkP9EQCs1hyOHj0FQOh4Fb5Hf4tu8+1UmS7kL1vgqgvg\n8uXRGsrRIscOd2yCZ9+GWlc6+us/jP+ph4k4u/r9+7nlRhqXX0nT358m5HD1+zepIBQK4ff5MJnN\ntHSrcXlk5nRuJzx7ZUJJPsNlpG3x9u/fz9atW/nc5z6XwqMaOdOirGQyW5juY3Wc+NrPWPDUA7il\nCNpIBJ3ewoP/d4ZXdrbzvvfk89AvFpOZ3jMQ73T5eGNXO8+93MbD/2jk47eXsm5VOvZVi1nyz1+y\n/6bPsPAv95GxfmWPz/m83h7dfTo9EuEIZHUehpyyATuhQHIr0IE+P1CTdIXu7m5qa50UFPR0C+fk\nFLB27dW8+OJjuN2t3HjjXbHPWixW5s27gH37dnDJJdHMxJkz53DmTB1nzpxk5coF+P0BnM42mpvP\ncu+99/HAAz8ctyYH44nDGeKf/2mlps7DnJlGNl6UxbpVdsxmdayMIBwO43a7+dOfnqKz009BQREV\nFXmkp2cRicioVBINDdUUFJQDoMovQbtmE+Vv/p32wvew+4iL1WuiWbOWjBw2XbCC5/fuJS3NSllZ\nOUeP7qesbDY6nQGdzkBubhlHj75DqddC+8792D7xWRYuNfPGGy9QXr4Ii8VGTU0NZ7b8h4xDb6C5\n6RM83zSTk03wX1dC7hh9jXkZcMsl0XFnd15eQeaKDfgf/xOGOz6L1CupRpIkrrp5Lo0759Hy96co\n+sSto3JMbrcbk8lEKKKiukXHcu9rMHMJ6JM3tZN5vh0Ox4gS6V577TXq6+spKSmJTlVxuQiHwxw5\ncoQ9e/YMe7sjRViY51EywHw+XywTM5XCOhzBjIRCVH3kKxR86SNoZxZjtVpxuDV85utHcLhCPPSL\nJdx6Q2EfsYRoZ5E1K2387H/n8YW7Z/KnRxv51k+O0+0IYrtgMQv//BOq7vgizoNHY59REmvik3fq\n21WUpAeRmmsGHAydipIMpUzE5/NhsVh6xGPjqa4+hcFQ1O/vDAYTBoMOg8FIZ+fZHr+bMWM2FksW\n1dXvPmxLllxIbe0J7HYLs2eXolbrWbZsFS0tYT7ykU8QCPSOq019MtK1/Pgbc/jzL+eyab2dnbu7\nuPMzh/jD307T0RVCo9Gg1+v5xz+e4MgRF4WFi8nM1DJv3vKoNeP34XQ6OX26hqKiGbEMXXXxLLQX\nbsS695cUZOWxbb+GYCi6z7zyChbMWMS+fTtpajpNR0cjs2Ytih1TZeViGo+f4PBP/8iZDTewdkMB\nNpud9PQ8Tp2qpq21maMvPce+p5/Cf/P/489VM3G44e5rxk4sFUpz4ZoL4e8vg3fZlaBWE9zeNzYu\nyzKrlqdRNfcK6n79CHIolPJjUZoUGE0mjrboyJebSTdFkLOGF8RNti3eSATz4x//OCdPnmT//v0c\nOHCAu+++m2uuuYaXXho4NjwWTBvBjG/A3huPx0Nbaytn29pwOp04nU7OtrXR2tqK0+lMSY/PZAUz\nHA5z4r4/IlnNlHz0ZqxWK41NAT73jcNce3kuX/3MLNKsAzsI4ve3dKGN3/9kIQX5Bj7+pSoOH3WS\nseECKn/2dfa//1P4TrcA0QdMdT7LEqKtwZq7JYqDNZCeG+3qk2KUGZVOp7PHjMr+aG5uprbWid3e\nf0eVY8cOkJWVzsaNN7B//9t0d3f0+P3ixRfQ0FBPV1c03mW12igqmk119TtUVMwgJ6eQ1tZTbNp0\nC2fPavnGN75DaBReZBMZf0s7VTd8inO//xtLzG188wsz+dX3KpFl+MSXq/ntnxs5ceIMzzyzB7BR\nXDwHm03PrFmV6PV6DAYD7e0N2O15mExmgsF3F6HBnCJasrK5zPcOVrmbF3aDLwCo1CxbUIbOWsmW\nLY9RXDyjR+mCQasj9OxB9mRn8Z67Vsae4Vmz5nFw79u89defMS8zi7rKm/jNViOVJXDLpWAYpyYz\nC8pgZQU88ooK1eYPEdr3OuFTx/v8nUat4pIPr6FDZaP92VdTegzxTQraXRo6XVDpepPwzGUp3c9A\njDSGaTAYyMnJif2zWKKZ0BkZo5OklCjToqwEogKk/B8Oh3s8kOFwGKPRiM1ujyVBWCwW9DodPq83\nFjPUjGD0l9JqbqhCZaXnbefxWk59/vsse+zXGLMzON3s40v/W83dd5Zy1cachHrBxpd6qNUSKxbb\nKcw38L2fnyDDrmXRVYsgEqHm3p+T94Fr8AajJTfKZxrOqVBJMsUtr8Gs5UiGgft0+ny+pJqcK7Wb\nLpcLtVqNxWIZsjPIjh172LXrBGfOnESn02OzvduQweVycODAdlatuhi7PROVSkN19W5KSspj1qhW\nqwNU1NYeorS0HFmO4PF42b59C2fPnqGj4zR1dfW0ttYyd+5q9u7dhyT5WLp0cULnlAijVVaSKiSV\nCk1GGq7DJzjzs4doefhxDBE/665fwJVXF3H4qIsvfOmHNJ3xUVx0AcFgDcuXryItLZO6uqMcPbqb\nN954hmAwQGtrAx0dbUiShM2WQUvLKZwBL3NWbSS/6t+4jDnsPp1Grj2MyarHFA7z9jvbKZ8zn5yc\naJs7WZY59P2HcXVpMV1RRllpCfrzvV8dNYd4+9l/ULloFR1zPkR1vcx7Vvu5ZGXmaIbnEqI0J9qX\n9liLgfnL8wk8/Vc0iy9E0kbfO8FgEI1GQ1mJiUe2OMnc9hRFH3pvyhpoKE0KDEYLexv0LPbswDSr\nAkzDa4YejkBDa5i6FjUnmlTUtcLZLrAao/12e7Nr1y5MJhPLly8f4ZlEufjii8eypASmcx0mEMvy\nU+rR9Pp3Mz01Gk2sS4WCJEmoNZpok2Ktlq6uLsKRyLAnXwQCgUEFM15AVCoVjV/9KTlXX0LO5o10\nO4N84VtHuO39RVxx8eD9KuPPt7/uO8UFRlYts/PT39YSCEZYe+dFOPcfoeUfz2K47EKsVitqjQZZ\nhv0Nasr1zZj97UgzBhcNxZWbyLUJBoO4XC4ikUhs5TjU5xwOB4cPn6OycgMmk40TJw7Q0lJLdnYR\nGo2Wd97ZQVZWJkVFMwHIyMimtbWFrq5m8vJKYtvJyMji+PEj+P0eDh/eR1dXC9nZBahUsH79FXR0\nODl58hAdHaeRZQ3HjtUya1Y+xcVFQ55XIkx0wVRpNZjKy7BdciFZH34fGSsX07V9NzVf+hFyQyOZ\ni3Q88/Lr+PzluPy55OW6yMnOpLr6DdRqmZycIrxeJ1dffRsFBWVoNCoaG49y/PhBWlpOMWvWAnJK\nZ6GeUUFO7Wto/E5eby1CLUXo6jyCpDHS0d5AcfFMtFod1X94ms7d1VR8+1Ok2XU0NdVSkJ5F56vP\n8PZrT5O16kbeatFTVFzO5StNeBx1zJ5dMuadvHojSdGuQDsPQzAthyL9OUIHd6GetxxJkmIdxzRq\nFd1peUQe+yfZF8zDUDx0P9yhUJoUWKxWTpw1YfK2McPShZxfnuR24FRLtCPSv3fC6bMqQhEJnSY6\nP7PDCTnpUdHszc6dO8nLy2PBggUjPp9xQgimIpjJFtlrzguny+mMdrQxGpMWzcEszN4C4tt3hNO/\ne4QFD/0IWaXm3h8fZ8mCNG65PvHC+sG679htWjasyeT3f2mgvSPAZZ+/mpb/bMWwegn2nGwkSaLL\nI3GmU8V853ak4nlI5sFXpr2za/tDcb8qbQJNJlPCwlFdfZLu7nT0ehN2ewYzZsylo6OD6uq30OmM\n1NdXsXLlJT22l5OTz8GDu7HbMzCbo+4hSZLo7u5m69bHWblyLStWXERBQSl1dSfIyspm5sxZBALR\n7NtQKERdXTV1dS2sXr0oJaOKJrpgKigJPpbSQjKvWk/eHe/FXdvAf3/x2zS78li+eA1FpUEOHKqn\nw2Hi8svew9zKRbS3n0anM1JWNge93ojdnk1paSVGo4mdO5/Fbs8mL68IjcGIelYlGXIHefXb2e8q\nZt+h3Vxy4SqCsoqWphqc20/heuFVMv/fJymZnU6aJHPo5X9jP17FK50ROoquRpu9mnTpCEvmmMnM\nzMThcJGerp4QUzLUKigvhCd3QsGyCtKqtoBKhTq/JNaAQ5IkZpSY+Nfz50jftY3CD1w14v16zjcp\n8GGltk3FBf7XoGIVJLGIONkEj22HQ/UwtwSuWwMryv3MK4XyIjUz86GyuH+xBNi2bRvl5eWUlycn\n0kQ9P6YAACAASURBVBMI0bgAhp+golarycrORpZlOs6dSzqBZ6j5lAaDIWrdqdWc+Mb9zLr3U6iN\nBv7+xBnCYZm7PlgywJYT3188WRk67v/2PHa/08Uf/9HMjJ9+Bddru2h7aisA9edUlFicSH4PZI7M\nulKSibq7u1GpVNjt9qQsdb/fz/Hj7aSn58S2p1arWbp0DWVli3nmmb+Rk1PYp2WXXm+ksnIFBw++\nEYtD19fX0Npay7x5K2JuO5VKYs6chRw7dpDc3BxmzChBrVazdu01zJixjIMHD/GDH/wany+x2YeJ\nXI/JhjbDzq5SG62Fi5mRuwBp15t0732SW95zAWtWX82Dj3Tx4qvtNDScoLBwVp/P+/1uVqy4FK1W\nYseOF/H5vEiSCk3FYnI3b2ZBZAvF/kbeqc0k015Be8c52htOkH/XeykKnqL7hWdp3lmF23ohD7Rn\ncVpVzPpVC7h2VYQFc2dTWxtNXrNaszl2rGHCXGO7BW5aD0/s1OC58qMEtj1F5GxzjwQag0HNnI+/\nl+59h3EfqRnR/sLhMF6PB4PJwqHTOhZ5dqKavQzUiRVEdLujCUtPvQlr5sNnrofV88BiTD7pZ6R1\nmBORaSOY8Uk/w32YJEkiIzMTGZKeehK/3/g6Q41Gg81miwlI+/OvEXK6ybvpao7WuHjqhVa+9tnZ\nCQ3FTRZbmpaffHMe+6q6qW8Pkr16OUc/+126DtfS3CVR7KqCogqkBFamA13X+G5EaWlpmEympBct\nZ840IctZqPt56PPyCklLS6O1tbFPtx+AGTPK0enSOH78AK2tTRw5sovVqzeyYsU6amqqY0k9xcVl\nhMPQ1naaOXNKSEvLoanpONdccycZGfns2HGA++//VVLH3R+TdXpDV1cXDz/8PCpNLvlLKlFvyCM/\nq5D0v2yn4tg2PvPBbJqbz/HUC400NlvpnSd35kwNJSXlrFixkaysLHbujIomgKQ30mQyctGN13Pt\ngk48uw5QUrSIc/PS2RlZxlPda3jFspmakivJnrMQY/gYt29eyIw8kOUIhYWlnDvXTmdnBzqdnrNn\nvRNqKtGMfFi/CB49kIN08fX4n/gThHqOxHvP1UXsLbuMYz98aET7crvdGIxGTp41kBFqJjvHjGwd\nOlFGlmHfCXjgP9FGDJ95LyycEe2zK4fDhBtPIu/dTmjrE/if/iv+5x4hsOMFZH//i8iRZslOVKad\nSxZGNjlEac3mcjqJhMM9OuIMhpJsJMsyTqezR99X5SUqyzKHPvxlZn7tE+hnz+Cr3zvKXbcWM79i\neCu1RBq+6/UqLlplJxx08ephPcs3lHHw33tJu3AJZR1vQuWaARtJx9O7qb1Sq+f3+zGZTBgMhmG5\nIaMN1o9gMpWh0egIhUKxnqkABw++TXFxMTZbDjU1+ykpmdNHlNLTs9izZztNTXUsW7aO7Ox8TCYL\nbW2teDxdZGTknt+mlpqaw8yduwSPx0d9fR02WybFxRXU1x/m5MlG7HYt8+bNS/o8FJTks7GcUjEc\nFJeskrH8uc99hUOHnOTkzEKj8bJ46TwKF61g4a0fwHWgmrMPPoLJ3kLJ0jkcb0znlZ0dqDUqcrN0\n+P1OTpw4wOLFa1CpVOTmFuN0nuPkyWqKimbS2dlOY2M1OmkOh+77B4b6Wso3b6T5bCMzs/1csb6I\n+TNVzMyXOV27g4yMDDQayM8vRq1Wo9Xq6O7uxuvtJju7AK83SCDQSUaGrcf0FoXxWLQUZUFDGxwL\nFFMRPoZ8uhZdxaLYsei0Kk7r81H9/jfk33AZWnvyYhMMBvF6PITUdura1KyMvAWzlw3ZoMAXgMdf\nh2On4daNUaGUJJnI6VqCr/wH/zN/J3K6FlmlRm3PRJWRjWQ0g8uBekZFv++Hxx57jM2bN2O3Dz5Y\newIjXLLwriU0ktWnSqUiMysLj8cTbWqcAEoSjt/v79P3VaH9+deQIzLZ117KP55qoiDPwCVrkx/N\nFU8i56nThDCZDLz4ajtv2i8gvPlGbG8+Bdmlsay+oYgXfe/5zGK1Wo3RnMa2/Woee214pTnnzp3D\n6dRhOJ+hG2/Jer0e2trqmDVrAfPnL0OjsVBV1be1ndWahsPhIRwOkJ//bg1aZeVi6upqeliZoZBM\nS0sjFRVlmM12Tp488P+z997hcZzXvf9nZrZ3LMoCi94IgGDvFJtEkZIsS+6JJEt2ZMuJS2znJv5d\nx3F+tlziOIlcrmUrjh2XKLIlW5JVaMvqFMVeQIAA0TuwABaLssAutpeZ+8dilwQBSqRE60qRvs/D\nR9DO7My8szPvec853/M9OJ0VlJevIpnU87OfPfy2UwI6dOgQra0BDIYs1GrYsGEn8XiQ4uJK1Nk2\nij5zO9Xf+QfcI72Yfv17bk6e5ANXaejoDvCtH/Rz/4MniCTySCTOTdwrV16FTqfm0OGDPPNcI53P\newj987/hrMph00+/jL04lxUrNtLr6mZqcAQUmeHhfmQ5xrZte3G5BhfUyZaVLWN83IUkSeTlOXG7\n/RkReiCjVhQKhRaoFV2JkrFLgSCk8oDTfjhVdScMdpLsWKjrfPP7ymkuu5qOb/38so+vKAqBublU\nKHZUy6rwEcTq9SC88hTv9sKPfw9GPXzy3eCwKSR624n84h6iT96P6ChC/+mvoP+rLyPs/RCqrXtQ\nr9+BetPVaPZ+4KLzw5WQxnsz4m1jMF+pDvO1QJIk7NnZzM7OZiS9lkI6TxmNRjNe5VLehaIoDH7n\nZ5T/f59gfCLK754a53N3lb3m672c74UjESwWI/d8tY7nD88Sycqn3OFn+MnLU9SIx+MZkXSz2czA\nhI7vP5LEO6dww6bXRnJpaelCEJZ+8fr62nE4nOh0BgRBZMOGHYyPjzM62r9gv66udpzOXNRq3YLa\nTLs9B6s1j/7+lMSaKIpUVi6nt7cdq9WK05lDT08rx449R2FhDSaTEZ9PxTe+cU+KWPE/GOl8VTQa\n5cc//h1+fxxJUlNfv5vi4iwSiSS5uecYnRGDgPnaLWz8/tchkSRyz3fZ2fYId1WNQLCL/mEr3/rB\nAP/8gwF+8J/D3PvzEfa/YOfgfz+N69H72BqcpParf8XKv/8I4nwbkbKycrIsWZwZ9eDt66er4zQr\nVmxYIFqQhs1mR6s1Mzo6MN/s2MT4uCcjtJAmmen1+gVGNBQKZST/0p1c/lShXLUKPrwbjveo6d36\naaJ/fAh5ajyz3WiQKPnsh5n540tEXO7LOnYkEgFBoHfKiCM2SHZpPrxCGRhASz/817Nw7Vq4eQtI\nM26iv/4hsWd/i3rLbvSf+RrqrXsQzSkv8Y3Wkn0z4m1jMM/HlZLHSxfae73eRce7ME9pMBgQRfGi\nD9zs4dPEvT7y3reHn/z3MB98dz6O3Ncncn4p41QUheh8SYgjV8tH/6IG38AQIX0Orl/uw/PYqytr\npMPN6fBrHBO/egGePpHkQ7skPnytCqvx8g1/NBqltXWU06cPcvjw75mcPNfZIZlM4nJ1Ul29MvOZ\nVqtnzZodnD17MqM9GgoF6OtrZsOGXVRU1NPefnrBOWprVzIw0HOel1lOKBTG651g48Z1rFy5EUUJ\nMjfnJ5mUMJmyGBwM8M1vfvuyx/NWxH33/Qf9/TKiKFJTcz0lJVnMzo7gdFYuiJCMjPTgcJShL8jF\n+Yk/Y/kv/wX73qvwt7egPfwc1x19iI9MPsoHx59gT/tD7Dn879zc+hDbC8wY1hRT+U9/jWXlQjFw\nQYC1azbh95zl4KAfKRIhz5gyApWVtQwN9S3wEEtLqxkcTHn/ZnM23d0LyT/pFmjnG1Gj0YheLaGO\nBRH8k8jTo0THB4lMjBD1zxCb90SvlBG1GuGWq2X+2FuEd+uHiTzy0wV5wJs+UEVr+U7Ofu2nl3xM\nWZYJBgKEFSv+uSS1hnGUnIuTBGUZnm2AFxrhY9fDypI4sf1PEr7/e0jVK9B/6quo6jcs4i5cjsGU\nZflNn3Z4LXjb5DDP74l5KSUQlwq1Wk0sGiU2X26SFgy4ME+pKEqmW/lS6Py7b1H40fcxqCvhiWfG\n+ce/qUalen3e8KWMMxKJkEwkMJnNJGXocKu5RneSf39Ox7Lbrmf8C18h+9qtaB05i76bDr+m+2dq\ntHpOdql4+KUkqypEbtktkWMVUWQZeWIM0XR5eZnR0VFmZ22sXr2LREKmtfUkgYCXnJxCxsddhMPT\nLFu2ZsF3TCYzfn+A8fF+CgsraGw8Qk5ODiUlVdjtubS1NWG3Z2MwpFoPGQwGxsZGkOUYWVm5iKKI\nLMuMjvZTWZlSuBkY6Ke+fiMGg5Xu7lOYzcWMjg5jtaqpra29rDG9lXKYQ0ND/PSnzzM760evL2Hj\nxmuoq3PQ1XWK2tqN6PVGZFnG75+hsXE/DkcZRqMJtVqDoJLQlxYyaYecLRuov/VDGGvKMdWUY9uw\nnNz37qbgo+9nVBuiuKoWl6t7gchEGgajiXHPOGODxylYfRtSOIQlOIoh28HwqAu1WoXZbEVRZGw2\nO52dZ3A4CjGZLExPT1FQYDmXx1cUCPsRZtyIngHEkQ6koRYkdzcq/ySq8CzqsB9NeBaN34N6og/N\nWCeC100iMEssmSQhapAvsxn3hbAYFAyaGH/oLWJ5lhdV6xGk+nXzIvgCXnspiR/8gPz37UZtf/VS\nprm5ORA1tLrNbEwcRVO79qKh2EgspXXrD8Gd14HFP0jkoftAUdDd9hlUFXUXJfnFYrEFnIuLQVEU\nHnzwQT7+8Y+/ZUluXCSH+eZ+a68g/lQC7IIgYMvKYsLjyQgEC4KwKPT6SucMdvYz19jGyl99l29/\ns5ePf7gYrfaNcf4j5xGDxn0CFk2ULCnAe267mq9/t4cvf/HvaL7lb9j40q/Q5qdEE9KLgnA4nGH5\n9gyH+eMpEbNR4bPvV5FtSd3veF8H4ad/g5iVi+n2z17WtfX0jGM2lyNJElVV9RQXV3L8+H6OHv09\ngqCmunrp9kQrV27kxRd/R3t7IzMzY6xdm1IIkSSJysp6Ojub2Lbthsz+VVUraG09RllZLaIoUl6+\njL6+NgIBP5WVpZw9m8PISAd1dduZmRmlp6cDlUrFvff+kjVr1lBaWnrZ9/2tgO98598ZGQkhSUbW\nrXsXdrtAPD6HKKqJx2OcOPEi09MuFCXOyMggVquVgYFmVCotBQXlVFYux+MZpL5+M+ocG+qchQQQ\nv9/H3NwU11335zQ0HKSzs4EVK7Ysug6j0UIkEmRFkYI7VMJMLEblQAuVGoHBs0cptNtB1KDSaikq\nqmSgv4PVKzegTqoZbm4gp9yBEJxBCMyASoNitqOY7MjZhSh6K6i1FyfGJOIIQS+aWQ/a0VZIJohn\nlxC1l5CU1IiimCGhpf++FIOyvCRJJAG/7Xk/Hw79CPHFJ9HsST2n199czo/vuw7tF3/Ejt/92yse\nKxaLEY/F6PbmUR1txlhXD+LS6Y9JHzz4YqqH5w0bkshHniFy6gDa6/8MacXGV7zuy50vX28jhjcr\n3pYeZiyWkoC7UsXjmQ4OgQAmkwmj0bjo2K8kJND3jR+RtWMD3ZZaGpp9fP4T5VfkYUszVy/mYSqK\nwuzsLFabDVEUaR2RKIl2YnHkkF9VRFmxnn/Zl+TqtXrc3/sJBbfciCwKBINBEokERqMRUaXj6ZMK\nLzYJ7F6jcNNWNQadQHJ8hNDjvyR2+hD6Pe9Dd+3lyX7Nzc3R0jKO3V6e+UylUuFwFOHxTNDcvJ/t\n229Eo1nssUuShFZr4Pnnf8fGjdsX5Npstmw6OprJyjrfyzTicg2iUklYrVlIkkQkEmF62k1JSQWi\nKNHW1kJeXgnZ2QVMTPSi1WYxNeVlamqUa6/ddcnRireKh3n48GEefLABjcaMVmvHbM5j8+YaWlpe\nxuv14ve7yc8vZtWq7YiiQH5+KVu33kB19Wqysx3MzLg5ffoA4+NjbNly7ZL3p7e3HYNBQ2FhOXZ7\nHi0tJ8jOzkOvP5d7i8WitLWdwOEoJRTyU1uai6TW0p8sBksRIz0NOIUgljkP4tQwhoiPtqZDVGpg\n1jNKc2szG9YuR3SUIpeuQi6qI5lVTECbi0+2MB3RMhlQ4fGr8MxJTMxJTAUkfGGRUEwkKUiojUaE\nLAdKfhWKNQ8pMIXOdRaNHEewZCOo1CSTSRKJRCYPmmbEw2JPVFEUkskkFU41s0E4ktzAsv4nUAlJ\npMIyRFFArK7G970fkX31RvTOpdW9FFnGNzvLdMSK6PeyrFQLFykh6XTBQ/vh6tWws3iS2G9/jBL0\no/vw55BKKi9ZoetiEbIL8etf/5q77rrrkvZ9k+LtrfQD5yarWCyGJEmv22CeH5LU6XSI870D0w10\nL8RS5SzxGT8dn/86dT/+Jt/+6Rh33lJEadGV6XL7aguDWDRKLBbDbLEQjELPuMgq/0uItVsQRImi\nAj2F+Tq+e8jEVpObid88iWHPVnQGA0ajkT63wC+fSWLSw5/vjFGSJyDOThN+6kHC+/ehWXsVxg9+\nHFV+8WUvAAYHXXg8ekymhV6Joih4vZNIksDExCBFRZVL1mcGg3P09rZQVFS2wGCmQq7gcnVRXFyV\n6VIDIgMDnZSVpZRJIpEoBw8+x+TkGOPjAwwO9jM83IlGo0OWUxOjVqujv38EUQyydu3aSxrXW8Fg\nJhIJvva1exkfTyDLIhZLBStWlABBDh16kvXrd7J1643k5DhRqzW0tx+jrKweszkVctfpjOTnlxGJ\nBJmZmWR62kNurnPR4qa5+TC1tWswGFJhXElS09PTtKA0qLu7HVFMUl+/ge7uJnJzCrGZ1OTbFGRR\nw1hQS5cP1JU7iGaVQW4FY8E4fcEkg/4w5qLVCM4qAppShnw6eiY09ExomAyoCEYFZFlAEkGrUtCp\nFbQqBZWkkJQF5iIiY7Mquj0aJuckokkRjUGLOteJnFuGEPSiHmhEQkay5aHW6haUVqVlONNG9Hy1\nsbSedWUBjM8KHBO3UtX6K9R6LVJ+Ec5iEy81hgk9+DAVH3/vku9PIBAgHJcYmdKyPmcCIW9xFxJZ\nTknbvdwCt12jUOU9RvR3P0e9fgead92CqLu08rr0e3KhOMhSiMfjPProo9x5552XdOw3Kd4pK0nj\n9YZk097i7OwssixjtVrR6/VYrFZi0SiRcPiSjzX2wOPkXL+ThiEJlSRw1cY3rh/R+XWaQ9MiRZIH\nyVGKoDr3UmzblMWn/6KI76neQyiUZPRL3yUpq3jk5SSPHUzy/u0St1yjQucbJfr4L5j72b8g5jmx\n/t0/o7tqL4Lq8gXrFUWht3cCq3XxylqWZcbGurn66puw2Yo4efKFJUsDurvPsHXrtfT3n2s+nEZl\nZS0+n4+pKTfBYIh4PIHD4SQYDNDd3c7LLz9LR8cpcnJyyc3N4z3vuZ0bbngvwWAIn2+WZDKOx9OF\nxeJAEAR+97sD9Pf3L7qGtyoeffRxOjrm0GgKCQbnWLFiNYoySV/fSVav3s7atTszHmMo5CcUCuJw\nLJZtnJnxcM0176eoqIzDh//I5KQns21y0o0gJMnOzs98Vla2DNBk2K+JRJKhoQ6qq1fPM5odTEyO\nEAoGkJMJ8q1J9mwqRxXtR02QSFJiKqRhKiDR0NxIxYobMWbX0tM1jEErU2JPsKE0wp66EDurw2ws\ni7KiMEa1I05ZToISe+pfWXaCakecVUUxrqqMsLs2RFVejGhC4NSgjuP9OkZDJhIla0isvg4hEkTV\n9AzC1DACqQiHRqNBp9NhmF9cpoVJkskk8Xg8QwqMxaJcvy5OcYHEg0VfZnr/S8SbUqVRN93zEQJj\n0/Q9uJh4l5pnonRPWllv6EF0VizaxxeE/3oOXJPwqd1z5L30ExIn9qP/yP9CveVahFcpOTkf76j8\npPCOwbxMpJVrlqqnFEWRrKysjCFd6pznn1eRZUb+87cU/dWtPPDoCB/586IrGvd/pXGmvWOdXp/y\nuKZFSnynofAciSWRSOD3+9mwWs/nPlnFffl30h7N555f+tGoFP7XhyQqop3M3f99Er/9MaKjCOvf\nfRv91TchaF+bMASkmkQHAhI63WJPe3x8BJ1Og9Wazbp1W1EUNWfPHlu0Tzweor5+AwUFFXR0NC66\nL/n5FbS2NqDTadFqtRgMBqxWB/v3P4HdbmfXrpvZsmU34+NjxOMJ6utXUFBQRCgUQKt1YDbn43I1\nY7XmMTHh45/+6TtvWE3fnxJ+v59f/eoFYjE9ghBn+fKrmZtrJivLRH5+GYWFC7VBR0b6yM0tQRQX\nPreBwCyRSBiHw8myZWtZuXIzDQ0vZIymyzVAQcHC3K8oiqxYsYnu7lZisQguVz9mswm7PbVwqq6u\nZ2SkD53eQCgYIB6LYTAYcDoKCUy2U5YdR55pIs8wy5qacsrsIVaU6DASwiZNkWdOYtQqiJf5ikki\n5JhklhfE2LUsTEVOnLFZFS/36BkMWIhVbSG5bAvSSAdSxyGILFScSmsHp42oVqtFFMUMgSaZTLCr\nPsTysiT/nf9F+g+3EHn5KfIcOpRP/jV9//h9EoFziz5ZlvH55+ifzWK1qhN9xcJm6ooCTb2p+sqK\nAoUP559AvP+biDn56O76e8QlFjdXEn6//x2D+VbH6yX9LKX7ulRYTTv/Qvj9/oueP43pF4+ispho\nF1OhlK3rr6wqxiuNM937Uq1WM+4XMAohzGYNgsG8oEelTqfDYrGwbk0OO967jhMbP87K/fex6qEv\nEP2Puwn98SE09RvQfOZrSFv2vC5DmcbY2ASStJiVC+BydeN0ls+PT2TTpqtxu0cYHR3I7NPTc5bK\nyuWIokhd3WrGxkYIBHyAQiwWJRQKUl1dOy8En5qI+vu78fk85OQ4qKysQ6/XU1BQhNFow+NxodNp\n2bp1M8lkkOXL11FevgpBkJiensJqtXL27Cj33HPP6x77/2v88Ic/pa8vQF5ePaIYJpFws3x5DWvW\nXMvk5BjFxQs9GY9nYEE3mDRGRnrJzS3OLCYLCytZs2Y7DQ0vMj09icczQGnpYtJWdnYeOTkldHSc\npr+/jYqK+sy23Nx8tFoT4+ODGE0mwuEw4XCY0tIqRkb6cbkGGRrqYNu2vRQXVzE434NSo8nC5Rq7\nIvdHFCDPkmRjWYR1JVG8QYmDPXqGEwXEVu5FseSiankBcbQTlKUXUIqiZMpbNBoNer0ek8nINWvV\n3LQVHs/+Kw72mAk+/DN2f2wNE7lVvPS5ezO50ZkZH5NBPeXJQWzV1QsIS54ZuP85ONoOd6yfYHPz\nD5BPvIDu1s+gufZ9rynik77mN6p59JsZbxuDeT4ux2C+ku7rxWC12QiHQguUSJY67+jPH6HoE3/O\nb590c9v7nW8oqywcCmGYD8cOToqUhdugsDYjkg5kxnp2QOH/PJqg1Brlb3OeYHONm2QyyMjhUXS3\n/S3aDTsQL1ER6NWQDsdaLIsVjmKxKF7vKEVF58S9tVo9a9fuoqXlKKFQAK93gmBwmrKylKes1xsp\nLa2jtfUUwWCIRCKJwWDEZLJQXLyMrq4WhoZ66elpYfv2vVRVraKvrw1I/V7l5TW4XH2o1WpWrVqN\nyWTA5xtnzZodVFevRVEkvN4wgqDiuedOcfbs2QUyjG8lDA0N8fDDR9DrS1CrU7WXq1atYN26a/F4\nhtDrrZjOKw2KRELMzfnIz1+cO/N4hnA6F3qQBQXl1Ndv5MCBJ1GrRUympUsmli9fS19fN/F4aIEy\nE0BlZT19fe2oVCpMZgtyMonRaCEWkzlx4nnWr9+OwWCitLSK0dFhEokEVqud3l73KwqMvBZY9TLr\nSqKsK4ni9qk40m9k3LqC+Mo9CLMeVC0vIMxNX/LxRFFkeZnEp98rMl6ynV8kbqP/dy+y4/+/meQz\nz9H3QhPeaR+BCJhDE9gqCknMP2tuLzx6EH75LFTb5/i4/ABZT96DqnY1uk98Camw7IqO/ZXwjsH8\nH4LLEWC/WJ7yUoyaKIpYbTZmLxCAPv+8kdFxZo6cZnr1DqZnYuzc8vok8JbCxcaZDsfq9XoCEfCH\nFBzKGH5RnyIBmc0YjUZCUYFfPRvl2UNzfDDwADsa/4mcAivGT9/NT/P/joOeAo5tuxXvyyevWKmO\n2+3m9Ol2WltP4/VOLdjmcg1gt9vRXuDFOhxOCgtrOXPmED09bZSWnqvnUxSZ4uIK3G434fAcBoM+\ns626ejl9fV20tBxn06ZdWK12KipqGBkZyix2iovLCIUieL2TqNUq1q/fwPBwy3ypyxrKy8spKVkO\nCHg8Ab7+9XuYmZnJqMe80RJsrxWyLPP3f/9PzM1pWbXqOtzuY2Rn57Jjx/UAuN295OeXL/jO2Fg/\ndrsTlWohqSwUChAMzpGX51x0npKSGiRJzeysNyMWcSEMBiOKoiaRiC3aVlBQjKJIuN0uRFHAYDQi\nCCJ+v3/+Pc1BUVKLPbM5i9HRAVQqNYmEDo/Hs8TZFiISieB2uxkaGmJycnI+PRB4xWfbqpfZWBah\nJj9G17iGBk8OsxVXk3TWIHUeQeo9BbFz4gSv5q1ZjfCRvSI3XmPhZP4HeMS7leCX7sY/5SOelBGC\nYTSOInrHJF5sgh89qfDAczJZ4SH+KvET1hz4BpItC8Nnv4560zUIFykzuRy8k8NM4W3Jkk0r0yzF\n+ApEwTUtMzghM+6XCCcNyKIWtUpAcxnERpVKRSQcRp5vOg2plzEtJDB836/Qlzj57WQle3bmULfs\nyj9g6QkpLQWWRjQaJT7Pju0eFzAHhrDYdWizC9Dr9YiCQNNRF/e/KFA4epgPWQ6Tv20zhptvR11Z\nh95qYs/OXFx5y3m2R4fhJ98j0NyBaXklBsdiok4iEqPhP/6Ic+NiYfQL4XK5CYVyAJm2tmNMTU2S\nk5OPWq2mre04hYVlmM1Zi8aUk5NPR8cZxsZ62L79BiRJIhaLE4mE53NGKtzugQXeaSIR59SpQxQW\nFrFs2UoEQUCr1TE5OYksR8nKyp2Xh4sxOTmC01lKbm4eZ86cQqOxkJNTxPT0CCqVGp3OQjTqoO0b\nVwAAIABJREFUY3x8isnJEd71ruszY00zJePxeMb7TJcavFlq1Z544kkefriBmprrGR9vQK+38sEP\n3kF+vgNZlmluPkx9/Wa02nNlUZ2dJykoKMdmW7jYGxrqACRKSha3+YrHYwwNtWO35zA9PYXTuTic\n6/f7GBvrRpLU2O05mfIfSJdoSAwOdlBaWo0gCHR0NKNWM28os0FRSMoKAiKukV5KSqoQBBV+/wTl\n5Ytb1cViMfbt28cvfvEojz56gqefbmH//maOHj3K2bODHD/eTGPjGaxWA9nZ2Uv+ZoIARq1CsT1B\nUobWMR0BVRbm0lLUoWmk/gaQkyjGLJLztveVmNKCANkW2LBcRUWxhMGqwrG6mJ7uKM+2WGjriTPp\n8mGa6mPdzAtc6/4vStRTqGtXolz3IZJFFSSUcyL65+7da3veLofd3dTUhCAIbNmyuKb2LYS3t3AB\nnPO4lvKGpuYEOsZEglGw6ZPYDCJajUQiKTA5J9AxJqDXKJTnyBTaX504IAgCNpuNyclJDHo9kkp1\nTqA8mWTsvx8n/4f/StuDc3z5b6r+VENeEuFQKOVdBsO4poxsj7RiKL0OeWaaqYZT/KHPyaSqgNuq\nOqncchWi8fpFxxBFgQ/eVMDOrXfw619vJvjAQ6zb8wlU5WVYtm1AV5RP0Bdh6nQnwomj+HNLqbvl\nasy5F18YKIpCf/8kTucKtFo9y5atp6PjOAcOPEZNzUZ8vgk2bNix5HclScJqzWNkpJNEIkE8nkAQ\nBPT6VJPq6urlvPBCB7OzU9hsOSiKTEPDIVauXMvUlJtEIpExwmVl1XR2nqaiItWVpLy8mgMHfk8s\nFkGj0bF27TqOHj3E8uXXkJdXzvh4L0ajlcLCSlyuQZ54Yj+7d1/NddftWTC2dNQiLfwgy3KGEHJ+\n8fsbbURnZmb40Y8eBuxAEEFIMVZLSlLGxeMZQqczYbGcy7HHYjGmpz2sX3/NouN5PIOUlNQtea6x\nMRdms4XNm6/j4MEnGBrqo7R0oWEdGOiiqKgUszmbtrYGdu5894LtxcUVdHc34/VOoigwMtLNjh03\nMjDQzdTUCA7HRuLxODk5DppbjjE6MozZYmNwcJIRlwuLxZIxHqcbG/nFL/7A6ChYLEWoVEaCwTbU\n6jkcjlWsXLkTk8lMMBjgzJlZvN5GNm5cedF6RFGA0uwETluC/ik1R4asOK2bKK+rxug+i6rxKZTs\nEuK5ZfBqNY1yktjEGNNTOuxOA1JCIXLnXWz62G1s/9BKlEQcQatDsFyDmPdhhPPKq9LlK+l/0WgU\nWZYz4gp/yufN7/dfkWbrb0a8rTzM8+ugzi/CVRSFaV8MnRRhRWGccoeaXItIlhGyTQpOm0Jlnoxe\nDQNTIn0eCaNWwfgqz7soSSiyTCgcxmAwZOoiZw+cwHeqhZdK382KOgsb1/xpWuCkNTDP98YURWFm\nZgZRkvAEtBAKUJIYIvTsEzSddPPb2I1UVVu54/055FYVISwhDHA+jAaJLZvzqP3AZvpW7WUwZGK0\nxYW7oZvp4WmUohIqvvI5rvv+J9G+yg3z+Xx0dMxis6XyVqlWUCVYrXYOHHgMtVpDbe0aZDm5yMNU\nFJnW1mNkZxcyOTlMaWl1qjZ2PvwqSRLJpMzISC9FRRX09LTj83nYtu06xsfdJJNR7PZUg2qj0UR/\nfzdGowmTyYJarWZ2doZQaI6cnHyys3NpajpCMJhkdnYWj2cQg8GKJGkpLCxgfHyKo0ePsHfvjkx7\no/QEnV6wpUXAJUlCEISL1uxd6aYBS+FTn/ocnZ1hSkqWEwpFyM62sG3bNhwOR6qhec9psrKcqNVq\nBga66es7S1PTS0xMuInFoszMTCHLCkajhXg8Snv7KVavvmrJ+t/OzkYKCpzk5BRgtWZz5sxhCgrK\nMjWaiUSC5uZDrFq1lbw8J729Hej1BszmcxOwKIrE4wnc7gFGRgapqFhGbq4Tk8lMW1sTlZW1GUZq\nLJYgEvFTVFRGPC6j0yfIz3cQi8X4xje+za9/fZJQKJfi4vVMT4+QTPbw/vffwdYtNxIIzjIw0Isj\nr4hYLEYoFKOjY5CRkX4qKopfsSYxzax1WhPMhiTaJszMmYtRFZSgDU6gGzmLMOVCiAYhEUNIJlL/\njcwhzE4gu/sZdIVoT1RQnB3CbDZgz7WhXrkCz5f/lZHV11O1ZyNiTj6i2bpIzi6tmytJUqZryys9\nb68ktJD+XdKLu1fD4cOHKSwsfF1t8N4EeEe4ID0JpVf4Wq02o/tq0oHDrkd7Ea1EQQCTDortCgat\nwtkRCX9EIMek8EoiLxqtFr/Ph0qlQlYUJEli4Os/wnrDbn56QscXP1uJQX9lFIcuRLoXYPrFTiaT\nzM7MkJRlTKE5OtwaqgKniA65+IPldjpNm/jw9Vo2rTQgXSb3Xq2CslIdOz6wns0fu4YNn7yRdXdd\nz8r3b6agOu+SJvzBQReTkwaMxoWrU6PRyvh4P6FQAEGQsNtzLzCYCgMDvXi9Y2zZsoeenlZycx0Y\nDAu9WavVTlvbaYxGC21tp9i8+Zp5D1RNT08LFRUpopAgCCQSCm53P0VFKVaoRqOju7uZ8vIa1Gr1\nvEqSlzVrdhEOBxkd7SaZVBOPB6mv30RrawNtba3cdNP1C8JY6RW/aj7icLFJLb2wi8VixGKxRX0d\nr5QBfeKJJ3jyyVZUKjMajQWHoxa1eoY9e27OnOPo0acIhQKMjXWh1arIzXUSCvkoKamjuLiMWCzM\nyEg7XV3NuN0uDAYT5eU1i86VUu05xpo125EkFQaDiWQyRl9fB8XFKbWZ4eE+YrEA1dUr5ydoDT09\nZygvX6jZa7XaOHz4BQwGHWvWXAWkcp/j42MIgpwJE+v1Bjo6GqmoqMVgMDIxMYIoJvjGN37BmTMR\nNm++i3Xr3sXISC+FhTJ33vk35OcXoTcYyc520t/fwYv7nyCRCBGPRVBr1ExO+pDlCOXl51jAF4NK\nglxzkqKsOJGESN+0gUG5GF92DXFTHnIiAf5JElMewl4fk37ojzhok2vR2syU27yYjHqMppT6ka0i\nn6jByuTd/8ZQ2QYq65Zmky+FV3reYLHQwvlGNC35eSkG84UXXqCuro7KysUh+bcQ3gnJnr9aT4lG\np0o/LlYisvQxIN+qkGNKcHZE4mC3ik3lCUwX6SOd1pqdnZnBaDIRm5rB+9Jxum78JJvXiWRnXRl2\n6SshTfKJBoPEfV40HY1Mjs+SXHsnos7AT5Q7WV8kctt6EfXrFHx/Pejvn8JiWSxmHgz6iceTvOtd\nt3Lo0FMoisDKleuA1EseiUTo72+juroei8VKTc06zp49ydVXv2fBcdRqDWVldezf/yRr127Gak3J\niBUUFNLeniKSpFmZZWUV9PQ0EwoFMBhM5OY6UKn0uN3DFBaWsXz5anp62vD5plizZgeJxBzxuIrR\n0UEEYYCVK6+mtfUwX/nK17nnnkvvbJKelM6fmNJSaumi9/TkdX5YLe05XA5mZ2e5//5nCQRksrOz\n0emcBAJ9bNmyFlEUmZx0c+bMfrzeSa666l0UFFRkxOnb20+wZcs6DAYThYWVwGZmZyfZt+8/0Wgs\njI0NL8pPjo0NY7PZ0WjOvSzLlq3D49lHb287y5atYGiom4qKc+UmxcXl9PW14XL1UVx8bgKWZYV4\nPIbRaFpwjvLyGnp7W+ZFEFKG1Wi04XYPUVhYTkNDJ/fff5jJySDXX/9ZTCY7jY0HsNt9vOc9t6Kb\nV74ZGOimq+sURUVF5Oc7iERCbNu2h2QiQTweZ8TVy6lTjaxdu+qSBMk1KqjIiVOeHWfaH2c2omUi\nZmdQziYmCaBPqQ0ZNQp2Y5JqnZ9w0I/BaFykDlb/mfcje2fo/8IXeWjm29zyseWL6mAvFRd73tJq\nRMlkklgstiCVdf7zttS4/yezZN92HmYikSAUCpFMJjEYDBgMhouumpREDOIxEIRFIQ9RhAKbgigo\nNA6psOovHqJVqVRE51dt07/5I2qziZ+NLeOTHy0lx/6nM5iJRIJEIkHYO4Vy8iXkA08Sq9uAzWKm\nq+xmCubaeNZdzZ/t1rOhRrpsr/J8XBjmvlzMzc3R1jaJzbZYyLy//yxqtYby8lpycgpoanoZkykL\nrVZPNBohGo0yOHiW9euvnhePsM/X4ClkZS1cgYdCIU6fPsSOHTeg1xsy164oAi5XT4aoIkkqAoEA\nc3PT5OWdK/QeGemnuLhivtZ2lpkZD2ZzAbIMer0Kvd7KyEg3NpuDQGCOzs5OdDolI52XjnJcjjTe\n+W2p0l5B2kNNS5ZdamjtfPzv//1VWlrCiCLIspPc3Hzsdj87dtxId/cZenpOoVarWbFiG5WVKzLH\nmpgYZnZ2mmXLVi04nkqlxe0eYN26bXR0nCAQCJKXd65cqqOjEaezGJvt3G8iCAJZWbm0tBzBYLAw\nOtrD2rXbFixuNRo9XV2NlJXVZD5vaTmFzWZlZmaa4uJyJCklAWkyWejpacdmyzqPLCQyMNCFyzXK\niy+OMzTUR3X1ThKJBJ2dTdhsId71rt2YTDYSiQSNjYcZH+9hw4ZrqKiop6CgDJerl7m5WZzOklRb\nP2sOg4PDWC1iJmogiiLiq3hgggAicbKMMoVZKZJQWXbqX3FWgjxzApUcIBwKYjGbl9SeBnDsXAuB\nOcI/+BEPj5dSty4fo+HKRKou9EQ1Gg2JRCLzzC0V+UgvylUqFU8++STXXnstublLa+C+RfBOSDYU\nCjE3N4darSaRSGAymRaKIicTMDEIA2egpwGG22G8D4bOwkgX+CZAToDelKFq2wxgMyicHpLQqRUs\nF6nb186HZj3//iCBnTfRH7Hy0T9fzNi7Ukgmk4TGR0m+/BTCC79DnZUD19+CymimLVTGVECgMD7I\nrr2VZJlff3VRejHyWg3m6OgYbrcGk2mxNGBb21HKyuowm61oNFqMRisNDQfIyysiK8tOf387RqOe\nwsK0oIGA0Wijre046Q4kkMpznjr1Mk5nCcGgL1MnKMsyFouNjo4m8vIKMl6GXm+gvT01UadatVlp\nb2/C4XCi1erQaHS43b3IsgarNZ/h4Xaqq1czM+MjmQxgMGTj98/Q3++ipqaEoqKi12QwL0TaEF4s\nP3WhEPhS+dB9+/bx+OOdBAIziKKDsrKVVFdnYTSC1zuOLIfYvPnduFwd1NVtWqC61NvbhMWSS15e\nwYLrcrsHCIUCrFp1FYWFVQwMnGV0dJiCgmKSyQTt7cfmc5sLx67TGUgkojQ0HKKyshqHY2HtpcVi\nxeUaQBQVbLZsfL5ZOjsb2Lp1L37/HIHADLm5zgyBJRaLMzHhwuksA8BksvDII/9NU1OM0dGTqNVG\ndDqBgYFmvN5unE4NK1duAgSOH38eiLFlyw2ZmlNBEMjNddLaegyrNZdkMsHsrJdIJMnMzAQrVlSj\nKMq8EEYERZYR5z3/pRCPxzORgTTSaSK/zweKgtVqXZSnvxA5O9ejN2ow/vt3+eVxDZOaXMpL9Gg1\nr+19VhQFnz9B31CY1s45Gpr9HG/0caxhlpNNfs52hukbijI5lURBhSPXgCSlzpVMJvn617/OX/7l\nXxIKhZieniYajWIymTCbzZcV/YjFYnzyk5/k85//PHfffTePPPIIpaWlVFW9oeTIdwymoihotVo0\nGk2mDjHDXA3MQOPTEI+Coxwq10LFGoSSeihZAXlloFLD1Aj0noZoCExZCCo1Bi3kWWSahlVIYsqA\nXghRFAkMj6KqKOLBHifv3uugsvSVO6K/1jGG3C5CTz8MLz2JWFSG9dZPoVm1Ge9ckIPtJiYDKmql\nXqrXlCFpLxJLfg3njcViF10RvxpOn+5BkgoXCXQHg366u5syeapoNIJOZ8BgSOUUi4sraW4+Qn39\n+gVdLoxGExMTHkKhWXJzU/WAPT1tRKM+Nm3aTWvrSYqKylGrNRm2ajQaZXraTUFBKpSo0+lxu0cQ\nxVSXE1EUCYVCzMx4UBSJqSkPPT3tjI5209Z2hslJD9PTYxQUVDA15aa+fj3j42NMTHjp7e1g586t\nGAyG120wl8Ll5EOnpqb4whf+jYmJJKIosmzZburqlhOJNBOJhKiqqmflyl3Mzk4wNTXO8uUbF5yr\npeUQdXUbMguLNHp6GrHZHOTk5KNSqSkuXsbk5CB9fR0kk6AoEcrKlmbPWq25vPzyk1RV1WV+r/Nx\nvpd55sxxCgqc5OeXoNcbaWs7TUVFbSZSZDZbOHu2gZKSClQqNQ8//Auam33MzIxhtZbjdN6M1eqk\nvLyOzZtXUlqa6pTS19eB3W5lw4bdi36feDzG+Pg4zz77KJGIj0BglnDYz8TENBarhrKyUvR6PSqV\ning8TiAQIBqNZjz+tHFM5ccTmcVNIpEgEokQmJsjEY9jNJkwGI2X3P3Gsr6erE315Nz/A8K9Q3zv\ngJF+j0xSVjDoJQz6xSxYWVaY8sbpHQjR0Ozn+YPTPPJ7Dz9/cJR9z03SMxDC508iigIWk4rsLDUW\nk4BRryYSVRhwhXnpiJc9O7NRq1PhXLVazd69e7nlllt46aWXKCsr4+mnn+buu+/m5Zdf5vbbb7+k\n8UCq7K2trY17772Xb3/72xQVFXHrrbdy++23v5Hs23dymCqVKlObeD5jEQCDBVZdi7CEhyMIAuiM\noCsHRzlKNASuDjj1FEpRLZQsx6KX2Fad4GivCkWB8tzFherenz+G4Y6bybHDrq1XVqhAURSi05OE\nX9oHXc1oN1+D6sZvEkEEo5nGrjBqRSDLoiEmSlSqvQiG6lc/8BuAcDjM9HQMh2NxycnoaB+5ucXz\nuZQwKpUaWVZYtmwtPt8kL7/8NFqtKsNwPR8rVmzg8OE/UF5ehySp6OtrZfPmXej1BgoKKunpaWX1\n6nO1YhUVtRw4sI/6+kgmz1ZWVkN/f0oMIRaLEo/HOXjwGdasWU9ubgF1davweFxUVzsYGZmmp+ck\nMzMeotEIDQ3Pc+21H+Kxx+6jo2Ocf/iHu7n33u+8qudwpbBUfiolUPA1xsZEZDlEQcEmcnIKEYQh\nurub+dCHPktl5UoSiThjY304HAvFCrxeDyBhsy1sIyXLMh7PCDt3rs98JooiGzbspbHxJQ4ffopd\nu6676LW63S6qq1cwONhLZeWKBXlOAKezmN7es5w5cxy/f4KNG7cDkJ2di8FgweXqpbIyxcrU6fQ4\nHMUMDHTR09PNsWMD6HTFBIO95OTswGg04/MNUVNTR21tFjk5+YyMDM2Hg7cuMFaJRIKurrMMD7fj\ncDhZvnwlpaU11NWtmN8eZ3Cwk7q6IEajEY1Gg0ajwTTfMD4eixEOhZibn3dEUURWFIT5eyZJEmqN\nJsWjUKtfE5nLtm09m44/zMA376Pgsa8S1NzIwdFt3DdlIBqVsdvUaDQpIls4IuPzJ7CYVTjztRQV\naCkt0nPVRhtlxXpsloXlb3IkhpJMEonH0VlfnevhdDqJRqN861vfyizWLpQJfTUYDAa++tWvZv7/\n3e9+N+Xl5Zw+fZqSksV1u28k3lYG83xcWIspiBIsYSyX/K7WAFXrUQproPcUNPwRpe4qjOZstlUl\nONKrStWy5ZwzmnI0xuRjzzJSs5c/e3cBknjlpNPioSDBA0+hNB5CvfYqDH/7z4hGM4lEgomxEA+8\nlGRzRZDcfBOamIrw2BC66sUsxteD16P0MzAwgNsdxGj0YTYvLLEZHe2lsLB6PudszBBgAFavvpr7\n7/8OtbVLey0Wiw2Ho4yurkY0GhM2my1jWJctq+fgwd9TV7cGSUqxXg3zzMjBwS6WLVsNQGFhCe3t\np2lvb2Z4uIesLDurV2+mrKyciorlJBIJnn/+MdauXYnR6MFkMqPXG5iYmODw4SdIJB6lqmolbreL\nkyd7+dKXvsI99/zza7pPVwIPPfRbjhwZQ6czkp3tID+/Gr3ezfT0CKtW7aaoaBmRSKrbjsfjYv36\nvRkPXBAE3O4+8vIWT1rT06PodKYF0nlprFhxFY2NB3G5BiktrV1y0h0Z6aG2djVer5fW1hOsW7dr\n0T7V1av4wx8eYPfuGxcco7y8lt7eMxmDmfqshoceuo/+fpns7B1MTPSi0y0jK8tJKDRGVlYZgjBO\nXl49jY2HyM62s379DpqaXkanuw67PYdAwM/p0weRJIVt267HYsnC5/Ny5MjTlJZWYDAYUKnUqFS5\ndHb2sX79uZxuKveqyTDU0+x8WZaJhMNotFrUr9FALgWVxUT1PX9P0aduY/Snv8H04Je5sbIE45Z1\nyOWV4HCgtlvRm/WYDSBGIsRn/cQnhokOThA94mF8bIKhMQ+xiWni07Mkg2FErRpBkpDjCUgmUefa\n0RUXYFpdS9W/fnHJa0lHO9J/v16v0OPx0NPTQ319/avv/CfG28pgvl4B9kXH05tQVlydynu27Ecp\nWYG+qJarqhIc6VEhCQrF2alzTD1zEN2ych49JrD7vQZ8Ph92+9LNXi8VyWSSYMMhki/tQyqtxvjX\ndyPNk1ziCYUXTiuc6NRx46YkTmscuy2b5jbYpp9EMP6/Xamdj9HRGSKRMIcOPYHVmk9d3TqysnLw\neqfxeqfYuvUGdDotIFyg06qQnZ2Nz+fNsFkvRF3dGvbvf4xkUmbXrnMCDCaTmexsJ319HQvIKxUV\nNZw5c4SqqpXzjFCFcDjOsWPP89733kFOTj5jYy66upqoqFiOSqWiqKgSt3uI+vpl+Hx+3O4+Nm68\nCYPBTGPjc/h808TjAYzGbE6c6OP737+Xf/zHL/2J7+pi9PT0cO+9jxMOq6ip2cDc3DRarR+tVsJq\nLaCqah06nRZFgYkJF4oikJWVs4AlOTY2QH39VchyWq0odeyxsUEcjqWfqdHRIerq1iKKAk1NR9i4\ncaExDIXm8Pmm2Lz5GpzOJPv3P870tIfsbMeC/VKTsMKFip4ORyHd3S0LWM5zc7O0tk5gs13L3FwS\nWQ6xatX7GBhopq5uHYIwg0qlpqurBb9/nO3b34tGoyEa3UhDw0vU12/k7NljlJZWUVe3LnMuq9WO\n01lCZ2cL69alohNZWXn097dTXe2/KDs0veBIE4NeC6v5UqCvLKHqX79IxTf/Ft/RRnzHzxA8cIDo\nyDiJWT9yNI4gCkgmIyqbGU2uHY0zD63TgXlNXepvRw7qnCwkszFDdgwEAuhVauJTM0SGRom5J5c8\n/4UdmV4vEokEd9xxB3feeSfLli0W63+j8bYymOfjSmmfCoKQCtNacqHtIPgnMdRsZWsVHO1RoZKS\nFNgUxn79JFPrdlNnNpDvyGLC4yEy317rcqEoCmHXANGnHkRIxjHe+mk0ZefCqz0jMo8fTpJvh7uu\nC2PWKwgYGJqA3PgopmVXPhT7Wu9nPB5nZkZm8+YbkGWZwcFWjhz5A3Z7EVarlcLCiovmRV2ufvLz\nC7FYcmhqOsi2bTcu2sdgMCFJRvz+4QXsTIDq6hWcPPkCFRXLMyvi3Nz8ebbnMLm5BZw4cRC73YIk\nFWSUbvLzC2lrO01HRxOtrWdxuabp6GimsnI5sizjdg/g9Xqpr99FdrYTkykbo9HO0FALiqJl376j\nFBb+1xvaYNfr9fKZz3yN8fEA69bdhtfbhU4nkZ0tsn37jRw9+gcK5wW6BSGlE1tQULHAQ/L7vUSj\nKcnAWCyKojCvGiMwPj7Ihg17lzy32z1AYWE5TmclR478no6OM9TVrclsHxjoJT/fOe81qqipWc/Z\ns8fZufPmBeHR7u4W1q69iv7+NsrLaxa01auoWE5/fzsFBcXMzfn45S9/gVq9hmjUSDTaybJlexEE\nEAQZlUqD0RjD74/j851k794PZcZZVlZHf38H+/Y9wHvec1uGSHY+amvXs3//4wQC9ZhM5vlWXXl0\ndPSzefOaRftfiMvRZX2tEDVqsq7eTNbVm6/cMbUadEX56IryX3XfKzE+RVG444470Gq1/PCHP3zd\nx7sSeFuKr6f/vpIrIUFvgrXXg6SCpucwEWRzZYJml8TY8ByzRxp5KlzLu3bbEUUxVZu5RN/MV0Ms\nHGL2qd8QfeD/oF29Betn7s4Yy7mQwkP7E/zuYJKbt0rcsUfCqE0SCgbRGkz0T4pUm6cRDG+eGqnp\n6WnAmmE4FhRUs2PH+4A4R448jc12cWr6yEgfRUUV1NWtJRyOMzTUtWifFO09gl5vwu+fXbDNbs/B\nZMpmeLh3weepEF8bx47tx2jUs337DeTlFTM42EUsFmV8fJSBARc///mDnD07iyxXUlp6G6J4FeFw\nBbFYGc3N7bz44m/w+3309Z3CYCigunoDihJlcnKGH//4YR599NErcQtfFeFwmM9//iv09k5RWXkN\n8XiSmZlh7HYzN954GxMTQ+Tmli7IrU5MDGXaqMmyTDgcYmiog5ycQvR6Xaavo0olMTs7SSKhYDCY\niETC5+nmJolGI3i9bpzOcjQaDZs372V4uIPR0cHMucbGeiktPZciKC2tRBDUDA62Zz7zeMaIROZY\nt247Op2NwcHOBWMsLi4nEAgwNeXhgQd+yvR0NpWV1zE93YlOl2BuboDu7gcRRTednY9iMukZGeki\nN7cak8l23rUMEwr5KSwsIhpduruJRqPDas3h6aef4NCh53jxxX00NR3jwIEGJiYmXtdv9WbE+WVK\nl7rvlcBdd93F1NQUjz322CUJJrwReFuxZOGciHA8Hs/Utl0pCKII2UWp0pOuE+hy88iy6Tk9IKJR\nohyLl/GxWx3odLoMASkSiSwqTF4Ksiwz13WW6IM/QlKrMX/k82ir6lNlBLLCsTaZB19MUlkgcvse\niXy7iKIoBObm0Gi1jHq1aHyjlNYWv+aeeK+GNPP4ctDZOcjcnBVRVGXUl4xGE/n5JXR2niQSCWC3\nO84Lt6YK1hOJON3dp1m7dgcqlQqLxU5z82GKiytRnTe+3t52ZDmK01nF+PjAIo9Bo9HR2dlIaemy\njMdiMBh55pnHcTqdbN68G0EQUKtVHD/+MrOzIk1Ng0SjMnp9Abt2fYD8/Bymplrp6zv3O6BSAAAg\nAElEQVSB07mcvLwivN4xfL4ZZmamiEQUXK6zSJIGk8lEPC4yPj7CsWOnMZkkampq/mREoEQiwRe+\n8BUOHerHZKpCqy1jYOAJystr+Ou//hJarZaWlkOUl6/KyM/NzHjo6mpBFFV0djbQ1nYcl6uLlpZD\nRKMRhoY68XhGCYdDGAxmxsZ6MBptFBWVnTexKSQSSQYHe0gkQhQVVaMooFZr5yXxDuFwlDA762Vy\ncpj6+k2ZaxYEAbPZxtmzxykpqUKSVDQ1HaW0tAK7PQ+DwUh7e0PmN0smk6hUKpJJhWeeeZSurjjl\n5e+hvX0fKtUUKlU2Wq2D0tJtFBVtxO/vQq2OkZPjRKfLJj8/C5VKxeTkOE1N+9m06RrKyupobj5M\nYWFF5reRZZmhoT5On36ZWCyA1zvG8uVrqKqqJT+/CFHUotHEKSwsuPBnWIBYLHZJYgdvJsTj8VeU\nAkwjHA6zb98+PvrRj76u833qU5+ira2Np59++jUz718n3mHJno8r7WGef1yKl6PoTNCyn+yarRh/\n/iDev/g7bpqZ5vx3xGK1MuHxvKKhURSFcGCO6ItPQEcThptvR7tiQ2b74LjME0eS6DUCn7xZhSNL\nWPDdeDyO0WJnYEhiR07oijR4vlJIJpP090+g1aa8SKPRmJlE3O6B/8vee0ZHdp9nnr/KORdQQCEV\nciN1N9DdQCd2YLO7GSRSpmTJkuPY41lbmtU5s7Ne79md2TO7490982l89lh7Vhp7bNoSPZJoWUxi\n7G6SnYCOCI0MFFAoVM45V+2HAtANAqRISU1LpJ8vOLj31g3/G97/m56Hjo792GztjI29xaFDj23r\n+1tdXcRisW5NeMxmC3V17dy7N8bBg1VC8EqljMMxy759h9Hrzbz11j8Qi4W3GH6gGl6dmpLg8Ti2\naPDu3h2lrq5hS0Ysm80wN7fMwkKG2dmrGI0auruPE42mWFtbJJ320NTUgEplIJv1kckU2Lv3HG73\nGtlshEwmQDKZwG5fo1wOo1DUoNV2E4ut8Gd/9pfcvbvEk08+jsEgZWBg4GNPOj4I5XKZr3/933Dt\nmgex2IDB0EU6fZeurj18/et/ikwmIxYLksvlqatrolgsYbfPcePGqxSLJaRSIXv3jqDXWygW81Qq\nJc6e/SqVSpFQyIPHs8Lly5N4PGucOvXstjwdgEQCkYiHxsZ2BAIh5XKJYrGMRmOkqamTsbG3Ual0\nWK22HWFKk6mW2lob09M3aWzsIpOJ0txcva81NXWo1Sbs9hm6uvZu/ValUnD79jpq9X6mpn6ITKZE\nLq8hm9VRKoHZ3EY260KrlRIKOdm//xzxeBifL4DBoOHWrYvs3XuYmpoqUUVjYxtTUzcYGTlFNBpm\nfPwaAkGRvr4D1Nc3MTU1SjyeoLOzWoyi15twOGbo66tWzH5a8HFCyPH4B+dxPyrW1tb4zne+g1wu\nx2Kp5rEFAgHf/va3+epXv/pz7fvnxWfKYD7MkOyOY9U0U5EqKI9fwFJY5aX3nJx7qoNMIcJmzZhQ\nKMRgNBIOhZBKpTvCDoVCgeTKIvzke4hrrai++X8gVFVbL+LpCj8ZLbHsqfDUiIh97TtZXVLJJCKR\niKX1Eo3FdVQtD7/x96O+XKVSifX1dVIpCWazdse1e72r1NU109DQjlAo5ubNtxkZOYvJVEulUsHr\nXaWvb3u+qK9viIsX/xG/30VtbQPr66tIpZItpp7W1h5mZ+9w+PBj237X3t6P3T5NY2Mb09MTZLNx\nzp17lsuXX8XjWePatVFCoTICAeRyIZqajhIMruB2r7C+vsTjj/82DQ17CAR8OBzz2Gx6YjGIxaoe\ns0gkRCjMoVDsIxpdI5FYRigUUS4riUTCPP/8C9y8eYfPf/53cTgyWK0a2tutmM3mnzkCUi6X+ff/\n/j9y40aQZBJMJgvl8ho2Wx3DwyfQaqtP4draLHV1bayuzrG4eAetVoter2do6Dw1NfVIJOKN7eYw\nGDb/F1Nf30p9fSuRiI+XXvqvzM3dIJGI0Nd3cOucq8TsHg4cOLq1H6jKcPX0HCAU8nHv3ii//ut/\nSDab3ciHihAKq0a3t3eQS5d+TDgcwmbr2jYW3d17uX37AptC4dlsmh//+HUyGTGJxBRyeQMWSweV\nSoFiMUu5DIuLVxCJ1pDJckgk9VQqFdRqPSsrK8zPr9HZ2UtDQ9sDxzjIpUv/wK1b1/D7V+ns7KO9\nve8BPdW9XLjwI9LpAZRK1UYfrAm73cHAwO7E47+KwuKftBZmc3PzL61+7GcqhwkfT0T65z6WrgbH\nxXWavjjMkzYnbbVlprw6HkyNyGQyVGo14XB4G9FxPB4j+d5r8MK3UZ54EvVXv45QpaFQrPDOeIn/\n/MMiOpWA//HLYvZ37GxOLpVKJFMp8mUpnoSErhYZgoeYB/ioL1SlUiGdThOPx4lE4mg0DTuMZbFY\nJBDwbHGR1te3sH//MW7evEA8HiMajZDPJ7c8gU1IpTJ6eqrVjeVymeXlaVpb77ecdHb2EQqFiEa3\nC1M3NdnIZLJMT9/F5Vrg0KGTaDQadDoz77xzFZmsB5Opi+bmdmy2k1it/VitA6hUKoxGCwsLt0km\nY5jNNYCQUqmC3z9GNmunVCpRV2fDaOwilVqnvf0AtbX9yGQpenpaUSoNlEoa5ufX+MEP/j8SCRGR\niIH33nPyyitXuXbtBn6//2M9q/l8nm9+83/iRz+apFjUolAoMRjg6NGjdHTY6OgY2NrW4ZhlfX0R\np/MeBw8+Sm/vEcRiBSbT9r5Wn2+V+vqdtIWBgIu+vqM8+ugXyWajvPPOj4lGQ8Amd6xhR0+lQFBV\nj7Fa2xAIKiSTEWQy+YZBrGylKkBATY2NmZnbNDd3bxsDk6kGrdbC8vI9AK5fv8qdO4tUKkLE4jb2\n7v0cCoUAhcJKR8chVKpmLJYWMplVyuU8Mplig4hdyPz8FEKhaNu4ABuhfQk3brzB0aPn6Owc2FaE\nJJcraWiwsbg4u7XMaKxhYcFDLpf70Hv0qxSO/Tj4NPPIwmc4h/l+JY+HgXIuz9Qf/Dv+WvA4v3U8\nRY0kQVxqwh6U06Avs8EqVWUeSqcpFgpViq2AD8Er30Xod6H53X+DZENFY3q1wt++WaJUht98TMy+\ndiFi0e4vXiwaRSaVMueW0y5aw9xme2jXuYlsNotMJvvAj0E+nyeZTG7kqDTcubOCQtG8LecI4PGs\nkkrF6Ojo31qm1RoRCARMTY2RSqUwm427fsD1eiMu1xo+n5NkMsLg4PGt86lKfJVYX1/aRuQNkMnk\nuH79DR555HGMxhoKhTx2u5v1dSEmUyPB4Bz9/ecplSr4fCv4fDP09Z2koWEfXq+LWGwVuVyLx7PI\n2tpdhofPU1NTQySSo66uE5FIQLksJpPxc+DAr+FyrZJMrvCNb3yTQMBFsSjD4/Fz+fJLuN1zCIVi\nfL44MzNrRCIFAgEfUEAiEX9o/svlcvE7v/MNLl9eRaXqplgMoFbLefbZ36S9vYVkMk1PzxD5fJ7R\n0ZeZnx/n+PEn2b//FEqlhuXlCRQKLRZLIyBAJBKSz+e5d+86+/cf20Frd+/eNVpaujEaa2hs7Nho\nHXkXqVSNx7OywR27e+HWzMxtWlt7sNunsVqbkcsVW0xFYrEYkUiM07lMJpNEpdKgUmkplcpbrUUa\njZ57925QLpd47rl/IJFI09T0DCqVFolESC4XQSLRY7MNkU6nCASu09JSS0/PSdbXxwkGQ1QqBUql\nGHV13TQ0WLbGtVAoMDZ2AYkEjMZapFIFRuNOZRC1Wse9e6O0tHQiEomrjF7JLCpVEaNx977uj5oP\n/GXBJlfuR8mzLyws4Pf7OXPmzCdwZg8Vu+YwP3Me5iY+CQ8z8Nq7VJptBBQNyIfPI0gE6Ylfxags\nMWoXUSzd31at0ZBKpUg7VxB878+RWJvQ/OGfIjLWsB6o8J1XSrx1q8Szj4j43fNizLoPnqHmslVC\n8lBcjLCYp6njw4sQHjZKpRKJRIJ0Oo1KpUKtVpNKpUgm2cZRugmPZ2XXnr6OjgEslnru3r28oZCx\nOwYGRpiYuEF9ffMOirGOjl6i0cgOLzMSCSKRSFCp1FQqFZaXlxGLO5FINExPX2DPnhNIpXKMRjMz\nM+/S3DyATleH2VyLTteA0WjjnXe+i0olwWLpQ6Ew0tzcTW2tBK93hcbGfnQ6M4WCELd7gjNn/phS\nycILL/yAr33tt3jqqUcYGjoAqLh+fZznnvsWs7N30Wi0iMUGisUGxsfTvP76BC+88Ab/+I+v4HQ6\nCYVCJJNJwuEwf/Zn/zfPPvsNbt3yIpf3kct5UCqFfPOb/yuHDh3Dbr+HzdZHIODk3Xe/j8ezzsmT\nX8Fmu98Q7vM5tnKK95etoNPV7qAtTKeTpFLJDeNahc3Ww8jIOaanr7CwMLFVaft+JJNxkskg/f2H\nsNn6uX373R3yZdlsinB4nVOnnmZ1dRahEKRSyUY+tIxCoUKhMPDcc88TjSaorz+PUqmko+MAgcA0\nuZwQi6UTkUiEQiEkHJ6gu/skZrON4eEv4PFMMzNziZ6eM+RyEsLhMFA1aKOjbyORwNGjTzAwcJil\npXsUCjurZtVqHSqVlsuXLzI1dZs7d8ZwuVxcvTqx6/afREvJPyV+ETnMX2Z8pnKYsJ0S72EbTM93\nX2S6+RhPn7MgkMqp7HsM4cRF+kJvMWl4jNFlEYdsefK5NMViEZVjjmRtE4Zf+wOUnb1EkhXeuFFk\nyVXh7EERB7sFP1VRpFwuE4lEkMk13PUoGTKsIpDt9MQeBt4/ppVKhWw2SzabRS6XbyO7DwZDCAQ7\niRvK5TKBgJPu7t372RobuxEKX2d9fQ2zefeJQDUfLCad3knJVVU96WV29i5HjlT7BldWFsnnkwwO\nPsLS0jR1dTbcbiEGg5Vs9jJisQq12ky5XGZt7Ta1tS2Uy5Kta9bp9MzOXqCn5wjJZBCttg6Xy47N\nVq2eXFy8xOwsgJRsVsDc3DjpNDQ0HGZh4Sd85zt/xeHDe7HZajh69Pd4++03WFtzcvXqFW7cuMSe\nPf20tw8gEokplYqIRDKamnooleKk08u8++4rXL16C78/h1isor5+ELO5hMXSxpkzv4nN1kE47COd\nThGNrjM766Sn5zAzM5exPdC/G4+Hyefz1NRYKRYL2wqw6uttO8bS7V7GZGpALN4eUjcaLbS19eF2\nv8rs7AT79u3sBXQ4lrFYGhCLxXR37yUY9DA7e5u+vvu8tYuLM1itzTQ22vB615mdvc3+/ce3TYKW\nl+dwOEKoVK2YTB2IxQXUah25XBiptA6t1kKlAqHQJPX1zSSTaTQaEIvlGI01RCI+UqkoQqGM27en\nOX36CGNjF1AopAwNnUQoFG6IXetZXJylt7dKcpFOp1lZmcflsm9wyrqprT2FWi2nUCgQDEbweDz/\n5FRuvwh83BzmPxvMTyEetsHMefxEro9z6fRv8LcnqqEcgUhM2nYQXWCRvYFXuKM/z/UlMUOWIuLX\nvkslGcfwpQGiuSKjt7NcvificK+QP/mKCJn0o/VARSMRpDIZUw4hXTIXcrPpn6TQoFAokE6nEQqF\naLU7i3pGRydxuxWIRErM5vuMLqGQB6lUudXi8H6sr6+wf/8RvF47TmctTU07PRi7fY6+vkEiET+h\nkBeTaXujdXt7D2+/PUM47EehUDM3d4dDh06iUml4/fW/JxQSYTIN43ROYzDoyOdVxOMRgsFVBIIi\ne/eeYXV1Dqu1hVwuQzi8gEymo61thEDAzvT0FZJJCIUC6HQmmpsbWFycwWRqRSTKk8/HWFp6lfr6\nPozGZkKhVez2APv2deH1ujh16izBYICJiZu43T6mphaZmJgAqu0tIlEFoVBKNlskm61QqWiQyYxY\nLDra27vp6elELJaj1dbQ1VUtPrl79yLxeBS9PseJE88SCq2hVpu3Udk5nfNYLK3btBWLxSLBoIf+\n/mM7xtnnc9DYuFO/FKqKJ4888gW83gXu3h1lcPDwtvVu9zKDg0cAEAoFHDhwnPfeewWLpRGzuZ58\nPofbvcwjjzwBQH//AS5depHmZv8WveGdO5eZnHQiEmlQqXoQCnM0Nvbj9Y5RLudIpx3Mz/+IXC5D\nPm/n5Mmv4XQuYTbXs7Bwne7uYdbXXVy58iMMhjasVisXL76C0ajeMpab6Ok5xLVrr2GztWG3L7C2\nNk9dnZWDB49jNNZy+fKraDRGbLZqYV0yGWdx0bXDYP4qepgf55yTyeRWZeunEf9sMB8SPM+/TGzv\nEU6cakCpeMBYCATkmgaoOGfZ73+Re/rHuDWdZ9BQj+pLf8ToghCHO83xPWEGv2DCoPvo/XmJRIJi\nsYgnKEFeTtO6x0oimfzEDOamtFQmk6FYLKJUKnfly8zlchSLCmQyKXfuvI1IpKCra4imJhtu9+7h\nWGCjOtZOf/8IUqmEW7cuYTCYtn30S6USTucCR448RigU/EAh6dbWfubm7iISyWhoaMZorNlow1ES\nDApRqdL4fDPs2/cEfn+QxcVxSiU/e/c+gVyuYm1tiUDAhdM5SX29DZ1OzK1bV5BKpchkGkqlJHp9\nDTIZSKVZpNIYicQ8bW1dBAJaYrEgarUOnU5BJLLCvXsT6PV6zp8/i90+x+nTT/DUU19mfPwG8XgQ\njyfM2pqLRCJFOh0ln8+iUpnp7u7mxInjrK7eQibT0dGxj87OAW7ceIP+/hGKxSITExe5ffsqzzzz\nR3R3V/PCExOLNDZupxrz+Rz09R1737JVVCojSuX20Hk+nyUaDTM8vPNe5fNZwuEgBw+eobW1k+vX\nX2V8fJT9+6tGMxDwIhCUtkUIlEo1/f1HuHPnMqdOPY3dvojRaEKtrk6c5HIF3d37mZoa45FHniKf\nz/Lyyz8hnZajVBqRSg0UChE8nissLb2F2TyIWt0FVMjl5unrO0BtrRWvd53x8UsIBClqa4dxu+Mk\nkwWMxhSJRJBkMszZs0/vCOXrdEbEYgU/+MFf0dPTx4kTT2ydG0BbWy/z8xNbBlOt1uLxuIhEIhgM\nH42j+tOARCLxSctwfaL4zBX9bHIdVioVcrncQ2mKrVQqzPzx/8aL5if5/f9+CP2G0SsWi+RyOcrl\nMnJLE4SDWPyjZDVWpvQn+Mn1EvkCnB+RY9JLSMbDiDekc37a8ZIbOcJEQowvpWC4V4pYKiWfz2/J\nPD1MbArIFgoFJBIJarV6S3D2/fD7/bhcItrbB2lt7UculzE/fwOXa41gcI2enoPbpLo2EQh4CQTW\n6OjYh15volQqsrAwhc3WtXUcp3OFVCrKnj2DG1qZC4hE7KDFMxhM3Lx5mXQ6yuHDZxEIBHi9bhyO\nDEtL8ywuXkYoLJPJJCiVckxOXqK//xgmU+PG9cKdO69TW1uDWGzC718nFgsxPHySzs4hAoElJiff\noba2lr6+01gsNrxeLx0dp9HpLCQSCTKZEAMD52hvP8LS0hhu9zrFYpozZz7P1NQNBIIKw8Mnqamp\nR61WolaLUSigo6OLgwePMjw8jMWiIhh0UC5r+cIXfo+Ojj4WF28jl1ell27efA2/30dv72EGB6sS\nadlsmtnZm+zf/8hWEU8sFsTpXGBg4OjWxEcgELK0dAezuWEHr6vDMUe5XKalZSfNYnUd2GxdiERi\nrNY25udvkUplqK21Mjs7jslUs0PGS6vVE4vFcLmW8fmc9PcPb+MH1umMrK2tUCikefnl51lerlAu\ni6mtPUQqNU0+H0WrtZLJJBge/kOMxkaWlqbQaHIcOnQSqVRBPp/l3r03GBx8kuXlBTQaNWq1mUhk\njVjMRVfXSbRayUYvrACojsXk5E1CoXWgxMmTn9/BW6xW67Dbp1EoNGg01QlcoVChWIxhtd4fu49T\nQPPLgmKxuKV889Pw5ptvsnfvXmw228M/sYeLfy76eRAP08OMXr1NpiBAtrcPW5OScrlMKpUikUgg\nEAhQKhQULr5I6uJrLOpPUhOdxhKfpadTxrkRCRaDAIVCgclsJhaLEQmHt6p7349SqUQkHCaTyZBJ\nCllJaBnurCDdaH7/JHK1xWKReDxOpVJBoVCgVCo/NITjdAaRy6vyZkKhkIaGDk6f/gpyuZSZmUkS\nidiuv1tfX9lWGdvdPYhYLGR6+u7WstXVeVpbqzRrAoGQgYERZmfvks/nd+yvUCgikUiQSqUkEjHe\ne+8aiUQYkaiISFRhePhLNDfvJR73UC7HmZ29SSxWJZ3O5SIkEn7C4QKpVIzBwaO0t/cRDHrx+ewI\nBCXUajWVigq5XEljYztWaz1u9zRabQ11dY2AhoWFK2i1Zk6e/H0EAjF37kzxox/9FY888jixWJR3\n332FRCJCsZhFqTRy9Oivce7c1zh48DQ9PQdpbGynvr6L3/qtb6DTGUkkIiwt3SMaXWdhYYL+/pOo\n1Ur27LlPIL62NktNTcu2Ip6lpQmEQgVTU2Ncv/4mly+/zLvv/ojR0Qt4vU6mp2/j8axT3KhU83pX\nqa/fvaCnWh17f51UKufo0afweu3Mzk7g96/uamgBBgaGcTrXyWRiu5Kv799/hKtX32JmJoxc3kWl\nUiCbXcJgaKCu7iwezwz19YNIJHJyuRQCQQqJBORyLcVinlBoFq22lYmJW9TVWenrG0IqFVEoZKiv\nbyOdTmO3uze0Q3OEwyHeeedl4nE/Z858kY6Ofubnp3act1AopKWlm5WV+/SMer2ZlZUgmUxm12v9\nNCKZTH6qc5ifeYP5MIyJ629+xLTtBM88UUc2myUWqxoAnU6HsJAj+/xfsOQs8net/5E31poId57n\nQH2Mw5kL3FurMOkUUixVi1dqLRYEQiE+r5dIOEw6nSaXy5HJZIhGIvh9PgQCIeFghaW4niPtBVTa\n7d7ZwzKYD04E5HL5Du3F3VANmUbRaLaHqYRCISqVluHh08zNjTE5eWNHAZHPZ6epqXPrf6FQyIED\np3E6ZwkGfUSjYdLpMI2N90NCtbV1GAz1zM/f3Xa8hYV7NDY2IhLJCQY9rK050Wh6GBx8Fq1Wj07X\niVJpRCJRIRCUefrpPwVkzMxc5N69y8zPX0WlakIsFtPXV/WIGxttzMyM4XSOs2/fEwwPf565ueuk\n00kA9u49SjzuIJNJYrXuQas1Ewz6CARWqK/voq1tmHJZyd27s7z66vPs23eIZDLOD37wd7hcHnp6\nDjIwcICGhmYaGlooFrN4vW6Gh89SKGRYWLjL97//n8lkyrS3D3H69BcplTLI5QZMpvutHevrizQ2\ndhKPR5mevsWFCz/k6tWfAAWkUgGNja3s2TOIxdKAzdZLc7ONUinL4uIN3nzze4yOXsTtdmC1Nu24\nv9lsmlgsvNVDuwm5XMnhw+eZnLxOoZBD+QF8xhKJBKVSTT5fJBYL71iv0eiYn3cQixmIRmdRqw2I\nxWb6+7+MWq0kHF6hufnoBgn+HFZrIwqFmHg8jN1+h2w2g1JpQCKRUlfXRDDoJJfzYrHsxWLpJRhc\nIhzOEI8nSCbj3Lr1NnV1FkZGziISSbDZenE4FojFohQKxW3qOa2tPcRiIaLREPl8jlKpiECgxel0\n7Xqtvyr4pIkLfpnxmcthPkhc8DBQiMTxvfoOt8/+X/x2t4h8Pl8VhxWLKflcOJ//EZcNXyGhtnBu\nn4i97QKEAgFwCEONj5MLrzMd3M/FSD17GqDRKESv16PRaMik02QyGcql0oZCghSlRM70qoCyQM3x\nPaBQbjeWD+M6K5UK+XyedDqNVCqtTgSEwi0ZqA9DOBymXNbu6OcD8PvX2LPnEHq9kbGx17hxI8nB\ngycRiUT4fC7kchlarYFkMrn1mwdzXwZDLQ0NrTvyT319B3jvvZdoa+tBpdKSyaSw26d55JHH8fu9\n3L59GZGoA6t1kLW1KUwmC5WKEY/HQTi8hNXajcFQi802SLmcZXT0eVQqE2fPPsvCwhS5XAaZTEE4\nvE4+H6Km5gxqtQG12sDCwh3u3LnE8eOfR6PRY7N1sLY2Tl/fKczmRjKZODMz73DkSAPd3Y8Qj7vI\n5Qy89tpbeDweHn30i5w58xt4vU5WV2e5d+8aarWWUqnE8vIiDQ2dXL/+EsViCYlEjsnUzJNP/i4y\nWdV7tNvv0dZ237sMhTxEImEWF++STkeoq2uipaWTYjHHY499eWu7fD6Py7VAV9c+bLb7rDXpdJIb\nN14nEPBy8+Y79PQc2NafuL6+iMnUuGvIUa3WYzbX4/c7Nipvd3qoPp8bqVTA/v2nuH37HU6ceHob\nw89LL/0N2awF0JFOz9DQcBixWIPHs8D8/BuIxXpmZ0dRqfRUKgUsFhlG4z6mpq6RSDgxGNo5cGCE\n1dUlFhcnicWW6ek5Ri4nwOVapr5+Dz7fCjduxBEKAwwMDNPcfD/XK5PJaGxsZWlploGBA+TzJTKZ\nFH6/ZyO64OO//bf/QlNTM5VKlZ7R5dLR1mZDLBZ/6ot+EonEz61/+cuMz6yHCQ8nXOn+3osEW/dx\n8nwjKpViy1iu3Zzhr38Y4EX977H3QA3/doOhR/ggXZ/eguTgOfZbEhzIvMeaI8qFyQqzjjyRlBCJ\nQoPeYEKl0pFLwbw9zzWnnlptmSP7VCiUO5uhf9HXuNlTmc1mUavVqFSqHQbqw+DxBBGJdhZBpFLx\njZ6+BuRyJceOPUOxmGZ09MIG2YCdujrbrvtsaupAq9UxMXGVtradlGRqtZbm5l6mpkYBmJkZp7Gx\nBa3WQEODjZUVL6mUknQ6jts9TVPTIA0NLczN3SKfj9PQUGWAsVgauHHjLazWbvr7D+Nw3EGnM7O+\nvoLHs4DPN8fIyK8RCoWoVKo9hcPDn2N9fYZQyAOA1dpCIDDD7duvEYv5yeezxONhrl79Li7XMkKh\nnmw2SqViYXHRjlwuQ6lU0tbWzcmTT3D27BdpaekmHA7R13eavXuPMzz8OOfPfw2JBPbvP7FlLEMh\nD7lcnoaGVvL5LLOzY7zyyn+hWCzQ0tLBY499jf37T5NKRbFat4dIq2xLLhobtxpoSKMAACAASURB\nVBs1pVKNVCrn7NmvUlNjYWzsde7evbbVc+jxrGK17t7GlE4nyedTnDr1LOPjo4RC3h3bLC/PYLPt\noaurD6XSxOTkta118XiEq1fHkUhayWYnEIubCQTcKJVaCoUcUmmOvr7Pkc8X8flmSKf9BAKTyOUy\nFhfHACWDg8dRqbRYrU1MTr5BfX03Ol0dtbUWhEIJIpGWdDrK+PhlrNY924wlVN+nPXsO4POt4fd7\nmJgY5dq11wiFnNTW1vLYY89gsdRz9OjjnD37RR599AsYDK243e5dx+TThk97W8lnzmA+LD7ZzaKX\n1e98n3d0x/ji55qRyWQEo2X+7nkHf3O7js59Vv71F4Uc6Kx8YD+lQChEYO3EOHyMYy0pDkmmKPud\nzCzEuDhZ4bVxIZfnRDjCEoxqAWf6y3R0GD+0P/MXcY0PUtpJpVK0Wu0OL+KnjWelUmFlJYRWa9qx\nzuVaxmxu2ro/YrGYI0eeQigsMTr6Nl7vKk1NbR94HL2+nlIpv2sYD6C7e4BoNMbi4j283lW6uvaR\nTCYJhfwYDPuIRCK43XPU1DShUGiRSmXEYk5kslrK5RLpdJqJiasIhWm6u0/Q23salUpLPO7Abp9m\ndfUOPT0nqatrQipV4fWuA6DTmWhtHeLq1ReZmLiA0zlOR0cXkKOn5zh9fcdobh4im80QCPiRSjWI\nxVBT00Yup+Bb3/o/WV+3PzjK2O1VlqGjR0/R2GhDpzPgdC5QLstoabn/gV9auovRaGV8/AJvv/38\nRlN5DU8++Xu0tPQgFospl8t4vY6tsd2E3+9ApTLsKG6pVsAGaG5upatrkDNnfp1yOcOlSz9idXWB\nRCJGff3uVc4rK1XC/Pr6JgYGjnHr1jskk/fz1bFYlGjUh81WpTMcGjpGOBzGbp8G4Hvf+3/J5erx\n+SaQSFTo9R0Yje00NAyQzQbR6y00Nx9ApdKiUNTQ2tpPQ0Mjr732F4hEoNHUbLA9FVlbu0t9fTu5\n3P3nqKWlk3v3LiMUVtDra/B6k6RSqR3Xkc/nicVivPHGD9Dp1Jw9+yxHj56ns7OfxkYbTU3tuFyr\niMUipFIZen09ExMLJJNJ8vk85XKZYrH4K8Mr+3E8zF81FqOPi8+cwXwQvyiDWSgUiMfjhN67QToL\nHZ8/AiIJ/3Apx7d+mMaUWOZPvizi5CO1iEUfzYAJBEIEJiv63r30HWrnkSENj/dneWogw7khEUcG\ndbR1mJBKPzyq/osI/2x+IMrlMjqdDrlc/jPtNxaLkcvJdjDGQLV94f15L6FQyMjI48TjYbzedVSq\nDw71eL2rDA8/xuTkKPl8dsd6iURCT89B3n33VRoabJRKFaRSKS5XEJvtENlsmrW1cWy2IcRiMX7/\nMs3NrRu9jlkmJ8dIJh2MjPwaXq+bQiFPe/sRZDI5LtcdVKo61Oqq59zUZMPlclCplCmViuj1Jlyu\nObLZDIODTzAy8hRarRK3245IpCEajSKVqhAKS/T3n6a7+wSx2BJmczvxeJlvfet/5969UdLpJDdv\nXkKrbd4mwFwsFpmfv0Nv78hGaDzL7OwN7t69it/vQCbTc+rUr1NX14DZ3LRVxVkdd8eG8dk+iXG5\nlqmr225EAdbXlzCZrFv3UCqVc+DAY/T1HeLKlR+TzVY+MOLgdi/R3FwtyGpsbKW1dT/Xr79BNpsG\nqt5lVZ5NvLFvGQcPnmZ+foq7dy+zuJgkHg9SLILV2ktdXRcGQyvz8zcol6OYTHtIJqNIpSX0+hbC\n4Rn8/jharZmDBx8jGl1hauoaCwujSCRCRkY+TyQSJh6PABAOOygUohgMnXR0HGJtbYWFhdWt9zWf\nz3HnznWuX3+D/v4h6uqsNDZ27uDK7ewcwOlc2qiGFWMwGEmnpVt9ydV95UmlUqRSKbLZLIVCgVKp\n9CtjRD8Mv2oh54+DfzaYP8cDWiqVSCars1CFQkHwuy8z2nKWuo4G/vyFPKLZ6/xr08s88QePoDDq\nto75M52rUIRAqkAg+WCu1l1/93Nc426Udh8Wfv1px/L5gruy+1R7+kLU1e0sIhEKhRiNdeh0au7c\nubZjPUA4HCSbTbBv31Esljbu3r28y1YVJBIpqVRqo8BIRSQSJJXSoFTqEAiyVCpiJBIF2Wwan2+W\nvr7TSCQqbt16j0IhSltbL52d+5HLVfh8LnK5LJlMmvr6Zuz2WbLZDJVKGb3eiFSqwOFYYHLyIqVS\nkmPHfgO3206pVNVh7erqY2FhFK93jba2IWprW5HJyjgci1gsezCZrAiFYjQaK+m0guvXL/L88/8P\ny8uLaLUagkEXyWSUdDrJ3bvvUKmICQbXuHz5H3nzze8xPT1GZ+cIjz/+2/T1HUCpVLO2Nk9z83ai\nAZdrAat1O81gPp8nFHLT0GDbMYoej31XuruGhnZqahqQSktcv36BfH47+Xgg4EEorGA2328l6erq\no76+k+vX3yCRiOP1rtDe3r/td3q9kZ6ewzz33HMEgzHKZTl79hwDdNTVdWGxNBAKOSiV0mg0Tayv\nj2My2aitNeN2z+HzTfHoo79Hb+9pDh16gvHxn2C336Gr6zhSqYympnaWlqaZn79BNOrg5MmvkUxm\nUKnqkMulXLlynaWlZZzOFS5c+Ecgx+nTTzMwMEJzcydzcxM7xkKnM6LXm1hZWdxaplKZWVpybmnw\nKpVKVCrVVrFcqVQil8tV6TE3CvuqItzlf3Ij+lE9zH/q8/wk8JkzmL+IkOxm+DUejyMUCtHpdGR9\nUcbynWSf/Vco8jH+pffPeOIgmL/4tW2CzZ9Em8du5/txt9+8PrFYjE6n+4X0jS0vBz4gHGvHZGrY\n9RilUolg0MnZs79BNOphdnZ8x8u7urqwVewzMHCQWCyB07m0tb5cLpPJZJiausHx4+dwOu2k00ns\ndjcaTROJRBiBIIXJ1IfXu8ba2uSGF6Uml8sQjweQSHK0tw8jEAhoamrH611ndfUOBoOeU6f+BQJB\ngYmJyxQKxY1CLx1jYy+i0Rjo6TlFX99hJBIVd+++x+LiLH6/j8bGWqBMfX0bCoUOkUiCQgEul4Oa\nmm4KhSgNDXvJ53PMzi6h19dz5MiTRKMhJievce3aK1y48Pdcu/YWUqmSYrFCa+teHn30iyiVKkZG\nTm6x9sTjYZLJ+DYjmM/n8fvdNDdvbzT3eJbR6Wp3kBWk00lisciuOcpYLESlIuDxx38bpVLCe++9\nSjwe3VrvcCxuk87aRH//QTQaC6+//veYTLU7QsDV81khGKyQz4PFcohiMYpKVYPB0ITfv4BSKWB9\nfZx7975PKDSKz3eZiYnvIhKF0enqUSiqk9VKRYTV2k4qFWdx8Q7lchmLxYrPZ8fpnKa//ywajYHm\n5k7u3btFKiUkHF7lzTdfY2rqKocOnWBo6OQW/3F39yCBgItodGcaoKtrHysrc1ttOFqtEZcrQTx+\nn65xs7dRIpEgl8u3jOimgMEmCUgqlSKTyWwQfhQ/cemrjxOS3dRE/bTiM1cl+yB+FuO1WR0qEonQ\narVUEHJ9usybl2UIm/fzFe1F2qYvov7qHyHepddMIBB8og/8x314fxql3U871geNZywWY3R0HJFo\nnbq6Flpb92wJNHs8u4f/oCoRpdFo0etrOHz4cS5ffplKRUh3d9/W+Xq9dk6ceAqosvjs33+M27cv\nYDJZEIur5A2BgA+hsMTg4DHGx0Vcvfo6EskgRqOS+flRLJZO9PpWpqauIhZHGRp6mrm5SbRaDYFA\nFqm0Hqm0+qE0mcxMTYVJJEI88sjXEIulHD36JS5c+K90dPQjFIrw+Saoq9uDWKylUChQqZSpq+vn\nxo0XOHLkCwwNHSeVinLlynV8vnUMBiuBwBKZzBQqVSOhUIRiMU06HcNs7sRuv83y8jzPPvvfIRTe\nL2waG3uDtrYD2zhYZ2fHqKmxbWNAcjimsVq7tvG+ut1L6HQWlO+rrHa5FnetYF1fX6SmZvcK2CpV\nXLUSdHDwNEtLk1y79hoHDpxCpzPi9zvo7f3Crvd4374R7ty5gtEYp1wub4tixOMR/v7vX0AgkKBQ\n9CGVikgmU9hsvaysXMLhuIReX4/FcpBkMs/IyLMEAgFisRfp7T2MWt3BwsIkVmsTq6s3OXLkSzid\nTlZXr1MsZqlUytTWGsjn5RtV3lXjHw6H0es1qNVa4vEQZvOxLUq+TUilcmy2HmZnxzly5FHy+Rx+\nv5dIJEA8HsPhsPPCC3+NwaBHLJYiEAhRKHKcO3d613GA+0b0wfduk+ygVCpthW43hbpFItHW34dV\nEf9R8f5792nEPxvMj/hAlErVwo9SqYRSqUQskTC5XOGNm0XMmgqDz/0P1B2vpyOlRP3H/w6hdnc6\nrE/aw/yoxyuXy6TT6Q+ltPt5EA5H2LPnBCDG5Vrk7bfHqa/vpKOjj3DYz4EDu39E3G47VqsNAJVK\ny+HD57h06UUMBiP19Y04nXa0Wh1qtX7rN7W1VurqOhgdvcDhw+eQyxXY7dPs2TOIUCikp2cff/mX\no/T0HCEYdBEILGKzjZDJBAmHHZhMJtbWHFQqRTQaHSaTgXxeRLFYRCwWk0xGqVQiSCQ1iERV41FT\n00Br6yHee++H1NZa6Ok5hkSi3lAc0eNwLCESCWltHSIQWKFcPoRMpkGnEzEz8xYCQYZyOU+xmEMs\nVqBWa1hfXyEYvIhW20FjYxdud4yXXvpLvvCFfwWAx+MgFksxNLRv69qLxSIOxzyHD39u2zKXa4Uj\nRz6/bWzt9nuYzS24XA4KhWoItVQq4XKt0d29kzDd41mms/PQjuXVnscVDh48u7Wso2MvKpWGmzcv\noNfXYzSad/UeAZxOO729fQgECsbG3mJk5OzWh/eFF54jGAyj15/BYukmEpkim83h9V4lkYjQ0/Mb\nRCITyGRaNBoN09PjSCQFDAYhvb2PIpOpuHXrXa5f/z6HDz+DVltDd7eBZDLC3NwVNBotjz76+/j9\nAUZHL6FWazAazTQ3W1hYuMnIyFPEYk6WlpyYTHra27dPJFpauhkfv7ahZ5vHYDCi1xtpbrZhsdQx\nN3eXw4cfo1IpkUjE8XjWSaVSH6swpiqsLdzK7W72j29KFG4WEm1ut2lEhcKdOrk/Kz7KfhKJBCrV\nToauTxM+cwbz44ZkN8OTmzR6arUau6fCq6MlBAL40kkRileeo3y4Qrq7Fc2/+F0E4g8e1l+2kOwm\nRWAmk0Emk6HT6X72POuHXJvd7kevb0Ol0tHQ0EY6nWRx8TYvv/xXSCTKXQuBCoUCgcD6NrULvb6G\ngYEj3L59iVOnnsHpXKSt7cG8XFUhpbV1D37/Ol7vChKJAqGwSFNTNfQYiYQQi+u5cuUHCIV5lErl\nhrFMUCr5WFxcxedbY2joHOvrE/T1ncLl8rC+vkxTUzsLC9fo6jpEKJTB63VsKXk0N/cwMfEaJpMJ\no7GBYjFPKpXlxo13GBw8Sl1dI4lEDy+//BeMj18CMmSzAdRqEdBKTU0jPl+1IlSns5LJ5LHbg2Qy\nQdRqK0KhiAsX3uLgwdPU1bUyPX2D3t7jSCT3P752+xRabd22Ip719QWkUjXxeIDV1Uni8RCRSJDl\n5Vn27auQSPi2PsYu1zKJRIyrV1/c0IC0YrE0oVaryGSy1NVtF+2Gqoi0SCTboRdZX9+KTKbke9/7\nc4aGdpK3Q9XY2u3T9PUdoqamgbGxi4yNvcmhQ4+xvDzF9et3kMtbkUi0tLTsxe1+FZnMTCIhQ6/v\nR6s1s7YWRKezoFDUkky6CYdvc+bMMHK5mmw2RakUQCarIZXKYzJBPp+mVAohl5uoqWnk6tUfI5fX\nUi5XKJWyxGIr6HQ1nDz5m6ytLdHZOcj8/HvMzq6jUimoq6sjFPKzsjKP37+GWq0ml4vz1FO/udXS\nswmvdw2/30tnZw96vRm3W8TysoODB392ftnNsOeD3lylUtnhiW4a0fd7oQ8rZPppJy2AzyCXLLAV\nEt0s7d4txLTZnP+g4HEkJeGFd0vcnCtzZkjE544IUM1fpnj5Rd4I93PqP3wdofinM90Ui8UdL9bD\nwuYLtNvxisUiyWSScrmMWq3+UPHnj4JisQiwYzwzmQzj4y70+rat/VeZVmyEQutksyn8fhdmcz0y\n2f2Kw/X1FfL5OG1t2wtBFAo1UGFiYpRCIcnQ0EkEAgHFYoF0OoNAIEStVmE213PnzmX8fg99fQfQ\nag2USiVee+1VymUxAoGScjnLmTPfwGy2EQyuUVPTTbGowmSqwe+/RyoVoba2g9raRuz2eVIpPwJB\nkY6OEWQyBaur89TVNZFOx1levkZdXS/xuJ9stoDT6UCvr34YbbYuhEIhbvcSgcAqbvcsx49/me7u\nI4hEYjQaG+l0CoVCQyYTxmhspliUYjDUkEj4SacFZLN+ikUR6+sz6PV6KhU5/f33Pb5iscjdu5fo\n6ztGpVLE7bZjt0/w3ns/plKpTmaUStNGkU+F9vZ9HDnyOM3N3TQ2dtLY2Inbbefo0acYGDiKxWIF\ning8i1y58goCQZXNSC5XbLsfc3NjmM2NmM3bVWGgmvdMp1NUKgJiMT8WS/O2Z8ztdhCJuBkYOIpQ\nKMRqbcHjcbG8fJdXXnmFQCCLVnsEq7WTtbWXKJXyHDv2J7jdS4jFWvJ5N7FYEK22g2IRFIoylYoL\npdKASqVhfv496upa6O19hJWVBaJRD+vrd7Fau9BqW1hcXEYgKCAU5jGZjKytTdDY2MuePYdRq7UU\nCiW83nUsliZ8Pjs+XxSHYwKPx47ZXMv+/cfo7x/G73cBwh2TBpVKy8zMLZqbOzZCrVI8Hic2m+UX\n2n7xYIhWLBYjkUiQSCRbRnXTiObz+S3P9MHffhAqlQrFYvEjnavb7ebevXs8/fTTP3XbXwHsyiX7\nmTSYm7ysmw/O+x+GYrFIKpWqalSqVJSQ89qNCj8ZKzHYKeQrp0XUa3Jkfvwc2ZtXufWyB/Wf/C90\nte8ecnoQmz1Yn6TBLBQK2463GX7NZDJb3K+/CHL2DxpPt9uNyyVGrd5e8FMsFpmdvcm5c1+lXC4y\nPn4ZhUKDTlc1MjMzt6ivb8JgqN3xu5qaBqambpLLxejtPUQul6VQKKJQyJFKq4ZfLlfi8fhYXr7N\nqVPPIBAI8PvdRKMaursfIxJxkUxmaWzcQzwewOOZIZ9XMDBwCL/fh1CYY9++8zidEyQSIYrFCmtr\ntxgZeQaRSIJcriAWixKPB3C5xmls7KWhoYeZmTm83kn6+4/S3t5LqQQOxz38/nlKpSz79p0nGPSQ\nz+c2aPxKZLMFhELllrByOLxOd/dxrNYucrkQcrmOcllIoZDA5XIyNzdKb+8BotEAweA6Xq+D27ff\nxuv1EY97cToXKRRKgAihUMQzz/xLWlq6qa2tR6XSMj19lb6+w9sEvMNhHy6Xnb17j2wJNJvN9TQ2\ndm5UxzaztHSHQMCPRmNALleQz+eZmrrGvn3bPd1NzM3dxGRqZGjoOKuri6yvL1BXZ9t63sbHr9Da\n2rNFjl81mjZeeunvmJxcQ63uQC43o1Ck8fnmGBz8Q5LJBGJxBaFQxfj49xAIdJRKUiqVDOm0m87O\nRtRqM6OjP8RorGHPnhMIhSJSqQDj428gFusoFkWIRAIslkbi8QjZrI90Osjw8LMEAiFkMhlKpRqd\nzkAwGMDjsRMO24lGfWg09Rw9epKWlo6ta9ZqDUxOjtLU1Ib4gSI/pVJNMOghkUhQW1u/8T5CqbSd\nlP1h4EEjusmZLBaLEQqFWyHdfD6/5Y1uGtEHvdDNCfdHKfqz2+04HA4ef/zxh3pdnxB2NZifuZDs\ng3h/CHGzmjKfz6NQKBCJpVyfqfDOeJF97UL+7ZfFqOQCiq5V4j/4DmJbJ/de83Kl/jz/4WTNhxzp\ng4/5SWDzeB9EafewsbISQKnc2czu8djRaEwolSr27BmipqaemzcvEotF6OzsIxJxc/Dg8V33WSoV\nUShkCIUabt68xODgIw8oTFRRqZTJ5WI0N/duhC8PsbLiwWTqJx4Pks9H6Ok5xeLiJIVCgFxORFtb\nE2ZzHQJBmmJRislkw2hswW4fZWbmTdTqBnK5AptzgoaGZt5886/Zv/8oQmE1Z1ll1tERCCxhsTRT\nLidZWbnFvn2n6Og4QLFYYnj4c1y8+He0tg5gMNTh9Y5TW9tOJpNmZSWHWl1EJpMgkympqekgGFyl\nvX2E1dXLFApp4vFq769abaZYrH7oEokEw8PnaW3t2irkGRt7g87OoW0TIperqt/5fgUXh2OahoaO\nbXqYUO3VVKmMjIycIZ/Ps7o6xbVrr1Bb24pKJcdgsO4oHIJqgZzX6+TUqYNIpTKOHj3PnTtXuXz5\nRUZGzpLJZMlmEzQ1bWfT8fvXmJ93IxYbSCYVKJVekkkjCoWecDjM+vo4DQ17yGQcCIUlikU9AkGB\nXC6OXi8jl/PgdI4hElVwOh3E4y9QqWTIZqPU1vaTTufRastoNGr8/gXk8goiURd1dbWsrd3Bat3L\n8vIsmUyKfD5GKrVMIhGipqYbgSBDIlHhJz+5zPnzR7e0H43GWurrm5iYuMGBA8eIx6MkEnEymTTl\nsojR0XeIx+NIJBJUKg2hUIyWFitms3nHuD1M/LR86Kaa0oM50M1tflr06dPO8gOfUQ9zs7dp09uT\nbshgJZNJRCIRarWaZY+Iv32zRDYPX3tMzIEuIRJhhdyVN0i//F2Uj/86GUEt83/1Cm3/6X+mq/Oj\nPSgPU1bsg463KbmVTCYpFouo1eqfmXzgw1AqlSiVSts8zEwmw927VQ7P9x9vbu4GNTVNmExVD1Kp\n1GC1trGwcIvZ2XsYjfptPKabKBaLOJ12kskIw8NnWFqaQSoVYTBsn7Gvri6STIY4fvwpJifHyOez\nxGIaNBorS0tjmM1WWlr6WFwcx+G4S3PzAbq6BvD5Vsjl/Gg07eRySYzGWoJBF2q1kmw2id/vxWbr\noVwus7Q0RqVSIhYrkM9n6Orqp7W1m3A4SjYbxm4fRyQq0t19klAohNlcj0AgQKs1kE4nWFi4Q0fH\nXsrlPG63n0QiSU1NCz7fIiJRBbPZhlSqIhJZplQSoFLVkMmkyOUSBAJOnnnmd7DZOkkkggiFMgYG\nDm/cizLJZJTZ2VscOHAakei+1Nrk5GWam3u25TmrnuIV9u+veoqlDb5ioVDI9PR1LJZWTKZaRCIR\nJpOVlpZuQiEX7777Ig0NbTQ27qxyXlmZplIR0dpazTELBAKs1haKxQoTE5fxep20tu7Z1psJ8O1v\n/yfcbgEymQGJJEeloicUWkGjsSIWK2lpGaKhoZ/FxdfQaDrYv/9zhMMO5HILAkEAkahAd/cR+vrO\nEwjYmZt7F5drHoFAsdEjqcXrncXjmaelZR9DQ+eQSBR4vT4UChUrK2Ok01GWlsZQqXT09Z2gq2sY\nh2MVt9tFPO5gz55jhMMpBIIcYrEQn89NPB7n5s13WFmZJZEIkc2mEAorqFQqKpUykUgAg8FELpci\nFovz/7P3nuFxnve55296L5jBDDCog8EAIHpjB7tESrIkS3KVbdmJnd3I6ySb3ZTLvnLO5iS5zvrY\n1ybZs5v42Jt4fRwna8VNkq1CFYok2AkSvddBHZQBBpiK6bMfBhgCBCmLYhEl6v7CC8OZed7ned95\n7uff7r/Xu0RFRekd/x3eCtatyetduevxzvWwVTQaTZe0bCTPjdfe1dVFLBZj7969H9R07iQ+dsmu\nYyNhRiKRdH2TWq3GH5bx8+YEHSMJntwj4uh2ESq5gPjyIoGffo/E4izqr/wvSApLuPzcX9CSd4jf\n/Y8PbTmVvxtCodCaNXT3kUgkCIVCRCIR5HI5KpXqrvXGvJFL1ul0Mj0tRqPZ6o7t7j6/tkFfc/dI\nJFLy80u5dOkVEgkpNtu264TaU1ZyZ+dF7PZycnMLMJlyaGs7i15vRKVKHVySyQRXr56moqKRjAwT\nKpWeN954jZycvUSjYaan2ykrO4xAIGRw8AweT4gdOw4jFksYHDxNcfFuzOZ8xsb6SSRCuN0j1NU9\nicVip6fnHYLBAIHAEisrM0gkJvx+H7W1O9HrjQiFQmKxKP39F0kkVqmufhizOQ+v14vP50avz0Qk\nEmEy5TEy0oLfv4pCoWNwsJW8vGoMBiOhUIixsYsolWYyMiyEw378/iUCgShGowGdLg+ncxC320l1\n9W66us5RV3cIrVaHWCxGJBLS338ZlSqTrKzc9Ga3vDyPw9FPff1+hMJrz8HERC+xWAKbrTx9f0Si\nlGpQX98VGhr2b7oPIpEYuVzJ8vIiIpGY6ekhjMasTao37e2nKSmp36QsBKyJ26dKewoKbJhMeemN\n99y5Vzl3rh+p1EggsIxWm4dKlU8sNodCUU48HsVq3c7g4Hk8ngG2bXuSpaUxrNZ6VColCwvNgJSJ\niTEGB19HKAxTWlpDVVU9Gk2cWGwUt3sElUqFQCDF4RhmcLAFn2+WUGiJ6ek+5HIFYnGCnJxKPJ4w\nTucUi4vzqFR6dLoskskECwvDgJjOzla6uy8CYYxGEyUlVQSDPnbvfgS7vYLs7HxMphys1jLm5ibI\nzMyhqqoBq7UMny+IViu878TKN7py1y1MpVJ503io0+nk4sWLzM3NodFoaGxs/IBncEfwsUt2I9aJ\nJB6Po1KpkEqlCAQChmfi2CwCvnxUhFiUelgiV8+w+vaLyPc9gmzfowiEQhZPXWJ5zMmBf/8/EInu\njfLOrWJdfgu4J+7XG83N4XChUt3YHatWG1EolFv+LxwOYjLlkZ2dx9mzr7N37yMoFEri8RirqyG8\n3hWiUR+FhWWAAL3eQH39IVpbT9HU9DhabQbj4yNIJKJ0/0ypVIpaXYnDMYhIFCE7uxSxWIrD0YXP\nt8Du3Z9kbGwArVaBWp2BXp+yekymPK5ceZEjR76EWCxFozFy8ODv8tpr/xdCYRK7fT/bttUSCoUZ\nHx+mttaAx7PI3FwXJpMNvd7I6GgbdXVHsdnK6Oi4iFa7QFZWLlKpgpqaxCawagAAIABJREFUg5w6\n9TKDg1JUKgVTU1dRKDJQq/UIhWJ6e99ibKwNrdbAwsIoWq0do7GIeDzI4mIBra0tKBR/S2Xl/rSl\nLhAIiEbDzM1NcujQZ5DLFekDosPRjcVSQjQaIxaLIRSmNsXx8T62bdtcSiIQCHA4ejGbC26Yxexw\n9GKzVVNZ2cjgYCdnz75KSUkNdnsN8/NTJJNiLJa8Gz4rbreTw4c/g8fj5uzZl6irO4RMpuTNN98G\n8lheHkAiMWKx7CYcXkSrbSSZ1CGXZ9PS8hZe7wgajY6ZmSE0mkzm5iaZmjqNyeTFYlFSWqpj376H\nyMvLQygUolAoyMjIQCqV4vV6mZycZHh4GKfTycjIHEtLC7jdQYxGCx5PDL9/henpZiQSNUKhFr1e\ng8WSQyIRJBbz4HLN4PUusG/fZ1GpMgmH3SQScjIzTSQSca5cOc3+/Y+k1y1Vn7qfc+eOk5WVjV5v\nwGgsoLV1BKPRcN+WY6xbkwKBYFPXGLhWHzo7O8s//uM/0t7ejlKp5NSpU+zYsYOdO3eyd+/eW9p3\nlpeX+drXvsbbb7+NyWTi29/+Nl/4whfu9LTeNx5IwgyHw/j9/nSt4caEmD0V107dcbeL4K9/QnI1\ngOZrf44oO/XjTyaTtP/p3zO4+zN8c997i11ej7vZ5uf6mtGNGpb3EqurqywshDGb9Vv+b2Zm5IbK\nLwCTk0NkZ9vYvv0A3d3nOXv2NRobDyGTKZDL5fT3j2GxWDf9gHNy8gkGG7l8+W327fsEIyNdVFVt\nB9ZF36cpLd1Hf387DsdlnnjiT4hEIly9+jqVlQcpLi6no2OZvr5THDv2+xvm4ESjycbrDZKxVgng\n9y8RiyUQi4VoNDJ0OiN6PSwsOOnuvsjq6ix2+461bhstyGQSRkfbKSvbic1WzvBwD0qlivn5cXp6\nzhKNutFoirFaqxEItGi1qVo/sVjA/Hw3RUX7GRpqJRhcRSicwekUo1Il2Lnz05w9+0+cPXuK7duP\nbVrD4eE2zOYilEoNsViMSCSI17vMxMQQO3Y8xPKyE4FAiFgsxetdJhyOotNlEgqFEYmEQJJYLM7U\n1CCNjQ9vuUep+OQk+/c/tVbbWo/FUkB7+znm5iaJx2NbZPjW4fUu43a7eOihlEU/MtLPhQtv0N5+\nBpdLSyQyRSSSYOfOrxAKBVAoxASDMTIzsxGJ1MTjK+TmFjI/30ckMorb3Y9GI6CsLMRXv/oER48e\nfdekOq1WS1VVFVVVm7Ovg8EgDoeDxcVFBgcncDim6OkZJxhcXmuQHqWoqJra2mNEIlFaWl7j3LmX\naGx8HKVSw4ULfej1WrKzNSwvr/CLX/wbtbWNJJMJotHI2r9xfv7zH9PQsButVk8kEuLUqYs89tjh\nu+b5uR282z617rLfvXs3r732Gt/5zncoLCxELpfT0tLCa6+9xokTJ25pvG984xvI5XJcLhdtbW08\n/vjj1NXVUV5efiemc9t4IAlTKBSi0WgQCoXp5s4bkYzHCF88QejMceRNjyDb9wiCDQ/z1L+/waJr\nlSd/+uwtk97djFckk6kaxFAolK4ZBW7YceFu4HoLc2BggLa2PvR6D3l5NnJyChGJxEQiERYX56iv\nP3jD73E6R6mqagKSbNu2g0gkzsWLb3Po0OMIBAKczlGamrZm4tntlQSDAV5//afo9Rlp63JlxYXf\nL8Ng0CGTJZDLM3E6J5iaGkCplFFe3kQ8HkckCiKXZ7K87MZi0TA7O0Io5Kap6Rl6elrR61M9Mjs6\nXmXfvk/h8QTweJxrdZl7USiEtLc3c+TIlzAaU7q4ubk25ucdeDyzuFxTaLUmQiEvx4//E2q1gcLC\nOpqanmFkpIVoNEEwOIFCkY1EosBq3c70dBuBwAxZWUXk55fgdF5laWmShYVVFhfnkcnyWFrq5Ic/\n/Gu+/OU/RyIREwoFaWs7S1HRNl5/fYxYLI5crmBx0UksJmF62gGslziFGRpqR6XS09LyGhqNAYPB\ngtGYg8s1DUhQq3VEozGEQkE6EWRysh+9PnuTmpBeb+TgwSdpazvPmTMv8eSTW9WCIEXm+fnb0tZX\naWkliUSIF198lWBQz+rqFMXFn0Ym0xOLRfF6ZxGLLQiFStraforBoGZs7C2kUgM6XQir1URlZSlW\nq5gnnnjihmO+FyiVSiorUwpSB9ceTZfLRXt7BydPXmVoaIqBgbfo7DyFSCRGodAQCPh4+eX/E4lE\njclkIRDIZGlJTTKZwOUaYnx8HJMpm7y8fIzGDHJyiojFovT1tWGx5CMWi3A4lpFKhTz88KEPtVKO\n3++nsrKSpqYmvvKVr9zy54PBIC+++CJ9fX0oFAqampp46qmn+Nd//Ve+/e1v34UrvnU8kIQplUrT\nnQGudyHGZqcI/uqHCFRaNM//BSLj5kSS+GqI3m/+He7P/AGV295f7GGdWO4ked5M0m5jhuy9Ti5Y\nXIywY8dRVlaWGB/vpqvrPPn5ZcjlYjIysjfVXK7D7Z4nGo1hNGYRDAZJJpPU1TWh0ag5d+44ubkl\naDRatDdRUqqu3k5LSzNyuXwtDifC4ZhBLrcSDHrw+53s3ftpWlqamZm5xCc/+QdAqp1VNOphz55n\n6O/vIJlMMDXVSmXlEVQqLQUFdk6e/DWx2Dx79z5DQUElKytuBgairK6u0Nz8U7RaFXV1jzM76yQz\nMxWXy83Nx+12IZWKaG8/gUqlQiIRIRAYyMy0U19/CACXy4FQKCUc9jM21ordvheRSIzJVMHAwFkO\nHfoGSqWGSMRJbq4Rj2eF2dkrgBGdLg+vN8Abb/yUZ5/9U5aXBygr28P27fuQy1MC35FIhHfeeYGm\npqfQaq9Z/F6vm0gkwMGDTxMI+FlacjE7O0FX1wUWF6eoqmpae4aSRKNxkskEAoGQ0dEeqqqaSCQS\nm8oQhEIhEgns2fMJpqbGmZ+foq5uX1qJye9fYWFhlsOHN2c/v/zyvxIIZADTqFT5qFTF9Pc3YzBk\n4XSOoddLGBj4LmKxiqUlPzqdmmef/TI7duxAKBSxvDxNQ8OdJxuTycSxY0c5duwooVCI/v5++vv7\n6ejoYWUlSFZWLqGQBY/HSyAQx+XyI5Ml1kqbcnG7p1lYGMTliqPXh5BIxCSTemZnnXR3T1Ja2khe\nXinHj4/R1TVJdnYmHs8idXU1GAwadDoVSqUSrVb7gZDprTaPvh3hgqGhISQSCcXF15oB1NbW0tzc\n/L6/807jgSTM6x+ATVlfUinyg48jqdpxwwel7X/7AZPKfL74V+//JHsn45i/TdLuXpLkxnn5fD7c\n7sRaS6lc7PYavF43Q0NtNDe/RUXF3nT27kZMTg5iMhUQCq0ilUrXEogElJY2IBKJOX78p+zb9wlu\ntnzj46PY7XZkMi0tLW9TXr6dlRUhRmMGfX1n0OtzWFmZZ2amh0hklZGRTrTaaUZHr2C3NyCXK7HZ\nKmhu/heqq3ejVmeysuJmfHyAcHgeszmf/PxU5q5eb8Bszqe//yywRGZmI3Z7Jb297UxMDGO1pjIg\ns7OzOHPml4jFqUNNdnYFDz10kLGxIWZnx7FYrNhsO+nsfI2Kil1cvnyG0dGeNZFzLWKxkEBgAbVa\ni8Fgw++fQ6GQo1YXIBYnARsezyhu9ypDQ5cRicTs3//MJutvdLQDgyFvE1lCqmdmfv42lEoNSqUG\nk8kC1DAxMcyFC8eJRMKcOvUL8vKKKS6uQaFQ4XSOIRBIMJksRCJhksl191xKPGJmZpwDB55CqdSk\nY5sFBSWUlTUyMNBKfn75JvGDEyd+xvCwD4lEgFBoxmY7ikqlRa9vxOF4lWg0yPR0O0qljaKiPKqq\nZOTmWtix48CGzM0lTKYbu4DvFORyOfX19dTX1/PFL6ZeS+kUu1heXmZkZITOzj78/hihkJdoNIxG\nk4dEImJkZIxkcgGfL47fv0x2di6RiBKH4wRzcxlEowLOnVvBaFRSWLiNRCILpTJIMhnFYICmpop0\nCcv9Cp/Pd1sJTH6/f0tZilarxefz3e6l3TE8kIS5jvWT8UbCFBmztliV6/D0jbLw459T+P1/JkP3\n/rt33AnCvBVJu7th0f42OJ3zCASba8y0WgMVFbuZnBxBoRDxzju/oLJyD/n5KdddNBplfHyQ3bsf\nW8vK2xzTycjIIjOzgMnJYUym3C3tp5LJBMPDHVRX78ZszuXSpXc4fvwlLJZPMDh4ib6+E2RlFeJ2\ntyKReKiufoz5+WmWlkaBMH7/Aq2tv8Tv9yOVinG5VhAIellcnCUWW2T79kOEQhJGRropKakhFAri\n8YwjEMQpKTlGKDTP0NAlSkrq6e6+gkqlYXl5Grd7gqwsGzMzc+h0cQyGDAwGEzKZgt7eVoRCEVlZ\n+eTlVTA11Ud1dQN9fVO0tJxCozGQlVXF4OApxGIFEokKn28ekchAMilBq1WQlVXDlSsThMMCjh//\nFU8//dVNZBmJhBgf72fv3s1assGgl7m5KY4c+eyW+zc11UddXRPl5fV4PMuMjvZy+vSLWCwFuN0L\nlJTUprOhr8myxRke7kSrTYnex2JR7PYqcnOt9Pa2cvz4v+D1LvP0099Ij+PxLPLGGyeIRKLI5Tak\n0hCZmZV4PNPEYj4WF9sRi+3o9Qb27q3iiSf209PTnJYjTP0OAmi1yQ9Elk0qlZKbm0tubi5VVVU8\n/fSNBeYhda2BQCAdKlnH3Nwc8/PzLC0t4fF48HpX8ftdrKxMsX17LVVVdozGrV1+7gWSyZv3N70e\nt1uHqVarN3VzgVTThvtJbu+BJMz30+IrEYtx7vPfYvzg5/nGZ7bWBt4qbocw15WI1iX7rs9e+6Cw\nsch5eHgBvb5qy3smJwfJzS1h167DzM9P0NV1junpUcrLG3G5plGrDWRn57BRgGAdY2M9VFXtQqXS\ncvXqaYTCw+k4JYDDMYxUKk6/VlZWzYUL3fT3/witNoOSkgb0+kr8/mbKy3dRWnqQmZlRzpz5Ibt2\nfZbCwgpcrnH6+9/CZKqgt/cCvb3nsFrt5Odbsdl2kUjE6e6+Qm/vZYLBWTIzc6moOEB39xVyckpZ\nWhpifLwdjUbFO+/8C3l5NsRiIxkZWrKy7Ljd08zPD2E256HXmygvr6e/vx2fbwWxGJzOYaan+5md\ndSOTFRIOLzA/P4XHM4jfP49SqcXvXyIcDqHTmVlZ0SGRDFNd/TitrT8jHI5y/vyr7N//RNqKGxy8\ngslkRafb3It0YODKmot8c4lTqlvHYlpMXafLoKFhH8FgPW1tZ+jqasFgMBMK5SGXK9N1fMlkEqdz\nlB07HkMqlZJIJEkk4kilCurq9tLcvIhAkKC5+UVyc4spLCzjBz/4z8zOelEoClAo9GRm5qwp6gwx\nM3OBREJDcbGVp5/eT21tNdFoGJ9vmaysa5q2Xq+bhoYPhlDuBLKzs8nO3ioreD/gVg7agUDgtsit\ntLSUWCzG6Oho2i3b2dmZjivfD/jwRpjvEN4rYZ7/k/8b16qIL/zw67dtqb3fzycSCQKBAD6fD7lc\n/p7J8l6rC7ndbvx+abp910bMzAxTWJgSQc/KKqCp6WmSyShnzrzC8HAnRUXl3IgsI5EQc3NTFBdv\nIze3kMbGh+joOI/D0QekrMuRkS7Ky3emP9PW1oLBkENBwV6Wl12YTNU4HL2oVEKs1h0kEglcrj4a\nGh5nfn6R3t5LjIxcxGrdTTQqp6HhcxQWFjE93cXs7CRTU70kkwl0OhW9vScRi9UUFW1HJlNQVlbH\n1NQEanUew8NX6Ox8DaXSwspKDLu9kqqqnZSWVqLXW0gmFWt1hIssLU0Riy3R3v4qU1N9VFTsIxQK\nkZNjIzs7k8xMDTU1R7Baj5BMqjAaG9Fqa1CpjGg0hSwvuxgbu4DX60QkUqBWZzI9vci///vfA6yV\nR4xRUbG5Ns7jWWR+fpqSkpotaz0wcIWCgnKk0s1eFKVShVic5KGHPksyKebkyV/R23uZSCQCpA40\nOl02RmPmmpqMCKlUilwuIxj0kkjEefrp36Wx8VHC4QT//M9/zZUr3cTjEiSSMmKxBZaWVhga+g1z\nc/0kEiq2bSvhT/7kyzQ01CESiXA6x8jIyNkkw5dMLmE23/+E+UHkEdxLJBKJ28r0VSqVfOpTn+Iv\n//IvCQaDnDt3jldeeYUvf/nLd/Aqbw/3h2nyAeK9kMnQL0/j/unL1Pzyv2PIuH0N2FslsNuVtLtX\nhLk+jsMxi1S61a2dSuiJk5WVuybDFSKZhF27jjE1Ncwvf/lPZGfnkkiUbZnf2FgvJlM+CoWKSCRC\nZmY2e/Y8zuXLb+H3+1AqtchkUrKyUtmpKYstj8bGegYGmiksrOf8+RNoNFBRsQOpVMnkZDeJRITi\n4p1YLEFOnPhn4vEYkYgau72GxcV+8vJKaGj4DH19ZxkebqG9/ThqtYoDB76A0znD8HAXdnsV0egq\nPp+Tzs5XMJvtZGSoycjIRKstxOmcQK/PRCyWYLOV4XJNMTbWxvT0EJWVTVRWNtHY+An6+tro6enD\nbK4gkVgBRNhsxxAKxej1OQwNncDjmUOnK0KhEAMilMoCVlZG6e09iUAgIR6fQyw28s47J1hZmUcm\nU6BUGmlu/hVSqRSJRIpEomBiop/sbBvBoBepVJZe75UVF8vLLpqa9tzw/q2sLNPY+BASiRSvt5L+\n/nZOnvwZVmsF4+N97NhxYx3R/v4W7PZ6lEoFSqWCeHwVpzOETGZErd6JRBLF4wkQjV5GqSxELjdj\nNjv4gz/4Bnr9tbjr/LwDi+Van9lIJIRCEbrviv8/KnivJH+n9pfvfe97fO1rX8NsNpOZmckPfvCD\n+6akBB5QwrwVl+xc6xCDX/+PCL71lzQcKr7p+251/FvpwxkIBEgmk/eV+/VmCIfDOBzLGI1b12pi\noo/c3GKi0RiRSBipVIpCkUrqCQZ97N37GIFAiLNnX2L79qNp1Z5EIsHExCD19Zt7Zur1Bg4ceJKL\nF99iaOg1nnjiaxvGmkAqzcPnc+P1TqPR2MnKkjE/34rHE8blmmZmpp3KykcAAePjl1AoZCgUFcTj\nYTo6foPFUkhV1WPE43Gys/Po6RlCKlWh1eYwPHwOsVjLxEQvzc2/RKEQkptbSlPTc3g8i9jt5Swv\njxAMOhGLDVy5cgKdTofXO4taLcdqbWBxcZxoNIZGY8LjcRONRjEaCxEKo4TDQUKhFZLJlE6sVptN\nMikhEvGTmalDp7MyPX2FurrP0939JjMzbeTlbWdm5grJZBShUMvo6AT79x9ZW5fkmjpLiImJAeJx\nEXK5gvb2ZsLhIHq9kczMPKanB7HZapBIxFxv6Q8OXsVqrdwgOK5n167DuN2LnDr1EgsL09hsM2g0\nuk1qT7OzDlZXI2kVoUgkwk9+8g84nZMolY3odHn4fJcQicJotbXIZDLq6rSYzXtQKtWEw+G1hKI4\nbrdrU12oz+fGbjd+KCy3j7qFeSdah2VkZPDSSy/doSu687i/d997gHcjL1fvBC2PP0/g2d/jC392\n7IbvudNjrmNjH06FQnFbrbfupYU5M+MkHs+4Ts5uvYnxGDt2PEosFkWpVKWtmkQiwfT0MA0NRzAa\nzQwMdHLmzK+pqdlLbm4xs7MOpFIlZrNly3wUChW5uYXMzDjp77+MTCZDLlexsBDBYDDR03MCuTwT\nny+IXB5m795nWV2Fkyd/gsVSSDwuoKfnFCMjLVRUPIHZnMXQ0ClUKhvBoJDXXvt/iUQWEAjAYLAS\nDEYYGRkHlgiHgyQSETQaCxkZhdhsjeTn2/F4Vujra0GhkOL3u5mfb0MqVeHzadm+/RHUagMSiZjR\n0X46Ol5lZmYCo7GI4uIajEYTPp+H4eFuHI7f4HbHKCioxetdxu+PolbLWVgYQSAoJZkU4vXOIBJp\nUSqNGI1ZGI1P09X1S5JJAfPzc3R2tvDUU/9D2j0eiYRwu50cOfJ0WoUnFFplfn6GwcE2+vpSSUjx\neIiiosp0NxOXaxqfz8eOHVvjSWq1FqVSwSOPPMf8/ASjo78gP9+G1VqOUqmlt7eF8vK9iNda373w\nwt8zNDSPXF6IVFpMJDKJx9OPQrEDsTjEc88dIxabQ6u1IJfL0wlFMzMjKBS6tKRlStHItdaG7GPc\nDdwKyd/rphIfBD4mzJuQyXhzN12f+yP8T3yOL/zD796TMdex7n4Vi8V3RNLuXhFmMpnkwoUeJiaC\nGAyDZGVZKSgoRSqVMTrahVyuw2DI3GK9zM9PIhbL0/0Uy8vrMRqzaWs7yeLiDCsrLqzW6huOGYlE\ncDj6ePzxZwkEfFy9eoZQKEJGxkN4PPN4vTMIhVloNHLicRkWSxkORwfFxeVkZFTyzjv/zvR0K0VF\nu+nufhOBYAWNRoNUmgQCFBdrycjIQiKJo9dL0eszycurRyIRMze3wuDgLE7nEgsLTs6ebUckUiGX\nq9HrDbjdQRQKDZWV+/H55pFIzAwP91JQUIpKlSpu12pLmZlpRyAQYTAYmJ8fIBhcIRIJkptbQl9f\nG0tLS+kyDp9vAIPBiMNxFZFIwOjov5GdvRuj0cb4+CX27XueYHCJzs5XkMt1OByj/Nf/+id885vf\nB6Cj4zSZmfmbJOvkcgUWSx6Dg5f53Of+JxKJBKOjfTgcvWRnF1BYWEFPz0VKSxtu6OEYGrqKyVSA\nzVaKzVaKx7OMwzHA2bOv4fW6EAjkSCRCgkE/HR3NtLQMEosJSCSMwAIrKyNADnZ7Dr/7u89gNmfx\n5putVFTsTScUiUQilpamycuzpxOKIpEwQqEXlaqEYDCYft+6uML9Zs19GC3M93rNkUjkPbUA+7Dj\ngSTMd3PJJpNJmv/Tv+L73g/g+T/iC//7rav5vBfciMA2StqlCtw/XA+g2+1GoSjg6NF6ZmenmZ11\n0NfXgl6fids9T0PDkRvOaXy8j4KCsk2vmc0WDh/+FM3Nr9Lf30Jt7YEbjjky0oFOZ8FgMGMwmJHJ\nZPzmNydZWOjF6x1FJFKSn5/L0lIXlZWPsrg4zdTUZYzGElpaforbPYbVWoZa7aagYIV9+3ZSWFhI\nUVERBQUF7+mwEgqF8Hq9zMzM0NJyle7uCWZmXEgkcgIBP7293SSTEZLJASIRAT09LSiVCoxGI2q1\nEputDIejm8XFMSoq9mO370SrNZNIxEkkforDMUdJyR4kklTsLxDwIRSq1pR4pCSTQcJhcLnmeOON\nfyQjw45abUYsVhMIQG/vID/+8d+wd++T+Hx+Dhw4vGUOXV1nMBjyyMlJ6f5mZmYTj8cYHx/mjTd+\nSiDgo6SkLt36aR1+/wpTU2McPPhM+jWdLoO6uj3Y7eUcP/4C+fmVDAx0sbAwzptvvsHysphkUoJa\nLScWcxGNxqitbeD5579ERkYGMzMjqNVGlErNhnF8TE4OodVmMTExjFgsJZmMYbNlIJfLEYlE6d6v\n630d1wXEN5Lox3jvuJVD9oPQ2gseUMKEzbWJ1xPmTOsIFT/5PvWP197VsTeOeb2k3Z38cd8rC3Nk\nZAa5PKXgY7Xayc7OJxj0MzjYzujoIJmZZlQqJUajJf0Zv38Ft9vF9u1b9UplMgU6nZbKyn2cP/8G\nJSVV2O21pJYmuVZfOMi+fakO78lkkrm5BcrLH2FxcYaxsWYkEit+/ynEYmhre53x8Rb0ejMjI30o\nFAL2729i3z4bhw41kp+f/77mLZfLkcvlmM1m6uvrgVT9WGtrK5OTU0xNzTE05GB1Vcbk5BxqtQ6R\nKEYslkCtzqWoqJKmpmdpa3sdp3MUn28VsVhGJBLBaCxCLs/C43FiMFgpLd3N+PjptaQqEYnEMgqF\nmJycXej1OXR2vkA8LkGjySIUWkKpzGdlpZ/XX3+F7u4WPvGJL9Hff5mMjCyysvKRSuWMjfWwsuLh\n4MFPbpqXQqGkqKiYiYluamsPMDzcQ3//FQoLy7FaK5BKpXR2nsdqrUap3No8vbPzPBUVu6ms3E4s\nFuNv//bPCIV0iERxtNpCxOIAoEenC/JHf/T1tAD59PQwFksxKyuLTEyMsLAwzsrKLCsrHny+OQIB\nIdFomNXVZerqGjf1d1x/Dt6tx+M6id5rK/TD6rJ8L2vk8/m21Jd+FPHAEuY6BAJB+kQKqVPpl177\nm3s25s0k7e70eHf7x+r3+5mY8KPV5qRb/0gkEozGTCSSJMeOfR6ZTM6VK6fQ6fRUVu5GqzUwOtpN\nTo79hpZnIODF5Zrj2LEvEAoFaW09w+ysg8rK3ahUevr7WzCbi9BqU/WFHs8ii4ug1+txOF5EpytA\nLpcxM9ONyVTK3NwwKlU+4XCU2loFX//6F6moqLgrJ2OdTseRI0fSfycSCbxeL0NDQ3R0DNLZOYzT\nucjAwAR9fWcQCkUkEknCYS8TE50IhWqUSjUiUWodhMJcHI5OhEIpoZATtXoRo9FKOCxmcLCZYDAB\nSDCZtq25WCtwOM4gkWgQCktwuQaYnZ0jFAogEkmYmBikq+sckMDtdnHkyGe33INEIkFr6ykKC6uo\nrKwH6nG5Zhkd7WNk5AVEIiHhcIJdux7bMv/x8T5CoShlZakDxE9+8l36+2cRCi3IZF4ikSUUimK2\nbROzd+//mCbLVKx7FL/fj8PRSk6OjcbGQ4yPd6NQGCgvr0tf2+LiZQoKtnbCWSfCjZbwurjCes/W\nSCRCMplMW58bSfRu4qNq5X5sYT4guNc1iutjJhKJdEPnG0nafdgwNjaFQJCFUCgkGo2iUCgRiUQE\ng37m550cPboPmUxBUdE2hoe7OHv2FXJy8pmednDo0Kdu+J1DQ9dEuqVSGYcOPcnwcC8XL76NSqXG\n43HzyCNfAlIb4ujoOAqFjba2N3A4OsjNLSORCHP06B+xuDhNMLiMySTmk5+s5POff+aeZRxHo9G0\nItN62yNIFXp3d3fjdDpxOMaZmXESjeoIhQrweAJEIgkSCSkuV5RIJE5mZgErK4solSYiERc+33p2\nqJbh4bNoNAWIRHHc7hGWl32IREq83jGiUTFGYyGrq35+8Yuf8Id07blIAAAgAElEQVR/+Bfs2/co\nU1MjXLr0Nrm5pXR1nWNkpI3c3BIKCkqBVD1mIiGivPyap8VksmAyWXC75/nNb/4NnS5VsmI255Gd\nXUBGRjahkJ++vjZ2734CsVjE22//nNOnrxCP5wIrRCIBLJYKvvrVJ3G5eigsTI3n8bi5cOE1XK55\n6uoOYLVWIBQKSSQSLCzMsHfvtVpSn2+ZnJz3HrbYGAtdx3p7qvX+jqFQKP2+dRJ9kF25txJz9Xq9\nHxPmRxk3c8nebSSTSWKxGNFoFLlc/q6SdncKd3uOwWCQri4nWm01AoEAuVyR3piGh9vJybGnszQl\nEgkVFY0UFW3jrbd+htM5ics1jUq1WVw6FAridE5w+PBnNsxDSGlpNbm5Rbz44g+JREJ0d5+noGAb\nQqGQ6ekALtdJ2tpepLT0MQwGI3K5iuHhNhyOUzQ1lfCNb3yOkpIS7gU29lxVKpVbCFqlUrF79+6b\nfs7j8aRl065cGcJiqUYslhCPx3jrrZewWLJRqzNIJOwMDnagUuUzOelkcdFHLOYhEEgSDgfR6XII\nBHwIBAlCITHf//53OXToCiZTHocOfRKTKZtEIsns7CTT0+MMDbURiYRJJODRR5/bEsdNJBL09l5m\n+/bDVFQ0srQ0h9M5SXf3Ffx+N07nONnZRYyMtDI01M7LL/+GeLwAqVRKJNJPVdXDfOMbvw+EWFlR\notVm0Nt7lcnJbqLREIcPfwab7ZpK1NLSDBKJAq32Wq3l6uoSBQWZt5VIs+6iXb8v1yT+EmudXGJp\nV+6dSCj6sCX93Mr13kgH9qOIB5Yw13EvCXNd0g5AJBKhVG5tnnw3cDfnGI1G6ejoIZEwo9XqCAaD\n6f+LRELMzIywf/9TWz4nkymQyaQ8/PBnmZwcYWJigJqapnR8c3Cwjexs+w1jY37/ElptBkePfo7J\nyRF6elq4dOkSoZAYv99HRkYlIpGM0dErhMNC9Ho3zz9/iK9+9Sv3pONDMplMWyypWlPFLW2UQqEQ\npVKJUqnEYrGQSCTIzMzG4YhiNJpJJBLs3/8wgYCbhob9iERC1Go5mZkZlJZ+gdnZGS5efIeyskZO\nnjxDf387Uqkev9+DQCBlaWmFX//65xw4cIDt2w+ujSkgN7eQ3NxC+vtbuXz5HCaTmfPnf01eXjGF\nhRXpe9HbexFIHXyEQkHa6gRoaXkblcpMWVkd7e2nOXnyLEJhHhJJDjBGVdUe/sN/+CZyuZzLl4+j\n1WZx5szLyGRimpo+yblzL5OXt7mG1+kcw2y+JoGYepbdGI2Fd/S53miFrluuG2OhHycU3Ry326nk\nw4KPCfMeEGYikWB1dZVIJIJSmdLeDIVCd3XMu431LinLy8ucPNmBQpGHWCxGrb4muD483IHJVIhG\ns7WB9Ph4H0qljpKSSuz2ChyOIVpaTmIwZGK31zI9vTnzcuO4vb2XKSlpQKlUU1pag0AgYGIiSiQi\nZ3j4PCUl+5mZuYhAIKS6Gr75zT/FarXezeXYdH2rq6skEokbWpXvB0KhELvdyuhoK2JxquawpGQb\nJ068TDi8ikKhxGYrpb39PIWFZWi1etRqHcnkKs8//zVaWs4zOzvD5GQO3d1XkUgshMMuLl7sZGHh\nzzlw4Any8+1kZxcwOppKAHrssc9hMmWztDTPxMQop0+/iE5nIB6PEQxGOHToaYTCzSTR338Vny/A\n/v1Pcvbsy7z++hv4/SJAh1w+Q0VFGc8//xdr7cZCjI8PoFJpqKjYgc1Ww9TUABqNactBcmFhisbG\na3XQgYAHs1mGXC5ndXX1ttf33SAQCO5YQtFH2cL0er0PhNrSA0uY6XZed5EwbyZpF4vF7qkb+PrE\nptvB9XOan18hN3cHoVCY0dFUZ4/s7Dxyc+2Mj/dz4MBW6zJV59dNTc3+9PXZbGXk59sYHOzkxRf/\nGb0+84bW4NhYDyAjP99OPJ4gFPIzM+OjqOggb731D+zZ83kmJi4Tjy9RX6/ir/7qW+mEkruJ663K\n9YPRnYJer8dkUuD3e1GrtSgUSnJyrExMjJCZaWFubpqpqQl+9rN/wmDIJBgM0NvbxujoILFYDKdz\ngsbGXdTVlXLq1Jt4PFamp/vp65vA5/v/aGw8iNM5ic22jV27Hkat1iIQgMmUjcmUTTS6kwsX3mRw\nsB+z2czly6+TkZGFTmdErdbhdDqYmBhl+/aHeOGFv+X06au43UGEQgUFBQmeeeY55HI1Wq2eSCTE\nm2/+mNXVVR577MtotSkdWKdzDIvFtmnebvc8yaQAg+HaQSwQWKKi4oPRjr2dhKKPMvx+//vOMv8w\n4YElzHXcLcJ8N0m7ex03vVPjXT8nr9fLyIgfq7V+bQNpYGnJxfz8NKdOvUgsFmdmZhSbrRKp9Fqz\n6PHxPmQy9aaOE5CKbxYVlTI62kVWVjGnTv2KrKxU2YXRaCEUCjI83Elj4yNASglpcLCfeNzMhQsv\nkJNTRmfnaxgMXr7+9cN86lM3Tia609hoVapUqru2OZaXF3HmzDBqtXbNPQgnTrxCdXU9Fks++/Y9\nzPT0KI8+mmrXdfbsCcxmM/n5RbS2XmJ21kFOTiEFBfkkEglycpR0dXUyPr7C4uKLPPfc71NW1sj4\neD+dnecpKLBTUFCGXK6ks/M88XiS5577Q6RSOS7XHG73PE7nBFNTA4yPT1FcXMbf/d0fMzGxSjSq\nRi4Xsm/fLr785T/g8uVXqK5uYnFxhra2dwgGV3n44WfTZBmJRFhamqO29tCmOc/OjpKVVXTdSrjJ\nzEwpDt0PVtt7TSgC0kT7YXDl3moM82ML8yOMu2VhvhdJuw8iM/d2cH2d6LpcWWvrECqVddNpW6lU\nkZ2dg8lkobb2ADMzo7z99s/Iy7NSUtKIVCpneLiD+vojNxyrv7+FoqIaamp2EQ6vMjrax9WrzQiF\nSZaXF9DrcxGJBECChYUpRkeX6O4+zcqKg8XFEWpr5fzVX/0ZeXl5d30zXbe2w+HwXbEqr4fZbEah\n6Gd4uJ+RkV4MBgPl5bXY7RVYralM07m5GWZnJ7BYCqmoqOXKldMUF1ewd+9hTp4MkJ9fTEPDPo4f\n/xVWq4zCwhwuXmxmdtbLj370A/R6OZ/73O9TUlLF7OwkPT0tzM87sdmqaGw8kE6SsVjyyMgw0N7e\njMlURGlpA9/73t+wsCBEqcxDp1vk2LFneeqp53A6R1AoDLhc4zgcfRQWVgED5ORY03ObnR1Bp8ve\n0mpsbm6CmpprohXBoA+9XnBPvAa3gxslFK1n4SYSiTueUHQ3cCu/n49jmA8Y7sTm+l4l7T5MFuZ6\notL1daIjIw6WlpRYLFtdY93dF7DZqsnLs5KXZ8Xv9zI01M3Jk78kFguh01nSurAb4XbP43LN89BD\nh4BUYlBFRSPbttXR39/G9PQcZrOK1tZmQqEA4+PzLC+rmJ3tJyfHwL59mXzrW/8rAoEgbfGJRCLE\nYvGmTelOIB6Pp+Nnd9Oq3AiRSERmpoLW1jZ27jyA0ZjFzMwEQ0OdacK028sZGurBYinEaDSh15sY\nHu6mvLyeqqoddHVdxGIp4PDhx7l06R0ef/zzlJTUMTDQzuDgMAMDvfy3//ZdlEoJNTU7qKs7xM6d\nx4hGI0xODtHdfYFEIr4mOLFMIOBlcLCX5eUYAoGBoiIrVquG7OxDfPazvwfAwEALkUiUZDLO/v3P\nMDrajsVi3xQDdTpHycnZnL3s8SwSj8cxGq/1ivT5Fqmvv/9beV2PdSL8qCYUfVyH+YBg/UG+HcJ8\nv5J298qd9H4IM5lMEgwG04lKUqk0fa1TU1OcOtVPYeHeLZ+bnBwkFApRWnpN+1Wt1tLQ0ITVWsxL\nL/134nEhly+/SVlZA3q9Kf2+7u7zlJQ0IJWut1BLphMrJib6eeihT5OXV0QymWRgoIvZ2RHm59/C\nZtPzO7+zj89//tNb5hCLxdJxpVgstmkzEovFt7whbbQqZTLZpnW5F6ivr2Nmxo9en4rpWSz59Pa2\nsbDgxGzOoaDAxtBQT/rviopazp17i6KiMiyWXKanLfT2XqW+fi8VFfVcuXKGAwcexWg0kpVl4VOf\neo7m5rfp6emgv3+I7u5OZDIREol4bb4KfD4fPp8PgUBNPC4nFpOQl1fI7t270Gr1xGIxjh37IgBX\nr77NxISDpqYnqajYDiSZnR1nz55rqkKRSIjlZReNjamG1aHQKsvLi/T1XSYaFTI01IVUKkMuV5JM\nLmA23z8NhW8F1//e72RC0b243nfDxy7ZjzhupcXXzfB+Je3u9xNjJBIhEAjcsPdmIBCgubkHlyvM\nyMjP0Wp1mM0F5OeXIhAIGRhoZdeuR7Z0K4FUqciuXQ9TWlrD6GgfFy++hVqtwmarJhQKkkiIKC6u\nWHt3iiyTySRdXWcwmazk5aViWfPzU7zzzjl6ey9RUCDkO9/5Q2pqtjZCFggESCSSTSf6dXfYOokm\nEolNFqhYLL7p/fkgrMrroVAoKCoyMTW1iNGYEoqw2bYxMtKL2Zyz9nc5w8NdmM05aLUZZGXlMzjY\nSW3tHqqrGzh9+lUWFpxYrSV4PCu0tDSzZ89RBAIR3d0tPPnkU3z608/S399JT08Xc3MuVlaWWV4O\nIxJFSCQ0yOU5FBYWIJeHMJsLyckpoqyskbGxdgoLa4Akly+/Tl9fKw0Nj1BVtQOAqalhFIoMdLqM\n9Jymp0cQi9X09bWytDTF6moArVbL5GQfVmsV4fAKfn8Uv3+Z7GzQaK7Vrt4PMcw7hftZoei3wev1\nfuySfVDwfgjzdiXtbteqfT9j/TZstJTVavUWSzkYDNLc3IFGU86BA2bi8Tjz806cznFOn36R6elR\nrNYq1OqtJ83JyUH8/gA7dx5DJBJTXl5PaWk1ExOj9Pe309Fxgd27H8LlmsZgsGywZodYXvZw+PDD\n6b9/9KPv43LNcehQLv/lv/yn9+wKullyxvpmFA6H0/d0I4mm2khFPzCr8noUFxcyOtoOpJp0FxWV\nMDLSg8fjRqczUFRkZ2SkB5drDpMpm4qKWk6deo2ionK0Wj2VlTvp6LjEoUNPUF3dyIULpzl37k12\n734Ig8FAa+t5VCoVlZX1yGQyZmdnmJpykpubj0KhRi6XEY2G8Xo9hEJyjh79DFlZeYyMtBOLiVhd\n9XD69C/QajPJyiqksfGaJ2JyciAttB+JhBkbG+DMmV+SmZlDbm4udXUHyMjIwu9fIRhc5eDBT6YJ\nxOWaoKoqdo9X+87h/fzeP0iFomQy+Z5DGKurq/esrvyDxMeEya0R5nr94e1K2t3LOOZvGyuZTBIO\nh1ldXb2ppby4uMiFCwMkErlkZJiBVEwtJyef7OxcLl/2IxTKkcsVnDz5Ajk5Nuz2GvR6E4GAl97e\ny+zYcWyT5SkSibHZypibG2bfvk+iUmno6mohEFhGq9UjEAgYHu7Hbq+mre1tlpddnDr1BtGolK9+\n9SB//MfP33ZMct3ddX1caV3pJRQKpTc6iURyX5QHZGRkYDYr8PlW0Gj0iERi8vJSJNnYeACRSITd\nXsngYAcm06MoFCqs1jJ6elrYu/cY+fmFzM5O0tV1merqndTUbKet7QJdXRfIz7eh1eoYGOijpaUF\nq7WUQ4c+TW5u4doGHSEej9HefhaLpZwdO44gEolxu2dpbT2JQpGBx6Nh9+7H6e+/iNVaTTKZIJEQ\nEAwG8HjcVFWZ6ei4gNM5hFarx2TK4Yknfm/TAW1mZhizuXDT/Y3HF8nKujcqTfcz3q9C0a3+Vm6V\n4O+FKMgHjQeWMG/VJbuRVGQy2W1L2t0vmbLrST0CgeCmlnIymaS1tYeVlRgyWQCvdxm1+lpNaWvr\nO0SjcR555BlisRjBoJ+ZmQkuXnwLuVzC8vIiZWU70/0uN2JkpJNgMMbBg/sRCoVUVDQQiURYXJzl\nwoXXKSioJSurEIlETFdXF9nZ23juue0888wn7soPdD2uJBKJCIfDQKobiUAgIB6Pp6Xu1jeijW7c\ne2l1pkpMBtOiEHb7Nt5559cEAn5UKjVFRSWMjfWlrcyyskpOnBhjdnYKiyWf6upG3nnnFbTaYTQa\nPXK5kitXztPX18vOnQ/z9NO7EQqFDA520tHRzMSEEaMxB6VSTVfXJSSSDMrLixgYuIrbPcvgYCdq\ndT5HjjyDwWDC41nE611h+/aUMHsikWRo6CrBYJQzZ14kN7eQAweexukcQybTbPFmzM2NU1FxzTIN\nhYKo1bEPdWLJ3fIofdAKRR8lt/hvwwNLmBvx28hrI6lcX1N5t8a8k7jRWBvLX65P6rnR548dO0gg\nEGBpaYmpqTmczhGiURXDw33IZBr27DmKSCQiFouhUmmoqmqgvLyWN954AY8nyORkL7FYkMLC8nSi\nz9LSLAMDnTQ1PbFGfgIEglQ95uRkLzZbDY2NBwkEfPzLv3wHhULCt771BLt27byr67XumhYKhajV\n6i3EvNEK3Vhjd31G7t0uMVGpBgiFgsjlSuRyBTk5RYyMdFNbuweRSITNds3KFInEVFQ00NNzBa3W\ngNfrQas18OqrP6OiohartYzf+Z3/md7edhYXJykqKkGpVNPYuI9IJMzs7BRzczNcuPA2kYgUu93A\n1NQQKpUOhUJHfv42Hn7482kPwshIOwUFVSgUCgIBLwMDlzl37nW2bz9MXd1BZDIFyWSS6ekh7PYd\nxOPx9Hr5/SuEw5G03B6A17tIVVXmh149517hTiQU3craPij34WPC5Obkdb2k3Z2OXX1QhPley1+u\n/w61Wo1araawsJBIJML4+DgKhZlIRInbPYteb0IgEKWzU1tbT6HVGnn00S8SCHgZHx/m4sW3kErF\n6HSZjI8PUF9/FK3WwMZlbW8/TSwmory8gkuXjtPZ2YxS6ee73/1rTCbTzS/yNrHuRYhEIsjl8pu6\n29c3I7E4lTm6vhldn0y00QK9kyUtkLIUqqpstLRMIZenkqHKyio5depVyspqkcuV2GwljI31p63K\n7Owcrlw5y4sv/hij0UReXhFHj36KublJbLZypFI5O3cepK+vkzNnXqG2di8WSyFSqQyLJY/x8QFq\nag5RX78/XRISiUQ4deqX1NQcSZNlMOhnbm6aXbsqaG19i/n5aRQKPRUVO9m378n0HDyeJUKhMLm5\nKZ3YdStoYqKPzMz8tdeSCIUCEolFsrI2a8x+jPeO95NQtJ5099twP3jK7hUeWMJ8N5fszSTt7tb4\n9wrrWZ7r8VepVPq+v0sqlVJaWkppaSmBQIDp6VkGBvrxeoUIBFrGxjqRSNTs3p2yPLXaDGpqdlJd\nvZ3JyRFOnfo1YrGK3t7zjI93olSqEImk9PdfIZmUkpmZyauv/giJJMKhQ2X83u999a7GSGKxGKur\nqze1Kt8N65vRxvVcP83HYrF0SctGd+/7KWm5Hrm5OUilI0QiYaRSGUqlmuzsfIaHe6iu3olQKGTb\ntlr6+tpwu904HAMoFDJWV8VrCT7m9NwvXz7Jnj3HEIvFVFXVYTSa6e6+zMTEADZbFb29rej1Vmpr\n926qn0w1oy7AYrlGeleuvE4w6Kel5W3y8ys4cmQfnZ2nMBg2xx+npgbJzd3cCzWZTLKwMEll5f61\ng0iC1dUgcnkIlUqVtkQ/jPGy+80K+20JRcCmhKKNsdCN83hQEn7gASZMuHGLr3eTtLsbY99LeL3e\nOxJ/vR4qlYqyMjslJTZmZma4cKENg0FKZmYx0Whow4aYxONZpq/vCo2ND1FZ2UgkEmZlxY3f76W7\n+xxisYHGxv243Q6MxijHju2ltrb2Xce/HayXBqV6eCrecw3tb8NGK3R9nI1JGRut0PcrrCAWi6mo\nKKCjY46srBRhlZRUce7cG5SV1SAWSwmFVunq6mB5eYn9+x8lKyuP4eE+urouceBAyhVeW7uTS5ea\nuXr1NDt3HkEoFGKx5JCZ+QS9vW288ML/Q1aWlcLCWvz+ZdRqPUKhcE0ab4odOx5hcnIAl2uKubkJ\nxsdHOXToc5SWViGRSAiFgiwuzlNf/9Cm63c6R2loOLrpNY/HRTwO2dm5CIVCkskky8srlJeb0yo5\nQNq1CKTX8WPcPjYmFEWjUZRK5aZndz0euu7Gffvtt8nLy3sgSkoABL9l0/5I29r/P3tnHiZXWab9\n3zm1V3VV72u2TndnIQtJOiSEJCwJuzAqIjoojqgDIsMMLvPxOV7oODo6yozjKJ+iKOjAoDOKgsMm\nEJYkZCEh+9bZ0+lOeu+q6trPOXXe74/Tp7qqu3pLekvo+7py0fRSdbZ6n/d5nvu5b7MEEY/HU0Pt\nA0najSQikQgWiwWn0zn4L58HzA2Apml4vX3JFSMNkxQjyzLNzS0cPdpEZ6cG5NLVFaSubg+XXHI5\nNTU9w+eRSBfbt7/eXYa9BIeji3nzSqisnD6q18fMKs37MNZZS3o5zCznmgtRehl3oOcwkUjw4osb\nyM+fjdVq3NsdOzbR1RUgkYhjtVooL59JQ8NR1q79EHa7HV3X2bjxdYqKipg//zIAkkmNzZvfxOGw\ncdll1yDLMpFIiM2b11FWNhefL5+mpnoCgXZUNYHVauP48QMUFEyloKAYn6+IoqIpBIPNgINly9ak\njrGubjuhUIRly65Jfa+t7Qx79rzDddd9LON89u17B12XWbSoZ9ayuXknN944KzUYb143k8Gcntmb\n2f5Ey0KFEEQiETwez4TKMvvDQMdrVk9isRif+cxn2LFjB4qicP3117NixQouv/xyli9ffk6fXUVR\nuP/++1m3bh1+v5/q6mq++93vctNNN43UqQ0VWW/S+zrDNGHW70er/JoNo51h9ta01TRtTHbh5nkZ\nA/aVVFbOoKuri7a2NjZtqmPRohk4HHFaWvYCVlQ10e19Wcoll1RSVZVHefkloxrYRyurHC6yjbSY\nwgqappFIJFI9pfQgmr6AORwO5s2bxoEDzZSUTCMcDuH3B9i9exO33vpx5sy5FEmSCYWCHDmyhwUL\nliHLMsuWrebtt1+kpGQKxcXlWCxWVqy4hnff3cDWra8xd24t27dvZPr0RVxyyWIAZsyoAUBVFfbv\nfxeHo4Arr7wldfyKorBu3U5Wr/5w6vh0Xef06Tpqa3vsuQBOnz7IlClGidbY1IVQlATHju1j4cIr\n6ery43LloGkJcnOTGexYc7G22+0ZPWSznJiehZrXb6IE0AshWKZjoB6+1+vl2WefZceOHTz55JPc\nfPPNbN26lWeffZZf/vKXLFy4MMsrDgxN05g+fTobN25k2rRpvPTSS3zsYx9j//79TJ8+fSRO6bzw\nvs4w4/E44XA4lV2OpbRTLBZDCDEqtX9VVVMZrMfjQZZlAoEAXq931INmIpFAVVU8Hk/G4pUuQZhI\nJEgkEqm+XjKZpKCgYEwCuqqqxGIxrFbrsI2dxwPpZVwzG+0trKAoCi+99A4dHUmOHdvPlCkzSSQU\nXC47ixcboxnhcIgNG15m9eob8fmMUZTTp09y6NB7XH31rTidxnNoZJpvsXPnO1x99R0sXnxFn2Pq\n6vLzzjuvsnr1R/D5ej4zdXXbCQRCrFjRU2ZtajrOoUO7Wbv29tT5tLY28vrrzzBt2iUoSoREIorD\n4UBREpw+fZJ58xahaSqJRAyLxcZHP7qY2tpFqU2g2YMfqF1iElbMZ9AMqukZ6FgGUZNAONFF402Y\n8+Y5OX0N3Htj/fr1bNmyhe985zujciyLFi3im9/8Jrfd1tcfdxQxmWH2RiQSSTEdL3RDZ+j5UJq9\nh96lqrHomZrvY/aYepcUJUlKOZ6MJdIX2/HMKoeLgYQV0kdaPB7Brl11LF++hqKiUhQlzptvvkBN\nzQJycnzk5HiZOfMS9u7dyurVRnlr+vSZ+P3tbN/+FqtW3Ywsy3R0tBGJBFm6dC1nzx7B4bAwa1Zt\nKjjpus7u3RupqlqSESwVReHkyUMZGrFg+JeWlEzj+PE9tLTU4/e3kUgkkGUHM2fOIj+/LNUT3bFj\nHVVVi5k3rzb1Xg0N71BdXZlRPvd6vYNudNJttMzXgp6scyJnoRMFQ91MjqYsXktLC0ePHmX+/Imh\nH/y+fjp8Ph8ulytFLhhLjGQAM7O2YDAIQG5u7nkxYM/nOEwjZVMNaajU9NGEqqrdYuHSmPRxRxNm\nOczhcODxeMjJycFut1Nbu4h582pwuTzdQVSmvLySffu2IYQRHObMWUA8rnDq1OHU6y1cuBRJsrNr\n1ybOnKnnvffeYdGiVaxefQOrV9+C39/Jm2/+N4cP7yQej3Ls2F503cHs2ZnavSdO7CE/fwp5eYVo\nmkZLSz3btr3Krl3vcOrUPtraWqmomMPatX9JcXEpq1ffyowZ8/D5ClICGC0tDUyfXpN6zWi0i4oK\nDw6Hg2g0itPpPGcLtfSNh91ux+l0YrfbsdlsWK3W1EZEURRUVU1l9CNlvH6hYbjWXqMhKKFpGnfd\ndRd33303s2fPHvHXPxe8rzNM84EYD8bqSL2nOWSv6/qArN6x6JmalH+T/m/qs8LYDvWb0HU9RUIa\nrIR3ISLduLqoqIilS2ezf7+f4mLDIHrOnIW88cbzNDaeorCwFIvFwoIFl7FjxwaKiyvweLzIsszl\nl1/Nc889zd6927n11rtTggE+n4+VK9fS3t7KsWOHOHjwac6caaS29lpOntyP3W4QpeLxKDt2vM20\nabN5++3fEYl04fEUEAp1cumla1m9+oZU5hYOBwiFQikhfRNnzx7D4ykkJ6dn4Q2FWpk504umacMe\n9RkKhpOFmr9/rlnoRBspGUmEQiHKy/va9WXDmjVrWL9+fdZrsWrVKjZs2AAY1+uuu+7C4XDw6KOP\njujxng8urhXkHHEhBsxsps4DfSBH6xzT+0TmvBaQEZzS+3CqqmZIy43GUD/09CptNtuQXWQuFJhZ\nfDwezzCunjlzBnV1jaiqgt1uZKDz5l3G8eMHKC83hADy8wspLZ3O1q1vsXLl9UiSRF3dftzuHNxu\nHy0tDRkKOwBFRSUUFBSxfn2Q0lJDwL2zsw1VNcrBbW0NWPd6ha0AACAASURBVCw+ystn4fPlUVBQ\nghCCdet+Q23tyox7e/LkfsrLZ/Vxs2loOMy0abMyzi+RaGTKlOVjxiw1jzP9eHv3QtNnFCcqI3ck\nMFxrr6H0OgHeeuutIf3e5z73Odrb23n55Zcn1MjQ+zpgXqgZ5lD0X0cb6XOr6WSKbOivD5c+1D/c\ncYr+kJ51XexZZe/zczgcLFxYyY4dZykrMzK4qqpZNDae4NSpI9TUzMdqhSVLlrNx42scO7afrq4Q\nkUiQK664AUmS2bbtbaLRMLW1V2GxWFMKTIcO7cRq9bFixdoM4QJFibNu3bOsWfNhfL4ey64jR3ZS\nUDAlI2PUdZ0zZ46xYsWtGecUjYYJBDpZvrwaIXQSCQW/v4VZs4rGXTt2pLLQCy3DHM7aFAqFRpQw\ned9991FXV8e6devGpbU0EC6ubdF5YqyD5nDfz5yNCoVCOJ3OYbFeR7pnao4/AMMObmYfzul04vF4\n8Pl8uN3ulBZtNBolFAoRiURSM7JDEcdXFIVwOIzFYiEnJ+eiC5aqqhIOh1NqRNnOr7JyBh6PQjQa\nBox7c+mlyzl6dD/xeBQgZa/21luvEItFWLv2IxQUFJOXl89VV91EJBLhrbeep729hXg8ztmz9Zw6\ndZLa2qsygiUYHqfFxZUZwVLXdU6dOkhVVeZYQWPjEdzuwpT5tYn6+gOUlc1EkiRisXj3sxSkurpi\nJC7biGKgXqjFYkltBlVVveB7oePRwzx9+jSPP/44u3fvprS0FK/Xi8/n47e//e2IvP754uJaUc4R\n6SMPY7ULHO77nIv+a+/3O9+AmV6aMl9zJK5XfxJd6RZbA5VxL/as0mT4DqUXa7FYqK2dw4YNh3G5\nZiNJEgUFhZSVVXZ7jl5Ha2sTu3ZtZvHiK4hGQyQSMTweL5Ik43Z7uPrqm6mr28v27euYMWMOp04d\nY9aslYBMNBrDYjGqAfF4lIaGE1x11e0Zx9DYeAS7PYeSkszS7qlTB7rNpXtgzGkeYeHCq1AUBYfD\nQTKp4nZHKSrKDKwTFYNloWY/3yw1n08vdKww3JLsSAXM6dOnT+jNxcW1sgwTA+nJjsV7D+X9dF0n\nEomQTCbxeDzjxvDs3asc7Y3FYGXc9BJYMpnEZrOlZk4vJpxLL7asrIyKigY6OtopKDDE6hcsqOWt\nt15k06Z1BIOdLFq0gilTZnLo0F62bl3HlVfejN1ujPrIssS8eYsoK6vgj398CqvVyfz5Arvd0S2E\nbmxmdu/eQGFhJVarHUVRujcxFo4d28usWcsyjikQaCUUCpGfX0BnZwuaZvhqtrefIRyOYLfbcDjs\nWCwWOjoaWLiw+IK9l+m9UF3XURQFIDVK1bsXav7uRA+i/WG0WLITEe/rgJmOiRYwe/tvni9x5VzP\nb7SyyuGitzarqfai6zpWq5VkMkkoFMoQNx8rNu5o4HzUiCRJYtGiufz5z9vQtDysVhtC6EiSle3b\nN3LnnfdRWjoVgEsuuZR4PMaWLa9xxRU3ZfSMWlrOUFW1kNmzF3PqVB0HDmyjqKiM/PxSZNlCZ2c7\na9deC0gkEgqqGqOh4TBtbS2UlbWzc2c9iUSUeDzMsWP7sFhcbN78Cna7E4vFmvLI9PnKeO+9dahq\nHJfLRWGhg5tvvmWkL+mYw9zsmIpE6c/iYL1QM3iO1+dtIoyVTERMBsw0TJSAORqknnMJmGZWNxip\nZyxh9ioTiUSfhWigMm66Q8hEx3CH9LPB5/OxaNEM9uxpxGp1s2PHJoqKSrj22tu6PTIrUtdi0aLl\n7Nq1mc2bX2Hlyhux2500NTVQX3+C1as/SE6Oj6lTK4nFIjQ1NeL3t7Jz53rc7mLWr/992nW2cvr0\nUYqLa7qF/t0UFBQhyxKdnR1cd92d5OQY55NIJAiHA8RiAa6//k5sNhvJZJIzZ05QWNh6wSjiZEP6\nZqe/EvpQGLnpGaj5u2OVhQ4nYKqqOuHIOaOF93XAHM+SrIn0B7O3/utoC8APdEwTIavsDTOrBMMh\npfdGYqiqOCNpsTWSGGmN25qaKnbvPsT27SdZsGA506ZVoeuCTZva2b9/G5deagicy7LEkiUr2bNn\nG+vXv8i8ebXs3buD2trrM1iuLpeHqqo51NcLqqsXc801t2Us3i0t9ciyg+uu+1jq+0II9u/fzLRp\nl+B0ukgk4ggBkmSQfUpLq1IBxWKxYLfHWbp07nmd93jCfEYlSRr27OhwGbnpwXM0guhwiXzvB0z8\n7fYYYTxKsulQVZVgMIiu6+Tm5g46V3ku7zdUM1iT1ZdeFhpPmOXpSCSS6lUOJevurYrj9XrxeDyp\nEm40GqWrqyvFxlVVddxUiTRNIxwOI4QgJydnRHrVFouFq65axsKFcygrM0qwsiyxbNlVNDef5dSp\nutTvGkHzcioqqvjd735Jbm4ZpaV9WaqKEufQoV1ceunqPov0oUPbmT27NuP7qqrS0HCEuXMXYUhT\nS90bQZmmppPMmDGbWCxGNBolEOjA4egiPz9/3NWhzgWKoqSeUbfbfd5BbDBGLpCxITRnnEeCNDPU\nDPNCvE/ng/d1hpmO8ZrFNG2KRsLUebD3Gqxnmk7qmSily8GyyuEgnY1rXud0i61EIkE0Gs0QN7da\nraOaYZubAUVRUgviSKK8vJzly6Ps2HGasrLqlJbv8uVXs3nzOhwOV8r8WVHitLSc5vLLP0A0GmDz\n5heYP38lubmFqdfbu3cTxcXVFBWVZrzPmTPH0DQ5Q9oO4PjxXeTnT8FqtQNSSvD++PE9FBdPp6io\nJCWp2Nl5iiVLSonH4+ftFTqWSGcxn+8zOhgmWhZqYrw31WOF93XAHM+SrPleoVBoVEydh3Mc5gdt\novUqzUDicDiw2+2jclzjWcY1s1xzrnK0FrTq6ira2vycOXOWkpIpAOTlFXDZZVfx3nvrkWUL+fkl\nbNmyjtzcCpYuXU0yqXHkyAE2bXqJoqIyZs5cgKaptLd3dhN9eqDrOgcPbmPevMysM5FIcOzYfpYu\nvRG73ZEqvWqaxsmT+1m2zBCBlyQJVVVwuYLU1FyOzWbrs5E5F6/QsYB5D83Z37E+nuH0Qocj8TfU\nDPP9Zt79vg6Y0BMoxzJgmqbOQgg8HkNcerSR7fwmclY5FoEkG9LZuKbXYvriber2pi/cZhY6VPTO\nKm0226gutJIksXTppQQC7xIMdpKbWwBASUkZS5deybZtb6EoMSorF7NkiWEHZogbLKK6ei4nThxm\nx4711NXtYuHClTQ2HiU3txCvNx+73cmxY3twOvOZMqUy9Z66rnPgwBZycysoL69Aknru4alT+8nJ\nKaKwsDj1vUDgDAsXlqU2LkPxCjUZ0uPBik4nn41GZeB8MBJZ6FDXwlAodEETtIaL933ANCFJ0qgP\nzKbrv7pcLoQQYxoMzA/BRCX1jHUgGQqyiSoIIVIKLsMt46aXmMdyM2C321m9ejFvvLGdSMSGx2PY\nMXm9uQhhpb09yCWXOPscj93uYO7cS/H7z7Bs2c0UF5fR1naWkycPEo9HUNUYx48fYdasBbz66tMI\noafaDMePH6KmZh4vvfQkALJswWKROXx4L5dcspSdO9/E5yvA6y0AmqisvLzf4x+quEVvr9DRyEJN\noQyz3zxRNpr94VyyUBha0AyFQqNm7TURMRkwuzHaGWa6qbM5KjKWJJN0Ju5YChAMFeYoxXhklcOF\nJEnYbLZBy7i9y4eGoHhiVEvMA8Hr9XLVVYt5883dSNIMwuEwO3duYtas+Vx33W1s27aezs4XWLLk\najyeHnbsoUM7iMXg6qvX9BFN37r1z0yduoB582pTGwhZljlyZDszZsxj0SLDgFoIHV0XHDz4LrLs\nYe7cxUQiXQSDAU6cOMgNN1QNu9IyUDndDKIwsk45pnSjzWYbcWLeWKK/LNQ0SDDXCVVVgf57oe+n\nGUyYDJijXpI1d6OKoqSUesbrQ2Z+AMxAORE+7BMxqxwuspVxH/+vBtraEyya52HRfBe5XmORsdls\n47oZKCgo4JprLuVPf1rP0aNnWbJkNeXllQBcddXNHDy4m/Xr/5eZM+dQXb2Ijo4z3fOYH8riMHKU\nrq4Qa9bcgCRJKIqCz+eiq6udQKCda65Zk8H2jcejNDefZOXKW8nLM4hEipIgHN7NihWZykDngt7i\nFmZ/3qwG9HbKGc5sbvpzeiEZkA8V6apEkiSlssbBeqFdXV2TAfP9iJEOmGaPIxqNYrfbs+q/jlXf\n1Fw4gJQ4+Whaaw0V6QP6Ez2rHA4kSeJDN5aye38X23f7efK/m6ic5mLt6gJWLbOi6z1l3PEgseTl\nFXD99cvIzT2CzdbTf5JlmQULapk+vZqDB3fwwgtPEAx2cfXVH82YxwTDYWT//q3U1t6QWkzNueG9\ne99hzpxlKSk4EwcObKG8vCYVLAE6O0+xdGnFqPQAzU1h+munSyxmI3Vly0J1XScajZ7TbOWFAjNz\nzqZKNJBG7vPPP8/Zs2fH5ZjHA9IgC/ZFP2STvvuMRqMjYlOTTg5xu9397kbNEm3vhWWkkK1XaR6f\ned69rbVGe4zCPK6RHNCfiEgXhLfanOzcF+b19e3sOxhi7ZWF3HZzKaXFtoz7AKNrtN0V1vjJk/UU\nF9r5609OIxwOs3XrPvx+O0VFMzL6gx0dzbzzzmt4veUoSgibzUZBQTn5+cV4vQXs27eRoqIqqqoW\npMZ0JEli//7NBAJBVq++OeO9W1sb2LlzA2vX3o7dbpRew+EAknSUG25YPm5My96kLk3TMkhd5sbX\nJPZcaNWPwZCeOQ/HuCASifClL32J/Px8HnnkEVwu1ygf6Zgj642eDJhpC1YkEjmvgJlO6hmKqbO5\nax2Nh22osnbp7MP0hXu01HDSs0qnsy/J5ELEyRYJh01QlgeSlGnu3Hu33tah8MJrrbz8RhvLF+dy\n10crqCjrEeVOvw8jOYu4ebufR5+o58oV+Xz2zqk4HUaA0jSNurqjbH2vhYg6jSVzCjhz5iR79mxj\n4cIrmTZtJrqu09nZSltbM8FgB3V1OwmFIkyZMg23Owen04XFYiMWC1Fff4L585fidvuw2ew4HE4s\nFjt7977DwoWrqaq6JHWuzc27uPbaKoqLiwc69DGHWcY1x1mA1KZyIipEnSvSyUvDEVo4fPgw999/\nPw8++CAf//jHL/jr0A8mA2Y2mAuUKd6dl5d3zq9j6r8OdXg5/WEdKZwvqad338dcuM+Xvn8xZ5Vb\nDknsq5eJxKGyRGVWWYI50+zYbP0/A5Goxh9fauFPr7Zy1Yp8PvXRKeTnZV6T9PJhtmrAUMq47Z0K\nP/31aU6ejvKle2dy6bxMRqMQsPekxEtbgpTIdSQ6G2loaOOyy64lt6CCpA7utGrpnj3v0NTU3C3U\nbkNVE8TjcYLBdnbu3EBNTS25ufmoqoKiJNC0OAcPbieZhKKiwu7yey5ut4trrpnBkiULzu2ijyLS\nZyvNzWw6I9dU00nfyAx3tGi8MVAJtj8IIfjjH//IY489xhNPPMEll1wyBkc6bpgMmNmQHhSCwSD5\n+fmD/1EahBBEo9FUSWM4ZRuzZDcSc0yjKUDQe7EYyJsyG0zXBqvVmlJ6udigqiqtnQlOtTs50mQn\nHJNYUqVTWyNwD0D+7App/Oa5s6zb0MHtt5TykVvKcNizX8v+qgHZyriqpvP8Ky38z5+aufX6Yj5x\nWwX2Xq+ravDKDplmv8RtVyQp8glOnz5NQ0MbR05G6QjlUVGYS2mhD6vVxvbt6wi0NLPymtvJ8fpS\n9zEcDrBp00tUVy+hpmZexnvs27eZ9vYWrrrqViwWC9FomNOnj5GT087tt18/JjPIQ4XpV2lWiAYi\noPUu405UYYXeSJ8fHc7GVVEUHn74YYLBII899hg5OTmjfKTjjsmAmQ3mAy+EwO/3k5+fP+SHPN3U\n+Vy0I83ZsfMNmGM9KjLUzAeMTYGmaRdVVnk2ALIEeW5wWHtk0VwuV6oH1BqA7UdlDp+RWFotuGKu\njn2A0z/THOeJZxo5ejLC3R+fyppVBcjy0JRW0jcymqaxbXeUZ/7YxpQyB/d9ejrTp/StYATC8Owm\nCyV5gpuX6ti6W1dCwOlOaAskyLd04G/vpKnJz6H9dcTbO6iaPhd72VwsVjsWi41ISyO7929m5iUr\nmD37UqzWHhbwvn2baWlpZNWqD+ByGccQiXSRSBzh2msXTaj5PXPja/IOhttTHWgzM1Hs5sxzHG4J\ntrGxkXvvvZc777yTe+6556JoowwBkwEzG9If7s7OziEFzJEydU4kEqiqes67tYkiQJBtsTCfK7NX\nOd6LxUjCH4FAFAJRgSzpFLh1yvKs2Kx9zy8QgfX7ZE63SdxYqzN7ysAfqb0HQ/zimQY0TfBXd1Rw\neW3ekAJnUhds2e7nN39sQiD4q4+Wcuk8d9bNzJlOC89tsbByrs5lswTmbUnqcLzVCJrVJWC1dPec\ng53QcIiEJw/NW4qiKMRiCpHDBzj92p+IzrqM4nmXoSgasZiKrkHj4RMEdaiuXkxubiEulwdVVYjH\nj7NmzTwKCgrO6dqPBkZrtjJbZWYsdYrTYZaZrVbrkM9RCMEbb7zBP//zP/OTn/yEZcvOf/TnAsJk\nwMyG9OFcv9+fdfzDhMkoM02dz7e8aJZGzmWnPVEFCHRdT4nJ2+32VD80ncAyEXbbw4HQkyD1lNfM\nfqyiqOgWN/6YlUAUinKgIs8INL1R3wovbbcws0xw/WI96++k3k8INm3z88wfm1BVnVuuK+bKFQUU\nFdj7/N6phhibtgdYt74dr9fKX364nJWX5fURqjAX7cONEm8d8HDTkhhVZSJ1L3QhcbQF7BaoLAYJ\n4xy1SBeujhPIpVXIeT2C68k9m9C2vYHtQ59FLpma+r7SEWDXJx5EmjmVGf/0d8Tjcfz+CC0tXQih\nc8UV80eEiT4SGOvZyt7CCiahaDSZ0edagk0mk3zve9/jwIEDPPnkkxNqgzNGmAyY2ZAeMAOBAF6v\nN2s5xtyFAsOiXw8Es7c3nMHfiZJV9kZ6/yfbTr03kWi4fdDxhN58HNHVhuQtRPcUEBVWrDZbxoZJ\n0YxSrT8C0wuhMEvRIKHCC9tkYorEHauSOAcZPRRCsPdgiFffbufdnQFyPFbKih04HDLhiEbD2Tgu\np4UVS3NZs6qQuTWeAZ+Ffack3twrc8cqjWKflnY/kpwNe7BZYEahkXHG43FkXcXZcgSptBo5t4fJ\nmjy0A23TK9jv+AJSmpOJFoqw6wN/Td6VS6n55y8jTdD7CT2zlcCIWHGdC/oj2I3U5yLdRWU4Zea2\ntjbuu+8+rr76ah566KEJ+7kcZUwGzGxID5jBYDDll2jCfOhGw9R5uKMsQx0VGWukzxym9/EGQrbd\ntqkXOtFIE0IIRCKK6m9BDrcjAXLxdKTc0j7HF0nAiTbwOmFGIfQ+fCHg1Z0yLQGJO69OYh/ivkvX\nBY1n47R2KCiKTo7HQlmJg5KioZFmDjZIrNsl84lrkhT12p/VtwtiqmBGnoKmqUbVAnC1HUV4i7AU\nTUvdC72zBfV3P8H20S8gF5Vnvsdffw3Z5WTOj78+Ie5bfzA3qsNhiI4VevMDzCx0uGNevZm+Qz3H\nd999l4ceeohHHnmENWvWnPf5XMCYDJjZYJYsALq6ujLKFqb+67mSegbDUAPmhZBVnu/iMxwG6GhD\nb20EXUcqnYokyRmzow6HAzkeQm89BUJHnjIHyZFJ2krqcKwFbBaYWZw9aL6wTUYX8OEVoyv4D3C2\nA/7nHQufuDpJaa+pqWAUTnXAJeU6asIYc3I6nUidZxDRAEpxDcnuZ89qtWJ5+SnkqnnYaq/KuBfh\ng8fY85H7WbHrf7G4RkeI43yRPto0UlWi0Ua6sEL6SMtA87mKoqSYvkNVUNJ1nZ/97Ge8+uqr/Od/\n/icVFX3Nw99nyLrQTPwnZgxhStWZ5ZrxNnWGCyOrHAnT3P7cKMxFQlGU87bVGipEWxPJ995CKHHE\nnFqUOUtx5hf2PAeePOTKRYhAE/qpvchT5iLl9IwjWWSoKYXDTdDSBWW99kOSBDcv1XnydQtHzkiD\nEoHOBwkVnt9q4QNL9T7BUgio74CpeRrxtJk8hI7uP4ulchFuh8Fu1XUdrb0ZvbMF5cZPEOvqypCS\na3/5bUpuu2HUg6XS4cdeOLzRLxhfy7jzQfrnwnz+ervlpI+0mBvr4WwIurq6eOCBB6iurubll1++\naNjso4H3fcDsveAqikIkEknpv462T2F/AXOielX2zirdbveoXSNZlvvogA5mqzUS18kyfxnMrSXW\neBLLofdw/PGnWFbcgFi8OnWukiQh5Vcg7G70xkPIMy5FcvZkmhYZqkrg4FmDDNSb5GOzwtpFOu8c\nkJk9JcloYfMhmalFgjlT+z5n/ojB8rUTw5W2wIpQJzhzkBw94yiyLGNprkeaORenL7evQ0skipCl\nVBlwpNVwkrE4Df/vaRp//t9cvu0P2Ap6or8QOul+m71hZlzj5RIz0sjmlpOuiwukKmODjbQcOHCA\nBx54gH/4h3/gQx/60AV/bUYb7/uAaSK9DOj1esekXJMtYI6mAMH5Ip0oMRJZ5XAxVFutdCbuYIu2\nnlCINzbjrp6ees2Ue0r5dGzTqxGBdrRXnkFvO4v1+jsyFmfJk4dUPAO9+SiWysUZr+20Qa4LOiNQ\nkoXXVV0meGk7BCOQOwoevKoGu05IfO76vgFZ0zTaugR5TsPTMYOgFQshufu2CUQihuQ0gmhvh5bS\n61dTd/8/Uvn3f03SQaoicL4KUclYnOZn/pf6H/4K35J5XPbm05nBMtCO+tr/YL38OuQZc3q+3/25\nMkkv4/G8jhXMZz99Q9CfV2ggEOCtt95ixYoVbNu2jaeffprf/OY3VFdXj/dpXBCYGGnLOMIk9XR1\nl5gcDseY9zZ6Gzun61dOhGBpBpFwOIzNZpswi4+5aDscDjweD16vN0XaMlnNoVCISCRCIpHImA81\nETvRwK6bP8e2VR/j7G/+l3AohKZp5OTkpBYfOb8Y2x1fQHQ0k9z1Tt/jyC8HJY5IRPr8zOeCcCL7\n8csyFPkEneHRuceN7RJFvsxgbPbxotEoqm4lz5sl49KTkOX+SgUl6K1nsr5X/spa8lYtpe6ur2AJ\nhvF6vXi93tRoUTwep6uri1AolLK768+wXQhB184DHP2Hf2PLgg/Q8fom5v/6+yz4rx/gnG701oSa\nQNvyKspvf4RcPR9p2qyev+9qQ6/fSzgUAgyj7onwvI400gmJHo8ng0Ng+oS6XC5ycnLw+Xy4XC5C\noRCvvPIKN910Ew8++CB5eXk8++yzbNy4McM8ehLZMZlhdsPn86EoypgZOkMPeWeiknrAyLxjsRgw\nPlnlcJCt3zNYH9Q9t4orDv2Zttc3cepffobtv19i4TP/3teKzebAesNfov7+p1gWrUJKuw6SJCG5\nc43MrBcByCobJKD+oCUlrJbRIf4Eo1CQ0/M8m/fStKmiS8rObLA5IRHt8215xhy0N/6A3ngCeWpV\nn5/P+dHD1P/rL9m24g5K77iZko/ehG/pfGzdeqz9Gm3LMlpjC5GdB+h6dw+db2xGttsp+cgN1L72\n61T2DyBUheT+d0lufxN5ykzsn/wyki+/+2cJ9OZjiHiEeN40HN2kF02H0+2GMlPBKGTy44HelmOD\nrRfm5tLpdNLR0cH3v/991qxZw5YtW9iyZQsPP/wwb7755hgd/YWL9z1LFoyShjlwPxJSdcOB3+9P\nKf1MpECZPvB8sfR+IPs8KHSXey0WTn7le5DUmfeL72T9e+U/v4/1A59CLs5kEepnD4PLh5yfOWrR\nHIS4CpVFfV8rocKjL1j4279I4hgFnsWB0xJ1jRIfuSKZtWx3rAXyPEaPNR0iEUM/tRu5ZhlSL9Po\n5ImDaOt+j+3Dn8sQLMg4r7OtnH3qOdpffJPYiQZcNZW4ZlRgK8hDdtoRSZ1kNIba7ife2EzsZAPW\nPB+eJfPwLJ1P3jWXkzOvJsNuTgQ7SO7dQvLAduSKSiyXX49cary/0JOIjkZE5xm0nGJUXyluj0Hs\nCUbhVDvkumFagdFbBkgmYcMBmVkVOlOz3JuJDHMsZjifSyEEL730Ej/84Q95/PHHWbhw4Rgc6QWN\nSZbsYBgrQ2foKb/KskwoFMrou423Ck56VnkhMQqHArMPapJSzHk8SZJIJpOUf/MB9l52O11nmnEU\n5fclr1jtkNT6vK5IRJFzS/t8PxiF4n6EnHYdl6gqE6MSLAGmFApe2ykTCkeR6MtmznNDR6hvwJQc\nLiRvAaLlOJTPzngWLVXzYM1tqH98HEvt1ViWXIlky2SROypKmPnVzzPzq59HC4aIHqsnduoMmj+I\nrqhIFhnZ5cReXICjrBhXzQysXmOTmi5qnvC3kzh5EMvJg0j+VqQ5S7B+7G+Q84uNz6qeRPibjGDp\n8hErnoXVlYPH6URNSjS0G3OxlUVGwDTR3gX/+66FHKdg+ey+101RdNo6FKaUT6zxmHMdi1FVlW99\n61s0Njby6quvDksoZRKZmAyYaRirgJk+KuLxeDKGlXuXDcdSRi6d8HIxZZW9ke4D2Lu/5Xa7cZQW\noncESOb3lOktFgsWXUPyt0J+pn+jUGKgxMCVuRBFExBTjcDUG11R2HJY5lNrRq9v5LGrFHkFhxod\nLJ/b9xkqyOlRJ8rvVVSRymrQT+2BluNQWp0ZNGddilw8BW3jCyhPfhfLvMuQZy9GKpnS5z2suV58\nSxfgWzq4jZeIRxFN9UiNx5EbjmELtBtEnsVXok+fhSYgkUwi+duxRzuxhDvAnYtWOgtFMvp1ssVG\nU8AY5yn2GsHSzCp1HbYfldh8SObqBTpLqnt0dE00tcT59g+Ps2BuDvffPWPoF3uU0bsEO9RNbHNz\nM/fccw8f/OAH+dd//deLavM7HpgsydLjiXkuUnXDwVB7leMhI5c+p+ZyuS7KD9ZQhBaU1g62Lv0w\nq46uw+I0VHRSjMMd66G5HmXNRzPvRcsxJLsLuaQyn2GIFQAAIABJREFU7b2grsmQyOvNkNWS8Mzb\nFmrKdVbNG/mPWHomElI8/H6TnbuvS5KXpdMQihsiC3PK6GNDJpIaeuNB0HXkitkZYyYm9I4W9APb\n0I/vRyTiyOXTkYoqkPIKkXJywekGmwNJlo3NqKZCIo6IhSHShQh2Ivxt6O1NEI8ilU1DrpiJPH0W\nUnllqlcs9CQi1IEItEAshO4tQs0pQsX4uSRb6FIctIWteJ0wtUDCmZa5twbg5fcsWC1wy7Ik+Vmk\nC7ftCvBvj53kztsq+PBNJRNms3guykRCCDZu3MjXv/51fvSjH7Fy5coxONKLCpNKP/0hPTgNR6pu\nODgfAYL+7LRGYv4wY4xiEA/ACxnpQgsD6Woe+sI3sOZ6mfW9/5PxfdHVifKb/8B2x/1IBaU92p9d\n7dj8jcTL5mK1O1L342xAIpyQmFOWqfSj6/D8VuNe3XaF3ifDOV+kS6I5nU5kWWbbEYndJ2TuWpPM\n6s3ZGYH6dmNuNNeV+TMhBKLzLKK9HimnEKlwCpIzu7uOCAXQm08j2psQwQ5EOAiJuMEg1nVDW9Zi\nBbsTye0Bjw/JV4CUV2T0hHMLMkZ2hJpARPyIUAdEAuDyIeWVIHmL0JLG/bRYHQTiNlpDEm6bTqE7\ngU1SU58PTbew9Yid/fUWrlmos7iqb1YphOAPL7bw7EvNfP2L1cyfOzFsx9I/m8MpwSaTSX74wx/y\n7rvv8utf/5ri4uLB/2gSvTEZMPtDum5jKBQiLy9v8D8aIkbDVaQ/14PhzB8CKcm3izmrhJ4d+mD2\nTY0/+w1nnniWpW8+neqpgUGCUX/3E+T5y7DWXt3z/XgYvX4f0rT56HZ36n74oxJtUSdVBXGc9p4N\njRASL26XCcfhY6sHdiwBQz/2RH2UoyejNJ6NE0/oOB0yU8udzJuTw/QpPeeSTtLqvfERAt7aK3Oi\nWeLjVyXxuvq+V1fM0MAt7HZcsfR6FERSNQKnvwksNiRfEZInH1w5A4oGDBVC6JCIImIhiIUQ0SAk\nVSRPHuQUInkLkCy27lGKOKG4IKw6CcZl8t2GmpLLbr6WQNWS7Dsp8c4hG9OKVFbOjuJ1y314Akld\n8JMn6zl4OMy3/u+sIWvzjjbOVRy+s7OT+++/n6VLl/Lwww9PaFb7BMdkwOwP6U4BwWCQ/PzhS2/1\nRrr4wGgLEAymw9qbuJJesruYs8p0t4aBROGFrnPqez+n+bcvsvjFX+Ca0cOAFbEI6vO/RC6bjuWa\nD/dcw3gE/fQ+5LJqJF/PDr4jDA2dgppiHbulZ0OjqDqv7/OR1CU+coWG09F/X7q5NcHLb7SxbmM7\nTruFubM8TKtw4nZZiMV1Tp+JsfdgCLtN5qa1Rdy0phBZMvSQ+1tchYAtdRI7jsl8aEWS6VmSDjUJ\npzuMMm15nkEG6hM4hYBoEBHqRET8Ru/W4TbKtXYXWB1IVpuRSUqWtPRaGPOdySQiqYKmgKYglLjx\nGmrcKN26vODyIrlywenJCPrheJK2oEaXYsMiSxR7JQpzDM3e9PM81iSxfp+M3QbXLUpSXpDdFQRk\nfvxEE12hJN/4Sg3enIkhCWfOEA9Xn3nnzp18+ctf5tvf/jY33HDDRfmZHkNMBsz+kG567Pf7h2Qi\nPRDG26sy3TYoXbDZpOhrmpZyMXi/Z5Wxk43U/e23EEmN+b9+BEdpz4yB3t6M9sKvkGsWYll9S8/i\nHQmgNx5CKqtGzi1J/X5rl0GimV0G7jTiaDgGv39HJi9H5/pLYyCSWfvSpxri/Pa5s+zaH+LaKwu5\naU0RM6dnYQxh3ONDRyP86c/NbN8d5Jbrivj4h6aQ4xm4bHfsrMRL78ksmCG4cr6e1S0lkjDOIxw3\niEGFHvA4+orIg9HnJBFBJKKgxI0gmFSMuQ09Sc8SIoFsAdlijKpY7UaAtDnB7gS7u48dmJqEUAyC\nMUEwCqCT54Yir4zHIfUpdR85axB6kjpcvUBnVkXf8mvP7+s88pMT+IMqX31gKrKk9zHaHmvhkHP1\nrtR1nSeffJLnnnuOp556imnTpo3ykb4vMBkw+0N6VtbZ2XnOAXOiCxCYxs4mG3gshMzHGkOl3qv+\nLhoefYqzv/oD0x78NNP/9lM9BBMh0PdtRdv8CtYr/8LQlu3+vvA3IdrqMwTXhYCGTghEjWCZTjY5\n0wHPbbGwaKbO6nk9C3h6X7qlLc7Tzzaz92CUD99UxAeuK8bndQz4/KRnz8GQzG+fb+G93UE+eXsF\nt1xXgsXS/72MxGHdbpnTbRJXzddZUCn6ZJJgzI92hI0eZ1I3VIu8TiN4umzZA+i5QAgjOMZUiCoG\nuziSAE2HHIfAaVFwW1XyvC6sverY0YTh87njmIzHCSvm6Mye0n+gNPE/f2pi0zY/j3xjDk6HZdzd\nctKZ28MpwYbDYb74xS9SUlLCI488MmpGEe9DTAbM/pDuien3+8nNzR125jXeWeVAMEs8ptKH3M1Y\nvFANnftD+nn25wEYPV7PmSd+T/NvXqT4lmuo/If7cE4tS/1c72hGe/OPoCpYb7wTudCYrRSait50\nBNQ48tR5SHajEahoRu9PkqC6uEdkXQjYeVxi4wGZD1ymZ3UkUVSdP7zYzB9eauED1xZxx1+UYreJ\njAU7mw+ieZ69s+cT9VF+/lQDHX6Fz//VdJYtHpi81tgO6/fLBCISy2bpLKwUqT5gb8RVo88ZihtB\nLaGB0woOG9itRlnUKhslXIvcvdqkNgegCyMLTOpGIFSTxrVTNOO1ZMnoQbrsRnae4wCrpBGL9T1P\nRYPjTRIHT0ucapWYVSFYWqMzpTD7sfdGV0jj7gf38rNH5g/Ys+wdQEfS3Dkd/d3PwVBXV8ff/M3f\n8KUvfYk77rhjQq05FwEmA2Z/SA+YgUAAr9c75Gb5RM4q07OtwUo8o8nEHW0Mdp6x+rN0vLqB1j+8\nSvT4aco/8UGm3PMxnNN6VHlEKID27jr0Y3uxXn498qJVqVEI0dWGaDmBlFuCVFyZKh36I4aXZInX\nIMqYtz2uwMvvyXSGDZWdgiyky32HQvzH46eoKHNw/93TKS/NHJLvr6xuVgccDkfW/pYQgq07gzz+\n9GnKSxz89SenUTUje1nXxJkO2H5E5nizxMxSwdxpgupBBBWSuqFUlOgOeGrSGJdJdgdGIXoWD1ky\nro1FBotkbCps3f8cVrDbjGCbfg4mO9ToPdtoC0J9q8TJFonTbRIVhYJ50wRzpwqcw0yqdu3v4snf\nNvLod+YN6+/6+4ycaxn3XEuwQgieffZZfv7zn/OrX/2KOXPmDP5HkxguJgNmf0g3kQ4GgykB76H8\n3UT0qoSh9/D6Q3qJ6nyYuCON0J46HOXF2IoLUtlWytzZbkdr9xM72Uh4/xHCuw8R2LwTrStM4fWr\nKP7QdRRcuxLZ3rMw6Z0tJHdsQD+6B8uCy7EsvzblyCHiYfTm45DUkMtnIbmNgUotCac7jR7fzGKj\nTGmivhVe2GZhVoXg2kV9mbCRaJInftPA1h0B7r97OquWD638b46LACnfw4GqAqqm89Lrbfz2ubPU\nXprLXbdXDKpcE0tAXaPE4TMSje0SJXkwrUgwpVBQli/wukauDNsfEqpOU1uczrCFYMxJc0CiyS/h\nssP0YkFlqaCqrP9MeCjoCms8+PBB5s/2cvPaImZVe7Dbhr8ZHKiMO5hDixCCaDSa8pMd6mY0kUjw\nta99jWg0ymOPPYbbPfBm6HxRX1/P/fffz5YtW3A6ndx+++386Ec/mrCb5xHEZMDsD+kBs6ura0jZ\n2ETNKk1NXNP8eqScV3o7vw/GxB0tHPjsV+l8cyt6LI61IBfJbjB89UgMNdCF1ZeDq3Iqnnk1eBfN\nJfeKJXguqc4glAhVQT++n+SBbYj2JiwLr8CyeDWS25gvFIkYor0eEfYjFc9Ayi/vzuy6WbB+Q8R7\nan4Pi1TVYMN+mQOnJT6wTKemvO9HZ9f+Lv79ZydZssDHvZ+aNihBBwbW9B1KxhOLC57/cyt/eqWF\nJQt9fPQvyphdNbhWsqpBY4dEQ5tEUyc0ByS0JBR4Ic8j8LnB6xS4neC0g9MmsFmN7NEiG1mlcYw9\nZVhNg4QmoagQU4x/kbhEOAZdMYlgRBBNSOS6BcW5UJInKM2DigJBTpZRmPNBsEvlxdfbeGebn8az\ncYoL7ZQU2ynIs+HzWsnxWHE7ZVwuCy6njMNhwWmXcThkHHYZp8P42umQcTktqZ5x+mfEHP3qHUDN\nYGm2SIb6mWloaODee+/lk5/8JPfcc8+YrDm33HILJSUlPP744/j9fq677jruvfdeHnjggVF/73HG\nZMDsD+kBMxQKpRam/n73Ys0qh4tsPZ7z9T8cCpLJJKGOTnR/F3bZgixLWDxubPm5yI5+7ls8il5/\nBP34PvRTdUhl07HMW4ZccymSaZwcCyM6GhCRAFJBBVLBlJT4eDhuZJUImFFkEF9MNLTDS9stlOYJ\nbqzV+4gDKIrOE79tZOPWTr54byXLlwxtzneoYgupcxwg41FUidfW+3nhtXYK8mzcuKaIq1YU4M0Z\n+oYqmgB/GPxhia6oEewiCaMEnVAlFK27LNtdkgUjI5W7y7BWCzhsAofVCLIuB3gcAo9T4LAouO0K\nJflO7Nmou6OIhKLT3JqgpS1BIKgRDKmEI0misSTxuE48kSSe0EkoOomEbnyd0IkruvHzeBKbXcbj\ntpDjtuDNsZLrs1KQZzP+5VspLrBQUmQl19vjqpOuaTzQ50QIweuvv853v/tdfvazn1FbWztm12b+\n/Pn84Ac/4KabbgLgoYceIhQK8dhjj43ZMYwTJgPmQEgkDNNC0/PR4chc9SYyqSfdaWWgecOxOI5s\nu+tzZeKm1GHM/x+iKpEQOgT96K2NiOZ69MYTCH8r8pQq5Kr5yDULkNze7vdIIkLtiM4mUONGkMwv\nTwXKmAJn/Ian5dR8Y7A/vVf59j6ZI2ckbqjVmTu178elvjHGv/zoOBXlTr54byW+IQaoc5FD63sd\n+s4fqlqSvQdjvL2li937w8ybncOKpfnULvQxpfzc3ud8cDFIMgohiMV1orEkobBGKJwk0KUSCKp0\n+FXa2hWa2xKcaYoTiyeZMc1FzQwXl9fmMH+Oa8CNpqZp/Mu//AuHDx/miSeeGJEZ8eHgF7/4BZs2\nbeKxxx6js7OTm266ie985zt88IMfHNPjGAdMBsyBYAbMSCSSkhWDsRUgGC7StVHHKqscDs6Xiau+\n9j+IMyeQCkoRvnw0mxOcbuzu7oF2IUBNIBIxiIQR4SAi2I4ItIPDhVw6Fal0OvKUmUhlM3oySaFD\nJGiQebraweVFzi8Db2FKtSaSgKagMQdYlgelXsPw2fh7wzrrzT0yNRWCNZfqWXtqr61v5xdPN/DZ\nO6dy09qiIWuAnosjxVCR7gbSFUqwY2+I3fuj7K2LkEzC3BoPs2Z6mDndxdQKF+WlDhz20QliiqL0\nsRy7GJEuV6glbZxqiHP0ZITSYgerl+f32Wju37+fr3zlK9TW1rJ3715uvPFGvvWtb43LZqKuro67\n7rqLPXv2oOs6n/70p3nyySfH/DjGAZMBcyCYrhSmI4DL5ZrwWaVZrhvPrHI4GKzn1puJK3Qd0dmC\n2noWrbMVqxJH1hRIqsaTKclgtyPZneD2IuX4kHILkfJLkBy9WKfduqSE/YiwH+wuQ94ttwTJ5ug+\nPvBHDQGCuGrIrRV7M9Vumjrh9d0WtCTcWJvMOsqgqDo/+dVp9h8K8fCXqvsVH+iN9IW1v7GYkYZ5\nT1RVpbk1zuFjEU42JGhsUmlqUWhpV/B6rBQX2inIt5Hns+LzWvHmWPF6rHjcFpxOo49n9PrMHp8F\nh0PGbuv7uUmfIR1KqXmsoevdzN9u9m8yaYzFCGFUF0zGr80Ctu7RmmxzrNCzKXB2m1kPBfF4nN/9\n7nc8//zzhEIhDh8+jNfrZdWqVTz66KNjlmUKIZg5cyb33XcfX/nKVwiHw3zmM59hzpw5fP/73x+T\nYxhHTAbMgWAGTDMIOZ3OCUnqGYrjxoWC3kxcPRFFyNaUiLksy8Tj8dQGZsijPppqqM/Ew4YuaSwE\nugbuPKScfKScglSQBKPs2hGG9rAx5lDiM+yu5LTL2hkyDIdPt0pctUDn0kpBtg2/P6DyTz84SkGe\nnb+/fyZu1+DH3LvUPJ7D5737oIqi4g9qBII6wZAgFNHpCicJh5OEo0ki0STxeJJorKfXp6T1+rSk\nwGGXcXUHVbdLxu2SyPVZKS5yUV7ioHKaizk1HpyO0Q+cWhI6w+APSfjDEIxKhKIQjktEE0afVk0a\ns6XmfKksG//Mx0E3iUxJI6gmVKM/63FCjhN8bkGuR+BzKuS5VKaUOHDYh3Zuuq7z05/+lHXr1vHU\nU09RVlaGEILDhw+zefNmPv3pT4/ZBqOjo4OSkpLUqB3An/70J77+9a+zd+/eMTmGccRkwBwIqqqm\neoGmH6QsyxOqpzJcEsiFhuSZOuhqR1jtJC12dIsNYbEhW+3IVhuyxYIsm8oAerc2qQpJFaEqoCZA\njRmpgMOD5PSA02v0K+3uDF3SmGoo8/gjxgJZ4DGyyd6lVX8YNh8y+pTLZuksny2w90Ogbjgb42vf\nPcL1VxVx10crkOXBNzLnKrI9luhvgH8ovemkLkgkdGLxJMFgnEAwhqJZiUSho1PhbEuCk6ej1DfG\nWLksn3s+OY38vJHRdNV1aAlAQ7tEU6dEc0AiGAGfGwq9gjwPRmBzQ45T4HYYFmeOYaoYCWEEzUgC\nwjGJQFinNaARjFrpDFsJRKCmXPCRlfqArxMMBnnggQeYPXs23/72tydE1aimpobPf/7zfPnLXyYU\nCvHZz34Wj8fD008/Pd6HNtqYDJgDQVGUVKaTSCQmzNwhZI4WXOhZ5WBIJjUSXQFQ4zgkAUkVXVMQ\nSQ2hJ0EIJFlG6tYklax2Q+zbajeyRrvLcNNIuz5CgJI0VGpCMUOxBskwds53G3OUfYyEO+HdwzIn\nWyRqawTLZ+m4BjCyOH0mxkPfPszdH5/CTWsGt1NKrxRcaD28bL1pU+QiW296KLJvobDGr/67kbYO\nhW//39nnfGzhGBw9K3G8SaK+TcLrMmZJKwoFZXmCQh+DusRkP+eerwe6TSZZK/2eqprxzBUO4Bq2\nb98+/u7v/o6HH36YW2+9dcI8C3v37uXBBx9kz549WK1W1q5dy6OPPvp+sAybDJj9Qdd1vvrVr7Js\n2TJWrlyZsvfKNneYTapstI/NzECGU5a8ENARNno/bjtYZYGmDV5qHoyJK8tWEkmJePesXyRhSLkJ\nYQRGr9PQRHVmySIUFQ41Gt6RoRhcVqOzpHpgxRuASFTjb756kDtvK+fGIQbLidzDGy6y2c2ZoxOS\nJKEoCjabbdC+7In6KP/4r0d5+v8tGtb7KyocapDYVy/REpCoKhPMqhDMLBV4BtBq0HWjVx3vLqsq\nmrGxUpM9JVe9W9YvHRJGidYiGwpFNgvYrQILGhZU8nLsuBzWIWWpQgieeeYZ/uu//otf//rXVFVV\nDevcJzFqmAyY/UHXdTZs2MDbb7/Npk2biEajLFmyhFWrVrFq1SoKCw1mR2+psnQB85EOoAMNrF8s\naA5CMApRRaALsFt0HDYZh1VKDcBbpB6ihQDDJUoYEmzJJGi6QFFF2kInYbMIHFaB2w4eh0SOU8Zu\nzZ4ZqBqcaJGoa5A41iQxvViwuMqQhhtqdfRnT50mGk3y5ftmDvq756obeiHBDKCJRCIl9g8DC5kL\nIfj2vx9n5nQXn7pjypDep6MLth+VOXhaYlqxYGGloKZcZM0gdWFsnMLxnk1UQjN61k6b8V+H1SDx\n9NbFNSvrJjHb1MbVugUZFFUnHFNRkzKasBJTjT9YNG3gbDQWi/H3f//3OBwO/uM//iPFzJ/EhMBk\nwBwqEokE27ZtY8OGDbzzzjsEAgEWLVrEqlWrWL16NSUlJYa6TD+D++frbpBMJonFYsDFl1X2hlnC\nkq12hOxATRolLK1bqDupGw9h70F4Wepe1NJ0Se1WsMkCXU9mVAbSmbiybKWtS+J0m8ypFomGdony\nAkOTdO7UgTOS/nDfQ/t54LMzWDC3/5rbcHR9L3SYVRGTrCXL8qB90Of/3M4bGzv48T/Pwz7IGEuz\nH945KNPYLrGkWlBbpePNQkROqBCIGZuycNx4PnK63VY8DiNQDtZmFkIY/XKMXVvvz3O2EqzoDqa2\nAT62x48f5wtf+AL33Xcfn/zkJy/KjdMFjsmAea5QVZUdO3awfv16Nm7cSHt7O/Pnz2fVqlVceeWV\nVFRUpAJo+kI9XOWbizmrTCZh40GZigJDlzTHKYjHBzd3Ph/EEtARgtaAoDUALQGJ1qAFryvJlEKd\nyhKdqjIJt/P8KgPP/OEsr69v56N/UcbltXkUFWT2UC+G4fyhIlsAyYb0Puhzr7Ty4usdfPuhGZSX\nuvoV+28LGu4qZzslVszRWVJlyPGlQ9F6LMkUDXLdkOsyyvC9A5jQ9TQvT8PEWqgJw9w6qRn/ED1p\nohCAZJhjW6zoFhtJ2YrV7cNiGl9bBn6OhRC88MIL/PjHP+bxxx9nwYIFw7i6kxhDTAbMkUIymWTP\nnj28/fbbbNiwgaamJubMmZMKoDNmzOg3gKaXcNMDaHpWOVHZkueDhApbD8uc7TACl5YU5OcICnIk\ng6XoMliKLjvYbcIoi5mUfrMURnfW2V1+VVSjVxlXIJqQulmK0BWVCEaNv8nPgWKfoChXUJYPpXk6\nDmtmH7S3N+hwKwNCCHbvD/Hi663sPRhC1wVlpQ4K8+14cyTcTvB5HeR4bLhcFmNO0Wlok9rtEk6H\nBaepS+oyvh4Kw3YiwcygNU0b8gZI1wX/+bszbNzq57tfm0VRgTXjvoDBGUhoFrYcdnL4jMwVc3WW\n1mQGSiEgGDPmZ8MJg8hVmNOXzGXM4gYgGjRGjZSYMY/rcBtkMbsTyeoAmx0sNpCtGVml6K7H6ppC\nPBxC1lXskkBSYoh4GLlwCpKv/x62qqr84z/+I62trfz85z9PjWpMYkJiMmCOFnRdZ//+/axfv54N\nGzZQX19PTU0Nq1evZtWqVVRXV2d4UPYmrIARMM0ZvIslq+wNk+yiaRqSxU0wZiUYkeiKGXT8qKlL\nqhlC32qye3okbZNvkXvsoexWw9rJYTPGATxOQ6Tb5zJGBdyOoY0HjLQmrj+o0twS52xzmGBII6HI\nxOKCWDxJLKaTUIx5RVOTVFGMr2PxJLG48f9Op0yOxxAI8Hmt5PmsFBbYKS6wUVrsoKLMSUWpY9Dy\n5VjgXAQX4okkP3jsJG0dCv/0f2aR68ssUQsh0JI6u45LbDpkZXa5wrLqGB6XnDbKYqEjItEcNJ6L\n0u75WVNEQAgB8RCiqwMR7jAyR3cekjvXcJ5xeDKkF4cCswc9XLZ6U1MT99xzDx/5yEe4//77L7oN\n8UWIyYA5VtB1ncOHD/P222+zfv16Tpw4wYwZM1i9ejWrV69mzpw5yLLMrl27sFgsVFZWIstyH+m4\n4WqvTmQMxdx5ouB8NXHPVwc2qQtisSShiKFN2hXSenRJOxSaWxOcbUnQ2pagpMhBzUw3c2o8LJzr\npXqmG8sYZafpLYSBtH17o6UtwT/92zGmT3Xy5c/PzBr0W4Pw8nYLsgw31SYpyeu5L4qq0RGWaY/a\ncNl0SrxJfC45dV+EEkcEmhHBViND9BYheQuNkmk60UhTEe1NiI5mRGcrItiJCAcgFjHkFjXVoNJK\nMthsCLsT4fRgyS9GLipDnlaDXDZ90Gu0fv16vvnNb/LjH/+YFStWDP9CT2I8MBkwxwu6rnPixIlU\nAK2rqyOZTHL69Gm+8Y1vcPfdd2O1WjOk44Yy3zZR8ewLzWzbHWBOtYeqGW7KimWKCiTycj0XJNll\nqPclfVxkLOQKVU2n8WycYyejHDoaZt+hEJ0BlcsW5bJqWT6XL80bNR3YdD/H4YzGbNsV4AePneT/\nt3fmgVFVZ///3DtLJvsekkBCYoiyhy0gJNS9ilYtLlgsbrwuuC+1u0VqlV99xfZ1qUuLVbBV1BbF\nKlWgNUH2LWEHQ1iSkJCQfZbMes/vj0smGSYJASGJcD7/QObOzD33zsz93vOc5/k+N1+Xwo3X9AsS\nWJ8Ga/cobCxRuWi4vk7Zfgmx3g4VDXopUmq0wGw4FhnweKClCbOtFtVtR0QmoMYko4ZFtYVUvR5E\nRanetaaiFFFfjRKbiJKQghKXhBIVhxIRA+GRut2iyQSqAc3rxWltRjgdWDQPirUBUXcEImIwjr2o\n02P1+Xy8+OKLbN68mbfffpuEhIRTO9mS3kAKZl9g/fr13HXXXaSlpXHttdeyZcsWdu3aRWJioj+E\nO3LkyCABbe+92tcF1GrzsrvExp59Nkr2Wzlc5aa61kNUhO5JGh9rIi7WTHSUkehII+HhBsLDjISH\nqoSFGvQ1PYvuSRoSomIy9h1rQui47rD18dawZPsSI00joPVV+7o+5Vi2r/FYlu+3/Thr692s39LI\nynUNlOy3M/nCOK65PLFbPTC7y6mUxni9Ggs+PMx/vq7jFw9nMXJo8PpdnRU+XW/AYhJck6sR1S7z\n1eGCQ3X6uUuPg8hj/TGFEGCrRzt6CDQfIiYVX3gsXk3/jPB6MVbuw1C6A8r3oSSmomZcgDogC6Vf\nmm560Y1jPdloQV1dHffffz8TJkzgV7/6VY9kui9atIhnnnmGsrIyUlJSeOedd8jLyzvj+z1LkYLZ\nF7jjjju4+uqrmTZtWkAyweHDhyksLKSwsJDt27cTExPjL2MZPXo0JpMp6ELdXkA7yyzsDdp7o7aW\nUPg0QV29m6N1burqPdQ3emi2emmyerHZvdgdev/BFqe+lud06b0G3W4NTQi9Ya9Z9yO1WHRhjYww\nEhVhJC7WRGK8mbRUC9nnhXfLv/V0oGnQaBdU13uob9awu03YnQpWp0KLW8HlUXF59PXYgObKnfiS\nur36c0LNetlDxLG12NgIQXwkJEYLIkO7b9velPsVAAAgAElEQVRWW+9meWEtny0/Sr9EM9OnpjIu\nJ+qUbz46+ly7Q+URJ8+/up/wcCM/fSCT2Ojj1yth6wGFr7arfG+YxpistlmlpsHhRqi1Qv9Y3b7Q\nP+N0NKNV7wfNi5o4ECLbOsKIxlq8xavQdm+G+BS0QSPwpp2PZrYErU8DuI8cxVlehbumHp/dgeb2\noKkKmsVMZHp/IocMwhjRPRP9TZs28eSTT/Lcc89x+eWX98jN3vLly7n33nv58MMPyc3NpaqqCoCU\nlJQzvu+zFCmY3xWEENTU1PgFtKioiPDwcCZNmkR+fj7jxo0jJCQkyLy8vcNKR90/eoIzUULh9R5r\n3utuTZzRxdVm99HU7KWu0UPNURdlh1soPdTCqGGR3PWjAZw3sHsXuO7g06C6AQ7XKxypV6hpUqhr\nhlCzICbCR1ykSkw4RIbpTZEtJo0Qow+j6kHFB5w4E1cIXTRbXHpxvbVFodkO9TaFeivUNOnP7x8v\nSEsQZCYLkqJPLKA+n6BwbT3vf1yJxWLgrlv6M2Zk9Ekd/6l43goh+LKglrf+XsGPpqYwdUq/oOxf\nlwf+vVnlaJPCDy/0kdhuWA4X7D+q10sOTGgrCxFeD6J6P8LegJKUgRLdFtrVaqvwrVuOVrEPw/AJ\nGEZMRImOCzgOd7ON+sINNH69EVvxblp2l2KwhBCSlkJIvwQMkeFoioLmdoOtBdeRGlr2lzPyw1eI\nnTyuy3P01ltv8emnn7JgwQIGDBjQ3dP7rcnLy+Puu+/mrrvu6rF9nuVIwfyuIoSgvr6elStXUlhY\nyKZNmwgJCeHCCy8kPz+f8ePH+11Cjs/4hJ7xw+1uc+czjdPl44v/1rLokyre+uNwwsNOfR2xzgr7\nKhUOVCtU1CpEh+tilRKrERfhJcLkICK8e/WyXRXudzcTVwhodsDhOoWyowr7jyhoAgYPEAwfqJF8\ngq5PmiZYua6edxYdJjXFwj0/HtCt1mOnksR0tM7N//35IPWNHn72YGaH+znaBP9cYyA9QXDFaM1f\nKiIE1FihsgHS4iE+vN2ssrkWrapEb8uWONBf9yhszXhXL0U7uBvD2IsxjJyEYm4z/9Vcbo5+9hXV\nH3xO45otRI4aQuzFFxI1bhihw7JRIsMDfjOqqmI2m/3fY3Es7K52si5ts9l45JFHSE1N5fnnn+/R\ntfrWFn/PPPMM8+fPx+Vycf311zNv3jxCQrowQJZ0hRTMswUhBE1NTaxatYqCggI2bNiAwWAgNzeX\nyZMnM2HCBMLD9TWrnvDDba0hbe/s0pt4vRrT7i1m/h9GEHeSnS8abLDzkMKuchWnGwalCs5LFqQn\n6nWinXWMaZ0dOr3HPEmP9VL0+tpci1p7KopWjz9AUQQKAlXRMKl66NZiUgkLUQk1K5gMnc8ghYDa\nZthVrrLjoF7vOf58jSEDurb183g1PltWw3sfV3HRxDhuv7k/UZHBQnAqzax9muDz5Ud596PDXHdl\nEj+amoLJGDyYvYcVlm5SuXSkRk5m22VG0+BgLTg8MChJn10CCM2HOFKKcDSipg7Wy0KOjVHbvg7v\nmn9jGDYew/jLA3qhehqaqfjz+1TO/4iwwVmkzLiOhKu+hzE6cA21NeO3tXclEFQP2tlvZvfu3Tz0\n0EM88cQT3HTTTT1+o1hVVUX//v0ZN24cn332GUajkeuuu45LLrmE3/3udz06lrMIKZhnK0IIbDYb\na9asoaCggHXr1uHz+Rg3bhz5+flMnDiRqKi2C0yreLYK6Kn64fZVZ6J//OsI64saeWH24G4936fp\nF/CiUoWjTQpD0gRD0zUGxAeKVetMy2g0oakW7O5jPRTduom3QW3zJW31JG31JVXb++Ieez9B+zVM\ngbs19OzVa1HdPv2zCDMLokIhJkzt0DQedKEpPaKwdo+KwwUXj9C4oL/oMlzbbPWy8KPDFK6t59Yb\nUrn2ikSMx8TtVELru0tsvPZ2GSaTwiN3Z5CRFhr0HCH0LNjN+1RuzPOR2hYtxeODkmr9/GUktKun\n9LjQyneimENRUrLbZpUtNrxfLkI4bBi//yPUhOS28+HxUPH6+5T939vET7mI9EduJ/yCjo3NuzLD\nb132aJ/gpWkaP/nJT8jIyMBoNLJs2TIWLlzI+eefepeVb0NjYyNxcXEsXLiQGTNmALB48WKee+45\nNm/e3CtjOguQgnmu0Jryv379egoKClizZg1Op5MxY8aQn5/PpEmTiI2NDfDDPVnXm77qd1uwpo43\nFpbzf88MITmp63CUywNbShU2lajERMDYQRoXpAqOPxRNEzTaXDS1gMtnxu5WCTG2eZKGmfVEHcNp\nnFjrNzY+nG4fVqfA5lKxe4yoCsSFaSREKljMwTc3QsDBaoUVW1XCQwRTxmnERnS9r4PlLby5sIzq\no27uvKU/40eH43Z3/yaorKKFv/2zku27rdw1fQBXfC++k04z8MVmlaoGhWmTff5MV9Bn5HuP6C49\n/WPbhWBdDrSy7SgxKSgJaW1rlXVH8HzyFobskRjyrkZp96HZ95Sy6+5fY06KJ/t/f0bYoIGdjv1U\nTBd8Ph+ffPIJH330EUVFRdTX1zNixAjy8/OZMWMGo0aNOuF7nG7S09OZO3euXzA//vhjnn32WSmY\np44UzHMZp9PJ+vXrKSwsZPXq1VitVkaNGuXPxE1ISOjSUL59OMrj8fS5WSXAsoJa/vp+BXN/dX6X\nCT8uD2z4RhfKzGTBhRcEr/8Jodus1Vk1Ghy6PV9MmEJUqEKkJbinohACPE5wtyDcTr2ZtdeN8Hl0\nT1JNT/xBHLMtUlRQDXrvTqMZTCG6RVtIuP7/ICEU+HwazS0+6u0KTU4jEWYP/SJ8hIaoQdEBTdOP\nce1ele+P0hg28MQ/5U3Fjfz1/XJcbo0bf5DMJXkJhFo6vhHyaYKibc38a3kNu76xccPV/fjhlH6d\nPt/rg0/WqXi8cOMkLaAJt9sLe6r0DNiUmHbH7HKgHdqGkpSBGtNu9lhTgefj+Rgn/wDD0MAknNp/\nF7LnwTmc9/TDpNw+tcvvZvsQrNls7vR5x3Pw4EFmzZrFHXfcwcyZM2lpaWHjxo2sWrWKvLw8Lr74\n4m6/1+ni6aef5osvvvCHZK+//nouvfRS5syZ0+NjOUuQgilpw+PxsHHjRr+hfOtdcqsfbnJycqd+\nuIA/IeJUO7KcTjRN8LdjBujP/fJ80vsHhwJBv2hv2aewZo/KecmC/KEacceVA7q8eglDrU1fW4ww\nuUmINBARavRneLaKo3A0Q0szosUGLrvuPxoSimKygClEb2ptNOvCqBp0kfT3iNJA0w2+hcetv5/b\nAU673iQ7PBoi4lAi41EMweuwHq+gullQY1WIDfUSZ3GCCO6WU9OksHiNgcEDBBeP0DoN0bYPwe4q\n8fDplzVs320jZ1gk558XTmK8GYNBoabWxcHyFrbutJIQZ2LKZYlcNjkeS0jnEQafDxavVVEU+OGF\nWsDNhk+D3ZUQFwGp7cXS60Y7UIySkIYa21YaIRrrcH/wCsZLb8CQPTJgP7VLC9j72HOMeP+PRI3t\n3NT8VPuRCiFYtmwZv//973njjTcYPXp0t17XE3i9Xh599FHee+89QkNDueWWW3j++edP6kZAEoAU\nTEnneL1eioqK/AJaXV3NkCFD/D1BCwsLWbFiBW+++SYGg8FfD9reNu5UfFe/LXaHj3mv7ae+0cOc\nJ7OJ7SDJRwh9jfK/W1USogQXj9RIig7cbnVCdbP+b1y4INzQgsWoER6ul1AIzQf2BoS1HmFv0EUt\nLFq3W7NEgiX8hJ0quotwOxGORoS1HuwNKBFxKPEDUEKDi/3dXr2g3+WFrEQNoxJs9u/RjHyyPoyU\nOMGVYwLXNY+3t2t/gW22etmyvYnSgw7qGjx4vYKEeDMZA0IZNjiC/skn7oUmBHy6XsXthRsmaQFh\nayFgX42+zjuw3XqxEAKtbAeKJQK1X1uPUeHz4ln0CuqQsRjHfC9gPy37y9l8+e2M/OhVosYO63Q8\npxKCBf338dxzz1FaWsr8+fP9TeYlZy1SMCXdx+fzsX37dv71r3/x+uuvYzAYuPTSS5k4cSL5+fl+\n/9v2bZpa/z0Z39Vvw4EyB7/7YykjhkTy4F3pmE3Bi4i1zbCsSMXWonDFaI3Mfm1faSGg0QGVjXry\nTb8oiDS78bidmM1mzGYTiq0B0VyDsDWAJUKf8UXE6V0uAhoga9BUj2is1T1J7U0Ihw2OeZIKTUM5\n5klKSChKeJRuxZaQjBKfgtJJBqrweXVf1LoKCI1CTc5CMQWuzQqhi/2RJrggWV9P1R9v+2zsLV4W\nr49gULKHCy/w+kO4TqcTIcQZ65Dz9U6F/UdUbr3IF9SKq6YZjlphSGpgX0qtoQrRcAQ1c1TAOfZu\nLkArK8H0w7uDvlM7bnuSyNFDGfjEzE7H0j4EezJlT9XV1dx3331ceeWVPP74472eBS7pEaRgSk6O\nZcuWcfvttzNz5kx+85vfBPjhHjx4kMzMTL+hfHZ2tl9Aj/ddbW8ofzrs/IQQfL7iKAs+OMy9t6Vx\nxUXBHp1eH6zepbKlVCFvqMa4QW2lFq3toCoa9F9FagxEh7b15wwzqijN1YjGaggJ02v+IhMCbNRE\ni133Iz18AO1IGaK2CiyhujdpdDxKRDRKaARYQsGoe5KiaXrHDKcDYW9GNNUhao8gmupQ+qWhZg3H\nMHg0SljwTFJoPkRdBaK+EjX1ApTIuKDn1FrhcAMM7d9x82KrQ/DX5UauGddCvygXmqahKIo/OnC6\njS4OVit8ukFl5uU+Io6Lknt9sL0CLkjRk6b8xyk0tJINqGnDAmbUQvPhnv8spqn3oCamBryXp6GZ\ntSOuJm/vcgzhHWXmtrUeO5kQLMDq1av59a9/zYsvvsjkyZO7/TrJdx4pmJKTY/v27djt9g47LGia\nRklJid+NaN++faSlpfmTiIYMGRIkoKfDD7fZ5uXF1w9QU+vml4+c1+F6ZXktfL7RQEKU4MrRGpHt\n8n/sLiiv10sYBsRCTBj4fMf8Qn0uTNYaaGlCiUnWMzND2t5fq69GK9mGVroT0XAUNTUDpf95qCkD\nURJTUSyn5iwk3E608lK0fdvQSnegZo/EOPEqlIhgNx7haEIr34Wako0SFXyjUF6vJzUN6tfxvnaV\nwepdCtMmNhEaavF3yTm+5vDbGl34fPDnLw1cMVpjUErwZaSyQQ8jZx7XPlI016LVH8aQkRPwuHZ4\nP96CTzD/+Img97IW7WLPw78ld9UHQdtaHYoURSEsLKzbx6JpGq+88gqFhYUsWLCAfv06OaGSsxUp\nmJIzhxCCAwcOBHRkSU5O9s9Ahw8fjsFg+NZ+uDa7lyVf1HDzdclBIViPFwp3qOwqU/j+GI3BA9q+\nvl6fPqNscED/GD0jE3R3Iq+tAYutBsXj1NcKY5JR1GOGBM4WtN2b8O3aiLBbUbNHYMgajtL/vC7X\nLIXPh+b2gCZQLeaAsocuz6PTgW/TV/h2rMd4yQ0YLgguURAtVrSyHagZOXpmbTs0DbZVwPn99H6g\ngds07HYH730dyZVjNTL6BWfiduQUdSp1usX7FXaXK0y/SOtw+/YKOC9RL8sJGGNVCZhDUeMDbeV8\nOzeglZdiump60Hu5qmrYMHEaeftWBDjxtNbNnmw2d2NjIw899BBDhw5lzpw5Z7zrjKRPIgWzN3C7\n3TzwwAOsWLGChoYGsrKymDt3LldddVVvD+2MIoSgvLzcPwPdsWMH8fHx/hloTk6O31D+dPnhvleo\nEmqGK8doAWJRb4eyOn02OSBWLwnx+Xy0NDdibqrE4LajJKbrQqno+xKNtXg3F6LtLULNuADD8Ako\naYP821tx19bTtG4r1qJd2Pfsp+VAOe6qo3ibrCgmI6gKwuXBEBGGZWB/wodmETNpDAnXXIw5ITis\n2opWU4FnyV8xTroKw7DxwdtryxEtVgxpQ4O2Veg5SaS1NwVoJx7rSyz4NIVLRnYsZgH7Oe6z6W5z\n7Xf/a+DCwRrZqcGXEM+xcOzo9GATBt+h7ahx/YNCzr49W9D27cD0g9s7HGfx9bOIvWg8A5+YeUoO\nRa1s3bqVxx57jNmzZ3P11Vf3ega4pNeQgtkbOBwO5s2b52/p9fnnnzN9+nR27NhBenrXzWfPJoQQ\nVFVV+f1wt27dSlRUFJMmTSIvL4+xY8diNps7neV0J0xoc0LEcYmbB47q9ZQZCRBpOZYV6nKi1VZg\nsh1FjUvVC+JbZ5RNdXjXfol2YDeGkZMw5OShREQFHIdt6x5qlqyg7ouVOCuOED1+JJFjhhE+OIuw\nQQMJSU3CFBftn1UKTcPb2EzLgcPYtu+loXA99f9ZQ/yUizjvNw9hGZBMR2j11Xg+eBXz9EdRYgLD\nr0LzoX2zDjV7fFDZSZMDqppgcErg+l1rj86dhxS+qVSYOvHEghk0pg7KjI5P8hJCYd7HBh67zhdQ\nb9mK3QUHamF4/+BtvrIdqDHJQeFm0ViL+4NXMd/9VIcze2dZJUXX3E3SzVeT+MB0DKGWk7JpFELw\n7rvv8v7777NgwQIyMjK69TrJWYsUzL5CTk4Oc+bMYerUqb09lF5DCEFtba1/BrplyxZCQ0P9Wbi5\nublYLJYga7KT9cO1tuhhP1XVL/bO5kZMR0tRTSGoqdkoZn2NUnhc+NYtx7djPYZR+RjGXBTgSept\nslL1tyVULliM5nSTNPUKEn5wCZGjh3ZqyN0V3iYrZa++S9U7ixm28AViJnZc0+dd8wXC6cB06Q1B\n23wHilGTMvWazXbYXHCoFgYnd1xCUbxfobxW4drxJy+Yx9NRlrRPGJj/n2gev87Z4Rp1i1svJxnR\nQTMPrfoAKKAmZQZt83wyHyU1E+P4yzoci62skpKfPY+jeDepd95I4nWXETF00AmPweFw8MQTTxAV\nFcWLL74oDcslIAWzb1BdXU1mZibFxcW95j3ZFxFC0NjY6J+Bbty4EZPJxPjx45k8eTLjx48nLCzM\n/9yT9cP1d9wwqpjdtsCWUOX78Cz7ADU1A+PkawNmlN5mG+Wvvsvhv3xI7CUT6H/3NKInjj5tobq6\nFavZc//TjF//D0xxwbV9WnU53mUfYL7tyaBtvkPbUOMH6GUu7ai3CWqaNVIj7B2WUCzdpBIfKZhw\nwen/ebda+v3x0xDuvqwZgxK8Ro2iUnQIctI6cExy2vT12UG5/lm/f1tzA+5FL2PMuxrDsNyAfbZ2\nygkLC8O5u5TKdz/Bc7SeYW8/3+V4S0pKuP/++3nooYeYPn26DMFKWpGC2dt4vV6mTJlCdnY2r732\nWm8Pp08jhKC5udlvKL9+/XoAcnNzycvLY+LEiURERHTLD9ftdvtLCjpaz/LtLQKzBUPmkID9V3/w\nOaWzXyL2kglk/mIWoZlnpr/hrvueImr0UAbMujX4PDTW4v7nm4T8z6+Dx12yATV9GEpIeMC491d7\nURWN9ARjUAmFywOvfW5g5hU+osOPf8fTx/uFKjmZgiFpWtDnA1BlCyPCAsnRStANjlaxGwwm1JTg\n2aFWdwTPkr+ipg3CmH8NIiT0pPt0gn6elixZwquvvsr8+fMZOjR4LVhyTtOhYMr0r2/JJZdcQmFh\nYYd3pnl5eaxcuRLQf6AzZswgJCSEV155paeH+Z1DURSio6OZMmUKU6ZMQQiB3W5n7dq1FBQU8PLL\nL+PxeBg7dqzfUD46OjpAQFuL8kGfgbafjbb/vAwXBIdD7TtLKH/1bye0WTsdRI4cTMuBig63afU1\nAQ2QWxEuh26vZ27LkvV6vdjsDppckQxJAYMh+Du59pgt4JkUS4BR5wnW7VUZkib8dbjtm573UzUO\n1BkJVW0YVREQIVCSsxAHt6EdPYSSkB7wWanxyZh//DjeNf/G/c7v8WaNxDgsl5DUgd2eHbrdbmbP\nnk19fT1ffvklkZHBda9nipKSEkaOHMnNN9/MwoULe2y/ktODnGH2EDNnzqSsrIylS5dKf8fTREtL\ni78jy+rVq7Hb7YwZM4aJEyeydetWli1bxldffYXJZOo0UaWrTE+haSg94OryzU/+HyFpKQx87M6g\nbZ5//w2lX3qQFZxW+Q0YTahJmQEhyWZPOE6vocM6zMp6+PBrA//z/cBOIWcCIWDBfwyMyNAYO6jj\ny0h5vZ4ANChJQ/MdZ/iPIOToPr3EJDUb1Whu997Hjrf+KCElRVCyFVQDpqtuRU3N6HJchw8f5t57\n7+Wmm27i/vvv73HXniuvvBKn08nAgQOlYPZtZEi2t5g1axbbtm1jxYoV/nU4yenH5XKxZMkSfvrT\nn2I0GsnIyCA7O5tJkyaRn59Pv376umX7NdDe9sP1NDSzfsz1jC34O6EDAx1stJrDeD7+M+Y7foFi\naVM4fx3moHEIxeAPSaqmMPYeURmS2tZ4uRWbExasMHDZqMD61DNJXTO8+5WBGyf5SEsM3i4ElNbo\ntoRZSW3t0fxJXm4Xan05qr0Bb1QySkw/VKMJt9sNtIVghRCI2iqUyJhOzSOEEHz11Vc888wzvPLK\nK0yYMOFMHXanLFq0iE8++YShQ4eyb98+KZh9GymYvUFZWRkZGRlYLBb/epKiKLz55ptMnx5chC05\ndVatWsXUqVP5xS9+weOPP47P52Pz5s1+Q/na2lqGDRvm78iSmpoaIKA97YcrNI2dd/wMc0oi5//v\nzwO3eVx43n8Zw9iLAxNcfF60A0UoiQPxhcXqiUxmM0ZTCHuqFPpFQWJU4H5cHvh7gYFBKYLvDe9+\nZqzbo9HQ6MHu8BEWaiA+zoTJeHIzsv1HFD5dr3Jzvo/+8cHbNaFn9NpdcF5SoE2e/zktNrSag9DS\njCc0Bm9YDIREYDSZuuUW5fP5eOGFFyguLubtt98mPr6DgZxhmpubyc3N5auvvuIvf/kLpaWlUjD7\nNlIwJWc3VquVAwcOMHLkyA63+3w+tm7dSkFBAStXrqSyspLBgwf7BXTgwIF+AT3jfriaxjdP/h77\nrn3kfPI6BktbKYPw+fB+tgAsYRi/f4tfrIXQ0Mp3gjEEd2yavzBfNRjZVw1mY2DXDwCnGz742kBy\nrOD7oztv79XKkRoXK9fWs3ZzI/sOOoiMMBARZsTR4qOp2cugzDAmjovh8u8lENdBZ5iO2Fep8NlG\nlavHaZzfP/iSIgTU2qCiHhKO9cQ0BnQ10TuquO3NhLqtKLZ6hM+DLyEDryXK7xbVvsyoNbmrtraW\nWbNmkZ+fz89//vNea3T+2GOPMWDAAJ588kl++9vfSsHs+0jBlEjao2kaO3fu9AtoWVkZWVlZfjei\nrKysM+KH67Xa2X3fU3gamxm56CWMURH+bcLrwbv0XdAExmvv8BfpC6GhVewBzYcjdiDqsdpKFJX9\nNfoPNSspsOuH3amLZf/4E4vlN6V23vu4kh17bOSPjyV/fCzDBkcENIR2unzs2G2jcG09azY2MCk3\nlh9NTelWm6/KOli81sCQAYKLRmhB5SSgtyo73KB3kEmMgqRIMBkEDocjqKOKcDtBVVGMgWYXXq+X\n9957jxdeeIExY8awbds2Zs+ezZ133tlrXUaKi4uZMWMGxcXFGI1GKZjfDaRgSjqmoaGBmTNnsnz5\nchITE5k7d+45GS7WNI29e/f6BXT//v2kp6f7/XAvuOCCAAE9VT9cn9NFxWt/J+3BGagh7ZJZrI14\nPluAEhOP8fs/ahNLnxetYjcCcMSkEWIJxWw2owmF0hr9tYP6BYplvVVP8BmcJrhoeOdiWVHp5K33\nytlbamfadSlcdWlCl82gW2m2eVny72qWfFnDRRPjuO3mVGKiup5xOlx6DWidVeGqMRoDkzq+vDg9\nUN0EdTaBxegjJlQjIdqE2dj93pUvv/wyq1atIjIyks2bN2O1WsnPz/c3WO5JXnrpJZ566ikiIyN1\npyibDZ/Px9ChQ9m0aVOPjkXSbaRgSjqmVRz/+te/smXLFq655hrWrl3LkCFDTvDKsxtN0wJamn3z\nzTekpqb6Q7hDhw71G8qfDj9cz38Xo0REY8i9tC0M62pBq9iJzxSOK6Y/YeHhem2pF/ZVg8Ws2/61\nF8uyo/DxWgP5QzvPUG1x+vjbPyr5sqCWm69N5odT+hFiPvkZWFOzh78vruSrVfX8aGoK11+ZhLGL\ndc7WZt4rilWSYwSTh2v0izn+OQKPx4OjxYlLhGF1GWl26ob5aZ3b7wJ6WP7hhx9m4MCBzJ07F5NJ\nF/GKigo2bNjADTcEOyadaZxOJ83Nzf6/X3jhBQ4dOsQbb7xBXNwJDkjSW0jBlATjcDiIjY1l165d\nZGVlAXDHHXfQv39/5s6d28uj61sIITh06JDfzm/Xrl0kJib6Q7gjR4485qV6an64QoigptRa6Wbc\n4fGIqH6EHmtPZXPq1nJJx9b7Wl8iBBTtV1i5Q+W6CRrnJXf88127uZFX3zpEzrBI7vlxGrHdXIvs\nirLDLbyxoIzqo27uvyOdcaOCW5O1x+uDzfsU1u9VSYoRjB0kyEoWKIqgpeVYX9J2vSuFAJ8W7AzU\nnl27dvHQQw/xs5/9jKlTp/ZZ1x4Zkv1OIAVTEkxxcTH5+fnYbDb/Y3/4wx8oLCxkyZIlvTiyvo8Q\ngsOHD1NYWMjKlSvZtm0bMTExfgEdNWrUCQ3lO/PDbU10cbW0YAkL89fu2pxQUq3PKmPbmQ94vPDl\nFpXKeoWb8nzEdVCL32z18qe3D7G31M5j92QwanhU8JO+5flYt6WJNxeWMSDFwr0z0kgf0HX40+uD\nXWUKRftVmuyQ1c/FoBQfWf3NGDswXuhsv4sWLeLtt9/mnXfeYdCgE/vHSiQnQAqmJJhVq1Yxbdo0\nKisr/Y/Nnz+f9957j//+97+9OLLvHkIIampq/DPQoqIiwsPD/XWg48aNC3C7Od5Qvr14ulwuINju\nTQi9PZa5nUeX1QGLvjaQGC24eqzWYYeQDUWN/PHNg3xvYhx3/ah/t9YpTxW3R+PTL2r4YEkVF46L\n4babUklK6NrQ3O12U1Xr5kBtGPurTTG4IGYAAAmeSURBVDTY4HvDNXKzu74EOZ1Ofv5zvSTn5Zdf\n7vH1SclZixRMSTAdzTBffPFFVq5cKWeY3xIhBPX19X5D+U2bNmE2m7nwwgv9hvIWi6VTO7/2Idyu\nzBR8PvimUmHwABGU3ON2a/zl7+Ws3dTITx/IJGfY6Z1VdoXV5uUfnx3hs2U15E+I5cYfJJPeP1DQ\n2rcfax+Cdbj02WdUFz4fBw4cYNasWcycOZM777yzz4ZgJd9JpGBKgnE4HMTFxbFz507/Gubtt9/O\ngAED5BrmaUYIQVNTE6tWraKwsJANGzagqiq5ublMmjSJgoICiouLWbJkid/7NsAurhuNm4/n9QVl\n1Na5eezeDCIjesc6utnq5ZMvqvlseQ2DMsK4+vIkJoyJRlVEh+3HToQQgqVLlzJv3jz+/Oc/k5OT\nc4aPQHIOIgVT0jG33noriqLwl7/8hS1btnDttdeyZs2acz5L9kzTWmLw8ccf86tf/YqwsDAyMjIY\nPnw4+fn5TJw4kaioKP8M9FT8cF1uDbNJ6ROzL7dbo3BtPV8W1HKwzMG4nAgm5cYwblQcYaHdE3Ov\n18vvfvc7Dh48yPz584mO7jq5SCI5RaRgSjqmfR1mQkICzz//PLfccktvD+ucYNWqVdx44408+eST\nPPHEE7hcLtatW0dBQQFr1qzB6XQyevRo8vPzycvLIzY2ts/54Z4MrSHYyiMOtuxwsbG4mT0ldh69\nJ4PLJndtWXfkyBHuu+8+rrnmGh555JFeMyKQnBNIwZRI+hq1tbXs37+f8ePHd7jd6XSyYcMGCgsL\nWbVqFVarlVGjRpGXl0deXh6JiYm96od7MmiahsPhQFEUwo6VyIDuIOTzQXhY54lIX3/9NU899RR/\n/OMfyc/P76khS85dpGBKJN91PB4PGzdu9AtofX09w4cP95spJCcnd8sPt6cF1OPx0NLSQkhICGaz\nudv71jSNl156idWrV/POO++QlJR0hkcqkQBSMCVnA263mwceeIAVK1bQ0NBAVlYWc+fO5aqrrurt\nofUKXq+XoqIif0eWI0eOMGTIEL+ApqWlBQno6fDD7S7te3WGhYX5TdG7Q0NDAw8++CA5OTnMnj27\n14zTJeckUjAl330cDgfz5s3jrrvuIi0tjc8//5zp06ezY8cO0tPTe3t4vY7P52PHjh1+P9yKigqy\ns7P9a6CZmZmnxQ+3O7QPwYaGhp7U+xUVFfH444/z29/+lquuuqrXw8mScw4pmJKzk5ycHObMmcPU\nqVN7eyh9Dk3T2L17t19ADx48SEZGht9QPjs72y+gp8MPtxWv14vD4cBsNhMSEnJSIdgFCxbw0Ucf\nsWDBAgYOHHiqh95tZNRC0gFSMCVnH9XV1WRmZlJcXMz555/f28Pp82iaxr59+/yG8iUlJaSlpflD\nuEOGDOlUQKF7frinGoK12+08/vjjxMXFMW/ePL8d4JlGRi0kHSAFU3J24fV6mTJlCtnZ2bz22mu9\nPZzvJEIIDhw44Lfz27NnD/369fOHcEeMGBHUkaUzP1zA71R0vKXfidi7dy8PPvggjz76KNOmTev1\nEKyMWpzzSMGUnD0IIZg+fTo2m83vjCP59gghqKio8Idwd+zYQVxcnN9QPicnB5PJ1KEfrhACVVUx\nm80dGsp3tr/Fixfz+uuv89Zbb/UJswwZtZAgBVNyNjFz5kzKyspYunRpj4XuzkWEEBw5csQ/Ay0u\nLiYqKspvKD969GheffVVVFXlwQcfRFEU/yxUCBFQC3q8mYLb7eapp56iqamJ119/nYiIiF48Uh0Z\ntZAcQwqm5Oxg1qxZbNu2jRUrVhAW1oU7t+S0I4Sgrq6OwsJCvvzyS5YsWUJMTAxTp07l4osv9hvK\nA0EhXE3TWLhwIXa7nREjRvDKK6/w4x//mHvuuadPuPbIqIWkHVIwJd99ysrKyMjIwGKx+C9oiqLw\n5ptvMn369F4e3bnDpk2bmDZtGj/4wQ/49a9/zbp161i5ciUbN27EaDQyfvx4f0eWVlcfTdP4z3/+\nwwcffEBhYSGNjY1MnDiRiy66iMsuu4xJkyb16jHJqIWkHVIwJRLJ6WHx4sVomsZNN90U8LgQAqvV\nyurVqykoKGDdunUA/o4sa9euZd++fbz11lsoiuLv3OJwOHo1BCqjFpLjkIIpkUh6FiH0Fl5r167l\nH//4B1arlXfffbdPhGBbkVELSQdIwZRIepuSkhJGjhzJzTffzMKFC3t7OBKJpGM6FMy+c5snkZwD\nPPTQQ512JpFIJH0bKZgSSQ+xaNEiYmNjueyyy3p7KBKJ5BSQgimR9ADNzc08/fTT/OEPf+AEyyAS\niaSPIgVTIukBZs+ezT333ENqampvD0UikZwi3XdGlkgkp0RxcTErVqyguLi4t4cikUi+BVIwJZIz\nTGFhIYcOHSI9PR0hBDabDZ/Px65du9i0aVNvD08ikXQTWVYikZxhnE4nzc3N/r9feOEFDh06xBtv\nvEFcXFwvjkwikXRCh2UlcoYpkZxhLBaL318VICIiAovFIsVSIvmOIWeYEolEIpEEIo0LJBLJd4+G\nhgamTp1KREQEmZmZvP/++709JMk5igzJSiSSPs0DDzyAxWLh6NGjbNmyhWuuuYZRo0b1iWbTknML\nOcOUSCRdsmjRIoYOHUpERATZ2dmsXr26x/btcDhYvHgxzz77LKGhoeTl5XH99dfz7rvv9tgYJJJW\n5AxTIpF0yvLly/nlL3/Jhx9+SG5uLlVVVT26/2+++QaTyURWVpb/sZycHAoLC3t0HBIJSMGUSCRd\nMGfOHGbPnk1ubi4AKSkpPbp/m81GVFRUwGNRUVFYrdYeHYdEAjIkK5FIOkHTNDZt2kRNTQ3Z2dmk\np6fz8MMP43K5emwMERERATWsAE1NTURGRvbYGCSSVqRgSiSSDqmursbj8fDPf/6T1atXU1xcTFFR\nEc8++2yPjeH888/H6/VSWlrqf2zr1q0MGzasx8YgkbQiBVMikXRIaGgoAI888ghJSUnExcXxxBNP\nsHTp0h4bQ1hYGDfccAOzZ8/G4XCwatUq/vWvf3Hbbbf12BgkklakYEokkg6JiYlhwIABAY8pSof1\n3GeUP/3pTzgcDpKSkpgxYwZvvPGGLCmR9ArS6UcikXTK008/zRdffMFnn32G0Wjk+uuv59JLL2XO\nnDm9PTSJ5EzS4Z3hiQRTIpGcwyiKYgReAm4FWoAPgJ8LIdy9OjCJpBeQgimRSCQSSTeQa5gSiUQi\nkXQDKZgSiUQikXQDKZgSiUQikXQDKZgSiUQikXQDKZgSiUQikXSD/w+GZmolNv6kbwAAAABJRU5E\nrkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x109e08610>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(8,6))\n", "\n", "ax = fig.add_subplot(1,1,1, projection='3d')\n", "\n", "ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)\n", "cset = ax.contour(X, Y, Z, zdir='z', offset=-np.pi, cmap=matplotlib.cm.coolwarm)\n", "cset = ax.contour(X, Y, Z, zdir='x', offset=-np.pi, cmap=matplotlib.cm.coolwarm)\n", "cset = ax.contour(X, Y, Z, zdir='y', offset=3*np.pi, cmap=matplotlib.cm.coolwarm)\n", "\n", "ax.set_xlim3d(-np.pi, 2*np.pi);\n", "ax.set_ylim3d(0, 3*np.pi);\n", "ax.set_zlim3d(-np.pi, 2*np.pi);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Further reading" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* http://www.matplotlib.org - The project web page for matplotlib.\n", "* https://github.com/matplotlib/matplotlib - The source code for matplotlib.\n", "* http://matplotlib.org/gallery.html - A large gallery showcaseing various types of plots matplotlib can create. Highly recommended! \n", "* http://www.loria.fr/~rougier/teaching/matplotlib - A good matplotlib tutorial.\n", "* http://scipy-lectures.github.io/matplotlib/matplotlib.html - Another good matplotlib reference.\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 1 }
apache-2.0
anthonybu/api_sdk
DEMO.ipynb
1
41839
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# SDK for the Brandwatch API: Demo" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The goal of this notebook is to demonstrate the capabilities of the Python Software Development Kit for Brandwatch's API. The SDK was designed to address many of the challenges involved in building complex applications which interact with RESTful API's in general and Brandwatch's API in particular:\n", "<ul>\n", "<li>The SDK's object hierarchy roughly mirrors the API's resource hierarchy, making the code intuitive for those familiar with the Brandwatch platform</li>\n", "<li>All required parameters are enforced, and most optional parameters are supported and documented</li>\n", "<li>Typical Brandwatch workflows are supported behind the scenes; for instance, one can validate, upload, and backfill a query with a single function call</li>\n", "<li>The SDK is designed to support simple and readable code: sensible defaults are chosen for rarely used parameters and all resource IDs are handled behind the scenes\n", "</ul>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the user's perspective, the basic structure of the SDK is as follows. One first creates an instance of the class `BWProject`; this class handles authentication (via a user name and password or API key) and keeps track of project-level data such as the project's ID. (Behind the scenes, the user-level operations are handled by the class `BWUser` from which `BWProject` is inherited.) One passes `BWProject` instance as an argument in the constructor for a series of classes which manage the various Brandwatch resources: queries, groups, tags, categories, etc. These resource classes manage all resource-level operations: for example a single `BWQueries` instance handles all HTTP requests associated with queries in its attached project." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Typically, you'd import only the classes you plan on using, but for this demo all classes are listed except for superclasses which you do not use explicitly)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from bwapi.bwproject import BWProject, BWUser\n", "from bwapi.bwresources import BWQueries, BWGroups, BWAuthorLists, BWSiteLists, BWLocationLists, BWTags, BWCategories, BWRules, BWMentions, BWSignals\n", "import datetime" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The SDK uses the Python logging module to tell you what it's doing; if desired you can control what sort of output you see by uncommenting one of the lines below:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import logging\n", "logger = logging.getLogger(\"bwapi\")\n", "\n", "#(Default) All logging messages enabled\n", "#logger.setLevel(logging.DEBUG)\n", "\n", "#Does not report URL's of API requests, but all other messages enabled\n", "#logger.setLevel(logging.INFO)\n", "\n", "#Report only errors and warnings\n", "#logger.setLevel(logging.WARN)\n", "\n", "#Report only errors\n", "#logger.setLevel(logging.ERROR)\n", "\n", "#Disable logging\n", "#logger.setLevel(logging.CRITICAL)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Project" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When you use the API for the first time you have to authenticate with Brandwatch. This will get you an access token. The access token is stored in a credentials file (`tokens.txt` in this example). Once you've authenticated your access token will be read from that file so you won't need to enter your password again.\n", "\n", "You can authenticate from command line using the provided console script `bwapi-authenticate`:\n", "\n", "```\n", "$ bwapi-authenticate\n", "Please enter your Brandwatch credentials below\n", "Username: example@example\n", "Password:\n", "Authenticating user: example@example\n", "Writing access token for user: example@example\n", "Writing access token for user: example@example\n", "Success! Access token: 00000000-0000-0000-0000-000000000000\n", "```\n", "\n", "Alternatively, you can authenticate directly:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "BWUser(username=\"[email protected]\", password=\"YOUR_PASSWORD\", token_path=\"tokens.txt\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now you have authenticated you can load your project:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "YOUR_ACCOUNT = your_account\n", "YOUR_PROJECT = your_project\n", "\n", "project = BWProject(username=YOUR_ACCOUNT, project=YOUR_PROJECT)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Before we really begin, please note that you can get documentation for any class or function by viewing the help documentation" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "help(BWProject)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Queries" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we create some objects which can manipulate queries and groups in our project:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "queries = BWQueries(project)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's check what queries already exist in the account" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "queries.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also upload queries directly via the API by handing the \"name\", \"searchTerms\" and \"backfillDate\" to the upload funcion. If you don't pass a backfillDate, then the query will not backfill.\n", "\n", "The BWQueries class inserts default values for the \"languages\", \"type\", \"industry\", and \"samplePercent\" parameters, but we can override the defaults by including them as keyword arguments if we want. \n", "\n", "Upload accepts two boolean keyword arguments - \"create_only\" and \"modify_only\" (both defaulting to False) - which specifies what API verbs the function is allowed to use; for instance, if we set \"create_only\" to True then the function will post a new query if it can and otherwise it will do nothing. Note: this is true of all upload functions in this package." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "queries.upload(name = \"Brandwatch Engagement\", \n", " includedTerms = \"at_mentions:Brandwatch\",\n", " backfill_date = \"2015-09-01\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you're uploading many queries at a time, you can upload in batches. This saves API calls and allows you to just pass in a list rather than iterating over the upload function." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "queries.upload_all([\n", " {\"name\":\"Pets\", \n", " \"includedTerms\":\"dogs OR cats\", \n", " \"backfill_date\":\"2016-01-01T05:00:00\"}, \n", " \n", " {\"name\":\"ice cream cake\", \n", " \"includedTerms\":\"(\\\"ice cream\\\" OR icecream) AND (cake)\"},\n", " \n", " {\"name\": \"Test1\",\n", " \"includedTerms\": \"akdnvaoifg;anf\"},\n", " \n", " {\"name\": \"Test2\",\n", " \"includedTerms\": \"anvoapihajkvn\"},\n", " \n", " {\"name\": \"Test3\",\n", " \"includedTerms\": \"nviuphabaveh\"},\n", "\n", " ])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Channels will be shown as queries and can be deleted as queries, but must be uploaded differently. You must be authenticated in the app to upload channels.\n", "\n", "In order to upload a channel you must pass in the name of the channel, the handle you'd like to track and the type of channel. As with keyword queries, we can upload channels individually or in batches.\n", "\n", "Note: Currently we can only support uploading Twitter channels through the API." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "queries.upload_channel(name = \"Brandwatch\", \n", " handle = \"brandwatch\", \n", " channel_type = \"twitter\")\n", "\n", "queries.upload_all_channel([{\"name\": \"BWReact\",\n", " \"handle\": \"BW_React\",\n", " \"channel_type\": \"twitter\"},\n", " {\"name\": \"Brandwatch Careers\",\n", " \"handle\": \"BrandwatchJobs\",\n", " \"channel_type\": \"twitter\"}])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can delete queries one at a time, or in batches." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "queries.delete(name = \"Brandwatch Engagement\")\n", "queries.delete_all([\"Pets\", \"Test3\", \"Brandwatch\", \"BWReact\", \"Brandwatch Careers\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Groups" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You'll notice that a lot of the things that were true for queries are also true for groups. Many of the functions are nearly identical with any adaptations necessary handled behind the scenes for ease of use.\n", "\n", "Again (as with queries), we need to create an object with which we can manipulate groups within the account" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "groups = BWGroups(project)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And can check for exisiting groups in the same way as before." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "groups.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's check which queries are in each group in the account" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for group in groups.names:\n", " print(group)\n", " print(groups.get_group_queries(group))\n", " print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can easily create a group with any preexisting queries.\n", "\n", "(Recall that upload accepts two boolean keyword arguments - \"create_only\" and \"modify_only\" (both defaulting to False) - which specifies what API verbs the function is allowed to use; for instance, if we set \"create_only\" to True then the function will post a new query if it can and otherwise it will do nothing.)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "groups.upload(name = \"group 1\", queries = [\"Test1\", \"Test2\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or upload new queries and create a group with them, all in one call" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "groups.upload_queries_as_group(group_name = \"group 2\", \n", " query_data_list = [{\"name\": \"Test3\",\n", " \"includedTerms\": \"adcioahnanva\"},\n", " \n", " {\"name\": \"Test4\",\n", " \"includedTerms\": \"ioanvauhekanv;\"}])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can either delete just the group, or delete the group and the queries at the same time." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "groups.delete(\"group 1\")\n", "print()\n", "groups.deep_delete(\"group 2\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Downloading Mentions (From a Query or a Group)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can download mentions from a Query or from a Group (the code does not yet support Channels)\n", "\n", "There is a function get_mentions() in the classes BWQueries and in BWGroups. They are used the same way.\n", "\n", "Be careful with time zones, as they affect the date range and alter the results. If you're using the same date range for all your operations, I reccomend setting some variables at the start with dates and time zones. \n", "\n", "Here, today is set to the current day, and start is set to 30 days ago. Each number is offset by one to make it accurate." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "today = (datetime.date.today() + datetime.timedelta(days=1)).isoformat() + \"T05:00:00\"\n", "start = (datetime.date.today() - datetime.timedelta(days=29)).isoformat() + \"T05:00:00\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To use get_mentions(), the minimum parameters needed are name (query name in this case, or group name if downloading mentions from a group), startDate, and endDate" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "filtered = queries.get_mentions(name = \"ice cream cake\",\n", " startDate = start, \n", " endDate = today)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are over a hundred filters you can use to only download the mentions that qualify. see the full list in the file filters.py\n", "\n", "Here, different filters are used, which take different data types. filters.py details which data type is used with each filter. Some filters, like sentiment and xprofession below, have a limited number of settings to choose from.\n", "\n", "You can filter many things by inclusion or exclusion. The x in xprofession stands for exclusion, for example." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "filtered = queries.get_mentions(name = \"ice cream cake\", \n", " startDate = start, \n", " endDate = today, \n", " sentiment = \"positive\", \n", " twitterVerified = False, \n", " impactMin = 50, \n", " xprofession = [\"Politician\", \"Legal\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To filter by tags, pass in a list of strings where each string is a tag name.\n", "\n", "You can filter by categories in two differnt ways: on a subcategory level or a parent category level. To filter on a subcategory level, use the category keyword and pass in a dictionary, where each the keys are the parent categories and the values are lists of the subcategories. To filter on a parent category level, use the parentCategory keyword and pass in a list of parent category names.\n", "\n", "Note: In the following call the parentCategory filter is redundant, but executed for illustrative purposes." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "filtered = queries.get_mentions(name = \"ice cream cake\", \n", " startDate = start, \n", " endDate = today,\n", " parentCategory = [\"Colors\", \"Days\"],\n", " category = {\"Colors\": [\"Blue\", \"Yellow\"], \n", " \"Days\": [\"Monday\"]}, \n", " tag = [\"Tastes Good\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "filtered[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Categories" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Instantiate a BWCategories object by passing in your project as a parameter, which loads all of the categories in your project.\n", "\n", "Print out ids to see which categories are currently in your project. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "categories = BWCategories(project)\n", "\n", "categories.ids" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Upload categories individually with upload(), or in bulk with upload_all(). If you are uploading many categories, it is more efficient to use upload_all().\n", "\n", "For upload(), pass in name and children. name is the string which represents the parent category, and children is a list of dictionaries where each dictionary is a child category- its key is \"name\" and its value is the name of the child category.\n", "\n", "By default, a category will allow multiple subcategories to be applies, so the keyword argument \"multiple\" is set to True. You can manually set it to False by passing in multipe=False as another parameter when uploading a category.\n", "\n", "For upload_all(), pass in a list of dictionaries, where each dictionary corrosponds to one category, and contains the parameters described above." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's upload a category and then check what's in the category." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "categories.upload(name = \"Droids\", \n", " children = [\"r2d2\", \"c3po\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's upload a few categories and then check what parent categories are in the system" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "categories.upload_all([{\"name\":\"month\", \n", " \"children\":[\"January\",\"February\"]}, \n", " {\"name\":\"Time of Day\", \n", " \"children\":[\"morning\", \"evening\"]}])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To add children/subcategories, call upload() and pass in the parent category name and a list of the new subcategories to add. \n", "\n", "If you'd like to instead overwrite the existing subcategories with new subcategories, call upload() and pass in the parameter overwrite_children = True." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "categories.upload(name = \"Droids\", children = [\"bb8\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To rename a category, call rename(), with parameters name and new_name." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "categories.rename(name = \"month\", new_name = \"Months\")\n", "categories.ids[\"Months\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can delete categories either individually with delete(), or in bulk with delete_all(). \n", "\n", "You also have the option to delete the entire parent category or just some of the subcategories. \n", "\n", "To delete ALL CATEGORIES in a project, call clear_all_in_project with no parameters. Be careful with this one, and do not use unless you want to delete all categories in the current project." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First let's delete just some subcategories." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "categories.delete({\"name\": \"Months\", \"children\":[\"February\"]})\n", "categories.delete_all([{\"name\": \"Droids\", \"children\": [\"bb8\", \"c3po\"]}])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "categories.delete(\"Droids\")\n", "categories.delete_all([\"Months\", \"Time of Day\"])\n", "\n", "categories.ids" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tags" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Instantiate a BWTags object by passing in your project as a parameter, which loads all of the tags in your project.\n", "\n", "Print out ids to see which tags are currently in your project. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tags = BWTags(project)\n", "\n", "tags.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are two ways to upload tags: individually and in bulk. When uploading many tags, it is more efficient to use upload_all. \n", "\n", "In upload, pass in the name of the tag.\n", "\n", "In upload_all, pass in a list of dictionaries, where each dictionary contains \"name\" as the key and the tag name as the its value" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tags.upload(name = \"yellow\")\n", "tags.upload_all([{\"name\":\"green\"}, \n", " {\"name\":\"blue\"}, \n", " {\"name\":\"purple\"}])\n", "\n", "tags.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To change the name of a tag, but mantain its id, upload it with keyword arguments name and new_name. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tags.upload(name = \"yellow\", new_name = \"yellow-orange blend\")\n", "\n", "tags.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As with categories, there are three ways of deleting tags. \n", "\n", "Delete one tag by calling delete and passing in a string, the name of the tag to delete\n", "\n", "Delete multiple tags by calling delete_all and passing in a list of strings, where each string is a name of a tag to delete\n", "\n", "To delete ALL TAGS in a project, call clear_all_in_project with no parameters. Be careful with this one, and do not use unless you want to delete all tags in the current project" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tags.delete(\"purple\")\n", "tags.delete_all([\"blue\", \"green\", \"yellow-orange blend\"])\n", "\n", "tags.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Brandwatch Lists" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note: to avoid ambiguity between the python data type \"list\" and a Brandwatch author list, site list, or location list, the latter is referred to in this demo as a \"Brandwatch List.\"\n", "\n", "BWAuthorLists, BWSiteLists, BWLocationLists work almost identically.\n", "\n", "First, instantiate your the object which contains the Brandwatch Lists in your project, with your project as a the parameter. This will load the data from your project so you can see what's there, upload more Brandwatch Lists, edit existing Brandwatch Lists, and delete Brandwatch Lists from your project\n", "\n", "Printing out ids will show you the Brandwatch Lists (by name and ID) that are currently in your project." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "authorlists = BWAuthorLists(project)\n", "authorlists.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To upload a Brandwatch List, pass in a name as a string and the contents of your Brandwatch List as a list of strings. The keyword \"authors\" is used for BWAuthorLists, shown below. The keyword \"domains\"is used for BWSiteLists. The keyword \"locations\" is used for BWLocationLists.\n", "\n", "To see the contents of a Brandwatch List, call get_list with the name as the parameter\n", "\n", "Uploading is done with either a POST call, for new Brandwatch Lists, or a PUT call, for existing Brandwatch Lists, where the ID of the Brandwatch Lists is mantained, so if you upload and then upload a list with the same name and different contents, the first upload will create a new Brandwatch List, and the second upload will modify the existing list and keep its ID. Similarly, you can change the name of an existing Brandwatch List by passing in both \"name\" and \"new_name\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "authorlists.upload(name = \"Writers\", \n", " authors = [\"Edward Albee\", \"Tenessee Williams\", \"Anna Deavere Smith\"])\n", "\n", "authorlists.get(\"Writers\")[\"authors\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "authorlists.upload(name = \"Writers\", \n", " new_name = \"Playwrights\", \n", " authors = [\"Edward Albee\", \"Tenessee Williams\", \"Anna Deavere Smith\", \"Susan Glaspell\"])\n", "\n", "authorlists.get(\"Playwrights\")[\"authors\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To add items to a Brandwatch List without reentering all of the existing items, call add_items " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "authorlists.add_items(name = \"Playwrights\", \n", " items = [\"Eugene O'Neill\"])\n", "\n", "authorlists.get(\"Playwrights\")[\"authors\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To delete a Brandwatch List, pass in its name. Note the ids before the Brandwatch List is deleted, compared to after it is deleted. The BWLists object is updated to reflect the Brandwatch Lists in the project after each upload and each delete" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "authorlists.names" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "authorlists.delete(\"Playwrights\")\n", "\n", "authorlists.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The only difference between how you use BWAuthorlists compared to how you use BWSiteLists and BWLocationLists is the parameter which is passed in. \n", "\n", "BWAuthorlists:\n", "\n", "authors = [\"edward albee\", \"tenessee williams\", \"Anna Deavere Smith\"]\n", "\n", "BWSiteLists:\n", "\n", "domains = [\"github.com\", \"stackoverflow.com\", \"docs.python.org\"]\n", "\n", "*BWLocationLists:\n", "\n", "locations = [{\"id\": \"mai4\", \"name\": \"Maine\", \"type\": \"state\", \"fullName\": \"Maine, United States, North America\"}, \n", "{\"id\": \"verf\", \"name\": \"Vermont\", \"type\": \"state\", \"fullName\": \"Vermont, United States, North America\"}, \n", "{\"id\": \"rho4\", \"name\": \"Rhode Island\", \"type\": \"state\", \"fullName\": \"Rhode Island, United States, North America\"} ]\n", "\n", "*Requires dictionary of location data instead of a string\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Rules" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Instantiate a BWRules object by passing in your project as a parameter, which loads all of the rules in your project.\n", "\n", "Print out names and IDs to see which rules are currently in your project. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "rules = BWRules(project)\n", "rules.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Every rule must have a name, an action, and filters.\n", "\n", "The first step to creating a rule through the API is to prepare filters by calling filters(). \n", "\n", "If your desired rules applies to a query (or queries), include queryName as a filter and pass in a list of the queries you want to apply it to.\n", "\n", "There are over a hundred filters you can use to only download the mentions that qualify. See the full list in the file filters.py. Here, different filters are used, which take different data types. filters.py details which data type is used with each filter. Some filters, like sentiment and xprofession below, have a limited number of settings to choose from. You can filter many things by inclusion or exclusion. The x in xprofession stands for exclusion, for example.\n", "\n", "If you include search terms, be sure to use nested quotes - passing in \"cat food\" will result in a search that says cat food (i.e. cat AND food)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "filters = rules.filters(queryName = \"ice cream cake\", \n", " sentiment = \"positive\", \n", " twitterVerified = False, \n", " impactMin = 50, \n", " xprofession = [\"Politician\", \"Legal\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "filters = rules.filters(queryName = [\"Australian Animals\", \"ice cream cake\"], \n", " search = '\"cat food\" OR \"dog food\"')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The second step is to prepare the rule action by calling rule_action().\n", "\n", "For this function, you must pass in the action and setting. Below I've used examples of adding categories and tags, but you can also set sentiment or workflow (as in the front end).\n", "\n", "If you pass in a category or tag that does not yet exist, it will be automatically uploaded for you." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "action = rules.rule_action(action = \"addTag\", \n", " setting = [\"animal food\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The last step is to upload!\n", "\n", "Pass in the name, filters, and action. Scope is optional - it will default to query if queryName is in the filters and otherwise be set to project. Backfill is also optional - it will default to False.\n", "\n", "The upload() function will automatically check the validity of your search string and give a helpful error message if errors are found." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "rules.upload(name = \"rule\", \n", " scope = \"query\", \n", " filter = filters, \n", " ruleAction = action,\n", " backfill = True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can also upload rules in bulk. Below we prepare a bunch of filters and actions at once." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "filters1 = rules.filters(search = \"caknvfoga;vnaei\")\n", "filters2 = rules.filters(queryName = [\"Australian Animals\"], search = \"(bloop NEAR/10 blorp)\")\n", "filters3 = rules.filters(queryName = [\"Australian Animals\", \"ice cream cake\"], search = '\"hello world\"')\n", "\n", "action1 = rules.rule_action(action = \"addCategories\", setting = {\"Example\": [\"One\"]})\n", "action2 = rules.rule_action(action = \"addTag\", setting = [\"My Example\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When uploading in bulk, it is helpful (but not necessary) to use the rules() function before uploading in order to keep the dictionaries organized." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "rule1 = rules.rule(name = \"rule1\", \n", " filter = filters1, \n", " action = action1, \n", " scope = \"project\")\n", "\n", "rule2 = rules.rule(name = \"rule2\", \n", " filter = filters2, \n", " action = action2)\n", "\n", "rule3 = rules.rule(name = \"rule3\", \n", " filter = filters3, \n", " action = action1,\n", " backfill = True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "rules.upload_all([rule1, rule2, rule3])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As with other resources, we can delete, delete_all or clear_all_in_project" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "rules.delete(name = \"rule\")\n", "rules.delete_all(names = [\"rule1\", \"rule2\", \"rule3\"])\n", "\n", "rules.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Signals" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Instantiate a BWSignals object by passing in your project as a parameter, which loads all of the signals in your project.\n", "\n", "Print out ids to see which signals are currently in your project." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "signals = BWSignals(project)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "signals.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Again, we can upload signals individually or in batch.\n", "\n", "You must pass at least a name, queries (list of queries you'd like the signal to apply to) and subscribers. For each subscriber, you have to pass both an emailAddress and notificationThreshold. The notificationThreshold will be a number 1, 2 or 3 - where 1 means send all notifications and 3 means send only high priority signals.\n", "\n", "Optionally, you can also pass in categories or tags to filter by. As before, you can filter by an entire category with the keyword parentCategory or just a subcategory (or list of subcategories) with the keyword category. An example of how to pass in each filter is shown below." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "signals.upload(name= \"New Test\",\n", " queries= [\"ice cream cake\"],\n", " parentCategory = [\"Colors\"],\n", " subscribers= [{\"emailAddress\": \"[email protected]\", \"notificationThreshold\": 1}])\n", "\n", "signals.upload_all([{\"name\": \"Signal Me\",\n", " \"queries\": [\"ice cream cake\"],\n", " \"category\": {\"Colors\": [\"Blue\", \"Yellow\"]},\n", " \"subscribers\": [{\"emailAddress\": \"[email protected]\", \"notificationThreshold\": 3}]},\n", " {\"name\": \"Signal Test\",\n", " \"queries\": [\"ice cream cake\"],\n", " \"tag\": [\"Tastes Good\"],\n", " \"subscribers\": [{\"emailAddress\": \"[email protected]\", \"notificationThreshold\": 2}]}])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "signals.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Signals can be deleted individually or in bulk." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "signals.delete(\"New Test\")\n", "signals.delete_all([\"Signal Me\", \"Signal Test\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "signals.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Patching Mentions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To patch the metadata on mentions, whether those mentions come from queries or from groups, you must first instantiate a BWMentions object and pass in your project as a parameter. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mentions = BWMentions(project)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "filtered = queries.get_mentions(name = \"ice cream cake\", \n", " startDate = start, \n", " endDate = today,\n", " parentCategory = [\"Colors\", \"Days\"],\n", " category = {\"Colors\": [\"Blue\", \"Yellow\"], \n", " \"Days\": [\"Monday\"]}, \n", " tag = [\"Tastes Good\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "if you don't want to upload your tags and categories ahead of time, you don't have to! BWMentions will do that for you, but if there are a lot of differnet tags/categories, it's definitely more efficient to upload them in bulk ahead of time" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For this example, i'm arbitrarily patching a few of the mentions, rather than all of them" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mentions.patch_mentions(filtered[0:10], action = \"addTag\", setting = [\"cold\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mentions.patch_mentions(filtered[5:12], action = \"starred\", setting = True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mentions.patch_mentions(filtered[6:8], action = \"addCategories\", setting = {\"color\":[\"green\", \"blue\"]})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
dsacademybr/PythonFundamentos
Cap05/Notebooks/DSA-Python-Cap05-04-Heranca.ipynb
1
3693
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# <font color='blue'>Data Science Academy - Python Fundamentos - Capítulo 5</font>\n", "\n", "## Download: http://github.com/dsacademybr" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Versão da Linguagem Python Usada Neste Jupyter Notebook: 3.8.8\n" ] } ], "source": [ "# Versão da Linguagem Python\n", "from platform import python_version\n", "print('Versão da Linguagem Python Usada Neste Jupyter Notebook:', python_version())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Herança" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Criando a classe Animal - Super-classe\n", "class Animal():\n", " \n", " def __init__(self):\n", " print(\"Animal criado\")\n", "\n", " def Identif(self):\n", " print(\"Animal\")\n", "\n", " def comer(self):\n", " print(\"Comendo\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# Criando a classe Cachorro - Sub-classe\n", "class Cachorro(Animal):\n", " \n", " def __init__(self):\n", " Animal.__init__(self)\n", " print(\"Objeto Cachorro criado\")\n", "\n", " def Identif(self):\n", " print(\"Cachorro\")\n", "\n", " def latir(self):\n", " print(\"Au Au!\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Animal criado\n", "Objeto Cachorro criado\n" ] } ], "source": [ "# Criando um objeto (Instanciando a classe)\n", "rex = Cachorro()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cachorro\n" ] } ], "source": [ "# Executando o método da classe Cachorro (sub-classe)\n", "rex.Identif()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Comendo\n" ] } ], "source": [ "# Executando o método da classe Animal (super-classe)\n", "rex.comer()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Au Au!\n" ] } ], "source": [ "# Executando o método da classe Cachorro (sub-classe)\n", "rex.latir()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Fim" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Obrigado\n", "\n", "### Visite o Blog da Data Science Academy - <a href=\"http://blog.dsacademy.com.br\">Blog DSA</a>" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
johntanz/ROP
.ipynb_checkpoints/ROP Data Analysis v1-checkpoint.ipynb
1
467433
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# ROP Data Analysis 0.1\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###Call ROPtimes dict, and clean data up" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "# Import Modules and Identify Low Signals\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from pylab import *\n", "import pandas as pd\n", "from datetime import datetime, timedelta\n", "from pandas import Series, DataFrame, concat\n", "import scipy\n", "import scipy.stats\n", "import scipy.fftpack\n", "\n", "#Define any string with 'C' as NaN. 'C' is an indicator for the Masimo as a low signal reading\n", "def readD(val):\n", " if 'C' in val:\n", " return np.nan\n", " return val\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 91, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "import ROPtimes as rt\n", "\n", "Baby = 'ROP015' #change depending on which baby you're doing!\n", "BabyDict = getattr(rt, Baby) " ] }, { "cell_type": "code", "execution_count": 92, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "\"\\nParse_dates tells the read_csv function to combine the date and time column\\nInto one timestamp column and parse it as a timestamp.\\nPandas is smart enough to know how to parse a date in various formats\\n\\nIndex_col sets the timestamp column to be the index.\\n\\nUsecols tells the read_csv function to select only the subset of the columns.\\nNa_values is used to turn 0 into NaN\\n\\nConverters: readD is the dict that means any string with 'C' with be NaN (for PI)\\n\"" ] }, "execution_count": 92, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dfNIRSpre0 = pd.read_csv('/Users/John/Dropbox/LLU/Projects/Retinopathy of Prematurity/NIRS/Clean/' + Baby + 'NIRS.csv',\n", " parse_dates={'timestamp': ['Date',' Time']},\n", " index_col='timestamp',\n", " usecols=['Date', ' Time', ' Ch2 %StO2'],\n", " na_values=['0'])\n", "\n", "dfPOpre0 = pd.read_csv('/Users/John/Dropbox/LLU/Projects/Retinopathy of Prematurity/Pulse Ox/' + Baby + 'PO.csv',\n", " parse_dates={'timestamp': ['Date','Time']},\n", " index_col='timestamp',\n", " usecols=['Date', 'Time', 'SpO2', 'PR'],\n", " na_values=['0'])\n", "\n", "dfPIpre0 = pd.read_csv('/Users/John/Dropbox/LLU/Projects/Retinopathy of Prematurity/Pulse Ox/' + Baby + 'PO.csv',\n", " parse_dates={'timestamp': ['Date','Time']},\n", " index_col='timestamp',\n", " usecols=['Date', 'Time', 'PI', 'Exceptions'],\n", " na_values=['0'],\n", " converters={'Exceptions': readD}\n", " ) #make a PI df as well to clean it better\n", "\n", "dfNIRSpre = dfNIRSpre0.rename(columns={' Ch2 %StO2': 'StO2'}) #rename NIRS column\n", "\n", "#Clean the PI dataframe to get rid of rows that have NaN\n", "dfPIpre = dfPIpre0[dfPIpre0.loc[:, ['PI', 'Exceptions']].apply(pd.notnull).all(1)]\n", "\n", "dfPOpre = dfPIpre.combine_first(dfPOpre0)\n", "#combine PI dataframe with the rest of the Pulse Ox dataframe after cleaning\n", "\n", "'''\n", "Parse_dates tells the read_csv function to combine the date and time column\n", "Into one timestamp column and parse it as a timestamp.\n", "Pandas is smart enough to know how to parse a date in various formats\n", "\n", "Index_col sets the timestamp column to be the index.\n", "\n", "Usecols tells the read_csv function to select only the subset of the columns.\n", "Na_values is used to turn 0 into NaN\n", "\n", "Converters: readD is the dict that means any string with 'C' with be NaN (for PI)\n", "'''" ] }, { "cell_type": "code", "execution_count": 93, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Both NIRS and PO indices are even.\n" ] } ], "source": [ "# Phone almost always equals Philips monitor\n", "\n", "# NIRS date/time is 2 mins and 10 seconds slower than phone. Have to correct for it.\n", "# Pulse ox date/time is 1 mins and 32 seconds faster than phone. Have to correct for it.\n", "\n", "#This code is to make the combined dataframe come in even seconds.\n", "#The corrected is 1 second, + for NIRS and - for PO.\n", "\n", "TCcorrect = timedelta(seconds=1)\n", "\n", "ncorr = dfNIRSpre.index+TCcorrect\n", "pcorr = dfPOpre.index-TCcorrect\n", "\n", "\n", "if dfNIRSpre.index[:1].second % 2 == 0:\n", " if dfPOpre.index[:1].second % 2 == 0:\n", " print '\\nBoth NIRS and PO indices are even.'\n", " elif dfPOpre.index[:1].second % 2 != 0:\n", " print '\\nNIRS even, PO odd. PO index corrected.'\n", " dfPOpre = dfPOpre.set_index(pcorr)\n", " else:\n", " raise NameError('Indices are messed up')\n", "elif dfNIRSpre.index[:1].second % 2 != 0:\n", " if dfPOpre.index[:1].second % 2 == 0:\n", " print '\\nNIRS odd, PO even. NIRS index corrected.'\n", " dfNIRSpre = dfNIRSpre.set_index(ncorr)\n", " elif dfPOpre.index[:1].second % 2 != 0:\n", " print '\\nBoth NIRS and PO indices are odd. Both corrected'\n", " dfNIRSpre = dfNIRSpre.set_index(ncorr)\n", " dfPOpre = dfPOpre.set_index(pcorr)\n", "else:\n", " raise NameError('Indices are messed up')\n", "\n", "TCnirs = timedelta(minutes=2, seconds=10)\n", "TCpo = timedelta(minutes=1, seconds=32)\n", "# NIRS is slower than correct time, need to add TCnirs to catch it up\n", "# PO is faster than correct time, need to subtract TCpo to slow it down\n", "\n", "dfNIRS = dfNIRSpre.set_index([dfNIRSpre.index+TCnirs]) #NIRS Time Correction\n", "dfPO = dfPOpre.set_index([dfPOpre.index-TCpo]) #PO Time Correction" ] }, { "cell_type": "code", "execution_count": 94, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Both machines on\n" ] } ], "source": [ "#for babies that only had one machine\n", "\n", "dffakePO = pd.DataFrame({'SpO2':0, 'PR':0, 'PI':0}, index=dfNIRS.index)\n", "dffakeNIRS = pd.DataFrame({'StO2':0}, index=dfPO.index)\n", "\n", "if len(dfNIRS) > 5:\n", " if len(dfPO) > 5:\n", " df = dfNIRS.combine_first(dfPO) #Combine two DataFrame objects and default to non-null values in frame\n", " print 'Both machines on'\n", " elif len(dfPO) < 5:\n", " df = dfNIRS.combine_first(dffakePO)\n", " print 'Only NIRS on'\n", "elif len(dfNIRS) < 5:\n", " df = dffakeNIRS.combine_first(dfPO)\n", " print 'Only Masimo on'\n", "else:\n", " raise NameError('Check your files')" ] }, { "cell_type": "code", "execution_count": 95, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total (h) Baseline recording = 15.748345932\n", "Total (h) After Exam recording = 25.46390926\n" ] } ], "source": [ "a = -(df.index[0]-BabyDict['ExamStart']).total_seconds()*0.000277778\n", "print 'Total (h) Baseline recording = %s' % a\n", "b = ((df.index[-1])-BabyDict['ExamEnd']).total_seconds()*0.000277778\n", "print 'Total (h) After Exam recording = %s' % b" ] }, { "cell_type": "code", "execution_count": 96, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "#Convert to Relative Time and Time Windows\n", "def reltimecalc(ROPNumber, df):\n", " ROPreltime = {\n", " 'BaselineStart' : (df.index[0].to_datetime()-ROPNumber['ExamStart']).total_seconds(), #should be negative\n", " 'BaselineEnd': (ROPNumber['EyeDrop1'] - ROPNumber['ExamStart']).total_seconds(), #redundant, just for labeling sake\n", " 'EyeDrop1' : (ROPNumber['EyeDrop1'] - ROPNumber['ExamStart']).total_seconds(), #neg\n", " 'EyeDrop2' : (ROPNumber['EyeDrop2'] - ROPNumber['ExamStart']).total_seconds(), #neg\n", " 'EyeDrop3' : (ROPNumber['EyeDrop3'] - ROPNumber['ExamStart']).total_seconds(), #neg\n", " 'ExamStart' : (ROPNumber['ExamStart'] - ROPNumber['ExamStart']).total_seconds(), \n", " 'ExamEnd' : (ROPNumber['ExamEnd'] - ROPNumber['ExamStart']).total_seconds(), #positive number\n", " 'DataEnd' : (df.index[-1].to_datetime()-ROPNumber['ExamStart']).total_seconds()\n", " }\n", " \n", " TimeWindows = {\n", " 'tw0' : -10800.0, # three hours before 0\n", " 'tw1' : 10800.0, # three hours after 0\n", " 'tw2' : 21600.0, # six hoours\n", " 'tw3' : 32400.0, # nine hours\n", " 'tw4' : 43200.0, # 12 hours\n", " 'tw5' : 54000.0, # 15 hours\n", " 'tw6' : 64800.0, # 18 hours\n", " 'tw7' : 75600.0, # 21 hours\n", " 'tw8' : 86400.0 #24 hours\n", " }\n", " \n", " return ROPreltime, TimeWindows\n" ] }, { "cell_type": "code", "execution_count": 97, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "tw = timedelta(hours=3)\n", "twend = timedelta(hours=24)\n", "df = df[(BabyDict['ExamStart']-tw):(BabyDict['ExamStart']+twend)]" ] }, { "cell_type": "code", "execution_count": 98, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "Data, tw = reltimecalc(BabyDict, df)" ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "df = df.set_index(np.linspace(tw['tw0'],tw['tw8'],len(df)))" ] }, { "cell_type": "code", "execution_count": 100, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "df = df[df.PI.between(0.02, 20)]\n", "df = df.drop('Exceptions', 1) # Drop exceptions now that you don't need it anymore\n", "#filter PI values to only allow =< 0.02 and >= 20\n", "\n", "dfen = df.dropna(how='any') #df for no NaN" ] }, { "cell_type": "code", "execution_count": 101, "metadata": { "collapsed": false }, "outputs": [], "source": [ "psa = dfen['SpO2'].values\n", "prs = dfen['StO2'].values\n", "\n", "FTOE = pd.Series(((psa-prs)/psa)*100)\n", "\n", "dfen = dfen.assign(FTOE=FTOE.values)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#Analyis Start" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###Linear Measures:\n", "\n", "Avgs, Std Dev, and Coefficient of Variation\n", " - Avg, std dev, and CoV for every time window\n", " - Avg every 10 sec for 4 mins of ROP exam, std dev, CoV.\n", " - O2 DeSat Counts" ] }, { "cell_type": "code", "execution_count": 102, "metadata": { "collapsed": true }, "outputs": [], "source": [ "a = df[tw['tw0']:0]\n", "b = df[0:tw['tw1']]\n", "c = df[tw['tw1']:tw['tw2']]\n", "d = df[tw['tw2']:tw['tw3']]\n", "e = df[tw['tw3']:tw['tw4']]\n", "f = df[tw['tw4']:tw['tw5']]\n", "g = df[tw['tw5']:tw['tw6']]\n", "h = df[tw['tw6']:tw['tw7']]\n", "i = df[tw['tw7']:tw['tw8']]\n", "\n", "dflst = [a, b, c, d, e, f, g, h, i]\n", "\n", "tlst = [tw['tw0'], 0, tw['tw1'], tw['tw2'], tw['tw3'], tw['tw4'], tw['tw5'], \n", " tw['tw6'], tw['tw7'], tw['tw8']]\n", "\n", "#dfen for no na values\n", "\n", "ea = dfen[tw['tw0']:0]\n", "eb = dfen[0:tw['tw1']]\n", "ec = dfen[tw['tw1']:tw['tw2']]\n", "ed = dfen[tw['tw2']:tw['tw3']]\n", "ee = dfen[tw['tw3']:tw['tw4']]\n", "ef = dfen[tw['tw4']:tw['tw5']]\n", "eg = dfen[tw['tw5']:tw['tw6']]\n", "eh = dfen[tw['tw6']:tw['tw7']]\n", "ei = dfen[tw['tw7']:tw['tw8']]\n", "\n", "dfenlst = [ea, eb, ec, ed, ee, ef, eg, eh, ei] #basically same dataframe but all NaNs dropped\n", "#some functions will return NaN if there's even one NaN present so this is why this is necessary\n", "\n", "#entropy functions replace original data, so need to make a copy\n", "dfenlstcopy1 = [] #use this for entropy measures\n", "dfenlstcopy2 = [] #use this for cross entropy meaures\n", "dfenlstcopy3 = [] #use this for baseline cross entropy measures\n", "for i in dfenlst:\n", " cpy = i.copy(deep=True)\n", " dfenlstcopy1.append(cpy)\n", " dfenlstcopy2.append(cpy)\n", " dfenlstcopy3.append(cpy)" ] }, { "cell_type": "code", "execution_count": 103, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#AVERAGE DURING ROP EXAM FOR FIRST FOUR MINUTES\n", "\n", "\n", "#tensec needs df['y']\n", "\n", "def tensec(a, b): #a = baseline values, b = next time epoch\n", "\n", " blavg = np.nanmean(a.values)\n", " blstd = np.nanstd(a.values)\n", " blcv = scipy.stats.variation(a.values, nan_policy='omit')\n", " \n", " r = np.arange(0, 250, 10)\n", " \n", " avg = [blavg]\n", " stdev = [blstd]\n", " cv = [blcv]\n", " \n", " ind = list(np.arange(0, 250, 10))\n", " ind.insert(0, 'Baseline')\n", " \n", " for i in r:\n", " x = b[i:(i+10)].mean()\n", " y = b[i:(i+10)].std()\n", " z = scipy.stats.variation((b[i:(i+10)]).values, nan_policy='omit')\n", " \n", " avg.append(x)\n", " stdev.append(y)\n", " cv.append(z)\n", " \n", " dftensec = pd.DataFrame({\n", " 'a_mean': avg,\n", " 'b_std dev' : stdev,\n", " 'c_CoV' : cv,\n", " }, index = ind)\n", " \n", " return dftensec" ] }, { "cell_type": "code", "execution_count": 104, "metadata": { "collapsed": false }, "outputs": [], "source": [ "PIten = tensec(a['PI'], b['PI'])\n", "PIten.columns = ['PI mean', 'PI std dev', 'PI CV']\n", "\n", "PRten = tensec(a['PR'], b['PR'])\n", "PRten.columns = ['PR mean', 'PR std dev', 'PR CV']\n", "\n", "SpO2ten = tensec(a['SpO2'], b['SpO2'])\n", "SpO2ten.columns = ['SpO2 mean', 'SpO2 std dev', 'PR CV']\n", "\n", "StO2ten = tensec(a['StO2'], b['StO2'])\n", "StO2ten.columns = [\"StO2 mean\", \"StO2 std dev\", \"StO2 CV\"]\n", "\n", "FTOEten = tensec(ea['FTOE'], eb['FTOE']) #e means dropped nan\n", "FTOEten.columns = ['FTOE mean', 'FTOE std dev', 'FTOE CV']" ] }, { "cell_type": "code", "execution_count": 105, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def linearmeasures(avglst): \n", " \n", " #mean\n", " \n", " PImean = []\n", " PRmean = []\n", " SpO2mean = []\n", " StO2mean = []\n", " FTOEmean = []\n", " \n", " #std dev\n", " \n", " PIstd = []\n", " PRstd = []\n", " SpO2std = []\n", " StO2std = []\n", " FTOEstd = []\n", "\n", "\n", " #coefficient of varience\n", " \n", " PIcv = []\n", " PRcv = []\n", " SpO2cv = []\n", " StO2cv = []\n", " FTOEcv = []\n", " \n", " \n", " for i in avglst:\n", "\n", " ax = np.nanmean(i['PI'].values) #mean\n", " PImean.append(ax)\n", " az = np.nanstd(i['PI'].values) #std dev\n", " PIstd.append(az)\n", " av = scipy.stats.variation(i['PI'].values, nan_policy='omit') #CoV\n", " PIcv.append(av)\n", " \n", " bx = np.nanmean(i['PR'].values) #mean\n", " PRmean.append(bx)\n", " bz = np.nanstd(i['PR'].values) #std dev\n", " PRstd.append(bz)\n", " bv = scipy.stats.variation(i['PR'].values, nan_policy='omit') #CoV\n", " PRcv.append(bv)\n", " \n", " cx = np.nanmean(i['SpO2'].values) #mean\n", " SpO2mean.append(cx)\n", " cz = np.nanstd(i['SpO2'].values) #std dev\n", " SpO2std.append(cz)\n", " cv = scipy.stats.variation(i['SpO2'].values, nan_policy='omit') #CoV\n", " SpO2cv.append(cv)\n", " \n", " dx = np.nanmean(i['StO2'].values) #mean\n", " StO2mean.append(dx)\n", " dz = np.nanstd(i['StO2'].values) #std dev\n", " StO2std.append(dz)\n", " dv = scipy.stats.variation(i['StO2'].values, nan_policy='omit') #CoV\n", " StO2cv.append(dv)\n", " \n", " ex = np.nanmean(i['FTOE'].values) #mean\n", " FTOEmean.append(ex)\n", " ez = np.nanstd(i['FTOE'].values) #std dev\n", " FTOEstd.append(ez)\n", " ev = scipy.stats.variation(i['FTOE'].values, nan_policy='omit') #CoV\n", " FTOEcv.append(ev)\n", " \n", " \n", " PIlin = pd.DataFrame({\n", " 'a_PI mean': PImean,\n", " 'b_PI std dev' : PIstd,\n", " 'c_PI CoV' : PIcv,\n", " }, index = ['-3:0','0:3','3:6','6:9','9:12','12:15','15:18','18:21','21:24'])\n", " \n", " PRlin = pd.DataFrame({\n", " 'a_PR mean': PRmean,\n", " 'b_PR std dev' : PRstd,\n", " 'c_PR CoV' : PRcv,\n", " }, index = ['-3:0','0:3','3:6','6:9','9:12','12:15','15:18','18:21','21:24'])\n", " \n", " SpO2lin = pd.DataFrame({\n", " 'a_SpO2 mean': SpO2mean,\n", " 'b_SpO2 std dev' : SpO2std,\n", " 'c_SpO2 CoV' : SpO2cv,\n", " }, index = ['-3:0','0:3','3:6','6:9','9:12','12:15','15:18','18:21','21:24'])\n", " \n", " StO2lin = pd.DataFrame({\n", " 'a_StO2 mean': StO2mean,\n", " 'b_StO2 std dev' : StO2std,\n", " 'c_StO2 CoV' : StO2cv,\n", " }, index = ['-3:0','0:3','3:6','6:9','9:12','12:15','15:18','18:21','21:24'])\n", " \n", " FTOElin = pd.DataFrame({\n", " 'a_FTOE mean': FTOEmean,\n", " 'b_FTOE std dev' : FTOEstd,\n", " 'c_FTOE CoV' : FTOEcv,\n", " }, index = ['-3:0','0:3','3:6','6:9','9:12','12:15','15:18','18:21','21:24'])\n", " \n", " dfCoV = pd.DataFrame({\n", " 'PI CoV' : PIcv,\n", " 'PR CoV' : PRcv,\n", " 'SpO2 CoV' : SpO2cv,\n", " 'StO2 CoV' : StO2cv,\n", " 'FTOE CoV' : FTOEcv\n", " }, index = ['-3:0','0:3','3:6','6:9','9:12','12:15','15:18','18:21','21:24'])\n", " \n", " \n", " return PIlin, PRlin, SpO2lin, StO2lin, FTOElin, dfCoV" ] }, { "cell_type": "code", "execution_count": 106, "metadata": { "collapsed": false }, "outputs": [], "source": [ "PIlin, PRlin, SpO2lin, StO2lin, FTOElin, dfCoV = linearmeasures(dfenlst) #USE dfenlst" ] }, { "cell_type": "code", "execution_count": 107, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>a_PI mean</th>\n", " <th>b_PI std dev</th>\n", " <th>c_PI CoV</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>-3:0</th>\n", " <td>1.400518</td>\n", " <td>0.607776</td>\n", " <td>0.433965</td>\n", " </tr>\n", " <tr>\n", " <th>0:3</th>\n", " <td>1.470180</td>\n", " <td>0.408768</td>\n", " <td>0.278039</td>\n", " </tr>\n", " <tr>\n", " <th>3:6</th>\n", " <td>1.328343</td>\n", " <td>0.666908</td>\n", " <td>0.502060</td>\n", " </tr>\n", " <tr>\n", " <th>6:9</th>\n", " <td>1.516548</td>\n", " <td>0.507242</td>\n", " <td>0.334471</td>\n", " </tr>\n", " <tr>\n", " <th>9:12</th>\n", " <td>1.880443</td>\n", " <td>0.617186</td>\n", " <td>0.328213</td>\n", " </tr>\n", " <tr>\n", " <th>12:15</th>\n", " <td>2.044417</td>\n", " <td>0.810196</td>\n", " <td>0.396297</td>\n", " </tr>\n", " <tr>\n", " <th>15:18</th>\n", " <td>1.722643</td>\n", " <td>0.592473</td>\n", " <td>0.343933</td>\n", " </tr>\n", " <tr>\n", " <th>18:21</th>\n", " <td>1.780041</td>\n", " <td>0.529919</td>\n", " <td>0.297700</td>\n", " </tr>\n", " <tr>\n", " <th>21:24</th>\n", " <td>1.238639</td>\n", " <td>0.605162</td>\n", " <td>0.488570</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " a_PI mean b_PI std dev c_PI CoV\n", "-3:0 1.400518 0.607776 0.433965\n", "0:3 1.470180 0.408768 0.278039\n", "3:6 1.328343 0.666908 0.502060\n", "6:9 1.516548 0.507242 0.334471\n", "9:12 1.880443 0.617186 0.328213\n", "12:15 2.044417 0.810196 0.396297\n", "15:18 1.722643 0.592473 0.343933\n", "18:21 1.780041 0.529919 0.297700\n", "21:24 1.238639 0.605162 0.488570" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>a_PR mean</th>\n", " <th>b_PR std dev</th>\n", " <th>c_PR CoV</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>-3:0</th>\n", " <td>147.459532</td>\n", " <td>15.811006</td>\n", " <td>0.107223</td>\n", " </tr>\n", " <tr>\n", " <th>0:3</th>\n", " <td>148.137215</td>\n", " <td>17.468538</td>\n", " <td>0.117921</td>\n", " </tr>\n", " <tr>\n", " <th>3:6</th>\n", " <td>146.487619</td>\n", " <td>15.656282</td>\n", " <td>0.106878</td>\n", " </tr>\n", " <tr>\n", " <th>6:9</th>\n", " <td>154.990661</td>\n", " <td>15.570040</td>\n", " <td>0.100458</td>\n", " </tr>\n", " <tr>\n", " <th>9:12</th>\n", " <td>150.472088</td>\n", " <td>14.765096</td>\n", " <td>0.098125</td>\n", " </tr>\n", " <tr>\n", " <th>12:15</th>\n", " <td>164.673462</td>\n", " <td>16.413125</td>\n", " <td>0.099671</td>\n", " </tr>\n", " <tr>\n", " <th>15:18</th>\n", " <td>151.246552</td>\n", " <td>14.890699</td>\n", " <td>0.098453</td>\n", " </tr>\n", " <tr>\n", " <th>18:21</th>\n", " <td>156.654985</td>\n", " <td>14.957723</td>\n", " <td>0.095482</td>\n", " </tr>\n", " <tr>\n", " <th>21:24</th>\n", " <td>153.593688</td>\n", " <td>17.143984</td>\n", " <td>0.111619</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " a_PR mean b_PR std dev c_PR CoV\n", "-3:0 147.459532 15.811006 0.107223\n", "0:3 148.137215 17.468538 0.117921\n", "3:6 146.487619 15.656282 0.106878\n", "6:9 154.990661 15.570040 0.100458\n", "9:12 150.472088 14.765096 0.098125\n", "12:15 164.673462 16.413125 0.099671\n", "15:18 151.246552 14.890699 0.098453\n", "18:21 156.654985 14.957723 0.095482\n", "21:24 153.593688 17.143984 0.111619" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>a_SpO2 mean</th>\n", " <th>b_SpO2 std dev</th>\n", " <th>c_SpO2 CoV</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>-3:0</th>\n", " <td>98.768316</td>\n", " <td>1.969275</td>\n", " <td>0.019938</td>\n", " </tr>\n", " <tr>\n", " <th>0:3</th>\n", " <td>97.741483</td>\n", " <td>2.303449</td>\n", " <td>0.023567</td>\n", " </tr>\n", " <tr>\n", " <th>3:6</th>\n", " <td>98.665524</td>\n", " <td>1.748614</td>\n", " <td>0.017723</td>\n", " </tr>\n", " <tr>\n", " <th>6:9</th>\n", " <td>98.020172</td>\n", " <td>1.972344</td>\n", " <td>0.020122</td>\n", " </tr>\n", " <tr>\n", " <th>9:12</th>\n", " <td>98.063082</td>\n", " <td>1.734714</td>\n", " <td>0.017690</td>\n", " </tr>\n", " <tr>\n", " <th>12:15</th>\n", " <td>98.151674</td>\n", " <td>2.144752</td>\n", " <td>0.021851</td>\n", " </tr>\n", " <tr>\n", " <th>15:18</th>\n", " <td>97.956578</td>\n", " <td>2.278130</td>\n", " <td>0.023257</td>\n", " </tr>\n", " <tr>\n", " <th>18:21</th>\n", " <td>97.970015</td>\n", " <td>1.944758</td>\n", " <td>0.019851</td>\n", " </tr>\n", " <tr>\n", " <th>21:24</th>\n", " <td>98.817949</td>\n", " <td>1.833986</td>\n", " <td>0.018559</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " a_SpO2 mean b_SpO2 std dev c_SpO2 CoV\n", "-3:0 98.768316 1.969275 0.019938\n", "0:3 97.741483 2.303449 0.023567\n", "3:6 98.665524 1.748614 0.017723\n", "6:9 98.020172 1.972344 0.020122\n", "9:12 98.063082 1.734714 0.017690\n", "12:15 98.151674 2.144752 0.021851\n", "15:18 97.956578 2.278130 0.023257\n", "18:21 97.970015 1.944758 0.019851\n", "21:24 98.817949 1.833986 0.018559" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>a_StO2 mean</th>\n", " <th>b_StO2 std dev</th>\n", " <th>c_StO2 CoV</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>-3:0</th>\n", " <td>78.951285</td>\n", " <td>4.364783</td>\n", " <td>0.055285</td>\n", " </tr>\n", " <tr>\n", " <th>0:3</th>\n", " <td>79.807937</td>\n", " <td>4.488576</td>\n", " <td>0.056242</td>\n", " </tr>\n", " <tr>\n", " <th>3:6</th>\n", " <td>78.421524</td>\n", " <td>3.891876</td>\n", " <td>0.049628</td>\n", " </tr>\n", " <tr>\n", " <th>6:9</th>\n", " <td>78.064625</td>\n", " <td>3.017061</td>\n", " <td>0.038648</td>\n", " </tr>\n", " <tr>\n", " <th>9:12</th>\n", " <td>79.340901</td>\n", " <td>3.176529</td>\n", " <td>0.040036</td>\n", " </tr>\n", " <tr>\n", " <th>12:15</th>\n", " <td>78.302226</td>\n", " <td>3.366731</td>\n", " <td>0.042997</td>\n", " </tr>\n", " <tr>\n", " <th>15:18</th>\n", " <td>81.875885</td>\n", " <td>3.955571</td>\n", " <td>0.048312</td>\n", " </tr>\n", " <tr>\n", " <th>18:21</th>\n", " <td>77.831709</td>\n", " <td>3.228982</td>\n", " <td>0.041487</td>\n", " </tr>\n", " <tr>\n", " <th>21:24</th>\n", " <td>81.162525</td>\n", " <td>5.011192</td>\n", " <td>0.061743</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " a_StO2 mean b_StO2 std dev c_StO2 CoV\n", "-3:0 78.951285 4.364783 0.055285\n", "0:3 79.807937 4.488576 0.056242\n", "3:6 78.421524 3.891876 0.049628\n", "6:9 78.064625 3.017061 0.038648\n", "9:12 79.340901 3.176529 0.040036\n", "12:15 78.302226 3.366731 0.042997\n", "15:18 81.875885 3.955571 0.048312\n", "18:21 77.831709 3.228982 0.041487\n", "21:24 81.162525 5.011192 0.061743" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>a_FTOE mean</th>\n", " <th>b_FTOE std dev</th>\n", " <th>c_FTOE CoV</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>-3:0</th>\n", " <td>20.027616</td>\n", " <td>4.778722</td>\n", " <td>0.238607</td>\n", " </tr>\n", " <tr>\n", " <th>0:3</th>\n", " <td>18.295492</td>\n", " <td>5.087889</td>\n", " <td>0.278095</td>\n", " </tr>\n", " <tr>\n", " <th>3:6</th>\n", " <td>20.489832</td>\n", " <td>4.247597</td>\n", " <td>0.207303</td>\n", " </tr>\n", " <tr>\n", " <th>6:9</th>\n", " <td>20.323137</td>\n", " <td>3.546801</td>\n", " <td>0.174520</td>\n", " </tr>\n", " <tr>\n", " <th>9:12</th>\n", " <td>19.063551</td>\n", " <td>3.603959</td>\n", " <td>0.189050</td>\n", " </tr>\n", " <tr>\n", " <th>12:15</th>\n", " <td>20.174427</td>\n", " <td>4.068943</td>\n", " <td>0.201688</td>\n", " </tr>\n", " <tr>\n", " <th>15:18</th>\n", " <td>16.356134</td>\n", " <td>4.786585</td>\n", " <td>0.292648</td>\n", " </tr>\n", " <tr>\n", " <th>18:21</th>\n", " <td>20.521799</td>\n", " <td>3.698035</td>\n", " <td>0.180200</td>\n", " </tr>\n", " <tr>\n", " <th>21:24</th>\n", " <td>17.821530</td>\n", " <td>5.556991</td>\n", " <td>0.311813</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " a_FTOE mean b_FTOE std dev c_FTOE CoV\n", "-3:0 20.027616 4.778722 0.238607\n", "0:3 18.295492 5.087889 0.278095\n", "3:6 20.489832 4.247597 0.207303\n", "6:9 20.323137 3.546801 0.174520\n", "9:12 19.063551 3.603959 0.189050\n", "12:15 20.174427 4.068943 0.201688\n", "15:18 16.356134 4.786585 0.292648\n", "18:21 20.521799 3.698035 0.180200\n", "21:24 17.821530 5.556991 0.311813" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from IPython.display import display\n", "display(PIlin)\n", "display(PRlin)\n", "display(SpO2lin)\n", "display(StO2lin)\n", "display(FTOElin)" ] }, { "cell_type": "code", "execution_count": 108, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAEACAYAAAAdqhecAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdcE/cbB/DPMQSVPaSAAiruVbc4KtZWxVFnLQ6crXu0\n1qr9aat2Otu6R61i3XVUa0FxtGhVrOKueyAi4ED2Jsnz++MEGQkETHJJeN6v173I5e6+90Qkn9zd\nN98TiAiMMcYY0w0TqQtgjDHGyhMOXsYYY0yHOHgZY4wxHeLgZYwxxnSIg5cxxhjTIQ5exhhjTIfU\nCl5BELoJgnBLEIQ7giDMVLGOryAIlwRB+E8QhL81WyZjjDFmHISSvscrCIIJgDsAOgOIAXAegD8R\n3cq3ji2AMwC6EFG0IAhORBSnvbIZY4wxw6TOEW8rAHeJKJKIcgDsBNC70DqDAewlomgA4NBljDHG\nlFMneN0BROWbf/zyufxqA3AQBOFvQRDOC4IQoKkCGWOMMWNipsF2mgF4G0BlAGGCIIQR0T0Ntc8Y\nY4wZBXWCNxqAR775qi+fy+8xgDgiygSQKQjCSQBNABQIXkEQeGBoxhgrAyISpK6BaYY6p5rPA/AW\nBMFTEIQKAPwB/FFonQMA2guCYCoIQiUArQHcVNYYEen9NHfuXMlr4Dq5TkOtkevU/MSMS4lHvEQk\nFwRhEoAjEIP6FyK6KQjCWHExrSeiW4IghAC4CkAOYD0R3dBq5YwxxpgBUusaLxEdBlCn0HPrCs0v\nAbBEc6UxxhhjxodHrlLC19dX6hLUwnVqliHUaQg1AlwnY8UpcQANje5MEIivVzDGWOkIggDizlVG\ng494GWOMMR3i4GWMMcZ0iIOXMcYY0yEOXsYYY0yHOHgZY4wxHeLgZYwxxnSIg5cxxhjTIQ5exhhj\nTIc4eBljjDEd4uBljDHGdIiDlzHGGNMhDl7GGGNMhzh4GWOMMR3i4GWMMcZ0iIOXMcYY0yEOXsYY\nY0yHOHgZY4wxHeLgZYwxxnSIg5cxxhjTIQ5exhhjTIc4eBljjDEd4uBljDHGdIiDlzHGGNMhDl7G\nGGNMhzh4GWOMMR3i4GWMMcZ0SK3gFQShmyAItwRBuCMIwkwlyzsKgpAoCMLFl9MczZfKGGOMGT6z\nklYQBMEEwEoAnQHEADgvCMIBIrpVaNWTRPSeFmpkjDHGjIY6R7ytANwlokgiygGwE0BvJesJGq2M\nMcYYM0LqBK87gKh8849fPleYjyAIlwVBCBIEob5GqmMqhceE42HiQ6nLYIwxVkolnmpW0wUAHkSU\nLgiCH4D9AGprqG1WSLY8G/1/6w+nSk44O/oszE3NpS6JMcaYmtQJ3mgAHvnmq758Lg8RpeZ7fEgQ\nhNWCIDgQUXzhxubNm5f32NfXF76+vqUsmQVeDkRdp7oQIGDBqQX4ouMXUpfEGNOg0NBQhIaGSl0G\n0xKBiIpfQRBMAdyG2LkqFsA5AIOI6Ga+dVyI6OnLx60A/EZEXkraopL2x4qXLc9GrRW1sGvALrhb\nu6PZ+mY4FnAMTd5oInVpjDEtEQQBRMT9aIxEidd4iUgOYBKAIwCuA9hJRDcFQRgrCMKYl6sNEATh\nP0EQLgH4CcAHWqu4nNt0aRPqO9dHm6ptUM22Gha9swgjDoxAtjxb6tIYY4ypocQjXo3ujI94X0uW\nLAu1VtTC7vd3o3XV1gAAIkLPHT3R0q0l5vnOk7ZAxpjGhUWFoa1HWz7iNSI8cpUB2XR5ExpWaZgX\nuoB4Cmp9z/VYfX41LsZelLA6xpim5chz8OHBD6Uug2kYB6+ByJJl4bt/vlN6VOtu446lXZZixP4R\nyJJl6b44xphWrDq/Cu7Wyr69yQwZB6+B+OXSL2jk0git3FspXT608VB42Xnh65Nf67gyxpg2PE19\nim//+RbL/ZZLXQrTML7GawCyZFnwXuGNvQP3qgxeAIhNiUWTtU0QPCQYLdxa6LBCxpimjTowCg4V\nHbCkyxLu1Wxk+IjXAGy4uAFNXJoUG7oA4Grtip+6/YTh+4fzKWfGDNi56HM4fO8wvuz4pdSlMC3g\n4NVzmbJMfH/qe7V7LA9qOAh1HOtgXqh66zPG9IuCFJgUPAkL3lkAGwsbqcthWsDBq+c2XNyApq5N\n1T51LAgC1vRYg02XN+Hfx/9quTrGmKYFXg6EmYkZhjYeKnUpTEs4ePVYpiwTC04twLyO80q1nYuV\nC5b7LceIAyOQkZOhneIYYxqXmJmI2X/Nxgq/FTAR+O3ZWPFvVo/9fOFnNHNthuZuzUu97cAGA9Go\nSiN8+TdfI2LMUMwLnYdetXuV6W+eGQ7u1aynMmWZqLm8Jg4OOohmrs3K1MbztOdovLYx9g7ci7bV\n2mq4QsaYJv337D+8vfltXJ9wHc6VnQss417NxoWPePXU+gvr0cKtRZlDFwCcKztjpd9KjNg/Auk5\n6RqsjjGmSUSEKYem4MuOXxYJXWZ8OHj1UEZORpmu7SrTv35/NHdrjjl/zXn9whhjWrHnxh7Epcdh\nXItxUpfCdICDVw+tv7AerdxboalrU420t9JvJXb+txP/RP6jkfYYY5qTlp2G6UenY4XfCpiZqHOL\ndGboOHj1TEZOBhaeXqjROw05VnLEmh5rMPLASKRlp2msXcbY61twagHaVmuLjl4dpS6F6QgHr55Z\nd2Ed2lRtgzffeFOj7fau2xs+1Xzw+fHPNdouY6zsHiQ8wJrwNVj87mKpS2E6xL2a9Uh6Tjq8l3vj\n0JBDaPJGE423H58Rj0ZrGmFbv23w9fLVePuMsdLps7MPWru3xucdiv9AzL2ajQsf8eqRdeHr4FPN\nRyuhCwAOFR2wruc6jDowCqnZqVrZB2NMPSH3QvDfs/8wzWea1KUwHeMjXj2RnpOOmstrImRoCBq7\nNNbqvkbsH4HK5pWxqscqre6HMaZctjwbjdY0wtIuS9Gzds8S1+cjXuPCR7x6Ym34WrSr1k7roQsA\nP3X7CX/c+QPHHxzX+r4YY0UtO7sM3g7eaoUuMz58xKsH0rLT4L3CWydHu7kO3T2E8UHjcXX8Vb4D\nCmM6FJMSg8ZrGiNsdBhqOdZSaxs+4jUuOj/iTc5K1vUu9d6a8DVo79FeZ6ELAH61/PBOjXfw2ZHP\ndLZPxhgw89hMfNTsI7VDlxkfnR/xBuwLwK99f9XZPvVdWnYaai6viaMBR9HIpZFO952UmYTGaxvj\n514/o0vNLjrdN2Pl0elHp+G/1x83J96EVQUrtbdTdcRbsWLFJ5mZmS4aLZJphKWl5dOMjIw3lC3T\n+RHv+Zjz2HZ1m653q7dWn1+Ntzzf0nnoAoCtpS029NqAD//4EEmZSTrfP2PliVwhx6RDk7DonUWl\nCt3iZGZmuhAReNK/qbgPRDoP3h39d+DjkI/xIOGBrnetd9Ky07A0bCm+7Cjdrfverfku/Lz9MC2E\nv9LAmDZtuLgB1hWs4d/QX+pSmMR0HrxvvvEmZneYjcF7ByNHnqPr3euVVedXoaNXRzSs0lDSOpZ0\nWYLjEcdx6O4hSetgzFjFZ8Tjy9AvscJvBQSB+0iVd5L0aiYi9NjeA03faIpvO3+rs/3rk9TsVNRc\nXhN/DfsLDao0kLocHH9wHCMOjMDVcVdhX9Fe6nIYMyoTgyYCQJm/O6/qGi9/U0R/FdcTXZLv8QqC\ngMA+gQi8Eoi/I/6WogTJrTq3Cp28OulF6AJA5xqd8V7t9/BJyCdSl8KYUbny5Ar23NyDr9/+WupS\nmJ6QbACNKpWrYON7GzFs/zC8SH8hVRmSSM1OxQ9nf5D02q4yC99diJORJ3Hw9kGpS2HMKBARJh+a\njK98v4JDRQepy9EpLy8vVKpUCTY2NrC2toaNjQ1OnjyZ99jKygomJiYFlj9+/BgA8Oeff6J169aw\nsrKCs7MzAgICEB0dndf25s2bYWZmBhsbmwLbP3nyRGU9y5cvR6NGjWBlZQUPDw988MEHuH79erGv\n4d9//4WVlRXS09OLLGvWrBlWr15dtn8cXfbyEndX0LTD06jPzj6kUCiKLDNW3//zPfnv8Ze6DKVC\nI0LJbakbvUh/IXUpjBm8bVe3UbN1zUgml71WOy/fO9V6T9UXXl5e9Ndff6lc/vDhQzIxMSny3r97\n926ysbGhnTt3UmZmJj19+pRGjRpFXl5elJiYSEREgYGB1KFDB7VrmTx5Mnl7e1NoaChlZ2dTRkYG\nbd++nRYuXFjitnXr1qXNmzcXeO7atWtkaWlJCQkJKrdT9TsjIvWCF0A3ALcA3AEws5j1WgLIAdBP\nxfIixWXmZFLTtU1pzfk1Jf4DGIPkzGRyXuRMN57dkLoUlaYET6Ehe4dIXQZjBi0lK4Xcl7rT6Uen\nX7stQw3e48ePq1yeG7xyubzA856enrRkyZICzykUCmrYsCHNnTuXiEoXvHfv3iVTU1MKDw9XuU5S\nUhIFBASQs7MzeXl50TfffJO37LvvvqPOnTsXWH/GjBnUr1+/YvdbXPCWeKpZEAQTACsBdAXQAMAg\nQRDqqlhvAYCQ0hxxW5hZYEf/Hfji7y9w/Vnxh/3GYOW5lXinxjuo51xP6lJU+q7zdzj7+Cz239ov\ndSmMGaxvTn6Dt6u/jbbV2kpdisG4ffs2oqKiMGDAgALPC4KA/v374+jRo6Vu8/jx46hWrRqaN2+u\ncp1JkyYhJSUFDx8+RGhoKH799Vds2rQJABAQEICTJ0/mneomImzfvh0jRowodS251LnG2wrAXSKK\nJKIcADsB9Fay3mQAewA8K20RdZzqYEHnBRi0dxAyZZml3dxgJGcl48ezP+rdtd3CKleojE29N2FC\n0ATEpcdJXQ5jBufOizvYcHEDFr6zUNI6BEEzU1n16dMHDg4OcHBwQL9+/UpcPy5OfL9xdXUtsszV\n1TVvOQCEhYXltW1vb49atZQPwfnixQul7eVSKBTYtWsXFixYgEqVKsHT0xOffvoptmzZAgCoWrUq\nOnbsmDd/7NgxZGdno3v37iW+HlXUCV53AFH55h+/fC6PIAhuAPoQ0RoAZfo1jWo6CnWd6mLG0Rll\n2dwgrDy3El1qdkFdpyInDPROB88O8G/oj8mHJktdCmMGhYjw8eGPMav9LLhaq37D100tmpnK6sCB\nA4iPj0d8fDz27dtX4vpOTk4AgNjY2CLLYmNj85YDgI+PT17bCQkJuHv3rtI2HR0dlbaXKy4uDjKZ\nDB4eHnnPeXp6FujMNXz48Lzg3bp1K/z9/WFqalri61HFrMxbFvQTgJn55lWG77x58/Ie+/r6wtfX\nV9xAELC+13q8ufZNdKnZxehul5WclYyfzv6Ef0b+I3Upavvm7W/QdF1T7LmxBwPqDyh5A6Z16Tnp\nqGReSeoyWDGC7gbhQcID7Pcv+6Wa0NBQhIaGaq4oiVApU7tOnTqoWrUqdu/ejenTpxdoZ+/evWod\nNRfWuXNnTJo0CRcvXkSzZs2KLHdycoK5uTkiIyNRt654UBQZGQl391fHl/369cPEiRMRGhqKffv2\n4cSJE6WuowBVF39zJwBtABzONz8LhTpYAXjwcooAkALgCYD3lLRVwmVwon8i/yGXxS4UkxxT4rqG\n5JsT39DQfUOlLqPUzjw6Qy6LXehp6lOpSynXYlNiaei+oWQ635T67OxDYVFhUpfElMjIyaCay2rS\n4buHNdoujLRzlSAIRTpX7dq1i2xtbWnHjh2UmZlJsbGxNHLkSPL09KT4+HgiEjtXtW/fXu1apkyZ\nQrVr187r1ZyZmUk7d+7M69U8dOhQ6tevH6WkpNDDhw+pbt26tHHjxgJtjBw5kry8vKhhw4Zq7VPV\n74zU6dUMwBTAPQCeACoAuAygXjHrb0IpejUrM/fvufTOr++QXCEveWUDkJiRSE6LnOh23G2pSymT\nz458Rv139S9XX/nSFznyHFp+djk5LXKiGUdm0LPUZ7Ty35Xk9ZMXvbXpLQq6E8S/Fz3y7clvqfeO\n3hpv1xCDt3r16mXq1UxE9Mcff1DLli3JysqKHB0dafDgwfT48eO85YGBgWRmZkbW1tZkbW1NVlZW\nZG1tXWzP5eXLl1ODBg2ocuXKVLVqVfL396cbN8RvlyQkJNDQoUPJ2dmZPDw8CvRqzhUaGkomJia0\nePFitV5/ccGr1pCRgiB0A7AM4jXhX4hogSAIY182vL7QuhsB/ElERU7oqzu8mUwhg2+gL3rX6Y3P\n2hn+/WK/OfkN7ry4Y7C3Q8yUZaLpuqaY13EePmj4gdTllBthUWGYEDwBdpZ2WNV9Feo7189bJlPI\n8Nv137Dw9EIQEWa0m4EPGnwAc1NzCSsu36KSotB0XVOc++gcatjX0GjbPGSk4SluyEhJxmpWR2Ri\nJFr+3BLBQ4LRwq2FlivTnqTMJHiv8MbpUadR27G21OWU2bnoc3hvx3u4Mu4KXKz49p/aFJceh5lH\nZ+Lw/cNY/O5iDGo4SOXA+kSEkPshWHh6ISISIjDNZxpGNx2NyhUq67hq5r/HH7Uda+OrTl9pvG0O\nXsOjd2M1q8PTzhMru6/E4L2DkZqdKnU5Zbbs32XoXqu7QYcuALRyb4WRb47E+KDxpe4wwdSjIAXW\nha9D/VX1YW1hjRsTbmBwo8HF3s1GEAR08+6Gv4f/jV0DdiH0YSiqL6uOeaHz+KtgOhT6MBRhj8Mw\nq/0sqUthBkBvj3hzjT4wGgoosKn3Ji1VpT2JmYmotaIWzow6g1qOyr9jZkiyZFlovr45/tfhfxjc\naLDU5RiVCzEXMD5oPMxNzbG6+2o0eaNJmdu6HXcbi88sxr6b+xDQOADTfKbB085Tg9Wy/GQKGZqt\na4YvO36ptd7/fMRreAzyiDfXMr9lOBN1Bjv/2yl1KaW27Owy9KjVwyhCFxBHGQvsE4hPQj5BbIrq\n78Ux9SVkJGBC0AT02N4D41uMxz8j/3mt0AXEAWk2vLcB/034DxZmFmi2vhkCfg/AtafXNFQ1y2/N\n+TVwruyM/vX6S10KMxB6f8QLABdjL6Lb1m4499E5eNl5ab4wLUjMTIT3cm+c/fAsvB28pS5Ho774\n6wtceXoFB/wP8E29y0hBCvx65VfMOjYLfev2xbedv9Xa3WsSMxOxNnwtlv27DM1cm2FWu1lo79Ge\nf3ca8DztOeqvro/Q4aFavcUnH/EaHoPsXFXY0jNLsffmXpwceRJmJpoa90N75oXOQ2RSpEGeIi9J\ntjwbLX9uiU99PsWwJsOkLsfgXH16FROCJiBLnoXV3VejpXtLnew3U5aJzZc3Y/GZxahSuQpmtpuJ\nXnV6wUTQ+xNfemvMwTGoZF4JP3X7Sav74eA1PEYRvApSwG+bH1q7t9ZKr0FNyj3a/ffDf1HToabU\n5WjFpdhL6Lq1Ky6NvQR3G/eSN2BIzkrG3L/nYtu1bfi609f4sNmHMDUp+7BzZSVXyLHv5j4sPL0Q\n6Tnp+KztZxjSeAgqmFbQeS2GLDwmHL129MLNiTdhZ2mn1X1x8Boeg77Gm8tEMMHmPpvx88WfcTLy\npNTlFOvHsB/xXp33jDZ0AaCpa1NMaDkBY/4cw72cS0BE2HFtB+qtqofkrGRcn3AdY1uMlSR0AcDU\nxBTvN3gf5z86jxV+K7D9v+2osawGfgj7ASlZKZLUZGgUpMDkQ5Px7dvfaj10mfExmCPeXMF3gzE+\naDwuj70M+4r2GqpMcxIyElBrRS2tfIle32TLs9F6Q2tMaTUFI5uOlLocvXTz+U1MDJ6I+Ix4rO6x\nWm9vEXch5gIWnVmEvyL+wtjmYzGl9RRUqVxF6rL01ubLm7E6fDXCRofp5FQ9H/EaHqM44s3VvVZ3\n9K3bFx8d/Egvj7R+PPsjetfpbfShCwAVTCsgsHcgZhybgaikqJI3KEdSs1Mx8+hMvBX4FvrU7YPw\nMeF6G7oA0NytOXYN2IWw0WF4kf4CdVfWxYSgCXiQ8EDq0vROUmYSPj/+OVb4reDr48Xw8vJCpUqV\nYGNjA1dXV4wcORLp6ekAgE6dOmHjxo0qt33y5Ak+/PBDuLm5wdbWFvXr18f8+fORkZFR7D7Hjx+P\n4cOHF3n+ypUrsLS0RGJi4uu9KA0xyP81C99ZiHvx9/DLpV+kLqWA+Ix4rDq/CrPfmi11KTrT5I0m\nmNp6Kj48+KFefhDSNSLC3ht7UX9VfUSnROPquKuY0nqKQXQIBABvB2+s6bkm77plq59bwX+PPy7F\nXpK6NL3x1Ymv4Ofth1buraQuRa8JgoCgoCAkJyfj4sWLCA8PxzfffFPidgkJCfDx8UFWVhb+/fdf\nJCUl4ejRo0hKSsL9+/eL3Xb48OH4/fffiwT01q1b0atXL9jZ6cllAVWDOGtjggYH9L7x7AY5LXKi\nm89vaqzN1zXn+BwafWC01GXoXLYsm5qva07rw9dLXYqk7sTdoa5bulL9VfXp74i/pS5HI5Iyk2jx\n6cXkttSNumzpQscfHC/XN2XIfd/R9d26YIA3SSh8d6LPPvuMevXqRUREvr6+9Msvvyjdbvbs2dS4\nceNi2z59+jS1bNmS7OzsqFWrVnTmzJm8ZXXr1qUtW7bkzcvlcnJzc6ODBw++zsspNVW/MyIyzCNe\nAKjnXA/fvv0tBu0dhCxZltTlID4jHmvC12DOW3OkLkXnzE3NEdgnEP/763+ITIyUuhydy8jJwJd/\nfwmfX3zQuXpnXB57Gb5evlKXpRE2FjaY3nY6Hkx5gA8afIAJQRPQakMr7LmxB3KFXOrydIqIMOXw\nFMzpMIevf5dSVFQUgoODld4Pt7Djx48Xe9/dhIQE9OzZEx9//DFevHiBTz75BD169EBCQgIAICAg\nAJs3b85b/+jRo5DJZPDz83v9F6IhBte5Kj8iwoDdA+Bh44Efu/2osXbLYs5fc/As7RnW91pf8spG\nasGpBTj24BiOBhwtN4MzHLx9EFMPT0Vzt+b4seuPqGpTVeqStEpBChy4dQALTy9EfEY8Pmv7GQKa\nBMDSzFLq0rRu3819+OLvL3B57GWd3wWqrJ2rhPma+TukuaV/365evTpevHgBMzMz2NraomfPnliy\nZAksLCzQqVMnBAQEYNSoUUW2q127NqZPn44xY8YobXfr1q1YuXIlzp49m/dc27ZtMW7cOAwbNgxR\nUVHw9vZGREQE3NzcMHToUDg7O+PHH3WbEcV1rjKMC08qCIKAn3v9jDfXvokuNbvAr5Y0n2hepL/A\nmvA1uDDmgiT71xfT207H77d+x7oL6zCuxTipy9GqiIQITD08FbfibmFtz7XoUrOL1CXphIlggr71\n+qJP3T44GXkSC08vxNzQuZjaeirGtRgHW0tbqUvUivScdEwLmYaNvTca1K0XyxKYmnTgwAF06tSp\nVNs4OjoiNlb1kLQxMTHw9Cw49rinpyeio6MBANWqVUOHDh2wdetWTJw4Efv378epU6dKX7wWGeyp\n5lwOFR2wpe8WjP5jNJ6mPpWkhh/CfsCAegMMZjhLbTEzMcOm3psw5685iEiIkLocrciSZeGbk9+g\nxc8t0Nq9Na6Nv1ZuQjc/QRDQ0asjgocE49CQQ7j67CpqLK+BmUdnGuU43otPL0ZL95Z4u/rbUpdi\nUMpyhvOdd97B77//rnK5m5sbHj58WOC5R48ewd391UA+w4cPx6+//oq9e/eiRo0aePPNN0tdh1ap\nuvirjQla7Agw5/gc6rqlK8kVcq3tQ5nnac/JYaEDPUx4qNP96rNFpxaRb6Cvzn8X2hZyL4RqLa9F\n7+14jyISIqQuR+9EJETQpKBJZLfAjkYfGE0XYi5IXZJGRCREkMNCB4pMjJSsBhhB56r8iutcFR8f\nT9WrV6dhw4ZRZKT4b/748WOaNm0aXbt2jV68eEH29va0Y8cOkslktHPnTrK3t6cXL17ktZGWlkbW\n1tbk5eVFS5Ys0fyLU4Oq3xkZcueqwub6zkVyVjKWnV2m0/0uPbMU79d/n2+7ls80n2nIlGVi9fnV\nUpeiEY+TH+P93e9j3J/j8EPXH3DA/0C5P7uhjJedF1Z0X4E7k+7Ay84LfXb2QZsNbbD58mZk5BT/\n/Ut99umRT/Fx64/hYeshdSkGpaT7SKtib2+PM2fOwNzcHK1bt4atrS3effdd2NnZwdvbGw4ODvjz\nzz+xZMkSODk5YcmSJQgKCoKDw6ubjFSqVAn9+/dHTEwMhgwZotHXpQkG3bmqsIiECLTe0BohQ0PQ\n1LWp1vaTKy49DnVW1sGlsZf4j7KQ23G30W5jO4MerzpHnoOfzv6EhacXYkLLCfi8/eeoaF5R6rIM\nhkwhQ/DdYKwJX4PwmHAMazwM41qMM6jbZB57cAxjDo7BjYk3JO1AxiNXGR6juEmCunZc24H5J+bj\nwpgLqFyhslb3NevYLCRlJmFNzzVa3Y+h+jHsR/x+63fsGbgHNhY2BtXzNfRhKCYGT0Q1m2pY4bfC\noMJCH92Pv491F9Yh8HIg3nzjTYxvMR696vTS64FFcuQ5aLK2Cb7v/D161+0taS0cvIanXAUvAIzY\nPwLmJub4+b2ftbaP52nPUXdVXT7aLYZcIcf7u9/HP4/+QVJmEgRBgI2FTd5ka2FbYF7Zc7aWtkWW\nW5hZaK3mJ6lPMP3IdJyMPIkfu/6IfvX6lZuvRulCpiwTe27swZrwNYhMjMRHzT7CR80/gpu1m9Sl\nFfFD2A84cv8IDg05JPn/AQ5ew1PugjclKwXN1jfD952/x4D6A7Syj5lHZyIlOwWrexjHdUxdyJJl\nITkrGUlZSUjOSs6bkjILzRdenm++cICXNbxtLGwKBLhMIcOqc6vw9cmvMbrpaHzR8QtYVbCS8F/L\n+F15cgVrwtdg1/Vd6Fy9M8a3GI+3q78tecgB4gewhqsb4tSoU6jrVFfqcjh4DVC5C14AOB99Hj22\n90D4mHCNH5HmHu1eHnsZ1WyrabRtVrJMWWapgltV2OcGuK2FLbLkWfB28Maq7qtQ37m+1C+xXEnO\nSsbWq1uxJnwNcuQ5GNdiHIY3GS7p3cdG7B8B50rOWNxlsWQ15MfBa3jKZfACwKLTi3DwzkH8Pfxv\njV5LmnF0BtKy07CqxyqNtcl0i4iQJc/KC+IsWRbqO9fXi6Ot8oqIcDrqNFafX43gu8HoV68fxrcY\nj5buLXUWL9MvAAAgAElEQVRaR1hUGAbsHoCbE2/CxsJGp/tWhYPX8JTb4FWQAl22dMFbnm/hy45f\naqTNZ2nPUHdlXVwdf9XohwdkTCrP0p5h46WNWHdhHZwqOWF8i/Hwb+iPSuaVtLpfBSnQ6udWmNp6\nKgKaBGh1X6XBwWt4ym3wAkBMSgyarWuGvQP3op1Hu9du77MjnyFDloGV3VdqoDrGWHHkCjlC7odg\nTfganIk6g4DGARjXYpzWrrtuuLgBmy5vwqmRp/Tq7AcHr+Ep18ELiAPZTz40GZfHXYadZdnvx/g0\n9SnqraqHa+Ovwd3GveQNGGMa8zDxIdZfWI+NlzaivnN9TGg5Ab3r9NbY2MkJGQmot6oegocEo5lr\nyXfR0SUOXsNT7oMXACYHT8az9GfY2X9nmT/JTj8yHVmyLKzovkLD1THG1JUtz8a+m/uwJnwN7r64\niw+bfYgxzce89qWfKYemIFuejbU912qoUs3h4DU8xQWv0QwZWZJF7y7Cjec3EHg5sEzbP0l9go2X\nNmJW+1maLYwxVioVTCvAv6E/Tow4gSMBRxCfEY/Gaxqj766+OHL/CBSkKHWb155ew87/duLbt7/V\nQsWv52ftDUegVV5eXqhUqRJsbGzg6uqKkSNHIj09HQDg6+uLihUrwsbGBs7Ozujdu3fe3YVUOXfu\nHHr06AF7e3s4OTmhTZs2CAwMLLGOevXqKV1v2bJlaNWqVVle2mtTK3gFQegmCMItQRDuCIIwU8ny\n9wRBuCIIwiVBEMIFQdC7W3hUNK+Inf13YsaxGbjz4k6pt198ejGGNh7Kp5gZ0yMNqzTEyu4r8eiT\nR/Dz9sPMYzNRZ2UdLDmzBC/SX6jVBhFh8qHJmOc7D46VHLVccekcOQJ88YXUVZSNIAgICgpCcnIy\nLl68iPDwcHzzzTd5y1avXo3k5GTcv38fmZmZmDZtmsq2wsLC0LlzZ3Tq1An3799HXFwc1qxZg5CQ\nkBLryL1TUWFbt27FiBEjyvz6XouquyfkThDD+R4ATwDmAC4DqFtonUr5HjcCcE9FWyXd0EHrVp9b\nTc3WNaMsWZba28SmxJLDQgeKTo7WYmWMsdelUCjozKMzFLAvgOwW2NGw34dRWFQYKRQKldvsvLaT\nGq9pTDnyHB1WWrJr14icnYlOnjSOuxN99tln1KtXLyIqenei1atXU4MGDVS21b59e5o8eXKx+1u/\nfj15e3uTo6Mj9e7dm2JiYohIvLORubk5PXr0KG/d69evk4WFRYE7Gmmaqt8ZqXl3olYA7hJRJBHl\nANgJoMDApUSUnm/WCkBcWT8IaNu4FuNQzaYaZh+frfY2i04vQkDjAL0c1o4x9oogCPCp5oNf+/6K\nu5PvolGVRhi6byiarW+G9RfWIzU7tcD6adlpmH50Olb4rdCrcaOfPgV69QJ++AHo0EHqal5fVFQU\ngoOD0axZ0U5rL168wL59+9C6dWul22ZkZCAsLAz9+/dX2f5ff/2F//3vf9izZw9iY2Ph4eEBf39/\nAIC7uzt8fX2xZcuWvPW3bt2K7t27F7ijkU6pSmR69YmqP4D1+eaHAliuZL0+AG4CSADQSkVbWvt0\nURrP055T1R+qUsi9kBLXjUmOIYeFDhSTHKODyhhjmiZXyOnw3cPUe0dvcljoQJOCJtH1Z9eJiOh/\nx/5Hg/YMkrjCgtLTiVq1Ipo799VzKOsRL6CZqQy8vLzI2tqa7O3tycvLiyZNmkSZmZlEJB7xVq5c\nmezs7EgQBGrTpg2lp6crbSc6OpoEQaDbt2+r3Nfo0aNp5syZefOpqalkbm6edz/frVu3Up06dYhI\nPCvi4eFBBw4cKNPrUpeq3xkRQWMf8YhoP4D9giC0B7AFQB1l682bNy/vsa+vL3x9fTVVgtqcKjnh\n1z6/YujvQ3Fp7CVUqVxF5bqLTi/CsMbD4GrtqsMKGWOaYiKYoKt3V3T17oqopCj8fPFnvPPrO/B2\n8MaN5zdwZdwVqUvMo1AAw4YBNjahIApFvrfLspG4x/OBAwfQqVMnpcuWL1+OUaNG4fr163j33Xdx\n6NAh9OvXr8h69vb2MDExQWxsLGrXrq20rZiYGDRv3jxvvnLlynB0dER0dDQ8PDzQr18/TJw4EefO\nnUNqaioyMjLQvXt3zbzIMlAneKMB5B/suOrL55QiolOCIJgJguBIREV6N8x77f9JmtGpeicMbzIc\nIw+MxJ+D/lT6FaPYlFj8evVX/Df+PwkqZIxpWjXbaviq01f44q0vsP/WfliYWehVh8nZs4EnT4Bj\nx3xhYeGb9/z8+fOlK+o1kBrB36BBA3z11VeYOXMm+vbtW+S9uGLFivDx8cHevXvRsWNHpW24ubkh\nMjIybz4tLQ0vXryAu7t7XhsDBgzA5s2bkZGRAX9/f5iZSXhpQdWhcO4EwBSvOldVgNi5ql6hdWrm\ne9wMwH0VbWn10L60smXZ1OrnVrTs7DKly6cET6FPDn+i46oYM2z37hGtWkVUTH8mpsQvvxB5exM9\nf150GYygc1V+hTtXZWdnk7u7O+3atUvp+mfOnCFra2tasmRJXoeoy5cvk7+/PxERHTt2jKpUqUJX\nrlyhzMxMmjJlCnXo0KFAGydOnCBHR0eytbWl8PBwTbzEYqn6ndHLk/fqhG83ALcB3AUw6+VzYwGM\nefl4BoD/AFwE8A+AFira0fqLLa17L+6R0yInuhx7ucDz0cnRZL/AnmJTYiWqjDHDc+QIUZUqRLVr\nE02ezOGrrmPHxH+3W7eULzfE4K1evbrK4O3UqVOB4CUiWrhwITVr1kxle+fPnyc/Pz+ys7MjR0dH\natOmDW3ZsiVv+bp166hmzZrk6OhIvXr1oujoot9CqVGjBjVs2LCMr6h0igvecjNyVXG2Xt2K7/75\nDuFjwvMGYZ9yaArMTcyxtOtSiatjTP8RiT1wlywBdu4E3nwT6NIFaN0aWLYM0KNhj/XOzZtAx47A\nb78Bqrq88MhVhoeHjFTD0H1DYVXBCmt7rkV0cjQarWmEmxNvwsXKRerSGNNrGRnAmDHA9evA/v2A\nx8seIUlJHL4lef4caNMG+PJLYPhw1etx8BoeDl41JGclo+m6plj87mL8HfE3LMwssKTLEqnLYkyv\nRUUBffsCtWsDGzYAlQrdtY/DV7XMTKBzZ6BTJ+DlgE4qcfAaHg5eNf37+F/02vEeZIoc3Jp0q9iv\nGTFW3v3zD/DBB8AnnwDTp6sOVQ7fohQKYMgQ8RT99u2ASQlDGXHwGh6+SUIJcnKAoCBg+czWSPnz\nC8hOzMKJ4CpSfwWOMb21di0wYACwaRPw2WfFh6mtrTjm8L//AlOnSv7VUr0wdy4QGQkEBpYcusz4\nlNsjXoUCOH1a/LS5Z494qmzwYOD994G7d8VrVtWrA6tWAZ6eUlfLmH7IzgYmTwZOnQIOHAC8vdXf\nlo98RZs3A/PnA2fPAlXUPKnGR7yGh494XyICrlwBZs4EvLyACRPEjiDnzokhPHGi+IfQrh1w6RLg\n4wM0by721pTJpK6eMWk9eQK8/bY4jvDZs6ULXYCPfAHgxAlgxgzxDJu6ocuMT7k44r1/H9ixQ5zS\n0sQj20GDgEaNSt727l1g3DggMRFYv14MYsbKm/BwoF8/YNQosQfu65weTUoCunYFWrYEli8vP0e+\nd+4Ab70FbNsmdqoqDT7iNTzlsnPVkyfi9+K2bwcePAAGDhQD18en9H/oRMCWLeIn1UGDgK+/Bqys\ntFM3Y/pmyxZg2jTxg2ffvppps7yFb1yc+N4zaxYwenTpt+fgNTzlJniTkoDffxfD9vx54L33xKDs\n3BkwN3/99uPixN6bf/8tXvvt2fP122RMX8lk4ofNP/4Qr+c2aKDZ9stL+GZlAe+8I17CWrCgbG1w\n8Boeo77Gm5kJ7N0L9O8vXq89cAD46CMgOlrsxNCtm2ZCFwCcnMReiJs2iUcA778PxMZqpm3G9MmL\nF+LfzvXrYh8ITYcuIF7zDQkRPyRPmWKc13yJgA8/BFxcgO++k7oa3Tp16hTatWsHOzs7ODk5oUOH\nDrhw4YLa2//5559o3bo1rKys4OzsjICAAERHv7o/T3BwMDp06AB7e3u4ublhzJgxSEtLK7bN7du3\no2XLlrC2toa7uzt69OiB06dPF7tNTEwMzM3NERERUWRZ3759MWPGDLVfUx5VY0lqY4KGxhXNyRHH\nhB0xgsjenqhzZ6ING4ji4zXSvFrS04lmzyZyciJavZpILtfdvhnTpqtXiWrUIJo+Xfxb07bERKLW\nrYkmTTK+sZ3nzRPvrZuW9nrtwMDGak5OTiY7OzvatWsXKRQKyszMpKNHj9K1a9fU2n737t1kY2ND\nO3fupMzMTHr69CmNGjWKvLy8KDExkYiIduzYQSEhIZSRkUGJiYnk5+dH48ePV9nm0qVLycXFhfbv\n30/p6ekkk8koKCiowH18VenWrRvNnz+/wHPx8fFkYWFB169fV7qNqt8ZqXuTBE1Nr/OfRKEgCgsT\nB153cSFq2ZLoxx+JlIyDrVP//UfUti2Rjw+Rmv+nGNNbe/aIHya3btXtfo0xfLduJfL0JIrVwH1W\nDC14w8PDyd7eXuXywMBAateuHU2aNIlsbW2pXr16BW6o4OnpSUuWLCmwjUKhoIYNG9LcuXOVtrlv\n3z5q3Lix0mVJSUlkZWVFe/fuVVlTVlYWTZ06ldzc3Mjd3Z0+/vhjys7OJiKi7du3k7e3d4H1V61a\nVexNHQw6eK9fF48sa9QgqlOHaP58ojt3St2MVsnlRGvXim9Yn38uHg0zZkjkcqI5c4g8PIh0cMc0\npYwpfP/5h8jZWXMfxg0teJOTk8nJyYmGDx9Ohw4dooSEhALLAwMDyczMjJYtW0YymYx27dpFtra2\nlJCQQLdu3SITExN6+PBhkXbnzp1Lbdu2VbrPqVOn0qBBg5QuO3z4MJmbm5O8mFOTX3zxBfn4+FBc\nXBzFxcVR27Zt6csvvyQiooyMDLKzs6PTp0/nre/j40PLly9X2Z7BBW9kJNHChURNmhC5uxN9+inR\nhQv6/8cYE0M0cCBRzZpER49KXQ1j6klKIurVi6hDB6KnT6WtxRjC9+5dojfeIAoJ0Vybhha8RES3\nbt2ikSNHUrVq1cjc3Jzee+89evbsGRGJwevu7l5g/datW9PWrVvp1KlTZGJiQllZWUXaXLt2LdWu\nXbvI80eOHCEHBwe6d++e0lq2bdtGrq6uxdZbs2ZNOnz4cN58SEgIeXl55c1/+OGHNHbsWCIiunPn\nDllYWNBzZTdPfqm44DUr/VVh7YiLE0eQ2r4duHFD7Cy1bBnQoYPhDKnm6grs2gUEB4sdKt56C1i6\nFHB2lroyxpS7cwfo3VscqH/PHqBCBWnrye1w1bWr2OHK0Ho7x8cDPXoA8+aJo3RJTQgN1Ug7pOp+\nhcWoU6cONm7cCAC4c+cOhgwZgo8//hjbtm0DALi7uxdY38PDAzExMWjRogWICLGxsfAsNGxgbGws\nnJycCjx39uxZDBkyBHv37kXNmjWV1uLo6Ii4uDgoFAqYqAiUmJgYeOTeWguAp6cnYvP1nh0+fDh6\n9+6N5cuXY8uWLejatWuRWtSmKpG1MaHQp7OUFPE6SPfuRDY2RP7+RH/8QaTkg47BSU0Vj9SrVCHa\ntMlwP70z4xUUJJ4OXb9e6kqKSkwkatOGaOJEw/nbycoi8vUlmjZN823DAI94C1u5cmXeNdjijniJ\niKpVq0aLFy8usDz3Gm/u6V8ioosXL5KLiwsFBQUVu291rvF6e3vToUOH8uZDQkKoevXqRdbZtWsX\n1ahRo9i2iPTsVHNWlhiu/v5EtrZEPXoQbdsmhrAxunCBqHlzok6diG7flroaxsQg+/57Ijc3olOn\npK5GNUMKX4WCaPhwot69iWQyzbdvaMF769YtWrp0KT1+/JiIiB49ekTt2rXLO1UbGBhI5ubmtHz5\ncsrJyaHffvuNbG1tKf7lV1Nyr/nu2LGDMjMzKTY2lkaOHEmenp5561y7do1cXFzot99+U6umpUuX\n0htvvJHXqzknJ4eCg4PzejXPmTOH2rVrR8+fP6fnz59T+/btC4Q8EdH8+fPJy8uLHB0d8zpeqaJX\nwevoKF5LWrOGqJjT40YlJ0fsge3oSPTVV8ZxRM8MU2oq0QcfiN8KiIqSupqSGUr4fvut+AE7NVU7\n7Rta8EZHR9PAgQPJ3d2drKysqGrVqjR+/HhKeXmEFRgYSO3bt6fJkyeTra0t1alTh44dO1agjT/+\n+INatmxJVlZW5OjoSIMHD84LciKikSNHkqmpKVlbW5OVlRVZWVlRw4YNi61r+/bt1KJFC7KysiJX\nV1fq2bMnhYWFERFRZmYmTZ06lVxdXcnNzY0+/vjjIteZIyIiyNTUlCZOnFjiv0FxwavzkasiIwn5\nTqOXK48eAZMmAffuicPvtW8vdUWsPHn4EOjTB2jSBFi3DrC0lLoi9SQliYN5NG8OrFihf9d8d+0S\nR/gKCwPc3LSzD2MbuWrz5s345ZdfcPLkSalL0Rq9GrmqvIYu8Gpkra+/Bvz9xVsPJiRIXRUrD0JD\ngTZtgBEjxNHXDCV0AbHD1eHDwIUL4i0J9SlnwsLEmg4e1F7oMuNjIP2FjYcgiD22r18Xh7Js0ED8\nxKxPbybMeBCJR4n+/uJdcT7+WP+OGNWhj+H74IF4x6bAQKBxY6mrYYbEqG6SYIjCwsQj32rVgNWr\nxfsEM6YJWVnA+PHiLf327wdq1JC6otenL6edExPFuw1NnChePtI2YzvVXB7o1almVpCPD3Dxovh9\n5RYtgCVLxLvCMPY6YmKAjh2BlBTgzBnjCF1AP458c3KAAQPE7+nqInSZ8eHg1QPm5sDnnwP//isO\nHtCypXjHFsbK4uxZoFUroFcv8Z7Uxnbv6NxBNi5cEINPl+FLBEyYAFSsCPzwg+72y4wLB68eqVkT\nOHIE+PRT8U1z6lTxiIUxdW3cKN6Heu1aYPZsw7yeqw4bGzF8L17UbfguXiyeut+xAzA11c0+mfHh\n4NUzggAMHSp2vkpJETtf/fGH1FUxfZeTI556XbgQOHkS6NlT6oq0T9fhu3eveF354EHjO4vAdIs7\nV+m5v/8Gxo4FGjUSx60tNLwpY3j+HBg4EKhUSey5bGcndUW6lZwsju3crBmwcqV2jvLPnRPHYA4J\nEfeja9y5yvBw5yoD1qkTcPWqeOT75pvAqlWAXC51VUxfXL4s9glo21Y8M1LeQhfQ/pFvZKQ48Mgv\nv0gTusz4qBW8giB0EwThliAIdwRBmKlk+WBBEK68nE4JgtBI86WWX5aWwFdfASdOADt3Au3aiWHM\nyredO4F33wUWLQK+/bZ8X3PUVvgmJYlHujNmiNfOmfpOnTqFdu3awc7ODk5OTujQoQMuXLgAQBy5\nqkOHDkW2OXPmDDp37gwbGxvY29ujd+/euHnzZt7yf//9F126dIGjoyNcXFzwwQcf4MmTJ8XWERIS\ngo4dO8LGxgYuLi7o1KkTDh48WOw2WVlZsLe3R6iSuzt98sknGDhwoBr/AsVQNZZk7gQxnO8B8ARg\nDuAygLqF1mkDwPbl424Azqpoq8TxLVnx5HLxbjLOzkQDBoh3PnryROqqmC7JZEQzZxJVr050+bLU\n1eiXpCRxbOcJE15/bOecHKKuXTXT1uuCgY3VnJycTHZ2drRr1y5SKBSUmZlJR48epWvXrhER0aZN\nm6hDhw4Ftjlz5gxZWVnRihUrKDU1lRISEmjOnDlkb29PERERRER06NAh2rNnD6WkpFBGRgaNGjWK\nunXrprKO3bt3k42NDW3cuJGSk5OJiOjkyZM0ZsyYEl/DuHHjaOTIkQWek8vl9MYbb5R4NySi17xJ\nwstQPZRvfhaAmcWsbwcgSsWyEotl6omLI9q4kah/f/EuTy1bEs2dS3TunBjOzDglJBD5+Yl3uyov\nNxkpLU2Er0JBNG4cUbduYgBLzdCCNzw8nOzt7ZUuu3nzJllaWpKZmRlZWVnlrde+fXuaNGlSkfX9\n/Pxo+PDhStu6ePEi2djYqKzDw8ODli5dqnK5QqGgr7/+mjw9PcnFxYWGDx+eF9BnzpwhGxsbysjI\nyFs/KCiIXFxcSK7Gm2xxwavOqWZ3AFH55h+/fE6VDwEcUqNd9hocHYGRI8Wblz97JvZmTUsDhg8H\nXF3FMXl37xZH2GGGhUgcw/vaNSA4WLyhwZw54u+0aVOgdm3xtGpZ78Ft7HJPO1+6JI4sVZbTzj/+\nCJw+LQ7namam+RqNXe3atWFqaooRI0bg8OHDSMz3RlS3bl2sXbsWPj4+SElJQXx8PDIyMhAWFoYB\nAwYUaWvgwIE4evSo0v2cOHECDRo0ULrs9u3bePz4Mfr376+yzk2bNuHXX3/FiRMn8ODBA6SkpGDi\nxIkAAB8fH7i6umLfvn1562/duhWDBw+GicnrdY/S6H8pQRA6ARgJQOV9d+bNm5f32NfXF76+vpos\noVyqUEHshNWpk/g9w4gI8Q170yZg9GixQ0iPHkD37kD9+sb73U5DkZwMREUBjx+LP3On/POmpkDV\nquJQornTW2+JPdx9fKR+BfrPxkYc4apbNzF8V61S///9/v3A0qXicK42NtqtU5XQ0FCl1xcNhbW1\nNU6dOoWFCxdizJgxePLkCfz8/LBhwwY4OzsXWT8+Ph4KhQKurq5Flrm6uiIuLq7I81evXsXXX3+t\n8nrtixcv8rZXZfv27Zg2bRo8PT0BAN9//z0aNmyIwMBAmJiYICAgAJs3b8bgwYORnJyMAwcOICws\nTK1/g+KU+HUiQRDaAJhHRN1ezs+CeAi9sNB6jQHsBdCNiO6raItK2h/TrPR08StJQUHiJAhiAPfo\nIQZ1pUpSV2hc0tKUB2n+eblcDNLCwZp/Xqo3fGOTnCyGb+43AkoK3wsXxPUPHRKHcNUXZf06UagQ\nqpH9+5Lva21/584dDBkyBLVr18a2bduK3BYwPT0dNjY2OH78ODp27Fhg28DAQMyePRvR0dF5z927\ndw++vr5YtGgRBg8erHSft2/fRv369fHgwYO8YC2sfv36WLp0Kfz8/ACInaoqVqyI6OhouLq64tGj\nR6hVqxYiIyMRHByMZcuW4cqVK2q95uK+TqTOEe95AN6CIHgCiAXgD2BQoR14QAzdAFWhy6RRqZIY\nsj16iKfcbtwQj4YXLwYGDRLvCZx7NFy9utTV6reMjIJhqixYMzNfBWjuzxYtgL59X83b2fFZB10p\nzZFvVBTQu7d4r2x9Ct3X8bqBqSm1a9fGiBEjsH79egBiKOVXqVIl+Pj4YPfu3UWC97fffkPnzp3z\n5iMjI/Huu+9i7ty5KkMXAOrUqYNq1aph7969mDZtmtJ13NzcEBkZWaBtc3NzuLi4AAA8PDzQoUMH\nbNmyBYcOHcLw4cNL98JVUXXxlwpewO8G4DaAuwBmvXxuLIAxLx//DOAFgIsALgE4p6KdEi9IM91J\nSCD67Tei4cOJqlQhqlePaPp0or/+IsrOlro63crMJLp3jyg0lGjLFqLvviMaP56oVy+iN98kcnQk\nsrAgqlGDqGNHoqFDiWbNIlq1iuiPP4guXRI7O0nd+5Upl5RE5OMj/k6V/Y6Sk4kaNyZavFj3takD\nBta56tatW7R06VJ6/PgxERE9evSI2rVrR2PHjiUiosOHD1P16tUpO98bzalTp/J6NaekpFB8fDzN\nnj2b7O3t6d69e0RE9PjxY6pZs2axHaby27NnD9nZ2VFgYCAlJyeTQqGgf/75J6+ODRs2UO3atSki\nIoJSUlJowIABNGzYsAJtbN68mTw8PMjCwoKelOIrJKp+Z6ROr2ZNTvr6n4SJPaHPnRN7RrdsKfaU\n7t9f7DkdGyt1da9PJiOKjBSDddMmoi+/JAoIIGrXjsjNjahCBSJPT6L27YkGDSKaMYNo+XKi338n\nCg8nevqUe4sbOlXhm5ND1L070Zgx+vvBydCCNzo6mgYOHEju7u5kZWVFVatWpfHjx1NKSgoREWVn\nZ1PPnj3JwcGBnJ2d87Y7ffo0+fr6kpWVFdna2lLPnj3p+vXrecvnz59PJiYmZG1tTdbW1mRlZUXW\n1tbF1hISEkIdOnQga2trqlKlCnXq1ImCg4OJ6FWv5mrVqlGVKlVo2LBhlJiYWGD71NRUsra2ph49\nepTq36C44OUhI5lST5+Kp+iCgoCjR8UbOOSesm7RAnjNTn0aRyQOnRgRoXyKihJ7AVev/mqqUePV\nY3f38j0ARXmh7Jrv5MnA7dvi/3Vzc6krVI6HjDQ8xV3j5eBlJcrJEe/pmttB6/lzwM9PvC7ctavu\nhilMSVEdrBERgIVFwWDNP3l6iiOAMZY/fOvUEa/pnjkj3m5QX3HwGh4OXqZRDx+KHbSCg8U74bz5\n5quj4QYNyt5xKCsLePRIDNEHD4oGa0YG4OWl/KjVy0u/3ziZfskN3/v3xftge3lJXVHxOHgNDwcv\n05qMDPHrSsHB4tGwQiEeCXfvDrz9NlC58qt15XIgJkb1EeuzZ2LPX1VHrVWqcG9gpjnp6UB8vPh/\nTt9x8BoeDl6mE0TArVuvTkmHh4uDPQiCeAQbFQU4OCgP1Ro1xOusPEoQY0Vx8BoeDl4miaQkIDRU\nHFkr9zprxYpSV8WY4eHgNTwcvIwxZsA4eA1PccGrZ18KYYwxxowbX1FjjDEDZWlp+VQQBBep62BF\nWVpaPlW1jE81M8aYnivutCUzPHyqmTHGGNMhDl7GGGNMhzh4GWOMMR3i4GWMMcZ0iIOXMcYY0yEO\nXsYYY0yHOHgZY4wxHeLgZYwxxnSIg5cxxhjTIQ5exhhjTIc4eBljjDEd4uBljDHGdIiDlzHGGNMh\nDl7GGGNMhzh4GWOMMR0yk7oASaWmAk+eiFNs7KvHCgXg6ipObm6vHlesKHXFjDHGDJygyxvTC4JA\nWt+fXA48f14wSFU9lsnEQH3jDXHKfWxiIq4XGwvExLzaxtLyVQgrC+bcydoaEPie1YwxzRAEAUTE\nby4QB/IAABGGSURBVCpGwnCCNzVVvTCNiwPs7QsGqarHNjbqByQRkJDwKpALB3P+iajkcHZ1BRwc\nOKAZY6plZQERERDq1ePgNSJqBa8gCN0A/ATxmvAvRLSw0PI6ADYBaAbgf0T0g4p2CgavXA48e1Zy\nmMbGvjr9W1yQvvEGUKUKYG5e5n8QjUhJKTmcY2OB9HSxZlXBnDs5OwOmptK+JsaYdmRnAxERwN27\nr6Z798SfsbGAhweEu3c5eI1IicErCIIJgDsAOgOIAXAegD8R3cq3jhMATwB9ACQUG7zdur0K1Rcv\nxKM+dY5OjfH0bUaG+O+gKphzp8REMXwLB7KjI2BrK042NgV/2toCFhZSv0LGGCCG68OHysM1Jgao\nVg3w9gZq1Xo1eXsDnp6AuTmfajYy6gRvGwBzicjv5fwsAFT4qPflsrkAUooN3qCggkenZuW7f5da\ncnKAp0+LBnR8PJCUBCQniz8LPxaE4oNZneesrcVr3oyx4uXkqA7Xx4+BqlWLBmutWoCXV4ln6Th4\njYs6qecOICrf/GMArcq8x+7dy7xpuWVuLv7RVq2q/jZE4vUhVcGc+/PpU/GNQdXytDSgcuWyhXbu\nY0tL8TVUqCCeMje2Mxes/MjJASIjiwZrbri6uRUMVj+/V+FaoYLU1TM9wYebxkoQxMCztARcXMre\njlwudmwr7sg6OVl841G1PCtLfMPKzhav1eeGsLn5qyn/vDqPNb2NublYm1wu9nZX9bO4Zbr4KZeL\nZyBMTcUp/2Nl8+qso41tzMzEf18LC3HK/1jZcxUq6M+ZFZlMdbhGRYmXefKHa5cu4uPq1TlcmVrU\nCd5oAB755qu+fK5M5s2bl/fY19cXvr6+ZW2K6YKp6aujV01QKMQQzg3ikh6XZb3U1LK1bWIiBkZu\ncOT+VPZcaX5aWLze9vl/mpi8+oCQ+zN3KjyvzjrFbZOVVfZ2ZTLx3zYrS5zyP1Y1b2amOphVPVfS\nfEnrpKcXDddHj8RLYflPB7/zzqtw1UHfidDQUISGhmp9P0wa6lzjNQVwG2LnqlgA5wAMIqKbStad\nCyCViJaqaEv73+NljBkeIvHDT0nh/Drzyp6ztCzYqcnbG6hRQ3xej/A1XuNSmq8TLcOrrxMtEARh\nLMROVusFQXABEA7AGoACQCqA+kSUWqgdDl7GGCslDl7jYjgDaDDGWDnFwWtc9KQ3A2OMMVY+cPAy\nxhhjOsTByxhjjOkQBy9jjDGmQxy8jDHGmA5x8DLGGGM6xMHLGGOM6RAHL2OMMaZDHLyMMcaYDvHd\niRhjTM/IkmVI+y8NqVdTkXY1TepymIZx8DLGmERITsi4n5EXsLk/s59mo3KDyqjcuDKsGltJXSbT\nMJ2P1Rx3KA5QAKSgVz/lheZf/iR50eegQLHPK2untO0L5gLMbM1gZmsGU1vTvMeF501tTGFixmfr\nGWMly4nPKRKwadfTUMGlQl7A5v6sWLMiBNNXQzPzWM3GRefBe7nrZQgmAmCCAj8F06LPwQTFPq+s\nHZgqWbeU7SuyFZAnySFLkuVNSueTZTCpaKIymPPm7cw4vBkrJxQ5CmTcKXoUK0uSoXKjfAHbxAqV\nG1aGmU3JJx45eI0L353oNRAR5KnyV0GcKCs5rAvPp8hgYqlGeCsJc3Mnc1RwqQATcw5uxqSQ/TS7\nSMCm306HRTWLAkewlRtXhqWnpfgBvww4eI0LB6/EioR3SUGdL9xznucg53kOzOzNUMG1Aiq4VoCF\nq0Xe48LzphVNpX65zMAoshWQp8qLTilKnss3KbIVMLMxg5ldvrM+uWd+Cv00tTYtcyDpiiJLgbSb\naQUCNvVqKiibipwmrtygMkwra/ZvjYPXuHDwGjiSE7KfZyM79tWUFZtVdP5JNkwsTYoN5tx5UxtT\nCAL/jRsSIoIiS0lIlhCQJa0LAkytTWFqVcJUaB3BXIA8+eUHxdwPi/l+5v8QKU+Tw9TaVGUwqxPe\nJhaaOetDRMiKzioSsJn3M2FZ07LIUayFu4VO/lY4eI0LB285QUSQJchUB3O+eZKTWkfQ5o7men+k\noisKmQKUJYafIjvf4ywFKPvV48LzBR5nERTZ+R4raUuRpYAiTQFZiqxISApmQskB+XIyszZTaz1N\nBVpxSE6QJRcK6ELhXGx4J8rE125b+vBWZCiQdq1gyAqmgnj9NV/AVqpXCaaW0p0x4uA1Lhy8rAhZ\nqqzkI+jYbMhT5DCvYl7iUbSJuYnY41wm9iQn+cue5vJX8yQr+hzkKLBNge002VZue9llCM6XYQkA\nJhYmMLEwgVBBePXYQoBJhXyPLUxgUkHF40LbKm3LwkR5SFY2hUmF8nmtn4igyFCUeGRdONhlSTKY\nmJsUOVVcwaWC1C+pCA5e48LBy8pMkaVA9pMSjqCf/L+9c421oyrD8PPO3qc36EXKpViEckeIAqVc\nEiAQ8FL4AYiQCNFgSaCJoiYIijEGjcYLP1BRkYCAYoISgQDhokBoRYMtlLYUSilFCFAEBAVbaHt6\n9p7PH7N2mTPdl9k9M0PP4XuSlb3WmrXme2dmzXyz1qyZvRlrGKqHmeW1MCO9lkrXtXVeTcPys/VU\n73NdqfV1WtcwB9mvs/SZ6U6JuOMdW7jjdRzH2c5xxzu28Nt0x3Ecx6kQd7yO4ziOUyHueB3HcRyn\nQsbsnySYGYNxzMY4ZlMI6Xg2vbHZ3BKXxORajSm1GpPr9bbx8VHk77o6o4bYjGYIDTOasCVdRp4B\nE6KI8VHEhFTYKi0xIYqoR94HcD44VO54V737bl9OsGfZ7LJQd9Bsy0ndChNrteHpzEWglY6B9Y0G\n65tN1jWbbeMxMLlWSxxxcMjbEp9cq7FDbfR+sKJpxlAcs9mMITM2x/Gw3yEzImBcFDEgvfebitel\nUbv9nRiKYzaE9rghtNN0fEOzOfy3x/JWfFMc09gGpwhQA2phf9daoUPesPQ25AEMmiXnYuYczaY3\nxTFia0ed12nnLt+m/rgoGrYfsvtlrLVLZ/ugcsd75sqVPR1fOj2tXu/bcbZOsqjEk2Ywjrc44fXN\nJus6xN8YGuKfGze2Xba+0WBds8lgHLNjP866XmdKrUYkdXV6mzNOMU/ZdvXaOdNW3IBxEgNRlPym\nHOpAyI+z60mtf3Mc04QtzrjdetLOut/leesMSAzmcICt5b2cJcCkWo2JUfTeb2jDk0JbzS6fGEVM\nHxjoWnZCFFHP6TzTeWWeC0XQSDvm4LA7OepO6f81Gryeqd+r7ubUTUozc+MSAyJ5HtfOKfeTjkZQ\nt7adHzunf/x1ou2ARhzzTqtH3aGHnY63HLjBFueWx7H0ckJ5nFy2XhEXhbiPG4ORLO9Wp2HG+JaT\nyzi9bs6yk4Mc8KHTUY8F5xu3ccr9pOMR1G2FC2bO9NeJxhDueB3HcbZz/D3esUWu23JJcyU9I+lZ\nSd/sUOYqSWskLZd0WLEyHcdxHGds0NPxSoqAXwKfBg4BzpF0UKbMKcC+ZrY/MB+4pgStlbFw4cL3\nW0IuXGexjAado0EjuE7H6UaeHu9RwBoze9HMhoA/AqdnypwO3ARgZouBqZJ2K1RphYyWk9F1Fsto\n0DkaNILrdJxu5HG8M4GXU+m1Ia9bmVfalHEcx3GcDzw+9dJxHMdxKqTnrGZJxwDfNbO5IX0ZYGb2\nk1SZa4AFZnZLSD8DnGBmr2fW5VOaHcdxtgGf1Tx2yPMBjceA/STtBbwKfA44J1PmLuDLwC3BUb+d\ndbrgDcdxHMdxejpeM2tKugi4n2Ro+nozWyVpfrLYrjWzeyWdKuk54F1gXrmyHcdxHGd0UukHNBzH\ncRzng04pk6sknSbpCUnLJC2RdFKHcrMkLQof5viDpEq/Hd3rwyB5t6NkjeMlLQ4aVkr6YYdyJ4Yy\nT0laULXOoGGqpD9JWhW0Hp1ZPk3S7WGfLpJ0cEW6vibpyRC+2mb5gZIekbRJ0sWp/D0kPRS2pW3d\nEeq6XtLrklak8q4I+2+5pNskTclbN+RfLmmtpKUhzC1JZy47XXQeKenR0GYflTSnJJ097XQ7zpLO\nCudUU9LsAjS2tZXHTp72KOnrkmJJO41Uq1MiZlZ4ACal4h8DnutQ7hbg7BD/NTC/DD0dbEfAc8Be\nwACwHDhoW7ajAq2Twm8NWAQcm1k+FVgJzAzpnd8nnb8F5oV4HZiSWX4F8J0QPxB4sAJNhwArgPFh\n/90P7JMpszNwBPB94OJU/gzgsBDfEVidbSMj1HYccBiwIpX3CSAK8R8DP8pbN+Rfnt6GEnXmstNF\n5wLgUyF+CsnkzDJ09rTT7TiHdro/8BAwuwCNbW3lsdOrPQJ7AH8GXgB2KrINeCg2lNLjNbMNqeSO\nwJsdip4E3BbivwM+U4aeDvT8MEgf21EqKR3jSW4Y3soUORe4zcxeCeUr1xl6Zseb2Y1BQ8PM1mWK\nHUxyYcHMVgOzJO1SsrSPAovNbNDMmsDDwJnpAmb2ppk9DjQy+a+Z2fIQfwdYRYHvp5vZ38kcSzN7\n0MzikFxEcjHNVTdFoZMYu9jqaadL3VdJbhgBppG8+z8iOtjqaafbcTaz1Wa2hoL2aSdbeezkaI8/\nBS4tQqdTLqW9xyvpDEmrgHuB9NDNPZJmSJoOvJW6yKwFPlyWnja0/TCIpAslXdjK7LQdVSIpkrQM\neA1YaGZPS5qf0nkAsJOkBZIek/SF90Hm3sCbkm4MQ4/XSpqU0fkEwelJOgrYkw6OpUCeAo6X9CFJ\nk4BTgY9kj3MvJM0i6U0tLkVle84H7gv2d5d0d856F4Wh6t9Imtq7+DaTtjOtT52XAVdKeolkJORb\nJWlsa6eTziqPcx5beXVKOg142cyeLEGqUzRld6lJhn9Wt8mfDjybSu9BZjiqZF2fBa5NpT8PXNXv\ndlQZgCkkvaATMvm/AB4BJrT2K7BfxdqOAIaAOSH9M+B7mTKTgRuApSQjHIuBj1egbR6wBFgI/Aq4\nskO5tsOnJKMdS4DTS9C2V7t2D3ybZBSjr7rALrw3afIHJG8hFK6zHzsddD4AnBHiZwEPlKQzt51u\nx5lkyHrEQ829bOWxk60LTAzXhckh/QIwvei26qG4UFiPV9KXwgSGpZJmtPItGf6phx4uqfz/ANOU\n/AkDJI53xMNNffAKSY+rRVf7nbajSiwZur0HyE4QWQv8xcw2hf36MHBoxfLWktxxLwnpW4Fhk0TM\nbL2ZnW9ms83sPGBX4PmyhZnZjWY2x8xOBN4muTHJhZIJf7cCvzezO0uSmLX5RZKe+bn91jWzNyxc\nfYHrgCMLlFaknaPN7I6wrltJHv2UQS47VR7nkdjqUHdfYBbwhKQXSK5lj0vatTjVTpEU5njN7Goz\nO9zMZgM7tPJbM/SCQ8iyADg7xM8DKrmwBbZ8GETSOJIPg9yVLiBp31S823aUhqSdW8OFkiYCnySZ\nCJbmTuA4SbUwnHo0yfOfyrDkgykvSzogZJ0MPJ0uo2TW80CIXwD81ZJnVaXSeo4saU+SeQQ3dyue\nSd8APG1mPy9LXtpmmB18KXCamQ32UzfUn5FKnkky1F6Gzn7sbKUTWCPphLCuk+njZqgfnX3YyXOc\ni3p23stWNztb1TWzp8xshpntY2Z7k9wEH25m/y5Ir1M0ZXSjgW+QnIhLgb8BR6aW3QPMCPG9SYYb\nnyWZ4TxQZXcfmEsyM3ANcFnImw9c2GE75lQ9JEEym3opsIzkGeklWZ0hfQnJzOYVwFeq1hk0HEpy\nQ7McuJ1kUkt6fx4T9vcqkrv2qRXpejgcx2XAiW2O824kz/vfBv4LvEQynHcs0Azbsywch7kF6roZ\n+BcwGGzOC23xxWBrKXB1KLs7cHe3uiH/ptAGlgN3ALuVpLOtnT50zgnn/jLgHySOogydR7Szk9bZ\n7TgDZ4S2sZFkotZ9I9TY1lYnO3l1Zmw8j89q3q6Df0DDcRzHcSrE/53IcRzHcSrEHa/jOI7jVIg7\nXsdxHMepEHe8juM4jlMh7ngdx3Ecp0Lc8TqO4zhOhbjjdRzHcZwKccfrOI7jOBXyfzk9tJGTWchU\nAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x103c09c90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dfCoV.plot() #CV graph\n", "plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Pearson Correlation Coefficients of 3 Hour Epochs with graph to see trend" ] }, { "cell_type": "code", "execution_count": 109, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "ar = dfen[tw['tw0']:0].corr()\n", "#excludes NaN values\n", "#pearson correlation coefficeint\n", "\n", "#pearson, kendall or spearman?\n", "br = dfen[0:tw['tw1']].corr()\n", "cr = dfen[tw['tw1']:tw['tw2']].corr()\n", "dr = dfen[tw['tw2']:tw['tw3']].corr()\n", "er = dfen[tw['tw3']:tw['tw4']].corr()\n", "fr = dfen[tw['tw4']:tw['tw5']].corr()\n", "gr = dfen[tw['tw5']:tw['tw6']].corr()\n", "hr = dfen[tw['tw6']:tw['tw7']].corr()\n", "ir = dfen[tw['tw7']:tw['tw8']].corr()\n", "\n", "dfcorrlst = [ar, br, cr, dr, er, fr, gr, hr, ir]" ] }, { "cell_type": "code", "execution_count": 110, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# 0 1 2 3 4\n", "# PI, PR, SpO2, StO2, FTOE\n", "# PI aa ab ac ad ae\n", "# PR ba bb bc bd be\n", "# SpO2 ca cb cc cd ce\n", "# StO2 da db dc dd de\n", "# FTOE ea eb ec ed ee\n", "\n", "def corrlst(dflst):\n", " \n", " a = [] #ab\n", " b = [] #ac\n", " c = [] #ad\n", " d = [] #ae\n", " e = [] #bc\n", " f = [] #bd\n", " g = [] #be\n", " h = [] #cd\n", " i = [] #ce\n", " j = [] #de\n", " \n", " for x in dflst:\n", "\n", " ab = x['PI'][1] #ab\n", " a.append(ab)\n", " ac = x['PI'][2] #ac \n", " b.append(ac)\n", " ad = x['PI'][3] #ad\n", " c.append(ad)\n", " ae = x['PI'][4] #ae\n", " d.append(ae)\n", " bc = x['PR'][2] #bc\n", " e.append(bc)\n", " bd = x['PR'][3] #bd\n", " f.append(bd)\n", " be = x['PR'][4] #be\n", " g.append(be)\n", " cd = x['SpO2'][3] #cd\n", " h.append(cd)\n", " ce = x['SpO2'][4] #ce\n", " i.append(ce)\n", " de = x['StO2'][4] #de\n", " j.append(de)\n", " \n", " rgraph = pd.DataFrame({\n", " 'PI:PR': a,\n", " 'PI:SpO2' : b,\n", " 'PI:StO2' : c,\n", " 'PI:FTOE' : d,\n", " 'PR:SpO2' : e,\n", " 'PR:StO2' : f,\n", " 'PR:FTOE' : g,\n", " 'SpO2:StO2' : h,\n", " 'SpO2:FTOE' : i,\n", " 'StO2:FTOE': j,\n", " }, index = ['-3:0','0:3','3:6','6:9','9:12','12:15','15:18','18:21','21:24'])\n", " \n", " return rgraph" ] }, { "cell_type": "code", "execution_count": 111, "metadata": { "collapsed": false }, "outputs": [], "source": [ "rgraph = corrlst(dfcorrlst)" ] }, { "cell_type": "code", "execution_count": 112, "metadata": { "collapsed": false }, "outputs": [], "source": [ "PIg = rgraph.ix[:,0:4]\n", "PRg = rgraph[['PI:PR', 'PR:FTOE', 'PR:SpO2', 'PR:StO2']]\n", "SpO2g = rgraph[['PI:SpO2', 'PR:SpO2', 'SpO2:StO2', 'SpO2:FTOE']]\n", "StO2g = rgraph[['PI:StO2', 'PR:StO2', 'SpO2:StO2', 'StO2:FTOE']]\n", "FTOEg = rgraph[['PI:FTOE', 'PR:FTOE', 'SpO2:FTOE', 'StO2:FTOE']]" ] }, { "cell_type": "code", "execution_count": 113, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PI:FTOE</th>\n", " <th>PI:PR</th>\n", " <th>PI:SpO2</th>\n", " <th>PI:StO2</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>-3:0</th>\n", " <td>0.233640</td>\n", " <td>0.013749</td>\n", " <td>-0.118383</td>\n", " <td>-0.298969</td>\n", " </tr>\n", " <tr>\n", " <th>0:3</th>\n", " <td>0.183815</td>\n", " <td>-0.195262</td>\n", " <td>-0.153697</td>\n", " <td>-0.275949</td>\n", " </tr>\n", " <tr>\n", " <th>3:6</th>\n", " <td>0.095198</td>\n", " <td>0.022819</td>\n", " <td>-0.130706</td>\n", " <td>-0.147530</td>\n", " </tr>\n", " <tr>\n", " <th>6:9</th>\n", " <td>0.135511</td>\n", " <td>-0.095433</td>\n", " <td>0.099453</td>\n", " <td>-0.104914</td>\n", " </tr>\n", " <tr>\n", " <th>9:12</th>\n", " <td>0.124760</td>\n", " <td>0.292634</td>\n", " <td>-0.182124</td>\n", " <td>-0.218045</td>\n", " </tr>\n", " <tr>\n", " <th>12:15</th>\n", " <td>-0.011576</td>\n", " <td>-0.031112</td>\n", " <td>-0.095576</td>\n", " <td>-0.035857</td>\n", " </tr>\n", " <tr>\n", " <th>15:18</th>\n", " <td>-0.047382</td>\n", " <td>-0.167565</td>\n", " <td>-0.091544</td>\n", " <td>0.007187</td>\n", " </tr>\n", " <tr>\n", " <th>18:21</th>\n", " <td>0.163204</td>\n", " <td>0.013000</td>\n", " <td>-0.089759</td>\n", " <td>-0.228809</td>\n", " </tr>\n", " <tr>\n", " <th>21:24</th>\n", " <td>0.009394</td>\n", " <td>-0.074790</td>\n", " <td>0.037989</td>\n", " <td>0.001988</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " PI:FTOE PI:PR PI:SpO2 PI:StO2\n", "-3:0 0.233640 0.013749 -0.118383 -0.298969\n", "0:3 0.183815 -0.195262 -0.153697 -0.275949\n", "3:6 0.095198 0.022819 -0.130706 -0.147530\n", "6:9 0.135511 -0.095433 0.099453 -0.104914\n", "9:12 0.124760 0.292634 -0.182124 -0.218045\n", "12:15 -0.011576 -0.031112 -0.095576 -0.035857\n", "15:18 -0.047382 -0.167565 -0.091544 0.007187\n", "18:21 0.163204 0.013000 -0.089759 -0.228809\n", "21:24 0.009394 -0.074790 0.037989 0.001988" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PI:PR</th>\n", " <th>PR:FTOE</th>\n", " <th>PR:SpO2</th>\n", " <th>PR:StO2</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>-3:0</th>\n", " <td>0.013749</td>\n", " <td>0.077095</td>\n", " <td>-0.130241</td>\n", " <td>-0.125067</td>\n", " </tr>\n", " <tr>\n", " <th>0:3</th>\n", " <td>-0.195262</td>\n", " <td>0.357436</td>\n", " <td>0.024431</td>\n", " <td>-0.383907</td>\n", " </tr>\n", " <tr>\n", " <th>3:6</th>\n", " <td>0.022819</td>\n", " <td>0.088692</td>\n", " <td>-0.110004</td>\n", " <td>-0.134817</td>\n", " </tr>\n", " <tr>\n", " <th>6:9</th>\n", " <td>-0.095433</td>\n", " <td>0.081715</td>\n", " <td>-0.040494</td>\n", " <td>-0.114552</td>\n", " </tr>\n", " <tr>\n", " <th>9:12</th>\n", " <td>0.292634</td>\n", " <td>0.205445</td>\n", " <td>-0.225870</td>\n", " <td>-0.330577</td>\n", " </tr>\n", " <tr>\n", " <th>12:15</th>\n", " <td>-0.031112</td>\n", " <td>0.207018</td>\n", " <td>-0.062346</td>\n", " <td>-0.280120</td>\n", " </tr>\n", " <tr>\n", " <th>15:18</th>\n", " <td>-0.167565</td>\n", " <td>0.181063</td>\n", " <td>-0.059224</td>\n", " <td>-0.246554</td>\n", " </tr>\n", " <tr>\n", " <th>18:21</th>\n", " <td>0.013000</td>\n", " <td>0.159951</td>\n", " <td>-0.162107</td>\n", " <td>-0.260643</td>\n", " </tr>\n", " <tr>\n", " <th>21:24</th>\n", " <td>-0.074790</td>\n", " <td>-0.080035</td>\n", " <td>-0.206098</td>\n", " <td>0.024120</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " PI:PR PR:FTOE PR:SpO2 PR:StO2\n", "-3:0 0.013749 0.077095 -0.130241 -0.125067\n", "0:3 -0.195262 0.357436 0.024431 -0.383907\n", "3:6 0.022819 0.088692 -0.110004 -0.134817\n", "6:9 -0.095433 0.081715 -0.040494 -0.114552\n", "9:12 0.292634 0.205445 -0.225870 -0.330577\n", "12:15 -0.031112 0.207018 -0.062346 -0.280120\n", "15:18 -0.167565 0.181063 -0.059224 -0.246554\n", "18:21 0.013000 0.159951 -0.162107 -0.260643\n", "21:24 -0.074790 -0.080035 -0.206098 0.024120" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PI:SpO2</th>\n", " <th>PR:SpO2</th>\n", " <th>SpO2:StO2</th>\n", " <th>SpO2:FTOE</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>-3:0</th>\n", " <td>-0.118383</td>\n", " <td>-0.130241</td>\n", " <td>-0.005173</td>\n", " <td>0.383524</td>\n", " </tr>\n", " <tr>\n", " <th>0:3</th>\n", " <td>-0.153697</td>\n", " <td>0.024431</td>\n", " <td>-0.025551</td>\n", " <td>0.437388</td>\n", " </tr>\n", " <tr>\n", " <th>3:6</th>\n", " <td>-0.130706</td>\n", " <td>-0.110004</td>\n", " <td>-0.022274</td>\n", " <td>0.371598</td>\n", " </tr>\n", " <tr>\n", " <th>6:9</th>\n", " <td>0.099453</td>\n", " <td>-0.040494</td>\n", " <td>-0.024701</td>\n", " <td>0.497076</td>\n", " </tr>\n", " <tr>\n", " <th>9:12</th>\n", " <td>-0.182124</td>\n", " <td>-0.225870</td>\n", " <td>-0.035578</td>\n", " <td>0.445869</td>\n", " </tr>\n", " <tr>\n", " <th>12:15</th>\n", " <td>-0.095576</td>\n", " <td>-0.062346</td>\n", " <td>-0.105365</td>\n", " <td>0.548999</td>\n", " </tr>\n", " <tr>\n", " <th>15:18</th>\n", " <td>-0.091544</td>\n", " <td>-0.059224</td>\n", " <td>-0.107909</td>\n", " <td>0.539084</td>\n", " </tr>\n", " <tr>\n", " <th>18:21</th>\n", " <td>-0.089759</td>\n", " <td>-0.162107</td>\n", " <td>-0.014472</td>\n", " <td>0.460192</td>\n", " </tr>\n", " <tr>\n", " <th>21:24</th>\n", " <td>0.037989</td>\n", " <td>-0.206098</td>\n", " <td>-0.153297</td>\n", " <td>0.437165</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " PI:SpO2 PR:SpO2 SpO2:StO2 SpO2:FTOE\n", "-3:0 -0.118383 -0.130241 -0.005173 0.383524\n", "0:3 -0.153697 0.024431 -0.025551 0.437388\n", "3:6 -0.130706 -0.110004 -0.022274 0.371598\n", "6:9 0.099453 -0.040494 -0.024701 0.497076\n", "9:12 -0.182124 -0.225870 -0.035578 0.445869\n", "12:15 -0.095576 -0.062346 -0.105365 0.548999\n", "15:18 -0.091544 -0.059224 -0.107909 0.539084\n", "18:21 -0.089759 -0.162107 -0.014472 0.460192\n", "21:24 0.037989 -0.206098 -0.153297 0.437165" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PI:StO2</th>\n", " <th>PR:StO2</th>\n", " <th>SpO2:StO2</th>\n", " <th>StO2:FTOE</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>-3:0</th>\n", " <td>-0.298969</td>\n", " <td>-0.125067</td>\n", " <td>-0.005173</td>\n", " <td>-0.924194</td>\n", " </tr>\n", " <tr>\n", " <th>0:3</th>\n", " <td>-0.275949</td>\n", " <td>-0.383907</td>\n", " <td>-0.025551</td>\n", " <td>-0.909062</td>\n", " </tr>\n", " <tr>\n", " <th>3:6</th>\n", " <td>-0.147530</td>\n", " <td>-0.134817</td>\n", " <td>-0.022274</td>\n", " <td>-0.936017</td>\n", " </tr>\n", " <tr>\n", " <th>6:9</th>\n", " <td>-0.104914</td>\n", " <td>-0.114552</td>\n", " <td>-0.024701</td>\n", " <td>-0.879214</td>\n", " </tr>\n", " <tr>\n", " <th>9:12</th>\n", " <td>-0.218045</td>\n", " <td>-0.330577</td>\n", " <td>-0.035578</td>\n", " <td>-0.910117</td>\n", " </tr>\n", " <tr>\n", " <th>12:15</th>\n", " <td>-0.035857</td>\n", " <td>-0.280120</td>\n", " <td>-0.105365</td>\n", " <td>-0.888480</td>\n", " </tr>\n", " <tr>\n", " <th>15:18</th>\n", " <td>0.007187</td>\n", " <td>-0.246554</td>\n", " <td>-0.107909</td>\n", " <td>-0.894428</td>\n", " </tr>\n", " <tr>\n", " <th>18:21</th>\n", " <td>-0.228809</td>\n", " <td>-0.260643</td>\n", " <td>-0.014472</td>\n", " <td>-0.893971</td>\n", " </tr>\n", " <tr>\n", " <th>21:24</th>\n", " <td>0.001988</td>\n", " <td>0.024120</td>\n", " <td>-0.153297</td>\n", " <td>-0.955420</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " PI:StO2 PR:StO2 SpO2:StO2 StO2:FTOE\n", "-3:0 -0.298969 -0.125067 -0.005173 -0.924194\n", "0:3 -0.275949 -0.383907 -0.025551 -0.909062\n", "3:6 -0.147530 -0.134817 -0.022274 -0.936017\n", "6:9 -0.104914 -0.114552 -0.024701 -0.879214\n", "9:12 -0.218045 -0.330577 -0.035578 -0.910117\n", "12:15 -0.035857 -0.280120 -0.105365 -0.888480\n", "15:18 0.007187 -0.246554 -0.107909 -0.894428\n", "18:21 -0.228809 -0.260643 -0.014472 -0.893971\n", "21:24 0.001988 0.024120 -0.153297 -0.955420" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PI:FTOE</th>\n", " <th>PR:FTOE</th>\n", " <th>SpO2:FTOE</th>\n", " <th>StO2:FTOE</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>-3:0</th>\n", " <td>0.233640</td>\n", " <td>0.077095</td>\n", " <td>0.383524</td>\n", " <td>-0.924194</td>\n", " </tr>\n", " <tr>\n", " <th>0:3</th>\n", " <td>0.183815</td>\n", " <td>0.357436</td>\n", " <td>0.437388</td>\n", " <td>-0.909062</td>\n", " </tr>\n", " <tr>\n", " <th>3:6</th>\n", " <td>0.095198</td>\n", " <td>0.088692</td>\n", " <td>0.371598</td>\n", " <td>-0.936017</td>\n", " </tr>\n", " <tr>\n", " <th>6:9</th>\n", " <td>0.135511</td>\n", " <td>0.081715</td>\n", " <td>0.497076</td>\n", " <td>-0.879214</td>\n", " </tr>\n", " <tr>\n", " <th>9:12</th>\n", " <td>0.124760</td>\n", " <td>0.205445</td>\n", " <td>0.445869</td>\n", " <td>-0.910117</td>\n", " </tr>\n", " <tr>\n", " <th>12:15</th>\n", " <td>-0.011576</td>\n", " <td>0.207018</td>\n", " <td>0.548999</td>\n", " <td>-0.888480</td>\n", " </tr>\n", " <tr>\n", " <th>15:18</th>\n", " <td>-0.047382</td>\n", " <td>0.181063</td>\n", " <td>0.539084</td>\n", " <td>-0.894428</td>\n", " </tr>\n", " <tr>\n", " <th>18:21</th>\n", " <td>0.163204</td>\n", " <td>0.159951</td>\n", " <td>0.460192</td>\n", " <td>-0.893971</td>\n", " </tr>\n", " <tr>\n", " <th>21:24</th>\n", " <td>0.009394</td>\n", " <td>-0.080035</td>\n", " <td>0.437165</td>\n", " <td>-0.955420</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " PI:FTOE PR:FTOE SpO2:FTOE StO2:FTOE\n", "-3:0 0.233640 0.077095 0.383524 -0.924194\n", "0:3 0.183815 0.357436 0.437388 -0.909062\n", "3:6 0.095198 0.088692 0.371598 -0.936017\n", "6:9 0.135511 0.081715 0.497076 -0.879214\n", "9:12 0.124760 0.205445 0.445869 -0.910117\n", "12:15 -0.011576 0.207018 0.548999 -0.888480\n", "15:18 -0.047382 0.181063 0.539084 -0.894428\n", "18:21 0.163204 0.159951 0.460192 -0.893971\n", "21:24 0.009394 -0.080035 0.437165 -0.955420" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(PIg, PRg, SpO2g, StO2g, FTOEg)" ] }, { "cell_type": "code", "execution_count": 114, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdkAAAEACAYAAAD/dgzlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYFUcXxt8FeygiWFCaXRSNFYkVYxdrrMQSNZaYz5ZE\nE0SNJib2lthj7D222NDYACmKYhdEUaQIKmIB6XDv+f4YUMB74Za9Deb3PPvo7s7OvHf3cs/OnJlz\nBCICh8PhcDgc8THStQAOh8PhcIor3MhyOBwOh6MhuJHlcDgcDkdDcCPL4XA4HI6G4EaWw+FwOBwN\nwY0sh8PhcDgaQhQjKwhCD0EQwgRBeCgIwk8yzvcVBOG2IAg3BUEIFgThczHa5XA4HA5HnxHUXScr\nCIIRgIcAOgOIA3ANwDAiCstTpgIRpeb8vzGAo0RUR62GORwOh8PRc8ToyToDCCeiKCLKArAfQL+8\nBXINbA4mABJEaJfD4XA4HL1GDCNbA0BMnv2nOcfyIQhCf0EQ7gPwAjBVhHY5HA6Hw9FrtDbxiYj+\nJSJHAH0A7NJWuxwOh8Ph6IpSItQRC8Auz75NzjGZEJG/IAilBEGwJKJXBc8LgsCDKXM4HI6SEJGg\naw2cjxGjJ3sNQB1BEOwFQSgDYBiA43kLCIJQO8//mwOALAObCxHp9TZv3jyda+A6tbtlZGdg7s9z\nda6juNxPrlPcjaO/qG1kiUgCYDKAswBCAOwnovuCIEwUBGFCTrGBgiDcEwThBoA/AAxVt11dEhkZ\nqWsJCsF1iscP//2Aw4GHdS1DIQzhfgJcJ6dkIMZwMYjoDID6BY5tyvP/pQCWitEWh6NtiAjHHhzD\nyzcvIZFKYGxkrGtJHA7HQOARn1Rg9OjRupagEFynOIS8DIGxkTFqdKgB3yhfXcspEn2/n7lwnZyS\ngNrBKMRGEATSN02cks0S/yWISYqBnbkdwl+FY3PfzbqWxOHkQxAEEJ/4pJfwnqwK+Pj46FqCQnCd\n4uD1yAu96vaC/Rt7HAk7gkxJpq4lFYq+389cuE5OSYAbWQ6nEN6mv8WNZzfg6uCKqiZV4WjliP8e\n/adrWRwOx0Dgw8UcTiEcDDmIbbe2wWu4FwBg3dV1CIgJwN6Be3WsjMP5AB8u1l94T5bDKYTcoeJc\nBjcajFPhp5CSmaJDVRwOx1DgRlYFDMVHw3Wqh5SkOB1++r2R9fHxQZVPqsDFxgUnH57UsTr56Ov9\nLAjXySkJcCPL4cjhxrMbsChvgVoWtfIdd3dyx757+3SkisPhGBLcJ8vhyOFX31+RmJ6IFd1X5Due\nmJ4Iu9V2iJoehYrlKupIHYfzAe6T1V94T5bDkYNXeH5/bC7m5czRuWZnHLl/RAeqOByOIcGNrAoY\nio+G61SdlykvEZYQhvb27d8fy6tTn4eM9fF+yoLr5JQEuJHlcGRw5tEZfF7zc5QxLiPzfO96vXEt\n9hqeJz/XsjIOh2NIcJ8shyMD98Pu6FyzM8Y1Hye3zMijI+Fc3RlTWk/RojIO52O4T1Z/4T1ZDqcA\n2dJsnH18Fj3r9Cy0nD4PGXM4HP2AG1kVMBQfDdepGkFPg2BrZosaZjXyHS+os2utrgh/HY7It5Ha\nE6cA+nY/5cF1ckoC3MhyOAU4FX4KbnXdiixX2rg0BjoOxP57+7WgisPhGCLcJ8vhFKDpxqZY12sd\n2tq1LbKsb6Qvpp6Zitvf3NaCMg5HNtwnq7/wniyHk4fYpFjEJMWgtU1rhcq3t2+PV6mvEPoyVMPK\nOByOIcKNrAoYio+G61Se049Oo1vtbihlVOqjc7J0GglGGNpoKPbd1Z8JUPp0PwuD6+SUBLiR5XDy\n4BXuhV51Po7yVBjujdksY+7m4HA4BdFLn+z69YRRo4BPPtG1Gk5JIiM7A1WWV8GjKY9Q+ZPKCl9H\nRKi3th72frEXrWq00qBCDkc23Cerv+hlT/bsWcDBAZg1C4iN1bUaTknBP9ofjlaOShlYgP3A8TWz\nHA5HFnppZI8eBS5fBlJSgMaNgREjgOvXda3qA4bio+E6lUNeQoBcCtM5zGkYDoQcgEQq0YAy5dCX\n+1kUXCenJKCXRhYA6tQB/vwTiIgAPv0UGDAA6NgR+PdfQKL73zFOMcTrUeFGtjAaVm4IqwpW8Iv2\nE1kVh8MxZPTSJytLU1YWcPgwsGoV8OoVMG0aMGYMYGKiA5GcYkfEmwi02dIGcT/EwUhQ7d1zsf9i\nPHnzBJv6bBJZHYdTONwnq7/obU+2IKVLA8OGAVeuADt3Ar6+zG/7449ATIyu1XEMHa9wL/Ss21Nl\nAwuwIePD9w8jU5IpojIOh2PIGIyRzUUQgDZtgEOHgGvXgOxsNpzs7g5cvaodDYbio+E6FUeRpTtF\n6XSo6IB6lvVw7vE5EZUpjz7cT0XgOjklAYMzsnmpWRNYuRKIjAScnYEhQ4C2bdmwMvfbchQlNSsV\nftF+6Fq7q9p18VnGHA4nL6L4ZAVB6AFgNZjR3kJESwqc/xLATzm77wBMIqK7cupSOXZxdjabGLVq\nFRAXx/y2Y8cCZmYqVccpIXiFe2FJwBL4jvZVu64XyS9Qf219xP0QhwqlK4igjsMpGu6T1V/U7skK\ngmAEYC2A7gAaAXAXBKFBgWIRADoQ0acAfgOwWd12ZVGqFDBoEBAQAOzfz/y3NWsC33/PerscjixO\nPVQs644iVDWpilY1WuHkw5Oi1MfhcAwbMYaLnQGEE1EUEWUB2A+gX94CRHSFiBJzdq8AqAEN07o1\nM7Q3bwLGxkCLFsDgwWz9rboYio+G6ywaIlJ46Y6iOnU9ZMyfu7gYik6OfiKGka0BIO/83qco3IiO\nA3BahHYVws4OWLaM9WTbt2eBLVxcgAMH2PAyp2QTlhAGiVSCRpUbiVbnF45f4OKTi0hMTyy6MIfD\nKdao7ZMVBGEggO5ENCFnfwQAZyKaKqNsJ7Ch5XZE9EZOfRrNJyuRAMePM79tVBQwZQowbhxQsaLG\nmuToMSsCVyD8dTg29t4oar399/dH/wb9MbrpaFHr5XBkwX2y+svH+byUJxaAXZ59m5xj+RAEoQmA\nvwD0kGdgcxk9ejQcHBwAABUrVkTTpk3h6uoK4MPQjar7fn4+sLAALl1yRXAw4OHhg19+AcaOdcXU\nqUBMjHr1833D2t9zYg8GOQ5CLmLV7+7kjq23tsLhrYNefV6+Xzz2c/8fySeb6D9EpNYGwBjAIwD2\nAMoAuAXAsUAZOwDhAFwUqI+0TUwM0U8/EVlaEvXvT3TpEpFUKr+8t7e31rSpA9dZOInpiWSy0ISS\nM5IVKq+MzpTMFDJfZE4vkl+oqE51+HMXF0PQmfO7qfbvOd/E39T2yRKRBMBkAGcBhADYT0T3BUGY\nKAjChJxicwFUArBeEISbgiBoKWyEYtjYAIsXM79tly5s2U+rVsCePSycI6d4cj7iPNrYtsEnZcTP\nqVihdAW41XPDwZCDotfN4XAMB4OJXaxNpFLg1CkW6CI8HJg8GZgwAahUSaeyOCIz7vg4NK7SGNNc\npmmk/pMPT2Kx/2L4j/XXSP0cTi7cJ6u/GHTEJ01hZAT06QN4ewMnTgD37wO1awP/+x/w8KGu1XHE\ngIiKTG2nLt1qd0NYQhiiE6M11gaHw9FvuJEtgmbNgB07gJAQwMKChW1s394H8fG6VlY0eSdJ6DO6\n0Hnr+S2YlDFBXcu6Cl+jrM4yxmXwheMX2H9vv5Lq1IM/d3ExFJ0c/YQbWQWpXh347Te27MfODmjZ\nUnsJCTjio+lebC66DkzB4XB0C/fJqsi//zI/7e+/A+PH61oNR1nabm2LeR3noVvtbhptRyKVwHaV\nLS5+dRENrApGG+VwxIH7ZPUX3pNVkf79AT8/FtRi/HggPV3XijiK8ir1Fe6+uIsO9h003paxkTGG\nNhqKfXd5b5bDKYlwI6sCuT6a+vWBoCDg7VugQwf9Sx5vKL4kbes8+/gsXB1cUa5UOaWuU1Wne2M2\nZKytERr+3MXFUHRy9BNuZNXE1BT45x+WfMDZGbh4UdeKOEVxKly8rDuK0Kp6K0hJihvPbmitTQ6H\nox9wn6yIXLjAEhD88APbBO4h0TskUgmqLq+KGxNvwM7crugLRGLOxTlIz07H8m7LtdYmp+TAfbL6\nC+/Jikjnzmz4+MABYOhQ4N07XSviFORa3DVYm1pr1cACwDCnYTgQcgBSkmq1XY56GOj7PkeP4EZW\nBQrz0djZsQlRZmYspd6DB9rTVRBD8SVpU6dXuBd61VFt6Y46Op2qOKFiuYrwj9Z89Cf+3MXh+XMW\nhObvv310LYVjwHAjqwHKlQP+/huYPp3lsP33X10r4uRyKvwU3Oppzx+bF3cndz7L2IBYsACwtAR+\n/RVISdG1Go6hwn2yGiYoiE2KGjUK+OUXwNhY14pKLs/ePUPD9Q0RPyMepY1La739iDcRaP13a8R9\nH6eT9jmK8+jRh5Go779nf7dbt+palXy4T1Z/4T1ZDdO6NRAcDAQEAG5uwKtXulZUcjnz6Ay61uqq\nMwNXy6IWalvUxvmI8zppn6M4c+cC333HerLr1rG/3717da2KY4hwI6sCyvqSqlQBzp0DnJxYCr2b\nNzWjqyD67vPKRVs6vR6pF0pRDJ3aCLPIn7t63LgB+Poydw8ABAf7YP9+YNo04PFj3WrjGB7cyGqJ\nUqWA5cuBRYuAbt2AnTt1rahkkSXJwvmI8+hRp4dOdQxpNATHHxxHWlaaTnVw5OPpCcyZA3ySJ81w\ns2bs2LBhQGam7rRxDA/uk9UB9+4BX3zBjO3KlUCZMrpWVPzxifTBzHMzcW38NV1LQeednTGp5SQM\najhI11I4BfD2ZmFS798HShfwKhABffsCDRoAy5bpRp88uE9Wf+E9WR3g5ARcu8bCMHbqBMTF6VpR\n8UedpTtiwzPz6CdEgIcHy7ZV0MACLLjMtm3A/v3AmTPa18cxTLiRVQExfEnm5sDRo0DPnsxP6+en\nvq6C6KvPqyDa0ClGajuxdA50HIjzEeeRmJ4oSn0F4c9dNY4cAbKygCFD8h/Pq9PKCti1CxgzBnj2\nTLv6OIYJN7I6xMiI+Xn+/hsYNAhYs4ZHmNEEUW+jEJ8Sj5bVW+paCgDAorwFOtp3xLEHx3QthZND\ndjYwezabM2FUxK+iqysbUh41CpDyAF6cIuA+WT0hIoL5aZ2cgL/+AipU0LUizXP/PrB7NxAWBlSr\nxjZr6/z/Vq3KJo2pw8bgjQiMCcTOAfoz22zf3X3YeWcnTg8/rWspHLAX3b17WfxxRWKOZ2czV4+b\nGxti1jXcJ6u/cCOrR6SmAhMnAnfvsqGrWrV0rUh8nj0D9u0D9uwBXrwA3N3ZcHl8PAtj9+xZ/n9f\nvgQsLD4YXVmGOPdfU1PZP5B99vXB8MbDMcxpmPY/sBxSMlNQY2UNhE8JR+VPKutaTokmLQ2oVw84\nfJhl0lKU6Gj23T12jAWu0CXcyOov3MiqgI+PD1xdXTVSNxFb/L5gAbB9O/PZqoomdSrDu3fspWHP\nHjbha8AAlq2oY0cWSacwnRIJkJDwsfGVZZCl0o+Nr2XVdCyRVsH2ppGoZ1sJ1aoBlSur1jsW+366\nH3ZHB7sOmNRqkmh1Avrz3ItCX3QuXQpcvQocOiT7fGE6//2XBa24eROoWFFzGouCG1n9Rc2BOI7Y\nCAIweTLQtCnL5PPNN8xXVJSfSN/IygLOnmXDwadPM4M6fjx76y9fXvF6jI3ZkHHVqkWXTU7+2PgG\nvvCFmbQJtm+o9P7Yq1cskk9hveLcf01MVL8HReHu5I7lgctFN7IcxXnzhi3HUXXiYf/+LNDMhAks\n+xZPb8kpCO/J6jHPnrG4x5UqseAVunxTVgQiFqt5926WyL5ePWD4cPYZrKx0o2na6WmoalIVnu09\n3x/LzmbD0LJ6wwV7ykZGH4apJ09mLz5ikZGdgeorq+PWxFuwNbcVr2KOwsyaxUZKNm9WvY60NBY+\ndcoU9iKpC3hPVn/hRlbPycxkCeDPnGFLfpycdK3oYx4+ZEPBe/awYdgRI4Avv9S9T5mIUHdNXRwe\nchifVvtUhetZ7/jZMxYwfswY5rdr1048jeOOj0MDqwaY0WaGeJVyFCIuDmjcGLhzB6hRQ7267t8H\nOnRg4RgbNhRHnzJwI6u/GNggpH6gzfV9ZcqwpT0//8xmMx44oPi1mtQZHw/8+Sd7g+/QAUhKYtru\n32fLkpQxsJrSGf46HGnZaWhStYlK1wsCm0xVrx7QqxcwY4YPhgwBoqLE06iJwBT6tv5UHrrW+csv\nwLhxRRtYRXQ6OgKLF7ORjjQeMZOTB25kDYSRI5mPc9Ys1rPNzta+hpQUtsyhVy9meIKDWa7Np0+B\nVauAFi30yyeVG+VJEElUq1bAjz8C/fqxHq4YuDq4Iu5dHB6+eihOhRyFePCATcb76Sfx6hw7FmjU\niKXG43By4cPFBsbr12woNiOD9RyrVNFse9nZbO3g7t3AiRNAmzZsOLhfv/wB1PWRbru6YVLLSRjg\nOEC0OolY7+fNGzYbVYwJadNOT0Ol8pUwz3We+pVxFGLIEKB5c/HXuCYmsmQCy5YBAweKW3dh8OFi\n/YX3ZA2MSpWAU6eYX7BlSzbRSGyIWC91+nTAxoYNVTs7M9+rlxcz8vpuYJMzk3H56WV0qdVF1HoF\nAVi/ng2Xz58vTp3ujdmQMX+51A7BwUBgIDB1qvh1m5uzdeCTJonrVuAYLqIYWUEQegiCECYIwkNB\nED4agBEEob4gCIGCIKQLgmDwgym69iUZG7N1tGvWAH36sAhRsn6fldUZEcHqdXRkKb0qVmRLG4KC\n2MxJTfWaNXE/L0RcQOsarWFa1lS0OnN1li3Lhhp37mSzqNWldY3WyJBk4NbzW+pXBt1/PxVFVzo9\nPNiLo6JR1ZTV2bo1MGMGm1mvC7cOR79Q28gKgmAEYC2A7gAaAXAXBKFBgWKvAEwBoGcJogybfv0A\nf3/gjz/YEGZ6uvJ1vHoFbNgAtG3Lota8eMGCYISHs55a3bpiq9YOYiQEKIwqVdia38mTgevX1atL\nEAQMazSMZ+bRAufOsUhNY8Zotp0ZM9hozy+/aLadoihfvvxzQRCIb5rdypcv/1zuQyAitTYALgBO\n59n3APCTnLLzAHxfRH3EUY5374gGDyZq2ZIoKqro8qmpRAcOEPXpQ2RmRjRsGNHJk0SZmZrXqg2k\nUinZrLSh+y/va7ytI0eIbG2J4uLUq+f289tku9KWJFKJOMI4HyGREDVvTvTPP9pp79kzImtrogsX\nNN9Wzu8m/z3VEfLuPxGJMlxcA0BMnv2nOcc4WsLEhE2CGjaM+U4vXPi4jETCjo8ZA1Sv/iHzz9On\nzIfk5iY7h6bGSU0VPaHuvfh7KG1UGvUt64tarywGDGABCAYMUG0kIZfGVRrDtKwpAmMCxRPHyUfu\nRLVBg7TTXrVqbFRo1CgW/IRTMtHLsIqjR4+Gg4MDAKBixYpo2rTp+9ihuf4RXe7funUL06dP1xs9\nufs//AAIgg8GDwY8PFzRqpUPHj9mQ2T+/q6oVg1o3doHmzcDgwbpXi8A+Awfjls3bmB6ziwRMerf\ne3cv3Oq6QRAEUfXm9c3lPd+uHRAS4ooJE4AxY3wgCKrV7+7kjuV7liP7s+xi+f0suC/vfmpiv21b\nV8yeDXzzjQ98fbV3P8uU8UH79sCYMa44cQLw9RXn8+T+PzIyEhw9R14XV9ENbLj4TJ79Yj9c7O3t\nrWsJhRIdTdSqFZGFhTfZ2xN5ehKFhOhalQxiY4ksLMjbwoLo1i3Rqm2/tT15PfQSrb5cCnvuKSlE\nLVoQLV2qev3hr8Kp8tLKlCXJUr0S0v/vZy7a1LlhA1GXLqpdq67OzEwiZ2eiVavUqqZQwIeLdYq8\n+09E6q+TFQTBGMADAJ0BPANwFYA7Ed2XUXYegGQiWlFIfaSuJg5bR3v/PtCkiR4nF/juO/avuTkL\nILt2rdpVvkl7A7vVdoifEY/ypZXIRCACT5+ymaWbNgG9e6tWh/NmZyzotADd63QXV1wJJiWFTeA7\ncYIFTNEFERHsu3HmjGY0yFsny39PtUNh65RFCUYhCEIPAH+AzVbeQkSLBUGYCGbd/xIEoSqAYACm\nAKQAkgE0JKKP4ubwL0UJIT4eaNAAuHePOYw//RSIiVF7Ae4/If9gx+0dOPXlKZGEKseVK0DfvoC3\nN4v+oyyrLq/C7Re3sb3/dtG1lVQWLQJu3VIuJKkmOHCAhRy9cYOF6xQTbmR1S2FGVpQ+DhGdIaL6\nRFSXiBbnHNtERH/l/P8FEdkSUUUiqkREdrIMrKGQ1y+iz+i1zhUrWMb26tXh8/gxW0MkwqLT3FCK\nmkCR++niwj5a375seZSyDHUaimMPjiE9W/VZVHr93POgDZ2vXwMrVwK//aZ6HWLpHDqUpXz83/9E\nqa5Y4ODggAoVKsDMzAzW1tYYO3YsUlJS0KlTJ2zdulXmNb6+vjA2NoaZmRlMTU1hZmaGfv36YdKk\nSe/3y5YtizJlysDMzAxmZmZwc3MDAGRmZmLWrFmwt7fHJ598gvr162P58uX56nd1dUX58uXfX5tb\nv6ro60Aipzjz6hWb3pw3cOyECSyqhhpISYrTj05rdH2sIowcyWawDhrE8uoqQ3XT6mharSm8wr00\nI66EsWgRC2+oL+u9//gDuHYN2LVL10r0A0EQcOrUKSQlJeHGjRsIDg7Gb7/9VmS88Ro1aiApKQnv\n3r1DUlISjh07hg0bNrzf9/T0xLBhw5CUlISkpCScOsVGtgYNGgRvb2+cOXMG7969w65du/DXX39h\n2rRp+TStX7/+/bW59asKN7IqkDvTT9/RW52rV7NfPjs7ADk6e/Zkw8V37qhc7fW467Asb4maFjVF\nEpofZe7nwoVs5DvP367CqJuZR2+fewE0rTMmBti6lUV3UgcxdX7yCRs2/v57FqaUg/fhRK2trdGj\nRw/cu3dPI+1cuHAB58+fx5EjR+Do6AgjIyM4Oztj9+7dWLduHSIiIj7SJAbcyHK0y9u3LMRUwcjs\npUoBX3+tVm9W01GelMHYmGUs8vVlH1cZBjoOxNnHZ5GUkaQZcSWE+fOBiRPZunB9okkTFglq2DA2\nQZHDiImJgZeXF5o3b/6RkbOwsEBgoHpryM+fP4/WrVujeoEvhLOzM2xsbHBBVoABEeBGVgW4z0sN\n/vyTTb3Nk3D2vc6vv2aWKTVVpaq9HmnWyCp7P83MgOPH2Q/qxYuKX2dZwRLt7drjWJhqQ1R6+dxl\noEmd9++z2cQ//qh+XZrQOWkS4OAgfhYgVRAEcTZV6d+/PypVqoQOHTqgU6dO8PT0/KjMmzdv0KZN\nm/f7sbGxqFSpEiwsLFCpUiUcOnSoyHYSEhJgbW0t85y1tTUSEhLe70+ZMiVf/fPmqZ4hSy+DUXCK\nKUlJLKtBQIDs83Z2LJfeP/8Ao0crVXV8SjweJDxAO7t26usUkdq1WUQtd3f2sWvXVuw6dyd37L23\nFyM/HalZgcWU2bOBmTNZkgt9RBDYtIRmzYAuXVjENV2h68nHx44dQ6dOnZS6pkaNGoiOjlbqGisr\nKzx69EjmuWfPnsHKyur9/po1azB27Fil6pcH78mqAPd5qcj69UDXrizjex7y6ZwwgS00VZIzj86g\nc63OKGNcRk2R8lH1fnbqBMybxzImJSk4AtyvQT/4R/vjVaryU5T17rnLQVM6r1xhk4smTxanPk3p\nrFSJ5Wn++msgNlYjTRgE2lpi1KVLFwQFBSG2wM0OCgrC06dP0blzZ420y40sRzukpACrVrEuRmH0\n6qXSBChNLt0Rg0mTAFdXlotXIim6vEkZE/So0wOHQoseBuN8gIgNwc6fD5TXbiwSlWjfni3pGTFC\nse8FR3U6d+6Mzp07Y+DAgQgNDYVUKsWVK1cwcuRIfPvtt6iVx4UlJtzIqgD3eanApk3sF0VGhIZ8\nOnMnQG3erHDV2dJsnH18Fj3r9hRBqHzUvZ9//MHczTJcTjJRdZaxXj33QtCEzv/+Y+kav/pKvDo1\nfT9zvw+LFmm0Gb1E3lKdgsdNTU0RIM/NpASHDx9Gp06d0KNHD5iammLUqFEYP348/vzzz3zlJk+e\n/H6NrKmpKVq1aqV6o/LiLepqgwHE2uSxYZUkNZXl/Lp5U+bpj3RGRRFVqsQCAiuAX5QfNd3YVE2R\nRSPG/UxIIKpVi2jHjqLLpmelk8ViC3qa+FSpNvTmuReB2DolEqJPPyU6fFjUarVyP58+Japalcjf\nX7XrwWMX6xR595/EiF0sNjwMWDFk7VqWCkiZBd1ubsDgwQpNgPK84AkjwQi/fa5GWB8tEhLC/LTH\nj7MIUYUx9thYOFVxwveffa8dcQbM3r1s8vrly+rNdtUVJ04wP/LNm8xfqww8rKJu0XhYRQ5HLhkZ\nwJIlwNy5yl03caLCa2ZPhZ/Sm/WxitCoEbBtG4vH8fRp4WXVDUxRUsjMZF+xxYsN08ACbGLcgAHA\nuHG6n/HLEQ9uZFWgJPu8lGb7dsDJCWjZUm4RmTp79QKiooC7dwut/mnSUzxNeorWNVqrp1MBxLyf\nbm4sGlS/foUvC+5UsxNiEmMQ/ipc4br14rkrgJg6N29mk9Y1MRFYm/dzyRIgMhLYuFFrTXI0DDey\nHM2RlcW6Fsr2YgGFI0CdDj+N7rW7w9jIWEWRumPmTNarHTNGfs+llFEpDG44GPvv7deuOAMiOZkl\nAFi4UNdK1KdsWWD/fhYKsoj3S46BwH2yHM2xbRtbCKhquLLoaLZaPyYGqFBBZpEBBwZgoONAjGgy\nQg2huiM9nfW+3Nzkv4sERAdg/InxCPk2pMjA6SWRBQtYhKe9e3WtRDx27GC92uBguV/9fHCfrG7h\nPlmO9snOZl0LVXqxudjZsZlBBw/KPJ2RnYGLTy6iR50eqrehY8qVA44eZcOdR47ILvOZ7WdIyUrB\nnReqJ08orrx8yZZGLVigayXiMmoUS+4+fbqulXDUhRtZFSiJPi+lOXAAqFaNJdAsgkJ1FpICzy/a\nDw0rN4RVBSuZ58VGU/fT2poZ2okTWXLxghgJRhjWaJjCE6BK0vdz4UIWaF/RcJWqoIv7KQgsQJq3\nt+6TzXOwPZzAAAAgAElEQVTUgxtZjvhIpcDvvzPHkrrDm25ubCaIjPRX+h7lSRlatGArnfr3B+Lj\nPz7v3tgd++/t11oIOkMgKgrYuROYM0fXSjSDqSnzz06ZAjx5oms1HFXhPlmO+Bw8CKxYId6CxZ9/\nZinyCkRlabC2AfZ8sQctqrdQvw09Ye5c1nu5cIFNgsmFiNBwfUNs6bsFbWzbyK+gBDF6NGBrW/yG\niguyciXLmeHnB5QuLaNAejqE8uW5T1aHcJ8sR3tIpWyq59y54i1Y/PprYM+efGtdHr9+jMSMRDSz\nbiZOG3rCL78AVaoA336bf8axIAhszexdvmYWYAMbp0+zGdrFnenTAUtLOcnnpVJgpOFmanJwcECF\nChVgZmYGa2trjB07FikpKejUqRO2bt0q8xpfX18YGxvDzMwM5ubmcHR0xPbt2wEAUVFRMDIyeh8S\nsWbNmlig47cwbmRVoCT5vJTm+HG2/KaX4sO4Req0twdat843Acor3As96/SEkaC9r7A27qeRERsC\nDQ5mE3ry4u7kjn9C/0G2NLvQOkrC99PTkyUCMDMTT488dH0/jYzYcvNdu1jgtHzMmCHbv2AgCIKA\nU6dOISkpCTdu3EBwcDB+++23ImfR16hRA0lJSUhMTMTixYsxfvx4hIWFva8zMTERSUlJOHToEJYs\nWYLTp09r4+PIhBtZjngQsbG7OXPED7tTIAKUphO06xITE/ausmQJC3ifS13LurA1s4X3E2/didMD\nAgKA27dZZqOSQuXK7OVr9GiWAAEAsHo1+4L8+68upalN7nC2tbU1evTogXsy5l8URr9+/WBhYYHQ\n0NCP6mzRogUaNWqEkJAQ8QQrCTeyKlDS83XK5fRpFt+uXz+lLlNIZ54JUKlZqfCP9kfXWl1Vkqkq\n2ryf9vas4z5yJPDgwYfjioRZLM7fz9xUdr/8wpY/aQN9uZ+ff86M7FdfAdKDh4HlywEvL8DCQtfS\nRCEmJgZeXl5o3rz5RxP8LCwsEBgY+NE1RISjR48iMTERTZo0yXccAK5cuYLQ0FD1suioSSmdtcwp\nXuTtxRpp4N2tVClg7Fhg82Z4/68bWli3gHk5c/Hb0SPatWPpz/r0AYKC2G/pUKehaLKhCTa4bUDZ\nUmWLrqSYceoU8OaNQbsh1WL+fGBK8wCkj5mECn7/sbcxNRF+EWfUieapNsGqf//+KFWqFMzNzdG7\nd294enri0qVL+cq8efMm335sbCwqVaoEIyMj2NnZYffu3ahTpw6ioqJARKhcuTLS09ORkZGBpUuX\noqMCSwk1hrz0PLraYACpmQwhldi9F/eo54KelJaVpp0Gz50jql+fKDtb6UsVvp+RkUSWljT18Hha\n6r9U6XbURVfPffp0oq5dibKy2H6HbR3o6P2jcssbwveTSHmd2dlETk5Ex45pRo889Op+hoVRtlVV\nGmJ+hq5e/XAYBprqzsHBgS5evPjRcVdXV9qyZYvMa3x8fMjW1lbmucjISDIyMiKpVEpSqZRWrVpF\nNjY2lJSUJKrugsi7/0TEh4uLK7MuzMKtF7cw5OAQZEmyNN9gbi/WWIMxhO3tQc7OMD58pNj6Y2Wx\nbBkbHPjhB7ZfUjPz7NnDJjr16aNrJTri+XOgZ08YL12EIVu6Y9gwIClJ16LUhzSwxIiIIAgCpk+f\nDgcHB6xatUr0NhSFG1kV0BcfjTyCngbh5vObeLCcOfNGHh0JiVSiuQZ9fYHYWBZ6RwWUuZ9Ph/aE\n++VkNKzcUKW21EFXz71UKRaU4MwZ4O+/gUENB+HMozNIzkyWWV7fv5+5KKMzI4MtYdFFKju9uJ/J\nyUDv3swhO2YMBg4EunYFvvmGp8UrSEGj7eHhgT///BNpaWk60cONbDFkrvdczO0wF6ZlTfHP4H+Q\nkJqACScmQEpSzTS4YAFbU1FK8y7+gzVTUTfRGEKemYQlgYoV2YxjT0/g/nUrtLVti2Nhx3QtS2ts\n3MgyJrZvr9125b3IaJXsbGDoUODTT/Mtll21imXqyVkiapDIW6pT8LipqSkCAgJUqtPNzQ3W1tbY\nvHmzaiLVRd44sq426LkPgUjPfDQF8HniQ7X+qEWZ2Znvdb7LeEdttrShqV5TSSqVittgYCCRvT1R\nZqbKVShzPztt70QPJg0hmjpV5fZURR+e+3//EVWrRrTi/E5y2+Mms4w+6FQERXUmJhJVqUJ0+7Zm\n9RTk7ou7VHZBWRqxYgRlS5SfayAKUinR+PFE3bvL/Bu7d4/IyspwfbLFBXn3n8TyyQqC0EMQhDBB\nEB4KgvCTnDJ/CoIQLgjCLUEQmhZWX3p2uhiyShxEhLneczGv4zyUNv4Qf82kjAlOfXkKftF+mHNR\n5ECvCxawNRUy472JS2J6Iq7FXYPN9HkshZ6Ohn90Sbdu7HZvmdkfflF+eJX6SteSNM6KFexz51mh\noXGkJMXEkxMxp8Mc3I2/i157e+nmXi9cyCKTHDwo82+sUSMWJpyjx8izvopuYEPOjwDYAygN4BaA\nBgXK9ARwKuf/rQFcKaQ+Whm4UtMvHsWSM+FnqMHaBnLful+mvKSG6xrSwksLxWnw2jWiGjWI0tPF\nqa8IDoUcou67urOdHj2Idu7USrv6hlRK9PXXRNWnDaKN1/7StRyluP3uHU17+JBsAgPpamJikeVf\nvCCqVIkoIkIL4vKwKXgTufztQhKphLIkWTTjvxlkv8qersVe056IHTuIHByI4uIKLSaV8p6srpF3\n/4lI/QQBgiC4AJhHRD1z9j1yGlySp8xGAN5EdCBn/z4AVyJ6IaM+wgwAawBkqCWt5DEeQCCAwoKb\nmAIYA+AKgKvqNXcUwEWwR6UV+gJ4ASAI6A/gBwBadtHpEaUBx58B563ADj1P0WJiAnTuDPTsyRb7\nnjnDZi/VrKlAvuE/ABAALSZW/QTAtwB2gn3fcmkIwA3ABQA3NCuhM4A9AFwBhCl4DfEEATpD0wkC\nagCIybP/NOdYYWViZZT5QDiAtiIoK0nUB2AMoKj5QO/AfjzaACh00L5wGgNwBqDVqQR1wb4bAE4C\nqAX2u1cyyQLC/wCqvQJMlYuwpRUEgeXvmzMH2LePjfX+/Tfg7g5s28aG+yUSZmjlUhPAcABaHg/t\nDjYeV7ALEApgG4DPwF74NDTPrwmAvQAGQ0EDW6+eZoRwREE/ZxefApAONvjMUYzPAXiDvfQXxVsA\nu8Belx1Ua24OgBVgj0krVAMb2XjNdrMBbAXQSVvt6yPZCYC/BLCxBNBS12oYFhZA9+7A3r3AhAks\nb9+QIcx3HxzMssYALPymry/QtrC36V/BxiteakF4DtYABAA+cs4nANgEoCyAsWC9XhGxAjAbwBQA\nfopeVKGCuCI4oiKGkY0FYJdn3ybnWMEytkWU+UA22Je3uwjqSgKNwO7Zg6IK5uEVgN0ABgFQ8kXY\nEUBHABuVu0w96uF9LzaXvwHMB6ClELb6yfMUoO1RAEfALIQOKFMG6NKFzVDato31rObOZUkdAgLk\nT1ALCgIGDQKqV5dxsgmALgAOa1B4AUqBdR/vACgsfks2gIM55SYBqC1O8+Zg78lBAP5R9KLatYtv\n1vpighhG9hqAOoIg2AuCUAbAMADHC5Q5DmAU8N6H+1aWPzYf/mC/5pYiKCzOGIF15y6qcO0LAPsA\n9AMbmVOQ2QBWA0gtqqCY5BkqziUK7Ms3SJs69I0nACzeABaLAfwLrb5y1K/Pkp0ePMgiI5w4AQwe\nDKxZAzx6VPT1qanAsWNygpgszNm0uE61PYBn+Oh7JpcrYMa2H4AOYD1gFSkD9pp0EcBKZS4cMQI4\ncED1hjmaR96MKGU2AD3A+lHhADxyjk0EMCFPmbVgs5BvA2heSF3vZ2wt9ltMAw8MFHUWmBjo0zrE\n7Te3U/ut7WWuf1VUp2+kL1kttaKA6ICiCz98yBbmKTAzVFGK0vky5SWZLjSl9CwZs5iPHCFq1040\nLYWhT889L5NOTqIFvr/R0KFEX35JdPGit8bais/IoJXR0eR09SrVunyZFjx5QtFpqsXH9vb2ppcZ\nGWTh50dP88xQ9/Vlk2q1NGmdiIhC40PJcoklxSbFytRZGLFJsdR2S1ty2+NGr1NfK9+4VEo0fDjR\ngAFKxf4OTU6mKv7+lJydzWcX6xh595+I9DsYRWpmKtmstKErMVfEvidqoS8/thnZGVRzdU3yjfSV\neV4ZnWfCz1CVZVXoetz1wguOHk00f74SKoumKJ177uyhvvv6yj6ZmcmiM4SEiKpJFvry3AtyKfIS\nNVrXiFJSiJydiWrX9qZff2WBCsSIPZIlkdDJhAT64u5dMr90iUaGhpL369ckUbPy3Ps5PTycvg8P\nJyKm18VFu6uzJFIJtd/antYErZF5XpHnnpmdSdNOT6Naf9SiW89uKSdg1iyizz4jSk1V6rLhISG0\nMDKSiPgSHl1jsEaWiGjz9c3UcVtH8SMVFQM2XttI3XZ1E62+I6FHqNryahQSL8dgRUSwRYuvVXhb\nV4MvD39Jm4I3yS/g6Uk0bZr2BOkZEqmEbFba0J3ndygri8jHhwXEsrUlqluX6Mcfia5cIZJIlKv3\nQUoKeTx+TNYBAeRy/Tr9FRtLb3NTAYlITFoaWfj5UUJmJh09StS4sUrJnFRmy40t1PKvlqJEddp7\nZy9ZLbWiHbd2KHbBhg3sIb18qVQ7D1NSyMrfnxJznoehGll7e3sqX748mZqaUrVq1WjMmDGUnJxc\naBYeIqLff/+datasSaampmRra0vDhg1TuM2MjAzy8PAgOzs7qlChAtWrV4+WLVuWr8yMGTOobt26\nZGZmRo6OjrSziLc+gzayWZIsarC2AXk99FLsDpYQ0rLSyGalDQU9DRK13l23d1GNFTXo0atHH5+c\nMIFo9mxR2yuKbEk2WS6xpOi30fILRUQQWVoq3RMoTsz4bwbNOj8r3zGplMUL8fQkatCAqHp1ov/9\nj+j8eflRMJOysmhLXBy1vX6dqvr704xHjygkOVnj+seFhdGcxxHk6Eh08qTGm3tPfHI8VVlWhW7E\n3RCtzrsv7lLdP+vSpJOTZLs4cjl+nMjamuiRjL+1Ihhz/z7NyxOhw1CNbN5Ud3FxcdS4cWPy8PCg\nTp06yTWy27dvp4YNG9KTJ0+IiOjFixe0efNmhdvs06cPtW7dmkJDQ0kikVBQUBDVrVuXpuYJ1Tp/\n/nx6+PAhEREFBQWRhYUFXb58WW6dBm1kiYiO3j9KTTY0IYlUyVdxDaEPw4arL6+WP4Sag6o6NwVv\nIofVDvkNW3Q068Uq+catCIXpDIwOpMbrGxddSffuRLt2iSdKBvrw3OVxPe461Vxdk6RSqVydoaFE\nv/9O1LIleyf56iuWmzUlRUp+b97QmPv3yfzSJep75w79+/IlZSrb9VWSvDofpqSQyXl/+qxzlihD\n3Ioy6ugo+u7Md4WWUeW5v017S/3396fWm1vLfkEMCiKqXJnyJYVVkCepqVTJz49e53lTMmQje+HC\nhff7M2fOpN69exdqZCdPnkzffSf/mbm6utKsWbPI2dmZzMzMqH///vTmzRsiIjp//jyVL1+eYmPz\n+96DgoLI2NiYHj9+LLPOvn370sqV8iMRFmZk9XOdbAH61e+HT0p/gr139+pail6QkpmCxQGL8avr\nrxqpf0KLCZjiPAVddnXBi+ScSeBLlwJffw1YWWmkTXl4hXspljt2wgRg0ybNC9JTmlVrhtLGpREU\nGyS3jKMjy+Jz7Rpw4wZQ2zkD069GwfToVfS6+BDpDyrgqqMzjjVujH5WVihtpL2fB1ujCpBetUCz\neXFaS2Xn/cQb3k+88Wsn8f+OzMuZ48iQIxjQYACc/3bGhYgLH04+fgz07w9s3Qq0aqV03UtiYjCx\nenVYaCFeuDaJiYmBl5cXmjdvnvuC8B4LCwsEBgYCAFxcXLBz504sX74c169fh1T6cXaxXbt2Yfv2\n7Xj+/DmMjY0xdepUAMD58+fRunVrVC+wbMzZ2Rk2Nja4cOHCR3WlpaXh2rVraNSokWofTJ711dUG\nOW9elyIvkf0q+8KHX0oIi/0W05CDQzTeznzv+dR4fWN6/TiEyMKC6PlzjbdZkOabmtOlyEtFF9Ti\nBCh9ZZ73PJrqVXh2ogyJhA7Hx5Pb7dtU0c+PxoWF0anIt/T3Fim5uRGZmrKw0H/9pd3HvXw5Ucex\n76haQAClacEhm56VTvXW1KNjYcc03tb5x+ep2vJqtNhvMUnj45kPdsMGlep6mp5OFn5+FJ+Rke84\n1OnJspS06m8q4ODgQKampmRhYUEODg40efJkSk9PL9Inu3fvXuratSuZmJiQlZUVLVmy5P253J5s\nLqGhoVS2bFmSSqU0btw4cnd3l1mni4sLLVz4cVz3UaNGUa9evQr9HPLuPxnKcHEuvff2plWXVxX6\nYYs7b9PeUuWllSk0PlTjbUmlUprx3wza06UqpU+epPH2ChKXFEcWiy0oS6LgZBtPT6Lp0zUrSo8J\nexlG1ZZXkzmB5+67d/RdeDhV9venDjdu0PZnzyhZhjFLTCTav59o6FAic3Oi9u2JVq4kynF/aYS3\nb9nI6b17RL3v3KH1T59qrrEc5nvPp/77+2u8nVyi30ZT+7UtKKyuBaXN/F7leqY+fPh+JnZe1DKy\nOiSvTzYvRRnZXLKzs+nQoUNUpkwZOnv27Ptr169f/75MSkoKGRkZUXx8PHl4eJCrq6vMuuzt7emv\nv/In3JgxYwa1bNmS3r17V6iOwoysQQwX57Ko8yIs8l+ExPREnerw8fHRWdurr6xGz7o94VjZsciy\n6uoUBAFLP52Bflfe4staN5CapZnwE/J0nn50Gl1rd0UpIwWDxI4bB+zaBaRrJtijLp+7ItS3qg9r\nE2ss3LUQAPA2KwsbY2PhfP06ety5gwpGRghs1gy+zZrhq2rV8Imx8Ud1mJmx/OD79wPPnwM//QSE\nhLBRzebNWXTEkBDWdVGX3Pu5bBng5sbSts22s8PSmBhkyRgCFIsHCQ+w5uoa/NnjT6V0qoOtSXV4\nn6uBxBpWaGJzHPfi7yldx4vMTOx68QIzbG2LLmxAkBpfJmNjYwwcOBBNmjTBvXsf7mlMzIdQ+VFR\nUShdujSsrKzQpUsXBAUFITY2f8DBoKAgPH36FJ9//vn7Y/PmzcN///2Hc+fOwcTERGWNBmVknao4\noVfdXlgWuEzXUnTCq9RXWHN1DX7u8LPW2hRWrUKFEWPwiUM9fHHgC2Rkay81kle4F3rVUcAfm0vN\nmiwo/aFDmhOl56zothJLbh9Bv1tBcLhyBRffvsWvDg6I+uwz/FarFuooEee2XDlm/P7+G3j2DFi1\nCkhIYMl06tdneW2Dgj6EI1aFZ8+ADRuA+fPZvou5OWqWK4f98fGqV1oIRIRJpyZhToc5sDXXkrEi\nAr77DsbvkuH83z3M7jAHnXZ0wr67+5SqZkVMDIZXrQrrsmU1JNQw2LFjB7y8vJCcnAwiwunTpxEa\nGgoXF5f3ZXbv3o2wsDCkpqZi3rx5GDx4MARBQOfOndG5c2cMHDgQoaGhkEqluHLlCkaOHIlvv/0W\ntWuzGJmLFi3Cvn37cP78eVSsWFE9wfK6uLraUMTwRtTbKKq0pBLFJRWeY7E48tO5n2jC8QnaazAh\ngc0ojoykLEkWfXHgCxqwf4Diw7dqkJmdSeaLzOn5OyUdg4cPszHOEohUKqUet29TDd8zVGXvJHqc\nlKChdvIvDapRgy0NunCBSNlltJMmERWcKHru1StyDApSO9iFLHbc2kHNNzXXynf4PcuXEzk5sXHx\nHG4+u0m1/qhF005Po8xsOeup8pAbGUtedC0Y6HBxzZo1880uzqXg7GITExPy9/cnIqIjR45Q27Zt\nqVKlSmRubk5NmjTJt47V1dWVPD09ydnZmczNzalfv3706tWr9+dz18na2tpShQoVqG7durR06dJ8\n7QuCQOXKlSNTU1MyMTEhU1NTWrRokdzPIe/+k6H5ZHP54b8f6JsT3xRZrjjx7N0zslhsUfh6UbGZ\nO5do3Lj3u+lZ6dRjdw8acWSExpdTeT/xplZ/tVL+wtwJUKGa91nrG7uePaNm165RlkRC/zv1P+qx\nu4coARaKouDSoNGj2dKgopYth4ez8gVXhUmlUmoVHExH4uNF1ZmQkkBVl1XVbuL1/fuJbGzYErgC\nvE59TW573KjtlrZFdhpmP35M48PC5J43VCOrCRT154pJYUbWoIaLc5nVbhYOhh7Ew1cPddK+Lnxz\ni/0XY2STkUoNcamlMzERWL8emDXr/aGypcri8JDDiE6MxrenvlXLl5IXWTpPPTyl2NKdgpQuDYwZ\nA2wWP9OtPvtk32RlYWZEBDbWqwf/S5ewqvsqZEoy8dP5nzTedsGlQc2asaHlatVYvoB9+9jXqSAT\nJvhg+vSPV4UJggBPOzssjI4W7TsGAD+e+xFDGw1Fy+rKpQVU+blfugRMmQKcOgXI8KNalLfAcffj\n6F67O1pubolLUZdkVvM2Kwsb4uLgYWcn8zxHvzFII2tZwRIz2szA7IuzdS1FK8QkxmDn7Z2Y1X5W\n0YXFYs0a5pCrVSvf4QqlK+Ck+0ncfH4TM8/NFPVHMC9ejxRcHyuL8eM1OgFKH5kVEYEvrKzgbGYG\nAChtXBoHBx/Ev2H/YsetHVrTYWcHTJ3K0sg+esT8t3v2MBvTqxd794mPZ8b41i2WxEcWfa2skCqR\n4PybN6LouhR1CWcjzmLB5wtEqa9IQkM/vGE0aSK3mJFghLkd52Jr360YfHAwVl1e9dHf1JrYWPSx\ntESt8uU1rbpYIGhrobWiyOvi6mqDgsMbKZkpVGNFDdHDCuojE09MpB/P/qi9BpOSWKadQoanXqW+\noiYbmtB87/miN//kzROqvLSyekPS3boR7d4tnig9JvDtW7IOCKA3MmIlhsSHUOWllRXLsKRBCi4N\nsrQkWru28Gt2PXtGrjdvqt12RnYGOa51pMOhh9WuSyFiY4ns7ZXOcvDkzRNqvqk5DTk4hN5lsCUj\nSVlZVNnfnx6kpBR6LfhwsU6Rd//JUH2yuWy+vplct7sW6+QBj18/pkpLKlFCimYmschk8WIiBQJu\nP3/3nOqtqUfLA5aL2vz6q+tp5JGR6lVy6BBRhw7iCNJjsiQSanL1Ku0tJHLEqYenyHq5tXb9+YWQ\nlsaSGBQ1SSpLIqGaly9TQJ4JQ6rwm+9v1Htvb+38TiQlETVtSvTbbypdnpaVRl8f+5oc1zrS/Zf3\naXFUFLkrEGCFG1ndUmyNbG7ygNPhp5W9J2qhzRi2Xx39in6++LNK16qkMzmZqGpVort3FSoekxhD\nNVfXpA3XVItgQ/SxTrc9brT/7n6V6yMijUyA0sfYxSuio6nLrVv5DIgsnUv9l1Kzjc0oOUPzwf4V\nRZH7ueHpU+p9547KbYS/CifLJZYU+SZS5ToUfu6ZmSyG9oQJaucY3Hx9M1kur0EVfS/Q3SICIRBx\nI6trCjOyBumTzaWUUSks/Hwhfjr/E6SkucXruiIsIQynwk/h+8++116jf/0FtG0LODkpVNzGzAbn\nRp7D736/Y/ed3Wo3n5aVhktRl9Ctdjf1KtLgBCh9ISY9HQujorC+bt0i/VAz2syAUxUnjDk2JvfH\n1yAYXa0arr97h9vJyUpfS0T49tS38GjnAfuK9hpQl68xYOJEoFQpYN06qBuAeVzzcRjV4x9kvr6B\nnZd/RbY0WyShHK0jz/rqaoOSb15SqZRc/nahXbc1m4FFFww9OJQW+clfmyU6aWksH5oKfrCQ+BCq\ntrya2n6v0+Gnqd3WdmrV8Z7Hj5lvWc7aQkNnwN279IsS8Q7TstLI5W8X+sXnF82J0gDLoqJo6L17\nSl+3584e+nTDpwqtQ1Wb+fPZGiYFep2KkJadTdUDAuhCfDR129WNXLe7FrpmHLwnq1Pk3X8y9OHi\nXHwjfclhtUOxSh5w+/ltqrqsqnaH99auJerTR+XLb8TdoMpLK6s1fD/FawotvPRxkG6V6dqVaM8e\n8erTE46/fEn1rlyhdCXT0cUlxZHtSls6FHJIQ8rEJykri6wUmPyTl9epr6na8mp0JeaKBpXlsHUr\nUa1aomZUWJdnmDxbkk1zLswhm5U2FBgdKLM8N7K6pdgbWSKWPGD15dUqXass2vDN9dvXT+1kCErp\nzMggsrVVKb9lXgKiA8hqqRX5PPFR+JpcnVKplGr9UYtuP7+tloZ8iDgBSl98ssnZ2WQfGEjnX7+W\neb4oncGxwWS11IpuPlN/5q46KHM/50VE0Nf37ytcfsLxCfTtyW9VUPUxheo8c4bNYShkJr6yZEgk\nZBcYSFcSE/MdPx52nCovrUxrgtZ8NImLG1ndUpiRNWifbF4Wfr4QC/0X6jx5gBhci72G4LhgfNPy\nG+01umMH0LChSvkt89LGtg0ODDqAwQcH42rsVaWuffjqITKyM9C4SmO1NOSjb1/gwQMgLEy8OnXM\nr5GRaGdujs4WFipd36J6C6ztuRb99vf7kC9Yz5liY4MjCQmIUWDtc2BMIE6Gn8TCzgs1K+rmTWDk\nSODwYRbMWSR2Pn+O+hUqoHXOmudc+tTvg8CvA7H5xmaMPDoSKZkporWpKxwcHFChQgWYmZnB2toa\nY8eORUpKCjp16oStW7fKvW7hwoWoVasWzMzMYGdnB3d39/fn5F27bNky1KtXD5988gkcHBzg6emJ\nzMzM9+eXL1+Oxo0bw8zMDLVr18by5cvF+ZDyrK+uNqjx5vXV0a9ozoU5Kl+vL3Tf1V2t2bpKk5lJ\n5OBAlBMbVAxOPDhBVZZVUapXujJwJY0/Pl40De/x8CD6XvX0YvrEnXfvyMrfn54XyCeqCnMuzKE2\nW9oYjJvlh/BwmvbwYaFlMrMzyWm9Ex24d0CzYiIjWdDmQ+IOu2dJJFTr8mW69OaN3DIpmSk04sgI\nary+MYW/YmnvYKA92byp7uLi4qhx48bk4eHxUezivGzfvp0aNmxIT3LmI7x48YI2b978/ryssIqT\nJ0cMz60AACAASURBVE+mevXqUVBQEEkkEgoNDSVnZ2fq16/f+zLLli2jmzdvkkQioQcPHpC9vT0d\nOKDY90je/afiNFxMVDySB1yKvEQOqx0oI1v9H1GF2baNqFMn0as9cO8AWS+3prCXig2lddnZhY7e\nPyq6Dnr0qFhMgJJIpdT2+nXaIFK+VYlUQgP2D6Ax/44xiLXmsXISludlkd8i6rG7h2Y/z+vXRI6O\nRKvFd0/tfPaMOt64UWQ5qVRK666uo8pLK9OxsGMGbWTzJgiYOXMm9e7du1AjO3nyZPquYFaJHGbP\nnk3GxsZUvnx5MjU1pSlTplB4eDgZGxtTcHBwvrIxMTFUtmxZue6AqVOn0tSpUxX6HCXGyBKx5AGT\nTmo2wbimfHNSqZQ6bOtA225uE6U+hXRmZxPVrUskI3GyGGy9sZVsV9rSkzdP5Jbx9vamdxnvyGSh\nCSWlJ2lEhxgToHTtk/07Lo5aBwcXmZ1GGZ3vMt5Rkw1NaGXgSjXVKY8q93NiWBjNfvxY5rnHrx+T\n5RJLingdoaay/OTTmZ7OfPxyfuTVIVsqpfpXrsj1tcvicsxlsllpUyyMbHR0NDVq1Ih+/vnnj3qj\nFStWpIAAFrVs9+7dZGlpScuWLaPg4GCSFJj8V/DajRs3koODg8z2O3bsSJ6enjLPNWvWjDZt2qTQ\n5yjMyCqYDdtwmNVuFuqvrY/pLtNRz7KeruUoxfmI83ie/BwjmozQXqMHDgBVqgCurhqpfkyzMUjJ\nSkHnnZ3hN8YP1U2ryyx3IeICXGxcYFrWVCM6MGECsHYt8OWXmqlfw7zMzIRnRAT+a9IERiLGZjUp\nY4Ljw47DZYsLGlZuiO51uotWtyb40c4OztevY6adHcxLffj5IiL8z+t/mNFmBmpa1NRM41Ip8NVX\nQNWqgFj+ujwcevkSlUqXxudK5C91sXHB9QnXUfX7qiq3K4iU+IJU/A3p378/SpUqBXNzc/Tu3Rue\nnp64dCl/soQ3eWJYDx8+HEZGRti2bRt++eUXlCtXDjNnzsSPP/4os/6EhARYW1vLPGdtbY2EhISP\njs+bNw9EhDFjxqj0mfIhz/rqaoMIb14LLy2kwf8MVrsebSKVSsl5szPtu7tPe41KJEQNGxL995/G\nm1rkt4gc1zpSfLLs9GXjj4/XbG8qI0P0WaDaZPT9+/RdeLjG6veL8qPKSysrPLSvS4aHhNCiyMh8\nxw7cO0BO6500uyZ2xgyidu004naQSKXkdPUqnUpQLXwqDLgne1HGKJqi6eqys7Pp0KFDVKZMGTp7\n9qzMa5Xtya5Zs4Zq1apFcXGKux3l3X+iYjS7OC/TXKYhICZA6dmtuuTkw5NIzUrFkEZDtNfokSOA\niQnQtavGm/Jo54EBDQag++7ueJv+Nt85IoJXuBpZdxShTBkWAeqvvzTXhobwffsW59+8wS8ODhpr\no51dOyzqvAh99vXBmzRxMt9oCg87O6x++hSpEgkA4G36W3z333fY1HsTShuX1kyja9cCJ08Cx44B\n5cqJXv3xhASUFQT0rFRJ9Lr1HWajVMPY2BgDBw5EkyZNcO/ePQAfZ+H5/PPPERMTg+Dg4HzHY2Ji\ncOXKFXTp0uX9sa1bt2Lp0qW4ePGi3N6vshRLI1uhdAXM7zgfHuc91HqA8hA7r6iUpJjrPRcLOi2A\nkSDeIylUp1QKLFgAzJ2rdgg4Rfnt89/Q3q49eu3pheTMD2Hyth7dirKlymp+eH/cOGDnTpVT4Oki\nn2ymVIpJDx/ijzp1YFpKMe+Oqjq/bv41etXthaGHhmoljJ+qOp1MTOBiZoatz54BAGZfmI3edXuj\njW0bEdV9wGfBAmDRIuD0aUADRpCIsCAqCnPs7fUvTZsesmPHDnh5eSE5ORlEhNOnTyM0NBQuLi4A\ngKpVqyIiIuJ9+bp162LixIkYPnw4goKCIJVKERISgkGDBqFbt27o1KkTAGDPnj2YPXs2zp07B3t7\n8cJwFksjCzBfYNy7OJx9fFbXUorkcOhhlDIqhX71+2mv0RMnAGNjljNWSwiCgFU9VsHRyhH99vdD\nejYzdkGxQXCr66b5H5jatYGmTYGjRzXbjoisiIlBrXLlMKBgZnMNsbwb8zXOODtDK+2pyix7eyyL\niYF/zBUcCTuCxV0Wa6ahy5eBFSuA48cBDY0knH79GllE6KulZ6xPyPubL3jc1NQUAQEBAAAzMzMs\nXLgQ9vb2sLCwgIeHBzZu3IjPPvsMADBt2jQcPHgQlpaWmJ6TsHjdunUYN24cRowYAVNTU/Tq1Quf\nf/45Dh069L6NuXPn4vXr12jVqhVMTU1hZmaGb7/9Vv3PqE5PTxAECwAHANgDiAQwhIg+igYhCMIW\nAL0BvCAi+RmMWVkSq/d55P4R/Or7K25MvCFqD1FMJFIJnDY4YVX3VehRp4d2GiViQSc8PYEvvtBO\nm3mQSCUYfmQ4kjOTcWToEXTe2Rmz28/Wzuc/eJAFcNdBr1RZItLS4Hz9OoJbtICDFhN2v0l7A5ct\nLvixzY/4uvnXqldEBGRmAqmpQFrax1tWFpCdXfQmp1znxo1hf3k/Zr5MhaNFXZXqKHJLSgL++Ydl\nn9cARIQ2N2/iOxsbDKlSReV6BEEAEX1kscT8PeXIR979B9Q3sksAvCKipYIg/ATAgog8ZJRrByAZ\nwE5tGlkiwmdbPsMU5ykY3mS4KHWKza7bu7Dp+ib4jfHT3lDR6dPAjz8Ct28DRrp5+ciSZGHgPwMh\nCAK8n3jjxYwXKF9aC4YkMxOwswN8fUWN0iM2RAS3u3fRsWJF/GRnJ1al7PPLMngFDOGz+Cf4w2cR\nJjqORM1y1YosL/dYqVJA+fJAhQrs37xbmTLsvKJb6dL59v+QPMPi5q6IefQUpQqcU+R6hTYTE8Dc\nXJz7L4Pzr19jcng4QpydYazG3z83srpFk0Y2DEBHInohCEI1AD5E1EBOWXsAJ7RpZAHAN9IXo4+N\nRtj/wlC2VFlR6vTx8YGrCEtesiRZaLCuAbb03QJXB/XrK4hMnUQsld3UqcCwYaK3qQzp2enovbc3\nUsNTEbggUHsNe3iwXoqSyzDEeu6KcPjlS8x78gQ3W7ZEaUVfhFJTgR9/hI+3N1zLlJFt9IyMPhg5\nWYYvz/HozAR4Pb0I91ZjYV7JWm65Qo8ZG8uVq879jHobheZ/tYCd63HMdqiDQWr0AotCk8/d9eZN\nfG1tjZHVqqlVDzeyuqUwI6vuOtkqRPQCAIjouSAImvumq0hHh45oVLkRNl3fhKmtp+paTj6239qO\nmhVrasTAyuXiReD1a2DwYO21KYdypcrBa7gXzl7Qst983DigTRvg99+BsuK8eInJu+xsTH/0CHsd\nHRU3sA8fAgMHMp/zN9+wFylZxk/ByVMAYAcg7fIqdLi9HQFjA2BSxkS1DyQyRITJpyfjO5fp+LRW\nPcyLjMTAypUNbtKQ39u3eJqRAXcNviBwdE+Rf3GCIJwDkHelswCAAMyRUVyUV6bRo0fDIWeSQcWK\nFdG0adP3b5K5MxKV2f+i3Bfw9PPE6KajcePyDaWvl7Wfi6rXu7RzwYJLC+Bh45HvTVnV+mTtu7q6\nfnz+hx+AL76Aa04PQ8z2VNkP9AvM9+OttfY//RQ4cgQ+OdP0Vb6fGthf+/QpurVsifYVKyp2va8v\nXNetA379FT7167PZ4s2bi6KnaXpTVE+ojlFHR+HQkEO45HtJtM+r6v28FHUJj5Mf49DgQwjwC8Tb\nBw/wX82a6GH5//bOOzyKav3j3xMIhBIIpJBCCi0gLQFCsVIs+PMqVdGLCgiogAVBBfWCBQQBRfEK\niigXkYvXAgIKgogJQhIgCamEVNJ7IT0h2ey+vz9mEsOyu9nNzuxO4HyeZ57Mzp4557szk333nPec\n93WU7f40IWX96zMzMTM3F8FnzrRJz+nTp5GRkQGOwtG3gNaYDUACgD7iviuABANlvQHEGlGn0QuA\nTWHeoXm0NnCtLHW3hX+f/zc9/N3Dlm30zBmiAQOIVCrLtmuAgvp6yr9mhQD1P/5INGmS5dtthYuV\nleQSHEzFxiQAaGgQwvv5+BCFh8um6ZrqGt2x+w5F/P9UXKsgj60e9FfGX83HvisooLuNiPerJM5X\nVJBXaCjVm5gPWB9op8Eobhb0XX+SIBjFLwAWiPvzARwxUJaJm1VYN2kddoTvQEF1gdl1af+6NZVa\nVS0+CP4A6yatM1uLIW7QuX498OabJg0ZykGDRoNDxcWYFheHIWFhGLprF2Kqq1s/UUqmTwcSEoRh\nViMx9763hpoIS5KTsal/fzh16mS4cG4uMHmykMLv4kUgIEA2nZ07dsbPc37G3pi9+DH+R8nqbYvO\ntYFrMXXAVNzjfU/zscecnZFXX4+z5eUGzmw7ctz39zMzsdrLC51slLnqgSMd5t7hzQDuZ4wlAbgX\nwCYAYIy5McaONhVijH0HIBSAL2MsizEmQUBI0/B28MYCvwVY95e8hs0YdoTtwJ1ed2KU2yjLNXr+\nvGBQnn7acm1qEVtdjRWpqfA8dw7bcnIwy8kJ2RMm4OW+ffFgbCxiLWloO3UCFixQVASoL/PyYGdj\ng/mtTYIJDBSM6oMPClGILBAlqE/3PjjyxBG88NsLiMyPlL09XUTkReCH+B+w5f4t1x3vaGOD1V5e\n+CAryyq6TCWqqgqRVVVYaOZkJ2Ows7MrZIyBb/JudnZ2+hMz6+viWmuDjMMbJTUl5LTFiZJLDOek\nlJOKaxXkvMWZ4oviLdvwQw8Rff65ZdskotKGBvosO5tGh4eTZ2gorUlLo9Ta2hvK/VBYSK4hIRRb\nVWU5cSkpRM7OQmYVK5N/7Ro5BQfTpepq/YXUaqING4hcXYn++MNy4lpwIP4AeX7sSflV+RZtV6VW\n0egvR9Pe6L0637+mVpNHSAhFVsqUxUlCZsXF0SdZWZLWCQPDlXyz7nZLjVU4dnXEygkrsSZI15wt\ny7Dt/DZMHTgVQ52HWq7RixeFNbFSZJQwAjURjpeWYk58PPqfP4/Qykps6t8f6RMmYH2/fhigI7DC\nHBcXbBs4EA/ExuKSpXq0AwcCI0cqIgLUyitXsNjNDcO6ddNdoKxMGOI+dgwIDwdaxFu1JLOHzsbi\n0Ysx84eZzRG7LMH2sO3o2bknnh6peySms40NXvX0xEaF92YvVVcjpKICz7nrzkbFuQmxtpXX3iCz\no76moYbct7pTWE5Ym+toa17R0tpSctzsSCml8mVTaUmzzhkzZEkwrU1STQ29ceUKuYeE0LiICPoi\nJ4fKGlrPitLyen5XUECuISGGe3RS8sMPRieslyuf7MnSUvI5d45qGht1F4iIIOrXj+iVV4TJTq0g\nd95bjUZDj/34GM07NM+s5OjG6swqzyLHzY6tZgiqUqnIOTiYEiR+dqS8nk/Ex9OmzEzJ6msCvCer\n2E2ZPdmZM4G9e4HSUsmr7mrbFe9MfAerT61uMuoW46PQjzBzyEwM7D3Qco3Gxgr+2GeflaX6ysZG\nfJ2XhzsjIzExOhqNRDjp54cLY8ZgiYcHHGxNy4ryzz59sHXAANwfE4PLNTWyaL6OGTOA+HiTJkBJ\nyTW1GstSUrB90CB01Q7cQCT4jB98ENi8GfjkEyFqkZVhjOGbGd8grjAOW89tlb29l0+8jJfGvYTB\nToYjdHXv2BEveXhgc3a27JraQlJtLf4sK8My3ou9tbC2ldfeABB9+y3RzJlEPXoIvYxPPyWS8Nef\nSq0i38986UTKCcnqbI3C6kLqtakXZZZL/yvWIHPmEH34oaRVqjUaCrx6lZ6+fJl6njlDM+Pi6Jfi\nYmqQaDkCEdF/CwrILSSE4i3Ro121SsgVagXeSUujWXFxN75RU0M0bx7RsGGKzYGbVZ5F7lvd6Vjy\nMdnaOJxwmHw/86VrKuP85lcbGqj32bOUIUPOV3OZf/kyrUtPl6Vu8J6sYjerC7hBUMvh4poaosOH\niRYsIHJ0JBo9mmj9eqK4OCIzhqmIiA5ePkj+O/1JrZHOMBhixYkV9OKxFy3SVjOXLxO5uBBJNJko\nvbaW3k1PJ59z52hkWBh9kpVFRcas52wj+/LzyT0khC7LbWitNAEqqaaGHM+epWxtg5CURDRiBNFT\nTxFZati8jYRmhZLzFme6XHRZ8rqr6qvI82NPCky7Mam3IValptKLydab3KiLK7W15Hj2rFHuk7bA\njaxyN6sLuEGQPp+sSkUUFES0fDmRt7cQVOG114iCg4n0+bIMoNFoaPxX42l/7H6TzzXVR5NTkUO9\nNvWivMo8k9syh6D77hNmo5pBTWMjfZufT5Ojosjx7Fl6MTmZLlZWmuWL08bQ9fxWNLRS+9lu4N57\nif73P4NFpPTNaTQaujcqij7WnmV64ACRkxPRF1+0+Yek3D5Zbb6J+oYGfDqASmpKTDqvNZ0rT6yk\neYfmmawn/9o16nX2LBVI9ANQiuv5bGIirUlLM1+MHriRVe5m3agEptCxIzBpkrB98gkQHQ0cPgws\nXQoUFQHTpgn+tSlTADu7VqtjjGHzfZvxzJFnMPu22ZIlD9DFhrMbsGjUIrjZu8nWBgDBh5eVJcw+\nDQ8HwsKAgwfbUA3hXGUl9hQU4GBxMSb06IGl7u6Y5uSEzhZePP+0qys0AO6LicGf/v4Y3LWrPA09\n9xywc6fFkib8r6gIpY2NeMnDQzigUgmJCw4eBH77TUhF2E6Y7z8fcUVxmHNgDk48eQK2Hcz3G0fl\nR+G/cf/FpaWXTD7XtXNn/NPFBdtycvBB//5mazGXrGvXcKC4GMnjxllbCscKmJWFRw7alDXiyhXg\nyBHB6MbGAlOnCgb3oYdaTVP1j+/+gakDpsqWPCC9LB0BXwUg8YVEOHdzlrbyvDwgIkIwqBERwtax\no/AFPXaskJBdjGFrVHX19fi2oADfFBSAADzj6oqnXV3hoYAg+t/k52NNejoC/f3hK4ehbWgAPD2B\ns2cBX1/p629BmUqFYeHhODR8OMb36CHcx8cfB+ztgX37AEdHWduXA7VGjUf+9wj69+qP7Q9tN7uu\n23ffjiUBS7Bw1MI21ZFRV4cxFy/iyvjxJk++k5qXUlLQxcYGWwYMkK0NQ1lgONbl5jCyLSkqAn79\nVVj7eOaMkG1lxgyhp6tjVl9sYSwe2PcAkl9KRo/OPcxQrpuFRxbCw94D66esN6+i4uK/DWnTVl8v\nGNOAAGEbO1bnZzREvUaDX0pKsKegAOcqK/GoszOecXXF7T16KC6ryZ78fLydkYFAPz8MksPQrlol\n/N2yxXA5M1kmzmT+3NcXCAoCnnwSWLYMeOstq+X3lYKKaxWYsHsCXhn/Cp4PeL7N9WwP246fLv+E\n0/NPm/UMzk9IgG/XrviXt3eb6zCX/Pp6DAsPR8K4cejTWqhMM+BGVsFYe7xae4OU62QrK4l++olo\n7lwiBweiCROINm0SJpa0YN6hefR24NtGV2usjyapJIkcNztSWV2ZKaqJysqITp0StM6eLfige/Yk\nmjJFmAn7009E6emt+uz06dRoNHSxspJeTE4mp+BgmhwVRd/m51N1G3zbUmCKz2t3Xh71DQ2l5Joa\n6YUkJwsTxfRMgJLCN3e+ooLcQkKorL5etuhNlvbJtiS5JJlcPnShoPTWNejSmVuZS05bnCSZSHW5\nuppcgoPNfq7NuZ4rU1JouQUmYYH7ZBW7tR+fbFuwtwcefVTYGhqAv/4SeriTJgEODkIPd+ZMrLvn\nXYz+OgBLxy6Fa3fp4om+e/pdrJiwAg52DvoLVVcDkZHX91Dz84W8oGPHArNmARs3CtGJzOzlFDc0\nYH9hIfYUFKCisRELXF0RNno0+umIwKRUFrq5gQBMiYlBkJ8fBkrZox00CBg+XHA7PP64dPWKNGo0\neD4pCR+5usJh9mxhHXh4ONC3r+RtWYtBjoOwf9Z+PHHgCYQuCkX/Xqb5RJefWI4lY5bgNufbzNZy\nW7duuKtnT3ydn4/lVrjGxQ0N2FNQgLh25F/nSM/NN1xsDBqN8OV2+LCwVVUheJQTIid44eVVByVZ\n8B9XGIf79t2H1JdSYd/ZXjhYVyeEN2zpR83IAEaMuH7Id8gQQDswQRtp1Ghw/OpV7CkoQGBZGR5x\ncsIzrq6Y5OAAG4UNB5vCV3l5WJ+ZiSB/f51hGtvMDz8IASD+/FO6OkU+yc7GsYwM/DF/Pti0acKw\ntIxDiNbkswufYVfkLoQuDP37+W+FY8nHsPzEcsQtjUMXW2nuaURlJWbGx+PK+PEWz3jzVloayhob\n8YXMPn6ADxcrmVvTyGqTmIiaH/cj4etNGFXVDR0efkTo5U6dCnTv3vr5OpizfwamqfrjqfrBf/dQ\nk5IEA9rSjzpsmCxftBWNjdiQmYl9hYXoZ2eHZ1xdMcfFBT2tnOZOSnbl5WFDZiYCpTS0TROggoOF\nnq1EZNfVYVRoKEJXrIDv2rXAY49JVrcSISI8f/R5FNYU4tDjh2DDDBu4moYaDP9iOHY9vAv3D7hf\nUi1TY2Iwx8UFi9xknt3fgqsqFQZduIDIgAB4G7HawVy4kVUw1h6v1t5gxSTDG85soCU7HxGy1Tzw\nAJG9PdHDDxPt3k1UVNRc7gYfjUpFFBtL9J//EC1bRtX+Q6nWlpF66FAhkMb27UQXLhBZKApNvVpN\nk6Oi6N49e+RfXyoB5vi8dubmkldoKF3Rkdmnzbz+urBp0WadNTU0a88eeuf11y0SvcmaPtmW1DfW\n0z177qE3T72p8/2WOledXEVzD86VRcfpsjIaeP48NVpw3fE7aWm0MCGhTe21BXCfrGK3m6dbIwHL\nxy+Hb/gOLHribQQsXQqUlwtrFg8dAlasAPz8hLjKXboISbObhnyjowEPj+be6TuOF+G77SM8N3Gl\nxT8DEWFRUhJ6dOiAl7y9MURfVpebhOfd3aEhwpToaAT5+0vjX168GLj7biHJvbnLl1JScPTttxH7\nxBPYv3atME/gFqFTh0448NgBjPt6HIa7DMfcEXN1lostjMWe6D2IWxoni457evaEi60tDhQX43EX\nF1naaEllYyN25OXh3CgL5ovmKBdrW3ntDVbsyRIR7QzfSVP2TrkxolFdHdHRo0SLFgnxZB99lGjz\nZqI//xRmA4sEZwaT9yfeRsdalZo1aWk0LiJCf0aXm5QdOTnkHRpK6VL1aCdPFjL0mMPBg1Tj4UE+\nv/9OJ0tMi4Z0MxFbEEvOW5x1Zr5Sa9Q04esJ9GXEl7JqOFpSQiPDwiSNVKaPDRkZ9NRl6cNMGgK8\nJ6vYzeoCbhBkZSPb0NhAvp/50u+pv5t8rkajoYl7JtLuyN0yKGudXbm5NODcOSqUMZ6wktmek0M+\n585JExz++++FJVNtoaGBaOVKIm9veiM4mP4ZH2++nnbO4YTD5LHVg3Irc687/kX4F3TH7jtkjyGu\n0WjILyyMjsr8Y6e6sZFcgoPlj7etBTeyyt3a78p3mbDtYIuNUzZi9anV0JBGZ5nTp0/rPB6YHojc\nqlzM85sno0LdHC8txdr0dPw2ciRcxIlU+nQqDal0vuDhgVf79sXk6GhkXjMzofiMGUBcHJCS0nzI\nKJ15eUJoz4QExIeE4GsAH8sY6UcXSrzv04dMx7KxyzDj+xmoU9UBAH4+/jPWBq3Flw9/2erEKHNh\njOEtb29syMxs+jFvNKZcz515eZjo4IDbbnI3Dcd4uJHVwazbZqFTh0744dIPRp9DRFgTtAbvTXoP\nHW0s6+qOrKrCvMRE/Dx8uDwhB9sRL/bti1dEQ5tljqHt3BmYPx/4+mvjzwkKEvzyU6dC8+uvWFJU\nhPd8fOCqgLCUSuDNu97EwN4DsfjXxSAibA/bjsWjFmO4y3CLtD/b2RklKhXOVFTIUn+dWo2t2dlY\nY8UIUxwFYu2utPYGKw8XN3E6/TT129aP6huNG3o9mnSUhu0YRo1qy/pCM+rqyCMkhA60mP3MIdqW\nnU39z52jLHOGjpOShAhQrQ2/q9VEGzdeF73pP3l5NDYios0zWm9WahtqKWBXAD3646PUb1s/qmmQ\nIXKXAXbn5dED0dGy1P3v7GyaHhsrS92tAT5crNiN92T1MNFnIoY4DcGXEV+2WlZDGqwNWot1k9eh\ng400QSSMoUylwkOxsXjV0xOznSVOPtDOWd63L1708MDk6Ghkt7VH6+srrGM+fFh/mbIyYPp0IV52\neDhw330oaWjAG2lp2Onriw7tOOCHHHSx7YLDjx9GZH4kPv/H5+hqa9mRl6f69EFCbS0iKislrbde\no8EW3ovl6IAbWQN8cO8H2HB2Ayrrr/+H1PbRHEo4BACYOWSmpaShXqPBrPh43N+rF1Z4euoso0Tf\nnC7k0rnC0xPLREOb01ZD+9xzQgQo6NAZGQmMGQMMGACcPt0cHnF1Whrm9umD0VZarqP0++7RwwOp\nL6XCLkf+IA3adLKxwWuentiYlWX0OcZcz70FBRjerRsCekifZITTvuFG1gB+rn54YMAD2Bq6VW8Z\ntUaNt0+/jfenvG+xrDVEhIWJiejVsSO2DhxokTbbKys9PbHUwwOTY2KQW19vegUzZwrpE1NT/z5G\nBHz1lRARbPNmYNu25qhdZ8vLcbKsDOt8fKT5ADcp1szwtNjNDSEVFbhcUyNJfSqNBh9kZWEt78Vy\ndMDDKrZCRnkGxuwag8vLLqNP9z43vL8/dj92hO9AyMIQi31x/CstDYHl5fjTzw9dJYpxfLPzYVYW\nvsrPR5C/v+n5cV9/XUjOsHkzUFsrpKWLiBASrA8e3FysQaPBqIgIrOvXjw/fK5yNmZlIrK3Ft7eZ\nn4jgm/x87CssxJ/+/hIoaxs8rKJy4T3ZVvBx8MF8v/lYf+bGfLAqtQrv/vWuRXuxu/Ly8GNxMX4Z\nPpwbWBN43csLi93cMCU6Gnmm9miffRb45hsgPh64/XagsRG4cOE6AwsAH2dnw8fODrOcnKQTzpGF\nZe7uOFZaivS6OrPqURNhI+/FcgzAjawRvHX3W/j+0vdIvSoMGTb5aL6N+RaePTwxpd8Ui+j4/2pL\nhwAAEu5JREFUrbQUb6en4/iIEXA2IqmA0n1zTVhK5yovLyx0c8NkUw2try8wdChOBwQAS5cC+/YB\nWusg0+vq8FF2NrYPGmT1ZPf8vreOg60tnnd3x4fZ2a2WNaTzx6IiuNjaYqKDgXSWnFsabmSNwKmr\nE1ZMWIE1gWuaj9U31mPdmXVYP/nGHq4cXKyqwvzERBwaPlzaHKq3GKu9vLDA1RVToqORb4qh3bED\n+OwzYMkSQMuIEhFeTEnBq56e7So3763OK3374vuiItOegxZoiLAhMxNrfXys/sOKo1y4T9ZIahpq\n4LvdF7888QvGuI/BjrAdOJZyDL89+ZvsbWfU1eHOqChsHzQIM7mvTxI2imkAg/z8zA4W8XNxMdak\npyM6IMDiOUs55vFySgrsbGywpQ1RuQ4WF2NzVhYujB5tdSPLfbLKxaxvBMZYL8bYScZYEmPsd8ZY\nTx1l+jLGAhlj8YyxOMbYy+a0aS26deqGt+95G2/8+QZqVbXYGLzRIr3YMpUKD8XFYbWXFzewEvKW\ntzeedHHB5JgYFDY0tLmeqsZGLE9NxU5fX25g2yGveXri6/x8XFWpTDqPiPB+ZibWentb3cBylI25\n3wpvADhFRIMBBAJ4U0eZRgAriWgYgNsBvMAYG2Jmu1Zh4aiFyCzPxP3r78eEvhMwxn2MrO3VazSY\ncekSHuzdGy+LazBNgfvmDLPGxwdzXVwwOTraKEOrS+c7GRm4r1cv3KMgnxy/78bjZWeHGU5O2J6b\nq7eMLp1HS0tBRHjY0VFGdZybAXON7HQAe8X9vQBmaBcgogIiihb3qwEkAPAws12rYNvBFhvv3YjQ\nrFC8N+k9WdvSEGFBYiKcbW3xkYUDzN9KrPXxweMuLpgSHY0iE3u0UVVV2F9YiC39+8ukjmMJVnt5\n4bPcXFQ3NhpVvqkXu4b3YjlGYJZPljF2lYh663uto7wPgNMAhosGV1cZRfpkmyAixBXFYWSfkbK2\n82ZaGs6Ul+OUnx+68KU6svNuejoOFBcj0N+/OYuRIdREuCMyEs+5u2ORm5sFFHLkZE58PCb06IGV\neqKnteTk1atYkZqKuLFjYaMQI8t9ssql1Z4sY+wPxlhsiy1O/DtNR3G91pEx1h3AAQDL9RnY9gBj\nTHYDuzM3FweLi3Fk+HBuYC3EOz4+mOXsjHtjYlBsRI/2q7w82DKGZ1xdLaCOIzdvenlha3Y26jW6\n01s2QURYn5mJf3l7K8bAcpRNqznZiOh+fe8xxgoZY32IqJAx5gqgSE+5jhAM7D4iOtJamwsWLICP\nGJbOwcEB/v7+mDRpEoC//SPWfB0dHY1XXnlFlvo/OHIEH2ZnI3zRIjh16mRWfS19SUq6ftqv5bye\nprx+z8cH6efPY/zFi7iwcCGcta5/0/5VlQpru3ZFoJ8fzvz1l9X06nutlOvZ2mulPZ9+3bvjrZ9/\nxiNOTnqv56dHjyI9OxuPL11qVb1N+xkZGeAoHHNS+ADYDGC1uL8awCY95b4F8LGRdZLSCQoKkqXe\n8IoKcgoOpvMVFZLUJ5dOqVGSTo1GQ/+6coVGhIVRsVaKuyadT8bH06rUVCuoMw4lXU9DKE3n2bIy\n6n/uHKnU6uuOt9Q5JSqK9uTlWVhZ64CnulPsZq5PtjeAHwF4AsgEMIeIyhljbgC+IqKHGWN3AjgD\nIA7CcDIBeIuITuipk8zR1F5JF9fCfj5oEGbwpTpWhYjwr/R0HCstRaC/PxxtbZvf+7OsDIsSExE/\nbhy68aH8m457oqKwxN0dc/vcGKc8tKICTyYkIHncONjaKGu5FvfJKhcejEIBXFWpcGdUFF5wd8eL\nbViqw5EeIsJb6ek4XlqKP0VDe02txsiICHw8YAAe5vGJb0pOlJbi9bQ0xAQE3OBzfSg2FtOdnPC8\nu7uV1OmHG1nloqyfY+2Eln4Rc7mmVmPGpUv4R+/ekhtYKXXKiRJ1MsawsV8/TO3dG/fFxOCqSoUl\nP/2E4d26Kd7AKvF66kKJOqf27g1bxnC0tLT52OnTpxFRWYm4mhos4BPdOCbS6sQnjnw0rYXt06lT\nm8K6ceSFMYZN/fuD0tIwMToaWcXFuMTz997UMMbwlpcXNmRm4hFHx+Z1sO9nZmKVpyc6K2yYmKN8\n+HCxFVl95QpCKipwys8Pdty/p1iICO9lZMDLzg4L+ZrYmx41EYaFheFzX19M6dULsdXVmBobi7Tx\n4xW7pI4PFysXbmStxOe5ufg0Jweho0dfN7GGw+FYn70FBdhXUIBT/v54PD4eY+3t8ZqXl7Vl6YUb\nWeXCxz7agLm+pF9KSvB+ZiaOjxwpq4FVos9LF1yntHCd5jPXxQUpdXXYW1CAk4GBWKLAyU6c9gE3\nshYmvLISi5KScHj4cPTnuUc5HEVia2ODVV5eWJiYiNnOzujekU9f4bQNPlxsQdLq6nBXVBR2+vpi\nmsJnqHI4tzp1ajWeSUzEl4MHo6fCjSwfLlYu3MhaiFKVCndGRuKlvn3xgke7TELE4XAUCjeyyoUP\nF7cBU31J19RqTI+LwzQnJ4saWCX7vFrCdUoL1ykt7UUnR5lwIyszGiLMS0xE386dsYnnHeVwOJxb\nCj5cLDOvX7mCC5WVODlyJF8Ly+FwZIEPFysXZXvz2znbc3Lwa0kJQkeP5gaWw+FwbkH4cHEbMMZH\nc6SkBBuzsnB85Ej0tlKwifbiS+I6pYXrlJb2opOjTHhPVgYuVFZicVISjo8YgX58LSyHw+HcsnCf\nrMRcEdfCfuXrq/hsLRwO5+aA+2SVCx8ulpCShgb8X2ws3vH25gaWw+FwONzItgVdPpo6tRrTL13C\nLCcnLFFIsIn24kviOqWF65SW9qKTo0y4kZUADRGeTkiAl50dNvK1sBwOh8MR4T5ZCXg1NRUXq6rw\nu58fT+rM4XAsDvfJKhc+u9hM/p2Tg+NXryJk1ChuYDkcDodzHdwqtIEmH82h4mJszsrCbyNGoJcC\nE6+3F18S1yktXKe0tBedHGXCe7Jt5HxFBZ5LTsaJkSPhw9fCcjgcDkcH3CfbBlJra3F3dDR2Dx6M\nhxwdrS2Hw+Hc4nCfrHLhPVkjKVOpcLGqChFVVdiVn4/3fHy4geVwOByOQbhPVgfVjY04U16Oj7Oz\n8c/LlzHowgV4nT+PdZmZKFap8GxhIZ5zd7e2zFZpL74krlNauE5paS86Ocrklu/J1qnViKmuRkRV\nFcLFnmrGtWsY2b07Auzt8WDv3ljr7Y3BXbuiAxNGY07n5FhZNYfD4XDaA7eUT7ZBo8GlmprrDGpS\nbS1u69oVAfb2CLC3x1h7ewzr1g22fDkOh8NpJ3CfrHK5aY2smggJNTXNxjSiqgqXamrQv0uX6wzq\nyG7deK5XDofTruFGVrmY1V1jjPVijJ1kjCUxxn5njPXUUaYzY+wCYyyKMRbPGNtoTpu60BAhubYW\n+wsLsSI1FXdFRqLn2bOYHR+PU2VlGNSlC7YOGIDCO+5A3Nix2DNkCF7w8MC4Hj3aZGDbi4+G65QW\nrlNauE7OrYC5Y6JvADhFRIMBBAJ4U7sAEdUDmExEowCMBDCFMXZnWxskImTU1eGnoiKsvnIFU6Kj\n0Ts4GFNjY3G4pARunTphXb9+yLn9diSNH4/9Q4fiFU9P3OXggO4dpXFBR0dHS1KP3HCd0sJ1SgvX\nybkVMNfqTAcwUdzfC+A0BMN7HURUK+52hmDYy4xtIK++vnnIN7yyEhFVVehsY9M83LvK0xNj7O3h\n3KmTeZ/EBMrLyy3WljlwndLCdUoL18m5FTDXyLoQUSEAEFEBY8xFVyHGmA2AiwAGANhJRJcNVbo+\nI6PZsKqIMFb0oS7z8ECAvT3cO3c2UzaHw+FwOPLTqpFljP0BoE/LQwAIwBodxXXOWCIiDYBRjLEe\nAE4yxiYS0V/62qxRqzGvTx98NmgQvDp3BmPK8udnZGRYW4JRcJ3SwnVKC9fJuRUwa3YxYywBwCQi\nKmSMuQIIIqLbWjlnLYBaItqq531lTXfmcDicdgCfXaxMzB0u/gXAAgCbAcwHcES7AGPMCYCKiCoY\nY10A3A/gPX0V8geFw+FwODcL5vZkewP4EYAngEwAc4ionDHmBuArInqYMTYCwqQoBmHS0z4i+sh8\n6RwOh8PhKBvFBaPgcDgcDudmwSqxAxlj0xhjMWKAigjG2BQ95XwYY+cZY8mMsf8xxiwaa5kx9iBj\nLFFsf7WO9436HDJrNCrYB2NskljmEmMsyNI6RQ09GWM/McYSRK3jtd53YIz9LF7T84yxoRbStZwx\nFiduL+t4fzBjLJQxdo0xtrLF8b6MsUDxs+g8VwJtuxljhYyx2BbHtojXMJoxdlCcUGjUueLxdxhj\nOYyxSHF7UAaNRrVhQONYxliY+MyGMcYCzNFoQGer7Ri6z4yxR8X/KTVjbLS5Gg21Z0xbxjyTjLFX\nGWMacSSSIzdEZPENQNcW+yMApOop9wOAx8T9LwA8b0GNNgBSAXgDsAUQDWBIWz6Hpa4ngA4AzgO4\nU+v9ngDiAXiIr52spPMbAM+I+x0B9NB6fwuAteL+YAiBTuTWNAxALIQ13B0AnATQX6uME4AxANYD\nWNniuCsAf3G/O4Ak7WdEAn13AfAHENvi2H0AbMT9TQA+MPZc8fg7LT+HTBqNasOAxiAAD4j7/wdh\nUqUcOlttx9B9Fp/TQRCC8YyW6HrqbM+Ytlp7JgH0BXACQDqA3lI+q3zTvVmlJ0t/B6cAhAehRE/R\nKQAOivt7AcyUU5cW4wCkEFEmEakAfA8h+EYzJnwOWaHWg33MBXCQiHLF8hbXKfa27iaiPaKGRiKq\n1Co2FMIXCIgoCYAPY8xZZmm3AbhARPVEpAZwBsCslgWIqISILgJo1DpeQETR4n41gAQAHlKKI6Jg\naN1PIjpFwrI4QPhR1dfYc1sg2QRDA+202oaBc/Mh/DgEAAcAuW0WaLitVtsxdJ+JKImIUiDt9dTZ\nnjFtGfFMfgLgdam0clrHaqlmGGMzmLAE6DcALYdfjjHGXBljjgDKWnyZ5ACwZBJXDwDZLV7nAPBg\njD3HGHuu6aC+z2FJGGM2jLEoAAUAThPRZcbY8y10+gLozRgLYoyFM8aetoLMfgBKGGN7xOHDXYyx\nrlo6YyAaOMbYOABe0GNAJOQSgLuZEIe7K4CHAHhq3+fWYIz5QOglXZBFpX4WAjguanBjjB018rwX\nxeHmr5mOmOMS0bINBxM1vgHgY8ZYFoQRjhtCtkqEznb06bT0fTamPWO1MsamAcgmojgZpHL0Ye2u\nNIQhnCQdxx0BJLd43RdaQ0oy65oNYFeL108B+Lepn8PC17IHhJ7NRK3jnwEIBWDXdF0BDLSwtjEA\nVAACxNfbALynVcYewH8AREIYubgAYKQFtD0DIAJCWNAdAD7WU07nECiEUYwIANNl0uet69kH8C8I\nIxQmnQvAGX9PenwfwG6pNZrShh6NfwCYIe4/CuAPOa6lKe0Yus8Qhp0lGS5urT1j2tI+F0AX8bvB\nXnydDsBRjueVb9dvFuvJMsaWiZMLIpkQuAJA8xBOR7HnihbHSwE4MCEkIyAYWbOHjEwgF0JPqgmD\n7ev7HJaEhOHXYwC0J2/kAPidiK6J1/UMAD8Ly8uB8Cs6Qnx9AMB1kzeIqIqIFhLRaCKaD8AFQJrc\nwohoDxEFENEkAOUQfoQYBRMm4x2AsDTthnXicsEYWwCh1z3X1HOJqJjEb1oAXwEYK6E0qdoYT0SH\nxboOQHDfyIFR7Vj6PpvTnp5zBwDwARDDGEuH8H12kekJhcuRDosZWSL6nIhGEdFoAN2ajjfNkhO/\n/LUJAvCYuK8z2IWMhAMYyBjzZox1AvAEhOAbzTDGBrTYN/Q5ZIMx5tQ03Mf+DvahnTbkCIC7GGMd\nxCHR8RB8NRaDhBjX2YwxX/HQvQCui2HNhNnHtuL+swD+IsGvJCtNfl/GmBcEv/93hoprvf4PgMtE\n9KlM8prabG5XnKn7OoBpJGS5Mvpc8XzXFi9nQRgyl1qjKW3coBFACmNsoljXvTDhh48pOk1ox5j7\nLGUgndbaM9TWDecS0SUiciWi/kTUD8KP3lFEVCSdZI5OrNF9BrAKwj9dJICzAMa2eO8YAFdxvx+E\nIcNkCDONbS2s80EIs/NSALwhHnsewHN6PkeAFa7lCLH9KAg+zde0dYqvX4MwwzgWwEtWuu9+EH68\nRAP4GcKEk5bXc4J4vRMg/BLvaSFdZ8T7GAUhTKj2fe4DwT9fDuAqgCwIw3F3AlCLnydKvA8PSqzt\nOwB5AOrFdp8Rn8dMsb1IAJ+LZd0AHDV0rnj8W/E5iAZwGEAfGTTqbMMEjQHi/34UgHMQDIIc13KM\nrnZa6jR0nwHMEJ+NOgiTqI5LoFNne/raMlarVhtp4LOLLbLxYBQcDofD4ciE1WYXczgcDodzs8ON\nLIfD4XA4MsGNLIfD4XA4MsGNLIfD4XA4MsGNLIfD4XA4MsGNLIfD4XA4MsGNLIfD4XA4MsGNLIfD\n4XA4MvH/v/y4nDJ4sKoAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1186cdf10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "PIg.plot(grid=True)\n", "plt.hlines(0,0,8,colors='k', lw=5)\n", "plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 115, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAEACAYAAAAdqhecAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYFFcXxt+LqKCACipgAxVbxF4g0ShGjX7WJBq7RlFj\nYoxJjC0mGmtib1ETu1FjjTVq7KCisYuKImIB7Agive6e748LCLK7bJnd2YX7e5552Jm5c+dlZnfO\n3HvuPYcREQQCgUAgEJgGK7kFCAQCgUBQmBCGVyAQCAQCEyIMr0AgEAgEJkQYXoFAIBAITIgwvAKB\nQCAQmBBheAUCgUAgMCGSGF7GWEfG2B3G2F3G2AQN5ZoxxtIZY59IcV6BQCAQCCwNgw0vY8wKwDIA\nHQDUBdCXMVZbTbnZAI4Yek6BQCAQCCwVKVq8zQGEElE4EaUD2Aagu4pyXwP4G0CkBOcUCAQCgcAi\nkcLwVgTwKMf648xt2TDGKgD4iIh+B8AkOKdAIBAIBBaJqQZXLQaQ0/crjK9AIBAICiXWEtTxBECV\nHOuVMrflpCmAbYwxBqAsgP8xxtKJaP/blTHGRPBogUAg0BEiEg0aC0GKFu8lAB6MMTfGWDEAfQDk\nMqhEVC1zqQru5x2pyujmKG/Wy88//yy7BqFT6BQ6hc6sRWBZGNziJSIFY2wUgKPghnwtEQUzxkbw\n3bTq7UMMPafchIWFyS1BK4ROaRE6pUXoFBRWpOhqBhEdBlDrrW0r1ZT1leKcAoFAIBBYIiJylR4M\nHjxYbglaIXRKi9ApLUKnoLDCzM0/wBgjc9MkEAgE5gxjDCQGV1kMosWrB/7+/nJL0AqhU1qETmkR\nOgWFFWF4BQKBQCAwIaKrWSAQCCwc0dVsWYgWr0AgEAgEJkQYXj3w8/OTW4JWWIpvSuiUFqFTWixF\np8ByEIZXR4Iig9B/d39EJUXJLUUgEAgEFojw8epIt63dcOPFDXSr1Q1L/7dUbjkCgUAgfLwWhmjx\n6kBARACuv7iOAN8AbLm5BXej78otSSAQCAQWhjC8WkJEmHh8Iqb5TMO9q/cw7r1xGH9svNyyNGIp\nvimhU1qETmmxFJ0Cy0EYXi05cPcAXqe8xsD6AwEA33h/g8DngTgVdkpmZQKBQCCwJISPVwsUSgUa\n/NEAv7T9Bd1qdcvevvXmVsz/bz4uDb8EKybeYQQCgTwIH69lIayFFmy+sRmlbUqja82uubb38ewD\naytr/HXjL5mUCQQCgcDSEIY3H1IyUjDFfwpmt5sNxvgLZZbPhzGGhR8uxI8nf0RSepKMKlVjKb4p\noVNahE5psRSdAstBGN58+P3S76jvXB8tq7RUub9FlRZoXrE5Fp9fbGJlAoFAILBEhI9XA7Epsai5\nrCaODzyOes711Ja79+oevNd449bIW3C2czahQoFAIBA+XktDtHg1MP/cfHT06KjR6AKAh6MHBtYf\niJ/9fzaRMoFAIBBYKsLwquF5wnOsuLwC032m59mnyuczufVk7ArehVuRt0ygTjssxTcldEqL0Ckt\nlqJTYDlIYngZYx0ZY3cYY3cZYxNU7O/GGLvOGLvGGLvMGPtAivMakxmnZmBQ/UFwK+2mVXlHW0dM\najkJ446NM7IygUAgEFgyBvt4GWNWAO4CaAvgKYBLAPoQ0Z0cZUoQUVLm53oA9hCRh5r6ZPfxZvls\n74y6g7Ilymp9XJoiDe8sfwe/d/4d7au3N6JCgUAgeIPw8VoWUrR4mwMIJaJwIkoHsA1A95wFsoxu\nJnYAzDq1zxS/KfjG6xudjC4AFCtSDHPazcH3R7+HQqkwkjqBQCAQWDJSGN6KAB7lWH+cuS0XjLGP\nGGPBAA4BGC3BeY3CtWfX4Bfmh+/e/U5tGU0+n0/qfIJSNqWwIXCD9OJ0xFJ8U0KntAid0mIpOgWW\ng7WpTkREewHsZYy1BLAJQC11ZQcPHgx3d3cAQOnSpdGwYUP4+PgAePMjMNb6iGUj0KtSL9gVs1Nb\nPjAwUO3xp06dQj+7fpjiPwW9PXvj8rnLRtVbENY1XU+xrvu6uJ4F/3pmfQ4LC4PA8pDCx+sNYCoR\ndcxcnwiAiGiOhmPuA2hORNEq9snm4/V76Idh/wxD8FfBKFakmEF19dvVDzWdamKqz1RpxAkEAoEa\nhI/XspCiq/kSAA/GmBtjrBiAPgD25yzAGKue43NjAFBldOWEiDDxxETMbDPTYKMLAL+0/QW/XfwN\nT+OfSqBOIDezZwOLFsmtQiAQFAQMNrxEpAAwCsBRALcAbCOiYMbYCMbY55nFejDGghhjVwEsAdDb\n0PNKze7g3UhXpKO3Z/7Scnb3qMO9tDuGNRqGn07+JIE6/dBGpzlg7jrT04HFi4Fp0/yRmCi3mvwx\n9+uZhdApKKxI4uMlosN4y2dLRCtzfJ4LYK4U5zIGGcoM/HjyRyzpuETS9H6T3p+EmstqIvB5IBq6\nNJSsXoFpOXAAqFkTIALWrgVGm+3QQIFAYAmIWM0AVl9Zja1BW3Fi0InsDERSsfzicuy5swfHBh6T\nvG6BaejSBfj0U6B2baB3byA0FChaVG5VAsEbhI/Xsij0ISOT0pMw7dS0XGn/pOTzJp/jcdxjHAo9\nJHndAuPz5Alw7hzQsyfg5QW4uQE7dsitSiAQWDKF3vD+duE3eFfyRvOKzbU+RhefT9EiRTGv/TyM\nOzYOGcoMPRTqj6X4psxZ559/8tZuyZJc54QJwNy5vNvZXDHn65kToVNQWCnUhjcmOQbz/5uPWR/M\nMup5utTsAhc7F6y5usao5xFIi1IJrFsHDB36Ztv//se3Hzkiny6BQGDZFGof74RjExCTEoNVXVcZ\n/VzXnl1Dpy2dEDIqBA7FHYx+PoHh+PsDX38N3LgB5PRCbNrEDbKfn2zSBIJcCB+vZVFoW7yP4x5j\nzbU1+Lm1aXLoNnJthA7VO2B2wGyTnE9gOGvXAr6+uY0uAPTpA9y/D1y8KI8ugUBg2RRawzvNfxqG\nNx6Oig55wkrni74+n5kfzMTKKysRERuh1/G6Yim+KXPU+fo18M8/wMCBb7Zl6SxaFBgzhvt6zRFz\nvJ6qEDoFhZVCaXjvRN3B3pC9mNAiT+pgo1LJoRJGNh2JSScmmfS8At3ZuhVo3x4oqyZB1bBhwKlT\nfGqRQCAQ6EKh9PH22NEDXhW9ML7FeKOeRxXxqfGotawW9vXZh2YVm5n8/ALtaNoUmDkT6NhRfZkp\nU4AXL4CVK9WXEQhMgfDxWhaFzvBeeHwBPXf2xN1Rd2Fb1NZo59HE6iursenGJpwafEoE1TBDrl8H\nunYFHj4EihRRXy4yEqhVCwgOBlxcTKdPIHgbYXgti0LV1ZyVCOHn1j8bZHQN9fn4NvJFTEoM9oXs\nM6ie/LAU35S56Vy7Fhg8OK/RfVtn+fJAv37A0qUmk6YV5nY91SF0CgorhcrwHrl/BM8TnmNww8Gy\n6ihiVQTz28/H+GPjkaZIk1WLIDcpKcCWLcCQIdqV//57YNUqIC7OuLoEAkHBodB0NStJicYrG2NK\n6yn4pM4nktevDx03d0SnGp0w2ktE3TcXtm0D1qwBjh/X/pg+fYBmzbgRFgjkQHQ1WxaFpsW7LWgb\nilsXx8e1P5ZbSjbzP5yPWWdmISY5Rm4pgkzWrs0dqUobxo/nuXrTROeFQCDQgkJheNMUaZjsNxmz\n20qTCEEqn49neU90r9Uds84YJ2SlpfimzEVnWBhw7RrwsZp3M3U6GzcG6tQB/vrLaNJ0wlyuZ34I\nnYLCSqEwvKuurEINxxpoU7WN3FLyML3NdGwI3IAHMQ/kllLo2bAB6NsXsLHR/dgJE4B583gcZ4FA\nINBEgffxJqQloMZvNXCo3yE0cm0kWb1SMvP0TNx4cQM7PhX55uRCoQCqVQP27QMaNtT9eCKgSRNg\n6lSgWzfJ5QkEGhE+XsuiwLd4F/63EG3c25it0QWAMe+OwX+P/8O5R+fkllJoOXGCR6nSx+gCPJ5z\nVspAgUAg0ESBNrwvE19iyYUlmNFmhqT1Su3zKVG0BGa2mYnvj34PKVv7luKbMged2gyqyk9njx7A\ns2fA2bPS6dIHc7ie2iB0CgorkhhexlhHxtgdxthdxlieAMiMsX6MseuZSwBjrJ4U582PWWdmoa9n\nX1R3rG6K0xnEwAYDkZqRip23d8otpdARHc3z6/brZ1g91tZ8StGcOdLoEggEBRODfbyMMSsAdwG0\nBfAUwCUAfYjoTo4y3gCCiSiWMdYRwFQi8lZTnyQ+3rDXYWiyqgluj7wNZztng+szBX4P/TB0/1AE\nfxWM4tbF5ZZTaFiyBLh0Cdi82fC6kpOBqlWBkyeBd94xvD5NKEkJJSmhUCqgIEX2ul0xO1ixAt2Z\nJXgL4eO1LKQwvN4Afiai/2WuTwRARKTyvZ8xVhrATSKqrGa/JIZ30J5BcC/tjultphtclynptrUb\nWrm1wtj3xsotpVBABDRowI1vGw2D3rfc3IIj94/kMnLqPt+7r0BSsgI1a6svk99nhTJzXcNnACjC\nisCKWaGIVREUYUXAGAMDQ93ydeFZzhOe5T1Rz7kePMt7onzJ8ia6qgJTIwyvZWEtQR0VATzKsf4Y\nQHMN5YcB+FeC86rlxosbOHL/CEK/Nk7ONn9/f/j4+Bil7rnt5+L99e9jcMPBKFtCTU46LTGmTimR\nU+fly0BiItC6ter9GcoMjD82HgfuHkD34t1R36t+LkNXxCrT8OX4nOhZBIMHFcGoHlZwKZ+3zNvG\nUtfPWfWpa9X+c+QflK5dGkGRQQiKDMKu4F0IigyCtZU1N8KZBjlrsS9ub8QrrB7x/RQUVqQwvFrD\nGGsDYAiAlprKDR48GO7u7gCA0qVLo2HDhtlf/KyBDprWfzj+A37o8gMcijtoVV7X9cDAQEnry7n+\nPOg5WipaYvqp6Vj6v6VG0W9u68a8nvmtz5jhDx8fwMoq7/7XKa/x4YwPoSAFLky+gOsXrgOZQcY0\n1W8DYFhbH1zYDnTp4g8FFCb9/+4H38e3Hb7F+27vw9/fH59W/RStB7fGs4Rn+Gv/X3hw/wHOpZ3D\nqqurcPPCTZS2KY2m7zVFvfL1YBVuhaplqmJgt4Eobl3cLL4fcq/L+f1Ut571OSwsDALLQ6qu5qlE\n1DFzXWVXM2OsPoBdADoS0X0N9RnU1Xwm/AwG7hmIkFEhFusnfZn4EnWW18G5oedQ06mm3HIKLElJ\nQKVKwM2bQMWKuffdjb6Lblu7oUP1DljQYQGsrXR7R42I4FOT7t8HypSRULTEKJQKPHz9EEGRQbj5\n4iaCXvJW8oOYB6haump2q7heed5dXa1MNRSx0pArUSALoqvZspDC8BYBEAI+uOoZgIsA+hJRcI4y\nVQCcADCQiM7nU5/ehpeI0GJdC3zR9AsMajBIrzrMhbln5+Lco3PY22ev3FIKLBs3Atu3AwcP5t5+\n7P4xDNgzADPbzMTwJsP1rn/QIB5K8ocfDBQqA6kZqQiJDsnurg6KDMLNyJuITIxE7bK1sw1xllGu\nYF9B5JaWEWF4LQwiMngB0BHc+IYCmJi5bQSAzzM/rwYQDeAqgGsALmqoi/Rlb/Be8lzhSRmKDL3r\n0AY/Pz+j1k9ElJyeTG6L3Mj/ob/edZhCpxTIpbNVK6K//36zrlQqacn5JeQy34VOhZ3KU15XnTdu\nELm4ECUnGyhUR4x5PeNS4uj8o/O0+spq+ubfb6jtn22p/LzyVHp2aWq5riV98c8XtPzicjoVdoqi\nk6Jl0ykllqAz87kpyfNcLMZfJPHxEtFhALXe2rYyx+fhAPRvOmiBQqnApJOTMKfdnALRFWZjbYNf\n2/6K749+j4vDL4rpIRITGgrcuQN07crX0xRp+OrgV7jw5AL+G/of3Eu7G3yOevV4AoWNG4HPPze4\nOrPAvrg9vCp5wauSV67tkYmRuBV5C0GRQQh8HojNNzYjKDII9sXtecs4xwjrOmXroGSxkjL9BwKB\n/BSYWM3rr63HusB1OD34dIHp8iIieK/1xtfNv8aA+gPkllOg+OEHnsZvwQLuU++xowccbR2x6eNN\nko7yPX2aR8S6cwcoYvnvgzpBRIiIjcjVVR0UGYSQ6BBUtK+Imk414eHoAQ9HD9RwrAEPRw+4l3ZH\n0SJF5ZZucYiuZsuiQBjelIwU1PytJrb13Ib3Kr9nJGXycDbiLPru6ouQUSGwLWort5wCQUYGUKUK\nT3af4XQD3bd1R/96/TG9zXTJexaIgHffBcaOBXr2lLRqiyVDmYF7r+4hNDoU917d40sM//s47jEq\nOVTiBrmMR7Zh9nD0QNUyVWFjrUfqqEKAMLyWhUmnExmL5ReXo5FrI5MZXX8TzutrUaUFmldsjkXn\nF2HS+5N0OtaUOg3B1Dr//RdwcwPuWu3F8I3DsbTjUvSt1zff4/TRmZU84ddfeSxnU3TGmPt9t7ay\nRu2ytfE86Dm+8/ku1740RRrCX4e/Mciv7uH4w+MIjQ5FeGw4XOxcVBrl6o7VUaJoCaPoNffrKbA8\nLN7wxqbEYs7ZOfD7zE9uKUZjTrs58FrjhaGNhlpM+EtzZs1agkuvX/D1v3/gUL9DaFaxmVHP1707\nMHEi4O+vOTqWAChWpBhqONVADacaefZlKDMQERuRyyifiTiDe6/u4eHrh3C0dVRplD0cPWQLEiIQ\nqMLiu5p/PPEjniY8xfru642oSn7GHBmDpPQk/NHlD7mlWDQPHiWh9vihqO/zAPv77UEF+womOe+a\nNcCuXby1LZAehVKBJ/FPchnlrOV+zH3YF7PPY4yzltI2peWWbzCiq9mysGjD+yz+GTx/98S1EddQ\npVQVIyuTl1fJr1B7WW34feaHuuXryi3HInkS9wRei7ujeHxtBP2y2qQ+89RUoFo14NAhHhtaYDqI\nCM8Snqk0yqGvQlG8SHG1RtnJ1skiBmsKw2tZWLThHXlwJGytbbGgwwIjq8qNXD6fxecX49iDYzjY\n72D+hWE5vilT6Lzw+AJ67OiB1DOjsOf7CWjZUvdnlKE6584Frl8H/vpL7yq0Qtx37SEivEx6qdYo\nlyhaAgtrLkTvLr1l1ZkfwvBaFhbr47336h523NqBkFEhcksxGSObjcSyi8tw/MFxtKvWTm45FsPm\nG5sx5sgYfF9jLdav6ooWLeTRMWIEb/WGhQGZocgFMsMYQ/mS5VG+ZHmVgzOnn5qOJceXoFfnXhbR\n8hVYBhbb4u3zdx/UK18PP7b60QSqzIddt3dh+unpuPr51QIRKMSYKJQK/HjyR+y4tQP7++7Hwome\nqFMHGDdOPk0TJvCcvUuXyqdBoD2pGalouLIhfvngF3xc52O55ahFtHgtC4s0vFeeXkHXrV0R+nVo\noYuAQ0RotaEVhjQcAt9GvnLLMVviUuPQf3d/xKfG4+9ef6O4oiyqVOGBLJxlHBj+9Cng6QncvQuU\nNSzro8BEnA4/jf67++PWyFtwKO4gtxyVCMNrWVhkHMIfTvyAya0my2Z0c6bmMjWMMSz4cAEm+01G\nQlqCxrJy6tQFqXU+iHmA99a+h4r2FXF04FGULVEW27cDPj6GGV0pdFaoAHzyCbB8ucFVqaWw3ndj\noXyoxIfVPsTkk5PlliIoIFic4T3x4AQevn6IYY2HyS1FNppXbI7Wbq0x/9x8uaWYHX4P/fDe2vcw\nstlI/NHlDxQrUgwAsHYtD91oDowbxw1vYqLcSgTaMrf9XGy/tR2XnlySW4pO2NraPmeMkVhMv9ja\n2j5Xd18sqquZiNB8TXOMfXcsenua9yhDYxP+OhyNVzXGzS9vmmwuqrnzx+U/8LP/z9jyyRa0rdY2\ne/vt20D79kB4OGBtJsMJP/4YaNsWGDVKbiUCbdl0fRMWnV+Ei8Mv6pyf2dio62o2NL+5QH80df9b\nVIv379t/Q0lKfFr3U7mlyI5baTcMbzwcP538SW4pspOuSMdXB7/C0gtLcdb3bC6jC/DW7mefmY/R\nBfggqwULeNxogWUwoP4AlLEtg98u/Ca3FIGFYzGGN12Rjh9P/ojZbWfLniLPXHxTP7T8AYdCD+H6\n8+sq95uLzvwwRGd0UjQ6bO6AsNgw/Df0P3g4euTan5YGbN4M+EowDk3K6+ntDVSuDOzcKVmV2RSG\n+25KsnQyxvB7598x68wsRMRGyCtKYNFYjOFdd20dqpSqgvbV28stxWwoZVMKU1pPwdhjY1EYu5Nu\nv7wNrzVeaOLaBPv77Ecpm1J5yvzzD1CnDuDhoaICmZkwAZgzh2cwElgGNZ1q4huvbzDq0KhC+ZsT\nSINF+HiT0pNQ47ca2NdnH5pWaCqTMvMkQ5mBer/Xw4IPF6BTjU5yyzEZB+8exJB9QzCv/Tx81vAz\nteU6dQL69gUGDjShOC0hAurXB+bPBzp0kFuNQFvMcW6v8PGaHxbv411yfglaVG4hjK4KrK2sMa/9\nPIw9OhYZyoLvMCQizDs7D58f+Bz7+uzTaHQfPwbOn+fp+MwRxvgI57lz5VYi0IXi1sWxsstKjD48\nGnGpcXLLEVggZm94XyW/wsLzCzHzg5lyS8nG3HxTnWt0houdC9ZcXZNru7npVIe2OlMyUvDZ3s+w\n7dY2nB96Hu9Wfldj+Q0bgN69gRISpWk1xvXs2xcIDQUuX5auzoJ23+VGlc5Wbq3E3F4JcHd3R4kS\nJeDg4ABXV1f4+voiMTERbdq0wbp161Qec+rUKRQpUgQODg4oVaoU6tSpgw0bNgAAwsPDYWVlBQcH\nBzg4OKBq1aqYMWOGCf8j7ZDE8DLGOjLG7jDG7jLGJqjYX4sxdo4xlsIYG6NL3b+e+RU96vRATaea\nUkgtkGQF1Zh2alqBfQN/Fv8Mbf5sg1RFKs4MOYPKpSprLK9UAuvWSTOoypgULQqMGSNavZaIpc7t\nNScYYzh48CDi4uJw9epVXL58GTNnzsw3LnbFihURFxeH2NhYzJ49G8OHD8edO3ey64yNjUVcXBz+\n/vtvzJkzB/+aWT5Ogw0vY8wKwDIAHQDUBdCXMVb7rWLRAL4GME+Xuh/FPsK6wHWY0nqKoTIlRe6M\nKqpo5NoIHap3wOyA2dnbzFGnKvLTeeXpFXit8UInj07Y1mMbShTNvwnr7w/Y2QFNJfROGOt6DhsG\n+PkB9+5JU19Bue/mgjqdTiWcMK/9PIw4MKJQuHmMRZYP2tXVFR07dkRQUJBOx3fv3h1lypTB7du3\n89TZpEkT1K1bF7du3ZJOsARI0eJtDiCUiMKJKB3ANgDdcxYgoigiugJAp2/nVP+pGNFkhAgQoSWz\nPpiFlVdWFqipDjtu7UDHvzpiUYdFmNx6stYZYrIiVVlCQhk7O+CLL/ggK4FlIeb2SsejR49w6NAh\nNG7cOM+I8TJlyuDcuXN5jiEi7NmzB7Gxsahfv36u7QBw/vx53L59G82aNTOueF0hIoMWAD0ArMqx\nPgDAUjVlfwYwJp/6iIjoVuQtKje3HMUkx5C54efnJ7cEtUw+OZkG7B5AROatMyeqdCqUCpp8cjK5\nLXKja8+u6VTfq1dEpUoRRUVJJDATY17PFy+ISpcmev7c8Los+b6bI/npDIkKIac5ThT+Otw0glSQ\n+dxU+zzVfKw0iz64u7uTvb09lSlThtzd3WnUqFGUkpJCPj4+tHbtWpXH+Pv7k5WVFZUpU4acnJyo\nUaNGtGPHDiIiCgsLI8YYlSlThmxtbcnKyormz5+vnzgDUXdPiMg88/EOHjwY5xPOo2GphtjwxwY0\nbNgwu7sna6CDnOuBgYFmpSfn+rsZ72LFsRW47HXZLPTocz2T05Ox+tVqRCZGYlGtRXh95zXgAq3r\n27MH6NDBB05O5vH/abvety/w/ff+GDas4H4/LXFdm+uZNbf3O5fvwBgzur6sz2FhYTAUuWcb7du3\nD23atNHpmIoVKyIiQnXPHmMM0dHRAIAlS5ZgwYIF+Pzzz2Fvb2+wVslQZ5G1XQB4AzicY30igAlq\nymrV4j0XcY4qL6xMyenJRn0jKaisvrKaWq1vRUqlUm4pOhMWE0b1f69Pvnt9KSU9Ra86GjUiOnJE\nYmEm4N49Iicnorg4uZUIdCUlPYVqL6tNu2/vluX8MKDFKyfu7u504sSJPNt98mnxVq5cWeW+sLAw\nsrKyIoVCkb2tZcuWNG3aNGkE64C6e0JEkvh4LwHwYIy5McaKAegDYL+G8vl63SaemIipPlNhY20j\ngbzCx5CGQxCTHIPdwbstKrpOQEQAvNd6Y0jDIVjTbQ2KWxfXuY5r14DoaKBdOyMINDLVq/PECatX\ny61EoCtibq/58PYzb+LEiVi6dCmSk5NlUpQXg7uaiUjBGBsF4Cj4YK21RBTMGBvBd9MqxpgzgMsA\n7AEoGWPfAHiHiFQmlI1MjMSgBoMMlWY0/P39s7t+zJEiVkWwuONidPmlC3pV7oWSRUvCrpidVos2\nZUsWKylpdhZ/f3/cd7iPH078gE0fb0IHD/3DOK1bBwwZAlgZYYa6Ke77+PHARx/xrEXFiulXh7l/\nP7MoaDpzzu1d8r8lxhdWAFA3WPLt7fb29jh8+DBatGihc52dO3eGq6srVq9ejdGjR+svVkIkeXoS\n0WEAtd7atjLH5xcANE+8zMEvH/xidmm3LI0Pqn6AQ/0P4f1W7yMxPREJaQlaLc8TniMxLREJ6ZrL\nFStSTCeDrsmoL7u4DDdsb+DMkDOoVbZW/v+cGlJSgK1bgStXJLyQJqZJE6BWLf5/fKY+KJfATJnb\nfi7qrqiLAfUHoFlFMxtJa4Y8ePBA5faTJ0/mWo+Pj8/+3Lp1a7X+XTc3NygUijzbb968aYBK6THL\nWM1KpVLraSMC00NESMlIyWWIdTHubx9T37k+NnTfgDK2ZQzStXUrsH49cPSoRP+oTBw7Bnz7LXDz\npnFa7gLjIkfeXhGr2fzQFKvZLA2vuWkSWAbt2gHDh/MwkZYMEW/5Tp8OdOkitxqBrhAR2m1qhy41\nuuC7d78zyTmF4TU/LD5JgrmRc0i/OVOYdD58CFy/zv2jxsJU15Mx7uudM0e/4wvTfTcFuuoUeXsF\n+SEMr6BAsH490K8fUFz3gdBmSc+ewJMngIpgPQILQOTtFWhCdDULLB6FAqhaFThwgOe3LSisWMH9\n1Xv3yq2rUr5LAAAgAElEQVREoA+mzNsruprND9HVLCjQHDsGODsXLKMLAIMHA//9BwQHy61EoA9i\nbq9AHcLw6kFB9U3JhaE6sxIiGBtTX88SJfh8Xl2TJxSW+24qDNEp8vYKVCEMr8CiefmSt3j79pVb\niXEYORLYs4f7ewWWicjbK3gb4eMVWDSLFvEwkRs3yq3EeHz7LVC0KDBPp2zWAnPC2HN7hY/X/BA+\nXkGBhMh03cxyMmYMD4X5+rXcSgT6IvL2qsbd3R0lSpSAg4MDXF1d4evri8TERPj4+MDW1hYODg4o\nV64cunfvjicaun2mTZuGYsWKwcHBAfb29nBwcMD8+fPh6ekJBwcHODg4wNraGra2ttn7Z8+eDQB4\n8uQJBgwYgLJly8Le3h7e3t44ePBgrvqtrKyyj8tZv74Iw6sHhcE3ZUr01XnxIpCaCrRqJa0edch1\nPatUATp1Av74Q7vyBf2+mxopdIq5vaphjOHgwYOIi4vD1atXcfnyZcycORNWVlZYvnw54uLicP/+\nfaSkpGDMmDEa6+rTpw/i4uIQHx+PuLg4jB07FkFBQYiLi0NcXBzef/99rFixInv/xIkTERMTg5Yt\nW8LGxgbBwcGIiorCt99+i379+mH37t25dN64cSNP/foiDK/AYlm7FvD15QEnCjrjxwNLl/J41ALL\nRMztVU3WtXB1dUXHjh0RFBSUa7+DgwM++ugj3Lp1S7JzZbFw4ULY29tjzZo1KFeuHIoXL44+ffrg\nxx9/zGXo6U2aRUkQhlcPLCGjClCwdSYmAjt3mjaRgJzXs149oFEjYNOm/MsW5PsuB1LqHN9iPEJf\nhWLvHTE5+20ePXqEQ4cOoXHjxrmMXHR0NHbv3g0vL6/sbWfPnoWjo6PB5zx+/Dh69OiRZ3uvXr0Q\nERGB0NBQg8+hCpECSGCR7NwJtGgBVKggtxLTMX48j0Xt6wsUKSK3GoE+ZM3t7b+7P9pWawuH4g5y\nSwKbJk2XEf2sX4vwo48+grW1NUqVKoUuXbpg0qRJOH36NEaPHo3vv/8esbGx8PLywrJly7KPadGi\nBV69epWrnu3bt+PAgQMgIjDGcPv2bbi4uGg8d1RUFFxdXfNsz9oWFRWFGjVqAAAaN24MKyur7Pq3\nb9+O9u3b6/U/ZzehzWXhkswbPz8/uSVoRUHW2bIl0e7d0mvRhNzXU6kk8vIi2rVLczm5dWpLYdbp\nu9eXRh8aLVl9mc9Ni3ueuru708mTJ/Ns9/HxobVr1xIRUVBQELm6utIuDV/8qVOn0sCBAzWeK2ed\nWXh7e9PUqVPzlH348CExxig0NJSIiBhj9ODBg3z/n5youydEJLqa9SI1VW4FhZqQECA0tPBl7smZ\nPEG4CC0bMbf3DZTPl7lu3bqYPn06JkyYILlvvF27drkGUWWxfft2VKlSBR4eHlrr1AVheHVl9Wr4\ndO8O7NghtxKN3LsHHDvmg+RkuZXkj64+tHXrgIED+dxWU2IOPsnu3fm0olOn1JcxB53aUJh1OpVw\nwrz28zDiwAhkKDMMqutiXMEPR/nZZ58hOTkZO3fulLTe7777DrGxsRg6dChevHiB1NRUbN26Fb/+\n+qtB04XyQxheXdi4EZg2DdiyhU+u/M085+RlZAADBgAHD3I/6MOHciuSjvR0fhsK+txddRQpAowb\nB8ydK7cSgaFINbd30oMHEikyPUzNlIS3txctWhSjR4/GnMxcmQEBAXBw0M0/rupcjo6OCAgIQHJy\nMt555x2ULVsWixcvxubNm9GzZ89cxzZo0CDXPN78pjdpRF0ftFwLzNUnsW0bkasr0e3b3Ofz8CFR\nrVpEEyZw55sZMXMmUbt2RCdO+NGiRUTlyxMdOSK3KvXo4kPbt4/ovfeMp0UT5uKTTE7mX8Xr11Xv\nNxed+SF0EoVEhZDTHCcKfx2u1/HHX70ij/PnLdbHW5BRd09IKh8vY6wjY+wOY+wuY2yCmjJLGWOh\njLFAxlhDKc5rMvbsAb75BjhyBKhTh29zdwfOnuV9fp99xptiZsC1a8CSJbw71sqKhxvcsYNnuvn1\nV8v3DRaGSFX5YWPDv44ihKRxuXePZ7z6+2/j/bwNmdtLRJj04AFmuLsbR5zAeKizyNou4N3V9wC4\nASgKIBBA7bfK/A/AwczPXgDOa6iPnj0z8quILhw4QFSuHNGVK6r3JyYSdelC1KEDUXy8abW9RXIy\nUd26RJs25d336BEfEfvRR0SxsabXJgVPnxKVLi37ZTYLYmKIHB2JwsLkVlIwiYkhql2b6Oefidq3\nJ6pTh+joUeOcKyU9hWovq027b+s2TH93ZCQ1vHSJFEqlaPGaIeruCRFJYni9AfybY30igAlvlfkD\nQO8c68EAnNXUR8BhAhjxz/It7QB6AVDzfMoVAWgVQJcAKi+r5rkE7NSwvxgBvxMQTEBt2a+v7st4\nAlabgQ5zWeYQsNgMdBS0pQgB/xKwJMe2bgTcJ2A3AVWlP6cbCN+BUFzL8lZWhPXrCV5e2dvUPU8F\n8qDunpBEXc0VATzKsf44c5umMk9UlMmBA4BvJJCmP60A/AXgEwAX8ymrAPA5gAMAzgKoblxpangf\nQD8AX2gokwbgSwBzAZwG/+8sCV8Aa+UWYUYsBjAQgOERfAQ5mQfekZdz8Mx+AO8AuAzgEoDpAEpI\nd8pwAPcBtNGyfPv2QFwccOGCdBoEJsNMRzW3Bw+q5SzL2d8B8DeAPuCGVFumAfgOwGwATYygSz02\nADYAGAEgWovy68F7/xcCGA6z/RrkoiX4K855uYWYEc8A/Aqgs9xCChCdADgB6A3+fctJKoBfANQG\nf70OBuAj3amPgbc5nPIpV6QI0Lw5MGuWdOcWmBQpnrhPAFTJsV4pc9vbZSrnUyYHiQCeAvADYCuB\nRO1pmnnWgZl/deUAgE0ADgH4UEJdmlkK4ASAg/kVzMEV8P+2F4AjyP/XLjdDIVq7qvgHvIVm2t9J\nwaQVgHUAZgLQlIMxCkD/zGURAH8A9Q0/fTKAOwB6QvOTuWtXoEQJIDLS8HMK5EFdH7S2C4AieDO4\nqhj44Ko6b5XphDeDq7yRz+CqN8tG4j5J0/h2GgD0HKAuEtT1XmZdA4yuu3Om78lOz+OLEDCbgIcE\nNDbZtdZtsScghoByZqDFHJfdBIw0Ax2WvFQl4BkBbXU8zoqAEQQ8J2A5AY6GaxkEgreafTY2hL//\nJnh45Nmn7nkqkAd194SkGFzF60dHACEAQgFMzNw2AsDnOcosAzfQ1wE01lBXtvDYWKKqVU0Uk/fm\nTSIXF6K//863qNbz+m7fJnJzI5o92yhzfV++5PM5T51SvV+X+Yc7dxKVLUu0bp002nQhP50rVxJ9\n8olptGjCXOednjtH5O5OlJ7O181V59uYi87YWKJ33iFatkz1fm10RkcTffUVnwCxfPmbe6EPmub2\nzgoLo95BQXm2C8NrfmgyvJI494joMBHVIqIaRDQ7c9tKIlqVo8woIvIgogZEdFWbeh0cgL/+Ar74\nAniioWPaYEJCgA4dgAULABUpovSmTh0+1/evv/jES8XbPiP9IeLXpX9/aRLB9+zJpyTPng18+aV5\nhaMWc3c18+67QOXKfL6pQDcUCqBfP6B1a+Crr/Svx9ERWLYMOH6cZ85q0kRzWE9NqJvb+yo9HYse\nP8aMqlX1FyowD9RZZLkWqHhDmzGDqE0boowMg15AVHPvHlGlSsZt6sXEELVuTfTpp3yyrQRs2sTn\n7EpUXTaxsUTduxN5exM9fixt3fpw8yZRxYpGuvcFiH/+IWrY0OyCqJk9Y8cSffABUVqadHUqlUQ7\ndhBVqULUuzdRRITudaia2zvh3j0afueOyvKw0Bavm5sb2drakr29Pbm4uNCQIUMoISGBWrduTTY2\nNmRvb09ly5albt260WMND6TXr1+Tr68vubi4kIODA9WqVYvmzJmjtY7Hjx9T//79ycnJiezs7MjL\ny4sOHDiQvT8yMpL69u1LFSpUoNKlS1PLli3pwoULGutUd09IqhavsfnhBx5/WPKY1eHhQNu2wI8/\nAkOGSFx5DkqXBg4f5p87duRR7g3g0SMeKnrTJh7FSEocHIDdu/n4jWbNgNOnpa1fV9au5VG3RP5Z\nzXTqxKMrHT8utxLLYcMGYO9e3kKVMuEGY8CnnwLBwUDt2kDDhsCMGdApYUlW3t7Rh0cjLjUOz1JT\nserZM0xxc5NOqBnAGMPBgwcRFxeHq1ev4vLly5g5cyasrKywfPlyxMXF4f79+0hJSdEYG/m7775D\nYmIiQkJCEBsbi/379+fKLKSJmJgYtGzZEjY2NggODkZUVBS+/fZb9OvXLztzUUJCApo3b45r167h\n1atXGDRoEDp37oykpCT9/nF1FlmuBWre0MLDuf/k4sX831604vFjomrViBYv1vlQvX1TCgXR118T\n1aund3NSoSBq25bHY84PQ31ohw/zOM+LFhm3JaVOZ0oKv+f37xvv3LpgLj5Jdfz5J/9umLvOLOTU\nGRDAv1vBwfmXNVTnw4dEPXpwP/zu3br9lrLy9o4MCaExmblhVQELbfG6u7vTiRMnstfHjRtHXbp0\noTZt2uTKnbtixQqqW7eu2no8PT1p3759avczxmjp0qVUrVo1KleuHI0bNy57308//UT16tXLc8yc\nOXPIzc1NbZ0ODg509epVtfvV3ROylBYvAFSpwn0o/foBCQkGVvb8OW/pjhjBfa+mwsqKB1Lu35+n\nDQoO1rmKFSv4/z9BZURsaenQATh/HvjzT57tKDHR+OfMyf79gKcnUK2aac9rqfTpA9y9C1zVagRF\n4SUsjI9p2LiRt0iNjbs797+vWQNMngx8+CFw+7Z2x85tPxd/hfrhr+dP8UOVKvkfYME8evQIhw4d\nQuPGjXP5tqOjo7F79254eXllbzt79iwcHd8EjvH29sakSZOwYcMG3Lt3T2X9e/fuxdWrV3H16lXs\n27cP69atAwAcP34cPVSM7enVqxcePXqE0NDQPPsCAwORnp6udas6D+osslwL8nlD8/UlGjJEYxHN\nvHzJnaPTphlQiQRs3Ejk7Ex09qzWh9y5w0ceh4QYUZcKkpKIBg7kDfV790x33g4diDZvNt35CgJH\nj/KWXA73lCAHcXH8e6xHR5ckpKURLVnCf8fffsuHf+THe2cPkMvOCZSuUD9UGoa0ePlYTcMXPXB3\ndyd7e3sqU6YMubu706hRoyglJYV8fHyoZMmSVLp0aWKMkbe3NyUlJamtJyUlhX799Vdq2rQpFStW\njGrUqEH//vtv9n7GGB3NEWx7xYoV1K5dOyIi8vDwoJUrV6qskzFG586dy7U9NjaW6tWrl68PWd09\nIZJoOpGUS35flPh4oho1iLZv11hMNdHRfATKpEnmMQrl8GH+lNy7N9+i6elEzZvzqQpyoFTy6Rbl\nyxMdPGj884WH8yQAGn5rAjWcP8/f6f78U24l5oVCQdStG9Hw4fL//CMjiT7/nN+n1avVDx68ER9P\nzgEB1GpjR1p4bqHa+gwyvDLi7u5OJ0+ezLPdx8cnu6s5KCiIXF1dadeuXVrVGR8fT5MmTSI7OzuK\nyXyzYYzR7du3s8scPHiQ3nnnHSIi8vb2pqlTp+ap5+HDh8QYo7t372ZvS05OptatW9OIESPy1VGg\nDC8R0aVL3F7plJnl9WuiZs2Ixowx+FcnqW/q0iU+GfePPzQWmzGDZ0nRRboxfGgBAXyU8dSp/EGm\nNwoFT67bogX5NW6cZ1jptGlEX35pmFapsSTf6e3bfFTtvHlyq1GPqa/nxIl8ckFqqm7HGVPnlSs8\nv3STJqo7v7rduEELIyLyzdtryYY3p483i5yGl4ho9erV5OHhQUotH4AJCQnEGMv2wTLG6EiOpOQ5\nW7w//fQT1a9fP08ds2fPzuXjTU1NpQ4dOtDAgQO10lDgDC8R0Zw5RC1bajnNJD6ef7tHjpTkVVfy\nH2JoKFH16kRTpqjUd+UKf9F49Ei3ao31wHj6lF/7Ll206yrLRWoqn7pVpw5Ro0ZE27aRn7c3vzeZ\nKBR8IMrly9LqNhRLMrxEfBrLO+/wKTMGvSQZCVNez40b+VjKly91P9bYOpVK7lKpWJG7dJ484dvP\nvX5Nlc+do+TMh9x0/+nUdUtXlcanoBvetLQ0qlixIm1X09U5Y8YMunTpEqWlpVFKSgrNnDmTHB0d\nKTExkYi44W3Xrh3FxMRQREQE1a5dm9asWUNERNHR0eTm5ka+vr70/PlzSklJoS1btlCpUqVo586d\nRESUnp5OXbp0oY8//pgUWv6YCqThVSj4/Lvp0/MpmJhI5ONDNGyYeT59snjxgr/2DhuWK+xNcjJ/\neP71l4zaVJCaygdoe3gQ3bihxQGxsbz5VbEib7ofO/bmJeP1a6JatXifG/FdDRrI3x1YEIiOJnr3\nXaJBg6Sdq2pJ/Pcff3FVEfDJrIiPJ/rhByInJ6LZc5TU6so1Wp1lhUlz3l5LNbxVq1ZVaXjfHtVM\nxEcZN27cmIiIzpw5Q/b29tn7Zs6cSZ6enlSqVClycnKiNm3a0H///Ze9nzFGv/32G1WrVo3Kli1L\n48aNy/UC8+jRI+rbty85OjqSnZ0dNW/enP7555/s/adOnSIrKysqWbIk2dnZkZ2dHdnb21NAQIDa\n/61AGl4iPiOnfHkeMk8lycn8IT9woGVEYIiP5yOKunblLwxE9P33PO6GuRqhTZv4QJGtW9UUePbs\nzdOkd2/efFfFnTv86Xj2LPXpQ7R0qdEkFzoSE4k6dybq1IkoIUFuNaYlPJyoQgXLGmwWGkrk/VU0\nFd16nvYdyN1YOBV2iiotrESxKbG5tluq4TUVjDG6b+J5iQXW8BIR7dnD4zm/fv3WjtRU/rTp1cuw\nwKkqMGrXU1oab554e1PA3pdUoYJ+3WNEpuvKu3aN34MxY3Jc6rt3+eiR0qV5N7KGL322zgMHSOFS\ngWrbP6boaKPL1hlL62rOSVoa0Wef8Yhk5nJtjX09ExL4WMr58w2rx9T3XalUUtPLl2nikRdUsyZ/\nYco5kyFrbm9OhOHVjLkZXmv9JiGZDx99BBw5wuOsbt6cuTE9nU9qLFqUb7S2oH+zaFFgwwakfj8J\nLj1bYtPKwyhb1l1uVRpp2BC4fJlPTx7ldQmLK8yBzflTPOjz3btAuXLaVdS5My40/Qr/nPsYjiVO\ng+cZFhiMUomiynSs/y0dUyelobt3OrZvTkeFsmn8t5KeDqSZ+DPAk7n7+BjrX8agQUCjRjzKmyWx\nOyoKCiLMal8O024Cv/0GvPcej1f+0098bm/dFXUxoP4ANKvYTG65FgFjTG4JuWDcMJsPjDHSVVNS\nEtC0KTBpEjCgr4JHe4iL47EPixc3klLjMmwY0Pb2b+gbMQc4eBBo0EBuSeohAo4cAc2eg9jAB1jM\nxqDz7qFo1sZO56oaNSQcLtUbzlVLAOvX8/h7Au1ISQF69+aJOXIaOoWCv9AVKwYULYqk9KKITSkG\nJ5eiKFbizfacZVSuS/n59Wtg7FhuUZYs4WFVJWTyZMDfn4fQtKRHQIZSiXqXL2NR9ero6PQmR/bz\n5zx07tGjwK+/AlR/E5ZcWISLwy/C2soajDEQUZ4fiz7PU4E0qLsnACy/qzmLa9eIyjkpKO7jQUTt\n2kmfPcCE7NvHu27j4ohHWy9XjkjFAATZSU/nwzHr1yfy9ORDR9PSaN8+LlnFnHSNXLnCRzMr4hJ4\nnXJFObBEMjJ47sSePfkk0devuXM3PV3lAIE//+RzSHOMPzE9CQncDVG5Mh9RJxFbtvDv0YsXklVp\nMtY9fUqtrl5VO23m/Hk+K9LLW0lNf/sge24vRFez2aHunlBB8PFmo1TSDe/hdMW+FaXFGHcEiTF9\nPpGRfFrv6dO5Tsgt2bZtOtVlNJ0JCXz0k5sbnxh58GCeh3tICB+NPXRo/u9AWTpHjswRUOzBA24Z\njh+XWr3emK2PV6nkUSHatSNKSdFa58GD/Gt16JBx5akjW+eRIzxD2KhR2YMK9eXCBT7YT6uR9lpi\nqvueolBQlXPnKCDPgJXcKBR8Rl652iFUfLITXbkXLgyvGaLJ8FpMrGaNEAGjR8OTBWGm1wFMX1BS\nbkV6QcTDRw8YALz/fo4dPj68z2zsWGDxYrnkAVFRwNSpQNWqgJ8fsH0778/r1ClPl3DNmsCFC7zH\n//33gYgIzVUnJwPbtvFMRAD4ObZu5Y7jBw+M8M8UIH76CQgM1Nm10qkTsG8fT8yVPT5CDj78ELhx\nA4iJ4U7ZCxf0qubJE+CTT3hGq3r1JNZoAv54+hT1SpZEi1KlNJazsuL3LPR8TTTJ+AbvzhhlIoUC\nyVBnkeVaoOsbmlLJ59w0bUr0+jU9f07k4kJ06pRu1ZgDGzfyHlu1LcTwcB54wtQRER4+5K2RMmX4\nPGM1OUFVoVTyUaUuLpobr5s385lUeViyhAfXjY/XWXahYNEiPgda36HvRHTrFo9ytWCBhLr0ZedO\n3tPx4486hZhKTOTT4GfPNqI2IxKfnk7OAQEUqOP3PCU9haotqC1avGaIuntCBaKr+aefuD8wxxyJ\ngwf5g+TVK92qkpOICN7td+1aPgWjo3kUrv79dY99pyuBgUT9+vGgyRMm8JBVenLiBDe+c+eqnpPc\npg13Z+dBqSQaPJj7Ls11MrNcbNzI/aPhqsMI6kJEBH+nGzfODC7zs2c8LFrDhlr1GSuVfK77wIFm\noF1PZjx8SH1v3dLr2FNhp4ThNUMKruGdMYM7EiMj8+waPdp4z2qpfT5ZOXZ/+UXLA5KSiLp358FB\n4uLUFtNLp1JJdPIkb35WqMAtZT4+J20JD+cDQz79NLfszZv9qFw5nn9XJcnJPEOENkmIjYhZ+XgP\nHOAtQxUPa311RkXxeb6DB0s+9V0lGnUqlURr13KH7dy5GgPgTJ3KdRtrPKWx73tUWho5nTlDoQb4\nt4XhNT80GV6DfLyMsTKMsaOMsRDG2BHGmErnBGNsLWPsBWPshiHny8X8+Tyh5vHjKueJzpkDhITw\nGSnmzvLlfErUuHFaHmBryxN8VqvG/b8vXhguQqHgdXp58fm3n37KfavjxgH5+Jy0pUoV4PRpXp23\nN78/AHD4MHflqnVP2tgAe/bwZMQHDkiixaI5e5Y7w/fuBd55R7JqnZz4z+nFC+Djj/l3UjYYA3x9\ngUuX+HQ6Hx/g/v08xXbuBNat45fCxkKnfc+JiEDPcuXgUaKE3FJMjru7O0qUKAEHBwe4urrC19cX\niYmJ8PHxga2tLRwcHFCuXDl0794dT548UVtPbGwshg4dCldXV5QqVQq1a9fG3Llzs/dbWVnhwVtj\nRWJjY/Hll1/C1dUVdnZ2aNCgATZs2JC9Py0tDcOGDYO7uztKlSqFxo0b4/Dhw9L84+ossjYLgDkA\nxmd+ngBgtppyLQE0BHBDizrzf5VYupRHPM8na0BQkDz5a3UhOJhrzJF5SnuUSh6sulo1PSsg3kz4\n4w8edNnbm4cCM4H/eNUq3rW+axcP33zzphYHnTvHD8qR3qvQceMGj5N6+LDRTpGWxrtt33vPTKJc\nKRRECxfyH8off2R3Y12+zDfl654xYx6npFCZM2fosdruHu2AhbZ4c6YFfPr0KdWrV48mTpyYK1Zz\nbGwsffjhh9SrVy+19QwZMoR69+5NsbE8lGZISEiuNIJWVla5IlelpaVRkyZNqHPnzhQeHk4ZGRl0\n+PBhcnZ2pkWLFhERUWJiIk2bNo0iIiKIiOjAgQNkb29P4Vq6dtTdEzK0qxnAHQDOmZ9dANzRUNZN\nEsO7ciV34D58qNU/v3w5H3RhbHeoPqSn867XFSsMrGj1au5AvXBB+2NiYnjftosL96edPm1yB9mF\nC3wWSfPmOhy0di1RzZp6pEUqADx4wN9S1AbGlg6Fgo9ZrFtX96xYRuPWLf5j7tiRnl99QpUr8xc3\nS2bEnTs09t49g+uxZMObM0nCuHHjqEuXLnmSJKxYsYLq1q2rth5PT0/at2+fyn2tWrUixhiVLFmS\n7O3taceOHbR27Vpydnam5Lf8E9u3byc7OzuKVzPIrX79+rR7d94kFaowpuF9pWn9rX2GG94NG/iT\nOjRUq3+ciNuSrl2Jxo/X+pB8kcrnM306d6VKYu/2788zKVOlzkeP+BPV0ZHHhNaqqWk8oqKItmzx\n0+2gUaOI/vc/kye+kNXH+/w575VYtizfolLqnDuXT9cODpasymz00pmWRmmTfqYo6/K0u5fxX0CI\njHffQxMTyenMGYqSIG1UQTC8ERERVLduXZoyZUqutIBRUVHUrl078vX1zT4uICCAypQpk70+bNgw\nqlu3Lq1fv55CVdgHxhg9ePAge71Pnz40ePDgPOUyMjLI2tqajh49mmff8+fPydbWlkK07ELVZHjz\nDWLMGDsGwDnnJgAE4CdVPdf51acNgwcPhru7OwCgdOnSaNiwIXwyY6b5z54NPH4MHw8PAIC/vz8A\nwCcz5uvb66dO+cPXF/jqKx+0bw9YW2sur816YGCgQccDgL29D377DVi+3B+nThmmBwB8unYF9u+H\nf6dOwOefw2f27Nz7y5cH5s2D/99/Ax07wicwEKhcme/39zf8/Hqu37zpjxcvAgHocHz37vCZNQv4\n6Sf4d+hgUr2yrCckwGfKFKB/f/jXrZvv/ZLi+5m13qyZP/r04ev79gHJyfJeD7+As5h53gfeH3TB\nzBsD4d9mJfDtt/Dp3t1o55fyeuZc/zksDN0eP8bNjAydj8/6HBYWBkNhOeo0BNIz7vZHH30Ea2tr\nlCpVCl26dMGkSZNw+vRpjB49Gt9//z1iY2Ph5eWFZcuWZR/TokULvHr1Knt92bJlWLRoEZYvX44R\nI0bAzc0NS5cuRceOHd/oozfmKSoqCs2a5Y1zXaRIEZQtWxZRUVG5tmdkZGDAgAEYPHgwatasqdf/\nmQt1FlmbBUAwcnc1B2soq3+Ld9cuPoLTgNbZ0aO8l86A6Y6SkZTEp25s2WKEyoODeby8WbN4Uzog\ngHel9tgAACAASURBVDf5nZ35qGCzcNpJQGQkb4rpGM3L4khO5tHBRo6Uda7MgQPcn/rvv7JJICL+\nFW7WjP+GKCmJ6Lvv+Oj7gwflFaYj1+PjyTkggOIkGj4OC27xZvl4c+KTo8UbFBRErq6uuXy2moiP\nj6dJkyaRnZ0dxWS6pN7OTqRLi1epVFLv3r2pc+fOlKFDL5u6e0ISdDXPATAh87PawVWZ+90B3NSi\nztzq//mHDyZRl8dVB8aO5bNw5J7rN2YMz1ZoNB1PnvBM8h4eRNWrE/3+e+aTqoBx7Zrlj67RRHo6\n0Ucf8TzGZpBP+uxZ/v62ebM859+1i09bzjOd/ORJ/hI2fLjG6XXmRJcbN2ixhM5zSza8J1TEoc9p\neImIVq9eTR4eHmpjWL9NQkICMcbo6tWrRJTX8K5Zs4acnZ0p6a3n4rZt28jOzo7icnyPhgwZQm3b\ntqVUHQcKGdPwOgI4DiAEwFEApTO3uwI4kKPcFgBPAaQCiAAwREOdb5QfOcL9lroMGtJAaipR48bc\nDhmCIT4fPz/+gh4VZZiGfImNJb/5883iga2KdIWCHiQl0fFXr2izISN0t23jLXwVc7mlxqQ+XqWS\nB7pu317nkYHG1BkUxI1f5sBPg9BFZ9Y71uXLagrExhL5+vLsIrkCnRuO1Ncz4PVrqnLuHKVIOHug\noBvetLQ0qlixIm3fvl1lPTNmzKBLly5RWloapaSk0MyZM8nR0ZESM+dGu7q60rEciThSU1OzRzWH\nhYVRenp69qjmBTlCuI0YMYLefffd7Hp0wWiG1xhL9hfFz4//0gICdP6HNXHnDpGTk8q4A1qj7w8x\nNpa/mJuqV0zugA9x6ekUGB9PuyIjaV54OH0REkIfBgZS9f/+o2L+/lT53Dl6/+pVKvvbb4YNMJk4\nkcjHh8+DMSImvZ4TJ/Lh3nqEyjS2zvBwotq1eTAzQ3pttNX57BmfyKAystnb7N/Ps4yMHStZRA0p\nr6dSqaRWV6/SWgOiwKnCUg1v1apVVRret0c1ExHNmTOHGjduTEREZ86cIXt7++x9M2fOJE9PTypV\nqhQ5OTlRmzZt6L8cqbdWrlxJrq6uVKZMGdq5cycREcXExNAXX3xBzs7OVKJECfL09KR169ZlHxMe\nHk6MMbK1tSU7Ozuys7Mje3t72qKlj1CT4TXPfLwBATzD/Y4dQJs2kp9jzRpg2TLg/HnTTrr39eXp\nSFeuNN05jYmSCM/T0nA/ORkPUlJwPzk51+cEhQLVbGxQ3dYW1WxtUd3Ghv+1tYW7jQ2KW/H4LWPu\n3cPj1FRsf+cd/RJWKxRA165A9eo8a7ils3AhsHo1cOYMULas3GpUEhUFdOnC43esWgVY5ztMUz9S\nUvgjoGNH4OeftTzo5Uvgiy94hJaNG4HGjY0jTg8OR0fju/v3cbNpU1hbSZejRuTjNT805eM1T8Nb\nrhywaROQOWJVaoh4YKbKlYFFi4xyijzs2weMGQNcvw7Y6Z4fXjZSFAqEpaTgfkoKHmQa1qzPD1NS\nYF+kCDesmQY252eXYsW0MqQpCgWaXLmCSW5u6O/snG95lbx+zaNuTZjA33AslY0beRb3gAD+BTVj\nEhOBnj35y+S2bYDUgZeIgM8+A1JTef06vZMRAX/9xX90o0cDEyca7+1AS5REaHrlCiZVqYKe5ctL\nWrcwvOaHJsMre9fy2wsAPqDKyERHc1+VPrlIde16evGCx6mQuNc8X7TRqVQq6WVqKl2IjaUtz5/T\nzLAwGhIcTK2uXqVK585RMX9/8jh/njoEBtKXISE0PyKC9kRG0vX4eIqXaESmn58fXY2Lo3IBARRu\nSPfg7dt8TICRsrsbvat5/34+esnASbOm7BJPSyMaMICoRQvdk5Lkp3P2bB4vw6AUvRER3E/evLlO\nWbVyItX13PHiBTW5dEnrAUK6AAvtai7IqLsnRFrM45WD2I4dIU10YPU4OvLGRb9+wLVrgL4Nrfwg\n4r1en30GtGhhnHPkR4ZSiYjUVN5iVdFyZUCu1uq7Dg7o7+yM6jY2qFS8uKRdYupoZG+PMZUqYfCd\nOzjeoAGs9OlyrlOHJ2Pt2RO4eBGoUEF6ocYiIAAYOpTHoq5dW241WlO0KPDnnzykd6tWPO52xYqG\n17t/P/caXLhgYEu6cmXgyBHg99/5D3DKFGDUKJ7U1oRkKJWY/PAhltaooZ87RVCgMMuu5u9DQzE/\nM0CGsfnxR254Dx7UsStLSzZu5PkcLl3SKUe5wdxPTsao0FDcTUrC49RUOBcrxo1rDj9rVpdwGWtr\ns3gYKIjQ+to19ChXDt8Z0s06cyY3YP7+lhE5/8YNoH17no2+fXu51egFETBvHs9jceQIUKuW/nXd\nuAG0bct/k82bS6cRoaHAoEHckq9fz7N2mIi1z55h84sXONmggVF+a6Kr2fywuK5mpzNn6I5B/Uva\nk5bGe6GWLJG+7vBw3vMZGCh93ZpQKpX0YWAgTbx/n+4kJko6bcHY3E9KorIBARSUkKB/JUolzwk5\nZIj8k7bz4/59HtlFzTQJS2P9et3DhufkxQs+O8wowWWI+NzoX37hP8wNG0zy/UjOyKDK587ROYnS\na6oCoqvZ7FB3T4jMdDrRvPBw6nT9upEuR17u3eMzl7Q9pTY+H4WC6IMPiH791TBt+vB3ZCR5XrxI\nx1QM0zdH3r6ea54+pYaXLlGqIS8M8fFE9erxTFYSIbnv9NkzHuDE4CwZuZF7Gtn+/fz3dOSI5nJv\n60xJ4b7in34ynrZsAgP59+Ojj7i114Ch13NhRAR1vXHDoDryQxhe80OT4TWto0NLRleqhNDkZByK\njjbJ+apXBxYsAPr2BZKTpalz2TI+FULrHLsSkZCRge/u3cPyGjVM4ps1Br4uLqhSvDimGhKH1s6O\nDyWfNQs4eVIybZIRG8vnyAwaxPMfFyC6duX5cQcOBLZs0e4YIn4ZnJ2BadOMqw8A0KAB9//UqsU/\n79ljlNPEZ2RgdkQEZlWtapT688PGxuYFYwxiMf1iY2OjPlG6Ooss14LMN7QDUVFU6/x5w1o9OqBU\nEvXty0PiGkpWjl0dkihJxoR792hAAchX+yI1lVzOnqUAQ7vnjh/nI4VzZCaRnaQkolateJYlc+8K\nN4CbN3kyscWL8y87fz5Rw4ZEhngY9CYggPc8DBpEJHF38LSHD6m/IdF6tAQaWldiMb9FdgF5BGUa\nXqVSSR2vX6cFmUmITcHr19y/pCato1akpRE1bWp4WEp9uJ2QQGUDAuiZgUm1zYW9L19Stf/+MzyQ\n/KJFRPXry/RUf4v0dB4wvG9f7o8o4ISFEdWqRfTDD+rfMQ4c4GFUTfhTz0t8PNGXX/IQWcePS1Ll\ny9RUcjpzhu6ZIE66MLyWtZhtXyRjDIuqV8evERGITEszyTlLleIDSz//HHj6VH05fw1ptH79FXBy\nAkaMkF6fJogIX4eGYrKbG1wyh09r0mlOqNPZvWxZtCldGmPu3zfsBN98AzRqBAwZwvs09cTg60nE\nvxgpKcCGDUab0mJO993Njc+UOnECGD4cyMh4s8/f3x+3bvHbsmuXzPFC7Oz4kOxVq4DBg3nQjaSk\nbJ36MDsiAr3Kl0d1W1vpdAoKBGZreAGgdsmSGOjsjJ8ePjTZOVu04L6mzz4DlErdjr18GVi+HFi3\nzjhTkzSx8+VLvExPx0hLmruqBYs8PHAyJgb738qPqROMAX/8AYSFAZl5imVh4kTg1i1uZYoVk0+H\niSlblhvex4+BHj3ejKOIjQW6deMRMr295dWYTYcOfD5TdDR/WbtwQa9qHqekYN3z55js5iaxQEGB\nQO4m99sL3hqFF5OWRs4BAXTFhOm+0tP56Mp587Q/JimJB46XIz1sXHo6VTp3js5k5p4saJyJiSGX\ns2fp/+2deXxV1dX3vyshzEkIZCAQISFhCAokjIL6imJ9tOWDUx2q9hGqtYN1qLbOfVrfWgtardra\n4alzfWtFSlEcilqNQBFICAFkTEICCZCZDEyZ7nr/OCcYQnJzL3dO9vfzOZ+cc+4+Z/3uOSd3nb32\n3muXuzlLz2mUlloxzffe844wd3jqKWsSZp9PSxW8NDaq3nij6vnnWx2JL7zQmgsiaFm61OofMGWK\n6sMPW/Miujjb13d37dL7Cwp8LPArMKHmkFqCMoFGR01/OXiQ18vLWZ2R4bdED8XF1uD9Dz+EadO6\nL//jH0NZGbz5ps+lncZPCwupbGri1fR0/xv3Ew/t3cvOo0f55znnePYMrFtnTcCxZo1nWR7c4dVX\n4Re/sGKuSUn+sRmkOBxw333WRCXz5sHy5X5PIuUeLS3WbCrvv28tBw9avdHnz7dqxzExpx2y59gx\n5uTmsmfWLIZGRPhFptNkDYbgI9Cev+NCJ+POWhwOzcjO1jfLyk77zJe8+abquHGn98npOK7v00+t\nHAjV1f7T1saXdoeqsk5qg4Eez+kqruhsbG3VKRs3emc6tb/8xerx42YP1jO6nu+8Y2WUOMM8wWdC\nsN93h0N1xQrVDz74LNBSXOKU67lvn9Vzcv581chI1QsusJJKb9t2svfYDdu36+PFxX7ViKnxhtQS\nzO+aJwkX4fm0NO7fu5djra1+s3vDDTB7NtxzT9dl6uqsziEvvmjlf/YnqsqP8vP5+ejRJPTwNsO+\nYWG8kZ7OA3v3stfTwda33WZVt266yZpS0FesXm3ZWrnSf7XrEEAErrgCQrLP0ahRVvL1lSuhvNxq\nt9+/36oBJyeT9/DDZJWVcfewYYFWaghiQiLU3MYN27czYeBAfuHHwegNDVYfi8WLrdz7HVm0yEoH\n/Mc/+k3SSd4sL+epkhKyp00jPAhyLfuDZ0pKWF5ZyeeZmZ595+ZmuOQSOP98K8mGt9myxcq7/Le/\nWXYMPRtV2LGDb+Tnc9m6ddz5pz/BBRfAN75hLT7uZGVCzaFFSNR423gyNZXfHTjAvhMn/GYzMtL6\n7bzjDigpOfWzFSuspsKnnvKbnJPUt7Twk8JCXhg7ttc4XYB7kpLoGxbGU/v3e3aiiAh4+21rzta3\n3/aOuDYKC+HrX7eGpxin2zsQYe3IkWxPSOD2xYth3z4rK9n69TB9OkyaZNWO16w5dUyVoVcSUo53\nVP/+3DlyJPd7Oq7TTWbOtMLN3/62FZnMysqiosIadvTaa4GZ2P6x4mIuGzqU2dFdT6AYTOM5neGO\nzjARXp0wgWdKS8lraPDMcHy8lSrwhz+0aqjd4JLOQ4fg0kut6ec6C5H4gZ543wOJKzpVlYeKivhF\ncjL9wsKsTlfXX29NT1ZWZo0P7tPHGh+ckGDlp33jDfBkmJwhZPHI8YpIjIh8JCK7RWSViJzmBUQk\nSUQ+FZHtIrJNRO7yxOb9o0axvr6e1bW1npzGfbv3W21TS5ZYUaXbb7fG2Qdijt1tR47w1/JyFo8Z\n43/jQcCo/v15OjWVm3fu5ISnbbSZmfD883DVVZ7/CNbWWj1eFy3yfwYVQ0D5sKaG6uZmvj18+Okf\nhodbnUUef9yag3TrVrj4Yli2zEoUP2eO1dyRl+dRghdD6OBRG6+ILAGqVfVJEXkAiFHVBzuUGQ4M\nV9U8ERkMbAKuUNVdXZyzyzbeNt6qqODX+/axafp0v4ZZS0utoUXf+hZ89pk117o/59gF6836wrw8\nvhUfzw+8MeN4iKKqXLdjB6P69eNpb8zd/MADVtL8VausMLS7HD9uDS/JzIRnn/V/BhVDwHCoMjUn\nh/9JTubquDj3Dm5shM8//2q40okTX7ULz5sHgwa5dBrTxhtaeOp4dwEXqmq57WCzVHVCN8esAH6n\nqv/u4vNuHW+b87k5IYHb/Zypaflyy/FmZ8PkyX41DcAbZWU8W1rKhl7UoaorqpubmZydzRvp6VzU\nyXhKt2httXqmjhsHzz3n3rEtLVZKpshIK7QY1ANTDd7mrYoKni4pYcPUqZ6NMVeFPXssB/zee9aP\nzHnnfeWInUS4jOMNMTwZiwTUONvupHwyUAwMdlJGXSG3vl4T1q7Vw01NLpX3JitXfuZ3m6qqtc3N\nmvif/+iGujqXygf7eM42PNH5YVWVjlq3Tms9nUhBVbWmRjUtTfXllzv9uFOdDofqwoWql19uzZAR\nBPSG++5PnOlsam3VsevX68e+GMRfW6v69tvW8xUfb6XGu+8+K3FAh2cNM443pJY+3TlmEfkYSGi/\nC1Dg0c78uJPzDAaWAXer6hFnNhcuXEhycjIAQ4YMISMjg7lz5wJfdXSYO3cuC2JjuW3pUn40cmSn\nn/tqu6AgD/CfvbbtnxcVMbWggGNNTeDH7+vr7by8vDM+vv+2bWSUlHDnkCG8np7umZ6YGLIeeQTu\nvpu5EyfCrFndH3/DDfDll8zduBEiIkL+eprt07edXc+Hli9ncG0tl8ya5X370dFkxcbCLbcw96WX\nYNMmsl54wRpHfOAAWaNHUxwTA724ySlU8TTUvBOYq1+Fmj9T1dPyFopIH+A94ENVdRrHcyXU3EZl\nUxMTs7NZnZFBuottIaHKliNHuHTLFrbPmEFs356dLMNdjra2kpmTw69SUrg2Pt7zE777rjV+bONG\nSEzsutyTT1qh5dWr/Z89xRBwjre2Mm7jRt6eOJFznYwu8AllZVY+2/ffh08+QerqUBNqDhk8bYx6\nF1hor98CvNNFuZeBHd05XXeJ69uXh0eN4scFBXjyAhHsqCp37NnDL1NSjNPthEHh4fw1PZ0f5edz\nqLHR8xMuWGB1W7/6aqvzS2e8/LKVNWXVKuN0eyl/OHiQaYMH+9/pAgwfbvWeX7YMKir8b9/gEZ46\n3iXA10RkNzAPWAwgIoki8p69fh5wE3CxiGwWkVwRucxDuye5Y+RIik+c4P3qam+dslvawkH+4vXy\ncppUudVZ7asT/K3zTPGGzllRUfxgxAi+s3u3d17CHnkERoywar72+U7qXLECHn3UcrpBGObrTffd\nH3Sms76lhSX79/O4H7PodYl5GQ85PHK8qlqjqpeo6nhVvVRVa+39h1R1vr3+H1UNV9UMVc1U1amq\n+i9viAcrh++zaWn8uLCQJncn0A0BapubeXDvXv7QyzJUnQmPjB5NVXMzfzp40POThYVZ2VE2bLAy\nULXx+edWbXjlSqsHtKFX8kxJCZcNHco5gcieYwh5QipXszPmb93K3CFD+MmoUT5QFTjuzM+nRZU/\nmh95l9h97Bjn5eaybupUxg0c6PkJCwutBAdvvQXR0dZY3b//3UqAYOiVVDY1MWHjRnKmTSMlSGZ6\nMMOJQose43jb5sD8csYMhvs7q4WP2NzQwOVbt7Jj5ky/zevZE3jhwAFeLyvjP5mZ9AnzwpjaTz6x\n8oWGhVlZrq65xvNzGkKWewsKaHI4+H0QvQwbxxta9JiR/uMGDmRRYiKPFBX53JY/2qYcqtyRn8+v\nxow5Y6cbym1onvDDESOI6dOHJzydSKGNSy6BJ54ga+HCkHC6vfW++4r2OktOnOC1sjIe9fFsQ4ae\nTY9xvACPjh7NBzU15NTXB1qKx7xWVoZDlUWd5X41OEVEeHnCBF44cIBsbz0LixZZ0/wZejWPFRdz\n+4gRPSaqZggMPSbU3MZLhw7x8qFDrM3M9Cx9WwCpaW5m4saNfDB5MlMjIwMtJ2RZWlHBz4qK2Dx9\nOgPDwwMtxxDi7D52jPM3b2bPzJnEBFnTjwk1hxY9qsYLsGj4cBodDt4M4bFtjxYVcU1cnHG6HnJd\nfDwzIiP9Po2koWfys6Ii7k1KCjqnawg9epzjDRPhubFjeWDvXo56OmVcF/iybWpTQwP/rKryyvjA\nUGxD8za/HzuWd6urWVVT4/G5zPX0LqGkM7ehgbV1ddyVlBRoOYYeQI9zvADnRUdzQXQ0i73VucZP\nOFT54Z49/DolxbxVe4khERG8MmECt+7aRXVzc6Dl9HrqW1r4pKaGJfv3s6yigr+Xl5N1+DC7jh6l\ntrk5aDPQPVJUxCOjRzPINFkYvECPa+Nto/TECabk5LBp2jSSg2SsXXe8ePAgr5SVsSYzk7AQbZ8O\nVn5cUMCBxkbemjgxZNv+Qw1VpeD4cdbV1/NFXR1f1NdTePw4mZGRzIiMpFWVsqamU5ZGh4Phffsy\nvG9fEvv1O7necUmIiKC/n5zg6tpabtm1i90zZ9LXG8PTfIBp4w0teqzjBfhlcTFbjhxh2TnneOV8\nvqTa7lC1avJkMkzbrtc53trK9E2beHj0aG5KSOj+AIPbHG1tJbu+ni/q61lXX8/6+noGhoUxOyqK\n2dHRzI6KImPwYKfO61hrK+UdnHHH5VBTE+VNTQwMD+/SMbdfYiMizjjrm6py/ubNfG/ECP47iEcY\nGMcbWvRox3u8tZX0jRt5ZcIEzydKb0dWVtbJaby8xfd276ZfWBjPjx3rtXP6Qqcv8JfOzQ0N/NfW\nrWyaNo2z+vd3+3hzPb9CVSk6cYIv7Nrsuvp6dh87xuTBg5kTFXXS2Y50MuzGE52qyuGWFqcOum05\n3NJCbEREl445sd16ZHj4KRGR96qquPPttyn4/veDOmWrcbyhRbfz8YYyA8LD+U1qKvcUFLBp2jTv\nZDHyARvr61lZXc2OGTMCLaVHkxkZyT1JSSzctYuPp0wx4Xw3ON7aSk5Dg+VobWcbLsLsqCjmREdz\nU0ICUyMj6een/zERYWhEBEMjIpjYzZSgzQ4Hlc3Np9WaC44fZ21d3Sn7W1VPccqbjxzh1sTEoHa6\nhtCjR9d4wXozvigvj+vj4/lBEM4k06rKubm53DVyJN8O4lBWT6HF4eDCvDyujYvjnrPOCrScoERV\nKWlstELGdtvs9qNHOXvQIKsmazvbs/r163Ht5UdaWihv56RbVbk2Li7ov6ep8YYWPd7xwleTyO8M\nwpzHfz54kDfKy1mdkRH0/9w9hcLjxzk3N5esjAzO7qa21BtodDjIbVebXVdXR4vqSQc7OyqKaZGR\nJglJEGMcb2gRnLFXLzNl8GCujovjseJir5zPW+MPq5qa+FlRES+MHesTpxtK4yT9SeqAAfw6JYWb\nd+50ayrJnnI9DzY2sqyigvsKCpiTm8vQtWu5Iz+fwuPHuTI2ljWZmZTNmcOKSZO4f9QoLhgyxCdO\nt6dcT4PBXXp0G297fpmcTHp2NrePGBE0tZyHioq4KSGByWZOT79za2Ii71ZX81hxMb8aMybQcnxG\ns8NB3pEjpwzpOdraerKX8a9SUpgRGcngPr3mp8BgCDi9ItTcxvOlpbxXXc2qyZMDHtZdX1fHNdu3\ns2PmTKLNj15AKG9qIiMnh2Vnn8150dGBluMVqpqaWGs72HX19WxuaGDMgAFWT2Pb2Y4dMCDgz7/B\nu5hQc2jRqxxvs8PBlJwcFo8Zw4LYWJ/YcIVWVWZu2sS9Z51lxpQGmBWVldxXWEje9OlEhugLUFVT\nE/+squKtigqyGxpOtsvOiYpiZlQUUSH6vQyuYxxvaOFRG6+IxIjIRyKyW0RWichp1QYR6SciG0Rk\ns4hsF5EnPLHpCRFhYTyblsa9BQU0utG21xFP23z+fPAgkeHh3Bgf79F5uiNU2qYCqfPKuDjmDhnC\nvS5MpBBM17O6uZmXDh3iv7ZsIXXDBj45fJgfjBzJoTlzeKCmhv9JTuaSoUOD2ukG0/V0RqjoNIQO\nnnauehD4RFXHA58CD3UsoKqNwEWqmglMBi4WkfM8tHvGXDp0KGcPGsSzpaUBsV/R1MQviot5Ydw4\nE+4LEn6blsa/Dx9mZVVVoKU45XBzM68cOsTlW7cyZv16Pqyu5tbERA7OmcNbZ5/NNXFxpuexwRAC\neBRqFpFdwIWqWi4iw4EsVZ3gpPxAIAtYqKo7uijjs1BzGwXHjnFubi7bZswg0c8TWn9n1y6G9unD\nb9LS/GrX4Jw1tbVct2MHW6ZPJ75v30DLOUltczPvVlfzVkUFa+rquCQmhuvi4pg/bJjpEGU4iQk1\nhxaeOt4aVR3a1Xa7/WHAJiAV+JOq3u/knD53vAAPFBZS3tTEq+npPrfVxrq6Oq7bvp2dM2eGbHti\nT+bBwkJ2HTvGP885J6DRiPqWFt6tqmJpZSVZtbVcNGQI18fHM3/YsKAOHRsCh3G8oUW3oWYR+VhE\ntrZbttl/F3RSvFOPqaoOO9ScBPwfEbnQQ90e8+jo0Xx0+DAb6+vdPvZM2nxaHA7uyM/nN6mpfnO6\nodI2FSw6H0tJofjECV4pK+v0c1/qbGhp4W/l5Vy5bRtJX3zBW5WVXBsXR8ns2bwzaRI3JiS47HSD\n5Xp2h9Fp6K10+5+sql/r6jMRKReRhHah5opuzlUvIu8D04HPuyq3cOFCkpOTARgyZAgZGRknk6m3\n/RN4Y/uJlBQWvvkmvx83josvusjl4/Py8ty2ty0tjZg+fUjYsYOsnTt98n1CdftMrqcvtvuFhXF3\nVRX3rF/P3NtuY8yAAT61d6SlhSdXriSrtpYtaWmcHx3NpIICbouKYv6kSWd8/mC5nj1lOxivZ9t6\nsZeSAhn8i6eh5iVAjaouEZEHgBhVfbBDmVigWVXrRGQAsAp4TFX/3cU5/RJqBmvi+XNzc7nTx3mS\ny5uaOCc7m9UZGaQHSfIOQ9c8XVLCiqoqsjIyvJ4c/2hrKx9UV7O0spKPamqYEx3NdXFxXBEbG3Tp\nTA2hgwk1hxaeOt6hwFLgLGAfcJ2q1opIIvAXVZ0vIpOA1wDBCm3/VVV/4+ScfnO8AF/U1fHN7dvZ\nPXOmzzqr3LJzJ8P79mVJaqpPzm/wLg5V5m3ZwmVDh/LAqFEen+9Yaysf1tSwtKKCf9XUMCsqiuvj\n47kyNpZhxtkavIBxvKGFR8OJVLVGVS9R1fGqeqmq1tr7D6nqfHt9m6pOVdVMVZ3izOkGgtnR0Vwc\nE8MT+/e7fEz7cE93rKmt5dPaWn42evQZqPMMd3QGkmDTGSbCqxMm8JuSEvIaGk7ud0fnidZWVlRW\ncuOOHYxYt44/HjjAvJgYCmbN4qMpU7g1MdFnTjfYrmdXGJ2G3orpIgksHjOGydnZ3JaYyJgBrTi8\nGQAAC7NJREFUA7x23rYOVc+kppqhHyHG6P79eTo1lZt37iRn2jT6uzA+ttHhYJVds32/pobMwYO5\nLi6OZ9PSgmqIksFgCCy9KmWkM57Yt4+chgaWn3OO1875nJ0b+qMgyA1tcB9V5drt20nu37/LcddN\nDgcf1dSwtLKSldXVTB40iOvi47kmNpbhfh4jbui9mFBzaGEcr82J1lbSs7N5cfx45sXEeHy+Q42N\nTM7JYW1mJuMHDvSCQkMgqGpqYkpODm+kp3OR/Vw0ORz8+/BhllZW8k5VFWcPGsR1cXFcExfHCONs\nDQHAON7QolfMx+sK/cPDeTo1lbvz82npJo+zK20+Py0s5LuJiQF1uqHSNhXMOmP79uXF8eNZuGsX\nv3rnHW7dtYvEdet4fN8+MgYPZuv06azJzOTOpKSgcbrBfD3bY3QaeivG8bbjqthYEvr25c+HDnl0\nns9ra1lTV8cjAehQZfA+lw8bxjVxcfy/sjLOHjSIzdOn85+pU7k7KYmk/v0DLc9gMIQYJtTcgW1H\njjBvyxZ2zpx5Rr1Omx0OMnNy+L8pKVwdF+cDhQaDwXAqJtQcWpgabwcm2T1Rf15UdEbH/+7AAZL6\n9eOqAM73azAYDIbgxTjeTngsJYWllZVsO3Kk08+7avM52NjIE/v28buxY4OiF3OotE0Znd7F6PQu\noaLTEDoYx9sJwyIi+J/Ro7mnoAB3wt4/KSzk+yNGMNb0YjYYDAZDF5g23i5ocTjIyMnhlykpXOVC\nW+2nhw9z6+7dbJ8xw0xGbjAY/Ipp4w0tTI23C/qEhfHc2LHcV1jIidZWp2WbHA5+lJ/Ps2lpxuka\nDAaDwSnG8TphXkwMUwYP5pnS0lP2d2zzea60lJT+/VkwbJgf1XVPqLRNGZ3exej0LqGi0xA6GMfb\nDU+npvJ0SQkHGhs7/bz0xAmW7N/P80HSocpgMBgMwY1p43WBh/fupbSxkdfT00/77Prt25kwcCCP\npaQEQJnBYDCYNt5Qw9R4XeChUaP49+HDrK+rO2X/JzU1ZDc08KAX5mw1GAwGQ+/AOF4XiOzTh8Vj\nxnBXQQEOVbKysmi0O1Q9n5bGgCDtUBUqbVNGp3cxOr1LqOg0hA7G8brITQkJhAF/LS8H4LclJYwb\nOJD5JkOVwWAwGNzAtPG6wYb6eq768ks+njKFCzdvJnvaNFIGDAi0LIPB0MsxbbyhhanxusGsqCgu\njYnhvNxc7kpKMk7XYDAYDG7jkeMVkRgR+UhEdovIKhGJdlI2TERyReRdT2wGml+PGcPUwkLuP+us\nQEvpllBpmzI6vYvR6V1CRachdPC0xvsg8Imqjgc+BR5yUvZuYIeH9gJOYr9+LKitpX+QdqhqT15e\nXqAluITR6V2MTu8SKjoNoYOnjvcK4DV7/TXgys4KiUgS8HXgRQ/tBQW1tbWBluASRqd3MTq9i9Fp\n6K146njjVbUcQFXLgPguyv0W+CkQnL2mDAaDwWDwE326KyAiHwMJ7XdhOdBHOyl+mmMVkW8A5aqa\nJyJz7eNDmuLi4kBLcAmj07sYnd7F6DT0VjwaTiQiO4G5qlouIsOBz1Q1vUOZJ4CbgRZgABAJLFfV\n/+7inKZWbDAYDG5ihhOFDp463iVAjaouEZEHgBhVfdBJ+QuB+1R1wRkbNRgMBoMhhPG0jXcJ8DUR\n2Q3MAxYDiEiiiLznqTiDwWAwGHoaQZe5ymAwGAyGnkxAMleJyAIR2SIim0UkR0Qu7qJcsoisF5E9\nIvKmiHTbGczLOi8TkV22/Qc6+dyl7+Fjjf1EZIOtYbvdpt5Zubl2mS9F5DN/67Q1RIvI2yKy09Y6\nq8PnQ0RkuX1N14vIRD/pultEttnLXZ18Pl5E1onICRG5t93+JBH51P4unR7rBW0viUi5iGxtt+9J\n+xrmicg/RCTK1WPt/T8XkVI7oU2uiFzmA40u2XCicYaIbLSf2Y0iMt0TjU50dmvH2X0WkW/a/1Ot\nIjLVU43O7Lliy5VnUkTuExGHiAz1hl7DGaCqfl+Age3WJwEFXZR7C7jWXv8j8D0/agwDCoDRQASQ\nB0w4k+/hr+sJhAPrgfM6fB4NbAdG2tuxAdL5KrDIXu8DRHX4/EngZ/b6eKzkLL7WdDawFehnX7+P\ngDEdysQC04BfAve22z8cyLDXBwO7Oz4jXtB3PpABbG237xIgzF5fDPza1WPt/T9v/z18pNElG040\nfgZcaq9fjtVx0xc6u7Xj7D7bz+lYrARCU710PTu154qt7p5JIAn4F1AEDPXms2oW15eA1HhV9Vi7\nzcFAVRdFLwb+Ya+/BlzlS10dmAnkq+o+VW0G/o6VMOQkbnwPn9JORz+sF4bDHYrcCPxDVQ/Y5f2u\n066VXaCqr9gaWlS1vkOxiVg/KqjqbiBZROJ8LC0d2KCqjaraCqwGrm5fQFWrVHUTVs/89vvLVDXP\nXj8C7ARGelOcqq6lw/1U1U9U1WFvrsf6MXXp2HZ4rQesEzvd2nBy7CGsF0aAIcCBMxbo3Fa3dpzd\nZ1Xdrar5ePd6dmrPFVsuPJNtORUMASRgkySIyJViDUf6AGgfunlfRIaLyDDgcLsfmFJghB8ljgRK\n2m2XAiNF5HYRub1tZ1ffw5+IlQd7M1AGZKnqDhH5Xjud44ChIvKZiGSLyLcDIDMFqBKRV+zQ4/+K\nyMAOOrdgOz0RmQmMogun4kW+BC4QK+/4QKwMa2d1vM/dISLJWLWpDT5R2TXfAT60NbjTqfFHdqj6\nRXGSY91D2tsY4qbGB4FnRGQ/ViTEWTpaT+jUTlc6/X2fXbHnqlYRWQCUqOo2H0g1uEOgq9xY4Z/d\nnewfBuxpt51Eh3CUj3VdA/xvu+2bgefd/R5+vpZRWDWgCzvs/x2wDujfdl2BND9rmwY0A9Pt7WeB\nxzqUiQReBnKxIhwbgMl+0LYIyAGygBeAZ7oo12n4FCvakQNc4SN9ozt79oFHsCIZbh0LxPFVx8rH\ngZe8rdEdG11o/Bi40l7/JvCxL66lO3ac3WeskLVXQs3d2XPFVsdjsXIorAci7e0iYJgvnlezdL/4\nrcYrIj+0OzDkipVsAzgZ/ulj13Bpt78aGCIibRqT8EK4yQ0OYNW42nBqv6vv4U/UCt2+D3TsIFIK\nrFLVE/Z1XQ1M8bO8Uqy37Rx7exlwSgcRVW1Q1e+o6lRVvQUrBeleXwtT1VdUdbqqzgVqsV5MXEKs\nDn/LgL+q6js+ktiZ3YVYtfMb3T1WVSvV/vUF/gLM8KI0b9mYpaor7HMtw2r68QUu2fH3ffbEXhfH\npgLJwBYRKcL6PdskIl2l+TX4EL85XlX9g6pmqupUYFDb/rbeebZD6MhnwLX2+i2A337YgGwgTURG\ni0hf4AbglCkNRSS13bqz7+EzRCS2LVQoIgOAr2F1BGvPO8D5IhJuh1NnYbX9+A21cnqXiMg4e9c8\nOsxWJVav5wh7/bvA52q1U/mUtnZkERmF1Y/gb86Kd9h+Gdihqs/5SF6bzZN27R7CPwUWqGqjO8fa\nxw9vt3k1Vrjd2xrdsXGaRiBfrIQ7iMg83HgZckenG3Zcuc/ezBzVnT1ntk47VlW/VNXhqjpGVVOw\nXoQzVbXCe5INLhOIajZwP9Y/Yi6wBpjR7rP3geH2egpWuHEPVg/nCD/rvAyrV2A+8KC973vA7V18\nj+kBuJaTbPubsdpIf9JRp739E6yezVuBOwN036dgvdDkAcuxOrW0v57n2td7J9Ybe7SfdK227+Nm\nrBSoHe9zAlZ7fy1QA+zHCuWdB7Ta32ezfR8u87K2vwEHgUbb7iL7edxn28sF/mCXTQTec3asvf91\n+znIA1YACT7Q2KkNNzROt//3NwNfYDkJX1zLaZ3Zaa/T2X3GmpGtBDiO1VHrQy/o7NReV7Zc1drB\nxl5Mr+aALSaBhsFgMBgMfiRgvZoNBoPBYOiNGMdrMBgMBoMfMY7XYDAYDAY/YhyvwWAwGAx+xDhe\ng8FgMBj8iHG8BoPBYDD4EeN4DQaDwWDwI8bxGgwGg8HgR/4/bdRzUDho1rsAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x113ef4610>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "PRg.plot(grid=True)\n", "plt.hlines(0,0,8,colors='k', lw=5)\n", "plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 116, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAEACAYAAACebi6nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYU/f3B/D3DaCCbIIKCAIqzrr3qLi34KjWWVdtbdXa\n1tHx7Q/bumuts9rWrVVxVlv3QqtWxFkVEEURRIYgm7CS8/vjIgVZAS4kIef1PPeR5K6TBDn5bIGI\nwBhjjDHtJ9N0AIwxxhhTDydtxhhjTEdw0maMMcZ0BCdtxhhjTEdw0maMMcZ0BCdtxhhjTEdIkrQF\nQegnCEKgIAhBgiDML+QYd0EQbguCcF8QhAtS3JcxxhjTJ0JZx2kLgiADEASgJ4AXAPwAvEtEgbmO\nsQBwFUAfIgoXBEFORDFlujFjjDGmZ6QoabcD8IiInhFRJoC9ADzeOGYMgINEFA4AnLAZY4yxkpMi\naTsACMv1+Hn2c7m5AbAWBOGCIAh+giCMl+C+jDHGmF4xrMD7tALQA0B1AP8IgvAPET2uoPszxhhj\nOk+KpB0OwCnX49rZz+X2HEAMEaUBSBME4RKA5gDyJW1BEHgydMYYKyEiEjQdAyt/UlSP+wGoJwhC\nHUEQqgB4F8DRN445AqCLIAgGgiCYAGgPIKCwCxKRVm9eXl4aj4Hj5Dg5To7z9cb0R5lL2kSkFARh\nBoDTEL8EbCaiAEEQPhB3069EFCgIwikA/wJQAviViPzLem9NCQkJ0XQIauE4pcVxSovjZKzkJGnT\nJqKTABq88dwvbzxeAWCFFPdjjDHG9BHPiFYKEydO1HQIauE4pcVxSovjZKzkyjy5itQEQSBti4kx\nxrSZIAgg7oimF7ikXQo+Pj6aDkEtHKe0OE5pcZyMlRwnbcYYY0xHcPU4Y4zpOK4e1x9c0maMMcZ0\nBCftUtCVNi6OU1ocp7Q4TsZKrqLmHmeMVYCnCgX8U1JQKyUFFoaGsDA0hLFMBkHgmlPGKgNu02as\nEkhRKvFdSAg2R0TA1dgYCVlZ4qZUIosIFgYGOUncwtCwxI9NOPFrNW7T1h+ctBnTYUSEIzEx+OTx\nY3SxsMCPdeuiVtWqeY7JUKnyJPGcn7Mfx+d+XMgxWUQwz53IDQxgmTvJc+LXKE7a+oOTdin4+PjA\n3d1d02EUi+OUlrbF+VShwKzHj/EoNRU/u7mhh5UVgPKJs7jEr87jzFyJ39rQEK2Dg/HD8OEwN9Tu\nVjpt+9wLwklbf2j3/xbGWD7pKhV+DAvDyrAwfOboiANNmqCqrHz7lFaRyWBbpQpsq1Qp9TUyVCok\nZifxF+np+O7+fbheu4b37e3xiYNDvhoCxlh+XNJmTIecj4vDR0FBqG9igjX16sHF2FjTIZXJU4UC\nP4aFYXd0NEbVqIE5jo6oq+OvSRO4pK0/OGkzpgMi09PxeXAwLickYE39+hhiY1Op2oejMzKwNjwc\nG8LD0cvKCvOdnNDSzEzTYekMTtr6g8dpl4KujNvkOKWliTiVRFj3/DneunEDjlWrwr9dO3jI5UUm\nbF18P2tUqYLvXVzwtEMHtDU3x6B799D37l1ciIuDpr/E68r7yfQDt2kzpqX8EhPxYVAQzAwMcLFF\nCzSuXl3TIZU7M0NDfO7oiBkODvg9KgrTg4JgYWiI+U5O8JTLIatEtQuMlQZXjzOmZeIyM/H106c4\nHBOD5a6uGFezZqWqCi8JVfaQtiWhoUjMysI8JyeMq1kTVcq5452u4epx/cFJmzEtQUTYGRWF+U+e\nYKhcjkUuLrAyMtJ0WFqBiOATH4+loaF4kJKCTx0dMc3ODmZaPlysonDS1h/8dbUUdKWNi+OUVnnG\n+SAlBe537mD18+c40rQpfnZzK3XCrozvpyAI6G5lhVPNm+PPt96CX2IiXH198c3Tp3iZkVF+QUJ3\n3k+mHzhpM6ZBKUolvggOhvudO3jH1hbXW7dGO3NzTYel1VqamWFvkyb4p2VLvMzIQIPr1zEjKAhP\nFQpNh8ZYuePqcaZR4enp8E9JQVcLC1QzMNB0OBVGnelHmXoi09OxOjwcv754gf7W1pjn5IRmpqaa\nDqtCcfW4/uCkzTTmr5gYTHn4EM7VqiEwNRW9rKww2MYGA21syjTzlrYLUSgws4DpR1nZJGRl4ZcX\nL7Dq+XO0NDXFF05O6GJhoRed+Dhp6w+uHi8FXWnj0tY4M1QqfP74MT569AiHmjbFsqQkBLdvDw+5\nHH/FxqK+ry+63LqFZaGhCEhJ0fg43dfK+n5mqFRY/OwZ2ty8iY7m5rjbtm25JGxt/dzfJHWcFoaG\nmOfkhCfZv0uTHz5E59u3cTQmBqoy/A7pyvvJ9AN3vWQV6qlCgXf9/VGzShXcbtMGNkZG8AEgr1IF\nE2rVwoRatZCuUsEnPh5HY2LQ999/UVUmw2AbGwyxsUEXCwsY6uBwn/Nxcfj40SPUMzaGX+vWOj/9\nqDarZmCAafb2mGJnh0MvX+LbkBB8+eQJ5jk5YUyNGjDSwd8fxl7j6nFWYQ69fIkPg4LwpZMTZteu\nrVa1JRHhbnIyjsbG4s/YWDxRKNDf2hqD5XL0s7aGhZYP+YlMT8ec4GD8XUmnH9UFRIRzcXFYGhqK\nIIUCnzs6YqqdHapXoj4UXD2uPzhps3KXplRi7pMnOBYbi72NG5epd3R4ejr+io3F0ZgY/J2QgHZm\nZhgil2OwjY1WlV6VRNgQHo5vnz3DlFq18I2zc6VKErrKLzERy0JDcSkhAR/Z22OGgwPklaD/BCdt\n/cH1RKWgK21c2hDno9RUdLp9GxHp6bhVyHCmksTpULUqPrC3x7FmzRDRqRNmODjgTnIyOty6hbf8\n/PD1kyfwTUwsUxtmYdSN0y8xEe1u3sSBly9xsUULLK1bt0ITtjZ87urQRJxtzc1xoGlTXG7ZEuEZ\nGXC7fh2zHz1CaFpaoefoyvvJ9IN21y0ynbYnKgqzHj/Gt87OmG5vL3m1cHUDA3ja2sLT1hZKIlxP\nTMTR2FhMDgxEbGYmBtnYYIhcjl5WVjCpgKTJ04/qDjcTE/zWoAG+dXYWe5vfuIFBNjaY5+SEJnow\nxzvTXVw9ziSnUCrxyePHuBAfj32NG2tkicVghQJ/xsTgaGwsbiQloZulJYbY2GCQjQ3sJB4PTUTY\nFRWFeTz9qM6Ky8zEhhcvsOb5c7QzN8cXTk7oZGGh6bDUxtXj+oOTNpNUQEoKRvr7463q1fGLm5tW\nzA0dl5mJk69e4WhsLE69eoV6xsYYkl0Kf6t69TKVhv1TUvBRUBCSlUpscHNDW57NTKcplEpsi4zE\nD2FhqF21Kj53dERbMzPYVami1bUmnLT1ByftUvDx8YG7u7umwyhWRce5PTISc4KDscTFBVPs7NT+\nI1eRcWaqVPg7IQFHs0vhSqKcjmzulpZFrh6VO84UpRLfh4Rgc2QkFjg740N7exhoyR91/v0suyyV\nCgdevsTGFy9w9/JlZDRvDpdq1VDX2Pi/LftxnWrVNL7qGCdt/aH5YhDTeclZWfj40SP4JSXhQvPm\naKrFU0gayWToYWWFHlZW+KlePfinpuJoTAy8QkIQkJKCPtbWGGJjg/42NrAppIr7SEwMPnn0CF0s\nLHCvTRuefrQSMpTJ8G7Nmni3Zk34JCSgdadOeJKWhmCFAsEKBe4lJ+OPmBgEKxQIT0+HXZUqBSb0\nusbGMNeC2iZWeXBJm5XJv8nJGOXvjw7m5lhXv75OD2uKysjAsezhZOfj49HS1DSnFO5mYoIQhQKz\nHj/GI4UCP9evj+48/SiDWHvzLC0NwbmSeu4Eb2JgkJPEXd9I6FJVu3NJW39w0malQkT4LSICXz99\nih/r1sWEWrU0HZKkFEolzmfPyvZnbCzMDAwQm5mJzx0d8bmjo8arQ5luICJEZWTkSejBCkXO42Sl\nEq4SVLtz0tYfnLRLQZvb4nIrrzgTs7LwQVAQHqSkYF/jxmhYxiEy2v5+qohwOzkZwf/8g5F9+mg6\nnGJp+/v5Gscp/l96kiuJ5y6ll6TanZO2/uDGlhJQKJU4ExeHgxERsEhK0shQJk27lZSEUf7+6Glp\nCd9WrWCsw9Xh6pIJAlqbmSGpEsycxbSLuaEhWpiZoUUBf0sKqnb/JyEBwWlpePJGtTvTH1zSLkZi\nVhaOx8biUEwMTr96hZZmZmhlaoqDL1/CxsgIU+3sMLpGDVhW8nG5RIT12dNyrq1XD+/WrKnpkBjT\nW0SEyIyMnKr2iXZ2XNLWE5y0C/AyIwNHYmJwOHt+67ctLDDM1haDc63zrMpehGBTRAROvXqFIXI5\nptrZoWslXL83LjMTUx4+xLO0NHg3box6JiaaDokxlgtXj+sP7k2TLTQtDWueP4f77duo7+uLM3Fx\nmFCrFp537Ii/mjXDZDu7nITt4+MDmSCgt7U1vJs0waP27dHS1BTTg4LQ4Pp1LAsNRWR6uoZfkTRz\nJvsmJqLVzZuoXbUqrrZqVS4JW1fmduY4pcVxMlZyet2mHZiSgsMxMTgUE4OnCgWGyOX43NERva2s\nUK0EbbW2VargU0dHzK5dG9cSE7E5IgKN/PzgbmmJqXZ26GtlpXNrQKuI8NPz51gWGopf3Nww1NZW\n0yExxpje06vqccruBXzo5UsciolBYlYWhtraYqhcjrctLCRNrElZWfCOjsamiAg8T0/HxFq1MNnO\nDq460GkkNjMT7wUE4GVmJrwbN4azDsTMmD7j6nH9IUnSFgShH4BVEKvbNxPRskKOawvgKoBRRHSo\nkGMkTdpKIlxNSMChmBgcfvkSRjIZhsnlGGZri7ZmZpBVQPvz/eRkbI6MxK6oKDSvXh1T7ezgKZeX\nqDRfUS7Hx2NMQABG1aiBRS4uPB6ZMR3ASVt/lPkvsiAIMgDrAPQF0ATAaEEQGhZy3FIAp8p6z+Jk\nqFQ4GRuLaQ8fwv7qVcx6/BhWhob46623ENSuHZbVrYv25ualTtglbeNqamqKn+rVw/OOHfG+vT02\nR0bC8do1fPLoEe4lJ5cqBnWUJE4VEZY8e4YRDx5gg5sbfqhbt8IStq60GXKc0uI4GSs5Kdq02wF4\nRETPAEAQhL0APAAEvnHcTAAHALSV4J75pCiVOPnqFQ69fIkTr16hkYkJhtna4p9WrbSmSrqqTIZR\nNWpgVI0aeKpQYEtkJPr/+y8cqlbFVDs7vFujhkZWxYrKyMCEgACkqlS40bo1alerVuExMMYYK16Z\nq8cFQRgOoC8RTct+PA5AOyKalesYewC/E1F3QRC2AvhTiurxV5mZ+Cs2FodevsSF+Hi0NzfHMLkc\nHnK55GsmlxclEU69eoVNERG4EB+PodlDxzqam1fI0LHzcXEYHxCASbVqYYGzs851mGOMcfW4Pqmo\nYt0qAPNzPS7yl2vixIlwdnYGAFhaWqJFixY50wgePH0alxMScN/NDb6JiWj2+DHetrDA1sGDYWVk\nBB8fHzx89Ah22ce/rtpy19LHf1+8CBMAh9zdEZmeDq8//sCo8+dh1qYNptrZwTUwEJZGRpLfv2u3\nbvg+JARrjx3Dl05OmNOpk1a8H/yYH/Pj4h+//jkkJARMv0hR0u4AYAER9ct+/AUAyt0ZTRCEJ69/\nBCAHkAJgGhEdLeB6+UrawQoFDmf3+A5ITcVAa2sMs7VFX2trjawq5VPOcyYTES4nJGBTRASOxMSg\nt7U1ptrZoZeVVYnWbC4szhfp6RgbEAABwO+NGmm8VqK830+pcJzS4jilwyVt/SFFSdsPQD1BEOoA\niADwLoDRuQ8gItfXP+eqHs+XsHMdj/spKTk9viMyMuApl8PL2RndLS0rfY9mQRDQ1dISXS0tEZ+Z\niT3R0fjqyRNMy8zEZDs7TKpVC06lbHc+9eoVJgYGYrq9Pb6uU6dEXwIYY4xplpRDvlbjvyFfSwVB\n+ABiifvXN47dAuCvotq06127hkyVCsOyx1B3srDg5ALgdlISNkdEYE90NNqamWGqnR2GyOVqfYnJ\nUqnwTUgIdkZGYlejRnDntaAZqzS4pK0/tHJylZuJiWhpalrp5vCWikKpxMGXL7EpIgIBqakYX7Mm\nptjZoVEhS2SGpaVhtL8/TA0MsKNRI9SowqtVMVaZcNLWH1pZz9zKzEyrE3buziCaYGxggHG1asGn\nZUtcbtkSRjIZety9i863bmFrRARSlMqcOP+MiUGbmzcxyMYGx5s108qEren3U10cp7Q4TsZKTq/n\nHq8M6puYYImrK75zdsbx7KFjnwUHY6StLaKfP8etqlVxqGlTdLaw0HSojDHGykgrq8e1LSZdE56e\nju2RkXiWlobFrq6wqeRrfTOm77h6XH9w0maMMR3HSVt/aGWbtrbTlTYujlNaHKe0OE7GSo6TNmOM\nMaYjuHqcMcZ0HFeP6w8uaTPGGGM6gpN2KehKGxfHKS2OU1ocJ2Mlx0mbMcYY0xHcps0YYzqO27T1\nB5e0GWOMMR3BSbsUdKWNi+OUFscpLY6TsZLjpM0YY4zpCG7TZowxHcdt2vqDS9qMMcaYjuCkXQq6\n0sbFcUqL45QWx8lYyfF62owxVkkZGxtHpqWl1dR0HKzkqlWrFqVQKGq9+Ty3aTPGmI4rrE2b/57q\nrsI+U64eZ4wxxnQEJ+1S0JU2Lo5TWhyntDhOxkqOkzZjjDGmI7hNmzHGdBy3aVc+3KbNGGOM6ThO\n2qWgK21cHKe0OE5pcZzM2dkZJiYmMDc3h52dHSZPnoyUlBR0794dW7ZsKfS8xYsXw9XVFebm5nBy\ncsLo0aPVvmdGRga+/PJL1KlTB9WrV0eDBg2wYsWKPMfMnTsXbm5usLCwQOPGjbFz585Sv0ap8Tht\nxhhjGiEIAo4dO4bu3bsjIiICffv2xcKFCyEIhc/Iun37dvz+++84f/48nJ2dER0djaNHj6p9zxEj\nRiA6OhonT55EgwYNcOPGDYwbNw5hYWFYvXo1AMDU1BTHjh1D/fr1cf36dfTr1w/169dHhw4dyvya\ny4rbtBljTMfpapu2i4sLNm/ejB49egAA5s2bh4CAAKSkpGDcuHGYPHlyvnNmzpwJIyMjrFy5ssBr\ndu/eHR07dsS5c+cQGBiIHj16YOvWrbC0tMS5c+cwePBgPH78GPb29jnnXL9+HZ06dUJQUBBcXV3z\nXdPDwwPu7u749NNPJXrlxeM2bcYYY1orLCwMx48fR6tWrfDmFw0rKytcvXoVANChQwfs2LEDK1as\nwM2bN6FSqfJda+fOndi2bRsiIyNhYGCAWbNmAQDOnj2L9u3b50nYANCuXTvUrl0b586dy3cthUIB\nPz8/NGnSRKqXWiactEtBV9q4OE5pcZzS4ji1gyBIs5WWp6cnrK2t8fbbb6N79+746quv8h0TFxeH\nTp06AQDGjh2LtWvX4vTp03B3d0fNmjWxfPnyPMePHz8ejRo1grGxMb7//nvs27cPRISYmBjY2dkV\nGIednR1iYmLyPf/hhx+iZcuW6NOnT+lfpIS4TZsxxvSYpmvPjxw5gu7du5fonNGjR2P06NFQKpX4\n448/MGbMGLRs2RK9e/cGADg6OuYcW6dOHWRmZiImJgZyuRyPHz8u8JoRERGQy+V5nps7dy78/f1x\n4cKFEr6q8sMl7VJwd3fXdAhq4TilxXFKi+NkAPJVhZeEgYEBhg8fjmbNmuH+/fs5z4eFheX8/OzZ\nMxgZGUEul6NXr17w9fVFeHh4nuv4+vri+fPnOW3rAODl5YVTp07hzJkzMDU1LXWMUuOkzRhjTGds\n374dx48fR3JyMogIJ06cgL+/f56e3bt27UJgYCBSU1Ph5eWFd955B4IgoGfPnujZsyeGDx8Of39/\nqFQqXLt2DePHj8dHH32EunXrAgCWLFmCPXv24OzZs7C0tNTUSy0QJ+1S0JU2Lo5TWhyntDhOVtjQ\nrjefNzMzw5UrVwAA5ubmWLx4MerUqQMrKyt88cUX2LhxIzp27Jhz/Pjx4/Hee+/B3t4eGRkZOUO5\nAODgwYPo3r07+vXrBzMzM0yYMAHvv/8+1qxZk3PM119/jbCwMNSrVw9mZmYwNzfH0qVLpXzppcZt\n2owxxjTiyZMnBT5//vz5PI+TkpJyfh46dCiGDh1a5HXr1q2LRYsWFbivSpUqWLJkCZYsWVLo+QX1\nSNcWPE6bMcZ0nK6O0y4P3bt3x/jx4wsc461LeJw2Y4yxSq+o2dQqA07apaArbVwcp7Q4TmlxnKw8\nnD9/XudL2UXhpM0YY4zpCG7TZowxHcdt2pUPt2kzxhhjOk6SpC0IQj9BEAIFQQgSBGF+AfvHCIJw\nN3u7LAjCW1LcV1N0pY2L45QWxyktjpOxkitz0hYEQQZgHYC+AJoAGC0IQsM3DnsC4G0iag5gIYDf\nynpfxhhjTN+UuU1bEIQOALyIqH/24y8AEBEtK+R4SwD3iMixkP3cBsMYYyXAbdqVT3m2aTsACMv1\n+Hn2c4WZCuCEBPdljDGmw5ydnWFiYgJzc3PY2dlh8uTJSElJgbu7O4yNjWFubg5bW1t4eHjkW+Qj\nt4SEBEyZMgV2dnawsLBAw4YN8y3XWZTw8HCMGzcOcrkcZmZm6NChA44dO5az/+XLlxgzZgwcHBxg\nZWWFrl274vr162V67aVVoR3RBEHoDmASgHzt3rpEV9q4OE5pcZzS4jiZIAg4duwYEhMTcevWLdy4\ncQMLFy6ETCbD+vXrkZiYiODgYKSlpeGzzz4r9DqffvopUlJS8PDhQyQkJODo0aOoV6+eWjHExcWh\nS5cuqFatGgICAhATE4PZs2djzJgxOHToEAAgOTkZ7dq1w+3bt/Hq1StMmDABAwcORGpqqiTvQ0lI\nMfd4OACnXI9rZz+XhyAIzQD8CqAfEcUVdcGJEyfC2dkZAGBpaYkWLVrkLI/3+j+QJh/fuXNHq+LR\n9cf8fvL7qc2PtfH9fP1zSEgIdN3r6ns7Ozv069cvzxKbgLhAiKenJ9avX1/oNfz8/LBo0SKYm5sD\nANzc3ODm5pazXyaTYfXq1Vi1ahWSkpIwceLEnJL4ypUrYWZmhk2bNuUc/+677yI0NBSfffYZhg0b\nBhcXF8yePTtn//vvv485c+bg4cOHaNmyZdnfhJIgojJtAAwAPAZQB0AVAHcANHrjGCcAjwB0UON6\nxBhjTH3Zfzd17u+ps7MznTt3joiIQkNDqUmTJvR///d/5O7uTps3byYiopiYGOrVqxdNnjw557zL\nly+TlZVVzuOpU6dSkyZNaOvWrfTo0aN89xEEgXr06EHx8fEUFhZGbm5uOdfv0KEDLViwIN85T58+\nJZlMRkFBQfn23b59m4yNjSkxMbFsb0ARCvtMJZlcRRCEfgBWQ6xu30xESwVB+CD7pr8KgvAbgGEA\nngEQAGQSUbtCrkVSxMQYY/qiLB3RhG+lmaubvEr+d9vFxQWxsbEwNDSEhYUFBg0ahBUrVqBfv37w\n8/ODkZEREhIS0L59e5w/fx7GxsYFXic9PR0//fQTDh48iH///Rd16tTBmjVr0K9fPwBiSfvUqVPo\n3bs3AGDDhg04dOgQzpw5g/r162Pu3LmYNm1avmsaGxvjypUreZb9TExMRJcuXTBu3DjMmzevxK9Z\nXYV9pmUuaUu9Qcu/GRIRXbhwQdMhqIXjlBbHKS2OUzrQ4ZL2+fPn8z2fu6R9//59srOzo4MHD6p1\nzaSkJPrqq6/I1NSU4uLiiEgsafv7++ccc+zYMWrcuDERFV3SFgQhT0lboVBQt27d6IMPPlD/RZZS\nYZ8pz4jGGGNMY6iYmoAmTZrgu+++w/z584s9FgBMTU3x1VdfISUlBU+fPs15Pizsv0FOz549g729\nPQCgV69eOR3OcvP29oaTkxPq168PAMjIyICnpyecnJywceNGtV5buSgok2tyg5Z/M2SMMW0DHS5p\nv27Tzi13SZuIKCMjgxwcHMjb27vA63z//ffk5+dHGRkZlJaWRgsXLiRra2tKSUkhIrGk3atXL4qL\ni6PQ0FBq2LAhbdq0iYiIYmNjqU6dOjR58mSKjIyktLQ02r17N1lYWND+/fuJiCgzM5MGDRpEQ4cO\nJaVSKfXbUKDCPlMuaTPGGNOIwta+fvN5IyMjzJo1C8uWiXN2Xb58Oaen+OvjJ02aBFtbWzg4OODc\nuXM4duwYTExMco7x8PBA69at0apVKwwePDhn+U5ra2tcvnwZCoUCjRs3hlwux6pVq7Br1y6MGDEC\nAHD16lUcP34cp0+fhoWFBczMzGBubo4rV65I+n6og1f5KgUfH5+cIRjajOOUFscpLY5TOjwjWtFk\nMhkeP34MV1dXTYeiNl7lizHGGNNxXNJmjDEdxyXtohkYGODRo0eVoqQtxYxojDHGmNZSKpWaDkEy\nXD1eCrmnEtRmHKe0OE5pcZyMlRwnbcYYY0xHcJs2Y4zpOG7Trny49zhjjDGm4zhpl4KutHFxnNLi\nOKXFcTJWcpy0GWOMMR3BSbsUtH12pNc4TmlxnNLiOBkgTknauXNnWFpaQi6Xo2vXrrh586Za5/71\n119o3749TE1NYWtri/HjxyM8PDxn//Hjx9G1a1dYWVnB3t4e06ZNQ0pKSqHX8/f3R9++fWFjYwNr\na2u0bdsWJ0+eBABcvHgRjo6OBZ7j4eEBS0tLWFhYoGfPnvjnn39y9j969Aienp6oUaMG5HI5+vfv\nj6CgIHXfnnw4aTPGGNOIpKQkDB48GJ988gni4uIQHh4OLy8vVK1atdhzDxw4gLFjx+Kzzz5DbGws\nHjx4gCpVqqBLly5ISEgAIK59/c033yAiIgIBAQF4/vw55s6dW+g1Bw8ejL59+yIqKgrR0dFYs2ZN\nzhznRJRvTvTg4GB06dIFzZs3R0hICF68eAFPT0/06dMHvr6+AID4+Hh4eHggKCgIUVFRaNu2LTw8\nPEr7lvEqX6WhC+vrEnGcUuM4pcVxSgc6usrXjRs3yMrKqsB927Zto86dO9OMGTPIwsKCGjVqlGdF\nsDp16tCKFSvynKNSqahp06bk5eVV4DUPHTpEzZo1K3BfTEwMyWQySkhIyLcvJSWFjI2NycDAgExN\nTcnMzIwiIiJo3LhxNHDgwHzHT58+nbp161bgfV69ekWCINCrV68K3P9aYZ8pl7QZY4xphJubGwwM\nDDBx4kTfSdl+AAAgAElEQVScPHkS8fHxefb7+vqifv36iI2NxYIFCzBs2DDEx8fj4cOHCAsLy1mF\n6zVBEDB8+HCcOXOmwPtdvHgRTZo0yXm8bNkyDBkyBABgY2ODevXqYezYsThy5Aiio6NzjjMxMcGJ\nEydgb2+PpKQkJCYmolatWjh79izeeeedfPcZOXIkrly5gvT09AJjsLOzg5WVlfpvVG4FZXJNbtDy\nb4aMMaZtUJaSNiDNVkqBgYE0adIkcnR0JENDQ/Lw8KCoqCjatm0bOTg45Dm2ffv2tGvXLrp8+TLJ\nZDJKT0/Pd72NGzeSm5tbvudPnz5N1tbW9Pjx40JjCQ8Pp5kzZ1K9evXIwMCAunXrlnO8j48POTo6\n5jne0NCQTp06VeBrkslk9OLFizzPh4WFFbkueG6FfaZc0maMMX0mVdoupQYNGmDLli0IDQ3FgwcP\nEB4ejtmzZwMAHBwc8hzr5OSEFy9eQC6Xg4gQERGR73oRERGQy+V5nrt27RrGjh2LgwcPom7duoXG\nYm9vjzVr1uDRo0d49uwZTExMMGHChEKPl8vlhcYgk8nylKZfvnyJvn37YsaMGRg5cmSh1ywOJ+1S\n0JVxmxyntDhOaXGc7E1ubm6YOHEiHjx4AAB5eoIDQGhoKOzt7dGgQQPUrl0b+/fvz7OfiHDw4EH0\n6tUr57nbt2/D09MT27ZtK9FIAAcHB3z88ce4f/8+AOTrhAYAvXr1yhcDAHh7e6Njx46oVq0aALEz\nWt++feHp6YkvvvhC7RgKwkmbadTx44C3t6ajYIxpwsOHD7Fy5cqc5BwWFoY9e/agQ4cOAICoqCis\nXbsWWVlZ2L9/PwIDAzFgwAAAwIoVK7Bw4ULs3bsX6enpiIyMxJQpU5CUlJRTUr9//z769++PtWvX\n5pxXmPj4eCxYsADBwcEgIsTExGDLli3o2LEjAKBmzZqIjY1FYmJizjleXl64evUqvvnmG8TFxSE5\nORlr167Frl27sHz5cgBiD/k+ffqgS5cuWLRoUdnftILqzDW5gdu09cbTp0S2tkQ2NkR37mg6GsZ0\nF3S093h4eDiNHDmSHBwcyNTUlGrXrk3Tp0+npKQk2rZtG3Xp0oVmzpxJFhYW1KBBAzp79mye848e\nPUpt27YlU1NTsrGxoTFjxtDz589z9k+aNIkMDAzIzMyMTE1NydTUlJo2bZqzf/HixTRgwAAiEnuI\nv/fee+Ti4kJmZmZkZ2dHY8aMydMuPWXKFLKxsSErKyuKiIggIqIHDx7QoEGDyNzcnMzMzKh79+50\n9erVnHO2b99OMpks5/6ve5+HhYUV+d4U9pnygiFMIzIzgW7dgOHDAVNTYNcu4NIloIAaKMZYMSrj\ngiHbt2/H5s2bcenSJU2HohG8YIiEdKWNS5vj9PICLC2BTz8F6tXzgUIhJm5tps3vZ24cp7R0JU6m\nHww1HQDTP2fPAjt2ALduATIZYGAA/Pwz4OkJDBkCWFhoOkLGGNNOXD3OKlRUFNCqFbBzJ9CjR959\n778PVK8OrFqlmdgY01WVsXpc3xX6mWrbB8q/ZJWXSgUMGAC0aQMsXJh/f0wM0LixWBJv1qzi42NM\nV3HSrny4TVtCutLGpW1x/vgjkJwMLFiQ9/nXccrlwHffAR9/XKa5GsqNtr2fheE4paUrcTL9wEmb\nVYjr14EVK4DffwcMi+hJ8f77QGqqeBxjjLG8uHqclbuEBKBlSzFpDxtW/PG+vsDQoUBAAHdKY0wd\nXD1e+XCbNtMIImD0aMDGBli/Xv3zpk4FzMyAn34qv9gYqyw4aVc+3KYtIV1p49KGOLdsEUvMP/5Y\n+DEFxblkiVhFfu9e+cVWUtrwfqqD45SWrsTJ9AMnbVZu/P2BL74A9u4FsufNV5utLfDtt9rbKY0x\nJo3Lly+jc+fOsLS0hFwuR9euXXHz5k21zv3rr7/Qvn17mJqawtbWFuPHj8+zyMjx48fRtWtXWFlZ\nwd7eHtOmTUNKSkqh13N3d4exsTHMzc1hZmYGc3NzXLp0KednMzMzyGQymJqa5jx35coVAMDVq1fR\ns2dPmJubw8rKCh4eHggICMi59sWLF2FgYABzc/M81/f19S3ZG1bQ3Kaa3KDlc+Uy9aSmEjVtSrR5\nc+mvkZVF1KoV0a5d0sXFWGUEHZ17PDExkSwtLcnb25tUKhWlpaXRmTNn6N69e8Weu3//fjI3N6e9\ne/dSWloaRUVF0eTJk8nZ2Zni4+OJiGjPnj106tQpUigUFB8fT/3796fp06cXek13d3fasmVLkfeV\nyWT05MmTPM9dvXqVTE1Nae3atZScnExxcXH0v//9j6ysrOjp06dEVPB63EUp9DMt6ElNbtr+S8bU\n8+GHRKNHE6lUZbvOP/8Q2dsTJSRIExdjlZGuJu0bN26QlZVVgfu2bdtGnTt3phkzZpCFhQU1atSI\nzp07l7O/Tp06tGLFijznqFQqatq0KXl5eRV4zUOHDlGzZs0Kjcfd3Z02F1PSEASBgoOD8zzXtWtX\nmjFjRr5j+/fvT++99x4RSZe0uXq8FHSljUtTcR48CJw+DWzcqN4CIEXF2aED0K9f/rHdmsCfu7Q4\nTmlERWk6gtJzc3ODgYEBJk6ciJMnTyI+Pj7Pfl9fX9SvXx+xsbFYsGABhg0bhvj4eDx8+BBhYWEY\nMWJEnuMFQcDw4cNx5syZAu938eJFNGnSJOfxsmXLMGTIkDK9BoVCgatXr+aLBQBGjhxZaCylxXOP\nM0mFhADTpwPHjgHm5tJcc+lSoEkTYNIk4K23pLkmY5XBxYvA2LFlu4Yg0ZcScncv8TlmZma4fPky\nli1bhmnTpiEiIgIDBw7Er7/+CkBcw3rWrFkAxAS4cuVKHDt2DM7OzgAAOzu7fNe0s7NDTExMvufP\nnDmDnTt34vr16znPzZ8/P99xs2bNwpw5c0BEqFu3Lm7cuFHka3j16hVUKpVasYSHh8Pa2hqAWMst\nCALCw8NhbGxc5D3yKKj4rckNWl6dwwqXkUHUsSPRGzVWkli/nujtt8te3c5YZaBUEi1aRFSzJtHJ\nk7pbPf6mhw8fUps2bWj06NG0bds2ateuXZ7977zzDi1fvpwCAwNJEAQKCQnJdw0vLy/q1KlTnuf+\n+ecfsrW1pQsXLhR5/9JUj6ekpJCBgQH5+PjkO3br1q1kb29PRFw9rlGvFK80HYJWWrBAnAzl00+l\nv/YHHwBJScDu3dJfmzFdEhMDDBwIHD8O3LgB9O2r6Yik4+bmhokTJ+LBgwcAkKcnOACEhobC3t4e\nDRo0QO3atbF///48+4kIBw8eRK9evXKeu337Njw9PbFt2za4l6I2oDgmJibo2LFjvlgAYN++fXli\nkQIn7RIgInzr8y1sP7LFyn9Wvv4mq7Uqsi3u7Flg2zZg+3Zxuc2SUCdOAwNxcpZ584DExFKFWGba\n3rb5GscpLW2K8+pVcZW8Zs2ACxeA2rU1HVHZPHz4ECtXrsxJzmFhYdizZw86dOgAAIiKisLatWuR\nlZWF/fv3IzAwEAMGDAAArFixAgsXLsTevXuRnp6OyMhITJkyBUlJSZg9ezYA4P79++jfvz/Wrl2b\nc155WLp0KbZv345169YhOTkZcXFx+N///odr167By8sr5zgpcgYnbTWpSIWZJ2bicOBhrB2wFrv+\n3YWxh8YiNTNV06FpXFQU8N574hrZNWqU3306dhRLFd9+W373YEwbEQErV4rT+65fDyxbBhgZaTqq\nsjMzM4Ovry/at28PMzMzdOrUCc2aNcOP2bMxdejQAY8ePYJcLsc333yDgwcPwsrKCoDYxr1z506s\nXLkScrkcTZs2RXp6Oq5cuZJzzMqVKxETE4MpU6bAzMwMZmZmeCtXx5glS5Zg4MCBOY8FNXrOFnRM\n586dcerUKRw8eBB2dnZwcXHB3bt3ceXKFbi6uuYcFxERkW+c9uHDh0v0nkkyjakgCP0ArIL4JWAz\nES0r4Jg1APoDSAEwkYjuFHIt0rYSbIYyAxMOT0BEcgSOvnsUFtUsoMhUYNpf03Av6h4OjzoMFysX\nTYepEa+X22zdGli0qPzvFx0NNG0KnD8v/stYZRcXJ3bCfPEC2LcPyO6DlUdlnMZ0+/bt2Lx5My5d\nuqTpUDSi3KYxFQRBBmAdgL4AmgAYLQhCwzeO6Q+gLhHVB/ABgI1lvW9FSc5IxuA9g6HIUuDk2JOw\nqCauYGFsZIwdnjswueVkdNjcAWeCpe3WrytWrhTbmitqSFaNGoCXFzBjBs+Uxiq/GzfEL8R16gCX\nLxecsJl+kWLIVzsAj4joGQAIgrAXgAeAwFzHeADYAQBE5CsIgoUgCDWJqMARhupUUVQIEwBjALwE\n8CdgMtqk4OPqAH0i+wDXAFypuPA0ry2APwG0Q5UqoRV4XxkAP8hkKwDsqcD7MlaRPgLgBeAjrFlz\nEGvWaDoepg2kaNN2ABCW6/Hz7OeKOia8gGO0izmASQBCABwBoCri2GcAfgPQGMAIAFXKOzhtYA4x\nYU4HUJEJGxA/jI8B/ADArILvzVh5MwOwF8BUAJ0AHNRsOBry3nvv6W3VeFG4I1pBzAFMBnAbwFk1\nz0kEsBVABIB+AKzLJzTt8QuAUwBK1olCOtcAnAZQxpklGNMqrgDWA4gD0BFAsGbDYVpHiurxcABO\nuR7Xzn7uzWMcizkmxwaIhdfcWwSKLuxKxgHAaIjJusCuckXIglg93hZi0v8DwGNJo9MSkyFWK7TX\ncBzzATwAcAmAv4ZjYayspgBYAmA2AJ6QgBVMiqTtB6CeIAh1IObWdyGmvdyOQqzP9BYEoQOA+MLa\nswHgHoA6AFpk/1sHYsE1HPmTeWiufzPK+kpcAQyHWB0eVIbr+AGIglhV7gfg77IGpk0aAVgK4G0A\naRqO5SWAbyH2g+yh4VgYKy0TiEWVVgC6Anio2XCYditomrSSbhArhB8CeATgi+znPgAwLdcx6yCW\nO+8CaFXEtQqe002hIAoKIjpzhmjTJqJvviGaMIGoWzciFxeiKlWIatUiat+eaORIorlzidatI/rz\nT6J//y12mSjv+95ku9yWLoVcKm52uWKnwnvtecJz6rCpAw3zHkaJaYlqnSMldeNU1+vlNjdtkvSy\nZYozM5OoRQui3buli6cwUr+f5YXjlEh0NNEvv9CF48fL7RYPHhA1akT03ntEycmlvw4KmfKyWrVq\nkQCIN93bqlWrFlnQZyrJOG0plXpcoVIJREQAz54VvhkZiWMn3tgOpPjh+2c7sGPaSTS3ayHp60nP\nSsfMEzNxOfQy/nj3D7jZuEl6/Yr00UfimNHdu9VbvauiXL0KjBwJBAQAZtwvjZWVQgGsWQP88APQ\noAGQnAwcOSL5eKudO4HPPgOWLxfHYZdFYWN6WeVTeZJ2cYiA2Nj/EnhoKCgkBIG3TkH59AkapVaH\nQaoCcHIStwKSOxwcSjcNERE2+W7AwnNe2NhvHfrV6QlkZkqzZWUVvk+pBAwNxc3AoEw/X71uiE3b\nDLH2ZwNUtyjmeHWvK5NJlv0nTQJsbIAVKyS5HNNHKpX4jfTrr8XB0UuXAvXrA6tWiZl13z6ga9cy\n30ahAGbNAv7+G9i/X5qV6zhp6w/9SdpvUJEKs07MwuXQyzg57iRqmdYSv1GHhhZcSg8NFefrrFUL\nPqamcDc1VT+xKpWAgQFUhgZIQSYMqlaDsbE5BCMj8UuAupuhYYmO93nyBO6urmJiz8oS4yjFz6mJ\nWfj7ohLtW2fBsvobx5ThulCpAAMD+BgZwV0uBywtASurgv8tbJ+pKSAIiI4Wl+/08RH/LQ8+Pj7l\nsuCA1DjOUrhwAZgzR/w/9uOPQJcuObt8fHzgnp4OjB8PLF4MTJ1a6tsEBQHvvAM0bgz8+qt0NUOc\ntPWHXq6nnXta0osTL+bMcgZTU/F/U+PGBZ+YmQk8fy4uFt2mTcmSrUwGGYDkpAi8s/8d2JjYYIfn\njv/uXR58fIAy/lHMzAR6dQOGLQL6zpEkqv8QiQn81CmxuBEfL9a/v/nv06cFPx8fD6SlAZaWqGFp\nifsmVgjragnqZQWhqC8Aub8IVNGLQfWsMAEBwPz5wP37wJIlYjtLQbU/ffuKReMhQ4B//xWnAjQs\n2Z/PffuAjz8Gvv9eXLVOm5qYmO7Qu5J2ckYyhu8bDmNDY+wdsRfVDKuV270Kk6HMwKcnP8W5p+dw\neNRhNLJtVOExqOvrr4Fbt8TvKSVdvatCZGQACQlAXByyYuIxc1wcxg2OR+dGhST5N/+tWlX9Un3r\n1oCjY/ExMe0XFSXOvXvgAPDll2I2rVq1+PPi44F33xW/bHp7A9bFT8iQng58/jlw4oRYHd6qVdnD\nfxOXtPWHXiXtmNQYDNw9EE1tm+KXwb/AUKbZioYtt7dg/tn5+G3wb/Bs6KnRWApy9qy4etft2+W3\netfrz1qqqWuvXAFGjVKzUxqR2CSiTnJ/9Urs8da1q9gjr1cvLf0Ww4qUmiqWkletAiZMAP73P7US\nbx5ZWWLp/OhRcWtU+Jfup0/F6nAnJ2DLFvH7X3ngpK1HCupSrskNhQ35KqPQ+FBquK4hzT8zn1Qq\nVZmuJeVQFd/nvuS40pH+d+5/pFQpJbsuUdnijIoisrcXR9iVhzhFHK36ZxU1XNeQGs5pSAlpRQ/J\nK4n33iOaM0eyy+W4cPw40a+/EjVvTlS3LtGKFUSxsdLfqIy0fihVtgqNMyuLaOtWotq1xSGhjx+r\nfWqhcW7ZQmRrS3TsWIG7//hD3L1qFVEZ/+QUC4UM+eKt8m16UVQIjAlEl61dMLXlVCzttVR7FiQB\n0M6hHW5Mu4FLoZcweM9gxKfFazokqFRiCXviRLFAKaWbL25i6tGpcFntgmvh1/DLoF9Q37o+hnoP\nRXpWuiT3WLYM2LYN8Jd6kjRjY+D998Wqh507gTt3AFdXseu6n5/EN2OSOXtWbNr47TexYdnbG6hb\nt+zXnTQJ+OMPsWPaDz/kLDuXmSlWh3/yiVgQ/+QTbr9mEtL0t4Y3N0hc0vZ97ks1f6hJ225vk/S6\nUsvIyqBZx2dRvTX16F7UPY3G8sMPRB07EmVkSHO91IxU2np7K7X7rR05/eREiy4tosikyJz9Wcos\nGu49nEbsG0FZyixJ7rl6NVH37uVfwqHoaKKlS4mcnYnatBFLXykp5XxTppZ794j69SOqV4/owIHy\n+2V49kyc4Wf8eAoNUlDHjkQDBxLFxJTP7QoCLmnrzabxAPIFJGHSPv34NMmXy+lo4FHJrlnedtzZ\nQfLlctr/YL9G7u/rK1bpPX1a9msFxQTRZyc/I/lyOfXf1Z+OBh4tNCkrMhXkvs2dpv81vczNF0Ti\nTGnNmhHt3VvmS6knK0usJh04kMjGhujTT4kePqygm7M8XrwgmjpV/EVevZooPb3875mcTC+6vEM3\nDNvTuq9fkFLalq5icdLWn63SdkTb92AfZp6YiYMjD6KLU5fiTyiB8h5feiviFoZ5D8PopqOxsMdC\nGMgMSnWdksaZkCD2bF2+HBg+vFS3RJYqC38F/YWf/X7Gncg7mNRiEj5o8wFcrVyLjTMxPRHu29zh\n0cADXu5epQsgl8uXxY6+Us2Upvb7+fQp8MsvYs+jFi3EjmuDBpV4iFBpSfn7SUTIVGUiU5mZ82+W\nKivPc1mqrBLvB4AaL2vAo5+HJHECEDsV/vijOJvZlCnAV19J0vOruPczKwv4v/8DdmwnXO6/EM6n\nfgUOHxaHhVYQ7oimPyrlOO2f/X7Gor8X4cz4M2hWs5mmwymxVnat4Pe+H949+C4G7B6APcP3wNq4\nfNf6JBLHjvbpU7qEHZEUgd9u/Ybfbv0GJwsnTG8zHUdHHy3RkDrzquY4MfYEOm/pjJqmNfFhmw9L\nHkguXboAPXuK42KXLy/TpUrGxUWcTev1kKLly4GZM8U3eOpUoFatcrktEWG172ocvXgU66LXlTqh\n5t6vIhUMZYYwkhnByMAIRjIj8XH2z0YGRnn2q3tsUkYSTp87jRU1VmBSy0mQCWXoXqNUAlu3Al5e\n4rwEN29KPuVoYV68AEaPFkeL3botoEaNb4BDTYD+/YG1a8VvjYxJqFKVtIkI3138Djv/3YnT408X\nWbrTBVmqLHxx9gscDjyMw6MOl+sXkM2bxVEw16+L/a3UQUTwCfHBzzd+xtknZzGqyShMbzMdzWs1\nL1MsT+KeoOvWrljdbzVGNB5RpmtFRQFNmwKXLhU5Mqf83bkDbNggdoTq00csfb/9tmQ9lIgIn5/+\nHBdCLmBup7lqJ9ni9hsIBuXWcfN2xG1MPzYdMkGGDQM3lPz3hgg4eRKYN08ctvXjjxVauj13Tpwk\nbfp0sVBvkLtC7O5dwMMDGDtW/NZYzsMDuaStRzRdP//mhlK2aStVSvr42MfUYmOLPJ2cKoPd/+4m\n+XI57bm3p1yu/+ABkVwu/quOOEUcrb62mhqua0iN1zemdb7rKF4RL2lMtyNuk+1yWzr35FyZr7V6\nNVGPHhXQKU0d8fFEa9YQNWxI1LixuBJdMSvQFUepUtL0v6ZT21/b0qvUVxIFWjGUKiX9euNXsl1u\nS7NPzFZ/6N/t20S9ehE1aEB05EiFfrhZWUQLFhDZ2RGdPVvEgVFRRF27Eg0ZQpRYvqv8gdu09WbT\neAD5AipF0k7PSqdR+0dRt63dJE8eBdHEONg7EXfIZZULzTk1hzKVmWqdo06cqalEb71F9NtvxV/v\n5oubNOXIFLJcakmj9o+iiyEXJek0VlicF55eINvltnTrxa0yXf91pzRv7zJdRtrPXaUiOn+eaMQI\nIktLog8+ILp7t8SXyVJm0ZQjU6jz5s45CU8Xx2lHJ0fT5D8mk8OPDuR937vw36uwMKKJE4lq1iRa\nv166IQ5qxhkVJX5X6NZN7O9WrPR0sVNc06ZET56UV4ictPVo0/lx2skZyRi8ZzDSlek4Oe5k+c7l\nrUHNazWH3/t+uBt1F/129UNMaowk1/38c3Gq9SlTCt6vyFRg+53taL+pPYZ6D4WrlSsCPw7E3hF7\n8Xadt8t1zLu7szs2DtqIgbsH4vGrx6W+jqEhsG6d+FqTkyUMsCwEAejeXZzX8sEDwN4eGDBAbIjf\nvVuc+7IYWaosTDwyEcFxwTg57iTMq5pXQODlw7a6LTZ7bIb3CG8svLQQfXf1RVBs0H8HJCWJs5c1\nby6+V0FBYhNDaVbdK6VLl8SOmu3aiUO/7ezUOKlKFXFlkGnTgI4dxfUAGCsLTX9reHNDCUraL1Ne\nUrvf2tGUI1PULn3quixlFs0/M5+cVzmXuQR64ACRq6tYY/umR7GP6PNTn5N8uZz67epX5HCt8vbL\njV/IdbUrRSRFlOk648cTzZsnUVDlISOD6OBBop49iWrUIPryS6KQkIIPzcqgd/a9Q3129qGUjMo1\nLjwjK4N+vPoj2SyzIa8zX1P6utVEtWoRTZhAFBpa4fEoleJQ/Jo1iY4fL8OFzpwRP9cNGySL7TVw\nSVtvNo0HkC8gNZO2lNOS6iLv+94kXy6nnXd3lur8kBBxGKuv73/PZSoz6XDAYeqzsw/ZLreluafn\n0uNY9ad7LE/f+XxHzTc0L1PzR0SEOITa31/CwMpLYCDR7NlE1tZEgweL2SJ78G9aZhp57PGgwbsH\nkyJToeFAy4lKRS+9t1KYgxldqV+N/v5jjUbCiIkhGjBAnGxIku8LQUFif4aPPpK0ap+Ttv5sOtl7\nPDAmEH139cWsdrPweafPKyiy/2jLOsD3o+9jqPdQDKo/CMt7L4eRQd6qwsLizMwEunUDhg4F5s4V\nh2tturUJv976FY7mjvio7UcY0XhEha2Aps77SUSYeWIm7kffx8lxJ0sd2+rVwJ9/AmfOlLzjtkY+\n95QUYO9eYP16ICEBme9PwTjLc1BaW2H38N2oYpB/adHyjpOyV1TNyCh8S08ven9GBuDv74O6dd2h\nVIpT5yqV4lYj7Ca6H58Dk+RonOr5A47XleGUwUzIVW/BPW0Vqmc55TvnzcdS7YuKAnr18sGuXe7S\n1cQnJABjxgAKhdg8YmNT5kty73H9oXPjtK+HX8eQPUOwvPdyTGg+QdPhaFTTGk1xfep1jD00Fr13\n9sa+d/ahRvXil+NasAAwMye0Gu6Dkfs34MyTMxjZeCT+HP0nWtRqUf6Bl4IgCFjdbzXGHBqDsYfG\nYt+IfaWadObjj8XhbQcOiKsvab3q1cUOB5MnQ3HlIv7+YjS23I6F8fBRkNW5LTawZn/7IBK/jBw7\nJk6PXppkqk6yfd3cXrWq2GT7+t+CtsL2GRkB0dHi9QwMxBFRNimhGHD1a9QPPYfzXRfgTqvJEIwM\n0VgGNJTdw2Usx++GrdC9yjz0MP4UVQyNIJOJ57++RkE/F7WvuOPMzMS5ciRtOrewECcl//JL8fM7\nehRo0kTCG7DKTKdK2meCz2DMoTHYMmQLBjcYXMGRaS+lSgkvHy/s/HcnDo48iDb2hY9VPXIqHhN+\n3IFagzbC0FDA9DbTMb7ZeJ3pwJeelY6BuweirlVdbBy0sVQd4f7+WyzoBAQApqblEGQ5SExPxMDd\nA1HPuh42dVwKg+07gI0bAUtL0PSPcK7GaPxvsQmSk8Xh3yVJoMXtK2i/Qekm6StYQgKwZIm4oMeM\nGcCcOYVOYRf8KhgzTsxAaEIoNgzcgLfrvC1hIBqwcyfw2Wfi7HmDS/83jUvaekTT9fNvbiikTdv7\nvjfV+KEG/f3s7wL3M6JD/ofIdrktbb29Nd++my9u0ljvqSR8aUnu60aRz1Mfne0LkJiWSK1/aU3f\nnP+m1NcYN45o/nwJgypHcYo4av9be/rgzw/yLt+qVNLdZSfosvVgeiWzpsB+n1DWg0DNBVpSGRlE\na9eKnbOmTCEKD1frNJVKRQf9D5LjSkeacHiC7s/LcO2auA7ukiWlHm8ObtPWm00nSto/+/2MxX8v\nxvGxx7ViWlJtadMuiP9Lfwz1Horerr3R37A/YmrEYMONDXiR9ALV7n+AfjWnYM3i8plGs7RK835G\np2/YWHcAABbOSURBVESjy5YumNV+Fma0m1Hie0ZEAG+9Jc5P3rBh+cVZVrGpseizqw+6OnXFT31/\nyqlZ+Ocf4JtvgCdPxNk7x3YOgeGWX4HNm+ETHw/3qlXF4rChYcFbUfuK21+Wc1/vT0mBz/ffw71p\nU3Ga12Yl/3+dnJGM7y5+h213tuFb928xrfW0Us/TX5QK+dyfPwc8PYEGDYBNm9SfljAbl7T1h1Yn\nbSLCtxe/xe/3fsfpcafhYuWi4ehE2py0ASAhLQHjD4/HibMn0KtHL0xvMx0BRwfgyGFDXLxYoUNb\n1VLa9/Np3FN03doVK/uuxMgmI0t8/qpVYvvv6dPqdUqr6M89KjkKvXf2xoD6A7Ck5xIIgoCbN8XF\nKe7dE5P2xIlvfJ5KJXzOnIF7p07iShavN6Uy72N19pXnOUTwad4c7vPmlfl9uh99H9OPTUdaVho2\nDNxQZPNQaVTY565QAJMnA48fi+t0OziofSonbT2i6aL+mxuyq8cr87SkFUGpUtLLlJdERHT9unTL\nbWqbu5F3yXa5LZ0JPlPiczMzxYmq9u0rh8DKKDwxnBqua0heF7xIpVLRv/8SeXqKU2euXUuUlqbp\nCLWLSqWibbe3Uc0fatJHf32kc9O55lCpiBYtInJwyDsesxjg6nG92TQeQL6AANq+K50GbKm4aUkr\ns/h4cQKV/ZpZnrtCXAy5SLbLbckv3K/k514kcnQkSkoqh8BK6Vn8M6q3ph4tvrSYAgKIRo0Sm31X\nrCBKqVzzqEguNjWWPvzzQ6q1ohbtuLNDZ/tt0B9/iAsC7FRvHgZO2vqzaTyAfAEBVOPzPmQ80ZMs\n5Qrq04fo66/FNQHUmuu3AujK3M7nz1+gUaOIPvxQ05EUTYr384+AP6jWiloUFBNU4nPHjiX64ovi\nj6uIz/3JqyfkvMqZvvpzJU2YIP7dXry4ZF8qdOX3szzj9H3uS61+aUVvb32b7kfdL9O1NPZ+/vsv\nkYuLOI1fVtGzEXLS1p9NK+ceH/y2IxI370fAvWqYMUNsb/z5Z3Eoo6OjuN7z0qXA+fPiaBFWsOPH\nxWmtV67UdCTlz6OhB77v/j367uqLF0kvSnTuDz+Io40ePiyn4NQUFBuELpu7wf7pPPwy8VO4uIjN\nm19+qTtD07RFO4d2uD71OkY2Hgn37e6Yf2Y+kjO0ZeJ5Nb31lrhW7vXr4jKfiYmajohpAa3siKZS\nqQocf0sk9pa9fh3w8xP/vXNHTOTt2gFt24r/Nm8ujivVJ8nJ4nsTHPzfduCAuD6BPs3bsPjvxdh7\nfy8uTboEy2qWap/300/AiRPAqVOSLXFdIhfuP8DgfX1A57/HJ29Pxpw54hLRrOwikyMx98xcXAy5\niNX9VsOzoWe5LnQjucxMYNYs4OJFcSKWevXyHcId0fSHVibtksSUlSWWJnMn8qAgMVG9TuLt2okj\nKSSdEKKCEYkzSOVOyrmTdGIi4OIC1K3739a5M9CypaYjr1hEhNknZ+N25G2cGncKxkbqDZ3JzBTf\nqwULgBEjyjfG3KKjgc+X38Xvsn7oJ6zAts/Hokbxk9qxUrjw9AI+Ov4RXK1csbb/WrhauWo6pJLZ\nsEH8Bd29G+jZM88uTtr6Q+eTdkFSU8VpHHMn8uhooHXrvInc0bF0paryGgKSlQU8e5Y/Ib9+XLVq\n3qTs6vrfz3Z24rSLFRGn1KSOU0UqjDs0DqmZqTgw8gAMZerN1nvxIjB+vDhTWvXq5RtnbCywYgWw\n/vANZI0aiJ96r8MHXaSZV1VfP3d1ZCgzsPKflfjh6g+Y3X425nWeh6qGRVfLadX7eeECMHq0uEzp\nxx/n/AHjpK0/dG7ucXWYmIilzM6d/3suNha4cUNM4jt2iLMlEuWtVm/bVpK5+4tUUDX26+35czH5\n5k7K7dr999hCN2Ya1TiZIMM2z20YvGcwPvzrQ/w2+De1qkO7dQO6dgUWLhRn1SwPCQliH4N164Au\no/9BlUke2OW5CUMaDCmfG7I8qhhUwRddvsDopqPxyclP8NaGt7B+wHr0rttb06Gpp3t34MoVYMgQ\ncbD+2rXivLJMb1TKkrY6iMQkmbs0fuMGYGubN5G3aiV+CSjJdd+sxs69JSWJyTh3Kfn15uzM//+k\nlJyRjB7be6C3a28s6rlIrXNevBAn57pyRWxSkSyWZGDNmv9v786joyjTPY5/nwCijOxbgGiCIosL\nArKMGkdMVAKKCop6WQx6juJBDC6Dg8dlRka5yHi4ox50dESuEZdckeAlsggkERGQQQgqAsYjDITr\ngiB4gWHNc/+oSmyb7k53Ut2dvv18zulzqqqr+v11Vaffrvd9q+L0nV9zDQwa9yETV44gf1g+OV1y\nvCvIRGTB1gXkLc5jQKcBzBg0g45NO8Y7Unh+/hlGj3Z+Bc6di7RrZ2faSSJpK+1AKiudEcS+Ffmm\nTc64D9+KvFs358s9UP9yoGZs30dq6snN2CZ6dh/cTebsTO7pdw95A/LC2mbGDGdA2uLFdR+UduiQ\n0xU5fTpkZTm3HN3ZaCmj5o3i7ZveJqtzVt0KMHV26Nghpn40lb+t+xuP/u5RJvSfEHaXSlxVVjrN\n5G+9hWzfbpV2soj3NWf+D4L8w5B4OXzYuaPYzJmqubmqPXqopqSUaHq6alaW6p13qk6b5ty8ZP16\n52Ym9YVdr+vY/tN2TZuRpm9+9mZY6x89qnreeapz5/56eSQ5Dx9Wfe455w5mw4Y5l9yqqhZtLdK2\n09tG9R/f2HGvnS27t2j2a9na88We+vGOj6uX17ecJ3njDbtOO4keCfBzMr4aN3bOsPv1g/HjnWUl\nJU7XkkkM6S3SWTRqEdn52bRu0pqrz7465PqNGsHMmXDbbZCTE3hQWjDHjsHs2U6/eM+eUFTkdLEA\nFG4u5O7372bBvy1gQNqAOrwjEw3d2nRj6ZilFGwqYMQ7IxjcZTDTrpwW71g1GzkSRo2KdwoTI9Y8\nbpLGyh0rGV4wnKKRRfTv1L/G9UeOdMYZTJ1a82sfPw5z5sCUKU43yJQpcPHFvzxf8EUBExdPZOGo\nhfTp0Kf2b8LExP7D+3m85HHmfD6H7M7ZzuOsbM5ueXa9vMbbRo8nD6u0TVJZsHUBdxXdRWluKd3a\nhB5pVjUobdUq6No18DqVlVBQ4Fw+2769c4b9u9/9ep38jflMXjaZJaOXcEH7C7x5IyYmKn6uYPk3\ny1m+zXk0TGlIVucssjtnk9U5q94MXLNKO3nYkKhaKC0tjXeEsFjOkw3tNpSpWVMZNGcQu37eFXLd\njh2dW4jee69zVYBvTlWYN8+p1J991rmE68MPT66wX/70ZR4pfoTi3OKYVdh23L2T1iyN9H3p5A/L\np+L+CpaMXkK/jv0o3FLI+S+cT4+ZPZiwcAKFmwv56V8/xTuuSQLWp22Szu29b+eHgz+Q80YOK8au\noOVpLYOum5cHr74KhYXObUVVnf/B/fjjzvNPPw1DhgQeZf78J8/zzOpnKMktoUurk289aRKLiNC9\nTXe6t+nO+H7jOVF5grLvyijeVsxLn75E7vxcurbuWt2UnnlmJk0aRXC9qDFhsOZxk5RUlQc/eJC1\nu9bywZgPQn65lpZCbq4zOO3JJ51rrqdMgWHDgl8S9syqZ3hx3Yssv205GS0yovIeTP1y9MRR1lSs\noXhbMcu3LWfDtxu4qONF1X3i/Tv1p1GDRlEp25rHk4dV2iZpVWolufNz2Xd4H4W3FIa8Nnf0aOfa\n/T/9CW6+OfR97J9c8ST5G/Mpzi0mrVma98FNQjhw9AArd6ys7hP/eu/XZJ6ZWX0m3rN9T1LEmx5K\nq7STR50qbRFpCRQA6cB24GZV3e+3ThqQD7QHKoG/q+pzIV6z3lfa9epexCFYzpodO3GM69++ntTT\nU5l13aygI4MrK52cWVkDg76WqvJYyWMUbilk2ZhldGjaISqZa2LH3Vte5dxzaA+l20urB7XtObSH\nKzpfUX0m3qVVl1qPTLdKO3nU9WfeZGCZqnYDioGHA6xzHHhAVc8DLgbuEZHudSzXGE80atCId0a8\nw+YfN/Pw8kAfX0dKSug72akqDy19iKKviijNLY1bhW3qr9ZNWnPjuTfywjUvsHXCVsruLmNo16Gs\nrljNFa9dQfpf0xk7fyyvb3y9xkGSJnnV9Ux7C3C5qn4vIqlAqaqGrJBFZD7wvKouD/J8vT/TNv//\n7Dm0h8tmX8adfe7k/ovvj2jbSq1k4qKJrNm1hiWjl9DqNPtH2CYyqkr53vLqpvSS7SW0bdK2uil9\nYMbAkJ8rO9NOHnWttPeqaqtg8wHWzwBKgfNV9UCQdazSNnGxc/9OMmdn8lTWU4zuOTqsbSq1knEL\nxrFp9yYWjVpE81PtX7GZuqvUSjZ+t7G6Kf3jHR/TtXXX6mvEM8/M5Den/HKrPqu0k0eNl3yJyFKc\n/ujqRYACjwZYPWhtKyKnA3OBicEq7Cpjx44lIyMDgBYtWtCrV6/qPqWqazvjOV9WVsZ9991Xb/IE\nm/e9DrY+5Ak2X1/25xnNz+CJjCfIezGP1g+0ZvA5g0Puz+OVxxny1BB+OPgDHz3xEU0bN7X9aZ9P\nz+Z7d+jN/q376dupL5fceglrd63llXmvMGnZJMr3lNNudztaHmlJh9OtKyap1OXG5cBmoL07nQps\nDrJeQ2AxToVd02tqfVfv/4GAy3LWzqodq7Tt9La6eufqXy33zXn0+FG95Z1b9Kr8q/Tg0YMxThha\nfdufwVjO2jtw5IAuLl+skz6YpH1e6mP/MCSJHnVtHn8a2KuqT4vIH4CWqjo5wHr5wI+q+kAYr6l1\nyWSMFxaWL+SO9+6gJLeEHm17/Oq5I8ePcOu7t3LsxDHm3jyXUxueGqeUxjiseTx51HX0+NPAVSKy\nFcgGpgGISAcRKXKnLwVGAVkiskFE1otITh3LNSaqhpwzhL9c9Rdy3shh5/6d1csPHz/M8P8ajiDM\nu2WeVdjGmJiqU6WtqntV9UpV7aaqV6vqPnf5t6p6rTv9sao2UNVeqtpbVfuo6mIvwseLb19cfWY5\n62bMhWPI65/HoDmD2HNoD4uWLmLoW0Np1rgZBTcVcEqDU+IdMaD6uj/9WU5jImf3HjcmhAcveZDv\nD37PtW9dy6HyQ/T+bW9mXTeLBikhbolmjDFRYrcxNaYGqsr498fTMKUhzw5+1rNbTxrjFevTTh5W\naRtjTIKzSjt52ClDLSRKH5fl9Jbl9JblNCZyVmkbY4wxCcKax40xJsFZ83jysDNtY4wxJkFYpV0L\nidLHZTm9ZTm9ZTmNiZxV2sYYY0yCsD5tY4xJcNannTzsTNsYY4xJEFZp10Ki9HFZTm9ZTm9ZTmMi\nZ5W2McYYkyCsT9sYYxKc9WknDzvTNsYYYxKEVdq1kCh9XJbTW5bTW5bTmMhZpV0LZWVl8Y4QFsvp\nLcvpLctpTOSs0q6Fffv2xTtCWCyntyyntyynMZGzStsYY4xJEFZp18L27dvjHSEsltNbltNbltOY\nyNXLS77incEYYxKNXfKVHOpdpW2MMcaYwKx53BhjjEkQVmkbY4wxCSIulbaIXCciG0Vkg4isE5Gs\nIOtliMgaEflKRN4SkYYxzpkjIlvc8v8Q4Pmw3keUMzYWkU/cDJtEZGqQ9Qa663whIiWxzulmaC4i\n74jIZjfrAL/nW4jIPHefrhGRc2OUa6KIfO4+8gI8301EVonIYRF5wGd5mogUu+8l4LYeZJslIt+L\nyGc+y6a7+7BMRN4VkWbhbusu/6OIVIjIeveRE4WMYZURImM/EVnrfmbXikjfumQMkbPGckIdZxG5\nyf2bOiEifeqaMVR54ZQVzmdSRB4UkUoRaeVFXhNjqhrzB9DEZ/oC4Osg6xUAI9zpF4FxMcyYAnwN\npAONgDKge23eR6z2J9AAWANc6vd8c2AT0MmdbxOnnP8J3O5ONwSa+T0/HXjMne4GLItBpvOAz4DG\n7v77ADjLb502wEXAn4EHfJanAr3c6dOBrf6fEQ/yZQK9gM98ll0JpLjT04B/D3dbd/kffd9HlDKG\nVUaIjCXA1e70YKAkSjlrLCfUcXY/p+cAxUAfj/ZnwPLCKaumzySQBiwGtgGtvPys2iM2j7icaavq\nIZ/Z04Efg6yaBbzrTr8GDItmLj/9gXJV/aeqHgPeBq73XSGC9xFVPjka4/zY+MlvlZHAu6q6y10/\n5jnds8HLVHW2m+G4qv7st9q5OF9IqOpWIENE2kY5Wg/gE1U9oqongBXAcN8VVPVHVf0UOO63/DtV\nLXOnDwCbgU5ehlPVlfgdT1VdpqqV7uwanC/isLb14dlI4xDl1FhGiG2/xfmxCdAC2FXrgKHLqrGc\nUMdZVbeqajne7s+A5YVTVhifyf8AJnmV1cRe3Pq0ReQGEdkMLAR8m5veF5FUEWkN/OTz5VQBdIxh\nxE7ATp/5CqCTiNwlIndVLQz2PmJJRFJEZAPwHVCqql+KyDifnF2BViJSIiL/EJExcYjZGfhRRGa7\nzaUvi0gTv5wbcStMEekPnEmQCslDXwCXiUhLEWkCDAHO8D/ONRGRDJyzuE+ikjK4O4BFboYOIlIU\n5nYT3Ob1V0Skec2r14pvGS0izDgZmCEiO3BaYB6OUsaA5QTLGevjHE554WYVkeuAnar6eRSimliJ\n96k+TpPV1gDLWwNf+cyn4deEFuVcNwIv+8yPBp6L9H3EeF82wznzutxv+fPAKuDUqv0KdIlxtouA\nY0Bfd/6vwBN+6zQFXgXW47SsfAL0jEG224F1QCkwE5gRZL2ATb44rSzrgOujlC890GcfeASnBSWi\nbYG2/HK555PALK8zRlJGkIxLgRvc6ZuApdHYl5GUE+o44zSze9I8XlN54ZTlvy1wmvvd0NSd3wa0\njsbn1R7RfcTsTFtExruDPdaLSGrVcnWarBq6Z9b4LN8DtBCRqoxpeNBEFoFdOGd6VUKWH+x9xJI6\nzc3vA/6DaSqAJap62N2vK4ALYxyvAudX/jp3fi7wq8E0qvq/qnqHqvZR1VygHfBNtIOp6mxV7auq\nA4F9OD9qwiLO4Mi5wOuq+l6UIgYqdyxOq8DISLdV1d3qfnMDfwf6eRjNqzIGqOp897Xm4nRXRUNY\n5cT6ONelvCDbng1kABtFZBvO99mnItLOu9QmFmJWaavqC6raW1X7AL+pWl41CtKtTPyVACPc6Vwg\nZl+KwD+ALiKSLiKnALcC/+27goic7TMd6n1EjYi0qWreFJHTgKtwBs35eg/IFJEGbhPwAJy+rphR\n1e+BnSLS1V2UDXzpu444o8sbudN3Ah+q0y8XVVX95iJyJs64iTdDre43/yrwpao+G6V4VWVWl+uO\nxJ4EXKeqRyLZ1t0+1Wd2OE4XgdcZIynjpIxAuYhc7r5WNhH8kIokZwTlhHOcvbwjWU3lhSrrpG1V\n9QtVTVXVs1S1M86P6N6q+oN3kU1MxOP0HngI5494PfAR0M/nufeBVHe6M04T6Vc4I8kbxThnDs7o\ny3JgsrtsHHBXkPfRNw778gK3/A04fcK/98/pzv8eZwT5Z8C9cTruF+L8GCoD5uEMAPLdn7919/dm\nnDOF5jHKtcI9jhuAgQGOc3uc8Q37gL3ADpzmx0uBE+772eAehxyPs70J/A9wxC33dvfz+E+3vPXA\nC+66HYCiUNu6y/Pdz0EZMB9oH4WMAcuIIGNf929/A7Aap4KJxr68KFA5vjlDHWfgBvez8S+cQW2L\nPMgZsLxgZYWb1a+Mb7DR4wn5sNuYGmOMMQnC7ohmjDHGJAirtI0xxpgEYZW2McYYkyCs0jbGGGMS\nhFXaxhhjTIKwStsYY4xJEFZpG2OMMQnCKm1jjDEmQfwfOg3IRaI7mbIAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x103b39610>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "SpO2g.plot(grid=True)\n", "plt.hlines(0,0,8,colors='k', lw=5)\n", "plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 117, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAEACAYAAABxrEWZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FOX2wPHvJCEkkAoJIfQaVBRBRboEkY6CUkSwBLBc\nLFjuxYLyAwsWREVArw0EQQUEriJIhyhdUFBBpEkJIQQJ6aTv+f0xSUjb1E02m5zP88yT3dl3Z85O\nAmffMu9riAhKKaWUqtyc7B2AUkoppYqmCVsppZRyAJqwlVJKKQegCVsppZRyAJqwlVJKKQegCVsp\npZRyADZJ2IZh9DcM4y/DMI4ahvFcAa+PNgzjt8xtu2EY19nivEoppVR1YZT1PmzDMJyAo0Bv4Byw\nFxglIn/lKNMZOCwisYZh9AemiUjnMp1YKaWUqkZsUcO+GTgmIqdFJA1YAgzJWUBEdotIbObT3UBD\nG5xXKaWUqjZskbAbAmE5np+l8IT8ILDWBudVSimlqg2XijyZYRi9gLFA94o8r1JKKeXobJGww4Em\nOZ43ytyXi2EY7YBPgP4iEm3tYIZh6OTmSilVQiJi2DsGVb5s0SS+F2hlGEZTwzBcgVHAqpwFDMNo\nAqwA7hORE0UdUEQq9TZ16lS7x6Bxapwap8aZtanqocw1bBHJMAzjcWAD5heAeSJy2DCMR8yX5RNg\nClAH+NAwDANIE5Gby3puezl16pS9QygWjdO2NE7b0jiVKhmb9GGLyDqgTZ59H+d4/BDwkC3OpZRS\nSlVHOtNZKYSEhNg7hGLROG1L47QtjVOpkinzxCm2ZhiGVLaYlFKqMjMMA9FBZ1We1rBLITQ01N4h\nFIvGaVsap21pnEqVjCZspZRSygFok7hSSjk4bRKvHrSGrZRSSjkATdil4Ch9WhqnbWmctqVxKlUy\nmrCVUkopB6B92Eop5eC0D7t60Bq2Ukop5QA0YZeCo/RpaZy2pXHalsapVMlowlZKKaUcgPZhK6WU\ng9M+7OpBa9hKKaWUA9CEXQqO0qelcdqWxmlbGqdSJaMJWymllHIA2oetlFIOTvuwqwetYSullFIO\nQBN2KThKn5bGaVsap21pnEqVjCZspZRSygFoH7ZSSjk47cOuHrSGrZRSSjkATdil4Ch9WhqnbWmc\ntqVxKlUymrCVUkopB6B92Eop5eC0D7t60Bq2Ukop5QA0YZeCo/RpaZy2pXHalsapVMlowlZKKQem\nXYjVh036sA3D6A/MwvwCME9E3iqgzGxgAJAIhIjIASvH0j5spZQqpg/3fshjNz+mfdjVQJlr2IZh\nOAFzgX5AW+AewzCuylNmANBSRFoDjwAflfW8SilV3e0M28m00Gn2DkNVEFs0id8MHBOR0yKSBiwB\nhuQpMwT4AkBE9gDehmEE2ODcduEofVoap21pnLYj4hhxQuWNMyI+gpHfjGTB0AX2DkVVEBcbHKMh\nEJbj+VnMJF5YmfDMfZEFHdAwtGVHqarDG2gPdMixtQLeAXrZMS4H5gw8AJyAQf8eZO9oVAWxRcJW\nSqlMgeROzB0Af+B3YD/wI+ZwlyRgA+ADLLZLpA6tL+Yl/AngIeBTu4ajKoYtEnY40CTH80aZ+/KW\naVxEmWwdgZqYo9OSgQzMv81IILXs8SqlyszArCU3BFoDwzBr0buAY4AF+AZ4CvOfekEDSfsCrwGn\ngW3lH3JV0RJwA5YB0hKItm88qsLYImHvBVoZhtEUiABGAffkKbMKeAxYahhGZyBGRApsDgfoBgTk\n2epjfk+/jJm4z2f+zLnl3Zdigw+nlKqBOZ40Z625HXAJs9a8H3Pc6X4K+R5egL+AV4H1QAiwzmYR\nV1n1gbuAhUDGGOAt4Fa7hqQqji1v63qfK7d1vWkYxiOAiMgnmWXmAv0xK85jReRXK8eyGpAB+JI/\nkReU3OtxpVZenOSeXPqPr1QV4gFcT+7k3AY4yZXkvB84gO1qdp0wv9OPxGwyt7+OwKPAIOA/wFIq\nQQXAHXgY2AQcGoH5X25v4DCA3tZVDVTducRFIDoaIiOvbOfP536ec6tZE+rXh4CA/Fve/bVq5T6P\nxQIZGZCefmUryfPyKmuxgLMzODmZP7O2op5X9Htq1gQPD/O66oDDCnPhAuzfn3sLD4e2baFDhyvb\nddfl/pMvD6GhMHIkrFoFnTuX77msunwZliyBDz+ES5dgwgTo2xdefhkOHjT333abXULLsGQw8KuB\ntKvXjq6JbzNhAmzYAO3ama/rXOLVQ9VN2CUhAjExxUvu58+bSUbkSnLMSkQuLuaW83FRz8uzrJPT\nlS8TWVtRz21VpiTvSUmBhATzZ+3aZvL29DR/5nxc0L6iXnd1rfZfAkTg5Ek4cCB3cr58Gdq3z52c\nr7rK/POxhx9+gLFjYf16M64Kc+wYfPQRLFxoflt47DHo18/895Pl++/hiSegWzd45x3zS3wFmrx5\nMnvC9zDRdz0PP+jC2rVwww1XXteEXT1owi4pEULXrSM4ODh3YqyEQkNDzTgruew4MzLMxJ21xcfn\n/mntcWGvi5Qt4ed4HHrkCMG9e9v7chUqPR2++CIUF5fg7MR84ID5PShnYu7QAZo1s+93mYL+Ples\nMPPi5s1w9dXlePKMDFizxqw1//orjBsHjzwCzZtbjzMxEV59FebNg1degYcfNv/9l7OVh1fy9Pqn\nmdFqH0+M82f1arg5z42zmrCrB72tq6QMA9zdzU3ZlrMzeHubm62kphY/4Z89a/31rMdDh8KQIWYN\nzMPDdnHawOHDZniJiWZFsEMHeOEF82e9evaOrniGDTNr/n37ms3kLVva+AQXLpgJ96OPoEEDePRR\n+PZbcHMr+r21a8Obb8K995rN5QsWmMfp0MHGQV7x18W/+Nfqf/Fy0A88Ptafb7/Nn6xVNSIilWoz\nQ1KqEgoLE/ngA5G+fUU8PUUGDRL55BORiAh7RyarVon4+YnMn2/vSGzjv/8VadZM5MwZGxzMYhHZ\nsUNkzBgRHx+R8eNFfvmlbMfMyBCZN0+kXj2Rp54SiYuzQaC5xSbHSps5beS5JfPEz08kNNR62cz/\nN+3+/7du5btpk7hSpREbC2vXmrWz9evN9tshQ8wqbps2FRaGCEyfblb0li+344CtcvDOO/DJJ/DT\nT+ZYzxJLTIQvvzSbvS9fNmvTDzwAvr62C/LiRXjuOXME2KxZcNddNulnsIiFYcuGYSTUZ/sL/+Wr\nrwof76ZN4tWEvb8x5N1wgBr21q1b7R1CsWictmU1zpQUkfXrRSZMEGnYUKRNG5FnnxXZudOsiZWT\n+HiRYcNEOncWCQ8vRpyVTHHinDZN5LrrRKKiSnDgw4dFJk4UqVNHZOhQkQ0byvR7KNb1/OknkWuu\nERk4UOTvv0t9riyv//S6XDurs/gFJMvatUWXR2vY1WKrnKOllHIkrq5mp+uHH8KZM7BoEdSoYQ5K\natDA/LlmDSTb7m7/kyeha1ezuz801DxNVfR//2cOF+jfH+LiCimYng4rV0Lv3hAcbA4U3L8f/vc/\n6NOn/AeG9uhhnu+WW6BjR3jjDXP8RCmsP76ed3fMIeL95cz/tCb9+9s4VuWwtElcqfJ04gR8953Z\ndP7bb2byGDIEBg2COnVKdcjNm2HMGHjpJfMOpKp+15qI+TkPHoR16/LcEx4RAZ99Bh9/bI7wfvRR\nc+Saq6vd4uXUKXj8cfj7b/jvf6Fnz2K/9WT0SW76uDOy9Bs+fekWhg0r3vu0Sbx60IStVEX55x9Y\nvdpM4Fu3wo03msl7yBDzHqsiiMD775sDlb/+GnpVo4WuLBbzHu3z52HVd0LNPT+ZLRobN8Ldd5uj\ntrNmEakMRMwvaU8+CbfeCm+/Df7+hb7lctplbvywG+fWjOXjcRMZNar4p9OEXT1ok3gpVNb1cfPS\nOG2rzHH6+5tZ59tvzZrhk0+ate6bbzZnCpk2zWxWLeALa3Ky+dbPP4fduwtP1lXxejo5wbz34hj+\nz4ecr3cd8q8JZjP0yZNmLbYck3WprqdhwJ13wqFDULcuXHut2RJgsRRYXEQY/dW/OL23LbPHPFGi\nZK2qD03YStlDrVpmzXr+fDN5z5lj3uc9YoRZ25440Wz7TksjPNxsVU1Kgp07i1UZr1oOHoTHHsOl\nVTPGN9/KR9fM4d4Oh8iY8Lht79kvD56e5nD39evNhH3LLfDHH/mKTVs7lx9++Z2ZPT/hgQe0oqwK\npk3iSlUmIvDnn9n93mlHTrAqbQBOQ4cw9KP+GF6e9o6wYqSmmi0RH3xgTh368MPw0EPQsCFJSeYQ\ngJYtzdu+HKYP32KBTz+FKVPM5pL/+z+oXZtvft7GqJXDmdZoF1Meb1GqQ2uTePWgCVupSmrePHj/\n2XC+HLWK6058Z1avu3c37/W+/XYIDLR3iLZ39qyZhT/7zLyf/bHHzJaIGjVyFUtIMAfm33wzvPee\nAyVtMNck+M9/4KefOPb8y1x96kUe9J/HR/8p/XBwTdjVgzaJl0JV7CO0J40zt7Q0c5Dx22/DNzsb\nct0HE8zh0WFh5sQfoaFwzTXQpYs5Au3w4Vz93g53PUXM5v9hw8y+6Oho2LTJHJg3fHi+ZA3mrLA/\n/AA//mhWVCskTlsJCIBFi4ic8QkyeQI/fe/NRyOvse05VJWkc4kru7p40Zw0TJn++cfsxvbwgD17\n8nTRenubI6LvvttsMv7xR7PpvE8fc57rrBHnUVHmnNnWljStLAvWJCTA7NnmaO8aNcza9IIFZr9v\nMfj4mBOM9expfvznny/fcG3pwgW4avV3NHniNva7dDSX3nr+eXMgYgFfUJQCbRJXFUTyLPGY9TMh\nwcwdISHw7LMVvmphpXLggNnaPWaMuRhUsReCEjFXnPr2W3MZyPPni17qFIpez9zaZotyKSlmrbp/\nf/Pe6e7dS92ufe6cOZbrySfNlb4qu6gouD7kc5JufJOTL+zFq6YXHD9ufmGJiDDnme3atUTH1Cbx\n6kETtrK51FSzlTZnYv7tN7Pi1L6DcFX7aJpcHUndZucxPCKpSxvWfNaBRYvMsTjPPlvKuaMd2NKl\nZjP4Bx/AyJEVcMLirFde0GarMmBOjm2jb2inTplJe9o0c6XMyio6Grrc9QtnevZn76M/0rZejqZw\nEVi2DJ55xhxV9+abxZ5cRxN29aAJuxQcbp3pchQXB/sPWNixP4q9f0Zy8GQkp6MiqdMkkrpNIqlV\nLxLDM5IUl0iikiO5kHiB2q61CagdQIBHAPVq12Pj5o18+cyXdPAYxJtvmus1jBsHkyZVrmUhy+N6\nZmSYM5YtWWJWkK+/vuzHrK5/n0ePmrOSvvsuNr2P2VZxxsZC8MCL/H3bTcy7+x2GX2NlGrPYWHMk\n+TffwFtvwX33Fdn6oAm7etA+bFWgDEsGFy9fJDIxksiESM4nRHIsIpI/T0dyIjKSiLjzRKdFkuYa\nCbUu4ooXvo0DaHBtAEPqBdDAy0zIAbVbU9+jfuZjM0HXdKmZ61wf8iHjVo3jw4EfMnv2MJ57zpyK\n+aqr4MEHzcRdxCRRDikmBkaPNidF2bsX/PzsHZFjCwoyb3fu08e8zf2OO+wd0RXx8dB/YDoXg0fx\nr+6jrCdrMMcqzJ4N998P//qXOVvOhx+aK8Kpaq1S1rAtFguGQ92n4RjSLelcSLxAZEJkdiLO9TPH\n40uXL1HLyRfXtAAscQEkXgjAuBxAI58AWgcGcF2LAG6+JoCOVwdQ38sfV+eyzd28P2I/A78ayMw+\nMxnTbgxg3uHzxhvmNJwPPWQm7qqS1A4fNvur+/Uz59XQcUa2s3ev2aJc1JKUFSUxEQYOhJiOz+Hf\n7lfW37sOZ6diDlDIyDBncnv5ZXjkEXjxRXB3z1dMa9jVQ6VM2K+EvsKUnlPsHYpDOxZ1jFd+eoVz\n8eeyk3BMcgx13etm13YDPAKoWzMAS3wACecDuHAygLDDARz/LYAAD39uaO9C+/bQoYM5c2aDBuV7\nv+uhC4fou7gv03pO46EbH8reHxYGr79udu89/DD8+9+Onbi//x7GjzdbO8eOtXc0VdO2beZdYitX\nmuPZ7CUpCQYPhow233C6zbPsfWgvfrVK8cd77pzZt713rznQIc8SXpqwqwl7r++ZdwOk6XtNZdFv\ni6SyquzrDZ+LOyfNZjWTkPdCZOOJjfL7+d8lMiFSIi+ky6ZNIjNniowZI9K2rYi7u0j79iIhISLv\nvy/y448iMTEVG2/O63n04lFp8l4TeX/3+/nKnT4t8sgj5jLHL7wgcvFiBQYpZf+9Wywir71mLpm9\na5dtYipIZf/7zFLecW7YIOLvL7J3b9mOU9o4k5JE+vUTGRRySPxm+Mkv534pWyAiIuvWibRsKTJi\nhMjZs9m70fWwq8VWKfuw14xew61f3EpDz4b0al6NliSygdjkWPp/2Z+Q6x7EeWc3ti0Mzh6pHRtr\nDmrq0MFcNvg//zHn37DnSoR5ta7bmp9CfqL3F725nHaZ57tfubm2SRPzjpcXXjBr3EFB5iJNzzxT\n6pUqK0xCglmbDguDn3+uuutXVyZ9+pgTpg0ebM7Dcu21FXfu1FTzfno371gO33AnM3vM5IbAG8p+\n4H79zLnI33jDbPaaMsW8LU5VC5WySVxE2HJyC/esuIetD2zlGn+dBag4ktOT6b+4P27x13LkvTk0\na2rQrduVJu3mzSvHfBnFER4Xzm2LbmPENSN4OfjlAsc0nDoF06ebzZ6PPmombl/fio+1KCdPmv3V\nN95ojh1yc7N3RNXLkiVmN0poKLRuXf7nS0sz57bJsFiwjLyTpj6NmTtwru1P9Ndf5h9+bCzGr78i\n2iRe9dm7ip93M0MyLTywUJrNaiYR8RGiCpeekS69Px4mfo8Ol+vapcvmzfaOqOwiEyKl3X/byb/X\n/1ssFovVcn//LTJ+vEjduiL/938i0dEVGGQRNm8WCQgQmT3bbBJX9jFvnkiTJiKnTpXvedLSRO6+\nW2TgQJGpm1+VrvO6Skp6Svmd0GIRWbRIm8SryWb3APIFlCNhi4i8HPqy3PTJTZKQkiCVRWXrIwwP\nt8hV/35UXB8Klg8+TpL0dHN/ZYvTmsLijLocJR0/6SgTVk+QDEtGocc5cUJk7FgzcU+davvEXZLr\nabGIzJplJuuK/vJUFX7v5eH9983u33PnSva+4saZni5y770iffqIfHvwB2nwTgMJjwsveaCloAm7\nemyVvoF0yi1TuLbetdyz4h4yLBn2DqdSSU42u7JajZvOpdo7OPbatzz6sFvxp7R0AHXc67Dp/k38\nceEPxq8aX+jfQIsW5vLSu3fD6dPQqpV5N0xFz1WenGz2V8+fD7t2wa23Vuz5VcEmTjRH5992mzmH\nvS1ZLOYdDGfPwrufn+DhtSEsHb6UBp46WEHZTqXtw84pNSOVgV8O5Gq/q5k9YHa1v0dbBJYvN6fw\n9O39GRevfp09D+8g0LMKLreYKTE1kSFLhuBXy49Fdy6ihnPRNy4fPw6vvmqu6jRxojnXtJdX+cZ5\n7hzceSc0bWrOd1G7dvmeT5Xciy/C2rWwZYu5gEhZiZhdyX/8ASu+T6TPki48cuMjPHbzY2U/eDHp\nbV3VQ6WvYQO4OruyfORytp7ayqzds+wdjl398os5Z/L06TB+xndEXD2FTSHrqnSyBqjtWpvVo1eT\nkJrAiG9GkJKeUuR7WrWChQthxw44dgxatoTXXjOnUy0Pu3ZBx47mgllLl2qyrqxeew169DAnV0lI\nKNuxROCpp8y7MNasEZ7Z+jAdAjvwaEcdua3KQVna0wFfYANwBFgPeBdQphGwBTgE/AFMLOKYYs3p\nmNPS8J2GsuLPFVbLVAR79BGeO2f2z9avL/LppyI/ntwufjP85OezP1t9T1Xsy0xJT5FhS4dJ30V9\nJTE1sUTn+esv8/5zf3+R6dNF4uJsF+dnn5nH/f77kh2zPFTF37utZWSYAxVvvVXk8uXCy1qL02IR\n+fe/RW680RwvMWvXLGn/UXu5nFrEAcsB2oddLbay1rCfBzaJSJvMpPxCAWXSgWdEpC3QBXjMMIyr\nSnOyJt5NWHXPKh5Z/Qi7z+4uddCOJCnJvOf4uuvMhTCOHIEudxxixPK7WHznYjo27GjvECuUq7Mr\nS4YvoV7tegz8ciDxKfHFfm+bNrB4Mfz0Exw6ZNa433jDnOe5tNLSzCUdZ8wwjzt4cOmPpSqOkxN8\n/LH5b2rECPO+6ZIQMRdt2bTJXJP7t5gfeWP7G/zv7v/hXiP/1KH24u7uft4wDNHNcTZ3d/fzVn+h\nZcn2wF9AQObj+sBfxXjPt0DvQl6Xoqw+slrqz6wvx6OOF1nWUVksIkuXijRtKnLXXSLHMz/qmZgz\n0vjdxrL4t8V2jc/eMiwZ8tCqh6TzZ50lOql0w8H//FNk1CiRevVE3nxTJD6+ZO+/cEEkONi8hacy\n3Uqmii81VeSOO8yJw9LSiv++l182Zwq8cEEkLDZMAmcGyobjG8ov0CJgpYZdnP9PVeVi7XcpUsbb\nuoBLhT0voHwz4BTgUUiZYn2oD3/+UILmBMnFxAqen7IC7N0r0r27OWVozta4qMtRcvXcq2Xmjpl2\ni60ysVgsMvGHidLhow7yT+I/pT7OoUPmvbP16om89ZZIQjHuINy/3/wy9cILkn0bnXJMSUnmrVgP\nPGA2lRfljTdE2rQROX9eJDktWTp92kne2PZGucdZGE3YVUdhCbvIqUkNw9gIBOTcBQjwUkEV9kKO\n4wEsB54UkUKHeoSEhNCsWTMAfHx8aN++ffZ6tKGhoQBMCJ7AyZiTBL8czDt936Fv7765Xs9b3pbP\nDxw4wFNPPWXz4587B+PGhfLzz/D228GEhMC2baGEhsLN3W5m8FeDue7yddyYemP2tSrseFmPy/t6\nlPV5aa+nYRgMdRvKxYSLBC8IZuN9Gznyy5FSxbNkSTCHDsHjj4fy5psweXIwEybA3r1XymeV3bIF\n/vvfYObOhYCAULZtqxrXs6KfV6a/z//9L5j+/eGuu0J58kno1evK6zmv56OPhvLdd7B3bzABAXDH\nGyNwTXblufHPVWi8WY9PnTqFqkasZfLibMBhcjeJH7ZSzgVYh5msizpmsb+JZFgyZMSyETJq+agi\nJ9WwJVsPlrl82VwUom5dkeefF4mNzf16WkaaDP5qsNy78t4Sfc7qNPjo1R9fldazW8uZmDNlPtYf\nf4gMH25OejJzpkhi5ti2TZu2ygsvmDXr/fvLfJpyU51+77YUGyty000ikyblnpUuK845c0SaNxc5\nk/kn9tkvn8lVc6+SuOQSjl4sB2gNu8qw9rsUGzSJvwU8l/n4OeBNK+W+AN4t5jFL9OEup16WrvO6\nyvMbny/5lbEzi0VkyRIzAQwbZs7Ulb+MRcZ9O076LeonqempFR6jI3ln5zvSbFYzOXGpgAtZCr/9\nZv5e6tc3E/fAgWaf9YULNjm8qoSiokSuu07klVdy7//4Y3Nq07//Np/vObtH/Gf4y+F/Dld8kAXQ\nhF11lGfCrgNswrytawPgk7k/EFid+bgbkAEcAPYDvwL9CzlmiT/gP4n/SKvZreTjfR+X6gLZw88/\ni3TrJtKhg0hoqPVyL25+UTp+0lHiU0o4Iqqa+vDnD6XRu41s+h/pgQMiI0eat/Ck6nemKu/8eZGg\nIJF33jGfz58v0qiRyLFj5vPIhEhp8l4TWfnnSvsFmYcm7Kqj3BJ2eWyl/QM7evGoBLwdID8c/aFU\n7y+JsjTlhYeL3H+/SGCguSBBYQOWZu+eLa1nt5YLCaWr0lW2JkdrbB3ngv0LJHBmoPx2/jebHre6\nXs/yUpnjPHNGpFkzcyBa3bpb5XDm97+0jDTptaCXTN402a7x5eWoCbtp06bi7u4unp6eUr9+fRk7\ndqwkJCRIcHCwzJs3z+r7pk+fLs2bNxdPT09p3LixjBo1Kvs1a++dMWOGtG7dWmrVqiVNmzaVF154\nQVJSrizM8vbbb8u1114rnp6e0qJFC3n77bdt+2GLqbCE7RAznRVH67qtWXn3Su7/9n4OnD9g73Dy\nSUoyZ1i67jpzLeQjR2DcOKzO+73s0DLe3PEm6+9dj39t/4oN1sE90P4B3uv3Hn0X9WXfuX32Dkc5\noMaNzXusz5yBt9+GqzJnjnh+0/O4OrvySq9X7BtgFWEYBmvWrCEuLo5ff/2Vffv28dprrxU6/fTC\nhQv58ssv2bJlC3Fxcezbt4/evXsXep4nnniCzz77jMWLFxMfH8/atWvZvHkzI0eOzFVu0aJFxMTE\nsHbtWubOncuyZcts8jltxlomt9dGGb8RLju4TBq928gmg49swWIR+fprs/9r+PArfWCF2fL3FvGf\n4S/7IyrxyCYH8N1f34n/DH/Zfnq7vUNRVcCSP5ZI81nNJepylL1DyQcHrWE3a9ZMNudYzm7SpEky\nePBg6dWrl9Ua9uOPPy5PP/10ga+9+OKL4uzsnF1rf+KJJ+TYsWPi7Ows+/bty1U2LCxMatasabWl\nZ+LEiTJx4sTSfbAysPa7lKpUw84you0IJt48kUFfDSIupZwmjS6mn3+G7t3NWbAWLYJvvoHmzQt/\nz4HzB7h7+d0sG7GM9vXbV0ygVdQdbe5g8V2LGbp0KFtObrF3OMqBHbxwkMfXPs7Ku1dSx72OvcOp\nksLCwvjhhx+44YYbsr5sZPP19WXnzp0AdO7cmS+++IKZM2fyyy+/YLFYssu99tpr9OjRg7lz5xIX\nF8fs2bPZvHkzjRs35sYbb8x1zEaNGtG5c2c2btxYYDzbtm2jbdu2Nv6UZVPkfdiO6D9d/8PJmJMM\nXzacNaPXFGtlp5IIDQ3Nvi+yIOHh8MILZpPa9Olw//3Wm75z+jv6bwZ9NYgPB31IcDPrx7dVnJVF\necbZt2Vflo9YzohvRrBg6AIGth5Y6mPp9Sw5ESEqKYqjUUeztyNRRzhx6QRJx5Nocn0TfNx88Knp\nY/7Msfm6++bb5+7iXuGr9a3esJqnjzzNe/3eq5Jfom11OfPk2GIbOnQoLi4ueHt7M3jwYCZPnsxP\nP/2Uq0x0dHT24zFjxuDk5MTnn3/Oyy+/jJubG5MmTeLZZ58t8PgXL14kMLDgxZECAwO5WMBaq1On\nTkVEGDtkCB1+AAAgAElEQVR2bOk+VDmpkgnbMAxmD5jN0CVDmbBmAp/e/mmF/CO/fBneeQdmzYJ/\n/cvsp/b0LN57LyReoN/ifkzuPpnh1wwv30CrmZ7NerLqnlUMWTKE/w76L3ddfZe9Q6pyLqdd5ljU\nsSuJ+VJmcr54BItYaOPXhqC6QbSp24a7295NS9+W7N2xl5Y3tCQmOYbo5GhikmOISY4hPD48+3He\nLd2Sni+Jl2QracK3iIXp26YzsOtA7m13bzleQfspbaK1le+++45evXqV6D333HMP99xzDxkZGXz7\n7beMHj2aDh060KdPn3xl/fz8iIiIKPA4ERERtGjRIte+uXPnsnjxYrZv306NGrat7JVVlUzYAC5O\nLiwZvoRbPr+F17e9zou3vGizY+etvYjAkiXw3HPQpYu5BGbmRG3FkpCawKCvBjGq7SibrqFbWWpZ\nRamIODs36sy6MesY+NVAktOTGX3d6BIfo7pfz3RLOqdjTnMk6kiuGvPRqKP8c/kfWvq2JKhuEEF1\ng+jZtCcP3/AwQXWD8KvlV2CSvHHEjQWcpXAp6SnEpsRaTegxyTGcjTtb4oTv65a/Nu/j5sPmk5up\n0aIGM/vOtMUlVAXI2/xdEs7OzgwbNox27dpx8OBB+vTpk+9v7dZbb+Wxxx5j37593HTTTdn7w8LC\n2L17N1OnTs3eN3/+fGbMmMG2bdus1srtqcombAAPVw9Wj15Nl3ldaObTjDHtxtj8HHv2wNNPQ0oK\nfPmluc5uSaRmpDJs2TDaB7TXkaflrENgBzbdt4m+i/tyOe0yD97woL1DqnREhMjEyCvN1xePZNeW\nT0afpL5HfbO2XCeIq/2uZkibIQTVDaKJdxOcnYrR71NGNV1qUs+lHvVq1yvV+wtL+NFJZi3/TOwZ\nYlLMfQYGy0Yss3m3miq9hQsX4u/vzy233ELt2rVZt24df/75J507dwYgICCAv//+O7t869ateeSR\nRxgzZgxffPEFHTt25PDhw4wbN46+fftm1+6//PJLXnzxRUJDQ2natKldPluRrI1Gs9dGOYxq/CPy\nD/Gf4S+hJ0NtcrytW7dKWJjIvfeKNGgg8vnnxVs0IK8MS4aMWTFG7vj6DknLKMFSQSWI0xFUdJxH\nLx6VJu81kdm7Z5fofVXpesYmx8q+8H3y1e9fybSt02T0itFy48c3iufrnuI3w0+6zusqId+GyBvb\n3pAVf66QPyL/sPk6z1XpetobDjpKvHnz5rlGiWfJO0rcw8NDtm837/ZYuXKldOvWTerUqSPe3t7S\nrl07+eKLL7LL7tq1S4KCgqROnTry5JNPZu+fMWOGtGrVSmrVqiVNmjSR559/Ptd92M2bNxdXV1fx\n9PQUDw8P8fT0lAkTJpTHxy6Utd+lSDEW/6gKrq13LV8P+5qRy0cS+kAoV/tfXaL3i0BUFJw7Z25f\nfgk//AATJpj91B4epYvr2Y3PcjLmJBvv24iLU7X4VVQKreu25seQH+n9RW8up13mue7P2TukcpGa\nkcrf0X/na74+GnWU2JRYWtdpnd2E3a9lPybePJHWdVvrKGhVYXLWhHPasiX3XR3xORatv/POO7nz\nzjutHrNz584cOXIk3/5JkyYxadKkEsdSmRhi7xEHeRiGIeUV08IDC3n5x5fZNX4XAR4BiEB8vJmE\nw8OvJOSsLWtfRISZlBs0MLdWrWDSpJL1U+c1c+dMPj/wOdvGbtP/IO0kPC6c2xbdxshrRjIteFqF\njz62pfMJ59kVtotdZ3dx6J9DHI06SlhsGI28GmU3YWcl56C6QTT0aoiTUeXu6qy2DMNARPL9AZfn\n/6eqfFj7XUIVTthJSWaizZuI16VM43SNH6j3w1bOh9UGoGHDK8m4QYP8zwMDwd29zCFlW/TbIl7a\n+hLbx26nsXdj2x1YldiFxAv0WdSHvi36MqPPDIdI2umWdH6P/J1dYbvYeXYnu8J2EZMcQ+dGnenS\nqAvX17+eoLpBtPBtgauzq73DVRVAE3bVUaUSdloanD+fvzact5acmFhwEg4MFBYlhGCpEcs3w1fg\n61PygTJluc913fF1PPDtA2x9YCvX+F9TqmMUV2W6H7cw9o7zUtIl+i3ux80NbmbOwDlWa572ivPi\n5YvsPrubnWE72XV2F/vO7aOJdxO6NOpC18Zd6dKoC2382mTHbe/rWVwap+1owq46CkvYlbLjdM2a\ngpPwuXNw6RL4++evCffokTs516ljbUIAg7szPqX/4v5M2/UM7w94v8I+18/hP3Pf/+7ju1HflXuy\nVsVXx70Om+7bxKCvBvHgqgf59PZPK2TEc0EyLBn8+c+f2cl519ldnE84z80Nb6Zro6481+05OjXs\nhK+7r13iU0rZT6WsYQ8YILlqxzmTc716xZs1rCgxyTF0m9+Nh294mCc7P1n2AxbhaNRRbvn8Fj65\n/RPuaHNHuZ9PlVxiaiJ3LLmDerXr8cXQLyrkVp6Y5Bj2nN2TnaD3hO8hoHZAds25S+MutPVva7cv\nEMoxaA276qhSTeK2dDrmNF3nd2XugLncebX1UYdlFREfQdf5XXmpx0uMv2F8uZ1HlV1SWhLDvxlO\nDacaLB2+lJouNW12bItYOBp11EzOmf3PZ2LPcFODm7Kbtzs36oxfLT+bnVNVD5qwqw5N2IXYd24f\nA74cwOp7VtOpUadivackfVqxybH0XNCTEdeMsOlsa8XhCH1vUPniTM1IZfSK0SSkJrDy7pXUqlEL\nKHmc8Snx/Bz+c3bT9q6wXfi4+dClcRe6NupKl8ZdaBfQzua39FW262mNxmk7mrCrDofrw65INzW4\nifl3zGfo0qHsGLeDFr4tin5TMSWnJzN06VC6N+nO5B6TbXZcVb5cnV1ZMnwJId+GMOirQawatQrP\nmoVPCi8inIg+kX1r1c6wnRy/dJz29dvTtXFXHuzwIPPumEd9j/oV9CmUUlVNta9hZ/ng5w+Y8/Mc\ndo7faZP7ojMsGYxaMQqAJcOWaB+kA8qwZPCv1f/i4D8HWTtmLT5uPtmvXU67zL5z+3LdWlXTpeaV\nvudGXegQ2EFvq1IVQmvYVUdhNWydOSHTYzc/xuCgwdy59E5S0lPKdCwRYeLaiURdjmLxnYs1WTso\nZydnPrn9E25ucDO3LryVL3//kolrJ9Lx0474v+3Psxuf5XzCee697l5+feRXwp4OY+nwpTzV+Sk6\nNeqkyVqpIjRr1oxatWrh5eVFYGAg48aNIzExkeDgYNzd3fHy8sLf358hQ4YQHh5u9TixsbGMHz+e\nwMBAvL29ueqqq5gxY0b2605OTvlmMouNjWXChAkEBgbi4eHB9ddfz4IFC7JfT01N5cEHH6RZs2Z4\ne3tzww03sG7dOptfg5LQhJ3DjD4z8K/lz9jvxmIRi9VyoaGhhR5n+rbp7Ajbwf/u/p9NBy2VVFFx\nVhaVOU7DMJjVfxbDrxnOR8s/orFXY2b1m8XFSRfZ/eBu3uv/HiPajqCRVyN7h5qtMl/PnDROZRgG\na9asIS4ujl9//ZV9+/bx2muv4eTkxAcffEBcXBwnTpwgOTmZZ555xupxnn76aRITEzly5AixsbGs\nWrWKVq1a5TpPTmlpafTu3ZuwsDD27NlDbGwsM2bM4Pnnn2fWrFkApKen06RJE7Zt20ZsbCyvvvoq\nI0eO5MyZM+VzMYqh2vdh5+RkOLHozkXc+sWtTNkyhem9p5f4GJ/9+hnz989nx7gdeLt5l0OUqqIZ\nhsHkHpPpmtGV4G7B9g5HqSolq8k+MDCQ/v37c/DgwVyve3l5MXToUD744AOrx9i7dy/Tp0/Hy8sL\ngKCgIIKCggDo2bMnIkK7du1wcnJi3rx5xMfHc/bsWbZv346bmxsA/fr1Y/bs2YwfP54HH3wQDw8P\n/u///i/7HIMGDaJ58+b88ssvNGnSxKbXoLi0hp2Hew13Vo1axdJDS/ns188KLGNtxOiqI6uYsnUK\n6+5dR6Cn/ddSrewjW7NonLalcdqWo8Tp6MLCwvjhhx+44YYbcq2RHRUVxcqVK+nU6cpdPDt27KBO\nnStjjTp37szkyZNZsGABx48fz3XcH3/8EYA//viDuLg4RowYwcaNGxkwYEB2ss4ybNgwkpOT2bVr\nV774IiMjOXbsGG3btrXJ5y0NHXRmRdZEJwuHLqRfq35Flt9xZgd3Lr2TNaPX0LFhxwqIUCmlTGUZ\ndGa8bJv582Vqyf/fbt68OVFRUbi4uODt7c3gwYOZOXMm/fv3Z+/evdSoUYPY2Fg6derEli1bcLey\nqENKSgrvvfceK1as4Pfff6dp06bMnj2b/v37A2Yf9vHjx2nRwrwLqE+fPnTs2JHXX38937ECAwN5\n9913ueeee7L3paenM2DAAFq3bs2HH35Y4s9ZEoUNOrP7+td5NyrR+q3bTm8Tvxl+ciDiQK79edfH\nPRh5UOq9XU/WH19fgdEVzRHW8RXROG1N47QtR4gTB10Pu1mzZrJly5Z8+4ODg7PXwz548KAEBgbK\nihUrinXM+Ph4mTx5snh4eEh0dLSIiBiGISdOnMguM2rUKAkJCcn33vT0dHFxcZENGzZk77NYLHL3\n3XfLoEGDJD09vUSfrzSs/S5FRJvEC9O9SXfmDpjL4K8HczbubIFlwmLDGPDlAN7t+y59W/at4AiV\nUsqxSREtAG3btuWVV17hueeeK7IsgIeHB5MnTyYxMZGTJ08WWOa2225j7dq1JCUl5dq/fPly3Nzc\n6Ny5c/a+8ePHc/HiRVauXImzLebFLgtrmdxeG5XwG+Gb296Udv9tJ7HJsbn2R12OkqvnXi0zd8y0\nU2RKKeXYNezNmzfn25+zhi0ikpqaKg0bNpSlS5cWeJxXX31V9u7dK6mpqZKcnCyvvfaa1KlTRxIT\nE0VEJDAwUDZu3JhdPiUlRW688UYZNGiQnDp1StLS0mTdunUSEBAg77zzTna5Rx55RLp06ZJ9nIpg\n7XcpWsMunme7PUuXRl0Y+c1I0jLSAHPijNu/vp2BrQfy767/tnOESinleKytP593f40aNZg4cSJv\nvfUWANu3b88eEZ5VfuzYsfj7+9OwYUM2b97MmjVrqFXLnFZ42rRp3H///dSpU4fly5fj6urKpk2b\naNy4MZ06dcLb25v//Oc/vPHGG9m3j505c4ZPPvmEAwcOEBAQgKenJ15eXnz99dflcSmKRQedFVO6\nJZ07vr6Dhp4NGeUxilmRs/Bx82Hh0IVW10+2N0eYAxk0TlvTOG3LEeLUmc6qjnKb6cwwDF/DMDYY\nhnHEMIz1hmFYvfHYMAwnwzB+NQxjVVnOaS8uTi4sHb6UfRH7eOj7h0jLSGP+HfMrbbJWSilVtZSp\nhm0YxltAlIjMMAzjOcBXRJ63UvZp4EbAS0SsLghd2b8Rnos/x/SfpvNWn7fwcPWwdzhKKaU17Cqk\n3JbXNAzjL6CniEQahlEfCBWRqwoo1wj4HJgOPOPICVsppSobTdhVR3ku/lFPRCIBROQ8UM9KufeA\nSUCV+MtxlLmFNU7b0jhtS+NUqmSKnEvcMIyNQEDOXZiJ96UCiudLyIZhDAIiReSAYRjBme8vVEhI\nCM2aNQPAx8eH9u3bZw/6yPrHY8/nBw4cqFTxOPpzvZ56PSvz88p4PbMenzp1ClV9lLVJ/DAQnKNJ\nfKuIXJ2nzOvAvUA64A54AitF5H4rx9QmHKWUKgFtEq86yrNJfBUQkvn4AeC7vAVEZLKINBGRFsAo\nYIu1ZK2UUkqpgpU1Yb8F9DEM4wjQG3gTwDCMQMMwVpc1uMoqZ7NUZaZx2pbGaVsap1IlU6b1sEXk\nEnBbAfsjgMEF7P8R+LEs51RKKaWqI531oxSyBoBUdhqnbWmctqVxKjCnGe3WrRs+Pj74+fnRo0cP\nfvnll2K9d/Xq1XTq1AkPDw/8/f257777CA8Pz379hx9+oEePHvj6+tKgQQMefvhhEhMTrR7vzz//\npF+/ftStW5c6derQsWNH1q1bB5jrajdu3LjA9wwZMgQfHx+8vb3p3bt3rvW0jx07xtChQ6lXrx5+\nfn4MGDCAo0ePFvfy5KIJWymllF3Ex8dz++238+STTxIdHU14eDhTp06lZs2aRb53+fLljBkzhmee\neYaoqCgOHTqEq6sr3bt3JzY2FoC4uDimTJlCREQEhw8f5uzZs0yaNMnqMW+//Xb69etHZGQkFy5c\nYPbs2dlzlotIvjnOT5w4Qffu3bn++us5deoU586dY+jQofTt25c9e/YAEBMTw5AhQzh69CiRkZF0\n7NiRIUOGlO6CWVsVxF4blXx1GRHHWB9XROO0NY3TtjRO28FBV+vat2+f+Pr6FvjaggULpFu3bvL4\n44+Lt7e3XH311blW9mratKnMnJl7pUSLxSLXXnutTJ06tcBjrly5Utq1a1fgaxcvXhQnJyeJjY3N\n91piYqK4u7uLs7OzeHh4iKenp0RERMi9994rgwYNyld+woQJ0rNnzwLPc+nSJTEMQy5dulTg69Z+\nl6KrdSmllLKXoKAgnJ2dCQkJYd26dcTExOR6fc+ePbRu3ZqoqCimTZvGXXfdRUxMDEeOHCEsLIzh\nw4fnKm8YBsOGDWPjxo0Fnu/HH3+kbdu22c/feust7rjDnHizbt26tGrVijFjxvDdd99x4cKF7HK1\natVi7dq1NGjQgPj4eOLi4qhfvz6bNm1ixIgR+c4zcuRIduzYQUpKSoExBAYG4uvrW/wLlcVaJrfX\nRiX/RqiUUpUNZalhg222Uvrrr79k7Nix0rhxY3FxcZEhQ4ZIZGSkLFiwQBo2bJirbKdOnWTx4sWy\nfft2cXJykpSUlHzH++ijjyQoKCjf/g0bNkidOnXk+PHjVmMJDw+XJ554Qlq1aiXOzs7Ss2fP7PKh\noaHSuHHjXOVdXFxk/fr1BX4mJycnOXfuXK79YWFhha7rLaI1bKWUUtbYKmWXUps2bZg/fz5nzpzh\n0KFDhIeH89RTTwHQsGHDXGWbNGnCuXPn8PPzQ0SIiIjId7yIiAj8/Pxy7du9ezdjxoxhxYoVtGzZ\n0mosDRo0YPbs2Rw7dozTp09Tq1Yt7r/f+rQhfn5+VmNwcnLKVYv+559/6NevH48//jgjR460eszC\naMIuBUe5L1PjtC2N07Y0TpVXUFAQISEhHDp0CCDXiG+AM2fO0KBBA9q0aUOjRo345ptvcr0uIqxY\nsYLbbrtyt/H+/fsZOnQoCxYsKNGI/4YNG/LYY49x8OBBgHwDzgBuu+22fDEALF26lC5duuDm5gaY\nA8/69evH0KFDef75Ahe0LBZN2EoppeziyJEjvPvuu9mJOSwsjK+//prOnTsDEBkZyZw5c0hPT+eb\nb77hr7/+YuDAgQDMnDmT1157jSVLlpCSksL58+cZP3488fHx2TX0gwcPMmDAAObMmZP9PmtiYmKY\nNm0aJ06cQES4ePEi8+fPp0uXLgAEBAQQFRVFXFxc9numTp3Kzp07mTJlCtHR0SQkJDBnzhwWL17M\njBkzAHMkfN++fenevTvTp08v2wWz1lZurw3tw1ZKqRLBQUeJh4eHy8iRI6Vhw4bi4eEhjRo1kgkT\nJkh8fLwsWLBAunfvLk888YR4e3tLmzZtZNOmTbnev2rVKunYsaN4eHhI3bp1ZfTo0XL27Nns18eO\nHSvOzs7i6ekpHh4e4uHhIddee23266+//roMHDhQRMyR4A888IA0b95cPD09JTAwUEaPHp2rH3r8\n+PFSt25d8fX1lYiICBEROXTokAwePFi8vLzE09NTevXqJTt37sx+z8KFC8XJySn7/FmjzMPCwgq8\nJtZ+lyJStsU/yoNOVq+UUiVTFRf/WLhwIfPmzeOnn36ydygVqjwX/6iWHKVPS+O0LY3TtjROpUpG\nE7ZSSinlALRJXCmlHFxVbBKvrrRJXCmllHJwmrBLwVH6tDRO29I4bUvjVKpkNGErpZRSDkD7sJVS\nysFpH3bVoX3YSimllIPThF0KjtKnpXHalsZpWxqnUiWjCVsppZTdbN++nW7duuHj44Ofnx89evTg\nl19+YeHChfTo0SNf+Z07d9K7d2+8vLzw9fVlyJAhHD58OPv1PXv20LdvX+rWrUtAQAB3330358+f\nt3r+sWPHUrNmTby8vPD09MTLy4tly5ZlP/by8sLZ2ZlatWpl7/v6668B+PPPPxkyZAg+Pj54e3vT\nu3dvdu3alX3s06dP4+TklH2crPcXtGBIsVibs9ReG5V87lullKpscNC5xOPi4sTHx0eWLl0qFotF\nkpOTZePGjfLHH3/IggULpEePHrnK79y5Uzw8PGTOnDmSkJAg0dHR8tJLL4mvr6+cPHlSRETWrl0r\ny5cvl/j4eElKSpJx48ZJ//79rcYQEhIiU6ZMKTTO5s2by5YtW3LtO378uPj6+sqUKVMkOjpaEhIS\nZPbs2eLh4SG7d+8WEZFTp06Jk5OTWCyWYl8Ta79L0bnElVLK8TnqoLNffvmFPn36cOnSpVz7//rr\nLzp06EB6ejpubm7UqFGDS5cu0aNHD9q3b8+cOXNylR84cCD16tVjwYIF+c6xf/9+goODiY2NLTCG\nsWPH0rhxY1555RWrcTZv3px58+Zx6623Zu+77777iI6OZvXq1bnKPvroo/z555+EhoZy+vRpWrRo\nQVpaGk5OxWvQ1kFnNuYofVoap21pnLalcaqgoCCcnZ0JCQlh3bp1xMTEAHDVVVfx0Ucf0aVLF+Lj\n47l06RJJSUns2rWL4cOH5zvOyJEj2bhxY4Hn+PHHH2nbtm3286+//pr27duXOfZNmzYxYsSIAmPZ\nsWMHKSkp2fts9aXJxSZHUUop5ZAMG30hkeDgEr/H09OT7du389Zbb/Hwww8TERHBoEGD+OSTT/KV\nvXTpEhaLhcDAwHyvBQYGcvHixXz7f//9d1599VW+//777H333HMP99xzT65yb7/9NnPnzkVEqFGj\nBhcuXCgy9osXL1qNxWKxZLcaiAj+/v7Zjw3DYNeuXbRp06bIc+SlCbsUgkvxh2kPGqdtaZy2pXFW\nDqVJtLbUpk0b5s+fD8DRo0cZM2YMTz31FP369ctVztfXFycnJyIiIggKCsr1WkREBH5+frn2HT9+\nnIEDBzJnzhy6du1aaAyTJk0qtEm8IH5+fkREROTbHxERgZOTE76+vkRGRmIYBlFRURhGga3cJaJN\n4koppSqFoKAgQkJCOHToUL4EV6tWLbp06VLgCOtly5bRu3fv7OenT5+mT58+TJ06ldGjR5dLrLfd\ndluBsSxdupQuXbrg5uaWvc9WTeKasEvBUfq0NE7b0jhtS+NUR44c4d133yU8PByAsLAwvv76a7p0\n6UJAQABnz54lLS0tu/ybb77JwoULmTt3LgkJCURHR/PSSy+xe/dupk6dCkB4eDi9e/fmiSee4KGH\nHiq32KdOncrOnTuZMmUK0dHRJCQkMGfOHBYvXsyMGTOyy8mVEftlpglbKaWUXXh6erJnzx46deqE\np6cnXbt2pV27dsycOZNbb72Vtm3bUr9+ferVqwdAt27dWL9+PStWrCAwMJDmzZvz22+/sX37dlq2\nbAnAvHnzOHnyJNOmTct173OWr776iuuuuy77eXGaqgsq06pVK7Zv386BAwdo1qwZDRo04H//+x8b\nNmygc+fOud7r6+ubK5ZZs2aV6nqV6bYuwzB8gaVAU+AUMFJE8o2dNwzDG/gMuBawAONEZI+VY1bq\n2xCUUqqycdTbulR+5Xlb1/PAJhFpA2wBXrBS7n3gBxG5GrgeOGylnFJKKaUKUNaEPQRYmPl4ITA0\nbwHDMLyAHiLyOYCIpItIXBnPa1eO0qelcdqWxmlbGqdSJVPWhF1PRCIBROQ8UK+AMs2Bi4ZhfG4Y\nxq+GYXxiGIZ7Gc+rlFJKVStF3odtGMZGICDnLkCAlwooXlBniQtwA/CYiOwzDGMWZlP6VGvnDAkJ\noVmzZgD4+PjQvn377Hshs77t2vt5lsoST0HPg4ODK1U8hT3PUlni0etZ/s/1epYtntDQUE6dOoWq\nPso66OwwECwikYZh1Ae2ZvZT5ywTAOwSkRaZz7sDz4nI7VaOqYMklFKqBHTQWdVRnoPOVgEhmY8f\nAL7LWyCzyTzMMIysqWl6A3+W8bx2lfdbd2WlcdqWxmlbGqdSJVPWqUnfApYZhjEOOA2MBDAMIxD4\nVEQGZ5abCHxpGEYN4G9gbBnPq5RSqghubm6Rma2cykG4ublFWntNl9dUSikHV1gzqqo6dKYzpZRS\nygFowi4FR+nT0jhtS+O0LY1TqZLRhK2UUko5AO3DVkopB6d92NWD1rCVUkopB6AJuxQcpU9L47Qt\njdO2NE6lSkYTtlJKKeUAtA9bKaUcnPZhVw9aw1ZKKaUcgCbsUnCUPi2N07Y0TtvSOJUqGU3YSiml\nlAPQPmyllHJw2oddPWgNWymllHIAmrBLwVH6tDRO29I4bUvjVKpkNGErpZRSDkD7sJVSysFpH3b1\noDVspZRSygFowi4FR+nT0jhtS+O0LY1TqZLRhK2UUko5AO3DVkopB6d92NWD1rCVUkopB6AJuxQc\npU9L47QtjdO2NE6lSkYTtlJKKeUAtA9bKaUcnPZhVw9aw1ZKKaUcgCbsUnCUPi2N07Y0TtvSOJUq\nGU3YSimllAPQPmyllHJw2oddPZSphm0Yhq9hGBsMwzhiGMZ6wzC8rZR7wTCMQ4Zh/G4YxpeGYbiW\n5bxKKaVUdVPWJvHngU0i0gbYAryQt4BhGE2Bh4AOItIOcAFGlfG8duUofVoap21pnLalcSpVMmVN\n2EOAhZmPFwJDCygTB6QCtQ3DcAFqAefKeF6llFKqWilTH7ZhGJdEpI615zn2PwS8C1wGNojIfYUc\nU/uwlVKqBLQPu3pwKaqAYRgbgYCcuwABXiqgeL5MaxhGC+BpoCkQCyw3DGO0iHxVqoiVUkqpaqjI\nhC0ifay9ZhhGpGEYASISaRhGfeBCAcVuAnaIyKXM96wEugJWE3ZISAjNmjUDwMfHh/bt2xMcHAxc\n6eXbh9sAABA7SURBVE+y5/MDBw7w1FNPVZp4rD3P2fdWGeKx9lyvp17PyhCPteeV8XpmPT516hSq\n+ihrk/hbwCURecswjOcAXxF5Pk+Z64HFQEcgBfgc2CsiH1g5ZqVvEg8NDc3+B1SZaZy2pXHalsZp\nO9okXj2UNWHXAZYBjYHTwEgRiTEMIxD4VEQGZ5abBIQAGcB+4EERSbNyzEqfsJVSqjLRhF096MQp\nSinl4DRhVw86NWkp5OxHqsw0TtvSOG1L41SqZDRhK6WUUg5Am8SVUsrBaZN49aA1bKWUUsoBaMIu\nBUfp09I4bUvjtC2NU6mS0YStlFJKOQDtw1ZKKQenfdjVg9awlVJKKQegCbsUHKVPS+O0LY3TtjRO\npUpGE7ayq4T0dCJTU8nQbhCllCqU9mGrCpWYkcHO2Fi2xsSwNSaGPxIS8HZxISotjaZubrR0d6eV\nuzst3d1pmfm8uZsbbs7O9g5dqUpL+7CrB03YqlwlZWSwMy6OrdHRhMbEcCAhgfYeHvTy9aWXjw+d\nvbyo5exMUkYGJ5OTOZ6UxImsLTmZE0lJnElOxt/VlZZubleSeY6k7lOjhr0/pt0kZWRwPjWViNRU\nzmduGSK4OjlR0zCo6eRETScnXHM8zvc883HWe1ydnHAy9P9+R6IJu3rQhF0KjrDcHtgnzuSMDHbH\nxWXXoH+Nj6edhwfBPj708vGhq7c3tfPUlouKM91iISwlJVcSz9qOJyVR08kpdyLPrJm3dHcn0NUV\nw0bJp6Kup4gQnZ5ORGoqESkpuRJyRM7HKSkkWSzUd3Ul0NWV+plb5N69+HfsSIrFQorFQqpI9uMU\nEVJzPC6oTKoINQyjyCTvmifhF+eLQc73/LlzJ9d07Wp+5qzPnvdn5v8FUsRrRb3X2utFvdfVyQmX\n335jbP/+Nvs7Kg+asKsHF3sHoBxbisXCnswEHRoTw964ONrWrk0vHx9ebNqUbl5eeLiU7c/MxcmJ\n5u7uNHd357Y8r4kIF9LSciXxzTExfBwRwYmkJBIzMmiRJ4lnJfWmbm7UcKq4YRxpFguRhSTfnInZ\n3cmJwJo1sxNx1s8OHh4E1qyZvc/XxSVfIgmNiCC4TZtSxykipBWR5FPzJPzCvhjEZ2RwMS0t33su\nxMRw5OJFsqLP+hzZz/P+NIxCXyvqvXn3F+e9iRYL60+e5KVdu+jj60vfOnW4zdeXAFfXkl1UpWxA\na9iqRFItFvbGx7M1OpqtMTH8HB/PVbVq0cvHh2AfH7p7e+NVxgRtS3Hp6fydp2ae1ewekZpKo5o1\nC6yZt3R3z9cSUBARISEjw2ryzZmcY9LT8a9RI1cSzpl8c9aS3bXPvlI5kZTExkuX2BAdzZboaJq7\nu9M3M4F38/Ky+xgLrWFXD5qw80izWIhOTze3tDQu5XgcnZ7OpfR0kjIyaFCzJk3d3GhasyZN3Nxo\nVLMmrhVYW6soaRYL++LjCc1s4t4VF0drd3d6ZTZxd/f2dtg+5FSLhVN5E3nm85PJyfi4uORK4i6G\nkbt5OiWFiNRUAKvJN/tnzZr41aiBcyVuVlXFk26x8HN8PBsyE/jBxES6eXtnJ/BratWq8OZzTdjV\nQ5VM2OkWCzFZiTZzu5SZcPMm3+gc+y+lpZEigo+LC76ZW50aNbIf+7q44FujBmG7d+Nx442cTknh\ndHIyZ5KTiUhNxb9GDZpkNrVmJfKcjyu65lmaPtd0i4VfExLMPujoaHbGxdHCzY1evr4E+/hwi7c3\nvjZO0JVxTIBFhHMpKZzIMRDu1K5ddOrZM3cidnXFsxK1KEDlvJ4FqSpxxqSlsSUmhg2XLrE+OppU\niyVX83m9Cmg+14RdPVSu/2lysIgQW1CyLUbyTczIwDtHgvV1caFOjscBrq5cVatW7mRcowZ1XFzw\ncHYu8ttx6IkTBLdokWtfusXCudRUziQnZyfy3xMS+D4qitPJyZxOTsbVyanARN7UzY0mNWsS4Opa\n4aNzM0TYn6MGvT02lqZubgT7+PBIgwZ8ec011HXQGnRZOBkGjdzcaOTmRk8fHwBCz5whuFEjO0em\nKhufGjW4y9+fu/z9ERFOJCWxITqaZRcu8OjRo7TI2Xzu7U3NKtgSpypGpaxh+2zbRnx6Oh7OzvmS\nat7kW1At2MvFpdLdliIiXEpPz66R56ydZz2OS0+n8f+3d7YxdlRlHP/9l27XrsDe3RZabKUF2vKW\nCpQWiAVaeanVD4AIiRANQiIkiprwZg0xaCS+8AHfMUEBXxKECAQQRAqhUAy2UNqlLZRS0gItbwK7\nF7SUZdk+fphzl/HuvXfndmfm3mWfXzLJmTNn7vOfc2bnmfOcM2eD854ec+Sl9LS2thH/sQ+Ysa7U\ngy4WebRYZGpb2+AY9MJCgX18Qo3jpEJ/Wfj86R07OD6Ez09NMXzuPeyxQVM67Lfef5+OcePG3Hjf\nzoEBXqrgyEvpV/r6mNjaOsSRx9MdZeHZXWas37Ej6kH39rLi7beZPH784GdWCwsFn/HqODnRGw+f\n9/TQb8biri4Wd3ZySmfnbr8su8MeGzSlw242TeU0auxtwIxX+/oq9s5L6RYYdOLF1at5dvZsulpb\nB3vQiwoF9mtry117LT4qY5nNgutMl6x0mhnPh/D5sp4eHi4WmTlhwqAD/3Qd4XN32GODph3Ddoay\nR2xcdUFHx5DjpQU3Ss77yc5Obp0/n6lN5qAdx4mc7Kz2dma1t/ONqVPp37WLle+8w7LeXpZu2cLG\nd98dDJ8v7uri0AbMPneaC+9hO47jNCE9/f081NvLst5e7u/pYaAsfD4pFj73HvbYwB224zhOk2Nm\nbN65c3Dy2iPFIrNi4fPPdHW5wx4D+PcFu8Fo+f+4rjNdXGe6uM7kSGJ2ezsXT5vG3XPm8MaCBVw7\ncyYtwBVbtjRanpMTPobtOI4zyhjf0sKJhQInFgpczYfrnzsfbTwk7jiOM8rxMeyxgYfEHcdxHGcU\nMCKHLeksSRskDUiaW6PcEknPSnpO0ndGYrMZaIYxrSS4znRxneniOh2nPkbaw14PfAF4pFoBSS3A\nr4HPAocD50g6ZIR2G0p3d3ejJSTCdaaL60wX1+k49TGiSWdmtglAtb/mPwbYbGYvhrK3AKcDz47E\ndiMpFouNlpAI15kurjNdXKfj1EceY9hTgW2x/e0hz3Ecx3GchAzbw5b0ADA5ngUYcKWZ/S0rYc3M\nCy+80GgJiXCd6eI608V1Ok59pPJZl6TlwKVmtqbCseOA75vZkrC/FDAz+2mV3/JvuhzHcerEP+v6\n6JPmwinVbpYngJmSpgOvAl8Czqn2I37TOY7jOM5QRvpZ1xmStgHHAfdIui/k7yfpHgAzGwAuBpYB\nTwO3mNnGkcl2HMdxnLFF06105jiO4zjOUBqy0pmk0yQ9JWmtpNWSTqpSboaklWHBlb9IynXt8+EW\nfEl6HRlrbJO0Kmh4WtKPqpRbFMpsCHMOckdSh6S/StoYtB5bdrwg6Y5QpyslHZaTrm9LWh+2b1U4\nfrCkxyS9J+mSWP40SQ+Fa6l4bgrabpD0uqR1sbxrQh12S7pd0t5Jzw35V0naLmlN2JZkoDGRjRoa\n50t6PNyzj0uaNxKNNXQOa6dWOyddPKpOnRXtJbGV5J6UdKmkXZK60tDr5IiZ5b4B7bH0HOD5KuVu\nBc4O6d8CF+WosQV4HpgOtALdwCG7cx151SewB7ASWFB2vINoOGJq2J/UIJ1/AM4P6XHA3mXHrwG+\nF9IHAw/moOlwYB3QFupvGXBgWZlJwNHAD4FLYvlTgCNDek9gU/k9koK+44EjgXWxvFOAlpD+CfDj\npOeG/Kvi15GRxkQ2amhcDiwO6c8ByzPSOaydWu0c7tNZwEPA3JTqs6K9JLaGuyeBacA/gK1AV5r3\nqm/Zbw3pYZvZu7HdPYE3qxQ9Cbg9pP9ItKpaXgwu+GJm/UBpwZdB6riOTInpaCN60egtK3IucLuZ\nvRzK564z9AJPMLObgoYPzOydsmKHET2MsGhRnhmS9slY2qHAKjPrs2i+xQrgzHgBM3vTzJ4EPijL\nf83MukP6v8BGUl5jwMz+SVl7mtmDZrYr7K4keggnOjdGapM7a9gZ1kaNc18letEEKAAv77bA2raG\ntVOrnc1sk5ltJt36rGgvia0E9+TPgMvT0urkS8P++UeYsLYR+DsQDzHdK2mKpIlAb+zBtB34RI4S\nKy74IulCSReWMqtdR55IapG0FngNeNjMnpF0UUznbKBL0nJJT0j6SgNkHgC8KemmECK9XlJ7mc6n\nCM5S0jHA/lRxRimyAThBUqekduDzwCfL23k4JM0g6r2tykRldS4Ahkz2TMDFIaT+e0kdwxffLeI2\nCnVqXApcK+klosjLdzPSWNFONZ15t3MSe0m1SjoN2GZm6zOQ6uRBo7v4RGGqTRXyJwLPxfanURY2\ny1jXF4HrY/tfBn5Z73XkXJd7E/W4Fpbl/wp4DPhYqV6BmTlrOxroB+aF/Z8DPygrsxdwI7CGKKKy\nCvhUDtrOB1YDDwO/Aa6tUq5imJcourIaOD0jfdMr3fvAlUSRk7rOBfbhwwmnVwM3pK2xHhtVND4A\nnBHSZwEPZFGX9dip1c5EofVUQuLD2Utiq/xcYEJ4NuwV9rcCE7O4X33Lbsuthy3p62FixxpJU0r5\nFoWpxoUeNbH8t4CCon8eApHDHnFYrA5eJurhlahpv9p15IlFIeZ7gfKJM9uB+83svVCvK4Ajcpa3\nnejtfnXYvw34v4kzZvYfM7vAzOaa2XnAvsCWrIWZ2U1mNs/MFgFFoheaRCiaCHkb8GczuysjiZXs\nfpUoGnBuveea2RsWntrA74D5KUpLy8axZnZn+K3biIaosiCRnbzbeST2qpx7EDADeErSVqLn2ZOS\n9k1PtZM1uTlsM7vOzI4ys7nAx0v5pdmOwZGUsxw4O6TPA3J7IBJb8EXSeKIFX+6OF5B0UCxd6zoy\nQ9KkUkhT0gTgVKIJcnHuAo6XtEcI+x5LNLaVG2b2OrBN0uyQdTLwTLyMolnkrSH9NeARi8bhMqU0\nTi5pf6J5EjfXKl62fyPwjJn9IiN5JZuDdsOM68uB08ysr55zw/lTYrtnEg0LpK2xHhtDNAKbJS0M\nv3UydbxE1aOzDjtJ2jnNRZ+Gs1fL1pBzzWyDmU0xswPN7ACiF+ijzOzf6Ul2MqcR3XrgCqI/4DXA\no8D82LF7gSkhfQBRWPQ5ohnjrTnrXEI0y3IzsDTkXQRcWOU65jWgLucE+2uJxoAvK9cZ9i8jmim+\nDvhmg9r9CKIXoW7gDqLJPvH6PC7U90aiHkJHTrpWhHZcCyyq0M6TieYzFIEe4CWikOMCYCBcz9rQ\nDktS1nYz8ArQF+yeH+7HF4O9NcB1oex+wD21zg35fwr3QTdwJzA5A40VbdShcV74218L/IvIuWRR\nl0dXshPXWaudgTPCvbGTaALbfSnorGivmq2kWstsbMFniY+6zRdOcRzHcZxRQMNmiTuO4ziOkxx3\n2I7jOI4zCnCH7TiO4zijAHfYjuM4jjMKcIftOI7jOKMAd9iO4ziOMwpwh+04juM4owB32I7jOI4z\nCvgfMhgjUCbd+uYAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x118692250>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "StO2g.plot(grid=True)\n", "plt.hlines(0,0,8,colors='k', lw=5)\n", "plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 118, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAEACAYAAACebi6nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVPX++PHXhx0EBMQFcddcsszKNbMwtbQsTcs09YZt\nN5eW263bciu7XX+39FrfNrW8WVqZtmhlamaWaK6pSSoqqeVG7qAssvP5/XEAZ2AGGObAzDDv5+Nx\nHsw585lz3nMGeM9nOZ+jtNYIIYQQwv35uDoAIYQQQlSNJG0hhBDCQ0jSFkIIITyEJG0hhBDCQ0jS\nFkIIITyEJG0hhBDCQ5iStJVSg5RS+5RSvymlnrJTJk4ptUMptVsptcaM4wohhBDeRDl7nbZSygf4\nDegP/AlsBUZprfdZlKkPbARu1FqnKKWitdZnnDqwEEII4WXMqGn3APZrrQ9rrfOBRcDQMmXuBhZr\nrVMAJGELIYQQjjMjaccCRy3WjxVvs9QeiFJKrVFKbVVKjTPhuEIIIYRX8avF41wF3ADUAzYppTZp\nrQ/U0vGFEEIIj2dG0k4BWlisNyveZukYcEZrnQPkKKXWAVcA5ZK2UkomQxdCCAdprZWrYxA1z4zm\n8a1AO6VUS6VUADAKWFqmzNfAtUopX6VUCNAT2Gtvh1prt16mTJni8hgkTolT4pQ4SxbhPZyuaWut\nC5VSk4FVGF8C5mqt9yql/mo8redorfcppb4DdgKFwByt9R5nj+0qhw4dcnUIVSJxmkviNJfEKYTj\nTOnT1lqvBDqU2fZumfUZwAwzjieEEEJ4I5kRrRri4+NdHUKVSJzmkjjNJXEK4TinJ1cxm1JKu1tM\nQgjhzpRSaBmI5hVq65KvOiUhIYG4uDhXh1EpidNcbh1nejosXQqff07C778T17gxBAdDUJD9nxU9\nV1FZH3Ma6Nz6fFrwlDiFd5CkLYSnunABVqyARYvg++/huuvgrrsgNRU6dYLsbMjJsf0zLc3+cxX9\nzMmBgADHE33Zn/XqgdbQty/4+rr6TArhMaR5XAhPkpcHq1YZiXrZMujeHUaNgttvh6iomj++1pCb\nW/2EX/I4PR02b4bjxyEuDvr3hwEDoH17UNLK6yhpHvcekrSFcHcFBZCQYCTqL7+ESy81EvUdd0Dj\nxq6Ozjl//gk//gg//ACrVxtfCkoSeP/+0LSpqyP0CJK0vYeMHq+GhIQEV4dQJRKnuWo1zqIiWL8e\nJk+G2Fh45hmjyTsxEX76CSZNspuwPep8Nm0KY8fCBx/AkSNGAu/VC776Ci67zHjPDz9srJ8757o4\nhXAT0qcthLvQGrZvN2rUn34KERFGjXrDBmjXztXR1TyljObx9u1hwgQoLDS+pPzwA8yaBePGGa0M\n/fsbS58+Rv+4EF5EmseFcLXdu41EvWiRkbhGjTKWzp1dHZl7yc2FTZuMZvQffjDOW8+eF5vTr7rK\nawe1SfO495CkLVwnP9+4TGnfPqMG1bkztG3rHf949+83atOLFhmDsu66y0jUV10lA7Gq6vx5WLvW\nSOA//AApKcagtpL+8A4dvOZcStL2HpK0q8FTrtt02zhPnIA5c4yldWsSmjYl7sIFo+Z08iR07Gj0\nZ3bubPy87DJo0cLl/4CdPp9HjsBnnxmJ+tgxuPNOI1H37m3atc+mxFlLTI/z+HHrQW2FhRcTeP/+\nxtgAd4izBkjS9h7Spy1qh9ZG3+zMmbByJYwcCcuXwxVXGCOjS/4pZmbCnj1GAt+92/gnvHu3URst\nSeKWybxJE5cn8wqdOAFffGEk6n37YPhwmDYNrr8e/OTPz1QxMTBmjLFoDQcOGAn8m2/gb3+DRo0u\nJvC4OIiMdHXEQjhMatqiZmVlwYIFRrLOyYGJE+Gee4xBVo5IS4OkpIvJPCkJdu0yRlmXJHDLhN6g\nQc28n6o4exaWLDGav7dvh1tvNWrUAwYYE5OI2ldUdHFQ2+rVsHGjMTK9pD/8mmuMiV88lNS0vYck\nbVEzfvvNGPH70UfGrFeTJhn/IE1sBkZrOHXqYhK3TOghIdY18s6djSU83LzjW0pPh6+/NmrU69fD\njTfC6NEweLBHJ4M6KzfXmNylJInv2gU9elxsTr/6ao8aWyFJ23tI0q4GT+jjAhfEWVhozNI1c6ZR\nq7nvPnjoIWjZssKXmR6n1kafcdlkvncvREdbJ/OSa4GrkFjLxVkyjejChcY//uuuM2rUt90GYWHm\nvR8Hye9nNaSnw7p1F0emHztmNKFffz0J588Td/31xu9OdLTRiuPv7+qIrUjS9h7SqSacd/o0vPce\nvPOO0a84aZIxKtxV19AqBc2bG8vgwRe3FxbCoUMXk/nKlTBjhjGSu1mz8v3l7duXb84uO41ojx5G\non7vPekj9WTh4TBkiLGAMSDyxx+NiWx27TIenzljLKmpRktOSQK3TOb2HjdoIF0jwhRS0xbVozX8\n/LNRq/7mG2Pu60mTjGZFT5Ofbwxasmxe373bSPBt215M5keOGNOIdu5sJOoRIzx/GlHhOK2Ny83O\nnDHGL5Qk85LH9rYFB1ctwVsm+sDAKoUkNW3vIUnbUefOGU1ntmph3iA726hlzpxpDA6bMAHGj3ft\nwK+akpMDyckXk3nDhsZlWs2buzoy4Wm0Nprgyybzyh4HB1epNq9uuEGStpeQpG1PQYHRbLpzp/WS\nmkpCRARxqanG5Uq9el1cmjd3q8uPTO0z/P13mD0b5s0zmoQnTYJBg0wZWOZWfZsVkDjNJXFWwjLR\nV5Lk1dq1krS9hCl92kqpQcDrGDcgmau1nmanXHdgI3CX1nqJGcc2xalTRr+VZXLeu9fo5+zSxVju\nu8/42aqVMWClWzfYts0YgfrJJ8ZNDfz8rJP41VcbfV+eqqjI6PedOdNoCo+PN95v27aujkyIuk8p\nqF/fWCr7m3OjyoKoWU7XtJVSPsBvQH/gT2ArMEprvc9Gue+BbOB9e0m7RmvaublGMi5be87Lu5ic\nS5bOnaFevarvW2s4fNhIaps2GT937zZm9+rd+2Iib9vW/f/AUlPh/feNmnVEhHGnqVGj5NIlIdyU\n9Gl7DzOSdi9gitZ6cPH604AuW9tWSj0K5AHdgWU1mrS1NuYhLpucDx40kmbZBB0bWzOJNCcHduww\nEnhJMr9wwbo23qNHzV077KhffjFq1UuWGKNoJ00ybsjg7l8yhPBykrS9hxnN47HAUYv1Y0APywJK\nqabAMK11P6WU1XNOy8oyRvuWTdABAReT8qBB8I9/GNfjVnE0ZkWq3McVFGTUsnv3vrgtJQW2bDGS\n+EsvGYmydWvrRN6pU+31FefmwuefG8n6zz+N66qTk40pH2uJ9G2aS+I0l6fEKbxDbV2n/TrwlMV6\nhd8I4+PjadWqFQARERF07dqVuOuug0OHSPjkEzh4kLiMDNi5k4TDh6FFC+L69IEuXUho2RIeeYS4\n4cOBizewj+va1Xq9+I+wOuuJiYnVf/3+/RAVRdz06cb66tXw++/EFRRAQgIJL7wA584Rd8010Ls3\nCSEh0KkTcUOHmhY/QFybNvDOOyTMng1t2xL3/PMwZAgJP/0Ee/YQV5y0TTteTZ1PWS+3Luez7p/P\nkseHDh1CeBezmsdf1FoPKl4v1zyulPq95CEQDWQBD2qtl9rYn9bnzpUfGLZrlzF5Rdmm7fbt696N\nF86cuVgb37zZGATWuPHFmnjv3nD55Y6/b62NGZ9mzjQmjRg3zpgLvH37mnkfQohaIc3j3sOMpO0L\nJGMMRDsO/AyM1lrvtVP+A+CbCvu0Q0ONgWCWyfnyy713xqnCQuMOUSUD3DZvNga9XXWVdbN6TIzt\n158/b1yqNWuW0WQ/aZJxJyRHBtoJIdyWJG3vYcp12sWXfL3BxUu+XlFK/RWjxj2nTNn3qWwgWmGh\nuTeWMFmCO/RxnT8PW7daj1YPDb1YE+/Vi4Rdu4jbvt24h/NNNxnJuk8ftxtY5hbnswokTnNJnOaR\npO09TGlX1lqvBDqU2faunbL3VrpDN07YbqN+feOORAMGGOsl9w8uqYl/9JEx6G3SJOP+1E2auDZe\nIYQQTpMZ0aqhsKgQXx/PuW2fEKJuk5q295AqrYPe++U9GkxvwIr9K1wdihBCCC8jSdsBMzbOYOq6\nqUxuNJl7v76XeYnzXB1ShSwvD3FnEqe5JE5zeUqcwjvUsWulaobWmud+fI7Fexfz0/ifOLjjIONu\nG8egBYNISU/h2b7PotxscJcQQoi6R/q0K1Gki3h4xcNsTtnMyjEraVivYelzxzOOM3jBYPo078Ob\ng9+Ufm4hhEtIn7b3kKRdgfzCfMZ/PZ4j54/wzehvqB9Uv1yZ8znnGf7ZcCKCIlgwfAFBfkEuiFQI\n4c0kaXsP6dO2Izs/mxGfjSAtJ42VY1daJWzLPq76QfVZcfcKAnwDuPGjG0nLTnNBtLZ5Sl+cxGku\nidNcnhKn8A6StG1Iz01n8ILB1Auox5d3fUmIf8X3xA70C2TB8AV0b9qdvh/05ej5oxWWF0IIIapD\nmsfLOHPhDIMXDObqmKuZefNMh/upX934Km9seYMVY1ZwWaPLaihKIYS4SJrHvYfUtC2kpKdw3QfX\nMaD1AGbfMrtaA8v+fs3febn/y/T/sD/rDq+rgSiFEEJ4K0naxQ6kHuDaD67lnivu4eUBL1d4CVdl\nfVxjuoxhwfAF3PHZHSzes9jkSKvOU/riJE5zSZzm8pQ4hXeQ67SBnSd3MnjBYF647gX+2u2vpuxz\nQJsBfDf2O4YsHMKJzBNM6jHJlP0KIYTwXl7fp73p6CaGfTqMNwa9wajLRpm+/z/S/uCmj2/izkvv\nZOoNU2USFiGE6aRP23t4ddJe/ftqRi8ezfxh87n5kptr7Dins04zZOEQLm14KXOGzMHf17/GjiWE\n8D6StL2H1/Zpf7n3S+5efDdLRi5xOGE72sfVsF5DfvzLj5zKOsXQRUPJzMt06PXV5Sl9cRKnuSRO\nc3lKnMI7eGXSnpc4j4krJrJy7Er6tuxbK8esF1CPr0d9TUxoDDfMv4HTWadr5bhCCCHqDq9rHn9j\n8xu8uulVVo1bRcfojjV2HHu01ryw5gUWJS3iu7Hf0SayTa3HIISoW6R53Ht4zehxrTX/WvsvPtn1\nCT+N/4mWES1dEodSin/f8G+ahjXl2vev5ZvR33B106tdEosQQgjP4pbN41OnwpdfQnIyFBQ4v78i\nXcRjKx/jq31fmZKwzejjmtB9AjNvnsmgBYNYdXCV0/uzxVP64iROc0mc5vKUOIV3MKWmrZQaBLyO\n8SVgrtZ6Wpnn7waeKl7NACZorXfZ219GBrz/PiQlwfHjcMkl0LkzXHrpxZ/t2oFfFaIvKCrg/qX3\ncyD1AAnxCUQERVT3bZru9k6307BeQ0Z8NoJXb3yVsV3GujokIYQQbszpPm2llA/wG9Af+BPYCozS\nWu+zKNML2Ku1Pl+c4F/UWveysz+rPu2sLNi3D/bsMZJ4yc8//zQSt61k7l98RVVOQQ6jF48mOz+b\nxSMXUy+gnlPvtabsOb2HwQsGM7n7ZJ645gm5llsI4RDp0/YeZiTtXsAUrfXg4vWnAV22tm1RPgLY\npbVubuf5Kg1Eu3DBdjJPSYG2baH9ZZkkdhpGk/AoZg/8mEs7BJQmc3d0LP0YgxcMpn/r/rx202v4\nKLfsuRC1QGuNRpf+LNJFDj0OCwgj0C/Q1W9D1CJJ2t7DjKQ9ArhJa/1g8fpYoIfW+hE75Z8A2peU\nt/G8U6PHs7Nhy85U7l9zM6EXLqPlznfZk+TLsWNGMreslXfubNTMAwIcO0ZCQgJxcXHVjtGecznn\nGLpoKE1Cm/DhsA+d/sdbU3GazZ3jLCwqZOWBlczeNpvtG7cTdEkQWhcnyeLEavbjEgqFj/JBKVXl\nx0opzu87T2j7UBrVa1RuaVyvcbltkcGRLvmS6M6fuyVPiFOStveo1dHjSql+wHjg2orKxcfH06pV\nKwAiIiLo2rVr6R9NyaAQe+sr1izmie+f4I7BdzB94HTWrl0LQM+ecSQnwxdfJLB/PyQmxpGUBIcO\nJdC0KXTvHkfnzqB1Aq1awZgxcQQE2D5eYmJileNxZD0iKIJ/Nv8n/2/d/2NQ1iC+uusrdmzeYdr+\n3XW9ps6nM+uXdr+U93e8z+uLXiciKIKnxz7N6NDRpcnxmr7XoJRi80+bUUrR57o+KBSb1m9Coeh7\nfV8Uig0/bcBH+dD3ur4opdiwbgMA18ddj4/yYd3adSgU/fr1Q6FYu3Zt6Xp149/hv4P4h+I5lXWK\n71Z/R1p2Gg3bNORU1ilW/bCKcznn0K00p7JOcWznMbILsmnU2Ujofkf8iAyK5PKel9OoXiNS96YS\nGRTJgBsG0KheI/Zt20egX6DLPx9v//0seXzo0CGEdzGrefxFrfWg4nWbzeNKqS7AYmCQ1vpgBfur\ndk37j7Q/GPDRAO678j6eufaZKvUN5+QYo9TLNrMfOQKtW5evmbdv73jN3FGFRYU8tvIx1h1Zx7dj\nvqVpWNOaPaAAjGbpjUc3MmvbLFbsX8HwjsOZ0H0C3Zp2c3VoNSqvMI/TWac5lXWq3HIy62S5bf6+\n/hXW3C2fiwqOqtYtboVjpKbtPcxI2r5AMsZAtOPAz8BorfVeizItgB+AcVrrzZXsr1pJO+lUEjd9\nfBPP9n2Wid0nOvz6snJzbSfzQ4eM0ew33QRDhkCfPtRIX7nWmmkbpvHOtnf4dsy3dGrYyfyDCAAy\ncjNYsGsBs7bOIrcwlwndJnDPFfcQGRzp6tDcjtaajLwMI6Fnlk/opy5YJPzMk5zPPU9UcFS5ZN4w\npCHRIdFEBUeVW0IDQmUwpoMkaXsPU2ZEKx4R/gYXL/l6RSn1V4wa9xyl1P+A4cBhQAH5Wusedvbl\ncNLemrKVWxfeyqs3vsqYLmOcei+Vyc2FDz5I4OTJOJYvh/374cYbjQQ+eDBER5t7vPmJ83lq9VMs\nuWsJ1zS/xqHXekJfHLguzt2ndjN762wW7l5Iv9b9mNhtIje0vsFuwpDz6biCogLOXDhTvgafeZLd\nP+8m6JIgUrNTrZacghybyTwqyMY2i6V+UP0a6Zt3p/NpjyRt72FKn7bWeiXQocy2dy0ePwA8YMax\nylrzxxru+uIu5t42l1s73FoTh7ASGAgdO8JDD8GUKXDiBKxYAV99BQ8/bDSj33KLkcS7dAFnKwz3\ndL2HxqGNGbpoKHNvm8ttHW4z5414qbzCPBbvWczsbbM5mHaQB656gF0TdhEbHuvq0OokPx8/moQ2\noUlok3LPJfjZToZ5hXmkZaeVS+ap2amczT5L0ukkm89l5mVSP6i+w8k+MjgSPx+vmRxSeDiPnnt8\nafJS7l96P5/d+RlxreJqNrAqyM2Fdetg+XJYtsxYL0ngN9wAISHV3/fWlK0MXTSUF+Ne5MGrbQ68\nFxU4fO4wc7bPYe6OuXRu1JmJ3SZyW4fb5DapdUhBUQHncs7ZTOgVLedyzlEvoF65RH/maBSJ65px\nT8dH+eeToTRo4Op3aJ/UtL2Hxybtj3d+zBOrnmDZ3cvccqCQ1vDbb0byXrYMtm+Hvn2NBH7LLdCi\nheP7PJB6gEEfD2Jsl7FMuX6K9PtVokgXsergKmZtncWGoxsY12UcD3V7yCU3ihHuq0gXkZ6bXprE\nD59KZcbMVA6dTKXDjT+x88Ru9MIveWRsO/72N4hwn0kVS0nS9iJaa7dajJAq9taWt3Sz15rppFNJ\nlZatCWvWrHH4NWlpWn/6qdbjxmkdHa315Zdr/cwzWq9fr3VBQdX3cyLjhL763av1A0sf0PmF+abH\n6Qpmx3k667Sevn66bvNGG33Vu1fp97a/pzNzM53er7eez5rijnGuXq11s2ZaP/KI1hcuaF1UVKQf\nm/2YbvBKIz1gwrc6OlrrqVO1Tk93daTWiv9vuvz/tyw1v3jUtFtaa6aum8rrm19nXfw6Lm14qatD\nqrKICBg5Ej780OgHf/dd8PGBSZOgcWMYNw4WLYK0tIr30zi0MWvuWcPh84cZ/ulwLuRfqJ03UENy\nciA1Fc6fh/z86u9Ha82mo5v4y5d/od2b7Ug6ncTCEQvZ9sA27rvqPredwla4h5wcePxxuOcemDsX\n3ngDgoONGuzQjkP5avRi9rS7j3FzXmZ3kqZdO5gxw5iZUYja5DHN41prnvz+SVYdXMV3Y78jJizG\nBdHVjKNHjcFsy5bB2rVw5ZVGM/qQIcagN1ut4HmFedy/9H72p+7nm9HfEB1i8rB1k2gNp0/D77/D\nwYPGT8vHZ85AeLjxT7PkH2BwsPUSElJ+W8niH5LFwXqfsMNvFvkqg+tCJtAvIp5GYQ3svsZyf+48\nta2oHTt3wpgx0KGD8WXaXt91SnoKIz4bQfP6zXnykg+YPjWUjRvh6afhwQchKKh247YkzePewyOS\ndmFRIX9d9leSTiex/O7lRAVHuSi6mpedDWvWXOwL9/O7mMCvv94YvV5Ca80zPzzDV/u+YuXYlbSK\naOWSmPPy4PBh62RsmaADAowpZNu0MZaSx23bQmws+FrMvZGfb5yDssuFC9brB9P38n3abH7OXkAL\n+tI1fyJNLgwgJ9vH7mtsbYeqfTkICYEePSA+3rkBhcJ9FBXB66/Dyy8btea//KXyqz1yC3KZtGIS\nm49t5qtRX5FxuB0vvAC//gr//CeMH1/zky/ZIknbe7h90s4tyGXsl2M5l3OOL+/6ktCAUBdGZ6it\n6za1ht27jeS9fDns2mWMQr/lFrj5ZmhaPFHam1veZPqG6Sy/ezlXNLmiRuJMTbVfWz5+HJo1K5+U\nS5bKBu5UNc68wjy+2vcVs7fNZt+Zfdx/5f08ePWDNK9v894zVWL5JcFeks/ONu4298EHCSQnx/HQ\nQxe7NdyRJ1xXDK6N8+hR4wtYbq7RZdWmjf2yZePUWvPOtnd4ce2LzBs6j8GXDGbLFnjhBWPw6Qsv\nGN1dVbl1sFkkaXsPt744MSsvi+GfDSc0IJRlo5d53Z2LlILLLzeWZ54xmpJXrjQS+D/+YfyjMS4p\ne4QZA5sw8KOBLLpjETe0vsHhYxUUGP/I7NWWi4qsa8jduhl99G3bQvPmNdvMfPT80dLLtdo3aM/E\n7hMZ1nEYAb7OV2n8/Y0lPLzysm3aGF+U/u//oFMnuPNOox+0Q4fKXyvcx6JF8Mgj8Nhj8NRT1i09\nVaGUYkL3CVze+HJGfj6SyT0m88y1z/Ddd4qffoLnnzdq71OmwKhRju9fiIq4bU37XM45bvnkFto3\naM//bv2fTH5QRn4+bNx48Zrw1FS48vYENsaO5PWb3mR891HlXpOebr+2fOyYUXO01YTdpg1ERTk/\nUYwjinQRq39fzayts1h3eB1jLh/DQ90eonOjzrUXRAVOnYJZs4yld2948kljSlu5Cs99nTsHkyfD\ntm3w8cfGF09nlfRzNwtvxrxh8wgNCEVr+PFHI3mfPw//+hcMH24MPK0pUtP2Hm6ZtE9knOCmj2+i\nX6t+vHrTq3Jv6Sr4/XcjgS/8cSeb29xCuzOPc3uTv3HkyMUEnZ1tuwm7bVto2dK6v9xVUrNT+WDH\nB7yz/R3q+ddjYveJ3H353W7RLWLLhQswfz689poxgOmJJ+D226V25W7WrjVGht9yC/z3v+aOSyjb\nz90uqh1gdG+tXGkk74IC+Pe/jbEpNfHFTpK293DLpH3Jm5cwtstYnr/uebecQMTd+wz3/nmEGz8c\nhF9yIy69ojvRUQE0jPInMjyAQL8AAnyrv/j7+Futm3EHpzVr1lCvfT1mb5vNV/u+Ykj7IUzsNpFe\nzXq51edf0edeWAhLlxoJ4eRJo9k8Ph7queBKM3f//SxRG3Hm5hp9zB99BP/7n5G0HVWVOG31c198\nDr7+2ogjOBheesm4X4GZv9qStL2HW7Y5T+4xmUd6PuLqMDxWp6Yt+PXR9fxr3r9ofkVj8grzyCvM\nIys/k7ScvNL1qiz5Rfl2n8styEUp5XTi37BuA/kt8nmo20NMnzydhvUauvoUOszX16hh33670W0x\nY4bRLOrug9bqsqQkGDvWaEX69VdoWIO/Vvb6uZVSKAXDhsFtt8EXXxh96Q0awNSpUNPfrYKDg0/k\n5OTIb58HCgoKOpmdnV1u0n63rGm7W0zCvsKiQoe+BNhamoU3Y2DbgXWuG+S334xBa4sWGYPW/v53\nGbRWG4qK4O23jRrtK6/AfffV7lgDW/3clgoL4ZNPjC91LVsazebXOHYDv3Ls1bTl/6nnsvuZutsH\nKr9koq4pO2jtiSfg2mtl0FpN+PNP41rp8+eNJvFLLnFNHPb6uS3l5xuXm730knF3wH//u/qD4yRp\n1z32PtO6VbWpJQkJCa4OoUokTnNVN85GjeDFF+HQIRg0CO6910jeX3xh1LrMVtfPpz2LFxuzCV5z\nDaxfb17Crk6cgX6B/O/W/zGp+yT6vN+Hb/d/W66Mv7/RCvDbb3DrrUYT+rBhxgxtQtgjSVuIWhIS\nAhMmwL59xvXBr70G7dvDzJnG5C2ietLTjdr1008bgwGnTKndiU3sKennXjxyMfctvY///PQfbNV6\nAwNh4kTYv9/o477xRmMOhD17aj9m4f6keVwIFyoZtPbTT8agtcmTZdCaIzZsMGYfGzDA+BIU6p5X\nBlbaz20pK8vok3/1VbjpJuNLSLvyretWpHm87pHmcSHc0DXXwJIlRvI5c8a4QcyDDxq1cWFffj48\n9xyMGGEM9pszx30TNkBseCxr49cSERRBr/d6cSD1gN2y9eoZLTEHDhgtMb16Gc3ohw7VXrzCfUnS\nrgZv7TOsKRKn8c959mxITjamSr3uOhg61KiBO1pRquvnMznZ+LKzYwckJhrnqSaZdT5L+rkn95hs\nt5/bUni4MTHL/v0QEwNXX200o6ekmBKOW2jVqhUhISGEh4cTExPDvffeS1ZWFv369eP999+3+Zq1\na9fi6+tLeHg4YWFhhIeHM3ToUCZMmFC6HhgYSEBAAOHh4YSHh3NL8QX6eXl5PPPMM7Rs2ZJ69erR\noUMHZsyYYbX/uLg4goODS19bsn93YUrSVkoNUkrtU0r9ppR6yk6ZN5VS+5VSiUqprmYcV4i6xtag\ntV69am7K7DlrAAAgAElEQVTQmifR2vhi06ePcV6WLYMm5a5idW9KKR7q9hBLRi7h/m/ut9vPbSky\n0rimOznZaE24/HLjWu8TJ2op6BqklGL58uWkp6fzyy+/sG3bNqZOnVrppEqxsbGkp6eTkZFBeno6\nX3/9NbNnzy5df/bZZxk1ahTp6emkp6ezfPlyAO644w7WrFnDypUrycjI4KOPPmLOnDk8+uijVjHN\nmjWr9LUl+3cXTidtpZQP8DZwE9AZGK2U6limzGCgrdb6EuCvwDvOHteVPGG2KZA4zVabcVoOWnv6\n6YuD1t5+u/JBa3XxfJ48aYywnjvXGBk+YULtXTJXE+ezT4s+/Hz/zyxNXsqdn99JZl5mpa+Jjobp\n040Balobl4k99ZTRreLJSr60xMTEMGjQIHbv3l0jx/nhhx9YvXo1S5YsoVOnTvj4+NCjRw8+/vhj\nZs6cye+//14uJndkxhjLHsB+rfVhAKXUImAoYNkrNxT4EEBrvUUpVV8p1VhrfdLWDt1p6koh3Edv\nHn74CR5+uC/G9963gVMujqk23Aq8C8wFXqJTp3wXx2MiX9hy8xYWr10Mi4BUR14cy/Tp/2T69JE1\nFFztOnr0KCtWrGDEiBGsW7fO6rnIyEiWL1/ONU7MQrN69Wp69uxJ05J7Ghfr0aMHzZo144cffqBN\nRfdodRNmNI/HAkct1o8Vb6uoTIqNMkKICm0CRgB9gGiM78XvAnV1mrV6GO/vdeAO4HmgDiVsgELg\nG+Bn4F6gklHi1lKAiYBztytTypyluoYNG0ZUVBTXXXcd/fr149lnny1XJi0tzSphp6SkEBUVRWRk\nJFFRUXzxxReVHufMmTPExMTYfC4mJoYzFk0WDz/8sNX+p0yZUo13VjPc4GpGIYRj9mP8s54C3Ay8\nDPgC/wXWuzAuM/UAPgbeAx4Dsl0bTk3bBpwEegHBwC5HXnzIqUO7uiX466+/pl+/fg69JjY2liNH\njjj0mujoaA4csD1q//jx40RHR5euv/XWW9x7770O7b+2mFHTTgFaWKw3K95WtkzzSsoIIRxyGpgP\njAG+Bd4HNgMvAfcDAzFq4cGuCrAafIEXgKXAM8B06nzCLnEUWAn0BEYCAa4Np7bUVv/xgAED2LJl\nCyllht9v2bKFY8eO0b9//1qJw1lmJO2tQDulVEulVAAwCuMvztJS4C8ASqlewDl7/dlCCEdlY/Rx\ndwSmAgVAb+AfGG2vqRjVuK3AF8BrwKPA7cBVQIPaD9mmthgtBX2AK4HFrg3HFTKADzA+0vuBKNeG\nU5f079+f/v37M2LECPbs2UNRURGbN29m3LhxTJw40SP6s8GE5nGtdaFSajKwCuNLwFyt9V6l1F+N\np/UcrfUKpdTNSqkDQBYwvpJ9OhtWjZL7FZtL4jRX2TiLiuDUqSAOH27EkSPdOHwYjhzB6mduLrRo\nYSwtW5b/GRtrzJVdE3FqbYwKf+YZ47rkyZPBx+dPcw/mBFd87lpr3t3+Li+0eoH5w+Zb3Z/bFk8d\nvGsv7rLbw8LCWLlyJX369HHqeIsXL2bKlCkMGjSIs2fPEhsbywMPPMCTTz5pVW7y5Mk89thjgPFZ\ndOzYka1btzp1bLPINKbV4Kn/vN2VxGmu6sSZkVE+kZf8PHzYuOSqcWPbCb3kcViY43F27hzHAw8Y\n16UvWACdOzu2j9rgys99w5ENjPxiJJO6Tyq9P7ctMo1p3SO35hRCVFt+vjETl73EfuSIceMLewm9\nZUtj4hgfiw65FSvg/vuNucNfesl4vSivZN7y2PBY5g2dR1hg+W9HkrTrHknaQogaozWcPWs/oR8+\nbNyNq3lzI4kHB8OuXcb9pK+/3tXRu7/cglwmr5jMxmMb+equr7ikgfV9RyVp1z2StE1Ul5tJXUHi\nNJe7xnnhAhw9aiTwEycgKiqBIUPiXB1WpdzlfJb2c68p388tSbvusfeZynXaQohaERICHToYC4CH\n3NfEbZTMW355o8ur1M8t6iapaQshhIcp288dHhQuNe06Ru6nLYQQdUTJ/bmjgqLoNbeXq8MRtUiS\ndjXU9fsV1zaJ01wSp7ncNc5Av0Dm3DqHh3s87OpQRC2SpC2EEB6qpJ9beA/p0xZCCA8no8frHunT\nFkII4VZatWpFSEgI4eHhxMTEcO+995KVlUVcXBzBwcGEh4fTsGFDhg4dWu5GH5b+9a9/ERAQQHh4\nOGFhYYSHhzNjxgwuu+wywsPDCQ8Px8/Pj+Dg4NLnX3nlFcC4zefYsWOJjo4mLCyMXr16sXz5cqv9\n+/j4lL7Ocv+uIEm7Gty1j6ssidNcEqe5JE6hlGL58uWkp6fzyy+/sG3bNqZOnYqPjw8zZ84kPT2d\ngwcPkpOTw+OPP17hvkaNGkV6ejoZGRmkp6fzxBNPsHv3btLT00lPT6dv377MmjWr9Pmnn36atLQ0\nrr32WoKCgti7dy9nzpzhscce4+6772bJkiVWce7cubPc/l1BkrYQQgiXKWm+j4mJYdCgQezevdvq\n+fDwcIYNG0ZSUpJpxyrx2muvERYWxnvvvUfDhg0JDAxk1KhR/POf/7T6kqC1dpsbWUnSrgZ3mB2p\nKiROc0mc5pI4haWjR4+yYsUKrrrqKqsEefbsWZYsWULPnj1Lt23YsIGoKOfvW7p69WpGjBhRbvvI\nkSM5cuQI+/fvd/oYZpMZ0YQQwoupf5kzo5qeUr2a6LBhw/Dz86N+/foMGTKEZ599lnXr1vHII4/w\n97//nfPnz9OzZ0/efvvt0tf06dOH1NRUq/18+umnLFu2DK01Sin27NlDkyZNKjz2mTNniImJKbe9\nZNuZM2e45BJjnverrroKHx+f0v1/+umnDBw4sFrv2RmStKvBXeYirozEaS6J01wSp3uobrI1y9df\nf02/fv3KbX/zzTe59957SUpKYuDAgXz77bcMHz7c7n7uuusuPvzwQ4eOHR0dzfHjx8ttL9nWsGHD\n0m07duygdevWDu2/JkjzuBBCCJeprK+4c+fOvPTSSzz11FOm9ysPGDDAasBZiU8//ZQWLVrQrl27\nKsdZWyRpV4OnfOuWOM0lcZpL4hRVdc8995Cdnc3nn39u6n7/9re/cf78ee677z5OnjxJbm4uCxcu\n5OWXX3bZJV2VkaQthBDCJezdoazsdn9/fx555BGmTZsGwPr16wkPD3f6WFFRUaxfv57s7GwuvfRS\noqOjef311/n444+54447rF57xRVXWF2nXdklaDVFZkSrBk/p45I4zSVxmkviNI/MiFb31MiMaEqp\nSKXUKqVUslLqO6VUfRtlmimlflRKJSmldimlHnHmmEIIIYS3cqqmrZSaBpzVWk9XSj0FRGqtny5T\npgnQRGudqJQKBbYDQ7XW++zsU74ZCiGEA6SmXffU1NzjQ4H5xY/nA8PKFtBan9BaJxY/zgT2ArFO\nHlcIIYTwOs4m7UZa65NgJGegUUWFlVKtgK7AFieP61KeMhexxGkuidNcEqcQjqt0chWl1PdAY8tN\ngAaes1HcbjtMcdP4F8CjxTVuu+Lj42nVqhUAERERdO3atXQgSMkfkCvXExMT3SoeT1+X8ynn053X\n3fF8ljw+dOgQwrs426e9F4jTWp8s7rteo7XuZKOcH7AM+FZr/UYl+5Q+GCGEcID0adc9NdWnvRSI\nL358D/C1nXLvA3sqS9hCCCGEsM/ZpD0NGKiUSgb6A68AKKVilFLLih/3AcYANyildiilflFKDXLy\nuC5l2UTlziROc0mc5pI4hXCcUzcM0VqnAgNsbD8ODCl+vAHwdeY4QgghhJBpTKulZFCIu5M4zSVx\nmkviFGBMSdqnTx8iIiKIjo6mb9++bN++vUqvXbZsGT179iQ0NJSGDRsybtw4UlJSSp9fsWIFffv2\nJTIykqZNm/Lggw+SlZVld39xcXEEBwdbTVe6bt260sdhYWH4+PgQGhpaum3Dhg0AbNy4kf79+xMe\nHk5kZCRDhw5l7969pfteu3Ytvr6+hIeHW+1/yxbHLqaSpC2EEMIlMjIyuPXWW3n00UdJS0sjJSWF\nKVOmEBgYWOlrv/jiC8aMGcPjjz/O2bNnSUpKIiAggGuvvZbz588DkJ6ezvPPP8/x48fZu3cvx44d\n48knn7S7T6UUs2bNIj09nYyMDNLT07nuuutKH2dkZKCUYteuXaXb+vTpw6ZNm7jpppu4/fbbOX78\nOH/88QddunShT58+ViP8Y2NjSU9Pt9p/z549HTtpWmu3WoyQ3NuaNWtcHUKVSJzmkjjNJXGap/j/\npsf9P922bZuOjIy0+dy8efN0nz599OTJk3X9+vV1p06d9A8//FD6fMuWLfWMGTOsXlNUVKQvu+wy\nPWXKFJv7XLJkie7SpYvdeOLi4vTcuXMrjFkppQ8ePGi1rW/fvnry5Mnlyg4ePFjfc889WmutExIS\ndPPmzSvctyV7n6nUtIUQQrhE+/bt8fX1JT4+npUrV3Lu3Dmr57ds2cIll1zC2bNnefHFFxk+fDjn\nzp0jOTmZo0ePWt2JC4ya8ogRI/j+++9tHm/t2rV07ty5dH3atGncdtttTr2H7OxsNm7cWC4WgJEj\nR9qNpdpsZXJXLrj5N0MhhHA3OFPTBnOWatq3b58eP368bt68ufbz89NDhw7VJ0+e1PPmzdOxsbFW\nZXv27Kk//vhjvX79eu3j46Nzc3PL7e+dd97R7du3L7d91apVOioqSh84cMBuLHFxcbpevXo6MjJS\nR0RE6KuvvrpcmbI17WPHjmmllE5OTi5XduXKlTogIEBrbdS0fXx8dGRkZOn+IyMj9YULF2zGYu8z\nlZq2EEJ4M7PSdjV16NCB999/nyNHjpCUlERKSgqPPfYYYPQBW2rRogV//vkn0dHRaK05fvx4uf0d\nP36c6Ohoq22bN29mzJgxLF68mLZt21YYz5tvvklqaippaWls27at0vgjIyPx8fGpUiyxsbGkpqaW\n7j81NZXg4OBKj2FJknY1eMp1mxKnuSROc0mcoqz27dsTHx9PUlISgNVIcIAjR47QtGlTOnToQLNm\nzfj888+tntdas3jxYgYMuHgl8o4dOxg2bBjz5s2rkSsBQkJC6N27d7lYAD777DOrWMwgSVsIIYRL\nJCcn89prr5Um56NHj7Jw4UJ69eoFwMmTJ3nrrbcoKCjg888/Z9++fdx8880AzJgxg6lTp7Jo0SJy\nc3M5ceIE9913HxkZGaU19d27dzN48GDeeuut0tfVhFdeeYX58+fz9ttvk5mZSVpaGs899xybN29m\nypQppeW0Ey0SVjtxpwXp0xZCCIfgoaPHU1JS9MiRI3VsbKwODQ3VzZo10xMmTNAZGRl63rx5+tpr\nr9UPP/ywrl+/vu7QoYNevXq11euXLl2qu3fvrkNDQ3WDBg303XffrY8dO1b6/Pjx47Wvr68OCwvT\noaGhOjQ0VF922WWlz//nP//RN998c+l6v379Kh097uPjU270uNZab9iwQcfFxenQ0FBdv359PWTI\nEL1nz57S5xMSEkpjKYknLCxML1myxOZx7H2mTt0wpCbIBPdCCOGYunjDkPnz5zN37lzWrVvn6lBc\noqZuGOKVPKWPS+I0l8RpLolTCMdJ0hZCCCE8hDSPCyGEh6uLzePeTprHhRBCCA8nSbsaPKWPS+I0\nl8RpLolTCMdJ0hZCCCE8hPRpCyGEh5M+7bpH+rSFEEIIDydJuxo8pY9L4jSXxGkuiVMIxzmVtJVS\nkUqpVUqpZKXUd0qp+hWU9VFK/aKUWurMMYUQQtQd69evp0+fPkRERBAdHU3fvn3Zvn078+fPp2/f\nvuXKb9y4kf79+xMeHk5kZCRDhw5l7969pc9v2bKFG2+8kQYNGtC4cWPuuusuTpw4Yff448ePJzAw\nkPDwcMLCwggPD+ezzz4rfRweHo6vry8hISGl2xYuXAjAnj17GDp0KBEREdSvX5/+/fuzadOm0n0f\nPnwYHx+f0v2UvN7WzUWqzNbcplVdgGnAP4ofPwW8UkHZvwEfA0sr2WeF874KIYSwhofOPZ6enq4j\nIiL0p59+qouKinROTo7+/vvv9a5du/S8efN03759rcpv3LhRh4aG6rfeektnZmbqtLQ0/dxzz+nI\nyEj9xx9/aK21/vbbb/UXX3yhMzIydHZ2tr733nv1oEGD7MYQHx+vn3/++QrjbN26tf7xxx+tth04\ncEBHRkbq559/XqelpenMzEz95ptv6tDQUL1582attdaHDh3SPj4+uqioyOFzY+8zdWogmlJqH3C9\n1vqkUqoJkKC17mijXDPgA+D/AY9rrW+rYJ/amZiEEMLbeOpAtO3btzNw4EBSU1Ottu/bt48rr7yS\ngoICgoKC8Pf3JzU1lb59+9K1a1feeustq/I333wzjRo1Yt68eeWOsWPHDuLi4jh//rzNGMaPH0/z\n5s156aWX7MbZunVr5s6dyw033FC6bdy4caSlpbFs2TKrshMnTmTPnj0kJCRw+PBh2rRpQ35+Pj4+\njjVs19RAtEZa65MAWusTQCM75f4PeBJw398eB3hKH5fEaS6J01wSp2jfvj2+vr7Ex8ezcuVKzp07\nB0DHjh1555136N27NxkZGaSmppKdnc2mTZu44447yu1n5MiRfP/99zaPsXbtWjp37ly6vnDhQrp2\n7ep07KtXr+bOO++0GcuGDRvIzc0t3WbmFye/ygoopb4HGltuwki+z9koXi4ypdQtwEmtdaJSKq74\n9RWKj4+nVatWAERERNC1a9fSm5eX/AG5cj0xMdGt4vH0dTmfcj7ded0dz2fJ40OHDuEsZdKXEl0c\noyPCwsJYv34906ZN48EHH+T48ePccsstzJkzp1zZ1NRUioqKiImJKfdcTEwMZ86cKbd9586d/Pvf\n/+abb74p3TZ69GhGjx5tVe6///0vb7/9Nlpr/P39OXXqVKWxnzlzxm4sRUVFpa0HWmsaNmxY+lgp\nxaZNm+jQoUOlx7DJVpt5VRdgL9C4+HETYK+NMv8BjgC/A8eBTODDCvbpcNu/EEJ4Mzy0T7us5ORk\n3a1bNz169OhyfdpZWVna19dXJyQklHvdBx98oJs2bWq1bf/+/To2NlYvWLCgwmNWpU+7VatW+ocf\nfrDa1qRJEz1v3rxyZdesWaP9/Px0dnZ2jfRpO9s8vhSIL358D/C1jS8Fz2qtW2it2wCjgB+11n9x\n8rhCCCHqmPbt2xMfH09SUhJKWTfKhoSE0Lt3b5sjrz/77DP69+9fun748GEGDhzIlClTuPvuu2sk\n1gEDBtiM5dNPP6V3794EBQWVbtMmNo87m7SnAQOVUslAf+AVAKVUjFJqWYWv9GAJJjUn1TSJ01wS\np7kkTpGcnMxrr71GSkoKAEePHmXhwoX07t2bxo0bc+zYMfLz80vLv/LKK8yfP5+3336bzMxM0tLS\neO6559i8eTNTpkwBICUlhf79+/Pwww/zwAMP1FjsU6ZMYePGjTz//POkpaWRmZnJW2+9xccff8z0\n6dNLy+mLrR6mcCppa61TtdYDtNYdtNY3aq3PFW8/rrUeYqP8Wl3ByHEhhBDeIywsjC1bttCzZ0/C\nwsK45ppr6NKlCzNmzOCGG26gc+fONGnShEaNjDHOffr04bvvvmPx4sXExMTQunVrfv31V9avX0/b\ntm0BmDt3Ln/88Qcvvvii1bXRJT755BMuv/zy0vWyNXpbbJVp164d69evJzExkVatWtG0aVO+/PJL\nVq1aRa9evaxeGxkZaRXL66+/Xu1zJnOPCyGEh/PUS76EfTL3uBBCCOHhJGlXg6f0cUmc5pI4zSVx\nCuE4SdpCCCGEh5A+bSGE8HDSp133SJ+2EEII4eEkaVeDp/RxSZzmkjjNJXEK4bhK5x4XQgjhmYKC\ngk4qpRpXXlK4m6CgoJO2tkufthBCeDh7/Z+i7pHmcSGEEMJDSNKuBk/p45I4zSVxmkviFMJxkrSF\nEEIIDyF92kII4eGkT9t7SE1bCCGE8BCStKvBU/q4JE5zSZzmkjiFcJwkbSGEEMJDSJ+2EEJ4OOnT\n9h5S0xZCCCE8hCTtavCUPi6J01wSp7kkTiEc51TSVkpFKqVWKaWSlVLfKaXq2ylXXyn1uVJqr1Iq\nSSnV05njCiGEEN7IqT5tpdQ04KzWerpS6ikgUmv9tI1y84C1WusPlFJ+QIjWOt3OPqVPWwghHCB9\n2t7D2aS9D7hea31SKdUESNBadyxTJhzYobVuW8V9StIWQggHSNL2Hs72aTfSWp8E0FqfABrZKNMa\nOKOU+kAp9YtSao5SKtjJ47qUp/RxSZzmkjjNJXEK4bhK76etlPoesLwfqwI08JyN4raqyH7AVcAk\nrfU2pdTrwNPAFHvHjI+Pp1WrVgBERETQtWtX4uLigIt/QK5cT0xMdKt4PH1dzqecT3ded8fzWfL4\n0KFDCO/ibPP4XiDOonl8jda6U5kyjYFNWus2xevXAk9prW+1s09pHhdCCAdI87j3cLZ5fCkQX/z4\nHuDrsgWKm8+PKqXaF2/qD+xx8rhCCCGE13E2aU8DBiqlkjGS8SsASqkYpdQyi3KPAAuUUonAFcB/\nnDyuS1k2UbkzidNcEqe5JE4hHFdpn3ZFtNapwAAb248DQyzWfwW6O3MsIYQQwtvJ3ONCCOHhpE/b\ne8g0pkIIIYSHkKRdDZ7SxyVxmkviNJfEKYTjJGkLIYQQHkL6tIUQwsNJn7b3kJq2EEII4SEkaVeD\np/RxSZzmkjjNJXEK4ThJ2kIIIYSHkD5tIYTwcNKn7T2kpi2EEEJ4CEna1eApfVwSp7kkTnNJnEI4\nTpK2EEII4SGkT1sIITyc9Gl7D6lpCyGEEB5CknY1eEofl8RpLonTXBKnEI6TpC2EEEJ4COnTFkII\nDyd92t5DatpCCCGEh5CkXQ2e0sclcZpL4jSXxCmE45xK2kqpSKXUKqVUslLqO6VUfTvlnlFKJSml\ndiqlFiilApw5rhBCCOGNnOrTVkpNA85qracrpZ4CIrXWT5cp0xJYA3TUWucppT4FlmutP7SzT+nT\nFkIIB0iftvdwtnl8KDC/+PF8YJiNMulAHlBPKeUHhAB/OnlcIYQQwus4m7Qbaa1PAmitTwCNyhbQ\nWqcBrwJHgBTgnNZ6tZPHdSlP6eOSOM0lcZpL4hTCcX6VFVBKfQ80ttwEaOA5G8XLtWsrpdoAfwNa\nAueBL5RSd2utP7F3zPj4eFq1agVAREQEXbt2JS4uDrj4B+TK9cTERLeKx9PX5XzK+XTndXc8nyWP\nDx06hPAuzvZp7wXitNYnlVJNgDVa605lyowEBmqtHyheHwf01FpPtrNP6dMWQggHSJ+293C2eXwp\nEF/8+B7gaxtlkoFeSqkgpZQC+gN7nTyuEEII4XWcTdrTgIFKqWSMZPwKgFIqRim1DEBr/SvwIbAd\n+BWjeX2Ok8d1KcsmKncmcZpL4jSXxCmE4yrt066I1joVGGBj+3FgiMX6f4H/OnMsIYQQwtvJ3ONC\nCOHhpE/be8g0pkIIIYSHkKRdDZ7SxyVxmkviNJfEKYTjJGkLIYQQHkL6tIUQwsNJn7b3cGr0uBDV\nlZafT2JmJomZmZzNz6dpYCCxgYE0DQigaWAgjf398fORhiAhhLAkNe1qSEhIKJ1W0J25Q5xaa47m\n5pKYmcmO4iS9IyODswUFXFGvHl1DQ8n85ReCrrySlLw8/szN5c+8PM7k59PQ35+mAQFGMi9O6LGW\nPwMDifLzw5izp+a5w/m0Ja+oiNT8fFILCkjNz2fbTz/R47rr8FfKWHx8Lj62s+5bS+fQkruez7I8\nIU6paXsPqWkL0xQUFbHvwoXSGnRJkg7w8aFraChXhoYyulEjprdpQ9vgYHyKE0XCn38S16GD1b7y\ni4o4mZdnlchTcnNZd+5c6eM/8/LILiwsTehla+uxFtvq+fq64pQ4pKCoiLSCAs4WJ2Crn3a2nS0o\nIKeoiCg/Pxr4+xPp50fmiRN8dvAgeUVF5Gt9calgXUGVEnyA5XoVvgwEVPDcgdOn2XnsWOkNCyy/\nrGs7Py3LWW2roXJ+SqHPn6dDbi4xgYEVfn5C1AapaYtqySosZKdl7Tkzkz1ZWTQLDKRraGhpku4a\nGkqTGvxnd6Gw0Cqp/1mc5K0e5+URoJRVIrdVg28SEECACU3yhVpzrgrJNjU/v3R7an4+mYWFRBQn\n3yh/fxr4+Rk//f1Lk3KUjefDfH2dam3QWlNomcwrSfCOfBmoqKwlVeYnUPqebD5XpkxNlcspKmJn\nZibbMjII9PGhe1gY3SyW6IAAO2e1dklN23tI0rZBa82FoiIyCgrIKCwsXTILC8koKCBXa6L9/Wns\n70/jgAAaBQQQWIf7X0/l5Vk1bSdmZnIkN5dLQ0K4MiysNEFfXq8eYX7u13iji5NoaWK3k+RP5ucT\n6edn3QRvUVv3BZvJtuy29IICwv38bCZYW9tKknF9P7/S1gfhXrTWHM7JYWtGBtsyMtiakcH2jAyi\n/P1LE3n3sDCuCgujvgv+BiRpe486kbS11uQWFVkl2LIJ114CtlUms7CQAB8fwnx9S5dQX1/C/PwI\n8/Ulbds2/K68kpN5eZzMy+N0fj71fH1Lk3jpYmc9uJaaah3tiyvSmt+zs637nzMzyS4qKq01l/zs\nGBKCv0lfVNylz7BQa05bNMmXra2f/vlnLrnmmgprvQ38/Ynw83NJH3EJdzmflfH0OIu0Zn92tpHE\n09PZVvyFNjYw8GIiDw+na2hojXfPSNL2Hu5XLQLmHT/ucAL2ASPBFidWW8k2zNeXKD8/WgYFVVgm\n1Ne3woSUcPo0cV26lK4XaU1aQUFpEj+Zl8fJ/HxO5uWxOT3dav1kXh6BPj4VJnXL9dAa+taeW1RE\nUlaWVYL+NTOTSD+/0uT8QEwMV4aF0SIwsNYGe7mSr1I0CQykSWAgV4eFlXs+ITWVuEsvdUFkwh35\nKEWHkBA6hIQwpnFjwBiXsPfChdLa+CenTrE7K4u2wcFWNfIuoaF1unVO1By3rGn/Zc8emwm4bGK1\n3CY85bkAAAmQSURBVGZGX2Rt0FpzvqDAKomXTeqW6woqrbmXLOF2+jbP5efza1ZWadP2jsxMfsvO\npl1wsFXt+YrQUBr4+9f+SRGiDsstKmJ3VlZpbXxrRgb7s7O5NCSktG+8e3g4lzrReiU1be/hlknb\n3WJypUwHEnxeUZFVEvcFdmZlcSovjy4WyfnK0FA616tXa830QghrFwoL+TUz06qP/EhODleEhpbW\nxruFhdE+JKRKXS2StL2HJO1qcNe+uAuFhZyySOI7fvqJUTfdRLvgYJf2sVbGXc9nWRKnuSROa+kF\nBfxikcS3ZWRwOj+fq0oSeXg43cLCaBMUVK5FTZK293DLPm1RPSG+vrQKDqZVcDAA4ZGRdAgJcXFU\nQoiqCPfzIy4ykrjIyNJtZ/Pz2V6cwBedOsUTBw+SVVh4sVm9+KfwHlLTFkIID3IiN9eqNr41I4PT\n114rNW0vIUlbCCE8mNYaHx8fSdpewqkh10qpO5RSu5VShUqpqyooN0gptU8p9ZtS6ilnjukOPOX+\nuhKnuSROc0mc5vCGyzHFRc5eJ7ULuB1Ya6+AUsoHeBu4CegMjFZKdXTyuC6VmJjo6hCqROI0l8Rp\nLolTCMc5NRBNa50MoCr+qtcD2K+1PlxcdhEwFNjnzLFd6dy5c64OoUokTnNJnOaSOIVwXG3MSBIL\nHLVYP1a8TQghhBAOqLSmrZT6HmhsuQnjznX/1Fp/U1OBubNDhw65OoQqkTjNJXGaS+IUwnGmjB5X\nSq0B/q61/sXGc72AF7XWg4rXnwa01nqanX3J0HEhhHCQjB73DmZOrmLvF2Yr0E4p1RI4DowCRtvb\nifziCSGEELY5e8nXMKXUUaAXsEwp9W3x9hil1DIArXUhMBlYBSQBi7TWe50LWwghhPA+bje5ihBC\nCCFsc8n9LJVStymlflVK7VBKbVNK3WCnXCul1ObiSVkWKqVqda70yiaFqer7qOEYA5VSW4pjSFJK\n/cdOubjiMruLxyDUOqVUfaXU50qpvcWx9izzfIRSaknxOd2slKqVm1crpR5VSu0qXh6x8XwHpdRG\npVSOUupxi+3NlFI/Fr8Xm681Iba5SqmTSqmdFtumF5/DRKXUYqVUeFVfW7x9ilLqmFLql+JlUA3E\nWKVjVBBjd6XUz8W/sz8rpbo5E2MFcVZ6nIo+56pOMOVgnDaPV5VjVeV3Uin1d6VUkVIqyox4RS3T\nWtf6AoRYPL4cOGCn3KfAncWPZwN/rcUYfYADQEvAH0gEOlbnfdTW+QR8gc1AnzLP18fomogtXo92\nUZzzgPHFj/2A8DLPTweeL37cAVhdCzF1BnYCgcXnbxXQpkyZaOBq4N/A4xbbmwBdix+HAsllf0dM\niO9aoCuw02LbAMCn+PErwMtVfW3x9imW76OGYqzSMSqIcQ1wY/HjwcCaGoqz0uNU9DkX/55eAvwI\nXGXS+bR5vKocq7LfSaAZsBL4A4gy83dVltpZXFLT1lpfsFgNBc7YKXoDsLj48XyM2ddqS+mkMFrr\nfKBkUphSDryPGmURRyDGl420MkXuBhZrrVOKy9d6nMW1wb5a6w+KYyjQWqeXKXYpxj8ktDFxTyul\nVMMaDq0TsEVrnauN8RfrgOGWBbTWZ7TW24GCMttPaK0Tix9nAnsxeQ4CrfV6ynyeWuvVWuui4tXN\nGP+Iq/RaC6YN+KzgOJUeo4LXHsf4sgkQAaRUO8CKj1XpcSr6nLXWyVrr/Zh7Pm0eryrHqsLv5P8B\nT5oVq6h9LknaUDqIbS+wArBsblqulGqilGoApFn8czoGNK3FEG1OCqOUelAp9WDJRnvvozYppXyU\nUjuAE0CC1nqPUuqvFnG2B6KUUmuUUluVUuNcEGZr4IxS6oPi5tI5SqmQMnH+SnHCVEr1AFpgJyGZ\naDfQVykVqZQKAW4Gmpf9nCujlGqFUYvbUiNR2ncvUG4AaBVMLm5ef08pVb/y4tVieYwIB2N8GnhN\nKXUEowXmmRqK0eZx7MVZ259zVY5X1ViVUrcBR7XWu2ogVFFbXF3Vx2iySraxvQHwm8V6M8o0odVw\nXCOAORbrY4E3HX0ftXwuwzFqXteX2f4WsBEIKjmvQLtaju1qIB/oVrz+OvCvMmXCgPeBXzBaVrYA\nXWohtvHANiABmAm8ZqeczSZfjFaWbcDQGoqvpa3ffeCfGC0oDr0WaMjFQahTgblmx+jIMezE+D0w\nrPjxHcD3NXEuHTlORZ8zRjO7Kc3jlR2vKscq+1r4/+2dz4tOURjHP0+MmiSKGBthyk7CiKIoKStJ\n2dj4UShlh/wbNjaKomY1CZGshIUNM0iUKcJQiJQFFvpanPPqer3zmtu89063vp+6dc9577nP955z\n733Oj6f70p/fDfNy+hWwsIr71Vu1W20j7Yg4loM9RiNioJWvNGU1O4+sKeR/BhZE+sMRSE572lNk\nJXhHGum16Gp/suuoE6Xp5htAezDNBHBL0o9cr3eBNTXLmyD18h/k9AjwVzCNpG+SDklaJ2k/sBh4\nWbUwSRckDUnaBnwldWqmRKTgyBHgkqSrFUnsZPcAaVZgX9mykj4pv7mBc8CGHkrrlY2Nkq7kc42Q\nlquqYEp26m7n6dibpOwgsBx4HBGvSO+zhxGxuHeqTR3U5rQlnZW0VtI6YG4rvxUFmZ1JO7eBvXl/\nP1DbS5HCR2EiYg7pozDXigdExGBhv9t1VEZELGpNb0ZEP7CDFDRX5CqwJSJm5SngjaS1rtqQ9AF4\nGxGrctZ24FnxmEjR5X15/zBwR2ldrlJa6+YRsYwUNzHc7fC29HngmaQzFclr2fxjN0dinwR2SfpZ\npmwuP1BI7iEtEfRaYxkb/2gExiNiaz7Xdkp0pMroLGFnKu3cyw9D/c9eN1v/lJX0VNKApJWSVpA6\n0WslfeydZFMLMzG8B06RHuJR4B6wofDbDWAg768gTZG+IEWS99Wscycp+nIcOJ3zjgJHJrmOoRmo\ny9XZ/hhpTfhEu86cPkGKIH8CHJ+hdl9D6gw9Ai6TAoCK9bkp1/dz0khhfk267uZ2HAO2dWjnJaT4\nhq/AF+ANafpxM/ArX89YboedPdY2DLwHfma7B/P9+DrbGwXO5mOXAte7lc35F/N98Ai4AiypQGNH\nGyU0DuVnfwy4T3IwVdTl+k52ijq7tTOwO98b30lBbTd7oLOjvclsTVVrm42XOHq8kZs/rmKMMcY0\nhBmLHjfGGGNMOey0jTHGmIZgp22MMcY0BDttY4wxpiHYaRtjjDENwU7bGGOMaQh22sYYY0xDsNM2\nxhhjGsJv4d6ACVArBD0AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11342a510>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "FTOEg.plot(grid=True)\n", "plt.hlines(0,0,8,colors='k', lw=5)\n", "plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plots comparing baseline and 3H after ROP Exam" ] }, { "cell_type": "code", "execution_count": 119, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "def savitzky_golay(y, window_size, order, deriv=0, rate=1):\n", " r\"\"\"Smooth (and optionally differentiate) data with a Savitzky-Golay filter.\n", " The Savitzky-Golay filter removes high frequency noise from data.\n", " It has the advantage of preserving the original shape and\n", " features of the signal better than other types of filtering\n", " approaches, such as moving averages techniques.\n", " \n", " Parameters\n", " ----------\n", " y : array_like, shape (N,)\n", " the values of the time history of the signal.\n", " window_size : int\n", " the length of the window. Must be an odd integer number.\n", " order : int\n", " the order of the polynomial used in the filtering.\n", " Must be less then `window_size` - 1.\n", " deriv: int\n", " the order of the derivative to compute (default = 0 means only smoothing)\n", " \n", " Returns\n", " -------\n", " ys : ndarray, shape (N)\n", " the smoothed signal (or it's n-th derivative).\n", " \n", " Notes\n", " -----\n", " The Savitzky-Golay is a type of low-pass filter, particularly\n", " suited for smoothing noisy data. The main idea behind this\n", " approach is to make for each point a least-square fit with a\n", " polynomial of high order over a odd-sized window centered at\n", " the point.\n", " \n", " Examples\n", " --------\n", " t = np.linspace(-4, 4, 500)\n", " y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape)\n", " ysg = savitzky_golay(y, window_size=31, order=4)\n", " import matplotlib.pyplot as plt\n", " plt.plot(t, y, label='Noisy signal')\n", " plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal')\n", " plt.plot(t, ysg, 'r', label='Filtered signal')\n", " plt.legend()\n", " plt.show()\n", " \n", " References\n", " ----------\n", " .. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of\n", " Data by Simplified Least Squares Procedures. Analytical\n", " Chemistry, 1964, 36 (8), pp 1627-1639.\n", " .. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing\n", " W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery\n", " Cambridge University Press ISBN-13: 9780521880688\n", " \"\"\"\n", " import numpy as np\n", " from math import factorial\n", "\n", " try:\n", " window_size = np.abs(np.int(window_size))\n", " order = np.abs(np.int(order))\n", " except ValueError, msg:\n", " raise ValueError(\"window_size and order have to be of type int\")\n", " if window_size % 2 != 1 or window_size < 1:\n", " raise TypeError(\"window_size size must be a positive odd number\")\n", " if window_size < order + 2:\n", " raise TypeError(\"window_size is too small for the polynomials order\")\n", " order_range = range(order+1)\n", " half_window = (window_size -1) // 2\n", " # precompute coefficients\n", " b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])\n", " m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)\n", " # pad the signal at the extremes with\n", " # values taken from the signal itself\n", " firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )\n", " lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])\n", " y = np.concatenate((firstvals, y, lastvals))\n", " return np.convolve( m[::-1], y, mode='valid')" ] }, { "cell_type": "code", "execution_count": 120, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [], "source": [ "ypsg = savitzky_golay(dfen['SpO2'].values, 31, order=4, deriv=0, rate=1)\n", "yrsg = savitzky_golay(dfen['PR'].values, 31, order=4, deriv=0, rate=1)\n", "ytsg = savitzky_golay(dfen['StO2'].values, 31, order=4, deriv=0, rate=1)\n", "yi = dfen['PI'].values #don't filter PI values\n", "yf = dfen['FTOE'].values #don't filter FTOE\n", "\n", "dfgraph = pd.DataFrame({'SpO2':ypsg, 'PR':yrsg, 'StO2':ytsg, 'PI':yi, 'FTOE':yf}, index=dfen.index)" ] }, { "cell_type": "code", "execution_count": 121, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEaCAYAAABEsMO+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4FeX1x78HQlZICIsgiFEUEEVQBFeqqbu2ReuO1qV2\n0bpWW7Vqf261dV9q3bUqYl3qirYqiopYBdlXZSeEJYQlJAESSEjO748zx3nv3Jl75yb3Jjfwfp7n\nPvfembkz78ydeb/vOe95z0vMDIvFYrFY0o12rV0Ai8VisVj8sAJlsVgslrTECpTFYrFY0hIrUBaL\nxWJJS6xAWSwWiyUtsQJlsVgslrTECpSlzUJExxDRytYuRyy8ZSSieUR0dGuWyWJpK1iBsqQ1RDSG\niMqIqIqIlhLRrZ5NQg/kI6IJRFRLRNVEtMn5PijJRfbjhzIy8yBmnpjsAxBRbyJ6i4jWO+c2h4gu\nctYVEVEjEbXz+c0rRLSBiDYT0WQi+omxvjsRvUpEq519fkVEhya77BZLEFagLOnOPQD2ZuYCAKcA\nuJqITmrivhjAFcycD6ALgC8BjElOMVudMQBWAOgDoCuACwGUO+sIcu6kGxNRIYD/AdgGYCCAbgAe\nBfAqEZ3hbNYRwBQAB0Ou18sA/ktEuak+GYsFsAJlSXOY+Ttm3uZ8JQD1ANYbmxARXU9E5U5L/5I4\nuyRnvwzgdUjlrDsaTkTfONbCaiL6BxFlGOsfcY5TRUSziWh/Z3kmET1IRCsca+9JIsryPTjRciI6\n1vl8OxG9QUSjHatuLhENNbbd3bGK1jnW49Uxzms4gNHMvI2ZG5l5NjOPc9Z96bxXOsc5DMD1ADYz\n86+ZeT0zb2fm1wH8FcDDzjVazsyPMvM6Fp4DkAlgQJxrbLEkBStQlrSHiJ4goq0A5gH4KzPPMFb3\nBNAJQC8AvwbwBBEVhNhnJoBfAJhsLG4A8HuItXAEgGMBXOFsfyKAEQD2day5cwBsdH53H4B9AQx2\n3nsDuC3k6f0MwKsACgB8AOAJ53jkfJ8JYHcAxwG4lohOCNjPJABPEtG5RNTHs077vPKZOZ+ZvwVw\nPIC3ffbzbwB9iKifdwURHQSgA4AlIc/NYmkWVqAsaQ8zXwlxNx0P4G4iGm6srgPwF2ZuYOaPAGxB\n7Bb+Y0RUAaAaIj53GseZwcxTHGuhFMCzAI5xVtdDhHB/IiJmXsjM6kL7DYDrmLmKmbcCuBfAqJCn\n9z9mHudYdGMgIgcAhwLoxsx/dc6tBMDzAM4L2M/ZACYC+DOAZUQ0g4iGebYh43M3AGU++ylztusW\n8UOifIiL7w5m3hzy3CyWZmEFytImcETjSwBvIrLy38jMjcb3GoiYBXENM3dh5myI9fK2BkoQUT8i\n+sBx01VC3F3dnON/AeBxiIVTTkRPE1FHIuoOIBfAdCKqcMTvI0g/UBjWesqe7QQz7Amgt+6TiDYB\nuBnAbn47ccTxFmY+EEAPALMBvBvjuBsglpmX3Y31AAAiygbwPoBvmPn+kOdlsTQbK1CWtkYGpCJv\nNsz8P4i76kRn0VMAvgewDzN3BnArDKuDmR9n5mEA9odYaTdAKvIaAAc4wteFmTs7bsDmsBLAMmOf\nhcxcwMw/C3FeFQAeBNDLCYbwi3QcD+AMn+XnAihl5sXAD67Q95xllzf1ZCyWpmAFypK2OGHO5xJR\nHhG1c6L3zoZUmMnY/xGQIIl5zqJOAKqZuYaI9gPwO2PbYUR0qBM0UQuJfmt0XHPPAXjUsaY0fPtE\nNA0VxCkANhPRjUSUTUTtiegAH7edlu9eZ317IuoEcV8uYeZNkKCSRgD7GD95BEABEf2TiHoQURYR\njYJYaX909pkB6aeqAXBJE8/HYmkyVqAs6QxDRGIlJCDhLwAuZOZpcX4Ti8edSLZqAKMB3MrMnzjr\n/gjgAmfdM5AoPyUfIkQVAJZDLKcHnHU3QSyxyY5r8BMA/ZtYPgYAx235UwAHOcdb5xw/P+B3uRCX\n3ianLH0AjHT2VQtxV37tuAsPdaysEQByAHznnM/vAfyCmd9y9nkkgFMhFmaVM1aqmoiOinMOFktS\noDATFhLRtZAIKQB4jpkfc1wHbwAoAlAC4BxmrkpVQS0Wi8WyaxHXgiKiAwD8CsAwSGvup0S0D4A/\nARjPzAMAfA5xDVgsFovFkhTCuPgGAvjWGcjXAAllPQPiPhjtbDMawOmpKaLFYrFYdkXCCNQ8AD8i\nokInxcmpEP92Dx0HwsxrERD+arFYLBZLU8iItwEzLyCi+wB8ChkEORMy4j5qU7/fE1HoZJ4Wi8Vi\n2TVgZoq3TagoPmZ+kZmHMXMxgEoACyGDFXsAABH1hEQZBf2+RV+33357ix+zLb3s9bHXx14je31a\n8xWWUAJljO/YE8DPIbnD3oc7NuJiAGNDH9VisVgsljjEdfE5vE1EXSD5yK5g5mrH7fdvIroUkub/\nnFQV0mKxWCy7HqEEipmjZgBlGeh3fNJLlASKi4tbuwhpjb0+sbHXJz72GsXGXp/kEGqgbrMOQMSp\nPobFYrFY2g5EBE5WkITFYrFYLC2NFSiLxWKxpCVWoCwWi8WSlliBslgsFktaYgXKYrFYLGmJFSiL\npQ3w3/8Cn30G/OY3QFlZ5LqXXwZWrWqdclksqcSGmVssaU5jI9C+PZCZCdTVAa+/Dpx7rrueCDjj\nDOCccyKXWyzpig0zt1h2ElaulPe6OnmfM8ddV10t7++8A5x3XsuWy2JJNVagLJYWZtUqQJ0Kf/6z\nWD9KdbWsO/BAYMMGWbZkCXDMMUCnTsB++wEzZsjyujpg+fLIfW/dmvryWywtRdoLVEMD8PzzwOLF\n7kNtsaQL06cD27eH3/6++4A+fYBbbwW++AJ49115AUB9PVBQAHz7LTBvnlhKY8YAI0cC++4rwjZu\nnAjU++8DWVmyzWGHye/z84HHHwf++c/kn6fF0hqEzWZ+MxHNJ6I5RPQvIsoiotuJaBURzXBeJ6ei\ngO+/Lx3D/fuH969v2ZKKklgskWzbBgwbBrzySvjf/OlP8n7PPcCxx0ZaPCUl8v7JJ/K+fj3w1FNA\nTY1YTvn5Im51dfJcAMBFF4l19eWXwAknyP5//Wt3n6+/Ls+PiqDF0paIK1BEVATgNwAOZubBkASz\n6u1+mJmHOq+PU1HAceOAE0+Uz2PHhrOiOnUCPvwwFaWxWFxUUMJG0DU403zOng384Q/yecUKeX/s\nMfESAGJBAXK/t3Oe0MGD5Z1IPo8dC9x/P3DaacCoUcDRRwM33RR9zFGjxAPx298mdGoWS1oQxoKq\nBlAHII+IMgDkAljtrIsbhdFcvvpKWpuVlUCXLuKPv+8+92H3snGjvC9cmOqSWXZ1li2TdxWqeKxb\nB/ToIQLz4INifSnXXgv85Cfy+auv5P2114CvvwZ+9StgxAh32yFDpH/qqKOA994DDjpIlg8fDtx2\nG9C3b/Sx99xT3m+7DZgwIewZWiytS1yBYuZNAB4CUAoRpkpmHu+svoqIZhHR80RUkKxC1dcDF1wA\n3HADsHQpMHCg+OZ79wZOP13cGN9+67Y0TbQV+s47ySqNxeLPsmXAPvu4VlA81q4FevZ0v/fqJe/M\nwBNPyOdf/xrYvBno3t3d7qabgNxc97sK2777Rh9j1CigQwf3e7duImgaAfiXvwAPPRSuvBZLaxPG\nxdcXwHUAigD0AtCRiM4H8CSAvsx8EIC1AB5ORoHKy2W8x6uvSiuzTx8gJ0fW3X038N138vm444DD\nD4/+/eLF0mmsobmtwfr1kZFZlp2TZcuAH/9Ygh0++UTuWQCYOVP6p7x4Berpp4HJk+XzFVeIhXXn\nnfK9wGju9ekTuZ8jjpB3U8SU3Fy3X4tZxO7tt8WzoO7xzZsTO0+LpbUIM2HhMABfOxMUgojeAXAk\nM79qbPMcgA+CdnDHHXf88Lm4uDjmZF7//a+8H364PLyDBrnrTj5ZoppmzAAeecRd/vXX4tI78kjx\n7x9yCPDvf4c4sxRRWiqd0szSZ2DZOVm+XAbHPv88cNJJsmzUKGDoUGD0aAlgMPEK1O67y0tRwbnl\nFtnfY4+JSy47O3I//frJ4F2/eysvzxWojRtFsHr1Aioq3LD1L78Exo8Hjk/L6UYtOyMTJkzAhKb4\nlpk55gvAEABzAWRD+pxeAnAlgJ7GNtcBeDXg95wIZ5zBPHo0c0MDM8D8179Gb/P557IOYK6vdz/r\n65lnmHNzEzpsUpk0ScpRU9N6ZbCknsGDmadPZ16zJvoevOOO6O3/9jfmm25KbZm2bmXOzpbPs2cz\nH3CAfM7JYf7qK+YhQ5j79GHOz2c+91zmxsbUlsdi8cPRhbj6E6YPajaAlwFMBzDbWfwsgPudsPNZ\nAI5xRKrZTJ0qnb/t2omr7Prro7c59FCxrHJzgVmzotcPGQLU1rbeuCl179hBkzsvzOLi69tXrCCv\nxb50afRvvBZUKsjKknFZzJKzTy20ggLgpZckWOLbb2VA8BtvSB6/2lrZZssW6f+1WNKFUOOgmPkB\nZj6AmQcz8yXMXM/MFznfD2Lm05m5vLmFqawUV8Tee8v3bt2i3RuAuDHmzgX22EP8/yeeCPzoR+76\ngQOlozjWAMpUipcKVE1N6o5haV02bJB7rHNn+X722eJ2O+ooGbO3enX0b1pCoNq3l1d9vRyvRw/3\n2P/8p0TCahkOPxy45BLg97+X78XFMpbKYkkX0iqTxPz5wAEHuGM/4tG1q4TkHnigiBUgI+nz8yWw\nQluGiorSHXdIfxYgQrd+ffPLvn69G1Wox011a7Sx0Q7AbC3UejIhAv73P4kgXbMm+jclJdEBD6lA\nrajyclegOneW8PZbbpFyNjQAH38sz8H778v206dL/5TFki6klUDNnStiE5bCQmDSJBllf999Mr7j\nyitlXW5upAXzn/+4Lcd333VH6w8eDJx/fvPL/sc/Sot0xw7Xgtqxo/n7jcXy5RIt6BViS+rxEyil\nd+9oC4oZWLQIGDAg9WXLzhbBWbPGDWUvK5Pgov795Xu7duL2++gjCVf/7LPUl8viT0ODuFttKrdo\n0kagduwAvvlG+pfC0qWLuFp69JCW6THHuOu8FtTEiRLGu2CBO8BSWbeueWUH3IHBc+e2rEABySm/\nJTFmzQL2399/XUGBVDrjxrn3YEWFVEBdu6a+bFlZcg+aIpqdLa4/P0aOBO691/3tpk1iCVpahu+/\nl0z0OoTG4pIWAjVxovjzx4yRcSVh6dJF3rt1i17ntaA0JHfgQDdXnwpIPFdcvJbNjh0iTGecAUyb\n1nICpaJox7W0PB995LqJvRDJvXfyyRKCDrhi0RLDDtSCKisTay4ev/yluMovuEDKd/PNkX26ltSi\nA73nzm3dcqQjLSZQq1cDVVX+695/H7j4Yhno6Dc6PggVKL8Bi14LygyYOOsscQ8+8IC7bRCvvx7c\nJ/bQQ8D//Z9EQu2xh7j4/vhHV6CC0jEli9lOTKV18bUsq1eL+2z48OBtNGFrhjPScPlyN/gn1agF\ntX69/7PhpVs3GTP1yiviidAKM9X3r0XQ6z1vXuuWIx1pEYGaOFEq8CD3xuzZMuBx1KjEWpiJCJTm\n6AOAN9+U3z7wALDbbu6kb37oSH8vDQ0iRnffLbnShg4FLr1U9rVpk2yTagtq0SJ5twLVskyeLNkc\nglxmgJsMtrFR3svLUx/Bp6gFFVagAPdZKipy55sKalBakssrr0j9UVra2iVJP1pEoPSG92uRMUvL\n4YADEt+vhqDn50evy82VVm51tVhm48bJcrXQunQRIfnXv1yXn1YmJkHus3XrZB9nninfhw4VAR40\nSFLdAC3j4hs4sPUEav584NNPW+fYlZXhc+Alm1mz5P+OxX77iUjpf7NxY8v0PwFiQVVUyP2cl5fY\nb4uK3D5N2/BJPRs3SqDXDTeEz4q/K9EiArVypeQYy8yM7s+ZNEncbZptORGGDRP3m5/VlZMjPvWC\nAnlfv16i9R57TNarqA0ZIgLFLC3iqVMj96PpYbysXSvukFdflVlRL7xQlg8cKBGDQGoFqrpaXv36\ntV5Fcu657lQoLc3VV8u1DsuHH0ZPiV5dDfziF4kfe/lySRIbD9OKb0mBys4WN2S3bon3eem0HkBi\nEzFamsbatXIfDxokny2RtIhALVwoFWlGRnR2hfHjgZ/+tGmdxwcfHOwn9+tXevRR4JRT5LO6L7p0\nkQ7tykr57jWzywOGH+ugy8xMyRCt7pvf/c7dJpUCpdc0N7f1BKo1K7D6ejlvP6vXjxdekFBekzlz\nxIKO5eL1o7Q0XIOqtQQqK0vuz8LCxH/7m9/IWKj99vNPeGtpHvPmRY5d1MHUPXoE1zW7Mi0iUF98\nIX1QBQXRfu1Vq4LHkzQHU6Dy84G//z3SH69ujPbtRWR0mg7tP1L8Utb89a/Ac8+5gyBNTNdPKgVq\n8mTppPcbkNxSBFmXLYHeR97/KwgVIbOBpBWC9uWFJRGB0kjSlragysvdLBeJkJMjkx/qYF/FRpgl\nhxtvjJzpQAdTd+0q92isiOIVK3Y9t2uLCFRNjYwZyc+Pbq2ao92TiTl/DjNwzTWR66++WjJKAEDH\njjIWAYis8MrLo1uRzOLSe/dd/3IXFIjr8cADUytQ06fLtCKtKVBqdbYG6q8vK4u/LbP0G+22W+RY\nE80gcvfd4Y+7Y4ccUzOXxKK1LaimCJS5j+3bpcK89lpx/U2alLwy7qp43XgaPNOunbhkY41p3Gsv\nqdd0bq9dgRYLM+/aVSrvlhIotaB69AAuvzx6/R//CNx+u3zu2NEN2TbHTi1ZIsEb7du7YmPeYEER\nUlOnys2USoFaskSyAmRnxxeomho3qizZ+I1BawlWrZJKM4zffsUKcS+fdFKkJaACNXasjGsKY42V\nlck5Z2bG37a1BaopLj5FIwGnTHH7bbUR58e0aTYsPQzeoCszX2JYN5/WVbsCoQSKiG4movlO9vJ/\nEVEmERUS0SdEtJCIxsWaUVfnePJz8ek02MlGBerFF4H774+9bV6etLC7d4+0mBYtks7wzEy31aLC\nALihuX5kZKReoPbZx61IYjFzJvBwUqaTdNHK3S+Zb6rZulUq/gMOiBSoqiqpKL1MnSru0H32AZ56\nSpbt2CFZRR55ROYPO/VUabT4sWyZK2wrVoQP6GnNIIlkWFDbtrmDwQcMkGc1KEP/8OE2XVI8srLk\nuQXcZ7aszE1HFUugKiulnrr4YvGe7CqEmVG3CMBvABzMzIMhkxyOAvAnAOOZeQCAzwHcHLSPU0+V\n9/z8aIEqLxfXS7JRF1+sQbhKx44SMj1gQGRl/+67kt3Z9McvWiQDct9+OzoqzMS0uprKtm3+N+Pm\nzWKJ7r57dF+BH5oXLpnJa+fPl5D9VLgbxoxxhwX4sXq1uNh23z3Sxffcc/6DZ6dNE7frhRfK5+uv\nl/vi1VflntSZmc0xb489Bpx+ughT//4ygzMg/U9FReHOQwWqrk7eCwKbcMklmS6+hQulz/W3v5WA\nko4do7fVe2BXzCUXdsaCTZvc67Tbbq61buZLVIHy8wp8/71E+w0eHNuSNdkZLNowFlQ1gDoAeUSU\nASAHwGoApwEY7WwzGsDp8XbUqVOkiavh3X43fXNRYTL7ooLIy5PW4cCBrgU1ejTwwQcyzsm0oBYv\nlui5M86IPcYkGRbUv/4lFauXpUslsKRdu3ACpYEeyeqramwE3npLQvRTEcl30UWSJsibD27hQon6\nXLXKX6DUf+8VzZkzJeKzb195f+QR+W8yM4FjjwXuuUfcfEuXutfo5Zdl2eDB8qDrfxk2QAJwBaqi\nQtxtLTW7cna2VIDJEKhVq+R8d9vNzXTw3XdyLt4p5HeG+c9WrAjO+LF5sxtMBYg1FHacmf7u0kvF\n81JRId+9AvXuu3Jfr18vDShFZ3rw3vOx6NzZ9Ri0VcJMWLgJwEMASiHCVMXM4wH00DmgmHktgLh2\nUKdO7qBYwO0gTMWDqwIVxoLSUOXhw90Kd8YM4K67pMyZme7yWDewSUZG81swQWG+11/vZjFQV0wQ\npaUyxQKQPIG69loJ0b733tQIlE5J8eGHkcvvv18s2uOOk4evV6/IrOHqjlqzRq79kUfKvfXppxJQ\nAkjjQpk+XfoKO3WShKlFReLm04aTSXW13CcrVoS3oDQfZEu69wC5J4Dm90Ft2yYVadeukW54nQlA\nr70KlPlsA/J/3HVX5LLJk1MfbNGc5MlTp8q0KH4icOONrnsfcJNOhxnqUF0tjSGdk8tPoLp1k7Rv\ngAzcveAC9/eLFsmxwwhUVZVkOtmyRcagtmUy4m1ARH0hs+UWAagC8CYRXQDAa9AHGvh3OOFyM2cC\nNTXFAIoBpHYCt0RcfJoGKSfHrewXL3bdOllZbqu8sjJ235PiZ0E1Nvrn9auvl4rea0kGCXddHfDg\ng/I5Xh/U11+7n5MlUN9+C/zjHyLUOntrMhoZ69bJNaiuloHdXn+8VjzFxWLhzJkT+QBOnSr308qV\n7gj9I46Qwbga0KKZRF56SQZHmlRXA08+KS9l770lNdZxx8l/v2QJ8LOfhTufvDyxKlpaoLRfMBkW\nVEWF3O/mvakCNWeOWLIqUF7L9fHH5XXlle75H3GEvKfKHbh9u4jpjBliLSeKNnJWr3ZnI1a037Wu\nThqtOpvAli3+2WxMqqulIQTI9Vy9WvpA6+rc/0kDb3r0cLPRKBoUtPvu8QODJk503dXxytVSTJgw\nARMmTEj4d3EFCsAwAF8zcwUAENG7AI4EUE5EPZi5nIh6Aghst6hAZWVFRvGZESzJJhELSh8+s7JX\nVx4QaUGFdZ14Berzz6WS83swf/tbmTLc6yJR/3ZDQ2Tet7Iy14qL5eL79FMJr3/uORG0ZAnUhg3S\n2mvfXgR3xw7JRt9cTj5Z/osdO2Sg6Jw5Erzyn//IsebPlwpEW7F77ukK1Nixcl3OPluWbd0qHcov\nvRR5DK0k/ERm//3lnhw5Ulqy//2v3AP9+kkFW1HhugvD0NoWVDIFSivrAQNEoPLzpX/u1FNdgfL2\ncWpAwGefSa7NpsIsrqrLLoud/xBwI9zmzm2aQGn/jpm707tu0SJp3KjrfPPm+EJgbtOli8xivHZt\nZIb7K66Qxtfzz7uNJG38rV4tmen9IqGXL5drr8+FOemk16rV/bQ0xcXFKC4u/uH7nXfeGep3YQRq\nIYD/I6JsANsBHAdgKoAtAC4BcB+AiwGMjbejjh0jZxpNVYg5kJhAPfqoPEzqLtuxQ1xjOoDYFIHK\nyvACZT6wc+YEb/vFF/6drRpQsn17ZF+aaXnGEqgPP5Sb/te/Bp54InGB0paiCXNkYIuKd1MFats2\nEaPvv3dbjfvtJ/fFpEmRlUxOTmSKoV69pCz19ZIp4qCDxP328cfS4tTgHJM//lFaon5W8FjnDu7Y\nUcplRih27ermdgxr9be2BZUMF9/Gja4FlZsLjBghjYQzzpBn5s033eAP836vqJAQ9QsvFEvBvJ7a\nSFAaGyUwZtMmd/p5k9JSscIyMiTTRSxrXd2HTz8N/Pzn7rEWLhSXmV+UJyAV+ebNInB9+kQ3Fjdv\nFtffyJHSFzdokOvi84aOm41b8/dalsJC1wpS9x4gz7L2lSrbtsl9r/2uek+ZjBolXg1t/G7YIF6D\nwsJI939Njexj7txo70G6EqYPajaAlwFMBzAbAAF4FiJMJxDRQoho3RtvXx07Rv6ZqXTxqTCF6cQ8\n9FDJ06cW1KpVUgFrS9QMkqisDPfghw2S2LgxOOmpDoQ1b7KGBhEaPa9YfVCrVrmT6plZDcIwebJ7\n/t4yZWS4D5vp/mwKq1bJ+ZsCvMcecv2906bn50e2oDMyRMjWrBH3y2OPiUCNGSOi75eAOCPDX7gA\nuT9Na9qkoEAqpETy27VlCyonRyrC6mp3P1u3SuMBEGt3wgSxjDQAQAWqvt61OI87TirEnBx3cLPZ\nOFizRv7TSy4BrrvOvyya6eOyy8RlzRydWLVfPwmqGTdOPBKTJkmWcGXyZOlzNK2Pmho3WvTyy0Us\n5s2TvktTBL76SrYbOlQaQaNGiTirBWVuW1Ymloy6A5Xq6kgLSjEFSjH7uLdulfNVy0fvKdMTo25J\nZeNG8ST07x9ZN6i731u2dCbUOChmfoCZD2Dmwcx8MTPXM3MFMx/PzAOY+URmjptXIChIIhVopelX\nyQahlX1JSeRNolYKc3gXX4cOkQIVVIm/+KK8H3RQ9Do/gaqtlZtUK8mgPqhJkyTSTiPOEs04ERTK\nqi05JUwUYSzMDt+//U3emaMt69//3j/jQ8+eEugwaZK4n1SUXnopuZPu5eeLQCUiNK1tQTVHoDRd\nUl5eZKNABXzQINeFN368vOs9roLy5JPyn4wdK/fJJZfIcrOB98EHMg6td29xF/s9J4sXuxOZTpwo\nQqSBNIA8D0uWiEt24kTgvvukzGYlrveZ9htpuU8+WSr8DRvE4ho9WhojpugcfbRU+PvvD5x2miz7\nz3/kfth//8ht9dy/+CLyHEwLyhQov/tir73kvXt32femTXL9cnPlvLKyIp9lb0aXjRulIeUdxK8C\n1RoTnNbWytx6idKiM+p27BgpUNqXkQoOPFDM8UTQynb5cvcm0eV1dSIUROEGp3otKD1vb2TfunUy\ngaJfq9xPoLZujbQ2/ASirk4eqs6dXeEzA0BMxo3zd6to2b3lXbQosnJorkCtWSMP/dq1MpNr+/Yi\ngN7K9aGH3EkATR54wHUvdu8uFVljo/Q/JXP4Qn6+3BeJ3K8dOsj1e/HFlhUovR5eV1oi5OSIQHnH\nbl14IfDNN5HPx0cfyf2rFtSyZWKl/u53IlD19fIs3n23WCjmfbh4sVhhmpPTL/fl8uWSNf+NN8SV\npSLA7I4xA2R9v35y7/zhD5EVsQqUGXijuSS/+krW33abDHEw3WhmBT9okFhRY8aIa7NDB7lXTc+E\nlu3LL+WePv98mS8uyILy65M+6CARk65dpRxr10YGbJjlU6vT/J82bJDfqptW0QZFUwVqwoSmT3Hz\n2mtieSZKiwqUdxxUTU3i89WEpWdPt08hLFrZmqO7AbefJWz/ExDdB2X2J5msWeNGw3nRB8grUOY1\n8xOIsjJo3jgSAAAgAElEQVQRmIqKyL44P4E6+WRJpOtFH0zzN8wipqbwJ8OC6tPHtZjWrAGeecaN\ndjzpJLEEg2Y1Li6WfoXHHnNFPhXDFkwXX6Js2BB+4sBkoBZK0DULgwqUt/M/L08i8fLyxJV2443y\n//frJ/c7s/Q5aV+hlkXP35t9XwddA2JFmRFqa9cC77wjAT577y2W1owZbt/Ptm2yTe/e4r5bvtyd\nLsTrMSgrk/vCTHCsbsL582W9ikBurisACxa42x97rLwffbSI9GGHRYrFjh3Sj3r22RJI8sILUjG/\n8IKUUxsMptfIb8hKu3biZtRn1tsVYh7z0UflPcOIJlCL3XsNSkrkf4o3Xu3rryOHbyg//jFw1VWx\nfxuENtATzZDf4gLl9QGHGUjbUmhl661QdHnY/icg2sWn1pC3Mt+wQR4wP9fGqlXRHZ1+AuX90ysq\nZBCtWVGHydln4idQOhWJOaVIcwTqyy8lS4HZGDD7/o4/XjrFdVLIIAYPluS/qaQpLj6TlrSgTjqp\n+XMLqYsvVvaLZ56RqXIAGUNYXy/BODfeGNnRP3Kkm8HbW2muWuVGlZnjgwCxrPW/P+oo2eeqVa4r\neOtWqUh79XL7xrTPVftqlLIy8ap4BWrIEAlgqqx0n3lTABYskHKccYa7b3Wb77Zb5HGuv16iDX/5\nS7Heb71VrOf+/UUEVewPOkissYqK4PRagPvMertCTAE98UTJaqNlqKmRV5cu0RbUihWSjCCeQI0Y\nIWMc/Uh0ahpFr3ui47JaVKC8ufjSUaDq6qQT0Wwp6/JERud7LagggaqulgfDK1DM4v7bc8/ICMLS\n0kiB8uuD0sgrE+/NqsfQdV70hjcrkzVrJKDEFL7mCNQFF8iN6x1vonz6aXxxainy86XSb6rQaAXa\nEhA1Pzo2yILyMmKEbHfwwXIPl5TIcjPl1Nix7phCryVvWlBegWpoEKulvl62IRIByMuTxm5NjdyT\nGjxw8MFuX5WfBTVoUKRArVwpjaAJE+QZVIvTtPKWLBFhevvtyPv+iSfEJW2K2dq1kvnlxBMlC8SZ\nZ4rLsHdvCWQw+6DmzpXGZywrV88hlgVVW+s2YpndXJHt2kVeg8ZG+Z/69QsXLBU02LmpVrkGZqj1\nGxYrUAbqytNORkUr4UQEymtBaZi5tzKvqpKHw7t882bZh2lBnX++tFjj9UHp6H8TPxdfTY0cQ10z\nJnpjmw+5337NCMdEUWs0VYEyyUQr6qaEbp97bsu6+JJBdrY0nuLlDyQSS0Lvo7o6mSXgqKP8tzct\n/oaGSHe6V6AqKyVc3HRfXX65uIt69XIFSn8/Y4Y0oIDIqFVmfwtKw+VXrIgUdLNiX7zYHdxtcsUV\nYhmZYrFli0zh0769WCrqmlYLMdFBs9qojCdQeXly/bdvlwaC9g+ajdING+S/LCwMl5IqKFt/IvX1\npEluHah9f4laYC3u4tuyxU0Nkm4CpZX9li2RHeyZmXITJ9JJbgZJVFVJC6Jv3+jKXAXKu3zdOnnw\nzZtMM2qbY7v8BCrIgvK6+Coq5NgZGdH78BMov/02x4LasUOuyZAhTft9S6KVS1Mi4/xCidMdvcfC\nVqoqUFu3xp4rS70RjY0yCLuoyD1WQUFkRFqsRNLqWjMFyrte793Nm0VI997bFaiqKtm/Cpp5D5vP\n3JIl0WOa/MoBSAPWrwGjApVo0EpYCyonx902SKDWrBFPhd84KhOtm70CpRZVmHGlgAjRkUfKmERA\n6s599kk8X2OLClT79nKBNFAiXQXKW66sLGkZXX11YgKlLr7ycrk5/NxxQS6+9etluXmTaXSW6ZIL\n6oMKY0G99pq09LzBK4B/H5TffpsqUAsXin9/6tRgF1860VQL6n//k7RNbY3mCFSswCciV6QmT5aA\nA6VjR7cCq6mR/QUdX/thgjIjmFaQBkB06+YK1MSJEuyh1pkpjOZvlyzxt6AUs8LXrBteVLATDbAx\nBcq08MIKlHkeKnJm/5UfQWmrDjlE3sPOiKDRjB99JBbsokXSGEhkLCbQwgIFRLr5amrCK3JLoA+O\nn0ApYW8y08WnYyC8lXlDg9wsXbpEV/JbtshvTIFSH7h5zRLpgzKtoY8+kgigF1+MDv/X4wPRFlSy\nBEr7ZJqT7aAlaaoFddRRzQv3bi0SzUahrt54AqX73rZNLCgzU4gpUJplJigiM4wFpZWhClTXrq5A\nzZ8vIeOA9EFpSx9wK3YNjIrlgjaPEyRQ2gBL9F7X61RVFXnfxRKoFSv8LSi9nvEsKE3xZAqJDox+\n+OHwz/rixXLfL1kinp927eR/SmsLCnCnfWdOP4EyHzJToExzN2wnuWlBqUBlZka2QL77Tv607GwR\nMzMrst545k2mHZReC6opfVBPPSVjiPr0ibagli2TQYz9+0f3QSXDxadjq4YPb7kpKJpLc1x8bRF9\nLhPpcw1jQQGu1T97dqR7Ny/PbRjFm8g0nkCZ1oMmfjX7uExL45hjpH9K0cacNvRi3aNa4TMHR/kO\nGCDlNfvSwqDnYA7y1eX6LGs9oS7NIAvKFKggK+b99yUkHojcpqRErNSDDw4XJr5smfSXH3useIKG\nDJH/NZ715kerWVB1dVLhJiPJaLIgkvJUVgZbUGEnVzT7oDRRpDeg4NlnJSSVKFq8NHeZKVA6ot+v\nD8oMcvATEq8FtXmz27IzLShmCSO/8cbI+bGA5FlQy5dL38OUKYn9rjXRYIG2YvE1l6YKVJixjXpP\nr1wZOeDXvA/jTWSqAhXGxTdunEQbavolILIi9/ut5iGM1yDVcmzeLOflV58NGtS0ubL0OnkFyqwT\nTAvq4YdlILOfBaXRfbEsqKuukmEfhYWRAjV3rgi491n/7DMJpfcyfrz0N91zj9t39dJLTUuL1moC\n5b3o6YJmXA8SqLBzAfm5+Dp0iPyDxo+Xga9AZMZ0wF+g1PIwW2Lt24vAmRGDfg+W14JSFyIQaUG9\n+aZUDtddFx2q6yd83nKHoS0lq1RUoFKV3DjdSDRdkmlBxetXNhPRmi5zPxdfELm5UvmZ01V412sl\n+/XXMo9Ybq6byzKeQJkWVCy0wg8KkGgO8SyoxkY5/+xsWaZp0/S6mc+8zmMWS6D0XPfaK7KeUoHy\nDlW57z53TJrJvHmS3LeoSBoQXbtKZhdvIzwMYaZ8709EM4lohvNeRUTXENHtRLTKWT6DiE4Oc8C2\nIFBApJWigvDYY+ErVtPFp1GB3j+ottZ1HXmtKz8Xnzli3cTbDxVkQZk31+bNbqSi2XL99lvJhNyh\nQ7TVFWRBJdoqKimJzEreFujcOXoM2s5MohZUon1Qa9eKYJju80RcfHl5khapd29/F5yGmVdUyL76\n9ZPtunZ1EzQHNTbNmZDDWlBB/U/NIUig9Fnetk2eP6LI+kq7ArS+aWhwBdnrZhszRvqiNZDh8cej\nJyL9z39kfJlpQTHLOEU/9NpqQ0UbId4GehjiekWZeRGAgwGAiNoBWAXgXQCXAniYmR9O5IAFBVIB\n/v736SlQ6iozrRRtiSWSrcC0oNQa8oqQOQWBt6L3s6D04fX+yXrjqOD4CYlXbMxQelOgzCk2wlhQ\nTXHxmWll2hJmDsKdHX02w7q0E+2DWrUqOuDI6+Izs1F4yc2VtEJB95H2tWgghrrHu3SRRMgdOwaX\n07Tw4gmUWiSpEKjsbLHMMjIiXYfZ2dK3o1NxAO77M8+422nE5LZtrmisXx/pvrv1VnG1Dhkiz/rv\nficBJFrHNDZKX+GPfiSNCl1uTh+kjWnFK/5a9pRYUB6OB7CUmTVhRcJd3AUFctL/+Ef6zPZo4jdN\ne1PSe5h9UNu3y40SS6C8rjKvBcXstny8o7m9LRs/d0M8F59WDPX1kQKVij4oHZNhSV+ys2UoQKwx\nQCaJCJRaUN57NFEX34oVwQKqwvH999KXqnTtKgNIzanbvZguvrAWVKpcfOvXRzfktU4whUE9P96E\nyjk57pQmnTtHu/g0MGvFCsl60a5d5DNdVib1dMeOkcunTBG33e67Rw+unj3bdZ8WFbkNjaZYUIkK\n1LkAXjO+X0VEs4joeSKKM+ZcUFGqr09PC8pvDidNQJkIpotPBcr7B3ktqFh9UDU17rZe37k5Fqq6\nWm5K70A704JiFreBViTmPF2mBWX+ZscOKYO3UbErWVC7GrEqcS96b4cZ25idLfeAt0JPNIpv5cpg\nAdGotu++i0wz1aWLTIWhefX8SESgUm1BrVsXXU9qw7G21q0TtF7xNl6zs2W8oVo0XoHSBrl3ElLd\n35Ilrjve9PIsWxY507Si093otZg5E3j5ZXe/iVpQoQMfiagDgJEA/uQsehLAXczMRHQ3gIcB/Mrv\ntzrlOwCUlBQDKAaQngLlZ0FddJHkjUsE08XnZ0HpVAHa8vFW9Fu2uHO6bNvmuuRKSqIfhI4dpQXU\nt2/wg2JaQ9u2SfnU9Pa6+HS56eLTlrHX35+VlXj6/vXrw7uOLG2DzExpHGVmxp+WPStLLChv/5bX\ngooXxadjCP1QS2DaNOBnP3OXd+0KvPeeTBsShDbMKirii7S6Er35O5NBLAuqtjbSggpqJObkRAqU\nXjedSl6f+9JSNwmuWRdpBggg0suzbJkk0fVm/6irE/et1hPaCJkwYQLef38CFi6UpAdhScSCOgXA\ndGZeDwDMvJ75h+Dm5wAMD/rhHXfc8cOra9fiH5a3FYEC4j90XvwsKLMFoZaK/pFegfrmG0k8mZcn\nJrN2lHbvHl2W4493pxYJ6tj19mWZqZxMgfK6+FSggsasNSWKL5XTrFhah6wscXOF+V+DLCi97zRh\nczyBAmJbLTk54ooyE9fq9n6zLZvlaGgQ6yWMi6+sDPjzn90KPlloRvkwLj6/eaV024ULXYHq0EHq\nj+3bpUHR2Cjl/v5791xNS8mMdjTrKB0QbAZobd0q9Yifd6S4uBijRt2B/fa7I8JgiUciAjUKhnuP\niMzx1WcAmBdmJzfc4M6smE5pjpQggUoUrwWVmRlpQWkEjmL++RUVEqr5ox8Bhx8ukXVffx08Ad+w\nYW4yxqDQWFNszP4nIDhIwm+8hZemRPEF7cvSdsnOlnsvrED5WVCA/L6qSsQuljho3RGr30cte3M/\nesxYLj6NiluzJlyYuZKolyUeOTn+CXtNF58+R0Eh89nZEp1niqdafaWlIlydO4ulpOdqNjpLSlxx\nM+svc9ZerSNWrpRAoqCM5ynrgyKiXEiAxDvG4vuJaA4RzQJwDIDrwuyrZ0/J7gwEq35r0tiYnOwG\nfkES5h9k9j8BkQL1v/9JosWsLMkDNnKkjEUIEqgePVyBCmNBmSHmQOQ4qKAoPp1q3ktT+qDSLQej\npflkZYn1nYhA+YlLx45ScXbuHNtrEUag6uujG0LaYR/Pe5OTI66qeBaUusPHj09+0JeZRNfEz4J6\n+GF3AkbvPr76KjKqTvuh1K3XuXNk14H5TKuIAZFjLnXyVr/BwEGkrA+KmWsAdPcsuyixQ0XTnBk/\nU0kyslsEufjCCNSmTZHujV69IueT8WIKVJAFZQY8xHLxBfVBBbn4miJQ1oLa+dB7OagRZaLuwCCB\nWrYsfh+lClS86UC8z8K558qMt/HIzBTXXZiB+U8/Ld6OZBM0WNqvDyonxz+jxtKl8n7iie4yFSi1\neLTu0GuVkSGepIYGdxvFnF28oCBaoGJdr5aI4ksqiUQJtSRBc6Ekguni02AIswURS6C8FXjv3tLR\nGfTwm1magywoM0gilovP7IMK6+JLRKDM0e+WnYdEksvGylLRubO4pOLNn6UCFc9q8e6HKFx/sj4P\nYayiyy5LTp3hJWiwtJ9ABaHiY+5DAyW0n0/XqUDp+KnaWhEoU3S0cdGhg3xORKCaMndcgukLk8fq\n1ek7iZuZtLWpxLOgtm+PFigdb+W98Xr1knDPESP8j2VmiN+40f8m0c7Mhob4FpQ+bGa6mGQJlIbG\ntpUksZZwJJIaSbf1e/47d5aBorHmlAJcV2IsC+rTT5s+nMGb3b810OvkN+h++/ZwAsUc7U7PzRVR\n2bBB6gqtd0xrMzNTLFntZ1KyskT09H82h7iUlrozJ/uhY+USodUEKl0ncXviieT1QfkJlN74fhbU\nL3/pjug2bzy9QYNcfDk5Ijzbt4sFZU5hoLRvL62lsrLoPijvOCh18XkFyq/fKNEovqD9WNo2es+E\niczV+95PhDp3lgChU06JvQ+9h2K5Ao8/Pn5ZgnjzzdZPZK3WqDegQxuFYV3l3n4htXo2bJAAq9Wr\nZbk3CfWCBdHZPDIzJbpRBcqM4jND1f1oUxZUunLFFcnZjzmjp0bxeYMkvFF8gNw05gA8wL0Zglqn\nRLJuyhS5SYI6douKxAz3uviCMkmYg/qS1Qdl+592TvzmKgtC7y8/gSookICg3/429j60/zpV2eXP\nPDM1+02EwkKZs+rwwyOXJyJQ8+dHB66YAtWtm9sVYTbMMzOl39svKUB5uXvdTRffqlWx04G1RKoj\nS0jMyDjTgnr0UWmVeC0obxJZ88ZTYYr1MBYUyOykX34ZHBprClQYF5/fxGheunWTkflhIzLTbQ4w\nS3IJ899qg8bPktaO/nh5D4uKZJLBndlVTARMn+4/XiysQO2/f7TLX0VFBxffdBPw/POR22RlSYCF\n1yLys6Bqa2XbZctiu2bbXJDEzkynTu7EjKZAATLmwHtzmbMMe9fpDRrLv2/64oP69nr1EhefV6BU\niBoaIl18XgvKr0IZNEjcmQsXBpfNxLr4dm7CTMoXNGYHEJcTED+Aigg46aTQxdqpSNTF58VrQe2+\nO/ArTw6gzEzp9/Y2FPz6oLZvB956S77HKo+1oNIITfmybVu0QAHRbjy1YLZuDbagYnUIm+uCcpiZ\nU52YAtW+vYjX3LkyPsVrQW3eLMLmN8YlI0MqlU2bgstmYi2onZswEXK/+IX/mB1A+p5efTUyf54l\nkmQLVNAxVq6Mrku8aap0XxkZMkNFLKwFlWYUFkrFbQ7UVbw3l2aNVkEww1u1vyhWq9I78NYPzZvl\n7YMCpBU1YoQIiPaH5eaKoPXpI7NjBg3C9E7LEQtrQe28vPZa/EoKEOvHb8yOMmrUzu26ay7NFais\nLAmmamgIfqa9fU1KUJDE+vXxo7JTmizWkjjdu8sfp/06pgW1fn3kzfXgg651o6O0FaJoi8uLdnRe\ne23ww925s+y7ri56TFXXrq47T8VLy6vux6Cb2Yz2i4cNkth5Oe+81i7BrkH79vLSmQsSJTvbnY8r\nqK7Qfi6v18ZrQWmY+fr18Sch7dAh8UH9VqBSiAqUn4uvpCTy5srJAQYMkJaNV6CA+ANb9Y9/9NHg\nbVSgGhqiBcq8EbVc3ps3yPJJRKCsi89iaT5ZWfIsN1Wg5s+XtHOx9g9E10NBFlRlZXwLqil5O62L\nL4Xstpu/QHXoEC1QgETfPfOMTBEQL4WLl9LS+NsUFga7+NSleMIJkcJkhvsGdYAnakFZF5/F0jyy\nssSz0VSBWr489iBmrau8AuUNkjAjAuOlp1LXZCI5WOMKFBH1J6KZRDTDea8iomuIqJCIPiGihUQ0\nLuyEhbsSmoJIrQb90wcOlBvEaxV16eKmLIqXpNLL008D//537G20T8wbxQe4LaaPPopcfs898l5c\nDBx7rP9+8/NdN2A8bKJYi6X5NFegSkpiC5T2l/tNUAr4u/jiWVAZGW6y2bDEFShmXsTMBzPzUACH\nANgK4F3IxIXjmXkAgM8B3Bz+sLsGGgWn/S6mQK1YEX1z6R981VWJT3523HHxk2DuvrtE5nij+AA3\n3Yk3Cks7SceODfYx9+7tjkaPhxUoi6X5NNfFt3lz7LFmOvjWm9Bb6zD18KiLLygHqF+5E+mHStTF\ndzyApcy8EsBpAEY7y0cDOD3Bfe305OXJTdSunbRINHKpf38RLW+EjA6oO+ec1JSne3cpx+LF0S6+\noDBxIjHJYyXN7N07OGzYiw2SsFiaT3MESp/lWGmJgqJyvdOc6EBdv3mr/DBTI4UhUYE6F8Crzuce\nzFwOAMy8FoCdxNtDbq4kb9WbqG9f+SN1bIHXxNYbJtZsn81FW01eC+qWW4CHHmraPvfdVzJQx4PZ\nWlAWSzLIymp6wJG652JZUEEC5U0KnJUlQRN5eeHGwJnJZcMQOoqPiDoAGAngJmeRt6srsOvLnOK3\nuLgYxcXFoQvYlsnNlT4ls0Lu1MntTPQKVFaW9A+lcjp0NcO9xzj88OicX2HZf3+ZMjoWs2ZJEttr\nr43fmWqxWGKjfUFNESi1dJpiQW3cKO/aBaGTT8Z7pidMmIAJEyagtha4//7wZU0kzPwUANOZ2enG\nRzkR9WDmcmf693VBP0xkDvqdCRUo702kIuHXSZlKcQLczs8wrZ2wdOokZnt9fXAG6CVL5H3VKumD\ns1gsTac5AqUuvlh583RMpJcjjxRviUb6ahRfvKS9api88QZw+eXAY4/dGaqsibj4RgF4zfj+PoBL\nnM8XAxibwL52Cbp1k/Bv7000bBhw552xxyGkCo0STCZEkXn7/NAgikmTrIvPYmkuKlBNmfizTx+x\neGL9tlcvcd17uewyeYa95QgzD5hu/+KL4csayoIiolxIgISZBP8+AP8moksBrACQoq79tkuvXiJQ\nw4dHLs/PB267rXXKdPHFwKGHJn+/KlB+N+qYMW4KnDVrrEBZLM2lOQK1227uTLtBjBsXLhw8kZmU\nAYkCfOCBcNsCIQWKmWsAdPcsq4CIliUAjdqbOrV1y2Fy5ZWp2W8sC+qppyK/2yg+i6V5qCs9FVPN\nA+EmngTcYKuwiQVieVn8sJkkUoiOa7rhhtYtR0ugE8358ZOfyLtaTtaCsliSQ2sn1VWBDJsEVsdb\nhsXm4ksh7doBL7wAXHhha5ck9Tz4oAwUXr5cXJpDhrjuvupq4KijgCOOkO28Ie4WiyUxEkkX1BKE\nHdtkBSrN+OUvW7sELUNxMfCf/0gH6NtvizXVtasI1bx5kVZkWPeBxWLxJ50Eqk8f4MADw21rBcrS\nahx2mLwAoLFRpoF+4w3ggw8kz6Amm000Ea7FYomksbG1S+Dy/feJBWt06iSplsJg+6AsKaFdO5mE\nUd2bBx7o9snFSyppsVhik04WVNgsEoAktB6bwIAka0FZUkpRkVhSffsCCxfKsmQOErZYdkXSSaAS\nIV5Cay/WgrKknL595X3AgMQnLLNYLNG0VYFKFCtQlhYlKBWSxWIJz8CBu0Y0LHGKpZiIONXHsFgs\nll2JHTskoWtbjYglIjBz3FFcVqAsFovF0qKEFSjr4rNYLBZLWhJKoIiogIjeJKLviWg+ER1GRLcT\n0SoimuG8Tk51YcMyYcKE1i5CWmOvT2zs9YmPvUaxsdcnOYS1oP4O4ENmHghgCIAFzvKHmXmo8/o4\nJSVsAvbmiI29PrGx1yc+9hrFxl6f5BB3HBQR5QP4ETNfAgDMvANAFUmWwlZOVWixWCyWnZUwFtTe\nADYQ0YuOK+9ZZ34oALiKiGYR0fNEZBPYWCwWiyVpxI3iI6JDAEwGcAQzTyOiRwFUA/gHgA3MzER0\nN4DdmflXPr+3IXwWi8ViiSBMFF+YVEerAKxk5mnO97cA3MTM641tngPwQVMLYbFYLBaLl7guPmYu\nB7CSiPo7i44D8B0R9TQ2OwPAvBSUz2KxWCy7KKEG6hLREADPA+gAYBmAX0JcfAcBaARQAuAyR8ws\nFovFYmk2Kc8kYbFYLBZLU2gTmSSI6CwimkdEDUQ01LPuZiJa7AwiPtFYPpSI5hDRIiewQ5dnEtHr\nzm8mEdGexrqLne0XEtFFLXN2yYWIhhPRFCKa6bwPM9Yl7Vq1dYjoauc6zCWie43l9ho5ENEfiKiR\niLoYy3b560NE9zvnP4uI3naG4ui6Xf76xIOITiaiBc61uCnmxsyc9i8AAwD0A/A5gKHG8oEAZkKC\nPfYCsASuVfgtgOHO5w8BnOR8/h2AJ53P5wJ43flcCGApgAIAnfVza597E67VFwBOdD6fAuAL5/P+\nybpWbf0FoBjAJwAynO/dkn0/tfUXgD0AfAxgOYAu9vpEXJvjAbRzPt8L4B7ns33G4l+7ds51KYJ0\nGc0CsF/Q9m3CgmLmhcy8GNEDg0+D/KE7mLkEwGIAhzoBHJ2Yeaqz3csATjd+M9r5/BaAY53PJwH4\nhJmrmLkSUoGlTfqmBCiDiCwgQrva+TwSzb9Wx6W47C3F7wDcyzLoHMy8wVmejPtpZ7lGjwC4wbPM\nXh8AzDyemXXS9ckQMQfsMxaGQwEsZuYVzFwP4HXINfClTQhUDHoDWGl8X+0s6w0Jj1dWOcsifsPM\nDZCsGF1i7Kut8ScADxNRKYD7AdzsLE/Gtao03T1tmP4AjiaiyUT0hTPWD7DXCABARCMhQ0vmelbZ\n6xPNpRCLCLDXJwzea2ReiyjSZsp3IvoUQA9zEQAGcCsz+46xStahU7jvlBDjWv0ZwNUArmbm94jo\nLAAvADghWYdO0n5STpxrlAGgkJkPJ6LhAN4E0DdZh07SflJKnOtzC5J3z0QdOkX7TSph6iMiuhVA\nPTO/lsxDJ3FfbZ60EShmbsoDsRpAH+P7Hs6yoOXmb9YQUXsA+cxcQUSrIX0T5m++aEKZUk6sa0VE\nr+h6Zn6LiJ53ViXtWiXnLFJLnGt0OYB3nO2mOsE3XSHna3ZS77TXKOj6ENEgSP/JbCIiyLnOIKJD\nYa/PDxDRJQBOhdtFAOxiz1gTCbqHfGmLLj6zhfE+gPOcSJi9AewLYAozr4W47g51HrKLAIw1fnOx\n8/lsSOAFAIwDcALJ1CKFkBbkuBSfSypYTETHAAARHQfxgwPJvVZtnffgVCwkA9AzmXkj5HzP3ZWv\nETPPY+aezNyXmfeGuGAOZuZ1sNcHgEShQfrnRjLzdmOVfcbiMxXAvkRURESZAM6DXAN/WjuqI2Tk\nx+kQv2UtJAjgI2PdzZCokO/hRK85yw8BMBdSQf/dWJ4F4N/O8skA9jLWXeIsXwTgotY+7yZeq2GQ\niCUcTZgAACAASURBVKGZACZBKpekX6u2/IJED41xznkagGPsNQq8VsvgRPHZ6/PDOS0GsALADOf1\npL0+CV2/kwEsdM75T7G2tQN1LRaLxZKWtEUXn8VisVh2AaxAWSwWiyUtsQJlsVgslrTECpTFYrFY\n0hIrUBaLxWJJS6xAWSwWiyUtsQJlsVgslrTECpTFYrFY0hIrUBaLxWJJS6xAWSwWiyUtsQJlSVuI\n6BgiWhl/y4T2+SIRVRDR5GTu12KxJB8rUJZWhYjGEFEZEVUR0VJnjh2ThJNFEtFLRFRPRD08y0dA\nZiztxTIXVCoE8Bhn+o5q57XZeT8smcdpQrkKiOifxrVeQEQ3Gusbiaivz2+ecn6zhYhmO9NM6PpM\nInqeiEqcfc5wMn1bLEnBCpSltbkHwN7MXADgFABXE9FJTd0ZEeUCOAPAdwB+4Vm9F4ASZt6mm6MJ\nAmgcq33AqtXMnO+8Ojnv3zb1OEniEQB5AAY413okJOu2EnEdiKgDgM8gcxUdBqAAwI0A7iWi3zub\nZQAoBfAjZ5//B+DfRGTO92OxNBkrUJZWhZm/8whGPYD1xiZERNcTUTkRrTZb8AGcCWA5gPsg06fo\nTi4F8ByAIx2L5n7IVN29DCunJwl/IqIlRLSeiF4nos7OPoocS+NSIloBqcBDQ0SFRLSSiH7ifM8j\nosVE9Avn+6mOFVJFRCuI6Hbjt3rsS4iolIg2ENHlRDTMsWwqiOgfMQ4/HMCrzFwNAMy8iJnfcfb9\nJeTaz3Guw9kALoRMJncWM5cycwMzjwNwDYC/EFFHZq5h5ruYWacs/69z7Q9J5LpYLIG09twg9mVf\nAJ4AsBUiTpcby49xlt0OoD3EwtoKoCDGvsZDpizvBJk/zJwP62IAEz37L/X8/loA3wDYHTJv1FOQ\nih0AigA0AngJQA6ALJ/jR+3Ts/4EAGsAdIcI5hvGuqMBHOB8HgSZ+2yk59hPAsh09rMNwLsAugLo\nBaAcYs34Hfc5APMgor2vz/pGiCWr318D8KLPdu2d/+QEn3U9ANQA6N/a95R97Rwva0FZWh1mvhJA\nRwDHA7ibiIYbq+sA/IWlBf8RgC0ABvjtx3EtFQN4k5k3A/gYMntpIlwG4FZmLmPmegB3ATiLiPRZ\nYQC3M3MtR86matLbsWgqiGiT857jnOunAN6EWF8nA7jcuA4TmXm+83kegNchgvfDJgDuYuY6Zz9b\nAPyLmTcy8xoAXwE4OKBMVwF4BcCVAOYT0SKf/iJztupuEIGMgJkbAGxw1rs/JMpw9v8SMy8KKIPF\nkhBWoCxpAQtfQirvUcaqjczcaHyvgYiZHxcCmMfMOs39WwAuiNFX5EcRgHdVYCB9WfUQ60BZFWcf\nq5m5i/MqdN5rjfXPQSykl5h5ky50pgT/nIjWEVElRCy7efa9zvhc6/Pd99ow83ZmvpeZh0MsrjcB\nvKnuSx82QKzICJxr2c1Zr8sIIk7bAVwdsD+LJWGsQFnSjQyICDWFCwH0c6LOygA8CqmMTw3Y3i9A\nohTAKR6ByWPmsji/C4VjiT0LYDSAKzyRc68CeA9Ab2buDOAZRFo1SYGZtwD4GyRoYu+AzcYDOEUt\nP4OzIK5FM0z/nxDROsOxsCyWpGAFytJqEFF3IjrXCRZo50TvnQ2ppBPd1xEA+kKCAYY4rwMgfSkX\nB/ysHEBXIso3lj0D4G8aieaUcaR5qDDFibHuVkh/z6UAHgQwxrFAALF+NjFzPREdCuD8BPYbu0BE\nf3YCKjoQURaA3wPYBGChs8layPVTxkAsxTedAI0M5//5O8TFudnZ79MA9oP0ldU1tXwWix9WoCyt\nCQP4HYCVADYC+AuAC5l5Wpzf+HERgPdYogLX6QtSof7Ez5XFzAshArbMcen1dLYfC+ATIqqCBEwc\nGuL4JrtT9DionxPRUIgwXMjMDIk0bATwJ+d3V0Ii5KoA/BnAG3HOPd5377oXIRGSqyHjwX7CzGqt\n3gHgZec6nOWIzfGQ/+ZbAFUQQb2ZmR8Gfujz+y2AgwCUG+dqumgtliZD8pzE2YjoWgC/dr4+x8yP\nEVEh5AEqAlAC4BxmrkpVQS0Wi8WyaxHXgiKiAwD8CsAwSEvpp0S0D6TVN56ZBwD4HMDNqSyoxWKx\nWHYtwrj4BgL41okCagAwETJSfySkoxfO++mpKaLFYrFYdkXCCNQ8AD9yRsHnQiKi+gDowczlAMDM\nawHslrpiWiwWi2VXIyPeBsy8gIjuA6ADA2cC8Asl9e3MIqImh+RaLBaLZeeEmeNGpYaK4mPmF5l5\nGDMXA6iEhKaWk5Mt2ol+Whfj9/YV8Lr99ttbvQzp/rLXyF4fe312rusTllACRUTdnfc9AfwcMqDw\nfbjJOC+GhOZaLBaLxZIU4rr4HN4moi6QlC9XMHO14/b7t5MlegWAc1JVSIslJmefDey7L3DPPa1d\nEovFkkRCCRQzH+2zrAIykM/SDIqLi1u7CGmP7zVavRro2hXo0AF46y3gwAN3WYGy91Bs7PWJTTpf\nn1ADdZt1ACJO9TEsuxgNDUBGBnDTTcDIkcBRRwGDBwOzZ7d2ySwWSwiICJysIAmLJa2Y7OQp/fRT\nYPFi4NhjgfLy1i2TxWJJOlagLG2PceOAP/wBWLYMGD8eGDYM2LgRqK4Wi2rSpNYuocViSQJWoCxt\nj0WLgKFDgZ/+FHjlFWCffYDOnYF33gE++AD4+99bu4StQ2MjUGXTYVp2HqxAWdoeJSXAXnuJ5QQA\nRUVAjx7Axx8DJ5wAfPUVMGRIa5awdXjvPRFqi2UnwQqUpe2hAnXkkfL9gANEoD76CBg1ClizBpgz\nR4IpdiVKS+W9tjb2dhZLG8EKlKVtsWMHsGED0LMnMHy4iNUeewADBkgf1GGHudtu2eJ+XrcOmDix\nxYvbojz6qLwvWhR7u1/+Evjii9SXZ1ekuhr4zW9auxQ7DVagLG2LykogPx9o59y6RUXyvt9+7vs5\nzphxsz/m2muBY45puXKaHHkk8MQTqT1GVRWwYoV83rQp9rYvvQSMGZPa8uyqlJQAzz8P1Ne3dkl2\nCqxAWdoWmzYBXbpEL7/sMonqa9cOeOMNYP/9IwVKK4yamsjfNTamrqzKpEmpF4SlS4F+/YBTTxUR\nj0c7++jHZPp0CcRJlOpqeY/XSLCEwt6llrbFpk1AYWH08qwsYO+93e8dOwJbt7rfly+X92uuAXTg\n+D//KdZYKlFBLCuT96lTge++S/5xVq4E+veX8zHP24uee15e8suwM/HJJ8DMmYn/ThsHfv2AjY3A\nhAnNKtauhhUoS9siSKC85OZGWkvLlsn7P/8JrFolFfVf/yqVeRiLo6ksWyaWTWUlUFEBHH64WHvJ\nYvVq4O23JUCiTx8RHj+BUvefBlJYYpMRNk2pB72Xtm2LXjdrFvDjH0s/qiUUYbOZ30xE84loDhH9\ni4iyiOh2IlpFRDOc18mpLqzFgooKfxefl7w8V6AqKiSib8wYcW0tWSIunI0bJQJQratUsGCBuBv3\n3BMYPVpa0U2t/Pw45hjgrLOAL78EBg6MthwBOfe99hJhnjdPlm3dKsEmp9uJsH1pqus3lkCtXSvv\n8YJYLD8QV6CIqAjAbwAczMyDIQlmz3NWP8zMQ53Xxyksp8UibNwoSWLjYVpQX38tEX+/+IW8li8H\n5s8HfvYzt+IO4qmngEceaXp5Fy6UCMPzzgOuv17KlSxqa6XS699frKghQ/wtqPXr5X3FCnE1ZmfL\nNrNmAWPHum6/IDZvlusFAM8+C1xwQfLOIV1p6hCFWAJVUiLvs2Y1bd+7IGEsqGoAdQDyiCgDQC6A\n1c66uMn+LJak0hSBGj8eOPFE+bz33sDtt0uYdVGRhKjHEqirrxZhaSoLF0pk4ZVXyvczzgC2b09s\nH2+84R8VNnWqWGfPPivfDzkkUqCmTRMx1jyFpaUiVnvtJddG+0nilSc/Hxg0CDjlFODPfwZefbVl\ngktaE73eibrj/ARq61bg/felgUAEPPQQMGNGcsq5kxNXoJh5E4CHAJRChKmSmcc7q68iollE9DwR\nFaSwnBaL0BSBmjvXjcjae28RpNGjRaB695YAAz+++cZ1yW3e3LTyLlggFlTnzmKNXXSRf+s6iG3b\nxPqaOVPKqcEWgFiGRx0lbj5mce+ZAjV8OPCTn7iuJVOgtm51hSvWuan1BUimDv3+5pvAww/LsqZe\nm5Zi5crIoIWVK+O7deOJ93vvyTxkXjR6z/yP99wTOO00ySF53HEiTtpgscQkrjOciPoCuA5AEYAq\nAG8R0fkAngRwFzMzEd0N4GEAv/Lbxx133PHD5+Li4rSef8SS5mzcCBx6aPztcnPdilrdbIBUFopG\n/U2dGv37HTuk8gfEdTZvHnDEEcHHmz8fyMkB+vZ1lzFHHvvyy2W7RARq7lx537hRsrbvtpsb8DFl\nioiXidfFV1fnCtGqVVKBFhXJ1CSmQHXv7n/8VauAgw6KdEsdfHDkcf/xD+Cqq0T099or3HizkhKx\n8OrqgPPPj799c9hzT+DSSyVABpBxadu2RYqvFxWoujo34nHTJuDBByW45vXXZR4ykx07gBdekM/6\nHzc2yj5OPFEiA197TSz6XSwl1YQJEzChCRGMYXprhwH42pmgEET0DoAjmflVY5vnAHwQtANToCyW\nZrFhQ2IW1ObNUrHssYcsHz4cuO02EaXDDpP1GzZE/37SJJml98MPgb/9TYRCBWrNGqBXr8jtR4wQ\nd9vXX7vLysuBzMzI8mZnJ+bimzJF3teuFeExK9WVKyND6wGpTM0MGu3ayW/z8+V6rF8vgSHffONa\nVrEsoDVrgN13l8p35Uqxwjp1ihxHtXSpTHtyySUiftrXUlMT3Od24YXA//4nn08+OVzgS3Mw3bhr\n18Z33flZUJ9+KvfCNddEb//ee67bc8AAV6BWrpRrf8QRIlCHHirDDE47renn0gbxGiZ33nlnqN+F\n6YNaCOBwIsomIgJwHIDviainsc0ZAOaFLq3F0lTKyyXNUTxUoGbMkNl2tULt2BG4804Rnvx8sRy0\n0l+yRKylnBzgxReBn/9cQsQHD3YtmR07xC1ohmvX1krfgw4Mfv11qcQuvti1npSsrMQsqClTpPJW\nMTEr/NWrpSwm3ii+Dh3kmhUVSWW7ZYsIjuniMwXNi4rxp5+KqOfnSz/Kp5+62yxbBtx7r4hjv35i\nOT75ZOyxVtnZkeeYCN7B1mEwA0HC9Cv5CdRqp+t92rToRsbPfw6ceaYIz2GHub9fvVosOM140quX\nWNmlpTbbRAjC9EHNBvAygOkAdMrSZwHc74SdzwJwDMQNaLGklrVrJTFsPDTMfNw4IJZLuVs3saC2\nbpXKdc4cEZA333TFZb/93NBgtQ6+/17eZ850RaO+XvLhjRolbq9PPpHgApPsbH+Bamjwn8dqyhSZ\nVmTdOvle4HT1ak5C77XwuvgyMyXMvlcvOW5dnQhedbWcY26uWFC1tXIu998fuT8VqJ495fooxx8v\n/8Unn0gAwAsviOuqtFRyHmofS9CgYVNktOIPS14ecOON8r5kSbjfqHWjQpWdLZnvn3rKf3s/gdJG\nwqxZ7n/ojYDca6/I/3jtWrl2Z50FfPaZrMvKkmuq95IlkFDjoJj5AWY+gJkHM/MlzFzPzBc53w9i\n5tOZ2U5pakktdXXirgvqLzFRC2rsWGndBqEW1MKFkcu3bHH7k7p2lUoeEFcW4PYDPf64vL/2mkRp\nXee00zRMuU+fyP0Gufi++kr6RsyKu6pKXFM//nG0QK1dK2X3jqnyE6jKSqkkt2+XV9eurlvziCNE\nrEaMkECSm26K3J+fO1Pp0SMyOe+BB4qQf2yMOFmwwP+3GzaIdXvLLYkJlArCAw/ItXrttXC/Iyfg\nuKJCrtGOHSKoH37ov70KlGnllJeLqM2c6R8MAYil5BWoHj3ELXrsse522dmR18nii80kYWk7fPaZ\ntOI7dIi/bW6uiMzixdKpH0RhoQjBggUSAm5W0CpQnTu74cPaYleBmjlTLJ/zzpPKn0jEpF07sbJu\nuCHyeEEuvm++kXd1JQJugEWvXhLUAIgLDxDh8Lr3AFeg1I3Vvr1UpipQdXVuJo4DDpAKtaoqOOx5\n3ToJzAgiP1/EZvlyOfbQoeLue+stuZ5Ll/r/bsMGEe8uXRLLW1dutIMvukgs3jBkZsr7ihXSt6jX\nJ2gMmBkkoaxdK6H2M2fK/dK+vdwX5j6KisRFrL8PEvihQyPdpBZfrEBZ2g7Tp4eL4ANEoFavlgo9\nKyt4u/btRYCmTJGK6957pWP7kEPciL/CQlegFi+WdEVLl0qFv2CB9FEpzK6Ft99+bsWoZGTINt5+\nEHXvHX64u2z5cgmC6NHDHSirLfrVq/0rPhUo7Q/bti3agtL+n8xMscjWrpVK9aKLooMVYgU6KF27\nimsLAJ55RkKpzzxTAlP8rKMdO6R8hYWRlXksmOVVUiL/54EHirU6fXrs35nRdID8X2akZdAQAz8X\nX1kZcPTR0jiprpaZnCsr5Rrl5Mg2+fmR5xT0P114YeyciRYAVqAsTWHjRhns2tITApaVxbaGTHJz\npSIJE1DRvbsk8Rw4UL7vsYd0hKtbqKDAbSkvWQKcdJJEbV11lVTMiWSHIIp28+3YIRFtDz0UmWdw\n+XLZv1owxx7rVrhBLXMNklBBralxLSjtg1LRVIG67TYp1yOPRFsUtbVu5RuGYcPEdQaIhecVqMMO\nE3dm587SOAgrUIceKoJ/3XWSnmnOHBGpsrLYQRMq1LW1cr9edhkwcqScb3FxcG7C2loR+7o6Ke+Z\nZ0rjpG9fseB13Jle686dxSIqLo508X3/vTsVjEnfvsFjsTZvdrOi7+JYgbIkznnnAXfdlXj0VaJM\nnBj5EGuHcxhyc6XyCrN9587iQtNxT14yM+W1datUUiedJBXU88+7s/oCEhhw663xj+cNlHjxRank\nzj8/0n1ZUiIWlFpk++8f2TIPcvFt2SL7695dKu/KSrHC1MWnFmWHDm429+uui06wCyQuUCZ77CGi\ne8018l+cfbbcM6++KsEpgCtQ8URq2jTp35o82bWA2reXz7Gyw2tFX1sr/XkFBRIOv2YN8N//ioD5\nuflqa2XbujrJc/jOO9JQKCwUsczLcwNxKitl+fHHi4Ws56QpovwaVUVF8h/6RRQOHy73mMUKlKUJ\nbNkileW0aak9zjHHRI7WLyuTEOkwqFUTRqC0n2HffYO3KSyUYIrSUuk/mDVL3EbPPedu8/jjwN13\nxz9edra0ytW9NHWqBAsUFkonvrqzvv1W8uxlZIgb8bjj3LIGCVROjmyzYYNYWFu2yKtbN1m+fXuk\nBaXic/vtIlx1dZFpjJojUBog8uKLcr10YGtFhSu6Wpnn5roZ1/3o3VsE+6abIgf2nniiiEcQVVVy\n/WpqpHGxzz6yvGdPOWZQn2BtrTRc6uqkvCNGuIE0H3wgoqiDwdWCUvScnnxS+vn8wu0zM+WczD5H\nZckSEWKLFShLgjQ0SFaFCy7wf7iSjVlZhrWIALdSCBOS/sEH0qekLj0/CguBzz8XiyYrS8ZLEcX+\nTRDZ2RJZeM450ulfWiqWWFaWW5lOnSrvGvk1e7a0xOMJFJGc83ffiUBt2iQVZk5OtAWVmelaIx06\nyG+9LrfmCNRRR0kU5ZYtkaJSUhJtQQHB7rbGRgnW6NlT+gjN0P2rrhLXZFBWCA2xr611pz4xCQr7\nNy2o8nJxDep1KyyU/km1OL0CpfucNk3KF8QllwBPPx29PF7y3mSycmVkH2qaYQXKkhg33igVzogR\niQnU0qVN67PSDv2GBnHLaEaIeCRiQengyVh06SJJW3/603DHj4VW+JMnS/lKS92ADBWSNWskgs/M\n2JCZ6QpUaak7+NNL374SPKDWploKGiShbsTDDhMLxGwE6HaAOz6qqQLVrp309wCRc24tXBgpUNpP\npAEgt9wi48i0762iIjjYZZ99xEq55x7/Mvz1r3Ktamv9B3lnZ0e7FxsbRXjUgqqqcsP7TTQgJciC\nWr8+OEQfkGvvF+TRkgK1fLk8x4kmMG4hrEA1h/x8d36dXYW33pKcZgceKP71sFmt991XBnUmilaO\n5f/f3plHWVVd+f+7qapXRY0UQ4E0CKhhTAJiVII/FYOxbc3StK2BLFccYuxEOzGx1QRdJhGHJMSI\nrWmT1VF/hkjigEPH2A6oSEfjD4mMQkExlAwFNVFAFVXFVNT5/bHv9p57353eqzfBO5+1alXVG+87\n797zPXufPTTzJKBXIAgiEYGKQnU174lNntz313JP+HrAg0yYe/bE53uJQPX28srXnWMljBzJFpQE\nXBQU2HtoBQX809kJ/PjHfL9uBcp7HDjA53djY/ICJbgrJnR1OQVKcsy6u/nvn/8cuP12nuB7esL3\nHn/+c//90Opq3hfs6vJO8u7f32lBffwxj093Ny9KDh9mAfISKD8LSgSquTnYgh83jvfV3IKUSYGS\nEP8cDcowApUsvb18EedTNnh3N7tarr6aL/zKyuB9A0FOfj2nJAzZPJb9kp07nYVew0i1QMlk9bnP\n9f21RGS/9z3+3d5uh3eLe2jPHnsSF2IxPobWVrYo/KIHa2rYSpFJs18/tj46O20rpKyMJ2I3sRgL\nil6fsK8CVVgI3Hab8zY/gfr+9/lvOVeamsIFavp0roHoTrr9xjfYxThjhl3aycuC0gVK31eVPbkg\nC0oESr9fXjNMoKqr+bF6hfpMihPAEblAcLmrLGIEKlnkAs50qDXAF7RUZs4ka9dyKLZMcpMm2SV/\ngpAqCIm0Vpfxlagy3Q0WBTlGdzHVZJE9La+Q4USRCX/ePNuNJVaMrOhbW/0tqLCxqKmxXVQAC1Qs\nxqLvzstyU1RkV+wQolqtQfzqVxzMcOWV/L8uUHpIfH29XREcYGtw/vxggSor4z09d+LrwoX8W4Jf\nduyIFwy3i09PLJbxbm/3rj4uQRL79jnTA+QzdXWFF8EdP95ZxaSzk19X9indFU76glKcTqGLoBGo\nE5Tdu/l3MoUr+8qyZcC3vpV5v/GqVXZfJYAvPi/ROXbMeRGI2EQRKKlJJ7XvpNJ2kEvLCyK23MaO\njf6cICSpMhWTtVguJSVcAkcnzII6epStdr/9J8AOBJBJUywoIDhpWd5DIteEZAJBvPjnf+b0BMAp\nUEJHBy+C3Pt8r78evJcDcLSnnnPV1saf9frr+bwpKODAE4niE9wuvq1bgaef5nHWBSrIgnILVGkp\nRwwOG+bcQ/Ri3DinCImVV1XFuXaJtqjYvt0/Abipictm6Rabn0CNGeOMUM0SkQSKiO4kovVWcdg/\nElGMiKqJaDER1RHRm3nXsFC+5ChJhqlGXGZycmWKN95w9vqpqHC2atixA3jkEd6n+clP7NvlOKOI\n+fLl7LKR95HPmqgFJceXKn74Q7tzbV+RPRkidhnqYciyoveyoIjYwtm6NXgsJDBBcpz69bNF0cut\npyOTciLlhxJBLAr5bLrgr17N1t+QIVzVQm9TEpQCAHBEoywaAXbtfeUrbI0VFNiLOXfko9uC2riR\nrZrCQh6L7m7+8TqX/CwoCe/3irJ0M26cs16huDP1XmZROXKEE7vdCxtBykLp1TNk8agL1LFjvAhK\non9TqgkVKCIaBeBGAKcrpT4P7iH1dQBzALytlBoHYAmAO9N5oDlHNi2obG1srlvnLDVUXu48sV9+\nGfjBDzh44tFH7dvlIogi5vrqrq7OFsBkBCqVjB8P3Hhjal5Lt3wXLnROGLoF5dX3KhbjPJmgsZBJ\nX94nbBXvfv2jR9O3+BGBkqhJ3YJ66im7xuGCBfZjv/lNZ6FVLwYMsKMBAeDVV+OLBF9wQfzzZJ8J\n4H3lTZvsKvaxGFtlAwd6C7tuQekuQD3HK4xx45xV7EWg5Lpat47d6PqC74EHbFepzpIlHDJeVOTt\nrZCoW/0++Z71a1NEUR/PLBHlzO0AcARAGREVAugPbv1+OYAF1mMWAPhqWo4wV8mmBSUClYoTaPny\naC27jx3jTHzdtaQL1EsvsTgJ+qTodRH4IZN1dTWvQA8c4PdO1MWXy+gCVVYWv39x6BCPq1hAOrEY\nT+Jh4fbPPANccgn/rbvowjbhZQ8qXQJVVGQnDgPxLsebbrL/fukldu89+WS4q7aykhdsBw9yqaWG\nhniry2885fvYsYO/C7GWiov5dfyK5UoUX1ubc69JctGiWFDTpvE1KMFG7oCQTZs4veG+++wF6aOP\nAi++GP9drlrF1dYnT/Yu/isWlD5vtLXxserX5ubNbAX61SnMIKEddZVS+4joIQA7AHQDWKyUepuI\nhkqLDaVUExEFlDw+Adm9m1dN2RSovlpQ99/PocYPPQT8+7/7P27DBl7dDhnidMlUVNjVpd0b1HrJ\nHulbFDZWSnFZmcceA26+mf8/eNCuPh21ikSuExTNWFzMn7mry78Cwc6d4QnIekv2RFyd4uJra+Py\nR1HatyeK/rnc+1t6p9nPfja+n5YfVVU88S5dysJ80knxwuI1DroFtX69MwgmFgsXKGn34c6jW78+\nWtX9IUM4ynDLFl78iUC98w4vAM8+m0syAbz3/Mkn/N0UFXFprTvusAOBtmzhxx8+zGLVrx/PUUOH\n2nt4kyfHW1AjRzo9QU1NwJQp/hXuM0ioQBHRKeBmhKMAtANYRERXA3AvxXyXZnrLd3fr3+OWlhY+\nMbLh4pMN7EQ6s3rx4x87ewP58fDDvGGq9/4B+AKSqKf6ehaxn/2MV2D6sclFECZQzz/PbkLZSJfJ\na9s2vtBSuaeUTc45x79NhCTKdnV5h5HLqj5KTyyAV9q6OzDM3acL1AUXZL41uTuIISqVlWxty7XR\n2OgUlkWLnJXiBd2CeustpxtQBMpdfUIQAfrCF+KDKLzcs34MHmxbrE1NfJ3pLs2PPmLL8vrreWFc\nWMgLynnzuOHiggW8Z7d9O1cnKSzkxpO3387HLtcTwPu7bgtq3DjntdnYyHujixfbZbdeeYXPfYL4\nygAAIABJREFUhSQDZpYuXYqlSexphQoUgC8A+JtSai8AENHLAKYDaBYrymr/3uL3ArpAnTC0tPCK\nJxsWVHMzn4R9jeIrK2PfdthKSTqJugVRd/Ft2sTVJSRxt6uLT2wiFsARI8LHavVqvtgnToy/r7Mz\nuIX48cRDD/nX7JNK593d/hbUoUPeUWVeXHGF8/8oAnX0aHgfqFQzZoxdvT0ZpDK63mFXHz+vPRvA\naUF9/LGzf1csxteaX/TpF7/I+V0PPpjcMQvS1bmjg92ZEuQC2AVlBw/mhcb06TxGI0fyd3v22Vx8\n95pr7Ooi06YBN9zAzy8q4j2uefOAWbM4QlE+j1Is6CNGOBfajY1sQZWV8WPr63k/b/1672szAm7D\nZO7cuZGeF2UPqg7ANCIqISICMBNALYBXAFxnPeZaAH+OfrgnAO+9F//FJsp55wGJindPD5v8o0cn\nJ1AffMCrwoMHeSI69VQ7T8mPDRu4z8+iRc7by8vt/avWVp7QzjuP86MKCuwLP6oFtX8/rxL1SXTL\nFnZPSC7PiUBJiXPfSUdcfIcOeYe0yxhI48JECVsByx5Uc3NmBWr8eD6f3R2CE6Gqyk5PiIpePmr9\nej539fsA/8aCAwdyfldfw/AHDuRrRKrSzJxp3zd8uF33b84cvr5OPpnf86yz2ILq7WXrSfZpq6rs\nXLJBg9haP/10Fi9pHQOwIBYX8236tSluRuk2vXq1PT59IYm5MlSglFJrAPwBwAoAawAQgN8BmAfg\ny0RUBxatXyT87rmMX/FJwN6cnDAheQtq82YWublzefKPilg755yTnECdcw6v+iSMuabGX6AOH+aK\nzNu2cWFLt6ujooItGylCWlHBxS9Xr3a2HhcLKuwElfI6OpWV7NZIdkI+3igu5gmkf39va0fcSsla\nk2GTqUzYLS3RCu2mCqK+L0CqqjgC7Vvf4ursURAXX1sbX8t68IkczxNP9O24wpCuwrt3s6WSyHd7\n/vlcgmv0aF7UyHOvvprdfB0dTuHVu0O3tbGAudusSNeAIUP4PPjgAx6Lr32NIwWTYc8ePrYECxtE\nij9VSj2olJqklPq8UupapdRRpdRepdSFSqlxSqmLlFLRygTcdhubo7lMUxNP3HrIs440fRs6NHkL\n6o47bPfLd77j/7hJk1gkhIYG9gXrRT0BXvFedFFwlJacHL29tsUjqyQvFi/mjdhRo7wnD3Hx7d3L\nF5lMMoWFzpO+uZkvoDAx7+iIFygRpnwSqL17/ScpcaEma2lE3YNqaYm+z5UKogQUhFFZyTUIZ82K\n7pkQF9/SpRx1pwu4nHNf/3rfjy2I6mpboMISkt34eVJiMR6Hujr+fBJgJGL45pucNjFsWHwFe92C\n+uQTtsZuvZXve/XVpD7ip2k5iVSTQTYqScyfz37QIGprnbkBmeaDD/h3ULfN/v39S/VH4d132Xf9\nm98EJyHW1jqLrEoLabdAbdjAroiGBv/Xkr0k2WPQLSivoq9vvcUbrH//u/frSaKuCJSOWFCHDrHw\nRHHxdXR4V1YAThz3XhgiUH519tyFVxMlbAUrYeBKpaZqRlRSJVAHDwZX2XAjglxbG1/GSq7LsOob\nfWXgQP7OW1sTt1ol1+qCC+I9IYMG8fU3caItvPJejz3G1tD48c7FpFJ2NYuaGg7znz6d96pvvDHY\nsxSERPvqFUoikJ1SR2Gr4csvd3YqzTRSGdmvPlVfBUoidsaM4RItfjknUjBVn/x37+aVnrttuKxQ\nnnySj8mrEoBE6+3ZY7v4SktZTK67Lv7xdXXAGWf475eIBeVl+chJX1/Pq7yysnCB8nLxyYWVqnI7\nuU5xMX93fhZUIgV3vQhzC8diHOXV1wKxifDii+yO6isi6onWbDx8mMfcPedMmWIv6tKJWFBe5a2i\n8rWvxVu8Mh56CLzsd4kgTZvmtKCkf1hJCb/eO+9w8m9pKVtkyeZGHVcCFZZkmO0K4WKF+Lnv+ipQ\n69dzfgcRn5wdHd4rW6ns3NXFFs6tt/Iez7Rp8RaUCNTcucDdd/OJqBQ/79/+jYVizx5eGW3eDFx7\nrb0JfvfdbNV++KHz/Tdv9g+xBWwLyktY5KTfsoUDMfSLoLaWQ9fdeAmdkOkqz9kizMXXV4EKQwTK\nz4JLB1dckZqivrKgTMTiEQvKq70JkJl9uL4KVE8PN1R0Q8Svd+aZ9m2DBrFArVnD1+a3v83XZnc3\nz2V6orDsQUnL+pEjgz00ALsEvTxPsl2S0wIl/ke/FTnAq/aenuDHCEqxBZLqUO+WFp4o0yVQ69bZ\nCYgFBby562XxPP88W5OtrRyl88wz7MqbOdNfoABekQJ8wm/bxm7E+fP5//HjbVeAWGY/+AFvLK9a\nZb/GkSPsTgxyl+gWlNs1JxbU1q3xAvWrX3Eeh9tddeCAv3WdbwKVDhffY485S1B5kQ0LKlWERaN6\nobcwyeSem4643ZIVqIICfw/Drl3ALbfY/w8YYIvhKafw80pLWZj69+fFswiUuDzPOIN/jxjBAiW5\nUV7X5PTpzu7JggiTvHdEMitQktQZtAqUrOkoK6q2Nm6gl2qLKyzHKZUCBdirGjddXVyk9N13+WSa\nMME+edwCtWsXJ97edps9Hjt32idGSwufGGIRnXkmN3ITxoxxjuOKFXyCBu39xGK86b5nj78F5SVQ\nUutr2TLnczo7/ZNx802g/CyovgjUzTezKyiIoqLjV6Auv9zbkghCrqP6+syG1eukwsXnRyzmFK/C\nQl6QbtjgbPEiNRCXLLHnmIsv5uAR6WAg2wGtrbzndfPN8e/X1OSdVynW7f79zuK4IWRWoDZt4o3H\nIIFqbWWTP8qEJBt2qfYTt7byvomXBbViBZfjSbVAuVcVR4/yhaNbMLpouwWqoYHrcOkT0M6dfOKX\nlPD94uKT99RP3NGj2TwX3nqLowLDKC9n683Pgmpo4D0BXaAaGrgcjX4i9/by/X6WQyIFT49niot5\nseJnSWbKxXc8CtR997ELPBFiMfYcHDjgzIHKJKWl7DVqaEi9QHnx8MPOgBCxoACuWiFuTSIOY9fn\niZEjgfff5znwf//X+/W9gms6O/l19+1zJlOHkLmr/sgR4D//kye9oIts40belItyIcqk7hVZsm1b\nwiGNAFgYW1t5UvUSqCuv5BIiIlDuTeeVK+P72bhf3y1QUqZFR/Z1dLeD/sW7BUqqfUuY6qmn8lju\n3ctlS3btsvMegPgJf/hwp9DX10fLGq+o4Me63SMiSA0NzqCO3l625qZP5z0uobvbP/fH63hPVEpK\neHGST3tQ2aS4mOeKiROzJ8pEdgJtIiWSUoX+uT/6yN5z8qKmBviXf+G//cRUj8h87TU+Z7u62EW4\nbx/vQUckc1f9XXdx+PY3vxkcSZSMQHlV4x4zhoswbtjg3J8J48ABO7vayzqSzT4/C+rdd203pReN\njWxm6xN6aWm8O1ECBsTFdtZZHMwg6AJ19ChHyQwfzmJw111cLHTOHM5hmDSJBez55/1bAUixTcGv\ni6ib8nK2jN2FXGXjddcuPjH79ePbWlv5ghw3zvm9dHb6Ww2//33iK+PjFdng9xuLvoaZh3E8u/iS\nIRbjBVOUPe90InNZNtIp3IuRoPqL+vnnnh/cOXpvvQVceimnyXR2svW1f3+0LtwWmROojg6OHBs6\n1F98enrYzTRxYvxj7rmHa1/piOXkV9W7u5tfK5GCl2JluDttCtIXxk+g/HKnhM2b7X4zgkzmOnoX\nz9GjOchBT+LTXWb19XxfURFP/g88YG9s1tezW08qjw8ezCImrRgEt0Dt3x+t3psIlDvBsLSUxV7K\n+QO2tVVTw8egd0ANEqhrr/Xu5XMiEiZQv/ylszdQOt5fKlnkAyIIYa3ZT2Tc33WQWP/2t5yjeuGF\n9px17Bg3M5W5Ubwdv/0t/96+na/vMWN4DtI9JyH0ofBVgtTWso9YL87opqWFVbmyMv4xL7wQXwtK\nVh1ugZKYe9nHSsQtIr1dSkq8I+t0gSouZoGS95k7lzt5AvyleTU5q6+PL83vLjUin0kCD/S9IcEd\ntv35zzvvv/RSFrb6ej7hnnqK3ZODB3uHiiZrQVVU8GPdAtW/PwdI1NTYK6rycv4sNTX8+KgWVD4h\nAuXn4rv99vS+v5z3+SJQMt7ZtqAArkOZDeS7vvtuZ6FaL2Tv6t577RY9hYXsrRJk0V5Xx1HWu3bx\n9T1xIudVyfwcgcxYUErZ9aD04oxuJNRTClbquCsdPPooR6GddFK8QH38MVsQskJPpLbV3r1sQfkF\nQMhk278//92vH1t+a9Zwza5ly5x16NxIlrZOmEB5oQtUY2O8QMRiHDre28tjKhvAfqVUKitZaERs\no1pQskhwNxMsLeUWHfp3U15u71eddBKPheR/GYFiwiyodFNSwt9FvuxBiQWVbYGqqwtPAUgX8l2P\nHu3MmQqirIzPE5mXly7ldJbOTnvua23l7gQ7dtgCtXmzfwEED6K0fB9LRKuIaKX1u52IbiGinxJR\ng3X7SiK62PdFGhtZdGpqnP1X3IhAeYmY+zl6ozD3HlRtLZehT6bys+7i8woz1y0owBay9nY+lmHD\nggWqoyN+4g/ag/JDPz6/Gl6yiTl4MLsVX389XhyFoiJ7cvI7Ti/+53/svlLu4wN4z1HQBSoWYwtN\n3LRGoJhcECjAWFCZZuzY7H3nMgaJJCXLHKcHVkk6yaFDvPDcu5cFb8sWvr5PPpnnrAT22aJUM9+k\nlDpdKTUVwBkAugC8bN09Xyk11fp5w/dF9Gq6Ij5eYeS6QLk3g93WjOTzTJwYb0Ft386rAfEre7na\n/JC6clEsKMB+XHe3vRIJEyivnCGxoN57j1ccYQKli5pUH3YjAlVTw3tTF/uvIQDYbj6lvJNvvRg+\n3NkQTT8+IF6gtm61LwR9H8oIFBPm4ks3+SZQuWJBZRMJI08kD0zmOH374bTT7GAoSfwdM4bnJ/36\nTqDAdqIuvgsBbFVKSUGmaAXS1q2zBaqgwHaLuZFyI14uPrdYHDrEpX8uu8xboEaNsi2rRFqjhwVJ\nuI9bfPavvWZf1OXliQmU7uI77zzOxI5iQclzwiyoqMUzRaAOHeLvqC9FMsWi0nO33AI1bJi9AjMC\nxciYB3336cQIVH7yt7+xOy4qIlDbtrH1B9g1EEtLeZE9aBDPQS0t/Njycm5qmkBn7EQFahaAZ7T/\nv0tEq4noCSLy9we5G4G5c3gEsaCkdIden87tAmtv58TUqqp4F5/kBP3rv3J4dpBA/dd/AY88Yv+v\nB0l4ufjkvURAS0qAZ5/lHC9Z9SZqQbn3oPbtS3wPysuCkkkm6spIBCqqey8IsV71k3HQIGf5pAED\n7O/GCBQjAtXX8U8WEagEJpHjGhnvbOQf5RLTpyeWa1hWZheDvuIKu8u33Ld9O8/lZWW84O3t5fv/\n+lfv4DMfIkfxEVERgMsAzLFu+g2Ae5VSiojuBzAfwA1ez73nzTdZbJqbufWvCJR7Qmpt5aRSwHYF\nyiTrtmZkEi0r87egHniAReq88/w/2K238kQvhVn37uUACy8X39Gj8a7HkhLbTSUXdTICpYvh/v0s\nFKee6n/c7j0oL4GaMAG46aboJ54uUH1dwc+Y4aztB7CL8fHHuUo0YAdmADzu+TIpBiGRk9kSKN0L\nkA/IeOe7QCWKuPI+/JDTePRFcFkZW1ZDhrChUViIpT09WJpo93AkFmb+TwBWKKVaAUB+WzwO4C9+\nT7ynt5f3KSTSK8yCAtjNd/gwD8Lhw7wvok+a7e38v1ugDh7k+8SNpE+CXritpKAgicZGO2pFPktJ\nie2mkovbT6AWLeKJOGgPCrB7KEXZgzp6lFckXlZSRYWz2WEYIlAytn2hoMAWIuFLX+Lf4varrOTP\nqRR3QJ0zB3mPjHu2CpfmmwU1dCgvir0WeIZgKio48ModfagLFAAUF2NGTw9maAI1d+7cSG+RiIvv\n69Dce0Skh4NdAWCd7zNbWpzRY0ECJfsmeqCEJILqgRWSyCoVtYWdO+3KBYDdEkIprqowe3b8++pR\nJUFBEr+wutp/8glbZgA/TjKjRby8BKqnh+vkrVnjX7dOOHIkuouvsdF2i/aVVLr4vBgwgL8H+W7k\n/d54gz+rXikjXyHi8yiT7dZ18k2g+vUD1q5NTcPEfKOsjM9Vd/uk3l7eOpE5xCveICKRBIqISsEB\nEi9pN/+SiNYS0WoA5wO41fcFBg1yngC6QC1fzi45wGlB6QJVW8sVdXXBEIFyi8H27c6GZYWFPJl3\ndnK5nOeeiz8+fa/LK0iivR24/347M3r0aNt3XVJiJ5wGCZRerdydAOt28YlABU0ShYV83KNGxSf+\nJksqXXxREAtq7VoW/GxFruUa2WzOmG8CZUgemR/dYeOSGyn70GFNMgOI5OJTSnUDGOK67ZrI7+KO\nMNMF6pJL2GrauDHexSeBCNu3c6TIq6+yCCjFE3p5OV/MEndfUGAHSOiIYPi1sHYL1MCBLGgiGmvW\ncK7PWWc5W1TIZxExEqHwEii9oK07YsjLgtq/P3pkUSqsJ4AF6r33uJRJJgRKBPHw4eAClYbMIddI\ntqIIDccPXjVQAbvFz1132bf5zb0hZKaShNu/qwtUWxtHghw7xnspslmpJ+tK9QW5TayLfv1YoCSi\nBGAhcLtHRADEitOtKD2A4Cc/4WOorna6+MRErauLLykkA//OO8D3vsd/hwmUe8VRWsqPV8pePe/Z\nE12gZG+nr1RV8SLgv/87M5v0YkHV1wcHhBgyh5xz5vswhOEnUHK7zHOrV3OV9CTIjEC5Jzv3HlRB\nAatuVZUdqqi7+JqbWXTkee5N/M5O4I9/5L9lD0lHBEz2sGbPtt+/UDMi77vPPh49SEKCMLxqzolA\nTZxoWzJhAuVm1Ci2Elta+HiGDuX/wwpYnn8+93b56U+DHxcV/XvKhJtJLKitW1PnpjT0DfFc5HPx\nVEN0vM6TsWOdxagnT06611ZmisW663qJ0IhgFBXFt1zWXXxNTTxp62WF3KJ3003Ad77DFtBpp8W/\nvzt7uavLmYgqbr4rr+TfugWlRwm6rR+xyvTeKGVldlsOgC2vWbNYGCW4Qqe6mnO6nnyS3Zbiww2z\nYpYuDb4/UWbOBG64gYMW3JXj00FlJVvQu3dHTyY2pB8TMGCIglfnXIC3RFK07ZAZgXJnpYtAiQAd\nPBgvUOLOq63lyV63oPyizIg4acyt6uJC062C7m5+jSNHWBQ6OnhQpcZfLMauvWPHghN95T7dEnNb\nUNLqfuhQ/7YRV10F/Oxn/NzXXgNefDF1e0tRGTGCC97qrsZ0UlXFhX1HjzaTosFwvOG3b5zkfpMX\n2bWgDhxgMZGaTnooeizGwjVtGv8/dqzdldVtQemBEfv3h1dqAPj/Q4dYPCsrOTy9osIWGiLbivLz\ntQLezRDdAiXl5Vta/F9nyBBO+B08mD+zfO5skKkoMvmezH6HwWDwIDN7UEECVVHBE9XGjVw8VCgq\nYteY/hryPHcrCD0Ov7ExPlxZBErPo+ruZgHs35+PYfv2+GxyEaiODnZBSZi5zsiR8RXC3blZzc28\nx3L//fHP15+zZ0/+ZPAD9ndo9p8MBoMHmREoPxdfZ6ctUJs2OashxGIc/XHhhSxI8jyvPSh9xd/S\n4i9QemDGwYO2QJWXc+azV8uIgwdZSG+7jfe43PzhD04hBfjz6FZXRwdX9Q6aiPU6fvlCtltLGAyG\nnCb7FlR5OQcJbN3qDDQQgTr9dFuMdBefO9lV2qi3tcVP8hLFpyfDdnfzj25B6e8v7xdWdqikJP4+\nqV4hRCmEKsecT5M1EXeIveqqbB+JwWDIQbIrUBIYMWAAN7XSLZiiIraq9P2J4mIu1758eXyQxIoV\ndo6SlwXV1eWsRKHvQVVU+FtQsgeVSGa95PfMns3PF0sxiHwUKAB48MHMRAwaDIbjjuy4+PQ6csOG\nsQXV3e0UiFiMc5p0q0ZcQsuWxQtUWZl9m5+LTw9c0Peg/Fx8BQW8N5aoQFVUsJX33HMcIi+WYhD5\nKlAGg8HgQ3YsKLEwmpq4yoS46/TwcMk30gVKQpHb2rzDzGWSd79faSkXit2xw75NF6ijR9kCc+fi\nrF3L7qdEa9NJfo+8TxQLSkIz+9Ik0GAwGE4gQgWKiMYS0SoiWmn9bieiW4iomogWE1EdEb0Z2LDQ\nT6DEgpKOjLpAiRjpVo1eesi9BwXYIeLunJrSUrsgraAHSYjYjR/vffxbtyZmQel5AB0d0fagslkg\n1GAwGHKQUIFSSm1SSp2ulJoK4AwAXQBeBjcufFspNQ7AEgB3+r5ImAU1dSrfrtfQEwtKFyI9l8lL\noPwmebfLb8AApwX1+OOcg/TlL3s/P9FmevpxtLcn1i22D6XpDQaD4UQiURffhQC2KqV2ArgcwALr\n9gUAvur7LPcelAjUJ59wgu2553KRUt3ykb91YdCj8BIpZqoLZEcH8N3vOgWKiGvsuSs3/PWvHOYu\nx5wM7e289xU1fFyvrG4wGAx5TKICNQvAn6y/hyqlmgFAKdUEwKOlq4V7cq6qYqFoaOB9n6Ii4NJL\nnY8Rd51ueegWlLtJFuA/uYtArVzJgidBEyJQfpx7LrfYcB9HIuzfz+/ltiK9+MtfuE29wWAwGKIL\nFBEVAbgMwCLrJuV6iPt/G7e1I0EEBw74t5SQSua6VSO5RQsXeltQevUGHXEdSqUKaRB48GB43SgJ\nWki2Ll4iAvWVr2Svk6rBYDDkGInU4vsnACuUUlapbTQT0VClVLPV/t230Nw9v/71py67GTNmYMbJ\nJwObN7M49fPRSK8ujK++yoESfnXqxo0DPvgg/vbPfQ6YMsUuRhvVggKAz342mrj4kYhAGQwGwwnI\n0qVLsTSJ7guklL/h43gg0TMA3lBKLbD+nwdgr1JqHhH9CEC1UmqOx/OU6u11Bg5I2PWECVyt3Itr\nrgGeftpZPy+M7m6uTu4VQKGzcCHw+uvAZz7DHXrvvTf6e0Tl7LM50VjKNLnHwGAwGPIUIoJSKnRC\njOTiI6JScIDES9rN8wB8mYjqAMwE8IuAF3D+L3tSQdZLUIsLP0pLw8VJHvenP3Hx1zALKlnefx/4\n3e/s/404GQwGQ0JEcvEppboBDHHdthcsWokjk3VQSLWUCUoHshfV0pI+gSoqSl0rdoPBYMhDMlNJ\nwo/2dv/7Zs/mzq7p4DOfsf9Ol0ABnGS8eHH6Xt9gMBhOYLInUFOmxPdRyhQDBwLvvcd/p1OgAE7+\nTWQfzWAwGAwAMtVR14u33/aP4MsEEtGXboEyGAwGQ1JkT6DclcMzjREog8FgyGmyuweVTSTaL5Ea\newaDwWDIGPkrUP36AeefD0yalO0jMRgMBoMHkRN1k34DIpXu9zAYDAbD8UNKE3UNBoPBYMg0RqAM\nBoPBkJMYgTIYDAZDTmIEymAwGAw5iREog8FgMOQkUauZVxHRIiLaQETriehsIvopETUQ0Urr5+J0\nH+yJSDI9UvINM0bBmPEJxoxPMLk8PlEtqEcAvKaUmgBgMoCN1u3zlVJTrZ80VXY9scnlkyNXMGMU\njBmfYMz4BJPL4xNa6oiIKgGcq5S6DgCUUj0A2olbZpgmRwaDwWBIC1EsqDEA9hDRU5Yr73dWA0MA\n+C4RrSaiJ4ioKo3HaTAYDIY8I7SSBBGdAWAZgC8qpT4iov8A0AHg1wD2KKUUEd0P4CSl1A0ezzdl\nJAwGg8HgIEoliSjVzBsA7FRKfWT9/wKAHymlWrXHPA7gL8kehMFgMBgMbkJdfEqpZgA7iWisddNM\nALVEpHcbvALAujQcn8FgMBjylEjFYoloMoAnABQBqAdwPdjFNwVAL4BtAL5tiZnBYDAYDH0m7dXM\nDQaDwWBIhrRVkiCii4loIxFtIqIfpet9cg0iGkFES6yE5o+J6Bbr9moiWkxEdUT0ph71SER3EtFm\nKxH6Iu32qUS01hrD/8jG50kXRNTPigp9xfrfjI+GT3K8GSML6/Outz7bH4kolu/jQ0RPElEzEa3V\nbkvZmFhj/Kz1nP9HRCen/UMppVL+Axa+LQBGgd2CqwGMT8d75doPgGEAplh/lwOoAzAewDwAP7Ru\n/xGAX1h/TwSwChywMtoaN7FsPwRwpvX3awD+MdufL4XjdCuAhQBesf434+Mcn98DuN76uxBAlRmj\nT8dmFHirIWb9/xyAa/N9fAD8H/C2y1rttpSNCYCbAPzG+nsWgGfT/ZnSZUGdBWCzUmq7UuoogGcB\nXJ6m98oplFJNSqnV1t+dADYAGAH+/Aushy0A8FXr78vAX3SPUmobgM0AzrKCUCqUUn+3HvcH7TnH\nNUQ0AsAl4H1NwYyPhZYc/xTAyfFKqXaYMRI6ABwBUEZEhQD6A9iFPB8fpdT7APa5bk7lmOiv9QI4\nYC6tpEug/gHATu3/Buu2vIKIRoNXNMsADFVWEIlSqglAjfUw91jtsm77B/C4CSfSGD4M4A4A+gao\nGR8bv+R4M0YAlFL7ADwEYAf4s7Yrpd6GGR8valI4Jp8+Ryl1DMB+IhqYvkM31czTBhGVg1cZ37cs\nKXc0Sl5GpxDRpQCaLSszKEcuL8fHohDAVACPKaWmAugCMAfmHAIAENEpYBfxKADDwZbU1TDjE4VU\njknac1zTJVC7AOgbaCOs2/ICy+3wAoCnlVJ/tm5uJqKh1v3DALRYt+8CMFJ7uoyV3+3HO+cAuIyI\n6gE8A+BLRPQ0gCYzPp/iTo5/ESxY5hxivgDgb0qpvdZK/mUA02HGx4tUjsmn9xFRAYBKpdTe9B16\n+gTq7wBOI6JRRBQDMBvAK2l6r1zk/wKoVUo9ot32CoDrrL+vBfBn7fbZVoTMGACnAVhumePtRHQW\nERGAa7TnHLcope5SSp2slDoFfF4sUUp9A1yJ5DrrYXk7PoBvcvx6mHNIqAMwjYhKrM81E0AtzPgA\nbNXolk0qx+QV6zUA4CoAS9L2KYQ0RpRcDD6RNgOYk+5oj1z5AVsIx8CRi6sArLTGYiAOGaYEAAAA\nqklEQVSAt60xWQxggPacO8FRNBsAXKTdfgaAj60xfCTbny0NY3U+7Cg+Mz7OsZkMXuitBvASOIrP\njJH9ue4Ai/Za8MZ9Ub6PD4A/AdgN4DB4f+56ANWpGhMAxQCet25fBmB0uj+TSdQ1GAwGQ05igiQM\nBoPBkJMYgTIYDAZDTmIEymAwGAw5iREog8FgMOQkRqAMBoPBkJMYgTIYDAZDTmIEymAwGAw5yf8H\nnZWm21cP+awAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11ac6d990>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(nrows=2, ncols=1)\n", "\n", "dfgraph['StO2'][-10800:0].plot(ax=axes[0]); axes[0].set_title('3h Baseline StO2');\n", "dfgraph['StO2'][0:10800].plot(ax=axes[1], color = 'r'); axes[1].set_title('3h After Exam StO2');\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 122, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEaCAYAAABEsMO+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FsX2x7+HFiAJIbQQqdJBUURA7FhALBfLz95Qr14L\niveqKOhV7P1aror9YsWCHQsiKlYQFEQQpIgUQToEQkggyfn98d1x933ztiRvSGLO53n22d3Z2ZnZ\n2Zk5c2bOzoqqwjAMwzCqGrUqOwGGYRiGEQkTUIZhGEaVxASUYRiGUSUxAWUYhmFUSUxAGYZhGFUS\nE1CGYRhGlcQElFHtEZFDRWRFZacjFuFpFJG5InJIZabJMKo6JqCMaoGIvCgif4hIjoj8KiI3hHlJ\n+IM+EZkiIttFZIuIbPLO90xykiPxZxpVdU9V/TLZEYhIKxF5Q0TWec/2k4icW4r7e4jIuyKy2cvr\nT0Vk/8D1ziLyjoisFZH1IvKRiHRJ9nMYBmACyqg+3AVgd1XNAHA0gCtE5KgyhqUALlPVRgCaAPgC\nwIvJSWal8yKAZQDaAGgK4BwAaxK5UUQ6AvgawGwA7QHsBuAdAJNEZD/PW2MA7wLoAiALwAzv3DCS\njgkoo1qgqvNUNd87FQA7AawLeBERuUpE1ojIShE5L06Q4oWrAF4F0D0QUF8R+dbTQFaKyCMiUidw\n/UEvnhwRmS0iPTz3eiJyv4gs87S9MSKSEjFykd9E5HDveLSIvCYiz3ta3RwR6R3wm+1pRWs97fGK\nGM/VF8DzqpqvqsWqOltVP/bCaScixSJykfdcK0Xk6sC9NwP4VlVvUtXNqrpNVR8Bhd49Xn7NUNWx\n3vUiAA8C6CoimXHy2zBKjQkoo9ogIo+JyDYAcwHcoaozA5dbAkgHe/0XAnhMRDISCLMegLMBTAs4\nFwH4J6hd7Q/gcACXef4HATgIQCdPmzsVwAbvvnsAdAKwl7dvBeCmBB/vbwDGAcgAMAHAY1584p3P\nApAN4AgAV4rIwCjhTAUwRkROE5E2UfwMANARwFEArnOCEsCRAMZH8P86gAOjCNtDAfyhqptiP55h\nlAFVtc22arOBms+hANYD6Ou5HQpgG4BaAX9rAPSLEsbnAHIBbASQD2ATgMNixHklgDe948MA/AJg\nPwAS5i8XHIZ05/sDWBJI4/LAtd8AHO4djwYwKXCtO4Bt3vF+AJaGxTMSwLNR0poB4E4Ac0AtcyaA\nPt61dgCKAXQO+L8HwNPe8U4AgyKE2RUU2tlh7q0B/A7g1MouF7b9NTfToIxqhZIvwJ7+GYFLG1S1\nOHCeByAtRlDDVbWJqtYHtZc3naGEZwgwwRum2wzgDgDNvPg/B/AoqOGsEZEnRCRNRJoDaAjgBxHZ\nKCIbAXwEzgMlwuqwtNcXkVoA2gJo5cIUkU0ARgFoESkQVc1R1etVtSc4RzQbwNtBL6BQcSwDtU6A\nQj87QrDZoGD7U0vynvdjAI+q6usJPqNhlAoTUEZ1pQ7YkJcbVf0awGIAgzynxwHMB9BRVRsDuAHe\nnJXn/1FV7QOgB6hdjAAb9zwAe3iCr4mqNlYOA5aHFaAW5sLMVNUMVf1bAs+1EcD9AHYLzBEJaEDh\naAtglXc8GcApEYI6DcBU9eYARaQxKJzeUdW7y/RUhpEAJqCMKo+INPfmVFJFpJZnvXcKaGGWjPD3\nB4fV5npO6QC2qGqeiHQDcGnAbx8R6ecZTWwHhwiLVVUBPA3gIU+7cCbfg1A2nECcDmCriFwrIvVF\npLaI7CEifaI8y93e9doikg7OnS3W0DmiG0WkgYjsAeB80EgEAG4BcICI3CYimZ5meAU4R3etF346\ngEkAvlbVcFN/w0gqJqCM6oCCQmIFaJBwG4BzVPX7OPfE4lHPYm4LgOcB3KCqk7xr1wA4y7v2JPwG\nHAAagYJoIziPtB7Afd6160BNbJo3NDgJNMcuS/oUALxhy+MA9PLiW+vF3yjKfQ3BIb1NXlraABgS\n5ucL79onAO5V1U+9uBaDBiC9ACwFNasTwXkpZ0RyIoB9AZwvIlu9bYuItI7zPIZRaoQdvxgeRJ4F\nK8gaVd3Lc8sE8Bo46boUnCTNEZF24NDIL97t01T1sgpKu2EYpcCrn0sA1A2brzOMKkkiGtRY0Bw1\nyEgAk1W1K4DPwElbx2JV7e1tJpwMo2oh8b0YRtUgroDyJpDDv3E4HhwWgbc/IXDNKoBhVF0SXhLK\nMCqbss5BtVDVNQCgqqsRavLaXkRmisjnInJQuVNoGEZSUNVlqlrbhveM6kKd+F4SwvXK/gDQVlU3\neUu1vCMiPVQ1N/wGEbGenGEYRg1FVeOOtpVVg1ojIlkAICItQcsiqOoOZ86qXIbmV0S3YtrlXyWP\nHj260r+Mrqqb5Y3ljeWN5c2u2hIlUQElCJ1beg/Aed7xUHirGYtIM+/rd4hIB3A9siUJp8YwDMMw\nPOIO8YnIOHBxyaYishxcN+xuAONF5AJwqZRTPe+HALhVRHaAS6NcrKqbKyLhhmEYxl+buAJKVc+M\ncunICH7fAvBWeRNVUQwYMKCyk1BlsbyJjuVNdCxvomN5U37ifqhbYRGLaGXFbRiGYVQeIgKtQCMJ\nwzAMw6hQTEAZhmEYVRITUIZhGEaVxASUYRiGUSUxAWUYhmFUSeIKKBF5VkTWiMhPAbdMEZkkIgtE\n5GMRyQhcGyUii0Rkfjl+1lYjKSgAxo2L7eeZZ4D77ovtxzAM469AUn+3ISI9wI92uwM4GsAYEam0\n1c137KismMvGl18CZ50V+ZqzyL/qKuDaa7lt3Bg9rHfeARYvTn4aqxIFBcDKlSXdd+7c9WkxDCP5\nJPt3G0MAvKqqhaq6FMAiAP2Sk9SSFBdzi/Q5lSqQkgJ8/z1wyCHAvfeWPvw5c4AlS/x4gixdChQW\n0r2wEPjjD7q//jrw+++RwzvgAOCDD0Ldduzw05+fz31hIfDtt8Brr/n+atWiW1ERz++7D5g4MXra\nTzwRuOaaUDdVYNYsHj/0EDBiRPT7HStX+s8GAKtWlfTz3nt+urZuBX79NX64ibBjB/DJJ8D8+ZHf\nw8iRQOvAf1x/+QX47jsgIwN49dXI5SIZbNsW309lfuJXXAxMmhTfX1Vk7Vq/HiSDRN5VLAoK4qen\nqAjIySlfPBXF+vW7riz+8AM70MkkoQ91vT9xTlD/j7obVbVJ4PpGVW0iIo8AmKqq4zz3ZwB86K0w\nER6m/vqrokMHvtymTYGBA9kQq3JzwifSlp8PTJsGnH46G+qMDODjj4H0dLrl5AA//USBcOyxwHHH\nAfffD3TpAkTS6VxcCxawQW7UCOjnidbzzwfGjgWOOAKYPNmlHzj3XOCFF4DGjYHNm3m/CDB8OHDy\nyTw/5JDgM3M/YADw+ec83n13IDcX6N8feP99uuXmAocfDkyfDhx6KNP21VdsdIcOZaVxHHUUBdr6\n9QzjiSdC4zrpJKBePQrr570uxcaNwGGHAbNnAy1bAvvvDwweDHTtyvjOOguYORPo2JH517s3C9/i\nxUDnzsyHBg0Y1qZNwDffMH0HHQT84x/A009Tgzv++Ohl6qmngNGjgT59ovv54gsKvObNgXXrGO+n\nnwJnngm0aQPccw/9uSKckQFs2cLjO++k39atgeeeo9t33wGdOrGslZVp05hfgwYxT2vVYl7XqsWt\nsJDlMT8fWL0ayMpiXu67L3DaaUyjS68ry8Hjsl4rKmJ8b7zBTkTv3uxEtWtH4b7PPnw/v/3Gcu3y\nJBE2bQKaNKHwaN687HnnWLKE9eyhh1hngzRuzLrbty+fpWVLlt+yUFAA1K8PfPYZy3s4v/3G99W5\nc/QwevRgWXv9deZxZiY7YJ068frYsay3b71VuZ2SaIhwWuDvfy9fOEuX8jkvvzzy9Rkz/PYykXxI\n9EPdZP9uo1R07HgzLrwQWLYMaNRoAIYNGwDAr/TxtvPPZ6N9yy3Am28CH30E1KnDxrKO92QbNnC/\nfTvQrRsz8V//Ak44gUKlZUtg/Hjg1FMZzujR9B9sxMaOpZD79FM2UHvuSfcXXgDS0oBbb6VQWuIt\ni1u3LgWTSEnN68Ybqf0sWsSKsXIlK2qbNr6Ays+ncJg7lw3+3Ll8ppwcX1MBmNb+/YHatSl0zj8f\neOwxngNsnM48kxV1xw7GcfvtzO+996bbiBHABRcAb7/Nyvjjj5wHGzOGjfvmzX6j/9tvzK/LLuMz\nArz23XcUYAcdREEJUADFElBjx/IdHH105A4DQOF6wQUUTvvuy/xPSeE7zMvjs8+e7fsvLPSP8/Lo\nP9j49O9P4fvSS9HTFY8vvwT22AO45BK/MxXU5IuLKVjz8/mOs7IYZ5Mm7JgAfvmNdlzWaw89xPrQ\ntSvdP/iA72rCBJaF886jwP/nPzlE3KNH7GfNy2OZcUPJU6cCQ4aUPe8cHTv6xytWMI5gnPffz/S1\nawfcdRc15bLw2Wfcf/11ZAF15pksP3l5ke8vKqL2vngx0KsXG+kBA4ApU6iZNWjA8um47DK2A926\nlS29iZCXx05oIpqKqw9u1CMnx++sJEJ+PkeDOnVi+3DVVSz3dSJIjbfiLHA3ZcoUTJkyJbGIgyS4\nNHo7AD8FzucDyPKOWwKY7x2PBHBdwN9EAPtFCfPPfqGI6t13a6l5913V88/n8Usv+f3MZ59VLS5W\n/cc/VEePjqyDPfkk92++qZqdXfJ6y5bcz5ql2q+f6rp1qlddpXrPParjx6v27Kl68cW8X5Vh9OzJ\ne/7v/7jfbz8/rUVFqnXqqBYUqA4dqvrgg6obNqg2asS0qqquXq3aoIHqypWqJ57oh62qet11qnfe\nqVqrFsPOyiqZH3vsoTpqlOpnn6k2baq6dm1JPwcfrDplCsN/4w269e3LMPv0UZ0xQ3XPPX3/y5ap\ntmrF46eeUr3ggpJhPvOM6r77qt5xB8OZOFG1cWM+cyQ2b+ZzbN8e+XqQY49lmFu2qF5yieqLL/rX\nVq7ke3I0a+a/v7/9jft99vGvA6onnRQ/TlXV775TXbKkpPvw4aoPPBD73sWLVZs0UX35ZZ43b676\nxx+JxVse7ryT5eT551nWBg1S3bZNdeBA1dde8/2NGKF6zTWh97p39euvqrNnq3btyrKUlaV6zDGq\nBx2kevzxqn//O/0WF9Pv5MmR05KTo5qXx/g3bfLdt2/331H9+qqvvsr83LaNYdaqpVpYqHrIIfRz\nzjl++rZt4/Hq1arffsvjzZtVd+xQXb68ZBouuoh18qyzQt3z8lgP09IYx86dLPeFhUxDr16qBxyg\n+uOPql26qLZrV7J9+PhjvtNIbcucOao//xz9PRUX+3VelfHv3FnSX1ER8yfo96uvGMeOHapTp6qm\np6suWMD8DrJzp5+e4cPpdtNNPN+wgWGOGsV6FUzXlCl8Rxs2qLZvT/8FBfQLME/C41FV3Wsv1W++\nUU1JYf7ef7/qxo2R/aqqUvQkIHsS8gS0BzAncH6PE0QArgNwt3fcA8AsAPUA7A5gMbxhxAhh6ty5\nqq1bJ6cCFxSo3norn+inn+h29dUs4G3a0P3EE1lR77rLFyZuW7NG9fXXKTgA3hMuBB58kC/7hhtY\nUYM0acL7/vc/CgeADb9jwwbVjAweO2E6YoRq796h4bRvz4p/zDGq77/vu997L5/Hpbdz55J58Oab\noZXfVeggxx1HwX7ooRRkqmzIADZqPXqoXnllaL7WrctGa9Qo5nE469b5wglgRW/blhUnEtdeq3rU\nUZGvhXPWWV4pjcDmzWxkVClcg+9zt93YuDRqxPSsX0/3M85ILN7Gjen/zjtD3U86ieUkHiNG+Pem\npCQmjMvLs8+y83PffexIZGZSQAN8R46lS+mWksLyVqeO35lyjZLbTjuN7h9+6LtNn+43lK4Be/11\nHnfsqLr77jweONAvi088wTrw88+M46ij2NlzYXz5Jctrgwb+s3TuzGutWjGtu+/Oa3ffTXcXz9Ch\n3K9axfvy8ni8224U1n36+M8erEOunNSu7QsdV04AlvehQ/1OEqB65JGqJ5zATuhXX7FjtnIlO7EX\nX6y6995+hy9S+XdCbeBAnk+b5of9wguhjfrMmXQfM4bPo8o2AVAdN071lVdCn6VbN9UPPqC/Tz6h\nW48eTK8q2xCXn1u3+mVAle/HdQoA1dRU/9398otfD9PT/fS5MtGjB/PQ1fvZs/1wHMXF7EA2bera\n3iQJKADjAKwCUABgOYDzAWQCmAxgAYBJABoH/I/yBNN8AINihKs7djAFtWpF722XBtcDcD2O0aNZ\nEPr1o8C57Ta6uwraqBH3M2b4YaxZQ7cOHZjZQcaPp5Dr2ze0R6rKwjJ2LHtyrqJ27cpr+fmq/fv7\n4eXmsqADqqeeGhpO166q8+apHn44C5nj2WdVzzvPf/Hhgs0xYwYriUhoz8tx1lmqzz3HQuJ6Qzfc\nwPROnKj6+ees4EFuvdVvuIIaTDhz5/pax8knU7vp3ZsFuEMHVowmTdgIrVgRPZwgzzzDihOJnTv9\nsuPyZcwYNtAA09Ckiertt/vXw/PbUVjI587N5XmrVr7QVmW5+Ne/+Eyu9x6LRx6hxpefTwEf6V0k\nm7ffVh0yhMLxrrvY0QBUH3+8pN9p0/j+f/2V7zwlhZqOa4Rcfv32G/3v3Mle8SWXsKF76ilf+C1Z\nonrhhSyfs2apLlzol+///c8P68UXWY5PP51h5uUxbd27sz6tWcPOqqO4mI32Dz+wXqWmMo033UQB\nN2eOP1oBqA4ezP2wYdy3a8dRhMxMPz4nCN58U/X77ylsx4/nszz9tOr8+ezYDB7MtDz6KJ/poYf8\nNmrrVtUWLZiOs8+mW34+y5Dr4NarR4Fx3HGh+f799/6ITf36TOuZZzIc9xx5eaojR3Ikw7ndfjvv\nf/pp3+3hh/3jYcPYWXOjHffdp/rPf/L53CiC60S2bMn8rFePdfHXX/lOgnXoyiuZd0ccwXbhoINC\nBeKOHXznl15KLfrrrxlHv34sG3Xrhpaf779nZ+Cbb5wAS5KAqqjNS2AJSZtM7ruPqudhh7HwBHn6\naQ7jfPBBaONRXMz07LknC2qQqVP9nnW4+upwqvXpp7MgqnLIJ/w5XU9q5MjQ+/femxXiwAPZQ3O8\n8w4b6pQU3het0V60iBWrYcPI1599lsN8u+3mD4sUFYWq+pEoLmbvZ/782P4cy5apTppEgTlnDhut\n5cvZCCVTm0hJ4ZBPMH/nzOHx8OF+L9xt0TS3227z/eTns/KuWMHGuqiIw7vu+po18dP10kssA+vW\nMd92BVOm8N0OHcr3PG8ey3Gk4aNwjjqKvWiAjUzdusyHcMaPZ+N9zTXUEA88UPWLL9gZCHbann+e\n5b+4mMK6aVPVG2+kEAsXmJdeSj+//uprSZE44ADGNXw4BYYqh8AAv4cPqF5+OffHHMP4GzdmGZk8\nmR3FSIwcyQb8yy/5TE7bmDYtsv+TTmKn9+abQ91nzWIdvuKKyG3bJ5+w8zlzJjtuADs8xcUUvl26\nsI65e4PP9cEHoeX0uOP846Iif7Rj507mwcMP87ld+Rs5UvX66ymUZs5k2Rg6lJ3HzEyGE97mnX02\nO7Rt2rAjcuml9DdzJke/wof8jj+e2vtRR1E5+Ogjut99d+jITKIC6i+9kkR6Oi2bUlN9wwHHhRdy\nsv2YY0In6UVocLF9Oyfkg7RqRaOBo4+mNU8k3ATigAG+6ambZHaWPwCNDQBa8QVJSeHkZEFBaPyd\nO3OC3lnwRbNsSk2lUUFqauTrQ4cCa9Zw4rSJZ4dZqxbzKhYiNIBIdAK4bVtaZfbpQ6OSzp05Gd6i\nBS2rkkVqKvC//4W6NWvGfYsWNBwIEjQHfuQRWooBtEJyvPce30/r1jQkuesuWrLddBMwalRilmyp\nqZzQ3rKFFqG7gsxMpnPVKiA7G+jenZ9KRJrUDmfQIE6AA75ZdXj5B2j8M3EiDRk6dwZ2241Wr5s3\n0wLPce65NAASoeXXo4/S4OCXX3wjI0dWFstkbm70cguwrixbFhrXySfTInD//XneqBHjbdIEuPpq\nxn/MMcCLL9Jo5ogjIofdogXrzbp1fL+XXQb897+0JozEkCE08Nhjj1D3Xr1oaBQ0zqlbl4ZZqnw/\nmZk0VDjpJF7v04fpbNyY6Vi5knm/YAENep59lv5cvXX88IN/XKsW24Tmzfk+XDwtWjDepUtZFrOz\n6TZzJq8fdhgNJzZ5HxJRd/DJzuZzrl7N+jBmDC2Mn3+e72OvvUL977UXjXJat/atbwHWw+7dI+dl\nLCpdQLVr5xeuZJOWRtPYWIU+EikpbMjCK6gTKu3axb4/J4fWd/n5tKTZuJEWbt9/X9LfRReFutWp\nw3vy80Pj79EDeOUV4OyzeR5ekBxpadxHe+batf30N2wY+zmqA3l5wPXX89h1GpwFZrNmbJwmTaIp\n/HPPhQqo4cNp0QaEWls+/rhfma6/nhaHmzbR8vHOO6NbHQZp2NAXUPGEf7JwAmrZsvhlNJxLL+U3\nZxMnsiPiPiMIp0ULv8F0AmrlypICCgjNp27dKJwWLuSnHuFhOgHlym8k2rYFli8Pjat2bYZ34YVM\nd8uWbHAffZQNKQBcfDHrTjwBtXatb0qfmgpccQUb/kicdRbLUzSrRmdJOX060/TQQ+xgOsEBAMOG\n0YLYWcQCfK6ff2Z6XD65Do4IBcX48Sy3we8Tg8+xbp0fjwhwxhnAyy/TgjMtjeX4ww95/eyzaaWY\nm0thf+mloeFlZ1MQtmjhp7NpU3Z8unYtWRf22IPx77FHqIBavRo4ssQvbuNT6QLqiy/4zUxF4BqG\n0gqoevX4wsIFlHtB8RqoRo3oJzWV5qgbN7JHkZER2V94HIWF/jccQU4/nT1BILqAckInWgMTvLfy\n1vhIHq63X6cOMG8ej917at+e+4ED+ZH04YezF9+zJ3vIgP8NmzPxP/dcfqM2cCDPzznH72Q0+fPL\nv/i4d79lS8n3XlE0bsyGaflyNualoUEDNiCdO/NZY5WfwYO579yZowqrVlHwx3rOLl34ucSOHSU1\n0KwsCoZ4AqpNm5ICypGSwoYzM5OfQwSv9+9PjWH6dJaDSDRvTiHpNKh41KnD0YhoIxkDBzIf+/al\nBnLppcCTTzIOl7aWLSkUgjRqxA5GsKw5bWzzZnZ60tJCTfPdiIE7Xr+e5cDFM2AAn33bNt57yCH8\nnjMzkwK+Y0eW1/HjqekFyc7mpzXBDk/TpqxrWVkln9ul9cgjQwVUSgo7M6Wl0gVUu3aUzhWBK+yl\n1RTcMFuwZ+Po39//niUe6enstZSmcYumQYUTTUC5ocxYwifavdWZOnV8DRdgY3dU2AJdrgGdO5da\nEsAGYflyHm/aBPz73zx297qedbDnmwhOg9q6dddpUGlpjLNu3dgNfSwaNGDZiyWgdtuN3wg1bMjj\nVasiC40grg7WrVuybAaH+GKlu2VL+osVV2YmOwXBd1WvHt9jp07R61SrVtSwxoxJzsfIIqFp6NCB\nWty4cbHLUXo6y2PQz95781uwvDy2DbVr+wJq4kQOKTqcgNq82Q/j4IM5bD17NgVRmzYl8yga2dnU\nfsIF1OrVofXNseeeXLVnzz2Zj+vXc+mxwsKyDe1XuoCqSOINd0XDFeJIvaOpU/lRbyKUR0CFz0GF\nE6sxAGILoUTmJKobwV4kEPmdBxu/zEzgwQc5VLFsGXDggczTzp05H+XmFlw4K1aUToMKDvHtqjko\n1/CXJ75ENHDAH/oKDvEloikGP6Z2lEZArV4dX0ABJa9/8YWvJUfCNcCrVydHQIVz/vn+MGcsweA0\nqHA/9euz41BURAHVqhXd99/fPwZYD4JDfADz94gjuAKGE1BAYuXZCaGgRu7ui6RB1avHj/9FWB5y\nctgGRhotSoRyCSgRuVJE5njbcM9ttIj8LiIzvW1weeIoD+UZ4gvuy0paWsUIqGnTSk7+hxNLQN1/\nP/Duu4mlp7oQq/FxBOcTGjTgSha5uRw6DTaubtLa0aJFaI80EYJDfLtKQDl2hYBy7LYbGz6R+D3k\nc8/lvEs4LVtyPsXNkUTDCbJYAsq5h7+rbt38eaFIpKX5BkAVMaLTtCnngiKlLYjToMKfr0EDGm4V\nFrKN6NULuPvuku86OMQXjMcJ3YYNfWGcyHNmZ3MfrkEBkQVUECegyjMPW+a+tIjsAeDvAPoAKATw\nkYi4pVAfUNUHyhp2siivBhVpiK80pKdzwvahh7gsUiI4AVVYGD3+/faLH074EktB9tyzpCVVdaZn\nTw6DlIajj/YrWl5e7EbdCa/SlCPXoOzKIT6AGmB5jI5cmUtUy3YaVCJah1sLMpy0NObXsmXxBdSq\nVawb0fI0mgaVCLNns+536FD6exPBaSOx0taoEYVweHl05clpUA0bAtddV/L+5s05AqAa2mFwHeTU\nVF/oJDL14fI5OH9UWgFVnjpQnsGe7gC+U9UCABCRLwF4hpOoEtPvZdWgYg3xlTb+8eN5HM16KJw6\ndThmu3Nn+Ybi/orzTJH46CPfGCJRrr665D+1YjWMiRrHBHFDMrtag5oxo/zlFki8/Lg6Vt7y1qYN\nh7/23Te6n9RUGlm4xXkj4d5VrOHxaNSrR+FQUXPiTkDFG+IDSpZHZzzlNKhoNGvGNSCdBZ/DCZXU\nVLqPG8f1ReMhQivY4Ly7E3ZBQ41oz+I0qLLWgfIM8c0FcLD388KGAI4B0BqAArhcRH4UkWeCPzPc\n1TjBVNrMSaYGNX06F6FN1IIlEQ0qEWqKgBo8uHSLc6an08LILbDqFo6N1YkJ/4YuEZyxQU7OrhVQ\nGRmJD8/ForTlJze3fPFlZXG0IZ5xR+3asdMWXOm/LFSUcAISE1BO4IdrHLVrs01wGlQ0ggIqSFCD\nAjjcmGi5HDgwtC1ygimeBlapGpSq/iIi9wD4BEAuuAZfEYDHAdymqioitwN4ABwKLMHNN9/85/GA\nAQMwIFHzuARxmVrahj5Zc1Dp6VwNuDQNaKNGnLMqLo7eS0yEmiKgSotbmd3hKmksARVruDQatWqx\n3K1fX/JjxupAactPef/h1Lw5Vx2PJ6BSUqKvPg6Ufqh3V+IEVCTrN0c0Dap2bQqnRDSotWtLzrcF\n56DKS5suVsrIAAAgAElEQVQ2iZWPjAzOLQ4fDmRnT8HNN08pdVzlsudS1bHgH3chIncAWKGq6wJe\nngYwIdr9QQFVkZTWeiRZQ3yukJXmC+pu3WgGXadO+b5T+ivNMVUkiQioxx8P/Wo/UerXZ2Oxq40k\nkkFpBFQyhhSbN+ccSzwBVb9+bAF12mklvy2qKrRqxY+cY2kT0TSoOnUooBLRoICS80NuPiqZq7jE\nw73LRYuAgw4agJtvHvDntVtuuSWhMMoloESkuaquE5G2AE4E0F9EWqrqas/LSeBQYKVS2v+zJGuI\nz/3tNdYP0cLp3p1LLZUn7qVLd+3EfHUmEQHVp0/sHytGo0GDmiGg3n+fc6blwfXw4wmoeKMKIlX3\nM4ratUP/HxWJWBpUInNQ0fJxv/242sau/Dg/GFdZ5gSB8v+w8E0RaQJgJ4DLVHWLiDwqIr0AFANY\nCuDicsZRLsoy1OV6hOUVUGefTeFUml5L9+78E3B5Kllpl7mpySQioMqK06CqY2ehNPXGrbpRHhIV\nUJdcwh75X5VoAipRDcq1WeEaVOvW/NN1ZbF1a9nuK+8Q3yER3M4tT5hVAddLK29vo1mzxCxlgrRt\nywnn8sw/GYlTkQKqQQN+01IdNaiy9njLSqIC6rbbKj4tlYnrzIR/eJ6oBgVwCDQZw67JoEULCsfz\nzivb/VVUGa4aVIahgVtZvKw9DqN0VLSAUq1+Aiozs+Qq3RVNogLqr05GBleqCV9Q1xlJxNOggORY\ncSaLNWvKd78JqBhUliXcX2ER1+qC0xQqQoi4od3qNsT344+lWzUjGTjz7uqWV8lGBHjttZLuwSG+\nqjrHVhHUoEctPWUxL04GJqB2Lb/8UrLHmgyqq4Aq7UroycBpUOFDWwYJDvGV5bu86ooJqBiYBlUz\niLVGW3lwHZya1OMtK40b88eQf4V/lFUEwSG+mlSebCo+BpUlKExA/TUoKqrsFFQfRPhLCSMywRVm\napIGVRGrmWeKyCQRWSAiH1fmUkflZVd+1BbEBNRfg6o0WW1Ub0yDKiVhq5n3AnCciHQEMBLAZFXt\nCuAzAKOSkdDKoDLG4o2/DpdfXnbzWsMI4owkapoGVRGrmQ8BMMDz8zyAKaDQqlYsWVK2XxQnA9Og\n/hoMGcLNMMpLcLFY06ASI9Jq5m0AZKnqGgDwljyqwPWBK47dd9/1Hys6TEAZhhEkuFisaVAJEGM1\n8xJeyxpHTcUElGEYQWrX5nqHqjVrlZmkr2YOYI2IZKnqGhFpCWBttPsr+ncb1RUTUIZhBHECqnbt\n6tk+TJkyBVOmTCn1faLl+NgnbDXziQD6A7gBwEZVvUdErgOQqaol5qBERMsT91+Zli25RIhlj2EY\nADBnDnDiify/XHn/vVUVEBGoalxRWxGrmd8D4HURuQDAMgCnljOOGocJJsMwgtSuzd/d16T5J6Bi\nVjPfCODI8oRb0ynvv3UMw/hrUbs2f2dfkyz4AFtJwjAMo8pTUzUoE1BVkP33B7KzKzsVhmFUFZyA\nqmkaVA173OrBW2/xewfDMAyApuU7dlS/f4uVFxNQVZCUlMr7SNgwjKqHW0mipmlQNsRnGIZRxXFz\nTzYHZRiGYVQpTECVAREZJSI/i8hPIvKyiKSIyGgR+V1EZnrb4GQl1jAMoyZSUwVUmUc0RaQdgIsA\ndFPVHSLyGoDTvcsPqOoDyUigYRhGTccJJpuDSpwtAHYASBWROgAaAljpXauGq0UZhmFUTWqqBlVm\nAaWqmwD8B8ByUDBtVtXJ3uXLReRHEXmmOv9R1zAMoyrgVjCvaQKqPEN8HQD8C0A7ADkA3hCRMwGM\nAXCrqqqI3A7gAfDPuyWw1cwNwzDiU901qF2+mrmInApgoKpe5J2fA2A/Vb084KcdgAmquleE+201\nc8MwjATYuROoVw/o2xeYPr2yU1N+El3NvDxzUAsA9BeR+iIiAI4AMN/7B5TjJPDPu4ZhGEYZqe4a\nVFkpzx91Z4vICwB+AP+kOxPAUwCeFZFeAIoBLAVwcRLSaRiGUWNxc1A16W+6QDl/WFiuiG2IzzAM\nI2FEgAMOAL75prJTUn52xRCfYRiGYVQYJqAMwzCqCVLDvjA1AWUYhlFNMAFlGIZhGFUAE1CGYRhG\nlSTZq5nXE5FMEZkkIgtE5GNb6sgwDMMoC2UWUIHVzPfxVoqoA+AMACMBTFbVrgA+AzAqGQk1DMMw\nahbJXM28Abho7PEAnvf8PA/ghHKl0DAMw6iRJHM18xxvNfMsVV3j+VkNoEUyEmoYhlHTqWlWfMlc\nzXy8iJwFIHx5iKjLRdhq5oZhGIlTXQVUVVnNvD+AwwEMUNU13sKxn6tq9wj321JHhmEYCSICHHII\n8MUXlZ2S8lNZq5nPA/AegPM8P0MBvFuOOAzDMIwaSjJXM58FrmaeDuB1EbkAwDIApyYjoYZhGEbN\nwlYzNwzDqAbYEJ9hGIZhVBFMQBmGYVQTqqsVX1kxAWUYhlFNMAFlGIZhGFUAE1CGYRhGlcQElGEY\nhlElKc9SR10AvAYuZSQAOgC4EUAmuMr5Ws/r9ao6sZzpNAzDqPHUrVvZKdi1lOdD3YUA9gEAEakF\n4HcAbwO4AMADqvpAUlJoGIZhAKh5AipZQ3xHAvhVVVd45zXM1sQwDKPiqVNmlaJ6kiwBdRqAVwLn\nl4vIjyLyjP1R1zAMIznUNA2q3PJYROoCGAL+SRcAxgC4VVVVRG4H8ACAv0e61363YRiGkRh9+gB/\n+1tlp6Js7PLfbfwZgMgQAJep6uAI19oBmOD9Ej78mq3FZxiGUQPZlWvxnYHA8J73DyjHSQDmJiEO\nwzAMo4ZRLg1KRBqCv9TooKpbPbcXAPQCUAxgKYCL3S/gw+41DcowDKMGkqgGZb/bMAzDMHYp9rsN\nwzAMo1pjAsowDMOokpiAMgzDMKokJqAMwzCMKokJKMMwDKNKUmYBJSJdRGSWiMz09jkiMlxEMkVk\nkogsEJGPq9JSR2X5krmmYHkTHcub6FjeRMfypvyUWUCp6kJV3UdVewPYF8A2cDXzkQAmq2pXAJ8B\nGJWUlCYBKzDRsbyJjuVNdCxvomN5U34qYjXz4wE877k/D+CEJMVhGIZh1CCSuZr5OO84y60coaqr\nAbRIUhyGYRhGDSIZi8XWBbAKQHdVXS8iG1W1SeD6BlVtGuE+W0bCMAyjhpLIShLJ+P3V0QB+UNX1\n3vkaEclS1TXewrFrI92USOIMwzCMmkvSVzMH8B6A87zjoQDeTUIchmEYRg2jIlYzbwLgdQBtvGun\nqurmJKTVMAzDqEFU2mrmhmEYhhGLar2ShIicLCJzRaRIRHqHXRslIotEZL6IDAq49xaRn0RkoYg8\nFHCvJyKvevdMFZG2gWtDPf8LROTcXfN0yUNE+orIdO+D6uki0idwLWn5VF0RkSu8558jIncH3Gt8\n3gCAiFwtIsXe6Ihzq9F5IyL3es/+o4i8KSKNAtdqdN7EQ0QGi8gvXj5cF9OzqlbbDUBXAJ3BD4J7\nB9y7A5gFGoG0B7AYvrb4HYC+3vGHAI7yji8FMMY7Pg3Aq95xJoBfAWQAaOyOK/vZS5lPnwMY5B0f\nDeBz77hHsvKpum4ABgCYBKCOd94s2WWoOm8AWgOYCOA3AE0sb/7MlyMB1PKO7wZwl3dc4+tUnHyr\n5eVJOwB1AfwIoFs0/9Vag1LVBaq6CEC4ReDx4EsuVNWlABYB6OdZFaar6gzP3wvwPyQOfmD8BoDD\nveOjAExS1RzlXNokAIMr5IEqjj9AAQtQyK70joeg/Pl0RAWnvaK5FMDdqloIAOpboyajDFX3vAGA\nBwGMCHOr8XmjqpNVtdg7nQYKcsDqVDz6AVikqstUdSeAV8Hnj0i1FlAxaAVgReB8pefWCsDvAfff\nPbeQe1S1CECON6QRLazqxEgAD4jIcgD3wl9+Khn5tDk49FMN6QLgEBGZJiKfi8i+nnuNzxsRGQJg\nharOCbtU4/MmjAtAjQiwvIlHeP4E86EEyfgOqkIRkU8AZAWdACiAG1R1QkVGXYFhJ50Y+fRvAFcA\nuEJV3xGRkwH8D8DAZEWdpHAqjDh5UwdApqr2F5G+AMYD6JCsqJMUToURJ2+uR/LKSYmoKyjcpJFI\n2yMiNwDYqaqvRAiizFEnMaxqTZUXUKpalgqyEjRzd7T23KK5B+9ZJSK1ATRS1Y0ishKcpwje83kZ\n0lShxMonEXnJXVfVN0TkGe9S0vIpOU9RMcTJm0sAvOX5m+EZ3DQFnzM4WV2j8kZE9gTnUGaLiIDP\nOVNE+qGG541DRM4DcAz86QCghtSpchCt7ETkrzTEF+x1vAfgdM86ZncAnQBMV64NmCMi/bxKdy78\nD4nfAz8sBoBTQMMLAPgYwEARyRCRTLBH+XEFP0uyWSQihwKAiBwBjosDyc2n6so78BoYEekCoJ6q\nbgCf87SamjeqOldVW6pqB1XdHRyK2UdV16KG5w1ASzRwbm6IqhYELlmdis0MAJ1EpJ2I1ANwOvj8\nkalsq45yWoScAI5nbgcNAT4KXBsFWovMh2fB5rnvC2AO2Eg/HHBPAT8wXgROerYPXDvPc18I4NzK\nfu4y5FMf0IJoFoCpYEOT9HyqjhtoSfSi96zfAzjU8iZiPi2BZ8VneaPwnmMZgJneNsbyJuG8Gwxg\ngfe8I2P5tQ91DcMwjCrJX2mIzzAMw/gLYQLKMAzDqJKYgDIMwzCqJCagDMMwjCqJCSjDMAyjSmIC\nyjAMw6iSmIAyDMMwqiQmoAzDMIwqiQkowzAMo0piAsowDMOokpiAMqo8InKoiKyI77NUYY4VkY0i\nMi2Z4RqGkTxMQBlVAhF5UUT+EJEcEfnV+89OkFIvGikiz4nIThHJCnM/CPxr6W7K/0BVhAA81Pt1\nxxZv2+rt90tmPGVIV4aIPBvI619E5NpS3N9KRF4SkfXeM00TkWMD15uLyDgRWSkim0TkK+8XHYZR\nakxAGVWFuwDsrqoZAI4GcIWIHFXWwESkIYCTAMwDcHbY5fYAlqpqvvOOMgjAQFy1o1xaqaqNvC3d\n239X1niSxIMAUgF09fJ6CLjydly83818DSAfQHcAzQA8BGCciJzkeUsDMB3APgCagL82/8B7H4ZR\nKkxAGVUCVZ0XJjB2AlgX8CIicpWIrPF65+fFCfL/APwG4B7wdykukAsAPA3gAE+juRf8XfduAS2n\npZCRIrJYRNaJyKsi0tgLo52IFIvIBSKyDMCnpXlWEckUkRVO8xCRVBFZJCJne+fHiMhMT8NZJiKj\nA/e6uM8TkeWeJnOJiPQRkdnesOUjMaLvC2Ccqm4BAFVdqKpvBcIvFpErPC12rZc/jqsAbFXVC1V1\nnaoWqOqrAO4A8IAX3m+q+pCqrlXyNIB6ALqWJo8MA0D1/h+UbX+tDcBjALaBwumSgPuhnttoALVB\nDWsbgIwYYU0Gf1meDv4vLPgPrKEAvgwLf3nY/VcC+BZANvjPqMfBhh0A2gEoBvAcgAYAUiLEXyLM\nsOsDAawC0BwUmK8Frh0CYA/veE/wX2dDwuIeAzb8A0GN5m0ATQHsBmANgIOjxPs0gLmg0O4U4Xox\nKHAzwL+dLgBwgXdtKoDREe5pD6AIQOcI13oByAOQXtnly7bqt1V6AmyzLbiB2tOhANYD6Ou5HeoJ\npFoBf2sA9IsSRlsAha7B9BrvBwPXExFQ8wAcFjjPBrADHHVo5zXI7WI8x6Gen43etsnbNwj4eRjA\nT+BPNzNjhPUggP94xy7uloHr6wGcHDh/A8DwKGGlABgJ/tm0APwJ5+DA9WIAAwPnlwL4xDteBOAf\nUcIsBrB/mHsj7/murexyZVv13GyIz6hSKPkCwHgAZwQubVDV4sB5HjjfEYlzAMxVVfdr+zcAnBVj\nrigS7QC87Q2ZbQQF1k4AQYOL3+OEsVJVm3hbprffHrj+NKghPaeqm5yj91vwz7whts0ALgbne4Ks\nDRxvj3AeMW+Uw3J3q2pfUOMaD2C8G76M8FzLQK0MoCDMjhBsduC6e4b64K+8v1XVeyPcYxhxMQFl\nVFXqgEKoLJwDoLNnqfYHOJHfFMAxUfxHMpBYDuDoMAGTqqp/xLkvIUSkFoCnADwP4DIR6RC4PA7A\nOwBaqWpjAE+CmmVSUdVcAHeCRhO7By61CRy3A4ciAQ6bnoSSnAZqoIsAQETqgelfrqqXJDvdRs3B\nBJRR6Ximyad5xgK1POu9U8BGrrRh7Q+gA2gMsLe37QHgFXBoLxJrADQVkUYBtycB3CkibQNpHBKM\nKpHkxLh2AzgsdgGA+wG8KCLOfxqATaq60zPRPrMU4cZOkMi/PYOKuiKSAuCf4PDjgoC3ESLSWETa\nABgO4FXP/UEAzkw9S0RSROQMAKMAXOOFXwfAm2Dn4ryyptMwAPZSDaOyUXCu43Gw8V0E4BxV/T7O\nPZE4F8A7qjov6CgiDwP4MmwoiwGpLhCRVwAs8TSbHuD8EABMEpFscAjtNXDYKlb8QbJFZItLgnfP\nUHDY7J8A+qiqisg9oHY3EjS3HwbgPyLyKIAvvHiD6Q6PO955+LWxoJZUCM4RHauqQW31XQA/gHNI\nYwH8DwBUdaPwG7J7wSHPet7+bFV937v3AO9ZtgPI8WSugtroNzHSZRglENXY9UxEngVwHIA1qrqX\n55YJVpp2AJYCOFVVc0SkHYD5AH7xbp+mqpdVUNoNw0gyIlIMWvctqey0GEYiQ3xjAYR/MDkSwGRV\n7QrgM1DFdyxW1d7eZsLJMAzDKBNxBZSqfg2OUQc5Hpzchbc/IXAt6ZO5hmHsMsps+GEYyaasRhIt\nVHUNAKjqagAtAtfae1/Bf+6NVxuGUU1Q1do2vGdUFZJlJOF6XX8AaKuqm0SkN4B3RKSHZ84agohY\nT80wDKOGoqpxR9vKqkGtEW+FaBFpCe8jQVXd4T44VNWZAH4F0CVGAm2LsI0ePbrS01CVN8sfyxvL\nm+qdN4mSqIAShM4tvQf/G4ehoFkqRKSZZ6YL78PDTgBsuMAwDMMoNXGH+ERkHIAB4IeMy8EFO+8G\nl0e5APym41TP+yEAbhWRHeBHiBer6uaKSLhhGIbx1yaugFLV8K/YHUdG8PsWgLci+DVKwYABAyo7\nCVUay5/oWN5Ex/ImOlU1b+J+qFthEYtoZcVtGIZhVB4iAq1AIwnDMAzDqFBMQBmGYRhVEhNQhmEY\nRpXEBJRhGIZRJTEBZRiGYVRJTEAZhmEYVRITUIZhGEaVJK6A8n7vvEZEfgq4ZYrIJBFZICIfi0hG\n4NooEVkkIvNFZFBFJdwwDMP4a5PUHxaKSA9w2aPuAI4GMEa8fz5Xa+yDYsMwjF1Osn9YOATAq6pa\nqKpLASwC0C85SS0DW7Yk5k8VmDAhVBAVF/N8/XqgVi2gqCjyfY88AhQW8vyPP4CtW4ENG4CCgvjx\n5ucnlr7K5J13gN9/L18YRUXAjh3JSY+juNjP93C++AL4/PP4YRQU8B1Eerfh/PwzsDmwrGRREbBi\nRWJpNWoueXmVnYJQ/vgjOeG8/DKwKVwsBJg2DfjpJ/88N5ft5Zo1wMKFiceT4NLo7QD8FDjfGHZ9\no7d/BMCZAfdnAJwUJUytUFavVgVU33478vXiYtVt20L9LlniX/+//6Ob21auLBnGTz/x2ocf8hxQ\nbdBANSWFx7/8UvKesWNVX3hBtUMH+vn889jPsXWrakFBvKfl8xQVxfdXWgDViy8u/X2rV/vHd96p\nmpFRvnTk56s++KB/ftFFTNtxx5Xc3HuYM0f13nsj++vcme59+qjWrq169NE8nzaN4bvza6/lebAs\nvPmm6jPP8LgqcOKJqrNmVXYqjHDmz/fLzLJllZ0a1U2bmJYff4ztLz9ftXdv1fXreb5xY0k/gOp9\n94W6ffqp6qBB/vXUVB4XF/M8M/PPuum1/3FlT7J/WFgqbr755j+PBwwYUHLBwk2bgMaNgbKMEn72\nGfcnnghccgnQrx8wdCi1IQB4/31gyBAWn7Vr6bZiBbD77jxeuBC46iqgY0dg2DAgJwfYbbfQOFau\n5H7VKr83vX27f336dKBr19B7LrrI7/n37890xFqosWdPbu+9F/t5L7iAGsG4cbH9lQan4e3cWbr7\npk4FDjjA10gnTmT+FRf7+R/k11+BDh1iv+e5c4F//Qu48kq+xxdf5PERR4T6Ky5mL61RI+YbAAwf\nDhwZtrZxXh5w9tnA999TC27bFqhfn+/kgw+Ajz4Cjj0WePdd4JZbeM/tt/PZ3n8faNmSbhMmMN9P\nPrl0eZQsVIG33wZ69wZ69aqcNJSHWbOAPfcE6tatvDSMGwccfTSQmem7qQJLlrD+FxSwbNarl1h4\nRUVsG445BsjOptuUKcC55/p+pk9nm1QeioqAGTNYZhNhiffnozfeAPbeO7q/H34AZs4ERo9mufr7\n3xlXeN117abjf/8DJk3yz7dt+3M/BcCUgw8G1q2jdpUoiUgxlNSg5gPI8o5bApjvHY8EcF3A30QA\n+0UJM7oEnz2bPQ5A9a23Ykt7VdXc3JI9lEsvpYQP9nwXL/avB3vAn37K49de8683a+ZrAb17q86Y\nwa19e9X//pfuL7zA+w49lPu0NNVXX1X99lvVoUP93rfD9SQA1aOOUv31V9WWLVXHjAn1t2qV6h9/\n8BigRhaPJk3o97HHVPfZJ77/RJg5k2G6XlGivPoq7ysu5tasGc/ffz+yf0B18uTYYX73Hf05rRVQ\n3bEjst8pU1QPPph+7r03epgjRjBtjp07Va++mu9kn31Ut2/346pfn88yfbrq3nurHnlkaNlSVV23\nztdki4tjP0+y2LCB8Z99dvXUogDVhx+OfO2TT/gOKhJXJ8Pr4PTpdC8qUu3YUfXvf088zMsu88vF\n5Mmq99xDt/x8Xt+4kdc2b/bdysLXXzMcl0fFxZFHehxvvUX/BxwQ6r5+veptt/H+5ctV//3v0LIN\nqK5YQb9bt6r+/jvdLrggNBxX51RZX1z+LVmi2ratHxcVGtVEZE9CnoD2AOYEzu9xggjAdQDu9o57\nAJgFoB6A3QEshrdieoQw2ZA5/vUvNuyqJTNn5ky6FxXxRf/0U2jGXHllaEH//nuez5ih+vHHfjj3\n3OPf88or/st97bXQ+/PzVevW9YfMDj6YjZ4LZ8gQut9/P8/btuV+77398CdMKKnav/iiH8aIEXT7\n9FOqvsGC2rMn/axdqyriv/TnnlP95huNyF57lWwwy8vzz7OhbtBAtWlTpt89x+rVbNAj4ToGO3bw\n+bOzVS+5hEN9Bx3EfHNs3Uq/r7wSOy3uPT74oOrAgbGHM2fNYn5kZEQennDs3FmygXCV74oreO7y\n0w1ROqHVsiUFt7u+di33n37KjskeezD84cP5jBXFjz+WfO8ff+yXL8fmzbz+wAPsnI0YwQbmmmtU\nb7iBHYDcXNWFC1WHDeP7eOop3rNqVcWlH2DjGO1acFi3InDv+/HHQ91deVuwgPvWrVXnzUtsGP2w\nw3jPwoU8/+ornjdsyPyfNs1vG8LbwSefZPlxHZx581Qvv5x+gtuJJ1JoAnxPV13F9wmwjdh/f049\nnH8+37Eq8/KYY1TbtVMtLKT/efNUn3iC9z3zjGr37jzOygotV99/zzCOOUa1cWO6ZWezU+ZwbdDa\ntaq1avG4WzeWrX33pR+vQ5A0AQVgHIBVAAoALAdwPoBMAJMBLAAwCUDjgP9RnmCaD2BQjHAZfU4O\nEw5Q63DHgOpZZ3Hvei9O07n55tACMWSIf09ODjPRNZA7d0ZuuMeO1T+1quef5/GoUby2dCkLpGPw\nYNUPPvDDOO00ul93neruu/vuw4b59+TlhboVFVHYjBrFCjl3ru+3W7fQ8wMP5L0TJlArA1QfeYT7\nAw/UiPToEfk5x48v29zU0qUM56abQsNduNA/vuGGyPdecQWv5+aqTp2q2rcvhesZZ9D9yCN9vy68\nJ56InZ4bbqC/E05gox+LxYtZCWvVYkUsLQDLh6rfQAXzdPBgzh26NB14YGg+denC/c8/c//uu6VP\nQ6JMmOBr8K7HGqmTMns23QYNUj3iCG7/+Idqp06+/0ceYZkGVE8+2Z+H+/hjNizDh7PxSSaA6i23\nRL9WGs2lLEycyHjuuIPnw4axQ+E6sC+9xL2r5999Fz/MPn3YVjmKi9l+7L8/wzjvPO7dO6ldm5pP\nQYH/Ltz89b/+5b+PU0/ldsopoXXSpc8Jl+OP5z49nXs3SjB8uOpdd6nWq0fNDuD88rBhqscey07V\n3nvT/YMPONfarRs7626ePTWV1xs3Zri33+4/Z+vWfh0FVG+8kf4nTGCdcZRCQCVixXemqu6mqimq\n2lZVx6rqJlU9UlW7quogDfw1V1XvUtVOqtpdVSfFChv77gu89RaweDHPneVcWhot4V56CfjyS+Db\nb3l96VKgSRPOAzgKCzk/MW8e0L49kJEBfPghMGcOx7XreNNsp54KNGzoW/a5uaJOnXyLu9Wr/b2b\nYwB437ZtQKtWwOmn+9Yra9cC3bvz+LLLgIce8u9p0AB4801g+XKe//wzx7PvvBP497+BPfbw/bZv\nz2dzcz6qHFf+7jvf+u2KK7iPZh24bh2wYEGoW3ExcMopwKJFDBPg2PfPP0cOw8X90EPMPwDo04f7\nxx9nXj3/vO83mkXQsmXc79hBP9nZHPP+4Qe6p6eXDGNzhB8vFxX56b7jDu6nTeN8VSzS0xlugwZA\n7dqx/UZiwwbOcwFAly6cw/rHP/zrH33EecODD+b5SSdxHqNRI567d+7mA2PldyR69GB5BoDZs0te\nLyoCXnmFebNiBdOYkwOkptJays0vuDkA90yHHgp8/DEweTK3J59k2XBzoFu3Aq++ynm58eNZjy66\niHOEc+YA//0v59+STaw5TjdvUlEsXcr9pk2sW489xjK2cSPdX36Z+5wc7tet4/7HHzn/mZfH9Lty\nqsp6uM8+fhwinI/69ltg8GDguefo/vXX3BcVAffey3feowfnRr/8ktemTqVF6vjxwGuvcXv9df/e\nURcCPmsAACAASURBVKOAhx9mPs2bB3Trxnm9N9/k+wTYDrz7Lt/fnnuyHXv5ZZaHr77ifPtll3Hu\ndvZshn3MMSzX8+cDZ5zBawDrFMD5+Ftv9cs6wDxr2pR17q67OGdcu7bfBjjizacHqNyVJPbaCzj/\nfE5GA6xEGzZQqDRpQrc+fZj5RUU0+R4yhC+taVO+xK5deb1zZ2C//XjPTz/xRTgefZQT3e3acRKv\nuDjU/DMvj9ec0cPatUBWln89NZWVfcsWptcJqHXrWKAANt51wmxO9tzTb+i/+go45JDI+bDbbsCI\nEf7LX7WKk7a3385rn37q+/3+e7oHJxqLipimDh3YYGVnA4MGUcADwLXXsjMAMI9O8L4KWLSIE5tB\nfv+dBWvFCjbAxx3H5774YuDAA4Fnn2VeA6wAv/1GI5RPPuFE8Dff+JWnoIDCPjub73rDBronKqDq\n1KExRJDVq/muYpGeTuHoBEZpadIk1GDj4YfZmIdz1FFsnDp0YCfrpJNolOM6GnfcwWvz5rHhmj49\nsfjnzwcefJCdr169/EYRAO67j4YZZ55Jwffii3wfjRqxc7Zli9/5+uwzCiRV1p2mTSPH9+GHwG23\nAb/8wnfqygrAcn3vvb6RiTM+KiykUclHH7FuBYVhaQkaFjlcg5/opyJlZe1aoEUL1h/XQV28mI3t\nJZfw+QBfYG3cyHJ98cXMi549aTxx33287jpGQYOLIM5wZ599WNcGDmR79vDDdNtrL9azzz/ne58z\nJ7Ixhes4nn8+O1COtm0pNJyxV8uWbN+uugpo3ZrGSx06AGPHstM7bx7rbr9+FFwAsP/+oXG1aEGh\ncscdvqFIw4b079rM/HyWiebN2XZkZdHALS+PAtulBwD+9rfo7yOMZFnxlY0+fZhRruFau5Y9muDD\nNGgANGvGl7l+PXsIaWlsxGfO9HtYdeowIwG/EDiGDeO+VStqFOPHs1JcfTXwn/+wcezblw2sKguh\nE5AA49u8mfe0bRuqQZ14Io8jVf6OHeln82YK08GDI+dDdjYbJYDxr15Nje+//2X+DBjAwtSsGQXW\nRRcBN97IfGvShPvGjZkHqalM5yefcANYyXbuDBWsAPDUU8D999MC0OG+eXIWjSK+QDnySGpQr7zC\n93LeeUzb8uVsfGfN8sNp2JBCYsMG5k2tWiy8GzaENv6//05N1/VQHe7bpHCtEIgvoOrX594J/Iqk\nTh2gTRseZ2dTSADUtLt3Zyfl7rvZsdhvP/+dxeOZZwBn5bp2LfMOYGfDdZ6GDmUdGDGC5xkZzMet\nWym0hgyh+4UXsnw0axY5rgYN2Hi98YbfSDk6dfK1jCuvpMXgmjUso856MS+PcR5+OOPJymLZT5RI\nws0Jedc2VBTr1jGvNm3yO0vLl7POdurEd+jqJkB/X33ldzZc++M6jAsWlLTcDXLOORQakyYx7rQ0\nv5MLsLO+zz7ApZeynu2+O+tSOCkpzPfwMt62LfdZWdS2srP5/hcuZJvZpAnD//RT1t2nnmKZCZaN\ncGu9rCy2E2+/7QvewkKWmQ8+YJhz53Kfmsq2w3XymjenpeGFF0bPkxhUroA66CDu69VjRjoB1b59\nqL9OnTjMsH49X/4331ANdmrnOedwf+21FDTRCGpFeXnM7GbN+II6dmRPZskSFs7GjX2/aWkctmrS\nhFuwoXdDfOEm6ADV2yOOoODcuZM90UgE1d9169hgd+vG53X897/+8YABwFlnsXCcc47fCwRYmPPy\nKFScit+4McN1DWNuLveuod+2jQUL8HuRy5aV7AWecQYbwUMPZdp++YWN7o4dfD+Oiy/mEFJBAdPg\nwnEFP9ggLV/ORjxcQHXq5Kfdcf/9wDXX+JUwGk4ARjJprwhat+Y+O9sfkr3rLpbjDRvYAfjuO7p/\n+CHwf/8XX3i2bUvhA1CLeOst4Pjjeb5mDXDYYexl77svjwFqUVu28P326UMN+ZJLgCee4PVRo6LH\n16wZRx4GDgx1P/hgNpLDhvG9Pvkk3039+nz39euzYf/Pf7g5nAaUCJE+Zs3NZR6tXs2wyrMgzfbt\nbFCLi/0OhGPdOg6RLlvml/277uL+2Wc5TLtihS/sN2/mOz3lFJbd777jiME11zCPVq9m3Y2G+2zk\nq68Yd0YG39u4cSwXTkOZMYP5Hkm7dEQqQ64sNmvGTi7gP7Obtrj8cnasmjZlZ9fRr1/kYftgu+na\njuJiv2PmtM+mTdmO/PGH39Y0b05h7oboS0nlDvH17MnKu3mzr20sWFBSQHXsSLV73To+cPv2bKA3\nbeKLcBWjdWtfWEUiJYX77du5NWjALSeHBaNHD1a+OXNCG2cnoJo29Xupqkyv6/24lxXOe++xQd6w\nIXrDGpzv6tbNLwTR6NSJhfnccymsgwKqXj1WxmDDHgyvbl1/ZQc39n/ffUy/094AVr7gUBxAgfu3\nv7GxcD2ufffl+9iyxR/CfOIJpmPHDgooF47L02B63BxK+Koarteenu43du7+RDQQoHyNWmlw2k2j\nRn45cJXajclPmMDyd845bHjizUsFG8VFi/i+H33Uv37DDdw/95z/rjMyWJe2bfM1+gce8AVbtCE+\n9wyqoZ0l575kCUcb0tI4PJSbyw7KQQdx1MGlJcjJJ/vvMB7RBFRWFstrw4al+3Zmwwa/zOTm8v7+\n/SN3Xp2A2rSJddxp3wDzrVev0CGpTZv8+ubS7YbVxoxhRyKWBuVo0IDhpKXx/IwzQr+z6tOH78sJ\nnERxHc1gWK6j5upDu3a+EA7y8MOhHU1HUEC5fC0uDtW6Zs/2NSggVEDl55ds0xOkcgWUCIdCtm9n\nI52fTwOC8JfSsSNw3XWcoHWNQePGrIxbtiQ+1+Be2tatLFwNG7JA5uSw8XBhT5wYKqDS030NKiWF\nlebOO9kQNGrEdMcqlHXrxm5UXaPgxsKdsInF5Zez0n3+OYWKK0QifK7gR3TBXpgrYIsX+xXslls4\n1LZ8eaiAipWvImw0Tz/dL/hjx/oNSUoKNajg+3n8cfakggJq+fJQQ5UvvgiNp7iYmwh785dckrjg\nKYuBRFlwDUDPntQuL744tHfbrRuHdJzhxZo1wMiRkcMqLuZelQ1Jq1bsyQMcsgEolA47jOdBY5tG\njfj+6tdnp+Prr5mOyy/n9WhDfMFrkUYCggQNVJymEPzo84wzmO9vvsl6lAjr1pUU2Lm5bLwbN2b9\nmjkzdOmccCZM8D+Ab9aM2jbgawTz5nGIC2AeH3ss905AzZoF/POf/qjOpEmhAv3ll6mBBgXUY4/x\nXWRn+6M5QOICyg3xJZMuXUq6Pf10yXoVLU2R0hMcrk1NZf3LyAithz/8wDbODUe69s51TsM7PglS\n+b/bcI1XsLce/jCdOvmT6E5jadzYLxROM4rHaadxv21bqAa1eTPDcA3NypUlNailS/0Cm5pKQQrw\nJSUafzQ6duSLdZV/7tz49zRsyCGFuXM5vuyGxNy1ggKOM4dPsDrh9+67nBcZPJiFevBgNgJOQK1Y\nUVKDCueNNyg0TjuNk7UdOviGKnXrUkMLalA9ezKecA2qUydqW6tWcfhy0yb/eXbsoMZXuzbnCh5/\nPH7eOIK94YpGlV/dZ2X5Q2qOW2/lnMKdd1Lj6NWLjWhhIS0mg8NhO3Yw75o25TzUgAHUVnr0YH5m\nZfkropx6amgjkZHBspuezvAPPJDursMX7AmH4wRUvIYk2IC54e299mJH6Z57mOa99qL72LGx1zl0\nz/3FF6FGTbm5LJtpaX7n6tlno69+oEpt01n7AhxidmGFp/e33zjUun69L6AcLs+CoxoAjVL69g0V\nUAcfzHcRNI566KHoxlBBnICKV8dKy5AhfifH0bNnYmmKRseO/rRG/focfnQWql99RQvXTz5hB99p\nUK79dMP5ZewsVi0B9dVXLOinnx7qxzXca9f646kZGfF7+eEMGEDjgm3bfA3KCajwZUyCQ2Tp6b4J\nJeALS1eYy0tWFtPkBGSsnm6Qnj3Zi77vvtDlktyyMYcd5htmfPop86qggM92/fVcCHbQIA6r9u1L\nK7SffmJFVk288lx5ZUlrwEgCCvBNoQEKwx07OERSUMCCD/ha12GH8XphYUkLyUQob8chWRxxBId/\nmjalhnX33RQkixfTYjK4PExBAdO9fj2NUtLSqN22akUBHqu8N2rEcMN7wc7wIbzRDb8X8C00o+GE\n/oYNfvkXYfm79lrWqY4d2ehPn+4LikhEE1433sih/7Q0v6y44cJIc1tuJGDKFH8y3hkC5eZSK/ry\nS+bruef6gswZXjkN4cEH/eHQSHmVmUn/K1dGH+W48srE2iQ3tZBsDQqomKFt1x4WF3NY301XHHQQ\njWMWLgzt1Lty8uijpTIrD6dcAkpErhSROd423HMbLSK/i8hMb4tiuubhXmZaGh92wICSGdy1KzPB\nDcEBzLDSCijANxl3GlRKChvElJTQseZwDQrwBZQzsXXm1Mnippu4Jcpee1G13rAhdK0514NyqjjA\nvGvatOQQolPJr7+e+2nT/J5qWc20AQr8nTuZt0EBlZbm96qeeorpbtCADbMb5tm6le/HCVSnQZWG\nqVN9M/uqRuvW1BzdeP8bb/jXCgpCNb+0NOZhq1Ycror1ToIaVJD0dM7ZBq3FwhGhoAxfszCcu+7i\nvGesIet+/Wj6fM45wAsvMOwffyzpL/y9unLr5iPT0/05PWfmHW5MA/i9+9tuo6YlwgZTlWUpLY35\nlpNDs/xXXqH/SZNYl502889/+oZDkTqJmZkUbh98UFJApaSEdmrj4epdsjWoiiZSp+KUU7hv3brk\nXHKXLqUyKw+nzAJKRPYA8HcAfQD0AnCciLjBygdUtbe3xR6IjjTEF056eui3QAArY2Fh2QWU06CC\nAurUU/1GLVyDAkLHpKN951AejjrKX5g0EUQ4rBQ+lBUsRE5ANWrEilhcHFlA1a/vz3U4AVWeylO3\nrm8kEXxHrle8ciW/5/rHP/z5KvdNRW4uC3p6Op+lLAKqf//QYc+qROvWnNOcOpXpHDfOHxZ0GpTD\nDZm0ahVfq42mQQEs1/EWOx04ML6m2rIlv6WJxYgRHH7u2tUfCjr77JL+iosZ39at/ucSgD8CkJbG\nDtOrr/r3nHgiO2Xr17N8vfuuL7z+v71zj5Wruu7wt3x97/Xb2OHhGhuDhQgEUuyLoQ7BDTKPgpvw\nkmpIIwwJQlEr8iCPYvePJDQh4qEAQQqVwIaaNBQIkNhIUQ2EmqaooWmM62DAgRIIuMEhsmMeToxt\nVv/YZzPnzp0Znztz5nl+n3R1Z86cObPPPvuc315rr71XHINyD21my5bSWNaUKaWo2HXrQntfsaJk\nkUVBmj69etRg+p4vt7Aefzy4DbMSxyibYUE1k0opbsaMCc/Tz3ymsflwFWjEgjoGeNLdd7v7PuDf\ngQuSz7LbmPEGHO2clXij5mFBvflm6eaNfvryMHMYLlBZI8naQSWBmjy5JGRpSzQ9xyLOfo8RN40K\nVDUX35tvhkHn008PD8UoULH3lbag9uypT6A6mSlTwvldc01wq555Zhij+sMfwkM0LVCx7UU3XRaB\n6pReeXQDfe1rYdynfGwkXtdJk8IDP45/RiZNCvdZ2u24fn2IcLv88iAI55033I344IMhYOKPfwyu\n6ihQkyeXjv/uu6Xx6KGh7OcTx1hOOWVkVNqCBSMnuNailwQKwvmMZsX3jDQiUE8Di5L07xOAJcAs\nwjpLV5jZRjNbmU4HX7kEY4b/z0q8sKO9GSdODG6HJ58sWVC7dpUeCrEnlTbxy8Ob16zpXPcRDBeo\nKEoHHFB6XcmCgiBQb71VEudGXHxRoMpdfLGHftVVJUsthqTHSL4f/jA8rCdNCjdErwmUWekBdeyx\nYQLk9OnhATc0VL9ATZ0aAoc65aEX3XPz5oV76JZbgusvXuf0dZ05sxRlF62XeB6Vgju2bi0tB/TF\nL5aOd/75YfWT668P9ZkWqMiHPlQKjIjz07Iwfnw43k9+Ut+YaPmxoHM6E1mpJlCR224bvhRdg9Qt\nUO7+HGFV80eAHxFWMd8H/CMw193nAa8BN+73YIODw9euykK9whYtNihZUFBS/mOOCdFW6Qd3fDjE\nB/s553R27p20QC1cGHqwY8aUbopqFhSE+okC1agFtXt3EP/yB+bixeF/HJyOFlR8cN16a3jdqwIF\nwYrfsSMsaQVBkOO6e2mBihZwfNjXEp8s7vJWEoObjjwyjH9deWXIvXXddWF7+rrOmhWCo154oeR2\ni+ca3WnpcOdt20JQA4T78447hj8LFi0Kx48CFev0+OPDOFK01hsVmnrpVgtqf9mnDzwwe36qDDR0\nddz9TuBOADO7BnjF3VMLh3E78FC177+XsHD5ck7du5dT6ynEaCNW0jPJx48vWRVRoAYHR864j9tG\nK6LtIr345oEHhsRjULpJ0zdFpWVU0hM/66W/P7irpkwZ2Yn48Y/DQHNcAaFcoCC8njgxDF73okCZ\nDXcjP/dcaYA+LVBxnzg/qVZiv3SEaycwe3Y4z7lzg6W4aVOI6Fq2LMxDmjGjdF0nTAjRsTfdVFqN\nI4pHX19p3e4zzgjtJ70+4b59IToyTVxJJQpUJB7zox/NPpG4GXSrQNXJ+vXrWb9+/ai/15BAmdlB\n7v66mR0GnA8sNLMZ7h6dyRcQXIEVSWfUbRknnhgmmD7wwPCe1f58p9/8ZvPLlhflkTSRKObpUN1K\nApVHT3xgIPj8q43VxQWCYbhAfelLYZKle+g87N1bf5h5N5FeZSQtUPFapCNIqxH3bcQ1mydmpXGn\nxYvDOZxwQohgXLAguOGiQF12WXC7ff7zI8UmfbzYgx8aCtGE06YNn6gemTAhWKVxRYpI/L2TTgqu\n/nbRjS6+D36w7o5iecb0qzMGgzU6D+oBM3saWAP8rbu/AVxvZpvMbCPwEeDKBn+jNqOd6zI4GG4C\nCD30rALVTaxaVXmMLFoysYcKlW+QmTNL6/jVS39/cMPUWl4nve+ePUGgliwpWbVjx/ZmkEQ1YhRl\nuk0fd1ywgKNAlwcapOk0CyrNxz4WJrf39ZVc5unrOjQU5hDNn19a9aBSpyS6DeOK67HTlXbdQ2lN\nynILqlPaURSoTulMZOGRR0ZGUzeZRl18I6Ynu/uyRo45KubNG94Tz0q0GgYGelOg0quTp4k3c3rm\nfLUbpFHXQ39/6ClnEag4ZyqGWA8MBCtw7Ngw4LpqVec8WJpJtBzKXXzR0zBmTO2xz06zoKqxdGmI\nYNy1a+R1nT+/tCp+pVXrb745eDP27QtW2LIqj5vx4ysLVKfc51F8K3kwOpVaK5E0ie72m6TTO4yG\n444LA/HQmwJVjShQF14Yop3OPbd5Lob+/uB62d/KBBBu1r17gygNDgYL6o03wjE2bw5/WdY363bi\ntai2RNP27bU7DuULdXYqX/96OJddu0aOT8aI2XXrRq6sDqGOYj1dfHEQqEoLNUeBihN1IYx77m8l\n/FZx4olhZfhWLWjcpXS3QNXLwECYdwLFFKi4fmDWxTzrob8/TLxMJ7+rVa7+/tDbjQIFw108RbCg\n4oO32pzA/bnu4vXt9GCeGGZfyYKKAjVzZraH9xe+ULkT1N8fjr1jR0mglixprNx5Mn788CzNoiLF\nFKg0RRKoVtLfH6KysroKBwZCbzctUOmItSIIVDzvRs51NHmY2sm4cSHKs/xcY9Ri1naTzkFVTlzV\nvyCRcr1I+xeLbTdFEqh0cESz6e8Pvdfyweta+0cLKloQaQuq16P4oGQx7G8yZC8QJ8hXs6DyEBUJ\nVNcjgSqSQGUZD8qLWJ+jsaDefrvYLr5IEQRq3LhwvatZUHmMjY4fH35DAtW1SKCKJFA33DA8sVoz\nSS/4OZr903m5iubii7TS0m0Xg4OVBSrdDholRshJoLqWAvhN9kORBKq/P1u23rx+C7K7+NIreRx1\nVIgALKoFVQR35tixQYjLr+vRR8MRR+TzG9FVnLUNio5DFlSRBKqVRIHKOs8j7j8wEMJvN2wopkCd\nfHLI3dTr9PVVFqjZs+HFF/P5jTimVwTB71EaXeroc0CSwpLb3f0WM5sG3AvMAV4Clrp7hSxjHUKM\neqq1xpkYPbE+s6Zdjw+Tvr7wNzhYTBffE0+0uwStoa8vTM7O2j7qodaqG6IraEbCwuXAo+7+fuAx\nYEX1o3QAmijXHEY7llApPLpoUXxFYsyYIFDN7Hjsb+Vt0fE0I2HhOcDqZJ/VwHmNFbHJLFoUksaJ\nfIku06w95P0JVFEsqKIQLajRpssZDRKorifvhIWzgUPcfRtAsqp5i0bl6+R97wsrm4t8ycOCKqKL\nryhUG4PKE3lHup66/Sbu/pyZxYSFb1FKWDhi12rHSKfbKF+OXXQ5ox2DkgVVLPr6wnyvZlpQCxeG\nHFSi7bQlH1SlhIXANjM7xN23mdkM4LfVvt+WfFCiNeQxn0UC1bvEMahmCtTNN8O11zbv+CIzbckH\nZWYHJf9jwsK7gbXApckulxByRYmikYcFJRdf79KKMahx44ZnLRZdR6OhUQ+Y2XRgD0nCwsTtd5+Z\nfQp4GVjaaCFFF5J3FJ8EqrdohUCJrqcZCQu3A6c3clzRA6RXhsiCwsyLRSvCzEXXo+6LaA5xmZms\ni37KxVcsZEGJDKh1iOZQKWVGLeTiKxbxekqgRA3UOkRzOPZYePzx7Pvv3j1ymyyo3kUCJTKg1iGa\ngxn8+YghyupUEiBZUL1LFCZdV1EDjTyLzmDlypAiPo0EqneRBSUyIIESncHZZ4/cln54KYqvt5BA\niQyodYjuQBZUbxGFSQIlaqDWIboDCVRvIQtKZKDRpY5WmNlmM9tkZt8zs0Ez+6qZvWpmG5K/s/Iq\nrCggv/lN+K8HWW8RBUodD1GDuh37ZjYHuBw42t3fMbN7gYuSj2909xvzKKAoODNmhP9KndBbyIIS\nGWikdbwBvANMNLOxwARga/KZniZCiOpoDEpkoO7W4e47gG8BvyYI0+/d/dHk4yvMbKOZrTSzqTmU\nUxQdWVC9hSwokYFGXHxzgSuBOcBO4H4z+2vgVuAf3N3N7BvAjcBllY6hhIVCFBQJVKFoR8LCBcAT\nyerlmNmDwMnufndqn9uBh6odQAkLRWZkQfUWCpIoFO1IWLgFWGhm48zMgNOAZ5MsupELgKcb+A0h\nRC+iMSiRgbotKHf/HzO7C/g5sA/YANwGrDKzecC7wEvAp3MopxCil5CLT2Sg0YSFNwA3lG1e1sgx\nhaiIXHy9hQRKZECtQ3QHEqjeQgIlMqDWIYRoPQqSEBmQQAkhWo8sKJEBtQ7RHcjF11tIoEQG1DpE\ndyCB6i0kUCIDah2iO3BvdwlEnmgMSmRAAiU6n0MPhUWL2l0KkScxQ7IsKFED5dEWnc+rr7a7BCJv\n5OITGcg7YeGAmU0zs4fNbIuZrdNq5kKIEUigRAbqbh2phIXz3f1PCdbYx4HlwKPu/n7gMWBFHgUV\nQvQQEiiRgTwTFo4n5IU6F1id7LMaOK+hEgoheo8oTIrOFDXIM2HhziRh4SHuvi3Z5zXg4DwKKoTo\nQRSdKWqQZ8LC75vZJ4DyFle1BSphoRAFRwJVCOpNWGheZwMxs6XAGe5+efL+YmAhsBg41d23Jbmh\n/s3dj6nwfa/3t4UQPYAZXH01fOUr7S6JaDFmhrvv17+bd8LCZ4C1wKXJPpcAaxr4DSGEEAUlz4SF\nTxESFk4G7jOzTwEvA0vzKKgQogeRF0XUoBkJC7cDpzdyXCFEQVAUn6iBJiEIIdqH5kGJGqh1CCHa\nhywoUQMJlBCifciCEjVQ6xBCtA8JlKiBWocQon1IoEQN1DqEEO1DYeaiBhIoIUT7mDat3SUQHYwS\nFgoh2sOvfgWHHdbuUogOppF8UEeZ2VNmtiH5v9PMPmtmXzWzV5PtG8zsrDwLXATqWVSxSKh+qtNV\ndXP44S0dg+qqumkxnVo3jaTb+KW7z3f3IeAE4G3gB8nHN7r7UPL3r3kUtEh0amPpFFQ/1VHdVEd1\nU51OrZu8ui+nA//r7q8k7zX7TgghREPkJVAXAv+Sen+FmW00s5VmNjWn3xBCCFEg6s4H9d4BzPqB\n/wM+4O6vm9lBwO/c3c3sG8CfuPtlFb6n+FIhhCgoWfJB5RHFdzbwc3d/PfnR11Of3Q48VG/hhBBC\nFJc8XHwfJ+XeS7LoRi4Ans7hN4QQQhSMhlx8ZjaBkJRwrru/mWy7C5gHvAu8BHza3bc1XlQhhBBF\nouExKCGEEKIZtGWpIzM7y8yeM7NfmtlV7ShDKzGzWWb2mJltNrNfmNlnk+3TzOxhM9tiZuvSEY9m\ntsLMnjezZ83szNT2ITPblNTdze04n2ZgZmOSid1rk/eqmwQzm2pm30/Od7OZ/ZnqJ5Cc6+bkvL5n\nZgNFrRszW2Vm28xsU2pbbnWR1O09yXf+08yavwyIu7f0jyCKLwBzgH5gI3B0q8vR4nOeAcxLXk8C\ntgBHA9cBf5dsvwq4Nnn9AeApQhDL4Ul9RWv3SeDE5PWPgL9o9/nlVEdXAv8MrE3eq25KdfNPwCeT\n12OBqaofJ3mGvAgMJO/vBS4pat0ApxCGVzaltuVWF8DfALcmry8E7mn2ObXDgjoJeN7dX3b3PcA9\nwLltKEfLcPfX3H1j8vot4FlgFuG8Vye7rQbOS16fQ7j4e939JeB54KQkAGWyu/8s2e+u1He6FjOb\nBSwBVqY2q24AM5sCLHL3OwGS896J6gfgDeAdYKKZjQXGA1spaN24+38AO8o251kX6WPdD5yW+0mU\n0Q6BOhR4JfX+1WRbITCzwwm9nJ8Ch3gSQOLurwEHJ7uV19HWZNuhhPqK9Erd3QR8GUgPiKpuAkcA\nvzOzOxMX6G1JcFLh68fddwDfAn5NOM+d7v4oqps0B+dYF+99x933Ab83s+nNK7rSbbQUM5tE6Hl8\nLrGkyiNUChexYmZ/CWxLLMxac+MKVzcJY4Eh4Dse1r18G1iO2g5mNpfgGp4DzCRYUp9AdVOLFlG2\nJgAAAa5JREFUPOui6XNZ2yFQW4H04NqsZFtPk7gg7ge+6+5rks3bzOyQ5PMZwG+T7VuB2amvxzqq\ntr2b+TBwjpm9SJhPt9jMvgu8proBQg/2FXf/7+T9AwTBUtuBBcAT7r496dH/ADgZ1U2aPOvivc/M\nrA+Y4u7bm1f09gjUz4AjzWyOmQ0AFwFr21COVnMH8Iy7fzu1bS1wafL6EmBNavtFSdTMEcCRwH8l\nJvpOMzvJzAxYlvpOV+Luf+/uh7n7XEJbeMzdLyasQHJpslsh6wYgcc+8YmZHJZtOAzajtgMh2Gih\nmY1Lzuk04BmKXTfGcMsmz7pYmxwD4K+Ax5p2FpE2RZucRWhczwPL21GGFp/vh4F9hIjFp4ANSR1M\nBx5N6uJh4IDUd1YQImueBc5MbT8B+EVSd99u97nlXE8foRTFp7opndfxhI7dRuBBQhSf6iec05cJ\ngr2JMIDfX9S6Ae4mrIu6mzAu90lgWl51AQwC9yXbfwoc3uxz0kRdIYQQHYmCJIQQQnQkEighhBAd\niQRKCCFERyKBEkII0ZFIoIQQQnQkEighhBAdiQRKCCFER/L/nz07FldOCq0AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11204bf90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(nrows=2, ncols=1)\n", "\n", "dfgraph['SpO2'][-10800:0].plot(ax=axes[0]); axes[0].set_title('3h Baseline SpO2')\n", "dfgraph['SpO2'][0:10800].plot(ax=axes[1], color = 'r'); axes[1].set_title('3h After Exam SpO2');\n", "\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 123, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEaCAYAAABEsMO+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4HdXx978jyyqWZVvuDduY3kwgpiUUhRIIoSWEFnpN\nIJRQQgDnjU3vAfKDhBpa6IQEktCJHapDMd3GmOKCuyXb6rIszfvH7LBn9+7eu/fqypKs+TyPnnu1\nu3fr2fM9M2fOHGJmGIZhGEZXo6CzT8AwDMMwojCBMgzDMLokJlCGYRhGl8QEyjAMw+iSmEAZhmEY\nXRITKMMwDKNLYgJlrPcQ0R5EtKCzzyMd4XMkok+IaPfOPCfD6GxMoIz1AiJ6kIgWE9FqIvqSiCaF\nNkk84I+IphFRIxHVENFK7/+t83zKUXx7jsy8NTO/mu8DENG9RNTsXdsKInqRiDb11k0mojXOdb9F\nRLvl+xwMIykmUMb6wtUANmTm/gB+BOAsIto3x30xgDOYuR+AgQD+C+DB/Jxml+Ba79pGA1gG4D5n\n3aPeukEAXgHw5Lo/PcMQTKCM9QJmnsnMTd6/BKAFwHJnEyKi84hoKREtJKITMuySvP0ygEcBbOHs\naAcietOzMhYS0f8RUaGz/ibvOKuJ6EMi2tJbXkRENxDRPM/a+xMRFUcenOhrItrT+z6ZiB4jovs9\n6+ZjItre2XYEET1JRMs86/GshPesCcDDAFKsQ2ZuA/AQgMFENDjJ/gwj35hAGesNRHQbEdUD+ATA\nlcw8w1k9HEA5gJEATgFwGxH1T7DPIgDHAJjuLG4F8GuIdbULgD0BnOFt/0MAuwLY2LPmDgdQ5f3u\nWgAbA5jgfY4C8PuEl3cgREz6A/gngNu845H3//sARgDYC8A5RLRPgmvrC+BoADMi1hUBOB7Al8y8\nIuE5GkZeMYEy1huY+VcA+gLYG8AVRLSDs3oNgMuZuZWZnwNQB2CzNLv7IxFVA6iBiM+lznFmMPPb\nLMwHcCeAPbzVLRAh3JKIiJlnM/NSb92pAM5l5tXMXA/gGgBHJby815n5Bc+iexAicgCwI4DBzHyl\nd21zAdwN4Mg0+/qNd22fAygDcKKz7ghvXQOAkwH8OOH5GUbeMYEy1is80fgvgCcQrPyrPLeV0gAR\nszjOZuaBzFwCsV7+poESRLQJEf3Tc9OtAnAlgMHe8acCuBVi4SwlotuJqC8RDQHQB8B7RFTticBz\nkL6eJCwJnXsJERUAGANglO6TiFYCuBjA0DT7ut67tpHMfAgzf+2se4yZB3q//wRAInehYXQEJlDG\n+kohpCJvN8z8OoAvAPzQW/RnALMAbMTMAwBMgtdn5W1/KzNPBLAlxEr7DYAV3vls5YnDQGYe4LkB\n28MCAF85+6xg5v7MfGB7dsrM1QB+AeA0ItqwnedoGDlhAmV0e4hoCBEdQURlRFTgRe8dBuAfedr/\nLpAgiU+8ReUAapi5gYg2B3C6s+1EItrRC5poBNAEoM1zzd0F4GbPmgIRjfL6rHI6Le/zbQC1RHQh\nEZUQUS8i2oqIJua4329h5s8BPAPgwvbuyzBywQTKWB9giEgsgAQkXA7gWGZ+N8Nv0nGrFzFXA+B+\nAJOY+UVv3QUAjvbW3QGJ8lP6QYSoGsDXEMvpem/dbyGW2HTPNfgigE1zPD8Gvo22OwDAd7zjLfOO\n3y/H/Ya5AcBxRJTOZWgYHQJlmrCQiEYDeADAMABtAO5i5j8SUQWAxwCMBTAXwOHMvNr7zcUATgKw\nFsA5zottGIZhGIlIIlDDAQxn5g+8sNT3ABwMifypYubriOi3ACqY+SJvzMdDAHaADAR8GcAmbFP3\nGoZhGFmQ0cXHzEuY+QPvex2kc3g0RKTu9za7H8Ah3veDIKPR13ohr3MgobCGYRiGkZis+qCIaBzE\n1z0dwDAd38HMS+CHtY6C9AUoC71lhmEYhpGYwsybCJ5770lIn1IdEYVddlm58CJ+bxiGYfQQmJky\nbZPIgvJCZp8E8CAzP+0tXkpEw7z1wyHRQ4BYTBs4Px/tLYs6wXX6N3ny5HV+zO7yZ/fG7o3dG7s3\n6+ovKUldfH8BMJOZb3GWPQPgBO/78QCedpYf6SXG3BCSc+ztxGdkGIZhGEjg4iOi70MSSn5MRO9D\nXHmXQBJfPk5EJwGYB0mKCWaeSUSPA5gJyUt2BmcjmYZhGIaBBALFzG8A6BWzeu+Y31wNmZ+nS1FZ\nWdnZp9BlsXsTj92beOzexGP3pv1kHAfVYQcmMsPKMAyjG/H++8CPfwwsWtS+/RAROF9BEj2N114D\nmpoyb2cYhtHRLF4MUMaqfN3w/vtyPusKE6gIdt8duOuuzj4Lw1h/YJZKtqams89k3cMMTJkCNDbm\n9vslSzJvs65oa8u8TT4xgYqhM16khQuBxx/P7bdEwNy5eT0dw8gba9bI57Jl6bdbH1mwALj0UuDz\nz3P7fWurfK5dm79zyhU9l3UlVCZQMXRG99jllwNHHJH97/RcTaCMrkp9vXyuXt2559EZzJkjn7W1\nuf1eLa8GZ3azr78Gmpvbd165oNdQV5f8N9Om5V43mUDF0CsubrEDaWnJ7Xf68ldX5+9cDCOfdAeB\nOuqojnmHVFhyvXb9vStQ48cDl13WvvPKhZUr5TOph+mKK4Af/AD45S9zO15GgSKie4hoKRF95Czb\ngYjeJqL3vc+JzrqLiWgOEc1qx2RsnU5nCFRh4sRTQbTQdCVftWG4qEB15T6oRx8Fpk/P/3414Erv\nQRyNjcD556cuV2EKu/jaG0nncvzxwLPPZt6uqko+k1pQ/+//yWefPrmdVxIL6l4A+4aWXQfgd8y8\nHYDJ8CZk86baOBwy++iPAPyJqKvEn6RHfapaCDrDxZfrnVq1Sj5VqAyjq6GVs2sFKKtXAw8+uG7P\nJ45sXFdJUVdc1LW7fPYZ8Ic/pC5XF19YoPJZRz3wAPDXv2beTq3AbL09ZWXZnxOQbLqN1wGEq77F\nAPp73wfAz7XXbafa6NULmD3bb+3kM8y8qipz6wlov0Dpp2F0NbT8R70HU6cCxx3nB1J0Jh3RMNW6\nJJNAxVla+ruwKITPlRn49NPczhGIDnw4/fRgRLOKZbb9X+XluZ1Trn1QFwH4AxHNh1hTF3vLs5pq\no66ucyyVOFas8AtJVAuBObfzPegg4Cc/Sb59tsdQYbrhhsxjFKZPz/89nzoVWL48v/s01i/SCZR2\noHdUGdptN+D229Nvo9aJRqllYtas5O9RUhef9n+F3aBxLr7w8d96C9h662TnFEXU9dx+O3Dbbf7/\nei1JGxPl5cA22+QeYp+rQN0D4CxmHgPgXEgy2awpL5+CQw6ZgilTpmDatGk5nko8ixYB552XeTt9\nMETpBer3vwc23DD58Vetkgfz5pvAK69k3l4LYNSxiYAnnoj+3cqVfv/VrFnx+2cGdtkF+PLLzOei\nPPcccOut6bfZc0/ggguS79PoeajrLKqSnjdPPjOFoH/9NfDzn2d/7NdfB55/Pv02WoEmqUhbWoAt\ntwTeeCPZ8ZO6+LTuCQtUUhdf3Lm/9Vb7gj/c/ng9RlKBKisDTjsN+PLLaZgyZcq3f0nJsVseOzHz\nPgDAzE8S0d3e8sRTbQhTsMkmMoitI/jPf4Cbbor267roTW9pSS9QV1yR3fG33BL47nfle5KgC/cl\nKSpKXf/pp8Bhh6UuX7UKGDFCxluUlmbef1RhXbpUXoxNNgkuP/NM4Kuv5DMdSVueRtfmk0+kxZtv\nKzudBZW0D/XZZ4FHHgEefjj742e6nqhQ7jgWLgx+ZqKpCSgoyLxvrXPiLKhMLr6CGHPje9+TIIj7\n7kt//Lh71L+//72xUf5PKlB1dcDw4UBJSSWmTKn8dvmll16a6PdJLSjy/pQ5RLQHABDRXpC+JiCH\nqTaS9M3kSlQlH4UWgKam9AKVLYsXS+UOxBcel7iXRAtOXCTM6tVA377yPV3fmRb8FStS1x12GLDp\npqnLkxbE7hEKY2RCRSLpQMxVq5I9+6hQaUWtq0xh2O3po8okfvruJamP1I2eNNtMUxMwcGBmgVIL\n6eyzg8uTuvj0mUXVXUn61KP6tACgosJflo1AMcu5DxyY+7NLMt3GwwAqAQzy+pwmAzgNEqFXBKDJ\n+z+nqTY6ImpGUbdXW1t6gdAC0NzsP8i4UdtDh0Yvj0OPm0Sg9NhhU13vUZwV1tQkCRxnzUr/EqhA\nRbn42ttiLi5u3++NroFWbqtXByumONT6WbMmfYOwoUH6I6IEoK4OGDKkYwVqwYL0691GaiZ0OIe6\nJjPR3CyVdCbx03sfDnV3PTwu4XdWXYmNjUDv3sF16eof3U9Un1b4typQSYIk1BNUWpr7s0sSxfdz\nZh7JzMXMPIaZ72Xm95h5J2bejpl3Yeb3ne2vZuaNmXkLZn4x0/47UqCSRuRpwVm7NrMFlW26EW1d\nZuPiC4uMCkucj3nNGnnBf/az9C+BjgK//PJU90RcAc4krFqoS0rSb2d0D7SM6HiXTGiZzBRB2tAA\nDB4cXT5ra4FRozILlL6T2biT9TeLF6evVPU6kghUdTWw8cbJG6tRFlRra2pYd1zdktSCUhGIqifS\nNR70d+Fr/9e/UsWlqSm5BVVfL31QRUUdKFAdTUdmDY+zSMK4Pt44gdL/s7U0stk+V4FqbhYLprQ0\nswVVWQlsu21qOGqcSyeTQOUanWN0TbTBmFSgtLxlsg4aGqQRFWdBjR6dWaBcT0dSGhvFchs7Fvji\ni/TbAcnqo5oaEdSkjesogfrqK+DYY4P9TXGN4mwFyr0G/U26hnVcgEhtLbDHHkFxycbFpwLVu3c3\nFqiOHFmeNDLHLQBa+MOFpaFBKutcBTWpBVVeHl1QgPhjr1njC9SqVX7urzA1NUC/fnKM8MuVa/JH\nrVSyqTRmzQJ++tPcjmd0LFouovopo0gX/OCiAhXXBzVqVDIrDMjuHWxokL7bMWOAb77Jz75raqTj\nP0lABeC7+NzttR/Lvc8tLcDhh6daZkldfLre3U5/6+YBJJJgGCWuId/cLPWF+25nI1BPPSX3vltb\nUB05uDSpBeW6+KIeMuB39jU1JbOKwn7dJAIV15maxIIqKhI325/+FB3sAEghLS+XgIqwQMVdUybh\nUn98NgXw5ZeBv/89+fbGuiNbCypdhgiXdC6+pBaU/jYbgWpslIbb4MHprylbC2rEiOQCpe+1e+0q\nTBq8MWeOvEPl5ann0NAgVkhSgXLfRT3HsCHg9kPHDb5VgdL9MfsuvkwNUmZJ2zR3bjcWqOLijk0e\nma0F1dIif716pRaG+np5WIWFySL89IHog1RXWWMj8P3vR4/4bmyUghw+36QuvpKS9OMd1ILKp0Bd\nfLF/DklJGl1prHuytaCSuvgaG+NdfEn7oJII1AsvBAf8qgU1aFD6a8pWoIYPTx6BHNXw1Ia5vtub\nbipjDuMEqm/f1HcxF4HS37hBTXq8KIEqL/f3t2aN1H99+mR+39ViW7u2GwtUnz7SguiobBLZ9kGp\nBdWnT7QF1aePiECSfhfdpxvlBEhwwptvRo/4bmyUlmQ4NX1NjQhcnDBqBFVpafqEs+kEKk6IMgnU\n/vvLZzYC5UZXGvmjpkZmg24PtbVSRrK1oHLtg2ptlXI/cmTyPqh0799++0nmFiWpBdXQINfdkS4+\n953Ta3Utm/p6v+5xA0HU9Z9UoNx6or5erC89jp5D2A1YVpZ67U1Nclw3OrC0VOrATPfJHVzcoQIV\nlc3cW36Wl7H8YyK6xlmeOJt5YaFc8NKluZ18HIsWyYC+pBaUvjQtLXIj+/RJ7VTUDr8kDwfwzfKq\nKvmNPmS3kIaP0dgI/OpXkrnBXVdTIy3AuIfsWlBasKP87R3h4mtpATbbLDu3S9yIeaN9/POfMht0\ne4S/rk4CCtaVQGnDr6Iis7s/qYvv66+D+1eBymRBqQs/EzU1ci2trcm8KU1NYiF99ZUkhH3kET/D\nTU1NMFF1797B+kKvoawsdwtq+HDfotF77IprUxMwYEBmF182daBb53a0BZWSzZyIKgEcCGAbZt4G\nwA3e8i2QRTbzlha5MU8/ndvJx3H77ZISJakFpRVlOgsqF4EaPFgKkT58ZikoG3i5Nl56KVgRNDZK\n2iBNXKvU1qYXKA2SKCnxW2ZR4z46woKqqwN22gl4993g+Z1xBrD99tGWlb4cHTnEoCeiFXCS9F5x\nqEDl28Wn70PY6qirk/LYv39mC0rLS6b3L2yV9O0r70+mPqiKimTekZoaOd8+fZJtr/0222wjaZfc\nrG7V1f68TrW1IlDFxakik42Lz627Ghr8/r2mpmiBamzMj0AtWQLMn+/vs6AA+PjjDhaomGzmpwO4\nhpnXettocT4YWWQzv+46yWLcUTPBJvUr64uRxMVXWppMoOrr5aUA5He9esn+a2uBrbYSn/v++/uj\nxteulQJXWAgMGxZ8mWpq5OWOa625QRK6TZQw5CJQWrDiwlTr6uR6ttgimO+suRl4/31pOZ58MnD3\n3cDMmXIcPXZnzAi6PqMiccstue+jrg4YN65jLKjBg6UMvv++v1yt+iQCtXKlWAPp3j+ioGjU1kp5\nT2JBVVQkt6D69ZP3OombTz0c++8v56CDaIcMAT78UKaDB+QeFhbKuxyOnOvbN3W69fB4sDgLasAA\nGbc1a5Yv3lECFb72cBSfNibiBGr77eUPkPUTJkhXRmf0QW0KYHcimk5EU4nIyziXXTbzU0+VaJhM\nSSLDPPpofD4uZn9wbFILatUqaRlokES+LChNP9SrlxTQ5mb/hdT08+45lpbKuQ8YIIPkFBWoTC4+\nNw9fnECVl8t1hAUqToB0VHrcZIh6X445JjjwsLxcciA+8wwwcSLw3/8CBx4ooq0tRhOo/NLUJK1l\nLf9bbhlsrSdBBaojwsw1p9t++wWP17evlPlM/dErV0pfVbr3T985fX/1fRs0SHJzpju/bFx8/fpJ\nuU8iUE1NUm/06ycirAFTu+wiMwG459C7d2qFHrag4pJKxwlUaakI1FdfRY+1jHPxaR9UUgtq8WK/\nHGh9Bkj919bmC6rrHcpErgJVCKCCmXcGcCGAmDzb6ZkyZQpeeWUKXn89u2zmRx0FHH106vI1a+Th\nf/ih/K+mdSaBWr1aBCCTBaUPJ2mQhDtJV1igwnn1Ghv9ZR98AFx/vV9gampkbERcJaBBEm42h6jK\nXzvAoyyoqNH5bW2y7zPPjE+UqxXMYYdJH4hWMCqa224rc8o8+KCEtmr6FD3v9ZmqquQd6fmgsVE8\nElpJz5oF/O9/2e0jlz6ouOg8F/VAAKn9q+XlvvV/ySXRv2cWd9jIkXKdcULW1CTvso4z0vdtgw3k\nN3HnWVcnv8vWgtL9pXOFuwL1wQfSDwUAO+4Y9B6pBeW6+O66K16gmpqCAqd11gcfBCN/S0tFgFav\njg40ccc26THuvTc1SCJJI12H0zQ2+vUREVBYOA2TJ0sm8803nxJ/s0LkKlALADwFAMz8DoBWIhoE\nsZjGONulzWY+ZcoUnHXWFAwaNAWVlZWJDx7OM6Vo+vvPP5fPmprosO0wq1b5LrR0FpRG8SW1oFwR\nCguUti60tastHUDmdQL8dEQ1NZKR+OOPo918bpCEuyxMOhdflEA1Ncl+f/c7GXQ3c2bqNipQFRXB\nTmPtFwuzgZPrPhsL6plnuld4upapww9fd8dsapKGTEODX4lla6XW1voCpSKwZk28INTWitstXX/i\n2rV+OTn5ZHEJK6tW+Tn/Kivjp4Kpq5Py1L+/9DEXFKRaeS0tUsGOH+8HCen7NmSIXFdcQFZ9fTKB\n0n5kbWQ2NMh71atXfAomfT/79RM3+Esvyf+uJannrxaUPrfTTpPPwsJUgZo6Vfqs3d8DMs269kOq\nQKkLNSppb1OTbKOWGzNw0kniNcnGxQcEh9O4Hp2SkkpceOEU/P73UwBMif5x1P4SbhfOZv4PAHsC\nABFtCqCImasg2cyPyCab+eDB2U9UFldRLVokn9oqqa5O1vGplYlrQcVF8WXTB6UCReQLVF1dvEDp\n9kceKZ/qCqupkZHw48ZJ6yhMlEBFWSfaWo0SKC3cYd90aamI/EUXyV8YfVmBoGsiLnloJjdkHO++\nm58M87mSbUqnvfeWT3fEfkejVni/fv4A0GzPWxO3Fhb6ZWTcOODOO6O3V4FKZ0GVlcm7OGAAcM45\nIn6trSI0q1bJcgC48UZxbR97rAw4d6mqknJYUuLPrRa+t/qOjhyZakEBcp5LlkgFXFAQzEcZtqDi\nJlNtaJB3TccDNTT4+4kTP1cklL/9TVywYbQPKvz+FhT4mePj3gN3ufbnuRaUzk+n1xE+P62j9B5U\nV/uWlVqfmbxIajyo6Cl6TdkGRiUJM38YwJsANiWi+UR0ImSCwvFE9DGAhwEcB0g2cwCazfxZJMhm\nrjcuG9yKr63Nd0eo5aQ3r6oqmUC5Lj4NM0/n4svWgmJOtaDUutAxQWGLCwDuv18+1TW3226p41ya\nmoLjoJRsXXz19cB22wUzPLitoCOPjHYXuS1g98XSwI0wbm6/qqrkoebpxnd1NO++Gz/VSRwqEOty\nGhKtFCoq/GiqbCeq01ayG/W2eDHwYkza57o66UcOl6e//13cvs3NfpkoLPRFYv58cf3OnesL1FZb\nSZn7619luIVbcyxdKsFDbiMsPJRCK9ARI9ILVEOD7Nud3DMsUOXlQZE85xwZSKteCMAXKBUm7Uuv\nq5O5l959V8TLdfEp/ftHz90WjuIbNUruVa9e8cFFarm5dZYu02O7FlTv3tEWlNZtbmOjtNRPXKD3\nt7g4vg5UgXJdfIBfN2Q7tCTXbOZrmflYZt6GmScy83+d7bPKZt6vXzBPVBJcF9+dd0rBAqSy1MII\nxFtQX30VjIT54guxUJK6+JL2QbmVmj4gjSrS/btjtdztTzpJOrwB/6XYaKNgq2/+fClAYQuqrCx9\nkERYoO68U16yX/0qOKmZK1DFxdEtt0WLpOJwrxGId/Epw4dLPr4dY2M8g3REf9VHHyVr0anbKZvx\nRRrBuS7RSmHgQN+L8OWX2WX/VoEaNsyv5IF46yDOgrrvPuDJJ/3z2Hxz+Rw0SN5LbQi9954vUOHy\n4npWliyR47jl8b33gttHCdS8eVLJA/L52Wd+g9i9pqg+KFfA/vhHiTp2BWrFCuCAA/zzXL4cePxx\n4LHHgBNPBHbYwRfpsECNHOl/33tvYF9vIE84ik/f2YICv/yFXZvuOE5FPUBhF19jozyDsAVVUuI3\not1nqfWKCleUi6+mxm/MxLn4NGFstpmDOj0XX0mJb7kkRVvmFRXBztxVq/xKHZBCp9u4lctGGwF/\n8Sapv+QSeQgjRiQPksimI1XPVx/+7bcHx0+oOIcF7aSTRDTdfYXHR+hvwwI1cGD0mAZNXRIWqOee\nk8+jjgJmzPDHULmFLCojcVubtBr1ZUtiQQHygu2yi3xPOv18uvLR1gY89FCy/bhsu230mCENStEW\nfLrpyuMoKpL7qi6ldYFrQelg1VdeAX7xi2S/X7NGxEwjQp991l8X14isrZV3p74+eJ1abubNk34S\nrewLCsRlqO7iN94Izjv1pz/JkAVA7t2//iXWqAqUlqmbbwaeeCIoIlEC9cEHwHe+I9/32AOYNEkG\nygLBuqOuTt4b7ccCUt38ra3iwVBPjYrvu+/K5/LlwBFHAFdf7f/mrbf8yGKtDy68ENhwQ3+bnXYS\n7wgQdPGpW00FSt+BcNSzO4BZ6xBtlEQFSQwenBokoRaUdkMoxcXB7omoOvCQQ/w6oKDAn9sr7OJr\nbu6GAkUkDyAbK0oL6apVfkE8/HDJb6etJbWkKiokEub884P7mDFDPq+7TvajyRgzhZkn7YNyBUpf\nehWNtWszC1R5uW8O677C4yP0BaqpCUbxVVSkClRVlRRMIhEot7IdPVpe+D59gEMPlZYvEPQjFxWl\n3pPqaj8/oW6TqQ8KkBactpbjkuhedlnwRdH9TpwoARsuixdLmHu2c3XpNYRZsEAqG32Z9Bll455o\nbJT77bpmOhptCatAaVZsd9xROtR6IhLL9vnn/Xv60Ufx07VvsIEIYUGBX+7Uy7F4cWp27jvu8MvS\nypUS1KCcfroE4+y1l4jSgQeKaKlAqQjuuKN4E7Qf569/Be65xxeoRYukIdTQ4Df0fujltXn0Uflc\ntsyvyLVv2HVftbZKcM5VV/n/f/qpf0xNqaQNPI0sjquEtT445hjf9Tt7tgQ16LuiLr7rr5djl5RI\nGXIFKlxm3QbUwIHy3bWg1MW3apXcD9eC+vxzCb9XCyrs4tOGr1pWUQK1aJF/bkRy3y+8MOjiKynx\nXXzZuMs7XaCA7Nx8770XdFm8+qp8PvGErNtsM/l/xAj51NZZ2B3gJmu99FKpZNWC0jFRLm4uvmwE\naupUqfCLi/1+iZNP9vfhCpTb4lDR1lZtSUlq56lWBm1twXFQFRWpFseKFb4rtKjIDyEH5IXSDtwx\nY3wXgutHVgF3W8lVVUFXVlGRvDza75DOxafrXMu2uloKODMweXKwz0tfmvfekygoQCphzeWm15Et\nUe4vdf3ojKn6jLLZv5aXIUOyDwLKFdeCmjvXfxcyVQjMYmXMmuVXcHvuKc/ziy/8sPVnnkn9XVWV\nNBoUfWZahl55xS93imbbP+44+VTrwWXYMBknCcg5TJkiAqWNIVfU1qyRwIrbbvODJBYtkuc3bpwv\nBgMGADfd5FsgV14p+2ttjbYOZswADj5YrC5AcmjefLNUvoAMPv/RjyS6VsXPvfYw+o65wRKbbirv\ngitQRUWS9PaQQ3wh6dUrKFBu40/fDfUYAcE+qNJSaSQsXJiakPrgg4F33gkGSbgCVVAQFK6+fYPz\nzj3+eLCf1W0kBqP4gLPOkmfuRh5moksIlGstpKOmRl4GrTjKyqRwuGyzjXyGBeq114IDAV99VTr+\nS0uBCy6QgqECVVqafqBukj4orfQrK6Xzt7g4+MLoPtyR3W5FoqKtnbxEqQLlCmVhYXoX3/LlfkUR\ntqJcgXItvfBgO6Jghe5GYAFyfjvtJC9WOhefHgcQgdJ7oY0GbRG64uWWj8ZG6UccP17EX7efNSv7\naTyi3G8IpavgAAAgAElEQVQqUE89JZacG02ZFFegsh2InithC2r0aIkWy+Q+r6qSsYN33SUiAMh5\nv/mmuNuGDhVPw/TpfsOmoUH+iKRR8/jjkinh2GMlnc8rr8i+Hnww1YLToQa77CL3P2pq+aFD/UAP\nHdg5fLj/Xrr9Vmed5f+urEwGpX75pQRRqEfFPfaCBcFgnYUL5f3Q/hUtTzNmSD0yZkxwH26YvHYp\nuALlsvvu/vfiYrG69B676LtSWBj9vNxk0V9+Gaz86+okf+fcuf69XLtWrM5Fi/yBunPn+hluwvVP\n//5BS8kl7OJTdyEgLk134K1b77j95SUlMlh/+fJg/1smuoxAJbGgwi2T8DgCwL94dSu4hf/SS4Ot\nucce86P2dBqNuDDz1atFNHLpgwLkIX/zjbz47nnpdYeDJFS0V60KikdTU/QYF6L0AuVaUECwH2r1\n6uAL704dHe7odIU7SqAAKYhJLajWVrnuTz8V0QH86Ky6OnE/EAX7C+6/3x9f1NTkX8c55+Q2EeI7\n7wTvlwrUZZeJJee6UpOiz3NdWlD6vCoqRKzLyqTBlm7Q7XPPScYPQPrxVDw08AWQ57rbbhIo0KuX\nVMaabWLQIHk+hx0m/bqrV0u/7umn++X2uuuCx+zVS97PdAEybjnTiq5/f3HVa5YVZmkA3nmnn2Kn\nrEzenYYGaSiFrTe9ro039pddfrmfF7Rfv2B04H33BV2UEyb4fVqAv61adOo+VNx3mkjyjkY13FwL\nSj0tLq5A3XBD8L2srxeRnjXLr1eam0Vc//1vqRd0poMVK4IWlDYCtY877OIDgkESrkBpY9Vt5Lnv\nkfu+uO6+bJKD55zN3Ft3PhG1EdFAZ1nibOZKv35yMf/+tzzgV1+NbkW4ArVgQWq/EuDfIM3i4Fag\nt9yS6r/Vm6wWVDjMvLJSrDSt4HPpgwKkALoC9a9/iUVVXy+FJCrqr6BAHqa+6EVFYiFoRFRYhLQQ\njBkTLVB6bCBVoNxjRFlQus59Lq6w6XpAriepBaXU1PhirUEan37qC5GOfVHUZbtypX8dUZbK0qXp\nxyJpf8s99/jLli2LPvf9908uUuqyHTp03VlQGlKsldSnn2ZOknrxxX6n/tq14vIBgq385maJSNOy\noC3hceOC5WzYMHmPZswQgbrwQjn+976XetylS31RieKAA6Sx8cc/+pbUDjvIO/jjH/vbqQXz5z/L\np773P/mJfIYbvipQWm7LysQyvOACKQsjRvhBELp/N2r4/PODQx5+8Qvg17/2AzvccwOSDzNwBSrq\nebl9UHvsEawr3GtUd6xrvehz69dP7rtrQen59e8f7eIDgsv79vXdouqtcnG9S0cc4X/Xuunss1Mb\nLOnIKZs5ABDRaAD7AJjnLMsqm7lSUSEVzQEHSCTZHntIi2zevOB2rkCNHh30Qys77wz89rd+53vS\nDjm3D6qkRCpZInkZp03zBSpsQb30krT8584NFka30gfkIS9c6IvEsGEiJBUVfmdu+Fy1NacvkxZi\njXwLi1Dv3lLZDB2avQWVycWn+09iQakbKBuBamnxz0cF6v/9P3lZ3YinMPX1/gsVZYUfdVT0i+Qe\nF0ht4V17baqvvLU11aUcBbN/78aM8SvYjsB1r+gxNUDonnvk+dTWxgeQaOtX3Vjf9bJqFhUF01b1\n6iVlNJMLdcwYeR4bbyyRqElz+oXZbz9xT2qf2HXXBd8n5brrJFJPrTFtcD71lPSH3XhjcHsV3rvv\nls+JE0WQtL9u5Ei5p1quR48OBvK45R0QQb/pJmk0trX5ArHVVmLR77OPTFCaCdfFF2VZun1QVVXB\nuiJKjNzZDHTZkiUixq4FpeKrg6CjLKiwi09xIygBv/8YkPfn0EP9dWqp3Xxz/IzfUeSazRwAbgLw\nm9CyrLKZKw0NfgSO8swzcjEu4ZbFsGFy4W5FOHo0cM01QR8zIHniwpSV+Q/adfGFK9aiInnJBwyQ\nh/jZZ+JnJxJ3x0YbybgHwK/wdOS8ogIVHh+jLdwogSovl7FJ2gIPV+pRY50uuigoMkpYoIYP9ytO\n19rLJFD6kowbBzzwQLDS0PvW2prcxafU1/sCpW6TggJphGgewLDvvrAw+Dv1i+szaG31c5URBQUs\nHLI7Y4ZcDyACNX58sPNfO/STZN7XmUcLC0Vc1XWZb+rrpWLUBotaUFqhbrGF3MP+/aPdRoC/7Xbb\nyWdUY8AtS26fChC8R0Cwos0Hag2G+5KUgQNluIDiNh533DH1evr2lYbP1lvL/ZswQZ6XvpebbAK8\n/bZ8PvSQvBduw3OjjeLPVbc7/ng/oOLcc6WuyIRrQT3wgC+YimtBhUO4XTFyvTaKW68CvkDV1kod\n8ItfSINC3/0vvghuH3bxAcF7rqjbdIstgN+ElEHfvWwHrufUB0VEBwFYwMzh9mRW2cyVFSukryGs\n3DffHPRvPvOMFDDXZeCm/nBvmr54WoHqzK/HHuuHhV52mX/j3CCJcK6/WbOkci8okIf10kupkUea\n63bZMtnH0qXBl6q4WK4zXIDUegyLASACtWKFL8xh4YxLFRQlUG6QBCDuFe281vBi/W1cH5Qbaj5v\nnoxhcUVY71suLr76ev9Z6PibtjaZV2rCBPk/3OjQMW7h+cS0MtZPtVqfekqsaz0e4Lt8b7tNKpa5\nc+Xaxo4N3q/f/x742c+AOXPir0lxIzLHjw9OoJdPdL/XXy/PUJ/XgQf60a2ANHwmTIgeaK33fNw4\nqeiinpkbrFJR4YdXDx0qVo7LZZelpilqD2pBueMb4ygoCAYwREEk50jkTwUP+J9bbSV9kv36yZxy\nAPDLX0rZaGvLvH9A+q2ihCIdrrAXFEgdM2GC73J1+6DSCZR6ArRfEfDL/623+v83NsoQgDFjZGym\nDlNpahK3qkvYxQcEy5eifXV9+qQKUa5DLbJu5xBRKYBLIO69vPDKK0HrYeed5SWbNEncBPfeK8sX\nLRIX1plnBn9/5JFSIG6/3V+mldk22/iTZwHiI95vPxGU7bf3l6sFBaQK1AsviNsRCLqColi6VPaj\n/nhFw8zdTBeAL1BxLj7Az78XTvEU1xcWlcsrbEENGybuKtetqb/NZEG5LoVwZ7qSrQVVV+cX4red\n7I0VFdLaZfYjMwERsVmzxGIMV7yHHSaCMnas/K9BCjfeKNd87bW+QIWtcm1xb7ih//y0kbTvvn5C\n4nS4AS/jx3ecBaX7veMOqRx0em2iYANKLdJPPvEtpRdflO3U+qqvjxaB++8PVrba0U8Una5nn33k\nL19suaWc89ZbZ962utqvQJOiAqifY8cG0yMBIlQqVh2Fa0EBEqzywQd+2XMtKB33qCxYIM+hsdF3\nce62G3DCCTKeTMv0YYdJ3Tl6tLzje+0VfKeKi/3+N9edr8Lluvii0jTpPYt673MZAgLkIFAANgIw\nDsCHXv/SaAAziGhH5JDNXJk6tRI77FCJvn3lQi+5BPjBD8RaOussEZNevaL7E6LmhnJ97lr5fv65\nb6Kr4CjaB8WcKlCffSaD64DoB/P3v/udslddJec7blxwG31o2QiUnoebSkhpaMjOggoHSWgORDXb\ntcUTdvG556sWlNuv4LpQwgKVzoIKr6utlRdgww2DFsfAgf53bcnrS1td7b9EGi1XUiKtu2OPlRDn\nceN8t5x73uEpsMP06+eXOWXQIKnsf/tbaSiFLTrFfZaauPTGG6ODeuJobpb+z7jw5ddfl+g1FcC3\n3pJ7FeVC0W0eflgi0Ij81DqANAB32CH6OOrajCKqDzjf9OvnD6rPRFQfVSbCFpQ2asLvaUcTFihA\nnpM+T+2D0n4ed7v580V8TjzR78qYONFv2CtDhkjwijZEvvnGv15A3v2ZMyUwjMh3j7sWlApU1IwS\nWsdFCdT48dOwevU0OFV+IpIK1LfZzJn5EwDf9gYQ0dcAtmfmlUT0DICHiOgPENde2mzmU2LOVisg\n9cO+9ZZUFsuWpY5KjyOqctxkk/jt1cXX1hZ989XNFGVBHXigfG68sbg8Djoo+ODd8wm38NIJlEaM\naUXoPvj6+uQC9fzzqS4+nSDOLXTh32oiUEVbVW5fjrtP955ncvGF+yg0iu+Pf5S+pv/9T1p7UQKl\nuOc9dqxc4/e/Lxb54sXyHNw5d8KpbTR6NIy+2LvvHmzoDBwIvPyy/J1+emojRHEtT312F1wg/RFx\noqbcdZcMINUAoe9+V8RtwgQJed91V/lfrcwrr5R340c/irfu33xTKq5TT5UQZS3LRx8t93jnndOf\nUxTz5kWPX+puhC0orV/SWf8dQaa+O3Xx6aSH7nYLF8r6yspgeqowRKnuV9e6LymRQIpRo4INcQ0/\nD89xF0dU/fn885Voa6v8dt2lOo1wBnLNZu7C8MUr62zmYSorxXICpND84Afy0h51lJiycZ2lYa66\nKnnLC/BdfJrXLowb3RSmVy+pIG+8Ub7PnRuc9wjIzYIKm8XusevqkglUTY1UXosWBQM0KirEenD7\nn/S36koIr4vKSBwOpXdJ11EeLhWrV/vpZiZO9F1RbiUY/o37shx8sARTuMt69/avuazMv662Nj87\ndpiTTxbXSBSuWEbNjaWEn6UKY7o5g5TTTgtGr773nrwT++8P/N//icv77belvP3852IJ7beftKDd\nxoTLsGHAKaf479VH3oCRu+7KTZwA6btY11ZGRxBu9WsDItsE1u0liUCtWeNbibqdfmq9eNZZklUn\nKW5XQHGxP6zlnnv8/tnWVolI1MCfOLRsRzXCevWKn8cvHTllMw+tH8/M1c7/WWUzDzN1anBWzVNO\nkVHujz4qlWXSzsfycr+SS4I7DsqtaHfbTaICdQBw3Kj8r7+WFvuAAXK+cQIVZ0FFBUnkQ6DcMGR3\n/3EWlNsHpYKhRFlQcQKVaXLBcL9RTU1QELUl61a6YQvKFYFRo6TPUl+SO+/0x2lNn+6nqwHEPXfg\ngdF5+FwRCuOOgHdTZYUJC9TAgX56nE8+iZ9lN8qaO+YYydIwfbq4p+vr5f8XXpAoM204PfBAajqv\nMFdcIYNXlSh3dU9ju+38lEou63KaFMB/X+KeSZxA6Xlefrl8brCBBPMk4bbbgsEOKlAarayNw+XL\n4xvuLukEKlc6cZadZLhhnekG9rWXwkLf4nIfxKRJQX/95ptLtKBOK69oQRkyRDo3jz8+uF73GfaT\njxwplU+UBXX99cFKORsX39tvi1tpp52it1ELyo3M0d/qfnVqEMW1oDT7R0cJ1MYbp+YnTOfiU2HR\nl0RfrooKuQdupNPvfiefBx4YnF7k7LPFdRfHoEHSJzNihESUnnZadL9HVGPj2mvF6jrggODgYmXG\nDF9snn9erKKPP/YDRP78Z6lMd95ZKqBwBVpSkjmA53vfk/7Sm26KzuLeExkwIHUyxpdeinffdhT6\nvsSN29Q5mfR9U2tE36NsBbW1NVVIiorElRcu0+edJ4kF0qXMuuwysfSfey6/AtUlUh2lY9ttxX0B\npA6Syyeu6aqF5dRTg+IE+NE1hx8ug/3CQjV4sPh1w65IFZewBbjJJhK6HBYDQETuRMehquelVlpj\no4jQ26FePj3WjTemDnZW1IIKD74L90G55+RaUFqIXbM96h7GEX4JtA/KtdjClXw487me99VX+6HP\nYYHSMqMj/ZWRI8XFBfjXePnl6QcFAxLVduqpEqRw5ZWp6y+4QM4nqqyOGSMd0+HBxVtt5YvTM89I\nmTviCH9cCZGEOu+0k99R3h5+/WvpazCi2XvvYCqkdYG+R5ksKK0/4mYBSEqUiOj08uF3U13DYff0\nKadIuQRkbJlGjubT+uzyFlRJieTMe+IJP2lnRxAOCQfSV7KPPRa9XF1T4ZDdOAtq3DiJwlmzJnMA\niDvNyBlnSF/JxImpEViupTVvnlxb2N1ZUiKFVJNkusdwBwSGLSS1oA49NPVaXKsoUyE9/nhpcWkk\nWNiCiuI//wmG1mtrc5dd/OPtv78/PTjgC1VYeN57LzhNCJA8RHmjjaQ8Pvhg6jrNXOAmMFW0z2v8\neDnWpElilc2cKdGpM2b45xTO6abk4scPQxTd/2Z0HioYcc9Xo/j03dZ3bZ99opPP5kLcxJGApMQK\nn9tdd4mX48gjg8t7lAUFyAs1c2b6KLz2EuWeyiVKSR+yG9IdtV4ZNMjvC8rU6RwWzLq66BaXu928\nedJn8eabqds1N0uCz7AF9c03Moj366+Dhd+1oEaNkuS74f0pmYIBCgp80Rg0SEQ6U5TQttsGXZa6\nrfucfv1rER8VKO3D6tNHGhW6rXtdufjOJ0wQF9x990n5XLQoaFFFPf/zzpMhCxpJdeWVsuyJJyRw\noTOntTc6l7Fjowe/KmpBqeWkjcjvf9/PgJIvosLarroq9X0H5L0KD9npcQIFpLpo8o3bOV5cLJ3g\nbrBGtoQfkgpTuBLSaTT0e5J9urPRRvmswxbU2LHRLoGhQyWcO9wHBUh/X3196kBcFaioYJWoyRST\nMH68nGdbW3auiyiBUvR5usEqhx8ePW17VIaFTOh4LXXBjhrl920BqVm0AbnPm20mY5t08PXeewdz\nlhk9k/Dg6jBqQYUFKl3qpVyJiwZNSj5dfN1GoDqa8IDULbfMLcoprnP1oIPiK+1TTkmN+otjzz0l\nggsQKyeqMLgC9dFH8ec0aZL0Y4UtqDh69xZxuuuu6NlVXYGKEoI4evXKzXro3VvcnFEvVHm5dNiG\nA2uiOnp33z21ozzJsQEpK+7Eiko6oSUSa/Czz2Q+q3UdMWZ0P1Sg9D1pbZV3URMI5IsVK3KbssYl\nLngrF3KaboOIrvOm0/iAiP5GRP2cdVlPt9EVIPLz6bXHz3/RRcFUQC5xldatt6YmaIzjlVek8tXp\nITIJFBDvqtRADrfSdt2D114b3L53bxknBER3Iu+9t9/Zn8nFFyYuY0Im7r03Xtz22y/VknVnCVbK\nyqJDjTNx7rnintPpx59/Xp7liBHJUvNstllu2Q+MnkfYxdfamn1apySEk1lnyw9/mF/RzHW6jRcB\nbMXM34FkLL8YAIhoS+Qw3UZXQVvi7Tnj3r2zmzFSj5cp6i3MSSeJiyk8/wwgAqWtoHRJNtU94A5M\n7dXL70vRyDhFk68+/XTqOkDcXe++K9+zEaiCguyvP1deey3V4snVZ/6HP/j3YeRIib771a+kPypq\nDiTDyJUoC6or8sILqUET7SGn6TaY+WVmVifOdEjOPQA4CDlMt9FV2HTT6A7Crsq4cdFiSuRnmU7n\npvzOd6SghyP8LrlE+p7CofJqukeJU5hsXHwFBTKANCqFf77ZdVc/1Q8gobVqFRpGV6WgQLoIXAuq\nJ5CPuKGTADzifR8F4C1nXaLpNoyOI9PgzTjrIWqczD//mVx4snmBWlsl7Dw8uHldcMcd6/6YhpEt\nKkwmUFlARJMAtDDzIxk3jsBNFltZWYnKysr2nI4RQT7T2WTjhktqif70p/HZLgzDENxpgfr3TzZL\nb1di2rRpmKad/FmQs0AR0QkA9gfgToy9EIAbj5Z4ug0j/wwZEj+NQkeTtB8vPOGdYRipuBZUVVV+\nxxqtC8IGSNJs5llPtwEARLQfZLr33ZnZDSrU6TZuQoLpNoyO5auv4nN7dTTd7QUyjK6Ma0G1N81R\ndyKjQHnTbVQCGERE8wFMhsyoWwTgJS9Ibzozn8HMM4lIp9toQQ7TbRj5oyPCUJOw3XbZT3ltGEY8\n4T6onkJGgWLmqMmO741YpttfDeDq9pyU0b2ZOtUGnxpGPlELygTKMNqJDT41jPyiwtTT8jVaT4Fh\nGEYXp6daUCZQhmEYXRyzoAzDMIwuiVlQhmEYRpekp0bx5ZrNvIKIXiSi2UT0AhH1d9Z1y2zmhmEY\nXRVz8cUTlc38IgAvM/NmAP6D9SSbuWEYRlfEXHwxRGUzB3AwgPu97/cDOMT73q2zmRuGYXRFzILK\njqHMvBQAmHkJgKHe8lEAFjjbWTZzwzCMdtJTLah86XFO6Ywsm7lhGEZmunuQxLrOZr6UiIYx81Ii\nGg5gmbfcspkbhmHkGTdZbHck12zmSV18gWzmkKzlJ3jfjwfwtLP8SCIqIqINYdnMDcMw2k13t6By\nJdds5tcAeIKITgIwDxK5B8tmbhiGkX+6uwWVK7lmMweAvWO2t2zmhmEYeaSnWlCWScIwDKOL01Mt\nKBMowzCMLo5ZUIZhGEaXpKeOgzKBMgzD6OJYJgnDMAyjS2IWlGEYhtElMQsqB7ypNT4loo+I6CFv\ngG7sVByGYRhG9vTuLZ9mQSWEiMYCOBXAdsw8ATKm6ijETMVhGIZh5EZRkXyaQCWnBsAaAGVEVAig\nFJJ3L24qDsMwDCMHiovl01x8CWHmlQBuBDAfIkyrmfllAMNipuIwDMMwckAtKP3sKeSsx0Q0HsC5\nAMYCWA3JzXc0UqfeiM3FZ9NtGIZhZEYtqO4qULlOt0G55nIlosMB7MPMp3r/HwtgZwB7Aqh0puKY\nysxbRPze8sgahmEkgFlCzWfOBLZIqU27H0QEZqZM27WnD2o2gJ2JqISICMBekCzmcVNxGIZhGDlA\nXlXe09r0Obv4mPlDInoAwHsAWgG8D+BOAOUAHg9PxWEYhmG0j54mUDm7+Np9YHPxGYZhJIYIWLoU\nGLoehJ0ldfH1sKBFwzCM7klPbM9bqiPDMAyjS2ICZRiGYXRJTKAMwzCMLokJlGEYhtElaW828/5E\n9AQRzfKymu/UlbOZ5zKSuadg9yYeuzfx2L2Jx+5N+2mvBXULgGe9TBHbAvgMXTibuRWYeOzexGP3\nJh67N/HYvWk/7Zluox+A3Zj5XgBg5rXMvBqWzdwwDMPIA+2xoDYEsIKI7iWiGUR0JxH1gWUzNwzD\nMPJAe5LFfhfAdAC7MPO7RHQTgFoAZzLzQGe7KmYeFPH7HjjszDAMwwDQ4ZkkvgGwgJnf9f7/G6T/\naSkRDXOymS/L9eQMwzCMnkt7JixcCmABEW3qLdoLwKewbOaGYRhGHmhXslgi2hbA3QB6A/gKwIkA\negF4HMAG8LKZM/Oq9p+qYRiG0ZPotGzmhmEYhpGObp1Jgoh+RkSfEFErEW0fWncxEc3xBhH/0Fm+\nPRF9RESfE9HNzvIiInrU+81bRDTGWXe8t/1sIjpu3Vxd/iCiHYjobSJ63/uc6KzL233qrhDRWd71\nf0xE1zjLe/y9AQAiOp+I2ojIDX7q0feGiK7zrv0DIvqbN+xG1/Xoe5MJItqPiD7z7sNv027MzN32\nD8BmADaBDAje3lm+BWQCxUIA4wB8Ad9a/B+AHbzvzwLY1/t+OoA/ed+PAPCo970CwJcA+gMYoN87\n+9qzvE9TAfzQ+/4jAFO971vm6z511z8AlQBeBFDo/T8432WoO/8BGA3geQBfAxho9+bb+7I3gALv\n+zUArva+9/h3KsN9K/DuyVhI19AHADaP275bW1DMPJuZ5wAIRwQeDHnIa5l5LoA5AHb0ogrLmfkd\nb7sH4A8kdgcYPwlgT+/7vgBeZObVLH1pLwLYr0MuqONYDBFYQER2off9ILT/Pu3Vwefe0ZwO4Bpm\nXgsAzLzCW56PMtTd7w0A3ATgN6FlPf7eMPPLzNzm/TsdIuSAvVOZ2BHAHGaex8wtAB6FXH8k3Vqg\n0jAKwALn/4XeslGQ8HjlG29Z4DfM3ApgtefSiNtXd+IiAH8govkAroOffiof92mV6/rphmwKYHci\nmk5EU73xfYDdGxDRQZChJB+HVvX4exPiJIhFBNi9yUT4/rj3IYUuP6MuEb0EYJi7CAADmMTM/+zI\nQ3fgvvNOmvv0OwBnATiLmf9BRD8D8BcA++Tr0HnaT4eR4d4UAqhg5p2JaAcATwAYn69D52k/HUaG\ne3MJ8ldOUg7dQfvNG0nqHiKaBKCFmR/J56HzuK9uTZcXKGbO5QVZCAlzV0Z7y+KWu79ZRES9APRj\n5moiWgjpp3B/MzWHc+pQ0t0nIvqrrmfmJ4nobm9V3u5Tfq6iY8hwb34J4Clvu3e8gJtBkOt0O6t7\n1L0hoq0hfSgfEhFBrnMGEe2IHn5vFCI6AcD+8LsDgB7yTrWDuLITyfrk4nNbHc8AONKLjtkQwMYA\n3mbJDbiaiHb0Xrrj4A8kfgYysBgADoMEXgDACwD2IZlapALSonyhg68l38whoj0AgIj2gvjFgfze\np+7KP+BVMCSDzouYuQpynUf01HvDzJ8w83BmHs/MG0JcMdsx8zL08HsDSCQapG/uIGZudlbZO5We\ndwBsTERjiagIwJGQ64+ms6M62hkRcgjEn9kICQR4zll3MSRaZBa8CDZv+XcBfAyppG9xlhdDBhjP\ngXR6jnPWneAt/xzAcZ193Tncp4mQCKL3AbwFqWjyfp+64x8kkuhB71rfBbCH3ZvI+/QVvCg+uzcM\n7zrmAZjh/f3J7k3ie7cfgNne9V6UblsbqGsYhmF0SdYnF59hGIaxHmECZRiGYXRJTKAMwzCMLokJ\nlGEYhtElMYEyDMMwuiQmUIZhGEaXxATKMAzD6JKYQBmGYRhdEhMowzAMo0tiAmUYhmF0SUygjG4P\nEe1BRAsyb5nVPu8lomoimp7P/RqGkRwTKKNbQEQPEtFiIlpNRF968/C4ZJ1UkojuI6IWIhoWWr4r\nZFbTkSzzRHWEAO7hTe1R4/3Vep875fM4OZzXZCJa451LNRG9TkQ7e+uOJ6K13rpVRPQhEf2kM8/X\nWL8xgTK6C1cD2JCZ+wP4EYCziGjfXHdGRH0A/BTATADHhFaPAzCXmZt0c+QggM6xesWsWsjM/by/\ncu/zf7keJ488ysz9AAwB8AaAvznr3vTOcwCA2wA87E1DYxh5xwTK6BYw88yQYLQAWO5sQkR0HhEt\nJaKF3mRy6TgUwNcAroVMp6I7OQnAXQC+51kK10Gm8x7pWDnDSbiIiL4gouVE9CgRDfD2MZaI2ojo\nJCKaB+CVbK6ViCqIaAER/dj7v4yI5hDRMd7/+xPRDM+anEdEk53f6rFPIKL5RLSCiH5JRBM9i6ea\niFKeoA4AACAASURBVP4vyXmwTD9+P4DhFD0F+YOQqSI2yub6DCMpJlBGt4GIbiOiegCfALiSmWc4\nq4cDKAcwEsApAG4jov5pdnc8gMcA/BMygdp2AMDMfwHwS/iWwoUQi22RY+UsAXA2gIMA7OYdcyWA\nP4WOsTuAzQFkZekx80oAJwG4i4iGALgZwAxm/qu3SR2AYz1r8scAfklEB4V2syNksryjvN9PgkzM\nuDWAw4lot0znQUTFAE4EsIBDM7x6VuFJAFZB5vYxjLxjAmV0G5j5VwD6AtgbwBVEtIOzeg2Ay5m5\nlZmfg1Tim0Xth4jGAKgE8AQz1wJ4HjLDaTb8AsAkZl7MzC0ALgPwMyLSd4oBTGbmRg7OuOoyyrNo\nqolopfdZ6l3rSwCegFhf+0FEU+/Dq8z8qff9EwCPAtjD2S8DuIyZ13j7qQPwEDNXMfMiAK8B2C7N\ntR1BRNWQCfm2g0wMquzirWsEcB2AA717aBh5xwTK6Faw8F9I5X2Us6qKmduc/xsgYhbFsQA+YeY5\n3v9PAjg6TV9RFGMB/F0FBtKX1QLADbj4JsM+FjLzQO+vwvtsdNbfBbF47vOsKgCAN234f4hoGRGt\ngojl4NC+lznfGyP+j7s3APCYdy7DmXlvZv7AWfcWMw8EMAAyVfdvM1yjYeSMCZTRXSmEiFAuHAtg\nEy8qcDHEBTYIwP4x20cFSMwH8KOQwJQx8+IMv0uEZ4ndCekDOoOIxjurHwbwDwCjvGCFOyD9cusM\nZm4AcAaAPYho93V5bKPnYAJldHmIaAgRHeEFCxR40XuHQSrpbPe1C4DxAHYAsK33txWARyD9UlEs\nBTCIiPo5y+4AcJXnLtRzdPuBkghGum0mAWiD9PPcAOBBItLt+wJYycwtRLQjgJ9nsd+84Vl1dwK4\neF0cz+h5mEAZ3QEGcDqABQCqAFwOCRJ4N8NvojgOwD+8qMBl+gfgFgA/1ki8wI6YZ0ME7CvPpTfc\n2/5pAC8S0WoAb0ICEzId32VExDionxDR9gB+7V0jQyIN2wBc5P3uVwAu9477O0iwR7prz/R/e7gZ\nQCURTcjjPg0DAEBS/tNsQDQawAMQ33obgDuZ+f+88NsDATQD+BLAicxc4/3mYkjLby2Ac5j5xY67\nBMMwDGN9JIlADQcwnJk/IKK+AN4DcDCA0QD+w8xtRHQNpP/6YiLaEsBDEBfKaAAvA9iEMx3IMAzD\nMBwyuviYeYlG8TBzHYBZkM7Zl52oqekQMQJkbMijzLyWmecCmIOg68MwDMMwMpJVHxQRjQPwHQDh\ndCwnQUbbA8AoSF+BstBbZhiGYRiJKUy6oefeexLSp1TnLJ8EoIWZH8nmwERkLj/DMIweCjNnjDZN\nZEERUSFEnB5k5qed5SdAxo64Ya4LAWzg/D/aWxZ1gvYX8Td58uROP4eu/Gf3x+6N3ZvufW+SktTF\n9xcAM5n5Fkec9gPwGwAHcTCVyzMAjiSiIiLaEJIP7O3EZ2QYhmEYSODiI6LvAzgawMdE9D5kDMUk\nAH8EUATgJW/84HRmPoOZZxLR4/BTv5zB2UimYRiGYSCBQDHzGwCicpRtkuY3V0Pm7zFyoLKysrNP\noUtj9yceuzfx2L2Jp6vem4zjoDrswERmWBkCM0DrNJWcYRidCBGB8xUkYRgdxrRpQIEVQ8MwUrGa\nwehc5s7t7DMwDKOLYgJldC5r13b2GRiG0UUxgTI6l6amzj4DwzC6KBkFiohGe7N3fkpEHxPR2d7y\nCiJ6kYhmE9ELRNTf+c3FRDSHiGYR0Q878gKMbk59vXxawIxhGCGSWFBrAZzHzFsB2AXAr4hoc8jc\nNC8z82YA/gNv0jIvm/nhALYA8CMAf3ImWjOMILW18tnS0rnnYRhGlyPXbOajIVNu3O9tdj+AQ7zv\nls3cSM7q1fLZ3Jx+O8Mwehy5ZjOfDmAYMy8FRMQADPU2W7+zmT/0EHDrrZ19FusPq1bJ55o1nXse\nhmF0OXLOZh6RjTzrToQpU6Z8+72ysrLLjmYOcMwx8nnmmZ17HusLK1bIpwmUYay3TJs2DdOmTcv6\nd4kySXjZzP8F4DlNGEtEswBUMvNSb9bdqcy8BRFdBJld91pvu+cBTGbm/4X22T0zSWh3Wnc8967I\nsGHAsmUyHmrs2M4+G8Mw1gH5ziSRks0ckrX8BO/78QCedpavn9nMdczOZpt17nmsTyxbBpSUmAVl\nGEYKuWYzvwTAtQAeJ6KTAMyDRO5hvc5mriHR/fun386Ip60tmNqouBgYOdKCJAzDSKE92cwBYO+Y\n36yf2cwbG+Wzri79dlF8+imw5ZaWFLVXL+DLL4Hx44HWVrGc+vUzC8owjBQsk0Q2NDRI61/H7mTD\n1lsD06cDQ4YAjz4avc1rrwELFkSv6+589BHwxhvyffly+WxsBEpLxYoygTIMI0TPFqi6OmDp0szb\nVVUBDz4oFerQoblZUICM+VmxAnjnnej1u+8uVtb6yL77ArvuKt/V49vYCPTpAxQVmUAZhpHC+idQ\n2eR2O/54YPjwzNs9/TRw3HFiQQ0dKhZUNt1quq32YfXunbqNRrDV1QHV1cn33R1pa5PPhgYTKMMw\nYll/BIpZXGelpb4QhFmxIigsOgYnHccfD9x0k3xvbJQAiYKC7CpUFc0LL5TPXhFdevPn+981u8L6\nwLRpwH33Be+1PoOGBnleRUUWJGEYRgqdK1BLlgBbbSXusyhaWyWoQFvc6fjyS+Coo+T7zJmp66dN\nk/6fqVOzO8cHHgA++US+a4u/b18Jjda+lEysXCmf3/lO/Db9+snn1lvn1sfVFamvB37wA+DEE4PT\naoQtKOuDMgwjgs4VqH/+U8TkrLOi12urWtPhpOPVV8X99t3vAjNmpK5fskQ+2+M+0079vn3lfzeg\nYd484Kuv/P9dV+Odd8qAVLUioqyFYcOA2bOBsrJ4C7C7MW9e9HIVKOuDMozuzf33Azff3GG7TzLd\nxj1EtJSIPnKW7UBEbxPR+97nRGdd8qk2tC+moSF6vVbkSUTlX/8Crr1WOuOjLBsNhlBrJhe0xV9S\nIv+3tvrrdt9drEGltBR4910591tvBa6/Hli0SNZFBVk0Ncl+1ydrYv58YO+9RaBd1JqyPijD6N6c\ndhpw7rkdtvskFtS9APYNLbsOwO+YeTsAkwFcD+Qw1YaOK/rpT+Vz6tSguKhAVVUFf7dyJfC3v/n/\nt7UBL7wAHHywWFHLlqUeSy2oJNZYHPPmiYWjwqRCc//9UhmHAzRmzwZuvBH4yU+AbbdNLlCd3R9z\nyimp9zwXli8Xy3D06OByFSPrgzKM7k0Hj+tMMt3G6wDCZsdiAJpOYQAkYzmQ7VQbjY0SvaYV1p57\nAuef7693Berjj/3ljz0G/Oxn/v8LFgAVFfI3YgTwzTepx6qqAjbYIGhBZZvgYtIk4K23fIFSQTrh\nBPksDI17bmgAnnsOOPlkoLzctxSjXHhhgWLOfH7vvgt89ll215COefOAl18G7rkn+766KKqrgYED\n5b676HM1F59hdG86uGGZax/URQD+QETzIdbUxd7y7KbaaGiQwAXXonADBPTiFy0CJkzwJ7ULuwQX\nL5Z0OYAEIrz/fuqxmppEvFaulD6kqIo9SdBDY6PvogpbTOr6U9askb+yMhEoJZ0FpZX1SSfF980p\nO+wAHHRQ5nNOyjnnAPvsI9/zEUmYSaAsSMIwuj9Rw2byROLpNkLcA+AsZv4HEf0Mkkx2n2x3MuWF\nF0Qwli5F5bRpqASCFo5WZNrZXlUl45bcvh/AD14AgI03BhYu9Ct8palJKsvGRrFgojrwhw6Vvqx5\n84Azzog+6V/+EvjDH4Lnp0QJVEuLPEAVqL59UwWqtVVEr3dv34K67z4JZ88095Redz4oK/O/56Nl\nVF0NbLppau5C18VnFpRhdG+KizNukut0G7kK1E7MvA8AMPOTRHS3t3whALe5PBq++y+FKRMnSn/R\n7NmAzgXlWiVaSc6aJZ81NZkFqqBAhGjlSrGYlKYmEQm1wuIq4N/9Dvjgg3iBOuUU4LrrUs8VkMrW\nZdEiOV5hof8QKypSBaq5WcSNKNgHlcQFmc88vG4S13wJ1MCB8v03vxHX7Pz5QRef9kGZQBlG9ySB\nQIXn+7v00ksT7Tqpi4+8P2UOEe0BAES0F6SvCch2qo3GRmDQID9YAghWjK6LD/D7btwxNbof15IY\nODA18q+5WQTKdc+5lbtWkJnM1dJSP0w6TqB0/Q03+BaUUlaWKlCutedW1gWdOAogH6HuVVW+QB16\nqH/vwy4+C5IwjO5L2HOUR5KEmT8M4E0AmxLRfCI6EcBpAK7zpt+4wvsfzDwTgE618SwyTbXR0OC7\n3ZQogdKIMu17CldmYYEaMiQ1kq+pSdxrWvmHrTCtkDVPXlgElaIifxyUK1CHHupniFArDZDwdleg\nBg1KL1CuBZUkQiaf/l/3ePnsgwLEitT7FXbxWR+UYXQ/tI4MB4flkSTTbfw8ZtVOMdsnn2qjsdEX\nqHBkHCAVdXGxP8BVRUSDGVpbRRQ0GkwZMUICJ1xUoHT/roi4+1ZWrhShC0MEvP46cN55si+1lq66\nCvjxj+W7W9mGLaghQ1IHEoctKBWoJBZUPguH25bIt0D16uVfV9iCamkxgTKM7kZNjXx2oPejczNJ\nuIELepGuQK1ZIxaHuuvUgtIboyITtqDKy1PTBalAqbUWFqgoqyaO0aMl63hjo4yvKiqS48eJnysi\nG2wg27kWXNiC0so6gW+3wwQq6Xixhgbg2Wej14UtqLBA6XMbONAfp2YY+eJ//wt6Z4zcYZYhKC6r\nV0tdm02Cbt1XQjpfoCoqpBDpRYYtqEGD/P/D44jiBCoqXZAGSbgi4t6o+npgu+3EOttww8w3vbhY\nIv5GjZLvJSVBF9bw4X5uQLWg/v1v4OKLU88vzsVXVJT+HID8CpR7zUnzAf7jH77l6NLWJg0JjeDr\n1ct3CYRdfCNHSqLfJFOfGEZSdt4ZuPfezj6LrstHHyUfkD9zpgxBcRvyq1dL5HO2ArX55ok37XyB\n0sCFhgZJmJpOoLRSV6HSii6JQDU3p3fx1dXJ+sGDpdLMdNNLSvzgjSiBKiryK2cVqP33F/djONQ8\nzsWXzoJScc2nQLnjy5K2PNXFGe7Tq6uTZ6Ln557nVVfJ+atAqZX1yiu5nff6wiuvRI/hM3InylXd\n1ibJpXsqr78ObLONZLfJNNZSUS+W6+lYvVoyxWhigTBnnAH8/vepyz//PPGpdq5ANTdLJVZSIhfb\nv38wuq65OdgPlNSC6ttXtmlp8S2BKAvKRStLQM4nk1+1pMTvG1OBqquTpLVr1ogoaYbycCBDOoEq\nLvbPMV0AhJ5fWBjaQ9iqS4IGo4SjJi+8MHiN4SlGPvvM7ztUIe/AztZuwd57S7quXHnnnfi8lj2V\nqIbWCy/IeMl8cu65kvKsO/Dvf/szNMQldA6j99GdNmf1avGAFRam1qfz5gF//rPkR20HnW9BFReL\nuKxcKZVV796+ZZTJgmppkWnUZ8+OtqCuvtoXibBArVkT3w+k1lBcJJ9uo+uJ/Mp1jz18C0oHvoaD\nHVRAFc1JB8jvtNWn59famtonFLYi80EuFpSeV9hiveOO4P9h8Vm+XH7Tp48UciB6niwjGW+/Dey4\nI/CXv+S+jyTT2nQ3ohpwmgwgn2MIb75ZEkJ3B9x6TeuPxYvTRw1rfeCmkVOjoqQkuP6JJ4APPwzu\nP0dyymbuLT/Ly1j+MRFd4yxPns1cRaG0VCq6sKtMLSwlbEGtWQPssovMeBslUHPm+MuigiTcF1Ij\nBgHfimluTh18q7ix/83NwYerAhVnAZWVBft46ur8TBPFxb5fWB/uZZf5lXj4XuRToFyRSSpQ+qwy\njZtS8dllF+DAA+UaV6yQBsigQeLfXt8i+errs++kz9Ui/sh7PbPtD1Bmz5ZntDB2XH3X5O67gcmT\n49dH3U9t7ecys8Fzz3V/IXcFSj0x+tzjRFvL8WGH+ctUoNwulVtvBQ4/PG+nmlM2cyKqBHAggG2Y\neRsAN3jLt0A22cw1g4JaUCUlqQLl9sPoTaivl5vimpuuQPXpE7RKmP2ceK6Lzy28ei6Afw7hdEku\n7vJwxaoCFdeHFO4jCwtUdbU8eLd1E8YV6XyRi4tPC25YoPr3D2acVwuqd2/p56uuFvfg0KGyfOTI\n3CvXrsrEieK2y4a4yq+tLf2zVjdprtPJ6FxmSV0+HUVLS6q7KB2//a004OKIup9azpLMqB1m//0l\n00zSY3VFXIGqrZV5+fSexHmN3IaW1ptRAqVjRDXSup2DeHPNZn46gGuYea23jT7pg5FNNnMVgJIS\nebGiLCi3kleroaFBbozr9oqyoPTmNDf7Fo3u+4svgglj1d0IxAuUG33iLg8XzPr69BZU2MWnARqA\n/K6qSiwmfVGjhE6vL59jEHJx8cUJVGmpRFEpakEVForFtGSJXPeAAbJ8fcwm8dlnEuqcDXHtuauv\nTh80oxVCrtOkzJ8vn0lnie4o9ttPZjVISlwuSrUEoiwoLWe5CBQQPwQjny7DjsRtAMydKwmn3b76\nKNz6QK9fBcqtz/Q9r6mRBN/t7OvLtQ9qUwC7E9F0IppKRN/1lmeXzdztg1q1yhcrvRnpLKj+/YMR\nOm6iUxUoLbxqHbn9W4884u+vrS14rCiBuv32YIRVOoGqrpYK94gjgFtuSb3usAVVW+sLlFpQFRX+\nuUb1zaxcKaHsHWFBFRa2X6Bc0dV96uegQVJ5Dx7s98+tr9kk9Nl99pkvIumIE6i4VrtSUyMRVbnO\nd6ZBLu2Z0DNb5syRDCwur74qUWZJieu31Eo4qsLVZdmKsRu8lW59VyfqPdN8p3HvfWOjBIJstJFf\nVlatkgbm0qXAiSfKMi2/q1aJOLXTK5Jr2FQhgApm3pmIdgDwBIDx2e5kSl2ddCwuXYrKjz5CpYpV\nOgtKxy+VlYkAKO50Furi05u1dKkISlyUWEtLUIz69JEH0tjoLyssDIqS+10L5nvvATvt5AvU0KHA\n2WenHi/Kxaeh1toHNWGCPPy5c6MzSlRXi0BpyzeK2trgfUlHW5t/36PyBcYRNX5NQ8jdRoNrQQ0c\nKOMq1L0HdI2JGjsCtaK32ELCbm+7Lf32cQKVqfKrqRE3adRze+YZ4OuvZTqVOPR3SWavzhcvvww8\n9VT79hF3X9zB4GG0rF52WXZRk7rPuDGC3cXFF3VPZs+Wz3QWVGmpNC6rqoBNNpHGjA6y1/BzvUd3\n3AFsvfW3+8s1m3muFtQCAE8BADO/A6CViAZBLKYxznbps5kzY8rll2PKFlugsrw8vg/qtdckSqa+\n3u9/Cg9idVvrKgB6szbbTPYT5XIrLRW/qyuGKnCuaLmZ0YFogdp+e2k1VFenDxEvKxPXzxdfyP9h\nF19bmwjLvvsCzz8fjOZTdOqROKuDWSIY0wkYALzxhly7inFJCTBunKxL0hfQ2OgPtnaXFRUFW7dh\nC+qDD4LzRLW0rJ9jU9xyqs87HXEClSl4or5eykOUQE2ZAvz61+l/X1vr9w2uKzowyWggnVbcunDK\nMUCiz+L6YbReiksD1lUFKnxeasm7dZSO6YwTKHfMopYRN1OMHkfv9/z5kvjA219lZSWm/P73mLLx\nxpiSxannms38HwD2BAAi2hRAETNXQbKZH5E4m3lRkbyQGiQR7oNS1d51V6n8Gxr8GxUWANdSUIFy\nb3acBdW7txTIsAXlClRtrXSOuriWnWvhlJf7FlQcZWXAAw9IWDAQFCjdb1mZ+OOfe86v/N3rqa6W\nlEt1ddEtOu2LyJRCaNddRQTV4pk9WwaMlpYmc/NFCVTYvQek9kG1tclsykqfPtLqevHFzMfsTrjl\nIEkFlusU2g0NYpEmzQASpq4OGDOm8wUqX1OIpxOopibgzDNTJ9IEZMLT55+P3qeW8ThXbTbBHeuK\n++5LnY9Ny4hbH2ogVvidnzdPxk1p/eCmnlOB+vvf5f9Vq/z7PXIk8L3vBfc3fz5w7LFZnX6u2cz/\nAmA8EX0M4GEAxwE5ZDPXSizcB+W6jVzRcC2oqMGvSlmZLzBKnEDpILOwBaUCV1KSWtnq/pQ99gie\nR1VVZoECfH9/lED17StRYJ9+Gi9QY8ZI2OdVV6UeQy2ndBWOPpqGBn9M0pgxUgjd55AOFSh32yiB\nci0oDTbZZBN/vYr1vvtivUDTNrnlIEkfRVwFnaniVoGKsqCSVJydIVD6Dm+wgV/JxbFihbgqw8Td\nUzfLTJjmZjnm8uXRv49r1GkZ704CtXChPFv33FSg3DIVZ0FdcAFwwAFBC0obvytXyrt/yCHyLi9d\n6gvUkiVikbv7i4pGzkCSKL6fM/NIZi5m5jHMfK8XpXcsM2/DzBOZ+b/O9lcz88bMvAUzp28O6yDa\nTBYU4ItOWKCuuEI+w31QURZUWNSefloqzPPPl05CFR1X4OLcEDouac4cyUenlJcnFyhAjhsnUNoX\npg89LFADBwLXXAPcdVeqe0wryHQio/1gdXWpfUZJLSg34a8SzuwB+FZmQYG4ourrg30iev1HH535\nmN2B4cPls7DQrwQbG6VSSDdmLC6DvVa4cS7dhgYJkoiyoJI0NGprcxcordyyYc89pR8SkMGd4f4J\nzXQAiIv+Bz+I7i/Se/v00xLpqGSyoCoqxKp3BV33FXePMwlUVwzy0WvS+uD11/2AG1egXAuqutoP\nVNH6L+zi23Zbsa40kcKgQVKH6/1ua5NtmX2XaUcIVIeilVp4HJQud4MUVHRqakTYVGxckVNcMdNk\nkVEWVEmJFNIHHpCM3K4FddNN0qkdJ1ADBshDGTMmKHxJXHxudowtt4wXKA0Yce+HogI1cqQkaw2/\n4JqCKF3ggZsFQoVfcZ9DOqIsqHBwi8v/b+9aw6uqzvT7BXIlARIlIGAEBalOLYpWRi5TGC0jo6J1\ntKVjL4pQ29EpnXFQgdGWYltrabXyjE8RLNZ6q9dqnRkpILaVi7dKYZQiImIACaIQCASCsObHez7X\n2vvsfW5JyEmy3ufJk3P2ue299lrf+92XLoqysuAC0YWUa+pvvqKx0QoHrTHSmiMXGmMKa/Sf/Szb\nxSjxxLnwUllQmSSfqAW1eDGwcmX69yt27GDD5MZGWr9DhmT2uWXLgl3ww9d/2mn2tbfeChJWFK65\nBpgxwz5PlSShWb3hfeNSkZr7Xc21oESOXjq/KkM6b1Qp0PMIY/9+ZuqNHs3nKscaGqyL7/vft4Xh\nKn81q9pVvioqgklv7Y6g1JR2Lajycg7m4cPBWqbqagrlujpeuJKCWk7uYHfpwtc1FVuPxRGUwiUo\nAKitja+zEKEwDRPR1q1MlU1FUOGuEHV18QSl2YRAsgWl3+N2yFDowjtwgD7k669PPg8N9jY0WBef\nwp1YqRC36WQ6ggpDxzmHSZy3GD2a46oJNlqtH0XCbmIQAFx5Jeffq68yO1QFTJxwbGzkGtm3L5nk\n9LtTuRgbGiwp/OY3KS8rAHUlv/su44dZNAINICoJ5PDh9K4/RbgTvjaHjrOgios5Xi5RKLnHpeq3\npIvvaHXs0Gvau5fXNXeufU2EHgu37uy+++z1HzpkW2e98w4Jyk2KuOwy+7hnT36uvt6+p7ycMlZd\ngtu2Ad/6Fud0hmhbgtLu1aWlHMiSEl7crl3Uhl580QqukhLgxBOZb19UZAngjDOCLY0U2mlCBX9D\nQ7KLr6wsSFD6W66gzjbTSH8jVVHlqacGn2/cSH8tYK+rWzdLEqqVhOM8rvUYJihdeAcOsIbrZz9L\nPo/rrrPflauLr7GRWpWe2zvv8LuyJahRo5h2nGsdT2ti9mwK39ra9O8FbLPgJUuiLR51o11xBfDo\no3zs1v4BbDyqwqF7d35PaWm8cNy/n8pacXFQKL/0EudCly6pFY7GRsZl5s7NruGsuvfCbr5bbwXu\nuiv1Z925EJf6fOmlwWNhEnCJTdcDwHEMJ++4qdBRFpSus7gsvTgLSpNf4rp6u9DXN20CHnyQz40B\nZs1qnRiWa0G9+CItUXWtiwAPPAD8c2JP2rIyKteK55/n/8GDGQvv0cOSz6ZN7Lmn6NGD80zLHfT7\nNCt4+XJgxQq6Bs88E5mibQlKmVuJobjYBuHWruUxFdwAF9C+fXxNiaCkJLpauayMA6Zk09SU7N8v\nLQ0SlJKRG+DPZNNAF3Pm8L8r7MM4/vhkjVG1bNeCKijgde7enbwxmOsWLC1NFioffWTjee6iWbaM\nC6qhwboFoyyoTF18YQvqpJNYnJztuIkwg2r7dvqsp04FJk/O7jtaC7fcQvdVTU369wIknkOH4q1o\n1Sgfeoi1fEeOcPx69gy641Sg7txJodm/f2qCKivjPHHdfH/3d/xfWZm6tk0/f8IJ2Wn3avGqoC8o\n4LnefDMwc2bqz7rrMcqqjCL38DWEu5+okD94kOOpr+/ezTV2+HDQgnIt9kwsqMrKZAJrauL3hZWD\nuO8AgNtvB77yFYYS6utZCpDOjZkLXIJSJWLCBP5XBUGJvVcvnv/ttwMjR7KZwRVXsIbvyBG+76ST\nKHfcDFyA827qVCoV6tnRDG2Ayt3GjcHuMhmgbQlK4VpJmsaoxNTPaUShAtR18cUJQs2m08+4tQ36\n2TgLqn9/eyzbZp96c1IRFMDFqf7g664LdlTQ89dz0nhTOJVbfyNs7RgD3HsvJ5y7LT1ApWDpUtaW\nud8VZUGlc/EZYxet+94tW7K3oADe16Ym4KabgHvu4TUcDUyZkpXbIS0efzz165q9qXP8ySeD46hz\nddcuzs8dO/h4wIDUMajSUusiV4waBfznf6YvvtbEln79gh2r00FJVAnqyBHbvirKmpg3L9rjsXNn\ncgNn17pRuAS9YkXwec+e1jpVgtJ1odf+3ns2+alXL+Cb37QxwXQW1IEDHJ9wOyl1aUft5B1GOOFp\n2TJ7zq1FUD17cpzef59zQQ0DXYu6pVHfvjz/6mpaTQ8+SGtH0/F79ABOPpnvCa9jvQ+NjUzWl9AN\ntwAAHMNJREFUUajS/9RTfM+nP53V6efczTzx2vUickREqpxjmXczV2ievrr4nn6aQbinngrGgNTq\nePbZoAUVBdUKoghqxAj+P/bYaAtq8GC29QCyJyg1geO6oLs45RT67N09U1Sw6/mrD1fJRuFaUJrt\nB1DAqzZaVhbtdqirY11XWRnN9L17k5MkMnHxHThgtxVx35vKxZcKanGsWdMye0OlI9i33uJ9XrCA\nCTG3357+O9evB66+OhjTS+eaOf30oFa+axf3JNL7dPnldK3p/dT3btlCgbBxo/X/R1lQtbXWyg5b\nUPX11JjDe5CFoRZUv37ZW1DHHRdNJko2xtgY0Te/SQUECN6f1auDm3zqdYWxdy9jqk89xXvmQgP1\n99zDpAm1oIyx1759e7DFGmAzYNNZUOoGffttuqwU+n3du6dvZ6UEpXLnww8ZvwNaJy7V0MD7s2dP\nMCwAWJJRl5waA4MG0UL6+GPKCVXY3c+G4b7mxth1HT/6KOVullvq5NTNHABEpD+AzwPY7BzLrpu5\nQhMZiou53frOnazodjcrBCzJ9O+f3oJKRVAFBZy0FRXRFlRxMWM2xcUsEM4G+nuZCtjBg4Nkpp/T\nTD89J7fbtzFBQlEy+eMfec7qU9YCZIWOwYMP8v8Xv2gFl7thI5CZi2/GDOvPd39n377cCErR1BQc\nv82bs9vnaO5c9k0sLeX51dZyMU6dSuGl+MIX2KEE4GZ/N97Ia77rLr63ro6brrk47TSey8MP83ld\nHQVrUxNjfcOHJ59PTU1Q8H70EXD33Xy8YoU9Z81iVWFfW0uC2rGD86GwkMJRu8T/6lfUwGtq+J7u\n3ZMtqJ07qYilIihjrAXVqxeFZiYJMsbYuMLWrcku9CNHOO4LFnCNf+MbdswAK6yHDAlm3WkmYJSl\ntWcP080vvZQywrWylaB+/GOeT2kpx+zgQWsd7dxpN8rUkgYlwn37KKRTWVAqq9zNCbOxoPQ8dKxW\nrgTOPZePH344d5KKi3251xRWQlUeKEGppVRTA0ycCEyfznuhnWVSeYVmz2aM64kngDFjkn8DoDWf\nJXLtZg4AdwCYFjqWXTdzhd70igr2oFO46dgA4wCaYJDOgtLsPhXw7kC5NzPKglLs3s1CtWygfJyq\n1VG6z69ezUUPWO2qR49gunlRkRXipaWc2FowvGQJ/0+caJveAlbw7dxJ7XLhQqtxR1lQbgv+VauS\nz1WFuxKkjqsmvEQhrs7HRWFh8L7ccQetlihs2BB0Sf361+x/OHs2n0+fbmNHd91FzXrlSrb+efNN\nCpaLLuLrw4cz8+622/jePn2CWvq991r3VY8eHD9tX7RlC2NKL0c0TnFdHgAtKNVWXUIrLaXgVAFe\nW0ufP8DfXb2asR3NnrrySiv0AdtB5Qc/sMd0z61UBHXwIOdSly72/rgp4GF8/DHXxnPPMR586qm0\nQsIdC5R09Bznz+d/tT4aGxmHca2R3r3ZWHfAgGAG36JFjItohq++d9IkPu7Sxe5w4O4CoN4FvfaG\nBktQgwdzPDUTsaEhPUGVlfG85s+3xKYElYkFpWQUtQ7WrKGF2dhoa6qWL6fCqRsAAowdh7OLhw4N\nZuhpHei+fSSg3buDYYHXXrMJEeXlvBaNgx9zDIvptQHAySfzfypbo7SU9+fSS3m+aj273oUs409A\njjEoEZkAoNYYszb0UnbdzBU6MOXlXCjqE3ZTGgHGat54g4/TWVAuQfXtywxARRxBhW96SUlurVdu\nuSWYgpkthg5N/t2SEmbVvPaa1ZQVpaXJAmXmTI7rgQPWZaELautWG/9QwRVOknA18Sef5EaDUfjG\nN6y1pYSmm09GIZ2JP2UKrVbXggrX8dx9N8/ZGLrPxo61r33ta/yvcZ477kj+jREjbJf5Dz5gh4L9\n+zmur70Wner+gx9QGLqCZdIk4JFH+Hjz5mDK8v338//8+UF3YFERY1QNDdzcraDAKhQaQ9JgtjHW\ni3DkCF1bChWE7m+qcrNoEdeQCrqKiiBBGQNMm2bHdfv24L2/5RYqH+53z5lDd/C0aXxcWWlrDM88\nk3Mq08bECi0uVkV0yBC79t99N7g31bhxVBhcAnDXdEEBSXzePOs6VYLavz+Ybu3uFVdTYwlKrQ3X\nxbdyZXJdpirJ2vXEJah0FlS6ouZnn+U5f+ELfP7QQ7Ss3BZMy5YFU94nTaKioBmhAPA3f8NO8S7p\nukrosGH8TkX//tbFHg5PDBsW7cJNBZVfSlCHDmW3jUoCWROUiJQCmAEgxTaWWaK6mhryKafw+cCB\nFDBut+s4xGnkOtgFBXT3uG1SXIJyiaClmlfOmpVc65QrzjuPPvuSEroVRo6kBulmAUbValVXW9eb\nEoYS1PvvW8FXXk7N7Sc/CQqY6mo7KeOKCgsLKejDBcVAbkkSABdWY2MwWK73Ut1h115LzfK44yhs\nduzgPV25kgtw2jRq9P/0Tywq3LiRVhFACwqwO4O6ioxaXYrf/pZjs2iRLQLV+aZ7iam7dOtWq/UO\nGGB7jk2ebF1WCxZY196iRXZ+a6ZdSQnPxxVilZW8V+XlFKbGMNCsXRPq66lsKEmr5X3SSfy9Y4/l\nmJeXU3A3NdGFN2eODcoPHBi0GkaOZBLNrFkMqr//Psd0yhR+TtOPn36a7xk8mOdcUQF8+cvBMVSL\nM4yaGt47VTQ3baKLKJWFXVERLyi7dCFBPPGEnYcaZ2pstK61a6/l9UQRlApz1yU4YgQF9uOPcx2U\nlFiLYt063g/Xxbdnj91xIQqDBtlsv9mzrZIQDiWoIucqdOPH89z1XjU2ct2qorB2Lcmrtpbkvn49\nr+OUU3g/9+2LbtumSJUiHw63ZAq9vznGlHOxoE4CMADAX0RkE9ix/M8iUo1su5l/73v8mzULL3zl\nK8E03riJrUjXeNO9sdXV8TcmnaBvayxeTFPb3dsKCO7b4za9VAFcWRkkqIEDOXHVteRaUArXxecS\nlGqf+tvLl1NAG2PbU7kFxUA8QaVz8anG62pxSlAjR1ofvduhYd8+CsYRI6xLo7aWwuDmm6lpjx1L\nIvjFL3jed96Z3H1j+HAKZICuu4svZsxpnJPrM2eOba8F2PuwbZslqLgEmauv5t+XvhTcTVgXsd6r\nG26wC7qqisL7d7+z39OrlyVcgG4jJQ03O/Pb37YKQbdutHbPO8+6jd97LzrB49xzSeDLl9Ny1BiF\nCkYd96YmWjXl5ZwbFRXU+N36J1dLB2x8dNgw3iu9zgEDgiUlAMdn7Fg7R7t3pxV36qn8LbdrRUFB\nchfy4mKugw8+sHNY36P3qKaGRL1qFc9Hyznuuy/4XZdfTjLQdajb4GzZYgmqspLxxVGjWJAahR07\n6OrSOK3O7fJyzksNcWj8Ta35+fPZE2/JElsM/fLLVBCXLCFZDhlCK0W3XN+7l+dzySX8vr17U8eR\nxoyxCWQthYQceOGFF6y8/973Mv54prT2STdzY8z/AejzyQskqWHGmF0i8gyAB0XkZ6BrL2U382xO\nNAnpCuJSMbb7WZfoWrP9f3Mgkvrchg6llVBYyIk+bx4Fm1o1e/ZQ8P37v1shH0VQrqusd28riDSt\ndvJkatGf+xwFU/fuVjt/881gLChXglKN13XvuPVE6l5x3XCHD7P7wcUXA1//uiVKV8k5+2zgD3+w\nz/v2tYLXhZJ9VKdrgALWGBLZ8OEshC0qyoygFFpD0i/k/daEDv39TZso9MJCRcdj40ZaSm4GVdjN\npoFpPf6nP9mx3bo12jru0oXavbuDtIs1a+z8GDjQfrf+v+YaCspPf5rn/uGHdOP17EmLc8ECJiH9\n9rfxsdp+/Wgx3HabJZWKCt5DVbbcuRtViFxURAVjzZpkN7HOz+OP53Wccw6tq759OY/eeCM6Zqfr\n8IQTSKoPP8x2VMXFPPbYYySOKOLfv5/nUV1NBU/v449+ZNOvb72Vrtx580iatbUkoHPP5b1as4af\nnTiRFuyBAxxrEa7Ll1+28WJVMCsqOCfffz81QZ1+ejAe2BJIyOExY8ZgjJM8MWvWrIw+nms3cxcG\nlryy62beHKSzoFIRlPuaa0HlK0EB6U3kE0/kYlOhXFjI69m2jcFjzVhSYtIFqhrhDTcELdjevZNd\nfA88YGMu27dbgaQC98Yb7edzJai//pVauGLOnKBfX2MQUTvMXn01ffdqmaSzwqOggiJVqyq1StSN\nqwWfKiDTZTDGEZTbbFQJMhyHBWxiht6vVEJH2xa5ZKzx0WXL4vcLczvNA9a9qtDsuSFDrPtHrbii\nIrpqAZJ5VRXdYmedxWOlpXZ84+b1hg3MuDzmGJtkokJ/6FDO6XCbsrCoKS5mp5nXX7fWkcK1LBWv\nvcY5c9lltBbD7ZOAoIyYPJlkv3y5jU1pk9WqKrqX3b6LW7fSLV1YyPPRMbjpJlpHABN2fvELPj7n\nHM53jdF/5jP0qGzbRqv+9dc5PnotZ55pSVvdkFOm8P/evVR40tVntjTmzQvGxrJETt3MQ6+faIz5\nyHmeeTfz5qA5BOVObPd7Mskwayu4AuaYYxjDiIII3QGjRnHRbN7MBX7ttXxdF6mOj9tl3EV1NRfo\nyJFBd4fbSNTtgzh7dtBCyTUGpRl1PXrwnKZNCyaAFBTwu196Kfmzuig1KzQXghoxIvON53TMRo+m\npqtxi3TXGM4wVRx3nN0CfeBA/o/qXjFgAK9V72FUM9jzzw9uyBf+npoaJr/EtSMKzweND8+ZQ7K6\n4AIK8Zoa3o/Jk4PpxWH84Q9WuQGscI6zoEpLk8dR3aka91OcfjoTFsJZYsXFVNw2b6Y1pFmGur15\nGBs3cs707UsyqaujwuJaFS5B9enDmOLNN/O3LrjAvrZnD/Dd7waVLbV4i4p4PqmUoAsv5NjW11sL\neexYZvMdPEjl5s03g5nOX/wi3/+nP7EUQrNSAdvhJttElubirLNsvDcHtEA1ZBshnRBxu0GEEWVB\nuXs65SMmTWLsoqKC1+bGRcLQFkElJVxkJ59stbCKCqaCanpuHNSFE6VhFxRw/F1X1uTJXKiKXC0o\n3Reqvt7WF4XbQn3nO6x1Of54xplKSzkeGpNQjTvXRJVMMzf796eP/4MPeN7du1OIpnMaXHBBcm/E\nt9+mJaJu027dGGsIx2UAxqPc3whv8/DDH5KgzjjDHlPy/uMfqU1XVVFD13qudFCyHzfONpV1XYua\nQh6GnmefPsHjuQTPVfsPu1BffZVjJkLBrXGu4mIK8OeeI+GMHUurI+y6nDuXWZevvEIS69uXVsqO\nHVQURozgxqHjxwcJyk3iCntfdAv1v/zFdq5Yv56/rS7LVAR1661MtNm0KVjTuXgxrTL1cKjiANgx\nULeuWxpy4YUsmTnaBNVMdFyCuu66+L2FoiyocMA836CxngULbG1MOqi5X1VlBUS3brbQMxXCbaCO\nPdYWORYX87/bP61PH2ZK/vKXjC3kSlAuOXTtSuHrBr+PHLGL8j/+g4kAYahWmaryvblYt44ablkZ\nBU19PbX1TAiqqsp2KlGE72nv3sluNoVreVVVJVsO06cnf+a00+g2c/tW3n8/0/KvusrW57jo2tXG\nwoDkz2eCOLJPZ0FF4Yc/jK5LdOepK/S7drUu0rVrgX/9V5v+7+K660ger7xCAunViwRVV2eVHbez\ni8Ktb9N7smABf/fKK/n88cdJet/5Dv/mzrVJDqkIShN99u8PxtrOO4//tcVUuFY0DupOPtouvmai\n/RJUJkkScamR7oSOavOfz4grWI2CS1C6sMKZToqowH5Rka32r6wkIa1fT61y06bkBp8XXcTsrFQE\nlal10rt3sH2TCxWm4QJYRUEBiyk15tEacLVwXfQ6tpm6COPw8ceZt4QJ94WLg0gyuXz1qySoiy+O\n3gxwxw7OIU2qyJacgPh1mi4GFQXtFZgKgwbRmn35Zd4H1wJNpbDovXNrq1assJ4Ytx2bIsqC0vWp\nBLViBQlQO3/362fHM92ecbt3B4unXeh1ZdrAWLME2xnyOOiSBs0Z7LgYVEeDEpTr6ora9XPmTFvg\n6kLHaf586yIErEYdVTWvRBeVcDJ6tI2xpMLSpbTyVHiFM6L69WNGYqrCv0suyb2bR66ISzjIFln2\nK2sW9u+PJieA86awMDdiAmgBRllmQLPrY2IxdKiNTxYWUjnTpINUO95OncrYlrrJ9u2jtaX3NMqC\ncgkqPNeWLuXYDh3KWOD3v8848PnnW2JKRVAFBTz3OAVax01dtx0U7deCOuOM3LPuXK2qvVlQ2UD9\nzerm6N6dSQ9huHU9UZg8ORiY7tOHAXG3FkuhBBVlQbl7zaSCEo8uQtfq+9//pQD56U8z+66jhaVL\nKdQmTMjvbNAwWrP2L9Xmhbm4+LKFZktecw1dwamsjU99KjqtXtOho3budu9zWI64ytO4cdxP7M47\nOad1baQiKIBW20cfxb/+6KMkvA6M9ktQkyfntl/Qpk1BzacjE5QuJrU2s90MMG5sxo+Pb96qi64l\nrAAVXq7mm68L0hVI7Ymg2gqtZUEptMO4IpNt711s2UIFT4lJvRHh7jZNTZzzca5zgFmo27bZa83E\nggLSlys0IzuuvSDt7BCRewFcCKDOGPOZxLHbAVwE4CCAjQCuMsbsSbw2HcAkAB8DmNqqqea5QDvz\nKjoyQWm8Ryd6tn0FXfenutnWro0ucA3/ZkuMqy7o9nSPrr/e9mjziEdrW1DN6aYPJMe6unRhTZmm\n/yv0/FNtVNilS7DwO1OCmjHD1rx1UmSiviwEMBeAm/7yewA3GWOOiMhtAKYDmC4ip8Jut9EfwBIR\nGdxqxbotgfYk/HLB+vXJu19missus8WKM2fSl57phmMtSVCptNN8g9abeKRGLkkSbQ1tIRTGwoW2\nPCITZOri036OnRhpZ4cx5kUROSF0bInzdBUAjXxPQGK7DQDviohutxFRVZkn6OgE1ZwgqrvXzvjx\n/MsERUW2JVFz4Aov3SLbo2NALY+jncjSGtCMvUyRqQXl0SIxqEkAtNqvHwCn1UCG2220JTo6QbUF\nsvX3x8ElqMrKYCahR/tGe7SgWgpqQXUEcm5lNGt2iMhMAIeMMRmWowfhNosNNxP08AjUfxzN1GuP\n1ocSVD7uINDa0CSadE2FOxBeeOEFvJBDM4ScCUpErgTwjwDcYpStANw20Gm322hzdEYNrr0g3FXC\no+Mg3Y7YHRla2J1qb6YOhlbrZp7AJ9ttAICInA9u9z7BGOP6c54BMFFEikRkINJst5EX8Jp5/sLN\nrfEE1bGgFlRnJqh21naoLZBJmvlDAMYAOEZE3gN30p0BoAjAYqGWu8oY8y/GmDdFRLfbOITW3G6j\npdC3b+oUUY/8gFckOhbUgmpuOnh7hE+SyBiZZPH9c8ThhRHH9P0/AvCj5pzUUcXSpT5Roj3AW1Ad\nC53ZgtLYarZ1iZ0QftXHNZT1yC94C6pjoTMT1FlnsfWRR1q032axHh0fPgbVcRHeJr4zoWtX4POf\nb+uzaBfwBOWRv/AE1XFRUsJO4Z0ok80je3iC8shfuATlXXwdD25/Og+PCHiC8shfeAvKw6NTIy1B\nici9IlInImucY5Ui8nsRWS8ii0Skh/PadBHZICLrRGRca524RyeAS1C+LYyHR6dDJhbUQgDh/QNu\nArDEGDMEwPNgN3OEupmPB3C3iM+l9MgR3oLy8OjUSEtQxpgXAYS3Tr0YwK8Sj38F4JLE40+6mRtj\n3gWg3cw9PLKHt6A8PDo1co1BVRtj6gDAGLMdgG4z2Q9ArfO+/O9m7pG/8ATl4dGp0VJ+k5zaGflu\n5h4p4V18Hh4dArl2M5dMWuUlNiz8nbPl+zoAY4wxdSLSB8AyY8wpInITAGOM+XHifc8B+K4xJmnD\nQhHJ+zZ9Hm2MQYOAjRv5eMMGPvfw8Gj3EBEYY9LmJ+TUzRzsWn5l4vHXATztHG9f3cw98heHDtnH\n3oLy8Oh0yLWb+W0AHhORSQA2g5l7aJfdzD3yF0eO2Mc+BuXh0emQkYuvVX7Yu/g80uG//xtYvBj4\n+c+Bujqgujr9Zzw8PPIembr4PEF55DdWrQLOOQf48EOgqqqtz8bDw6MF0NIxKA+PtoHGnryLz8Oj\n08ETlEd+Q4nJE5SHR6eDJyiP/IZuaOez+Dw8Oh08QXnkN7p143+/3YaHR6eDJyiP/IYSlO857OHR\n6dAsgkpsrfGGiKwRkQcTBbqxW3F4ZIZcWoJ0WFRWAi8FG5H48YmHH5t4+LGJR76OTc4ElWh/NAXA\nGYkWSF0BfBkxW3F4ZI58nSxthrODDfH9+MTDj008/NjEI1/HpjkW1B4ATQC6iUhXAKVg9/K4rTg8\nPDw8PDwyRs4EZYzZBeCnAN4DianeGLMEQO+YrTg8PDw8PDwyRs6dJETkRADPAhgFoB7AYwCeADDX\nGFPlvO9DY8wxEZ/3bSQ8PDw8Oiky6STRnOKSswAsN8Z8BAAi8hSAEQDqRKS3sxXHjlxPzsPDw8Oj\n86I5Maj1AP5WREpERACcC3Yxj9uKw8PDw8PDI2M0q1msiEwDyegwgNcBTAZQAeBRAMcjsRWHMWZ3\ns8/Uw8PDw6NToc26mXt4eHh4eKRCm3SSEJHzReSvIvKWiNzYFudwNCEi/UXk+URR81oR+XbieGxR\nc6IIeoOIrBORcc7xYYnC6LdE5M62uJ7WgIgUiMifReSZxHM/NgmISA8ReSxxvW+IyHA/PkS2zQI6\n8tiIyL0iUicia5xjLTYWibF9JPGZlSJS0+oXZYw5qn8gKb4N4AQAhQBWA/jU0T6Po3zNfQCcnnhc\nDsbvPgXgxwBuSBy/EcBticengi7TrgAGJMZLrd2XAHw28fh/APxDW19fC43RvwF4AMAzied+bOzY\n3AfgqsTjrgB6+PExSMiQdwAUJZ7/Box7d8qxATOqTwewxjnWYmMB4FsA7k48/hKAR1r7mtrCgjob\nwAZjzGZjzCEAj4DFvR0WxpjtxpjViccNANYB6I/4ouYJ4M3/2BjzLoANAM5OZEVWGGNeSbzvfnSA\nQmgR6Q/gHwEscA77sQEgIt0BjDbGLASAxHXXw48PkH2zgA49NsaYFwHsCh1uybFwv+txMDGuVdEW\nBNUPQK3zfEviWKeAiAwAtZxViC9qDo/R1sSxfuB4KTrK2N0BYBoANyDqx4YYCGCniCxMuEDvEZEy\n+PGByb5ZQKcZGwfVLTgWn3zGGHMYwG4RadVtrn0386MIESkHNY+pCUsqnKHS6TJWROQCAHUJCzNV\nbVynG5sEugIYBuC/jDHDAOwD+136ucNmAf8Guvr6gpbUFfBjkwotORatXsvaFgS1FYAbXOufONah\nkXBBPA7g18YYrQ2rE5HeidfdouatYJq+Qsco7nh7xkgAE0TkHQAPA/h7Efk1gO1+bABQg601xrya\neP4ESFh+7jjNAhIafaBZANCpx0bRkmPxyWsi0gVAd5No1NBaaAuCegXAIBE5QUSKAEwEi3s7On4J\n4E1jzM+dY3FFzc8AmJjImhkIYBCAlxMmer2InC0iAuBraOeF0MaYGcaYGmPMieBceN4Y81UAv0Mn\nHxsASLhnakXk5MShcwG8AT93gOybBXSGsREELZuWHItnEt8BAJeDu1W0Ltoo2+R8cHJtAHBTW5zD\nUb7ekWAx82owc+bPiTGoArAkMRa/B9DT+cx0MLNmHYBxzvEzAaxNjN3P2/raWnicPgebxefHxl7X\nUFCxWw3gSTCLz48Pr2kaSNhrwAB+YWcdGwAPAdgG4CAYl7sKQGVLjQWAYrAJwwYwhj6gta/JF+p6\neHh4eOQlfJKEh4eHh0dewhOUh4eHh0dewhOUh4eHh0dewhOUh4eHh0dewhOUh4eHh0dewhOUh4eH\nh0dewhOUh4eHh0de4v8Bukz03BWgN4AAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x102320d10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(nrows=2, ncols=1)\n", "\n", "dfgraph['PR'][-10800:0].plot(ax=axes[0]); axes[0].set_title('3h Baseline PR');\n", "dfgraph['PR'][0:10800].plot(ax=axes[1], color = 'r'); axes[1].set_title('3h After Exam PR');\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 124, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEaCAYAAABEsMO+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYFEXzx79FRlDAHBBMoIAKIvKqSDArKsbXLGZ9xdfw\nmhV/gr6Kor5izoqKAREVEyoooqigCEgSAQUEkQx3ZLi7rd8fNe30zM7szu7N3u3t1ed59pnU09Mz\nO9PVVV1dTcwMRVEURck3alR2ARRFURQlCBVQiqIoSl6iAkpRFEXJS1RAKYqiKHmJCihFURQlL1EB\npSiKouQlKqCUagERdSWiBZVdjlT4y0hE04ioS2WWSVEqExVQSsFARIOIaBERFRPR70TU25ck8qA/\nIhpNRBuIaDURrXK29425yEH8XUZm3peZv4n7AkQ0kIg2Ofe2nIhGEFFL51gfIhoU9zUVJRtUQCmF\nxP0AdmfmRgCOB3ANER2bZV4MoBczbwVgawBfAyikiru/c29NASwF8Ip1TEfvK3mBCiilYGDmX5h5\no7NJAEoALLOSEBHdQERLiGghEV2UJkty8mUAgwG0sjI6iIi+d7SrhUT0BBHVso4PcK5TTESTiai1\ns78OET1MRH842t7TRFQ38OJEc4noCGe9DxG9TUSvOprPVCJqb6XdiYiGEtFSR3u8JuIz2wjgTQAV\noR0qSkaogFIKCiJ6iojWAZgG4D5mnmgd3hHAlgB2BnAZgKeIqFGEPOsAOB/AOGt3GYDrIdrVIQCO\nANDLSX8MgMMA7OVoc2cCWOGc1x/AXgD2d5a7ALgr4u2dBBEmjQB8BOAp53rkbE8CsBOAIwFcR0RH\nR7i3hgDOAzAxXVpFqWhUQCkFBTNfDaAhgKMA3EtEB1mHNwP4LzOXMfOnANYC2DtFdo8T0UoAqyHC\n527rOhOZ+UcW5gN4HkBX53AJRBC2JiJi5pnMvMQ5djmA/zBzMTOvA/AAgHMi3t63zPy5o9ENggg5\nAOgIYFtmvs+5t3kAXgRwdoq8bnbubRaABgAujlgGRakwaqVPoihVC6cC/5qI3oFU/uOdQyuYOWEl\nXQ8RZmFcy8wvAwARHQbgQyLqwszTiKgFgEcAdABQH/ItTXCu/xURPQnRcJoR0XsAbnLSbQFggig9\nAKSRSIjGYl/Z6xFRDQDNAOziCBw4+dUAkMrB4iFmjqq5KUqloBqUUsjUglTk5YaZvwXwG4BjnF3P\nAJgBYE9mbgygNyxBw8xPMnMHAK0hWtrNAJY75WnDzFs7v8aOGbA8LAAwx8qzCTM3YuaTypmvolQq\nKqCUgoCItiOis4ioARHVcLz3/glgWEz5HwJxkpjm7NoSwGpmXk9E+wC4ykrbgYg6Ok4TGwBsBJBw\nNLsXADxKRNs5aXdx+qyyKpaz/BHAGiK6hYjqEVFNImpDRB2yzFdR8gIVUEqhwBAhsQDikPBfABcw\n809pzknFk47H3GoArwLozcwjnGM3ATjPOfYcxMvPsBVEEK0EMBeiOT3kHLsVoomNI6IiACMAtMyy\nfAwAjtnyRADtnOstda6/VZb5KkpeQHFNWEhE10E8owDgBWZ+PJaMFUVRlGpJLBoUEbUBcCmkw7gd\ngBOJaI848lYURVGqJ3GZ+FoB+IGZNzFzGcR76LSY8lYURVGqIXEJqGkAOhNREyLaAkB3ALvGlLei\nKIpSDYllHBQz/0pE/QGMhAx+nAQZae+BiLRzVlEURQEzpx3/F5sXHzMPZOYOzNwNQBFkhHpQugr9\n9enTp8KvWZV++nz02ejz0edT0b+oxBZJgoi2Y+ZlRNQMwKkADo4rb0VRFKX6EWeoo3eJaGtIHLJe\nzLw6xrwVRVGUakZsAoqZ83Lmz27dulV2EfIafT7h6LNJjT6f1OjzKT+xDdSNdDEirsjrKYqiKPkH\nEYEr0klCURRFUeIkNgFFRLcT0XQimkJEbziTvCl5zPLlwLp1lV0KRVGUYOIKddQcMhHbAcy8P6Rv\nK9VkaUoesN12wOmnV3YpFEVRgonLSWI1ZLbSBkSUgEzK9ldMeSs5ZMGCyi6BoihKMLFoUMy8CsD/\nAMwHsBBAETN/EUfeSm5RnxVFUfKVuEx8ewD4D4DmAHYG0JCIzo0jb0VRFKV6EpeJrwOA75h5JQAQ\n0XsADgXwpj9h3759/17v1q2bjhVQFEUpcEaPHo3Ro0dnfF4s46CIqC2A1wEcBGATgIEAxjPzU750\nOg4qjyACWrUCfvmlskuiKEp1okLHQTHzZACvAZgAYDIAAvB8HHkruUXbC4qi5CsaSaIaQwTssw8w\nY0Zll0RRlOqERpJQIqHtBUVR8hUVUIqiKEpeogJKURRFyUvijMXXkogmEdFEZ1lMRNfGlb+iKIpS\nvYhzPqhZAA4AACKqAeBPAO/Hlb+SG7QPSlGUfCVXJr6jAPzOzBrpTVEURcmKXAmoswC8laO8FUVR\nlGpAbCY+AxHVBtADwG1BxzXUUX6hJj5FUXJNpYY68mRI1ANAL2Y+LuCYDtTNI4iAFi2AWbMquySK\nolQnKnOg7jlQ816VQdsLiqLkK7EKKCLaAuIg8V6c+SqKoijVj1j7oJh5PYDt4sxTURRFqZ5oJAlF\nURQlL1EBVc3RPihFUfKVuPugGhHRO0Q0g4imE9E/4sxfURRFqT7ErUE9BmA4M7cC0BaAzjRUTejX\nDxg6tLJLoShKIRHbOCgi2grAJGbeM0UaHQeVRxABe+4J/PZbPHm1bg1Mn17+vBRFKWwqYxzU7gCW\nE9FAJ6L580RUP8b8lRwQZ3tB2x6KosRJnG7mtQC0B3A1M/9ERI9Cwh31sRNpqCNFUZTqRaWHOiKi\nHQCMZeY9nO3DANzKzCdZadTEl0cQAXvsAfz+ezx5tWoF/PJL+fNSFKWwqXATHzMvAbCAiFo6u44E\noNVVNULbHoqixEnc0cyvBfCGE9F8DoCLY85fiRkVKoqi5CtxhzqaDOCgOPNUFEVRqicaSaKao158\niqLkKyqgFEVRlLwkVhMfEc0DUAwgAaCEmTvGmb+iKIpSfYjbSSIBoBszr4o5X6UKoCY+RVHiJG4T\nH+UgTyWHqFBRFCVfiVuYMICRRDSeiC6POW9FURQlj5k5M9784jbxdWLmRUS0HURQzWDmb+0EGuqo\ncFFtTFGqN/vsAyxcCOy8s3d/pYc6SsqYqA+ANcz8iLVPQx3lEURA8+bAvHnx5NWiBTBrVvnzUhSl\nakIEzJ0L7LZbunQVHOqIiLYgoobOegMAxwCYFlf+Sm7Q9oKiKHFSVhZfXnGa+HYA8D4RsZPvG8w8\nIsb8lTxHhZ2iKIlEfHnFJqCYeS6AdnHlpyiKolQ94myoqku4oiiKEhtxalAqoKo5uYjFt2gR8O67\n8eWrKErVIc4+qFgFFBHVcKZ7/zDOfJWqxdixwIMPVnYpFEXJNV9/DaxZ492XzxrUddBJCqs9a9cC\nf/xR2aVQlMKhpCQ/Z6vu1g148knvvrwUUETUFEB3AC/GladSNVmzBliyBNi4sbJLoiiFwTPPAG3a\nVHYpgqld27udlwIKwAAAN0PCHSlVhFy4hhuVf8GC+PNWlOpIcXFllyAc8g23zbtxUER0AoAlzPwz\nEXWDBI0NREMdFS5G2BkB9ccfEl1CUZTyUVpa2SUIxy+ggjSobEMdxTUOqhOAHkTUHUB9AFsS0WvM\n3NOf0BZQSuWTSw1q/vz481aU6kicWkmuCRJQfmXk7rvvjpRXLCY+Zr6DmZsx8x4AzgYwKkg4VScS\nCYlHtWlTZZek4lmzBthlF3WUUJS4qOoCKlvijmauOJSVSQW9cSNQt25ll6ZimDMHWLZMvPj23VcF\nlKKUl+++AwYPBurXr+ySpMdYY/J2HBQAMPPXzNwj7nyrGubPqm7x6SZPFg2qTRs18SlKeXn+eXHj\ntiv9m28Wt/NseOSR+BuOpg/K1HVx9pdpJIkcUVUEVNzlSyREQKkGpSjlx1T+69e7+x5+GPjrr+zy\nu/FG4Lnnyl+uIFJpUL/8AkzLYm4LNfHliHwXTLmCWQRU69bAn3+KwKqhzSBFyQojoPxjCv39PEVF\nwOLFMmFgOnLlEZhKQLVpI/VApua/OAfq1iWiH4hoEhFNJ6J+ceVdFakqGlTcGAG13XZAkyby0SiK\nkh1GQPkrdr+A6tULaNUqWp6ZCgnm1OZ6v4kvLH+/O3oUYhNQzLwJwOHMfACA/QEcQUSd4sq/qpEv\nAorZax6oiOutXQtsuSXQrJma+RQlHevWpU9jKn0jmPxa0Nq10a+XqYAaOlRm3k6HXbage8rGeSJW\n4wszm6qwrpP3qjjzr0pUtmAyvPYa0KBB+PG4ymnMeEaDathQXmp1lFCU1DRsCHz/ffAxo3X4BZPf\nSSIb7SQqK1ZES2fqksGD5Z5ssi1fLqKZTwKwGMBoZs7D8IYVQ75oUHPnVsx1jIDavFk+onr1VINS\nlKjYpvANG9wK3W/iM0NWzPhKImDkyMwEQKZ1Uti4pjvuCM7399+T09bK0tshbg0q4Zj4mgLoQkRd\n48y/KpEvAqqirm8+kNWrxbxHJBqUCihFCcd8nxdfDLz5pqwb7Wj9eve78pv0Nm921ydPzq0GFSag\nPv5Ylv4+qCAXeLOv0pwkbJh5NYBPAHTwH+vbt+/fv2xiM1UVKlswGe65p2KuYzQoI6AANfEpShDM\nwO67y9L01axeDQwcKOtGGO22G7Bypaz7K/Z33gH+/W9Zv/lmd3/z5sDUqbLepQtw5ZUylsp//Vtv\nBb79Nrh83bsDM2a420ZAHXmku+/LL93r2PkCXuHpMhpAX1xwQV906NA3+MIBxOZmTkTbAihh5mIi\nqg/gaABJAZeqSyy+TDSoRx4BOnSQF6qiibsPqrjYFVBq4lOUZNatA+bNk4r/7LPd/atXy9IIqGXL\ngFmzZN0voB591PvtGkE3f75oNvvtB4wZI79GjYArrnDTrl8PPPGETCo6ejTQ1bFzffklsHAh8Omn\nwEknuV6B5tqjRrl5vPyyu3799cCkSWJqBIDp04PuupvzAyZMAAJEQyBxalA7AfjK6YMaB+BDZv4y\nxvyrFJkIqBtvFCFVGSxeHE9oEqPmr1mjGpRSuPz6K/DNN9mfP3cu8PTTsl5aCnzyiXvMCKhnn3X3\nGWHl/0b99YptVvPH//RP1fHSS+76DTe46//6F3DhhbL+xx8i3IBgE5/fpPjqq8mDh3/91V0/5ZTg\n89IRp5v5VGZuz8wHMHNbZn44rryrInF1RFYERUXlz8PWoIwHT5Mm8mHl81w2ipIJp5/uahyp+PZb\n0Ub8ZrDHHxfzGpDcr2Qq9D59kvela0Ta9U1YgGpjLrSZONFdtyce7N/fteiMH+/uX7pUllEEzUkn\nJeedaYNVx/jniEydJHLdZ2VMBUHEIRyDTHxEauZTCouw73TmTO92585A06bA/vu7x5iBYcPcNHGO\nXbK1l7Bxj0Zz8zNsGLB8eXjEl7ffdtcvukiWUQbg22U262H9XmGogMoR+eLFZ9h77/BjQS9/UVFm\nZTctKltAAWrmU/KLoiLp/wHEpFbesD/Llknlvs8+Em8uyGJgwg+NHu1e25QFAI4+Ov110gWHnT3b\nXfeHRTKENURPPVUiv2yxRfKx335LzqOoCPjii9TlAaRfrLhYzsm2G0EFVI7IVDBVpiALenmaNHHd\nXqMQpEEBqkEp+cW227oedI0aAWbevLDvz7/fv7399lK5A/IN3Hcf0LhxcF5+jWn1avHUO+44d1+Y\nwPTv33774HSACCh/OX/7zftdBhHkfbdhg3e7uFjqhiCuu867vXSpPItHH80DAUVETYlolBOHbyoR\nXRtX3lWRTDWoyuyDCnt5Fi6MnkfNmrK03cwBHQulVB69eolmbyr3b79133XToJo9W4Iah5m3atQQ\nDSkKRF4NyU8P3yREpr+2Th13X1j/kV+DMn1BQSQSyfls2OB+o2EEXdsvGMeNCz8/bM6qV15xx0xl\nSpwaVCmAG5i5DYBDAFxNRBFi6xYm+WLai0KcXnxq4lMqmqeeAg45xLuvXz/gmWdk/cEHZblsWfK5\nb7/tCg5/Bd2+vSxtJyL7u/Y7Cpx9tjuWKQq33CJTUNhRFsJMeZmYIsvKxBnDZs6cZA3HT5AGZd/7\nTTelPt8WULajh+kfM2MybaeLdMTpxbeYmX921tcCmAFgl7jytznmGJlpMp/JpZPE1KnAwQenT3fE\nEdHyi0NAmRbo/PkS5sigJj4l13z2WXLL/tNP3fVXX5XlaafJ++hn0iRZrl0rgqB1a6mMzf5TTxUh\nd++97jlB3+vPPyfvGzTIXW/TRqI++K9r+qxq1vSa1GyhZAvP225Lvg4AvPCCLBMJ11PQYNy8/djj\nsObMkaUZAAx4NbWttw7Ow2ALWru8pj446SQpW4ek8A3h5KQPioh2A9AOwA+5yH/kSOCjj3KRc3xc\nf70scyGgxo4FfojwZL/6Klp+cYTHt00ktilDNSglGzZvDq9U/fg792+9FdhmGzcCt+1ebd7Fe+9N\nfr83bQL69pUoCv/7n7t/2jTJ8//+z/XIixKBfMstgfPOk/WyMsnfbrwBwJAhrnm/Th1vvjVrSqDW\n+vW9/VfGJLjDDu6+oUNdAfH11+nLZnjxxeR9Awa460brrFnTjQMYRosW7rrtsm66CkwItEyIfcJC\nImoIYCiA6xxNyoMdSaJbt27o1q1b3EVIyfTp0qLv3j231xk8OLP0mQioVNHJs8EWUJ9/Lh93ujI9\n8oi0Rs84Q7btF8+OZLzzzmLD37zZa2tXlFQUFQEffCCV94MPijnMbgT16ydDJ665Rip5G2PSe+QR\nGYi6dq0rpGrWBH78UWZ8PvxwoJM1IdDGjWIujEKUfqnGjeW7qFMH+OkncVTw99Pss4/URaedJut+\nE+HWW0tlv3atOGMsW+YVUEuWiNBs0QJ4/XXZb1zAv/9ehKsdRcKPXZc0bSreebYmtHSpPKtRo5Kf\nsx97So7zzgP++1/76Gg8++zozOsuZo7tBxF4n0GEU9BxjgOA+dZbszv3oIPk/Fwj1Tvz/Pnuvi+/\nZP7ll+C0Rx8dPe933412D6YM5hd2fMoU777ddpNl//6p8z7gAHe7aVM3v+XLvWmbN2f+7bf05VWq\nN4kE88cfy/pnn7nvEsC8erWbrrTUfde22sr7ficS7vYLL7jr998vS/s9LCtj/uADN824cbLcdltZ\nXndd8jdkfj/+yFy/fvhxgHmvveQ6W2zBfOihsm/pUubx45mfeEK2//jDLY85r2ZNKYthm22Ya9eW\nOgJgfughWbZp4/2u33zTe/3Nm5nHjAku27ffMk+d6r1uq1ZuXl9/Lde78krmHj1kn/08AfmvXnxR\n6o8JE+TZd+8ux+bOTb7m+vX2vYI5gkyJ28T3MoBfmPmxTE5auTJzM1DUjrbp092Ox++/d9eDRlUb\nSkvD4klljq2FHHkkcPXV6dOlw6jPcbmy+z0Io6rhdmvQbt3a6j2gZr5CYdq01P2VZWXeyAmlpcFe\nX6tWyX7/dzZ3LnDiiZKHcb0ePlyWdp/GTz+56yY8kDnfHoO0//7uesuWstxzT3dfjRpiju7fX7YH\nDhQtxVgAbrhBzHpBzJkj2tfkya65vZNvelZjEmvY0A2+Wq+e9MFcfTXw2GNiYfDTogXwj3+423Xq\nSL1lzIPmu0v33dauDXTs6N13wgluWffdV9b7OXOf285NXbrI8/ngA2Crrbz3Y+d16aUS9699e7n+\nG29IIFt/HWDuPVPidDPvBOA8yEy6k4hoIhEdF5ae2VVFTz45eMbGFSu8Xi0LFrgdh6NGyYuejn33\nlU7F5cvlTzEdmX4vF5uBA90/r7z4P+jyhv2ZP981L6QbvOfHH9LIfMD+MoYJKP//YZvs7HP8pjzj\nKLFqVbgbrZL/7Ldfai+1oUO9QmHMGPGu+/13b2Xar5/sv/5673dmhI2dR8+esjR9P2vXug5Chx8u\nS+Ndtt9+3sn1DjjAXf/1V7c/yM8tt0hF/txzYkIz7+iOO3rLYvqVAWDKFDGx7b+/KwTq1ZP+m6ef\nFgHz5JOyf9tt3brKCBci4Nprg+dJ8g+0Ndvm3L32kqX/uw2qD/zf4tNPS8w9m7POkqW/LBMneiNG\n2AIqrJ+rcWMx+wcJqMqe8v07Zq7JzO1Y4vG1Z+bPwtK//jqw006iyRjvEUC8WBIJ+VO23VZaMSaq\nQbNm4qlibn7rrcNCuwvmo3jkEWCPPdz955wjDzhMozBCJEwAZCIY/DbtqAMCw67bvDlwySWynelU\n7n6B3qaNLP0vuj07rs2224r7qHmu9riKKBrU1luntocr2ZNpY8UmkUj/LpnvzO+qbX9/ttdZSYnb\nsb/XXq732oYNookByd9Gqsk1DztMlraQOPZYWRpninXrxKOvVSugbVvve9ivX+oYeqZ1/+9/Sx/W\n009L5W5raAMGuMJx1CjgoIPcY/fcI9NeXH89cNVVoiGa7vVtt3XTRZm4zz+Wyny3l18OXHCBOxD4\n6qu9Fhn7HbAFv5km45xzpA417vcGI3j8s/qaspq+LVtApZt5IUhAZUOlRZIwavo227h+8sXF4pFz\n001uq+TJJ2Xk8vvvy3avXt4/om7d5ICMhquuctfXrHHX//UvCTtix5iysb1qgqhTJ7qbu9+UGDYg\nN4qA8nsOZSqgwsyafgGVqiPzr7/cFqZ9L7aA8g8ItAfr2o0RJT7q1Elttk7Fvfd6G3B+NmxwKyf7\nHfzsM2+lZb6XtWtl3XYkKC6Wd3yLLcSK4R+0yiyOAobTTw8ui/3+HHaYRGLo1EmsK4AsmzVzLSUj\nRsjyqKOkgg/D3EffvsD557t1h9Gg9ttPlmZKiXHjvCa9//s/V2D6STWoNhOOPBJ47TVXQJ1yiqul\nAd568fPP3XWjuZx4YnC+YaY38x0bzc08oyhC1p/myyzntahwAWXMTP456wH3wQ8YkCx0wl5YwKuG\n2/hbBIAIu0aNZN20Bhs1ErupIcq4oHnzRFimKheQXFnbgmjYMNdFNhsBFRZs8phjgAceSN7vr8DM\nNf33G/TfmCCPr77qltk+z3wEQd5N9lioyoyYUQgcd5yE0wkiaCBqEM884/bJAPIeLlmSnI5Ifma8\nDiDXPuooWbeFxZ13upX6mWfK0ozLAaSBaOLFLV4sGooxLQHJfZRnnhncx2IPnejUydW6jMt1//4i\ntAymTjECJgxT+frDAXXoIN/JlCnedEDqcEM2RsvMtgFhMN+YCTXkFwK2gLK1tuOOE2F+7rnB+Zr6\n0J56A3D7nozLvbn3MEFn49egoo7J9BNnH9RLRLSEiKakSmdsxAMGiOntnHNSBzJNF57D4H9Z3nnH\nNSXYFenKle6Db9JEWnKrV0tnYKtW8iLa6cNMiE89JR/6e+/Ji7PnnrI8/nhvOr/d1f7oxo93B+al\nE1A1a0oFZHfyGtX/rruA2293948c6XYu20TVoIIEVOfOqc8zGlSQndl2ksgXAdWmjXeqgarC559L\nX4+NeXeKi6UlTyRzjJWVSdy5I46Qfa1bi3AYPVqERcOGMg7GCCAzXqWoyPs//vOf3ut9+aXXSeme\ne0RwmW/bDJIdO9ZN06OH+51vuSWwyy6uACMSodK+vXsvTZvK/qBAo0EDVWvXdhtOtgnLCKggZwQb\nE4on3VAIWyhEFVAHHyz9YWEx7NJxzjnebXNPfgFlTKzM3vu48cbUc1iZfPx1rRFc/unan3gifZlj\nG1ISxdUvyg/AYZDBuVNSpOG2bZlnzRK3w40b5bdqleuKuHQp8xdfuNvDhzO/8467ve++zAcfHOw6\n+cMPzF27Mk+f7u577jmvK6XhrLOYn33W3X/hhcF5vvCCe86vv8p5qVxLzTXM+g03yPbtt7v7vv8+\n+Xpdu7rXmTaN+aKL3O2yMkkzbBhzhw7M220XfC3mcLdSgPmppyTNDz94948aJfuvukq2Tz9dlg88\nIPuffDI5r112kf/BsM8+sn/FCk5i3TrmevXk+EEHJR+3+esv5pNOSp0mjBtvlPv389ZbzI884t1n\n7mPt2vD8/vxTnkVUHn5Yntk//5l87LLL5N7Kiyn3okXMffow//QT86ZNrttvzZpuGvOfmF/79sx3\n3BH+foweLdc455z07/gBBzCffHL48ebNZTltGvOll7r7Dz+ceeVKuU5JifecwYNlf9B/stdezI0b\nM7/yinwPtsuyoXZt7zfOLM8JkHOiPNdM/oOobNzIvGZNtHzbt0++f+O67U+7ZIl33xtvZFYuf343\n3eTdZ/63gQNle/hw2bZd/lNRVMS8557Me+wRdD0wR5ErURJF/QFonk5AmT93q62SH9CDD8r6xo3u\nS7B5s4w5AJhnzGBetkz+GHO8d+/kj8OM4wGYJ06UPH/4gfm779zrXXIJc40abrpzzw3/2BYtknPe\neiv9hwt4x2IMHsxcXOw9fvfdyed06eKWzYztWLdOtqdMke1OnZiPOop5wQL3Hs2zA2R8xB57hJfr\nv/+V9GYMhvmNHMk8b5673aKFLLfYgnnhQnf/o4+66y1beoVNq1ay31Q+fszYkgMPlO3evUUg+vno\nI+9H9tFHIljfeMObbsAAKduAASJIzHMwwmHWLObnn2f+9NPgCsW+/9mzk8vx3XciVADmDRuC78mP\nnafNihWy75VXZPuDD2ScTxCbNsmzvesu5rFjZd+yZa6ANfkfdZS7nkromN8XX8h7Z48bsn/77cfc\nujXz5Mmy/fHH3u/MCJyw37HHyvKFF5hHjJBnNmqUfAs33uimM/9V0DP7+efwZ9u1q6QZPz48DVHy\ns2eWdzsdmQooomhpMwEIbhBt2uS+C4age0okvOOqMr32jTd6923YIHWvEe6JhIyPyoRVq+SXfD0w\np5Al5pc2QSa/TARUgwbeAo8c6R/I5b4wmzdLReO9Qfk99VTqDyeoRc8sLTk73RFHeLffesttQQwY\nIILu+uuT81+2LHnf6tXu+mWXSeViH7/rLlm2b+/u69xZymVaw4ArUF991d3XqZPs69BBtvv1S76+\nqbCM0DC/Sy+VCn/LLb37H3qI+d57Zd3WKu3fqFHuQEZABgm2b+8+z91355QC6sAD3XPPPttdP+oo\neUaGUaNjCpnqAAAgAElEQVRk/5AhIqD9lf4bb4imAjDvv78sW7SQ9CZdIsHcpEnyPbz4omhYf/7p\n3d+kiVTg/frJ8/drjDffLAOs339fylBSImm++IL5tddkEKh/UGdpqaQ5+2zmY45x95uKHHC1AZt7\n7vHms+uuzO3ayfpFFzHXrSvXuvba8Hf+gQfc9RtukEZSIiHfwsCB0lL+/HPvOV26yNJoXRs3ut/Z\nYYcxz5kj2tq997qDTu2fv2FhYwaWBh2334mSkuDzmd3vc9Om8DREokFmw+zZ8i1HYfvtpYEYNxMm\nJAvwisK8KxV3PTCHyAn7lzZBJr9oAqrP37+vvvoq9AYeekhGRofxySdS+meeCf5In3mG+e235cMM\nwq40AOaGDd11U2G+/bZsmwrR/+vZU9J9/LF3f9Aoavt34IHMtWpJC6VjR7cSYPZWnvffL5Eobrkl\nuaLu1Ck8/379RKjNmJG6HICY6g47zBUaGzcyb721e/zyy91rzpwp6336iKBo21b2m8oJCG4tMTOf\nemrqckyezNyrlyu8gWRzqv85h/3OPDNauqDfP/+Z+vhTTzHfdlv6fFJp5PavRw8RPGefLY00Y6ay\nf40aebeLi0XYXHGF18y2xRbM993HPGmSu89ECwji449Fqx4yRISPOcdEQGAWQeZvdBQXi7UDEI3s\nySfFhOXXcg2mYROkNX7yiWjTRiCGYd6fVEydKibFXPPjj/KMC4kvvghvzMfBV199xX369Pn7l8cC\nyv0QysuDD0qf1SWXyEdl553uRTUmA4B50CBZ7rSTaEmbN0sa058TZN445hjpk2KWVvDNN7umMftj\nD/sdcYSce9xxsn3oofKxPvOMmHhMuuOPZ77gAk56bn4N0PwuvNA1SZaWSmsvKN3QobIcMECe30UX\nuX0QzZq56ebNY37sMdm/YYO0vktLRaDstJPbPwaImSisFRykfRbCr2XL1OavYcPc9d69xYxy/fVi\nQQhKX6uW2O5vuUXCeTVuLK37W24R7eDaa5O1ru++E/OcYfVqOffWW8MbaEGYMqQytdk89hjz4sXp\n05WViVZfWhq9LH5MI00pDCpLQO0GYGqK439/BOefH+8NG7PMNde4FWsqjAZWp47bZ9S8uTfN+PHJ\nFcjDD7uduUF06+atlMJ+xx4r6c87L/nY3Xczv/yyu925s7v+v//JeSNHBucbZCLwp9lqK9c0+dFH\nyentTvIwzPljx7ppU5lIBgxILkfv3vI/pOvbO+QQ77MZNkwaJ8bZxvxOPz3ZRPn55yJ8w/I+8EA3\nPuNJJ8mye3ev6dSYEu2+nn32kf/aMG2a/JcjRrhptt5aju23n2iDfmxNx/wuvjj8GeaaI4+UhlI+\nMnWq1xSsVG0qXEABeBPAXwA2AZgP4OKANGkrvmyZNElakevWid0+lXeWwS5LULmmTvVWHsOHp8/z\nrLNSV4hG0zOdvXafBOCa+pilsgKY995bKg/jhWe48kq5Z/v8IFPJ0KFeDXPwYDHJACLo/Eybll5A\nMTOfeKJ46Zx5ZvrnYgeavOkm0SIMpmO+bVvpCxk/XrQF+z885RRJY+8zDQsjCFLRtasIj/r1xZT4\nxBMiiG0rcyIh103VzxGVxo2Tg+YqiiJUigaV9mKOgLriipzee2ROOklMbMzBFbJxUQWYd945Wp7G\ndGZ+pr/i6quD0594ohw/4wyva3lU7P6fVALF9G0ZTEToGTOS0y5dKsdatsy8PGHYmla2nkaKohQG\nUQUUSdqKgcQ3s8KuFwdmwGLPnu7MnKlYvFhiDF54oaRPd7unnioj+fPpsZSVyeC9VavcQYGKoihx\nQURg5rThY2OfsLDQKCmRmHf+WTvD2HFHCffTpIk31EsYqWKgVRY1a8o9+ydXUxRFqUjiDHV0HBH9\nSkSziOjWuPItL6NHjy7X+bVqSWikKAESDdtsI6F/okT0vf/+aLNz5oqw56PCqfzvTqGjzyc1+nzK\nTywCiohqAHgSwLEA2gA4h4j2iSPv8pLvL0mdOu4U65VBvj+fykSfTWr0+aRGn0/5iUuD6ghgNjP/\nwcwlAAYDODmmvBVFUZRqSFwCahcAC6ztP519iqIoipIVsXjxEdHpAI5l5iuc7fMBdGTma33p8shX\nTVEURaksKtKLbyGAZtZ2U2dfxgVSFEVRFCA+E994AHsRUXMiqgPgbAAfxpS3oiiKUg2JRYNi5jIi\n+jeAERCh9xIzz4gjb0VRFKV6UqGRJBRFURQlKrEN1K0oiOgMIppGRGVE1N537HYimk1EM4joGGt/\neyKa4gwiftTaX4eIBjvnjCWiZtaxC530M4moZ8XcXbwQ0UFE9CMRTXKWHaxjsT2rqgoRXePc/1Qi\nesDaX+2fjYGIbiSiBBFtbe2r9s+HiB507v9nInqXiLayjlX755OKjII6RAnYl08/AHsDaAFgFID2\n1v5WACZBzJa7AfgNrob4A4CDnPXhEI9DALgKwNPO+lkABjvrTQD8DqARgMZmvbLvPYtn9RWAY5z1\n4wF85ay3jutZVdUfgG4Qk3QtZ3vbuN+jqv6DODt9BmAugK31+XiezVEAajjrDwC431mv9t9WmudW\nw3kmzQHUBvAzgH3C0lc5DYqZZzLzbAB+j8CTIX9sKTPPAzAbQEci2hHAlsw83kn3GoBTrHNMCNih\nAI5w1o8FMIKZi5m5CFKRHZeTG8otiyBCFhBBazwre6D8z+rIHJc911wF4AFmLgUAZjYBp+J4j6r6\nszEMAHCzb58+HwDM/AUzJ5zNcRBhDui3lY6MgjpUOQGVAv9g4YXOvl0gA4cN9iDiv89h5jIAxY4p\nIyyvqsZtAB4hovkAHgRwu7M/jmdVZJt9qiAtAXQhonFE9BURHejs12cDgIh6AFjAzFN9h/T5JHMJ\nRCMC9PmkI6OgDnkZzZyIRgLYwd4FgAH0ZuaPcnnpHOadE1I8qzsBXAPgGmYeRkRnAHgZwNFxXTqm\nfHJGmmdTC0ATZj6YiA4C8A6AuGLL5/2zAdI+nzsQ37uSdOkc5RsrUeohIuoNoISZ34rz0jHmVaXJ\nSwHFzNl8GAsB7Gptm8HCYfvtc/4iopoAtmLmlUS0ENJHYZ/zVRZlyjmpnhURvW6OM/NQInrRORTb\ns4rnLnJDmmfzLwDvOenGO0432yB80HlBPRsg/PkQ0b6Q/pPJRESQe51IRB2hz+dviOgiAN3hdg0A\n1eTbKgeRgjoYqrqJz25pfAjgbMcjZncAewH4kZkXQ0x3HZ2PrSeAD6xzLnTW/wlxvACAzwEcTUSN\niKgJpCX5eY7vJRfMJqKuAEBER0Ls4UC8z6qqMgxOxUJELQHUYeYVkPs8qzo/G2aexsw7MvMezLw7\nxAxzADMvhT4fAOKJBumf68HMm6xD+m2lJrOgDpXt1ZGFF8gpEBvmBogTwKfWsdshHiIz4HivOfsP\nBDAVUkE/Zu2vC2CIs38cgN2sYxc5+2cB6FnZ953ls+oA8RyaBGAspJKJ/VlVxR/Eg2iQc68/Aeiq\nzyb0Wc2B48Wnz+fve5oN4A8AE53f0/p8Ij+74wDMdO73tlRpdaCuoiiKkpdUdROfoiiKUqCogFIU\nRVHyEhVQiqIoSl6iAkpRFEXJS1RAKYqiKHmJCihFURQlL1EBpSiKouQlKqAURVGUvEQFlKIoipKX\nqIBSFEVR8hIVUEq1g4jqEdFHRFRERG9XdnkURQlGBZRSsBDRaCJaSUS1fYfOALAdZD6os4joQiIa\nE/O1LySiUiJa7fzWOMsd47xOFuUaSESbnLIsJ6IRTjR3EFEfIhpUmeVTFBsVUEpBQkTNIdNLL4VM\nw23THMAsdiMlm4nosr1WzZBD3zPzVs5vS2e5ONvrxEh/Zt4KMhfPUgCvWMc0erSSN6iAUgqVngBG\nAngNMnUKAICI+gK4CzJnz2oi6gXgGQCHOFrOSiddHSJ6mIj+IKJFRPQ0EdV1jnUlogVEdAsRLYLM\nVBwZItqDiFYQUTtne2ciWkpEXZzti4joF6d8vxHRFda55to3O+csJKJTiOh4IprlaEW3RSkHM28E\n8CaAfTMpv6JUFHk5o66ixEBPAH0gE6T1JaLtmHkZM/clIgawJzP3BAAiWgfgUmbuYp3fH8DuAPYH\nUAqpyO8C0Ns5viOAxpDZQTNq6DHzHCK6BcDrznTzAwEMZOZvnCRLAHRn5nlE1BnAZ0T0IzP/bF27\nDoCdAFwM4AUAIwC0g8yE+xMRvcXMf6QqBxE1BHAeZD4jRck7VINSCg4iOgzALgA+ZObZAKYDODfD\nbC4H8B9mLmbmdQAeAHCOdbwMQB9mLmHvjKo2hzh9YCuJaBURmRmNwcwvQSa1+wHADgDutI59yszz\nnPUxEOHT2cp3M4B+zFwGYDCAbQAMYOb1zPwLgF8AtE1xbzc7muIsAA0gQk5R8g7VoJRCpCeAEcy8\n1tl+BzKl9mNRTiai7QBsAWCCzM4NQBpzZCVbxswlabIa69PK/LwImfb7CjsvIjoeoq21dK5bH8AU\n67wVVv/ZBme51Dq+AUDDFNd9iJnvSlN2Ral0VEApBQUR1QNwJoAaTv8QIOawxkS0HzNPDTjN7xiw\nHMB6AG2YeVFA+qBzMi1nAwCPAngJYoJ8l5mLiKgOgKEAzgfwATMniOh9eIWjolQL1MSnFBqnQvqM\nWkHMXG2d9W8hmlUQSwA0Ne7ojnbyAoBHHW0KRLQLER2TYVlSCZXHAfzIzFcAGA7gOWd/Hee33BFO\nxwPI9LqKUhCogFIKjZ4AXmbmhcy81PwAPAngPCIKeudHQfqpFhORMZXdBukjGkdERZB+oJYZluXg\ngHFQBxJRD4jQ6eWkuwHAAUR0jmOWvBbAO04/0dkQM2Aq/NpcKu1O3ciVKgO5puwUiYjmASgGkABQ\nwswdA9I8DuB4AOsAXGR5HCmKoihKxkTtg0oA6MbMq4IOOmaIPZm5BRH9A8CzAA6OqYyKoihKNSSq\niY/SpD0ZMiASzPwDgEZEtEM5y6YoiqJUY6IKKAYwkojGE9HlAcd3AbDA2l7o7FMURVGUrIhq4uvE\nzIscj6aRRDSDmb/N9GLOCH5FURSlmsPMaYdORNKgzFgQZl4G4H1IEE6bhQB2tbabOvuC8tJfyK9P\nnz6VXoZ8/unz0Wejz6cwnk9U0gooItrCidllBhceA2CaL9mHcMaYENHBAIqYeUnkUiiKoiiKjygm\nvh0AvO+Y52oBeIOZRxDRlZAxjc8z83Ai6k5Ev0HczDW2V6HDDJAGN1AUJXekFVDMPBcSJdm//znf\n9r9jLFe1pFu3bpVdhGi88QZw113A779X6GWrzPOpBPTZpEafT2ry9flEGqgb28WIuCKvp+SI668H\nHntMtChFUZQMISJwXE4SiqIoilLRRBZQRFSDiCYS0YcBx7oSUZFzfCIR3RmUh6IoiqJEJRMN6jrI\nRGhhfMPM7Z3fveUsl5LPqGlPKQQGDQLWravsUigpiCSgiKgpgO6QCdZCk8VSIkVRlIqgZ09g2LDK\nLoWSgqga1AAANyN1qP5DiOhnIvqEiFqXv2iKoigZUlwMLF5c2aVQYiKtmzkRnQBgCTP/TETdEKwp\nTQDQjJnXO5HNhyFk7py+ffv+vd6tW7e8dW9UFKUKcsIJwHffqRk6zxg9ejRGjx6d8Xlp3cyJqB9k\n+ulSAPUBbAngPWYOm50URDQXwIHMvNK3X93MC4HrrgMef1wrASX/2HNPYM6caO8mEfD668B55+W+\nXIqH2NzMmfkOZm7GzHtAZvcc5RdO9tQaRNQRIvhWQlEUpSLR6CYFRdRo5knYoY4AnEFEVwEoAbAB\nwFkxlU/JR7QSUPIVfTcLiowEFDN/DeBrZ/05a/9TAJ6Kt2hK3qKmPaVQ0Hc5r9FIEoqiFA6qQRUU\nKqAURam+qEDLa2IJdeQcf5yIZjtjoZKinyuKouScTAWOmvjymlhCHTljn/Zk5hYArgTwbAxlq7os\nXw4sDJxQWFEURYlIXKGOTgbwGgAw8w8AGtmu59WOQYOAhx+u7FIoSvUjUw1KTXx5TVyhjnYBsMDa\nXujsq54kEsCGDZVdCkWpfqiJr6CIK9RRZKpNqKNNmyq7BIqiKHlBtqGOooyD6gSgBxF1hxPqiIhe\n80WTWAhgV2u7qbMvCVtAFSzMwMaNlV0KRVGUvMCvjNx9992Rzosl1BGADwH0BAAiOhhAETMviVb0\nAkU1KEWpeLRPqaCIJdQRMw8nou5E9BuAdQAujq2EVRUVUIpS8aiAKihiCXXkbP87xnJVbdTEpyiK\nUm40kkSuKGQNSj2flHxFNaiCQgVUrihkAaUo+YoKqIIirYAiorpE9AMRTSKi6c4Ehv40XYmoyAmF\nNJGI7sxNcasIauJTFEUpN2n7oJh5ExEd7kznXhPAd0TUiZm/8yX9hpl75KaYVRDVoBRFUcpFJBMf\nM693Vus656wKSKa6tY0KKEWpeNTEV1BEjcVXg4gmAVgMYDQzBwWNPcSJZP4JEbWOtZRVETXxKUrF\nowKqoIiqQSWY+QBIhIguRNTVl2QCgGbM3A7AkwCGxVvMKgZzdhpUx47AkCHxlydutBJQFKUCyHQc\n1Goi+gRABzjjoZz9a631T4noaSLamplX+vOoNrH4stGgxo8HPv4YOPPM+MsTJ+pmruQr2njKS3IW\ni4+ItgVQwszFRFQfwNEA7val2cGENiKijgAoSDgB1SQWHyAaFLN+MIqiVHuyjcUXRYPaCcCrREQQ\nk+AgZv7SDnUE4AwiugpACYANAM7KrPgFhtEwSkqAOnUqtyyKoihVlChu5lMBtA/Y/5y1/hSAp+It\nWgGwcaMKKACYNQto0ADYpfpOEab4GD0ayIV5Xy0WBYVGksgl2ThKFGL/zt57A0ceWdmlUPKFTZuA\nww/PTd4qoAqK/BJQxcVAWVn8+ZaWAqtXx59vGEbI6Fgol/Xr06exKSuT90EpPBKJ3OVdFQTUhg06\n43ZE8ktANW4M9O8ff7533gk0ahR/vunQsVDZ8/DD8j4ohYdpwOVSUEWlMiwWhx4KHHJIxV+3ChLF\ni68ugG8A1HF+HzDzHQHpHgdwPGQ+qIuY+eesSjRnTlanpeT33+PPMwqqQblkWhEsDJyQWSkEjJUk\nkQBqxNxGrgoa1M/ZVY3VkSgz6m4CcLgzUHd/AEcQUSc7DREdD2BPZm4B4EoAz4ZmWLOmjPcJIx9a\nVeVFTXzlp27dyi6BkitsAVXZVAWBVo2JKxbfyQBec9L+AKAREe0QmFkiIV5dYeSiD6qyHA/UxJc9\n6v1YuOSTgKqsukEFYyTiisW3C4AF1vZCZ18wW24ZfrFcCCg/I0dKH0euUS++7FENqnAxgikXAsqu\n+FeuBM4+293+9lvgmWfiuc733wPlCTqgAioSkUIdMXMCwAFEtBWAEUTU1Zn+PWP6AhJvbuLE4FBH\nFdGquvNO4McfgZtuyu11VINyyVTwqoAqXHKpQdkV/6RJwNtvA4MHy/YddwBjxgBXXVX+6zzyCPDu\nu9kLqWomoHIW6sgmLBYfRGPa1dpu6uxLoi8AXHABcOyxwRepCA0q1y9HofdBVYSWpwKqcKkoAVWz\npvfY2rVIItu6oLx1SDUTUNmGOooyo+62RNTIWTex+PxuKB8C6OmkORhAkYnNlzH16mV1WkZU1MtR\nqAKqItA+qMKlovqg/AIqaCxeto0tFVAVQpQ+qJ0AfOX0QY0D8KGJxUdEVwAAMw8HMJeIfgPwHIBe\nKXMsKpLl0qXJL83WWwefsyQ7eReIeTnWrAHWrcv8/JISYMWK9OnSmfjMPa1e7T6HQu2DUhNfatau\nze5drIrkog+qtBRYvtxb8ftd2OMcHBu3e7wSSBQ386nM3J6ZD2Dmtsz8sLP/OSdQrEn3b2bey0kz\nMWWmpuOyXTvghhu8x8JazjvuCEydmq64YTcRvH+//YCu/qmtInD77cC226a/XioNaulSuScA2GMP\n4LjjMi9HIVO7dmWXoGJp104GcFYHcqFB9e8PbLedd59fgwr6HivLxKcCLhIZ9UHFzqJFwOzZsm4q\n9VQV05o18VzXvFx//AEsW5b5+X/+GS1dKgFla1crVqR2vc83KsI8Ud1MIL//Xn2Eci4E1F9/Je+L\n8g6piS+vqXwxvsUWsnzrLVnedx9w//3yB5oR18Y1NC7zl/1yZJNn1NZPKhOf/7pxmjCrOtddB/Ts\nKeuFavIMorrcay5MfOabrqiKv7wakAqoSERxkmhKRKOIaDoRTSWiawPSdCWiIiKa6PzujFyCBg1k\n+bXlFPjpp7KcOVOWH30ky2w/YP959suVzUeS7uUsdC++bMjkv3v/fXc9HwZzKvGSCw2qogWUalAV\nQpRmQCmAG5i5DYBDAFxNRPsEpPvG6atqz8z3Ri5B/fqytL33TGVmlosWyfK774BrromcdSi5FlCG\nQh0HleuWvv18q4tWAVSfe82FgDLvjF3x51IIpKsDTjsNmDcv/LgKqEhEcZJYbAK/MvNaADMQHCUi\nsyduPsbddpPl/vu7xw44QJbmBTadnc8/Dzz5ZEaXCaS86nmU8+vWTa1BhVVGhVpJZXJf9serGlTh\nkUsNqqJId7333we++ir78xUAGfZBEdFuANoB+CHg8CFE9DMRfUJErdNmZqJVv/aavKjr17sefKaz\n2P8CZzKId9Uq4Isvgo/ZAiabF8XvHeTn/fclTWWY+L7+OjvHj3yivBpuVaVQGyd+zH8a56D8fDTx\nVZf/0/Dnn8C4ccHH5s4FJkzIOMvIXnxE1BDAUADXOZqUzQQAzZh5vRPZfBiAlkH59DUrxx+PbgC6\nzZkj4xfWr5c5m5YtS+5EzeaFvu8+4H//C35JymsGSKdBTZoky0ycJOKiWzfgkkuAl17KTf7Zksn9\n1rJey+okoKoLhaBBqZNEMuefLw3kgG999BFHYPS8eUCfPhllGTVYbC2IcBrEzB/4jzPzWhPxnJk/\nBVCbiAJH3PY1v5Yt0c3sTCSAX38FttpKts0L7O+LykRA5bJiS6dBGbIx8cVB2MvPLK71+c7227vr\n1UlAVZcWd5wCauFCGaRrBIYZQD9/fvLzjPp8EwlgwYLUaaIImFRpClFApbinbk2aSL3fty/6ZhC/\nMGoz4GUAvzDzY8HlcqfWIKKOAIiZV6bM0a68y8qAV15xXzKjeZRHg7JfxlQfQjYvStRzsjHxbd6c\n+TlR+fJLt88vn1ENqrCJ0828aVOxlJhv8tdfZdm8OfD667KeqeB/9VWgWbPUaXSgbjKp7inLMX5R\nZtTtBOA8AFOdcEcM4A4AzQGwE03iDCK6CkAJgA0Azkp7Zb+AAoCdd5aBu34BlY0GZb+UptJnTn6x\ncmHiM/hNfPb1wz6aoqLgcmZCWN5VxavQFlDVRasAqs+9xj0OatGi4Ag0K1e616lZM/o3ZUKxpUJN\nfMmkeiZZ3m8UL77vmLkmM7dzwh21Z+bP7FBHzPwUM+/rHD/UmbQwNbaAKimR5erVsjQVqflgs9Gg\n7JffCKgaNYABA7wVQS6cJAz2PRLJ9Y0Dg998afjyy/LPWfPyy8GxAnMZ3+6ll1IHeM2k8rWdW1SD\nKjz833V52bABeOih8OO1amU2LUZ5zXc2kycXpjAKIgf3WXmhjuzK2wgQI6j8NuryalD2tfyefbnU\noIJMfKtXS8ywoFZkmzbAvvu6Ho7lYd06YJttvPuiCtZsGDvW/f/iRAVU4RG3BhUUpRzw1gFffBG9\nkRSngJo7t3znVyVyYLasPEOoXXmPGiXLvfeW5XvvyZIZeOcd4BdnAt90L/S6dfLHT5jgHS81Z467\nnkhE06B69XIjWPgJ+iPKyoDDD3cr6Vq1gk1qJqKyX/gCwPTp4sloNMkgNm4EDjssff+WyX/RIuDo\noyUY7eLFyekGDszYsybl9cIIE15DhqSeOFIFVOERl4D68UdZRolS7n//JqaIZ11eAfX44+nTqYCK\nlmW6BFFCHTnpHiei2c5YqHZpr1xa6q4PHCjLwYOBe+5x9ycSMnOlIZ0GtXSpLD/5xLvfrsz9raiw\nF+WZZ4Cnnw4+Zv4Iv5Y2erTbmqtXL1iImEnTwkx8jRunFlBFRRJRY/ny8DSA+6z+/FNaj59/7hXU\nhr59vc88W9L9NwcdFLz/wQelk9umaVN3XQVU4RGXiW/IEFlGEVClpd5v/YMkZ2SXKBVtqjTXXSfL\nVBpbdRNQueqDQoRQR87Ypz2ZuQWAKwE8mzZXu0Vj+i5q1fJ6zyQSbkcn4BVqn30mrqQ233/vzc9g\nmwD8H8WaNW5Q2m++AWbMcI+li/Zgl+e552Q5frws69YN1qCMl1FYKzKdBmWemxF0iYTY3+2yAK7A\nsAWHP419/fI6UKSrbEwoq/nzgeHD3f12+VatkkrHNk0mElK2V14pX/mqOi+9FPz/VUX87/6YMa6V\nJIwpU1xLyyefSN+OOT9sHi0TgBoQjWnVKnfbVJg9ewLPWtXVhg2u918qoggxWyiOGgU89pj7Hi9f\nXnhOMTkQunGFOjoZwGtOmh8ANLJdzwOxP7ZWrdy5XGx3xETCG6PPPuf444FbbvHmef75smzUyLvf\nrnyDXooLLpBl167Aqad6rx+EqVRtl3Azr9XRR8syTIMyzgtBJj5T9kwE1KpV8hz80w2YMtoNgaAK\nzqSzg/VmQzoNyry8N90EnHBC8HkvvACcdVZytPnRo4GLLy5f+ao6l12WvhKvKvg1qC5dvN9dEBdf\nDBx5pKyfeCJw7bWZO0+FefNedZW7/vnnwA/pfbw8nqZ+LrlEliUl7nWOPBK4/nrve1woDQ5DJWlQ\n1jVoNwSHOtoFgD2ybSGC4/W52H9OSYkrXPwuxkGeZ2bupC23lKWJem4YNMi77R8T5RcKdmigmTPd\nllpRUXK/zR9/uMJh40b5OMaMSS5jnToioJi95Qsb42VIZ+IzAsd0vprnaALqGn76SZa2EA3SkuIy\noZlyhH10YaFobI3V/K92mYyLsOKGBPNbDqoSM2cGv/umYTpvXnDDzu/6vWGDK5gyrfyKi5PPmTJF\nvnz5cVgAACAASURBVBW7EZBqjrZUHqsNG8oyndNQnDP85oKw/yKMynSSSBPqKDJ9zW/lSow2Ozds\ncP9wfxw2I4RsjDNFixaSZp99vEJn7FhvHjaJRHiMP6N5mZba+PHATjt50+62mxtGaONGCWvUpUty\nGY2TxNdfS/kAuZewMV6GdBqUEQBGKIYJKDOfkv2RBH0QphyZfORBWqgRwibMkx+/gDIVgS3QzHP1\nNyiqg4Bq0iR9mkRCtOXmzXNfnlzw66/yLaQSULvvDtx9d/K5xkxvGoc1amT37gLBUSLatgWGDQN6\n93b3mXomiFRDNsrKpD7z93v5yfdxibvvHpt7/uji4qwiSURyM08X6giiMe1qbTd19iXxd9HsFsj6\n9e4f7hdQqT7cJk2SXdNt6tRJbsWkMnP16JGsfaWirCz8JatdW1ofdgukYUO510TCLUe2fVCzZ0tF\nbuzvYZqLrUEFzUgclx3cCL8wl1+/gIoaBiqoQVGIHHCAq7mHkUh4+1GqGmHjGwGv5SQo2LF5r4qL\nZVmjRnZRV2rWDBccYX1ZQZj6q7Q02dxXViYmftvEF0ScwXJzRSYTqabQoLo1aiSh7RzhdHdQIyQo\ny4iXThnqCMCHAHoCABEdDKCImVPfme38YEcyt29y7tzUITKuuMLVdoIqaGNmsykpSU5bUiJTeRjh\nFFVVLS0NV+Nr1ZJr2+U/6CBpRZ5zjmuLDjLxLV4MHHKIbNetC/TvDxx1lLzsS5ZImhkzpJymlffS\nS8Efg/0Rm/uzBUA2ZpJU1wkT2OacwYPTX88u3+67u/16mZTvsssyOyefeeMNWSYS7vv0yCP5o1nO\nnJlZdO8gDcpusAZ9y+a9Mh6eNWsCL76YeVlTCY4gL1fDiSfKN2gwdcSuuyanjSqgzH326CFBnvOR\nTMY2VkYflBXq6AgimuTMmHscEV1JRFcAADMPBzCXiH4D8ByAXpFL0LmzqO1BGlStWulbGd99J8sw\nAeVvZW3enCwUNm50TVSDBgF77BGt7KWl4RVyzZpyLVOJ1Ksnzhj164un2vTpst9/f2YCRxO2fvNm\n6U/68kvZXrZMTJv+vjHT52RTVhasqUSNU5gJ5jmk64MK27aJo0wjRpQ/j4ok1fOYPVuWtoCaMCF/\nNMuo07v4h1YEmfiA4G/e/x3b9URJiZjoolC3brjgSHUfI0a43yDg3kPQ2MJEwr1OKsy3MmJE+Z2U\nckUmAqqSvPjShjpy0v2bmfdi5rbMHD4KznQgGurWFdNTkAa1YUN0NT6oYly50uvSDMgD938ApaXA\n1k7w9Xr1wjtA77gj+byPPw5Om0hIPuZFrllTtt9915vOuKXb5xnM/ClDh7r7NmyQMu61V/J9+bnk\nEtf5xMa44wOuyaQ8L9exx7qmgGwF1GOWcl6eyRxNRVXeqBZXXhk+UDsu9tgjuYK78UYZsmC8Qi+5\nxH3Hvv3W1RryKdho0Pey667yH7dv7/4X/ogw//2vHAe8ZrJBg+S+33pL+pNtzcXwzTfu+tixXm/f\nVKTSbII88667Tgbe+t8n/6wAy5ZJnk2bejWoVA3s8njxFRcDO+6Y/flRKSkRz1t/PRpE0DvZs6cE\nW6gIL75YGDnSu12njgioIA1q48bMBFTHjskC4513vNthL81ee8msvqecEi6g7r/fXW/dWq65NsRf\nxLykRoMxAsuPf1Cx/dIGaQHr10trs1Ur7/6g5/Taa8Fl++yz4P1R8QsKu5xRBZQ/j//+N/xYurxt\npkyJnjYVzz8PvP12+fJIx9y5riZtGiaPPCLj2gYMkO2BA92Gyocfuufmi3kPCC7Ln3/KctIkt//I\nVPLmm/jyS9epxi8cBg6UwfIff+zVXMLcu2vUCJ8iwwQCAFzBEZaHn8cfB269NXm/vw757TdZLlxY\nMQJqyZLM+oeypbRUBtJHMacGPb9Bg7IzxZossz4zWxo39m7XrStjeML6oD79NFq+paVSSfu97vx9\nWKWlwS9NWZkInVq1kgVJUBSGunUlL/OS7b57cn5167odr5s3BwuoJ57wbtsaVFA4ltWrgwVUJi6r\nZWWi9dimzMcfT91JPGVKuLZoE1VA+dPZwW2NScuPXbEkEtJgCDNXxhEX8PffvYM9g5g5U2ZQTkVx\nMfDAA+72Aw+47+CmTVJWe3pwU/ZUWoHdMLr//srpcDfP3xZQv/3mRngwGAuAaUSZEEU2n3+e/O2O\nGeN9bkCyBcZQVuaNQGKz557uuhEc/oYhkPwtGvxm/AEDkicEtd8909f74YepQyqVlsp3awT2hg3A\nww+7+fnv3SbVOKw4CfqOHnxQGpS//Qa8+absW7rUXR8+3HvfiYTbFZMhUfqgXiKiJUQ0JeR4VyIq\ncvqmJhLRnSkz9FfSRnMyL55dkRk1/trA6EpeSkvlj65bVz72L7+UvppjjvGma9Mm+GO2vXH8ZTzu\nOPlTDD/9JGltJ4kttvCeY+zQptI3rqfpsMtmm/YMYQIqE77+WrQeO5DlRx/JgNgwLr4YOOmk9Hln\nK6BswvpWbC1x9WoxudqC2fYgzGYuLj/jxgHnnps6zQ03AKedljrNtGnA7be727ff7rZ+N24UQWhj\nxjn578F+f2wt+I47vE5HFUFZmfv8zX+bSAC33SaDrW2Mw4r5/4x26CesP8cmrOGRqkHSqZO7bvqG\nbDN3phjzq42/nNOnSwVuWwb8lJZ6x0hOmgTcfLPkVVTkfWf8mGee68G+Qc/11luBu+6Sevm882Tf\nyy+7x084wd0PlMtTOIoGNRDAsWnSfOP0TbVn5ntTpvS3Cs0D3nlnp0QBRQqyQfuxBVS3bsARR4hw\n8pu+fv89+GMuK3NbgkH2UvtFOPBAyeOPP8Jbu0bNtyvNKNNdpGsJxyGgwiISmHv8/nt54Uxsw6VL\n3UgV9hgzIJobP5D8TFMNggzDvpZ5Tvbzta+di4kfZ8xwhcby5WLGitL3YSoh+781rfLNm72DlVNh\nO8L440FWdGw3819MnSo/sy/s/3/uufDYlpkQpuUHDaEw2HXK6tXegc6m79nM5p2OKQHt9JKS5PfN\nODulYsUK77CWe52q8+efXYEX9jxtDTwbJk92353585PrRHN9f/+hLYjt99Fv5rXLXQ5nnihOEt8C\nSDf4IvrXYbcCb7jB1RKMBhIkoIIq9iOO8G7bAspQr5680CbPunWlZRPUUrMFVJD67K8Afv8dOPNM\n+QPbtUuew6m0VK5nV6DpKpGuXcVt3B881aa4WASUcW+tV0/6zjLBOEb4MS9Vp07ApZe6IWA6d3af\n2aGHetV3v6kjqoBKpa2FYVcC5gO1NSj72mefnXn+6Wjd2jXBdO8u/0HQQHI/l14qS7syMeubNqXX\nwAz2/2be1XQRPHKF+S+6dXNDhZWUhGsy//pXsik0UzOVX4O//HLXhG8iTdx3n5gKjcndntUAkO/W\ntsgMGiRu/EHjLf3dEUCwt6AdaMDQpk34fRiGDfMGwzbdGY895j7HMC9h839nO9j3xBMlUgQgA79P\nPtl73PSN+v9Pe9v2evQLKLsxVo7GYlx9UIc4Ucw/IaLWqa9oXdKeZqFBA+/xey1FLEhA2R2ngAgC\nv4CqX9/rIejPx+78tAVU0NiGsJZbSYnY4g86yHs/pg/KDtESNojVMHCgPIcgE4LBaFDm4543L5qH\nDeBGtAjDX8nNmyf35xdo5p42b04+FlVArV+f2cBIIDMNKt2U3dlSVCQtQmOiMzEko1BS4rb0zWDs\nsMZCOkzFZJapTFy5mKfL/Hd2Bbl5c2YVZqaeiLaTCCCefp07y7pppd9xh2j7ZgJDExcviJYtpaFx\n7rnBDY1Vq1JPBWNYsSL5GXfs6K6HNUCMI4mfNWuS/18/qQQUs+ugEWaR8X9/ixdLXiZf04Ay76dJ\nG6ax+bUk+1sMcySLQBw9bRMANGPm9U5U82EAWoYl7mv15XSbMEFGFwOuBmXcp+0/2BYse+8d3Dpu\n21b6sfwa1OLFbmXub7EddZQMggXSa1BhneUlJcHp//MfETS2tpEuRE1Yi7JzZze00erVwA47uB93\nrVrRzRPpWjL+j4wouN/MmKSOPTZZEwq7hl9ADR7sDtqNSpAGZQuodIFx46C0VFzBjZkok1mKN28G\ntt9e1g8+WJZmaoZMMRWTicQfJoSWLBF35LgjZxuT/I47utq1LYCjkEnLOqiS33VXsWKMGpX8f5vv\nI5UQtDUy/3t+112yTGVyP+ggGSYSNG7SFnhhwWfDpvx4//3gBoCNud+gRt7AgaK177ef9MP7h7aY\nfG3rw4IFYsFp00bM+0aoGE1q5Ej5f//v/4Lzuvlm7z77ua1bh9GAhLbLJHQSYtCgmHktM6931j8F\nUJuItg5L37d377/j8XWz+5aMgNp1V/mY2llTStmVwJ13ujfpt93bA34BEVBr1wY7PwwZ4u3bKi1N\nLaDCKC0Njnbxn/8k72vePHVFYedjXpD+/cVZxHhGrVkj6UxZa9dObe/ebz933V8hpDM5pmvhBpnp\nwlpYcfSRBGlQYSa+XAmokhLvGBzzvqX6X0309iiaTDot168Zmr7BsPvNdby3Ll3caCabN6fXXP3P\nyTZxpcI2oT/4oOSzyy4yXg0IF1C26alxY+DRR91t2wHG/uZvucWNBxgmoN57L9gb0WB/kwsXSnnD\n3hHz/JjdAbvmHUsnoII0cNPHPHVqcCBr5mQBVbeu3I+ZcTxI69mwIXncJhDuFW1Ytw7dgKxi8UUV\nUISQfiZ7Wg0i6giAmDncpch+YerUcc1pfi84O50tdGy1OEgw2EJoxQqZf8Wks19Cf+V73XXun5mJ\ngBozJnU4pjD89wt48zEvuNm3ixMc3vRBpROmZgCk6cAGvEIfSHbLveAC71ivoJcxFbVry/Mw9vcx\nY1zBNGhQsGtvJnz4obRWW7b09pcZyiOgVq6UdzGdk0ppqTdWomlp16gh92rHyuvSRfaZ+/b3hwSR\n7t3z923YGtTuu8szD3LcKK/ATiTkXszPsHmztOJr1hTh5De9p8N+5/1DNWxs93K/ttO+PdChg3ef\nX4Paay95V2znHPtZ2xNq2hqRcVE3IdUMO6SeTciTd7oxa/b0QKbfywgm4wHpjx9oKvmOHcVr8ptv\nxMpzySXePmw7lJn5lZa6kfEN5v1YsAA4/XTRLv3l3rgxeHBw0DezZIn73vsDWWdAFDfzNwF8D6Al\nEc0noovtMEcAziCiaUQ0CcCjAM4KzQzwCoYaNdyWgt9UYj8c+4OzPXD8L2q7dt78zYMxL4up5IOu\nB7geOlEElBk8CbgfWVQzyvr1Imj8LvD2x+r30jr0UDEZmj4o28QXhN3KB8Qc9957XlW8Z8/ksU0m\nWoY9bTWQ2hR1+eVumT/+2G3B+QdJDxsWngcgncMtQ63DMlZm7lwZJxU2VCBoPQqLFknjJ529vLQ0\n2MnGzsfgb73arfcwwv7PXXeVe3/hBe9+04IuKZE+ww8/9GqxRmvLtL/PT5g5zggo04fsnxYDSA5w\nW1zsCqO1a2VQNJBsEZk6VY6vXett0PkbhGPHui1/g/luzHcybZqYziZPdtPYz9q4vl90kcT4NPz7\n31J+O6rI//4n36ONuX9D/fpufWLXZeb9NrMNvPGGdzaEfff15mM0KvOfmv/BbuwNGSLDRt56yzso\nGQjuhzLvjK1B2dr9e+/J0j8H28aN3q4Xg/2t7bZbcj7lIIoX37nMvDMz12XmZsw80A5zxMxPMfO+\nThikQ50JC1Nc0XdJ85L4TUD2n2q/kLYQ8Asof4e1sQObSsM+N5VZbNq08GMG2+snUwFVv77ct781\nEqSJ2X9+nTrysdgaVFjrzP/BNGsm55m+A1PesGjxfkcRe5ZbP2aAJZHbWXroockDH43behjbbZfa\nbdu+1yABZY8pKSmR++vdWwSPPY5t6NDkgYOmNbl6tYzlCeOll1ILsQcflDEgQabOoMHU/sk1TR+V\nH2b5+P0NKzMeylQwRgj26CFuwGbwZK9errYHyBibt98WzSPIDbh/f5lp1sSEPOOM4HINHy7vZKpG\nnd8bbqutXPdueyYD/73VqSPvsf9d9n8ndeok7/O/H3XrShr7GvY5Zr1BA29dVKOGlN+uL+xK2OBv\nANSu7Qphu9FlrBjmPd92W29Zw8zq5v8NC5x8333BA+mLi5OFiqnfFi1yTZlB5mf/wOk33wwem2XP\nSGw8A4Fkp5ZsYOYK+wFgLi0Va+z77/PfjBvHSaxbJ+muvJJ57VpZHz+eubjYTZNIMB93nLHuMv/r\nX948br3VPQYwH3CAu/7tt5Jm/HhvGmbvdosW3m2TpqTE3f7lF9l3yy3h+Zh9NkVFqY8DzP36udtH\nHin7br89+bn98APzTz958/rwQ+ZJk5inT3efW1ERc+3akua22+Q8fzlPOEH+H3tfp07M9esnpwWY\n16+X5RZbBB/3/7bfPnnfJ5/IM23ZMvy8E09016dOTX5ujz/u7jvvPPe96d3bmw6Q69h89ZXs//rr\n8P8tyr2Z3+TJ0dJts40sX35Zrr1mjbzH5vi4cbLcaSe3HEOHyu+XX+Q8gPm775Lz7tw52r2sXx/8\n7gHMbdsG3/uppzKffrqsN23q3of9Hjz9tNwTM/OECe46M/PixZLm1luZX3jBLdvnnzO/9prcTyIR\nXK6XX07e72fIkOBv6vjj3XLOmZOc9zXXhOdpzhszxt03dSrzRRclP5+nn5bjr7zCPGuWm/6vv6TO\nufxySVdWJtdM9Z4xMy9Z4t0++ODM3kf79/zzsuzePTzNJZcwjxgRfnzWrOyuXVLi3CKYOb3MqPhQ\nR6aFYNuM//GP5HSmtXz44W6LpnVrr8cakcTOM/jNQ/4Wma2NmBaMXY6gjnz/+ACD3WI0raugcROp\n8Leeg7BbV+beTWvPfm4dO8oA4sMOc/eddJK02Ozn1qiR6wVZVhbc8j3qqOBWdVjEaHP/UR0hgrwZ\nu3d3J3kMwzYBBWlQtmYzbJirFQVFDSgq8pppTQvYPxA5W9LN7WQwz//ii8XU07ChmJkM5j+27/f0\n0+XXqpWc17lzcAs4SIsbMsQbQcSf9/r1yfEyg3jySbdfplUrb6gqY4676irXfNW+vdeUZfpwTIgy\nwzHHSF/ooYeGv09R3NPD+hJtDT3o3Y+St913u+++wUMNTD4XXiiedIaddpI6x1h3atRIb47++GNv\nPbd8uWi22YY7MmbYVIN8TzstPP+OHb33lAmXXZYcCisF5Q515KR5nIhmO2Oh2oWlcxJHK5kRUA0a\nyEt1xx3B5h+TrkOH5LA0/mvZlV9QH5R5aXpZs4X4TQdBlXTUSMrZYH9opnx+Zwcb5vR53nmnVCpX\nXRX8Ep59tricGnbfXfqHHn88eRCxGbgKBH/chx+evM+fh+3VY/6jfv2Sz7NDAvm8hAB4XZzXrXMd\nROw4d4alS72NE5OH37wXtdHhN7X6vThvvlneZb8Jb8iQ5AGsbdqIO+8tt7j7UlVi9eoFu3cHeZmd\ndVayW7Sd9/Dh3r7RsPdpu+1ESALeyPr9+0cL6QWICbhXL8kn6P8O4t57ZZBpOsKel/09B5lTo9RP\ntpkccBtovXu7ruPpBN3VV7v9vP6y3nOPd4zmSSd5G07GXP3YY9LYy3S+NL+ACmowdu4sjiNBbuX2\nzAM2r7+eWnA1aAC8+mpyKKxUpFOxABwGoB2AKSHHjwfwibP+DwDjUuTlqrDz54er0syi3htTSSoG\nDgxW5ZmZ77pLjnXoIMtdd2V++21ZnznTTWfUzwYNZHvoUHefycP8Hn3UPa9tW9m3fLls33efVw0P\nM6/YpDoOMP/f/7d37rFWVWcC/31wLw8BoRSUXggXqdyY8gcGh2uVmUhrLGoTH5kKTix06h99ID6w\ndSwU01uljU3boK3WWtMpbceprdapGNtgiCXTK31GCJb6uDyGUqwOBHBaNcDYr3+svdhrr/08955z\n7uHe9Ut2zj7rrLMf3157Pb71fd+6I/5+ww0m7S9/yZfHhRfmnyuLnTuT13DGGelrczl4MPuarfz8\n35YuzR7m2/3Nm5PHP/30fPm521NPxft9fUZ1snx5Ms/ddye/HzwYlyu7HT1qVIF33pk+x5YtqlOm\npOXhb2efXX69zz1n8vziF+VlwgdUJ07M//3qq5PqTX/LUvW52+7dqseOGfncc0/63vxnvnJl8toe\nf1x19Oj4fmbNqq0MNoK8euHaa036V76S/g1Ub701/5igOmpUOt2Ws61b43wPPVT9Wq+/Pv/9z9rO\nP998/vzn6bxnnZXM+653xfWITbvuOvM5f775dNWzWeXSTX/++fzrU1V98MH8637ggZP7UVtA2VaP\nUEdXAt+L8v4amOianvcb25PxJ0h9qvTW9u41k3urVsXHc3tSV15pwgVZr3Hb+5k9Oz2CclVfdqTl\nR1j+xCfMp9sLctUbVVmwIOmrZXusRTJRre0c/giqzJChSN7uCPXyy81nlqrQPacv3zvvjHvTdsS4\nejVcc00yn/UtAtNr6+gwarWlS+Nz+6OhqVPTpt6TJpnn5xoQWN75TqNOKbOAs2XVWmZlYY1OurrM\n86tVRVJk/j5+fHFA5fb2tCOly7vfbaw0p06FW25J/rZrV1qFdcUV8X5Hh9EqrFkTj/iqjqAaSd4I\nypYjN7ipS9nIJ+u4dgTlWhrW4veXd62u6buLdfx1R65W47F6dTJ6htUUXXppnGZXaLZqWVc9C0l1\noo9b12WtWm21SZ/6VDI9b6qkjCqtGNBJ/gjqSeBC5/tmYH5O3rjl3bevvGcBqgcOFOd59NH83tra\nteY3d1RgJ8P3788/pjUQUFW96y6zbyejs3peFjuC8u9hzJj8/9jexVVX5eepBdu7qsru3fm9J1C9\n6KJkfmsQkZU3q/dlJ9L9Z/mTn5i0Z5/NvzY7uosmVhVU169XbWuLe/d5vTt/NOX2/vN6eOedl/ze\n16c6fXpcVtzfli2L9+fMic/7xS/G6WvWmM8jR0ofQyFgDFTyWLEiKfsjR5LXevvtcd5Nm7Lvvbs7\nXy5Zz7WIuXNry98IvvnN/GvIux9Qve22/GPm/c8aHVitjK0vqmK1DD579sTn/POfk9ewbl3xMXt7\nk++Iajxispur8bBlNcsw5X3vi/NZbZGq6uHD6fJhNVS//32cbrVl9pm0tdVvBNUwtGJPvyyMT1H4\noKyIwLaXU9TLK+r9FDkTZrF4cdrfKYuq8qj3cWpd+K5Wp2S35+/O++WFn3KxI0X3GmfPjp1zd+1K\nlg+3p59XLooWT3Pn3cDc64kTxk/Hd5Dt6orLgg1bZK/PzQP1maMsGkH5vX5/hO3KPc/B1JXxmWcm\nHaBrZeHCckfWRlMW0cJ9Zi7u2lE+eaMrO4JyTdHLwpq5vCcnfKk7WrHl3M6J+itq+1i3EPd99es1\nqxkYNy7p0OtzwQVx+XfLVla5ttfnGoDZd9y+LzX4KNajgToAuE4zM6K0THp6ekzIi/Xr2VIW0fr4\n8fwFyiwLFuQ7EdrK2rVwylLx+WQ9JBFznqLI01mNw8aN2es6Vflvf6j1OH7F94UvJL/n+ae5KoMi\nXBWf2ymo0kB1dhrLPHsNx44Z9dKmTbGa6ZVXTCiZQ4eSleLnPmeiQ7z1VrJx2b07VsW50ZjBGHwc\nPBhblnV2Gv+f3t7kEiUnTpgJ8ZdfNvk2bIh/W7IkVi0uX25+b3QD5VvBtrcn3wm38Zk3z6h0/GCh\nNs9DDxlneH+h0FqWdXjggfxAqM3issvy64U338xeQO+NN5JOuj55HVdfxXf8eHq1hSLuuCPbCnPq\nVONjdvhwfOxDh0wZXbKk+JjnnGOuw21QshrYVatM1Iei8nXXXcbi1S/LWYZml1xiyteMGXG919bG\nli1b6Nm6lZ61a+kpvvIEVe0Uc0MdARuBG4Afish7gaOqmrsWcU9Pj3EOu/XW8l5O1d56Xj77cNwe\nim3wqo6gbIV/2mnl15PVmFbVxw9WA+W/dH5UZ9+R1+bPsm4bMyZtJu7mc2Vh85WZyrovmBuVft48\n0/hnOXKCqXDttc+ZEwe97OiIzYSnTEn+RyROsxX2tGnpdYyKGleRuCIQ6V8YrCyKKpCsZ1F03skZ\noTJ7e83nrFlpx9dJk2qbVxoxovZI5Y0gTwZ5TvpZ4ceqYP9nK+9an7lI/nvgP9uRI9PlNo/2dvM8\n7bpNWebw48cnR1BZjBiR3RhlPWORuHzZz5EjWbRoEYsWLTLf163j89XuYOChjlT1p8BeEdkFPAis\nKDicYfv2xi2H4PLpT5vetjuCmTnTTKYXGRrU4g/lsmJFXBHWSr2WRKi1gfJVlu6LsndvOnQKmMrM\nn+TfsQP27EkvcX3ffWbUsn17spDv2pU+Xy189rPVF/rbsMFETbCxBdeuhRdfNPvbthnT6rxFHG0Y\nJ4uNfVdEvZdfL5twz1uTyl+pNws39M+yZbEfnYgZZTz5pJFRIB/b4NUS2b5ZfP3r8fN7+OF0fE3b\nuNa7zEIsF/8dL3KT8SitHVS1ZM1rUNWVlc8I+Q6f9Wb06PT8j0i2b46fx9+vUvja2/P1yWXUK+r0\nAFavBJKFKSukC5g5Bt8R1UZN98OjTJiQXYHa0WZ/G6jRo8sjf1smTkyqRMaOjSNIn3tu8Qvjh6Oq\nUnYH+gx82tqKOzB5avCsZSB83MUulyxJqnD8eHPDnbyOQhV19WAxbVpchidNMr5/7hIptoGqlwbH\nxR7bl0t3d7WOHvVbsHBokaXiayQLFlSLdF2F/l6vLURVjSaWL0+vIlwLNppFM+Q7UNavT5u5F3Hz\nzcl5qYFS9ky6uoxjpVXTuXzta2kHdh/bgeivimu4sGVLHLz1VOaJJ+L6xqr9brwxvTr2QMlroGpQ\nF7dgk98CNFt/fvXV1ZaIrsJAGih3TawyOjtjf6/+YK18Gr1eUT245RZj4edHZ89j+nQT4qZelD2T\nCRPS0estN95YfvytW80IODRQxeRZNtZjrbNm0t1tDIpWroyjp8+Z0//wRXlYFZ9ffmvQMIQGwg2r\nvAAABfJJREFUKgu3xV+8uJouv78sXFjNDL0qN92UjDFXlcFQU8ycmV6TqlXp7EyHuGkWja4AbcMU\nGqj+0dWVrw5vVaZMMWruer1/NsiBy+TJJgaj3+Hv66t82EpDBRG5VEReFJGXReT2jN8vEpGjIvJc\ntK2tfAWtiDtn0t1dX3WNT2+vCfIK5Wb3Vbj+erj//tr/NxgN1L59xct4eNRFPv1l8mRjzj4YVJjA\nHpBsrMHQEG6gGlp2pk5NB+BtdcaNM4ZCkaXrgOXz5S+n08aONZ1lv4OVZ/6fQRUrvhHAfcBiYC7w\nLyKSNTv936o6P9rWVb6CVsRfC6lJDFoFPHduvGZMK070RgxqAzWYXHJJqWHPgGTjO4EOQYZt2alI\nU+VTQwNVpTbqBvpUdR+AiDyCib/3opfvFFPEFtDRUX9LrFZm27bYZ6fWyBKBxmMjZDeKsWNNpVEv\nn63A8KE/c971HEEB04H9zvc/RWk+F0TLbTwlIv20tW4hTrWJz4HQ3h6PnPJ8agJDm9A4BZpFVUdj\nQLSkBRSRfwYWq+rHou8fBrpV9SYnz3jgb6r6pohcBtyrql0ZxzoFbIoDgUAg0GhUtXQUUEXFdwBw\nwz6kYu2p6l+d/Z+JyDdEZLKqHq71ggKBQCAQgGoqvt8CZ4tIp4iMAq7FxN87ibv+k4h0Y0ZmhwkE\nAoFAoJ9UCXX0toisBJ7GNGjfVtUXROTj5mf9FvAhEfkkcAJ4C6hhTd9AIBAIBNKUzkEFAoFAIDAY\nNC2mT5mz71BERGaIyDMislNEnheRm6L0d4jI0yLykohsEpGJzn9Wi0ifiLwgIh9w0ueLyI5IfvcM\nxv00AhEZETl3b4y+B9lEiMhEEXk0ut+dInJ+kE9MdL87o3t7WERGDWf5iMi3ReQ1EdnhpNVNHpF8\nH4n+80sRafySFFWW3R3ohmkId2GWjm8HtgPnNOPcg7kB04Bzo/3xwEvAOcCXgH+L0m8H7o723wNs\nw6heZ0Uys6PcXwMLov2fYiwrB/0e6yCjVcB/ABuj70E2sWw2AB+N9tuAiUE+J2XTCewBRkXffwh8\nZDjLB/hH4Fxgh5NWN3kAnwS+Ee0vBR5p9D01awR10tlXVU8A1tl3SKOqr6rq9mj/r8ALGCvIK4Hv\nRtm+C1wV7V+Beej/r6r/A/QB3SIyDZigqnYxl+85/zllEZEZwOWAuw57kA0gIqcD/6Sq3wGI7vt1\ngnws/wccB8aJSBswFmNdPGzlo6q9wBEvuZ7ycI/1GHBx3W/Co1kNVFVn3yGLiMzC9G5+BZyp0arD\nqvoqcEaUzZfTgShtOkZmlqEiv/XAbYA7ERpkYzgLOCQi34lUoN8SkdMI8gFAVY8AXwX+iLnX11V1\nM0E+PmfUUR4n/6OqbwNHRSRjeeb6EdaDagKRI/NjwM3RSMq3TBl2lioi8kHgtWiEWeQfN+xkE9EG\nzAfuV9X5wBvAZwhlBwARmY1RD3cCHZiR1HUE+ZRRT3k03K+1WQ1UqbPvUCVSPzwGfF9VbVC116zv\nWDSk/t8o/QDgRqq1cspLP5VZCFwhInuAHwDvF5HvA68G2QCm57pfVX8Xff8xpsEKZcfwD8Czqno4\n6s3/F3AhQT4+9ZTHyd9EZCRwujbY37VZDVSps+8Q5t+BP6jqvU7aRuBfo/2PAE846ddG1jJnAWcD\nv4mG5q+LSLeICLDc+c8piaquUdWZqjobUx6eUdVlwJMMc9kARGqZ/SJiQ4ZdDOwklB3LS8B7RWRM\ndF8XA38gyEdIjmzqKY+N0TEArgGeadhdWJpoYXIpplD1AZ9p1nkHc8OMEt7GWC1uA56L5DAZ2BzJ\n42lgkvOf1RiLmheADzjp5wHPR/K7d7Dvrc5yuojYii/IJr6veZjO3XbgcYwVX5BPfF+3YRrtHZjJ\n+/bhLB/gP4FXgGOYubmPAu+olzyA0cCPovRfAbMafU/BUTcQCAQCLUkwkggEAoFASxIaqEAgEAi0\nJKGBCgQCgUBLEhqoQCAQCLQkoYEKBAKBQEsSGqhAIBAItCShgQoEAoFAS/J30dgMxAMmPBcAAAAA\nSUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x118477d90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(nrows=2, ncols=1)\n", "\n", "dfgraph['PI'][-10800:0].plot(ax=axes[0]); axes[0].set_title('3h Baseline PI');\n", "dfgraph['PI'][0:10800].plot(ax=axes[1], color = 'r'); axes[1].set_title('After Exam PI');\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 125, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEaCAYAAABEsMO+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYFcXSh3+1C0takoogiCAogiiCmYsKBhDFHPBTFLMX\nMYsBFQXFQDBizoqK2atgwgB4UURUUHKWKEHyLhvYhfr+qNO3e+bMnLB7Ntf7POeZ1DPT02emq6u6\nupqYGYqiKIpS3kgr6wwoiqIoShAqoBRFUZRyiQooRVEUpVyiAkpRFEUpl6iAUhRFUcolKqAURVGU\ncokKKKXKQURdiWhlWecjFv48EtFsIjquLPOkKKWNCiilUkJEbxHRGiLaSkRLiOgeX5KEBwAS0SQi\nyiWibUS0ObJ9UIqzHMT/8sjMBzHzf1N9AyJ6nYjyI8+2gYi+IaI2kWODieitVN9TURJFBZRSWXkE\nwL7MXB/AKQBuIKKTi3gtBtCfmesB2A3ADwAqU8U9PPJsewNYD+AN55iO5FfKDBVQSqWEmecyc15k\nkwAUAPjHSUJEdCsRrSOi1UR0WZxLUuS6DOA9AO2cCx1BRFMi2tVqInqaiKo5x5+I3GcrEf1JRAdG\n9mcQ0aNEtDyi7T1HRDUCb070FxGdEFkfTETvE9GbEc1nFhEd6qTdi4g+IqL1Ee3xhgTLLA/AGACl\noR0qSlxUQCmVFiJ6loi2A5gN4CFmnu4cbgKgLoCmAK4C8CwR1U/gmhkALgYw1dm9E8DNEO2qM4AT\nAPSPpO8B4BgA+0W0ud4ANkbOGw5gPwAdIstmAO5L8PFOhwiT+gDGAXg2cj+KbM8AsBeAEwHcRETd\nE3i2TAB9AEyPl1ZRSgMVUEqlhZmvA5AJ4CQADxLREc7hHQCGMvNOZv4KQDaAA2JcbhQRbQKwDSJ8\n7nfuM52Zp7GwAsBLALpGDhdABOGBRETMvICZ10WOXQ3gFmbeyszbAQwDcGGCj/cjM4+PaHRvQYQc\nABwJYA9mfijybMsAvALg/2Jc6/bIsy0EUAfA5QnmQVFKlGrxkyhKxSVSgf9ARB9CKv9fI4c2MvMu\nJ2kORJiFcSMzvwYARHQMgLFEdBwzzyai/QE8DuBwALUg39XvkftPJKJnIBrOPkT0CYDbIulqA/hd\nlB4A0mAkJMZaX95rElEagH0ANIsIHESulwYgloPFSGZOVHNTlFJDNSilqlANUpEXG2b+EcBiAD0i\nu54HMA9Aa2ZuAOAeOIKGmZ9h5sMBHAjR0m4HsCGSn/bMvFvk1yBiBiwOKwEsda7ZkJnrM/Ppxbyu\nopQ6KqCUSgcRNSKiC4ioDhGlRbz3zgfwaYqu3xniJDE7sqsugG3MnENEbQFc66Q9nIiOjDhN5ALI\nA7Arotm9DOBJImoUSdss0mdVpGxFltMAZBHRHURUk4jSiag9ER1exOsqSpmhAkqpjDBESKyEOCQM\nBXAJM/8W55xYPBPxmNsG4E0A9zDzN5FjtwHoEzn2IsTLz1APIog2AfgLojmNjBy7E6KJTSWiLQC+\nAdCmiPljAIiYLU8D0DFyv/WR+9cr4nUVpcygVE1YGLF//wZgFTOfQUQNAbwPoAWAZQB6M/PWlNxM\nURRFqfSkUoO6CcBcZ3sggO+Y+QAAEwDclcJ7KYqiKJWclAgoItobwKkQd1bDmRBTCCLLs1JxL0VR\nFKVqkCoN6gmIZ5JrL2xsxnsw81oAe6boXoqiKEoVoNjjoIioF4B1zPwHEXWLkTSws4uItJNWURSl\nisHMccf8pUKD6gLgDCJaCuBdACdEIiCvJaLGAEBETSDeRGEZLdXf4MGDS/2eFeGn5aJlo2WjZVMa\nv0QptoBi5ruZeR9mbgUJpzKBmS+BxAO7LJLsUgCfFfdeiqIoStWhJMdBDQPQnYgWQAJWDivBeymK\noiiVjJTG4mPmHyBz5YCZN0GCdJY7unXrVtZZKJdouYSjZROOlk04WjbFI2UDdYucASIu6zwoiqIo\npQcRgUvJSUJRFEVRUo4KKEVRFKVcogJKURRFKZeogFIURVHKJSqgFEVRlHKJCiilTCCSHwAsWwb8\n8EOZZkdRKhzjxgFplbwGVzdzpdRZuxbYay9ZZ7aCSl8DRUmc/fcHFi+uWN/N0qVA3brAnnuWkps5\nEdUgol+IaAYRzSGihyP7GxLRN0S0gIjGE1H94t6rMvHbb7Zirmp88YVdf+GFssuHolRkjjqqrHOQ\nPK1bA3smMa9FKmLx5QM4npk7AegACRbbBTphYUxuuUWWc+fGTleRWbEC+Oqr6P3jxgF33inr114r\ny4yM0suXolQG9t+/rHMgvPoqMG9eyVw7JRZMZs6JrNaIXHMzdMLChPC3gn75BWjUqPTz4fYJuWzc\nWHRNb/Bg4NRTvftyc4EJE4Dzz/fub9OmaPdQlKrKjh0le30i4K+/4qe76irg2WdLJg+pmlE3jYhm\nAFgLYBIzz4VOWBiTpUtlmZ0ty/x8YNo04OWXgQ0b7H5AWifLlwMffgjMmJH8vRYvBnbuTCytP92m\nTbIsKIhO+/PPwJdfevPqsm1b9L4JE4BOnYDmzb37ly1LLH+Koghbt8qyJPqgli+X5erViaV/9llg\n+/bU5yMlwWKZeReATkRUD8D4yMSF/mILLcYhQ4b8b71bt25VIsBi27bA33/b7S++AM49125/+ilw\n8cWyfuCB3nOTfSH33x947TXg8svjp/3nH6BJE7u9dq0sly4FDjjA7t+5E/jXv2T9nXeAiy6KvlZe\nXvS+sWOBM84Aatf27s/OBrKypANVUZT4GK2loKBoJvJY39svv8iysDD62NChUjftu693/8qVUq8F\nMWnSJEyaNCn5TJbARFT3ArgNwDyIFgUATQDMC0nPVY1du5hFzMhvzRrme+7x7nv+eZve3Q/I+Ybt\n25mHDAm/V0GBPW/48OA0c+bYNOee6z12xhmyv3t37343P2+8EX3N7Gx73LBzJ/NeezEvWCDrAHOr\nVrJs2pR55crw51AUxYv5vrZtK/r5v/wSfOzrr+X4p5969y9ZIvuPOy46HxMmxL6ft94DcwLyJBVe\nfHsYDz0iqgWgO4AZAMZCJywMxJjRXn9dvFqysrzmsEMPja0uuya1hQuBIUPCtao1a+y6cUzwc++9\ndt3V6gDReADg229tayonx5smyPwXZLuePh2oV0/6m9LSJM8//SRp69ULNgkqihJMs2aydL/xRDGm\ne6Mp+TF1jL9LYX1kXnT3m69WDTjnnPj5MENKkrEApaIPai8AEyN9UFMBjGXm7wEMh05YGIip6AsK\ngBo1pLMzP98e79EjWEBdfbUsp02z+zp3lmWQOQ2QPqJ4bNkiyxtvBM6K4cry0UeyXLjQuz/IDOAX\nYoA177k0aQK0bAnUr68CSvHy3HPA6aeXdS7KP/37J3/O7rvLcv784ONLlsjy/vu9ddHKlbI03RHM\n8v23bg306RO7r3vnzuQHFqfCzXwWMx/KzJ2Y+RBmfjSyfxMzn8TMBzBzD2beksx1//yzaC2DkoQZ\nmDmz+Ncxf2J2ttiO8/O9Hjn16gVX8I89Bpxyiu0cBaxgCqvcE3FjnzBBlrvvDixaFH1tw8SJsly3\nDujaFTgpMh1lkAZlnEBcxo0Lr3Bq17Yvv1KxKSwEzj5bnH3i8fTTVkt32boVuO464PPP41+jZ09v\nAy+VrFoFzJpVMtcuLrm5sqxRo+jXyMqS5TvviIOWIT/fetZu3mz39+4tS6Nh7dwJpKcDjzwi27Hq\nR5M2GcptoIyOHYGmTcs6F16WLQMOOaT43ipG4zj5ZBFQrgbVvr0IKFcIGWrXBnbbLdhrzrxofmbN\nAjp0CM+L2+Jp1kxMbobbb5dlrVo2b4BoXI0bW/fzIA3qwgvtOrOMiVq50mp8fho2DG/NKRWLrCxx\n8knk/7zxRuDmm6P3N2hg142jThDMwPjx8dMUlebNY38/pcGuXcHPkJsLHH20bSgGwQy89Vb0+XXr\nAldcYeuZiy8GrrnGHs/Pt3VKUN0ye7YsCwtFK0pPl0brgw/Gfo4KL6A2bCi/ERbMB1dcU5TRUg48\n0Gvi+/BD+eMbNQLmzJE0rnaSni7Cy7wwn3wiy9atg/O0dq1oPc8/LxWBe2+DqyV16ybPaISWed7N\nm4Err7SCKi8PqFlTPP4A4NZbw5+1eXMxF4wbB/TqJfbqII48MlzIKhUL09h66KHY6YwG8Ndfsf/7\n338PP2YsD0ENOkPXrsDjj8fOS3F5912pt8aNS/21997b2+ADRODk5QFdugRbMAxZWUDfvtGmtVq1\nRLCNHStaop+8PODgg2XdLduWLSU/po744AN7/4EDpU4KarACZWTiSzVvv+3dLk9xpkzHov9jmD49\nuev8+itw7LGybkx8+flWVW/WzLYIc3OBzExrhqtb137Mxg7cuHHwB/7887Js0MAK/QEDvGmMgDrp\nJHEbZZbBuYBosY0bS77q1LGaY16e7Iv1YTRvDgwfLq7oP/0U27xn8rglKSOwUl4xAiqeid4VPOad\nM1xyCXDCCTJ8IchcbDDv5LffhqeZPDk6osnffwMvvhh7sKvbeItnQjTDLPx9rMUlN1fK0TRYDTt2\nSGOvTh3bHbBqVXRZhTWmCwulkQnIOEmDqW/z8oDTTpP+cLe+69BB9ptyX7fO1in16skyzFRfKUx8\nmZne7bDO/7LACAH3T1++HDjssOQq1w0bgOOOk3Vj4tuxw45laNNGNB1meUFr1QKOP16O1a0b/dKl\np0vrhch62QC2gmjUyI5hqlPHe65pxV56qbRu9t/f2pyJrHbk3tcI08MPt9fxC6smTUQj69IF+Ppr\nEVInnxxeJjVqiA380UfD0ygVA1OZm472MIwZr1276O+nSRN5Xxo2jC3oTOV8222x72Xec8NTTwH9\n+sXuv3ErZtf0HY9EHJMSZeRIWfor9mXL5JtzBdQZZ0h/nMubbyKQwkJpgALAggV2vxmYm58vAqxe\nPdswB0TI1K9vuxncsVS77SbLsC6QSmHicwdw1qtXMqOTi4r5U1xXbCMQPvggth3cxRVG6enS8nE1\nqEaNRDjs2GEFlME18XXpIp3Ip50mwWfd/ADy4tx1l1yvXz/ghhukMnDJy5O+vj59ZLthQyugjCkP\nAPbbz3rvbdwoeX3tNduAcDtSTVllZooG9cEHsow1CNd0yA4aFFszK0+sWCG/qsD118cXOIa5c+W/\nDzPnGgoLpUVev770WbmYb+mgg6z1IIhE64effgL++1+77b6vYZ5nW7ZIg+3885Nz4ClKtJcwTD3h\ntySZ/qLata2AmjEj2oQfZnIsLJSgrddfD4wYYfdPnQqMGmWtJHXqAB9/bI/v3CkNiylTpI4aOtT+\nz23bSj1huhP8zJsXXU/Eo9wJqO++s+th3mxlhREMrqeKEVr//ne4A4CfXbusLbZ+fXkZXAFl9m/f\nHi2gXBNfXp6Y4Jo0sXZft6W4aZP0TwHyMjVvHq195eaKUDImwIYNbYvJFVDt29uO0XXr5KVMS5M8\nN2sW7XpuBFSHDnKNeKYP85Ln5wMvvRQ7bXmhRQv5VQWefVYqn0RYu1asCvGER2EhUL26mJH8nnJv\nvSUVZ+fO0eYtl+3bpWJMxJPNNQNu2SJ9U4CYAIPYulW+w6ZNo02QfmrXlnGGzZunNhpKgwZifjeh\nhwymbGvX9pazP0JL37523QjOHTukXq1WTa7vmgUfewy46Sb77Z93nlfoFRZGxwp187Z8ufX29TNj\nRmyHjiDKnYAqLLSdc0BiwQpLi+xsYI89vELT9ajzv0RhuKpuixYicFytCrB9PkEC6pdfpAWzfbu8\nkK7Hk2sS3bHDChhABP7PP3vzMmOGtwII06AOPFCEUGGh2Kxdz6YOHWRYgIsRUNWry0Bif3DYoDIx\nDB8eXmkAkoc33oh9vfLKc8+lZqhCaZJsP3BhobwvBQWxXbQLC6WS7NLF23Ay61u3ivDJzg53lMjJ\nkeER+fnBFaPxMgNs5W3iWt53nzScwszza9eKllGzJvDHH7GfuW5dqdgvuii1Vp+sLDHPb93q1fQO\nPxzo3t3bN5yWJuXh9pcVFIjnMSCOHIB13a9Wzaudtm4tGhQg16lZUzTIdevEYWrIELl248bePLr1\nT8uWsiSSRobLxInJe0SWOwG1fbsMPPv0U+m0D/IwKSuyssSDxX2hs7OBffaRdX/MvDBcDap2bWmh\n+DWoMAFVr568LF26yL3r1rUOF4BXg/ILvU6drBZkuPRS73aYgKpTRzS1JUvExOkOAdh332gTiBFQ\ngLirx5sD5ogjgGHDJN3KlTKOJowFCxKLK1iSuGbIZCrw666TzvmKhHEkSHT+oZ07pWECAKNHh6cr\nKLCt+HnzbDkah4a335Zv4swzw81m69bJO37JJcGmwO3b5d0dPBi4+24xV/XrJ8eOP16+P9No80dR\n2bhRtIWOHeO7zJvvNDMztYGPTaPYNe0DUoece66UsxGe9SMz7rmN0pwccTYBpD9rzRorhEyfMyD7\n3HFr06ZJ2TduLGXcrp0M2p08OVpDdLU2t4H8yivedIWFiVuZDKkIdbQ3EU2ITFY4i4hujOwv0oSF\nxnX6zDNFkypPnl3Z2UCrVlLBuINte/SQzsU5c2K7uxpcATVlinzEiQoo9+XYulVexoYN7T5XQOXn\newVUhw7SOiWyQsht/QBimnnpJRkQ/OGH1jMHkP6AGTOkMnEDxx51lGg9ZgyEqdCSCWCZni4mEtPq\n2rjRtrYOPdSaIC+4wPZXhPVVLVki6f1TfaSSrCwp9xo1knfkee45aY1WFIzF4NdfE0tfWGgtBI8+\nGu4BZ0x8rVrJ92MqdlOerVrJslGj8Ep//nz5Vjp1kj5RPwsWyH9lIqScd54dz0cklfeIEfI9NGvm\nfae2bJHv49BD5dnNlDRug6R/f3FEMN9v48bh2n8sb8QwTEOvfn1v3WIan/vvL8usrOD+ne3bvfWD\ncYwYPlyeZdQo+W47dfI+14YN1knCj/lvL7hALCNuY9LMlA1In9+4ccAzz8h2QUG0CTIeqdCgCgHc\nysztAXQGcB0RtUURJiw0lb7peG7QwOthkkref98bMigWpk9mxQppqQHWtGdeoKZNRcPw98UE4Qqo\nQw+V5ZIlwQJq/nzbGgW8L0xWlhUCGzaIs4Srcfo1qJo17XgK04q6/no7eSIgg/d69hTPO0CEr6F9\ne2DSJPlY3BfROFiYmH6u9pQs3bvbD3nWLDGHmdYzszhcDBok2x99JI0C1zzIbPuwgiZLTBVbt9r/\noijvaKKVfSq45JLEzc9BZGXJ/7lrV7RDwXvv2UbR7Nny7kyeLJqRefe+/957DrN8JzNmyDX32EMa\nRhs2iND68UdJZ7xEO3SQ9zEjw/63Y8ZIg2bQIKlcL7hA8vb0096K9pdf5J0yfbGAfCNmcPDVV8v9\nTV+NEY5r19o+KP9cZW5/1PPPi2ZhBNTxx0sDbuhQKfOnnpJ0ubmSB1dY77mnWD8+/DB22detK3WB\n0Uh27RKhWKOGvINz5si36bdSbNgg5Vy7NvDww7Jv/XrRpExff716wD33SNk+95xMPmjqhho1gsct\npadLGb/3nnyPxoQIiPnwnHNsVIozzhDnLCL5Hl3tLiESiSibzA/ApwBOAjAf3mjm80PS/y/a7ccf\nS6TbyZNle/RobzTsVAIwd+kSP11enqTdsUOWzz0nkbdXrZLj99/PPGiQrB9zjGzH4+abmR9/XNbd\nCL9ZWTbNySczf/GF7B882O5fvtwbSTw31/tMbnkdfzzzd995733rrZKmSRPZvuMO5kce8abZtYv5\nggskkrnL228zt2/P3LZt9DO1aGHvvXw5c/Pm8UohNuZZmje366+9Fh3ZPTPTG0V5wQLvcZctW+R/\nTAV//MHcoUPwfRJ5rmOOSU0+Er1ny5ZFP/+zz5ibNWOuXp153rzoa7//vqwPGWKfb+BASQ8w167t\nPee332y6Nm1kX/fuEkH7vfeiy3TlSuZhw7z7DzyQ+bLLZPv665lzcrzfkYmMDzA/8ICsu9/anXfa\n6190kd3/4IM2XY8ezI89Jmmefdam+c9/ZN+yZdHvWmGh3b7uOll+/718h27kfxPNP977c+GF8t25\n6VavlvUPPmDevNkeq15d3kvzfWZmyv7zzmNetMh7vzp1wu85f76k+esvW4bVqgXXU7Hwf6sA808/\nmWNgTkCepLQPiohaAugICRqb9ISFpnPU2LovuECWrh9+KklkbIO5txmJvmuXtLKmTJFtV1vo0SN6\noHEQ7ohqIulYvPpqr9ZRp46o7NWri/3c4Lf/BpnRjIlhx45o7ybTgiESs8qIEdGtGiJpHX3miz/f\nvr201lyTgcEM9svLK54G5XLaadKqM1xxhSxd82LnzmK+GTFCWpX+CdaIJC89eohGnpEBPPBAYvdf\ns0bON3lYtEha/d98I6aSZMd0AFLWU6YkZgpOBcZkVZx+kZwc6fM8+GCvq3b37rI03+l//mOPVavm\njX5/2mnS9/Pqq+IpZjCaTYMGorWY1rvp1wWk39eNxJ+bK67sN90k240be83gp58u3nQDB8r2XRHb\njRuhxtVk3ADJgwZZh54//7Qmqf79rffa2Wfb79ZPerqdx83M13TiidZ77bLLZOn3VPVrUczSpz1j\nRvQ3b0zo1at7jxUUyPb8+aIlGiuPcaZyeeGF6LwbTCDZvfe298vJkXLZY4/ifdtJxw1MRIol8gOQ\nCeA3AGdGtjf5jm8MOY8HDx7MgwcP5l69BnNm5kSPFG7enHn8+MQkdjKY1kV2dux0M2Z4WwBZWcyX\nXipax86dzNdey/zMM5L24oslzebNsa953XXMo0bZ7c2bRVNzueQS5vvuY05L8+5353fyt7x++sm7\n/4gjoud7WbNGWoCZmcxPPilpR4yInV9Dbq6k79o1+PghhzCPGyf3POKIxK4ZxoQJ0urbtIn5qqu8\nzzxvHvNdd4mWaeaTMr/LLw9uufl/Ljk5Mu/NF1/I/QwXXGDTr1olmrN7jeOPt+9HvPfIUK2atFBb\ntChe+STKli3Ja3l+XnqJ+cormfv1Yx45UvZ99ZW3LMy7Yawggwcz77efrE+fHl3+774rSzPP2Omn\ny/ZVV4lmtGBBdD5MWS9ezNyokexbvNhqxUH/8+mne69h8vnuu3ZfYaGd58j8GjSQ5cSJNt2mTczT\npiX2Tv3yS3i63FwpS3efsVbk5cnzuN/y99977zFrFvNuu0n9wyzzQQHMhx0m37fRTN1312haV18t\nS/88T37++Sd6344d8q0kivt8nTtPZGAwX3ON1PVIUINKlXCqBuBrADc5+xKesBAQtX/kSDFBuTRr\nVryPK4x27WJ/uFdeKSYH17Rg0t53n92+5BKrto8cafd36hR9TXdiwGefjZ2/fv2Ye/YUk5qfWKYB\nd/8hh8hHHcS//sV81lmS1hWW8QCYu3ULPvbEE8xHHWUr71SRlWUrDP8zBwmkli2ZZ85MXEA99ljw\nseOPt/uuvJK5Vi1vuqeftmXSt2/85zjxREm7caMsP/+8eOWSCOvX2/yuXVu0azz6qJil77uPuXFj\n5rvvji7PyZOZa9SwzzZ0KPPChcxTpkSbs4xAB6Sxxsx8zjmyfe65YroKwlzniy+Cv68XXoi+z8UX\nR6d7773oBiGzlI85z5gPp0/3ptm0SfYfeaQ0woYNk4bSuHHReb3kEhFoV14pjZ1335XvuW7d6Hxe\ndZWc1769mBbdMl6yRK7TsqUVNB07eu93881iat26NfhdN10VpgER9Pyp5uWXbR5uuUX+szVr5Fhp\nC6jRAB737RsO4M7I+p0AhoWcy4D07dx6a/TssOYBi1Kg27Yxb9gQfMwVUE8+KffPyZEXy9igr7tO\nXsD+/Zn32MP+2Y8+as9t3Zr5o49kf5B2s3Ytc36+rD/zjD3mzpgbxIABzAccIB+KH8C27v28/LII\n9cJCecY5c4Kvb+zuV1+dXL/MYYfJBx7EX3/Z5+vZM/FrJkJBgWgefu00P9+r6QDMb70lxwDpZwRE\nWLtpjj1W3o+VK8OFVywB99BDkic3XSzc/g9mEWj+xlhJsGqVzGK8774iLIrC4MEinPyNNYD56KNt\nmXftaoXI0KHea7jnmD6Sbdvsu2esDyecwPztt+F5adKE+ZRTmDt3Dj5uBLLpDzP92Yli8rhhgyyX\nLk3u/FjMmcO89972Ht27y/LOO5lPPdXe3y/AmEWj3G8/q8HVrRt8D38dZM4379/336fueeLhNkxu\nucV7LFEBlQo38y4A+gA4gYhmENF0IuqJJCcs7N9f+nn89lZje07a+wPiobLHHsHH3Ii7N98s969d\nW9x/zfw0GRli123QwDtGwLWPL1li7bv+0C5Llohnn4mn5QamjBfVt04d6f8Kstmee64d2+CnZ0/p\nh7n33mg3cxdTnu3aeb0E4/Hbb7bPwU/LluJRBcSeuKwoVKsmfU9+t/iMjOh3Rto9wurV4n48ebI3\nTtnkyWKnDxrcmZdnPQAvv9y6yQLyTg0bBtxxR/T/HWtIxJgx3u20tJKPsA3I+1u9ugx4/9e/inaN\nbdukjHv1svMBGYYOleUll0i5p6VJ+Zx2mjfdtGm2H8z0bdSta9+9Ll1kOWNG9H/scvLJ0ldl3jM/\nJh5cZqaMbzrmmIQe8X+Y/k2Tr+bNkzs/FpmZXi9b4/124ole13Tz7UyaZEOXmZid5h0Li/7uvpNt\n2kifH2D730pq3qwg0tKsR2ZYhPO41yhuJpj5J2ZOZ+aOLJMWHsrMX3MRJyz0T7UxzBFrI0ZY54Rk\nCJo4LazAhg4VV1UAeOIJGaTmr8D9L21QROQjj7SurGZ8ghu3LZ6AysyUlzFIwHz0UfhHbD7+l16K\ndjN3uftuWaYyLAtgO4HdwcOljWlAvPyyCKfLL5fnHD7c2zm8das3FIyhVi07hqpPH5lqxGBC2rgV\nAbNUBu6Eb37u8g2yMP9/Mu7f27bFjrARRKx3IB4jRsj3+MQT0lA66CAZnuFihkkA9lnuvNOOtzEc\ncYRETVm6VFyT/fTrJ8Jl82Y7eDSIBg1iCzHjuFJQIHMlJYtpEJplvHiCyeAP1HzKKfLfHHOMCBwT\nQaewUNKEUGUtAAAgAElEQVQeeqh1zKheXZ7J1DVhjUSXrl2tY5HBdSYpDUzDo8wEVCowY24Ab7BT\nw7vvSots6tSiRbueNCl6X0FBeNRhd9zGnDnyckydKp5tgI2isHKltFC6dfOef8IJIihMSBHjseVq\nQ4loUKb1G4Q79sfPsGFSGcTSoIz3VLLzs8TDBIosiodbqjAx1q66ykaBB2Q8zb//bbeDhJNLrVrS\nuq1Z0w5GDCv3QYNE6IdN32AibZhJIM2YsVgR3v0MH26j4CeKeYdcD7t45OWJ0HU95/zfpfkGGjaU\nSCJAYvOk7btvsBcoYLWD+jGG9BstLOwagAz291fMiXLzzRIZvUYNryaeCoz3m4necuCB8o0aoWGi\nvOzYIZ53rtXIWHN27BCvQ1MXBWHeKX8j4Z9/ouuq0iKoXk+IROyAJflDxEhqbJVffBFu05w82aY7\n80zpfHTH+axcKX0LhoYNmQ89VNI/8oi1hebny/q6dcw33RTcx9CkiV0fPjw6LxMmiF3Xz8MPSwe9\n8WACmM8/X44NGGD3vf56+HMyi+OFsU8HYcaSBLF0qb2P65XmB7DjElLJ3XfbMRSlgd/LLx6x+pbc\nn9t/Z/Y991z4ddPSxPnl/fdt+ief9J7vjiEBmNPTg6910UXe/pPff0/8+VymT5f+NzOOb8oU23n9\n1Vc23Z57Mt9zj/02Ro+2nq7+PqXHHhPHGpOXnBx5dtczrigA0V6rfowjw6uvFu9eZYHpB7r+elm6\nHnFHHBHcd2TYvJm5Xj3p/+3dO/Z9xo2T84Pqp7LgzjuZf/zRuw8J9kGVKwEV1vFncAfBmZ/xnsrJ\nYR4zRvbNmycfFCCOBv5zJk/2Vgzbt8v+ceOsG+rZZ9v0ZlBtMnTrJueOHSteOcx24B7A/Oabsc//\n8ENJZwYBJ4u5Tyz351GjrANHRaY4AirIoyroOg0byr7Zs8Ove8894rDRurW9hqlw69QR92CXBx4Q\nz75du0SA5OVJ57zxcDvzTHkfV62SAdXmmv7/LCfHugX7HV6mTBHPSmZxuR4xQhpMgHglzp3LfO+9\n9tqvvCLLww6T5aefynLYMO91581LXljGAxBPwHj88IM4WFREAGkU+wnydHTJzpb/a/ToYM9El4KC\n6HetvFEhBdSBBybyYNE/f/QA9/f44/ErINOyMS3WW26RUeJGuzLuxMmwcSPzr79KBXHwwV4vLsAb\n/SCIL7+UdIlEpgjC3CdVkRPKMyNGJCegatSQdI0be8cJATLmrrBQ3HVdRo5k3n//2Nf98cfod8xE\ncEhPj/4vvv1W0hiNK6gVHfZzhZRphJn7u8cmTmQ+7jhZ32037zUyMuLf59lnxSPORGZwcaOYpAIg\nOupEZQMQS0oQF18skSyC3uP8fBlD98orzFdcUfL5LGkqpIA6+ODEH3DPPeWcrl2tyuz/LVkiaQcN\nku06dcIrMkBMfi5mzMCLLyaeLz8rVsg1Vq2y9/VXfkH88IOkffjhot3XuLSXFzW/JNm1SyrLUaOY\nr7kmfvqdO+X/MP+3+V8uvDC8vHbtSkzbbNnSVkKAmGPMO+C/9qRJiQsK/++//5X38z//sfuMljd3\nrow36dVLtg86yPucgFgL/O75Qb8PP4z/zKkCELNiZQYQbTheGje8GbM0mohkWEjQ0JOKRqICqlw4\nSRj8Xi6xGDdOnBn69/e6ARsvrZtusp23pnPShB4BbEgVQ35+dLBF03mZjBu2H+NVZxwmrrkmOEKw\nH1MWRfXAMnn3e0VWRoikQ/mGGxKbyiItTSJX+//vo44KLy+ixP6LO++UUErG+WTbNhsuy3/tww8X\n13zjWOF34TYYh4RTTrH7xo6V4QZuJGnjLTpvnoSp+uIL2Tad71Om2PeqRQv7bpoo9D17ypQTJjjv\nv/8t9yhNUhEiqzxz2mnieBOLoUOjyz0tTZoML79ccedCKwrlRkCtWBE+PXEQRx4p3nK9ewO33ir7\nevSwXloPPGArBPPSu66p/rltgiqfVAgoU3l+/bVUiImOfTEVSVHvHcsTSvFiPPOKMtbOT79+4qFn\nxrhs2ybeV4cdFp22Th0Zn1Svnry3rgs3sx2jZbxKTUTqPn3CYz5efrkIKjd+pclL5852AtC2bSU+\nXK1aEs0akKko9trLujbvtlvpNnC6dw+fLryyMG6cd4aAIAYN8k7aCsj/UJaesWVFCr38i0dxBsQ9\n+igwYICtYMRyaDECKjMz+lgszPWKI6DMdT79VKacTlRLLK6AiuWGq3gxlXBx/2eXPn3Erb1DB2kR\nh80IC4iGYxpPy5bZcXtduwI//CDCZPp0udayZSJApk6VsSVZWTLmbPNmucaIETJW6pdfZLjBgAHe\nsTyNGkmg1erVRWMyAUXd78KdpLI0+eab0r1fRSM9PfUD4Ms7KRFQRPQqgNMArGPmDpF9DQG8D6AF\ngGUAejNzicRwJvLO8OrHCKhkB6WaFktxKy4zvsOMz0mE4gqoVGgDVY1UCijAmnJNZJIw3MZZixby\nA+S9NuOeTOQEc8wfScSYK3fbzWrpe+8dPNC0XTu7HjQOzrw7ld3cVtGoVk3MwUHaeGUlVSa+1wH4\nhxwmPWFhSVFUAWU+3uJWXKYvLJnrFFdAHX20aGxK4qTahGJMZaXJkUfa9USnaPdjzN0qoMoX5v3U\nPqgkYeYfAfgnHD4TwJuR9TcBnIUywlT2ZaVBmVlsk8FUEsmYJF3S0uwcNEpipDKsDSBhkdzZRksD\nE4sOKLqAMeWQ7PTcSslSrZpEuKhK5vuSdJLYk5OcsLCkKKqASpUGNWRI8qE+iOSFVGeH0qMkOqHN\nhIFhQYtTTePGdr2ofUimTy7pyeWUEiU9XUx8VclZojSdJEJ1gSFDhvxvvVu3buiW4oBRpiWYbIsy\nVRpU9epFM/eYyk0pHVLdBwXI7K9AcMDiksB1nS+uBlTUIQ5KyZCeLhaVVMfPLA0mTZqESUFBUeNQ\nkgJqHRE1ZuZ1RNQEQKgO4QqoksC0CJNteaRKg1IqBvvtl/prGgFVWhihcvvtxW9pq4AqXxjTa0UU\nUH7F4/7770/ovFQ+KkV+hrEALousXwrgsxTeKylatACuuy7588yLoKaOyg+zRJdONUZADRyY+mvH\nIt5g0ERQAVW+MA2OiiigikpKHpWIxgCYAqANEa0gosshExQmPGFhSVKjhjfaRKKYF6K051BRKg9m\nqpXSdlgpqnONS2n1mymJUZE1qKKSEhMfM18UcqhC+5GZF0HHFCnFpTTn4Xn00eJPGGkG/irlB9Wg\nFA/mhVABpRSVZs1kWZqeVwMGFD8KhAqn8ocKKMWDeRHUxKcUlapUmSgli5r4FA9q4lOKy6uvAmvX\nlnUulMpAVdSgVEDFQL34lOLSvXtZ50CpLFRFDaoKPWrymIGyVWFOJUVRyjdGg6pKkSRUQMVABZOi\nKOWFqmjiq0KPmjzNm8vspIqiKGWNEVBVqeFc4gKKiHoS0XwiWkhEd5b0/VJN27ZlnQNFUZSqJZgM\nJSqgiCgNwDOQuaLaA7iQiLTKVxRFSZKq1PdkKGkN6kgAi5h5OTMXAHgPMk+UoiiKkgRVqe/JUNKP\n3AzASmd7VWSfoiiKkgQqoBRFUZRySVUUUCU9UHc1gH2c7b0j+zyU9ISFiqIoFZ2KLKCKOmEhcSri\n8oddnCgdgJluYw2AaQAuZOZ5ThouyTwoiqJUBnr1Ar78MjVTqZQ1RARmjuuXWKIaFDPvJKLrAXwD\nMSe+6gonRVEUJTEqsgZVVEo8Fh8zfw3ggJK+j6IoSmWmKgqoKvjIiqIoFQ8dB6UoiqKUS1SDUhRF\nUcolKqAURVGUcokKKEVRFKVcogJKURRFKZeogFIURVHKJSqgFEVRlHKJCqgkIaLziGg2Ee0kokN9\nx+4iokVENI+IehQvm4qiKFWbqjgOqriRJGYBOBvAi+5OImoHoDeAdpAAsd8R0f4adE9RFKVoqAaV\nJMy8gJkXAfAH/TsTwHvMXMjMywAsgkxeqCiKohQBFVCpwz9R4WroRIWKoihFpioKqLgmPiL6FkBj\ndxcABnAPM49LRSZ0PihFUZTYVGQBVabzQRHRRAADmHl6ZHsgAGbm4ZHtrwEMZuZfAs7VrilFUZQ4\n3HAD8MwzVWs+qFTKZPdmYwH8HxFlENG+APaDTFaoKIqiFIGKrEEVleK6mZ9FRCsBHA3gcyL6CgCY\neS6ADwDMBfAlgP6qJimKohQddTNPEmb+FMCnIcceAfBIca6vKIqiCKpBKYqiKOUSFVCKoihKuUQF\nlKIoilIuUQGlKIqilEtUQCmKoijlkqoooFIyULdYGdCBuoqiKHHZtg2YOhXoUQnmhkh0oK4KKEVR\nFKVUKYtIEoqiKIqSMoobSWJEZELCP4joYyKq5xwrtxMWFiVoYVVAyyUcLZtwtGzC0bIpHsXVoL4B\n0J6ZO0LmfLoLAIjoQNgJC08B8BwRxVXnSgt9aYLRcglHyyYcLZtwtGyKR3EnLPyOmXdFNqdCZs8F\ngDOgExYqiqIoxSCVfVBXQALDAjphoaIoilJM4nrxJTJhIRHdA+BQZj43sv00gJ+ZeUxk+xUAXzLz\nJwHXVxc+RVGUKkYiXnxxo5kzc/dYx4noMgCnAjjB2b0aQHNne+/IviJlUlEURal6FNeLryeA2wGc\nwcz5ziGdsFBRFEUpFsWaDwrA0wAyAHwbcdKbysz9mXkuEZkJCwugExYqiqIoSVLmkSQURVEUJYhK\nEUmCiM4jotlEtJOIDvUdCxwwTESHEtFMIlpIRE86+zOI6L3IOT8T0T7OsUsj6RcQUd/SebrUQURH\nENE0IpoRWR7uHEtZOVVEiOiGyLPPIqJhzv4qXS4GIhpARLuIaDdnX5Uum6IEKqgqZRMLIupJRPMj\nZXBnzMTMXOF/AA4AsD+ACRBvQrO/HYAZEFNmSwCLYbXGXwAcEVn/EsDJkfVrATwXWb8AMp4LABoC\nWAKgPoAGZr2snz3JcpoIoEdk/RQAEyPrB6aqnCriD0A3yKDzapHtPVL9/lTkH8TJ6WsAfwHYTcvm\nf+VyEoC0yPowAI9E1qv09xSnzNIi5dECQHUAfwBoG5a+UmhQzLyAmRdBXOBdzkTAgGEiagKgLjP/\nGkk3GsBZzjlvRtY/gvVOPBnAN8y8lZm3QCq0niXyQCXHGoiABUTIGs/KwIHVSZbTiSWc95LkWgDD\nmLkQAJh5Q2R/Kt6filwuhicgzlAuVb5sOMlABVWpbGJwJIBFzLycmQsAvAd59kAqhYCKQdiA4WYA\nVjn7V8EOJP7fOcy8E8DWiFmjMgw+HgjgcSJaAWAEIqGpkJpy2uKafyoYbQAcR0RTiWgiER0W2V/V\nywVEdAaAlcw8y3eoypeNj0QCFVTVsnHxl41bBlEU14uv1EhkwHBJ3boEr51yYpTTIAA3ALiBmT8l\novMAvAYg5ji3ZG6douuUCHHKpRqAhsx8NBEdAeBDAK1SdesUXafEiFM2dyN170jUrUvouikjiUAF\nBcz8bipvncJrVVgqjIDiOAOGQwgbMBxrILE59jcRpQOox8ybiGg1pK/CPWdiEfJUosQqJyJ62xxn\n5o8iET6AFJZTap4i9cQpl34APomk+zXibLM75BndzupKVy5AeNkQ0UGQPpQ/iYggzzmdiI5EFS8b\nAyUXqKBSlU0RCXtvAqmMJj635RE4YJiZ10JMd0dGPry+AD5zzrk0sn4+xPECAMYD6E5E9YmoIaRV\nOb6EnyXVLCKirgBARCdCbONAasupIvIpIhUMEbUBkMHMGyHPeEFVLRdmns3MTZi5FTPvCzHHdGLm\n9ajiZQMkH6igKpVNDH4FsB8RtSCiDAD/B3n2YMraqyNFniFnQeyauRBHgK+cY3dBvEbmIeLBFtl/\nGIBZkEr6KWd/DQAfRPZPBdDSOXZZZP9CAH3L+rmLUE6HQ7yIZgD4GVLZpLycKtoP4k30VuQ5fwPQ\nVcslsJyWIuLFp2XDiDzHcgDTI7/ntGwSKreeABZEnnVgrLQ6UFdRFEUpl1RGE5+iKIpSCVABpSiK\nopRLVEApiqIo5RIVUIqiKEq5RAWUoiiKUi5RAaUoiqKUS1RAKYqiKOUSFVCKoihKuUQFlKIoilIu\nUQGlKIqilEtUQClVFiKqSUTjiGgLEb1f1vlRFMWLCiil0kNEk4hoExFV9x06D0AjyFxQFxDRpUQ0\nOcX3vpSIColoW+SXFVk2SeV9ipCv14koP5KXDUT0TSSSO4hoMBG9VZb5UxRABZRSySGiFpBpptdD\npuJ2aQFgIduIyWYyuqLeKz3k0BRmrhf51Y0s1xb1PilkODPXg8zJsx7AG84xjSKtlDkqoJTKTl8A\n3wIYDZkuBQBAREMA3AeZt2cbEfUH8DyAzhEtZ1MkXQYRPUpEy4loDRE9R0Q1Ise6EtFKIrqDiNZA\nZihOGCJqRUQbiahjZLspEa0nouMi25cR0dxI/hYT0TXOuebet0fOWU1EZxHRKUS0MKIVDUwkH8yc\nB2AMgIOSyb+ilDQVZkZdRSkifQEMhkyUNoSIGjHzP8w8hIgYQGtm7gsARLQdwJXMfJxz/nAA+wLo\nAKAQUpHfB+CeyPEmABpAZglNqsHHzEuJ6A4Ab0emmn8dwOvM/N9IknUATmXmZUR0LICviWgaM//h\n3DsDwF4ALgfwMoBvAHSEzIT7GxG9y8zLY+WDiDIB9IHMaaQo5QbVoJRKCxEdA6AZgLHMvAjAHAAX\nJXmZqwHcwsxbmXk7gGEALnSO7wQwmJkL2DurqkvnSB/YJiLaTERmJmMw86uQie1+AdAYwCDn2FfM\nvCyyPhkifI51rrsDwMPMvBPAewB2B/AEM+cw81wAcwEcEuPZbo9oigsB1IEIOUUpN6gGpVRm+gL4\nhpmzI9sfQqbVfiqRk4moEYDaAH6XGboBSKOOnGT/MHNBnEv97NPK/LwCmfr7GvdaRHQKRFtrE7lv\nLQAznfM2Ov1nuZHleud4LoDMGPcdycz3xcm7opQZKqCUSgkR1QTQG0BapH8IEHNYAyI6mJlnBZzm\ndwzYACAHQHtmXhOQPuicZPNZB8CTAF6FmCA/ZuYtRJQB4CMAFwP4jJl3EdF/4BWOilKpUROfUlk5\nG9Jn1A5i5joksv4jRLMKYh2AvY07ekQ7eRnAkxFtCkTUjIh6JJmXWEJlFIBpzHwNgC8BvBjZnxH5\nbYgIp1MAJHtfRanQqIBSKit9AbzGzKuZeb35AXgGQB8iCnr3J0D6qdYSkTGVDYT0EU0loi2QfqA2\nSebl6IBxUIcR0RkQodM/ku5WAJ2I6MKIWfJGAB9G+on+D2IGjIVfm4ul3akbuVLuIWvCLuaF5IP/\nDcAqZj6DiBoCeB8y1mQZgN7MvDUlN1MURVEqPanUoG6CeA0ZBgL4jpkPgLRM70rhvRRFUZRKTkoE\nFBHtDeBUiDeS4UwAb0bW3wRwVirupSiKolQNUqVBPQHgdnjt2o2ZeR0ARMK67JmieymKoihVgGK7\nmRNRLwDrmPkPIuoWI2lgZ1dkNL+iKIpShWDmuEMmUqFBdQFwBhEtBfAugBMikZDXElFjAIhEbl4f\ndgFm1l/Ab/DgwWWeh/L607LRstFyqbhlkyjFFlDMfDcz78PMrSCusBOY+RIA42CDc16K+C6yiqIo\nivI/SnIc1DAA3YloAYATI9uKoiiKkhApDXXEzD8A+CGyvgnASam8flWjW7duZZ2FcouWTThaNsFo\nuYRTXssmZQN1i5wBIi7rPCiKoiilBxGBS8lJQlEURVFSjgooRVEUpVyiAkpRFEUpl6iAUhRFUcol\nKqAURVGUcokKKEVRFKVcogJKURRFKZcUW0ARUQ0i+oWIZhDRHCJ6OLK/IRF9Q0QLiGg8EdUvfnYr\nGUTyUxRFUaJIRSy+fADHM3MnAB0gwWK7IJkJC3/7LXrfmjWxK+9Bg4CrrvLuW7IE+OefZB/BsnYt\n8PLLRT8/Gd59t3TuoyiKUkFJaSQJIqoNYBIkSOwnALoy87pINPNJzNw24BzmMWOACy/0Hjj4YGD2\nbCAsf40aARs2eI8TAUcfDYwZA+y7b/Q52dmSpk4d7/6XXwaqVQOuvhrYuTP8nqlizRqgaVO7rZE0\nFEWpQpRqJAkiSiOiGQDWQgTRXCQzYeGuXdH7Zs+OfdOMjOD9U6cCrVpF7z/3XKBdO6BHj+hj11xj\nhZPBFRojR4pg27Ejdp4S5cADvdtLl8Y/5/LLgU2bUnN/RVGUCkBKgsUy8y4AnYioHoDxkYkL/WpB\nqJow5N13gUWLAEjQQk/gwlmzgCZNgK++Avr2tfurV4+XKa+J8JNPZLl1a/g5Dz8M3H23mAn33BNI\nTwcKC4E77pDjGzZ4NZ9vvxWBx2zv98UXwLHHAvXqhd9nyxbv9qJFwULVsGsX8MYbwHXXAbvtFp5O\nURSlHDJp0iRMmjQp6fNSHc18GxF9CeBwAOuIqLFj4gudsHBIt27AbbcFHxwwQMx/V1yRnIAqLLRp\nXM0nOzs4/c6dVqjsuafd52otBQXec2bNkuWiRUCbNiKkTjsNeOQRYODA2Pkz7LsvkJ8fO405HpZ3\nRVGUcoxf8bj//vsTOi8VXnx7GA89IqoFoDuAGQDGItEJC7OyvNvMYo4DgAkTrDnvnntsmr32kmWQ\neRDwCiWjPZlr+0mLUQwzZtj1jRvt+vTpVmCtW+e9tjEVbtkCvPSS955+IdOgATBtWux+qK+/luW2\nbeFpSpo//yy7eyuKUiVJRR/UXgAmRvqgpgIYy8zfAxiORCcsNBW8YdQoYN484MUXgT32sALs4Ydt\nGuPocMABVkgZoQWI+c3gd8Dws/fesgwSdic5U1q5+TzsMODJJ2V9wABZGqForvPCC8C//w388os9\nb+1au/7aayKIH3oImDkTyMsLzt/o0bIsKwG1cCHQsWPZ3FtRlCpLKtzMZzHzoczciZkPYeZHI/s3\nMfNJzHwAM/dg5i2hF/n0U+/277/L8tBDpdK/9lrZdvuUcnJkuXix1UoyMmyas882GYz9ABs3AitW\nyLprwtu82dvfdNxxwCWXeB0pjLCZNk2WRsCYNEYzKyyMPgcQ854ROh07ArVqBedxn31k6dc0Swvj\nEr9mTdncX1GUKkn5iCTh98irXVuWTZqIoDCceKJdd/ttcnNlWVBghY0hyPPO1VQizhkAZBwVIH1R\nDRoAf/8t29dcAyxfLsIslpAweTIalOkDq1nTpvn9d/Hi++MPoGvXcBOlS926sly9GujcOb5GmJsL\n/Pxz/OsmypAhsmzaVLwklarD77/HdixSqi7Llkk95mfyZKmrDFlZXitSEpQPAeX/AIynWp06dn3k\nSG+6vDzghhtk/emnZVlQIELhpZeAc86RfXPnRt/P7VcyA3v32ssKOldLAoDu3UVAAcD27eHP4QpK\nALj1VllmZVlni5tvljwdcohoe2ecEX49w99/A82biylw6lTgvfdip3/iCeBf/4p/3USp5vjSdO6c\nuuuG8eGHwJw5JX8fJT6HHx7uwKRUba68Usad+jnuOOk26dVLtp94IjhdApQPAbVtm1fC1qgh2kXD\nhkCHDrKvVy9vH0xenq2EH3pIlkZANW8ujhGrVwPz53vv1b27t38qP1+E2V57WbOha5IDvC7jjz0m\nyyZNop/DCA5/5XrCCcHpAemjGjo0+Jhh8WLp83KJZbo07pwffxz7uoniek+WBr17AxddVLr3VMIx\n3qqK4rJ6dWwP5C+/lKVpuOfni3a1cGHCtygfAgqwDgeACB8zoNa03uvVAxYssI4K+fnAUUeJCaJj\nR2D8eBEwtWtbgfLDD9JvcuCBQL9+osV06eI1A+bliQmuZk0rAI2J0VCvnoxDAqxGVqNG9DMY1/Jx\n46KPGa3qmGOA11/3Hotnslu8GOjUybsvliZnzKL//W/s6yZKKvueEo2aMXMmcNNNwK+/pu7eFZVv\nv03MFFxS7L572d27tNi509twVeJj+vvDvmnjfGaOP/igaFdHHpnwLcqHgEpPl9BGhtxc6zBw/vni\nqdekiR2wC4hgqVEDyMyUFl7PnqL51Khh+2z69BHBdd55wPPPi0bWqRPw6qv2Xp9+KmazWrWA9euB\n448HPvhAjv30kyzr1wcuvVT+kJ49ZZ/Rsh55JNxG36qVzYth1y5gv/28+1q3Bho3lnW3zw2Qe65Z\nE+0KH6svrGVLWRrvvyC2bEm80vvqK+DRRxNL63LPPdF9gGlp8kwffWT35eTIPv+LPmpUUi9zpaVH\nj9T2KSaKsSisWlX69y5tpk0LjjKjhLNypSzT0qQB/sMP0viuUwc480zrW2C6TNZHhsIm0adZPgTU\nXXdJZWb6aYzwAcRBYf58EWLnnGM1B6P51K1rC2DXLqno6juB0xct8proTB/Kjh3SR/TxxxJqKCtL\ntLFzz7Wu5f/6l6ipbdrIdr9+1vGhoEAEx8CBcv0TTrD3MH/Mjh3R5r45c4KjTKxdC+y/f3iwW2Mi\nbNhQBFwsAeWOwzLC1k/DhtGaXBjVq0t/nzsOLB7XXy/DAoyjiZ/zz7frRnP1R9hQbJmnOl4jc3zT\nnalIgqwFlQ1jqamq4cRWrAC++Sa5c4yGBEi93KuXBFRo0UL62pculeuaxm0RLDHlQ0A1bChLE5Nu\nxw6v55shM9NWzPn5kiYzMzpd8+Z2fd06r0AwL+Lbb0vnHSD9UsZV3K/xnHKKCEdA7mdsrkZAGlzH\nBaM17NghlfuGDSI4N2yQj75Fi+g8A+I5GFZJX3GFdFjPnCnPYyr1oIrL9VI0jiRBmBZQLE2qoECO\nV69uBb9fywvi2WdlaezPYXkF7EDkk06KdlAJ49ZbJaRUZcdtpaaSOXNs/24YZvhGWQ4QLy2Mtug6\nUFUlHnsMOPlksRANHhw/ffXq0uViuPtuqzwUFFiLkFvXTZiQdLZSEUlibyKaEJkLahYR3RjZn/h8\nUEbIHHGELPPzg4PBZmbKRzNhglR8NWpERyaXm9v1nBz78gFWqLjXN94mQOwYejVqyJ/wxx/y0bpp\nd+eFOoYAACAASURBVNtNxm25rF8vf+Tuu0t/2dy5kje/EDTUrx8soJ58UiqoX3+VVkvNmuLi+fTT\nQNuoAPFikrv6apsHv5ntuedkaQRTjRpiTgti+3YpYyIR1E2aSLT4WLiCyK3c/M4nBtPCmj5dnr9B\nA+9xI+xcvvoK+PHH2PmoDJx8sizDwlwR2eERyeAP2xVEdraE/apKAsodmG/IzZXvraQx88MFuW6X\nNJMny3L8eOCBB+zz5ud7NZ8PPgAuvth+y6eeKsvnn7dpFi+OHtN54YVSl9x3X1LZSkWzrBDArczc\nHkBnANcRUVskMx+UqwVNny6FEmRW2LJFPPbMeKj09PCW5aJFIhQAb0u7Vi2xNbvzPplCBmILqI0b\npYCN26177/R06+EHWO9B43DRrp3Me1W7dnieMzNtH5thn33EnuvSrJmEHvrtN/GIcSsoIxyaNbP7\npk+X5dix0p9gwhbt3ClmnsJCucarrwLffee9lxFQht694/eHuDZmv+eln7w8ac3ffrv0D27eLBr1\n8cfbNEUcQ1EpMHb7WHEYg4ZSxMM04mJpz9nZMvatKoyDijVTwYgRwdP3lBRffFF69zL4NUdjEbr3\nXm/AgnffBd55x277+7n32EPqoNq1bV3SsKH1Qk7yXU1FJIm1zPxHZD0bwDwAewM4E8CbkWRvAjgr\n9CIXXGDHLR12mPQLBWlQ8aLhugEI99vPmvP8ms2//uX1cHNDJPk9+FxMZfv998HHjVoL2L4no7G1\nbSsaUJBJ0rBggWhLxizWrJnYcP1a4uGHi/ZgNA3XVGMqMjc6eu/eUh5nnikOFEYV//VXey6RTABp\nwjYZ9t7b24I67jivRhrElCl2PZ6AWr1aXuDzzhMhn50tGuYVV9g0xsTqUpZebWVBLK/NosRJdE3V\nYWRnyzudk1P5HSVcd2kzMN1QnGd/7LHkp+kJszSEUVAQrknPni3H/vrL7jNjMIlEQw4yvderJ/Xc\nyJGybQSLv7Hiry+7d5dlrVpWkdi82dZVRMAzzyT8aCk1bBNRSwAdITH5Ep8PKj3dDrY1BGlQbiw+\nFzPdhV99dAWGi38Qq1vIhx8emk0P/fpF7zMBbgFRc1u0sC3Vdu3iCyjTv/bEE/JSGweDRo286U48\nUYT1hx/Kdk6OeBxu3y79eM2a2RfllVekH8O8vDt3SguoXj2vW60RbDNnAnfeKetGULomt8xM0cSm\nTPHaoP3P0bu3eD4aAbVwobzcbscqs+SrSRMRUps3Sz4yM72Dg/cMeHWqioAy708sDSoRc50fI5hi\nCT7TWOjYMdzZpbLgCpHhw73HXnlFlkVxVLnttsS0BmaxrIwcKc4KYULq77+j+2mNs8uTT3rHfa5a\nZU11bmSHmTPt+j//iINWeroILkC+261breWmWzfbKHe7IFxva4Op3/z19+mny7JxY5k2KEFSJqCI\nKBPARwBuimhSCc8HBSB8AkIX1w3UxKeLxbXXAjfeGL2/e3fxHDSkpUn0idGjvRWjn+uvt+uuCcrl\nv/8VjWzgQK/XW7t2UhmH9T8BVpN7443Yav7BB0t/lavZrFghz9Wxo9zXlGdY5Ad/Be+2sEaMkKWJ\nnuH29XTpIsKkS5dwJ4Vt2+Q5XWeOAw4QL8VVq+y9t28XQXfQQSIEXQFlvCX79w++h6ks3P7Gykj/\n/vJfBgkSU4nFEjJhmMZHPAGVmSn9qxWpHyo3Vzxyk9FEXA0qTKtMtm8oLDJNWNqMDGmsTZkSbeo3\nNGtmuycKC+W/MeazZ56x3sQ//ijOYkagZGeLMHIb46bh17SpCBRT9x15pDg9GAeHY4+13o1GgyKK\ndmQbM8Zae/zTIZl7HXRQ/LJwSNWMutUgwuktZjbTaqwjosaR47HngxoyBEMeewxDAEw67jjZ+dtv\nQTeyUQ1Mv0osTjoJeOqp4GN+QXH11RIMNhbHHGPXe/cOTnPssVZwGLMlIKa1jIzYGtQnn4h5c8MG\n77l+MjLsGC3D9u22bygvT16UunWjtS+DGc8FSNogD5ucHGlVtW9v92Vm2tbQP//If2I8IA1ZWXLv\njIzgkEVE8lFs3iyCdd99Reht3SrPv3Wr/VgaNbKV49NPi4AbMaLojgGpNFVt3Rrf3FlcCgulMRKk\nQZmK1HRwx2PLFmmhM9tzY+XfCKj69aVPt2nT1Lu7+0mFIHz1VbGE+PtTY+FqUPvs4x0rGZTG5fnn\n7TfhYiwcridrGPfdJ/+JseCY7gxmsRzddpttjI0aJWM8GzWK9qhds0a+E9N4NHXaKaeIkDB5Ofpo\n7+wM1auLYGrUSBpFbdpIQ/ftt0UIDhki2pLxtHb70X/4QYT3hRdaoWXy+vnnwPjxmDRpEoYMGoQh\nf/+NIX4TaiyYudg/AKMBPO7bNxzAnZH1OwEMCzmXmZk5L08MdQccIMvXXuNAfvxRjhcWBh9PlMcf\nN4bB5M5L5JyPP5Y0553n3X/QQcw9e8Y+d/Vqe49zzmGeMyd22p07mW+5hXn33ZkbN47OX36+3ef+\nhg2z68cfz1ytGnN6ut23eLEsmzWLvu/27cxr19q0V1zhPT5kCPO99zK//DLzxRcz79pl0w4eLGna\nt2f+80/mPn2YR4+WfXXr2nRffCHLhx9mbtJEjvuf4aGHZLltW+wyNbz4YvL/dywaNmTu0aP419mw\ngXny5OBjF18s782AAdHHVq2S59lrr/BrFxYy//UXc04O8w8/SPqsLOYxY2R92rTwcx9+mHngQOZL\nL2Xu21fS79iRzJMlh3lP1qwp3nXMe/HOO4mf88QTzDfeyLx8uX2/8vLkmNn+/PPgc3v1kuM7d3r3\nu+9yPEzawkLmww5jPvlk5uxs5r//Zq5Zk/mkk+R4r17Mjzzi/Q6uvpr5o4+YJ00K/tb32CN638KF\nct8PP2Ru1Yq5USO5t3lm80xffcX80kvec9u1kzwGcd99CX1jkXo/rmxJhZt5FwB9AJxARDOIaDoR\n9UQy80EBViX8+2+ZC+qyy4LTde4sUjyo4zwZijr4MCcn/sy2xinDn8d27WKb+ABvv9kee0iYpjCa\nNpWWzODBwJtvRjs4AKLFmDBSNWtad3LXpJqRIf1eru3dRLtwbdeG2rW9+XztNe9xY+Jr0kRaYab/\ngtl2QGdmim3eHU/m/idGg8rOFht5UMt94EDp00pkXBZgTa6JuKcXFMSOxJGXJ/f95pvE7x/GgAHh\n5tKcHGnVBpniNm2S/27NGttv6Ofpp0VD7dvXaieLFlkN9M8/gccfj+4DBqwGNWGCLYt4sz8XhyCz\nY7NmdixYohgzVDKDbvPyoi0cNWt6PXzDQiGZ/LqewS4vvBD73qa/GJA6Y9Qo+a/OPlu+8WrVpF8I\nkP/Bna37xRele+LccyV+qcv++8vSjclpHBRMEO5995X69J9/5N7mGzz3XFk2aSLal8uvv4aHUUuk\nqyYZEpFiJfmDK20vu4z555/jSt+U8PLLRdOgEmHXLub+/ZnnzfPuv/de5ssvj39+8+aSr2uuSf7e\nYc8EMJ99tl1/6imbtlcvm87VwhIpn1atJM0vv9h9Z5/N/PzzzD/9xHz00cwTJzIfeGBwPnv1Yh47\nVva52vP338v6r7+KtnXEEd48TZki5xx0kGhiifDcc4mX61dfxX72pUttXr7/PrH7h3H++eH36tVL\nNPGLL44+Nn06c8eONh8FBdFp+vWTY82bi0YBMH/2mbyLbnmmpUWfe+ONzE8+KRqaSbdhQ/GeNRZ/\n/y33mD1bnvePP2Tb5NW07uMR690N04QAsW6EWRwA5qOOEq3GxbUOnHOO3e+/jl+7MhQWRud37lzm\nOnXsvlNPlfMXL7bnbd4sGrQfo+1ce210PrOyZP3vv+3+RYuCy6qgQO63a5dst2iRWH0wfHj50qBS\nyuuvFzkse9L06SOdekUY3RwXIhlc6h9Ee9FF4Zqhiwlm63oFJsp++wX3OzVr5tXGXOcCt0PTnVAx\nEUwUCNczZ8MG0f4yMkQTWbdOtoOYOdO22kyLb889rSNF7dpSHv6gsWZcSno6MGhQYnndvl0cUeKN\n6xk71rYaw9K6fVnFDY8Ty9U7P18Gegf1uRYWSuv6wQdlO8ixxmie27dbDWruXNt5fvTR8v8HeUUa\nDcq9d0lqUCbKdX6+9H2YcYwm2v+SJcGatAuzdwzg11/b6t/gD/9lNPy//grXAEaMkPF4/j5kV3t2\n+6g2bJDl66/L9+iG9nJxB8ibfq9Wrbxa5Mkni6WkdWu7r0ED73MajGZ0zTXe/UQ27+6wmjBns2rV\n5H6mnnCHjpQiMVzWKjm1asWPIp5q2rYNjvwQRL9+sR0lwnAnYHRZuNDrdeMKKBNc1pCebj2Pwpws\nDGa81W+/ifnugAOk0/6ll6TiLSyUSv6AA7znjRkjAnvlShFSPXrYDygjw3oD1awZHHfQmEqfekrc\nYf2hp4LIzhbPplWrxNznRulmlkGxjRt7I2WMHy/n5eaKs0iHDlIJTJ0K/N//yfM9+KAI0RYtxPPx\n/PPlPmvXygBIv4nET1ClP368RFYxAmruXBnTctBBwMSJ8jvlFKlI7rlHKm/Tge1iKuZNm6xn2Ny5\nUu6tW4sTzJw5NqRVWpo0rtauFZNWjx7eqWLWr/cO3EwlptPeCHx/ubRvL/OnffYZQrnjDjFL33ab\nRChxy97Emhs9WkziBuOdFxa1PTNTXK39fPyx/B9mrNjnn9tjubnSiLrsMnF8MBFB/BhHiqeftmP/\natSwwy5Wr06uvI3nrXEZj0eiJrmmTeU9SLYBW0zKlwalWJ5/PjFX+kTxR7AwAqpGDe8AZ0AitGdk\nAO+/H98TKj3dthzvv9/ax1u3lmOFhdJar++LdOVqc6avzhVQRuPyj7NwnwcQt/qtW4PDIfnJypL+\nwXXrvAOBAWlpm4rYRFDfay8ZRH7llTLE4PjjbSW2bJm0YLdulX6cAQNksPGAAeKNCUi/ntuHEYZ/\nFmhAvCxfeEEEr2kkmD6QJ58UraKgwPbVtWgRrMm5msPYsfK/LFsm2sIBB0hL3UzlsmqV/F/XXy9C\nd+VKGyfTEBbMOBWY8Vxun4yfsLmEdu0SIW0Ejwn15eJG0HcxlbrRLPwaeXZ2dDkA8n//5z/yDZmG\np3kGMzcdIP2kYf3Ws2bJcX9+jZdwso0Bo3UmM/zixx/jhy8DEhNmxx4b3eAtBiqgqipGWLVpEx3e\n6ZZbxOzRu3f8gKKA10S4YoUI1urVpfIsLJSK0R8No0MHu+/KK2VptjMyxNy3ZEm0gDKDsc0HWL++\nhL8yJpVYZGeLQHv7bcmTab2OGWM7hTdsEIFz003hg1Nbt5Z4hnvuaWdNdrn5Zsm3GU/WqVPwHGEG\nUwkVFopAMZrDo4+KadOYbW69VYSfEc7nn++dLy3Ipd+vVXbuLK39HTtEEOTl2YHYV17pjUsJWM3X\nNCiSmZJi//2t+TGM3FzgrLPkuYMGHLthdYDwMGFPPSXmbWOq9DeIANHq/QwZYsfamRiVN98sS9eE\n5r+eGVrx0UcioIzTQEaGPMtTT9m8ZmaKefXjj+W9dZ0p0tJESPmdtoraOD36aNG+k6FLl8SsSS1a\nRI9v8tO5s3dMZTFRAVVVMa2hIJt+tWrJT1JnRrD/+adtkVarJlrLTz9JZA0XImtnN+Y6o0GZj6BV\nK28FW716sIk0VhR4l6wsuYeZe8y0Uu+6y3qQ3XqrmBxNmiAN0pjSliwRTefbb23L/fLLZen2K/3x\nBzBsmAi/IFu++Q+qV5cKyzyz6d9wI598/bXtf1u/3ppiW7YUs6W/L2nVKhlHY7SCffYRM83GjVYD\nNALxu+/EDDZunGjPP/9sB2sGCT/D+PEyLc3YsRJx4KOPxNS8eLHEcnMHzDJ7//vvvhOTXW5usIDy\n90nPnRsd2Piff+z7ZTw13femdu1os2CtWiI8zYwGY8bYwaS77y4NmS5dxKQIyLts8jdqlI1qM3++\n7Hfvd/fdov0ac5hpRJx3niyvu842ErZvD47/GRQ9JRHS00tuXqs33hDTdmmSiCdFSf5QEl50SmwA\n5tdfZ77kEvG6SQVmXNTKlXbf0qUyhgOQ8U5B+XD//4cflm3XK2/HDpuuWjXxojJef4a332Zu2jR+\nHk87TTzY3HsbL0T/z/XANB59jz/O/M03Ns3s2d7rjx4t40saNLBpjj6a+cwzZf3uu4M9ug4/PNxz\nDBBPqj//lOe/4gq5jju2hVm8sTIzmR98MLqM+/SxY2dee82eN326LLt29d5vyZLg8hs5Mvo/dssy\n7LdihXiFTZ3K/NZb/D/PPDPWDhDPsmefjT7XjPXy/3Jz5fzCwuBxPnl5zOPG2e3Nm4Ovc8YZsly3\nzvtMmzbJu2Y8LLdujX5WMzbJ/AeDBnmP165tr3fIIXb/3nvLmMMzz2SuVy+4rFesKJoXbwUBCXrx\nqYCqigDhA0OLinGrzc21+1assB+lvwIw+XD//1GjooXDzp02XXp68L03bvRW/GvXWvdYw99/M7dp\nY13C3QGZgFRIboUZa7DozJnhbsPMzOPH2+t89RXzd9957zVzpjd927bhlfstt9h0o0fb/UOHMtev\n7y2/F16QAZS7dsnxbdvk+JVX2rL95hvmTp3seeZ6ZgA8YN2Rg2jUyKYbPdrrgh72mzXLOwjb/K69\n1rv9739Hp1m/XgZqd+8uFX68ewHM//d/UgZuY4JZhj8AzBdd5E0/alT48158saQx7uXueWYwubm+\nGShr3OKrV/deC5BGklsWGRnh967EJCqg1MRXFWH2hm1KBcb27po63GjyYSYL1/Zu+qDceGFun0NY\ngFjTgf3ll2LuadLEO31AYaH08yxcaDtw99nHmuPMNVq3lj6J2rXD3eIBMf/FmkDQPNO4cRL9/dhj\nxWQEiEeX30ySlSV9d8Y0CsicO7NnyyBag3vPFSts35Sha1eJQTd/vpjWzBCKBx6wZVqvXnCMOpPn\n006LHY7LdZLo2zd4ltTbb/duf/55sCfmihVed+gXXwzO15o1Ynrcvj22Bx8gJsN33xUzor9fx/Rb\nvvOO1+TshvLyY/pAg/5vv3emmXn72mtl6TdZDh0qA27dsihtT+IKRqpi8b1KROuIaKazL/EJC5XK\niRFQYXET5871ThURJKBcROOOhkjceU8/3XZw33KLCMauXb2T0LnTkLz2WvSI+MGDpSKMFTQ4HqYi\nPO00eZaMDPHKPPJIaRhcc404KNxxh6Qz442aNwc+/VT2paVFV5yuYOnRQzwGXY+3tm1l7JzpNxsy\nRK7btKkdr1avnrcfzzho1Kwp/RfxPLBMP4ofdxZrf6R/NzAzYPNcr158bzO/kDHOGkENiIcf9vbX\nxYoW4w6f8E+Q6WKigZv34YcfZFm9us27O34PkAZS0PszaFD0f5pKT93KSCJqVrwfgGMg02zMdPYN\nB3BHZD1+LD6l8rFpU7QZLxaffCJpt2/37nfNKmGceGJss8/11wfHZjP9O6lk8uTwvPrjpZl+EjfG\nHRAcccSY+I49NvzenTvLs7ZuLWn33FP2X3qpbK9cKf0pf/0l+5cvl/7IwkLmLVvEVBsLEzMTYO7Q\ngfmff2T//vvb/cbkGta/55reLrggOM0770gEEb+p1ph8v/46+hx/lAvTx9a3r2yfe679X1zTcVif\nG7PtO3Jx38X8/OAIHqYfMohVq2xcxGHDwu9diUGCJr6UCCi5H1r4BNR8yJxQANAEwPyQ80q2JJSy\nw/SBJPoff/aZpPVXSokIqEcftWlcRwDzMxVpaVBYKP1QQWzYEJ23OnW8aQDpN/KTkyPHunYNv/cp\np0jH/1VXectsyxbp44nVd5YoRjj99JPdt3y59GP9/LP8f6++Kv1+mZmSfvx46dsy/0NhoTi2nHii\n9LNNnCjp/r+9e42Voy7jOP790VJQayuQtERqgQaFAomkAhZBbCBC1YTWeENALk14YWMEY7QgL9B3\nYmKUcEk0INS2WLmZFoNYGihBoQiBprUtUCFCKVAxIBdDAMvji5npmbPd3Tk9O3N2zs7vk5ywM3v2\n7My/wzzzvz5Ll8awPp92soDQWo6tC9lmfYpbtiTb+QCVfX7atD2vt7xsKanW8588uWsRxaJF3R8k\nNm1K/s6113b/OwNqpAGqyj6oaTHShIU2mLJmjmw+UJGsCWs0OZ4uvTTp63jmmaSd/4EHhuau7NrV\nvU+pbN2G+h500J5NXtlE2bx2fR7d+kMy776bDPdubcqbOjUZ+tzts3tjyZLhzWkzZybDsufOTf79\nFi1KJr5mQ+KzlUKyf4cJE5LmzzfeSFZjmDcv6ac76aRkonCnCdowdF21zvFqnaOTLWic/a1219X5\n53e/3tq9d/zxQ/1MndxwQ/cM4Nmxt84PtGHGcqmjDh0IDMsPMm/ePOa1W1bExp/sRjLSdvbRZIbN\nTJgwfJLpqacmfQOPPVbeTbksl1ySZEXO+sba5Rbrdsz5wRStssnFU6YUT6ocrRdfHPk8nW7pzrOB\nCtlE2WxgS7uV1dvJ5q5J7QdYZIEp64tqF2yKro0VK/Zc0b91Xch2spTqnTQsQK1bt4513QJ2B1UG\nqJ2SpkfEzpEkLLQBlC1h1GnQQ6tuN7PRqGu23enTk5/Fi5PFRPODODLd0sm0W3MvkwWlKVO6d/73\nIr/YaJGbb24/0g+SpaPuv7+cB4ho8/yblWF2HbT7nqJrZPbs0S3aXKRhAaq14vGT1uXVOijz0VLp\nT2Y1cGH6+gKgYHyoDZzshlC0iGtmb1J0D4LrrktWFGh3AxztTTsbhTdlSudh+WNp7twkr1E72ei3\nXnO7QecRnmvXDjX1tQtG+YVwx1JWu2tIgBqtUmpQkm4B5gEHSXoeuJIkQeFtkhYBzwEdcqTbwBvp\nisknnFDqQpMsW1Zuivex1Omm/dJL3ecpXX/90NqHF188PEVD3WS1vapqUJA0pWZav2fHjuGJN8dS\n1uzoANVVKQEqIs7p8FabtgtrnJEGqGOPLXWhSY48cs80H+NFp5t20RN/tsDp5MlJOpAsE2sdZX2U\nZQSokdTCWr+nqrQhIzFxYtKy0K8a3DjR3HxQNnbGcgTdoOi12StrPquzMmtQ7dJhtKpbn2Q2yMM6\ncoCyar31lpsxRqOXm/Yppwxf2aGuyqpBrVgxsrxb551XnE3ZasUByqrl4DQ6I8nD1cmDD5Z3HFUq\nqwZ1TqcehhZnnFFdKgqrhAOUWd28/Xb3deQGRZlNfDaQHKDM6makw/LHu6yJr4xh5jaQ/OhiZv3h\nGpQV8JVh9bd8eb+PwKrgAGUFfGVY/Z17bnXL9lj/lDkPygZS5VeGpPmSnpT0tKQlVX+fmY0TrkFZ\ngUqvDEn7ANcCZwLHAN+UdFT3T5m14ZvY4HENygpUfWWcCGyLiOci4j1gJbCg4u+0QVS3VQCsd65B\nWYGqr4xDgO257RfSfWbWdFmA8jBz66AW86CcsNAKuQY1eNzE1xijTVio6LRMfQkkzQV+HBHz0+3L\nSHLRX5X7najyGGxATJsGr7zSOa2CjT+rVsHChfDQQ0mqd2sMSURE4VNn1Y8ujwJHSDpU0iTgbJJE\nhmZ7xzWoweM+KCtQaRNfROyS9B1gDUkwvDEitlb5nTagHKAGj5v4rEDlfVARcQ8wTrPGWW04QA0e\n16CsgK8MM+sPBygr4CvDxgffxAaPVzO3Av6/3sYHN/ENHtegrEAt5kGZFZo5E958s99HYWXyIAkr\n4ABl48Py5Q5Qg8Y1KCvgAGXjw6xZ/T4CK5sDlBXwlWFm/eEmPivgK8PM+iOrQWX/NWvRU4CS9FVJ\nf5e0S9Kclvcul7RN0lZJZ/R2mGY2cLyauRXotQ9qE/Bl4Ff5nZJmA18HZgMzgLWSPu5VYc1st6yJ\nb6K7wq29nmpQEfFURGwDWiepLABWRsT/IuKfwDaS5IVmZgnXoKxAVX1QrYkKd+BEhWaWlwWo/fbr\n73FYbRXWrSXdC0zP7wICuCIi7irjIJyw0KyBsqa9/ffv73FY5fqasFDS/cD3I+LxdHtYYkJJ9wBX\nRsQjbT7rrimzJopIhpi//76XsmqYfiQszH/ZauBsSZMkHQ4cAfytxO8ys/FOSoKUg5N10Osw84WS\ntgNzgT9K+hNARGwBbgW2AHcDi11NMjOzvVFKE19PB+AmPjOzRulHE5+ZmVlpHKDMzKyWHKDMzKyW\nHKDMzKyWHKDMzKyWHKDMzKyWHKDMzKyWHKDMzKyWel1J4mdpQsINku6QNCX3nhMW9mg0iys2hcum\nM5dNey6XzupaNr3WoNYAx0TEcSQ5ny4HkHQ0QwkLvwBcL3nBrb1V14umDlw2nbls2nO5dFbXsuk1\nYeHaiHg/3VxPkj0X4CycsNDMzHpQZh/UIpKFYcEJC83MrEeFi8WOJGGhpCuAORHxlXT7GuDhiLgl\n3b4BuDsi7mzz971SrJlZw4xksdjCjLoR8flu70u6EPgicFpu9w7gY7ntGem+UR2kmZk1T6+j+OYD\nPwDOioh3cm85YaGZmfWksAZV4BpgEnBvOkhvfUQsjogtkrKEhe/hhIVmZraX+p6w0MzMrJ2+riQh\nab6kJyU9LWlJP49lLEiaIek+SZslbZL03XT/AZLWSHpK0p8lTc19pu2EZ0lzJG1My+6X/Tifskna\nR9Ljklan2y6XlKSpkm5Lz3ezpE+7fHaf5+b0nFak3QqNLBdJN0raKWljbl9pZZGW7cr0Mw9Lmln5\nSUVEX35IguM/gEOBfYENwFH9Op4xOueDgePS15OBp4CjgKuAH6b7lwA/TV8fDTxB0hR7WFpeWa33\nEeCE9PXdwJn9Pr8Syud7wHJgdbrtchkqm5uBi9LXE4GpTS+f9N7xLDAp3f49cEFTywU4BTgO2Jjb\nV1pZAN8Grk9ff4Nkrmul59TPGtSJwLaIeC4i3gNWAgv6eDyVi4iXI2JD+votYCvJCMcFwNL015YC\nC9PXbSc8SzoY+HBEPJr+3m9znxmXJM0gGQ16Q25348sFIF1C7LMRcRNAet6v4/J5A3gX+JCk74/P\ntwAAAlxJREFUicAHSEYLN7JcIuIvwGstu8ssi/zfuh04vfSTaNHPANU6mfcFGjSZV9JhJE8764Hp\nEbETkiAGTEt/rdOE50NIyiszCGX3C5IRoflOUZdL4nDg35JuSptAfy3pgzS8fCLiNeDnwPMk5/h6\nRKyl4eXSYlqJZbH7MxGxC/iPpAOrO3SvZt4XkiaTPIFcktakWkeqNGrkiqQvATvT2mW3eXGNKpec\nicAc4LqImAP8F7gMXzezSJqFDwU+SlKTOpeGl0uBMsui8jms/QxQO4B8J1vHybyDJG2KuB1YFhGr\n0t07JU1P3z8Y+Fe6v9OE5xFPhB4nTgbOkvQs8DvgNEnLgJcbXi6ZF4DtEfFYun0HScBq+nVzPPDX\niHg1faL/A/AZXC55ZZbF7vckTQCmRMSr1R16fwPUo8ARkg6VNAk4m2SC76D7DbAlIq7O7VsNXJi+\nvgBYldu/x4TntKr+uqQTJQk4P/eZcScifhQRMyNiFsl1cF9EfAu4iwaXSyZtotku6RPprtOBzTT8\nuiEZZDRX0v7p+ZxOMveyyeUihtdsyiyL1enfAPgacF9lZ5Hp86iT+SQX2Tbgsn4eyxid78nALpIR\ni08Aj6dlcCCwNi2LNcBHcp+5nGSEzVbgjNz+TwGb0rK7ut/nVmIZfY6hUXwul6Hz+iTJQ90G4E6S\nUXyNLx+SfsvNwEaSDvx9m1ouwC3Ai8A7JP1yFwEHlFUWwH7Aren+9cBhVZ+TJ+qamVkteZCEmZnV\nkgOUmZnVkgOUmZnVkgOUmZnVkgOUmZnVkgOUmZnVkgOUmZnV0v8BxhEjg8QkD/4AAAAASUVORK5C\nYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11af6a0d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(nrows=2, ncols=1)\n", "\n", "dfgraph['FTOE'][-10800:0].plot(ax=axes[0]); axes[0].set_title('3h Baseline PI');\n", "dfgraph['FTOE'][0:10800].plot(ax=axes[1], color = 'r'); axes[1].set_title('After Exam PI');\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Information Theory\n", " - Fuzzy Entropy\n", " - Cross Fuzzy Entropy" ] }, { "cell_type": "code", "execution_count": 126, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from entropy import *\n", "\n", "#def fuzzyen(x, dim, r, n, scale=True):\n", "# return entropy(x, dim, r, n=n, scale=scale, remove_baseline=True)\n", "\n", "def FuzzyEnLst(dfenlstcopy1):\n", " \n", " PI_FE = []\n", " PR_FE = []\n", " SpO2_FE = []\n", " StO2_FE = []\n", " FTOE_FE = []\n", " \n", " for i in dfenlstcopy1:\n", " a = fuzzyen(i['PI'].values, 2, .2*np.nanstd(i['PI'].values), n=1)\n", " b = fuzzyen(i['PR'].values, 2, .2*np.nanstd(i['PR'].values), n=1)\n", " c = fuzzyen(i['SpO2'].values, 2, .2*np.nanstd(i['SpO2'].values), n=1)\n", " d = fuzzyen(i['StO2'].values, 2, .2*np.nanstd(i['StO2'].values), n=1)\n", " e = fuzzyen(i['FTOE'].values, 2, .2*np.nanstd(i['FTOE'].values), n=1)\n", "\n", " PI_FE.append(a)\n", " PR_FE.append(b)\n", " SpO2_FE.append(c)\n", " StO2_FE.append(d)\n", " FTOE_FE.append(e)\n", " \n", " FuzzyEnDf = pd.DataFrame({\n", " 'PI FuzzyEn': PI_FE,\n", " 'PR FuzzyEn' : PR_FE,\n", " 'SpO2 FuzzyEn' : SpO2_FE,\n", " 'StO2 FuzzyEn' : StO2_FE,\n", " 'FTOE FuzzyEn' : FTOE_FE\n", " }, index = ['-3:0','0:3','3:6','6:9','9:12','12:15','15:18','18:21','21:24'])\n", " \n", " return FuzzyEnDf" ] }, { "cell_type": "code", "execution_count": 127, "metadata": { "collapsed": false }, "outputs": [], "source": [ "FuzzyEnDf = FuzzyEnLst(dfenlstcopy1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "FuzzyEnDf['PI FuzzyEn'].plot(grid=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "FuzzyEnDf['PR FuzzyEn'].plot(grid=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "FuzzyEnDf['SpO2 FuzzyEn'].plot(grid=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "FuzzyEnDf['StO2 FuzzyEn'].plot(grid=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "FuzzyEnDf['FTOE FuzzyEn'].plot(grid=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "FuzzyEnDf.plot(grid=True)\n", "plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#def cross_fuzzyen(x1, x2, m, r, n, scale=True):\n", "# return entropy([x1, x2], dim, r, n, scale=scale, remove_baseline=True)\n", "\n", "def CrossFuzzyLst(dfenlstcopy2):\n", " \n", "#Cross Fuzzy Entropy between variables\n", "\n", " a = [] #ab\n", " b = [] #ac\n", " c = [] #ad\n", " d = [] #ae\n", " e = [] #bc\n", " f = [] #bd\n", " g = [] #be\n", " h = [] #cd\n", " i = [] #ce\n", " j = [] #de\n", " \n", " rlst = [a, b, c, d, e, f, g, h, i, j]\n", " \n", " # 0 1 2 3 4\n", " # PI, PR, SpO2, StO2, FTOE\n", " # PI aa ab ac ad ae\n", " # PR ba bb bc bd be\n", " # SpO2 ca cb cc cd ce\n", " # StO2 da db dc dd de\n", " # FTOE ea eb ec ed ee\n", " \n", " for x in dfenlstcopy2:\n", "\n", " ab = cross_fuzzyen(x['PI'].values, x['PR'].values, 2, .2, n=1) #ab\n", " a.append(ab)\n", " ac = cross_fuzzyen(x['PI'].values, x['SpO2'].values, 2, .2, n=1) #ac\n", " b.append(ac)\n", " ad = cross_fuzzyen(x['PI'].values, x['StO2'].values, 2, .2, n=1) #ad\n", " c.append(ad)\n", " ae = cross_fuzzyen(x['PI'].values, x['FTOE'].values, 2, .2, n=1) #ae\n", " d.append(ae)\n", " bc = cross_fuzzyen(x['PR'].values, x['SpO2'].values, 2, .2, n=1) #bc\n", " e.append(bc)\n", " bd = cross_fuzzyen(x['PR'].values, x['StO2'].values, 2, .2, n=1) #bd\n", " f.append(bd)\n", " be = cross_fuzzyen(x['PR'].values, x['FTOE'].values, 2, .2, n=1) #be\n", " g.append(be)\n", " cd = cross_fuzzyen(x['SpO2'].values, x['StO2'].values, 2, .2, n=1) #cd\n", " h.append(cd)\n", " ce = cross_fuzzyen(x['SpO2'].values, x['FTOE'].values, 2, .2, n=1) #ce\n", " i.append(ce)\n", " de = cross_fuzzyen(x['StO2'].values, x['FTOE'].values, 2, .2, n=1) #de\n", " j.append(de)\n", " \n", " XFuzzyEnDf = pd.DataFrame({\n", " 'xf PI:PR': a,\n", " 'xf PI:SpO2' : b,\n", " 'xf PI:StO2' : c,\n", " 'xf PI:FTOE' : d,\n", " 'xf PR:SpO2' : e,\n", " 'xf PR:StO2' : f,\n", " 'xf PR:FTOE' : g,\n", " 'xf SpO2:StO2' : h,\n", " 'xf SpO2:FTOE' : i,\n", " 'xf StO2:FTOE': j,\n", " }, index = ['-3:0','0:3','3:6','6:9','9:12','12:15','15:18','18:21','21:24'])\n", " \n", " return XFuzzyEnDf" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "xengraph = CrossFuzzyLst(dfenlstcopy2) #error up to 4 decimal places" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "PIxg = xengraph.ix[:,0:4]\n", "PRxg = xengraph[['xf PI:PR', 'xf PR:FTOE', 'xf PR:SpO2', 'xf PR:StO2']]\n", "SpO2xg = xengraph[['xf PI:SpO2', 'xf PR:SpO2', 'xf SpO2:StO2', 'xf SpO2:FTOE']]\n", "StO2xg = xengraph[['xf PI:StO2', 'xf PR:StO2', 'xf SpO2:StO2', 'xf StO2:FTOE']]\n", "FTOExg = xengraph[['xf PI:FTOE', 'xf PR:FTOE', 'xf SpO2:FTOE', 'xf StO2:FTOE']]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "display(PIxg, PRxg, SpO2xg, StO2xg, FTOExg)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "PIxg.plot(grid=True)\n", "plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "PRxg.plot(grid=True)\n", "plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "SpO2xg.plot(grid=True)\n", "plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "StO2xg.plot(grid=True)\n", "plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "FTOExg.plot(grid=True)\n", "plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def OrderDetn(x1, x2):\n", " \n", " x1\n", " \n", " #Takes the length of two arrays and\n", " #arranges them from least to greatest\n", " #return (smaller x, bigger x)\n", " if len(x1) <= len(x2):\n", " return x1, x2\n", " else:\n", " return x2, x1" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#def cross_fuzzyen(x1, x2, m, r, n, scale=True):\n", "# return entropy([x1, x2], dim, r, n, scale=scale, remove_baseline=True)\n", "\n", "def CrossFuzzyLst(dfenlstcopy3):\n", " \n", " #cross entropy of baseline across different time epochs\n", " #comparison across the same variable\n", " \n", " #len(x1) <= len(x2) for it to work\n", "\n", " PIxbl = []\n", " PRxbl = []\n", " SpO2xbl = []\n", " StO2xbl = []\n", " FTOExbl = []\n", " \n", " for i in np.arange(0, 9): #9 time epochs\n", " \n", " a1, a2 = OrderDetn(dfenlstcopy3[0]['PI'].values, dfenlstcopy3[i]['PI'].values)\n", " b1, b2 = OrderDetn(dfenlstcopy3[0]['PR'].values, dfenlstcopy3[i]['PR'].values)\n", " c1, c2 = OrderDetn(dfenlstcopy3[0]['SpO2'].values, dfenlstcopy3[i]['SpO2'].values)\n", " d1, d2 = OrderDetn(dfenlstcopy3[0]['StO2'].values, dfenlstcopy3[i]['StO2'].values)\n", " e1, e2 = OrderDetn(dfenlstcopy3[0]['FTOE'].values, dfenlstcopy3[i]['FTOE'].values)\n", " \n", " a = cross_fuzzyen(a1, a2, 2, .2, n=1)\n", " b = cross_fuzzyen(b1, b2, 2, .2, n=1)\n", " c = cross_fuzzyen(c1, c2, 2, .2, n=1) \n", " d = cross_fuzzyen(d1, d2, 2, .2, n=1)\n", " e = cross_fuzzyen(e1, e2, 2, .2, n=1)\n", " \n", " PIxbl.append(a)\n", " PRxbl.append(b)\n", " SpO2xbl.append(c)\n", " StO2xbl.append(d)\n", " FTOExbl.append(e)\n", "\n", " XblFuzzyEnDf = pd.DataFrame({\n", " 'BL X FuzzyEn PI': PIxbl,\n", " 'BL X FuzzyEn PR' : PRxbl,\n", " 'BL X FuzzyEn SpO2' : SpO2xbl,\n", " 'BL X FuzzyEn StO2' : StO2xbl,\n", " 'BL X FuzzyEn FTOE' : FTOExbl,\n", " }, index = ['-3:0','0:3','3:6','6:9','9:12','12:15','15:18','18:21','21:24'])\n", " \n", " return XblFuzzyEnDf" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "xblengraph = CrossFuzzyLst(dfenlstcopy3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "xblengraph" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "xblengraph.plot(grid=True)\n", "plt.title('Cross Fuzzy Entropy', color='black')\n", "plt.tight_layout()\n", "plt.axvline(1, color='y', linestyle=':', lw='4') #vertical line at ROP Exam time\n", "plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Chaos Theory\n", " -Lempel-Ziv complexity\n", " -Lyapunov largest exponent\n", " -Hurst exponent" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Scripts for Chaos Theory based variables\n", "# Import from other scientists\n", "#\n", "\n", "# #1\n", "from analysis import *\n", " #Source: https://github.com/thelahunginjeet/pydynet/blob/master/analysis.py\n", " #def lz_complexity(s):\n", " #Aboy 2006: turn into two bit data based off threshold (threshold = median)\n", " #turn data into a string of 0's and 1's\n", "\n", "# #2\n", "def LLEcal(data):\n", " #Source: http://systems-sciences.uni-graz.at/etextbook/sw2/lyapunov.html\n", " result = []\n", " lambdas = []\n", " \n", " # loop through data\n", " for x in data:\n", " #take the log of the absolute of the data\n", " result.append(np.log(abs(x))) #np.log = ln\n", " # take average\n", " lambdas.append(mean(result))\n", " \n", " return max(lambdas)\n", "\n", "\n", "# #4\n", "def hurst_mod(data):\n", " #Source: http://pyeeg.sourceforge.net/index.html?highlight=hurst#pyeeg.hurst\n", " #modified lstsq line to to start from third iterable\n", " X = data\n", " N = len(X)\n", "\n", " T = array([float(i) for i in xrange(1,N+1)])\n", " Y = cumsum(X)\n", " Ave_T = Y/T\n", "\n", " S_T = zeros((N))\n", " R_T = zeros((N))\n", " for i in xrange(N):\n", " S_T[i] = std(X[:i+1])\n", " X_T = Y - T * Ave_T[i]\n", " R_T[i] = max(X_T[:i + 1]) - min(X_T[:i + 1])\n", "\n", " R_S = R_T / S_T\n", " R_S = log(R_S)\n", " n = log(T).reshape(N, 1)\n", " \n", " #remove NaNs from both R_S and n\n", " rrr = np.ndarray.flatten(n)\n", "\n", " dfxxx = pd.DataFrame({\n", " 'n': rrr,\n", " 'R_S' : R_S,\n", " })\n", " \n", " dfxxx = dfxxx.dropna(how='any')\n", " \n", " N = len(dfxxx)\n", " \n", " n = dfxxx['n'].values.reshape(N, 1)\n", " R_S = dfxxx['R_S'].values\n", "\n", " H = lstsq(n[1:], R_S[1:])[0]\n", " return H[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def ChaosVars(dflst, col): #or dfenlst if it doesn't work. \n", " #make sure you put in a['PI'] etc.\n", " #tau = 1 + n #embedding lag\n", " # n = m from fnn function, embedding dimension\n", " fs = 0.5 #sampling frequency, 1/2\n", " \n", " \n", " LZlst = []\n", " LLElst = []\n", " Hlst = []\n", " \n", " for i in dflst:\n", " \n", " data = i[col].values\n", " \n", " datalz = []\n", " \n", " thresh = np.nanmedian(data)\n", " for i in data:\n", " if i < thresh:\n", " datalz.append(0)\n", " else:\n", " datalz.append(1)\n", " \n", " strlz = ''.join(str(x) for x in datalz)\n", " \n", " a = ((1.0*lz_complexity(strlz))/random_lz_complexity(len(strlz),p=0.5)) #normalize\n", " LZlst.append(a)\n", " \n", " b = LLEcal(data)\n", " LLElst.append(b)\n", " \n", " try:\n", " d = hurst_mod(data)\n", " Hlst.append(d)\n", " except ValueError:\n", " Hlst.append(np.nan)\n", " \n", " dfchaos = pd.DataFrame({\n", " col + ' LZ': LZlst,\n", " col + ' LLE' : LLElst,\n", " col + ' H' : Hlst,\n", " }, index = ['-3:0','0:3','3:6','6:9','9:12','12:15','15:18','18:21','21:24'])\n", " \n", " return dfchaos" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "dfcPI = ChaosVars(dfenlst, 'PI')\n", "dfcPR = ChaosVars(dfenlst, 'PR')\n", "dfcSpO2 = ChaosVars(dfenlst, 'SpO2')\n", "dfcStO2 = ChaosVars(dfenlst, 'StO2')\n", "dfcFTOE = ChaosVars(dfenlst, 'FTOE')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "display(dfcPI, dfcPR, dfcSpO2, dfcStO2, dfcFTOE)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-2.0
DistrictDataLabs/yellowbrick
examples/examples.ipynb
1
1497985
null
apache-2.0
ML4DS/ML4all
U_lab1.Clustering/Lab_ShapeSegmentation_draft/LabSessionClustering.ipynb
1
347350
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Lab Session: Clustering algorithms for Image Segmentation\n", "\n", "Author: Jesús Cid Sueiro\n", "Jan. 2017" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.misc import imread" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Introduction\n", "\n", "In this notebook we explore an application of clustering algorithms to shape segmentation from binary images. We will carry out some exploratory work with a small set of images provided with this notebook. Most of them are not binary images, so we must do some preliminary work to extract he binary shape images and apply the clustering algorithms to them. We will have the opportunity to test the differences between $k$-means and spectral clustering in this problem." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.1. Load Image" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Several images are provided with this notebook:\n", "\n", "* BinarySeeds.png\n", "* birds.jpg\n", "* blood_frog_1.jpg\n", "* cKyDP.jpg\n", "* Matricula.jpg\n", "* Matricula2.jpg\n", "* Seeds.png" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Select image `birds.jpg` from file and plot it in grayscale" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQgAAAD8CAYAAACLgjpEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXt4HHSd7//KXDKXzGQyyWSSaZJp\n0qRJSEibJ7Rb6BYQdRGseDgigghuF0EsBxRY7VE5chHXRZRFUBdRF/EgHJTFC4isXaSWwyl0i7G3\ntGnT3CaZTDKZyWQy98wlvz/y+3xIXPmd57ec59meffp5Hh+Uxmbme/lc3u/35/MtW1pa4oydsTN2\nxv6UGf69P8AZO2Nn7PS1Mw7ijJ2xM/a2dsZBnLEzdsbe1s44iDN2xs7Y29oZB3HGztgZe1s74yDO\n2Bk7Y29rZxzEGTtjZ+xt7YyDOGNn7Iy9rZ1xEGfsjJ2xtzXTv/cHACgrK1vq7u5mcnKSfD5PqVSi\npqaGWCzGmjVrmJ2dxeFwkE6ncblchMNh/H4/+XyegYEB0uk0drud+fl50uk0TqeTvXv3cvfdd2Ox\nWFhYWADAZDJRVVVFIpFgcnKS2tpaFhYWKJVKeDweQqEQ+XyefD6Py+Wip6eHgYEBSqUSDocDk8nE\n+Pg4Ho+H3t5evvvd72K32wHweDz6fdLpNPl8HoBHHnmE+++/H4/HQ3t7O3v37sVoNOJwOIhEIvj9\nfl588UVsNhvJZFL/DrfbzX333cePf/xjNm7cyHvf+17Wr1/PZz/7WYrFImazGafTSSKR4D//5//M\npk2bePbZZwkGgwwPD9PR0UEoFMJsNrOwsIDD4SAUCtHd3c3s7CxGo5FYLEZjYyMAp06dwu12Y7fb\nKZVKRCIRvF4v0WgUm81GLBajoaGBUqlEOBymsrISgEKhQEdHBydOnMBms+F0OgkGg3i9XuLxOA6H\ng3w+T21tLbOzs2zdupUnn3yS2dlZnE4n+XyeH/zgBzz99NMMDQ1ht9vZuHEjhw4doqOjg+HhYTZs\n2MD4+DhHjhwhn8+TSCRYWFhgaWmJfD7PVVddxeTkJBaLBZfLRbFYxGq16jlJpVJUV1fT39+va7tm\nzRpyuRwej4enn36a6upqzGaz7ls+n8dut/P1r3+dv//7v8dut3PuuefyxBNPYLFYKBaLGI1G3a9c\nLsdHPvIRDh48SGdnJydPnuTOO+/kPe95D6VSCZ/Ph91uJ5fL8bGPfYzR0VFyuRyJRILKykpGRkaw\n2+04HA48Hg/ZbJalpSXm5uZ47rnnaGho0O9cVlbG0tISbrebfD6P0WjEYDBgNBoJhUKcf/75rF+/\nnlwux/Hjx8veyd08LTIIs9lMNpvFbDbj8Xior6+nVCrR0tLCpk2bsNvtRKNRrFYr1dXV2O12CoUC\nnZ2dzM7OMj8/z9TUFOl0GoBsNss999wDwMzMDIVCgampKSwWC4uLiwBYLBZMJhPhcBiXy0UikaCv\nr08XHWBwcJBwOEyxWARQ5xCJREgkEuoc3G73qu9TKpUwGo38z//5P9m/fz9+vx+n08mpU6ewWq1U\nVlaSTCbx+/243W7q6+sxGAxYLBY9fLlcjg9+8IMAHDt2jMcff5yvf/3rANTV1eH3+/F4PDzzzDN8\n7Wtf4/LLL+eaa64hkUgAkEwmWVhYUMdVUVHBxo0bcTgclEolzGYzFouFTCbD2Wefjdlspq6ujlwu\nR0NDA263G7PZjMFgoFQqAcuXoKamRp2T/PtgMIjb7SYcDpPNZqmpqaG9vZ18Pq9/Ty6XY8OGDYRC\nIVKpFHa7nbGxMXbs2MGrr75KIpGgoaEBg8HAoUOHdI3MZjORSIT3vve9OBwOzGYz6XSabDZLPp/H\n6XQyOztLc3MzDoeD1tZWgsEgxWKR7u5uBgcHSSaTLC4u4vF4cDqdxGIxcrkcAFdddRWNjY1YrVZ1\n3GazGbPZDMD+/fuB5eDynve8B4PBQC6XW+UcAH70ox+xb98+isUiJ0+epLq6Go/HQ6FQoFQq6ZlK\np9MYDAY8Hg+pVIry8nKsVis+n4/6+noNcLFYjGw2yzXXXENDQwPpdBqTyUSpVMJiseDxeLBardjt\ndiwWCwB79uzhqquuYs2aNRiNRoaGhv6tV1LttMggjEajXgqLxUI2myUcDhOLxQDw+XwAtLa2cvLk\nSdra2pidneWiiy4ik8lgMBhIJpNUVlZiNBoxm80Eg0E2bNiA2+0mFovh9XpJJpPMzc1RXV2tkcjj\n8dDY2MjevXvJ5XK4XC6cTqdGIq/XSzgcplQqYbVaMZvNrF27loceeggAl8u16rCk02mKxSKDg4N8\n7nOfY2xsjObmZlKpFC6Xi2g0qgcxn88TiUT0M5dKJTKZDOXl5RgMBvx+PzU1NaTTacxmM4FAQKNk\nMpnk3nvv5YILLmBhYYFsNovL5SKfz1MsFslmsxgMBs0yisUidrudeDyu2VdtbS1VVVX89re/xWw2\nMzMzQywW0zUYHh6moaFBM5tIJEI+n8dms1FZWUkkEqGlpYWTJ0+yZcsWAOx2O3Nzcxw+fBij0cjC\nwgJGo5H5+XnGxsawWq184hOfoKenh927dzM5OUkmk8HhcNDd3U2pVOL48eOUSiXGxsY4++yzyWQy\nfOYzn1l1ZgyG5diWy+XI5/MEAgHsdjuhUAin08n09DQmk4mGhgaKxSLJZFKzNqfTyfz8PH19fXz0\nox9VR2cymTAajbqfwWCQgYEBjEYjVqsVv99PMpnUwCA2NDTEt771LSwWCzabjZmZGaxWqzoFk8mk\nDmdubo54PK4/MzMzw+LiIsVikbm5OaxWK6OjozidTj796U9z2WWXEYvFKJVKGAwGHA4HLpdLzwss\nZzvf+973eOyxxzCbzSSTSV3Td2qnRQZx9tlnE41G6e7uxuPxkMlksFqtbNq0icnJSRYXF1m7di1H\njhzRS1RWVkZraysWi0U332w2E4vFuPzyy+nu7iaVSjE6Osrs7Cz19fWUlZVRV1enKXqpVKK1tZXj\nx4/T2dkJQLFYxGQyEY/HGRsbw2w209nZidlsxuFwcOWVV/Lmm2/S3NyMx+PRjZdDmM/n2bFjBx/5\nyEdIJBIa8YLBIENDQ9TV1emFC4fDqyJ8XV0dNTU1WCwWDAYDdrtdyypAS59sNss///M/s3XrVsLh\nMIlEglKpRCAQoFgsctFFF5FMJrnzzjsBaGtrY9u2bercwuEwsJwROZ1OisUi69at49FHH2V2dpaX\nXnqJsrIyNm3aBCxnW2effTZ2u11LkOnpadatW0cgEMDj8TA6OorH4yEYDFJbW0sul6OyspJwOEw4\nHMbhcJDJZMhmsxw8eJAjR44wOTmpzr+6uprXX3+dUCiEzWbDYDDQ2NjIOeecw//6X/+L2tpadfCF\nQgFYdg4f/ehHsdvtGI1G/H4/8XictWvXYjAYmJyc1D3I5XL6vS0WC9dccw3PPPMMVqtVM8RCoUAu\nl8NgMJBIJHj/+99PeXk5LpeLWCzGM888o+dD9mPz5s1s3boVo9FIXV0dhUIBr9cLgMPh0O9ht9tJ\nJpP4fD5mZmZIpVKYTCZcLpeWBy6Xi7Vr13LPPffw61//WvfX7XbT1dVFT08Pzc3NOJ1OjEYjzz33\nHL29vXz0ox/lwQcfxOfzaYkejUb/4ziIoaEhDAYDIyMjtLe3U1NTQ2NjIwMDAxgMBmKxmOIQFouF\nUCjE7Owshw4dwmKxYLfb9aLef//9JJNJQqEQpVKJ9vZ2TVMXFhYoFArU19dTWVmpaWA+n6eqqgq7\n3U4wGNT0u6+vD6fTqRu9bds2brvtNhKJBNlsVj9/sVjUw5/P59m3bx/t7e1Eo1GNYGazGa/XSyqV\n0kML6GWQqL/S4vE4hUKBxsZG8vk8ZrMZn8/HQw89RCAQWIV1GAwGxsbGyOfzTE1N4XA4eOyxxwgE\nAiwtLTE8PEw8HmdxcRGHw6GXKhQK0dPTw0MPPcS73vUuxQ1mZ2fJ5/Ncd9117N69m69+9at4vV6K\nxaLuSaFQwGQyYbFYKJVK5HI5vF4vs7OzpNNpSqUSlZWVWifncjnq6+tJJpNEIhFqa2sJBoPk83lS\nqRQ1NTWUlZVRUVFBd3c3lZWVnH322Zr+S3q/tLSE3W7nF7/4BePj41gsFvx+P6Ojo+TzeY4fP64O\nXbIlOSfi1G+88UYWFxdX/d0Gg0Ev2E9+8hMWFhbIZDKaacZiMS666CI+8YlPcPPNN/PhD3+YUChE\na2sr8XicyclJje7ZbFYDgWQ74ojq6uqYn59X5yOBolQqcd5557F161aSySRGo5Hy8nIaGxv1vIhz\nnJmZ4Y477tCSJZfLMTQ0pHuQzWY1A38ndlo4CLvdjtvtJpfLcfLkSUwmEx0dHRiNRjZv3gygkVgi\ncHNzMz//+c8pLy/XevKLX/wie/fuZXp6mmw2y/DwMBMTE7jdbgqFAlarlUKhQCKRoKamhu985zt8\n+ctf5vbbb+fEiRMAWnKEw2EGBweZmZkhFArh9Xr5L//lv+B0OnE6ndTW1gJvZQ6pVIpiscjPfvYz\nwuEwhw8f1oNpNBpZs2YN9fX1Wjfb7XYMBgNut3tVWmswGLDZbNjtdlKpFH6/n3Q6rRnG5ZdfrpHc\n4XBoBlBRUcHo6Cjt7e2cOnWK7u5uBW/T6TRlZWV6ScSxFItFdu7cyS9/+Ut6enooLy9X3MFisVBX\nV8cHP/hBLBYL73//+3nssccwGo1UV1fjcDgIBoO0tLSQz+epqakhm82SzWaJRqMKUuZyOTZu3Eix\nWKRYLJJIJHA4HBSLRU35GxsbNfuKxWJEIhFOnjxJsVjk/PPPV+co6yln4Te/+Q02mw2A2dlZksmk\n4hiSkpvNZo3uEmAsFgvr1q3D6XRiMBgwmUx6ic1mM5OTkzz00EPqRN1uN6lUiv379xOLxdizZw/P\nPvusAuRSehmNRmw2m2YGgmWIo5BS0ul0YjabCYVChEIh3G43o6OjuN1u/vIv/5JIJAJAbW0tDQ0N\nq+5KsVhk9+7dXH755dhsNkqlEqOjo2zcuBG3270KxJfM853YaeEg8vk89fX1enBmZ2fJ5XLkcjmG\nh4dJp9MUCgWMRqOi1blcTgGvRCLBrbfeyvPPP091dTXFYpGqqipdIDm0+Xweq9WKw+Hg4YcfprGx\nEY/Hwyc/+UluvPFGBfgkvTebzWQyGUqlEu973/vYsGED6XSadDqtnyGZTCo4euTIER544AGcTqeC\nkfF4nEgkQiaTYWRkhHg8zqZNmzRSr1+/XjMMq9UKQFVVFeXl5UxMTGhNOz8/T2VlJe9973splUq4\n3W5KpRKJRAKj0cji4iLT09O0t7eTzWbVCWWzWSKRCJOTk9jtdiKRiB7e7du3c+WVVypzszKKCk4j\n3zOTyXDRRRdRUVFBKBTCYrGQSCQYHBwkGAyqU/b5fJoyS2ReWFggHo/T3t5OLpejpaWFqqoqysrK\nsNvtmhEYjUbC4TDpdJoLL7wQAK/Xy/z8vAK/sje//e1vOXHiBNXV1RiNRnw+Hw6Hg7GxMUqlkjrZ\noaEhEokEoVCItrY2fD4f55133ir0/4/P4g9/+EN1ooFAAKPRqJmm0+nUUiWRSCjGY7VaCYVCZDIZ\nampqiEQiikfF43Fd33w+z8zMjK55NBoll8tRXV2tpYPdbsfn8+HxeKisrFTnOjk5yX333cdNN93E\nxMQEmUyGxsZGBV0FvLVYLMRiMSoqKt7x3TwtQMp8Ps/IyIgejtraWkKhEA0NDauAG1i+vA0NDRQK\nBWpra/nwhz9MNpvViw+rWZFCoaALbTabGR0d5fbbb8fv92tJYLFYuPXWW3n00Uex2+0KeElU8/v9\nXHfddepA5PLIhhgMBmZnZ9m5c6c6j2w2S2trK2+++SZOp5NoNEpHR4eWP7CcOa1fvx673a6prURx\ns9nMkSNHCIfDLCwssHbtWnp6enC73RgMBioqKjQKmUwmcrkchw8fZmJigubmZl555RXq6up0/cSR\nWCwW8vk8wWCQO++8k3g8DiyDrQJ6xWIxPahGo5FsNsvMzAyNjY185jOf4f7778dsNutBHh4eBpbB\n5KNHj+JwOIjFYphMJnWWksENDg5iMplYWlpSYDUcDmOz2XQPS6US+/fv1z1YCbZKKfPcc88pLRsK\nhYjH44qBuN1ukskkVqsVj8dDWVkZhUKBsbExAG6++eY/6RxyuRy///3vefzxx8nn8ySTSdxuNydO\nnMDr9RKLxbQcFKcu0V7wrBMnTlBfX6+ZQ6FQoFAorGIxIpEIuVwOk8mkJVsikSCRSDA1NUVnZyfZ\nbJZgMMjCwgIHDx5kdHSUX/ziF8TjcQWcYRn0NBgMzM3N6R5EIhFd/3dqp4WD8Hg8pNNpBezWrVvH\nwYMHyefz5HI5rZmLxSLpdJqWlhZg2bEMDw+TzWZZs2YNvb29DAwMKEi2tLSEw+FQft3lcpHL5Tjv\nvPPIZrOKTgvVZDKZNBL4fD6KxSINDQ2Ki0gEgeUDIYckm82ya9cuxsfH8fl8eL1e1SM4nU4sFgs1\nNTUMDQ1hsVgoFAoUi0Xcbjetra2aQks9Kf97YmKCeDyOwWBQyisSiagTSaVSmkYPDQ0p2yFRv7Oz\nk71799LR0cEf/vAHxVgEfNyyZQvFYlGjGyyDpb/+9a9VpyDZQDqdZnZ2luuuu47+/n5+9rOf0dXV\nRSgUUqBN8Jv29naGh4fVUfb29jI9PY3FYsHtdpPJZDTr6uzsZM+ePaxbt46RkRFlSAD8fr86tHQ6\nTTKZxGQy8fLLL3PkyBF8Pp+m5gKOBoNB6uvr9bNks1lyuRzFYhGn08k999xDT0+P1vRS2slF/eY3\nv6nnUgKOlD0NDQ3k83kcDgeFQoF4PK5ONxaLKeVoMpmYmppibm5OHYE4iD179jA2NobX69XvubCw\nQGtrK1NTU9x9990AZDIZdTKS9RWLRVwuF3Nzc+q8rVarMiPr1q0jHo9TVVXFwsLCfxwHYbPZCAQC\nNDQ0KA5RXV2Ny+Wiv79fveXCwgJut5u5uTlisZimeOJBpW6ORqNUVFRQXV3N6OgoTU1NLCwsMDg4\nSGtrKw6Hg1wup/WgXMCXXnqJHTt2YLFYiEQiGAwGreONRiPJZJJoNMrzzz/P//gf/4OZmRnWrl1L\nMpkkmUzS1dXFoUOHFNnv7e0lEAiQzWYplUrqBGdnZ/F4PBiNRs4//3wAjchSP8fjcf7lX/4Fi8VC\nbW0t11xzDZ2dnRSLRWpra1UABcslyYMPPojX61Xg0el0cuDAAWKxGGNjY7jdboaHh/H5fKTTaZ56\n6ilKpRIul0tLm2KxSCgU4lvf+pbSmYJ/VFRUaNnyyCOPsLCwwNzcnH43uQB+v59jx47h9XqVUn75\n5Zfxer3s2bOH1tZWzbLa2tqYnJzE6XSSSqXUOTQ1NREOh9m6dSsej0cB1vLycn7zm9/w8MMP4/f7\nlbYdGxvD7/czMjJCTU0NExMT+n1EN1BXV8e3v/1tNm7cqLiQmFClk5OTHDx4UKNwOp3WcwLLNK/b\n7WZhYYFisUhzc7P+uTh4+Vmfz0d/f79iCpFIhGPHjrFr1y7VzYTDYZxOJ8lkkkAgQE1NDSdOnNDP\nXFtbq5iL0NOTk5PU1NQQjUYpFAq43W4NnMFgEKvVqusxPT39ju/maYFBiOBD6rLp6Wk8Hg+HDh1S\nhHilaCcQCNDa2kp1dTXpdFqBqqGhIcxmM/Pz86RSKY4cOYLD4VgFQAq6LBspmYTRaKS1tZWLL75Y\nEfBCoYDBYOCll15i9+7djI6Ocsstt/Doo48q9hGNRhWMKxQKtLW1YbfbaWhooL+/H4/HQzKZpLW1\nVetYs9mM2+1mw4YNCqIBq/779PQ0oVCIZDJJsVhk+/btGAwGqqur9XOLeGZ+fl4dqQCRDodDHapQ\npSJEu/rqq6mursZms2n0F/vtb3+r0VCETzabDaPRuEpgtWPHDvr7+wkGg7S2tur/32azqe4ik8kA\n6AWVzyL1/8mTJ3G5XHrwzWYz0WhUdQBSAgJa6vzgBz9gZmaGeDxOPB7HbrcrUCs4jgCayWRScZFt\n27bR19env1tsZblw//33E4vFGB4eJhgMUlVVpcCfOPiWlhYNWKKbyefzeL1eXcfR0VEikYiCsGVl\nZYyOjnLHHXfoegSDQf0cHR0duN1uqquryWQyNDU16ecYGhrS7EHWRVgjwZei0Sgul0t/zuPxKEj8\nTu20cBDhcJimpiYABdYmJydVzppMJrHZbKxZs0Z/TmTRnZ2dZDIZ1Q4kEgmqqqo4deoUZrOZkZER\nlVFXVVXhdDp58803VTchYKRkCTfeeKNSc1JLZ7NZbr/9dj7xiU9w7NgxVa6ZzWbdVImYi4uLtLS0\nrLpQ8Xhc0XvJIoSJAf5VLWw2mzl+/LjKc9vb22loaFAQC9AU3el0cuTIEU13V6rt0uk0a9asweVy\nEYlEWLduHQCXXHLJqssHsLi4SD6f56mnnlJlYSqVIhKJYDablaIT27x5s36+4eFhZSAElZf6Op1O\nU1NTw8zMjGJL4pydTqf+PKCXV0RsAu6JJPm1115jaGhI6WChB0VMlsvlKCsro76+XqXUkuL/9V//\nteJSf2wWi4Xdu3fz4osvUltbS2NjI/X19USjUYLBIPF4nJqaGoxGo2JhsFx6iPJV8CpxOOl0miNH\njjAzM0NlZSU/+clPVIiWy+X03MXjcRXHiY5lYmICh8NBb28vDoeDQCBAqVRSabqAth6PB7/fr+dV\nWCWDwcCJEydW7e+/1U4LByHpUSwWUwBGADOpu4S9mJiYwO/3Mzc3RyAQUBBSqKp4PI5M6t62bZtK\nfQUom5ub48iRIwrySUSUqNDQ0MDHP/5xMpmMCpOi0aj2J4hVVFQoSCd/j9B4MzMzzM3NqdoQllV5\nvb29CpxGIhH+7M/+TGvfPza59B6Ph56eHs2yxPL5PJWVldjtdl544QXWrVuHy+Xi1KlTWCwWLRum\npqb0UlZVVbFx40aNepKxyH8GBgYYGxsjFArpoZd9EEGRpO1Op5Pu7m7dt76+Pnp6erT2z2QySjnK\nRfN6vZxzzjlaGhSLRcrLy5mfn6e+vl6B0VKppMpLoU6LxSJPPfUUDodDHZOUm+3t7QpeTk5OKu0s\n67Np0yYtj/5Y2FYqlVhYWOCee+7R2n1mZkZpd8kYgsGgUo42mw2v16s9KoJXtba26lp6PB7m5+d5\n4YUXePDBB3n22WfVEUp2IQrJlZmP3+8nl8thtVp544039AwKxhMMBolGo2zatEkziNbWVs3EAoEA\njY2NWhq/UzstHIREv5XAVT6f174HUeUJYzA2Nobdbsfr9fLGG29QVVVFJpMhmUwSDAYpKyvD5/Px\nwgsvEI1GFU8wGo1kMhl++tOfKuq70stKNLj66qs1ZcxmszgcDmprazEajXi9XlUR+nw+re+DwSDh\ncFi5blHApdNpmpubicVivPbaa1gsFqqqqqiqqqK+vl41HCutWCwSCASA5dT6z//8z4HVmYaIYCKR\nCC+++CIA/f39mmFEIhFqampwOp00Nzcrsn799devkmFns1kVbr3wwguquxCQc//+/VoH/3H/wbve\n9S6am5uprKxkeHiYQCBAW1ubroFE1Uwmg8fjYWBggFOnTinrEQwGqampYWFhgXw+TygUwu/3q6T5\n4MGDCvRWVFSoEExA2tbWVsLhMIFAgHg8zvr16zGbzZhMJnWKbW1tXHPNNbrX4sgFdyiVSjz22GNE\nIhFlg9ra2jTbGB8fx+VysXHjRiorKymVSni9XpxOJxs2bMBgMBAOhwkGg/o7hemYmpriySef5JVX\nXtEmLFHwys/5/X4SiQThcBiz2UwikdBz53Q6FdAWtXBzc7PiSYJ7JJNJ7SeKRCKMjo6qJPud2mnh\nICQ1c7lc2Gw2Tb36+vq0nrbb7VitVu1AFC66r6+PgYEBbUwqlUosLi5q5AFU1Sf1sdFo5PXXX1+V\nqYiJWnHnzp2Ki7hcLlKplGIHDQ0NHDhwAIfDwalTp3A6ndhsNv0z4erLy8uJxWIqNZbS5OjRoyps\nkeaxeDyueEMmk9EDYDKZVqHuK2tyu93OoUOHtEFKSpazzjpLv0sikaC+vl4zJvmZlRmJOLTnn39e\nuXuRrUutvJLpEGe7detWgsEgZ511llLUhUIBi8Wi3ZGS8gom0NnZqRdEdBRyGQAOHTrE4OCgqgfv\nvvtuRkdHefzxxykWi0obippWFIQ+n4+hoSHWrl2LyWTC5/MRjUb5sz/7M5qbm5UNkQxI6O0DBw7w\n2GOP6WWUfZifn8dutysdHo/HmZiYIBaLUVVVRT6fp7+/X8/P2rVrFTAEaGxsZN26dbS3t3P8+HFy\nuZxqX2pqaigWizQ2NiqwHIvFtFGwpaVF16Ompobq6moVfsnfL9oa6QWSICZl7x9jS/9WKzsdHs5Z\ns2bNUnV1NalUCofDoZSYz+fj3e9+t4pGqqqqqK2tXVV/DwwM8MILLzA5Oak1HCyr0Obm5jCbzVRW\nVjI+Ps7atWuZnp6moaGBWCzGE088QW9vL6lUShu0hFKzWq386Ec/4s477ySXy3HxxRczOjrK6Ogo\nW7du1S4/0U1IdAiHwzQ3N7N161aef/55RbltNptmCw6Hg/PPP59vfetbAKr0FHAvnU7z53/+57hc\nLq644go+//nPa5otQK44oPPPPx+Hw8Hg4CAej4dEIkEmk+GCCy5g3759VFdXk81mqaqq4h//8R9V\nuSlCq0gkQjab5SMf+QilUokjR47gcrlobm6mqqqK2dlZfvWrX1FRUYHBYFgVldLpNO9+97uJRqMs\nLi4SDoe1fdxisTAwMMC2bdvUia1du5aamhpcLhcHDhygpaWF0dFRZW3EYQtNabVatddGmubOO+88\n9uzZow4ym83S1dUFLGMSolqUQPPZz36Wv/qrv1LQ9pVXXuHrX/86o6OjWuqsWbNG+0IikYg6yPb2\ndkKhkOpw7HY7dXV1TE5OAqjTNpvNVFRUMD8/v6q1vbW1lVAopA6wvLycf/zHf+T+++/npZdeUmxI\nqG/R90iDWzgcxm63a7PXyuCQy+U0uxW85dSpU3pPKioqiMVijI+P/9/f7p3NZkmlUsTjcaLRqEao\nu+66iy996Uv8p//0n2htbaXrP8DeAAAgAElEQVSqqkqdg1zmLVu28Ld/+7fcfffdbNmyRVH+gYEB\nfD4fiUSCQqGgPfey+YlEgieffFIdyspSQyLmhz70ITZv3kw6nWZ8fJxQKER1dTX79+9XAKy7u1s9\nuKDcc3NzCmb19vZis9nIZDJ6KaVUEWcgjkNAurGxMWKxmIJQUmuK+Ec0+sPDw/q7JCpLqbZv3z69\nQOl0mvPOO0/raikV5Du//vrrnDhxglAopH9mNBo5cOAAuVyO6elpzcpWmtFoxOl06neTSL20tKQZ\nVzqd1s7VaDTK4OAgR44cUbxA9hJQJa3oBLLZLPX19cBbbEM4HFaVqtvtZufOnTz++OM8/vjj/PSn\nP+WGG25Y1Wuyb98+hoeH+eEPf8iOHTu44447FDAVKly+19zcnGah+Xxe9/DkyZP4/X6am5uZnJzU\nDFFKr4qKCqLRqP47YbakX8bv9wNwxx13YLfb+dCHPqQYgWQgHR0dRCIRZmdnicVidHd3Kz4l5Ux1\ndTUtLS1Kt1qtVpW4S9YUj8dJpVL/R/ow4DRxEHa7nVgshtPpVMowHo8zNzfH7Oyslg8C5qzU9Iu4\naPPmzTz55JN8/etfZ926dVqmrGQo/H4/VqtVAa0DBw6wZ88edSrwVlSQoSO33XYbFouFsbExpegE\nIDSZTOrFJfNIpVKaoTQ3N3Pq1Cna29tVhGUymdTjS1s3wPz8vP7OV199Fa/Xi91up7m5WR2JmFBd\ngmnY7XYqKyvVgbW0tGhnojT9XHLJJavwDlmDfD7Pz372M53zIIIwWTuLxcL09PS/wh9kHUS+Lp9x\nampKsYErrriCmZkZ3WMZmCIXciWQ6XK5tBvR4/GoaC4ajSrQLF2SXq+X3t5ennjiCa677jplWvx+\nP//1v/5Xenp6NNAcO3aMD3zgA3zta1/j2LFjwHL7dVlZGfPz87rfor1Yuc6iExF8ZHh4mFwux5o1\na4DlMk2ys1KppA1mglmk02l1ytu3b+fiiy/GZDLh9/uVhvR6vWQyGcbGxuju7lbnJg5elKSHDx8m\nm80q1SkY2ejoKGVlZVoyiehQ2Ld3aqeFg5CSYmU7blNTE48++ij9/f1ks1ncbrcyBvX19VitVnK5\n3Cq1n8Vi4QMf+AA/+9nPsFqt6qUDgYA6lEgkQn9/P2bz8syIH/zgBypwEVptZb2/ZcuWVbQhoFhJ\nTU0Ng4ODACoTFkHP3NwcVVVVxGIxAoGAqvGqq6u1N0DwB5k1YbVa2bdvHz/+8Y918Eg4HCaXy2lU\ny2azzM3NYTQa2b17t2YBdXV1eDweisUiS0tL2o+yEs2WXovFxUUVOQWDQV5++WUqKipIp9MqQZZO\nyGQyqZSZ/C6p4+fn5wkGg9hsNt07o9HI/v37SafTnDx5koWFBW3+CgaDdHR00NDQoFqTYDCoEmiZ\n8GQ2mxkbG2Pjxo16iQR7mp2d5cILL+Thhx/WKWIul0uxE2FvYLnkmJ+f1/kIkrHMzs4qqD0zM6Nl\nGaAdnzIXQ2aCGAwGrFarOik5k4JTeTweDh8+zMzMDOl0mkAgoGXKV77yFb785S9r16XgYRaLhXg8\nrhniwYMHCQaDKuRyOBw4HA4qKio08xRHeezYMe17iUajBAIBDVIrHfc7tdPCQTgcDk2XhDI8evQo\nx44d45577mFubk7VdJKaSzaxUl4sF9vr9fLUU09pyiUZSjAY1AMgTUQDAwM888wz2gNQKpVWaQny\n+TxdXV0sLCwocyIAkQh2PB4PDodD9Q9Sx6ZSKZqamvD5fFitVk0NZ2dnGR8f59ixY1q39vf3c+ut\nt/Kxj31MI5s4FWDVBTUYDMzPzxMIBLTUmZycVGBWFJArB+h873vf4+/+7u90wpIAds8++6w2f0m2\nJeDnzMwM4XCYeDyuDhneGvBTKpVIpVJ0dHRQW1tLIBCgrq5O12lmZkalzg0NDUozHj16VAG5P750\ngK67jBBMpVJK3e7YsYMvfelLKhSS7E+anebm5piZmVE61OPxYLFYOOecc/B6vbS3t69qapImQJnq\nJBSkZDPSIyRzOiorK7WkGxoaoqqqShknaQgUh3zTTTfxwAMPqNQ8lUrp8JzJyUktv4SylQ5h0TWI\nQvfkyZPawyPOCCAQCLBx40bWrFmzSlkrKtiVtPy/1U4LByHpnQiIhEoyGAxMT0/z6U9/WkdsiTjF\n6XRiMpk0hZPoL3bRRRfxzDPPcPXVV5PNZvH7/aokTCaTCh5arVZ+/OMf65gyYRFEh2+1Wrn44ou1\nlJBORp/Pp6PZenp6CIfD9PX1UVNTo2CddIJOTk5is9mUGxcl57333ksikeC+++5jx44djI6Osm3b\nNuCtEmBgYGAVfy8a/X/5l39hZmZmVe+Fz+cjl8sxMTHBli1bmJycpLW1FbPZzPDwME899RRf+MIX\nuOKKK/jkJz/JXXfdxQ9+8AO9KNL919TUhN1ux2azUVdXpw4P3sItpLSx2+3s3buXqakpXC4Xs7Oz\n2jyXz+e1gzMcDuu+OZ1OddKwDCiLSrahoUFp78rKShXCyZm44YYbtEwRZ9TQ0EBDQwNWq5WhoSGO\nHj0KoDqFqqoq9uzZg9lsZmBgQHEcKY2kGQ3Q8YCAZp0rxViS7crnl7kLQh2vnN953XXXabpvMpk0\na4hGo+qMJVPJZDIsLCzgdDqV9hXmQtrIRTUq/S+wTHfPzc2xbt26VdSm0Knv1E4LFqO/v3/pYx/7\nmF7yWCzGWWedxfHjx6mpqdHZgn6/nzvvvJOuri7y+bwiv+KxhUaU5hzpnINlxP2rX/0qb7zxhnr6\n5uZmQqEQ69atw2g0snfvXm3dlcMvHXyf/exnefHFF8nn89TV1TE8PEx9fT319fUcPnwYt9tNXV0d\nmzdv5le/+hXnnnsu+/bto6KiglQqRW9vLxMTE4yMjCi1VVZWRk1NDalUCli+KK+//rqO1vN6vbjd\nbt7//vdz2223qSbE6/XywQ9+kGPHjtHa2qodm+FwmNbWVmZnZ9mwYQMHDhzA5/MRCAQ0KgolKBJz\noXEHBwfp6+tjZmYGn8+nvS5+vx+TycR3v/tdVRPKFKhYLMall16qkviysjIF66RD02g0UlNTQzAY\nBJYdbkNDA+eeey433XQTFRUVWK1WHY4jA2ikhHrwwQcJBoP4/X5+/etfK1UouNLKORq7d+/WXpqG\nhgbtdWhsbOTUqVN68aSEymQydHV1aTkgWZEoeEX1ms8vjwbs7OxkdHRUmRIpfYRhkDLV6XTy1FNP\n0dzcrIyY4FRut5tbb72VAwcOEI1GtS9FLrSMvRM5tcFg4IknnuDcc8/V8/3HtmfPHq6++mqd2To/\nP8/CwgI1NTWMjo7+389iGI1Gdu3aRTwex+Vy4XA4KC8v17R/z549wDKavGvXLv7bf/tvBAIBKisr\ntU1WpL2w7Cjm5uaUwZANvfvuu/nIRz5CZWWlRqdSqUShUNC5k3JpVlo+n+fKK6/UGl6yCZPJRKFQ\n0PLi0ksv5W//9m/5/ve/T7FY1C5OEbGUl5erDFku9bFjx1hYWFh1WGw2Gw6Hg7POOgur1cr3v/99\nbUUX0EwUfMAqLGZmZkbRe5Es+/1+jEajOiJpm66srNTmqba2NgYHB8nlcoqAyzqcOnWKgwcP6uWR\nUkPYJ4fDwdTUFOXl5fr/EfGVfNaWlhZaW1u56aab+Pa3v83dd9+t3YYS0VeqWw0GA5dddhmf/vSn\nMZlMfOpTnyIej+sMCenAhWXnMDExwQMPPKC///jx4zo45cCBAzq3c9OmTXoZhTUpFosKHMvMSovF\ngsPhIJFIKPYk+IFkR9L4trIDV7p5ZZCOZApSNuVyOfr7+4lGo6sG+MTjcSorK1UZLDTtBz/4QXUO\n0rkr6yP/rK6uplAokE6nFRP7Y2D733w3Zfrzv6dNTk7eI6PBdu/erWIYAdskUqTTaaqqqhgZGWHv\n3r0cP36cSy+9VDUCAOXl5QAsLS0xPj6uF3FxcZFCocCWLVv4h3/4B+XepUYvLy/H6XSydetWnV2w\ncgzc+Pg4v/rVr1izZo0qOaXTcd26dbS0tPDFL34Rj8fD+vXrueiii4jFYpw8eRKLxcKRI0cUVFtc\nXKSyspLFxUXtNWlra2NmZgabzUYwGKS8vJx4PE5TUxOpVIrDhw+zd+9eYrEY3/jGNwiHw4ojiMR3\nZmZGJeAi6ioUCiwuLq6amrSwsKAAqdTDS0tLdHV1YbFYGBkZIZlM6nwF0ZKcd955LC4uKh4QDAb5\n7ne/S3V1NVarldnZWZVO+3w+PdRbtmzh2muv5XOf+xyXXnqpov/iQGG5pBIwrlAoUFZWRrFY1MlY\nn/zkJxWElO+4cmjrF77wBYaHhzEYDKRSKbxerzpCaYWenp7WC2uz2bRWlzHyMnRFwGXBWqqqqpib\nm9PPZDAYqKmpIZfLYbPZdB8rKipYXFwkFotx22236dktLy/XABaJRPje975HWVmZ9vDIXjQ2NmrZ\nWCgU2LlzJ7fffrtOoFo5i6JYLOqci29+85scP35cHd34+Dh9fX3Mz8/zuc997t53cjdPiwxCUqcb\nbrgBWO6H8Pl8+P1+7aKDZVXZ3Nyc1oLPP/889957L6FQiHQ6zfz8vJYppVKJ5uZmamtrmZ+fB5br\nMimpmpqaKC8vp7a2VlPbRx55hDfeeINgMMjg4CCBQIBIJMKnPvUp7r33Xn33QehAmTUhCr+6ujr9\nTnV1dXzta1/jpptu0jHnEs3j8bgCohaLhdbWVk6dOqURVaJ7sVjUmY0Ak5OTPPnkk4qUd3d365+F\nw2Hq6+tpb2/XcfqRSESVkJL+CrgnbzVI1PP7/Rw5coRsNktPTw/ZbFYxiZaWFkKhkNb+AjyeOnVK\nm75kpL/ZbMblctHW1obJZOKaa67hm9/8Ju9///upqqpifn4eo9Gok7NlrySLADQbguVIeOutt+pl\nFvGU/HmpVOLpp5/m6NGjquOQyC0S97Vr1+qo/Xg8TjgcZnJykng8rvJocbiSGco+w/L8R+kEln1b\nCRhLpiZPKIiQaSXoC8uZsjBotbW1FItFnbi+cuy+0+lkx44d7Ny581+tBbwFWBcKBZVyi7RdShzZ\nr3dqp8U8CPHMkkKXl5frZB5AdQWC7K5fv56xsTHa2tr4xS9+wT//8z/z4Q9/WOswSROLxaKOspMS\nolQqsXnzZiKRCCMjI2zevFnbju12OzfccIOOqJcILTMW3G43k5OTOvHH5XJpWSQS5pVmNBrZuXMn\nnZ2d3HvvvRw8eFCFONlsloWFBZ2OLRRjoVAgm83S1NREf38/CwsLdHR06OGTTZeZFclkkqmpKQWz\nEokEQ0ND+P3+VQdL+i7EKisrlRqrq6sjGAzqRPH6+nqcTqc+Q1AsFunv7ycQCGiLvdFo5He/+x1O\np1OHqcDy4W1ra+OSSy7h4osvxuv1qgBM5kFKQBAgVpyMZBVywaVZq7OzU3sRpKyQnzebzTzyyCN0\ndnYSi8V0CHB1dTWLi4tEo1Hq6+t5/fXXlYYWJyJveQA6PcpsXp4SVV9fryIzWeuVk7/EEZ44cUJx\noHA4zNzcnJaXgDpNETPt379fSzKfz0cwGFRAfGRkhIaGBm6//XauuuoqrFbrv3IOK+3JJ5/krrvu\nUiZH9CTpdFoDxju10yKDqKioUE75+uuvV1oLWOUUADZu3Kjocnl5OQ0NDczPz/O73/2Oa6+9lu98\n5ztEo1F9PUrSUaG7pM17ZmZGZzQKCi7pcUVFhR7aUqlEWVmZotnDw8MUi0WOHTtGIBBQufDKl7XE\nJBXctm0bX/va1zRbEVGPDKRpaWlhcHBQB+F0dXVpy69oNwDFCfL55ZmRc3NztLS0EAgEVPwTCoV0\nNJ7oCpLJpKoCzWazovQya1ImEgleMDk5qdOpFxYWCAaDVFZWsmfPHs2WgsEge/bsYcuWLTQ1Nal+\nQTCGq666Sp2sMBdSc0vJKFFYSkSJzNFolO985zvcd999Skuu7CpdGcHlsr766qvamSmTplZiKfX1\n9dTW1mpH5VlnnaWUoWQOInHO5/OaZQCK90jpVl9fTywW48SJE1rSyAyN6upqurq6VukWxPEDvPnm\nm0SjUQWKm5qalJJ2u918/vOf59prr9XhQfIdV/4Tlp3BnXfeqQFCWKxIJILP51OA+J3aacFiFIvF\npZU19aFDh7j55pupqalhaWlJeW3ZREnL5JBEIhHWr1+vLbmRSASbzcb555/Pu9/9bt71rndpBA2H\nw1xzzTXa6CJvVUgK2tnZqZdV2nydTidut5vKykoymQzF4vJE5qNHj+qbHldffTW33XYbdXV1b4s2\nx2Ix7r//fvbu3avDZCTtb2xs1KfWpG4WpxOJRPRnBcEXSlCewZMaWoaHxONxNm/eTCAQUFpM1svl\ncmn/yP+7/tTV1WmpViqV9Pk70St4vV4CgQDPPfcchw4d4uGHH8ZkMumjL0ajkc9//vNs375da2FB\n5MUkNZZ0WOTYMnfxpZde0o7Uvr4+vvzlLyu7IVO9VwLIoVCID3/4w6RSKaW6XS4XnZ2dBAIBnWgl\n2hB5DkDOj1CnNpuNjRs30tnZSVtbG2NjY9x///1UVVUxODioXbdVVVWq7RAh2djYmL51ITjZX//1\nX3PDDTeouEoETHa7XaX50odx1llnMTExwX333cdVV12lZc0fmwDE8Xic+++/nyeffFIdhkjaxSwW\nCy0tLfT397O0tPSOWIzTosQwGo1Kz8RiMXp6erjkkkt49dVXNbUqlUqMj48r2COAj8vl0tez5FIJ\n9XTgwAF+8pOf0NXVRV1dnYp0UqmUagYkvQuHw8pQiN7daDTS0NCAzWbTZ9GSySSxWAyr1arjwmB5\nfsMPf/hDPvGJT+Dz+f6k93a73Xz5y1/m8ccfJxAI0N3dzWuvvYbb7Wb9+vU6mk3mRkoZAstlljTh\nyLODl1xyCevXr2fNmjU6PUiUp0LJyppks1l9l0Pq7lgsxpYtW3j55Zd1jFpnZyfHjh3TLEJYA1nT\n66+/XpkOGaB78cUX80//9E/6wJAoEAVTEfBPLozY0NAQL774Iv/0T/+kHZPyXbdv365Yh91uV5R+\nJaX41a9+leHhYe2ilGxiYGBAVYypVIq5uTktKSQTuPTSS9m6dStNTU3aPSn4Snd3N4VCgW984xva\ndTk4OKhDdWD5fQrJGkQcJeyTMBgrnwoEdG0qKip0gtbU1BQAV1555dtGfCnRhoeHueOOO5idnV31\nnkY8HteRA/LIT0dHx/+ReRCnhYOQmq28vFxnNnzmM5+hv79fRUUymSgcDuP1erUOllmQo6OjKrLx\n+/36tJnP5yMcDnPixAncbrc+/CoqPGEWpGvO4/EQCAR0jLpo7ROJxKoBpILAT09P09jYyMmTJ3VM\n3He+8523/a4Wi4UbbriB6upqHnroIdra2hgfH6dYXB6QW1dXRzgcJhKJKM6yadMmwuGwNvB0dnay\nc+dOBcHkfQ1AXwi76qqrWFhYYGpqiomJCX70ox8xPT1NoVBQhWksFmP//v0qOpNhN42NjRrd5U0Q\neQRIHI7X69Xp3P39/VRUVNDV1UVFRYU6Xek+TSQSeolEIfmHP/yBL37xiwSDQUql0qrDXF1drQI4\nycZEFSo/++Mf/1jBOcGHROkouIqwUxdeeCFms5nu7m66urp05gSguIecC8kkm5ub9TPLYFzprxFF\nI6DrKGI1l8tFU1PTqvO8kh6XUlC6asPhsGYO/1/t2W+88Qb33nuvlrPSN7LS+cj6uN1unTr1Tu20\ncBAid7Xb7eosbDYbN998M5///OcVrJEIIRN3vF4vDoeDkZGRVWKb9vZ24vE4w8PD9PX1EQgEtDtQ\nOjvPOecc9u3bR19fH8FgkAsuuID+/n6tJ1e+sJzNZgmFQpxzzjkcPHgQu91OVVWVNglJB6PVauU3\nv/kNQ0NDelH/lJnNZq666irq6+v5yle+gsPhUKRcgFoR6WQyGTo6OggEAvo69vXXX69gm7wVKZnW\nyotms9no7Oxk8+bN/MVf/AWzs7McPnyY3bt38/vf/15ReZH4SjOVCHTkd0xPT+sMg9bWVgYHB1e1\nfReLRc477zwqKir0oohzEN5ewL/du3fz7LPPalu5ZHErey4GBgZ47LHHuO+++1Q8JKm62bw8wfuh\nhx5ShaHMJK2srKS8vJy+vj42b97M9u3blRb94+icTqfJZDLaeSrlnWgxYDnzWbduHRMTE5opitOQ\n8lOyl5XNa7Ke8NaQHxGPRaNRBdAl0u/atettz0qpVGLv3r184Qtf0HZ2odnlLiQSCQ1Y4iiy2Sxt\nbW3/+8v3v7HTwkEIui7RWca8vec97+Gcc85hbm5OX9QWhPraa6/lve99L7AcwR555BFNQUdHRxVk\nFCpr06ZNOtuyqqqKsbEx7ZtYWZvPzs7S0NCgE5ByuRxbt27lxIkTOgA1Ho+zf/9+1QYcPHhQ5dkm\nk4krr7yShx56iPPPP/9t8QiACy+8kOnpae677z5GR0fp6+tjz549nH322UxPT2t28NprrwHLMuvN\nmzcruClScZE2rxSLCSiWyWT0vcmqqiouuOACtm3bpn0o119/PSaTibGxMVpbW0mlUlx44YUEAgH2\n79+vmI4cenmhS/j2iooK6uvrue2221ZNp4K3JjiNjY3x7LPP8uqrr3L48GGV0cvwHikjqqurlVX4\nwx/+QDgcprOzc9X3Bbjnnns0y5N26u7ubrZv305XV5c6r5XIvygoJaKv1FCIQ4O3IvGbb76J2bw8\nRFcYFPnMgl9JNiF7LJmctPXL3ydMxvj4uDIaMlDnpptuUsHbnwIli8WitqhLGSPzIWQsYnNzMxMT\nE8oQmc1m1q1bx/Hjx///XcQ/YacFizExMaElgzx6InTXpz71qVU4RE1NDeedd96qF6E2btzIP/zD\nP3D55Zev4tbNZrMOjZGOOUBFRTabjWw2q92FK4e6HDx4UDOXgYEBBdzm5ubo6elRWnZkZERBPAGy\nFhYWuO2223j00Uc18rydXX755artiEQiWK1WfWnKbDZTV1enF9zpdLJx40ZCoRCNjY3U1dVhMpm0\nPIK3DrjD4VCMQNgJmW4lQ0y6urpoaWlRfCKRSJBMJnnzzTcJh8O0tLSsonthuRPSbF6eHC78/Wc+\n8xmcTqemu+Kc8/k8e/bs4brrruO5555jenpawWWJpH19fdrtKWCq9IJIc5uUUmazmZ/85CcKZEpZ\n9vDDD7Nr1y7FQFZOxbJarVRVVVFdXU1VVZWeK8kOJTiITFmG7zzxxBOKd8jFa2lpwev10tDQoGvo\n8/lWMRbye0XpKH9mNBqZmJhQ3Gpubo66ujouvvjiVesrJs7h2WefVbm20MJCa8raye/2+/0UCgV9\nxe0/DAZxySWXcMUVV3DLLbeo95UD0t7ezu23386dd96p0VtYBEkRpW/+2muvZefOnczNzfGxj31M\neWZR/dntdlVnJhIJrak3b97MwMCAvhg+Pz+vzTPCJV944YW8+OKLdHR0MDQ0pNy3dFOWlZXpuxOt\nra0cPHiQZ555hpdffhmfz8euXbu052OlScuvNFfJ61tiMkC1p6eHkZERjh07pvMRxXms1Gus7GoF\nlMYTJD2bzaqaM5/P88Ybb3DXXXfxyiuvEAqFMBgMDA4O4na7qa+v196NmZkZ6urqFIMQenh6eprP\nfe5zNDY2aqo9MDCg8zdyuRyBQED3taGhgaGhIZqamshmsxw+fBin00ksFmPjxo2Mjo5iNBqJx+Pq\n9OSgv/vd79YSr7KyEo/Hw9NPPw28VV4IViEmzXdCpcrAHMkypOkqn89z5MgRbr75ZgAVOkknq1xO\nh8OhlLE4POnXcblcOu5PfvfKMXG/+MUvdNL41NSUlqfCBElwMpvNPPbYYzz44IM6l2P9+vX09PRw\n/fXX6zMD0WiU2tpadbiA7vGtt96qAsF3YqdFBiFTeD/+8Y/r+wCiX08mk/T09GjDTDKZ5PXXX2d2\ndpb6+np9qUkk1blcjrq6Onp7e3Uw7dq1a1V/kM1mOXr0qCrezGYzx44dw+Vy0dHRAaA9+XKpisWi\nvtWxtLTE1NSUqiLNZjObNm2iUCjQ0dFBeXk5mUxG3widmZnh6NGjXH/99ToWXkafi4kuA9561k8o\nSJPJRE1NjYqsvvnNb3Lo0CF1DBLdRGH4p2gyOYgul4u6ujo6Ojp0lL7BYOArX/kKt9xyi0Y6eblM\n0n0ZmirzJozG5TdE5DuEQiEOHDigQ2aF8Th06BBlZWV0dXURi8WoqakhEAjQ3NyslKC0nkuLurwv\nkk6nOXr0qDq3l156iYGBAc0Q3W43gUCAG2+8UedjSMSWQTmBQEBpXilnBOMRheLw8DDPPvsst912\nG3fccQdtbW3azCfviUg2IAwQLOsoLBaLgqOyxvJ9RJQna7q4uMjg4KCOuXe5XExPT/Pqq69qD4uA\nmd/+9rf57ne/q4DvX/7lX/LAAw/wwAMPsH79es2GTSaTZm3SX9TQ0EBvb6+O4Xundlr0YnzhC1+4\nJ5FIMDIyoh2OXq8Xs9lMWVkZRqORBx54QKdES6168cUXazYBrHrI9n3vex8DAwM6L7Guro62tjYV\nI1VVVWG32znnnHNIJpNMTk4yOTmJyWQimUxSX19PWVmZ1nxCwckFkRe8Zmdn6e3tZXx8nNraWoaH\nhzWKJZNJysvLtff/4MGDVFdXU1lZqfRhPp/nwQcfxGg06jzHzs5OpRgXFhaora1l3bp1etD/8Ic/\nMDMzw8TEBOXl5dovIbr/lSaHVUok+Y9MsxIHI0N09+zZo2m3MBfz8/N6gXt6epiZmSGVSukUrMXF\nRRVAFYtFzVoKhQKpVEp7Qc4991wikQjT09OUlZVpZBYJtpQEohrdv38/+/bt46WXXuK///f/rs8Q\nCq0nA2FeeeUVfve739HY2IjFYmF2dlYDQnl5uTpQcdivvfYa3/jGN/j+97/Pk08+yYEDB5ifn2dp\naYnnnnsOn8/H/v37lQWE1rsAACAASURBVKqVTNHn8+kbH+l0ms7OTg1M0icyPT3NX/zFX2A2m1lc\nXKS8vJxCocDMzAxPP/00BoOBsrIystks5eXl7Nu3j9bWVvx+P6FQiAcffFBpX4DLLruMv/mbv9E1\nXVpa0uxPBjQLNudwOLR8/va3v83i4iJ33HHHO+rFOC2EUuvXr1+qqKhgZGRk1YMhf/VXf0Vvby+v\nvfYaN998My6Xi1AoxIYNG5ienmbXrl1cdtllCgJNTExoPb2wsMDS0hI33nijUp6ixZcmnkgkQnd3\nt7IcKzEL2XQRzoyPj+sm9vT06DQiqU0nJyd10wTXGBkZYdu2bRr5TCYT09PT9PX1sW3bNqxWKydP\nnmT37t0kEgm6u7u54YYb2LZtm9a/oVCI1157jV/+8pdEIhGmpqaUopM5DjMzM2zfvp1wOMwFF1zA\n2WefTVNTk07eErDzT/Hsgm9Izbtjxw6dRRkKhbj66qt58cUXWb9+vb6HWVlZSSwWUwcigiRYzjrk\nnU3JwqREkMGu8llisZg+UFNTU6PpvMxVSKVS+pSeOFMBqeXZRdm7dDrNWWedxWWXXcaHPvQhnWwV\nDAY5efIkwWBQg4Df7yeTyTA7O6vMTV9fH9dccw1XXHEFAD/60Y/40pe+hNfrZWJiYtX36O7uprm5\nmS996Uu8733v0+Ah7eC33HILH/jABzR4VVdX8+KLL3LLLbcoluR0OpU+dTqd+oLc5OQk1dXVbN++\nne3bt+P3+xUHklJSdBHRaFQBS0Cxj49//OOaPS0uLr4jodRp4SDe9773LR04cECHk4jKTARH8hCv\naBEaGxsJBAJ0dXXx85//HHjrRS5pWJF6NBgMcuONN6oIS4Qs/f39Sp1VVlbq5OR4PE5vby/Dw8OU\nl5czOztLZ2cnw8PDbN26lZdeekl7I8LhsDY6mc1mbe7yer24XC6CwSAXXXSRPhP405/+lGAwuOqy\nFotFfD4fPT097Nq1S7MI6QNYqcYbGBjg8ccf5/Dhw5SVlVFeXk5dXR2///3vaWlpUYq2qamJZDJJ\nTU0NBoOB3t5eLrjgAn3+T57hk0Y4cRDz8/N88pOf5Pjx49rBKCj/xo0bee211+js7FRAVYBDWfuq\nqiqGh4d1Vqi8YymyXxnPL+IgoQvlPQ15AX1qaop4PE5tbS2Li4v6+WQkvbylIW9Unn322dqc5HA4\naGxs1HF6MuZNLo+Mt5+fn9dgFIlE+MpXvsKGDRtUT5LL5fj+97/PXXfdhdFopL6+nuT/w92bh0dZ\nnu3DZ2YymckksySZZLJOErKSEIiBGEwRpFJFfaVU61IWFUSr4uGGu9WXioqIStEKKmqlKqV1Qygv\niAJqIxJZGgghezKZLJNtJttkkskkk++P+Z0XM337fcf3lf5Bv+c4ONRIZnme+77u6zqv8zwvlwvp\n6enYsmULoqKiEBYWhmPHjuGee+7BwMCA+Fjo9Xp8/PHHGB8fl/GGDz/8MD777DMpI5hxEeh0uVwo\nLi7G/PnzUVJSIgAwAOFQBJYrgaI7rpGJiQn86U9/wvr168Wpu7+//z+fSenz+eByuWCxWERiTKYk\nuf95eXmwWq1QKBTiWjQwMIAjR44IEYZpNgDx5ktLS8Prr7+OBx98EA6HQ/ragXwDvV4v+IVWq4XT\n6RTats/nE8OVlpYWlJSUiAUYMxe73S5uP4HIcW5uLq644gqUlJQAAN577z2xWe/p6UFBQQE6Ozvh\ncrnw9NNPCwrO1yBwxYWQn5+PN954A83Nzbj11lvh8XjgdDqDLNtoaabVasWGrru7G/v27RPreQJz\nWq0WpaWlMuS3oaFB5oEODg7CbDZjfHxcJjZRw8HT3Gw2CwnK5XIhISEBs2bNQmVlpXBZiJVER0ej\nt7dXAhlPvdHRUZhMJoyNjYngy2KxoKqqSrCIgoIC9PT0oL29HSkpKbIZAQgpiAY58fHxKC8vh1br\nn6dCTCAvLw+1tbUyDZsZmtvtxtatW5GWliafiTL/RYsWweVyYdOmTeINev/990sQUalUmDNnDlau\nXImXXnpJVLsDAwNCOAOAHTt24PDhw0LUY2Bj9uJyubB+/XrMmjVLMqhAdSvFdsA5TwoGTWqSTp8+\njeeeew4nTpyQw+r/qcX+//a6IDKI2NjYSRKTqNnPycnB2bNnMWXKFLS0tCAvL0/AGZ1OJ6dDZGQk\nbrvtNjzyyCNB5rIksQDnUq8NGzbgtddeQ3FxMY4ePSonIE8ZpVIp75uQkCA03tLSUjgcDjQ1NcFi\nsaC2tlbIOSMjI0hNTUVDQwPi4+MRGhoKo9GIZ599FsnJyZLCO51OPPHEEygoKMCePXtkvoLP54PF\nYsGaNWuwePFiuSecpUB8hZwCBg3iBDU1NdizZw927tyJhIQE2O12OJ1O6cbQrl6r1YpLF2eDkJUK\nICgjIPClUChkwvSTTz6JkpIS7N+/H2vXrsX06dNx4sQJ4WHw9wg+FhQUoLy8XJ4BcM4FOj09PciT\nIj09Xdp9n3/+uciVA7sztHVjLW4ymVBTU4PMzEyMj4+js7MTOTk5MktTo9GI/D4+Ph5VVVUyhDcs\nLAw33XQT7rzzTjEo4makwMvpdGJkZARHjhzB008/LfycnTt3yuQ3Ep58Ph+ef/556aiEhYWhq6sL\noaGhGBkZEftBlgZ8tgUFBVi9ejVSUlJgNBqltCXgSl4E2/48LBgcnnjiCezdu1fWEundPPBGRkbQ\n0NDwn+8oxYhLa67w8HCh25LJWFNTI5p9zkLkbIBdu3bhwIEDcgJoNBpERUXBbrdjcHBQUtPVq1dj\n2rRpqKioQGZmpnhGqFR+p+DU1FRERETA6/UKiJiYmIiKigr09PTIBCmKhhISEhAaGorBwUFJbcfG\nxvDwww8jJSVFPk9YWBgiIiLQ3t4uDEJ2EJg+fvXVV9i9ezdGR0clrabmBDhnx89WJmm1+fn5ePzx\nx/H5559j3rx54kTU3d0dNLatr68PHR0dIl9mLUsVJz9Hd3e3ALgej0dOwuuvvx4ajQZFRUVYunQp\nWltbRRnKzTJ9+nQRlDkcjiCPUcAf5AYHB6FSqUSLoNfr8ctf/hK333477rrrLmzfvl0IV9wI7FrM\nmzdPAqPb7ZbgxtaezWaDy+VCSUkJRkdHxb16aGhIAgHgx24eeOABKbf+sS1K+vU333wjLlVKpVKy\nD/534LO59dZbodVqZXg0xxYAkIyJztkEPB944AHpdhmNRjE/DmRyejyeIA2Iy+XCnj17cMcdd+D7\n77+XUXsKhQJTpkyRMZU0PTrf64IIECTDUGzCDMFoNMrEI7aSvF6vjKVj772npwdvvPEGurq6hBWn\nUqnEpIWppEKhwPr16xETEyOuTnwYrIE5cKetrU10Gunp6Whvb0dLS4uwFrk56ChMMpJCoUBRUREm\nJyeFz8B+Pof/ABANBGXS33zzDV5++WXcddddaGpqEsMSCp0CiTQkQnGjU3z2yCOPYObMmZgyZYoE\nBpZd7CqwxUZtC1WQpLvTvZk9fJVKJa5P5AUsWbJEPCOGh4fFAayurk42G7EbArekg8fExCAkJASZ\nmZkSxDjCzuPxID4+HqWlpUHfnQGOGFRmZqZ4h9KBicOZ9Xo9fvjhB9mggTaCnLHxyCOPiP/HP16j\no6NwOBzYuHEjNm7cKIcVAeyzZ88KGxM4N881PT0dS5YsEeCUwCXgz84IApOMtWrVKpn3CkAyUq6X\nQFDS7Xbj8OHDeP7553Hddddhw4YNOHz4MMbGxsRUiVlUSkoKzp49K0Su870uiABB9Vt4eLjMCaiq\nqpLWl8lkEpIUU2NSoSMiIoRO/MorrwgJimkv62XAH32Liork5EpPT8ezzz6LTZs2iUKOqlBiGrz5\nhYWFiIiIED68VqtFWVmZOAnl5uZCrVbj17/+tYBiUVFRYhZLz4SKigpcfPHFAM5RzAMl0MeOHRPH\n6UBXIMrMAy+CfGxtDg0NYfPmzUK2Yg1Os1maqdC0xmQyQa/Xy4QwGquyzo2OjpYhNcw4+M8bbrhB\nGJOU4Y+OjkrdTRt8Mvx4L5OTk3H69Gkxd+GcEhLgfD4fnn76adxxxx1BXo1qtRrNzc1BvA8CxEzJ\n2Z2iVoYlE5W5cXFxePTRR3HDDTcE8UW4CRlENm/ejA8++AAJCQlobW0VxiYAaX+yDON7A8DNN98s\nPwvsujAYcV6GRqNBYWGhZCX8DgBkvTEA1dfX484778S9996Ljz/+GH19fejp6QEAmbdCKwKXyyVl\nI4WG53tdEAFCq9WKnTvra6aPPHGJBtMGbWhoCImJiVKTAsCnn36Kb7/9VmizgYuTD9HlciE/P1+k\nzomJiZg/fz5efvllqNVqXH755UGW7IDfALW/v1/al9HR0dJeUigUwp2YMWMGlixZgvDwcIyPj4uy\njoNVz5w5A5VKhZ6eHqjVauE2sPPBEioxMRFffvklHn74YdhsNgGl/lk2oVKpgoYbq1QqoRyzXAL8\nFnhnzpwRJiCt/ylR7ujokAlaZArSlHbGjBmw2Wxob2/H6Kh/cM+sWbOEzMXsrq+vTyzqeb9oPEMO\nA2dRJicnSzDq7e1FWVkZoqOjpcNz3333YcmSJbIOKIKKjIxEXV1dUMsawP8ydCVXwev1W++rVCo8\n+OCDWLRoUVDmQJCQZe69996LAwcOAIDcB+IGxFd4OvPecm0lJSXhqquuEu0IJ2ARF2PmwWfGAVEM\nzJyGVl9fj+3bt2Pp0qW4/vrrUV5eLl0LTvGKjIxEXFycuIDze/Ow5aS6870uiABBiq/ZbJZ0ltGV\nff6kpCR4vV5xm4qLi0NjYyOqq6uhUCjQ0tICj8eDd999VzYV09r09HQ5TWgUOjg4KJFdoVBg9uzZ\nghFwYUVERAhAxFmLtKvLysoS5yB6aN57772S2huNRuj1ekRHR0OpVAojMiMjA52dnTLHgNlGamqq\n1NsdHR0yQfqXv/wlXnzxRTQ2Nkqbi0IsXsyU2L50u92Ij4+X2ptDiZilAX7grre3V0qK0dFR8XDU\n6/Vy6gIQ/4ukpKSgE3PRokXQaDRCWyZuwe4RHZoImgHn3K65ydntYCcoIiJCypsnn3wShYWFcloT\nYwD8AcPpdEKv12NgYEBYj9nZ2bJBWfJZrVY89dRTuPnmmwWHAPyHBbMOhUKB48ePo7OzEwBkqhi9\nI1tbW8Vi7uDBg//Lwo9l5LJly4JwEmIxCoVCND9utxt79uyR9q/H48GpU6ewbds23HvvvfjVr36F\nV155BVVVVaL/IPuWQ3pGRkZkTkxqaqrM2uC4hH+2Tv6V64LoYsyePXuypqZGFHsqld9w9MyZM4iJ\niYHL5YLb7RYyCYGYQBchgmPj4+PIysrCX//6VzmNJiYmEBYWJv3jKVOmIDMzEz/96U9x3333YWRk\nBGNjY0Jmcjgc+P3vfy8lBEGp+Ph4jI+PS/uVrbtHH30Ut99+u+AfNJMJXIxutxvZ2dmC0BcXF+PY\nsWNyCtOwhik7EXKz2SwneVJSEtra2rB48WKsX79ewD+CefxnV1cXfvGLX4imghssKSkJra2t0s1g\nAGXWEhISgqamJqhUKim3SkpKMGfOHKxYsUI6OwzoMTExePnll/HnP/9ZKMcmk0kIYTRGCezT33vv\nvTLxm61Bs9mMzz//XPAYnrbcaIcOHcLDDz+M5ORk/PDDD0hLS4PT6RSuiVbrn0w1MDAgc0YiIiJk\nTN/vfvc7CVDEZKjM9Pl8+MMf/oAtW7YEkaHYHuV8CnbZBgcHkZSUhPfffx8ZGRni6wBAysFdu3bh\n8ccfl4OCjmjEwtiCJd8nPDwcg4ODuPTSS1FVVYXFixdj1apVwi/54osv8Mwzz8jEN/58ZGREDlSS\n1ojZEF/q6Oj4z+9ifPTRR7j11ltF0GMwGIJMSnlCkaBDJiFTay4ktsI8Hg9eeOGFIEdszqVgq5CC\nIJ6GZFY6HA5ERkbi7rvvxsDAAKKjo5GUlCQeFGwHch5GcXExbrrpJtmgXGDc7ABElUfNCevplJQU\naZ8Ftgqzs7NFXzA8PCzmuw6HAxMTE9i7dy9eeeUVdHR0yAYHgo1cH330UXCUAO/n5OQk3G63BL1A\nwhQp6ETCWT+3tbVh//796O3tFcGWTqcTi/drrrkGarVaJlxbrVbx52Caz9ahTqfDrbfeKsNt+Zkt\nFotoUOhwzSwCAK688kosXboUVVVVAPylT19fn4CwvG80mFGr1TIkJyMjQwBfYgcsk0ZGRrB27Vrs\n3r1biEtut1s6LQUFBRgfHxfzGK5Jt9sd1DXjpVarERoairlz58qaZWuX3SJyE5RKJdrb24PKsqqq\nKjz44IN49NFHRQPi8/mQmZkpgYqyezqN0VyYpYvBYJCg8e+4LogA4fP58Mgjj2DLli0IDw9HQkKC\nyKppvx44Daqnp0cAGfaHGckTEhLQ39+Pr7/+Ghs3bpSHaDAYZH4BT5Pa2loR2QQKbgD/1KTc3FwM\nDQ0hIiJCSFMkprB+fvnll4P8HrkgKJ32eDz4+9//jtdeew15eXky8IWiHaoICwoK5ATmTAYqVh0O\nh/gQcIHv3LkTN954I95++210dXVJ54an42WXXYZ58+YJCzMwq6F5LwlYBF05m4IbSaFQwGazYXJy\nEmVlZbIBOWhYqVRi6tSpyMrKktYscaSuri4YDAaUlpYiIyMDWq0Wc+fOlUAAQHCigYEBNDc3i5gu\n0JqO7d4HHnhA9BU8RDjbcmJiQijJgdgDNzNwbuAwA/fw8DCeeOIJfPLJJ9K6zMjIkG4DxVmkldPD\ngrL4Xbt2STYbeCmVSphMJtjtdskgyayl2xkH8rDFrtPpYLFY8NJLL2HJkiXy/cnrSUxMlIDNA0Ol\nUgnWxTYwBxHHx8cHkcnO57ogAgT7vaWlpViwYIGcUswG6PJDPwi2gJjasQNA3oDH40FJSQl27tyJ\nF198UQgmHO6q1+tF6DMwMCBzD/l+XFTz589Hd3e3sNK6urqQn58v9d7q1avFbZvcBJ78PM2dTice\nfPBBtLW14ccff0RHR4f4NAS6HdGrwmAwCM4SOBODpzLRaqvVit7eXuzcuRO333471q1bh8rKSkxM\nTCAiIkL655yTQE2Bz+dDc3Mzpk+fLicPKeajo6Noa2sToRkDX0hICI4fPy4LNhAnUqvVuPLKKwU4\nJUWcztd1dXXijnXPPfdIhkNOBbGEV155Jch4lT4XfB9yVeLj44OmTF1//fXIyMgQDIMBlthOWVkZ\nbDYbBgcHMTg4KEHujjvuwIkTJ0QR6Xa7pUvCrlJnZ6eY+dbX12N8fBxWq1UGMZWVlUlA4cXnxcOk\nqalJjJZZXrKEamxsFB7Ghg0bMHfuXMlumUERNGb5zAORJZ7D4YDH4xGA2efzoampSajp53tdEGrO\nyMjItQwSixcvFsemuXPnorW1FT09PUhPT0djYyPCw8PF+oyyYrZ6QkNDMW3aNMTGxuKbb76BSuW3\nJ7PZbJg2bZqAQrW1tbDZbIiIiEBmZiZycnIwMjIi7siBHIC9e/fKiHkyE0NDQ5Geno4XXnhBFgSB\nPqaLSqXfcn/9+vX45ptvRFEZGxuL9PR0OfUdDgdSUlKQn5+P+vp6LFy4EK2trUIGow8iAAHdUlNT\nBQOhb8WxY8dQVVWFEydO4H/+53/wpz/9CX//+98ldfZ6vejp6ZFWMgBBzilTZpbFdiRLKafTCbVa\njXnz5sFsNkOj0WBwcBAKhQKTk5OIjo7Gxx9/LLZ7brdbyGE8Ra+66ir88pe/xOTkpPzxer04dOiQ\ndFa8Xi9KS0sxOTkp5YVK5R92xOzwyy+/lGG/ExMTOH36tLQGWQYQU9Lr9XC73bBarcjLyxOPkQ8+\n+ADNzc0IDQ1FaGiouF1T50DlK8FZYgec/MUsyePx4LrrrgMAOaw4FWzr1q3o7e0VJy+OPOAYhcnJ\nScl6jUYjfvOb34hbVyDl2+PxYPv27fjuu+8Ej5sxY4a8ltFoRE5ODtra2qR7x5a9VqvFAw888J8/\nWYt2Y7zxK1euxObNm3Hw4MGglhQXus/nk0gcHR0tmERubi5Wr16NzZs3S49cq9XiwIEDWLx4MbZv\n3w6r1SoU39TUVOzfvz9IyBMIONHCfurUqVJLp6enS3oemMlwQTFgaLVa7Nu3D2+99ZYsVMDPqtu3\nb5+MducpffToUZFb0+SEsmcAgo14vV7U1tYK447gIJWh5eXl2Ldvn4jZXn75Zbz66quSffD0ASAL\nnpJoGsUmJSVJBsA0dXh4GM3NzZK6ms1meR7JycnSSqQrFi8yUpcvXy7lQ2RkJGJiYpCXl4ekpCQM\nDg5Co9Fgx44d+Nvf/iakKQBBjklXXXUVbrzxRgkmZAyGhoaiu7tbGJDM6ngS/+1vf8OGDRtw9913\n44477sCOHTtEsk6pusViEWyD2AwJfOwuMbvIyMhAeHg4zp49K+uRWQTvV35+PgCINoPfITMzE0ql\nUliVF110EbZt2yaBJ3BEIl/v+++/F1fz8fFxtLW1wWq1SmZcXV0tJRcHPJvNZsF+zue6IAIEVZY0\nMe3v78esWbNw/PhxLFmyBEqlEi0tLUhLSxOnIb1eD4VCgfr6ekkJN23ahMLCQqnl2RkJDw9Ha2sr\nnnnmGVx55ZX49ttv4XK5UFVVhZMnT2Lv3r1iUkPQk9O11qxZg9TUVAwMDCAtLQ2HDx9Gamoquru7\nMXPmTHz44Yfo7e2VOpadhVtuuQX33HMP8vLy0N/fjylTpiAkJAQej0coviQeRUVF4dJLL0V6ejpa\nW1vF78JsNiM7Oxvt7e1CfuGgVs795BSlkJAQAfxoJf/yyy+jpKQERUVFYnATHh4ualTax1GYZbfb\nkZKSImAtAUMK0d544w3Y7Xb5zIFTtmm8GhUVhZiYGKSlpUGj0aCjo0MG9/I5cbOkpqbioosuknkj\no6OjuOuuu6Q844wOlhSRkZF47rnn8O2334qhL+AfScjTNTMzU0xp6Gil1WqxZMkSbNu2DfPmzROM\nZXBwUExWzp49KzJsdji0Wi3q6+tlBgbVnD/88AO6urrEz5R4E8tclUqFa6+9FkqlUlrN1N20trYC\n8I+ZPHjwILZs2SLPhUAksSalUonf/e536Ovrg9vthtPpRGRkpDiXqdVqKaf4TNLS0kSoF2gs/K9e\nF0SAYCptMBiCgBev14sVK1aIYSgX18jICNra2jB//nw53QsLC4UhCAC33nqrnI4mkwkxMTFCXKJi\nkjjEd999Jyg3eQMEiYqKimC1WgH460r27OmQ9Mc//hE7d+4Mitbbt28XzgQ59qmpqUEAKGvmwcFB\nsbmnOIw1a0REBCoqKtDd3S0GKZzQrdFokJiYKAuSqemrr74qmQI5DyQLEayk/brBYJBTEfAj4nRT\nIi7T3t4OwO8b2t7eLkEOgGxSgoQkuHHRhoWFYcqUKYKrECgkBqFQKJCVlSWqTQaG7du3y7Pm6Q2c\nI0NlZGRIm5fanalTp0Kr1aK6ulqsBmmHn5mZKczFxx57DHfccYeAtg6HI4iJGR4ejs7OTvl/M2bM\nEGDTYDDI4UR26okTJyQQsG1K9aVarUZsbGwQUU+p9I9jfOyxx6DT6SQAB2bHzEq3b9+ODz74QDIh\nu92OiIgI6HQ66YqwNevz+dDZ2Ym+vj5kZWVBqVT+/4coRaZab2+voOhcNBqNRkw8uKkYMDo6OqQ2\n1el0QslVq9VYuHAhLr/8cgwPD6O6ulpO4NzcXGHsESBqbGwUgJKBgicDx8JzhqbBYEBzc7NM4Xa5\nXNi+fTt2794tqfp7772HiYkJNDc3IzY2Fq+++io2bdoUxNAkUMm0mz8zGo0YHh6WgGA0GpGVlYXa\n2tqgDCUyMhLDw8Ow2WwICwtDXl6eTFtiu8toNMpr2+121NbWiseFxWLBxMSEtHJJYKKCk6xMDiwe\nGxsTtWqgdyKt7nn6DQ4OyqzRtrY2EcsRlxkeHpbn7fP5pDulUCiQnJwMn8+H9evXo7KyUjaAy+US\n0g9fZ968eXj66adRVFQkLkqAn78Q+NqhoaEYHR0Nsse/7777ZL4qmZ7EMRwOh2SgvEdsf5IdGfg+\nP/74o6wXYhVkPapUKuksMEg8/fTTuPvuu+X+sVQkOE7y1VtvvYVnn30WLpcL8+fPB+AvW3t6egS7\n4HNgAGV2wesfqfn/ynVBBAgKoPhFKRHmTef8R6of2T6cPXs2amtrMTQ0FGQuA0B63Jdddhk8Hk8Q\npRXw+07GxMRISVFRURHEbAw0gaXysLm5Genp6RgZGYFWqxXTW6/Xi61bt6K6ulpEXlqtFgUFBXjp\npZeQnp6Ojo4O5OXlQalUChLO9iLgp3M3NTUJCs+TmPMyhoaGZBgMzWPz8/ORmJiI22+/HVu2bEFW\nVhYMBgNiY2ODTo/Ozk709vZCr9djcHAQarUa0dHRSE5Oxvj4uIwGoDyapz0zA7pAjY6OSu3OS6vV\nyqYnKYvtSr1ej7i4OAFkiSewg6NWq5GWlhZkEMss6ze/+Q2am5vlswRySvhnyZIlsFgsUKvVQTNK\n+NzKy8tFnBYYaIaGhrBt2zbcc889kqVw7gczsebmZgwNDYmdn9vthtFohN1uF/csn8+HTz/9FDU1\nNQAglGqfz4f29nZ0d3dDq9UiLi5O/lx77bWy3gOJdIHU7XfeeQcvvPACdDod0tLS0NjYiPHxcfke\nZIuSHAhAgNvAe/TvcLW+IALELbfcgqqqKmg0GgwPD8viYY0eGRmJ/v5++blarRYQkEw8RnuTyYTk\n5GTZuOvWrcOsWbNw+vRpuFwuNDY2SrpoNBrR3t4Oh8OBr776StJM1m7UP8TExMBoNEKj0aCmpgZq\ntRpGo1FqYMD/gLdu3YrbbrsNXq/fYPeKK64QYMnn8+Hqq6+WqE5zGc7SoPMStQUkR4WGhqKyslLQ\n7kCvA4fDgfXr12PVqlVCt2ZmQtEa4J/KxOyDGUhFRYWg7AaDASaTSTY+NxnFVMzkYmNjsX//fuGA\nABBSE+3YCeB2l3oodAAAIABJREFUd3dDo9HIgFsufuCcmMlkMiE+Pl4ymcAWcVVVFTZu3Cj1NbOC\nwN6+SqXCk08+icHBQSFKkRSlVqthsVjgdrtRW1srQHLg795yyy3YsmWLyNKBcxZ8dM7m8GStVouW\nlhbhXpCib7PZ8M4770j3hpvz2LFjso4mJycxPj6Ohx9+WLgm/8iyZeawY8cOvPfeewgPD5dD4tSp\nU0EzT8rLy4VExW4XeSdk5up0Osmqzue6IALE0NAQVqxYgZ07d4rAKFCnz02dkZEhakrWvACk28B6\nzufzIT4+XmrW5cuXCxW1vb0dbrdbakMqEY8cORJEdSYRiFqOtrY2Ado4PdpgMIi2gwub7b/S0lJc\neuml6OnpkQnjaWlpKC0tlVM3Li4OJpNJ6nGmyqR00x6vpKQEV1xxhegEMjMzUVpaij/84Q+YM2eO\n6DBYywIQgDEiIgLff/+9BFVmZdxUxBlUKr8LEadpk0/B14uMjERVVRUqKytFVAYgKPNLSEiQzgg3\nDCdYMWAESqUZ9KKjo4M6H2SsHjp0CBs3bpTnwLYsOwvAuZMzMTERQ0NDGBgYQG9vrwB94+PjGBsb\nk7KQfhlutxv9/f1ISkpCcXExkpKSBJOhOphelATQA0VbbGkrFAp8//33qKiokDa5z+fDkSNHxPIv\nPDwcq1atwhVXXCGZwz/Ss5VKJXbt2oXXXntNHK/orMYOGGnWMTEx8llVKr8cn6bCJpNJfEB4j87n\nuiACRGNjIyIiIrBlyxYZvEregM/nwyeffCJEHtbxQ0NDMjy1rq5OggNPTRrOkAjEDUgA76KLLsIP\nP/wgdTd1AOQvsLZmqdDV1RVkuUZVX3h4eFDLiVyLJUuWiMqTJ/PExISQYQh8dnd3i6U+xWFErGNj\nY2VWKL0QFixYgIaGBjz55JOwWCyIiooKSiW5MDg45+jRozIlitmRVqtFenq6tJaZ3rtcLrGcS0hI\nECAP8AulRkdH0djYiPLycrnPAIQPUVBQIKIlErrIFGRQ4f3mH41GIxlfdna2nIBMp//617/inXfe\nEWo8MyFmdwCCDgBOgWf7lyc6FZEEARmkvF4vfv7znwdJp8ld8Pl8QopjiQVAGJRer98ox2g0YsOG\nDVKiBA5rCg0NRWlpKZYtWyadBmIOXNMejwc7d+7EunXrBMth4O3r68NFF10El8slfq30xEhMTITd\nbkd/f7+QwLq6umQeBkuh87kuCE/KiYkJ1NfXQ6VS4Re/+IVIvCcnJ0UmDEAGliYlJcFqtWLatGnC\naSe+wOgeOOwE8G/qwJRr//79iIyMhMlkQn19PY4cOSIlTH9/P2JjY9HT04OJCf9058TERBw9ehRm\ns1mszvr7+xETEyPuxHa7XUDTtrY2zJgxQ1pp3DgLFizAjz/+iI8//hh2ux3d3d1IS0uD2WxGXV0d\n5s6di4MHDyI9PR3l5eWSzvb19eHee+/FLbfcgoiIiCArt8CL9+i1115DWVmZlAhk4kVFRaGpqQlK\npd8VmWSgqKgoREREyOTv2tpaSecDMY/+/n5s2rQJZrMZ1113nQyJ7erqwg033IB9+/bB6/VK21Kn\n02FoaEhwHF7Ei8gvUKlUkkoTaGVK/dZbb+Gjjz7CgQMH4HQ6JRMi+/W5556DzWYT1+rk5GRUVlbK\nGDyXy4Xdu3dj2bJlQWaxRqMRRqMRV155JW688Ubs3r1bcCH6NHR1dUn7MiMjQ7JPbl4+QwAoLS2F\n1+vFnDlzEBsbi9DQUDz33HP42c9+Jveyq6tLTnYqUHfs2IG1a9eKGtZisUj263Q6pbsVHR0t2URd\nXZ2U4AxMBoNBDk5yVc73uiAyCCLmHOxC/QFPtZkzZ0r9TUEXQT6ezqQlc9w7x9kxuGi1/ulblJTT\nGsxms2HKlCmCPBMHCSTGOJ1OmbnBxTw8PIz8/HwMDw9j7ty5UKlUYtZht9slbSdlOLD/n5SUJJoT\ni8USZErCEoW+Fz6fD2azGY8//jgeeOABGI3G/9vgAACVlZVYunQpzp49K6IjwL8YOZqNHgsjIyOw\nWCzCKaEwTqvVSl/ebDYLyMjvpdFo8PXXX8tJSoAtKioK4eHhUiaSfMQTLRADYMlAAhd1N1qtVkRs\nDPJstX744YdBeEaglR0PAK/X7zhGUJCdi/b2dlRVVcnEbb62QuGfDbJixYogunhLS4usoUDgGvC7\nZYWFhQkRLzw8XMpi0tadTifCw8NRWFgoh0MgqYqB6O2338bzzz8v68PtdqOrqwuNjY2y5li+smRj\nh43AMwMt2/Qmkwlms1kGIJ3PdUEECN6wqKgooYxmZ2fDYDAgKioKra2t8kDpnsOxb6GhoYLyA5Ab\nSqIPATEAMkWbP6OohZTt9vZ22RjAuWGqp06dAgCpQ+kBQYNU9qXpyB0eHo6TJ09KJ4SkG0px58+f\nLzRmpvu9vb1iwZaamgqPx4Pc3FwsWLAA77//Pn71q1+JgOsfL+IKfX19eOihh1BXVyf3hi5SHMRD\nh+5Auz3yPmpra8XrkQFPrVZDp9MhNjYWQ0NDUtcfO3ZM3KuJLbCEC7wCFzcvpvrcLEajEVVVVYiK\nihJDW256nrLd3d346KOP8Mgjj8jpycBUVVUlsy+4QaKiotDZ2SmqR5VKhUOHDgE41zXj81UoFCgo\nKEBpaen/Onm1Wq3QtFni0Fymp6cnyE2LhsqcVB44s4L3gPjIxMQENm7ciN///vcAIGAsWbeBeFJk\nZCSmT58uKlwS5rjO+fcJFC9atAjbtm3Dm2+++a9tyIDrgigxyFLjUNpAXoJWqxWRkVqtltbR1KlT\nMTQ0JJRi+v4FmngQ3IqOjsbAwIBQcIllBP5dlUqFgwcPYtmyZQDOzWY0GAwijIqLixPhE2nIHo8H\ndXV1iIyMlFO/s7NTPClZ+lDNp1QqkZWVhaioKKFmU1iTl5eHxsZGzJw5U1yYX331VVkMgScwcG7K\nl9vtxtmzZ7F27VrhbjQ1NYlNH3EVslBdLpdYwxmNRpw6dQqpqalSa7MrYTKZgjIEBlq2Snfs2IEn\nn3wSUVFRknUxu0tKShJbuLq6OnR3dws+wlOdG5Tfz+fzobKyEoB/Y3J0ImX7Op0OZ86cwapVq5CT\nk4P58+dDrVbjxRdfFNo6BXPp6elQKBTo6+tDdnY21Go1/va3v8lIAIKwgRyFm2++GeXl5bBarYiM\njITdbkdmZiYMBoP4bZLUx2HNLNGokCV/hwHqT3/6E6699lpUV1fj6NGj4nhGl63R0VHRAtXX10Op\nVAofIzIyEklJSRgeHhZsTqPRwGq1IjMzU9Ztbm4uent7YTKZMH/+fKxdu1Z8Sc73uiAyiPr6emRl\nZQlmcMkll8BsNksayrRKoVBIxDxy5EgQmMk6mzeRF1Fjr9eL7u5u1NbWor29XbwkOd5eoVBg7969\nguBTm8EFQGuy5uZmaZ8NDAxgxowZ0vunNoCnAQfR8uIC0+l0mDp1KmbPni2nSVxcnLAB6XuwcuVK\nKVP+8WKaPTAwgB07duDRRx8VIxuCYaxlOV7earWKSUlLSwv6+vrEAp/OR4A/wBG7CZy7QY0Cr5qa\nGnzyySeIjo5GYmIient7ZX7F6Ogo6urq0NbWJuY3AEQHw4sqTdbRxB/MZrM4UhGIHRgYgMPhwMjI\nCCoqKrBp0yZs3LhRngWDcGJiImpqapCcnCyZk9PphM/nQ01NjQSjQIKS1+vFJZdcIocGBXL9/f1o\namqS78/xCJStM8vl+mCZZrfbMTY2hnfeeQcLFy7EnXfeiX379gFA0PBfi8WC6upqcfBi1kQqO20B\ngHNdDJPJBIfDgfDwcLEMuPbaa/H+++9j7dq1QS3l870uiABBcNHr9YqzNB+owWBAQkKCnDoxMTHS\nb6d0lxuDLkCBvg78b55CcXFxGB8fF+oxAFHqqVQqvPPOO4IZHD16FMuWLUNKSorYhQH+E89kMiEp\nKQnXX3893n33Xezbtw/33Xcf0tPTpTY9fvx4kPCGKkGqFhsaGqBQKDA4OAifz4e9e/dK6vv666/j\n5z//+T89BRgs+/r68PDDD2Pt2rVicEsxGQBRbWZnZwuvgkYkJpNJ0m9OdwrshrDU4ucDIJwJj8eD\nnp4e9Pf3Y+/evXjqqafgdDrxwAMPCEah0WhEsxIWFiZWfsA57IDvzYDACdWBHQOXyyWlg9FolC4P\nuRn8Z6AxC01dKaZqaWmBw+FAc3MzvvjiC8mUAj8D03RiQGfPnpX7QTo24A/y6enpsNvtEthY3sbG\nxsLhcMj9JCbGEqS5uRmdnZ0YGBgQ7MxqtcLn8wmwSFZpTEyMZC8EkxncvV6vZF1FRUVYu3Ytnn/+\neaSlpUkgJr5yvtcFYTkXHR09GchBz8rKgt1uR0xMDDo7O6UOttvtiI2NlahJcNPtdqO4uBhvv/22\neEiS+MKHfPXVV0v9TR3GNddcg2+//VaITbNnz0Z1dTWSk5PFsObkyZNQq9UoLCxETU0NVq1ahQUL\nFoi7NtFj8i8ol/Z6vbjnnnuwbdu2oFYiaeQKhQL3338/2traAEC6B2azGc899xwyMzOFJGY0GmVK\nFTGNmTNninszR9WlpKRIO9BgMKC+vh7p6elwOp2CkQwMDKC4uBh1dXXCK6F7OIf+8MRyOp2IiYmB\nRqNBVlYWcnJykJaWhvb2dnzwwQcAIGpK1uaBxjURERFoaWlBRkYG1Go1du7cieTkZNmgDOzl5eW4\n5ZZb5Oesp+mixdo/NTUVw8PDwqaNjIyE2WzGqVOnoNVqJetwOByIi4sTzgKp3+3t7Zg2bZo4W/M5\nsZRRqVSYPn26tCh5ILDcZP2vUvnnwObm5sqoBRrLcD3OnDlTxhfYbLYgv1BqRfg9pk2bhoGBAVHv\nkojGQ66vrw9JSUlBQDmzaLPZLIclvwNJZf8noP/nW85Nnz5dFjcASfO5UAM9CsfGxmSOJutaGo8w\ndWRNCJwT+ISHh4uPAk8M1rtsq544cUKisFarxbFjx6BSqZCeno7S0lKxxmNUJ9BIRSVt7Yi0d3V1\nob29XT67TqeTMop0ZwYGWp/39vbizJkzAnBx03AxHzp0CEuXLsXExISYuHJTdnZ2or29XViRFotF\nauzAcXvsxFDQwzKMGz08PBzLli3Dpk2b8Ic//AGffvopXnnlFaxYsQKXX3457rvvPrz++uvCNlQq\nleKgFB0dLWDZ2NgYcnJyJLupr68P4h/wM9AKMCEhQcRrLAnZHaGuoqSkRIhxg4ODqKmpQXx8PMLD\nwzE5OYni4mLo9XpMTExIlsjSjq3ow4cPB3UwyIp0uVwoLCxEX18fEhMTheBFti7g36x9fX2YMWOG\nWP6FhoaKWC82NhYGgwHV1dXC/6DGRqXye60ODQ0JZsEWNjEHZngM1mTIElgFICA+Sy+SsQCIaGx4\nePjfYnt/QYCUq1atwn333ScDUTlli9OVmHqxri4rK0NCQoJgEi0tLYiPj5c6ldE/0A6sr69PNtKl\nl16KiooKoaeOjY1Bo9HIKW2321FSUgKv1z/ibevWreKe3Nvbi5CQEKG+EnjjpuTQ4fb2drS3t+PY\nsWPifs0NysB38cUXo66uDg6HA4ODg9L62rlzJ0ZHR7FkyRJxhyorK8P777+PH374AREREYLuk4zE\n9F2j0YgLFklVNL7lCUerPavVCpPJhNzcXBQWFiItLQ35+fkyFOcfa1kGK6/XK0GV1O/ExEThfJAp\nOjExISSw0dFRlJWV4fLLLw8SNgEQD4RAC3eDwSDpMrPFzZs3Izc3F6dOncLy5csB+FP+Dz74AFVV\nVTh48KDU6YDfiwLwtyX1ej2Sk5MxPDyMiooKCVQsPfleBQUFKCsrEwYjae3sWDC4U77N3zl+/LgA\nv5QDECSOjY2F0+kUfQqnmXu9XsTExIglAV3UBgcHUVhYKMbCLL/i4uLQ2dkJt9uN4eFhOTRCQ0Mx\nPj4uP+Oz+kdQ+1+5LogAMWPGDKFP04yUlt4JCQkCAmo0GiGNcCOyvUfyCvEGBgeCUSEhITIufe/e\nvcjJyYHNZoPJZEJ3dzemTZsmCDfr7FWrVmHRokUCgoaEhEjPGzgnKuOGJIOP/XwSuniR2cdoP3v2\nbLzwwgsinGLNPDAwgL/85S/YvXs3Zs+ejW+++UbszngCjYyMSHs0LCwMIyMjmDZtGmw2GxQKBSwW\nC6xWK6Kjo4UUREt7ACguLkZ0dDRWrVolIwzZdgxEwAM7JUyxq6qq8MQTTwi1lzZ1Go0GDocD4+Pj\nSEhIQH19PWJiYqS0OXbsmDBSeQ/JcCVHg+9F3gER/ieeeELk7bNmzUJWVpaMN0hOTkZxcTGWL1+O\nmpoa7NixA0eOHBHfx+7uboyMjMi94dhFBjt2bQAgLy9PaOfEbZjaZ2dn4/Dhw+LoxCnldXV1cliZ\nzWYkJCTg7NmzAPwbtaOjQ9rZZFmGh4eLvoWAMTkvZMAyexgcHJT74HK5xN/k4MGDQkbzer3IysqS\nDJjl9/leF0SA+Pjjj2EwGHD27FlJtTmvgekh21hUy7EG7evrQ1FRkbwWxTaBElxSgVl20JXZ7XZL\n2kud/9jYGFauXInrrrtOAgXBRd5wnlBWq1VOAYqEAD8t+cMPP4ROp0NVVZWMieNrREREyBAe6jr4\nmtxMISEhaGhoQHd3N7q7u1FSUoKCggJ8/fXXkhFwIXM4UH9/P6ZOnYqTJ09ixowZaGtrQ29vL6Ki\nojBlyhRccskl+MlPfoLMzExERUUFKT7JS2AmRYfwQIIQN/Pvfvc7of1yyC5T/L6+PsyaNUtIPA6H\nA52dnYiPjxeQ8Fe/+pXU2QqFf4ZFU1OTOE0RPzIYDMjJycGaNWsE4yGIy2DHIbncKIWFheIKbrPZ\nMDw8jA0bNkg3gi1LHibMKonv0PMS8GcnBEUNBoOI5jh9DfCXFF1dXdLJ6O3txcDAANLT02Gz2aTT\nwAnpdL4mdkNAlUGqp6dHyipyURQK/9wXql/ZtVm7di0MBgOcTidCQ0MxOTmJOXPmYM2aNdi/fz8O\nHTokA4X/1euCCBBbt25FRkYGKisrERISgpKSEpw+fRrAuYUbKDQqLi5GdXU13G439Ho9qqurhQ3J\nm09QiVeg3x/JNSaTSRaDXq/HnDlzcMMNN4h6lO1KzqkgAERQixkEQVRSxpctW4aWlhYhdXV3d0v6\nyXqbqtWrrroK7733nsi8GTgSExPR0dEBlUqFkpISAfToQ5iQkCDmvkNDQ5gxY4a0LwNNbTIyMpCR\nkYHnn39eUtiJiQlx5uYpBZzTcQAQPIe1NWt1q9WK2tpaCQxhYWFSh7MTwE1FvIOLf2JiAps3b0ZK\nSgrmzZsn4N/JkyeD5oQWFxejqqoK69atw09+8hPRJfT29iIyMhKnTp2C1WpFbm4uIiMj5XNSCEZ5\nemxsLCwWC7Zs2YKHH35YZn5Qy8MAyVScQYYgt8ViQUdHB3JycjA4OCjdCt4TUrEBfxnkcrkkMw0P\nDxdzIrVajeHhYVnDLAljY2MlKyWeZrFY8Pe//13YpMw2srOzUVdXF1RCEfj2+XwiSzh8+DC+/fZb\n4eSc73VBdDGSk5MnyUBTq/0zFvr7+4VTT+SYtZtKpZKBrrm5uXA6nYiOjsbBgwcFMPvH07+0tFTe\nj+nctGnT0NjYiJ/+9Ke45pprBCtgEElKSgoa7UfBFNuo9fX1OHjwIPbt24ezZ88GDUfJysqC1WpF\nVFQU4uPjsWfPHgCQxUFhmVKpxM9+9jOhfDc1NaGoqAgVFRUoLS0VkhHt1rmYOYdi5syZaGhokO4F\n+RucY7pp0yZYLBaYTCbJxvgaxER4cZGTYk6QKywsTMCwn/70p+IYxWCclpaGzs5OUZsS5O3s7ER6\nejrGxsZk87GOHx0dRXZ2NioqKqRrAfgxjT/+8Y8oLS2V7oXT6URERAQUCv90qptuugknT56Ue5Kc\nnIxt27bJ4COPx4PIyEhYrVYYjUb5PM3NzXjhhRfgcDjw0EMPiS0cW5Uulwtnz57FzTffLE7ZBHc5\nQ4WZAclytLLnM83IyMCqVauwePFivPPOO1i3bp0ESGJTer0eRqNRukcsfQsLC1FRUSFGxeySBfIj\n6BnKNc9OTVRUlLh3M2vJyMjAmTNn/vO7GBTPkNBDdZrdbkdRUZEsHsqwo6OjxTyFN4q8eabzPL2U\nSqUImFJSUkSlp9fr0djYCK1Wi6ysLCxcuDCoP06gjukcswYu8M8++ww333wzPv/8czQ2NkKv10ut\nTxyBvIHa2lqZ0jU0NCSdFABSGrCnzpkJHo8HJ06cCFInajQaxMXFweVyCWegra1N+A/URlCDkpyc\njNjYWGmhtbW1wW63o66uDo2NjfKdAP8E6t7eXoyNjQmD1Wg0ikdjTU0N3nnnHSH5DA8Pw263Q6/X\ni48D/TioAlWr1RgbG0NYWJiUiFSmRkdHw2azYWRkRBilXANz5syBTqeD2WyGy+WS1i6AIJzEZrOJ\nfT9nqwae1AS62RosKirCY489BgDYt2+fgJPEAkwmEyorK6FSqSTY9/X1wWq1yuRwGuZqNBqYTCaZ\ny0Fsafny5SgoKJAymFaHfC7MlNiVcLvdCA0NhU6nw8mTJyXgEpcB/AGXHqU07SFWxmd3/Phx6HQ6\naUur1Woh3J3PdUEECKa2nJeZkJCA1NRU6ZUDEGk3a1eOkHe73VLHEcXlQydH4ciRIzLBqKOjQ6jD\nIyMjiIqKwqxZs6BSqaR7EtiWomhLq9WisbERv/nNb3D11VfjscceExSeOhLOokhISJDTlAy5rVu3\nQqn0+2nSq4DUcBLCGhoa4Ha75YRSqVQYHx/HmjVrsHXrVvzlL3/BunXrMHfuXPh8PsyePRtOpxMZ\nGRmwWq2CadDtu7e3F/39/VIGMPMhJZmpMu3TuLH1ej1sNhv27duHdevW4fbbb8ett96KdevWAYDM\nc2DgbmxsxPDwMHQ6Herr66WbpNVqYbPZpCVMMNPr9YpDNgf5UFy0ZcsWCUo0agnMZAKzHqVSierq\nang8Huzfvx8ff/yxbEDiCSwLuc5mz56N9evXo7GxETabTUhxgL8D9Omnn0KpVAroPGXKFAEBAwlj\ntMQzm82SPdx222245JJLAPizMbvdjtbWVqhUKhmAzEyELdfs7GwhsrEjMX36dMkM6H3JUphsV2Y7\n/Pf8/HzZR/+M+PavXhdEgAgPDxcknmzI2NhYLF26FMuXL8f8+fPl1CePvru7W+YnMGPo6OgIUvsR\nEd++fTsyMzPR29uLmTNnIioqComJiTJUNjo6Go2NjUhOTpaeO99Hq9Viz549uOWWW3DjjTfi66+/\nFporI7harRbPRCL7/F1SmLu6ugQMY8uRKTSVkgTIBgYGZCDtkiVLsGjRItkYeXl5ePHFF2EwGMSF\ni0g3AKlJeVrv3btXuiYul0uMYiYnJxESEiIKSKPRCLVajcbGRrzxxhu4+eabsWHDBuzatQtHjx7F\nxMQEcnNzBUAj/uN0OpGcnIyxsbGgtl2gOMvj8SAjI0PAx5GRkf81/DY8PBzr169HcXGx4A1UgnID\nG41GeDweOUji4uJE/ajT6fD888/jxIkTYp4C+OeRkg3K9uBll12GwcFB/PnPf0ZXVxecTicOHz6M\npUuXymAlYl8DAwNCRiJISrCZWatKpcKCBQuwePFi4TaQEcn1SIo3P3ttba3oNQoLC3HppZdKEGBZ\n2dPTI1PkCgsLAZzTLblcLuFuREVFyd/TarXIz8+XQHy+1wUBUi5btgyHDx9Gf3+/UFBXr14tfoLz\n58+HyWQSf4P4+HhphfK0MZlMqKurQ1ZWVlCb7O2330ZNTY3YzweqJ+lkRKFLUVFREHvOZrPhs88+\nw7p160Q6y5PXYrHA5/Ohvr4eRUVF0u/nZmUayrTbbrejvLwcRUVFgoAzDY2NjcXw8LB4QHi9XqSk\npKCzsxPXXHONZFEMeIDfGbu2thZJSUkoLy9HQkKCYC8ARE/yySefwOv14vHHH5fgEUgi83g8OHbs\nGE6cOIGKigo0NDRgcnJSsjFawdNpm4Qmm80m94JZndlsDlIcBqoMqUsxGo2C1HMR5+fn47e//a20\nAUnxpj3b6OgowsLCAABr165FdXW1BFK+B3UzO3bsQGxsLOLi4kQ8lpSUhJ6eHvk7KpUKd911F958\n802xhuNUMo1GI/eRfwLH+aWlpaG+vh6lpaXCl6BjFIMKPT4CDVtYutJqQKFQIDs7G6tXr5YZGgkJ\nCfjLX/4iTNljx45JqVNdXQ0Aki0z+JBlydERKpUKdrsdISEh/1T5+//1uiACxLXXXotPPvkEo6Oj\n0kf3+XwoKCiQB/frX/8aK1euxHvvvYfGxka0tLRAp9Ph4osvxt69exESEoI9e/bgqquuEhBuz549\n2LZtmywgt9uN06dPIz09XU7Ympoa2O12FBYWyg0vKyvD4cOHsWfPHilVaCem1+sFnSbSPz4+jubm\nZsyaNUucrGfMmCGnxPHjx6FWq/H000/joYcewpw5c6DRaNDc3Iw33nhDGIzx8fFQKpXIz8+XLggx\nCcCfnQROXuJFfwCyNUmCioyMRE9PD7788ksolUokJSWJFyazlp07d6K7u1sAuJiYGNTV1UlZ1dbW\nhtjYWFFsEtehHoFdFXp1khLPExeApMnkCrAbRZfwV199VUq0oaEhsf4nC5bA64oVK3D69Gkp+xIT\nE6VsqampQW5uLr766ivU19fjgw8+ECyFHQ2yKb1eL5YtWwav14tXXnkFRqNRshnep8LCQuzZs0cI\nTVlZWTh79iwaGxsRGxuL6upqkWY/9dRTyM3NFayHZc0ll1wSBHrPmDFDytjs7Gw8+eSTiI2Nlc29\ncuVK7NmzR7JRUrApd2c5Rk8Uku50Oh16e3slaEZERAhH43yvC6KL4fF4JpcvX46vv/5aTqiBgQFs\n2bIF+fn5OH36NHQ6HaKjo8XjYWxsDDt27MAXX3whvWWm7+yvM8VKTk5Gc3MzCgsL8d1330mWQYFM\nfHw8WltZoHl6AAAgAElEQVRbkZGRIX4RgWKmmJgYlJeXIykpCV6vV9yhHQ4HLr/8cthstiC3KmY1\nnZ2dcpIlJCTAZDKhoqICer1eZnSSXk2PTdaic+fOxY8//ojvv/8era2tcqKSi/Dtt9/ipZdeQnd3\nN0wmk7zG0NAQ0tPTERISgqqqKukWOJ1O2O12IaMVFRWhurpaTjneKwYbak0ASPAgLZwgKsseLmLe\nt5qaGigUCsycORNlZWViapKSkoKGhga5z/v27RPJPBWtnHYF+DGHmJgYHDhwAM888wz6+vowNDQk\n2gpK0FUqlXgxEOj1+Xw4ffq0gLmcJ8HATnu5vr4+PPjgg6itrUVLS4vIuMkQJbFs6tSp6OzsREND\ngzAyU1NTsW7dOsyePVtEWQDEhDgmJgbff/89brvtNmHp0kTn9ddfF5yLPicJCQl44YUXsHXrVqjV\napSWlor1QSAQzCwnLS0NkZGROHPmDDIyMqR1S+sDtVqNnp6e//wuRnNzMxobGyUAkH349ttvCzIL\nnAPTiPr++te/RkREhNT8JSUlonrjPEROJeIwHvoMcE4GufB0B+Z7kBzkcDgwPDwsszeoMbBYLHIi\nc1OSbcfUnQ7PlHiTaBOo0LTZbLLAAQiv/8cffxSqLzUZ/AP401GPxyOTrFgf+3w+lJeXS6bDFNlg\nMCAtLU2k7V1dXdL9GRgYQEZGhuAm06dPFzs/PpOqqiox/KVbNzkPlMOzs8BNb7VaMTo6KnUy4OeO\ndHR0YN68ebKReSjwXgOQ2Z5bt27FM888A51OhylTpgQRt+bNmyeBjXRudgwGBgawa9cuIdzR3j8s\nLEzahTR2eeSRRzA5OYnIyEjRf3i9XuTl5UlJYrVaJeBPTk7C7XZjbGwMM2fOlL9PH0xK/wPZqPx3\nt9uN1NRUxMbGAjgXmAE/DyMvL0+MhY4ePYquri5hglKTZDAYZISfw+FAWlqagO6RkZEoKSkJMqs5\nn+uCCBDPPvss6uvrhQhjMBjEUZmzEzkEJvBGezwevPXWW7jmmmswMjIiJiuM8PRu6OrqQmpqqpwa\ngYw8Cl1o08UoT4Q/MTER7e3t0Gr9sy4YAGgpV1tbC51OJ+ksbfLi4uKEQz916lRh7yUkJIjhCNNs\ncifoKEXlH9ul7Dxwk3GRAH4mX1NTE1JSUtDV1SVpeU1NjbRUA0FPdjJ4r/V6PSIiInDy5EmZb9nb\n2ytBmsYrxcXFMjj5hx9+EAk06172+pm5UerM/n12djYcDgcsFgsWLlyI//7v/xbORUxMjGQnxJVC\nQ0Px1FNPYePGjUhMTITNZpOuBuAHhjn1GjjHbo2Pj4fH45HS5ciRI3LftFqtrKfw8HAxgp0+fTpW\nrVolDl98TWIRxJN4DzkDlLgIsxK2ZjnGUalU4ssvvxR3cWqKOL2Nl0KhkLIiLS0NcXFxwkWhGI/P\nnR4RY2NjgpGEhoYKrjE8PCzy+H/HdUEEiO+//14eosPhkJrb6XSiqalJLObi4uLkxrP1Ex0djcWL\nF+Pll18WPQa5ETzBWZawk6BS+SeCT506VTwo2YKihX1YWJjoHniKU848MDCAhIQEqFQqocDW1dVJ\ngOCDAvyLp7+/X0oftgZpDx8ZGYmEhATk5ubKomVGQdMcouZsVU5OTkopwqlQ1K7QG4HgIuBH8t1u\nN6ZPnw6v1yuTu30+n6TGTHcBf1ZTW1sr5CKdToeOjg4RNgUqC61WKzIyMiSlNRqNYsvOEsRkMonp\nSmlpKZ588klp9ZFwBpxT8fb29uKee+7BX//6V4yOjqKpqUmwD7pc8XkAwLZt23D33XdLxkRAMCIi\nAi+++KLgMSzPAAjiT1/TFStW4JJLLpGOB8u2uLg4KSdJcuP7Z2VlYWxsTDJEHjjMEk+fPi3myC0t\nLQJiBo4TACBBm9wH4iGcyULsgSpkTp9jp4c4BHEiPqt/h5rzgggQExMTWLRokXD62Reuq6vD8uXL\n8dlnn0k7MtCTkiw32oBv2LAB9957r2xinsKsNUlsyc7ODrIwLygoEK68Xq9HTU0NxsbGUFdXJ+P0\nhoaGEBISgsrKSklXedKQowH4T5309HQh6dA/ITs7W4Lc3LlzMXfuXGRkZMipQO4DN2AgmYYdCV78\nWSBgOTQ0JD6TWVlZaG5uFkVfeno61Go1GhoaEBcXJ9+TrUm6bkdGRkr7jIpTq9UKs9mMyclJmeLt\ncDikOxMVFYWKigrpkACQVh7bp0ajEQ6HAwsXLsTKlSullKPNGvUYCoUCUVFRuPPOO2WEnEajkTkV\nbAsbDAZp5c6cORMZGRn4r//6Lzz11FMSmKljaG9vx1NPPSVYBNcbAOkI0b/08ccfl/vJ6W12u104\nGXzeHo8HRqMR9913XxClmepKzuh84403pG2flJQkzyssLEwYvsC5MoOliFarRWxsLNRqNRwOh2Sn\nxKkmJyeFbh8REYHw8HDJbkjOChxLcD7XBdHF8Hq9OH78uNBXOXyErLA333wTN9xwg5z+ROKBc+Qo\nntyLFi3CxRdfjLvuugsJCQlyEk5M+O3rXS4XWlpaAPhbRjExMWhvb4fNZkNqaipycnLgcrlQXFyM\nAwcOIDk5GfHx8WhsbJSFOmXKFNTX1yM8PBx5eXmyGbVa/2Qrh8MBo9EokT8tLQ0FBQVYsGCBGKn4\nfD7YbDbs2rULe/fuFf4/iWJtbW0iVw48bYil0Pk7KioKGRkZaGxsDJLFGwwGIYSRlEW6L8HHzs5O\n4WrQk+Ls2bPSBuU4u4aGBmlLEhgjE5Ktw+zsbAD+1J/AnsvlkhImKSkJ999/P0ZHRzE8PCzTxGkz\np9PpEB8fj++++06yIQYMYkeBJDIGlKuvvloC5jXXXIP9+/eLFwI7ElVVVVizZg22bNkiWQDvN1N5\nt9uNvLw8eDz+ocd6vV7apMwsybDU6XS45pprUFBQIJ2jQC8Tr9eLAwcOoKysTHghzGKZvfJe8fky\ngwgLC4PRaBTGKgDprvHvMJOgjH1kZEQ4NnFxcULD/3dgEBdEF8NoNE6SnDQwMCAybIJdFotFBqOs\nXr0a8+fPlwfT398Pr9c/cSnQnp7p9ccff4zdu3fDZrOJlwAAzJo1Cy6XCyaTCadPn0ZiYiKioqJQ\nWVmJhIQEKVM4x8Dn88k4ebZh3W430tLS4HK5cNFFF2HatGm44oorkJKSIvUpU076C7hcLmlJknQz\nNjYm5cqdd94pG6OzsxNHjhwRwImnkc/nw+7du/Hb3/5WtCmA33inurpa1JPk9NPRKDo6GvX19UhK\nShKDYAAiHCMfhPeQRBx2KTjRnJkZVYrkCURGRsrCZMlIRei7776L2NhYwUG4odhZeOutt7Bz505Z\nE3z/kZERGUMHQMRog4ODiI+Px759+4JmokxMTOCxxx7D4cOHBbNitud2u7F06VI89thjMqeT9564\nRX5+vtDaSb0m/tTX14ecnBzcfPPNWLNmTVBWp1QqBajlWuHvKJVK5OTkAPDLCPR6PXbu3BnkGsUO\nREJCAh599FF8+umnQXgb75tWq4XdbkdSUpKUdXxflrCXXHKJvN6hQ4f+87sYGRkZUt8TqeWVmpqK\nU6dOYXx8HL29vbjtttvwxBNPyEQhcvVZFzIwDA0NYXR0FMuXL8fmzZuxYMECNDc346KLLoJKpUJd\nXZ3UbPQzJFA0Pj4uqDGJTDk5Oejv7xdQMT09HUVFRVi0aBE++ugjvPbaa7j77ruRlZUlOgQAcmpw\ngzNNDnTIIpJP70IGDuoTmLozs2JrlKw5LuaysjJ0d3cjIyND+Bt0jOKJD5wb3hIaGgqn0ymbZWLC\nP+PR4XDAbrcLsEvTEp5+9MTIyckR8dA/emQE/szr9eLMmTPQarVi6krhVmdnJ+6//37s2rVLsB4a\nwPJ7U8TW3d0tLMeSkhLJighuEqC96qqrBDwN9OzQaDTYt28fPvvsM3nWvK+AP5gR55qYmJARDCqV\nChkZGSLrv+mmmyQ48LBgGUiiEvENHnT19fXw+XxiUhx48b+p6WCGHNhNI3BJrxF2mDgPxuFwwGAw\nICYmBlVVVejv75ehwudzXRABoq2tTdyRGChyc3NFn5CZmSnKNq1WK7TYd999V9iFer0e2dnZMjKO\ngijeuIceegiXXnopAATNMqAP4NDQEGprawFAWl7AuQdjNpuhVCrFtVqtVuPdd9/Fgw8+iNzcXDll\nKBLjvwOQQSiBBqt88GFhYYiKisLhw4exfv16SfVJjGH6y4AxMTGByclJDA0NiXEIU/KsrCyoVH5v\nSdKPq6qqkJ+fD7fbLZLx8fFxGSFAs96xsTEkJibKYCGWFgRGnU6niOVGRkbEDTwiIkJs1QKFVCTu\ncFO9++67KC8vlw0I+AfhLF26VFywWZ4YDAYZHKxWq1FRUSFaHdbo/J2enh45UBhQiouLkZmZCZfL\nhfr6egnIo6OjaG9vx9atWxEbGytYD7suAGSEHfEEtsJPnjwJjUaDlStXwmw2y3uxewBAuCrbt28P\n6vDwszQ3N8NoNGJ4eFhEWuxgBGZV1NPodDpkZ2fD4/HA4XBAp9PJzNa+vj5hs5Jjws/PQPTvuC6I\nAEE2Ik+4uLg4/PDDD7JAOIOCbjyAny9QVlaGZ555BidPnkRfXx/a2tqgVqsxZcoUREdHIyIiAmFh\nYXIK33XXXRgZGZFWFn0LzGaznGxFRUUYGhoS0hFZdt9995281vz587F+/XqZbcmAQEbk4OAgmpub\n0dzcDKvVGpRWE1yMiIiQenHZsmVYu3ateDT09PRgdHRUFiK/M1+DFG0CjZwiRXUmuQkEYhUKBZxO\npwBltHajFyIA2Wx2ux1ms1mmnKlUKhkwRG9GllmdnZ3isszPmZGRIcY+rPWp0fjwww9x/fXX44kn\nnsCaNWvw3nvvQavVor+/X54X53bMnj0bGo1GJm7R6Zm4CL/nmTNn5PTmBtXr9cjLy4NarZaAxMzE\n6/Wivb0d+/fvlxSer88OCLMzblyyU4uLi3HddddJdkgHLJagPp8PbW1t+OKLLwQ87+7uRlNTE9LT\n00UQODk5KYGNa4F4E+DPvpRK/3wPMlTZ/g+0HgAgnTo6X3E+qdFo/Ld4QlwQICVPMG5akowoIOrq\n6kJ4eDh6enoQFRUlNTzTxuPHjyMtLQ0LFy7EnDlzEBcXJ3Z0BI08Ho9w9Ovq6kRTTxq1QqGA1WoV\n/CIkJER0BCQxXXTRRQD8vA06+TDqswbkTAOWAryIOYSGhorM98CBA3j33XdFW9DV1SWS3qSkJMky\nPB5PUNahUvmdpMjYGxgYQHNzM/Lz86W9ZbFY0NbWhpycHDQ1NYnpCrETsgQZbAAI4NXb24vU1FT0\n9PQIaMvNTi0Fuy3sBFgsFpEdx8XFiY1eRUWFdCDo6alSqaS1mZqaitOnT0Ol8luzGQwGMQFKTk5G\na2urdKsAiEpUrVajuLgYP/74I2699Vap/fkdf/azn2H79u0CMpJyrdVq0dvbixdffBGrV6/GZZdd\nJpL6gwcPwuPxCAWchr82mw35+flYvXq18At4nwMtAjweDz788EN0dnZKq5qWhgAETyEuEvh7AGQu\naUJCgvAlGNSoFKZQjt+H1GtmklarFXPmzMGJEydE43E+1wURIIqKilBeXg4AUqurVCoxBiVt99tv\nv5W5Azk5OeJ/kJycjIaGBrzyyivYuXMnZs+ejRUrVsjwVhJOtm/fjrKyMgD+HrnVasX8+fNRXl6O\nOXPmCMg2OuqfYq3RaJCTk4PJyUl0d3ejsrIS69evl3KIrUjgnHs2AOl2sK1FcKmzsxPl5eU4dOgQ\nKisrYbPZBByLi4uTTdPe3o5Zs2bJCcP6mu0xLj4yETlDxGw2w2azSTnBtFStVmNychKJiYmiD+nt\n7RXhWGhoKDo7OyVQ8H6RaEXDGvo6Av7SiGSvQDYqh8GcOnVKBskya2LZVFtbKxb1DQ0NQdZ3fG9u\nRGaF5ATQv9TpdIqcnVkcSzAAyMzMFAwGOOeMzvLG6XTizTffxFdffYXLL78c7e3t+PTTT+UZVlZW\nihGMxWLBddddh+LiYnl9Bh4+34mJCdTU1OCDDz4QzxASmQA/oY3tZafTKZ0HAOJgRtDUYrEIAYrz\naOmArtVqEREREVRqsJzgBLmGhgaoVCppFZ/PdUF0MQYGBibLy8vx85//XOzsk5OT0dXVBYvFguHh\nYbS2tsqkZr1eLycWCS80bGlubha+gfX/OAr19/cjMzMTTU1NwmpkrV9WVoZp06YJ2Mnhs5WVlYiL\ni4PD4RCzkcrKSrz99tuIiYmBw+FASkpKkJU8y4vD/xd37x4ddX3mj78yk8kkc0kmk3smmUwYciEh\nEAM0ahFElIK0luJaLerxUrwVi1qv6Fe7xSq2gFZta+2yWlfb1dNtpSjVUpCCFMwGKSEEcptcZzK5\nz2RmMjPJTDK/P6avh8+43/M757v0j+x+zvHUIoS5fD7P+3let+fwYbjdbhw9elQCWLiajtQa6Uam\nAnEzuN/vx/z58xGLxbBhwwYJlU1JSZGZU6/XY9OmTWhra0N5ebmImajBoHbfbrejra1N2lClU5Xj\nAqXQNptN5O4UINHk5vV6EwKCI5GIGKj4HZ09exYajUY+G9KEVKVSxToxMYEFCxYkJEtzXmcRIec/\nNDQk0nnSfGR3ONcnJyfjxIkTIlRiYZuamsK1114rC4yVWhV+Z3q9HiMjIyJZZwdCCpShO319fZLv\nweQut9stuZKZmZk4evQonnnmGQBx+vLs2bPIzc1FSUkJBgYGhBkim/LQQw9h8+bN0g3w3khLS4PZ\nbMa9996LgwcPwm6344c//CHsdrsIpNiZulwuDAwMoKmpCadOnUJ3dzdGR0dRXV2NgYEBuN1uOJ3O\ni2Ix5kQHoVarUVNTIwKPmZkZ0ZUzVmxwcFAqcjAYxNmzZ7FixQoMDQ2hqalJ1II8NRwOh7ARMzMz\nOH/+vKjpuIE5GIxv2po3bx4+/fRTkcC63W4UFhZicnISixcvRlNTE9rb2xEMBvFv//ZvuPXWWyUz\nIhgM4vTp0+jq6sKRI0cE6KRgB4DYf5ctW4YjR47ITcbxhiAau5CysjLZxajT6ZCSkoLp6ekEWs3r\n9cJoNKK7uxulpaWyktDpdAp9CcTHhurqaoyPj8sDzpFlaGgIhYWFEt7LANaSkhLEYjFZRlxUVCSf\ncWZmpox2FC3xZAMgqUncnM4NUPQ0RCIRDA4OSltfVFSEEydOyGkJXAjuJVhIyTMFb3a7XQxsFKSR\neeBnFgwGcckll+Djjz+GTqeTtDIqMOm7KC8vR0tLiwTIshviuMvUMT6UxBXIgmg0GoyMjGD79u2S\nJUFBHsNmzWazsBNc9sx9KQR1mQjO7A673Y7x8XHs2rULpaWl/9f1izqdDvPmzUN9fb0A7ufOncPx\n48dlA93FXnOiQKSlpUGj0WDBggUSgqLRaGS5KrljJjQD8Va0ublZgBi6DanA5D6DaDSK0tJSOBwO\nCQcNh8MYHByUL51/J3GDvr4+LFy4UFaecWlKTk4ODhw4IIEm7EwaGxvFTs5TMz8/H8FgEOPj43IT\nNDY2IhQKoaSkRGbrSCQeTMpfIzgFQNpTsjE84dhiVldXo7+/XzaDcxfnyMgIysvLE7ZpkcpkviQB\nOWWiNgDJZuT3kp2djWg0KoWarzkpKQk+n0+Ww/DXOUP39PRIrJ8SM5qampLVBjTSUdhFBeL4+Ljo\nHDjGMRdSpVIJ6MxW/uTJk1i1apUIllh0169fj2PHjklRLCoqEszE5/NBp9OhubkZExMTEs/f09Mj\njABfGx2eMzMzYlhj8K9KpcLTTz8tJi+v15uQvJ2bm4uBgQGYzWYBPTMzM9Hd3S24CcdopZbBZrPB\nZrMhOztbsiyIO/C+VWJcxOxKS0uxYsWKBGbmYq45wWKwGi9evDjBRZmUlCRxZhTZEGQjthAKhSSQ\nlXFcNTU1MjMHAgFhB0wmE5KSkiQXgPRoOBxGSUmJ4AlsaXmzMhGKqr/u7m5hTpjSZLVa5QQLBAI4\nefKkAIjcCkU5MwA51XhikfdnVHxmZmYCOEfvBQChMjs6OiSUlRw+jUIEENkVcAlPKBQSxJ4/i/oT\nAGI80+v1MJlMuOSSS5CXl4fs7GyYzWYxYE1PT2PevHly6vPmpk2a7TIzIywWC8LhMGw2m4Byubm5\nyMnJEeZgeHgYJpNJRj2OELSSE/fhw0gJ8heXLpO6pYSeGE9nZ6doCzweD6qrq6FSqcSKD0AYA44d\noVBIlLYOh0M6z6mpKcRiMfzsZz/D4cOHodFoBFeguY8AMMVNAwMDQm/29vbK/UbVJztngtQcjTwe\nD4aHhzE6OiphRF/UUhCvIrWqUqn+9wTGAPEbrLq6WpB0zpoARFij/GCILaSlpeG6667Dd77zHUxP\nT+PAgQMSAkIAqaWlRbhzRsJxVmYiUyAQkDRpLmGl2KWtrQ0qlQoDAwOYN2+exM1RK8BQEQp3WCgA\niJCot7cXkUgEtbW1Esve2toq7ryamhoAkCRvbvvi+MEHWJmhyM5qdnZWwLurr74an332meQtOp1O\nXHrppbjppptQX1+P1157DadPnxYqNC0tDUNDQyIzrqqqgtPpxNNPP40vf/nLAOKga3d3Nz7++GN8\n9NFHqK2txcTEBLxeLwAI6p6eng673Y7u7m7JzCgoKBBTEUcMruuLRCJob2+XZG7y/Hq9XjQIDEYZ\nHx+XEzQUCiE/P1/CiE+ePCmUOKlnntS1tbU4depUgsmPojGn04msrCzEYjGcP39eqFqGwVAOzsJM\n7QOL0PT0NP7whz8gOztb/olGo2IKZO6k3W4XXQMAiUbkPQZAwF5eOTk5+M1vfoNFixYhKSlJOieK\n5/geeS+o1er/Mob8r+kgiFJXVlbKTcs06YyMDLhcLnR2dqKyslIW5tBFl5qaik2bNolBa82aNaiu\nrk5Y+pqcnAybzSaGraSkJNmrweQmntShUAh6vR6BQEDmViLS0WgUOTk5Ei5DFJn5kAUFBcJwUONA\nfwlv+OnpaWEvZmZmxNvf0tKCoqIiEY0xmUipp6fe4s033xTBFvdfeL1eBINBkSvzhhkfH0ddXR0y\nMzNRWlqKhx9+GIsWLZLRx2QyCTNCn8TU1BS+9KUvIRKJZ4OWlZVhzZo12LFjhwBrBIgjkYj4MMje\nTE3Fd3OGQiHBJ8giEMnnaMiHCoB879wV2t/fL1vLiLEAkO+UoJ/f78cHH3wgRVrpqrzmmmtgsVgA\nQLaecWFyT08Pent7pePh98FDiAt2MzMzsWPHDvT39wOIF4rjx49jy5YtgjW53W6hm6lBIFhOzQLv\nMcbp055PypjfG9WShw4dwvPPP49YLCb3AkcRRgEwcX1kZETWPRK/+UeIpeYEixGJRGL8kDZs2IC2\ntjbhgFko5s+fj/T0dHR0dEjUF1OItVqtRGzp9XocPnwYO3fuhFarRVFRkSgSfT4fFi9ejNOnT4sQ\nibp2j8eD8fFxObXr6+vR3NwsLbfX64XJZILP50NpaSkmJyeh1+vhdrsTcgrYsnM2r6qqQlNTExYu\nXIiOjo6EPQp5eXkS5jI8PCxYDIG3H//4x+I7UalUePDBB+F0OtHX15ewRo8gIGlHinQYSvKDH/wA\n69evF4wEgBSoq666Cnq9Ht3d3bIMNiUlBe+8846cqPn5+Qn7JYD4fO52u3Hw4EEcOnQInZ2diEaj\nglOQZl28eDG6u7sRCoVEnMVluwRUWaTnzZsnC5OoXuWmKo5jLpdLRiJ6JiKReLr0008/jQ0bNgij\nxOXGu3fvlrj6pqYmYZEY9U/mjN8f9S/ABW0INQcs/uwm+F75mS9btgybN29OiO/7+te/LntS8vLy\nJOxWp9Ph6quvxsMPPyzY2tRUfN/I2NgYbrrpJhEHajSaBONYdXU1Vq5cCZvNJvZ9sjMs3H8PUfqf\nz2JQAZeamore3l55YHQ6HYqLi+XkZYoSb2ZSWykpKQmR6LQh/z1ySxD8vLw8fPrppyJhraysRF9f\nn9ygdHw6nU709PTA7XZLW8hEps8//1xoV4PBgOrqanR1dUksHb8wpjYHAgFJJsrIyJAdFwT2dLr4\nAh2DwYDR0VFxZlosFpw4cQKXX345ZmZmsHv3bjQ2NgK4EEhL2zPpPeoNIpF46C2ZA76HL1qZuX6Q\npxJb+vz8fOj1evGpcJRguhSLTF5eHm6++WbccMMNaG1txQMPPACXy4W0tDTMzs7K8hmG3nKdQCgU\ngs/nk5OaeykoGFPulWTIDkVLpGwZCe/1ejEzM4ORkRG8++67uPLKKwW95/2wfPlyfPLJJ9LFzczM\noKenJyGIhfJmFiN2fZzt+TmxyBkMBmGjqBT96le/is2bN8tOFY1Gg2PHjgmFydeekZEhgrHf/e53\naG9vl9xQsnj8JysrS9gVGuIGBweh1+sFx8jKyhJzWGlpKZYsWZKQ73Ex15woEEoBC09YCo04FkSj\nUTQ0NODqq6+WVpA3PltktpX8IkmJMuWIQJnVasXLL7+M2dlZHDlyBM8884ygwFxvxhQkxsKz2NDe\nTLnt6dOnxZFYXV0tRqZjx45JJJ3X68Xo6Kig0319fVi1ahUOHjwoUXYulwtLliwRd+qll16KY8eO\nibBrZGQEOTk50ikRSAUgngci4nS3sgUndQZAJNjcHcGiQI0C051oImPXEAqFRPPAVp7FSK1WY9Gi\nRXj55Zfxxz/+Ec3NzWhvbxfpOfd0hsNhify32+1C0/KBov7B6XSKKIzFi2Y9RsuRWVKpVJI50dzc\njI6ODtTW1iItLU0YjcLCQmRnZ0u8H0Fdajv4PnixOITD4YTdHfzMACRIt61WK+655x5ce+210nlw\nPD569Cg0Go24K7lwmJjD6Ogo+vr6cPDgQaxbt050MRSZcaykcdBqtQpFnZ2djVAoBKfTiebmZmRn\nZ+PkyZN45513kJ+fj+Li4ovezTknMAgAMosR8QUg5hyPxyNR6Z999hkmJiYQDoexfv36BKWiXq+X\nG//IAj8AACAASURBVL6kpASTk5MC8DFXsbS0VMJp/H4/li1bJotS+YGTWaCpZurvuxi6urqQkpIi\n9F52djasVquIbEZGRuD1euWmcjgcaGlpkQwHnvBK8JEnF7sNjhzHjx/HyMgI/H6/0J6U4mo0GmRk\nZEinRBk3PzeLxYKOjg7k5uYKg6M8mWjWIpgaDodht9sBxBmlcDgsy4fJTpCSoy+GBZ2sAAvkE088\ngV/84hf40Y9+JBvEiehzzQC1CBqNRkJuqIjkA6TX6+Hz+aSQEFfg50SZOQDZzpWWlob33ntP2C3K\nk/V6vWQ48iHn6+e4QuaIegoGCtMpSR8Ld27y8KmsrMT/+T//Bxs3bpQkL7IXo6OjOHjwoHSMPCTY\nuRBnGh0dxTvvvIN33nkHfr9fdCkM4SkoKBDgvq+vD4WFhQAgqlZ2FsPDw2htbcXIyAg8Hg8+/PDD\ni38uL/on/IMuatuZWGyz2aRoMPFXq9WKzt1oNGLFihUyewEXWmgWkJGRETnpqcJUqVS47LLLxIZt\nsVhw5513Qq1Wo6WlRdJ5SJsSeVfiGIxmd7lc6OnpEW09RySi2PRexGIxXH755dDpdOjq6pLXsXDh\nQmk1mSLEk9nv96OgoEAWzvDEKi4ullmUHhE6U7mqjQYshtICSFj4AlwY60gVms1mCeUFgPfffx9/\n+ctfkJmZKYnhpBKVRiwuECZNR0HXypUr8eSTT+InP/mJBOKyIyRmwuLr8XikU2OxoZaBJ/y1116b\n0GaHw2H4fD4JsmXU/ocffojTp0/LnM/OoLKyUt67Mt+Tzkf+N8bvK8cu3nfABSUli+yOHTtwxRVX\nSMfh9/slCOfMmTNwuVwYHh6WODkyOPwO6JA9fvw43nzzTWzduhWHDh3CgQMH5Pcwe5NrENra2uSz\no74FiB8MykwVvseLueZMgaDXffny5QleA61WK3mRTGrOzc1FcXGxVHzmDHC0oIWbF09qIN4+MhOQ\nlOHmzZuxbNky6HQ65ObmQqVSySJf4EI7SSAqNzdX2j/OohQe8f9rNBqRzZIOLSsrg1arxfLly9HY\n2CjjBANwW1tbxVDGVpIPhMlkQjAYRCgUkuJQXFyMsbExeT3k8skQkHfnScvXRTqMD6TRaERjYyNS\nUlLQ0dEhp+0vfvEL/OIXvwAA4dR5qirVhWq1WpgJFh2KnrhO75577pHPhA8f0Xqe6hwFZ2dnJXdT\nrVbj/vvvxzPPPIObbrpJurfBwUHRKZAWDYVCEvVGepmv0W63y2Gi3DNC1oI4A3CheDL/ksWRVLvd\nbodWq8Xq1atht9ulCJHdUY6k7DaysrIklYzJUPz76NkZHR1FY2Mj7r//fuzdu1cYMbPZLDgTcCEX\nhL+mdNPSwUon7sVec4LFABALBALwer1wuVz4yle+gqKiIiQlJYkvg9RUdXU1mpub8eGHH0Kv16Oi\noiLB1BWNRnHttdfC6/Xi8ssvx759+7By5UoMDQ1J9T137pycnEpH3SOPPIKDBw/CYrFIjgTpJD6o\nOp0Od911Fx5++GFhDEhNkafu7++Hw+GQOP+enh74/X4MDQ1JJB1b2dnZWYyOjqKqqgoOhwOLFi3C\nzEw8Pp4iIwKOdrsdHR0dEvnG7oAdDvl9+iRYRG6++WbccsstMoIRtI1EIrj22mtF5UgcgvM2i6Hf\n70d1dTWWLVuGJ598MiHEhp8fcy54kvIieMqbGAB+97vf4fnnnxeL/Bft7Fu3bsVXvvIVWbUXCoUw\nPT2NX/7yl3jjjTcS0q343RG9p+LSarVi//79ks85NDQkydUsquFwWMBknvLKB1EZnUeZf21tLerq\n6nDfffcJCErPiHJ8sFgs+Otf/yrdKT/vhQsXyqJe3jfsVEl/cqxj4Zk3bx76+/sTNBMqlUr2q9DL\nwSJOde7flbz/81kM4MKNZrVasWDBAnR1dckp2tfXJ/MyaUmz2SymHM6WrMiTk5PIzs5GS0uLjA4E\noniq8MPkYlsAqK+vx29/+1tcddVVOH78ONRqtbSLhYWFGBoawoIFC7B69Wp5SHiTZ2RkyKxtMpmw\nePFimYF9Ph/OnDmD559/XpbCVFdXy2bulJQUtLW1ITc3F06nU6TJFosFPX9PZGYWIgNkeWNUV1fj\n6NGjshKOfg66AAcHB4Wx4GdMSXkkEpHPSavVSnEYGxuDwWBAVlaW0Kfd3d3w+/3QarXYsGEDbDab\n/CyOHUoBD6P0uDAmGo2Kd4IPdygUEvkxtRNFRUW44YYb5IHie1Gr1Th48CAqKirQ39+PrKwsKQoE\nrJljCcTHzIceegiPPvooampqcPDgQSQnJ+N73/secnNz8d3vflfGFHaeXCBMZSQdlBqNRkDRNWvW\nYOPGjTIKUcZOEx7NWADEFs8ixDG35+8rBXJzc4UiJUtDnIVjJw89HoDsEtjB8jPiKExXLXDBRn4x\n15wpEHyDRqMRq1evxsDAAIxGo0hduY8zGo3KmjxWYN6AarVaMgVIWX3ta18Tw05SUpK04VNTUwJ+\nEajT6eKhs4zqYtI1AFRUVGDt2rW45557kJWVJfw0TxGePsrgEspemTW4aNEiHD9+HDt37oTT6URH\nRwdKSkokxIW4BiW2hYWF0s2YzWZxQDJGTq1WixqTLSaLQXd3N2w2G4aHh0UUxdempBHpveB7VRYR\njgpURc7OzuKNN97Ab37zG1RXV2PDhg1YvXq1dFocgTga8LPlCefxePDee+/h448/htFolPY4LS1N\nxqgHHnhATkjeE8oTkbgACxzB1oGBARQVFUlbbzab0dnZiW3bton2YOfOnbjyyisBQAq8VqsVj4/b\n7ZYiyCVDxD1yc3OxdetW1NXVyYGixAHo6CXm1dPTg9dff11GCQLhlJAzCJmYm3Ic4L3M70zJfPAK\nBAJySLATYpe2atUq7N+//38PzckrGo2KC++nP/0pTp06JZujOEdPTk4KPsB2UpnJ0NbWJg9vIBDA\n6dOnAcQLUHFxMUZGRqT68yZUml4ASML1mTNnUFJSgscffxxZWVkSRU6qjug7t44zB1Kp5AMgHg6L\nxYK1a9fKNidiB9QE0P1IMdjk5CQyMzMlgYj+ALbE7FIAiOORRid6AygC4kPGz4Jtv9JoZbFY5Obl\nz6CGIT09XcDSSCSCgYEBbN++Hb/73e9QWlqKtWvXYuXKldJNcDRQqVTYs2cPPvroIxEvFRYWCiND\nB21mZiYuueQS1NbWysPB7zs1NRVJSUlSEIgdEJg0m80YGxsTRyjfD4tde3s7nnvuOVx11VVivSeN\nTsl5RkYG+vv7hR53uVyYP38+otEo3G43nnzySdTU1IhcWxnmw5GMAKTBYMANN9wgngx2B8q4PoLa\nfKh9Ph9sNptQuJ2dnbJkiVkYoVBInLRarVbs5lzDwA1mhw8fls7vYq85VSDoK6ioqJBTh18WwUii\n9eFwGElJSdLOJSUlITk5WTZEWSwWpKenw2w2o7q6Gq2trejv75dCw8LAL3t2dlYeetqVY7EYUlJS\nUFlZCbfbLUG5bNeVgB8xCD6ELGC0avPvUavVWLZsGXbu3Ikf/OAHEilmsVjQ1NQkp3tWVhaGhoZQ\nVFSE1tZWeajZbhOh5kPCh5dtMRf3cs+pMkeAFx2zJpMJPT09yM/Ply3lPKGzsrIkK4OaA3oJ+MA3\nNDTg0KFDuPLKK7F8+XLU1dWJ3Xn//v3Ys2eP5HhoNBrYbDa0tLQAuLARq6qqCt/5zncEPObIEovF\nJPS1pqZGbPCkkunKVHYaFJsZDAZYrVbccsst+MpXviKjm9frTdhSZrVapUhHIhGRx/f39yMQCGDN\nmjUiJ+foRCqTOQ8EGlNTU3Hq1Cm5B9LT0+H3+4V25XumY7SzsxMLFy6E1+uVxdVMNSOmpbT5M0Wd\nxS0ajYoXSGm8Y0z/xV5zhsXgzarRaJCTkyP6+cnJSdmjyTFAKXAhohuLxRCNRtHR0QGNRiO7I4H4\nPNrT0wObzSby4y8aXUipEg3nNqxgMIif//znQrWaTCYAkBuSGgmCrPx3UoF+vx8+n0+ceLzxa2pq\ncOedd8rsy7Vv6enp0qqqVCqZgYG425WjCwCZZTUaDaqrq0WWzKRnAAlbsXjqKQVlJpNJ9BMMdeEc\nzZ/l8XiQkpIiTtZ58+aJlJtKwlgshr179+Kxxx7DXXfdhbvvvhs333wzdu7cKQAvN3+dOnVKWCEA\nKC8vx6ZNmyRmj69tdnZWov/27duH06dPi7KSD9vMTHwJT3FxsaxLYBdx8803Y8eOHairq5P0bqpC\n6dadmppCR0eHdA7ENdiprFu3Dk8//XTCQwpAxiMyQ+yEjh07JopSOoZJFVPIBkBWE6hU8TWO0WhU\naHHqMAhU8mczZZwOVEoD5s+fL0pd+kr+EUYtYI50EDwNNBqNyEpXrlwpKcQZGRkiGlHuNCTqzpGh\no6MDjY2NElp66tQpORl4onIWVG43ikQiUpwoh6Yxh8XlwIEDcLlcqK+vB3Bh4zXFMrQUp6amorKy\nUmZRZRFil5GUlCTpzWp1fCUgJb7cHt3a2gqLxSKWaeok1q5di1OnTgmWwCLm9XplTl2wYAHOnz+P\nyspKEYdRyw9c6G7UajWqq6sldYodFHMl6R9YsGABOjs7UVVVhdbWVumUKFpisDAQR+/PnTsnLtVF\nixZJ+Am3c7M1pipzx44dolNgKAwfplgshldeeQX79u0DEF/dd+zYMQn94eLaQCCA8vJyJCUlyUi2\nZcsWGXco7mIuZGlpqXQMU1NTcDgcyM/Pl9GFn1d3dzcCgYDsex0cHJSHj+FDKpUKv//97/H2228L\nZsWHmypVl8sl+ZQM1enu7kZ2drakdJHWVCaaM3xmcHBQOkgC0n6/HxkZGTh48KCMlzpdfO8oD5iL\nveZEgWhtbRW7M6t6RkYG2traUFBQIK1UZmYmxsfH5eYmSMgb/9SpU3JK/u1vf0NfXx8qKirgcrlg\nMBjQ1dWFNWvWJDAX/BIp8KFwpqysDA6HQ6y6paWl8Pl8OHfuHMLhsOQI9vb24vTp0/D7/bJop7Cw\nEDabDT09PZLrUFBQgJqaGtFenDx5EsePHwdw4UQn0BWLxSSyjW0mN0QRwGT6FqPvGOzL/7548WKc\nO3cOKpVKxiqqKKl+5OfMOV6v18Pr9YoXhiAeW2jusuAKP5fLhTVr1qCrq0vcluwWcnNz4Xa70dbW\nhqysLAlcnZiYQGlpKQYGBhCNRrFp0yZUVVUldHRsk2lF//jjj1FUVISJiQmMjY0Jc8EiPTIygsHB\nQXi9XkxNxdcwUpkJQNSr/HcWIgqQZmZmJJezpKRE5nluRt+2bRvee+89WVjMkZRd1e7du/HOO++I\nvNtkMiEajcLlcokxj+MdAV9KqjkuE+RVGq4IqLPrZJfAbewcZfizOZ7y4FFK7P+715woEJs3b8a1\n116LjRs3QqfTCSpPIU8gEJCgWlq8Cfwp04WPHj0qjMLY2BiqqqoAIOFG6e3tFUxAuTyFRYZfVFJS\nkjAmjY2NkgCk0WhExp2SkoL09HTpgEZHRwXFd7vdGBkZkcQmlUqFAwcOSMcxPDwsnY/P55OMRRqF\nGOo6b948XHHFFTh//rykYalU8QRuinSYzlRZWSkndXZ2NtLS0qR1ZRGiQImF0e12izErPz8fQ0ND\nEuTidDoF5OQDRQER1/Rx/2VtbS3cbreMePQ66HQ6WYVnNBpFwBaNRpGfn49NmzYlKDyBCzszp6am\n8N5778HpdIoac2BgAGVlZTKb9/f3i16BmhLqCniAKEN/ea8UFxeju7sbZrNZNCanTp2Cy+USRon3\nEQCcO3dOHnYg/jCaTCbccccdaGxsRFlZmdj4mVBOgd6pU6eEhQMgyexKXwzveXZyFAmSzmR3QaPX\n6OioyPSpzyFQ/qUvfQmlpaWCm1zMNScKRH9/P37961+joaEBr776qtzIbNnJUjCliP+fSkSetGfO\nnMG8efMkOchut0v7FolEpNWjDgBAQgfCv6OkpEQcpIyTGxgYkBuZFmDG1DOQJBgMYuHChXC73QL6\nRSIRAfZIRdKgxCRpttUMszEYDFi4cCG6u7vR1dUlFmez2YyRkREYDIaEaPSenh7ZxUldCO3LTC9S\nApR8/3ygmKTsdDpFc8EsBCoiKRijxfrcuXNQq9Voa2sTdJ6dSW5uLgKB+BLZ3t5eMSqlp6fL6Jae\nno7bbrsNVqs1IeiEnZ1GE09l/vDDD4XiJAC7atUq7N27V3QaycnJ0pmRcqWSkDQrL+IzsVhMvg9l\nchgTswgSUjj12GOP4amnnkJlZaVQsx9//DEGBweh1WqFRfL7/XA4HDLWNjU1oaCgAElJSbBYLEJj\nU33LMYIjmjIkR0ltUobPPxMOh0VUl5eXB5vNhurqahQXF6O6ujrBb3Ix15woEIFAQJJ/yAu///77\nkotA3MDv96OoqEjkqlwXBwBdXV3ieGMAzNmzZ2UPAeksBrbyUvLrAIRjHxgYgN1ux+HDh7Fu3TpJ\nJqZklq+Tey9TUlJEV0/E/tJLL8XJkyel9YtEIhIOQ36c6c1UTDocDuTl5aGjo0MAtWg0ikAgIF3F\n/PnzkZ+fj5aWFlitVglC5cPHGyMajcJischpplTo8cajSpSfbVNTkzgRCwsL0dnZKScyaTnevCwy\nKpVKWInc3FxYLBa0tbUhFosJK6BWq+FyuVBQUAC32w2bzYavfe1rwiQpLwKVH3zwgdj++ZmrVCop\nDjyhz549K7oFdp006imFWwS2+Z0TB+CCXeIRo6Oj0nWwiLjdbjz66KN48cUXkZ2djeeeew6NjY3o\n7e2FVqsVrCs9PR05OTmSnE5wOBAICL1J3MzhcIh2hSOlRqMR/MFkMkGlUolqtqKiAiaTCevXr4fd\nbhd/DzsIfo7/iKg5XnOiQKhUKtEr/OQnP8Hp06clbp4yWj5g3FsBXGhFVSoVGhsbhfcl4EMqiy1b\nNBpFSUlJQtfAm0IpxjGbzejq6hJQ8/z587LyjXP5l770JblBKioqkJKSgnnz5uHUqVMinOn5e+x+\nT08PysrKoNfrMTo6KspLblOqqKjA6Oio0KtcmZeWliZOQuYyMGqNAbDnzp2T2L1f//rXUiDdbjcK\nCgpEd0AFZzgcljEoEolIMlQgEBDGSFm4lDsvSZ0pmRWi9JzLDQYDenp6kJaWlrCuj98TO5JoNAqj\n0SioPS+ORO3t7Thy5IiAiyxqPIVZ8Kk0ZaFkAVJ2hSxq/I7pcA2FQvL9A5CxwuFwiJyb4xIf9oce\nekjs1hQ+ccwlNU13rfKe4r1Miz49KHxfLArBYBC1tbXo7OyU5PJVq1ahpqYG5eXlwuip1WoZtXn9\nI2jNL15zokDU19fD4XDAarWisbERzc3NciNQ9EK+GQA6Ojpwww03AABOnDgBl8uFd955B8AF0FEp\n/U1LS4PJZJIlLDw9lVRQNBrFmTNnxKZtMBjQ29srm7ACgQBKS0slrObQoUMwm82ys6Kjo0NStRke\n29XVJcAeEHcRLl68GLW1taiqqoLZbBaQjCccXxe7pJUrVyIWi0mXwRNHpVKhuLgYw8PDMBqNeOut\nt7B06VL09fXJqcuFN9PT02J5VyLwbFfT09Ml6n98fByFhYUS1Q5AEo7y8vLkASfgWFVVJQ8mANk2\nRuk7uz9qUyYmJlBSUoLdu3cnMCt83+Pj4/jLX/6Cp59+GhMTE5IqBUAKYkFBgSSel5WVIRAI4MSJ\nE6IHYAo11Zsci6iDoOtSObaQViQQSK8DO9tAIIDKykrZ/g7EMS29Xo+WlhYxdmm1WukG+D2w4HZ2\ndoroidiCRqORGETa2J1OJyKRCBYtWoRf/vKXYvgDkDAa81KCu1+8vtid/b9ec6JAMNmJAR2k93Q6\nHWpqatDQ0CBS0mg0is7OTvmz2dnZ2L9/P3Jzc9HX14f8/Hz09/cLeANAbNgMolFeyiJBteLU1FQC\nIMUFraRFMzMzJV2YoR+bNm3C22+/jWXLlgkot2zZMhk1rFarpCgDF5gLCp/IMAAQIQ7BxMnJSfh8\nPpSVlYlmgSMWOW+ezj09PXKTMiY+EongxIkTWL58uch6NRoNDh06JH82IyNDWIyhoaGEPaher1dM\nSdRq9PX1yYOYnZ0tiUnshAYGBpCbm4u0tDRMT0+LpNlgMKCiogL19fX/5cQjPvDWW28BgITXEGzk\naa5SqeB0OpGTk4O2tjZxYyYnJ8NkMklmBZOngAubs7nCkJ/5zMwMCgsLxWIPAMXFxcjPz5f3Tg8F\naUmVSgWLxSJbzHS6+BoBh8OBpUuXyoY0SvlTU1PhcrlkyTPxCeUaQzpiKVIbHx9HT0+PbEdTjsXK\nDviLHZjyUmJt/91rThSIXbt2obW1Fb///e/xpz/9SYA/k8mEiYkJoYS4Hamrq0uqdVpaGv7whz8g\nEomIyiwrKwvDw8MSScYbsbS0VEYZ4MJNEw6HEyzQ6enp8Hq9yMnJQWpqqmgT0tLSsHjxYlE2pqSk\nyAP3+eefo7S0FFNTU7jqqquwdOlS4fa5Uo3mLc7zbHuBCwWDBjReKpVKQCxKdisrK7FmzRrs3btX\nTmGdToempib5/zy12Cb/+Mc/RmZmJubPn4/R0VG8++67+M///E9psefPn4+Ojg6UlZWhq6tL/n6e\nwkofwZo1a/DBBx9gyZIlOHz4sGwDZwhMLBZDRkYGlixZggMHDgiDQXZkw4YN/wVA43eRkpKCwcFB\nkSITD6GsXrkYmIGxpGuHhoYwOTmJQCAguhaORV8EaalcTE1NxcDAgFCfO3bswGWXXSaW+enpaXR3\nd+OXv/ylFB6+Noa59PT0SPw/3anEJRjhNzw8jOTkZNjtdsGgmA5Gap33NoHKoaEh7N+/H3fffXeC\nSpcXxVe8T/iz+Gvs4C7mmjNKypqaGjz55JO4/PLLZU29VqtFa2srjEYj0tLSBHDs7OzE0NAQAODk\nyZNy8hJwI/BFzpxWZAJHwIVRhP87Ozsr/52zfywWg1qtRm5urowgjJPX6/Uil2WK8Y033oinnnoK\nt956q6xtp0OSWgLy98yW4L+TBeDFbAkgnjxUU1MDj8cjVuMNGzZgzZo1AC4oKSlFBy6oInU6HUwm\nEzweDx599FHceeed2Lp1K/bu3SsbqXgyz87OikiHCkmtVosFCxZIUKtWq0VjY6PkHfA040OiLBSf\nffaZ5HdQmWkwGFBfXy+UHxAvDsxyoLyaOQ0cqVhMr7nmGvGWkKHid8/ugtJ1shNKPQk7JqVdnONS\namoqvv71r0toDr//iooK7Nq1C7fddptoaJia3tPTI+NFbm6uhO7SN8NlTWq1GqOjo2htbZX3SeyH\nh4zf7xcmiL9OFoffD+9ZdtO8qB+i/HtgYEBMhxdzzYkOgjOhWq3G008/jb6+Prz55ps4cuQINJq4\n6YrR37Tovvfee7jjjjuwe/duAPEHijsi2QbTn0BgcGJiAsXFxfIQMbWIFZezNMccv9+PpKQkaDQa\nsZ5rtVr09PRIkOr111+Pyy+/XLh5Rscr3YwsWmyBgfjJxJuNNzll40SkTSaTAF509NXU1KCgoACp\nqam4/vrrceDAAbjdbpw/f1648vz8fJE1B4NB2O12NDc3w+VySYoVN0LzvSvBXyCOl+Tn58v+z97e\nXlgsFkQiEQmmHR0dTeDnOZIxhIYBwnScAvGHMT09XdYW8GRnSvgnn3wiowxBYbIvQBxzAi607yqV\nSkBSADLbd3Z2isw9Go2KaEipi1ACrUB8v8fk5CSSk5MFVFSpVIjFYjAYDLjxxhuxYsUKvPnmm/jr\nX/8qm8yId+Xl5cnYWFlZiXPnziE9PV1YirGxMSn8VAbz8yLdyQhB3usdHR1wOByorKxMwB2mpqYS\nFu6Ew2F4vV4MDAzgnXfeEe/Q2bNnL+rZnBMFQq/Xy81JpPoHP/gBurq68Pbbb+Pw4cPixSAi/Prr\nr2Pfvn2yFIfx9NTQKxFi8uPKDdT8IpSeeka5ARCJc3l5OVatWoXZ2Vl0dXXhxIkT0ma++OKLyMvL\nSwAAaZji6Ucgi7kRvIh18CIlRwWcRqPBBx98IN6T9vZ2ZGZmYtmyZTAajRgfH4der8fll1+O48eP\nS0iKsuDwQaNAiVLfrKws+Sw1Go0UO6r0gsEgCgoK0NvbC4PBgIaGBulEOjs75b3RF+FwOFBUVCSJ\n4yqVSqzItGNTIcjsy0AgIEWE3cPIyIh4N/Lz89HZ2SnCocrKSil6DCsOBAJYuHAhAKCpqUns7cQJ\nGLjLEZJ+F3Yl/G7ofOR3z/tCacBiB6NSqfD444/j0KFD2LNnjyyAtlqtshYhEomgu7tblJVUt7Jg\nK9kwdpHZ2dmCL3H8IqvywAMP4Ic//CFqa2tlDKO1oL29HQ0NDXA4HMKscC8tIwgv5poziVL8F44X\nKSkpIp0lN3zs2DHs3LlT9O50WfJBUHYMFMjMzs4iLy9PGIyJiQls3rwZ27dvl5a3p6cHDz30ELxe\nL7Ta+CbvjRs3or6+XqhA4gfNzc342c9+hmAwiIMHD8Jms0mXwN9XUFAgJwCLlDJVSWmWAuKnd2tr\nK06dOiX0Hh/AvLw8ES5dffXVgu7n5+eLTbi7uxtPPvkkXC6X7AhV8udmsxmtra1YvHgxurq6pIiW\nlZVhcnJSouNDoRDq6+sxNDQEt9udYLKqq6uTMBPuA6mrq8OxY8ekGDMchiYm8vMTExNS6Orq6vDY\nY49JQeJD2NTUhNtvvx06XXyLFilTjjw+ny9hqzrp356/7wBlcef8XlxcjH379kkR5ihXWFgIlSq+\nGYsPIABRpL766qtYu3YtNBqN6BCAxBmfuI3f78e+ffvw8ssvw2QyoaOjA7OzswJ2KvEhBsYw6Ytj\nDr+v9PR0RKNRoTt1Op0AwRqNRtYGkEWanZ2VAsQDip0J8adgMIiRkZH/+YlSypNfGSY6PT0tX1Iw\nGMTKlStRVFSEq666SgxVvb29yM7OxtjYGCoqKgRB5mmp0VzIReDP/eijj1BUVISqqiq43W68Vcok\nPwAAIABJREFU9tpr0Ol0sFgsWL58OW677TbpMCgiogWXy3I1Gg3uuusu1NTUYOPGjaipqYHFYoHb\n7ZYoOCVazhsxFArB7/djenpaKNrGxkb09fXhuuuuw969e7F8+XKRaI+Pj8PtdqOoqAh2u126ECUt\nunDhQlx55ZV47bXXpPBw2S/HG2IDfOB5eun1ejidTjH4dHd3y7xLHYXdbheGyOPxSAT94OAgrFYr\nxsfHMTw8LLRtW1sbbDabiL5I9zmdTkxMTODrX/86CgsLpWB6PB48++yzMi7QdETxEh9uj8eDFStW\nSMHjQ8cHMDU1VYBppViI8u4vov18gClKAoDnnnsOx44dw8MPPyxaA/4+FgkW75mZGVx33XVYsmQJ\nXnjhBVnRyA7AYDCIVDsSiUgSOnEpmtY4QjFHc2hoSNSn1GowlRyAfC/KhHTKsu12O0ZGRgBA6OGL\nueZEgVCpVCIwISKdkZEhQa3kr9meAfEHhHMxHXijo6PC0StDYdRqNcrLy3HkyBEB215//fX/Yh+/\n8cYbsXHjRrlZxsfH5SHSaOJe+08++USoPSCer8gRaPPmzVi7di2ACycW+fC+vj588MEHaG9vR1JS\nEvr7+wV8I1jY2NgolZ9mHd6MQNwpSWCKEnRSr2VlZQkxaJx9gQsLaV0uF0pKSuRzZJfAm5+JWsrt\nVdnZ2UhNTYXD4RBBD6nU3t5e6VbKysrEecuCTlaGHRYf+G3btmHbtm2or6/HxMQEdu7ciZaWFlRU\nVODMmTPQ6XQoLy9HQ0ODLGFmtxCJRPDJJ5+goqJCqG3KymkKm5mZEWEYO7kv+j1IGzJNy+/3izhs\n37598Hg82LJlCxYvXizFmF4H3n88vbOzs/Hiiy/igw8+wMsvvwwA8l45YjH0xul0SlRgf3+/OFdp\nUefnRdyCDljeb0ppttJGUF9fjxMnTmBkZARqdXzF4T9ixFD/8z//80X/kIu9XnvttX8uKSkRn0Us\nFpMPzmg0IiUlRapiamoqfvvb3wKA8O9GozEhOiwpKQlqtVoeslgshszMTPT29soMyv0GfEAmJyex\na9cumT2TkpIwMTEhLs+srCy88cYbOHjwoCz/9Xq9iEajiEajGB8fR0NDA/bv3w8A2L9/Pz766CO8\n9dZb+Nd//Vf09vbi008/xfDwsGyRMhgM0o5WVFSgoaEhIeyEn0dWVhZUKhXuuusuod+KiooE5NJq\ntTh+/DhaW1sFjAXiJ5her0dSUpK8DwarFhUVYXx8HLFYTDab00FLzCYnJ0fYIAbAaLVaARSnp6dl\n/+fMTHzPpzLkJC0tDcXFxcjNzYXD4RBsZmxsDA0NDeLBaWpqksyJoaEhMctxTR+X1xKnMJlM6O3t\nhcfjwczMDPR6PWKxGKanpyVaMCUlBTfeeKMUVxbFtLQ0xGIxvPDCC4jFYiKOmp2dFQET9QPvv/8+\njEYj5s2bh0gkgunpaUxOTkqoCwsE2Y4lS5bgqquuQkdHh8j3rVarAOzRaFTuxfPnzwsQy5zNoqIi\n0V0w9GV8fBzJycmyOS4Wi6GzsxPJycmymAmIiwe5A4TdeDQaxbZt235wMc/mnKA5X375Zdx11114\n8cUXZTMVq+jAwIBs8WbbuGrVKvh8Pvh8PixZskSMRRpNfOU7EV5KlGdmZmT5L09NBrPodDqMjY3h\nvvvuE2qV7TgftMzMTPz1r3+VTAJSrYyES05Olravt7cXH3zwAV555RXs3bsX7e3tyM7ORkNDg7TU\nZ86ckdBXnky8MZRtIakxWt15WrBrYMAJEI/JYy6FRqNJSIIiA1JXVyfmJvo0+NBTLEVrOi3LBoMh\nwXZMhocnqc1mg8ViEUl1JBLfNEX1n9frlYwPdlQEQ//93/8dDocDgUAAS5YskTxRvne26Ex7Vqpg\nGeLr8XhEYBcMBkVmzcW1XG4LJI4YHBvYVWg0GrhcLhkrSKM///zzePzxx2VcUwLgxMZIYU9NxfeW\nPPfcc0K7siB6PB55rT6fD1NTU/Lwe71eFBQUYHx8HBkZGRI/x70u7EJCoRDy8vLEok89BztEhizx\n8/ritu//zjUnRoyBgQH4fD44HA7odDp8+ctfRmVlJUKhkLxJzoqhUAibN2+Gw+GA3+9Hd3c3gHhC\nTzgcRktLi+gKaBoyGAyYmppCeXk5nE4nZmZmJFG6rKwMGzZswI033ijzZjAYFHHQ1NQU2tvb8dJL\nL8lszFxLUnBarRZWq1Xsw7w4V9rtdtEG5ObmwufzJWABTJKurq5GS0uLaAC46Ts5OVkUhWwxgfhN\nTUajtbVV5OoApNDy5KRlnoVlZGQEq1evJpAl0nAqCnk6ciamzDwjIwNWq1W+K260Sk1NFbOY3W5H\nd3e3AMYsggScqbrkrwWDQVlMQ1Czp6cHS5cuxblz52RlHT8/6jUuueQSuN1u5OTkiEGKBTMpKSlB\nNET6kuMjL4a+8PskMMtQY4/HgyNHjuDw4cNYuXJlgv+H2ZgMEOZWNQB4+OGH8corr2BsbAx2u13C\nZnj4ZGZmIi8vDypVPISYG7k4YqakpEj6GdkZAt1UBGs0GlH/ErTk+PtFncR/95oTLIbZbI5xSenU\n1JSkEy9fvhzp6em49dZbUVtbKycob/yhoSFce+21uOmmm/Duu+/KXE502uPxYMGCBQgEAoImU4Ov\n0+lw8803Y8uWLSI9JpbB+TEpKQljY2O4+eabYTKZMD4+jsrKShw7dkzwgb6+PtTV1YkTlZQWeW92\nBaQgXS4XbDYb+vv7UVZWJh4LdjPDw8NYtmwZzp8/LyG5o6OjKC8vx89//nPMzMygtLQ0waTT0NCA\nRx55BO3t7RgbG0NpaSm8Xq9YuNPT02VEY54Ai1AoFJLsgeTkZCxevBj79++XhC/amInt6HQ6tLa2\nJmy45s+kq5QdCb8Po9Eo8XWcq61WKwoKCmSHKd2qXq9XFJR5eXlISkqSzWFE6gcHB2GxWCSngiAw\nR0xuVX/33XelQLGwkmallJq5pQ6HA5dffjk2bdqEH//4x8jIyEB3d7cUeXZwlZWVuPPOO7Fq1Srx\n6RCHmZycFN9LRkYGnE6njDlkx9asWYPrr78eBoNBgl04+inZLiVrQlpZCZj6/X75TNn1ckP9s88+\nKysffT7fRbEYc2LEUKvVYlBJS0uDz+dDTk4OGhsb8fHHH+NnP/sZdu/ejTNnzgiFlpKSIrQmzV18\naCgWoh6frWFfXx9SU1ORl5eHm266Cd/73vcEkzAajRgaGkrwRAwMDOCRRx7B7Gw8GzEjIwPNzc0i\nCqIt2Ol0yumuNIlR0UcBDK3mvGHcbrfw5qmpqRgcHJTdGEajEZOTk8IqaDQaEfB88QoGg2hvb5c9\nocnJyTAYDGhtbcXw8DAmJyflz/EEoi+APhPggmfFZrMJUEoqkoWVJySBO4K3NTU1SE1NRVpampyy\nwWBQkHuOdfxv4XBYjG8Ep61Wq+wDValUwudT1Wm320W6TD1Menq6FBTiJQRaGxoaZISgHoSvi7oa\ntvqMAqivr8ePfvQjmM1mGR1mZmYkAt/pdOK5557Ds88+i+HhYRE8TU1Nib2doyS3pPEBPn36NNat\nWydUPosDx2NqN/iaqZ9RsikA5Pdx1wi/18zMTFitVlx//fXi6r3Ya04UCGIG2dnZMoMy0CM1NRWN\njY3Ys2cP7r33Xtx+++3Ytm0btm7digceeADZ2dlwOp246qqrJOyW/HlVVRVGRkawYMEC+QCDwSDW\nr1+PLVu2iPJRqazjzsVAIIBnnnkGbrcbHo8HZ8+ehclkwujoKEwmkxSJ3NxcmatJ0/LfNRoN2tra\nYDKZ0NfXJyeEyWSSEzo9PV3mac7oyogxtrqciXkjKS8Cg9XV1dL+8+RTq9UylxcVFSEcDmN0dBTt\n7e0oKSmRU+zSSy/F448/jsLCwoQEcc7z3PhEzwLfH3EB7s8wGo0oLCyERqPB/PnzpdBotVpceuml\n0okASIjR58gRjUbldSuNdFSTUmsCQAJfWUAZuFtbW4vR0VHs2rVL9BYshpFIBEePHk1geBgxyNyK\noqIi3HHHHdBqtaiurgYAKVxkTD755BM88MADQmPz79fr9WIszM/Pl86XWo5gMIiBgQE0NzejubkZ\nQ0NDcLlcApaTMeM9qSwMHCWU6l/+eiAQENxs79698rou9poTBQKA8N4Eu/jvkUhEQB2fzydMwcmT\nJxM45/Pnz0uICOkffmjkmSmz3rJli3QO/EKGhobk7xkaGsKzzz6LpqYmXHrppZJORVuv1+uF3+/H\nmjVrxNnJ10Hqkl4IlUolRq1IJG5FpsqQDwgBTqo9lRQZ3X8EH79I1wEQxeCRI0fE0ERshJ0D22+N\nRiPLeMbGxlBQUIDq6mo8+OCDWLt2Lb7//e+joqJCJMGciRmtD1xIAaffIS0tDR0dHUhNTZXYPcao\nARCF35EjRySRmic2PQy5ubn49NNPhSEiBc2kJZ6aVG8yx4L3Ch9QfpfUrGzbtg1Hjx7F7Gw8Q7Kx\nsRE7duxAcnKypEGHw2G43W5cc8018Hq9ki51zz33wOl0wmq1yg4Tjk1ULL7xxhuy+YqUOLvESCSC\nr33tawDiO2EZ+5+SkgKNRoPJyUkBMBkORFqenzNwYfEyOxF2vDyosrKyMDMzg48//hgPPvggGhsb\nUV9f/w/JpJwTBYJI+ejoqOxN1Ol0sjo+KytLcgftdrsAPGxxgTjNwweOIJ7BYJD1c4yJY+AHEF+7\nx/xAfsEzMzN44YUX0N3dDYvFgs8++wwajQZJSUnIy8tDfn6+dBrj4+NwuVyyVRmAtMdsZ9lNUHas\nPCnC4bCcdkr+m3Nmamoq8vPzYTAYYLPZRDSjvIgjMGaOMfGMJwMgFmKn04lAICC5kf39/cjOzsYN\nN9wAm80mMuZrrrlGPnsWPLIKnOlJDTOlmkIdpXKR9CcL9sTEhGzyGh8fh1arhd1uF/EZEAebSTfO\nmzdPEsWI63ADGL9n4h5AfA2ASqWSsN6pqSm0tbVh+/btuOmmm/CNb3wD27dvx9mzZ+HxeIQ1YXZm\nSUmJ3BszMzNYsWIFamtrYTQaJSqOSdxAvAPas2cP7rvvPkka52fBA2D58uW4+uqr5aE+cuQIbDab\ndBpkIGgs4zjF16D8R9k9KEVbf/vb3/Dggw/i7bffljWKZ86cEdzpYq45USCU4ST8AlwulwA+tAoD\nFz60pUuXYmpqSk7e2dlZJCcnIykpCVarFYWFhbIZubOzE0ajEUVFRfjGN74B4AL4Q1ByYmICsVgM\nr7/+Oo4ePSoP7ezsLKqqqmRJsM/nE9PS7OyszKbEN9jp0KPBDAiCoKTfuru7UVdXhxMnTsBoNMJu\nt0Oj0Yh0m1Jej8eDrq4uhMPh/98oc9K2lOSaTCYRO1GhSLs8QVGOM1deeaU4DJOTk1FVVYXS0lKo\n1WpMTk4KdsDwG3ZuPp8PoVBIfm9ycjKWLl2KYDAIvV4Ph8Mhfovq6mrpKDjW8SGy2WyC5FPnwYef\nnxsAwXpGR0ehVqvlJKdGgIWZxYw6ErIeQ0NDaGxslGJOcLWwsBATExMSVsviGIlEcPfdd4tupKCg\nAN3d3fD5fEKtezwetLa2YuvWrXjxxRfhdDoTsKJIJILNmzdLy0/6OzMzE5mZmdLl8fVTGEjszO/3\nCyDp9/ulw2EhGR4exve+9z2cP39e8il4wPzf8Kr/12tOsBglJSWxcDiM8vJyeL1enD9/XoAottSk\nxlQqFWprayWk44knnhAQLBKJoLGxEd/+9relRTcajdBoNLjhhhtw9913S+w7/QEAJOCzvLxc2m+y\nDxaLBZdeeqmoMDkCEKBMT08Xd2Vzc7OYmhgASwMP28W6ujq0traKpZw3WW5uLvr7+3HJJZego6ND\nUpbZRZSXl2PXrl2YmppCTU2NfPnBYBA7d+7ECy+8gKVLl8LpdGJsbAzLly/H8ePH5eEiZ085LjMJ\nPv/8c8EIOCvPzs5i0aJFmJiYSAh9YVDqkSNHsG7dOhw5ckSYn7q6OgwNDUn6lHJfJ8c+xt3TAcoR\njAAmPSGpqalCUVMgVV9fLwuEyVhQg8BxkjhDZWWlWJ3JaE1NTQkADsSXEHH/B++Fp556Crfddpuw\nTUNDQ+K6/ad/+idhSDQajXQ2zKLk98oAodtuuw0rV65EcXEx/vznP+ONN96Qz4KekoqKCng8HtTW\n1qK+vh5Wq1WwHypSmTiuxCJYbBobG/Hmm2+itbVVCoNOF9+fEgqFsGzZMrz//vv/870YShML2/H5\n8+dLGjMDS7OyspCfn4+tW7dKGAuBPV5sw2pqatDa2gqPx4Pq6moMDQ0hGo1KNeaNydZv//79sgtR\npVIJ3djV1YWTJ0+KwrGurg7Hjx+Xm8NsNqOtrQ35+fmSwk3FnkajkcW7BNMYWU7QLysrC0uWLMHB\ngwdloStj6GgvN5vNMnoQkwAuRPQz/NTpdApecP78eVHmUR1oMBjEG6FWq1FTUyMAZn5+PkKhkMy4\nJpNJOhkA4mlpbGxEZmYmTp8+LfszOPfPzs5KYfR4PCgqKhKzFdkVsgJkliigYviLx+OBxWKB1+tF\nSUkJQqEQ+vr6MDIygkgkIjgA1Y7stADImjv6GACgsLAwYXUhEO9Cm5ubJXeBgN+7776LO+64I2GU\n4OvKysrCxMSECNB4ry1btgz9/f2iAK2vr8exY8fw1ltvYd++fYJPcU0DOziVKr66gPfDJ598IgK0\njo4O6baqq6vR3t4uupS6ujp57bx/6fPIysqS/aKk8C/2mhMjBuO8GDuXm5uLhoYGCXlVzojf//73\nsXjxYkFsGazBlmz//v3Q6XQyEzL3gCAPmQQgXonNZjP+9Kc/iUpSmWnQ2dkpKD65aSoby8vLodFo\n5MtkYaI8myYkfoE0W7W3t8vvBeJZmFygwz8zOzuLtrY2FBUVwWaziWCKnQvn9fHxcYTDYbS3t0v8\nGxO19Ho9RkZGErYs6XQ6SeemPoGfBylKgoF8IHljm83mBPMUMx8ACJhMVogz+OTkpLwnu92eAAQT\nBM3KypLtUhT5ZGdnY2RkRHIn2aWQGuTrpKgtNzdXAEqbzSa7LXiRLeLpTaqcHgyC2Lz/eGVlZQk2\ndddddwn4SmZpamoKn3/+ufgxmH1JJoujM5kuZlXS/0Nql8K+rq4u8RMBECPf2NiYBPI4HA54PB4M\nDw/D5/NJASZlq9Vqcfvtt+O73/2udI8Xc82JAsGLX0Z5eTlmZmaQlJQkJ05paSm2b98uHywX2/Bh\nU6vVaG5uxoEDBzB//nxB3fnF1dXViXGHD2dmZib279+P3bt34/Tp0wkcPzdqGQwG3H777di6dSue\ne+453HDDDVi9erW4P7OysiSrgHPx8PCwUIqkq4C4upGoM2dItsdUvzHQJRwOSzyd2WyWk5FFiKCV\nx+NBX1+fPPQ6nQ6xWCyhq+DF/aCkCvnz+J55avFk1mq1olAdHx8XXwWTukhXRiIX0saXLl0qSP/E\nxAQuu+wyAJCN2pyPuduDSkTl6U4glElNlBATqOSfd7vd8nBRycnUaLIoVNbS9MTxkZ+XkgIlhkNs\nIycnB1arVVLM165dK1odi8Ui70WtVguIefz4cczOzmLBggVITU2FzWYTQRMA0b/wsx8dHRUQl3EE\nycnJQlsrHZ+zs7NwOBzIzMwUDC0jIyNByFVaWootW7YILXux15woEIzlstvtyMjIQEtLC3JzcxGL\nxWA0GmG1WvHyyy/DYrEgFArJzFpcXCwP39TUFPbs2YOsrCxotVrJUeAXvnz5cgl4NZlMMJvNeOWV\nV7Br1y7o9Xr5kCsrKwFAHuDU1FSsX78elZWVWL16NbZu3Ypf/epX+NWvfoUVK1bAaDSivb1d2tto\nNJqgrwiHwxgbG8PQ0BBisZhEtjPpSdn9sIUmAzE6Ooqmpib4/X5RmXKs4InKjU8cdwBg0aJFQvlS\n/UhMgGCv1WoVpkTZAisvZVvO16c0bZ08eTIhRo9AJ29cCosYPpORkYG0tDRhlMhyUBZOGpCtc2tr\nKzIyMlBVVSW5CNxpmpWVJa9dmaHAB5FRd6mpqcJqcbkQgVPiQjxpPR4P3njjDQCQ90hfilqtxt13\n3y3z/fj4uGAoeXl58veyeLe1taGlpUU+M75n6kCoIaFlm3kQfG2BQEC6OAq4KioqYDAYxHrPxC4+\nDxqNBg8++CAAiJjwYq85USBCoRAyMzMlDZozpcPhEKFJWVmZOO74wShdi6+88orEk1MPoFarEYvF\nsHjxYmRnZ6O3txfhcHyB7rZt2/Dmm2/CZDKJ+k+5NJWt4cTEBJqbm8UvwPZep9Phsccew8MPPwyz\n2Swaf6vVioqKCgAQ5oAPmZIFoFWZdB3pz6KiIpSWliakG1FG63K5YDabpfMA4nZzt9stfgiLxYI/\n/vGPKC4uxrp166BSqSTEld0KENcm8KTkTA9cWOxrMBgEI5iampJ0ZaYyER+x2WziKWEHQo3BFVdc\ngaKiIik0er1eTlzSs729vULTckSigpMRgGNjY1L4qXJV5iwo/S9UrxqNRllgxJ2oLJS0tVONSWl0\nJBLBf/zHf8j9AyBBX2E0GnHvvfeKvoDiOxYLiqjY2Sq9JozdZ7Q9U814aHEUdbvd0v2wgAWDQZw8\neRJdXV2iiaB5jaydxWLB9u3bsXr16oSog4u95gSLUVZWFqONmBjA1NQUFixYgC1btiRkLNBIQ/de\nd3c3vvnNbwKIF5rly5fj2LFjgvLPzs5i3rx5+OY3vwmDwYBDhw7h3LlzSE5OhsvlQlVVlRi+Zmdn\nYbfbMTY2hoGBAVE7RiIRPPXUU6irq0uYvSsrK+V1NDQ04JlnnkFRURFOnz4t7WpaWprsduAppzyt\n+QCPjo6ivr4e586dk8KSlZWFvLw8tLe3IzU1FXq9Ho8//jjWrFmD3/72t3jttddQUFCAlpYWVFdX\no7W1VYqRRhNPIWJWJ0cT5XKZ+vp6/PznP5eCy05GrVajtrYWarVaVgRqtVoBN1lEqfSj2Wzp0qVY\nuXIlHn30UdFddHd3w+PxYPfu3dIRcCbv6uqScYunJoVCZJBYOPkwcd7nQ0U/Bt/f7OwsbDab6C8W\nLFiAUCiEQCCAnp4ebNy4Efv37xeA2+PxwGazYXBwUHaZpqenY9GiRXj11VdhNpuh1WrR1dWFgYEB\nTE9PY2xsDC+88IK4ZNklKIsKCxHZluHhYdFc9PT0YNWqVTh+/LhgKXSW8nNmoV60aBEGBwdlq7hy\nSREQL4gPPPAAbrnlFgAQASAgY+P/fC+Gz+eD1+uV04NKvY0bN+LKK6+UjoLbsfjh6HQ6PP3006Jc\n1Gq1+Pzzz5GWlia5hNzh8Prrr+PVV1+Fw+FALBZDR0eHuCQZEccvdGRkRCjNQCCAUCiEf/mXf5Eo\nPN4UShq1rq4OL730kti2ac4yGo1wOBwIBoPIyckR6TZxBrbu3IaVmZkpi1kAyN5L+vvfeust3Hvv\nvXjppZcQiUTgcDhk83d+fr5kEfp8PjFUsQAAkNm5oKAA0WhUshZ4WnGdYSgUQkZGhvD9pHKpoKRE\nW6/XyzjW0tKCyy67TDoG/npRURHuu+8+ubnb2trQ09MDAPJ9c6wguwJAioPNZpORi3gBFZAcT+kx\nIRNE+fsjjzyCt956C1u3boXFYsGRI0eEGuV9xDHPbDZDpYpvQz9z5gyOHTsmBZeZHEBct7Np0yYp\nUgSp58+fD4vFIvmUyoef+RosGGfOnBG2hN1Qbm6ueF84GnZ1dYmTc8WKFfLwU99y55134lvf+haA\nC1vMyUT9r8EglGg6577rrrtO3jjnMtKUjDenB6C0tBQA5ERgaAhBMWrgmfpbUFAArVaLwsJCDA8P\nw+12IxAIwO12o6amBjU1NdIWciTo7+/HW2+9JQYwAGLbtlgsyMzMRFVVFX7605/KuML9liwmNpst\nIauR+g4+dB6PB4WFhVIohoeH4ff7MX/+fGlXW1pa0NLSIvM3DV8sZspTMBgMioaBfgGezikpKf/F\nSs/PkP9LHwUQ327NB6KtrU3MZ6FQCNFoVDotXtSvsN2tqanBV7/6VXk4bTabvMZgMCjdDu31AGT8\nikajsrGcdCwLQ3l5ORYuXCgjEXMeCXJyJFu5ciXuv/9+hEIhGfHKysqkcwEgDAwL0EsvvSQjZUZG\nBkpKSpCTk4O0tDTU1tbilltugcFgQE5ODiKRCLxeL3w+HyYmJkRMVVxcnNA5KscHdo9UCUejUUmC\nIn3MrmnNmjVobm6WlYsajQZLlizB9ddfL6IoiswAyGhzsdecKBBMD8rLy5OgkSeeeEJuOt7cPG15\nIz7xxBNwOp3w+/0iz+YODafTKQIdzmMsMu3t7dBqtVixYoXw2lqtFtnZ2WhubsbJkycBxHl1rv9T\nqeJLY/fs2SOnQnd3t2AdbLULCgqwYMECBINBVFZWorOzU/ZqnD9/XgrbsmXL5IErLy+Hz+cTMJKF\nIRgMoqmpKcGzQYVfTk4OSktLE8xbycnJkg/BLAOKckjV8mRlTP/09HQCkxGJxHMEysrK5NeU3gpq\nPOhIzM7ORlpaGioqKmSNHV8Lt3Wx89q4cSP8fr/Yu5lNwROPxZIPOaXvXq8XKSkpIgICIOzHuXPn\nMDExAZPJJJvDgHjnZTabUVBQIPTounXrsHHjRmRnZ0Ov1yfoDXJzcwVDUKvjS4k7Ojqwfft2CZwh\nFsF7cd26ddBoNOjs7ITFYpFcUsriCdpGIhHJ1eB4ScCYqtBIJAKn0ynFcPHixdJhpqam4vTp0zCZ\nTAmLhpmdSrCZaswvfq8Xc82JAkHlHRmAJ554ApWVlbLwhhJm5Un4/e9/H2fOnJHWnFkKfCDC4bDk\nMtpsNkmbJl+s0+nw5z//WR6+8vJyAHHuub6+PqHtZfhqKBTC0aNHsX//fvmi+/r6ROXJeXXXrl1Y\nuXKlgIIMzaUMempqCmfOnJGgEwq6CgoKkJaWJi7AgoICwVx4GvOkBYDPPvtMYvyZ3Uhtk19xAAAg\nAElEQVRsgK89OTlZqFAKmzweDz777DORIXOs4KmvUqnQ19eHmZkZoQTz8/NFAcnuh2lVgUAAXq8X\nkUgETU1NUmQAyNo4rVaLsrIyXHHFFQDiCViUuWs0mgTgTzmi8L/zAWA0G2lYalvC4TDOnz8vPh0+\nyEzJAuIt+P333y/aEB5AdI8qhWFpaWlYtGgRDh06hB/+8IfyupT+FDIkLMonT57E0NAQzp49K5Sz\n1+uVlYnskDgesdulWIwAZl9fn4Qvs3j4fD4MDAzISKtWq/HlL3854eDge6Ixje/lYq45USCY0RCN\nRrF+/XqsWrVKKEYiz7yBTSYT3n33Xbz77rvCrfMfOg+j0agIhwBIQCyrdnZ2NpYtWyZRXxTJ0BVH\ngDMjIwMWi0WKRTgchtVqxZ49eyRrIDU1FSMjIzLrm81mVFZWYseOHaitrZWf6Xa7hVqk9ZlSXlJ1\nWq1W3IvcMF1cXCyybo4ORqMRNptNHmzejNQ28OHIzc2Fy+USIRG3iQeDQXmIVCpVwn5H0nv0WgAQ\njIedjclkktZ4dnYWa9askSwE2topQCLrBMRv9vXr18upSIaA2gUlLqAMBk5OTobP5xM8BrhgigsG\ng/I9Dw8PIzU1VdbfVVZWwmg0ykjJ4vutb30Lbrc7Qd1IHEqr1aK4uFjSx30+Hw4dOiQCJp1OJ2E3\nBoMB1dXVMkL4/X6htinMo86B4irKstlF0MFLmr20tFRYCXZtxcXFklpGhS4ZHaXLlfjczMwMWltb\n8Z3vfOein805wWLU1tbGOLM3NjZifHxcjDcsDj6fD+3t7fj2t78tVCgVeQCkGgeDQaxatUqcbDQg\nRSIRbNiwAbfeeisMBgOeffZZ7N+/X6g8yp+5CcpoNMLv9ye09XwdRPF37dolbS27HCLoSnHMtm3b\n0NTUhPz8fElv7vz/qPvSuDjLc/0LZoFh2GZhgGFYBggQCCEbzT9pNEZba4y2RuvRpoutRqtHjVbr\nbtRqNdaqtXU/qU3dcqoeNdr6U1OTmJgmchLJQiCEsMPADAPD7Pvy/0CvO0PPt5PzIc4XfyowM+/7\nPs9z39d9Lb29s96LM3W6T6tUKsyfPx/Hjx+Xk46MRlKqGWnHh23OnDk4cuQIVq9ejS+//BJ1dXXo\n6uoShJ0VQHFxMVKpFCYmJvDpp5/K2I++E/F4HMuXL5eeuaysbBbDkBUTACEODQwMwGAwoLq6Go8/\n/jjq6uqk3GViNiuDCy64QFig6ZgBNwxS4dl2mM1m4XnQbYxAqkajQX9/v9x7siWzs7Mltk6v10Oj\n0Yhbd15eHs466yxpk6xWq/htsPqcN28e7Ha7eJXU19fDbDZj/fr1WLJkCQBIJskdd9wBp9OJ8vJy\n2Gw2IX5xfM9Kkj4jHEkHg0FYLBbBlOhCVl5eDr1eL9b2bD+5mXLEX1ZWJmHVc+fOlWdlenpacI6h\noaGv/xQDgOy67PdYPXCkMzk5iVtvvVUYeiqVCq2trYIr0CiG8/NwOIzCwkJkZ2fDarVi06ZN2LBh\ngzx4w8PDgs4vWLAAAMSlh4uVLwJtFotFQEkakuzfv18YmsBMQjhLUeIaDz74IKqqqtDR0YF4PC42\nb/RJAGb4E4ODg8jOzsb09DQWL16M48ePzzoRS0tLhRlJWXIoFEJDQwOysrKkpz98+DD0er04SVVW\nVopxDB2rCJymOxqx3KVBcDr7j2M2TmDoKF5YWIj8/HwYDAYUFRVhaGgIXV1ds7waAcj7aLVaCeEh\nRkDgl+U1uRJcVKFQCNXV1Xj77bfxu9/9Di+++CKuvfZaIUypVDMKz+rqagE90zfO9GsDzGxqxEjo\nCJauOQEg7NbGxkYoFArxTL3mmmvws5/9DM888ww+/vhjfPjhh5iampJrw4zVoqIiqeaA2XT0+fPn\ny4bo8/lQVVU1i+HLsTc3vfTpREVFhVSuNpsNJ06cQCwWE5Up21FyJU73dUZsEJQ7V1VVyUVi+Uv6\n9RNPPAGr1YpgcCY1iCah1BDwgaLjNUv3wsJC3HHHHVi0aNEsVDd9dEoZ8fLlyyUNnDkFExMTAqjR\nlJaGrXa7HVu3bsXAwAAsFguAUy5JlC9nZs6kc2/YsEEYnixXeTOzsrJEb5FMJmEymXDgwAHxeIhG\noxgZGRHj2tWrV0u+BU8dhUIhIBgwI5fu7+9HZmYmTpw4IaNf9vvEcni906MPWUonEgnxfuTvsf3g\n4nM4HLKoKVhqa2ubdQ+BU710OBzGeeedh6mpKVlABJc5TSAekZubC7PZjKmpKXz7299GRkaGsGtX\nrlyJF154AWazWUyGyOKkIlKj0cwyruWGkJmZibPOOmsWGQ2AtKHU6NCtPL3lDAaD6OzsxJYtW/Dy\nyy9j//79Ur1GIhGpXmgyxPKfoUXU+PC9m5qaZDFTVczPxGeUB97ExIRoNzhqvuyyy3D11VfLRkLg\neHh4+P8kvPeM2CDcbjfcbvesUpOnD3f2jz76SEpJ7ow2m00EMgBQXV2NkydPirdkRUUFnnjiif+x\neDkWpNhlcHAQCoUChw8fFqozX1xIJpNJnKHZL2ZmZmLfvn24//77sX37dmErsg8nYAQACxcuFM0A\ne27SiAsKCjA1NQWLxYLu7m6xOSM2AczM4fkZDh48CLVajenpaRQVFcHtdqOqqgperxf5+fmiUiSd\nmJoNbsDcaLmR8TOm6yGMRiNMJpP4StBgNx19V6lmVJ9cHNxwaJ4KnPJVJCAaDofR3NwsJyr9I+mP\nwPtJIJQV0+TkpLg1sSLIycnBPffcI1wEr9eLiooKWK1WIZYBpzYAAPLsXHrppRLQRG4IK5Y1a9ag\nq6sLExMT2Lt3r7SYTDvzeDxCgONCT+fwsEJ1uVyzAnupX0nHH8LhsJgRFRQUSOi0Xq+H3++XTYuj\n/r6+PtHTxGIxvPXWW/jLX/4irSMnLDU1NbPSxf63rzNig+CYkOIfAi986D799FNotVp0d3ejrq4O\nw8PDyM/PF1m22WwW7YPP50N1dTXOOussrF+/XsZlRJGnp6cxMjIi7DcSrOhyvGLFCpko+P1+sTdj\nfBx9D61WK5YvXy4o+K9//WscPHhQTGFGR0fF34AbRW5urtw0ysr7+voErV+0aJGE4QIQSzF6ILDv\nrK6uhsPhQFlZGQKBgJxSZDSqVDNuTlR/FhUVIScnB8eOHUMwGEQ0GpUKJz8/X1oLgpsA5EEbGxub\ntVFTlJZIJMSFuqKiQjI7rVYrDh8+jO7ubpn1U9lJT0WTyYSmpiYhYnFTIwDJ9yH1PDMzU7Aak8kk\nPhv8zEajUTYIn8+HgwcPwuPxYHh4WHQefPHwWbBgAaxWK2KxmGATVVVVQrajjwQ3TcrQAcg9JxaU\nnZ0Ni8UCk8k0CztLt6fz+/2wWCzSVnH6NjExISYz/NuJRGJWG0j9jMlkErCblZdGo5FxNqvEhoYG\nnH322bjssstOe22eERvE2rVrZ6no0mnIHR0duP/+++Xh6ezsxODgoOyuk5OT4hvBUZtGo8E111wj\nYyZWJwQ/7Xa7tBAcvyWTSQFCVSqVAHN1dXUSWd/c3Izh4WHo9XoMDAzg2LFjUKlUGBsbg91ux69+\n9Sv09PRIsA2RcAKq69at+x+gIxmCCxcuxM6dO2e5TLMPLSsrk5JXo9Ggo6NDTl+qX7nhpMvMWT0E\nAgGUl5cDgEx5VKqZUBu73S6fFzgVRQ9AqgFyCdjKTU5OwmazySiU1cjQ0BB8Ph/Gx8dx6NAhub/8\nPpzrJ5NJnHfeeTJ9oqxaqVQKFwKYqT7Gxsag0+nQ09Mj5X9OTo4kSKlUKvz7v/87YrEZk1i2nCqV\nCl988YUs0vSRHzfEiy++GD6fT0bjZIcCpwRcZLEmEgn09/fLhpFMJmGz2aSaoNAqGAwiEAiIy7rR\naJxFx87IyMD4+Dj0er2wJomrxWIxMTFmW0PcAQCKi4vlOSYOZ7VacdVVV+GBBx7AE088gVdffRXP\nPfccNm7ciNtvv/201+YZMcWYnJxMhcNh3Hbbbdi8eTOAmTn5zTffDGDGnm1iYkJ2y8suuwwHDhwA\ncGrH1ev1mJycRFNTE+6//35UVlYK8svQksLCQiGRrF27Vk719FaFWgWVSiWkH54OAwMDAhoCwLFj\nx0RuS2FXTU0NNm3ahIaGBni9XqRSKRkvajQanHvuuaI9IM02Go2KZV1JSQksFossvkcffRRVVVWi\nTuWLG0wyOZPr6Ha7MTU1hd27d2NwcBCJRAKdnZ2yCAHIWJLTBD6Q999/P7773e8iPz9fQnkvu+wy\noVlzXKpQKFBVVYXu7m7RSXDDIOo/OTkJk8kEi8WCTz/9FAUFBVLNDA8Piw+oQqHA8uXLYTabEY1G\nBZchhtDa2orPPvtMph+ZmZno7OyUk5ObIcfPn3/+OR555BE4HA5pBauqqvDAAw/gggsuELEYNxXi\nTjfeeCO++OILaW+58Ng60KsikUigqakJY2NjUmWx9OdnZxtRU1MDt9st1zpdN0KyGUejLpdLxtVs\nlaxWK/bv3y+UfTpVceKWSCQwf/583HXXXWKxR9o/eSHUyZSWln79pxiU4D7wwAMYHh7Gnj17cMst\nt2BychKHDx+WEpD+hZRAc7qQnZ0t0uErrrgCdXV1QowiT4EPQG5uLvbv3y9gEBFz9qP0dGB8mcfj\nwdjYGCYmJuS05RiJ3pS1tbVSDno8Htxzzz3C1iQwRxqvWq1Gbm4uVq5ciampKSnLAYiUme/9u9/9\nDosXLxYbeeCU0zHbD51Oh7KyMtTV1WHZsmW4++678fzzz+PJJ5/E5s2bsWbNGil9ObMnlTgSiaCk\npARbtmzBO++8Iz4RrAoAzAJOMzMzZfJCII9kpFQqJeQh6k/a29vl9OTvcCqVn58Ps9kMp9Mp4Tzc\nAHNzc6WS4wZYWloKm80m1eW/Oj4vW7ZMiFMsyf1+P959911pV9PbHOIzl156qfBmqKTkM8FRJGXj\nAITPwCqLPhIGgwGTk5Mi++dImpvB5OSkgNSlpaVCxWflTHUpNS0cEbONYUvl9/sFFGWbyNaQkyJS\nzPnMnM7rjAjvHRoaeogl8913342XXnoJQ0ND4lNYVVWFoqIi2O12lJSUIJmcsVofGxtDIpFAbW0t\nxsbGsGHDBlx55ZUC3qlUKrFjB2Yo3SaTCRs3boTD4RCrM0q1eWr7fD60tLTMMkc9//zz8dVXXwmB\nKCMjA1VVVQJCRaNRWK1WdHV1IR6P49ChQ6iurobVapXwVq/Xi7/85S9Qq9XCjCssLJyVF+r3+6FW\nq7Fp0yYsXrxYhDsUVVFYlZeXJ+QkmopotVrRRjDcdd68edi2bZswMJn/SFJXZmYmnE4n9u3bh/7+\nfsmI/OCDDwS1d7lcYorLh5PUeLL/OJrjBIK9/qpVq2bpV1hma7VavPTSSyJXttvtsulmZGTA4XCg\nubkZIyMjyMjIQEZGBvLy8iRbQ6FQSGXG7+v3+9HX1yfJ3hyPt7a2ori4GNFoVEa7arUa8XgcBQUF\n2LZtG4LBmRBeUsPD4bBUO6w8+CJAy2cjHA6jsrJSpguDg4OIRqMSDsxNmSrU8fFxaUGpzaFlvsVi\nkemO2+2W1jCVSiEzM1M4FFNTU6iursbChQsFCC4oKEBeXh4yMjJEGa3T6b7+4b3B4IyrtNPpFOYZ\njWPC4TBsNpuwy+i0RJS2tLQUbrcb69atw1VXXQWv1ys3kyVpuobe7XYLYEk3ZlYTpBarVCoZEXLW\n/vHHH0vpydOjs7NT+mev14vh4WH5TuFwGL/85S/x17/+Vf7+W2+9JeX/8PDwLOk6W5VEIoFzzjlH\nnJj4uzwl1Gq1jOp4YjPbgz/H70KQdfXq1SgrKxMcgbJvn8+HkydPSibDli1b8NOf/hQ///nPxZyX\nSdY2m02MU1gZke0HQOjKzc3NMqXZuXOnLKZQKIRoNCqVC6uKUCgkzmFTU1MytVAoFLJ46urqEIvF\n8Pbbb8v1T8epWHavWbNGKghS3cPhMN58881Z3gp0c6KmZdmyZeLqxGeA157TAXJlCMhSFsCWZ3h4\nWIBRqmhZiaXngLA1ogSc6lESuhhhSMzN5/MhJ2cmH4RuVJFIBDabDa+//jq2bNki7RPbRvqq/KsB\n0P/mdUZUEH6//yG2CPX19XjrrbckSp7AmMPhECNbi8UiRp5ZWVn41re+hTvvvFMAomQyKdwAnmg0\nBPnFL34hCke2Fna7HcXFxRJZx9OuqKhIcImMjAwYDAa43W4JXWXbwNwNpVKJOXPmwO/3Y2pqStoZ\n0pNffPFFOJ1OOfnY27P10Wg0KCwsxIMPPiibUH5+PjQaDTQajZCvON/nScjSWqlUSmugVCqhVCqR\nSqVQW1srm5NSqZQEb4fDAY/HA7PZLGG7JJox4SoUCqGyshJut1tOdypBeUJyMZOgRCwmEolg/vz5\nsyTNAOSz7ty5EwMDA8jMzBSwkLL/rKwsNDY2SiAvuQBWqxW1tbWzlKiJREKqg8HBQezevRtjY2NC\na3c4HDjnnHOg0+lk4VBJmpmZicLCQvGIaGlpwZEjRwDMJk1NTk6K1yi5OPRtoL0+gc3GxkYZCaen\nqOXl5cHtdiMajaKurk58Nkhbz87OxsTEBAoLCwW7oisXAedkMinGOxMTE+js7MQHH3wgEY2MIggE\nAvB4PKioqDitCuKM2CBsNttDLJXLysqwZ88eMV+lWxIFKLy5J0+ehFqtxne+8x3cdtttsnvq9Xro\ndDqJRU+lUtBoNMjLy8OvfvUrdHV1wel0QqlUyg1WqWaCcQhQKZVKuFwu5ObmQqlUSotjsVgQjUal\n9eHoampqShybU6kUlEqlIOpOpxOpVApvvvkmAoGAvA/zF9jT5+fnIxAICNOwpqZGNjeOAEkEYgnJ\nE48ncjweFxCMI0YAkuR06NAhaDQaIZhRUm4ymRCNRqHRaOB0OlFUVAS9Xi/J3WzZ2Ec7nU5pM4qK\nimQzJnuTUnsyFs8991wRKiUSCWlX3n33XTidTsmlYO/OicTBgwcFZOamMj4+ju9973sIhUL/w1It\nGo3CZDLh73//O5RKpdxnVp3f+ta3pCrSarVIpVIIh8MoKSnBzp07YbPZZLyq1WrFaYou2QQrFQoF\nysrKYLPZxLE7HVPgpIPPKw8cpVKJZDIJo9GIrq4uYaDywLJarVJBZWRkoKSkBFVVVRgaGgINldhq\nssphhdHb24u///3v6OjowAsvvIBdu3bhww8/xL//+7+f1gZxRkwxtm/fnuKFz8vLw5/+9Ce89dZb\nAgguWbJEPBvoyLNixQq43W68/fbbclOoNQgGg4LoGo1GfPzxx+JoxD5ap9OJ+Mlut6O8vFxOzhUr\nVogrFNl95FAQLGtpaUFOTg7a2tqk76QsnGo/LrB4PC49cDA4E6YTiURE/0/tfn19Pfr7+wUwvfzy\ny/GNb3xjVogrTyn2otwYCa6x4krnNBDp93q9WLVqlRCzeNLxehBPUalUqKmpkSQuj8eD2tpaiYmr\nqamBy+WaNRqltT8/m9frxbx58zA9PY2vvvoKwEzv7nA4UFxcjJycHFx44YVwu92w2WzicsXoAQCz\nxn2s5Kanp7F+/Xr86le/kvaQLE2CkG1tbfj5z38OYGZMycnIihUr8OSTT0qFki6R9nq9+O53vyu0\nedrh87nkoiezk3wQLlTqVuhkxf+e7tthNBplQXM6Qs1OY2OjCPRycnJgsVjw2WefoaWlRX6uqKhI\nDHF4zR0OBxSKGYduh8MhFHhOoAKBwNc/F4MaiEgkIig+MFM+5uXliU7faDTC5XLBYrHA5XJh48aN\nchPJYEwnXBmNRnz11Vd44IEHxHfRYDBIv0/aNOnK9JXYt2+f9H3kSgSDQSxfvhwHDhyQk9lut8si\nIVrNPpOLUqPRQKlUIhqNCgmqt7cXAASAYq/IENfm5mYcOXIE77//Pv70pz/JdYnFYhI9Z7VakZOT\nA5PJhJqaGjQ0NEiGZPp15SuZTAp5idmRo6Oj0g/HYjGxuOvu7hZXbPJF2LoxSIdcCpoNE6zj+6tU\nKskL4cIn06+goAA7duxARkaG8DnS9SucBlGMRryAY9nu7m44nU6xsP/XZ2nRokVYvHgx2traZOQH\nAHv37sV7772HNWvWCNWd1PG8vDzU1dXhwIEDwsWoqakRzQ7fx2g0YmBgQIJt+LPcdPPz8yVGkq5k\nZHSSURqLxeRA4bPlcDiEocu2E5hRqJaVlWF8fFyEdNQQ8f5xakRRHqtsHm6n8zojWozR0dGHiPoy\n75DyZgJF7Dmj0ShKSkpwzTXXSBWRTM5kV6RSKeTn54tY5sSJE7jjjjvgcDgkFOass86CQqHAyMiI\n8Pjz8vLEjZilNW8yK5HR0VFkZGQgGo2ioqIC4+Pj0laMjIzIf9Pr9cjIyBA8gIxEYAaJnp6ehlKp\nlIdz7ty56O7uRnFxsYTCDA4Oor6+HmNjY5ienkZlZSV6e3ul1waAo0ePIhQK4csvv0R7ezsGBgbw\n4Ycf4vPPP8eePXskrq+3txft7e147rnn8OabbyIzM1M0Jaxi6LK0YMECwQRisZikOjHljBvI0NCQ\nMAb5edJ1DFlZWcjPzxfAuKioCNXV1TJ5iEajePLJJ4WSzr6+sLBQTmECywQ3Achsv7y8HAqFQsa2\nfFZ4yHDTaWtrg9vtRkZGBkKhEJqbm7Fjxw4sXLhQWg/qSsh72bNnj+BBBJKJGVDZqdVq5doAkM2C\n5jaBQECYmGR40n6ACeB6vR5er1dMfymzp7kP/yZp7JFIBJWVlSJT9/l8cDgc4pdCrIpO2PF4HNnZ\n2bjzzjtPq8U4IyoIznMB4Gc/+5lQRwnEkdhjMBgAABdddBEuuOACUa8FAgFpT/hwTU5O4pe//CUG\n/xnoWlRUBJfLhf7+frS3t6OyshIDAwNoamrCrl27kJeXJ+SfmpoaqSaamppEtEUEvqamRtBmvV4v\n9N958+ahvLwcBw4cENKWy+WSVikUCs0KbnG5XBgbG5MFSX4+H8T01Gh+f8qAgVPOzpFIBEeOHJFE\nqtHRUbFBt1gskikaDAZFd0CdRUdHh7RSo6OjmJiYkFaJWEl6bkU4HEYoFILFYkEgEBABGEFmltN0\n+FKpVPj444+xcOFCybekQziDd9NNalk9Go1G2Gw2oUoTH0omkxJWs3r1avGDBE45QZG2ng70Tk9P\n49ixYwCAxx57DK+99ppMkIjXMO0svUVghXXixAm5d9yAPB4P5syZg5UrV2J0dBS7du2CTqcTCTa1\nN/T+JN+BVVkyOROQpFQqEQqF0NjYiLa2Nuh0OgwNDSE3NxcjIyNYsWKFTPPSI/+4CdHnksZELpdL\nANrTfZ0RFcQVV1zx0NjYGP7+97+LtTfn7NQCUAs/b948/PKXv5RZtcfjkcVACW9paSmuuOIKMYhd\nuXKl6Buoe8jNzRXsYXR0FCUlJUilUjKWU6lUuPrqq3HjjTdi1apV0Gg0+Mc//oGWlhbRBQQCAaE5\np1Ip8YugZya1IXq9XhyWeAOpTGRiFacLWq0W0WhUmJ98ANge9ff3CybBh5s9LfkGZCqyvHa73WLL\nRj8Er9cLpVIpn4uTFSLn0WgUGRkZQt02GAyYmJgQsDAcDiOVSkGtVksVR0UtadME+EKhEEKhEObP\nny/YyZYtW0QFyyzRgYEB8TGoqKiQZyDduIbXlSU8qwGi/hzvJpNJvPbaa/KZeK2Lioqg1WolGpA4\nRzgcxp///GcEg0Go1WpkZGQITpWRkSGBzLQ0HBkZgU6nw1NPPYVzzjkH559/vqSGU7hFsJMmyKlU\nCiaTCRkZGejv7wcwUxU1NjZiampK2jifz4fi4mKpwkZGRoSUx0qJG04qlUJhYeEs4ZhGo5G/cdNN\nN339eRAdHR1oa2vDtm3bpI+PxWKykAm2JZNJ1NXViVMPtRUsEfPy8mA0GjE4OCghvRaLBfv27Zu1\nofAkys/Pl9AbAkG5ubkwGo149NFHcd1114moZs2aNWhsbJS+jjPu9vZ2NDQ0iNyWEm36LqQTeigq\nYpxccXExysvLpULiwmWlFIvFJH1KpVKJOSpVqbRTo9UcH0riDLSX5/Xh3yF/gb/H6k2pVAoJhzTq\n4uJiOUUpOQZmqhdmVvDU5rgzvbfm9fjyyy8lvYwbVmlpqWSD9PT0YGpqSvIvBwYGEIlEMDg4OMuQ\nhyYs4+Pj+Oijj/6HECsnJ0ccqFtbW0V1y1KeVgCvv/467rnnHtxwww348Y9/jB/96EdCUwcg1Q2r\nSmIMAwMDMs3Jzs5GXV2daGQaGhrELIgTCk6Q0unUNMLlYUWpfzgchtlsloqNMQMFBQVwu93IzMyU\nfBCdToeWlhYhVZFlSv4Kw6dP93VGTDGam5tTLJn8fj8mJiawZs0afPrpp9Dr9bLgsrOzkZGRgVtu\nuQXNzc2CQvM0fu+99/DGG28gHo+jpKREXKUY/ktMgOq6xsZGEUT19fVh8eLFePrpp8UVKhabiZTj\nWNBms+Huu++GVquFy+XC9PQ0Ghsb0d3dDaPRKIg6WWzsj1ny8oGYnJyUlKnjx4/L6cDPRsdmmo5w\nMyJyTs4/05rKyspE8anValFVVSWnMasPAor19fXy38455xzs2LEDoVBIUHh6CnChnzx5ElarVcx3\n2fbREm5yclIWH41kJicnpfydmJhAfn6+5FfQX4KgLnEKvjfFXBqNRkDksrIyefjZctLFesGCBXjt\ntdcECCSJy+fzYdWqVULOouCKAikAsqmWlpbKhkVaNCcGHR0dsz7b+vXrsWLFCixdulSYpmxrr7/+\nevT09GDBggX47LPPUFZWhrPOOgvr1q3Drl27sH37dnR2dopkYHBwELW1tTh+/LiQvWiDB0AWenZ2\nNm6//XZcfPHFQpyjiNHv94u9QVNTEzo7O6W9mJ6eRjQa/fpPMY4fP478/HwRMeXn58PhcKCurk54\nA+mquTfeeAOZmZmC3NtsNhw+fBh9fX0oLS1Fd3c3ksmknDTsqflQejweVFZWSlpqyccAACAASURB\nVDYGT9dnn31WJgsApNVhdRIOhzE4OCgOQIlEAgMDA0KTPnbsGObNmweFQoGpqSlBsfmgsUog5kAt\nCQEqStc5TqVxqdlslokK/193dzcikQguuOACSXG22WzYsWMHjh49irq6OkngHh8fF7t2qg5jsRh2\n7NghrQsfSlqiJRIJ0RaQ50BlJHGKwcFBaXv4YKdvwCSAcdJDAhtJPqQqp5OWKEiqqanB4OAgGhoa\n0N3dLV4WrPaAmQXucrmgUqkEh+LEQq/XC8+BDmC0byOQ6vf7hazGZ6W8vFwWIX1HOeWpr6/H1Vdf\nLZsT34vXc2xsDC6XC7t370ZJSQkikYjkuF5wwQWor6/HLbfcIlUP3bL4d1ip8CDjZms0GrF06VJ4\nvV4EAgFRFt900014+eWXJVF9YGBAnlMeOKf7OiNaDC7AWCwm5CVOBMbGxoSVR3rr8ePH0d3djQ8/\n/BCvvPIKdu3ahc7OTjn9IpEIJiYmEI/Hhc5KMUt6PidBtYyMDLS2tkpJDpwaW+bl5QlbsaOjQ+bx\ner1eFk1NTY2U3un9ckFBAWpqaoQ4lW7rztEYszIoNyYDkNMPLlyqAhOJBFwul5x2TU1NKCwsFFeu\n6667Dk8++SQuueQSLF++XBZDVlaWhACT7ZieVs3rQ6Yh2aIESVtaWmZRiwFg3rx50jPzb1CuTuGV\nSqWaJV3mKQ7MLAjO7emjQc8NbswEOisrKwFAjHDIH5iYmJADgTqadCo2wWlqeDh5orlPcXGxxAfQ\nCJZ6G743r9H3v/99GAwGoU6zdaC+Ynx8XNotMmlra2slWby4uBhr164Vd3UAUlmxWmC1Q+ZoOu6S\nHkuZTCaxZs0abN68GRs2bBClstFolPejTPx0XmfMBuHz+cSSi9JgxrbR+oz0VfbgLP+BGcEOcxkS\niQRKSkqEV88QE55uq1atkl6T1uUPP/ywbFTsyXmT+IB/8sknwiwkmWh6eloWCBWPl19+OTZv3ow7\n77wT5513HhobGyVMt6mpCc3NzfD7/ejq6pLPyWQn+mqePHkSOp0OBoMBbAMp6U1PAmMbw1NjfHwc\nsVgMzc3NuPHGG/Hggw9i7dq1kvhFuvLk5KQg4gDkpOeDT2UnKwOeahMTE7I5sQKi6W66k7jX6xWv\ni1gsJlMFTg744iIk65K29VwILpcLsVgMvb298n3TpxMejwdPP/20TIbY0hH1DwQC8Pv9iMfj4vhk\ns9nk1J2cnMTo6OgsV3AyOrlJE8M4++yzRZtCDw2Kv7q7uwXEZZtz7rnnQqvVys9lZ2dj/fr1YtvP\nTSk/P18A0UQiIfci3U2KfzM9M5WTl9tvvx0vvfQSWltbpWUjoHm6rzNig2DkmNVqFccmUm6JZp88\neRJNTU2yw9IncXp6GmNjY/D5fBgeHhYaLLM3SSbiOI39flbWTLJWQ0MDXnrpJZSUlIhCj6UrTwed\nTodPPvlEWIDEM9IXEHDqlP/hD3+IpqYmkV8//PDDMJvN0Ol0aG9vBwDh6Lvd7lmCMVKqqcwrLi4W\nL0r+fbowqVQq7NmzR+zPgFNGJ6wIVCoVLr30Uvz85z+Xn6FpDePdxsfHUVhYCK1WC5PJJPgLWwJm\nYrBcByCs03SXb45piVMYDAZUVFQgEonA6/VKpcDPRYoy8RqFYibWgJoHXluG2tDLATgl9w4Gg9i9\nezfeeOMNAKdMadiG0IGbDtZ+vx9lZWWzTmU+czzJGThcWFgo3harV6/GnDlzxHg3vXxXq9XYv38/\nysrKkJ2dLWZGjCEETmEjALBhwwapxjwej0zAfD4f6uvrhbOjUqnQ3NwsuAkJbnQX43MXi8VQU1OD\nZ599Ftddd51obdIduv63rzNig2BpNTo6irq6OrHw4qlC+ilPBspmCeDp9XrhQLBUa21tlXJweHgY\nSqVS8jAXLFgAjUaDhQsXYtOmTaKbYPo2KwmNRgO1Wo2pqSk8//zzssBqampE78ExmdFohE6nw7nn\nnitWcwBkUT311FPyHaLRqJjjpvebtNKbnp5J8ubDnpOTIxRvJivZ7XYkEgkMDQ3hjTfegNFolHyR\noqIi8SiwWCzIyppJEbv11lvxyCOPYO3atVi0aNEsu//R0VHRMpC1SfKPUqnEkSNHkJOTg/nz58s9\nI6Wb1z3dW7KgoABDQ0OykUajUdnguGjZ0gAQG7lIJCLSZt73/Px8aQdo5ZauJE0mk/jTn/6Ebdu2\nyaJJryKJI/Czsm0KBoNS6UxMTEirQSozQe7R0VEsWbJk1kZOCwEACAQC+PzzzyVfhNUUN0ceTsCp\ntopK01gsJmNUXod0w11KDPbs2SPVHiu39EMDmDkUfvCDH6Cqqur/bG2eETyIjz766KFEYiZcRqvV\nwm63y6zf5XLB5/NJBLzdbofZbBZvh1QqJb+XTCZRVFQEm80mKkCNRiNEI1YHIyMjmDdvHh577DFZ\nWNT88+QMh8MIBALIzc3Fvffei4GBAdE5qNVq9Pb2isFMPB5HU1MTwuEwLrroIrS0tIi6kxsF6cNd\nXV3iAcFTIx6Py2ZEj0mTyQS3243p6elZPpxGo1GUi1RQ9vb2oqGhQYA8ajkoQiOVnXb2zc3NWLFi\nhZDFWKXwlAqFQnA6nZL4zUXF6mB0dFSYgORSKJVK2VD8fj/y8vLEiDccDovprNPplIqjtrZWkHuO\n8cg05biVTEQyankdyW+or6+XtqCvrw8ajUbyTf/2t79hampKmJQMqcnNzUUqlYLL5Zp12LDs93g8\nmDt3rmSY+nw+3HvvvSIOU6vVwlcBgO7ubmzduhWJRAIjIyMAgP/3//4fLrnkEqRSKSgUCqRSKdkE\nhoeH8fnnn0smyOTkJAoLC6W1Y2wgAd2CggIcPXoUl156KdRqtRycpLur1WphD2dnZ+Pss8/G4sWL\nMTExgcsvv/zrL9bSarWp6upqGfmZzWYcP34cDQ0NaGtrQ21tLZxOp4BmAERcBEDGftXV1dBoNEil\nUujo6BC5d11dnTgUZWdn4/3335c2Jt2wlQxGnp7JZBJPPfUU3n33XcyfPx/79u0TH0gufJZ8rACu\nuuoq3HHHHSgqKhKgjuw8/s5dd92FvXv3SoYmCVbAzAlTUlIieEFvby+qqqowMTGBhoYGdHR0oK6u\nTkROVBVWVFRg5cqVuP322wUVT3fFJqGJbFCO5vhPn8+Hw4cP47333hNH6vHxcVit1llhwrFYTHgf\nNGc9cOAADAYD4vE4XC6XnK7MOq2oqJDRYfq4lG2QQqGA1WrF7t27sWTJEpw8eVKqq+rqamkXWFqz\n8qmvr5dKihsIR6RerxcajQZWqxUDAwOor6+H0+mEy+WSg2NoaEgmXFyorG5yc3Mx+M+ckvz8fHR2\nds4aRfPk9ng8uP7667F7924BSktLS/Hoo49i6dKlovVg25OZmYnf/va32Lp1q7R409PTqK6uxpEj\nR+Rvk/tBM2ZWD1dffTWuu+46aZPTs0d4PV0ul+AXDQ0NpzXmPCMqiD/84Q8P+Xw+QV8BYGxsTFBt\nlr5cUJwi0PORXoEkqZSWliKVSiEQCAiPwmq1wul04qyzzsLq1atn+SnQq5GBp2TSvfLKK3jllVdk\nLEmJMfn4JFsxhYv+lj/96U8Ri8UESOIYk8ShpUuX4sSJE7JY58yZg4GBAVFJcrTHTSojIwMajQbB\nYFCs31mac/Sp1WrR0dGBzs5OMWChbD0ajSIajaKgoEDMb/lKJpPCzDMajTjnnHOwePFi8bNkhcON\nef369Vi3bh2+973v4cILL8Ty5cvR0tICnU4nIUKpVEp4KH6/H4lEAt/+9rexd+9e0SLQh4PlPqsD\n3ov04BuDwQCbzSafg/dOqVRK5UGA1Gw2z/pdYKbNI3uVeAargWg0KroKv98vlevQ0JDwYRQKBTZs\n2IB4PA61Wi0y7kQigePHj+Ppp5+WVowM1F/84hcCJBOXiEajiMfjePHFF+Hz+dDa2ipUa/4eGaHp\n4GRhYaGQschzaG1tlUqXmyyrPfpBqNVqGAyGr78fxPHjxx8iyzCZTMLlcsFsNiORSMgCIAJNgpDH\n40F5ebkwGzlpoJXY+Pi4iGaYXlRYWIjf/OY3ErfOsp4eD5ypq9Vq/PnPf8brr78+y+jDarViampK\n/j0QCEiP39/fLxXIDTfcIDZ07FlZfnOxNzc346uvvhKPQaVSKWrHZDIJt9stblZOp1NCfQoLC9HX\n14dYLDbL+CYUCqG2thZfffUVjhw5gk8++QQulwtVVVUoKCgQOjLHfHR+DgQCMhqMx+PiC0HsgPyB\ncDiMRYsW4eabbxYQkSVuZWUlFi9eLK2Dy+US49iWlhYJ1CG5isAkq5qCggIEAgEolUr4fD7BIMh8\npZ0bFZ6BQAAajQYWi0XGo8lkUkbiIyMjwkOgrRsl97m5uXA6nfI9maBFQ9l4PC7UdypxzWYz/u3f\n/m1WJgcroPfeew+7d++Wqo0t7c0334x4PC7AKg+zyclJbNu2DVarVQ5B5mJQDcv7wepDr9fPotUf\nPXoU7e3tuOiiiwRI53uzpQTA6Miv/wZRX1//0Le//W2sXbsW3/rWt9Da2gqz2SwPPsv+goICRKNR\nGAwGhEIhFBYWCgEKgOQr0vSDJVwikcDChQtx5513CqcilUqJP6JarZaNJjs7WzYHt9sNp9OJ6upq\nOJ1O8W+YP38++vr6ZEOw2+2SIZqZmYni4mLZ4UnZ5d9mRZGfn49Fixbh4MGDsjGNjIygsrISg/+0\npUufCJCOy0zNaDSK5cuXo7+/X1yUOUak9NrpdOLgwYOSLRkKheTnAEhvTBMSTiJCoRCWLVuGL774\nQrwiJycncccdd8gDyFEfK5xUKoXly5fjrLPOgtlshsPhEG1Bum+l1+sV+jIXaH5+PtRqtfgb0DxH\nqVQiIyMDwWAQRUVF8Hq9qK6uht1uFwyBuSbs29mCpI8pTSaTaBgoWvP7/SgpKZEsTlaP3CwoslIo\nFJg7dy5Wr14NrVYr35XK0ccff1wMgzIyMuSA+fGPfyyYDze7jIwM9PT04O2334ZarZYWhtdBrVaj\nuroakchMxiuxJvqIEHBPJGZyM4qKijB37lxhtrKaiMfjSKVSvCZf/w3CZrM9xPJLr9ejqqoKixcv\nxoUXXoiLLroIq1atgkqlkl033W2YfSVPiYaGBgGdqqurxe5tw4YNaGhogFqtlkkHpyLRaFS4FS+/\n/DKefPJJYSySlswNhOUbKd78LGRklpeX49ChQygrK0NTU5OUuuzLuagospk/fz62bdsmfXMikRBn\nKY5AMzIyYLfbUV9fD5vNJmlaTLzmSUlwkDoAj8cDpVKJTz/9VKYa6SNkCtxYCrO902q1MJvNOHHi\nBNrb28Xde/369SLQ4kJhScsWDQDq6uqwatUq6HQ6DAwMIBAICAMQmGE5UulIdSPDfbg5ADMbPQ2F\nuVgY2EsXanIyfD4fSkpKcPLkSQFX4/E4DAaDVFypVEqmKelWbyrVjKMXWaYEdNmaMXGeY3Auwlgs\nhhdffFFAXdrXaTQaXHXVVeIWxU24qKgIX375JT766COJGODipkiOpi8k+KnVasHJuFGTWn/o0CEc\nOHAAVVVVs/g0fMb+qe78+ou1eCKRHOL1euWkKygoQEtLCzZu3Ii7774bzz33HC655BKRBpNNSL3G\niRMnRCyzatUq+P1+XHjhhZg7d64ATgSNAMwi7mzZsgWPPvqoLBjO3unkTBlzKBRCaWmphKPU1dXJ\nfJ/5EQ8//DB27NghYBbfD4CQaUicoqEscQomQtPpiOQtKvYYMEyviH8l6JAp6vV6ZQr0+uuv4/77\n78djjz0m+AIAmZVzE9Pr9TAYDDh48CDef/998Xyge1ZTUxMsFgssFgusVquMHXktfT6fXM9LLrkE\nv/3tb2EymWTknJOTIy7fLJvJuxgYGBDJNclCWVlZwkLleNfn86G/v18IdpTSs1okKSoUCkmkQHoW\nBcfZrEQ5LfD5fJicnITBYBBA0WAwiAgr/cWqll4jCoUCc+bMQSwWQ3V1tbSYAOTeJxIJnDx5ErHY\njFlPWVmZTKKYt8JWNF3QxVyMcDgsQG0kEsH09DTa2tpwzTXX4J133pE2h9YEfP/TeZ0RUwyHw5Ei\nUJRMJuWBS78pLLEikYj00clkEtdeey26u7uhUqmwYMECfPjhh8jJycGcOXMQiURw5ZVX4vrrr5ey\nkmYuvNAkybzyyivYvHkz5s6di3379ol5BzcUAEJUufLKK7FixQqMj4/jww8/RFtbGyKRCIqLi9Hb\n2yv5ix6PBytWrMCDDz6I5uZmaLXa/5GXyMW0Z88ePPfcczhw4ADKyspkqqFWqzE2NobW1lYR9YyM\njIh7EDDTKhB841SCfpYs6akM5YPHNoPmJyqVSkRbk5OTgj2Qnn3eeefhk08+wY9//GPccMMNcnKT\nUcmTniE5AASg5Pvv2LEDr776KkZHR6Wf589QwMVqhc5aFEMxgoDKRcrGydQkUGwymeTesoe32+2S\nnpWVlSUj4Ly8PIm444bFqRIB6KKiIrz55puoqKiYNbniodba2gq/34+ioiIMDAxAp9Nh48aNuPTS\nS4WVyhYyFovh+9//vrxncXGx+FpmZWXJNMrlcqGmpgaHDh2SjYHv29TUhJ6eHrl+6SngRqMRxcXF\nwtmZnp7GsmXLvv5TjMHBwYc4cmPgB0c26XTR7OxspFIp0RDE43Gce+65OHr0KA4dOgS73S4hp+wL\nn3jiCZSWlorhp1KpFGCOqP6LL76Ip556Shyt9Hq97OgajWZWKEoikcDll18OjUaDmpoatLa2IhgM\nYmRkRGbURUVFmJiYELHQ3r170dLSgsLCQsE8+OLDbLFYYDAYsH//fiiVSiLQGB0dFU8FKiOpLm1t\nbYXNZkNJSQkCgYA8kFarVcRdqVQKdXV1mJycFFYkNQM0g/X5fBgdHRUVqsvlQigUElovuSmpVArt\n7e34/PPPkUgkUFlZKVqWSCQi5sB0ZCK4SaVpRUUFli9fDpfLBbvdDpVqxsUpOztbAGUCeVw8wMwm\nSbEe81SBmbYjfZy8aNEijI2NycibGw89JbRarXhCEssiv4bCLeIF1FksXboUF198seBH5GiQ8PXq\nq69Kbofb7UZDQwNuuukmGAwGuTYAhGPxxBNPIBqNStA0q0ulUolYLAan0ylWd8ReWFWxTaqoqEA0\nGoXT6URpaalUIdXV1ejs7MSXX36JSCSC2tra03a1PiNaDJbxzBWgKo4tBmfApORyxyVP/v7770dt\nba2MylguFxcXy2nO8otgHP0Pn3nmGfz+978HACm7w+EwHA6H2M+xFB4eHsbKlStRWloqiro5c+Zg\n/fr1uOyyy9Db2yvzdjoPx2Izkub77rsPOTk5kv3B04gKxmAwiBUrVuD+++9Hf3+/kMPoEsTSmN+N\n3ojAbH4AUXByBbKysjA8PIypqSnBKHJzc4UVylKZACfDf3k9OFbu6+uTjbOrqwsvv/wyrrnmGuzY\nsQMARMuQrlQkYMcJCUVO9913H66//nqhxpPmTiOa9ArE5XIJ1ZwTAgKkvIbFxcVScvN09/l8Qu1m\ndcNrxbaGi5DPVDKZhNVqlWeFY1eFQoFoNCqVBe8bDX+pTqVZERPEeX3TVa587k6ePIlwOIyKigqx\nuyf9nON83oNAIIBQKITzzjtPpjUUB/L7qlQz2agqlQrd3d14/vnn8bOf/ey01+YZsUEQ/U8HgHiS\nDQ8PSzRbUVGRbBYkKLF/+8EPfgCdTgeLxSITgHA4jN27dyMWm/FXpNBKr9fD5XLhrrvuwnPPPScu\ny7FYDH19fYKOky+Q7kOwatUqwQTot1hYWChBN+lW+larVdhyNptNHnS6JvMBz8nJkdN71apVWLdu\nnbQ1ubm5Yi1PujidkNjTc/zHDY5AFmncZG2SYKXVaqXV4AkFAAaDAfn5+ZgzZw5qa2vF7p0LhuYk\nBQUFcDgc6OzsxJ133olrrrlGTHm42XBUR22F2+2Gz+eTCctll10mG9jhw4cFeE03/SHdmFkRtKIv\nLi5GXV2dkIwY29fY2CilNu9DJBJBT0+PXB+mwnPCQa+KvLw8jI+Pi3yfzMp0VSu5Blz0xAbS3cyX\nLl0qzycnC4lEQngzBHUJ2Pb19c1qIfhPtr+khBsMBvT09ACAiNJoaENA3efzCfDr8/kwNjZ22mvz\njPCD+OMf/4iamho0NjbCbDYLRkDAKRQKSX4EX8QpAoEAVCoVGhoakJubi9HRUTF8dblceOyxx/DR\nRx/JiJI3WKFQCMhJmnG6mpN6CKr1srOzUVFRgYaGBmRnZ4s6k4Eqg4ODgi5zYXq9XtE5xGIxPPXU\nU9i4cSMAyAIyGo1C92XC0sqVK/Huu++KhoAPLTdHg8EgylaWx3xRtUq1KnDqdFcqlRgcHJTNpbq6\nWvJB04lFlDtTJEQcg4zQ6upq8YAIBoPYtWsXRkdH8dxzz6GpqUk2CoqWGIjDBZZeabC1ZM4HOSvB\nYFAs641GI8bGxuT60nqeRjNMXKd0mjZ+ZMfyvQBIJWKxWNDV1TULvwEgtG6OYfPy8sQBnVUEX11d\nXVCpVBgeHpZrtWLFCgCQViX9vScmJgRr4QSKmwOnT3SxTvfLJDlscHBQxHicwvHw5Hc3GAwCMnMq\ndTqvM6KC2LVrF+666y5cf/31eOSRR/Db3/4WH330Eex2O4BT5SofYnIjCGiyRFMoFPB6vbDb7bO8\nFPbs2YMvvvgCbW1tUmq3t7fLorNYLFJKk+vPEyYWi4mhyYIFC+QUUKlmTFGcTieSySQOHDgg5CEK\nhXp7e+HxeKTd2L59O55//nkAM9MDujABkNIzEolg9+7dMl3gYqa4Kjc3F3q9Hnq9flYVxcWUSCTE\nXJUS69LSUmHkcYGksympyOSDODk5iTlz5siDbDKZUFpaCgCzRFlWq1XGwx6PBzfccANefvnlWc5X\nOTk5kkuZzrUAIL01VbkApOIijhGLxURMx/4bwKzJg0ajgdFoRHt7OxYsWACXyyULiExXbsacogwP\nDwtISo8QlvW0+QNOnerpeZ+8X0yzon9DZWUlioqK5LpyM+TYdteuXTCZTAJY0lpQoVBg3bp1Eshs\nt9uFGJhIJCS5i89D+u/y3gEQotv4+Lg8s6f7OiOmGBqNJsUxHXDqS3O0SFUfFYQtLS2wWCwwmUzw\n+/344IMPxCKe4z/mGjAvQKWayT4kHVur1WJ0dFTKOArDKioq0N/fj/r6epw4cQI+nw81NTVQqVR4\n+umn5QFobm7GyZMnEQgE0N7ejscff1zi46amphCPx+Hz+SSijZsE4/WuvfZaXHzxxQAgvS0NZu+7\n7z5s375d2I7JZFLGukTlWU3xOqX7D3o8HlH08QQtLCzE0NCQ5Go0NjYiHo/LNUgmk5IrQlEaTYOL\ni4vhcDhEGJWRkSHWelNTU4ILcJT5z8g3NDU14Uc/+pGU6eQRkDz09NNP47nnnsOKFSskh4OmwcDM\nZsRRIL8X3a6pQSHfIx6Pi4UgLf34+5s2bZLKLxgM4vjx47jxxhsRi83YCXg8HnHdor7HYDAgEAhg\n5cqV+PWvfy24VTA445N68uRJfO9730Nubi60Wi0cDgeefPJJrFq1SrglxERoF/D888/Pqgb5GdOT\n2qqqqmA0GhGPx/Hll1+Kj+nIyIhwP9LVzX6/H3PmzJnVFrGaGRwcRCqV+vpbzmVlZQliTtPWZDIp\nAhoAYszC8aHP54PFYhHjE+7szMWge1O6r19eXh6OHz8uGwVl2pT3sqflglUqlSLkWrNmDcxms7wH\nN7RUKoUDBw7I2IvakM7OThEpNTY2or29fRbjc/PmzXC5XFi3bp3MtZnBUFZWJpsDORh8RSIRWRy0\nhuODQTPTWCwmoBdf5DLQlJfhLP/q9ZiVlSUjPbvdLoxCAPLvDodDjGu0Wi2OHDki42JWfX19fRgc\nHMThw4fxwgsvCChKRS3HdzqdDkeOHBH3JNquVVVV4dixY7I4WEWma15YBbFqo2V+Q0MDenp6kJeX\nh7Vr18Jqtc5ygVqwYAGuuuoqvPzyyzJF0Ol0UCqVkm/i9XqRTCbR0dGB48ePY/78+TI5UygU2L9/\nv1RDqVQKOp0O5eXlUnWyOlGpZkx2/vCHP0icYzAYlJi9UCgkJi8qlQoOh0OeeVY+bJnou0kZOD0+\n+fwXFxfL2JeY3um+zogWA4AwIcvLy6XMJXWaizGZTIoTMqm3HNlRg88Stbm5GRdddBEqKytlvEWE\n3uVyCY2ZElkuRvbw7e3tsjBozApANhIAolX44osvZIETHadwKJlMyrSBUXzMyXjjjTfwySefzFIG\nxmIxnH/++bIxEfk+cuQI8vLyJEiWGEhra6uAXuSJBIPBWUawNAKmZoQPHEtVlqhc5PR35CZLK7aJ\niQmpsogbMAyGC95gMAjvgfbr99xzD/7yl7/A5/MJpRkAXn31VfksHCNS6dnf3y+cj1gsJuna7OHZ\nQpLGnUwmYTabEQ6H0dPTIwcKrxM3Am7+dLOORqNyoIyPj2NwcFAWPq/F5s2bAczgRoFAAMPDw9i6\ndau4f/HAUigUIj1nEFNmZiZ+//vfyzPBait9bM5nKRaLiVsZ3z8SiaCjo0NyM9KTy+hiFovFBFvL\nzc0VHg3NfU7ndcZsEOwlCT7SVo1AGBc03ZZIc+bEYGpqCuPj4zI7Xr16Nc477zw8/fTTEvvm9/tR\nWFiI6elpdHV1IRaLiZcl3YPoJUnXaZ5mTHECIKO7rKwsHDlyREhNHo9HpNNZWVk4ceIEGhsbheWX\nn58vNGifz4eBgQFs2rRJFjRxj4KCAtTV1UkFwPel4pViq0gkIii4Xq+XB50u0HzQOT7jZ6ZZjdFo\nFOt8tgfUv4yPjyMzM1Peh60YT1FmTdDZKBgMitaBdnEGgwFerxd9fX3YunUrbrrpJmzbtg0Oh0M4\nDjabTfrsvLw8MXGlryVPYUYeNjY2So9NN+rp6Wnk5+fjq6++EmUowcX+WHm+5AAAIABJREFU/n6p\nxniNCTzfeuut+OY3vym4Ei3cWI2SnHf48GG8+uqr4lr2yCOPoKenBxUVFYK/JJNJSQUnqJ2Xl4et\nW7fiP//zP6Vq8ng8KCkpEbyLG2lWVpaY9fAZJoZA3Gj37t2C6RQUFGD+/Pk4cuSIVEes3tjSplee\n/9vXGbFBsMzlAkmnDZeVlaGgoAAulwv19fXCFiSQk06bZhXS2dkplNXGxkb85je/kWRnhp2yLGep\nSvPUJUuWwOPxCEil1+tRWVkpbsHkxkciMxmcbW1t8oCRx88ELXIoWEpzjKvVapGXlydu1Y8//rgw\n4lpbW1FUVCS2/kuXLkUsFpPqiHgJUX2FQoH6+nrhSdCFmj8XCoVEthyPx1FVVSWnMcN/GCbDU4/X\nlsrHqakpKXs5DeEYOhgMory8HNPT0zIaDoVCqKioEJMdLuJjx47h9ddfx09+8hP85Cc/kYqLmz/1\nNWx9CGCyeuSomPwMTipUKpVgQxRuFRcXIysrCwcOHAAAqZIUCsUs8dytt94qmhliIPw8FosFwAwg\n+dZbb2H9+vW49957sX37dgAzRjGs+iwWC37/+9+ju7sbwIwL1SOPPII//vGPUKlmskh4uBEYJXhL\nFS+/T0FBAcrLy2GxWDBv3rxZ4850Xc/Q0JDksgaDQZn+8DMT2Dyd1xnBpHzmmWceYsZDupiGeZ00\nJ9Hr9QBmFu3IyIgsyHA4LKNJhsuUlpaiqakJwExaVHV1Nerr66WkI62YZerU1JSctrRG58bxne98\nB/X19eLuQ1Xf4OAgnn32WSn3yEcoKiqC0+mUERWdqRQKhaRQUQTm8/kwMTGBtrY2OJ1OOJ1ObN26\nFTt37hQ9AXkcdECiUKiiogJ2u12Q8uLiYllcXMic04+NjQlD0Ol0IitrJk4+HA5jfHwcNTU18t/5\n0FOBSVYhJx10vSIGQHIPS16O3EhBpoM02YLsmclJ4MPP0jsSiUCr1UKtViOVSsnkiozNjIwMwQrI\nbky3e8vIyBDsZnp6GvX19aitrUUkEoFarUZubq5sckVFRSgvL8fOnTuRTCbldCcDlGE2w8PDoobl\niZ0uy/d6vXA6ndi7dy/++te/4u233xZ8oaamBj09PWJMw0OQCk+1Wi2O60ww4z1lu0GFaX5+vsTs\nUd1MPwm6UFGANjo6io0bN379HaWWLVuWWrhwId555x05NegJSSPT3t5eaDQauN1uQZInJiZQUVEh\nDxwXHFOlHn74YeGsc7rBctloNOKdd97Biy++KPH20WgUNpsNS5YsQUdHh0wQ9u3bJ74LJpMJer0e\nbrcbd9xxBw4cOCCaCPb7nBQsXboUBw4ckNPfZrNh3rx56O3tlTHV1NSU9N7pgTLMxUjvc/+VFUra\neE1NjZxcmZmZEqbDz7Br1y60tLQgEAhgaGhIcByCYBaLBWNjY7Kos7KyYLVacfDgQdkU6BHJhzUd\nkCPbMy8vT5y7OIKtqqqSVGq2DNx4WBmxXyazklTjcDiM0tJSqUzoWk7MqbKyUr5PR0eHEL7ITeBk\nRaFQ4IUXXsCiRYuktSIhjwfG+Pg4br75Zhw9elTGxqxieSqzsiA3A5gp52tra3HixAmZfLF1I0PW\n4/GgpqZGXKXIdOV1ZQWUnZ2NoaEhmEwmcZIKBoPQ6/UIBAKw2+0Ih8Pyt0jGMhgMKCkpgc/nw3XX\nXYeysjJMTU1h7969eO21177+Uwy3242Ojg4x9LBYLDj//PNFLJSbm4tPPvkEmzdvRiQSkQkHtfyU\nAFNXwN1/cHAQ3/jGNwBAph5DQ0NC5Lnyyiuxf/9+HDhwAA6HQ0aRJKhQsAWcYm6m4wKdnZ0oLS0V\nWjh7YjIm29vb5fc4OcjNzRVvyRMnTsgmSO4FT75wOIyGhgZ84xvfgNlsFskvH7hYLAa73S6nDyso\njjIJIHJ8SLVrXV2dWMplZWWJ8S032nTKdX5+PhYsWCDze34v8iyo1/B6vTJeTPdhYL/M7+T3+2V0\nSkt8vrjgCPISD2CvThCRVQr1L36/XzZSAMKnoI08Zc//8R//geeff14IXPz/XGgqlQrr1q3D9u3b\nRRVKAtKiRYvQ0dEhit3p6WmMj4+jublZ4hI5WeF9isVm3McbGhok6JmaC95HtkdGoxEOh0PsCVas\nWIGxsTF4PB45NOhdUVJSgomJCWnduNHE43EsW7YMq1atQjAYRG1tLc4+++zTXptnxAaxceNGIQoV\nFhbKDs85byKRwKWXXoolS5Zgy5YtOHz4sIym+P85HiUarlKp8Nlnn+Gb3/ymkI7oiE0gLScnB5dc\ncon0qXyw+/r6xOuvvLxccinIjuNGEQwGxQ7v2LFjQuLhKUlkmsnQOp0Ohw8fRklJiRidJJNJMTrh\niVZWVgaLxYJbbrkFra2tYmab7uIMQIhEROmTySR2796NnTt34tChQ0IW4rUdHh4W4IrgGisEUoBJ\nvMrKysLixYvF/JeOzzxN+d7j4+MCijLtmpRsKi+JlaS/B/vyZHLG1p4VAwARZKXjEBwPVlVVCReA\nYzz28nSestlsszCbRCKBr776Ch988AGuuOIKuN1uWcTAKT0D6fKcvuTl5YmehClX5IdwHMlqNz8/\nHyMjIzLZAiDAL/0p0tPI2GJRbxQMBqWq47QEgGRsUiNCpyxWkbxG4+PjuPbaawXj+L96nREYREVF\nxUNE0ysqKsS8A4CcVG63G+Xl5bjggguwdu1aoRtTpWmxWMSGnj1/NBrFkiVLxJYsFovBarXC4XBA\nqVRCq9WitrYWbW1tkrYMzGAW9LC0Wq246KKLhAZNJWYgEMBrr70mgh2SvGjHptPpxOSEvSVdp4uK\nigRctNvtworkBOOSSy7Bvffei9bWVhQUFECtVouylGpVqhhZkeh0OuTl5QnA+c1vflNi8WKxGKLR\nKFwu1yxlak5ODrRarWA/gUBAjEeYr0mz3L6+PmRmZkqVUV5eLhtgaWmpmKXyROU4NycnR2z9uHFQ\nhcnKiW1GVlaWMFOVSiXKyspkQsCRJau/yspKjI+PIxqNwmw2S7XHqqW4uFg8Ky0WCzweD3p6erB6\n9WqZgtGijVWpRqPB3/72N0SjUfkepaWlOHTokIDWtA2kSpN8A+ouyA7lxM3hcIhzGZPg6bJtMpnE\nZs9sNgvo7nA4UFNTI0Y6brdb1L2sxBiHmJmZidraWrEcPO+882TD+yej9+uv5iRJhmEy6cAVv2gq\nlYLdbhcT1lWrVuEXv/iFmJQ4nU55AHmyZGVlYdu2bdDr9QJOkR/P+TcArFmzBjk5OWJ4qlKphEi1\naNGiWXFnwMxDsnXrVoyOjgKABJ4QLG1paZGbTYJQMjkTBGO32zE6Oiry4OnpaRw/fhyxWAytra24\n7777cPvtt2POnDmSGsbvQjdm8jYAiMkIQUmFYibAt6SkBJdffjk2bdqEmpoaqW44XzcajQIKEiXn\nhkA68PDwsEw2SBlnLofNZkNpaSnMZjPcbjfKysqEHh2JRFBYWCi/Q04FgUGyP+neTSctqiGp4CUd\nOn2en24zyFZBrVYLwS3dcYzfNyMjQzQyr7/++iydhEqlkuvp9/tx5513znIgJ4WfxDMqjzkK52fi\n5kj/VB54xBcSiYSIu0ipJvhO0Jp0dk7XSMUnU3Z8fFwEW6SOZ2VlYWRkBAqFAt3d3QgEAqioqBDD\n5NN9nREVRDgcfoj2ZTabTRSc09PTUlrTADQUCgnYU1hYiC1btogtW/rUgAvIbrejtbVVkHTqOBiJ\nlkgkUFFRgZGREZw4cUIQdAKfra2tqKyslBudm5uLrq4uPPzww6JGpFsyPRgKCgrQ398vyDpdp3hC\nMpyYjEiVSoXzzz8fDzzwABYuXAi/3y96EprjMrae9OaRkRGRjk9OTsLlcgndnCGvXPQtLS34/PPP\nZdFMT08jHo/LpIU6B4YVJ5NJ1NXVIRAIiAckqyqv1yv4APMcRkZGUFRUNCvJiZMULhSn0ymVXGVl\nJbxeLxwOBwoLC2VBuVwuabdyc3PFn2FsbGxW+HBmZqZQ6A0Gg0wAOM0wGo1SXZSUlMwC/IaHh7Fs\n2TIp81lFsEWrqqqCx+OBy+WSSgiYof+z0lOr1eJ6Rpdxv9+PefPm4eTJk1JllJSUQKPRwG63y3SO\nG5xOp4PT6ZQJCT05R0dHhRMRicwEDlksFgFnTSYTmpqaMDg4CI/HgwULFmBgYEA+Az1BeWgYjcav\n/xRj165dKUpqA4GA0FlZPQAzo83MzExMTk7iH//4B95//31MTU1Bo9GgtbUVu3btEs2FQqGATqcT\nxWFmZibefPNNGT/W1dWhra1NTGHMZjNGRkZw8803S/YD+16LxYK3334bAHDw4EE888wz+PLLL2W3\nj8Vi4khcUFAgHo4FBQVoamrC9u3bBViiMOzIkSNYunQp2tvbhe4dDofxwx/+EA0NDSgvLxdcgb08\nX+kZCHx/lt28VrTmp9R4ZGQEt912m6gFOTFhSzcwMCDCLAAS1NvR0SHioMWLF2Pfvn3i2MT4v/z8\nfAwNDSE7OxuVlZUIhULSmxPQM5lMmD9/vtje5+fn45FHHpHJETDDKXjiiSekEhoZGUFpaaloJAhA\nc/LR39+P6upqnDhxAiUlJTLVYjYG8SkKxKhK5VTjv//7v2dVEPR8YKvT19eH6667DoFAQHQwdLBi\n9UKPUP4dunklEglpv6jUtVqtUimmK085oaE9vkajwcjIiMgDwuGwcIQmJyelHSspKYHRaERXV5e4\nZAWDQcyfPx//9V//JQxcAF//KQbBokQiIbb1RNrZ2z377LOYnJzEwMCA9HdLliyBzWZDW1ubjAI5\nfaBztEKhEFrzhg0bZOERBGW1UF5ejsHBQZSWlootu06nw+joqES29/T0SFnLSD0SjEixBSBW6gQk\nqcwLBoMyliTbMjc3V0Zyf/7zn6FSqVBbW4tYLAaz2SxtD522AIiDdjpxht+Ji2JychKBQABdXV0A\nIJsdQUqdTifXwOv1SnpXVlYWOjs7Z4W10BBXpVLBbrejpKQEAMT+n5UQKwFyGXJzc+Xk7unpkfFg\nU1MTKioqkEqlhHS2aNEi/PGPf8QTTzyBtrY2ARHp7ch2q7i4GPF4XExfORIln4WtAn83KysLpaWl\ngqFwysLvQYIW2wU+c3PmzMFtt92G559/XioHVoWMKyQb1O/3w2KxQKvVikCLhrjEaIaGhuSeulwu\nsYvjBswgqNLSUvT396O4uFis/MiKZYRfS0sLVq5ciTfffBMqlQpmsxljY2Mwm80SRMwW93RfZ8QG\nQabd8PAw2tvbMTw8DAAYGBgQHQB7VxqCUO7N36+rq0NZWRm6uroE5SWKXlJSgo8//hhr1qwRwKqu\nrg5dXV3izMyymTsxx1Y6nQ7d3d0YHBzEnDlzRJOfmZmJ+vp67Ny5U8Ci6upqWSR0u+L40mAwoLi4\nGKOjoygvLxfTVfo2VFVVyWjRbrdjZGQEvb29mDt3Lg4fPoza2locPXpUFKx8URBGsGpgYEA4/cXF\nxdJu1dbWorOzE8uWLZO0K5vNJoClw+GQE3t6ehpGoxElJSWw2+1oampCf3+/6F8ASHYGAEHnWX2R\n78AFAEAqMofDgeXLl4uLdrpRUFlZGX7zm99g8eLFAjaS9UjCFzcxYIZDQpHV+Pi4kNFI0ybGQj5D\naWmpTKG2bduGW2+9VQxo+F6kp/v9flx66aXo6urCxx9/LAZEZDFyvM7QX7Z+JFCFw2FYLBahpUci\nEeHHsPWqqKiQg62wsBB2u102i9LSUuzbtw8Wi0Wo/SaTSVzXPvroI0laZ34tcRtO9jjBOp3XGQFS\n3nnnnXj44Yfx6KOP4uOPP0YkEsHY2JgAQvQiZGpWYWEhqqqqMDo6OsulqaurS0p/GoAAQHl5OSYm\nJvDqq68CgFCpWZKTW8ANhdRvAkjcQGhdRl+Bzz77TCqSvLw8ybOsqKiQmTctziiPZs/OBy07Oxs5\nOTnSQgGQLAq73S4jOer7WUnQ+bm7uxtGo1GckziOpJ8lS3NSpzs7OwFAWjg+RASEOVUg4QoARkZG\nMDExIZMchgdxE+aJmk4q4ncjAEg/DWBGzcoqiwpTnqQkSpG/QADSZDJhYGBAqrFIJIKSkhKo1Wqh\nKvOe1tXVCfM0JycH8XgcFRUVMBgMUnrv3bsX27ZtE/Ee7xEwu3278MIL4fP5ZBpBMJVEvnQgnSc3\nae6UcHM8TV9Kthl9fX2YmpoSjkRxcbHkrZw8eVIW97x58wTX4EY3NjYGk8mE5uZmyRtlC3b06FFh\n957u64zYINIXc3Z2tgiqmFNAMgiZcTQm9Xq9qKqqEoAwJycHfX19sqPSIKW3txd5eXno7OxEX18f\nAoGA9IAMJUm37aI6kH/H4/GgrKwMTqcTJpNpVqDs/2/vamPbLK/2FduP7cRx4iR2HCe2Eydp2jRN\nW9qF0hC+BusqBh1rhbaxaWysCAZj2tgGY5tG2Sid2rFNSEgDMdpOjI0hPqZOgkEFAkpW1DRyCGnT\nOE3SxLHj2HGcD9tx/JH3R97r1Nn75s/b/SivnvMLUEnqx8997nOuc13XyRdZRaNRsRKjSWwisezO\nHIlEBDADlndHABCMgVMbKjaJKfh8PlRXVwtRh4YwmUwGzc3NKCsrQygUEjYncYdEIiFIPRfylpeX\nS/Vht9tlbMbynG2QoiiyvYxVG+3ty8rKRHdCJuDExASKioqwdu1aufGZWGkeMz09LQj8mTNnZAJU\nXl4uP5s3/X333QcAQgcnpZtu1JwmVFVVib8CsSfS2Wm3xgNMxSP1OoODg3jmmWekTeCfyVfQsmUA\nloFdTmo4DeMkgy0y/T50Oh02btwoSZnrBPg+K4oitPNMJoPS0lL09vYKRZxjUZrtnjhxArlcDiaT\nSSYjrEx4wVBg53a78cILL8jU7FLjskgQ1dXVQiipqamRxTMs00dGRgQQIyuPL4VOpxO23ebNm2G1\nWrF161aZy+evjh8bG4PX6wUAhMNhOJ3OFUa13/rWt6REZMlLJmBpaakAZufOnYPBYBDLczo88yAM\nDw+jsrISbW1tSKfTImo6ffq0ZHyv1yto9vz8/ArePXDRd1Cj0cgez6KiInzyyScyE3/jjTeQTqdF\nO5IvG6eBLfEJ7qbUaDRwu904efKkrLhjcgiFQjJ1IE/ihhtukMObSCQwNDQk/TpNfKi+5I3P6oJl\nOcVq/D3RaBSHDx9e4clJkK6oqAjXX3899uzZI5VSUVGRlOb5ozvqIujTyVaLwjH+PegTQTNh4gHp\ndBpPPfWUVACKoojnAslPPT09gmXNzs7KFI3vHslfPKzl5eWCv9BTc2xsTLa08Vl4PB7BZwg+Tk1N\nrWBw8jPyoEcikRWb3nO5HN555x0xizGbzSgoKEBvby+8Xu9/xA/ishhz7t+/f19FRYX4CdAjgMpJ\n0qd1Oh3C4bCUpZTQxmIxbNiwAf39/bDb7Th9+jQcDoc8OBqrGI1GxGIxfOUrXxHgh+Wkoii4/vrr\nRQre3t6OkZERWVLj9/vR0NAgZincVK3RaODxeHD69Gnp0V0uFwoLC3H27Fm43W4B2GhrZzKZBJDl\nhi32+kw258+fR3Nzs/D/M5kMIpGIGO8CkBeUmgeNRoOpqSl4PB5MTk5i48aNGBsbg8vlknEsABkb\nG41G2f+p1+sRCoXQ2NiI0dFRWS/Hm41jS8rVw+EwjEYjotEonE4n4vE4wuGwgHgswbm/kwcDgJCe\nOjo6ZBEu+R1sxTo6OuB0OnHixAl58YPBIFpaWlbYuJWWlor3BisEErmIBXA1Ac2BOblYWlqCz+fD\nsWPHoNPpsGHDBiwtLYlfpM/nw759+5DNZlFZWSmGyLFYDHV1ddKOMgnHYjFYrVbMzc3JLg5yfNju\nkGQ1MDAgW7fsdrsY85CL4vF4MDg4CJfLJWeAAi8SzwCIvR5l/ufOnUMwGMT58+exdu3a/x+29zzo\nNIDhdCDfFMNqtUqpy/+u0Wgk04bDYQAQoRbNYQwGg0h/W1paMD4+LiUtdxmSVZnL5fCFL3wBMzMz\n8Hq9UBQFbrdbNmjxZS8sLJT+nJRegppr1qyBoiiyYZt9K4OeDgSxFhYWBGyzWCyYm5uTGT9NWvLB\nvnwyzebNmwXFJnuULEgAsqCGUu/h4WGpMvLZqrwNafhKTwX+Hnor0CaN5CGdTiceDtSsABDWJ7Un\n7KW5g5LP4cUXX5TvgZUTCWupVAo7d+5EU1PTiqkAt5MTk+IKBLYv1EXw55KFyZs/EomgvLwcdrsd\nJSUlsFgsSKVSOHr0KDo7O+XSmJubwyuvvLKipaAlHw8qsFz98n0k3qEoijyThYUF+Qwej0dwNYfD\nAbfbjVtvvRV33nknrr32Wqmi3G43GhsbpZXIZDKiDwmFQjKyJc2b29KTyaQwVKPRKF5//fVLPpuX\nRYKw2+0YHR0VGev58+extLQkjD6z2YyGhgZs2rQJAMQUlpoKWnBRDs6emrp67rak1DYQCKxwbOKt\nQ+R/06ZNwr6kzNZgMEgLEY/HEY1GUVlZKYaqROVpRjsxMSFKVJfLBaPRCL1eD4/HI8tOtFqt3Er0\nliCFGVg+4PkuSxQ0sW3iXD2VSsHv92N4eFiQc2D5dmFJTpcojhr5eSwWCxYWFlZY0HNMDCxPSTo6\nOvDlL38ZN954IywWi5TSpEqTjcmDUl1dLTcc6enz8/NobW2VvjwYDOLYsWOSiPMBNf5+RVFwzz33\nSElfXV0tI1DiQ+QIABDKN2954OL+CoKlnDDp9Xr4fD4ZOS8uLuLQoUNCkwaAwcFB1NbWYmFhQXwz\nkskkFGV5B0VpaekKa3leBJwo0ECns7MTxcXFGBgYQG1tLdavX4877rgDv/3tb3Hfffdh+/bt+N73\nvoe9e/fKiLizs1OqKVbQbBkotyflPBwOi9U9N5/PzMzgvffeu+SzeVm0GEePHt3HEV8ul8PExISI\nf0pKSkTgMjAwIAeIPa+iKLDb7QiHw6iqqkJvby+WlpZQX1+PQCAgBi4FBQUCTjY2NuIzn/kM5ufn\nwaXB+RuRz5w5g3Pnzsk4k4KaSCQCnU6HkpISuN1uTE1NYXZ2Vmz2q6qqxL+AFmQU5RBE5WHfsmUL\nrr76auHlt7a2YnZ2FjabDZlMBnq9HtnsxWWsdEWam5uDRqMRlSt3MDKREtQjKaqkpATDw8PQ6/Vo\naGgQt6Mrr7wS3/jGN7Bp0yZx3+aiIC7Qvfrqq/Hoo4/i5ptvxjXXXIPrrrtOxr78vfSPKCkpwcaN\nG8Uhipu++Pfn5AGAVHYkFH32s5+Vfycdm/TsxsZGDAwMCEuVqwpIxiIturGxUTQxlK8zyQCQcl+n\n0yEajcrBj0ajiMViqKysRCAQQGNjo7xjL774Irxer2z2Iv+FDFdaxhmNRiwuLgqlu6CgAC6XCxMT\nE8LgZdXa0tKCAwcOYNu2baIDoRZmw4YNeOWVVwTcJnVbq9WisLBQlkaTXavVakWcxaqUxkRkBN9z\nzz2f/u3e+/bt2xePx1FdXS1ZkE6/ZrMZFRUV4k7EG8lkMsnh1Wg0Qm0FLgpoyGcIBoPQarXQ6/VC\nk73mmmvkMOdyOVkoW1hYiA8++ACjo6OynToQCMjLTBYccRLam01OTkq259SALzCNSkwmE+rq6vC1\nr30Ne/fuxbZt29DR0QFFUdDQ0IAbbrgB1113HXbv3o2uri4Eg0GRc/NQjY6Owm63i8xcr9dDURTB\nKVjeUsXICQ/t37LZLO68807cddddqKurE+0DDWvYUzscDtx///3iL0mn5g0bNqCtrU14GktLSzJl\niMfjCAQC4o/JCYnBYMD27dvR39+PTCYDi8UiRj/0+3S5XFhcXBRiFBmRGo0Gra2t+OCDD2Q9H1cX\n2O12IT45nU50d3fDYrEI2EqRUzKZFAUtkxZp3TyMJOh9+OGH0Ov1OH/+PN577z3E43E0NjbKXhUC\nkMAygcxisSAQCOCKK67A4uKiTHk4iaJ6uLS0FFVVVfjd734nFVMymRSl8NLSEgwGA/7xj3+IkU4s\nFhPfioKCAnn+dEEjT4Vj19nZWRkVkxH63e9+99OPQRQVFcHhcKwgOHGcSPp1IpGAxWIRMGlkZASJ\nREL6+DVr1kgioG0ZfQ0ASH9OrsOJEydWjIEotaZQRqvVys/jvF6j0aCpqUls1YqLizE1NSXehMDy\nSzMzMyOGMGvWrBF/wgcffBAHDx7ETTfdJJMFGqjedddduOGGG9DU1IRNmzbhiiuuQGVlJSwWi5ST\nlKgvLCyIM1UisbzgpbGxETabTYxqiRl4PB5YrVZ4PB5otVrs2rULX/3qVwFghcszgTZOK8xmM5qb\nmwFcXFfHNmndunU4cOAAbr/9dklcdEeihJstF5+31+uV6oSCKmISr7766oqtW7Rtp/ampqYGd9xx\nh2ALNNGhZ4ZWq0VfX5/wSegl6Xa7Bd/iaNztdsukg4mEXgu8hf/0pz/hj3/8o7wbsVhMJh1sUdju\nsf2JxWJi6ptIJMTtikmttrYWP/zhD+X/yadlU98xNzcnAGm+7SHH+1QYkxFKYZxOp5NxLfkqdB+/\n1LgstBgWi2WJ/R11FKOjo3Lr8UWmDwBv5pqaGrFgSyaTGBoaQkVFBSYmJsSAdmRkRHwRiouLhS1X\nXFyML33pS9i9e7esprPb7Th06BC6urpgsVgw8t9bqEhq4Zyeq/sURUFzczMGBwcFSHO73cK4YwJy\nOp342c9+JotseAMxgsGgrNYrLi7GSy+9hCNHjgBYJk3NzMxg06ZNiMVi4gqdTqflViwrK5PdDPlU\n8traWvT19UmCyGazOHLkiFRYNNgNBoO46667BFQkd2LPnj2499575ZYmSYeEoHg8junpaRw7dgwH\nDx5EIrG8QHZwcHDFoeOtT/8L7hWtqamRG9DhcODIkSMyZiWHgnTyoqIifO5znxPAlYa5TBr9/f1w\nOByyhJejcQC45pprcPz4cZFXU+sTDAZlkxsrP066SKk3mUwIBAIZ7/MXAAAVr0lEQVQi1iOVma3N\n1q1bMTg4CEVRRGzlcrlw4cIF2O123Hvvvfj85z+/onXSarUCzBIoHx8fx8svv4xIJIJYLCbVQCQS\nwY4dO/DWW2/J5m8yRDnNA5ZXKIZCIUkYnJjFYrFP/3bvZ555Zh/lz9RSWK1WxGIxJJNJOBwOORiU\nFxuNRqRSKREfDQ4OCsFEr9eL6QnHdwUFBXxgIgHu7++Hx+OBxWKBxWLBE088gffff19eCgJqHC22\ntrZifHwcBQUFWFpaEmdt9qMkTfHlLS8vx9q1a/Hkk0/KTUcGZX5QSlxUVIQ333wThw8fhtPpRCgU\nEjUo+2sCg0ajEQUFBYhGo6iqqpIyOZvNCoOSZC4+g127dqGjo0Oei06nw9LSEkKhEA4fPoySkhIU\nFBSsSLhLS0vYsGGD4ByLi4srJkxMkmazGV1dXfId0USXOAqnS+Pj4/ISs1znmDSXy+Gqq67C/Py8\nqCgpespkMjh+/DguXLggExcAYpZCAJIVFFu80tJSSU7EoojdsK3gIiICmvlrDRRFQTwel3aUDND8\n1haAbJ2nK9ratWvxox/9CNddd51YC+STo1it0iRp3759MBqN6OrqktbV4XBIRcpJE30l6APKNX35\nkzXSzfV6PR588MFPf4vBG5H7FQKBgMzSrVYrenp65Ia3WCyyl4GHhuM7Timamprkn4Hl9oIvLb0F\neHs+++yzOHToEL7//e/LLcCszJ0RoVAIa9asQXd3t9xKwDKvwel0CrBIqztyEzweDx5//HExk/13\n4kr+C1daWooXXngBzz33nJSdS0tLmJ+fR1NTkySF0dFRcdyi38L4+DgGBgZEBJTL5dDS0iLiMe5p\nYJvBZMQKhzP2iooKAQGbm5uRTCbFt5P2balUSiThnAJpNBrs2bNHfh4ZkLFYTNijhYWFMinhsyU5\njtvOjx8/Ljoc2giSLJZOp7Fz504BJDk54XjUarXKAiCTyYSysjLY7Xa0tLQgHA5LywlgxeSBGgdi\nVhxf2mw2uN1uGSeyNeHoMZlMikWcxWKRpEJc5dFHH8XmzZtlQmUwGARbYIvA1jMQCAjWReyIo1WK\nFevr69HY2Ija2lpMTEwgHo/LcyatHIAsNWbldalxWSQIah9SqRSampqkpaCtOHdvAsujP5byZLjx\nSw6FQrBarUJgIihF/UB+yc8Xnl8KPQ85hweArVu3YnJyEuPj44jFYjJqIqfCaDTi448/hsPhwMTE\nhOzySKfTaG9vxy9+8QsxjPl30cz8/LyYsSQSCfz85z8XBBuAeBLyYJWVlWHjxo2STIhUs30iGQlY\n5mb09fWJVT8ZhS6XCwD+h5EITU6YqFkdENB75513cOTIESSTSeEVcGEtb8JUKoW7774bAAQIVhQF\nXq9Xensefhr4EsxjrxwOh3Hs2DGk02mR/eePom+55RbY7XYMDw+DLug8tGazWfaXcFERKfM02+Fa\nAX7f1I5QHs/EqSiKVG/coE0gmE7iiqKIRRwFcmSpPvTQQ8LIpEiNOzeZZCnRDofDeOqpp2RUTz4D\np0233nqr4E/Dw8OCbZFUNjIygsXFRTknvCzJZ7nUuCwSBCcSGo0GAwMDSCQSKCgoQEtLCxobG4Ws\nQsEMzTzzHZ6pIMw3B6XFm91uF+CLQiODwYDa2lqZPmi1WvFfPHnyJAwGA86cOQObzSYkLrpd5XI5\nnD17FtFoFJOTkzh79uwKwKilpQWPP/441qxZI+5H+UFJMF/ahx9+GK+99hpMJpOU8rOzs2hsbBTe\nBAAZ3bE/ZYKkkUgqlUI0GoXJZJJkQWMWh8MhJf+/Jwj28vm7SrmXlB4I//znP7F//35JCPPz8+jv\n74fFYgEX+ezevRt33323cFN4k8fjcfFVIIeDI7rh4WEB46g7IOBLB3P+TpPJJPL46elpBAIBGSGy\nWiKfhgf55MmTcLvdQqgiz4MHNJ1eNhHiciMyGUmtT6eXzWd9Ph8SiYRUoG63W5ymOA5vb2/HT3/6\nU+GLMDFwvM6ETRp6d3c3HnnkEVH0ktKfTqfFSIeWe6Ojo1AUBefOnUMsFsPU1BQaGhoEQOcIfH5+\nXkax/4m4LBJERUUFbDab0HPXrVuHWCyGgoIC9PX1wW63o6ioaIVYCQA2b94sM2DSVNlexGIxYbDx\ngbW1tUGn02FwcFBKYAKP/CKoljSbzTLCs1qtSCaTaGtrkwTEMo7TF2C5XF27di1+85vfCOU2Pzmw\nLQIg9NvHHnsMw8PDqK+vF/ORYDAonIuZmRl0dXXBZrOhu7tbnIhYtpN5SpLY5OQk/H4/SktLUVlZ\nKcpMJjrePAxqFQhscQJBn0aOPvV6PT755BMZVfLz9vf3S1tGYHPv3r2w2+0iQONkhOM3PhOTySQH\nNR6Pw2q1wufzrdCj5BOXPvzwQySTSbHLs9vt0m+zGqMYihMK0uJ9Pp+Ae2azGRs3bpRxLq3jOaVg\nVcfvicStVCqFvr4+uazcbrcQtnbt2oX9+/eLnQCB3kgkInwR+l9YrVa8/vrreOKJJ4SirdFo0NHR\nIcBjIBDAyMiIqJqZ8ClmTCQS6O3tRSqVEh8TAIJXARdZt5cSl4UfBHX+lFTH43EBc0gSokS4qqoK\n4+Pj+M53voNt27aJkOfEiRPQarW4cOECrFYrrFYrTp48KaOk8vJyvPvuuzKWAyAuyWfOnBFK9fHj\nx8WGnOrHRCIh6sampib4/X4ZsbIUpS8DASROYxg0s4nFYjh8+DDeeOMNaLVa+dyKosiej2g0itbW\nVvzrX/8SqTerh4WFBUlqJSUlIjHv7e2FVquV58Obkci8zWYT74T8YFvh9/ullOY4mKY7oVAIw8PD\nMJvN+MEPfoDy8nLs27dPKjT+bt6uN954I2666Sa88847OHjwoBz4bDaLqakp1NXVYXJyUhIob/1I\nJAK9Xo8HHngAv//97yUxAMvs0aeffhqhUAh2ux3RaBTRaBTNzc0y4iT/hBUKKfDDw8NioU/XsQsX\nLsiGs+npabS0tCAUCmFoaEh0OpTKs2IrLCzE5OSkCAmj0Sj279+Pjo6OFa3DunXr0Nvbu0KlrNfr\nYbPZ8O1vf1uqAMrY+T0MDAxgbGxMquHGxkaMjY0BABoaGoSPwhaE/pakX/PPkZ6fT/H/v8ZlUUGM\njIygvLwcTqcTZrNZVorNzc3B7XbLg6ZhRllZGVpbW9HS0oJt27Zh9+7dOHDgAH75y19i165d4m3J\nm5KjNYPBgG3btkml4PF4UF1djcrKyhWeALSgp/aDAOrAwIDslSRYSVCUXg9f/OIXRQkIQPjzc3Nz\n6OzsxAMPPICXX35ZMA9FueggxZaDOyjy2XFGoxEul0sMW5qampBIJLBmzRr09PTI58s3RPX7/UJe\nmp2dFR/O/CAgykPMSoptCMtx3ubpdBqhUAhPPPEEent75cUkT4D2aQaDATt27MB9990nOAIdn8gR\nGB0dFaCWRDY6Nb300kvS9/NQczJBRiUXzLCioy9FLre85JmLhhYWFuT7oJENcSW6W586dUrEfQRQ\nuXuFS41TqZSsgiTBrr29Xfg7VVVVqKmpQX9/v7xL/PtWVFTg5ZdfxkcffQQAMqZWlGX7/6KiItTW\n1spWLEq4iS+xIiUJjtgGtUZDQ0PIZDI4f/68mNb+J9Scl0WCoDM1NzDRqZmAGQ1dFhYWhBeRb9RB\nVWJrayt+8pOf4LnnnpP+ny9nJBIRzURNTY2YdRBomp2dFdKRRrO8tJbYA19uEliouWCvvbCwgMXF\nRaxbt07MTjie4xo1k8mEhx56SJbtAhCCzPj4OGZnZ8VxyGKxiJinqalJZvsUb3GEmL8kiP4RlHQT\n4KPnJiuCfw/e0vmKQx5MjnnJIaH5SS6Xw4ULF3Dw4EGpyoBlYxmayup0OhgMBtx6661iR08PBx56\ncip4KBYXF4VdeOTIEZw4cQIAREIeDAZhMBiEdj07OysOU/mCKb4X+TsvCWxTTNfU1CTemh6PRyYi\ntHWjGQxt+thGVlVVIR6Py/iYlgTEQTo7O1dYAZaVlcFgMODQoUP4wx/+AADSUvAy4rpIenvyudM2\nLpvNShvKd91msyGXy4lhrU6nk8uvv79fqs1LjcsiQeRvrzKZTGhra4PRaMTWrVsF0OPsmZx9n88n\nSkIAkq3psUCHqh07dkhCMZvNOHXqlIzOMpmMvAjEFNiHM7FUVFTIqjOWbJz706mangUclxFV9vv9\nYuDy5z//WZyXaTHW0NCATCazQgnJPpjVBUtRGovkYx98kTjRyeVymJqakp2kGs2yTT2ro/ySncGW\nguIiflZWDjR2oecGfSnI1nz++efx5ptvys+KRCKYn5+XKVFBQYEcPibZbDYryaGqqkqYr1RxhkIh\nTE1N4cknn5QWLBgMShW0tLQkVRLl8AaDQXZgEsXnO6MoimAU4+PjUp3q9XpUV1cjm80K2FhTUwOH\nwyHOXPQsZRKIRCIYHByU75nVzfT0NKampmCxWKS9pFnxj3/8Y7z22msCjlNRSiu5gYEBUfUSrM8n\niPFiIE7idDoRDoeh1+tRX18v7MlTp07J9/K/jdX/L3FZYBCpVAoejwelpaXST5LCTPPYRCIhvZfd\nbhf2IwBZlMJ/5i24Y8cOtLe3o6OjA6+++iq8Xi/Ky8tFzxAKhWT2XVhYKEw7HiifzyejQZZs/J0c\nqTqdTnHAstvtMuXgDLuoaHkz9KuvviqVCNfPUcevKIoQv0jsYfVBPgdLb1YP7733HhRFwdDQkJSc\nZDjmI9j9/f2w2Wwyfs0PthZMrgTcOHsvKysTVur8/Dw8Ho9MDfJHlMeOHUM0GsVtt92GbDaLaDQK\no9Eoo762tjZRFrKC4/qBsbEx2aHBZM2x7vT0NH71q1+htLQUZ8+eFfCOZDNWBQ0NDfD7/dBql9cf\nlJeXy5iX4C0T/PT0tOwI4WRlcHBQkns4HMbMzAxaWloE7OXf22Qyia6CPg+HDx/G1VdfDavVKgt8\niHkdP34czz77rDxvbiMDLvJwqBXi8ydGw++alwoAdHZ2im8EAV9WXaz0OIXK14xcSlwWCaKyshKL\ni4vwer3IZDJoamqSW4FZNN/bcHh4GNlsFu+++y62bNkih8ZoNAopKRgMivfAtddeiy1btuCjjz7C\nSy+9JF8g3ZEXFxdlY1ZfX59wDyoqKgQU4iiR/XJ5eTm6u7vFSdjj8cjyFM74FUXB0aNH8fzzz8vo\nkQdyZmZGSlRFUdDW1iY3CQ85WYbcScmbky2F3W6Hz+cTrAJYfgkpNCOgCUBaj/ygNJrPlZu4iIHw\nz/CG7+/vR3FxMXw+n7guc27/97//HbfffrvcrOl0Wka2X//613Hy5EkBDGtqagRp37p1K06dOgWr\n1Sqfm5/N7/cLu5YUdbYxpKWfOXMG69evl0kUy+1IJCKEL6/XC5vNBr1ej5KSEhl10++TiZnyesrn\ngYuGNBz5coer2WzGunXr8Le//U1G1Nu3b0c2m8VVV12FkydP4v3334fD4ZBkRfdtUskJAgMQfAW4\nmLjZamu1WsEk2PaSlZpv6gtc9Dglz+NS47KgWj/99NP7gsEg6uvr4XK50NPTg/Xr14sbFM1b6aSj\nKMtGo9PT09izZw/0er0s0OWBs9lsqKiowOLiohyC6upq7NixAzt37kQ4HMbQ0BBGR0dRU1ODUCiE\ncDgsnoLFxcWor6+H1+tFYWEhWltbcebMGSFgtbe3i8wcgGgayE3461//isceewydnZ3IZDKCqC8t\nLcnhp08ll8bwZaVBCKuL+vp6dHV1SVltMBjgcrmkzCTjkp/b5XJhbm5Oev/x8XHU1dXhlltuWeH1\nQNHXxx9/LIff7/dj7dq1mJqaQiwWQ3l5OQKBgCRQvtQVFRUYGRlBdXU1fD4f1q9fjyNHjuDdd9+F\n3W6H0+nE1NQUkskkbr75ZsRiMZw6dUqEdlyEdO7cOaTTyxvGib+w7Cd9mWNHVghXXnmlTBqy2ays\n3/P7/SguLhYV8Ozs7IqNXsFgENdeey26urqEiRiJROB2uxEKhVBdXS0iKSpgiWNxkZHT6cTExAQA\nYHx8XFrIZDKJwcFBhMNhvP3223JJxGIxFBYWikdDRUUFzGYzJiYmJNFZLJYV7wWl8qTr06W7tLRU\nWlQ+33g8Lr4lNL1taGhANptFc3MzvvnNb376qda8cZi5NRoNvF4vAoEAtFot6uvrpYemV+TMzAzq\n6urw61//WjCE6elpKV2p6HM4HMJXZ/KorKzE/fffj71796KoqAgTExPyhXIxCYMKQYrEgOVVa2fP\nnsXQ0JCQW0gLPnr0KB588EF89NFHYq7C+Tyl0G63W9bAkwFJdJpBB2uySCsqKuQlApYP98zMjHA0\n6GwdjUYxOjoqjlrUcgCQ0TEAOXS8rQoLC2Gz2aDT6eD1egWZZ1tFTILPuqenB0VFRRgaGkJZWRnG\nxsbg9/sRiUTw7LPP4plnnkEikUAul4PP58OVV16J6elpmUhls1l4PB7U1dVJmb19+3YxApqamoLd\nbhdQmDiBRqORXpuEOIPBIEBuS0uLYCBMqLT4KyoqwunTp1cI6biNnfsuifOUlZUJ/kOHLuIrxLro\ngcmpBt8PUvAJkpKol78AiFOI+fl5IZoBkNE0yVfT09OYmZlBKpWC0+lEOp0Wyz9FUVBWViayfVYj\nrPDIKL2UuCxaDDpM+/1+UQwSjOnu7obb7ZZ2I3+U9+abb6KyshKPPPIIHn74YTQ0NCCVSom4hSSp\n4uJi1NXVIZFIyO4GALjtttvgcDhw4MABwQGCwSASiQTWr1+Pvr4+Adj8fr+8vADkFqEOg7gFAbaa\nmhpRkhIsslqtsjUJgGArtEbjQSAi73A4EAqFkMvl4HQ6MTAwIH0lPxfbFh72mZkZbNmyRaYzbL8o\nE2fbQc4/q5vZ2VmMjY3J78nlcrIugApP+l3yBee0h3hO/s6Ot956C6Ojo2hvb4fBYMDbb7+NdDq9\nwhpweHgYMzMzcLlcoojkVIDkIH5XnFSQDUo+S0lJCerr62V50qlTp+QgUk7PCsvhcIh+xWKxyKIa\nrVaLubk5IZx1d3fDbrejv79fkmwmkxFvDIPBIBMKOpft2bMHO3fulIuEhCz++9zcHHp6evCXv/xF\nTIUZ0WhUxIl8z/k+caI0PT2NWCwmSYjcnMXFRfT09KChoQGDg4MCzHJZ8qXGZSH3VkMNNS7PuCxa\nDDXUUOPyDDVBqKGGGquGmiDUUEONVUNNEGqoocaqoSYINdRQY9VQE4QaaqixaqgJQg011Fg11ASh\nhhpqrBpqglBDDTVWDTVBqKGGGquGmiDUUEONVUNNEGqoocaqoSYINdRQY9VQE4QaaqixaqgJQg01\n1Fg11AShhhpqrBpqglBDDTVWDTVBqKGGGquGmiDUUEONVUNNEGqoocaqoSYINdRQY9VQE4Qaaqix\naqgJQg011Fg1/gvLlHywlhiLRgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11814a8d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "name = \"birds.jpg\"\n", "name = \"Seeds.jpg\"\n", "\n", "birds = imread(\"Images/\" + name)\n", "birdsG = np.sum(birds, axis=2)\n", "\n", "plt.imshow(birdsG, cmap=plt.get_cmap('gray'))\n", "plt.grid(False)\n", "plt.axis('off')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2. Thresholding\n", "\n", "Select an intensity threshold by manual inspection of the image histogram" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAFAZJREFUeJzt3XuMXPd53vHvE9GSr7UoaSUwJBvK\nCWtYLhpaWMh0BQiuFevWInKCGKBa2KyrgEEjFXYboKBTtLKTGrCLJC6MOkrkiIkcpJZVx4kIiY3C\nyA5SF7Wkpa0LKUbgWlKttRhxE9ly2gBuKL/9Y35rjVZ7mb3NDvd8P8BgznnnN3PeGc6eZ85lhqkq\nJEnd80Pr3YAkaX0YAJLUUQaAJHWUASBJHWUASFJHGQCS1FEGgCR11KIBkOTVSR5M8kiSY0k+2uoX\nJ3kgyYkkn09ydquf0+Yn2+07+h7rw63+RJKr1+pJSZIWN8gWwPeAd1XVjwO7gGuS7AY+AXyyqnYC\n3wZubONvBL5dVT8GfLKNI8klwB7grcA1wK8nOWs1n4wkaXCbFhtQva8K/582+6p2KeBdwD9t9TuA\njwC3Ate3aYAvAP8lSVr9zqr6HvBUkkngMuB/zbfsCy64oHbs2LGkJyRJXXfkyJG/rKqxxcYtGgAA\n7ZP6EeDHgE8D3wC+U1Wn25ApYGub3go8A1BVp5O8AJzf6l/te9j++8xpx44dTExMDNKiJKlJ8r8H\nGTfQQeCqerGqdgHb6H1qf8tcw2aWPc9t89VfJsm+JBNJJqanpwdpT5K0DEs6C6iqvgP8KbAbODfJ\nzBbENuDZNj0FbAdot78ReL6/Psd9+pdxW1WNV9X42NiiWzCSpGUa5CygsSTntunXAD8BHAe+DPxM\nG7YXuLtNH2zztNu/1I4jHAT2tLOELgZ2Ag+u1hORJC3NIMcAtgB3tOMAPwTcVVX3JHkcuDPJfwS+\nDtzext8O/G47yPs8vTN/qKpjSe4CHgdOAzdV1Yur+3QkSYPKKP9/AOPj4+VBYElamiRHqmp8sXF+\nE1iSOsoAkKSOMgAkqaMMAEnqKANgCXbsv/dl0/3zknSmMQAkqaMMAEnqKANAkjrKAJCkjjIAVpkH\nhyWdKQyAVeAKX9KZyACQpI4yACSpowwASeooA0CSOsoAkKSOMgAkqaMMAEnqKANgAJ7nL2kjMgAk\nqaMMAEnqKANAkjrKAFhDHjuQNMoMAEnqKANAkjrKAJCkjjIAJKmjFg2AJNuTfDnJ8STHknyw1T+S\n5FtJHm6X6/ru8+Ekk0meSHJ1X/2aVptMsn9tnpIkaRCbBhhzGviFqvpakjcAR5Icbrd9sqp+pX9w\nkkuAPcBbgR8G/iTJ32s3fxp4NzAFPJTkYFU9vhpPRJK0NIsGQFWdBE626b9OchzYusBdrgfurKrv\nAU8lmQQua7dNVtWTAEnubGMNAElaB0s6BpBkB/A24IFWujnJo0kOJNncaluBZ/ruNtVq89UlSetg\n4ABI8nrg94EPVdV3gVuBHwV20dtC+NWZoXPcvRaoz17OviQTSSamp6cHbU+StEQDBUCSV9Fb+f9e\nVX0RoKqeq6oXq+r7wGd4aTfPFLC97+7bgGcXqL9MVd1WVeNVNT42NrbU5yNJGtAgZwEFuB04XlW/\n1lff0jfsp4CjbfogsCfJOUkuBnYCDwIPATuTXJzkbHoHig+uztMYfTv23+tPQ0gaKYOcBXQ58D7g\nsSQPt9ovAjck2UVvN87TwM8BVNWxJHfRO7h7Gripql4ESHIzcB9wFnCgqo6t4nORJC3BIGcBfYW5\n998fWuA+HwM+Nkf90EL3kyQNj98ElqSOMgAkqaMMAEnqKANAkjrKAJCkjjIAJKmjDABJ6igDQJI6\nygCYhz/bIGmjMwAkqaMMAEnqKANAkjrKAFgnHmOQtN4MAEnqKANAkjrKAJCkjjIAJKmjDABJ6igD\nQJI6ygCQpI4yACSpowwASeooA0CSOsoAkKSOMgAkqaMMAEnqKANAkjpq0QBIsj3Jl5McT3IsyQdb\n/bwkh5OcaNebWz1JPpVkMsmjSS7te6y9bfyJJHvX7mlJkhYzyBbAaeAXquotwG7gpiSXAPuB+6tq\nJ3B/mwe4FtjZLvuAW6EXGMAtwNuBy4BbZkJDkjR8iwZAVZ2sqq+16b8GjgNbgeuBO9qwO4D3tOnr\ngc9Wz1eBc5NsAa4GDlfV81X1beAwcM2qPhtJ0sCWdAwgyQ7gbcADwEVVdRJ6IQFc2IZtBZ7pu9tU\nq81XlyStg4EDIMnrgd8HPlRV311o6By1WqA+ezn7kkwkmZienh60vVXhf9MoqUsGCoAkr6K38v+9\nqvpiKz/Xdu3Qrk+1+hSwve/u24BnF6i/TFXdVlXjVTU+Nja2lOciSVqCQc4CCnA7cLyqfq3vpoPA\nzJk8e4G7++rvb2cD7QZeaLuI7gOuSrK5Hfy9qtUkSetg0wBjLgfeBzyW5OFW+0Xg48BdSW4Evgm8\nt912CLgOmAT+BvgAQFU9n+SXgYfauF+qqudX5VlIkpZs0QCoqq8w9/57gCvnGF/ATfM81gHgwFIa\nlCStDb8JLEkdZQBIUkcZAOvMU08lrRcDQJI6ygCQpI4yACSpowwASeooA0CSOsoAkKSOMgAkqaMM\nAEnqKANAkjrKAJCkjjIARog/CyFpmAwASeooA0CSOsoAkKSOMgAkqaMMAEnqKANAkjrKAJCkjup8\nAHjuvaSu6nwASFJXGQCS1FEbOgDcvSNJ89vQASBJmp8BIEkdtWgAJDmQ5FSSo321jyT5VpKH2+W6\nvts+nGQyyRNJru6rX9Nqk0n2r/5TkSQtxSBbAL8DXDNH/ZNVtatdDgEkuQTYA7y13efXk5yV5Czg\n08C1wCXADW2sJGmdbFpsQFX9WZIdAz7e9cCdVfU94Kkkk8Bl7bbJqnoSIMmdbezjS+5YkrQqVnIM\n4OYkj7ZdRJtbbSvwTN+YqVabr655eAaTpLW23AC4FfhRYBdwEvjVVs8cY2uB+isk2ZdkIsnE9PT0\nMtuTJC1mWQFQVc9V1YtV9X3gM7y0m2cK2N43dBvw7AL1uR77tqoar6rxsbGx5bQnSRrAsgIgyZa+\n2Z8CZs4QOgjsSXJOkouBncCDwEPAziQXJzmb3oHig8tvW5K0UoseBE7yOeCdwAVJpoBbgHcm2UVv\nN87TwM8BVNWxJHfRO7h7Gripql5sj3MzcB9wFnCgqo6t+rORJA1skLOAbpijfPsC4z8GfGyO+iHg\n0JK6kyStGb8JLEkdZQBIUkcZAGcIvxcgabUZAJLUUQaAJHWUASBJHWUASFJHGQCS1FEGgCR1lAEg\nSR1lAEhSRxkAktRRnQwAv1UrSR0NAEmSASBJnWUASFJHGQCS1FEGwBnGA9iSVosBIEkdZQBIUkcZ\nAJLUUQaAJHWUASBJHWUASFJHGQCS1FEGgCR1lAEgSR21aAAkOZDkVJKjfbXzkhxOcqJdb271JPlU\nkskkjya5tO8+e9v4E0n2rs3TkSQNapAtgN8BrplV2w/cX1U7gfvbPMC1wM522QfcCr3AAG4B3g5c\nBtwyExpaPn8WQtJKLBoAVfVnwPOzytcDd7TpO4D39NU/Wz1fBc5NsgW4GjhcVc9X1beBw7wyVCRJ\nQ7TcYwAXVdVJgHZ9YatvBZ7pGzfVavPVJUnrZLUPAmeOWi1Qf+UDJPuSTCSZmJ6eXtXmJEkvWW4A\nPNd27dCuT7X6FLC9b9w24NkF6q9QVbdV1XhVjY+NjS2zPUnSYpYbAAeBmTN59gJ399Xf384G2g28\n0HYR3QdclWRzO/h7VatJktbJpsUGJPkc8E7ggiRT9M7m+ThwV5IbgW8C723DDwHXAZPA3wAfAKiq\n55P8MvBQG/dLVTX7wLIkaYgWDYCqumGem66cY2wBN83zOAeAA0vqbhXt2H8vT3/8H6/X4iVp5PhN\nYEnqKANAkjrKAJCkjjIAJKmjDABJGjHD+p0vA2CD8IfhJC2VASBJHWUASFJHGQCS1FEGgCT16dLx\nNANAUud1aaXfzwCQpHnMFwwbJTAMgA1qo7xBJa0dA0BSJ/khyQCQpEXt2H/vhgwMA0CSOsoAkKSO\nMgAkqaMMAEmdsRH346+EASBJKzQTLGdawBgAktRRBsAGd6Z9IpHWgn8HczMAJKmjDABJG46f+Adj\nAEhSRxkAkjYEP/UvnQEgSWtk1ENpRQGQ5OkkjyV5OMlEq52X5HCSE+16c6snyaeSTCZ5NMmlq/EE\nJEnLsxpbAP+oqnZV1Xib3w/cX1U7gfvbPMC1wM522QfcugrLlqSRN6pbAmuxC+h64I42fQfwnr76\nZ6vnq8C5SbaswfI1h436c7bSmWhU/hZXGgAF/HGSI0n2tdpFVXUSoF1f2OpbgWf67jvVapKkdbDS\nALi8qi6lt3vnpiRXLDA2c9TqFYOSfUkmkkxMT0+vsD1JGl3rvSWwogCoqmfb9SngD4DLgOdmdu20\n61Nt+BSwve/u24Bn53jM26pqvKrGx8bGVtKepA3OXZsrs+wASPK6JG+YmQauAo4CB4G9bdhe4O42\nfRB4fzsbaDfwwsyuIg2ffzSSVrIFcBHwlSSPAA8C91bVHwEfB96d5ATw7jYPcAh4EpgEPgP8/AqW\nLanD/ACzOjYt945V9STw43PU/wq4co56ATctd3mSpNXlN4ElaZ2t1xaNASBJHWUASBp5nu2zNgwA\nSSPLlf7aMgAE+IcmdZEBIEkdZQBIUkcZAHoZdwVpPXmwd7gMAEnqKANAkjrKANCC3BzXMPg+Wx8G\ngCR1lAEgSR1lAGggbqJLG48BIGld+KFi/RkAkobCFf7oMQC0Iv5RS2cuA0BL5rc1pY3BAJC0qmZ/\nOPDDwugyACSpowwArRp3DUlnFgNA0rK4q+fMZwBoTfSvDNwykEaTAaChmh0MOjP477YxGQAaCYOs\nVFzxrI2Z19VdOt1jAGjkDPJpc6n1ucas1q6plT7GYvefb8W80tfAFbwMAG1YS13Rr1bYLHfFutrB\nNPuxXOFrtqEHQJJrkjyRZDLJ/mEvXxvPaq/Y5lsBL3U5S/3kvlKu4LVUQw2AJGcBnwauBS4Bbkhy\nyTB7kCT1DHsL4DJgsqqerKr/B9wJXD/kHiRJDD8AtgLP9M1PtZokachSVcNbWPJe4Oqq+tk2/z7g\nsqr6V31j9gH72uybgSeG1uD8LgD+cr2bmMco9wb2t1L2t3yj3BusbX8/UlVjiw3atEYLn88UsL1v\nfhvwbP+AqroNuG2YTS0myURVja93H3MZ5d7A/lbK/pZvlHuD0ehv2LuAHgJ2Jrk4ydnAHuDgkHuQ\nJDHkLYCqOp3kZuA+4CzgQFUdG2YPkqSeYe8CoqoOAYeGvdwVGqldUrOMcm9gfytlf8s3yr3BCPQ3\n1IPAkqTR4U9BSFJHdT4Akrw6yYNJHklyLMlHW/3iJA8kOZHk8+2gNUnOafOT7fYdQ+jxrCRfT3LP\nqPXWlvt0kseSPJxkotXOS3K49Xg4yeZWT5JPtR4fTXLpGvd2bpIvJPnzJMeTvGOEentze81mLt9N\n8qFR6a8t81+3v4ujST7X/l5G4v2X5IOtr2NJPtRq6/raJTmQ5FSSo321JfeUZG8bfyLJ3rXoFYCq\n6vQFCPD6Nv0q4AFgN3AXsKfVfwP4l23654HfaNN7gM8Pocd/A/xX4J42PzK9tWU9DVwwq/afgP1t\nej/wiTZ9HfDf2+u+G3hgjXu7A/jZNn02cO6o9Darz7OAvwB+ZFT6o/clzaeA1/S97/75KLz/gL8P\nHAVeS+9Y5p8AO9f7tQOuAC4FjvbVltQTcB7wZLve3KY3r0m/w3qDnwmX9mb6GvB2el/Q2NTq7wDu\na9P3Ae9o05vauKxhT9uA+4F3Afe0N8tI9NbX49O8MgCeALa06S3AE236N4Eb5hq3Bn39nbYCy6j1\nNkevVwH/c5T646Vv7p/X3k/3AFePwvsPeC/wW33z/x74t6Pw2gE7eHkALKkn4AbgN/vqLxu3mpfO\n7wKCH+xieRg4BRwGvgF8p6pOtyH9P1nxg5+zaLe/AJy/hu39Z3pv7O+3+fNHqLcZBfxxkiPpfZMb\n4KKqOtl6OQlcOLvHZi1/DuRNwDTw220X2m8led2I9DbbHuBzbXok+quqbwG/AnwTOEnv/XSE0Xj/\nHQWuSHJ+ktfS+zS9nRF57WZZak9D69UAAKrqxaraRe/T9mXAW+Ya1q6zwG2rKsk/AU5V1ZH+8gLL\nH1pvs1xeVZfS+5XXm5JcscDYYfa4id7m+K1V9Tbg/9LbBJ/Purx+bR/6TwL/bbGhc9TWrL+2r/p6\n4GLgh4HX0fs3nq+HofVXVceBT9D7wPZHwCPA6QXusl5/GwuZr6eh9WoA9Kmq7wB/Sm9/3LlJZr4n\n0f+TFT/4OYt2+xuB59eopcuBn0zyNL1fTn0XvS2CUejtB6rq2XZ9CvgDeiH6XJItrZct9LauXtbj\nHP2vtilgqqoeaPNfoBcIo9Bbv2uBr1XVc21+VPr7CeCpqpquqr8Fvgj8Q0bk/VdVt1fVpVV1RVvO\nCUbnteu31J6G1mvnAyDJWJJz2/Rr6L3pjwNfBn6mDdsL3N2mD7Z52u1fqrajbrVV1YeraltV7aC3\ni+BLVfXPRqG3GUlel+QNM9P09mUfndXL7B7f386A2A28MLN5vNqq6i+AZ5K8uZWuBB4fhd5muYGX\ndv/M9DEK/X0T2J3ktUnCS6/fSLz/klzYrv8u8NP0XsNRee36LbWn+4CrkmxuW2FXtdrqW4sDC2fS\nBfgHwNeBR+mtuP5Dq78JeBCYpLdpfk6rv7rNT7bb3zSkPt/JS2cBjUxvrZdH2uUY8O9a/Xx6B69P\ntOvzWj30/lOgbwCPAeNr3N8uYKL9+/4hvbMqRqK3tszXAn8FvLGvNkr9fRT48/a38bvAOaPy/gP+\nB71AegS4chReO3ohdBL4W3qf5G9cTk/Av2iv4yTwgbV6Df0msCR1VOd3AUlSVxkAktRRBoAkdZQB\nIEkdZQBIUkcZAJLUUQaAJHWUASBJHfX/AV+cD8z3m+maAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11814a550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.hist(birdsG.ravel(), bins=256) \n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot the binary image after thresholding." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQgAAAD8CAYAAACLgjpEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAFFdJREFUeJztndmSxbYNRKFU/v+Xb16iRNaIEhcs\nDbBPlatsz4zEBWyCJAgdv99PCCHkiX9FF4AQggsFghDShAJBCGlCgSCENKFAEEKaUCAIIU0oEISQ\nJhQIQkgTCgQhpMm/owsgInIcx3Q451sk6HEcs49dfvdIGVrPuf/t7/drPu/tZ2jc69tb7t52Wi3P\n27M1fne0vKPRztfn/36/pcYp60FkGSxv9Ayk3+/3v9/LGDYf3U8jbZahfbXbE8KDmCWyw7S8B+sy\nIDLTLuh1tejrkTpb2VpqgWgRPTA9ZsUe4xlddlyfGT2zX7FaRo7243Ec08sjzXJZv/9KaoHw6rAr\nCDNZ79p2VhxaP4sQjShxsHinNh5lKbUHMbP5k20Nql2Grza4/gyh/l5ECUFvG3uVr4xArOwMaxo+\n0gxD5kDuw+M4XMuXXiBmGuxJEL5EwmpTEv2YVuNvLIhYXkTiLQwnqfcgkEDZmCTvIGwwI7//DgXi\nQu+uP9pmnYhu8M3Xs7yCsrQDo7wFNmITXZv0SwxvsnXwExoDxWOwPbW1Zftb921G26FA3HibtTJ2\n8ChV6xi9PMvarlsKBEpnaW1QotTHmozeQ/aJZUuB+CJ6trmjWZ5RUXozbrR2apGlnIhQIBrQqDA4\nBSqj91CBFKcYFkdTTzvMT+9FNx6tcGrkemrHPETWNYNNXYH2IHpDoUdDpk8ydBQ9mW/O/v8Sg+j9\ngIzX8qEFYpRZofh6pjfeNwQzCOUTT/3dEomsdYwGWiA8AmIyG07msq+SaRa2mLi8gBYIkTxRcxpY\nznStZ6NGjr6RqW8zlfUJeIEQsReJqAFw3aFvlUG7bOe7srrdmQZcprK2OEAq8VtNXNpDzx2D2b+1\nJjqm3yJh7OgNWYQ0f71o2tJKvcskrR2Z7SOWHb1/a7XeRDF8DUbaaGTnv1IboZAiDuKJ0xhGB6Pl\nOfQ9CY3F8iCKnriRN6w91YrigLBEhvEgROaMSLNx3vYBZpPBgCzhQlltA7ZhHGk9iCuz3sTbszTJ\nFj3XC8o9jUxt21NWpGN6KA9ilcideY2Udeh4bCRf35Vp4GuBJA4igB6ERor10Z1vDarc7ejlqR6r\nbX1/pvfGZOR3QdCE4QROILTxbMxekTh/d5WIY1mvjVcPcfhK948YpOctXLACkXW27d3tX63f6JIG\nsS0Rc3siE9FesAIhklckepmt32q6+ug27Q3vXvWQsogBcowHtEC8gTxDjsQMjIqEdsJZrXbzTCe/\nsixZfYc2yOIgkuAUYzTiDgUkwbLGUxxa70fr/ypAeBBfcQy9syySG30vA6oBayzjvNra4uSk5x1R\nz16pr1Y9oDwIhEFthVbdrAK5UAXsC812RbK/pyPfiD6C8CBm+FrnI25wrt5nuD5HRH/2RGuz3rLM\ntMfXPoanV/Tl+UaKN5xAaLrlaAYv8rd+vcFBvclesnoCGrQEeCYCtMd2tOxLe9NVdUMYwaCO45gu\nBPou8EmvwX1hHbyD0FYRjAhzzwna7Cmb9n2i1XwQcB6EBZGehPYpzKwL/DZL7SoKJyNL1aff1WhD\n1IuG6QWid/3pPRCsPTOtE5uZma3KjVeEkOiVMni0F9QphjVeyynvvBaZTyFE/pk1Cq2PLAc6ujiI\nFBIIzzWeFatHbWiDqxdEz8H62HN2EvE+ji0jECJzhqY9a0XnQrAQida624roZ7+1/dvPrModGaNR\nSiBWQPQskETCGy+hu4O0YYsQvFVOICIb1MKoZ4wk2qhmsI7pyLL8ilhGvJE+DqJF71XhkfPvmXfN\nPnP1ndoGptFO92eNBMVZ7s1YXLnXPvZc8CaXCgLhQVjNvCsgCOcKqDMmWrvO2onVDI92IgUhECI2\nDePhpkVFKCK5oR4gTiLaIAnDCYxAWIFwVGV9hdhDLDSe37vs84Di0AecQCB5Eqjhr2/vitjkmm2n\n0XW21uUl5Kv3ke95Ak4gTlaMbuRGH9pMog3Kmja6DGinA1ei2+YNWIEQ0d8AmzGQWbc40hhPUfD0\nxLTe1eNFzIY1ew7Ennf1lCla0KAFQkTPfX1j9bKTlQs7A/JspImHXViCUo4v4AUiC1+zq4dBZDG6\nK1oJXlbf6cWILUR7DyJJBCKjIXiWAWWfQRPrwaHVZlZ7WwjiIAIiEJZHaJ5qfV9u3N8ddb9AE+9T\nmS9W6+95UpXJcziBEAgRjHiFbGQ0uFEyl/1K1r6CEQiRWkeRqx7N7PPJM9YnMFoeKBpwKecQGyki\nHVqrHL1YR2+2ckRYvPcrrSBK/6zcSEUo/xNQHgQqM53ndZvS491R7/Ak0iNDbssyAoHcyHcsb0Bm\naodRVoPP0NrGMphO65SmjEBUBVkcRt6nWbb7wNJ6trUX4XVXRrMecHsQkbTW1lEgi4Mms3sIGeqc\n4dLcG/QgboyGTV/vPYzcTvzqzJHNrciBcn0/B2wMloFy9CAe0BrYltfMIy+CPb2/4sBDx8PbpUB0\ngrT0QMiUhXK0OAPaUhIZCIFANzYrY2rVu3Xu73E/wZLVgdnyzlpeDVkHQiCQWR00K4MCwVNo4T0Y\ne/MriKxnwKbQ/B8IgUDsEA1hQAQlrHiE1bgR1L5YpVWvq1Cu9jeEQCCRcQD1gLLmfjLaL0NfZTev\nQLOuFIj/Yulqvym5tfGiJAAeecZoGraemdJzn0LjJAsFxkEskL3zKzGak8Hq5jCKp6YFPQjxiVhc\nWQ9GrqnR9xtm32FRr4p7H/AeBMqeQFTEYutadS8rgpZNHEbLy2Cvb2A9iKuxRG4yVTCaHu8lup5a\neRN6PbXTpiwvevXYLfp+BYQH0duhM0aONINqlk/j3ef/jzZM7aQqo/sRq2gtHRH3Lw6QQv1msvFE\nG7YHb22Qvf7WSyWPbE6z92Zaf2eQaGjpgRAeRIvV4zCSHw8PB8mOkMoiAiIQqwqO1qjkG48bqyN/\nb2VD2b08CIHQgCKRB21xeJsksg/QaOAFQstQCAaWnsOqSGjnCq0gTrDHnFdGg4wQY+85w8V+WYw5\nIOZIIRAi399GuBORI2DGAGej77IJi9ds+zY5jNrQ2zu+yNY/LeCXGHdGd7U9lh1c2qxhcLSn+ryd\nSScQJzNCoY22MFSZdZ5oBYlF1Dki7kH7HV6kWWK0GFlbau5NUBjG2aWelUjrQVzxnokoDjjMJpux\nisys1p/pPYgrT4lMWz+fBeV2KVnnumnJqN1nIATC4sQhehBGv5/0o9VXVn0e6blACEQm3vY8KAr7\nMpOLYiRT98jvMSdlMF5CsKtbq4VXwJxHdiqvv71TYpOS7E2k51bda4TyIFYUHz0zTzSj+zxWm7yk\nH4Tw8BIeRHQjonNP37fyHNS2nj3uXHl+1uXLCFAexAyoBmuBRZCXRjxAtBF7Met9rd4NsRa/N0p4\nEHeqiMbVMJAHIYpnETmQVt61mjf1/o8m6T2IWbLsWSCX7Q7iNXsvkI6+vwIGR0jtQWhlEyZ/Wdks\njvQoIgZk5eja1ALRArWxdwNl6WGJ9r2c03ZRbLikQIxS3Yhn0VrTaiRoWU2Rn6mPUcRBBHAPoncd\nq93hI+tnj+8tIKGxph3Z89Fy2a1EIZPYrEIP4oKF6ESvyUVqXYIboeVJoIQxZwDOg0BHw7gyDbIn\nVnI7el+r1tzRH/377P0sAioQaMdlkcsZZHoHH0JdKQ5zpFxioBtjD9VcVY0NTe4Z4AHpQUTxFhJr\nlfQ2i6D1ov3RG+vnWjyjUp9SIDphSjI7kMVhhErCcFJKINDzAmQJ7yb/5MuDrNyXEAKh9cUjdCob\n0ixeX9yyArl8GuMJQiBOEBJkED8y9XUG27QoH5RAEHIFbXa+ikR02bzECk4gVu7Gr1LxVIHoEmUf\nUd4LnEBEgpituqpgZd978CJ6WZNSIO7rQXRjiu7kbKD3505ACATKuk4TNFFAElW0trmClBnqfG9k\ne0EIxEmFPQCPzpwV1OxtG0nFSawHKIEQGe8IhA6LUvgKgpqNDG2ueYMVTiBOvoQCoZMihAHZPdcA\noV+/8PYmIiM5YQXixOIbDE8Nfn9uRIesfKMiw8D6IlsdPNs+qm3SXfe2+FLSrDhoXHG2+p5BNlDq\nP9MXlb06eA/CkhFh6HmO9dn+2/MzrI1PkE5UWoyeHlTy5K5sLRCjfHX+VSi8DSWbYWYo78wRYyah\n7gFiiYHgZmt/34DUYPclB4RAXIlIed8DBz0ZoYpIQC4xevYGtNZ8PR1JcdiH1hJhJrbg6VkewqFp\nr3AexBNWyw+KA3miZ7MZ2S40RSiFQJxc9ypWO4ni8JcqbvHJrvaxnQehTebOt+Jskx1EotW3GT4E\n9IW23ULuQUSzqzhc/7tSG6xkxe752+gbl2cZLNjOg2CiEjLCyIeaezwTi/2Lre9ifPHUgbMuZFZx\nsF5r786IR/V02tGzzFmN4rUipUDQqIkF2kuFkcEbdUr3RbolhpUXkNV7ID5km5S0ypvKg1ip9Or1\nbfTLRYScbBkHYXE02bth9LTLn21GIX282UOGPtcuYxqB+CIiPyOCUNCb8SW6v9/Y8sta2p7DzID6\n2rzyygWQIY+CyNjJEiJf+T3Q4kQsRQtaIDTFQSPz01d5PAwHyTCfQBtUGQQVmTJLDA9Qr6KTPkb7\nJsN+hHU5YAUC9b4EZ6F5UAbVCMgi4fF+SIFAFYfed0cbTiToAmpxIasykAJRgZ1F4g2EdkEogwca\nwga3SemVGdpr01LjXWQOi7BppJuvHu+FE4g30C4l9cbuox2LZcXiI0qj3C9jVe/XNEsMNHE46S3X\nLm6tiN8eTXSbVhcHkUQCMUu2JKFkjNn+jRaXLJQWCE8joEiQiqTYg5gZfFHfzuDM5M/sXkClPQQr\nuztADPononfXIDqOQvPL4JrRfyPv0LrM9oZ2Wzw9r2oWMZFu21iqINQSw0scrNEyupm6nDdMR26a\nZh4kXzCobQ0ogRDx+SiJx4Dw+OKX5nMyJFOtLGSowAnECmizwd2gMxg4+lej3mj1f9b6fOHRV3AC\nYX1s5W0sM52oLXRowolG9vaxFAo4gZgBVRxQ3i0SNwi8lxm7eRFXTqG4/rNKeoHIIA6jaHbwlewz\n5YmFSFRpG21SxEG0qCgOdxjKTSJJKxA7iMMIXzEAaO1gXZ5WEBSD2caAW2JoGg7aoPDGaqkyUw6k\nZ7b+lsLxFwgPwmKXXztYKXqQZQdt5n4qz2oUakUbgRAIRJASg5BnVkWH/flNKYGwvj9AkVjDaqnh\n7ZmMvk/DC4361khKgbDK6oPkAo9Q3c1FYlYczn/X7B+PCQtuk3IUzwGRYfCNXtQiudn2uxjeWIQ3\nRw9ShDJ44CXcGm1p0R+W/UyBENu7DwiDNPr9HkR7dyO5KKz6w8LWthcIr4Cr6MS5XHqssWu7bS0Q\nFuKQwZCqikW0F2HJqA1q9S1EyrnjOFwLMVJni3yYUenueqg8yFYYTSOomXZw5NlPr1t519YexBdW\ngyV6ufFGz+xzT2uHMMnshKeIbycQKMZsLRJWdzC8N97IM14iAREo5RUlZr20GMUj0OV8/kyAz71s\nPZ7F/b3VqV5PWA9C24X1FAfETU1vQ+bSw54tc1K28FrvajU44swScfW7gkho1gHt6vvns0E6cLoQ\nvTEAWs+6PzPq/ZHsdoMS6QSjh9v79z7FGFkXtxidWe+Rkj3PH30uMtq3Eokump5ieoEQiZ/RdhWJ\n2bbj/oQPzGq9iGYQ1K4Gj5DSjtgBccypkfTjLUkpCr31zJiYBi2lnBaa+w8ZgfEgtD/44U1vmXt+\nL2P9RfKW+42KdRoBwoN4YuR0IFM+AJG6s63I375AqCdKIF5GsYHxIGZA8TZmyoBQbg92qecXWdsh\ntUB4YjET7vJ9hkgh19hUXt3byioOIsUFIsNxWmbjGSVCKN7eNysSu4iDSHGBOEG+Xq31jEygLA1F\nxkXirdz3n6HUcQXYTUptVjY0PbyQ663LCoaVCc02r9Z3W3gQVzQvfWW7eLMrmvdl0NG+1AgrEBrX\nvb8MI5NRMHvTGjuJxIlGfSCWGL3RhSL6MyyySz+7A49aH2KLhcDBehAtdplFV+q4SxuNUl04LeqX\nTiBOegeBlVFYJrTVGtwUir9UWnZ6kFYgNEExCqtyoNSP5CNlRimro8qeyEZrN9WqP9Dca6/7ESPv\nv4PWZr1oZpSC2KTsQSORrNVpiCYzl9SQN1pHQKsHWnkigBKI3Tujl4oReydeg7LyjVpNIPYgvEJv\nKw0k4sPuIgIhEIRcqfqtEC8067WdQGjd7iNroAzOr3KglDOK7QSC5MAzhqOiCDDtvRH0IvxAGpiR\nCY+Rj7YpEAQaT8GO+CzhWT/UqFeoY87diD5n77kAZx3QtONxY6b6bikQ0UbZ8+k+S+G4v7MlVG+3\nSb2jHr3eZ20bmcRBhEsMV1DdyBk064GWq8EqLidj32/pQYj8M0z56f9rg2IcozkY335f845KtFdn\nxWr27GjoQVxAEQckQ+ktS8XBvUp2cRChQJh/7g9JHNAvq1XK1ZCprG9sLxCWaKZUjwa5bGggTQqr\nUCCMqOBe3vGY4bO0RYtK4iBCgTAhmzholqHSSc0o1cRBJPkphmemJ00ylfVO6/TnzkoW8taJBmK7\nVRSFK2k9iKdgH4SZa5eU9Dzd2IO0AtECRSieqCIOJ5b1qdhWGeuUViB6NsxQhaISFIlvMtcj9R5E\nD1Zf5Bol+v2W9O5LrDwbla8IUPTyf1FeIE6ihCK7gWgQfWvVmnvdKtU37RJDZP77GB5Lj6xrzhV2\nrPMTldogtUCIzHeGlVBwkDy3AfeDclJiibFyE7CSO4hGtQ/7fFHxa10on94jhACSfolBCLGDAkEI\naUKBIIQ0oUAQQppQIAghTSgQhJAmFAhCSBMKBCGkCQWCENKEAkEIaUKBIIQ0oUAQQppQIAghTSgQ\nhJAmFAhCSBMKBCGkCQWCENKEAkEIaUKBIIQ0oUAQQppQIAghTSgQhJAmFAhCSJP/ALqX+jDhl0Lv\nAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10febbfd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "if name == \"birds.jpg\":\n", " th = 256\n", "elif name == \"Seeds.jpg\":\n", " th = 650\n", "\n", "birdsBN = birdsG > th\n", "\n", "# If there are more white than black pixels, reverse the image\n", "if np.sum(birdsBN) > float(np.prod(birdsBN.shape)/2):\n", " birdsBN = 1-birdsBN\n", "plt.imshow(birdsBN, cmap=plt.get_cmap('gray'))\n", "plt.grid(False)\n", "plt.axis('off')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3. Dataset generation\n", "\n", "Extract pixel coordinates dataset from image" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "(h, w) = birdsBN.shape\n", "bW = birdsBN * range(w)\n", "bH = birdsBN * np.array(range(h))[:,np.newaxis]\n", "pSet = [t for t in zip(bW.ravel(), bH.ravel()) if t!=(0,0)]\n", "X = np.array(pSet)\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 17 0]\n", " [ 18 0]\n", " [ 19 0]\n", " ..., \n", " [214 253]\n", " [215 253]\n", " [216 253]]\n" ] } ], "source": [ "print X" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXd4E2e6/n+/I7lblg1ucgGyOQFi\ng22CSTA2NbsJqSwku9nz20A6HdLPhnzPbkKym5AtydnQErJpJOek7AIphAQSQjWdpZqWStxl3CTb\nKpZnfn/II4+kKe+o2DLM57pyxUijmdFIeuZ9n/d57ptwHAcNDQ0NjYsXpq9PQENDQ0MjvGiBXkND\nQ+MiRwv0GhoaGhc5WqDX0NDQuMjRAr2GhobGRY4W6DU0NDQucrRAr6GhoXGRowV6DQ0NjYscLdBr\naGhoXOTo+/oEACA1NZUbMmRIX5+GhoaGRr/i8OHDFziOS1PaLiIC/ZAhQ3Do0KG+Pg0NDQ2NfgUh\n5DzNdlrqRkNDQ+MiRwv0GhoaGhc5WqDX0NDQuMjRAr2GhobGRY4W6DU0NDQucrRAr6GhoXGRExHl\nlRqhh2U5NLQ50MWyaG53YkBCNDjA8zchBCzHeT3X2tGJYZkGMMzFc//nrwPHcV7vV8cwSDPEgBAS\n8mMRIOT77ivEvkfC705qYgzSk2Ivivd6MaMY6AkhuQDWAsgEwAJYw3Hc3wkhTwN4AEBD96ZPchy3\nqfs1SwDcB6ALwGKO4zaH4dw1JHC5WNz+yh4crWpV/VpDjB5Hfv8L6PX9P9izLIc7Xt2Lg+ebRZ+/\nekgK3p9dAoYJLkixLId6qx3z3jnsueah2ndfwrIcfrNmLw78KH79eC6G93qxQzOidwF4lOO4fxNC\nDAAOE0K+7H7uJY7j/ircmBCSB+A3APIBZAH4ihAylOO4rlCeuIY4LheLaSt3o6LWGtDrrQ4Xzpmt\nyMsyBvR64QiaIaRPR7YNVodkkAeAAz82o8HqQIYxNuBjSN1UD/zYDLPFjszkuID33dc0tjtxWOb6\n8Rw+34LGdifSDDG9cFYagaAY6DmOqwVQ2/23lRByGkC2zEumAXif4zgHgB8IId8CuBrA3hCcr4YM\nLheLW1buwunatqD2MzAhOqDXuUfQe3DwfIvnsRFZSXht1mhkGuN6PeDTGN9zHBvQvlmWQ63Fhnte\n349zDR2i2zS2O/p1oE9NjMbowSmKI/rRg5ORmhjYd0ajd1CVoyeEDAEwCsB+AKUAFhJCZgE4BPeo\nvxnum8A+wcuqIH9j0AgBLMthegiCfPHgZKQnBTbCNVvsXkEeAE7WWFCybBuKcpKwbl4pdLreSwnR\nBPq57x7G+vllqtIOLheL21aX41i1RXa7lLgo6n1GGvzM7H9+UwSz1Y47Vu+FgwViGODDeSVITYxB\nS0enlqPvJ1AHekJIIoB1AB7iOM5CCFkN4FkAXPf//wbgXgBin7jfL44QMhvAbAAYNGiQ+jPX8KLB\n6sCJIIL80LR4vHP/2KB+tI3tDsnnjlZZcOvK3fhkQVmvBfumDqfiNserLKrSDmpSY612F7Io9hlJ\n6S7+fHxnZjwOFpi2ci9G5SbjX3NLevXGrRE4VIGeEBIFd5D/X47j1gMAx3H1gudfA7Cx+59VAHIF\nL88BUOO7T47j1gBYAwDFxcXKQy8NWVyuwJdA4vUEnz80ATqdLqhzGBAvP32vqLHi+pd24PMHxyMq\nKvwFX0rnAwCFuUaqtANNqkZIfBSDYZkGqn3OfvuQ141jzOAUfDCn7xY3a5o6RIO8kCOVLbjupR14\n576rYUqO10b0EQ5N1Q0B8DqA0xzHvSh43NSdvweA6QBOdv/9CYD/I4S8CPdi7BUADoT0rDW8cLlY\n/PylHape8x8D4/C33xQhSqfD8F4sqfz2QgeG/n4zziy9HjExfV/du/I/RykGKZbl8OtXynHoJ/oq\npq8fnSh7Td373INDP/kH1IPnm1HT1IGc1ATq44UKl4vFtS9up9r2uwsdGPfCdhTmJGF9L6flNNRB\n88mUApgJYAoh5Gj3fzcC+DMh5AQh5DiAyQAeBgCO4yoAfAjgFIAvACzQKm7Cy7cNbbC56CdFhTlJ\n2PLoJBTmDkBeljFkQb7F1km1HQfgxuW7UNdqo8qjBwpN6qaZ4pzrWmyqgnx+lgEZRvlF2AarQzTI\n8xytlh9Rh4tvG9rgULk+fazKgmkry9HVFdjCtkb4oam62Q3xvPsmmdf8CcCfgjgvDRUMzUhEfBSD\njk75H1phtgFrZo0J2+LZsEwD4vSE6qbz3YUOjH3+67DmemlSN0rbuFws7npjn+w2QmJ1wCcLSilm\nCfKfVa6xb0oVh2YkIlYP2F3qXneyxoJpK3fj415cg9GgR/tELgIYhsGxP1yHKzPivR4fnh6HjxeU\nYOOiUuxfMgUfLRyPjDCWOTIMg62PTVL1miOVLbjx7ztR29IR8tE93fsUPybLcqhu6cBNL+/ENxds\n1Mfc9tgkxbUOluVw1ixfsfPEhpNg2d5fumIYBlsfnRTQa0/WWHHjy+H5LDWCo++TpBohISpKh88e\nnIR6qx1NbY4+K3szGeNQmJOEY1XygUzIWXM7SpZtQ77JgI8XlEKvD25RmIcm2Ex5cQdOPDXVqxM4\nkJw8ABRmJyEzOV52G7ncvJDT9e191nCVlRyP4kFG1e8fAM7Wt3eX0xqxbt44bXQfIWifwkUEwxCY\njHHIz05WPXJnWQ71FjvqWm2oa7XBbLEHNCojhGD9vFLkmRJVv7ai1oqCpVvQ2RmaJR2aHL2tk8M5\ns3eppNqcPAAU5RqxgSJlY7bYFYM8j1y5ajghhODDuaXYt2QKrswMbEH4aFUrbn9lT5/MSjT80Ub0\nGpKaMIHmz3U6Bp8uHI+bX96J0/Xtql7b0cni5hW7sGnxhKBHg6mJdHluYWOT2pz8FalxePeBEqrZ\nE8tymPMOvTcy7fmHA4YhyDTGYeOiCZi+cheO16jv0ThS2Yr6VhtMKfKzHI3wo43oNbo7Wv3b3I9U\ntuC21YGNynQ6BhsXT8CwdPWph7P17SEZDaYnxaIgS76WHejJ5TudXapz8u/cP5Z69tRgdSh20/Lk\nZSYG3KEcSnQ6Bh8tnIBdj09EbrJ6mYO73tyvVeNEAFqgv8RhWQ73v7Vf8vmjVa2oaVJuEBJDp2Ow\n6cFJAaVxjlS2wmyxB3RcHkIIXplZrLgdx3FwuVgUPbsFZ830M5DC7CTFMkohdjtd+SkALJsxMizr\nKy4XizO1FsWqHyEMQ5A7MBHbH79W9Wd5ztyB21aXaymcPkYL9Jc4ZosdJ+vkg1swNd18GueygepH\n9qHIUesp0j9NHU6cM1sVy1OF0ObkeViWw91v0/cN0py3WpzOLhQ+swVT/74LhUu/hMulbqTNf5Zq\n8/ZHqyxosPbNeoOGGy3QX8K4c8YHFbfLTQ4uhaDTMdjy0ATVrwtFjjrNEIPC7CTF46hR7Nz3xCRs\nmF+qqtGsrsWGH5roZihxeoLhJvlzVgNfKjr17zvQ7nQvdFsdLpytVy9lrdMx2LhoAgqylVNiQrRy\ny75FC/SXMHUtNhyrVv6xB6jk60VUlB7nnpmKtfeNwbA05dF9MCqaQgghWD+/FMMzxBcEC7OTkJ4U\n687nKwSvnw2Mw7d/vB6ZyQmq0ipOZxem/G0b1bZD0+Jxcun1IetWdrlYTF+5G6XLtuH7Ru+1B6eD\nPpUkRKdj8NGC8dj7xBS8dc/oUJymLCzLocHq0G4WQaBV3VyisCyH+9cqj+YBoKrVhqIQHDM6WocJ\nV6Sj7OHJMFvtmLP2II5VW1GYbcCqO0ejpaMzLDZ/Oh2DzxZPxIxVu71ubEW5RqyfN85znA3zy3Db\n6nIcFekB4LdVG4BdLha3rNgFO2XF6Dv3jw1aXI6HZTnc/soeyQXgR/51DFsfmxKQeBrDEJiS45Bp\njKWquQ9UoM3tcrUPh39qxujBKXj/gbGak1UAaIH+EqXB6sCpOrqSuVG5ySE9Nl+6t2HBeDS2O5Ga\n6PYhzU4J6WG80OkYbFgwXlYOWKdjsH5+mZ9HaqA3Hj7Q0i7wFuUYQ1pp02B1yNpJ/tBkD9phi6+5\nF964fRkzJCVg9ymzxY4DPzYBAA780BT0+V6qaIH+EkXNNDhUI0xfGIb0qv0cwxBkKARS4TZZCl2u\nSigFWiFD0+Kxfv64kM1i3BLIytVSLBt8c5rwxt3Q5oCz04XjVa0YNcgIvU4f8OzM5WJx71veC9ha\n+iYwtEAfofBmFAQIixGFw0GvWqVNlQPD6aS/xm/dc3XI8vK0MgsAMOXFnTjx1PUhMYMX3iRzB6ov\nqRXCshxuW13uN+vUAn1gaIE+AvHtVC3KNeLZaflITXQHfJbj0NzuDFjPRk2pX36WIWJMn32dmAYm\nRKOpoxMD4qPQ1NHpSQFFCsdq6GUUQqXvA6iTWbB1svi2oS2kVT6hQKq5rKnDqXXaBoAW6COQBqvD\nq1P1aGUrblmxR3TbPJMBcydehtGDUhClp5sm05b6xemJR3LX5WJxpt4CjuPAchza7C6M/dnAkKV1\nhPsHABfLorKpA4MHxINhGDi7uvD4P0/g+ws96Yj4aB3szi7ERutg7+zClZkGPPPLPFQ32zB4QDyi\n9PpeNVXxhbYsdczg5JDdTFmWw2zKRXYASIjWYWhGcKPvcCDlmEYjPa3hjxboIxA1XYunaq1Y/P5x\nz7+V9GnUlPptfWQidDodXC4Whc9s8dRg8zAEOP108E5RLheLwqWb0a6iYQkAOrrPh/9/Ra0Vt632\n7vJNjNHh6O+vC0lqQi1KN5jLBsTi/TklSE8KnXR01YV2HK+hr4/f+siEPrsRSsGyHO6V6dbWUE9k\nfcIaAOhUF6U4UtkiqRPDshymry6nLvXj0wnnzFa/IA8ALAfcump30O3t58xW1UGeljZHl586ZW+h\nU1jbeG92CTKMofNbZVkOd6kIkMPSE1RJOPQWDVYHzjaI6w0F89u4lNECfQQS7PT0SGWraMu52WL3\nMqGWoyjH6EknCNUdfTlb344Ga3CaNGq6UiNx/1IMNyUhPko8iBcPTg55kDVb7NTdtwDw2eKyiFrT\n4JFbcNVSN4GhpW4ikFD8+Hx3QSt3APiX+imdz6zX9+OzxeMDXlDku1KPU3TpqoXvfO0LGIbB8aem\n4pzZiuQ4PZrD1BAGuFNys16nl1fe+7tJ0Osj8+cvF+gj8cbUH9BG9BchYg0qZoudSu4AAP5yW4FX\n3lappO2suR0Fz2xRLZLFQwjBhvllKMoJbeVHvsmgSngsHOj1DPKyjMhKSUB+djJMyfEhd/5yi5Vt\nxrkGOpXRohyjohNWX8GyHOa+e1jyea28MjAi85Z+iRNo3XpeZiLevOdq0UByoY1ePbDNJx/fYlPW\nROlwsjhntiIvy0h9HCF8V6rZasfM1/aq0oQXozAnSbXwWH+EX3ehMWQHgGEZCSFtzAo1je1OHJfR\n7G+xdcIUxg7qi5WL+1fQT0kzxGDMYHWyA4U5Sdi4WNr8W81IaOzlA73+PSzTgDi9cmBYsu5YwAuz\nLheLU7WtaGxz4K17r0ZsgEOQwmyD2wh9QdlFH+QB98Il7bpLrA7YtHi86uvCshxqW22oqG5Bfast\nrKPq1MRoFOaIDxbioxgMy1SnmqnhRhvRRyCEEHwwZ5ynOYhvkEqJj0JjRydcXV2obOrAZQMTkGqI\npcr5dlGkVX42MA5bHp7gVxvPMAy+fGQiyv68Xfb1x6qtARla86kH4ah0dG4Slv5ypGchtd5qR1VT\nB64alAwQxqNDE4oGsnAR7u5mQF33LV8u64vcebpcLG5bXe7VvFSUa8S6ueEx/iaEYN28cX72hXmZ\nCfh0kfqblIYbLdBHKL66LLzuSlb3tHXUoIFiL5OkslU+FVKUk4T1MqmOaMqF1gttDupAz7Ic6q12\n3PWPfX6ph8OVFqQlxnoErEzJ8SjKHeB53leHJlhdmlDCv6957xz2aN1cPSQF788uCbmcxNEqelOY\nqCjvn7vYeQr7MKTUL49WtmLaynJ8vKA0LMGety+st9rR1OaIuBt4f0QL9JcIlw0UD4R5pkS8efcY\nxaYd3sBDyfOUdlrvlnnYg4PnpQNVf1x4czq7MP2VclT4NC0d+LE5oNmOHCzLYcXXZ6m29e2+lbr+\nfB/GunmlsqJsJ2ssYQ32DENgMsbBFIF1/v0RLdD3Y/gRWVObAwMSosEBMHenOEYPSkFmck8zTl52\nMuL0gM0FRBNg+39NVKUsSAjBq7OKMfb5r2W34yi6elmWw4maFtkgD/QfMTVevqGzqwv/uWY/7BIL\no2pmOzQ0tjtxtkG+bl6q+9ZtCC9+/Wn9ek/WWHDb6j3dM8H+8VldqmiBvh/B51K7WBaNbQ7894YT\nsiWTBdkGbJhfBp2OAcMwOPH0Dfi2oQ1DMxIDynVmJMVieHoCzsjoq/9qzT5ULL1BUnKAVlmxKCcp\nYsTUpHBLAdvw879up6p6cXUGLwksJDUxGnmZibK+Anz3rS/1LfKpvPoWGzIobkpHq1pR3diO3LTI\n08vR6EFb2YhgWJZDvcWOmpYOnKhqxoxVu3HNc1sxbtk23LJij2Jd/PFqq5ccgl7PYLgpKeAFLUII\n5k++XHYbRxdkJQdolRX/+MsREZ2TdblYzFhVjtJl26hLG5XWSdRCCMGfby+QfL4wO0my+/Z8k7wZ\nyk8tHdSj9LveOhC0DIZGeNFG9BGKy8Xi9lf2UBtXSMHLIWQYY71kfgF4qlXUdGuOHqRcxLxk3TFs\nWDDeL1CIGUlI8f82nMSGBWURmRJwOrtwy8pdOFtP5xzFMygl9PnmvCwj4qMIOjq9A62vTaIQluWw\ncts52f0OSo6lXpf5vtGmOT9FOFqgj0Dc1Q7i3qWBQAjd4ufwjER8urDUrzpDCI0s8bFqq98P3+Vi\nccvKXThNaV94osaCxnZnxKRvaPPwcoRn0bJHZiElPgqEEFGbRCE0uf0nNpzEZw9OpFqXAULjVCW9\nb87LclJDPYrfPEJILiFkGyHkNCGkghDyYPfjAwghXxJCvun+f0r344QQ8jIh5FtCyHFCyFXhfhMX\nG2aLPWRBnhcnk1t84zlT34ahv9+MquZ2yYoX2hG28PfocrG4+eUdOF1LF+QBoDAnGamJkSFg5XR2\nYeTTX+Dm5eWYvmpfQEEeAAYmhOemxcssmJLjkWmMUyxFTE2MxpUKGvSn69thttg96zJKTHlxR8AS\nGFLwjVq3rd6Dsc9vxR1r9mkpogChGWK4ADzKcdyVAMYCWEAIyQPwBICtHMddAWBr978B4AYAV3T/\nNxvA6pCf9UVOYzu9XIESr84cDUIIminlXTkAZS9sx4xVe9DV5f/DTTPEIN8kHySEypcuF4tpK3fj\njJlOh4XnlTuvCsvojV/3qGu1oaalAxXVLaht6YDZYve7ufGB5ublO6nz8HKEY0QfCIQQzJ30M8Xt\nGtsdIIRgnsK6DADYOrmQykHzayAlz3+NI5Ut6GI5jzm4hnoUUzccx9UCqO3+20oIOQ0gG8A0AJO6\nN3sbwHYAv+t+fC3n/tXsI4QkE0JM3fvRoCBUUqxFOT3KjbyMAW3AOlLZgutf2oHPHxzvlcohhODj\nBWUY8dQXorr2+aZEj5aKJ12jYiTve97BIqxUqrPY8NiHx71cqoTkZxnwwm0FyDMlweVya8jQygso\nISY015cMGaDcYJYS5/7cpXowpLYPFL5c2Gy14/EPjoqKtPXH3opIQNUnQwgZAmAUgP0AMvjgzXFc\nLSEkvXuzbACVgpdVdT+mBfpeZGRWItbP71FuZBgGWx+bhHHL6NylAODbCx0Y+vvNOLPU20VKr9fh\nxNNTMW3lLpyq61mQHJmViI8XutvU+XSN2pH88PR4r/MOBrUL2hU1Vty8vBwJ0Qw4jvNb4FTLFalx\nWHv/NdAxurBJIAQKgfK5XPvSTpx4aipSE+luunPfPSy6CE+DmNSCGFqgDwzqQE8ISQSwDsBDHMdZ\nZL60Yk/4fTqEkNlwp3YwaNAg2tO4JAjGRacwJwlrZhaL5mlNxjjkmxJRoWKEzQG4cfkubHl4olfq\nISpKh42LJ3qZdfPBjG+dVxvk800GfLooeDEyfmR435sHZGvMpWh3Bp9rjnT1zFaHsiIpn46hDa5i\ni/A0uFwsbl2xi+qz0szBA4PqW0gIiYI7yP8vx3Hrux+uJ4SYup83ATB3P14FIFfw8hwANb775Dhu\nDcdxxRzHFaelpQV6/hclqYnqp/hxemD/ksn4aEGZpIIln3aJVekP8t2FDlF7Ql6Px3cB0L2YrK4s\nNN+UGHSQZ1kO1S0duGX5LpQ8/3VAQT5Y+ot65uWpdA1OS9YdU5VKVDvi5tdwaD8rzWEqMBRH9MT9\n630dwGmO414UPPUJgLsALOv+/8eCxxcSQt4HcA2AVi0/r470pFgUDzLi0E/+wXJ4ehyeu60AVc02\nXDYwAQMSY2CxuTAs00AVWPi0yy9e2oYfm+gXto5UtqK+tQOmFPkKDDW18jzD0+ODUiZ0Oruw98cL\nWLbpNE7XqattF6Mgyy2Fq8Zk+7KBsfi/+69BZnJCRKVopKC91seqrSCEoCDLoOp60GC3u3DTil34\nTmLNRIz+cG0jEZrUTSmAmQBOEEKOdj/2JNwB/kNCyH0AfgLwq+7nNgG4EcC3ADoA3BPSM74EIITg\nw7mlfjLFQhW/qwb3bJ+t0oghKkqH92aPQ4mKfD0AlLywHWd98vVCWJbDbavLVY2kg03X2O0uXPn0\nZv/cYIDkmwz4aGEZOA64bbV8L0MMA2z/r0m9moPn01It7U7qm3uwdHWxeGVmMca9oPx9EavUEsNu\nd2H405tVn4uWow8Mmqqb3RDPuwPAtSLbcwAWBHlelzxSMsWhItMYF5BPq1i+nqfB6lBcTBMSbJBn\nWQ63rtwVsiDPd5Py58M7Xs1++4CXNjrgrtD5ZEEpVQNZqPBdsDTE6HHk97+Q1BWSQ82C6feN7RiW\nSWfz+H1jO7IHKs/6bly+k/r4QjSHqcDQOmMvUXif1hmry3FMRXPWdxc6cNPLu7BxUZmfGbiaAW0o\ncvJ1LTZqn1Q54vTA9scn+yk8MgxBpjHOSxs9XObeSvC5bGG5p9Xhwtk6C/Jz1LmRAfSy0wBgjNFR\nb29UsAbju76/b1Sv+6M5TAVO5K4WaYQdnY7Bhvll+HThOFWvO1PfJmoGzgcDJYLNyQPuwHfti9sD\nem0UgE8XlqD8d5Pw+eIyVDxzAzKM8ZKBm9dGD5e5txLulNhu0Zr+Rz78d0DdorzsNA2PrzsGjgNW\n3zlaeWOFUwm063toWjxOPH1dRC9wRzLaVbvIYFkODVYHdS6TYQhGZCejIFvdSIk3AxdCEzzyTQZs\nemhi0D/Yc2ar6m7VgqxEbFpchrPP3YCROQOQnZKAK7OMER88zBa7pFLpWbMt4G7RjKRYxS5n4TH0\nFJ29Voe8tWEgXd95mYn44mFxG0QNOiL7G65BhVDOeMbqcox9bitmrCpHHaWRM5/GKcyhy8PyiJmB\nZyTFShqbF+UkhaROHgBS4qKot80zJWL/ksn4eNEE5PWDwO5Lg4IJSKALlGrKbTmOo5qx+RrL+6K2\nPLIo14iNARiaa3ij5ej7OdKWcK0Y+/zXyDMZsOSGYRh3earsiIhP49RbbPjNq+U436zctCXWICM0\nNmdZFuY2Byy2TgxNT1S0K1SDkm7MsPQ4vHVv33Sl8pUxF9oc0BGC4UFUxzidXVj03uEQn2EPer0O\nXz8+mapjWs5lTMpYXmwfSlw+MBbvPjA2IjuK+ytaoO/nKKlSnqq1YuYbh8AQ4PTT0qWRQHcuOjke\n788ppS69FPsNCiuGTGEy7U4zxGDM4GSv916QbcCrM4v7ZLGUR8xBKzFGh6O/v051dYzT2YXCZzYr\npqjERvRCjZ/Wjk7ZUkyTMQ55mQlechZSx8hIivXbdlh6Aj5/aALVzUyp2se38kkjNGiBPkLxNQmR\n0hinzXmynHxppBDa0sv8LEOfCXUJZw6+Egx9iZiDVpujC+fMVuRlGan3w7JuUTWadQhfWQAxg/KE\naB2O/v4XiIryH3ETQvDJwvHIf+oLOCRk5flj8NuOXLoZtk4O8VEEmx6kT62kGWJQmJPkV+mVl5mI\nN++5utcXui8VtEAfgbjTMXtx8Hyz1+NXD0nB+7NLvEZFauQSvrvQgWkry/HxglLZYE9TehmnJ/hk\nQWjExwLFt9cA8L5B9nbwZ1kOc945KPqcmjUFwH3DoFXOFH4HpGYB7c4uTF9djk8WiouO6fU6nHx6\nKqat2o1TIlpIwmPo9TqceGpqQP7DhBCsn1fq1YwW6bpAFwNaoI9AGqwOvyAPAAd+bIbZYkemwLQ5\nPSlWVXv6yRoLbl2xG58sLJMN9sKc/d2v7/VyJMozJeLThWVhrYKQsz3kAK+/zVY7fmpsR25KHJ7c\nUOHlYpVnMmD+pJ9han4m9Prwft3rWmwyPr70C6ZyNwxf8jITPZLOTmcXpv59h+QsoKLGKuvaFRWl\nw8ZFE1DX2oEJL2wHXz9TPMjoJxvN+w8Hgk7HYP38MjS0OUCAiJiJXeyQSGgpLi4u5g4dOtTXpxEx\n1DZ3oESi3fzjuSUoHDLA67G6VhuV3ZuQgmwDPqKUlO3tUXKo/HJ9OfP09YhVaOgJFJblcMNL23C2\nQbwRKC6K4MRTU6ny9HUtNoxdRvd5fjK/BAWDBlDl8/NNBmxcPJ7qs3O53OWzAxOitXRKBEMIOcxx\nnGJDhDZXikDkZIp/avHvBM1IilVdGnm82ooGq3zZHo+USmU44CVrQx3kAeDrc2bljQKkweqQDPKA\nW/L3bD3drOtCG32tuV7HUOfz50y4jPqz4+0JpZRQNfoXWqCPQORqjQelxPk9xuc9r8xQ9vYUMuv1\n/aht6QirUJSwxv9EdQtO1bSCZcWFr3gd+3DJC9N07QaKy6Vsji31vv321UlntB2nJxhuSkJdi40q\nnz+E0imqr/D9rhz5qRGfHK3EsZ8aZb83GspoOfp+hpQzkE7HYOPiCbjx79tx1kynI3LW3I6SZdsw\nZnAyPpgzLiBnIDmkavylyg0brI6wjOR5hJaIwnMMNlfscrH4+Us7FLfrojDPdrlY/HrNPqrjbnts\nElgWuPZFulLYNIP/ICFSoEnX7VtAAAAgAElEQVTXBVqmqqGN6CMSudSNnDOQTsdg04OTkEfR1i7k\n4PkW1LeqF5lSoq7FJlrj3+boEk1jhDNDIObZ6nR24ZYVu3DNc1tx9XNbJQ3RlThbTyfHUElxjc/W\nW+GkmGDlZxmQYYzrPjbNWUaOObkvvLy10k2eL1PVUE9kfvKXOHKpm+c+Oy0bjHQ6Bp8uHK86Z3/f\n2oMBiWNJ4XKxuOsN6ZGp2DScVhRNDXmZidi/ZAo+nFPiNVrnFy+FteZHKltEnbTkYFkOS9Ydo9p2\n8AD5ETXtvmJ18JS2dlGkjAC3/EQkmZMLUSNvrbZMVcONFugjELn0wen6dtz08i7Z3DpfGvnm3VdR\nH/NUbVvA4lhCeDu/m17eiW8uqJslEEKwfn4prkgNTYphaFo8Ni4e77eg6HKxuHn5TtFR+JHKVlXX\nocHqoC5tVUqd1LXYqPb1weyx0Ol0cLlYPPLhEapjvzqzOGIXVdWsEUXqe4h0tEDfDzlT34aSZdvw\na5nRJ8MQ5JnU6ZQHu9jlbv8vR+mybThrlrf04yTOW6dj8PlDExETZIl+fBQRbcvn0wRyOvZqrgPN\nIiyPXJBSI7vMMIznfXzbqFw5VZST5FcHH0moWRuKhHLw/ogW6CMQ2i++Um49PSlWlfyw3NoADXUt\nNlGfWzHk1hr4Lk0aCV0hcXqg/HcT8fniMpxcOlW0oYsmTaDmOnzfSO9RK/e5qpFd1jFEVbrjuekj\nI3oknGaIQV4mXcVYi036e6MhjVZ1E4GkGWJw9ZAUHPqxGZenxuMbGfPku97cj88fFNevUesipVZC\nlodlOdRabLjzH3upX3NFuvwNKCpKh08XTfDzzfXtjCWEgOU4L+EuOQ9dmhG4muuQFE039VDKkdPm\nnvmSytpmurQYvz0tLMuhsd2J1MToXrs58Po5I57+AnaZheWEaJ3mMBUgWqCPQAgheH92CRrbnahq\nsGL6mv2S254zd8hKGvD5+oqaFtyyYk/Iz5VP19CO5AGgoLtiRAk531xfD90siiwVbRkkLSzL4fF/\nHaXadvVvRwcdOIemxePzhyaAZUH9Pt5/4BoqDRn+Zj1n7WGcrrOiINuI1XdehYxe6op1z+JuwJl6\niyc942JZVDZ1YPCAeETp9UHJPV/qaFctQmEYt9RAtYLpBABU1Fplq0VoXaQCSd2oSdfwvHbXmD5J\nJdCmR2ivQ4PVgXMX6LqLlUoblVIS+SaDx2VJVZqHoqTS5WIxfeVulC7bhpM1FnSxHI5UtmDs81/j\njlf3hrQaSwy+UcrcZgeBW0AtzRALkzEeY3+WhoLcAf3SMCaS0Eb0Ec6oXLoF1SOVrahvtXnJ1Qqh\nSeOoUcIElEsoxRgzOLnPFgZp0yO0qRvahUGa0sZhmQYkRDFo7/RfCC7KScJ6gbrjwAT61FKaQf5a\ni5mOCznwY7OfuUwokVJqFTIq14h/zR0XsX0A/QEt0Ec4Yt2cUsjl6wGhIqUdDVYbZqzcK6tQKAcf\nINSUUH62cBzyspP7bGGQ9ri029EGepq0DcMwOPbU9Z7UhYtlUd1sQ/HgFD/jcn6RXckvoDBbvtrG\nbnfhphW78J3MGhAQ3kY2KaVWIUcqW3Hjy7vw2aIy6PWab2wgaIE+wuGbiGgqLJTy9QDvIhUHU3Ic\nzvzxhoAUCnnhMTWaNIXZSX0a5AH6wEyznVtKmE5xlXYkqtczGJHdM4MbNUh8O352dsty+c9gzSzp\n2nm73YXhT29WPKeiHGNYG61ovw5n69tQ8MwWHP/D9ZoEQgBoVyzC4X06aamotWLaynKqVv5AFArd\nwmPlqoJ8vsmADX1sUgLQ595ptqNtlAqXC5dOx+CF2wskny/KkZ6huVwsbly+k+o4r84MfhFZjjRD\nDHUZbYeT1SQQAkQL9P2AjKRYFA+mb37izUWkgr3LxeJkdQtOVDXjVHWLqgahmqYOjzMQDUU5Sfh0\nUVnQC2nCcz5W2YTyb8zo6qJvVgLoc+8029GM+oVSBeEgNUH8BpJvMmD9/HGix+VTbt83KqfcemM9\nhRCCjxeUIZry66FJIASGlrrpBxBC8OGccaiobcUty8upXlNRa8X0Vbv9zEVcLhaFz2xBu7MnSMZH\nMTj2h+tE/USFOJ1dmPK37dTnHaqcvPucN6Pd6X1DYghwZulURFPWsocSmqa2D+eMDasLl1hKaGha\nvOSN1d1NK73wKuTT+SUYkZvSa6WVWx+diPF/CV3pq4Y32oi+n8AwBCOyjLgijV5TXMxc5JzZ6hXk\nAaCjk8XNK3bJpnt4cwsaZUUgtDn5s/VWvyAPuA3PD/zYSL2fUKZuaFIOGcbw6r+nGWJQPKjHcFxK\n9oHHbLHLWB16k5Ec36upthjKooNgu7cvVbRA348ghGDT4vGqXnPvWwe9ArjU1Pdst1iaVOdog9VB\nbVZdlJMU0py8XGrpj59VUNd5hzJ1w6ccYiUG7GqrmAKBEIIP55Zi75IpsrIPPA0UPRlA+BdgxUgz\nxFClJwPt3r7U0VI3/YyoKD3OLr0eU1/egR8oBK3ci7O78fECdyWOXPA9U9+GkUu34KtHJiDLZ0RH\nE7P1AHY/McmvHDCcnKnvoK7zDnV5pV6vw8mlN6CirhXnL7Rh8IB46HQ6pCXG9JrPKsMQmIxxMCl0\nGjudXVj03mHF/eVlJkrm98MJn56st9gw8x/78K1E2W5fL+j3VxRH9ISQNwghZkLIScFjTxNCqgkh\nR7v/u1Hw3BJCyLeEkLOEkOvDdeKXMjExenz1yGRckUYn53uyxorbVpeDZTnF3LKtk0XpC9v9lDHT\nDDGyGvf5WQac/dNUZCYnhPzHqOTMRLuYHMrySh69nkFhTgpuLcpF4aCBGJGdHHE+q7z2/o/N8vLL\nvHm43MK5p4vVYpe9TkJbwIrqFtS2dKCu1eb1b9/nLrQ5kGmMw+aHJ2GoxHdbU68MDJoR/VsAVgBY\n6/P4SxzH/VX4ACEkD8BvAOQDyALwFSFkKMdx6sojNBTR6RisvW8sSpbR2cgdrbKgwepAelIM8kyJ\nOFUrXx558HwLGqx2jyYNIQT/mjMOt67chdN1bsXGOD3w9WOToGN0Advw0aDkzNTU4ZTsCBZCq3zY\nYuuESUYYrT9BaxwOAG/cPUYyyLMsh3qrHfPeOexxghqVm4x/zS3xLArztoydXV2Ys/YwdapPyNVD\nUvD+7BJsenAi8p/6Ag6fyHExfTa9ieKInuO4nQCaKPc3DcD7HMc5OI77AcC3AK4O4vw0ZMg0xmG0\nYDFOCULcAfu1mXR1+cL8PstyuPONAzhX346inCRsWlyGimdugCk5IexpCjFDdCFPrj9OlacflmlA\nnF7+POOjmItKIZF2bUWui9blYjFjVTlKnv/ay+5P6MjFb3PNc1tR9sL2gII8wEsu2D1S1UJbzERN\nvTJggsnRLySEzAJwCMCjHMc1A8gGIBQ/qep+TCMMEELwz7mlqLfYcaHdAY7twoyV+yCm9CpcYIui\nbCOvqLV6Om2bOjpx+Hwzujh3KijNENtrIlNKxzlWbaXK0zMMg62PTcI4mVnQVw9LV61EKi6Xu5Eo\nJT4KOobxml3Rpjp8u2j5EbzZasfjHxyVNGo5UtmKnxracNfbB3G+KTS+w3e/eQBv3nM1MpJisXHR\nBNRb7GjpcHpkqDXUE2igXw3gWQBc9///BuBeAGLDJdFvGiFkNoDZADBokESvt4YiQkkDADjzxxtw\ntt6CJeuO4XiNOz1TlGvE+nk9C2xphhhcmZngScHIUVFrxc3Ld+LTheMxenAKDp9vxujBKUhN7L3q\nB6UcPUCfpzcZ42QlJfpbIHE6u1D07BZ0CMTQhCkVmkDv20XrcrG4bXU5tbHJpJfoumxpOV3XhrHP\nf42iXCNeuXM0Mo2xnu+3RmAEFOg5jqvn/yaEvAZgY/c/qwDkCjbNAVAjsY81ANYAQHFxsbbCEiDC\n0RwhBAwhyMsy4qOFbtMOAvjlzwkheOPuq6nz+6fr2vHLVXuwYd44tNhdvWpKASjn6AH6PD0vKTH2\n+a9Fn1dja9fX8N63HT6Kl3xKZd28Uir5Y2GVjVodo5zkWFS10JVtquVoZSvGPv+1J2/fnz6bSCOg\nQE8IMXEcV9v9z+kA+IqcTwD8HyHkRbgXY68AcCDos9TwwBtEfGe2IjFGh9/+4yBsPj90/oeRIVPH\nzef3D1NqyZ+sseCXq8rxycKyXq8oUcrRA+rqqzOSYlGQZfDTqhkzOLnX68cDhZcykEupNFgdnnUJ\nscVYYRcty3KobGnHrH8coE7BxOkJXv71SMxYczCo96LEgR+bYbbYkamN6gNGMdATQt4DMAlAKiGk\nCsBTACYRQorgTsv8CGAOAHAcV0EI+RDAKQAuAAu0ipvQwOdM57x9UFFMi0ZDvCe/b8NvXi3H+Wbl\njkM+jbNx0YRe1QbngvMs94MQgg0LyjB95S4cr2nD8PQ4vH3fWKQnRVZZpBS8MbjSgifLsrLrEmvv\nuwYAQW2rDbPfOoATCpVYvnz18AQ0dfSOh2tju0ML9EGgGOg5jvtPkYdfl9n+TwD+FMxJaXjjdHZh\n+ivlqKBQS+ShiVfu/H483p9TqiqNM21lOT5eUNprwT6UqRsenY7BRwsn9Lo/aiigNQbnr4nJGIfC\nnCQvw5nC7CQMTIjBjFXlXpU0arA4uqDrpXSKWlMcDW/618rTJQTfcFLV3I7CZzarCvJqUxBqyzRP\n1lhkrQtpm2poCXXqhoe3a+xPQR6gr6QZEO+WuyCEYP28UozKNYLA7dj0zzkl+GUQQZ4vQx1uSkJ8\nVHivX3EfupJdLGgSCBGI215tDw6eb1H1ussGxOL9OSWqUxCEELx3fwk2n6rFovePUb3mSGUrzBYb\nMrtNuvlmGVtnJ+5785DHtSjPZMDsCUNw2cAEgBBYbJ24PC3RU93CEOVgS1MJE4mxmmU5VLd24OhP\nzRiUEge9TofUXpRHmPe//8b6+WVgGAKdjsG6eaVosDrQyXbh5uW7JPP7SvAm5fzncvypqZKm3izg\n+ZthGKrnLhuYgFRDrKe4oD/ejCMNLdBHIGaLXXWQB4AXby8MSDHR6ezCqD9+6adqqcTkv23Hsd9f\nj4YOB2a/fUg0Z3yq1oqHPjghu5+iXCNW/fYq6H1qwHk4imaoue8e9gS1SIBlOdy+ajf+LaLdX5Rj\nxLp5gXug0o7oj1ZZvBYxWZbD7LUHqcsmxcjLTPSTSfB1xgKAUYMGiv6t5jmN0KEF+giksV1ek0SK\naosdo1S+hi/REwZ5HQCakG/r5DBt5S6crleux5fjaGWrZ7GQr53OEIx6Wx3KC37HqyxobHdGTNWM\n2WIXDfIAcLSq1VP+GMiNSY1UL7+IGYj9oy/5JkNITGSAnhmgWPmvRujRAn0EEqgU66ABcahrtVFP\nd3lbQN8pvJpxfbBB3he+djo/y4AXbitAnikJl6cqW80V5ib3ahOXHCzLYe678n6y7vLHHi0hNaj5\nfgyIjw7I/tEXvuku2CDPlwcLZ4B5JgOenzECAAJK7WkoowX6i4RYHXDrqh71CZomE7PFLmsL+B8D\nY8FyHL5vCmyGEQwVNVbcvLwciTE6bFbQ4M/LTMS6eSUREwwa251eFS5S3P/2AXy8cELY001Kn7Mc\nI0wJeP3ua0KyrsCyHH79SjkO+fRunKq1YtrKvZKvE5vlaahDq7qJQNRMzQuzDfhsYSnsPsNwvslE\nDqUU0beNdrz7wDgUZosLSY0eZMSVmQnU5xoIbY4ufN8oPWsYPCBOVlqXrwCqa7WFrApIidTEaORl\nKYtvnahp83MAo4FWhRNwf5cCSQUOTYvH/iVT8OniiSGTXTZb7H5BngZ+lnfHq3upTWY0vNFG9BEI\nzdQ8z5SIN+8eg/SkONS3igeLC23yTSY0x2EIwYYF49HQ5vAKkvyUuquLxYinv4BdTEktRBhj9ZL6\nNO/df7VskPetXhqRlYSP5o+DnlLYLRAIIVhz52iU/nm74rZz3jmkehFZrtvVlwHx0apnDPF6tyVh\nqP1uaR2upKBpBNQQRwv0EYhUNcaw9Di8de81fvrvUl6vbJd8tp12lMYwRFJOwS0newPO1FvAsiwe\n++AIzl0IrfYJIQTr55fi5uU7vYTYRpoSYUqRnlGIVS+drLGgYOkWKjP0YKBVCHVXxvSUqdLAMAy+\nfGQiyihuJIQQpCfFoiDbgOMKfrHDM+Lx4h2jMDwzKeTibizL4fF/HQ16P5rxSGBoqZsIJM0QgzEC\n/8zCnCTsXzIFXzw82U//3eVi8fOXdoju51dr9sElo/woZwbOQ6MKyZfXFeQOwBePTMH+J6/F3icm\noyBLeRGVBkLcN7+NiyZ4Nf18vGi87M2qtkm8Tryjk8WtK3eFNQ2QZojBlRl0aa3Jf9su+zmJoaO8\nSXMc55Z8mF8mmYIryDZg/5Ip+PyhScjLSg6LgmeD1YEz5sDq9oVogT4wtBF9BEIIwQdzxnnKz1Li\novBNg7tiwndR7JzZKjmFd3S5n8/L8u96ZVkOD7wjXxkCAA+8cxifLhpPPf0Xjv4/WjgBdRYb7n/r\nAE5RSCJLkWZw749v+qGRLWBZDg//84jk86fr2sOaBiCE4Ikbh+OuN5V9Wm2dHM7WW5GfTd+dTLuO\nw8sg6HQMNiwYj3qrHU1tDgxIiPZqSOI4wGwNX7ljqHanVupCw40W6CMUPmC6/T579MbHDE7BB3N6\nqmlS4qJk97Nk3TFsWOAfqBusDqpyu1O11oDr0xmGICs5HhsXT0RDmwNdLIumdieeFGjlK1E8yFsr\nnZctUKLB6lD0SA336HBYhrTHri9dLnWLHLQllsLtxIzEWZZDTat3uWO+yYB/3FWMzBB636YZYjA6\nNwmHKwNv1gICLz2+1NECfYTCq1XOfG2vl974wfPqJFuPVVtFt6c16ijKNQZdn87ftFiWg45h8Mqs\nMWhudyI5PgotHZ1IiY+Cuc2BnxrbPe3whBCkBSEXQPP+wh3oM4xxGGlKpFKF/NWr+3By6dSwrhv4\nImUwUlFrRcmybUF38AohhOCf88pQ3dyOWa/vxw9N4dGw1xBHC/QRiLtaZC8Onm8WfV4o2UozhReT\neKWd+j87LZ860PI3J2FqgOU4T1Cf/7//9qovF9ZHZ6UkoCh3ANVxaKB5f+FOAxBC8NrdV0uanAhx\nsMD01eX4ZCFdmkxt6sYXvolKTg7haFUrpq3cjY8XlIUk2DMMQe7ARGx9bAoa2hxwdXXhgbcPqkrr\naebggaEF+gikweqQDPKA9/SVZir75Prjfukb2inwwAT/NAnfvs6PiFmOQ2ObA/+94QSOKVR2CAmn\ngxDN++uNNEBGUiyKByfjEIV20ckaK3W3bCCpGyF1LTaqJqqTNVbcunI3PglRsAe813H4tB7HcWA5\nTja1p5mDB44W6CMQpZSCry2gEmLm2bSjdOFmfPv6A28fxCmVJhVyhKM+mub9haLTk197aG53iipT\nEkLw4ZxxqKhtxS3LyxX3ee9bB/DJwvGKQZX+8/PfjmU53L+W3vitosaKm17ehTfvGRPSvD3gX7qb\nlRzvscHkr2tKfBRabS7NHDwItEAfgSgFeuHztHnmLp+aetrXzXnnEDYscEsQ/PqVPTj0k3pVTRpC\nnS+n2V+gx3S5WJypt+C/N5zwGxUX5Rqxbq53XpthCEZkGXFlRoKiNlBFbRtuW12u2ERFO/sRe4+N\n7U7VVVBn6ttQsmwbxgxOxgdzxoVVtkEY/LO6+wuytHRNUGi3xwhEKf8qfJ62Hf6Bdw551Y3T5nj5\n2UCD1RG2IA+E3pSbNkdPi9AIpmDpZty8vFw09XG0shU3vbwLtS0dXkGWEIInb7yS6lhHqyxosMpX\nDKUZYlCYo1zVI/YeUxOjMTQ9MOmKg+dbUE/h+KURWWiBPgJRyr8KbdX4dnglKmrbvIKHmvy0u+mG\nenPVhMOUO5Q5epeLxYxV5bjmua0oe2G7VxWUGPzod/qqcq+mtHH/kUp1PEC5aoh3jboyQ34xWcyC\njxCCzxaVUZ+LL3e9uZ+q2U4jctACfQQilwPNy0z0qSt3t8PT4DvCVINvt24ouCI1DvuXTMaHc8eF\nvEGHputV7pguF4uT1S04VtmEG/++IyDLvaOVrV6WizqdDrt/N4nqtY1t8iN6luVQZ7VDLvtUmJ0k\nacEXFaXH2aXX47KB6tdFzpk7ZK0kNSIPLUcfgcjljv90q3+5o5p2eB41qRKGIZ5uXbPVjrtf3xd0\nO3tRThLWzy8Ny+KanCyEEKlr4G5S20wlGqaEW3e+Z6E5Oznez6hbjMf+eQSbHposeo5S9e++rJlV\nLHszi4nR46tHJuOWFbtUL667rSTp+zk0+hZtRB+ByOWOq0UUAGnz9ML9phlikGdS1qIpyjF60ioM\nQ5BpjMNb942lOp4YeaZE7F8yGRsWhMapSAw5WQiey1Pj/dJFLMuhttWGm5fvDEmQ5xHGWj7lMjRN\nPkCeMdvQ2O7/PaCpfweAMUNSqAy1dToGny4cr3g+YtDIH7MshwarQ9Oo6WO0EX0EIpc7HpXrnz6h\nla0V7pcQgtdmFstK6bpH3f5plYykWIwZnEzta5tnSsTrdxX7qW6GCyVZCAD46wzvmZHbFCP0VUVi\n6w86HYNND06UlXfOy0wU7UhWqn9/865RyM8eoOo605yPGHLfU4+T1NpDOF1rRZ4p/PLQGtJogb6f\nITYKppWt9VVI1EmMqIekxOCDueOQniReMy0UXeMbXZrbnRiQEA0O8PwtFM1SG9yFTVnhsJP7zesH\nUbH0Buj17mtQ09QR0iA/LD0Oa+8bK3kNeXnnc2YrjLE6zHp9P75r7JmtvXH3GL/XsSyHe97c57sr\n7+NmGKlG8lLnc6begvnvHMBPLcqzRKlRulhq6WSNBQXPbMHxP1zvueZKuFwszpmtSImPgk7COF6D\nDi3QRyByqRupFvBoipHSsZpW5Kb1pGukctSPXTccGUb5ag6xRhexvwNBzDBkVG4y/jW3hKo7k6Zs\nUqjsybIc7nlrf1DnzJOXmYg377maSqNHr2c8yqJbHpnsDo5VFhQPThbtjjVb7DjbIF/a2GzrRFaA\n587LTX8wtwwl3WbtcjzwziF8usjbClEutdThZGXVVIXyGV0ch+te3OlV4RSODupLBS3QRyBSU+L4\nKEayBZzXP5dryBmU4j3SSzPEiLbnTx2ZqfKMQ4uYYciRyhZMW1mOjxeUKgZ7enkH93YNVge+uRB8\nbXhhThI2BLjArNMxWD+/TFKCmWU5zKGQlRYrp1RLpjEOowcZcVjB9o8v2RV2NCulloRpNX7EbozT\nY/67/1Zcd9AcpgJHC/QRiNRI8KuHJ0gGEUII/nHXGNmce5rBe5TIt+fXW+yot9pQ02zDdXkZ0Ov7\n9mtxQaK08GSNBTe9vBMbF42XzfXSTO+FZaqBLhTyjl+EMCFJL8lJMJstdsVAKFdOKQU/kr7QLTJW\n3WzD6EEp+HDOOJitDlxos2Phu4dwvkV8liS8dk5nF377D2mTbwCotdpw6KcmZBljcOfrh2BT6EmQ\nO54GPVqgj0CkvsxKQYTWvk4IwxCYkuNgSo5DUa7ql4cFV6e0BeKZ+vagrQBjdcCni8o811NtKkBN\neiYUsCyH2WsPKm73yp2jVZ2PXJlmQbYBG+aXwZQch62PTUH+U1/AIfKx8NfO5WJR9OwWxWayGavk\n1xiU0AJ9YGjllRGIVI5ZqYxSqS2etgyzr6lUaLHv6GQxfXW5ZMOOXOAelp6Aimemehlfpxli8LMB\ndOWFhTlJ2Lh4PDJCLO4lR4PVgeM1yqqgatQl3bn0PZKzhOPVVkxb6e7sdS/UTkW+TznumCEpnhnI\nObNVMciHAjWyFRo9aCP6CEQsxyyXn+fha7RndC/qCUkIocSrcLoPjoOLZVHZ1NFjGgJgYGJMwJUS\ng1KUg65b0lc8Xyu19iDVpEUIwRcPjcfQP2yRPF5hThLWzCzutVG8EBoTlaKcJFUyEg1Wh2K378ka\nC25dsRufLCxDVJQOny6aIFkJlRzbO6FEc5gKDMVPhxDyBoCbAZg5jhvR/dgAAB8AGALgRwC/5jiu\nmbg/9b8DuBFAB4C7OY77d3hO/dLiy4fGUy3y6XQMNswvQ73Fjgvt7kCsYxgMD5HEq9p686JcI56d\nlo90Qyx1kKQ9T6kA6Lv2UNXUgeLBKcgwxksePzo6Cmeevh5fna1HbkosQAgsdhf+Iy2h1+r/pahr\nVl4ofnWmfBesL7QpkIpaK6av2o2Puv0MMkTWAFiWw9x3lb1xQ0GoNPEvNWhuw28BWAFgreCxJwBs\n5ThuGSHkie5//w7ADQCu6P7vGgCru/+voQKx6anF0YVsytcL8+6Av276gITogEfbalUsj1a24pYV\newAAhTlG/PGXykGf9pTkHKK81x7onKtiY/W4uZD2KvcOSibngNvjVWoRlmU50UoeNesSx6vlDVFo\nU0vBIkwVaahDMdBzHLeTEDLE5+FpACZ1//02gO1wB/ppANZy7uHCPkJIMiHExHFcbahO+FLAt0SO\nJm0jhqc7UWD8LERNbTpPMIthx6p6gn5RrhGrfnsV9CI3HDFXKzEuhWk8jcn563f5j+b59Nq8dw/j\nRJUFBTlGr886zRCDwuwkxUoenjnvHJLUyKf9Tlw+MNarKYyWgmwDXps1pk/SZhcLgSbWMvjgzXFc\nLSEkvfvxbACVgu2quh/TAr0K0gUSA/mmRHyykF4XhjfF6GJZLFl3AqfqpMWqjlS24PZX9mDdvFLq\nEV6omlWOVrZiXHdTTr7JgDWzRiNKpy5FEqk/emFXL8txaO3oDNgdyeWSrkAC3BVAviNtu92Faat3\n46ygp+JIZYuXJSAhBK/OKqbyswXcGvlmiw2ZQTTDvXjHKKQaYvHdhTYkx+rRxXFeazsulkV1sw1X\nDUoGw7gXy8PRFX0pEuoVFLFPQ/R2TwiZDWA2AAwaNCjEp9G/4SUGpJpnxOBH7z//63ZVgly+6opK\n8JU9SuqLaqiotaL0hdTt1HkAACAASURBVO0A3N2PL/2qkOp1kVhq53KxuP2VPX4LnQnROnz5yASY\nVFTr0KhwLpsx0mt/drsLw5/eLLptRY3Vy70qIylW1Wc5+a/bcfyp6/3KWmk/B66LQ3ZKPLIF6bZR\ngwZ6bTNKCwVhIdCVjXpCiAkAuv9v7n68CoCwGjsHQI3YDjiOW8NxXDHHccVpaWkBnsbFC988oxQU\neMXFGavKUbpsW0Cqi2oGS3xlD43yZSAc+LEZ3zXQSeZGWqkdX7IoVs3S7uzCuGXbMGPVHmrTDhoV\nTl/5gVtX7pLdXuhexX+Ww9LpRuk2Fyda1kr7OVRpzlR9RqCB/hMAd3X/fReAjwWPzyJuxgJo1fLz\n4cPlYvHLVbtR8vzXARljAIG5O/HStjRWdoFAU04IAClxkVUdTFOyeKSyBVNe3IHqpjbFkTCNCmea\nwT0TY1kOFbWtONeg7BMgPK5Ox+CzxRMQTXmzP1lj9bMSpF0rEVNe1egdFAM9IeQ9AHsBDCOEVBFC\n7gOwDMAvCCHfAPhF978BYBOA7wF8C+A1APPDctaXOB7d9Jd34HiAKZRg3Z34Ms69T0zBhvljMSQl\ndNUQjI7ufK59aaefImdfQpvCON/YgdI/78C0FbuCsuTjJQ9cLhbTV+7GLcvLA9qPXq/Dh/PoPQbu\neWt/QO5S4fIf0FCGpurmPyWeulZkWw7AgmBPSkMaMWVHteRlJmLjYrq6fDmEJYxfP34t6i02TP7L\nNtjl1w9lidMTDM2gmynYOjlJNcS+QO1CNd99KiXUptTJvGZWMTgOVEYkSudpUlArFXKmvsOr3JI2\ndSNXDqsRXrRbbD9DTNlRDUW5xpAEeV/cQT8eJ5fegE2Ly7D3iUkoyFKXx8/PMuDk0uuRYYxDYTZd\nsKdJb/QWfEeuGk7WWCT9V+WM34ty3LrzSmqRYq8TS9WlJ8WiIIu+hHfOO4c850yburkUymEjlchK\ncmp4cLlYfNvQhqEZiV5BuUHESpCGEaYEvH73NWGvRRZqrH+0cIJHYzwlPgrmNgd+amz3lNOxHCfZ\nfbr6ztEY94KyJnokld31dOTaMPMf+/AtpfTxkcpWnKhuhskY73UNGIbB8aeux3UvbcMPTT219EPT\n4rF+/jh0drKKapFC+NdJmclsWFCGm1/eKSt1zSMst+zv5bCXAlqgj0BcLhajnv0SVocLhlg9jvz3\nL6DXM2BZDo9+qE5RIi8zEX/5VSFSE2N6veGEYQhMxjiYuqf4WSkJ1F2qtGcZaSWW/Mxm88OTMPV/\ntuMbBaMQnmkr3QHbt4ktKkqHLx+ZjJFLN8PWySE+iuDzhybA5eJUG5j/7deFsjM5nY7Bm/deQ11b\nP/lvO3Diqesj7jPQ8EcL9BHIObMVVofbvNNqd3ny0GaLHecu0I/o802JiNUzuKl7ka4o14hX7hyN\nDImA79vo09zuDPkNQngMQLohhjbvK+W4JXa8YJuX1KDTMVh731gqpyYhYk1ser0OJ56a6pnhsSxw\nywr1BubpScpicRlJsbhsQCx+aFL+ntk63bPOLsoqKc0Zqu/QAn0E4pt3TomLonYY4inMScLK34xC\n2V97Gm6OVrZi7PNfi1qyuRd59+Lg+Wa/fSndIGiRaiYSOx+afK6SNIRc89Lmh8cjWmUnrlponZp8\nOVLZivpWm9fCpV7PYLgpqbtWfzfOmpXTK0KKB9F5yRJCsPbeqzH+rzsVt02I1mFoRqKnLl8Oteqa\nGqFFC/QRiG8Fhk7HoMHqUKysuCI1DmvvvwY6RoeBCdG4+WXxrsoDPzb7BZIGq0M0yAM9N4g8kwEv\n3DYSqQFIELMsJ2lyIXY+NPuVctziu4TveX2/aF15u7MLZd2duJenxeOvt49EtF6P5PgoWGyukI34\nCSH459xS1Tl7APjtP/Zhy8MTvZy0WJbDiZoWVYuvAPC76y7HLYXZaLA6qD6zmGi6BW5eUTU9KRYF\n2QYcr5YWNlOrrqkRWrRAH4GkGWJw9ZAUHD7fjNGD3Yp9SqMmX7/SuhYbTtdLN8/c89Z+bHpwkmcU\nTdOkdKrW6hElA9SN9KsutMveqO59az8+E5wPDWJ2gmpllL9r6MD01d7G4AnROnz+UBna7V1BB/1A\nc/bfN9pQ8MwWHP/D9Z71GTXvS8gLW77DC1u+A0BnsE0rc8Fff0IINswvwy0rduFUrX9XM18hpNF3\naOWVEQghBO/PLsG+J3+OD+aUgHTnsceIlO7lZSZi/5Ip+GiBt/BZY7v8jcFdC92zTSDuU/xIf/qq\nctS12iQX5ViWw11v7Rd9jud0fQca23vy8koBX6pMUK2Mshjtzi5M+PMO3PDybox8egs6ZawNaeFz\n9mrocLrNswF3WW2w7wvgDbbl8+800ghxUcRjrg70dEtfmZngtV2+ySBZ6aPRe2iBPkLx1brhhc72\nLZmCwmx3XrpIxtaOJsctDMxyNdtK8AH/ppd34VhlE05Vt3jNEOpabIqLe3mZiUhN7DlnuZp0t1OU\nePAIdQVIu7MLU/++U1FFUgyW5VDd0oGd5+pxvLIJTe1OjM5VJxuREqen9oylRVgDLwUvjRArYctr\n6+Rwoc3p95qNiyagqFsaoygnCZ8uolde1QgfJBJKo4qLi7lDh+gXGi91pMwkhNQ2d6BEoQ597+8m\ne+XFa1o6PNLBwRIfxeCrRyciLSEGBUuVywA/njsWhUO8lQxZlvM4Zbm6ulDdbFN0ijJb7Lj6ua0h\neQ9C4qMZTxqFBpeLxYxVu/0MOeKjGHyxuAwz39iH883KlUWF2QYsv+MqTHhRXsVSLfuemILMZOUq\nnM7OLvzipW34scl/hnjgyWtFUzI0308aXC73jGZgQrSmRS8BIeQwx3HFSttpOfoIRe7Hwo/25aAp\nT/RtSTcZ40ImQdzRyWLcsm0Ylp5AVQZocbr8HvN1yqKRsA2HjDLQk0ahkVvgVSzFXJc6OlnMf+8I\n/u+BcSj983bFfR2rtmLHN2bF7XiyjTGoblWugmlsd1AF+qgoHd6bPc6vTFQqdQbQfT994Y1Smtoc\nGJAQjS6Ow3Uv7vQYjhflGrFu7jjNSjBAtKsWgbAsh9+s2Yexz2/FHWv2BSQgRZO68d2Gz80WZIfG\nRBwAdRng5anecgkuF4tTNa2obelAXasNZoudKi3Dv4dwKGs+9uFRKhEyJRXLkzVW6BgGowfRafS8\nsetb6nN8774xVNupkSPINMahWHCuRbnGkObdeVG2kue/xk3Ly1GybBvKXtjuCfKAOz0oJRWhoYw2\noo9AGqwOHPixCQBw4IcmVcYgPDQ/QrFtdDoGHy0Yj9pWG75rsOKpj47jh6bw677zeVyXi8XJ2hb8\n55r9sHV6B9XL0xLw1t2jERMVJVsmKDRIr7N04OH3jija8dFwqq6NypGLNp/vLr2040KbHQvfPYTz\nLeLX+YcW5YXyoenx2LR4PE5TereqGRkTQvDh3FI0tDlAgJD2HvCzHxpRNrUmORo9aIE+AvH9DQXy\nm6IZ/UptwzDE4wT01aPXYsaq3TgmUyMdChiGwOViUfTMFrQ5xQPldw3tGP8XdyOPkt+tr7JmQ5s7\nz//A2wdxqk5ds5EQpWBD4woFuK+98By3PjYF+U99AYfIWx+anoBzPjOjPFNit1cs4+ku5jhQSWQE\n0rzEO1KFGhoNfyG0XgUa3mipmwiEr6PXEXfdcyAdhbQ5ejlYlsOFdidWzyzGxkWluDIjQXb7QMk3\nGZBmiMG3DW2SQd4XXiqAZirPB6nslARsXDwR+5+8FnufmKxaXZOHZVmcqbWIBh0aVyjA/9rr9Tqc\nfHoq8n2cu8YMScFni8oQF+W+28fpgf1LJuOzxRNgSk5ApjHOs1DZYHVQSWT88ZcjImZhU+1pRJqr\nWH9BG9FHIHwdfTCVC4Hk6IWIGUwXZBlQkJWI4zV0Vn+0vDZzNAghGJqRiPgoxis3K8eRylbs+qYe\nwzON1FUZwpHpRwsneHRwOI7F5L9sV9TSvzIzEVNe3AFbJ4v4aB2O/vfPER3d8zOilU0Wu/ZRUTp8\nuqjnnAjchsvNNheO/+F6fHeh3U/NVAhtyoh3pQoUfuG0pd0ZdEMZX0Z7iFJ6W5M6Dgwt0EcogVQu\nhAqns0vUYPp4jRUjsxKx+78m4fvGdhhjdHj4gyP4vlE8/z3IGI2fWpVHYHyHJcO4SzLVlHje9eZh\nAO5ZwccLSkW7ZaXwTUecXHoDzpmtSImPAgegqd3pSW91uVjcsWYfTtf13OQ6nF0ofHYLTjw11VN2\nSbtYKHVT4s/J6ezC9FfKUdGdc+e7kKVeR5syKsw2BNWl6tuhy3cRW22ugATweGnnipoWr65rjdCi\npW4uUoRdplJITYMPnG+SfM2JmjZE6XSYcEU6CgcNxJeP9DRwCSnMScJjU4crngOftuExGeOQl6k+\nRVRRa0XB0uC6WHktfVNyPLKS4zEiOxkjc1KQn5WM//dxBRwiEw3e5QpwB8EHKIXnpBZz+Sarwmc2\ne4I80NOUdsere0VvJmfr6VJGz88oCCpt49t5zHcR37S8HNdQdEmLwTAEI7KTvSp7pNBSN4Ghjegv\nQliWw5PrjytuJzUNToqRHxVzXE/E0+kYbFgwXlR6+NiPjYrn4F5Q7Ak8hBB8snA8Rjz9Bez+pfWy\ndHSyuHnFLmxaPCGk9dYNVgcqaqUXo/l0TYPVgVN1ymktqcVQKbVNIW4JA+/FYJblsGTdMcXjxukJ\nhpuCKztVCuD8DUlpsdwXvrLHbLVjztqDkov/qYmaAmYgaCP6fgDfIVrT0oET1S2oqG5BvcyoqcHq\nEG3W8UVqZMd2yf+Y57572GtUyacbMo1xnsVBjgOe2CB/synMTvL4jgpxL0zegI2LSnH5QHVphrP1\n7Zjy4g5UN7WFTA5BKffNX0fa463+rX8KxuViccvKXVQVKL7Hof28P5h9jep8Om9EX1Hjlk52rxoo\nc6SyBbeu2K3K/JxhCDKNcdiwYDz2P3ktdj42AZcN6Pn8iwcna+JoAaKN6CMcuVHemMHJ+GDOOL80\nAG0JmlhgcrlY/HrNPtnXHa2yKNYzmy12nDHLKzWu/u1VkjcbvZ7BiOxkbHlkMm74n+04R6n6CADn\nGztQ+ucdGD3IiH/Ola95V4JlOdyrIMjGE+iNhWU5TF+5C6dFlB9poF2ETU1UFyRdLtZPWlosTSdF\nRa0VNy/fiY2L1M2wetZOYrH1sSlhqd+/1NBG9BGMy8Xi1hXSo7yD51tgFvGQpc1jim13zmyFkyJe\nKf3eminOoZUiN6PTMdj04EQoZJNEOfxTq6JSoxINVgfOKtxk+BtJoNfdbLHjhIog72sYQ7suQHO9\nhfsVa2Q6Vm31GmUrcbquHdNWlqsa2Qvhg76mdRMcWqCPUJzOLtz08k7FnO+FNv+KF9oSNLF8Z1K0\nckSVa7ix213YdLwGSTEMYmS+XXF6IusOJYSvMc8zqa97p1FqlENptJyXmei5FrTXnd+OX3id9br8\nDEqIr8YM7bqAkhuXLzVNHZIDjN/fpLzILuRkjUV1GkcjtGipmwjE5WJR9OwWqnpyVuTHQzNNzstM\n9Mt3ulwsfvE/yhZyYjlmAOjo6ETeM1s8//6PgdH4tlF8lPv+A+ryxVFROmxcNAH1Fht+u2YPvhdR\nUxTjaJUFZoudSsDLF6ezC9e+uF12m+cDbD5ylymW45AKm8G8zEQ/jRnaNN3Xj06kvt5OZxfK/rpd\n8vllX5zBSFOiqllIoGkcjdCgXfEI5JzZSt001Orw10FJM8Qojn7fuHuMX4CiLdHz/aHyC3ZTl3vf\nJKSCPABEqah35+Hdmr58dIqq0b2SCYsYLMth+upyxQYqoeqmGkNzt5EIfZAflpGAjYvH+wVrmmMW\n5RhFF72lkCuvBYBzDXa8OmuM6hnW6bp2TZisj9ACfQRC210JAFek+0/HCSF4baa0RLVYtQttiZ4w\nVcG/7o5X96Lk+a/xU7N/PlwsfRMfxQRV5se7GRVRKlQG0k2pVFLJI1TdVGNo3iCytiJFrA7YJBLk\naY4pZ9IihSFKOSwwhODTheNVy0i4tYKCWzfRUI+WuolAaH+UBVkGyZGaTmKanpeZiHXzxqHOYke9\nxYaaZhuuy8vAhbZOqhK9F24b6XV+cqbiAOBggZ8NjMNLdxSCYRjoGAbDQ2C+rdMxWD+/DGarHfe/\nuQ8n66T9cQNJrdBWsgjfB62hucvFYdF7h6nPZdtjk6DTic+AxNIglw+IxVO/HIFhGQakJ/m7j8nB\nshx+t175hs8wxK10unACqpvb8f+9theVEuqbvsx6fT8+WzxeVRezRnBogT4CoS3Te+3/b++8w5s4\ns/3/PZK7Lcs2Nm6UQC4hMQGcYDohlL0JqSxJbjZbAiHJ0tOTu2T3bjbltwnZ/e3eTYBQ0stuKhDS\nQ0JZeg2YEgIJKeCCbYyLXGV53vvHzAhZmvKOLNnCvJ/n0WNZGmmOXo3OvHPOeb9nWmD4RUWvpPCF\nqQW4cUlgNcWATP3+oL50S2ybhHVrNAzx5/vKRvzyhZ2WOjTxoNZdr5wzFtt/PIVH3j+g2QnJKrxy\nAqoNVmhpkTD4cfOOWyqDc5ORlaL/3XRLjEFCNKGh5cz7JcZH44LM5KAqVU5WN5qWxfpe1dlshJ7d\nkrDhoYm6zcH9OVJe36bxuSD8iFGOQHjjrkaLRzIcsQFSAgOyHbjztd2a2t+HyvRnxL74l+gVlvDF\nmRvcEo6cDF3XJ3URWVFVPfKfWIOpL+3WdfJWnTGvAuWAnLbyDTz7mf7aTm4n3z8zEavmjjZ01hWu\n5jZOHgD2F7sM5RL0kCSGOzl60866vG+ATWo4rU83vlxAg1vCkbLwSl8LziAcfQQSirirKiWgytsm\nRBFskLhK8fTQKtHrlcpfU33v21+FpMTO7W7FdYs2YfiTawM6EfkzNAiZ55Q48wvd+CjCB35OOMMR\ni8G5+nmDWDvh+0q++LRRXN4XrfJalZ0/VimrWfngLdU8r5v2FYbdbsOae8dy709oy3cc7XL0RPQj\nER0gon1EtFt5LI2IviCib5W/qaEx9dxBz4Gf3y0OOx4ej1Vzx3DFuKOi7Djwp0n45O4x+OeM4ThQ\nGnzDDUCOL/vvN9PJF/IBgG8rGjF5cXD11GprwZ8qXRjkJ/ilx8fzRuOdmSMthy8q68yvqNbef3lA\n3JyIsHKOvm7/gp/ncdtgFJf3xSzM96sXtuNgURWXU+WXOdaftUdHR+HIY1eij0XpCkF4CcWMfjxj\nLN+nE/l8AGsZY/0ArFX+F1hAKwSQ39OJLx4Yj0xngmXH9fCK/ZjyHP+iHD20kmfdk+MwKId/Ic7B\nEhduXLLFUkjB7W7FoMc+x9XPbsblf92IJs7QR0YQMWpJYlxdmvQSiXa7DS/fPlzzOUcMX0rMLC7v\nCzMZxx8qG3Htoq24+E+fGyp7ynmJDVz71BpTNZR2sqYRlY1uPHPLJabO3sx2QegIRzJ2MoBxyv1X\nAWwA8Lsw7KfLonaY2v1jFQb1SMayWwuCSqzJy9i3cPXjNMN/RaYKEWH5tKEY8dQ67vfi0cqRJIaK\numa0ShJue3EH97oCFf/4OS88XZrOT08wfO/M5DgM7pGMwqK2417GIR0NAMunFnB/11rrKLQwU/aU\n11BwvZWGtpJcYmtUfaWFq9miPKkgaNrr6BmANUTEACxjjC0HkMkYKwUAxlgpEXVvr5HnGqHoMAXI\nFRT7ikLh5I1zApnJcZa6BAH6IQe1e9HM13ZjfztOUO/PtlY7bmaXL6/eZuyIiQgrZ4/GjUu2eMd/\n6HmpGNsv3fS9h1pUaNRaR6HHkbJ6XPPsJrw8fSiynG3LLls5wzZaJ3yzEls9hvdNs/waQXC019GP\nZoyVKM78CyL6hveFRDQDwAwA6NWrVzvN6Hq0t8OUxyPh1he3tcuGPmlxeHPGCNNwkdol6EBRFSY/\nx7dPrVlhmasJs1/fY6lZtB7VTa3IiA5P9XBUlPn7qnX+vsqL+37QX3HaJy0Ob80cabnuPdMZj4E5\nSTjA2d7xm7I6jFywHvk9krFi9mjY7TZIEsOD7+41fa2WBAMQfFL1hiXb8NQNA3FRdnK711UIjGnX\n6DLGSpS/5QBWARgGoIyIsgFA+Vuu89rljLECxlhBRkZGe8wQ+KEqDx7jrPDQYkC2A2sfHI+slETu\nXqzZnHFl/65S8qX/Vox8al1InPwlPVOQnhRcb1GeEkneck1f5UXGgPvf03emb84YGVT+hYjw/tzL\nLMsR7CuqxfVKYpy3qfjL04dpOuTqRr7wkT/7i2txzcItGPjoGpRUN4Ssf4AgkKAdPRElEpFDvQ/g\nCgAHAXwAYJqy2TQAq9trpMAa5bVNlh2mbxu3/J5OfHgXX2WPL2qjZzPUZuAq5bVN2GUh7GOEPFO1\nXmmjkuGI1a2aAeTQSjBXWpX1bvygU+df0MuaFo0/ag37YE5JCJVDJS5Fe8Z8Rm60bqN/lgPxUcFL\nCNe7WzFqwfqg2hAK+GjPtW0mgFXKDyoKwL8YY58R0S4A7xDRHQCOA/iv9psp4KWpyYNfPc8fsunb\nLR5r7hsLm83e7gYPaginrLYRt76wHd+d0q7h9j+BGNWC89KnWxz+defwNlcgajjodF0z0hJjwABU\n1buRkhCN6kYPUuKjUNvoQX8fSQYiwl//azCu1WhU/fFdo5GX4wxqbNKTYgIStP3S4/HGb0dYDtdo\nYbfbsGrOGJysacBlT28Ab+fcvSdqTPsLX5CRgPdmjcTJ2ib5u1Icsa+cxf4/XYmrn/03vrXQIMYf\ntQ3hgGwHlk8dgmi7XTQbCRFBO3rG2PcABms8XglgYnuMEuijOq/qencbBwXITv7CRz+39H5vzhjp\njTlnhqBNmxrC+fy+cZj0jw2aP3x1xiZJDJX1bu5EoBZ5WUl4efowpCfF4lS9G6U1jV5nPueNr7gq\njhyxUdj7x//0LsfPy3EGyAoMPS81aCcPBCZo5QT36KBa+/mevIjI26PXZiPkpCbimycm4ZqFG3G0\nnG+1s9kM+ukpA3HL8m2aaptJsXbs++MViI6247N7x1nuBqbFoVIXRj+9AQAs954VaCO0bs4CfEsN\nZ7++x+u8fB2UJDFcv3iTpfc1k1FoD3a7Da/dMQIjF6wPeO7YqTowAub88yscKKpF79Tgks55WYl4\nYVoBWiQJ1y/azKU2qYWr2YMjZS4MyJXDV/IMdRKOlruQmhANu80WkpmlmqANtppKq7WfysU5yVh2\n66Ww22ywEeGTu8fiP//33/ih0tzp2k1yDkUGksp1za3esVO7gQ145DM0h2jR694T1bhp6VasmN2+\nlpDnOsLRRzgej4Qblm7Bfo0ySV8HdbK6EUcr+GZwADAgW7uCIpRkOeNR0MsZ4CR+82JbPZXvT1tL\nGscQ4GbA1yfrMUqZ+bUX/zh1VJQNeTlOna2Dx7+ayuOR8E1ZLRhjkBhDXZMHI/p2866KVU/yjS0t\nmPbiLvx0WttxHyyp9c6CAeD8jAQ8fUMebn7eWCVzaO8UXJidjCE9k7HnhPbVT69U4/yB79h5PIyz\nfTg/e0/UBN08RiAjHH0E4/FIuPbZf+Mbg0vwFrcHbncrJvwtcOasx4XdE/DhXeY6Ku2FiPDOrNE4\nWdOI217YhqMmVUB90uLwg47Tjwag1nbw9LS1Cu/5zih0EswMffDja1Dvbhu6shFw+NErER1tD2oh\nEgAcq2gwdfIfzxuFvNwUEBHenT0GxVX1mPriDu93cEH3BHxy92U4eMI4sd/qkbyfJ/+Jz+EOg4RN\nWXWjcPTtQDj6CMXjkTB58WZDJw8AJ2oa8T8fHjLthKQyINsRVEVNsHg8Eqa/stPUyQPAol8PQboj\nzju7rap3Iy0xBqfrW3DNws1htTPDYR7Cktv/bcXu44EVQhfnJOP5qUMCFiIZcbTcFeDkAUBiwNUL\nN+GNO4YH5eR5KOjl9Dp54Izc8NoHJwQk5U+YCKOdqG5APrrhaLmL+zi0SlF1Y2BCUMCNcPQRiFoH\nzxNz7p0Wj4McAl+AHK7pSCfvdrdya6/HR1HAwpkcpS6f0L7knhkFnKtRK1zNmk4ekEMnIxesR35P\nJ5b+ZggyOSQrjDqJHTvVwCUZHCweiYGxwCsZtfbfF7PQzaL13+KawT24O6PF2GB51n/lxZnWXiBo\ng3D0EUiFq5m7Dj7TmYD8Hk7T7QfmJGH1vPCHawClh2xtI259fju39rrVZuGh4MN5o5CZHM8dduGZ\nqKslgnnZDjx940CkJ8UGncw9VFqHvKykdklL69rJoTekYva9HClvRIWrmfvzuSW5ZHPZby7F7a/u\nDgjX9c+Ix19vzkcrYyitbsIVeZlcq5EF+ojRi0B4l5SrVTNLbx2iKyqmlh8GI4oWDEaVIUYYlc+F\no9piQLYDF/uELnjIcMTioqxEHD5pLvf8dakL1/nU4l/S04n3Zo3yfk5JYpj5+m7z9zlZh4HZSTjA\n0bnJKjzdwYAzMXgjJEmyVAJ5tKIBc97cizX3jcPpxhZviad/vuMSoY4SEkRxagTC02EKAJYpK0wz\nk+MwVGNFan6PZHx092XIVOLGvlKy6q28tilkKxHbo5ZpFCPPcMRaXvVpREI04YN5xp2bVNQxK1ea\neb9027Cg9rn3RA2uX7wZJdUNKK9tQoWriatHLwA8NOlCbJ0/PqBjWHvh7Q5mFqMH5GM2wxGLfhn8\n/QkOn6zHlCVbkZ4YgyxnPLKc8R02ITnXEDP6CMSswxTQVuWQiPD2zFHeWvuqejfSk2K9GitltU1o\naW3FjNd2a/b0HNo7FW/PHNnumXPJ6Yag1DILehnX86uLjW5YsiVA+tcKg3KSsOCmfO7m5G53K6Ys\n2eLNlVzS04l3Z47EoBwHt5P25VCJC6OUdQUXWHCIj7x/AF8+MB4f3X05Kuqa4WltxW9f3YWvOa4s\njODtDtY7zbza5fcr92PV3Mvw6u3DLJW8HiypxdXPbMQrtw+zlMgWWEM4+rMQraX4vkk0NYnp8Ui4\naelW0/j9rp+qn85VcwAAFRlJREFUUHK6AT3Sg58xejwSJv59g6XXXJSViFemD+OSAFCX+JfVNuK2\nF7fhSIV+Fc95aXF45pbBsNujkJoQjeqGFu+JjzuOrJFI3nuiBjct3YqltxZg1NP85axaWFnz8GNV\nMwY9tgaFj1zh/Y5Vp+9boZSaEI3Khha0eDy4/619+LHKWFqCtztYepL5CaGw2IXy2iZkpyRYUtME\n5GbhsqKmEytmjxKrYMOAcPQRiFHopn/3RNOl+Gqt9x0v7+RO5O0rrm7j6NWFOr6OxMhZfldRZ2k1\nZDC6Maq8wqf3TfDaBqBNKaZW4jPXYjNLSWKYsmSLZiJ5X1EtbESajUXCSUOLhOsWbcbHd18Gu90W\nUB2jntxzlM+67qGJhrN/3kojAKjiVKesrG9GVko83p97Ga5btEnz6tGIfUU1mLx4C1bPHS2cfYgR\njj4CMQrdvDJ9qKFzdLtbMWXpFq6eqr70TDnzo1dlg7UUJfXKBy/ITEKcHVx11AW9nO3SjdEqAczh\nlEjmocLVbFjayhgLSSjJKt+U1XHLAfiOke/sHwhMeJrBE0oEzoRvVDXNa5/diMNl1sJLB0tqheRB\nGBCnzQhE7wc4KMcR0EtUTRaWVDdg74nT3I2z/fGdQZ2sbtSVDVbLB3+xbFubvq82mw1vzhhhuI8+\naXJz83dn8yVCVSSJ4URVPT4sLMKBE6dRFmYpW7P3rqx3e0NJW383rkNnS3tP1KDCZU0yQnX6wSY8\neWfXhcUuVLiava/56O6xGJhtPRwof8b2K5oKziBm9BGIlqMZkO3A+/PGtPmB8sbgeVCrXiSJYfrL\n5o3Ed/5YFVCHHW3gEOLswJcPjPNquPDi8UiYsnhTQHnh0N4peHvmqLDM+oyaaAOAR3neqxb5/67C\nkbJa3P/2VzhSHt7FXQBw56s7sXre2A6b8WY4YjE4N5mrmsq3NNhut2H1XZfjcGkNrlm4xdI+eUs/\nBXyIGX0EotWx56XbhrapFPF4JFy/aFNInPzg3GRvvLa8tglHOGVm/SeFeiWS/bsn4tDjkwKcvG/p\notbJTV0hrFVDvuunasszW17Myg79yw2jomwYkJuCT+4Zh8G5/D1cg+VASV3YPrsWRIQnbxjIta1/\nfslmI+TlODXLf43Yz1n6KeBDOPoIpH+WA4kxZ74a/4bRqg5OKFZM5vdIxqq5cijF45Fw+ys7OV8X\n2CS6e3Jcm05VgBzT//TesZpO/hfLtmL4k2sx7Mm1mt2FzDplzXx9d5vwkR6+4a1DxdWmoR/ffIUW\nepIAdrsNq+Zehh2/n4ht88djYI619n5W4P3soeKi7GSuLlJaMghq+e+2+eO493dpL2snBoExInQT\ngdhsNhQ+ciWOlrvQLTGmTUzV45Fw3eJNONzOlZL+3Y2snDz0mkSrapVq4s8o6effPlCN/V+c48D7\nSkOOma8ba73wLONvaGjBdc9txrFTbcsZB+QkY/WcUYiKCgwlMZPqIaMafN8k6Op5Y1Fa04hjp+rg\njLXjv98t1Lxa6t89Hq/dMQLO2GhctXAjfuAQgLMiYRAKbDYb1j44zrsOQI/TDS3ISdN6PSE7JRFH\nH5+E7T9V4s+rD+CITp/aS3smB+SiBO1DOPoIRUsPXZIYpoTAyedlJeGju8/o3kgSw40+C4PM0GsS\nDWhXxGhRVq2nq+7CoMfW4PO7L0Nhsbk9HoPuVE1NHuQ9vkbzuUMltd7a9OjoM87e45Fw83LjHAWP\nJAAgj0VuagJyU2Wn9el9400ljr+8f7xuZy5/1Hi4xyPhu4o6XJCZFFa9oGxnvGlZqcckvxETY8fY\nft0x5v4JAWMBWK8IEvAhQjdnERWu5nZrnuT3dLZx8ur78soWnJ+eEJKuVMer9RcMNbRImPbKDq73\n+b5Sv3xv3dFyw9c2tEiYsmRLmxDI0XKXqd49jySAFjYbIdsZjwG5KchOSdCsgFE7c/FQ3diiLOxa\ng0nPbMLAR9egpLohbBVJ6grlCzL0V8ryjo3WWAgJhPAhHP1ZRHuP/+3zx2GVRp9So1mxP6/eVhCS\nH6KZ9O33HOELAHDG6lfxDM4118c5WOJCee0Z58QjtWtmezBIEkOFSw55ZTnjMaSXcXerhGgb+nVP\nwpQlm72a9vXuVoxasB7XPLsJ7+89HpZSVLVdYKyO5+CRSxB0PMLRn0VkOGIxyGJVR//u8XjjjqE4\n9udJyEpJDHDSksRwO+fsGQBiYvg0x80wi4MDcicsMx5aUaiblOQt5Rz/tw3wcIZjAD7brSArfm7F\niKfW4obntkKSGN6dNRrb5k/Ah/NGob/fDDovKxEHHr0CVY0eHNK4wvu61IV73z6A6xZvw/Cn1mHK\n4i1obQ2d0VFRdhx8bBL6aczseWUVBB2LcPRnEUSEVXPGcJXwxUcBOx4ej8/uG48x/brrOr0KVzN3\nOeWAHEdApU2w8Fzizx7/H6bbqFroWvDWmTe2MBwtl/MBlfXmyqHBhm60UEtI956oRqvEvM2wASA7\nJR4De6Ti0/vGY9vDE/DxXaOx4+EJ+Piey2G325GeFIO+3cxn0PuKZI2eUFbpREfb8dm945Dvoypq\nRVZB0LGIZOxZhlrCp1a2tEpSGy2TQbkOLLhxMLdCI6/2fXwU4YO51la0GsET/ujTjW92yHSm2FYW\n+qTERUGSGH6/cr/ptqEMT2g1mdl7ogZlNY3IVpK4ajw729l2v0SEv988CD9fYn5Fpq42DUWVjqqD\nRABWzB6NU/XuNq0HBZGHcPRnIf6VLaqWidUfmyQxzHrDvPlF327x+OJ+eRbp8Ug4XFaL2gY3RvTt\nZnmlqwrPsvo/rj7EJQk86409WDlnTMAMnoiwcs5oLs2Vyrpm2O12LvnhDEfoHL3eiXbayzvw6T2X\nm45TZjJ/qKS1tf0NXf11kITi5NmB+Ha6AKrjt1qxUF7bxFXC+I9f5Hud/ODHP8d1C7fg1y/uQr//\n+QzHT9ehpLoBh0tquK8OAD6hrMJiFx67boDpdvuKalGmE06x2214kaNZyE3LtnEvuw/VrNXoRHu0\nvAE3+lUEaWHFwU59aUe7Y/UB6x+KanDtwo0hzQEIQo9w9OcwlfV8wlFRijM5Wu5CvU9XZ4kBY//y\nb4xasB5XPbsZAx9dY6oTo8IrfVvMGQ+/87Vduk4xisMZNrcChcXaQm7+hEpjprLebXiilRdFGVcf\nZThiMSCbbwXud6ca2x2rP1UXeMwcPlmPySFO+ApCi3D0XQyPR8LXJTVcZXU8s+r4KMKF2XLCzaz0\nsN7diknPbEQpRy03r/TtJT2duqV8vhwqrdNNymY4YnFRprmK4sK1R0y30ZJ+CJb0pBjTEtAZJlIH\nRITVc8cgjjOCtvdETZtyUivIOYxCzedUeWF/W5uaPPiosBiFxytxoKgKe49X4qPCIhSfrgtpG0uB\nMSJG34XweCTkP74GdUpddX5PJ1bM0o+f8oQg1j84zpvU5dn+2KkGjFyw3lRdkjf8Medfe/Hmb4fj\nhmXmCUe90BER4YVpQzH6LxsMX2/UtQrQl34IFiLCc7++1NCuwqJanKxuRE6afiw+KsqOdQ+NN5Un\nUBn//zdg/5+ubLMimIfy2ibsN+gcJZ9EmpCVIucwmpo8uPDRzw3f8+KcZLyvI0UhCB1iRt+FOFLm\n8jp5QNaPMbqkNgtB5PdwItOn0sNKyGLXT9XehtrB7FulsLjtZzLCqDNXdAgciZH0Q7BoKZX6c+yU\n+WpoVZ6Ah0YPC1gRzANPqM93m7UmK5MB+Upg0GP8IT9BcAhH34Vo1VjherCkVtfZZzhiUaAjH5vf\nIzlg9sobAlE5ZRBfVksfeUhN4FuklZYQ3WaFqf/+9D4rD/4KoqGCJ4RltPpXRZUn6JfOVxEkrwg+\n8/1IEkNpTSMOFVejtLpBM6zCY6vvNj1T+EJcDS0Srl20KUC9VBA6wuboiWgSER0hou+IaH649iOQ\nkSSG/16xT/O5gyW1uHFJYPyUiPDOzFHY+rtxiFb8eQwpUglzxwTMXokIL003r2BRuevNr3Tj9USE\nJb8ZwvU+6UlxXCuCZ72xB7cs346RT63FLcu3t/m86mfdNn88LsrUD4Noncg+njcK78wKXcjGF56q\nmQfeK+RKdNrtNrx2J59ODgBUKLF6t7sV1z67ESOfWodrFm7ByAXrMezJtbjqHxvR0nKmEonn87ed\nGPCXoR4pq8eIp9YF7FMQGsLi6InIDmAxgKsA5AH4JRHlhWNfApny2iZ8Y9DdaF9RDYo1BMDULkmH\nn7gKn91zGb7581WaUgkqWc54DMrhk2H44XQTRi5Yr7sE32bBca6aMwZ5JtUlhcUu7DleBY/EsOen\nqoBVrmpz8Y/vGYeP7hqt+R4vTR8WsNozLzclKCfvO0vWS47zXNl8W9GI6xdt5nL2Vr6fm5ZtQ1OT\nB/lPrNGUp/6mrA4X/PFzNDfLjpdntu27TTC19eo+i6rqxew+hIRrRj8MwHeMse8ZY24AbwGYHKZ9\nCQBUGcSnVX5tUEcdFWXDhdnJpjFoIsLyaUMt2aa3BJ83Tn+6wS1fTdw2DH1MlvxflOVAlI0wpHcq\n0pO0Qw02G2FAjjPgKiG/hxNZznisnDMGO34/ETt/PxHvBjmTlySGm5du9c6Shz+1DlOeCzzhERGW\nTS0wfb9DpS6u0kgr309zqxxHb2jRP4EwANc/txmSxAxzICq+22Q4YrnzBv77HPP0Btzw3FZRshki\nwuXocwGc8Pm/SHlMECb6ZzlMyxCPVzXhpqXb2q15kpkcZznerdXwmTdOn5YQg18+vx1jnl6PNJN4\n/fNTh2DbwxPx1owRhg5a1Q26pKcTBLmMU81JBLsAzZcKVzN2H29bl7/vRI3m+Gcmx2EQRzcq3qbZ\nmclx3PkPnjj6kbJ6VLiaLcfo1bxBMM4egKL70/7jVRA+R6/162jzbRHRDCLaTUS7KyoqwmTGuYPN\nZsO7s0eabldYVM0l3GWEb7z7vFS+enj5dYHvYzabHZybDLvdhj0/ySGZwmIXNv9unKYm+uDcZGQ5\n47llIOx2G1bMHo2df/gZVmrIN7cHvd1rjb88C+fLffCcd1TpB57EbKYzgSv/QcQXivHfxm63YdWc\nMdg2fwJemc6Xk/ElFMerIHyOvghAT5//ewAo8d2AMbacMVbAGCvIyMgIkxnnFhfnpiAh2tgTFJyX\nphvSsIIa7/7ygQmI41iNMfS8VM2FRpkafWZV8ns6sWruaGQ4YjGkd6o3JJObkoDP7huP7Q9PQH6P\nZO+MfFUQoms2W3g6GmU4YjU/l974ZybHmTbQ1htDLex2Gz6993LD70atJDJTRB3aOwUZjlhkOGIN\nbdSzTz5W4nH5BZm637UeoTpez3UoHAkPIooCcBTARADFAHYB+BVj7JDW9gUFBWz3bnNxLYE5Ho+E\no+UupCZEg4ggMYaqejfSEmNgt9nC4tR898kA7/5428NJEjNtsSdJDJX1bqQnxbR5H73HIwH/z2U2\n/qoqJGOszfemNR686B0P6UmxbUJT/raq36PWdhV1zWiVpKDsM/qMofrM5xJEtIcxZprkCYujVwy4\nGsA/ANgBvMQY+7PetsLRCwQCgXV4HX3YJBAYY58A+CRc7y8QCAQCPsTKWIFAIOjiCEcvEAgEXRzh\n6AUCgaCLIxy9QCAQdHGEoxcIBIIuTtjKKy0ZQVQB4KdO2n06gFOdtG8zhG3BEcm2AZFtn7AtODrL\ntt6MMdMVpxHh6DsTItrNU4faGQjbgiOSbQMi2z5hW3BEsm2ACN0IBAJBl0c4eoFAIOjiCEcPLO9s\nAwwQtgVHJNsGRLZ9wrbgiGTbRIxeIBAIujpiRi8QCARdnHPW0RPRo0RUTET7lNvVPs89rDQ1P0JE\nV3aSfRHVXJ2IfiSiA8pY7VYeSyOiL4joW+VvagfZ8hIRlRPRQZ/HNG0hmWeVcdxPRJd2gm0RcawR\nUU8iWk9Eh4noEBHdozze6WNnYFunjx0RxRHRTiIqVGx7THm8DxHtUMbtbSKKUR6PVf7/Tnn+vHDZ\nxg1j7Jy8AXgUwIMaj+cBKAQQC6APgGMA7B1sm13Zb18AMYo9eZ08Xj8CSPd77C8A5iv35wN4uoNs\nGQvgUgAHzWwBcDWATyF3PRsBYEcn2BYRxxqAbACXKvcdkHtG5EXC2BnY1uljp3z+JOV+NIAdyni8\nA+AW5fGlAGYr9+cAWKrcvwXA2+E85nhu5+yM3oDJAN5ijDUzxn4A8B3kZucdydnSXH0ygFeV+68C\n+HlH7JQxthHAaU5bJgN4jclsB5BCRNkdbJseHXqsMcZKGWNfKfddAA5D7uXc6WNnYJseHTZ2yuev\nU/6NVm4MwAQA7ymP+4+bOp7vAZhIndw95Vx39POUS9KXfMIOkdDYPBJs8IcBWENEe4hohvJYJmOs\nFJB/qAC6d5p1+rZEylhG1LGmhBMugTw7jaix87MNiICxIyI7Ee0DUA7gC8hXENWMMY/G/r22Kc/X\nAOgWLtt46NKOnoi+JKKDGrfJAJYAOB9APoBSAH9TX6bxVh1dmhQJNvgzmjF2KYCrAMwlorGdbA8v\nkTCWEXWsEVESgBUA7mWM1RptqvFYWO3TsC0ixo4x1soYy4fc/3oYgIsM9h8Jx1wbwtZhKhJgjP2M\nZzsieh7AR8q/po3NO4BIsKENjLES5W85Ea2CfLCXEVE2Y6xUuaQv70QT9Wzp9LFkjJWp9zv7WCOi\naMiO9J+MsZXKwxExdlq2RdLYKfZUE9EGyDH6FCKKUmbtvvtXbSsiuX+2E/zhvLDQpWf0RvjFGqcA\nUKskPgBwi5I57wOgH4CdHWzeLgD9lKx+DOSEzgcdbIMXIkokIod6H8AVkMfrAwDTlM2mAVjdORYC\nBrZ8AGCqUkEyAkCNGqboKCLlWFPixC8COMwY+7vPU50+dnq2RcLYEVEGEaUo9+MB/AxyDmE9gJuU\nzfzHTR3PmwCsY0pmttPo7GxwZ90AvA7gAID9kL+YbJ/n/gA5BncEwFWdZN/VkCsPjgH4QyePVV/I\nFQ6FAA6p9kCOO64F8K3yN62D7HkT8mV8C+TZ0x16tkC+jF6sjOMBAAWdYFtEHGsAxkAOIewHsE+5\nXR0JY2dgW6ePHYBBAPYqNhwE8IjP72In5ETwuwBilcfjlP+/U57v2xG/C6ObWBkrEAgEXZxzNnQj\nEAgE5wrC0QsEAkEXRzh6gUAg6OIIRy8QCARdHOHoBQKBoIsjHL1AIBB0cYSjFwgEgi6OcPQCgUDQ\nxfk/jSSOGYCDrX4AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11ac70290>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(X[:, 0], X[:, 1], s=5);\n", "plt.axis('equal')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 4. k-means clustering algorithm\n", "\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXd8HMX5/9+zV3WnLlm2bNmWe7ex\nccEUYzoYQi+G0EJLAUIJ+ZJCKuA0ILRAwhdM+9EDfCGEXmyKewP3LtuSLVm9X9ud3x8nW+1ud+90\nkk/2vl8vw93O7Oyc7vazM8888zxCSomFhYWFxeGLcqg7YGFhYWHRvVhCb2FhYXGYYwm9hYWFxWGO\nJfQWFhYWhzmW0FtYWFgc5lhCb2FhYXGYYwm9hYWFxWGOJfQWFhYWhzmW0FtYWFgc5tgPdQcAcnNz\nZWFh4aHuhoWFhUWvYuXKlRVSyj5G9ZJC6AsLC1mxYsWh7oaFhYVFr0IIsctMPct0Y2FhYXGYYwm9\nhYWFxWGOJfQWFhYWhzmW0FtYWFgc5lhCb2FhYXGYYwm9hYWFxWGOJfQWFhYWhzmGfvRCiIHAC0A/\nQAOeklI+IoT4PXAjUN5S9VdSyvdbzvklcD2gAj+VUn7UDX23iIavGf5wPezcHH5/IF2kANpmjhSi\nfVlKKtzxV5h4TA92tnt5cUOA+5b6CaitH18RMC5H4fVzPLjtIiHXKWtQ+cWiMs4a/wVTsoYzPGVG\nQto91Cxp/ohyrRgAefDHIzjwV0tXsjnOfQ524Tgk/bMwh5kNUyHgZ1LKVUKINGClEOKTlrK/Sykf\naFtZCDEWmAuMA/oDnwohRkop1UR23CIKzY1wxwVQVhz7uX4fbFjRJaH3S5UNVKCiMZB0+gpv3G0l\ngsfXBKgLdD6+vExjd53GyGxbl9pfVhrioRUBFpaoTCuoINNTxXbfMlyKh4GuCV1q+1CjSZX92h40\not+61dp+/LIJu8jowZ5ZxIqh0Esp9wH7Wl7XCyE2AgN0TjkPeFVK6Qd2CiG2AdOBxQnor4UejXVw\n9xXxiTzAyElw4Y1d6sJrbGAN+4HwCPomeRSjRE6X2uwKflVGLVtepnZJ6B9c4eOBlcGD78saUtnf\n4CUvtRFVhuJuN1lQhI1Z7vMpD5UghYZEoqCAlGhCIqRCti0Pr2KJfLITk41eCFEITAaWthy6RQjx\nnRBivhAiq+XYAGBPm9OK0X8wWCSC5ka4+3Io2RH7uakZ8OCbMO9FcLq61I29NBx8LYH/ZQ3bZHWX\n2uwKeoaZ+5b44273qe/87UTeoQS4dOIq0l0+FOwUuifH3XYykWnLJd8xmL3qTvapRfSzD2aEazKj\nnFMY6TqKXHv/Q91FCxOYjnUjhEgF3gRul1LWCSGeBO4lfD/fCzwIXEfke6vTsEoIcRNwE8CgQYNi\n77lFe75dDCU7YzvHZodx0+Cn8yCnb0K6ITt81RrwBKtIl05uZSo5IiUh10kEV4+N3a68v0njhfUB\nHlwVbHdcQ6AoGk67iitGM0ZAa8anNSCAVFsuQiRm3aArbAt8x7rgEjreup81v06ayOJE9wXYFcsu\n31swJfRCCAdhkX9JSvkWgJSyrE35/wLvtbwtBga2Ob0A2NuxTSnlU8BTAFOnTo0+v7Ywx57tsdWf\ndjJc8kMYkVg7crQvso4Af2MJd8uZZAl3Qq8ZT38ALhwRW0y/z3YHufoDH1qEMgWQWligJ3rOMN1m\nbaiMZQ3/Rra0mmMfxGTv91DEoXOI2xxYzcbgsqjl9bKaz5vfYLbnIpyiazNAi57B8NckwsOLZ4CN\nUsqH2hzPb1PtAmBdy+t3gblCCJcQYggwAoj+q7HoOgE/vPyoubrTToIH/w2/ejzhIg/6ppIAGg+x\njErZnPDrxof5kfPivSGuiiLyAN8b8y053kZShJd0e56pNutC5e1EHqAytJs9/u9M9yvRNKp1uiJ/\ngCbq+azpNdYHliGlNU5LdswMaY4DrgLWCiHWtBz7FXC5EOIowoOmIuCHAFLK9UKI14ENhD12brY8\nbnoCnZstxQtDxsIvH4PU9G7tRSpOyoku5I0EeZjl3CankkNKt5spwu1H/tuENHMC9U1JiCveb9ad\nHaS5/GSlNDLWc47pz7SxeUE7kT9Ag3ro1jRCBI0rteCnma3B1TSotcxIOa0be2XRVcx43XxN5KHP\n+zrn3A/c34V+WcSC0wXnXgvvPtf++NCxcOXtMPn4HuvKhYziIZbpimIjQeaxmALSuEUejVN0zcVR\nF53Rpl0xFuRPd4W4+kN9kQfYXJHPxNw0cnIHGtQMUxncTa1aGrFMlRH8QXuIdCWbfGUI+zTz6z37\ntB0sbn6f0c5pZNkMc2BYHAKSIvGIRQL4wf/AmMmwfUP4/dCxMLPnR1kDRBp9pZdSGg3rFlPPAyxl\nlhzE8aKgW/qjZ1X4tlxllI575cI95kQewB4aziWDPCgmR/PbfcujlpWGtjBMnYHXlmmqrUQihGC6\n+zSW+T6JSezLtD2U+fYw2j6N0a4p3dhDi3gQyWBfmzp1qrQyTB0+NMkgf2UxdTGYAaaTz1wxNuF9\nmfxiPaVNkctSbLDjhrSIZYv2hrj0P806W4XCCODUQQrPnuHBZmKGALC+8TNKght060zxnkeu49B5\no0kpqVOrWOr/mCbqYjp3vGMmw50Tu6lnFm0RQqyUUk41qmfFurEIIyVU74PqEqjeC6H4zQce4eDn\nzCQL8941y9jH3fJzlsqSuK8bCT17uT+Kin+xO8hl/zUW+Vy3YN01qbxwlte0yKtayFDkAf2pSA8g\nhCDDnsPJnotJJbaZxbrgYrb6v+2mnlnEg2W6sQjz1XOw/I3W9+l94apHwR15xGuEVzi4Q07jYZZT\nhc/UOUEkr7GJoNQ4XpizdRsxOkthX6N5X4DPdge56gOfKXPNZaPtZLtjW0xe0xB1aasdKbbuXTQ3\ni104ONFzPhsDKykKbdANh9CW9aElqIQY7Tq6m3toYQZrRG8B/kZY93H7Y3Vl8NLt0BzbtL0tqcLJ\nnUwnjdg21rzFFmqkuYeDEf86zfwGrUV7zYv8iQMUfjEtNh/yZq2OKs04PEW+fRReW5ZhvZ7CIVxM\ndB3LSe6LEDFIxqbQCmrVym7smYVZLKE/0gn64KU7oLm2c1nNPlj+7y417xEO7mYmGThjOq85Bvu+\nHmlO89J0+xfGIu8QcO5QhVfO9pjy2mnLlqZvkAYjYoFCYUr3jYKllHH7vafZsjjZfQkpmJ/lbQxY\na2/JgCX0Rzq71kC1ziizKcIDIEY8wsHPmBGTzT6R3DHF3IwiUpTLthSkClZd5eVfp3lj9v+vV8sp\nC20zrJdrH0yarXuCwL33msYVsyVXnizZ+G28Yp/JGd4rmOk6y1T9Uq0orutYJBZL6I90PnhAv1wm\nZkNTqnByB9M4lcGGPzoFSCNxW+uvGuuMeM381PbvJ+RE/6z9PPDBhR5yU+K7ZYqaVxvWcQkv4zyn\nxNW+Ee++rPHSE+HXmgZLF3ZtsbevfRCz3OfRVwxOQO8suhtrMfZIJxDF9/AAInHeH6nCyRyGc4Ic\nyEpK+S/bOIYCjqYvEomGxIZCJm5SRWymHj36ehWWf9/Li+v9PLwmHD44LwXeO799rPwX5ng5898N\nbOkwiRmYCh9d5CXLHZ/IN6v17AttNqw3zXshTiXxQd8+flvjlX+1P6YlYK96tq0fMz1nss6/lG2h\nNcYnWBwyLKE/kjFjf/cmftNOmnAxm8HMpudGg/1TFe6ekcLdOomfUuyChXPj8zKKhpSSjY0LDOtl\n2vqTYkt8XPevPpI8+3Dn40u+gMtukHjTuj5jG++awTjndFb5v2CvuhOV8MPUjpNC++guta2qzRSX\nPIfTmUd+v4u63NcjFUvoj2RWvqNf7kqFaZf0TF8OUzY1f0mFCTv1MPf0hMf90TTJG/Mjz8jqa6Fo\nm2Tc5MRcUwjB0e6TGac1sSG4DBt2xjqn4+jizKyhYQN+/z78/lJL6LuAJfRHKg1V4KvXr+PNAXeq\nfh2LqAQ1H/sCmwzrFTonk+NIzL6BA0gp+ftvJOWRw+kAsHENjEtwfhS34mGKa3ZC2pJSUrb/Pwfe\nJaTNIxVrMfZI5atnQTVwM5lujaC6wg7fckLo/43dpDHSk/igc4/+UbLia/06bz6X8MsmlNq61RA1\nMLRFLFgj+iTl2edV/u9d8Hrhjp+CJwVs9vA0OxSSKAJychX65sUx9a4qho1f6NdxpcK4U+PoeTfi\nr4fGUkCBjEEQbAmc5vBAUwWkJVdaO780Duw2znty4q/r01jyuXG9Q5jbxBApJRXlHxtXtDCFJfRJ\nyhcLwm5w9fXwx4MBnztOXzVOPhn69xOcPUeQ6jUp+qv/A9JgpHTmne3fVxXDhs9ADYLdDRPPhLRc\nc9czS/0+2PNN+BoHP6sSfq2psHshaC0bqbx9oakyHFXMnQ1N+yFvEqT1DZ8qFOgzFvoewuBaBq6p\nkzxzyElw4LKmBsk9PzJX96qbE3rphFJZtQBNGniEWZjGEvokRTU5Y/38cwDJf/4rOfVkuOYqRX9R\nr6kW1vwnevkB8oa2f//W76B2X+v7tR/A9x9JjNgHGuHb52HfapAmd8Q2tmSylIRFHmD/t7C/TZ3t\nH8IZj4A78d4sZrCL6Bu1JnrOoq9zWMKv+f+ekOzbY1zP6YRjTzn0uWkjoao+amujh3G2iJ0knrwd\n2cR6C9bWwptvw98fMXhCfPOCcWN5wyC1w+7Mppr27xur4f/dmpCds5Suhr3LzIt8LKj+xLdpkoHu\niaSITJQ2sX5cpDLFcy79nMMTfr3yfZJFnxnXS/HCn+cLMrKSU+jr6tegqg2HuhuHFdaIPkmJ18fg\nq2/gztujFAZ9sO4T40ZmXgFKh4QckeKjNNXCxgVw9HmxdrM9/afCto+g3sRQNFbshybsAkCaLZcT\nMq4CYJf/W+w4GOBKfMz9A3z8tsRvEAtOUeDeJwX5A5NT5AE07dBl2DpcsUb0yUqcSp/fT6fwo4dB\nC+k30GcoDJ9pvkMLnoLitWa7Fxm7G2b9GtISnGXqqOvAlRzhfge7JnWryC9bqPHea8b1CkfCgMHJ\nK/IAfp+OT6hFXFgj+iTFnQJ1Bm7ubUlPg5/dCePH6jy79+8wbigziudK1AePhPf+Cj960bhtPexu\nmP17qC6CxQ+AGm+YYgWGngojz0kake8J/jHPuE5uX/hthF2yyUQwWEtD47pD3Y3DDkvok5Qbr1N4\n6RWNZl/YXi8llO3vXK9f3/AC7PHHGYzSStaHs0fp4fTAsVdELvOkQ3155DJ/Q7iDXd3ZqdghZzic\n9EdY/TQ0V0PIB4E2TzxnWvihIGn5wwCKCP8/ezhMvi7czhHE+69rBEw8F6+8GVxxBmXrKez2NFyu\ngfj9Hc14yd3vZOfIuiN6EcfMEBwzo72dfPESjSXLJJoa1tTRowRzzjJ5A2z4Al17kGKHKx6CnCju\nfmffDa/e1e7QAa0l5Me36GXcx33fXF+i0bgfaorCNvvjfxU+poVg24dQXwKp/WD4HLDFlsjkcCYU\nlLz7inG9o4+DaSckt8kGQAiFnOwT2bvv/7U73q/vhYeoR4cHltD3ImYeozDzmDhPljrhCu0umPtA\ndJGHsO2+bXNt/gng7SYnl8fZNYJNsPZl2Ls87CXTfzpM+0m4TLGHzTAWEXn3ZUltlX6djCy48z6B\nEmOiFABVanzFWkoJX6QvWcxiIrZu3G2VmjqSgQU3EQxVI7DhdPXB5ezTbdc7ErCE/khB6+B2aXfB\ntIth+qVhV4yOXjYdcboJDphIqGQdfsVJQNj4weifsDJtCFKx4bTbmeELMdQd408q0ARf3guNbXz0\n9y6DhgsgNT+2tpKIskCI64sq2BdS+UW/DC7J7p6YQcU7jetcdmN0kQ8ENJ581I924TKmDs7hBNv4\nduVv8zXFtJrsSqminBoukScmPAhbW1JSCkghwYvzRzCW0B8p5LQJmtVvFFz2V7DHZgL56JRfs3Lh\na/y7zzHsdbf3sw9p8EZFM3cXmAzzKyWseDIs6pHQemcQqxWNPv6yt4alza17An5WXE26TeGMDE9C\nr1W+T7J0oX6d7/8YTjo7siA/94jGR++opE+sZcyQClaoFTRLH6eLqQCEpNpO5A+wl0peZyEXy1nd\nOrK3SByW0B8mSCl5778aW7ZCnz6Ciy8SeFLa3OBTzg8vtmohmHBmzCIPMCLVzTUDz45a/m2DSf9n\nqcGyx6F0VZQKCrgSGxe+u1nS4OORslq+aYz8N3i3pinhQh8IdJ6oteXS6+GcuZGF+KuPNT56C4QT\n+l2+hcYdaXiH1rOBXfSVWUwSw5A6azr7qOTfLOQiOQu7MJgNWhxyLKHvpaiq5B9PaqxbHx4cBwJQ\nVX2gVLJsueSBvyi43S1ib7PDpDlduuaoFAdzMl28XxN5t+lHtQE2NQUZ7TF4iCx/QkfkgWFn9Bqh\n3+4L8vPiKlY2BXS3PmhxJuTWY8BgwQmnS76KEPvrypvh7Eujj7Z37QqCQ5B/2RZSBtfj7tvqtlNK\nFZMwDs+wjyq+YztTGBlX/y16DkvokxifX1JdJZFIQiF48O+wa3e4TNMib1Y9wK7dcNfdGo/+XYlr\nES4aYRt89LAClSEV0BF6Xw3sW6F/keR3DqFZ1bho+342+IImA+l2z4e64BrB3j2S6kpAhmPYnHel\nYPYc/etln7uD/lKSf+l27GntN9Ed+Fk5hJ0hsh87ib6BaRmbGSeH4NKJ62Nx6LGEPkmprpbcfJtG\nfQybpjqyazf4/ZKUFhNOQ4Pkw7Uhygb60RSJKsMu6A4BszPcjDEaiQM/G5DKi/sbqY2ibj/ZXsu3\nk6OEHQg2w1d/Mu749k9gxNngTL6kJ5qUvFvTyN/21bAnZH6U3l2W7PwCwX3/jO0h0iCb2ZK3gYE3\nRi5vovng6zEM1hV6HwGqqaMfOVHrWBx6LKFPUu7/c9dEHiAtDZzOVhF45DGNJyZV4VM6q7SNBv47\nNodpafqp39LtCnlOhVpfZKXfF4jyBAg2wZf3QVOZcccVW9c3X3UD71Q38mhZHVsDBmEkIjAnM/FJ\nv+NFIFBQ0KLMRXZTTqmspp/Ioi/GOYN3UW4JfZJjONAQQgwUQnwhhNgohFgvhLit5Xi2EOITIcTW\nlv9ntRwXQohHhRDbhBDfCSGmdPeHOBwpTUC4j5/8EGy2VsHcUwxpux0QwaVeBc7fWMmyOuNoj7f1\nj24/n5MV4UER8iMX3gsNe810G0adDw6vubo9wMpGH7M27eXWPVVxifxol42zM5Pn83iFm3EGidnr\nCceCzxCpjGCAbt0lrE9Y3zqiqj5K9r5EeYWVhKQrmJlRhoCfSSnHAMcANwshxgK/AD6TUo4APmt5\nD3AWMKLl303Akwnv9RFAV5fuRo6AGdPbf739+oEtpERt3CfhrI1VjF5ZRmkg+gary/t4SIvwyzk1\nw8n8EdntjjWpkp+s+hbR1k9ej9R8KDzRXN04aK6Hzd/AyqIgC+ua+KKuma/rmykNdhbwmpDGa5UN\nXLS9nCKdv4cek1Mc3F+QfKNdm8Gtr7R7rT+76g5HWJ+vlOKSl9i+Yx6NjZuprv6mG65y5GBoupFS\n7gP2tbyuF0JsBAYA5wGzW6o9DywA7m45/oKUUgJLhBCZQoj8lnYsTNIVJ42RI2HeHxUcjvY36G23\nKrz2H9VwXbA8pHHCd/tZMCGPAa7IrnMvjszmwk1VByf/p2Y4eWlUNkobk0tdSOOM9RX4gykE0V2i\nDePtB7PuCacGTDCr3oPNi2Ddp7DHE2DBw2VQ11puB27ITeWmvHRy7TZKgyHO2lJKpRr/F/HzvHRu\n7Xdokp4YIQx+BJXUMaxlJF9AHpsp7olu4fOVUFm5kMamjknVe+e+imQhJhu9EKIQmAwsBfoeEG8p\n5T4hRF5LtQFA24hExS3HLKGPgXhM1FmZcNedMHaMgt3euYGsTMHk6ZKPaiKc3IEqFU5bX8En43Ij\niv0JGS6+m5xHsS+ITVE4yuuIKPJbfCoZSgqblL6M18qiy0tKbjiYmU1/jSBWNn0Nb98He9vohiNH\n4GgUBFPlwYdeCPhnRQO7Ayr/LMzl53uq4hb5s9Pd/LxfBkPdif0sicRhcOsvYgNT5SgUoTBBDGGJ\nXE+jjrfVLlnGYNG3S31qai6iuPg5rITgice00AshUoE3gdullHU6258jFXS6Y4QQNxE27TBoUGLz\nZh4OmNX51NSwwP/0ZoXRo43PemhIJuNWR4lC2YGyoMZJa8tZMLEP/Z2dxT7faSM/wvGgJjltfQXb\nfGFzR63i5casy/l39XwKtLpO9UnNhxN/nzCRV0NhYX/6R+GAnR1nR44mG6l77FSP6ZzRak+LCWdP\nMHZTzTCXnfeG98VrS/7douMoZDVbCUZasGlBQx404djQ3xT1BWu4ljPi6kswWMOe4mcJhaqNK1vE\nhSmhF0I4CIv8S1LKt1oOlx0wyQgh8mnN1lkMtNlvTwHQaRVOSvkU8BTA1KlTrXlZB/r3h9oImjh8\nOGSkAwLGjBJcerGIKeZIP6edH/b18K8yc4mXK1XJ7LXlbJ7S1/R11jQEDor8AVQEgUg/t9T8sLnG\n7jLVth47VkLJBvjyeSjdFr2eo1lh4r+yWPrrCnx57UePY9xhA9Nol4MdfnMLr27g0mwvP8/P7BUi\nD5AhvKRLL5VE+JG18D5LOJfjAMghgzqi/2YCxJcGMhisZWfR44CVVao7MRR6Eb67nwE2SikfalP0\nLnAN8OeW/7/T5vgtQohXgRlArWWfj51f/1Jh2TJJSA2HJdYkDOgvmDK560IyrzADAfzTrNiHJEvq\n/MzMMJeW79qtnUdmO+x9WOAYxlB/m1CLnj4w67fg6Jrr4e618N8HYcMC8+dk7HKSs95FSV6rz/hY\nl517B2QB8MDAbDZvLWW7ziLseRkpHJvq5oQ0NwXO3uepbPTYLqHi4OszmcaTvJvQ6weDNRTtehJL\n5LsfM7/O44CrgLVCiDUtx35FWOBfF0JcD+wGLmkpex+YA2wDmoAfJLTHRwgZ6YLTTu0+X/L7CzPI\nsMFf9poT+4s2V/POGGM/+09rfJRG2kgkBJ+6R3OZfyVeNPDkhW3yXczpunstPHIpBJqN67brjibI\nW+li79RmFA9MS3Py8tA+2JXwgzTVpvDJqHzWNwX4YVE5+1WJIOyNclyaiwcKssl19D5xb4sL/e/S\nT4i9spL+IgeXcCBk9CXRZvzslzXkCWO/ewiP5Hft/hdSxvjFWcSFkN0QgyNWpk6dKlesMNgWb9Et\n/GFXLY+WmhN7O/D66GxOzIhuZjllXQVrGqNP4y9o/pbrlV3MnHl1l0fy+3fA/acbp8GNRp/CcFDP\nufPaB/dMWhor4KN7wFcXXq0/5scw5Pi4myuT1bzK57r+LIPJ4wJxAgBL5UYWsyFq3ZEUMEfMMLxu\neCT/D6Q03rPRisLIEb+Pof6RgRBipZRyqlG93mFQtOg2fjc4g5v6mhPcEHDxpiq+rI1+g45J0V+0\nW5s1hbHH3thlkQdY+EJ8Ij9oIlz3JPx2Adz8Yi8ReYCPfgu+WkCGI4Bu+7xLzfUVWYb+9P42tvcR\nBvHhgybt9Lt2PxWjyEN+v0tjqm/Rnt4997RICH8qzMQpBI+bGNlrwNVbqiiaFjkpyENDMnmzojSi\n1XWQU+Hz8bkJWbBsqIIvnzNf35kCc/8MWf1g6LRwrpVexf5N4Ouw9lFXEk7c4ox/38Fg+rJdx/O5\nlkb8Mhg23Ri0ZTcpJ5rWYLp/GRkzyMqaidORbVzZIiq97eduYQI/sQ9z/zA4g1/0NycYjTpuzk5F\n8POCVNLaqIIDODHdyTcT8xLmlWLGJu9OhTl3wKM74YENMO08GD6jF4p8+Rb4/P7Ox/11sGNBl5o+\nDf1ZfzMB1hNOY5WOlxzSI9azoTCVUV3qS1uEcJOTcwZ98862RD4BWCP6w4BGAmyjEonGt+xjCxUc\nyyBmMJhczMdY+fnADGpVyZNl+iqqAffsquW+wZF3fd45II2b81P54546SvwavxqYxsiUBP/UdIaX\nngyYdiGcdzc4urbWmxysfTO6jSroi3zcJG7hZKwcxAZ2R60TaPG1twmF0XIQ37CuXblAcAkn0jcc\n7qpLKIqHjPTJ5OaeirASmiQMS+gPA+azjFLaT4cXsZvF7GYKAziFEWRgTvHuK8xEA/5lIPaf1Pi5\nTyculksR3B/lQZAIvBng8oK/Mfx+5LEw9mSw2WDy2ZCRp39+d/N+TSMf1fm4JMvL8WldeNqsewtK\nv9Op0HVniimM1BV62Wan6gByO5VfxAn0E10fddtsaRQO/gk2W/IEgDtcsIT+MKAqykYWCaykhM2U\nczPHkm5S7OcVZpKmCB7YF91mf31e4uPRxILLC/cuDtvqhRJeUE2WyMavVDZwd0nYnv5hbTObJ8SZ\n5DrYBN+9oV9HL5egSXJFBufIGXzActQI4QfaPkr6ixxOl0fzGauwY+d7HEuB6Cz+eqSkDKe5uXVH\nmxAp5OdfgidlMIpiJTDpDiyhT1JCaFTQgCQ8Nc7Fiz3qkoq+wjUQ4FG+4accZ1rsfzkogxDwcASx\n9wi4Kf/QJwVJSQ//SyaklMzb17po6u+K+/KK543rRPrqa4th8RNQtQuQoNhhxg0wZFbUZoaLAm6l\ngG/kOpazucMl2l9krChkLIXGfYtCwYArKSt7F5+/hJzsE0lLGx93WxbmsIQ+SXmVNWw8GFUC+pPO\njczAGSHmSA4p7EPfk6GZII/wNbdxvGmx/82gDEakOHhsXwObmsN2WgE8NcLcpphDQVMtLH4NfI0w\nciaMOKbnrq1JyY92VbTLvhX3JCPQAEWLjOtlD219LSUsehx2dThPC8LiJyFjIGQP0W3uODGeoAyx\nhu0Hj+WRWBOcEAr9+p2f0DYt9LGEPknZTfsQk3up4yM28z3Gdqp7JUfzNxYatukjxBMs4scca9pm\nP7ePh4tyUlhQ5yegSkZ5HAxP9MJqnAR88OYfoWRjywEJlXugoTL89sNHYOB4yBsCF/0O0mKzMMTM\nm9WNfFjXfnFUBdY0+TnKE2Msn2XPgDTwnsoeBgVHt75f9I/OIn8QYTpo3GxxFCNlAfU0k46HfJF8\n8fQtYiM57liLCHSe8pfTGLEmItWWAAAgAElEQVRmJikMIZOdGMcfrifAEyziVo4jFXPi41AEp2X2\nnPuKGoKV78Lb88JOJQLC/2nZgn9glKwGIWiw72bPuvC/jH5wwa+7r89+TeNfNdUIIdtEywz39Jcl\nVXwwIvK+g6jUGWXjEnDU3Na39aWwSyc5R/4kyNDPFNWW/jHa3S2SG0vokxQZYdKvZ+39AdN5huXs\nwjjUawMBVlHCLIYa1u1pti+Hx78PoQTHufJ23fNPlx2BIMVqiJSW56GUEAgqSAnbNB+fNTRySqpJ\nb5L9m6AmuhcMAOkDoF8b2/Y3j+vXF71t84BFIrGEPmnpLOtCR+ptKFzHNOabFPuP2MJAMhlCD21G\nefppWLUKbrkFxnY2P0FY3B+7IjxSTyTpeXDKjYltsyPrfO2nFkKAy9lqrH+/PgahX/9/xnVm3dn6\numE/VO3Qr58/wdy1k4BPmmtYFmxAk6AImBUo4mhPfzye5BuY9BYsoe9FuA2+LjsKNzCdp1lmSuzn\ns5wbmM5gunG4++67cNddsHVr+P1XX8HatRGramriRV7Y4fSfgK2bvfbuLa/ULVfNet9U7YR93+rX\nSR8A6W1MQYufRHe+58mBUWeau/4hZGWggUfq9lEkW38Eg0NVXNLwMUU1TsYOv+cQ9q53Y83nkpSO\nLm0KghkYZ+JSENzAdApNiLeG5GmWsR19kYqbV1+FCy9sFXmA9evh/fcjVnemwPhTEnf5IUfDw1vg\nxGsjl+8LBrm1pJRJ23Zyye4SfHH6pKtSJi6ienP0RCAHmXpt6+vyzeEQCXocfU2XutTdVGkhLqnc\nwp21u9uJPMBeWzqLHIW86xp9iHp3eGAJfZIiO4zQNCTzWcEKE0maFQQ/YBpZGEeI1JA8y3JqSHBc\n8Oefh8svB7VD4g4p4R//iHraWbcnrgtn3Bo9rs0D5VWcVFTMJ03N+CWs9Qe4qaQ0ruvcU1ZhWGe8\n26TXzdJ/6pfnDIe+41rfr30L/RyrAgZOM3ftQ8T6QBNlWijinCQo7Mz3HsMH7sjmPgtzWELfy3ib\ndazpnJmxE3YUjkffZ/oAkui7a+Pitdfg2mujlweij38HTYBzf9H1Lpz6Ixg3O3LZ6mYfT9fUdjq+\nzh/fuHxxs/5DMlsRXJdlwhe9Yhv4DDynsgpbtwCXbzUIjwCkdS1hd09gxqh16LNm9G4sG32S4sJG\nE0HsCDqOdd7gO5zYGIv+TXwMg2giwGfoJFBtQU3UrfTOO+GRvB45+n7Zp/0IZl0Fb98Py/4PpNp6\no7d1taT1f6Rlww8eh34jwqN4t87G3UcqIq9faHHsYl3v81MZ0k8knmd3oJiJz7DkSf1yYYPhJ7e+\n//Z14zZn3GRc5xAzyekhG4Uq3ZmJRVewhD5JuYAJrKOUEBqrKOlU/hKruYjxTDFIBnEyw/ET4muK\ndOslZGr34otw9dX6ddxuuO8+w6Zc3nDmp7nzEtGxVnyaxhJf5IiP8cTKeb6m1jDdxm/zTG448hvE\nae87rnVna8gP+9fp1wdwJVmMiAhkKHb+N3sYf2/Yx+JAA5Eem+a2ellEwxL6JGUYOQwjh//opG57\nk3UUkEke+nFnzmI0KhqLdSIUKl2V+hdegGtMLPqdfDIMH961a3WBLXrmmTgmNY2q/ihUAaakmNxs\npjejcKXDzB+3vq8xXqth4IyYNkkdSvrYHMzLGMS2kI/PmmsIIdEQKAJsCE7sBQ+sZMYS+l7Ol+zk\nYox9pM9hLHYUvooyste6Mm1+5x1zIg/w5pvxXycB3LG3LGFtNWkam3TWGyDGmVK0KYUzFeb8FVLa\n2Pm/fsS4vbHfi+XqACx5Fso2wtn3gj3GqA2JYLjdzfC0fj1/4cMcS+iTHK/BpHU1JaTi4EyM3c/O\nZDQOFD6n8+aauGX+9deNbfIHuPrqsOnmEFIjo39SEaPt5vOGJkoM7POXZaSZb9CVFs4a1ZaUbDhr\nHrg7LOYG6vXbyiqEnGGmLltVBE+dB/VlYYsQwNIX4OQ74dT/MdVEl/BLjTpNBdmyH7zle1CA7O7e\nAHGEYAl9knMchSxlNw06ntpfUYSPEOdjHO71FEaShpuvKGrnaZNpMshZO55/Xt+7pi2XXBKuf4jR\ndKwjMsbF2KDOQ+MAc2MR+mNvhg3vQrA5LHbuDJh0WWeRB/D0gbo90dvK0skK04bKIvj7seFLtkX1\nw6L/7X6hV6XkssqtVMnID8zjHalc6cllbBfy4lpYQp/0uLAzjYF80SZsbCSWU8wwcpiAcfCs6Qxi\nCgWso5RmggwgnT4Gdv5OlJaaF/m5c+Hll2Nr/xAQu4k+wZlOsofA8beZq3vS3fDfuyAUYWFZccDU\nHxg2UVkEj87uLPIHGDTdXFe6QlDKqCIP8HWwga9rG7grNZ9zU7o5YNFhjOVH3ws4lRE4TIjKF2yP\nmCEoEnYUjqI/MxnMoHhCIPz5z+bqXXcdvPJK8qR/ShBSSt6q0zef9LMpDHR0k+nBmxNdzEeeYWhg\nr9oNj58Cvs7bCQ7y/fld6J9JXEIwQjFeDHioYV/3d+YwxhL6XsI5EeLQd6SMBp5iqWmxj5s77oBH\nTCwGXn45PPNM9/YlRvQeN6Z83Vuo1TSW+/RjJN+Sk4U72tbcRBApvvzAGTDl+7qnVe4Mm2uaqqLX\nOeY6cPTAYqwQgptNbOqyPOy7hiX0vYSpDORYE7FuiqnlKZYSjOiNHGYr5XzCFvYbZKWKyA9/CA8/\nbFzv0kvhpZdibz8K1TSygE18ynoWsonaOHfy6plnYrHRG9UdbLdzfnoM9vl4iBR6eLxx5qbHToVA\n5NQGAEy9Ei54sAv9ipEpzlTOcuq7Tx5e88GexxL6XsQxmFtgK6aWp1lGKMI4qJEAz7GSBezgcRbx\nMqtpNBuSa+FCeOop43pXXRUOaJZAc83rLOMbtrKUHXzNVubzFTWJDNsQI6k2GzlK9M93U3YG9u42\nV+UMbW+imXZ92NtGh21fQrPOSD5nCFzyWGK6Fwu/zCggX0RfMrRCIHQNS+h7ETl4+THHYDcxvimm\nlo109hkP0JqeTkVjPWU8LhfRJA32d0oJ/2PCBePaa8ObpxIocjvYT0WH2UcTARayKea2dLQ5JvdK\nhxDckxc5C9Ovc7O4KKMHNvh4c+GSZ+Hyl8P/RpyqW33HNzD/Yv0m5/wxgf2LkR9b/vPdhiX0vYwC\nMrmRY1BMiP1brKWe9l4Zkc6qEz5+0rCBbwI10eOmNzfDsmX6F7z0Unj2WcN+xcrSCH7/AOsooRwD\nf/IO6FlcYnWvPDXVyw8y05nudjHD7WZmips/5eVyVVYPJk8XovWfAR/P04/3n9oHxp+TwL7FyGxX\nOr9M63/oOnAYY7lX9kIKyOAGpvEU+sIbQGM+y7mNE9ocFe0Sr+5r8lCnuWhQBfc27eYom5f7Uod2\nNjs4nZCRAbUR3DRGjYI//CEs9N1AQGe9oZhq+mDeFp5IE4BDCO7u0zsSZ3/4R9gZLW84YY/M6/7d\nc/2JxlnuTAJS48GG+EJGW0TGcEQvhJgvhNgvhFjX5tjvhRAlQog1Lf/mtCn7pRBimxBisxDijO7q\n+JHOYLK5iRmGX2A5je2yTaXiIlV6UCWUNrspC3hpCLXGrV+jNvKbhh2dIzna7bByJfTvDzYbpKWF\nF1u3bw9njLrssm5zodRrtUuhG44Q6svhi7/r1znrtzBgYs/0x4jzUrL5ZWp/k6nrLcxgZkT/HPA4\n8EKH43+XUj7Q9oAQYiwwFxgH9Ac+FUKMlFJnR4RF3Awmix8yk6dZSjCK4EngU7ZyPeHdL3YURgfG\n8C9fdL/k1WojJaqfgfYOu2Wzs2HNGujTJ1EfwRR6uXKDbdYczJBls9HcMRlKCxk2W0xt9Rbevku/\nPLsw7Gmjh6ZC8bfwyvVQUwITz4e5/2r/bK/VQlSoYX+vh+tL2aCGd2K1CzFN64Sy7beqADOdaczL\nGAjAWSmZnJWSyQN1e3nXX4MVCKFrGAq9lPJLIUShyfbOA16VUvqBnUKIbcB0YHHcPbTQpYAMbuIY\nlrKLUhooprNppQ/tk1LbTNj3f9GwnSfSR5GhtPxEgsFwUu+mpvAoPjfyQmR3oDdmX8AmjqYQh0kr\n5IP5eVxeHPkh97d+PfsA6yk2fRS9zOmBWz4Dj86ywrr34IuHoHh167E1b0BGf5jz+/D7zcFmflKz\nUzdks4zyGkAFFgXqqdRC5Cit3+Vd6f0Z6/PQT7Gkvit0ZTH2FiHEdy2mnQNbKwcAbQNwFLccs+hG\n+pPOBUzgRxzDdUzlIibgIjw6LSSLsxnTrv5Eh3G4g0pUflq/lRqtZcSsKJCVFTbZOHs2OrjeY0lF\n4tex4XdkotsV1S1yjOvwjHquF5Jn0sXgzY5ctuXzcIiEF69qL/IH2LUMGivhlRvhp7t2GcblN0ID\nbqzaQUWHFeM57kymOL2RT7IwRbxC/yQwDDgK2Acc2F4R6Q6KOO8WQtwkhFghhFhRXl4eZzcs2iIQ\nDCOXKQzgHk7l95zGjczA1uFrLrS5+Yt3qOEYuEwGubV+Kw1aKGyXX7cOdu2C9J6ODa4/A9Ez7XTE\nJgR/iOIW2Rs35ayuDDHxnVoKXq9h0Bs1XP1Vg2nvodFnwsURNjhrKmz4COZfBiXfRjlZwEm3w5eP\nw5p/g18kZpm7QoaYW7WN39TuIRhnsnaLzsQl9FLKMimlKqXUgP8FDoQ/KgYGtqlaAJETnEopn5JS\nTpVSTu3Twzbfwwm1ehuh0pWEylaj7f8W2RLmVkHgILrNeZIjlT+lDjVsv1wGuaFuc1jsFSUs+D1M\nogX4xFQvUzsk6746Ix1vL7PRLy4PccrHDexqlNSHoDYI7+wJceWX7fcceCOEMiqYDNdE2Lhcthl+\nXwjPzwWps/yRPRhGnw5NLev8/Z/LBv2IEKYJIFkYqOeUyk08Vm953ySCuIReCNE2ROIFwAGPnHeB\nuUIIlxBiCDACDHwALWJGNpYR2vgygRUPoK78G9q6p9DW/pPQd08QXHa/6XYm2FO511toWK8GlR/X\nbWk14/QwRuM6GeOjwCEE8wvyD4r9FRlp/Mpsur8kIahJzv20ATXCQHpBWXtT1uURwg3Nvj383D5A\ncy188IewqcYooyHAlR0iTqsO2S1Tojd8VSzsGKPfImYMV7CEEK8As4FcIUQx8DtgthDiKMJmmSLg\nhwBSyvVCiNeBDUAIuNnyuEkcMuQjtP5ZZOUG0KKELTBKSNGBaY507vUU8pumIt165YS4rX4rj6aN\naF2g7SGM9SN2s4FTCJ4vyKckGGKQs/ct9L2x008gysfuaPEYPC2cUbC2JfXwGffAhHNby/0N8MQZ\nsH+z+evntKSudbWEiZc22S27cmxAvrUQ22XMeN1ESh8UNSShlPJ+wPyw0sIQzVdDaOvbULYMo/Gt\nMvi0mNuf5kznr8pQftmwQ3dZs0wG+Un9Fv6ZNpK0Hhb77sAmRK8UeYDfromc4Bw6b2ewu+D2r+Ct\nO2H4CeHIlAd4/WZY/TrEOlk7MBs49oewawXwSF+aRwSondWIjsXQNJnYyLbZuTMtn5GOFOMTLHTp\n/XfrYYr016KVrUStL4Z935g6RxSchH34BXFdb6I9ld95BvPbpl269SpliNvrt/FMRvTUhcVVGgs3\nqRw12Ma4AV2PsmE8Xu+Ny6hdo0lHmEMSGoKSVEfr38WTBVe2iU6x/Sv4/CHYtiD2a5/xGzjgBJM9\nGG7+GHYuUvhPZQblboEUIuwnLyVCtCyVyzbbsYGwwU2gCYki237HgjGOFC735MQUNtpCH0vok5TQ\nd08ia3eaP8HbH8fouV265lGONLwoNBrMGvbKANtDzQyztx9p1TZJHvwwyIffafhDIFCZPAhsSnge\nkuYWXDfLwaRBsYm/kVfNbsoZS0FMbfYEdTLIy6HdVEg/CoJjlBxOtuclpnGdP4lfg7tWNPHPmZFd\nEr98Av7769gvOfIUOOV/oDBC5qkhx8JPyQR6MM6PhWksoU9SZFNFbCfY45/eloR83Ne0Cz+SO9wD\neMRXTL2Okkjg4eZiHksbcdCV7753g/x3jUZzsH29Vbvbn/nV5gBeNwgJHhf8fI6dk8faQITdQyPh\nMUiQ/jmbkk7om2SI3wTWUdEmBPR6tY5GGeR7jq5vLTEa7G6o7WyEk1Ly8o4A3/7aGfVvHY0J57ef\nEVj0LiyhT1piW2AUHuMsPZHYHfJxS8NWAi3Xm+fbw10pBXwRrGF5KLr7xVa1mbf21DPvaQfBGJbb\nVQl1LTlKa31w5yshsgdUctINKxip9GG6rZBsUsmkNRn0SYxlK/vRovxNjmeE+Q70EEvVqnYif4BX\ntWJSQnZOtcf3fR3EQKc7urUvLA1y8YJGAhrcoDixm3RR9+bC1CvgrN/H1cuo7FUD7A0FGOtIwaP0\nLrfW3ogl9IcDnjzsIy+J69Q72og8hE0sDzYX82r6WDapTfy2sSjqI2dlSYig2vXFTKcniM2hsU2W\nsZ0yBDCFwcxkOBl4yCEVO0rEKJYKgrFJtvk6JDVeVKOvdfxH3ctsWx/skTJEmcRoT1TboHS1AcmF\nXzQSajn0wY8bOOsJL3apf/3cYeHwCCkZcXczIrubd3NNQz0qgok0cbdSDkgUxUWftKk47Qm+oIUl\n9EmLmQG9zY1t/PUo2aNRd32CVrYCYXNhG34BSvYoU5dpjHAhFfjIX8XFKXm8kD6a95oreC3Y3pR0\nriOH04Zk8D6BLsePLN2ay+oPRjDpjK2IlijKK9nFfuq5muMAcGDrJPQCuJpjcSbZz1hBkImDsig7\niCoI8JfgJn7pGBP3gqPRRtS2Et4Y1A6KPEDJWJUPf9TIGf9Kxa51NpnZ3XDFfBhxYjgWTiKp9+2k\npPwN0lwnUyfcZKl7qQyuPVheUb8Shy0dIcBu8zAg6zQ8znydFi3MkFx3iEUr0e5/uxel8Azsha0R\noLVQAG3Hu0BYJEOrH8F+9M9QMofFffkX/aVcnJJHH8XJD7z9+QEREkJ44bmbnPzurQA7Y1xS6Eh1\nSQaBZjtub6s7STFVFFNFAdnMZgz/pf1+/EkMYgBRArW0IKVEC9QhAOHwIHrAJ1sRgottA/iHGjlh\nCsAGWc82rZ6RtvjCSaS7oKE5erls8wCJZPIqHq/yzGO1jPvcybFvp2DTBCiS/uMEVzwDfbrBGtbg\n2832/a+SgsYf/ZEjrUmCBNRKAPyhSraUzkdgJ8MzisJc43y4FpGxMkwlLR2U3uFFGXwGjll/bSfy\nYTqMqaWKWvJll65u1q160iCF/7vdzV8vszNrlCAvzjA4FUVZLHr5KAK+1s8tgVWETSCTGNjuL5JO\nCrOJ7uIJIKVK/aZ/Urvmd9Ss+R3Vq36Hr3w5Uutq+C1j7CZurX+Etsfd/j+PMT/U9jqi92X9yQG+\nvKKJnZMCXPKS5LYvu0fkAUprv8R4n3NnJCFqmjYkvkNHENaIPkkR2WOQZcsAgTL8Amz9j0U4I2dS\n0mo7jxxl7R6k1BBdsAPHwhkT7JwxwU6DT/LJepU9FRrPfBXbTV2xK4OyHdkUjKls41USHo0KBFdw\nDK+wBC9urmeWoTdOc8knhOrabPdUm2ja8RJqQxHeIfGtaZhlkM2LUVDNCgIUaY0UKrFHZpyea3Tr\nto7is5wKzxybwvWLOk8BpmQrXHmrnaNzFY7K7r7fSoNvNw1+/T0a+ljpwbuCJfRJin38D5AjLkLY\nXQgD10lt3XOdDzaVoFWsw9YnvrRB8d5WqW7BBUeHf1bXzpI0BzTufSfIkm3hBURN6o3pFFa/N4bM\nfstJzfKjCJhC4cHSQvpwJ2diQ8FuYvul2lgc8bi/chUpA05HcXbfol8/4Wa2yGWB1Ldp/TO0nT87\nY/+OjE377StcXOjilP4OmoNayyYmgUDSN0XpkY1JgZAVr+ZQYgl9kiKEgnCHN59oDXuRgUYUdwbC\nE2HDjRp5O7z0VUc8foBnmqNnmdKA//NXcL4r/gQj6SmC9BQbj1/dXpQf+yTI5xtUJBAMQXGbbvrq\nUlg4fxpHnb6duycWUtDBBu8ymWtI9VUSrNkYpbAZf8VKUvqfHMvHiZnzHQUsDlTh13m07ZHNrFKr\nmWKLEGJSB6MHcSTpznIqZDkjj9p3NqhU+CSTs23Yo8Tr7wqZnlGU1ffBH7RCkh8KLKFPctSylahr\nnwq/BmxH34Utq4MRNYqvnbb1DeSA4xBR4tJ8GtB/EBSrCYo724FbT3Nw62mtgv3R2hDLdmhoEhQB\ndsXL2VlTKOzCElKofgd6thOtB+z0fYSLySKTJbJKt95boeKEC320PQeReG6bj9uWhQcLEzIVbh/r\n5uLCxCZhURQHI/tey/66xeyvW4rscpoSi1iwhD6JkVJDLfqw/bHaIugo9NHQgkgtFFXoNZ3UQwrw\nw5SecWsL2/cT26bUC6ZObMlKusKPHMNYFqjSXYLcSROr1WomxyD2RmNus3lAXt/pPyjyAGtrNK5f\n1MTKyhB/OjqxvpU2xUl+5on0SZtKU2A/oLG/dgkNgaKEXseiM5bQJymh3Z+jbfs/0DqOqiPcwQec\nzyOgt7FG6JwnAEeMC7m+oCQYkggRtsWHxUYilfB1vtyk8df3QwRUGNtf8NBcO5mp3bQr0mBHkdTL\nr5dAHELhVKUvH2tluvVeDe1mkpJp2l5uVE+YaOffRQFuXBzZR/OJzQHS7fDTcSl47Yk15dhtXtJT\nwnGO01OGIaVsDYAmVXaWv0WjP5yRVEMFglgOgl3DEvokRdv1UQSRBykiCWN0UVPXP43tqFsiluk+\nBHT61uSXfLlZRdXCfuohTVDvkzzysWo6HMLKIsmJfw5y/SyNn57eDb7tBg+pnvJGArjGUUi538fq\nCInbD1CMj2KtKeytYwJNM3iQGZzf1lwTjT+vD/DX9QFeOM3B9/p0X85WIcTBB5MQdob1vfRgmZSS\n/XWLcDn090tY6GMJfbKiRrZhRhRgvbu6ektcl4/UpJSSN+oqefZZD3srEiOUn21Qu0foDUaAsWal\n6irnOgawOhhd6AEeDm3hIdtkU+0ZCble+Y561VDkD6AheaipiKxQPsfbe15shRD0zTiux697uGEJ\nfdISRYgiJuzSua11EyzrzASAVcF6pjhafffnNe7mg6UK9RWpOm3GRkpi1/wOYmijT4Dp5tngTtZo\n1WiE/fwLFS8324fhijDrGqmkMUGks1ZGdzMsI8AGrY6xivGusxS7YFymYH1N5O9Q7zGX41LIc8N+\nQ63XGD+1jPQsP3/378SNjalWHJpeiWX4Slai2VgjHY6ykQoAGUTduyTaRXS7ML+5NTGzX1P5KliL\nPdeP4k2Mx4RdgTvP7KaQBIYD9tgWY6WmEmray9bGIq73L+P7/qV8qu2ngiBVBKkkwEqtml8F1rJT\nbaBCdja7zbUPwmVwy70UMrepSAjBp6enMy4jSns6NvoMp+DLM9PplxK9jt0RonBEDbn9mrDZJBL4\nk38bXwf1PYgskhNL6JOWyCNOkTqw0zHb+Ot1W1KLF8TVg6Y2swdFCEStnVC1A2nWpUMHATx6pYPp\nQ7srRK3+ZDXyWkdk/BUrqV37N+rW/pWvK7/Ap/OQKMXPPaH13BZYw/vBve3KChUvv7OP0b1WkWxi\nmWpOTD12wZ3jXORGmBUdna3/+fI9Cl+ckUauq3OZ0xUgf1A9BUNrsbVpRgIPBXayMFhpqn8WyYMl\n9ElLhNFWaiG2nM5CIdI6i387tMgrpA6DYa+zTblDKDw7cDj3jerLKYO6Zm9RCIv8cSO7Lw55qHaT\nfh9M5LwNVH1Hzbd/oXH7i2i+8OxmXN1eA3NYKy9pe6jsMLIfbEslxyB0wwbN3C7Se1Y1cf2iZio6\nhL332OAvU40T0fT3KHxzVhrpbf4UQgkxfGwVg4bV4HJH/pyPBorw95DXkkVisIQ+aYkgwg535JpG\nHiRR9PzyFP3kF1d0KO9nczK7wM2DV7hxxLCW6bGD1wnnTYYVv3ex7A8uZo3uPpHXgo0Eq1ZFryCc\nOHOOilocaiymZs29NGydj+Zrv3t4eGM5VxUtwhZlsbwj/ghrKvMc48nWmXGs1KrwRVyLaeXBdc08\ntqm9wuc6INsBd4934zC5u7Wfx8bK76XRxwlC0RgxrpI+/Rtxp0QXcgmoUQYPFsmJtRibtHQ2Dwhv\nvBuYIt/0Z7tyeKy5JGLZnSkFzHJGz/857zIHLy8OElIPtC+REhQFkAIpJS6n4Krj7MzuRlGPjL5p\nyebpj82V0+m4FmomUPUdTTtfQy8ij0uquDSVJpv++sIMkU1/pfOmo1TFwf3OibwQKmKf5qOIpnbl\nVQSpkH4KROQNS79Z1cSjmzpnr5qV7+DZ42N3g8xLsfHlnHTm7aiiuKABE5MdQ/fVA2hSpcm/F69r\nQI+6tFq0xxL63oLixD7igohFwuZAGXYe2vZ3Ip/rr0VqQdOx2H/izud0l74r3enjbZw+vnemgNMC\ndUhNRXRIYVe/6SnURuOE7JoQaDqi1RcnF9gLOE6JHicoXTi4xRHe4fxZqIz5atHBsilkUhDhAQHw\nn92BiCIPMLtf/Ldzf4/C4+NzWas6+Z1vq2F9aWIxu7J+Nfvrl+IPVZLmGsLQvLmW2B8irL96stJx\nN5PiQNgirJy1IDw6o/1ADVrxV6YuO87m4Vx3H1N1kxVDH/NgFf7yZe2OhRpLUBvNebxMqithTF1J\np+8oHTu/so/mL85JnGDrY3qX6yn2vjzqPIqTyMWLwvlRkoermuTB9ZF9Ivu54Jrh0X8fZplgS+cP\n7hHGIRYMyourPmZP9fv4Q+GF23r/Tqqb1ne5fxbxYY3ok5WOIuHU961WcsagurLAHzlQmearihjY\n9yxHFh8EW8/pr3STY3usrHoDVr4BSMgZAufeC3aTQmbCKUhrE9BNbd5P3fqHMZsUQwHy/fV8JzXc\nwkkmDq50DGaiEt3UZUSOcHGDaxg3ED0r2KrKEKurI/fRYUvcBrAJtnTmuUfxW98WglH+mC8F9nKj\ne1DEshf9xYxuWN4pzgDpm3oAACAASURBVGggWB/1miG1iZDaDAiEkNT5ithX8xmaDCFQSEsZxtA+\n3ZtD4HDGEvpkpcP9ZZ+g70Ip7G6UgSejbXszYrmSFvmmvM07kME+N2tDjWQpdq5094uruwll60JY\n/nLr+/Kt8ObP4cK/gMPYm8TMQNrmKTj4OlC9DmRsewPG+JrIsPXnTMegLiX5joUff1kD0h7xA47L\nTKwZbZQtlfvco3jVX8Jq2VmgF6iV3Ejn39RTvt18qJZzlHc85zSua2cyEG1cWqWU1DRtxB+qRlV9\nlDcsJdoTWqJS12xsTrKIjiX0yUqHe1kxcqEEbINPRdv9GTJQ066ZQEZ/UvOnRz3vfHcfzieJzDW7\nI3jM1OyB126FsWfClIu71Lyz7yxcOW2SfcSUeMNGyuDzOSp3ClPs3Rf/JRKp2zZAwYSwHgpx0HQ0\nrGInT19iLnRCJD4MlLNEDUfYzFNcXOMsIE3YGWHz8hvPSN727+PFUPs9AZH+YgdEHmCDM4+pzank\naw0H62rSx66Kdwiq9QTVRvyhWBINWxmmuoIl9MlKHL9rIRRsw88jsOF5atI9qA4bAoE9NYvEBS3o\nAaL5qTdWwvKXYOAU6DM06unR4tgo3iGkj74JpUPGLmfWRJr3vK8/qhcuPIUX4sqdjDgU5q1/v8Zn\nf7mOOncqSFCkihQKmlDI0PzYbtPPLRC1Wf9eXg61cSHVGliv1vNgylg8LSPwC1z5nOnM47nm3SyU\nVSgIvmdvnwCnSgscFHmAgOLk3dQJfL9uOWktGYjL65aj0T05Diz0sYQ+WWk3yjRvGrD1P5agPYRa\n+l8g/LywOzu7EiY1RiPsBY/BJX+PWmxzeHHkTidY0brgak8dQtqYWzp52gDY3Dk4c6cQKF/avkBx\nYXP3wZk1gZSCjgnZe5g/3INNamQ1R9hMdc/v42ry/cD+9iLfQpkM8NOmdTyaMg5Pi69lirDxY88Q\nfsyQiG1FGpfsd2TwXuoEzmtYi4eQJfKHEEvokxZ58L/2UZfFdGZ63izsrj4EGrYjbG7Sco9NfPf2\nb4WtX4IagpawXig2GH4C9BvdtbYVgwdbtbF3TNqwK/ClD0dtLEZxZePue3xEkT+AZ9D5KK4cZLAJ\nKUBRnLjyjsFm4GbaI/zjUSiOnP8WgDnnxNXsZzqmkypC3Nm8gb95xpImjGUi2gS02JFFveIiRQuP\n6ns2ZqjFAQy/QSHEfOAcYL+UcnzLsWzgNaAQKAIulVJWi3BQ6UeAOUATcK2UUmeLokU0Dtw4mgA1\nY4CJVNjt8fz/9s4zTIpia8BvTdwc2F1yziAIklEBRZKAipgVI+aEV/GKCfWq18/sNSEqqJgwK6AY\nUCRJkCQ5S17YXTbHCV3fj55lU6dNsEK/PPswU1Vdfaan53TVqVPnxHYiItY4rkqVObgR5jymHUlz\n01yIawoIaNkH+lxV+f7bn60uyOphklSkmLCkPpCkvzZRGocrnIgmwyy1PeYsW6JfFxcHzVpUqVuz\nAGsp+HmgYAvPhnc0VfbLA9qmowKHh+mxfbk5Yyn10E5yYoVIj/kalY0+VmwC7wMjypVNAn6VUrYD\nfg29BzgXaBf6uxmYUjNinnzkRoeTHRPBkYQYpLN6NmGp+An4sgn6svH7sgn41Q1UVeaPaTrhklGV\ncMY+yNgLa76Edy6Bdy9VF1IzDkBeOhTlGffftBtEayRBPxk5lAwL5uvX33w7RBmswGSk6z4YL/c2\nNj+9LOJnCwm9P/Lrzzj8Dg9/JAwlytsCayrHjdMRgddVjzb1r6J784dp1/AaC8fZ6GE6opdSLhRC\ntCxXfAFwVuj1B8DvwAOh8hlSSgksE0LECSEaSSkrGgJtDAnGNMaXv4ew2K54IrRdI80oyN6CvzCN\nnJR5SKXsaEo4vDRoNwGXRigAU3z55m2KCU3ZydwPnxdnuhLQfSzENoLW/cGjsQvUcNR+EhkAFvwO\nOfr+53TqrF2+fRu8MwXenQr9+sO/H4azBpdpcqozBg+gvc+2hM/8BxnmTjIc1RtH/we/8NCuwTgK\nfIc5nPUHAaUQgQChhs4QAAI8zlgaxZ2Fy1mz+WpPdqpqo29QrLyllMlCiOLhVxNgX6l2+0NltqKv\nJAktr8FfcABvVHtL+T9LU5izlaxDv+Av2KfbRipFpOx6l8adHqi8cM17wsYfKn9cydlhbcjff+Wn\n0Hk4nHZxJdwcTyJXu6UGZpsuXWHMRRXLV66AEYMhGJp1Lf0DLhwF3/4Ag84u07StiGSTNJ5hBYAl\n/nRGeKo/ywr3NKBlknYoD5vao6Z3emj9UjV/lUKIm4UQK4UQK1NTzaeGJxtOVxRh0R0qpeT9hYc5\ntO0V0v6ebqjki1GClRiZl+aMG6GFNdu3KXlH1M1RH94AW36tmT6PM1/nZjFy/y6G7NvJsP07uTx5\nDzt9VfA4ycqCD6bp1z/0WMWylSvgvOElSr40//dUhZnS5LD2NDYJmwzwnt/4fjJ99J5Ek7C6SFUV\n/WEhRCOA0P8pofL9QOlVk6bAQTSQUr4tpewlpeyVlFSHNuv8w5BSoShvL8lbnufwtpcIFFqfPMU1\nGlm1kwoBwydBs55VO16LgkxY8HqpRdh/pmaYlZvFU+kpHFKCpEuFNEVhm9/HpYf2MubgbnK1FLAe\nRjHfY+Pg3FFlyzZvgnOHQKFOjsBlf0BqSpkij8PBdV7zhU4/MK1or269mSJp6NAOsW1zbKiqop8F\nXBt6fS3wXanya4RKPyDLts/XHlIqpO3+gNSdbxD0VWaXIcQ0HEVUQt+qn1wIGPEg9L8eOg7BWmxb\nC2z5LfTCZIyYUzdngV/naicNkcDegJ+LD+7m85xMAlY8h4IGir6jhkfVW69DoPKL7D2dsbTGPLTE\n94FUftRZmDX6NB4E13q0A7XZHBtMFb0Q4lNgKdBBCLFfCDEe+D9gqBBiOzA09B7gB2AXsAN4B7i9\nVqS2UZX83x9QlGOcSak8YTFdqd/uX8TUH1h9IRxOOPV8GHQHXDkV+taAZ0S7kFwukxHgvBeqf65a\nwCzsWopU+L+MVP6VehDFTNkbme0+/bLs+3emwIz3zAXU6FMIwaUWPHAA5vgP469kdikvgkgLvvg2\ntYcVr5srdKrO0WgrgTuqK5SNMTlpS8hK/gk0ElDr4yIyoT/xTaq2ucaUyHrQ/ULoNkZ9n58JPz4N\n2YdVz5uAjjkBh+p106ofDLq9RBH1vhx+eV7/fLl1c0Q/Pi6B1SkHMDPQLCnM577Ug7xc32Ck69TZ\nPXHOUIgvtZHrg+nw73vNhevZGxK0Y+T3ccUxQbbkf77dhl0clEWsCGRyhrsyG8n+mWa4Ewn7MfsP\nIy9jDVkHZ1XqGFdYA+q3uQOHQTz7GqNYUUfGw0WhUbeUsOozSN5YdjHQGwW9roAEjQ0/rU9HnXDq\njB4tbpo61vQJi+DVpMbckaq5NFWGBYX5TEg5wEtJjXFqjd5jY+H2u+HNV8uWP1xqEfbVl+Cxh60J\n99Bkw13Hg9wJvO3bS4FJuOapvj30c8WXkdlW5XUbW9HXUXwFyRTmbCUq8XQcpYJoFWStr0QvTmIb\njyIyvtexUfJ6CAG9Lq/CgXVTmZvRPzySFxIbMTHNfHlqUWE+E1IP8j89Zf/0s2qQt7deV9/f9wCc\nFloEf+1l60q+Tz8YPMS02V2eljzn22XYJheFDYEcurlLciQYfVNWslHZ1C52hqk6SvreT8k+NJfc\n1MVHy5RgAb58c7dJAOGMpkH7fxGdeMbxVfLV4p+7aWpwRBSvJDayJOUfhfmMOPA3X+Zkajd45nn4\nawus314SwKyoCCY/ZE0Y4YBJj1hq2s0VQ4yFgBuv+sqmXDT6psIqHcDDpqaxR/R1FCWQC0DQX+LF\nkZexFiWg7dVRjMtbn7jG5xEW3R6A9P1fkZ++Eqc7hvhmV+KNbFomAURppOLHX6R67yhBQdbu+kQm\nOoiqyVwkgSLIOoSqGhxQr6lBommBrgqJjLd2OkWyM10JWXokTiFol3hsFM/AiCjerN+E21MOmI5p\njyhB/puRSrYS5IZYjd3KzUuZt6SEu2+zJoRwwCdfwNkVltQ0CRdOLvM05h2f8YDCUe4RZvRAu8GC\n+6ZN7WIr+jpL6KcTms5LxU/WwdmGR0QmDiS+sepbLaUkfe+nFGT9BUDQn0narjfxRDQnqfXNmonC\nU3a+hb9AjVmy6ImL2PZ1Q4QD+v0L+twFcVWLnVVCUS58fT9kHyopa3IqnPsoOLVuxYqKvvidOMd8\n8XHuVj9vLPezKbVsH2c0d9CvqYOh7dy0T6zdSW3fsAheTmzEPRbMOACvZ6VTqEhuj9dJLK4ocP1V\nMOtbawI8/zKMqNx+iSGuRL7xHSINfVfNCd6WZd4n4CFFJ5hCP5e1h7JN7WGbbuoo4TGdAQfhsV0A\nUIJFoOPL4Y5oTVKb248qeYD8zL+OKvnS+PL3knXoF81+/AWqApYSvDH5gEQqsPRFmNIVpp8JC5+s\n4gcqyoWv/11WyQMcWAfr9BaXyyl5qf5tlc0hztgve/K8Qu6Y46ug5AGW7FV48Y8Aoz8s4OJPC7jk\n0wI+WG0W8aXqDIyI4sVE69Oid3MyeDfzSMUKKeG6Sih5lws+/gCuvQL2WzP5AbiFgzFuY3lbO8pm\n13oyvD1hGuP6+hZ23drUPrair6PEN7uIJl2eJCxKTRbtcEXgje5M6Umyy9uUhp0epkHbW/BGlh1u\nB4r03Q/z0lcQDJmGtDi0ujnbv+tZ5ly+HNi3BOZPhueT4K8PVSuMVZdqZd33kK0zql0/RzuiZTkT\nUy5ebiy8jy+aGdumX1pcyEd/me9ADSiw+qDCqoMKT8z3c+qreQyZns/2tAD+oEJAqblFxLMjonkz\nqbFla/Wb2ekVC2+/CWZbVPIOBwQCsGa1+mDo1RXGXaqfvascIz31ucLVSLOuPeGElzO3JTm8vBrW\nheZ4j941Sbh4KbyWQmXbVApb0ddhRKndpkI4SGp1LQ07TiIyoT/1291Nww534Srl+VDmWAOVIpUC\nCrO3Vih3uCIpyvJScCQGh0tfIeSnwbfXwNNh8FJT2DoHggYbMvNSYNWr+g8WCjIqjvQBzryxzNto\nUcT0jot4dKRxcK33VlcizEApcv2wK0My/IMiOrxSQPuX83lrRc2N9PuFR/J6krWNSRXIy4PPPjFv\nB2rY4vIKvagIvp8NO6wn2R7j0R7VH8Kn6YCZ6PTwSmQXngxrzyhXfV6IKMlQZXN8sb+FfxguTxzx\nTcaYtpMm7h5SI558bMPryfz7fVa/eQ75qbGW5MlNhpnnQVIXaNIXuo2DlmeVbbP+U9i9rgu9z5yj\n3UmTUyGpTcXyzsMhphEkb1AVV2wjaH+WaZTLGhyI89wiP4qU3N63ap5L+wN+Ps7OIF9ROCciioER\nUbyQ0JCJRzQebHpkZcHws63tHfB4oVUbWF/RbAfAVZfAn+ssndYtHNzrbclLRbvLlGcTpFAGdXe7\ndnZG09kZbekcNscGe0R/wmKsFLR8m8NjGrHgkQkUHImr9NlSN8DaaTDjHHhvAKSVmjD8dB9sXdeX\nHz+/RjOoIvEGXhlNT4XeV0LfcdDxHDXsggnntq/Z2/qFxQGyCiv39ChQFB5ITeayg3v4LDeL2fk5\n3JOWTIGiMDgympcTtc0ipZmfH5oF/d9TsHWz+UnDw2H+EmN7fCVs9QBnuhKY6C2bJ7YRHsJ1PLds\n6ia2oq+jSKkQ9BsknDDvwKS+4uTb4YLrf4+g2ekROKsYbFAqsHcxvNEZ3u4F/nyOriEv/+1C5s68\nmYC/RElIlxe6jNLurIo8PyKMwa1q9tb2F1kPNyGl5PpD+/ilIJeCcg/U1zNV99VBEVFMqW+cIvKF\nDHWdxbd3t/lJY2Ph96XQ+RTtEMUlwpn3VY7TXfV4xNuWZiKMHs4YXojojKOSORLMKJKF5ASzyA5m\nk6Nksz2wlc+KPuKTohnMKvqKAqWKIbVtANt0U2dRXSPXkdDiWsJjdbIIGWE24tKZdofFwri5kLIR\nFjwBm76o/KkBUCB5FUwfULZ41aJzwRFk5GXTcDjg0JGeNIotN7pVgrBjIX/neFhAT8DB0HYumsRY\nU95CCKaOCeOtFX7WH1b4fVcQX+XicJXBKQO4pt8Ht70IYZGm7QulZFtA27Y/Ky+b++upawx9wyJ4\nq35T3s5M409fxVhABYrCDl8RP7dqaRwdMDISfl4A7TvAa69AdpZ+2yoq6B6uWHq4rJnzKsu+4F4W\nBn7Trc8hh7n+OYz1Xlor5z8ZsBV9HaUof4/6f97uKil6YWK6Mauvfwpc8jkc+guWPAcbLK4DlufQ\nmoplqxaM5vC+NsTEHyGLXtz471KVW+bB2m8g6yBX577CQYJAkBf/8DOmo4sHBnmI8pgrK6dDcEc/\n1bXvQLbCygNBAgHJjLV+1qeYHFyKRoHDvJP3JNHKHvj2Rbh8sukxawr1R5/lI1b2DAtnasNmvJ6e\nyvTcsjtjXULgFIL3x4+n04b1nLVggerRkpgIj/4HPB51/0H/06FpyPz181xj4Xr0NpX/WBKUQUMl\nX0wB9oi+OtiKvo4SnTiQvPQVRNbrUaXjtRZbK1NfTMNucNHHMPJN+GgYHFxRWUG0i/fvUt3uLvyo\nVGHABwveACBDieR053q+Cg5E4iTPBx+vC/DtlgBXnepi0iDri6NNYhxHZwNju7jJLlLzlM7Z6uf5\nhQF8QfApGqJKiVv4iVLycCAhV8O3XYP/pOs/SfQer3fWS+K62Ho8feQwCwrzcALXRsfRyu3h9UbN\n+GPYcHoeTCbm5degT39wV9zwRvJBWG+y0DrtA0ufwebEwlb0dZTopDOJTjqzGj0Yj3pTZQxmfhH5\naXB4ndpVk95w/UKYexds/AKKdMKyaIqho90cbjj1qtJtVZlTlRjmBvowN9gXWc6KneeDt1cGOJIv\neW6Et9L5dIUQxIapx4zr7mVcd/WBsStd4YnfikjLV5AKCIfg77QAD+a+RxNSEW4vjAxF4D64DXyF\n0KKrpikkT9F/iAqD7yXK6eSZ+hXdL/uERdLn9n/B7f8y/nDffAlZJl+MXujj44RTOGkvOrJNVi6v\ngk3lsBX9CcqGYGNKb6GSEpb5mrI5UJ8tgSRGJLSitcHxGX/D1O5QFAqtE98GbloB570NZz0OK6dC\n6mbYbGDD73IVbP4aggXa9RVC3DjdHOxxJynLv2eK7zzyiNDt+6tNQfZmFXJbHzdnta7+bdy6noMP\nLi6bZWlLqkLGujE4gm2g2xAoyIUZk2DbcrVBxzPgyv9UCP3bJv0A6+o1US96uQdBrUZy3GAS2dTt\ngQjzNYZjTW9PPxSfwg657XiLcsJiK/oTlEVFzRl/5HoSySMgnAggKAUbg/UJ4uIcA0f7jF3wTt8S\nJQ+QsRPe7Qc3LofoxnD2E2p52lb47dGyCr/bdTDwETV0gp6SB2g1uGKZ6Hg29y9tTbaF1HZ/HlD4\n85si/jtUcvmpGqaMatIxyQHn9AP6qQWTh6pJVIrZsgQ2/A6nlv0gb8x9latG3sPeuIobjjyViLr5\nc14OM7Iz6B0Wzt1xicazlwP74dOP9OtBjWMfWT1F75NFLPMvIVtmEyWi6ec+gzBR/XywfT2n4/S5\n2Co3Vbsvm4rYiv4EpVCB3cEEdqMRCREMc5YufAoKNFLQpm+Hv95Xg5wVk9gBLv1cu5/0ncYynvt6\nxbJG0Q7evKoFE+YUsiXN2uj3oV98vLTEx5Tzw+jZpJZME4s/L6vki8kqZ4/ftJjIvAw++vYZ7h96\nK2satMXnLon3cpNWZMpS+KVkbWEBDx05xJGQCWiTv4jPc7KYVK8+50Vp74Qm04ItrWlT8zYm7Aru\nYp9Uk4RnyUy+9n121BwVTgQDXGcR76iHQzciqT69PH3oIXuxxL+QA3IfQdM8XTZWsf3oT0Ay/Qqv\n7DEYSgNeg2++QCPMSjFHdliXw6gfhOrKqUW7BAc/XBvBKyOtB8RKy4fLPytkxb5aUA7BACz4WLuu\nvBvrEnVqE+UvZMoPr/Dxt0+TkBdSwlJyvp6iBjKDQUYd+JtbUg8cVfLFFCCZkZ2hL+Mt1xl/hvYd\n4PwLjdtYICjLxrqQSJTQvzxy+TEwhx98s/DLyicpB3AIBwM8Z3G+ZyytRMluaZc9Jq0WtqL/BzHj\nYAFX/JXFr0eM468c9imYb+TUNgMoAThiEA5l5RTIsRBxd8ePkLxSv/70+yDCeHDL+Z3cPDfcurIP\nSrjy80Im/VRISm41HOfLM286FOjkASh/GQNlN1a1yUhmyuyXiCjMJyE/i7CgxqwAOBIMcOWhvaQZ\nLOT6jCLIba0Yu6gMd92j7aljhqLAZ+/AsvkAOCzsiM0ik5/831dZ2QNEiEhO9wxgtHsMfZz9Gek5\nv8p92diK/h/Bb+k+Oi9O5eZNuXyT6uOCtVn8lKa/U1OxEOzFr2O62fItpBmZSWVZ270eqSY79iMb\nmPcBcHEXN/8b5SHS4oBOAT7fEGTMxwWk5dfAwmdeFqz+Qb/eXd7Ns+IDtG32IX7+5AFmz3wYt4ay\nzggGufrQXg7pPASKiTLI9xqQ+nUF9VvBuOsM+9bl0VvhzafhwfGw6CeaOpvhtBCDM0uqyj4gjT+T\nGbGOONq5OhAt9GdCNubYir4OsyM/QNMFaYxcncWuUhsnAxIuXJvNogztkb3Dwnpf+QxBxaQJY9NH\nszMhoZ15/zHG4eKJroS5+LyObtZPiOTq7tbt74dy4Yv1NRB5cuMCVdlrEZ1QYSFWj4hAEWFBv2bo\nidl5WRwyCluA+viYGK8dtXPue5IPY19hr6sLB1wdOODqyH5nBw662rHL04u5p/zPkowVeG4SLP5Z\nfa0o8OitRK9cywj3aIQF1ZElM/nB9x3Baip7m+pjG77qKLsLgvRdlkGezmxdAWYmFzEgXsu0Ya7p\nu0RpK81fuhawbaCTzgu1vV7ajtDP/Bf0wZ9TQPFDr1shqSukanj8JZ4CXaqwm/2Jc8Lo2sDP23/6\n2GFk/w/x8pIAV3XzEBNWjbgsh//Wr0tqDmFR5QrNZhFl63MP7eL1Ir9BOkWVxk4Xp4VpfycLv4GU\n6OtYHH2dZv0zVdHzOVnwyzdly6SEuV8S13sgiSSSivkW4xxymOubw3DPKNyi5j2jbKxhj+jrKJev\ny9ZV8sXoLag2DnMQbTD4fbFdBH3jKj4gsgMKz+8tYM2oIgoitEeYLoMNqUtfgp/ugV/uh/cGwen3\na7cb+LCpXtPl4i5u5lwTwakWTD8BSaWjTpYhLwuWGyT68Gj5+Zs9VErVH9hK/oxJBEyOiQTebaA/\nBTIw69O0PdRvVskHXU4W3DoGfBrmwa3rwVfE2Z6hhFtwgYWQzd5XPZu9TfWwFX0d5UCh8VTeK+Cm\npto/tGiXg3uaa9dN6xzFHS20fan9IfPB3h5+FtyQj99VVkl6YqDL5RWPkxKy9sLSl0vKDq0GJJw3\nrWzbeu2g6xXan8kqHqfgqysjGNHOgcfkDg5aTYGlxbzp+nXCAQM1LoaZTi22sx/aCe9OICEnjQF7\n1hpmfrq3Xn0auAxGwxrndLqhUz945EMTebSYMxP268xk9v8NS3/DLdyc5xlLBNb88ouVvVKd78Om\nytiKvo5itoNySIKbTlH6ljeXxuaaKAdc1Vh/FHb1xpIsUMkdA/jCy/4oG3aHGI2B5TdXwystIL/c\nTP7726H1EBj7CbQ8B9qfB2NqKNSK0yF48/xw5t8YTpL+BlqcBguYpqz5Ub8uPAqad6lYbvS19RoN\nntD1X/Ax+ItwSsnz895h0O61moec4vYyMtI4WEX5b/q0s+HJL2HiWwK3twpmqwO7jev96kjfLdyM\n9JxPa0dbHFZs9mRyRNHYoGFT69iKvo5iFDbcBbx7irEXgkdU7OCtzqrCCCiS/+7M44q/snh4ey75\nQbXt0oySRbNDHQJsPbOIYKmkce3OrXie3MOw6SttGQJ5MHPAIboOT+baeXDFLGjW31DsStMo2sGc\na8KZ0F996NVYiIH0g2qQNT2qkiKv9Wnq/8u+hfXzjxZ7lAD/N/9dHlkwg5j87KNffhePl3caNMVr\nYufq3K/k9W3Pw50vCxq0qOK6REoyzP7UuE3bU46+9Aov/d1nhhZozc/5W+BncqQFty2bGsVW9HUU\no5/MhQ08xLuNv7pR9cMovQbZwC0YnuhBSsmYtVn85+98vkn18eKeAl7fm8+iDB8F5XTk7zfkkV1f\nQSLxxMCZkyqe56d7IVgxlDqg4HQU0SJuIXz2nKGs1SUp0sGE0728f5UHUT8Y2sQjKfIoKK4qKv5v\nXzCu73OBdnl4+cXZUgQDqhKfU3F11BsMMHbrYr78/HFaZyTTV/EzvUEzwizMSLoPgqRmEN8AtmtP\nDKyTbjLiPv0caFnR7SreUY9z3eeZjuwDBFjmX1IdCW2qgO11U0dR45pUVFLD67mZ0cXcp7h9pIsF\nfeK5c3MOMS7BtFNiiHQKLliTybz0su5uBwoVHt+RV6EPXzQkd/ATm+IksoFE6/GTvb/s+4jwI3hc\n+Xi9eVw49AkaJO6GLQ7YtKzs0LOa5Acku/KCLEzz88CmAnyKKp0jFoa3c7ArP8igRDfNI6o4lskw\nyOkqHDD4Gu26IeNh5xrQCgMdEQvfvWR42kRfLl9++TjcOsVSkpCtKyWvTijx2pz3Mcz/THLxPTBs\nXBVG9VP+a1zv0Y9rU6zsf/L/QAD9hdcUeZgU5TD1HRY3U9hUG1vR11HKmyAaewR3NI/gnhbhlkPz\ndot2sahPPAB+RXLemix+Ta/o0+xEkhmouEgmnTD7wVwOdA3y2U0RaCn6Jn1h70LwunNo12oR8dGH\n6N/jU8LDckt1pMDUe+HmF+CU0y3JrodfkXywt4gnt+ZzUGMmEZTwZ2aA/SPiq36S9fMhw2D777Cb\n9OuadoSGrSG53PbiJh3UspU6CdJL0/NctR8LLJlV0TU/GIDPXgBfkWT0+Eoq+3XLjes7dTesjnPE\nM8I9ih/8s1DQ4rGxoQAAIABJREFUX3jdFdhBfY+t6I8V1VL0QojdQA5qVtCAlLKXEKIe8BnQEtgN\nXCqlNAjSYaOFt9SIvoVX8Gf/esS4qjY6DUrJ+WuymJ+hPcqSQt+6qrhh5YUFNDhVe8VzyH+hpfiM\nwPo1NEzaRr1YHQUpJbw7CV5eWIVPoBKUkvOX5jAvzXgDjrO6dvodq4zrm5go4XH/hecvKVs2aBz8\n8aX5ufucD+ebxJ0vRcDAY/Gb18DtkQy/2qKy37TG0PuHuAS47EbTbmIdcYxwj2Kuf47umokibO+b\nY0lN2OjPllJ2l1L2Cr2fBPwqpWwH/Bp6b1NJJrWOpGeUg+V9Y9lyZkKVlTzA2DWZukoeQJHGCTGG\nxrtw6diKHS5o/8wldG67QF/JFxP0w5JvjNto8GuKj9Y/ZZAwJ8NUyQM82MHADceMwjzYtky/PjpR\nHZ0bEZsIrUqNfBu2hc5nYrqZyhtZKSUPEBVnXP/5i/DvkZLtayw8/J5/0Lg+sYGxOcnnA78PAgGi\nlXiGitFE6rhferGeIcym+tTGYuwFQLET3QfAmFo4xwnPTU3DWdIvgW7RnkpnUSomKCUXrM7kJw1z\nTWkcQlsFJbgFdzcP55vTTLSJwwHDrrUm1E/vWWpWEJR8f6iI/23P59yluewrlKYbyECdot7aqhrx\n0fdtghyDlIEDLgOvhY1C1z0P/cdC294w5l61LLGZ8TEX3GtdzhCjxpvnKz9yEJ4dDxuXGSj7hT/C\nLqMsTwLue1q/euI1MLQ9DGnPG5dMZ/iNAS6/OYbPHxpDvd0Dy9xgEURyiqursdA2NUp1bfQS+FkI\nIYGpUsq3gQZSymQAKWWyEEI7QIdNrTN5Rx4/pZvvRhQhL5XSNPYIlverR5LZjqRiRt8KgQD8phPO\ntxiTmC4AuQHJoEXZrMuufMjh8Jq4o/WIToS+FkP9Ol0w6q6yZR6DB8SYiZbj5pQmNlHQa6hkscEG\nXlDt+C/fBhPflnTsrTFwmPedcQcNmkDn0/Tr15bMgrKd8RSv5xw+Ai8804z6rYfRc9BBYsJdDGjd\ngbBEa7tqbWqG6v4szpBSHgwp81+EEJYTPwohbgZuBmjevHk1xbApzxGfwgyt1UoNIpwOYl0lP/4G\nHvizXz0SrCr5YsbcCZuXQvIu/Tb9zzPuY85U/nsolnVJwyp37hCdjGI/WEFj/8FRYutXL+fqQZ34\nzxc9CKdV7fMCXPsopO6HrQZhoUFdJnnpdrj/bUm700op+/w82PyX8cFPvGFcH7LtB4F2BeuYFzFK\nTQocImVXEnN3JQHwnRf6dw/w7/FOPJ5qxCGysUy1TDdSyoOh/1OAb4A+wGEhRCOA0P+akY+klG9L\nKXtJKXslJSVVRwybchQEJf2Wp5PqN7fLJroFNzUN54m2UZwS6WRwvJvV/RIqr+SLGTvBOJDN6Fu1\ny//4Du49C35+n2Be1TbUdI9x8OsZ1Qxn27Ib1KuYoBuHC4aZL0Tqkrafwkw1rIAioCjSS358FFzx\nRLWUPIDDKZg4Fdr3NG8b9MOzN8Ck0ZKMw6H74495kHJQ/6D2XaDdKfr1AGHqusgGby8+jr+jjJIv\nT2ERzF8uGXVrgFG3+PnutyC5ebWYS9em6opeCBEphIgufg0MAzYAs4Big+21gMmc0KamWZxZxL4i\n8x9OvEuwuE88LcKdDIz3sKp/PX7oGVd1JQ/QoQ/cVMkNUttWwsz/O5q045LDC2lacNjy4TEuuLeN\nl98HxBLmrOYI0e0t2cFamise0y63SvoBUlsnkty1OWltGrJ1RA9ybn8GThlY9T5L4XAK7nsL2lkQ\nUUp1BvCf4phDAZMF7nF3gMtk8v/oKyiAkAoui2GJFUVV+q/OULh4QoBPvw+QlWMr/NqgOqabBsA3\noYVCF/CJlPJHIcSfwOdCiPHAXuASgz5saph1OQEuWZNjqe0vPWNpGV4LOVa7nAHjn4FpJl4cxWwr\na3MICgf5DvPMUg7gyU5hXNM8jIZh1h9OM/YWkeWX3NVGZ9G205mw8vuS9xGx0LaP5f41ad+XcHmA\nbRFbiY/pQuvIvkS5anb5yuUWTHxbsvZ3+OBJyDeZGB3NTGgUaKxlOxgUin2xZB58O0N9MMTGw433\nQ9OWal3/wex/9me+e2EDPkflPWr8AXj3C8mXPwYYPsDB+IscOKv70LY5SpUVvZRyF9BNo/wIcE51\nhLKpIts3c9vqHAoTWpk27R7lMAyKVm26nQW3vgRv3Ye5W2E5d0gpUQxS1kU5YHLHMG5pFU6ES1sZ\nHPEpXLgsl+25akiEo/t6JRwJDTj/szWfhl4HH/eK4tTYUteiQz949Ad1d6uiqIuoRtEjLZLYYSxx\nig+XhYdYVXG5Bb2GQoeekscuhSyjiAbFX4vXwEupcQv1/4U/wuTbygZhys+D594/+rZ5v/YMe7QN\nq99RIJcqkZkDn/2g8MMChWsucDB2WC0lez/JsHfG/hMIBGDtCkg+AE/+G3yF6qLglJnQ50y1TfJ+\nuHIEUTe8ASaKvnuUk/m943FW0W3TMp37wx2vwLdvwIFtqp27IBf2bYW/18HcadB3FJw+BhJnQ5oa\nT8EjFSKDRWSW6y7RI7iqmYenO4WzLCPI8nQ/EjUt4sT1+WyppJ03068mUn9tVyHvnFYuRo0VF8oq\nUB0lf3if5OlxZRNeCQHNO8HYO1VHH4CWnSG6nuCxmZKnroJ0HSvYyBtCL84Yqtrht20o2yAyGm6Z\nBH8uVFMKlmf57+omq1LeOH1OdfDk3YLfVwSZv1xV3FUhJw/e+EQhI1sy/mJbTVUX+wrWdfw+uOUy\nWF1uE08wCD9+W6Lov50Jfh/TP32Yaf0uItcdzp8turK0dWiFTkoQgu5RTn7tHU/4sZoWd+gDD/SB\ntb/B9jXw1GWQUyo91NJZsHQ23Ps2fPA4HDlAQDjKzAHcwAPtw+gR52Jeio++C7LZmFNzOysLgsfP\nLpzrP8zhwk1IGcTp8NIkogceR1nH+MJ8yc8fwo/vQ1FB2eOlhD2b4OXbS8piE6HH2RIp4NSBsPIX\nyC331Bw6Di66O3QPeMPgtS/g6w/go9chLxc8XpjyDbRoC5+8qf8BFv18VNEriuSJN4IsXlVyPR0O\naNscdu6FYBW+sk/mSNq1CDKwtz2yrw62oq/LBAJwq4aSL6bYJ72oEKa+CECT7BQm/zwFUGfmq5qe\ngt/pACkQ7Ttx2nMv47WSVLYmCQZg4RewQy+0ooScDJj0IRzcQW/gu/CG5LojcAJtopwsS/czdkUV\n7QEmXNP8+O3S3JD5FQFKtHdq0Sa6x487qux3HlnBtFs6c3iHtQQfoJpr5n9R8t7tVf9CYeQZOR4u\nuqvcPRAWDlfeCuddAXt2qLb3uAS1zmjvQ6mE5otXKWWUPKiWr227oXESDB8A739tnmyxPJt2Sgb2\nruRBNmWwFX1dRVHglktglcF2/HqJ6v9vv6JZLYBe+zeqbzp2hf8+ay1zeE2SkwHvPWyg5EN4wlRz\nSSt1x2T50FkT1lWMrlldmoULXuwSybD61swpAaWIdZkzKQhmHI3h4sBBorcjLSLPwCk8lTbNBCi7\n18Gn5LImfQanxV+DwMHKFXs5vKN6Wq5YwbvccOYYDSVfmuhY6FLOT9MoOUKpdIMp6frtDqbCT4th\n9ltOZs5V+OZnSV6BbvMyxEXbi7LVxVb0dZVH7zZW8rHxcP2d6uvli4z76tgF3vtWnY4fS75+FX43\nSWIB0LwjtDN2As+p4XSjoxq4+LZf5Xzu8wNp5AfLrm4qKKQUbSClaAMCB80jTqdBeJcK5hd9Koaj\n9st81mR8SK+EG4hMyqFe68Ok76p+pMeAH37/AqLiJBfeUQnlabQvYtYncM1dUC8Jl4l15WAK3DQ5\nyNQnXFwxEqZ/HeTHhWUVfnwstGlWElKnaUMHF5xjp82oLrair6ssXWBcf96lEBOrvn76NbjgjIpt\nwsPh30/BiDEQXo1AX1Xh6//B7zOttW3WqSSXqg5uB+q2yxri/naVX2z1OmMN6yUKe/IXc6BgJdGu\nxsR7WtI4wsyxXXsU7Jd55AfS6dflTPYM2lYjir6YBV/BiOsk4ZEWlb1Rs2AADh0IKXrtHAqlSU6B\nO54I8PqjLm6/wsVl50qWrlVQghKXSzCgl4Noq3LZWMZ+VNZVjKbL3jCY+HjJ++atoO8AcHlU1wuX\nC5o0h68WwIVXHnsl/8O71pW80w39Rps2u7N19WcjLiDaATN6RnJGQuXdJb3OKE6NuxyzDOABWUiG\nfxe78n5jRdrbHCnSDn2Q4fsbI8W4PvMzvM5obrmrDy/+qtBjiHq5qpLFsDQ56WqCEssYhS4Gdbst\n0LurgwgL8eT2HYI7nwxQUChJiBOMPsvJ+ee4GDnIaSv5WsIe0f8Tufuhsu+FgKmfmx8XCMCW9SHd\nonrh0OnU6sVvKc/sKfDLDGttnS648zVo0dm06cMdI0nxSd782yCPqwZtIx24BPSOdzGlWyTeynob\nZabBkWRo0gbCIohxN6Fb3JX8lfkJVpYVfTKHzdmzcAov7aKG43VGE+VqgBCCPXnGKfUUAuzJW0yX\nuIuJS4A7SmU3XDlP8v276jq8EOrAOnVf5T6WZUzccHN9TqKABomCNx9zcdOjAfwmm2P3HYIbHwkw\n7WknYV57vFnb2Iq+zqKjRC4aB1cZZDjS4+dZMP11VdGXpu8AeP1jcFd/QxBfvQILPrPWVgi47WVo\nU2HPnS7/OzWK02ILeWlHAZtzta+PV8C45h6cAobVd3NBo2rMBHasg2fGq1q0eQf4jzpLiXY3ROBE\nYm2rP0BQFrElZxYAUa5GNIvoQ4QzgdyAcaiHTP8e9uetpGlkrzLlvYYIeg0p23bVr5KNf6gD8D/m\nHB1oa9LmVMuiQ9deutEtgwjun5bAlNASS7NGgu4d4c8Nms3LcCgNbngoyJWjJecOcuA81o4CJxFC\nGpkIjhG9evWSK1eahN472Ti7C2SUi4suBHwxH9qaJL4ozR/z4X//ha0Gv7yJT8C4m6smZzG7N8JL\nFoN+DblGdf+o16hKp/IpksVpAYJIBBKfAk4BTiHoGuOiQSXCIRhy52DIDcUJEA54/GNooWaX2pjx\nLRmBndXqPsJRn3xFM+ZfBfok3FqJBV7ISpPs3wFKEGZPhZ3rSuqGjoPLJ1ZSqY7tC0dKHkoSeLne\nY6wOH8AhbwvmvVcyUCgoktz0SIDkVOvdn9FD8MRdzirnXjhZEUKsKpX0SRd7RF9nKXfDO5ww/Rtr\nSj4YhJ1b4L4bYd8eTE0Me//WLM4tUI6GDhBInE4HYXphZX3WQiJz+SQ4/QJrbXXwOASD69fADMSI\nZT+WKHlQ48F89Cw8rCZO6Rx3AesyPiMneKDKp7Cq5AH+zllEh9gRltvHJgpiQ963Xc+A0gO6KilT\nDY+tHBFHsrtJhdsr3Ct49ykXt0wOsN9ibLolqyVPTgkw+fZa/l5PUmzjWJ2l3AJY51Ohu4k/taLA\nonkwdiBcOgT27cbS9pRyNvqgIvn3O36GPhBg2AMBhj4QYMgDQc6538/7PwVIydTos+1p0MzkIXT+\nndVW8seM7zUyYW1fCxtVl1chBF3jLyHa1eSYiJPq28juXBM3WgOEEEf/aoKd7g6EiwIcoVvh5ffL\nmrHCvII3HnPRvBKTtgUr4M1PrJvDbKxjK/q6SmldGhUNL5uk4Js3B64aAXddDXsMEn9o0bdsqNwZ\nvwRZtL6iMlckTP1e4YbnNYy/Dge0MIhZPupmGHJV5eQKkS19fBzcyVuBzfweNIibXlMU5kOGzlB0\nTYnbq0M46Rp3CW2jhtEkvJrRLS1woGgDPlnDGwqs0vvMktdSsjqsP79GnIfiUAcJS9dWvF+iIgSv\nT3ZxYyXi1/60WNqx6WsBW9HXVUqPvJ57G5J0/Kj/WgkXD4aJN8Hm9dptjLjvCTirJPFFboHk68XG\n7nTZejsa+4ysuLmm+9nwn+9g+PWVlw3IkX6eCq7ld5nMKo7wsdzFzGraxk2Z+wHkZmnXKWWd+R3C\nScPwrrSKGkDfhNtpFXEWZu6XVUEBDnpdzA7+TMBivPca5V9PQaGiPu0L/DhyCpEoR6+H16+9czky\nXHDpuS46trZ2mtx8+HBWzcUxslGxbfR1lYQkdTG2y2nQ+/SK9amH4OrRcOgglY8eEmLS03D5DWWK\nfl4VJE1HxxVzxdk6iqzlKaq75NevQFE+dBmgZpzSISglh2Q+UcJNrKgYOqBIBnkiuJosyo5ifyOZ\nS2Tr2ou+qRfuEQwvtdsRTpPInjSJ7ElQ+tmaPZdM398oFrxzYlzNyA0cRqGi+2gAyPZEkOsJI0gW\ne5UDtHa2sPBBahCHA3IUNTQxcDFTuXjPVA57mzC1zeMMCcwHtNMNOh2CNya72ZcsufPJALn5Ziez\nR/Q1ja3o6yrPvgV//A6XXAPuckow9TBcfDZklQ/kWwnunFRBye88qPDSl+ajqUsHGdw27XrAA+Z+\n9H6p8GJwPTvJQQBDRWMGOxqTIEp23GxRsiooeVDVwDRlKzc7O5qeB4B921WTSzCgxphv0AJOH6Xv\nH2605d/iw8Up3HSOPZ+CYCYH8leSH0gnO1DR0d0jomkccRpNwntREExnTcYMdaQcwg9ku8NJD4sk\nGDKTLJLLaSWbH3sPlWdegQllXXsbFB1g8qZQ2fvd4Dp9761mjVRTzkezgsz7Q1uZt2gM14yxI1XW\nNLair6u06aD+ledwMow7t+pKfsAQuHUinFLRf/2+qQHTULJXDnaQEFN9BTNb2ctO1GDlEvhZHmRB\n8BC9RRKXOVoTJpxMk/q55rdLk2kHQEYKfPI8rJpfweTCX4vh9v+reIwShN2bKvFJjAl3xtE2WnV4\nz/YdpFDJRiBwCCdSQpyn+dFAaBGuBLrFXcXazI9Ro+hAalg0eW4vQWfJT9VPAEUqOA2Ss9QK5wyH\nyEjI0wkwt+g3Q0UP0Kyh4MGbXVw5WrJnv0JQUX0BhACHQ9DjFEG413axrGlsRf9PIj0NrhwORyrh\noFyMxwvnXQKPPq9ZvWi9wuEMzaqjhHvg4oE1o1wOyorz9yIUFsvDNFEiGOJsQmF5z6NS5OBnl8yh\ntZq2WJtv34I/52nXrfgJLrwVGrUsW75lJezdqt+nUdo9E2I8jYlBI/F4KaLc9Tkt7mpWZ35KqtdN\ntjdCMw5Q6dG8EpLJYTQTqQmiouGHRXDe2ZCt8aCtRMD5Fo0FLRrbI/djhb0Y+09iyW9VU/It28K8\nv3SVPMBbs83tyEN6ChrVq5nRllEv38jdFJgsOAaBeYqJD3ukcRAy3nqoYpnfxKultpUpEOlO5JTE\nq8mJqGca7G2Tso3pwZlMD87kz8BacmTNh3MuQ4tWMHs+nKPh0++01Uldxf5m/km061S59h6vGhdn\nxpySSJca/PhnkF2HjLsK88CEC2tuAigNFtx8SDJkEQkYhy8okibhLMfcCuFR+vV7t0BKObu5iWI9\nVtQTcVzoHEEn0bZC3TmOM3AIB0dkBn8oJTvK/2ITnwdn8WtgMQsCS9kWrCXvpBat4N1PKt5TZ5xV\nO+ezqTa26eafRMeu8ONKNWbNFx+UBCcrj9utetQMGa3GrTcgEJR8OM88/u8Fpwsiw2rSdmrcl5SS\nm+nAf1mn22YfeRTKAGFC5zb2eCGmnpqnVvsk8Paj8Mj7JWWBY++6GFCK2JU7n1hPUxqEdTlaHiti\nOMPZh27yFAoUdedxhCOcSKFGIw3DiwsngVLxmyWSv9kLwHb5N5mBbPq4zEIlVwEhYNZvMHY4ZGbA\n1ePhBo28sjZ1AlvR/9No2AQeekb9K+bbmTD9VejaE554WQ1TbJGNuyW7ks3b3TXm2N4qEvAKp6Gn\nXQY+1sh0+ov6+o0uvQdeu1e/Pq3chw8Uabc7KljN+ngrMsiajA8pUrLY799KqttFl3LeRFEikihn\nxTg3kSKC5jRlF3t0+1/HZrxBL92c5hFCK03L1rBaOwSzTd2ibsxTbarHmMth1h9qApJKKHmA5CPm\nPssTLqz5yIJmN146PqIc5nFPDismTtk9z4YIgwXbzBRYMlt9LSW897Rxfy0qaT4zwa/kUahkkefy\nkBwZyzK5mrXBjZaPTxT1TNusk5sImpm5KsOPs+Gj6WoScZt/BLaiP8l5ZqaxAjirG1x+tvrwCCqS\nKbMDPPiun237qzey7SESDeunya3ECA+DaWjY7nv2my7ccvNTxvVzZ6g+9ooC+QZumwmNYNCFxn1V\nkoBwUOBwkeEOpyjkJ79S/kWGYs19tqujIxEYZ8sqwsdqpQq7prX44Tu49Rp45D4YOwxyc2qmX5ta\nxVb0Jzk+Ax3pcsB1w0pmCMs2K8z4ReH3dZJb/xdgx4GqK/t+zvrEoj9iLwjZnaMM2hTjK+8jX554\nkzR8+3eofvVmG5ASGlneMGWVjcp29sUkkusNPxo3BmCVor82URohBL0c5jH9t8gdFEqLEUaN2Lmt\n5PXWzXDRcCisgX5tahVb0dvo0rO9oEOzklukoLDEzFNQBFc/G6D/3T763+1jwD0+FqyrnHlAWIgJ\nkyjMc9PNkDuMGzRrB21NlGG6yUKFcMCVE01lqSy72IsUosIDZDf78VuMadPe0RqXyXJbET6+DP5Q\nfRNO+RH81s0w8kwo1AuAZFMXsBW9jSYOBzxyVVnl4XTpK+aAApPeDbKwEsreyMWymL6O+jQ0MU1s\nxmSXrMMBo02Cqs18BXwGC7FNWkPLmrXPA5wp9ENPzwsutNzPWaKfaZtCCjlUiRj4FUg/Am9rxLPZ\ntRPu0Li+Ph9MfQ0e+hc8PBEemQgP3QtvvGg/GI4xtqI/kTi4D267Ai46Cx65W00oWkX6doDE2LKK\n3YrRYtK7QVZstWbS8RrcfhLYKrNwCMEo0cywH2mwg/Yo3QdBqy769QGfce69u142P0cViBf6+xuS\nSSHTSqgHoImjMV4qBoYrz3z5h2XZKpCZru91tP6vimUfToNnJsMn78PH0+CjafDJe/D8UzDwNHiz\ndq6pTUVsRX8i8f6bsPR32LkV5nwB14w29QsfqRFGvVtrwfO3VLSN927vIMlks6kE7nsrwOrt5sp3\njKOlYf3M0Iaffs76RGC0Xd6i3fyyCeAysPnr7Xrt3Afq106CEaNMngoKq4LWbPVu4eIi5yg8Jsq+\nkCK2BE1MXboCGXynWh9k32799imH4bn/QNcW8N1XVZPHxjK2oj+R2FN2J6TcupG0G66h0KevTR65\nys3g7iXvu7YSvHqHS9OdMjJccPEg81smEIRpc83ty70dSYb1+aXC+yYa7JJVkBSGbM9FMsg6JZ2A\n1sizYy+493X9EypBNWWj1jG1FSnSpN8srLswRohw2tLStN1iuYJ9SrkELn8shA/ehRnvwMwZsGNb\nxQONdg1rKfqOBoloisnJhgk3wrNPhNJe2tQGtabohRAjhBBbhRA7hBCTaus8NiE2rIHlFVPNbTzg\n5tb/+XWVvRCCp65388x4J5PHOXnjLhcet77yuWqwk9Mt/H5X74A3Z1Vvl2lpie92nEKYzqheAT5U\n1FHqV8puXlM2MVfu1+60cx946gsYoOEm6XCFlHroZ9GpN0x803gWUE28woPLYLaSTgZ7zWL6lKKP\n8zSSMHZdBVirbCzJI/v8k3DlBfDY/TD53zBpAgw/Hf5cVu4og4eSVtVlV0PLNtYEn/IKDO0PW2su\ncqhNCbWi6IUQTtQsBOcCnYErhBC1sDXP5igaCb6XxQ7gmXbPsHUfhlmjhBCc1c3JuX2cuA0WXEFN\nIvHCzW6cFga4H85T+PCXqqe+K32KWIeXJx09iNS5ZfeHgnm1FTEk4qUVBpukmraF8ZPhsntKypp3\ngPAI6NIP3vgdXvoJ7n+rVpU8qCaX3nQ3bLNaWX80QqUZLuFktOMc03aHSSVFpqlRKN94qWKDYBDG\nXQirlpct00XjhhAC7tMIHKdHYQFcNAK2bbZ+jI0lamtE3wfYIaXcJaX0ATOBf0hW6H8oCWVHcbki\nknxXFMU/wGlzgxxKr5nt+0IIbhlt7dZ5c7bkq0X6I/sR6Nu+i90vpZQckHnECA+POXsSY+Bb38eR\nxDOu3nRxGMf4AeDca+H6R+Hsi9V4N8VmlIhoqFe/egHOMlLIfPkyZmdMYZr/E2YEviBNSdds2s7Z\nmliDB1Ma6fxcCQ8cp8NJe8xz9wWkX00NqEdRIVw6GjZvKO7YsgxHOW8sPPea9fa5OTD8DDi7l2rW\nsakRakvRNwFKhwXcHyqzqS36DlRj3YTIcscyteVEsjwJAOQXwW2v1FzArquHurhuuDW79Zxl+g+Y\nXgZ2+paokSd/lAd4PLiG2cpe4oWXR5zdiSrnN97GaARvxKCxcO3D4DH3168UuzZQ6AlS6HEjBfjw\nM0eZp+nH7hFuLnAOx23gC5+MSXjRcliJbeMQTvB6wGnggx8MwPxfQm8Mvm+jEBmXjoPpn0GvvqYy\nAaq9/++dcFPVksnbVKS2FL3Wt15m6CCEuFkIsVIIsTI1tQox1m0qcsu/ACjAw5TWD5LjLusi06CG\nYskfPd0oNzeNNO9zWC/92yxRhBGpYaNuTiTjnWqGrVjcOIC4UF7ZeOHlKWdPrhZtcQEdiOFKp0Vb\n8LGiZSdknkAp8B9dqIwkXHeTmEd4aI/+Z2iIye7ecsSKGAYa+Na7cRMrYlRz1cxZFdNVFuN0wcDB\n6usGDSFR58E8eqyxQIOHwZc/wtjLLEgforE9NqwphDTy76pqp0L0Bx6XUg4PvX8QQEr5jFb7Xr16\nyZUrV2pV2VSW0PcppSzj0SGlxFFLsdZlqXMWZz4q/dost2n5e1BL1tL9WSmvE8iSLWFWr7+UssJn\nqs53Z/T7LnPdSrcrd++g165028p8B1JWPEfp91Xp8yRFCLFKStnLrF1txZ79E2gnhGgFHAAuB66s\npXPZlEZHudamMtRS6JU5nxVZ9fqrs0oeQJSM363KKYSo0e/O8rF6it2onVlboz6M+qnL3+k/lFpR\n9FLKgBDKmHSHAAAFBklEQVTiTuAnwAlMl1Jaj71qY2NjY1Nj1Fo2CSnlD8APtdW/jY2NjY017J2x\nNjY2Nic4tqK3sbGxOcGxFb2NjY3NCY6t6G1sbGxOcGxFb2NjY3OCUysbpiothBCpwPGKUZoIpB2n\nc5thy1Y16rJsULfls2WrGsdLthZSSuN439QRRX88EUKstLKz7Hhgy1Y16rJsULfls2WrGnVZNrBN\nNzY2NjYnPLait7GxsTnBsRU9vH28BTDAlq1q1GXZoG7LZ8tWNeqybLaN3sbGxuZExx7R29jY2Jzg\nnLSKXgjxuBDigBBibehvZKm6B0NJzbcKIYYfJ/nqVHJ1IcRuIcT60LVaGSqrJ4T4RQixPfS/hfx9\nNSLLdCFEihBiQ6kyTVmEyquh67hOCNHjOMhWJ+41IUQzIcR8IcRmIcRGIcSEUPlxv3YGsh33ayeE\nCBNCrBBC/BWS7YlQeSshxPLQdftMCDUzjhDCG3q/I1TfsrZks0xxooOT7Q94HJioUd4Z+AvwAq2A\nnYDzGMvmDJ23NeAJydP5OF+v3UBiubLngEmh15OAZ4+RLAOBHsAGM1mAkcBc1Kxn/YDlx0G2OnGv\nAY2AHqHX0cC2kAzH/doZyHbcr13o80eFXruB5aHr8Tlweaj8LeC20OvbgbdCry8HPqvNe87K30k7\nojfgAmCmlLJISvk3sAM12fmx5J+SXP0C4IPQ6w+AMcfipFLKhUD5TNt6slwAzJAqy4A4IUSjYyyb\nHsf0XpNSJkspV4de5wCbUXM5H/drZyCbHsfs2oU+f27orTv0J4HBwJeh8vLXrfh6fgmcI45zhpyT\nXdHfGZqSTi9ldqgLic3rggzlkcDPQohVQoibQ2UNpJTJoP5QgfrHTTp9WerKtaxT91rInHAa6ui0\nTl27crJBHbh2QginEGItkAL8gjqDyJRSBjTOf1S2UH0WkFBbslnhhFb0Qoh5QogNGn8XAFOANkB3\nIBl4sfgwja6OtWtSXZChPGdIKXsA5wJ3CCEGHmd5rFIXrmWduteEEFHAV8A9Uspso6YaZbUqn4Zs\ndeLaSSmDUsruQFPUmUMng/PXhXuuDLWWYaouIKUcYqWdEOIdYE7o7X6gWanqpsDBGhbNjLogQxmk\nlAdD/6cIIb5BvdkPCyEaSSmTQ1P6lOMoop4sx/1aSikPF78+3veaEMKNqkg/llJ+HSquE9dOS7a6\ndO1C8mQKIX5HtdHHCSFcoVF76fMXy7ZfCOECYrFuzqsVTugRvRHlbI0XAsVeErOAy0Mr562AdsCK\nYyze0eTqoZX8y0NyHReEEJFCiOji18Aw1Os1C7g21Oxa4LvjIyEYyDILuCbkQdIPyCo2Uxwr6sq9\nFrITTwM2SylfKlV13K+dnmx14doJIZKEEHGh1+HAENQ1hPnAxaFm5a9b8fW8GPhNhlZmjxvHezX4\neP0BHwLrgXWoX0yjUnUPo9rgtgLnHif5RqJ6HuwEHj7O16o1qofDX8DGYnlQ7Y6/AttD/9c7RvJ8\nijqN96OOnsbryYI6jX4jdB3XA72Og2x14l4DzkQ1IawD1ob+RtaFa2cg23G/dsCpwJqQDBuAyaV+\nFytQF4K/ALyh8rDQ+x2h+tbH4ndh9GfvjLWxsbE5wTlpTTc2NjY2Jwu2orexsbE5wbEVvY2Njc0J\njq3obWxsbE5wbEVvY2Njc4JjK3obGxubExxb0dvY2Nic4NiK3sbGxuYE5/8Bj+f0LGIcnKcAAAAA\nSUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11b099510>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from sklearn.cluster import KMeans\n", "\n", "est = KMeans(50) # 4 clusters\n", "est.fit(X)\n", "y_kmeans = est.predict(X)\n", "plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=5, cmap='rainbow',\n", " linewidth=0.0)\n", "plt.axis('equal')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 5. Spectral clustering algorithm\n", "\n", "#### 5.1. Affinity matrix\n", "\n", "Compute and visualize the affinity matrix" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(4206, 2)\n" ] } ], "source": [ "from sklearn.metrics.pairwise import rbf_kernel\n", "\n", "gamma = 5\n", "sf = 4\n", "Xsub = X[0::sf]\n", "print Xsub.shape\n", "gamma = 0.001\n", "K = rbf_kernel(Xsub, Xsub, gamma=gamma)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAToAAAEICAYAAADP8Dj6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXmYFNXVxn9nxsGBZnAYRBFFEQUB\nRRbB3c8lxgXFJVERYsQlmrh8cUmiaFBQSYKJiVuCBo3i8qGiESNGgiYSk7jBsImCKCLKEvbVHkbG\n4X5/nHunbldXLwMDNGO9z9Mz3VW3qm5Vd7119iPGGGLEiBGjMaNoR08gRowYMbY1YqKLESNGo0dM\ndDFixGj0iIkuRowYjR4x0cWIEaPRIya6GDFiNHrEROdBFI+LyBoRmWyXXSUiy0TkSxFpZf93yHN/\neY8tJIjI90TktS3c9hgR+cSe+zkNPbcYMbYIxpgd+gIWABuBL4GlwGigubd+NLDJrt8ATAWO99Zf\nAtTa9e71+xzHHA18DbQNLT8OWAQk7OcSO7fuDXCeo4HhW3mdNgG7h5bPAAzQPo99tLdjd9mG3+c/\ngOt29O+qsbyAXYHHgPX2/rgxx/gb7Lh1drtdQ9//JKAK+Ag42Vt3CDARWKm0sOPPvSFfhSLR9TPG\nNAd6AD2BW0Lrf23X7wY8BLwoIsXe+neMMc2917WZDiQiCeC76A/he6HV+wELjDFJ+3lPoBT4cEtP\nrIHxGTDAfRCRbkDThjyAiOyylbvYjy28Xg1w7MaIYUBH9LqeCNwkIqdFDRSRU4HBwLdQUusA3OEN\neQaYDrQCfg68ICKt7boaYCxweYOfQSFgRzMtKqn4T5ZfA3/1Po/Gk4SAZqhU0tZ+vgT4Tz2OdzGw\nELgO+MBbfjlQTSAdPgMk7bG+BN6w4wxwoDe3PwB/RaXN94ADvH0a4EDgSvSH5CTT8cDPgD+H5vYg\ncF+W6zQEmOItuwf9wdZJdMAZ6I95vT3PYd74L7zz+RI4yl6/t4B7gdXAcP+aAkejT/l29nN3YC3Q\nOWKOnwKbCST0XYG2wMt23/OAK7zxw4AXgKftfH8Qsc9W9nqtB6bY+f3HW3+/Pc/1qLR/XGj/z9v9\nbwBmAZ3QB+lyu90p3vh/2v2/7X1PrYD/847fPp9jN+D9sTg0x7uAZzOMHQP80vv8LWCpfd8J+Aoo\n89b/G/hRaB8H0ggluh0/AY/ogH3sj/F+b/1oLNEBxcCPgPlAsV1Wd1Pmebx/oGS6J6q+9vLWpeyL\nCFWPdKJbDRwO7GJviGezjPUJey+USMvt513szXdYtusEzAW62GuxEH3S+0R3AtANtb8eCiwDzsly\nPpfY6/C/dg5NI67DL4A37Lr3gWvz+T7t5zeBkahk3ANYAXzLrhuGPgDOsfNtGrG/Z+2rGdDVnrM/\nt4tQMtoF+AmqtpV6+68GTrXrn0Sl4p+jZokrgM+8ff0TJeMDUO1hNvCxve5u+8fzOXbEeQxGHxCR\nrwzbtLTf157esvOAWRnGzwT6e593t9u3As4F5oTG/x54MLSsURJdoaiuL4nIBvRHvBwYGlr/UxFZ\nixLDfcBtxphab/2RIrLWex0ZdRAR2RcV/8cYY5ahpDdoK+f+ojFmsjHma5ToeuSzkTHmv8C/gPPt\notOAlcaYqTk2fQqVSr+N2lkWh/b7T2PMLGPMZmPM+6hkenyOfS4xxjxojPnaGLMxYv0w9MafDCxB\npdicEJF2wLHAzcaYamPMDOBR4PvesHeMMS/Z+W4MbV+MmhmGGmOqjDGzgSdC5/u0MWaVnftvUSny\nIG/Iv40xE+338zzQGhhhjKlBCbS9iJR74x83xnxqjFkHTAA+Ncb83du+Zz2O7c9zhDGmPNMrwyVs\nbv+v85atA8qyjA+PxY4Pr8u1r0aFQiG6c4wxZag00hl9Evm4x/4YmgK9gd+IyOne+ndDP5x3Mxzn\n++hTbYb9/H/AQBEp2Yq5L/XeVxH8OPPBE6hUgP3/VB7bPAUMRKWuJ8MrReQIEZkkIitEZB0qAYev\nZxgLs620pDAaNVj/1thHfx5oC6w2xmzwln0O7J3nsVuj0pI/JmW8iPxEROaIyDr7MNyN1PNd5r3f\niD5Mar3PkPqdhceHP9eNzePYW4sv7f8W3rIWqBqeaXx4LHZ8eF2ufTUqFArRAWCMeRO9oe7JsN4Y\nYz5AbUpnbMEhLgY6iMhSEVkK/A79YZ6efbMGQRQ5vAQcKiKHAGeixJt9J8Z8jqpffYEXI4aMQW1i\n7YwxuwEPA5JlDtmWAyAie6NS9uPAb0Vk11zztFgCVIiILzXsS6oUmu3YK1C1eh9vWTtvXscBNwMX\nAC3tw3AdwfluM9T32CJyqw25iXxFbWOMWQP8F7WLOnQns7Pnw4ixy4wxq+y6DqHvItu+GhUKiugs\n7gO+LSKRKqCIdEbVoXp9QSJyFGp7ORxVL3ugEsoYtl59zQfLUC9YHYwx1agxfgww2RjzRZ77uhw4\nyQTeYR9lqBRVLSKHo9KfwwrUWZB3bJ+ICPrw+ZM97n9Rg3hOGGMWoob9X4lIqYgcaveRk9Dt9rUo\nmQ8TkWb2u7/YG1KGEuEKYBcRuZ10qWVboV7HNsb80qRGBqS8shznSWCIiLS0538F+n1kGnu5iHQV\nkZao82q0Pf7HaCjSUPtdnIvacP8MdTGkpUAT+7m0Hg+0gkfBEZ0xZgX6hd3mLb7JPvmSwGuoZPHH\neu56EPAXa79a6l6o5+xMEaloiPlnwZ+ArtaG+JK3/AnUeZCP2gqAtSFVZlh9NXCntXnejoYMuO2q\nUMfCW9lsmSH8GHXc3GZV1kuBS61Ekw8GoE6QJcA41N72ep7bAlyLqoRL0Wv0DOo9BI37moA6DD5H\nHQ9Z1fAGxPY69lDUm/056tj5jTHmb6A2Z3tf7Atgl/8ajZX73L58e/eFqOlnDTACOM/eb6BOrY0E\nAsRG1PHVKCD5m1tibAvYH+lHQBtjzPodPZ9Ch4jcjV6r7SGFx2gkKDiJ7psEESkCbkRDUmKSi4CI\ndBaRQ61qdTiq+o7b0fOKsXNhuxOdiJwmInNFZJ6IDN7exy8U2AyN9WiYSDicJkaAMtROl0TV8N8C\nf9mhM4qxTSEij4nIchH5IMN6EZEHLIe8LyK9cu5ze6quNi7qY/TmXoRGmg+w8VExYsSIgYj8DxoO\n86Qx5pCI9X3RAPe+wBFogsER2fa5vSW6w4F5xpj5xphNaMDm2dt5DjFixChgGGP+hWYcZcLZKAka\nGzNbLiJ7Zdvn9k6i3ptUz9QilJHrICJXormhJBKJwzp3doHmXzN36vs0R336G9E4iSIgAbQ7FKa/\nryN7doHpczTH55CuMGu2bgMa7dmxKdRu1DyyyAAmD63RHKW19vM+dtIORWguVk0eJy/kCFgL7Xdz\nnmNjxNgabNYg6ta5R2bGaaedZlauXJnX2KlTp36IeqkdRhljRtXjcFE8sjca+hSJ7U10UcGUKfe+\nPeFRAL17H2YqK6eiNPU1/aQpJ6KBS5Wo0aYUTUS89SlIdFfSqXwEEsdqTEPlONj7oICozgDGnAa8\nAQPX5Tb29Lf/H0X3PRS4Hs38ByXZMlLTIzKhhIAQXemV2gxjy9A0i/D64izbxIixJajSMJStwsqV\nK6mszBTxlAoRqTbG9N6Kw+XkkTC2N9EtwotsRwWkJdk3+Rqd5pdsQOXZdSjJVdkR60ATxxw66r9N\n6NH8/K5qUKaoTn2kZELr0ATDwXYlKNnmA1/yyyaxFRMQYRhFxEQXoxBhCPSmbY5688j2ttFNATqK\nyP4i0gQNYHw58/Cv7WstUE5bNLL2IKANSkJt0JIW+Nmt1rVRDrAhldDaAfQC+miEZC6sInVcWEWt\nIT/ChFSCykctjfpyorYrzvA+RoztB4PeCfm8thovAxdb7+uRwDpbJCMjtqtEZ4z5WkSuRaPKi4HH\njDEZU7nmTn2fftKUDWh2+Bhj0Eo6bbiO9gQK6URaySUArL8e9jgRHgEGmhM5QCalZC3fPw7uOFe5\n7t7rYex9unytN6Y1qh6D6tAPojlT89H8mz+hGfWgkmVUHlYUfJLMJpXV2vmUkU6sUdvV5lgfI8a2\nR8NJdCLyDFrgY3cRWYRajEoAjDEPA6+iHtd5qGJ3aa59bveKrsaYV9GJ5kRztKbSalSSU5I7Ab2g\nfwU+QC1xp1KO2sk23qfq5avAwI2TOJCQ/ay72t067w4cEU1SPjEWozWOXD5aKQ1g0MgDJaSq3NkQ\n2+1i7Hg0HNEZYwbkWG+Aa+qzz4IuXe0yptfhyKoNgc3OKZR7AruoPQ5o2hZqlmilQZp2ooqPU3da\nbqW3DUBZoOr5kpOv/jkCcaSzGZX4tge2Rg2NyS/G9sV2tdHVGwWdArYR9a7OQLOZVXr7q13SA/Wh\n9gb+UeeY4OdKZBqcd3G6hXKFlsp94ytgiaqH4cqDu4U+z0UpFtTBsTXuonyxGSWq2OYWY+eAI7p8\nXtsfBS3RbSbwrqo6uRZVV0ErLO2CXrgFASnYsLt97N9NhFCrEuJagJpoj2l4WTUBGW4mIL1tjZjk\nYuxcKFyJrqCJroiAdAKpqz2qrkKgxnYOQjc+V4JYBnSiNJ3IDtCt2wF0jA70DS9rS2pYyPYSg2Oi\ni7HzYDNB9azCQ0ETXQINBl6HDSFhIkGfkz+jfVg6A2fXOSO4Wm1oTwPH8Uc6EwqwadKPGxiPnKE7\n972tDn7uSTFw5IGwcJ5+LkNbbG1rlKDdYPKxs4Vj62KCjLH9Udg2uoImunaHasYDnYF3oZVcQjlq\nJ3NZA8VovNynxpAQIfEVJM0KEtKa52QSa81V/FIe4hd2n+1lPHOAl/8KtxZFR/U4T2xrYMElcNJo\nJdGOwIxTIGF72CfQOtp9gFvtdlESYjlKXB2AaXbOHew5LCWdpNz4sHe3BHWyrLKf3bE227nU2lfU\nHHJlYsSIsfUoXKIr6MKbxSImW9ZB2LOYNIZeIsxFa30P89YnxwLnjyZh4+3qtrkcZZwRqIDYBDYd\npfXNr/DG3Q7cad+XoGQTVTd7PBreshSVDFegJLilqEAJdwPpod/lZCZXhxICx0aMGFGogqlbmZJF\n795dTWVlfkWyRXpv9fHqi4InuoT3ef31GifXtC3amfMgVOy5GhJf6cdpVrJLmu/DnKdIdLX7QqWo\nf6FNUSvQoOJSlCjOQMmgBE2yONg7bh/gn7tDwuYsJy+AxFgyoqHIJYF6gJdl2VcZ0W2cXDhMPsUG\nYnyz0TBE18VUVo7Oa6zIkdud6Apade3ZRRP06QjM1oyHCjRObq0NFyxGJR6nrirJKdmVAEnzCrfI\nmTwAfILWiVrcHWbN1K4x80PHrCYguQpg4X0w8HoluY7AjAcg8WNdn0A7tZyMSn9VdvswuVSghNoV\nDZNpgvqMN4SO71TxNnabWaRKcaWoE2UhgYq6ASU190BwKWnhOfhxgD5iSS9Gw2AzDZTetU1Q8BKd\nr7o+gmY8tELj5PZBpZ2n7esu4EbzfRLyFElj2CRCS7ttOXADSnbPoDf+8cCLY4EknHSpElUZ8PpY\naHFBQALlwOIJkLBNEZPNoE1VtCTl4vIc2bgQmS1BCSpNzibaaQLqEY7KZi5GiXETuaW6OLj4m42G\nkegOMpWVI/MaK3JyrLr6KBUxB6A3azkwxZwIGydB006oLLUPejv/kXKZxGZg/Wwo7wrLgSbG0E6k\nzotaDKw3A7hHnuFkoIdpwZGynlrq6gAAcDTao88hWQTXbdZSTSXAWk+q21YoQfNxPyA7UZag51Ud\nWpZAiTgmsBi50DBE18lUVj6Y11iR02LV1cchXbWeHO2ADXCAaO5qFR+zhCFsQmmuM7DWXEVCHiLR\nVdXVhJxJhQgLjeEEEaagN/135BlenA7cDxfJemZFHNeRXCmw6koYP0pJrgJY+AG0sMWdS4CT0Caz\nv0AlpyhiSdixHVGva5F9X4V2cvbVySJUdT0W7aXnk1yJPdeP7Oca+0qgDwJ37CrSJUBfMvbn6NfH\ni0kxxpYjDi/ZYsyarUUzS1CJZQPRBS6XAL+Uh+o+3yJnAur1PEGEf1qbHWgkXnnP/Iz0q6bD4p5a\nSwpg4TLou2dACGuvBI4CnoQbDwJegcSi9P0sr9AT+LhK51RC4GBw1Yur0E45m+35PE068XwbrXPV\nx243xc0DJbJMoSVkWeeKgfrpZjHhxag/YqLbYrhKdPngF2gISYsL4AFUwlmLkoFzUDBVSPROveFv\nsv+HmhNRWWoi/WU1z5kiEhLIWu2BxJ7BdskVkGiNrYWMtgwGkj9HRULHzlWQyK/waiRK0cotHYDn\n7DJXQqoPKiHaOqKRcGpspusYVToqlu5i1B+FTXQFndRfb5w/mg727Q2EMgSmChyWbo8cOg6GjgX4\nLkqPN/LcWbBAUv2TD3vvE+EFPqag7tVilJE+yjAuTxwE9CSaqGpJL0Dgo5T0ggX5ICa5GPXHdi28\nWW8UtETXHI1vq0bNdPePA7qjfLQCvSMPAJr0o72MJyGX8F80hOQT1PHwHXmGiUCiN4CV7I4TrWZ1\n4Qb2EKWCJNfWHbeCIA2sBFi7DPpYaa4jMOO7kLiNSCReA17b+nPvAAwChgMzM4xxWRbt0VhnCMit\nFA1DCf+signKuMcSXIyGQ2FLdAVNdB2b2kY2tUAvrQzcH5Vu3kBzYPcEbkDTunZHg4EXd4cWM6Gj\ndTyk2OSOE/i3AebBoLJIj6af63o7QLPAKzvjdDjyz8H6BDZVLI/zSRA4FxJkDv0oBa5FiSy83sXR\nOdSiISbOvudq5S0MbVeCxu+VeNu5EBhnn4vJLsaWw1DIv6CtUl1FZIGIzBKRGSJSaZdViMjrIvKJ\n/d/SLq93d+3ajSijTQT+ruEWnXeHI3eFI9E+iccBckbQeKICDQYuQQN5uT9EFteAVmA+EPIIEZkG\n0PyqOjV44wQ40Fu/ifztiJtC7zP1jahBCbFDxLooYnbZHY60SkmvThyngcXYtmj89ehONMb4DR0H\nA/8wxowQkcH2883A6ajm1xHlqIcI9XQNYz7akrAa2O8/2uOBI4AyOGkJemd3BE7WBH2wvSLQYOAe\npgUXyfrUnV64AQaVKckdZii1ndN8Fc9Pq5oAwFT2s/P5FvD2uZAYp+v9nq+5UJPhfRi1wDjgJ6S2\nSATb8cxDMZp36+a7jKBpkB/QXOu9nPQWh5bEaFh8s1TXs9HGDgBPoI0ebsbrrg28KyLlIrJXtu49\nX5Lad3XsfSrRFBPYoRzRVKMJ+jP+pIQ0aywc6cXJ3YQ6HvYQq64+CaUIq1zAdFfRvNnuwNtz6CFd\n+MTuNyGTSZrDSchkZgK3jIO77UmFcRcaBvIRGiayArg3r8uWimnA94DRqNr8AnpePiG1s9N9xVvm\nmvUUU9f1kSUEkqCT/HzELRRjbD0KOwVsa72uBnhNRKaKyJV22Z6OvOz/PezyTN21UyAiV4pIpYhU\n1jtno8q7iZMRN282MSrFRVsacWESKUMzXbgmwK4oCUepkPVFwu4nqsZccY7916fBTowYW4fCVl23\nluiOMcb0QtXSa0Tkf7KMzau7tjFmlDGmtzGmd3iDtQRJ6ytQ1lyK9xwZoV5a0NxVP61rqDkRzv99\nio2rGlSS6yYwy0CyBt6uYbnsz7SQV/UOmVT3/gHg6gyNiq79CjqZIvqtgB9+AEMnRA7LG79Cvaq3\nRKw7C9dLIx21qARYRe7+tWH+z7chd4wYAQqb6LZKdTXGLLH/l4vIODSyY5lTSUVkLzTtFLagu3a9\nsSA1DSoVbYCIFrJ11S1dWfZqFgJ7dE4dtpowDk5bAkCTDkA17L6U/NpUZ0cN+jSKiocry/MIsVQX\nY/ugcG10WyzRiUhCRIPQRCQBnILmoL+MhoBh/zszW727a9cbTYKbOp0YJhKhKauRq7v7UA2Uag/Z\nKanDfKlIL9riDJOoRjm8vEGs/Luh4SNNItY1Ibv0VYKq0VHbxojRsGi8Et2ewDjRHNJdgDHGmL+J\nyBRgrIhcDnwBnG/H17u7dhiu0m4xSgDOGbEaNbZvOioomvn6WPj2BUGCfn9ZzXNnDUkJBi4DeHsO\nUMpyKWEhmm7VxBgOkEBxLgZuNK9wm82hfQy42cut9TFElnAqS/gI9YCuiByVH4qBl9C81wci1j8B\nXElQ+dhHCeqgroLIwgU+/Pg+KGSTcozCRWEHDBd0maZcpdTDeISg/Hl6mfUiFsjmNIWzIyqhTbsN\nLQ0yBQ64L+hB4VBKKgEkTVsSkq55JycBv7Y7rgDKIXF9PU4ihBI0VvAGoF9o3Y+JJkAfpXYqucjO\nR6aqxTEaJxqmTNOeprLye3mNFbk3LtO0pWhNQHK+1FaKViFJSLQ16xP7P3FX6nJXCOBqEZ7Ahq+Y\nd2gnR7EaSMgSkmYOjOzCpmugiXkWWEpCLKt5TojkOjRe5FuoPLsQFh+vVsPiu9C0Btdsdi6MnAk/\ns9vWYBtuo/0oLgN+atf54S3ugRCWxqpRkkvY92FNuj1BVkcCVXVXExQPDaeKFdk5xbF3MdJRuBJd\nQRNdazTlqzUaFDuK6BusGO3WlRitnxfeF0hRq67UUksOJWha1zSUi7KpaVeLMNIY3rUNd8bLUSw0\nh5KQ9wEYKF0YMwqamKMZKhfybob9PLKb5vkf8zPo30EJ7v5zdRI/vU2lJ5cN0Q64pwSqa7Qiiz+/\n8cBkVIrznSMVwHV2+zdRb3NYIjse5dEFqDpbhFZqdjJpW4JSWNgxYWnapY3530FMeDEUseq6xWgl\nYi5CSWA/lPCOt+vmojddW7Tv6knz4D20dFFb9IZfXATjNwf15ACSy9CGqc2vAqaSkMlpx/VvXtdw\np5UI1ah9bk+CMBZIV2szIV+CKEY9Nyd0h0Qoo9+XVh0eBFw0THfUzjiN1CrJxehpt7bzrULthy64\nmCzzidG40TCqa2tTWXluXmNFHolLqfsI2+g6EBSubIOqVzUE8XS3Azfbbl3JCXDd6VoZGFRFexi4\nEZV4ilHynGUOBxLcIZNYbZfdaF6hlZxZR16lwCrPZpfsAifMSXPMAloZuI+d01pUQnpvC88/ASw/\nCn75jkqzYcdGGzRz4rSIbVsD59lzrSR7OfZMfSdyIZbmGgcahuh2N5WVZ+U1VuTxmOh8hNsdZrup\nOhLY2/z3FWhlYL9oZr5ImncYL0fVSYRJYzhSpM6wnzTPAnfCkNkwfDrwAAl5PGI/lwJz4Y63YWgR\nmM1wCSoa9kfZexV1jWDXD9MAlfD5JpvBcVXwJ5TgD/fWuaolmby8bewh/ODgYrQb2Uz73nUrW2j3\n56qbuGIBrgJKktQc3Fgi3LnRcER3Ru6BgMiTsTPCxz7AUGyLQ9TZUIoayF31DxdMO+MUWwuOoCVh\nCdrjoa9Hch3RUksbJ6hvIFOtN4B21ib3mLzPZcCRIrxrDC1EqAX2lgt5GOh3FHSUnmkJ9w595HEq\ngCHAwGGbKQV+h5LxqN8oQTijfxnqTV3fE46cnuot7VUFb6EBi76E1he4AJUeV6ARg5WkEk8vu2/H\np6Cq7Dv2/YFoRLdbt4Kg8U4ZgX0uSaqqHi46EOObisLOdd2pJLo/oYkMrYHeqJRSBExHQy9KgLW2\nuXSyGTACWvw4uOETwPLvaj25A4Gnz9UE/WKCMI0i1A73fe+4fwVO6AKJOa6TWGroSdq87f+tkXBK\nUdvbbFRtzaR6DkDtkU71dJLZILt8FtHFN/25daN+4ScOUSQXq7M7HxpGomtpKitPymusyIux6uqj\nvnF064EW9n04Fiy5Ang4vTLw3Si5ae7qwcBibpaHuDsUJ9eHVJtcMgPZJc0c4M+oPKopZQn5QT3O\nIhVd0aDhvc+CxMup61YCnYhKT1MkUGfK8dSvgkp78iskGkZMcjsnGoboyk1l5fG5BwIiL8dE56M+\nRBeu3uvel6DduhKjIjfLiqSZw0DpUpfDljTPsrdcWFd/LmkMDBeW3wZ7mM+A5iSkdcR+TocvJ8D+\nwIrvA+9h5GNkf+BvqMjlWoG9B+OHpXqKHdajMc2jUVL5Vuj8IbPkV2Z3HyYiv4etjW9mPhrm4hdR\nAL2WpegDJHyNIVZhd1Y0DNHtZiorj81rrMir253oCro5ThFBz9JEjrEXeO8v9t6fBNqS0IPrs5oT\nIzVOLsCdqT1xhgsMMexhXoJP94dB6SSneAuanw4rhsEdT8H4jxFzIsw/XI2Ek4B/oVnB5dBvbGr1\nA4fis1SdPeYoDanxcRZaQqY8wwxOQj3KruRTCWoCcNehAj2mXw6qlV2esC8/fzhMmOFw7KiyUjEa\nOxom11VEThORubYa+eCI9fuKyCQRmW6rlffNtc+CJjpnCC8ndzerPt77k733xwI8mTq2NbmJE2DT\nNcAVRweBs0Nm088jzeW3gbLT2XAJTA0dpw63r4fXJwCl1A5DPSw0BxbBPcD9wO9RY9wYYD+1m6Vh\nFpxWgcbSeJX9StE0saNRR24UiXdEVVJXsLSUIHcY9Bo3IZDeqtEfRxPUabEr+n1stvv34wEhVllj\nOGfE1nUBE5Fi4A/oc7srMEBEuoaGDQHGGmN6osrPyFyzK2ivaw3RDaujcKv3/grv/S+wzaWDcnJ5\n25+amGcZKhcGX83w6XSUIM1iD/OZSnKXAP82HMYM8NbX4c6/AW/CLYMpNo8CK+HSwco+752I+kKX\nglmurthD1HOahh5w3Dj4NyhjfaWLq9HE/loyh5c8Z9f5P7O5gE3QqKtW1YYgvMQVS3Alr0pR0ksS\n9M11YScQq67fbDRYZsThwDxjzHwAEXkWrU7ul5c0BOb43cgjDLSgJbr6wLdN+bXoaiC11ni9sDSU\n1vVAKISkOdwJU/8DMAPokWE/T8CmX3kZ+DOpHY2NZn4TzPuwZrky0TT4W00GCWmaEv+nq2HxytRV\nG4iqwZe6PkxEft8IFz7iH9eF8IT7TUQhvDyW8L5pqFeZpt1dFXH7utLbUT6VyIcBF4nIIrQq0v/m\nml1BS3T1QQ2aC9oPvWGd17UWSCyC5M+BKUGsncNdqHp27VfUFc0cIksYPokgQR9Vgf1g4KSZk+p4\nsJJc0hiU9PZBZaCvSWgjNDvO88B+BmQoNuBwEjD+ZOAmSJyiyw51c7gYDn5SJdQoJ0RrVI2/iNSU\nNR9+T44l9uU7KHxUE0jYa0OEIySQAAAgAElEQVTLIT0Vzie/mPi+CchboluZxRmRTyXyAcBoY8xv\nReQo4CkROcQYk/FmajQSHajhPGPhzbcJusV4+DYagEuTIlzRzFNBSy158G2AegP/mWg4ya45Sgcf\n5TX3TDgKtEtOVKuxZtnLpLdGbX257JGxNBZj69FghTfzqUR+OTAWwBjzDvqM3T3bThsV0fnFy9NM\nniVo3EQIH6G2KlZutnuYp9QUIsVwQ2i9/lHYB1epWC1eB2YYlx+WgRrLIkiavbPXjXOm34ocxwgT\n25b2jAgTZqP6ccXIgQYjuilARxHZX0SaoM6GUAQpX2Cjq0SkC/qTzVrjttGorqB84G7aNMO466gT\nwhLsjb0MYDMUr9a3IXbwBSo9RqZLV4qG8raxYzIFfOSHDaDGt7YRKyuyOwBcnmp9Z5CPRzoKUcTm\nlsVSYmNHw6SAGWO+FpFrUX9cMfCYMeZDEbkTqDTGvIy2PH5ERG5AGfYSkyMgOCfRichjwJnAcmPM\nIXZZBerIa4+aiC4wxqwRrat+P5p+WWUnMM1uMwh1CwMMN8Y8UZ8LkA98HktT1quIEsvqcjrr1tXa\n/YTYIV1yyvSlfo1K36V2J1v3LEmCRgpHhehVqMMgE5yzIVdoThjN6jneISzRxZkS3zQ0zLdtjHkV\ndTL4y2733s8GjqnPPnNmRtgWhl+izacd0f0aWG2MGWED+loaY262gXv/ixLdEcD9xpgjLDFWoimq\nBpgKHGaMWZPt2PXJjHDhDpBasy0BLK+ARKY8qSxIrtOimc4lkTSX0kcer/NzJ83pwFsaJ3fn34An\nSMgz6fsxRme3piW0fAdoD4v3gr3bopm0a9ESw0v1/f2DaXV9OpUml8FP94R7xtpz86Kkj0DJfQbR\nUt6paBiJL/WWoU+ly+z7k1E59CG0qMpilPQX2fGtUV/+TLRk1nxvuWsk7hB2TMTJ/4WLhsmMaGIq\nK/fIPRAQWVx4mRHGmH+Rnk55NtqbBfv/HG/5k0bxLlBuWx6eCrxujFltye11osuobTH8INnS8PIt\nlainacRigLmpGu2XE4BjNFqXN2FTOskp1gLl0LKfjmMB7H0imnr/JUEd9ZXA7nBKhsyNPfbQ+XQn\nPDHaosHCmTp+tUXJrAiVtIoJ4uIgCCAu9T63sK9d0fk0s/t32+O9j6r6HOObhMbZBWxP16rQ9m91\nVJ4pBiaf2BgAbEzNlaB+ZlcqyI/5ikIHAtW1K4GbpiPwcSjALIGqfDkljG9p+fNiW0qJO95mCB5D\n7w+sOAK+fTzcMjhzp5o1LS3JvQw3iMq7394IrIUP91JBzkVH9wW6PEovfpDenPq/y7lsACq+LggW\nlwB3oHy+EI2sDJ/bVXbcBD0qJWjpJneduqF2CCetrkCJrxnBtWpNYNP0Q0qivpvwE9RlVcSqbGNF\nYZdSb2hnRKYYmHxiY3ShMaPQZCiKRYwzqOfCNO/9m6HlYXE0W7XdFMzTHg91N+fQIgYO86x/K74P\ndwyjdhia8fArUuPkHFq+o7O6QeBeq8be0FRjVgZOt72wv0R/KK9Bnx/wn6j5LIO+z8CrXUkxvNWg\nua6gRBdFJlegqqZva3wTrX0HGn3TDCU/UF9xJUp47gm1gaCo6YF2eZIgrMePAYgKTo5JrrGjcIlu\nSyMAllmVFPt/uV2eKQYmn9iYrYKvKvnqWxFb0al+odqs6mA2h0Iv3oNeUNwTVO38R4YdtQeOV2nN\nqbF90Ww+DrTrD0Qvy/FweoYvpkcF7QFOxCbxBqggexhJG4KEfgdXkt5/7/ZRZt+XEUjVzUhVbf39\nhBFeFquyjR0Nk+u6rbClRPcyamDC/v+Lt/xiURwJrLMq7kTgFBFpKSIt0RjdyHTOMFyljVw3Sgfv\n/SHe+47YyBEP+VYvWXy8duuqO/YlWhnYwcjH0O9EmNYPLh1MbYQjQne0F3Crqqs3tITXBb5toOVG\n+LQMJreEt/aClzoCfeHOKXVNgFKxCyMHA8d0Ssn6L0Up9q+oRBZ1bs+j9oD9UM23tR6pTgM+GTWk\nuqfPItQUeKz9fwh6yKV2e78J+GZIq64cRXQx2TVm7OQ2OhF5BjgBzU9bhNbeGAGMFZHL0eC98+3w\nV9H7Zx4a0HEpgDFmtYjcRVC78k5jTN5+0OxJUgrfDLchtDysMrkczlxoAzDN237PoBcFoPXkSAJz\noSMU74+mdYWxd1vgSGCtqqu9oS6o+IC20MHSywrQZK3qDGXZj4e5zwPdoUkpoG0Xa1GCcqXOo+Ba\nx/r5rBsIxOyvCLqEQVCeqQq9Vq5qiSur7oeglBBtk/MRBw9/A2AK1ziRk+iMMQMyrPpWeIEN2rsm\nw34eQ6uU1wv5Xjq/yomfALGYdHtRvmEOxXdp39U69NceD3X4G/D8ZC219N6JcOubGXJX/wp8qY6H\ngdOBA+HTpkpyLLYWzK9hj2od99JeGUqb784d42Aof8YP9KtB+7puRok46vxuA/6OSrcuOf9d4OBm\nQJU+gT4gkIa7ocvm2326KiUdgf+gD4GZumkdQfoPmKh6dfl+l3H83U6KfKSHHYRG86DNdGNsJjpN\nNC+sDwUKrw4dpxoVpVYArNLuXpFYq+vr2PhrrcxkfDPlLtRZvjZkPp+AxFKfUbmIJONv0HNqlHgf\nfducQxGp4SgOTchtk2s0P7QY0TCklrnJ9toB+Eb8/rKVL8qKdSHpaFWIMFzj1iqApVkY1cbJ1YB6\nV6u9Hfs2i130ldGYVe79T03dcPFxmZDRJml34+LqHNE5x4PbrhgltEzOiHD8XlSWRIxGDEOQc5jr\ntQPQqHJdHcIPjfVbuqO1IZtXWKKrIkgfMMuzfIlLgZVWovsa+FK3WYFVV0sJvoqvsxDm1/YQ6QZd\n13s1E8Lr6j6XBZ9LSG0uVEzqkzCTRFdCOpFu7RM0Vl93MjiJrkDRaCS64gzvi9gK08HcUO+GFaG8\n0ffQbjW9UUPWG5l2tBZoY8NLXgM+hXOKYI9+qIS30r6W6rgBmTIczuIIQM2gF6esOchOJVNmRHeC\nHhHOk10OdcUCKtBAaz+8xJVfd6XsXYhKEZotAUFfj1wVUPLxnMfYybE5z9cOwE4h0eXTl6CcwATW\nhiBsog3pAXul5JaAAEbOhHtKYJSt+Lt+mAbYutzX8cO0kQ0PAodoZeBI3D9YA2q6PAp9fgCn/wru\nnAJUw0t7qfpbjPLhAKCl4UyE59J29Gu+Mx2UWoLW22XAvQOAJKx9WbMfwt7XK34CfX4LP7PXY1c0\nW8JVX74W6NEW3rAX6020TeKBKElVoWQ5ESX/eXa/e6MSc7heQhTRNSNzWSk/Fzbqe4klvAJHgUt0\nBd3usETEtCIgOpe6BKkPBtfRyt1svdCMiBLgPLRCn/sOOqA3dRIYR2pGRRTusvs7w85jfU9oNT0I\ne2yHeignkvl7drauXqjHsgglkXVo42h/uyZoqZjHjIGEkPAMjK2BBRdAt7GBHwQg6bpcVwMPnQ7P\nT+C4C1LP7R/Akd9Dox4X2rFPQPlkJZgP7Tm6zArXCLsCja+rRgl0IfBztBcHaHKzX6W42M5zRcT1\nqECPFUV2Lq0sXAwgxrZHgyT19xBT+VrucQCy59Yfr74oaKIrFjGuNloRAWG4p7sLQm2GNnepJchj\nBSWWuaSavO5AtcwOqLr3vajjEtykpcCq7rDHTCXHbqhUd0XEdg2JZDMgaWgjkkIMbUgNpWkNLFgN\n3azO+Qhw5H+AubD35cG5J9Bz/glaKn0uWjNrJqpRzyBzqoqTznxyX4hK0bWkEldXuzyqFHsxWnhg\nA5klu1hy2/5oEKLrLqYyrxQAkL1ioktBtjJNUf0IKtCb0vU9mEmgwpWixOYnvJegxJBA01Rr0DJE\nLwF7kepbSB4FiXf0/Q2oBOe3JXI4CS1/vgy9mZNseW+eMmCpMXCDMPC+VMkJVDK927xCQs5M2/ZU\n4EXTFR6bzaDL4YUsx3mfoA8FpJa5yoYBgJ8L4je4dp8T6HX0VWlXqW8TqhKXooScL8nFLRYbFg1C\ndIeKqczzhy77xUSXgvrUowMlsnnoDeDXpwNNSOiJrRbg4Sb0RmuPSo1tUQJ7mVTfgq+uJYDpQKeI\nOSRPRsXE1ehdvB4Sv4kYmCeS16OFAF6XuuY4detWAz0h8Xn6dsUo2Tb9CngIEtenj3FwifoOD5JH\nWyUCFdWhO77lUK/pbqgkODdiW4cNpDY0cohr2G0fNBjRhQueZ4Dsv/2JrtF4XSHo+gXpERodCHqX\n+niBQCpxrVIfQKU2Hz5BJoG9zyIaN6FMeBKaXHp3PjPPjIH3EeTGhtFyDidEnRR6HU4Elu8KXBfu\n/5uKcCuNy/L8CYYr04ebPe6DElWUt9WFILo2i5mwxQUZYmxfFHjAcKOR6Pynv2/QLkE7fb0atVEO\njLcvR3LJZtCrKpBO1gPFZ6EehR7AtGjpKrkM2GMP+O9yFbN6VKAO7+MJmheVo/FxZwG/pr2MTyOS\npDFsEqGJWQGUkhANdikGnkV/QzcSbWv7Eg1KGY8KmsVowv6L4yBxrjayfvp0oBkk/gzJLrqjD9ep\nJFuDtl4qB76LJjv/CFVzf4hG2vgS8MloyplDd/S6ZSI1X20tITXTI1ZVty0aRKLrJqbyxfzGSqdY\ndU2Bc0a4WLhsP3TfSO+rYq7ihk8a7VCpbF2OfbYGJgOHoZpoLzQKzlFTW1TNO60Cjlutx4kimatQ\nI/1lA7SeXHvQKiRz4Y5xAUHXoCXRvzMd+BUcMDbV8bAGaGIMHCcwHxL2YD8GfmUm6Vn98ExuGJWu\noifNibBpEnSGKZ/pNWgzFoZcAPcCybug9jYtq/4CSsG323m3aAushbeqlCx/DPwWDeG5HZWIFxCc\nRzGBPdShHUqKHxB9zZ0anElddZJdeF3svNh6NAjRHSKmMpsh2IN0iYkuBQ0l0fUh2guYC3ejRHOv\n/TwdlWpc2MZrwDFH2UHr4NPVqUZ9h+RYVKQpRxnoRLTUEt0J+sM6ie4aIEE3GZKmUibNCjiuNfxb\nS+IkRG//YrSsUi0arjeX9Js/eTqMnAB/IAjTOQ+45zVtjH0LMOQu4FNIjIZkT6AV8C4M/VIdB9fZ\nUz0f+CVwCUraV6ESs1/wtD+kxAEejRJfpqSP8Pfnxzm6DI3YXrdt0CBEd7CYyrH5jZVDtj/R7RQB\nw/VF+CbfmhvE9z6GvYfFoGLIEqAsRz/UGlTsKUMHbvrYllpyncJc7qoGA0ereKXWoPY14a9uCTns\nXTYV1y8hvwHqOmBvAGUblwrSjroLWW23K0Il580EzoRa1OEQ7jQWFTBcH8mryBvfqAzJjRUu17VA\n0WgkOkj3tProg9444QDhdihhnYXerE3Qbj9nktoCIhy/ZtvYpCF5MRrYtzd1EbeJTIWu8sC1wN2r\ngZZzSEiX1GMZw0CRtLATh77A86cAE0eTkEsyHiOsLiYHQ2JE7rmFt/sNmnnhMAgt0gLpITblBGlo\nC+x+2pKq+pfZ5bkCiGP1devQIBJdVzGVT+U3VnrHEt1WIUkQotAWFbbcjTgNlTz8m6IYVR5LgKdR\nSaUUdZbeGdr3aIKmOAOIDi0BOPhJFZI22GNn67uaC63RODnan8kJn3dJWz9QhDHG0EIk5UYvRgOD\nh5rp8FJPzs9CcgBrfwSJh4PP7fIgOVDHht/K7TbUPjofvcZj0AdEOB2tDfqAWY/6Zjqj/pxw7F5U\n0VT/weea8sQkVwAwFHQ9up1GovOzIcIIOyucpFFKEIzq0B4lwVJU2vDjvqJQgWZTuLiyqCyCfNOW\nwnaoTJ3NyoCls4E2kPAaQRSjFrw/2M/ueqw3hudE+w/1XwHsvoaktGQvgmvSF/WedpoJHNoJln/M\nF3tCF/R63IJKY+FerKWoY6IGTV9LokHWV9j1/dGHhENX1PYXflCgp0Mv4N+kZ0a4B5TLuohCpraK\nMdFtHRpEousipvLx/MbKUQUYRycij4nIchH5wFs2TEQWi8gM++rrrbtFROaJyFwROdVbfppdNs82\nva4Xar3/4ZcjNQeXNuZyJ/11C4CP0Oq5uUiuFDXAuyLDrYELCEgugUp3v0Nv4kR4BxZHoOEbU1Gi\n7QX8FyXMk9GQu5NRQrkSWDoAGBWkdTk8i3pXF6HeYNDzf06E/sbQ3xiYD2NCJAfwvPk9ncwL6pXp\n8TFcD/uac7nKns9lZg9W7anzxM7lQ2BpF3juD/DiXerwOAgY2FzjEmtQp0Q3Aq/obNQjG+550Q3N\n1niD6PQv1/MjU2pYGel2QLzjxtVRdjCcRFeg1UvysfOOJrrZ9L3GmB729SqAiHQFLkQb+J0GjBSR\nYhEpRgWR09GH/gA7tsGQ6akeFaNYn+sdVrvCN6KzIeWq7hu2Nbl+SE4S9f+TJFJErLUzyhp3WZzp\nhm+uL5cwvCtAuTe2DTRLbUzdDIJ2YBXQZFe7vjwY55pi+4jqvOZKO2UioybeuAynlRO5io/G2IYw\nqJ0mn9cOQD49I/4lIu3z3N/ZwLPGmK+Az0RkHnC4XTfPGDMfQESetWOj0kUjkUtF8ddl6xHhOtLX\novahbD1eq9GQie72v6uV6eaSRINiZ5GeJeBjBnojL/ReZ9ntPwmNnY6WWnrCnM4jD09IacxxI9Dv\nh2dyCqk82H8FMFl0YocZ+q8WHqoIOhEB0OcSmNIWLpkOl7yFugF+zBP2fHj2fc7+DGw6L2+jgcFd\nJ8Pv/xeogoFf2WDpXjB/kY6rJTV/OAEch6qnPuah9ruDUEk6/F2682lDdJ5tkswSs0PcIHsHo4Bt\ndFvjub9WRN63qm1Lu2xvUk0si+yyTMvTICJXikiliFT61sNsP+BiUsnMj6ELl1F36k+C1HzLTJhN\nSmdBJpLaP3Ut6SlUYbiwlNkEEuYMgkY2/iuJlkPi+QlahcTDEuCGUUo2LgGjGGD3NYw5Ap7rDawR\naGl4jVTpZmAlLJUlsKYnqkTfxEZZXWcXe2lAYIMDvYYz0VJWP1gJl1Wp2lkLTHlZ/5eiGRL+te+O\ntn4LS75Ju78jUKdQGIujL10dwqE9/nKISW6Ho8BTwLaU6B4CDkATn/6LmmXA9rMKwWRZnr7QmFHG\nmN7GmN5RG0FQnimqV6iL1ypGySx8c5SijLuAwK4TtQ+HDajH1pFiJUFDW4d8w4dqQu8zbZcEjrsA\nmKt2LX9+o0j9vfwESEpLfoQ6CE6owKaJGQYTROf9BbUnfLsCrpPH6S9LXAgdHw7W4N+wtlyNEvlY\nNPjXkVc/+/9B4P7QNk+R2ZnwCUrQ/Um1qSUIpLhsD40a0qW62tD/GDsQjY3ojDHLjDG1xpjNqBPO\nqaeLSK0+vg8qiGRavkXI59r55YL8Za7m5AZS69I5p0UZ6Yb0t1FPojv2m2RWo1qjRsgO6Am3zfOc\nwpiG1pN70XRlGalSpUNfNITEOR5qUXV1d+CXItxqDIsr1UYAet5vA4+icW11D4GjU0m3Teg44evr\nruvAA1O3K0MfAjd7n/uQ2lz8VVRyHIQabDugMYugpOyTbVQM5a7oNa4g3B4oGrHNbjuhETgj0iAi\ne3kfz0VTGEGrG10oIruKyP6oWWYyev91FJH9RaQJ6rDIs6hL/vDDNzaReoO6Ut6Z0Ma+2hLUSPPh\nGxNnoeQYhZOBi7zXwHwmngFrAR6bTdOvoi/W86cAL/VMI6JabAjKVIHDDGMuyX6c+0OVWPIMo2PI\nvNTPZ6MSr/sOjkPV2PNSh/EJQU+KIwiCisPXtA3pROVXqHHIRmaxpLcdsTNLdCLyDGqjPkhEFonI\n5cCvRWSWiLyPZm7eAGCM+RDVdGaj7Z2vsZLf12iQ/0RgDjDWjm1Q+A+LsFqYIPphsgRVp5qhtqMW\nKJF1DI2r9N5Xky71OVyE5nWeh+aA/jyfiWfBoMuBh2APE+Gknjia889NXwxKkgN7A5cKPJ49VjIc\n83a+6RA5LoyHQp//uF+qRHYXKn0dERpXjUp2b6NOmvfs8rCEVoZWJPbhSrH7VYrzyZ6JJbttjAJv\nd7jTBAznHEt6wDBEB+aGywBlQgIlNNcPwgW8upJPZWgMXEcCG1ZUCtqpqKR4FWpHawM8j2YG3Gbn\n4myL3dFGNu/+NvDMOnwJiDkR+k6CpZCYrsv7onFy0Bz6XMLAyvRqxEljgMug6+NMnaPqdVPTgcUy\nn05A0pwO70/gre5aGOARYOAoVK/cqwjWbIY34ZZz4Vf7wbWfw+NAcn8Y/pm+dylypaj9zi83fxMa\nQ3gd0b/189CqKa3tNfTHFBPE7S0IbefS/pwpISpbIg4qzo4GCRg+QExlnqqAXFCAAcONAeEbK6qz\nfBScMd6pvKtIDVqtQqW/aWh4SaZg12moXe9R1Ng+Da2MMgINT3kDJdO/A08CM36rjWzCctU1AJsm\nMXIC/HJ6sFwrH1vle0pbfkeUlHMZ8BjMbsthz0DTuQDvebmpN0HvQG0dBXxxJbapRnNlkh/ZnNX7\nYJLbbJAS/yoCtCU9t/VtNDUubP9zcM6edqR/X65Ywa6koyT0fwdqRzEayEaXT3KBiFwgIrNF5EMR\nGZNrn42G6Pwfd7Zr6Xqa+l3os+1zAcFNWEPqDV2Lqr6zyB40vBp1gkxAyXA1WsPtRbu9/5qNTYwf\npB5VH+MBOqv9zc+26TQTePg8GH0a8FfarFbJMwVdH0cjehbDhZ9Apw3AQN7AqnUfn8j5NYEaOQst\nrDlkEnD2eugHVy+zHtUKz7M6V8NdHDlVoNki4bJYH+hQjif6ujtpMJPSvBat/pwJtaRWZgmvi7GN\n0UDhJfkkF4hIRzRr8RhjzMEEHUgzotEQXSaEr6t/wvnYbcKOidWh7WpIj9WLmsNmArW21u7HGdbD\n6WxLABaqrS88lymf6X7W+SsO7QQPYz0Qb0HLSwlb9KbOAZ5dgobuHgjsApNfpxpLPI8qqbvA9Rqd\nArMA8zJsfC2I+2Oul3c8I5VcyoEjI65JNUpmBxHdZNtJw5m82ZmS992yAo5V/Wag4eLoDscmFxhj\nNqGZj2eHxlwB/MEYswbAGLM8104bPdGF4Wxz+ao4RaTftLWh9flexJLQ+6h4QJcqRXV6Q5liVLUr\nCe2L5R/rs+8QUKqZmFJSCnS1inltqMsCPrwosF8drVv68yi3o6UnNO2ikm0xQDfP7tUj9fyduh9W\nM0tQlTaT5NvK/o9ST932UfbaJt76TIgdEdsB9XNG7O6SAuzrSm9P+SQXdAI6ichbIvKuiESlqKbg\nG0d0zt5TTX4OoFYE6V11+Z8eyglq2mWCSxftQxCrdxIqse3mvSrsvq4CeEL7rvo4Fi1/fh5B7BnA\nF3sCY86Fxy8FfsxGWRLY0Cyamg7QaQXwHZjcFEdVR2Ovwzmf8RKBytsZ+BPwx/8Bpp0Osw9nzD42\nGPLIoiA+8CdKoo5olqF1/L4dOv4RqEf6ZaIrvRxl/2cKrmxLdCaL+z7cdS0l/bv4xv3IdxTyt9Gt\ndEkB9uVX/s8nuWAX1Ad4AmopeVREsoZVNqp6dA6+xFBDeoHIfD3c7dEbz3k+DyHIBQUlqhJU7TrX\n7jeqCOb96A25BO230AZVE9sBBzdD79By+99a8ssnp8/zxXEw5Fwtf85+8LQNPOsCXCXjKEaLhkY5\nRRbLfH5Ga95AiaaYzRyNMN4YEiJcLfsz0lTwOh+SkL1417wDHAN3b+Z3MoHNwE+HwYdD+9FZxvOR\naUZCqujTG6ZUAoMh8fcgaPmfPeE5z2HyLEpm4dxeB9dK8hWUyBcS2AuPQFX9cNFUCFLhXL+JUvRa\nu0IKSdLV2tgLuw3gVNetRz7JBYuAd40xNWhO/VyU+KaQAY0mvCRtW6Kve7jwpnva+6QSTh1zHebd\n1e6G2q7qe+z6oi/qBf0uQTFLHyVo0cyODwdzc+rth4OBozUY+E4CKco5Y/yQm6Qlu/rOP2nJLmXZ\n4dBvctARrAJ1Irjr2QH4K/Br1PEyGw3CvJP0B1LUPE5Fr4VTgXOl14SrTse9YtPRIOEl+4mpvDn3\nOAC5JvPxRGQX4GPgW2gK9BRgoB93a1XVAcaYQSKyO1oLo4cxZlXUPqERS/U+mYWXO5uYu9nDP3yf\n5JyKtoSgu5VPchXozesfJ3xzlqFq10kEKta5KJG1tq829v9BaAzah2ji/6GoFFRrt0nepe6ma+28\nEw/r56TZg6Q5lPXPqHRUPgISZ8GtKCkkzekkzSTWz4VVP4O14yBpPmMQkBAhaQzJYzUPtRYllOSB\nkBwFSfM3kuYFkoNV/U6aTvQCElJF0jTjbAL7WYvJKl39zn5eba/nT4HksUo0XVCv8Xuo9Hkn8JY9\nn/7etfSv48l23UR7PRba76SPXX8QKoGXkZpHu5bUkKAaYpvdNkEDpYBlSi4QkTtFxOXwTARWichs\nNNLpZ9lIDhqxRJeyH7ZMwkqgxnGXcN4adUw4InQ2tSZo2Ek10RLGuXbb9mjYRRuUSJqhYRd+uEtX\noEdbOHhJenBs8nSonQDFd+nghI0wKgVW7ak7PPszzSUN28GSM4HecH6N7rcceAlImAoSsprksdju\nYsUkZDPJuUCnNTrDu49ThhjyAjx8HiOvgquHQWKYhrycNBaeu0Aj9eqO9yQkLvY+fw8e+7+gUnMY\ng1C1O2GvwWLvWrZHw1LeJd1B49okOs3fSWxJ9LuqJqhe7JBvRehvChpEottXTGU4HioD5Po4YLig\nsCvZb5By9GZaijotMgXDuurDs1Fj/yGoPD7bvu+N2q9OQm/yN5ZkqADSzJLJp6SIndXARctgkK0n\nF3UTv9Ud+tVo4PInqL3rHEBlR7jsP5DySOi0ETgI7j+O3w2Ge24DRp4HP3pFmwYNHQaoxMj5veh/\nX+iA4UqD89N7zfpwqm4SzQg5zlt3FFoVelHEdk4tTRJkVJSgqXzOOh2+HuGsiRgNgDgFbMvRUBId\n5Jbq/ONESQFhtCdd4gJ1UNTa/SVQqS3Pvr6RcD0rLusNicrUdcnB2sgmqlAlKMGOQHNXE5K5AFL4\n2oRtdvlv15aEBDJt8k2AckcAACAASURBVBW0/lNnSIRq63VDMyUGoUFRa4HHSJUKb0Cv3y9SN63z\nrDoP+vGk9pSNQpndxhFj7JAI0CAS3T5iKjOJ6yHI4LiBdQoakui2BGWkdqJyapKDcw1VE4Q+RJVM\n7o/enCvQUN0yVDqpQG/4MvSGdn0R3kSzIsI3YrIL9J0Dr/bUgye8kibHozfv20RLdI+gEtUs9KFa\nhIaQvGveISFHcSrw4lyg00YS0lRzY9cI3AlDrLQ2/OfA8DkcIF341LxEQs6hIzDDnA9vPU/iWG+u\nw1S1rft8CvR6LV31dPBbHY5Gi3S6xuE3oPa8maTXF3SqqlP/W6HXshZ1giwgXRL3HRKxc6IBie6a\n/MbKrXG7w4KCa67jV931b4y16I1VhkpVmcrhL0ZVqdZoFZQKNHk/gaqw7iYtRn3kx9sxaeXZl8Dt\n2IN6LFiCElkz1EM7k3SyGzgKjr1S07oWomrdnwA4BoAXD8Ta5Gw5TlupmHtnMLxVTz3e0Onwry6a\nmvaSKr5/AFj+PO96JAdoYu4w7/MgGP4anJ/hGg0E7kGv5VhUO3d4Ew2NryUIOXFoY8+nFXrNEvbc\nqwikt7LQ9Sgl+A6/6STXYGi48JJtgthGlwVhB1HYY1eDkttmlAwz5WK6XhNJ+38JqhavQEMl5qGS\nzkeoxLWB1HLtDh+usxkO75Kiq5UCe3eBlofr+kgp+EzY90S1EXZAx3X6H+Bue5Y3AXwA99tsmjtB\n/b49YEiRZdjOMEIDf524dUx34HFb/t2iGNK9Mqugb7PMNjFX9qocfTD46vhqVOJrF96I4DrtRtAU\n2/Vg8SvY+Mg0h9hetxUo8FLqsUSXBeHvpIZU6aAazTltRnSzZYdFqGNjEyp9uCKgm0kPoHVe2FPR\nYFhfEvkFMKYtDF2Suvx4UId8hTayqV6pUlHKfPYqgjeaM/zs9ZiXNa2LN0/nd2Ip6oq/wd3qeABV\nV4e36qkkR63Gq68Rrp4AI00HfuhsfjMG8Ed5hie8Q+0H6mHx8MWPYd9x0OHc6KDhk3oDleqhHkWq\npLUYJf+TSbd39kIl2I4EZZxWoN+Hr576yPQ9FXnrYhveFqCAE45joqsHMj2Q8rkhXKS+/96viefH\njlURrQbXAKxN7xpXA4EIVJWh1t6azZBYD9VKkk2rAVZ5v80voSb0W60FzOaIpJxST/opT1MLikGZ\n3WOrBESLqQ52XRPSmx1BkN6VPpPU/277tPlk+RyjAeC8rgWKWHXNgvBTvYR0o7brVRpulO2jNUGu\nZms0p6Ud6pjojKqR3VC73dH2/wTS7WyXA29VafHKW7zl/wE23QbcCAOrgsKgKXgT2Beufk3DNwbO\nAdpN5qfD7PpbzoMhL/DTP+jH4T9HbXKyUe111mY38hJYLrMZ+T27XY+HuGKcLTFtMR9gQ4uUw7d6\nD7g4c/ObWa/p/xdQYdDvtdHRvsItFCFoQu7224GgX4cLFA7/yPOpRRijnihw1TWfUurtRGSSiMyx\nRe6us8srROR1EfnE/m9pl4uIPGCL5r0vIr28fQ2y4z8RkXAzrYJDEalk04T0HrGuTFMzMjdr2Q2V\naJagN+wB6I3pPjuSOwKN8J9IdBxdOWrjX0qq5JVESyP1+UpzRaPCYm45F7otgzGoZ/YV4OBFwFDt\n6XXCCLSm3dW2ZObwOfCvntC3KVdXwNUV1JVlPwzg6Y0AdJsJnPMS15lD645VCzB+feoEXoM+n2f+\nnV9o/y8AXi3RqlMOv0NNgmMjtnP5r7NQR8US9Dp1wBZzId1c6Cet+WWh/O82Vlu3AAVMdDnDS2wj\nnL2MMdNEpAxtCnoOGiG12hgzwlYBbWmMuVlE+qIB8H3Re/d+Y8wRIlKBOh17o/w/FTjM1ZSKwo4O\nL4F0qS4qqj6fEAUn9TkPbjmBmuqjCJVGBqDVhn3CK0f7MPwKJTpXiukRYGBzO6CX9l3tRyrhJfcD\n7kNVxLkoux5ZRGfZzEI0rWukfMwD9pht0BCXi4AWpgNQynKZzWHAQmNoJ6LpXWYOvaQL8+z5lAG/\nQb/oR73jXwT88XN4bj/4YcT1Sl4Pifs07SwRaroDaoK8HOgZWv4w6kn+KRraMwPV4v36dR1IlSRd\njKSf0+x/Py4HuoA1sQZFg4SX7Cmm8nu5xwHIvTtBHJ2I/AX4vX2dYIz5ryXDfxpjDhKRP9r3z9jx\nc9FyKifY8T+0y1PGRWFHE12U6hpO/ncPKScZRPWMcLmw1SjPlKI3YzOUUEq9166oF/aNiP08jAYA\nD0NV4DMijhGV/A/ajWsSSmIu37ct1FUh6QX8exgwdBgJGUbSvKQhJPfCD/+l40d+D3h6I+2kKQtt\nUHEHYJaZDtxOQsbXHS85ExLdg+Mnn4GjBwSqZhgdCZwUyZ7wxXTNiQX4DHUC/4X04Gj34CklaDXp\nMlTW2m3Cif1+MHh4XTY0VgdFgxHdhbnHAcgDBU50ItIe+BeqFXxhjCn31q0xxrQUkVeAEcaY/9jl\n/0BbfZ4AlBpjhtvltwEbjTH3hI5xJXAlgMBhTbf41BoWmZrvbEuUo/Wk/05ETJ2dx3hUegur1A+i\nfVeHzNNuXb4Ump7RkFqFJP/qJakZFCXA2hFw9mCdcynqFV1KIFF1Qxv/8Ht44zOVTl//GSR+o9km\njohBCStcQDTZDMZX6bgabApaFvRHGxe5c+qOkq0vmW9p7mtjIb4GIbo9xFSG+1pmgDxUwLmuItIc\n+DNwvTFmfbahEctMluWpC4wZ5Qry5U5C2vYIV9KIIrl8vHjFpNqDXBZEuMpwCXrDuwDZZwhIrgIN\nZ2tP0ETmNPRm/gJYA6xE1byrURXwXmz1kv01WyE5ANZ30f/JSpWAXBWS8SgR1aIS1mtAsjskzQCS\n5iqS3VVyTJo5dCCoenKSd11aDdZ9PkXQMHs+MBJImis4C2jxE0h8pgT9NkpyyQ/UPre+S3A9HckV\no4SePAgSVWrP+xlKcu/bMc+iDpo+BFIzKMkdT/D9zSSodOy+DxcI7pzC4e8qExoDyTUYCtwZkVd4\niYiUoCT3f8aYF+3iZSKyl6e6urrtmQrnLUKlOn/5P7d86tsH4QTwcNvE8PsoycCVIK9FbybXbtHF\n07muZCXoDbae6AKeP0SJ7yrUwfEju/xp9AYuQu1UUdLm8M/g1WFBI5uiOdD1GS2amegNA6WKMWPh\n3fN7kZBpmta1/Hl4HP4oz1AEXDEOZp3zEr2kC7PMdBLSk36ixTv5TEh00PN/AEia/+X78mDd8QeZ\no/mhPMLTEXMD6G89By3mwPrDYdZkdbCAxhO+B/SJyB87xf6/HvVin4w2LtuAmgCeIF0qdOXXkwRp\nfTUEfThqSU81g8YjwW0z7MxxdCIiaLbQHGPM77xVL6M52SPs/794y68VkWdRZ8Q6S4YTgV867yz6\nG/WjJHZKRMXChVFDULrdFb1chxJTa7vMkd1aMlQuQW/2BWj4SFlo3UfesaLwOFpKyq2vxebl2gDh\niWippf73WT/mW5rWNQHqgoGrzoXrzO2or+B2wIZ8fCawf0hobx2QHABN3mZchrlB0D6xFmA4dPsE\n298RWl4Pd94XHWi8wvvvSjM5O50twFxXhdjBJz4/1S4XiZXkMeYbiwJPAcvH63os+nueRcDZt6L3\n3VhgX1RzOt8Ys9oS4+9RraoKuNQYU2n3dRmBWeUXxhi/a18adrQzIhsyPd1LvfVFpFbM2BLU1aiD\nlOwDUO/mbWS2L5WhKvAf94NE+G7PgnAVkmxz84k1bLNLmoUwox306ERCPk7Z9gdo9kffwdBrhEqa\nybsgcZu3vzP0AInXUo/bniAeeT7649s3x1yd+chlVvgFGnzvq7+8jOAH7yql+FJ8Y/HKNoiNbncx\nlWfkHgcgTxa4M2J7o1CJbnuoMK6a8UKyl4vqiN58rmpKAjW4P4WK2ZWkEmEF6uSoRhvZ1KLlz1tM\nzv+cnNcyOUJtcv7+k8bAcKkjrHDp+vVHAW8/yqnyAz5HbRqDUbWgFlUBwon7eNuvRL3N7uExl+zz\n/gGpYS5HE/ScrSDw4vre13Ap/UxoLKpsgxBdKzGV/9/eucdbUVb//704HURGFMGTCJKAIomhwFcl\nyL4qecVbfStR+ypqpl8rr6mJt7ylqXktsdS8l2LmBU1Ny8tP0xC8gBdEEDEFEQRRHELw+Pz+WM86\n88zs2ftsZAv7wHxer/Oa2bOfmXlmzp416/pZI6obK7fWcTCiQIKV8eNuQh++rJDLmsczUG0lQgXQ\nDmiVwr2owAgji31Q/94VwIUkHb/2fpaSPrDh+fqgAtXOfbFf7nuKD4+HOE/g9OTlGd6rnQGefgZ6\nHM4zJBHWy0m6gD2aZUHxaERD/bv665rq/ywpuBf5lSn3k75nIQ1+eM3dg3HrUV2AqTWXxRoFR1Kb\n2NrfKkAh6FYQYcS0HIyE0+o1rf1hU7Dshj5sxiwyj9Ju9zujWt5IVFsDfdjOQbOwh6A+hu8DJ5A2\nrX6DRlSvQaOWx/pzxYM0Z+9QlP489j67+CyI58FHk+ClRnhxHfjIrUs8TrXEeJKmkGgPiaOJN9D9\nojOSaGyI2H3ALUAkQ4lmZ9Jb/PwAej2leXNnBt//GVh4jCYdTyAdwPuqH7MN6kieizYauN3fozm0\nuPqApGMbaOlcyCNofs/Z5JeJlfsfrw5aXU1Qg54RXxQK07XGsIehXfB5RfoTNKLdezdGH8wQo9CS\nrnK+ok4oJfm5oGVbVSK+H6K9Wh+XzT+L3dtE0jP4rD0o4GdEcnFq37OB/YCvPAHDd1AtLZ4O0WbB\n8W4Dntf0E0MDapp3RGmxJqApMFG5TGSP8/1cz/Gf+5GQgIZ+uXB7NxIhtoSkmqJlfpVP2WZQE9N1\nfXETd6purNxdmK6rDUIn9oogQk2pPLr0+ZTvUwGq7exF+UJ6QwmpyCHVzW1wdsOLPTNaj3mxTkht\n7QCceAl8xbWD/57An+2LTX+VPt7+X2ZsWj7SE/XnjfFLgLsqCDnT0vqgdbH24gzn3iczN0NM0lHM\nBPpSyr+41mgTtkZdwL4oFIKuzmGpKeVQSauYj6ajtPZPLiEM/WreqFJk89MYuHlGsP/Mj0qL42Wg\n4c97PgNmBRyiWVqEjckqCR+hnH0vkQRghlWYo2m7nVAh2ZzZnl1vH6yHaT+23ZK6iwcnB3WcMFyY\nrisB5u8x/cZ8eu3QF5ylodjYRvLbJm6NanY9/ZiwIcwAf5zp5Au/k1Gf38skaRJDUF/WBmhR/Nk/\nAGZA9Iz2eGAUMF9JMyM81dLDcOQZ8PvbIDpANatRbhi0f5ookBix+4CoJWVSzdilIiRb0rAUkW7A\nG43w+2WJHvhPYOBtcNcBcFBmv5+iuUxHoYGRzbcB5sGstzQd55eo/y/s23IiStuOv5eWtxj2rcir\ngV1d+0vUxHRdT9zEb1Q3Vh4sekaslggJN5tJU7JnX3ANqP+pC5pUHH4/FfUhvZrZ3g01xdZCo6OT\nKE2u7YVGZKeiOlZ31Llv0c6zt9e+q9aScPDD2uNhREdlBqYLsJ9SLU14C4b51hKj3I84Uq5tSQZu\nQIMmsaRF2lIR2jvHKJGSfECAru4FkEG8cQh0uzHN6vItYP50+B/XjoMkbftceDP89mD49XHAePjT\nM1o9MoNE48xGlK3TcXcSIdcJfVnMRs3XTSgVdHlCznpUZLkKV5fUk6pR58SbhUZXp7Ba2Kxml/cA\njUAjp5Z7NwStBggJOBtRgbiDH7MELWF5CfVRNZLfocvSSyBhRrG2hANQEs+wHWE8FHhaO4tlMQoY\nk6PZdUBTZG4F4jsg2q90HhGaWjIbjfoavkdSzzqJUuHUEw00mBAKXyAnAxf57SPRlJwlqCn8PNUF\nkcysbcuBiZpodOuKm1jlEeSxImE4hTVZ0IEKutZ8dN3Qh8zy7RrQ4MVINEo7LbO/PZjNwfYpJJRI\n1cBMuPgSLdBPM6FcBz0OJ/IS2shJbcwHQHvnOFGEiah2+hTKM9eIaqTme8sT6vEdcOF+qok1kE4G\nzsObQO/g8+VoXWwH9N7NJKF4Mu0uTCSuBEucbuvaW00EXSdxE6sM7csTRdS1QIBFqK/I6mGz6Ixq\nLGFScTP6kF6HanZHkdR8ghdQpIXfRaQxoJV5tVgov00/4IcDu8nhrOuF3NnA/Et8NYTH+sCJIvza\nOR53LzD3Ydjc3Q7AwiPSfXE/GprkuRncfvBz147ffgZXvKfb+lAeJghPRI9lVRfnkjQgP4JEyPUh\nEXINJInbWRgxA6SZbcLlGoc6DkYUgq7OYYnkeakLjWgUMg8hA3E5indDtun2JtVNjUffTH+2zmX2\nW94P4IR2vpViAjU9fSvFXfamJexwZnoco9O9I8DXqr74mUomnzfTt8Ic7dqGkNbaQnqdkCCha7De\nDjWZO5LcfwskdSDfv7rGokgvKbAiMKd8x5zvOqP1qnkwdpI5tJ4tkhV01TbzuCDzecQpaZ/iV54A\nGA/fvqf0fI8MQj1846CH36tHRnLufV1WRnIlwC5o+ceBuu3sCnM0DW5EF/Vl2rWGQurDYD3IV6Yr\nsCEJCzQkUXFzK4QwQVfHbEVfHIoSsAIrgg6oaZrnM5pJflNnUE1kW9QRf1eZMYbjM59/VOXcHjkp\n/Xnwr7RA36oHhu8A82Vb7pJvt4zpgK/w2OV24DnoITBL/cSvS+/U8Z6Uw/lh5pxP3gDMOwjGbwUz\n1GjdpcIcn/XLAxdoGsoY/zlMog79wI8F63NIamot2LDE/82j1Ky2Z3iNNV3rWKMrghF1iGw2vqEB\ndZRbZDFMhu2DBhmWUNrpHjQ62YQ+vItQbWUoGjGdh+aqXYNGb99GTcYD0Wjm8G30xC89rHWyrxwH\nAz0/XPyykmY+RtJYZiiauxY2svk3mkJypAzKJd80iqf4LOhxlh7Lri8C5o4HtruRSA7J7NefSF4l\nXgD8Hf69n17TJFSYxUC8BURTkn1uRIs/BpAU+XcDjkE5xLqg7Md5aTBZdPf3rxPpe54NwhjqMXBR\nk2BER3ETN69urEwqoq4prKmCLoTl1UEpk0l39OEqF5XtjAYiOqPEmuWQTYS19JHW0IvEoQ85fHLT\n8WVdnYnk/1q2N6KBB84EerzJ69KbQeTx2b3LR7IRGwXn6Is2LVnXS5hoWakgC2F1rPHB8OjNmnC8\nEBXslt96JkkN7Lkoxx8k/XZj1K84h6Rcrgel+YyWZFxtYnG5XMqVjZoIurXFTdys9XEA8nIh6FJY\nkwVdOY0g7yGyyGs7kmKrGaQFYJMf1wfVkNZC/Wm+iysj/XqYD9YJfXi/g2qLd6KCzVoSNqA9Htad\nksxzCEq11OupdEOfbsAbhwAjYNv9Sv2C8VkQnVUq7AzHABecC53PyJB9Xg7RcRB/F275C1xC0jin\n2d+vUSTR1wbUDzeVtLA7F60aGYtGj2ei7CytoR9aQheTvt7P23BnVaBmgq5S+DuAvFqHgk5EeqIt\nRruhFvY1zrkrROQs1J1j/99TnXMP+H1Go204m4FjnHN/89t3R+nQGoDrnHOZKu401gRBlxepK/eG\nNyFn92R5HqRyWsb3UAHWgFZX7INqNDei9NGzUKHQgFIhPdDotahBEL3ghd12wHkQ7ZocN5u/FjdC\nt2XlSUTDkitlPXmcSHbyn+dxvDRxG6X7h+0O+6Dc/P+zE9oYd7iyoYSMJJAm95wLfDnnHuWZmHav\nKiHMwbMyP1vPe3HVA2oi6DqIm9irurEytT5LwD4FfhY2sBaRR/x3l+W0K+yPunK2RK2rv4uIWe9X\nob7jd4AJIjLOOZd9ua9RyDbfqQTz4y5j+aNI5UwpS7doRoXay/7zJOANkmbQRlv+uD/Qv19I9nvp\nWd/jIUCWI//3y0qbdYdIVxY8TrqP0hzGk7//smA5BzXRt34MNoWWBMJsq8gwMhx1TA4c3qM8gVRN\nZ7AQy/O/bfOo8xKwVp8X59y7zrnn/foiNJG+R4Vd9gVud8594px7E60z387/TXfOzXDOLUXryfdd\n0QtYnVAun9JSGpqDcctI2iWWQwfUj1YpAXh8cIzZqOl2PNomcSoqJGxeb5M0zd6CxEz+OhD9xPd4\n8DgH5ZOL3ZeJ3WBOCObfgJaKxeO0kuIhfz2xexeASHZqIe+MO0IkA5jk9++DamFxb4jX81TwhySJ\n0rcCWwHRYxDtoCb7AiB+WHMOu/jriNfRuUSLSWiiUP+fYWeUx240KjNv8ufvhaaqZO99T3+u0Aqx\ne7eEfDeEBZ5WC0FYo4RhEdldRKaKyHQROaXCuO+JiBORVrXD5VIMfAPrQSSa/09FZLKIXB909+pB\nupHVO35bue0FWkG5F2VrptAS9IbPrzCGnGPk5ezloYSmKTvR52GszGWuPF9yvl7PwLB94B45HEs+\n+Ug2Su8fCcRp18oM1CTu8SZ0swS4G84rO0fT5h7fFRp+lZiVgz9OxhwZjP9DsD4S9dNNIGmusxsa\nibYXQN65qnUpLCOdbdGmBV6NEoZFpAG1/PZA40EHeCsxO64T6rot12IkhRVpYH01aiEMBN5F/cCw\ngg2sReQIEZkoIhPrN0yy8hEynhgnWjUPVDOqqZV7gIYE671Q19YvUa1usN9mmkd/4CE/1lJ7G9A3\nVnxculvXn1Fm4MNQwfRP0prOPNQ8/gFJM2kTc7GbR+xeIlqc0LKPJDEdY9Sft8jPK5LT6YBqXdcD\n8R7Kkhw7fT76oZpo5HWDYSQ+u3hoIvwaSVJKGlAH9KOosPslqtld7cdMyLmXS0jnNVoFhdHn5+XX\n1UmFVG1QG42uWsvvXLR6sar3SlWCLq+BtXPuPedcs3PuM+BaP0Go3MA6b3sKzrlrnHPbOOe2yZOM\nawIqvdXLkT5ahLRcsmof9OaHfSv6kTzkO6OaiiXSjkd/XaehjXTG+L+rUQ44S8e4x48ddnl6jiOO\nSZ9/4G0w/9zyfq65/r18DHC8NDFMEoP7MBGud465OVTJCz2v1Pw74Hl3EiPdHjAE3F5wvKj79/mM\nc++Rq3TZCdjymWTOjwfzzxAbA74qI4Oe6P/Lfthhq8Qu6L1uQN2ADSy/n6/NwPq6VifoNjBlxv+F\nPZZatfxEZBDQ0zl3P1WiVUFXroG1SMrO+A6JH3scsL+IrCUivdHUp2fRl2BfEektIu3RgMW4aie6\nJqHcS8+2W3DAEJo8EfnCbhlqknYlacbTleQX1RX4F+lgxAOoc78j+sD+CSX7/CFJt/Lh/TRKGzKO\n9AfGZKTCXQcAp7djV8pguxsBTSG5LZgH+BSYlibZGfzI65bff0xn1+tBzj5LKZ1uszGPZvb5hS72\nIrn+gcBAX1j7VXzHsgzyqJgGoALNBJ2pF538uhEomF+1TWtsraF60/V9U2b83zXBUSpafiLSDnUh\n/2x5prYiDawPQH8fDk07OtI59SaLyGmo1fIpauo+6LePQJlyGoDrnXMhlVkJ1oT0khVFuXwty5Vb\nROvBsN2onFBcDnFHdeaH+AAVMhNINJ2PSDTHIcCjdygLyZ2olvTkDRAdqm/EmcF8+1Da7yJ2Dm4X\nVSM7a+5dxTm6vYnkPrqhPsV4IkTbqM/tCVQDOxwV6ka62ZG0OQv59/AoVMMNmaObaZ3mydJOWvu/\nrKwqipqkl3xJ3MROrY8DkIXlzyciQ4GznHO7+c+jAZxzF/jP66EJAeZl7Ybe7n2ccxNLj+iPWyQM\n1zda+7FXSkxt8vu2Juz6kmYkrjbZ9XZULTf0QvOJxvvzDkYb2LxMQovegJrDP3ftlIVkF2DeQURy\nC+9CqgpiLurfCzWp+DZgf9cyw0jWTlGgZxEfANFt6nc5GpjmqyjinTQyC0lOIKi5btpqI1ovvIjS\nKogmVGiHtpPNI5u3Vw5G9VSuTKxNCboGcROrtMtlUUVB9yXgdZRYehb6zjzQOfdKmfGPAydWEnJQ\nFPWv1qj2Icmrqa0Gb2c+r0Wa4bcj+rrdMG8/95mqPn1ADWVf1hUg6p1jho+3GZubP02zVILXdDEA\n7x8ziRjm3AQ8T+FcG1C/53qZbeZrywYQ7aXcnupQ7j63q2JMXaIGwQjn3KeoG/hvaCrbHc65V0Tk\nHBHZ5/NOregZUedoTVhV+v6zzLLaY1QrILNaYhgZBi2NmkepGdeA/2K2X5oVks3sXZAzlxxyvYom\noE/2a8lja0J5mUIJWm0+TQZrZT5ne/quUbD0klocSiusHshsy7IV2vYdqzlmYbq2MeSZM5ZuYshz\neocR2WZU6+hIQpS5LeofW+j3tx4TXVATtAOqdz1PQke+BJiM+uQsr6wB+Brq0B8bnP+naCObww5O\nbze0sJBcDl2PS19DIz66+qM3iTJUTi2sJ24RMATav8qxy9TesY5o8TMQBSzHVqt7KXCSP89I4Poj\nILpGgxRj+0FUhf05GjV1tyXNdrI1KscXkQQiGklot5YHX7QJWxPTtZ24iVWqTbKsDmtdVyUKQVcZ\n1TwAlsu1PM1bdiDdSrFaWMtCQ7y1Npcehi/JCtAHtRjPRt10iyhlIYkPAW44j0hOT+3bnYT4cgbl\niQBCxP8HXH0okWhxmrVJBNgez5EHKT9hvAU8NEVfClv7a/snei9fRYV99ppmUL1g6kBSGYHf5zNW\nfqOdmgg6kcpOsgBSg/MtL9ZILXt1QfgwNZIuKQrHxKhPqTMqIGy9WzDW6JysX6xpdP1QDed7qGbX\niPZfsBfQ7cFxTMj18uOjSUqLtCkaoYyPUyEKKhD+hpaPLQLiBT5I8N0k9yy6MUkGju+A2Gn0YDbq\n7FchtygpF3OHEm+hwY5hJFZu7NoR/Y4WIRcfrELuQn+ep1CNLr5Zhdxefkw0Bb6LctPZtX0D1WBN\nyP0GFYKjSQu5HVDBZ/cbkiY8ds+X+GtfSJIAbUIu/B+2FT9djSrAvhAUgm41QeiPK/djso5iS9EH\naimJOfsJSTIxftkFza+z/bqjwuNVEnbdSSjtUejmmoMmVoY4AmC8hR1y4DmRbvmLCogwALAJwPdP\nAn6es6PVdhwGyMhAGwAAIABJREFUXA+vdufU7VXYDW4Zk6kSukn5hG4NruNJaJEyE6HUX0h+su/z\naHDFyuHsPixGXwBN/loaSJK6q3nYwzEhA0q9YvnyhVc+CkG3msDMnkrJxktJko2XoQ+jCbb5qNAz\nLagryYM9E/XlNaDa2oskTaH/DnyTdIOaJZTSm2++jTaXzvZdNfzb93K9BNWORgTfqXh7GXo9m90N\n2vtU5f43oAn0s+DJ0ew4XlNKFFlC9q0BDcge4Le8Byw9StfnAY8/WHqqkoJLVBv8kKTXrFGyvY0K\ntp5+Vuuhgu/z0Ky3lR4UdcykXgi61QmV3pbZagrbZj+AJSQOc1DNZAkqAOehGosx7C4gYS55A03J\nyAqBEiKBeUGlQg4sc/xtlE8ubIozcg/g7Ac5+63S/Y71F3X+FOCbs9Fc9vNhu8dob4rcyMnpnf58\nN6DXe55nMWkmafbTTCnNFChXXxaz/fhZ/rM1IjIz1Mrtmvx6JaqqcmjOLOsRhUZXoC6Q9wMzLRAS\nJ3jYq3SR/1tMukFPKDDtu26kkTVRZ71VWuWQN34ZwAGw6U7Blz8Bd1YSMAhhxfWPAY8/BTx7AS18\ndtuNBuD1OzI7hfU4QdJCaODmBVz3ytlmDXFMgPUMtlvEFZI2im2FdfjzoNDoCtQtTGg1ow+rPYif\noGbmhyTa4DxUGDaTmKBL0DQO66VgyFp+N5FD6xTAhGAzwHDgrODLPftzAkkjmxDT/fJV1OxdOgR4\ndidaNLvMoQCuCKXwScNaVsPjz8w51+Y5hbp2/+y+rRdsfw+9ZwtRl8BHLH9qSVvBZ9R1t8MivWR1\nRrVpDiGN+fJgJKU5cYejZVEm1CwNxARBT5Tc8jpUOI1HGR82Rs07y+ODpLFNiNjtDQfepw62bhDl\n+NLS4zX1pCeecNNNI5K+nIbW2k4F/ojW3PryWbqTkBR0Ij/lw/plRFPUlxn7sYtQQoBK/SY66dSZ\nQf7/xyjdO5PWCr8o1CK9ZKCIe6T1YQB8eRWklxSCbg1BtuOUFZZbAMPKqMxXZ76lMNerHeqTMtbe\nhWgaxRw0WLEkOPZPSNMa/Qb14+1JvvlmOXSHoxHQsKKiH55q6VGIMvajJQPHrh0qqn4IIyfz+h2q\nyd1LXnexe4jk2y0dvmagwm3aIog6+fU/QvSD9LnyivUvRjXJM4EfQ4tAPQAVZlP9fbLodE/S9bHV\nwAToF9VwpxaCbmsRVy0xxEaFoEujEHS1wfJm1tuDtbzHzTaPOZ8klyxgWQc0F28IMKKLNpe+F5+7\ndnMyJn5YmYHDfbuh9LMD0Id+KzQZOPpd/hwTTc7BI8KWu/pOZq4dkajHKL4SIs+fF7s9iETVxLgd\nWl4+B+7ZXklCx6AC/6AfQM8/pgXfv9C8wNY0OsNu/hoWoAJ3sT92g5+zpaQsJBFyYYpJ+KJaEdRK\n0D3Q+jAANl4Fgq6odV0DsLwPQrX5Wq0ddwmaq9Yz57ub0GLG8QsSiqhHb06Pad4VdvwVEHQNmIOy\nkETh+a8+FH6XFycNiAceEdjFMdPTnd0niVv85yFJ6I2BLdzcEY5aDJ3g2+OAfWDUlahEmlSq3Vlj\n7qq4vf3cuqAapJn3y0jMZkv2hsScD9NT6ikKW8NS1y8EhUZXoOqGy1lsTWl0dRjq1DeNsANJrSfo\ng30mKgzeRh/qMSjdU9YnlWcqxhPRcgtvQ0fTqQjzyfXCNDk1Yy9HueSmoprYsX5OTajgsevq4uee\n1XAbgYVXaVMg04CN886aC5VDE2rGj6c8l+ASNFHaetR+kfWutdDoBoi4e1sfBsCmRQlYgZUN6zdq\nNbGmMTSSZPLbsgl9CDv5v0moUOhFknj8NPrQW2WEaSknAoeiUdzj0Jy6p1BBtj/aR3Yh6scaQtJR\nC1R4xldBvIGSZkZTIPpQhVzsu8PHB0Ps+hC772i52NZqOkfSl9jd0xJFtXKx4/zx90XNzVeBeJL6\nBmegjbHxY0zIJZUWek3RT7QCowHtJTAHTXS+DPU1/j9UiJ+JmvA/Rec0Dy2zK+dvs8j2DH8e4xXM\nIW6pK9RzHl2h0RUowfIUpYcPazZK2g8VDstI++46oJ1NepI80GegBfPfCMbF62i3rjCn7XvATTuh\nTrpGiC5JF+hncRqaNhe7dtwnnzEHFbRhgCJ2U4hkC12fBJEWTnAo8Ns/Aq/BLueqEB+C3p9HusDp\nC9Kam7GiTEZ9h5XQgPbHmIqSnlqCcQMq2B9AXyJdUQ3ZtEXbF5KXUui7+zyCpBYa3ddEXGvNvQ1b\n1GMwQkQ6oC+ntVCf3p3OuV/4fhC3o9r988BBzrmlIrIWcDPwX2iC/Ejn3Ex/rNFoPU4zcIxzlQM1\nhaCrT1g6RXYd9MfQn/zk3u7A/wJ3UJqnNgB9oLPCztAJTdj9O2lheinKXnwh6iN7jbQZ3g9lH3kp\n+LzAHyMt7N7kUunNGUDsHuJa2b2EnSSLJmDmWsD1cO0P0mwmh/r5ZF0CjShjy71U9uWNICFkM9dC\nuRfQikZjayXosnnZ5bBlnQo6ASLn3Me+G9hTqEvjBOAu59ztIvI7YJJz7moR+TGwlXPu/0Rkf+A7\nzrmRvjfjbWi3sO7ob3Zz51zZl1Ah6FY+7GEq57czwRbm3jWhAi7UvLLanUU/q8FcIAr6UcRDtVvX\n21SmHW9C0zrOWwe1F08aRiRPl/SeCOnSQ2EXCu084RG7hOapHEKqqb6oRtsR7R37a7RPT6V+EqsC\ntRB0W4q426scu1U9+uicwhpRGBOQQ/PXTVu9CVr6EO9LwkF4J/AtLyz3BW53zn3inHsTTWq3FokF\n6gQmSMoFJ0wQWMoDqECbSprdYx5JX4XBpIVcB9RsOw01O0/0260a68uokPszKkCjZ1QDbEZ9X/Eg\niPdTvrpmlE+uGTXtLgOijyE6GSJ5mj/ifW5X6rn+heXWqTQyn51dm/nmlqBpIvEpEO+jmmAkN9AX\nXX8XCNrY6v47eaop/whPQxOqb0D9gHeSCLkOqL9uX1QgNpH4Qq3332D0IcOf0xDSuVv+Y2OwfVWg\n3mtdq0ov8d2zn0N9xVehtdwLPb87pHsvtvRldM59KiIfoq6GHujvjJx9wnMdgf9fr6l9XesdpkUt\nIa35maZnlQXzSGt1nVCT7GlKe6R2Q3vFnov66wC+H3zfiLacewC47gXAN7Ox6oyRaKLxe6Qfpiv9\nfCxPboKfRyRbEDtlLDZh92MRouMgdh8wWtbnSiD6VXqe1kRoI1T4vA+sPRUu7Zc024kmwijUdM0+\n2I3AP9D+oaeSj2vQB+CaYJ+pJPfdjmkvnWze48pqqhPC8fki9ysLVUVdfaPqgWilznbAFnnD/LJc\nX8aK/RqDc63xDazrCUbTbn+QaHKgD1moRSxEH8pshLA76mS/l3wT1lLZXqaUysiaSz/evbTb1/Ve\n/bn+Zph2tQqek9GKjS6oH2xaIAXGA3N87sil0rtFC/2xCGO8Zne8rM8FrpSQLutGmQqsfQdc2A9O\n8OqdkRuM2VWv5ad4ElJUyN+FJkDfRGXcHax/0y/75Q2k1MReVVpTPRf1L1fCsHNuoW8v9nWgs4h8\nyWt1G5P8Bt9BXTLv+NZl66Eau203hPsUqFPkmRth8CH0N5lfzor++6HCoT2qSYX/7D6omr8Zyjxy\nKmltDjQC9gdUKHwDPUAHtKLAunVF16gZGR2cP//OaFlX7PaAGx+k16EaVQ2jq/HlEB0HN3nNLhLh\nGmkiPgM45129ml5bEL2lKS5EwMyj6Su/IfI8eufsqizI0X4aIImydi2qjYbVA5P9vZqEmtdvkQj5\n6/zcB6N+vf6oltyF5OXTHi2Sn+3HLmPl07AbzHStV1QTjGgClnkhtzbqmrgQ1c7/EgQjJjvnxojI\nT4ABQTDif5xz+4nIlmizdwtG/APoWwQj2h5C0yhrJkXomy3vDdYBfXBfo9Qhb8nBh6MPeRaNKNfb\nrMy+e6G1o3uh5JcmaA39UaFr89kaFSqL0OhqJLsDaq4eL+tzDRqgOF8kxeaUh37A872BGVtxl0zm\noOC704CLKDXnOgDz28EvPtPgRDlYAyJIgiTlTNJs4Cd0J1TTI7YWwYivirhrqxz73/UYjEDdEY+J\nyGT0xfyIc+5+lPj1BBGZjr6c/+DH/wHo6refgC/g8Q1o70BfTA8BP6kk5ArUDxpIO7rDH032RRSj\nfrLs9s54wUB+1HFvv5xJqUO9AX2z/jFn37Henht7MLyxB4xDTcUBqFn9Klqgb5gEzPEBh2tl95Z5\njpb1ucybq+eLcGqOApA1qacCTIZ7ZDL/49YFEmr2U6/S3KqT0UhwhCZRPwf0akXIgTrCDd/zy6F5\nAyk1XfPMwy/6QbMSsHo1XYuE4QI1Q9Yp3g0VfI3k93Zth74hLRHWzDPDzmiQ4UeZfcMGQEso7R6W\nh7gd0NyRSDRn5VASFuGwCD8+A6Jz/bpzcJ6ofb2/Bi5i56Mgrw8iyjjN/oI208krXcvDEagZPsxf\njzE670PixzRtze7tDqjQ+gTVbhejGqvV/n6efLpaaHT9RNzVVY79Vp1qdAUKVIXs29ron9bNGdsF\nDblvQhK4GJAZM5xS+vVGtIfqcJLUi4cqCDlLv+B14KjFLQShvw20vHsD0gD1yXmcJ3C6g/2XQX/f\nT/arg2DbQbD530vICnb/RJfVmnCXbQG7b6HCaTwapX2ChEa+G5p+AkkLoLdQjTlGHd6b+O3rofl6\nqzK9ZFmVf6sCBXtJgS8U5WiElpFu1gOljvRF5L+Js9vbt3J+QNXGTsGD9lowKFQjQwrSzQA+Bb6k\nyW5T/LbOAD1KH1pPn/thhfmk0F7n9OVG2HCZam4dSTTc8L6FZV9Wk5z1xa3KLmH1HowoBF2BmiH7\nQ1/i//IEkfUx/ZBEwGUbIN+F+qdCbreQxsiwdYU52bHv2V6plhZdrJ93OTcZM3hcsEOvIHNq/zeh\nf6MKuXsdiMD9y4BP4Yq1S6jhr/Dq49EV5hPisEkaRPkOsOV6sGUjLH0/yd2aR5KRbyV1g9F7upAk\nqAJqKq/KhFwoaJo+NwofXf0iG3ltJO0fykb5locKyvLOLNdsNJr421rqRIT6+fZBBcjmu2qaR9Zn\nNhgNikC6rCss+8qbb5apOA/xdIg8o8owEqbhEVfD2KPgPCo3CaqE5UkEXp7611r46DYTcZdUOfbb\n9VjruipRCLq2haxwiFBrzhztWWQFZFYg9UGd9XlO7pCtoxwRQIgxKGmmVUgMISmq70tS8RBvANH7\nft29oD65zYD7lxFJY0u5GGOE6Cfpc1wMnET1DM2jgP2AHbujUYdGYDb0nZ2kw9g9sWMehQYg5qOa\n7SKSYEVeb4tqUCtBd1GVY79bMAwXWN3wGZ/fd/QZ1fVBrebhbkf6YFlK8hZEaHmFwQpQ+ZQUsm3P\nCAIfVcL6vbKhX/HkgO2DJMSGzNKITCPS0edV6Z+D1aQErECBz4uQzDNEI+p47xJ8ny18zqabGJrQ\niKNFPfPGGEwAHPQDYFJyrkcCQfV4uMPMwMP2+iCY8He4dQpcsbZuGyNwu8D+rqTM7SAfdT29wnxC\nXHgwbHklauMuQjnl39AKEdDrPNyv7+aXU1ENrh0afTa1aBPURM4TeCtDCNZ7UX9huhb43MjzGVXj\nRzIzyyjWm9BIY3bfvGMdheaYfYYSJN5NZViOnZmAsac/Px5N55iHlvocjQqR7n5+RjnV088xG3jo\nDMzyPjvLdTMOuUrNekBTRv60Fgz7RP11izPXOdIfZxZKCRSWgIUITX8TZt1JcvDsmvN8j6HpXwvT\ntY+IO6fKsQcVeXQF2hLyBFolIWfmlrHpLiGhV+ru18Mc3PBYPVFBcjVa8vUAKuRG++9/gyYB9w3O\nAyrkLibx/Rn9+WV40kxgV9TPF9+hvrHne0PsnWxvk994eyEJxdPMhyF2j/GAP2/0Ow1yXI/6Au2a\n+qJMtV8Den2iVRp5fVvH+nHrokLuFlTIHZ4ZZwnCu5FoS2+TaLoLUGEXCsKwYXkttat61+gKH12B\nmqOcVrcE1S7ycuusVvOTMsecTfLAhvsageZ16EP+Yeb7CO27auhEUF51PdrDEKVautAk0oytuEcm\nl5lJgiZo6S7GNzUa2+Kn6nsDPycdXJmBBite+wNs+kM4rMKxdzwGGq7UazGa+HLtBLOJy6GvsEOw\nbSH50fBaoN67gBUaXYGao9xbu5Gk8UsW9nCWCyx0RzWi7L7b+uUI1CTsj2ox9oDHJISeoBqUT6Xj\n2qBB9aX94OeeceQumcy3XV49RxrzAHZ5TIXcky51HUx7gZndlX7qe+i17wO8tgUc+MPWc+1uujK5\n1kc76vI3leYRINv/FfS6wwJ/Qy2FU600OhHZXUSmish0ETkl5/sTRORVEZksIv8QkU3yjpPap/DR\nFfgiUa5pS8iIaxUSIT07qKYyj9L8vA1RQdaApoVkqdJDWFrGv1Cf3J2oKWqNbMAzA3vSTKNaAq1d\n3f0TneAVnZRK6mJ/zIM+ge+vldayLM8ubIhdDg3AR+5QmHsDHAT/eVgTo3sCA8dBtI+a5acfAtGN\nSdrLELQ+uDtJp7U90bFvoyVk5qOz+xk21jHYc7WE2vjoNhFxJRKpDH5c4Xye5Pd1YBeU2m0CcIBz\n7tVgzE7AeOfcYhE5CtjROTey0jkLQVeg7mABUTP78gReFg1oFLcPSufUE63/PIPSfhVh45mQECAU\nCFnqI0gnAxvMuW8C1YRdJ+BFoNvdaOlG78dg8k7ct7W2d1wedEdN90oCPYvhqH8vhF1ftqFRLQTd\nV0Tcya0PA+DoyoJuKHCWc243/3k0gHPugjLjBwG/dc5VTKUsTNcCqwRWq2n9ZG0bqIBbEGx/m3RS\ncT+UAMBKv8wkW4Q6+MeiNEhnoMwkb/tlJzTa+gBKegnpHg9zUNJMUCHXBdXqrkeFQ7RZ0tP2QjS6\naj65RWhfCgtQLAI2BaLvQNQHItmJyAu5Dqggig/R4++Mmtzd0B658RN6zPgG7VkxG9VAZ/h7FKGC\neKS/HtBKkG3RgAyokNvBr5t5b5Ht2J8rJxVwhbAcpusGIjIx+DsiOExLKwaP3JYLAX4IPNja3AqN\nrsBKQ6XUE0uBKFe6ZAImS+i5NSrcdkDTNN5GhY6Zw6BlWCELipF7hlRNo1D68+hhjcqe6tNQWkPs\nDoW+N8C0F4hkUEqzY4Bw/sv6pFpfizHfhSP/okGUStUTYbVHfIr2roi7QJTD/3Q+6f4Tw9H+GctQ\nITeBtKkaanSNwIc10Oh6irgTqhx7QmWN7vvAbs65w/3ng4DtnHMlbk0R+V+UrX4H51y5OBZQaHQF\nViIqOaJNKOU50k3ryxMMJvjeRh/arYFBJBoSwdJgrOu3ogEOW/+3D0ZcBDTnCLlhOecfKzfQazrQ\nYxCg5ioAAwRecpzqRjPGDeZGYIzrD3e+yW1lriXE7uEHYzso0zQiS+JpjbYh6We7hORaNw7G1rKa\noUbBiKpaLojIzug7aZ/WhBwUgq5AnSB8ANqRFnbmB8vT9ExgzENNM9NYmkj6SkzN7POyXy5DC/zt\n/FcF28/LOdcBOdt+j5rZp/tHsZvPYD7/ZVA963zgn+x9HKietmdVkcew9O1xT9/yyjP5Y7O0UMtQ\nP6WtG9bzyy+iUqKGDMMTgL4i0ltE2qPWfsgvY36536NCbm4182tV0IlIBxF5VkQmicgrInK2336j\niLwpIi/6v4F+u4jIlT40PFlEBgfHGiUi0/zfqGomWKAA6ANbiSL8M1oiiC1j7YFemNknjEB2LLM9\nr1NZVjMMj92icnjH4TuA1nR5g3wIwDrwfqWCtQShMHwvs6xm387BusHosr4oQbe0yr+Kx9FmWz9F\nb94U4A7n3Csico6I7OOHXQysA/zZy55xZQ7XgmoShj8BhjvnPhaRRuApETHn30nOuTsz4/dAteS+\n6L/3amCIiHQBfoGW5zngOREZ55z7oIo5FFiDYGkn9pA2UlomZQhJO43/rglNwTDBNCmzz63B+pEk\nfrrQo5335Iy4Gq1BC2Da4l22ofdjwE6MBfaQ59n7uLX1Kdjfwe3CFXlqYSv4uV+Wy73Luy95AmVW\nZllr1ConzzmXbZiGc+7MYH3n5T1mqxqdU3zsP1qwrFIEY1/gZr/fv9C2iBuhlSqPOOcWeOH2CBlX\nRIECUEq5bY2y8zSRsNes0bOv6/d/w3+XyQhhRLAe+rd2CNZ3zTnX2KNKt/X189rLNkzeCdDAw96u\nP1z2gVKxeyKAY6tpJpGBJQr/scz3efclL0xp5uymyz+FVlHvJWBV+ehEpEFEXgTmosLKqLx+6c3T\ny0TEVw6WDQ9XFTYWkSMs7Fy/8eACtUb4sGYfCCtCzytXCkucOvv95qE/tHf8d9kSqe5+2UiSa9ZI\noqx1IN9Hl7ftXH+8Wz0t8H3edB3zXYC/At+A9xtVk/tAYH1XlenYFKzvfYcuB96cPzZ7fV3QgASk\nG4lbpHUtao/VQtA555qdcwPRCMh2IvI1NBn7q2gEuwuJhp1HweoqbM+e6xrn3DbOuW0qc7kWWJ3Q\n2gNgpmleaRNoQGAaWvw+E1/9gArA+4PxTSSpGGeTJCX/AzjQr89vBzvmzCGbrLsvGtV87Q9woE86\ntjy5I/8C60pvInmVqEnPGXWBdUX4yDniVjS7ma4Pffz6pr5S48tlmnT/IVhv9Ndxr5+H5XAchVZe\nbE9Cyw60nKMWqOd2h8sVdXXOLUTpu3Z3zr3rzdNPUDfHdn5YufBwVWHjAgUqodwPtpygzAYQ+vtl\nAwkhQAdUWJjQ/MVnpVURefjTWnANMPaHKkRMCA/zxy7L7tKKZtcZWCozuMKvz6O0miFESI/0VdSL\nD2pWT/L7WqDFTCgrofsclnQu6r0LWDVR1yYR6ezX10YTuV/zfjdERFDaLIvajwMO9tHXrwMfOufe\nRe//riKyvoisj7pB/kaBAh7ZBz/PVF1G0gnLzNZKSeWmhe2GCjnzuRwTrJ9J0p9iMonf7gi0RCze\nWn1uoInFPwXig5VPbh7KQhLja1eB+w6pnCeX0uzcr4lvg3hPJTaON4NZ7mjW98ec5TanGZj7lu57\nMnAjWgwaX6L8ek8A8VCIG1VDmxacax76wBpv31i/3AQdm41If17Uu+laTdR1I+AmX2zbDg333i8i\nj4pIE2qSvgj8nx//AOrvnY4Gyw4FcM4tEJFz0TwZgHOcc7V6oRRYTZFXTZE1gbKNeULYvktQ/4ol\nd4S5deNzxkPC6ksnDTaMRXs8NAFsAzOyPrO5Gr996MYykyk5zyXAz9Te3f9S1n5otib2Xa/hh+uA\nvc9+XXfwatsv2um5+SYqucOQcid4NXiiLLqaVx/7RTx4q0qIVYNWBZ1zbjKabJ7dPjxnOE5rynKL\nZ5xz16OlgwUKlCBPoFUzrhrn/gKSIASktZ4wsy2UG8OAuVO076oxhezYHc1EnprTz+IgXVTbsZ7b\nT/QV/j8DfgC7/xXYkjk/HNoyl9fP0qEvmiPuWjSM3ITWtXlV7T/PJEnTBtMq89JJjLapVij46AoU\nqAPEpP1DoWkZmm+h9tOA+mNeWQZiZQVN/u/5UoH7H19CVrXj+VZQGoE5qDdxT2BgSyR4MUngoEXr\n3BkN/3XTyS19OZn3bNLXaIInzy/WTOvJu8uLejZdC0FXoG5R7UNRbUlVaN6Gjv1w+1uZ7S/hnc/m\nMLSEvtDe9bBG29Wahf/5K/DQbDQNxYRd0nN2KYmGaTWrfKUPrP0VXZ+QjJ2KCrtQqNl9yRN0tY6A\nrg4+ugIF6hrVPLDtSD/wDWXWwwDIfLRErCOw1FogmtrUEfiYFCyloFrGnbU3wxfbbonGV7VczI7T\nEByzV8teS4ANYP0lMHguA3yyYF//TTsSYWL+zTwfpmk4tRI8RbvDAgVWAHkPoiUPm1Cq1NfVxjSg\nvrjIfw6ZSPYrs+8+fr85gM8Hpu9s2HIS3PVxEok1DPR1Y688UWFCHp0Bph0N98McGcqfZG1OlLW5\nQoRjPXXa/GPgRPcuACe6GwEYLrM5TCZzhcyFfhD5cw44GLbtDc8G5zjfL28PtplQP5TS+a8o6jmP\nruCjK7BaoJo2i9lxIdPwEahffx5wOcpkMq1k7zQ6oUJkx2O0x8OPg+/+idY3Zmt0m9Bk4KUyg/Ur\nHDt2jq4iLEFTYa4knzUYlKgzCurX4q0hmpT4GLcA7gP2Rl18fw/2HQVcXQM+uq4ibkTrwwC4tWh3\nWKBAZTRk/gzlhJyVQNlY66LSnUTIDUYTf+f58ceRCLlupMuxDE1oNHNPYF0v5Kz1YnyDkmbmtTKc\nBwyQGTyFCsmd/bGsRWMHID4Guoow3zni41TIxfuokDNtNkIjwWejQu5wNAUmPkOFHMBH26uQm0JS\n9WGUThejAtTyB2uBevbRFYKuQJvC8j4sFl3thAoIK7buGowJ60EHB+tNqPDYNxjTxW8/HM2StzmB\nNrIBSgnwMpiBZqLs7Tbn3rO0gfavUO1qNMAV76pP7XiBy7zFda+asEOB/0Uz8G69A070OS5X3AZj\njyCV2/K4D9l+pTG5D0YMGlFaI7siqCEf3ReCwnQt0KYRtvBrR37PWKM3N1jjGyP0xK9/E9WaIrRF\nYTXazi1o39VHO0K0OGlkE58CTFTSzPfQQvDfoAX6m+6n568ksM1chaC7mJtCJFuUjH2BdKLrtWgJ\n2v1+/Uf+Hhzqj3kpYLTn3YAZNTAlu4i4b1U59s5VYLoWgq7AGoEOpLvUhx2/+pEoYf1JEog7oVRy\nDWg+m5EENKBVEy+RTja2loRhK8VyiPBlXedoMvB4f7xeaOAhkkOI9wHufZdINmoRdlbKNhwYPgPo\n/R0iuZt4MVoLdlHSuvF1YHMg3gMiT7Znwv05fz3/TW26gHUWcTtWOfbeQtClUQi6AsuDcj1ksw13\nrN9pGJhoQAXeq359KGmWD8gPeByO+vp+A3yXpCVh7NuVvfKManRHo3xyA29WFpJKkWJIBx5MkzNh\nl8WNwCH9op2sAAANLklEQVTB5zNRgXYGSeOcDmjHsT1Rnj7jpGsC3qqRoPtmlWPvLwRdGoWgK1Ar\nmBO/Um9YUB+cJfzugCYQN6K+u7Eo3VEHVAN8ILPvEFQzC03iSjgZX7t6LRqV+EofYAnDZTbjSQvc\n3VAGjNg5VBe9CfqfwnNTVCv7f6i2uQ2lwjiP+cTynmvVwHo9Ebd9lWMfKKKuBQqsHJRLGM5Gci0S\nagJyMSo08sgrLcDRPue7PPQHlUxWu8qnwAYtycHtSDp39W/ZyyoovgsHwn/5At7/6g6bb5FOeLZr\nCftiGNqTzw6zIiiirgUKtBGED/8nJInJVg87H03RyLM0jDQgT7DkYRhoBKQJlaQf/BuY09KYuz1J\n28KEQeMmlBhoM6XOMFrko/QvPLfNMS89xhiZa4V6LwErBF2BNQJhaRSkBVootEJtbBYqEDqSFPu/\niqZoZPP4IGE4yaX1yUGPS1CT9Ta03/xWwL5zOfYk/X5X4CBPoz7cJtD/FDivbwt5J6f7jL/Tn4Sj\nb+fw4Pg7+eWlOec+FE2SrhXaPPFmgQKrAyrlcIUPQcjoYUQAi0nSUxahGt1Cypt+3ctsL0EHtGr/\nblh6N/zrHYjHoVoeMBCSrju9VYw+NwXNlbsKWjQ78MvOCYceSnIC8M0NKcH2yWlqhnrW6IpgRIE1\nFqHvrZNfX0ZiSVZiCTbshibeziOhZgeNdv6apBLBcv16orTt56DZIOUQlnVZntyNpKOrLWMz0djY\n3c+6shfNQOwOIpJbiLeHrk9pfesDJFTx8VCQZ1Y8OLCOiNu69WEAPL0KghEFe0mBNRIWcQTVzEyo\nWY8G0GjleiS9FcI8uk3QOtKwF8Bo4AJUCTuVUjSjjXsssTZWfk3+84yaxlPR4MOAg5Oyritug+gA\niBdD1FGjq//VHfXJnf4ksJlPJnbAx0yQTkSiauD5oEJuEEQ+V8aSoF9BI8zRM9Xdr2pQzwzDVZuu\nvuXhCyJyv//cW0TGi8g0ERkrIu399rX85+n++17BMUb77VNFZLf8MxUosHIRmrRZPjdrit0cjG0m\nh12YpLzsvWpPPBGYqoJ1UXAuntSv5wD45F9T/zqBSt/1QL2Ixlj3MbBOimG4hVA0RzU1DbNWqPcS\nsOXx0R2L1gcbLgQuc871BT5A3an45QfOuc2Ay/w4RKQ/Shy9JUrsMMb3oShQYKWjnPaRJeT8ENXm\nlgTfL0I1sKwvzkzRr7Vy7kZgAHDgMhi4QNvn7Yk2XdkFeP1NHTf2DOAuv9NFutgG6DoFeh4DZ8v+\n/Eu0B/wE6cR9IuwduKJ+4fyBpp3X0g3tZL/c1G1O9FZthV09++iqbWC9Mfq/uM5/FjS4dKcfchNJ\njfO+JBryncC3/Ph9gdudc584595EPanWIrFAgVWGrHbTSLrKIu/hbEY1uJ5ojlsfEo3uBvThsJaC\nIboAR6KC816UJcW0uWZUoxyEp1o6V0vKrkXLus4k0TIXoLLvW6hPbkdUizAztgGIpDexe5dITueN\nc9UUNz9hJK8TbQIf1ch0rfeoa7U+usvRl0En/7krsNA596n//A5Jy8ge+P+5c+5TEfnQj+8B/Cs4\nZrhPC0TkCHzku2hgXWBlIRRm5R7GbCkZJMLNBJqVbj2J5sB9Fd+nFf2xP42SALSGKOjSY0GOclHe\ndWWvzGdtpRiJsK52JSU6A2J3EpFcnAp0REOrmEwVsDy6ekWrgk5E9gLmOueeE5EdbXPOUNfKd5X2\nSTY4dw1KD0aDSP2GhAusccgKubBcrBkVaI+ipWNPoKVb2XpZUIFpFQ+zUI3OfH8NJPWpH22vVEt7\nkhTo48d0QPPktgV+4fdZiJqrkfRu0ex0eRCD5RYiuZi/oEIudsNg7tN03TDf37i8aPOCDuUQ3EdE\nRqD3d11Uw+ssIl/yWt3GJM2P3kG143dE5Euo23RBsN0Q7lOgQN2gHDlAFgtQYWcpUPZjfgIVQC+h\n2mF4nM6on20SSXQ3RDNK6TSFJFJ6LSrkTAA2o77C+/2fpZAAXOTN1XVlo7SwOxh63AwPoqZ2JE8D\nEE8H2YyaoE23O3TOjXbObeyc64W6AR51zv0AjQd9zw8bRaJhj/Of8d8/6nu9jgP291HZ3uhLLaS4\nL1CgLlCN09y0qgWogJsNLQ7/bdEu7WG01rAQpTJfjDqtB6DCspM/Xie0J5gxA8eNyicX76FCLkLz\n/PoDDwHxhkkKSbwZxO48ItkoyKFTYdf1Zj33q/4vdhOI3T1ENRJy9V4CtlwJw950PdE5t5eI9EHZ\noLugOY3/65z7REQ6oHyEg9Dfwf7OuRl+/9OAw9Dq5eOccw9WOl+RMFxgVaDa/hM21og9w33y/HmG\no9DUkbsrHPc+lP58UXD8cseMt0+0v26ggYczlHbq+YOh680w3zS7zyBqpwJzKbDQbY7I6yucwLuW\niKu2ImRmQdOURiHoCrQVmHA0Qk/zw62H1s/OQgMTMenmNNXA2Ib/ivrrssgKwAiY6wMPxr0HIVPx\nQ0Q+LQVqQ9PUXsTlkQfkYXYh6NIoBF2BeobxzmU1wNY0wu3RCOzYMt83oIGGD1ECgWVU5rgbRZLP\ndbLf/wKUaPNB1FR9xGtyIVPxAuDxTUDeWnHB0yjiNqhy7JyiBKxAgbaDkJrdhJuRXEZotM1YTmah\nrL5rkR+JDdFMWuuzHg8hM3CIkAD0IjTiZykkRg2vQu6hVIACoOtb1V1rNajnqGvBXlKgwOdElqSz\nAyrkuvnlVFTIvIRqTxNIhFwH1IfW5NctSbmRhD7pYmAMKuSeQ4WctTrshtbW/hWN3r4CTAZitzlv\nk6SQWOAhAiLZnd1Ikopjt6hVxuVqUctghIjs7stEp4vIKTnfly0zLYdC0BUoUGMsbX0Iy0jSMbLV\nE5bX9jZJSVocjG2HCryOqNADjQh2A/j368mB5j7tV2a1zGlBy5daG1tL1KLW1ZeFXgXsgSqkB/jy\n0RC5ZaYVj1v46AoUWDE0UtpmsZJPrQ8qcBaW+R7SfjcLcFibxizioQkLSQNa1hUNVU1x/nSINlNN\nL5LXiTdRc7Wldtc5RGSFfWYNIm7tKsfGFXx0IjIUOMs5t5v/PBrAOXdBMOZvfswzPld3DtDkKgiz\nuvbRfQYfL261HXCbwgbA+6t6EjVEcT2fAy9XMSboQ93CblzOnSaZelXRsq4NFsP7lgwsopqeZA6i\nZehsUsWUKuIz+Fus968adBCRicHna3xFFAQlpB7vkDDKkx2TKTMt+7+ra0EHTF3Z0ZkvEiIysbie\n+sXqdD0r+1qcc7u3PqoqVFMqWlU5aYjCR1egQIF6QjWloi1jMmWmZVEIugIFCtQTJgB9PbFve7Ts\ndFxmTLky07Kod9P1mtaHtCkU11PfWJ2up01ei/e5/RRlqW8ArnfOvSIi5wATnXPj0LYbt4jIdHyZ\naWvHreuoa4ECBQrUAoXpWqBAgdUehaArUKDAao+6FXStlYHUC0TkehGZKyIvB9u6iMgjvkPaIyKy\nvt8uInKlv6bJIjI42GeUHz9NREblnWslXEtPEXlMRKaIyCsicmwbv54OIvKsiEzy13O2395mO9hJ\n0Y3v88E5V3d/qBPyDTSJvD1KyNp/Vc+rzFz/GxgMvBxsuwg4xa+fAlzo10eghBICfB0Y77d3QfNC\nuwDr+/X1V8G1bAQM9uudUAbv/m34egRYx683AuP9PO9AeRIBfgcc5dd/DPzOr+8PjPXr/f1vcC2g\nt/9tNqyi39sJwJ+A+/3nNnstK/W+reoJlPlnDgX+FnweDYxe1fOqMN9eGUE3FdjIr2+EJj4D/B44\nIDsOOAD4fbA9NW4VXte9aAe+Nn89aGno82iW/fvAl7K/NTTSN9Svf8mPk+zvLxy3kq9hY+AfaA+e\n+/3c2uS1rOy/ejVd88pASjqG1TE2dM69C+CXX/bby11X3V2vN3UGoVpQm70eb+q9CMwFHkE1mKo6\n2KGUcF2pn+uxbnxWG191Nz7q71pWKupV0C13iUcbwQp1SFtZEJF1UN7G45xzH1UamrOtrq7HOdfs\nnBuIakPboe0YSob5Zd1ejwTd+MLNOUPr/lpWBepV0LX1jmHviWhDTb+c67eXu666uV4RaUSF3B+d\nc9Ynvs1ej8E5txB4HPXRdfalQ5DfwS5bWlQP12Pd+GaivVqGE3Tjy5lXPV/LSke9CrpqykDqGWGJ\nSrZD2sE+Wvl14ENvCv4N2FVE1vcRzV39tpUKUSqLPwBTnHOXBl+11etpEpHOfn1tYGe0uVab62Dn\nim58K4ZV7SSs4HgdgUb93gBOW9XzqTDP24B3Ufqxd1BSwK6o03iaX3bxYwUlFXwDJZ7dJjjOYcB0\n/3foKrqW7VEzZjLaruBF/39oq9ezFdqhbjLKjnSm394HfbinA38G1vLbO/jP0/33fYJjneavcyqw\nxyr+ze1IEnVt09eysv6KErACBQqs9qhX07VAgQIFaoZC0BUoUGC1RyHoChQosNqjEHQFChRY7VEI\nugIFCqz2KARdgQIFVnsUgq5AgQKrPf4/E++LvuzEvWQAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11b9f0f50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.imshow(K, cmap='hot')\n", "plt.colorbar()\n", "plt.title('RBF Affinity Matrix for gamma = ' + str(gamma))\n", "plt.grid('off')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.cluster import SpectralClustering\n", "\n", "spc = SpectralClustering(n_clusters=50, gamma=gamma, affinity='rbf')\n", "y_kmeans = spc.fit_predict(Xsub)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXd8HVeZv58z5Vb1XlxkuXc7carT\ne0ilJMAuARZ2YWkbtvBbFgK7S88uS3apSyCwECAJgYQ0EnASpzjFvcV23It6l65065Tz++OMJMe2\nbEm+imR7Hn/80blzZ86cke595533vOf7CiklPj4+Pj6nL9p4D8DHx8fHZ2zxDb2Pj4/PaY5v6H18\nfHxOc3xD7+Pj43Oa4xt6Hx8fn9Mc39D7+Pj4nOb4ht7Hx8fnNMc39D4+Pj6nOb6h9/Hx8TnNMcZ7\nAAAlJSWypqZmvIfh4+Pjc0qxfv36dill6Yn2mxCGvqamhnXr1o33MHx8fHxOKYQQB4eznx+68fHx\n8TnN8Q29j4+Pz2mOb+h9fHx8TnN8Q+/j4+NzmuMbeh8fH5/THN/Q+/j4+Jzm+Ibex8fH5zTnhIZe\nCDFZCLFSCLFDCLFNCHGnt/3fhBANQohN3v93HHbMvwgh9gghdgohrh3LC/AZmnq3kYftJzno1tMh\nu/id/RQ73N3EZYJH7adZ52wmIy2etFfwovPaeA93zHhebuQhuZK4TLFGvsmv5bN0yNiYnCshXU6n\n8pz21p9gbfgfpGNh73oYa+23kJlenIMrsF7/KjLePN5D9BkGw1kwZQP/KKXcIITIBdYLIVZ4790j\npfz24TsLIeYB7wPmA1XAs0KIWVJKJ5sD9zkx692t9BBjq7uDsAjTTQ9b3B3ERZIOuojJPorcAppp\no0W2cykXjPeQs05aWuykjjQWD/A8JgZd9PIQK/mIvJ6QCJxU/46UbLTizDcj7LFTfKb7AJcG8/j3\nvElZuoLxQ7o2bttmcG2w+nDbNkGyHZloxW3fiuyrx+09hB6tGO+h+pyAExp6KWUT0OS1e4UQO4Dq\n4xxyC/CglDIN7BdC7AHOBU5fl3GC0eA2s08eoo0OABxc9stDAOhobJbbAAhgsEquASBEKKtjSLev\nA6ERLD4rq/2OlGdZTxoLAaTI0EcSDQ0HF8nJe96/TrTz00QblwXzmKIFcIF1mb6T7nciIDQD45x/\nBieNCBViLv07ZLIDrWA6YsFHkLGDiJKF4z1Mn2EwIgkEIUQNsBRYDSwHPi2E+CCwDuX1d6FuAq8f\ndlg9x78x+GSZZ92XsLAJE8LGpo0OwoRwcekmRpgQAkGcJDlEiBLhOu3yrJzb6tlJsvE57NguANKt\nqwlXX4WZNzMr/Y+USopppIM4KWwcgpiksQDIYBMmOKp+t8p9HKSVg04VAGszfVSECgAInD6RG7Tc\nych4C9am76NXX4JWuggAESxAlBaM8+h8hsuwJ2OFEDnA74HPSiljwI+A6cASlMf/X/27HuPwoz76\nQoiPCSHWCSHWtbW1jXjgPsdmq/smFjYAs5g+0K5lKhnPwE0TU7hev5waMZnL9eW827iBqBbJyvnT\nbauVkRc6emQSdmwnvW/+GLtvWJIcWWcx07mZCzDRAcglQi4RQgQIMbqwTY+Ms5E97KGBPW4bAQRx\n6fLHZDcFQuczuZXZvIRxQSbbka6FTHdjrf0msn0rTsNLZF7/CtaabyGlO95D9BkBwzL0QggTZeR/\nLaV8BEBK2SKldKT6i/8EFZ4B5cFPPuzwSUDjkX1KKe+VUi6TUi4rLT2h+JrPCWiV7TS6zXTK7oFt\nadIDbdcLVRRRwNnaIgpFAVfpF1Musvu7F5rnIUsHEfA8PmmT7tyS1fMMl+fZyAOsxMJBIGinhzhJ\nLGxsRj5ttFc28HOeIUyAcms2B6wQEsl7Q0XEcOmRDhcHcofd30E7zUtpNTHc6lg8m+rBHufJXLdj\nB9Yrd2Fv+gH2wRVgJwGBjFRCXwMyth+7fhXSSozrOH2Gz3CybgRwH7BDSvmdw7Yf7ra8E3jDaz8O\nvE8IERRCTANmAmuyN2SfI7Glw5POs/zRfZ4pVA1srxLlBDyvNSRC3KRfzU361QRPcgLyuGiD0UC7\ne1v/RtJNz9G7936s2J6xO/cxCB/mtVdRBICLZAplRMXI5yXqaAegk17y7CokAgl8MFpKgdCZrAUw\nxLEeao9mt53iE937uStWz4pUN5/s3s9Xeht4JtV94oPHEiMEQkd270EeehaEAUKHQ38GLQjCQO78\nNc7ex8Z3nD7DZjge/XLgDuCKI1Ip/0MIsVUIsQW4HPh7ACnlNuC3wHbgGeBTfsbN2GIIneliKlPF\nJHbL/QBoaBSLIs7WFlJKMTO1GspFKaYwx3Qs0lYTkVq4As3z6IWZixYswWpfT3zfg0jpvm2P/heJ\nhRSSA0ADHUyhDID9NNMjRzZp+rzcyD6Vl4BEslG8CYCG4B97DvJf+VO4v2g6YpiG/teJdvqkS6kw\n+GFvC62uTb7QWWBmJ4w2WrT8aVA0B1wLjAiULwNpg2YiJl2q2kJDFM7C2vDf2G8+MK7j9Tkxw8m6\nWcWx4+5/PM4xXwe+fhLj8hkhl+oqNbJNdtDktGBhkxIp5ovZzNdmv23jCFVeiTByMAsX0Pfm/wKg\nR6qwY3sBEFqAns3fQLoZ8ubfiR4sHvMxJckAvGUiVkcjNIKJ2LS02Mo+JDCdSg7QSjjYzFVOMQ2W\nyQ47xVY7yUwzPKz+1mb6WJmOMV0PclUwjx8n2jCA/y6YSo0xugnibCLMXDWxZieUwQdwLWS6R7Wl\ni9u2Gdm5A9m5AyvTi7HwrxHCX4M5EfH/KqcZpaKYm/VruFq7JOvx9+FgRCcRrXk3QgvQPwcv9DBI\nq38HXCuGtGL07vwJVmw36dbXh+4wC1zOEgDSWCxlBqBSTvcePXV0TFIyw0OsRKI8nj5SODjoQvLR\naDFfz5vMl3OruTlUOOwxvZiOIYEe1yEi1ESxAKYb2U1zHS3GnPdCjrcWoHU95HiJcy2rIXcqALJ5\nNeROUe3W9dhb7vUnaScovqE/DSkUBUzVxnfBjrTjA209VEK/0TdypoCrPGw9XEnvznuJ738Qy/P4\nx4KplGF4H/WN7BmI27/M8SeIpZS8LLfyB16hk14EUEQuLXQhgKs4i2pRQoluclUof9ix+V/G29jm\nTWTa0uVPXkxeA/41Vk+rY43qOrOJMMIqhz7qTcWleiDitXsPQqH3lNh7CEqXAiDbNiI7to/DaH1O\nhG/ofd5CRlpkZOak+zFypxEoWkJk2u2YhQsG3zjMGEoAL8MkfvAPJ33OoXiGtdgoTzOIORDKWcC0\nIY9ZJ3fxE55iPbtophMNDRB00IuGxkwmsUAMffxQSCn5eaKNvU4GE0gj2e6kCCAwhcbKdIxXM72j\nucyso+kBzHP/Ba3iXPRp10FSTURTvAASraqdUw2pTtUOFiDtNJmX/h/OoWfHZ9A+x8Q39D4D2NLh\nIecxHnQeIyNPzqvUjCg5Mz9MqOxCzJwpGHnKA8y0rSFQdpE6X9cbRKbeCoCbqMN1bex4PVbvvpO7\nkCM4hDJKZzOTJpRRmkEVy8WCo/Ztkz2sljtYxVYSpClFTSi7uBSRi/Da/esTRooQgjvCJQjAAqbo\nQQwgg6RA6FwdzOOqYP6o+h4LhB7EWPBR9KlXgxlVG3v2Q9BLne1rRvS3093I7t2Q6cHZ9TBO66bx\nGbTPUfiG3oeMzLDG2USj20yaDBks9juHsnoOI6pivNJOeqEcQNoIIzo4ju7dxLb9D73bv4ebyV6K\nYQ5hNARJMgMGejHTj9pPSsmDPM9rqPCDjkYb3QgEJjodxNDRySfKtZwzqrFIKXkg2Y4ECoVO3HWw\ngSCCEs1gRTrGSxPEoz8S4+zPghEFM4K+6BPeVgcx+SqVfgnISIXK1AFkx45xGqnPkYxIAsHn9MOW\nNk86z9JJNy2UECRAmgzr2cLsYxjD0RIsOZdU8yqQGezefaBHwYmTanoBEShBZtpJHniIQNECXDuJ\nMHKydu4UGVwknfSiIXCRrGIbt8sS9COyRBwvxDObavbTgoNLOYUkSdFDgsXUspwFaKPMLnk81UVQ\naKSlS5900LxIVhpJk2NRqZnMmSATskeiRSsxL7kb0EBog8vN+g5Cfwa1FQPbW6hnTszrOBPxPfoz\nnDbZQSfKezYwSHvx6xAB2mVn1s6jRyowC+YAIIQBTsp7IzAwcSv0IE6yBTfZonK1s8S5qPO20kUV\n6mmihU7ipN6ynxCCiJdyuZ8Wop7QWzOdXMwiFjKNs5k9aiP/TLKb/+prJiZd5hkhLKBDOsw3QmhA\ni7RZGohSO0aG/oCTos89uSUtQjMRmo4QAn32+9Fqrsdt8tZDhoqQfQ2AA0YEfcqVJz9on6zgG/oz\nnJXuqwPtdroG2nGS/MF5ht3u/qydKzrtdiLT3kuwfDngIAJFRKfcolIv9RDRGR/GzcRw7TjSzZ6h\nXyZmcwsX8h4uQfOWhAhUaOZwpJQIBBqCaorpQi2oupwlzBDVXCnOIiJGl+P+cjrG75LqxlkidKLe\nuaNoLDSjuEC1HuBvo2Wju8gTsM2O87e9u/hU7y463Oxk9eiTL8OYcSsiT6VYkupUoR0AO4HbuTMr\n5/E5efzQzRlODlESJAEoIp8mb+KymELa6CRHZG+VpmbmECpTC7vyF9+FZuQgjBAFi+8CzUAzc8hf\n9HmQNpqZvdANwDRPseNGeT6/5UUcXMwjPv5CCD4gr8LGYQ+N1NHOpSxioag9qXO3ORZfjNUD6gvX\nKR3a7QQG6obzYLKDz+dUclkon8gYLDh6NtPFGitGEEGLtPin3r18O3c6xVp2Vkkbc/4COx1D9h5A\n6IaXSKshQkVZ6d/n5PEN/RmMlJIQIQx0bBy6iWFiYGHTRQ8fMm4bs3MPTMgCWnBQ7jbbBv5IAsLk\nA1w15Pthz2NfyoyBxVUnyy/ibYQRJJHkCp20dEkg1VOFgAV6mIuCeWNi5AHuTzbTIi0miQDd0qZJ\nZviH3j38IHcWOZp+0v0LTcdc+ikA3NghnEQL+tRr0QqyN8fjc3L4oZszmBfcVzlEPTYOJRSRJIWF\nTTmlJEmx2tkw3kM8LVhvJ0h6fm6/kdcAHUGPdFkezCUvCwZ3KIJeuKpJZpilqye0FmnRdZIptMdC\ny5uCedbfoxXPy3rfPqPHN/RnMM1S1QEoppCMNwmbSxTHy6dokH490GzwwUgJ83U1wSqBs8wILip3\n/u68ybw3nH29Hyklv0+18ZrVQ6s3sX2unkudqzJiarUgk7Tx19TxeXvwDf0ZzHwxiygRVT+WPqJE\n6CVOO51EibBAmzPeQzwt+J++ZrY5KUqFjg5ssBKUCJ1rgvlcEMwdtnTCSNhqx/lJqomvxw9xmaEW\nYL3m9HKdqcJk+9w0O5yJrycvnQz2lnux9z4+3kM5pfEN/QSnzc3Q63lk3dKi08uY6JM2rW76eIce\nl/1uHRvkG9QcViNm6mEVH2/WrmGWdnKTkGNFn9OJewooX6/L9HFd+5tY/TIP0sX1wih/GSnhC3lj\nV2Hzx4kGQH3B44cVWIkfVuzNPKYo7cRCdu/BbV2Pe+Dp8R7KKY0/GTtBaXHTvGZ38RurkTxh8C6j\nggesRlwk7zerecpuoV1meL9ZzQVGAZXayHKvu2UPNjY7GRQT24Mq93eOtuSo0oLdMkab7GCGqBm2\n3vpIiTtd9DgtVJqzSMsE7dZBKgOzcXFoyeymzJxOu3WQN5IrKDOnszhyPc3WLnL1EnL0YlqtfQRE\nhAKjgk6rHheXEnPKmIx1OLQ4FglPzXG2HmKnkwIk5wdyuCU8dhkpDXaKRi/+HkHjTUdlVZnAZq9e\ngAByxcT/+rt9nsLoOFfdOtWZ+H/pM5QfpQ+yxe3FROBIyU+tOkwEQTR+ZtUpESw0fmU18ITVwlfD\ns5k0TGNvSYsDsg4AAx3X+6chMDGZIo72NP/svEiMXtAkeeSyy93HWdpCollMv9ya+DMxp5VWYz9C\nQIu1h8bMm+TrZRzMbOJgejOFukqT7LAO0ZjZwbbkcxgiyLzw5WxJPINAY3HkOjYnnkYiuTTvowSz\nVA93pNwQLmSXneTxVLdn5JWHfVFgbMI1/fx3soEkLjpqHqBbWpioAil73RS56JhCEJrA2vEy3ox9\n4E/IptVqQ87k4x/gc1wm7l/6DOdio8gTvpJoCHSvHURgIsggyUEngKAHm2+kdvOV1G6sYeiB73EP\n0EEXAsFC5uB6y/7P1ZbwQf09FIqjRbWSXq59zO3jVWcdO+VeNrlvHLXfyVBhzgKg1d5Dvl4OQLfT\niEEQgU7c7UTVzjJwsGiz9hMQEWyZ5mBqExGtEInLjsTLVAXmUmnOJjCKcoHZ5O9zq7j/sDTDPxbP\n5ubw8HXrR0Kzk+EzvbuJCo1pWhAHSOEyUwtjoWQWZuthPhedzG/y51GgTVw/z6lbiWx6FYRAFM7B\nOPsfx3tIpzS+oZ+gXGmW8D6zEg3owqJahDARdGCTh0EUjXYsJFCEQbPMsNmJETuBdIAlbdbIjQDk\nEGEHuwHQ0ZmlnbgMnhDagExCKgtyxoczJbgI4cWN69PbMD0JgoOZTUQ0dfNpsLYN3ARa7X0D7R63\nmVxNZa+k6aVAr2Rh9JoJUfFokhnk76Ll/HNOJZExTKM84KbY7STZ5iQ44M3faMBuV92kBfCNnFrO\nNfPGbAzZwI0dwK1/GTQTpI3s3oOz8Z7xHtYpzfh/C3yG5FGrBRfIxyAt3QGPvgiTOC4acLaeR6en\nyPg3gSkUa0MX/o7JXtY7WwYUHKupII7KvJhMFR2ya8hj+w1wm2wfeAKIE2e/mz2VS03oLIpcD0BC\ndhMSeYCGTRrXddEwkLj0Oh0DN4E2+wAhkQtAi72HEkNVP3JGKSM8VrwnUswNY+TJ97PFi79LKQem\nXA+/rYzdLSbLuA4ICdFqQFPG3k6O96hOaXxDP4FJewb1zkANfV7mRCVBWj2P+kq9mOVGEYUYfDow\nlevM45cOfNlZwxu8SYggIYK8yV4CXvsAdax0Xhny2DnMIEyIOhpJkCSASSsdPOus4qHOnixdMZQH\nprMkeiNBoiRlN+ASIIIrLFxsAkQxhIlFiiBRQiKHlOwlSJRcvYSFkWu4JO+vmBJclLUxnQrcn2zm\nkbQqDDJbG6xbO1UL0S90MFkLEToFvvJawXTMi+5W9WpxIZDnh25OkokbpPPhDrOaFplmvpHLR5jM\ni3YHW9xe8jG4UC/k3YFKyrQgy43hZXA4h6XZDfp8/ZVQB732Y3GusZT57myecp8lRh8hwvQmJ/F6\nn8PWzj7eW5S9Yhll5jTKCqZRl95KzGlldvgS2q2DtFp7mR2+iLjbTV16CzNC5yGR7EmtZmpwCYVG\nFQDZUXA5dXCk5Kl0BwABBHtkaqDd5lpYQK0W4j9zp6OP4SRwNpHdeyCpFvRpNdeiTaBiLKcivqGf\nwNwaqBhoX24Wc6lRxAq7nRotzGx9ZJowe90DtNJOAfn0EEMiiRDGxSVFmiViPtO1miGPd6XLH9xn\nSKNiv1t6TX5VNwkXmGQKYo5Lnp5db3FycOFAuyIwg4qA0p4JalGKjMHMoCXRd2T1vKcaP0420o1D\nrRZkn5smIx0maQHq3QwZHGbqYb4ZrSUqTpngDTLeBEhE4Wz0SZeO93BOeXxDfwqhCcG1JwjPDEWr\nVI/1Dg5LmM9G3sDC5j36DWSwjplpcyRBAlhYbG6bwxPt+WjAnKDB9rTNt5t7+Er16GPQcaeLQ+nN\nTAkuIaoXnPgAnwEs7+lsn5vmIiOPVXaMejfDtWYhK6wuFhnRUYuXORY8ezdUzIPF78rmqI+PNu16\nRNFsRN40xBhOYJ8pTPyAnU9WqBDl6OhUiDLm6DMop4RF2lyiIjIsI68JjQu1Zdg4CLMTAwMb2J62\nCQkoHqU3379qdGfyZeoyW9mdHHqe4FTCRVJPDz/kNTbROGbncaSkx9PuDyLY5wyGbZrcDA/nzedv\nwlVDHm8fthDJOYbG2a7n4fn/goc/Bek4/PIOeOhvx379khAaWsEM38hnCd/QnyGkSOHgkCZNVES4\nybiGpdrRxbGPR8YuYnX7ZBoShaSkxBQQFpCSsDM9ciXEbzR1M2trPQ909NHnrd7MyFM7u6KObhJk\n+C6ruI81NNDDDlrG5FzNTobbe7bR6mY4W88hjaRRZjhPz0Ui2eLE6TlOuu2jqTZu6tnKY41dvPpT\n+GIFPPftt+7Tn+wigS9Phm1PweZHwTq1/0xnHL6hP0OYLaZzuXYhy7XRFbUGsFzBc2017OstpVAX\nWBKQMNXUebInyTM9wxPJcqXkVx197ElZOMDnG7p4rFuFa4qN8ZMsOBn208kTbOd/eZ1fsI4eUmRw\nCGNSRg6pMUj3tHBJI2mRFuudPjRULHa108slZgHfiE6jSh9aoTImHSTwxD0OT/wLSBd2r4S0ytLE\nseB3d4JmwLQLUNZewg1fgdfug1hT1i/JZ4zwDf1pwEt2J/+d2k9M2mxyYnw7tY8m9631UDWhMV2r\nOSnJgpkhk0+U5NLmuDgSAkAS6HRcgkIQ1Yb3cVrVl+YLDV2s6k3x/8pzkcDDPXNJyfcwPXzuqMc3\nXuykjZ+zltc5RAiDJno9I29g4fA8e1lN9tYb9DNZD/GLvDncHiwlV+i4gA3kCp2zzFzOMnOPe/wH\nQ+Wcfdtsin9aQn4VlM+F/a/CC99V72sGVC2C8jnQX8ZWD0DjVvjjl+FH74CYr2R9SuBPxk5weqVN\nAI2g0Eh4HthzdjtPWi18IjCVBA7fS+/HASqsAH+wWsggqbUjvOuwrJ1s8e6iKCtiSXambSQwM2iw\nL23jAM3W8BQlczQwvZDPhkSGiBAkJPy0XeOCHIdSc+LHZV0kP2ctGRxCGDhIDDRmUsJWmtGAuZSz\ngQYEkMfYaL8Xaya3hcp4V7CUHyUbCQuNj4YrT3hcoguMgCBcF6QXQAPdy0vtFwYVAv7iPvjxjZDp\nAz0IThoOrIZwPnQegO9fBf/wKoQm9mLbMx7fo5/AtLsZPp7YyieTb9DspPl08g0+ltjCRruHdmnx\n9fQeVlldA9nxdU6SjJeB0XUCeYLO9D5Sjlro1JOpI263D2tMtUGT+ZEAEvXhqTa0gfO3WDa7U8eP\n1adcyYcPtGNJKNAFu9M2CSkxgKCAc3Y0sjo+evnlscZFsp0WOklwiG7q6aGbJEF0bFx2004+IVxg\nM41UkIOEMQndHI4uBJ+OVA/LyPc0wjcXwT0XwbK/VNu6DsCca+GKf4LL7hzc9+AaaNutjPu5H1Lb\n2vfABX8LCOhpgNbdWb8cnyzjG/oJyk6nj0etJiTQJS2+nNqJKyGJy263jxJMXGCN202NJ9z1mtvD\nTC8085Tdxk6n7y19xu129ve9SFtqB9tjj7K569d0pvextee3bOr6FTFreNkhX6sqZH5IldZ+IZ7x\nlBHhP1pivG9f65DH7U1Z3N3Uje4tzHJciekt4HFRxsoQyuBPRCSSh9jMr9nIE2xnFqrubQ8pzkfN\nLaSwucqrNesguZUFfIRzOI+JM/egGaAbKuyy8jsQyFHbnv9P6K5/q3deuUCFbYQGr90LZlh5/s/f\nDcFcMILQvG38rsVneJzQ0AshJgshVgohdgghtgkh7vS2FwkhVgghdns/C73tQgjxXSHEHiHEFiHE\nWWN9Eacjv8o08LTdTiE6EU/AzAAK0EkgSeFQhokEGmWKqZ72y16ZYImWy2wtepRGfV3idRqS6zgY\nfw0NA0sm2df3AhomEocDfS8Na2xRXeOqvBBLIiZFuoYFFGmwJBzguvzwkMf9sC3GfR19mEhKdUGv\nhPaMzRRTxZc3JdL8dGoJSyITs8RdHd28gQpK11LEdtRNbTGVrOIAANMoZIUnFFdChApymU4x2gQq\n8pFbBtd8AeyUMto5peDaIHSoWwfNOwb3La6BK/7R2zcAuZVqklYzIFwIdhqe+OIYDtbXoc8Kw/Ho\nbeAfpZRzgfOBTwkh5gGfB56TUs4EnvNeA1wPzPT+fwz4UdZHfQZwW6ASHWjGIopOBJ1ObGygCJM+\nXLqxqBBBMkAdKaYIFTIICZ1vhueQd0RhierwMgIil5TbhYtNUMvz2hZhrZCY3Uhb6k0Sdgf2EZO5\nR/JwV4I1CYs+xyUkoN2FD5fk8PXqY8sxrI2n+UNXgoCAZkcScyRBAd0SOmyHoICEVBO1bxfdThvO\ncdIPk1i0op6KnmQH96K00QUMGHOA9TQMtA/SRdoL01zCdMwJKiW2+F1Qc74y2p37lecuHWjbA5sf\neeu+y/4CJi0FJwOd+6BsjroxdB+EacvVTWNM2PprePJj0Lh2jE5w5nBCQy+lbJJSbvDavcAOoBq4\nBfiFt9svgFu99i3AL6XidaBACHHiwKHPW1ik5/FeoxIBtGFRSRAd6MPBRBBCkAFiMkM+Bi7QIFP8\nVWASHw0cu0hDrllB0JNOKDJnkHZjABSatSTdLkDSY9Wxoev/2ND1S9JO75Dju6+mhM+W5WEBC8MB\nvjO5iJsLhs7o+VFrDAvI0zSuyAkqIQUJtxdEiEtIS/hmVQGfKR/bWb2Y28kBawf7re28kHqEVakn\nsKVFggyvcZA+Bm80P2ct32UVf2YXW1FhtGpyySeERHnsZV4MPkqAyeTjohTzb2MRSxl6odJ4Ey1W\nhh6UJ9/vxesBeP7b0PLm4L75VTBpiWpXL4VW773KRSpL55X/zfLgpAsHX4RYPbgWrP0hNKzL8knO\nLEaUdSOEqAGWAquBcillE6ibgRCizNutGqg77LB6b5ufdTtCHrFbBiY9G0nhwICxT3mFR0wEXdjk\nopMnTK4ySggfR9Nkfv57OBh/GcsdXPGSceMoP1XSk6lHwyTj9rKl+0EWFbyPoH50mt78cID54QDv\nLIxQbupEjpNaeXdTN8/2przjTJ73vPb5YZNHu1Xu/aygwV+WHD8d8GRIyyTbMqvpcJqIyxj5ohgQ\ndLmtvJ56moOBArbrCVrp4xbmA6CjoSF4kX0EvOBLA70I1G+r3ZN4FkCcDDHSmGgspoIlE9jI93Pt\nl2DutfAjpQzNR34HP7tdtdv2qrTKfm6+GxbeCj+5Rb2ef6NaPIWE/GyWvj34EjSsgbY3IFwCRlit\n2tp0H1Qvy+KJziyGbeiFEDnIYEO/AAAgAElEQVTA74HPSiljxylQcaw3jgq0CSE+hgrtMGXKxJmo\nmkhcY5TyJ7uNNC75wmCSMNjtJtAQLNHz+OvAZLqkxcOZJt4fqBqW0JmLRVNqEwB5xiRidj1xp4Wo\nVkrS7SLpdhLS8rFlmrQbY3P3b1hc8BfHNPYA04LH14q8tzXGD9rUk8EF0eBAaGZh2GR7UikrzguZ\nPDKj7Di9jAxXuthYBEQQKSXr0yvpdJtJyF4MTDR0emQHGhqg0e42ITMdmKEqcsXg/EAv6YG0SYFA\nAiY6GpDGIYiOBDI4FBOljBzexQKCp0jWsqZB6ezB18W1KqVSopzqw9FNyCsffH3bD2Dbk6p9/Zey\nMJjWbbDll5COKcOumWAlVFsPQKQkCyc5cxnWJ1IIYaKM/K+llP0RvBYhRKXnzVcC/ekW9cDhsYNJ\ncLTYh5TyXuBegGXLlvkzLsfgGrOEx+0WAgj+IVjLNC3CY1YL0/UIi3UV4qgixPzw8D3hgBalOnw2\nDcn1xOx6onoFcaeZuNtGVC8l7rSTcnsIinxcbDJuH5u7H+Ccor8ZdlHwhozNoYzNBTkhftLeb+QD\nJFwXB6gNGNyQH+ZbSYt5IZOHppcd94lguEgpaXXq2WNtod1tZFFgOZ1OC/WOiqfniWJiUsn55osS\nejyht3xRTKdIYglJksH00HeygM00sp4GbFSopt+LLyOHDuJIJMup4RwmUcrIFEUnAocveEr3MeCS\nGce4f8cOS6jqaxtsH6fWzYlJdUPLVtj8f2qSIKcSEpYK2QRy1YDspNrPZ9Sc0NAL9e2+D9ghpfzO\nYW89DnwI+Jb387HDtn9aCPEgcB7Q0x/i8RkZVVqIb4ZmkysMqrwMmmwsgpqWcxlSQmNqPXGnmZLg\nHNrTbxJ32igyp9Np7SUte8gzJtFnt+BKi5jVSH5geM/oH9rfxq60zb1Ti+lzlGs4O2jyR08ioSag\n87HSPGaHApwbDZKbBXnjRns/jfZ+6p3dmASQuGzOvIxxmDp972EVtPqNvIZGj+yg0BGcm4GrA7MG\n9plOMdMpJozJKg7QToJFVLCFZiaRz3tZjIukilN3tdDDn1A/jSA8+y3lyYsjPP1+fvd36mcgCo/+\ng2prOhSeTN3u1/4LYnVqokAPQl+T+qkJSHWq0I0ehHPvPHFfPkMynG/YcuAO4AohxCbv/ztQBv5q\nIcRu4GrvNcAfgX3AHuAnwCezP+wzh9l6zoCRzya1uZcxJXIhYb2IsuBcNAbdMlMoz9SRFhG9GFum\n2B9/Ydh9Fxk6uZrg+Z4kcak+ZC7Q6ih38dK8EIYQXJkXzoqRB1iXfo56ZzcGAfqjhwam9xp0DMIi\nCoCGTti7xiAR8rUSrgrfxs3mNQSOkSVzPXO4kumUEOUSavkiV/BOFlBB7ilt5AFqL1I/7bT6j1DG\n/s9fP3rfad7kbSYOpveRdB1YcfcoT96xE3o9H7Dm8sFUyrJFg5oLeZOhdAG0bR3lSXxgGB69lHIV\nx467A1x5jP0l8KmTHJfP28CU6AVMiV7Agb6XccmgYRIxSui09gKCsuA89idWAlAVPouk3UXYOL7m\n/M/ae1kdTyNRmTSgjHzSld50L7TZ7tAdjJIgIZLEcbApECV0yVZsLEq1STS5+3GwKdWqOei8iYvD\nTHMJXW4LU4w5lOonnji9gplcwcysj3s07EnaVAV0IvrJ5+an+5Q3b6fh4FoVi3cySqFy+9Pw7ntg\nqTdBe/sPlZF/4wmoW69C504G1v0aNj4E778X5g23BkyyCw69CtIGhJLDdL3V3LoJGS/jK6ccDr0M\nHTtgzjtP+nrPVPyVsT5EDDXRlWtW0JjcAIAhQjQm1wMg0GlKbmJ91884GH+VPmto2d0DngbOJTlB\nHvVCNUvCJo90J5CoidePl2bHC5ZSUmfvJuZ2kvJi59P0eQMhmnJt8kCIpkSrIqip9M8KfSo1xlzO\nDl4xLCM/kVjRleK8LW38xa7OrPTXtsvz5FE6Nk5GhWM0Tc2Ftu8f3FcIOP+jqp1OqH2Fd/fOxKFz\nuLptqW547p+hYbXKrEFC/auQ4/0t6l+FfC9BI5gHZ/8tnPf3WbjaM5dTIz3AZ0wpC80lYhQT1PLY\n0PlzpHSxZRIpHEAgcUg4HYCgLvEaLamtnFv88WP2dVdlAe8pjBIScN3uFmwgTxOUGDrFhuCRGdmZ\neAVocepYn36eiMjBIIBFmv3OdkJEsLFoceuYps/ngLOD2YGllGhVVOo1FGglw55YnkhIKflek1rA\ntTOZHe2cDz0AT34JNjygDH7ZLGWw7RQUTIa+Vkj2KBEzgJxi5XDbSaV22b5XGfyp58LyY38kjkYz\n1aOdmwKzwsuuSajHi0gZJFqhpw6W/wsUzVB3Hp+TwvfofQDIMcoQCCyZQOIgMHClDUg0DC9+qtoB\nMXR2SUATLIoEmBUOcLMnh+AIwdp5VTwzqzJrRh6gQC+hTJ+EJS0s0uSIfHJEHkn6yKGQSfpMFgUv\n5ObIX1OqT0IIjUK99JQz8mt7M1y0pY0fNMV5pVdlBS2LZqcEuhCw7n610tUIKUVKO6Vi8KkeeP1n\n8OafBvevXABXfV5p3rS8qYx89RI4/6887344bP3VYJgmlKeMPMCkcwYfL8oXQvEs38hnCd+jP42Q\nUq1szTEqMEaR82ZoQWbkXE1TcgtxpwVTRIjoxfTYdWiYFAVm0JnZQ9xpxXYzJzzH56sKKDEN3lcU\nHe0lHZeQiDBJn0mrUw/ANGMBZcYkDlo7qDUXEtFOvXTHY/F6b4YdSZtXezOYAiwJrbbLa7EMF+Sd\nTG6jsrNXf0Fl3Ngp5ZnXbwQrBcXT1YKq+TcM7l+/UU3UShdmXAqzroRLPzPCkzasUT8rz4H27apd\nvhgW3QFlC6DnEMy8cQR3Dp8T4Xv0pwnt6d3s6n2GN3oeZkfsMRqTG5CjEISqCC+iMrwIwPPuFS7W\nwApaicvevmdP3JdpcFdVATNC2fE+j4Xj6cpU6bXUmvPJ1QpYELxg/I28lPD978Nzz510Vx+viPL1\nqbm80pPGkioU1pCyuHFHB3/qOr4m0XBYcIPKbiydCdf962Dt2Gu+ANd9SaVT9mNnBhdTlc4ahZEH\niJYDGjStHRS/n+4tz61YCrNv8T35LON79KcBrrR5M/Y4AKaIErMa6LEOEdQKcGSajvQuanOuHNC5\nOREV4UWknT7qkq8Rs+uoDp9DQ3ItfXYT5aHFdKX3kmtODPmiaeY8KvQphER0YoVkPvAB+M1voKwM\nWk6uZuy+lM09DXH6JBTrgqAmabQgTxdMC538V7hiHnxxO4RylZHPq4JYIzz5RZh/RBZNzXkq++bp\nr6r2qLjs32Dn47D7SdCCcO3dEDpxgXqf0eMb+olOrEMFTMPDC384cnBl587YH9GFgSXj5KUnUR5a\nOOyQztScCzG0EAmnnbA+qEiZo5cxs+SqkV3DGBMeb+/9SFIpZeQBPvShk+qqPu3wju0d9DiSSlPD\nkcrIF+iCR+cWMyt87K/wrTs6aMo4rJhfgiEEXbZLdXBoLznHUxgwgnDWe+GFe1QVqmNx9vvV/1Gj\nB2D6NZBsh4qzfCP/NuCHbiYqXa3w4sPw7++Gu++Atc9A5tiP6ZowmJf3TvKMSQP58EWBGbiksWWa\n6vAy9sdfYkPXz0kfUYzkeFRHzmJm7jWkHPWNLzBrKA/Pz8rlnZa4Lvz2t1BXB2FPl//RR0+qyxbL\nocdbaHZerkmbrdrzIzqLjjEh2+e4PNjaxyuxDHtSDvc2x7llRwdLN7WyOX786l/9TFqqfpYdY3Vs\n1uhPm6w+9WoEn4r4Hv1E5b7Pw6EdEAxDqg/u/3c4uB3e8w/H3L0oWIuULrHeehxSZNw+VDzdpjO9\nDw2NjNvHlu4HhlSkHIop0QspDE4jz6hCiInpGxyydpGQMWabZ9PiHKLdbWSOuYyY20G9vZfZgbMI\niqGLomSFhx+G970PLroI3vlO5dXX1Z34uCFY0Z3iobZBldF9KWdgzqTmGPMe32vs48VYmpU9GcIC\nbAnfbOijzNQIaYKwNrzQ1sKb4NPPQcn0UQ/dZ4LhG/qJStLzvHMKIL8M9m2Gvp7jHhLUcwmIPDKy\nlz67GZNcbOIk3U4CIpeMjJN2YzSntjA1unzYQ9GETr456WSuZkS40qXB3steeyuLAxdhSYvt1uvM\nMZcRFlE2ZV6mxphLqV7N+vTzlOmT2WltwMUh5nYSczvpkz10OC0YGLS5DUS0XGaYi8Zu0KkU3Huv\nisnfeiv80z+p7XfcAZYF5sgnpD+9t4d222V6SKfbctiSsJka1Fmea/Ld2oK37Ls/afNvdWo16cKI\nwdaEmqSeGzb4REWU95aGMUYwhzHZrwt3WuEb+olK1Qxoq4OOJiifprZNnXvcQ3qsejIyRq5RiYZx\nWFpkLR2ZPYCgMrSEgsBUUk43Ib3guP2NB3G3l5XJ36knEFK8knpK5feTZkN6JS5Kgjie6cUm4xn3\nLlyvRHmTcwDZXyDdVZOghVoZk40xli9oboaVKyEQgNdfH9wuBIRCKoRz883D7i7jygHVnW7LoTyg\n05F0aEk7fH5u8VH7xw/TFZ4a0NiRUKXhTCR/WTZ0QRifM4OJ+RzuM6gTO3kObH9VtU+w2KgyvIRZ\nue9gbv4t5JuDGv8VoX5PVjI1upw3uh9mfef/4cjMGAz85Gi1D+Fg4aIMl401kEJpHdZWRl7t4xwm\nLdwf2hCHyTMVaeVjH7Y5eFAZ8nT6rSmVDz2kYveNwyu83s9X63ppsV0MoM+B7UkHU4ADpI6RNvux\nPYNPe6/1WdioL3fyVBQAdx3Y9yx0H1CvD74MbTuOe4jP8fEN/UTlL++C826EOq9u28W3waW3H/cQ\nTeiUheYS0KLomnpYc3FIOINa3u2pPUhcJA7NybdHEdCWLj+39vOEfXxj50ibzdYrSCRlWn+oSFKt\nz/BaLpO1WYDAxaFan45Aw8WlXExGxwAk+ZRQqJVRoJVyReg2FgTOH9PrA+CGG+Cxx6C4GBwvN7y0\nVHn4AHv3jqi7uREDgfLKP1gexkAtlPpoeZjpx0ipnBkazKi5vVjd1FzgB7WnWEaLdGHNd9Xq2Y33\nweb7VXWpNd8d75Gd0viGfqIiBKx7RrWLq+Cdn4He4QtZlYbmEdIKAJeGxBolYwAcSrwy2I6/ztqO\ne+nODFeNanS86cZ41m3lIef4E5O6MJhpLqZCn0qTewCAHFFAo6OMZFjk0OweBCQBQnQ6zUhcdAyS\nJAa8/ZAWIS2TnBO8kjy9aMgJ5G6ZxvW845jMYB9ZVmkkuN6xU6ZAgRcSC4ehtla1+43/CYjZLpdv\nbeOxjhRlhnoq+XNXmjleGmX4iKe61b0ZFm1sYXJgcHuv4w48z9xdP3Td3wlFulfpKaz/X2jZrLaF\nCuGA93Q05eLxG9tpgG/oJyoPfBMcT7gq3gM/+ix86WY4uG1Yhwe0CIsK30dV6GwsmcTFxhAhXC/K\nLdAx9TBpt5dtPY+QdmJZv4RNTjdtMs19tpJANIfxcZsfOI+ACCFxCRCkSCvHwUZDZ6o+lwxe7Vnz\nfJKoCetF5kUDlaPmGueSIUVcxojLoY3cGreNzzlr+bm7ixVOA59z1vC/7ptD7n9CvvIVdXPeuBGq\nq8Ew4NAhiMXg61+HL395WN2s6c2wNWHzbE+ampAqW3gw42IjeU9xiE9XvXU9xfaERUPG5UctSZZG\n1M3gV+0plnjt7cnh3WDGlb5m+PPfw8tfg/adapseUoVHQC3bnTlc/WOfY+Eb+omKGVTLwM+6GlJx\nqN+tXr/2JGx7ZVhdBLQocafVEynTkUhsmUDDQBM6KacLDRNdmIgsfxT+zzrAf9o7+Y61C8uLnIuj\nSwcfk3JNzS9U6tM45KgvfqlWzS5bSSjnUsBuayMAJkEanD2AKigyxZzFeaFruTh0C2X6sTOFHCnZ\n7N0YNstOfiv3I4HAyfwOvvMdJXugabBnD9g26DqUl8MXvjDo5Z+Aj+zpHigIvz3h4AIm0GFJfteR\n4pGOwbUUjpS0Ww4X5Kj5nI0Jm2VRY6B9ZX6AZ+afArVWhQbCUBr16R5l2HEhVq+ULjVd7eMzavzf\n3kTl9s/B3Sug1DNWkVyoXQiv/gF++5/D7qYwUEvUKGN27g24nq5IgTkNIVVMN6qXcW7xxwkMUx7h\nRKx3uvhy+g1WeBkvvdKix5ssNdF40Wk73uEAVJu13Bj5CIuCF1GuT6ZSq+G84LVUG7WUiCouCd9K\nlTmNAlHK5aF3UWFMJVcUcXHoFsJalJCIUKwPXXJxDzHWyHaC6pYHqEncD4oZI7/gDRvg4othppfV\n47qwbJlqOw4sWDCi7lKuuhnODalVsAA1QY1lOQbzIwbLcgZXNq/uzfCthjhr4xbLc5WxXxe3uSJP\ntZ/ryQyUcpzQRMvg+u/CvNshkKP0b5wMBPNV7Vgno0I7PqPGN/QTFSHUYqlLboPaRSrNcpcqBEJ3\nK/z+nmF1MymyjKWFd2DJOBIbgUGXtQ+bJAKdXqeJjvTurA17jdvJXuJowEyRQxcWLjBDROnD4RWn\nfVj9GMJEFzoXhN7BeeFr0TSNs4NXcFHkJkwtyLzAeVwWeRcRPY9acwFXRm6jUC89Yb+ulDzo7CWI\nRikherHQEFwhKglpo8g2/tOfYNUqePllOPtste3pp+GCC1T7kUeG3dW/HYohgAVhg20pl4SEuWGd\n3WmXHUmHlxaWDqyGdaXk8wd6CHoLo3anHAJeYH5zwsYU8P6S8JASCRMOPQBTL1b1YQFqroQc72Zd\nvgRyJ4a20qmKb+gnOrmFMG0RA4mDNQtUiODF38JD/zHsbspDC5iZey1hvcAL5WgEtTzAZWfv06QO\ny8wZLa867ZynFWEgcIFphIl42eBRafBxo5a/Nqed9HlOBhdJJxnSuPRiUUAAF8nLsgVrNJOxd94J\nF16o/ibr18OVXnXN115TIZunnhp2Vw0ZNZ28LWlzkeeh70g6/FNVlF/OemsJR0dCqyXxHgBIOi6W\n1067EkvCzUUhtIkk9DYczrsTln0SFt8BSz8KS/8Gzv2MH7o5Sfzf3kQn1qH+T5mnXh94A2oXq/Yr\nj8LvvjOsbjRhUB5awML82whphRgiRMrtQqAT0HLQxcnpmu92evmBvZfv23tYLFQ8+s+yjYuFihFv\npocpRCgT2S90PhIMoXG7qAEghsWNqNCYhcuaYYSVjiISUQul+rNhPvlJyPHCYIEALF067K6+X1uA\nhrqlzw4b5HpdlgV05kfeurLW1AQfLAtT66VVhjXBorBqBwSsXlTKNYWj+F1v/xOs+smgVvHbTf6U\nQf2baBlMWe5LFmcB39BPdLa8CGufVguoZnmx3/pdcOGtqv3Sw2qByTAx9QjLij/CvPx3oosgEofN\ngclYJ2Hoe6VFTKoMoQwuH9AmD7x3k1Y58CGzGP948ePOQZ6WDZQSQgIPsZ9JqEyWFTSMrLPGRmXI\nP/e5QYmDe+6BfC93/f77IZkc+vgjCGqCD5SqHPhftia5a3Ie1xUEubnoaIOddiXfaYyzM+UQFNDr\nSjYnHUICzsoNMmM0IZtNj8KqH8O2P0Lj1hF9rrKClJA5THTPj8tnjVMkgHcGs+xa6O2CKXNg1wbY\ntU6lXVbWDu6zdRXMO19l6gyTXLOChfm38YvEy6wz87hBWkTEyD8OT9tN/Mo5xNWiDFDe6MNuA17N\naL7n7OVOYybtMsPMEQipjRU7ZA8tJNEBHYGFpJUEQTRuFCPU89m/HzZtUqti014JvDVrIJNRHv7+\n/dDVNahkOQzuqS1gTsSkKqBxU1GYv644tjx1UBN8bUouXzrUS1rCrKDOwbRDSkKXNYIbarwDuhog\n2Q2rf6m2VcyDP34NZlwEVx5bRC/rdOyCulfg4Isw9z2qUvmuJ2D6dcrDL6w9cR8+Q+J79BOdUBSu\n/yg89RNY+RsvFU2D339HVWnWTaV0+czPRtx1jlnOu3Nv5AuBRVRpI5cIyEiXFY7KrjlEgsmoPnbL\nPhaR722Ps0wv4jpj6CyYt5OP63P4sDYTEDhIJhNGIEjj8rgc4cKx5cvhhRfgppsGt73fE2p3Xfja\n16CqauRjrIhyU9GJ/x7XFIYICsjVBLs8ZctSQ3DfjBFoGP3pW/DUv8KuFwa3Sd7eMn7dB2DVN6De\n0wja8XvY7c1t7HsWXvoqxFvfvvGchviG/lRhzrlQNR0WX6IKKJtBuOAmFUvVdJi2cFTdVmghZmoj\n97Qftxv5qrWdFtIIoEda1NEfpnDZjNJe6Y/RTxQKRICzRDH5eNkrCMq9G1Sft7J2RBQWQkODypkH\neOONwRh9cPhPWKOhNmTw+LwiKky1CiIj4Xu1BUwebtWphi2Q8Cbh6zdCThkgoGU7XHcXXH7nWA39\nrYSLILd6MFQULoL+DKhQgaplePDFt2cspym+oT9VuPmT8PlfQYHnGZtBWPsn1Q6E4f6vQOOet2Uo\n9W6CR5x69sk4M0QOYXSaSTOVCEWYtGExiTDv1qv5UGB8s2yORQMJOlGCblVEOEQcgGpGUcT8iSeU\niJmUKr1y/XqIx+Gyy+DDH87eoIfg9V6L3WmXiAZhjZGVFtzzMsTbvYKxM6DP85przoPqBW/fJGgw\nT0kcSFvJHjhe7rwZAd1Qcfv9z789YzlN8Q39qcZVd8DZ1yi9+nRcTdBKF5K9sOJ+qNt5wi6klLzi\ntFPvJkZ8+hedNv7Z2jrwwdkj+wZkgQ+RIOHJBV+sl/AuI7sa9huSKVb2jXzMR9IqBydIE9gD1+IO\nc+XuW+gXLXNdVXAElNG//HIoKhr6uCzx4bIo5+eY9LmQciHpjuIapAPF/VVGJNScq0KCbyc1l8Oi\nO+DcO8FSN16ChYOTs3565Unh//ZONV57HNb/GQIh9Xi7a52KpwpNbf/RZ+HBb6lShEOw2e3hh/Ze\n/t3azgE3PqLTFwhzYBITwEQMZNOE0JlGlK+ZC7hBz+4CF1dKPljfxCeaWtiXHr288gannZ+7aoFY\nBSF20Y0LFBLgk9rx9f6PIpmEn3lzI7NmwWZPjKu4GO66a9RjHAkRXXBlQQgT+HZN3v9n77zDrKqu\n9//Z59w6c6f3AjMMvUgHEVBUEAsqlsQaNfYkxthiojGxJmryi8YSTWIs39hiryigYKFIB+m9zAzT\ne7v9nP37Yx9mQKZTHMx9n2eeu++Zc/bd55a11177Xe/iuFbKC7YKXz3kr1Tt9KFQskG14zJh4KlH\nZKztwuaEPlMhIRf6zQAgEKii6rgfq/+HO89eiuBgRAz9sYbBExSPXppghsFueZTSVEXEjTB88yEs\nm9UiirYfDCmZY5TgQMOLwZOh7fwxuAmf7ByVbrCIJRsXJpCEg8F4CAPR6PzJPpTfO4fQR4tGHIHN\nvH13U2samFLiM7tO13xdKiXMbKKwoRECEnFwtzYCd1dZRwsWwJYtilp5yy1qYxbg/vs7rB1wOHF7\nloeS8en8NK2D0FPxBnjrV7BzMaz/WDFtNBtkDoG6IkDA8VcclTG3iz6nUJ6Uw+wBw3gmLYQvfZhi\n30TQbUTolccaeg+CW/8J334Ji96zPHodjpsC678GQ4dJ58GCd2DxB3DHixDfsiHqJcwm2QBIMnFR\njJ9yGaBM+mmUYQaLWPQ2jHSZ9PO74Hp0SwS3kRDbLPM7WksgrRvMnc4gJCXLvC0e3VZ/iL9X1bLa\nH+CdXpn0c3Y+ByAaG3WEyCaapagEqd54+J25klEiiRv0QZ0f2KmnKqM+dqzSo/f7lQb9FUffWHZq\nYi3eADWFsGcZ7F6mjiX0gk2fq7Y7HvocBe3+juBOwDbpLtayijoCPDh+LPcwkcOjxvS/iYihP1Yx\n8hRwe5ShD/rAFaXCN6ahdHFCfmj0wT9vg7teab4sRti51z4EDfhbaBsAuUSxwKxgrlHGCBHH7fYB\n2FqJiRpSYiBJw8UVtnReDu/BgcZ1tj6M0hIOOv9w4R/VtTxbXYtbKGbJA5VVJGhK9CvUxbj6TNGb\nf8mtzUZeB76lGgEE6GKCkN0O993X8vz2o8Q57w52LIRqqx5AY/WBqz0jAHY3nHV0wk2dQaJwkyRd\n1BHAwOze/kkEzejQ0AshXgTOBsqllMOsY/cD1wP7csZ/J6X81Prf3cC1qKpnv5JSzj0C444AYOA4\n6DsSdn6ripIkpEF1CdRVqjqzBZuUfMJ30E/zkG82Ncvy7sFL0CpWsVbW8a1Zy1j94I3ETM3N045R\nONFxCI3RWgI6Apc4suwMjyZwCDjDE837DWpPYXKUm7tTkki0de21Z8lCTPbtJ3jYTB02BL8Ww8jp\nBs30mICvDuZbUhmOKCjfCphgc0FTNYR8cMqtkNyzkpL6k0gNfi5nKLHiyFJVf+joTCDx/4DWAmR/\nk1KOtP72GfkhwCXAUOuaZ4U4wlbgfx3n3QwjToFRU5WRB8W3L9ik2lmtS+8uM6spJYAG5Igoiq2C\nHoNFDIO12FavaZJhpdtuefvRwnbEjTxAedggKOHThib6WlIDsxubWOrzUdvJyk37ME1kAeDHYDcN\naEAYSVjIVlcxPwgse0WpQ8KB2u6mASdcBf2nQM6Yjvvx1cHbt8CH96g9oe/CX6/+AL8Ms0VWcZ9c\nyCy5gz2yjj/KxbwuN1IsG/l/chnPytWUyyaekav4q1xGQB64p3S6yOMPYjJ54sitFv9X0KFHL6Vc\nIITI7WR/M4E3pJQBYLcQYgcwHljS7RFG0D5yhsC1DytK3/ZVsHKuovrpNrU8D7XOUDlLz+AzoxQf\nJsnSQS1KNz6MpEB6GSwONPZhafKb4DoCmPzNMYIYcfTodzckxDOvsYm9YYM9oRBOAQEJd5dVEqUJ\nvsjtdVCJvbYwUU/DY9pZZVbyDYqZNFGkMkAcY7VVu4LSLYqXrtshNh3KtwMCpvwCBpwMA05p/3oj\nBLuWwJp3VIxft0PNXkhsKUBP0Adv3KQmj3P/yONJpVThQwLLKOYL8gHwUclKShGAjsajLG3e8wlg\n4IxEk48IDsWF+aUQYmXB9CgAACAASURBVJ0Q4kUhmqfcLGD/wqB7rWMRHGkIAVfcB7f+Cy64FWIS\nITEdrnuk1dM9wsZELQkBrKKWJqs4yHbZyMOhzXxr1PByeA/1Uh3XEEQJHRda8w/zaCHRppNis1nj\nAJsVrpVSgqTL4xmuJZItopqfB6SB8UOOAZuWpyx0CFsTv90J2SPav67wW1jyEqz7GL74G9SXqYpP\nRgi+elqd46uHxc9DxXbF4An5YM7D2NGaK2Xl0uI0HIeqGSCBcajkPwPJGeRRR4D35FbqZeDw3XsE\nQPcN/T+AvsBIoAR4zDre2i+u1V+QEOIGIcRKIcTKiopuyMNGcDCEUEVK4pLg/vfg3nfB0/ay9xp7\nXvMXIE942BeEycLN0+EdzDXKmguFaELwZ/twnnKM6pb42aEi1abjEoIQ4AdcQhAEakwTbzd05Adq\n8aSgVCFXUcV2efhr5h4NGGG1mPv4/8FTl0LDwVsyymOPzYSwH+pLIaU/zHwEojoIiXz1NKz7SIVj\nbE61Ksg7AdIHQd5Edc66D2HDJ0raePj56pi/gZmoilsmcDFDmrucSk7LsEjEaX0Dgxi8wxYWsZfP\nUDWGjUMp1h7BAejWL1ZKWbavLYT4NzDLeroX6LXfqdlAcRt9PAc8BzB27NgfsDt1hGGEYc9GyB2q\nwjX70Mn09etseVTIAHvMJgzUTJ0h3BRa2aNSQpUMkCSc32sRi9W+AH4pGeawU2OaFIUN+thtXBoX\nS7ze9X2C3sJDrvBQIf0MIo7+ovV9iZ6MqkL48wxIyYWGSqgphkfOgLtmQ+z+EkNjL4bkPjD3EaWT\n1HciJOW23mlTNfgboGwzeK3i3FKq6wBi02DqbS3n+63MVV9dc+6AgTzA49ufzeQl3Kxs6iXMPt/Q\nSwivtaqsxMtyWcwbbGaK7MVMMaAb704E+6NbHr0QYv+0x/MBK62Oj4BLhBBOIUQfoD+w/NCGGEFr\nWLHL4P1VYfjkOXjyZ6x/4UVCRtfny5P0FDKFm9WyFodVvnu5rMZh/QBfNwu4O7iej0PFzWGc7wOD\nHGpPYEMwRI61Ibs7FMYvu+8jXKLlca02gF/pQ4/JjdhQQKlgFKxTBBrdDg0V8OLPWjm59xhIs3IE\n/O3ovH/0O3jnVihY3XKsdu9+7WJl+PchyxLTCzRA/jIksDcxgVnsbDYu/2YNDmu9+AJriUVtDL/P\nVlJQIbTFFJFoictto4b1FqHvawpZJyPKlYeKDr/dQoj/ojZTBwoh9gohrgX+IoRYL4RYB5wC3AYg\npdwIvAVsAuYAN0nZyZTLCDqNhVsNfvafEPe/H2ZlIJc6Ect/dvZm/qbuLXVThZM47M10SwdacwlA\nOwIHGm+YhTwY3ETD92Tsn8lMZ4Bl7Ff4/JwSpYzC41U11HWRebMPscLBBC0V+zFo5AHS+8GF9wEC\nKnbB2HNVhMUR1crJhauhbAvEpMH4y9vuVLM22fNXQtrglmtzrKpPuxZDycaW8/tNhnGWNHPxBraN\nmMI/zrmQQhpIwY2OoBwfHuw40WgkhInEg50wkgqaSLJCaDupIctKi9pIJePJwIO9eQKIoPvoDOvm\n0lYOv9DO+X8C/nQog4rgQEgpKamV3Pd+mJAh0QSEDXDa4L/hqcyLORVdg590kwbeV/PwrHM0c8Il\nvGIUEMRkmIhltawliGScFsNis5oS/KwwqpmspzRTLI8WnquppSasDLoJrPf7m/8nD8GrP1YhJfzj\np1C6HZBqb3XT1yrCUlfWygVpVlw967gDBcJMAz59ULFmZtwHdRZFt8/xiq0DkNwXGiyvOjZNPd8f\noy8CYYPlrzBw7ddcOvp8XmYHZfi4iEF8wHaq8XMe/ZnHHhoIMZ0+rKSEavyMJpF86immkTic5BCH\nE51zRP/D/K797yLCZerhME3JXW+FmLvBxKaBKdWfXYdAGOZtlLjs4A9B/SGSFc6wZRAvHKw36vhK\nqqXzEKGMPEA/Ec1Lxh4+M8t41DH8UG+tS1jq9VFhmmiAU0ClKbGjNmVdR1FXpqfACMHO5RC05juh\nqzg9AlytbTe4YuC0O1ueF29Qx2LSoGSTYuZ8+oDSSwo2QckWcHmUHk5NIWQOg+o9MHi6ksX+LkZd\nAJ5kEIIRjhyuk9HU4GeCyCJdethDLZPIZgCJbKCSyWQzgUyWU8LxZOJAZzF7OY4U0kQ35KIjaBcR\nQ9+DIaXkt2+F+GyDCskMy4ZvrSJII3rDSkVO4KSBgksn2Bmde+gGb4KexBJDUTcSsNMPD5towIXG\ndJHOs3InxbJ9JcEFTV7W+gPcmBjPJn+A+U1ebkiIJ0bv3viKQiEKQipkZBcCw/LgHQIQsMTr4xRP\nzzYOy54ChwdGXXP4+jQNWjht1qMQndiHry2Cj+9VdMgz71F5F6CWA80JcEZLkhUSTvqFui5rWNv9\n9j+puTl4v4IzuSKOXKviWDoe0q3wjAsb02mpVzCN3A4GHkF3ETH0PRhbS2WzkT95IHxlSc0PyYTN\nVh3r1Fj4y8WOQ1aL/Nao4UOjmMtsvYkWOkhIFA7cmg6GKuxdYWXPGsAyo4rj9SRATUj7Xn9+YxO3\nlZYTlOARgmdqamk0JU5guT/AzBgPp3qi+E1pBWPcLn6WGH/A9a3h5dp6yg2TOE0jVhMUhg3cQpBt\n09kaCvNoZXWPNvRzboNlT6j2kIvAeRjUuWwOiM9QXnygSdlkByoC01TTzoVbv0Bu/hwRk6LCMXMf\nhcReUJ0P1XsVdbJ0k9qwTR0AVbQUAsk+uqu4CA4f/vfWvMcQkjxgtz4hb1AQbcl91Psg3tpwq25U\noZxDgc+Xz/za+WyTjawxajnfls3JWgpX2XKZFDZJDTZgANXhSnICyoosMZXXX1W9gO07HqC2biUf\n1jdwc4ky8n3tdh6rqqHRlGTbbLxYU8dyn5/36xuYmb+XhV4f79Q1cHFBMZN3F1ASCrHeH8BsJd5+\ncVwMF8Z6iLaMvB3o57CzNaQSgX6W0IUaqUcZXz/YYuT7TIU/x8OKfxx6v6GAolMGmgCh7HDQp8Lv\n0W28HVJC8ScLEWVbqIg5C5wxilvvSVEhHEwIeiFjqLqgYieccI2Kwcce3pq/VdIXSYw6iogY+h6M\ngkpJyFpVX3y8RpP1u7jsBJ0yK7/n5tN0dO3QvHnD8HJq7RbOrlrHxPodpAgn19vz6Kt5cBl+flq+\nhHNrtjC26CN+UraM8+v2cKUtlybvTqqq5gEmRfVbuausEhPI0HUKQyHCQLym0WQYeFGx9RrDoNww\n0YEkXWNtIEC1YfJgRRU/Lizmd2WVzGs8sBhKnsPBgylJlFibsQ+mJrEjqEI518THcn5czxQjW/cq\nrHlJtZOHgL9WFXNa/+qh912ZD1OuhoGTUNnBDhhzjpKgyV9rxeu/gy9fgH/95+e8OuuXFJb1U5RI\nAFccNFg7uPGZMNJKfIrPhuHnKFbNYcyhqJMB/sxSHmYJJVLx8FfKEvJl3WF7jQgORCR000OxaJvB\nR2vCeJzQGIA/fWyQGgPlDfDaNwZj8wQ7SiVnj2z5CItrJM/MD3HeaJ1xeZ1PIvJ4BhNfGcOYpkIw\nD9R2j47uz+BePyetZjGNopj0jB8x0JWNLhwEdA9CuBBC0OjfQ7IYjSGiKDEMnEIQL6DWNHEJgUcI\nGqVkbziMG/ABmwJBFW4Avmzy4QA+amjkg4ZG7khK4PrEFtdUCNEcjp7d6GWo08GOYJBL4npmolPh\nN/D+FaC7Vdi70tKYQ4PcqYfe/6t3QsFa6DNaefG+OijZobj0IT98+gRc/MeW8z95HMp2QXV9KsvW\nT8WRuY1RY3SENFRylM1pxeiF4txf/HeIPjKF3b+1tG6CGLzEWlJkNJupIgobg2UyZ5JHEIN55HMy\nvcg+BpPZehoiHn0PxUsLwsxdL5kxQkMXUN0EU4dqnDJY4+IJNv71Uyfz73KRHNPiaX24Jsysb01u\nfiXEtwWd59SbZgAs3ryUJqZ5oBCaw5FMetpM+vW9G090f3RdsS6czjT69/sdycnTSSDAC/K/XBit\nXjcgJWfGeBCAX0rOjVESCwEJZ8V6cAAh4MQoN9GWtzjQ6SDJynJ9sab2gDFoQpBrtxMlBAu8Ppya\nxtK+ufR2dCCuJiV4j76nmDoMck9W9a6lASlDQXcCJjSVQqBehVu6i/EXqMfdqxWXXmhQvBnOvBX6\njoPRM1rOrS2FOU/Bmllw0UPq2MK5Ayjqc6+aheqKleeeNVwpWQLEZynO5mGGlJJZ7CSESTYxNBBi\nM1WkE42GYBWlzGMPs9jBakr5mB34ZZhwRA7hkBAx9D0Ut59p52en6AxI1zAkZCfCtVPsPHG5g6sm\nH7wQy680eWmBgV0HXwg2FnXuhxEO17Nr918JhVTs3R8oYtfuxwgEOp+NGB83hoz0i0hJmUGNUDuN\nJ0a5SNa1Zi9cFzQnwusoLx7AJgRN+1g0kubkp++qUZpSUmGE8UnJT+JiuCOpk9K1HzwGD58PGxeq\nwPaWJW0qeh5OOGMhoS+YIXAnQe/Jqr6H7oKcKfBYBjx/CMWcJl2qvHchYNNXLarBhRtg5woVvtkH\nh1sxcTQdxs5sodE3RQ9vib2nDICzH4Cccd0fVCfwNluaBeRyiG2WR+hPAo2WBIIANqH2gKKwcR8L\neYxlR3RcP3REQjc9FEOzNIZmaUgpyYgXDM7SSIxuO05qSknIUBuzY3IFlxzfudBNU9N2TDMEmNhs\niYTD9UgZpLjkv/TJvaXT442JUbS7uwyTqdHRTI52I1EaNd/4/JwY5WaR18fuUJjysEEvm05h2GB3\nKMQop5M1gQB7jDBnxETxUYOXyvCB2a6aELzdK5MG02SEy9XpcbF9OSBh6xLYtgxWfQLjZ8K5t3a+\nj26i73RY8wIMOAdWPaeO5ZwEH12rjP6hePQ2B9z5MbxzH2z6Uh3rPRzWzj743Kg4uPMjQIA7Rmnj\n1JZAah9gxANQU3RUGDWNMshaSxp6MEnNxjyTaPagVl2xOGiy3AAHGom4LMZXpDj4oSBi6Hs4hBBM\nGtCx0a5qFM3sm7wU0ekN2vKKTwATIRyYph9VgttOdFTrBUs6gkfXOMXTkoP/76x06kyTBF2nUUr+\nWlnNSJeTr7w+NGBGTDR/q1JhGpeEjxq8AEzzHJzHn+fofG1YAEp3gnefKqWAzYtUs9XU0cOPoRdB\nn1Nh4aM089z7nwu7PlPtc/51aP3PeQp2LAME9JsAO6yqDyddBdO+o3eTPbSlfddspVbsjgFIguik\nQxtIZ8fLLnyE0RGkEMVmqhDAMFL4jD0AnEAmc632BLL40lI9H8DBFc8i6DwioZtjAIYp2V7Wdijm\n4Y9D3P56kD7W3tl7q0xmrzOobuqYdxkbOxYAKYMkJZ5sHQ01Hz9UaEKQYMXdz4rx8EWf3lyZEMfF\nsTH8KS2Z6xLiuSY+jpEuJ0WmyWiXk+sT4vhreuqhv/jCN9UGo8ujYhzeOuUKjzv30PvuJKKSYcUz\nqj30Elj0oGpnnwBbZ8EjMbD14673GwrAWqtIZ97YFiOfOwqWvgVL3mr7Wrtzn5E/urBb5iaP+GYx\nMwk00LK0qaFF2qIKX7MKpp8Dq09F0DVEDH0PR8iQ/OrVID96Osgri1v/su+pkNT5YHcluOxgmHDP\nOyEueDJAKNy+sU9MOKG57fXtYd9XoqzsvcN1CwchStN4IC2Z82Nj0IXgNymJPJuRxj0piTyTmcYd\nyYmHRxI5w9JkCQVh1aeqLQS8+jvYuerQ++8kYjPVo68amqytD3cyLH4Ugo1Qu7vrfdqdcN7dMGwq\n7FqhjmUNhj1rFJ++Yk/n+yozSygxVQZelVlJgdGFi7uAM8jjfAZwCUOYQCaDUSuJJRQzyGovp5Sh\nKI9lI5VkoDb064lw7g8FEUPfg2GYkltfDbJomzLWKbGtG79zRrccz0kGh00Ze49L0JEMTF39t81t\nKVWsHkC3HV2XL9Gmc0V8XLP3f1gwdApEJ6hguN0J8WnKFdZ0cB89yt51y2HaX1pCNiOvhu2WFz/i\npzD+5q73GQrABw/DhvlKycDmgCKLJTlsKsy4vXP97A7vZF5oLl+EPqfQKODz0GwWhr+iymyFiH+I\ncAobJ4peJAgXutC4lhEMIxk7GmeRxySy0YATyOIsVKHyYho5i77cwpHdJP6hIxKj78FYk2+waLsy\n8vfO1JkysHWr/cQctXE5MF3JlgTDkB4Hz19rp6NQfXW12smLihqEz6fqejocGWRmXNLtcUtpImUY\nTXMgpcQnJVHWjPN4ZTVLvD6eykgjVteIPpKCZGvmKj0AocGIqbDyE0DAyVdA5tFTRoxKUkmoAPYY\nyF9g/UOHkpWwez7kTet6v/uYNiPOUBuy4SBkDoLrnoPOzpcrDcVmSRLJfBtehYFBNB5iRSwhGcJ+\nBGsDa0JwDSOaJTCyieUCOQAhBENIJkraWUMZI0kjRnRxfyaCAxDx6Hsw7n1XhWqcNpi/SXLinwJs\nKTk4Vh9riQmOzxNst/YZJ/fXmPFYkNtfb18/Xlg/ZK93C/sIkMFgKUXFL3dqjD5fPuGwymT1+4sJ\nhWopKn6NnbsepbFxKw9WVDF2Zz5v1NbzfHUtz9XUsT4Q5PW6esbuzOfpqvaEWQ4RWQMgPl1ZxNVz\nIbkXIOHLl6FwU4eXH06MuBIm3QWeVKjZqTJZUwdD+QZ47UxY9zo0lna+P7sTTrdWAmtmKW16hEqi\neupS5fF3Bob1meeIXEJWrDxNpLPD2M5bwdfYEj7y79P+Okf7tyeKbG4SY0gSET36Q0XE0PdglFh5\nPj8ap/FtgUnIgG/zDy6y8avpdmaO1qixlAOiHEonJ2zCyj1tb+IGAqXExY4hOlrV9JRSWpuwEr+/\n6KDzpZTU1C7D690FQEXFHAr3vkBJyX+pqVlKQeE/Kdz7POFwHVKGKS55g8ZQIyaSByqq2BFs2XTz\nmiYSKA8foU22go3wyu/AZoeoWCXDW1cByb2V4Q8cXbqePUqFVWp2gi1KrbzKN4AjVqlQvn85vH52\n1/o8+w6YfpNq56+FEdNVe9dyeOf+zvUhrO3OalmNZpmDOlnHXlPJpG41NmNEagcd84gY+h6KzzYY\nxFp08TeXmcS6ISUGJrdCtfznF2E+XG2ypUSiC/AG4cvNJtFOmDm67Y+4vGI2tXVLCYWqUF+FEH5/\nIUI4ifEcd9D5Xu8OKio+oaj4dYLBampqvwHA6cyiolJtdjocaQSDdVY7kRuDsxhLIX31IKWWCFm0\nJpoLkTcaRyjj0RUNzihFIt9XgcrtUcFsgKbatq/tJObeAZ/erOaNxX9Rkgchb9vnp4+CmEw44Q6V\nMQuQdxrN1Et7a5WhOsA5d0K6FYUq2gwDrJrdlfkdX1tulmG3yvrtkbuajX4VFfilYr800sC80Fw2\nhze02U8EPR8RQ99D8dYyg1of9EtVdqCkFs4ZpZOdePBHdtVkG6NzBDvKFalkYj/BtjJoCsAvTm17\nGyYhfgKa5iYYLAMENlscwWAZUgZITj4waCylpLzis+bnpWUfNbcNoyVOYLclgMWQcLtyMcMV3Mt8\nHo3awyq/On6GJ5pL4mOZ7oni4vgjtClatA0CXiUAM9bSA6ivhEk/huFTod+YrvVnhKGmlOKV8Nd0\n+PhGWPo3WPF3+O9MWPxnJWL2/AktdbS/i0Ez4fYiOOkeyLDYq1s/hEyrSl/hYlj9fNdv9cL71Gqh\nsgAK1kNyjpoAOsIuYwc+vCSQiIZGI43EiwR0dOqpw0MMduxUynI2GRsIyxBe2dRxxxH0OEQMfQ/F\n3efYuHCsxq5yxaDJSxGtSh8AnDVCZ1L/lo9y/6zY9qrsOZ2ZVpIUJCZMwTDUjzgmZiRe787m5woG\n4XAtIHC5cvD7VfgmKqo/DY2rm9t19aoWvNudS139CkDidGaxsqGYEEq++NfJieQ5HDyVkcaEqCMU\nf91346YBWQNbjmcPgiGTlaffFbz3Z3jsUmo+/JKmMlj9HGRYc8X2WRDbW+35lq+DFya2CEO2hoYi\nKFunyrPKsGoLm1oZlK3r2rDCQWisUlsRQigZ+bg0xafvCMNtIxmlj6WfNgATE4FghD66OW4/QZtE\nyJIlGKmPYU7oEz4IvkOteQT3VSI4IogY+h6KvqkaH68xMYGsBHjlRgfxUa1TaAIhyTPz1Y9zUCbc\n+56KC6TEgMvRNu2mrPxD1HpBIxiqRFrxBE3YKS17l/KKOc3nCmEjN+cX5ObcjNudBUBU1ADCIRUC\n0fVYTFPFvTXNjZT7vlp2UpJPYyK7+Quf8GavzMNLoWwLmf0VjTK5F3zylDrmjoV3HoE3HoBNC9q/\nfh8Wvw1L3lVxfmCofJDx16rQVMlKGH6FOq3sW1VUBAGlq2HubW13qTuVTo0ZgqhUcEQrg+/wwIir\nunab8/4J/7lF5YI5PXDdv+D65zp3bZSIZohtGHarILhAHGDE/ftVEtOxUS/rkEhqZcTQH2uIGPoe\njLAVvh6Qpjjx7WGf/EHfFPBb8d/sRNqlV3o8g/ddTThcwz4FS58/H6czA0/0wAPOt9sTcDiSSU46\nldycW/B6txEMVWC3p2EY9fj9e7HbUwDw+3dht6eQlHQSLlc2bndfxsfm4OlmOcEuo6FSefP1FS3e\nva9ehW9ScyFzYLuXY4ShrhJmPwuf/B2mXNH8rzN/sw2bFU9PGQIeNe+h2Vq8/IrNbXcdmwXXLAJX\nInjL4bjLISpFJU999uvO3+Ird8DSt1U7IRMeXQ0jTm+78EhbyNCySCGVIfow1pkqryKNDFZJlYkV\nSxybjPVIJC5cZGiZXXuBCL53RAx9D0aCVR1v6c72z3PaBVdNVkb6wzUwqrey7mvy4ddvtK2cFR83\njqQkFYv3+wtxu3MACAYryMq8slmorDU4HEkkJ51GasrZ9Mm9ibTUmSQlnUpuzi9JTzuPhITJ5PT+\nOUmJU9A0B72yryI97ZzO3vqhIyYZdJsqg+etVy60zaEmgAHHQ0I7FZNWzIIHzoAFr8G+JPwP/qr6\nAJj9DFGWPMw3j0Fctmpvegfi1VtI8mDaRfpIuGo+jLsJJv4aMq0JwlfV8a0ZIdiyCJa/B1WFMHAy\n/Oi+luF1FS7hYrrzLEbYRmOzJvtGGrBZaTZemnBYPPYAAYK0T9mNoOchYuh7MPbRJS8c2/HHdPsZ\ndsbnKaO0pVQ2s20WbZVUNrQdqE9KPIno6EEABINl9Mq+luysn2KzdVyDNTHxROLj1U5iXNwYkhJP\nRgiBxzOYlOTpaNr3mI8nTeXRB/2QOUAdCweV63vKlW1ft+Jj+PAxdW3V3pbKSvUVzW3T24Rh2bqQ\nF/yWbpoZgsl3w3kvwxl/63iI6SPhrL9DXC/Is6iRuad2fN2nT8AzP1HzmKbB1kWw5M2Or+sMTrKd\nioaGiclxYiQAYcL009R7KJFUmRWd6yzgh3dehN3bDs/gIug2Ioa+h+LLzS30yrdXdI6CeN5o5Y3V\nNKkkK02oMM6/vmyfq26zqY1J0zRxu3OIiurT/YH3FGT0g76WmxzwwjiLeeOrV7TL1rD+S/jwcdVO\nzYXd69SEEZcKNaXNko/zF9xAUynYPTD8J1C1GTQHXPSO8sxHXNGSCdtZnHAb/HIbnPF4++c1VML2\nJeCIUp69aSq9+cwOVhCdRbqewXmOH3O2YyabpaJU6uhsNNQusUBQ2VlD//kH8PSDcMslsHPL4Rlg\nBN1CxND3UPy/T8PU+qB/muCakzrnGZdbTA8hlJHfF7dP8rR/nc3StbHZOjjxKMNnSCYvr+GMVbWt\nFg3vEIlW8Ly2TAXQQRn9TQtbP3+2VbU7o79KPTWCisKSOUBNEO4YGDGNASmz6D9oDVcvgAm3QP8Z\ncNnHMOi8rg9xfyT1bykK0hbWzlFVpVweZexBPU69/tBee3+4hRuHcDLINoQkkYKBQT31pIo0JJKt\n5mZCZtshQQwDCnbB2y+C0wV11fDZ+x2/sGlChZUevPhzOH8czPvw8NzU/zgihr6HIs2il0/qL5g6\ntHMf04VjdRKi1N5jg0+SYBVhWlTYfmZjQvwEkpOmkZnx40MZ8mHHotoAK+vDfF0ToqkDFc6DULS1\npRSeEVIeOSgPvaiNUELQYpn0Gwt+K26WlqfCPwCeRMgYQE7vdVx2+0tkjFKbsZfNUkVGjjQaKuHD\nR9V8Y7ND0Kvi8pf86ci8Xp7ej3H68QA4cBKQKkFAQ0O0NSMFA3DHT+CKUyF/O+zLfI5phc7q88JX\nn4Lfp86753r40QQ1Kbz0JFRXwPsvw+pvYM+OI3GL/zOIiJr1UNxwio3Xvgnzf4tM3l0ZZNHvO66q\nFOsWnD1S45VvTAqkydboMHabYNLw9nfpNM1BYuJJh2vohwXrGsJcvk4tURLt8NCuJm7sFUXfqE5Q\nMwNeeO5mmgPpNocqOiI0yBvVeoy+phTC1vmmCT5reWR30CwBanfCmDPURm563iHeYdcxuyJIULfj\nAqqLBLpdpQP0P6HDS9uFKU02GutIFElk6b0O+F+SnszpYgZuEcXHQSVdPVIfg020YjqCAbjzKvh2\nqVpW9hsK262M2oQkqCqHt16A6edDRi+4/TLYvBYuvh7yd8BSq1TW7HdarouKhtsug/gk+PDoSUv/\n0BAx9D0Uz38VZuUeSU6SYFRO5xdevz7LwZljw0x73wcCbjzexs9HHf4iz0cav9jcQL0BqXYYE2vj\nqUI/27wmH4zqRKKT3aUEzQo2quLXfUYq43/xHyA2pWWDdX8seVeltOp22PqNVaTECSdcqDZmKwvg\npEvVuXkjD+/NdhLX7mgk9Ad4Tsay8h4dIyiYfLtJVNyhLcwLzXzWGd9ix85F+uUH/T9ZU5TZftpA\nKs1y+uh9D+7EMOA3lpHXbTB4JGxYqf434RT4YhYU7IQ3noNv5oHDCTs2qXMXfQZF+WoiTkmH1YvV\ndYmpsMIKs408hAK7EUQMfU/F9SfbyN1octM0W7u1YltDvFudrwm4feyxZ+Q/qwyyql4t+WekuHil\nWIVOdCHJWVDJLzrgzgAAIABJREFUEI+N2aPbIYtrGlz9GLx4BxRuVLGOq/7c/ouOOwf8jbB2HlQW\nwrCTVW3ZXEvz59bOqXkeKayuDWMX4LfDz0U9g651ELvexqQxGtA9Cd+t4U2sMlYwSKg6gyFCbAiv\nY5htODVmDR7hOUCmeKx9fNudVZfDmqWqffO98OR9qn3BVTDnHfA2wbAx0CtPGXyA3v2gYIcy8nmD\nYNcWKC+G/kNh52bV54ChkL9Txfkj6DYihr6HYkI/HaIli0rDnNu3awTprBidV89047aB23YYKjW1\nA8PwUt+wnhjPsE5RMjuD0qC5T+cLu5DNReSiNEF1SFLg6wQLye6Eq/8K6+bDwE7ENlJ6wwW/Vbo4\n3noYNLG7wz/seGKHjzs3+jgz1Ua0LninJMSeYUGevMzOj7O7rxe/29yFRFJCEckkU0klW43NxIo4\nFoa/JFbEMd1+Jk7RiWLsUR5wuQGhPHQp1YTbUKeMPEBjPRQq6Qz6D4XtG1W7dz9l5AHSs2H3VhU+\ni0+C4kJF0ywu6PZ9RtCJzVghxItCiHIhxIb9jiUKIT4XQmy3HhOs40II8ZQQYocQYp0QYvSRHPwP\nHZd/6uPGeX42V3VdJnZqbxsTM4/cPF5Xt5qy8llUVX1NRcUnFO59gXC4CZ+vgJLSdwkGu++BXZnp\nop9bfTW/rgkxKV7dx8LaEF+Pi2fR+E6mfjpcynDHdKGwdO9hPcrIA6yrV5//0hqD3Gi1RxEwYESc\njn4IJRfzNFUAvlbWYFhTqx8fG8PrEQjqZR0bjE6K7yyeByedAS982kKlnHpuC4d+yCgYd6KaDBwu\nZeR1HdxRyqu3O8AdDaV7wRMHcQlQW6VYO6mZ8OQb3b7PCDrHuvk/4IzvHLsLmC+l7A/Mt54DnAn0\nt/5uAP5xeIb5v4nrjnMws6+N3EOMwQI0BiVBQ/2YvSGJr6sslu+gsmoedXXLafJuRwgnoVAlBYXP\nUVOzmIaGtTy+eQk7vWGezPcy/JtqltQqOl7YlNSGOvbIH+nvwSFgq9ekKmgSqwtKg5KfrK9vV6jt\nh4hb+7qI1qEmJCnxmyQ7BAEJf9jUsaZ+ddBEtvGGDbANYqzteBJEIjVUoaGRLFKophKJJFWk00vL\n6dwgn7hXsWXWr2w55opqkZ9wulSsfu5muPznMHC4iuvHJsCQkaqurxAwZjL87XV45AUYPRF+/wS8\n/Y3avI2g2+jQgkgpFwDfdc9mAv+x2v8Bztvv+MtSYSkQL4TIOFyD/V/D3eOd/HOau9vhlwV7w5Q1\nmRQ2mAx/uZHT3/XSFJKMe72R8a834T8EY5+SrOb+UKgShz0Z0AmHa/AHSni3aTxPVQ1j0vIavqgO\nss1rcPqqOor8BueuqSN7QRWr69tPoz8p0c4ve7kQwBavSZYT7AJ2+UymrTp0LfljCXUhychY5cm/\nuTfI2DjV7uVu/+f7+A4f6bNruXld2yL5A/XBDBQq28rExENLppcde7OSZYcIWbz6nZtbahzWVbcw\nmfYvGfnTW+CpN+Hq2+Dep+CZ9+Bnd8N9T8Pjr0LeQBg6Whn80T1rdXWsoruuYpqUsgTAeky1jmcB\nhfudt9c6FsFRxuf5YS7+xMeZ73tZUhLGZ8C2GpNlpWGq/VDpk3xZ2H3NktjY4cTHKSZEMFRJVJRi\nYoTD9ey0nUS1GUVtGHq5NAQQlHD/ziaW1YUIS3h4VxPzq9pOurl6QwOPF/iZmWJHAJu9kpMT7Lg1\ncHRUCPcHhPs3ezl1cQMVQZNUpyAMfF0Z5t3x0fy/YW1XKnlih4/fbvQhgb0+k79s8xEyD57YwzLE\nCnNp8/NC2VKxpFyW8kXoM/KN3R0PdOBwxZp5+4UW7vyCOS2x9RO/k2jgciuDP2yMmgQuvVF5/BEc\nERzuhKnWfoGtuo1CiBuEECuFECsrKjqZUh1BpxA2JW9uDeLUoaRJ8uyaIC4dTOAPi/x4rND9H5d2\nsrBoG4iPPx67Xal7eb3b0LUYlgYH8mppgAyHIN0BzxcFSLVDhkPwSkkAh4Ash2BWZYjL19cTNCXX\nbqzn7u2NB/Rd5Fee5KYmk15O9bXa5jWYkezg8zFd1JL/PhDywcK/wcYPut1FfUjyp22KcRRn1whY\nK7Akp+DcDCcuvfUJT0rJnRtVWGd6io1vqkLcs9nH+8UHT6waOmlaBmkig/HaCc0e/HFiRLMWfVNn\nio2MmdjiyQ8c3nI8byAMPx4GjejUPUdwZNBdQ1+2LyRjPZZbx/cC+wfTsoHi1jqQUj4npRwrpRyb\nkpLSzWFEsA8bKsOMeKWR6z7zsaHC4JPdBgEDzsrV2Vor8RswtbdOcRM0huGEDJ07xnaCTdEOHI4k\n+uTe0iyhkJR0Eg/XKM9tdKydvm41o6Q4dE5LUhRAmya4ubcqNuI1JMtqg7xWEuCJfB/GfrHkR/t7\nSLULtnkN9gYkOS5Bvt/knfIgpYEjVH7wcECasPhpeP8mKFyuDP1bV0PJOmgohbC/013F2gUXZChW\nzcZ6g4uyFVV2r18SbsU7B2Xkr13dMmn2jhLUWA52axODJjROsU9jmuN0NprrAYgjnmKpaga7cWPD\nxpuB19gYbmdj9nNLqmDIKFijSkySN1CFctYtg4VzO33fERx+dNfQfwTsK5FwFfDhfsevtNg3E4C6\nfSGeCA4/DFPy9rYQ22sMfvSxj3KvZG2Fwa1fK2Pi1CBoGQQN+MuJLrJj1I/9nvEOLujffWre/sjK\nvJTU1HP4zDeMPX5lhHs5NRbXKQsTpcNrJWr1kGgXPLRLxYzjbIJrN6kM1GjtwOXgyyV+ykNq7Kcl\n2sn3q/atvV0sqQtT4O+hBas3vAf530DYpzSLwwFl3LfPg49vgwUdqJZ9B6cmq8nSJuDf+QE0INbW\nes4XwB+3+nllr/LEz0q18Xy+al+c5eCc9LY/7+3GVppQE0SqSKeKSgDSRAYrjKWECVEt22FS/fbP\nik2zdZ2iRtqdinETDiuO/KU/69J9R3B40SH/TgjxX+BkIFkIsRe4D3gUeEsIcS1QAOwTSfkUOAvY\nAXiBq4/AmCMATCm5/nMfs/cYjEvT2FfPI2BIou0aIAmbLcJmJoqS9/F50ZR5TQYmHL4qTw5HCg5H\nCilGEIeAi9Od3NjLxWslfuwaLK83iLMJNCRbvSYuDWJ1qAhJ0oQg0QafjolH2896rWtQk0Rft8C0\nDifbINWhc8OmBs5MdvD+yB4YwnFbVM7YLKi14t2eNNirinjQWA61BRDfu8OuGkKSWzeoEMy4BJ35\nlQYm8NoYz0G0yv/uDbC61mCL9b4l2yHb2qyN0uGhwS5EO1RMNy0lHYWgOeAqpEAgkEhM2c5KqqxE\nxdqDBiQkK0ZNfUDRJp99T9EoI/je0BnWzaVSygwppV1KmS2lfEFKWSWlnCql7G89VlvnSinlTVLK\nvlLK46SUKzvqP4LuYVWZwew9yqudnqNTbUUETs+xkV+vfpCTsnTqrDD88GSNjGhBvFMcViO/P05J\ndFB3ajL/HhrLYI+d8lOSeWRADCfG21k0Lo7/DIvDpYHfhLv7RHNCnI2nB8VQNCWZkTEHepv35EUj\ngJ0+yaR4O3agMgwlAYNJ8XZ+nNZDM377nao8+foisLmUkW8sA90BngzVnvcQ1HScAOSxwanJ6n35\nutLgzFQbM9LsTEw62DP/+bdNPLHTz/gEGw4BlSG1CvDo4DXgoa3th4yy9d6coJ9IikhrXllpaMRo\nMUjL6udouYRlG5LXT94Lfi/k9Lcqe9VAVg6ce1nEyPcAiLY4tkcTY8eOlStXRuaEzuLeb/w8vz6E\nBHQBhlRhj32fpEODoAkfnuvGBOYXGNwyyoGnnfqxRwufVwVZXBvirtyoNjcT9yFmfgUhCX/o4+bp\nAh+1BlyR7uAP/Tz0dh2FurPdRfE6+OrPgKmqijRVqPCNM1bVsfXVqEngrL8ow5865ED64X4ImZJz\nljQwv1IZ2A+P93BW+sGSB+mf1lAVkmQ6Icmhsb7BxKPBxCQbn1WE+XU/J48M7ThzOSD9vB98B4Mw\nscThx0+QAA4cRAsPDbKeM+3nEqvFHnjhjycq+QJNh+hoaKhX4ZvefeDFOa2/WASHDCHEKinl2I7O\ni8gUH4MobZLNRv20HGXwJHB2H9UOmnD1EDvjM2xMyLBxz/HOHmHkAU5LcnB/3+gOjTzAoCgdDXho\ntw8r9M8rpUHGLqlhU2P7xVS+V2QOhxNvUYJqul1V7QYVr3dYPPVwEJY9B1/8CbZ+2mZXdk3w0Qkx\nTEtRUVb/ftGTD4qDvFyglmw2ob4RQSnQUCeFJMTZ1fucYO/c5y+RCFQxcIkkSACBIIZYamQ1YcIU\nmYUHX/in55SRNw1ISleqk6EAVEUYdT0BEUPfQ/HxzhBXz/Wxt+HguGhDUB1z6RBt7bLYBCRaYmZO\nDc7pe+zLGC0cn8B7I2KxCfBLmJnswK1BvSH57XfomD0OvcbD+c/CtPsg/TjlzRsB8FaAMw4woXyz\niumXb4VVr9BWyq9DE8w6IYY90+O5INOq3WpILl7RyLVrmjhjcT21VkpEbhQU+NX3oG+0ICwhyyUY\nHd+5jXeXcDNKH4tBmDAhdHQkkjpqm2vIrjZWEJbfycHI7Q8eaxIL+lWcHqDhfyu5raciYuh7KB5a\nFmDOnjAvb2rhPtf4JdV+yXXHORGA34ARKToODcISYh2Cs/Ns/N8Zbk6wdG6Chmx1smgVPh8U7VXt\ncBgK8ts//xBQ5DfwGu2HDU3g1q2N6t502OYL4zPVpPaLXu52r20VFcUtGZxHA65YpYV//A0w0pI4\nDvmhtyW5Kw3IHg1FK5VXv/CJFi76d6ALQdZ+mbBOXXBjrgOnBvMrw+RFa0TrsLJWEmODeLtgU6Nk\nfkWIPacnMC218wyr3noOOVofy+CrfaBoPM2G3okL/bs8Dm8j1CujblZVIMssVvXMn3T6dSM4cogY\n+h6K3jHqo+kbrx59YcnkN5uY9EYjOTGiecMsL15nUJI6Z2yazr9Pc3Nyr5Yf4dVzfYx/vYkvC0NU\n+Uze2x5qW/rg0gth+EBYvBDOnwEjBsF7b8MH7x5Wo7+2IcyARdVMXdq+t9doSAqtWMWgKL25nWoX\nnJncyc3Y6gpY+CmsWgA3ngZ3Xw6+TiQAHW70mQzpwwEJ2+dC+jB1fPs8yLS0//Yuh7VvtduNKSXv\nFAXZ2Rjm7aIgARPibCrk0mQomYi8KI3akArBPDui64qiLuFmsn0KSVoymmUiwrR48GFCmN+VRohP\nggf/QcGQ89ECPvLTp8Bv/wK3PNDl14/g8OPYX9//QPHS6W621ZiMSVNxd11AnANCpuCBJQFMwKnD\n4ESNN86KIr/eZGTqwRuUq8uVLuE3RQYvbQzxeb7BTSPs/H5CK8lSiYngcsEbr8GiBYpnt2oFPPs0\nDBkGi1d0+34amiSvfGQyebRgp89EhqC4DJjU9jVhKZvNSW6UzuoG9SzN2QX/5LE7YNNKOP0SQMDO\njfDio3DZr+Ddf8OUc6D/cd29rc5Ds0FCDpRaSUexWVBqCcJGJ7ecZ7YtSyGl5MpVjbxZFGJigo60\neJAuDYuaKpES8qJ1FlcbzEi308GiqV18E1qIiYmGhh0HTdQg0DjZPg29tQpTU87ktaXTqC28mHL7\ncJ6c7Cb24LMi+B4Q8eh7KGIcotnIAzh0waJLoll6aTQz8uyMSBZ8PNNNpkcjwSVaNfKLi8I0WXbD\nF5Z8U6QMZaW/jVDO8y/DmWfDwq/V85RUmDtbtYsK4cypyrMPd30j9N3PDN6da/LXFw3s1RrHvxXH\n4C/bL0ZeF2wZ598HRjfr0j8zqIMi5u8+B7/7CVSVQam1cRjwQZ4S72LvLnXOJ6/CP+9XIZ27L4f3\nX1D/N4w24+WHhMwRoFsrkeJvQbPCKSXrFP0SoOhb+PKRlvq1+2F7k8mbReoDTbBDVVCNMdWlNX+m\nyU7BP0ZE8flEDx+UhLh6dRMv5QfazKRtDzl6LjbsmJg00oCsTmTni9OJakxv85qZ59rY5RlHZZ2T\nhYu+f0ZfBAoRQ38MQRMCXRNcMsjOnAs9HJfS/oLsrW0hQqby/F/fEqYprDZwP9ppsKO2FWPf1AQf\nvgeFBcqDLy+DnTtg1Bioq4Ol38B/XoT0eLjpBmUMDUMdD7XtidbUS96eo370Tge89L5Ek4LoKNi0\no+39gziHZjFAwK7rPDvYw315UYyK7SDe/P4LsHk1LP1csVvASuaxkgqEgBJrAmisgzlvwJY18P7z\nsH0dXDkR7rlCccF3b27/tbqCtKEw5deQO0nRKs2Qol82loIRhOgU8FYqw//ZvQdd3j9a44xU9Zl/\nUm5wUqJqr683GRan2lVBSUAKfrXei0OofY7fb/KS8mkN7xcHqAp2cr8GGKAPxrCm1/Da0bz5ixks\n/yyFdRvaNuBDBgvuv1fjnBmCEyf3DKZXBBFD/4PFvPwQb20Lk+0Bjx18BkTbYWCiRtBQmvQHQdPA\nZleGMGM/den0/dob1yvj/vorcOM18NdHlad/0UwItC6SFgqpv2i36rquAWw69OsFN//RYM7C1o1P\nplNn9ug4vhgXj1sXXJPl5u686HYzPAHItgp3r16ojDVAVSkU7lBtKWH1AtV2e+CDl1TbFQ33Xwfe\nBuX133Ml3H6hmgS6i8Yy2PyJEjkDFZuf+EsYMtN6/QSaf4YOD83ZEKEDpYW3Nxo8tNXHvPIw+1Sr\nl9eGm3/AK2uVQf7HyChcGtSEaA7bhKTEa8BFK5o4Z0lDp4euC53p9rOYap9O49pBgPqKPP2MJBhs\n29gPHSK44TqN2NiIoe8piBj6Hyh2Wh57uRduHK48YG8IfjXKwfLLohme0krCkdMJOTnKkG/bArm5\n6vjcT2GCpQs+dzacdbZqv/0GlJUp6/3Vl9S98jYPPRtm2doDDXejFwwTvH6I20cpN0DXBfExkJXW\n9n2cnOjg+LguavLc9bR6XL0QnNbssnaJqmBksyvDHROv0vPzt6niF3anCuG4olS7oRZ8jeqarz/q\n2uvvjzWvw5pXYf4fDxQ0G3kJnPsE1JcApipEHvKBEVIhndwDNy9+vcHLQ1uVpESKFeURQIql7Bmj\nQ58ojakpDj4oCdEvSmBY5yQ7BPs+kcExXUs0S9ZSSNcyue4awdNPCHJzITcHbJHdvWMKEUP/A8WF\nA+wku1Xy1Nd7DfLiBBJ4eFmATE8bH7vNBnO/gvN/BL+8FWosVow7CnZsV+2oaFizuuX4nFnKQ3a7\nWfjWdr5aLnniPwZX3RUiv0iZl+x0yOulTisqg3HW3ufaLZJ3n7Zz3IDD/DWMS4JzroIzL4MhY9QL\nZ/dVj+EQpGSq80JBiEtUxj8UUEbdE6vamg7pvRVDZ86bKsTTVRStUVx5oUH1LvjoNvj2vy3/96TB\nkLMhZWCL+JkzRoV0ts4+oKsYK8HMZ8KMdAfCat/Rz8WMNDvPjPSw7bR4st0at65v4ssqg+GxGulO\nwfYmyUCPxnU5Dp4d0T05Al0X5OZoPPmYzp8f1tGOUE2AYFBSVy9ZvkLy0+sMZs/twUqlxxAihv4H\nil11JpVWtCDVrbGnTi21s2M6+Mjj4uDFV+CGX6jHK6+GpkaorIDhI1Wh55JiGDxEFW0uKYGcXEwJ\nU9b8i0xnLaEw7C2FWx42KKkwWbFeMlKt/GlsgsmjlZEIGYqN0x427TDZnt/FTT0h4Jrfwg2/h5/e\nCZffAhfeoLRY0rLhop8pj13T4eaHodISWP3131T9UoCr74TtSraX6RepOqZdwd4VsOCvEGiAhFyV\nJeuvhfItB543YDpM/QOM+gmceCsELepnv2nNp7xSEOBNS0v+kiw7cTY1aZ+SbOMXfVx8MCGGGZYs\nwuM7fBRbSp9TkmyUBFR7cpKN/ysIct6ynpdotnu3ZPMWNc477zL56TUmq1abVFXBs/+UrF4TMfaH\nisgC7AeKVWXqx+HWISRNTNSs3i9eUO41SY3qxBx/6jT153LBc/+AzRuVEZUSdu5UcrS6DuVl1Jix\nPDDlTapkPIF6telqmvDA3w2258MFpyn6X5MfduQrjrdhwLOvG/z2+oO/hjsLJB9/afDJ1xKbJvnw\nhL/jOOtCyOhkDdN96N1f/QEkp0PvftDUAA4n5AyEtP3KJ+xPsxw4SqXzA/Qd0rXXLFkPC54ATLXB\nWleskqMcMTD5loPP13QYPEO1o1NUXH/XVzBWKYE7rWjL5dl2XhrtIWjCtFQHJyXbDqq29Wmp2hQf\n4NGa5RIS7XBjrpPXCoOdkp44mgiFJLf/xsQw4MXnNAoKVVhv4AD48muVw7d2vWT0qO97pMc2Ih79\nDxTj0jWibWDXYNYuE7euNmVf2BDm/7N31mFyVFkb/92q9pket8xkMnEnrhCFQAiWBAiuwRZYLOiy\n2CLLsizuTiDAZhc+NhAhECEJkBB3l4mMu09b3e+PW5mOzCSjEKDf55mnb3eX3KqeeuvUkfdM3dTA\nFoLPPA97c+Cc8Yr4T+qtMlgSE9X7qipi7ZUMHR6JxwtWC0w4DSqqYH82dEhVpA/qvhAZIWq0evr3\nqP1f8PkP/Hy9UBIfDUNd67HOfBfe+0fjTwhAz4HKH9+qDXz0Ezz9CSSmQO+TYcjp4DokbfPQgG+g\ngdr3az9F+d2dENkaAtUgLHD6I+CKOfa6Y5+ChK7QZnDNRxel2Ck8K5oP+7sRQmDXBWMSrLW2VDwo\nUhiuK/kDALsm6BtlJXtcNF8MOk5q6q8Av1/ZDtM/N2q03RZ8D+FmrdfKFRwz+BvC8REi+t8psisk\nFX4o9UGnKEFVQI17RPi4pGsDg5ubNqp0i/c/hs+/gqgo9fkV16iUTICOnclwq76x7jDo2l6rGYe5\nBN/+qC5Upx3+O0eNI90w5uSj/wVXbDDYarYp7doeBud9qSqBPVVw7XB4ZDLs2ty0XHe7U911rDZ4\n7F24/yX1/oaHlJunffeguyau7rzxWtFjIiBU85GqYpUjL/2w6F/BO16d8wpT+jhDDm/U4a6nKFkH\nM/6yriSAw7wRZHkk/8v0EmYRh2n+nwiwWgXnna3m9P2iYJbu+g2Ql6+CyfsOQKjbaNMQIvrfKc5K\nE5wbq7oE7SiWnBGj0gy7FSwldcfM429gbzq8/w7MnAHDBsLpI6DI7DD01vvw8htw9/0wbIT67JTh\nNc1PdA2GD9B48Cadf9xtISdfUmUmnAjAY17MkXUYlwVmDNhug0Ur4DXb3XweeSNsXA4lRbBrI9xz\nIbx4f/MXNp11GVxxp7qxPfYuTHkWBoyq+drvk8z7SpJ14Bj7bd0PP1b11BLwgNU0TT1lyoXTQghI\nSY7pkw8AeyqDhW2ZdRXJnQC44XqN++/R6Nc3+HN266JeJTB0CKSknFg3qN8aQkT/O4W2axlv7b2V\nC40fidD9TDnwDN9X3sO//B9A5DHyGQ/i+qvh7tth4XywWmHrFnjwPvVdq2S48hpwOuGBh+CHFfC3\npzhtqI7DBmOHCYQQnDZUo22KYFj/oFZ+l3bBXbRJrv3iPXO4xntPWehlXuwVwk2vDiZpSQM69FSu\nlcUz4eUHG3V+6oW0zjD87MPcOHO/lLz3nOTFR+omep9PsCcnlZySePK6/wU8peqL3hcp2eIWgJSS\nS1eUMzvHjwCGRut8k6tuKqNjLWwqC1BRl8bRCYBhpwjunaLRs4d6v3krJJitpJcugwMZJ+7cfwsI\nBWN/r0hoj4hI4JXSl8GdAFqJSuFzJ8APUyGhA7jj6l6/2jTB58yCmFjIyYaqyqOXEwJ6KIGuXl1g\n1ttB22H1ZoPnPwiQW6Deu5yww9RG69dd8Mitded0t00RPHqLziV3ByivhGer/sw7cXNUhsyO9dCp\nF2xfB9/PUGmQS2bB3f+Cdl0bdJrqC8OQVFaoVHtQWml14ctpgi//9zgAF4XDOMOKwxoAV2z9d7hr\nIWyaAQMnK3fP6qnQYwK0H1nr4vurDL7MUo9KZyZYmJOrboyjYnWWFPpZWODnnCQr4xKPblrSGJSW\nSt58R1JQILnnLsFXMyXrN8DddwpSUgR6I4K+Fovgyb9pvPq6ZNceyZ49Kmc/LU2QmNAs0/7DIkT0\nv0dUl8OndyszuvfZsG6W+rzzcNj9M5Tlwt410PP02tf3+5XFvnY1fDZNfXbjzXDbXQ2axtQvA2Tl\nQUoChLlge7py10w+X2PSOA39OLnYVR5BZTXoIsDN228Cs2E11ZWQYTrxhYBZH6t0yWXfqQbVKW0b\nNM/64L3nJAtnw2CTZ8tLYf7XktPOPfwYvB7JclMqyGKF9cthW9HtpMXtY+QpfUk+1k48ZVCwWx3T\nz2+rz/avgF0L1JNM9oY6ib6NS+e+Tg6e21HNT4WK5C3AqpIAfglnJFgYE988TxOzvzF44y2JxaLi\n1JNvlISFqXDNbXdJ+vaRPPZw4zqA6brgjtsEBQWSWXMkZ5wuSEoMuW2aipDr5veKgA+qS2D/+mCm\nx97VkNBRpfMldqx9Pb8fLpsE909RkbGDJZBbNsPPS+HD9+q1+9WbDTaaNVbJiYrkATq0UfVD9YkJ\nxkQJXnvEwlspT9MvsEK5Uk4eq740Aiq/XUqlhX75HfCfN2DKRKVQ2cyQEpCwbCHo5ilZu0ziP0JK\n4r/vSzL2gt2hlt+6HrYX9Gbm+nNZvfQ4B73sTfj+H7D5kErc0sw6NeqPhEBiACV+6B2hIYEyPwyJ\n1vnfYDfWZipyKjdT8aUM+tQPJiZJCWX1V1moE7Gxgquu0EIk30wIEf1vBWu+hv89DpX1qNC0OSEq\nRY2ryyDZdGf4PNBxKKT1g/A63DaLFsJ33yiCz88LKlW6XMpvf9ef66VNn5IgaNcaxp8mWGWq8fbp\nCrv3w3ufGyxYVj/y6txW0G7Cqaqa9cIb4PzrVcZMVQWs+0lVsgb8MPsT1cLO64FHJ8POjfXafn3R\n/ZBAYVpHlYa/8gdYs/SI+fYQJCTDuAvVqRMCzrpY3Zc+eQM81cfwNSd0B6sLcjYBQgVxczer71xx\nkNizzlXQy7m+AAAgAElEQVTTK/08s8ODRJLmFKwvVS1D2jhhUoq90SRfWSX5xz8D/PeL4O9VaoYc\nYmOVagZAeDg4HUGin/apwbPPGXg8Id/6iYAQ0Z/o2LEUXp0ESz+BXcvgvetg9rPHXqe8EHJNczqu\nLez6WY0jEmD9bNizAnJ21L5uSooqkOrVB9aaYl4JiUrTBpTOTevU2tc9BIlxgmsm6nyzxOxcDmzd\nDR5TTNLaEKfhgJHw9jwYegZ06KGyYRwuyDkAVgdExEBRviL/+GRVEPXXK5UOfTNhkalIYLFCUoq6\nn6R1gB79Dl+uskJSXBgMPkupskKh7qeY7RsMbhpv8NZX45CBgzfWWHCaaaxWJ5z9L+gwqs75hTur\nGNZpP6d228fGM8I5vUc6Qztk8P3pgts71NJ7oJ5Yv07y41L4bHqQsE8fIxg5QmCzKh07XYfEeGoy\nq1KSYfp/JYt/kGRmNnrXITQjQkR/ImPnUvj6KfBUQESSKqP3VkLOTtj4ndJtqQ0Wm2p0AcqUtJi+\nWcMP5zwAY++EtDpKDdetUYHYzRvhSbNAKS9XpVO++BpM/YyaqpYj4PNLvllikFugSOGbHww8XuW6\n6dIWqr0qZfLua3VGDWrCv17XvvDX15UPpShX5cI7XEp1srwYYhMVEz9+E1SUNn4/wMZVkk2rJZOn\nCJUa71N++qtvFzz8ksAVfjh7L5ipWqZu3wCdzULb5YtgypOCB54V2B2HL79jk8ETd6kufHu2w9tL\nbiJgCPw+P6VlZoqm3wdH9mg9AkIIxnTfx4jOBzAIcHLHTMb2TKep3hpprn9ozVhaG8HddwpKzFNr\ns0GZ6c7RdfAe0q4gKztk0Z8ICBH9iYq9a+Grp5R/1h0PhQdUDrbDrYh/7guw4Zva17VYVUZNdAqc\n+6DqUwow5jZI7AQ9zziGk9z83OcL3iCkhMwMuHryMWULZy8yePa9AI+87Of1TwOMGKDuCaf0EWxL\nV8uMGiQ4a6TWdFGsnoPg4bcU2RdkQ8eTFNlXVYIrQmnaxMQHj6ERKC2W/P1uyVNTJBGR1JjpYW44\n8wJBmPvoYzi4u5xMSDIjr2Wl0L4L9Bp49PLPPaR4PCJanebvNw7hr1/9izfX/Z2121rjM+ww6l5T\nwrh+0A65rBt7lvftl7zymkF+vjpoKWHzliBpCyF48m8Cu13JFJSVgdutbgg7dkCCmSXzzL8ka9eF\nyP7XRojoT1Qs+0yRvMWuyNlXqaz0DkOgohCcEdCmd+3r2lww6Wn1uv4QFcQNc4+/3zFnQNt26oq9\n907oYvr3r7kcFsw75qq9uxic1Bn2ZcIX3xpoQvLtexaumqBzSj/B+WcIbruyGRO9eg+FYePUWACj\nJ6hxST68NANe/0b58xuJLz6UNQHH72YcSnJ1r9Ozv3otzFNqx0Ioj9L3s48mu6UL5MF+2ow+GzLN\n0Ef7gUmsWhXJGwtv5q0970GrXsedq0HQhy4QDKAdnUkkoZHN/GbOlnw7TzLja2WxSwnPv2Rwz/0B\nSkyBvPbtNJ5/VhARoYROTx0F0VGK+KOjlAvHMOCV10/cYq0/CkJEf6Ji+DWquMbvgZ0/qTJ6ww+b\nF0BEoiLy2DZ1r5+3W/nhd/4ENrMy88CG4+83Ng7Om6jGZaXQ07yZVFfB4u/rXM3vLcZa/Dh/ufB1\nIsIVERhF00EGcNgFj99u4dbLWiCb94q74LyrlXSBKV5m+P0YV57c5O5Qm0w1ZiFgttmzW9Phvefr\nXqfcdGdYrLBkriJIqw1mfALZR1TTrl8hkaYu3LdfquCtxQo/fKcySOMS4bKb6neJzkb9tgKBhsZY\nejKJQVhoXJpjz+4w9nQVmvF6YdjJUFAA27bD+g3B42iTqvH3JzQmjBdMnKAxYrj6fNt2aoTIcnNh\n3nyD7dslBYUh6/7XQIjoT1Qkd4NBFwXfJ3YENOW+CYuG+HZ1rgooy3/Co6pHqbdCPQ2cZ1aRGgFY\n9SVkbD56vc/fgpdNJuvdF76YrsYDBsF9tVeheqsyKM2ZhzS8+KqzeWzyD0yZOJXuqRsoyf4Ov7eo\nYcfeEMQlwbX3Q2oHOGMSPPAyG12dMXx+1u6rPv76x8D5V0GXk8yAajWcNFCduqwDda8z6VrBBdco\nd4zXA+MvVwTu88Ke7UGSq66UxMQrOfxAQC3fKlW9GgG4/h54/A1BbEL9nC8SiYZgIv2wNpLcD+Kz\nn3N59nlJVraKywPs2AmprZUrLi3t8DmltRFcd41GbIyo01OWvldy9/0G9z0Qsu5/DYQKpk5k/Gya\nke54M63SgKhkOP+J468rBHQYrKz6slw4615o3VOx1ownYPdyiGkN15qFOQc2wM/TYf1SiHVBpzaw\ncbv6LjIKJt+gUixrQXHG//BW7gMsIHTC5Vx6t7cBNsrzv8cIlBGTelGt6zYrNA0Gj2Fm+RAe21bE\nC71TmrS5D15SFnpEtMrg3LBCjTt2q3sdh0uwyhRwc7hg/x7TA2eBtp2Dy30/B/5vqrL23ZFQVgK5\nWRARBbc9Aj37N8wG60ISbuy0p2klpIWUs7HVJuyJA8jNc1JdrUjd64PrLhZ07yaIjKz75pNrJmd1\naA8bzXKG2BjIyFDj0mbIsQ+h4QhZ9Ccyws2S+YpiGHwRdBsNl7+gepvWFydfATdOVSQPUJavSB6g\n59jgcj98BOmroU0a/HUSjGkFY3rAKcOhpBg+eKfWzVeWbMBXnYPFngD4QXrQbXEgvSC96NYoHO5j\nMGMTkVVm8MKPXga/WcmiPX7KPJIHTwvn/25JJS2q8f/e382QlJukNHqc8rODyo+/9+ljb/fMC9Vr\ndSV07qHI3O+HojzB9HcNbj7fwB0pCXMrS79Dd+WmCfghqXXDSb6YShazna1ks5H9+Gm8cNpCthLV\npppB1+0nO1ug60qGoKgI/vmcJP04JRQXX6QxdAicd45gT7oKnVRUwkrTDSYlzJodsup/aYSI/kTG\nwQbRNqeSKzjrXpV101hUlUL6SuVoBtg4VxVUAUS3Vq8l2eqpAaBnGEy5CP7xL3j+1Vo36a/ORhoe\nAr5iDuZ4GIGKmu+NQDWF+6ZRkv0d3qqMxs+9Fny2zsfwd6qYts5HXoXk+i89nPNxVbNse9dmWZNl\nU14eVBdOrMdDwiljBHaHeqj69zvQexBcf7egWx+VQllcAG88rYqwANYuhV6D1LhV64bNcyMHeI35\nSHOy37CRD/iBahrYc8BEJsV48ePvmEVionIr7T8A7dupm9XxxMXS2ggevF/n1NEa489VfQeqq6Fv\nH/W9xwNbt4f89L80mkT0Qoh0IcQGIcRaIcRK87MYIcR3Qogd5mt080z1D4gLnlT65PVRm6wPFr0L\n372i0i6FplI2/30fVJXBabdAimn1714GSaZ05Jr/gwljoedJtW7SnXAq8R3+hNAcapuANA72swIp\nDUBQljuPvF1vNfkQCisljy/0sGiPn4fneTEkpLjBYYGABG8zKTQezBsXAvbvDn4ecQy3xUFYLII/\n/SVYSdu6HZx2nlL0vO1hc/t+9XRwUE6hXSd49GXBdXc3LCHSjnKKBzDoQiICQS6lfEM9Au9HIIMi\nEs0sHRldyZlPbQEkgYDKoPnzzYKzzqz//IYMDi6bmKCCzgAljWi/G0LT0BwW/WgpZR8p5QDz/QPA\nfCllJ2C++T6ExiCxI9zyb7j8xaZvKz9dBV+FBgX7lFtIs0DBXti2WKV7tO2nqjABygug73ho0wei\nWtW5WSF0bK40DH8pyACa7kJoGmAgNAe6JQyQCGHDGVn7zaI++GiNjws/q+L9VV4+XO3nz1976BSn\niGRbPvQwg5b5FcfayvFRWSF5+l6DinJIba/IevtGNb7jMejRr35EZzOlAaw2uPh6dZltXiN5akpw\nmfeeD5KfwwVdewustoYRfScSiURFTAWCFFQ1bQFl5FHGByxhLceXrABYwnZ2kIMFDRs622L3kDIq\nh4iUKpb8CD+vkIhj5JYahsQwDubdS7p1hQfvF3RoDyOGazVZONk5DTrEEJoBLRGMHQ+MMsdTge+B\n+1tgP38MaE3LoMBTAUUZKi2zOBMc4Sovf+8albLZ51zoYjYPWfkF+KoguTsMmAidTqnXLoTQcCec\nRlnufAwjWMUpjWoCRjUgkNJLZdFqNM1GVMr4ek9/T5GBTYc52/2szjTYmmvQNkqQXizZWSDpniDY\nnCtZlSm5oIeFQa2bZrvkZirFSast2O0IlFWfn1t/Eu41UDDhCkmbDsF11q2Q7NkOnXqoLJ59uyAy\nGsaeD4NGNL6ALIZwSqhmO9l0JRkoIptS1rOfTIrJpBgbFrpzbL/TYNqTQRHV+NAQuHGQesdqvEU2\n4j4fzRkj6y4+83gkN//ZAAFvvaZx7/0GObnw+isaTz4iKMiEtDRYsRKSG9iwK4Smo6kWvQS+FUKs\nEkLcaH6WKKXMAjBfQ0rSvyZmPQOf3AmF+9X76nLVvxQg4FWZKk63CtIetOazt0Pq8Yt0DkVk0hnE\ntr0GZ6Ry/9icwSbeNldbc2QQCNSiaV8H5u/yM/bDKsZNreLa/uqGV+mH24da0IVy1UzopuMwDyfa\nAZN6Nk2Kt20nwdiJKkiKhMGjgt+VldTfLWSxCC6+QWPoqUECn3iF4OYHVSbOvl3qs2694bI/adjs\njSf68+iHhqhpAH8wvTKPUsJQ+vPL2c02so+5nXXsr/HtdySBMlR66tjo9tx2g40uneueY1mZJC9f\ntfzbvNJg3y4oL4OfZkleuR0evxTCigVT7hDcdUcoNPhLo6ln/BQpZT9gHHCrEGJEfVcUQtwohFgp\nhFiZF2oI2XLQrcoRvHeNctUIHdJXqO+Erqx6gJ+mQXk+uKIgvq2qyG0gnBHdiEm9iPiOt+KtUu4C\nzRKBt1KNrY4UYlpPOuY2SnO+ozjza6Q0uGu2B78ByRGCZxYpAop1wvQNfgISnBZYnyOp9oNFwNld\nmucB9eBDVHgEFOSqscMFF1/fNNkGh0sFaavNe92UJ+HWh5suwxuOna4k4cDKRjIJEMCGzi7yqMCL\nFY0MivmcFaxgT53bsRxCB2EEf/9Iak+rPRSRkYLEWNCr4cOHBf1jBLEHBF8+L0hWrYSZ866gT3fB\nytkw9XGJL6Rs+YuhSVeGlDLTfM0VQnwJDAJyhBCtpJRZQohWQG4d674NvA0wYMCA0C/eEti5FHav\nUBW1cW2VVS8DENcOig4ozfpKs5ip+2lQUQSnXAWJHRq9SyE0bM7WhMWejLdyH76qA4COw92N2LQr\nEFrt/3IBXxmleYuoyF8CwLycAVR4VWBwdDuNd1eq6OjYTjqfb1TjEe00vt+txkPTNHq3aqKby8TY\nCwQ5mZKdm2HnZnC64JIbabo+D8EKW4cTuvZWln9zYCIDqMDDVH6giEo6kcQ2svBjkEw0OZRSjY/l\n7GY/hRRQxiUMxk1QIqIcDwA6Gj4zRVO5cI5/07daBdefr/HOg+BxQsF+0ANKFG39kuByT1wGVeVK\n+G39EjjlPMlpl0FkbEh3viXRaIteCBEmhHAfHANnABuBr4CrzcWuBmY0dZIhNAKZW4IkDyrTxjBT\nSSISFMmHxcDQy9VnqSfB+X9rEskfhBAa0SnjcUYedP8EsDqS6iT56vJdZG15isqig7LCgvnbcpGA\nVYOP1wQISLDp8PnGAF5DZdl8t8Og3AsJYYInxzT8CaQuJCYL7n1aY/Kd6n1VJQyq97PqsXH17cr/\n7/FAdUXzklsYdq7iFEbQhd6k4jf1bwTgMV0yVnR2kUsuZUzlx5p1Axi0Jx5hjh1YcePAQFKNv5a9\nHY2EVBXr13QlNyQ0FZQuzlMPlbpVfS6l+q44D+b/G+4+HbYsl6xeICkrCtl8LYGmWPSJwJdmFN4C\nfCql/EYIsQL4jxDiOmAfcOxn9RCaF7m7lZDZ+jnqanLHQ1ke7PhRkX1RhmoneOrN0PkURfYtBN1y\nUHFRoyxvIc6ovticR6eKCqGB0My0TEDoTGz9M3MzOmI5pBuVTVN+eQzltgF46nQbw9J04sOa3+/b\ne4ggMloiNI6SI24s2nfRePZDSVUlxLdqfis2HAfDUSW4o+jC92wjk5IaffxSqvCiGohLgqS6nN0s\nYAtWdPwEWEk6KUQxgX60QRXurV0k2b8NzpoMei1PIla7St5qfxJsWwV+L0TFqZtaSZ4SFY1uCxk7\nlJJ2h16wbaX6fVd+B9//F7oPgbvfbPbT8odHo4leSrkbOEo+UUpZAJzWlEmF0AT8NE01KLHYlSZO\nSbYypcJiFMlrFkX4nVqW5AHCYvrjjOxJ5qZHATCM2gOx9rB2JHd/lKyt/0QGPOjWOF7dfRkAUQ7o\nEi/4fo+kdyvB3cNs/OVbL5f1tnBhDytOa+1kWVQlmTLHw4AUjev7W7lnjodYl+Cx0+w8NM9DabXk\nuXF2rMdoYu1wCl75jyIiSx37aQwSU34ZN4XNvLwDBIjAQSnVePETjoNyqmuCrQCpxODGUfNZDGF0\noVUNya+aL3nrAfUg6AiDVfMk590E3YcEjyW1s+Cl7yVWO9w0UH121cPwpplzF5+impwBRMYFawhc\nEUoXCGDnWti/TZLaJeTKaU6EtG5+Y0jPkcS4IcJ1xIVQmgvTboewOEXyfo+6qpyRUFUC1aXgTlC6\nN11HQHjLkvxBaLqdqJQJBLxF2F1ph33nrczA6khEaBY03Y7VkYS3YicBbzb9kz1szHOQVQ73DrcS\nH2ZwbT8rXeM15lxtobRaklkq6RArqPJJ1mUFmDLHS3KE4K+jrNwx08OBUtiaG2DhLj+rsyQWDUqq\nDWZsVU8OMU4v/97g543z7IxuX/ul0NC89pZGMZVY0FjMdjZygIn0pxOJVOGlEi+xBHXru5HMStIp\npAIvfnQEASTtiSMcBxGH+OdbE0MSkZRRjYbgEgYTTVBqY8VcRfKapizyHWvghVvgL1Ml7U8KniO7\nU42v+Itk7xZIbAeX3AvvPgR7t8CA0yFzNxRkQiezWrbClHEC5bv/dhqsXiDpOxrGXqVuICE0DSGi\n/w2gsFSyYK1BuyS47bUACZHw9hQrCVGHXADeSiVnUFUKrU9SxVGVRRCTpkjfW6X6kZ5+O3Qb9YvO\nPzx2CNLwU1G4Ant4Byy2WAr3T6eqeA1hsUOJTlE68sKsrI1IHIs3Jxzwc2kvnQndrUzoDj/vDzBn\nu59xnS1c+FkVuwoln19q56WlPhanG+galHokF3zqwa6DLiCnAip8EgH4DVi4J6iz8sUmP94A5Fb8\nun5hQ0pmVpTR1Wans63uWMMOsvmclTiwEk0YPgJ8zgquZRjTWUEF1VzOUPIooxvJOLDSm1R8BFjG\nLgJIInFyKt0Py6o5iDM5iUyKqcRDgMP1aC6+B1YvUBW9Trey6qsrYO33ylUDqmDqp6+hTRfoMRSm\nPQ0r58HLiwTRCRK/D5Yf7JUj1HegfPo/zVJjiw1++lqN1y2GpTPh5n9JBowJkX1TECL63wDenBng\n62UGbRPBboWcYrj5JR9v3HEI2ce1hc7DVZVr7m7oc5ZqKF6SAWfdB/PfgIT20OvMX+UYKotXU5zx\nf2iWcCKSzqSq2OxHe0gPpNi2VxLwlWC1x/PYqZKr+1rpHKfI35CSK/5bTUDCt9cI9pcoD/OWfMnm\nXEVK47tobMgx2FEIvZIEDissSZdEO2B8N51P1gWQEh471cpjC3x4A/DN1c6affwamFVRyjcVZfxY\nXUmSbmGgw8ltUXHE6Ydfmunk8zkrMZDYsZKPEr53YOW/rKCcaqzozGE9BVSQSymFVLCXAjqQwKUM\n4XNWkEZcrSQPEIGTmxiFBz9Rh6RUFmRJ/vcapHaG9M3w7ceKyHetg76jg+tv/BE+eFTdBC6aomL/\nFSWwfomk13D1O3cZIOk9El6/W/nwuw+BzcvU+l36w851atzuJMhJV+MDO2DAmKaf6z8yQkR/gmNn\nhsGyLQYWHdJzIMatBLYyC2D+GoNLR6uUwsIyyXNbJvGgvo4wbwnsXBZ04exdAzd/8qvMP+CvQAid\n8vylICwY/nJKc+aBsIL0YfjLa5bVNBuaPR4Aqy7oHBe8Cbz5s1cFYoFvdvjxmQZnVolBselqdtk0\nDpSabhmXxvL9KssoLkxjcboaRzoEE7tb+WmfwUmJWoNIvrJC8sx9kug4+PND8PzDqsL1vqfB7mzc\nzeKN4gIyA37sCCoMg68ryuhhc3CRO4qAlEzJy8KHZEjcfgxNYkEjETdbqUBD0IkE1nEAAfQghbXs\nA8BAspcCdV6wmlk0zpoCqrrgxIbziGWWfwM/zYSew8DlVq15i/PgtZ8Ot7Ij41Q4qLoCNi1VWnze\nKpj1Hiz4t8Tnhbteh94jYMjZcGC7IvnWnRXpb1sFEbEQkwR7NkBUArTvBcPqX0gdQh0IEf0JjP25\nkmnzA+SVQIQL2icJ1u6W2Cxw7ViNcwYHySW7ULJgfyrp1se5p9s8+pbMVFfdwAuh91m/yvyLM2dR\nnr+YsNhT8FVnAmCxJ+L35AISzRpJRGL9TLVF6YrArRpszZMYUj0LFFVL/Cbp65qkyswEjHNCkXkD\nSI0UrMlS47QocNsFb453NPh4Sopg+yZAKv347RuUouNf/wSPvy5xhQmWVVXQyWYnVq/fpRWp6WQH\n/HiQCFMFLdas2PJIyXJPJX4p2ZITxpikAvzCYCvZWNDwY7CBjJrxRg6goxHAYAuZZrWsZCe5bCIT\nA4mBwal0b9BxR8SpVwFUmvdlmx02/iTpMZQa/Zs9G5UfX7dAQhvwmq6ZHkNhxhtqvHSm8tPf8JQg\nP1Oy+AsYeaG6mXz+EqR2gdtegG8+gs79oEv/kMumORAi+hMYN7zgo8QU6ZLA2t3K19y5Ndx49uE/\n3cEUxN2+NBbH3EDfc05TDs+4tr/klGtQXbaT8vzFAMhAUDpYt0bh9+QBEk1zYHXUT5lTqWAqv/v2\nfGWdC2BTblB7fXte0K+cURr0u5ceUoEZ1UjLG6BVa8GVt0o+fhU2r4EhI2HZIshIh49ekeTdkMuX\nFaUMsDu5IDySMsPgQnfkMbcZoWtYfIIBDgc/VQfP09slBQxzhDE1MZXFVeW8XlLInrIY2kXkI8BM\ngzSOSpOse9x4HFTh3LEmuKGcfSoYe9MzMMhsa9DuJOVv13SY876yMwSK5G1OdRP48G9qO5Mfh7hk\nwfm3qXXHXiVJ7gAd+4DVLjj3hiZMOISjEBKdOIHRJTVozYw1m05L4PGrj64ATYwWdG4tOGuQ4PaJ\nOiR1/tVIHsBij1XSxYDfV4xuVYTn8+RjdShVK7+3uN7bG9neSrtouKyPhZ2FivDbRMK6bEUmbSJg\nqdmTNdkN35tPAOO7aqw8oMb9kwUvntW0wqqzJmlcfw/Et4L01uouLDRI71DOlxWm31wI/lKQzd+L\ncsnw160L/2NVBVLCGwkpNUTc1mJhr9/HmyWFPFSQTWebnesjY5mf0p7xbhdJRPInRtOftsQRTl/S\nCCCxojOYDhjmlrrSqmabacTVkP6Rbpn6oEx5gPD7IEp51qiuVC6WlEPq69K6Ck67RCV7WawQl6LW\n0XSIjleBXKHBnk2QnX74rUfTBb1HCMIiQhZ8SyBE9Ccwrhqjfh4B3HSOtSZsaaulWCXGLZh6n5WH\nr7DWKSXrD0j2ZB1ygeXvDVbLNhPK838kY+MjeMr3YHWoBiYBfzm2sI5qAaOaiMTTAeqslK0Ntw62\nMX9yGNf3t9IrUSMgIb0kKE+8rxRObqPRJ0kjswwGpGjcOtjK82c5uG+EjSv7WJg2yYneQBmDnCqD\n3KrDM1BOO1cj6tVcFo/KofjUEtrcWs63g5X2bj+7g59MMZtuVhuXZO7lreICMmsh/DkVZSz3VHFr\nXgaRprtmv99PfkD5n/b6fcyvVI1honWdc0VvrmMEMYQzkq7cxGiG0IGepHARgxhMe+JRjWk0NNqg\nUmi3kUWqOd5PIatIb9A5GDhWkbrfq1w38anq36a0APKzDl921CQYPE4Rek668ulHxaknAJsDWrWF\nzF3wxOVwYGeoCvaXgpDy1z/ZAwYMkCtXrjz+gn8gZBVIvvzRz8fzlLvmgUt13E6w6ILhJzXu/vzi\n//mZ/r3BuUMED3adBQvfZlfKBaRNmozlGIVDDUFRxv+oKFiKsiFUQT3oqERpiS2sI/Htr6eyaBVW\nRxI2VwNbKgGPzvfw8Vo/53XV6R6v8Y8lPoa20Xh/ooNSj2T2tgATu1uIcDTtmFbk+Tl3QTl2XbB5\nQgRhh9xgJ+fsZ61HBQHChUa5VG4UG+BB+UQN8y9cCCql5NOkNrg0jbWeKs50uSkMBDg3cw8+4DyX\nm3lV5VRKyXC7ky0+D/mGwUk2O7dExTHYcXxhMYAqvGwkg+4kY8fCZyxjH4UMpC0rTIIfRDtOp2eD\nzkVBluTJKxS5W+3Kss87oPLqb3sReh0hs7xiriqwkhLa9VQ59EZA+e5L8sBTpQqlLrwDBp4OrpAl\n3ygIIVYd0guk7uVCRH9i4vbXfKzYJnHaIGCA1w/XjNW46ezGhVUKSiX3v+Nn0171e9/W9Qcurnye\nl4om0/Gc8Zw3tOmCYAFfGSXZc6kq3YwMVICwolsiCPgKQOiExQwlstVYNK3h7oND4Q1ItuaprBmA\n9TkG3eO1Y1a5NgZ9viphT7kkySk4rZWFmzrb6R2jzn+ZEeC/pSW8WlqAHTgnLIIvTNfNLe4oXi9T\nbqlbIqJ5o7QICdwTFccHpUUUGAHuj45np8/DTq+HrV4PHsAFVKHcczrUdH7VgLkp7eod4D0UAQxy\nKMWKxof8QGtiuIhB6I14mP/uE8kXLykJ57hkKC9RGTYuN7yy5Ohzv/wbybsPKeve71U3CFCuHbtL\nEb/PA2dcCRc3sLNWCAr1JfqQ6+YExen9NGLcEOlSJB/mgJO71//n8vklSzcHuPxpH4vWBZg2P8Cm\nvZLIMGibCK9sHcaY7C/YEX82fTscZ7ueqmBE7hioLFlHZdEKZKAa3RYL0kfAV4huiwEZoKJwaZNJ\nHsBLnrsAABwTSURBVMCmC3ol6Qih2vP1TtKbneQBkp0aEVY4NcnCJ7t9vL7VU/OdW9M53x1Jd6uN\nME1npkny4ULjv6a7xQnMqChDAnbg32XFFBgB7Ag+Li3ii/JScgMB2lps9LU7sGoaEkizWIk1W0+l\n6BbGOMNxi8ZdqjoayUQRTwT3MI5LGdIokv9ppuQ/zyuSj28NRbmK5FM6wojza19n0JmCjn0Vybtj\noNeIIMkPG6/GuhU69Ianr5Z89s9f3+j8vSJE9Cco1u+RFJZBdjGcO0Tj+T9ZOKld/X6uPdkG5z7s\n49GpAXZnSR6fFmDGj8rP7PPDgXy1XKRRwuvrTyE1f3ndG/vha7hlBLz3mHK0Zuyqc9GwqH5oehgQ\nQLNGodviAInQXEQknUlM64vqd/AnCDKrJKU+mJvp49qOVkYmHd7UJErXGRPmptAI0MXmwAqUS4NI\noREmBFVAhWEQr+l4gKyAn3a6FQ+SzICfblY7WQE/2/xeetudlJiibl2tdnLNprVpFitLqiu460hn\neCMgaPzNcOMPygLXLVBerAKruhWK8+HMq+teL1JJ5dChF6xZoMZpXWHJl2qc0Bo++bsqlFo1r9HT\nC+E4CBH9CYqfNqmLflQvwYOXWejV/vg/VXmVZOq3Ae563U9JhSL1lFio9Kingvat1DhgqBTNSeVT\nVfWV11vHJGbDu4+qqzo/E/46CR65RF3dtUCzuHBFKQETX8Uu7G7VYNwR3oGIhNG4ovs04kwcgnlz\nYPrHTdtGA6CZMgBVAcisMLh5WSXT9xx+ri53R/PPuCQei03AhiBK03g+Lhl7jQUua1wuAmhvCz7R\n9LAHM4D85hOTBZhbpZLVHQh+8lThlZKiQIAPSgqpMA4PDP9SuOwBVcx0MHPGHaPSJb2V8O0nkFFH\nYPWqh+C6J2DDj6aPPlXZC95qlXJpd0FpocrM+dOzv/BB/YEQIvoTFHbTHdsmsX5W2Otf+bnrDT9v\nzgxQ6QGbBap9UFwBVl2R+/48sOhmw+sDMD3+VuZfNRv6DD98Yxm74MU7YOqTgARnOOQeUM/gsa3A\nGVbrHAAik88FocjM7kohqetfiGw1rjGnQKEgH265BqZPgz9dBfffDk8+1PjtNQCD45UFX+mHXjEW\nUl2CzpGHXzJWIRjjctPWamdmSjtmJrejtc3G3VGqyqhcyhoxAT9Q5gtqu+/yeGqSHTtZbcxObluj\n/P50TCIHk9avc0cjpeSVkgI+LC1smYM9DsKjBL1HQFxr1W2rrFBl0cQmw+z3YPpzta/nDBcMOQs6\n9YW23eHhTyHNrNfyVqmiKFA3AXfUL3Msf0SEiP4ExR0XWDitr8YFw+oOkq7aYXDOQ15e/Z+PafMN\nNqZL4lRTJrx+CHdCdDj4AuCwQVoC+ANgtcD5wzS+esrFmFOP6NRcXqIUptYuVmaW1aZaAlWVq2ja\n9Y+B3XnkVGoghCAq+Rxc0f1wRvTAYouqM92zXlj2A8yeAQ/eCYOGqs+mf9T47dUDP+f56fR/JcQe\nknKfUWkw+3Q3fWPqDohG6jouTV1So1zhnBcWQXurjdU+D31sDtpYrCz3e0jRLXSy2ljj8xCu6Zzt\ncjPaFU6SxVpTwbjL5+VgRKAag51+9SQhfkU39jWPCsZcCoWm8vX5t0F2OiDg1EvqXk/TBfe+LXj4\nU4HLLZh0l/mFgB++Ci731JUw9+OQn74lECL6ExQje2k8ea2FhOjaSXLl9gB3vuanoBQ2pEts5v3A\nalFWO6jyfN38hT0+uHeShbgI5dI5c2AtP/2BHXDvObDwcxh3tYq2+bww7DxV+eLzwI51x517eOxg\nYlIvRtPrITOwdRMs/K7u77OUdAKBALgjQdfVawOxKNvH6oL6dUraXhogt1oybbe/xqs964CPk2aU\nMutA3QVQh8KpaTwWm8izca24MyqOlxOSGW0+CQ11hHFxuDJfu9rsPBGXRLiZR/9KQgqPxiRQIo2a\ngqdqQ9Zk4KRam9b8vKkw7zdYLJDcXo2FgD4j638zT24nuOEpJVRWWaLy9IdNgIpS2Le1BSYdQkgC\n4beKhz4I4DeU1V7tAY9fkXzbJFi6GTQBw3rCPFMk8v6LNXp10Jh6v5W8YkmX1FqI/s2/Kss9PBJW\nfKt8PBYr7N6kSF5o0H1Q8x7IpLOgrBRmzIeSYliyEO68H8LCIScLnjLdNEmtYOG3ivA91bBqOfSv\n31z2lAU4b0EFVgHZF0fy0S4vpT7Jnd1rvxF5TTe435BoQnW18hvKKmpoOnKq1cZVVuWguTUqjmHO\ncHrZHViFoIPNRkfr4ZW6B/PlNxSoAiwNWO8JNghZWV2FH5gY3vCbXXPgYON03aLCO1CvhKyjMORs\nwYAzJKdeAh17q+0OGw9tujbfXEMIImTR/4ZQWCa59WUf7872M6irsqDKq2BELzX2+aFvBzU2JLRr\npeEwncAHK0Jj3KJ2kl+zSKVTpHSAHoNVyaPNAaMuVKWMugWmvAztejTvQVWYYj5ZGXDvn+GdV4MB\n1+hYGDMOWqVAdhbExEFqmvLbP3BHvXfxj/VKQ8Yn4cXNVdy1oopH11azp7z2quAh8RbahWtU+BXJ\np4UJfFIVP2VVNd61YBGC/g4nVtOV1dvuJEyr/RIc7gyjq9XOZHcUW/1eNODmiGi+rizjicLcmuDt\nL40Bp0OHk2DcZOW+AWXRP3GZZNf6hs3JYhV06S/QLSpNtlNfUdO4JITmRYjof0PYnSVZvVPyn0UG\n81api0oT8O4cWeNieGOmxGpaXX06CJ65wcJFIzVG9jrOTz3zfaU9GxWvLGxQurM+05p0OOGkU5r3\ngCorwG7eiZ5+RJVZArz0TzUHmw3e+QRizBy9xEToaXavLK2/Ts7cTOWyibfDV/vV2KlDjK32c9Ij\nSkcXitg7RWikugReA+IdggvSfhnXyUhXOJ+2akNf08K3CcFbpUVALY/h61aqDua/AGJbCR78WHDW\ntQKR/D6DLl5Gu5O8pG+GzT//IlMIoREIEf1vCAM6azx9nYW+nUSN/3ZUb0XxEuiRph6jfQGYcIpG\nv046g7po3HWBBfeRrQePRIde6nXzcthi5tWX5MEiM+G5bTNb8qCs8qoqRfD5+cqq13Xw+dQfwOIF\nsGm9Gqd1hDlm9K5r/edjNf/LvQboZjTTb4DPqN0C/XCnh51lyi8xOlHnB1MV84I0KzH2X/aSGeoM\n419xrTjZ4cIAJrujeT8xFcvBAPcX0+Dqc+G686GiHIoK4KM3IT+3ReclpSRAOYMvX8AZ933IdU/C\n2CtbdJchNAEhov+NYVRvjaeutTC4K6TEwZQLdMYOUBf9pr1wwTBBhAtO69vAn3bgqdB1AEhD/XXp\nHyTb6x6DO19q3gPZvRO2bQGEcva2SlGEHwjAQ08qK94wYMbnKk4AsHMr2E2/emYG3HMrlJcdd1c9\no5UNXOqDQjOVxSfh5mWVLMg6Ori6rUS5dKKtsLZQkbxDg9wqg8zKXz6P/VRXOE/HtWJGqzT+HB1H\nT/shsYU27cFqhc3r4MZJ8PYL8Pzf4NoJLUr2Qgg6JV6BVY8kNiGGk88R2JqoLRRCyyGkdfM7wasz\n/JRXwT2T9IYLlO3dCk9fp7RnUztB9l6VbdO6k3p/zUPHTKlsFO65BT7/DBKTIDIatm+BiEgVYP3n\nqxCfALt3wKlmwPWUkfDjIjUeOATWrwGPB55/A84/Rm4fynK/a0UVi7N97K2QtA0X2DXBtlKD7pEa\nS8+OOGz5PeUB7lpexdJcP9UG9IrSOFApKfRK7upu57E+zXwuTOT6/cTresPSUdcshymTlSsrEIDI\nGBVQ93ohIQn6D4WnX2+R+Ybw6yOkdfMHw5/HW3jgEkvjVChXLVAkD5DYRpE8qKjbTU81P8kDpLVT\nr6WlyroH9QSxeAGkmzILB9MpLRZltQIgIDFZkTxAdTXHg1UTvDrYRZxpcdo16B2l/vVzq42jXDib\nigIszPbXtLPdWGxQbfYxbBfeMpfMF+UlnJm5hwfyszEaYnzt2KLcNb0HquhoSSG06QAuF+Rmw/If\nmn2uJVU78PpLmn27IbQcQkT/R0dWOnz1jkqdBFj9ffA7s7qzRXDLFOjWUwURNQ2GnKLGB1M6QVn1\nDzyqCgJWLTeDtRK+mxXczsP3BIPHx8HEVBX43VYqiTOzO/I98OLmw28WXpP4qwNwXmsV2a4MwNhk\nC1d1aLooW23wmLmK31WVM7Pi+O6oGlx4Jbw5He75m9IkAHj+XRX7AHi4eXUFiiu2sCfvP+zK/axZ\ntxtCyyJE9H90RMUrzVlpKFnCNDOR2REGE2+ufZ0V85SrZ//2xu9X11URFsC558PWzWp88gh49V/w\nwj/Ue4tJrDYbjDL7ywYCMPlPwXFdWj1H4LbuDsLNjCS3VSPV1CbYWHR4muWGIkW6NgEd3ToG6kK5\ntL2taVW+x8A2r3pCcQpBN1sDumBpGgwZATP/G/xsyYJgcvv+vXDteNi0tlnm6Q0oHR5foIydOdPw\n+Ouf/RTCr4cQ0f/R4QyDLqbgSHUFDFLdn2pKIGvDsm9g22p48mrIzYA3HoCbTobdGxu27yeeg4kX\nqUqv4iIVaO3ZG+bPhTdfVMtccAlcMRke/rty6wC0ag1zvlZjdyS4I2rf/hEIGMEuqhrgl4q0D+Xu\nnCqDPWVmMPYQvrXrMLFNy1jzAC6zzqFaSsoMg+1eD1UNETBbMFu9Wizw3stqbLXBB68oP/6tl8H5\nI4JuuUYiNrwXUa7uWHU35Z69bMt6l2pfQZO2GULLI0T0f3TkZSptG4CkNPjfW2ocn1L78j/NCvrz\nPdXw2bPw81ylWb96YcP2PeQUWLMS/m0WSNkd8KaZ3ZPUSr1GRMKTz8HXXygXDgIK8oKpmH5f8Mng\nOHh6QzUVpvG+ttBfU/zk1A4WmUlOmVPGDDPXvtIPz29RxNg5ouUulR+qKqgw3UUS+Ki0kEuy9/FQ\nQXb9N/Lih3DjFHWODrp+Av5gVlJFBWTuh83rmzTXSm8WxZWbAQ2BjiE97Mr5pNZlDRkgv3w1Hl8h\nUkoKy9dT6W263HIIDUeI6H9HyCqUPD7Nz+odDbAEnS5wqj6jVJapYGxCKjzw7tHL7lgLbz8EO9YE\nffprF5smsVBFVy9PgU3L6r//VqqvLJoOUYeU9XfsCst+DL5v1xHCwgAJ1VXKlRMIKL/+jC/qtat2\nbg2HpmKsczIDaKi0yU/TffyY60cTApdOjW6QABw6TB/pYtYYd/2PqQEoCgS4Iy+TWZVlWMx9Lq6u\nxC4Ee30+9tTXAu96EtxyL0y4TN2ArVZo1xm8HuXe6dpTBa7/NqVJ87VoLjRhx+svQhJAw4YUkrKq\n3UcfW8UGDhTOYX/hbPYVzmRf4dek531BfvlqDhTOxZD10x4KoekIEf3vCPNWGcxZbvDpggC3vOzj\nnrd8x9dmCY+CM81Kl4AfHv83/POrYMeIQ9G6I/Q/VckWSwMSU5VssZQQk6ieCFYvhGnP1H/S73wG\nI8col8O+vdChs6rCnf8NvPtacLmHnoRZi8HhUPn1A4ZApKlr+1b9cvwvb28n55Iobupso5Nbqc27\nrYJzWlvpGaVjSMm+Ckl1AHpHa1h1FZDVELitLeObdwlBvK6ToFvoZbMjAYcQjHS42O33MqO8foHm\nGrTvpJ6Mzp0Eu0yFsDFnw4bVahwR3aT5Om0JhNlTkfjRhYNIVxf8gXIOFM09atlwR1vcjvZEurpR\nVKGeJKJc3cko/Jb88pWUVe1BSgO/cfzMqRCahhDR/45w9hDBmH6C0/sJ1uyU/LhJciC3Htb96ZfC\n+BvhxqeOvZwzHG57Dtp2U++L8lTXCFBPA3mm0mRUfP0nfeGZ8NMiZXk6HCp3vroKIiLgnr8Gl5MS\nrpigrFKHQ2XalBQra/WhJ+u/P+CZAS6uaK/87XkeycQ2FiJtwdRLgHVFBgNjLTzc28HoVi2n/edB\nUhgIUBQI4DHvydVSUmqYcQK9gZdoWYmy6B0u6GQKv29aB8PNQPaOzbWvt2opZB0wl18Le3bUuliF\nJ4OyapUO67DGU1S5CQCLHn7UsnZLFO3iLkTX7Id8FoM0G7pUerLYk/85Gw+8QF7ZqlBgtwXRYkQv\nhDhTCLFNCLFTCPFAS+0nBAXDkDzz7wDzVksWrZc1UsWPf1K7cNdhcJoZNu3rKStw41Nw9rVmxks1\nxJia9gGfytZJ6xq8ARwPu7ar/PlzJipLVEoYOBRmLjpa5uBgvrvNDoVmlyshYMVSSD/adXAs3NbN\nToqZYjk/S7kQNCFYPM7NE30cCCDZpXFPDwdWreUqPiM0nY+SUpkYHsEmn8q8GeMMY5mpWNngcsbr\n71D++rMvDJJ6WgdY+r0at2p99Dqv/1NJKNx6GcyYDlecBZePU7/vETjobhFYqPDuByQWzUW7uAtq\nnU5m8QL2FcxAYAE09hfNQhM2QJBTtoQKTwZgkFH0DbtypjX0aEOoJ1qE6IUQOvAaMA7oDlwqhOje\nEvsKQWHZFoPFG5S4WacUgd+8Rvt2bIGfOMytOkYEfKqYSgZUxo7NoSSOv/kY/n6damJyPIw2s3xm\nfgm9+6vxiqUw7f3DlxMCvvwOevRSAdqMA+AKA6cT3noFXm5YvriuCe7paadNmODqjkGLs0ukzu3d\nHew6P4LnBrZMBeyR6GpzMMoVzsEWM9G6jsNMBdpdz9TRGtgdMGostG4DcYnqs5wsRfZwtCxCWamS\nTQDo2Q+eul/dbDv3UMHuQyClQXbJEgA0YTMJWxIwfFh0F7UhzJ6KTY8izj0ATEs+PnwgB29hMWHB\n9pJOW3LDjjWEeqOlLPpBwE4p5W4ppRf4NzC+hfYVAipDEdTlU1EddNcUl6kLKrtQUlbZjHIXY69Q\nr54qSO6giNhbrSx6u1O1HnrssuNnxLzxEfQfrMZbNsKESWr8wVtHL5uYBLMWwYtvwZnnKvXL8nJF\nalde1+BDmNzJwYbxkQyJP9o1E+vQ0JohZ/6FojyG7d/J0qqKYy432OGivVkzMLeiDIdZlmtd+A1M\nOlW5sxqCyGi4+Bo13r0dhp+mxsWF8J+pweU0LZhfWlQQJPeSo5/IPP4iKjx7AUiOGo0h1U0ozt2v\nzmlEh3Wne8qthDvaAOpJIKcsGKzPKwtKXpZU7SSj6BhNaEJoNFqK6FOA/Ye8P2B+FkILYWAXnV5m\nx58lG2HcQHXxLtog2Z8rmfSEj+ufr18aYr1w1jUw/iY1NgJw4W1qnLUHbjaLnfIzVdugY0HXVZEU\nqMKnM89V42MFkQcMgTc/gvseUe8TEqHvceU+fnHMLC/l47JiKqUkw3/8DJMki7rhlEtJtTSw+H3c\n/M5LsD9d+d0bilap6lUe0QB+767gOCwcrjSLz1b8CA/8XY3Tdx1diHbIT+J2dq4ZRzm7HXcqEY6O\npMacQ7i9DZidcSMcHcHsnRXh6AT4yCtbTkF58xR3hRBESxF9babQYVeuEOJGIcRKIcTKvLy8FprG\nHwvXnGFB1+DUPhqXjNaxW2BIN4HDDm4nxEc2s6954p/giekqQHvy2RAWAe17qi5UcckqTTOsHsVM\np41Vfvczz1EFU+6IYH/YY+GWu2Duj/DBf5p+LC2AaF1HB84Pi+DCerQ/bGu1YUPweEwikyNjkRYr\nG9+cDl8sUhZ6Q5GYpOQkzp0EF1yhSH3ISLjz4cOXm3QVuMJhwFAYfSbEJUD7zofoCylYLW6smhu7\nJQar7sBpTcCiubBbjz83IQSx4b1pF38hTlsyuuYiJXosEY5OCCwkRQ0nNqwfILDodTefD6FxaBH1\nSiHEUOAxKeVY8/1fAKSUT9e2fEi9svkgpawp069r3II7D7oBDh239LonMBp63pv9N6vvea3nckfO\nqbFz/FX/T39H+LXVK1cAnYQQ7YQQNuAS4KvjrBNCM+DQi6SucQvuvPZxS697AqOh573Zf7P6ntd6\nLnfknBo7x1/1//QPiBZJEJZS+oUQfwbmAjrwvpRyU0vsK4QQQgghhGOjxSpBpJSzgdkttf0QQggh\nhBD+v73zCY2jiuP450saU7HFUKsSaNFGPNiD1OChoPSgRWkuUeghJ3sQBP+AHjxUClKPCnoQxKJY\nUBGtVsUgCFateDKhav6VUJtihdrQ6KFVLyLy8zC/le2yu1kXd95z9veBx755M5v57C9vf8y8mdnX\nGfFkbBAEQcWJRB8EQVBxItEHQRBUnEj0QRAEFScSfRAEQcXpyQNT/1pC+hn4MdHuNwO/JNr3WoRb\nd+TsBnn7hVt3pHK7wczW/F3wLBJ9SiSd6OTJshSEW3fk7AZ5+4Vbd+TsBjF0EwRBUHki0QdBEFSc\nSPTwSmqBNoRbd+TsBnn7hVt35OwWY/RBEARVJ47ogyAIKk7fJnpJByX9JGnWy3jduqd8UvNTku5N\n5JfV5OqSzkpa8Fid8LZNko5JOu2vXcyO0ZXLYUmrkhbr2pq6qOBFj+O8pNbz3vXOLYu+JmmrpOOS\nliSdlPS4tyePXRu35LGTtF7SjKQ5d3vG27dJmva4HfGfZEfSkC8v+/obe+XWMWbWlwU4CDzZpH07\nMAcMAduAM8BAyW4Dvt9R4Ar32Z44XmeBzQ1tzwH7vb4feLYkl13AGLC4lgswDnxCMevZTmA6gVsW\nfQ0YAca8vhH43h2Sx66NW/LY+eff4PVBYNrj8S4w6e2HgIe9/ghwyOuTwJFe9rlOSt8e0bdhAnjH\nzP4wsx+AZYrJzsvk/zK5+gRQm2n6deC+MnZqZl8BjbNXt3KZAN6wgq+BYUkjJbu1otS+ZmYrZvat\n138Dlijmck4euzZurSgtdv75f/fFQS8G3AUc9fbGuNXieRS4W4lnVOn3RP+Yn5Ierht2yGFi8xwc\nGjHgU0nfSHrI2643sxUovqjAdcnsWrvkEsus+poPJ9xGcXSaVewa3CCD2EkakDQLrALHKM4gLppZ\nbdb3+v3/4+brLwHX9MqtEyqd6CV9JmmxSZkAXgZuAnYAK8Dztbc1+VNl35qUg0Mjd5jZGLAHeFTS\nrsQ+nZJDLLPqa5I2AO8DT5jZr+02bdLWU78mblnEzsz+MrMdwBaKM4db2uw/hz53GT2bYSoHzGx3\nJ9tJehX42BfPAVvrVm8Bzv/HamuRg8NlmNl5f12V9CFFZ78gacTMVvyUfjWhYiuX5LE0swu1euq+\nJmmQIpG+ZWYfeHMWsWvmllPs3OeipC8pxuiHJa3zo/b6/dfczklaB1xN58N5PaHSR/TtaBhrvB+o\n3SUxBUz6lfNtwM3ATMl6WU2uLukqSRtrdeAeinhNAft8s33AR2kMoY3LFPCA30GyE7hUG6Yoi1z6\nmo8TvwYsmdkLdauSx66VWw6xk3StpGGvXwnspriGcBzY65s1xq0Wz73AF+ZXZpOR+mpwqgK8CSwA\n8xT/mJG6dQcoxuBOAXsS+Y1T3HlwBjiQOFajFHc4zAEnaz4U446fA6f9dVNJPm9TnMb/SXH09GAr\nF4rT6Jc8jgvA7QncsuhrwJ0UQwjzwKyX8Rxi18YteeyAW4Hv3GEReLruezFDcSH4PWDI29f78rKv\nHy3je9GuxJOxQRAEFadvh26CIAj6hUj0QRAEFScSfRAEQcWJRB8EQVBxItEHQRBUnEj0QRAEFScS\nfRAEQcWJRB8EQVBx/gYchZR3iC2iNAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x13a5d8bd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(Xsub[:,0], Xsub[:,1], c=y_kmeans, s=5, cmap='rainbow', linewidth=0.0)\n", "plt.axis('equal')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 0 0 0 ..., 253 253 253]\n" ] } ], "source": [ "print X[:,1]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
ogaway/Econometrics
Dummy.ipynb
1
54300
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#構造変化、理論の妥当性のテスト\n", "『Rによる計量経済学』第9章「構造変化、理論の妥当性のテスト」をPythonで実行する。 \n", "テキスト付属データセット(「k0901.csv」等)については出版社サイトよりダウンロードしてください。 \n", "また、以下の説明は本書の一部を要約したものですので、より詳しい説明は本書を参照してください。 \n", "\n", "##ダミー変数(Dummy Variable)\n", "###例題9.1「定数項ダミー」\n", "以下のようにモデルを設定して回帰分析を行う。 \n", "$Y_{i} = \\alpha + \\beta X_{i} + \\gamma D_{i} + u_{i}$" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# -*- coding:utf-8 -*-\n", "from __future__ import print_function\n", "import numpy as np\n", "import pandas as pd\n", "import statsmodels.api as sm\n", "import matplotlib.pyplot as plt\n", "import warnings\n", "warnings.filterwarnings('ignore')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>i</th>\n", " <th>X</th>\n", " <th>Y</th>\n", " <th>D</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>5</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>3</td>\n", " <td>7</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>3</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>6</td>\n", " <td>6</td>\n", " <td>5</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>7</td>\n", " <td>7</td>\n", " <td>9</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>8</td>\n", " <td>8</td>\n", " <td>5</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>9</td>\n", " <td>9</td>\n", " <td>7</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>10</td>\n", " <td>10</td>\n", " <td>10</td>\n", " <td>1</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " i X Y D\n", "0 1 1 2 0\n", "1 2 2 5 1\n", "2 3 3 7 1\n", "3 4 4 3 0\n", "4 5 5 7 1\n", "5 6 6 5 0\n", "6 7 7 9 1\n", "7 8 8 5 0\n", "8 9 9 7 0\n", "9 10 10 10 1" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# データ読み込み\n", "data = pd.read_csv('example/k0901.csv')\n", "data" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>const</th>\n", " <th>X</th>\n", " <th>D</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1</td>\n", " <td>5</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>1</td>\n", " <td>6</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>1</td>\n", " <td>7</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>1</td>\n", " <td>8</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>1</td>\n", " <td>9</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>1</td>\n", " <td>10</td>\n", " <td>1</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " const X D\n", "0 1 1 0\n", "1 1 2 1\n", "2 1 3 1\n", "3 1 4 0\n", "4 1 5 1\n", "5 1 6 0\n", "6 1 7 1\n", "7 1 8 0\n", "8 1 9 0\n", "9 1 10 1" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 説明変数設定\n", "X = data[['X', 'D']]\n", "X = sm.add_constant(X)\n", "X" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 2\n", "1 5\n", "2 7\n", "3 3\n", "4 7\n", "5 5\n", "6 9\n", "7 5\n", "8 7\n", "9 10\n", "Name: Y, dtype: int64" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 被説明変数設定\n", "Y = data['Y']\n", "Y" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: Y R-squared: 0.948\n", "Model: OLS Adj. R-squared: 0.933\n", "Method: Least Squares F-statistic: 64.02\n", "Date: Sun, 19 Jul 2015 Prob (F-statistic): 3.17e-05\n", "Time: 04:03:42 Log-Likelihood: -8.0050\n", "No. Observations: 10 AIC: 22.01\n", "Df Residuals: 7 BIC: 22.92\n", "Df Model: 2 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [95.0% Conf. Int.]\n", "------------------------------------------------------------------------------\n", "const 1.1650 0.491 2.374 0.049 0.005 2.325\n", "X 0.5777 0.071 8.143 0.000 0.410 0.745\n", "D 3.3155 0.408 8.136 0.000 2.352 4.279\n", "==============================================================================\n", "Omnibus: 3.054 Durbin-Watson: 3.236\n", "Prob(Omnibus): 0.217 Jarque-Bera (JB): 0.973\n", "Skew: 0.000 Prob(JB): 0.615\n", "Kurtosis: 1.472 Cond. No. 16.9\n", "==============================================================================\n", "\n", "Warnings:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" ] } ], "source": [ "# OLSの実行(Ordinary Least Squares: 最小二乗法)\n", "model = sm.OLS(Y,X)\n", "results = model.fit()\n", "print(results.summary())" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# ダミー別データ\n", "data_d0 = data[data[\"D\"] == 0]\n", "data_d1 = data[data[\"D\"] == 1]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAEKCAYAAAA2Mm/+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VHXW+PHPIYEEDFVYmlKMDVERNMG1EVFAKYptxQUF\nC0XIwD6rz2Pfxd+Wl8+u6/owE3oXpYiIQERAJODaEjpSNQhSBKQYApJAkvP74w4YMISQzOTOZM77\n9cqLmTt37j13ZjjznW8VVcUYY0zoq+R2AMYYY0rGErYxxoQJS9jGGBMmLGEbY0yYsIRtjDFhwhK2\nMcaECUvYxrhMRJqISLaISAn2TRKRHcU8PlFE/hLYCE2osIQdwUSkhYh8IiI/icg3ItL9HPsni8hy\nEckRkQnnea4+IpLvT0zZIrJVRMaLyGVlu4ryJyKbROTxIrYPEZGM8z2eqn6vqtU1MIMi1P9nKiBL\n2BFKRKKBD4A5QG2gHzDlHAl0F/AXYHwpT/uZqlYHagB3AseAFSLSspTHc8tE4LEitj/qf6zE/O9D\noJ2zpG7CkyXsyHUl0FBV31THEuAznKRTJFV9X1U/AA6U8pziP46q6lZVHQQsBYZC0T/3RWSbiLT3\n3x4qIu+KyFsiclhE1orIZSLygojsFZHtItKh0HPTROQvIvKZv1Q/R0TqisjbIpIlIuki0tS/b4qI\nvH7GueeIyB+KuI4pwC0i0qTQvlcB1wBTRaSLiKzyn+N7Eflzof2aiUiBiDwhItuBj0WkqX9bJf8+\nj4vIBv81ZopIv1+9kM41/ygi34nI78/6got0FZHVInLI/zpcc7Z9TeizhG0KqwRcXYL9iizB+ZPC\nTed5zlnArcU8fubP+67AZJxfBauARf7tjXBK/6PO2P9hoBfQGIgHvgDGAXWAjcDJZDoReORkPbKI\n1AXuAN7+VUCqO4ElnP7l9iiQqqoHgSNAL1WtCXQBnhaRe884zG04X5qd+PXruRfooqo1gMeBf4tI\n60KPNwAu9F9zb2B0Ub+M/M8ZB/T1X+8oYI6IVDlzXxMeLGFHrs3APhH5bxGpLCIdcZJI1RI8t8g6\nUlWtraqfn2ccP+Akk5JapqqLVDUfmImTuF7z358ONBORGoXinKCq36nqYWA+sEVVP/Hv/y7Q2h97\nBpCFk6QBegBLVPXHs8QxCX/C9peMf+/fhqouVdX1/tvrgGlAuzOeP1RVj6lq7pkHVtUPVfU7/+1l\nwEJ+/aX2iqqe8D+eivPFdOoQ/n/7AaNUNcP/q2YykAvceJZrMiHOEnaEUtUTQHecEuAPwH8BM4Cd\nACIyv1AD4SNnPD2QdaSNgYPnsf++QrePAfsLNdYd8/8bV2ifvYVu55zx/Jwz9p2MUxrH/+9bxcTx\nPtBQRNoCSUA1nMSJiLQVkSUisk9EfgL643yxFFZcT4+7ReRLETkgIoeAzmc8/5CqHit0fzvQsIhD\nNQWe8f/yOeQ/1kVn2deEgWA0eJgw4S/9JZ28LyKfAxP8j91d3FMDGMZ9wDL/7aM4ie9kPFFAvQCe\n61xxTwHWiUgrnOqK2Wc9kOrPIjITp/GxKjBVVfP8D78DDAM6qepxEfk3ULcksYhIDPAezhfGB6qa\nLyLvc/qXZG0RqaaqP/vvNwXWFnG474G/qerfz37JJpxYCTuCicg1IhIrItVE5FmgPsX0chCRKBGJ\nxfmijxKRGH9SPd/zRolIcxHx4lTDvOp/aAsQKyKdRaQy8DIQc77HP/N0Z7n9K/666eU4Je2ZRVVX\nnGESTtXJA/7bJ8XhlIKPi0giTnVJSb/kqvj/9gMFInI30LGI/V71V2XdivMr6V3/duGX6xwDDBCR\nRHFc4G8QjSvieCYMWMKObI8Cu3GqDW4HOvirSs7mFeBn4DmcEuAx4KWTD/qrT24+y3MV+K2IZOPU\nFS/BSWwJhep7s4CBwFicqpkjnF51UFQf4/O5X5LnT8Lp7VFcdQj+eJcBPwE7VHVFoYcGAv9PRA7j\nvGbTz3HOU9tUNRsYjFM9dRB4BKf7ZWE/AIdw3ru3gP6quqXQcU4eawVOg6PPf6xvKLo7ogkTYgsY\nGPMLf4l1iqo2dTsWY85kJWxj/PzVMH/AqUowJuRYwjYGZ5g+TjVDfeBNl8MxpkhWJWKMMWHCStjG\nGBMmgtYPW0Ss6G6MMaWgqkV2QQ1qCVtVI+rvz3/+s+sx2DXbNds1h/f1FseqRIwxJkxYwjbGmDBh\nCTuAkpKS3A6h3Nk1R4ZIu+ZQvd6gdesTEQ3WsY0xpqISEfQsjY7lPlufnHud0YhkX27GmHNxZXpV\nS06nsy8xY0xJWB22McaECUvYxhgTJixhG2NMmLCEXYw+ffrwyiuvuB2GMcYAlrCLJSIlahBMSkpi\n3Lhx5RCRMSaShcwivKmpyxg2bCG5udHExOQxeHBHunS5rdyPcaaS9GixXh7GmHIRxAlMtChFbZ83\nb6nGx7+ooKf+4uNf1HnzlhZ5jKIE4hgrV67U1q1ba/Xq1fXhhx/WHj166Msvv6yHDh3SLl26aL16\n9bR27dratWtX3blzp6qqvvjiixoVFaWxsbEaFxenHo9HVVUHDx6sF198sdaoUUOvv/56/fTTT896\n3rO9VsaYyOPPB0Xn1bM9UNa/80nYHTu+dFqiPfnXqdPLJb7Ish4jNzdXmzRpom+++abm5eXpzJkz\ntXLlyvrKK6/ogQMHdNasWXrs2DHNzs7Whx56SLt3737quUlJSTpu3LjTjjdlyhQ9ePCg5ufn67/+\n9S9t0KCB5ubmlvg1Mca45OhR1fnzXTt9cQk7JOqwc3OLrpnJyYkqt2N8+eWX5OXlMWTIEKKionjg\ngQdISEgAoE6dOtx3333ExsYSFxfHiy++yNKlS097vp5RddKzZ09q165NpUqV+OMf/0hubi6bN28u\n8fUYY8rZ1q3w7LPQpAmMGgV5eW5H9CshkbBjYop+YWJj88vtGLt376Zx48anbWva1Fk4+9ixY/Tv\n359mzZpRs2ZN2rVrR1ZW1mlJ+sx67Ndff52rrrqKWrVqUbt2bbKysti/f3+Jr8cYUw4KCmDBAujW\nDdq2hUqVICMD3n8fokOmie+UYhO2iIwXkb0isq7QtjoiskhEtojIQhGpVdYgBg/uSHz8S6dti49/\nEY+nQ7kdo2HDhuzateu0bdu3b0dVef3119myZQvp6elkZWWxdOnS0yYbPzNZf/rpp/zzn//k3Xff\n5aeffuLQoUPUrFnThuQbEyoOH4Zhw6BFC3juOejeHbZvh3/8A5o3dzu6szrXV8gEwAtMLrTteWCR\nqv5DRJ7z33++LEGc7Mnh9b5CTk4UsbH5eDx3nVcPj7Ie46abbiI6Opphw4bx9NNPM3fuXDIyMmjf\nvj1HjhyhatWq1KxZk4MHD/Lqq6+e9tz69euTmZl56n52djbR0dHUrVuX48eP89prr3H48OESX4sx\nJkg2bgSfD6ZOhY4dYdw4uPlm8Be6gtHTLKDOVrldqATZDFhX6P4moL7/dgNg01meV1yFekhavnz5\nr3qJvPLKK7p7925NSkrSuLg4veKKK3TUqFFaqVIlzc/PV1XVL774Qi+//HKtXbu2DhkyRPPz8/WJ\nJ57QGjVqaMOGDfUf//iHNm/eXBcvXlzkeUP5NTEm7OXlqb7/vuodd6g2aKD6pz+p7tr1q90C0dMs\nECim0fGc82GLSDNgrqpe479/SFVr+28LcPDk/TOep0Ud2z/Xaym+Wioue02MCYIDB2DsWBgxAho2\nBI8HHnwQqlQpcvdOnV5m4cK/FrH9FT766C/BjvaUoM2Hrapa3OroQ4cOPXU7KSkpZFdxMMZUIKtW\ngdfrNBx27w4zZ8INN5zzaYHorVYaaWlppKWllWjf0iTsvSLSQFX3iEhDYN/ZdiycsI0xJmiOH4dZ\ns5xEvWMHDBwIW7ZAvXolPkQgequVxpmF2TPbyAorTbe+OUBv/+3ewOxSHMMYY8ruhx/g1VehWTMY\nPdrpR711Kzz//HklawhMb7VgK7YOW0SmAu2AusBe4E/AB8AMoAmwDfidqv5UxHOtDruE7DUx5jyo\nwhdfOKXpjz6CHj0gORlatizzoVNTl+H1LirU06xDufcSKa4Ou9wX4bXk9Gv2mhhTAseOwbRpTqLO\nznaSdO/eUKvMQ0FCSkgtwmuMMedl+3anp8f48ZCQAH//u9OHulJIDNQuV5F3xcaY0KcKixfDffdB\nmzZOo+Lnn0NqKtx1V0Qma7AStjEmlGRnw1tvOaMRo6Kcao8pU+CCC9yOLCRYwjbGuG/LFkhJcZLz\n7bfD8OHQrt2pIePGEZm/K4rQrFkzqlWrRo0aNahduzY333wzo0aNKlVj4HPPPUfdunWpW7cuzz9f\npmlWjKm48vNh3jyniuPWWyEuDlavdga6JCVZsi6ClbD9RIR58+bRvn17srOzSUtLY8iQIXz11VeM\nHz++xMcZNWoUH3zwAWvXrgWgQ4cONG/enP79+wcrdGPCy6FDTgPi8OFQp44zZHz2bIiNdTuykGcl\n7CJUr16dbt26MX36dCZNmsT69etL/NxJkybx7LPP0qhRIxo1asSzzz7LxIkTgxesMeFi7Vro1w8u\nucQpSb/zjjP39GOPWbIuISthFyMhIYGLLrqITz/9lHnz5vHaa68VuZ+IcPDgQQA2bNhAq1atTj12\n7bXXnlfCN6ZCOXHCKT37fJCZCQMGwKZNUL++25GFpZBL2PJqYOqt9M+BGYjSqFEjDh06xAsvvMBz\nzz13zv2PHDlCzZo1T92vUaMGR44cCUgsxoSNvXthzBgYORLi453eHt27Q+XKbkcW1kIuYQcq0QbK\nrl27qFOnTon3j4uLO22xgqysLOLi4oIRmjGh56uvnNL0vHnw0ENOv+lCvzhN2VgddjEyMjLYtWsX\nt9xyC3//+9+pXr16kX81atQ49ZyWLVuyevXqU/fXrFnD1Vdf7Ub4xpSPnByYPBkSE+GRR+C665zq\nj9GjLVkHWMiVsN10sgvf4cOHWbZsGX/4wx949NFHadmyJS1btuTFF1885zEee+wx3njjDTp37oyq\n8sYbbzBkyJBgh25M+duxw6nyGDvWSdJ/+hPcfbcz4MUEhSXsQrp160Z0dDSVKlWiZcuWPPPMMwwY\nMOC8jtG/f3+2bt3KNddcA0Dfvn3p169fMMI1pvypwrJlzgRMn3wCvXo596+4wu3IIoLN1hcC7DUx\nIe/oUWcUos8HeXlOI+Jjj0H16m5HVuHYbH3GhDFXV/LOzHSGjE+a5IxGfPNNaN/eRiG6xBK2MSEs\nNXUZQ4YsIDPzb6e2ZWY6q6IELWkXFMDChU61R3o6PPEErFjhrOpiXGVVIiHAXhNzNuW6kndWFkyY\n4JSo4+KcIeOPPAJVqwb2PKZYViViTJgql5W816936qanTXMmYpo4EW66yao9QpAlbGNCWNBW8s7L\ng7lznWqPjRuhf38ncTdqVLbjmqCyhG1MCBs8uCOZmS+dVoftrOR9V+kOuH+/0296xAi46CKnt8cD\nD0CVKgGK2ASTJWxjQtjJhkWv95VCK3nfdf4NjitWONUes2c7y269/76z9JYJK9boGALsNTFBcfy4\nsxiA1wu7d8PAgfDkk1C3rtuRmWJYo6MxkWT3bhg1ypnLo2VLeO456NoVou2/e7izyZ/8ArVE2JIl\nS7j99tupVasWzZs3D1K0xpxBFf7zH+jRA66+2qmrXrwYPv7YmdbUknWFYAnb7+QSYYcPH+b777/n\n+eef53//93958sknz+s4cXFxPPXUU/zzn/8MUqTGFPLzzzBunFMf/cQTTne8775z+lJfdZXb0ZkA\ns6/dIpxcIqxBgwbceOONPPPMM7Rs2bJEz01ISCAhIYGPP/44yFGaiPbdd05PjwkToG1beO016NAB\nKlkZrCKzhF2M0iwRZkzQqDpVHD4ffPYZ9O4NX37prOhiIkLoJexAja4KUK+L810izJiAy852Jl/y\n+Zz+0h6Ps4DtBRe4HZkpZ6GXsEOse9v5LhFmTMBs3uwk6bffhjvucHp+3HabDRmPYFbhVYzSLBFm\nTJnk58OcOdCxo5Oca9aEtWvh3XehXTtL1hEu9ErYLgrEEmGqSm5uLidOnDh1W0SoYkN/TXEOHnR6\newwfDr/5jTNkfO5ciIlxOzITQmyko1/z5s3Zu3fvaUuE9erViwEDBiDnUapJS0ujffv2wC/XmpSU\nxCeffHLW54Tqa2LKwZo1zkjE996Dbt2cRJ2Y6HZUxkXFjXS0hB0C7DWJMCdOwKxZTv30d9/B009D\n375OydpEPBuabkwo2LPHGS4+ahRcdhkMGWKjEM15sUZHY4JJ1ekr3bMntGgBu3bB/PmQlgYPPmjJ\n2pyXUn9aROQFoBdQAKwDHlfV3EAFZkxYy8mB6dOd+ulDh2DQIKcKpHZttyMzYaxUddgi0gz4BGih\nqrkiMh34UFUnFdrH6rBLyF6TCuT7750h4+PGwfXXO42Id99tQ8ZNiRVXh13aT9Fh4ARQTUSigWrA\nrlIey5jwpgpLlsD990Pr1nDsmDNz3vz50KWLJWsTMKWqElHVgyLyL+B74BiwQFVttiMTWY4cgSlT\nnKoOVac0PWkSVK/udmSmgiptlUg8MBe4FcgC3gVmqurbhfY5a5WI+TWrEgkj33zjTF/61lvO6MPk\nZLj9dhuFaAIiGN36bgA+V9UD/hPMAm4C3i6809ChQ0/dTkpKIikpyRKTCU8FBfDRR04j4ooVzlJb\nK1dC06ZuR2bCXFpaGmlpaSXat7Ql7FY4yTkByAEmAumqmlJonyJL2MaElZ9+cuacTklx5vXweODh\nh6FqVbcjMxVUwEvYqrpGRCYDy3G69a0ERpc+RGNCzLp1TpKePh06d3aqP2680ao9jKvKfWi6MSEr\nLw8++MBpRNy8GQYMcIaMN2zodmQmgtjQdGOKs28fjB3r9J9u2tSp9rjvPmexAGNCiCVsE7kyMpzS\n9Jw5Th/qOXOcftTGhCirEjGRJTfXWQzA53MmYxo40OnxceGFbkdmDBBi06sa44qdO51Z8saMgWuu\ncao9unSBqCi3IzPmNMEYmm5M6FOFZcvgd7+Da691JmFasgQWLYJ77rFkbcKO1WGbiufoUWdVcZ/P\nmTUvOdlpVLS1N02Ys4RtKo6tW501ESdOhJtugtdfd1Ybt8mXTAVhn2QT3goKYMECZz3ExERnYEtG\nhtPjo0MHS9amQrEStglPWVnOzHgpKRAb6zQiTp8O1aq5HZkxQWMJ24SXjRuduumpU50S9NixcMst\nNmTcRARL2Cb05efD3LlOov76a+jXz5nro3FjtyMzplxZwjah68CBX4aMN2zo9PZ48EGIiXE7MmNc\nYQnbhJ5Vq5x5p99/H+69F2bOhBtucDsqY1xnCduEhuPHYdYsJ1Hv2AFPPw1btkC9em5HZkzIsIRt\n3PXDDzB6tDNs/Mor4ZlnnFGI0fbRNOZM9r8ijKWmLmPYsIXk5kYTE5PH4MEd6dLlNrfDOjdV+OIL\npzT90UfQowcsXAhXX33Op4btNZvzYu9z0Sxhh6nU1GUMGbKAzMy/ndqWmfkSQOh+sI8dg2nTnESd\nnQ2DBjkNirVqlejpYXnN5rzZ+1wMVQ3Kn3NoEywdO76kTlH19L9OnV52O7Rf27ZN9bnnVOvWVb37\nbtUPP1TNzz/vw4TVNZtSi/T32Z87i8yrNm43TOXmFv3jKCcnRGagU4XFi52VW9q0ceah/uIL+PBD\nuPvuUg0ZD/lrNgFh7/PZWZVImIqJyStye2xsfjlHcobsbGfBWp/PScoej3M/Lq7Mhw7ZazYBZe/z\n2VkJO0wNHtyR+PiXTtsWH/8iHk8HdwLasgWGDHHWRFy82Jk1b9066N8/IMkaQvCaTVDY+3x2tuJM\nGEtNXYbXu4icnChiY/PxeDqUb6NMfj7Mn++UpleuhKeeclYab9IkaKd0/ZpNuYjk99mWCDOBdegQ\njB/vlKJr13aqPR5+2Jk1zxhTJsUlbKvDNiW3dq1Tmn73XWc9xLffhrZtbaY8Y8qJJWxTvBMnYPZs\nJ1F/+61T5bFpE9Sv73ZkxkQcS9imaPv2OUPGR46ESy5xZsq77z6oXNntyIyJWNZLxJwuPR0efRSu\nuAK2b4d5835ZedyStTGuskZH4wxqmT7dqfb48UdnyPgTT0CdOm5HZkzEsV4ipmg7dzpzeYwdC9dd\n51R7dO4MUTaizBi3FJewrUok0qjC0qXOyi3XXuuMTFy69JeVxy1ZGxOyrNExUhw96nTD8/mcnh/J\nyTBhAlSv7nZkxpgSsoRd0WVmOgNcJk1yVhd/4w244w7rO21CmqqyZNsSLqh8AW0vaut2OCHDqkQq\nooICZ2GArl3hxhudao7ly53+1HfeacnahKwjx48wImMEV4+4msHzB7P/5/1uhxRSrIRdkWRlwcSJ\nkJICF1zgDBmfMQOqVXM7MmOKteXAFlLSU5iybgpJzZJI6ZxCu6btECtcnMYSdkWwfr2TpKdOhU6d\nnLrpm26ykrQJaQVawPxv5uNN97Lyh5U81eYpVvVfRZOawZs8LNxZwg5XeXkwd67TiLhhA/Tr5yTu\nRo3cjsyYYh06dogJqyeQkpFC7djaeBI9zO4xm9homzzsXEqdsEWkFjAWaAko8ISqfhmowMxZ7N/v\n9JseMQIaN3aqPR54AKpUcTsyY4q1du9aUtJTmLFhBl0u68Lb979N28ZtrdrjPJSlhP1/wIeq+qCI\nRAMXBCgmU5QVK5zS9OzZ0L07zJoF11/vdlTGFOtE/gk+2PwB3nQv3x78lgHXD2DjoI00iGvgdmhh\nqVQJW0RqAreqam8AVc0DsgIZmAGOH4eZM51EvXMnDBwI33wDdeu6HZkxxdp3dB9jVoxh5IqRNK/V\nnOTEZO678j4qR9l8NGVR2hJ2c+BHEZkAtAJWAENU9eeARRbJdu+GUaOc2fKuugr+53+cLnrR1uRg\nQlv6rnR86T7mbpnLgy0eZO4jc7muwXVuh1VhlDYDRANtgGRVzRCRN4HngT8V3mno0KGnbiclJZGU\nlFTK00UAVfj8c/B6nWHijzzirI141VVuR2ZMsXLzcpmxfga+DB/7ju5jUMIg3rzrTepUtcnDSiIt\nLY20tLQS7VuqyZ9EpAHwhao299+/BXheVbsW2scmfyqJY8ec7nherzN8fNAg6NMHatZ0OzJjirXz\n8E5GLh/JmJVjaFW/FZ5ED50v60xUJZuPpiwCvkSYqu4RkR0icrmqbgHuBNaXJciIs22b09Nj/Hhn\nma3XXoMOHaCSDT41oUtVWbZ9Gb4MH4u3LqbnNT1Z2mcpV9a90u3QIkJZKkU9wNsiUgXIBB4PTEgV\nmKpTzeH1wmefQe/e8OWXEB/vdmTGFOvo8aO8ve5tfOk+jucfJzkxmXH3jKNGTA23Q4soNh92ecjO\nhsmTnd4elSs7M+X17OkMHzcmhGUezGR4xnAmrZnEzU1uxpPo4Y7md1jf6SCyVdPdsnmzM2R8yhRn\nhrxRo+DWW23IuAlpBVrAwsyF+NJ9fLXrK/q06kNG3wya127udmgRzxJ2oOXnw4cfOqXp1auhb19Y\nuxYuusjtyIwpVlZOFhNXTyQlI4VqlavhSfQw46EZVKtsk4eFCkvYgXLwoNOAOHw41KvnVHvMmQMx\nMW5HZkyxNvy4AV+6j6lfT6VTfCfG3zuemy++2ao9QpAl7EBJSXFGIU6bBomJbkdjTLHyCvKYt2Ue\n3nQvG37cQL82/Vg/cD2NqtvkYaHMGh2NiSD7f97P2JVjGbF8BI2rNyY5MZkHr3qQKlE2eViosEZH\nYyLcyh9W4k33MnvTbLpf2Z1Zv5vF9Y1s8rBwYwnbmArqeP5x3tvwHt50LzsP72RgwkC2JG+h3gX1\n3A7NlJJViRhTwezO3s3oFaMZvWI0Leq1IDkhmW5XdCO6kpXPwoFViRhTwakqn+/4HG+6lwWZC3jk\n6kdY9OgiWv6mpduhmQCyErYxYezYiWNM/Xoq3nQvR48fZVDCIHpf15tasbXcDs2UUnElbEvYxoSh\nbT9tY0TGCMavHk/bxm1JTkymY3xHKolNHhburErEmApAVVn83WK86V7+8/1/6NOqD188+QWX1rnU\n7dBMObEStjEhLjs3m8lrJuPL8BFdKRpPooee1/Tkgio2eVhFZCVsY8LQ5v2bSclIYcraKdxxyR2M\n7DKS25reZkPGI5glbGNCSH5BPh9+8yHedC9r9q6hb5u+rBmwhotrXux2aCYEWMIOgNTUZQwbtpDc\n3GhiYvIYPLgjXbrc5nZYJsCC+T4fPHaQ8avGMzxjOHWr1cWT6GFOyznERscG5PilZZ/t0GIJu4xS\nU5cxZMgCMjP/dmpbZuZLAPbBrkCC9T6v2bMGX7qPmRtn0vXyrkx7cBqJjUNj8jD7bIcgVQ3Kn3Po\niq9jx5fUWfvr9L9OnV52OzQTQIF8n4/nHdfpX0/XW8ffqo3/1Vj/uvSvuid7TxCiLhv7bLvDnzuL\nzKtWwi6j3NyiX8KcHFs5uiIJxPu898heRq8YzcgVI7m0zqUMbjuYe6+4l8pRlQMVZkDZZzv0WMIu\no5iYvCK3x8bml3MkJphK+z6rKl/t+gpfuo/Ub1J56KqHmN9zPtfWvzYYYQaUfbZDjw2LKqPBgzsS\nH//Sadvi41/E4+ngUkQmGM73fc7Jy2HS6kkkjk2k56yetGnYhq2DtzK62+iwSNZgn+1QZANnAiA1\ndRle7yJycqKIjc3H4+lgjTIVUEne5x1ZOxixfARjV46lTcM2eBI93HXpXURVCs9qBPtslz+bS8SY\nIFJV0ral4cvwkbYtjUevfZSBCQO5/MLL3Q7NhCFL2MYEwZHjR5iydgq+dB+KkpyQTK9re1E9prrb\noZkwZgnbmAD69uC3pKSnMHntZG5rehueRA+3N7vdhoybgLC5RIwpowItYMG3C/Cme1m+ezlPtn6S\nlf1W0rRWU7dDMxHEStjGFOOnnJ+YsGoCKRkp1IipgSfRQ4+re1C1clW3QzMVlJWwjTlPX+/7Gl+6\nj+nrp3P3pXfz1n1vceNFN1q1h3GVJWxj/PIK8pizeQ7edC+b92+m//X92TBwAw2rN3Q7NGMAS9jG\n8OPRHxk8GqgjAAANYUlEQVSzcgwjlo+gac2mJCcmc3+L+6kSVcXt0Iw5jSVsE7GW716ON93LnM1z\nuP/K+5nTYw6tG7Z2OyxjzsoaHU1Eyc3LZeaGmXjTvew5soeBCQN5svWTXFjtQrdDMwawftjGsOvw\nLkatGMXoFaO5+jdX40n00PXyrmE7ZNxUXNZLxEQkVeU/3/8HX4aPRZmL+P01v2dJ7yW0qNfC7dCM\nKRUrYZsK5+cTP/POunfwpfs4lneM5IRkel/XmxoxNdwOzZhzClqViIhEAcuBnara7YzHLGGbcrX1\n0FZGZIxgwuoJ/Pbi3+JJ9HDnJXdSSWwWYRM+glklMgTYANhsN8YVBVrAx1s/xpfu4/Mdn9Pnuj6k\n903nktqXuB2aMQFX6oQtIhcBnYG/AX8MWETGlMDh3MNMWj2JlIwUYqJj8CR6mPbgNKpVruZ2aMYE\nTVlK2P8G/huwikFTbjbt34Qv3cc7697hzkvuZEy3MdzS5BYbMm4iQqkStoh0Bfap6ioRSQpsSMac\nLr8gn3lb5uHL8LFu7zr6tunLuqfX0bhGY7dDM6ZclbaEfRNwj4h0BmKBGiIyWVUfK7zT0KFDT91O\nSkoiKSmplKczkejAzwcYt2ocwzOG0yCuAcmJyTx01UPERMe4HZoxAZOWlkZaWlqJ9i1ztz4RaQc8\na71ETKCs3rMa71deZm2axT1X3ENyQjIJjRPcDsuYclEeA2csM5syOZF/glkbZ+FN97I9aztP3/A0\nW5K3UO+Cem6HZkzIsIEzxlV7juxh1PJRjFoxiivqXkFyQjL3Xnkv0ZVsEK6JTDY03YQUVeXLnV/i\nTfcy/9v5PNzyYRb0WsA19a9xOzRjQpqVsE25ycnLYdrX0/Cme8nKyWJQwiD6XNeH2lVrux2aMSHD\nZuszrtr+03ZGLh/JuFXjuKHRDSQnJnPXpXfZkHFjimBVIqbcqSpLti3Bm+5l2fZlPHbtY3z2xGdc\nduFlbodmTNiyErYJqCPHj/DWmrfwZfgA8CR66HVtL+KqxLkcmTHhwapETNBtObCF4RnDeWvtW7Rr\n2g5PooekZkk2ZNyY82RVIiYoCrSA+d/Mx5fhY8XuFTzZ+klW9V9Fk5pN3A7NmArJStjmvB06dogJ\nqycwPGM4NWNr4kn00OPqHsRGx7odmjFhz0rYJiDW7V2HL93HjA0z6HxZZ9667y1uvOhGq/YwppxY\nwjbFyivIY/am2fjSfXxz8Bv6X9+fjYM20iCugduhGRNxLGGbIu07uo8xK8YwcsVImtVqRnJCMve3\nuJ/KUZXdDs2YiGUJ25wmfVc6vnQfc7fM5YEWDzCnxxxaN2ztdljGGKzR0QC5ebnMWD8DX4aPfUf3\nMfCGgTzR+gkurHah26EZE3GsH7Yp0s7DOxm5fCRjVo6hVf1WJCcm0+WyLkRVinI7NGMilvUSMaeo\nKp9+/ynedC+Lty6m5zU9WdpnKVfWvdLt0Iwx52Al7Ahx9PhR3ln3Dr4MH7l5uSQnJvNYq8eoEVO6\nNZRTU5cxbNhCcnOjiYnJY/DgjnTpcluAozYm8lgJO4JtPbSVlPQUJq2ZxM1Nbub1Dq9z5yV3lqnv\ndGrqMoYMWUBm5t9ObcvMfAnAkrYxQWTzW1ZABVrAgm8X0PWdriSOSSSqUhQZfTP4oMcHdIjvUOaB\nLsOGLTwtWQNkZv4Nr3dRmY5rjCmelbArkKycLCatmURKRgpVo6viSfQw46EZVKtcLaDnyc0t+mOT\nk2ONlcYEkyXsCmDDjxvwpfuY+vVUOsV3Ytw947j54puDNmQ8JiavyO2xsflBOZ8xxmEJO0zlF+Qz\nd8tcvOleNvy4gX5t+vH101/TuEbjoJ978OCOZGa+dFq1SHz8i3g8dwX93MZEMuslEmb2/7yfcSvH\nMXz5cBpVb4Qn0cMDLR4gJjqmXONITV2G17uInJwoYmPz8Xg6WIOjMQFgA2cqgJU/rMSX7uP9Te9z\n7xX3kpyYzA2NbnA7LGNMgFm3vjB1PP847214D1+Gjx1ZO3j6hqfZkryFehfUczs0Y4wLrIQdgnZn\n72b0itGMXjGaK+teiSfRQ7cruhFdyb5fjanorIQdBlSVz3d8ji/Dx0fffkSPlj1Y9OgiWv6mpduh\nGWNChJWwXXbsxDGmfj0VX7qP7OPZDEoYRJ/r+lArtpbboRljXGCNjiFo20/bGJExgvGrx5PYOBFP\nooeO8R2pJDb41JhIZlUiIUJVWfzdYnzpPj79/lN6t+rNF09+waV1LnU7NGNMGLASdjnIzs1m8prJ\n+DJ8RFeKJjkhmV7X9uKCKhe4HZoxJsRYCdslm/dvJiUjhSlrp9C+eXtGdBlBu6btbJVxY0ypWMIO\nsPyCfD785kN8GT5W71nNU62fYs2ANVxc82K3QzPGhDmrEgmQg8cOMn7VeIZnDOfCahfiSfTwu5a/\nIzY61u3QjDFhxKpEgmjNnjX40n3M3DiTrpd3ZeoDU2l7UVu3wzLGVECWsEvhRP4J3t/0Pr50H1sP\nbWXADQPYNGgT9ePqux2aMaYCs4R9HvYe2cvoFaMZtWIU8XXi8SR66H5ldypHVXY7NGNMBChVwhaR\ni4HJwG8ABUar6rBABhYqVJX0Xel4072kfpPKQ1c9ROrvU2nVoJXboRljIkypGh1FpAHQQFVXi0gc\nsALorqobC+1T7o2OgVzJOycvhxnrZ+BN93Lg5wMMShjE460fp07VOgGO2hhjfhHwRkdV3QPs8d8+\nIiIbgUbAxmKfGESBWsl7R9YORi4fydhVY7muwXX8ud2fufvSu4mqZOsVGmPcVeaJK0SkGdAa+Kqs\nxyqLsqzkraqkbUvjwRkP0mpkK7KPZ7OszzIW9FpA18u7WrI2xoSEMjU6+qtDZgJDVPXImY8PHTr0\n1O2kpCSSkpLKcrpilWYl76PHjzJl7RR8GT7yC/JJTkxmwr0TqB5TPVhhGmPMadLS0khLSyvRvqUe\nOCMilYF5wHxVfbOIx8u1DrtTp5dZuPCvRWx/hY8++stp2749+C3DM4Yzac0kbm1yK55ED+2bt7ch\n48YY1xVXh12qKhFxMts4YENRydoNgwd3JD7+pdO2OSt5dwCgQAuY/818urzThd+O+y2VK1VmRb8V\nzO4xmzsuucOStTEm5JW2l8gtwDJgLU63PoAXVPWjQvu40kvkzJW8b77jWiaunkhKRgrVq1THk+ih\nx9U9qFq5arnGZowxJRGRCxh8ve9rUtJTmLZ+GnddeheeRA+/vei3VpI2xoS0iJlLJL8gnw82f4Av\n3cfG/Rvpf31/NgzcQMPqDd0OzRhjyqxCJewCLWDymsn0bdOXB656gCpRVdwOyRhjAqbCVokYY0w4\nCngvEWOMMeXPErYxxoQJS9jGGBMmLGEbY0yYsIRtjDFhwhK2McaECUvYxhgTJixhG2NMmLCEbYwx\nYcIStjHGhAlL2MYYEyYsYQdQSZf5qUjsmiNDpF1zqF6vJewACtU3OZjsmiNDpF1zqF6vJWxjjAkT\nlrCNMSZMBHU+7KAc2BhjKrhyX9PRGGNMYFmViDHGhAlL2MYYEyaCkrBF5C4R2SQi34jIc8E4RygR\nkYtFZImIrBeRr0VksNsxlQcRiRKRVSIy1+1YyoOI1BKRmSKyUUQ2iMiNbscUbCLygv9zvU5E3hGR\nGLdjCjQRGS8ie0VkXaFtdURkkYhsEZGFIlLLzRhPCnjCFpEowAfcBVwFPCIiLQJ9nhBzAvgvVW0J\n3AgMioBrBhgCbAAipSHk/4APVbUFcC2w0eV4gkpEmgF9gTaqeg0QBfRwM6YgmYCTrwp7HlikqpcD\ni/33XReMEnYi8K2qblPVE8A04N4gnCdkqOoeVV3tv30E5z9yI3ejCi4RuQjoDIwFimzRrkhEpCZw\nq6qOB1DVPFXNcjmsYDuMUxipJiLRQDVgl7shBZ6qfgocOmPzPcAk/+1JQPdyDeosgpGwGwM7Ct3f\n6d8WEfylktbAV+5GEnT/Bv4bKHA7kHLSHPhRRCaIyEoRGSMi1dwOKphU9SDwL+B7YDfwk6p+7G5U\n5aa+qu71394L1HczmJOCkbAj5efxr4hIHDATGOIvaVdIItIV2Keqq4iA0rVfNNAGGK6qbYCjhMjP\n5GARkXjgD0AznF+McSLS09WgXKBO3+eQyGvBSNi7gIsL3b8Yp5RdoYlIZeA9YIqqznY7niC7CbhH\nRL4DpgLtRWSyyzEF205gp6pm+O/PxEngFdkNwOeqekBV84BZOO99JNgrIg0ARKQhsM/leIDgJOzl\nwGUi0kxEqgAPA3OCcJ6QISICjAM2qOqbbscTbKr6oqperKrNcRqhPlHVx9yOK5hUdQ+wQ0Qu92+6\nE1jvYkjlYRNwo4hU9X/G78RpZI4Ec4De/tu9gZAohEUH+oCqmiciycACnFblcapaoVvTgZuBXsBa\nEVnl3/aCqn7kYkzlKSR+LpYDD/C2vyCSCTzucjxBpapr/L+cluO0VawERrsbVeCJyFSgHVBXRHYA\nfwJeA2aIyJPANuB37kX4CxuabowxYcJGOhpjTJiwhG2MMWHCErYxxoQJS9jGGBMmLGEbY0yYsIRt\njDFhwhK2McaECUvYxhgTJv4/eyxKj4UHH7IAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1060c7550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# グラフ生成\n", "plt.plot(data[\"X\"], data[\"Y\"], 'o', label=\"data\")\n", "plt.plot(data_d0.X, results.fittedvalues[data_d0.index], label=\"D=0\")\n", "plt.plot(data_d1.X, results.fittedvalues[data_d1.index], label=\"D=1\")\n", "plt.xlim(min(data[\"X\"])-1, max(data[\"X\"])+1)\n", "plt.ylim(min(data[\"Y\"])-1, max(data[\"Y\"])+1)\n", "plt.title('9-1: Dummy Variable')\n", "plt.legend(loc=2)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "###例題9-2 「係数ダミー」\n", "以下のようにモデルを設定して回帰分析を行う。 \n", "$Y_{i} = \\alpha + \\beta X_{i} + \\gamma D_{i} + \\delta D_{i} X_{i} + u_{i}$ " ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>i</th>\n", " <th>X</th>\n", " <th>Y</th>\n", " <th>D</th>\n", " <th>DX</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>1.5</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>3</td>\n", " <td>5.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>4</td>\n", " <td>7.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>7.5</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>6</td>\n", " <td>6</td>\n", " <td>7.0</td>\n", " <td>1</td>\n", " <td>6</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>7</td>\n", " <td>7</td>\n", " <td>7.5</td>\n", " <td>1</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>8</td>\n", " <td>8</td>\n", " <td>7.2</td>\n", " <td>1</td>\n", " <td>8</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>9</td>\n", " <td>9</td>\n", " <td>7.0</td>\n", " <td>1</td>\n", " <td>9</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>10</td>\n", " <td>10</td>\n", " <td>8.4</td>\n", " <td>1</td>\n", " <td>10</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " i X Y D DX\n", "0 1 1 1.0 0 0\n", "1 2 2 1.5 0 0\n", "2 3 3 5.0 0 0\n", "3 4 4 7.0 0 0\n", "4 5 5 7.5 0 0\n", "5 6 6 7.0 1 6\n", "6 7 7 7.5 1 7\n", "7 8 8 7.2 1 8\n", "8 9 9 7.0 1 9\n", "9 10 10 8.4 1 10" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# データ読み込み\n", "data = pd.read_csv('example/k0902.csv')\n", "data" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>const</th>\n", " <th>X</th>\n", " <th>D</th>\n", " <th>DX</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>4</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1</td>\n", " <td>5</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>1</td>\n", " <td>6</td>\n", " <td>1</td>\n", " <td>6</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>1</td>\n", " <td>7</td>\n", " <td>1</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>1</td>\n", " <td>8</td>\n", " <td>1</td>\n", " <td>8</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>1</td>\n", " <td>9</td>\n", " <td>1</td>\n", " <td>9</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>1</td>\n", " <td>10</td>\n", " <td>1</td>\n", " <td>10</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " const X D DX\n", "0 1 1 0 0\n", "1 1 2 0 0\n", "2 1 3 0 0\n", "3 1 4 0 0\n", "4 1 5 0 0\n", "5 1 6 1 6\n", "6 1 7 1 7\n", "7 1 8 1 8\n", "8 1 9 1 9\n", "9 1 10 1 10" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 説明変数設定\n", "X = data[['X', 'D', 'DX']]\n", "X = sm.add_constant(X)\n", "X" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 1.0\n", "1 1.5\n", "2 5.0\n", "3 7.0\n", "4 7.5\n", "5 7.0\n", "6 7.5\n", "7 7.2\n", "8 7.0\n", "9 8.4\n", "Name: Y, dtype: float64" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 被説明変数設定\n", "Y = data['Y']\n", "Y" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: Y R-squared: 0.946\n", "Model: OLS Adj. R-squared: 0.918\n", "Method: Least Squares F-statistic: 34.73\n", "Date: Sun, 19 Jul 2015 Prob (F-statistic): 0.000346\n", "Time: 04:03:43 Log-Likelihood: -8.6672\n", "No. Observations: 10 AIC: 25.33\n", "Df Residuals: 6 BIC: 26.54\n", "Df Model: 3 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [95.0% Conf. Int.]\n", "------------------------------------------------------------------------------\n", "const -1.1500 0.779 -1.475 0.191 -3.057 0.757\n", "X 1.8500 0.235 7.872 0.000 1.275 2.425\n", "D 6.7300 2.062 3.263 0.017 1.684 11.776\n", "DX -1.6200 0.332 -4.874 0.003 -2.433 -0.807\n", "==============================================================================\n", "Omnibus: 1.187 Durbin-Watson: 2.627\n", "Prob(Omnibus): 0.552 Jarque-Bera (JB): 0.835\n", "Skew: -0.432 Prob(JB): 0.659\n", "Kurtosis: 1.878 Cond. No. 75.1\n", "==============================================================================\n", "\n", "Warnings:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" ] } ], "source": [ "# OLSの実行(Ordinary Least Squares: 最小二乗法)\n", "model = sm.OLS(Y,X)\n", "results = model.fit()\n", "print(results.summary())" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# ダミー別データ\n", "data_d0 = data[data[\"D\"] == 0]\n", "data_d1 = data[data[\"D\"] == 1]" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAAEKCAYAAAAhEP83AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOX5xvHvA0EWwxKKFVAEfrhVXOpCta7RKlqQqrVu\nlaCILC4kKloBRVGrVUutghtWXFG0WJElLiASoHVh3xUUFwQFFyAsQoDk+f0xE0wgK5mZM8v9ua65\nMnPmzJn7TODJO+95z3vM3RERkfhRK+gAIiJSmgqziEicUWEWEYkzKswiInFGhVlEJM6oMIuIxBkV\nZpEYMbMDzGyjmVkV1s00s68reP45M7snsgklXqgwpwAz+5WZvWdm683sUzM7v4J19zKzEWb2pZlt\nMLO5ZnZONd7rSjMrDBegjWb2uZk9Y2YHRWZvYsfMPjGz7mUszzGzmdXdnruvcPeGHpmTBzx8kySk\nwpzkzCwNGAuMAzKAXsDICgplGrACONXdGwG3A/82s9bVeNv/uXtDoBFwJrAFmG1m7fdwN4LyHNCt\njOVZ4eeqLPx7iLRKW96SmFSYk9+hQAt3f9hDpgD/I1RcduPuP7n7Xe6+Ivw4F/gCOKYa72nh17q7\nf+7u1wFTgcFQ9tf0cAv9jPD9wWY22sxeDLfaF5jZQWY2wMzWmNlXZnZWidfmmdk9Zva/cCt9nJk1\nM7OXzCzfzGYU/2Exs8fMbMgu7z3OzG4oYz9GAieb2QEl1j0MOAIYZWadw98o8s1shZndWWK9NmZW\nZGZXmdlXwLtm1jq8rFZ4ne5mtiS8j8vNrNduH2Ron783sy/M7M/lfuBm55rZPDNbF/4cjihvXYl/\nKsypqRZweFVWNLN9gYOBxSWWrTOzE6v5nq8Dp1Tw/K5fy88FXiDUyp8LTAovbwncAwzfZf1LgK7A\nfkA74ANgBNAU+BgoLprPAZcV9/OaWTPgd8BLuwVyXwlMofQfsSwg193XApuAru7eGOgMXGNm5+2y\nmVMJ/XE8m91buGuAzuFvJt2Bf5rZ0SWebw78IrzPVwBPlfVNJ/yaEUDP8P4OB8aZ2V67riuJQYU5\n+S0FvjOzW8ysjpl1JFQs6lf2QjOrQ6hgPefuy4qXu3uGu79fzRzfEioaVTXN3Se5eyHwGqECdX/4\n8atAGzNrVBwJeNbdv3D3DcBbwDJ3fy+8/mjg6HD2mUA+oWIMcCkwxd2/LyfH84QLc7il++fwMtx9\nqrsvDt9fCLwCnLbL6we7+xZ3L9h1w+7+prt/Eb4/DZjI7n+8Brn79vDzuYT+AO3cRPhnL2C4u88M\nf0t5ASgATihnnyTOqTAnOXffDpxPqEX3LXAj8G9gJYCZvVXiQN1lxa8LF6EXga3A9RGIsh+wthrr\nf1fi/hbghxIHzbaEf6aXWGdNiftbd3n91l3WfYFQ65rwzxcryDEGaGFmxwOZQANCBRIzO97MppjZ\nd2a2HuhN6A9ISRWNrPi9mX1oZj+a2Tqg0y6vX+fuW0o8/gpoUcamWgP9wt9k1oW3tX8560oCiMYB\nCYkz4dZcZvFjM3sfeDb83O93XT/8NX8EsA/QKdzqrKkLgGnh+5sJFbji96sdfq9IqWy0wkhgoZkd\nRaib4Y1yN+T+k5m9RuggYH1glLvvCD/9MjAUONvdt5nZP4FmVcliZnWB/xD6wzDW3QvNbAyluzsy\nzKyBu/8UftwaWFDG5lYA97r7feXvsiQStZhTgJkdYWb1zKyBmd0M7EvFowqeIFSw/lDWV/BqvG9t\nM2trZsMIdZ/cFX5qGVDPzDqFu0tuB+ru6fsUv10593cT7jueRajl/FoV9vF5Ql0eF4bvF0sn1Krd\nZma/IdTNUdUhbHuFbz8ARWb2e6BjGevdFe6COoXQt57R4eXGz/v5L6CPmf3GQvYOH5hML2N7kgBU\nmFNDFvANoa/7pwNnhbs4dhMevdALOApYXU43x0YzO6mc93Lgt2a2kVBf7hRCBaxDif7YfOBa4GlC\nXSqbKP2Vv6wxutV5XJXXP09odEVF3RiE804D1gNfu/vsEk9dC9xtZhuAQYT6vit6z53L3H0jkE2o\nW2ktcBmhYY0lfQusI/S7exHoXaKv30tsazahA3+Phrf1KWUP85MEYZooX1JRuAU60t2rMz5bJCbU\nYpaUE+4+uYFQF4BI3FFhlpRiZr8i1D2wL/BwwHFEyqSuDBGROKMWs4hInKnxOGYzU5NbRGQPuHuZ\nQzsj0mJ295S63XnnnYFn0D5rn7XPib3PFVFXhohInFFhFhGJMyrMeyAzMzPoCDGnfU4N2uf4UOPh\ncmbmNd2GiEiqMTO8nIN/UZtdziq/3mRK0h8xEalMVKf9VBEqTX+sRKQq1McsIhJnVJhFROKMCrOI\nSJxRYQ678sorGTRoUNAxRERUmIuZWZUOzmVmZjJixIgYJBKRVBXIxVhzc6cxdOhECgrSqFt3B9nZ\nHenc+dSYb2NXVRlFopEVIhJ1EZiIw8tS3vIJE6Z6u3YDHXznrV27gT5hwtQy14/WNubMmeNHH320\nN2zY0C+55BK/9NJL/fbbb/d169Z5586dfZ999vGMjAw/99xzfeXKle7uPnDgQK9du7bXq1fP09PT\nvW/fvu7unp2d7a1atfJGjRr5scce69OnT6/WZyIiqSdcD8quq+U9UdVbdQtzx463lSqoxbezz769\nyjtU020UFBT4AQcc4A8//LDv2LHDX3vtNa9Tp44PGjTIf/zxR3/99dd9y5YtvnHjRr/ooov8/PPP\n3/nazMxMHzFiRKntjRw50teuXeuFhYX+j3/8w5s3b+4FBQVV/kxEJPVUVJhj3sdcUFB278nWrbVj\nto0PP/yQHTt2kJOTQ+3atbnwwgvp0KEDAE2bNuWCCy6gXr16pKenM3DgQKZOnVrq9b5Ll8fll19O\nRkYGtWrV4qabbqKgoIClS5dWeX9EREqKeWGuW3dHmcvr1SuM2Ta++eYb9ttvv1LLWrcOXSx5y5Yt\n9O7dmzZt2tC4cWNOO+008vPzSxXjXfuZhwwZwmGHHUaTJk3IyMggPz+fH374ocr7IyJSUswLc3Z2\nR9q1u63UsnbtBtK371kx20aLFi1YtWpVqWVfffUV7s6QIUNYtmwZM2bMID8/n6lTp5aa2HrXojx9\n+nT+/ve/M3r0aNavX8+6deto3LixTkcXkT0W81EZxSMnhg0bxNattalXr5C+fc+p1oiKmm7jxBNP\nJC0tjaFDh3LNNdcwfvx4Zs6cyRlnnMGmTZuoX78+jRs3Zu3atdx1112lXrvvvvuyfPnynY83btxI\nWloazZo1Y9u2bdx///1s2LChyvsiIrKb8jqfq3qjmgf/4sWsWbN2G5UxaNAg/+abbzwzM9PT09P9\nkEMO8eHDh3utWrW8sLDQ3d0/+OADP/jggz0jI8NzcnK8sLDQr7rqKm/UqJG3aNHCH3zwQW/btq1P\nnjx5t/eM989EJJVMmDDVO3a8zU877U7v2PG2ao3qigQqOPgXtfmYw3ON1mjbyUafiUh8yM2dRk7O\nOyxffu/OZe3a3cYjj5xd4/Mhqqqi+Zh15p+IpJyhQyeWKsoAy5ffy7BhkwJKVJoKs4iknEgM240m\nFWYRSTmRGLYbTSrMIpJyIjFsN5p08C+G9JmIxI/c3GkMGzapxJDbs2J24A8qPvinwhxD+kxEpFiN\nRmWY2QAzW2xmC83sZTOrG/mIIiJSrMLCbGZtgJ7AMe5+BFAbuDT6sURC8rfmBx1BJOYqazFvALYD\nDcwsDWgArKr4JSKRsW7LOo544giW/qCZ+iS1VFiY3X0t8A9gBfANsN7d341FsGhq06YNDRo0oFGj\nRmRkZHDSSScxfPjwPer/vfXWW2nWrBnNmjWjf//+UUibuq578zrOO+Q8Dml2SNBRRGKqsq6MdsAN\nQBugJZBuZpfHIFdUmRkTJkxgw4YNrFixgv79+/PAAw/Qo0ePam1n+PDhjB07lgULFrBgwQLGjx/P\n8OHDo5Q6tbyy6BXmfDuHB856IOgoIjFX2exyxwHvu/uPAGb2OnAi8FLJlQYPHrzzfmZmJpmZmREN\nGU0NGzakS5cuNG/enBNOOIF+/frRvn37Kr32+eef5+abb6Zly5YA3HzzzTz11FP07t07mpGT3qoN\nq8h+K5vcP+fSoE6DoOOIREReXh55eXlVWrfC4XJmdhShItwB2Ao8B8xw98dKrJNww+Xatm3LiBEj\nOOOMM0otb926NQMGDCA/P5/777+/zNeaGWvXrgWgSZMmTJo0aefVT2bPns3pp59e7rSf8fyZxIsi\nL+KckedwUquTuDPzzqDjiERNRcPlKmwxu/t8M3sBmAUUAXOApyIW7K7IXHHa74xMsWvZsiXr1q1j\nwIAB3HrrrZWuv2nTJho3brzzcaNGjdi0aVNEsqSqx2c+Tn5BPgNPGRh0FElGmzfDokWwYEHotnAh\n9OsHXboEnayUSifKd/cHgQej8eaRKqiRsmrVKpo2bVrl9dPT00u1jvPz80lPT49GtJSw9IelDM4b\nzPs93qdO7TpBx5FEVlQEX3zxcwEuvq1aBb/6FRxxBBx5JJx3Hhx3XNBpdxPzK5jEq5kzZ7Jq1SpO\nPvlk7rvvPv72t7+VuZ6Z7SzG7du3Z968eRwX/sXOnz+fww8/PGaZk8n2wu1kjcni7tPv5uBfHBx0\nHEkk69aFWr4lW8GLFkHTpqHie+SRcPHF8Ne/wkEHQVr8l734TxglxX29GzZsYNq0adxwww1kZWXR\nvn172rdvz8CBlX+V7tatGw899BCdOnXC3XnooYfIycmJdvSkdO/0e2lavynXHHdN0FEkXu3YAcuW\n7d4KXrfu5xbwUUdBVlbocZMmQSfeYyk5V0bbtm1Zs2YNaWlp1KpVi/bt29O1a1f69Omz28VWK3Pr\nrbfy9NNPA9CzZ89yDxpCfH8mQZqxagZdRnVhbu+5tGzYMug4Eg/WrCldfBcuhE8+gf33/7kVXHxr\n0wZqJd5EmZrEKE7oM9ndT9t/4ujhR3PP6fdwcfuLg44jsbZ1K3z88e6t4O3bQ63f4pbwkUdC+/aw\n995BJ44YFeY4oc9kd9e/eT3rtq7jpT++VPnKkrjc4euvf279Fhfgzz+HAw8MFeCjjvq5CLdsCdX8\n9ppoVJjjhD6T0t757B16ju/J/D7zyaifsdvzubnTGDp0IgUFadStu4Ps7I4xnS83CEmxz5s2lR6S\nVnxr0CBUdEu2gg89FOqm5oSVezyOWSRa1m5ZS49xPXj+/OfLLcq7XsV4+fLQFScSrlBVUcLtc1FR\nqMW7awH+5hs47LCfi+8f/xgqxvvsE3TihKEWcwzpM/nZpa9dyr5778sjv3+kzOfPPvt2Jk78axnL\nB/H22/dEO14g4nqf164t3QWxYAEsXgzNmu1+MO7AAxNiSFrQ1GKWuDJq4Sjmr5nPnF5zyl0n3q9i\nHA1xsc/bt5c9JC0//+cuiKOPhiuuCD0ucearRI4Ks8TUyg0ryXk7h7cuf4v6deqXu168X8U4GmK+\nz7sOSVuwAJYuhVatfm799uoV+tm6dUIOSUtUKswSM0VeRPex3ck+PptjWx5b4brZ2R1Zvvy2Uv2t\noasYnxPtmIGJ2j5v3QpLluxehAsLfy7Ap54K118f6htOoiFpiUp9zDGU6p/JsI+G8fKil5nefTpp\ntSpvEwR9FeMg1GifSw5JK3n74ovQqci79gW3aJH0Q9LimYbLxYlU/kw+/v5jTnn2FD7o8QEH/eKg\noOMkvo0bQ0PSdj0gVzwkreTt0ENhr70q3FxSDNNLMDr4t4s2bdrw3XffkZaWRu3atTnssMPo1q0b\nvXr1qtYp2VOmTOHuu+9m7ty5ZGRk8MUXX0QxdeIqnqDor2f8VUW5ugoLyx6Stnp1aJa0CAxJS7hh\neikgJVvMJSfK37hxI3l5eeTk5JCZmckzzzxT5e3MnDmTZcuW8dNPP3HfffdVWpjj+TOJpjum3MGs\nb2aR++fcas9FklLKG5K2zz67nxl34IFQOzKjNeJ6mF4SU4u5AjW5tFSHDh3o0KED776b8NenjZqP\nVn7E8NnDmdd7nopysaoMSTvmGLjySjj88KgPSYuLYXpSSsoX5mIdOnRg//33Z/r06UyYMKFKl5aS\nim3etpmsMVk81ukxWjRsEXSc2HMve0jasmVwwAE/F+GAh6Sl4tDEeBdsYY5UCypC3QPVvbRUKqjJ\nQaFbJt3C8fsfz58O+1OUU0bWHu1zRUPSirsgMjMhOzs0JK1B/FxkNsihiTroWLZgC3Oc9bdW99JS\nya4mB4Xe/uxtcj/NZX6f+VHNGGmV7rM7rFixe1/wrkPSOnZMmCFpxb/LYcMGlRimd07UC6QOOlbA\n3Wt0C21id+Utjwdt2rTxyZMnl1o2Y8YMr1Wrli9atMjvvfdeT09PL/PWsGHD3bY3adIkb9OmTaXv\nG8+fSVk6drzNQ5Wo9O3ss2+v8HU/bP7B9/vHfj7588kVrhePSu5zOhv8BN73Xjzp41od637yye6N\nG7u3bOl+9tnut9zi/uKL7vPnuxcUBB094ezpv69kEa4HZdbVlO1j9ghcWsrdKSgoYPv27Tvvmxl7\nVTJmNFHsyUEhd+ea3Gu4uP3FnNH2jGhFi5rifb6ckQynN0s4jAUcyZd7NYO7bw31CzdrFnDK5KCD\njuVL2cLcpUuXUpeW6tevH3369KnWNqZOncoZZ4SKj5lRv359MjMzee+996IROeb25KDQywtfZvH3\ni3nhgheiFSuqivd5NBcxissoIlQkzj5wEH1PPz3IaElHBx0rUF5Tuqo3ErArIyiJ9plMmDDV27Ub\nWOprZrt2A3zChKllrr9i/Qpv9mAzn/PNnBgnjZzq7rPsuVT/rKmgKyMlTzAJSiJ+JlWdu6HIizjr\nxbP4XdvfMfCUyruB4lkqztERlFT+rDVXRpxI5s/kkQ8f4dXFrzKt+7QqTVAkkup05p9E1ZLvl3DP\ntHv48OoPVZRFIkAzX0uNbCvcRtaYLO773X0c2PTAoOOIJAUVZqmRe6beQ4v0FvQ8pmfQUUSShr53\nyh774OsP+NecfzGvjyYoEomkqBZm/WdNXpu3babbG914vPPjNE9vHnQckaQStVEZktyumXANW3Zs\n4bnznws6ikhC0qgMiag3P32Ttz57K+EmKBJJFCrMUi0//PQDPcf35KU/vkTjetGdwF0kVakrQ6rM\n3blo9EW0adKGIR2HBB1HJKGpK0MiYuSCkSz9cSkj/zgy6CgiSU2FWapkRf4K+k3sx8SsidRLqxd0\nHJGkphNMpFJFXsSVb1zJTb+9iV83/3XQcUSSngqzVOqRDx9hW+E2bjnxlqCjiKQEdWVIhRZ/t5j7\n/nsfH139EbVr6coSIrFQaYvZzJqY2Wtm9rGZLTGzE2IRTIK3rXAbXcd05W+/+xv/l/F/QccRSRlV\naTE/Arzp7n8yszRg7yhnkjhxV95dtGrUih5H9wg6ikhKqXAcs5k1Bua6e7nNJY1jTk7vf/0+F/77\nQub1nse+6fsGHUck6VQ0jrmyroy2wPdm9qyZzTGzf5lZg8hHlHiyadsmuo3pxhOdn1BRFglAZV0Z\nacAxwPXuPtPMHgb6A3eUXGnw4ME772dmZpKZmRnZlBJT/d7pxymtT+H8Q88POopI0sjLyyMvL69K\n61bWldEc+MDd24Yfnwz0d/dzS6yjrowkMmHZBPq+1Zf5febTqG6joOOIJK097spw99XA12Z2cHjR\nmcDiCOeTOPH95u/pNb4Xz5//vIqySIAqncTIzI4Cngb2ApYD3d09v8TzajEnAXfnwn9fSLuMdvy9\n49+DjiOS9Go0iZG7zwc6RDyVxJUX5r/AZ2s/Y9SFo4KOIpLydOaf8OX6L7l50s28m/UuddPqBh1H\nJOVprowUVzxB0S0n3sJRzY8KOo6IoMKc8v75wT8p8iL6/bZf0FFEJExdGSls0XeLuP9/9zPj6hma\noEgkjqjFnKIKdhTQ9fWuPHDmA7TNaBt0HBEpQYU5RQ3OG0zrJq3p/uvuQUcRkV2oKyMF/XfFf3lu\n/nPM7zMfszKHUYpIgNRiTjEbCzZyxRtX8GTnJ/nl3r8MOo6IlKHSM/8q3YDO/EsoPcf1pMiLGHHe\niKCjiKS0Gp35J8lj3NJxTP5iMvP6zAs6iohUQIU5RXy/+Xv6TOjDq396VRMUicQ59TGnAHen14Re\nZB2ZxSmtTwk6johUQi3mFPDcvOf4fN3nvHLhK0FHEZEqUGFOcl+u/5K/vPsXJnebrAmKRBKEujKS\nWGFRId3GdOMvJ/6FI/c9Mug4IlJFKsxJ7KEPHgLgpt/eFHASEakOdWUkiNzcaQwdOpGCgjTq1t1B\ndnZHOnc+tdz1F6xZwIPvP8jMnjM1QZFIglFhTgC5udPIyXmH5cvv3bls+fLbAMoszsUTFD145oO0\nadImVjFFJELUlZEAhg6dWKooAyxffi/Dhk0qc/07ptxBu6btuPLXV8YgnYhEmlrMCaCgoOxf09at\nu3dRTP9qOi8ueFETFIkkMLWYE0DdujvKXF6vXmGpxxsKNtDtjW4MP3c4++y9TyyiiUgUqDAngOzs\njrRrd1upZe3aDaRv37NKLbvx7Rs5s+2ZdDmkSyzjiUiEqSsjARQf4Bs2bBBbt9amXr1C+vY9p9SB\nv7GfjCXvqzzm9dYERSKJTtN+JoHvNn/HUU8exeiLRnPyAScHHUdEqqCiaT/VlZHg3J2e43ty5VFX\nqiiLJAl1ZSS4Z+Y+w1frv2L0RaODjiIiEaLCnMA+X/c5/Sf3Z8oVU9ir9l5BxxGRCFFXRoIqLCrk\nijeuoP9J/Tn8l4cHHUdEIkiFOUENeX8Ita02N/72xqCjiEiEqSsjAc1fPZ8hHwxhVs9Z1DL9bRVJ\nNvpfnWC27thK1pgshpw1hNZNWgcdR0SiQIU5wQx6bxAHNj2Qbkd1CzqKiESJujISyNQvp/LSwpc0\nQZFIklOLOUFsKNjAlWOv5KkuT2mCIpEkp1OyE0T3sd2pU6sOT3V5KugoIhIBFZ2Sra6MBDDm4zFM\n/2o68/pogiKRVKDCHOdWb1rNNbnX8Polr5O+V3rQcUQkBtTHHMeKJyi66uirOLHViUHHEZEYqVKL\n2cxqA7OAle6uWdhj5Ok5T7Nyw0r+c/F/go4iIjFU1a6MHGAJ0DCKWaSE5WuXM2DyAKZeOVUTFImk\nmEq7Msxsf6AT8DSgwbMxUFhUSLc3unHbKbfR/pftg44jIjFWlT7mfwK3AEVRziJhD/7vQerWrkvO\nCTlBRxGRAFTYlWFm5wLfuftcM8uMTaTUNm/1PB768CFm95qtCYpEUlRlfcwnAn8ws05APaCRmb3g\n7qUmahg8ePDO+5mZmWRmZkY4ZmrYumMrXV/vykMdH+KAxgcEHUdEIigvL4+8vLwqrVvlM//M7DTg\n5l1HZejMv8jp904/vsoPXSZKc2GIJLdInvmnChwlU76YwqhFo1hwzQIVZZEUp7ky4kD+1nyOfPJI\nnuj8BJ0O6hR0HBGJgYpazCrMceCKN66gflp9njz3yaCjiEiMaBKjOPafJf/h/a/fZ27vuUFHEZE4\nocIcoG83fsu1b17L2EvHaoIiEdlJA2UD4u5cPf5qeh7TkxP2PyHoOCISR1SYA/LU7KdYvWk1d5x2\nR9BRRCTOqCsjAJ+t/Yzb3ruNad2naYIiEdmNWswxtqNoB93GdGPQqYM4bJ/Dgo4jInFIhTnGHvjv\nAzSo04C+x/cNOoqIxCl1ZcTQnG/n8PBHDzOn1xxNUCQi5VJ1iJEt27fQ9fWuPHz2w7Rq3CroOCIS\nx3TmX4zc+PaNrNq4ilf/9KrmwhARnfkXtMmfT2b0ktHM7zNfRVlEKqWujChbv3U93cd25+k/PM0v\nGvwi6DgikgDUlRFlWWOyaLhXQx7v/HjQUUQkjqgrIyCjF4/mo5UfaYIiEakWFeYo+Xbjt1z/1vWM\nu3Qce++1d9BxRCSBqI85Ctydq8ZdRe9je3P8/scHHUdEEowKcxQ8OetJvt/8PYNOHRR0FBFJQOrK\niLBPf/yUQVMG8d+r/kud2nWCjiMiCUgt5gjaUbSDrDFZ3HnanRza7NCg44hIglJhjqC/Tf8bDes2\n5LrfXBd0FBFJYOrKiJBZ38xi2IxhzOmtCYpEpGZUQSJgy/YtZI3J4pFzHmH/RvsHHUdEEpzO/IuA\nnLdyWLN5Da/86ZWgo4hIgtCZf1H07ufv8vonrzO/z/ygo4hIklBXRg2s27KO7mO7M+IPI2hav2nQ\ncUQkSagrowYuf/1yMupl8GinR4OOIiIJRl0ZUfDqoleZ9c0sTVAkIhGnwrwHVm1YRfbb2Uy4bAIN\n6jQIOo6IJBn1MVeTu9NjXA+uPe5aOuzXIeg4IpKEVJir6fGZj7N2y1oGnjIw6CgikqR08K8alv6w\nlJOeOYn/XfU/Dml2SNBxRCSBVXTwTy3mKtpeuJ2sMVnclXmXirKIRJUKcxXdN/0+MupncG2Ha4OO\nIiJJTqMyqmDmqpk8NvMx5vaei1mZ3zxERCJGLeZK/LT9J7qO6cqw3w9jv0b7BR1HRFKADv5Vou+b\nfflxy4+8fOHLQUcRkSSiM//20MTlExm7dKwmKBKRmFJhLsfaLWvpMa4Hz573LBn1M4KOIyIppNI+\nZjNrZWZTzGyxmS0ys+xYBAvadW9exwWHXsCZ/3dm0FFEJMVUpcW8HbjR3eeZWTow28wmufvHUc4W\nmFELRzFv9Txm95oddBQRSUGVFmZ3Xw2sDt/fZGYfAy2BpCzMKzesJOftHN68/E1NUCQigajWcDkz\nawMcDXwUjTBBK/Iirhp7FX1/05fjWh4XdBwRSVFVPvgX7sZ4Dchx900lnxs8ePDO+5mZmWRmZkYo\nXmw9PvNxNhRsYMApA4KOIiJJJi8vj7y8vCqtW6VxzGZWB5gAvOXuD+/yXFKMY/7kh084+ZmTeb/H\n+xz8i4ODjiMiSa5GkxhZ6BzkEcCSXYtysiieoOie0+9RURaRwFWlj/kkoCtwupnNDd/OiXKumLp3\n+r00a9CMPsf1CTqKiIhOyZ6xagZdRnVhbu+5tGzYMug4IpIiNB9zOTZv20zX17vy6O8fVVEWkbiR\n0i3m63J5LGJ6AAAGlElEQVSvI78gn5F/HBl0FBFJMZrEqAzvfPYO45eNZ8E1C4KOIiJSSkoW5h9/\n+pEe43rw/PnP06Rek6DjiIiUknJdGe7Opf+5lBbpLXj4nOqN/svNncbQoRMpKEijbt0dZGd3pHPn\nU6OUVESSmboyShi1aBQL1yzkufOeq9brcnOnkZPzDsuX37tz2fLltwGoOItIRKXUqIyv87/mhrdv\nYOQfR1K/Tv1qvXbo0ImlijLA8uX3MmzYpEhGFBFJncJc5EV0H9ud7OOzOabFMdV+fUFB2V8utm6t\nXdNoIiKlpExhfnTGo2zevpn+J/ffo9fXrbujzOX16hXWJJaIyG5SojB//P3H3DPtHl684EXSau1Z\nt3p2dkfatbut1LJ27QbSt+9ZkYgoIrJT0h/8K56g6K+n/5UDmx64x9spPsA3bNggtm6tTb16hfTt\ne44O/IlIxCX9cLk7ptzB7G9nM+GyCYQmyhMRCV7KDpf7cOWHPDX7Keb2nquiLCIJI2n7mDdv20zW\nmCwe6/QYLRq2CDqOiEiVJW1XxrW517Jp2yZeuOCFoKOIiOwm5boy3vr0LXI/zWVBH01QJCKJJyEL\nc0VzVvz4049cPf5qRl4wksb1GgecVESk+hKuMFc0Z0WnTqfQJ7cPl7S/hNPbnh5URBGRGkm4wlz+\nnBWDWNdqBUu+X8KLF7wYUDoRkZpLuMJc3pwV630TN71zE+90fYd6afVinEpEJHISbrhcmXNWWBGf\ntn+DG064gaNbHB37UCIiEZRwhbmsOSt+0akj+7ZM5y8n/SWgVCIikZNwXRm7zlmxI2M1C4+bxfir\nZu/xBEUiIvEkoU8w2Va4jd+O+C19ju1Dz2N7BpJBRGRPVHSCScJ1ZZR099S7admwJVcfc3XQUURE\nIiZhv/t/8PUHPD3naeb1macJikQkqSRsi3nBmgU80fkJmqc3DzqKiEhEJXQfs4hIokraPmYRkWSk\nwiwiEmdUmEVE4owKs4hInFFhFhGJMyrMIiJxRoVZRCTOqDCLiMQZFWYRkTijwiwiEmcqLcxmdo6Z\nfWJmn5rZrbEIJSKSyioszGZWG3gUOAc4DLjMzH4Vi2DxLC8vL+gIMad9Tg3a5/hQWYv5N8Bn7v6l\nu28HXgHOi36s+BaPv8ho0z6nBu1zfKisMO8HfF3i8crwMhERiZLKCrPm8xQRibEK52M2sxOAwe5+\nTvjxAKDI3R8osY6Kt4jIHihvPubKCnMasBT4HfANMAO4zN0/jkZIERGp5Jp/7r7DzK4H3gFqAyNU\nlEVEoqvGl5YSEZHIqtGZf6l28omZtTKzKWa22MwWmVl20Jlixcxqm9lcMxsfdJZYMLMmZvaamX1s\nZkvCx1uSlpkNCP+7XmhmL5tZ3aAzRZqZPWNma8xsYYllTc1skpktM7OJZtYkyIzF9rgwp+jJJ9uB\nG929PXACcF0K7HOxHGAJqTNS5xHgTXf/FXAkkLRdeGbWBugJHOPuRxDqtrw0yExR8iyhelVSf2CS\nux8MTA4/DlxNWswpd/KJu69293nh+5sI/WdtGWyq6DOz/YFOwNNAmUeRk4mZNQZOcfdnIHSsxd3z\nA44VTRsINToahA/4NwBWBRsp8tx9OrBul8V/AJ4P338eOD+mocpRk8Kc0iefhFsZRwMfBZskJv4J\n3AIUBR0kRtoC35vZs2Y2x8z+ZWYNgg4VLe6+FvgHsILQ6Kv17v5usKliZl93XxO+vwbYN8gwxWpS\nmFPlK+1uzCwdeA3ICbeck5aZnQt85+5zSYHWclgacAzwuLsfA2wmTr7iRoOZtQNuANoQ+gaYbmaX\nBxoqAB4aCREXda0mhXkV0KrE41aEWs1JzczqAP8BRrr7G0HniYETgT+Y2RfAKOAMM3sh4EzRthJY\n6e4zw49fI1Sok9VxwPvu/qO77wBeJ/R7TwVrzKw5gJm1AL4LOA9Qs8I8CzjIzNqY2V7AJcC4yMSK\nT2ZmwAhgibs/HHSeWHD3ge7eyt3bEjog9J67dws6VzS5+2rgazM7OLzoTGBxgJGi7RPgBDOrH/43\nfiahA72pYBxwRfj+FUBcNLYqPMGkIil68slJQFdggZnNDS8b4O5vB5gp1uLiq14M9AVeCjc6lgPd\nA84TNe4+P/wtaBah4whzgKeCTRV5ZjYKOA1oZmZfA3cA9wP/NrMewJfAxcEl/JlOMBERiTO6tJSI\nSJxRYRYRiTMqzCIicUaFWUQkzqgwi4jEGRVmEZE4o8IsIhJnVJhFROLM/wNX3AjODyKmKQAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x109489890>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# グラフ生成\n", "plt.plot(data[\"X\"], data[\"Y\"], 'o', label=\"data\")\n", "plt.plot(data_d0.X, results.fittedvalues[data_d0.index], label=\"D=0\")\n", "plt.plot(data_d1.X, results.fittedvalues[data_d1.index], label=\"D=1\")\n", "plt.xlim(min(data[\"X\"])-1, max(data[\"X\"])+1)\n", "plt.ylim(min(data[\"Y\"])-1, max(data[\"Y\"])+1)\n", "plt.title('9-2: Dummy Variable')\n", "plt.legend(loc=2)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###例題9-3 「t検定による構造変化のテスト」\n", "例題9-2において$\\gamma = 0$に関するP値は0.017であり、$\\delta = 0$に関するP値は0.003であることから、標準的な有意水準を設定すれば、いずれのダミー変数も有意であるといえる。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###例題9-4 「F検定による構造変化のテスト」" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# ダミー変数を加えない時のOLSモデル作成\n", "X = data[['X']]\n", "X = sm.add_constant(X)\n", "model2 = sm.OLS(Y,X)\n", "results2 = model2.fit()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " df_resid ssr df_diff ss_diff F Pr(>F)\n", "0 8 19.316242 0 NaN NaN NaN\n", "1 6 3.314000 2 16.002242 14.486037 0.00505\n" ] } ], "source": [ "# anova(Analysis of Variance)\n", "print(sm.stats.anova_lm(results2, results))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "F値は14.486、それに対応するP値は0.005より $\\gamma$ , $\\delta$ のうち少なくとも1つは0ではないと分かる。" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
SatoshiNakamotoGeoscripting/SatoshiNakamotoGeoscripting
Lecture 11/.ipynb_checkpoints/Satoshi Nakamoto Lecture 11 Jupyter Notebook-checkpoint.ipynb
1
15229
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Team: Satoshi Nakamoto <br>\n", "Names: Alex Levering & Hèctor Muro <br>\n", "Lesson 10 Exercise solution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Import standard libraries" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from numpy import mean\n", "import os\n", "from os import makedirs,chdir\n", "from os.path import exists" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Import non-standard libraries (install as needed)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from osgeo import ogr,osr\n", "import folium\n", "import simplekml" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Optional directory creation" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "if not exists('./data'):\n", " makedirs('./data')\n", "\n", "chdir(\"./data\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Is the ESRI Shapefile driver available?" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ESRI Shapefile driver IS available.\n", "\n" ] } ], "source": [ "driverName = \"ESRI Shapefile\"\n", "drv = ogr.GetDriverByName( driverName )\n", "if drv is None:\n", " print \"%s driver not available.\\n\" % driverName\n", "else:\n", " print \"%s driver IS available.\\n\" % driverName" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define a function which will create a shapefile from the points input and export it as kml if the option is set to True." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def shpFromPoints(filename, layername, points, save_kml = True):\n", " spatialReference = osr.SpatialReference()\n", " spatialReference.ImportFromProj4('+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')\n", " ds = drv.CreateDataSource(filename)\n", " layer=ds.CreateLayer(layername, spatialReference, ogr.wkbPoint)\n", " layerDefinition = layer.GetLayerDefn()\n", " \n", " point = ogr.Geometry(ogr.wkbPoint)\n", " feature = ogr.Feature(layerDefinition)\n", " \n", " kml = simplekml.Kml()\n", " for i, value in enumerate(points):\n", " point.SetPoint(0,value[0], value[1])\n", " feature.SetGeometry(point)\n", " layer.CreateFeature(feature)\n", " kml.newpoint(name=str(i), coords = [(value[0],value[1])])\n", " ds.Destroy() \n", " if save_kml == True:\n", " kml.save(\"my_points2.kml\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define the file and layer name as well as the points to be mapped. " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "filename = \"wageningenpoints.shp\"\n", "layername = \"wagpoints\"\n", "pts = [(5.665777,51.987398),\n", " (5.663133,51.978434)]\n", "shpFromPoints(filename, layername, pts)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define a function to create a nice map with the points using folium library." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def mapFromPoints(pts, outname, zoom_level, save = True):\n", " mean_long = mean([pt[1] for pt in pts])\n", " mean_lat = mean([pt[0] for pt in pts])\n", " point_map = folium.Map(location=[mean_long, mean_lat], zoom_start = zoom_level)\n", " for pt in pts:\n", " folium.Marker([pt[1], pt[0]],\\\n", " popup = folium.Popup(folium.element.IFrame(\n", " html='''\n", " <b>Latitude:</b> {lat}<br>\n", " <b>Longitude:</b> {lon}<br>\n", " '''.format(lat = pt[1], lon = pt[0]),\\\n", " width=150, height=100),\\\n", " max_width=150)).add_to(point_map)\n", " if save == True:\n", " point_map.save(\"{}.html\".format(outname))\n", " return point_map" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Call the function specifying the list of points, the output map name and its zoom level. If not False, the map is saved as an html" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div style=\"width:100%;\"><div style=\"position:relative;width:100%;height:0;padding-bottom:60%;\"><iframe src=\"data:text/html;base64,CiAgICAgICAgPCFET0NUWVBFIGh0bWw+CiAgICAgICAgPGhlYWQ+CiAgICAgICAgICAgIAogICAgICAgIAogICAgICAgICAgICA8bWV0YSBodHRwLWVxdWl2PSJjb250ZW50LXR5cGUiIGNvbnRlbnQ9InRleHQvaHRtbDsgY2hhcnNldD1VVEYtOCIgLz4KICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9sZWFmbGV0LzAuNy4zL2xlYWZsZXQuanMiPjwvc2NyaXB0PgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgPHNjcmlwdCBzcmM9Imh0dHBzOi8vYWpheC5nb29nbGVhcGlzLmNvbS9hamF4L2xpYnMvanF1ZXJ5LzEuMTEuMS9qcXVlcnkubWluLmpzIj48L3NjcmlwdD4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxzY3JpcHQgc3JjPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9qcy9ib290c3RyYXAubWluLmpzIj48L3NjcmlwdD4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9MZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy8yLjAuMi9sZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy5taW4uanMiPjwvc2NyaXB0PgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgPHNjcmlwdCBzcmM9Imh0dHBzOi8vY2RuanMuY2xvdWRmbGFyZS5jb20vYWpheC9saWJzL2xlYWZsZXQubWFya2VyY2x1c3Rlci8wLjQuMC9sZWFmbGV0Lm1hcmtlcmNsdXN0ZXItc3JjLmpzIj48L3NjcmlwdD4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9sZWFmbGV0Lm1hcmtlcmNsdXN0ZXIvMC40LjAvbGVhZmxldC5tYXJrZXJjbHVzdGVyLmpzIj48L3NjcmlwdD4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvbGVhZmxldC8wLjcuMy9sZWFmbGV0LmNzcyIgLz4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvY3NzL2Jvb3RzdHJhcC5taW4uY3NzIiAvPgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9jc3MvYm9vdHN0cmFwLXRoZW1lLm1pbi5jc3MiIC8+CiAgICAgICAgCiAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIAogICAgICAgIAogICAgICAgICAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vbWF4Y2RuLmJvb3RzdHJhcGNkbi5jb20vZm9udC1hd2Vzb21lLzQuMS4wL2Nzcy9mb250LWF3ZXNvbWUubWluLmNzcyIgLz4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuY3NzIiAvPgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9sZWFmbGV0Lm1hcmtlcmNsdXN0ZXIvMC40LjAvTWFya2VyQ2x1c3Rlci5EZWZhdWx0LmNzcyIgLz4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvbGVhZmxldC5tYXJrZXJjbHVzdGVyLzAuNC4wL01hcmtlckNsdXN0ZXIuY3NzIiAvPgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL3Jhdy5naXRodWJ1c2VyY29udGVudC5jb20vcHl0aG9uLXZpc3VhbGl6YXRpb24vZm9saXVtL21hc3Rlci9mb2xpdW0vdGVtcGxhdGVzL2xlYWZsZXQuYXdlc29tZS5yb3RhdGUuY3NzIiAvPgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAgICAgPHN0eWxlPgoKICAgICAgICAgICAgaHRtbCwgYm9keSB7CiAgICAgICAgICAgICAgICB3aWR0aDogMTAwJTsKICAgICAgICAgICAgICAgIGhlaWdodDogMTAwJTsKICAgICAgICAgICAgICAgIG1hcmdpbjogMDsKICAgICAgICAgICAgICAgIHBhZGRpbmc6IDA7CiAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAjbWFwIHsKICAgICAgICAgICAgICAgIHBvc2l0aW9uOmFic29sdXRlOwogICAgICAgICAgICAgICAgdG9wOjA7CiAgICAgICAgICAgICAgICBib3R0b206MDsKICAgICAgICAgICAgICAgIHJpZ2h0OjA7CiAgICAgICAgICAgICAgICBsZWZ0OjA7CiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgIDwvc3R5bGU+CiAgICAgICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAgICAgPHN0eWxlPiAjbWFwXzJmNzIyNWU4YmYwZDRkM2E4NTFhOTIzMmQ1NDQ5ZjJhIHsKICAgICAgICAgICAgICAgIHBvc2l0aW9uIDogcmVsYXRpdmU7CiAgICAgICAgICAgICAgICB3aWR0aCA6IDEwMC4wJTsKICAgICAgICAgICAgICAgIGhlaWdodDogMTAwLjAlOwogICAgICAgICAgICAgICAgbGVmdDogMC4wJTsKICAgICAgICAgICAgICAgIHRvcDogMC4wJTsKICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgPC9zdHlsZT4KICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICA8L2hlYWQ+CiAgICAgICAgPGJvZHk+CiAgICAgICAgICAgIAogICAgICAgIAogICAgICAgICAgICAKICAgICAgICAgICAgPGRpdiBjbGFzcz0iZm9saXVtLW1hcCIgaWQ9Im1hcF8yZjcyMjVlOGJmMGQ0ZDNhODUxYTkyMzJkNTQ0OWYyYSIgPjwvZGl2PgogICAgICAgIAogICAgICAgIAogICAgICAgIAogICAgICAgIDwvYm9keT4KICAgICAgICA8c2NyaXB0PgogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCgogICAgICAgICAgICB2YXIgc291dGhXZXN0ID0gTC5sYXRMbmcoLTkwLCAtMTgwKTsKICAgICAgICAgICAgdmFyIG5vcnRoRWFzdCA9IEwubGF0TG5nKDkwLCAxODApOwogICAgICAgICAgICB2YXIgYm91bmRzID0gTC5sYXRMbmdCb3VuZHMoc291dGhXZXN0LCBub3J0aEVhc3QpOwoKICAgICAgICAgICAgdmFyIG1hcF8yZjcyMjVlOGJmMGQ0ZDNhODUxYTkyMzJkNTQ0OWYyYSA9IEwubWFwKCdtYXBfMmY3MjI1ZThiZjBkNGQzYTg1MWE5MjMyZDU0NDlmMmEnLCB7CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjZW50ZXI6WzUxLjk4MjkxNiw1LjY2NDQ1NV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB6b29tOiAxNSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1heEJvdW5kczogYm91bmRzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGF5ZXJzOiBbXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNyczogTC5DUlMuRVBTRzM4NTcKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB9KTsKICAgICAgICAgICAgCiAgICAgICAgCiAgICAgICAgCiAgICAgICAgICAgIAogICAgICAgICAgICB2YXIgdGlsZV9sYXllcl9jYTVhMDlhNjhiOWE0NWRiYTNiMWVkMzMyOTdkMDZiYiA9IEwudGlsZUxheWVyKAogICAgICAgICAgICAgICAgJ2h0dHBzOi8ve3N9LnRpbGUub3BlbnN0cmVldG1hcC5vcmcve3p9L3t4fS97eX0ucG5nJywKICAgICAgICAgICAgICAgIHsKICAgICAgICAgICAgICAgICAgICBtYXhab29tOiAxOCwKICAgICAgICAgICAgICAgICAgICBtaW5ab29tOiAxLAogICAgICAgICAgICAgICAgICAgIGF0dHJpYnV0aW9uOiAnRGF0YSBieSA8YSBocmVmPSJodHRwOi8vb3BlbnN0cmVldG1hcC5vcmciPk9wZW5TdHJlZXRNYXA8L2E+LCB1bmRlciA8YSBocmVmPSJodHRwOi8vd3d3Lm9wZW5zdHJlZXRtYXAub3JnL2NvcHlyaWdodCI+T0RiTDwvYT4uJywKICAgICAgICAgICAgICAgICAgICBkZXRlY3RSZXRpbmE6IGZhbHNlCiAgICAgICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgKS5hZGRUbyhtYXBfMmY3MjI1ZThiZjBkNGQzYTg1MWE5MjMyZDU0NDlmMmEpOwoKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCgogICAgICAgICAgICB2YXIgbWFya2VyX2NjYmU5MmJjZmZkNDQ3NjZiZTE4M2Q3ODA2YmZlY2JhID0gTC5tYXJrZXIoCiAgICAgICAgICAgICAgICBbNTEuOTg3Mzk4LDUuNjY1Nzc3XSwKICAgICAgICAgICAgICAgIHsKICAgICAgICAgICAgICAgICAgICBpY29uOiBuZXcgTC5JY29uLkRlZmF1bHQoKQogICAgICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIC5hZGRUbyhtYXBfMmY3MjI1ZThiZjBkNGQzYTg1MWE5MjMyZDU0NDlmMmEpOwogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgICAgIHZhciBwb3B1cF9iODE0M2VmNDc2ZGU0NzdmOTFlZGVmMzU5YWEzODVjZiA9IEwucG9wdXAoe21heFdpZHRoOiAnMTUwJ30pOwoKICAgICAgICAgICAgCiAgICAgICAgICAgICAgICB2YXIgaV9mcmFtZV84YjQ4ZmEzNDkxMGU0ODQ2OTBlNjg2Yzk4OWU2ZjllOCA9ICQoJzxpZnJhbWUgc3JjPSJkYXRhOnRleHQvaHRtbDtiYXNlNjQsQ2lBZ0lDQWdJQ0FnQ2lBZ0lDQWdJQ0FnSUNBZ0lBb2dJQ0FnSUNBZ0lDQWdJQ0FnSUNBZ1BHSStUR0YwYVhSMVpHVTZQQzlpUGlBZ05URXVPVGczTXprNFBHSnlQZ29nSUNBZ0lDQWdJQ0FnSUNBZ0lDQWdQR0krVEc5dVoybDBkV1JsT2p3dllqNGdOUzQyTmpVM056YzhZbkkrQ2lBZ0lDQWdJQ0FnSUNBZ0lDQUtJQ0FnSUNBZ0lDQUtJQ0FnSUNBZ0lDQT0iIHdpZHRoPSIxNTAiIGhlaWdodD0iMTAwIj48L2lmcmFtZT4nKVswXTsKICAgICAgICAgICAgICAgIHBvcHVwX2I4MTQzZWY0NzZkZTQ3N2Y5MWVkZWYzNTlhYTM4NWNmLnNldENvbnRlbnQoaV9mcmFtZV84YjQ4ZmEzNDkxMGU0ODQ2OTBlNjg2Yzk4OWU2ZjllOCk7CiAgICAgICAgICAgIAoKICAgICAgICAgICAgbWFya2VyX2NjYmU5MmJjZmZkNDQ3NjZiZTE4M2Q3ODA2YmZlY2JhLmJpbmRQb3B1cChwb3B1cF9iODE0M2VmNDc2ZGU0NzdmOTFlZGVmMzU5YWEzODVjZik7CgogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCgogICAgICAgICAgICB2YXIgbWFya2VyX2IxOWYzYzA2OWMxNjQwYjY5NWNmNmVjMDE3YmE2MWI2ID0gTC5tYXJrZXIoCiAgICAgICAgICAgICAgICBbNTEuOTc4NDM0LDUuNjYzMTMzXSwKICAgICAgICAgICAgICAgIHsKICAgICAgICAgICAgICAgICAgICBpY29uOiBuZXcgTC5JY29uLkRlZmF1bHQoKQogICAgICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIC5hZGRUbyhtYXBfMmY3MjI1ZThiZjBkNGQzYTg1MWE5MjMyZDU0NDlmMmEpOwogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAgICAgCiAgICAgICAgICAgIHZhciBwb3B1cF9mNGJkMTdlNDUyYjE0MzkxOTE1NjMwZGM3NTE4N2E5YSA9IEwucG9wdXAoe21heFdpZHRoOiAnMTUwJ30pOwoKICAgICAgICAgICAgCiAgICAgICAgICAgICAgICB2YXIgaV9mcmFtZV8zMzZjOGI4NDU3NGY0ZmJiYjQ5ODNlZDZhNjEwYjg4ZCA9ICQoJzxpZnJhbWUgc3JjPSJkYXRhOnRleHQvaHRtbDtiYXNlNjQsQ2lBZ0lDQWdJQ0FnQ2lBZ0lDQWdJQ0FnSUNBZ0lBb2dJQ0FnSUNBZ0lDQWdJQ0FnSUNBZ1BHSStUR0YwYVhSMVpHVTZQQzlpUGlBZ05URXVPVGM0TkRNMFBHSnlQZ29nSUNBZ0lDQWdJQ0FnSUNBZ0lDQWdQR0krVEc5dVoybDBkV1JsT2p3dllqNGdOUzQyTmpNeE16TThZbkkrQ2lBZ0lDQWdJQ0FnSUNBZ0lDQUtJQ0FnSUNBZ0lDQUtJQ0FnSUNBZ0lDQT0iIHdpZHRoPSIxNTAiIGhlaWdodD0iMTAwIj48L2lmcmFtZT4nKVswXTsKICAgICAgICAgICAgICAgIHBvcHVwX2Y0YmQxN2U0NTJiMTQzOTE5MTU2MzBkYzc1MTg3YTlhLnNldENvbnRlbnQoaV9mcmFtZV8zMzZjOGI4NDU3NGY0ZmJiYjQ5ODNlZDZhNjEwYjg4ZCk7CiAgICAgICAgICAgIAoKICAgICAgICAgICAgbWFya2VyX2IxOWYzYzA2OWMxNjQwYjY5NWNmNmVjMDE3YmE2MWI2LmJpbmRQb3B1cChwb3B1cF9mNGJkMTdlNDUyYjE0MzkxOTE1NjMwZGM3NTE4N2E5YSk7CgogICAgICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICAKICAgICAgICA8L3NjcmlwdD4KICAgICAgICA=\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;\"></iframe></div></div>" ], "text/plain": [ "<folium.folium.Map at 0x7f889b192510>" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mapFromPoints(pts, \"SatoshiNakamotoMap\", zoom_level = 15)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
wilomaku/IA369Z
dev/Autoencoderxclass.ipynb
2
620811
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Corpus callosum's shape signature for segmentation error detection in large datasets\n", "\n", "## Abstract\n", "\n", "Corpus Callosum (CC) is a subcortical, white matter structure with great importance in clinical and research studies because its shape and volume are correlated with subject's characteristics and neurodegenerative diseases. CC segmentation is a important step for any medical, clinical or research posterior study. Currently, magnetic resonance imaging (MRI) is the main tool for evaluating brain because it offers the better soft tissue contrast. Particullary, segmentation in MRI difussion modality has great importante given information associated to brain microstruture and fiber composition.\n", "\n", "In this work a method for detection of erroneous segmentations in large datasets is proposed based-on shape signature. Shape signature is obtained from segmentation, calculating curvature along contour using a spline formulation. A mean correct signature is used as reference for compare new segmentations through root mean square error. This method was applied to 152 subject dataset for three different segmentation methods in diffusion: Watershed, ROQS and pixel-based presenting high accuracy in error detection. This method do not require per-segmentation reference and it can be applied to any MRI modality and other image aplications." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Python version: 2.7.13\n", "Numpy version: 1.12.1\n", "Scipy version: 0.19.0\n", "Matplotlib version: 2.0.2\n" ] } ], "source": [ "## Functions\n", "\n", "import sys,os\n", "import copy\n", "path = os.path.abspath('../dev/')\n", "if path not in sys.path:\n", " sys.path.append(path)\n", "\n", "import bib_mri as FW\n", "import numpy as np\n", "import scipy as scipy\n", "import scipy.misc as misc \n", "import matplotlib as mpl\n", "import matplotlib.pyplot as plt\n", "from numpy import genfromtxt\n", "import platform\n", "import torch\n", "from torch.autograd import Variable\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "%matplotlib inline\n", "\n", "def sign_extract(seg, resols): #Function for shape signature extraction\n", " splines = FW.get_spline(seg,smoothness)\n", "\n", " sign_vect = np.array([]).reshape(0,points) #Initializing temporal signature vector\n", " for resol in resols:\n", " sign_vect = np.vstack((sign_vect, FW.get_profile(splines, n_samples=points, radius=resol)))\n", " \n", " return sign_vect\n", "\n", "def sign_fit(sig_ref, sig_fit): #Function for signature fitting\n", " dif_curv = []\n", " for shift in range(points):\n", " dif_curv.append(np.abs(np.sum((sig_ref - np.roll(sig_fit[0],shift))**2)))\n", " return np.apply_along_axis(np.roll, 1, sig_fit, np.argmin(dif_curv))\n", "\n", "print \"Python version: \", platform.python_version()\n", "print \"Numpy version: \", np.version.version\n", "print \"Scipy version: \", scipy.__version__\n", "print \"Matplotlib version: \", mpl.__version__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction\n", "\n", "The Corpus Callosum (CC) is the largest white matter structure in the central nervous system that connects both brain hemispheres and allows the communication between them. The CC has great importance in research studies due to the correlation between shape and volume with some subject's characteristics, such as: gender, age, numeric and mathematical skills and handedness. In addition, some neurodegenerative diseases like Alzheimer, autism, schizophrenia and dyslexia could cause CC shape deformation.\n", "\n", "CC segmentation is a necessary step for morphological and physiological features extraction in order to analyze the structure in image-based clinical and research applications. Magnetic Resonance Imaging (MRI) is the most suitable image technique for CC segmentation due to its ability to provide contrast between brain tissues however CC segmentation is challenging because of the shape and intensity variability between subjects, volume partial effect in diffusion MRI, fornex proximity and narrow areas in CC. Among the known MRI modalities, Diffusion-MRI arouses special interest to study the CC, despite its low resolution and high complexity, since it provides useful information related to the organization of brain tissues and the magnetic field does not interfere with the diffusion process itself.\n", "\n", "Some CC segmentation approaches using Diffusion-MRI were found in the literature. Niogi et al. proposed a method based on thresholding, Freitas et al. e Rittner et al. proposed region methods based on Watershed transform, Nazem-Zadeh et al. implemented based on level surfaces, Kong et al. presented an clustering algorithm for segmentation, Herrera et al. segmented CC directly in diffusion weighted imaging (DWI) using a model based on pixel classification and Garcia et al. proposed a hybrid segmentation method based on active geodesic regions and level surfaces.\n", "\n", "With the growing of data and the proliferation of automatic algorithms, segmentation over large databases is affordable. Therefore, error automatic detection is important in order to facilitate and speed up filter on CC segmentation databases. presented proposals for content-based image retrieval (CBIR) using shape signature of the planar object representation.\n", "\n", "In this work, a method for automatic detection of segmentation error in large datasets is proposed based on CC shape signature. Signature offers shape characterization of the CC and therefore it is expected that a \"typical correct signature\" represents well any correct segmentation. Signature is extracted measuring curvature along segmentation contour. The method was implemented in three main stages: mean correct signature generation, signature configuration and method testing. The first one takes 20 corrects segmentations and generates one correct signature of reference (typical correct signature), per-resolution, using mean values in each point. The second stage stage takes 10 correct segmentations and 10 erroneous segmentations and adjusts the optimal resolution and threshold, based on mean correct signature, that lets detection of erroneous segmentations. The third stage labels a new segmentation as correct and erroneous comparing with the mean signature using optimal resolution and threshold." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<img src=\"../figures/workflow.png\">\n", "\n", "The comparison between signatures is done using root mean square error (RMSE). True label for each segmentation was done visually. Correct segmentation corresponds to segmentations with at least 50% of agreement with the structure. It is expected that RMSE for correct segmentations is lower than RMSE associated to erroneous segmentation when compared with a typical correct segmentation." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mask List [ 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18\n", " 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36\n", " 37 38 39 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55\n", " 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73\n", " 74 75 76 77 78 79 80 81 82 83 84 85 86 88 89 90 91 92\n", " 93 94 95 96 97 99 100 101 102 103 104 105 106 107 108 109 110 111\n", " 112 113 114 115 116 117 118 119 120 122 123 124 125 126 127 128 129 130\n", " 131 132 133 134 135 137 138 140 141 142 143 144 145 146 147 148 149 150\n", " 151 152 153]\n", "Label List [0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0\n", " 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0\n", " 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1\n", " 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", "Correct List [ 0 2 3 4 5 6 8 9 10 13 14 15 16 17 18 19 21 22\n", " 23 24 25 26 27 29 30 31 33 36 37 38 39 41 42 43 44 45\n", " 46 47 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 65\n", " 66 67 68 69 71 73 74 75 76 77 80 82 83 84 85 86 88 89\n", " 90 91 92 93 94 95 97 99 100 102 104 105 106 107 108 109 110 111\n", " 112 113 116 117 118 119 120 122 123 124 125 126 127 128 129 130 132 133\n", " 134 135 141 142 143 144 145 146 147 148 149 150 151 152 153]\n", "Erroneous List [ 1 7 11 20 28 32 34 35 48 64 70 72 78 79 81 96 101 103\n", " 114 115 131 137 138 140]\n" ] } ], "source": [ "#Loading labeled segmentations\n", "seg_label = genfromtxt('../../dataset/Seg_Watershed/watershed_label.csv', delimiter=',').astype('uint8')\n", "\n", "list_masks = seg_label[np.logical_or(seg_label[:,1] == 0, seg_label[:,1] == 1), 0] #Extracting segmentations\n", "list_labels = seg_label[np.logical_or(seg_label[:,1] == 0, seg_label[:,1] == 1), 1] #Extracting labels\n", "ind_ex_err = list_masks[np.where(list_labels)[0]]\n", "ind_ex_cor = list_masks[np.where(np.logical_not(list_labels))[0]]\n", "print \"Mask List\", list_masks\n", "print \"Label List\", list_labels\n", "print \"Correct List\", ind_ex_cor\n", "print \"Erroneous List\", ind_ex_err" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAACKCAYAAAC6jLGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACtxJREFUeJzt3H/s1VUdx/HnG1ARBElRUhRYViZoWf+YpdPVEjENq5mV\nTqUyqVxu2vJH6pximsupJakzN5c2mlma5vyRS2qm5rRZlmT+JFQgQPG3lHr645xvfbjcL3y/cOFe\nDs/Hdsf9fM7nxznn3vv6nHs+l2+klJAkbfyGdLsCkqTOMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiph\noEvrSURcHhFndLse3RARkyIiRcSwbtdlU2Kg97CI+GJEPBARr0TEwoi4NSL26YF6HRMRd3e7HutT\nRFwdEbMGsf0qfZJSmplSOqfztZPaM9B7VEScCFwMfBcYB0wAZgOfWotjrTJKcuQkVSil5KPHHsDW\nwCvAYavZZgty4D9XHhcDW5Sy/YFngJOBRcA17daVbQ8GHgKWA/cA72+cY2fgl8ASYBlwKbAb8Abw\nVqnj8n7qdwzwJPAy8BRwRKPsS8A84AXgdmBio+wA4FHgReBHwO+ArzSO+QfgolLfJ4GPlPULgH8B\nR7f00feBfwKLgcuBLVv66KSy30JgRin7KvAf4N+ljTeX9acAT5Q2PQJ8uqxv2yfA1cCsRn2OBR4H\nngduAnZslCVgJvBYadtsIPrp2yGNuiwDrgO2KWWHl/4eXZanldd7u7J8Semrl4AHgX0bxz0L+Dlw\nbWnjw8B7gVNLHy0ADmhsPxc4D7i/HO9XjXpMKm0a1nhPX1X6+VlgFjC025+12h5dr4CPNi8KHAi8\n2fdh6Gebs4H7gO2B7chhfE4p27/s/70Salv2s+6D5YO6FzAUOBp4upQPBf5MDs+RwHBgn3L8Y4C7\nV1O3keUDvmtZ3gGYUp5PL6G2GzAMOB24p5SNLft9ppSdQA7WZqC/Ccwo9ZtFDuvZpc4HlCDaqmx/\nETk4twFGATcD57X00dnAZsBBwGvAO0r51TTCuKw7DNiRHKiHA68CO/TXJ81jAB8DlgIfKnX9IfD7\nxrYJ+DUwhvxtbAlwYD/9e0J57Xcqx7oCmNMo/2k597bki/3BjbIjy/ph5IvZImB4KTuLfGGaWsp/\nQr44fKf00bHAU41jzSWH8+7lNf8FcG0pm8TKgX5DqedI8nv2fuC4bn/Want0vQI+2rwocASwaA3b\nPAEc1FieCjxdnu9PHl0Ob5S3W3cZ5SLQWPcosB+wdwmVVS4q7cKrpXwkeZT5WcqIuFF2K/DlxvIQ\ncpBOBI4C7m2UBXlU2Az0xxrle5TQGNdYtwzYs+z7KrBLo2zvvkAq/fF6s33ki9uHy/OraQn0Nu18\nCJjeX5+wcqBfBVzQKNuKfLGaVJYT5YJZlq8DTunnvPOAjzeWdyjH6gvPMeQL3cPAFWtowwvAB8rz\ns4DfNMoOIX/jGFqWR5V6jinLc4HzG9tPLu+xoTQCnTxluKL5XgC+ANzV7c9abQ/n0HvTMmDsGua5\ndwTmN5bnl3V9lqSU3mjZp3XdROCkiFje9yBPs+xY/p2fUnpzsJVPKb1KHsHOBBZGxC0R8b7GOS9p\nnO95cviOL+dd0DhOIk+LNC1uPH+9bNe6bivyt5YRwIONc91W1vdZ1tK+18q+bUXEURHxUON4u5O/\nVQzESq9XSukV8us8vrHNogHWZSJwQ6Me88jTPePKsZeTp052By5sacO3ImJeRLxY9t26pQ2tfbk0\npfRWY5mWei1oPJ9PHsm39snEsn5ho85XkEfq6iADvTfdSx7RHLqabZ4jf1D6TCjr+rT7M5qt6xYA\n56aUxjQeI1JKc0rZhH4uKmv8E50ppdtTSp8gjx7/DlzZOOdxLefcMqV0D3l+dae+Y0RENJcHaSk5\ngKY0zrN1SqnfwG5tQnMhIiaWNhwPbJtSGgP8lXwxWmX7NlZ6vSJiJHnq49kB1qdpATCtpQ+Hp5Se\nLcfek3yfYg7wg8Y59wW+DXyOPLU0hnyvIlY5w8Dt3Hg+gfxNYWmb+q4AxjbqOzqlNGUdzqs2DPQe\nlFJ6ETgTmB0Rh0bEiIjYLCKmRcQFZbM5wOkRsV1EjC3bXzvIU10JzIyIvSIbGRGfjIhR5DnOhcD5\nZf3wiPho2W8xsFNEbN7uoBExLiKml9BaQf7a/nYpvhw4NSKmlG23jojDStktwB6lzcOAbwDvHGSb\nAEgpvV3ad1FEbF/ONT4ipg7wEIuBdzWWR5JDe0k51gzyCLi5fb99Qn69ZkTEnhGxBfnXS39MKT09\nwPo0XQ6cWy4ylPfA9PJ8OPl9cBr5XsP4iPh62W8U+b7BEmBYRJwJjF6L8zcdGRGTI2IE+X7E9Y0R\nPQAppYXAHcCFETE6IoZExC4Rsd86nlstDPQelVK6EDiRfNNwCXmUczxwY9lkFvAA8BfyXOmfyrrB\nnOMB8o2uS8lzqY+T54IpH8pDgHeT52OfIU+jAPwW+BuwKCJaR2OQ31cnkkelz5Pn5L9WjnsD+cbs\nzyLiJfIod1opW0q+8XgBeTpicmnjisG0q+Hk0qb7yrnuBHYd4L5XAZPLFMGNKaVHyNMX95LDew/y\nL276rLZPUkp3AmeQbxwuBHYBPr9Wrcq/VLkJuCMiXibfIN2rlJ0HLEgpXZZSWkG+CTorIt5D/kXR\nbcA/yNMjb7DylMnauIZ8r2AR+cb5N/vZ7ihgc/Kvg14Arid/e1MHRZ6mlHpPRAwhX0iOSCnd1e36\naGURMZf8q5Yfd7suyhyhq6dExNSIGFOmJU4jz+/e1+VqSRsFA129Zm/yTzKXkqd8Dk0pvb76XSSB\nUy6SVA1H6JJUiQ36B5oiwq8DkjRIKaUB/V8BR+iSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6\nJFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtS\nJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUY1u0KSBtaSmlQ\n20fEKvs210m9whG6JFXCEbo2WimltqPn9XGe/tY5UlcvMdC1UegvrNdXiA/U+jx/68Wi9QImtTLQ\n1VPWNSB7KfDWtS1+M9BgGejqik6NbHs52PqrWyfa3nqMXu4HbTjeFJWkSjhC13rTiZFojSPPdm3q\nxPRMjX2lwTHQ1TE1zX9vaOv6a51Nue/0f065qCMM885Zm77o9q991BsMdEmqhFMuWmdrOzp0VN45\n9qXAEbq6KKX0v4fWjX0ocISuDoiIjv8nmk19xDnQPt3U+0krc4QuSZVwhK6O6MQove84ytr9LZf+\nyiQw0NVBq/sttQG07uxDrYmBrvXC8JE2POfQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmq\nhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY\n6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEu\nSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJU\niUgpdbsOkqQOcIQuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIG\nuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBL\nUiX+C/FpUaxTAXtDAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb0cc2bf550>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAACKCAYAAAC6jLGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAC2ZJREFUeJzt3X/Q5VVBx/H3Z3cRWFkWFH+A/EoQg7VJx5i1P8ydoCAS\nrWkqtTRoLCcbdQrFSk2GVokxB7JS1DQHbBgxBYOGhkA2USPKhrIwi59u7IKysrjqaimnP865O18u\n99m9z+6zz4/zvF8zd+Z+v+f743x/3M8933Pus5tSCpKkpW/FQldAkjQ3DHRJ6oSBLkmdMNAlqRMG\nuiR1wkCXpE4Y6NICSfIfSTYsdD0WQpJzknx2oevRGwN9ASS5N8nOJN8cvP50oeul6bVrePoslv9I\nko3DeaWUdaWUTXNeOS1bqxa6AsvY2aWUG/e0UJJVpZTv7WmeJNlCX2Tao+jnklySZBtwwQzzViR5\na5L7knw1yeVJ1rZtHJ+kJPmVJF9J8lCStwz2sSLJ7yS5K8m2JFcledKg/CWtO2B7kk1JTh6UlSQn\nDqZ3tTyTHJHkurbe15PckuRx91iqS1q9v5Hki0me08oOTPJHrd4PJrksycGDdc9PsjXJliSvHtan\n1eW9Sa5vTz2fS/L0JJcmeTjJfyZ53mBbRyX5RJKvJbknyesHZRe083J5kh3tfPxIK7sCOBa4tu3n\n/Db/40keSPJIks8kWdfm/zrwS8D5bflr2/xdrfx23Je249rS3h/YyjYk+Z8k57VztjXJubu5h9Ym\n+VBb7v4kG5OsbGXvS/KJwbIXJ7mpXZPD2/X7Wjtf1yU5erDspratz4+OI8mTk/xlu47/lOT4sXvl\n9UnubvfguybdD23ZH0zyd+2++XKSX5jp+LQbpRRf8/wC7gVOn6HsHOB7wOuoT1AHzzDvV4E7gWcC\nhwCfBK5o2zgeKMAH27I/DHwXOLmVvwG4FTgaOBB4P3BlKzsJ+BbwE8ABwPltP09o5QU4cVDfjwAb\n2/uLgMvaegcALwQy4RjPAL4AHAYEOBk4spVdAvw18CRgDXAtcFErOxN4AFgHrAY+OqxPq8tDwPOB\ng4BPA/cArwJWAhuBm9uyK1odfh94QjuPdwNntPILgO8AZ7V1LwJu3d01bNdkTTunlwK3TzpPk7YB\nXNiuyVOBpwCfB/6glW1o1//Cdl7PAr4NHD7DPXR1u6ZPbNu7DXhNK1sN/Bf1nnphO19Ht7InAz/X\nllkDfBy4ZrDdTe1eOAFYC9zRtnU69b68HPiLwfIFuLldy2Pbsq8e3Oefbe+fCGwGzm3beV6r1ykL\n/Vldaq8Fr8ByfLUP8jeB7YPXr7Wyc4CvjC0/ad5NwGsH088G/q99II5vH6ajB+W3AS9r778EnDYo\nO3Kw7tuAqwZlK4D7gQ1teneBfiHwqWH5DMf/4+3D/QJgxWB+qF8mJwzm/ShwT3v/YVq4t+kTeXyg\nf3BQ/jrgS4PpHwK2t/frJ5zT3x0FEjXQbxyUnQLsHLuGE7+UW/lhrW5rx8/TpG0AdwFnDcrOAO5t\n7zcAO4FVg/KvAi+YsN+nUb+8Dx7Meznti2xw7F8H7gNevptjeC7w8GB6E/CWwfS7gesH02fz2C+x\nApw5mH4tcNPgnh4F+i8Ct4zt+/3A2xfyc7oUX/ahL5yfKTP3oW+eYt5R1A/kyH3UQH7aYN4Dg/ff\nprbkAY4Drk7y6KD8+23dx2y3lPJoks3AM2ao69C7qEF4QxKAD5RS/nB8oVLKp1MHgf8MOC7JJ4E3\nUlvVq4EvtPWhhvzKwTH/82BTk87Tg4P3OydMD8/BUUm2D8pXArcMpsfP30GZYfyidWm8A/h5agt7\ndG6PAB6ZUM9xk67nUYPpbWP7HV7PoeOorfitg3O4gsG5KqX8Y5K7qa33qwbHsJr6hHQmcHibvSbJ\nylLK99v0tOd3ZHiNxo9pWOf1Y9diFXDFhGW1G/ahL06T/gnM8XlbqB+EkWOpj+UPsmebgZ8qpRw2\neB1USrl/fLupqXAMtZUONUhWD7b19F0VLGVHKeW8UsozgZcAv53ktIkHWMp7SinPp7Z8TwLeRH3M\n3gmsG9RrbSllFBJbqd1EI8dMcawz2Uxt+Q/PwZpSyllTrj9+PV4BvJTa/bCW+pQE9Qtp0vLjJl3P\nLVPWZWgztYV+xOC4Di2lrBstkOQ3qd1CW6hdaiPnUZ/01pdSDgV+bOwY9sbwGs10TJuBvx+7FoeU\nUn5jH/a7LBnoS9eVwG8l+YEkhwDvBD42qfU4wWXAO5IcB5DkKUle2squAn46yWlJDqB+yL9L7dMF\nuB14RZKVSc4EXjTaaJIXJzmxfQk8Qm31D58CRsudmmR92/63qH3Vj5ZSHqX2+1+S5Klt2WckOWNQ\nt3OTnNxak2+b7lRNdBuwI8mbkxzcjuc5SU6dcv0Hqf3uI2uo52kb9QvvnXtYftyVwFvbtTiC2rf/\n0SnrskspZStwA/DuJIemDoCfkORFAElOoo4l/DLwSupA7XMHx7AT2J46SP722e5/gje1wdZjqGM3\nH5uwzHXASUlemeSA9jo1g8F4TcdAXzijX0iMXlfPcv0PUx9JP0Md+PsOtc94Gn9MHXi8IckO6mDc\neoBSypepH/Y/obaYz6b+xPJ/27pvaPO2U3+5cc1gu88CbqSOD/wD8N5Sys0T9n8oNbgfpj6Gb6N2\n1wC8mTrwdmuSb7TtPbvV7XrgPdSBtjtbvaEG6ay0LoQXU/uJ72nH+ufU1vU0LqIG8PYkb6QOCN5H\nfZK5Y1C3kQ8Bp7Tlr+HxNlK7k/4N+CLwL23e3ngVdaD3Duo5/ivgyCSrqF8SF5dS/rWU8t/A7wFX\ntF/UXEodRH+o1f9v93L/Q5+iDj7fDvwN9Tw8RillB/CTwMuoLfgHgIupTxGahbQBCGnJaS24fwcO\nnPLJRPMoSQGeVUq5c6HrslzYQteSkuRnU3+zfTi1FXetYS5VBrqWmtdQf7J3F7WP3oEzqbHLRZI6\nYQtdkjoxr39Y1AZJJEmzUEqZ6m8BbKFLUicMdEnqhIEuSZ0w0CWpEwa6JHXCQJekThjoktQJA12S\nOmGgS1InDHRJ6oSBLkmdMNAlqRMGuiR1wkCXpE4Y6JLUCQNdkjphoEtSJwx0SeqEgS5JnTDQJakT\nBrokdcJAl6ROGOiS1AkDXZI6YaBLUicMdEnqhIEuSZ0w0CWpEwa6JHXCQJekThjoktQJA12SOmGg\nS1InDHRJ6oSBLkmdMNAlqRMGuiR1wkCXpE4Y6JLUCQNdkjphoEtSJwx0SeqEgS5JnTDQJakTBrok\ndcJAl6ROGOiS1AkDXZI6YaBLUicMdEnqhIEuSZ0w0CWpEwa6JHXCQJekThjoktQJA12SOmGgS1In\nVi10BaSlppSy632Sx8wbTUsLwUCXZmEY5rubNti1EOxykaZQSnlceO9peWm+GeiS1AkDXZpCkll3\no8y2VS/tKwNdmoW96Rs31DVfDHRplkat9dmEu6Gu+WCgS1InDHRpH8y2lW5LXfuTgS7to70ZLJX2\nBwNdmmf+0ZH2FwNdkjphoEvzzC4X7S/+Wy5atiYF63x1h4zv224YzQVb6FpWRr80mamVvFCtZ1vt\nmgsGuiR1wkDXsjJN18ZsW8u2rrVY2IeuZWcY6vvajz6XYT7pP86QZsMWupa1ScE5DNZJ/e176off\nH3WSpmGgS1In7HLRspdk6v9abq73K80lA11iz/3q+3N/0lyxy0UaY9hqqbKFLo2Zjxb6nvbhl4r2\nhi10SeqEgS6NWQytY/8zDO0Nu1ykCeZ7kFSaC7bQpT1YDC12aRoGuiR1wkCXFimfDDRbBrq0SNl3\nr9lyUFSawu5aywavFgtb6JLUCVvo0j6yr1uLRXxclKQ+2OUiSZ0w0CWpEwa6JHXCQJekThjoktQJ\nA12SOmGgS1InDHRJ6oSBLkmdMNAlqRMGuiR1wkCXpE4Y6JLUCQNdkjphoEtSJwx0SeqEgS5JnTDQ\nJakTBrokdcJAl6ROGOiS1AkDXZI6YaBLUif+H2jzhrRliQL7AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb07e379c50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mask_correct = np.load('../../dataset/Seg_Watershed/mask_wate_{}.npy'.format(ind_ex_cor[10]))\n", "mask_error = np.load('../../dataset/Seg_Watershed/mask_wate_{}.npy'.format(ind_ex_err[10]))\n", "\n", "plt.figure()\n", "plt.axis('off')\n", "plt.imshow(mask_correct,'gray',interpolation='none')\n", "plt.title(\"Correct segmentation example\")\n", "plt.show()\n", "\n", "plt.figure()\n", "plt.axis('off')\n", "plt.imshow(mask_error,'gray',interpolation='none')\n", "plt.title(\"Erroneous segmentation example\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Shape signature for comparison\n", "\n", "Signature is a shape descriptor that measures the rate of variation along the segmentation contour. As shown in figure, the curvature $k$ in the pivot point $p$, with coordinates ($x_p$,$y_p$), is calculated using the next equation. This curvature depict the angle between the segments $\\overline{(x_{p-ls},y_{p-ls})(x_p,y_p)}$ and $\\overline{(x_p,y_p)(x_{p+ls},y_{p+ls})}$. These segments are located to a distance $ls>0$, starting in a pivot point and finishing in anterior and posterior points, respectively.\n", "The signature is obtained calculating the curvature along all segmentation contour.\n", "\n", "\\begin{equation} \\label{eq:per1}\n", "k(x_p,y_p) = \\arctan\\left(\\frac{y_{p+ls}-y_p}{x_{p+ls}-x_p}\\right)-\\arctan\\left(\\frac{y_p-y_{p-ls}}{x_p-x_{p-ls}}\\right)\n", "\\end{equation}\n", "\n", "<img src=\"../figures/curvature.png\">\n", "\n", "Signature construction is performed from segmentation contour of the CC. From contour, spline is obtained. Spline purpose is twofold: to get a smooth representation of the contour and to facilitate calculation of\n", "the curvature using its parametric representation. The signature is obtained measuring curvature along spline. $ls$ is the parametric distance between pivot point and both posterior and anterior points and it determines signature resolution. By simplicity, $ls$ is measured in percentage of reconstructed spline points.\n", "\n", "In order to achieve quantitative comparison between two signatures root mean square error (RMSE) is introduced. RMSE measures distance, point to point, between signatures $a$ and $b$ along all points $p$ of signatures.\n", "\n", "\\begin{equation} \\label{eq:per4}\n", "RMSE = \\sqrt{\\frac{1}{P}\\sum_{p=1}^{P}(k_{ap}-k_{bp})^2}\n", "\\end{equation}\n", "\n", "Frequently, signatures of different segmentations are not fitted along the 'x' axis because of the initial point on the spline calculation starts in different relative positions. This makes impossible to compare directly two signatures and therefore, a prior fitting process must be accomplished. The fitting process is done shifting one of the signature while the other is kept fixed. For each shift, RMSE between the two signatures is measured. The point giving the minor error is the fitting point. Fitting was done at resolution $ls = 0.35$. This resolution represents globally the CC's shape and eases their fitting.\n", "\n", "After fitting, RMSE between signatures can be measured in order to achieve final quantitative comparison.\n", "\n", "## Signature for segmentation error detection\n", "\n", "For segmentation error detection, a typical correct signature is obtained calculating mean over a group of signatures from correct segmentations. Because of this signature could be used in any resolution, $ls$ must be chosen for achieve segmentation error detection. The optimal resolution must be able to return the greatest RMSE difference between correct and erroneous segmentation when compared with a typical correct signature.\n", "\n", "In the optimal resolution, a threshold must be chosen for separate erroneous and correct segmentations. This threshold stays between RMSE associated to correct ($RMSE_E$) and erroneous ($RMSE_C$) signatures and it is given by the next equation where N (in percentage) represents proximity to correct or erroneous RMSE. If RMSE calculated over a group of signatures, mean value is applied.\n", "\n", "\\begin{equation} \\label{eq:eq3}\n", "th = N*(\\overline{RMSE_E}-\\overline{RMSE_C})+\\overline{RMSE_C}\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Experiments and results\n", "\n", "In this work, comparison of signatures through RMSE is used for segmentation error detection in large datasets. For this, it will be calculated a mean correct signature based on 20 correct segmentation signatures. This mean correct signature represents a tipycal correct segmentation. For a new segmentation, signature is extracted and compared with mean signature.\n", "\n", "For experiments, DWI from 152 subjects at the University of Campinas, were acquired on a Philips scanner Achieva 3T in the axial plane with a $1$x$1mm$ spatial resolution and $2mm$ slice thickness, along $32$ directions ($b-value=1000s/mm^2$, $TR=8.5s$, and $TE=61ms$). All data used in this experiment was acquired through a project approved by the research ethics committee from the School of Medicine at UNICAMP. From each acquired DWI volume, only the midsaggital slice was used.\n", "\n", "Three segmentation methods were implemented to obtained binary masks over a 152 subject dataset: Watershed, ROQS and pixel-based. 40 Watershed segmentations were chosen as follows: 20 correct segmentations for mean correct signature generation and 10 correct and 10 erroneous segmentations for signature configuration stage. Watershed was chosen to generate and adjust the mean signature because of its higher error rate and its variability in the erroneous segmentation shape. These characteristics allow improve generalization. The method was tested on the remaining Watershed segmentations (108 masks) and two additional segmentations methods: ROQS (152 masks) and pixel-based (152 masks)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Mean correct signature generation\n", "\n", "In this work, segmentations based on Watershed method were used for implementation of the first and second stages. From the Watershed dataset, 20 correct segmentations were chosen. Spline for each one was obtained from segmentation contour. The contour was obtained using mathematical morphology, applying xor logical operation, pixel-wise, between original segmentation and the eroded version of itself by an structuring element b:\n", "\n", "\\begin{equation} \\label{eq:per2}\n", "G_E = XOR(S,S \\ominus b)\n", "\\end{equation}\n", "\n", "From contour, it is calculated spline. The implementation, is a B-spline (Boor's basic spline). This formulation has two parameters: degree, representing polynomial degrees of the spline, and smoothness, being the trade off between proximity and smoothness in the fitness of the spline. Degree was fixed in 5 allowing adequate representation of the contour. Smoothness was fixed in 700. This value is based on the mean quantity of pixels of the contour that are passed for spline calculation. The curvature was measured over 500 points over the spline to generate the signature along 20 segmentations. Signatures were fitted to make possible comparison (Fig. signatures). Fitting resolution was fixed in 0.35. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In order to get a representative correct signature, mean signature per-resolution is generated using 20 correct signatures. The mean is calculated in each point." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Signature configuration\n", "\n", "Because of the mean signature was extracted for all the resolutions, it is necessary to find resolution in that diference between RMSE for correct signature and RMSE for erroneous signature is maximum. So, 20 news segmentations were used to find this optimal resolution, being divided as 10 correct segmentations and 10 erroneous segmentations. For each segmentation, it was extracted signature for all resolutions." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Correct segmentations' vector: (123, 50, 500)\n", "Erroneous segmentations' vector: (24, 50, 500)\n" ] } ], "source": [ "smoothness = 700 #Smoothness\n", "degree = 5 #Spline degree\n", "fit_res = 0.35\n", "resols = np.arange(0.01,0.5,0.01) #Signature resolutions\n", "resols = np.insert(resols,0,fit_res) #Insert resolution for signature fitting\n", "points = 500 #Points of Spline reconstruction\n", "\n", "prof_vec = np.empty((len(list_masks),resols.shape[0],points)) #Initializing correct signature vector\n", "for ind, mask in enumerate(list_masks):\n", " #Loading correct mask\n", " mask_pn = np.load('../../dataset/Seg_Watershed/mask_wate_{}.npy'.format(mask))\n", " refer_temp = sign_extract(mask_pn, resols) #Function for shape signature extraction\n", " prof_vec[ind] = refer_temp\n", " if mask > 0: #Fitting curves using the first one as basis\n", " prof_ref = prof_vec[0]\n", " prof_vec[ind] = sign_fit(prof_ref[0], refer_temp) #Function for signature fitting\n", "\n", "ind_rel_cor = np.where(np.logical_not(list_labels))[0]\n", "ind_rel_err = np.where(list_labels)[0]\n", " \n", "print \"Correct segmentations' vector: \", prof_vec[ind_rel_cor].shape\n", "print \"Erroneous segmentations' vector: \", prof_vec[ind_rel_err].shape" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(123,)\n", "(123,)\n" ] } ], "source": [ "print(ind_rel_cor.shape)\n", "print(ind_ex_cor.shape)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "res_ex = 15\n", "#for ind_ex, ind_rel in zip(ind_ex_cor, ind_rel_cor):\n", "# plt.figure() \n", "# f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))\n", "# ax1.plot(prof_vec[ind_rel,res_ex,:].T)\n", "# ax1.set_title(\"Signature %i at res: %f\"%(ind_ex, resols[res_ex]))\n", "# \n", "# mask_correct = np.load('../../dataset/Seg_Watershed/mask_wate_{}.npy'.format(ind_ex))\n", "# ax2.axis('off')\n", "# ax2.imshow(mask_correct,'gray',interpolation='none')\n", "#\n", "# plt.show()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYXFXZwH/nTm8723t2N1vSe08gkJCQhGYAARHwQ0VQ\nARVFULCAIqiIIIiiSO+goZNCgIT03rPZzWZbdrN9d7ZMb+f7YyawhCQkSNyEPb/nuc/MnHLPe+7c\n+973vue95wgpJQqFQqH48qP1tQAKhUKh+N+gFL5CoVD0E5TCVygUin6CUvgKhULRT1AKX6FQKPoJ\nSuErFApFP0EpfMUXihDiSiHEu30tx/8aIcT3hRDNQgi3ECKlr+VRKA6HUvh9iBDiCiHEpriSaBRC\nLBJCnH4SyPVNIcSqz1NXSvm8lHLOFy3ToQghZggh6k90O8eCEMIA3A/MkVLapZTtfS3T8SCEmCWE\nKBNCeIUQy4QQ+Ucpe2P8nA0IIZ46JK9ACCHj5/PB7Ve98oUQ4o9CiPb49kchhDik/rK4HGVCiNmH\n7P8KIUStEMIjhHhdCJHcK88khHhCCNEthGgSQvzkCzk4XzKUwu8j4ifkX4B7gAwgD/gb8JXPsS/9\nsaQpPuYLPj4ZgBnY/TnkEEKIo16HJ/K/FEKkAq8CvwKSgU3Ay0ep0gD8DnjiKGUS4zc+u5Tyrl7p\n1wEXAqOBUcAFwHd75b8IbAVSgF8A/xFCpMXlHA78E/gGsePtBf7eq+6dQAmQD8wEbhVCzDuKjP0T\nKaXa/scb4ATcwKVHKWMidkNoiG9/AUzxvBlAPfAzoAl49nBp8bLnA9uATmANMKpXGwOIXeytQDvw\nMDAU8AORuIydR5Dvm0AV0ANUA1f2Sl/Vq9wcoBzoInaBfgh8p3dZ4D7AFd/POb3qfgvYE2+jCvhu\nPN0G+IBoXEY3kA08BfyuV/0ZQH2v3zXx47MDCAD6eL0F8WNQDfywV/lJxBRgN9AM3H+Y4zAI8AAy\nLscH8fRpwMZ4vzcC03rVWQ7cDayO96P4MPv9wmU9wv94HbCm1++Dx3bIZ9T7HfDUIWkF8eOgP0Kd\nNcB1vX5/G1jX6zgGAEev/BXA9+Lf7wFe6JVXBAQPlid2jczplf9b4KW+vtZPtk1Z+H3DVGIW4WtH\nKfMLYAowhphFNAn4Za/8TGIWWT6xi/ZTaUKIscQsse8Ss5r+CbwZf/zVAW8DtcQu1BxiF8ge4HvA\nWhmz0BIPFUwIYQMeIqacHcSU27bDlEsF/gPcFm+/PF62N5Pj6anAvcDjvR7zW4jdsBKIKf8HhBDj\npJQe4BygQX5sSTYc5Vj25uvAeUAisRvGW8D2eP9nATcJIebGyz4IPCilTCCmYF45dGdSyr3A8PjP\nRCnlWXFXwzvxY5RCzN3zziG+/W8Q+98cxP6DEyarEGKHEOKKI7QxPL7Pg/3xAPt69enzUCuEqBdC\nPBk/Bw7bVvz78F55VVLKnqPk95azktgNYpAQIgnIOsq+FXGUwu8bUoA2KWX4KGWuBH4rpWyRUrYC\nvyGmJA4SBe6QUgaklL4jpF0H/FNKuV5KGZFSPk3sIplC7AaSDdwipfRIKf1SyuPx20eBEUIIi5Sy\nUUp5OHfGucBuKeWr8b4+ROzpoze1Usp/SSkjwNPELtwMACnlO1LKShnjQ+BdYPpxyHg4HpJS1sWP\nz0QgTUr5WyllUEpZBfwLuDxeNgQUCyFSpZRuKeW6Y2zjPKBCSvmslDIspXwRKCPmwjjIU1LK3fH8\n0ImUVUo5Skr5whHasBN7CulNN7Eb0fHSFpczHxgf38fzR2mrG7DHb/CfJcfR8u3x34fu+/P04UuN\nUvh9QzuQ+hm+2Ww+afnVxtMO0iql9B9S59C0fOBmIUTnwY2YGyc7/ln7GTedwxK3Ar9G7EmgUQjx\njhBiyBH6UNerniTmdupNU698b/yrHUAIcY4QYp0QoiMu+7nEngT+G+p6fc8Hsg85PrcTv+EA1xBz\nNZQJITYKIc4/xjYO/e+I/845ghx9Kaub2BNUb5zE3GjHRfxGsyl+E2sGbgTmCCEOKt5D23IC7vh5\n8VlyHC3fHf996L6Puw9fdpTC7xvWErO0LzxKmQZiF/lB8uJpBzncNKeHptUBd0spE3tt1rjFWQfk\nHeGm85lTqEopl0gpzyZmkZcRszYPpRHIPfgjbsnlHqbcpxBCmIj5q+8DMuKupYXAQXfP4WT0ANZe\nvzMPJ3qv73VA9SHHxyGlPDfexwop5deBdOCPxAYRbccg/qH/HcT+vwNHkONI/C9k3U3MZQh85K4r\n4nMMQB9F/oN65hNtxb/v7pVX2OvmcLj83nIWAUZgr5TSRexcO9K+FXGUwu8DpJRdwK+BvwkhLhRC\nWIUQhrhFe2+82IvAL4UQaXE/6K+B546zqX8B3xNCTI5Hg9iEEOfFL6oNxC6SP8TTzUKI0+L1moFc\nIYTxcDsVQmQIIebHlUOAmIUVPUzRd4CR8T7qgRs4vBI+HEZiA9etQFgIcQ6xAeCDNAMpQghnr7Rt\nwLlCiGQhRCZw02e0sQHoEUL8TAhhEULohBAjhBAT4/28SgiRJqWMEhv05gj9PJSFxHzLVwgh9EKI\nrwHDiI2ZfF5OlKyvEXPNfVUIYQbuALZLKcsOVzjeHzOgA3Tx80Yfz5sshBgshNDi4xUPAcvj5zvA\nM8BPhBA5Qogc4GZiA+0Hx0K2AXfE93kxMJLYTR9irqELhBDT4+fdXcCrvXz+zxC7XpKEEEOBaw/u\nW9GLL2r0V23HvxHz028iZpk2EVOQ0+J5ZmIXTGN8ewgwx/Nm0Cv65Ehp8fR5xKJEOuP7+TcfRzbk\nAa8TczG1EfMZQ0zZvgN0EBtrOHSfWcSibbri+10ODIvnfZNPRunMA/bycZTOWuAbhysbT5PEo1aI\n3SCa4208C7zEJ6NwnojL3knMjWImFlLYTSy65cd8Okpn9iHtZRO7uTYRixRad7AMsRtsC7Eb2m7g\nwiP8jwUcEp0CnA5sjvd7M3B6r7zlxCOVjnJufGGyxn9feZS2ZhN7SvPFZSvolXc7sKjX7zvjfe29\n3RnP+zqx6CEPsXPtGSCzV11BbGC+I77dC4hDjuPyuBzlh+n/FcD++P7fAJJ75Zni58PBKKWf9PX1\nfTJuIn6wFIoTTjzevJ6Y8lnW1/IoFP0N5dJRnFCEEHOFEIlxn/ztxKy8Y412USgUXyBK4StONFOB\nSmIuowuIuRp8R6+iUChOBMqlo1AoFP0EZeErFApFP+GkmmArNTVVFhQU9LUYCoVCcUqxefPmNill\n2meVO6kUfkFBAZs2beprMRQKheKUQghxpPmYPoFy6SgUCkU/QSl8hUKh6Ccoha9QKBT9hGNW+PH5\nLTYIIbYLIXYLIX4TT08WQiwVQlTEP5N61blNCLFPCFHea95uhUKhUPQBx2PhB4CzpJSjiS3KMU8I\nMQX4OfC+lLIEeD/+GyHEMGJzdQ8nNp/K30Vs0Q2FQqFQ9AHHrPBljIPzThvimwTmE1u4gvjnwSl/\n5xNbQSkgpawmtorOpC9EaoVCoVAcN8flw49PybqN2Kx8S6WU64nNVd4YL9LExwsy5PDJBRzq+eQC\nEAf3eZ0QYpMQYlNra+txd0ChUCgUx8ZxKXwZWyZvDLFFLCYJIUYckn9wutTj2eejUsoJUsoJaWmf\n+d6AQqE4RoIH3PhK2/taDMVJxOeK0pFSdgLLiPnmm4UQWQDxz5Z4sQPEltE7SC6fXPFHoVCcIMJt\nPlr+upX2Z0oJNXv6WhzFScLxROmkCSES498twNnEFk14E7g6XuxqYgsTEE+/XAhhEkIMBEqIrdqj\nUChOMN5dbR9996w/dN14RX/leKZWyAKejkfaaMArUsq3hRBrgVeEENcQW6j5MgAp5W4hxCtAKRAG\nbpBSRr5Y8RUKxeHwl3VgyLYhjDqC9Wotb0WMY1b4UsodwNjDpLcDs45Q527g7s8tnUKhOG4inhDB\n2m4cMwcgg1Hc6xqRkShCp96z7O+oM0ChOMnwV3bS8XI57jUNyOiRYyCiwQihVi8y8sm1ygN7XSDB\nMjQFQ44dwlHC7f4TLbbiFOCkmi1ToejvBOt6aHtiFwjwbm0hUNlJ8teHIPQf22YyIulZXkfP8jpk\nKIou2UzKVUMxZtsB8JV1oNkNGHLsH90wwi4/hnRrn/RJcfKgLHyF4iSic2EVms1A9u2TcZ5XiG93\nO+3PliJDseGvcLuP1kd30L20FvOQZBIvKoZwlLYndxHpCSLDUfzlLsyDkxGaQJ9oAiDiUha+Qln4\nCsVJQ7DBTbC6G+f5hWhWA5EpGfwLDyvbe7At3sEZGDh7SxdpUUHy5YOxjkkHwJSfQMvfttHxYhm2\nyZlIfxjrqFQANIcRdIKIK9CXXVOcJCgLX6E4SfBuawFNYB2bTrnHz7zNe/lX2IszxUKXBn+2hzl/\nuo3fXJTJjgIrB9ejNmTaSLywmEBVFx0vlqNLNmMqic1h2BQK8Vaxmb3d3r7smuIkQVn4CsVJgr+0\nA1NxIrUiyle37EMIeGNcCROdNgAqvX6eOdDOS00dvLl1H8VWExekJXJ+eiLDxqUT6A5QVt9F7YQU\nyiob2On2saHLTbhAjyMS4j1fgHyLqY97qehLxEEr4WRgwoQJUi1xqOiPhF1+mv64Ee28Ai7S99AT\nifDmuBKKreZPlfVGorze7OLVZhdrOt1EAbtOIywl/vggrVkTDLVZmJxoY8z2Tq5PCnLTwExuHZj1\nP+6Z4n+BEGKzlHLCZ5VTFr5CcRIQqOhEAndYA9T3BHltTPFhlT2AVadxRXYKV2Sn0BYMs6itk70e\nPzohGG63MMphpchiQq8JADr3+BnZ7ee9tm6l8Ps5SuErFCcB/goXmwaYeKvbzc8GZjIp0X5M9VKN\ner6RnXrUMprdwKR9YR5z+vBFoljUC1j9FvXPKxR9jIxKfPs6+XuJmRyTgevz0r/Q/etsRgo8USRQ\n41PROv0ZpfAVij4mdMDNOqtkpyHKTwoyMWlf7GWp2Q3ke2Jv4+7zKoXfn1EKX6HoY/x7XbyWayBZ\nr+PSzKTPrnCcaHYD+d6Ywq/0qhew+jNK4SsUfUxjeTsr0g18NTMJ4xds3QPo7EYsEUgTGvv9wS98\n/4pTB6XwFYo+JNzh5x0ZIKTB5VkpJ6QNzRqLzUiTgpZg+IS0oTg1UApfoehDfLvaWJ6up8RkZLjd\nckLaECYdaIK0qKAlEDohbShODZTCVyj6kLbdzdQntzErzXHC2hBCoFn1pISgOagUfn9GxeErFH2E\np7WW8rwf8ydxANE2mEDek5hMGSekLc2iJzUoaQtFiEiJTogT0o7i5EZZ+ApFHyClpHTXrQhTG2+J\ny9CC9WzfcS2RyIkJm9SsBlL8USISOkLKj99fUQpfofgfI6Vk8dYPWVBj559NN1AduYJOy32srBRs\n3vVbTsT8VppVT4o3Nqe+GrjtvyiXjkLxP+Zvy/Zx37se4OJYwq793ATAdTy+y8MvOhdw5ZmXfFS+\n0xvkg7IWPIEws4ZmkJ14/IO7mtWAs8ULaLiUhd9vOWaFL4QYADwDZAASeFRK+aAQ4k7gWqA1XvR2\nKeXCeJ3bgGuACPBDKeWSL1B2heKUY19LDw+8t5eJmVuYme7mLvsl/LN4ADk2E8FwmF8vWMQvFqVQ\n3bWcC8ePZcGWel7eWIc3GLPO711cztPXTGJc3vG9oKVZ9TjcIcCAK756lqL/cTwWfhi4WUq5RQjh\nADYLIZbG8x6QUt7Xu7AQYhhwOTAcyAbeE0IMklKqs03Rb3l8VTV6TXLlkP/weui3DM5w8JVhmR/l\nv3bjeVz/5L94bM1IHluzCr0muGB0Nt86rQCLQcc1T2/i+ue28O5PziDBbDjmdjWrnoT427bKwu+/\nHLMPX0rZKKXcEv/eA+wBco5SZT7wkpQyIKWsBvYBk/4bYRWKUxl/KMKb2xqYlltDUtjG+7Y8zkpO\n+EQZuzWFx679HvedW8o1I57jvhn3cue8KKNyEynJcPDXr4+lpcfP7xeWfVTHGwyzaGcjVa3uI7at\nWQ0khGJjA51hZXP1Vz7XoK0QogAYC6yPJ/1ACLFDCPGEEOLgs2YOUNerWj2HuUEIIa4TQmwSQmxq\nbW09NFuh+NKwtqodTzDC2OR36XSPJyQEs1I+HX9vNCZyyRm38OML7yTdobF9x/cIBGLXxugBiXxn\neiEvbtjPmso2ats9nP/QKr7//Bbm/mUFG2s6Dtu2ZtFjjoJZCBWl0485boUvhLADC4CbpJTdwCNA\nITAGaAT+fDz7k1I+KqWcIKWckJaWdrziKBSnDMvLWjDpYVBSOZuMU7DrNCY5jzzvvd0+mFEj/0Ek\n4qZ0zy0fRe/8ePYgClKsfPupjcz7y0pc3iAPfG00mU4zv35j92GjfDRrzP2TqGl0Kh9+v+W4FL4Q\nwkBM2T8vpXwVQErZLKWMSCmjwL/42G1zABjQq3puPE2h6HdIKVlW3sqo9FbMEQtvJw7lzGQHBu3o\nL0DZ7YMoLr6Njo6VNDYtAMBi1PHsNZOZNzyTc0Zm8sYNp3PR2Fx+cFYJexq72VD9aSv/4Hw6iWh0\nhpWF3185ZoUvhBDA48AeKeX9vdJ7r5l2EbAr/v1N4HIhhEkIMRAoATb89yIrFKceVW0e9nd4Gepc\nQ6RzDI1C+5T//kjk5lyJ0zmBiop7CATbABiQbOUvl4/l/svGkJdiBeC8kVkY9RrvljZ/ah8HLXyn\nFCpKpx9zPBb+acA3gLOEENvi27nAvUKInUKIHcBM4McAUsrdwCtAKbAYuEFF6Cj6K8vKWgAYnrqV\nncZpaMCc1GNT+EJoDB1yD5GIjz17fk40engL3WbSM60ohWXlLZ/K+8jCj6IUfj/mmMMypZSrgMM9\nfy48Sp27gbs/h1wKxZeK5eWt5CV4SDN4ecgyjtOS7KQZjz2s0mYrYlDJLynf+2u2bL2S/LxrSU6e\nhk5n/US5SQOTWV7eSqc3SKLV+FG6MGigFySEJS7l0um3qDdtFYoTjCcQZn11O7NztxLtHE1lmp7r\n0z9+cSriCeHb1YYMRjAOcGAckIDQfdq2ys29Ek0zUVn1Z3bs/C5C6HE6x5Of9x1SUmYihGBMbiIA\n2+u7OHPQx0EQsRkzDThDks5QBCklQk2g1u9QCl+hOMGs3tdGKCIZkbaVTZb5GIXgnDQnAMEDbtqe\n2EnU87HVrdkNWEelYRmThnGA4xOKOTv7EjIz5+NyrcHVuYHm5rfZvuNanM4JDCr5BSNzhwKwo67z\nEwofYqGZCQFJyCLxRKLY9br/Qe8VJxNK4SsUJ5h3S5ux6oOUWFv5vnkCl2YmkWzQE/WHaX+mFGHQ\nkf6DkeicRgLVXfi2t+Le0Ih7TQO6FDMJMwZgm/jx27iaZiAl5UxSUs6kcOBNNDYuoLLqfjZuuojM\nzAvJdp5D5WFewtKsBpz+mP/eFY4ohd8PUQpfoTiBBMNRluxqZEzaNnYwk7Bm5Ef5sTnve1YeINIV\nIO360RhzYvH41pFpWEemEfWH8e1qw7OhCdeCCkItXpznDvyUG0bTDOTkXE5GxnnU1P6T/fv/Rbpl\nOJWt5k/JorPqcfh8gA5XKMwAs/FTZRRfbtT0yArFCWTVvlZ6AhEmZGzlSfNcflGURZ7FhAxF8Kxr\nwDw0GWOunajX+1EdGZX4m3rwJUmSvjMc25Qs3CsP4FnfdMR29HoHxUU/pXDgTaQa97CvpftTL2Bp\nVgMJ7piFr16+6p8oC1+hOIEs2FSGVe+lITWP01OLuTY35lf3bGmJ+e0jFVScdi0RlwvrhAlk3Pk7\n1r2xjbXduwiIEDqhY8LECYwuzqLzrUqMOXaMA468HGJu7lVk2X6ELyRp7g6Q6fzY0o/NmBkGjCpS\np5+iLHyF4gRR39HO4t1djM/aTqe4ir+OyEcIgYxK3KsOIMx+Wu+9DVNJCanXfx9/RQUf/O1Vlvds\nJSMljVkFUykKpbN+w3pe9a3CZ4/Q/mIZUf+RlbVe72BAfH6eepf3E3maVY/Tf3DGTGXh90eUha9Q\nnACi0TB3vPYEUTmEhORC/jxpHEYtZl/5yzsIt/rwbX4ex5w55DxwP0KnoyN7DBt3LmNAV4ivXzUL\nS3ERrjf2UbR+N+937eYt0ybmukZg/Pdekq8YChqEGjx42rupj7aRkOQkPz+fwozYjCb7O9xMKEj+\nSKZPzJipJlDrlyiFr+hXhBoa8O3YiW/nDvw7dxFubsY0ZAjOC+djnz4dof/vLwkpJa+su4PVVeMo\nSO7mt4kzMDs+HiDt+bAOGeyGSD1Z9zyMiAYJ79vK4l3rsWlGJm9ZRv21ayl44XkSzy9k4AE35zWb\nWGLYwdu2rcwtjRB60Es4GGZ3TxVb9FUEREyBT5w4kaEjCwGoaWkC8j5qV7PqMUqwCjW9Qn9FKXxF\nvyBQVUXTr+/Au2kTAMJgwDR0KKYhQ/Bu2kTPkiXoMzJwTzyfMt0YwgYrw07PZtycfMRnTHB2KGvL\nH+a51YmEpIG7POkkTs/9KC94wE20difW7idI+8ZgdG9+Byo/YH3gW7j0Ftz29fzynCJ89eOw3/02\nhkEDqWl302nU48ucgl6TLG1p4Ku+enyyi26Dh/z0XEa1ZFFj6WDjxo2kpo3Daeyitv2TYZeaJfZm\nb5KmKR9+P0UpfMWXnp7ly2m4+acIo5H0W36KddJkzIMHIYwxq1uGQvQsW0b56xvZ0DMGq7cFiyHE\nutf9tB/wMOvqoej0xzbctav6De5f1MWu9rF8X2di9OxCdPaPrXvfC/eRYXwQkRuF2i0A+PWprNFp\nmLVWkvwR9B4nHzqslMt0ChpryMkMsH/EVLRohLCEXblD2VfTxWXuBq6ZM45Bgwbh3dRM2oK9tGR2\ns3pVBalmI/WuT659q9lil7sTTVn4/RSl8BVfajqef57mu+/BPGQIuX97GEPWx5O7BoMdNDS8THvH\nCtxCsEd/NUmZkrNH22m/4w7qBs9n78YzCHjDzPvuCAzGw7+o1NztZ01lG8v3lPNuaQhfeAwXJpj5\npjUR+7QsIpEIq0rraF33Hhf1/JUeXy4RnZ8d9isxdjfTZfbg0Ux8LbqCkkg932ImbTKZnxkf54Bl\nIE+MuJIRTe08UFlFTuR1bi2exZsFs3m+Xk/PJje/zPCTPS6D7uV1jIsWsqh7PYVWHbu7sj8h50EL\nP1GqsMz+ilL4ii8tbY88QuuDD2GfOZOcP9+HZv14orGWlsWUlf+SUMiFzTqe6uVfA0Ikj/0N5clG\n8n5/BQN+/jym0bCz9AxeuXsjxePTsSWaSEg1k1mUyKI9TTy2spqdB7oAsBq8FKdWk5M0kVsqTSRf\nO5RFqzfzuyVVtEVMLNJtpzHyMn6dgT36bjyBTqyZPrZ0pxIKt/Njz7XUmQfikRqzAlFqOYuXJwwl\nGpKYKur4N40MC5/DwxX/Ii/cwcMFl/FOrZslf1zG3OEZzC2xM2Kdl5T0JMI+F8s8BiJRiS7ukjo4\nY6YzIqhQLp1+iVL4ii8l3UuX0vrgQzjnf4Wse+5B6GLWeSjUzd69v6Fz73aSQ/PImXQ5q98M42nv\nYN43BpM45H6qqu6nwvQPkq7LI+3hV5g628A+49lsWlQD8XeZ/EbBq0Y/9hwbN8/OJSn4O2ymKv4R\n/B0/XW8i8bIi7nvieZ5qT0Uf1fGaXI2Jy2iwNrM5IYPZbQ7MISfLOtxouhbOF+eydYQR9z4/kRwr\ny0oSyG1Pw+cwc9bGVhp6MvGkVdAW9PJYZD7fqniPLn0uz+ZPY2hYsK68lUWhCFYEU92FZES2koaH\nlh4/Wc6Ya0foNYRRhzMscYWiffTPKPoScbjl0PqKCRMmyE3xQTWF4vMSqKyk5tLLMBYXk//sM2gm\nE1JKtq9cy65Vm9B3p5Hoy8IkoDEkcUUk+VY/uSZJ2JFAVaqVFl8NpsadmGpLCXe347I7CFmsGIxO\nWikgWTcamzQydYIDf/7tuKlnT/cEzm6EpPYoj1Sl8EzWHEa0VfCjaDVRQzYYLazFxZjG1ezMzePf\nlvPokQaSiBDItOHuimANSq5JtfJBrp6tKRbsoQjfXdKDxfvpfkpg+WmwKjeZ6yr8TLFYWNLp4a0D\nLqwiwEhdAz/5zhVM7BWa2fiHDTwywsrj9jD1Z45WM2Z+SRBCbJZSTviscsrCV3ypCLtc1N9wI8Ji\nIfehB9FMJsLhCG8+vJDGMhtm3VAiUke1jBKVoNcijLMayTDaeVwGaOjyMqQ7QBgnLjmV5KzhFKcF\nKIlEqEKwL9BFatiLLryciGU0azdFGN1t4UxfI3NCb34kx09zjUxp28let5MdMgxUAZAaCPNc1mls\nMk8kg26GRJpotDnpatLQ0Lhcv5TrO99le+4PMUXH8+8NH5JsGoQ0OmnQd7DFVMkKy05CIsrlzZmc\ntWYW7sk9PFriYH+ji98MsXBus50fR0NsC+ewdnf1JxS+ZtXjDESJ2KAnEiVBTaDWr1AKX/GlIdLV\nRd13v0eooYG8J5/AkJlJOBjhtXvfpqXewTCzRkmSiYpQAx9qu9FjIjmkpyYS4RFnC7nJOxmR4sFq\n0kiUXgIhE+aIhfRgGlp3PnNbbEwNufl7NJMV4ek4ojDTF2F/5U1sN1/GekMLe2UKUz2bGNBWC1Li\ndOawNb8VV7CSoExmf8+lNJtyyDOvZFzuerLdAab5KykIG/mp/3qeZA7brVNYkzqUm8r82L1j2GLb\nSbvWSZFvJPM9UxgTzeKvaQv43dD3+OGBzVyy4UbSewIsHZbE6qiPC0eWcZULnqrN4PG19Vw9cxTO\n+BKHmtVAwsEZM0NhpfD7GUrhK05pon4/njVr8KxZS/fixUQ6O8l96EGs48cTCoZ59Q/v0NbgYIQz\nQkGSlde6N9JubMfqTcPpTmNz+gZK899leoKe2qSv8TSziAg9A0LV/J/1MQZoZXRFavFYNuCUXga7\nAvwlLKkyDefpwE2cpUunUNMB+ZREg6zpeANHT5D9GX7WD23Dba0BQLgH4m24nKjJxtdT/83scSs/\n6kNt9QzeNl2M3ZmNrSXA5s4Ehpd1YK9+h2+W7EDfMY26zlFEhCDFVMptwWzu2/8TdloqeDdxLdG0\njUwuPZPmAn1eAAAgAElEQVSR9a2Ujvbw7/Qx+NNN6ArDePd7+Pa/1vDSjdMx6DR0DiMOVzdgwBWK\nkG857GFVfElRPnzFKYt75Uoabv0ZEZcLYbFgmzSJ1BtvxDJyBN1tPt58+F26muyMSpQQ0Vhp2E5Q\n38kwTwPTHW/zq4wM/PoA56U6+KPzTlrI4Nx1H5Db0sRrp8+jJSmFG1Y/xtTkdwkPkhx8CTcSgux2\nH9kNejzhYWw3W1jX4sNRrRHRoGFwFC03gtncQ7LVTXnTmXxYM5dEfQ93FP+VIdp+aM3C2FPA2lwj\nd2VMwIsRc0TDGAwTrogQDhjJZydtjhABWxsGSz1SCwEQDTmw+HP5dufpXOAeQxTJSp2HHpcBi4Az\nk5dRnr6Nn6TfREd6Olqbn28eiHD3D6fR/V4tK7c28J1JVl4aXciMY1xIXXFyc6w+fKXwFackvh07\nqL3yKoxFRaT/9KfYJk0Eg4H6Mhe7VzZQta0ZjTBFA7cQHbCKtoCkq9pAXmMzJQMquTklj69FetAN\nSeUe7sQddfCVbQvQUgQH7EU0h1PxWSzUJeVw7ofvMHzvapIzuylI6qBE30l20IMmISxALyEqYXsw\nhfqxGtbU2DXV5E7j8V1XYe2RfC/hVWZFt2EJRYkC79itPOFMYJ/xM+akj+qw+xIodqcxJDIEv3E1\nW4w6am3dCJ0fQzCFC/3f4BsNg2gySja7QpijIean/527AiPYmTOOPUOL0dW4edDkZF5xKtuWVHHJ\n6TYeGZbPRRlJR29fcUrwhSt8IcQA4Bkgg1iAwKNSygeFEMnAy0ABUANcJqV0xevcBlwDRIAfSimX\nHK0NpfAVx4IMhaj6ynyiAT+Fr76KLjGRtno3y58vo7m6G4MlSkLmWpKLl4Gjgbcq5rGhbRQhacDp\n2Mrs8BKmDgywN7WEB8O34JUWrln3b2ZGt1Mk9pNGO5IIVUYDLs2IWRjJ8UdIi3YjBHhDBrZ7U2lJ\nsmGd3IM1ECJrn5n87kYQ0J5iYG84l/r2PCaJMgq1JiIIOnUlNAfmcmvuJmotBzCSxkAtnx/UraUo\n2kK7zcBa+yDK6mdB1IgpmIANH1GzGxEJY+6IYg1PQ9NsdOj8vJ67gkDGe2giRJF3JPc0XEuXEda2\n+TGEBUHrTh7VF5E/Qsf2nFwS1rSw4LTByGX1zJlp556SHL6dm/bZB1xx0nMionTCwM1Syi1CCAew\nWQixFPgm8L6U8g9CiJ8DPwd+JoQYBlwODAeygfeEEIOklOoVP8V/ReerrxGsrib3kb+jS0ykpbab\nNx/chk6vMWE+dOt/iE4KRMDB7z68lb2p+ZgHSeymDhJ1A6lzXMh2fyqr5XQKPAd4YtdvmBzdTrem\n8ZI5h6X2HKqsEO41m4JV6iiKDGeQaxIJndm48gdwIDWVkCuEw7qHIaPfYWzAz8CaINYWHVNlNV6t\nkUYyWB49n+zgeawVQf5e+DgevZuE1tlUjfsG49Yup67WgymplrHRvYzq2kGts55dNWfidlkwtPQQ\nMIWoHTQAX7qdoHcFJVV+BvYYGVzn5G+DbqCl4B32ObZzW8bD3N10LeMyNZY2h8jyjOUqLUpS5Wb2\nZGTgG+zkh8v38vdgbI58Nb1C/+OYFb6UshFojH/vEULsAXKA+cCMeLGngeXAz+LpL0kpA0C1EGIf\nMAlY+0UJr+h/SClxPfcs5mHDsM+YQcAXZuEjOzFa9My+1kJZ9XVoXhuaFuaJ9d+jrLiYSIEdR6AF\nuzHKPjmYdZyOSRfmW/ve4LbGR/GKCD9zjGFpchcRXRiLP53p7cVM9g9FSI315jK2Jjaw01jNjvR3\n8JRcgs8xiTRPAC0iabeN5VVtIlm04+x2UeO3MFjXwjRdPROiSUyWZdxv3MOigoWEo2aml05m3cR5\nZLW3Mby1iuaSNAKmKIGopFA2UNDVQUbWG5SfYafUmE115QDSgluwaBJ/ZjJ16dkkNJsoqVzIH1YG\nuM3zfZoHDqAy/X1+aPwTf6q/kbm5Hpb09GBuL0I0jWFMdRUbBg2hytTNvwJ+7DKBTvW2bb/jc0Xp\nCCEKgLHAeiAjfjMAaCLm8oHYzWBdr2r18TSF4nPjXb+eQMW+2NuzQrDm1X14uwJc8OOBVO6/AlxZ\nkFDHhjW3sj4tl0iBnTnBxVxleIKeqmm07ryQHt0mJjleYZRuEw8kZPJ6goGAvp0Rrnwu7jmHKd6R\ntOs7Wa/fjGF/AyX+HrKTsmjNLGZr6m5a5AuktSzmtFV5fGvjVnYWD+GtmbPZpuXj6rQQHmDFlZxG\naZuX1rZWnjTpKc95HYc/k6vWJbA9v5DGtAz+troFW7ue1rY2IpqNSm04e7UR5GVVMc24mzG7uslM\n81MxtIWg8eDjxn5gG12daWxOn0RRTyM31bzIX6qvoC4wgJacF/hOwb1cXHcd0+0hlgfDJLu9zCnV\nsbUwhL3AwKs7vDhb/bRnKgu/v3HcCl8IYQcWADdJKbt7v6knpZRCiOMaBRZCXAdcB5CXl/cZpRX9\nnY7nnkOXmEjCuefQ0eChdFUDo2Zm09R1M6K2CJmzlpqt3+KdQAKBYXYGRXcyputN3mqYTo/eRHH2\nQ5j0XSw2u7jZkktAg0xfCtc2fpVpntHUGZu4L/MpCmurCTfYSDUFmJI2mjWaE9G+nTO846hNzmJ7\nynaWzdhJ28gxFPQU0dVswE+UAqMbg1VPRVImdekpONofxeTbhD00ijlbTezKLeGNM+cwedsahnZk\nY06fi2PbP7A2V3IgyUF1mpNdHjst7uGc6awlBxcpLhcbU/O4oe4WksJubo0+jW2GizFjFlFRPpkW\ncQbndmxl+4FU9rm/iqfkHV4qeIhXDlzBhQmluPUObO1FTN5fy+qBhWTt9eHe7aKhQA3Y9jeOK0pH\nCGEA3gaWSCnvj6eVAzOklI1CiCxguZRycHzAFinl7+PllgB3SimP6NJRg7aKoxE6cIB9Z88h5Zpr\nSL/5J7z72C6qd7Yz5er36NxVSTh3PS0103lm6+l0zsqmzVBLUts/8fFpS9YWgtwmGGaeyzVt5+MV\nAZ5LXcgW1nLxbgvdHgcpCRZGpn6NDBl7aA0R5h+Olwj2+LDoc9mYtYUm+wGEZyDulvOY2FnAdL8e\nXdRPnbOUD0rewmPsxKTNoiHrSqLxuM4Je/dwzZYaLHojxdbhmHU2ekIuOgKNhEIefFonpR1bSCbK\nWd69JI/qxGEI0W4y8Q9tLoFMyXjDDpBR7Fk+DpQVUNU4FXR6zJ3t+LwNLBvdhsvmItRwKecJyHYl\n4w8P5uHzUyjcX09DmYa1wMHu753xP/0PFSeGExGlI4j56DuklDf1Sv8T0N5r0DZZSnmrEGI48AIx\nv3028D5QcrRBW6XwFUej5b77aH/iSYrfW4pHn8jzd6xj8GkhhP4htKRagu50XllxEf5hqazObsHR\n8Rip0szPWxqJegZg1MEgrZyGymQ2RM7gzOzLSMZGZXAfH3oXonncWII6DJpEl1OCf3w53d0tFHen\nkB4YTJbvLJIjqdQbm3nNuof33QV02fdhTlsMei9ZniSS29x0W4LUpQtSuiU/eDPCkDpYO9TOf867\niIunXI3uqSosdgOX/HwCIhSm4Z3tBPd3YemREIrN6BmOBqno3orb4qXg8uF4PriXyeFydBFJXZaF\n98xjGFd9PuU5b5NWVEEooKelajD7G0YQNhiRgR7WDdhKg7UN04Gr+KoIYq+bwJunS8rTUhi9opGd\nYT2vXj+NcXnK0j/VOREK/3RgJbATODjV3u3E/PivEFtLrZZYWGZHvM4vgG8Ti/C5SUq56GhtKIWv\nOBJRv599Z87AOmkSuX99iFX/qWDHB3VMzCvDO/RFOgJ6lpWdB5EsXpsCiS1/ZHRQ8njDfl70zaPY\n1MrpYjNVVSlss/yYCYmj8Ec8bGpbzAF/FR2OAPlGN8Uilby8XEpYigxFiIh09ulyeDR/HGsd47mt\nNIK73cKdeNGJMKeFJddpVtYlrec1xxa8lg4SdX5yRBoycgZ1/k460hO5ZOgcLgkNYNWzZcio5JKf\nTSAxw/qpfoY7unC/swV/dYCgx4JA0BSqo65rF8m2DvLt2ykw7CEQ1lNnuAACF/PosKXMy1mIlKBr\n0ShfOJqWrAKCNjMfZK6m29jF5JobGBz10BEdzVOznYws28v+egdFGXbeuvH0j6ZQVpyaqBevFF8q\nXP/+N02/+jV5Tz+NrnA4z961kSSdn9SJj/OYeQqrrNMoqe9i10An6Y0/JTPUyRN1nfy++5vMtpZx\nofYe5a58gtqvSDJlUuMpZX1oCw1JPXxQvIvLPV1ca7+AxKsfxLuxhc63KiEi0adaMA9NJjotgb9U\nvMr7tck0b7ZQhIa9aB/faslhRE8K/zGGMbYJdFGICOi0aWDSSDIbSNXp8LT7CXjCJGZYOe/6UYdV\n9ofirm9l4/0vka0VYtMn4CUAQHnLPxiZtJECRydRaaPMPZRFOdmMGLUenYigaxOUvVyI12InlJbE\nSyNKCUkjt1b9gO4uK4/NTsBvkoxb3c3aKNx90QiunJx/ov9CxQlEKXzFlwYZjVJ1/gUIo5Hcfz7H\n5j9vYUt3iPQhpdw+fBQ9+tj0AIZwlJLOu2jzVvDIgS6eaL2G0xz7uVq8RmdoIJ7IffhkhC1sJNvy\nIZX2eh5I15jp8fGHIT/COvNGvNtb6XipHPPgJJznF2JI+1gx13V4+crDH2CUbh6J2EkPOokSZcXI\nNewtNCH1o0hry8bWHsXRHcYShWhYomkCW5KJ3CFJFI1JR2c4tuUSASLhMJ3NTYRawviWHsDQESUi\nI7T692MQVRTa12DXbcAv9byiTSF5ajUWvZ+QS0/pK8XktXezZ3wSrwyrQd85lrvqLuGdFCevT01g\n2ua9uCNp9ESjLL9lBiY1kdopi5oeWfGlwf3hhwSrqsj+0710L66hzh+mxxHgTyPH4xdmhu+pY1K9\njcS8B3jOUsNlXg8LW77KsIRuLhcLCctM3JG7WCM8DDG8ziDbQl5OsLDIbmOEN4W7LvgH1gFDCDV7\ncC2owJifQMr/DUPoPlbMLk+Qa5/ZRDhq4N/Xn0+u0Yu7tA5jtoMr8m5B007MpaTT60nJyYUckKPz\n8e1opfv9/aQ15xIRWXSFZ+GJ1GKL/IL/s6zkhfen0HNGJ+lJbeSc1sT+1ZnMWFbPtvQBVKRt4SlP\nDuc2zOQ9X4jK4jTmbYnyctDPyxvr+L+pBSekD4qTh2M3NRTHTTQqWb2vjUdXVLKxpqOvxTklkVLS\n/o9/os/KwnbaWbhK23GForw53YxfmBm5fC+XboaBvs0scVSRRgRrzVkYExO4XLyPmSivRa/nD6mv\n8cbA27imeD3fzE5lqcXJ9O4LeOKbS3AOGELUF6b9uT0Ik46UK4d8QtmXNXVz6T/XUtXm4ZErx1Oc\nbsecmE7qtPEkFAw6Ycr+UIQmsI5JJ+Mn40k8uwijMCOjEcIyH1fPr/E0mrjSuo7OZbkccGeRPKyb\nhIIeNg/M5JLFXej8yZRnrKA9cQ9n7ArQ7EyiyeZnbLqDJ1fXcDI97StODMrCP06klNTuamfLklqE\nJjBN7OaV1tVsqUgi4LeTaA8yJDOBPEcBK8s91LR/vFTRT+cM4sazSvpQ+lMP97Jl+LZvJ/O3v2Hv\ngq0YJSQVWqhyWMkpbeKSehOICGsnP0VrQGNO8zh6zAP4amQvOboa/mobzKPpj6KXkuF+ydSWERjc\nY7lwxFymXz0anU5DhqO0P1dKuMNP2jUj0CWYAOjwBLln4R4WbKknwWzgmW9PYkphSh8fERBC4Dw7\nH9uEDELNXlwL9gKDqB/8MM5dP+O7tvd54MO5OM52k3tWC80fRGgkkelb9SybUs0rqZu5oaaAdT1G\n1g1P5vJtIZ52e1hX1cHUor7vn+LEoXz4x0FHg4dV/6mgrrQDa7KeDr+LbRETKy0RzCY/SU43Hd0G\nAn4HAPaERvJzG/EbtuJtnkdj0wBeuHYy04pS+7gnpwYyGKTq4oshFKbr9jtJXRQgJGH+GVa6NLjt\nP/Xo0Ng08R42WDwMiSQxpeYCzgpGGGn6I+9aLfwpxck1nZKc9pm8YHEwVGZysXcimhDo062YixPx\nV3YSbvaSdOkgbONjMfdb97u49pnNdPmCfOu0gVw/o4hE62fMbNlHhJo8NP9lC+gFy6cEOWfN1dg1\nD8+GxzNwThVSgvYfC7X703n69ATasyuZsP9S0oIzeHamg2G1Plpqepg5JJ2Hvj62r7uj+Bwcqw9f\nuXSOgRfW1jL6V4u55Y+rqd/XSepYPa/nPMZTKRWstEQYEtTxh/QiFl15Kbt+cBFvXZDH7Wd1MTu/\nhjRrHeOzB2HOfA1haOe6F95nf9eBvu7SKUHbY48R3FeJvOF6gkuaEAiesArarAbO2+xCh561Rf9g\nr91Dgib4Ss3lnNWTRqF4gGadxnqLlUcqz2Wn+ypuKtnAqOREvn/1d8i+bRKJ84vQrHo8m5oRQpDy\njWEfKfuaNg/XPL0Ji1HjzRtP5/Zzh560yh7AkGnDNjkTwpIZqwwsy3mYqNRxqbadru1OhIDwRQHG\nH2jgkvU9iKCTjRnLKPG0Mq2sg90FVpz5Dt4tbcKvJlT7UtOvLPxoNMqePXtoaWkhGo1itVqx2Wwf\nbXq9nnA4TCQSIRKJYLM7eHF1E39ZXYU+Cn4NrFHIDWs06SXdmmSaX8+Z0kgkJMnU7abAtIWeaApl\nvhl0GH2ApDAnj5EzcnmqdRmvrEzGkv4uF0+yM79oPuMzxqPTVHTEoQQqK6m+8CJsZ89mVd4opjcV\nccBezvcGD6fLbuTHrzWyIeU1QsO2Uxr186P2c5hYNwEzv6TI2cK71kT0rb/mleS9ONN6mNs2jZnX\nXYI+2XzUdpu6/Fz+6Fq6fCEWfH8ahWn2/1GP/ztkKELTX7YQdYeQgQjb0/Yxr/PHtAasbJ/mQJ8Q\npmrNILIXuXhtQibrx1Vib5/G9yov48mpQcpystCXdfHsWUOZOTi9r7ujOE5UlM5hWL58OStWrEBE\noxjDYcKaRkR/+EPQFTWzIlRIu7SRi49zAlE6Ek28RwP10QRyAxGu9LsYZNLT2ZPOZPuLDLO+T5Xe\nwNtOO4tti+nRxV5mMUYslCwbz/SOrzAm2cCu9tksrniQNyvfJM2SxtyCuVw76lqSzcmfkEFKSe+5\nivoLUkoa77gDzWqlcf58hix2E9F7WS4NNCWbmVbmZatxPbKomt3RAHOimUytP40D3ns5O6uFPQYj\n/pabaUscwJ8mzcK9tI7kK4ccVdlXtbp5ZVM9L27YTyQqefrbE08ZZQ8gDDqSLxlE6z93YBzgYHRd\nMa9m/5xL2n/PmJWSXedayJxQR8XqMZS0tFHRPoiOlDVs9Qziqm3ZPBtNoHyIk3/sa1QK/wsg5Pez\ne8UH7Hx/CW11NdiTUxkz9zzGnzsfTdd3Bl6/UPiBYBsNB8qpeeklzttfh+PAAaKhEG7HALwlk3AN\nymOhuRSXoQm/uQudN5fytgsAwWyayTU0EkoKIXQ9XOraQ0JjlFBUj0Ai7B3MTGkizebiFudg3nUG\n0CGY5fEw1udnR0cRZQk6SjNXU5mygfF75rFLPwVz+TVcXdJEdVI1L5W/xOKaxTw480FGpY0C4MnV\n1TywdC/XTi/kB7P610Bv1xtv4Nu0mbTf3Mm61WWcJYfRlL+A9b5ZAOSU7qJi5GoaDa0M1mtct+Mm\ntrc9xoUFe2jTNFztl9GujeHq706g9aGtWEakYB358UIf0ajklU11LC1txheK0NoToKLFjU4TzBqS\nzq3zBlOc7uir7n9uTAOd2KZm4VnXiHGAg6kNp7M04/+YI55BbIqwazzsmpvJuGUtzN2h8fKUbN7L\neZELgrfwo9IGbrHmscJpoMkfJNN88rqwTmZ6OtrYsvBNdn6whIDHQ0ZhMePOnU/TzjJWPPcEuxYs\nYtqwS0gtLiCUpKGzGrA7HZjyEtDiC82fSL4ULh13ezcrnllITlEBmRlJHNiynubtm9D5OogM8bJ/\ngI7cF70UVlbhszmpmjKJzWnptIsA+qgBpy+NDPdAdFE97SleluhCtAWNfNUbIitkZV3OC+S1+2h2\nRGhMqKMzIYQZSUG3mUHlGZi7o7Ql+inNc+O3aRT2jGZS8xQuTvwNVq2TV9tOZ3cEVoxooD0hQHbF\neCqDFxIWegpp51tfKeH5pt/iC/t4/tzn6ex28JWHVxGN/zWLfjSdoVn9Y+1RGQyyb9Zs9NlZ9Pzi\nF/BiPU69YK1+IbdP+ia5zW7c7j9icBzAogvzp/03ULVnO2dkv0Oy2c2B0FgWuX7JNfdNx/PaPvzl\nLjJuHo8+MWbdN3T6uOU/21m9r53CVBvJNiNJNiPj85O4eGwO6QlHd/mc7EQDEZof2Aw6gQxFQQj2\n2x5nSsdLtCYb2FScyvIXz8AZraeyaBTr8peTELbxVO3P2Ggw8dMzErgk2cnDYwv7uiunFK6mBja+\nuYDdy99HyihDJ8xg5Jy5ZA8fSs/S/XR/sJ9GYw3rq94gGA4SsScSstmJGkwYdCYStSSGFA5lxnXz\nP1f7/epN2+0Ll/LBOw+wP20gW7yjqNVyMYcDXFWxlK+WL/+o3B8vOJ89+fV47bvhkFmctaggO5BC\ntHsU+3wlnNmdxmBTK2W2RppMpTQl1xDWhUnwJZLTU0RYi1KTVEpEhJi4fx6Dai3oPNuAEBLwmiR+\nzclYQyPp+i5aAyNpCYTwRnrwmMLUZVhwBb7CXoOFnv9n773j46rPvO3rlOl9RtKMumSrWe4dV2wD\ntimmh5IAAVI2ZZNN2zy7eVO2EdKzSSA9kEIJEMAJHUwzNraxLRfZkmWr9xnNjKbXU94/xALZZ58N\nhBgZ4+sfW0ejc+77fGa+8zv37y6yg6uWuNlR+D/UOetI9P0d4/E8D39iJZv+czuXLKjg1svnvb2b\n+y4h8eSTjHzms1T/7Kds7ehj3cBMwjMf5hejK3hwbSO1+55FL7kLUS7yRWUe5pdbcMh/YI1/gBge\nHgj+iGXvm09ztYPwr47gOK+GF0sMPHZ4lIFIhp6JFLIo8rUtrVy9tPq0DJllu6JE7jyKfW0lmf1B\nQKDbeh9rkneQcMj81LGO/I40oqOSh/zNFGvuZk5iBt8c/QxXzzUx4jfRtX4+FulMTsf/hq7rjJ3o\n4sCTj9D18kuIssTSlkXU5+egFUvQ0dGsGlJGYnJGgf7sfyJYx1FVhYkTLuLDUyHDCstMjJKZqDnJ\nR27/8V9ly3sqhn/wxPP8zP0hisI4zpkP4zGNY8w08kv5eozmHOcc28VXrlrOYOXToJrRwmu5LjVA\nPFXGoWINonuMqhmv0G2LETI/j1V4jr3A3lfPb1BNNE4sYO5IC+syOWocOSxmP2PRzXyr/CH21D2O\n4vXww0gHNl2hVyvnhUKA7rhGV8rDYNGGyzCC6PLjk+Ziyo1gHYyQM96Hq9LHUGYu9++by+zqf2Lv\n4B6KsQQ/unYh1V4r61vKeKYjxC2XTpXon+4knnoKqbSEdFMTzqf7AJgIjbNjbj2+aISc724kUeET\nbqh5YT3d8d+wsWWQnCbzYPIzyA4Ps1dVEL7tILLPzA/SKe54pp8qj4WWgIO1TaVcf1Yt1d6/3Mvm\n3Yq5yYNppovM/iC+m+YQvbuTGfErecozwnnJp/hU8TkeKpnNWDBKo8dGW/BCjgQe4b7sU3xy5EK+\nUCHw+GiUK6rPpA//T+i6TueOF3hl6wNEhgeRTGbEBcuQ7U34h8u42zjBEXMPTlWiNe2mxaQhmX6E\ntaEPMQa6APamBOZdFkoGP0a0ZAY/sfdQoSdOuu2nheCfUCIEqn9MxBLCraoEMkaO2I5R6XmAX9jm\ncc85J1BNbZjDc1jXDi+5F/Fz8/kgg0nKUcwvpKNzCwAObYyLor8jaymiSBKelERj1sxSd456z72Y\nvX2vXbcM+F7Yyz1FA3d6olxrLucDEz4253v5iKWNY+ZW+n1XEBLNzND2sFJ+kNvKL0HWq1nYO4d9\noZ3M6ouRaP0jXnmAzqEL0DgLh6+djbPPBWBjq5/HDo9xeCTOgmr3dNzedwxdVUm/vAvHhg10Huti\nFn7S3g62hy8k6NYp6f8Ouljk5pIc84cu4MDQU5xXM4SOwCOmJnKheaw4v5rs7jGUiSzHzqvkjmc6\n+eCKWr62ZfZ74gsTXi3M2lxP6PaD5DqjlH18PsHbDtI0+Qn2zz3Agq4wV3mPcn92Fn5tgOLkWkqt\nXTxQ+gR39JyNsWDhj8dDZwT/jeRTEBtAtZfz7N130/7sUzjdXiqKMq1HOrH0Q/eKRVwnj7Ckajer\nS49glvJkFTNJWxADCnufWUNmwkLB4aJpSZCGs15ie9OjfPfgh0DRWWM7cdLdOD0EXxNJGCc5t6+O\ny18ZIbvAyq+bk7T7D2IWDlLIl+I9toVLuo/QMBHhwvSPOeqrJ2Yz07FgFoeblpGJibiTeT4cNbLI\ncgOSaEEUzTjcAiVl+3Ebfoaim3iucDYhv0iZbRhfKoWUkrhyLEtrn8zXW+3cWhnhocw8lmXynJM/\nzBLhX3lOu4ACGxjJn8+1g22YxS5U2UCj0MoLSjcrjgq0OHqZsP6UzgYrMVs3j/U1cXnj5axumPrQ\n7ewOn/aCnz9+HC0ex7ZyBcMHe2hQmxiU2tk++zrcoZ8gSMNcJLmYZVAZPWSmxDFMnT1Gj+wmbbwF\nSRZpnuMj9tNDSC0evn5wkDqflS9dOOs9I/b/hbHagWVeCckXhhBkEUEUMBYk9Mwa9s3dzoKOKFdU\ndBIcq8DjWgrj55Jt+jFb3c8xL3IFu73592yW2J+hafDiN2DHf4KaR0BgdsaB11GKY89xBpwVdK48\nj8qSag7aH+aWhpfRfVn0tAHBrCLIU6Hj6Kib0uQQk7oLi+Eox+IFtqkuutIGDPXfB0OSQ5nASXfn\ntBD8JakEH5bB7+1EvjZLwi2zLuEgjc48g4bxOQfddUYOr1rNmsRvadXHWav3kJVMjJgOEx15ikmD\nnXUqFCIAACAASURBVHZvE7tqGzgSNrBoPEiDNkRAegkvx+mhmj/J51Cz4BVK3SGGctXsEZuoM/ZR\nk02jj3loPbYKo/IKhxri/K4kxu8ow6ZpXJp8mlWxP1Kp5QBQNBlJUnHWWtkY/gj7u16mCxOeJBQs\nIQ41i9y++7tcUncxPruJWeVOdpwI88n1DdN8p08uuY4OABLOcizRcQD2DzcxOPNF7PG9tMaaWN96\nBOvwQg5H2rm2foi0bqSj6TsUdko0LCkl9+IwuqbzXK2F3mNp7rhxyXu2C6T7kgaUSI7EU/1ILiOm\nJg+u8bMYqX6RPt96Wsa28b6y3TxdPJ9epZKZsQZecL/IpsmL2VdupGM4wexq13S7MX1oGvzpU3Dw\nLrL+s9lxOIpDjDHbHKSyqgeqYAZhDBwAYE0R6IRJl8yhJieJYS+9hWpKikPEalKc2JCmKzfOSHFq\nb0TUJFShiM/sosxWweJ88KS7dFoIfrUQ5rx4z9QPr/YoK0HGLzfjXH6M8PIsl8S3Mjvej47Adt9C\njlhaKFMnWJI/wOz8EOa4xgWRHa+fVAAkKCLxFGt41hpg8ZxnUEwWvqLcQq+lZeplusZ6cRsfnPFL\nLvI8wsQRDzPbHCSLdiJukUJ5D/dVOPij3cXGiQrMqVkUJDvr2ME8vY+ykjtYIN/CzOdvY1eDg9n9\ndob9GuPeOF96+Eq+8b6HWd3g4zcvD5AtqFiMp6945Y52IHkrOPrcCWpFG1nLGE/WBLDFb8WW97PW\naEaUFEY7zdTaBwhYUuwMfIj6wEoG8100N7jIPtqLbUM1v2rrZ3aF8z2dUy7ZDJR9cgFKJIvsNqMV\nVHLfjqHlPARdBexKLbWhAVaKe+gSLsEfWUab+x7c8V5gLs8cC723BX/n9+HgXXSazmfbiynsFQIz\nkxJtwhX8dsUMPha9i1IxhGIQyJolkpIB6YSJpbExyrfB9pjE3qZRhsoU1JgRQReoVwxsyYlUx91k\nMpVIDpkKPcG6gb20OZpOukunheA/Km7iucaNuEdyVKTCtNDDCr2NS5SdsBMgQlGQuCuwhR/UXI+i\nm1k62c6F8cdAKXDQYOSQxYjBITLfptOXnseoOoNCVmDOo/sJty5j/dIneN54DvdwLYpspHRiB/aB\nUuTyIs9VbmQkXslnjd+kek0Q1gRJJT1kByVSgwEWHkxz9zkyDwWGKcYaWRQuQZfWYtLTLBFO4HE8\niHbOv7DopVt4od7MxldcPLIanhS6ue7g11nV8BF+8VIf+wairGks/Uu3411L7tgxzAsuZ0yLMEtt\nYY92jB7vXgw5ibPHF1M3exdy2kf/QIgrqkeJSg5W3HwL93+znZIqO8bDE6hOI68EjPQ+l+YH1yx4\nz4ckBFF4rae/ZBDxbJ6B7+hZRGqf4on2c7nJMshN8pPcWbwEPVmOqAuMCG3I6hzaYulptn4a6duO\n/tx/cFhrYfuJKA1XDGL0FSkC8AzvB+IeSAg2EnkH7cH5NHWeYHCsko4aE/fPzjNsyGIryixIW7k4\nO8GmXBjbG7MiDUAOklkznfJM+mKVJ92t00LwN+ZCfM13JTMNec7uSDBpKfLVUhMpSzctmRPkJZk+\ncxOmkIdrOo6iDotsXTaDdt/fs2KgnaWZTpq1Is6DE5iCo1Rc3UlnZYA7hI9hbLyaJrGDAeEWYoKX\n1nCemoHHafc8Qrq0QNnYCjwRF11zZvGvof/gpl23wWIHkr1IQ8sJ8rMtPJl/H4XJcpyJrSTczzOR\nb8eTOJen5E1UFoNUG14gaTkX75r/j1Xtd7Ldm+GinR62Lc7xh8Hfct28OgyShx3d4dNa8Av9/ZjX\nXk9B6ELSTGwtkTDk2yjNLMYqq5jdo+SOzMJlyFBnjxFb9gWCQwUiIylWnlNFcX8Q92UN/GJnH5Vu\nCxfOLZ9ul045bMvK4ZVFiOITSKVZjmtu5sYnWSB2My568CfqOWg/RFVapVfV0VQN8b2WnpkYJXvX\n+0nnzbzY76bpogEku8b20TnMLRnEZUgwmKhGjc1kZqyJqnAjo5yg01zLsUVddHg0agoCPxqfYG02\nS0x0ssc1l+87LmFXppn+mA/VYKDFHWHeZD+iIOBWFKoLmb9s29vktBD8rDHM9f1Bft5YyYfW2ACQ\nlCJ1wWaO00ntRISynISzaCED4ILzu/Zj1oxU5dzMla7CkcmTkSMMeu8k/KyXxcv2UjNzkMelixhS\nGiiPiGw+nqRhrIhPWsmWsYU8FniMfaUvY9JfwTt4GWM1F/KtFV+hpKcPqyhRLPcxVBLAaMoTCIwy\n5P8S7siDjPsfwcAj2FObuctwFZ9Tf4mkf4+0fBvlSz7NlvBRXs7tY9NejVCfi27h35kT+C4vd0em\n9T6fTNRkEi0vExFUykQjcVXlSPleUKysmKiiLtAPgs7ACYXF/lE0BNwrPsSBR8aQjSJlw0lEn5lj\npUb2DUzytS2tyO81oXoTCKJA/dVriey5g9aqcfbvqma2fZJrjU/zL9qHWZZs4KDzGeYmM7zithEZ\nSVNa8+6rOv6rUYvEf3kZlmKa54eWs8gySD5QJDhQyqrKDrSCTPeBFaxIXIlX97LP1MZL8iFQFNps\n7fR7+jDGmugfv5IvmwqkmgKc0x3mqrt+whXJx7mCxwGYLAtwZMGFWOwNLNH9OHQLIT100t07LQS/\npaoVqf9BnkwcocM+k/39JaRdVj40tp3flYg8X5ugenAL38m7GTKMIykKPs1PCQ4EUSCnFNFMRp6J\nPkquWEbRZKVqTxbHfoUPmI8QFU2kBBsFQ4qYfZxsqIeypJUbc/O4anItd3tepNPzKGq4g6Tv7xif\nP1UkJSpJSoI7uPywlQUNzxKum+An7s+QMNoZ4l5k7XnquZD7OZ/rc4+SEz5NJHklHuc6zi2Zza78\nCxSDuzi+dSbVS5/mkYGNTKYLeGynX9l7oX8AyV3DmDhJQDTxuG0MTWnDW5hPQcrT4E6QzzhJTcCM\nuQkKleswWAL07O+mptaBHszguqaZr+3ow201cPXS6ul26ZTF42+gXalivmcvudzZhCuPsTHRxj8h\n44470Kp0HNkTJCoXMzgYf88IvpYpojzwBVyJY2yNLGRWWz+R/1AQkhIVnhAkBEq+rdNU14JU52In\nD9MluDBkYzzoTVH091GIriQfXo1WVcJorYefHcwyK1PD0Orr+ZnpDqrMi1lQOJcWrZQaYFxP0i2M\nMqL1oOhjLOKKk+rjaSH4wUANt3Y3cG+8nTbrTLZVL+ZCc5p/kVczEFEodKX4dtGFA5H6XY+DkMGy\n7HOvxXcNWoHMnp/gKzVRMxbEH5ukd85yoitupJjQsSmjWOUOjOUDRFxpxqjGlKxmR8cwruMv8zHz\nTIbd/8FxwwS66zATfpEJxkindhDypHm4qcCx0FmcH2zkKwv+nR84PsWQfjF9/IkjrjwPOD/Hkr1H\nqRSCVBt/yomBbcj5q1lRs44jc8aQDg9SMpxAB57rOMwVS/9iQd27jsLgAKKzipAYp14p5+mKQwio\ntE4GyNjHyXu7SB+vZkYghkdJwbIb6T0SIZ9RKE8VMASsjAYsPHNfkL9f34DVeFq8tU8aq2fWkYzs\nxd0YoUd1s0IPsVToIl+YWkyIxX5gMYfHkyyeVkvfGXRVI3HbD3Fnfs1kYRPOjkmK5+ooLh3jgEqh\nQiD5UAPK0iYqTHN4PLeVlMeDZXCEuxvN6IFXqA6WE4iE2Lu8hpTNwS/2ZZEyw9zr7eDa6EY+xzcR\ncxLdqNwnRJljuB+v2sN+w2ZAYiJ/8gfJv+lPhSAIdwAXASFd1+e8euxfgI8AE6++7Eu6rj/+6u/+\nGfgQoAKf1nX9qb+h3X/GJeetZ6zwYx6r+gjHC60ktqW4Jzf1xp1X5uKfd7+Ma8bFqOEXKPvMNdg2\nric+dJRE9iDJ/GG0bAqTrLDsUBipqRT7NR9kwXw34ci9hMPPIQgy5eWXUVvz71it9X927WNDUcIf\n/RAt7Y/Dlm8THg+wNCoyxzIPQdiMFtF43niQ75a+Qp/lSS7bfh2fmvMHtgVa2JOfjS12PzNDIt+u\nuZk7ur7C94WruKRqO6N7t1Jp8XA9l/G92m9T1x3B3JDnkVceZ1OrC7vt9GqoVhwdRXJVMSGmyac9\njNsOANWYshILXSK6pDDeDXMqC2h5M2LjRrru6MFslvBmijivbuZrzxzHapD44Mq66XbnlGdG1WYe\nGd+Np26YE7vLWG4OsUFq41Hzeuw5Dyn6AehMZKfX0HeI7PZdONPfZlKrIaF+hJrqPQxs+g1yGAq1\nEDrURHROGWvDc3k89AQpfznCZIT7Z1jQK56ncdjBBQcq+cZNH0eVZW7bn8GbSvGp6t/TIEzQES9j\nVG3ifjTclk6unHcfdmMQ9biTzkk3EdXFxlldJ93Pt7IM+jVwG/Db/3b8+7quf+eNBwRBaAWuAWYD\nFcA2QRCadF0/KdMVtgV7uNWzhfKCyiyzidkNUbzBEOcFnqHa1Yc/+UWKQoTYJ3oJqvtJ7flndL0A\niNjtzYh2M+mL4+Q3BYFx4Ah0gcnop7bmI1RX34jJ9D+n97VUe1F++3P6rriSRXtvZez679K+I0Ta\nM0jdjF2c6LQz0dXJ2okWHivZxO7A44h7rmV19S4unrOXbxUtpPgDxqGr2OlcwA3pp1hX/DbXz9vG\nBS89gPvsr9DgXYo2cIhWU5a2YDMHDn6ElWc9iSS9uxt9vRFlbJyCswkHWXYY46D14VHX0O86yvsc\nMoWChVTIwBzvMMKsi8gVDfS3h6m3SJhnuDhqhiePjvO585oosZum251THo/7LFIGDzWGIcaLrcTK\nDJwTa+OX6iVUpByM2ceQNZ3eYgFd0xFO48I1PZPE8OLH0JC4vzfAYmEn0uosmDUUQAlayRocLPIk\n2XXoEKkKP3KuQLuQpFC9n8qEh6H6T/PllQ34Egrf35uhMavxMUFnZPCjpIQse3UJVchyY/PvqfaN\ncjhzBf2RueyJ6pgNEotX5SmrW3/SfX3Tgq/r+nZBEOre5MsvAX6v63oe6BMEoRtYBux6yxa+CTZV\nzufTw19nce73yAWFkvQV+Ca2wETzlO2iRnLDsxTVKAbZRXX1DXjcZ+F2L0GWX49PalqebHaEQiGE\nyeTHYqlFEP7yxp9cWkrlf36fgRs+SP3un2O64B/Y9zgUbXPxrbsNzbIW6Xg3s40NtBev40p3P7Ge\n8zEMqVy34XF+qMGE/WkeU9azSj3Ip13PcEv8Mo4tbuMrI/u5mHXc4T1I+fAB2rzraR8zUjP8G2pr\n/+5k3M5poTg+TtTZists537f1EpnxoSTCXcXRV+Q4lCAspo8DjUHcy5n4EgETdWpQMeysZYvbz1M\nwGnmw2vq/8KVzgAgSWbqHBWoiSPYmrOMFyy0CmPIeh5vWuSAb4KaVI4xu0Q8nMVddvr2HlLu+iSy\nPszD2U2kigmk0T8Qvl5DToBmgchYI/Vz9jG+9VLGSw1IShFt4BBHN45iy/rpmvnv5I1mlh0L8tke\nEw2SyOfFOBNignnkOaxOTVL72pLv0Zm7jp/tnFo81vnMbJnvZdmSCv6+b4QS4eS3svhbBDo/JQjC\nDcA+4PO6rk8ClcDuN7xm+NVj/xeCIHwU+ChATU3NX2WALJn47KyP0/24hhx24xhbhnVhGaYGN1q6\niLnZQ7X/7L94HlE0YbPNwGZ7661hrYsWUfaFzxP6xjdpWLwIw2Xr2fUwoH2RspW30nrJCi5kFpf9\nPsXvCjP5hC3BaPoSZt/TxTlX9bONMOXJYR73rOED8UfYI81lm30RSyd2soXFOAMNODq6MZau52h8\nMwuP/5GA8RpM5adHYUw2GCPqyWJVPQw7d6GJbsRJhbO9JWiGfkLdRlpKRtELNoSGc+n7SScmASqX\n+Lmzd4Jj40l+ccOSM7H7t8CSqk3ce3Sc1poOBo74aSXBGqmdYakSTejHnxqhy1lPeCh12gq+uv8B\nDKN/ZFi7kO7BOPWRBJkrcgiijuaE/MEAMzwHid9ZTUdpFs3ooKntOb5xaQ6h6Ga49qs4ixIz+n/F\n9X3n0ChbuUOMcpQcn5O3MUw1Z5l0VmdmMnr0q2zNpLh2WQ2fPbeRMqeZUL7Ihr1dtNjMfG1mxUn3\n9+3mrf0EmAEsAMaA777VE+i6/nNd15four6ktPSvyzHXMkUSvx3F07kZr7gB0W7Ac3kDtsV+HGur\nMPhtf9V53yreD34Qx3nnEfrOd2gpCbPm6iai/TVMHvge8ckuhqI38+GKo5xA41HZTkHOc9zxd5z/\nuIGArNHm2M3jpkXIusJ5gZeZJ/Vxe+1CiokR1mYXI1FkliHJ3tEW/C9+kokfHCZ7JPyO+HayUeJF\nwmISJWEhK3ZiEJvoLRljti2HoBgZG5OYnRtBaNlCsSAy2BklYJEYWOTjh8+eYMv8Cs5r9U+3G+8q\n/P5NJCQ/BkOBpCtAThY5S+wkrUxtHlpzA8SsIqHR5DRbenLQs5MIj32evNbI9/UMki5QUR0lN19H\nEMB8QqAhPo7wCxvtchlBVy17sw6+e3ERFYms6bNYNAOW8a9x8chZrJBKaCPGbzSRr0oPMiTUUll1\nHFE3cljQWJ0RecTl499WzaDMaUYtqnx8+zFSuSLf7FUwqSe/Vf3bEnxd14O6rqu6rmvAL5gK2wCM\nAG/Mi6t69dhJQYnmUJMF3BfUUxxJYV9diWB451sQCIJA+ddvwVBVychnP0frPAsbbmhhos9C4vDt\nzGr+IZvOifBhU47nBYU/mKFocKGMnMv5EyIpYNK2lXv8F3BF5GnkWisp0cq+XIgavR7F5yAwvI9Q\nWue4MrXiGv79Pjp3vPCO+/q3RMvlMGhGQmKGTiGKoGfxZkopODuxegYRgnWUVuaxKgX0lgs4cedR\nihqUr6vkH7a243ea+Y9L50y3G+86RNHEusBsgoVyzGWjJFwyy8RO4tlyZFVEVQbRRIETkZNfEDQd\nFP/wLUQtzt3GWXj7c5RoKfLvy6NrAlIInG0m0s+aOFBWwWRlE08Xm+it3UlezqON30S6soqKiZ/x\nqdjnuUKtpUfL8AVEPm0+QL+5HtmU4Ve91/LTrJeX6y2kttThUCH4o4NkOiL865Md7JRVvjgpUXlo\nktjD3Sfd57cl+IIgvLGU8TLgyKv//xNwjSAIJkEQ6oFG4JW3c63/DWOVg8AXl5LvjSGYJexnTV+F\npeRwUPWDH6DG44x84Qu0LPez/roWhjpjHHqkhpaWW/nCzRt4EBv/5A1jMsUZqDmPNfcbWYnAYU1n\nq7NIVjLzudhvCZhj/NzrQ9dUGi0t1KZ6kXSdp4sR2iLPYFFsvPTTOwj29Uybz28XZXwcrF6iBhft\nJb0AuMNOmk0WNFOC9ICX5tIwumQgOdzM4PEYiHB7OMpoLMcPr12Ay3Lyx8OdjqxquJ5D+lJs9jhh\ns4tqIYyq69iLDjIMAHAsNjnNVv7t0TNR5J5fE2cZDxi6MBdlquaF0M0gFHTKfi3gSCQ5ZillMlDJ\nXqkBSp9FtneTH7+EVHkrZ4XD3H3sZs6JGNlezHGzqHAJGTyWAtmihW3ZhUgOO7+7eRn3fHQFLauq\n8f/DIgx+K+HfddCTynG1buLjV87FddEMrItOft+nNy34giDcy9Sma7MgCMOCIHwI+JYgCO2CIBwG\n1gOfBdB1/ShwP9ABPAl88mRl6PwX+e4Y2SMR7CsrEM3TG8c1t7QQ+OpXyezaTfj222ldVcHqqxrp\nPTjBC/d0YapxU7+qmoWJOupax9BEI6PeC2k8UmS2rNFXPMp3qi5jdeYAzf4wJ2Q3E6kR5mvzMOkF\nZqhZDttMmNa+BECNs5WDTz06rT6/HSaHR8g5fXiKbkZdPaiSj2ShyAqTCTSJvmEjrblRlNJlJJ6b\nYFiE5/3w3PEJ/mVLK4trvX/5Imf4HzEYnMyqPJdcwULMOfWlOV/qxVD0MSGPAtBrjqCp2nSa+TdH\n2X4XIhkekMqY0+fAohdgeR4E8N4pI1gMdI4EGClxESxpodcSwlCynfLkKlrs56DV2PiH4yIZ7Ri3\nZXJ8yVDgnEoXl5sVerMiQYODScnHvR9bwZqm10PVRavMt1a5OOySuPVQjn+V7GipIralAUwNJ7/9\n+ZsWfF3Xr9V1vVzXdYOu61W6rv9K1/XrdV2fq+v6PF3XL9Z1fewNr79F1/WZuq4367r+xMkxf4pc\nd4zI7zqQ/VYc606NCkv3FZfjuuJywj/+Cant25m/oZolF9TRuXOMPX/qxXXBDMwtXlr65mJ0hBip\nWM2aIzbUqAkN2O7MEDJ4+XL4lxikAtsMRazGUhz2cmqyo/QURDxzzyLn6qfeO4++g/s5lcZVvhWG\n+odIOh1YU2YSxl4UYyMpZzu1jhjmaCOaO4Y7nyUxvpQ/OuDHcoZ92Sxf2NjE9Svqptv8dz0fmHMB\n7bGzyPnyKKLAUrETJVtKSs7izGcpGsoYGTn5rXvfSYTD91PQ6rjP2Utg0kJ94xjIkO91YG4XSegG\nOv2lCGVNvIQPS/mDWLQANxy/nBNNNuZHJzGpD/G7TDkPWgssC8h8JqfzgtSJaCywLdnAP25q/rPJ\najlV4+YjfdwdT3DQLWKqdpB6op+xW/Yw+tWXid5z7KT7fVo0GzHVu3BuqqPsEwsQT6H2wYGvfAVT\nczOj//hFiqOjLNtST+uqcvY/MUDbMwN4P9CCdWEZK4QAuiASFM7DoaYozcjkMof4Vu2NNKqDvN/+\nMr+3uNHVIvXmmbjSJ9CBSS4hWfYKNsWBnBKZHBudbpf/KsLDw8QsNuJKGk1IIQt1BNw9yJY4+kg9\ns8rG0YGbci18O5lABH565Xz+fsPpVXw2XRhEAYN4MXnFTMIps1I8Sio7lTHiTw2TsBv51WO3T7OV\nfzv0UDdypp1erZVZPRZETcO0NIOug/9uFdGjcFD0kzR52GpbQDrwNJKUY8nYTeRrbMSMIrnsQ3TH\nmnjIKlJrSvMFq5VHUy+h6BodpnrcDhvvW1L1Z9f90olhnosm+XJHjk94PJR9Yj6lH52Le8sMnJvr\nsM4/+Y0RTwvBFyQB57pqRNOpI/YAotlM1Q/+E11VGf6Hz6Dncpz9/mYal5Sxe2svD33vAMLqSrwe\nGx4pwWjFaq5rF0mJGilN4UWPlT5zBZ/M/4EMGoPZMWaa5lCan3qQah+1oTSNoco5NlbeRPKXPeT7\n49Ps9VsnMzpGVLQTsg8CYFDKaXAWAIiNlTC7MEqb1kjY7ONmp4fPO3xs/m8fpjO8PW5YsYrh4dlM\nOg00iGMUlKl9MGOum6BdIjxuJJVPTbOVfxuU7fcB8CgatUErTaZxdCdk4y6sYwpHfX62+Vfz68pr\nGLcNYHB0UCat5ZJgOU9XGTEqSa4/ZuSXcguaUORT9XaeGnkewaxS3rSX3RNV3Liy7s8G7+ycTHLP\nWJSbYwKXhTRcF9QjCAKmGW7sqypxrqvGMufk5+GfFoJ/KmOsq6PiW98kd+QII//4jwjonHfzbDbc\nMItYMMOTvzqK/dwaZlt8KLKVfOhsXFIBSRUIpJ7i32Z+nDKifNr4KC8YRIxGF5XGMrxqlj3Hxyiv\nv4zhed9jIN2BkNNJPD0w3S6/ZQxjYRKqhbC9Bx0ZXXWw2CBhjtcTFFNU5mI8ry3mtx9cQslwnvp5\nZ2at/q0prfYRjiwj5jAiorO4MAG6SFHpZ8IqUjG5gCf2/XG6zfyboPe8SF6rJjEWA1nBsWJqeLj5\nsExRFHmqdAl7PUtokCYo9T9MTVGkaWwhlVaJnaUSJdEu2pObGTBo3Fw+zuH+vfjNXtaeM8TR9GJE\ngT9r3qfrOl8+MUKNKHHz3gTOjbVIjulpgHhG8N8BHBs24P/Sl0hte5bgrd8AAWatLOecG1uJjqbp\njRfx1zkwKgkmHMv5YCiFQREIZYK0eeo4YG/mA+JTPG4CTclTY2/BV0zQF8kQCFxM0T/MUX0b46ZB\n8n1x1GRhul1+06i6TslkBrVgJ2ztQTFWYxVGKbFmsEZnIdmnvsB85eegTUyV+dedEfyTwvyyRgYK\n9ejAOexHz/tQlKmnSYPVxfP7t0+vgW+DfD7EiRNfZ/TEg8iZQ4wW/bhSBhaK4xSbp/a+ytpS9FS6\nedm7nBolRZnvWZKGPJp1HWuCJbSVGlBEkfUdteyw5qgVgojJJE7ByrU3XUkm8xJtE4tYWuf9s/Ye\n2yIJOtM5Pnw8j6PMhv2sk19g9f/ijOC/Q3ivvw7vjTcyedddxB98EIC6uT6qW73se6If68Z6qmSN\npLOO6q65aLJCRoQ1hV/ztYa/x0WKjxn+SHd2mBpLM658kGhRYiKSxe+/GNkRZSR+HHQoBt89k4p6\nMzkwViJoEiF7GMVYj8d4DEHUEaNVNGjDDOklXPq+C+g9GMbqNOKvc0632aclrcvm0js2h4xVYrmp\nA6XgJ0sMgJxbQo8GyObfPe+tN9J57J8YHPoV6SceQRRyHItpxLwZHBUpEKCQM2Po1tgemEvS4GSB\nOUqvq4umgkAuPUaL4ObpMjAVFOTJNCFR5nxvjpSa5px5q8mIBxhNuhmIWTh/zp8PI799MES5LrCx\nN4v70pkI0vT1JToj+O8gZV/8R6xLlxL85rcoBkMIgsCqKxrIZxS6umMsuXoJaCpD2dVcmkojapCd\n7CJpM/K0dwVXSs/xtDmLUbZRg4CGyK5DXVRVvh+TM0toYiqHXYnmptnTN89AcIKQt4mEKURRVlCM\nddQIQdAF4ikLC9VeugyNOD1WBo9GqJtXclo38ppOqlvqyKVKmbSZqJXDWNNWFDkGWpGYS6Q2Opfn\n77ttus18y6TTvUQiLzKj7P9QOjFVdd8XN1BVOklmjo6uChjHZUI2Gx2uZqxqgYzjIClDjqhpBgtC\nDbhlkZdLZZpGVYbtITwkKaYnqRZKmHPRcsIT2zgYXg7AxtmvC/6hZIbd8TRXn8jhXOTHVDe9rVDO\nCP47iCCKlP/7v6EXCkx8b6oLha/STu0cH+0vDONZXYlZCZG1NnP2hANRFThSELmJH3Fr/YcxN8CW\ncgAAIABJREFUUmCR9Sm0YobZhqkd/QM9Izgcs3H4ykgXEiAKqJF3j+DH9u0nai0naTgEgGKsZ744\niTlRR584ik3IoVfOZfj4JMW8Sv38M+Gck4UkSVR5/QzpfsyqxrzUBAg6tpEexhwqroKX544ffNel\n/0YndwDg6FmOiS5impUJg8i6dASlEgRZxzWYpbfEQ6+1jrlinn5nNy4VwtoAm5NLOeoUyBgNtEz0\nslsLsNiWQtOLbDjrbESjRCz2CgfDS5lf7abCbXnt2ncOh7FocGlIxXV+3TTdgdc5I/jvMMa6OjzX\nXkv80ccoDA0BsODcarLJIsf3BKlY4KNg9jAyuoYmNUdGhLwSYpZ5Hw+XnctF0ssMpTqZa55qNNc7\nHkNRFPzVZ6Gjo9v1d9UKX9qxm4zgIC53gi6hyJXMcIxhmWzGpp+gqEu0nnsFfQcnkE0SVS2e6Tb5\ntGb+iqV0p2cBsM7UB4AU6ue4HfwGyBkaSLz08nSa+JaZnNyN2VRD4VAGo3GA0ZSNnDdFzva6/Bm6\nNfb5Z1EUjXgs3QQtIVTJg61ookHz8aRPAaBCHURFwlGM0CJUU7uulVx+nJFYlhMRN5vfsLqPFhUe\nDk6yeaRAxepqJPv0T6o7I/jTgPemmxBEkcgvfwVAZbOHkmo7B7cNsvq6NQhqkXRmFh+M5kCH9oSB\n83Ivc6//fKzkGSvZR0A0IekaqbyDkZER/NUrAchLkyix/HS695YwDMRBEBl3jSOJfmxqGoNUxDrZ\nzBz9GEfEWgLli+g7HKa21Ys8DT2S3ks0z55Ff2YGqgDL7ZMImgDCMONFCbe5QGVkHi/d+evpNvMt\nkUp14SmuhkwESQ0xkbVTYcuQrJIQYlPhwfCYk0FrNWZdJW0/AQKk9BgfCJ+PSRTY5zFREcuwM+XC\nJWSpQWD9sjWIJol4/ABtoamxppvfEL+/dzRCXte5Jgr2VdO3UftGzgj+NGDwl+G69BLiW7eixuMI\ngsCCc2uYHM8QGcliKo6jm8rxjVdgV3Ta0xJ2U5D5ph3scC1kpWUXaiGJT9coalb6+vooKZ8NQFaN\noGWK0+zhm0MvFtFUH+gKQyU5dLkGjxIBHYSkmRZhmH5bDWM9aTLxAjMWnvzClPc6VqsV2WAmbHAQ\nIIsvI2OwDiAMZOhzTVKh+PhNZQXFxLujg6aq5slmB7FOtmIQp55YQjkbC8mQrwFFMyBlICg5GDZX\nMkPIM2ofwqjLgM6CxAIigka/10xtcpSjahVzTTm2aEvxra0DIB5vY19wMc0BO/UlU3sEqq7z64EQ\ni6IKS1bVnDIFoWcEf5rwvP/96Pk8sYcfBqBhSRl2j4mD24awVRopmL10ZteyJp8hLEFEV1kmHuR5\n8zIqlDBd1iNUCEYyusbo6Cg291SoI1uIoGWU6XTtTZM+fJiEuwm1eJicUSNvmkEZE8iJSkLCVJm5\nXtPMsV1jGM0S9QvOCP47QVV1FYPFOhxJhXqjimweRgpnedaSo94kMCfVzO0/e2a6zXxTZLP9gIYh\nVobJOlXYN160UpePgxEwg3lMp9frJ2Z04zIOMmGeoIBKVTZAneZhm6uIJgnkIll0BK4vVuFbXPVa\niObYSDfdsTouXfB6MeCzkQRDqsrVE/o70hTtzXJG8KcJ86xZWBYuJHbv79E1DUkSmbu+ipGuSWau\nmQuAmq/i2qGpnPr2tIQ54yIkO0mJFnLe/QQEibgoExyaQJJlTDYTOSWJnlXQtVN/Y23k+Z0kbBWk\n5KkN24y1iYBxHHusFUXrJasbqW5ZRk9biIalfgynyCrpdGfF0qUM6xXIGsxxpdFEBcEUoltxolgm\nqCr6uG9cZCJ56ocO05mpzDUhasFo6iehmEgbZQ44p6bhSeYCuSET/bapQind1oMuAILO5sn1CILA\nK14QNRUxksIva7SqIvbVU/OcVDXPthNOBHQuW/j6jKc7+oKU5jQuaixDkE4dmT11LHkP4nn/tRQG\nBkjvmpr8OHt1BQaTRGxMwJQZA7zkU/V4ihqH40bSthCVvhPssixgQ3oHFrlIHBlh0kMikcBst5NX\npjZs9dypv8of39eHLkiEnEOIukDBVEOpGMYabaGKHg5Tjz48E6WgMWvF9LW8fq8xs6WVfm0qfXB+\ncUrUDd4hIhkTR6QhWk1m1hYkvvXo0ek0802Rz40iaDJaREVWewjlrIgGL7pdAQUQIRaxMWyuxI5K\n2jqEoINRkdmcXEqoqHLEbyEQj9KtBFgrWjHPcGMonWqKNhk/zM6RxSyrFQm4pmZMD+UKvJDKcNlI\nEffyU+t9e0bwpxHHpk1IXi+T994LgMlqoHV1BSf2hjBZs+TMAY7qy9icTjEggGbIM8d6gN5CDU41\njeTsQBOgXPMxNjaGxeF5TfBP9bCOmkySiBsRNJVBfwaH6gLBgI8JbLFqZjLEgLmUoy+mqWh0E5hx\neoxyfDcgiCIJsZSiZmTWYBGroGOxdqPmBU4IKnZjhiZB45m2MQYip3YhVi4/hilXA5qCmOsnkrNT\nNDlxyROQndqwDWacDFlqKBfjhC1j6AJsjq/Gpps5IkeIOG1URkPkMbKmIGJb/vrG7Na2LiI5Hzes\nbHjt2MPjUQAuM1pPicycN3JG8KcR0WjEfeWVpJ57nuLYVAn7ok21SAYRu8sDgkhea2TNKOgCdGYk\nUgUzx5y15AQjrabDr57IwNjQKBaHm3xxSujVU3zjNrNvHzF3I45kHyOePAZtKovBmyqS13oQBZ2o\n3EomXmDpRWcGk7/T+KrqCOkB3NEizWYVwdCFjkaf5qVXmqDVaGNBQeTuPYPTber/Sj43jrXYhCyM\nIaISLVjAYEQvURARoACDSgVp2YLTNEjKkEdWJd4fvoCwotHmm5oDYIpEcIsw32TEMnuqFkTTdH6z\nV6bKEeb8ua93bn1oJMq8SZWmllNvz+mM4E8znquvAl1n8v77AbA6jSw4p5rRmAtDIYmYkjBFAjgU\njUMxEwYhjckb57hYz7npVwCdJBLJYzHMdgf5wpTga9lTe4Wf2NNG0lmLpraTMWiI0lT8syLuJCkd\npqhLRIMrKW9wUdl08gdDnOHPmb9kOUNiKWazyhxVRRVyiCWjDAgOOsQgVZKRBaS4b88QueJJnW30\ntsjlx7AUapCFYQAieStVqSBqKQi6jhaUGTJNbbbK1ql4/6rkQlyana6cRkeZHYNS5Fi8gpWCEcec\nUgR5Sja3H59gKO7g6vlBxFervztTWY4VCmweL2Ke7ZsGj/93zgj+NGOorMS+bh2xB/6AXpjaoF1w\nXg1muwlrIYxgKONFeQUbMhm6VHBYc8y276ZfraamME6jMMI4Go4xE2a7nWzu3RHSGTk0gi5IBL1T\nxWeCJYBZz1IVacFBF0f1WuwpJ0svmmoje4Z3liWzW+nVTIiSzpqOIgYBDN79JIs2kmKOtJBnhsGI\nM6Xy1NHx6Tb3/0k+N4YhW47BMDVSO6y5qEoNgwiaSSMTMTNirsJJgYx1AHS4eeJSJoU0KTnIQIkD\n32SclGZhrSphfUPjvt/u6sJpTHDRvNezcx4MTiLpOhcYzUi2U2/s5hnBPwXwvP9a1HCY5LZtAJgs\nMovPr0VXdRSjgzGpibOCCnkRevMiihJlv2WqGnKD4QDtJnBjxWixkc1lAVAzp+7gaTWZJBg3ImgK\nw6UJJB1UewU+wrgizdQKvXSqzZTXW6lqPlNZOx1YDAYG9amQRFWnyiKrglHaD2KeMc3BMSLUCS7m\nKkWeaD81BV/XNQrFMHLajWwcIaGYyBmdWOUY6KCbBKIxO8PWSvxSnKAlQnnRR5ni5VhKImeLEbfZ\nMUVTOESB5Wbza2MIR2JZXjgeZ3Xlbko8CwHQdJ2HxydZHlapqD81x26eEfxTANuqVRiqq5m8597X\njs09uwqhYqp9Qumkgms8gEHTORQzIosakz4zI/g5V2rjuBEsuoBS0FH0qaeEQvrUHTydbWsj5m7E\nmRxgpCSLv2AkZXbiUSeRlXGMgsJQfg7LtzSdWd1PI6mKZWiaAZtBYZVBQaCAwd3GiGanRx7FK0nM\nkPK8cCxEpnDqPVEqSgJdVxFTNgR9kGjOgma2IHoKSKGp1/QlasiLRkoM42QlhTWJRUyIMUJFiUO+\nKdGORgysE404m72vpVg+cmgUTRdYX3MQu70JgFfiaUYKRc4fK2JqPDXDkGcE/xRAEEU811xDZt8+\ncsePAyAZRJZfMx9zNkIAKw8aN7I8l+NITsJvz+OxHqabOhbpx9HUOAVRQJlUUHUFHZViOjHNXv2/\nie3eR9JRgzN+ghFHGlfORUxy4coVSIntAOTNVVTPOjVXSe8VKuYsIKNVYvYUmTGhYzd6MZa8xLhm\nImWYUky34MRW0Hmha2Karf2/KRQioAsICRmjMkC0YMWMhhrQMIQEdB16s1MJAbKtC4CzUvMZERJI\nxiTHSx3IxSKFJJynSJgbX3/afLYzSL1rgoZALYIwVR/yUHASiw7r4jrGSsc77/Cb4E0LviAIdwiC\nEBIE4cgbjnkFQXhGEIQTr/7recPv/lkQhG5BELoEQdj0tzb8dMN1+WUIRuNrKZoADYvLsAgZcrYq\n9otNrJgsEJN0JjQBWTpCh9CAhM7awgF2lsgor65aVCmPmj110+VGDo2iCxIpe5C0pOMUHCQFF6UZ\nI7J0lONaJWet0s+s7qeZOS2tTIoVmDwKhnaJJU4HojRJ1tlDUbMwoWVpEUyUqjrbOk+9IeeFYhQ5\n70ZSo8jkiOYtBMKTKH4dXYBizMCwsQa3kCHo6EXWJcoKPkbibpzO4wyXuDBHs/iNIvORML+aPJDI\nFdk/MMlsXxsu16Kpa2kaj4RinB3V8NS5p7Xn/f/GW1nh/xrY/N+O/RPwrK7rjcCzr/6MIAitwDXA\n7Ff/5sfCf30NnuF/RPZ4cF5wAYk//gk1NTU7VBAFqpfWoUlGNkRjlA75ATicMOATdY66KojrNjYI\nB3jeJ1Gam3pDqkIONXdqVkFqhQKhV+P3/WVT+wxux1T/kcaoh3Khi8NaE4uWNU2nmWcA5nqchKVS\nJIOGpx3ONg6jCNUYfS8S0c30S31USSJZUWN718Qp1za5WIhgyJQii1OJAZGiHf94GKEgUPTrJCI2\nhq3llIsJwqYETdlauuUgimJhTFBJma3koyrnWWyY/DYk59QUq339UTQdZnm7cLmm4vcvRP9/9t47\nTK6zvvv+3KdM79v7rna1u9Jq1ZstWbJs2dgYG7AxNaEEQp7EyZv3DSFXIE/KkwcICaGEEEjoLYbY\n2GCDsXHvKpassuq7q+11dnqfM+fc7x8jHCCEhFjSrqT5XJeunTkazf07R+d8975/96+kiJVMXjOW\nx9G1NN058GsIvpTyWSD6C4dfD3zj3OtvAG/4mePflVIWpJQjwBCw+VXaetkTfPvbsLJZEvff/8qx\nDe/cirBKLC+aPMkuegtFBlI6y3wGOfcQx2UnO5UjHHCYqHp5GWkpBlZhacbhpx57nLh/Ob7kKNON\nKTQpcfvL9cPXxSK4RI6wy0cgsG6RLa0Q1DVmbeWSA161QMhIoXl3oNgXOOuaZc5+Ek0Itlh2Iuki\nZ+aWVpPzohFFz1eji7LgLxDCpyawnRZYNXB6rouS0KjVIpSESV+2i7QBipbj5WA5TFhEilyXkji6\n/92ds/dsFF216PSP4/OV79P752IEEVy1YL6ysbsUebU+/Dop5cy517NA3bnXTcDEz3xu8tyx/4AQ\n4v1CiANCiAPh8NLzA15MnKtX41y/nug3vokslTfBXF47XhnHdFTzlGMj27MFJhVJQZFI51GGaSck\n0vTFT/ByVXkGYmIiC9ZinsovRRaLTH/yH0h5W/CnhpkPLFBf0DDOZSP68uWaOmqHgqq6FtPUCudY\nqFmLlAqOoIE+Kljh0zCLtcyFDrGglVdoW6WKAJ46tbTcOsViBK0QRBMT5E2NpOZDqc6jzZXdLadT\nXQgk+cARpJB05ZvJpmtwhYaZqK9GLZToQNJtiV8Q/AjdoTChQDe67iNdMvnJQoIb0wK7z45W4/zP\nTFp0ztumrSyv537tNZ2U8otSyo1Syo01NUsvM+1iU/Vb78GYmiL12L9XI2xc5iXtaWZHJEJX2IEU\ncDyj0avlOWlvwpSC62P7OBEox/2aogTFpedDXPjSl1jIe5FCRSHFpCOPv+QipgZBSnxygBGrjr7u\nyn2wVNBbOzFkK/aQxH5QpVecIl+4AdMeYdRmkJJZWhUVBbj/5anFNvfnMIwIerEWRZ0gWnBitwTS\nJ5Ge8t8PW8upFhnGPeWEK9WwYxU9qNoME6EgRItcH/AjNBX7uT7KybzBsakEXb4jBAPlloaPLCTI\nWZIbTmdwrAgt6b2nVyv4c0KIBoBzP89tGzIFtPzM55rPHavwX+DZtQtbWxuRr37tFZ9o721rAVib\nTjAaW09NqcSRuI0V3hLTnghHZSfXZ1/iRFDDZQtQkiYYSysAy0wkiH71a8RrViIsg+mgJKUK6nSN\nBWrwFwo0KCc4bq2krW7tYptb4Rz1tbWUZBuOgMT5ssIK8xgF+xasYpDT/mHiYpigqtBbFAzOp5dU\n1m2xGEEv1qAzzkLBTXUyhchBoc0iEvczq9XQosYpqQathQYMw4FQDAZULzm7A2Uhz1VZiX2ZH3Gu\n8c6LQxEsCT3BUwSDW4FyslWTqrJ6oYRjiUeWvVpVeBB417nX7wIe+JnjbxVC2IUQHcByYP+rHOuK\nQKgqoXe/i/zAAPmBcohiw4p6NDOPXdh5SNnFjmyeIQk2h4nhOcVh2cMqRgjbY/jtTZSsEsLQkXLp\nuHUSDzyAlckQc3fgT44y2VHOE+j0FZi2mrl6fhivyJCmh1Bo+yJbW+GndNR6Maw2dEcWm2FRlw5T\n7UlSjOwk7ohx2LcHuyLYURJI4MEjS2deZxSj6DkNXSSJFF3URBPoU4JiFxwaL3eoCtnnKIkSfdlO\nipkQzupBTtUtA8ATLdAdK/1cOOaTp+bw2Ew6A6P4/RuZKRR5JpriloyCqis4li1d/z38emGZ3wH2\nAD1CiEkhxHuBjwM3CCEGgd3n3iOlPA7cA5wAHgHuklIunV/9SxzfLbcgdJ3ED38EgKIIavxFkr42\nfCU3q3MKRQUG8wrdjhjDoryY2jnzAsWqTgyrhFKyUyotnVj8xA8eQHT2kPK24EuNEKmaRLcky0Nx\nZqlny+xBAOq0dpzO1kW2tsJPaa5yY8g2APRgCfugYK33CEZyNUIqPOcrC3yXooGEew5MLqa5P0fR\niGDPJYByhE5VKoYaF1hVkoFoH06KRP2HKSkmy3Mt5PI+bJ45RqvqUBIFNgc8qIhXwjEtS/LkqTCr\na89SFehH133cMxPDAm4+miq7c/SltbL+RX6dKJ23SSkbpJS6lLJZSvkVKWVESnm9lHK5lHK3lDL6\nM5//qJSyU0rZI6V8+MKYf3mi+nx4du0i+eMfv7J527mtg6I9wDULEyjxZhyWxeGonX6XwbyrwKSs\n5sbw88xWN2MYBRTTQbH4i0FVi0NhcJD8iROk2zeBUBAyy7wzSb2hUtJ0MoqH7uxRpqw6mhz2Je0D\nvdJQ7RqFc/EWot6B63mV7c7nkMKNyHcx6IpTkEWqFZ3WkmBgMrHIFv879jO9uErlQJB5GcKh5Ci2\nWVgIhorLaFITTLrKv6Cq8+WuVPOKyrw/gAgXuFrRUX02tNpyAMHAVIKFdIG+4B5qam/CkpLvzEbY\noui0xAw8Vy+NvrW/iqX96+gKxnfr6zAjETJ79gKwbGc5Lr3OMHg4s4OrcnlOGgo+X4mid4T9Vh87\nCoeZ9tooFAsIqVHMLw3BTzz0EKgqYSOAsAySbpURm0WN0JmT9egjCdZzgqTVC3plIbjUyDjcWNKB\nXmPHfkbQYZ5FdUty2Q3kVYPD7gMEVMH6gkqhZHFqZvFXllJaeMc3oYtxLOnEo/eiZiW5jZLxVDN5\nHDQpKYpqgZDhw56pxREa4UVvF1II1LkcfZES9uXBVyYgT5yaRxGSVVUnqK15DS/G04zmitw2UkBv\ncGNr8y3yWf/XVAR/ieLZsQPF5SL16KMAeENO3CJDwVHFiLmSTQWLpCqZNgQt7lkmRRMOYeBJHaRY\nKCddGen4Yp7CK6SfehrXhg2ECz78yRHmOuLkFUG72+TJsZ1sHDpMQGTwWH0Ie+WWXGoUgzkM2YrL\nbyIQ6GFBm2eKQmwFQirs9e3FrwqazrXV/M7+xa+RX4gv4Ei1oolxilYz/RkvSkFQ7LUYmCoXHvTb\n5lFR6Mt1kc57cVaf5lR9M85kDnvWpLVg/Vw45pOn5lgemqMh1IHT2cLdM1G8QrDzTAbP1Y2XxMq0\n8nQtURS7HffOHaSefBJplme9zT1+Ev5lbA+P01gszyYGYjb6vEmiSogkLtamXsSkHJ65FOrpGNPT\nFE6fRt+8nZSjAW9qjHT1CABBh509g2vZ6R5ASkFJrEXYKwnZSw1RZWJYbXj0CEbIh/2kYIt/H8Kw\nYaldHPBMoQpBrVBwWfDc4MJim0x+uuzK0ZVxokUvnoljWE6J5ZecWOghIHLMeE9RVEqsynYRNyWT\ndi9hXwB9KkeLw4YixCtJVLOJPMemkqwK7aeh8U7iRomHwnFuSQlcDg3X2ksjlLgi+EsY7+7dmJEI\nucOHAejevQKp6PSlIhwsrqenUORkWqc6UCTtnWWPYzXXiZc5Yi/X7C7lFl/w0888A0DU1gBCQcoi\ncWcUpwWHpneCEOy2HSVZakeRIRT70qshfqXjrtMpyTZsSgpP0xocLws6vKMAZJXVLOg55rUoQVWj\nq6gyFslgWotbZqEYTqCQRBVxZmIZSrNHSN5cwlA0zubaaVCSTLnLG849qS4sW5JHQutRTZPCTJ61\nQsXW4n2lpv1Tp8sR5+vqRmiofyP3zcUoWJLXDaRwbap/JWxzqVMR/CWMZ+dOhK6TeqxcJ7+xJ4Qi\nSyiqm8cTW9iSLzKpWxQk1FSd5Zijh2qRZM5V9t2XcotfEz/99DPora1MDyVRLIOcW2fMXqTOUjgw\nt4GaQJJV2TPM5ppRLQeqY2n1AK0A9g4HRVmOBNPqQtjGFZpc5QR7f7i82fnZ9pMEVYUeQ8GU8NLo\n4u4flSI5VDEGgDqdRqoK2e2SqXQDJXSkXyfh0KguVaPlazjRl+JEfRNdY/MIQ7Il8/PlFB47Pk6V\nI8qm5degqm7unonQJzR6kxbudbWLdZq/NhXBX8KoHg+uq7aSevxxpJRoukpVlSAe7GbFTJouU8cU\ncHzOwbJgmBHaMVDpUw+zgIWZyy2q/bJYJPPSS3i2b2MuouBLjFBoSjNo06jSXGQMN9e4TgEwki63\ng1OdjsU0ucIvwRYIknaVZ7Dz4gCmQ+COFanSIzjCDgQ+XvAP81KrjTqr7Md+6OjMr/rKC44ZNVCV\nsuC7pg1yHSbY4dlkOcfjyIouhMwwEVjHW26p5p7l/TTEFwieKVeZ7UPFfk7w84bJC8NRVtecoK3t\nvRxN5ziezvPGBQs15ECru3TKgFQEf4nj3b0bY3KSwulyve7lOzrJuuq4OnyWmUI/TsviWMJOyJvD\nS4IXvWvYrRzkBUqY59odLha5gQFkNou2fitJrRp3eoJ07RksIXBS9nleWzpESqliMlu+FTXnpfPw\nXCnY9BCxpgEs6cGuzpKuUXGcFrT6J0mZbprSfly5E3y2z0HeJbBbsO9sZFFtLiVAU0YxTZViTiN7\nrcmQuZwnUteDCmsmv4aQRd4208sNx7O89uQRbj28l2HpJKAqhFw2bM3lYoTPnT5LoaSyqzuIw9HI\n3dMRHIrg+mMpnL1Lu5TCL1IR/CWO9/rrQYhX3Drta8v16fyW4FvRW9mcLzCiWUgLOvxH+UnNdrqU\naabFOGZucUskZ/bsBSGIOppBKJiYRFwzKFKSSXdjVwrsTB1kng1YlDemNefSbBxxJaPrQUqOOIZs\npdqRJ+zxYDsraPFNk8FJKFeDJZNgzbN3lYfGkmAsusjuxLSKnSEKUZWpoJdMn8oX1P8HPZmnRqZJ\naAN4TBvvnOhkx+gY7bMT2At+UgJ6UcvhmOcak//w4IvY1AK3brmTrGlx/1yMm3Qn3ryFY+XSLqXw\ni1QEf4mjVVXh3LD+lX63gToXDs0gFuylI5ykt6ASt5uMTbloqBvkOW+5XGuVcmDxBX/vHhwrVjC+\nZxjFMig5nQw7CtRbCguZBjbYB/GZGRK5lTid5Zr4utu/qDZX+I/YbCFK9jiG1ULQlmJSC6JNC5q9\nU0gU9Fy5ifeW2RO83GqnRdUplCwmY4sj+tKUaHkVuxgjH9OJtNl51n4ts6IBkSxRpS6Q1tNsT/WT\nNlVU3ySWUiKqB0DAFlN5xX9fKCzwwojCuoYkQV8HD4XjpEyLN8ybCLuKvf3Sul8rgn8J4N29m8Lp\n0xQnJhBC0LGhkViwh9dPHCKaKBcaOzLnxOXIUVB1hrUWNipHmEwvnj/cymbJHTmK66qtzEwW8SeG\nkY0pjtltdDgk85lartGOU0IlnKnD4SiXlLV5qhbN5gq/HEWxI10FSrIVh5IHxcL0W7Tp5SzVuNGA\nZmn4M8exFEG8peyW+/6hxSmzYGWK6GIORTFIZ/0obQUe5Waa0yOYUgXfAAi4KXYd0RKkCzaQgsNa\n2c3Yj/aK4D979G4i+RA3rekH4O6ZCB1OG/3HEjh6ggjt0pLQS8vaKxTv7hsAXnHrrLimBalohEyV\ng/ktNBklRjQoGSqN6hRPBzazRTnJmbQX01ycRijZgwfBMFDWbiUpgjgyU+RrjlNUBN2+AtGCn2vk\nUYYdq4gbEey2cvib6rAvir0VfjXCo1KU5RILVbYMRrVC7UyCoC3GnOUnVAgxZjtDX7TEWHP5//CZ\n04sTj1+IF9AKLwMwq7Yz1N/DpGijO3kcKLEQPERVyU53vp1IySRJHlFyMZwrZ7CsaPCiem0YRpyH\njw4BcNPqlYxkC+yJZ3iT041MGzhXXHqTk4rgXwLYmpuwr1jxilunbpkfTRaIB3voTc64TeFGAAAg\nAElEQVSxNmcx688TGQ3SbB/lJw1XYRcljEyMZPLlRbE5s2cv6DpRe3m5b0iLsKfcE6cKD1WkWFUa\nISbWU1Qj6OfimCuJV0sTmyNAzlme9VbZsmRsOs4x6A4NESt5qMnWMm2Ls30+zlxQw6OrnJlLLYqt\n4/NptOLLWCaMa3UcrNuMU2bRIxnsVc9S0LPcFusHCSnnLCU9R/rc/bccBW9fOY9lfPzr7Jlew7pm\nBw1+J9+ZiaAAt86aoICjJ/grrFiaVAT/EsF34w3kDh2iMDyMogiaOtxEQn1cNziIPdNIXpOcGXNS\no8yxL7CagrTRap1hIfLkotib3bsX15o1jO0bQS3lkA4fQ44C1RaksnVcoxwFQMmvo0AKm1p+4BSn\ntij2VvjV6HqIokdSkg6q7FkSWS9KUdITGiKPDUe+HEzQlCrPiL01LpL5EoncxV9hTs1GsKkjFFNO\n5vwFjimr2WDtZzirYqt5HLfh5rrobhKmJKeU9xlG3OXVyzY0HH3VlEopXjjxKDOZeu7Y2IVhSe6Z\njXFdlQ//yRi2Nj+K69JLEqwI/iVC4K1vRTidzH/yU0gp6btlBabmQCt6McwOAMaEhbeQpqDYGRT9\nbFaOMjZ7+KLbWorFyJ88ieuqrUyfzRCID6I2pTjgsNPjtJiIdLBTPUpYCyJyTeSzGXSlIvhLGbut\nhqJrmpJsJeTIE8v7MEOSnuAwANl8G0hYUM/SlDDJ1pX3j546Of+rvvaCkBsZxu6Jkc/Vc2JTGynh\nJ5B7gnj9w2iGn2DBTchsIVySpChimTqn0uVSJRu9bvR6F/PzD/P85Ao0BW7pb+De2SizRYN3+nwY\ns1mcS7zRyX9GRfAvEbRgkJrf/33STz5J+NOfoc6eQrGKJHxdhObttBcNojVZmC5nqp5xrmaZMsvo\nSBzTvLgJWNl9+0FK5KotZKQbPTdLquYQRUXQ5y0yHW/kGuUoJ5wbKQooZDPYFBtStxBq5ZZcitjt\n9eTto5hWK9X2HEkclBokNbkIPjXJBLV4DA8nnUOsDxdYqNKRCjx8/OInYFVN7UfVLbJmJ+Mt7ej5\nU+yLjmLmm1g+dTPX5JtQhGDWylNwhFnQM6QLFjqwvr8OIQRjM0/z/NTV3LCyHo9T5zNjc6zxOtky\nUl4ROFdVX/TzOh9Unq5LiNC73on/9tuJfPGLjN12C4HoGRaqV7P6aIT2nJMpX4HisI4iTQ42lZeo\n2oydWHzfRbUzs2cPittN2CzPgvJCMO6bQJXQabdwFk1CIk1OrifhKICU6MKBcF46CSxXGnZ7HUX3\nHIZswa3m0WQBkRcoMwqrqk4SNrzU5Go45RxlQ7yAqQqE38ah8dhFtTORy1KTOw5AWO1iWq+nKvZl\nHJZObvy3cOoxNqa2kLckUS0OAsbt5ZDgDaj4VldjGHEeOGqSLTn4Xzs7+eeJecbzRT7QXk/ucBhb\nmw8tdGlmhFcE/xJCqCqNH/sobXffTcPHPsbat2/GsHkR+HEVaymoMF/KEbDinKjzMmXVsSwTIRp5\n7qLamdm7B9fmzYy/NI5eTCFcIQ47S7RKkEUnfYxiIahKr0bpKUd06MKJ6qrU0Vmq2O11FF1zlGS5\nG1mVLYM1p6MUYE3DMUpSRcs3kVcM2nOzCEsS8DuJJ4skshfPj//8vn0E5TilvML32tuJZoYwjTn8\ns5uwSYWiY5KuXB9zhiQrcliWwmyxF4Bb7E5srT4mpr/Po2Pb2djqwBa084mRWW6p8bOzqFKay14y\nlTF/GRXBvwRxrV9H4PY30n3rZlSzQNLfQe1U2Y8f9UbxFrJEVR/DrGIjgyyEL57gFyenMMbGcW29\niumxHIH4GWiMMmzXWektEY83crV1nGPKMrx5Fy2dZd+pLl2obudFs7PCr4fdXk/JEcEQ5airKnuW\nbNyJEjDoqzqNIk3SuXIv2AnbKE3xEmbIhpBwYOziFVI7tP8xPI45cnEPB3rAlbiPOpubaGQb1UqG\nJhnAJlSmDIucc5Zpe5iFjAMncNP6JhAWD760h2g+xHt3ruT3T47h01T+truF7L4ZUAXO/kvTnQMV\nwb+kUXWF5uo84eq19JwQtBct4oEozkyJBWqIu2pwiQKps/Pk89MXxabs3j0AFJZvIG/ZEfl55usO\nALDSYxCP1rGOQY6q64lQxHau1bENX2WGv4RxOOpBSEq+ACY2QrYs8YIfsxUcIs8ybYzpYge6qXPK\nOcKKaJ5oSCevwWNHD1wUG81SiXh8H3ZXhlyuiZT1LMLKctOcRkwNUSPS3JS6irRpMUcaUy3wUqk8\nUXoDOv4NdSwsPMHDwytp8MEhu+R4Os8ne1sIpEtkDs7h3lCH6rl079OK4F/i9N+xAVNzoJegMetj\n0lPAmckQpYpSU5SC1NDmHMRiey6KPZkX96DV1DA5W36fUm2c8U3jMQWNuiSf96IJi6S5jjFKZBPl\nrlya5UZxVSJ0liqaFkDTfJRCMQxaqHLmiRg+EGBFNPqqTpI2nQTyNRxzDrE2kcNUBS6vnf2n5ikU\nLny0zuTJY6y0lzdV97fUksyeQnGtZexIP1IIavQovYV2BgsWz2k2vlnYQCLXg03AXVUB9CYPzw38\ngNOx5dywoYPPTczzlvoQN4Z8xL4/iBAC7/WtF/w8LiTnRfCFEKNCiAEhxGEhxIFzx0JCiMeEEIPn\nfl56WQqXAC3rW7CZaeKB5bROtVFQBFp+ECkUCg1THLJ66EjHiMZevOC2SMsis3cv7quvYvTAFN7U\nOGowyEsuwQpVks766JBTJKWL2mwX0XqFZGQGASiGA8V56cU1XykIIXC5Osj7RjDNVqrsOXKWgj4D\nSgrWtZbzKkSuiWl7mL50HGFJ3EEH2VQtA8f/BCkvbFOUF/c9ztZ8FrMk2L9hEClLtOQ6OevuRMPk\nBqOWSctgvCixOSepd51CFZKbpYZvfT2p9HEeOOHHpkqedUtqbTp/3dlI7L5BCoNx/K9bhua/tDPB\nz+cMf5eUcq2UcuO5938KPCGlXA48ce59hfOMogg62jUiVatYdcSBkBLFKpdSjihVnFZ6WcYsmZnn\nLvgDlx8YwIxG0TZvJxxV8MVOE287Q14RrA0WiEWb2JY/wrPWapylDJ1rgsTDo3jcToQUqMFL+2G6\n3HE5O0i7j1KyWvCpOWxmDmVaRQRNmoMzBEvJV/z4BTVGQ8KgFLIhEQyMDzM59a0Lat8LE8/SroSJ\nBXVeztkpaY34RyVn3Z00KQnq8XI8ZWGqOZbbJyi6BzGl4DXYcK2rZeD0F9gzs5nergCnDIOPdDVS\nun+I7ME5fLtb8WxpuKD2XwwupEvn9cA3zr3+BvCGCzjWFc2qOzYgFQ2XYaMx56aolRs/zJUaiHjK\n1fxsU/NksyMX1I7UU0+BqhKt6gMEBTPLaNUAugk9bpNYtpk6M8ZT5losK8vq7laSkSl87nJJZC14\naYa6XSm4XB0kHS9R0tsBqLLlyKedEJIIAb3KaRZyvSDhhHOYFfE04ZBOUZUcjb2eoaGPX7B7MBVZ\nQNPSuPQMk9U6E0WTonMdtpSfnLDRq8T5RvDH5KVCzjXFpP8UVmIHLYrCxq4qstoZHhzIUzRtHK1y\ncGOVj61PzpI7HMb3mnZ8u9suiN0Xm/Ml+BJ4XAhxUAjx/nPH6qSUP826mAXqftk/FEK8XwhxQAhx\nIBwOnydzrizqempxWXFm67fQNR5kzpYGWWQi04SjaZRpGUKfsxO7wG6d9FNP41q/nrGjYXQjTcER\n5GVPks6SgiIFQSOLhWDQWseMJairqyMTjeJ3net2VZnhL2l8vv5ypcymn0bq5IgVy7kW0oDOqiFM\n04mrGOSA6yQbUllMVeDxOjg00gsojIx+7oLYNn7iKFc5yuXAX1yowxJQdKxiXO3CTYFM4CB9469F\nYqEEzrLHPUusGORmS8ezpYFTZ/6WpyZ20ljnJO/V+MMRg/yRBXw3tePb1XJBbF4Mzpfgb5dSrgVu\nBu4SQuz42b+UZV/CL/UnSCm/KKXcKKXcWFNz6ca3LiZCCDrW+En6Olg1lMNQwJM+yWyhidbqMzxr\nrqY9EyMaef6C2WBMTVE4fRrXzl2Mn04Sipwg2l4iqiv0u0tE09WsLZ5mQHbiNp0s+B0IIclECwTc\nTSAqM/yljs+3DhBkO7NY0k67R2UiXw+Aloa+xjPl1/kGRpxTXLvgLCfVBe3ksgrBmt9gdvZBstnR\n827b3pPPsl6dp6ALhtNekAJ1rp6zCNZoU+glOzbDh3TPkuj8MfaZW9GB13lcJKpe5OnBLPPZKpIt\nHq5SbdTtmcezsxnftZeP2MN5Enwp5dS5n/PA94HNwJwQogHg3M+LX1TjCmLjW7cgLJOgsRkhwZ05\nyqytGada4JjSjZsC1ugzyHNhkOebxA9/CEBq+dUUTRV3cpippkMICWtq85xJrWdN+jRPldYQNNM0\ndNuYn96LZSgE9XbUgP2Sqy1+paHrPryelYTdP6QkOmlw5TAyEpEQaLqkui5KXT5MMd+KoRhkRYTm\nZJF0lR0h4fnZm1EUnfHxL593207ODdGaXSBp2pj1J0DWwpkCDUoSl2eAzngfitRpWXcvz8VbieZ6\neD02mra6ODP0UR6buJVqv52FkM4bDiexL/Pjf037ebdzsXnVT5gQwi2E8P70NXAjcAx4EHjXuY+9\nC3jg1Y5V4T/HU+XBlz1DvHoH7XMCtXiaiLcKI1rDvM9LWjqomoyTSp0472NLyyJ+3/24tm5ldKyE\nWsojhMZJ/zhNOQ2PCva8joLkcWsdwVKaDf1tjJ/+CQIFdyaEY3kliOtSoKHhDpKZIxSCLXjVKTxF\ni2LMjaEoKJqkRUwQS5czV5/y7GdDIs90lYYLwXdemKa29jZmZn+AYSTPm025VJJ1vjnsJYv0kIPT\nHgUj2YzDLtihDyGFhVIIoTpjTDjijI/+Du2azm8rdiaCn+NYuI7BaB2+rgA1Jbg2KQm9teeVFoeX\nE+djSlUHPC+EOALsBx6SUj4CfBy4QQgxCOw+977CBURpKFLS3CybD1KSExiKZHKmjcba0zxkbqU2\nbBCff/q8j5t96QDGxAS+N97O8IE5qiMDjLb4GHNAn24RNYJszRxlUqnnmOzAI1Xa29uZPruXbv9G\nREng6L00qw9eaTQ03IHb3c2U/ziKKLLKV0ch6cSylz22nZ6zlIq1qKaNl9wn2R6xUdIEfq+D+bRF\nTLkTy8oxM3vfebPpwP2P0afNYAGPpPso6CVKso2OpiRh1zgLthT+XCOh7sfYN7iDzYbGP0kX1tXP\nEo4/zYOj76XWZ+dEUOUNY0Vq7+xB9V2e+0mvWvCllGellGvO/emTUn703PGIlPJ6KeVyKeVuKeXF\ny6++QvHeuB6bmSdoXo0UFnpxiKPZRrpDQ9xr7sCOQenIg+d93MT996F4vaQ6NlMsQvXCEQaXvwwS\nNtVl2Z/exbb4YfaWthGwSug+D5IRQuNXsTa0C8fKEI5LtNzslYamedi44V5qt30IgGVehWJagApq\nUdJXfQpQcOarWbDFWBU711c5ZMNtwYPHNPz+9UxOfgsprVdtTyme58Wh/SzLzLKguPj82q0A5DtX\nUV1MUXSP0RnZgNDy1GVe4D0zFh9uqkUNDDDt+jrH0+/jdFjH3uHFbcH7mqtx9ly+92LFaXoZsXzV\nChoTZ/AaVyMs0PMnGfE3Uy8KhO1VnLWaCJwYwTLPX3NzM5Ui+ZNH8b3uFgYPR1HMIpgFTlXP0JDR\nCLklVckSKhbfNLbSVYzR0e9h7syjLDNuYEGbpuodKxHi8ls+X65omodQ59uxVDdB2xyx2XIAnloU\n1NdFqCosYGbbSOkp9thfoDNVYq7GhkcKHjw0RaD6N8nlxohGX30QwfwDg/iD8/iyBo+nNlJ0hxFS\nUHK3YXGWaUWybGE93ro9LDutMVS6Dq8xwczaf6GgrOMrh9bRUO1isM7Gny4IWm/seNU2LWUqgn8Z\nsby+hqrYIeymm8ZEAEfuGJFAC+ZUCxuaXuLL5k2EzDALL33zvI2Z/PHDyHwez623c3rvNLXhQxxv\ng3GHoB/By+Z63jT/GENiOUdlE91Gku6+BnL7MkgsCn0g1IrYX3IoCjRtwq4coy7fD1GFklRRa0xa\nilPEU/0g4DnPETZELSarNZoslbwpeXGqD03zMzN7/6syoTCR5GO5Ufq0QQC+rN1GQD+NTi0IG9Ps\nZ9P4bViKyTUHf8BT+ge5uk9ncuUnKCp2/mXgd8mXLEZ7PeyOWrz7tb2XfT+Gy/vsrjBUIUi7i2h6\ngfpMP6oxQsLp53RUY2PDAe43t5O2PJSevPu8jRm//z7s3d2MJANIS9Aw8yIj/VMgYX1NjplYH125\nCZ4u3IxTmjSrdlyuAVzTq5nNjbJs25bzZkuFi4uy4kZ0ZYJWbxWZOReWzQQBK5VBioV2dFMjoadp\nTcxR1AQenwMXksdOLlBXdwvh8GOUSulfa0zTzDE49HFeOnAHf3n0+2QK4ywvnWVKhJguBSl5Igi1\nhWC+SFWqldZ4H6vkDznS9h6qO9tJNn6MuJ7lK2c+wpGpHJlVATYZCl/Y3oMeuPzDgiuCf5lRaqmn\nXitQl+oDTFL6DIdtJRrVAq2uMHdbu6gvHCZ28tVH6xQGB8kfOUrgjtt5+ZExbIU4RSPC0ZoUDUmd\naPVyXj/zHFElwD9ZG+nOzRJsD7Iw/COcZg1Je4zqlssjg/GKpPN6AFpc88Rmg3Bun3OL4zig4Ek1\nEnaEmc89jWZJsg12nKZg7/AC/tBtWFae+fAj/+3hpDQZOHYX4+Nf4ki4mnuVLjbkX6YumeF+4xo6\n1BMUVQNh68WfT7Fj4k789jFSWgfO/l1Ud/4jp2SB/7P/r9k3bmCsCnCrw8ndu/rw1nsuwAVaelQE\n/zKjpquTjmKaxnQHiqWhFwZI2HYgwz28rvshvlJ6DRaC6A/+7lWPFb/vftB1CuuvIxMv0jT1LCdX\na8zYFNYLwVBiLbtiL3GweDMxNPqKC9T0pygeLIt88w3rKr77S5maHqSrAZdyCGdsJQCiIKjqiFBT\nWKAQX05eyzOtz7E2ZjDUqNNSUjEsGJhvweFoIhx+7L893JETn+DFwUlM68/4gvl+1s4Ms736WQTw\noLmNQHACgLinm4aonZJi55sburj/tl0otR/hwYSNj770RyxYOr41VXy6upovvK4fzxUws/8pFcG/\nzOjoXY43E0N1FWlMdmHPHSHuaWco46Kv9jhBovzI2kJz7mFmjo39j8eRxSKJBx/Eu2sXex8Lg5Q0\nzu7leH8cvSSoaa3hzrFniSo+HjFuxi4tVisOMrP34Z5bR1ZJ0bN7x389UIWlixDQeyN25RCNnjVk\nZh1IAwrLJStTo0TymxBSkNNyhBKDTHhVltl0NCRPnQ5TVbWTWOxFLKv4S7/eMJIYRhwpJZ956Lu8\n5e5u/u7AH/L+x+uYPx7hOuvHtCZiDFNPynSRd86hWzopZyveOHgabPxeOsY7kn/Gl8+u5tsn34zX\n6+DPA35eWNnJm2/qQdHUi3zRFpeK4F9muDo6kJkIPiVGW6wPtTTLrF8ykzBRCz7ev/yH3F28FruS\n58w9f/c/rqCZevJJzGgU5223Mz0Yxxc/TcxTZF/IYnncTrbQzfb4IR4xXs8TQmd5bpoV7jbCj9ZR\nY2+lalsXQqncfpc6Yu3bUUWOleoEYnIFeCSogo3aACUZIJioZsIzgZE5CIDe4MRhSfYOhakK7cQ0\ns8Tj/7FByuzcD3n+hS088cwW3vbZj/OZ57z01cb5/JtWoXd6WW+dYF31HkJJg3uMXTTb0kTsERqN\nDhAq7bkim2q/h9n6Uf7q+J3sn93A+7DzsCPIu96xBu/qK7OMS+WJu8ywtbZipudoUl2sTHcDkFbO\nslDqRp9bj79tjP7wAZ4z+1klHuSr3/mfdSOK33MPemMjh6eqQULP8A/Yt6NAXhH0Vgd49/BPGNab\nmC7cRBxJT26CoFLNTU3vRSgC/7ZLu5FEhXO0bEHWrkTVv09/4r3IogYlWN5bLtHtnGsjp+Xw5tLU\nZgsMNui0lDRGojmkbQNC6ESiz/7cV5pmjsHBj4DeyxdPfoy9M6v57a1Z7v3932B4LkO208Vv9n6H\n5pk8Bgr3mDtpkXMkbGmCdAJQX/0k0WU/4idnf4Nwto7P+kP84Wt7afiDdeg1rot+mZYKFcG/zFAc\nDoSepckM0WFT8eWbsGf3MV3bwuiCDxSLhu4IQ/NOqkSSsePf4itPD/9aYxQnJsi8uAfP7W9i8KV5\n7LkwzuwEj3RCU8xGr+mhpTDLp/O/yaSwYZMWNaljHLG+B9Ulgm/qRruC/KaXNUIgNr0XP5PM2R6j\nZuR20EDvz9KZnmChcDWaqTLpmSSQPMOBKo3dSnl3d2C6SMC/4T/E48die0hkU3x83/s5OuPkU29e\nw5+94U6KBWg4Eefh0/dT45qnMVzgadGPiY7QLCzFQtG6UE3JlpWbcLU8whOznbx1axuv+9DVeHc0\nI/Qry4Xzi1QE/zLEVu3ALe2YWpiV82vRi0MMhhwMpb04Yl209M8TSeiMFOu4S32Iv3nkGP/yzH9f\n9OPfuw8UhdHq7ZglSfvIAzy1QxKxKWx1O7lj4lke9W7Bb6znOVFiWW4ShwbBWwdp+sBO3Bt+aaXs\nCpcq634TWbWcZuWb2MY3oM2XZ9nbmvexoDfSPFnNpHuStrmzFFWBbHKgSJMDx04SCG4hnT5FqZR6\n5esSySN879QdrAhr3Lu2g1ubQ1hZg7NfOMzq/BTzXffRNaihWpJP5d9CixonYo8BMOPupDpp8mKm\nl/d/+yyNAQcfvKlnUS7LUqQi+JchtvZmrNQUGTxcn1oPQFI7TcLhITLVh+bMYfVLDs9VUacs8Afy\nef7m4VP8677/ehPXymSIf/e72K+9gSMvRNCLSXyJw9y93kZDUucdiQgp1c3/Tr6blSZEkLSlT1G7\ncZaunrsQonLLXXZodsQtn6TJNMh4PkLHwAexsjY2rduPx8wSS9wISNLKYbz5LHuabOws2XjqyDAB\n/wZAEk8cfOXrhiaHuW16F38sHdS8vMDcpw4y/ZF9uBYKHFj7bexpg4bIPIdczZyU7bSRIRJ4me5c\nG2d9QfyJEp98Zog1LQG++/6r8DkqrTN/SuXpuwyxr+ilNHWQFcUa+nUXNellONNPcbS6lUNRH3q6\nga51owzkG5jIB3if7d/YUMrzFz84xjNnfnUTmtg992ImEkz0v5mSYdE58jX+5bU+MnbJOx0Flqen\n+Xj9e1hbqOaQqqBJk2X5aVo3+qirfe1FugIVLjrLdmLu+BM2GiM45Ndp2PcnuNQ8b+z8EZN6H95w\nO2e9w7TNH2Vvlcpr7XDWFsOdAiFUEuc2bqWUyL1r2IyOubuFhj/bgv+WZcz0+fnrbYM02Y+y+mQS\nUxV8cuFO7BiELIMxd5K12TWkHQrrQ25e/vMb+Pb7ttAUcC7yhVlaVAT/MsS1YQPG+B6qFTfzaoTr\n5rehmguMVofJKjrTo+vwO4rYrjvDMzPtuNUEfy7uoclS+L1vHWRwLvVLv9fKZol+9auUNlzDsSNZ\nvPkT7G1OcqA7Q78UvHl6hh9Xbed7k1t5nyV4ShZozY5R3xOhq+suhLiy/aeXO+quDzPaup1a249o\nli9SO3Q9O5c/zw3pF5lOvA0pFczcjzAVwVSDjyY1zT9/48N4PX2vROrEnj3OqmgvD2p5Wq9vQ/Xa\ncGxr5P+tL/Ku9D+w6WACr2HwlLOZ/WItrUqcmO9lhASNctb2tZ3VhNy2xbwUS5aK4F+G2Do6UJyg\nGPvJqg7enNuEu1CDnn2EAV8jp6IhxHwf69sKnG43OBBpYq37Ef6k+Dxa0eK3vriPaPrnC6xJy2Lk\n7/4WIxzmedtVCCtDOvlDntiQxCbgr6IR0qqbD1f9Lu/Ma0QVjYgQdGXO0n61i7q6WxfpalS4aAhB\n27sf5KlAEwH9HuSpAbSM5C27/42bhk6Qj1zPgnOMQOwZvt8kuSvbxSnXJgJP3oHzhXUsfPMY2Ydj\n7BM5jnfr5aS80w8z/qXbeWjvrVx7ahSQPNdazQ9OXochdNpJc6DuJFvTq3kmUIVqSW7orV3sK7Fk\nqQj+ZYgQAs91u8g8eQ9bf+96hFbk5oWtaMY4Q83jzOPl4HAftnyQq7aFecIVYjzj5xbf5/iMdS+Z\ndIT3fPQx9nz133j27q/zwN9/hK+/+y1k77mXwVU3Ytoa0eJf4/m+NOFgkbtKGbqTaT7U8gdcf8LB\nb+PgvtIsqjRZXXuM/g0fqvjurxCEotL320/ykMvP6sAJ6g5IhNfiXXX30DPUhJVrwp74NoPeHDZH\nDQnbJN/U9mOPrGRuLM5o5wIflgZXd7fB1MvIf/tN3JEj5H2SYz1+nuur5tDzyzjjX4WdAgv1T1BU\nJNfOv46zARs9Qsd9hSVT/TpUnsLLFP8tt2BlMqjPPkPEleRdiRtoTK3ElnmA4VCalGHn9MANuI0A\n62+Y4bH6Go4la9nlvp+9jrv4Pe3THBg8QuaFNJGRKMvCOslNm5mseg1K6lucrE4y0JmkK1/FOyei\nfKe0i8dO9tFXUhhLHOVZ1cWyzFnWX99NKLRtsS9HhYtIrbue0Du+w4tFDyuUKN0nM2RuKvGBI/dg\nTtyOJSX++U/xt8EEb596D4POCf6g7h6u3+bmrfYaCkh2Zh6l9NXXEVZ9jNRt5Xifi+mgndkn+wkF\n7mTEn8ff8XmG/EO8ffo2/l4NkQzqvKG9erFPf0kj/qeZlheCjRs3ygMH/meJQBV+Hiklo3e8iVIk\nQvBzXyL7r9McrnqK/1O9l4IyT8/0cnqLXawULrq6BkjXv0Qq5qTwtI9uEaHNnyWkJolbHvbOb6ao\n1nKkuIWweYozQZ2pvkdRSy4enh4kpYb4YM1nyJ/NckYoeESWlHTxXnEPf/p/P4eu+xb7clRYBH5w\n5j46/+kD9AdjjLQ4mcy7Gfj+Fj65cxPOlq9hpnvJTb6De/ASUEziSgabGKFBfJ7LJXwAAA3jSURB\nVJs6ZYiI2sGg8Vqym/8NS4f0vQ04q3+LDzU9guE7ia8Q4LrRbewtrGWor5lCh4f9V62k2XHl+e+F\nEAellBv/y89VBP/yJXf8OGNvezuuTZvIrHgbzojg4ZqH+ELtPNI8jGIJqgrVdOcCXKu2Eup6GsWW\nYeFUK9MvOMDnYnvNKJu1M+yzevmg8TuMCy/u9s9j1xN8bSZKkyV5X88/svuh+9l64CAf3v12ZrQO\nNhuH+LsP/QZV9f2LfRkqLCLfP/pdur78Z/SHFhhtcTJ30sO/jr2JhzfoOBp+QCnViz51J5+wxlhv\nv5ca5TQlWUM08zqmZk8Rf+MglhMiP2jiTOMu7ml9GEuUaJrbyfVTW8jGnuYr/XdgbqrmLY1VfLr3\nyszgrgh+BQDi3/seM//7z/G89k2Y9utZ0OZ4whnlGz0hDHmQUOwlsnoEhMRpauzUfGxrmMSfbiZ3\n6iZi8SAedT836j8irVq8r6mOcVXwudkYnZadP+r4S97+ha9Smwyzd3mQoj1Az446dr31r/D4rsyH\nr8LPc3B6P7Yv3EG/miQc1BmzvCTuq+MvfutqkupjdORsfHX+LG5T4XC+nohjHVVdRbKNL6NkA8y/\neBNfqp1hLrQfK9fIytHbuSbRSqLwMPdd/XpmO0K0O+08vKmboK4t9ukuChXBr/AKka98hflP/D2O\n234fXVnNpH2cx5H8ZHk3g002NCNNTexl1PzzFORJVFS2u01uDGRRil4sUyNqxflOTGdeqHxiPkbW\nvZH7zV28/+tfYypkYyJUj7Wljbt+5//i9AQX+5QrLDFShQRnv3INqxbGUC0wNIGUCo857PxldRWK\npeNJbeGPVz6FXSthGgrmmX6eiOzg4YYfoTjm8EQ3cPPozQSLQQ43jPLY5rUUdZ2eksID1/URuELF\nHiqCX+EXWPjnfyb8mX/A/oYPYKOHjMjxjDnPY756YjVuwlUakYCKtOZwJb6PPbsXgYpNrUbIHAUr\ngRQB4jV3ocsW3vL493BnShz11tHEXra97528qefOSn37Cr+SqT2fo3Tgb1A1A6kKvuF9K9/wXY1/\n8gsUHBFUw09XyU2p6GVUy2O6xxCGh/Wz21k7uw1LLbCvzeCZdatwJA2Cw2me/l/b8buu7GzaJSP4\nQoibgH8AVODLUsqP/2efrQj+hSX82X9k4fOfx/umP6CkrEQrqsyS5K/UBMdMP0KR2IIKhstOybGA\nzb4XTZnAUu0YjlUExHbWTE4z5NBoGj7B+uIQq2+6gWt33oFTq2Q0Vvjvc3bkAI/+8wfJ1nn45Jq/\nQC8V0A4/h+7dj+ocB2Egi1XUpTvYmmjAJu1IxeKFxg0cW96CI5zHfzrJN9+9mTUtgcU+nUVnSQi+\nKKdWngFuACaBl4C3SSl/aX+9iuBfWKSUhD/1aSJf+hK+17+Bqvf/MfORFAeeH2XfaJrjukVUAY8r\nyorGA1zjTNKTWI492YEldfKGl5NbP0N7sIW1qz+K01W/2KdU4RImMjXBX37+80w4a9i37TrWDSex\nzqQ5rZj4LXh91k61VSLvmsVQinxrZR/xNi/qRIatGcEn71xDe7V7sU9jSfDfFfwL7fTaDAxJKc+e\nM+q7wOuBV99QtcKvjRCCmj/6/xBOBwuf/UcKg6ep/aMPcOMWnRVPfo3MfIq2j/wpxsYtTMVbGZ88\nycCCRqvbTyggaNzqoTf0dRyOxsU+lQqXAVVNLfjf8bs8eHQKz1SWQ52+/7+9e4+RqyzjOP59ZnZm\nd2andNvtbrcX1i5So5WYtlBKoQJBKReNFSWhJhr+0JQ/xGg0KoTEaNQYUYQQE5J6STAqhKjEhpDY\nlkuJJgLb0mLLxZbSUkvLbrvAXtrt3B7/OGfLtEBaOjN7Zs/8Pslkz3nPZOf9TdKnb95z9n255ZK5\n3LhhJ/ccch7IjvOFkcMsoYd7l3by1uxWckN5/nLlIhb36j7R2aj3CP9G4Fp3/1p4/hVgubvfWvGe\ntcBagN7e3gv37Tv7bffkzA1v2MAbP/4JxcFgsbRkZyfz77mb7LJlEfdMmsmTQ8Os2b6He/dD//JO\n/vD6EZaek+Wmzg42PL2fzUdGKPZNg3SCttePct2Sedx3wYKou91wGmWEf1ruvg5YB8GUTsTdaRrn\nrFpFbuVKjvb3gzvZZctIZJt3JyCJxoqOHFmHp8hz74I5LJ/ezk/3HOT7r74O3Uno7mDucJEvDZT5\ndW87PVrquCr1LvgHgHMrzueHbdIAEtksucu1kbhEpzWR4LJMhn/OKnN8/whfPH8mq7tnsHV4jDeL\nJRZmWkn9bAvlS3u4ixF6WlXwq1HvtXSeBRaaWZ+ZpYE1wPo6f6aITCFXz+ngUCbBC/uDXataEsbF\nHTmumTWdBckWrFjmSHuwINrstAp+Nepa8N29CNwK/AN4EXjI3XfW8zNFZGr5VE9wA/bJt8feda00\nkgfgcCYs+BrhV6Xuc/ju/ijwaL0/R0Smpnltac4vGE9Zge+ccq08UfBbgTGN8Kul5ZFFJHKXJ9Js\nzRmjxwsntZdGgvPBcIn72enInzOZ0lTwRSRyV03PUUgYm18bOql9YkpnIOHkkgltblIlFXwRidwl\nczvIFp3HBodPai+PFiBhDJRLms6pARV8EYlce3eWZUNFNo8fo/KPQUsjeZK5FAP5om7Y1oAKvohE\nzlJJPnk0wQErs+vo8RPt5dE8iWlpDh0vaP6+BlTwRaQhXJFqBeDxI+9M65RG8iRyLQzkCxrh14AK\nvog0hN7Ods4bLZ1c8EcLjJ2T5ljZNYdfAyr4ItIQWrqyXDpY4t9vjzFWLOFlpzyaZygXTOVoWYXq\nqeCLSENo6cqw4nCRvDv/emuU8tEClOFwNihT3ZrDr5oKvog0hFRXhiVvlsgCjx0ZDh7JBA63BWVK\nI/zq6b9MEWkIiWyKtvYUy/NJHh8aoWjBblaDYZXSHH71NMIXkYbR0pXh0qES+8fz7Bo+BsBA0skm\nE+T0V7ZVU8EXkYaR6sqy4rVx4J3VM/eVS/Rl0lF2KzZU8EWkYbR0Z+l5s8D5bWk2F8ZJTm9lz3ie\n8zJtUXctFlTwRaRhpOfnALgikebZVIljs9vYN36cD2dbI+5ZPKjgi0jDSM3NQQIue9vJJ4yHe1oo\nOfRlVPBrQQVfRBpGIp0kPW8aH33iELmC84tMsDzyio72iHsWDyr4ItJQsku6STvc9FpQ7JdMy9Kr\nEX5N6Dl8EWko2Qu7Kbwxxnc7M6z8WI5FuUzUXYoNFXwRaSiJ1hZm3LAQgOsi7kvcVDWlY2Y/NLMD\nZrYtfF1fce12M9ttZi+b2TXVd1VERKpRixH+3e7+y8oGM1sErAE+DswFNpnZR9y9VIPPExGRs1Cv\nm7argQfd/bi7vwrsBi6u02eJiMgZqEXB/4aZPW9mvzezGWHbPGB/xXv+F7a9i5mtNbN+M+sfHBys\nQXdEROS9nLbgm9kmM9vxHq/VwH3AecBi4CBw1wftgLuvc/eL3P2irq6uDxxARETOzGnn8N3902fy\ni8zsN8Aj4ekB4NyKy/PDNhERiUi1T+nMqTi9AdgRHq8H1phZq5n1AQuBZ6r5LBERqU61T+ncaWaL\nAQf2ArcAuPtOM3sIeAEoAl/XEzoiItEyd4+6DyeY2SCwr4pfMQs4XKPuTBXK3ByUuTmcbeYPuftp\nb4I2VMGvlpn1u/tFUfdjMilzc1Dm5lDvzFo8TUSkSajgi4g0ibgV/HVRdyACytwclLk51DVzrObw\nRUTk/cVthC8iIu9DBV9EpEnEouCb2bXhuvu7zey2qPtTK+GCdANmtqOibaaZbTSzXeHPGRXXpvwe\nBGZ2rpk9YWYvmNlOM/tm2B7b3GbWZmbPmNn2MPOPwvbYZgYws6SZPWdmj4Tnsc4LYGZ7zew/4f4h\n/WHb5OV29yn9ApLAKwSLuKWB7cCiqPtVo2yXA0uBHRVtdwK3hce3AT8PjxeF2VuBvvA7SUad4Swy\nzwGWhsfTgP+G2WKbGzAgFx6ngKeBS+KcOczxbeDPwCPheazzhln2ArNOaZu03HEY4V8M7Hb3Pe6e\nBx4kWI9/ynP3p4ChU5pXA/eHx/cDn69on/J7ELj7QXffGh6PAC8SLK0d29weGA1PU+HLiXFmM5sP\nfAb4bUVzbPOexqTljkPBP+O192NitrsfDI8PAbPD49h9D2a2AFhCMOKNde5wemMbMABsdPe4Z74H\n+B5QrmiLc94JTrAD4BYzWxu2TVpubWI+hbm7m1ksn6s1sxzwV+Bb7j5sZieuxTG3B4sLLjazDuBh\nM7vglOuxyWxmnwUG3H2LmV35Xu+JU95TrHT3A2bWDWw0s5cqL9Y7dxxG+M229v4bE8tShz8HwvbY\nfA9mliIo9n9y97+FzbHPDeDubwFPANcS38yXAZ8zs70EU7BXmdkfiW/eE9z9QPhzAHiYYIpm0nLH\noeA/Cyw0sz4zSxNsnr4+4j7V03rg5vD4ZuDvFe1Tfg8CC4byvwNedPdfVVyKbW4z6wpH9phZBrga\neImYZnb32919vrsvIPj3+ri7f5mY5p1gZu1mNm3iGFhFsIfI5OWO+q51je58X0/wNMcrwB1R96eG\nuR4g2DqyQDB/91WgE3gM2AVsAmZWvP+O8Dt4Gbgu6v6fZeaVBPOczwPbwtf1cc4NfAJ4Lsy8A/hB\n2B7bzBU5ruSdp3RinZfgScLt4WvnRK2azNxaWkFEpEnEYUpHRETOgAq+iEiTUMEXEWkSKvgiIk1C\nBV9EpEmo4IuINAkVfBGRJvF/hSA055kLfcIAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb07e2cfa90>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8VNXZ+L9n1mwzk30nGyFAWIIssikioiIWtXVDrda+\nLrVWa13an32tVbtobbVvq7Vaa90q7riLuIIisskSIEASICH7nsySmUxmOb8/7gSyZzJEUHK/n898\nMrlne+6dmec+9znPeY6QUqKioqKicuKiOd4CqKioqKh8s6iKXkVFReUER1X0KioqKic4qqJXUVFR\nOcFRFb2KiorKCY6q6FVUVFROcFRFr3JMEEI8IYS4+3jLcSwRCs8IIVqFEJuPtzwqoxdV0Y8gQohy\nIYRLCOHo9vrH8Zbr24CU8gYp5e+/6XGEEPcKIV74pscJklOAM4F0KeXJx1uY4SKEuFUIUSeEsAkh\nnhZCGAep+6QQolgI4RdCXN2r7GohhK/X72Jht/JYIcSbQoh2IcQhIcTlvdqfIYTYJ4RwCiHWCCEy\nu5UJIcSDQojmwOtBIYToVp4VaOMM9LF4JK7Ndw1V0Y88y6SUUd1eN/VXSQihC+aYyrFlhD+DTKBc\nStn+TcjxTX5fhBBnA3cCZ6CcRw5w3yBNCoEbgW0DlG/o9btY263sMaATSAKuAB4XQkwKyBEPvAHc\nDcQCXwOvdGt7PXABUABMBZYBP+lW/hKwHYgD7gJeF0IkDHryJyJSSvU1Qi+gHFg8QNnVwHrg/4Bm\n4A8DHNMAvwEOAQ3A84Al0EcWIIEfARVAE3BXtzE0KD/OA4H+XgViu5WfBxQBbcBaYGK3Mgnkdvv/\nWeAPgffxwHuBdi3AOkDTzzmKwLk0ADZgFzC5d3+B/38F1AI1wLXdxw/UfQx4H7ADm4Cx3dr+HagM\njLEVODVwfAmKwvAADqCwv88FuBd4odc1vSZwTb8IHJ8DfBU450JgYa/P8mBAtjLgin6uxTVAB+AL\nyHJf4Ph1wP7AdXwHSO31GfwMKAXK+unzG5F1gO/ri8D93f5fBNQF0e5L4Op+vvtfDlA/MvCZ5XU7\n9jzwp8D764GvetV3ARMC/38FXN+t/H+AjYH3eYAbMHUr/wK44XjrimP9Ui36Y8tslB9dEvDHAY5d\nHXidjmJFRQG93T+nAONRrK3fCiEmBo7fjGLdnAakAq0oChMhRB6KdfMLIAFYBbwrhDAEIfftQFWg\nXRLwvygKpzdnAQtQfmAW4BKUG04PhBBLgNuAxUAusLCfvpajWJAxKIrxj93KtgDTUCy8F4HXhBBh\nUsrVwP3AK1KxGguCOLcuTgMmAmcLIdJQbjJ/CIxxB7BSCJEghIgEHgHOkVKagHnAjt6dSSn/A9zA\nEUv2HiHEIuCBwHVJQbmZv9yr6QUo34n8b1JWIUSGEKJNCJExwBiTUG4aXRQCSUKIuEHkGoyThBBN\nQogSIcTd3Z5G8gCvlLKk11iT+pNDKk9H+wcq76ftQSmlfYDyUYOq6EeetwI/oK7Xdd3KaqSUj0op\nvVJK1wDHrgD+KqU8KKV0AL8Glvd6TL9PSumSUhaifHG7FNoNKBZ+lZTSjWK5XhRoeynwvpTyYyml\nB3gICEf58Q+FB0UxZUopPVLKdTJgHvVTzwRMAISUcq+UsrafepcAz0gpi6SUzoCcvXlTSrlZSukF\nVqAodgCklC9IKZsD1+xhwIhy4zsa7pVStgc+gx8Cq6SUq6SUfinlxygug6WBun5gshAiXEpZK6Us\nCnKMK4CnpZTbAp/Pr4G5QoisbnUekFK2dPt+fCOySikrpJTRUsqKAcaIAqzd/rcF/pqCPNfufAFM\nBhKBC4HLgF92G8fWq76t2zi95Riq3AZEBfz0Q7UdNaiKfuS5IPAD6nr9u1tZZT/1ex9LRbH0ujgE\n6FAs6S7qur13onyhQfGlvtl1kwH2orgOknr3K6X0B8ZOC+Kc/oJiRX0khDgohLizv0pSys9Qnj4e\nAxoCE3Tmfqqm0vO8+7suA50jQog7hBB7hRDWwHlaUNxLR0N3GTKBi7vfsFGeolICFuWlKDfVWiHE\n+0KICUGO0fszcKA88XT/DPq7FsdDVgfQ/bOzBP7a+6k7KAGjpSxwI9oF/A64aIBxusayh1huARwB\nQ2SotqMGVdEfW/qzgnsfq0H58XaRAXiB+iD6r0R5TO9+owmTUlb37jdg8YwBqgOHnEBEt76SDwso\npV1KebuUMgfFz3+bEOKMfk9QykeklDNQXA95HLHculMLpHf7f0wQ59Yl96ko/v1LgBgpZTSK1dYV\nadHfNW5ngHPrLnq395XAf3tdx0gp5Z8ApJQfSinPRHnK2Qf8u5/++qP3ZxCJMklY3a1OMOlkj4Ws\nRRx5UiTwvl5K2ccVFwKSI59XCaATQozrNVbXU1IPOQLXbOxA5f20zRFCmAYoHzWoiv7bx0vArUKI\nbCFEFEd8zt4g2j4B/LEr/Czgpz0/UPYqcG4gVE2P4nd3o0xmgeK7vVwIoQ340E/r6lQI8T0hRG7g\n5mBFeUrw9x5cCDFLCDE70H87ymRkn3oBWX4shJgohIhAiagIFhPKja8RRUH8lp5WWz2QJYTo/t3e\ngeL+0gshZnLEmhyIF4BlQoizA9cjTAixUAiRLoRIEkKcH1A4bhSrsb9z7I+XUM57mlBCFe8HNkkp\ny4NsfyxlfR64RgiRL4SIQfmMnh2oshDCIIQIQ1Hg+oAcmkDZOUKIpMD7CYG+3obDPvc3gN8JISKF\nEKegGBP/DXT9Jorr6cJA//egTLLv6ybnbUKItMB8xe1dcgb8/juAewLy/ACYAqwM8hqcOIzkzO5o\nf6FEd7hQflBdrzcDZVfTK/JggGMa4Lcollojyg85JlCWhWIN6brVXwtc263tbUAxyuPpAXpGTnwf\n2IOirD8HJnUrm4li6dhRfmQvcSTq5tbAubWjTMrePcD5nwHsDJx3E4pvPSpQ9iw9o25+jeKeqQF+\nGjivMQPUXQhUBd5rgadRfK21KNZ9OYGoGhQL+UuUiehtgWM5KJE7DpSJy0foG3Wj63UuswPXqCXw\nObyP8nSVEjhu5Uj0Uv4A16O/z/eGwOfSghLJlN6trEfkUz/9jZisgXIHkDHIeLeh3DhtwDOAsVvZ\nB8D/9voeyl6vhYGyhwL9tKMEHvwO0HdrGwu8FSivAC7vJcdilKcRV2CcrG5lAvhz4NxbAu9Fr2u2\nNtC2mAGi4k70lwhcDBWV40Ygamg3iiIJ5slFRUVlGKiuG5XjghDi+0IIY8At8CDwrqrkVVS+GVRF\nr3K8+AnKwqoDKD7/nx5fcVRUTlxU142KiorKCY5q0auoqKic4HwrkmjFx8fLrKys4y2GioqKyneK\nrVu3Nkkph0zS9q1Q9FlZWXz99dfHWwwVFRWV7xRCiEND11JdNyoqKionPKqiV1FRUTnBURW9ioqK\nygmOquhVVFRUTnBURa+ioqJygqMqehUVFZUTHFXRq6ioqJzgqIpe5biwf/9+1q1bR0tLy/EWZUjs\nnXYqbZV4/WrONZXvJt+KBVMqo4svvviCzz77DIB169Zx5ZVXMmZM0JtMHTNsnTYe3Pwg7x98H5/0\nERcWxy3Tb+H7475/vEVTURkWqkWvckyprKzks88+Y/Lkydx8881ERUXx4osvfusse6fHybUfXsuq\ng6u4fOLl3DfvPrIsWfz2q9/y5M4nj7d4KirDQlX0KscMKSWrV6/GbDazbNky4uLiuOKKKwBYsWIF\nDofjOEuoIKXknq/uobi1mL8v+ju/mvUrfjDuB/znrP9wbs65PLr9UT459MnxFlNFJWhURa9yzCgt\nLaW6upqFCxdiNBoBiIuLY/ny5bS1tfH444+zbds2PB7PcZXzw0Mfsrp8NTefdDML0hccPq7VaLlv\n3n1MipvE7zf+Hnun/ThKqaISPKqiVzkmSClZu3YtMTExFBQU9CjLzMzk+uuvx2w288477/Dwww/z\nySefHBcL3+lx8tCWh5gQO4EfT/pxn3Kj1sjdc++mtaOVJwqfOObyqaiEgqroVY4J1dXV1NTUMHfu\nXLRabZ/ypKQkrr/+eq6++mqys7NZv349jz/+OLW1tcdUzhf3vUi9s55fn/xrtJq+cgJMipvEBbkX\n8PK+l2l2NY/Y2N02tFZRGVGGVPRCiDAhxGYhRKEQokgIcV/geKwQ4mMhRGngb0y3Nr8WQuwXQhQL\nIc7+Jk9A5bvBli1b0Ov1TJ06dcA6QgiysrK49NJLueGGG9BqtaxYsYL29vZjIqPT4+T5ouc5Je0U\npidNH7Tu1ZOvptPfyWslrx31uO6DZVTf8UtKZs9h38R89p+xmMZHHsXf0XHUfauoQHAWvRtYJKUs\nAKYBS4QQc4A7gU+llOOATwP/I4TIB5YDk4AlwD+FEP2bRiqjApfLRVFREVOnTiUsLCyoNklJSVx2\n2WU4nU4+/fTTb1hChZWlK2l1t3L91OuHrJtjzuaUmHxe3vU0nn3vg98f0phtK1dy8Pzzcaxdi2nx\nYuJvvBFDTg5N//wnZRddhKe6OqR+VVS6M6SilwpdzlJ94CWB84HnAsefAy4IvD8feFlK6ZZSlgH7\ngZNHVGqV7xTFxcV4vV6mTZs2rHYpKSnMmjWL7du309ra+g1Jp9Dp6+TZ3c8yK3kWJyWeNHhlvx/e\n/TmX7V1Ls8/F+revgefPA1vNsMZsfeVVau/6DZGzZjF29Qek3v9HEn5+Mxn/fpIxTz2Ft76Biut/\ngq+t7SjOTEUlSB+9EEIrhNgBNAAfSyk3AUlSyi4Hah2QFHifBlR2a14VONa7z+uFEF8LIb5ubGwM\n+QRUvv0UFRVhsVhIT08fdtv58+cjhGDTpk3fgGRHWFW2igZXA9dOuRZbk4uywkaaqx1Ifz8+8w3/\ngG3PM/ek64k2WFg1/hSo2Q7PLA1a2bt27KDuD38gcsGpjHnicXTx8T3Ko06ZT/o//oGnooLa++4b\niVNUGcUEpeillD4p5TQgHThZCDG5V7lEsfKDRkr5pJRyppRyZkLCkFseqnxHcblcHDhwgPz8fIQQ\nw25vNpsZP348O3fuxOfzfQMSKpOgK/auIDc6F0NhCv+9ewOrHt/Fy7/fzPN3fcXXq8rxdgbGtlbD\nmvth/Lnoz/wdZ2adxdr2CpxXvArtTbDiYvC4Bh/P66Xmzl+jT0wk7S9/QRgM/daLnH0y8Tf+FPsH\nq3F8/vlIn7bKKGJYUTdSyjZgDYrvvV4IkQIQ+NsQqFYNdF/Pnh44pjIKKS4uxu/3M2nSpJD7KCgo\nwOl0UlZWNoKSHWFr/Vb2tezjHMsFbHq7jNzpiVz4qxksumoisSmRbHrnIC//YTPWRhes/zv4vbDk\nARCCc7LPweV18YW0w8XPQP1uWH3noONZ33qLzvJykv7312gtlkHrxl1zDYaxY6l/8M/IEOcBVFSC\nibpJEEJEB96HA2cC+4B3gB8Fqv0IeDvw/h1guRDCKITIBsYBm0dacJWRRUqJr60N2dk5ov12uW3S\n0vp474Jm7Nix6PV6iouLR1CyI6zYuwKLwYL240yikyI44+qJJOdYmDgvhWU/n8Z5t0yjo93DG3/5\nGuvXH8HkCyEmE4DpidOxGC2sq1oH486E+bfA1mfhYP8WuN/tpvEfjxFWMJWoRYuGlE0YDCT87EY6\nDx7E/om6GlclNIKx6FOANUKIncAWFB/9e8CfgDOFEKXA4sD/SCmLgFeBPcBq4GdSym/mmVtlRGjf\ntJmDS86hZM5c9k0toOyii2l5/nn8TudR9Xu0bpsu9Ho9OTk5lJaWHpU8/VHtqOazys+Y7V9ER4uf\nRVdOQKfvGSQ2ZmIs3799Or6ODj5ouBnPSUeicrQaLfNS5rG+ej1+6YeFv4aYLHj/dvC6+4zX+tJL\neOvqSLz11qCvienss9FnZtD8ryfVOHuVkAgm6manlPIkKeVUKeVkKeXvAsebpZRnSCnHSSkXSylb\nurX5o5RyrJRyvJTyg2/yBFSOjo6SEiqvuw6EIPGXvyTupzeAENTf/wD7z1hM68svh6xcRsJt00VO\nTg5tbW0jHn3z8r6XQQoSNxcwZUEaKbnR/daLS43izLQXaPZmsX5DVI+yU9NPpbmjmb0te0EfDksf\nguZS+OqRHvV8jnaa//UkkfPmEjlnTtAyCq2W2KuuoqOoCPfevcM/SZVRj7oydpRT/8ADaCIjyVzx\nAnHX/A+Jt9xC9muvkvniCox5edTdex9VN9+M393XOh2KkXDbdJGZqbhKysvLj7ovv89P6df1bPyg\nlNf3rCTHOoVUcypzvj924Eb1e8h0vUXBJCtFX1RTVXzkhjM/bT4CobhvQHHhTDwPvngIWo/I2/Lc\ns/haW0n4xS+GLbPl3HMRej1tb7417LYqKqqiH8V0FBfj3LCRuGuvQRcX16MsYvp0Mp59hsQ7/x+O\nTz6l6qabkcOIehkpt00XiYmJhIWFUVVVdVT9+P2S9/+5i4+eKuKVL9/GIe2c7F3EspsLMIQNsj3D\n7tdBaJl9xTwsCeGs+e9ePG7lesSGxTIhdgIbazceqb/kARBa+ECZmPW2ttLy9DOYzlxM+CCrgwdC\nGx1N1OIzsL37Lv4RnkdROfFRFf0oxvbBB6DVYvnBD/otF0IQd/XVJN97D+3r1tH81H8G7KusqZ0r\nntpI3m8+4My/fs4Tb6/D7/fjs6Rx+b83sqa4gU5v6FEjGo2G1NRUqo9ypei+r2qpKGpm/kW52E7d\nR0pECv/v1h8RnRgxcCMpYddrkHMa+thkFl01AVtTB1+vKj9cZU7qHAobC3F6AvMalnRYeCeUfAD7\nVtH876fwO50k3HJLyLJbzjsPX1sbzo0bh66sotINdYepUYzjszVEzJiBLiZm0HrRl15K+8ZNND76\nKKYzF2PMyelR3mDr4JJ/bcDj83PF7Ax2VVnZXbSNGI2BG98qBwRfHWhGCAjTKROdUWE6Fo1P5Gen\n55IRN4iS7UZqairr16/H4/Gg1+uHfb5SSrZ9dIjETBOxJ8PmNzfxs2k/QyOGsHeqtkBbhTLRCqSO\ni2HCvBR2fFLBhLnJxCRHMid5Ds/sfoZtDds4Je0Upd2cn8KOF/G8/itaX9NhOe88jLm5w5a7i8h5\n8xAREdg/+4yoBQuGbqCiEkC16EcpvrY23CUlRM6bN2RdIQTJv70bjcFA0z8e61N+99u7sXd4ePn6\nOdyzbBIr/mcGmQYH8enZ3P29SWy5azGPXHYSP180jivnZvLDORnMyYnj3Z01LH1kHZsOBpcBMiUl\nBSkloa6kbqp0YG1wMWlBGu8ceAeN0HBB7gVDN9z1GmiNMOF7hw/NvWAseqOWz18qQUrJSUknodfo\n2VTbbQWvVg/nPkzTBhvS20n8zTeFJHcXGqORqPnzcXy2Ro2pVxkWqkU/SnEVFgIQftIQeV0C6GJj\niV6+nJbnniOx/lfok5SMFzsq2/iwqJ47zspjQrIZgAMHDuD3+bh08Ryys7MBOK8gtU+f1W0urvrP\nJm54YSvv3HQKY2IHt+y7VlA3NTWRmtq3v6E4WNiIEJA1NY4PP/mQWUmzSI5MHryRzwO7V8KEpRBm\nPnw4wmxg9nk5fPFyCfu3NjBuZhLTEqf1VPSAR59FW3kU0dntGKhHWT8YOlFnLML+8cd0FBURPmXK\nUfWlMnpQLfpRiqtwJ2i1hE+ZPHTlADGXLQefD+tbbx8+9txX5UQZdVw9P/vwseLiYsLCwsjIyBi0\nv7TocP7zo1n4/JKfv7wdf395ZboRGxuLECJki76mpI2EDBOVnnLKbeWcnR1EBu39n4KzGaZe2qdo\n0oI0EjJMrH+tlM4OL7OTZ7O3ZS+tHUcicpr+9SRCoyN+VgS8cxN4j24iNeq000AIHOvWHVU/KqML\nVdGPUjpKijFkZqKJCM4/DmAYM4bwadOUSVygyeHm/Z21XDg9jSij8nDo8/koKSlh3Lhx/W4w0pus\n+Eju/l4+2yvaeHfn4AnBdDodsbGxNDU1BS1zFz6Pn/pyGym50awuX41WaFmcsXjohjtfgfBYyO1b\nV6MRLLgsj3ZrJzs+rmBOqhIbv7lOWQjuqa6m7Y03iL74IvSX/Q0a9sD6vw1b9u7oYmIwTpyAc+M3\nm+RN5cRCVfSjlM7S/RjHjRt2O9NZZ+Hetw9PTQ1vbKui0+fnyrmZh8srKytxuVxMmDAh6D4vnJ7O\npFQzf15djMc3uO85Pj4+JIu+ucaBz+MnKdvMh+UfMjtlNjFhg09C02GF4lVKygNt/5O/ydkWck5K\noPDTSsYa84jSRx0Os2x5/nkQgrjrroO8s5XY+vWPgLOl376CJXLOXFzbt+N3DZ48TUWlC1XRj0L8\nHR10VlSEFAESdaoSUdL+1Ve8v6uOqekWchNNh8v37duHRqNh7NhBFh/1QqMR3HZmHtVtLlbvrhu0\nbkJCAi0tLcPOZNlUqWyp0BpdTaW9kiVZS4ZutPdd8HZAwfJBq538vWw63T6K1tYyM3kmm2o34Xe7\naXvrbUyLz0CfkqJUXHgndNph4+PDkr03kXNmIz0eXNu3H1U/KqMHVdGPQjrLy0FKjGNzhqzbG0Nu\nLrqEBBo//5LCyjbOmZxyuMzv97Nnzx5yc3OD3kmqi9PHJ5IVF8Ez6wfPUJmQkIDf76elZXhWcVOV\nA32Ylq/tGxEIFo5ZOHSjwpchdiykzRi0WlxaFJmT49izvoaTk06m0l5JyQev4LdaibnkkiMVkyYp\nkTub/wWe0LcJjJgxA3Q62lX3jUqQqIp+FNJZUQGAPiNziJp9EUIQPn06jm07AFg65UjUSlVVFTab\nLaTcNhqN4EfzsthW0UZRjXXAevGBDTqG66dvqrITlxrF+pr1TEmYMrTbxloF5V8qk7BBrOyddGoa\nTmsnY2yKy2rd5tfRjxlDxOzZPSvOukZxCZWEngJKExlJWH4+rm3bQu4jWDp8fh6vaGDh5n0s+bqE\ndS32b3xMlZFHVfSjEE+lsgGYIWPMEDX7J3zaNMKa65lj8ZMZF3n4eFFREVqtlvHjx4fU7wXT0tBp\nBO/sGHhSNiawuKttmNvrtdU70Sd72dW068iCpsHY9TogYerFQfWfOSmWqBgj9q16EsLi2eovw3Tm\nmQhNr59Y9mkQmQh73hmW/L0Jn1aAa/dupMdzVP0MRKvHy3+qGpm3aS/3HaghWqfF6vXyw10H2etQ\n5wa+a6iKfhTSWVGJ1mJBazYPXbkf2nMURX5BxBHrrsttM27cuGG7bbqIiTSwIC+BdwtrBgy1DA8P\nx2AwDEvRu50eXHYPFea9SCSnpp06eAMplWibMbMhNjj3lkarIXdmElV7W5nmH8PuDEnUwtP6qwh5\nZ8GBT5UY/RCJmDYN2dFBR0lJyH30xunz85eyWs7Yso+JX+7mrtJq0sMMrJw2lremj+Od6eOI1Gr4\n48HaoTtT+VahKvpRiKeyEv0QMe6D8VmncoOY4T3iPqmoqMButx91SuLzClKpsXawtaL/dMRCCKKj\no4el6NvqFQu0VLObaGM0+XH5gzeo362EQk69ZPB6vcguiMfvk4zb3YE1UlCVbeq/Yu5ixX1Ts2NY\n/XcnvKAAUPaeHQk6/X4uLzzAw+X1WHQ67sxO5oMZebwzfRzzY5TzSDDouTY9gU+abZS7hp/NVOX4\noSr6UYinrg59CCtLu3h3v5VmUzzhlUcmTouKitDpdOTl5R2VbIvzkzBoNXy8p37AOhaLZXiKvkFJ\nNLbHtZMZSTOGzm2z8xXQ6GFS/8neBiI5x0J4lJb8dcp12dSwpf+KmfOVvxVfDav/7uhSU9ElJODa\nURhyH935Z0UDG63tPDYxgzdOyuUXWcmcZO67xuKiJMV19l5Dz+tvs+1kd9Gt7N//IF6v6sf/tqEq\n+lGGlFJR9MlJIbWvanWy9VArvpxc3IGt/brcNnl5eRiNxqOSL8qoY1Z2DGuLGwasEx0djdU68IRt\nb9rqnTiMLdR11DIzaebglf1+2P2GklM+IjboMUCZUM6NayWxwcEYTTwbajf0XzEqEeJy4dAA5UEg\nhFD89IVHr+htXh+PVTRwTryFC5MHP+eMcCNTo8L5pNl2+JjdXsTWbZfR1PQZhyr+TeHO6/H7vUct\nl8rIoSr6UYbf4UA6neiShsjxMgDvFir+2bSpE+isrER6vZSXl9Pe3j4iO0kBLMxLpKTeQXVb/5N+\n0dHRdHR00NERXIhiW72T1jQl0mhm8hCKvmoL2Kph0veHJXMXSW178KPh5NgFbKzZSKNzgMVdaTOh\n9ujcLuHTpuGpqMDbHFxSuIF4ubYZu8/PrVnB3fznxkSx3e7E7fcjpZ99+36DXmdh7txPyZ/4IG1t\nm6mueemoZFIZWVRFP8rw1ikLkkK16N/eUc30jGjiJ+aB14unqoo9e/ag1+sZF8JK2/44fYKSvGwg\nqz46WtnuL1j3TVuDk/qYg5gMJsZFDyHjnrdAa1BWsoaAbs8mbJYcpneeiVd6WVm6sv+KKQVgrwX7\nwC6qoQifNg3gqK36V+paKDCFM9UUXDqM2ZZI3H7JTruL1tYN2Ow7ycm5FaMhnuTkHxAdPZtDh57A\n71c3SPm2oCr6UYanTlEsuuThW/TFdXb21dk5f1oahuwsANwHyygtLSUnJweDwTAiMo5NiCItOpwv\nS/uPlbdYLABBuW+kX9JW7+SQsYQZiTPQagbJvyMl7Hkbxp4BYZZhy+2pqaGztAR33kzcxWHMS53H\n6yWv0+nrR+GlKJOp1O0c9jhdhOXng1ZLx+7dIfdR5HBR5OjgkiFcNt3p8t3vsjuprX0Dnc5EUtIy\nQHEpZWZch9tdR1PzmpDlUhlZVEU/yvDWByz6pOFb9G/vqEarESydkoIxkH64tagIq9U6YtY8KMpi\ndnYsm8ta+t2YfDgWfbvVjVW20ihrh3bbNOxR3DYTloYkt+PzzwGIWriQhkM2Ls/5IfXOep7e/XTf\nyokTlb+N+0IaC0ATHo4xJ4eOoj0h9/FqXQt6Ifh+0hALyLqRbNBj0WnZa7fT0LiapMTvodUeCamN\njT0VvT6WhvpVIculMrKoin6UcdiiD+R2Dxa/X/L2jhrm58aTYDKisVjQREbSUqJMyA4nt00wnJwd\nS3N7Jwf/08s3AAAgAElEQVSb2vuURUZGotPpglL0rfVOas0HAIaeiD0QsEDHLhq2vAD2z9agz8gg\nbWEBSEhtzeOc7HN4vPBxVuxdgcvbbc4hIhYi4qCpNKSxugjLz6djT2iK3uOXrKxr5cw4M7H64Lem\nEEIwITKM3dYG/P4OUlIu7FGu0ehISDiLpubP8PnUxVXfBoZU9EKIMUKINUKIPUKIIiHELYHj9woh\nqoUQOwKvpd3a/FoIsV8IUSyECM3ZqfKN4K2vQxsfjximm2VTWQvVbS4unJ4GKD92fWoKzooK4uPj\n8Tv1vPdYISv/vJXijUe/oGZWtuJK2FzWN6eNEAKz2YzNZutT1htrvZNa80HCteGMjx1ixe6BzyA+\nT9nvdZh4W1tp37AB81lnkpRlxhiho3JPC/fOvZd5qfP40+Y/Me+leVzy7iXct+E+9jbvhbhxR6/o\nJ+XjbWzE0zBwlNJArGmx0eTxDstt08X4yDD2dwj0+jjM5oI+5UmJS/H5nDQ3fz7svlVGnmAsei9w\nu5QyH5gD/EwI0bXi5P+klNMCr1UAgbLlwCRgCfBPIcTQiclVjgmeuvqQ3DZvbKsi0qDlrPwjvn1d\ncgo0NpGWPIY3H95GfZkNj9vLJ8/uZcv7gycnG4qc+Ejiowz9KnpQ/PTBKPrWeif15oMUJBag0/S0\nWqWUrNpVy22v7uCvq/fQVr4jdGv+44/B68V0zjlotBrSJ8RQsaeFcF04/zzjnzx55pNclX8VMWEx\nrDq4ikvfu5TnosKg+egtegD33r3DbvtKXQuxei2L4gZY2DUIWWEG7NKIMfp0RD/rEqKjZ6PTmVRF\n/y1hyOc1KWUtUBt4bxdC7AXSBmlyPvCylNINlAkh9gMnA6EHDauMGN66umGvinV1+li1q5alU1II\nNxy5Z3tjoglvb6f1gJL06+I7ZxIVG8Znz+1l87tlxI8xkT01PiQ5hRDMyoplS3n/it5sNlNeXj5k\nP7W1jTRZargk8fwex6WU/O69PTyzvpzYSAOt7Z28JX7Da8nJhBKPZPvgAwyZmYcV75iJsRzY1khL\nbTtxqVHMTZ3L3NS5ANg77dzz1T08dOhjYmlnmasNwqNDGBWMExRff8eePcruU0Gyy+5kVaOVGzMS\nMfTOxxME8Shho66o/tNJaDQ6oqNn09q6cdh9q4w8w/qEhRBZwElAV37Um4UQO4UQTwshumZz0oDK\nbs2q6OfGIIS4XgjxtRDi61C3hlMZPp764Vv0H+2po73Txw+m93Rp2MPCCXO7aS/zcvKyHMzx4Wg0\ngoVXjCd+TBRrX9iHxz28vPHdKRgTTVWri2ZH3+X2Xa4b/xCbZBdZd4NQNu/uzpvbq3lmfTk/np/F\nlrsW8/q8cpqkhZs3RA25pWFv3GVlODduwvy97yECmS4zJsUBULmn743KZDDx5wV/Zropm/vjY2mu\nDT0LpTYqEkNW1rD89Davj0t2HCDeoONnGYkhjWt2K7nwbcaB962NjZmLq6MCl6sqpDFURo6gFb0Q\nIgpYCfxCSmkDHgdygGkoFv/DwxlYSvmklHKmlHJmwjAnBlVCw9/ejt9mG3Zo5YdFdSSajMzO7unL\nbQlYgrF4yT/lSF56nUHLaZeNx2nrZMcnFSHLOzVdCXHcWd03jNJsNiOlxOFwDNje7fRQri1Bg4ap\n8VMPH3d2evnTB/s4KSOa35ybj1YjmOFYxz3RH7K5ws47hYNvadiblqefQej1xFx+2eFjptgwYpIj\n+lX0ADqNjnun30aHEDy194VhjdebsPz8YUXevFrXQqvXx3OTs4c1CdudSKeyXWKtL3zAOjExyhOM\natUff4JS9EIIPYqSXyGlfANASlkvpfRJKf3Av1HcMwDVQPf8t+mBYyrHGU+9MmE3nMVSPr9k/f5m\nFuQloNH0zMte7Vbiw/NyBDp9z2mY5Bxli73tH1XgdoW2HH5KmgUhYGdl/4oeGNRP31LTTq3pIDkR\n44jQH1kM9PSXZTTY3dy1dCJajVDi56s2c/F4HROSTTy+9kC/YZ394W1sxPrWW1h+8H10cXE9ysbk\nx1Jd2oa3s/+nmuwx81na7mJl8zas7uBTOvQmbFI+npoavK39J4Lrwi8ljx6q55791cw0R/SbyyYY\npJT4bRsJFx6qOwbOwBkZmYdeH0drq+q1Pd4EE3UjgP8Ae6WUf+12PKVbte8DXas23gGWCyGMQohs\nYByweeREVgmVrhj64aQ/2F1txerycOq4nr52t9tNjVf5kY9J7P/HPv3sTDxuHyWbBt8ecCBMYXpy\n4iPZWdU3jDIYRd9Q00aD6RDTu7ltOr1+nv2qnNPHJzAzK/CE0nIQnM1oxszimlOyKa638+X+4DY2\naXn+v0ifj7gf/7hP2ZiJsfg8fmr3D6DEtXqukJG4pI/VZauDGq8/wiYqfvrBJmR9UnLT3gr+eLCW\npfHRvFgw9rCbabh0dFTi9baQoPPT0Dmwolcyjc7AavvmN0hRGZxgLPr5wJXAol6hlH8WQuwSQuwE\nTgduBZBSFgGvAnuA1cDPpJShO2pVRoyuGPrhWPRdCm9+bk9FX1VVjSs8DCkEWlv/SjEpy0xcehQl\nm0Nf5l+QHk1hlbWPhd21OnYwRV9YvRufxsPsMbMOH/t4Tz1Njk6umpt1pGJlwA4ZM5vzpqUSH2Xk\n2fXlQ8rmczhoffllTGedhSGz725daXkxaHSCQ3sGzkUz0ZRBrtTx3sH3hhxvIIyBjdgHy03/t/J6\n3qhv5c7sZJ6clIlZF3ognNWq5OhJNIZRP4iiBzCbp+FyVdDZeXQboqscHUMqeinll1JKIaWc2j2U\nUkp5pZRySuD4eYHonK42f5RSjpVSjpdShr5nmsqIcsSiD17Rr9/fxMQUM/FRPbNS7tpcgtRoELHx\neKoH9mnnTk+k7qAVR2to+cunpFtocrhpsPdsHx4ejk6nGzQNwq42JQfM9OTph4+9tLmCtOhwFuR1\nmxeq3QH6CEgYj1Gn5cLpaXxe0khr++C5WqwrV+K324m75n/6LdcbtaSPj6FsR+OAriARnclZzg4K\nGwtpcg1ve8QudLGxaOPjcRf3r+gPODv426F6fpAUwy2ZSSFb8l1YbdvRaMJJCTfR4B7cLWcJxNjb\nbCOTTlklNNSVsaMIT20d2uhoNEHuACWlZFe1lekZfUP/DpYeQifDCEtLwTtI1FRWILyyal9oFt2E\nZMVFs6+uZ47zYBZNlXr3Ek8y8eGKDA32DtYfaOKiGeloNQKf3U77xk3Y1myg3TMO6VUePJcVpOL1\nS1btHnjhl5SS1pdeJnzaNMKnDBx5kjsjEVtTB40VA+Rot2SwqK0RiWRd1boB+xmKsLw83ANY9P+o\naEAn4L7c1KNW8gA26w7M5qkkGQ2Dum4ATKYpgEZV9McZVdGPIjx1tehSU4auGKCyxYW9w8vktJ4J\nvurLbDg6W0hKSEaXkIB3kI2641IjCYvSU1U8+EThQExIVhbz7Kvtq9AHU/QOu4vKiBLyw48o4Q+L\n6pESFkd1UPWLWymdN5+Kq6+m+p1GKl5upOSUU2l57jnykyLJSYgcdO9a58aNdJaXE3PZ8kHlzy5Q\nJrH3bx1g5Wp0BnmdHmINFjbVbeq/ThAYx4/HvX8/0tfTS1rn9vB6XSvLU+JIMOhD7r8Ln8+N3bEX\ni3kaiQY9dp8fp2/gEFedLpKoqDystpHZCUslNFRFP4rw1tahTw5e0e+uUdwik1J77i276YMS/Do3\n4yePRRcfP6iiFxpB6rhoavcPbzPvLmIiDSSZjRTX9bWIB1P0G0u30qlzMSd57uFjq3ZUkSk60P74\nUtrXryfm8ssY89ffkb2kgfTbLyK8oID6B/5E9S2/YNmkJDaXt9DUTww/QNvrK9FaLJiWLBlU/rBI\nPekTY9i/taF/9030GAQw2zyWzbWbg4726Y0xLw/pdtN5qGc467PVTfik5IYxIxPC7HAUIaUHs6WA\nRIMSmtk4pJ++AJutECVAT+V4oCr6UYSnthZ9SvCKfn+DEqM+LvHIEvnWunb2F5cDMCYzHV1CAr6W\nFqRn4B97YqYJW1MHHe2hbYY9Ptncx3UDiqK32+39Lpr6snI9SMHpecrKzbrdxWwqa2HOvi+J/eEP\nyf3kY5J+/WuiMrSERXsxfe8ixjz5L5LuugvHp58y7cMXkRI+3dt3Itnf0YFjzRpMZ5+NJogdtXJn\nJGJvHsB9E62sUp6uj6HR1Uhde2gRSmHjlS0c3YEkc6C4l96ob2VBjInM8KPb+auLrolYi3na4Rj8\nVs/gsRYW8zS8XhtOZ/mIyKAyfFRFP0rwORz47Xb0w3DdHGx0kBYd3iPtwYY3D+A3KjeA1NRUdPGK\n/9vbMrAPPiFDuVE0Voa2l+jEZBP7Gxx4erkILBYLfr+f9va+GS63W7eQ6MwgLSmJ9q++4u3/9wB+\noeH86y8i+Td3oQ1E7VBbqOwPmzARIQSxV/6QxDtuJ+mD10nR+/ioqK+ib1+/Hr/Tienss4KS/7D7\n5ut+3DemVBBa8gNzmntaQstEaRg7VslNX3xE0W+zOano6OSCpNDSK/SH1badMGMqRmMS0YHInTbv\n4BOy5sMTsqPbfSP9kvYtdTT9dw+tb5biCexlfCxQFf0owVurTCwOZ1VsWVM7OQmRh/8v39VEWWET\nEaleEhISMBqN6BICir5xYPdNl6Jvqhx4FetgjE820enzU94rZXFXLH3vyJuWjhbK/aWMl1Np//JL\nKn5yA4XpUzAZtJx81twedanbqeSG1x3J5hl7zTWYFi5kdslG1pU20t4rssT+0UdoLBYiTz6ZYFDc\nN7Hs39aP+0arA3MaeS47WqFlT3Noil5jNGLIysJdciRJ2hv1rRg1gqUJI6fobdYdmC3KzlbRAYu+\nbQiLPjIyF602EusonpCVfknLi3tpXVmKp7Yd5/YGGh7dTkfxsQk7VRX9KMETUPT6lNSg6kspOdjU\nTna8oujbrW7WvrCP6ORwHJ0tpKYq/Ry26JsGjrwJjzIQFqmnrT40C2Z814RsL/dN90VTFbsLWf3P\nv/HS3b/k/n/8FL/wM6ExnAO33IIhN5cdmQXMGxePTtvtKy+lYtGnTO3RrxCC5PvuZW5TMZ0+yRcl\nR85N+nzY136OaeFChD74yc3cGQnYmztoONS/+ybMWk1OdE7Iih4U903Xhu1SSj5stnJajOmoYua7\n43Y30OGuwWIOKPpAv63ewRW9EFpMpsnYbaHvpvVdx7q6HNfuZiznZJH8y5kk/3IWuvhwml/cd0ws\n+++0opceP4711cghLAoVJbQSCNp1Y3N5sXd4yYiNwO/z89FTRbidXuYtz8DpdJKWpuSp61L0vkEm\nZAFikiNorevrYgmG3MQotBrBvrqeE69din7Du2/y2u/v4sDXG9Hq9eyJqiPabqBz70Y+zU1hzcmz\nqbG5OaXXoi9sNeBshuS++dT1SUmcdukSTJ3tfLCu6PDxjqIi/FYrkQv6z9o4EING31jSwVrFxNiJ\n7Gnec1QTsp6qKnyOdspdnVR1eFgYO/wUxAPR5XrpsugtgbQXbZ6hU1yYzVOwO/aNyn1k3RU2HF9U\nETk7GdNpYxBCoDUZiPvRJIReQ9t7B79xGb7Tir6z0k7buwexrx9eEqrRiKe2BrTaoHeWqm5TdgZK\niw5ny6pyakrbOO3y8XRIRdl2WfTawxb94Io+OikiZIveqNOSEx/ZJ/ImLMyIQFJfVcX8S37IT554\nnlNvu5nK8BbGtS5maquZglMX8VWVcoNpevNxdq35CG9nQNkE9mv1JUzqV7kmXnUlc1oPsqbcfnh+\noH39ehCCyHnzhnUOYZF60ifEcLC/xVOWdLDVkB8zgZaOFhqcw99EBMCYp2ys4i4t4fNW5VqdNoKK\n3morRAgdpqhJyngaDRFaDW1DWPQAZtNUpOzE4Qh968TvItIvaXvnABqTAcvS7B5lumgj8f8zmbjl\nQ2yIMwJ8pxW9McdC2MRY7Gsq8dlHn6UwHLy1deiSEhHa4B7juxS92S35elU54+ckM2FuCjU1NWg0\nGpICq2s1RiMas3lQHz0oit5l99AZYoKz8cmmPq6bDa+9CJ1uEifkM+fC5egMBv67979opGBc00wm\n33QdZ9x8O2LmuSSFQ4zfwUdPPMITP7mSl+/5Fe8//ypvVebz9//9E0/eeDXFG3ouWNKEhXH2jCzs\nGgPrPlQyMDrWrycsPx9dTPB7rHaRPS0BW6OLltpeTzaWdJA+xocpN83SttA2IzHmBSJvikv4osVO\nmlFPzghF2wBYrduJiprQY3/YGJ12SB89gNmsuMdstl0jJs93gY69zXiqHFiWZKEx9s0UakiNQhNx\n9OsbhuI7regBLEuzkR4/tk8OHW9RvtUooZXB+ecBagKKvmlzI4YwHadcrGz+XVNTQ2JiIvpu/umh\nYukBTHGKcrC3dAxXdEAJ8axuc+EKZIJsqaliyzsrMUVGIsKULIytHa28tvcVCg6lEu2OIfl7p+Px\n+dlU3saiSan86KIpXHtBBrOmZ9DpcrFvfyMHHHFMW/I9omLjeO9vD7L9w545Z5ZctQyDz8OqT3fg\nc7Tj2lE4qDWv5L95hfoHHqD5mWd7rBru2oSlbEeva2VRkr1m+pWfY4UttNTO+rRUNJGRtJeU8GWb\nndNiTSOyEhZASh92+24s5p55/aP12iGjbgDCwtLR62Ow2UeXn97+eRXa2DAipoWW93+kCC0Z9bcI\nfUIEUXNScGyoIWpuKvrkyKEbjUI6qyqJmDnE5tjdqGlzEaXRULOnhSkL0gmL1COlpKamhomBbIld\n6OLjB02DAEp+dgB7cwdxaVHDlj83MQop4WCTg0mpFr5Y8Qw6g4GkseOoDkw0P7btUdz+TmbXLCA6\nJRKNRrCtvBWH28up5f9A7H4di9AyW/qYfe5vKFy1GUvGeLKu/gnezk7e+/uf+ezpJzDHJzJ2hhJR\nE2WOZE6Em89bzdg++RS8XiJmz+5XRse6ddTe9Ru8DQ2IiAik00njo4+Sev8fMS9ZQmS0kcQsM2WF\njcxcmnWkYWCP2niXjXBdOBX20BS9EAJjXh6FrTZsXj8LYkbObdPevh+fr73P/rAWnS4oi14Igdk0\nBdsompB1l1vprLATfd5YhHZkbrih8p236AFMZ2QgjDraVh3dPqUnKv6ODrw1tf1mWByIOlsHJ2mN\n+L2S3FmKNWK1WnG5XKT0WnR1LCz6sYnKDfxAYzvNVRUc+HoTM5f9gNj4eOx2O+sq1/FK6Wss3eLH\nZJ5DTKpyM1lX2oRAMq/9E7j8NbizAqZeCmv+QEH4PrJOCoRI6jSIZZPoiNPz+v/9jmtevZyVJSvx\nSz/nLJhEY0QMW95YDRoN4dP6Tt5a33+fyht+ijY6msyXXmTCtq3kfLCKsPHjqb79DuyffgpAzrR4\nGg7ZeyZ5swQ2XLdVk2HKCNmiBzCMzeGrcGWS+pQRVPRWq7KjlCUwEdtFjF4blI8ewGSeGrhhHLv4\n8eNJ+6Y6hFFLxMxQNqccWU4IRa+N1GM+IwN3Sesxi0v9LtFZoSgOQ2ZW0G0a7W5yOzSYYsNIylIU\nR1NAmffeEUwbHzdk1E2EyYBGJ7A3h6bos+IiEQIONDjY/uH7aPV6Cs5citlsplHfyB2f30FGs+DH\nvlNwtAuikxR3zpe7DzJVHCR64U2QdxYYo+D8f0JqwAVhNFHaWsry95bzm02/5evZHWjQkL7Owb1f\n3csdn9/Bolk5aKRkrd2IMW8c2qieTyTtmzdT86v/R8T06WS8uAJj3mQ89e3oEtMZ8+9/EzZ5EtW/\n/BWdVdVkT1WuXVlhtycgowlPeCylNhuxEekcOgpFb8wZy5bMXCaHG4g3jNwDu81WiE5nITw8q8fx\naJ02qKgb6PLT+7HZi4as+13H7/Li3NVExLQENIaRCW89Gk4IRQ8QNTcFXVwYbe8fRHrVnBrd6Tyk\nzF8YsrKCbtPa1kGcw0/ujMTDft7mZiWvenx8zzBFXXwCfqcTv3NgS01oBKaYMOytoSn6ML2WMTER\nlNZZ2fPFZ0yYt4AIs4UdnTtYl7wOk1vL/77kxXzVz5F+SUxyJLYODzvqPZwSdgDm/uxIZ1od5J4B\nQPv6v/LjVT+kuaOZvy78K29ctYpzrrkZc4OfGz3L+PjQx7yy/ylOijewITkfba9JWE9tLdW/uBVD\nRgYxV99N07/2Ufv7jdT/3zZqf78R6+pq0h76KwKo++3dRCeHE5sayb4NirvJ45c8XFZHwfTnOTX8\nPD61h1Nhr+KF6vqQwiy9OTnsyRnHPF9o13kgrLYdWMwFfXz+0XodbV5fULKaTcqE7GiIp3cWNoDX\nT+Ss4W3b+U1xwih6odNgWTYWb4ML21HsU3oi4jms6IN33ZiaPAgJuTOPTCI1NTVhNBqJjOw5D9K1\nhZ63eeANNgAiLAac1tCjo8YmRLKvohFPh4vxp5/BHzb+gUcPPEqMO4Yb340ie9EynGGKxRyTHMHG\nXSX40HBKfhYYem2b11RKtSmByJZyrmv38NK5L3Fm5pkIIZi0cDFjZ87BvXYPF8Wcw1O7nmJKvIMy\nSyqHuq3O9bvdVP38FqTbTeSZv8D2cR2aCD2WpdnEXjaBqHmpOL+ux7nLTcIdt9P+1Qba135O/imp\nNByys7Wkie9vL+Uv5XWc7K3lkdrnuSg9H/Dxqz2F3FZciX+Yyn57yhi8Oh2zG0Yu5NjrtdPeXorZ\nPK1PWbROi9svcQWxobrRmIDRmIzNfuJH3rRvqUefHIk+hPmob4ITRtEDhE+IJWJGEvbPK3FXDJyn\nfLTReegQ2ri4Pi6HgXB7feQ6QEbpDqcvAGhpaSEuLq6PVaeLDyj6odw3ZiNO29Eo+igq7T4MibH8\ntuwvvFL8ClfkXcGpdaeiJYL4m39+eFFWdFIEX27ZSjgdTF94fp++HLU7+J8EC+tN0VzZWEtyNz+z\nEIKzrr8JQ0QkORs9JEcko9n7LBrp5139GNwHlD1l637/ezp27cK09Gd4G8KxLMsh4YapmBakE1GQ\nQPR5Y4mclYzjyxqiTj8XfWYGjY88woQ5SZTmhXPRoUqK2zt4Ij+TZ/2buKTyDS7JyAfg4lg3L9W2\ncO/+4Sns9cKAobOTKcWhr7DtjRISKfv450GJuoHgFk2B4r450SdkO2vb8VQ7iJh19Ju8jBQnlKIH\niF6Wg9ZspOWVYnwhZkscDOnz4SospOX5/9Lw8F9pevxx7GvW4He5RnyskaKzrHxYE7HFRU2k+bRE\nToru8UW1Wq2Ht/DrjjYusDo2KIs+tJ2mADIsejzCxwczGtjdtJu/nPYXbh9/PTqfxDdpMob0NFpq\nnUTFGDEYtayrlsyOasCYkNOzI1crf9HaqZMeYi94Ao30w0d39ZI1mtOvupaGA6X8sPN0Mor3M7ul\nhA+zZlP/2hu0vvgi1tdXEnnaJfg9uVjOzcE0P63PD9t8ViZCr8H2URUJN92Ee98+Hn9lJS+fFE5s\nm4/HfBYuSIoBcxq4WskwKjfNOREOrkuP58mqRt5rCD7F89pWOwV1VXBgf2gXuR+sNmUitnfEDUC0\nTpkHsAY5IWs2TcXlOoTHE/pm6N92XDsaQAMRBSOTGnokOOEUvSZMR+zlE/C1uWlZsRc5yKYIw8FT\nU0PD3//O/kVnUH7pcurvv5/mp5+m8e+PUPXTG9l/+iKan3m2z8YP3wY6Dx0KWtFLKSlcdYh2IUmf\n3tMXb7PZDqcd6M4Ri35wRR9pMdDZ4cPTGdo1Cmsux5jwIZWimgcWPMCSrCW0vbCCCKcT77hcQEmj\nHJMSSXnJTsp88SzM7ZvQa3vRK7xhiuJH6YuZOPYcOOU2KHoTDqzpUW/CKQvJmDIN60fbyK/WkO/d\ngs0QyeefbaX+/gcwjJuJiF6EeXEGplPT+pVZazJgWphOeVkrj6Xm0xCXQPIbr3FLRiJ31eoof7sc\nt9NzOJY+rtOFTqOjzlnHb8emMc0UwR3FlUPmfAdly8BSp5uFtmY6DxwY7uUdkLa2LURGjkOv73st\nYwIWfe9UxT5HO62vvErjo//Aue3I5uCHF06doO4bKSXOwkaMuTFoowxDNzhGnHCKHsCYaSbmwnG4\nD1ppe/tAyLlDupCdnZRdfAnN/3oS44TxpD78ELlffM6E3bsYv2M7Y/7zFGGTJ9Pw4INUXnc9vkG2\ntzvW+Ox2vI2NQU/EVu1txXbIwcYwD3Ex4YePd3R00NnZ2b+ij40FwNs8lOtG+eK7QnTflFd+jCHu\nS6aalrIkawn+9nZaVqwgyhiGw+9XlpvXOYlJjmDtpi0ALJwzp0cfUkoeLn2JBK+PG+YGrPj5t0BM\nFnzwK/AekU0IweJrb0TncmFy+LBG7WKWv47xtSWIyAQME64ielkupjMyBpR5m7WdG2M8nLcgkket\ndgrPWUZB6V5u7bSy4Adj8XT4KPqy5nAsvcZWTWJ4Ig3OBvQawT/yM3D4fDxwsO+2hq3tnVidR24A\nq5uU792ZRoGnpmbQyfHuODodPLXrKR7a8hAHrT3zrvj9XqzW7URH95+ps79UxZ3l5ZRdcAF199xD\n02OPcejyK6j7wx+RUga2FjxxJ2Q7K+z42tzfKmseTgBFb7fv7VeRR05PwrRwDO2b63B8WX1UY3Ts\n3YuvuZnUP/+ZjH/9C8u556JPVKJRNGFhRM2fT8ZT/yblD7+nfcsWKq69Dp8jtJS8I01XNsOwCUPn\n05BSsuX9MjSROgoNPmIjjlgkXTs59afohcGA1mIZ2nVjVpbjh+Kn9/m8fCw/R3rMpMmLAbC++y5+\nq5XY7GxsNhv2lg68Hj+xKZGsLXORrW8hK6tnfpE1lWso7Gzh5/ooGhpe4cCBh2ixb0UueRCaSmDj\nP3vUj0lOZdYUZaGZ0WDhti8eB2DtzB+TeNNsTKf0ddcA+KTk7tIqlm4rZZvDyQ36KN7+wsHVs89D\nhIfT8t8XiE83kZhpomxH42FFj7WaxIjEw/luciPCuDY9gZdqW9jQ5uCPB2q4YVcZy1/bxkm//5iC\n33c30q8AACAASURBVH3Eba/swNXpY3WjlalR4WRlKE8H7rKh15XYOm1c+cGV/H3b31mxdwXL31vO\nzsYjStjh2IvP5yDa0v9iO0uvVMU+u52K667H395OxvPPMX7bVmKuupLWF16g+Ykn0OvNhIdnnbB+\neueOBtBpCJ8U1+O4z+empuZVyg/9C49HccVJKamre4fm5tD3Cg6W7/TK2JaW9WzfcRWTJz9KUuLS\nPuXmszLxNruwripDFxve5+IHi3Or8ugZOXvw/OPRF12ENub/k/fe8XFU1/v/e7Y3rbSr3mU1q7jK\nvWGMbYrpDh2DaaGHQCABQguBJMQQajCYYiBgBzDGBRuDce/dsiSr995Xu9peZn5/rFyE5JaEfMPn\n97xeekmauTN7Z/bOM+eee85zTDT++mGaHn2UxHfeQZD9v32XukuCIlLqrOwztISm8h5aqqwoxpoJ\nVPZi0p8d0UNQ3OxMejfHLPp/JfLm+8MraA11YrJdRW3AFyzOvWQJmpwcTCnJlO7efVxDRm9wsNuV\nwE0p/bVxJEnig4JFzNV7CDG5qKr+G4KgoLbuHcymKeRmzUa1dQEMv/Z4EhNAgt5IN3D1Zicar8T7\nU+5jg87AVTiIYeD9kCSJX5fU81WbhTvjI/h9aiw6uYyuKi+2LR0YZlyMbc0aoh57lKRh4Rz8tha3\nLBeNIANrI1G6KMotJwp9/yYlhmUt3dxWUIM1EEARkPCbBeZckEKqV+DDnTU0eb0cSFDxuyExqMOC\naxLe6mq0ubmnva9/3vtnaq21LJq9iPSwdG5ddytPbH+CFVeuQC1X09MTnBmFhY0b9PgTFn2Q6Dve\neBNfUxPJn32KLi8PgOgnn0S0Wul4401048djNI6gp2ffafv1c4QUkHAVdqLNMiGoZdTUvo2lexeC\nIMfuKMfrDeZOtLR8xaiRi2lq/py6uneJjLyI8PBzU0M9V5yRhQRBSBQEYbMgCMWCIBwVBOHXfdvN\ngiD8IAhCRd9v00nHPCkIQqUgCGWCIFz0U3XeZJqIXp9JVdXL/eRPez02NpUt4sv8p1mVtZnecC+d\n/yzG3X7uFY5ErxfL55+jHjr0rJQfQ2bOJPr3T+LYuo2u994758/7T8NdVorcZEIRdea+52+oR2dU\nYYtTI5cJGDUn7IAzEb0iPPyswisBnLZzX5D9tHQJWrecMeFzqO6w49y7D09FJaZ5845XmmqpC75o\nKhoL8KDi/OHp/c6xv3U/Q/z5nGcOEKUdzbSpezl/egGZGc/S03OQ/TFtuBTCgIVZT0EBKBRo3H5C\nJj3CsCwBj0zOC0t39WvncDg4cuQIT2zcwVdtFi52dDG1qpDqkmLcbjemazNRhGsJ+EYjeb30fLmM\nhKEmJAnaGpwQEgvWRqL10bQ5T8TRGxVyrogOwxoIkIcC+eYWUhVKvlP6yB0Xyx8uz2WH6EUAbowN\nD67HyOV4zuCnL+woZG31Wu4cfieT4yYTpYvi2YnP0tDbwNcVXwPQY92PVpOERjO4vLVBLkMuBBdj\nvfX1WL74grBrrz1O8tCn7//ccyhiY2n94wsY9bl4PK14PP+aSuf/KjzVPYh2H9qRUVRWLaC6+lV8\nfhuBgBOjcSSjR31K3uileL1d7Np9PnV17xIXdwPDh731k/ftbMxNP/CoJEk5wETgAUEQcoAngI2S\nJGUAG/v+p2/fDUAucDGwUBCEnyQ1TBDkpKc/jstVT23tO7RYy3hv+w2s2TIGqWkBET2fE9L1Kk9H\nPItddLD73dW8eeANLG7LWX9G98ef4KuvJ+p3vz3rY0w33ojx0kvp+Pvb/Uq7/b+Ap6QUTXbWGcO8\nnDYv9Ue7yZoUS7fbj0mn7HfMMaIPCRk8rV4REX5GH702RIUggOMcLfp2ZztH/VWM7E0gJyGKTruX\nuiVfIg8LwzjnkuMvn8aaNowRGnZUtaPBy4QxY/qdZ1vJX7jA6Ce22cOwUe+hUkUgk6kJrbqAhL2P\n4fVYOJSdjrtk2/GFWX+3Bef+AwiShHLSPdjDwvgwfDHXWQpZa9WwsbCeffv28fHHH/PKK6/wj2+/\n4zN0pPV2M6a2hEOHDrF8+XJeffVV1m/bgP7WdLTZGcgjs+n+xxLMMUFpiM6G3j5d+gaiddG4/C56\nfScMk0qnBznQ2NLMtdEWPh4SyoQwPQ8U17EtRCKQqEfR4CDg8iOoVKgSE/FWnV7n/MOiDzGqjNwx\n7I7j2ybFTWJk5Eg+Lf4UURTp6dl/SmsegiQe2pcd2/n2QgSFgogH7h/QTqbTEf3EE3jKyhAOBbPX\n/6+5b5z5HQhqOV2Gb6mvf5/4+HmMH7easWO/YuSIRZjNkzGZJjB2zDJiYq4iPe13ZA19gZ+IHvvh\njEQvSVKLJEmH+v7uBUqAeOBK4JO+Zp8AV/X9fSXwuSRJHkmSaoBK4Oxqrv0LCDdPJyrqUmpq36T4\n4BzSfPvRqsxo4h4gPftNorUmfp0u0DPdS4YzibYdlVy24jJWVa4KXp9PxFNvw1XchejuHwvsa2uj\n8913McyaiWHKlLPukyAIhN//GJrRN9P658VIgxSv/m9A8vvxVFScldumYn8bkigxdEIMFocXk65/\nxIDNZkOv16NQDO7tk0dEEDhD1I1MJqAJUZ2zj351xSokAWaap5IWGcwFKD1UDFfMY9fqBryW4IPS\n2tROdFoo69pNTA9tRaM5IdHb1H2EbLGAXqec7MBoBF1wAuqusGD7rhZz0kSGmv6MW99MQVYm4re/\nQ7TbqL/zTggE0E+9FH3kKA62rye2WUdSko1Q0clvlu7jm7XrsNvtTJs2jc7ZV6BUKvjiwqn86sEH\nefLJJ7nzzjvJyclh3759LPzwXbqmq9FPu5xAdwfdf1nCcLMKxaF27J6ZSD3NROmCSWrtjqDF2+rx\nscNiJ8Xay5UVuzF0V/D5xx/xSqSOK6PC2NhtY0ZYCJrKXl75PmhYqNLSTmvRd7u72dKwhV9k/AKd\n8kQymSAIXDf0Ohp6G9jfsBqfz3JaogeCRO90Yfv2W8LmzkUZNbhSY8iFs9EMH47r/fUIyP9PKVlK\nfhHX0U5IdVBe80ciImYxNPPZQQ0svT6N3Jy/kZx8D4Lw33HtnpOPXhCEFGA0sBeIliTpWChAK3BM\nuSce2HPSYY192358rruBuwGSkk4dtXAWfSJ96J9YXLWbUIWc6/NeJDt21vH9Jn0iBw/dhM78D1Sp\nz3Bv0/VM841HX+qinA3ofGro42GZQYn5xiw0aWFIfpG2v32DevitmOYN9P8DYO+AivVQ8T0054PL\nApFZiOMfwLI2DmV88OXQtXg9EXddjKusm57VVRhnJKH/Lwgdeaqrkbzes1qILdvbSlRyCOY4PRan\nt59/Hk4dWnkMivAIRIcD0e1GptGcsp3OODjRBwIijaUWDCY14XH9E7tWla8kqlvNqPGT0PQRfZUp\nhe6OXDz1DUiCCNHg8vfSG2KlXTRyWUb/zzhU/BgyILe4G2H6ZQBIvgCWlZUoIrSYrx2KoMzGvauZ\nmoiXKXWYCLn3BjwlwQXNInkIbeZiGpVmRrqn0wqc7y9jlWw0xnFX8eBlIynodfL9gXIeSY4mQRO8\nfzKZjMTERBITE5k8eTIrV67ki2VfMHX6ZJK2RuPY8Q2pU4bit3nosU3GLVcQqQ6GtbY720k3pbOp\ny4YEjCrfT1eImea8SUw9sIUdGzfwzvz5x69xQbufhVuquGvaECJTU7Fv3Yrk8w1a8vC7mu8ISAEu\nS7tswL5ZSbN4XvY8RxtXksyp/fPHEKZQ0NnciuTzEXb9dadsJwgCEffeQ+MDD6IJRP+fsOhbW1fT\n3rEObfNQtO4xNGjfxhQ2gWG5r/9XLPWzxVm/TgRBMADLgYclSeoXPygFnYnnFMMoSdJ7kiSNlSRp\n7I9Fss4V31SvY0OPm0vy3uhH8hCM283JWYC19zDt0V+BR2SYdQiqCD1btfvZmnQEw01pRNw5DJlO\nQeeHRdg21NH62m6QDUUZN4Keb9pOiKVJEpR/D0uug79lwqr7oWEfJIyFkTeA24rs6/kYHG8Tfns2\noqMeV7mGnjWVdH9WQqDLjfXb6n875PNs4DoSLMasGTbstO0cVg8d9b2kjg5+DxanF9OPiiGckejP\nIZZ+sKSpjR+XsOatI3z+x318/34RtYWdHPyulo9e/55aZz3JrTrihuYQb1ShFP2UpM/A74frnx5P\nQoYZmV8DGg8Hu5rR4mbmpBNRIp1dO9B5qznqNJPh9MHQS4LXfbCdQJebsCvT8El+SktLqXFmoG+8\nAEtXD/YDNXRFmhEFgcNmLy59gOjICNQtdew1bmB+1xGmdJXz4d5mmnpcvFnXhlEh476kwS3a6Oho\n7rjjDvLy8tixexfN40YT6CinMc7FOoePb3K+5vak9by69a8AtDnbAPih3YLe40bjcDP0wsvYIymI\nGDGampoa2trajp//nvPSCNEoeO2HClRpqeD3421oGLQva6vXkmnKJNOUOWCfTqljXMw4XL1HUKmi\n0GpPn4MRqpBj6bGizctDkznwfCfDMGMGqvQ0FGUebLbC/8pz8FOhrW0tR4sfwWYrIFAqJ6ByEDv2\nEkaN+gi5XHvmE/wXcVZELwiCkiDJL5Ek6eu+zW2CIMT27Y8Fjq2sNAGJJx2e0LftJ4Ff9LO4aDEj\nIkYwPmZwD1G46gKie6+nLWQpPnMbgkLGuLvnEH1tLgt07/OblqcRU9RE3T8KdVootg31+DtceMo/\nJ+a3Y1FG6ehaWoq35Ch8fCksvS5YVHrKw3DPNvhNCVyzGOa8jP+mTdjFywlRrETb8gHma1IQbY3Y\nd7QgD1NjvDAZ0enH3/HTZ9K6Dh5CbjajGjLktO0aS4IvsaScIFl3O3yYf2TR9/b2npbo5X16N4HT\nFAmHwS369jobFfvbGDY9nrGXplBb0MnatwvYs7KaowQjnpI6I+jtVuDZs5sYZw918hAmTPETUfYa\nl2csZYS5F00MfFsvZ6aqGF1cUEpAkiQKy56n2y+Q0+SCpEkQloQkSdh3N0OUmrVHNvHyyy/z+eef\ns2PnDtobxxP2uQZvokhIrgWZKY7HfvU77n/gfm67+x5CfC6GNRlZn+Xh7gNf4veLvLq5grUdVu6I\njzxtMW6lUsnll1/OzJkz2aXVICoU6PO/ZWPSEhZKGzCK0OwM1vct7CxEFEW2d1qItXTgTpjA/Tkp\nJGiUrDBEIggCFQe3QP0esHcQqlPyy2mpbChpo14XfGl7BwmxbHW0UtBZwJwhp5ipAlPjphAj60Wl\nzz3j+k6Iy4FNriD0yoFSEz+GIJNhuukmZPk9+P09uN2Dv4j+1xEIOKmo/DMhhlwmjtlESGcextFp\npKTeg0z2v5ModQxndN0IwW/5Q6BEkqRXT9q1GpgPvNT3e9VJ25cKgvAqEAdkAD9ZLNW6mnU02Zt4\nfNzjAwak6PHTu6WR3u1NhHIx4gUOWtLfJ3nfM3Rs3c3oHCsvZ6bS3LOdb7ZNITt6OoYZqQhRXlzP\nLCHumadRmEMIvy0X698Xo/j8j4gKOYFxL6KYeTeCRo2/x4NrexMIoEoy0rupHrd4D7ocLbItf8Fw\n8xi6vVtxH7Yx5KuPEF1gW1+Ht86GMkp3iqv6z8B56BC6MXlnfFDrS7rRhiiJSDAgSRI9zv4++kAg\ngMvlGiBmdjIUfTIIZ4y8Mapw9nqRJOl4vyoPtCOTCUy4IhWNXsmoWUl0NfYSGqnjN/u/IKxSTaQs\nne8WFTHRuwGTfBjXaD5jVNk6KBeQy1Vc5XOymLn0BK7hxjQH9J27vWMdoruaLb16Xm2vg2v/DIC1\nuA1/m5OtimLqPd2MHDmSnJwcEhMTsS7+iA57AM+8KHqHNWMa5calKcPS2kRU1MUMO38WnnWrWJ5a\nx5VyBeeL7aw6JEN9fgx3JZx5dioIAtOmTUOtdtBZsxHz/u9pGifnBvNsHq3aSWXgD9yU+QTratYx\n2XA1drkST4/EzReORCkTeDApmgVHi3hVs560fa/2PV0CDL+W2y/4E4t3Kvl7pZdHGJzodzfvBuC8\nhPNO2ccJESnUt0k0i6d+uR+DtrEBm95IyJTBC7L8GKFXXIH6n38F7NhsBWi1/7rr9v8VqmvewONp\nZVjuG3grepF8Itrh/1tJUifjbHz0U4BbgEJBEPL7tv2eIMF/KQjCnUAdcB2AJElHBUH4EigmGLHz\ngCRJP4kugCiJfFj4Ielh6UxPnN5vn7fFQdcnR4NZaqMiMV6cQkLoVKprXsdVXoF3Twg18j+g18QR\na8yiuqeUuvYN6HCDXkLxtJKkWcEYZEXHdszicwTUiXS6nsK/PRJhzwEUEVp8bQ4QAwj4kAj6psOm\nypBd9Ca8VwDfPEz4XW9Tf8d92NasIuy6G0AA/78o13u28LW346uvx3TjjadtJ4kSDcXdJGSZEWQC\nNrcPvyj1I3pnX4blaYn+LF032hAVol/C4/Sj0QfdQ3VHu4jLDDv+v1qrIC7DhNPnZH/rfjJbNYy+\ncCIlu0V2+/P4i3kBucqj+EfeimL2c6DU0vPeFczrWM0WWQaTRp6w5quq36LNJyOxV4c6NAmyLqWi\nooKOL44ShZG46RnMnToJrTY41RZdLro//hh5zDBiOu5B3PMIlkktHDwY9D3XNywmcfw1HFwrktFh\noipPx8SSzWzIuZ4JDuGsNOADATd1de9idyzCOyeAIl/OjYcC5GbsQNJWYjK1ECFq6fDa+cfePZA2\nDp1gYlJq8B7fYFYxqeBRktx1bGYSwy+eT0RvCexeSEhrIb+a/C4vbGji4TDToElTu5p3EamNJD0s\nfcC+Y9D4gscdsNq5+jTXIkkSmopyHBOmD5BwBmixunhrUyVev8j956eRGmlAbjAQMf5q2n2f0tOx\nn+jogesE/4uwWPZR3/ABblcjdkcZ8XE3EhY2lq51pcj0CtRDBupA/a/gjKNSkqQdwKlMwpmnOOZP\nwJ/+jX6dFfa27KXKWsVL015CdtLqtau0m+6lpcg0ciLvG4k6+YRVkpb6G6wzKuhd0cq4+O8JGZqG\nIAgsKVnC7/e9xD3uqUz5YTe2ezUcPHIjo2OfwLjsNwgRmSjmryZaGYq7yoq7tJtARwum+PdQWn5A\n8LsQJT0ByYjyQAvYL4M5r8Anl6Ozb0QzcgRdiz8i7NprkRlUBP4NFcezgatPX0Q3Ju+07SytTly9\nPhKygg+pxRHs18mLsQ5HXyLSaYheflyq+CxlEHq9aPRKPC4/3S0O0scM9GsXdBbgE33EdplIGzuS\n5M4fMNb8BZ3SwSPe+7h34lMM1QfDPfcN/wMTN13H7xVLkaUG675aLLtwOcvZ1Kvi8aZKmPEHDuUf\nYdOq9VznnYxirJkZs4PrF5IkIXkCWL/9joDFgva8O5EFVEQevJT07o+Q5t6MNSaatva11DY/x9DL\n0xG3mlmaUoMh9nwkhQJv8wnJAUmS6Oragl6f1s9i7eraSln5H3C56omOvoL1+ghaspYwfY+Mtkvt\n7MszISkWYOqQ43BpaFGbkIt+7hp5IgNXs+EZMhzV3Jr9IhmlXXitZi666I+QdgF89gvmd7zCO/pb\naTBEoqup7XdPA2KA3S27mZ4w/bQzve7unTjRs6fr9LH43poadM1NBGQy7AGRkJPcVi1WF1e/vYtu\npxe5ILClrIPvHp5GhEGN+YabUW77DIt/K5x+CenYDYWuSmg+DG1HwdkJCi1EZUHWZRDy0+q+W62H\nOZx/CyplOIaQbKKiLiE5+W4kn4i7pBvdqMh/qVxgu7OdCG1EP/76KfCzlkCYGDuRDy/8kItSgjlZ\nkijRu72Rrk+OoojUEvXgqH4kfwwho1MR1HL8heLxwX5z9s38avSvMK/cj9SgY8y45WhlYSiX34dP\nJrIn3c7eovl4xW60WWZMk/1E9NyOqmsdQkIwKkGmVaCUtUDEUChdA4c+gZE3IOx7j4hbrsbX0EDv\n+vXIQ396orfv2IHMYECTffrQytaaoIpgbFrQGrH0aaeY9ScWY48RvU53aleTTKVCFhp6xhDLH2fH\nttfaQILoIQO/p4NtBxEkgXhnKJGRYUTUvoBeY6PusiWsEKdR2X5CZuKTMjn/DMxgqKwBxOAEsq7+\nAxyiAo8rlAxBzV5xGKtXr2ZiSC4yQSDqgqBF67d6aH/jMM1/2E3XBz+AQk3EnZcgM7hRJk7COGQM\nkbtWkZ74AJMnbSYx8Q60cZXEpjfRaojk26kXkK7s5Uidhe6+F2Vd3bscKbiL3Xtm0dq6is7OzRzO\nv438I3cgCApGj/qUlIwX+KpyLY3XTkHlC+BZNgRnQIfSpyFWNgp5QEWrMZRosYIx7V/R+Y9iPAf2\nwMGPCUy4j/y46dii4igqKkIURUg9H2Y+h6LsG14ZWsZRuQlHZf9Y+tLuUqweK5PjTl3gXBT9WCx7\nQJdNu7OdVkfrKds6duzE4AyOjx+XFHxmZRE2t49VD0xhxQOT6XF6+dv6YMavOiMDrSsap7wRMTCI\nYJskQUcZ7P8Alt0Gr2TC38fC17+E3W9D5UYo+BLWPgqvDYPNf4bBzvMfQCDgprjkt6hVUUyYsI5R\nIz9kyJBfIZOpcVdYkLwBtMP7CwBKooSvzYHoObUzQ5Ik7t1wL49tfewn6ffJ+FkTvSAIjI8dDz1+\netbV0PrX/VjX1qDJCSfynhHIjepBj5Op5OhGRuIq7EDsU1K0tDoI/2YYlqQ32DnqRT56s4ihpbFo\n3AEKsw1oovJwOCqoqHgRrE3w6VUgyGD+amgrDC7yPVYJF78U1EwxpULhMogfC2IAA3tRJSfT/eln\nyI1qxH8hO/RsIQUC2DdtxjB9+qChdSejrdqKWqcgrG+94JhFH6Y7N4sezi47VnuM6HuDn9PREEwK\nihrkhXyw7SBRbj0pQ7Lg02tRquzY4+8ndsQshiFHPNiGt8lOfkMPO6stHGAEIjLY/TZ2exnd3dvY\nYhOY297E0aRbWbdhC9mZWQxxRqDJDkfRV7Dc9l0t/i4XxtnJQBvqoVkYJsQhuSqR6cwExjwbtCD3\nvoMgyMlI/z3RUVcSM7aTxJhJSILErZs+R5RgQ0kbLlcTNbVvEhqah8GQw9Hi33Ck4C5stkLS059g\nwvg1mM2TWV6xnF5fL3MvfpjelHGkFLRSvutiNu+5ApkqArfcS5fBBK4GWnUfY2+rJLDqz0gKPcrz\nHuPexEj2mmLo7e2l4Vh0zaQHIXYU0xvfwREZiczWg99yIkHwUHtwpjc2+tSF4nt7CwgE7MREzACC\ni8KngmPnTkz64NixnqRJv7GkjQ0l7Tw8K4PsWCNZMUauG5fI14ca6XEGv3tz2kwklUTnrhXBg+zt\nQWL/cj68kgFvjw8Sef1eSJsBl78J9+2Gp1rg0VJ4sh7u3wu5V8PWv8LyuyBwdrr454Lq6ldxOmvI\nzn4JpbK/e8ZV2IlMp0CdemJ7wO6l4/1C2l47ROtf9+FtGlz3anvTdiosFcxInPEf7/OP8bPWupFE\nCfvOJqzf1YIkock0E3rpELTDI864AKkdEYljXyvuMgskG1nx6mECDidJDZupOm8oUR21hAbWUqGb\nz7CLXkWlUVBZ+Vfq6t4n+2AFMrcNz7xPUJesQnBbg24ahQom3gdKHXzzEOgiYNsCGHEtQv5SzNc/\nR+uCtzBc6CBgO7sBKbrd9K5fjyv/CP6uLqSAH0QJeWgomqyhGGbORJWQ0O8Y15EjBLq7CZl5wRnP\n31pjI3qIEUEWvF/HLFLzOfroARSRkfjbT5/Wftyi75vRdDc70Ieqjvvnj8Eb8FLQXkB6q5rJ4SXI\n2g7StN9E5IMP4Vxfx7vooayX9rLDvGIKEKYWGEU9Nepc0guX0ZAkEUBOvlPD/b3wT6eWxMR4Lsk4\nD1tBFYZJwZR+f7cb55F2DJPjCZmRQPNvawmbOxcAX/Uu5ImZuBqi0GZeAjvfgnF3IWhNZGe/SFPT\nduZErKOyW8Hw0EKiVW5WHzrMED5GEBQMy30DlSqCzs5NyOQazKZJyGRB40OSJL4q/4q8qDxyw3PZ\nOutGQj74Ddd0FrMpPoHCWis+kw9RkOj1VNGjl2Mb/wHJm7fjlP8CndbEbfEii6LiEcsPk5+fT1xc\nHH6/H9WsPyL/9ArmjuqEA7Bry2HOuzo4Fo50HCFWH0u0/tR5HN3dOwGBnISrUcreo7CjkNnJswe0\nE71eHPv2EXXbXcAJi16SJP62vpzUCD23TzkR8TVvQjJL99azpqCFeROTiZp0A7WHltC97wOi6r+C\nyg0gBSAkLuiGSpka/DENOb64PgBRWfCL9yF2BKx/GsIS4cIXTzsGzwU9PQeob1hMfPxNmM39kyYl\nv4irpAvtsAgEuQxJlPBU9mBZXkHA4cM4OxnH/la6/lFM9MN5yLQKAnYvzoPt+NqdbPd8T5wulouS\nLvyP9fdU+FkTvaeq57gFH3ZlGorQwS14gPb2djo6OggLCyM2Nhb1kFBkeiWuwg4KjnTicfqYUPEB\nESlhzHn0erpey6LVFcKGmjnELizg0gdHkpBwC979byOv2UndsCwqq+4lzOVn1OibkMec5GgcMx9a\nC2H/+8H/1UbwuwlNcdCm0eCpLEIKpCP5RATlqSdV9p07aX78CQKdncgMBhQx0QiKICG6CwuxrlhB\n24KXMV1/PVG/++3xRKXeDRtBqUR/3qmjKgC8g/jHLc7BffSCIKA5TSIUgDImGuf+A6dto9EpEWRC\nP6I3D1JurbirGI/oYbRbIq5rE9a2OHwRY/A1gn1HE3tCZaxSidwTHcaOonoeMrlJdrWyRxxGuq8Q\n6ehy9hoMzLDL+EYxlxCDkRtuuAH7R+UoIrWo+3Tqe7c3giBgmBaPr6EByelEk52FJEl4yksxpHbh\nKtIi3vUksvLzYP+HcN5jyOU61hge5yrP4/w+/J9Y7vOTVXyQffV52DIqGJbzEhpNHABRURcPuL4j\nHUeotdVy5/A7AdDnZNEWmYewu4AbLtlNYeovKfYXIwv0ovA18l1dAk+K+5AQWe2NxrHwfXyyGCDT\njAAAIABJREFUAFmhMZREJSIcPszhw4ePn/9WWSppju+olRtZvXoHwy6cilmv4kjHEUZFDqwUdTK6\nu3cSEpKLXhNNdng2RzqODNrOdTgfyeUiangwaOFY8ZG9Nd0Ut9h4ae5wlPIT4zs7NoSUcB0/FLcx\nb2IyhpAMZAEZRBUhNagQpvwaRlwHkVmnJvZTYfKvoLMi6NbJvRrix5z5mDOgq2sbR4sfRaOJJz3t\n8QH73ZU9SO4Amiwzto312Pc0I/b6kJs1RN07AlVCCJpME+3v5GNZUYHxgiQ6PzlKwOJBVMF878XM\nk1+InTrM154+/+Dfxc/adaPJMBFx5zDCb8k+Jcm73W62bdvGokWLWLZsGe+//z6vv/46Bw4dQJ1j\nxlXSTcXuFjKGCGjrCwmbOxf5vveJcvawImcc69M+p6ncwrbPy9HIzWQ0iFhDFFSH9xLniqQnVEF5\nyiDukYv+FPTVKzSQ/09IGI+s8DOMcy7BVRAkw9NVwHIeOEDjvfehMJlI+vgjMvfvI23NGlJXriB1\n5Qoytm8jbcMPmK6/DsvSpdTdPA9fezuSJNG7cQP6CRPOWDqwrW6gf7zL4UUp7y9o5nA40Ol0yM6g\nxKmIjgn24TSSD4JMQBeixGXzIooS3S0OzHEDZwpFnUUA3KKtxR8xkuYtEiGzL8G6rgZVspHi3DD2\n99j50OciVC7jMkskYeoMKn3ReA1mYlsdbLEKxLXl0BtQcc0116Bo8+FrtGOYHIcgCATsXhz729CN\njkIRqj6uS6TOHIqvqRnR4UA9RIXkE3F1xAStzL2LwOdmXUcPy7zp1EtJqCUPJdsU5G2tweXX8uvN\nL/C37Qm02U4dWbWicgVahZYLk4PWnMGsoSblUiRvgO5SA96+GZ9c7GWoQkeNwkNMq4wuk5qwcWtR\n+NsJCwvjSq1AUXImfqUKlUpFVlYWkydPpin9ZjSSk9AMF+N7jvDUeyup7Wmi1dHKyMiBlaKOwe93\nYLUdxmwKWq855hzKLeWDJjY5du4EhYKYkcFiItY+qeIPd9Rg1qu4anT/hHhBEJiZHc3uqi7cXj/C\nmkcw9nroUanoDnkIZj0HUdnnTvLHcOELYIiGdY8Hffz/IkTRR1n58+QfuR2l0sToUR+jUAx8llyF\nnQhqObaNddh+qEMVZ8B8YxYxj4xBlRAMElAlhmCcnYKroJO21w8h+USiHhjF36Yt4+9JX6DLi0KT\nMbCgy38aP2uihyDZD+am8Xq97Ny5kzfeeINNmzaRlJTEL3/5S+bOnUtYWBhr165lfdUO8ImYBImE\nhs3IQ0MxTMqDbS9DxkXcOfcLMsdHczB+PaW7WmhZ/gZKZy+yWX9iYvwLZO8vIUU2hubOb2hu/qp/\nBxRquOw18LvBYw0qE1pqMV84Aqk36McWT0H0ottN029/hzIujuTPPkU/ceKg16hKSCDm2WdJWPg2\nnpoa6m68CfvWbfjq6gmZNWhAVD901gd9h1FJJ4i+2x6MoT/58xwOxxndNgCKmGjw+wfo0ouih9ra\nhTQ2foYkiWj7YultHS4CPpHwQYj+aNshIvwiYQElPdIcQIYidiyi3YfxwmTSo0Nw+0Q2l3Xwy/Pi\nMckK0dmDC4yNUQpMVj9TLck0SOnMPH8aCQkJ2DY1INMpjstP2Hc1Q0Ak5Lyg68tTVg4yGer0NDzl\nwUVD7ehkFOEanIfaYPJD4GjHdmgpvy1rZIi8mzg6Ef0CihwZoyuCIYkZ0ZGsONzEJW9s50Bt94Br\nc/qcfFfzHRenXHxcZybErMGpj0ExfjyWCh3KluB3E690ce3wq0h11KP1O9BPeRqdSkZq+lrmXjGL\neVdfxW2ZQ1g5Ygp6k5nS0lJ2796NLHkSDDmPyBwn0V4X0dZinv44mAYzGNEHRImGbietHbuRJP9x\nN0WGKQO7z06LY2DhE8fOnWhHjSQ8NDh+evwB6rocbChp4+YJSWiUAxPHJqWG4w2ItK/9Exz+FGPo\nKJxmBV1ff/PvV2fThMK0R6FxP9Tv/pdOIUkSRUcforHxHyQm3Mb4cd+g0w1MOJQCEq7iLpAJBDrd\nhN+WS8Ttw9CNjBwwSzfOSMR8UxbG2clEP5RHnaGVTc2bSZ6SS+QvstGNGjyT+j+Jnz3R/xh+v599\n+/bx5ptv8sMPPxAfH8/dd9/N/PnziY+PZ8SIEdx+++3cfPPN9Ojc+PATEWqld98GjJfOQXboQ/DY\nYOYzqOQqXpr2EqPnJNBqLMVwdBHumHGEDLsL7cbXIDSJ1MkfYTJNoqz8WbotPxpcKVOC2uaCDKo3\ng1yFxn0EZV9STaB38Mgby5Kl+FtaiHnhj8gHqdH6Y4RccAHJn3yC6HLR9PDDABhmnNk/39nYi8Gk\nRmM4MSPpcngHZMU6nc6zInpldJBAfa1t/baXlf+Rquq/UVb+HBWVfw4mTVm9dDcHF3nNP9K2IeCn\nuH4LOR4PRTG3Y9u4F23eGJz5NlSJIahTQ0mPCh6jV8uZH1WNWbkAs8qIydRMU6QPEbiwy0mC1s2k\naTPo3dWEp7IH0R3AcaANf48H+85mtDnhxxPXPOVlqJKTkWm1x4leMzQTXV40nmorftNEpJjh9G5/\nA7vfx32BPxMfeTmdRWbSw724U3uI9fUSEaJm3a/PI1Sr5KYP9vJdUf+olY31G3H6nVyVftXxbSF9\nC8OBKdcjiTImHKkHIFbhZmbSTK60O3CrdOhG3UNO7Ov4VRYKDz2MJEn8MjESV6iJsumX8MADD5CV\nlcUPP/xAy9D5KFQ+cqJaiM4Zj1OoQZBkLNvh48v9DXy6u5bnVhXxi3d2Mey575m2YDOL1n+CV9TQ\n4w/mIhyTSDhZHx8gYLPhLi5GP3ES+j6p4h6fn4921qKQCcybOLhswrghZgQBjGVfQNoFGHPvRpJL\nuGTN2LZuYXfzbt489CYL8xcOqHZ1Vhh1M2jNsPPNcz8WaGhYTEfHetLTnyAz8xnk8sE9Bd4GG5LL\nj+TyY74hC22W+bTn1Y2IxDgzCblRxUdFH6FVaLlx6OlzXP6T+D9D9H6/n4MHD/L3v/+db7/9FrPZ\nzG233ca8efOIi4vr11YQBDIyMpg//w7aRA+xAQPrLriAA/ERiLvfDsblxgw/3vZXY37FnPObCZF3\n8U3dGOp2LwxG2sz+A4JKz7Dc11Grozl8eB5FRb+mt7fkxIfNeCpI9B4bmFPh6EqMFwdX2d1F/R8e\nANHhoOu999BPnYp+/NmLfmqHDyPln0uhz23Ss/yrM1pInY12whP6k2y3w0P4j2pdHnPdnAmK6GAs\ns7/tBLH5fDZaW1cQF3cDCfG30NDwMUqtE1evl67moNVqju3/EnF+/3tqJC/qLgO65El4SkvRTbyY\nQLcbw5Q+t0vfdY5NNhHSsBG5RiT25hEkxlbhFAwUKeIYQRmXj0uGAFjX1vRlL4fQs6qK1pf2gSgR\nOueEteYuK0c9NCgA56mqQhEbi9xgQDc6aHE5D3fwQ+ZtxNtreTuwgXiphvjEK6ltyCPgk2O5XGRY\ncwn7qztJjdDz9X2TGRZn5P4lB1myt+7456yvXU+MPobRUaOPb9OFqhihlWGoNuBPnkBWRQPhNolw\nmZMYmZpZTjdbwiKCoZ9Z04iquwmrbw8tLcsxKxXcFhfByjYLvXojV199NUajkfVlDryyJMIi67j3\nyvORYhSEeo3UH9rB75Yf4ZlVR1l2sBGZADeMT+QvV+cyJaGEku4crl10gPouJxmmDGAg0buOFIAk\nHc+8DlMoaPf4WHaggctGxBFtHHw9J1SrZHy4hzB3E6TPwhgadPvUj9Hxy6PPcPcPd7O4aDGLChYx\nd9Vcviz78ozjrh9UOhh7B5R/B7aBs5DTwWo9TGXVAiIjZpOUeNcp29n8ASoPtiAB6sywcypo1Gxv\nZl3NOq7JvIYwzU/vsjmGnz3Rt7W1sWHDBl5//XW++eYbtFotN998M7fffjspZ6iT2lrZS6dbjQEN\nuZ1uDI1rkHl7+aozjc2bN1NZWXk84mRSez4udRQdllks2NhCfuIoyA1GZ6hUEUwYv5bk5Pvo7NrC\nvv1XUFfftxBrHgJ5twIC9DRAbzPGvODb37Hn0IA+2b5fT8BqJeK+e8/5XggaLZLXizori84336Lu\n1vmnFLXy+wL0tDqJiP8x0Xsx6/tbMWfrulHG9Fn0JwltdXVtQRQ9xMVeS7p/GHkFvWRaXsBnt9LV\nZMcYoUGpPmmKv+ddSo98jCQIiO1mQruCZddkhkwEpQxNnx7PZ3uDFm+EXg2Vm2DIeUgJHozh9XS3\nDEV0X0EITqKMGrq/KIWAhGFyHJH3jMA0NwPd2Ggi7xmBIrwvI9bhwFdfj2Zo0IL1VlejTg1WalKY\nNahTQ+k+0Mrd0ki6dLHMKFmMXK7HKWWzzZ9Jd0ko4Uki2e4aetwBqjsdmPQqltw1kfOHRvHUiiJe\n+6Eci8vGzuadzEqa1d89trmBIWo5VWo5XblWJGDuTglNbzcUfY1KEvlI4aXZ3owgF4iLuAFtTyYV\nlX/B57NxX1IkapnAm3VtqFQqxo0bR01NDV2xV6HUBfBveZsOqZlhEcNIkXfzzmwj+34/k8I/XMSy\neyfz3OW5zMnqQSlYmDnqF3gDIo8uy0en0BFviB9I9IcPg0yGZniQqMOVCgrae3F4A9wxZaCr42Rc\nFlIR/CNpEhpNIsUeI89nB2iS23g28yF23biLzddtZkr8FF7Y8wJbG7aecez1w4jrAQmKV571IR5P\nB0VFD6FWx5Cd/ddTRu192NjB6F1H6SjpYr9Zzl9G6vCJZ78e8I/ifwBwa86tQNBV5PP9NPH/J+Nn\nTfTV1dW888477Ny5k5iYGG655RbuvvtuMjIyzhheCUGNl+6+dpMj05iuPkpXxHis2mS2bt3KZ599\nxoIFC1j8t2ehdjvtCRcTFlvM0NbpPOuK4XBH/vFzyeU60tMeY8rk7URFXUxl5Ut0dW0L7pz0YHCB\nyecABOStOwART20z7s5Oapye44PFumoVquRktHmnz2gdDPbNwWIZ8a+8TNyCv3KkvZG3f3MvBYve\nGdDW0uJEFKUBFn2Xw0v4Sa4bv9+Px+M5K6KXm82gVOI/yXVjtR5CLtcTYnUj/+puQjwKUhy7ucC4\ngI5GK+Env2gKvoTvHqc4MWjpJgkxcOgQiqhovA1+NDnhyFRyqjvsfFvYQoxRg6o9H2yNMHQOTc1f\nABK1LUMI888mIBnxfL8Md1EXyMB4UQqCIKAfH4P5mszjC2YAnspKANSZmUiiiKemBlUf0QMERkag\nsHiY4lSinfwAus5mYgNZfFfUSZUule6y4GwmcmTQ3XC4Phi7rlXJWXTLGK4Zk8AbGysY/9pb+EQf\nF6acCKlzV1jo3dRAs0LGt91OWsJMHBo+khkFIiGFVUiHl+ANT6dYpWRD3QYAdMOjiCq5Gb+/J1iO\nTqVkXlw4X7V1U+fykJeXh1wuZ58iFWenEuHgOzjcPUzPmU5mZiYHdm0Ftw257MRz0tG5AUGQkzPk\nYp6ak83+Wgvri9vINGUOIHrn4UOohw5FbgiOiwilnGqri/EpZoYnnN7dONW/m1bJRHdoDqurVvN+\nu59YtYIFS+RM+aYWnVKHWWPm1fNfJdOUyYt7X8TpO7tC58EvITM4Iy/86oxNJUmio2M9+w9chddn\nYfiwtwbEyh/Dq7WtPFXRxMUKDel2EbdWzlJbL89Vnl6zUZIknE4npTWl7Dy0k8vkl3Fo6yGWLFnC\nK6+8wrfffnv21/Yv4mdN9MnJyVx66aU8+uijzJs3j7S0tLMi+GNoKOnGGOYjYG3AoC1GcPcQfvVf\nufPOO3niiSe49dZbmTVrFuM0wWn311VKyiUL3dF7GNuax2tLX2dH6Y5+51QqjeRkv4JON4TKypeC\n0QrhaZB9BcgUgIBQ9i0ynYK2sHCmHaxk0t4SzttXQnllNc69ewm96spzuo5jcOzciSIuFlVaGvbM\ndCrNBkSZwPbvVtGzenW/tp2NwUSlyMQTZOf1i/S6/f189GcbQw9BZUJlVBS+k1w3VtshjMYRyDb/\nCfSRbLxmKc+mPUCq8jCe2E9oSuqb4rsssPohSJ7K0cSR6L1KMoYMx7l7D7opVyA6/ehGBtc23tlS\nhUouY2KqmaHdm0CmQMyYTV3jZzTZTHi8BlrVK3HLp6D27UGhs6FOD0OmOjFz8LndFG5az6aPFvHd\nwtfYvzhY9nH/vh2sf+sVqvRKhKTgIq1XFHmIXpxyeN6hhtwZVHjHs3X5bdi/qGWKIYy0ERdgqw0j\nakI7ep+TneUnZlJKuYyXrxnB2zflER5dhugLYf1BNV6/iOQT6VlVRSBUxXKHmzBJhqiPYf3505EE\nGLmvFKH5IKpxd5FpHsrG+o0AqIeEopPSMTln0ND4EW53M/cnRSFD4K26dvR6Pbm5uRxtaaGtNAyF\nt4vL7Q6yw7O54oorUKlUrFmzpl80TWfnBsJCx6FUhnHNmASSw3W8v62aDFMGdbY6PIFgkp/k9+M+\nUoBu9AnXk8/lxyMXuGNqyukHicdOUvcu1gXG817+5zy982mGh8Zyf6SdIZf9Auvq1Xgbg8Splqt5\nasJTtDpaWVy0+Izjrx+GXQNNB8BSd9pmFZV/pqDwPpSKUPLylmA0jhi03Vt1bSyoaeW6GBN/cgXH\n7CVDIrk7IZLFTZ3s6wm6IUVRpLm5mb1797J8+XIWLVrESy+9xIIFC/j8k88Z0zoGeYWc/Px8rFYr\n6enppKWlndu1/Qv4WRO9XC5n3LhxGM4QRjgYrB0ubB0uwjqK8NtK0HlW4I8aCRufh4WT0Gx9gdT4\nKKZOmcJwSiFpEnfPGMLNfM24nBHIJCVDeoaw4fMNLHx3Ifn5+QT6fOJyuZrkpHuxO8qw9PTVYJny\nEIj+oGXfdhRXqItHL5+ERZR4NjWWXr/Iks+C/kjj5Zf366skimxb+jEL77qJFQv+iNNmHXA9kiji\n2LcP/cRJCILAvlXL0BpDmTHvTtwqBWV/eA7bDz8cb9/ZaEehkmGMPKGbfSyG3jyIzs3Z+OgBFNHR\nxy16UfRjt5cTLsZCzTYaRt/FPY1hfBc7nQ3KS7mr7Ut2OdfzdZsFDn4Cfhdc/BeKOosxWRREhUUg\nWq0oYoaDQkCdHkaL1cWKw03cOD6J3Fgj5wf24EuaSptjP5K/h66mYD6DUjiMfuZkBAJoPevRZJ5Y\nLGsoLuT9B+9g/aI3Obp1A/VHC3D0Lb5WVldQefgApXERrNz6PW0N9fyqpJ5tThfOzDC0JRaam/LZ\nZH2IEKENGx7GtojEDp1GR1EICnWAjEAdO4v7i4kJgsCM7FD86mKGaCfyzpZqZi7YwNcfHsLf6eLJ\nXit2pUAYAt1+DfXRMWwfHU5uSQ8+lxpp+A3MSp7F4fbDdDg7gmGqIyMxHboMSYLq6teIVau4OS6c\nz1u7aHB7GTduHF6vl5LQkVh9Rn7ZYyMzNBWDwcDMmTOpr6+nqCgYxup01uFwVBARGaznoJDLmDch\nmQN1FkJkCYiSSI01eE2eigpEpxNtH9FLkkR9Sy+CWsbsnDNozlR8jzzg4QttNEurXmNK/BQWTPw1\nKiGA+vrJIAh0ffD+8eZ50XnMTp7NkpIl52bVZ/c9QxXrT9nEYtlLQ8Ni4uPnMW7cKkKNg4edvlPf\nzp+qW5gbbeK1rCTcBUEpbsP4GB5PjSFOreThwiq+XrmSV155hffee49169ZRW1uLTqdjxIgR5M68\ngGV56ayaMpaRv7yfJ554gvvvv5+rr76aYWeoF/GfwM+a6P8dVBUFvyzV3jX0hOxHLtjwt3hpryuh\nWx4BexbCR5cEa4d2lMKwX6Bv2EJGuJJLr5vLzHFXEtE+kWpjPQ3WBlauXMnChQsp7yOM6OjLUShC\nqG/6mlKHK5jAkTQJ1EELennIbhoNal5Y+DK3bvg7C23fkp5/EHtC/IBM18JN69m/6isiU1KpL8jn\nqxefxuvqP+g9paWIViv6iRPobm6i+vABRs6eQ/qkqQDYMobQ/PgTeKqDroWuRjvh8QZkJ03du+xB\noj/ZdWO3By2Vs32ZKmOi8ff56F2ueiTJh7mpFUmQcYswnli1klfNBVQ0zKfVn8bC0hepWfc8/q0L\nIH02zoh06uz1hNtUmFxBC1J0haBODVrkn+9rICBJ3Dl1CKMV1aTI2miMu5D9Za9g96qwdSahlAu0\nEQFZlxIwjUEn/x5NRnA6XleQz1cvPoPWGMoNzy/gwY++5OY3P0CWlovFFM7X9zyLcfg0JlU04pYk\nPnr6MfYUHeWZtDiypiQieQK0bfLhD+iZFfYGiaGfojYoKd0jInhTCLj0pMTU0eEzsr+lv3TA9qbt\neAIeHk6ZzGP2lVxT8C7Dqy3ky3wkj41h3gWpBPwBulwirfpwdk1PRCZCe1kGnuZg5ScJic0NQRed\nYUo8Snc4Ud6raGldQbdlN786btW3kZCQQHR0NJUZGdTUhZLo96MtDgq+5eXlERMTw6ZNmwgEAnR2\nBl1CkREnCvdcMSoYxNDQGgyfrOwJurecfYJ5x4h+T3U3Xd0uRIUM/5nqDxWvoiAshqb4HRiEIbw6\n/VXCTcHkJqeykbC5c+lZ/nU/1c35ufOx++ysrlp9qrMOhDkVTCnBbNtToKHhI5RKMxnpTyKTDS4V\n8m59O89XNXNFVBhvZiUh+ET87U4EtRyn2seeLVvIKzlEtV9ibWs3aWlpzJ07l0ceeYRHH32UW265\nhQsvmcPzkooufTqiNoH7ypu5vqCaFs9Pq3d1Mv5/SfQ9Ti8r11XhET2Y3I2Mjt6HOzCSKv0DXC37\nO3k19/J65AuIXZWwbH5QJS/tAqjecrw60ehZSaiVWmbKbmJN9Bqk0RI7NTt57PvHeP+r99nb7WSF\n5klu6riE8/eV8ZfqFqQxt4G7B4dCT7ornz8VNDOmvgjL0k+ZevBtRlUUsz4zl46di4731eN0sOOL\nT4nPyuWap17gyseeorOhjjWv/xXxpKgax569AOgmTODQtyuRKxSMunAOxohI9GEmfBPGIdNoaHr4\nEUSf7xQRNwMt+nMlekVMLL6WluAMwxlcdNM1llIdMYoKWSjv5aaQmzIZSS6ywXsPyshMHq39iHql\nmbIZf6GqpwoJiUiXHm1VLcqETAI9PjRDTfgDIl/sb2BaRiSJZh1ZzStwSmrWBAzo/fV0NmeTlzeW\naI2PNiEGzKk4lZejlLWg6NmBtb2VNW/8FXNcPDf+8WXis3LwiBLX51fRU1OLNSYWnVxGW1k5CknB\nwsvvxKVSM//bj7nC3oY6NRR5hIaw5kSM0TZqIrK5XvUD0y6LobPBTkLupbT/f9Sdd3hUdfb/X3d6\nn0nvIT0kQEKTJr0oIFZQsYC9sYoNu66urvW76rqra+8IqIhYKErvvSeQ3nsmk5lMr/f3x43ELLi6\n7Xl+e54nf+TeuXc+t8z5nM857/N+l+jIzKoBQcYfNn1IONL3jDbWbyTXGUfJm5+hVQhMGnkNOpkG\nheYwz10ymMQkPWG5D49CjVNlIErv4mAeOKtduHbXkmPJIc2YxubGzdK9jtZIsL29U9FpMjl69Hqa\nS67ifE05y1u7aPEHGTlyJDaNhvZWMy2GGNjxJ4iEkclkTJkyhe7ubrav+Y6yIx+gIAWttk8zKMGk\nYUiKmcPVChSCgqpuydF7jxxFER+PMkWaCN7ZXo2hl33RGvgH1B4BN46qjTwQY0ItWNB23YJOqUOt\nSkCliqPHeYK4u+5EplLR8eJLpw8rii1icMxglpUt++2KVIIAOTOgdjsEz2xcC4d9dNm2k5BwIXL5\nmQihYETkD1XNPFXdwpw4M28UDEAhEyTKFBFKDS289tpr7Ny5k4kaGclyaBl5LpdddhlFRUWYfwaL\n/rylBWtYwxhxG4fGFfNCXioHHR6m7i9nq63njO/+b9j/vKNv8f3yrCiKIpXtTnZUdtLlkqLDQCjC\nDR/sx+yMkBZpILbQi0wI47XMJ0ZdyJaHpvPY7ALebcvhDv9diP4eRLlS4tGIhKBoPgAag5Ihk1Nw\nlcuYET+LVfZVVGgqaDI38Rf3G8zfv4qV7jySxQbONzp5rb6duf5CepQmuuQGZnUfYJpNh2XO+bha\n9fQUvoIiHGHX4JG8U1UFdbsA2Pf1F3idPUy57hYEQSBj6Aim37SI2qOH2Pzh26dffM/+/agyMghq\nNZRu3UThhCnoLRL1cExqOt1dnST+4Sn8FRW0LF2F3xMi7oxCrHSPfg6v/K2EZj+ZKj0dMRAg1NGB\nx12NIhhB1lHJV7pi7kiLZ4hRR5TlHJRaO0GVGsWtW+m4fT9XjVvK5XV+9nVI0NSBsQPxHzmCpkhq\n/NLkR7OlvJO2Hh9Xj0oHvwt95TesZwyt3SuJiAJdXQVMmTKF+Eg7VlksYkSkp30EEWU87HmDtX99\nGTES4aIlj6Hpnbierm7hYI+HQnsXxQNzWTUsh7k+B7qcbD6aPJrfPfsnoqJjWPnHxzm+aT2RwX7M\nqMkbYOR130y0BMiNrMYYrcHZnUJ3pYlMs5QXtlYFWXpqKQD+sJ+jp3Yxbq8BS0IS8x9/iThXMoGY\nIKWlW6nYtwtDtIawwkOXQYqgc+y1fDVOjhgM0PP9KsRAhGnp09jXug9nQKqxGKelI/NryW5/jrTU\n65DLtZzve5OIGOLV6kqGDBmCQoCWtFwq82ZLVL+lEolYXl4eCVEWjq16B5m+jaZDPupP9AEMAKYV\nxHO00UWKIZ1qu0RZ7D1yBO2wYQiCQEmzgy3lnczI6tW5/UeOvmojL5vUdIgBJlnuo9EqIxyRBGhM\npiJ6ek6giI0ldtEduLZuxbVDqn/9JFhe66g93TH9myxnOgQ90LD7jF12+z4iET+xMZP7bRfDYQ4c\nLWHBjzt5s6GD61NieXtQBkqZgM/no3L9UYKEOOApY/jw4SxevJiF11zDXdmpHHF62edw9z+fKPJ/\n1bXIg808N+wiFDKB61Ni2XBOHklqJdccr+Gzln9MBPifsP9pR7+728WYvadY22k/Y1/lBj+NAAAg\nAElEQVSH08fV7+5jxqvbWfD+fkY+u5HbPz3E778poaPOiUYUSKzZQnReDyQOQT7iQkLtHny2Cqam\nrOKTeVuZnnWEiAy8wTCUr4Vz74afcdoUjEsmRJCy7jIEBBJ1icwb/QkhZQpR1ve55fCPPKn6iLt4\ng+fzUrGKKjamzCI1YEUbcqAI1WC+9UEQRbpXrEDQakkfPZIPUy7DseFp7G2tHF77DYMmTiUhq08k\nomj6TM65aC7HNqxl76oViKKIr6wMzZAh7Fz+MeFwiBFz+uQiYlLT6WpqxDBtGrqRI6lf8UPv9r5C\nLPSlbn4Or3S5XCiVStTqX+YR+rmp0qWIMFDfgMfbgMEdhYBITcIo7s+Q8rcCCgRFkEhYQBQgPjGf\nj4fl44tEeLv6CPKwwMCEgQRbWpDH5CI3q1HEaFi2r554o5ppBfFwbDlCwMVK+UBGx9TSZU1j9Kjz\nMGoUmL0NuMNK3NU2RL9AOP96hLrtBOsPMPWG24hKlCLRnd1OPmi2sijWiKLLenrswZpaonNzGGsx\nEB+fwNXPvsyAomFsfO8Ntu3+HF9EJK7HxHZ7LPWxE5Hv/StDJ8VgbfQSnTAFuVNBsqoNo6+A1w6/\nRom1hN0NOxl10IBSpWbuY08TOuJA9IVIuWoEManp7P5yGXqLkrDCg01vYoizggRvN7WJAoqhwwlU\nbMB7rIWp6VMJRULsbJacoDJOh2FcMoH9PgboFzN82FIuGL2UKcIuVnR4sSEjLUpLQ3o6onwExBVI\nnd8RiaI72teDKc2JIINAVwqH1vSHJE4vSEAUQS+kUGWvItjeQbC5Ge0wiS/n5R/LMWuVXDNUojto\n+QfpiJMnlrHaoGdBwQJGJRcTCEdo6pZSkCbjEDyeGkIhF1ELFqAckE77c88RCUjnmz5gOiqZirW1\n/wRCJXMCyJRS+vXvzOE4CsiwWCQWT1EUqfvmO/ZNnoph/uU8ec+trP3b8zytCiEXBMrLy3n9r6+j\n7hKxCx7uvPN3zJkzh6hesZUrE6OJVsp5o6E/qd/37c20RwyMUjVSGNNHGZ6j0/DN8FwmRhmp9Px3\nRYjgf9zRjzDrKDBouKesgXpvH+1vq8PLxa/v4mijnSfmFLLsltEsmpzN5vIOVhxoZIxZj4wQ2Yb9\nyJUinP88mhwL3ekbOFAiYeDdjk1Epx9m56g4FugWc53lIzrGPNrv+y0JOqoH7aYxVMttxbdR6xd5\noyXAkMzbiOCkWV1NbW0Sjp4DzDW2sm1UPqMHXkqZPRoR0MgOIbfEY5g0CV/pSbRFRdyZNwCXXMuH\n8hy2vv0iglzO+PkLz7j2CVddR8H4yez+4jO+feZxQm1ttPlcnNj8IyMuuISYlL4leExqGkGfF3e3\njbj778OBtKyMSekfpdvcAWQCWLT9ueh/azQPoEyXOiIDDfU4PU202DLwytTcNmYm2l6Cq+42D5Gg\niqDHTE+PRJg1UK/lzcIMerz1CEIcsb18e5GA1AnbbPeytaKTK89JQymG8G1/kWMaDdrULgxKL922\nIsaMGQOtx7EgFas7TjSCXKBn8IUEIzIm5QUomCA1q0VEkaeqWkjVKLlHJaVXlGnphB0OwlYr6uw+\naKVap+eSB5/gnIvm0lpeS5WrClWbj1xk+CY+DgEn+YGlKJQytFGj6CrTkhVXS7uYQJw2nru33M22\nr5cS7VQx8/Z70anNuHa2oB0SizrVzNh5V2NrbqT++D4iKh92QzS3Nq8kqhdyG7npMkR/D92ff0VR\nbBExmpjT6BsA09Q0ZFoFjnVSXlurTWHxgCREEf5UfhAhXUQQRVqr7DBxiVRzOvk1QZ+P9pPHMecF\nCIdNZBdfTN3Rw/jcfbS6hUkmzFolQW8cza5mug/3pgiHD+dAnY0t5Z3cMTmbfJNUrG/+pRV20Mtf\n7EexyFTcXHwr2XHSiqqmU4qADcZCQMTlLkemUpH42GMEamuxfSChbYwqIxNTJ7Kudl2/dNg/NJUe\n0kZLKVckksDmBx+k/cWXcO3fjVadwc6dB/jxrbcoueoavA89iFWjo/T+h4h68EEMjQ3UzJ3Hhr/8\nleXLl5OkisGAhuTkJMwx/dW0dHIZN6XEsaGrh1OuPj3oZ8pPIQvbeWnomcR2RoWcT4dk8fvs5DP2\n/aftf9rRq2Uy3h2UAcCS8kap+SAc4c5lR+jxBvny9rHcND6Tcdmx3Dcjn7QoNXJZhG9cPQQCp4gr\ndCCmj4PMCbSL39Ax8DPMgVGMP3c3EwqWM+yYA7U6ikXD38Wg282lb+w+HYEAdHm72GNaR4ZtCFfG\nLkRIvBsx7OaZwlEURBfQktRCR0cBwaCew0duYPVri1nx6husaxlIu9eAjF1EXEGirr1WirCUSgYb\ndUyP0vNDaBjVJ6sYO/cqDNFndt4JMhmz7ryfKdfdQs9RibWwtOoUA8+ddMbEYIqTGpkcne1ohw7F\nm1SALtTdv1GJPvqDnxdoXS7Xb87P13v9POcOE1YoWHOkhLucV5PdXYstcSTDovtQL63VdkJeC2G/\nibbWzae3T4sxYQg04DLkclJUITMmIvpF1JlmvjggwRWvPCeNYxsfRuPqZE1qIXNSm2lzx5Ex8App\n1dFyGDNS3rOrqhVVppEfPvuEU+400sVKBJcUca1q76bE5eWRzCSE5iYAVGmpp4vVqsw+Rw8gk8kZ\nPW8OmqgUKrrX4JNFWCxoySocCUOvQX3kTbIH67A2KXC3JJFlrqNH0PBg4XN4vS6Uh9vwpuvIHzUO\n57YmxGAY03RJeSpv9DgsCUkc+3EtotqLV6NkTuc2LEjPxzk4HWVqHq5tXyMEI0xOm8yOph0EwpJT\nlemUGCak4q+0E+yU3s+RAy5jkuIoq2xyDutayaypobLbQXfyZCmq3/IctYf3EQp6MCc5aG9PJC57\nIKIYobH0+M+uW2B4uoUOWxQiIuWl2xHUatT5+fzf+nLijGquG5uBRSFHJ5fR5Dt7809T6Up2aVRc\nlTYNk8pEVq+jr+6UJhWjQYp2Xb1d5YaJEzGedx7WN9863fQ3K3MWXb4uDrUf+i2vo2RZk6HtOD3f\nrKTxpptxb99B99KlKJ86jvHeTrT3LyHtz6/hLy/n4+tvZ9DXXzHvlutJvPEGYj7+CLdSSfy77zI8\nNo5CUyYhwuhHnh1ZdGNqLDq5jNd7o/rN7XU0ROI4R91CriXjrMcoZAKyf5XE7Z+w/2lHD5CuVfNw\nZhI7ul181+ng3R01HKrv5sV5RQxO6SuIvLDtK9rMT6DJfg5R2Y0tsRKlJoQw+SEcPceorHoak28k\nyccWoVRGI5R+TbQjyDnFy4iPn81lOauYlPQFC97fh7U33//msTcJEmBMw4V8cbwFm5CIsWcln5X8\njQWFC6h31ZM7o5iTpefRsD+Kmj215E7IYOE159Lp06NX1NFRcghEqZ3fW1KCGAhwR7SOMXs2IhhV\njJhxJg/4TyYIAsNnX8ysuVcDcP7TL3DB4geQK/qzT5tipRZ+Z2cHgiDgjs5E3113Wm7wJ7O6/MSc\npSv2tzj6oz0eph0o54PWbjpj4wk3NGAOdFHgriUlrz9dcluNA4VSgnW2NvT9aB1+B4GIA40YywsJ\nWYgDJZIyWYaRzw82MikvjoONn5O6/0OqDDHcNOtPmBSVbGs6F2V8r2NuPoRFL53b0dNDI5W0VpSh\nnf4AQjgAR5cSiER4qbaNwQYtlyZEEWySHL0yLY1AjRQV/zyi/8lsth0otOMRlWqOOPYzTJQTqrBL\nNBdyJQWhpQR9YeJSLyZNkLDg7SVObtJcjCYo52BaO8crDuPa3YJuaDzKBGmlJMhkFE2fSVNZKT7c\nTHTtQRvxYQlKkaE94MBy9UJEVwfdy79nWvo0PCEPe1v3nh6bfkQCyMBzUEI8yWQKFmUNxIeafbZj\npLbXgSiybcdOmPoYdFXh3fMh0dkRBFmQNusArL4ASrWGxtL+aKERA6Jo6ZB+S+XNx9EMGcza8i72\n19m4e1ouWpUcQRBIUStp/oXUzdenPkMmilw6YjEgFfwtOiXVvRG9Wp2EQmHC6eqjD0l49BEEuZy2\nP/4RURQZnzIelUx1GnX0myxrMuGAQNuzz6MpKiJn6xYyd/5A9w0huhKT8MbHse/8WaybNZPLrrqM\nTIOOSCRCWVkZ765ezdZJE4nI5SR+/BFrqjbwuXo3jfpufOXl9Kxbh2PNGrwlpYiiSJRSwYLkGFZ3\ndFPu9vHwqZMIEQ//V/TfFxb5NfufdvQ91g52LP8Y7fuvkOSwcv/uE7z2w0nGJCqYVdjHCLepfjMr\n6p9GJxi5vCOXjOi13Kpcw1FysMeP4OTJ+1Gp4siNeppId5iw1QslKyF9LPLoXAYP+jMpKdcwLW0D\nUxPfY/Gyg1TZalhZsZJ5efMoSM3no6CbNI2KG1LTWF21mhxLDvHaeNa0rWHC6EvoOKTBNEDANGQn\nURMuJ9vYhUyAU98/g23vHpDJiNjtdH31Fc0fvo4u4GP5jIW0Vf16+3ekrQMUCuKHn101yBQb13u/\nOgn6wzi9coz+DuyrVvX7XJvDR6K5PwLB5XL9auomEIlwd1kDZoWc3WMKyMzNZqi1lRdcjyEgEkrs\nz3/eWu04jfhxWF14vZKjreqWUDozvHKa9UZWjp2IzKhie0cP7T1+0lMaCP/4GJaIyICrVlJV/gHh\niIxdLaOp6HUYNB/GmDoQAYEe3BzY/w1JOfnknH8NpI2B41+wvKWLBl+Ah7OSkAmCJJaiVCKPiiJQ\nW4OgVKJM6U+xC9DRvouQN4Wscy6l0boDuyJA99eVhOWxMO1Jkjs+wWgIIQrZaNs9aOQ+DpbVYzty\nCpc2hCdRTc3nBwgQwDtB2+/cgyZPR6bWYNNpuabte+zGdCxhKQDo9ncTffWFCPpYupd/yuik0eiV\nejY39K2G5CYVmvxo3IfbEcNSymd86ngGyapx+btQxBko6Ojg6NGjtJpHIFrSMXXsQp4ZwhvS8Hb7\nTO7dYEOTmE5bTWW/sQ0fEEUkEINcUFAbaIGhI3h2zSkKk0xcNapPDzdVo6LpLKmbSNDLam8j5ypj\nSDT1pRSz4wzU9Eb0giBgMBTgcpWd3q9MTCT2rrtwb9uOc8MGdEodo5NGs6Vxy29H3yQPw14fTbjH\nQ+ITTyDTaPBE6ukZqmDbiNHY772Pp+fMJ2QwcGT9WrZs2cLLL7/MihUr8Pl8uPV6Wq65GqPbw4V7\nK9AEw3y+6ku+eeIJGu+7n5b7l1A3bx77Lr2MT155Bd2qz7j8wGbu2rCNBjGZCZoWrBEj95U1SP0i\nf2fttdW0VVeeZeD/WfufdvQBr5eD361CDARY2FGNtzmMX5SRe+ATnnj2aS7ccZhpe/awZPvjhH3J\nvBMqIKH+Gv7UoCRFsPFK4FJu++Qr3O5aCgpeRJ8jvYS+I6dOY+cBBEFOft4fyMxYzLjkvYy2PMeD\nG59CLVdze/Ht2IZbaDDJuMVs4faim9Epdbxz/B2uKriKndXNvLS5hu/jZ/GjdjI2D1j9J9HmjCMi\nCiTJm9h8aDehgnyUxcWsX/4RjSdPMPr627HGJHJfa4TQr3BpBJubUCYnI8jPpIUFUGo0aI0mejo7\nJCIxEeLyE3Gu/4GIty+f2NbjI+lnjj4cDuPxeH41ov9bQwflbh8v5KVSUdfN91YZkeYWjD3SMv6a\ntUHquyRH7HUGcHR4ScmTCJ0CPQmnMdzH66Xo/oK4XMaeOMyHOXG4s00s299IlB78FQ8z1+WGcXcR\nic3G7d6E2zkQiz6Wslan1F1rq0aeOhytTE0HHbgd3UxacBOCTCaJWnSWsbZkJ6PMeqZFS8XoUKcV\nRaykSuavrkGVkYHwd6uiSCRIW0MpAJrc4bSqYznY8Q0RTwjbijLE4TcjZE0kl+/pbAggunLIMtdx\nxBNGrLcRyY5mWeybjHQX8mHsauZsvJhHdjxCuU3iwNeZzCQPHYlO7abYVYE77xIsPxHU+ezINCp0\n515EsP4UoeMnmZAygS2NW/rlq3XD44k4g/jr+hrqZvemkjtileQfPIhWq+XL1d+yxTeINHUnsdGt\neBjO5QNNBEIhdnRraK2p7gfdLU61IBPkRIVjaIyO8KmxkFaHj2cuGdSPQiFVo6L5LKmbUyeW0SGX\nMSujf546K1ZPjbV3gg56MUTMuJwnEZ19ZGTRC65FnZ9Px4svIQYCTEmfQrOr+TSm/9dMlMnprjWi\nTRLQDpGAFE7XKRz2REQRSo0x+BQqpl8wh/b2drZt24bX60Wr1XLppZeyZMkSZt93H6r8CaiaSzhv\n/XoG+v2cKizkwOK76Hn1FQ7cegvrhxbT3NFBals7WKIpNcQS7bKjEjO57GgVy1ptLDpZz167Syr8\nHj3E8iceYOnDd7P7i6W/6Vr+HfufdvQxqeksem85Vz/7Mguuvh5Vi4dIqh7Zonv5cMKleCscDFtz\nkvNKFzDOcTtlx4egUIgUKNbhJ4H6FB/7GuLYb7uemOjxKGK1yEwqGo6VUko+h8P5HDhwgLa2NgRB\nICvrbgoGvkBhTAXzzLu5JmM2MZoYvtQFsLjCDK71YdFYuG7QdWyo38yOwxl46hdxvMdA0JzIQX8+\nT+5+hPVHDyEUXYFMEMkzu+gOB/hREWCNwk+7Vsk56TlMnDGTP4YOs02VwfUnqvsVm//eAo1NqFLP\njEB/bqa4eHqsHXQ1SRFU6swxRNxunJukqDAQimB1+fuxDv4W+oNqj49X69u5KN5CQ5mNmz4+iCM6\nEU0wiLEzjEebQLlLzdXvSimv1mrJCaUVRqPWK4h4CujoWA9ASdMRFCEB4yMvcvvatfjkAi9bwmyv\n6CRKtZGnbV1E0sYgn/YkBw6+iVweJDf3ZgqSjJS19UCLVKuIxI5AF1JiC9lIKxxCykCJcpdBlxKW\nKZnUtJ5HspJO00yEOjtRxEmrnkBNTT+Om5/Mbt+Pt0eKwpuDIXZGj6PLUYMtzYa/0o51aRnhme+S\nH1+GKEK6eg5ZhkbqiCUSUTEl8SJ8P7agLYpl0c0PM3/gfDY1bGLed/NYsm0JVq8Vc1YewyKlhJCh\nyr8WjSiiFRTY/RKqLOrKeaDUYX3zXaamT8Xms/VTf9LkRYFcwHeqjwPfjATDPKDJQOl0YZWnYOto\nY5cjCZkgUtDVxfjBF/PQxcO5UHUSfXwihIIs39CnFKZXK8hPNGHpUlIbr+SjuhDzRqQyYkB/at4U\ntRJrMIQ33F94ZkfFKgRR5NziG/ttz4oz0On007P2SXilAOOBr4iIAbxv9soCRsIICgXx991LsLkZ\n+9ermZQ6CeA3p298pScJ2gJY0mxgk9JyLucpenoyUalUrBNVnBtlYELxEO644w6MRiM6nY5bb72V\n4uJitGo1TXcvQWYagjx+EAR6uPjaa5kzZw5tDgfr9u2jLRRi8uTJXF88lIbmIN86k1Ed72To0VIS\nd23hvmQLJ8cPJlop5y8nq/j8qYf46vkncdqsTF54C7MXP/CbruXfsV919IIgfCAIQocgCCU/2/aU\nIAjNgiAc7f2b/bN9jwiCUCUIQrkgCOf/twbe+12oe1vzP9pVhxgRETKNvO2Xc21VmEsPiMT1RGHw\nJzCs1kQ7A5iQeRyNIQDF1/HSBA+DYk7x3pFiSlvsBAIBvlcc5At3DV8ym29/2MyaNWt466232LBh\nA6IoYoydyfKeJLSCjIHeZWwqe50St4vZXQINh6Vu27nZVxNqvpltp/yMUJWzsPlj3r0hg88WDEIn\n9/HMtuFslo9DRI5KcDKruYoRQ0YwZPpMpiVnE7d+M/6aWq7Jyua5ylfZ2e1k3L5TXHm0mmWtXQT+\nTsEp2NyMMiX1729PPzPFxksRfbMbpVpO/JRRKJKScHzzDSDBUUWRfhH9rzVLiaLIA+VNqGUCo90C\nz3x/kpmDErljocSFr24S0GaM4tMbR9Pp8vP7b0poq3YgUwgkZJiITtIT9uRidxzE52ulxlFDtFuN\nwR8iW7RwWVOQNQ02RETe9n6H3JyO7Mql+ENhurq+JRCIpbDwQgYmmqjudONvkGoOXscACPoJCQLn\nXDzv9Hi7FCZ2Ro1knm07Y819k9dPjj4SCBBoakKVdSb7Yqd1IyG3pDNb5vTgi04nZ9RYtu7+BN3M\nZPzVdtr+Vg2Jz1Gk7yGtO5HBghIRGXnpt5FTnYJmYDTRl+eTZEjioVEPsWHeBu4ovoMtDVu44rsr\naPN0M8FzkD2GofjCcWAZgAXZaUevG5qKKmMi7h1bGStmoZAp+qVvZGoF6mwL3lNd2D0B7lp+hFe2\nbSESNFHaLbFy2uq6USTmEVabadZEk9DhJyZ6IhaLhcTYKH6qM360dj+bTvWR0w1KNhHfHMRuChNn\nhifmFJ5xj1I0Uv9FP4hlKMDBnhryURN96jvY/y4c/gS2/R/ZxyUhlJp9ayBzIobxzwDgHDQJdv8V\nVt8BkTD6iRPRFhdjfestYhUWhsQOYWvj1rO+k39vzg0bQC7HmOKDWikN6nSdors7ibj0dCp9QWbF\nmgmHw3z//fd4PB7mz59PVFQUoijS+vuncG3ZjCJhENE3P4wiJoaWJQ8wfNAglixZwuLFi7nvvvvI\nLhrF7+zpvJ15PpHuEPpmJ7vdGZT2RDOoqhSF3caI5ko2++GNvLH8eOsT1N31B2QTZqDR//MULv+s\n/ZaI/iPgTGwQvCqK4tDev7UAgiAUAvOBQb3H/E0QhLPnE/4D5gyFuaWkjh9au/loTx2p6Wb8OgUI\nAj1dPtrSylk16BVknZ/y7QgIKQRkHdsJhRSIU+fjsa1j4agSRJmbhR9u48vV39Hq6WRsMI+bR+Zz\nzz33cM899zBixAh27drFpk2beHL3kxx29lCteJZj1gKE1j/zf8IS5iZV0FFXyokjDdz80QkCrkzM\n0V8zrnILjekuXq95j3GDMnlygoMUQyu3f3GKMssFAETFeRlz+TVMveE2Bj/6ODKdjpaHH0ZMHcuN\nHT+wx/sNi9LiafD5ua+skZkHK2jzS0tkMRgkbLOhSPhlsWcAU1wcPdZOrE1OifpAIcd80UW4d+0i\n1NlJm0PC8ib8zNH/1Cz1S45+eZuN3XYX8w0mnl9dyrk5Mbw2fximwZKGqNguR0gZwZBUM3dNyWHt\niTYqT3URn25EoZQTnWzAbTUiiiIdHetoFq0kubUIgCp3DDc3h5E3ubGYvaToIiiuXwOGOPbuXYXB\n0E5y8uXIZDIGJhkJR0SqamshJhd3uRuvzwpqDRnFfSygf6xp4dvYCcR7WqC1LxKWHH0swfp6CIdR\nZ/UnmRLFMJ2dPyIPF6FUyzna3kNRqoWJV19POBTkUOU6Eu4ejnZQDL76EJnKGFQyBcN9Elpku6qG\nmIWFxCws7Kc+ZFabWTR0ESvmrJCK5DVbSA5a2S4vpK26HuILsIRCdPuk3K5cr0Q3+SIQBHzLv2J0\n0mg2NWzql6/WFkYT6PJy8/v7+aGkDYulg+yogVRPGAjAY/l1PHrLleicNjrjVWj9EdZ/+j7r1q0j\nPT2dtm7pu/I1Hn637DD7a6XVQV6cnkqlpNFw10wjZu2ZlAGpvY7+5+mbUMmXHFfKGOrsgjX3w9ol\n8O1dsOWPZEXqAKg57yO44hP0hdcjCHJcA8fC1Mfh+Oew8xUEQSDu7sWEWluxf/klk9Mmc8J6gg7P\nPxaihz4VLHlsItRsJRIJYLW24vEoscVIs9qsODM7d+6kvr6eiy66iNReCpLOV17F8dVKNEMXIMjk\nGMblkPziCwTq6mh/4UUUCgXR0dEcb3FyyRu7ONHqIDjYgqrwE15I3csl9Xs4FU7gw90NvL/kTtJ2\nSynK6uRM5JYolrd3M+tQBfeWNfzqdfy79quOXhTF7cCZemhnt4uBFaIo+kVRrAWqgN+unvFPWrnb\nxy67kxvXl+DyhahKVHEHOtKsIdafo+OrAV8yunEOWQnjGFT5NZ9PlpOp2Ud5YCrHS94jEglhcE1m\nYmE1XU4ZHxzzMCnWzaBwGibNaCwWCxaLhTlz5jB8+HB27txJ3fE67h5+N4snzmWF4z5e4SGihQA+\n5WPoxn7CwhU7KW/t4fWri5jZ1EREBqMvvYIdzTtYX7ee6ROu5+5h76ARPNzmvAK/V4Eh2Y8qU4oi\nFXFxJP3hKXzHj9P5zgeQOZGk8lU8lpXE7tEFfDQ4k3pfgOtO1BCKiIRs0g9TEfuPxQ9MsfGEAn46\nGzpPF0LNF18EkQiO79fQ2AsbTYvqKxL+FNGfLXXT5g/ydFULQ7RqVn5dRk68gTevHYFKIUMREwNm\nGX67EhIlNsCbJ2QRr1fT0+wmMUtCcMSlGQj4IqjEcZQ1fI5XESStCwxTpqBMLaJMH4RAhI6sVL64\neA2YU/H5fDQ2fYEoyigYeD0AAxOlXHtZi51I4mjKD+0g6HcSEWSEQlKn5l67i+WtNpKLLwFBDqck\n3hQxECBst6OIjcNT2bto/fuO4a5t+P1tEMjGEK2hstNNUaqZqKQUis+bzYlNP+LwdxJ9RT7JT4zB\nfM9wfugJ0mCPIUnfxgl5EG1BNILs7DC63Khc3p78NiPCjXhkasq9CdQc3gZx+UQFvNh9fUU8w5g8\nFCnnYF+5khnR42hyNVFp7yvmaQZG8wNBDjY7ePLiHNxiCzOzR5A5OAOH0YD9yI+0159CZa3Am9jL\nbeSq4MCBA9TW1hKKiOgs0UxNhGSzlmvf28c9K47wyc5qatVSUV2nP3snZ4pacv6NPxVkIxGqNj+J\nVyZjaPGNcH8FLKmEe0rg0RbS7/wOuUygxiUdJ5er0emypILsxAckvYetL0LrcXRjx6IdNgzbRx8z\nKVlCcW1v2n7Wcfxkoe5ufKWl6MeNk2CWtdtxuyrptkldvPt0FoYZdWDrYtu2bQwePJji4mIigQBt\nzz1H17vvosyYhHbEZASNHHWmCf2YMcTcdCP2zz/HtW0bB+tsLHhvHyqVHPeoWBLjy8hQ2jhv8fM8\n9fhVjLRXciichledzoNLHmLjyDwqJw5h7Yg8jp87mMezkhhn+f8jov8lu0sQhPmqivQAACAASURB\nVOO9qZ2fugdSgJ8rXTT1bjvDBEG4VRCEg4IgHOzs7PyXBjDSrGf3OQOJa/aRmWrix8mDyNlq4+qy\nACHBjyvmQeJdI5hneY0nioJc0boSpRCgRjkSh+cr2toyOXiwnsyKEMMULdREYii11qPUO2isqafZ\n1Yyzy8qBNav4rulDmvRNFNmKsH5ygi+efRwhVUaFLYeqz7PZvW8Cf65fRFAlZ9GA13F89wDx7XL2\n51kZMmAERXFF/H7X76l1tZISk8dNhUtp8ghsCI9AG+en+4sTpyMz08yZmC+7jK6338EdLgB7PVgr\nEASBmXFm/jwwnWNOLx+3WAl3WYFeLvh/YMY4CYUU8NiI7W2UUmdloSkqwv7ll9R3uhAESI3qY6ns\n6ZHw6CaTqd+5IqLI3aca8IYjdO5qw6xV8tENozBp+qI8IS6Er1t5WqlLq5IzPycemQjqRGkyic+Q\nzqsKX0pNj4Rfz6xxos4tJmz381V7NQlCFyNTwjze6md1ezd79+4iJqYCk3E8KpX0g82I0aOSC5R7\nTTgjYyixbsdslCYTl8tFIBLhoYomUjVKbs8fCBnj4eS3IIqEevVtRYucmh1S6uBIxx2n6wYOv53S\n6tdQqxMJec1ENFLbflGqVEwec9l8VFot25Z+cPr5GRP1xOZF0dSWzBBjKXX+TLq/XAyhX+4ajXQF\nGEQlP8aci8mloq1qP5GYfCzhEHav9fTntINjUeXMQPR6OWdfNwJCv+YphUXDSnmIPLWS3LRuImKE\nQTGDuCIxmorULMKNAoe3voopzY1PIxDRmhmfqWPu3LnY7VKKSG4w4u5o4as7xnHJsGR2VlnRhQM8\nvvMbFCh/sRCaolGhEgRqfqonlXzJqYgUQBQWLwBjAhjiwZIGKj0qhYwB0brTWHqgP/LmgpdBa4H1\nDyMA0dctJNjYSNKxZpL1yb+avvHs2w+i2OfoPV346n+k256EwahjX0TOBIue1atXo9PpmD17Nv6a\nWuqunE/3J5+izJ6K8dLbibhDaPKjEXob/uIWL0aVnU39U89w07u7SDBpSJ2UgtYox9f+HncU34Gz\ntZ0v33yFUe49GAnwRdQo2h99kkKVHH0vaMKokHPngAQuT/zHv93/hP2rjv5NIAsYCrQCL/+zJxBF\n8R1RFEeKojgyrrcQ9q/Yd0dasLsCPHN+Ae7tbdjbPaiGVmDofI2gKoGN05T4iBA1cwm3tK+jRJ9N\nS/4uBFkEW+mFjEyZw7ix53L12FjUuir+FJrDzcnvM1+9mJlfzWT2svNYUvMse/VVKAwO4nQq3DoT\nVaKKScd3MX/P92wVBvKhYx6J5jgWRZeRn9xA/JiDDLupm9TiAB+WvMWfJ/8Zo8rIrRtuRYwaz+DE\nUiYZj7FMNQ2ZDMSTG/FX9lE5JD72KKoBA2h5ZyMhnwwqfji9b06cmdFmPW81dhLodVSK2Nh/eJ9+\nwtKLkZ5+Yh/RCxcSqKlBtns7iSZNP0Fnh8OBTqdDqey/TH+uppVt3U5MtS5wB/nkxlH9YJmhkBtV\nlA9/j4LIz0QchvXWU3Y7eiUEk/UolDL8tnxa/ZLzz2/2IYvOpJIw+yPxpKfUsnTMWIab9Nx+sp43\nrHUoVH6yshacPq9CLiPPHKEsnMKarfvwhJ0MmyGVh5xOJ283dlLu9vFcbqr0Iyu8CLoqobOMUG+Q\n0ez9GqHFjywhCkPMII6fuJMnN1/HxBUTuausmk3BwbgdQVwyyZkX9Ypr6Exmxs67irqjhzi1c+vp\nMWWfE4foaiSHasLI2XSiFr6/9xefj+v495hEN6vip2Pwygj5e6jtkhMVjpzO0QMozGq0gwtRpBQS\nWPkdxTFFbGnoK0xWtDupCIe4IKTgQOsBZIKMYQnDuDjeQm3qALStEVpOVhOV7UehjEJIOQdajlBY\nWIjFYkGlUhFSqrC1NGHRKnhpXjEHH5/Bx6H9FHfVoyHpFx29XBDI0qmp+qmlf+efqVAp0ciUpBvT\nz3pMVpyhv6PX5+LztxAKuUAXDRMfhPpdUL0Z4/TpKJKS6P50KZPTJrO3dS/ekPes5wVw796NzGBA\nm2o+LSsYqdqCw56EPjUTwmFiOltob29n9qxZ+L9fQ+0llxKobkQ7ehHmi2/DPG0AEbe0IvvJBJUK\nx8LfIWtt5tKy7UwIqtjh9ZJfW8XkxlyKPOks//0SQgE/C5/6I0umpWMX9PxVTKXzL/+alu2/a/+S\noxdFsV0UxbAoihHgXfrSM81A2s8+mtq77b9igVCEN7dUMWJAFPkaFUd+aCBluIEP7H8lp03N7ANO\nqnQGLhjzCUebGrAInZxQFFKenM3brjupURioO2in4QcF8dYo/qp8E92A96gVGpnTfjFZnmTspiB2\nc4j7R9zPW3d8ye8efJTf3bWYypwiOpxKVivHcdA0lGxvHbeKe5g5ZSH1P75K64GFeF0q5pjszGIL\nlRVP8ZcxdyAHHj36FT3yDK5JXoq+wYVHVGPVf0dL6Wr8ASl6k+n1pLz6CuEeFy1H0hDL15++bkEQ\nuDE1lkZfgLIG6fYqfiWiN/d2x4oRZz9Hb5o1E9WAARRuXkV6VH8MvcPh6MfCB/BGQwevN3Rg7vAR\nrnXy8Q2jyE3oz5nj8zWhNwVBFPBX9KUVvC0evGqBlaWtiKKIXC4jOc9CU5mTxq5odDIR7bAwQkcz\nn+NGLvi5ZdZUTAo5Xw7NZgoBdsSM4HXhEUxRE/p9Z6GilYTWWtps9UwcfTXZvRJ3NVYbr9S1MSvW\nzHmxvdcy8EJAgJPfErJK99upqMZgT0abU8iwYZ+yPZjDqsbDjNQFmRSbxld1e3A7fHQGQySaNP3Q\nScNmXUhyXgGbP3gLp006X5uxlEiohcRAFFHqbj4XJ8PRpXB0+Vmfj7HuB5xyPacSx4JBDTINJUfK\nMUciOMM+gpG+vLe2KBZF8niCzc1c2p3JKdspml3Se7C9Qpq4JoTlHGjYR35UPiaVCYtSgWJgPkIo\njLvViC6hm0jET5fagdh5krDXypAhQwgEAjhDEPL7T18LgOfIEdrTcgn6Ev4htDFHp6bK7Qd7A3Sc\npFytJjcqD7ns7KW67Hg9dVYPoV6kjl4vcTp5PL3C4COuA3M6bH0BQaEg6uqr8Ozdyziy8Yf97Gvd\n94tjce/ejW5ILsI742HTUwBoTh5BDMmxtTZxz3t/wP7pW2QmJ2P68CPan3oCbXIssbf/nsTHriX2\n5iH4qxwg60U09drubY1cf0jkSPxALqvexqk8JapQhHO3/EjWMRurn38OZDlc+eRLxKYNYJTRT66i\ni7Wpo9n99Y94jx79hRH/9+xfcvSCICT97N9LgZ8QOd8C8wVBUAuCkAnkAvv/vSH+su2v6aTN4eXG\n4bFs/qQMlV7Op5Y/oUDNpOpLuExZzrITD+LWxHB4/yf4BCVPDbqNZfLr2G2axPLJw9iSWUWPs40T\neyK8YshFqeiB5qv52jaW4Z6F3DrkVsxqM8vKltHU08HRRjv3bqnnYCnsiORj0Go4V1nLuVFdNJcc\nZd3rjzFpvplZ195PoPZlGrY8TL3bgtO2gbbKh3gsrpVbLC04fC0QF+SyBV9yTJaJKtDBTvl77No1\nnsbGjwHQFBSQ8MjDuOuD2DYcB29fZDcjxoxWJqOssQUA+a9E9Gq9HplcjVLlRqXtw4gLcjmxi+4g\npaOeafUH+x3z947+w4ZOnqluQdnuxVDp4rObR1OcdqbAsddTj0knRXXeE1I7vSiKtNX2YErV02Dz\nnO6ITC+Mwd7uocHtJyEiQz3Zw1c2M+uB6MQyJiRnEwx2E/Y5mVrzBvMjn7CPEdxzbPfpVIkYiZBW\ntpF4Xwf5cbMZcuEsjEZp8llZ14QgCDyT+7MMojEB0sfAqW9x9mL3Y7JmIDbaUGVlcaDjGF+3NzMr\nbRwvz1jKa7PWMDNhDogCtT4rxWn9Jz+ZTM7M391LOBxi/RuvEA6F2LlpBRAh0D6NkQlHOBTKoyH6\nXPjh0X7PESDocZDuOcaGuEkMsljITc9CUBVQfeQQOqX0XB3+Pmy8bngCitRhyAwWBu+QHPxPUf3O\nKiuZMTossjAnHKWMTOxrossfVoxdp0Gu8aPQRNBokmmTNyGIIqe2XkBGhrTq8yuloqqtqRG/J8jG\nd4+yIXERjekLSWoeQoeng57A2el1c3Ua6nx+AqfWAVCj0ZETlXfWzwLkxBl6yc2kyFyvl8TI3e7e\nAEGhhrGLoGk/tBwh6vLLEdRqMteWoFfqfzF9E2hoINjUhF52VHret+9CHDAOc7CHa/gaw8FNRGRy\nFF3tZP/wLcrqFeTO7WLAmAPEdlyLpuQhgr5uGg+XU26o54nDT2H1Wjm6tYn7vzuBTwb5dy1C6XMS\nc2ILWe37UPvaUOnSEAQVfmcJnz3+An+7+RrWvPo8YxwHUBHm+dFX89GLT/H1i3/g+9de4plXP2L1\ntxvOeg3/Sfst8MrlwB4gXxCEJkEQbgJeEgThhCAIx4EpwL0AoiiWAl8AJ4H1wO9EUfyNDET/vMV7\n61jY8Cllf36Atqq9HMpdQ42vkkE116MOmZgWfoOJFh0bizOY37qOPfqhXKH4jAdVy5GFINknsnPk\nKFoHHEWW+SjNpjom1F3BgpZi0gQ5H3Za2H9kFLPifk+728p5n93MJW9sZ+fBFuI8ndyZ0sWuJy4g\nJa+IiAgps+eiN1tY+5c/0liyjVm3FSH6BsKxP/BIk4qYjMcZMOBWMqJHEBLB3a4galOYKJ2TLKGN\nz/bcgo8ZVFQ+TXOzFPlZ5s/HMGYoncf1BPd9dfradXIZk6INdLa1I6hUyH6le1UQBGQKM3KF64x9\nwSnnURqdwZgNywjZ+uruPT09mEwmGm0ebl5XwiNVTcisPmYGlay5azzD0qPOOBdAqP0IGl0YRYwR\nzx6pTd9p8+HtCVAwWErTbSmTEBNphdGIiHTr/aQ265CXp/Mn1KSorDx2znF275nA9h0j2bP3HLIy\nd3Kh8A2XyDeyymHmzaNvIooRSrf8SMDhZnvMeBwxhaizzGi1WgS5nCabnQcyEk8jQk5bwUXQXkLH\n0Q8RBcjKuIeIx4M8I51n9z5LmjGNpye+hsUyAplMxk3ZtwHQptlx1sktKjGZ6TctoqHkOJ8+fi/a\nA+2ICXH43SlMN5cgIvBS1/lSU9eOP/U71r7/c9QE+Sx+BsVGHcOzilCqihAjEVx+CRnS/bOCrFyv\nRFeUiCJtHOGd+xjOADY1bKK9x8eOSiszChNoje5mfsf5zGgdRdgp1QYmDh1Eh1mPIVnKmw8Z/FcG\nTZcmCE1XK27PB6hUKiJKiQajs7GRb/58lIrDNuI7D6MyqpjZUUx+x2jKuso4m+Xo1IRFqKvYjlMQ\n6CJMhjnjrJ8FyI7vz3mj0UiO0u3+2aqh+CpQ6mH/e8gtFkyzZ+P5bg3j4kezrWkbETFyxnndu/cA\noDe3wSVvQuJgAtMfYjvnMIBmrk07iGF4PKMtjQzL20dCcQ9B9XDEuR/AuffAiZW0vj0FS4+K2vgO\nfqj7gXs/eYIXVpfSqhB5+cpihs+bjjW/gMs2r2Ps9u0ojDpC/lYue+QBMorHEg71EBGzGDjhNm65\n9z5GKRvoUMezS1NMS0Mlm8qq+LAtmr8daDxj/P9p+y2om6tEUUwSRVEpimKqKIrvi6K4QBTFIaIo\nFomieJEoiq0/+/yzoihmi6KYL4riuv/m4J2JCo4M9SPIUgh5fqTDd5AL4h5mUGs2yUkONJ5aGH8P\n1cueQif6iIp2M4VNzG9u5qXdT3PrgZfRiEFcWRo+iPeh9A3kkdvvYuqFWSwJ6ViEmvLmHt7ZECDQ\nNhe5rhZL0RYmqo9wefcG7rppHjKZwDWTi6gKx3CqvJxLHnuGzOEj2fTBm5RuW8OImRnQoiPFU8gn\nDSfIyV7CuJHLyC78G5HPBALHFdjUUu56pFDKH3dciE8xm4rKZ/D5WhAEgYRnXgQE2t/4qN/1n2sx\nIu/uhpiYX9WYDQXCRCIGIuEzI7HKTg9/HToXhc9D21N/kGiPfT78fj/b6txMeGMH38sDWEKwalQe\n7y4YeQZVQj9rK0EQQD9qJO59+xDDYTrqpMad/MIY8hOMbCmXHH1Uoo6QyU5AGaTY08UjvlvQIPDI\n4C8w+g6QmrKAjIwHaG0dRDCYjFabzl/OvZcClYNXugez79Tz7P3qM+I0Xk4aB1Edr0GQy/CEI7hU\nGpIjQW5OPbMG1JMqQSh1HRHkFjORZqnWsVVWQV1PHY+MegSNou8a1T5pIvWbTqIznh0ON2jSNM67\nbTFdHc049CFmL74btV6BOZDK0NgTbPSkYM28RMKSe/omVFnJl9gFI3ssxRQbdVhidcjkMXQbRZpb\ne7tj7XX9vsswNgll6niIRLi8KobDHYdZcegUuojIta0hBljjuaLrPOJ2y2l7+SC+KjvxOi1tMRZM\nSR6Uymj0+lwEUxIYEkgQ07Fa15CRkQwyGTKVmtJtpXQ2OhmXXEdB1Qqm3llMnTLAhJp5nKj9BUev\nl+5ZldtNg0qaXAeYBvziq5Id29/Ry2QK9LrM/o5ea5G6mktWgs9B1FXzET0eRrXpsXqtlFpLzziv\ne88eFHpQFU+QVm+AVfCylbGsdE1EVMr5netzxifV0R3W0OJ7ksjFSxGGzIUZf6Bp6kMMcNRhUbzH\n9ZfewVuj3iel9AL2qYNcMCSaC4el0BMK89noSaR2tJHT0knY6WHiNTeQUTScuY8+zJ3vv8/w2TdS\nV6Jn3+dWxiVpKNY52Jkwio9Uk1htuQC5xsU509vOGP9/2v6nO2OzKWBO272YMy5FGxfLtPIBHNts\nRC2KpHmXczg4gmM2E7FtG3FHNNjS2khu8aA8uYupkSPME7ZzmfMAm9UOAjKBkUd1fPbADez49O7/\nx957RtdVXe2/v71P70dHR0e9V8vdcu8djHEopvdACqEHUoA3IQQSSAhJSAIklGB6gqnGmGIb994t\nW1azei9H0ul97/thCwljk+Qd//zvuIxx50dp17XXmWuuOZ/5PARVW7kGHY+G9Oz50SJe/e5d6JIu\nJBHbjCm8ndJZc0eatSZm24knFyJLEjV19Xzr3gcpmTGHba++SCJaiVqnYnnoSja3bKbFq4hSLEif\nS0GfyAmXisFCDTJwj+YTglGJB7eupG4wl4YGpcatzc7BMT8X34l+IjWjk3p2kpkkn4eA7ewI86s2\n0BVAEK1Eg4Nn8YTU9fhosaZj/P5t+DZuxPvRRxysU/hnDnVFsM5Ow27QsHn+WGbm/nuEgKq/EUkQ\nMC1ajuT1Eq6qoqfZi0otkpxpZlGZiwNNA/gjcQU/nqz8qBt1kzkhu7hDEOlKjjFxwguUlj5MV+c4\nWppL0Gh6SHWtRKtS8deJ0wkKFp4+LeBxD1KW7KBAUFErKhvIJ5u78Wr0lIkSmq/AGoeGDnGk8cf4\nrEYMHi2alFQiw2Rmzw1tYGnOUuZlnVkDCHgUJIlPlWBT95qv5VopnDeXD89zM3RlEeVFkyifnUFv\n+xguKNxEWGXgoebpEA/DESU9h6edpP6DbE+ajySomGAxYnYozjKU6kQYHHb0PcfPuI8uz4ZxSjGq\nlBIK97QjSQlqqnbwqsqC2OhlbdomfpX5Ask3lKOy6XC/dopgywAhlYAlxY/aOB5hWBWK1LGYAxKy\nnCAlRdk5SKYkBrs6mLYyn6T67ejHjCE328lOu4CASN/Oc79/kUHZDZzWZdCUnAdAnjXv3BMFsBk1\nOM06GnpHBTuMpqIzHT3A5OuUcatej378ePTl5Yx57zgqQcW29m1nHCpLEsE9uzClBBGm3TLy94bG\naiRUNLuNvNS+hMZPUqi13MlbLRPpUKdiGDua/vxjopdmYT5m9UfgOUL92jA79CpEdYgGzRM0ehp5\ntdPNxknTiIkCmYM+8iZVMOWCb41cQ61VMf/qUs7//jg8fSFCzRYmJepYNLSJlGCESyZksu7qZdxb\nfNfXjs9/y77Rjl6SveQseIplt0gsuP5Wgv29zOz+iJj/VXY3htjSaGbHupfJo53BDBlB0HBny2Os\nUD9P/bePMHP+eurDejT+bTiHciiKi1QZCsldcAHuQCuhRABbyMuT751i1fEGoo6rKNAUsae0G/XU\nvDOe5bK54+iXjOzefwiVWs3Ku39C/qQKtr36HOn5XjRNDvSSiTeq3wAg2tSENipR5ZKplAYYxIZT\naOPvFj3JJj1PHryNdcda8fsVLhTH9+9BUEm4//jIyD1LjXqSfV4GzWfCH89l/e1+BNFGPBqi1+Pl\njU43b3S68cTinOzw4DBpyfnBdzFMnkzHw4/w+ze2ATB15SR6RZnflGSdnf74GtMOdhExWzDNUZxl\nYM8eepo8OLPNqNQic4qSiUsyR1oUp9IrKnn890KXMF8UcBgbKSj+KU7nYuLxOPv27aOsLAgkSE1V\nRJ/LzAYuT3OwzbQcv82Cd2kV+cm9nOz1U+UL8nx7H06bFYJnKv6Ew51UnrgVnc6FvuI24kMB1EkW\noo2NRAxqvBaRn07/6VnvFBiKIAPqxBwq+4+xu3P3Od/9jeo3GAgP8L0J3wNg/KIsQgNFFNhamWOq\n5tNgFicd58OBFyERRz78CgIy63JXk6nT4NSqsQw7+vLC89FGlUVqsL/2rHvZLylGWzAbOjp59sS3\neaB9Ega1SMclEmuS3me+r4KEP4rz5nEIWhXu10+h1kuokhP0ub+0YLvKEfsbsJjKMRiVklpM6wQG\nmbI4g9CJEyOKUrlZVmpdtZibMhnsDpz1TCa1igw5RJ0pj840pUkr0zxaH5EliRNbN/Lps3+k6ahS\nEypMMXH6S8gbk6mYULiNROJLiJrMCkjKh8q1CIKA/eqr0J5qZIKh6Kw8faSmhoQvgClHCyWjvZ51\nda0IJFCF/Cw6fAxh3iVkLL0dlaDBbekZ6XMYDA+yv2kvqvDtSNp0Im/dyd6eATpFiduXZhCU3Fz5\n0XX8sbEJraqbXquR9CE/C4dV4L5qhZNdXPHgNNKTctFrIyyd3cC9FzzLytQr6Wibx8Hd9591zn/b\nvtGOXm3sxZzipr75No72P0JDXhH6WBdaMcKEYhX6RZcwSV2LBDTlGllTfRlpspV35pqo0IX58YGP\nofl5ENSkTvkR3//zcxzNWsInxql4b/8ZjVInqVodeUfa+J8UJ9tnjOWShgLMcR2PN/2F/i/hm1dN\nzKBddOEb7Ke7uxtRpWLl3T/FkZFFy7HXiYc8XMR1fHD6A7xRL+GqUwCECpzsD6joc5YiALne93jn\n5ulMzrHz/Imb+O2GLciyjHri+djHGfDsrCTeo2TK1KKA0++l6z9w9O4OP2qtjZ7kdJZWNnNfbRv3\n1bax8GAtB/p8TMiyIarVWB5+lGgkyoq2fXj0Rt4KJzjPaeUi17/fNXxheo+HqCMVdXIy+nHj8G7a\nTF+rj9Rh3PzknCRUosCh5gFkScJDDaqYCRIW7pFM1FqamZMxB4DKykr8fj9p6d0YjQWYTKOFvfvy\n0pAQqJ68ELN3DKmuzxkKxbjjcD02tYrp6S58Pt9I9C1JEU6cvANJUnYLmvHXEg+pUKsDdFcfpiUp\nzg8m3Uaa6Wy+8YAnQkiUmZ6ygkxzJn8+8uezcsPukJs1J9ewMGshk1xKc5HFoSd/XDFRr4trsj5B\nL8e4tWsVQU8f1G9EPrSG0+RxzFbARIuyQ9QZ1ah1KgpNkwgMf9qBweaznklt15H2i5tApcbR2Mg7\nyZt4etp6Hm1/gnRTOgvi04i2+FDbdDiuKEHwyZQNN+b1VX+JfCx1HCQipOsmE4kcRK8xEjcYkOI+\ngtUnkUMhjMOKUmMzbOwxdiMJEoe3NJ7z+5cFmzhlKqDHnoldZx9JgcmyzMbnn2bj3/5MzZ4dvP/b\nR2ipPEahy8zpXv/Id1KQN/Io8gYUDdgJVygasN4ubCtXIprNTG2AusE62ryjee7Azm0AGJdcCGol\nOInH4/T3q9BEfRgjUazWOFkPPIT/s3ZSLbl0do0upNvatjHJV4Igm+gvuA9TpIHk5D0Uu8zcs2A2\nb696m4yM6wiiJ71uPd12C9qExGP/uPmM5/iyWZ0GwgvfZMr0d3Fl1ODxlOE+uQoxdAGlFTPOec5/\n077Rjt5sHk9//Blq188ha18Ll03aQHiZg7/mXspj0moGOhuZIlbidmgZqHZy+9YmHnz9QUK33kLz\noiWUvPMW9pCfoPl8difsHAqEKCxLZvOpHn53up/KWeVoRB3O2HEqakPg7sV9spZ7km7AG/Vy99a7\nR3C8Bq2KSRPGI8twpFJJr+iMRi7+yUOAhBzfRF7fBELxEO/WvUv45EkEo5HpMy6iIaJiYJhZT6va\niLE/wuvfmcOSwh5eO5rDbz85AYKA/Ts/BAm8f1Hw2LIkYfF6aDYY/y1tq7vDj5iTwTsrb0SUEnw8\npZgPJxcRSUjU5ekpHMaFP1kV5MVxq7DGvOwomYRGFPhNSda/rQF8YQl/F/pInIRTIQazXnABkaoq\nNEPdpOYrXsusU1OebuVA8wBDna24LXEi0TQWxzS4ENHmW9Gr9UiSxO7du8nIdBCJnMDpXHLGc1g8\nbkoaqjhQUEGG+1rmj1OE22u7gjycFcdpsxKLxYhEIoTDnZyqvh+v9zjlY57AaMxHtucRj6hQxdoI\nNZzGl2bluvLrzj1+/SF8gsyUHCe3T7qd6oFq1p1eN/J/WZZ5aM9DRBIR7qm454xzp1+YT7C/GF1q\nFz+aqKFdsvPzxHdg+28Qg31sFWfSKQsjjl4QBMxJOjqrPWSGlqOOC+xsy2TLq9V4+s7EjesLUjEv\nmE+o4xhrdL1sd39Md6CbR+c8ijE7iWibUhvRFyfRLbeQkqkBCVQHegl8wVCZqlBWOOMuZBk0IRtx\nvYwsinTv3gmAoaICUDhvvBEXjcnHOL2/j1j0bKzF2MET1Btz6Yp6STWOUnPse/efnNy6kRmXXMHt\nL/4DW2oq2157kQKnCU8oNiJO/wXE8qz0zdhLARnqPkE0GrFddBGTP1Qcc3S4YAAAIABJREFU9CfN\no+XAwNZP0VpjaGZdNfK3o0cPEQ5bEAe8JAXC5M/oxvPMmyS8UQoWzGKwqwNv/7BgSNsWFoSnIxjU\nrD9UQqdcwE3SP7lncR6iKGA3pNChX4BL8LBsXw/9NhOSRk1eZR83b7x5BOr6ZWtofoHs0Cd4VTbq\naq+j5fQ4yt86zNzzn8DquuKs4//b9o129Ac3bCP99htZ9MlBUt+WSP+lmhWf7OJPBQ9z66RXOL/g\nIwzxKL3HrRS+EMTccAr9jddTXTGOukwnBhI8uFbixZcqmX70ALccrGafDQRR4FsBNT+6aDqySiZD\n5+DoZx9wcN17qNRqLlh2PY/Pe5wTfSf4yfafjER2188rpV82ceTEqZFntKemsfCG7xIJNtPYvInx\n5sm8Xv06oaqT6MvHcHHp1QBsijYSE3SYhS58NQ1o1SJ/uHIaC7J287cdbaw71oF+2Y3o0ix4tx2E\nt7+N1N2CmEjQbbLS+m9E0nvb/Lw3JZOoVscvgt1MsZmYbjfzoyQHslZkizHBsfYh/nmwldRrr2bb\ngmV0JLn4eUE66br/LGUDEG1XHAMuxXlYVyhbZ1ffkZFOWICpeUkcaxsisONZWnUCqrCTK+NxYrLE\nuDEKJLCurg63282UyXpkOYbTuWT0nSSZhnd3MeXkXoJaNZ/PSsOadyGyALm+FpxNV6GwcMC+/bey\ne888eno+pCD/h7hcSjNVwuMBCTSxTtJUIcZXnI9GPJvDBWCgP4RfkJmYZWdlwUqmpk7l8QOPc6Tn\nCAkpwVNHnmJH+w7unXovhfYzuXLsqUassRwEfYT5BQbmJeppTSST6KqkxzGdw/aJAEywKE1jIV+U\nsC/KYHeQ7InT0EVF/JoW6g928+Yv9rH9zVoCQ6NsppZlyzB5B1gdXsbaC9fy8aUfMyN9BposC/G+\nIFIkQdDr4UDbBsK2RjT+VMaeqmd3/zBkM6UUBBV6zyDhngWI3hQQIG6ysmf/Tg6Oyeeff3iM5267\niban7uby03uodu0lEYHTh77CN9NXz1hvDTFRQ5u/h1ST4ug762rY+84/GDNvEXOuvB6NXs+Mi6+g\nv7WZtLBSjPwCcms05CII6lGI5ReWUgpJeVCrOPWkq67EORBngpTBhsYNyLKMHI0SrGrAlKmCrGkj\npx49qhCaiUEfe6fMQWUyYtF/gusHE8mfqxzXXl1FMBbkQMd+pvjG0CdDPCrzsuUacsVeVogHAXi1\nw017OEb6ydfRxUUKps/CMns2S9tsBKJ+7t5y9xmNXF1dH9Dc+Bsqgyr6db8inrEUryCyfeJ4Hr7x\nQZ5+efM559x/09T//pD/75qclow73cW20jEkdDoKmpsYU3eKjJNx7OXdOKUgp5tTEcMqQmVF7BGj\nRI7tQW+2kProLdxa8yS/9V9I3gdHePQ5hUkPrZaYLBBZL9C4dRbm8tXkJMo53PQUJ7bApPNWYrIn\nsdS+lJ9O/ym/OfAbXjv1GjeOvZHCFDOCLZ2Y7zRenx+rxYwsy3QWyKxb1s+Q5n3wA7LMg+W93G48\nn7nmdMpMZna720lkTEHTsZfuU6+S8q2p2Kzj+d7UB+kOFfGLD6uYX5yC9aqb6XvqT0QPbkA+tgtQ\nM2SxUekLkWs4t4C3tz/MriwVJwwC5+/7HFvqKA68r92Hrs5D9XiRWw41kGTUsnBmFlcbp1DU1cpl\nTjWcA7XydSZ1KnlXMUvZjmrS04lmjyGt/zC2lFEenel5Dt7efYqmxk+RsmUmDCTI1kgMxMFakw8l\nsHv3bux2O3pDHYGgDZt18sj5vq1tdBw7SY6/i7G+el41luOuaUFj1ZIhZWKxjKOjYw0wj/7+eiZP\nvgNXynIslrEj14j3Ks1FcYOEoyyAc+KZBdgvW9gbI6xWIlpREPndgt9x4yc3ctOnN2HVWfFEPKwu\nXs3VZVef8/wJ4yfTPPAavYdf5umxKgzNH9EqufhYWkowQyHRCnzexeZAO+01A0SCcTQ6FZfeNZ8/\n/VVDQO1j6UV1nDxZxsmd7VTtaid3nJYFV0+hq0RpDpsX7mBM8uUj99RmmUGGWJeftq5KQgkvYUc7\nls4pmFVN7DhwmOWrlpFAJKpPo3vT67SH78egjuEVEsQtDrxD9VjNZmwOBym5+WiMJup3nCDMHvya\nPnatHSJ7zELMScM5/yOvMNavROK9wR6mpo4nEY/z2V+fwuxIZsnNPxjZlZXMmsvna/5GvO4QUMjp\nXj/T8x2IohaDIffsiF4QoPQCOPh3iAbQFRdjnDqVWQcbeW5GJ3WDdWRVdSPHJEzTp4CoxLHxeBxv\nZzfqqB4xEqJp4gXIYhxdzYtg9uC05KIzmWivPklvnkChLwtdTM3xoTAZK7L5zQ4ftzlyse97Gv+Y\ni/ljSzel2iBz97cBamZfeR2qXfsIbN/BPZaf8OjAH7l07X04wzcSD9dyQ/FjtES1rGnPw7srDgwx\nU8zEphnkmsqPcQ9Vwx0rv3bu/TfsG+3oHakuXpp/CeOzbKRqRBrFfFTluYyVddj27CLc14khOUry\nL5/DOG8hzqpKfO5+sidN4potN5LjKGDxTY+hvlXm9jfeZ0xzA1datAz5I2zc38Dy/QeIHzqMYdZP\nyXKdh5cAC64breJfU3YNezv38uyxZzkv7zzSTGksmDaBqi2n+WjnYRbOL+bX+3/NjvYdFCcXUbZn\niCRNHsfyqmhzBrnd9Bn3Vo1jtrOAl1oq8RfMQt+xF3toM7FIFI1OS1b6hVxT8hKP7HuA32+q5aEL\nLqDvqT/hz/sx+o61gB+vxcIJX5BVX5NH39LoZvNEIwuNRpb5+3DHRiGW+xrdTNXoyLLbeAsPyXNd\nXFvVjDkW4fKdnxEKTsY4nFb6j6yniqhaQO8YP/onVwXZba8Tqa9HX6Lk2Ctyk/iB+kP+oSoFapjQ\n3YzBaada66bjMwl7poq2tjZWrDifgYE7cSYvRBSV6Rp3h/B+3sqQ2Ee6PcGiaCNPB4sxqQRWlrjY\ndKyLoqsfoafnWgC0mskUFpxNP/AF/UGtRs/c1EFiznN3b0oJCTEqYcvQox7mO3EanLy58k3erHmT\nTn8nC7MWsjhn8WhqSZah7lM4+jq07iU16EaJbT8iEdDSapjMLUNXMdRjI73MQZqgomWLsuV35VrI\nn5jCyR0dxKMJ0q0ZdMXa+eC1DyG8HkFlR62bSdPxMTRX7iSYo2aaIYnctjMhj9pMpWks2u6n5dQx\njE4NkuhHH8hHVzae8J69RJbM5sM/PM54d4Qsa4zEUC6pk99AIEhXohibMcS3Lvw2SVeMphf+5N+F\nYJCpSz3C5LblvPrT+7novh+SWToG6jdSEGrHQIxgbIhUYyrVO7cy0NnORT/62QhSDUCrN5A7fjJ9\n1ccwO0oUTYFhM5kKCQQazngfWZYRSs6Hfc9Cw1YYcyH2q69i2s9+xIsztGxo2sA171cjqCRMF45S\nZDQ3NhKN6tH4PXS7sphjS0I96zaofh4Or0Fc/DMyS8tpr66if3KIFf1LScgytkkuNoeD6DUadHPu\ngE0/Zv3hTxmIZTGh4Z8Yo2pEazJP7BuitcHAL4BDa04Qmb2E9pTNxOJp3FG0kbig55WBODeNv5mV\nF88nM8mAVopTO206kiCyYcFlLDznzPvv2Tc6dVOSk8bfHvwed950FYXeCBZvMSuuuYwxjz5K3hV2\nSi7pJn1lOqb5ixAEgZxxExm7YAnrOz+lxdvCj6b+CI2oQdBqsc2Zwx+XXIjj3vsoefh/qL/mNn6y\n+B5kQSZ89BUml84lGpvOYM/ollkQBH4y7ScA3LXlLoKxIBfNHksIgfca/8nF6y7mYPdBfjz1x6y9\n6G2W2S4ltaGP7zWN46nnEsy2T+HJQ0/SEwOQ2S4rEz1b6ODURoVdMTV1FVmWbi4Y42XtwXY8Salo\nsrMJnGgiPvMBACyaMNX+IOeyKn+IB/xubEGJZyfk48zOwd2u4MD9kTiV7R5mFSQTPjmApcZDmc3I\nlWkOLj2+i3QRvJ9t/F99E1V/IwGzGq1OcWshX5Rm3VhkQcT7yWge1SX1Md3wOZ9rlMJn48QMAOS5\nCTR6FbvXNqDT6igsFIjFBkh2jupu+nZ1kCDOgK+TdnsSLzqUlM6qlCSWFDoJxRJ0+LNwpSgLlF4/\n+5zP2tSk8NcnVOOQJQFN/WvnPK67J4AAZKR9iWVQkrB1HOMHGYt5dM6jLMn9Uv0g7IXXL4V/XAUd\nR6BkBSx7hDpHKgdLMnip92V2+R9lpdzCgGyivi2OvTVESo6FW/+ykMsfmEZagZLmqj9wBLEvSEiX\nICxJLP/hfdz18kvc/sKtzLvChFrjxtgq4nOUENu5Hfff/z76LaxaVFYtsXYfrSePkzVBgQ8mFVSg\nzpzK+Lpmnn7yN7RVVZI0cRlmwYPFHGP+Rd9GFBU8/aA1GeNwfv4LG5thZXAwhxrnAQRBQKUt451f\n/4zWo3vAXY9KECnUKamLFH0K+95/i9SCIgqnnl10zJ80BW9fL1Pscao6Rx290VhIKNSCfyhAzd4u\nPnrmOG/8Yh+xtBmgs0GdMpesy5aRZExmyqCdj09/hHfXAcyZCcQxo2m+5ldfI6rVIYcDNOSWsnxC\nppICKl0Bh16CWIjMsrEMdrZz7GAN0/xjcYsCbcUG3j/aQUmqmdfCswiqbSQdfBbLkJeiPcqiul1V\nwubqXrTpaQxlF3JNrJlN336UeZnzmJX6DyzqLrbHsrAbs7l71qWUplno90X47X1PoY7HEICf3fH/\n5+j/rYmiABEfrTU+nKZ+TGXToes46q4tCAKoZt9wxvHdgW6ePvo0M9NnMi9zdKs+w2YimJCoCigT\n9HvzC6nRJNHwretJ9NehqzqMWi1SvavzjOvlWHN4Yv4T1AzUcNWGq/jNwV+zNfdTai27GOeoYN1F\n67hh7A2oRTULrr0GBBP2gy2IMkzMnsGVpVeyobMSh0rmH54qZFGDLEP8uMKGqNdnYLdPZ0H6+0QT\nEm8dbMU0ezbBAweIe5VnTaeb6sFR6tiYJLO2e4Crjzdw3qFaSMjcWp/AYdCQnJVD0DNE0OvhYNMA\nCUmmONXMplPdfCc/lXenFPPLnGS0oSDJxcWET5wg2tLyn30MSUIz1EvIahuJvrsaPMS0VjQTK/B+\n/PFI0bhl8//wA+s0BK0HnWTk+lNlBIUw/wi9zaSV6cQ8GgrsFQx5diIIKpIdirKQNxTjrc4BflHm\nR0ok+KDoPJbowsyymdg95GdyjrKrOdI6yLRpr6LT6YjHz73T2XV8vfINwyl43dkIVe9Bz9nNN4dr\nlbEtzrONvCfv3gyvfguenQn1X2ph93XDmgsUdMiK38E9lXDxMzDnbiKm8XjToiy/oxyVWoTwBNJV\nXiItQXJjES7+4SRUw3z1kWAHUf8HfPyXX6ILQliXIKxJsFN1BLVWi0qtZuKSmVzzxGVsNkZpy7+M\nftcYep/8PaETIxpBaLIsDDS24enpxpGvBQRSZs4BQWKcrpQTgo5LfvIQhuLlAEybGsSVNheLZRrI\nEkFVMnVaA2t2N/HekXY6hkKUp1vxDmXhNfQjpkawOGdiT03n+HP3K0L39mxyhjuwEx2DeHq6mXnp\nVecs6GePVdJOpfRR3eUlMSybqdflI8tx/vmbD/n8lWpaTrjx9Iao3NENxUsVkj9JQtBqsa9ezYKt\n/Vgbekl4o1imj1GoE1Coij3ViuC4KuDFnVPOpMzh7zjrdgi6+fytP/Pz/cpvae6JyZhFkbcSIR7+\nuJpwTOJ4u4fHNrXygmkFy917WND6BkkBpW715P03cfhnS3n15ukUXbwC3ekaMqUQD1V8l/nmKHv8\nKj7rbeGGsTegElVsre3l4j9tZ97+j4i50tHEY2hbzo1e+m/aN97RA8QPvEJPpICs8RkKNnndPUhx\nZVKJ5aO5L1mWeWTvI8SlOA/NfOiMiTd9WHHowJBSEKrITWJaXhJPiCWIVhvRms+ZWGyj9kDPWUiD\nBdkLeGbJMxjVRja1bCLbmMWc7jnoe64l3TxKC+TKc2BJmY9xwM1AqpkPm9fzwPQHWJo1l4GEQK2/\ng0hqOXHBTFn8CA11ygRNS/0WSarDzMrX8fq+VnQzZyEFAoSHJ3CuRaRd1uELBwnEE6w+dpq7qltp\nCEa4NSuF27b6GZ+ibOOdWQqLoLu9la21vRg0Kk73+JFkuGZY6NnjUYp0rmlKkcr78cf/2YcYakaV\niBNNGn3nztNDqNQijgvPJ9bSSqy1lcHWPdw2dICgfwoqbRfFiWRyxFJaTR1UDVXx8uCfiGoH8NRq\n6ev9HJttKqLawnNtvUzbf4qHy7TEPEpD1zNdT/L3sblcm5FMWzhKhyCRatVxuGUQQRCxWCz4fL6z\nHvVY7zEC3e0k9FoSjc0ELYtAZ4Etvz7r2FMNShfruMLhPPTxN6HqfZh1B7jK4Z1boP809NXBi8tg\noBGufgtmfA9Uo8Vdm1MZT518iKsemkHpHDW5di9CXKar5ghr7v0Ob//qZ7x413fY9NzDSPEOSmZf\nypJv3YAsgC6mYsOhdwnGRndvB5qHOKpNYJxkoKrkFqJqAx0P/2JkQdVmmmlrV8ABWpsfozGfgb5e\nOoeOoc2aQXFSHvmTp3L0hLKDKMpWIMMOhwNRirJPN5FVzxzll+tPce/a48x/Yitba/uQ41Zc+mza\n0qsY7A6z6Kb7KbJ5iUoiHtt4kkUlOm+racNgtVEwZbQw+mVLSs9Eb7aQHOwiGE3Q7A4Q8kc58L4C\n/yyYGuaKB6dx218XkT/Ryf51jRz2XYLs74cuRTrSfsUVVNTLXHBMIKaWMa+6cuT67pdeojfFiSoe\nYNBsY2FWAeLw777NMpk6sZC8ujVkFxSAoCZPUOpId985g/nFTpxmLQceXMKOny/h9bFXkhDVfLtr\nCzKQXT6eorzMET9iWbIEZBnftm30tP0NlcrI1oCNInsRq4tW8+LORm55+SAX9Z8gNeAm587bAAgd\n/b9PcvbNd/TxKD3bPiWBloxJhbD+boTuI0Q8aiRLjsJ9PWzrG9ezs2Mnd025i2xr9hmXydBrydZr\n2ecZbdy4Y3ExLb44LdMWEu8+QWbETzQUp+HI2co287Lm8c8L/8nOq3by+xm/Iy2UxvG6Fg63jHKU\nCILAmNkLsIaiJDQW2rxtHO87zqNzHydVrfww9+j1qMUYJkJ0f/Y3AFyuFQiCliX5NXR7w1RnloEo\nEqmtQ7RYKCtXdiY11Vt5vKmLg54AfxmTw/6ZY7jbkYxqMIorR3H0ydlKO3p/WwtbanqZU5TMu0fa\nmVfsJNuh5E+/4KFPys3FOH06Q2+/gxw7W/T5LOtRHIrkHJXi6zrtwZVnwTxTITj1HtzHXVvvoUul\nQfCPRdT14RrSoLKkoy12cGXJlWz3bScxthNB208wVIfevoCrjjfwi9OdjAvAmpMxrpa8mA0iE4xR\nsGezIsWGQRT4qM9DRW7SyLhbrdZzOvo1J9eQEtKgc7qId3ejK5kAs++C2g3Qfia5W2Pb8Hg4DRAL\nwdbHlAae5b+Cq94ElRr+vhSeXwDxENz0kRJ1fsUcJeeBBIOt2xFFgSBxhGQtiRQd3YZikovKiEci\nOLPzWPTtW9HZv0tqwUJSLUp6K6iLk9ym4t36Uc6jT052Y9apufrWhRTOSqGh4BJiVadoeO6vgFKQ\nbQ/UkpSSQTTRDBEXax95kHpRKXROb4jR0+nn5HGBuGhCM6SkJCxqNacS6VSKeSzNGmT/g0v49J55\n3Dgrj531Sm1DE5jNdt16BFGgvTZMiTNEW8DOhwejGBPK4ni6w0fJzLmIXyNcLwgC6cWlCL3KrvFU\np4fNa6rpb1Ci7oJpUVJyLAiCwLJbxlJY4WLffhMbhh4kfHLr8DtmYpk5k5lVMbaPE2kvUIr2cbeb\nvjfepNflQvT6qS0Yx9XlSorQH4lz3UsHeElaSaHYxXfEIKIqg1S9GXW6EZvLxL6mAVZNzMBl1fN8\nZz+dWgenM2YwXduPURWjfP7iM95FV1qKJiODwc/eo79/MwV5t/H+pZtZc97L/HpDHb/aUM35Y1K4\nrmELuvIxWFdfitrl+n+FzfKb7ejjEdjzZ2KBAAutz5C79Xw49joDLelo7QJi4fyRQ+sH6/nVvl8x\nxTWFa8quOeflZthMHPAERqKhBSUpnDc2lWekHJATxI/vJ9Op59SuTvY2uLlpzQFmPLaZS57dzacn\nR/kq0tKUH2aeIcqP3zlOODa6A8i1eVHJMu64RNagic2tmzHr7NyRaUcEHpd7kKQIATmJgoFP8AwN\nodHYcDoXkav9Jzq1yKZmP7qiImJdXagcSZQVKU50X/MpXu7o57qMZC5PcyAIAn0tipNzDjt6syMZ\nrcFIY10D7YMhMu0GOj3hkWgezhQccdx0E7HOzjPy619nUs8JZCDmLMMdchP0Ruhr8ZJZmoS2sBDR\nbmf7uj9zjBA/MH+LkNoDYoLsXmWBKZo8nvNM56GTdOxz7qB0gRK1/7wmi4OeAE/mpPPULi+zS1Po\nPl1Hut4LOUre16RSscBh4dN+D5Oz7bQPhuj1hs8Z0Td6GtnatpXihBPVMBmcrrQUZt4KRidseXTk\n2F5vGP9QBAQwWLSw/znwdsDSXyookKRcuPZtyJyqEKV9bxtkTuFcZioej7pXxBdUUit9fX0MJLlI\nTo/gjcp4Z1yF5fIf4rjo+4xfdgFmuwXfYIQUg4J6sqfEKG8389LxvxOMBQnHEnx6spsV49LQqVUs\nvmkqsYpF+EwZeJ59js+e/iMt3VX0hlvJzi4gHO7g9O5GkrNzuOSxR4mEGihV57Ljw9Oo1CqEtLEj\nqatwRx+HpHwyxSFW6veRatVTlmbloVXlfHD7HLRqkdr6SbgDaZgLoH5fO6K/B4smTG9/gK6qXUiC\nnl5rBmVz5p9zPL6wjOIy/D0dmIiybV8HrVVuZl08Hp02leCXCrIarYrlt4xl/lUltEUn89aGQjqH\nNRzULheqhMCmKSJvNW8AwP3i3+mzWZFFEbXfSzSvkDF25Xs//GEVbQNBVl9/B27dNI4cEIg7rLg0\nGagLzOys7yMal1henoYvnuDNrgFWpybxSXsCjSgx2dlLycw5Z7yHIAiYlywhvP84OimV7OybMKot\nPPxBI6/sbeG78/L5tbWLeGsrKbfdhiiKpN7/I5JWn0up9b9r32hHLzXthS2Pkqc/QpFxP2JyPqGJ\nDzF4Mo5KFR1xAt6ol3u23oNJY+LJBU9+LTf2dJuJvmic5tAoJv2hVWNpSS3ApzcT7z9FnlFF12kP\nt/9tP9VdXuYVp+APx7n19cO8tEvBbev1ehwOB7MzVDT2Bfj5BydHFg9jr4IN9jqSmdOSyZZWpfM1\n11bINKuZbkHiNasF2TWfDHppeP9ZANLSLkKUupiVJ/DpyW50EyaQGBxE7XCQbdBjlmN8LGaSkOH2\nHNfI8/e1+RBEAecwB70gCCRn59DaqOQF2waDOM1alowZbWzxer3KpDWbMS9cgK64GPcLLyB/RZT8\nqxbrPESfVsU1h95h4dqFLFq3gE+L/05t6n4+afqE+pQ4urYBfu5PELZdi6hTUCZj/bkkEmHSC/Oo\nPlbNtNA0av21tBk3EvGnUFRp55OKElY1hhFkEIr1eHq7Sdf0Qs6skfuvcNrpiMSwpSs/5iOtgyOO\nXvrSs79a9SpalRZnUIThSFNXUqKkbubdC43boFHBXe+s78csC2hNGsTwIOz6AxQvh/wvQTEzK+C6\nd+DS58D29SLtglqNwesgqO8mFovhdrvptDiZKtaRbkjwqw2nuOPNo9zw0gHO++MO/FYR/0CYZIMi\nE2krTEYTUWFsDfLKqVfYXN2DPxLn4skKxYBKJbLi9im0lq/GGI0SeP8DPnr2t6gEDeqgssPJKl7C\nlQ//FpM9CWOpGkFU4agZonxuBqqM8YqjlyQ+qguQQGS6upW+r1AdjM2wcfkU5T3D7dex19yG3yvR\nGS3HpQ8yY9lCOnsbEEUbvRl5ZJaM+ZfzJr1EoUqYYvBxuGGAzNIkxi3IxGgqIBA8E3kjCALjF2Zx\n6ZJqxESY939/hPWPbcW3cROmtDAFah3v1r3LwEAnQ2+/TeekSUo6Ra3hyjLlmU92eHjncDu3Lihk\naoGL7aG70Yo+AmkBJThKtLHpVC82g4ZpeUm81zNIMCGxWOclWivS4HcwNbkTrXS26IlqfiFCTCaj\naRYxScv3XzvMB8c6+fF5pTxwXgkDzz2HrrQUc4kVPrgd67FbMXat/Zfj89+wb7SjD7cP0b4riQ31\nd3Og7HO44QP6NzdhyhvOi+bMIhQPcefnd9Lp7+QPC/9AivHrMeHTh1f7/V9K32TaDbx08wxOuYrx\n9taQ7ImQpILvZbnY/uNFPHn5RDbcNY/zxqbyqw2nRiBiKSkpEPZx1+Ii3j7czi/XnyKekAgfPUrc\n6iRumYOhK0K8tZ+6wToMxlwusIYQZJm/OOx059rxYyOt5TXivjDO5IWo1TYqUivp9oZpLJoEiQSC\nTo8gCJQaddSYCpjJIHlfwtP3NHsVJSft6OKWml9IrKeNMWkmDjYPsqQsFa16dCp4vV4sFguiKCKI\nIsnf/z6R+tP4Ph0VP/mq+aI++lv2cEKt5bysmdw//X5K/RX02Vr5XfVj/HTnT2l2xMjvl7l8+o/Z\nWtePWXsalaSmRJxMkG48Pg+NjY2sHHMZVmMBSVIdvfHJ5DZHcPVG8e/uRF+eTN+AghpKN/ggexTJ\nscxpRSVAvSChU4vsbxrAYrEgSRLBoJLX7gv28WHDh1xcdDFy/wByLIbKZkPtGl4cp94C1kzY/AuQ\nJHbU9+EQVNgcetjxpIKoWfrwv5iV/9rM6mIShhg9XVUERDV9Kh0TQ42URSqRZHjpxqn87bop+CNx\n/uIb5Ei/D6dBQcuIuTmY1RFmd2Wy5uQa3tjfiMuiY2bBqF6wNdnAlPsux20vpqhnAE08wcTcxSRl\nK99/zkX3oB5WDHMsmY474CVfJ1KxOAsyJkPES7S3lk0hGzniIDZRlCYFAAAgAElEQVQhjNd/Ngp7\nTrETWRawWAb5tMVOhyZCbVyJTGdf931idg3aqI7O1Gxl5/MvLL2oBASBHH8X7UKCqavyEQQBo7GQ\nYLDhnF3fqTNmcWXyPcye5iHl4z8jhcOkTvay6lMfwXiQNRseRfL7aXM4EEN++vNdrC5V0pbP7WjE\nrFPz/QWFdNQN0dVrIjl5HWVyMSEpQOWJ7Wyp6WFxmQuVKPBap5txZgN1n72IRhLZ0ZOHmhhsPbue\n023bgeQCeX0lr/zllyTXr+X16a3cnlaD76XHiDY14cxrRnhpmVLnGXsJTDp378V/077Rjl5fkIuv\nw4DQ7yejNIlYdzf+rVuxTXSBMZmYPZd7t93L0d6jPD7vcSa7Jv/L65UY9SSpVRzwnBnBTMlJ4vxr\nV2AMDRIVhpju0KFvC6FBmcBatchvV0/Aotfwh411ADidTgYGBrh7SRE3z8nn5T3NXPPCPvyHDqOd\nMBnEsehMVqbUJfHbA79BpXFhE3yUOkrRyTI/d++hv/QWMuik5YVfIwhaUl0XkKt7B4DDJiWKk4fb\n2LMsVkIqPau6RxEgsiTT0+gZEeP+wmzZhagSUSZaYvjCceYWnyla8gUP/RdmvWAFuuJi+v7yNPKw\n2PZX7bFdD5EWCWK0ifxsxk9YZlzFjOOr+Vv+G6y7eB3vrFzL1WYRMS7gT5pPZacPra6dZMmGzpxB\n1CZTWVlJRKXhd4Y0bNZp6EQZ2WlBFAUOv1SFHEtgOy+X7tO1CAKkWoSR9n0Ah0bNTJuZz9xepuYl\nsbfBPSJA8kX65o3qN0jICa7PuxwpGETy+9GVlIwW5jV6WPIL6DxK/OjrbK3pJUWjJs3cDvv/BlOu\nP+Oe/1uzpyqUuR11n9FnVdBAem+Y72mURfR0n5/zx6Wz/s65pOm1vB7zsafOi1ljxm2wMDmpE31X\nDHNHCnsbPNwwKxfVV9g5Cyal0FaegSoeZy4OKlZcTEzfilbjGtHZBWjx2Dkpm9AKAt7KXshSOpKr\ndq7Hq9ZTqupFRZhwwsjBrgNncPtU5CpaBLPKPQjaPt41xtgfqiBuyUfUW4haVZiDAgGNjsZghH9l\nWoMRR0YWxt524gL0aoc5b4wFxOM+otH+s85JWIrwt1qwvvwrbO5aDBUWIrY0MnqMzPan8XZ4D4GK\ncYQTCdR+L9NzD6LXOWkfDLKhspNrZ+RgM2g4urEFg1VL85gAFYExxJJD7D/dzWAwxtIxqRz1BTnp\nD3FlqoXw/npkUUCXVwHTvqNAM6vXDz9QjOiRF8j77J+kpnuJ1rVzU/vT/E7zPHMr70d681r6nn8N\nnS2GZWI6rPoT3FcD5z+u6Nn+X7ZvtKMXcycjpeVh9bWQUWRn6J13QZbRGwdJZM3g/l0PsKtjFw/N\neojz8/99HkwUBKbZTOwfOpuVz1ah5F3tJTF0cYmxskTj0dGirN2o5ZoZOXxe00u3J0xycjKJRAKP\nx8NDq8r5/eUT6a9vRnb3U5tZiEanI7VwCakDOjpPneKN04om7JLMGSz3BzhJhH0Ti+kS0kn3rMG/\n9RRpaRdjUrspdkrsH1B+dFJA2X18EfSM7doOfQr/x0BXgGg4MYLJ/sKaxeEIsK8VjUpgfvGZuxyv\n13uGspQgijjvvINoUxOe9R+dNTafNn9Kw+mPUQFmu4hOl8GJ7R2odSrKZmVQYCug1N2MQVAi8brD\n1cQliahxgMywcp8eu42jx46xZ8pcGiNx7ksPk0DFcy2fk2SM0+wOY7u8BE2qifbqKlzmOJq8qfCV\nNNyKFBt1wTAlBUnUdPtAo6AofD4fgViAtbVrWZKzhPSIQrSVcLuVtM2XbcIVkD0DeeNDmMPdWBJR\nJgV+p/CiL/3lWe//v7GkMUshBp6ho/RakhCAFreJWcIJxqXq+ayqB4BUq57HZhbhTAh8//XDGEQ7\nffEAkwq06LUCFXWZCCo/Ywr6zrpHd0M9nYF2OkumYqg6Qsfuzwlb2jAJxQRjQU70nWDDwc/5/I1T\nRONdBN11eHa28Fjt2wRFFc3H12OMhbCqOkAIkNCa+J/13+G8d89jbe1a4lKcVKueHIeRgDcfQ/Ya\nVEKEtw0Cp1hOQkowEBvC4VEK+BuOHP2342KwZqOL9IAsc7BJKeQaTQqVRPBL6RspGKT397+nfsEi\nevZpEBIBsv/yR3KLG2kKTEK68AZWvddFQCvx6kJlbgmxAMVZUQRB5KPKLiQZrpuZy0BXgNaqASYs\nymIomoVB1pPuaqLFXIgaifklTl7rdGNUiWiPrcMUEhEkmfnX3ISw7JdKLWbtDfDqRfDUBLQf/ghR\nkvlo3IXERBXVntVwdyXcfoAB6w+J+dW4Hn8W4eZPoOIm0Fvh5Qvh3e/8n0yp/8i+0Y4ewG/Pwxpo\nQ6cXGHr7bSzzKsDbwiOGKBtbNnJfxX1cVnLZf3y96TYTDaEIfdEzUSb6kmIEjYa4uxHbygLSNSLS\n+gYiLd6RreVlFVkkJJlNp7pJTlacqXtYvHt1RRZrJitO6Q+9Rtp1MkNDBViSnVzYOZaD/UrOfHZK\nHipgWijM08ee5viY76IVgojb78IkjUGvz6bMUUtNg8JgmRhUilH9MSXS9qtNcFJBZXQ3KjDJtPwz\nI/pdvRATtQy1NLCw1IXNOAoBlGUZj8dzRkQPCp+KrnwM/c88cwYCJyEl+PORP7NgOFKM2J3EQiL1\nB3sonZGG7gvZwl1PoRkuUrdVNyJoBkioExR5XMixIHvlOLt0VmqNNh4pysAQ2I3VOp14Ao66thCT\noSsqEY9G6aqvIUvTDbmz+KqtGNaFjSQr6au6AWVcfD4f79S9gy/m4+ZxN490xcrRKLrSrzh6QYCL\nniERi/Kh7uesNt2DNVIFK/+gCFb/H5g+vxhNl4q42Magw4U2lGDAoRTTFye7OdI6OELulZFm4oqA\njrIUM92DWo53tXE0+QJabHmk+TqZZtrI7w4/cgbcEuDYZx+h0emZ8fwfCbqKSbzxB6SBTgY6dCx8\nayEPvP4YtS+H8OOh0vgsVK/HHBYJHxukxZJMqehhmruespxyrEYjskbLzY6LSTel8+i+R7nx0xtp\n87Uxt9jJ8UYNxboYxWmvMChK/Nw9m/5QPxISqUEZXTzKppo6ouGvF/GWZZmA144gBym3Jjgw7OhN\nRsXRB4ZZLBM+Hy3XXY/7hRexnLecvMe+Q/6yLsyWFkQpQoc0lc6MuRR2JJjcJLBTc5yYFMLp8qAf\nJlf75EQXE7JsZDuM1O7rRhAFsqeZSe9xEhei2DqfocNZTkawnU0v/5X3u9zMj/npeVuBGE+7aDVZ\nY8YpAcQN62DmbRB0I6dP4OTELN4oXcJj4YuJXnoVut27GNp+FP+pbvpfex/LsmWYFy8ffXFfD3Qd\ng5Sy/6M59Z/YN9rRSwmJHiEDTcSH5/33iff0kLy4jD8l2XjPW8d3x3+Xm8bd9L+65gy7UrQ8+JX0\njaDVoisrI1x1CuvcTAbLHGgiCfr+epye3x9maEMjmd44uUkGttf1neXoAdRH9qNyOvnJD1ZSr04Q\n9clkzbyQSFsv80KK0zr22l8IO4p4wD2IPxZgi6OHjczHJBxCev12sjKupsC0HWNQSUXE+/tJxOPU\nDDd61WQtVhz9sEar3qzB5hrlmElIMtvq3YRt6Vj93Vw86UtaqkAoFCIej5/l6AVBwHX33cTa2/Gs\nG2Vt3NS6iTZfGxeaCpBEEdmRT93BHhIxiXHzh6/dshfa9qFecgdoNAw1t2LXKfC+qcGJxNynaff2\nczivjBlWI1ck+QiFWnEOTeey/qV87NqA2gL1h3rpqq8hEY+TbfRAwSK+apl6LePMBk7GYxi1Ko50\nKeMyMDTAy1UvMyNtBuOc40ZEwQH0paVnXUdyFHGL+Ev69YXEJAOt4/8EYy8+67j/rQkqFYaAE5XJ\nTZfJStwdZvn8+WDJYEliD7IM2+uUnaIlWY9eFnh8djFpphS6/L1cWT2bdabFqBypzGsO0jvYya/3\n/3ok2Ah6PdTs2UH5giVY05yMfesFZJMBx/MqeiuzuH7fr1hR+12Ski2svG8c993xDIn+WnoEHz8I\nXY01azXFQjvLkqLYrXbkYZpfVb/IK+e/wm/n/ZamoSYuX385FsdJ/JEYSz0empJauFyq4bik4Zkt\nCvlXtiOHKSY9Dcnp7H3n3KLowViQZ3Y+zymVgrCaZvZzoGmAaFxCp0tDpTISDDQgSxLtd95FuK6O\nrGefIfOJJzAsv15J/598G9R6TJMW0X5UuU5FYxZxIUyj6RTJ+WF0ulTaB4Mcb/ewYlw6siRTd6Cb\nnHIHJwPHmekbTzwzTmNES3dExcKiJN7v8/H/UHfe8XGU197/zmzvRStp1Xu15SZ3GyMb24AhNsbU\nhBJI3jSSm56bSnJJJTekvDc9F1IhJhB6MQYb995t9d6llbSr1fY28/4xwrIsmxLI+/nw+0fS7Dwz\no5nZ85znnN/5nSgC6U//CVVcRlXu5orbPzx18ToLXP19+MQ+xtZ/kmFblG0d8/nlB+ez4P6vYKit\nZfCrX6P3459AW5CP+4GLVoNtk2Jm5Ve/6/fqrfC+NvQjvUHG9Uom3ffY31FnZPCk5gwP223cVLqZ\nz8z/zDs+5hyLAZ0ocNg/M3yjqygn1qqwZoo2lfBqIImv2IbKoSN4YIDRP5zllxEdybZxDAYjer2e\n0UmDIqdSBPcfwHzFFWyYk823P16LhMxLjQ5yqmvQvz6GlBTQGKPY9HMpTiS4yVjItv5tHEqv4aSm\nDp33aVyvPU2Fsw9HfJIymEhwrq0TbyKFVaWiMWMxjLXB4GmG2v24i6zTCsNO9vgYDycIWbJwJUap\nK5ve9/VCauXFMK1aha6yEu+f/6IoBcoyj5x9hEJrIfmRAGGzHr0hl7bjw6TlmHDlTkoGHPwlGJwI\ntXeicbtJDgxgULUiygJVyVmEY4OErCJhrZ5PF2QyNrYLAPXJQu5y3U65s4x620F66sfoOq00Kcmx\nS5A175LPcL3LyrGJEHOLnRzo8GG32znddZrRyCgfn6v0fn1D0AyVCl3lTI/qZO84+4PZnJ7ze570\n/hihauOMff5VmHTleDUOwioNlpjEhjnZULKamuFncZm17GxSrs3smAwvBRJcU1WOwRDikU2Z7NV/\njtuuryE+EeTu0ZU81/4cf65XOlad3fEKqUSC+VcrhYKNqgGevSeOKgjVuw5SXWRn7YeruOv+K5hV\nWE5eyTxiWVn0eA6T8sY4MJCBRkixrlphXYWjapBlhof9CILAhuINPLnxSUrtpTzW9QPmuv7Ctf4R\nZKAm7Y+UJUS2Tsp0F2SUck2eG68jg9f37MbvGZ52H2RZ5ou7v8jvOn/Ja9XPg0qgRPYSiCU53Dk2\nmZBVmDfjTzxJ+NAh3Pd/C8uaSf66OUN5BwbPQsFyqlYVk9m7DxmB5+vuJjuUTbOrBzHLh1br4rUG\n5fzXznYz0DpO0BejfEkmbY0NuJIOMpbM5lWLMpl/4o7r6Vu/mSqdikxTlLhKYst/fOOyct1HGv5O\nKGFk7bwbWD/LjajVkv/Iw2R9//u4H/gvCh9/HLXjoh7Lra+AJUvpB/Bvxvva0NvSDSz61FWgVhNr\nauL07bX8ONjAVbKeby779tvWUL8QOlFkvsV4vkJ22melpaTGxkiOjWF26MmZncax9gmcd88i+1tL\ncd5WgV4t8r2Enr7n20lLSzvv0UfPnkXy+zFfsRKAqkIH5hwTzgmZwQU3k55fRDygQWtJoOoM06VR\nc5NvBIfeQYOrkWcT8xhK3Iu+9wgFAyOUq6bKpvd2K7IMs8x6GjWZIKqJnniW8eEwmRclYnc2eVCL\nAo1JOypZIjAwvVHCmxl6QRBw3nknsdZWwocPc3DgII3eRu6dfS94GggYZFRkMtjmp7R2ksUSGFZk\nZRfcCVoTCVcGjqAXwTCEPWFGgxqPI0VbVh52ZFY7rXhGtmFUl6Iec+BYlMcPr/ghbWknkFIyrceO\nk2GKoy9doRQqXQJXu2xIgK3QSpsniM2ZhsfjYUHGAhZmKgnH5MgICALa8jJE3UzVz23nBtGoBMrM\nymrI4nqTHrnvEIJzAe0omut1GTaF8VS8GjHqZXWeit3NHpIpCZ1Rjc6oxu+JkG3KJpaKMm9uIRlG\nAXeyldrrbiB5soeNqWU8dPwhfn/it5x85QXyZ8/FmZPHP5r/wb2v3IupSMR/pwbdWDeF+5+gwKlX\nJBgmYZ4zB3vj6wTsWp4aykWSBdLSw5jNZuJx0MghJqJTuZBsczZ/vPqP3FF1B1dpDlGSSJKvtrDT\nHuczZWnoVUo4MStrFnVO5T3qyivjwBOPTrsPO3t2sq9/Hyu6bmSJZg0eS5TkcAsGjYrtk7kKk7GE\niKcNz0MPYVy8GPvNijpnOJ7k0cPd/EHYohSpZc/HlW0gx3OQ3uI5pHRaqn3VJFQSe2IRNBonR7t8\n5NgNFLpMNB8ZQqNTUTQ3HVVrFAkJU3UGr4ormC10Mtizl8ZwnM0mEaHLS3iuk7z0Ii4Fj98LsT10\nhZbyibopKqmo02HfciOOW25BvEDMDYBUQhFmK1v3lqyk9wLva0OvN2moWpmPyuGgLw1+bNnL3Gic\nB7OvvixX/u1gid3M2WB4qjHDJHRlZQDEWpWwQ01dLmF/nObDQ4h6NcZ5GcTvquQF4qgODWEOaM57\n9MF9+0EQMC6biivPXZJFZkrkr/uHqfvS90jPmYeQliB5qpd+s4v00Xb+T83/oTnazLDewwGpikHd\nz0gbtFImdAEQd2jZH45ToNcy32qiNZIkXrKOoRNKUc7FjJudTR6K0010TyZkh9qna36/maEHsF5/\nHSqnE9+jj/HwuYfJMGZwXcYihOAwAZPIxLAyrmTBpKE//RjIKZivaA6NGR24In7CZh+FsRykiJfG\nXDu9zkzKEiqSiWH8/uNYx5YimjXoKx2UO8r50ob7mNB68A60k6kbgeIrL/v85pgNuLUaRk3K690e\nH0Qf0/PR6o+en/wTkzF6Y82cGeOTKYlnTg1QV5FBciIOAlgc752hjzuqaZfLUElJPlg1KRdRXAfA\nGkMbE9HkpISDgMNtwjsYItusVHQOhIcUSmnPYa64/S7cJWW4947zAWMdu575KyGfl/5Zau56+S6+\ne+i7LHYvZqkzC926eViu2UC86WWG/++rhI5PedeO+fNwe0fY7UpxRDYxkMhAPX4Os1lZkVkME8Q1\nBoL+8fNjNCoN/7n4P/lA3Mk5rY7hZIjjeh3Va90UpwaQJRV/ardSZtCSo9PgrV1Jw97XGenpOn+M\nrc1bSRMymD28iq+t/hIjaQm8XV2sKrLyWuMwsixjNBajenUYaWKCzG98HUEQONwxxrqf7uEbT59j\nT5fikB3yqAjt3o02Ms7jK1ZT7h3DHjVRMGZnd1BFWNZzrNtLbYGDZCJF+3EPxfPT8ad8VIzmMZ4R\nxStJnBwVWGdq5y89/ZhUIuILjxBXS9RtnlLDvBhPHngMnSrO6vl3KtpbbweDpyE2wc6u6zi+rest\nd3+3eF8belCSaaGIn5/eqEIvqnnIM4Ku8PK64m8Hi20mkjIz2De6EiU5FO9UvOn8aifp+RZOvNKN\nNCnGVJ5j4yExxsliE+YxkUAgQGwiQmjvXvRzaqYt3wpr0nBrBL6e0tP7+zOkn72B7Mh8NAmBUVUa\nafEoi8RsLDEt9fazDNrDECjG+YkjFPlHSQkiOz9VwDGTmZUOM/OsRuKyTEPV7Qz6MxBFRfL2DfSP\nR2gaCiAgoLO7MFhtDLW1TPsf3yiWeoOWeDFEnQ7bxo1MvL6Txo7D3FV9F9pJ6YOAWY23z4Q904jD\nbVKoQCf+CgUrwKV4sH3osccCJNUpVgTmk/A0cNCZgSwIBLsCjHgU9pG+fhbGBRkIk7LAawrWkFkQ\nQZAl/pFtoDmz/JLXB8rKY73LyolwFJslxon4PkRECoSC8/skensVhtYlJJj3to4yEohxU20ugbEo\nZrvuvNjYewG/qKFVqiQ71cfyNzjw5nTIrGFl4GXUosDOZiVO78wy4hsKne+72h/sVwz9WCuq2AQf\n+MLX0BlNpD3ZSW2zg5FceGTiabxRL/cvu59frfkFkXA7Vsts3N/6OqLZRKL9GXxPtZLwKElcwxxl\nsjsw3EsKiGqrofcIFoOSpE9zRUFU0XDi+PR/JOylMNzNjlgd6SkRWRD4z4bPozaOoovr2NsZ5H/3\ndbLaaaXe5ECw2Ni39S8ADIeGOTx4mOKBBZTXuinKySO7qhpBkllhHWfQH+VwpxeDOh/TbhW6ZfPQ\nV1Tw0tlB7nz4CDq1yNaPLeW3qxJIssAnz5Ry4smXkVzpbFuykBzvKGIkxHxfLgkZHus8yfBEjNoC\nB93nxohHU5QvzuRUyzGKYjkYqtPY2TSMLMOS+dU8Z5zNtWKQ2Jlmussl6kpnSloA+MMJwv5dRFJO\nZr8Tu9O1j7ikp7lZRyT4NuRF3iXe8u0VBOERQRA8giCcu2CbUxCEVwVBaJ386bjgs68JgtAmCEKz\nIAj/9ixDYMcO/rY8SX8afJ8aMlMpyFv8ro65wm7GrBJ5fmR82nZ1RgaCVku8T0n4CIJA7bUF+D0R\n2o8rX0yNSiQvzchLRpmspcrE0Pab/URbezGvVF4EWZaJ1I8R39rMEpOa+So1AX8MVV8GuWc+zrqC\nD0OrYgBeevKrLOh04TP4OS00EJKjJNpD5GoKGdNbORRcREBjYIXkodaqLA+PO2vpi88lw+ZDq58K\nb7zepFxjx0iQD8zLxl1SxlD7TEP/RrHU5WDbfANCMsVVzTqF0TRwEhmBgFnFSIee7NLJVUT3AfC2\nw/wpb6g9oUUrpdDHYW64gtH4AF12F0ZJoqNjnP7B5zBQhC6Yhak2c9p58+2KtySrqvjQvi/zaOOj\nM/q2voGrXTbCkoS27DQenSJP0X2BCmdiQAl3GWpqZox94ngvDqOG1RUZ+EcjWNLeO28eYMTno1ss\npFJsRHXhbS6pwzKwj4X5NnY3KysOR5aJSCCBU1AosIqhn3y/+45idWVwxw9/ztIbb+WKD36Y7/7g\nSU7dfYoXb3yRm8tvJhxuQ5bjWCyzUKelkXbvPSQ6TyJN9BLYo7zH+upqZJWKMd84ahnM6isgFcMe\nVFZ7GXnKfW9ruahBeftOBFmi0XAVj/SHyBQ0tPpaGVUNY4+oWOw08+C2ZnJ8SUKSTHzTh+g4foT+\npgZe6nwJGZny0UUs3aS0nVyzfDNJUULuO4hVr+bRwz0IBwdRTQhotizkT/s7ue+xE9Tk2njqU8tZ\nWpyGaeQUks6KJIv8PJ5L87prUcsykhRFFQmRg8BCY4ptA0cR1BPUFjhoPTqMwaIht8KB97QSusyv\nrWJ7/TA5dgNHSlcTUem5au9PCeuSzL32ustGCP52qIMKRxNpzlXvLFTctY8+/TVIKZnC2Wlvvf+7\nxNtxU/4EXExC/yqwQ5blMmDH5N8IglAN3AbMmhzza0EQ/vUYytvA3m0Ps71W5NqjMnNOtStqggbH\nWw98E+hVIte4bLw84id+Qem8IIpocnNJ9Pad31Y8Nx1HloljL3ed9+qLXSY6R0Nk1yoxPV/Aj2n1\nd8CwEP8rXXj+5yRjf22AlMxIsY3tgSSfkkLsWdXBwJxfYTTbWKxXlO1MhlG+cu9PcRvcNNua6TaN\nEW0cw5wSmNAbaRpRPNuFr36c7Pgobq2GU744I4lictmvxAInsbPJg9OkJSHJ3DAvB3dJGd7+vmnU\nt0tRKy/GQKaGzky4vsWMSWOCwVMkbOmk1CLhMTtZpZOywGe2gtYM1ZuUY4cTdCYVLzFzQkNWwkWT\nJUa/M5MlVjPZpiFCwVNY+1egzbegyTRNO6+3+yxqlYPr4htY7F7Mj478iLtfvpsO/0yZ1+U2ExpS\njOgt+MfWYHWk0d4+xcdOeb1KIra0dNq4QX+EV+qHuak2F61axDcYVlYn7yFO+4IkRC1lYhPhiQu6\nKBWvhlScuvQATUMBhvxRHJNyDolREZvOxkBwQKlgFVTQdwQAo9XGilvvZPGmm9Do9IjC1Nc6MKH4\nZxaLsnJxfPCDiCYTqaHXiZweQYqlEPV6dOXljCd0ZIpxpORcZFlEt2sn6ZIVncmMKh5i0HMRZ791\nOxjTKK5aQFZqmDutc5BlmbgmhS6pY1F3mNJ0Fb96vpH0wShH3MUYbXb2P/5Xnjz7FBmBAtbULcLq\nUvIgKwuvxJORxHPmLFvmZ7Ht3CCBV46ScMIPPW6+83wD66oyefSjS7AbtYpcdN8x1Fk13Ot5gZMZ\n5fyyZCnLA0EQQBWPYdZFudqWICVLGNN3U2wz0HV2jNIFGSCCo0fHqHmChFXH3tZR1s3K5I9jMZYF\nmlkX3M3JqnG2zL6VS0GWZQ427caoiVCSt+7tvwCpJPQcolu+Eo1eNfV9+TfiLQ29LMt7AO9FmzcB\nf578/c/ADRds3yrLckxWGna2Ae/OvX4T+Fub+EVhE27Jwu1HtERauiB/6Xty7I0ZdsaTKXZ7pwti\nafJyifdNJTAFUWDx9UV4B0K0HFY8x8I0E11jIex2ZcKZkOtJjTUQ60oS2NULooDjxjIyP19LRl0e\nUkpmndPGy80yAfdRTPfK7ElvJSFlc+NEHj3jQ9xTcw9evZcD5nNE2/0kh4aQHQ78YTPuWB/BDA/C\n85+l1mpgsHUcGZFcDkGzwv+NJlIcaB9FFKAi08KcXBvuknJkWcLTMWUAL66KvRR+c/o3HJ6tw9rh\nIdHfDwOniNgdCFiRkgaySm0gpZQkbNl60CorjVN944zrlLhvtT8TUQxworKMiEbLDTlpXJV/GFlW\nYW5djHHhdG8+lUww2NaKy5Bk2OPgoaU/5wcrf0DnRCdbntvC9w59j2ZvMykpxVBoiAePfBchfALB\nvJy4dyVJazZdXV34/X7kRAI5FkOTlYWgnp7Q/cvBbmRZ5q5lhUSCcaKhBA73RYm0d4kWSfH8Smhj\nrPWCfqEFy0Glo05W1DN3t3jOn9s7GCLblE1fsA+0JnDPhlMKM8cAACAASURBVN4jb3muQLAetdqC\nwaCErVRWK/abbybacIBUcJxYm7JqlWbPY1CfRiDbiPtrdUjWKjSBE2yKL8LcNguDykswkSL5RmW0\nlFLogaVrubFIcSbSU/OxRbWEdEmy0rIwpLRkTewjNyNI4MwYx3b0MHrF7Rzsb6I7MkSltI5ouYm/\nHermey808IXHz3E841a2G+to7+5HHwkSPXCQ51yr2NZq5ZN1Jfzmjlr0GhWRYJxQ+1mI+ZHLr2Ht\nySNkJiZo60syb2SS0ixJ6DOsuNQyGaFqVLbDnDjZSCohUbYok/qeM5QHC0iWadnV7CGeklC5DQzG\nEiw8sQOzJs41ZTlkGDNm3FeA+oEJ0rUnkRFxOC7d3OaSGDqDHAvQ7c0nv8o5LTH+78K/eoZMWZYH\nJ38fAt74VuYAF9I4+ia3zYAgCB8TBOGYIAjHRkZmVve9HTRFu/Ha1Xx76f3YCwuIjjBN5OrdoM5p\nwaVR84e+6demzc0j0dM7TX+jZEE6GQUWDj/XQTKRotBlIpqQ8CfAaDTi9fSidnSR88AKcr67gsxP\nz8e02I2gEsgqsaEzqlmo0XN2aNJ7YwjNxiyOG2Ss9FLwTw2rm+diFkzs1x8mGA6QGBoivVxZ8rrb\n+xjM1NLIfm4beQ5jbwSVRsSdHoYjfwDgYPsY0YTEaDDOrYvyEAQBd4mSXB6cDN/IsvyWhr7F18K2\nrm3kXrcFgOArT0NggIBFixTLwGjTKh5a7xEIjUDV9efHnuzxMWFQXrk5vmx8kW560pQiqivsWlbk\nHCU2MheNyolx3vQv10hHK8mURFmeCkmCrjNjfKDkAzyz6Rm2lG3hny3/5Kbnb2LB3xaw7sl1PNX6\nFGudJiKCkeISB6dDitd05swZYp1dyrMsm+7NT0QTPHa4h6tnuclzGvENKjHs99Kjj8Vi9JusaONx\nMhND+IcuMNYaA+QvpWLoedxWPbuaR7A49Kh1qvNx+oHgZOObvCVK96rUpSUp3kBg4hwW86xpYQX7\nTVsglSI5eIRos+LDndRnIAkigj7JCDKqmjVoVc30awdJb55NlglkUaS1fjKCO3ASwmNQtp4SQTEF\nr/W7WKyahaSC+SW1lC5KZ6FnFWHjLyguq0cMJ3m4Hp52fpRgy3d4caCUux45yjefOcdfD3VTPzBB\nTOVmWO/iRH+IVUPnUMkSkcWZ/HD1Vr5ydQVdp0f4xw+O8siX9nH4148DcPiAHSmuZ5GpF3E8TnBg\nDDEeQ9JoiU8ys1a9rpBbHml6GLNTh7vYRvuxc6gQKV40m23nhnCYtDwaDpA/0odlYByfKHJjOM7l\n8PyZAWpcjVgs89Fo3tw5mobu/QwnKgiFROqlx9mz889vPeZd4l1PJbJi8WaqDr31uN/LsrxQluWF\n6elvv/n0hVhSczXbb9/JyqprMGQbiY5rkLMv3eDgnUIrityXn8EeX5DD41MiZ5q8XKRgkNT4VPxe\nEASW3VhK0Bfj7Ov9ZNmUmO6QP4rDaGRCrca88goEUUC4aPYWVSIFs9OQByIgOEjJWqLRPjaVbOKk\nXYVWGOM1+0skD3nZPLqGIeMQbckzkEggVlQhqwRSXSJpg3MZcBtQS//Dtem/xVg5imrJPdC1F4Yb\n2NE0jFoU0IgCmyfVDo02OxZX+nnmTTQaJZFIXNbQS7LEDw//EIvWwi1X/Qe68nISh58BwGeMExl3\nkFViV4xK0wug0kLp1JL2VO84kk1Z9eRPWGiJ9zBmsZOt0yB5n0UrTlDcvZ6RIguidnrEb3CvovFT\nueEGLE79+Z4ALoOLby79Jjtu2cEDyx/gI7M/wlcWfYVnbniGH9feggjYi6wcGoiRk5vHqVOnCOxR\nlCmN86ZrH/1+dwf+SIL7VisTwFi/8twdWe+dRz86OsqALQ13LIluSE0wNj1HQvk1CKNN1BXq2Nc6\nSlKWcbqNjPUFzxt6WZYhdzEkQuBpuOy5JClBMNSExTo94awrLUU/dw7JvgNE25X3+IAPDIkoczxt\n7PYFoOQqhFQcn30/UV2E+SGFl19/ZlI7veUVEEQoWYMw1oqMwIsDRlxxZRUb1iZY+oFSRFnNp6Rv\nkUxupzpPT3xhGqas/WQatvPVxRYe+z9LOPi1NTQ+cA2vf6mOHV9cTaX9t9zT9Sc+lmphyOikcF4U\nl/oo2x8+ybbfnSMZT7H0hmLmVw2TEC2caM/kyOKvM1qQi6gSOJDQowr4SOkNCESQE1o21p9juekq\njqt3k7ZIYNwThvoIXjFAa3OU15s8ONx6/CmJ9Ye3U1+n5YA9nbTe4xCf2aZTlmX2NDZTYO0lM73u\nnb0EXftpkjcSMfp5VPssT5597J2N/xfwrxr6YUEQsgAmf74h+tIPXNjRI3dy278NTr1Skq63TCCn\nBGKjby6g9E5wd46LdK2aB9oHSL3RsSdP+fcSfX3T9s2tcFAwO42jL3Vin4yRDk/EME9MELBYME3y\n5y+FwjkuosEEm/MzGAk7CIZ60aq0FFZuBuCU8zn+csUObsy7AZUs0pNSep3uHdGAXUtMlYfr7Ocp\nOfVDbP2luDKPk1X5dXrcKlDrkY/8LzsblUd0TU0WDpP2/LndJWUMT3r045OTl91+6Zjh061Pc2z4\nGF+s/SI2nQ3L2rWI443IooYxnZ+Iz6mEbWRZEXsqrlP0PFC+GKd7x4mbJpUnU0ZazQJjNicLLDq6\ne/6AMVGFzlfOE/JFzzAeZvDETszaFJbazZTWZtDb4CXkn9rPqXeyuWwz/7HgP7iz+k6KbcW4tGoW\n2UwMG0RSkowus5ixsTGGjymhEeOyqTBf/3iE/93Xwca52cyebDU30hNAb9Jgcb53ydi93cOE9Ebm\nGvUYwhlETCPIFyaUKxWDWqdtJhBLcqLbh7vYxnDXBFmmLGKpGGPRMcibdGj6Lh++CQabkKQ4VsvM\nhLP9xi2kRvuItzUSHwtyKGFm7lgHC/o6lXBlwXLQmCiknXPuZqyJdIxJgb6+ya9z4/PK6tnohNFW\nUtZc4oIWzySB4fjISewZRqpXZBE+o+P2xq+xtCGE4BAJlBazOtWL8dATLCtykmUznKclGjVGXItr\nCBslxIZ6orPnsafZBqToaz/Nss0l3Hb/EmqvKcSRqEdduIjaht8i643Uns6iWh+hU3IQC0aR9EZs\n6RKJmJWgvZzVp6oQULHH+hx//9MrzI4U02cMsfWlNkLxFM1WFfPbTnP97ddzIHEacdaNCInQVAXr\nBegeC2NXKRo+aWmXp/rOgJQi1X2EtuBCmoqUhPRnl37p7Y//F/GvGvrngLsnf78bePaC7bcJgqAT\nBKEIKAPeOpD4biFJGFDa6r2X3VqMKpFvl2RzfCLMH/sVPrwmd9LQ9/bO2H/lLWVISZn+XcpSdng8\njK6lhYjRiHwZ4wlQMCsNUSUwR9AwEnHgGe8CYNWiTwOwUFLz+OhTiOtczNbX0B9Tls+vLCgi26al\nB4nW4f2YXbNIb/w6hbsfYjQ6l9bun9E3fxEtp/Yx4I+SlGRuXzS9s5a7pBy/Z5jwhP98C8ELBc3e\nQONYIz868iMWuRexuUyZgCzr1mJ0xUlqs0kJSRIhF9mldhg+B+Pd540WKF8MXzhBwjpATCMAQcYt\nFsb0Jurk7USjfTjOracpy8A/WobxTESnTr73IQb9KtxlVQgqFVUrspAkmaaDg7wV1qVZ6YgnMFq1\nNESsaDQaBgeUcboCJW6dkmQ+//gpVILAl6+ekkPw9ARIL7D8S4V3l8NOj6ILv7k4C7OhElkrEfJf\nUMvgKAB3Dcu9z6AWBXa1jJBVaicZl7BGFD2h7olusBeAKQN6j172XOPjymc2+8IZn1k3XIug05Ho\n3k/Dc4cYMjhYgpcFPR3s9gaQVFooWkVetIm+hJ9A+gnyceOPxkkNNcJII1RPpuZGW1BnVLC0KA1/\nRLm3Dd4G2sfbKZjtQpZkhJSK2jt06CaeJW5cyKzVn2aku5OWwwdmXFtdwWoGnCOoE0ncZXksHFFI\nDYu2CCy4ukCZFKJ+GGkiFk/D6mnEvlpLXC0wK9IHCJwzlCHp9NjTJRIJC6dn3Yt3OJuV8nq29b1M\nb+okelnLvOtqadQFEFUyGqvI/71mDS9E92BQG1i+/MtgTIOGZ2dc4/72UWpcDYjqNMzmN9fbn4bh\nc3T5y/AS4bjpMFf12ihefGnq5nuJt0Ov/DtwEKgQBKFPEISPAD8C1gmC0AqsnfwbWZbrgX8ADcA2\n4D5ZllOXPvJ7iOGzaFSjqOxmwseOv/X+7wBbMh2scVr4QccgPZEY2jxFciHe2zdjX3uGkQXXFNB7\napTilIrkyROYJml8Pp9vxv5vQGtQk1PhINIVJCZlkIwrY0xmNz6zi+wJDwa1gYeOP8StVbfi9iaJ\n6rScNZnYNGm4X4j047ylmLMWFamEmuV7P4lBu4IWQzP7dUpRTkm6iWUl06lc7hKFtTPc0XZZQ++N\nevns65/FprPx41U/Ps/q0JUWoU9LEPIof0vxDNJyTND0IiBAxYbzxzjVOw5CjJBlnITeQDAwyIjZ\nhlkOkOX7A+ZwDZbwQmbdVEFSkvnTga7Jk3cS3vNrxhMGsuYqCS+H20ROhZ36vQPI0uWjhrIss8Kq\nxNdzK9N4vc1HRXExESkFGg2i1UpKkvnmM2c50unlgU2zz7dTjEeTeAdC0+oQ3gvUp0CXiHN1YSb2\nbCWf5G29yGOsvB7rwF4W5JrZ1TyirJIAvUd5du3j7UrAOW8x9B6+7LnG/Ucx6PPR69wzPlNZLFjW\nriPRf4ydZ5Vw2qpKN+ldHUyEwjQEI1C2FlN8BJV/jNHSp8mRXMiCQOuuJ5SDVH1AYb6MtUFaGTdV\nW4lrQwiygE7U8eNXf862P5xFZ1KTSkgU6kswBV5BTHr5hVqHMzefA//4G5I03USsyl2FfbJ/wKGz\nZ9FG3MRTGs54T0/t1HcMkAk0+FCnp/NMWSGHlsQwaH0UJ0aot1STQA1CgP6UEVR6UqKWa4PLECUV\nfY5mIuoY3cNttKjUxHPM3JPuxOYy8GLni2wq2YTNkAaV10PLNqWF5AXY3+ahxtVMhutKBOEd+Mtd\n+2mOXElD3uukBIl7Ku58Tx2Jy+HtsG5ul2U5S5ZljSzLubIsPyzL8pgsy1fJslwmy/JaWZa9F+z/\nfVmWS2RZrpBl+a37z70XaH8dQQDTokWEjx69ZKOCfxWCIPBgRR4C8JXmPgSDAZXTOSN08wYWXJ2P\nNd3AuogG54GdWJLKS+z1Xkxcmo7iuS78ngg55kL0qgD9XoU5YMxfwex4gkJrIXv69mBz2CgbEGnN\nVmLYd1Rm45RDnHJVMH6uja6+ON60VrTCIJk77kCjcWGsGKKAQT5ZVzrjpXKXlCIIIgPNDfj9ftRq\nNSbTVPIxISX44q4v4o16+cWaX5xvggEgDJ5GFGUCjUFIgN1ZiKgSofEFhf1knkqoHukaQWNoQxZl\n1Hob4Ykxgmo9W3gcUkFcp27BtraQghwb18xy87dD3YqK46v344lZJq91qkhq9iqlmKntEv17e71h\n7n/2HEt/uIMbHtyNEEhwTpVkaCJGX8MQ+miMhM3OK/VD3PnwYf5+pJf7Vpdw44Ip3sBgmx9Zkskp\nf3dU3QuRkGR6LVZyx32oRBHHrEnJ4qGLjHXl9YBMnW2QxsEJgoKMLd1AvEuDUW2copPmLgJfJwRn\nkhlkWWZ8/Bj2S3jzb8C2+QZIhBkY6qJKDFFWW42QSlHa18Uub+B8fqU41YHsjOB0KInfM/XtkLcU\nrFkQGCARS7G3bQmeRw8QNCQxxaxU91/BgdButFURbv36YoxWLTsfr0eUE8wVTtOXNDF67bV4B/po\n3Ltr2nW5TW6W99kJGWyEBT+L1iWJyIWMTzRysH2SUdN3FBkB364W9OvXs8cfZt64B1EWWeA9TkzQ\n0hUpJhoNMNG1EBAAma4GC6XR2dQbWmlL6+V3T+5AElTIWQZqWyW2Nm8lJaW4o/oO5TyzboB4ENp2\nnL8+SZLp8xzHqAmRlvbmbRIvRrT1KM2pas669rGyRUXVxstX3L6XeN9XxgLQvhMyqjEsW0lyeFih\n/L2HyNNr+UZxFrt8Af4x5EPjdpMYHrrkvmqNirrbK7AmBQimkTUZB34rQ184R0lIZ8mK9/3KGcV7\n0eUtJTOZxOupJ8+Sx4/2fofcMYmWrCgLJ4bINehYkgZdxjyOvd6KLEPl5vXYtT9CE9WS4bmHdMso\n9+Q/ycaimROg1mAks7iE3oaz+P1+bDbbtMngJ0d/wrHhY3xn+XeYlXZRw42egwBEBkS07QKZ+WXg\n64Lhs5PGagp72nqw6utRS2pMziyEaBSVI8pVvILTux6juhTTIsXz/NzaclTxCU7+8fPQ+BxjWUrd\nnSt/qrK1eH46aTkmDjzVRiyiGKBkSuIXr7Wy+ie72Hq0l9oCB9/YUMkmhxXJqkW2aRAPHccUCtEn\navnE307QMDjBDzbX8OWrK6f9333NPkSVgLtkZhjrX8WLfWPENRpmJZTcgjY7D+2QZmZCNnMWOAqp\nCylVwrubR8gqszPY5qfYVkzb+CT3/oLCqYsRDreTSHix2y/PbjYtW4pksDJr4CSb5+dhmDMXgLr+\nbiUh6yggaimglC5UKjvCrGaskgFPwg3VishbsLOFJ8b+mzP1NowWLwFjCiHhYlPObRhUeg6U/hOj\nQ0PZejvisInN8of564p70KTG+Z0UJ72omH1b/0IiOhWq83T6KOwMM+osw5LhpnHfi5TlzKPAOsCX\nnjjFRDQBvUeQ9Dmkwkkalq8ilUqiHeqmSDThDneRnQpxTnZS//h3MHesJL3MxrrsM8yr/w2LrUUk\nhRT/DD5JQ8Yi1DYts7Q6+g8O8cy556nLq6PAOvmuFV6h1OW80WAEaBicoNB8FhmRNOflc28zIEm0\nNsmcce8nrkpwp309oum9rdG4HN7/hj4WhJ5DULwa40LFewkfPfaen+bDOS4W20x8u60fKTOT5OCl\nDT1AXrUTWT3CQPaVyMs2YjQap8kVXwpmh46MAgsT3QrP/EjbZJ/ZyVZ582Ixqp3VpLWNIkoyLTkC\nmQM7kBMpblhVQ0pUs70f0nJMOCtKaalehUV8AuPRSvp9xeQXtaFundk0BCBv1hwGW1vw+XzTwjbP\ntz/PY02PcWf1nVxffP3MgZ27kV0VJFNqNKcNZJdmKN48TIvPR+NJ+sdAbe6lKlJE3GlGH42yPONV\nUhhxnr4ey5q884ykCpeW7bbvc9Xo3wAYVeVisNowWqeuTRQF6j5USWg8zou/Ok1P5zgffuQIP3ut\nhQ01Wez58mp+/aFaPraqhP9eVopRJeKodrJktBVzOAwWPX//yCKOfmMtH1wy1Rh9OJZgx9gETfWj\n5JTb0Wjfu3q/rd0eVFKKK+1KeEgQBIyJLCKm0ekJWUGAmpupGniaHKuGV+qHKJiVRiyUJEvMo2N8\n0qPPng+i+pIJWa9PmYTt9jdhoQkC51zFLBxu4lq3A01mBprsbJZ1tnB4PEQ4JRHJu5IielEnDYTT\nz+KUDYS0FmKF64iGEjy3NUZQSmPjx/LR6kcJWWTGUg56sxx8delXOTJ0hI+/+nG+N/4lRqzd5JxZ\ngCFu4M4sK0FNCYcWuwh6xzjyrBIOGurws/O7z6NORnllTgv6ZaV4OtsRIi6M6hCpRB//9cwZ6DtG\nZNyAOiODZzJyqfZ6SMlJctzKCmyVqQO/Sqan4DjDpSfY8rn55N9yLdrAOfK6HCwOzuJEzhAeWSSc\nb+LafBfJuER2bzV3Vd81dY9UGiUE2fLy+eLD/W2j1LgaMZpq0GjewYpv+BxnQvM5l7WbhS0Stbfe\n9/bHvku8/w1926uQikHlBnSlpajsdsKHDr7npxEFgYcq8gilJE4arCSGhy+7ryzLzG18FHXcz/6D\nKRwO51t69ABFc9PxtCkMj1hsgPqBCciaA2oDm3VZ7OrbzWbPXCJaLWdL8ulQHSHa6Wft4krMyTCn\n1AZKJ2UDnGv+E632WZJEMLXfgKyTGei/NI0rr7oGKZXE5/WeN/Rd/i4eOPgAi9yL+ELtF2YOSsag\n+yBCyRriJXr0DQKZhVYlPp85G5xTSn9PnD2GLMYIG0eYzyxGxRS6eIwq8Rxj4VvR6ByYFlxQIHXk\n96RHOtmtq+O/pHvp6hrAlVcw4xLcxTbW3VONpzvA8w+eoOZEiPsLsvnZLXNx26aYMha1ijuz0vBY\nVIzZLWhiMUJ6PY6UF80FGgR7vQGWHW7kQ2c6+O/5Goxz3l2TkQuRkGSOxKLkej3MLZiKmVusc5B1\nMoH+i7owzbkNAYlrXR72to5iL7agUouYfS5GIiP4Y36Fd++ec8mE7NjY6xgMBecLpS6Fvl37eaRo\nFWpZQnxJaWVoWrGc7DMnSSaTHBoPIlVtQoWEY8hPPDFKpjBARExSv7+Vg8+04/druC7952TX5NPf\n1UxYHafAmsvWI71sLL6Bryz6Cs2+ZrRqLevvnkMqIfPKH87xpZIa1KR4SW3AOreMo88/ReOBNp79\n+UnSgsqKpWu2gVMZQ+gtVjoOKXmrjy2L0HT6EMT8TJwdx7huHa/6gizs78GAFo1ZhSBAmdRGjj7M\na9FstAVK43R9VRWHV+eyKDibxcOlJFRxbO5TSG4DS3MsjDi6mO+5irmOi+SvK69Xkr9dewE41tlJ\nkbUHd8bMfghvBu+pI+x2jhBVR7g9OhdtYeE7Gv9u8P439I0vKJnx/GUIoojpiisI7t2HLF1aA+Xd\noMyk58M5aRzQGpEmJpBCM6WMASInT+Hqb6Ul1sGEN0pyQv22DH3B7DSSUSugJt0wzj9P9BFFxaCr\nhvSJGIMZD5F5tJWTs2uIi6OM6rycaDqCShSYF4/QoZawlyveYl56Ps8VbMKpeprF3hqsyUy6DH1I\n4Znx3JzKalCpiESj2Gw2UlKKb+z/BlqVlgeveBC1eAk54N4jijxs8ZVEKuPoRhLQ26iEcy4K22w9\ncRy1sQMEWFywhNGkH1GS8YXTcJ1boRSPvVFfIMtKL8785cz6zD/Ybd2It6+HAcFGNDEzrx/L1vP3\n9CS7LSlySmxETvvYu7Vlxn6fLczElEzw6NU3IABJu436+vrzn/dH43ysvot8vZb/GNcQ0Yn8whx7\nz/I9L46ME1aJVA92cWHdiLNEMRZjDRels1ylkLuI64JPEU9J7O4YI6/KAV0KXbXT36nsl7cYBqYX\nTqVSYXy+g7hcay6b6JNlme+90ECbPYdUeiGhPa8gyzKmFSsRQyHm9LSz2xtAX7QUH1bShgcxeQao\nQOlJ3H+sm4Z9A9S4T5GTm8TT1YlfoyQsV5dUMjQR5dWGYe6svpO9t+3luRueY/msWq66u4rBNj8H\nH25gvdNOyryCx9JPIGoXsvMvXVjTDZSaBtAWFzOvejX7hw9Sc9V6Wve3IAoGluUOcYOzC4DQoEjb\nspXEo1H040NUphcz1NFMem4uAcHMBxyn8MUcNHuLz//PA7lF6GUd0awVJMOFqJ37UIkS7Z7tHMx6\nHl3UxNEXuqbfrJLVoDFB4/MkUhLRwEEEQX7H8flTxyY4nf061d0iyzf///Pm4f1u6JMxpXCjYsP5\n3qHmVatIeb1Ez579t5zycwVu/GlKQjIxdOnwje/RR0kZjLyYXULxyiwCA0rFaTx++So7AFeuGb1J\nBwkX1Zkhnj03yM2n2nhcW07RRCvXdezFOeFn7c0b2ZSuJMq+MHY/r3XvoEpKQxLgyYNKYw5ZlvlL\n4gOgeg2EJGneO4npRAbOzuxcrzUYSS9TKGI2m40/1f+JMyNn+MaSb5BuvEwxW+duEFSEnJXEa5T4\navCZRwB5WjXsWGSM7m6wGRvRS1pSpp+RXa1QYPcG1lI+IWJanDV13OF68HbAvNtxmXX89bYKtHKC\n1wYFlv1wB59//BS/3NnK/rZRttcPccvvDpLQCHz3i0u540sLmbsmj/p9A4wNBC+8WhxqFR997QWG\nJ5+dq6KS5uZmkskkcUnikw3dxGWZ35Xl4do9yof8ao4Gw2wb9b/pM3s7CCRTfK9tAEMwTJ7Xg9M5\ntVJwzFoHcfCPXIImOfd25vl3kGNR8fyZAYrnp2OYZN60+CYns9xFkAgrlNZJeL37kaQ4rrRLe5yy\nLPOLJw7zijaXD1snSLv6OlJjXYQOn8W0dAmIIpvam9jlC2AwGmmgAod3iOyeMbINCk8+JRrQa3ws\nNDwK6ZV0nT5BwKhMxOvLq8l3GvnD3pkaRGULM7ny9nJ66r04t3tICEYqPV9HpV1GKt5G5UIv8dMn\nMS5ZzOq81YSTYaR52ahENVLYRSBwig+6+whEDYzJDv5mcVPj6UdGJm/ObLqbmtkXcvLz2FpeHStg\nQcZp9nbqeL3Jw8t7tzInOpsWaYI/9CUoVG8gLo2QkzjBn8/9Hlepkeorsjn5ag/bfn+Ow8918Prf\nmnjmfxrpis4ncvRp/vy/Jyl31CML9kvWJ1wOiUicZ5I+wtoJbu1wYVrxDiQT3gO8vw1972GIB+CC\n7j+mlStAFAnu3vNvOWWaVk1dlSIdcLqta8bniYEBJrZvJ7F2A1G1DutCF3arEscb6p/JELkQgiiQ\nW+kgGnBgssDgLBsnJsIsmX0VajnFl5tbiKvgH44mvnnlN3FEHUSFGP/9zK+wJw045DEebfKyq2c3\nP9r7GO2B57kpK509lmPEzxTTG1Vxxv8iwdhM45VRqVRPevw9/OrUr1hXsI5ri669/MV27IKcWnp6\nuklmyeC0Edq3X+F3X9Ax54nmpwknchCtbVQYkkipUYYjhQDEhiuwVqahtl/Q+KNrn/KzuA6A+Iiy\nZP/MlpVcWZ7OvrZRfrK9hQ/972E+9tfjlGWYefq+FVS4FWZO7QaFZ31qew/9LT46To3QeXoEz+5j\nbHzuCVZ0KZ7wrqJqIokELW1tfKW5jyP+EA9V5BE96SURTfGJebmUGHQ82Dl0vlju7WKPN8BHznWy\n6UQrt5xqY+3RZgbjCWa3tGCxKFz+N6DSm9CNmwlJ3y9NvwAAIABJREFUXTMPNGszglrLZns7e1pG\nMBZbsKXSMGKm0avUjVwqITsysh2VyjwjPi/LMntaRrj1d4f4+Ykx6gbP8J+fug77zTeAIOJ/8hlU\ndjv6mtksOHeK5lCUoXiSVvMSRFnG5U2gXrAFq96KVxWiyDiCPtwBrnLajh1CVaBMQvnWXO5dUciJ\nnnGOd89cyc6+MpfNX15AndWEMSHTVWHjhcpfE7fv5ezDv0IKhzEtWcJi92L0Kj37/UepXFnHSGuM\nYKABY/9BUkMiB3Lm8urzHVR0thOVTXzq2ZMIyRjG3BJqVIOMpSycG62gwKnj4389xn+/1sBwoJIv\nk0RIxPn15jtQaXNIeJ9mKDTEfXPvY9Vt5Sy4uoC+Ji/HXu6i49QIqaRMMHM9BsHHYOs+Zrsa0asX\nvSNa5dmXj3Isey+Fw1rq1n/k/wul8kK8vw190Sr4zIlpTSjUDgeGefMI7NjxJgPfHTbVKEU1L5xr\nnrG0H/3d7wEw36UkdEYjca7YpBi+Pc+cfctQQG6lg55wEQ+k7gajmmWjEstqViPLwKF6Rufk8mjP\nU/TH+pkvzkMSJNbFNpJUR0lkbSOQMvGJZ3/LY50/Qus4wIjagU+3B7NkRDe6DJ1a4vvbr6V3YnrB\nlzlbqQ94ZddfsWqtfGvpty7/Mkb9is5K8ZUM9zWCAMYVtYTax5HLNpzvmJOSUjy15wDox4hq/FQZ\n47S1biDiqwagamgC84rs6cfu3ge2fLArCdLRPqWSdtWSGn5+23yOfmMtx765lkq3hS0Lcnn848vI\ntE7F4w1mLUVzXDQdGuKZn57k5d+e5aXfnOXJrQFO1n6JLckkKUHgz/ZMHl16NTf1Bdg65OXzBZlc\nYzZz7MUucioc5JXa+XKRm6ZQlOc90+Wq3wy/6/Vwy+l2jvvDqASBcErCrdOwNiRSMuEhyz1TIMsk\nFhFzBkmFpq9CMDph9hZu8f4OSYbn6ocomp1OWjCHhtFJ6QNbntKOrucQAMlkCM/INjIzNiCKSgW0\nLMs8e6qfdT/bw12PHKFr2M+nT/+TH9Xo0Dod6MtyUGfVENyzHTmVwlJXh7W5Eaffx25fgKS9iLBa\nYYeEqq9BCpnwCH4y4hkMR00MJ9KUhGmeE51Kh8vg4uaFeVj1av6wp/OS98ldZOP6j89hQ66TbreJ\nVcsW8VRpA1af4oToFixAr9azNHspu/t2U3vdDQQGtJgDMYSoj/CQhqLPfhirLYk1FaRHyGBjphI6\n+tzNK6nV9HNf4ZPYdEF8wRj5+OiML+VnJHDo4MFdvyQ7Mk7Yei3JWC/FtmKWZS9DpRJZtrmEj/50\nFff9Zg0f+ckVbPlKLbM/eg+otMwv2ItVG6TrQD69DW8djgWIhRM8dmYPAf0Yt5wUsd9449SHz34a\n9v3sbR3n3eD9begB0kpAPb0VnHXDBmLNzUSbmy8z6N3BkuVGFgSiAwP8fXDqYSf6+xl7+mm0N99M\nRmkhAJ6JGEWVihEd7PPQeODy1ZyyLHMmS82D2XcSlTXcHBc5eXKI/pieqFRG0heiasu9mDQmHjzy\nIOvLlY7yLdFW5i0t4Mf/aMWS9KEbvZVg2xeItf0X61w/wueahVoY4KqRDyIGU9TqRrj75Tto9k7d\nn0A4ArJEWluI++d/HYf+TdgEXftBTiEXrcLvbUOWRewV6UgJkYg81X91X/8+5M4CtGbF+7wi93aG\nhnSEVIpHWxkMoruwA5YsKxr2hSvObxrt6cLscGIwTxUuucw6tn1uFQ/dMhe9ZiYrZvWdlWz87Dw2\nfW4et3x9ETd8oozSrueI2bPxHmgmbHLhbo9Qo5Kx+kZ5qNDFV4rcHH62g2g4wYqblHqDjRl2Kkx6\nHup6e1793wbG+HbbANen2zi0tIqn5pfyQm05zy4oY7DFi1WMku5yzRhny1iIbADf6VdnHnTJx8lP\ndbMiPcrWo72ULMwgzZ9Li6+VRCqhTKoFK5SVkCwzMrKNVCpMVpYiOhdNpLjvsRN8duspNCqRn9w8\nh0db/87G8SbSP/ZRQFlJGmrXIE2METp0CPOaqwBY33CK3d4AWbowumQYARh9/Tn+H3nnHR5Vmfb/\nz5lekplk0vskIYEESIDQewdBRARFdC3YFcva66qrrruurmXt2FCxIaiA9N4hEEJNQhLS+0zKZDKT\n6ef3x4nUAK67+/723fd7XV5DxnOe58wp93Of+/7e31t06HDJvChVBnZbJ7F+9R6UGi1uk5zYoFgE\nQUCvVnD90CTWFTRQ2dx9LgtgYpiBFq+fcel307/ncASxDbtGxZ61K6RrmTCOekc9Fr2T0NAhhFvd\niIAvfBDb4uPJDrIgF2W8M2M8Pb01hMbEIWgk2eM2tYxHst7D4/HQLjvCm6oOFpn0/HxHDmZ7AxUb\nN9GuHYYoqNApdRf3sjUG/MljiNdJYUelOJB1Hx/DZjlfB+dc5K4uJzdqM7HNCqaMvx2ZpssxsdXC\noa8kx+nfjP/9hr4bGKZPA4UC2/IV/5bxBZUKRVgYfZ12niiu4ZMaC+usNh7Ymsucl95mxKgZ3FRY\ngTJISZPdhUajQafToTYF2LGkpNub44TDxZxDJ3mwup5It5MXeZwHc3QIwKc7y2m3RIJMJGrCZO7t\nfy/7GvYRCBMJ7YygPPQovYfGYVbpGdW8H5tbidmYjNcvZ2qvKJpzbsehOYTHoiHTlkqoIkC21sX8\ntfPZXrMdj99DXnkedoUdtVeObN/58g5noXwbKLRYySQg1KAQYghSFYMg0lF8euFbuWERbfIMgoxH\niFfKEBxS8qpSF4NfEEjR+c5+uCxFkiKi+TQ32VpdSVg3jJuLQa1TkpBhIr6X1AFMvX8tiRXruGZB\nKiZ5C25VBFOPurldZWJa4X5MRUcp3tfAse21ZE9IICJBWlRkgsDD5mhKnO5LevX72jp4sriGcaZg\nPsg0ozmDzdPc4abO0oJMDBDejaEPy5BCZC0l3Rj62P4QP5gbfcuobeukQPAS7U3CJ3opaeuSTkge\nDR0NYC2htm4JWq0ZozEHjy/AnV/msfpoA49P7cXP941kYnUevgO5RDxwP/IzxOuCRo8FpY62pctQ\np6ehTEhg6rF8trfayWlejh85tiAFsWVLSO0K0VjkLcRoR2KpqWPibfdQ3lFJqjH11Jg3DzejkAl8\nvKN7rx5gnCkYuQCbWzp4ZdifMFsDlMbIyVv1E0e3bGBC4gQUMgWry1aTNX4mYY0+2jRK1FffyJbK\nalIaa8j0x6NLNlJ9/AgpAwbR0SG9GSmVbqJ0PkZbthMT6mSgJ5YBo9PQJMSjycqiaO8+EFREGHpz\nzHrsLMenO9SEDsNn8oAslam3Svfomg+O4nFdWEG0tcHBT4dX0qpr4JpcH2Hzrjv9Pw98Kjk3A266\n4P7/KvxXGnpFaChBY8ZgW7kC8RIJ0N8KZXQ0wz0OBhr1PF1Sy01Hy1ljimaoy86DSVEUOVw4hoRT\n6JKKY8LCwtBHisjlApsWFZ4q3Q+IIq+U1TNhfxHHOzr5c3o8L9hqicCCUdnMjOxYvtlXia2gDX2U\nG7m9hKvTr6ZnaE/eLHiLlNZ+NAZX4KyqQZecQnZLCZHuJuptncgFGJISxoLkeF7oOQCQoW0cQbDd\nxyyjSLQunAWbFpCzOIe2ljaCw430GTuR/DUrsVZXXvjHl22DpGGcyGtFZWgkRJ+EvGoz2mQTHTuk\nGHtZYzHsdGFRCXhU9YyMG05JSRlRoSaK0rKxBxnQK88RL/slPp8kefSBgJ+WmmrCE82/+TqJgQBt\n3y1BN3Ag+ow0VLYGwgdnYAoInPyulriwFHJz97PuqwPEpoUwbFbqWftfHmE85dV7LyC3UOvycOux\nChI0Kj7ITEJxTt/Q3SebMQpSWKE7Q2+I7IfMLafNcQH5jiF3Msm5mlQjfLiznByzVNh09JcEbLK0\ngLaVLsZmO0B8/O8QBIFX1xWxrdjCX67qy91jUwnU19H40p/Q5uScarL9C9QpYSgThmLfuBF/WxvB\n48eTcPQQo8rXEd12gF2yAZxI06PFwbSonxAAu/4k8fp0bnt5IeahQ6hqryI99HT1cpRBw5yceL7d\nX0V1S/eer1GpYIgxiA3N7cgKT6LyBGgYn0pdWCfrPnyLg3s3MjJ2JGvK15AUH4LR46UpVsWm7F70\nLitELsgYEJZBzckC/D4fKQMGY7dLPSRMWjvtzQH6Cse5wh1PJz5Kw6RwlmHqVJqbJU/63gGPoFVo\n+fz4xeWCd3vjsRkUxCkSMEbomHxbb1rqHGz8rOAsKQ5RFDmZ38SPfzvI4uf3sD9uDXFWgWmZU5F3\n9eHF1Q77P5KIC2dQkf9d+K809ACh187Fb7FiW7ny0hv/BihjoqGxgWX9UlkzoAcf/PQlK/7yJJ9M\nGcnjKTGsG5iOKgBbjXDU7sRkMtHW3srIq9OoP2mjYFcdnf4Adxyv4I3KRmZFhbJrSAbz48KJiZeM\nTaulgvvG9yC+uRp/UyvB8S44uQWFTMFzw55DVxuJ2ZqNKIisP7qGAqWJeGsr461bcXkDhOpVBKkV\npOk1KPsMpE3dTGdzMqmVbrz+Zl7rdzkvjniR2zJvI8gfxOieoxl93c2o9XrWvvcGfl83noq9ASyF\nBMxjKNlfh9rQQFSHDHydBI0Zh7uwEG9jIz9++Fe8QaNR6EsQBRhnvp7q6mriFWqORJvwBRnxt54T\n46zcBYY4CDUD0NbQgM/r6ZZD/2vh2LULb00NIfOuxdfUhNjZSfSQ3vgnRtGIH+exCPDJcUWXMuXO\nTOTysx8JmSDwdEoMJU43b1WeXzvh8Pu55Vg5rkCARX2TMSrPp6LuPmklSik5HN1JcguCnCCXGWek\nFZ+tm9f4jCuQBUdyd9AOCuvbcUXGo/Jp2VcqqZgSagZjIhW2VSiVJuJir2VTYSMf7SjnxmFJXDs4\nkUBnJzX33Q+iSOwrf0GQnx3yUiUGo0waCV4v7St/JmjCeGReL89tf5dKQ092BAbTHqSiOmEImqLv\nGBdchtVfC0IAf76dMlsZIiJpoWlnjXv/hDQEQeCtTWc3oT8T403BFDpcNG7fATIZ992+kH6334DN\n4CP3g0+oKD1GU2cT5V/cgSiCJVxFQdEy0ppq6e2PJ7RHJCW5u1Hr9MT1yqS5rZ2ACOGyJnxOBREz\nRzCufRA7VTbuW3YUm9NLWU40rcFS2HBwZC9mp81mTfkaGhwXLoTMb68GQSC6uhJEkcTMMEbMSaP8\nsJUtXxXh8/ppt3ay6t0jrP3wGA6bG+/oSlq1jczd5SViweOnB8v7TArZjOymRuXfgP9aQ68fORJN\n795YFy5E7M5g/ZNQRMfga2hEEATMa1fTc91qEh96EHlXwVGSVs3oZhHBLzL38EmcoeHY7XZScsKI\n6xnCxlVlXJVXwiqLjedTY/l7r0TCVJKRiO8hPSzW+jJSIoK4U6jCj4A8KxXKtgDQN6IvE+1Xo/UE\nofFp2C47QKEnjoS2dgxiJyBi7fCws0RS3fx9UhSfJUXjFXtgaA7H1Oanuup9pieN4TrzdSBKbx06\nYwgTb7uHxrLSU9WKZ6FcYjM1yvrjC9QgyLyE1NaCPoKgKyXdjtLPPkZb5OCIPo4QUx7BCjV6WzCi\nKGJzB9OukqGJjMB3ZrWwKEqx/6QRp5K5zV1vFf+MoW/95lvkYWEYJk3C80vDEbOZmyb3YFmoj9oR\nkcy55iqcXhtbt2/udozJ4UZmR4XyZmUDu1tPJ0zbvD6uO1zGUXsn72Ymka7vXs54V2kzKQYRnU6H\nTte9tn1Y1Dj8JmjZ1024UaGCQbcxy/oBmREqFh6qJtqVzBFrl8iXINDSozfNqjYS42+h0Q4Pf3+Y\nzBgDT03LQPR4qH34EVyFhcS+9iqq+PjzppAHq1Cnp6OITqVt6VK0vXsi1wj4qgXu7fU0PpQEfDoc\nwwZD+lRG2Vdg8Neji2/EkddAYaX0dnGmRw8QY9Ry49AkfjhYQ0mj/bx5AcaHSSGk5p270PTpgzIk\nlBv638y9f/oIbWQ4I7Zr0XkCpNgLqG/W0uFX09O+Xiog9iQgxiop3rOTXiNGI1coKCqtQPB5UKo9\nmPuOQlYfjUKUkyP/jMZ2F48szefZ0rcpS5RoruFKBTdk3oCIyOKCxd0eY5PdhV44CAEVhhP7JVo3\nkDU+noHTzBTuqueTR3ay+Nm91Ja0MWJOD2Y/04/1wlckNolcFpuKoovai8MKO/4GqRMgbkC38/2r\n8V9r6AVBIOyuO/FWVtH6zbf/8vGV0VEEOjroPHacxldeQTdkCIYrrjhrG7NeTfChFhSCwJ+EYKx6\nI21tbWiuSOC9kTqO2Tv5qLeZuxIjz4pVm2JM+N0G7Dapk1XWyTyKY9L40ZWOWHMAOttobXCgqDNS\nmXCIcHc4hfoy+keno/QHcMRmAwIxRg1P/XgUp8dHn2Adzt5h+AGH7DLSStvx+eycLHsTq1VaDH4J\nK6QPGUHP4aPZ98N3tFvPKbAq2wraUI6dMBEUWY/ML6KpOgoZM1Cn90QeFUXjipWExcykXBQQdWWM\niBtBaUkpOp2O/OBYFAGRiIQY/Gca+uZScDSdlYi1VFWAIBAWf7a08q+Ft66Ojq1bCZk9W2rqXlEB\nSIY+MljDvMGJLC2oJzg2iaFDh5Kbm0tpaWm3Y/0pLY5krZrrjpzkTyfreLuykVG5ReS1O/igt5kp\n4d1r4lS3OKlqcRImd3UbtvkFUX2ukX5zWfcyFQy6DblKx3PhW6izuQjIUmmU1dLU0kwg4OGEoQJt\np58o+UDu/fogXl+Ad68fgFr0U/PQQ3Rs3kzUH54heNyFqzk1qSEoYofjLi7G/e48gqIddDQZOaiK\noz4kHIXSiDdggzmf0WHoweVsRhFbgKCUc/zYQbQKLfHB5y8i94zrgV6l4IWfC7plnWXoNZh9brSF\nBWfxy6MiErjj5fdISunNs4dcqFQBTmSOp6bBRHRoDVqjBp2g5njRFnxeD1kTL6NgxxY6KopQip3I\nlAGCDOn0rTRTE9lElrCTxxKK2FBgoazSjL9PDrpOJ7LKCmKDYplsnszSkqXYPecvSFsKG+kTVojG\nMBpZWBqseQxc7QiCwJArUrjywf5kDI0mZ2oS1z03hH4TE1lUuIhaj4X527xE3HeGN7/pj+BxwJSX\nL3gt/tX4rzX0AMETJ6IfMYKmN97AU/OvFTpTREtl7LWPPopMqZReh8/J2kcGq3G2ulncOxlBEFg6\ncBxjCuu4uaoWnVbJjZtsZFnPr/YUBAGZGIXbXYe7pARfRQXpc65glTsbQfTTkLecQxurkSsEgnpk\nIgQEXHIXAW0LgiqIenUcKr+bJ4aEUNXi5OXVEutlQWYcB8LkNMivQO+E+DoXtbVf0dQkSUacWcgz\n+rqbAdj7wxmLpChC2TYCiaMoO9RMZHorkc1eBJ9L4nwLAi1hRhISL2ef0ohKX4oHHxOTplFaWoo5\n3sz6eANDW9rRRkge/akHv6u8nKTTiVhLZRkhUdEo1b+t8Ufr99+DKBJyjWRE3SdPImi1KKIkuYW7\nx6aiUsh4aVUBEydOxGQysXbtWvz+869JiFLBj/3TmBBm4J2qJv5UVk+SRsWqnHSuiLxwr4EtJ7pq\nJ9z2ixp6vSEVpUNHm3AEsZv50Zkg5yaGVH7IrYPCKLZEgSCyIXcnJ8tex+m3kFbawYurSjhY1cZf\n52RjNiglI79xE1HPPIPpuuvOH/cMqHuEoIzpjaAQaNt2jKArr0dwusgpLKQwOglBCMLjaQaVDnv2\n7VgII+joB4QMsFLqKCNFlXRWY/JfYNKreGRKT8pKmtn5QxHOwxYCZyQwBUFgbm05skAA7bCzC4k0\n+iBm//4hJgW30mpXsrHJg0V9GTJZgARfHkXy4xxY/SOJffux9YuPWfPO3/AqNegTpWvcnmtE79eg\nGB8Dg24n2f4aiuAjuJum0RCZRqi9nfY1UlXy/N7zcXgdfHfiu/N+w/7S/YRo2jHHT4SZ74CtGtY8\nLj0TQFzPUEbP68mQK1IINmkobi3m48MLGVYQYHyUCnl6131dtAoOfgFD74bIXufN8+/Cf7WhFwSB\n6D/+EUEQqFmwAH9Hx6V3+pWQh0r0Q29lJbGvvYYy+nzN78hgyUCFBgTWZ6cwpOw4A/DxUloc20dk\nkqlUs+2bYnye8x9sjSYWQWXF+tMaEAR6Xj2DR265HguhHF33JUd31XFE6WNJrgGZUpp7uz4fReoI\nCrwGEjwN6Mv2MX+Ema/2VVFQ106fYB0tPUMI6oDano+TWmZH4/Ljdr5LSEgQWq321PyGiEiyJl7G\nsS0baG3o6lPaUgbtNTQpBuDzBAiKbCC+CSlGnDSSsrxc/CFD6DSPYpXgISZqGyqZErNoprOzk3pM\nWDQyZstdKMJMiC4XAUdXkq5iFwRFSXRZpIRWbVEBcT0zf9P1Eb1e2pYuRT96FKp4SX7YdfQomt6Z\nCDLpto8yaFgwrgfrCxrZVdbK5MmTsVqt5OV1nxQNVyn4pE8yxaP6UjCyDz/npJMdfPE2g+uON9Az\nXIW7s/Oihh4gXD0CV4qH9gNbut9gmFQ2/7jmJ/pHZSGKAt+Vraai8mPCo37H6+0P8HWlkbvGpDIt\nI5zahx8+beR/d/1F5wZQm1qJ1D9LcLyT9joTuqsfJiBXMnNPLmURcTT7w/B6pb4KkaKFr5iJSxWK\ntvghyrXVJDSG47V2njduwOnl8joP3xFM8n4rLd8U0fDX/XSeOJ2jGXZoPx1aHcUpaeft7//8LlQa\nP++GRFNksFDeFITTaSAo/jiHS1biC/ipOnqIpooyTqZNQVSpSU/So3REE34ihm0hB+nXdzDVOdfz\nXISJ/rHL6RNr4ECzEz3CKUOfEZbB6PjRfHr0U1pcp4+tye6i0y4RBcLDxkgS3KMfhcNfw553zjve\nTl8nj217FJ3Tzx27PYTcfIcUjmwqhJ/uhphsGP+HS16PfyX+qw09gCo+jri33sJ98iRVt96KrytM\n8c/AVVhI48t/BsB45ZUEXaBNYIRB4vc32V3EGoIY2lTFdR2N3BYfQbBGweh56bRbOslbdz7DxRiW\nhFLXgm3derT9+6OMjGRwSjhB2VcyVn4ElejGlBPBt3cM5cN5LxLsCSYvqACLeQQNqMmJUnJi707u\nG5uCQaPkr+uKAJg+xoxbBnsdY1EEoFdTCHJ1G6nRm87rjTlk1jXIFUr2Luvy6rvyAwU1aQSbNCgc\nhRhb2qH/Dfg8PqzfFpAUOYqv20rwiAJebSUj40ZRXSYlsX7UG4mzu7g804y8K17pb7Z28efPjs+3\n1NbQaW8nLuMcaeRfCfumzfgtVkKvvRaQDL+rsBBtn7PL1m8blYw5TMcfVxzHnNqD+Ph4du/eTeAi\nWknBCjmmbpKu56LN6WFvWQtjk6QF/1KGPq7fXSCHmqOLut/AGA9Zc1HlL+LLub3R+GIpoYkHt77C\ndd8N4xvHAO5RrOSx0VHUPf4E9g0biXrqqV9l5CndhGzRBBTyZuSZNxDodGNds4mWkF4MLDtMQBDY\nHBiExyM9PwrLcYIVfjaEzafc30m7zEmmOwXLwiN46iXevBgQceY30fBGHp0HGxEHRXGrqpNXwoBg\nFc2LjuPIayTg8RCyawc7+w1ii9111mG585ehbd+KtSWRmkHTqI/0E+F0UGkdhj7SRZDZS22oA9fY\nJNqveJQNvkQUBDDo/MQcvYNOwU1xP0kE7s6djyMoNLxRW8zHIzsQVHJqCKaxuhF3iZQsfnjgwzh9\nTt7Nf/fUMXx/oIbeYQWoND1Rq7sK3sY8Ab1nwfpnYPfbpzx7f8DPY9sfo7ytnHt/8tErR0A29Dao\nPwKfXwEKLVzzxXm1P/9u/NcbeoCgkSOIe+N13CeKKZ91Fe3r11+wQlUURVyFhVgXfkT9889T/4dn\naXjhRRpeeJG6Z56h4tp5lM+6Cm9TEwhCt578L4gM7jL07W4EQcBkOlvFMqGXifTBURxcV0lb49lG\n1mhKRNniQVZbRvDk0w225T1noMTN8N4neOl3/RiaEkacIY4EZQI1mnr2aKQKxmnDe+Oyt9NafJQF\n41LZesLC3rJmYo06LEl6elR5WZN6I3qHgbq6dHSRxVi/Gy3pyXdBHxJK9uRpFO7YSnNNtRS2CY6n\nqFhLRGI91Wt8HGyNpTNiJnV/20eMLIWv1Fv4wWgiI3Yr9oCPiUkTOXHiBJ0pGRQZlPxu736C0tNQ\nhEtcbGdNDfk/LGLnSRVVstOJvJJ9uwBI6nuOkuCvROu336KMjSVotEQ9dJeUILrdaPqe0yhbIef5\nK3pTZnWwcHs5w4cPp62tjcLCwt8075nYWNiEPyCSGSotXpcy9MbIfqhswbSoDhC4EC14xAPg60Q4\n+BZDTBY0+jIGhemZnRPP0pk6HpV/Q8OjD9C+ejWRjzyM6cZLNLYQRdj1Fnw1BwxxdI5Yhlc5CWV8\nIpavlmAJz0LVZmFsWSFbZP1xe9sIBDxQl0+sQUmBVWR//zkAjMmSQ0Ck6e8HaXwnn/qX99Hy3Qnk\nRjWRC/qTMDudJ67vx5pWOw8qO5ElGWhdVkzrt2sQ7XaqRo5lS0s7HW4fS/NqeOGdj+DHO+m0KnnA\nNo+NeSaC2/UoA36M9RPAZ8R8eRid08fzrW47X1T+nauzTAgiRB2LR9uewlvRi0mO68HNa2/G2mnl\nvUkfEm9MIXrn0+iCVfg8In8Ydjt1qyT1zhRjCtf2upalJUs50XICnz/Aj3mFpIWWExM1/vR5k8ng\nyg+kdorrn4Hvb4L2Or4s+JKt1VuZvynAyICToGvug/0fwyeTJEnpm1aeYpX9T+L/hKEHMEyahPmb\nr5GHhVF7/wNUzJ5Dy5eLcRUU4KmqwrFnD01/+xsnp06lfNZVWF5/Hfvaddi3bqF99WraV63CsW07\niCLh999H2sYNKCIiLtiABCCiy9BbOiS+eGho6HktBUfMSUOhlLPtm7PlFLSaOLT50uURBp1Wycs9\nHofNF0WGau1Z40xPm05ACLBJW0ykp5OhvXu5Vw+BAAAgAElEQVSgCTZQtGsbNw4zExms5vX1xYii\nSO9hCYR7RL7VXE9Js4OykwNREkNBZAuuz8ZIjVy6MPiK2ai0WjZ+9HfEih20qPvj7lhLwZbPqK9P\noN17N9bP6/HZXWyyL+NTtQ6/XE5c2BYUgpw+2j40WSzsDjcT3elnZnsFgkyGootmuPG1l9m8ZBm5\nzQl8v2QXy197icayUo5sWkdCZl8M4edLBlwK7rJynHv3EnLNNadohJ1HJVaItu/5QlRje0YyPSuG\nd7aUogqLJzQ0lD17/nmp6+/2V5EUpkPjdyCXyy/YdP1MxBivwBPvpXbb+91vENETb8ZUDjm/IVnt\nwUeAvs52/nhFb3IGjaDxcDi2zfsJX7CAsNtuu/hkPg+suBc2PCvpRd22Ac2gfgiCgCZnIory4wT3\n7QmCwOwj+2mVG8hnAJ6WArDXExsbg9vtZp9MIEKUkZz/DlF3JRM8LgGZRoE6NQTTdb2IvKcfqjiJ\nPz6uZyTvXDeA/AY7cy0W7EFKmr/4HiHYgKtXNgdtDnL+sonvln7HI9Zn8LtVVBT14qHnbuftq+YS\n64zDIxcZbQtn28nxKLy51BcpkLdNQRlyEI/nByZ7s9FVR7Ez4Sd2Gw7z/uH36fB2sHDSQrKjc2D6\na/haKmn3+7m8VxQVxhh+X6qm0yPlDe7OvpsQdQhP73ya7w6UY1LkIxMCRISfYejtjVC4QmLNZF4J\nJ1bT9vcsPs17k8FtItc7WokZq5DkDdY/A8lj4M7tEJHe3ZX4t+P/jKEH0GRkkPz9EmJeehHR66Xx\nT3+i/KrZnJw8har5t9D86Weo4hOIfuGPpO3eRfrePaTv2CF97ttL2o7tmL/7loh77kFuMKCIjr5o\nA5IwvRq5TKCxq9G1yWSira3trGSfzqBi2KxUaopaKdl/mqet1sSiyZfRERZOwXFpe5ulk6Pb6rFE\nXo2yfg80Fpzafkb2DARRRrm+mEHICVRV03PoCEoP7EXm93Df+B7kVrSwo8RKUEYYAbWMYfUii8Nm\nIopyMvp+gKgO4nAvNb5v5kDuR9LxGUMYf8tdeCpyETpb2X+sGjwljE8bzBWJt5NqyKbElseqyg9Z\nZPLhbs9gRuoaTjo9DPDFUV1aTW1IBCUaFTfkn8Q4QPKoLXaJL673+bl+lJL7hzcw6rqbqTicz+In\nf09HSzMj5v62Nmtt330HCgUhc2af+q7z6BHkRiPKhO4ZPM/NyEStkPGH5QUMHjyYmpoa6rr6/f4W\nFNa3s7+ilRuGJlFfX09ERAQy2aUft+RRTyJvl1PVvKjbt06Pp5n8hBacGpgml6h5Je5CrNUdWN/7\ngNYiFaa+EL7gnotP1NkKi6+C/MUw5nG4ehGo9MiNalRJBgKabALISHAVou3fn56Fxwn2drCBy3DX\nS4tgbGofREQOWvLJiRmC0NmGfM/LGCebibitL2HzeqHLikA4p4Bsap9oli8Ygcmk5ZG6E/hqDuKJ\nHsqOHTWIgsDcdAvf6l9DY4yhZl0QEVffSE5KBAUqFTHOOFq1VlQmHQ/f9AIKdQoPDV7Fvrv+wPvh\nf+XOE9OJDoRyKOUrFoasRURkaOxQvpn+Df0iu94OU8bSOvAOREFgkLaNF80ejuhjuP39bdhdXoxq\nI38c/kdOtJ7gL7mvMjapGKUyFIMhG7wuWPMEvNkHfrhdWiQLfsLj9/JEWAh20cdjjgYisjqQybxS\nMduNy+H6JRB0ASXY/wH8nzL0AIJSScicOaSsXEHq2jXEvfkmMX/+MwkffUT6vr0kfvIxoddcg8J0\n6aYTyujoC0oVA8hlAlHBaurbJEMfGhpKIBCgvb39rO16j4wl0mxgx5ISOlol71/RIkNVJSMwMJFj\n22tpt3ay9asiZHIZMVffCwoN7Hjt1BihQaFECQkQdJIBqmBO7NlBr5Fj8bndlO7fy9xBicSFaPnb\n+hOgEAjqE8EUi58GMRq13EtEWCZ9st7DoYFjA8wE1jwCPz8Efi+Zo8YxeWIWAN7ACGalPUCEbxyi\npog1NZ+Q37KJ45pYKr1TGZzQTlbsZiwqGYMOOSkoKOBoal8iXQGmbF6ObtBAmmuqWf7+63iVCvpk\nZhHdthtF+iQGz5zD/NffZ9zNdzLvpVclnfx/EKLXi23lSoLHjUNxRqik82A+mqysC+qZRAZreOKy\nXuwpa6ZaiESpVJKbe37npl+LRbsqUCtkXJkdTU1NDeZf2WRCrtQS3TkeV2Q7lQfOFrtyOivJOzgP\nh6eOLEc/Mg6sJVIdRqOxnMOfbcL63vsYx2UTmVmH0HT8AjMALeXwyWRJCO3KD2DcU6dyIwC6/pHI\n3FraI/og27OeoLFjUFZXM7o4l6NCP4os5SDIiMgYhkvjosXbwoCkcTDkTsj7HBouLRGeEWNg+YIR\nvNq8kYBWhyF9MstUoYx0nODJsseRG2NpVV2P3yXHePl0ihydLMs/iiogp0R/AkdvGUadjuw+f8Hv\na+LI1rtJ2qEjEKLgB9VeWlLysfhk3NrnVt4e/zaxQWeL51mGPQxAeN5HzL1mFA8cW86e+k5mvL2T\n7w9U47L1Qu0YB4ZdlAtHCDONRXDZ4bPLYN/7kD0P7tyO/9GTbL9mIfN6D2GXTsutG0B7bBjiY5Xw\nRKW0gKaM/VXX/t+J/3OG/kyozGYMU6cQMktKqJ4qT/6VUMZIhv5iipTxJh3VrVL8/Rf64rlNSASZ\nwMSbM/B5A6z76Bg+r5/OzZKR0U+PQRRF1n9ynJqiVkbM7oE+JgaG3w/HlklslS6YlP2Ra+rQy2to\nLrKijA/DEBFJ4c6tqBQyHpiYxuEaG+sLGgkaHovCGyC5xUKFMZLOqlx86jRcpqto1tjYnmMmcOAT\nWj4eT4OlkAhfJW7BzADTZWgECyGaZ9ir/ZK4iWPZPmgGa6OmEO1p5MbUVygWUpEj0H9HA+V1TVQG\nGbix3IGyvRRZspkVr7+MXKFE16MHYmUx+FyQNhGQ2D4DLptBTI+e/9C1+AUdO3bgb2nBOGvWqe+8\nDQ14ysrQDxt20X3nDUokO97Im1sq6NM3i6NHj+K4QHOZi6Gwvp3v86qZNziRdmsDPp+PpKRfX/TV\nY/orqEuUnLS9R2XVx3R0nKCi4gNy98/A47HQr98iwke/gSAG6OcXsBjKKK8IEDR5CjF//ptks0vW\ndz941T74eAJ0NMGNP0G/eedtos0Kxw/oe4/D39yMPFjS/hmzfz9y0cvXnngIT0euCaY9UnJaRseP\nhjGPSf1V1z11Kjl5MXgqKhDyDxCz4C4ibx5CiOU4i/IfpllhQLxxOba1O9AOGIAsNpYHC6tJt9ah\nkCto0jaxP0rKoYQYc0hS3Ue7ch/N47/jRK82RIOcYqfkXM3tObfbuS2ClCCPaClAvu81rukbwcv7\nF6GSwaNLj3DX4jyUthkMCx/EWpvImxXl5H99JY7GYzTNep8t/Wbx56rVTF41lwX7X6JDEHgmL5FJ\nJXpi3vgYQXfpMN3/JP4pQy8IQoUgCEcFQTgkCMKBru9MgiBsEAShpOvzH2iq+L8LiqhoRKeTgL37\nij+AhFAdNa0S5Sy0i5J5bpweIDRaz/gbetFQZmP1+0dpX7sOf4KSQIyTuJ6hNJa3E98rlN6jujyT\nkQ9KErXLF4BDKjxqbZPifwf1+zCrBnLf5vtJGTqMyiP5OG1tXNU/jrTIIP644jjuMDVOsxwCHk6a\nkphydAcTl07k8cOrWNmmxq/r4NvsMHQNR/C8+xBU7Mbt7YugWIFXeIq3I+J5t+VW7isO57A1lkxz\nM8+P2oFaaWdnYwtDwwcR7BIIarER6vYzbfMP6EeOYPOihbTU1TD9/kfRJifjqayQjIN51D99PUSv\nl5Yvv0RuMp3FhOrYIXH0L9XsQSYTePyyXtTZXNQoYvH7/eTn5190n3Ph8wd4bvlxDFolv5+YxpEj\nR1CpVKSmpl565y4oDEbS1Q+iLoDS0j+zL3caJ8texWgcwJDBqwgNGQShSTD0HgY0FtOmbKU5OIB4\nx1MIIXESfa+4G0N/dCl8PgM0Rrht01nicWei2dJJvSdASFgmiogIOrbvQJmSQlJZDUPYy8/KHBzx\nUtP7KnUVoZ5QYnQx0nUc+6RUPV28ttuxz0Tb8uUAGC6/HF2UlQj9c4iihllZr3O4pgN3SQmG6dP4\nqNrC8dY2UprrSSWaRGJYa5EE4PztHjSbc4i0zKVZsQ658n3CwrzkO7ykB0cRExTT7dxWj9T/NSLz\nMsj9kJCh8WTVHufbxGZ+vGc4S+4cxrZHJ/BIehpXhvg4bC3hRkUzQxOjmXDoz9y/5X6WlSwjMzyT\nV0e/ymfWmWStLyP62WdRRkV1O+f/T/wrPPpxoij2E0VxYNffTwCbRFFMAzZ1/f1fCWWMxLi5WPgm\nPlRLQ7sLt8+PwWBALpdfsK1g2sAoxt/YC0t+Ca7Dh2iJ78+xVdmndK8jkoJPhx5UOpjzGdjr4Zu5\nNDU1UFwVgkLUUhhcQ0AVhKlaw+fiWsRAgKLdO1DIZbwyJ4uGdhdP/3SI7TqpG9UEq4Ni/TjmZD7I\n0hlLee3KI6SmPkaUUeDggOGo/aORCV6OCw084I9mlOctPqy+jlp5EKrQfdw0pZ4lNwxHZcqlvM1M\nK05Sagw0RMeRc/wIt9oCCMfWUZsQTcGOLQyfcx2JfbJRRZvwtrkI9Jrzm+lmvtZW2n78ibonn6J0\nwkSce/YSdst8hDOae9g3bkQZH486/dKJsOGp4YxOj+DjA80kJCWxf//+bguouoMoijy/8ji5FS08\nMz0TRcDDsWPH6N27NyqV6h/6XeHXzSd2ez8i/26kZ8TTDB2ynv79FqHRSAu96PXSmK8h2yIlENvC\nj1B6sKvSOH2q1DC8o6tYK+CHTS/Cslul5OGtG6VWhRdAWb6Faq+IzC+gGzGZjm3bCB4/jkiLlamW\nbThketbFXkaTs4kqXxWxHbGnqqsZOB/C06UEpO/CgoL+DgdtX39D0IQJKLU+WHwVglpJQ/K7VGti\nWL2/EuRyvOMn8FpFAzNsjQS8XjKcMUyPncbBpoNUt1bRsuQEeAL0Gvs0PXu+iEpVTkz81wjApITu\nFzIAS1fiNXzM7yEmG23hX1GZE7EtWUL/xFAGJ5tQygUslrVcpdaxpaKKVxNm8FDOQzwz5Bk+m/IZ\nu+ft5u3xbzO6LQrbO+8TfNlUSTn3PxD/jtDNTOAXGbjPgSv/DXP8R+CX6ljfRQx9gkmHKEJtaycy\nmaxb5s2ZyBgey4Re0ngl4jTa66MZMDWJ+J4hnDx4jhxBwiCY/THUH0b9+RQSBAtZpv406ZooCpTy\nsPtmShX1tBq8bFjzJV8c/4K8tqWkJpey4lATS8o7UMnk/K4hgdEWB/muDNJD05ELcqI6ZhNbcjeN\n8kZKDCtxiSpu9i6gRp/O7LQVPBzyNXuemc6hB//Ac2NuoqjwCWQyLTWRg1AFFAS2nWB7zxSS62uY\ndXQFNr2aPQd2kpiWzJAZM8DvQ92+HUQBd8RFOlldAKLHQ+Of/0LpmLHUP/kkHZs3o83OJmHhh2ex\nTXytrTh27yF40qRf3dXn4UnptDq9tOmTsNls7N/fTZu/c1BudXD7F3ks3lvFnaNTmJMj8fH9fj8j\nRoy45P7nQqZSEf/mW6gb1Dhv/wj/7jJEvx/R66Vj+3Yq5l5Ly6dfEKGeTYg/AOE/UXugAIfNDZkz\nQQxIrBBbDXx1tZTP6X+DlBjUh11wXlEUKc1rQpViQG5UIY8YAoEAdKkz9tpdQUSgie/lSawplwqN\nYp2x1NTUSAPIlTD5JUnS4sCnF5yneeFC/DYb4fPnwZdXgduOcMMP9Jg3iSy3wCpTOLpx83mj3YvL\n5yOpophYmYnoiGiuHHoN6oCKhsVHcJe2ETIzFWWUntiYazl6ZCpufNwf6WakQYkodl8PYfH6UAkC\nBrUWrl6EIJcTGl+D6+hRnF3X2956AJerhqjyavSTXmTq+JeZ32c+c3vNZWD0QFRyFf62Nmofehhl\ndDQxXcWZ/4m4dNXHxSECGwVB8AMfiqK4EIgSRfGX7hoNwH/ee8y/CL9w6L0XYd70iJTi/iVNHaRE\nBGEymWg+U+PlHIiiSGCnVCQ18QUnJSVPkTMql6JdanZ8V4zN4sQYcUY1ZsYMuHE58s+vYbn6eTZE\nPcDB1t3kak/QrymD76/8ii+sf0Wxs5oPtr2BXe8jPiyBVHcYJbWZxEQF8Go1vHrIwSftMrY7T9Kz\n3EFeRQs/a/qzsbIXGxUPcliRxPyUAwxJ24Sz1UZ07MuE6cLw+10cPXYftvZ8eiS/wsZtrzGivT/K\nUA3y5mrqwoyErV9NvjkCrdDJdL5B9srXoAlB09kKROGqbUF7wTPS/Tmq/8Oz2JYvxzhnNqHXzkOT\nmXGq4vVM2JYvB68X45W/3t/ITghhYkYki44382ByCps2bSI9PZ1mr5L1BY0UNdix2t2obJVo3C2U\nB8IpdupQyWX84fJMbhlhpr29nf3799OnT59L8ucvBFV8HOZvv6F6wb3U3nc/gkYDoojodqOIjSHu\nzTcxTJ3CwFU3kN+Qx3MhD1D31RFSZ86UVEB3vA7rn5WM/uVvQM78s5Ku3aGp0o7N0smAqUnoOjzY\nt3rQDsjBvnEj7mQzQXm1jJixgxVts2hp/Zb+kf2JaYqhvLycAQO6BLrSJkPKONjyJ+g1HULOZjp5\nampoWbQIw+WXoT30nFS7ccMPEN0XAZhjFHnWJac0Zihpa2uYb2jA2WFnlL8fpqvTEa0BPqr5IxEO\nI5rpcegHSs+hzWbD2hHEDw0qbovwI6/9FL+7ij6930AuP7uC2erxEaFSSIbZlALXf0/IJzOxaoKw\n/uVpEp+5kcbSPyOEikRkPQrD7zvvXImiSN0TT+KzWjF//fVZ+v7/afhnPfqRoij2Ay4DFgiCcFZb\ndFHKUnablREE4Q5BEA4IgnDAYrF0t8l/PBQRESCT4bsIlz6ty9CfaJDi+JGRkVitVnwXUNR0HTuG\nu6QUw4zL0evMCAI4OytIzJQSud21L2sIGcBM13PI1TqGb30TgEqDlUpZE7rDPu697kUQBF4y3Ufu\n9bmsmb2a18dkkylvYHujjNnONv6iduI72c43W8qYWVnHApxsD3h5IEskSdaEQm9gUOoSAqIF0S8n\nKPk4J4qfZ+++yVitm0hL/AO7VzRiFxxcnjmTn0ZPwxIey6H4cDaZo/EqFVyx4F50v/tCemhSxqKc\n/ymy4GBcR/6xRu72tWuxLV9O+IIFxL70Eto+vbs18qLPR+uXi9H274+m5z/GX35meibegMj3lkg8\nfvjzOx8z7Y3NvLb+BIeqWwnqqCbZUUi0r5FhgePc30dkx2NjuXWkpGu0fv16AoEA4y4iIvZroDKb\nSfnxB+LeeovQuXMJnTePuL+/ReratRimTgFgUMpl1CnklAcnkdr0Jnw0Dtprpf96TIB79sDAWy5p\n5AFKchuRKQRS+0egz4kCETQDpuCtqkIZHYrW6mVC7WYUrqPUddQwr9c8UlJSKCsrO11NLAjSwiIG\npJJ//+l7XfT5qHv0MQSlksiUMqjNk95Kz8gXjNm+AYXPxxfZOoY2ONBUHCOBcFLNqbR8fwLLwiOE\nEcLTCW+zJPh0LqC1tZUTxhPYAiLGoD6kp/0Bq3UzB/N/d6qi9xdYPN5TarEAxOUgW7CNsCEhOI5X\n0/HRgzQGuzHpslCOeLTbc2V97z06tm4l6tFH0Z5TiPefhn/K0IuiWNv12QT8CAwGGgVBiAHo+uy2\nI7YoigtFURwoiuLA7jS6/zdAUChQREXhrb2wYJperSDRpONEl0RrdHQ0gUCApqbuG4W3Ll6MTKfD\nOGMGOp0ZgE5nBcZILTqjivqT5+uV/5hfy8lALLZ5q0gIjifO58ehqeC4UILzYBN6rZGEjD5U7N2H\nRi6xDQqOH2OCqY0f7h7G8LRw8pQqluJkg9KHPUrD81f1IffpidwbeRgRGUXWK0EAp1WD1hBEXcNX\n1Nf/gE5rpn+/L9HtHszPqs3EaWJxRqZQEhmP8rq7yPLYSbbYmDFwJDHDZ0KvaTDxeZjzCUKfK9Hl\n5Jx6Vf41ED0eml77G+qMDMLvufui27YtXYq3tpaw22//1eP/AnO4nk9vGoRPrmW7Pw1doJPb4hrY\n/dhYvr2+J4mOIlJSUnjyiSfI6NWL9tID7N68FqfTyZEjRzh27BijRo06Syjut0JQqTBMmUzUk08Q\n9cTjGCZPRnZGzH9wtNQg/MiU37Os80O2is/jndRFvU0d96sbW/h9AYoPNGLuG45ap0QRrkVlNiCK\nPVH3SEF57DABARJ3Wwi1/4hCaWJi4kTS0tJwOBzUnvkcmJJh2quSWN3yBRDwI4oiTa++Smd+PtET\njSibtsD01yHztOqr6Pcj/LyC8fVVrNcLfBRWQkAQGWXIItDqRh6iIWRmKglPDCOsdzyfHvuUohZJ\n3mN31W5KjCUM0vnJjh1DQsLNZPV9j46OE+QdnIfLfdohs3p8RJyRxwEgLJXQN7egjImiTJaGWyUS\nl7ag23NlW7kS69vvYJx5BaE3/O5Xnd//n/jNoRtBEPSATBRFe9e/JwMvACuAm4C/dH0u/1cc6H8q\n1Mlm3GUXbpUG0DvWwKEqqRVdTIzEAqivryc29mxur89iwbZ6DaHXXIM8OBhNQIMgyHE6KxAEgZgU\n43mGPhAQWZpXzcCkUBLNqXDDTwz7ZiJrdC14lHU0ulsxHGik18ixbFj4Nk3lJwmOjqWkpIQhQ4Yw\nIMnEgKQuY3TwC7bt+Jybs17lda8d0dLKTUeX0kg2ESNWgl9L2c8J3PzapxgipIpVQRDwWpzsL/2Z\nI6nF/D7z97xd2Yxao+fBEB/WkgZkOj2+nzcg3v8IwjlJSd3gwXRs3Yq3vh5lTPcMiTPRtmwZ3tpa\nEp579rzmGWfCW1dH099eRzd4MEHjxl5y3O4wvEc4Gx6SGs/n5+ezfPlyVixZjM1mIygoiNmzZ6PR\naLjmmmvYtm0b27Zt4/BhSSM+ISHhN8XmfwtSQ1IxaUwcth1kwS2PseLNfNr2hXB5aC8UR5dJ3vyv\nQMn+RjrbPfQeGSvpHu3/CL3XSmvzZEJirTSWBnCYDBy0tRNwncQedgcuUUZajx4oBIEjR46QcGZB\nWr/rpLeKzS8hNpdiKe9Jyw9bCO0jYNQdhBnvwICzi+Kcubn4LVYmBalZD5w0Gbl+dA7pgwefd7xP\nDXmKw5bD3LL2FkbEjWBT5SZCBCWzQh2Ed1WxRkRMol+/RRw+fBsH8+bRv/9itNo4rF4fGUHnBwxl\nWi1Rzz3P4eO3oXDrCQs7/43MvnkL9U89jW7QIKJffPE/Ni5/Jv4Zjz4K2CkIwmEgF1gliuJaJAM/\nSRCEEmBi19//tVClpOI5efKiXPqhKWHUtnVS3SJ1mtLr9VR0aaOfieaPPwG/n9AuESqZTIlGE4ez\nU9o2OtWIvdmFo+10C751xxs4aXFww7AunnZwFMOGP4ZDJqOf6meKdMfp2FNH2qDhyBUKCndu4cCB\nAwQCAfr1O0dHpt/1jAlWserg3cQJXpbkbUTWWs4P0dm4dI3U7Ioipd9IjJFRCIJw6gZ35jexOnQH\nCkFBtGoQx/UhzFSB+MHLiD4Z4ffei6+hgbZly877zcHjpQepfc2l6XgBlwvr+x+gHTAA/agL0zG9\njY1U33knBALEvPSveRD79+/PrFmz6OzsJDQ0lBtuuAG9XtIVkslkjBs3jrvvvpuxY8cybdo0brzx\nRpTneoz/JgiCwKDoQeQ25BKXHsKEmzOpLWnj55an8JQfgKaiS44hiiL5G6owxepJMCMVVG14Fq2w\nA0HmhYz7MEwaRXBLOz4Ert2n4K6fiiibMpWKnIFc9d0Swl94kernnqNj+3YCri5xslGP4Br4EtXf\n1tD8wxZCUhxEjQ2GW9adZ+QBbD//jEyvZ5taT0JzA8cS0jFn9+/2mMO14Xxx2RfkROdwsOkgPWSR\nPBBjIzFyIgZD1qntQkMG0b/f53h9beQdnIvDUX4qRt8tciJwZ4ho17loWfgxYldISgwEaF60iJr7\n70fdsyfxb//9rDer/2T8Zo9eFMUyILub75uBCf/MQf1vgjo1hYDTia+h4YIe6fBUieWw5UQTNw4z\nk5ycTHl5OaIonjJCnqoqWr7+GuNVs1Ann37V1mnNdDoldcvoVKm5RUOZjdQBkQQCIm9uLCE1Qs/l\nWaffDoakXYEs71UOaUVm2T6jsS2dkKoUkvsPpGDnNpxNNlJTU4k6h+/rdgX4uek5LJVt/LHxQ1KT\ni3HJNPw9ZTYCVzGz8XMevGHOWfuIooj1UCUbI3OZZJ7E2xV2lHI1j6eaaN1WTFBGJKE3zMe+YStN\nb75F8JQpZ1Udq8xmNH37Ylu5krBb5l/0XLd8/gW+piZiX3u1W+Pts1ho+/EnmhcuhECA+PfeQ5WY\neNEx/xFkZ2eTnX3eLX8KUVFR553T/ykMjh7Muop1VNmr6DlEWvQ3fV7ACvkLXL77CzRXXrzJRflh\nKy11Dibc2IuOpTfxka+O/KzRhISYMYfuJKkmAv+to2mz5jI+340MF07NHmr7ZDHwisvpdDho3LgJ\n27If6PhuCYJajbpHD/x2O96qKmT6YKLun0Po7CsQIjO6zRcEPB7s6zfgGD8e06E9DNUY+HFANC+W\n1fH3jO4LzuKC4nh7/Nv4fC42bByMQhZJ78y/nbed0diPAf0Xk3/oJrYdvB2P+BqR3Rh6URQpKf0L\nSkUI0arhWN58C/vGTWh698a5dy+eykqCxo8n9q+v/MMFlv8/8X+6MvZfAXWapJ/tKrqw19QjMojM\nGANf76siEBBJTk6mo6PjFPdY9Pupf+45BIWCiPvvP2tfrc6Ms7MSURSJSAhGrpBRXyaFbz7bXcGJ\nRjsPTExHfoaeiFFtZEBUDht04SRQj0H1Gu0bKug7djLtyOno6GBYN1WiO5eW0lTVSVRyCEUdYwlt\nyOdkoB+PKl5A9ARYcuXt1B98F0o3nvBpznwAACAASURBVNrHU9nOSjbhEJxkhk/nkErP9EAnyree\n+3/tnXd8VFXa+L9nWjI1PZNeSQgQSggQEEFAQeoioAgWLBRX991XXBuudd11V/bnqrivFEVsK0UQ\nEBFYqVIiNbRAgBRCEtJJMpNMyiSZ+/tjQokkAREEhvv9fOaTO+fccp6bmWfOfc5TaKxT4PvH6c66\nAK+/hsNmo/D118/NkM6Nd9RI6tLSzqWKbYn6/HxK587FOPgu9Bc8xksOB9Z1/yVnylTS7xhAybvv\nok1IIOKbZeh7J7V6PlejZ0BPAHYXOiOq2ycFMHRaZ0oaolixsT22/NbXkRyNDnauzMTTrMOsWMUk\nezqfmwwodT7kWHP4ouEb/hIwm78dnMmGiTHsmuicuKQ8MIlnnngWrz/+L+F//jMBH/4fq+4dx77h\nw9CMGIHS2xv39u3xn/Ei0RvW4/3UDIS5Y6uLwlUbN1Jtt7PG2xulo5EJqk78IdzM14XlbDhjbfGY\ns5w6tRSNxoZO9zgqVcsK2GjsRPeEhZTjjPT1cFy8TlZcspby8mQiIv+H0JkfEPjWW0iNjVSuW4cq\nIICgf71DyIf/d1MpeZAV/a/GvWNHUCiobcqO2BJCCKb0i+RYYSUz/3sM/2CnHTMrKwtJkih5/32q\nf9pJwMt/Ru3fPFujThtBY2MV9vozKFUK/COMFGRUsGJ/Hn9fk8ZdHfwZ1eXiJ4k7w+4k293Ohsr2\nRIlU6svex3DQHbW5PZ4OHZ7JdThqzntDWEtrOL6zkM4DQrjn+SSGd1oHCMoST9Gu5gwTv/kIL+xM\n9LyXoyuedy6wNTZQnpLLcp+NJJmTmJfvjtZey4wAD8rW7sOjow7tIGdiMbd27fB/7lkq12+g8K9/\nbVbH1zR8OEKjoWTOXGdKiZ/9EDjsdvJffhkkCfOM8/F39txcsidO5PT06dizsvCZMoWoNd8T9vFH\nzZ6KbgUiTBEE6APYcfp8Soyobn6MfDQAa4Mfy9/Zh7WFoiAAx3YWUl5YTe8hXvxj/3tkqzXMu2se\nnw39jG/v+ZbtE7bzQdnLLLC9zZKRS/BPvJ26WAdJyxdTZ7Oxy+Is6NOhQwcemTqVwqAgFhv08Oor\nhPz7A3wefRSV16UD5LOWLWPLkCHU1tdTFNyD+PbhPBNupqPenafTcihpimZtifyCZVRXmwgLvbvN\naxgMsfhGzwSgPPtN8guW4XA4P4tlZTtIS3sRk6krIcEPIoTAc9xYolYsJ3bXTsI//wyPESNuCpv8\nz/m1fvS3PAqdDreYGGoOHWpzvzEJwfyUeYZ5P2Yx78cs7te6s2rTbrTLV6P+dhme992H5733XnSc\nVhdOg0PJtmMnyKqw8JOo4cgZK8VLiukV4c37ExJa/OANChvEzD0zOewbjL9N0EX1HZmnfKlUetKx\nUkvtsTLKl53A+6EOCCHYvz4HIaDb4DBE1hZ8S1ZQGB1Oo0mQuaodsQHBrOiXxJj9GdyXOJeVe6YQ\nXfMki/IDKfexYvAazclqN6bVn4HX30QoHfj9b/MMit6PPEJDcQllCxZg25GMLjERqa6OusxMpPp6\nKtesoXLNGhQ6He5du6Dt1g2FVkflunXUHj1K4D/+gTrYWS2q5uBBcqY9AUDgP/6Bx+jftehieasg\nhKBfcD++z/oee6MdjdJpOw5N6szozO9Zva0jK/75E+Ne6ovB63wUsr22gT2rT+IfYaImewZrdRqe\njLmf3sHnn/iMbkZ69r2DiuUZ1KVXEB8/lNxRy/D9l4X7N61lTWQwt3s5Z8nBwcFMmzaNzz77jIUL\nFzJ58mQu5VVXWFjI+lWryAwNRSUEazr35s8ZetwHeeOmVDC7UzhD9pzg9Yx8Zne82IRTV1eMve4I\npSVdCGijPsRZKoQvkEOwzoO0tBfJyJiJm8aPKttxdLp2dOk8B4Xi5rC9Xy637jfjKqLtnkBNSgpS\na8UicH4R/3lvF5b+vg/PD4okqrCU3y3/EvW3y0jrOxzPVy4uLdbokPg+zcQLW99gysJy/r7mGAes\nNtwcgudui+KrqUkY3Fr+rQ4yBBHvE8/WoErOJGtJJ4JoxafcqU6huHwnue6Z1Bw5g213ITZLHWk7\nCojrHYCh4RQsn0aDZxBpgVWIiruoyKthwMOTCde583VCO4RGz3295rM6N4hFnmtp55nEElsIMSWn\neTz9CDVpJwm4XYn69uaLbUIIzC88T/C/P0ATFkbV9m3UHD6MyuyP58SJoFSi7dYNj3vuobG8gjNz\n51Hy7rs0VlUR/MEsPMc4g57qMjPJnfYESpOJyKVf4znmnltayZ+lf0h/qhuqSSlOadYeMPYpRkct\noK6yhu/e20Wt7fzMeMc3Gdgq6ujXNYuPLIcwKTRM6jH9onPru5tRerpRuSGH0NA+1EWpKI/VMXHt\nSn460ryWgslk4uGHH0apVLJs2bJWY0YAMjMzmT9/PnmnTxN/NI0jfe5CZfAnqVqgCXUGIMXptfw+\n1I/lReUct9VedI7i4rUgJCSpx2UtgBc1PRkMSphD586z8fHpj5t7ENHRL9Czx3Lc3FwvxlP+dlwF\nDP3646iuprqVWqPnaGyk3e4NDPn7H+i/+XskhWDbA0/xJ79B3DP7p3NBVQ6HxKZjRQyftY3XVxfg\npyvjjbvy2P/qYJKfG8gEmxu3uelQK9v+941uN5oMiqhpLGK7biKHiKNf/Y9Miksn7+THiCAVFd9l\nkrosHamxnl6R++HTYUhIpHUNQ+UWRMrXGcT1vYOg2A4AtNO583WXKKQGDc+F51KtrGe3dhyBFaW8\naCuhZvYcPCKqMT3+LKhanhWZBg8mbP7HxG7bRrv1PxD20UcEvvYqPo8/Rs2BA5hGDCdq5QriDh4g\ndu9eov+7DtOQIYDTVp8zeQpo1IQt+OSqLrbe7PQK6IVGoWFr3tbmHe4m/Ca/x/DAOVQU17DyrY0U\npJexf30OR7fl0623G9UHn2GzXsdD8Y9j0FxsfxYqBcaBodhzK6nPrMbToys1D+hQOByMX/YfDlY0\nT+zn5eXFqFGjKCoqYsuWLS2O12KxsHTpUrwMBoauWkVMfGc2q/VMPGVHF+uFUJ5/Un0i1B+tQrAg\n7+LgysKi1dhsXgQHJ17WfSqsq8ekUqBXqfD3u5tOHf9Ft67ziQh/ApVKf1nnuNmQFf1VQN87CaHV\nYlm9usV+54LhOrJGjqLwtddRm80Ezv6QjaNGEdQ9ks8f78UZWx3DP9jGuDnJDHhnC49/tpfahkbm\nPNidN+9YSXfzAbz0GrRGDR7+2hYDp37OsMhhaBQatiTpUZdVsJyh/KAfiwEL94Wn4ntmNH6qF+iS\n/QRTAqeg3/AkeARjGfNXiqUMig544643MvDRac3OG37cypT963Cr2UOsrh9DMrN45FgykR/MQmsW\nBNxlQiT88qIhvk8+iSookIKXX6Gxqgqh0aA06M+ZphrKy8mZMhVHVRVhH3+MppUiIrcqOrWOpMAk\nNp7aeLG7r3ckIdM/ZkT7FVSV17H8XwdI/iaDCHMBSTn3s8zLC5VQMT5uQqvn1yc6Z/XWDafw9OqJ\nMBfhmHAvA1J2sWHR1xftHxcXR0JCAjt27CAnJ6dZn8PhYOXKlTQ2NjIgIxOtUPDRoJF4KBSMPFmL\nNq55oJmPRsWdPibWllpwXCBbTU0OVmsKxcXhl50KOq/WTpCba5lmLoWs6K8CCp0Oj5EjsX6/hvqi\n81WiJEmiatt2su+9j9PTn0Go1YTM/pDwxYvwHDSI6HbtOHHiBP1jfFk3vT9P9I9CqRC08zfw3v1d\nWf/MHQzrHIjBEIvNdt4jJTDKg8IsS5u+++D0vhkcMZgtHRo57ibRLiKSZFs4q6L+TkHXF0i3eFJR\nXwVI1EuJNI6cD1M3k2ldjcOuJXeng6FPTkdn8mh23tV7VzLffxF9Avtwf2NfIouK6LVuLW6KKkL6\nW1FM+LTV2fyl7mPQ229jz80lf8YMpPrzJoaG8nJyHnuc+rw8QufMxj0u7hef/1ZgaORQ8m35HCpt\nYc3IFEjY9Dk8NEViSOx/+Z3v3xiufp7GDkP4zuTBwLCB+GhbT3gmVAqMA0Kx51Siq4lDkhoJnTqQ\n0wFB9PlsPpazic0u4O6778bDw4MVK1ZQV3c+/iM5OZmTJ08yICgIxYYN1E+eyjf18GCDBq0D3GIv\nXrwd7udJsb2B1SXnJzkFhd8iSYKyMzFERUVd1j3KrrEToZUVvcwV4DNtKkgSp599ltoTJ7CuX0/O\npEfInTqVRouFoJlvE7lyBcZBg87NUGNjY7FarRQVFeFrcOOFoXF8/UQfFjzakzEJIWhUzn+PQR9L\ndfUpGhud9smAaA9qq+qxFLfsRXEhj3V6jBpFA8e9TtLH3Z2BAwdyIDWNo6bepPlN4z8ZYfyofZyy\n+j9RcSKevOxNVFTspGCvkYGPPkVkQo9z58qtzOXNHX/hb7oPiXfrwHj38aQdO0aX4xn4NkLYyxNR\nTf8RQnq0MaK20ffqhfnFF6nasJGcadOoOZyKdf16To4dhz0ri5DZs9H17HnF53d1BoYORK1Qs+5k\nKwFoQuCeeA8xf5pJ6F83Il4+zaYe46mwWxkXM67lYy5An+iPQq9Gsc+5wGqtOUT28y9hqqpi3zPP\nXjT5cHd3Z8yYMVRUVLB8+XLq6+vJyspi06ZNtA8NxefD2Wi7dePN3gPxVit5INWGJtyEUn+xrX2U\nnyddjFpmnMilxF6PJEkUFi6nqiqYkJAul5UK2iFJ5NTWEa69srTYNyuy181VQhMaSuBbb5E/YwYn\nfzcaAJXZjPmVV/Acf1+LEXQxTT74J06caNNbQG+IBRzYqjMwGePPBU4VZFrwNOtaPQ4g2hRNWF0Y\nmcZ0bOtX0X/+V1gsFrZt24ZHXRR630SOHFyJ2nwnsYe6s188T75WTXXCYNZ6HGT+xjUU2AooqCqg\nsr4SBQpGlw1kaOw9bNi0lfCCQjqePk34wiVofkEVpbbwnvQwCoOBwjfeIPu++wBnYFXIf75E26XL\nJY6+tTFqjPQL7se67HX8qcefUCvaWJxsmnAsP7GcIH0QfYLarsAFINRKDH0CsW7IQdeuHRWWvYwZ\n/HtmjhjLY98t5dDMmXSd0bwERXh4OMOGDWPNmjW8++671NbW4mMy0XnhIpQ6HXtfepVtZTX81eyH\ne0EWutEtF2lRKwT/7hDOkL3HeeF4Hu+GllFTk0N+/m30Trq8J7xiewO1DokIWdHLXCkeI0egS+iG\nbc8e1P7+6Hr1Qqhav8VGo5GgoCCn+aZ//9b3Mzhrp1ZaUzEZ4/EO0KPRqijMstDhtrbzw6SmptK+\npD35wXn82+8gHxw6xIgRIyjOrSCvJIuQvt0Y3H4EG3atYLHuDfbXN1BnVwMr0FXoCDGGEKQPItGc\nSJgxjD5F8WSeOMoGy1YCSkq4LSODiC8+v2pK/iyeY8dg6N+P6j17UBiM6JJ63TTh5tebMTFj2JS7\nic05mxkSMaTNfXOtufxU8BNPdXsKhbi8B3x9nyCsW/LQWWMpb9iKt1pQ+fAj7DqZTs/PvyAvOpqQ\nph/os/Tq1Qtvb28OHjyI1mIhZMGnaBwOpNlzeNHSwG2eBsbl2qkWoO3celrn9np3ZkQG8pfMfLrV\n76GTpKbsTDixl1FUBiCjqcRg5C1mupEV/VVGHRyMZ5Ov9+UQGxvLli1bqKqqwtBKtJ1WG45K5YnV\nepDg4AkIhSAgykRhVtsLspIkkZycTLRnNHHx7fi3mMP8b1/jyY7LUZyKxM9TsCtrB5/VHiVHn4u7\nkOjjMDO8y3QS45Lw0/o189Gvra3l2/Vfk6bOIii/gAGFBUQu/OqalU5T+fpiGvbLi5Lc6vQL7kew\nIZhFxxZdUtEvOb4ElVBdltnmLEq9Gn0PM5aMEBo7VVFZeZRHwiKZMPlp5r3zKuLV18g/nU/AU082\n+3EOU6tx27Cdqs3rUJiCqP79qzxmU6JVSMxqH0rdDwdxi/ZEaWhbCU8L9WNNcSmzLJ15pjyJdu3i\nqVK78W5GPv8ttRCrd+eNdkEtmmdSK53mzk4tJDRzZWQb/XXm7EwkIyOj1X2EEHiYumCxnq9fGhjt\nQVm+rZlP9M85dmwPxcXFdO7syQMdR9GvIZKPwrN4ZeFzpCn3U9bjNFvDt1CkzGW0p52XfRJ57OSz\n9Dwajb/O/5ySt1qtbNu2jVmzZnGsPIuuNh/usliI/uKLG7I+5q2OUqFkfPvx7C3aS2pp6xHbtQ21\nrMhYwaCwQfjr/FvdryVMg8IwVHQBSVBavInengb6BPnxzItvcTIyCsvcuWQMHMTpZ58j/5VXOHn/\n/WTePZSqHzei6TaKHS/+i3EhHlTX1vN1t2h80q00ltdh6H3pDKZKIXjOsBGl1Mg7Hk+xNLwTvX46\nytzcYkLcNSRXVDF8Xzq5tRfHtRyqqiHITY2f5rdJOHejIM/orzOBgYEYjUaOHTt2cTbJC/Dy6kNG\n5kxqa/Nxdw8iuL03cJLco2XE9LxY2Z45s40ffliIRmOkzv4Gu3ZKPJk0Hs3SIr6P2gBxQAEEqx1M\nC1Kjq5/Inj1KDojdaNJT8P1wKyqtBqvVSkWFM8VyCJBQGoq/RkfwpwtQ6NpeH5C5foyPHc9nqZ/x\n3r73mD9kfovR00uOL8Fqt/JAhwd+8fmVJg1+IxPJOxlJwdHvMW4ayEseKsaZ3XjtpbcYt/I/9D+Z\nhTklBamhHnwCKek5ls39B7G6YwC59nq6OlS8ud1CkC0fS2opKrMO946te/2cxWbLxFE4l+eqEvlK\nmkSh0cSEQANPhfkToXUj3VbLiJQTPHo4i++6x6JrijeRJIm9FhtdjLfWbB5kRX/dEULQqVMndu/e\nTXV1NbpWlKeP70AyMmdSUrqB0JBJmCNNuBvUnDxUepGir6jYS3LyDMrLB3P77Z3p2fMBCotWkZf3\nOffdEUFCkYEajxwCtB50iZxMWMjDqFQGBgyoJe3wUY5/n4LNakfoBEFBQSTExeG1dBnqHTswjvkQ\nfc8QWcnf4Bg0Bp7o+gRv736bjTkbuSv8rmb9lfZKPj78MX2D+pJovrxAo5+jS/DHv3EIOda52EU5\nvhluzMpq5LlEHR+Meoj5dbXoBdhV7liabAdqAbcb3Hk9MJhhPiYqio5TlZyPQqfCZ3x7hKLtPDI2\nWyb79z+MJKk5kxrA/430p0uXDs32idG7M6djBA8dyuKV9DzejXMG1R2vriWn1s4fwn7Z04srICv6\nG4CEhAR27tzJnj17uOOOO1rcR69rh9HYmdzczwgOuh+Fwo3weB+yD5VQVZlFdW06CqGhtq6AjIyZ\n5OT2R6NR07fvcLRaLR4e3fD0SOTIoX/ip63Ha42WINGD0JmPoFA5lba7uzsJPbvTzm7G8l0WPvd0\nxJ6RTOHrbyDZ7Zjf+ge2PWqUXu6/5e2RuULGx45nVeYqXkt+jTjvOEKMIef63tv3HpY6C093f/pX\nXSOg/Qhy9sxFGpZLUOCDeKaWsGpjDms0DWz3rCNPXYV3PfT1C6dP91C6exkwqc4XjPGeGEfDndUo\njRoUurbNKVW2dFJSHgAUnDg+Ck/PQOLjWy7hd6ePif8NNzPrVBG3eRq4N8CbpYXlCGCI741b2/Va\nIdvobwDMZjOxsbEkJye3WjhcCEFU1HRqak6Rsv9h0tP/ji7q/xF619Ps2jOYw4ef4uChKRw//iq1\nNfGUFPvQr19/tNrzj6m+3sPI/uFvUDCX9n1epHrjNrLGjMG6fn2zbJL6BB8UWgelH20j/4UZaMLC\niFz+DYb+zoU9pcet5Zp2s6JWqnnnjndAgik/TGFf0T6q66uZlTKLpSeW8linx+jg0+HSJ2oDg6ED\nRmNncnI/RRL16Lr6E/10IlMHxfBJaBQfGDxJOpmCMX0LXVWOZkoenJ9rtVl/SSVfW5vPgQOPIoSS\nmuo/UFioZNiwYSjayHH0fEQAvT30PH88l79knOaTvBLGmr0IvMWiYgHEpaIrfwt69Ogh7d2793oP\n47pSXl7OvHnzcDgcREdHExcXR3x8PMqflcvLz19G1sn3qa8vw00TSOHxQHx9e9HtjgFISCBpWLhw\nC9XV1fzxj39sFkRyYk8h6z85yqg/diWskw+2nbsofP117KdOoTCZ0ERGQEMjdZmZKL07ou31e9yi\nqvCdPAShVFKbUU7p/FR8p3bGPdrzN70/MldOamkqT29+muLq8/nXx8WM49Xer6JUtF6O8XIpLd3M\nwUNTCAocT/v2f0WhaG4oyM7OZvHixSiVSsaNG3fZEaxnqa3NJyXlQez1Zfj7/ZOlS3fSvXt3Ro0a\ndcljS+z1TE3NZqfFRge9O4u7RmN2c52FWCHEPkmSLhmhKCv6G4gzZ86wfft2MjIyqKysJCgoiIce\neqhVuz3At+/vx1ZRxwNv9Abgxx9/ZPPmzUyYMIG4C9IEOBwSS/62G0ejxAOvJ52zhUr19VRt3UrV\nj1ux5+YglCo0UZHo+txGbZonDeW1BDzfE4VGiW1vIeXL0gl4vgcqn1tvQetmxlZv44fsHyipKSHR\nnHjFdvnWyMz8F9mnZuPjM4D4Tu+jUhmb9ZeUlLBkyRJKS0vp168fAwYMuGgS83Pq68vJzf2cnNxP\nEUIQEf4+ixbtxGQyMXnyZNzcLu/JUpIkSusb8FGrUNyEueTbQlb0NzGSJHHkyBFWrFhBYGAgkyZN\najW8++DGXLYvTefBN3tTVJ7L4sWL6dSpE/f+LLf9sZ8K2Ph5GndPjadd4uUtRtWml1P6SSreD3ZA\n19kX64ZTWDfkEPy3vgiVbPWTaU7e6YWcOPEGOl00Xbt8jFYb0qzfbrezdu1a9u/fj9lsZsSIEYS1\nkn30TNl2Dh/+A42NVfj53Y2H6RG+/tqZlXPy5Ml4e3u3eNytxuUqevnbegMihCA+Pp6xY8eSl5fH\n6tWrW01gFtHFBwkHP65PZunSpQQEBFz0SFtttZO8IhP/cCPR3dsuAnEhblGeKPQqalKdJQ8bLXYU\nBrWs5GVaJCT4Abp1/ZS6ugL27B1LefnuZv0ajYbRo0czfvx4ampqWLBgAYsWfcWpU6eafb5LSjdy\n8OBUtNoQevRYTbVtEl9+uR6FQsGjjz4qK/krQPa6uYHp1KkTJSUlbNmyhbCwMHr0aP7Dffr0abZs\n2cIZcyal6Q7CwsIYP358s0daSZLY/GUa9uoGBj3d7ReVQRNKgbaTL9UHSpDqG2moqEXpKS/EyrSO\nt3dfeiR+w8FDU0jZPxGTqStGQ0c0Gl+Mxo54ed1Gx44dCQ/3YdeuF2l0fMXRNA3bd3TDy3Msnp4n\nqan9CJUqCkvFFBZ8sg6LxVnMfsyYMa1Gj8u0jazob3D69+9Pbm4ua9euJTAwkOCm9Ao5OTl8+eWX\nuLm5EeIdgy3HjUkPj0albm73TNtRQPbhM9w+Pgaf4F/+JdF29sW2u5DaExU0FFfjFiUvwsq0jV4f\nTa+eq8jP/5qi4rUUFa+locECSCgUWrw8e2KxHgRhIyhwLGfOZKHR7AR2UlMLFRVmjh7pjiQdJioq\nihEjRhATE3NT1mq9Ubhmil4IMRSYBSiB+ZIkvX2truXKKBQKxo4dy7x581i8eDEPPfQQDQ0NfPXV\nVxiNRh5//HGKM2pYO/cwRSetBF+Qx7uqvJbtS9MJbu9FlwEhbVylddyiPBDuKqpTimi02FFdIlum\njAyASmUkLGwyYWGTAXA47FgsKRQWfYfFkoKXVx+iIp/GYHCmALFaD1Fc/ANgpn1sf/rdrsXb2xtV\nG0kBZS6fa3IXhRBK4ENgMJAH7BFCrJIk6ei1uJ6ro9frefDBB/niiy+YM2cOAB4eHkyaNAmDwYC6\nvTtCIcg7Vt5M0e9Zk01jo4NBD8ddMuKwNYRSgXucFzUHnCXc1P6yopf55SgUGry8euPl1bvFfpOp\nCyaTnIL6WnGtfi57ARmSJGUBCCEWA6MBWdFfIWazmSeffJL9+52JzRITE8+5XbppVZgjjOSmlZH0\nO6ePsqWkhmM7CujULwiT769zhTQkBZ5T9JoQ4yX2lpGRudG4Voo+GMi94H0ekHThDkKIacA0oFUX\nK5nmGAwG+vXr12JfSJw3+9ZmU1fTgJtWxd612QiFoPvQiF99XbdID0xDI9AEG1Cabr2oQhmZm53r\n5icnSdJHkiT1kCSph5/f5bv8ybRMaAcvJAny0sqoKKrm+M5C4vsHY/C6Ol4ypgGhuMdcXMdTRkbm\nxudazehPA6EXvA9papO5RpijPNCZNBzdkY9Ko0SpFHQfenWrPsnIyNycXKsZ/R4gRggRKYTQABOA\nVdfoWjKAUqmg84AQco6UkbW/hB4jItDJZhYZGRmu0YxekqQGIcT/AP/F6V65QJKkI9fiWjLn6T40\nHEmS0Lir6DzwytwpZWRkXI9r5qQqSdIaYM21Or/MxSgUgp4jIq/3MGRkZG4w5KQlMjIyMi6OrOhl\nZGRkXBxZ0cvIyMi4OLKil5GRkXFxZEUvIyMj4+LIil5GRkbGxZEVvYyMjIyLIyt6GRkZGRfnhigO\nLoQoAU79ilP4AqVXaTg3C7LMtwayzLcGVypzuCRJl8wKeUMo+l+LEGLv5VRCdyVkmW8NZJlvDa61\nzLLpRkZGRsbFkRW9jIyMjIvjKor+o+s9gOuALPOtgSzzrcE1ldklbPQyMjIyMq3jKjN6GRkZGZlW\nkBW9jIyMjItzUyt6IcRQIcRxIUSGEGLG9R7P1UIIsUAIUSyESL2gzVsIsV4Ikd701+uCvpea7sFx\nIcTd12fUvw4hRKgQYrMQ4qgQ4ogQ4ummdpeVWwjhLoTYLYQ42CTzX5raXVZmACGEUgixXwixuum9\nS8sLIITIFkIcFkIcEELsbWr77eSWJOmmfOEsUZgJRAEa4CDQ8XqP6yrJ1h/oDqRe0PZPYEbT9gxg\nZtN2xybZ3YDIpnuivN4yXIHMgUD3pm0jcKJJNpeVGxCAoWlbDewCeruyzE1y/AlYCKxueu/S8jbJ\nkg34/qztN5P7Zp7R9wIyJEnKhCPQUAAAAm9JREFUkiTJDiwGRl/nMV0VJEnaCpT9rHk08HnT9ufA\nPRe0L5YkqU6SpJNABs57c1MhSVKBJEkpTduVQBoQjAvLLTmpanqrbnpJuLDMQogQYAQw/4Jml5X3\nEvxmct/Mij4YyL3gfV5Tm6tiliSpoGm7EDA3bbvcfRBCRAAJOGe4Li13kxnjAFAMrJckydVlfh94\nAXBc0ObK8p5FAjYIIfYJIaY1tf1mcl+z4uAy1w5JkiQhhEv6xQohDMA3wHRJkqxCiHN9rii3JEmN\nQDchhCewQggR/7N+l5FZCDESKJYkaZ8QYkBL+7iSvD/jdkmSTgsh/IH1QohjF3Zea7lv5hn9aSD0\ngvchTW2uSpEQIhCg6W9xU7vL3AchhBqnkv9KkqTlTc0uLzeAJEkVwGZgKK4rc1/gd0KIbJym1kFC\niP/guvKeQ5Kk001/i4EVOE0xv5ncN7Oi3wPECCEihRAaYAKw6jqP6VqyCnikafsR4NsL2icIIdyE\nEJFADLD7OozvVyGcU/dPgDRJkt69oMtl5RZC+DXN5BFCaIHBwDFcVGZJkl6SJClEkqQInN/XTZIk\nPYSLynsWIYReCGE8uw0MAVL5LeW+3qvRv3IlezhO74xM4OXrPZ6rKNcioACox2mfmwz4ABuBdGAD\n4H3B/i833YPjwLDrPf4rlPl2nHbMQ8CBptdwV5Yb6ALsb5I5FXitqd1lZb5AjgGc97pxaXlxegYe\nbHodOaurfku55RQIMjIyMi7OzWy6kZGRkZG5DGRFLyMjI+PiyIpeRkZGxsWRFb2MjIyMiyMrehkZ\nGRkXR1b0MjIyMi6OrOhlZGRkXJz/D1mTpE7fk+zGAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb07c4b00d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "plt.plot(prof_vec[ind_rel_cor,res_ex,:].T)\n", "plt.title(\"Correct signatures for res: %f\"%(resols[res_ex]))\n", "plt.show()\n", "\n", "plt.figure()\n", "plt.plot(prof_vec[ind_rel_err,res_ex,:].T)\n", "plt.title(\"Erroneous signatures for res: %f\"%(resols[res_ex]))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Autoencoder" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def train(model,train_loader,loss_fn,optimizer,epochs=100,patience=5,criteria_stop=\"loss\"):\n", " hist_train_loss = hist_val_loss = hist_train_acc = hist_val_acc = np.array([])\n", " best_epoch = patience_count = 0\n", "\n", " print(\"Training starts along %i epoch\"%epochs)\n", " for e in range(epochs):\n", " correct_train = correct_val = total_train = total_val = 0\n", " cont_i = loss_t_e = loss_v_e = 0\n", " for data_train in train_loader:\n", " var_inputs = Variable(data_train)\n", "\n", " predict, encode = model(var_inputs)\n", " loss = loss_fn(predict, var_inputs.view(-1, 500))\n", " loss_t_e += loss.data[0]\n", " optimizer.zero_grad()\n", " loss.backward()\n", " optimizer.step()\n", "\n", " cont_i += 1\n", "\n", " #Stacking historical\n", " hist_train_loss = np.hstack((hist_train_loss, loss_t_e/(cont_i*1.0)))\n", " print('Epoch: ', e, 'train loss: ', hist_train_loss[-1])\n", "\n", " if(e == epochs-1):\n", " best_epoch = e\n", " best_model = copy.deepcopy(model)\n", " print(\"Training stopped\")\n", " patience_count += 1\n", "\n", " return(best_model, hist_train_loss, hist_val_loss)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class autoencoder(nn.Module):\n", " def __init__(self):\n", " super(autoencoder, self).__init__()\n", " self.fc1 = nn.Linear(500, 200)\n", " self.fc21 = nn.Linear(200, 2)\n", " self.fc3 = nn.Linear(2, 200)\n", " self.fc4 = nn.Linear(200, 500)\n", " self.relu = nn.ReLU()\n", " self.sigmoid = nn.Sigmoid()\n", "\n", " def encode(self, x):\n", " h1 = self.relu(self.fc1(x))\n", " return self.fc21(h1)\n", "\n", " def decode(self, z):\n", " h3 = self.relu(self.fc3(z))\n", " return self.sigmoid(self.fc4(h3))\n", "\n", " def forward(self, x):\n", " z = self.encode(x.view(-1, 500))\n", " return self.decode(z), z\n", " \n", "class decoder(nn.Module):\n", " def __init__(self):\n", " super(decoder, self).__init__()\n", " self.fc3 = nn.Linear(2, 200)\n", " self.fc4 = nn.Linear(200, 500)\n", " self.relu = nn.ReLU()\n", " self.sigmoid = nn.Sigmoid()\n", "\n", " def decode(self, z):\n", " h3 = self.relu(self.fc3(z))\n", " return self.sigmoid(self.fc4(h3))\n", "\n", " def forward(self, x):\n", " return self.decode(x.view(-1, 2))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "autoencoder (\n", " (fc1): Linear (500 -> 200)\n", " (fc21): Linear (200 -> 2)\n", " (fc3): Linear (2 -> 200)\n", " (fc4): Linear (200 -> 500)\n", " (relu): ReLU ()\n", " (sigmoid): Sigmoid ()\n", ")\n" ] } ], "source": [ "net = autoencoder()\n", "print(net)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "314.804579605\n", "torch.Size([147, 500])\n" ] } ], "source": [ "res_chs = res_ex\n", "trainloader = prof_vec[:,res_chs,:]\n", "val_norm = np.amax(trainloader).astype(float)\n", "print val_norm\n", "trainloader = trainloader / val_norm\n", "trainloader = torch.FloatTensor(trainloader)\n", "print trainloader.size()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Training starts along 20 epoch\n", "('Epoch: ', 0, 'train loss: ', 0.0095215536444923105)\n", "('Epoch: ', 1, 'train loss: ', 0.0050852037164411147)\n", "('Epoch: ', 2, 'train loss: ', 0.00376094494262064)\n", "('Epoch: ', 3, 'train loss: ', 0.0035085569192864455)\n", "('Epoch: ', 4, 'train loss: ', 0.0036567833340333989)\n", "('Epoch: ', 5, 'train loss: ', 0.003376171098575376)\n", "('Epoch: ', 6, 'train loss: ', 0.0031902957710613286)\n", "('Epoch: ', 7, 'train loss: ', 0.0030486840006561165)\n", "('Epoch: ', 8, 'train loss: ', 0.0030420855841746704)\n", "('Epoch: ', 9, 'train loss: ', 0.0028730589579862107)\n", "('Epoch: ', 10, 'train loss: ', 0.0027359282127882474)\n", "('Epoch: ', 11, 'train loss: ', 0.0026264062204174889)\n", "('Epoch: ', 12, 'train loss: ', 0.0025942252269196861)\n", "('Epoch: ', 13, 'train loss: ', 0.00255845210631378)\n", "('Epoch: ', 14, 'train loss: ', 0.0027449630140675371)\n", "('Epoch: ', 15, 'train loss: ', 0.0026573979062761567)\n", "('Epoch: ', 16, 'train loss: ', 0.0025321919434200214)\n", "('Epoch: ', 17, 'train loss: ', 0.0023269568295550664)\n", "('Epoch: ', 18, 'train loss: ', 0.00239070575228151)\n", "('Epoch: ', 19, 'train loss: ', 0.0024925716195396482)\n", "Training stopped\n" ] } ], "source": [ "loss_fn = torch.nn.MSELoss()\n", "optimizer = torch.optim.Adam(net.parameters())\n", "epochs = 20\n", "patience = 5\n", "max_batch = 64\n", "criteria = \"loss\"\n", "\n", "best_model, loss, loss_test = train(net, trainloader, loss_fn, optimizer, epochs = epochs, \n", " patience = patience, criteria_stop = criteria)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4Vfd95/H3VxvahSTEpgUBxgs4MQEZ29hx7GYDd6FN\nncSOEzt2nlLauNMt7dBJlzRtZ9x0Op2kce1xJqRxmtpJmyahKQ3Z04lrDNjBC5stdoGEBAJJLNq/\n88c5yBdZy0VXR0fS/bye5z733nN+v3u/53Dhw9l+x9wdERGRscqIuwAREZnaFCQiIpISBYmIiKRE\nQSIiIilRkIiISEoUJCIikhIFiYiIpERBIjKOzOywmb0j7jpEJpKCREREUqIgEZkAZvYrZlZvZq1m\nttnM5ofTzcz+xsyazazdzF42s+vDeXeZ2R4z6zCz42b2sXiXQmRoChKRiJnZzwD/A3gfMA84Ajwd\nzn4XcDtwNVAStjkdzvs88KvuXgRcD/xgAssWSVpW3AWIpIH7gE3u/gKAmf0BcMbMaoEeoAi4Ftju\n7nsT+vUAS83sRXc/A5yZ0KpFkqQtEpHozSfYCgHA3c8RbHVUuvsPgM8CjwLNZvaEmRWHTX8ZuAs4\nYmY/NrNbJrhukaQoSESidwJYcOmNmRUA5cBxAHf/jLuvBJYS7OL6vXD6DndfB8wGvgF8dYLrFkmK\ngkRk/GWbWe6lB/AU8KCZLTezGcB/B55z98NmdqOZ3WRm2cB5oBPoN7McM7vPzErcvQdoB/pjWyKR\nEShIRMbfFuBiwuMO4I+ArwGNwGLgnrBtMfA5guMfRwh2ef1VOO9DwGEzawc2EBxrEZl0TDe2EhGR\nVGiLREREUqIgERGRlChIREQkJQoSERFJSVpc2T5r1iyvra2NuwwRkSnl+eefP+XuFaO1S4sgqa2t\nZefOnXGXISIypZjZkdFbadeWiIikSEEiIiIpUZCIiEhK0uIYiYhIsnp6emhoaKCzszPuUiZMbm4u\nVVVVZGdnj6m/gkREJEFDQwNFRUXU1tZiZnGXEzl35/Tp0zQ0NLBw4cIxfYZ2bYmIJOjs7KS8vDwt\nQgTAzCgvL09pC0xBIiIySLqEyCWpLq+CZAQ/2HeSv/tRfdxliIhMagqSETxTf5q//X49GmpfRCbK\n6dOnWb58OcuXL2fu3LlUVlYOvO/u7k7qMx588EH2798fcaWv08H2EVSX5nGxp4/T57uZVTgj7nJE\nJA2Ul5eza9cuAD7xiU9QWFjIxz72scvauDvuTkbG0NsCX/jCFyKvM5G2SEZQU54PwNHWCzFXIiLp\nrr6+nqVLl3LfffexbNkyGhsbWb9+PXV1dSxbtoxPfvKTA21vu+02du3aRW9vLzNnzmTjxo3ccMMN\n3HLLLTQ3N497bdoiGUFNWRAkx1ovsKKmNOZqRGSi/em/7mbPifZx/cyl84v5k59fNqa++/bt48kn\nn6Surg6ARx55hLKyMnp7e7nzzju5++67Wbp06WV92traeNvb3sYjjzzC7/zO77Bp0yY2btyY8nIk\n0hbJCKpKXw8SEZG4LV68eCBEAJ566ilWrFjBihUr2Lt3L3v27HlDn7y8PNauXQvAypUrOXz48LjX\npS2SEeRmZzK7aIZ2bYmkqbFuOUSloKBg4PVrr73Gpz/9abZv387MmTP54Ac/OOS1IDk5OQOvMzMz\n6e3tHfe6tEUyipqyfAWJiEw67e3tFBUVUVxcTGNjI1u3bo2tFm2RjKK6LJ/th1rjLkNE5DIrVqxg\n6dKlXHvttSxYsIBbb701tlosHa6RqKur87He2Op/ffdVPvuD19j/52vJztQGnMh0t3fvXq677rq4\ny5hwQy23mT3v7nXDdBmgfxlHUV2aR7/DibMX4y5FRGRSUpCM4tIpwDpOIiIytEiDxMzWmNl+M6s3\nszecuGyBz4TzXzKzFaP1NbMbzOxZM3vZzP7VzIqjXAZdlCiSftJhl3+iVJc3siAxs0zgUWAtsBS4\n18yWDmq2FlgSPtYDjyXR9/8CG939TcDXgd+LahkA5hTlkpOZwbFW7doSSQe5ubmcPn06bcLk0v1I\ncnNzx/wZUZ61tQqod/eDAGb2NLAOSLxiZh3wpAd/YtvMbKaZzQNqR+h7NfAfYf/vAluBP4pqITIy\njKrSPF2UKJImqqqqaGhooKWlJe5SJsylOySOVZRBUgkcS3jfANyURJvKUfruJgiVbwDvBarHr+Sh\nVetaEpG0kZ2dPeY7BaarqXiw/SHg183seaAIGHJcZTNbb2Y7zWxnqv+zqC7L49gZBYmIyFCiDJLj\nXL61UBVOS6bNsH3dfZ+7v8vdVwJPAQeG+nJ3f8Ld69y9rqKiIqUFqSnL5+yFHtou9qT0OSIi01GU\nQbIDWGJmC80sB7gH2DyozWbg/vDsrZuBNndvHKmvmc0OnzOAPwQej3AZgMtHARYRkctFFiTu3gs8\nTHAwfC/wVXffbWYbzGxD2GwLcBCoBz4H/PpIfcM+95rZq8A+4AQQ+R1cLo0C3KDdWyIibxDpWFvu\nvoUgLBKnPZ7w2oGPJts3nP5p4NPjW+nIdC2JiMjwpuLB9glXnJvNzPxsBYmIyBAUJEmqLs3XRYki\nIkNQkCSppixfB9tFRIagIElSdVk+DWcu0t+fHsMmiIgkS0GSpOqyPLr7+jnZ8cZbWYqIpDMFSZIG\nhpM/rd1bIiKJFCRJqi7VKcAiIkNRkCRp/sw8MgyOndGZWyIiiRQkScrJymBeiYaTFxEZTEFyBarL\nFCQiIoMpSK5Aje5LIiLyBgqSK1BTlk9zRxedPX1xlyIiMmkoSK5AdZlGARYRGUxBcgUuBYl2b4mI\nvE5BcgV0UaKIyBspSK5AeUEOedmZupZERCSBguQKmJnO3BIRGURBcoWqNZy8iMhlFCRX6NJFicFd\ngkVEJNIgMbM1ZrbfzOrNbOMQ883MPhPOf8nMVozW18yWm9k2M9tlZjvNbFWUyzBYTVk+57v7aD3f\nPZFfKyIyaUUWJGaWCTwKrAWWAvea2dJBzdYCS8LHeuCxJPp+CvhTd18O/HH4fsJoFGARkctFuUWy\nCqh394Pu3g08Dawb1GYd8KQHtgEzzWzeKH0dKA5flwAnIlyGN6gpD4JEZ26JiASyIvzsSuBYwvsG\n4KYk2lSO0ve3gK1m9j8JgnD1UF9uZusJtnKoqakZ2xIM4dIWiQ64i4gEpuLB9l8Dftvdq4HfBj4/\nVCN3f8Ld69y9rqKiYty+PC8nk1mFM3RRoohIKMogOQ5UJ7yvCqcl02akvg8A/xK+/ieC3WATqqYs\nj2Mab0tEBIg2SHYAS8xsoZnlAPcAmwe12QzcH569dTPQ5u6No/Q9AbwtfP0zwGsRLsOQdFGiiMjr\nIjtG4u69ZvYwsBXIBDa5+24z2xDOfxzYAtwF1AMXgAdH6ht+9K8AnzazLKCT8DjIRKouy+dfX2qk\np6+f7MypuHdQRGT8RHmwHXffQhAWidMeT3jtwEeT7RtO/wmwcnwrvTLVZfn09TuNZzsHzuISEUlX\n+u/0GNRoOHkRkQEKkjG4dF8SHXAXEVGQjMnc4lyyM01bJCIiKEjGJDPDqCrVmVsiIqAgGbOq0jwa\nFCQiIgqSsdK1JCIiAQXJGNWU5XPmQg8dnT1xlyIiEisFyRgNnLnVqlGARSS9KUjGSNeSiIgEFCRj\npOHkRUQCCpIxKsnPpjg3SxclikjaU5CkoKZcZ26JiChIUlCtixJFRBQkqagpy6fhzEX6+z3uUkRE\nYqMgSUF1WT7dvf00d3TFXYqISGwUJCmo1inAIiIKklTUlOkUYBERBUkKKmfmYaYtEhFJb5EGiZmt\nMbP9ZlZvZhuHmG9m9plw/ktmtmK0vmb2FTPbFT4Om9muKJdhJDlZGcwrztW1JCKS1iK7Z7uZZQKP\nAu8EGoAdZrbZ3fckNFsLLAkfNwGPATeN1Nfd35/wHX8NtEW1DMmoLsvXri0RSWtRbpGsAurd/aC7\ndwNPA+sGtVkHPOmBbcBMM5uXTF8zM+B9wFMRLsOoNJy8iKS7KIOkEjiW8L4hnJZMm2T6vhU46e6v\njUu1Y1Rdls/J9i46e/riLENEJDZT+WD7vYywNWJm681sp5ntbGlpiayIS2duNZzRcPIikp6iDJLj\nQHXC+6pwWjJtRuxrZlnAe4CvDPfl7v6Eu9e5e11FRcWYFiAZ1WV5gE4BFpH0FWWQ7ACWmNlCM8sB\n7gE2D2qzGbg/PHvrZqDN3RuT6PsOYJ+7N0RYf1IGbnClM7dEJE1FdtaWu/ea2cPAViAT2OTuu81s\nQzj/cWALcBdQD1wAHhypb8LH30PMB9kvqSicQW52BkdPK0hEJD1FFiQA7r6FICwSpz2e8NqBjybb\nN2Heh8evytSYmUYBFpG0NpUPtk8aNWX5HNPBdhFJUwqScXDposRgA0tEJL0oSMZBdVk+57p6OXOh\nJ+5SREQmnIJkHGgUYBFJZwqScVCj+5KISBpTkIyDqtLgokQFiYikIwXJOCiYkcWswhwadFGiiKQh\nBck4qdYowCKSphQk40QXJYpIulKQjJOasnxOnO2kt68/7lJERCaUgmSc1JTl09fvNLZ1xl2KiMiE\nUpCMkyoNJy8iaUpBMk50LYmIpCsFyTiZV5JHVoYpSEQk7ShIxklmhlFZmqdRgEUk7ShIxlGNriUR\nkTSkIBlHVaX5OtguImlHQTKOasryaT3fzbmu3rhLERGZMEkFiZn9ppkVW+DzZvaCmb0r6uKmGg0n\nLyLpKNktkofcvR14F1AKfAh4ZLROZrbGzPabWb2ZbRxivpnZZ8L5L5nZimT6mtlvmNk+M9ttZp9K\nchkiV12mUYBFJP1kJdnOwue7gC+5+24zsxE7mGUCjwLvBBqAHWa22d33JDRbCywJHzcBjwE3jdTX\nzO4E1gE3uHuXmc1Ochkipy0SEUlHyW6RPG9m3yEIkq1mVgSMNqjUKqDe3Q+6ezfwNEEAJFoHPOmB\nbcBMM5s3St9fAx5x9y4Ad29OchkiV5KXTVFuloJERNJKskHyEWAjcKO7XwCygQdH6VMJHEt43xBO\nS6bNSH2vBt5qZs+Z2Y/N7MahvtzM1pvZTjPb2dLSMkqp48PMNAqwiKSdZIPkFmC/u581sw8Cfwi0\nRVfWiLKAMuBm4PeArw61m83dn3D3Onevq6iomLDiasrydVGiiKSVZIPkMeCCmd0A/C5wAHhylD7H\ngeqE91XhtGTajNS3AfiXcHfYdoJdbLOSXI7I1ZQH15L093vcpYiITIhkg6TX3Z3gOMVn3f1RoGiU\nPjuAJWa20MxygHuAzYPabAbuD8/euhloc/fGUfp+A7gTwMyuBnKAU0kuR+SqS/Po6u2n5VxX3KWI\niEyIZM/a6jCzPyA47fetZpZBcJxkWO7ea2YPA1uBTGBTeLbXhnD+48AWggP49cAFwuMuw/UNP3oT\nsMnMXgG6gQfCkJsUqhPO3JpTnBtzNSIi0Us2SN4PfIDgepImM6sB/mq0Tu6+hSAsEqc9nvDagY8m\n2zec3g18MMm6J1x1wnDydbVlMVcjIhK9pHZtuXsT8GWgxMx+Duh099GOkaSlypl5mOmiRBFJH8kO\nkfI+YDvwXuB9wHNmdneUhU1VudmZzC3O5VirztwSkfSQ7K6tjxNcQ9IMYGYVwPeAf46qsKmsWqMA\ni0gaSfasrYxBV5CfvoK+aae6LJ9jZxQkIpIekg2Db5vZVjP7sJl9GPg3hjgQLoGasnya2jvp7OmL\nuxQRkcgltWvL3X/PzH4ZuDWc9IS7fz26sqa26rI83OH42YssriiMuxwRkUgle4wEd/8a8LUIa5k2\nEkcBVpCIyHQ3YpCYWQcw1MV+RnAZSHEkVU1xGk5eRNLJiEHi7qMNgyJDqCiawYysDF1LIiJpQWde\nRcDMgjO3dC2JiKQBBUlEasp0XxIRSQ8KkohUl+ZxrPUCk2g8SRGRSChIIlJdlk9HVy9tF3viLkVE\nJFIKkojUJIwCLCIynSlIIlKtIBGRNKEgicjrN7jSmVsiMr0pSCJSOCOLsoIcbZGIyLSnIIlQcC2J\ngkREprdIg8TM1pjZfjOrN7ONQ8w3M/tMOP8lM1sxWl8z+4SZHTezXeHjriiXIRW6lkRE0kFkQWJm\nmcCjwFpgKXCvmS0d1GwtsCR8rAceS7Lv37j78vAxaYezf1NlMUdbL7C/qSPuUkREIhPlFskqoN7d\nD7p7N/A0sG5Qm3XAkx7YBsw0s3lJ9p303ruymtzsDDb95FDcpYiIRCbKIKkEjiW8bwinJdNmtL6/\nEe4K22RmpUN9uZmtN7OdZrazpaVlrMuQktKCHN6zooqv7zrOqXNdsdQgIhK1qXiw/TFgEbAcaAT+\neqhG7v6Eu9e5e11FRcVE1neZh26tpbu3n3987mhsNYiIRCnKIDkOVCe8rwqnJdNm2L7uftLd+9y9\nH/gcwW6wSeuq2UW87eoKnnz2CF29uvWuiEw/UQbJDmCJmS00sxzgHmDzoDabgfvDs7duBtrcvXGk\nvuExlEt+CXglwmUYFx+5bSGnznXxry82xl2KiMi4S/pWu1fK3XvN7GFgK5AJbHL33Wa2IZz/OLAF\nuAuoBy4AD47UN/zoT5nZcoI7Nx4GfjWqZRgvb10yi6vnFLLpJ4f45RWVmFncJYmIjBtLh2HO6+rq\nfOfOnbHW8PT2o2z8l5d56ldu5pbF5bHWIiKSDDN73t3rRms3FQ+2T0m/+JZKygpy+LxOBRaRaUZB\nMkFyszO576Yavr/vJIdPnY+7HBGRcaMgmUAfunkBWRnG3//n4bhLEREZNwqSCTS7OJeff/N8vrrz\nmO6cKCLThoJkgj1020IudPfxlR26QFFEpgcFyQS7vrKEmxaW8cX/PEJvX3/c5YiIpExBEoOP3LaQ\n42cvsnX3ybhLERFJmYIkBm+/bg41Zfl8/icH4y5FRCRlCpIYZGYYD95aywtHz/LTo2fiLkdEJCUK\nkpi8t66aohlZbHrmcNyliIikREESk8IZWbz/xmq2vNzIibMX4y5HRGTMFCQxemB1Le7Ok88eibsU\nEZExU5DEqLosnzXXz+Wp7Ue50N0bdzkiImOiIInZQ7cupO1iD197viHuUkRExkRBErOVC0q5oaqE\nTc8cpr9/+g/pLyLTj4IkZmbGQ7ct5NCp8/zo1ea4yxERuWIKkkngrjfNY25xru5VIiJTkoJkEsjO\nzOD+1Qt4pv40exvb4y5HROSKKEgmiQ+sqiEvO5MvPKOtEhGZWiINEjNbY2b7zazezDYOMd/M7DPh\n/JfMbMUV9P1dM3MzmxXlMkyUmfk5/PLKSr6x6wSnznXFXY6ISNIiCxIzywQeBdYCS4F7zWzpoGZr\ngSXhYz3wWDJ9zawaeBcwrW7q8eCtC+nu7ecftukCRRGZOqLcIlkF1Lv7QXfvBp4G1g1qsw540gPb\ngJlmNi+Jvn8D/D4wrc6XXVxRyJ3XVPAP247Q1dsXdzkiIkmJMkgqgWMJ7xvCacm0Gbavma0Djrv7\niyN9uZmtN7OdZrazpaVlbEsQg4/ctohT57rZvOtE3KWIiCRlSh1sN7N84L8BfzxaW3d/wt3r3L2u\noqIi+uLGya1XlXPNnCI+/5NDuE+rDS4RmaaiDJLjQHXC+6pwWjJthpu+GFgIvGhmh8PpL5jZ3HGt\nPEbBBYq17Gvq4NkDp+MuR0RkVFEGyQ5giZktNLMc4B5g86A2m4H7w7O3bgba3L1xuL7u/rK7z3b3\nWnevJdjltcLdmyJcjgm3bnkl5QU5bNKpwCIyBUQWJO7eCzwMbAX2Al91991mtsHMNoTNtgAHgXrg\nc8Cvj9Q3qlonm9zsTO67eQHf39fMoVPn4y5HRGRElg774evq6nznzp1xl3FFmjs6ue2RH/L+G6v5\ns1+8Pu5yRCQNmdnz7l43WrspdbA9ncwuymXd8vl8adsR7n1iG9/Z3USfRgcWkUkoK+4CZHh/um4Z\ni2cX8uR/Hmb9l56nuiyPB26p5b111ZTkZcddnogIoF1bU0JvXz/f2XOSLzxziB2Hz5Cfk8ndK6t4\nYHUtiysKI/vOV06009HZw+rFs8jMsEi+R0Qmr2R3bSlIpphXjrex6ZlDfOvFRrr7+rnjmgo+vLqW\n25dUkJHCP/Z9/c7exnaePXCaZw+eZsehVjq6gtv/Lqoo4NfvuIp1y+eTnam9oSLpQkGSYDoFySUt\nHV3843NH+YfnjtDS0cWiigIeXF3Le1ZUUTBj9D2W/f3Oq83BtSrPHjjNc4daabvYA8CiWQXcvLic\nWxaV48BjPzrA3sZ2qkrz2PC2xdy9sorc7MyIl1BE4qYgSTAdg+SS7t5+/u3lE3zhmcO81NBGUW4W\n76+r5oHVtVSX5Q+0c3cOtJwb2OLYdrCV1vPdAFSX5XHLonJuWVzOLYtmMbck97LvcHd+sK+Zz/6w\nnp8ePcvsohmsv30RH7iphvwcHWYTma4UJAmmc5Bc4u68cPQMX3jmMP/+ShPuzjuum8PqxeU8f/Qs\n2w6epqUjGJ5+fknuwBbHLYvLqSrNH+XTX/+OZw+c5m9/UM+zB09Tmp/NQ7cu5P7VtTr4LzINKUgS\npEOQJGpsu8iXnj3CU9uPcuZCDxVFMxK2OMpZUJ6PWWoHz58/coZHf1jPD/Y1UzQji/tXL+ChWxdS\nXjhjnJZCROKmIEmQbkFySWdPHy0dXVSV5qUcHMN55Xgbf/ejev79lSZyszK5d1UN629f9IbdYyIy\n9ShIEqRrkEyk+uYO/u5HB/jmrhNkmnF3XRW/9rbFlx2nEZGpRUGSQEEycY61XuCxHx/gn3c20OfO\nz75pHj/35nncfnWFzvQSmWIUJAkUJBOvqa2Tz/2/g/zTzmO0d/aSn5PJHddU8O5lc7nz2tkU5+rg\nvMhkpyBJoCCJT09fP9sOnubbrzTxnT0naenoIjvTuPWqWbx72VzeuXQOs3SAXmRSUpAkUJBMDv39\nzk+PneHbrzSxdfdJjrZeIMOgbkEZ775+Lu9eNifpU5FFJHoKkgQKksnH3dnb2MHW3U1s3d3EvqYO\nAK6vLGbNsrmsuX4uV80uirlKkfSmIEmgIJn8Dp86z9bdTXx7dxM/PXoWCMb4eufSOdyyqJyVC0op\n0nEVkQmlIEmgIJlamto6+e6eYPfXtoOn6e13MgyWzS9h1cKy4FFbRmlBTtylikxrCpIECpKp60J3\nLz89epbnDrWy/dBpfnr0LF29/QBcM6doIFhuWljG7GJdBCkyniZFkJjZGuDTQCbwf939kUHzLZx/\nF3AB+LC7vzBSXzP7M2Ad0A80h31OjFSHgmT66Ort46WGNrYfauW5Q608f7iV8919ANSW54ehUs6q\nhWWRXtEvkg5iDxIzywReBd4JNAA7gHvdfU9Cm7uA3yAIkpuAT7v7TSP1NbNid28P+/8XYKm7bxip\nFgXJ9NXb18/uE+0DwbLj8OvD4c8vyeX6yhJysjLIzDAyzchIfM7gsmmZGYPmm1GYm8WtV5VzzZwi\nhZKknWSDJMoxwFcB9e5+MCzoaYItiT0JbdYBT3qQZtvMbKaZzQNqh+t7KURCBcD03zcnw8rKzOCG\n6pncUD2TX7l90cB9Vp472Mr2Q63sP9lBf7/T505fvye8hv6Eaf0eTO/vZ6Btovkludxx7WzuvGY2\nqxeXJ3XPF5F0EeXfhkrgWML7BoKtjtHaVI7W18z+ArgfaAPuHOrLzWw9sB6gpqZmTAsgU09GhnHt\n3GKunVvMA6trU/qs/n6nuaOLH7/azA/2NfPNnx7nH587Sk5mBjctKuPOa2Zz57WzWTirYHyKF5mi\npuR/q9z948DHzewPgIeBPxmizRPAExDs2prYCmU6yMgw5pbk8v4ba3j/jTV09/az83ArP9zfzA/3\nt/DJb+3hk9/aQ215PneGWyurFpZpTDFJO1EGyXGgOuF9VTgtmTbZSfQF+DKwhSGCRGS85WRlsPqq\nWay+ahYf/1k4evoCP3q1mR/ua+YfnzvKF545TF52JrdeNYs7r63gjmtmUzkzL+6yRSIXZZDsAJaY\n2UKCELgH+MCgNpuBh8NjIDcBbe7eaGYtw/U1syXu/lrYfx2wL8JlEBlWTXk+999Sy/231HKxu49t\nB0/zw/3BbrDv7T0JwJLZhdy0qIwba8uoqy1TsMi0FPXpv3cB/5vgFN5N7v4XZrYBwN0fD0///Syw\nhuD03wfdfedwfcPpXwOuITj99wiwwd2H2loZoLO2ZCK5OwdazvOj/c38x2uneOHIGc519QLBQfsb\nFwahcmNtKVfPLiIjQ2eDyeQU++m/k4mCROLU1+/sa2pnx6FWdhw5w45DrTR3dAFQnJvFygWl3Lgw\n2Gp5U2WJjrHIpKEgSaAgkcnE3Wk4c5Hth1rZeaSVHYfPUN98DoCczAzeXFUysMWyckEpM/PTcyiY\nM+e7eel4G/NKcqkpy1fAxkBBkkBBIpNd6/lunj9yhh2Hg4sqX25ooze8lqWqNI+l84pZOr944Lly\n5vS8ar+prZPv7Gni26808dyh1oHrecyC9bBwViGLZhWwqKKAhbMKWFRRyLziXO0ejIiCJIGCRKaa\ni919vNhwlheOnmHPiXb2NLZz6NR5Lv11Lc7NCoOlhGXzg3C5anYh2ZkZ8RY+BodPnefb4e0ELo38\nfNXsQtYsm8vqxeW0nOviYMt5Dp06z8FT5zjUcn5gWByA3OwMassTwmVWIQsrClg8q5CSfI0YnQoF\nSQIFiUwHF7p72dfUMRAse060s6+pnc6eYBDLnMwMlswpvGzr5eo5RRTnZZM5if7H7u7sa+oIb3D2\n+r1o3lxVwruXBTc4G+leNO7BhaID4dJyLgyZ8xxtvXDZqATlBTm8qaqE5dUzBx7puqtwLBQkCRQk\nMl319TuHTp1n94m2gXDZc6Kd0+e7L2tXkJNJYW4WhTOyKMrNpih8XTgji8LcLIrC6ZfaXJpWmJtF\ncW42xXnZFORkjnl3WnB3zLN8J7znzJHTFzCDG2vLWLNsLu8ap7tj9vT1c6z1wkDIvHqygxcbzvJa\n87mBrbmFswouC5br5hWTkzX1tuQmgoIkgYJE0om709LRxe7Gdg40n6Ojs5dzXb2cC587unrp6OwZ\neH+us5fHmgFMAAAKgklEQVRz3b2M9k9BhkFRbjbFeVkUzQiei3OzB6YVhwFVnJcdhE9uFt19/Xx/\nbzNbdzfR3NFFdqaxevEs1lw/l3dcN4eKohkTsk46Ont4uaGNnx47y67w0RKeOZeTlcGy+cUDwfKW\n6lKqy6bnMagrpSBJoCARGVl/v3Ohpy8Ml56B8Gm/GIROR2cv7Z09tF/sob0zmNZ+8fVpHZ1BQA0l\nLzuTO66p4N3L5nLntbMpyYv/uIW7c6Ktk11Hz7Lr2Bl2HTvLy8fbBnYTlhfkcEP1TFbUzEzr2z4r\nSBIoSESi19fvnLsUOGHQ9PU7KxeUkpcz+U/d7enrZ39Tx8AWy65jZznQEuwSWza/mHXL5/PzN8xn\nXsnkH53gfFcv+0928GpTBz9z3WxmF43tpm8KkgQKEhEZi+aOTv7tpUa+sesELx47ixmsqi1j3fJK\n7nrT3NgP3Pf09XPo1Hn2NXWwv6md/U0d7D/ZwbHWiwNtHv/gStZcP3dMn68gSaAgEZFUHT51ns0v\nnuAbu45zsOU82ZnG266u4BeWV/LO6+ZEutXl7hw/e5H9TR3sa+rg1ZMd7G/q4EDLOXr6gn/DMzOM\nRbMKuGZuEdfOLeLqOUVcO7eYqtK8MV9noyBJoCARkfHi7uw+0c7mF0+wedcJmto7yc/J5N3L5vIL\ny+dz21WzxnQ9z/muXpraO2lq66SxrZOmtosD4fHqyXMD47UBVM7M45q5RcFjTvC8qKKAGVnjG2YK\nkgQKEhGJQl+/s/1QK5tfPM6/vdRIe2cvZQU5/Oyb5rFu+XxW1JRiBh1dvZcFRPDcmfB8kfbON56s\nUF6Qw1WzCwdC49q5RSyZU0Rx7sScsKAgSaAgEZGodfX28R+vnuKbu47zvb0n6ezpp7wgh86evsuu\nxIdgyJdZhTOYV5LL3OLc4LkkL3wO3s8pzo19fLHJcM92EZG0MSMrk3cuncM7l87hXFcv393TxE9e\nO01JXvZlATG3JJfZRbnT6iJIBYmIyDgrnJHFL72lil96S1XcpUyI6ROJIiISCwWJiIikREEiIiIp\nUZCIiEhKIg0SM1tjZvvNrN7MNg4x38zsM+H8l8xsxWh9zeyvzGxf2P7rZjYzymUQEZGRRRYkZpYJ\nPAqsBZYC95rZ0kHN1gJLwsd64LEk+n4XuN7d3wy8CvxBVMsgIiKji3KLZBVQ7+4H3b0beBpYN6jN\nOuBJD2wDZprZvJH6uvt33P3SJaDbgPQ4v05EZJKKMkgqgWMJ7xvCacm0SaYvwEPAvw/15Wa23sx2\nmtnOlpaWKyxdRESSNWUvSDSzjwO9wJeHmu/uTwBPhG1bzOzIGL9qFnBqjH0ngupLjepLjepL3WSu\ncUEyjaIMkuNAdcL7qnBaMm2yR+prZh8Gfg54uycxWJi7V1xJ4YnMbGcyY83ERfWlRvWlRvWlbirU\nOJood23tAJaY2UIzywHuATYParMZuD88e+tmoM3dG0fqa2ZrgN8HfsHdL0RYv4iIJCGyLRJ37zWz\nh4GtQCawyd13m9mGcP7jwBbgLqAeuAA8OFLf8KM/C8wAvmtmANvcfUNUyyEiIiOL9BiJu28hCIvE\naY8nvHbgo8n2DadfNc5ljuaJCf6+K6X6UqP6UqP6UjcVahxRWtyPREREoqMhUkREJCUKEhERSYmC\nJJTKuGATUFu1mf3QzPaY2W4z+80h2txhZm1mtit8/PFE1Rd+/2Ezezn87jfc1zjm9XdNwnrZZWbt\nZvZbg9pM6Pozs01m1mxmryRMKzOz75rZa+Fz6TB9R/ytRlhfUuPcjfZbiLC+T5jZ8YQ/w7uG6RvX\n+vtKQm2HzWzXMH0jX3/jzt3T/kFwZtgBYBGQA7wILB3U5i6Cq+gNuBl4bgLrmwesCF8XEYwxNri+\nO4BvxbgODwOzRpgf2/ob4s+6CVgQ5/oDbgdWAK8kTPsUsDF8vRH4y2HqH/G3GmF97wKywtd/OVR9\nyfwWIqzvE8DHkvjzj2X9DZr/18Afx7X+xvuhLZJAKuOCRc7dG939hfB1B7CXoYeMmcxiW3+DvB04\n4O5jHelgXLj7fwCtgyavA74Yvv4i8ItDdE3mtxpJfT6JxrkbZv0lI7b1d4kF1y28D3hqvL83LgqS\nQCrjgk0oM6sF3gI8N8Ts1eFuh383s2UTWhg48D0ze97M1g8xf1KsP4KLW4f7Cxzn+gOY48EFuRBs\nNc0Zos1kWY/DjnPH6L+FKP1G+Ge4aZhdg5Nh/b0VOOnurw0zP871NyYKkinEzAqBrwG/5e7tg2a/\nANR4MLz+3wLfmODybnP35QRD/3/UzG6f4O8fVThKwi8A/zTE7LjX32U82McxKc/Nt1HGuSO+38Jj\nBLuslgONBLuPJqN7GXlrZNL/XRpMQRJIZVywCWFm2QQh8mV3/5fB89293d3Pha+3ANlmNmui6nP3\n4+FzM/B1gl0IiWJdf6G1wAvufnLwjLjXX+jkpd194XPzEG3i/h1+mGCcu/vCsHuDJH4LkXD3k+7e\n5+79wOeG+d64118W8B7gK8O1iWv9pUJBEkhlXLDIhftUPw/sdff/NUybuWE7zGwVwZ/t6Qmqr8DM\nii69Jjgo+8qgZrGtvwTD/k8wzvWXYDPwQPj6AeCbQ7RJ5rcaCUtinLskfwtR1Zd4zO2Xhvne2NZf\n6B3APndvGGpmnOsvJXEf7Z8sD4Kzil4lOKPj4+G0DcCG8LUR3LXxAPAyUDeBtd1GsJvjJWBX+Lhr\nUH0PA7sJzkLZBqyewPoWhd/7YljDpFp/4fcXEARDScK02NYfQaA1Aj0E++k/ApQD3wdeA74HlIVt\n5wNbRvqtTlB99QTHFy79Bh8fXN9wv4UJqu9L4W/rJYJwmDeZ1l84/e8v/eYS2k74+hvvh4ZIERGR\nlGjXloiIpERBIiIiKVGQiIhIShQkIiKSEgWJiIikREEiMgmFoxF/K+46RJKhIBERkZQoSERSYGYf\nNLPt4b0j/o+ZZZrZOTP7GwvuHfN9M6sI2y43s20J9/MoDadfZWbfM7MXzewFM1scfnyhmf1zeA+Q\nLydcef+IBfemecnM/mdMiy4yQEEiMkZmdh3wfuBWDwbZ6wPuI7iKfqe7LwN+DPxJ2OVJ4L96MDDk\nywnTvww86u43AKsJroiGYJTn3wKWElzxfKuZlRMM/7Es/Jw/j3YpRUanIBEZu7cDK4Ed4d3u3k7w\nD34/rw/K9w/AbWZWAsx09x+H078I3B6Oq1Tp7l8HcPdOf30cq+3u3uDBIIS7gFqgDegEPm9m7wGG\nHPNKZCIpSETGzoAvuvvy8HGNu39iiHZjHYeoK+F1H8HdCXsJRoP9Z4JReL89xs8WGTcKEpGx+z5w\nt5nNhoF7ri8g+Ht1d9jmA8BP3L0NOGNmbw2nfwj4sQd3vGwws18MP2OGmeUP94XhPWlKPBjq/reB\nG6JYMJErkRV3ASJTlbvvMbM/BL5jZhkEI71+FDgPrArnNRMcR4FgaPjHw6A4CDwYTv8Q8H/M7JPh\nZ7x3hK8tAr5pZrkEW0S/M86LJXLFNPqvyDgzs3PuXhh3HSITRbu2REQkJdoiERGRlGiLREREUqIg\nERGRlChIREQkJQoSERFJiYJERERS8v8BgQWtuespTfIAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb080cb3a10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.title('Loss')\n", "plt.xlabel('epochs')\n", "plt.ylabel('loss')\n", "plt.plot(loss, label='Train')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "((147, 500), (147, 2), (147,))\n" ] } ], "source": [ "decode, encode = net(Variable(trainloader))\n", "out_decod = decode.data.numpy()\n", "out_encod = encode.data.numpy()\n", "print(out_decod.shape, out_encod.shape, list_labels.shape)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAFpCAYAAADEGMyWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHGW5/vHv0+us2RNICCFAWIwBAgy7gCzBiFFUBBXF\nFSOCAgoKCh4F8YhyQFHwKAoCv+NhkUVWCeBBEJAlKELCLigGCIRsk8z09PTy/P7oAZJJT2aSqa6a\n6rk/1zUXTlVTdafNcE+9/dZb5u6IiIjERSLqACIiIhtCxSUiIrGi4hIRkVhRcYmISKyouEREJFZU\nXCIiEisqLhERiRUVl4iIxIqKS0REYkXFJSIisZKK4qTjxo3zqVOnRnFqEREZoh599NE33H18f6+L\npLimTp3K/Pnzozi1iIgMUWb2r4G8TkOFIiISKyouERGJFRWXiIjEiopLRERiRcUlIiKxouISEZFY\nUXGJiEisqLhERCRWVFwiIhIrkaycISL1y4v/hvwfgQQ0HIIlN406ktQZFZeIBKbccQms+gnggMGq\nc/ERZ5Bo+mjU0aSOaKhQRALhxRd6SisPdPf8Mw/tZ+OlxdGGk7qi4hKRQHjXPKBUfWfXnaFmkfqm\n4hKRYHiZyhBh1Z1hJpE6N+jiMrPNzexuM3vSzBaa2YlBBBOReLGGQ4B09Z0NB4WaRepbEFdcReBk\nd58O7Akcb2bTAziuiMSIpbeBlrlAA5CkMvcrC62nYMnNog0ndWXQswrd/VXg1Z7/vcrMngI2A54c\n7LFFJF4SLV/GG2bjuTswS0LDbCy1RdSxpM4EOh3ezKYCOwMPBXlcEYkPS03DWqdFHUPqWGCTM8ys\nBbgOOMnd26vsn2tm881s/pIlS4I6rYiIDDOBFJeZpamU1m/d/fpqr3H3i929zd3bxo8fH8RpRUQk\nIt79N8orT6W8/Dg8dyPuhdDOPeihQjMz4BLgKXc/f/CRRERkKKuskHIBlZvMHc/fD51Xw5jLqVzH\n1FYQV1z7AEcDB5rZYz1fhwZwXBERGWK8vAxW/Rjo4u3783JQeBK65oWSIYhZhfcBFkAWEREZ6rof\nAUuDd/fa0Yl3zcMa59Q8glbOEBGRgbOWPnYkIDEqlAgqLhERGbjMHkC22g6s6chQIqi4RERkwMxS\n2JhLwcaANfdcgWWh9RtYeodQMuh5XCIiskEsPR0m3Ff5vMs7ILMblhgZ2vlVXCIissHMUpDdK5Jz\na6hQRERiRcUlIiKxouISEZFYUXGJiEisqLhERCRWVFwiIhIrKi4REYkVFZeIiMSKiktERGJFxSUi\nIrGi4hIRkVhRcYmISKyouEREJFZUXCIiEisqLhERiRUVl4iIxIqKS0REYkXFJSIisaLiEhGRWFFx\niYhIrKi4REQkVlRcIiISKyouERGJFRWXiIjEiopLRERiRcUlIiKxouISEZFYUXGJiEisqLhERCRW\nVFwiIhIrKi4REYmVVNQBRIYqLy3FOy+D/AOQnIQ1fx7LzIw6lsiwp+ISqcJLr+NvfAB8NdANxQV4\n/h585PdJNL4/6ngiw5qGCkWq8NX/Dd4OdL+5BeiC9rNwL0SYTERUXCLVdN8LFKvsKEDppbDTiMga\nVFwi1STGVN/uRbCR4WYRkbWouESqsOZjgMZeW9OQ2R1Ljgs9j7vjnsPdQz+3yFCj4hKpwhreAy1f\nALJgLUADpHfCRp0fag53p9xxBf76Hvhru+BL9qLceXWoGUSGGs0qFOlDouXLeNOnofgMJCZgqSmh\nZ/DO/4XV54HnKhvKy6D9PymTIdH0odDziAwFuuISWQ9LtGKZtkhKC4COC98urbfkYPUFkcQRGQpU\nXCJDlHsZykur7yy/Fm4YkSFExSUyRJklIDGp+s7kFuGGERlCVFwiQ1nrN4CGXhsbsNZvRJFGZEjQ\n5AyRISzReChuaXzVj6G0CFJbYK0nY9l3Rx1NJDIqLpEhzhpmYQ2zoo4hMmRoqFBERGIlkOIys0vN\n7HUzWxDE8URERPoS1BXXZcDsgI4lIiLSp0CKy93vBZYFcSwREZH10WdcIiISK6EVl5nNNbP5ZjZ/\nyZIlYZ1WRETqTGjF5e4Xu3ubu7eNHz8+rNOKiEid0VChiIjESlDT4a8E/gJsZ2aLzOzzQRxXRESk\nt0BWznD3jwdxHBERkf5oyScZNO/+O567BsrtlScHN8zGTH+1RKQ29F8XGZRyx2Ww6nygGyjj+Xuh\n82oY8xuVl4jUhCZnyEbz8nJY9V9AF1Du2ZqDwuPQNS/CZCJSz1RcsvG6HwZLV9mRw7tuDz2OiAwP\nKi7ZeNbcx44EJEaEGkVEhg8Vl2y8zB5AptoOrOmjYacRkWFCxSUbzSyNjbkEbDRYS+WLLLSejKV3\njDqeiNQpTfuSQbH0DJhwH3Q/BN4Bmd2xxOioY4lIHVNxyaCZpSH7rqhjiMgwoaFCERGJFRWXiIjE\niopLRERiRcUlIiKxouISEZFYUXGJiEisqLhERCRWVFwiIhIrKi4REYkVFZeIiMSKiktERGJFxSUi\nIrGi4hIRkVjR6vAiQ4B7CQp/Bc9Belcs0dfTpUVExSUSMS8sxJcfA94FGHgJH3EWiabDoo4mMiRp\nqFAkQu7d+LLPQHlp5UGcvhrIQfu38eLzUccTGZJUXCJRyt8HFKvsKOCd14adRiQWVFwiUfJ2wKvs\nKIEvDzuNSCyouESilNkTvMoVlzVh2QPDzyMSAyoukQhZclNoPgZoXGNrI6RmQPagqGKJDGmaVSgS\nsUTrSXhmd7zzKvBOrHEONLwPM/14ilSjnwyRIcCye2PZvaOOIRILGioUEZFYUXGJiEisqLhERCRW\nVFwiIhIrKi4REYkVFZeIiMSKiktERGJFxSUiIrGi4hIRkVhRcYmISKyouEREJFZUXCIiEisqLhER\niRWtDi8SIC+vxnM3QfFZSL0Da5yDJZqjjiVSV1RcIgHx4iJ86UfAc0AOaMQ7LoCx12HJiVHHE6kb\nGioUCYi3fwd8BZXSovLP8jK8/ewoY4nUHV1xiQTA3aH7AaDca08Z8vdEEanuefFfeMevobAQ0tth\nzV/AUltFHUtCoOISCUwCKK272ZKhJ6l3XngSX3YUeB4oQfEpPHcbjLkcy8yMOp7UmIYKRQJgZtAw\nG0j32pOBhjlRRKpr3n42eCdv/6JQAnJ4+5kRppKwqLhEAmIjvg2pqWDNQANYE6SmYa2nRR2t/hQe\nq769+CTuvYdrpd5oqFAkIJYYBWNvhu6HoPQCJKdBZvfK1ZgEy1p6JsL03t4I6P2ud4FccZnZbDN7\nxsyeNzP9eilDmrvj3Y9SXvVTvONyvPRGYMc2S2DZvbCmT2DZPVRatdL0SaCh18YGaPyY3vNhYNBX\nXGaWBC4CZgGLgEfM7CZ3f3KwxxYJmnsZX3FSz0y/LpwMrDoPRl+IZfeLOp4MkLUch5dega5bwLKV\nSRoNB2GtX4s6moQgiKHC3YHn3f0FADO7CjgMUHHJ0NN1e09pvXmvVR6gUmYTHsQsE1k0GTizFDbq\nHLx0MpT+CckpWHKTqGNJSIIYKtwM+Pca3y/q2SYy5Hju97xdWr10PxpqFhk8S47HMruptIaZ0GYV\nmtlcM5tvZvOXLFkS1mlF1rbezz/02YhIHARRXC8Dm6/x/eSebWtx94vdvc3d28aPHx/AaUU2nDUe\nXpmmvo4EZHYNPY+IbLggiusRYBsz29IqHxB8DLgpgOOKBC87CxreQ2VGWqoyfdoasVEXYtb75mER\nGYoGPTnD3Ytm9mVgHpAELnX3hYNOJlIDZoaN/CHe9GnI3w+JEdAwG0uMjDqaiAxQIDcgu/ttwG1B\nHEskDJaeDunpUccQkY2gJZ9ERCRWtOSTRMaLL0L+Pki0QHYWlmiJOpKIxICKS0Ln7viqc6Dzf3u2\nJMHOhFG/xLJ7RJpNRIY+DRVK+Lrvh9xVVFatyAOd4J34iuNw7444nIgMdSouCZ3nrgOvtnpFGbof\nDj2PiMSLikvC54U+dth69omIVKi4JHTW+H6gyuoVXoKMPuMSkfVTcUn4srMgu2/P0ktG5XH3DTDy\nHCxRbTkmEZG3aVahhM4sAaN+Ct0P4/k/QWIE1vgBLKmHCohI/1RcEgkzg+wemv4uIhtMQ4UiIhIr\nKi4REYkVFZeIiMSKiktERGJFxSUiIrGi4hIRkVhRcYmISKzoPq5hwN2h8DgUn4PUVEjvWrmPSkQG\nxYuL8I5fQeFRSG6JtczF0jtEHavuqbjqnJc78eWfh8KTgFVWWEpuAWOuwBIjo44nEltefAFf+hHw\nLqAIxefw/D0w6gKs4YCo49U1DRXWOV99HhSeAHK8+dwris/j7WdGHU0k1nzVeZWfJ4pvbgG68Pbv\nVkY5pGZUXPUu93ug98MZC9A1D/dyFIlE6kP3w0CVn6HyUvDloccZTlRc9a7P51uVqPpDJyIDkxjd\n9z5rDi/HMKTiqnfZfVn3/2brmaChjzhFNlrTMUBjr41ZaHwfZtkoEg0bKq46ZyNOr/xmaG/+gDWA\ntWIjvxdpLqk99y68ax6e+z1eej3qOHXHmo6Apk8CWbCWyj+z+2EjvhtxsvqnX7nrnCUnwbg78dwN\nlUkaqe2wpsOxxKioo0kNefd8fPlcKhMGHLyEt3yFRMvcqKPVDTPDRnwdbzkWii9AciKWnBB1rGFB\nxTUMWKIFaz466hgSEvdufPkXwVevvWP1hXhmDyyzUzTB6pQlWkHvaag0VChSb/L3U7nSWmcHnrs2\n7DQigVNxidSdPNWLy8E7wg4jEjgVl0i9yewJXqyyowlreG/ocUSCpuKqIXfHczdTXnoE5SWzKa86\nHy+vjDqW1DlLjILWbwINvPUjbk2Q3QOyB0UZTSQQmpxRQ77q+9D5OyrLLQEdl+Jdt8DYm7GEblCU\n2kk0H4VndsFz14OvxrKzILs/ZvpdVeJPxVUjXloMnVex9nJL3VB6A89dhzV/KqpoMkxYenss/a2o\nY4gETr9+1UrhcbBMlR1d0H1/6HFk/dxzeP4ePH8f7r3XdhSRoURXXLWSGE/1tQCTkNgs7DSyHuXc\nndD+ddb6PW7URVh2r8gyiUjfdMVVK+mZkNgESPbegTUfFUUiqcJLi2HlyZXHU/jqt758xbF4uT3q\neCJShYqrRswMG3M5pN5JZS2zJrDR2KifYKlpUceTHp67mapXxm7QdUfoeUSkfxoqrCFLboqNuxYv\nvQLlDkhthVnvKzCJlK8Cqj36pbjukkkiMiToiisElpyEpbdRaQ1Blt0XrKHKngRk3xV6HhHpn4pL\nhrd0G2TeDTStsbERGg/XkK7IEKWhQhnWzAxG/Rjyd+G5G4EU1vRhyOwXdTQR6YOKS4Y9swQ0HII1\nHBJ1FBEZAA0ViohIrKi4REQkVlRcIiISKyouERGJFRWXiIjEioqrTnjpFbywEPd81FFERGpK0+Fj\nzsvL8OVf6XmMShpwvPU0Ek0fjTqaiEhN6Ior5nz58VD4G5DvWdm8A9r/E88/FHU0EZGaUHHFmBdf\ngsICoNhrTw7vuCSKSCIiNafiirPysp7hwWr7Xgs3i4hISAZVXGZ2hJktNLOymbUFFUoGKLUteKnK\njgxk9w09johIGAZ7xbUA+DBwbwBZZANZoglaTwIa19iahsQIrPlzUcUSEampQc0qdPenoGeFbYlE\novmzeGrrymdapSWQ3R9rPgZLjIk6mohITWg6fB2w7H5YVo/hEJHhod/iMrO7gE2r7Drd3W8c6InM\nbC4wF2DKlCkDDijx4+7QdSPecQX4KsgejLXMxRKjo44mInWg3+Jy94ODOJG7XwxcDNDW1uZBHFOG\nJl91NnReC+QqGzqvwLtug3G3YomWSLOJSPxpOrwEykuvQec1vFVaABSgvBzPXRtVLBGpI4OdDv8h\nM1sE7AXcambzgolVv9xzeP7PeP5B3AtRxwleYUEf95Z1Qf6+0OPI2txLeP5+PHc9XvxH1HFwL+Pe\n+wZ6kfUb7KzCG4AbAspS98q5P0D7aUAScCANo3+JZXaOOFmAkhOAcrUdkJwcdhpZg5dexpd+Anwl\n4OAlvGEWNvJczJLhZimvxtvPgq5bgRKenomN+B6W3ibUHBJPGioMiRdfgpWngufeXlPQV+DLP497\nrv8DxEVqBiQ3o1LOa0pjzZ+MIpH08OUnQHlxz9+9TiAPXX/EO68JN4c7vvxz0HUbUADKUPgbvuyj\neOmNULNIPKm4QuK5G1h3TUEAh67/CztOzZgZNvo3kJ4JZMAaITEGG3UBlpoWdbxhy0uLofgs614N\n5yD323DDFBdC8Rmge42NDl7Ac1eFm0ViScUVlnI7VYvLS5Up43XEkhOwURdC48chuSVk9oPkxKhj\nDW+ep88fd+8KNQrFf1I9Sx4Kz4SbRWJJxRUSa9gfrKnKHofM3qHnqSUvLcbfOBRyV0LxSei6CV96\nJJ7/U9TRhq/kFEiMrLIjAw2HhpslNa2PNTYbIL1DuFkkllRcYcm8C9Jta5eXNULTUViqvm7I9tUX\ngLfz9lBQGejCV55RuTlZQmdm2Kj/qvydo2fWpzVBcjOs+QvhZklvD5ldgOwaWxNgDVjTEaFmkXjS\nkk8hMUvA6F9C1x/w3M1gmcoPaaYOV3HP/xmo8ht1ub0yOUDDhpGwzO4w7na883dQ+jeW2Qsa34dZ\ntv9/Oegso3+Br/oJ5K6tDGNm34W1fkurq8iAqLhCZJaExjlY45yoo9SWjQBer7KjDKaVM6JkyYlY\n6wlRx8CsARtxGow4LeooEkMaKpTgNX+2Z0hqTenKb9WJ1kgiiUj90BWXBM4aP4IXn4XOK8Ey4EVI\nz8BG/ijqaBKSzlU57rj8Tzx+z5NM3nYic744iwlTxkcdS+qERfFheVtbm8+fPz/080q4vLS0cr9O\nclMstVXUcSQky19fyfG7nUr70tXkO/OkMilS6SQ/uP0MZuyzfdTxZAgzs0fdva2/12moUGrGkmOx\n7N4qrWHm/515DcsXryDfmQeg2F2kqyPPuZ+5SLNKJRAqLhEJ1AM3PkKxsO6s0iUvL2XZ4hURJJJ6\no+ISkUBlm6pPr/eyk2mo9uQAkQ2j4hKRQH3gS4eQbcqstS2ZSjLjXdtz5xX38JntTuBjm3+Rn33l\nElYsWRlRSokzTc4QkUCViiXOOfqnPHDTfJKpBDiMnzKOzbedyCO3P0Z3V+U5dMl0krETR/OrJ86n\nqbX37RMyHA10coamw4tIoJKpJKdf+VUWPfsKzz76AptsMZ7WMc18YYeTKZfeXp2+VCix/LWV3HnF\nnzjs+PdGmFjiRsUlIoFxd5a+soxMY4bJ205i8raTAPjvr122Vmm9qZAv8Lf/W8Ahn343+a5uXnz8\nJf654N9M3m4Suxy8A8lkuA+4lHhQcYnIBvn7PQu55tybeP1fS5h5wAyO/MZhjJ88lgX3PcWPPnMR\nS19Zhpedd+6zPd/87QlkGjLc+us7+zzeX256hA+M+FTlG4NUOkU6m2LspDH8+N6zGDW+2qr2Mpzp\nMy4RGbA7rvgTPz3uV+Q7Kyv/p9JJGlsbOfvm0zj1kO/R1ZF/67WJpJFpyFDIFykVqz3GZP2S6SR7\nH7Yb/3HNyYHll6FNn3GJSKCKhSL/fdJlb5VWZVuJzvZOLjjuV+vcu1Uu+VpFtqFKhRIP3PgI5XKZ\nREIToOVt+tsgIgOy+MXXKVa5cioVy7z83KsUu6s84XuQvOxabUPWoeISkQEZMbaVUqF6Ob05xT1I\niYSx84EzNEFD1qHiEpEBGTG2lbb3zCSVWfcTBi8He1WUbc4yYmwrJ/5ibqDHlfqgz7hEZMBOveIr\nfHLqcayuwbCgJYxpM6cybZet2H63aRzw8X1obNGNybIuFZeIrOWlpxfx85MuY8H9T5NKJTngY/tw\nzDmfoHlkMx0rOuju6u73GMl0glJh3fu2envzkSen/r8T2Oew3TCzIP4IUudUXCICQLlc5qITL+Wm\nn8+DnpG/PHDLxXdy9zUPsNf7dyWVTg1oskS5tP7XZBrTbDljCrscvCPv/9J7GD95bAB/AhkuVFwi\nAsDNv7iDP/z6j2+V1lscOpZ3cNcV9wZ2ru5cgef++gKdq7r48EnvC+y4MjxocoaIAHD9j2+hkA/m\ns6uBTNYol5yXn3uVn3zx4kDOKcOHiktEAFi1vCP0c5ZLZR689VGKfUyzF6lGxSUiAMw84J0b/O8k\nEka2OUsyvfH3WnnZKQc8nV7qm4pLRFixZCUHf+rdJJIb9p+Ectkp5vu/+bjavV8AZsb0Pbclk9WT\nkWXgNDlDZBh74+WlfOt9P+DFJ/617qSMASoV+5/23jqmmV0O3om7r7wPd8fLTrYpQ6Yhw9d+fezG\nnViGLa0OLzJMvfKPxXx++knrLI5bC2bGHaVryHV0cc/VD/DMI88zZfpkZh29Py2jmmt+fokHrQ4v\nIgA8/7cXmXfZ3eRWd7Hdblvz3F9fZNGzr/DqC6+FUloA9NxX3NjcwOzPHcjszx0YznmlLqm4NpJ7\nN955DXTdDJbFmj4O2dm6818i4+4suO9plr6yjO12n8bELTfh+p/eyqXf/F8K+QLlsjPvN3dHkm3U\nBD0MUoKj4toI7kV82dFQeBrIVbZ1/x0a/4KNPCvacDIsLVm0lFMO/C7LF68Aqzwn610f2oP7rn8w\nsHuzNprBJ7/9kWgzSF3RrMKNkf8jFJ/hzdKqyEHuBrz4z4hCyXD2vSPPY/GLr5Nb3UVuVReFrgL3\nXf9g1ednhW3ytpN4/7GHRB1D6oiKayN4/j7wzip7EtD9SOh5ZHh745VlPP+3f1IurT27r5Av4v2s\nGVhr2aYM37n2FA2hS6BUXBsjMQ6oct+JJSAxOvQ4Mrx1deQ3+P6rmjPY6d3v5Px7zmLqOzePOo3U\nGX3GtRGs8XC84xKg942XGcjuF0UkGcYmbb0JzSMbyXfmo44CVK6yPnbah/nkGYdHHUXq1BD7NS0e\nLDUZG3UB2AiwZrAmSEzCxlyBWSbqeDLMJBIJTr38K2SbsqR6ll7qa6WKmrDKV9OIRtINafb7yF58\n/LQPhnd+GXZ0A/IguBegsBAsA6l3aBxfIvXqC69x8y/uYPGLr9PY2sBd/3MP5WJtf74tYex92G4c\n9a3DWb2igynv2Ixxk8bU9JxSv3QDcgjM0pCZGXUMEQAmbrUJc390NACnHnJWzUsr25Tl2PM+xZwv\nasaghEtDhSJ15qWnX+avdz1R8/Mkksb+R+5d8/OI9KYrLpE6klud49RDansTfDqbomVUC9+57hRa\nR7fU9Fwi1ai4ROrIL06+nKWvLK/Z8VOZFP/xu1PY/dCdSSQ0YCPRUHGJxFRudY7fnHEVd/3PvZSK\nJXY+aAceuPERvAYPZcw0VO5bPP6nn2PPObsGfnyRDaHiEokhd+frB53JPx7711uPvb//hocDP08y\nnWTLHaZw6DEHs9cH2jRjUIYEFZdIzLg7537mQp555B81PU+mIc1OB8zgjKu+SlNrY03PJbIhVFwi\nMfP7n93G3Vc/UNNzZBrSXPz4eWw2bWJNzyOyMfTpqkjMXP2jGyl21/ZRJalMilf+8VpNzyGysVRc\nIjGz8o1VoZyn1uUosrEGVVxmdq6ZPW1mj5vZDWY2KqhgIlLd1jtNrfk5SsUyMw94Z83PI7IxBnvF\ndScww913BJ4Fvjn4SCLS2+v/foMffvpnzGn9BM888nzNzmMG2cYMp1zyJRpbNCFDhqZBTc5w9zvW\n+PZBQM/nFgnYiiUrOW7Xb/Q5RNgyqpnVKzoGfZ5EKsHBn9iPo79zBJtOnTDo44nUSpCzCj8HXB3g\n8UQEuPGi2+loz/W5P5FM0NjaQG5V1wYf2xJGU2sjxe4in/3+xzn8pDmDiSoSin6Ly8zuAjatsut0\nd7+x5zWnA0Xgt+s5zlxgLsCUKVM2KqzIcPT4PU+ud6JE+9JVHP61Odzwk9sol8sDPm46m+KEn3+B\nSVtvyrSdt9S9WhIb/RaXux+8vv1m9hlgDnCQr+fhXu5+MXAxVJ7HtWExRYavydtO4ok/P9XnUk6N\nrQ188Mvv5dZf3klXx8CfgvzuI/dh9mcPDCqmSGgGO6twNvAN4APu3hlMJBFZ04dOPHS9Dyn98Elz\n2HTqBH5453+QbRzYE7izTRkO+8p7g4ooEqrBziq8EGgF7jSzx8zsFwFkEpE1/GvhIlLpZNV9Mw+c\nwae/eyQA0/fclkxT/8WVbcyw0/7vZLu2rQPNKRKWwc4qnBZUEBF5W7FQ5A+//iPzLvsTLz29iO6u\nwjqvSWfTnPjzL6x1NTZ52kSeWvpc1WM2j2pi9CajOPSYg/jQCYfWLLtIrWmtwgFyz4PnwEaud9hG\nZLDcndPf9wMWPvAM+c6+P7NKZ1LkVq89k/BTZ36Ub84+u+rrU+kUv3nqgkCzikRBSz71wz1HeeWp\n+Gu74q/vg79xEJ6/L+pYUsceu3sBT/7l2fWWFlSmwW+5w9ozdHc5eIc+X796+eDv9RIZClRc/fAV\nX4XcbUA3UIDSInz5cXjhqaijSZ164s9P0dXR9z1ZiWSCbFOGr/36S6TSaw+aJBIJttyx+u0m27Zt\nFWhOkaiouNbDS69C/n6g92++3XjHr6OIJMPA6AkjyVaZZJHKJNl65lTmHHsIFz18Dvt+eI+q//5X\nfnYM2aYMlqgMaSeSCRqashz3k8/WNLdIWPQZ1/qUXgZLg/curjIUX4wkktS//T+6N7867X/W2Z5p\nyHD+PWf1e6PwDvu+g58+8J9c+YPreeGJl5g2c0uO+taH2GL65rWKLBIqFdf6pLYGX3c2F6Qhs3Po\ncWR4GDGmlXNuP4OzjjivstSTO61jWvjOdV+nqbWR7nyBq865gdsv/T9KhRL7fWQvjv7uEYwY0/rW\nMbbacQtOv/KrEf4pRGrH1rPYRc20tbX5/PnzQz/vxii3nw2dvwPeXCvOwJqxcbdgyUlRRpM6Vy6X\nefGJlzAzttxhCmaGu/ONWWfx5APPvDVFPpVJMWHKOH71xPlksumIU4tsPDN71N3b+nudPuPqh7V+\nC1pPgeTmYCMgexA29jqVltRcIpFg652mstWOW7x1C8YzjzzP0w89t9Z9XcXuIssXr+DP1z4YVVSR\nUMVyqNB96P/3AAAHKklEQVS9DN0PQXkxpHfEUrVbAcAsgTUfDc1H1+wcIgP17PwXKFdZszC3uouF\nDzzNQZ/YN4JUIuGKXXF5aTG+7CgoLwccvIRnD8JGnYdZ9WVxROrFJlPHk0yt+/c825hhs20mRpBI\nJHyxGyr0FSdC6VXwDvBOIA/5u/HOPp+oIlI32g7ZidYxzSSSa//opjIpZh29f0SpRMIVq+Ly0htQ\nWAiUeu3JQeeVUUQSCVUyleQnfz6bGe/anlQmRSqTYssdpnDen85kxNjW/g8gUgdiNlSYp8+u9Q1/\n+qtIHI2fPJbz7j6TjpUdFAslRo4bEXUkkVDFq7gSkyAxFsov99qRgYbZkUQSiUrzyOaoI4hEIlZD\nhWaGjToXrBF4c0mcRkhuirUcG2U0EREJSbyuuADLtMG4eXjn1VB6CcvsCY3vx6wh6mgiIhKC2BUX\ngCU3xVpPjDqGiIhEIFZDhSIiIiouERGJFRWXiIjEiopLRERiRcUlIiKxEstZhSJx5O489eCzPP+3\nfzJxqwnsMmtHkkktDC2yoVRcIiHI5/Kc9p6zeXb+PyiXnVQmyegJo/jxn7/H2Imjo44nEisaKhQJ\nwS9OuZwF9z9Nd1eBYneRrtV5Fr/4Gv/1uYuijiYSOyoukRpzd267+I/gvbfDX+96gq7OfDTBRGJK\nxSVSYy8+8RLlUrnqvnK53Oc+EalOxSVSY6uWrSaVrj4Jo6GpgabWxpATicSbikukxrZt24pEqnpx\nzfniwSGnEYk/FZdIjTW2NPKFH36SbFPmrW3JdJKJW03g6O8cGWEykXjSdHiREHzwy+9lqx234Pc/\n+wPLX1vBXh/YjTlfnKVhQpGNoOISCcmO+01nx/2mRx1DJPY0VCgiIrGi4hIRkVhRcYmISKyouERE\nJFZUXCIiEisqLhERiRUVl8gwU+gusOjZV2hftirqKCIbRfdxiQwjv7/wNn5zxlWUy06pUGLPObvy\n9cuOp7G5IepoIgOmKy6RYeCfC//NZ7Y7gYtO+A2d7Tm6VndRyBd48JZH+dGnL4w6nsgG0RWXSJ1r\nX7aKr+77bVav6FhnXyFf4KFb/8rKN9oZOW5EBOlENpyuuETq3J1X3EMhX+hzfyqTZPlrK0NMJDI4\nKi6ROrfomVfI57r7foHDpGmbhhdIZJBUXCJ1bvs9tqGhOVt1X6Yhzed/cBSZbDrkVCIbT8UlUufe\n/dG9GTluBMleT2FuGtHIGVd/jcOOf29EyUQ2jopLpM5lG7Nc+PAPmPWp/Wkd08LoTUbysdM+yDWv\n/oq93t8WdTyRDWbuHvpJ29rafP78+aGfV0REhi4ze9Td+/1tSldcIiISKyouERGJFRWXiIjEyqCK\ny8y+Z2aPm9ljZnaHmU0KKpiIiEg1g73iOtfdd3T3mcAtwH8EkElERKRPgyoud29f49tmIPwpiiIi\nMqwMepFdM/s+8ClgJXDAoBOJiIisR79XXGZ2l5ktqPJ1GIC7n+7umwO/Bb68nuPMNbP5ZjZ/yZIl\nwf0JRERkWAnsBmQzmwLc5u4z+nutbkAWEZHeQrkB2cy2WePbw4CnB3M8ERGR/gz2M65zzGw7oAz8\nCzh28JFERET6FslahWa2hErRDXXjgDeiDlFH9H4GS+9nsPR+Bmtj3s8t3H18fy+KpLjiwszmD2S8\nVQZG72ew9H4GS+9nsGr5fmrJJxERiRUVl4iIxIqKa/0ujjpAndH7GSy9n8HS+xmsmr2f+oxLRERi\nRVdcIiISKyqufpjZEWa20MzKZqYZRxvJzGab2TNm9ryZnRZ1njgzs0vN7HUzWxB1lrgzs83N7G4z\ne7Ln5/zEqDPFmZk1mNnDZvb3nvfzzFqcR8XVvwXAh4F7ow4SV2aWBC4C3gtMBz5uZtOjTRVrlwGz\now5RJ4rAye4+HdgTOF5/NwclDxzo7jsBM4HZZrZn0CdRcfXD3Z9y92eizhFzuwPPu/sL7t4NXEVl\niTDZCO5+L7As6hz1wN1fdfe/9vzvVcBTwGbRpoovr1jd82265yvwiRQqLgnDZsC/1/h+EfqPgwwx\nZjYV2Bl4KNok8WZmSTN7DHgduNPdA38/B/08rnpgZncBm1bZdbq73xh2HhEJl5m1ANcBJ/V6QK5s\nIHcvATPNbBRwg5nNcPdAP49VcQHufnDUGercy8Dma3w/uWebSOTMLE2ltH7r7tdHnadeuPsKM7ub\nyuexgRaXhgolDI8A25jZlmaWAT4G3BRxJhHMzIBLgKfc/fyo88SdmY3vudLCzBqBWdTgcVcqrn6Y\n2YfMbBGwF3Crmc2LOlPcuHuRytOx51H58Psad18Ybar4MrMrgb8A25nZIjP7fNSZYmwf4GjgQDN7\nrOfr0KhDxdhE4G4ze5zKL6x3uvstQZ9EK2eIiEis6IpLRERiRcUlIiKxouISEZFYUXGJiEisqLhE\nRCRWVFwiIhIrKi4REYkVFZeIiMTK/weVXPd5PW/EWAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb07975da10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(7, 6))\n", "plt.scatter(out_encod[:,0], out_encod[:,1], c=list_labels)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Testing in new datasets\n", "## ROQS test" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Loading labeled segmentations\n", "seg_label = genfromtxt('../../dataset/Seg_ROQS/roqs_label.csv', delimiter=',').astype('uint8')\n", "\n", "list_masks = seg_label[np.logical_or(seg_label[:,1] == 0, seg_label[:,1] == 1), 0] #Extracting segmentations\n", "list_labels = seg_label[np.logical_or(seg_label[:,1] == 0, seg_label[:,1] == 1), 1] #Extracting labels\n", "ind_ex_err = list_masks[np.where(list_labels)[0]]\n", "ind_ex_cor = list_masks[np.where(np.logical_not(list_labels))[0]]" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Correct segmentations' vector: (136, 50, 500)\n", "Erroneous segmentations' vector: (16, 50, 500)\n" ] } ], "source": [ "prof_vec_roqs = np.empty((len(list_masks),resols.shape[0],points)) #Initializing correct signature vector\n", "for ind, mask in enumerate(list_masks):\n", " mask_pn = np.load('../../dataset/Seg_ROQS/mask_roqs_{}.npy'.format(mask)) #Loading mask\n", " refer_temp = sign_extract(mask_pn, resols) #Function for shape signature extraction\n", " prof_vec_roqs[ind] = sign_fit(prof_ref[0], refer_temp) #Function for signature fitting using Watershed as basis\n", "\n", "ind_rel_cor = np.where(np.logical_not(list_labels))[0]\n", "ind_rel_err = np.where(list_labels)[0]\n", " \n", "print \"Correct segmentations' vector: \", prof_vec_roqs[ind_rel_cor].shape\n", "print \"Erroneous segmentations' vector: \", prof_vec_roqs[ind_rel_err].shape" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true, "scrolled": false }, "outputs": [], "source": [ "#for ind_ex, ind_rel in zip(ind_ex_err, ind_rel_err):\n", "# plt.figure() \n", "# f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))\n", "# ax1.plot(prof_vec_roqs[ind_rel,res_ex,:].T)\n", "# ax1.set_title(\"Signature %i at res: %f\"%(ind_ex, resols[res_ex]))\n", "# \n", "# mask_correct = np.load('../../dataset/Seg_ROQS/mask_roqs_{}.npy'.format(ind_ex))\n", "# ax2.axis('off')\n", "# ax2.imshow(mask_correct,'gray',interpolation='none')\n", "#\n", "# plt.show()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XecFPX9+PHXZ3vfvd4rcMDB0YsgCKIgghqNvScx9piQ\npumaxF+MfhMTjcaowd47UUQUlN57uzu43vttu+27n98fuyQnAUQjHOI8H4993O7MZ2Y+85mZ93zu\nM5+ZEVJKFAqFQnHqUg10BhQKhUJxfCmBXqFQKE5xSqBXKBSKU5wS6BUKheIUpwR6hUKhOMUpgV6h\nUChOcUqgV3wphBBXCyE+HOh8nGhCiFuFEO1CCK8QImWg86NQHI4S6AeAEOIqIcSWRHBoFUIsEUJM\nOwny9S0hxJovMq2U8kUp5ZwvO0+HEkLMFEI0He/lHAshhBZ4EJgjpbRIKbsHOk+fhxDiLCFEhRDC\nJ4T4RAhRcJS030vss0EhxDOHjCsUQsjE/nzw8+t+44UQ4n4hRHfic78QQhwy/SeJfFQIIc4+ZP5X\nCSHqhRB9Qoh3hBDJ/cbphRBPCSHcQog2IcSPvpTCOcUogf4ES+yIfwX+AGQA+cCjwAVfYF6aYxmm\n+I8vuXwyAAOw9wvkQwghjnr8Hc9tKYRIBd4Cfg0kA1uAV48ySQtwL/DUUdI4Eic8i5Ty9/2G3wRc\nCIwGRgHnAzf3G/8ysB1IAX4JvCGESEvkcwTwOHAt8fL2AX/vN+09wBCgADgTuFMIMfcoefx6klIq\nnxP0AeyAF7j0KGn0xE8ELYnPXwF9YtxMoAm4C2gDnj/csETa84AdgBNYB4zqt4w84gd5J9ANPAIM\nBwJANJFH5xHy9y2gBvAAtcDV/Yav6ZduDlAJuIgfmCuB7/ZPC/wJ6E3M59x+034bKE8sowa4OTHc\nDPiBWCKPXiAbeAa4t9/0M4Gmfr/rEuWzCwgCmsR0bybKoBb4fr/0k4gHPjfQDjx4mHIoAfoAmcjH\nx4nhU4HNifXeDEztN80K4P8BaxPrMfgw8/3S83qE7XgTsK7f74NlO+wzprsXeOaQYYWJctAcYZp1\nwE39fn8H2NCvHIOAtd/4VcAtie9/AF7qN24QEDqYnvgxMqff+N8Brwz0sX6yfZQa/Yk1hXgN8O2j\npPklcBowhngNaBLwq37jM4nXwAqIH6z/NUwIMZZ4zetm4rWkx4F/Jf7NVQPvAfXED9Ac4gdGOXAL\nsF7Ga2SOQzMmhDADDxMPylbiQW3HYdKlAm8AP08svzKRtr/JieGpwAPAwn7/zncQP1HZiAf9vwgh\nxkkp+4BzgRb5n5pjy1HKsr8rgfmAg/iJ4l1gZ2L9zwIWCCHOSaR9CHhISmkjHlheO3RmUsr9wIjE\nT4eUclaiSWFxooxSiDfrLD6k7f5a4tvNSnwbHLe8CiF2CSGuOsIyRiTmeXB9+oCqfuv0RdQLIZqE\nEE8n9oHDLivxfUS/cTVSSs9RxvfPZzXxE0OJECIJyDrKvBUJSqA/sVKALill5ChprgZ+J6XskFJ2\nAr8lHhwOigF3SymDUkr/EYbdBDwupdwopYxKKZ8lfnCcRvzEkQ38VErZJ6UMSCk/T7t8DBgphDBK\nKVullIdrtpgH7JVSvpVY14eJ/7fRX72U8kkpZRR4lvgBmwEgpVwspayWcSuBD4HpnyOPh/OwlLIx\nUT4TgTQp5e+klCEpZQ3wJHBFIm0YGCyESJVSeqWUG45xGfOBA1LK56WUESnly0AF8aaKg56RUu5N\njA8fz7xKKUdJKV86wjIsxP/r6M9N/AT0eXUl8lkAjE/M48WjLMsNWBIn9s/Kx9HGWxK/D533F1mH\nU5oS6E+sbiD1M9pes/l0Ta8+MeygTill4JBpDh1WAPxYCOE8+CHeXJOd+Fv/GSebw0rU+i4nXvNv\nFUIsFkIMO8I6NPabThJvXuqvrd94X+KrBUAIca4QYoMQoieR93nEa/7/i8Z+3wuA7EPK5xckTjTA\nDcSbFCqEEJuFEOcd4zIO3XYkfuccIR8DmVcv8f+Y+rMTby77XBInmC2Jk1c78D1gjhDiYMA9dFl2\nwJvYLz4rH0cb7038PnTen3sdTnVKoD+x1hOvWV94lDQtxA/ug/ITww463ONGDx3WCPw/KaWj38eU\nqGE2AvlHONl85qNMpZRLpZSzidfAK4jXLg/VCuQe/JGoueUeJt1/EULoibdH/wnISDQhvQ8cbNY5\nXB77AFO/35mHy3q/741A7SHlY5VSzkus4wEp5ZVAOnA/8YuD5mPI/qHbDuLbr/kI+TiSE5HXvcSb\nBoF/N8sN4gtcWD5K/g/Gl08tK/F9b79xxf1OCocb3z+fgwAdsF9K2Ut8XzvSvBUJSqA/gaSULuA3\nwKNCiAuFECYhhDZRg30gkexl4FdCiLREO+dvgBc+56KeBG4RQkxO9O4wCyHmJw6mTcQPjj8mhhuE\nEKcnpmsHcoUQusPNVAiRIYT4RiIoBInXqGKHSboYKEusowa4ncMH38PREb8g3QlEhBDnEr+we1A7\nkCKEsPcbtgOYJ4RIFkJkAgs+YxmbAI8Q4i4hhFEIoRZCjBRCTEys5zVCiDQpZYz4xWyOsJ6Hep94\n2/FVQgiNEOJyoJT4NZEv6njl9W3iTXAXCyEMwN3ATillxeESJ9bHAKgBdWK/0STGTRZCDBVCqBLX\nIx4GViT2d4DngB8JIXKEEDnAj4lfQD94rWMHcHdint8Eyoif7CHeBHS+EGJ6Yr/7PfBWvzb954gf\nL0lCiOHAjQfnrejny7qqq3yO/UO8HX4L8ZpoG/HAODUxzkD8QGlNfB4GDIlxM+nXm+RIwxLD5xLv\n9eFMzOd1/tNTIR94h3hTUhfxNmGIB9nFQA/xawmHzjOLeO8ZV2K+K4DSxLhv8eleN3OB/fyn1816\n4NrDpU0MkyR6oRA/MbQnlvE88Aqf7lXzVCLvTuLNJQbiXQPdxHur/JD/7nVz9iHLyyZ+Um0j3vNn\nw8E0xE+sHcRPZHuBC4+wHQs5pLcJMA3YmljvrcC0fuNWkOh5dJR940vLa+L31UdZ1tnE/yvzJ/JW\n2G/cL4Al/X7fk1jX/p97EuOuJN4bqI/4vvYckNlvWkH8gntP4vMAIA4pxxWJfFQeZv2vAhoS818E\nJPcbp0/sDwd7Hf1ooI/vk/EjEoWlUBw3if7iTcSDzicDnR+F4utGabpRHBdCiHOEEI5Em/sviNfq\njrX3ikKh+BIpgV5xvEwBqok3DZ1PvEnBf/RJFArF8aA03SgUCsUpTqnRKxQKxSnupHgAVmpqqiws\nLBzobCgUCsVXytatW7uklGmfle6kCPSFhYVs2bJloLOhUCgUXylCiCM9L+lTlKYbhUKhOMUpgV6h\nUChOcUqgVygUilOcEugVCoXiFPeZgV4IkSfi73PcJ4TYK4T4QWL4PUKIZiHEjsRnXr9pfi6EqBJC\nVPZ7QYJCoVAoBsCx9LqJAD+WUm5LPP1wqxDio8S4v0gp/9Q/sRCilPhLEUYQfxjTMiFEiYy/YEKh\nUCgUJ9hn1uhl/C1C2xLfPcTf5ZlzlEm+QfzVdEEpZS3x15NN+jIyq1AoFIrP73O10QshCoGxwMbE\noDtE/L2UTyXe3wjxk0D/N+Q0cZgTgxDiJiHEFiHEls7Ozs+dcYXiVBPu9OFZ1YRnTTOhRuUlSYov\nzzHfMCWEsBB/GcACKaVbCPEY8ZcAyMTfPxN/u/sxkVI+ATwBMGHCBOWBO4qvrVgoinNRNb6t7Z8a\nrh/iIOniIWgchgHKmeJUcUyBXgihJR7kX5RSvgUg4++GPDj+Sf7zFp1m4u8lPSiXT79KTaFQJMRC\nUbr+uZtQowfrzFwsU7NBCHw7OnEvq6fjkR2kfnskuhzLZ89MoTiCY+l1I4CFQLmU8sF+w7P6JbsI\n2JP4/i/gCiGEXghRBAwh/jo0hULRj5SS3tcqCTV6SL5qGPa5RahtetRWHdbpOaTfNhqhUdH11B7C\nXcoTnhVf3LG00Z8OXAvMOqQr5QNCiN1CiF3AmcRf34aUci/wGrAP+AC4Xelxo1D8N9/mdvx7urGf\nW4Sp7L+fS6XNMJN6w0hA0v3sXmIh5TBSfDEnxfPoJ0yYIJWHmim+TiKuIO1/3oou10Lqd8sQKnHE\ntIEqJ10Ld2Man0HyJSUnMJeKk50QYquUcsJnpVPujFUoBoB7aR0yFsNyugXX22/j+te/iPT2Hjat\nYbAD68w8fFva8e1SeqgpPr+T4jHFCsXXSajJg29bB0Qqqbv4xn8PFzodSddeQ/qCBQit9lPT2M4u\nIFDlxLmoGsNgByqT9tDZKhRHpAR6heIEklLS88pOZNiLd/njJH/3J2AoI+oKE/PU0/vCQwS2byHv\nsjxUWgmTboa0EoRakHTRYDoe2Y7z/VqlCUfxuShNNwrFCSLDYdr/+CyRLkmkdRU5f3qCsHMoUbdE\nn58Emnys37gPf3kDTX99G7n1RXhiJtSvA0CXbcEyLRfflnaCta6BXRnFV4pyMVah+Awxnw/P8uX4\nNm0iVN9ALBBAbbGgyczEMHw4xrKRGEpLETrdEecRKC+n9Vd3o866DJXFTNptk+haWInariPt5tGo\nzVqCDW66/rEZEWzH+eEfEd8bidm6m+yGbjTfWgqZZcRCUdr/vAWVRUf67WOOehFXceo71ouxStON\nQnEEsVCInqefofvJJ4l5vajsdvSDBqG22Yh63ARWrMD11lsACL0eQ9lITGPHYhw7Dl1eLjIaJXig\nCs+HS/EsW45+5HmoLBmkfKsUz8dtICH12yNRm+Pt7TpNM8mqP9CtvQffXcNwZcefNNJmMzH+lStR\n37gSlTkF29wiel+txLejA/O4jAErH8VXhxLoFYrDCNXX0/TDHxLcV45l1ixSbvgOxnHjiN8/GCel\nJNLRgX/HTvzbtuHbsZ3uZ56FJ//5qXmpHQ6Sv3srEc94dHlWZCRGoKIH+/wiNEkGgrUuXB/WEapz\ngrwHX0Ylruyt2HcNQbu3h64ru6lOdVHy+vVw7duYRqfhXduM+4M6jCNTUenUJ7p4FF8xSqBXKA7h\n37uXxhtvgmiU3L8/inXWrMOmE0KgzchAe84cbOfMASAWCBDYu5dIZycIFdqcHAzDh+H6oJ7wmmZs\nZxfQ81IF2kwTlqnZeFY14Xq/FrVNxx7VATZEC5iWswhNwEFqx48J7H4Q00QzjYMbSNu5gaSlv0TM\newDH/GI6H9+Fd3UztrPyT2TxKL6ClIuxCkU/obo6Gr9zA8Kgp+CVl48Y5I9EZTBgGj8e29y52M6Z\ng3HkCCJdAbzrWjCNz8C/r5uoK4jjwsF4Vjfjer8W46hUdozq4JZoFnJ4MyJ1H/sbz0Ad02OacSf2\npyJE+ixsH5GNd+vTsO159EV2jCNT8KxoJOoOHqfSUJwqlECvUCREenpouOlmUKkoeOYZ9EVF//M8\nZUzS++YBVHo15nHpeFc3Y5qQQbDWHW96GZ2G/dKhPLDJyzB1C9dM7URKwZvtw1moCqISGqzT78bx\nRgoxdR8fjhjCe6tepHvvh9jPLULGJO5lDV/C2itOZUqgVygAGYvR/KMfE+nqJefBR9Dm5n32RAen\nPUrPNe+6FkINHuzzi3EurkVl1KC26nAvrcM4Jo3ky4ayobya2pCN23NraGt+DWdvJrdMGsxrqjDL\ndEGEWk922s9Jaz4Pm70X46gDbG+7jTU75yOndNO3pZ1It/LQM8WRKd0rFV97MV+Yjr+9R6hZhcqU\nHB+oFuiL7JjGpmManYbQ/HedKNTkwf1RPYEqJ0jQ5Vowjc/APD4DoVERavHS8fedGAbZUaca6Vvb\ngqEshcDubnRlyazSvY/L3cDG9iLWuvNZnnE7e0dbyCpXsSp6M7tqgvT2aLiGAMOjZmTQhSYjTHho\nkL3mnWiyujDog+Rvv4uUvNNJvnzoCS45xUA71u6VSqBXfG3JqMSzugn3h3UQ+/Q4tUMPQNQZRGXV\nYZmShXliJmqrDikl3jUtuN6vQWXUYBqbDmoVwf09hNt8qGw6zJOy8G1tQ0YlxpGp9K1rQZ1qINoV\nwDg2mU22O9HpKwAIRPSs2Deba6f00OHaiGfjWOS2IMPLKw+TawFINFm57D49Fd2UcqwaHYWr7yX7\njtPRZpiPa5kpTi5KoFcojiLc3kfPq5W4m7y0hWM4/S50JTnYsyxk6dVodnUhQxHMk7KIdPkJVjlB\nLTCUJBH1hAg3edFmmzGOSCHWFyHiDBLzhpDhGBFXEOmLxBcUj8ugFiAlljNz2Gf+AX3+ffzLqaPG\nlc83HBEKbfUIKeg6kIxcXczY7TsIFRuQ37yan+5IIsciuTIKpaoSpLecvpX/QJOWxcp5GRSOW4Wj\ndQZF8iekXFs6kMWqOMGUG6YUiiPo295B2+v72eON0ByKIQG9zoKmPUDVfjcABaXJjDao6NvQirEs\nlbTbx9C3sRXf9g6IxitH4ZY+wi19CL0atUOfqO2DDPX79yAR5I0jUrDOzKPW+yD+pn0806XHGEwi\nuX48D9cN495pv8OqieGpzWTqzl0052SzZuI0RJOb80an8pfqVDptYX7u66XAOgzbxT/A/er9zNw9\nnLUZwxE5K+ndOBNrUx66XOuJL1TFSU0J9IqvDRmVON+tpnp1M9t8UaIS8j37GWStYehf/4hKpcLv\nDbF3VQtbltTRrlcza2oWbGklUOVERiWoBI5vDEKfb0Po1KhMGlSG+GEUrHXR80q8uSXlulL0gx3I\nYBSVWYtQCbq7V9FU8Sxbe+0cCKh5t24/Zwd/wDj9DkxCEpOCYfUNSGDpmLGcPXUKfVteZVeziu8V\nCR5vSOVWKfknMZLCxTDmLMKbllCSfyOu9Fo6hj2HbfFQ0m+ePIClrDgZKb1uFF8LMhyl64V9bFvR\nxMa+KCYVzNQ1MLj8SQb/ZgEqVfxQMFp0TJhXyKU/m4BGJfhweSM9UiD9EQhFMQx2oMu2oMkwoUk2\nIHRqgvVuul8qp/PxXaAWpN8yCmNpCiqdGrVVh1AJQqFu9pXfSUSm80pfiHl6FS8NmYLF7Oaaaa+h\njoJ/ZRJpuwI0nm6lTZ3G21t30GAfSxFNeFtrefRsK1dPzuHP0VaiMUlH9jwiBhvJyz6gp2oqfkct\nnYFPCFZ3DHBpK042So1eccqTkRgtC/ewYU8PbRFJnl7FuAyJ5/k/kXbXT9BmZ/87bSwYwbumheC6\nFk4nxhpgoyfM/CtKMHlC9K1roaO8B2FQozJriXnCyFAUoVdjPTMP68w8VPpPP5JASkl5+S8Ih3pp\nWmThkj7JpIndLHTO4/tjnkBXC47HrGT7vURVGmzFvZyWUs1r1Wfii3aTL3PRCFi3cjmzZp3FdcVu\n1m8vZ2LybPaWXUzh5qcYt3Is+/PS6Cx5ldS3ssj46fUnuJQVJzMl0CtOaVJKap7dx+pd3fgkjErS\nMciqoe+jezAMH0rS1VdT1eFlf7sHdacfy7o2Mr0RDCVJ+EqysYajdLzbwNJ3a7n8l5OwzcjFv6+b\nULOXmC+CyqRBn2/DUJqMSn/4w6lh1yN0dS/D9oaaCSt9aGIS1VotV1z8PiZ3D96X0ulMNSP1wyho\nP0Dys/X4z1+Nb+hWWnscNAdGEBGTMMsAweUrKR2ez7C6lXQaUhiZPZm67G2k7v4X1qUziF7yIS3J\nW0hel4p26vwTXNqKk5XS60ZxygoHo6x/ag97dnZjMKiZnGnE4YugUm+i8/WFVP35KZ6qDLCnxX3U\n+aRFBdd49CTlW7nmZxNRfY5HA3dueINdrrvQ12lZVm7ig9FBHg/00Lp1LFxQRd1zhfSpdfGLtgK8\nRjVZzm4sPjXNyRZUMr6soEayI3USAbWN4SVv86Gxh0EN8AfjAxjbdHSt/ROG3gZcI8xEprko9F5I\n7o/uBHPq/1CCipOd0r1S8bUlpaRmRydrXtmP1xWiIFnP6AILos6NeoaFX234GLdHg72ll4qsIk63\npXJOwExFUitrslsxq0agjqUQjkl0ahVZdgM1mzuY2CEZMjOHOVcc241Jzs3L2FF7C+gEO7YUsHBI\nO/M1kqv2SLbZ7AT3mvAFdaSHhjKkYRPvT84kHPGQ7NGhjcZIc/Xhs1ipc2hw+PpA6hje0k1Bt4ve\n0wS/n6ImEjHwTOgRgo1OYhXvEWpcgzoUIGZSk3P+aBy/ffE4l7ZiICndKxVfS32uIKte2U/N9k4c\nZg3T7Foys82E69yo5xdy45413Lr0fQqdbayceAklYSumNj07NV5aYk7a+qIMiq3gArEFG31sig7j\nhdhsIjo7Zr0WuaKZYWPTyB+afORMxKL0vnMPuwIvEUuCwKpMFg3voLTdQPZuBx8F9aijUaJqNYXd\nLioHp+I1pbNoUg0RdYQUZwGzusYzZNMByip2MlVCn0bL+qEplOek0pLh4PT19dzjUvH9uX38zvRn\nfuNeQF/ZJVhGXES5/hGyN+6l9bVt6Mb8A9NFt5y4DaA4KSk1esUpQYZjNFf08OGz5YQCEUaPTiWn\nqheVGhCgGd/NK/s+YcbrK4gKLcvO/BkWn40myx7akkPYAloG9RQx3/JPBhvX0YmOQEhPns5Dj7Tw\ny8C3WMZUvuXRYxUxzql5FFXQg/2880n73u3xt0tJSbj8derW/o7G7PizZ/TlxTxl7MVSmUF+u0Dr\nCJM00kXHmlRSPH6evPx7VOfl4Gi/D22ogdPCP6C4sYsQHuydY9CGw1QmL8EamsJ7Jsl09xsUdWhB\nE2Te1ibKJxbz+GkRbh9xA2OWZoGUbBTtZE76K0l/cmKISAZ9vA5hdgzsBlIcF0rTjeKUJqUk1ODB\nt72DwP5ealp97PTHu01OMmuwqeO3pOrFVhzaf+Kp62ZLdT616Q46c67B7NqDP7aX5nQfLlMEry2f\n22Qls/0HWO+9gg3BuawsepVRndX8SNVAki7A89FpLAx9l4tdNjp0LjKsW5mw/V9YJxWinZuLu2cl\nLn0AhEBXqaawKciTchDmWgsxtQb7OA8FwxupeHEoWn+IlrxR1I89j4B4gCpZhz35fKosl6EPhzin\noYezajpp7NNhDKYRUvvx6528qxGM975JUXcQU9jFtIpuls8+m93Zffx27K3wsZ8IkvUFH5Dve43k\nJ7VkXz8F+8+fGuhNpjgOlECvOCVJKQmU9+D+uIFwkxepEexVq6lu95OVZWLmCA+anW/hDl+FeXAn\ni4bp8T75GuauJnosRkJJs9A6N1CT1cmWYU78hsi/562LSSZ0mDhzeRqd+dcgNOlUlD3J4LxdXNbQ\nRXZXkKZMPW8lFyE23c4imUafo5nzi5cSiaiZqKogeacPY6UgpbiPp7yjKRrSjWO0G60qglodZevr\nZWicETI9UTjjdqpSfs4bOvhBj5Nv+EIsGzuMheJG9hhGApDlixKK9KALCbKdZorawnR2u0jyvcMQ\nVzs2n4/8XifrZs5jsyzgHlMJ2R4V79HLqEkLsTy6H5M7yqCPPkE4cgZqsymOEyXQK045oWYvve9U\nEW70oE42IMems3ZzBx0NHsbOyee0CU5Uz55Lj/gVvuB4/jAmyFmP/R+d5hhevQ6Rcg6dsSVsLO2k\nyxFABNKZ3pXBb8PL6dZE+aspiwp9LtOrLyTDNwQAY+oB7EOXsNveyviWPs5va6TLoWVTiZ269bfx\nSHAYvsRth8ZwgF/XPE9Vbhq67k5yp7aRVdpJxK9GY4xSXl5KcGWMVG8Aw+mzqLS9zeu2IFPcBkpa\nh3ObZjFhrZYdk4ysqh1JQHU1TeZBuHRQburCq08iqjaQ4o4yZFsP0e5NnNG1DkMoSlTvo2foTPaH\n87gvWkIUwerUNZTwFMn/1JJ7w0SsP31uALee4nhQAr3ilBF/uUY9nk8aUZm12OcW0mPSsuSJPahU\ngjOvHcagYTp4bCoxTLT0/pW9ohPz4nvZkZ+GR2+kvXgIlUkraUr3IWJwjsfMb7q6MAsXEKMrdimV\ngSns8uQQ0PRRnrWaUcYw2prpxCLJqNjC8Lw3GBdrxBL14der2DfEgrkmidecMzC2Rng5bQY5qq2c\nWb+PpDIvhac1EWtMJ0wym1tHkLx5Nyop6Z6QRoVKsDdzG0U+C3safkoEAxNFOS/q/kC3Wc+ukWZW\nfpRHyJjETeFvY1TbedewnBUGLTtLz8RrMjFobwWeRh/X1r+JVKnoTg6gyZiKKpLFdyMjeRoPs8Y/\njP1P9ViNYQqWbAGj0lZ/KlECveKUIGOS3tcq8e3oxDQ+A8d5xXR1+Hjnwe1YUwyc973RWJMN8O4C\n2PYszqlLeGy5l4+9jRjFAWwZW6jO7MSrjZDjdTCr/kIs7jJ0IkCRYSM6fQX3y7kM8RUwOKzBnLYf\nw2mP8ly3jqZYiOtaVVhqvkdUPYhoqBxH6lJ6B2dxaee7ZIf7aMwwYPGFafereSRcREFlGrFBLsae\n2U6go4SGVQtosUfJrn2BEE7abWewsbAHV+57DA+GGdc1jo5MIzs7RxL1JjFR7uY+7ULWpudTqzbS\n/nE6aqFlfMpsiqxl9EVcbOzbzMPTx9OSkcO4HS/R0VbEdysW4THpac2IYE6ezKhwIcOjRexJX0NB\n67PY3tVQfO8V6C+5e6A3qeJLdKyBXnnWjeKk5l7egG9HJ7bZBSRdMgSpVbHs6X3oTRou+P6YeJBv\n3gpbn4bTbuO+5V08ToDO7K3Uj1vM3twWpoTc/LFexaV7F+DwDGe4cS06XR17/TPY5bydc12DGBRW\ns9oQ5lG1gfUVFzKh5gpssWE8mx3j4ZkbWDMkhEo7jFb/deyrS2fW6Od4JaWQnPYAhpBkkzGVooo0\nbIN6GHtGF762EVRu/A4CNemt6wgKJ2rzbMyGEVgslRSHosxuH8PYsJOhtT7sLjXTNPV8wnjej05k\nUnszjcEhvPmta3jy0lv5/ThB9f7H8GlCzLKfzcK9ZvJdAXaVXc4kNrIj53ySPT6y2tQ4PZvZpa2j\nVd3Ors7xBCaakWrofeV1OAkqdooT7zNr9EKIPOA5IIP4/XtPSCkfEkIkA68ChUAdcJmUsjcxzc+B\nG4Ao8H0p5dKjLUOp0SsOJ9TspeNv2zGNzyDpkiEIIdj6QR0b3qlh/u2jKCxL3PX50uXEGjexMOUH\n3FdVTE7yeRp6AAAgAElEQVTWizgd+zirz8c1TRFW9YzApr6DWExPqa6Lu2QYp1bHgr6XSCq0EbNY\nMGfsYnPrcF5pmUcEFephJvSmILNXv0BmpxuVFAR1JoyqkbhTx+PXbaLJZmCSejHfjpRjDUVoyDBQ\nmZtF2+7LcDVMIqQRmDoX0UcNLlU6O/JnMjVgxBpMQRoaabME0YkuYqoQCGi1J7Fo9BnY+tx8vO07\nxKKCm/XfoyClh0xngPT2Ts78cDP6mT9BZx1Eiy7Gt6ZaMQaDXPLe40SC40l3/gu/TsOBEg1p2vGM\nDpeQVLwO6+qPMG+FIW8/i3rIaQO7YRVfmi+t6UYIkQVkSSm3CSGswFbgQuBbQI+U8o9CiJ8BSVLK\nu4QQpcDLwCQgG1gGlEgpo0dahhLoFYfTuXA34WYvmXdORGXQEApEeO4X68ga7GD+baPiiVp30fjK\nLL6fmU1VUCLD6QhdBzf0ePlmS5Sn3KWMMNxGZ9DCiOhG7jGm0GxK48fjHmVwai0Rv4G29mKaWkfg\naHLhaOhgrzmXTqOeIcEKdCod1qRs1iTvweqC/HYTQpgIpMylodBEbst6pL+XOVlNRFyj2OM/h4jU\nsbVYx8Qt/yAgnQTVZl4Ydhrm/KdJjcD51Vfi65uMIRJ/vEFMRDGrO0jXVVKb5mJl2kiKtE3cV/sw\nVTKHm0ILuEizltNVFWhaIwyONqLPSCasKuNVw2x+M2U809v8nL70NfxyMDr/+xjDIXaOsZLJGByq\nXMbk30fa/VoyLhlH8r3K3bKnii/tzlgpZSvQmvjuEUKUAznAN4CZiWTPAiuAuxLDX5FSBoFaIUQV\n8aC//vOvhuLrKljrInjAif284n8/771yQxtBX4TxcwsAkDJG7ZYf8H95qVT3ScLhIrS6Ws53Rrmx\n28PfvGWUpV5CW7eFvOhO7nNYaNBk8oOhT5DZ6+dA43TaPAVkyXbm+PyIXdVonc3E8npIEWa0AcH6\nrIlcYcvj59FZPFu0jCXFG5i+MxNr11sM94xBmuehVqnY2qpGIik0rWOy6WUKNmVQJYzEhI49w+2Y\n8p8iLRJhassEHhBlzMhaxfmyiU+ybmH2mvX06Kw0Rk5HVx/jAddfKDZsRAKDVU0s1f+MPbEihtCM\nI7sPZ8xMU1+UAstyrgpvYHv5rbwxYi7jxp2Hcfs6NLqpeNUbmLy5nRUzqhji04C1mFB+Cz0fbSfp\n7jBCqx3Aras40T7XIxCEEIXAWGAjkJE4CQC0EW/agfhJYEO/yZoSwxSKY9a3qQ2hV2OelAnE+8/v\nXN5IRpGNzGI7sViIfdtv4YChgfXdJjSBMUQs9WT5NNztbOD1nhGY86fS11iMTvp42iaoVBdyq+1F\n7JXJbNdPwCo9zAhvJkNOp2vbRqKRXjaPLUEbCTLC3UZWbYDZlVXU2LNoMtq5Vm3kCn0ZH5UeYF+a\nhuH1OwjK/bRkTKVBP4wqkxqNrpS7N6ZTL0zYRIDQxH3sSbNQHI5xpdZK+4huHvbcy+yqKvauzuOu\n/OtZlTWeJsNIkvs0qCLJLHHeRWFWE17fFrbkq7lV/SZZ7jbWB4axKjyKRZHT8WlNDAk18bLuXhZ0\nPMdqVRGPjhjCvW05dHSpMboy6DFLhuzbTfvQZPZXT2b43JfRPaGl96lHSb55wQBvYcWJdMyBXghh\nAd4EFkgp3UL85wl+UkophPhcV3mEEDcBNwHk5+d/nkkVpzgZjuHf24VpTDoqXfzZ7u21blydfibM\nL0RKSWXl3bS7VlJZJ4jqwJekwuh38peuFnZ355CaOYjs9tmUx2JsVHezXTuEa/I+wt9RQp1eR550\nYFCPYHfaJWze8zp56l5aCjPwGQxUF0hqOq2MFjaK2/yEhRrpc9Me7SQp6OXcmiBFRWN5erSNCc2N\nFDUuw2FewhCNgSxnlDq1BVU0wvMz3fRYrJwRtnFeYSt+aWBabR1lrW28pLuQ+jNy0QXT0AVzSfY6\nQMYwhZoIGDOpa80D8jjDb+DDrCDakv0UUsfZ1HOWfJdgRIsnbGV1Zy7fqC/n5y0v8fPIHTw6dTTf\nfedZ2pLmY+l9mozuFLaIdVgD55Ax3Ia+IErn489gu/gaNKnKky2/Lo4p0AshtMSD/ItSyrcSg9uF\nEFlSytZEO/7B19o0A3n9Js9NDPsUKeUTwBMQb6P/gvlXnIKCNU5kKIahNOXfww5sbketUVE8Oo2W\nlldoaX2Ngno/9/myiBiT0Qe2cWOvB4fTiDM0jDzPd1gRiFKtDrHeZuPi0vfYpDqT5sIcevV6sjqa\nGFxXwYgtb2H2e2hJstKRnIHR18qYPSqk2oihKJm+oeNx7HyX7Zo83ig5k3ZjEtft+4BLq1Zws7OA\nmuHzsKi3EqCT1F4fae4wXQ4PC+cHGeEfwgVNYwj1WTlQkY0jFKBG9rGKZDQRPUnShkBFVO2nz1KD\nVVOPaK/H0R6hJ+VyMFhprAmQ7P8WvcOj/MzZSaavicm9K7m9czlmXxtPZ51OXa6RK5pWsLjtND4x\nT2PtGZcw8oOnURmm41St4oK1HhafVUF+9enoLl+H5UE/rb/+Dbl/f5T+FTbFqeszA72I7wkLgXIp\n5YP9Rv0LuB74Y+Lvon7DXxJCPEj8YuwQYNOXmWnFqS1wwAkaFYZB8Zt7YjFJ1dYOCspSQO2mqvoB\nLKEkuj6J4ZkSxOrvpiAW5apOH5/UTGREzndY1BdGi5ptjh4mTapjhe9chh/Yy4TWZdjd3WgiQWJC\nkOL1k+z1U5tqJ7W3jdbkIGXJPcwwd3Dj6L+xIaWIiVOmcdfSxUzb8Hf8ERXtxiQ6k3IpdjVTvOFJ\nVJZMYp4WAIJlc3APnchTB0yUq1oh3ExuqJ2wdOEVdvoCaWjUekLaGDp1F+NUqfTkuHiRj8kKZ5Fs\nH0o4GEYTqsbRM5qw1k1Xc4zQ0x7sY6vZXDiL3fph1DOae5qf4sqW7fxu9JX8tvsZ/sRjzDowmA8m\nF5BROhFjg4lUvxWXPkpmwwEqU/PJGRqifbKV9E8+wfn66yRddtlAbmrFCXIsvW6mAauB3cDB19v/\ngng7/WtAPlBPvHtlT2KaXwLfASLEm3qWHG0ZSq8bRX/tj2xHaNWk3xzvWdNywMnbf97GnO+OIGZ9\njKbmFxn6Lx+/tI2hz+SmJsPJS00dbKkqw5H9Q14NqJns01Kn241MqSRjfzvqaAgAXTiKPRRDxCSl\njS1oYpLVJfnsGhVjc34rD0g7Z7dW8vzQh/n9PgfeyWmoDWqiwANGO6NfXk+nPohWYyXga0NVtRqL\nqwv0NrpGzCBktdMjvPT4mnjqzPkM767l/PpVqKSZtlgaARFFL7WMjxQz0lKMdXoulqnZbO/czq/X\n/poGTwPj7GXctXsPFTVzadXPxeDfhd84kqjGy76iFlaWlOK0OCjwN7N0242IWIyNWdnMbq7mpdgM\n7lHfSmRyOte8/RCpkflEPc+R4vXy2hzBRZZUuvQBrlxiwl9exaD3F6PNyhrAra34Xyh3xiq+kmKh\nKC33rMM6Iw/7OYUAbHinmm0fNnD9/WPYtHUakf0akh8TvDjTzkdjevhxdy9p5dlE7T/g/0QSF7h8\nCN9SRLiVmFCR6fSQ6vHhsA/GF6rF3N2HMRShLTkJzXnnsG+qkSdqnuWOsIGbmqvhkoUw4iIae3ws\n+HAfa9PVaMKSiE7FPXob573bjMsSZGtaHfW+TnzuAOZAGLvbTVpnJ7q+EHfd8hNCOiOX7ixncrSX\nWHYKeoOevJw8SocPR2+Kv1hc9HtblT/i59WKV1lat5RRHdX8rH4/LwT/jteZzlDPGirMU9FIJ10p\nFbjMaqZs28D8EesJ6QU6EaY9VUduW5DLg79mc+EkMlJinP3xStJ7PYRiFaBupmb8GM4t3UKSZz4p\n9y7BNn8+2ff9YYC2tuJ/pQR6xVdSsN5N52M7SbmuFGOijf61P2xGo1Mx4bKdHKj6f6Q+oOb1oeNZ\nNnovQ8N+flqpoiVwB/fbBjGmp4Fs1weEtSr2F49mwZuvIhDsGz2BpmgXGhFjTFIzI3JjJE+8iNUi\nwB0tSzinL8ADrgDi4oVQMudTebptcxVveb0ITxhp1TLbDT/Z6yfFHX/yZUAFbSLKXmpZnRxlZdlo\n5jZ2sSDQwtDLLkCTlvb5CyIWhb+fhi/m4NWmu0HAuOk2NrzfgpARpKOdLjyM713HjPR1/E1/FqGk\nKD9yL8YfMHNu4H4ap5UwsW4Hs3dlEu59EkvQz/JJTi4uVbHGnc0vmifS+/LLDF72EdrMzP952ylO\nPOUNU4qvpHCrFwBtlhkAnztEZ4OHYTNdVGx+AL1f4BcOGgftIibgm015tPvPZpG9hDTXfrJdHxIw\nprLo7Av4x0O/QarUrByaRyjajdBqGX/J1Zw+CMTmhVRvfZy7MlMZHonxu5zZiGt+Dbb/bsZ4ePwg\nundVsxIvulCMj2wqPpqoxxHVM9QZwaJWszlJjVs9lulaPR+MzGfEHPP/VhAqNUz/Caa3b+KC87pZ\nvCSZte+1k6ptwS9S8fYW4EBFNaOo7rgFC2FWxCpYO2w7M/e18JjuL9y+9bdsmj6B7LZVZEfOQKpW\nMH+dio8ybIy2efBddCY8/zyudxaResvN/1t+FSc15Vk3ipNKuLUPYdCgdugB+HhFAwB7tn2AOimM\nqVzP5ul9bLOr+EbLYIZ4S+mxn8ZuXwMTez4iqkvnhW9ew4Mv34uuL8LGogwiunRyhpVy+xMvMu3C\nSxBll9B5xXPcPmQMBmMqD12+DOM3/n7YIA+gUQleHDWIHxZkoNLHu3uqNCqcehUbM3SsSdcwLcPO\n4nFDeH3acEY4/scgf9DIiyGjjJQ1t3Gp44eMtb6HJqOYmDEZUKEmRHJGLTHrLkqNH3JOaw5dkUIq\nhpoZrzrAD8NPkFPt5aPTJ6M2FRLCgtOYjHV3B+m2Bt7qfQ/j+PG43nv3y8mv4qSl1OgVJ5Vwuw9t\nhgkhBC5/mCUf1zAYwQTtKkIRiV9YeD7LS6nHwSjXWYRSHfzFU8eFnUtBZWPJ3G/y6Dt3k1Ldx478\ndExpedhyM7jkl79Fo9MB0OHr4NZlt9IT7GXhnIVk2j77fj6NSnBXcRYLCjNwhqOkatXUBUJEJOQa\ntJjV6i+/MNQauOIFeHcBxqCHKVdeCfnx59S4Onx89OD7dLbnMnrQGio8Xuabf03Ftvm0n7OfWJ6R\nyxtX0FKXyUM5N7Joqpkxa+YwtOtNxu638v7kGOaelZjO/jbd9/+JUGMjury8z8iQ4qtKqdErTiqR\nbj+aVCMAb2zaRkZIhc1fS2hyhOQKB//M60HEVJxT/UNKzen82XyAs5s3oY6FKR91PvcufpusdV3U\npNkpHuollmzjort+hUanIxwNs6R2CVe+dyWNnkYeOvMhytLKPlf+9CoVGXotapWKQSYDQ82G4xPk\nD0oqhOvegRuX/zvIA9jTTZz3y/OxmCNU146mrK2Zp7iYfcl2OurG0FUY5WP7WH6ofYWbNy2hISuL\nriEWXJpUuqw2zFsF+bowHyetAcC7atXxWwfFgFMCveKkEQtGiHnCaFKNeL2VLNmwiZSYijT2oFVH\n2BbpZLvBwIzGeZylS+GD3A+R5XbsoSbc6TO4etWrJG9bQ1OSFfMIP/U2M55Li/nV5nu4aNFFTHpx\nEneuuhO7wc4L815gSvaUgV7l/4nBqmfej2YQFMl0m89m1qaVuPuCtHtGEotpqSsxU6HKY4F8mKv3\nbGfDqMHsyT2dmBBM2G9ndcTL4uBG1Jlp+LduHejVURxHSqBXnDQi3QEAwqYOtm67hr6uIgDkmHZC\nu808mmynrM3ILf55dNh28UrVLMa41hHT5TJj1/tk1u6jPjuX5iEWFpf28fuSXv5R/iR7uvaQa8nl\n+hHX89CZD/HG+W9QklQykKv6pUnJsTD1kiHU+0ehKyzkzGXLiXgEbW2DyNMf4E9DrsWNie93/pG0\nPj81EwtRCQNug5Vws4qAhL5CiW/HjoFeFcVxpAR6xUnjYKCvaP8lbb58ivpiqGJhQrZunncE0Ufg\nDvedBCX8WJiY17QZIaOMbGoio7MV59h57E3Xs290Mx/Yjdw06iY+uewTlly8hL+d9TcWjF/ArPxZ\nqMSptduXzcylYGQKWzXXYU8SzHn3XWLhMxDEmBCt44A2jwJVG/ds+wdtqensKR5FRK3i7L1mmsJq\nPrSGibS0Em5vH+hVURwnp9YefxJo8jQRk7HPTqj4L67mnQDokm2s672LQcEwMXMd+zv62GY0cF37\nmaRGk/mVuo0JdQF0oWrS/EZyO+sxTrmDPeou1LndLEnV8ZPRt3PH2DtINZ76D+4SQjDruuHozAZ2\nDb4dTSTMtDdX4XelUJz+CR2WPHbFipgvF3POvgMsnTUffSSGo8eKNwYfl8TvB/BvV2r1pyol0H+J\nXq54mXPfOpdvLvom65rXDXR2vlK83kq66lYg1WFGTXiC1e0+dFodTUnVvJfhZnyf5FzPN/lHMEDM\npyfHvRINZsbt34lu0o20GCVhg4eXS91MN+Vx3eivV79wk03H2d8uxRnNYs/k2/E0dTHkhS7UmjAh\ng2CoqCeGikvankYdFrjtGbgNeqb1SLrsYXx6gW/H9oFeDcVxogT6L8na5rXcv+l+xmeMJyqj3Lzs\nZv62/W+cDHcefxXsP/B7tMF0NA4z67d4yOnqwGtvoMGyipAQ/KhjBs8ZdrNODdN71oP0M7mykrYx\nkzCklbHHuYb9I+qQKhW/mv3I1/KpjPmlKcy9uYxezSA2Tf0t1ZFLiW7PIrlgB31qB50qB/NV65i8\ndS8rJ84EYGJlKiEZ463TdPTtUJ49eKpS+tH3EwqFqKyspKenB4fDQX7JUCqDEZoDITzRGEaVCrOQ\nZFe+ifbAUrQqwe682bwZy0Gz5s/MdOYgDA7Khk/DmVPNE7ueoMvfxa9P+zUalVLUR+Lx7KW3dz1p\nsevQOIy8vKmRcV2NOAeVszvZy/UuD57IeN4J27nU1YYM7SW/p4+YQUtJ/repdG3BlNPI8uQwPx18\nBdmO4oFepQFTNDqNK35zGmvfqKKeOcgDczA596HNfo8z29cTFirmBhfzO/sdnB+OIjtMZGs72TxS\nzVXP1CCl/FqeJE91p3z0iUQiLFu2jObmZlwuF7FYDJVKhcPhID09nbycTDoCbdS0+eiuqCYUDP57\nWp9Oz9pBZVSn5wIwwbWHPxz4C2XeKhqMWcioJHdbOeO6C1DFTPhMFgg5Yek72LQ6bph8Fs9UvI03\n5OWPZ/wRreq/X99W46zhk8ZPKLAVcFb+WV/Lg6y17R2E0KL22/CnqmkNSHKSQ1Sat2GNwvW9KVys\n8zLOlYHO+yY6BENbOgicdTsRGaTF/wnPTuim1FLAVVPuGujVGXCOdBPzbxtFnytIxdpmNr/vprz7\nh6TmhEmLHuAy9Qoeq7yYiM6MO+pjoi7KIpuKDm2Eko4OtBkZn70QxVfKVz7Q9zmDmBO3y/+XWJQP\n33uHTTv2kJ2VSWZmJgaDASEEvb297Ny+hfiz1CQgMKp8VOcXsqpwClPDXobu3cJ1y/9FblcHBNvo\nMJlYpsrkQ1UGndYwZj9kuqA538fotMlc4T+PGDEqkg6w2bMG1ZoqLrcUsap7NXdxF/dPvx+tOh7s\nw9Ewj+96nH/u/ifRxHvTry29ljsn3nlCyu1k0tW1jOSkacS8EaqdfoL6XoK5m6g2h/lptwtP9Az8\nfcWMdG0kGnMzrqqZltKRjDSVsbnzfWrGuunRqXlk5v8p/zn1Y7brGT+vmMLJFt7+wxLWti3g8tQ7\nsIgAs8KbqEsbRF7HXkbtKGXRkANsGywYV74Te8acz5654gsLBSJUbe2go86N2aGneEwaKTmW47rM\nr/RR0VrtYtFftnPahcWMPiuPUChEV2sDvTs/wNe0i8auPnbLEqawhXNaV9PXaqSbJMKGNKTWyMfR\nIlrIJKpWoSGCP2piUH07k3Y9SvG+SjLanbTaLVSlO4hYUrH7AhR5nYQ1GtRRC6qYZFhrG6fXRNCl\nVRMrfYoVmZkUBEdwvfUGyg272dSzhLO3pNPQuIMbWq7ilhk/xB1y8/iux6lyVnHBoAtYMG4B/9j5\nD57f9zzziuYxMnXkQBftCRMItOD3N5Cbcj3EJDUdfZQY91Fpr8UegMs8Hn6jzuRMj5tocDs5rj50\nVklp0Q20+etwZdfxVpKTm8puojSldKBX56SUkpLOrNkOlizSs0x1DTNi/+QS9UruNN9MntyDoSqZ\n9KGS7YMEXTs+wj5TCfTHJBICtRY+x3/hrdUuPnh8Nz53CL1ZQ8gXobvZy9ybPt8d2p/XVzrQ94pW\nnKYm1r4RY8WyVTgNVf3G5qAmSpboIi2nhHrjSHS+Nrpam9ntyaRWU4xQSz4eNIYat5302mbObVvB\njJo9pPV6aEm2snZIHhG1Co1QE8oppMVkI9rWQV5jAxPrO9mdk8r/Z++9o+M8y7z/z1Om99GMNOqS\nJduy5N6T2I7jJE4lgRQIEEhgaYHd5QWWFlgSQltYILu/XWApAUJLJZ3ETk/sOHbcLRdZlqxepvf6\ntN8f8rLs+y4LhMiKE33O0dHxoynXdY/Pd+7navfuOXXUlGDZyX7UZ8psaF/MyIrdbLWFWFh5N9fL\nn+LR4n3UxgZoeKTAz/d9noPtaYI1Dfzref/KpqZNAHxixSfYMriFXxz5Bd8691szs6AzQCq1GwC3\nvJwcaRIVFaenl+NOjRvG7Zh1E6/kz+KK7FOASMdkGNOmD1AxFA4WnuSOZSfpquriI4s/MrOOvM5p\nvegKah69jfDEBootd7Oq0IuCiKOsEpXjdApedjakmdi1h7aZNvb1TjEFD34Eep8ATyN0XAbtF4DF\nDeUM6Co0rAbHqaMwdR0MjX3PjbLzgQEsTpGOS21MyCc5OXacsreGi5kV+j9KshSjZD+GXSlgSrWz\nxH0Iq72HwyzgUGAx9kqOciZAvKeAKd6HUIgjYAGSOKRudLOTTf3jvCs5SX0yjlVVibnsHKkLoAtQ\nZWtgqW8jAUs9FRSO62Oka6o5EBQ4ZhrlSOMoH3ixijAOHl+/nPUnY9B3kOrJGuYsn4u/5puEzWfz\nVuE69rd085hyP/NGXXRMeFl20eWs9f3XGGmn2cmlrZfyYN+DZCtZXGbXzC3saSSbO4ogmLFo9eRI\nk3YUiRuHMKkG7yyVGKWFNZkkhjpG51iC9AUuWqWlPDNxFw8uP4nT6eHfz//334fEZvmfEQSBuQEH\n4bDMPtOFNPMb3irtQBesZMQKC5OLeN69nbFUbKZNfX2j63DP9TC8E9Z+DJIDsOdn6Dv+A0MXECUD\nBBFFbKTb10RJ7WVZJsPO9I0cK25GNo8xah1iZN9U74IZkZIan3azz2ihT73wIN6eo/gsL1G0Xsxg\nYSN7GlfgUGO0xU5QkWTK5Sze0WMgQMVfjW6xY00lsGWTaJUisiSRt0Gvberb1yRYCLaU8XYmyXAW\nO1L1CEmNXZUi/UYASQsQoh2LsYaWicMEw69QceSYjMPW+XVU1i5g89btVL94N4ca2yg0ZVjk+il7\nOj/EnrqVjA5+mcUDOvsef4Qjzz3N8sveSkNHJ8GWOVzSegl3H7+bl8dfZnPLm+P2OZc7jtMxF6Mw\n1WSm2bo54izSOe6hjqP8XLuCmvxBRF2mOhBHq72RXUe28FLoOLWdnXz1nK++KZqiXgvmveNSDvzr\nHuLh1UT993Ft7gV+Jm/AJYZpH5gPS7YzbtXRVQVRnv3i/L8p5RRe+dkTDPW8i4rp4zh22LDlxrGM\ndmAk46iShZ2dTbywbC4xrwtRq+CJpfDnZdZUbGy0Psw6zy8YlqvYGerCFC9R7C2jJaZfhs9ood/n\nWchIp5mmkT6sqe24NzzF25tT5PNeNLsd++EMgxEXeZefBakK3p4hvMkkzlIBAF2QyIbmI9Z3kQ+0\ncCLoxTL/QWr9B1A0G2OFvdwXbiJS9GNIYLalCJZMjKg2xivVGJVNHFh2Hi4px5r0HuZP9pDKFXjg\n3LXURRK0TIzRvG8barHCnOEC+nXvp9n5eQ7P+wqlOoWLuq28fN+vAXAFgrzjK9/CZXKxfWz7m0jo\ne6jyb0BLTJ3paontIFMNC9UFCMJhBlOrcKtbaEgVib/PhL5D4KBwgHWXX89713/gDTfOYDqxdnQQ\nHP8pA8KljLTXsrwwTMHhxFUKo8UmsWsiw1U64z3P0rDwopk293VFLlni4dv3kYnYqJcGEYs5cmNl\nos46yv514J+K0/tUgfYJEyvT27kp/2vmF4coimYe7jqPb/ov558tK4ha/FiiaS45dB+KycPJ+i5u\nmGb7z2ihN+cP84m2u4kuMXPkuTlkt1uRDT/uZIl4j0REddEQz7DwYD8iMOYIsDs4n/EaHz3eZg7a\n5oMos6kisqAsIY+IaLnNPF57Do8b9RQmRJAF1LkutGYHZameLGBRVGpjKo6syoiikk+beV7dyHFh\nDisy+6kf6EVCZ9RtYtTdiFk0s6r3JD/5xhf43Ec/zd8nPs1P/N/hZxdkuGxnHXOC9RT7j/G77/4T\nKzeuYG/4zTFJUFWzVCpR7I420icK5IUs49II1jK8RZfRRRFPJoJhCATWjpFMraY3uY2zmy/lknM+\ngDAr8n8RgihSF9QYAAYrq1nCMG3VEdQ+hbAxQovmYTCUoHfPY7NC/wdUyioPfWMH+XSZZYf+DU9y\nALm6mtyFN7Iz7MNA45nFEimrk01HJlh10oVJ6CLsWkeVO4ODLNfEn+TK1FNM2Hz06UGO7K3CbNFZ\nuuY4C0xR4JZp9eGMFnrL6BALhBzteQkhorJbM5HcJpHECWg4lDqOOES2b3Ji8yssz42yKjLEyeoU\n7q4wm+R9KAfejlj0cMyskhM0WjK1zEmKXC+qDJkmaSsVcJt1bKVeMv4YkwEH0fwCiLfhj9q4NC1i\nLcuAjG40MemtYreUok9wYNUrbNAOE4j2s2teiHUn03z9+9/i6x/7EjcP/S2fa/4mv1ub5JqXJRae\nfWm8EaIAACAASURBVB7Dz21hflMXz1mGSZVSeK3emV7iaaVYHAXAZm1gLJInpTxFT4uKJ95IKwPs\nz50L6jBWw0TxLJHh+0q0BaysqF2HIM2K/Kuh+S3nsntLgezICuLBh7lQ38ezSjMpKUNrpYGnggny\n3f0zbebrBiUcZuvn7ydtms/ynh9S3Zok/plv0D2kU+jxoJoybFmocmBuO1f0bOEK30850jAfaeIc\nuhPXcCx7GXWuPdT6dhOSj2NJ5unr8+IUK1xXdxDXZIWjpvy0+3FGC3083MRdk5/EMAdI+eYhq6Po\nhe1oSCiOhWjyQprUe2muvR/JrlDyG5xsNHDqOmeNuekN34Jh2Di8bJSIX2X52BHOSu4hWHTTnX87\n3nIDftMgxViWRxOb8aMwRzFTr03V7ZtdE1hrhrB4xkAwKMbaEccXU2d4WGIf436zm3uETVTVLuWa\n8QfZ1u5jw7EiH7vzdm7/0Ff49vFP89E5t7F1Mch9J2nvWsLki0dwniPRHetmfcP6GV7h6aVUGgHA\nZmsknywwmThAcpFAQ3oFFvFXHJn8IIb2Mt6FCSaGOkj5RrhKvg1Lq3+GLT9zca5Zje+e+4gInUQ6\nXCzMTPIk86lIOk3ZJirObvRIeqbNfF2gF4sc+tgtDAfejt8zSvfGEFtZSuilIbTcIkKWQzSG7uH2\ntn/hrSfuJpeCDxS+yM35u3mb+Rs851vPwcxmBjMrGM6sR1MGUfKPAQKaZQW/mLwISlAW80x3YfAZ\nLfS1FSuJmrMpiwmG/bsZCj3LkGsSRRDA2Mmlxz5MKHcFd4UOUTRnf/88SZe57OhN1OgBts/7Hn79\nCOvGK8xXFByyiUnRimH/Pi55JbH8WYiVFjYBFQnG3b3s9x1h2HuUssvLEsnPvNFGFpb8tDYcJ7b4\nfmK73g3JBfxdbJJX5ChPVjfxePVFXBl+jBe7mrlw9xGWvXgPX7vwRr5w/BPc3PRPFEsOItVLEASR\nFb2+N4XQ/35Hb2tEzu9lXJuqPrhY9VBKl0hLMqjgXJDn2B4nV0+UEZqtmBvfHBVJ04Gpro5Q4hBh\n7yIG9cV08jwuu0IeiZpJM9RCVivMjkIATn7tG+z2bUQXyxy3DFIrmukyWojkmmi1vYAQuI+Pt30a\nz4EneTa+mrnCGPeZv0wTMX5jW8F3Cm/HK6ToLD9DlZLCpURRJB9W5yZMehW6aMVwydjzPdPuyxkt\n9MPtWZ6o/QckwYqtYiUkxLguUwDRTb1SodH5I7rT3+bynr+hOzBOONjASG0dl+8VqctKbJ3/BCO+\nASyagx02O4bwhwPI8sALiMbzLMxbWFAy6NAjiMU2usurqRRWoVj3sLcyxGhjlFLPebTueQet7a2E\nNv0LgROXMN59BYuNEBdNTrDfyLPdfzbrEzvYvrCdy7Y/yzOr13HLig7OH/5bnlp8H1f2jNHctRRt\n/yscP7Ibls7Uyp4eiqVRJMmBJHkw51+iN6RhLtnZrCQ4dnINqnsMrCYS+VZiVVFch1ZBM7NC/1dS\n3+rkEAbJ8cVEnC+z0D/GZLIJPRYBYNKsMDK5j6baFTNs6cyxb+tWnip5cUrVVM1Pc0nkSXbnP0Ek\n76PB/Shfa+pmovQZHIdUlusSNzq/zbnKETRR4LbQe7EeEHlX/F4AdESSZj+9/sVUTWS59MC3MQSD\nJ5ea2bpCo+Rs5yN8dFr9OaOFfs5kmNsrf8tABkqFFvz2B1nR8BjzMoNkTFa+5P4ACbuVNSdamVi+\niLw3x/v2pKma8ODPPcr/2foCL8118MRCBUSFZaMXUp1rpigVyCgDNKROMiosZnlVnA+bfoeVCnCQ\njwsHUJMik1Ervwg6uM8Y4dn6O9lgf5p9yXPZPeKlteoprl4TxnfgQ4SppYFaEhaF3V6NValdPLeg\nmY/c/T1+8P7Pcc/81VRnfORPPs9gScdqk7Fvn0B/59RcnjcqlUoUi6WGSLaCFt7DsbUClWI71dk+\nnhNXo6sH8DQnGB1bxfrcNiT/RkS7hOT7IyMvZvmzcJ+zEvu2POXwEjIrZRalhnlpspasFsWmSYRd\nChO/+B5Nn/3pTJt62jEMgxdeeIHnX36ZQH4BNrdElznK0/F/xCwWOdv3Hd5f48I7/la+I93L5dJO\nTLKGpsKw2cdHgh9g83P70QSFgWYdp7mZhmyISZ/EW17cQtt4nJcWCPzyXCsILQy2nc8HTzqm3a8z\nWuhdHTaeze0m1HYCYcfN5OSzeCXeRlLdT3f4KuaoRdodj6KLa3jntqnnGIYTpfgM48oJxj112CNw\n2TaNF5fG2N/4JItPtrB65Aok0yrU4hYClWPUlNI87lxIWrViFBRCliz19jQ+c5GPhHNclUvz3YCH\nRwMTELgbgKNFmT7xCFct+xYnj9/A6phIZ6mamHQWB4N+VsSeYiAgcfEjP2Czp4FHzr6AOy+4kU3H\n9tFuGSdwYJzdL/6ONRvfMoMrPL1UylHM5gDHR1OoyTApp4Brcg6ZgS1Eq66EwssIDhMxo8Q1gy6k\n0DzMTZ43fUjhr8W+Yjm+x55mVFrEqD3EPLkfu6qSlUsENTsxd5rgkcMzbeaMsGPHDp5//nkaB1OU\nrEEcLjPbD7YTMo2huB/m3eLV1IR1HjT/I1axwniNmXJR5mbXBeytuYh3PraVnEnlibUj5OwyMElT\n+gq+eOfdyJrGd95SxQtV59NcWsPJ5TUsyhj4so9Mu19ntNBXL2nDX7wTWYRox+NkxpaSKfrZm7kA\np5imQcohV2rJiScpiyFshpOQScDlXI3AWkr0YxO2IBvHuXzUwvfxsWPOIO6q+7k4upHdai35cgwl\nAqYY6IJAzmVld22Z/Q0mypKJs3p8tB92sdSksqpLZI2xj7aKRr9h4guNfu6Sx3jb8n+iY8xM5ZkO\njtfdgE/voKfexTt2fJ+0WWQClau2/JrnLnkPT3etIToEq/oG2fPA/azecBnCG3RXX1FiOJ0LmDwW\nRiEHSKwoOohEgyiBqYRgXqwFVKQxDbG5CnPD9A5/ejNgnT+fuvF/ZNS/iPHoYgZNaaqkInHJRqDg\nJebO4KokMFQVQT6jJeIvor+/n6eeeoqWfB53oYFJO8TGigRsCX5izXFMex8+KcnPHF/ATpGXO/wU\n+7x8cs7lJIJXse7Ay1SlYjy9MkLZfTaGdTMNg1/gS7+6h7JJ4N+ubKDxWCOCYyWHzwmBLHJj7AXE\nlb8DbptW387oT7GpvIzu6FM0RS+gLbIWWRTBbMWomkokaYaGKBgIf+Cm5DEjB2wolQpiWEJKN2A2\nKlRZ3Xwx5uZeYyu/DD7Gds9vABB1CW+hGlHPkXBm0UUIVPwszq3BWi7wUsdhjjbmuHhvG5b9RQ7Y\nOmlr6KYNhSu3BXloWZYHqGCfk2Fj3TbOubfAk9UfozNfz76Ot3Dxy7+iKZXihQVzeefz28hfpXKo\naRXlZS/xlm1x+vbuYu6qs2ZqiaeVcjmK378e06E99Aenrl01MELMsxBdmQDJIFVupNlRxlDtIAiY\n6maF/q9FkGWqGhyYBIPc2GJizS/R5ozSq/qpH7NwfA6opQqllx7Ddu5bZ9rc04KiKDz66KP4HQ4W\nPbSVXWu/iqGD1znIl00+JNHPhQ3Pcr36BC3xFNv9IWIvVPPFdetJBq/ivOEUZ+15jnFvhaLLzlX7\n5+KbeIBlvQKGIHLH1SI3vTBC1cAIqUubeFhu5Jx4AW/THcQHQ9Pu3xkt9C2dq3AdfBdquAvBLoEK\nhqLjWFaDa10Q+acL0AUzJx+rAWsLgrMOydOE5G9BMLuxyQ4wyagOg+PeCDvEZ+g296ElNiEJHs5u\nbuer51/G0bt6Odidx+4pstJjxlMwI6hT4YPjhR6+Hvo5d53Xw/yhamyJeoZT1fy99wWuaTvBgzW3\nEoz8il8bCSw+gbk3HmHz1gM8yGL8lrWM1+ynNnyEdi1CT0HjCy908MlLJ+mbfyOFwz9g98P3vyGF\nXtPKaFoOizmId/wgY1UCQsVF9WAP+xqvR9G3Y/MoZA0zCz0tSJ4cAKbQ9Mcz3ww4167E11Mhmuyg\ntEZlnj8PEfBHFPJdAhMlJ5ZdP3nTCP327dtJpVJccPgIEwvehoGA1TnBrY5q7HqGdy64nyNj7ZxT\nGmfY5KB3Tx1PdLaSClzD2oks79m1m2Nqge62HGsnzsMVfo5l/RGcRYNtV8l86okSckQgcYPBwtA+\nHjMuZ2HuYfYfu5J3brp42v07o4XeFAphnX8RufAYgiSDoBP80GLMDaeqMq75CaKzDmf5IQSLFTkY\nxCiX0LK9iA47tsVLcG7YhCDLtALn69dRUAo4TI7/Ntd83UfWULMnzLN3HmOvYGLzB7qo5GOMPXGM\nttQ8fjTyFX5Z8wDbqvcQbT7EfkPixNAmfpTfwj19N/MBfydqzsWv1Bx/X1fEvP7nLN99O4dyBkfn\n30gwfiutvQn6ukJE4j1cdyzPv3Ru4unVi7BvfYX46AhVDY0zs8jTRKUyNTzLbA7gTAww2i7iTvhQ\n42HS8xsRMnF0qxlNUKiOJxC9jQiW2UTsa4V9xQqq9x4l4mgnUZrDhH8Cx0gFRZ8KE45jpjOzd2qI\n1xs0dPifVCoVdu3aRath4D3aQ/fGm0DX+XZNEC1e5j0L7+GOQ+/hnuZPIOUNnu2bh0tXOdD5Xmpz\nJW4+VOTZ7IvEfSWatMWcsMa4cCSNJ51m97wqNjwcRzAJaF9cTjm0iwXlIX64ZycJbwfXffbdmM3m\naffxTwq9IAg/BS4HIoZhLDx17Vbgg0D01MNuNgzj8VN/+zzwN4AG/L1hGFunwW4AtLxC7uVxBLuM\nUVKwNI4R/8lW9HwByeXCMn8+tmUuQrfd9mcl8EyiCY/F8z/+be7KGnwhO1t+eJiHvjs1A//sz16O\nUVTJvTLJh196Lx+cvI6Y3MfHa+5iX2s374ou4fuFg/xH7BDfF2/kt6Hn+OmIg8+2Zamr+RVPaW/H\nnbfRM+9aFh39OTVilrFCH5uH1nJXay99DedgSHs5/PxTnHv9+1/r5ZtRFGWqZr6CHzkRZcIvcOFO\ng7S3DcPIIhg6RZMPCQnX0WPIoUsx1TpmE7GvEbalS6ga/RHMb2d8rIuYswq/OsGkPBUaS0kVzEIB\nDv8WFl87w9ZOL/tffplSqcScp58hdfVn0KPQ41EoxjUuaHqBZ4+fT6f7ZboiGU7Kbnx6ie+d/SHy\nDjef2zXBXcKPaagY5FurWdxXZt3O3ciaxtFWJ6uPx1AaDWy3Xk3r4psxHrkN+8AyLPl6TFb7aZu6\n+ud8Vf8c+J/uLW43DGPpqZ//FPlO4Dqg69Rzvi8IgvRaGft/o6XKCAIYBZXCS/9B9Lu3kn1iC8X9\n+0k/8giTt9zCwBVXcvKyy4n9+Mdo6b+u4y/Q4OLtN69iztIALz/Qz+M/6KZigHtjI7WfXYXvmrmE\nvJ38Yuxm2mLncdyf5cPeueiSxM3qT/n8pEzcqvHbITPFuS9yra3CKxaVaPUqEp52OsfHAINwup9z\nR1NopioGl9Zz+PnH0XXttVm01wmKMvVZxJMOiuU8RYvB2QMpUtXtoIUBKAs1uO1ulMOHEa3Vs2Gb\n1xDJ5cIiRfCIUJzsoidYS7UphyJJOAsiCRfkwj6MLZ+FzMRMmzttFA4f5qXHHsOXTNL50Y/SW2wG\n4HlrGYdcoMZIclSZw6ed9yIAO8aa2R9aSvf8DpYP3M1PArcQGiyDaNBQbmDt7n3ImoYmQOdAjuwi\nG4lPSzSv/ATpB4fwH30LjddfQuDdC1DDBWJ3dFMenP5O5D8p9IZhvAgk/szXuxK42zCMsmEYA0Af\nsPqvsO9/pbD/MEbFQBl9Cd+159D29NPM27WT9qefYt7uV2jbuoXQrbcg+XxEv/Nd+s7bRPib30KJ\nRF71e5ptMhd9cCHr3zGX4SNx7v36biJDGQRZxLEyRM0nV1O9Gf4lsZSNvV/nwPiX+GXuP+j3VXGR\nFuHDyTS7ZJnc8SLLLH9Hh20/eVT62q9GnjAw22QGc4d4+7AfUU2wp2M9pWyJnj13vYYrN/OoagaA\n9MkyCauKo2jQMpki52tFF4YBA91iI+hxAzZAxlQ7K/SvJc6zVhOUDEzpOVj9Bezuqc1E55CZ8YCZ\n2PAKqOThgQ+Cps6wta89aizG7s/fTMbh4OzNF5FfdhHFnErUVCZbltnQsIPfjV7IJu+jrElkGPA6\nMWPhzvVnExz9FEOmJ7h6WzWyJnLW8TGufOQxrJUK0aAfyYDInBpyH87gmzyP6C1HKB2N4zy3DkuL\nB2tXFYJVonwyTfL+/dPu618TfPs7QRAOCYLwU0EQfKeu1QMjf/CY0VPX/h8EQfiQIAh7BEHYE41G\n/6eH/Enc5y9DcgzScPsHCdx0E+aG/3orQRAwNzfju+46Wn79K1ofehDnpk0k7ryT/gsuZPKrX0MJ\nh1/V+6IZdC4NcuVNi8GAB/55H0dfGp96X1HAtmkjLZdmWdH0GBvEEW43bHxz4gd8LnobUs+3qc2Y\nuCVYRdhS5mbLN0k5TpBzNRGrWsLcSpSCmsOV12lIH2fIOZeKycy+5/6D5KnTmN4IKOrULkY9ESXm\nFljeZ6CLZlKmFnTCCFYDRIl6XUdyTx3OPiv0ry321asIaBkEQ6ImaeJwzXwwDNrHrQyH7CiKnWjL\nu2FwGzw9vdMVZ4Lov/07x+tqsVutLLtoM7t+OTU1dq84gSyouMtFNEPgFv0hShaRHalGvr1+M47k\nv1BdcfAP+96JUBYIFBWKHh+iYRAJBnj+3PPovWgZ1r9zImpWPAfXYKgqhmGQefh51GTyVAhyEgA1\n9jrY0f8RfgDMYapJfwL4zl/6AoZh/MgwjJWGYawMBoOvygjRZqH2H9+DKVj1Jx9r7eig/tv/zJzH\nHsd1+Q3kXoky+n/uYOwL9xP90T7id/eQfKiP9JZBMs8Nk90+Rm7XBNlto6S3DJK49ziRHx5k4hu7\nGPvHl5j85m70Xx1lvWgQcMg898senvt1D6pyKsRyzse5cf1Grm94mvdJW9lmKDznDBLWTazruR5V\nF/lcYxUJuZZbHV/C0NIMtFxGy8jU3cZQ/giXTFgwBJn0ynXkx90cOPC+N4zYq+rU7CF5ZJSYG5ad\nNIgF5mEgIugJVIuMaAjURKOIVS0ggKlmVuhfS2zLluPJDGIIGuXxEI8EN+JWynhyZiI+kTR5ehIW\nWP0hePnfofv+mTb5NUNLpRjbupXxUC2r1qwhM5EjkpTRMDhh97Ci5gBl3cRD7i9Qr5Q4NtfJC4EL\nKWiP4tcCfLrnRhLhl3CUFRLN8/Ck0hybP59XNpzFDfYn6Tq/mZzlGFWHL8LW2IhgMmNu0hFdc5n8\n8o+J/fDnaDEDUKj51AXT7u+rqroxDOP3W2FBEH4MPHbqn2PAH5aHNJy6Ni1omTLJh/ox1zmwLQz8\n0RiuXtEodscoHIhQPpkGfRXWzlVABTWdQD1wHMntR7A4MBRAN/77C4gCktOE5LdiafMi+61IbguG\npqOEC5zVHeVwSeTotnHC/Wku/vAivDV2hEVXsbnjEtbdvpir9QPYUrcx6rJyKNvJkv429szr44dz\nrdx0zMdS54MclG4krizAbjcYzR/juvH1/GhBkYE5XVTveh6TWEt390dZs+YJLOYz+1QlVUkjCCZM\n4RNEfbD+iMHIvA4wymhFFdXuwyTIOAb6EUPrkP1WRMu0pXvelJjq6xCyA9iq2ilH53KoM8C7hRIT\ngou8nCOvpcn2H4GP/RbG98MTn4H288Hm+9Mv/jon+8wzDNbXgQDLly9n579uA8PKsCNMyfCyzrmP\nG5PbcSgahzrdbFXO5rk6sGfS3NR7HQcmH8Cm6rSlSkw6k+Q9Hg4tW8p7uR9jzgaGrQ9gS8ylZeVN\nZJ6YwHluA57NzYzf9hS6sYbiiQqiw4R1YTXlvjSm4PRuYl6V0AuCUGsYxn9maN4G/Ge/9CPAbwRB\n+C5QB8wFXvmrrfwjaFkFNVqgdCxO5plhXBsbcW9u/n1lhqHoZF8aI7dtDD2vIPmtOM+px9rmwdTg\nQnKYUMbGiP34x6QffAijXMbc1oZz43nYVqzG2tGF7HcjWKT/tdrDe/kc3DsnCDzaz96JPPd89RU2\nXt/B/DUhMNmwb/wMCx//B25vHOXakWYedeksjt3ISOuXeFwssFG8jlWuH3Ikew2jDefRqf+aPWqI\nSilOQzbFflcTq3SdoO0TjOU+ycn+77BgwTema1lPC6qaQZbdyOkhtCoJT0Gl19WIVTxByRAwzF6s\nNivKiT5sZ187m4idBgRBQPZDjSxSytdQb85QtjlQVImW8QoZhxUtVgHJBJffDj/cAM99HS7955k2\n/a+mePgIg61zaGlpwSzaODlqwhAMjvpTeCtwfWYH1oLBwS43g/4AvyjdiD36JdaGFzMw9CIWQ2Xt\niTGOLl7CsgMH2X3OWcw3HSO9wEvCuxVLuoV5nq+TeyGKXGPHc2EzgiQSvGkV47c8iuRpAkGi3JtE\ndk9/yfCfU155F7ARCAiCMMrUUSgbBUFYChjAIPBhAMMwjgiCcC9wFFCBjxmGMW3lIuZ6J6FPrUTL\nK6SfGCD73FR6wHNRC5WxHIm7e1CjRSzzfLjObcAy5/+dk2Kqr6f21lup/tSnyGzZQuaRR0n84k64\n4ycAyMEg5uZmTA0NmOrqMNXXTf0+9SOYTAiyiGtdPYvn+/DfeZRdA1me/tlRxo8n2fDu+UjLb4Ad\n/x/vTn2Tk5bvsdmQucMbY03fRh5d8Az3Ne5g4uQG5qnPcLTqLXQNg+CG/vwh1seW8RuvmaSniuxk\nibp572B8/F7mtH3qjN7VK2oGk8mNKZsgkAFdEClIjZhMTwOgma14/W7URBoEx2x8fppwbFjBnKN2\nhjBYlFLY6V9Ma+QYCwdkxkNeWq0pdENHDC2C5e+FPT+DDZ8GZ/VMm/5XMTI8RK6xkfOXLOHwg/vQ\nRROCI0JvoZ5bPD/Dl1H4Qu0FGKk+9lj/AUU9gEkv0XBYQiZPUzaHRQdbWQG7B09zA9VLtpGQy/hP\nXEZN8Z2U8xUESSBwQxeCLFIeypC8tx/ZNwdLmxvXec1YWj0I0vSXDP9JoTcM453/w+U7/pfHfw34\n2l9j1F+K5DDhu3ouqDrZF0Yx1ztJ3Hsc0SYTeP9CrPP+9K2m5HLhu/ZafNdei14oUNi3n9KRI1SG\nhqgMDZHfuRM1HAbjv8I6gt2OfcUKXOdvwn3JJZiCHlo+vhzP4yfZ8+woR3dMkOxLseltbVjmfg37\ny/fg0AZpEFpZSCOPzPkVCwWJbVKERmEjm7y/4FjxcgbkzQTtO4nke7l08kJ+0w6J5jYiQwN0nPdu\nxsZ+RTSyhYaG66dzWacVVc2glOuxZ/fTGtYZqWlEw4xkmcpRGCYLIasV0VUHCLNCP01433IZhUOv\nkLYlaRh38zP/OdwUPkJdwsKJJU7MMQtjPY/RuOAKOOtvYe/PYe+dcO6nZ9r0V41hGAyUy4jAggUL\nuP+OpxBUhXBDN1p4LW9RdzJs9fFbV4WVEzdwqK2LuQO/Zm5vI85ygt45Opc8Mslgaxsdx47iWHIF\nwWX3g+6geffNWLPN6KhIfiuB93YieS1knh0m8/QQktf6Z2vSa8kZ3Rn7hwiCgH15DYUDUeK/OoYp\n5CDw/i6kV3FbJNrtONedg3PdOf/tulGpoITDKGPjKGNjlI4cIb9jB5O3fpnw17+B64IL8F73DnxX\nrOLcJUG8d/eyZzDL/T86zLkuLzbxI/hQMDC4AQtbSrUEzCqHhSSDgV50sUxg/CDj1WtZyiNsV+2E\nkknMqo1oTZBoz2EcjrnYbE3E4s+d8UJfjCwkUHyFtkk4uKAdAF1MggiGJNNYqSB5TlXczIZupgU5\nEMAoRilWRwhFajHNAbOggWHBEAt4CgUGn/71lNAH5kLbJthzB6z7P1MhnTMQZWyciaoqam12spMl\n0qoDXRilFwvr5W68Sokf+zcRSkZ5edFGlob7mGSUtuE55OxOzikdQtYMVGcASRzj6MXP4CRP3YNr\nsVY1I4ccuNbXY18cRCsoxH7STflkGtuSIL63tSNaT7/svmGEHsDc7P594jTw/oVI7te2tVgwmzE3\nNmJuPJVvvvoqDMOgdPQo6QcfIv3II2Qefxxzexu+d1zHio9dScNwhYe/d4jhdh8br6hC/ekG0rn3\nkTfOwpFdxG7vIZZaNXYa3TwfW0ir9iJR03IqqbmAwsnSIdozXoar6omPPY6mKPj9G5icfADD0JjG\nfrRpRVXzMO6mYAZnCQquBqxCAU0tgMmHIAj4x8apVLUgmCUkn3WmTX7DIkg5bNapWULzFJFxe5Bq\nLUHn8AmaVBiOtWDkogjOIKx4H9z7HhjcDm3nzbDlr4549yFSPh+LW5o5+sQR0FWsgUkOJTr4luUO\ndB3u9tbQULmWE5JA7dg2nHknVk2l0JFjwcMycb+Lht5uIgtcOOpG8T7sxLfkb1BjGsEPLERymike\niZH87QkMVcd37Tzsy6tnrLP7DTXEQrRIVL27g8AHF73mIv/HEAQBW1cXoS9+gbkvPE/t176GaLMT\n/trXOLF+A5Wvf5wmpYfjeyYZ37ID/mYLJf0lTIaJy4sFcrpEhxigJOi84PLR7tqDuZxmUDyfGmuW\nicIRzk5YGPE0UJLNxEeHcbsXoWkFCoXB0+LjdKBpecRJg/KpTaFoCuEyj6KmJSSTC6tkQe3vRwq2\nTY0+EGdHH0wXlrk11ApOYo4I87Ow17EYTRKpGyoyIdWwQdjF4w+eqqOfeyGYHHD04Zk1+q+g7+hR\nAOavWsXo8RRyeYxUdZK84mC1cJhxhxu5PMHehlYuHo4xbOlnwYAPxexjnecYzkSRaKgRR7GAtH4C\nKSIw55I7UEbLuC9oQrRIJB/qI/7LY0g+K9V/twzHipoZHd/xhhJ6AFtXAFPQPiPvLdpseK++itb7\n7qXlvvvwXnMNGAatmVcQ0NnzcC9GSqOn5SJyUp6leiuWci1jqoVGk0a3bwRHsEQo/AoZVwfVImRg\nkAAAIABJREFUNoVcMc+iaA5DEJkINhAe6MflWghANnvmHg6haUXkaBYEyFlERD0E9jiVnAndbMXt\ndlM+cQLRVo0pNDOf55sF+6oOGso1nPTvpzGlkzHVAaBVLIhoVJNA7R8iWoiCyTa1k+975r/lq84k\nhuIJrJUKvkA9qaKVspBmSAYPOYJqjoO2Btr1K1FFga7eg5SNcbwFAbOvFtOLDhRZxp6JUw7KqAs0\nGt3XUjoMctCGpd1L5HsHye+cwLmhnuqblsyYHv0hbzihf71gW7SQ0Be/QMtvfk3nPT+j85xaJqpX\n0f/pW1i84Xz6cv206u3ImTnsqUyy3qkRN6d4xFdDTWoXCCLxympAwDp5BIB4oJrE0Akc9nYEwUwu\nN/2HCk8Xul5Ay0SwKNDTXIthmCnaY2AIlMwigYAPvQhgmk3ETjP2xW20lusY9O1DAOplL4pkkLJb\naE6MklOsNBgpfrf3Z1NPaDsP0sMQ759Ru18tEUOnWtMYPTAGgoAsV+jN13CBZaozdqe9ikO181kW\nTjMs6rSE7RhAXdsQnu4Kow0NNIyNUTmrCHkTQceHUWNFrAuqiH7/AFqmTNWNXXgvnYMgvz4k9vVh\nxZuApZfOxRAkBpVGjLvuoWQbQ0DAVV5JwRCoK7fiFOB+j4ca5yCO/BhxVuA2lZgoHMJfVkkGq0kN\nHUcUZWy2eorFkT/9xq9DdF1F1xTU4jj2MozXTOU8irapkUqa2UKd2YTonhppMZuInV4klw1LRcEr\nSaTtGi26iahLYNJnxTxS5JVKF3OFAfJPnWqJad049Xtw24zZ/GopFApkLBZq7XaGdg0gaGUcNSX6\n062sk/djAJPqOUStEuv7DzDqPU7LhBPDXEVtvBdZ0cg4nOiyTm6zTrVjE9lnx5G8FnIvjmKqc1L9\n8eXYOvwz7ep/Y1boTxOeoI2WxQEm5lxA4v6HmO93ETEynFVpwaRW05P3scapcNSRxwhW8CeOIZhC\nBJw6+VyUzkSFWFUjqfDUfAybtZFiaXiGvXp16HoRqejHnIshAFlnEyahiCJNDTrTzRZ8mcxsxc1p\nRJALzC+0MlSVpq4kE7HbqIhmVFXCMlzCTR5bxUmsGIOqNrBXweiZN45j5PhxAOpqagiPlBCUUUZ9\nOpohs0AeIGeRUUwrMWs6dZOQMJ/El5ORHI1YX4asy0nzyDClLgnDEAiG34VR1tBSZVwbGwh+cDGy\n5/V3ZsKs0J9GFm9soKyZSK58K+Z7HyCWeIVNFRFTaj67lFHW2gwM4KU6GX/yOAgSOVrAgAWDJ5jw\nBIlnKxi6jtXWdMbu6DWtgJFpxlYoAiALjfjkIfSMAggYshn7yAiSvwXJZ5mRcrQ3G5LPREexhWHf\nOBZNoGwKISCQD8oEBhIYBlRbUuzsfxEEARpWwci0Nb1PG8O9vWAY1Da3kSlbUIwYJwUTsqBSJySJ\nWO0cqK5iYThKlGbcuan/o0F3DPdIieHGJryZDOkrNczpNtSDBgjge/s8PBe3npbmp1fDrNCfRhoW\n+PCF7IzPvQSA0MBOmhEoZlYSNaUwJTqYb5L4dbMdb+oEgqGSVJciSiqeiW5UUSLiCZJNxLDZGqea\njpTpn3z3WqNpBbR0G7aCSswt4y5XY1gzSHEVyWTHarJCXx+Sv3l2N3+aMDf66Ci1Mu4+AYDFmOpr\nGGisQs8IjCf9NAoTTDzx7NQT6ldAvA/K2Zky+S/C0A0yzwwzfGwQTzpNxRrAEESsokpvMUibZQJH\nWSUsNjJpE1kxfpSwc5DauBVNkmmKdqMLAhVRQqmzIdQohPquAaDqvZ04ltfMsIf/O7NCfxoRBIGu\nDfVEx0tY/uErmEaHKSd6WViux0SIoXgrG7x5RlwSmq2CtTSGJNcScuYg0Y+g60SrakkO9GG1TB0o\nXC5PzrBXfzmaVkTK1WNSVQZq/Vg0J2mnjpEFw2zF7/FR6R9EMHtnE7GnCeuCRhoqNUiEibpF6pQ6\nChaVYZsH0ayT6bXRJIyTTp7q26hZCBgQPjqjdv+5FPaFyTw1RFQp4kskiQ1NfUHZfTKjuVpWSEeR\nDBiWlgHQFS0w5uolFLcimkJ4jqSZDIVoGR0hvVpDztViS87Hc2kLtgV/enruTDMr9KeZ+WtCSCaR\nIaMV92WXIRx/kpVI2HNz6ckLdJhEvKrMcI2BN9UP+KiySQiqQtPEENlAM5GduzCfmnPzn2evnklo\nWgFb3IFowFhwaicU8UpoJQnFJFMT8GHodkCc3dGfJqwd9YiILM66GQmYqKl4iPjKUFYQW0QY0nHm\nc5hlHcMwILRo6onh7pk1/M8k/8okao1MyQTeTJbJfRNgKExWgYHIYnEqdn/AtZzabI5Sbh5x8zDO\nkoxHlLBkNMbq6/CmUmgrcvhHLsDa7sO14cw4y3lW6E8zVoeJ9uXV9O6axP+Zz0FlgqWVMkZ0AePW\nSQqTi1im2ThQK1EVPwGIjFa6MASDpX3HyPrrSJ04iNk8NcO/UonPrEOvAlUtYBufuhNJeKd2Q2G3\nDrqAYjHjEwxE92wi9nQi2U0YapaV6SbCXgOLLpN2yUgVgd45LWBAqt9Bgxhh7/E94GkAixsir/8S\nX72kUhnNkjt1LpFPg0RaQ9fiDJpkBHQ6rL0AbK2eS2NqkKzuxVaeqgJrKPSjiwIV2US52oLuseIO\nr6Hqhs6ZcukvZlboZ4DOdXVUShqD/RVqv/wlmod2Yik1kXCqZEZWsaaqwEhQwJMZBCArtKJ7cjSO\n9BD1+MjmJ5H1qaFIZ+SOPlmiGDsGQMkawBAqZMUKALrJgiuVQvLUgywgV9lm0tQ3FaK1wtLcPOKu\nqeonzTQ1ofK4UI8jVCY1aCcgRtn73JNTCVn/HEi8/mvpK8NZ0CFlLwEQ8LvJmN0IepKTqp1aawK/\nuUBBtjBhdTM3dZKkPUwgI6MLAjWD40zWhGgcHUVZUsI9cRbVVzQjms6c8SOzQj8D1LZ78IXsHN0+\njnvzZuSAxnmCA5laYpFWapwl2qwKlkoGjByyXEWNK4UtlyCvl0hpKtqJFIJgplJ5dccwziTahIKa\nmcQw2bCp1ejmCM5kCgDDbMExNo7kb8FU43jdVjG8ETHVOWhSaslbwqgi2LV5KLKBUqog1wmoeYma\nRIRkeGouDlVtZ0TTlBItAJCopLEoCraqWjTJjlWsMJCvoUlO4VJUJs1THcELJkUmHUMEUmZE0YUt\nrTBWX08oHKbcpSKPd2Jbeebs5mFW6GcEQRDoXFfH5MkM8bEcdbd9kvOzMVzJOsLWKFqkkzWiFV0A\nXRvA0AIExKndQ+N4P2FHG9qhJzGb/Wfmjn7SwJ5LUvLW4y3WULEkcZ06N1OyODD19SF6GmbDNqcZ\nW1cjoiASKuSY9EnU5FuIegzMpRTxoB9BNHD2Z6kYEoqigL8N0iOgVmba9P8VNVZEsEpEEjHcqRQl\n81Qzk+KDomajXopgK+uMWJrwFnOY0nMYco7gz1jwqToAKa8Xk6Eg+Fox1ydm0p1XxazQzxAda2sR\nZYEj28cx1QRotOhUpUPEXBGyw2sRHBYqTh1zcQBBczKc60KXBFpG+kj751EcfAmzOXBGCr0yrGIr\n5UkE63CX/WRsZayJPIJsIeAPUhmeRJDssxU3pxnr4hYAVqRtjPtlAoUQkx4dvaBz1NaGs65EfsRC\nNXH6+/qmQjeGDqmhmTX8T6DGikhVViLhMJ5kikxlapJexDV1txhydGMp6xy3NeAqjpLTQiiMIusC\n1bkIabebQDZHpUUnEZ9H67I1M+nOq2JW6GcIq9NE27KppKxS0XBuWsNSzUfKoZAYX4zh0qlyVqiJ\nT53Y2O3XCKZyNI/1o0gySrEPM9UoamaGPfnLMAwD/cTU4SLRgAsBkbBbwpyroJssVHncCKIXYHaY\n2WlG9low9DIXxKqZ8MmYDBNZ51Sz2ojqxlVfQitJtCSHeXn7s1OhG3jdh2/UeImiS6OiKLgzGSKF\nqWFsJ2UJpylPvec4AtDjrCOQnURHx12aCiXWjMeYrA1RPTJEpU0gEi9ha183g968OmaFfgbpWldH\nuaDSvzeCbZ6fCxULEiqKZsZNCItbpSEyCkDc5eZ3awvYykUyQomiGsGaDKGeYUKvjOepxKbOi0+d\nGiXdF/AhVzQUsxm/ZMzOuJkhBEFAtFZozzvJ26dCFpLZhyGCrCVRqu0gGAQnIoyMR6Z29PC6Tsga\nhkHf6B4e3PIVrGMncWazJCsmDL1An+KmyRrDK08laUctNcyJqSRsYbw5CQMBR0lhMhSiKp4gFmyg\n0aKdkYejzwr9DFI3z4svZKf7+VHMjS58JgfBtIOSlCefXYvZpWIvJDBQWD6+BO1UAUqWfWQzJqxj\nxTOuM7Z0LE45NYxhcVGRzRjojLqdCIaOYbbgOTXjRnTISM7Tc6bALP+Fqc6BKEiYpSKaoOMvNpD2\n2BFSBQYt9VirFByjOXRD4MRYAiweSJycabP/KEqmwL7IUxiGjimTIC+oFA0HCHkmSj4CYp6QPnWs\n9Zilhtawh37XCL6cCasuggBFtxdLpcQrtrk019fOsEevjlmhn0EEQWDRxgYiQ1kik3mkgJUGtZaY\nc5x0bBEFjxkBENUYZr2GpaNLKFpE/KkIe0UbtvgkqpqdamA5Qyj2JDAyQ0ieZkTVQdaSpCafBKaG\nmTnHxpB8zZjqnDNs6ZsT++IWBEGkoZAj7lIJ5BvotwdQCyKDehXu+hJGEuyFPHffcw/7rGe/rkM3\nfTt3ohoVGtdegma1M+p1oMpeKhYV3ZCwyDE82pTQpwUT1lwD445hfFkz3lKZtNePu5hGrYX/n703\njbElPe/7fm/tdarq7Kf3232XudusImfIIS1RpkxSoRzYUoQkkvzBjBNAsaIAQRAgcBDYQAJY8Bcj\ncIAEiIFEUZAgRuJNcizJEilZ4jIkZ0bD2efuW3ef7j5rnXOqTu1vPlQPOZIoiZy7dPed8wMu+vS5\nS/3fma7/eet5nvd5DoJTbF5+/ohX9OFYGP0Rc/FTK+iWypu/v425WeWSqBOafdLAI2yWZqdmPbTM\nQbMN/EaD5ZHNv7qgY4Y9pEwoiuiIV/GDkU8SkjtDrNk+Wv0UStpibO+zNCiNXjEr6NdvINzlRSL2\niLAulLXzl0ch3bqgHa7zrlsezhsnKs5K+bO2tHdAnuf868kFJqPjWxBw7+030BWTxHXQG0uEpgmK\nR2iWoSnPuY4V5fT1OkrcR0iTyLiHmSo0xhMO2i1a3S7DFYe1zKdy4cePeEUfjoXRHzGGpXH506tc\nf/WAvG1zPquSazOCXKA4KwitwEq7KFJnUIkZeeDOFfachJHoguTExOmj94bk/jZCFih1F5ms4ls9\nmoOyXK3eXCHbnSKEtojPHxFqywJSnh/DQd2gklYpTIFSLYinMUoNMOGJ/XIXn0uFdyfHN2l+cPcm\nDWOZcTilqtuouAihMNbA1uZ4zi3UWOWetYI7GSEpcLLytHl1HtHvtGntDXi3vslTVh/cpSNe0Ydj\nYfTHgGc+u0GRS653Q6qygqpkBDk4ydMYbo432QWgMt/kXr3c/XbGJt+sjNGixomJ08/fHZBG5VpG\nnkRIk7E9ojrykYpGp9FEWOWNZKwvQjdHgRACrSVYi1xcvRzIvpSrDJ060RjuROdwl+fU90cgCwwV\nruZrEB2/zUaeZQwO7lE3lhlNxniTCZpaVnRtC5UNZ5e6HqNHCjvmMlt9Qc/qUQ/Kv+9FCf12m5rv\n82blApvLtSNczf2xMPpjQH25wuZTTd57vQ8S2mKZqTZjPn8Gw83o9G8D4KZLdBu3yRWF5VGFV00d\nb+yeiB29THPi62OiyS3QK8y0sntgvzLDDaYUhkFDA7W+CSpox2DO5kcV68k16lR5vmzFTiezeFe5\nBMB7YRNnOUGNCqqTKVkB26xSHG5GjhPj/S55nmGbdfI8x+j3yQ6N/lpRoWGMWNYLvDhi21zm4n6d\nG9W71Gc6agHoJhgqGilX9AusbZ472gXdBwujPyY889kNwknCnqGyaS0xtvcY5mvoXk7TH5CJEC3z\n8AqPca1Fa+LyhmHiTTWy7Pj3BI9u+Mi0oOjdRa1uUJABMHAj7CSiMCzqswlKbRN9pYJQFq0Pjgrr\n0jICwScHIyaWTyfxuK48gbMScm+q4C6XcfrlvT0KCTEmw+3jl5D1Dw5beDtlGDCNAoRaQ8qcgdTR\nFZ9lI8MoMgZaldZ0hV33Ho2JiRfn+M06bjgm6Bg4Ss7ShZOZiIWF0R8btp5q4TUttlPJZuISGz7z\n1Cb3TJRCEmpT1MxhbdphVK1Rnwq6hkoWpidiRx+9NwRdoI33ENU1cuGSqCFzU6Cm5WEpb7usuDE2\nT+4j8uOAccoDJFkxYmKP6URNxmoVvZ0wjxR6SgXDy9jY3wHKiq/dneM37Wy8Vxp9WilH+4WiQKVK\nos5BgBS7eMQA9IWFgopfuUtjqlMNZvTrDWrDMd1Ggy1xgLr6zJGt5X5ZGP0xQSiCJ55fYt9PcCcm\nusgICoFeKQeMZCJAyypsTdoMXR0zLXDnKgdFQJYHR6z+z0dKSfTuEL2TouQxWdViWpSJWCe2EIBq\nOei3ewjVXMTnjxjFUFFrCpGIcdQ59aiJTsF+sYSiFbw1XqGyFNM6GCCKFJD0B8evXbZ/sIemGoSG\nRFMUxqaKqlRJtbLipqXdQ41LC+znGpICQ+yhFQIvShg0GtQPJlyvnOKiPQLj5BYILIz+GHHu+aXy\nUTiqYAnJLJdolTIuqAd9BCrVZI1ePQWg5Zvsijl5NjtK2X8h2UFI7seQHfZEqY8YZesM7QNqh9Lr\n9SWKw5zyoob+6LEudFCFyrLQECh0RMBr6cepn5twZdpBtAVqVtAYlWHD/XF4xIr/NP7BHq7VYCpC\nHEUh01QKrUGogK2FLGshSeQBkIQuQ+uA2mF7BC9KGDUa1HyfN8zzPNs52aHEhdEfI5a2PLy6yV4K\nllthSExunkOoktq47HmjFW0GtSGFUGj7Bnf0+Njv6OPrZd+Q4Go5jUit7REWTUaVLk2/3F112sso\nlRUQEn15kYg9asxzDWxpsUZ5HHtZxHyn+THq5yakhcpOpQpA56AHCPaO4V5jNhxQ0TzGeYAahQhM\nUCwGqmC5ckDHzGFuEyg2jWGNO94dGtPyNLYlC+YVm+pkwk17g/ObJ2OS1J/FX2j0Qoj/TQhxIIR4\n6wPvNYUQvyuEuHb4tfGB3/tvhBDXhRBXhBD/zsMS/jgihOD0c236mWTVbjFRfTK5heFmrI2vA6Dm\nFZpRwrDeoj2pcE+HIhwdsfI/n+iGj9q0iG7tIOwmuVImYkf2Po1ZihSCZdtGqW+iNlSEuth/HDXm\n2RrV3GUrbxOpAcu5IEoNXvFexLESrs3r4MFS7wCQTDKN/PCE6XFhNhpiKS7TLCCdTagm5YfWriKo\n2Qd0bIkZqexYS5wa1tl1t2lMTYysYN70MIsITaZErk3n/MePeDX3xw9yR/3vwBf/xHt/B/iKlPI8\n8JXD7xFCPAn8PPDU4d/5n4UQJ2cMyzFg8+kWOVCLHTLDZ5Kvobs5q9MusZagpTZnBgaDxhLVmU5X\nU9H2j29/bFlI4ps+5tkacnRA4a2R5+Xj8tjepzbLKHSTxmyMWtvE3Dp5DaMeR9SqiSl15uqckdOl\nk1io04TftP46K2dG7MxrFMuSdq+HViRIBOPx+Khlf5cizwnHY1RMclmQzAPcpHxSvIuGoQ9w3Qwv\nDjnQ6tTjNkNnm7Zv480jhrUmXugzbjosKVO09eeOeEX3x19o9FLKPwT+pJP8NPBrh69/DfiZD7z/\nT6SUsZTyFnAd+OQD0vqRYP1CA0VAOjJJ9SnTwkB1TJxgzkSPUVObTlQnsD2cCHpSRxsc3/LKdHeG\njDKMUxbK9ICs6jAtVikomJoD3DBFGhbOnX2E4WCcXhj9cUGuGtwz9onNMe24jkihq6wRPlkBJAc1\nGyPNqPvlE2XvYP9oBX+A0B8jZQFqGYpR0hhdlLkfX5Ho8QSlktBKRvTUCpKCyN7BC8tEbK/epDac\ncLfaYVMfg1U9yuXcNx/2GXlZStk9fL0HLB++Xgc+WGe1ffjen0II8YtCiFeEEK/0eidvHN7DQjdV\nOi2LqW+RGQHTokB1myg5DNMCLXewZI1UK3+AtblJPDq+J2OTu+WHULH7HZA5ohkwyjaYaSGFKKjM\nU0zLo+iWybxFxc3xwT7t0jV6mHqCJnUahUD3I/5N6/Os2VNuiXJSU6tXGv3dG1ePUu4fYzYsq4By\nreynb4Uhc7tBLjJSAY18yCyv0sx8DnAY2wc4cY4iy0TsuNakfjDhqr3JhWp2lEt5INx3MFSWrRN/\n6PaJUsp/LKV8QUr5QqfTuV8ZjxXrp6sEuaDi1hjKBOGUsyyLeIpAR6VCUQ7JoT7VGc+Pb4w+2Z6i\nuDr+y68CYLX3GGYbDM0AO1ZRiwKv3qaITaBY9Lg5RphnakyVgNrh3N6loqC12+UV8SlO1QNGqc2w\nUaG9X5rqzu7OUcr9Y8zG5T2RaqXFLQ/GBNUlUiERSFbUAeO4bLcRxjV2vJs0puVN5SQJM9elNvG5\nYp/mRza8o1nEA+TDGv2+EGIV4PDrweH7O8AH09Mbh+8t+CFYu1SGL1pGk4k6QVTKAQ9L87Lvt5pV\nUFRJqqo0pgaj4hiWPByS7MwwNjwmV/cBgesdMMlXmdpjvLDcbbUanbJtsVMgtEUi9rhQWW2gZAW2\nmpOLjBUxw+pPGYgO7koBSLrLLp1eD2TBcHx8Du7NJ+VT7lRNEGlCaxaSGG1mqqBpDVk2UuKoDMeI\naYd7tWu0JuUmQ7UVpKJQ9Sfcqy7zsScvHtk6HhQf9q76DeBLh6+/BPz6B97/eSGEKYQ4A5wHvn1/\nEj96rD7TRgHMeQVfH5Lbl0CRXI6+A4CWmLhZxqDRojHVGcv50Qr+MyjinOwgRF93kSMfWWmh5ToS\nFb8y/K7RL9sGav00xubJ3zk9TliehznLuW3tMKx0WS4kWVJaxk67zao1ZWwbmElCyx8QRvERK/4e\n82n5oTNRYkSaUA1ThKzRVyR1+4BORYV5GSbUp2c4cO+wNKphpTlB1cMoIvQ8JXVMauc+cZRLeSD8\nIOWV/zfwEnBRCLEthPhPgH8AfEEIcQ34/OH3SCnfBv4f4B3gt4FfllIer5qrE4BRM2kYCsnIxNcG\nJHIDw8k5E9wiFBISCy+V9Jsr1Gc6E+V4Gn3anYEEbdVGmw0onCrTrJzQM3aGeKGJBJbGCUK3sJ9c\nO1rBC/4YumGiTENe8l4ntPp0Yo+ZsKgnQ173LnDaHeEXBomq0B72yAuIouMxG2E+naBpBqGWo8UR\nqlLOJ76nFFhqj0o1w4glGQrzvMPcGtCcqnhhhO/VqIY+/ZrHmj6BSvOol3Pf/CBVN78gpVyVUupS\nyg0p5f8qpRxIKT8npTwvpfy8lHL4gT//96WU56SUF6WUv/Vw5T++LNVN5mOLQs+YFCaqq+BO5gyU\ngkLWqGYF/cYKlVhjnAtIjt/JxGS7DCkNh9eQswPwBOOszM33vSHV0ATdRN8rzcE4XT8yrQu+PyIK\nmWgB0phh5xVUXDZ7N/hq5UXOuENAsNus0eyXFnD79u0j1fs+88kE03ZJ1XIaVlBpAdBXwchHiOoc\nL5kx0Dx2vdsoBZhJUp6IdZtURxNueaucrxy/++rDsAiIHlOW1x1AoV5bwidBdTzwBYExx8xd1KIg\nsstQhx+55P720Qr+PqTdAMXV6f3R65DH6LUp/fwUgZITWnOqgYZu2BQzHWSC1raPWvKCP4Fdsamn\nHjOrTMMty4Tmzj5vVy6xZAWYIueg7dA8rLy5c+fOUcr9LvOpj6abIAS12QS/2gZgrBS4ic+e3mYt\n7nGgVLnbeIf6xAEkXpTgew3qBz5X7S2eXtaPdiEPiIXRH1NWzpWJoqbRYSpmqE4HmSm0nOuYUiXP\ndAq9LLGM5g55//gNaE73A/QVh/n1snzWqfXZy84QGTNyIqqBglupIKwVFCdFiJPdT+RxxG006ERV\ndr3SwJeVCUZ3TqIYDPUmy3rEVFNxpyFmFLF32DHyqJlPJ0jKn6fGeMq4toREMhOwIobcZYuNeI9h\nUeVO4x02++WTpvt+xY0/4Y63wicvbB3lMh4YC6M/plTWPGoqMHQYqROEU/7AXaIsU/SjOoqikmiQ\nRxb5we2jE/t9kIUk2w9Rlyz0Qfn4W3d7TLMVpDnGikOMDFquiVJdQ19b9Lc5jthelepMY986YGoO\nWC4y9GIVS865Zy+z5k6JFY1IU2kN+4xGx6PUdz6d8H71e2vkM3VWSBUw1JSLesE9uclq3OMaLpE+\nY3PYBAmKDYWqUvUn9KoNnnj2xSNdx4NiYfTHFK1j01IVgq7GUBshnQsAnIveBiDImzh5ysgz0EKN\n9Mp7Ryn3T5GPImRaMK7EVKYTpKIiLAukhdTH1KdlArmjghAK9tMbR6x4wffDdqtYfkKgzskMn07i\nklnrbGR3ueqeYssrB4OPHIvO8IDZ7Hg02JtPJ2SyAClp+FMKfYWJIqmZA5ZdnSBuocucNywNIRWa\nUx07ywhqHnoRoaUJWlVBra0c9VIeCAujP6ZoTYuWoVDkCrGjU9hPgpBUB2MyJUUr6njzkHGtghOq\nFLvHIzb6Pul+uYvvzrvosyE4LuOiNPPEmFGdla2WO/NyKIT9zMnuDvi4YrkutWF5HlLTImpxi26l\ny2awyxvOBVbtMYooGFcsOt0eWZYeeXOzPMuIg4BU5qhpjECg0GBPLbC0AyrVjDy2yYBXan3qk3OI\ndEI1jPCrdarzCftekyec4/Gh9SBYGP0xRagKS51yOHOneYpYWGgVgdZTEG6Peq6RTCXDmocTaQTp\nhPKQ8vEg3S9vkoO9OxD2URyFflqa+Z4NtUBDAmbUQeZTVOfxSHo9blheleZER0iBtGYIFArzJudm\nM65UzqIKScOKGdYsauMpSEm32/2L/+GHSDQr224kqoIaz/hnn+kACneVAlMOCGqSWhJzycbIAAAg\nAElEQVTwm67D1JizOXgKWYzx5gmjSpPqyOeGu85z7ccnZ7Qw+mOMu+riGQp22GJCjOJWYKRQa9yi\nVQiGgcGwVp6iPchjoitXjljx90j3QpSawaQbUAQDDC/kTn6BTOTcdUy8UEcaAsU4j+qd/F4ijyu2\n66EVCp24yXu1MmzYEiErPlyvbAKwbCZMTAMlz7Hnc27dunWUkr9r9Llm8trSVb59uQy/DNUCLwq5\nVamxNL/NP2rU6MzWuDQpq9e+V3Ez5Y63wqcurB7ZGh40C6M/xuhLFVoChrcyBiJEcdpkE5WKvoMj\nFQZpnYlb1p7vJzGT3/zqESv+Htl+QNQWWNMC8hjHHbOXniGzfHzHLEsrzRxhdTDPLDpWHlcs73DA\nyLTBd2pvIEVOO1zjLXmbgV5lLiwaRoZEITR16qMxu7u7R6p5PilPxYYVhatLe1zeLUOG4dq/JFx9\nj18fjPgdvoavqPzYjb9BNSn/vBMnTD2Pmu/TrzY498zjkYiFhdEfa7TlCm1VkMY5fT1BcbYoUoVG\nUTYItaXNXFQphGSUaczfOB619DIvSHtzDqwpzVkCQMUNifIlNGOPoKJQDTU8o0zIVp4/e5RyF/w5\nWG7ZJmBt3KRQCmJjSmtynm+6r7Gav8tda5WWWbY+mNgGzeGQ4e7Rhm7eb3+wUx9QKJJmskmoT8jr\nr1EYcyZ5wbkU/uE9DSteRsRzhATNKrtdVv0Jcc3Gaj8epZWwMPpjjb5UoaUdxgktF+lcAqATlobe\nzgXKRGdayZhEFchNsn7/qOR+l6w/h1yyX4yozkozFxUVtahgs42UCWaqsqxnyCLDeowekR83bPfw\nPEdQ4Wn/DFcbr9OM2kgp0P3f4EZlgyXTByEZV23a/T7REfelf9/ou16fxlQQay4Tc0R265f5lehH\nUVb+S/6n/R6dYItcm5EnMyppStBw0YsYPY5pNBV4jM51LIz+GKN1bCxVUPN0TLWJcMpH0EZvgKJF\nrBURxcRk7KaEsYHRbjH7xktHrPp7FTcHsx6Vw3K70CpHFiTZjOq0PC6/pBoI/EXHymOM7ZXxayVN\n+fytZ1gVFjqCjf3PMg2v8o1KA1cbYdoFk5pJzfdJ8vxICwPKw1KSgT2kPpVUoyXGuUdDpOTeDD9r\nUM9mjLNT6PqIPPWphhFjr051PmbPbfPM8uNj8rAw+mONYqioDYuOp9PrJsztMpZtHIDhdVkhJw5s\nfCclj1VUKyH4+mtHrLrc0RcU7A96mOEYYapscw6AA3Qaftm/fFntoDUfrxvqccPyPIRQ0LKMvgj5\nmcmny/cHn8QSBn+g76CIHM+QBLqGFUVkqsJ0enRTz+ZTn2klJ1YTwkoLM69wD5fzmcUNL2czKp84\n/GyVXPWhmOHNE4ZOi9pgwm1vhU+eWzoy/Q+DhdEfc/SlCi0kaZyzrygIu0I+UbGtXWq5SZZbjF2J\nkBCkXeIb4yMvs8z6cyZuip5rEA5QHcmt9BKSgp1KlfrhjsvRljEvPl431OOGoqjY1SpaURAbBnpW\n9nlXM5eflJcYyx4vWyZNNSfONXJF4AYhd64c3bSp+WRCr1Ge07CLMiy4rxZ8uljhrYrHmXkZ+vTz\nVURePl2+X3HT2BuzX2ux9dTjNQF1YfTHHG2pQmNelh9OhETxVol9nVqxg55VMAsYuWVf90l+gDDX\niK9dO0rJZP05Q3dOVVYogh6mO6eXbYI1ZtTsUJ+GxGaOEEu4n3nqSLUu+Itx6g30oqAwDIrxDSQS\nr9D57OgJEDb/pOrR0goAppZBzfd596vfODK9M99nVM1AQivYQCLpq5I1Yq6YW1wKbgDgF030pOyc\n6sQJk2qVuu8zbVSprp/8YSMfZGH0xxxjzcGU0FqpkEkFpXqWeKLRodyVtHIY2+XBqnE+Qu1cYva1\no7vJoDT6gTqllpvI+RDLSYjyDqrZZVxrUZsmYMekUkdvn+yhyx8FKrU6SiFBURmN30ZTBY1CcDCp\noTsf4/cqNql1aPS2QdWfML55dE32Rr0DfDelntbYmJ6lUCAVsJv9U65xieem7xEWNRKtQI1ihJSo\ntiDXNGq+j7diPFaJWFgY/bFHPxyWvdqxmYSgVjegEKzNypYHZ9OAVNiEpmQQz1GsGvOX3zkyvUWY\nUoQZB+mY9kwBWaC6BWrhURQDJl6dagC6GZPZ5pHpXPCD49QbyLwsk90uungKNHLB9VBn1dskF4Jv\ntwNQJH7dpub7yOjo+rhPx2Pa2iq5ktEO19nVA1R1wrwyoCeWuRzcop+eJtInyHiGm6bM6i52OiNU\nTZ49Yx2Z9ofFwuiPOVrLRlgqS6bCLIPYK6cwuaMeQknYkAmkNmO3YDIvQzjJXoosiiPRmx4mYnvB\noNy5A6lTR5Eq2WzCXJFYqULFjFC3FmWVJwGn3iBNQpCSiefgyZiqFNzMFc6oM9ZzjT/yIlRbIXA0\n6v6YXFMYh8mR6E3SgC/OPkNMgZ663NETdCnYXT+FInOWkxHDbItEHyMTn/osYuQ1qI98btdX+djF\nx+9cx8LojzlCERjrLrUgRdUV9itLIBSSsYZjdmkoCkVi47spkwTQMxR3k/j69SPRmw0ixiIky3Oc\noKxn3jXLipt4nlCZHZ4BMHLsT1w4Eo0LfjicepOiyCHPmXkuRtpHIJgpOpuxz6Zs8Y5doOgqoaZS\nCeekus5Lb95+5FqzNEXzPKSQdGZlb6WurODOI24sX+RSeAOVgkG2SS76iCKjGsYMnQ7tbp/deofV\np3/0ket+2CyM/gSgb3gUByGr52r4aCjOErOJQ0u5h104yLyC70RkskCuK6jtC4SvvHokWrP+nIEy\nBQnmfAgCbqtlYmtUN2mPSqNf13Tsc4vWxCeBarsDgJ4kxKaN6L8BgCxczoQJjnaOQggCKyPKdXIh\nUIqCq19/+ZFrjaYTTnmXuWN2WZqVJ1u7qqST9njHe5a/MvkaANOig0jKUZfePMGv1WgORyTtClrj\n8eukujD6E4Cx7kIuWVtzCBKBUl0nHlmsiDuoqYeWekyc8hh62IxQzCrhHx1N5U3WnzO2IyoYEPbQ\nKjm9YguhBQzaDVqjfTKlYFO10PVFIvYk4B0avZXkFIYB3W8CYGZVlscZM/M8S1nGbi0EBIGp481m\nzK++/ci19vojNo0nuGLfZmm2SaDkxArUW3N8pcEnJ28ipcAXLfTDQeZeFDP1POqjEWvnnccuEQsL\noz8RmGdrIKCjCka5RNY2IUioH1beNKIWvlvWDfujuwAkO/Mj0Zr154y1kFpeRYZ7GG5GUrQQao9x\nvUNzPGbiZDiGhqIYR6JxwQ9HtVOedbBTkLpJqqZIIfFyA39aIbR1XohirjfLQ1LvV97Y0z6TKH2k\nWnev7LFSLHPH2GV5doZ7qgQkB2dPYcmQy4Nt/HyFhAlqHGLmOUnVxEwiDrwWP/F0+5HqfVQsjP4E\noLoG+oaH3Z1huDr9avloqc3Lgc2duEZg5eSKwt6d2wg9ReirpI+4i6CUsqyhz6c0kg5F0Ed3Msjq\nFOkQ32vQnIRklZioerTDKRb84NheFU030LIcqZv4tokiMuqF4MasgrRSXogiutUYCfgNi9rExyXi\n1TuPdrSg+2aCJlWSQqGSemxrBaoteOfUc/wEX6YRzhmmG7zw+7+KGvjU53OG9Sbt3oC3Ns6x8eTj\n07HygyyM/oRgX2yQ7sw4db5O1y77gKdj0ETEqcQEATPHZv+gi7HlorUvELzyR49UYzFLieOYaRrQ\niE1kPCf3XJTCIk5CAt3ECyW2NSdYPpqKjAU/PEIIqq0OpBFSURhXXVQ5pZELbmYGDb3PxVQlVyWp\nBYGnUfV9FBVeuT18ZDqzYURlWtDTR7SD8h7ZVQvS5QqVPOBn5/8UV58yyVr4joEsclp+RK+xTH00\nYvfUCuLU43Ui9n0WRn9CsC6Vw4uXqzoDYSOcDtl+k7Z2i61MBcD3LGbzCZWPbSIMh/DVRzuIJOvP\nGYuyiVl9Xia69p0z5e9pEUpcVuF0jJCsUX+k2hbcH82NTdLDvu2B42LG21Slwq7Q2Si2kdoS9Uxh\nVskJdA0nCEkNg3duPrpOlrNv7DJTQm6ZOyzNNslEeSJW1nT+09H/yKl75c/k3Gjw0vPPAdAI5oya\nDfxajedXQ9Afvxp6WBj9iUFfc1GbFo3BnFRCVN2EQURLv0UlaYAUDKsGRRYhOmXsO7nzaA+tZL05\nQ6W8mSrzcie3bZUllJGdYh2WVp7WZ+S15UeqbcH90d7cJEqnUBQUuoE+K3NBGTXORDPuWWs8F+f0\nvYh5Vo6FlEIwufIeRfHwey/JtCD49g6xjPl/V3dYnm1xYBVkAv7jb/5/fKz+Gs7QoZAqse1Qd26h\nihwvShjXa7yz9QT/7nNrD13nUbEw+hOCUATuiyuo2zMqdYOutwnzIRWlh5QmtahN3ysPTO1du4nQ\nI1CWyMfjR6Yx7c8ZqQHkCua8B8BAP4UQIX7Tozm6SyEkT4sCxWo+Ml0L7p/WxiYgUZKIwjBRpuWH\ntpF2WJ4UbFvLfCyaclCdI6VCaGgYScraaJtbg4c/ZDt84wCZwMiyeK0a0plt0s0LqgjWlS6KJnET\nQVjUUZ7/DYpxjnd4IjbWdRKpUrvw+NXPv8/C6E8QzqfWUFydNVXQt8uErDktd0/t6RYjpywLu/b6\n6xhbDmrrPMHLj65tcdYLGRtzvGQJEd5D0QsilsjzEb7XpDXqMbNzWpqNpi1KK08SS2eeAMCKYlTd\nIqMM42jzBunEYmJZfDwOv1v9NbVNqpMJG+mA1+89/M3G5HffZZ5M+e1THVqTHL0w2VMLLkUqtc5V\nhJS05R5CjegNTjEfmbSHcw6aSyhS0FYmsP7CQ9d5VCyM/gShmCrVn9yiFWUEXplscg40FDKWgw18\nq0xw7mxfx/n0OYSqE7786E7IZv05IzmjlXbIwh00J0dmTTJmjG2Hph+SmxlzS0PTvEema8H901hd\nwzarGOEMYVcYW5JUpjiZwXZgk5qSy0nK1Ck7rfoNk9rEpyEDvvOQjT4PU7KR4E68z5dXDU6NytBl\nV5OsE2GsBli7JrqIGVsOV1+5jABWRzP2l1cQAp5ds0HVHqrOo2Rh9CcM54UVVreq5JrNuLJEMRpR\n17ZZDtYoRECqm4yn+1jn28giJdl+NNUtMpfMhhPCPKJeOOTBEFmrIHKLTA8ZazNqgaClzwicDH2x\noz9RCCFYX71IMR2SqxqJoZPJKY1CcDMxEFaEJSWtrEpsFMxqKlV/gqlkvL07eajaJr/7BkKo/H57\nzsBU6ExaREqCLyQ/rvxznNU5zT0VCRzwDMpkgCYFTpRwsFzWzf+lFz/9UDUeNQujP2EIRbD0cxdo\naIJh7TTp8AZ1c5/GfBUlDwhthyyZEU1CFHMGyjLF4QnAh0k+ihgVZSK2KjUIQ4bV8qkjs1LU4AoC\nwTPahFl1jm60HrqmBQ+Wp5//K8giRb/5FgC6DKjngnuawLLKgSSbqc3YTQh1HXc2o1A13t31H2pC\nNvjmbbLI5/ZaG5HPWZptsG/6bOYC7AmqUbAaDhDA/mwJbT5jZRoyaVaZWjZSSlrPfO6h6TsO3JfR\nCyFuCyHeFEJ8RwjxyuF7TSHE7wohrh1+bTwYqQveR192OHWuRuydRUkCvDzFyKrUkoKJW0NJIm6/\ncQ3zbBXFXWb20usPXVPanzNSZiAFbhogcjg4LK1M7BzPL4c9PGcOCSsCQ18Y/Ulj7cnLrDc/TqEZ\nSEXDSXtUpSA0KqylAQd6kycyychNCfIyfCIVgTUbcWf4cCrAijBCZjV8xWev1eaM36cZrtLVYz5e\njMg2fPSJpCZDcim4sT1CKioX7+3TXVojzzUaroGiqg9F33HhQezof0JK+SNSyvczGX8H+IqU8jzw\nlcPvFzxgzn1hk0mt7AppHZR9blaDFsPGEqIouP7uu3g/fhmA8OXbD11P1pszFAFq4uFE5YndobWJ\nlBH9yoDWOCTRFFpmTOCoGIsd/YlDbdlcqr9IeO5pTNWkiLoIBGq4QWcsuGct81QWMHZTikIl1lTU\nPOdSsM273YcTvpn87isI1SRUFW5XPS51fRRUuopkKWpRPd3Fu2txddLm/7r7caJ5gKdYmFnO9qkN\nKkrGx1741EPRdpx4GKGbnwZ+7fD1rwE/8xCu8ZFn5XKTubdCrFnYO68hRUo7WGenvQLA9s51jLNL\nyGRM2s0eup6sHzLQAtSkhh6/C0CgrJMpY67X79KcmORmhdReplAE+mJHf+LQmhZVWQFAVzRCUSZZ\ni9kKYVBhYFV5Ju0T2GWYZmobOEHIE1GXdx5SnD54+SZSFsycJoGuszRIkBTE0qB55teZ3LT5+jc3\n+Vc7lzmIq4Srm1zY3mfmVdjv1AA4+8Tj3y77fo1eAl8WQrwqhPjFw/eWpZTdw9d7wPc9GSOE+EUh\nxCtCiFd6vd59yvjooagKa1t1xtUzyPE20txhaXaa3UbZaXA8OyDLMhR7BuoSRfxwm0ulByEDZuhC\nI4zfQqqCIm8TG1P2zBs0pga2kpI2yw8iw1jU0Z80FFOl0nKxFRNh2uSyjMvLsMXeXGFmGaxmfYzD\nW95vlCWW69mIdx7Cjl4WBdlQIGTAl1dLLe7Eol/ZZT11MJQr3PvDNZbNGV/YugEXLmIYLsv7+9zZ\nPM2wcNFUhbW1x/eg1Pvcr9H/mJTyR4CfAn5ZCPHjH/xNKWXZOu77IKX8x1LKF6SUL3Q6nfuU8dHk\n7AvLBNVzqHGKqu3TCTZJSZEIRDJn+9odzPMNhGYRfP3hjhcc90cUZLQKF/w+SWcJhMa95m3qMwVV\nwproM297qKqDqtoPVc+Ch4OxWaUqbdJqDWSEJKeWq1zNLFKrQJc59WKJRC2Y1ssZrBUlfiihm/lr\nb6C4p8AxeKkR4SQFXtim697jyZWv479psGxP+fTaNs9Wdlk3B5y/eg0pBN1nPWp5zNbpM6iPeXwe\n7tPopZQ7h18PgH8BfBLYF0KsAhx+PbhfkQu+P1vPtfFr5diz+rCLXhh84uAOqaajJBG33rmO95ef\nRhY5wat3H5qOIsoYBGOklCzlHto4wm+WQx/ebr/GqWH5eksfEnj6IhF7gjG2PBpphWmlgpkVKMxp\nFIJdYaDpZYhwiWo58cwoK2+kUNjzQ6YPuGXx5MvfRigqsVTYcSq8sJOiSY2u3WMteoUs0vjc8nWu\nVMpGZbfSgCeuX6d3vsbbrTaWKrl06dID1XRc+dBGL4RwhBDe+6+BnwTeAn4D+NLhH/sS8Ov3K3LB\n96fatpmvdJAIVu5eBeD8MCR0XJQ4Ymd3F/PMBsXsLunBwxumkHYD+mJKDHi166jTgr53llwk9J1d\nOpMlZk6NJXuGb6eY1mJW7EnFfqpNHZdYValmEi0b0M4FgezgHva4WVPAd1PCwkCREiWXNAi50Xuw\nrRCSm30ArojbxMYq53diCgr65oh0AJ4VUVciVAt81ePs61P0LGP6xZxaX0cIFkb/A7AMfE0I8Trw\nbeBfSyl/G/gHwBeEENeAzx9+v+AhsXlxj7ndprF/l0D3aYYOo1YTkSXsjcpUid5KEWqN5CFVPqS7\nM+4wIy10dO2bgGBsbtF3dmhGNRrDIaHboO5ZTBlgW+sPRceCh4/qGayeK///6VKQZfu4UmEebkBk\nkQiNjnbA3AaZa6SKgpblnI+6XD+YPTAdUkryQAEyvlG7TaY51HsZe94tlsUe832Ly06P3fknOJe8\nydvhKZ555ya3zm5ypb5KXUouXLiI5300Tmh/aKOXUt6UUj53+OspKeXfP3x/IKX8nJTyvJTy81LK\nR9eQ+iNI59nbjL0tzFRy4N5Gj1YZrrQRwHzu4/s+zotlPfv0K28+FA1JN2CkBKiZTRJcJVc05soa\n3epNzo0uYUchqYDaxeeJkwOshdGfaM78dNniF90iTsvmZulkg/1Yp2u1WBZdhFKeOJ04BvY85FKw\n/UCNPt3ZRamsIHT4ZmNCY5pjJ3Cr9TrPzH2kFGzYU8b1v8l60EX9ajmw/M5nO1S2PWJh8alPPf5l\nle+zOBl7wtHrkn7nPALI5C1IV9D1MtGpJBH3rt/B/eyL5JMdoisPp+dIvDsjV0JOaSlqN2HmnUKg\nMbZ32ZyWpl7LfeSppwCJZS2Ggp9kvEYN2zBIKg4yKyvmaqnJtdhiUHHZTPYwZNl0b9ixqI99NtIe\nN3oPzujnb72NUt1gpqbccTUuHbb6uN14k86+jqvFRP6TdO132f1mHa8f861PvQidKeNgk7Nti9On\nTz8wPcedhdGfcFS9gjxdJjuX+zcB2PLL5kxKXBq96joIcUCRuBThg02IyVxyb3+PuRqwuXoXZzfD\nXzoNQEWC6Y8YVxs8Ed9j3ilN37IXO/qTjBCCztISk2qNmgwR5HRyhXupx9zWOB3touhPkCkFg7pG\nfTymIufc3n1wdRnR69cQmsl3tCuk+jofvx7RNWaE+ohs32XFm6OkX+DUb/0G022b1z/2LL3NJpP9\nU6gi5699/jOIx3AI+J/FwuhPOKrqUFvvkwuFyzfvkilzTo1UCl1Bm4fs7u4AYF2oI4TC7OU7D/T6\nWT/klWzMTI2prL+G1UvZbT2Bb/ZYnxqoo7t0l0+zogf4Vvkh4zjnH6iGBY+e5dVV/EadltAwZcBK\nAWOWUISFITMqhsawmuJrJkaaomU56XRAkhUP5PrxrQEAV+3bnBmcpRlK3qjeZr1nUUiVIGkTvPF/\nYBzE7H2uzZWLlzHNACPU+ZL4lzSe+MQD0XFSWBj9CUfX6uT1a4RmhXN7KQPnJmrQJm5YiDhkb9Kn\nKAq8zz9PEfkE37z5QK8f354wEFNca44234cYptZZ/Moedpyj5ilTr0Gj0yEIr6PrzUV55WPA2toa\nmaZhqgbkA9q5QjfcIE/LUXyOs03gCNLUQAJqVNARM24/gCEksijIxuURnRvGDj/+bhVflYza3+LM\nno0mcp789k20LGbrswNeO/1xBAXG7oD/YuMNVlaWQTPuW8dJYmH0JxxNr2I032Vaq6AVEMurzPMl\n8qqDyBLSIqV30MN68kmK2U2ygYp8QLsqgNn1ESgzTjcO4D2HwFlFpUqhzfBCnUzVkEVK85nPMguu\n4TjnP1KPzI8r6+tl+C0rBEl6B1UqMF3mWlImYZtmn0xvohQKgamhJxlrxfiBJGSTO3dQKuUJ6zQ6\nzdJE8odmyqb5Dpv7FTqjOVLA8KdbRGsW06DKueImv/Sf/RLK4Bqsffy+NZw0FkZ/wtH1Oqq3Q6V5\njkJAa1D2mbGyBgIQWcrdd28hhMA66yIUg/DNnQdybSklf/DmPqHZZ7NzB/Ndj0GzrEuuxRPkeMjN\nzQss93ZpvPjXmc3epuo9/UCuveBoabfb6ELgKyoyKs9wnMpUvjNfw9crrBZDDMqke6/l4AQhp+e7\nXOvef0HA/M23UBunGSoBz977MXY9wbY+pd6XqLlKM0z4ztObfEZ7gz+wPoGC5Kc+dRnDrUHsw9Zf\num8NJ42F0Z9wdK0GQiLqTzO14MmbO5hqn0pY9htRo5B7N24DUPtrn0JmCdOvvP1Arp0N5twNJ2Sd\nq1iOj707Z2f5MjNjiBPfo0gDrpx9ijPDOxTulKJIqNc/WrHRxxVFUVhxXYatJquujikytnLYFS16\ndoMng+sI9Qy5kPQaBo3RiKoccufm1fu+9vy1txF6hdeTADep8OW25Gf0r3H+bQ81L7h98Sn+8qVr\nBKrFO/OL/FXxVVqf/SW4/dXyH9h8vIeMfD8WRn/C0fSyA9+4s0Smwrl9kMYVlKRsjaAGPve6Za2z\n9fRliuAm6R7IBzAI4vof7IA2YaW9A4GGNsiYO+eJzQEizslVjWm9xVbbZTR+CRDU64/vXM6PGuub\nm4zrdZbqLSzpcypTuBOuMjFqXJ7dYm7rjL2UkW1Qmc+phBHT/Xv3fd3o6pCwkPizGm+vzzgII/79\n9HfQEgdNpKimxNET/of6f8Rn82/x/Kd+DCpNuPpvoHMJ6qcewOpPFgujP+HoWmn0k/Uah61GkNPr\nSJpIVaDGM0bZjCROEEJgP9VEaA7T37v/YSTf+PouB+5NztfGGN86zbR6BiEMrLQH04zbpy7QGOyz\n9CM/Qe/gt6nXXkDXF3NoHhe2nn6aQlXBtCHroksVMVtiJ/XQyKm3dpm5KmleJmStUYKZh/c1bSob\nDBDmOW7EZZ7pq2dtzibbRFclsa6xs1Fnz2jwmWd+lb+pvcePmtfgM/8VhEO483W48MUHtPqTxcLo\nTzi6Xi9fLCcYus5uA9Zuv4euxGDU0QhAwN03ywlPzV/4HDKLmHzl/rpZ7rw9YB5mhFtfxdFTxJuS\ng/ZlJDnV2R+RZzFvnX+W1f1tqusOs+AKS0s/db/LXXCMOHPmDEJK9iZT5PwtQHIpVfn6vMzDrBl9\nUqOFUiiMHQtrmtBSZtzp+R/6msFLr1A0z3M3LthtXGGY2Pxc8fvsTlogJfPGEjc7a/y3t/4hZ/Z/\nD77w35W7+bf/ORQZPP2zD2j1J4uF0Z9wVNUBFMzOALXe4t0thdM7E7a0V1HlGjIBpOTKt8r2B1qr\njmKOkXGD5N6HT8p+6/98jbExYL29TZ4Z6N09uktPEusD1DwF1eTm5gW2dm+SGi+hKDYrK//eg1n0\ngmOBZVmsaBrbikKtLmmrkidThTezcwyMKmfibRRRVsd0Ow618YSmvs9rb733oa8ZfLvLdq6QAd8+\n/Qp6L+CL3W+x7zmMvYhTvYRPyDf50vAP4VO/DM//LZASXvlVWH4aVp59QKs/WSyM/oQjhIKu12nU\nuxTuEgdVUCV4s7dRlDXIFJTQ587u9+rna3/1YwjDpf+//LMPdc3uS+/QHSm8uv4HPFNJka9fxIhd\nCuMUJDeYzQV7py5TSwJW8gg//i3W138eXa8+qGUvOCacPXOGUaNBe3UDlx5uoRJMN9kzW7wweYvE\nbDA3cvq1sjd9PRhw+51XPtS1iiQnny1xLykwRIjVkfyE/zLTfZ3QNLh6Kubi9Zw2EJgAABhFSURB\nVB1+9uqXmfwHvwpf/BUQAq5/Gfbfghf/dvn9R5CF0T8GmOYSVW2HsXcOMy3oe6Dd20bXyrCOxzZD\nEZIMygHNzotngYT4Hszf/uEqcJLbt/nGP/odcpngbrxERQVegYN2uVNyw1coZMEfPvs8W927VNcT\nNK3C6a2//SCXvOCYcOnHfgyEIAwisvgqKDlPRyavJ+usxz3aKwX9espUM1GkpLodMh5+uD6H/m++\nQaC6jHOYu3uos8v8h8XvczNuApJRQ7DmJ9zsL1N96jBEk2fwO38XGmfg2Z97cAs/YSyM/jHAMDok\nyQH9lWfYGAi+eUng7g45Z10FFHR1QqYpvPfr3wZAaArOi+toK8/S/Xu/gkySH+g68Y0bXPlb/zn7\ntad4uXmTZ6oz4sTCvX2TuxvPUSgjlCLFMFvcWT3Nxo23Mdr3OHfuv8Yw2g/xv8CCo2J9cxNXSq77\nPpIeG1bCxVTl3wafAeCMfoe57SIynYlt4u5F6MqcMAx/qOvIvCB4ech2UB642jv1L5jtN3nx4B32\nPJfASlkdBDiaR/vZD5RPvvqr0HsXvvDff+ROw36QhdE/BpjmMkl8QHjxPFs9wb99VkEpJBvjbyDU\nDoxdVDXh3bdfReZlxYP7mS2EUJHZKt2/+/copz7+2cy+9nVu/8Lf4F7jeaRQuLX0Mk/bOZPXL+EF\nOon9BEX0BpMM7v7/7d15fJvVne/xz9EuS14l7/saZyX7RgLZCZAU2hQm0L7KnbZDOwxTOnB7h06X\n29LSaZkOLR3oAkyntAUCcwl7eJFQQgKBhKxO7DiJ992WZMm2ZEnWdu4fFr1pp1wYiKPkyXm/Xnr5\neY70eny+5xX/cnT06Hkqp6NLxCnva6d4VjnFRVvPxzAoKaDT6Zg9YwZDTie2NEklApDo/HM4ZS9j\nvWcfMrlk15efQY7bR1ZmH50d/71LcYwfcSFjRvoSBrJ0CZwFA6wcPY6nz8ZYmplTZQEqBicQcUnu\n/Mn/ZPB2wK7/DVWrYPrmc5r7YqMKvQaYTblEoh4ypzlIz8hk1CbocKZBiwezMZ2JkQQFec10MYD/\n2CAARqcVy7RszDOvZfSlVxj45jdJ/IWZfSISwf3gQ/Tceiu6gmL6i1cxYZDUFjRg1oHhcACXcxag\nxzLRCAhemTuPmv4z5GT7mLvo+wih/plp2YK1a5E6HSP9Q3hCp4mme5g+YWZPdAGV4X5K8xKMm2O4\nsvSkhcLkDXo4c/jND318mZCMvdrKyOgAAQzojd1E4+XcKPfQGpp8p9hZGKLAJ0lMjGKdORMi4/B/\nPg86PVz30CW7Nv8e9ReoASZzHlLGqSjTI4srqO1LsHu2QDcSo8owADKGPTbOhBU6/vOdP87q09eU\nQcJA1mfuZvSZ7XRs/gS+J58k1NhE8MhRhh99lParr8Hz4INkXHstkTv+lYmoZE9mO/My/IyHrBR2\n9NJVNhfJKNF4DHNmJZ6sfOpPHqNiXi3p6dNTPDrKVHM6nZQUFtJZU4Pfc5x5BhMC6HVdxYjBzmrZ\nwaAjQkBnJi4EOU0h2ns//FVUQyfcJAKSbr8PAUTrniDizaDMM8SQ3QZ6PX5bjEKvQDKKubYGnvki\n9B+F638Bmer+B6rQa4DZPHm5g5J0H8OORczqkuyeHyZuNFHRN3m+vLulnoppJ2n2HcK/d/Lbieby\nDMw1WchYBcX/9iuExcLgd++h89Ofpuvmm3H9+F8xFBRQ+sgjFN33Ixp2D5Cmg9G8/Uy3JOh/uxx7\nOI1w2kwI72VCxtk7ux5jNEh1z2mWXP21lI2Jcn6tuPJKxi0WIvpxiiIW+u1e8kJ5vGi7hhUjjUSy\nEoi4gZ4CJ85OH2Z7L36//wOPKxOS0VfbiY0NMGArI8cQJbemk+neYQZ70/HaLLgLjYgEFEdsWJfN\nR+z8Jzi9A66+D6ZvOg/pL3yq0GtAmrUCgGikm97MeUxzGZgwCfZNq4KuGCZDGjF3hNxsF77iRgZ2\nnCDimrxcbNamKhITcWLefCqfe5aqHTso/tkDlPzi59TseYOKx3+PfeUK+s+M4POE8enGWVZ8FAHk\nHBuku2QBYMAY6cRiymbvjMXMbT5I5cxicgqqUzYmyvlVV1eHw+HAtXQ5naOHyNNNnuve1rcOtzGb\nMoeLuJAM5+mxTExQ1uem9Z19H3jcUPMwcW+UgcFGJnQWDM59mESCtZEjtARyQQh6KlwUjIA9YSZ/\nngkOPgLL/x6W3Dr1wS8SqtBrgNVaBkAo2EW8OpvsHAdFw5Jti8ZBp6M06ELGBjh5/Gaql56iKfE8\nnodPkAhGMRbYSF9VSvCoi8C+fsxVlWRs2ED66tUY8yffKUgpObK9FaOAFzO7WZIRoLWlgvqOIEPF\nS5GxkwTiUU7XzUEAC4/tZ+WNX0nhiCjnm06nY9WqVbhHRgjX21kTz+CkNURuIJdHMr/I+oCHfmcI\nl8VE0GIhb1+I5pcfY6K19X2PKaVk5JnjJMbd9GZVYRQS29ztyNYczN4orrQ0rFhot49QPZDAaPJi\n7X4cZn4S1t1zHtNf+FSh1wC93orZXEAo1EXt7DzSapdy5YkEnoIBPHWLyO0eBeLo2owE/YVYrthL\nz+hhXL9oIBGKkbG2DOtMB6MvtTPySgeJiTgw+bY5dMpLx8+O0t3lxyTHWDTtFdINCYLvhvBn1jNh\nKMMa3odOZ+KFhcuYeeYIFQVZFNbUp3ZQlPNu5syZFBUV0Sok7lADVp0gjCTQOZ9M8ugvGEeGjXSV\n5pLhcVNizKDjhhvxPvEEMvqnt7iUUjL8Hy+RCBoJhlpwG0vIdrRiyghRPhSmrTOP4XQr0pFLQCep\n75EUTHdD2XK4/pegU6XtbGo0NCLNWsF4sIOldXlY5ZXMdtsREh5anI4jEcEajREPN9Fw5KsYrHGG\n5v4ST18XroeOkghEydlaj21RAYE9vfR/bz+D9x+i/553GP5NE6c6RhAywW5LE2vy2zjRVc2iEz7a\natcj4l2MRP201c4nZtCz8sAfuPpLam3+UqTT6di4cSN+vx/v/Byuj8fYb4lQHLDwa+udFGV4iesS\n+Ir0hM1mMg50E1+2hqF7vkfrhqsYvPcHeJ94As/Dj9B182cIvO1CxgI0BQRSCGzzf0e0tZBq2UOP\nPwMpBO5pk5831fdITBVO2Po4GC0pHokLjyr0GmFPn0Eg0IzZIAno7STqqlnQkuB07luwaA2lnlGI\n9ZLjkjQe+Ry2wiAncv+Fwe4zDP74bSa6h8jeUkvu316GfUkBBqcFQ3aYYP9OusYjGBLNbFi5CwH0\nH3UjzXPwp9VjDr8GOhMvLVvD8oNvkFmeSV5FVaqHQ0mRsrIylixZQnNvN15bMxkGgUcXx9FSglNf\nTFtRkBG/jpbqaszuTszhIjq2fJpIdSUjTz3F0D3fw33//STiGRicdXjGDjCYOZ/s0kPozcOYu+wM\nD9rxplkwCTNNjh5sYT0V4RiGLzw/eQEz5b8wpLoDyrmRkT6bnkSY8fEWbA4rWVzFpuNnOFwT4d76\nGN/2jdKSyCEa2ovs20yg9QS5iw6z/9lfM3NoM4mHQkw0/B064xhSGoj29xOzR+hftQRn+RDmsgOk\nmYK88m4laxt8nJq2FUPsCCORUQ7MX03O2BAzzuzlph8/muqhUFJs7dq1nDlzhp5EggXtx9iWNoe/\nCljoGfo8Z8p+Sl2vnaH8Iip6urGfeJrKzK/xpuzm6id/R74jn5gryvCLp5nwjXJU1CAMUXJmbafx\nnZu4w/AT3uyqx5WZhqkUWuKwsjXBcKWdaQ510/n3o2b0GpGRMXmtmdHRI+SVZFAwUYW7dhZrjyU4\nlvMWLXOuZLp0IaOtGMZP0XbiC0Td9VSsG+BQYCfHRt/CPP92jBn5yJIBRr9lZOjeKPr1b5FZ9SbB\nkTJO7NyApSeEq+wOYjpBLPgOYxkOjsxeyKZdz+BemkW+szjFI6GkmslkYsuWLQQCAcx1Ngrjgxwz\nRSl1lVA7sQBvdohooJuGWXMR/lEsfQe5PGMTL9x7L7t/8BsGfvU2A6KFvYZBQqKIojn/ydiRG6kT\n+xn3mwmEQArBYF0PcRKsPhrFsnxJqmNf0NSMXiOs1nIslhKGvXuocl6JDcGx8jVsfrONU54RvlN4\nhJ8nomQ1hvCP7cDA9bTt/Qcyy/ZTPNtNa6Mf/8gb5C28jEB+FBGQjLTWER6ezYmYjTq/C292HyWx\nrxO0xCH8GOMyxo7Vn2Tzq0/Tl9PNVatvT/UwKBeIkpISNm/ezHPPPcflZjePxLMoTKQxu/1GjuY9\nTs5pDx0l+VQU1YDPx5gzC0v2FzkjQ7Tp9MhuJ8IwgaPyDDM6/orHdEe517SP1zrm0pNjweSIsMuc\nwB5Jp77XR8maz6U68gVNFXqNEELgdK6mv/9pqrIm775T5q7k2MzF3LFzJ9+/PsTtpSa+SxvtTdMI\nBZ7DPF7OiFyPjkxMdvABvnag/U9v9zcdwFRJQaAM+8h+POYGEtEwu1ZvYdGRPWTG+zgwJ8rPqq49\n37GVC9jcuXOJRqO8/PLLLPccZZttKVvC4yxwfY4J87M42o9zqmorOkMh5tgIxoIBsqwjGKUBZySX\nilAlCU8p9+rd/Mj4S04Pl8BAkFB5Or66IYJygmsaIWoRpM9SM/r/H1XoNaSo8AZ6e3/HcPx1DFRz\n0+JStrg3klvr4/u/3c93bzLxPyvS2ZjVzpyDhbgiXRjdD2OUaRSUx9FbJSa/gZKoGzvjhKN6fME8\nfOOZiJExBuzjDKWnMSEsvL16KwuaD5IvvPxubju3XfYVbEZbqodAucAsWrSIzMxMnn36aXqHTrEt\nrZ4FOa9QGs6nvKuPaPgZCjEz5/AxTJ+2kB6fRmj/CDG7oNvp5M1MBz/QP49+MMb4fgPNNU5imRM8\nnxUmYpzHuoMH0c+pRej1qY56QVOFXkPS02ficKyiy/Mg1fyEHLOOq6IO3rJXk1EV4KcPN/KTawt5\nrd7Hq+u8bOoaprYxF69OT7g7TqV7hHzPKCQkgeQxTYYgrpIcXIXpRPXpHJ29nMKchVzz7naaMpp4\ndZaXRaVLuWXGLSnNrly46urq+MpddzHtySf5WUMXh3QrOFP5I0rywlx9MJdR/AQdBkwvjhNz7ifc\nawWgUHTwWXucsbgFGbTQWOUgYtCzq96N3jqL3ME2SoYh939c2lem/DDEB12e9iMfWIiNwAOAHnhU\nSvnD93vtwoUL5aFDH+2uM8qfCof7OXT4BopeuwtDkRn75stZ+dhhbnM9REmnjrqmJprqHPzLlTVE\nspqIGcLUuC0sbc7BEDASR0+PqYygzk6a8FEy0YtOSk5VlFJScB2bPSY6fc+T8cml9OaHKbIXsa58\nHQadmjMoHywSDHHn/dvYEYmTVvEwOWOCDYfzsEQkZZ4As/qG2FW9iJPllVzma8cx7sJn6MefXogu\nbKK5ZoT+y+bSZ5rDutcf4Is7E1S9/BLm6kvzchtCiMNSyoUf+LqpKPRCCD1wBlgP9AIHgZuklH/x\njtSq0J9b4XA//Y/uRnqNDKx9AG/4q9y508I9/BJLax11zTuRZolrg+C3dfUcF0Fi+l4cPitzW4oo\n9cQAiAtJd34Qa9os7pA34qMD2yoHVRvVWrzy8Rw9cYi/3vU8UcsRLKYelp1wUjmYhteWRkPt5WRZ\ndRyznMZk2MuWkyVY+nQM5sc5Pv82ThXnYx+4nQefCFGmL6P65ZdTHSdlPmyhn6pp2GKgVUrZnuzM\nNuA64C8WeuXcsliKcExbgf/1bqyGCmzibr6zfBEtnV+mUr7OkfQ7qWp5lqLn2/ia7STBy+M0L4Cn\n8gRvZncgo5LsgJ66vhiVscVsqtlC1rxaiuetQFzi1/VWzo15sxdybNYCvrTrAI7t9zBh7ObtWRks\nOB3nioaddBWFWaaPUTtYjC4iaKge5eSsz9JbWErm0AOs8QYp6IyT9Y83pDrKRWGqCn0x0HPWfi/w\nJx+LCyFuBW6FyW/TKeeWuSwdv4QZ2f9GsKaJjPb7KUz/Ktb5i3jr7SUEc28kvTtIaf8fcO5sYvFO\nyUIxOZNPCEkgPQ3XDevY9A8/RK8+6FKmghD8asNSvj56F5//9t/z1OrpvLtsgIozcYqHTOgTZnpz\nw5yoHsVTsBa3czHWnt3MNxzg796uQGR6yfrUJ1Od4qKQsoVVKeXDwMMwuXSTqn5olakiA3QQ6RjD\nUbeSnJzLGRx6gbbW+5i38Jvs6fsEDRnVlC9YzHpbORWtHegnBNKcj5izlOnXb2JZdnaqYyiXgH++\nYS3Ht89n04EG3ljxLU6vzaJm8AD6iUaiYpwrTtpY+dQB4vId0opiFIRLibV1UPDDf0afmZnq7l8U\npqrQ9wGlZ+2XJNuU80RnNmAqzSDc7CXzqgqE0FFYcD25zvV0dz9KXu5Jvrwmi5yxG/H+/hTWBQ5y\nPjNdLc0oKVH5N1+g97bbuH/gNP7cEXaN23jHt4YHn76PfrsDb0kVCwvtCNcQwm4g78dfIXOT+qzo\nw5qqQn8QqBVCVDJZ4LcCN0/R71Leh3WOk9EX24kOjmMsmDzH3WCwUVV1BwAT7aO4n2jEWGQn+4Y6\nVeSVlLFfeQXGoiKc7x5hwbYnWS0Erod+zjCSuv/4d8pn16W6ixe1KbnWjZQyBtwOvAo0A09LKZum\n4ncp7y/tslyEUYd/T+9/eS50yovnN40Ycsw4/3oWOrM6PVJJHaHX4/jylwg1NDD28g5iPh8jv/0t\ntitWqiJ/DkzZX7eUcgewY6qOr3wwvd2EfXkR/j29WOqySZuXRzwQwf9GL4F9fRiL7DhvmYneZkx1\nVxWFrE99itFntjPwjW9gcDhIhELk3XVXqrulCWoap3EZ68qZ6BrD+9RpRl/tJD4WgYTEtrSQzGsq\n0ZnUGTXKhUEYDJT8/CEGv/MdIn19FH/7W1imTUt1tzRhyr4Z+9+hvjA1tWQ0wfi7A0R6/OizzKTN\ny8OYr65LoygXu1R/YUq5gAijDvvl6jrxinKpUjceURRF0ThV6BVFUTROFXpFURSNU4VeURRF41Sh\nVxRF0ThV6BVFUTROFXpFURSNU4VeURRF4y6Ib8YKIdxA18c4hBPwnKPuXCxU5kuDynxp+KiZy6WU\nuR/0ogui0H9cQohDH+ZrwFqiMl8aVOZLw1RnVks3iqIoGqcKvaIoisZppdA/nOoOpIDKfGlQmS8N\nU5pZE2v0iqIoyvvTyoxeURRFeR+q0CuKomjcRV3ohRAbhRCnhRCtQoi7U92fc0UI8WshhEsI0XhW\nW44QYpcQoiX5M/us576eHIPTQoirUtPrj0cIUSqE2C2EOCmEaBJC3JFs12xuIYRFCPGuEKIhmfm7\nyXbNZgYQQuiFEEeFEC8l9zWdF0AI0SmEOCGEOCaEOJRsO3+5pZQX5QPQA21AFWACGoAZqe7XOcp2\nBTAfaDyr7T7g7uT23cCPktszktnNQGVyTPSpzvARMhcC85Pb6cCZZDbN5gYEYE9uG4EDwFItZ07m\nuBN4Angpua/pvMksnYDzz9rOW+6LeUa/GGiVUrZLKSPANuC6FPfpnJBS7gW8f9Z8HfBYcvsx4Pqz\n2rdJKSeklB1AK5Njc1GRUg5IKY8kt/1AM1CMhnPLSYHkrjH5kGg4sxCiBLgWePSsZs3m/QDnLffF\nXOiLgZ6z9nuTbVqVL6UcSG4PAvnJbc2NgxCiApjH5AxX07mTyxjHABewS0qp9cw/Bf4XkDirTct5\n3yOB14QQh4UQtybbzltudXPwi5CUUgohNHlerBDCDjwDfFVKOSaE+ONzWswtpYwDc4UQWcCzQohZ\nf/a8ZjILITYBLinlYSHEqr/0Gi3l/TMrpJR9Qog8YJcQ4tTZT0517ot5Rt8HlJ61X5Js06ohIUQh\nQPKnK9mumXEQQhiZLPKPSym3J5s1nxtASjkC7AY2ot3MlwOfEEJ0MrnUukYI8Xu0m/ePpJR9yZ8u\n4Fkml2LOW+6LudAfBGqFEJVCCBOwFXghxX2aSi8AtyS3bwGeP6t9qxDCLISoBGqBd1PQv49FTE7d\n/x1ollLef9ZTms0thMhNzuQRQliB9cApNJpZSvl1KWWJlLKCyb/X16WUn0Wjed8jhLAJIdLf2wY2\nAI2cz9yp/jT6Y36SfQ2TZ2e0Ad9IdX/OYa4ngQEgyuT63BcAB/AHoAV4Dcg56/XfSI7BaeDqVPf/\nI2ZeweQ65nHgWPJxjZZzA3OAo8nMjcC3k+2azXxWjlX8v7NuNJ2XyTMDG5KPpvdq1fnMrS6BoCiK\nonEX89KNoiiK8iGoQq8oiqJxqtAriqJonCr0iqIoGqcKvaIoisapQq8oiqJxqtAriqJo3P8Fmtvl\nlUaAFzEAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb07968c210>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VMXawH+zLZtN2ZRN7wVC770ICCKIIAoWxMK1936v\n5bPcexU7F/u1XCsiinQU6b33FkhISCO9J7ubZOt8f+wCAUFQ6Z7f85xnd6e+M2fPe955z5wZIaVE\nQUFBQeHSRXW+BVBQUFBQOLsoil5BQUHhEkdR9AoKCgqXOIqiV1BQULjEURS9goKCwiWOougVFBQU\nLnEURa9wThBCfCyEeOF8y3EuER6+FELUCCE2n295FP66KIr+DCKEyBNCNAohLM2OD863XBcCUsr7\npJQvn+16hBD/FEJ8e7brOU36AVcAsVLKHudbmN+LEOJxIUSpEKJeCPGFEMLnN9J+KoTIFEK4hRAT\njoubIIRwHXddDGwWHyKEmC2EsAoh8oUQNx+Xf7AQIkMI0SCEWCGESGgWJ4QQbwghqrzHG0II0Sw+\n0ZunwVvGkDPRNxcbiqI/84yUUvo3Ox46USIhhOZ0whTOLWf4HCQAeVJK69mQ42z+X4QQVwLPAIPx\ntCMZ+NdvZNkFPABsP0n8huOui5XN4j4E7EAEMB74rxCirVcOEzALeAEIAbYCPzTLew8wGugIdABG\nAvc2i58G7ABCgf8DZgghwn6z8ZciUkrlOEMHkAcMOUncBGAdMBmoAl45SZgKeB7IB8qBbwCjt4xE\nQAK3AwVAJfB/zepQ4bk4D3rLmw6ENIsfBaQDtcBKoHWzOAmkNvv9FfCK97sJ+MmbrxpYA6hO0Ebh\nbUs5UA/sAdodX5739z+AEqAYuKt5/d60HwI/A2ZgE5DSLO+7wCFvHduA/t7wYXgUhgOwALtOdF6A\nfwLfHtend3r7dLU3vBew3tvmXcDA485ljle2XGD8CfriTqAJcHll+Zc3/G4g29uP84Do487Bg0AW\nkHuCMs+KrCf5v34HvNrs9+VA6WnkWwtMOMF/f+1J0vt5z1nLZmHfAK97v98DrD8ufSPQyvt7PXBP\ns/g7gI3e7y0BGxDQLH41cN/51hXn+lAs+nNLTzwXXQQw8SRhE7zHIDxWlD9wvPunH5CGx9p6UQjR\n2hv+MB7rZgAQDdTgUZgIIVrisW4eA8KABcB8IYTuNOR+Eij05osAnsOjcI5nKHAZngvMCNyA54Zz\nDEKIYcATwBAgFRh4grJuwmNBBuNRjBObxW0BOuGx8L4DfhRC6KWUC4FXgR+kx2rseBptO8wAoDVw\npRAiBs9N5hVvHU8BM4UQYUIIP+A9YLiUMgDoA+w8vjAp5efAfRy1ZF8SQlwOvObtlyg8N/Pvj8s6\nGs9/os3ZlFUIES+EqBVCxJ+kjrZ4bhqH2QVECCFCf0Ou36KzEKJSCHFACPFCs9FIS8AppTxwXF1t\nTySH9IyOsk8Wf4K8OVJK80ni/zIoiv7MM8d7AR0+7m4WVyylfF9K6ZRSNp4kbDzwHylljpTSAjwL\n3HTcMP1fUspGKeUuPH/cwwrtPjwWfqGU0obHch3rzXsj8LOUcomU0gG8DfjiufhPhQOPYkqQUjqk\nlGuk1zw6QboAoBUgpJT7pZQlJ0h3A/CllDJdStnglfN4ZkspN0spncBUPIodACnlt1LKKm+fTQJ8\n8Nz4/gz/lFJavefgFmCBlHKBlNItpVyCx2VwlTetG2gnhPCVUpZIKdNPs47xwBdSyu3e8/Ms0FsI\nkdgszWtSyupm/4+zIquUskBKGSSlLDhJHf5AXbPf9d7PgNNsa3NWA+2AcGAMMA74e7N66o9LX9+s\nnuPlOFV8PeDv9dOfKu9fBkXRn3lGey+gw8dnzeIOnSD98WHReCy9w+QDGjyW9GFKm31vwPOHBo8v\ndfbhmwywH4/rIOL4cqWUbm/dMafRprfwWFGLhRA5QohnTpRISrkcz+jjQ6Dc+4Au8ARJozm23Sfq\nl5O1ESHEU0KI/UKIOm87jXjcS3+G5jIkANc3v2HjGUVFeS3KG/HcVEuEED8LIVqdZh3HnwMLnhFP\n83Nwor44H7JagObnzuj9NJ8g7W/iNVpyvTeiPcC/gbEnqedwXeY/GG8ELF5D5FR5/zIoiv7cciIr\n+PiwYjwX72HiASdQdhrlH8IzTG9+o9FLKYuOL9dr8cQBRd6gBsDQrKzIIwJKaZZSPimlTMbj539C\nCDH4hA2U8j0pZVc8roeWHLXcmlMCxDb7HXcabTssd388/v0bgGApZRAeq+3wTIsT9bGVk7StuejN\nvh8CphzXj35SytcBpJSLpJRX4BnlZACfnaC8E3H8OfDD85CwqFma01lO9lzIms7RkSLe72VSyl+5\n4v4AkqPn6wCgEUK0OK6uw6OkY+Tw9lnKyeJPkDdZCBFwkvi/DIqiv/CYBjwuhEgSQvhz1OfsPI28\nHwMTD08/8/ppr/HGTQdGeKeqafH43W14HmaBx3d7sxBC7fWhDzhcqBDiaiFEqvfmUIdnlOA+vnIh\nRHchRE9v+VY8DyN/lc4ry9+EEK2FEAY8MypOlwA8N74KPAriRY612sqARCFE8//2TjzuL60QohtH\nrcmT8S0wUghxpbc/9EKIgUKIWCFEhBDiGq/CseGxGk/UxhMxDU+7OwnPVMVXgU1SyrzTzH8uZf0G\nuFMI0UYIEYznHH11ssRCCJ0QQo9HgWu9cqi8ccOFEBHe7628Zc2FIz73WcC/hRB+Qoh+eIyJKd6i\nZ+NxPY3xlv8SnofsGc3kfEIIEeN9XvHkYTm9fv+dwEteea4D2gMzT7MPLh3O5JPdv/qBZ3ZHI54L\n6vAx2xs3geNmHpwkTAW8iMdSq8BzIQd74xLxWEOaZulXAnc1y/sEkIlneHqQY2dOXAvsw6OsVwFt\nm8V1w2PpmPFcZNM4OuvmcW/brHgeyr5wkvYPBnZ7212Jx7fu7437imNn3TyLxz1TDNzvbVfcSdIO\nBAq939XAF3h8rSV4rPs8vLNq8FjIa/E8iN7uDUvGM3PHgufB5Xv8etaN5ri29PT2UbX3PPyMZ3QV\n5Q2v4+jspTYn6Y8Tnd/7vOelGs9MpthmccfMfDpBeWdMVm+8BYj/jfqewHPjrAe+BHyaxf0CPHfc\n/1Aedwz0xr3tLceKZ+LBvwFts7whwBxvfAFw83FyDMEzGmn01pPYLE4Ab3rbXu39Lo7rs5XevJmc\nZFbcpX4Ib2coKJw3vLOG9uJRJKczclFQUPgdKK4bhfOCEOJaIYSP1y3wBjBfUfIKCmcHRdErnC/u\nxfNi1UE8Pv/7z684CgqXLorrRkFBQeESR7HoFRQUFC5xLohFtEwmk0xMTDzfYigoKChcVGzbtq1S\nSnnKRdouCEWfmJjI1q1bz7cYCgoKChcVQoj8U6dSXDcKCgoKlzyKoldQUFC4xFEUvYKCgsIljqLo\nFRQUFC5xFEWvoKCgcIlzSkUvhIgTns119wkh0oUQj3rD/ymEKBJC7PQeVzXL86wQIlt4Ngu+8mw2\nQEFBQUHhtzmd6ZVO4Ekp5Xbvus7bhBBLvHGTpZRvN08shGiDZxu4tng2WlgqhGgppXSdScEVFBQU\nFE6PUyp66dkKrsT73SyE2M9v70p0DfC99GyVliuEyAZ6ABvOgLwKChcdbreTqqqVmC370PtEERo6\nEB+fU77joqBwxvhdL0x597bsjGdt777Aw0KI2/DsUfmklLIGz01gY7NshZzednUKCpccNls5u3bf\njdm890iYSuVDYsL9JCY+gBDq8yidwl+F034Y693taCbwmJSyHvgvng0dOuGx+Cf9noqFEPcIIbYK\nIbZWVFT8nqwKChcFTqeZnbvuoKEhh7ZtJjNo4H569PgZk2kwObnvsGv3PTid1vMtpsJfgNNS9N6t\n4WYCU6WUswCklGVSSpf0bDL9GR73DHj2v2y+B2gsx+6JiTf/p1LKblLKbmFhyjBW4dLjwIF/Y7Vm\n0b7dR0RGjkKl0hHg34r27d4nLe1lqqvXsHvPfbjdtvMtqsIlzunMuhHA58B+KeV/moVHNUt2LZ4d\nggDm4dmf00cIkQS0ADafOZEVFC58amq3UFI6i/j4uwkN7f+r+NiYm2nd6jVqatazN/0JlLkKCmeT\n0/HR9wVuBfYIIXZ6w54DxgkhOuHZGzIPz0YSSCnThRDT8exN6gQeVGbcKPyVkFKSnf0aPj5RJCU+\ncNJ0UVFjcDhqycp+lZycd0hJefIcSqnwV+J0Zt2sxbMB7/Es+I08E4GJf0IuBYWLltraTdTX7yKt\n5b9Rqw1Hwp0uN0v3l5NRWk90kC+XtQgjLu4OLNYs8vI/IjCwA2FhV5xHyRUuVS6IZYoVFC4l8gs+\nRasNJSpqzJGwQ9UN3P3NVjJKzUfCtGrB+J4JPDX0BSyW/aTve4pePX9Br48+H2IrXMIoSyAoKJxB\nmpqKqapaRWzMzajVegDqGh1M+HIzxbWNfDS+CwdeGc7ixy9jbNc4vt6Qx6gPtxAU/SYg2bfv73jm\nNygonDkURa+gcAYpLZsPQGTktUfCnp21m4LqBj69rRtXtY9Cp1HRMiKA165rz3e3d8dldXDTFwX4\nhj5OTe1GDhV+fb7EV7hEURS9gsIZQkpJaelsjIGdMRgSAFiXXcmCPaU8cnkLeiWHHk3rktQuyCHu\n2yymNuh5r8mHt76PRmvoz8GDb2K1Zp+vZihcgiiKXkHhDGGxZGC1ZhEZORrwKP5X5u1mgDODqE3f\nMuetV9g0ezqWmmpqZmVhWV2EoYMJ4/AkEv19eNvpy6Ilo0D4kpHxPFLK89wihUsFRdErKJwhSsvm\nIoSG8HDPQq7LdhXQbue3dDi0AnNlObWlxaz9/hs+f+guti6bg9/AaEJuSCMgYDnR8nb8VDu4z2pi\n/97h1NZtobR09nlukcKlgjLrRkHhDCCli7Ky+YSGDkCnC8HtcrHmv28Sbqtk+CP/oE3fywCoLixk\n6SvvsqdmNdUbqrja2A7/RQ9jaeqMZduPiHg/rnZfzsHAn8h0vkiIoTc+xqhT1K6g8NsoFr2Cwhmg\npmYTNlspkRHXALBw+nQCa/MxDB53RMkD+JRq6RM0isHX3E1ZTjZTPviWPfvbUDSnDKkPwRC2BbWr\nmuiDD+BSNbLrveFYNysvliv8ORRFr6BwBigtm4ta7Y/JNBhzVSX7fvqRfEMiN918HW67HevGjdRM\nm0blJ5/jNu+kdd9OjL+uPSq7m6XuYMyjryZp1kzCX/uY8KSZ+DUloyrugbmHhdxHJ1D58ceKz17h\nD6O4bhQU/iQuVxPl5QsJDx+GWq1nw+wvcbuc6LtcgfOj98j64Qfc1mNXqcxZ9hHaADc9G7Xs6taW\nNbn7kT/Pocc1Y9FeeReh37yNPfcecqK3UfO3cNT/eRdHcQmRL76A0CiXrcLvQ/nHKCj8SSorl+Fy\nWYiMuAZrbQ17VyymShXO7VPfoLq+jsDhwwm8egTO2iAsa8oIGRdNw7z/UjljBT7SRV+Lk32du7B2\n2tfUlZcy5I778Y2bSEjFDmoODaI6eTmae8ZR++l03BYz0W+9hVAr69grnD6K60ZB4U9SWjYXH59I\ngoN7smPhT0ingzF7t+AbEU7S7FnETHqbgEGDsOe78WkRhV/3DrgO7gApCHv8cdyFxbT4YS4dW7Vn\nz7JFzH/nDZydbsdo/4DghuGoEKyLryLsySepX/ALJc+/gHQrb88qnD6KoldQ+BPY7dVUVa0iImIk\n0g27FswlrN5KY1onEr+fhj4tDQBHmRVHaQOGjmHYdm6gZkctwQNaYrr3HpJ/mo9f9+7E/DCHbnEp\nZG/ZwKwF+3Fq/UiMWImhshdxgStY36oXpgceoG72bMomvqr47BVOG0XRKyj8CcrLf0FKJ5GRo9k3\ndQpNtiaaXEZS/vs+Kl/fI+kadlaAAN/2JiomvYpKLTH9/QUANCYTcZ98TPD48YT/tJhe4fEUZuxn\nXmUv3Pt/pGXX+0BjQ7/vW9y33knIhAnUTJ1KzbdTz1ezFS4yFEWvoPAnKCmdjZ9fS/TWEHbO+A6N\nU7LxmkeJNQUeSSOlpGFXBT6pQTjLD2Hekk1wF380qd2OpBEaDZEvPI/poYcIWbKC7qFR5JU08Ut+\nLCH2KvSiMz6xy9j8+U7C//F3/AcPpuz117Fu2HA+mq1wkaEoegWFP4jFcoD6+h1ERYzh4FNPUKbX\nsi8gjdH90o5J5yi04KpuwtAxjMp330Zo3ISMv+mEZYY99CCmhx/CtGw1XaISOGAOY/Os70hteydO\n32payp1krisk+o038ElOouiJJ3FWVp6L5ipcxCiKXkHhD1JcMh0htPht1JKVfxCEYG90T4a2iTgm\nXcPOclAL1AEN1C9ZRXBqA5ret5y0XNMDDxB8261ELFxOsi+s3VuPrcyEWm2kOGY1zoX5oNYRM3ky\nbquVkhdeVPz1Cr+JougVFP4ALpeNkpLZhOkHUPXOxxRGmSjyjeHyHm3Ra49OfZRuScPuSvRpIVR/\n/T+EShJ6RXsIPPmyBkIIIp55hsDhw0jdnEOAsLPko3cIC70aV8QO/ISFvTMz8UlNJeyJx7GsWEHd\nzJnnotkKFymKoldQ+ANUVC7G6azFfy6Uux00INnj35rru8Uek86WW4fbbEcXp6Zu7jyCUixoeo87\nZflCpSL6jTcI7NqVNgcrqK2uo3RbIEI42Rm9jYD0Gpx1NkJuuw1Dt26Uv/U2zpqas9VchYscRdEr\nKPwBCgunYKiLpGn+Oko7tsGu1uOf1pkOsUHHpGvcVYHQqbAs/x6BJLStA9qMOq06VDodsR98QJRe\nTXSdmT2L1yLscejT9qKSkqx52QiViogXXsBlNlP5/vtno6kKlwCKoldQ+J3U1m2jrm4bpuXR2PQ6\nCiy17PVPY0L/1GPSSYebhj2V+CQZqJs9g6AWDrSdh4LeeNp1qY1G4l55jNYVFUiHg8qtCfiodrJW\nb0a3rxp3kxN9WkuCbryBmh+mYz906Ew3V+ESQFH0Cgq/k/z8T/GpCsS5bB8V/XqB201JVGeuan+s\n371xfxWy0Yk9dw1IN6EtK6DFFfA7H5zq+lxP2gAzcTX1FO6uwlYt8e2ei4+EnOX5AJjuux+hVlP5\n34/PWDsVLh0URa+g8Duoq99FZeVSwlYnInU6Mq115PvGMWZgJ7TqYy8n69YyVAEa3Bvfp8XoUrQG\nN8x9CN7vAtu+huOWMWi0mMnfs5OSrExcTsfRCK0e395D6JNSCUjMP0aQFL2fdFw0bi5FSok2Ipyg\nm26kbu5cHEVF56AnFC4mFEWvoHCaSCk5mP0musYg5MqDmAdfhs1cR1ZoR27pmXBMWmd1E7asGvxt\nHxDbpxyVygltr4OrJ4MhFOY/At+MAks5deWlzP/Pa3x0183MeOV5vnv+ST594G/sWDj/6LTJNqOI\njiwmyRRKidMP5+erKY7zIbjJTX1eHQChEyYAUP3dd+eyWxQuAhRFr6BwmpSXL6CmdiPRe7rhdjjY\n0WihRmtkxFWXYzRoj0lrXlOIv3o2gaqfaKgNQBUYDtd8AN3ugDuXwKj3oXArrg/7sPSfE8jduY3u\no8Yw9vlXGPn4M5ji4ln+5Sf8/O6buJxOSL0CNHq6dvXHqVZTt82XjtZfcCDJWJ4HgDY6moAhQ6j9\ncQbuhobz0EMKFyrKMsUKCqeBw1HLgax/E+DbDvfP+6nr2RVrVRkZsUN5tl/yMWldZjuurT8Rqv4C\nc5EBfYgFBv4TdH6eBEJAl9soafDH95cHuDZsI03XPothyO2eOKBFz75snjuDtdO+plhTw9qUYvzj\nU3iucgVBkX3Jl43EfjWDnO6BRKl7It0SoRKE3HYr5kWLqF+wgKCxY89xLylcqCgWvYLCKZBSsm//\n0zgcdVi3DcFeWcEal5NajZGrrx2Bn8+x9pJ59kpCVG9iq9djs+jQtuoDXSYckyZ7y0Z++HgKC5qu\nxp08GMO6V2HmXWCzAJ6XpnqOvp6u427if9qFZFVksF3YeCBA0rpTS+qEL/Ut/Yja/AW+eRspO1AF\ngG+XLugSE6mdM+ec9I3CxYGi6BUUTkF+/n+prFxKrvtFSn5Ywt7oaNQOC+tNfRnQKhIAi8XC7t27\n2TBzPj4HH0a63ZRu8Seksx+M/RLUR28G6auWMe8/rxKekMy1/5qM5tYfYfCLkD4L/jcESvceTZtQ\nR6PexaC1wTyT8CC5Oi175WoADvYWiPbtaNr2BYWTPkBKiRAC47XX0rh1G/aCgnPbUQoXLIqiV1D4\nDUpKZnIwZxJ643VMXShIrs+n0GQg15BAWVAKj3+/gyVLlzJ58mRmz5qBac/z6EQ5P9ivwDqwNar7\nlkHA0bVvti+Yy8KPJhPXtgNjX3gFX/8AUKmg/5Nw62zcDVU4PxnAhy8/wCNTNzD9wI/0i+pLC/9k\nSr5dTl9VCF+JXEIToqjJDyTorRtpiOuO35ofKH7yKVz19RivGQVCUDd33nnsOYULCUXRKyichMKi\n79i3/2mCg3vzU/54emdvYFdCBE1CR9KI27irrYGdhXV8sjKbVH0E9zuzaEEeWQeTqNDF8aOmK1sy\nCwFwu12s/OYzVnz9GS169OHap19Cp/c9pr6muP78zfddFru68qBrKl0KHqS6qYrrW93AyMefwdZg\npVNBSyxCUBtmpqlKT2HBOipuehxdm2upX7iI3OuvRx0SgqFrV8yLF52PblO4ADmlohdCxAkhVggh\n9gkh0oUQj3rDQ4QQS4QQWd7P4GZ5nhVCZAshMoUQV57NBigonGmkdHHw4CQyM18gNHQgUrzKzA25\nJDkzsep1dIi4HP3uddSkLyNVmNnjjOWy2q2EaxZQkxeMtiqSe5/8B2lpafz88898Ons5fZ+fxb17\nQtne6Tb63/sEGq32uDol/5ixm1WFEsZ+BWM+J9Nowc/tJm7XJkwxsVw2/g6su0vo2uDLfL/9AOTv\n2kOrvnH4tBxO9bC/4cgvwFFURMDQodiysrHl5JyHHlS40DidWTdO4Ekp5XYhRACwTQixBJgALJNS\nvi6EeAZ4BnhaCNEGuAloC0QDS4UQLaWUrrPTBAWFU+OwNVFdVIi1robG+nocNhtCCFRqNXp/f3wD\njRgCjej8XGQefJba2k2obcPYMW0Ma+07uLF0FnUGLSHaELYFV+Cr0tPNvyud6gQFztnEaGdwwNqX\nQxWp9PnwSfRBQYweNZJXP6zmzU0W/Fwu+sYaWFOu5/pPN/H1HT2ICTpq0b+zNIt5u4r5+5VpXNUh\nGrtrFCt3v03bGhct8l+H8pV0vuZDcnd2pWbPRrb2KoYgqDroJOJOGweFpNEWAICrqoqAoVdQ9uqr\nmBcvxue++85XtytcIJxS0UspS4AS73ezEGI/EANcAwz0JvsaWAk87Q3/XkppA3KFENlAD0DZCkfh\nnGGpqSZ/9w4K9u6iJCuDmtKSEy49IBE4A4w4/Y2EJlaS1GoPKrWT7AO9KS8z4XYtJLbsEIFOM+0L\nK9g7oje927ahdcsW+GTNI2jr2/hoXcx09WNn5TDCInzImTwbo6mOzNxcZppG4KtxMtw/h7uvvpFy\ngrhnylau+2gdX0zoTpuoQL5en8e7y7IY2zWWBwamALCuaB0WpxXfmGd4qnQPb5Z/h+rjflw94AXK\nvg4hvqaKrOBaWuQZKS9ZQ3VoEmG1/gA4KysxdOuGb8eOmJcuw6Qo+r88v2sevRAiEegMbAIivDcB\ngFLg8BOnGGBjs2yF3rDjy7oHuAcgPj7+94ihoHBCGurrOLBxHRnrVlGUkQ6APiCQ2FZtaNV3AKa4\nBPxDTBgCjWh8fNizN521GzeCq4Q2LTdjDCrBXBNG/u7eSHsAUTU1mGtyMWv86ZJXilutRu7ewN7d\nG6jQmxkWfQAfHxdryhN5WT8OGaJiXNF0HFYnFVUm5saOROVjYNpd3Vn9Uyk//PADt99+OzPu68Pt\nX2xm1AfriDLqKaxpZEjrcF67rj3CO4/+l7xfMPoYuavbMEZvCmJAv7GMzJuIz7LnuKXXFeTtCGBb\nqpkWuUFkb/gJU6uXCC6qxAo4Kz1TLf0GXEble+/jrKpCExp6vk6LwgXAaSt6IYQ/MBN4TEpZf/gP\nCSCllEKI37VSk5TyU+BTgG7duinb4yj8IeyNDRzYtJ6Mdaso2LsL6XYTEhNHn+vHk9KtJ2HxiQjV\ncWvQWK3MnDmT3Nws2iTvIzhqD26njpr0W2nR7lai2+9gy5wZWBwWMvxbYVVHc1P9TgJf+D86tI3F\nsPolDFU7cbi17NgWi9tm4h836fm/A77s7Pcod/ZK4LUFOdRYbfxN+mNyabn11lv5/PPPmTp1Knfc\ncQc/P9KP/63NJafCwr0DUri5RzxqleeaanA0sPLQSkYkj6BjbAgxQb7MzYGRt86AVW8SuOoNnomJ\n53qVBrvWxaH0XPqnvkWZbjxSqHBWebYW9O/vUfTWdeswjjq9pZEVLk1OS9ELIbR4lPxUKeUsb3CZ\nECJKSlkihIgCyr3hRUBcs+yx3jAFhTNGVWEBOxb+xL41K3A0NWIMj6D7qDFHLPfmhsgRmuqpzlzP\n2gXTCVWX0CY1G3uQg/KCLgTs1RDaOJ+1m7bR5JCE6uP4xXQle/XhzLQuQ/hoiXLNR8xdDG43dQWB\nlG01YBowiPYvv4wmOBixuYDn5+xl44z9GHRqJg5Ow7aijFlvbqPr8ERuvnk8X3/9FVOmTOHOO+/k\n6WGtTti2VYWraHQ2clXSVQghuKJNBNM2F9DglBgGPQthLQmedS8PNxpZHGZEWxiAI2wZGjEM4aPH\nWeYZaOvbtkEdEoJl9RpF0f/FOaWiF54r5nNgv5TyP82i5gG3A697P+c2C/9OCPEfPA9jWwCbz6TQ\nCn9dGurrWPf9FHYvX4Rao6FVn8voMGQYUS1aHaPcbS4bi/MWU12Tw2V11SQdXIUs2UWIdDMKcEso\n3Gkky2yi1GzhoFOHSkQSb4B24ZH4GPcTIspoSQGqX8wYwm2QvYzaHD2V6QGIsESi33ka/8svP1Lv\nuB7x9Es1sa+knq4JwZj8fbD1T2TtDwfYuiCPvD3+XD3yOmb/9ANTpkzhlltuwWj89dr00zKmEeMf\nQ5fwLgDtnBvOAAAgAElEQVRc0SaCr9bnsTarkqFtI6HdGITeyMjvxvFLkAVR7Me+bg8StAHUviYs\nKxbisjyP2t8fv359sa5eg3S5EGr1r+pS+GsgTrWpsBCiH7AG2AMcXlf1OTx++ulAPJAP3CClrPbm\n+T/gDjwzdh6TUv7yW3V069ZNbt269U80Q+GvQOG+vcx/53WaLGY6XXk1Pa+9AUPgrxVlUdUBHlhy\nDzk2j69aIyVPOvxoU+fG7GehqCiI8lwTLqcElQqNQUO0fwOD/csI0hSjEk0AVMkAmop8qF+rQxdo\nx27Wok8wEfLQ0wReOQxx3BTJ3yJnZwUrp2Zgb3SRMtCXTQeWUOZXRsuuLbmizRW0CvFY96sLV/Pg\nsgd5psczjG89HgC7002Xl5cwsmM0r13X/mih++ez8cd7WZfehfp2Nu667HNcUxbTuG4SAb07EvP5\nNOp/+pniv/+dxOk/4Nuhwx/teoULFCHENillt1OlO51ZN2uBE4yDARh8kjwTgYmnKltB4XTJ3rKR\n+ZNfxxgewdjnXyEsPvHYBFJC3lqqN3/G3eYt1KkE71VCguYyXgst50NnLiPLAvEpiAChotQ3me0h\nKZhNKdwWH0n3giYanC6cwbmYM1YzTj+Q4IZ6Jq99HwH492yPcdx96PsMO6mMZdYyrA4rScakX7mO\nkjuFEZlsZOXUDLatPsCKDmsp1xax8uBKPj34KS2MLegT04dZWbNIMaZwQ8sbjuTVaVT0TQ1lVWb5\nkWUOAGg9kh5XFrMqfzqNRYIMttDalIZvxyTM63dR9b//eRY2EwLLmjWKov8Lo6xeqXDBk79nJ/Mn\nv0Z4Ugpjnvs3ej//o5FOO+yYgtz0CY7KTB6LiqJMp2Ny7TjahI2kxL2UPvnptNwfjRuJMyICo+9Y\nOiYFMcFZR1CZHZlpxWUpxbr5E8z1RXzVdzzlQUHc26mGxl0+HIhV8Wq3gxhyX6JLw1yuTr6aoQlD\n0ao9Fn1VYxX/2fYf5h30LDnQM7In7wx6B3+d/zHtMATq6DkhhndmP01tYzVX5kwgOTaYjZaV5Nny\n+Lrua1r4teD1Xq8fKfswg9LCWZRexoEyCykmX+x2Oy6XC0PXO+kY/iN7cn14I/0V3ta+iTXpZhKr\nn6di8jv4tmuHvk0bGjZuggcfPLsnSuGC5ZSum3OB4rpROBm1ZaVMffYx/IJDGPfyW/gY/I5GZi6E\nRc9CdQ5N+lY85R/EqoBiXmv3MkPbDWbBZ3eSt9mMy6ZCGxjFztQmtkTu4obKodxScTVaNLib6pCN\n+9GnqjF07cS6IH8eXTaTkIjdhJYe4q0vXKy6rT32Yf2ot9eztmgtRZYiTL4mRiSNwI2bWVmzsLls\n3NrmVkJ8Qnh3+7u0M7Xjkys+waA1HBHX6rBy56I7ya7NZnLP96lbZCB/bxX6EDeGlvXklWVia7QB\noNPpCAjwvAAlpaTWBl9UpdBdW0hbdcmRMoUQRGqrsOzKYVnXchI1ydxfdi+tNWMoWN8SZ5MK/yFD\nqJ87l5ZbNqPy8Tk3J07hnHDGXDcKCucLt9vFLx9MQiIZ/fcXjip5pw0WvwCbP0GGtaLENJF/y02s\nC9jJU12eJCijkE8+GovdokVjUqPx64jaPYhbf/oU/94qprddzIqQDfQO6ExoXCJWdxNlDWVkVP1C\n2aFSdOEQF9yOBw61AJZw510foA0P98gk3awrWsd3Gd8xNWMqAANjB/JIl0dIMiYBEBMQw1OrnuLJ\nVU/y3uXvoVVpMdvNPLriUTKqM3hn0Dv0j+sNLaAwo5p1M7Op3KgiPnIACT0NqAIbqKuvw2I5umRx\nvEZDTBPU6+K4vHdrdDodarUas9lMaUkRjenZDC5U8VXXdNJsa/BXX0nMgL3k/aSnYfMmpN1O485d\n+PXscc7Po8L5R7HoFS5Ytv08h5Xf/I/hDz2JX8dktpdtx9pUQ8D2KRhL96NJG8Hm6hjmuVdQq6nn\nXnNHxNZyrE0afEOacIRHIGvi0NivoEN4Od2va42+XTvWlK5neuZ0dlbsxGq3EugTSIg+lMrqYCoq\nw3l31K1cmdaGvFtuwd3QQPKsWSeUz+l2AqBR/dpemnFgBv/a8C+6RnRlSPwQfjzwIwX1BbzS7xVG\nJI84Jq10S7K3l7N9UT6Vhyz4BfnQtn80rftE4R+sP5LujYUZfLY6h+0vXkGg/ljXzjfP30jDoWrW\n9ilgn86X0blDeEJMQbZ7hcIXPJPlTA88QNgjD/+pc6JwYXG6Fr2i6BUuSBrqavn80buJadUWy8hk\nJm2bhFu6f5VO5YLLCyJIyRTY3D7og5uISaqkpLEvNapIgiq7E5sayciHOiJUJ55T4HZLnpi+kzk7\ni3lrbAeu7xaHq76eA737EHr3XYQ/9tgfasO8g/N4a8tb1NpqifGP4Z99/kmvqF4nTS+l5NC+anYs\nKaAwowYhIK5NKC27h5PQ3kR6pYUx/13P5Bs7cm3n2GPyrpz+MttmbmJk671MiA9E7Qxk2KEe3NU7\nApHpQ9Unn6BLSCBl0cI/1BaFCxPFdaNwUbP+x6k47XZUw1rz1tZXGBw/mMdKiwjKXo55wN85lN5I\nzn4HteXp2KQLtc6GuW0gm8Tl2NUtaXKU01ZrwqQzMPj21keUvMvtIt+cT25dLkXmIg6Zi1i0NZiC\nwjgi4zbzUc7bvJVppVu6nYddLh5u+JLcqd9h0BgwaA34a/0J0YcQZggj3BBOhCGCJGMSScYkQvWh\nx8y2GZUyiuGJw6mx1RDmG3bil7iaIYQgvm0o8W1DqatoJGNDCfvXl7A0vQqhEkSmBmLy0fLj+gJG\ntYtGrT36xm+rniPZNnMTVYZOTKzYyCORki2mLNyb/Lj5luvQ/PQT9vx8rFu34det69k5aQoXLH9J\ni97hdpBemc4h8yGqGqvQqXXEB8bTMawjAbqAcyaHwompryzn80fuJm3IYN70m0WEXwTfBnZDu/wV\nXOEd2bI3gK01ftjcDQRbGynpFMY0RmNxBhBt9MFmrsEs9dilimAfDZd1kIRE7OageS8Z1Rk0OhsB\nkG4NztJxNNW1JTEhk86tCjH6BOKn9aPTp2sJ357Pyv/ehkO4sTqtNDgasDqsVDVWUd5QTmVT5TGj\njABdAMnGZNqEtqG9qT0dwjoQHxB/SgX/W0i3pDzfTM6uCvJ2VzKrupZtPk4ethqIjfEnJNqPkGjP\n5/x3biUwzIdbfDfwekAq04Lr6F3YiVhXKtcmp6B5ZSLqkBBSflmA+gQvailcfCgW/XG4pZuNxRuZ\nkTWD9cXrsTqsv0qjVWkZHD+Y+zvdT7Ix+QSlKJwLts6fDUB+W0FVRhXvmfqhXf4K+RYjizP8qJcC\nk9oPadOz9opYVpT0pkWYgzeu70Pu1hXsTc8gsLoTGb5mlmqKmbslDaFKJTZGxYCWnekUlUyTJZqp\n6yzk1DXw9PBWjOx5BYea7BQ22am1OTDtnUNZ197UhdyEWoBeCPyFIFCjxqhVE6RRE6AWuJx11DUe\notKSx6H6HLJrs5mTPYdpGdMAMPoY6Rzemd5RvekT3YeEwJMsz3ACbG439U4X5ggdPoMiiR8QzjX5\ndWz5fheH2voRb9dQkF5NxoZSALSBBqryG8hKHcZTNXNZq+/KtsjdBOUZmX0QBoSFEV5VRem//kX0\npEl/6gakcHFxyVj00i2x1NqoLW2gssRMWVEFVVXVNDSasTRZsTot2KUDqYIAYwBxMbEkJkWTmByJ\nJlCSW5fLikMrmJU1C7vbzqOdH+X2trcrF8M5ptFcz6cP/I2k3j2YZJxF66YmPsjPZ1V5CjtrovBX\nB9I+qC+vqg3Et89iQU5f+iY28t8JI5i/YxZZi7KwSogr78uuAbPp2qodkZquLNulYcHe0mNWKjb4\naTF1CaPAX0WT+2hEi4JcPn3tOd6a8AArel+GU4JLSn79hOBY/NQqgr03AR/sSFcdTbYKqqx5mO21\nICUBOj8SAhOID0zB6BtJkxssLjdmp4t6p4u6Zp/NZTqClOg2VoBL4ugbToSPjlidhhZoiN77M6qF\ni0nt2o+R1knskv24K6GIAKtgQHF/hE8APbYdIil7Hc7bnybpvpuOedircPHxl7Doi3MrWDF/K7V1\nNVgazDhpwKVpwq2yHfsurwrQHd1Oq6GhhswDheTuCUJnM2FURROdEsLQ1HFc1308Hx6axKRtk8ir\nz+PF3i/idMH6g5Vsy6/B3OQkJsiXy1qGkRapuHnONPtWr8Bpt3HI+T3VTid3VDmYUdCeokYjqT4t\naBd5FfcIO13abGBWRi86RjfSv1cto+YOp3Vua0LVoSSUXkZSrxAeuemjI+X2SrUT0ymcBRll5Jmb\ncBs0iHBfQgINDAo00MKgJ1avJVavQ5e+Divw6V3j0JhMR8pwuiX1Lhd1Dhe1XoVc43BS6/2scbio\ncXo+ax0qal1aatRB1Pom4/buMdIAlDlhc5UblSxCrwKjVofJx49grYYoHx1GjdozcvCOHg7/9lEJ\nbG7JarUfX/+SxRi1L5oQAwcbbMyxWHBF9+Ah1VJ+wk1U8CA6167mH7bOvGIsJKN2Ex0a+rOlczTB\nNQn4f/su0w/4kzK0Pb2vTUGnv6hVwUVJTU0NG35JJzg0kN5Xnt23li/qs1tvrierehMSiY+fgUBD\nAMEhUQSHGdlp287SyqXo/fTc0fEORqSOwO10Y7VaKS8vJyc3l63Z2yixZaEVOqoqWpCzJwmV1NLG\nZzSpYQNZX7SUu7K+IKM4ieK6JtQqga9WjcXmZOKC/fRMCuH5EW1oH6v4O88EUkr2LJpFqJ+ZrwIc\n9FUnsWdPI2a7jp7adiRGj+AZGujfeR/TdncmKtBCfdgUPtxVyMCAgYQ2hZIU0oHGMh0Dr2mHS0oW\nVdYxtbiaFdX1uIEOCQE8GhrDkFAjHQJ8UZ9gxJa3bh36du2OUfIAGpUgRKUhRPv7LxspJRLPYmoN\nzia2lGxgWcFSVh5aidlhxqEPpVfKKEYnjiY5KPE3y+rf15+F6wooSq9i1mVpCCFwuiWZDU3MX+hP\ndMEBXr7iGubvWESBoQO97BY2JtQSsX0T8Y1tWdunPSMWl9Glcg7rV4dQmlPH6Mc742M4/bV7FP4c\nFRUVfPzxx7hcLsID4hVF/1vYIixsareJImsRCYEJDE0cSrwpmombJlJsLebGDjfyaJdHjzxgdbld\nbCqYz+x9X7LRVoEt1NmstMUExQTRxzCAy+UYSg7oqDKPILPeRZS08XhKFGOGpBCbbKTc3MS8ncX8\nd+VBrvlwLQ8OSuWRwS3QqpW91v8MJXu3UFVWhatbE3VuFZ3XqLE6tAwghLDYEXyBjbY9ivh+Vww+\nGhu1Ye/TITCJSd0mkrk8k3x9AeaMANoOjGZWg5mPMsrJbbQTqdPySEIEN0WFkOj722+Gumprady1\nC9N9957RtlWXWKkrbyS5UxiBOl8GJ1zO4ITLcbgcrC1ay5zsOUzZN4Uv07+kY1hHbky7kWFJw9Cq\nfq18dRoVTw5N4x8zdjNvVzHXdIpBoxK09fclr00wGUvzmJTUlbI9KYwqW8yAbp8QUf5v1nUqJWJ5\nJqEt+rKzTWs679jGlddcx+IdguVTMhh2TzvFVXkOsNvtLFiwALdbckhjIbW34dSZ/iQXtaKPCYwh\nJTiFK5OuZGdlOp/u/hSJCj9VJLfFTybUmYKfxh+z3czsrNlMS/+awsZyIp1OxlgbaavyJaTDzdgS\n+rC7aDcLsxaywDGXlXIphsjryLe3pmNQGa1qbeh2+TJ3+zZCY/3pNCSOO/okckP3OP41bx/vL89m\ndVYl79zYiSST36kFVzghB+Z9hlC5WBrny1V7orHW2hlqKCYw4lk24KChk52V6YImpw5j8pc8c9nf\nuTb1Wmpra5mXOY+Y4DZsTPXj02g75ZmFdAjw5X9tExlmMqI5yRz647GsWwduN/6XXfan2yOlpCS7\njh2L88nb41lJ885J/dH7HVXeWrWWQfGDGBQ/iMrGSn7O+ZkZB2bw3NrneGf7O9zc6mbGthyL0efY\nUePYLrF8syGPiT/vZ0DLMIIMOgBadL+cjKVfUlO4hGDbcNKcHzAj/f/4R8u7qS9/g5mX63h01X4c\nQ4dSk5uL8YtJ9Hj6f2z8pYRD+6uJb6PsRHU2cDqdFBYWkpOTw65duyk3l7EzeD+FxoNEun3wbLN9\n9rioH8YuzqngkSnbsTlcuJ0StU8xPmGL0QRkIN0aXE0xRPjYMavLsOOmc5ONG81uXA034nOojOTa\nbYRqyqiJSWP/lS8T16ote3IW8XbGF7j0JYSpE3is1z1M3DSRToFdeSjgOdLXFFFVZMUY5ku/G1qQ\n2N7ET7uLeW7WHhwuyTPD07i1VyKq01QsCh6k08H//jaC0mQ36/3rGbI1nJ6hBaQYH+KQTOODeMne\niiKsdj1t2izmg2teJMbfs0PlosWLmZqVx9b4LlT7a+hp9OPJxEj6B/v/bgu1+OmnsaxaTYt1a//w\n+u0N9XYObC4lY0MJVUVW9P5aQmP8KMqs5bZX+xAQ8tsPQA8vs/D1vq/ZVLIJg8bA+NbjmdBuAoG6\nwCPp9hbVMfrDdYzoEMW7N3UGwOVs4v07ryUyzUS3wPtIqhiNzS8Mta8/D3e9mw1Z7+HSj+HbLrdQ\nMGsmaV9+hWPsWHa4hxEQoue6p/7ac+zzq6zUNTpoH2P806MbKSVb9h7gk6Xp7Kl0Uu/SIRGgrUGb\n8BlCY0VVO4oeUaP57MYuf6iOv8TDWL/aLJpC1AQ53CTYtIQ7ktHW3Eexq4js0O1ImU9Zk4r29mTG\nWQqx5KQSsKOEsEbPK+1NQkWZNMKOUlIW3EVhmInvW11HW9mNlvZMVO4GVq1/l7A0HeudawgL/pjR\nd42mY0kLts4p5OcPd+OK9WV7mEACjQ4XL83bxztLs5g4uj1XdYg6rXZUmG043W6ijL5nsbcubMo3\nzaXOrmVrkpVe68II0jbSOVBFhWzFRIOdg6V1IDUM776EV0dMPrJY2Kbqep626Sht0wNTnZOPYqO4\nNjX8D12k0u3GsmYtfv36/W4lb65uIm93Jbm7KynKqMHtloQnBjLg5jTSekVycHs5RZm1uJynmrsD\nKqGif2x/+sf2J7M6k8/2fMZnez7j+8zv+VvbvzG+9XgMWgPtYow8fHkLJi89wJVtI7mqfRRqjZ6w\nFH/Ks6oIuSse28KeaBq3omso4pM2wxibt5BM2wLGZfdl7v0PUbVuPQFz55Ly7HB2ra6jqthCaLT/\nKWW8FFmRUc49U7bicElu7ZXAy6Pb/eGyampqeOu7hcw4ZMCOjlitihZOFWq7lorYpZg1TdD0BFXq\nOA42lZ3BVpyYi1rRqysq+SYzm5KmPOpcVTTaG3E67aQKFYO0Bur8osnWBVHlDKLYJ4phwopoX0zI\njQMIHNQL4euLs6KC/EWzObjge/a4AhlUuxwpQe8QVAeGYTLXErXel/XtXcxlLnMPzgW3Lzbfq+is\n70XfQkmbMkF8t3BCov1Yn1PFltxqHvhuO5dtMTHx2vbEhXiUkqO0lMbdu2navZvG3Xsorarn/ah+\nrDV5Np0YHWzn7YevRGM4+z67C42DaxZREWRDljTiX+9P35g8bOpb+JerkX02O0adheu7zOGJEdPR\nqrRU2Z28klPMtJJqDFofRu6tYKQqjFGjI05d2UloSk/HVV2N/4BTu20aLXZKsusozqql6EANlYc8\nC5AFRRjoOCSOtF6RxyhMtcbz/OZ0FH1z0kLSeHvA29zV/i4+2PEB7+14j2kZ03iq21MMTxrOA4NS\nWJZRxv/N3kP3xBDCAnxI6tKF0vR1VIrdhLgGYFKvAUDkreX1y15izJLxiPrZ3L43mh9eeomG8eNx\nLPsSoRtH1pYyQq/5ayn6/EYbG2ssvDZrN4GBPqTFBDJlYz69U0K4qn307ypLSsmWtbv5fOlqFtuS\nMLldXG3REaULILJDKLOjlnOwfBdW4xgitCZuPFhMz7IiYPjZaZyXi1rRx/m7+L5iOb5qBzGGOoyB\nTfioXNikmiqnP362egLrVbhc0ATMQWDUBuP7Ywk+86dgp55aSyONDhXgR6VvCC6/AB4sno+jyIDT\n7CY3MZE9UUH02SNo8pE4w/tj0+RSHT2TyK5wVeyDrP06k6Dt9YzolchjV7Qku9zMuA9Ws+ZABQPe\nXM5gRwnXpy8kLm+fR3CtllXdR/BRu2tpEmpud+dTV13HHDoQe/uz3P/U+L/cKoMFeSUUJVtolxOE\nUeuipX8t79s6s1I4iDQU8kjnzxl1+QI0QsP00mpeyirC7HJxubWKVnt3EJLXmc6Pxf8pGSyrV4MQ\n+PXrd0y4rdFJVaGZigILlYVmyvPNVBd7XrhTa1VEJgXS+7oUkjqYCI488TOaw4re7fxjrtJWIa34\nYPAH7CzfyaubXuXpNU8zK2sWz/V6jknXd2TE+2t5Yc5ePr61K+363sjG79aQsX0xyX5jMNr90Ggc\niNzVtOg0jiF5RpYmraHEPIqXAlryWMeOBG/ZTOjNN5Kzo4Je16T8IRkvNppcbu7fl88vlXWoqprQ\n1duwdwyhKEKDLlfDQ/P2MlTYGBRqZGBIABE+xz4Yl1Jiz8tDFxNDdYWdzE2lbNu+lVxVLsvtbYlU\nqXm6m4lD4TlsNW8np2oXZeWldLGpeXXHFDLKFrC3NpSqYIB/nNW2XtSKPqp9b2675QCmsCByqpuY\nvaMYXV0pPbVVXCFK0Vmz0PjasOBDeZMf5U3+VNgqaXRqsTao8VW7SPTzJSg6kFT7Wmx6I6YHl+Ob\n3R65+XPsOQeIbagk3hrGIlUqg/bG07JqI13CTXzRMYEZzMS/JJt74wex6kAU8yZvpZtjNUG56/im\nuIRKfSCzUy5jQXIflnS6g9SeLuJMfmRaoLiuiS7xQbw5tiOp4f5IKSmatIRpjj4Mvesekt6ZRMDg\nE27gdcnhsDVRWO+kyM9B51otHUKLqJadeUdoMfqV8n/d3yct7Wkc6hDuSc9nfkUtPY1+/DshjLkf\nziNElUhwhB+xacF/qH6X001DvZ3Cdftp7DqK3ZvrqSsvpa6ikbqKRiw1tiNpfQO0hMUH0rJHBNGp\nQYQnBB6z5szJ+KMW/fF0Cu/EtBHTmHFgBu/ueJfr513PY10f46FBPfnPkv9n77yj5KjORP+r0DlP\nT/fkHKSRNIqjHJDIOQfHZ1iME8bruLu2116M7XW2366zn2ExYJNtQAgjLCQhFBBKaBRGmpzz9HSO\nFd4fLZJHawMjjTSY3zk6Oqdv1a1761R989UXW2jsDTK3uBJPOXQf7KDmEj/p/SuRxM0I7VtB17nN\ndj5b1Mep7Pl/bDR+jRs/9BEqv/R53ANbaE2dRySQ/Lt+hHcDWwJh/jwa4pMlPkbHRthkkNh51UJG\nVJX7sfDYc21sPTbCE94QAHPsFtblOFiX46TBZSX54nb6Pv5xNNnEuLOKYX8eYgEc86zCaBKoWvgE\nXwvuhI7s9QoUhdtDMeb3+Hl8YCaKLlBaZuGcy05/4/ZpLejjcTjeZWb9002kOruZFx6mIBhA0nUG\nrFbsaz+I87zLMM+v4RfbNmNpPIJLTXDe/GoWLlhCKlzO4+vb+GI0zCXWBn6kfpPxnZ+jrdBGidqD\ny6licqrMoY/EGGwbriSxWuf4eCfX/T6GskDmiRUHUY8e4P0vmHll4R28bJrP3JkZ8q/0czjl5vlh\nB3/58kU8e3iQbS0jDMfS1BWYs2n3cwtfc9oKgsDHL53HR+/bS9OCtZj+5V8pf+RhTFXvfu1q8MA2\nOn0pCgezPoo6Ty8/Vs7HYMhw+/yfYbUVoHpv5Lw9xxlKZ/gqDoo2BzmcHMQ+NhM97cJQKrHtoWZk\no4RsELNx6zqg62ga6KpOOqWQSaqkkyqZlEIqrhAPpUnGMtmFOK/N/v+nNiwOAy6flaIZHtx5Vnwl\nDnJL7Nhc76xxhySfKKo2SUEPIIkSN828ifPKzuPOnXfy/T3fZ5FvJU7z1fz386389iMNlM2v5cDj\nrZiLw0T3rsamPweRfhjvoLhhDSuffpJtc5upYZCv5ZTwG78f9/4XYfZ59DQFmLXy7ZkspiPbxqNY\nRJEvVxZw6VOtLKvModBqohCYfU4tu/f2UxRQ+feLatkSiLA5EOaXPcP8tHsYsw4feWoz7wP21a+k\nou8odceOUncMzmULAZdIywGdm6wZ3P4CykwRDJlx/phYyY5gDJc1n6I1C/B7CwhqLnynea/TWtAf\n+tPTBB9+CJdBIiXL9OaYaMsrxpjrJ69+LkV1c7DOmonDW8SNa6/nWks9FU0RfvVyjIJjEWRxHz1R\nkWpnP8vnPsR4iwHjkWcp6LbjDMYYXHoRydrVGGIhKpt20vRMlL79LsJWI8fO8ZODm+t2h1FSCs/N\nkxBTj0EKXgbYlV3j9ZKZX3/9JVoctRw3luBxWPHYsqFwKUXDYpRQlAjB4F5KjE2Y5GK+U7GGj5f0\ns+Y3n2Hmfz6BJL27E1l6GvfQnR9nQZuHPLMBhyHNxuQcZpf/nkpbmGTh/+XKAy1YRJGnFtYQ2dDL\n0fYwoj2NrFkRdQOxYIrWvcMoGRUloyEIAoLA6/9LAgaThNEsYzRLGMwSbr+Vwmo3VpcRofMYiT/c\nQ8U3v4x/+VyMllP7apwqjf6N5Fpy+em5P+Xxlsf53svfQ/J42dS0gvaRKHXLL+fAn37C8YMbsJvP\nxavakIghdGzDuugabvw3hR2zBXIH7qOl4F9oOedc5j/6EA59gOGuImatPGXLPCsJZRSeHB5ntcdO\nMq3SNhLlynnZP266oqA0N/MpQz/Pb2nF6uzn5jwvV2ku9jVrbBlL0OGXKR0bYtzp5msf+yhpXccf\nHueqjU+zIvo0/REDc0Zk7G0CgjrCsFFmb8Us0sYos4bD5IR6SR3eT0CWGXG7qVl3er/ep7Wg91fO\nICFUYVUldE1CU2T0pAQRHTpaGVjfTI/wGKJVwFJo4PbianbnlnDpjI00BitQdIlzZ3dyxaw0lsGL\nUVqabTYAACAASURBVBJNeNKbsCVCcMFd5K/859cvNhfOW9XCC7/6HOb+BMEhGDNmiFhKSbqCDHr7\nSZmNOESNYYNOUopjSUnkBi0UjOgsGTlOg9nBcM05bDpazpMH2lledJQrag6SI78CqACsLXkfW7sb\n+J76ETbn7+dTW9YwZ95d+HwXnJmbPAX0tLYSKknjjMiU+xJ0a36iTpVPFh+k03Qe3+x2U2o28od5\nlRSbjTyfVrG4jPTZd2KU/dSXL+Pij9VPag19X/wFMb2forXzEcRTn/j2qnlHfYc2+v8NQRC4vvZ6\n6nPr+dTGrzA+sIzvb97KL264EGfxd2jfe4gZF9xI6uBirNIOaN+KtOhmiotqWNQ5wu7qQ8yQh/nd\n0rXMe/Qh/IFdxMbfebTJdOEHnYOMZ1S+VJFPY08IXdNZHGij947/JrZzF1osxnxgPpA68DC9J86r\nFWWqSmrxrFlGJthLNM/HLS88ybx586gwjeIvuI+rSgrID5oJvJSHoUTHKcUZU20YdZllmUJs6SOk\nsGEQHCiik5DpdOvz01zQ22fMo2nWP721g3XI6YFLegD9A1yoRrGZFVzxxaRNxdhLXESkTeToW5EE\nhfGhC1F+ewgtoRATdH5VIPIHD2jrvsnF/fv55957mJfcRMwk0+ZfyyPma3la3EVKC+LU87hkoIZq\nwcrjc/7MPqmTH3v+lZ69exAPPc0nfGbyV3Rhzw8QSHrY2LsOv28NN624mF+f60VRNX65uYkfPQ8P\nqEk+IH6C8vJPU1X5udN6P88Euq5zNDaAO5I1iZTYWtmlzcaf/xCywcs3lY9TaDLy+IIqfMbsl42S\n1tBRyWQyWKMe6lZMzsygqyqx7duxn7PmtAh5eINGnzl1Gv0bmZEzg8eu+S3n9fyRjYdMPDT3j5TM\nK+LI+gD+igyD+5dSJW2Fts2g69iWLObirevZXybgDT7KTvvt9BYW4et6hdZg6u9ebzrTFE3wP32j\nfLjQS73Dyu+2HuXOl+7B/WQT8ZwcnFdcjnnhInpGrXzjwBBxJcPHRInaco0cZYDkK/uJPngfKArd\nVZXU19dzUVEc84Yv8cncMtLofNh5HQ1zt7A5JTHU5sIoGPG4buJoRibpuw6E15+zsvm5f2O1p4Zp\nLeg9+TKXftZEJLqfcHQP8UQT2fgaAUFwYjXPwGKZgVmuRYv5Gd7fy7MjaYoHR7GFkmiym8GIRlc3\n6OIAUIzIgzilOO4Xh8n1mjhUKPN/i0TGDDqXj2T46KCOOZCHqH2VZ8RNLBEeYm7PJuayiW8IdsaM\nBfQbQxhookRLcm5viutKjTww8HX+0xXl6AIHrzSX0PpkHtX1C2m4+AbaI3DvS1F+s/tlPra6kk+u\nreKOC2Yz1NjCAyMrWBvWoPNnGAxuSktuOcN3/dQSC47T4YrhHzchiRIl5hF+pRdwju9FfircBYKB\nP8yrfE3IAyhplYyaQhJknCYfJXXvzAn7KslDh1CDQWyrJ58N+79xOkw3f43H7OEr55/PFx85zDe3\n/Jqv15cgiKP0H9hIk20R/5yWUeMy8sgxrIsXU/bgg8zqdHLQ8BJ28+W8vGAx1214gkxv32lb49nA\nN9v6cUgS/1pRQKqlhdnf+ixSNIL/X/4F9wc+QPP+AC8/3U40kKKmuISHomFKPr6c2RU5r83x0ubN\nHPrDH8hdvpyrl1ai3X0hjxuq6VEruDV2HVqXxIZQPZnIgxj0FDbHDUgZAdmeZq+kEpU1rlleyjn1\nuZgdyt9Y7alhWgv6WPII7f3/B0GQcDrnkV98Aw7HLByO2VgsZQjCX2lna+C+Q+3siCb4rTpC884X\nUXc8gT8QwZmxoRv9ROzFjHur6bCa6Uyo0AsfNGvo6VYsoUa2K73IZTk8VHGQR97/FBs3LMAY+z1z\nzYexJRSk1CAO3UqPUEyXJY8KtZMb1Cj/Y3HQHtNYmexnafEg20fmc+BQP91Hfs45Xg+3u0KkJZ2W\nbQ7+30uzWHDZ+/jKrefyl/94igd2zeP7HxintfW75HhWYrfXnpkbfhoY7e5kwJtgxfFc7EYzogCH\nvWOU2i6nnSp+O7N0Qn2aTFolmYpjkHKoWVSAOMkaQ9FtL4IoYlu5YlLz/C3EU+iM/VtcMruIL0tH\nKBEv5WedP+WW0lxaX3oZ9erLCe+eh03sQm/dhrXhJmwZhYZeH61VScxjP2dL3UVctwEC0cfZ1pXL\n6tJV77raN3tDMTYHIny1sgDneIDOj96Gqij87qZ/41tXXMVTPz9Cf0sQX6mDcz9cR06lk6e+vYnH\nD/TSUJGDruts376d57dto+6CC7ji0nMZ/K9b2D/+aXoyDVymWhBEjRZLC6q6FYceZ5X3WgrI8Git\nzE8HbKyd4eFHlxeQCT9MW//D5GbW4s3/wWnd97QW9C7nPObO/Q0e9xJk+a2VDJ5tt7BxNAyLl3LV\nqrVkkkkG21sYbm8jcfgwOXsPUHZgA4Kms3XpZehz11CZsBPon4HmqEU2aKQDh7liSOdm6SZs3lyK\neipoZTZC1TZKXWFyJJUQYb4jfJ6gnsvNHU8AG/h0QSk3NazjhpjOOYefZK47yF8G69kxkqExmEOp\nrY5cczFXGvMxPtZNr6GLW2wmvqtZGc18Clnaw/HjX2fhwgffNS/gcFc7AWcaR0RGdqSI60Y03xDr\n+SLnO1Nc7ndPOCceTaLqCoaEh9ol7zxB6lWi27ZhmTsX2TO5L4O/xetx9KdX0NtMMssqvfSNW2mo\nPR8t+iLJTgfzLEEe0xZwq7SPyPZ2HCvcmGfMoCglcOHhEp5dNMKw/D8E7GCN7uf2rZ/iE/M+we3z\nbz+t651qftQ5iNcgc0tBDn233IIaifCdtXdQlF/FQ9/agyjAug/PpG5FwWvv2CVzClh/cIB/v7SO\nbVs2sXv3bubMqWd24XIev+sFRiOfJyNk6PQeoGSWgT8m7mdOh4OZvS7my7UU2iuwva+M3zx+jBsX\n+fjEop20HfklmpbBl3s+eXlXnPZ9T2tBL4pGfLlvz1t9td/D7/rGuGRfMx8s8HJBrhNXcRU93mI2\nVsxn/bLL8YTG+caOTZy/cQPCwU34PnMHjs++n97mMC17hmh/RcQlz+XyfQP0N7Qx79IqwrtDjBx1\nMu/66yny5tB95CB3Dgf4stvLfYXXUNt1iBFrP7/vfI57SFNWVc7XLdXceGQjx/s19idncySw47V1\n2g0iLqOPmdbF5FiNPLChlW9+9AscP/41AoEX8XpPn5lhKmnuO4JZkxA0cJuD9Kg5JHKvQxcEvj1z\n5knPScRS6IJKjqOAvArnSY95qyijoyQPH8b3z5+Z1Dx/j9dNN2/fGZuKZwgMxImHUiRjGQRBQDaK\n2D0mXH7rhJDP82b6uXP9UX45+z/YkLgWUdYYPbyRx4wLuVUHNZQhcbAb24oVuNb/EZfm5Zef+AXX\nNO+lrfRxFrUOsFRexq8P/porq66kxFFySu7BmaYtnmRLIMK/VeSjrF9PYt8+PHfexSuvWHEeGSen\nwMvFH5szIYfghoZiHt/fy133PIll6DD15ctJHXGxedMxcuQIUec+HqrdjM/lZku8n+VBkZltHooy\nErXlV2Nb7GGTKuM2DnBx/o/p6GzH77+MqsrPYbVWTMnep7WgfyfU2MxsXjyDb7b3c1//GHf3jb42\n5pRFbinK5Z+W1FFx1TrSn/kUg9+8i+Hvfo/whmco/smPqbxtDslYhuf+8Be6XjZSvm8VWoeZhcts\nvBT4M48+8giWruPIiSiiJPGBvGJ+e9GH6PNchSH6cwwqXD++lK6cMLcat5Jf5KesUGRvpg1JEVkQ\nyeFK7xUI3X30NR2iLzbEjQYP63PXYrXfiMn4M7p77nnXCPqmwDGchqz9vdY8SJdo4ri8ksvMTZTZ\nTp4dnEqkQReZtXhy/VgBotu3A5xW+zy8Merm72v0mqbT0xSg8+Ao3U0BwiOJv3m8I8dMSZ2H6oY8\nimZ4OHdmHneuP8qOlhA3LPkGz+38d7r37aX8wnPpb/XjlbYz+uhV2Fctx/vAfVDoRWzroix3OUfn\njbD46L0s3z2ffQ27ePT4o3y+4fOn5B6cae7vH0MW4P0eG8M/+hGWBQtozF0ENFFd5OSazy5ANk6s\ncVRiTuGSMrzUrXObfS2DuzVcPpULfb9gSDzAt0t9IKgMxPv5UDBMYecqQlqYBb4rkBwylktm8OTv\n/oevL/8pMhZmzf0tubnrpnTv/3CCHsBvMvDTujLuqi7iSDRBXNXIMxmYbbO8qZytsbiIkl/9isif\n/8zAf9xJx7XXUfj97+FYu5YrPnoJ9zbdTjKRQ3R8Hvue8SKpFVhy+1CqZnP9dddSMXMmoiixuC/A\nLcfN1KlfIpH5bx72v0zpoIUCh40BZ4hBHSqseVyhmnhE6ODb6v9w75r3c/mcWlq3b+TJnnlcPrie\np+71svqK6+ns/AXJ5ABm81srmna2omsaXZle3OmsoC83jvBs/hrQ4baCk2dmptNp1IyGKMmnxGwT\n2/YiUm4u5ll1k57rb/FWnLHJWIZDW3s5sq2PWCiNbJIonuFh1soCvEV27B4zJmv2lc2kVGLjKcb6\nowy2hWjZO8zRHQO486wsuLCUqlwr21pGuGXlKnJqMwRbRZTQ3WxQFvFR+VlENUj8YAE2oxOrwchA\ny3GWXTifnTPq+Qhg729jnnsB23q3vSsEfVrTeGQwwMW5LkybnkMNBLDd+V2ee6YDjHD5DTMmCHlF\nUdixYwfbtm1jLVWUhPIIR3VWXFfNnOTPaW7cyqfzywABBIX/jkm4hirYMhxiUcSOtaIG12XV3Lfz\nz3yg+r+wmPJZ3HA/FkvRlO//H7pThscgs8rj4MJcF/Mc1pPWLBcEAeell1Lxx8cxFBfR+6nbGX/o\nYQRBYNFlV6KmWsgvO0rt4hTO3CLs4/OxRWpY/+fnSSSSAFxclMNHTU6OFs7h/IL/4pKaywmWGVHM\nAouOufngS7WYWlI8JKX41qJ/wS7IfPn4faS7tlNjH2VpqYGkZGPopfuxy+sAnZGRjVN8t0490fEA\nI/YkBWE7mihjkRT2+dfSwG7qck/ecae7uxt0EbPR+r/WlXmr6IpCdMcO7KtXn7awylcRRQFBFE4a\nXqlkVPY+08l9X93Jy+s78BY7uPjjc/joD1dz2afmsujicsrrc8kttuPIMePIMZNTYKNkVg7zzy/l\n4o/X808/WMWFt85GNopsuf8YVw5JdBwPkFahev4yRKOK3NbDDosdAZ1c+Suo4TS2cz6HO6ky2NbM\nfIeVFl8+aaMRe6yN6nQ9baE2BmODp/XeTAUvh2IEMirX+z2M//4PGKur2XHISlDMmtIq/G8u5Nbd\n3c2vf/1rtmzeQol5PrWBfBIy7KyUmTc3TnfjPdyaX0hGs6IkCvlN1XWsGOhmV28O3miSqvpbMBTZ\n6fOF8Kv/gYKHlUsfOiNCHv5BNfp3grGkhPIHHqD3c59j8M47UUMh5n78Y8w97+LXjsmkVXY/2c7B\n50GNOXnk3qf4yCdvQhRF7lxewYsbGrnXbObPdV/hP1dnH6zuw41sf/B3GBpTBPt0vhL4De9fcTv/\ndeC/+Y0GdwAr3Lt4cPQTlCV2s+veDeRfVMPI6CZKSm4+MzfjFBEaHiTgTJPTbEM3ZDNYD9tnc7N4\nLzbbJ056zrGjzQi6kdy8ybdvTDQ2ooVC2NesnvRcbwVJFiZo9P0t4zx/3zHCI9nuU4svryC3+O1X\nj5SNEjWL86hu8NN+YIRNvz/G9REDzzxynGXrzsVdsZfKdjeP1x0k1WfEJPSSM/sogcY6ai0NbB3Y\nzTmyji6KBMsrcI0O4BooBCc0jjSSb8s/VbfhjPCXsTBGQWDpYA+DR49iuO0L9LWEsM5zYBtQcJ9o\no5hKpXj++ed5+eWXcTldNBRfSte+KNUNfkJzHNz9xCEO3/1VvuHzEsOCGLqA+XXHWN74FDuSC0im\n0iyz1iEIVpwXF7O58UM45Qz183+DyeQ/Y/v/u2qMIAj3CIIwLAjC4Tf8dqcgCH2CILxy4t+lbxj7\nsiAIrYIgHBcE4aLTtfAzgWi1UvKzn+G84gpGfvITAr/73ZvGDUaJVTfUcO0XF2K1WIgd8vGnuzcD\nIIkiv6gvR1Z1bjvQTkrLvvClc+by/m/9kEs//QXyknYufsHLs8/cx7KCZTxgNxHyViBlgqzkGK84\n62k78hJGbQnB4F5U9W/bbs92egfaSZo05JSIxZAhgoWE0cBKh44gnLwefPOxFgRE/CWTc8LCiWqV\nkoRtxekLq3wjkiy+5ozVVI1dT7Txpx8fQACu/Of5XPKJ+nck5N+IIAhULfRzw9eX0GLU6N82yCvr\nS3BXxhAz4AsY2GVwo8kWrP0/wlxjwl+4Bq+pCNdAL7IAY9W1OMNhUt1JZEGmKdB0CnZ/Ztk8FmaF\n245yokLpwVAlzlwzGbtMvsuMIAh0dHTw85//nJdffpklS5aysOBiuvZFqT+niAv/aTY3LC3l2zO7\naDe20mwy4Eldhe59kk94l5AeauNAn438UIz8uusxljvZMnoPfnMrccsXKPXPPqP7fyvfq/cCF5/k\n95/ouj7/xL9nAARBmEW2J9bsE+f8Qvjf3thpimAwUPid/8Rx4YUMfee7hJ58csIxBdVuPnjnSsy5\nGoP7RDbetw9d15lV7uZTYSMdssa3jva+PqcgULd6Hbf8+FcU1s5k+QEX0f0txJUE9y/KFtq6tngz\nR1yz0JEYOKCh6xlCoQNTtu/TQcvwMQCkdAaXnKTLWsgydpLjmnfS4yORCJFoGABH7uSbtES3bcMy\nfz6Sa2qau2cFvUYqobDh543sf7aLuhUF3PjVxZTU5fz9Cd4GOS4zg7NsHPeLtO8fJ97/KQxWWBme\nwQ5nBlFJQHQQz4xG9HSY+TnrCLQ1U2Ex0VVSgUFRkJN9VNgrOTp29JSubarpSqRoiac4P9dJ7MUX\nkWpnMTgMCy8qYyiSJN9lZt++fdx3330YDAZuvfVWikxzOPzCAHPXFbP6fbUIogCawuVdP+Rup4sS\ncxlm3wvM8dWwqnUHB2O1pFWNWYXL0NMiygoBKXYPLeEGrllx85m+BX9f0Ou6vg0IvMX5rgIe0nU9\npet6B9AKvOsKqwuyTNEPf4B12TIG/v1rJF55ZcIxFruRD331HHT3OK07Q2z5fRO6rvPJC2pY2JHi\nt8MB9odjbzrH5vbwvq99l+Ili2g4YMefdvBI91/I5NZgkcLcJO0gZqugfW8buiYQDO6Zqi2fFrrD\nXciKgKip+OQIXdZCFrAHp/Pkgv7Y0WbQs4+swTg5m3pmaIjU0aZT0hv2rSLJIpFAkj/+YB+9x8ZZ\n+8EZnPvhOozm02NBXV3jY30mxqJrKgl2VyGZCzF3BdklZWur6J5ypJe+jyR3kGsuIt40SpXVxEF/\n1slvTXRTJJbRGmw9LeubKnYGs01hVgsqicZGIgX1SLJI9SI/Q+EUBiXB+vXrqaqq4rbbbkMNWtjx\nWAuV832suqHmtciu0ae+TbchSqdJZlb+TAbi/dwx44PorZvYN+jDG0mQV34pxlIHLwz8CFUXWDbv\nW8iTTOg7FUxmBXcIgtB4wrTzaqZJEdDzhmN6T/w2AUEQPiYIwl5BEPaOjIxMYhlnBsFopOgnP0bO\nz6fn03eQGRqecIzZYuLqTy8lYeulafsgLz3Rht1j4ou5uTgSKncc6iSpvtlmK8kyN3z261hnljKn\n0cx4apwXSxeg6/BR+WlareWkYxHUUDWR6JGp2u5poS85iC2ZFXIFhnH6TD5mchSH4+SfuYdfOYao\nZWPGTxYG93aIvvACAPZ1ayc1z9tBMoj0HA0QHkty+WfmMXv16XXMra71oeswnG9k4WUOtMxq1EyG\nysS5dMoyo7IRokPYnHtJpALkjvupsprZ7cnakh3RIOaIneH4MAll+poJ94fjOGWRvAP7QNdpU8op\nn+vFYJYZCicJ9LZRUVHBTTfdhJoS2HTvUbzFds6/ZVZWkwe0RAjbgV/yhMWLLMjs7NvJisIVrBxs\npj3kJq7q1ObXo8VhcPYIfsN2BtXrmF9Rc4Z3n+WdCvpfApVki7sNAD96uxPouv4bXdcbdF1v8PlO\nf/W204Hs8VDyi5+jRaMMfOUr6NrEiIri4mLmX1JEwtLP/o3dHHium5Xnl3L1wSRt6Qw/7pwY0SBK\nEjd/6Xv44zZMaZFHtSCCAHnyOF5b9vjkUB6RyPQW9KPqOPnRrK09xxAnYZAwizJm88QiZbqu0z/Q\nhyuSLf9gtk+udHN06wsYCgsx1Uzdi2gwZcsjX3nHPEpmnlpTzcmoL3Lhshh4sXmEpZctwlM1BIKD\nWQPwosmNc7QVff6HsEefJjCwE4+cR0kiw7jFiu5yYY9EEYJZEdET6fk7Vzt72R+OsdBhI7l/P5gt\njEhF1C7OZyyaRNF0nEa4/vrrkWWZzfcdQ01rXHjrbAym15WJ0Uf+FauYZJfPj8/qI5qJ8vlFn4dD\nj3EgUIMxo1A242okj4mXQ78lrli5ZvUXz+Cu38w7EvS6rg/puq7quq4B/4/XzTN9wBvT6IpP/Pau\nxVRTQ96//SuxHTsYv//+kx6zZs1qpJIRcIXZ+adWBjvCXF9fwPz2FD/rHuZAOD7hHIvdwZqbP0p1\nr50dweOERYGo5uQa4w4Eo4+xLkilBkmnR09yxelBUIzjSWQFvU1OY7cksFkrJ9YoAo7u68A+Mgsp\nbWPxZeWUzfa+4+tqySSxXbuwr107paUk1n1oJjf8WwMF1RPLOpwOJFFgZbWX7a2jCIJA/SUDmJxF\nxHqa2JNYi0nXaM2rQS4oQht/CU1XcR/NPk9KcQnOWAIpkr0/3eHuKVnzqSataRyPJZnjsJA4fBil\noApRkiiu87DrYNbJvHLhbGw2G007B+g+Msbya6vfFLqrRwbxtD/Kfq2EHnWcwdgg19ZcywxNItrX\nQk/CQJnkQB+X6KkOUmbbh2q+Fo/t9JXUeLu8I0EvCMIbM3WuAV6NyHkKeJ8gCCZBECqAGk704Xg3\n477pJuzr1jH8wx+R6uiYMG40Grno4osYMTVi8Yg899sjlM/N5bJjKVwZ+Oyx7teicN7I6tVXkae5\n0QWd581OIpYqVomHMJi8BHtD6DrEYu1TscVTTjqZIGbMYEpmnapWKYPPMoTVVjnh2KGOMC/c24Gg\nSyy+ppQlV1S+9kn9Toi//DJ6IjGlZhsAX6lj0rH/b5fVNT4GQknaRqL4/EvJX7wP0CgcW0BSEOg5\n9CBcdzd+ay998Vb8rVmlI5pfgCMWQ86mgtAV7prSdZ8q2hMpFB3qjBKppiaCtlL85Q6MZpmd+7Nf\nxEvm1JJKKLz0RBsF1S7qz3mzSS36+BcRUTk4P9vyz2Py8IWGL8Cx9TQN5qELAjVzrgKDyPbMI2i6\nxIWLPz3le/1bvJXwygfJ9kuaIQhCryAItwLfFwThkCAIjcA64HMAuq4fAR4BjgLPArfruq6ettWf\nJQiCQMFd30Awmxm86y50fWI9k7q6OiqqygjYDyII8MKDzSxeVcTFOyMcjyX5cefQSee+6rLbMGZE\nHrTk4s51Igk6LnMUXVFIhw3E422ne3unhfDYKFFzBjllRAdMkoLL0InFUvam4wbbQzz5XwfQyBDz\ntLD4gupJXzuyZQuC1Yp1ybsuTmACq6qztc63NY/i8azAXdmNbLJgGutgS2Y1lcOttDm85F96FX2R\no+RHQABG/fmYo2FkVNwGD92R6anRH4tm/1LNHBtGz2QY1vMoqHLT29tL90i2F2y+28r+ZztJRDNZ\n5+sblYjBQ9g6n+ZorIznDFkl7s4Vd+IwOqBpPccjhdjSCo5MOSOlEjWeXYjW87Fazi5z9FuJunm/\nrusFuq4bdF0v1nX9bl3XP6zrer2u63N1Xb9S1/WBNxz/bV3Xq3Rdn6Hr+p9P7/LPHmSfD//nP0d8\n10uEn94wYVwQBNatW0c0PU7+IhjuDKPrUBfUWBUW+Hn3EEejEx1e65ZeRV7IQodZxZToYURzU2zJ\nPnDJgIN4fOIXxHSgf6QTTdQRMzKCKKALAqpRw2J+3fIXHkvwzC8bMdtkAu4D+Hz+SWnykLX1R7e+\ngG3FckTTO+v/Op0oybFSkWtje+soFksxVkspuTUiutrFsfEPU5ZR+f2m+7nL9WH2Z1LImkKupjOQ\n40XQdSyJBLmib9pq9M3xJCKQ35f9QxU15+Evd9LY2EhSzJbZsKQ1Xnm+h5lL8/GXvSE/Q9NQn/wM\nSUWmo/paDgcO4zV7WVe6DmKjRNsbGcJIma8GFJ3nxeexGpIsmnnz1G/073Dm437eRbhvvBHz3LkM\nff97aLHYhPHS0lKqqqo40ruLqoW5vPJcN5XzfSzbMo5DlPji8R7Uv/oaEASBGZ4ZJI0aT4XHOKrV\nMtfchI5AJuwnFp+eppve4AkNMS0gyTph0YouCJhPpIinkwrP/KIRVdEpXCSjySlmzZkx6eummptR\nBgZwrF076bmmC6trctnVNkZKUfHkLMda2IWuJZFTKdpSy+HACA/v7+fB4kt4LjVIfiRNpzNrX7bG\n4zgV57S10Xcl0hSaDWhtbeiCSNyaj6/UzrFjx5DtXnLtRg5tyua0LL3qr8yGB+5HGtjPC8MV/MGy\nD4BLKi7JjrVvpakvDwSB8pK1KDYZg2MnqliCx9MwlVt8S7wn6E8hgiSR9+V/Qx0ZZeyvsmZfZd26\ndSQSCSzVYYxWmfHBONaUxofHJfaH49zbN9G5+v7VtwGwweRnUPWSK4UQJRPJkIVkcnr6ugfDJz4C\nFR2TpJIQsg3TLeZiAHY81spYf4yLbptNR3crgi6ycMWsSV83umUrALYpjJ8/05xT6yORUdnROorH\nsxxr4RiCKKIKXeyIfJC10h6+938gT0pxtyzjTQh0mLLarjWawpKwMpIYIZ6ZGDRwttOVSFFuNpFq\na0f15CFZzaT0KOFwGNXkoMRqomnXADOX5mP3/FUhve0/YUTz0WSt5gjZL+fF+YuzY21b6Ih6ktWx\n6AAAIABJREFUMas69riPPTaVWk8bxfnrzspeEe8J+lOMdcECHBecT+C3d6MEJuaZFRcXU1ZWxoHG\nvSy9soLhzjD5lS5yNo+w2mnjP9sH6Eum33TOkppVWFMS3bJISs0A4JA0YuMCyWT/lOzrVDMay+Yd\nGBQVi5xBEzVAxGTKp/PQKEe397PgglKKZ3oYGu/FafJjtk7e1BLduhXznDkY/Geu7shUs7rGR47N\nyKN7e/G4lyKbNLzlHlJqB1G1kLy0h109f+LDsxwMyFbEYIbjtqwJwxFTkOPZUNbeaO/fusxZSVcy\nTZnFSKanh5TNjyffSmdnJwAxVWZWLJutPP+C0jefmBiH8Q6aRm3sdfUwz5dN4puRMwN0HeX4ZgZF\nGwXuUgRdYKO6H6OUweddPsU7fGu8J+hPA77PfR4tlWL0l7866fiSJUsIBoNIuRF8pQ6Cw3HUlMpH\nRkQ0XecrLb0THLoFeAla0gj5+YR1K25DklRIQVWjKEpkKrZ1ShlLjgFgUtPYxRSCAUxGH5kkbLn/\nGN4iG0uvqKT5UCeKkKCmavLtEzPDwyQOHpzyaJszjVEWuaGhmI1HBumP2LBYSkl6DcixIZL6GEdj\nlyO0b+OClWUYtAwjgRgDdjei3YY9mcaQyMaTT7dY+piqMpJWKLOYSPf2EpVz8OTb6O7uxul0Mh7N\nkD+UoWJu7sRoqIFGAIaTdkLlJmo8NVhlKwW2AhhrpfN4iowkUZi7gIhDJt+/D0Ewk5Oz6gzs9O/z\nnqA/DZgqK3BdczXBhx9GOUnW78yZM3E6nezZu4dVN9aQiGRw+S0Mbx7gC6V5bBwN8+xo6E3nzPbN\nIW5R6SmsoFGrINcUREtk0DICiWlovgmkg5hVC2Y1jVNMoJpljCYfezZ0Eo+kOe8js5AMIvt2HwQd\nlqyZP+lrRjZtAl3HeeGFp2AH04tbV1VgNkh89U+HiLCGR8ey91PJGaM/M5slAS8Hkq9QmuylP5oC\nXQe7AVsmhSWd/ZLqjUwvjb4vmf36Lc0k0cJhwqIbd56V/v5+8guLyB1XERWd+eefpIPWQLasyTGj\ngS+d/zV6wj1Uu6sRBRF6dtM+ngO6jk8rZ7uQYmnBQXy+c5Ek61Ru8S3znqA/TeTedhu6ojB2770T\nxiRJoqGhgfb2dgyuDCV1HhKRDIlwmnP6VGqtZr7R1v+m2Ppz67JOoPaxRg7rFfhMWY04HTWQmobm\nm5AawZJxYNLT2KQUqllEjVVxaEsvs1YU4CvN9gDuHmjHKubgL5h8Jmnkub9grKjAWD35EM3pht9h\n5s4rZ7OzbYyPP7mEHiEfg8NBjnEQgTTuwDqe69rIbGmcmC4ixBQykoolncSgGbDJtmkn6IdSWUFf\nMJI1EybMuZjdAoFAALMnjzlpCdFpOGkCW6hpA4GUBb2mirUla2kJtlDtOfHc9OxmWHHgMtgwiRb2\nygewyhHy/JdP2d7eLu8J+tOEsawM56WXMv7gQyjj4xPGFy5ciCAINDY2suSKStIJBavTwNEX+riz\nuoDORJp7el93zDZUZG1/Y7FOmrViHIZsfLCSkEmlJtbZOduJ6kmM6WxJXpOokjGrdO1eimQUWXpV\nFQCdbb2k9AgVJZMXzMr4OPE9e3BceOFZ6SybCm5sKOHB25bx+fP8/MeKH1Bc5yPVc4yIcYie+Ari\nXfuYW5DV3sXxNHGzE1MigoCA3+inJzq9TDcD6aygzxnNflUnzTmk9KyZU9ddlKoS3jmeCc9DJh3H\n1LuX7rib9196O2OJMQLJADXubLmM1KGXGDeY8DpLSRlF/HkHEEQrXu85U7i7t8d7gv404v3Ybejx\nOOO//8OEMbvdTmVlJYcOHSKvwknp7BwyKY3RniizwnBujoOfdA0yllYAcJlcWBQDKZIMCiXYpKzD\nNpOQSKenX1G4uJQGJWsXNYoqI8kSxjp8LLq4DKszG4Gz44WXQBdYtmbRpK8X3bwZVBXHhRdMeq7p\nzPIqL3ec30CJG5wlCVKxKKMulYxuZcVQHQZ3ErOWQBxPEbH7kWNZE6IbD32R6WUifFWjd4xnFaaU\nyUPihD8r0qGio1O1eGI7yvU7vokZlT7FR9WM+a9V76z2VEMiyPCRIdIGGY9cwisGlYb8I/i85yBJ\nJ29/eTbwnqA/jZhra7Gds4bxhx5CT6cnjNfX1xMMBunp6WHhhWVkUiqiLHBkWx9fry4komj8pvd1\nIe4XPCRMKgFjERYp+xCrCRvp9NiU7elUkZDS6Jms9mgQVbq6r8Jg0ahfmw2vVBSFjp5mbJqf4qrJ\nR8iEn3sOQ1ER5lmTD9Gc7giCgMvVgCH3OIIgkm+LYJZG8QZW0C4PkJ8cQgimCdqLEDJp5LSOQ3XQ\nF+1D1aZPovtAKoNTFhFHRtAlGdVkJxIPYpANxFtjdMka5X/VwKYj1EFf40MAGGvOQxDF1wW9uxr6\n9tI7nu1f4Jby2CMfxW4Ikus7f2o39zZ5T9CfZnI+9GHU0VHCGyf2eK2rq0OWZQ4dOkRhrRtvsR2D\nUaJ5zxDlyFzuc3N37wjjmaxWX+ksJ2TLIMg6UcmJiI4SM5KaZhp9JpUiYVBeE/RJ3cv46AJql2uv\n1WY/1HgYRU9TXTZz0qYWNRIhtnPXP7TZ5q9xuxtQ6COvqhzHaBth4xDBZB3d0WaKE32ICZVhazaN\n35LQMCctZLQMw/HpYyYcSmfIMxrIDA2h2jzYPBZGR0fxWovQYyrHTSoeq/G143Vd51svfYtVsTQj\nSSuFC7ItJnsiPdgMNrxmL3rXbkbSDgQE3EY/ku8VQCLXu+4M7fKt8Z6gP83YVq7AWF5O4P4HJoyZ\nTCZmzJjB4cOH0TSNeeeWkIoraIrO8ZcG+Vx5HlFV476+rMZemzuTjEFHZJBuPQ+LlEGNCtOuguVY\naAhd0BEy2fjsjtRqRDnOzJXZiAVN03hhyzakjJWFy+onfb3o5s2QyfzDm23eiNudTfzx13iI9Haw\nx2hBR2JOoJiCVLbuUqcp60OxxBWM8axAnE41bwIZBa9BRhkaJmPxYHMbGRsbw5z2oQsQyTEivqGk\nxvr29RwY2E19OkFP3E35vIVAtnJnqaMUQRBIH3yRcaMZl9lL2GJiVt5h3O4lGAxT06XsnfKeoD/N\nCKKI50MfItnYSKKxccL4nDlzSCQSdHd3U7PYj8VhwGSVObytjzqbmVVuO/f1j6LqOtX5dQBk6KFd\nz8Mmp1GiTDtBPxLKZsWKqaz23p9ZgKdyG1ZH9jP62LFjBCMBHMkyimZMvtRr6Kn1GIqKsMw7eeeq\nf0Qc9jokyY6jJJINE3QK2KQh/MGF+MzZymZ9ctbmbE5qGKNZQd8WnD5F9MKKissgoQwNkTS5MNsN\nhMNhMgEzIbuIx/N6Al44HeaHe37INeYSZFTCthnY3NlnrzvSTYmjBDSN2MHjhKwmcoyFHDD1km8b\nwH+Wm23gPUE/JbiuvhrRZiPwwEStvrKyEkmSaG5uRjZI1K0oJJ1QCA7FGeoMc3NRLn2pDM+Phanw\nZ73+CkN06HnZjNLEdBT0WY3RkM4+frpgwlX9ArLsIJPJ8Nxzz2HQbVSV1yIbJtdJKjM8TGzXLpxX\nXoEgvve4v4ogSLhcC9CtTZgdTqpSfYSNw0SSs9DsaWQzDOpZ4W5KqRDXcRld06qtYEhRccoSytgY\nScmBZFUQ0ibSYYFOs06e83Xn6T2H7iGYCvIx2wx0HUyzLwJA0RT6In2UOkthvIPRYYmMLOEx5DPo\n3g9Abu55Z2R/b4f3nvwpQLLbcF1zDeE/PzuhLILJZKK8vJzm5mYA6lYUoOsgiALNu4e4KNdFnlHm\ngf6xrFYBII7To/sxiQpqWkBVo2haZqq39Y4JRLM+BWMmK8SLTMcw2keRZQcvvvgiwWAQ63gVZXNy\nJ32t8IZnQNNwXXHlpOd6t+F2NRBPNFM6ZzZC/3F2Sg50JHJFO0ZjhpETbRtNqQwCUOGsmFaCPqyo\neHQVLRIhjg3dmMaYzDasOaSnXxP0Q7EhHmh6gMsqL8PRuZ+RlI3ihdkM14HYAIquUOoohaEjDMay\n+R0eUz4O71FkYxkWy0kSrs4y3hP0U4T7xhsgkyG8fv2EsdraWsbGxhgbG8OdZ6Wg2oVsEGneM4io\n61yT52FLIEISIxbVgC6FGdBzMEsKmUzW/KEooQnznq2MxbI+h4JUVmOcacn2bx0YCPHiiy9SmleN\nMe2mdNY77yL1KqGnnsJcX4+psmLSc73bcLuzVRb9NS7SkRBjBiMGMYZLrcYiJYicKONrzWRzNkos\nJbSOt56038LZhqbrRBSN3Gi2MXjGYEcTk5hSXpz5ZgYVhXxXdn+/PPhLVF3l9jm3YRo7Ql/KS2Ht\nTAB6wtncgRJHCUrbXgKiFQEBye6mIqeFPN/ZGzv/Rt4T9FOEubYW89y5BB97fMKLUlubrePyRq0+\nk1JJxRR6jga4MT+HjK7zh/4xcgQXmiHJgO7FJClkFAldh0wmOOV7eqcEk9kEsvy0BAjkWw4hiib+\n9Kf1uFwuvMpMnD4L7rzJpZMnm5tJNTXhuuKKU7Dqdx9O5zwEwYCtMPvsLDWPohmHiKTqKdaG0QQR\nVbbgOCHoCw2FRDIRhuInb5JzNhFRVHTAGw0DkDY4SGWSyBknnuqs47TAZWYgOsATrU9wY+2NFIUG\nkFBI5y1EkrOBAq86n0udpSRf2U/YYsRp8tKR04ZRypDrnR5VUN8T9FOI+7rrSLW0kDx06E2/ezwe\nfD7fa4K+aqEf2SgiyQLHdw8yy25hpdvO7wfGyDV4UOU0w7gxiQoaIroiTCtBH0lHsKVcOFUFSRBQ\nTSKKYiAUCnHNVdcw2BKlbNbkSx6E168HScJ52aWnYNXvPiTJgsMxh6TWiL+8ivxwF/tEEwnNw0Xx\nrIkmYbRizaQA8InZcMvpYL4JKdl4f1ck+6WbNjqIjysICAgFWQWi0G3h/qb7ERC4Zc4tJA49g66D\nbe7rpQy6I92YJTM+i49kSwdhixm3IY8R10F0ZNzu6dGl7D1BP4U4L7sUwWwm+NjjE8Zqamro6uoi\nnU5jNMtUzMu+VB2NoygZlfO8TjoSaRyWXFKmDCoSCFmtQ0lLZKaR6SaWiVIzsgRBVzCJaRImA8mk\nyJo1axBTDpS0Rukkmn8D6IpC6MmnsK1aieydvAno3YrbvYhw+BBlc+eR7m/nZTErBCviMppFImww\nY8pkk/1ytOwf3+bx5jO23rdK+ISgd4azGn3GYCc+BrqoEbJmxZ7TqvB48+NcXHEx+bZ8lJbNjKRs\nlDS8rqX3RfooshchpMIEB5KkDBIeox+b9wgGy3xkeWp7AL9T3hP0U4hkt+O86CLCGzagJd7cNrCi\nogJN0+jpydoEaxr8qIqOmtbobRpnsSv7QGmWfJImFQmFzImXUk2JKNNIo49mYtSOLiZOGpOUJmY2\nIIo21qxZQ/fhMURZmHRYZXTrVpThYTw33niKVv3uxO1ajK6n8dU40TWVetMYonmEeKqaEvsYAZMV\ng5JE0EEPxShxlNA4MjFM+GzjVY3eGn5do88EDcjOFIORJKIALww8RVyJc/Psm0FJYw03MyIU4fK/\nXhZhIDZAgb0Aho4ynMjmFThsNnId/RTnr53qbb1j3hP0U4z7+uvQYrEJmbKlpaWIokhHR7aTTeks\nL0azhCgJtB8cod5uwSAIRI1ZTd8qh0iLFgDUlDStTDdCxEFOIo+4kMIgaKhGyM0tQZIkuo8GKKx2\nYzBNLqxy/OFHkPPysJ8zPZxlZwqXK5sUZPIOYXG6qE93clgwMpyp4Wp9F2MGG1omjqwZiI31scC/\ngAPDB856h+yrGr0lHEIXJVTJDCkjVr9OfyiJ32Hi0ZaHWVawjBk5M1C69yKjoJcse9M8g7FBCmwF\nKK17CAhZxSpTkI2c83lXTu2mJsF7gn6KsTQ0YCwrI/RX5huTyURhYeFr3W8kg0jF/BPmm4MjGAWB\neoeFASGr6RrlEAkpq2FMN0HvClSjCiqqkEQWVQRZx2rNJRJIEuiPTdpsk+7tI7Z9O+7rrkOQ5VO0\n6ncnRmMOVms14eh+apetwjBwjGOIaMicE+olYrSgpmMYdQPx0BgL/QsJJANnvZ3+VY3eGI2iW+wI\ncjYD1lNqpD+YwG5VGIwNcn3t9QCM738aAPfC1x33SSXJeGqcfFs+yf0vEbYYsRmchHJbUXULdvv0\nqZv0nqCfYgRBwHXddcT37iXd1fWmsYqKCvr6+kilss6v6kV+NFUnGVUYbAux2GmjU82acGQ5REg8\nUZApMX1s9LqukxuqpdfRi5EUBlFDN+nIkp2epqymVDpJR2zwkUdAEHDfcP2pWPK7Hrd7EaHQPmYs\nX4WeSWNVOtDR0OIFOI1xhEwck24gEY+yqigbX/5C7wtneNV/m1c1ejkWRTPZEERQxRQ5BTYGQkmS\nDOAyuVhXkq1Rk2nfRUwxkr9w7WtzDMYGASiwFZA83krYYsJlzEPzNKMb5yKK00eJeE/QnwFcV10F\nokjwiSfe9Ht5eTm6rtPdnQ3pKqnLwWSVQYD2gyPMc1pJCtmEDVmKEBCyYWJinGnTTnCsL4Y9lUOr\nqxuDlsEgqChGDVl20Hd8HIvDQE7hO3dwafE4wYcfxnHeuRgKCk7hyt+9uF2LUZQIrmIJR66PhUob\nQXOc7sxcZpm7EXUNpyIQjyvk2fKY7Z3Nxs6NZ7X5Jqxkm/aIkQiKwYquQsYYwmaz0R9MMJpp4bKK\nyzBKRnRdxxJuIWwqQTa+XuRsIPb/2TvzOLnKMt9/33NOnTq1V+/7krWzQcjOFgwoCowoKCqKihs4\nOs5VZ3ScGZl77/DxOm7jdkfnjgs6jo64ASogiCAQCEtWCEm6051O73tX176d5b1/nEogJEDI3qG+\nn08+3X3qLO9JVT3neZ/neX+PK9VR768lPRAj4/UQMSL4gqNUV647Lfd1rJQN/WnAU1dL4OKLSNz1\nW6T9vOxrS0vLIXF6VVOYe14NQsDArmkWBQwcxTX0ipphTLier5IVs8bQ9+6YROLQGxzHIy00xcH0\nOKhamOGuGZo6Dm8E8WqI33kndiJB5Qc/eAJHfXZzYOFUMrmNc19/BeHYfvrsBJPmfBZ63e5loaJF\n1vFCcpRr5l9DZ6yTZyafOZ3DflmSlk1QVXCSSTK+WqQDpieBpRoULAepxbhm/jUAzPR1ElVT0LTy\nkHMc9OhNi4mMD4TAX+XOtuc2npm9YV+KsqE/TUSvvRZrdJTsU08d3KbrOs3NzfS/IKQzd0UN0oGZ\n0Sz1BYGmehFoKEqaEdwWaCIPlpU85fdwLPRun2Qs1EdWkSiOjUexsTSBmfOSSRRpPo5qG2nbxP7z\nJ/iWL8e3YsUJHPXZjWE049XriCe2cM5lb0QoKt5sJ0iVhHcuAL6iSUHVkSPbuXre1VQalXx1y1cx\n7TNTeiNh2UQ0FTuZIB5oA8DUk6RsN8nfGPGxuMoVCZx88i6EgPC5VxxyjrHMGAJBzXg/MdzCB0/j\nOKajE4mcewrv5vgpG/rTRPCyy1AiEeJ33HnI9paWFkZHRzFN9wvUvKgCzeO+TRN7Z5jrM1BEENQM\nQyKMJmxkYXZ49InJLNPDafZXPgOmF0XaaMLBUgXJiZLuzcJjN/SpPz2IOTBA5Qc/WNadfxUIIYhE\nVxOPb8YfidJxwcW0ZndjO1n2aGuRCJyCiRSCbOeTBDwB/mHtP/Ds5LPceN+NZ2S5ZbIkaOYkUySN\nBlAktpahP50B4JL2pQf3LXQ/CkBg8aGa8qOZUap91Tg7N5P0edFVL4WGfaSdxSiK59TdzAmgbOhP\nE4rXS+QvriL1wAPYqeeNdEtLC47jMDrqxgc1j0rrsioQMLB7mkVBA1sN46hZJmQQXbFxigqWeeYn\nY3u3uyqb+yufRVoGOJQ8eoXYkCRY4SVS6zumc0vHYeo730FvayN0+ZkvG3umEY2uplAYI58f4fy3\nX48qLVJyMwPKSjZe9CUKthuPjz3pKjZeMecKvrz+y4ykR7jh3hv46uavnlEx+4RlE1EV7GSSjFGL\nFrBAwObRXgCuXnQhAIVsFiPRTU6rgsCh1V4HSisLnbtIGl4i/hpkeAgjsPqU38/xUjb0p5HItW9D\nFgok7/3DwW3NzW4rvQMLpwDmLq8GCQO7Y3T4DYpaBEvNkiSAR7GxLWVWePS9Oybx1whSRgzFdpNe\nmnBwFJgadGhaeOzx+dT991PYu5fqT/wVQj2+GvzXItGI24gkHn+SqqYW6lZchJ7aAUUVyxPEFm4p\n7/S+GJQM+lVzr+Ket93DuzrexU92/4Q7uu84beN/MUnLptoqUlQMip4QSqDodnMbG0FR86xqcMM2\nvds3U+dNIhsPD/WNZkapC9SR6xsi5dMJBFxz2VJ/4Sm9lxNB2dCfRoxlS/EumE/izufDN8FgkIqK\nCoaGhg5uazunGiGgkLFoKkgcJURRL+CguAuOLAXbyeI41um4jaMikygw1psgF3VLKNVSdykVB4Qg\nF9ePeTWstG0m/+076PPnEb6qrGtzLASDHXg8lUzHHgPgrR+5CVvVMLN/REpJRm0mQJa02YaceT6H\nFPAE+Md1/8jK2pV8d8d3KdqH90Y+HSQsm+pCnkR4nrvBn8PwGYwkilSFOOhQ9D/5EBG9gG/BoYuf\npJSuR++tYHrawVEUfDVpbNvD4tbZVXEDZUN/WhFCELnmWnI7dlDo7T24vbm5mcHBwYNTYSPgoW6O\nWzPvH8zjKAEs1c3+a0JilRJMtp0+xXdw9Ox/xg3bdOuliiKrZOiFe4+O6aOpI3pM507c9VuK+/ZR\n84lPlL35Y0QIharK9cRijyGlQ7iqil2rrkJaw1j5TWTVGpba/RQj7eQfPVRqWxEKHznnI0zkJtg4\ntPE03cGhJC2bqlyWRGQeSAfbm8HWbJxiBfNr3M+ZWSyQ6nQfbKJu2SHHxwtx8naeBlsyaZbWrjQP\nE8vNQ/ccW3jxdPKKhl4IcZsQYkII8dwLtlUKIR4QQnSXfla84LV/EEL0CCG6hBBvOlkDP1uIvOVq\nUNVDvPqWlhbS6TSJxPNx9/mrXP0Nc/cMKH4cpQg4KIrAtt238UwO3/RunyBU7aVXdbXoVctdbKIo\nbr2zP1xBuOrVf4HsVIqJr38d33nnEXrjG0/cgF+DVFauxzRjpFK7ADAvuAjHtww7/xR2YRcNpoUZ\nrSX98J8PO/aCxguIeqP8sf+Pp3rYh+FI6TYdyWeJR+ehWXlsCqSdDNKsYFm9u76i/9kdVCiuZDZ1\nh65yPVBaWRuPMaP6UISC0tRPVp2d7SiPxqP/MXDFi7b9PfCglHIB8GDpb4QQS4DrgaWlY74rhCi7\nWC+DVlNDcP16Er/93cGa+iPF6ecsd7stTe1LElT9IAClCELBdNz/4jO1xDKfMRnuihNqgrTXnTJr\ntmvohep69PXt9cd07ql/+w52LEbdLbeUWwUeJ5VV6wGIxVyvfF5VkK6ON+KhBjN7P33xCMHgDOnn\nRg87VlM0Lmm+hCdGnjjtSdm07SCBcCpDKtiKcExMq8iImUZKD62VrmZNz9ObqA2aSG8Iwk2HnOPA\nYqmq/f0kfTrBYAChSsIVsy9sA0dh6KWUjwKxF21+K/Cfpd//E7jmBdtvl1IWpJT7gR5gdgg2n0Yi\nb7sWa2KCzOOPA1BXV4fH4zkkTh+u9hGIerGKDtGSaqVQ8qCoWPLM9uj7d07hOJKsNk7hgKG33IeT\nUAW2aVA/99XLHuT37CH2s58Rve46fMuWvvIBZV4Wr15NKLiU6ZKhj3hU7l4bZUnvHlRRS+/MBMX0\nViy5AGvi8OYjq+tWM1OYOe0NxA/o3HimLKTifs5yxSzTpbWJLZV+rGKR7qefoLlSIGqXwIuKAA4Y\n+mj3ECmfF39UIh2Nhc2Hip7NFo7VBaqTUh54rI8BB3Q9m4DBF+w3VNp2GEKIm4UQW4QQWyYnJ49x\nGGcHoQ0bUKNR4qXwjaqqNDY2HuLRw/NefW1JLlWoOWzFc8Z79L07pghEdAan9lLUXW9PK4WbpFfF\nMX3Uzw2/qnM6xSIjf/c51IooNX/z6RM+5tcqlVXrSSS2uZIImgqKglSgotCOorWwfQzG6upI/e72\nw45dXeeWHW6b2Haqh30IB3Ru7JgA6eAoHopmgbR0Q4MtlX56t2+mmMsQIQa1h4uTjWfG0RUd+uIU\nNRVv7QzpRDsdjcffx/h0cNxzXenO0171XE1K+T0p5Wop5eqamprjHcasRug64auvJv2nB7Hjrgpl\nS0sLY2NjBxdOASy6wA1vNA+WNG6UHJbicT16Kc9Ij94s2gzsmqZ2gY98IU9OsUAqaG5oHqkrOJaf\nyoZXp28z9e1vU+jupvELX0CrOD7t+jLPU1W1ASktpqYfJqSVHAiPQiTZjyd4DdWGxWa7k733P3DY\nsc2hZiLeCLund5/qYR/CAUOfT+oEMyNYmo50JFJxZ41NUR+djz1CdYUP1Uwd0dCPZkapNyqZyB5Y\nETvKTHYxXm12RqKP1dCPCyEaAEo/J0rbh4EXtkRvLm0r8wpEr70GaZok7rkHcOP0juMwMjJycJ/a\ntjCqR6FmxDWKupanILxYUkU1JeYZ6NEP7ophmQ6EU0igQBEhDTyO+wCTXgVVCaKoR/9RTD34INM/\n+CHRd76zrDd/golGVqLrNUxM/MH16IGc30f1zF6E8LCwqp4qr8ITwPiu5w45VgjB4srF7IntOQ0j\nf56kZSMcSbrgJ5IZwFFdw6+qNdSHDSjm6N32NOctd6URXpyIhZKhV31MO+53zVedo6DPzkQsHLuh\n/x1wY+n3G4HfvmD79UIIrxBiDrAAePr4hvjawFiyBGPpUuK3346U8mBCdnj4+eekEILathChtBfN\n9qCqBXKK28lezQss68wrr9y3YwJvQGMqN4i/sQkpcyiOl7DMAuB4QfdGjvp8+a69jHz27zDOPZe6\nz//jyRr2axYhVGprrmB6+mGCwn0Y21VVRHPTzCg2Q3I1b2nqQVO8/P4bX8Qs5A85fnFdUBR/AAAg\nAElEQVTVYrpnujGd06eBk7Bs6uI2ttQIF8aQwl1fYjlRWip9dD+1CduymNNUmkUewaMfy4xRlzOJ\ne7z4AiqqJgg1zt5049GUV/4ceALoEEIMCSE+DHwJuFwI0Q28ofQ3UspdwC+B3cB9wF9JKe0jn7nM\ni6m44QYK3T1kn3qaYDBIJBI5JCELsHBtPQqC5vhihJYnK9yppZZVzrgYvW059O+cpm1ZFUPDgxjN\nbQgni2obREuGHq+FP3B09fPF/n4GP/pRlECA5v/7f1G83pM4+tcutbVX4jgF7PRWAJS6RlQpGVUs\nJgtziepDXFi/nkQqyeO/+K9Djp0XmYfpmAynTt9EPmnZtE26xj1iT+Eo7kMnVdRpqfTT+fjDVDQ0\nErInIFgP/kMLAUzHZDI3SfV0gqTPi1FVREnMYVFr4ym/lxPF0VTdvFtK2SCl9Egpm6WUP5RSTksp\nXy+lXCClfIOUMvaC/f+PlHKelLJDSvmHlzt3mUMJX3UlajTKzM9+Brjhmxd69AAdpTj93Ni5SE+O\nVKm9mStVfGYZ+uG9MxSyFpXtGsViEWrqEDKHahuEpNszV/hNApFXrrgp7N9P//tvRBYKtPzg+3jq\nak/28F+zRKOrMbyN5KZLX99at+58hhyO4yNhNzAnMMocatl67+8Y732+21R7pB2A/mT/i097ykiY\nNq2TJn47iaZILK2ALQVTGZs6AwZ27WTRRa9DTOyB2sWHHT+ZncSRDhVDSXJeD0Z9jNTMQhY3hE7D\n3ZwYyoXHZxCKYRB9x3WkHnwQc2SEpqYmEokEqReInnk8Kv6ITtvMMlCKJEoaJEr29Ord2Ok0M7ff\nzuBffYJ9b34z+664kmf+9Zeowsbe9RCqZZELRVGcLIrtI0ipObq/iOF/eY8+9dCf6Xvnu5DFIq0/\n/jFGR8cpuKPXLkKoNDS8HTPhdpEya13nIl36fO2X6/CLB1je8k4Mj5dHfnrbwdr59nA7AH3JvlM+\n7gMkTYu2KYuK/ACW7sNUs2SkjgTUyT6QksUXrofJTqg7vCz3wGIpn/sDX1WOmewS/Prs6Sj1YsqG\n/gyj4vrrAZi5/RdHjNMDNM6P4rV9NOQjzJQ6TimnSZNeSknsZz9j3+vfwNj//mcKe/eit7ejL17C\nmNpK1dROQv/2ba6567cs+9q/cMGuabSCjt/JoQkb2yvRtCOXVlqTk4z+0z8x9PGPo7e00P6rX2J0\nLDzFd/japKHhOnylh3G+0lV1dKwEprB5JrMCXR9AFx4W+5cyuOtZ+p5xSyoj3ggV3orTauhzEzl8\nBUk03kNO8WCqeVLSDfPlurdTP28BFYYJVv6IHv2BGnol4YZFfZUmBX3ZYfvNJmbvI+osxdPURPCy\nS4n/8pe0feTDKIrC0NAQixYtOrjPgrV17Nk+xNxkI72i9KzOn3pNejudYeQznyH98MMELryAmk9+\nEuPccxFCMNQZo/jNHZz3met57OcDdMRi1D27g88mk+Q829k5t4mUIbBTKmqpyTm4rQBzzzxD6oE/\nkbjrLpxikcoPfICaT3+qHJM/hfh8zdRVrccbyxMv/b/XFBJM+UwUsx0hTfT4bcyvvIm9Vi9P3/Ur\n5py3CoC2cBt9ib7TN/hBN/8TGX+OieaFOGqRdMnQOwOdLLrhPTDuyjy8VGklgFnw4Yk6hM02Ii2z\nO1RYNvRnIFUf/CD9f3qQzF2/pa6u7jCPvmlBlJHwPubG23hGLVW2Fk6tR2/H4wx86MPku7qo+/zn\nqXjvDYdIDO/bNommK4RaNPqjUc5573v5eM7D/D+9h4u311ORKyAUL9EvGKS/8iW6q36IzOWwk0lw\nHISuE7riTVR/7GN458w5ZfdV5nnaWm/CP51mWLh6MDWFaYZVhwYzRN4JEI3cx+j0pSzwrmDHnocY\n2dtJ48JFtIXb2DSy6bSN2xjKkfcreJOjZFiMokqywo8mJEEnR8eF6+GZ7wMCag4PA45lxohIlbTX\ni68mizGznLZLjq9h/emmHLo5A/GvWoVv9Sqmb7uNppKhdxzn4Otev4fxUC8B00/UcXXdZfHUlVc6\nmQwDH/0ohe5umr/zb1S+772HGHnHkezbMUnbsirGJtx1AA3NLQwXM+ycq/Cdi1eRbK7A8Fkk3mHi\ne/sGAuvWEbryCqo/9jFavv89Fmx6nKavfKVs5E8j0ehagqrNsHSF6KoLcXo0AQi6i6uRAYHV9SPm\n+OagKwZbfvMbwE3ITuYmSRdPfbmvlJLwaJ58jYIAcsKL5lHICh9hO03rsnMJVlTCxC6oaAf98IV6\no5lRajM2Ga+OrzpPJtbBktZjU1Y9Uyh79Gco1R/9KIM33Uxr7362FItMTU1RW/v89DEbGcYesmgu\nNfCQllt1I6U8qW30pGUx9Nf/g/xzu2j65jcIbdhw2D6j3XFyySLzVtayd3gLuq6TDYaRjjulLjoG\ninTwaA6ZSyXRVR8gGll10sZc5tgQQlBlVDJZdB/W0XyCYRWECqP6ZbTzFP7aMZIPf505519O9zNP\nk+gaOZiQ7U/2s7T61GoQJSZz+LIOxdJiaUcN4lEFiaKHYH6CRVde4r4wseeIiViA4eQg7eMCKQS+\nyiKTI/MJG7OrdeCLKXv0ZyiBiy/GWLIE7913o9j2YfX0FX6DwUgPc61S7NESSGnhOLmTOq6Jf/06\nmU2baPjn/0348suPuM++bRNoHoW2ZVUMDw/T2NhIf8FElMYmbR+KtFFLEsUvlYwtc/qpMirIeetx\nvFBhZXAEFMMW04UFhESeypYZZGaKRYsbcKTN1n//FY2KK301lB56hbOfeEa6XQkRX8jt1+CoYRRF\nELc8VNgpFqy9EMw8TO87YiJWSslQeojqKfd7FfXWYkZm/+ezbOjPUIQQ1HzqkzgjI3T09x8Wp68K\nRemu3kyIkqF3XC/+ZCZkE3ffQ+xHP6LihhuIXnfdEfdxbId92ydpXVaFosHY2BhNTU305QooJY9e\nOgY4Dpo4YOhnb33y2U5YUzG1Bhy/pDbsLpcZ9aaIJXxk7CgyrGBFvHi2bKKubT690zsw7nE/g6Pp\nw+WMTzYj3XEyXkFEKS3IExFyjqSIypy6CEYgCFNdIO0jevRTuSkKjok/5UXx2FQWFhNoDB6232yj\nbOjPYALr1+Nft47FO59jdN+h0q+V4Qr6K5+liKtH4kjX0J8svZt8Zyejt9yCb9Uq6v7+cy+532Dn\nDNlkkYVr6hgfH8dxHJqamtifLWDIDADSNpDSQRXuomlNLRv6M5WwppJyFNRQBSE9hSGK7HPc93G4\nuIx0eC7R5gSZp55m0Zp1JIqT5PaOE1D8jGRGXuHsJxYpJYOdMfprNCJZ92FjayGmTdehWL5sgbvj\ngYqbusNLJofTrkOlSC++6jzB6eU0zZ/diVgoG/ozGiEEtZ/5DJ5cjupHH3VXl5aI+iuw1CI9RhFQ\nMKUGUmKfBI/ejscZ+sRfo4bDNH/zGwjPS8cru54YxRvQaD+n+uAspLGxkf25ApUlAyEdA1tKNNVB\noKKq/hM+5jInhoimkrRs9GgbpDw0BEcZsG10n8YQF1JVWUltaxIhHWpmUgihMKz2UluoYCR1ag19\nbDRDNl5kX70H4u5soujxM1NqtbluzbnujuO7QDOgcu5h5xhMDSIkOLYXX4WDnmhn4aLZKU38QsqG\n/gzHd84y2LCBhZ1dDD3xxMHtEb+bbdpjJEF4mLHqUe0Tr2ApbZvhv/0M5vg4zd/+FtrLSEoXcha9\nz0yxcHUdqkdheHiYQCBAJBKhL1ckfKCnrW1gO6CqNqoWPKnJ4zLHR0hTsSQokSj2dAWNwVFywkdk\njsZQfhkiNYGor8CMaAzfdR/NS5YxmO2kJhdleGrwlS9wAhnY5YaWehs8FKYGcQBT9ZAs1dDPrS9l\naMefc+PzyuGSw8OJfiJpD9JR8Bk1TKsKgYB+qm7hpFE29LOApls+j6VppL/6NWSpzLIi4K5WHPDN\nABrTZiMe68Rr0k9+4xtkHn+c+v/5T/jOO+9l9+3ZMo5tOnRc4GqjDA8P09TUhC1hIF/AV3oIScfA\ndBRUzSnH589wDkgVO+EQat7Bm9NIWSGy4SdIFULEJoroK95DQ+sMFb17aJi3mPjUKI1mJaP5sVM6\n1sHd0xi1PpJ+FTM2TN5QsRklJb1EPA6Gp2TYx3e9ZMXN0NQu2qbcGWvYWUwmOLurbQ5QNvSzgHBz\nM3svvABPTw8zP/85ABUh19Cj5pEqpKwITrLyhBr65L33urrv17+Line84xX373xilIp6P7VtIfL5\nPFNTUzQ1NdGfL2BJ0M0kiqPicSSWVFF0B4929BLFZU494ZKhN0MhPHYOb9qtJy94XR2cvsIaaFpF\nuM2tchnY4uaSai2DjMgy3X9qjL1ZtBnpTmDMdx0HOzaGHQhgOwOkHIOmqCvnTXoCMpNHjM8DDMV7\naUh4UXSb9sxatOpX37D+TKRs6GcJyutfz0RzMxNf/gr5PXuI+kuG3pPHVBXAYnpg/Qkz9PnOTkY+\nfwu+lSup/8dX1n2f6E8y1ptk6fomhBCMjrox0qamJroyrma5p5hAtXUqpDtGoUtUbfZXNJzNHDD0\nxWAQzcpRp7lhtr5CEH/FAPsLayE5jPf8t6BXWkSf3EiksQVPzM3H7H/m1HSbGtkbx7Yc5Fz38+TL\n5FBCUWxnhJT00lJRMtjjpWYpL+XR56eIpLwEKmyCVpTK1tlfWgllQz9raGtvZ9PqVYhwmOFP/w1B\n0/0CKlqBoqphiBgTQ6+jWDj+GL05PMzgzR91k6/f+iZCf+UY5c4/D6F5VRZd+HzYBtxE7AFDj5lE\ntQ0apDtG4S2Hbs50nu8y5a4gbVA8CCRP9bUSaH6WcXMBmf274ZLPEGnJMndmhLi3juzAGB5TMNB/\nahqF9++aRvUo5Jpcgx7MWWhGmKJSIItOW1VpBexBjZvDDX26mGbKMjHSOl6f60g1zTs72lSWDf0s\noa2tjYJhkPvYX1IcHCT397ei2hJNLZBXvBhiGrMYZbTz+IS/rJkZBm66GSeXo+V733vZ5OsBcqki\n3VsmWHR+PV6fu9h6eHiYiooK/H4/XZk8LYZO3soiHIPakkePIfGUF0ud0Rzw6LMlQ++zBSGRJ5eu\ng44aQKGnKwW1i4m8/mIAcr2jSNumYdpgNDuKNX1yF/FJKdm/Y5KWxZWkhCuXHM0Lio4k4XFDg3Nq\nSjPH8V0QaoBSjuuF9I7voCqhI6SgIN22gb76V9fL+EylbOhnCTU1Nfj9fvb7/TTceiv5TU/ysXsc\nPEqWnOJFJYffGKdvc/NBbfBXizU1xcD7b8QcGqLlu985akngXRtHsC2HczY0H9x2IBEL0JXJ0xEw\nSDs5hO2jWrrVN9IvUcse/RnNAUOfKhl6LVskIvIUZDWPyiECRpzB+FJGh36J5y234I2abBjdAbpB\n22SQSc8M+c7Yy13iuJnoT5GeKTBvRQ0J00I4BcJ5QbqYIelxHZX5dSWtmrHnjqhYCbBv4BFq4u7s\n1ZZLyHsESqCcjC1zChFC0NbWRn9/P9G3v42aT32SS3ZJPvXADvLCg+mozK+9l/RklIHdr/6LVRwc\npP+976M4NETLf/w//GvWHN1xeYtnHhykdWkVlQ2uMUilUiSTSZqamrAcyb5sgY6AQZ4i0jGoONAv\n1lcO3ZzpHDD0SZ+71kHLmUREnoQWprN7O/MWeRgsnMf+p75IKughuKyZ6qkEE3otTVN+pvxx8iVZ\ngpNF7/ZJFEXQfm41Q9k4qplEz5mkC2mSHtdzn1sXBjMHE7uhccURz7Nr/ClqE168Hpu5aghZ7Ttr\nSn/Lhn4W0dbWRjweJx6PU/2Xf8lvXmdwQc8ky0d7KDoq7YEn0ANptv6h71WdN71xI/uvewfWzAyt\nP/wBgQsuOOpjdz48RD5jsubN7Qe3jYy4C2UOLJQqSklHwKCgWkg7QLC0QhaDcujmDMdQBB4hiAXc\nB7InmyMs8thCwzcehUVFHDRy/WvYtetT+N95M0jBwsIARg5SMk6hL4l0jm2W+UpIKenZNkFTRxQj\n4GEgEyOccdU2iwqktBC6sKkM6DD6rCt90LTyiOfakemnLu5F10LMQSV6liRioWzoZxXt7e0A9Pe7\n/Tg3rgvzvcubqMymKBZVZJdD3dInGe1JMHgU02U7Hmf0n/4ngzfdjKehgTm//hX+lUf+EhyJYt5i\n+wMDtC6ton7O82WSw8PDCCFoaGhgd8aNz3b4veQ9FpYdIFRaIesYsuzRn+EIIQhrKtMBN8atpXNE\nFDe5Hkw08oSxl0ptkNjEZWQy3Yy09aIYKufPdLsniKWQeQtrIntSxjfWmyQ5mWPhWrfd4UQhQ3XW\nTfYXVZWkYhDVLNczH3G7YNF4+Ge8mE8ylhYYOY2kdy5+BL6ms6cirGzoZxG1tbUYhnHQ0PsVH08t\nMXiwZRW2opB5yEvbr+4l4Jc89ou9OLZzxPOYo6NMfP0b9LzxTcTvuIPKD32I9p//N3pLy6saz/YH\nBihkLNa++VDN+KGhIerq6tB1nR3JLLoQRNJxpAKWHcBfCt0IbzlGPxuIaCqTvgBSCNRMhrBwDb2a\nr+Gx4cfpqOtmIl5H1LiJweEfw5Xz0ccdTI8kNGlTFCaFvpOjwdT15CiarjB3RQ2WYzFjWjQXLQCU\ncC0JNKq8pdnE8DYINUK44bDzPPbMv1ITc2vthww3N+U5SxKxUNajn1UoikJ7ezv79u1DSklA9YNI\nMOONIHOCwPkF7L0wZ/MPeW7pR3jsL79Cx0IVNRRCOg7myAj5nc9R6OoCIQhdfjnVH/8YxgvaFB4t\n8Yks2+8fYMGaOurmPD/FdRyHkZERli51y9d2pLIsDfrYt2cvAAXbj+5kAQ+qVl4wNRsIaQpxCfhD\neHIZDKJ4FYeUCJMeHKN5/gzKsEV64GqM1j8wtWGMit+phAIJ6qdDTC9JE+1LwPmHG9jjwSra9Gyd\nYO6KGnRDY/vEdizho90s7RBuJSU91PpKGlHDW18ybPOnkfupnzbQHIew4RYVeOrOHg2msqGfZcyf\nP5/Ozk6mpqYIqH5sdRxTcSsDjDaH7huKrDE+yugvp+l0ziHy319Az7nJMLW6Gu+8edR+9jOELr8c\nvbX1mMYgpWTj7XtRNMFF180/5LVYLEY+ny9JH0ieTeV4Z30lvc/sBw1sO4hqFwAPqtfG45ndnXte\nC0Q0lZRlQyiKXkzj9/uoLkDCE6F5yqCrPcM8YxN7n9zA1Zf8L3Z13kT6MpWaQop8McpYZJzmvvoT\nPq69m8cpZC2WXNgIwMahjUhlLU0Z19KnAm04COqCKmRjENsHK2447DzZ3BibMineOB0hoAWJCg0R\n9aJ4zx7zePbcyWuE+fNdw9rT00NID2Hm81ii9DbaElTwnX8ul8/18Mt/2czwzf/BFR/qACFQjmLh\n09Gw9+lxBnbHuPgdCwhEDq3bP7BQqrm5mZ5sgYztcF7Iz56JEWgEafsRjolH2AiFsqGfBYQ1ldGC\niYhE8Yyl8Rl+KqTDmL+aBclq7skO8En/brpjlzDeuYDq6suZ/osHqPiVyiDQl9jHisQi7IyJeoLK\nFaWU7Hx4iMrGAI0L3c/Qo8NPIIOXEJxyk7Fjhlve2xr1Qr/bwzbduII/dt+BrupsaN5AUA/yix23\nUkh58OY9TPrruULzYDSfPfF5KBv6WUc0GqW6uto19JEQplLEEm4JnHBsQMM0k1Q1tXHBNfN4/Nc9\n7Hm6iqXrm07I9ROTWR757y4a5kc4Z8Ph5xwaGkLXdaqrq/nzuDuTONdvsDE1DoC0AziOjUd146ha\nOXRzxhMuSRWrFZXogxMYuo9wvkCn8OOfdLg/M8G/6EM01KTY8cAAb//HW5gefxDvkgLpZy2UkV4I\ngDmcRl14YlaajvbEmRpM87r3dCCEYCo3xe7EEATBmBrHAQZFEDBpr/JB/31M6n7ev+MrDJU053VF\nZ1XdCraOPcWKaXdF7VO+Dt5ngd5yduWOysnYWciCBQvo6+sj4AmCAFN1k03ScUBKLNtdebr8shZa\nFlew8RfdjPQcfy1zIWdxz3d3oqiCyz+0FEU9/ONzoHWgoihsSWYIqQqhySI5tSR7YBuYDuiqXdai\nnyW4ht5Bq6lGLybRPQYBmcWSgrTipyIeJBGoYFXDJtIzBfp3CGpSazGX55mpzKHH0kgpKQ6dOMG9\nzff04QvrdJzvhoQeG34MqbheuHdyHNtnMOHY6FjURfzQt5F/aWplKjfN9y7/Hj+96qe8o+MdDMS7\nWOC1uGS3jseRGKF5AHiay4a+zGlm8eLF2LaNdUBCpmToi46KZkkss2RUFcEbP7yMUJXBvd99ltho\n5pivaRVt7vuPnSTGs7zp5mWEKo3D9jFN82DrQIDHZ9JcEA0y0Zsg60mh2AqVTp6io6F5bDxa+KxZ\nkHI2E9FUco6DUleLx8qiOyqG6RrttFHFinwbO1VBS/F+6udGePr3+2ms/wgiB5maApqlEPPOUBxO\nn5DxjPbEGeqcYeUbW/Ho7mz2kcFHCPvcJKoRiyEiEaawiIg8Yd2hZ7qTB8jyoWUf4oLGC1hes5zP\nrvo0n280+axPkMwH0bQQK3QdBOhlQ1/mdNPc3EwwGCSdcGvUTY9bRmmWDH0yNn1wXyPo4eq/Xo6i\nKdz1je1MDrx6r6qQNbn7O88y1DXDpe9fRMuiI7dWO9A6sLm5mZF8kd5cgYsqgoz2JMj4UnhMHw0i\nTt7WUD02Wjk+Pyuo8rgRXrPOlRPwZfN4SyqponkRtWMedigWSnw/F72lkWyySPdYI6H7NexG17kY\nTO/CPAGGXjqSx3/Tgz+ss/QS16HImlk2Dm9kae35AARyWdTqGmYUQVjkqUzs4jehAB6hcf2i6w+e\na2joPykWJzE25il4NLq8LVzo86HV+lG8hzclmc2UDf0sRFEUFi9eTGLS/eLYqmvoC46KZksmhw7V\nAA9X+7jm0ytQNcEdX9vKnk2jR62HMzmQ4tdf3spod5w33LiYRS9TIjc0NAS40sSPx92xXRgOMLJ3\nhqyeRrMC1IsYBUdDNRw8+uzvxflaoN7rJlAztW5LPW8yh58iHlVg17ZjTsWZUt33st7vltxuf3AE\nz+RFhAyHlN9kKrEbO17AThdf8jpHQ9fTY4zvT3LBtfOe9+aHHqFgF5hb6TbG8ReKKLWNZBRBRMkR\nGnmMPwWDXNx0MRWGmyMwzRn6+r9LlWcho93utkcrzqM175x18XkoG/pZy9KlS1FM9+3TPG6T7aKt\nolkO06MTh+1f2RDgus+tprYtzEM/2cNvv7mDkZ74Sxr8VCzPoz/v4tdf2kIxb/GWT51HxyvUQQ8P\nDxMKhQiHwzw2k6bSo1I1bVLM22T1AqodolnMULA1pF+WK25mCXUlQz8ddY25lsigCKgN6uQOyPmq\nqwFIDjzO+ncuQDc0dtW+lcbnPIxU5YnnYjjSOS6vPpMo8NivuqmbE6Zj3fPlmvf33U+NrwbD24Bw\nHAzTJFVSp4yKLP3DjzCmKmxovfTgMfv7voNlZZg36mfAiWJIjeZADWrRwTvv7PtcHlfVjRCiD0gB\nNmBJKVcLISqBXwDtQB/wTinlzPENs8yLaWtrozrkelgej1s3XHQ0VEuQjE1RzFvoxqFvbyDi5a2f\nXsGuR4d56ve93Pm1bURqfDQvqiBc7UNRBZlEkfHeBKO9CRQhWHxRA+dfMw/jKMriBgcHaW5uxpGS\nh2JJLq4IMdLpJoFzukWwEKWFGDOOCkGJ7jlcKrbMmUe97r73o6EIjYAWT0JIpcavMFmAdU0teCb8\nJBSFvr2/Z/nFf8OGGzq473vPUdF3NaNL/0jHYIiYOUR0eA5Gx6ufyTmO5KGf7MEqOrz+xsUIxc3t\nzORneGToEa7vuJ4J06Z+ZgpFwrjirmpdofWzReQBPxc0uBpOmUwPQ0M/pbH+beR/82tmjEVMext5\nR3UYxkyMs9DQnwiP/lIp5XlSytWlv/8eeFBKuQB4sPR3mROMEII1y1yFSaG7Wdmio5I2qxBqhsGX\nULBUFME5G5q58YsXseGGDiK1Pnq2TvDEnft4/Nc9PPvQILYtWXNVOzfcej4bblh0VEY+kUgQj8dp\na2tjWzLLZNHiyuoIQ10xvPVFLE2CXUG9EwMESsBC18uGfjZQrWsowLDXh6PqaHH34R3VJSPxHPNW\nrWVybw9ToTqUid0kCgnmraxl2eowZvBSwva5AOw37j/mhOxTv93HwC537UbFC6QJ7u69G8uxuHbB\ntYzn8jSNuA3J90s/qnS4QOtkm+GjwV9HQ7ABKR06O29BVf3M81zEnqEQCMFDFatYp3jQav2o4dnf\nDPzFnIw6+rcCG0q//yfwMPC5k3Cd1zznrzgf0S9wtCSWUCk6KsViFN2fpXfHJPNW1r7ksR6vytL1\nTSxd34SUErNg49gSr0876C29Gvr6+gB3pvGDqQQeIbgkFOCX+xJkF/UA4NhVVDqbgSia30LXq4/l\ntsucYlQhqNU9jBYt7EgNWjyGENWEVIvxpEXreavZ/LvfoAeW0pB8kB88dxv/Y9WnufgDKxj6879z\nwdC7yPv+jcncEOmxAao5sh78S7H9jwNsu3+ApesbWbq+8eB2KSV3dN/BsqplLKxYyMiuHcybcJVT\ndxOgRmRZau/kmWA9K2td6YPR0d8QT2xm0aIvoj52H71WJR5U7MpmApN5jDUnfgXvmcDxevQS+JMQ\nYqsQ4ubStjop5Wjp9zGg7kgHCiFuFkJsEUJsmZycPM5hvDaJRqMYto6pxSkqOjnHg1n0EqzO0rdz\nGvslRM1ejBAC3dAwAp5jMvLgKmoahkFtbS1/mExwUTRIpi+FY0mGNLdvaNGsJmAlAPD47LKhn0U0\nGR6GC0Wcqno8yUlCoRA+J4cjQa2bgxEIMpMK4JeSh3fcxkh6BFVTucC3k5FwF5pzDumxACP1tx11\nQtZxJE/c2cOmO3qYv6qW9dcvPKQcd/PYZnriPbx94dsBmCiYNE65C/OedXxcqdq1vJIAACAASURB\nVD5Njhzj0mRp9VLy+VG6e75IJLKaxtprGL/3QWIBH93GHG5qrwXTwbvg7AvbwPEb+oullOcBVwJ/\nJYS45IUvSjfTd8Rsn5Tye1LK1VLK1TVH0a6uzJEJ4kVqWQpCJ+N4wRJ4AkmKOYuRrpPb8OGF9PX1\n0drayjOZPL25AlfXRhncHUNRBcO22zc0nQui2G6YqezRzy5aDZ3+XBGlth5vbopIJIJuuWGYkWSB\nOStW09njlvV2FIt8a9u3AAguXcz22u+Rr1eRjmTn9hXsfuK3r3i96eE0d/3rNteTv6SJyz+0BPVF\nC/R+tOtHVBqVXD3vaqSUxFBoSMbBazCs+rhGfYSdfjcfsLBiIbv3/B2OY7Jk8Zeg9xF2DYWRQrCp\ncgWXqzrCq2IsODt6xL6Y4zL0Usrh0s8J4E5gLTAuhGgAKP08vASkzAkjrARQlQJFRSdvezBsG0vO\n4PGqdG8ZPyVjSKVSxGIx2trauH00hk8RXF0bpW/nNI0Lo8SLMyi2oNoukLPdeL/mKxv62USbz8tw\noYjS0ITHyhESGkpJLG8kkWPuyjUMxyRS0bkuOI9799/LlrEtGMuWUp20eObcLQAUZvI8+psq7vzG\nJjqfGCUxmcW2HRxHkorl6d4yzr3//iy3f+FpYmMZ3vCBxWx4T8dhq7C7Yl08NvwY71n0Hryql2nT\nxlRUGrJZrOpaliv7WK50s63OzQ+EctuYmdnEwgW34PfPIf3rH9Dni2IqAToWLcC7P4mxuBKhnZ2F\niMccoxdCBABFSpkq/f5G4Fbgd8CNwJdKP1/58V3mmAmrQabFNKbioeBoVJhJtjhVzFsdpmfrBOuv\nX3iw3vhkcUAfv6G1jbv6YlxVE8WeyhMfz9J4voHZZeM3DdrFBBnLgyIcVN1B18szudlCq0/HlpCb\n00oQiCRzyMwMMIeReJ6r1q1BaDpJTwPnFS2ao818/rHP84u136H6bthsT3BFuBa7uJ/gkgyTfRcx\n0pU/4rV8IQ+rrmhj+etb8AWPnBj95rZvEtJDBxdA7Yu5D52adIpEuIZPaHeRlQb7o/VUZiaZGPg2\nNdWX09j4LqSZZ9/9u0nWt/NEZDmfmVOHs38E/7Kz1/E4nmRsHXBnKWamAf8tpbxPCLEZ+KUQ4sNA\nP/DO4x9mmZci4o1QKA5SULwUbI0qM84eLuTylRqdj9vsf2aShSc5wdTX14eu6zyheElaDu9uqGT/\n5ikAxmv2UdjvEHRqmCdGyNo6mu6gaX60chvBWUOb4Rrc2Lw2gkBgKoGq2UR9GsPxHF6/n7ZzVzAw\nPcgy+1n+5aq7ufGBD/PV/ttoKvj5EzmaO1rZsXmA8xIXk3jLP2OlOqjyfw47X4F0JP6wTnVriNq2\nMMrL5IqeHH2Sx4Yf429X/S0RryuKt2twCKQkOD3NYFUlV6jbeJCLGLXGqBIpDKOZJUu+ihCCxA++\nSLfmhmjiTeeyeLJIwadhdJydYRs4jtCNlLJXSrm89G+plPL/lLZPSylfL6VcIKV8g5Ty5LaAf41T\n6asmr+XJK15MS6G6OMMelhJpyBCs9NL1xNgrn+Q4kFLS09ND+5w5fH94miUBg4uiQfbvmKS6Jcim\nmYfJ+CzCajPzxTDxog81JPB6G8s6N7OIBX5X26ivqQFHqOgT7oO82qcwPONKcSxYdxH9MQ1h5ThP\natx0zk38rvf3hLzuSlN91XIAUmNFzp37fYyKAZLaB2hbs5e1V89l2euaqZ8TeVkjn7Ny3PrErTQH\nm3n34ncf3N49OUllMo6Sy7FA3cGQU8+TyjIG0vuo1RzOPeff0bQQTibD8I/uYrgyxJ7gQj58QQf5\n3dMEVtYiPGeX7MELOTsDUq8h6oN1SAGmR8GyBX47T789h+lELx3r6hncEyMTL5y0609NTRGPx0nP\nWUhnJs/NLTWkpvOM9SaZs6KaZ/o24yjgU1qZr4yQLPrwRMEwTmy3oTInlxpdo0JT6XEc8oFaPKNu\nYV3Y4zCedEMw81avY7xYkp0e3sLHln+MS1suZZ/l5oomayKEPDYjmW7GumtYs+ZOAv557Hzu4+ze\n8zks65Vr7L++5esMpga59aJb8arP90LoS2eYO+yGEGtDM/zUegdtSx8l60jOa72OYNBtDzj+hf9F\nn+7DVhQG6lfzZqGDLQmsO7s/j2VDP8tpiLjCTqUmU5iOSsTM8pttW2laFkBK2P34yEm7fnd3NxK4\nU/HT4PVwbV0FPVvd/HtxziSi1O0Hq4kFDJGxNYxIDsN7dn+xzjaEEHQEDLoyeQo17WjDvYRDIbxO\nnrGSofcFQ0QWriXrGMjBp1AVlS9f8mWM1jZUW7Jx973Ma9IZy/Ux+MwAhreeVat+QXvbxxkdvYOn\nnn4z8fiWlxzDXT13cXvX7bxvyftYU7/mkNcGHMFNe+4C4Ae+q4gu3UnW51YBLW24DIDUn//M9F33\n0N8YYcqo5oY3nU/+iVG886N4as9uueyyoZ/lNFW1A6CUFCxztkZjfpyd3mZ+/bufU9Oh8dyjw9jW\n0dXUv1q6u7tJti9ge6bAp9rq8CoKezePUzcnzBPpR9EdBSQYcYlqmUgE3mASr9H4yicvc0axKOhj\ndzqH096Blp2hNRBALSSJZ03ypqu3tGDdRQymgzg9j4CU+DQfn3rPt6mfgZ0j29i/NIyDTW7fZgAU\nRWfevL9l1cqfIxBs3fZu9nZ/Acs6VFL7gf4H+OdN/8y6hnX8zaq/OeS1bCLOMnMva/ZvQ+oKPwxe\nxZzaPfTG1gLQHmmn2NfHyN99jvGWMFmhs6vxEt4idJy0SfiyllPwv3d6KRv6WU5zVRsAqu56znnb\nwzmFHewKnotpWfRkHyeenaB3+4lflJbJZNjX38/G1g5aDZ13N1QyOZBieijNvDU13N17N4pHo6Jg\nUJHuI15047x6yMTvazvh4ylzclkR8pO2HeLL3Mbvjak0MusugJtIuuHB+WvOZzAbRc2Ow8x+ACpb\n5tOY9uDoGt+SO9B8XqYTz7Gv7/n0XTS6mrVrf09T07sZHPwRTz19JZOTD2A7Nrc9dxuffeSzLKte\nxjc3fBNNObSGZHjHn/ha39dJpYJ0RZuYXzHA7ucuI6lWoCs6NRmNgZs/iiNseqrD5LwBbnrb5eQe\nHUZvD6PPOfu7nJUN/SynOuCWKErDTYjlbI2FmecYk1W87ob3E46ESFTuZOMDm0/4tTs7O9nZOIch\noXHr/CZ0RWH3YyOoHoXppn3EcjESeoEmamiTA0wVXI0So7KA399+wsdT5uSyMuyGN/YtWYAjNIIj\nE/iFu8r1QPgmEK2gWF+Svdq/8eCxbZ46ZgybW9b8A73NBRLmJLff/nW6Yl0HFVQ1LciijltZtfIX\nKIrBszv/kl8+tJIHd3+VN7S8jv+4/D8I6of2crWzk9Ru+ixZDIozgs5gO8tD55BI1JP2JmkNNDH8\nkZuwp6aYWFdJ2vYyuPQaLpmxcVJFIlfOeU0UBZR7xs5yPIqHgKVT9LqJrIyp05rqQ0ib+9NpPvvh\nD/P9f/8RA4mtPPVoE+suWXHCrr1pTxdb2xfzhsoQb6oOYxZs9j49xryVNfx26P/RYFcwaszQmgmz\nVu1kOF+P1BU8Phu/f84JG0eZU8M8v5dKj8pzXpV1wWbCvX34l7srTw8kZAHq1/4FmU2/QdtzP95V\nNwIwp3IBljrMmsoVXNj+X/yuN4zS1cN1v7uOlnALiysX0xR0802jmVF2TFi0C50rIzk+VG2jqRvZ\nu/uvCQY6UFQD286SSXfT+Pi9VBVy/EP1P/DX5o/prGxlvSUZAsYLI7T3JDEHi0Q+/zHuv+Mu7KCf\nv7vmclL/1YVveQ3ettdGiW/Zoz8LqJQhkj53GjxT8FOXk6xkK7ePJ1G8Xj7woffjcYLc/9DdjI+f\nmNWyiWSS//JVIRWVLyxsRghB5xOjFPM24eU2Dw89zGLVNeaN8SzniR6m80H0Sg2PpwpNO/uaO5zt\nKEJwaWWYTYUcichc2NfF3Ap3lvZCQ7/g/AsZzEQRfRvBcXNDS+a68fKdux6iZd56VlY24WTTvDt/\nLfOi8+ia6eJne37Gz/b8jJ1TO1leu5K3rvwqf3HpDs5b/iNqai4nnx9hYPAH7N//LQYHf0ykexu1\nk1l+UnUV3lE3dGkvPRczNYWDw2h+nMZxi5bbfsgDD90DAmrf+nFCfx5GaArRv3jtOBtlQ38WUOup\nYtqIYQmVKTNMZVHyBu4jZgnumUwQjgZ53aorwVb52X/9N/n8kVckvhq+uG03A5V1fK6pgnafF8d2\n2PGnAermhPlF4scEPUEyhRSaLWjImqg4JIqSUG2eYLDjBNx1mdPB66vCTJs2Q8vXIKwiK+0CKg5D\n08+XRoYqq4kFl6BbSRjdAcDS5a9HsyS7BrdC24WcE+2ixtuM/siz3NL+Se6+9m62vm8rW9+3lfve\nfh9fe93XePPcN+PV/FRVXcKSxV/m/HV/4LJL93LZpd1cunYjc3qmMZsv5F8b3sf5XbsZ81ewdu1i\nEulJTDuLVOC89/4P/rz1MSZnHKrbKnh71QKKfUmib56LGva+1G2edZQN/VlAg6+epDdHXg0w7YQI\nO1na7Z1Uywm+MzCOIyVr3rSQytw5JNMJ7rvvvuO63rZ4mp/aOouzCf5qoZtU3bd9kuRUntDaIg8M\nPMANi29gD/3My/gJKTajuRAOknD9BKHQq5OpLXPmsKEyhID/396dh0dVnQ8c/57Zl0wmM9n3hSxk\nYUnYFwHZ3UAsFi2IIq211VZbtdXa2tq6VO2itvxUxKV1wwUEBBHZN9n3hCQkgZCE7Ps2k8nM3N8f\nSWmwWmxriEzO53nmmTtn7r1z3kN4nzvnnjmHI6OH4NaaCCspwSRcFJXXXrCfefi3URRoP/geAMbQ\nCGIbNeS1nYaoEZi1hxkTdg0qYeDt3zxE4YG9X7kOQqgQW58EVysnIm+m0RpM8qlcDoekMLn8GE7R\nQqe6a01bT5OZ/M0bSbDUM33BYzStL0afbMM07Mun8PZFMtH7gCj/aBQVeLV6mjwGdCoXOlUEMzxv\nk9PqZHV1I3qjhpET0zG1RnP06FFOnjz5X31WmdPFgmOFGF1OfhdtRwiBoigc3nAW/xADf2l4gmhL\nNCP1GTQbXIxuaSdBVJDd3vU12RzSgsVPJvrLlV2rYYTVzL4gDTX2DDx792NVdVJad+Gi84kTr6Hc\n6Y8nd935siRvCIXaBhStCRGRRmDAaaZGLqBRWFj9h8dY8cQjlJ48cfH1jKtOwqHXYMR3WdtsZHDe\nSQwuJ46YAVS98hqovHgTrQQ36Cl4/U0C9W2MmzYJ9/o6VEYN9huT+8UN2J7kzVgfkBKWBlWAzktH\nW9cfcJo5C23bR6zyzOOxIg3TA/3JmBLBwa3RuEUDa9euJSYmBj8/v39/8h4aOt3ccvw0bZ1ubinO\nZsz0xQAUHqqmtrSVulEnKGkpYen0pWzYshyAKa4GUkQz21sHIswKWrMbi2XQ194G0qUzPzyQe5pK\nyE4cRvju/VzZcpZV3iRaW1vP/z2ZA2yc8csg0vkZSkMJwhZDakASn+gqKKsuJDp2LJby17Fpnick\n/CaOeY6jKTxE8aMPYYmKRzN4Euf8EslvcOL2egm16Am2GIgMMPCdUz9Hr/eHSQ+ye9V2Zm7ZRrtG\nz9CjW6meOBnopLmqgumHQjGr3cyJK8Lt+DOuhhaCvzcYtcX3VpC6GHlF7wMGx3X9StCrb+/6UZIC\nfk4baqGQ3vIy55wuZu9Zxy2b5rMt7APM1Sm0OxysXbv24ldP3WpdbuYeLaSozcm07H1cPyILtVqN\np9PL3g+LUOxOPhCvcHfm3YwKG8Xe+oMEuowEeI24PGpaHR1YEtRotXY54uYyNzskAJtGzUeTR+G2\nBDG5YB/tipZ9+/ZdsJ9h5C0ANG17AYD0uNEAHD2+EWLHoVVO45ehMAsDGYZhHApagCtwMh2VjTR8\n/BpBK55izuHtRJ2rY92JSpbtOsOuj99EX7KDJ51zuOWtPM6WaJhQcJhz5iBSJo2i2M+Eobyc1P0N\nOExwW+x+RPzTOPJasM6IR98Pxsx/EZnofUBIQDhGl4Z2U2PXTc9OA46yWjQaf34WG0ic5zDZ7hiq\ntVksmHMdHrMHdVtI1zj4Eycuev7T7R3MOVJAUXsHN5bkkK64GDp0KADHtpbQXOdkXeirzEmew/cG\nfY+8vIOUWpoYr47ETzjY2JyOgpewpCoCAob3u6/NvsagVrEwMojscD3ZcRMIO5NLbGMFO/cdpqPj\nn/MqxU68gUqnFXXOSgAGZ05H71I4ULaHusAsfui6h1HZTVynbmNPp4vxKgOz/YczPfNHjLtiMcag\nEIrrdhCa9xI3VKzjgeByHtSsolhE8UbnZHYWNXDVoZ3ovC4q/f14vN6DNm8bmqZy8uLa8MssQVhu\noDk/ElNmCH4TIvuqyfqcTPQ+ItRtpczS1U9a4IyEshPY7eNR2rPZMfl2rrRbOG28BpdlHN9aPBZb\nczIuFFauWUlV/ZcPuVxX08iMg/nUdbp5WO3AcqaAmTNnotFoyC85za41+ZQEnOSK0Vn8esyvEULw\n1q6XUQQs8LYRLJrJbwxDqzFiDCrFbr/iUjWJ1IvuigkhQK3ixWun0WkwszhnHQ0OD9u3bz+/j9Zg\noC5wDBZ3Je5zxzEGhZJao+NgRyHfeSOPzUoWNwfkctWwSEqtGp7AyWx1Kw+ZOnmSYH7nN513Y+cj\nEseT0NmMc/9q1uRHsDI3gburlrOo+i3ilGw+zYinxe5mUFsebrM/prFXszetluTWQBqaF6BPDMD2\nraR+fYEhE72PSNTHcDawa9hkviuMgPYiAgMn4nJV42w/ybL0OEZZ/bg7t4RlKheJEyMIrRmOx+3l\niVefYPnJ5bg8/1zLs6jdya0nTrM4u5h4k56/RwdQuXUjycnJ+Ef588TeJ/j7ko14FS/D50bxi1G/\nQCVUtDc38ZnjMJHeQBLKj3OyPQzF6cCWYkUICLRP7Ksmkr5G/ho1DydGkB8TwJYx15NVc4osj5c9\ne/ZQWfnPqbEtE+7A7RW0bHgKgEwlmlJjK6dqK3g5/SSPup/lydmp7HxwMqvuGsdtY+PQa9QYdWp+\nMHEAqx++nvsf/znfffpJFiXmMC28g6FDZ0J6Jio0RDS0MCxrNDc8+BuMo6fRGZaBYuka0hnZ+mN0\n0f4ELkj12ZWjvqr+Hb0PGRo0lDajB0UFZS4r/qomAjTpqFQ6ysvfx6xRs3xIAosig3i5rJb7otzs\nHRZKuzkLQ0coKzd+ytgPbmLu9qVM/mw34/blsb2+mXujLTwW1Mam999C0Sp8Yv6EmStnkr29nIim\nJEbOiePG4defr8dHn7xKjbWDG2wD0XkdrK9JR60yEDOhEotlEEZj//367GvmRwQyyq3hDzOnUuQf\nQeanqwkE3n///fO/1YgaMYkzrmj8SjaAs5kke9f9pLGpdUzITIXONqg4jhCCodEBPHxNGu/cMZrl\nd4zh/hkphFuNAGgO/QGbrpGYiOkEtQ9hpX0g1x04SpJWx6T7HsAYHkV1Qy2m9jBOtZ3F5vYnJmYA\nQbdnoDLIMScy0fuIUQnjAfAYXTg6uv5ZS3OOEhJyDZWVH+J2t6JTqXgyOYp1WUlkWc1sj9fx1vA4\n/jb2anYM/jFlIY+wyzuSvLYOTI0rMZfczdott/Lem2/T3N7MJvsmHCoHd4U/wPiSG4hJtzNmysDz\ndXC2tvLumRXovBpuLt7FiZYwaHcRY43E7c0lLHRWn7SN1DuEECwdkUiAV8OTIxZAp4upBw/RXFXF\nihUr8Hg8qFRqXIMXoqWT1q1/4YR+BIpHj11/DGLGdp2o5LN//0Ele+HQawjFi8n7Ao+n1HLf68+j\nETqCklNwPnY1u198FJUimK4JYr+5gTGm4QQvGoRK77uLifwnZKL3EQkDMrC1aKn1d2LuaMXp1eA5\nsImoyAV4PG2UV7x/ft9hVjNvDE4gZ3wGj6n8mXG4javKK5mce5Dvnz7KMm0HT1rTuZN5TKuchk1r\nY+qcqaxftJ6lI15HtzEei83AtNvTL+j33LjmbxSFNHGdJQVNXQXrK1NRtIEEX1mFSqUnPHxOXzSN\n1ItCAwz8XvHnnC2Ux6behrfoNLOOn6A4J4fVq1fj9XqJv/YOyhwBaA78H1sq3fjXRHGw7RCdJjsE\npUDBp1/+AR1t8NaNADiu/A13TVzF7HffIKbyHJ2Zs8B8E/mu+zmhhJLmieZkRCmtagfTx83q9901\nPcmW8BE6o4nYDiunA12oFQ87nalEtBxEp07DFjCaM2f+Smdn4wXH2LQaFk+I53sxIQzbqeUGTRzB\n7a3s37aP3B25tJS2MCxrGD/50U+YPGgyjiovq5/t6v+89u4hGMza8+eqLy/j76ffBiFYVLib98uG\ngNvLMHsyncGHCQ+fi1bru2ty9mfTr0og2C04EZzOo7ffDUWnuXrXbkq3bWPNmjXozX5Uxc7D4G3l\nyra1TCjzo1V0sLt8N6TNguJd0Pol02i/fSN0NFMy+HZuaR7Kdb/6GUMKcjkeE0L71fGE/3IMxxOq\n0ap0NLZHsGLAVsLMYUyMkveCepKdVz5kpN9A3vTbA8DR1mimmT4m983tJC94hH37r6Wg8Pekpf7+\ngmOEEIybm4gQcHRTKZFJY7lufjhmmxar1YpWq8Xr8XJ8axl7PixEb9Iy+95MbGHm8+dQvF7effUp\nTkU2M9el52hhNDXtJhyBk9Gnv0uHSkd83I8uaVtIl47OqCEhwkJxSTMDRo3jlz+1c//SPzNl02YO\nVdfxfmMjM771Uw49t5Efaz+k0j6f7Q5YV7SWSemLYMczkLsaRnz3gvN6jryDt2QvZ0xJLPvMzC8/\nvRe1x0NDcjzlBkFUeijPnnyeje6N6EJMtEZtp6a+nD9O/OO/zFnf38nW8CFT0q7j1YLddFpA1eSF\nELCUfgI59xMbewdnz76Iv/9goiK/c8FxXck+icAoP3a9V8DaP+YSnmglMNKPTqeH0tx62ptdRKfa\nmHJbGmbrhZNBHd20npWmPZg8KpL26yhssXPMPpY7jXtxJFUTH3sven3wpWwK6RKLi/Anv7aNyM01\njJ82lP0v/x3dc39i6u5ttOTn8crhbHYaF/Oe9tcEWQ4wPsfDJtMmqkbcT2hQMt4TK6kbciuF7R2c\nanOyv6aGG9YuI/24maazsKh1BaoBA/AUFZETbic/pYnXD92HRmgwaoxolE4CNDZ+NvEZpsdN7+vm\n+MaRid6HxA8dR/RuIwUhzaQVwcGOBMK0G2hYNZvwmxfSaj9Jfv4jeL0dREfd9i/jigeODic2PZDs\nHec4c6yWggNVaPVqwgZYSR0bTmxG4L8cU118mr/seIa2CA837wrinMPIzsArmGtpxznhABZ1MnGx\nd17KZpD6QKjVQFOnm7SJcZzcWMbgplBGPf8cew8foW3JX7nm03VMVWnYnJzJldFHEVnz6FR2M2XD\nE3Skv0CrVxD80XZSzp4mtbiQhYe34l/bSr3wI2TiCOzzvk35fffTMHEs66NzKLK3MTd5LsNahnFo\nzyHsVaMYNzuVrDi5ctkXkYnehxj9rQxpMrEptoG0In/2novl7oStbNUcJOkdQcKcX6MKfoqCgseo\nqFhJUOBE7PYrsFozUam65v8wWnSMuCaeEV9hrm5Hawu/e+MeKvzbmbMrDLeiZkPoTK6NKiIidQ1q\nYWLwqFdQqbQXPZd0eQvzN6AokHJVNBarjv0fnaH6bAtTbk0lbPkbLHlhJY7VHzGt8BDFecHceXAD\nEVkhvDl0C+MChrLoty9hrWruOpkKTEEdWCbasfxqFdqoKKqefoZOp5OXBpRQFNrGD4b8gMWpi3nu\nueeIjojDUaHDFm7+95Xsx2Si9zFXBQ3gE/UBmgcYsRY5yGmLwGR4lzLrGKJWlhJz5QPY08ZTWb2a\nsyVLKT77Amq1iYCAUdjt47DbxmI2X3x2v/yaXH713k8wOFuZmh2CVg8FoSO4P2U56vgqVLUwJP15\nDHIR8H4hrLs7r6Kpg+FXxxM+IICNr51kxdOHSBoRyhZ3CG0zbiPYMBLtrh1kFRxhxuYGJu6CU+F/\nwFql0DbUQVxIO3ZrB6rAWLhrF2gNdFZXU//Wm7wyP5IjoRVca5/KD4b8gA0bNtDe3o7VPx6PQSFq\noLzZ/2VkovcxGeOmkLQ+l4/jCri9Jo1PSxJItVazy/IW8wZ+D7aeQ182mMybvo2id9LQsJe6+l3U\n1++krm4rADpdEDbbGOy2sfj7D8Fkij9/xZ9fn8+SI0vYV7iDidlBhNYHYPfv5NnAW3n6it+hNrow\nHtMRcXYCAfOu7MumkC6haFvXerJlDe0Mi7URmWLjO78ZxeENZ9m7sYQj5namWS1MmjGXwqQk3t+x\nlRk1Wwg5XUFGiYFKm+CemX4owkKKMDAlYyFTW0tJDEikeOnz/Olq2BtVwXBHAo/OfIotW7awd+9e\nhg7OomKzh7TxEWh1csz8lxFfdfbC3jR8+HDl4MGDfV0N3+Bq44V7ZvJ/oxpZFDefuL8dp9TRgFtR\nU2MOZcYVN5NUaEBl0mKbk4gxLfD8oQ7HORoa9tDQ8Bn1DZ/hcnUNeRNCS4c2nI/q3OxqaCSx0szY\nEza0XkiMq+dH3oeZnbieRcOcmHf54XphM/GrVmFISe6rVpAuMYfLQ+ojn3DftGR+NCXpgvdW7y/l\nnpXHWeg2EtoKZquOwBQvx/PX4md0MdhVREJ0AOcSIzlhDeSzumyOVB9BQcGuDaDZ2YhHwPDaWOYN\nuosT2Tm0traSmZmJqWEAhftrmP/b0fgHGfso+r4jhDikKMrwi+4nE73vyXvuVu535FET4WHD1aup\nvv0WSiKaOdkUTKdXjTY4juHWTMI6Y7FmRWG9Kh7N50bSKIpCe/tpahuP8s6pVXxQdhxzk5oZeTb0\nNUZCDC34xam4r+Ne0u1tvP3DybA/l7If/hDbggWE/fLhPope6isjHt/Exd0/VQAACXJJREFUlSnB\nPD13yAXlD644zroTFRz4+WRKc+o5tb+Kkpw63G4XTtV22m1eFJ0BtRBEhoYSHRuDW9fJvto95JQe\nBK+W2I5E/DxdFyUJCQmMHz8eZ7mBrW/mkTUjljFzBvRFyH3uqyZ62XXjg5Ln/4pxj9zO2+ENfHB2\nBQv/8hrauxeSlnqScoeZXQ2CPTXFqFRqwmriCN4ZQ8zQDCKHB2Ey1VFbXsDmPQeJVNfwoqGC9hYt\nV5VGE9AIOpWbQSHlLPW7kb2uwVyfGcGjszNQHT5A6X33oU9LJeSB+/u6CaQ+EGM3cbau/YIyRVHY\nll/DFUlBGIxakoaHkjQ8FGdbJ2f2niH3r4ep9kTQTA4uk4NSl5OS85OiGUhnPGqvQlh4DHExicSE\nJ+BxqMnbUMuZY8VEp9kZOUuub3AxMtH7IFVQIrPHX8P2cx+w7OhSbtRtJWZ+KlWrvdgNVdyVsIua\nDjM7GpOoaiuivLaIY5u2wiZQqbQIlcCDl1KPQpYSDoCfpoP0oCoqwoZSNPYp7ogK5/lIKzY6qXtx\nCXXLXkGfkEDMSy+h0vefRZelf4oLNLOj4MJfuOZXtVDZ7GRS8oVrtBrMWlKnJGPd0krTumcJfX8d\nVbVuzhzJpqa8grbWDlwOHSpVOCrFgKtacOqYh1MUdB3vp2XEtfEMmxmLWi1/4H8xMtH7qNSbf8Z1\njxfyknovf24t5TdtOUQMEzjq1NTnh9OgV3NFRDGeqGaOqkxUOvxxOQ10urS0o6ZSraFV72WMt5Wh\nHhXq+JGkzlqCWmXCXVNDx/HtOF49SOGmzXjb2rDOnk3oLx5Cbe2fK/hIkBLmx4rDZTS2uwgwdd28\n35xbDcCklC/+wVzg4u/StHoNjpefZeBTT5E6JgaAikcfpX7DewQ9/RyarFF0ONy4XR40WjUmfx3W\nYCNC1X/nl/9P9VqiF0LMBJ4D1MAyRVF+f5FDpK+REIJb7nycncu+zYqwOsaMe4YZg2djBEr27OTA\nyS2s9u6gUFfd4ygXKC6MbkFCvYYxeUbCC/To6lvQebZR/NdtF3yGOiAAy7Rp2ObPxzgo41KGJ30D\nJYVaADhV1crIeDsAm3OrGBxlJcTf8IXH6BPiCfr+96ldsgRtWDi2ed+m/q23aXxnOcHfXUzIdVMv\nWf19Wa8keiGEGlgCTAPKgANCiDWKopzsjc+Tvph/UAjPzHuR+esX8Mt9j5Cz+VO0LR62qI9SGNmG\nwaNmWL6N+GYbdpU/Nv9g7PYgbP42IpJC8E9UoTgd0NmJ1+VCpdej8rOgtgWgT0xEGxmJUMmvzVKX\nlO5En1vRzMh4O3WtHRwpbeSez43C+bygu35IZ2UFdUuXUrd0KQAB8+YR/JOf9Hqd+4veuqIfCRQq\ninIaQAixHJgNyER/iUXHD+SlWa/y/U138pp9B9hBg4aFqQu5c+idWHSWvq6i5CPCrQbCrQb2F9dz\n69g4tuRVoygwZWDovz1OqFREPP44Ad+aS0d+HoZBgzFmpF+iWvcPvZXoI4HSHq/LgFE9dxBC3AHc\nARATE9NL1ZAAUqMG88n8TWwq2YTT7WRS9CRCTCEXP1CS/gNCCEbF29lVWIfXq7Dy8DliA01kRPp/\npeNNWZmYsjJ7uZb9U5/djFUUZSmwFLrG0fdVPfoLk9bErAFyhSepd105MIRVR8tZsrWQPafreGBG\nSr9elPuborc6WM8B0T1eR3WXSZLkw2ZmhBHqr+ePG08R5Kdj4Rg5m+Q3QW9d0R8AkoQQ8XQl+JuA\n7/z7QyRJutzpNWreXDyK1z8r5taxcVgMcubSb4JeSfSKoriFEHcDG+gaXvmqoig5vfFZkiR9sySF\nWnh8zqC+robUQ6/10SuK8jHwcW+dX5IkSfpq5CBoSZIkHycTvSRJko+TiV6SJMnHyUQvSZLk42Si\nlyRJ8nEy0UuSJPk4meglSZJ83DdizVghRA1w9n84RRBQ+zVV53IhY+4fZMz9w38bc6yiKF+8qksP\n34hE/78SQhz8Kgvk+hIZc/8gY+4fejtm2XUjSZLk42SilyRJ8nG+kuiX9nUF+oCMuX+QMfcPvRqz\nT/TRS5IkSV/OV67oJUmSpC8hE70kSZKPu6wTvRBiphAiXwhRKIR4sK/r83URQrwqhKgWQmT3KLML\nITYKIQq6n2093nuouw3yhRAz+qbW/xshRLQQYqsQ4qQQIkcIcU93uc/GLYQwCCH2CyGOdcf8aHe5\nz8YMIIRQCyGOCCHWdr/26XgBhBDFQogTQoijQoiD3WWXLm5FUS7LB10rVxUBCYAOOAak9XW9vqbY\nJgBZQHaPsqeBB7u3HwSe6t5O645dD8R3t4m6r2P4L2IOB7K6ty3Aqe7YfDZuQAB+3dtaYB8w2pdj\n7o7jp8DbwNru1z4db3csxUDQ58ouWdyX8xX9SKBQUZTTiqK4gOXA7D6u09dCUZQdQP3nimcDf+ve\n/htwfY/y5YqidCiKcgYopKttLiuKolQoinK4e7sFyAUi8eG4lS6t3S+13Q8FH45ZCBEFXAMs61Hs\ns/FexCWL+3JO9JFAaY/XZd1lvipUUZSK7u1KILR72+faQQgRB2TSdYXr03F3d2McBaqBjYqi+HrM\nzwI/A7w9ynw53n9QgE1CiENCiDu6yy5Z3L22ZqzUexRFUYQQPjkuVgjhB6wA7lUUpVkIcf49X4xb\nURQPMFQIEQB8KITI+Nz7PhOzEOJaoFpRlENCiElftI8vxfs54xVFOSeECAE2CiHyer7Z23Ffzlf0\n54DoHq+just8VZUQIhyg+7m6u9xn2kEIoaUryb+lKMrK7mKfjxtAUZRGYCswE9+NeRwwSwhRTFdX\n62QhxJv4brznKYpyrvu5GviQrq6YSxb35ZzoDwBJQoh4IYQOuAlY08d16k1rgFu7t28FVvcov0kI\noRdCxANJwP4+qN//RHRdur8C5CqK8qceb/ls3EKI4O4reYQQRmAakIePxqwoykOKokQpihJH1//X\nLYqiLMBH4/0HIYRZCGH5xzYwHcjmUsbd13ej/8c72VfTNTqjCHi4r+vzNcb1DlABdNLVP7cYCAQ2\nAwXAJsDeY/+Hu9sgH7iqr+v/X8Y8nq5+zOPA0e7H1b4cNzAYONIdczbwSHe5z8bcI45J/HPUjU/H\nS9fIwGPdj5x/5KpLGbecAkGSJMnHXc5dN5IkSdJXIBO9JEmSj5OJXpIkycfJRC9JkuTjZKKXJEny\ncTLRS5Ik+TiZ6CVJknzc/wOZaKq+fRnDpAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb07e2df9d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "plt.plot(prof_vec_roqs[ind_rel_cor,res_ex,:].T)\n", "plt.title(\"Correct signatures for res: %f\"%(resols[res_ex]))\n", "plt.show()\n", "\n", "plt.figure()\n", "plt.plot(prof_vec_roqs[ind_rel_err,res_ex,:].T)\n", "plt.title(\"Erroneous signatures for res: %f\"%(resols[res_ex]))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([152, 500])\n" ] } ], "source": [ "trainloader = prof_vec_roqs[:,res_chs,:]\n", "trainloader = trainloader / val_norm\n", "trainloader = torch.FloatTensor(trainloader)\n", "print trainloader.size()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "((152, 500), (152, 2), (152,))\n" ] } ], "source": [ "decode, encode = net(Variable(trainloader))\n", "out_decod = decode.data.numpy()\n", "out_encod = encode.data.numpy()\n", "print(out_decod.shape, out_encod.shape, list_labels.shape)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAFpCAYAAADjtk1+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFUax/HvmZ5C6CV0lCogoEEELICAggqiiGBZrNg7\nKoqr2LFgxVURUVQERUVR6QiIKCX0Jr0TINS06XP2j4SYMpOeTMh9P8/DJnPrGx43P+65pyitNUII\nIYRRmMJdgBBCCFGWJPiEEEIYigSfEEIIQ5HgE0IIYSgSfEIIIQxFgk8IIYShSPAJIYQwFAk+IYQQ\nhiLBJ4QQwlAk+IQQQhiKJdwFFEWNGjV048aNw12GEEKIcmTlypVHtdY18zvujAy+xo0bEx8fH+4y\nhBBClCNKqT0FOU6aOoUQQhiKBJ8QQghDkeATQghhKBJ8QgghDEWCTwghhKFI8AkhhDAUCT4hhBCG\nIsEnhBDCUCT4hBBCGIoEnxBCCEM5I6csE2curZ3otB/BPR9M1VGRN6Ns7cJdlhDCQCT4RJnRgTT0\n8evBtx9wAgrtmo2OGYkp8oZwlyeEMAhp6hRlRjungm8f6aEHoAEXJL2KDqSGsTIhhJFI8Imy45oD\nuHJvV2bwrivzcoQQxiTBJ8qOqUqIHQEwxZRpKUII45LgE2VGRd4MKiLnVjDVAMs5YalJCGE8Enyi\nzCh7Z4h6ELCBigYVCeZ6qKqfoZQKd3lCCIOQXp2iTJmi70RHDgTvGlBVwNpOQk8IUaYk+ESZU6Yq\nYO8W7jKEEAYlTZ1CCCEMRYJPCCGEoRQr+JRS1ZRSc5VS2zK+Vg1x3G6l1Hql1BqlVHxhzxdCCCFK\nSnGf+EYA87XWzYD5GZ9D6a61bq+1jivi+UIIkYv2LCdw7HoCh9sTSOyLds0Od0minCtu8PUHJmZ8\nPxG4pozPF0IYmPYsRx+/E7xrQaeBfzv65BME0n4Id2miHCtu8NXWWidkfH8IqB3iOA3MU0qtVEoN\nK8L5QgiRi05+k9zT4Lkg5S201uEoSZwB8h3OoJSaB9QJsmtk1g9aa62UCvVf2kVa6wNKqVrAXKXU\nP1rrPwpxPhmBOQygYcOG+ZUthDAC37bg2wOnQKemT5QgRA75Bp/WumeofUqpw0qpWK11glIqFjgS\n4hoHMr4eUUpNAy4A/gAKdH7GueOAcQBxcXHyTzkhBJjqgn977u3KEWR6PCHSFbepczowNOP7ocDP\nOQ9QSkUppSqd/h7oDWwo6PlCCBGKqvQw4MixNQKi7kQpczhKEmeA4gbfaKCXUmob0DPjM0qpukqp\nGRnH1Ab+VEqtBZYDv2mtZ+V1vhBCFIRyXA4xz4OpOmBJb9qMvhsVdU+4SxPlmDoTXwDHxcXp+Pj4\n/A8UQhiC1jrjnV6EPOkZmFJqZY4hc0HJXJ1CiDOeUko6sogCkynLhBBCGIoEnxBCCEOR4BNCCGEo\nEnxCCCEMRYJPCCGEoUjwCSGEMBQJPiGEEIYiwSeEEMJQJPiEEEIYigSfEEIIQ5HgE0IIYSgSfEII\nIQxFgk8IIYShSPAJIYQwFAk+IYQQhiLBJ4QQwlAk+IQQQhiKBJ8QQghDkeATQghhKBJ8QgghDEWC\nTwghhKFI8AkhhDAUCT4hhBCGIsEnhBDCUCT4hBBCGIoEnxBCCEOR4BNCCGEoxQo+pVQ1pdRcpdS2\njK9VgxzTQim1JsufJKXUIxn7RimlDmTZ17c49QghhCjftPahXbMJnHqOQPJYtD+hzGuwFPP8EcB8\nrfVopdSIjM9PZT1Aa70FaA+glDIDB4BpWQ55R2v9VjHrEEIIUc5p7UYfvxl820CnAVZ06jio+iHK\nfnGZ1VHcps7+wMSM7ycC1+Rz/GXADq31nmLeVwghxBlGp00B75aM0APwAi70ycfR2ldmdRQ3+Gpr\nrU8/px4Caudz/GBgco5tDyql1imlJgRrKhVCCFFBOKcDriA7vODbXGZl5Bt8Sql5SqkNQf70z3qc\n1loDOo/r2IB+wNQsmz8CziK9KTQBGJPH+cOUUvFKqfjExMT8yhZCCFHeKHuIHRoIta/k5fuOT2vd\nM9Q+pdRhpVSs1jpBKRULHMnjUn2AVVrrw1munfm9UupT4Nc86hgHjAOIi4sLGbBCCCHKJxU5BJ20\nEbQz+w5TdbA0K7M6itvUOR0YmvH9UODnPI4dQo5mzoywPG0AsKGY9QghhCivHFeBoy/pT3cRoKJA\nVUVV+QilVJmVodJbKIt4slLVge+AhsAeYJDW+rhSqi4wXmvdN+O4KGAvcJbW+lSW878ivZlTA7uB\nu7O8MwwpLi5Ox8fHF7luIYQQ4aN9O8CzIv1Jz34p6W/Cik8ptVJrHZffccUazqC1PkZ6T82c2w8C\nfbN8TgWqBznuluLcXwghxJlHWc4Gy9lhu7/M3CKEEMJQJPiEEEIYigSfEEIIQ5HgE0IIYSgSfEII\nIQxFgk8IIYShSPAJIYQwFAk+IYQQhiLBJ4QQwlAk+IQQQhiKBJ8QQghDkeATQghhKBJ8QgghDEWC\nTwghhKFI8AkhhDAUCT4hhBCGIsEnhBDCUCT4hBBCGIoEnxBCCEOR4BNCCGEoEnxCCCEMRYJPCCGE\noUjwCSGEMBQJPiGEEIYiwSeEEMJQJPiEEEIYigSfEEIIQylW8CmlrldKbVRKBZRScXkcd4VSaotS\nartSakSW7dWUUnOVUtsyvlYtTj1CCCFEfor7xLcBuBb4I9QBSikz8CHQBzgHGKKUOidj9whgvta6\nGTA/47MQQghRaooVfFrrzVrrLfkcdgGwXWu9U2vtAaYA/TP29QcmZnw/EbimOPUIIYQQ+SmLd3z1\ngH1ZPu/P2AZQW2udkPH9IaB2GdQjhBDCwCz5HaCUmgfUCbJrpNb655IqRGutlVI6jzqGAcMAGjZs\nWFK3FUIIYTD5Bp/Wumcx73EAaJDlc/2MbQCHlVKxWusEpVQscCSPOsYB4wDi4uJCBqQQQgiRl7Jo\n6lwBNFNKNVFK2YDBwPSMfdOBoRnfDwVK7AlSCCGECKa4wxkGKKX2A52B35RSszO211VKzQDQWvuA\nB4DZwGbgO631xoxLjAZ6KaW2AT0zPgshhBClRml95rUaxsXF6fj4+HCXIYQQohxRSq3UWoccU36a\nzNwihBDCUCT4hBBCGIoEnxBCCEOR4BNCCGEoEnxCCCEMRYJPCCGEoUjwCSGEMBQJPiGEEIYiwSeE\nEMJQJPiEEEIYigSfEEIIQ5HgE0IIYSgSfEIIIQxFgk8IIYShSPAJIYQwFAk+IYQQhiLBJ4QQwlAk\n+IQQQhiKBJ8QQghDkeATQghhKBJ8QgghDEWCTwghhKFI8AkhRDmm/YcInHyUwOEOBA5fSCD5TbR2\nh7usM5ol3AUIIYQITgeS0ceuhcBxIACkQuqXaO9GVLUvwlzdmUue+IQQopzSzh8hkEp66J3mBs8q\ntHdTuMo640nwCSFEeeVdBzhzb1cm8G0p83IqCgk+IYQoryxNAXvwfeZGZVpKRSLBJ0QI2p+IDhwP\ndxnCwFTEIFDWHFut6aFn7RCWmiqCYgWfUup6pdRGpVRAKRUX4pgGSqkFSqlNGcc+nGXfKKXUAaXU\nmow/fYtTjxAlQXs3Eki8Ap3YHX3kYgLHbkD7D4S7LGFAylwdVW0yWNoCZsAC9h6oahNRSoW7vDNW\ncXt1bgCuBT7J4xgf8LjWepVSqhKwUik1V2t9+s3sO1rrt4pZhxAlQgeOo4/fDDr1343etehjQ6Dm\n7yglHaFF2VLWFqgaP6C1CzCjcj0BisIq1hOf1nqz1jrPN6xa6wSt9aqM75OBzUC94txXiNKi034C\n7c+xNQA6GdyLw1KTEABKOST0SkiZvuNTSjUGOgDLsmx+UCm1Tik1QSlVtSzrESIX/17AlXu79kMg\noczLEUKUvHyDTyk1Tym1Icif/oW5kVIqGvgBeERrnZSx+SPgLKA9kACMyeP8YUqpeKVUfGJiYmFu\nLUSBKdv5oCKD7FBgbVv2BQkhSly+Lyy01j2LexOV/nz+AzBJa/1jlmsfznLMp8CvedQxDhgHEBcX\np4tbkxBBOS6HlLHg3w94T28E6/koCT4hKoRSb+pU6V2PPgM2a63fzrEvNsvHAaR3lhEibJSyoapP\nhchbwFQHzA0g+j5U1Y/DXZoQooQUq4uaUmoA8AFQE/hNKbVGa325UqouMF5r3RfoCtwCrFdKrck4\n9Rmt9QzgDaVUe0ADu4G7i1OPECVBmWJQMSMgZkS4SxFlRPsPoVM+Ac9SMNdFRd+Nsl0Q7rJEKVFa\nn3mthnFxcTo+Pj7cZQghKgDtP4A+2h90GumjrwAiIOYFTJHXhLM0UUhKqZVa66BjyrOSmVuEEIam\nU8ZmjNv0ZdnqhOSX0dob6jRxBpPgE0IYm/tvIOfYTQBfRicnUdFI8AkhjM1cM/h27QNTlbKtRZQJ\nCT4hhKGpqLtAReTYagP7JSiTzKlREUnwCSEMTTl6Q9RDQASoaMAOts6oym+EuzRRSmTGXSGE4Zmi\n70BHDgH/LjDVRJlrhbskUYok+IQQAlCmSDC1DncZogxIU6cQQghDkeATQghhKBJ8QgghDEWCTwgh\nhKFI8AkhhDAUCT4hhBCGIsMZhBDCoHxeH39Pj2f3hn3Ub1GXrgMuwGa3hrusUifBJ4QQBnTqaBIP\ndX6GE0dO4Ux2ERHtYNyTX/LB369So171cJdXqqSpUwghDOijxyZyZO9RnMkuAJwpLo4nnOTdez8N\nc2WlT4JPCCEMaMm0Zfi82ZdjCvgDrJi5Gr8/2DJNFYcEnxBCiExKhbuC0ifBJ4QQBnTxdRdisZqz\nbTNbTFzQ5zzMZnOIsyoGCT4hhDCge8YMpU6TWkRUcmAyKSIqOahetxoPfXRXuEsrddKrUwghDCim\neiXGb3iHZb+tYteGvTRoUZfO/eKw2mQ4gxBCiArKbDHTpX9HuvTvGO5SypQ0dQohhDAUCT4hhGFp\nrZn52XxuP+cRrq9zB6/e9C4Juw6HuyxRyqSpUwhhWONHfM30/83GleoGYNG3f7Fi1ho+XTemws9e\nYmTyxCeEMKSk48n89MHMzNADCAQ0rlQX37/9SxgrE6VNnviEEIa0Z+N+rHYrHpc323afx8+6RZvD\nVFXZCgQCzJqwgOn/m4U7zc0lAzsz6Il+RFWOCndppUqCTwhhSLUa1sDr9ubarkyKes1jw1BR2Rtz\n50f8MfXvzKfeqWN+4Y/v/+bj1W9ij7CHubrSU6ymTqXU9UqpjUqpgFIqLo/jdiul1iul1iil4rNs\nr6aUmquU2pbxtWpx6hFCiIKq3agm7S5tjdWe/d//NoeVQcP7hamqsnNwxyEWTlmSranX6/Zy9MBx\nfv/mzzBWVvqK+45vA3At8EcBju2utW6vtc4akCOA+VrrZsD8jM9CCFFgWgfQ7sXo1C/R7r/QOlDg\nc5/97jG69O+I1WbB5rBSvW5Vnp3yGM3OO6sUKy4fNi/dhtmae2oyV6qbVfPWhaGislOspk6t9WYA\nVfRZTfsD3TK+nwgsBJ4qTk1CCOPQgePoYzdC4DBoLygLmBtAtUkoU0y+50dWiuDZKY/hTHGSluyi\nWp0qxfl9dkapXjd4A5vFZqZ245plXE3ZKqtenRqYp5RaqZQalmV7ba11Qsb3h4DaZVSPEKIC0Ekv\ngn8v6FTAAzoNfDvRya8X6joR0RFUj61qmNADOPfSc6hcPQaTOXsMmC0WrhzWK0xVlY18g08pNU8p\ntSHIn/6FuM9FWuv2QB/gfqXUJTkP0Fpr0gMyVB3DlFLxSqn4xMTEQtxaCFERaa3BNRfw5djjBddv\n4SjpjGIymRizcBRNOzTG5rDiiLJTrU4VXvzpSWKbVOxnkHybOrXWPYt7E631gYyvR5RS04ALSH8v\neFgpFau1TlBKxQJH8rjGOGAcQFxcXMiAFEIYhQZCLJiqc4ahCKZWw5p8uPx1juw7ijvNTb1msZhM\nFX94d6n/hEqpKKVUpdPfA71J7xQDMB0YmvH9UODn0q5HCFF+BQIBVsxew1cvTGXG+PmkJqWFPFYp\nE9i6kvvXmBnsPUq1zoqmVoMaNGhRzxChB6DSWxiLeLJSA4APgJrASWCN1vpypVRdYLzWuq9S6ixg\nWsYpFuAbrfUrGedXB74DGgJ7gEFa6+P53TcuLk7Hx8fnd5gQ4gzidrp5sueL7Fq/F2eKC0eUHbPF\nzFsLRtG0fZOg52jffvTx6yGQBjiBSDBFo6r/gDKXfXNdWrKTya/9yILJSzBbzFxxe3cGPn61IZb6\nKQ+UUitzjBwIflxxgi9cJPiEqHi+ee1HJr38Ax6nJ9v2+s1jmbD5vZAdT3QgFVy/oX3bUJZWENEH\npSLKouRsfF4f957/JAe2HcocGG+LsNG6Swten/NfQ3WcCZeCBp/M3CKEKBfmfbkoV+gBJO47xuE9\nidRpXCvoecoUBZGDCHes/PXzCg7vTsw2G4zH6WHz0q1sXrqVczq3CGN1IitjNOgKIcq/UE90Wp8R\nT0ub/t6CM8WVa7vfF2DLih1hqEiEIsEnhCgXLr+1G/YIW67tdZrUonaj8jOgWmvNrAm/c0frRxkU\neyej//MBh/ckUrtxraD1W2xmajaQJY7KEwk+IUS5MODhK2lxQVMc0Q5MZhOOaAeVqkXz7LePhbu0\nbD596ivGPjSBvZv3c+LwKRZM/pN7z3+S8y47N9cUYMqkiIhy0OnK88JUrQhG3vEJIcoFm93KW7+P\nYt2iTWxeupXq9apx0bWdiIhyhLu0TEnHkvnpg1nZ3uMF/AGcKS5mf7GAMQte4LWb3yNh1xHQmiZt\nGzFy8iPSq7OckeATQpQbSinadWtNu26tS+R6Wmv2bTmIK9XFWec2wmIt3q+8XRv2YnNYcy1n5PP4\nWLdoI8PeuIXPNr7L0YPHMVvMVK1VuVj3E6VDgk8IUSEd2J7Af/u9zpG9RzGZTZgtJp74/H669OtY\n5GvWapDHGn7N/l3Dr0bdakW+hyh98o5PCFHh+P1+hvcYxf4tB3GnuXEmO0k5kcqrQ95l/9aDRb5u\n7Fm1ad21BVZ79qZLm8PK9Y9X/DX8KgoJPiFEhbN24SZSTznJOUGHz+vn13Fzi3Xt5394gguvOi99\nDb8IW+Yafk07BJ9dRpQ/0tQphKhwTh45BUFmpfL7/Bzdn++siHmKionkuanDSU1Kw5nspHrdamfE\nOEPxLwk+IUSF07pLC3y+3Cs3OKLsXNCnQ4ncIyomkqiYyBK5lihb0tQphKhwajeqyZV39cQRZc/c\nZouwUadJLbrd0CWMlYnyQJ74hBAV0n3v3kabi1ox/cOZpKW4uPT6znToeS6H9yRSv3ldaZ40MFmd\nQQhR4W1aupWXb3ib5OMpaA3V6lTh+R+Gc3a7xuEuTZSggq7OIE2dQogKbfnMVTx68X9J3HcMV6ob\nd5qbhJ2HGd59FM7U3JNKi4pPgk8IUWEt+u4vnr/mDQL+QK59fp+fJdOWl3oNzlQXX77wHf9p9gC3\ntniQya/9iCfIIHhRduQdnxCiwlm7aCMfPz6R7at2hTzG6/Zy4tDJUq3D7/czvPsodm/Yi8eVHnaT\nXv6B+Dlreev3UfKeMUwk+IQQZ7TDexKZMPIb4mevJTImgs794pgxbh7uIIvaZmWxWWh9UctSrW3F\nzDXs++dAZugBuJ0etq7cyfrFmzn3knNK9f4iOAk+IUS54ff72bx0G+40N+d0aZFrZQavx8vKOetI\nPpFCu0vPweqwcV/ck6ScTCPgD2SsnjATHci7097pybBbdWpWmj8Om5YGX5zW6/Lyz7JtEnxhIsEn\nhCgXtq/ZxcgrX8WZ4kIphd8X4JGP76LnzZcCsGPtbp7s9SI+j49AQOP3+ml2fhPSkl3Z3uHlG3om\nRe+h3Xj0k7tLvamxVoOaOCLtuNLc2bbbIqzUqC+L04aLDGcQQhSbx+Xht3Fz+f2bP7FF2Lj6nt5c\nOqhLgYPF5/VxQ71hJB1NzrbdHmHjwxWjadCyHjc2vIdjB09k228yKQL5BF3O6w15egA3jryuTN6v\npZ5K5abG95F6Ki1zm1KKStWj+WbPR9gj7HmcLQqroMMZ5IlPCFFk21btZO2iTfzyv9kcO3g8873a\n1vgdrF6wgUc/vhuAI/uO8s0rP7L69/VUr1uVDj3a4k5zU6NedXrceBGbl23D5/Hlur7X42PG+Plc\nOqgLacnOXPsDAQ0KyCf7bBE2ug/uyv3v3UZEdESxf+6CiqocxZiFL/Dqje9yaNcRNNCgeV1GTnlU\nQi+MJPiEEIXm9/t5+YZ3WDFrDT6PD3+OeTFdqW7mfbmI6x/vh81u4e4OT+BMduH3+Tm4/RDr/9gM\npAfShGe/YeBjVwdtogz4A6xdtJHWXVqEbMJUSmVbhcFqs1C3aR08Li+Hdh0hsnIEg4b3Y/CIAZhM\nZT+C6+x2jfls47sc2Ze+LqCs1Rd+EnxCGMyuDXt57ab32LNpPxabmZ43XcrDH99VqFCYPWEBK2at\nwZ3j3VVWJrOJDYs388/y7Zmhl5Mn4wlxxqfzcLuC98LcsXo3Lw16O+g+R5Sdq+/pzZ/TlpO4/xgA\nF159Po+Pv5eoylF4PV4sVku5GDZQq0GNcJcgMkjwCWEgB3cc4u72wzOfnjzOADPGz2Prqh18FP9G\nga/z26fz8gw9AJPJROWaMaxZsCFo6GWVcjK10OFksVk4u30TbntlCHe9cQunjiZhj7Rn6wlqtVnz\nuIIwKpm5RQgDeffecUGbDLev2sWuDXsKfJ38ggzAarcQd3k7atTLv2kvEAgEnV0lL5WqRjFmwSis\nNitKKarUrJxr+IMQwUjwCWEgW+N3hNy35KcVBb5Oz5svwR5hy/OYVhc2x2qzcsOT/bFH5t2Rw+vy\n5TsMIRelSDmZyrZVO0k9lVq4c4WhFSv4lFLXK6U2KqUCSqmgXUiVUi2UUmuy/ElSSj2SsW+UUupA\nln19i1OPEBWV3+9n/7YETh1NKtZ1qtSMCbmv0TkNCnydfvddztntGxMRHfoJa+XctaScTKXjFR0Y\n9uYtRFaKICLagTIpTGYTJosJZSrauzeTxURktIMhDe9heI9RDIq9i3FPfsmZODxLlL1ijeNTSrUC\nAsAnwHCtdZ6D65RSZuAA0ElrvUcpNQpI0Vq/VZj7yjg+YSSLpv7N+/eNw+Py4vf56XBZW57++mGi\nq0QV+lp/fP930I4i9kg7vyR/Vaj3bH6/n+UzVjP65veDDjUAqNc8lue/H06TNg3xuL0c2JZA5Zox\nHN6dyPxJi5nx6Ty8+UzYbLVb8Lp9mC0m/L4A9kgbKIX2B7JNBWaPtHPHazcy4EH597NRlcmyRFrr\nzVrrLYU45TJgh9a64C8ThDCwzcu28eZtY0k6loIr1Y3X7WPVvPWMuvbNIl3vkoGdGfLMgGwBF101\niv/Fjy505xKz2Uznq+No3Db0k+KBrQk8dslzpCalYbNbadKmIdVqV6FVp2a0vKApFqs56Hmtu7Zg\nxFcPcs/bQxk+4X7Gb3yHgY9dTZdrOjL0xRsgoLOFHoA7zc3Ut6YX6mcQxlTWvToHA5NzbHtQKfUf\nIB54XGt9IvdpQhjT1LemZ3b5P83n8bF52TYSdh0mtkntQl/z9pdv5Jbnrmf9H5upFluFxq0bFrm+\nHWt3sy2PFRAgfRD6wilLuHJYr8xtCbsOs37xpqATSdsj7VwysDOX3XRJtu13jr4ZSF/m57MRk4Le\nK+lYSmF/BGFA+T7xKaXmKaU2BPnTvzA3UkrZgH7A1CybPwLOAtoDCcCYPM4fppSKV0rFJyYmFubW\nQpyxDu0+QrC3EVabmWMHjhf5ulablfN6nlus0AOY/r/Z+L159/B0p7k5tOff/88un7mau9o+zpwv\nFubqyWkym4isFMHlt3YLeb2IKAe1G9UKuu+czs0LXrwwrHyf+LTWPUvoXn2AVVrrw1munfm9UupT\n4Nc86hgHjIP0d3wlVJMQ5Vr77m3YvX4v3hzTeXndPpq0zR5afr+f1fM3cOzgceyRduwRNlpd2Iwq\nNSuXWn3HE07kOwwhItpBy45N02v0+Rl9y/tBxwBa7VYuvq4Td71+M1GV835/+eCHdzLq2jfwOL1o\nrTGZTdgibNz91n+K/sMIwyjLps4h5GjmVErFaq0TMj4OADaUYT1ClIpTR5OYP2kxifuP0fbiVnS6\n8jzM5uDvsvIz8LGrmP35AgKn0jLHzjmi7Ax8vF+2cEjYeZjHuz9P8vEU3GketNaYLWZMZsUNTw1g\n6KhBQa8/6/Pf+eqFqRxLOEHDlvUY9uZ/iOvdrsD1tezUjPjZa/F5c8+zCelhFntWbS686nwgvWnU\nF+IJsXGbBjz99cMFum9c73aMWfgik1/7kX3/HKB53Nnc+My1NGhRr8C1C+Mqbq/OAcAHQE3gJLBG\na325UqouMF5r3TfjuChgL3CW1vpUlvO/Ir2ZUwO7gbuzBGFI0qtTlFeb/t7CiMtfxu8P4HF6iIh2\n0Oic+ry1YFSRJyVO3H+Mr1/6nvg5a6hcI4ZBw/vlWvngng5PsHP9nqBj4RxRdp6d8iidrjw/2/Zp\nH8zgs6e/yfb0ZTKbePiju+h7Z3pDjzPFyYIpf7F/6wGadjiLi67thM2ePhvKly98x7ev/4TX7cs2\njMBsNeOItBMZE8FlN13MkKevJbJS+sTQuzfu48ELn8aVmvuJ75wuLbjsxotZ+ttKatSrRv/7r+Ds\ndo2L9HcmjKmgvTplWSIhSojWmpsa30vivmPZttsibPzn+eu54clrinV9v9/PP8u243Z6OKdzcxwZ\ng8IP70nk9lYP5+rlmFVc73a8NuvZzM/b1+zika7PBu1cokyKB96/nbjL2/NQ55G4nW5cqW4c0Q6q\n1qrMB0tf5cC2BJ7s9VKuJkuT2cSzUx7h4us6B61Da81tLR7i4I5D2d5d2iPtRMVEkJqUhjvNg8ls\nwmqz8Phn99F9cNfM47au3MG3r//Evi0HaXVhcwaPuKZIHXxExSTLEglRxvZtOUhykF6FHqeHeV/9\nUazgy7lIa8Af4O4x/2H/lgT+/HFZrneAOSWdSK/L5/Xx4vVjWDl3Xa7eoqfpgOaT4V8yf9Jiko4n\nZz5FulJaRGSuAAAgAElEQVRcJLq9jB/xNRarJej5jkg7qNB95pRSvDh9BMO7P487zZM5VVmj1vXZ\ntW4PXnf6zxHwB3A7Pbx7zydcdO0FWG1WVsxazQsD38p8r7d3834WTFnCB0tfpVGr+gX6exQCJPiE\nKDFmiwkdYmE4c4jxagXh9Xh5qtdLJB3Lvkjre/d8itlqzrdXpdliplPf9GbOqW9NZ1UeoZf1nM3L\ntuVqOvV5/Sz+YRkXXdsp6CwpGo0/xPu+0xq2rMc3ez9m5Zy1nDiSRNuLW/LK4HczQy+nHWt206Jj\nU96771Pcaf/W7fcFcKU4Gf/U17w0fUSe9xQiK5mrU4gSUvfsOtRsUIOc48DtkfbMd2ZFET97bdBF\nWoF8Qw8g4Pfz/ZjpbFjyT/qqCvmEHgCKkAPaTWYTlw7qgiMq9ztLv9fP+QXoHGOxWrig73lcfmMk\nsTU/JqrS4aDH+X0BoipHknIyNdfq6wBaw/rFm/O9nxBZSfAJUUKUUjz//XAqVa9ERCUHVrsFR5Sd\n83q25cphRQ++lBOphZqDslK16GxzYGoNzhQXT/QYxeHdBRsDazKZ6HBZW0zm7L8irHYLl910MXG9\n29F1QCccUXaUSn+itUXYeGDsHVSqGl2ge+ik59Enh4FzCv2HbsQekWNMn0kRe1YtGrSol36fEPN6\nxlQv2P2EOE2aOoUoQY1bN2Dy3o/5e3o8xxJO0LpLC1pkjGErqnbdzinQMkCnJR8PPntJqGEEWTmi\n7JjMJl7+ZQR1zqrNI12fJel4Ml63D6vNQr3msdz28hCUUjw18QHW3dGDr16YyraVO/F6fMyduIiz\nzm1Mi7iz87yP9qwF589A+hyfnS8/xbXDEvn+45pY7ZHoAFStUyWzCdNqs9LzpouZP2lxrvk5Bz7e\nr4B/M0Kkk16dQpwBxo/4mp8/nBV0GEBOyqQKv8RPhstuuphHx92dOfTC7/OzfOZqDmxL4Kx2jenQ\no022JtDPnpnEtPdnZuvd6Yi08/7SV2nSJvSsMIHkdyD1Y8jxTvTk0Ug2b7yRqg370+rC5tnu5Xa6\neX3oWJb+uhKb3YrX7aX/A1dw1+u3lIsV1kX4Sa9OIcLkdE9Fi7Xk/u915+ibadetNb9+MpfUpDTW\nLtgY8tiihh5AbJPa2cYbLvzuLyY88w2J+45Rs351bntlMD1vvhRIH+M37b0Zud4Zul0evn7pe/77\n7WOhb6TsgBnI/u6ySk1Nl6sboyJb5DrFHmHnue8e51jCCRL3HaV+87pFWqFCCAk+IUqIK83NR499\nwbwvF+H1+Di7fWMe+fjukM1+zlQXE0ZOJn72GiIrRXDF7T3oc0ePkIHZrnsb6reoiyPSxqDYYQWu\nSymCzvcZTNfrOmV+P/+bxbwz7OPMnpRH9h3l3XvGgVL0vOkSDu1OxGzJ3VtVBzTbV+3MuybHVeiU\nj8gZfGgNjl5BzzmtemxVqsdWLdgPJEQQEnxClJAXrnuTdYs2Zb6D2r5qF8N7jOLTdWOo0zj7pMpr\nFm7gqV4vZZvnctf6PSz5aTmvzRyJ1pr1izdzZO9RmsedzZ8/LmPK6z+B1tm69BeEyWxCAwFf3nNq\nKqWY8PQkXp0xEoDPR07OdS93moc3ho5l4ZQlDBkxIOj4QaWgQcu8pw5TlobomFGQNAowZ6SzHyqP\nQZkk1ETpkuATogQkbF9FpaglNG2j2BQfCaS/c/K5vUx7bwb3vnNr5rEr561jRO+Xcl3D6/ax4c/N\nLP5hKRNGTuZ4womM7V4CAZ3vZNCh+H2B9CczRc5XatlorVm7aCO71u+hSdtGHNl3NPhxAc3yGatY\nu3ATF151PstnrsoWkDaHjZueHZhvXabI69COHuBeDJjA3g1lkh6aovTJcAYhCmDzsm082esFBta+\ng4e6jGTl3LUAaB0gcOpZakbewkOjd/HKNzv5dNEWqtVOf+rzef3sWLs78zonDp/kv1ePDnkfd5qH\nT4Z/RcLOwzhTXDhTXPi8/iKH3mkmkypQBxCP08uszxcAUKtBjZDHaZ2+3FDAH6D//Vdk9gat27QO\nz//4BK06NStQXcpUFRXRDxVxlYSeKDPSq1MY0s51e5jy+k/s3rCXFnFnc8OIAdRvFhv02A1/bmbE\nFS9ne6qxR9p4auKDdO2zD5Je5nS3fACfF/5ZFcnjA5phtVm49pErMxdRnfLGT3zx7GT8IZodTWYF\nqGIHXU42hxWtdcjZUbKy2q18uWMs6xZt4u27PsqzabV63WpM2f8JgUAAr9tb5Im4hSgJ0qtTiBDW\nLtzIyKtew+PyoAOaPZv2s2jq37yz+KWgqwF88sRXQd91ffTYF3S99ABZQw/AYoXm7ZxUr+3F6YxA\nmU0MbfYAPq+fStWiQoZe+rmW9PdxRQi+83qdi9aa1fPXZ2vSVCZF5ZoxuJ0evO7k0BfI4PP6+OaV\nH3jow7sAzfgRk3JNvH1anSY1gfQB7xJ64kwhTZ3CcN6//1Pcae7Mbv8BfwBniouPH58Y9Phd6/YE\n3X7s4Am0PzXoPr8fHFHp05hNe/c3Du44zJG9R9m9cX/IukxmE6Pn/LdIPRar1qrM67P/yxtznuPl\nX54mpnolIqId2CNsNGnTkDELX+C9P1+mVsPQzZen6YDmt0/n8dMHM+gx5GK+2fMxfe68DHuELdtx\n9siCvcsToryRJz5hKB63l/1bDgbdt+nvrbm2aa2pXLMSR/bmfuIxmRQBW0/M7klA9iWB0pLNHNxl\nAbU727i6vObWtFjNpJ5M48kv7ufpPq/i83jTnw7z6ZQCEFX13/Fsnfqex3eHPmXPxv04ouzUPbtO\n5r5Juz/ijx+W8stHs0ncd5RDu44EfQIN+AKMHzGJXkO7ERUTyYNj78BsMTNn4kIAIqLs3D1mKB0v\nb593YUKUQ/KOTxhKIBCgX6Vbgk7UXL1uVabsH5f5edW8dYy56yOOHTgRdMows8VM3zvieODF33Al\nJ+CIDOD1gN+neOH2Jqz6o1Kh67NH2qlSK4ajB4+jAJ8n/2nG7JE27hx9M9c80KdQ9/L7/dzZ5lH2\nbwm+9rPJYmLwiAH857nrM8fruZ1uUk6mUaVWTJFXlReitBT0HZ80dQpDMZlM9L2rJ7ZczXZ2rn34\nyszPezbv57lr3uDInqMh58n0+/zMmriKFDWFSe82YcnMGKZ/XoN7e7bIO/Ty6FzpTnNzeHcifo+/\nQKFnsZq5aEAnrr63d77H5jT9w1lBn2RPC/gCTH1rOg90epoVc9bgyei8Uj22qoSeOKNJU6cwnDtf\nv5mTiUksmbYMa8acj5ff1o2Bj1+decy0937D6w69ovlpVpuFDX/t5eDBy5g2bmW2Ad0miwmz2Yzf\n6yOQpbnTbMl/Db2C6nTV+Yz46qEinfvzh7PzXZfP6/KyffUuXhjwJharhf9OfYzze+W/7JAQ5ZkE\nnzAcm93KM5Me5sThkyTsOkL9ZrHEVM/+hLZ/a0KBelY6U1y8MvgdLDYLPp8fk9mExWbGbDFTPbYq\nI75+iLEPTmDH6l1gUlisZnxeH/78M7VA8upJefzQCeZ/8ycnDp2kQ482nN+7HSbTv408zmRnyHNz\ncjs9uJ0enh/wJt/s+SjX35cQZxIJPmFYVWtXoWrtKkH3tb2kFZuXbs22BE5OJosJNHhc3szjLHYz\nbS9uxaAnrqF999aYTCY++PtVThw5xZ6Nexl51Wi8rvzH0hWEI8rOZTddHHTf6t/X81y/1wkEAnhc\nXn75eA4tOzbl1ZnPYLVZAbjgyvOYO3FRoZY8Alg09W+uvqfwTatClBfyjk+IIPrffwUR0Y5sC7Ha\nHFaq16uKI8pOrYY1MJlMuZ4KvW4f/yzfznmXtc32dFW1VmUO7zmKKcRiqnlS6e/ysrJH2rlkYGc6\nXpG7V6Xf5+eVwe/gSnNnBrIrxcXmZduY/fnCzONufXEwMTUqYXNYC1yKz+Mj9VRa4X8GIcoReeIT\nIogqNSvzv5VvMPG5b1k+czXRVSIZ8PCVXHV3r/TACwS4wjY46Lmh1syr2aBGnh1bcjKZFZ37deT2\nV4aQcjKNvZv2c2RvIlrDBX3Po+UFTYNOQ7Z99S48QWZocae5mfvlQrpe05EtK3ZQLbYK4ze8za8f\nz2HSyz/k+XR7msVm4fxe5xb8hxCiHJLgE4bhdrqZMHIysz9fgMflpcNlbbj/vduzjXPLqlaDGjzx\n+f1B95lMJlpe0JTNS7dl264UnHtJq6DntO/eGnuEHVdK8GBUKv1/rHYLjVrV547XbsrsSBIIBDhx\n6CTLZ63GbDZzTpfgA+chvfOMDgR/P3lk31FuanwfVruFgD9ArQY18Hl9KFP2xh+TSRFToxLOFHfm\nIrOOqPSnzGbnnRXy3kKcCWQcnzCMEZe/xPrFmzOfbJRJEV0lis//eY/KNWLQgTRwzwH/EbB1AGtc\nnhM7b1+zi8cueQ6vx4fP48Nqs2B1WHlvySs0bt0g6DmfPPEl34/5JeQ1lVJ0uup8Xvr5qcxtWmte\nGfIuy35bmfk0abVZaNmpGdViq7J8xipQcMnAzvR/4Ar+WbqdDx+ZELTnqNmau0epUoqcvwdqNazB\nlzvGsvSXlcyZuBBlUvQe2o3OV+f9dyJEOBV0HJ8EnzCEXev38GDnZ3LNuWmLsHHzs9cxeHhr9PGb\nAS9oDygbWNuhqn6KUrbgFwWO7E3kx/dnsDV+B3XPqsOgJ/rRsFX9kMcv+20lrwx5F2eKK+Qx0VWi\nmHb8i8zPG/7czNN9XgnZhHqayWQioANY7ZZid6CxOax8vuX9PFdoEKK8kQHsQmSxZ9P+bB1VTvM4\nPXz35k8c3zIUHTgFOg3wpX/1rEanfp37Wpv3M3/SHyz9NZ7oatEE/AG2LN/O4h+Xcu/5TzL2oc/w\n+4P3lIy7oj2xZ9XGag/9liGmRvahAstmrMaVlnfoQXpzKJoS6TWqtcZqL3inFyHOJPKOTxhC/eZ1\nCfiDt25Ex5wkIuoEuVvwXOD8HqJvB9Ln+XzhujdZOWdttvktTeb03p2nm1BnTVhA5RqVuOW5Qbnu\nZTabefuPF/nqhe/45eO5uQaQ2yPtDHqiX/b6qkRitVqCrnZeGCqjR2nWuUODMZlNNO3QhKq1Khfr\nfkKUV/LEJwyhaYcmNDuvSdAnLZXnJND/7vj6xamsnLsu16TOOYc0uNPc/PjujJC1RMVEcs+YW/nx\n6AQuHnghNoeVqMqR2BxWBjzYh7539sx2fPchF6GCPK0WhtliIiomkmqxVTJXWTCZTdgirDSPOxt7\npA17pI3IShHUqFeNkZMfLdb9hCjPivWOTyn1JnA14AF2ALdprU8GOe4K4D3ADIzXWo/O2F4N+BZo\nDOwGBmmtT+R3X3nHJ4oiLdnJ/x75nN+/WZxjQVbN50v+oW6TnNN3OSD6QUzRdwEwsNbtnDqa/3p2\nkN5hZLbv2wJ1BDlx+CRH9h2jfrM6RFWOCnrM4h+WMvqW9ws05CBnHTXqV+P83u245b8DiaoSxYxP\n57FyzlpqNarJgAf70KRtI7av2cXWFTuoUb865/c+V+biFGekMuncopTqDfyutfYppV4H0Fo/leMY\nM7AV6AXsB1YAQ7TWm5RSbwDHtdajlVIjgKo5zw9Ggk8Uh8/no1/Mf/BmCZGmbdN4Y+oOzBZwRAZA\nRYKlJaraRJRKnxbs6ko359vB5LSz2jXi1RkjSTqaRP0WdTNnSykOZ6qLN/4zlmUzVuH1eFFKoYCA\n1pjNJirXiCH1VBpupwez1YzFYubhj4fR65ZLC3WfYwkn2L1hL7Ub1wq5Kr0Q5VGZrMCutZ6T5eNS\nINiqlBcA27XWOzMKmwL0BzZlfO2WcdxEYCGQb/AJURwWi4UrbuvO7M8X4nGlP+VtXx/JHZe0Z/hH\njYnrWRdl6wC2rij1bxNjdJWoAgWfLcKG2WLmlrPvx2I1o5Tivndv4/Jbuxer7ogoB8//MJwtK7az\naOpfKJOJ7oO70qRNQyC96XLNgg38/Us8UTERXHbzpYUKrkAgwPv3fcqciYuwOax4PT7OubA5L/z0\nJJGVIopVuxDlSUl2brmd9GbLnOoB+7J83g90yvi+ttb69GJgh4DaJViPECHdM2YoJw6fYtmMVdjs\nVjxuL12uuZTz+92JKUgz3461u0k6ln8zp8lsomHLeuxavxefx5f5VPnBA+Ope3Yd2l4cfHB7MB6X\nh98nL2HV3LXUalSDK+/qRexZtWnRsSktOjYNek6HHm3p0KNtge+R1U8fzGTe14vxur2ZK1Ns/Osf\n3rn7E0Z+80iRrilEeZRv8Cml5gHBprYYqbX+OeOYkYAPmFTUQrTWWikVst1VKTUMGAbQsGHDot5G\nCABsDhvPfz+cxP3HOLTrCPVb1M2zF+PGJVsKdF2LzcKeTfvx5eiB6U7zMPWt6QUOvtSkNB7q/AxH\n9h7FlerGYrXw0wezGPXjE8T1Lp1lgaa9PyNzlpbTvG4fS6Ytw+1057kShBBnknyDT2vdM6/9Sqlb\ngauAy3TwF4YHgKzTWNTP2AZwWCkVq7VOUErFAkfyqGMcMA7S3/HlV7con7TWbFu1k+TjKbTs1Iyo\nmMhiXS/5RAp/TP2b5OMptOveJuT8laHUrF+dmvWr53tc1dqVMVstkE/nEr/Pj91hC7qW35G9RwtU\nk9fjZexDEzi443BmgPq8PnxeH6/f8j5TDo4rlc4noSaf1jo9uCX4REVRrKbOjN6aTwKXaq1DTdm+\nAmimlGpCeuANBm7M2DcdGAqMzvj6c3HqEeVbws7DPN3nZY4nnMRkNuH1+Lhr9E1c82DfIl1v/eLN\nPHPlq6A1XrcXq93KBX3OY+SUR7KtjFASOl11Pja7FVeKk7z6gymTIi3IOncWm4XzCjC586p563jx\n+jGkJTuDjrdzOT3s++dgyCnRiuO8nuey+Pu/sy2aC+n/OKhULbrE7ydEuBT3t8NYoBIwVym1Rin1\nMYBSqq5SagaA1toHPADMBjYD32mtN2acPxropZTaBvTM+GwYK+eu5fkBbzC8xyim/292ZkeLikhr\nzdN9XubgjsM4U1yknkrD4/Qw/ulvWL94c6Gv5/f7eeG6N3GluHCluvH7ArhS3SyfuYqFU5aUeP02\nu5UxC0dRt2ksjkh7yOWFfEFWRYD0uTWvz7LCezCnjibx/IA3SD2VFnKQecAfwB4Zegq14rjjtRuJ\nrByZOdbRZDZhj7Tz6Li7ZX5OUaEUt1dn0DfsWuuDQN8sn2cAuUb0aq2PAZcVp4Yz1VcvTuW7N3/O\n7CX4z/LtzJown3eXvIKtAk4VtW3VTo4dPJHrF7rH6ebnsTML1ekDYMuKHTnG4qVzpbqZNeF3etwY\nfIHWwtBaZ/uFH1MjhjELR5GW5OTlwe+wc+2eAl/L7XTz6ydzueW560Mes+i7v3NNFp2VMinqN48l\ntknp9AGLbVKbzza+w7T3Z7Dhz39o0LIe1z16FY3ymHtUiDORTFkWBicOn2Ty6GnZxpG509zs23KQ\nhVOW0Htot/AVV0pSTqRituR+L6U1nDhyqvAX1Drk2nbFmXfd7/cz+bVp/PDOr6ScSKVR6/rc8OQ1\n/PT+DHZt2AtAvaaxdBlwAbs37Ms1a0soAb9m8uhpXHV3r5CrvqecTA0a5pDeVFqtThVG/fhE0X6w\nAqpWpyp3vHpTqd5DiHCTKcvCYMOf/2C15f43hyvVzV/TV4ShotLX4oKmQeeatEfYuGjABYW/Xsem\nWKy5/w4dUXYuv63o4+U+feIrpoz+iZQT6evd7dm4nzeGjmXrqp143T68bh+7N+7jm5d/CBp6Ko8V\n1i1WC+sWbQq5//xe5wZdDd1qt3Dv20P5aueHpfa0J4SRSPCFQaVq0UGbtExmE1VrV8yJgaNiIrnr\n9ZuxR9ozJ4O2R9qo3bgmV9xR+NZus8XMc1MfxxFlxx5hQ5kUjig75/U8l+5DuhapxrRkJ798PDdX\nl34gj7k8cwu2CgSkP6BGVw0+JRmkh3mX/h1xRP3be9IRZefi6y6k331XlHiHHSGMSpo6w6DtJa2I\nrBSBK8WVrVnOarNw1d29w1dYKbvmgT40bd+Yn8bO5OSRJLoOuIArbu9BRJSjSNdr1601k3Z/xMJv\n/yLpWDLtu7emddeWRe6IcfTAccxWE4ReKi9fZouZB8fewXv3fprridAWYaN99zZ5nv/Ulw+y5KcV\nzJm4ADT0HtqNrkV4IhZChCYL0YbJns37Gdn3VZKOJWMyKXy+AA/97056/6dbuEsrtwKBAGsXbuTo\ngeO06NiUhi3rlej1nSlOrq99J25n0XvXxp5Vm4nbPmDOxIV88MBnmC0mtNZExUTy6syRmdOLFdbB\nHYf48OEJrJ6/HqvdSu+h3bjjtZtwRMrYOiFOkxXYzwBaa7au3ElaUhqtLmwuv8TycGTfUYZ3H8XJ\nxFOgwe8P0KVfHCO+fqhEB3N/OuJrfh47K1tzpzIpzFZzyKEKpzki7bz0y4jMpzpnqotNf20hItpB\ny07NitxUmXQsmVtbPkTKidTMXrE2h5VWnZvz1vxRRbqmEBWRrMB+BlBK0SLubDr0aCuhl49XhrzL\n4T2JOJNdOFNceJwe/v5lJb9+PCfXsalJaRzZm5i+Inkh3fHqjQx+egDRVaPSF2Q9rwmjZz/Lzc9e\nR50mtTBbzbk6sJhMiu5DLuLD+NezNWVGRDk4v1c7zuncoljv52Z+Nh93mifbUBCPy8s/y7azY+3u\nIl9XCKOS4BPl3onDJ9m2ckfQBV+n/+/f4EtLdvLioDFcX/sObm/1CIPrDWPxD0sLda8f3vmVKa/+\niA4EsNotmM0mmrRpyE0jB/LVjg/59sA4OvU9D4vNgsVmoUHLeryz+CWemfRwiTe9nrY1fkeuldoB\nTGbFno37gpwhhMiLdG4R5Z7b6Qn5xOR2/tsk+fLgd1jz+/rMsXBup4fXh35AjfrVadWpWb73WTFr\nNV8+/x1upwd3xqxj21fvZtS1b/LeklcAqFwjhpemj8CZ4sTr9hFTvVLm+VprNi/bxoFtCTRp05Cm\nHZoU9UfO5uz2jVn668pci9DqgKZ+i7olcg8hjESCT5Rbf/28gi9HfcuhPcGbLS02C5cMvBBIfwe4\ndsGGXAPAPU4P3735M89/Pzzf+33/9q+4cgxl8Pv8bF+zm4Rdh7ONoYuIjiAiy/SVKSdTebLXi+z7\n5wBKKQIBTasLm/HyLyOKPblznzt78t1b0/G6vZm9gK12C2e1a0Tz888u1rWFMCJp6hTl0pwvF/Lq\nTe+yY+0eUk+mZQba6dlfHFF2ajWozpCnrwXShyJYgkwKoHV6j8iCOBliBhmL1UzSsZQ8z33//vHs\nWr8XV6obZ4oLd5qbTX9t4fP/TinQvfNStVZl3lvyCm0vOQdlUljtFnrceDGvzXy22NcWwojkiU+U\nO1prxj81CXda7vdaVetU5txLW9O+W2u6D7kos1NQo1b1cq2BB+mhde4l5xTovp2uPI99Ww7kemrU\nAU2TNqFXQ/D7/Sz+/m98Xn+27R6XlzlfLOSet4YW6P55adSqPmMWvEAgEEApJZNGC1EM8sQnyp20\npDSSjwdf7Tz1VBpPf/UQfe64LFtP2KjKUVz/RD/sWbaZTApHtINBT/Qv0H0HPnY1MTVisGZMEq5U\n+uwy97w9FJsj9IoIOqBDztmZ871ccZlMpmyhp7Vm+v9mcXOT+7g65hae6PkC29fsKtF7ClHRyBOf\nKHcc0Q6sDmuuJyiAGvVCLxo7dNQNNGhej2/f/IlTicm079GGW1+8oUALzQLEVK/EuLVv8dMHM1k+\nYzU16lfjukeuynflCIvVQstOzdi8dGu2mXhMJkXHK9oX6N5FNWHkN0x7f2bmuMM1v2/g0Yuf48MV\no0utl6kQZzoZwC7KpYmjvmPqW9OzDSS3R9p5YsJ9XDqoS7Zj92zax+wvFpByMo2u/TvSsU+HMp/X\ncvfGfTxy0bN43V48Li/2SBsRUQ7GLh9N7UY1S+WeaclOrq9zZ66hDiaziW43dOXprx8qlfsKUV4V\ndAC7PPGJcumW5waidYAf3/kNn9dPRLSd2165MVfozZwwnw8fnIDX4yPgD7Bg8p+069aaF356skRn\ndMlP49YN+GLr+8wYP5/d6/fSouPZXH5bD6KrhJ6UurgSdh7GYjXjybHge8AfYEv89lK7rxBnOnni\nE+Waz+sjLclJVJXIXEGWcjKVG+oOy7VyvSPawZNfPMDF13Yqy1LLXNLxZIbUvzvXe0Sl4MKr4njx\n56fCVJkQ4SFTlokKwWK1EFO9UtCntzULNmCx5d7uSnEx/+tFZVFeWMVUq8SlN3TBHpG9443NYePG\nkdeGqSohyj8JPnHGyvkLP6vlM1azf+vBMqwmPB795G763tUTe6QNs8VEnSa1eO774bS8IP+ZaoQw\nKmnqFGcsj9vLDbF3kXIyNfdOBa27tOTdxS+VfWGFsHXlDsY9+RVb43dStVZlBj99DVfc1qPQ4/T8\nPj8elwdHlEPG+AnDkqZOUeHZ7FZe+mVE8J0aNi75h+2rd5ZtUYWwc90eHr/0edYu2Igz2Zm+5t5D\nnzP5tR8LfS2zxUxEdISEnhAFIMEnzmhturakUrXokPufuvxlvJ6SHUReUr4c9V2uRW/daW4mvzYt\n2+TbQoiSJcEnzni9brkUkzn4f8o+t49lv60q44oKZtuqnQR71aCUInH/8TBUJIQxSPCJM96tLw/O\ntjxQVn6fnxOHg08+HW51m9YJut3v81OtTpUyrkYI45DgE2e8iCgHD354J7YgvTw15DvlWLjc/N+B\n2COz12yPtNH71u5EVooIU1VCVHwSfKJC6Nq/I03aNMCaZWkim8PKxdddSOPWoVdWCKd2l7ZmxFcP\nUbNBdcxWM/ZIG1fd05v737st3KUJUaHJlGWi1CUdS+b7t3/h71/iialWiesevYou/TuW2PX9Pj8L\nv/uLxAPH8fn+ndg6ENA0blO/xO5TGi4a0Imu11xAWrITR6Q9c71BIUTpKdY4PqXUm8DVgAfYAdym\ntaB9AhIAAA1OSURBVD6Z45gGwJdAbdJbnsZprd/L2DcKuAtIzDj8Ga31jPzuK+P4zhwpJ1O5u/1w\nThw+mbnOnSPKzqAn+nPLc9cX+/p+v5+n+7zChj//wRtkCSCbw8rE7WOpUbdase8lhCjfymoc31yg\njdb6XGAr8HSQY3zA41rrc4ALgfuVUllXBn1Ha90+40++oSfOLL98NJuTR5KyLe7qSnUzZfQ0kkKs\nuVcYf0+PZ/PSbUFDD9JXKoifvbbY9xFCVBzFCj6t9Ryt9enfaEuBXO1KWusErfWqjO+T4f/t3X2Q\nVfV9x/H3Z/fubnZZkJUH8SGIgLVNI7WElEzG8SGSVjFTDDUdq/U51Uwba9KO0WprnEnjxDzVGKem\nhkiNk8bONCRYayRCJkUn0YojColWkRKDEuUpPOwuu+zeb/84F1hx7+6Ve/eee+/5vGZ2uPecH+d8\nv7PM78s553d+P14AvFBYRjy9Yu3bJpEGaGlr4eVnyn+5/GcPrWHf3n1F96tJI05tZmbZU8nBLVcB\nPxypgaQZwO8DTw3ZfJ2k5yXdJ6mrgvFYDZhywqRhZxOp1JD9zq5xRd/hg2R19Pnnzy37PGbWOEYt\nfJJWSlo/zM+iIW1uIbml+Z0RjtMJfA/4VETsLmy+B5gJnAZsAb4ywt+/RtIaSWu2bt1arJnVmMXX\nn09re8tbtjXnmjh+9rGcdOqJZR//3Ks+9JaRnEO9a1wbty27wa8GmNlblD1JtaQrgGuBcyKip0ib\nFuBhYEVEfLVImxnAwxHx3tHO6cEt9WXVvz3O1/9qCZEPBgYGmTnnRG5bdgOTjq3MBf6jS3/M1z/5\nLXItzcRgEIJLbl7MouvOo33cuypyDjOrfaUObil3VOe5wFeBMyNi2MswJfe57gd2RMSnDtt3bERs\nKXz+NDA/Ii4a7bwufLUvImD/Ghh4BXKz2B+n8eovNtPZNY5pM6ZW/Hzdu3tYt/oF2jpamXPGe/xa\ngFkGVavwbQDagO2FTU9GxCckHQcsiYiFkk4HHgfWAflCu5sj4hFJD5Dc5gxgE3DtgUI4Ehe+2hb5\nPcSOS2FwE0Qe1ATNM9DRD6Cm4acWMzMrV6mFr6wX2CNidpHtrwMLC5+fAIZdKyUiLi3n/FabYs/t\nMPAyUHjFIICBl4k9/4iOuiPN0MzMPGWZjYHehzlY9A7aD71+TdPM0ucpy2wMDBbZPlBk+9g79Mzx\nVWg5BbWMOobKzBpUZgtfDGwk9twB/U+DxkPH5WjcFUi+CC5b6+nQv5pDj3QBmpLtKYj8TmLHZTD4\nK4gAQeTmoKO/ieRRn2ZZk8lePga3ENs/Bn0/gdgL+S2w92vE7tvSDq0haMKtoInAgffn2kET0YTP\nphJP7LoVBjZC9AC9EL2wfy2x585U4jGzdGWz8HUvTTo/ho5o7YXeZcTgtrTCahjKnYCmrITxn4H2\nP4XxN6ApK1Gu+islRAxA3yre/syxD3qXVT0eM0tfNm919j/LsM+b1Ja8d9Y8ueohNRo1daJxl6Qd\nBsnt1nyRfcNPbG1mjS2TV3y0zGLY1KMfxvCqJPJ7yXd/m/zO68jv+SdicNRXFq1MUiu0zOHtb9Q0\nQ+uZaYRkZinLZOFTx9XA4TP2t0HbB1Hz2CwcEYPbiG3nwZ6vQN8K6P4Wse08ov/ZMTmfHaKjbk8G\nMHFgIEs7NHWhCTelGRYA27fs5JXnNtHX25d2KGaZkclbnWo5Gbq+Sey+FQZfBZqh/SPJoIwxEnu/\nBvntHLrF2g/RT+y6ESavGHYFgyM6T74nGbDTNNkjVAuUmw1TfkT0LIOBl6BlDmq/ADV1phZT9+4e\nbr/4Tp5dtZ6W1hz5fJ4rP/9nLP7r81OLySwrMln4ANQ2H01ZQeT3gtpI5tEeQ32rGPa54uDrkN8B\nzZPKOnxEL7HrH2Dfo4CgaQIx/jaa2j9c1nEbhZqORp0fTzuMg77w53fx7Kr17O/bz/6+5Fnj0pu/\ny/GzpjH//PelHJ1ZY8v8JYGaOse+6AEUfV8sQOUvlBq/+RvYtwLoB/ogvxV2/S3R79XHa81vtu7i\nmceeP1jwDtjX08eDX/xBSlGZZUfmC1/VtF/MoWdMB+SgdX7ZEzfH4BvQ9wRw+HOiPqL7X8o6tlXe\nrq27ybUOv3rE9td2Vjkas+xx4asSjbsC2s4C2kDjQB2QOwkd9aXyDz74axj2qjVg4JflH98q6rjZ\n04Z9ptuca2buglNTiMgsW1z4qkTK0dR1F5q8HE34HOpaiiY9jMp8tgdAbhbEcO+k5aD1/eUf3yqq\npbWFa798GW0dh25xN+ea6RjfzsW3/EmKkZllQ2YHt6RFuZmQm1nZYzZ1EuOuhu6lQG9haxOoHXX+\nRUXPZZWx8OMLmDZjKv/+xeVs3byd087+XS666aNMfbcnTzAbay58DUKd1xPN06F7STJKtHU+Gv/p\nMXsv0co3d8Ec5i6Yk3YYZpnjwtcgJKGOxdCxOO1QzMxqmp/xmZlZpviKrw7E4JZkCZ3+J0AToONK\n1PGxis32YmaWJS58NS6Z4/MCiN0kK5tvhb2fJwZfQhP+Pu3wzMzqjm911rjoeQCim6ToHdjYCz0P\nEoPbU4vLzKxeufDVuv6nSKYhO4xaYeDFqodjZlbvXPhqXe5Ehl87cACaj6t6OGZm9c6Fr8ap4yre\nvnZgC7ScinInpRGSmVldc+GrcWo5BXXdDU3HAG1AC7SdibruSTs0M7O65FGddUBtZ8CU1ZB/A9SZ\n6gKqZmb1zoWvTkiC5mlph2FmVvd8q9PMzDKlrMIn6UuSXpT0vKTvS5pYpN0mSeskrZW0Zsj2oyU9\nJunlwp9d5cRjZmY2mnKv+B4D3hsRc4CXgL8boe3ZEXFaRMwbsu0mYFVEnAysKnw3MzMbM2UVvoj4\nUUQMFL4+CZzwDg+xCLi/8Pl+4IJy4jEzMxtNJZ/xXQX8sMi+AFZKekbSNUO2HxMRWwqffw0cU8F4\nzMzM3mbUUZ2SVgLDDSe8JSKWF9rcAgwA3ylymNMj4jVJU4HHJL0YEauHNoiIkBQjxHENcA3A9OnT\nRwvbzMxsWKMWvohYMNJ+SVcAHwHOiYhhC1dEvFb4801J3wf+AFgNvCHp2IjYIulY4M0R4rgXuBdg\n3rx5RQukmZnZSMod1Xku8BngjyOip0ibcZLGH/gM/CGwvrD7IeDywufLgeXlxGNmZjaacp/x3Q2M\nJ7l9uVbSNwAkHSfpkUKbY4AnJD0H/A/wXxHxaGHfF4APS3oZWFD4bmZmNmbKmrklImYX2f46sLDw\neSPwe0XabQfOKScGMzOzd8Izt5iZWaaoyHiUmiZpK/DLKp1uMrCtSueqlkbMCZxXPWnEnMB5pe3E\niJgyWqO6LHzVJGnNYbPN1L1GzAmcVz1pxJzAedUL3+o0M7NMceEzM7NMceEb3b1pBzAGGjEncF71\npBFzAudVF/yMz8zMMsVXfGZmlikufCRTr0n6X0kbJA27JqCkswqz0/xc0n9XO8YjMVpeko6S9J+S\nnivkdWUacb4Tku6T9Kak9UX2S9JdhZyflzS32jEeiRLyuqSQzzpJP5U07KQQtWS0nIa0e7+kAUkX\nViu2cpSSV532F6P9G6y7/qKoiMj0D9AMvALMBFqB54D3HNZmIvALYHrh+9S0465QXjcDdxQ+TwF2\nAK1pxz5KXmcAc4H1RfYvJFkeS8AHgKfSjrlCeX0Q6Cp8Pq8e8hotp0KbZuDHwCPAhWnHXKHfVd31\nFyXmVXf9RbEfX/ElK0VsiIiNEdEPPEiyQO5QFwPLIuJVSFaZqHKMR6KUvAIYL0lAJ8k/5AFqWCTL\nWe0Yocki4NuReBKYWFj5o6aNlldE/DQidha+Hsmiz1VXwu8K4Drge4ywMkutKSGveuwvSsmr7vqL\nYlz44HjgV0O+by5sG+q3gC5JPykspntZ1aI7cqXkdTfwO8DrwDrg+ojIVye8MVNK3vXuaoov+lw3\nJB0PfBS4J+1YKqwe+4tSNEx/UdYk1RmSA95HMqF2O/AzSU9GxEvphlW2PwLWAh8CZpGssvF4ROxO\nNywrRtLZJIXv9LRjqYA7gRsjIp9cRDQM9xc1zld88Brw7iHfTyhsG2ozsCIiuiNiG8kiurU+uKCU\nvK4kuSUTEbEB+D/gt6sU31gpJe+6JGkOsARYFMnKJvVuHvCgpE3AhcA/S7og3ZAqoh77i1I0TH/h\nwgdPAydLOklSK3ARyQK5Qy0HTpeUk9QBzAdeqHKc71Qpeb1KYVkoSccApwAbqxpl5T0EXFYY3fkB\nYFdEbEk7qHJJmg4sAy5tgCsHACLipIiYEREzgP8A/jIifpByWJVQj/1FKRqmv8j8rc6IGJD0SWAF\nyQiz+yLi55I+Udj/jYh4QdKjwPNAHlgSESMO0U5bKXkBnwP+VdI6klGQNxb+h1qzJH0XOAuYLGkz\n8FmgBQ7m9AjJyM4NQA/J/1JrXgl53QpMIrkqAhiIGp80uISc6tJoedVjfwEl/b7qrr8oxjO3mJlZ\npvhWp5mZZYoLn5mZZYoLn5mZZYoLn5mZZYoLn5mZZYoLn5mZZYoLn5mZZYoLn5mZZcr/A2m3fyyx\njMzRAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb07e3d4450>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(7, 6))\n", "plt.scatter(out_encod[:,0], out_encod[:,1], c=list_labels)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Pixel-based test" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Loading labeled segmentations\n", "seg_label = genfromtxt('../../dataset/Seg_pixel/pixel_label.csv', delimiter=',').astype('uint8')\n", "\n", "list_masks = seg_label[np.logical_or(seg_label[:,1] == 0, seg_label[:,1] == 1), 0] #Extracting segmentations\n", "list_labels = seg_label[np.logical_or(seg_label[:,1] == 0, seg_label[:,1] == 1), 1] #Extracting labels\n", "ind_ex_err = list_masks[np.where(list_labels)[0]]\n", "ind_ex_cor = list_masks[np.where(np.logical_not(list_labels))[0]]" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Correct segmentations' vector: (131, 50, 500)\n", "Erroneous segmentations' vector: (21, 50, 500)\n" ] } ], "source": [ "prof_vec_pixe = np.empty((len(list_masks),resols.shape[0],points)) #Initializing correct signature vector\n", "for ind, mask in enumerate(list_masks):\n", " mask_pn = np.load('../../dataset/Seg_pixel/mask_pixe_{}.npy'.format(mask)) #Loading mask\n", " refer_temp = sign_extract(mask_pn, resols) #Function for shape signature extraction\n", " prof_vec_pixe[ind] = sign_fit(prof_ref[0], refer_temp) #Function for signature fitting using Watershed as basis\n", "\n", "ind_rel_cor = np.where(np.logical_not(list_labels))[0]\n", "ind_rel_err = np.where(list_labels)[0]\n", " \n", "print \"Correct segmentations' vector: \", prof_vec_pixe[ind_rel_cor].shape\n", "print \"Erroneous segmentations' vector: \", prof_vec_pixe[ind_rel_err].shape" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true, "scrolled": false }, "outputs": [], "source": [ "#for ind_ex, ind_rel in zip(ind_ex_cor, ind_rel_cor):\n", "# plt.figure() \n", "# f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))\n", "# ax1.plot(prof_vec_pixe[ind_rel,res_ex,:].T)\n", "# ax1.set_title(\"Signature %i at res: %f\"%(ind_ex, resols[res_ex]))\n", "# \n", "# mask_correct = np.load('../../dataset/Seg_pixel/mask_pixe_{}.npy'.format(ind_ex))\n", "# ax2.axis('off')\n", "# ax2.imshow(mask_correct,'gray',interpolation='none')\n", "#\n", "# plt.show()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYFEXawH81cXd2dmc25xxgd8k5KkoQUQQxYY6nnllP\nP+N5xjuzhzncqZgVUUSRoCJIkJzZXWBzzjs7u5NDfX/McLciAp4iAv17nn6mu+JbVd1v1bxdXSWk\nlCgoKCgoHLuojrQACgoKCgqHF0XRKygoKBzjKIpeQUFB4RhHUfQKCgoKxziKoldQUFA4xlEUvYKC\ngsIxjqLoFX4ThBAXCiGWHGk5fm+EEH8WQjQJIbqFENFHWh4Fhf2hKPojgBDiAiHEhqByaBBCLBRC\njPkDyHWZEGLl/xJXSvmelHLSby3Tvgghxgkhag93PoeCEEILPANMklIapZRtR1qmX4IQYrwQokQI\nYRdCfCeESD9A2BuC96xLCPHWPn4ZQggZvJ/3Hn/t4S+EEI8LIdqCx+NCCLFP/O+CcpQIISbsk/4F\nQogqIYRNCDFPCBHVw08vhHhDCGEVQjQKIW77TSrnGENR9L8zwRvxn8DfgXggDXgROON/SEtzKG4K\n/+U3rp94IATY+T/IIYQQB3z+DmdbCiFigE+BvwJRwAbgowNEqQceAd44QBhzsMMzSikf7uF+NTAd\n6A/0A6YC1/Tw/wDYDEQD9wKfCCFig3IWAq8CFxOobzvwUo+4DwC5QDpwEvB/QojJB5Dx+ERKqRy/\n0wGYgG7gnAOE0RPoCOqDxz8BfdBvHFAL3Ak0Au/szy0Y9nRgC2ABVgP9euSRSuAhbwHagBeAfMAJ\n+IIyWn5GvsuAcqALqAAu7OG+ske4ScAuoJPAg7kcuKpnWOApoCOYzqk94l4OFAfzKAeuCbqHAQ7A\nH5SxG0gC3gIe6RF/HFDb47oyWD/bABegCcabG6yDCuCmHuGHEVB8VqAJeGY/9ZAH2AAZlGNp0H0U\nsD5Y7vXAqB5xlgGPAquC5cjZT7q/uaw/045XA6t7XO+t294HifcI8NY+bhnBetD8TJzVwNU9rq8A\n1vSoRxcQ3sP/e+Da4Pnfgfd7+GUD7r3hCTwjk3r4PwR8eKSf9T/aoYzof19GEhgBfnaAMPcCI4AB\nBEZAw4D7evgnEBiBpRN4WH/iJoQYSGDkdQ2BUdKrwPzg31w18CVQReABTSbwYBQD1wI/yMCIzLyv\nYEKIMOA5Ako5nIBS27KfcDHAJ8Ddwfx3BcP2ZHjQPQZ4Avh3j7/zzQQ6qggCSv9ZIcQgKaUNOBWo\nl/8dOdYfoC57cj5wGmAm0FF8AWwNln88cIsQ4pRg2FnALCllBAHF8vG+iUkpdwOFwUuzlPLkoElh\nQbCOogmYdRbsY7u/mEC7hRNog8MmqxBimxDigp/JozCY5t7y2IDSHmX6X6gSQtQKId4M3gP7zSt4\nXtjDr1xK2XUA/55ylhHoGPKEEJFA4gHSVgiiKPrfl2igVUrpPUCYC4GHpJTNUsoW4EECymEvfuBv\nUkqXlNLxM25XA69KKddKKX1SytkEHo4RBDqOJOAOKaVNSumUUv4Su7wf6COECJVSNkgp92e2mALs\nlFJ+GizrcwT+bfSkSkr5upTSB8wm8MDGA0gpF0gpy2SA5cASYOwvkHF/PCelrAnWz1AgVkr5kJTS\nLaUsB14HZgbDeoAcIUSMlLJbSrnmEPM4DdgjpXxHSumVUn4AlBAwVezlLSnlzqC/53DKKqXsJ6V8\n/2fyMBL419ETK4EO6JfSGpQzHRgcTOO9A+RlBYzBjv1gchzI3xi83jft/6UMxzSKov99aQNiDmJ7\nTeLHI72qoNteWqSUzn3i7OuWDvxFCGHZexAw1yQFf6sO0tnsl+Co7zwCI/8GIcQCIUTvnylDTY94\nkoB5qSeNPfztwVMjgBDiVCHEGiFEe1D2KQRG/r+Gmh7n6UDSPvVzD8GOBriSgEmhRAixXghx+iHm\nsW/bEbxO/hk5jqSs3QT+MfXERMBc9osIdjAbgp1XE3ADMEkIsVfh7puXCegO3hcHk+NA/t3B633T\n/sVlONZRFP3vyw8ERtbTDxCmnsDDvZe0oNte9rfc6L5uNcCjUkpzj8MQHGHWAGk/09kcdClTKeVi\nKeVEAiPwEgKjy31pAFL2XgRHbin7CfcThBB6Avbop4D4oAnpK2CvWWd/MtoAQ4/rhP2J3uO8BqjY\np37CpZRTgmXcI6U8H4gDHifwcjDsEMTft+0g0H51PyPHz/F7yLqTgGkQ+I9ZLpv/4cXyAeTfq19+\nlFfwfGcPv6wencL+/HvKmQ3ogN1Syg4C99rPpa0QRFH0vyNSyk7gfuBFIcR0IYRBCKENjmCfCAb7\nALhPCBEbtHPeD7z7C7N6HbhWCDE8OLsjTAhxWvBhWkfg4Xgs6B4ihBgdjNcEpAghdPtLVAgRL4SY\nFlQKLgIjKv9+gi4A+gbLqAGuZ//Kd3/oCLyQbgG8QohTCbzY3UsTEC2EMPVw2wJMEUJECSESgFsO\nksc6oEsIcacQIlQIoRZC9BFCDA2W8yIhRKyU0k/gZTY/U859+YqA7fgCIYRGCHEeUEDgncj/yuGS\n9TMCJrizhBAhwN+ArVLKkv0FDpYnBFAD6uB9own6DRdC9BJCqILvI54DlgXvd4C3gduEEMlCiGTg\nLwReoO9917EF+FswzRlAXwKdPQRMQFOFEGOD993DwKc9bPpvE3heIoUQ+cCf9qat0IPf6q2uchz6\nQcAOv4HASLSRgGIcFfQLIfCgNASP54CQoN84eswm+Tm3oPtkArM+LMF05vDfmQppwDwCpqRWAjZh\nCCjZBUA7gXcJ+6aZSGD2TGcw3WVAQdDvMn4862YysJv/zrr5Abh4f2GDbpLgLBQCHUNTMI93gA/5\n8ayaN4KyWwiYS0IITA20Epitcis/nXUzYZ/8kgh0qo0EZv6s2RuGQMfaTKAj2wlM/5l2zGCf2SbA\nGGBjsNwbgTE9/JYRnHl0gHvjN5M1eH3hAfKaQOBfmSMoW0YPv3uAhT2uHwiWtefxQNDvfAKzgWwE\n7rW3gYQecQWBF+7tweMJQOxTj8uCcuzaT/kvAKqD6X8ORPXw0wfvh72zjm470s/3H/EQwcpSUDhs\nBOeL1xJQOt8daXkUFI43FNONwmFBCHGKEMIctLnfQ2BUd6izVxQUFH5DFEWvcLgYCZQRMA1NJWBS\ncBw4ioKCwuFAMd0oKCgoHOMoI3oFBQWFY5w/xAJYMTExMiMj40iLoaCgoHBUsXHjxlYpZezBwv0h\nFH1GRgYbNmw40mIoKCgoHFUIIX5uvaQfoZhuFBQUFI5xDqrohRCpIrApQJEQYqcQ4uag+wNCiDoh\nxJbgMaVHnLuFEKVCiF09VtlTUFBQUDgCHIrpxgv8RUq5KfgJ/UYhxNdBv2ellE/1DCyEKCCwsl4h\ngS/6vhFC5MnAKoUKCgoKCr8zBx3Ry8BStJuC510ENoRIPkCUaQTWN3dJKSsIrHE97LcQVkFBQUHh\nl/OLbPRCiAxgILA26HSjCGxu8EZwEwAIdAI9l1mtZT8dgxDiahHYg3JDS0vLLxZcQUFBQeHQOGRF\nL4QwElhR7hYppRV4GcgisBNSA/D0L8lYSvmalHKIlHJIbOxBZwcpKCgoKPyPHJKiF4Hd7ucC70kp\nPwWQUjbJwO5FfgLL4u41z9QR2NxiLyn8eD1uBQUFBYXfkUOZdSOAfwPFUspnergn9gh2JrAjeD4f\nmCkC+5NmEtihfd1vJ7KCwtGL9EscRW1Yv6mie3U93k7XkRZJ4TjgUGbdjCawZ+l2IcTejaDvAc4X\nQgwgsC51JYGNqJFS7hRCfAwUEZixc70y40ZBAVyVnXR8sgdva4+13b6qwDwlk7CRiYj/7I2uoPDb\nclBFLwMbR+/vDvzqAHEeBR79FXIpKBxT2DY20TF3N2pzCFEX5hOaH4XX4qLzizIs88vw2z1ETNh3\nF0IFhd+GP8QSCAoKf1SklOCTCM3//hG5bWMTHZ/sRp9jJvrCfFQhgcdOGxNK9GWFdHyyB+s31Wii\nQzEMjPutRFdQ+A+KoldQ2A+ucgtdK+pwlVqQHj+qMA36bDNhwxMJyTYfcjr2zc0BJZ9tJuaSAoRW\n/SN/IQSRM3Lxtjro+LwUXZYJjUn/WxdH4ThHWetG4bjE7fQi/T/di0H6JB3zSml5bTvu2m4Mg+OJ\nmJhOSO9oXKUWWl/fTssbO/A02g6ah21TE+0f70KfZSJ6P0p+L0ItiDonD3ySzvllv7psCgr7oozo\nFY4b3E4vW7+toWhlPd0dLlQaQXKumYGT0knNj0L6/LS9W4yzuB3jmGQiJqWj0v1XOUuPn+419ViX\n1tA0axNhwxOJmJiOOkz7o3yklNjWNWKZV4o+20z0JQU/Smd/aGJCCR+XivXrKlxVVvTpEYelDhSO\nT/4QO0wNGTJEKssUKxxOLE12vnp5Gx2NdtIKo0nMMeG0eSjd0IzN4qJgTCJ9Q9Q4NzRhnpqFcfR/\nP+b2+z3YbHvotu3G57Oj8RvxbzHgW61DHarFeEIKhn6xqE06PI12upbV4Njeij4vkpiL8392JL8v\nfrePxic34ApzUp9YjZSSvidPwhSXcLiqReEoRwixUUo55KDhFEWvcKxjbXMw9/GN+P2SU64qJKV3\n1H/8fB4/674sZ9PiamI0gvGT04k5PQsAS+dG6us/prl5ET5f90/S1WniiWw+GeO24Wjc/7XbC62K\n8HGphJ+Uitvlo2JrCw2lHXQ0WHA7u/F72kBW4XHWodFpiYiNJzmvN7kjRtOxsoLPP3gcj3SBEGj1\nes665yGS8vIPf0UpHHUoil5BAfC4fcz5xwbsnS7OvH0Q0UnGn4TxtjlY/9gGNnd5SMmPZPRFbqqq\nnqPDsga12khc3GSiIkdjDM9Hq4nA47FgtW6nqflL2ttXoFKFkqS+kFjnDPSRZkLyo2iub2LN53to\nKPch/SqkdCF9VhAaVCoTCBVafRfGiFLsliI6m5sQKhW6UAM4JVPGXkfM2fnMefhevF4Plzz+HKHh\nijlH4ccoil5BAfj+g11sX17HGTcPIDU/6if+Ukpa39yJu8pK0xgLtS0vEZZQjE4bQ3rGtSQnnYda\nbfjZ9O32CkrLnqSlZTFaTSzuutGUrsjA6+sVSN+7G3O8ldT8BJLyepGQnYc2xETZxmY2La6mq91J\n3xOTyR9jYOkbL1JbtAO9Poyx0TMouPcM2q11vH/f7eQMG8nUW+48bPWkcHRyqIpeeRmrcMxSv6eD\n7cvr6D8+db9KHsBR1EZ72wo6x31Ll9yMMd5M45ZzyMq9hLTUgoPmYTBk0qfgeb7/9O9Y+ZzQ+Hkk\nje2Fu97IoJNHkt73ZNSanz5mfU5ModfIRNZ+Xs7Wb2torg7H2tpKdEoaHqeT7xo+RD3HSJ8/n8bI\ns89n1UfvUHnSRDL6D/rV9aJw/KFMr1Q4JvH7JSs+3oMxSs/waVk/8pPST1d3CRXlL7Gp8ixqBz+F\nS1tPbs49nHDi98THXMrGBY3sXtd40Hza6huZfecLbF9SSNXSx3BUXUFEYgNRg/6B1zgXv/ypbX8v\nWp2aMefkcsqf+tBcWYa1uZHCcadzwaNPExERwzfL/0V9SQlDps4gMjGZpW++gtfj+dV1o3D8oZhu\nFI5JilfXs+z9zYy60I45qR2HsxaXsxGnqxGHo/o/L1dDO3JJzp5Jar/zUakCHyr5vH7mz9pCU4WV\n6bcNJCHLhJQSn8eP1+3H2uagrc5G8ardNJTaQegJj4JxF/UnNT8Kj6eDsvKnqa//CJUqhKSks0lN\nuQyDIeNn5V3w/IuUrFxMZNpNzLhjFP7GFj56/G7QCy599kWaqyqY++hfGX3uRYw4a+bvUYUKRwGK\njV7huMXtsrLww7sJS/4GofICoNGYCQlJIkSfgD4kiQhDPzzv6zBEZxB7VV88bh81O9up32OhvaGb\nrnYXnS12pB9UGoHfu5+Pq/x2dPpWTrxoDHnDsn+yKFl3926qq/9FY9N8pPRgihhIfMIZxMdNQaeL\n6ZGOn9dvuBJTfCrd1omE6e3MGPg5/p3LKemQVMedztS7H+PLWU9QvnEdlz3zkjLlUgFQFL3CcYrH\nY+WHVefh9u0hXH8aeYUXEh6ej0YT/qNw1u9qsC6uRHd+HsvXbqNmTzMaWxR6TShRiWEYo0Lweb1U\n7+xAo5VEJznx++zYLK1YGnYjpYWhU8czYsZ5aLTan5EmgNPVSGPj5zQ1zae7uwQh1ERHjyM5aSbR\n0eOo372LD++/g1Nv+AsxyX2Rb0whRlOGzzQEjWUdra5Q2k5+gZTBJ/DmrdeSmNebs+5+EJX60Obn\nKxy7KIpe4bhDSj+bNl9MR/t6OotvY8b11yBUP1141e/0Uv/YOvbovayyrcOrCZhx/Go/9b3qSYlJ\nIGmHh+4fihGqFLTGGUhfE9L9FZGJMWQMGET/iacSEfPLFyDr7t5FY9N8Ghrm4na3oNNlYdndm7Kl\ntfz5tffQb3oVvnmAJdbbqdeeRI57LSMj/k6zJ40tya8gZTnFK96j7/hTmHDVdahUirI/nlEUvcJx\nR33DJxQX30nDhosZdtK15A3dv3mjc1kNX3+6kyLTZqTaS01GNSXuYka3jEYjNSxOWIhb7eEU9XCu\n638d3R1hrJxTT2SCgSl/7kdETOivlrW5uYGFix4hOnoVoaFdtFfEoaqczmnieZo8OXzZcT8AahXk\n61dwoukZip3jWWq5Aa9jJV7nOpLz+zH52hsxJyQeJDeFYxVleqXCcYXPZ6e09Al89l54204me9D+\nR9tel5evP99NSfgO0HrZmLGeZk0z9469l+hSFUtWr+P8mkk0n+jjq5pFhNlSuP/E+zEnxLLole18\n9Mg6RkzPpmBsEmr1gSetSb/E1unG2mrH0uygs8WBrcNFV4ed2somhHcqVvcgInNfI2FwC7HqNwip\n7KJeZnOq+R+0e1NZ230Rdt+JVIZuJJ9viZ08jBLv+WxeaKau5DvevO1aBp56BiNmnEdI2E8/BlNQ\nAEXRKxwjNDUtwONpo3bNFfQ9IXW/SlhKybcvbGG3fidebTflGeW069qZPWk2ZouaD965g/CsQpz6\ncO4ffgspkWm8tu01okOjuXHgjZx33zCWvl3M9x/uZsNXlWQNjCU2NRxdaOAxsltdgZe4zXY6WxxY\nWxx4Pf7/5K9SCQxmHQ63Fa+wEWHYRb1oxLElkTm51/FW6x10h2r4PjIEo5jC8AQ/hZtXsbNjNMaO\nc8G/k7QtjzPminEUjLqSBS/m01bzDRu/nEfZ+jWcfd/Dyktahf2iKHqFY4K6uvcR3jRc7XkUjEna\nb5htS2vY3LQBt6Ede0YrW+UWXkmYQbalhbefm41fZ0A/aDJdW75h5dy5XDngRFqyW3ht22v0jurN\nxPSJTLt1INU729m5oo6SNY3sWP7jfe/VWhWm2FAiYkJJLYjCHBtKRGwoplgDPo+f1fO/ZENjMV59\nGa+ldXP+Eh1lqYn09S4istvF2pwU+iYuZVldHC1FEn1ECPGuLrZZEnGGjsXkXkjE+xcQde0yzrln\nHAtejKShtARb5xd8+o8HuOjxWWh1ynr2Cj9GsdErHPV0dRWxbv1U2nZciCn0XE75U5+fhGmr6+bf\nsz7EbqglLLSItxOKub2tg0utXQF/VyiPuWcyRzuRqWwjQXRxxvz5aFISeeCKEGr97cw9Yy4JYf8d\nMfv9ku52Jx5XYEtkQ4SOkDDtfl8AFy0r47uPymiP3oxH5eazrE/JkhdxTtMcXMZkhjs7SXMUcWf2\na4yJexKzaOFV+y2YqyGzuZHotkHofRoiXC9xdtoPaMNj4IIPcZkK+OyZzVjqS7C1fczg06Yz7pKr\nDlNNK/zROFQbvfJlrMJRT0vLEkDQXjqYgrE/Hc27XR7efu1t7IZa4lUlvBNXzOmRfbnk0uV0XvAN\nXzX0xqXS82T4m3zRfj/rRToevY6Ov9yGTq3j2hcqcXuc3LfyPvzyx6aYiJhQopONRCcbCQ3X/VTJ\n+7xUffEp331YQWPkNnwaB86wLkaFj+D61FdIHNZCRsEWWvqXszijgKLtDp74/ho67RFcrX+O2F6x\nLB80iqaYYtxC0K2/kA/KB+DzuOC1k9B/ewdTpznRhqQSFjWYjV99Tltt9WGucYWjDUXRKxz1tLYt\nw2fPI9QYQ0pe5I/8XC4Xrz8zi07RTIa/idlppeTHFvC3KW/gjUzjhdfeZVtnIv+uP4+OajO9Usv4\ne9wirP4Q5teWcutMJwaDicsWe1jbuJa3d759UHlcdg8bvixl3oMLeO+Wj/lqQRg6nR2t1km838xM\nUchZ5m9xtujp+mwy/VaPwWT1EJVcweTen2PUVPF88x04vXpGuB5hmGcH5f2H0hZVgkvG0Kk9l++a\nsmHgRbDlfcLmTuXy6IuZaFpFhtHKunlzDldVKxylKDZ6haMal6uFrq7ttJdNp/eIxB+NqJ1OJ2+/\n+jwtThvxnlDeyypGHxLGrJNm4fb4uWjWfZxYU8b6uHRSM79iXa9INKEa/J0V9HWnUuXQcVLVeO45\nbQ7/eMPDynwtz/AMnd9VM6AzD4fJQ2R+EoNGjUFr0OPs9rBtYSm1K+sxoiZLKwgJTUQTqmarroE6\n4aXLlElz/r3onZKihankxuWwRjuL3eVRxCalMCz1ByJj1vGacwpPibu4X3M/vdyfsalzJb6s8xng\nKcPUmcPO9rEMd7USfsceKP0GVdl3pGxfRHZICxt2t9LZdAGmeGXapUIAxUavcFRTX/8JxSV3UrHk\nr5x967mY4wNLCjscDt5+7VUa2zvQdqewIu9jWvTtvDTp36woEry4rIRT61aQ6GvB2MtB4fBivJ1J\nJG6/kGhnLyTwkX41BqlngqsPbZ6daNbO5S+X+zD7TNzVfC3RjjCM/hB8+HFpQLgFoT07Go2kxuGn\nWt9Mua6EqphETo2fTUx0A2s2prEkxEF7xI/3nh1q8DIz0oMP+EhcSFxbCBOj/822lnz+7U+kK/ZP\nnLbeRWG1i1wxi8lXnQWDLwXA43BQ+ugl5GuWsCfmLHJveOP3agaFI4Qyj17huKDDsgafO4LIqD7/\nUfJ+v585739EY3s7bUKypuB1VALOa76W816uRXoECZo9JIX70KfEkt//a4wVo0ncPRM1WhzNG7D0\n+ZyMyAR21hZQpK9gqBiCd/RA7qsp5fasWbyqXs7w9qlEqb3EawWhKkm3ro3OsCb26LOY2y5p8/ox\n6xz0VzWQqXJxqftFfGY7JZ1GPoxrJdwdzlVtbrIdGh623sjp1rWsLWzhSU8FV0Z6uVj/Lp4YDW57\nLAPiihjXkMMXvna2ZKtIbdVS7PwToz+/ifDE/pA0AG1oKKZLXqP89dFk+j/D33Q7qviDL7WscOyj\njOgVjmpWfD+OtspocjOfo3BsMl3uLv716b/oLOlkY/RGKiMqybf34qTGM+mrTuctTzNhYesYbc1E\nq/WSnlBGeFsfQrtz8XZUYK1YjrNpAzqfD6Za+MY0A5cvlHSNlxM7puGXknkh7/FG1lr+kfUEvUq2\n0lL+HW+GFbLcPRinOwK18DDM6yQ7tIwBqh2E6m3MTTmVUbGLSNQU8ViDjoya3kx1aDhXvYiNzlu4\nQ+ZQiZkr275jQ78KSk2lXNM1nJQYPb6YtZhVHUgJdW2FrG3uQ3HEKcxY7SM0pIirMl+Ha76HEBMA\nC/7xKifb78EbO5Dwm745sg2kcFhRlkBQOOZxu9tYsXIYrdvPZvrVj7LHVsI9C+5hQMUAukJq6HLH\nE0kejfp2lvVJI44cXljfRarzx3MQXM5GSrwNfDAomeZwIyF+PS7HHBpZhdllZFzjOMKNHcSoLCQ3\nXUWeVPFM4pusjSgmpOYyKh1pCGCI0JDn9mH2duOI3MF01SI8YWou6fMPCtUbuUb1Ep926Fisuo6T\nauCJ9icAH08axzGmczpv+cpYRw6Xu3eyJnMttcZabq+/lIH2YTzdv5Rzwp8mROPE6Yhhc9WVFHn7\nMKbYyYbBjcyM2c3EafejUqnoarOx5a8nMDauFHnl14jUYUeieRR+B5TplQrHPJaOTQCYzYOocJRy\nxaIr6NXQi1Dh5dSmBPo3TKA8rJKlA/II0WTyytpWYpw+luu/4/PWZ/hX3Vu8Ufs6s7vm8XqGj3Wx\nsXSpo5DN3xHaZkWjOgWHsQ9rYtdj7Yqm0RNLY+LLVODh1oZLyXWk0mFajjcxBO+oSGSuDWtsDd2R\nxZygWUNZdAoz+j9Pkq+Ny+UrVLpUNJVkEaLqQ154KZFY+b79/1BVnciD3lo2yDyE8PNerJskayZR\nziieSpzNX1P+wcSiLhoWZOPzqdGFtNM38xW6Y+qxGAT9t0bwxR4Tt7z0Mis2bMQYZaAh+jTsXi32\nLx45so2k8IdAGdErHLVsWvsQ7V3vEhMxj7tqbsPcFknv+l6c7l/G2pZ72ZbiY/5wI0gNL63ZxWBb\nOmtMb/FudS+KIvLxisDywnq/m0xbBXm2UpKlkfLcsZSkxdFi0uDUCdxqJ6GOPfRr8pDd0UDfsCqy\na2cSh5q/p75KkS2ecbZoQoQfj0qNOwo6YyPZEjaKHFsl5xvuRRXq5r0dceRWDUWGh3C/6nW+CB3N\nFy0jWE8OdlUovbt349Ua2RWaSojfzime9ezK3kZdeD0AQkKElIwwexhvlLQ6Yniv/B6mlhhwx5RT\na2wj3Omg/8CB9EmMo3n21YyOrcZ77Xo0CXlHsqkUDhPKy1iFY56Otk24HGl8FvIRzd3NDGwbQ4xo\nwuocBFLNqt4eQrtqua1sI0NtZ7Az5gv+UT+ejohINHE6Bnrayemqp4lQ1oblUhLeCzTgjQwjRG0j\nrb0VrTcGe0gYFQn5rMrVsUpKki0tjAjbwcV78nio5nq+iVhLebgRqzGTcBGBQQqkTZDvc+ONamGZ\n9lSydkUyZFcKrZpoJti+YY8+j8/q+7I1PBOXRs8T9m6MbXXslKWM8Zv4PGkKi3SjuOxbKy19M7Gx\nnW5VF7YQP9+qtDS4vVwa3cy01FmU1t1GSmc2sbn1rPbmwubNZKadQZEtgxExtbR+9iwJf375SDeX\nwhFEGdHV3/ZzAAAgAElEQVQrHJV43T6WLh2AzdWP+y3bGKk5i6Q9MFPO5/uWv1NqrKQzcTNXOvoS\n60ynW93FlZ1u2rRRhOeqmVa3hTNd3xPV0MISzf1UR+p4u28YqkYHotWNT6gxervI6y6ll62WeOJo\nNntY3VdHVdpJOPRmtD43hW0WBnYZ8ag0bDer2GFS41MJNH4fkbIdt0pDpwh8xDWs1cu43e3oalT4\n7Cv5MsJMuSGL+9e8wbDmXQCUxyVSkmggMbQ/b4TnURoWw7llS4lOV5FWXUVGRTXtpk4euljNyDAP\nU6O8FDX1RfX9dSwrDKc8u5MxO3aSrlWT47eTV/cOmWEWvDfuICw2+kg2mcJhQBnRKxzTlG8vQq2z\ns8VTT2xIHJl7HERgx2G7EI9fR1a4gwn2sTgiytFY+/Koo47m0FTikhycv3ML5zevpnG3gyV97qVL\no+LjMUYMPhePr3yYGIubz6NHszG2F1vM/dlkHkiOrYxxrSu46cMWEi2fMXvaSRTlnUxxVBxb4kIR\nfg8GVwPhHdsZtr2S07M2EJXcSdU3yVS3DmdTv7FUZMezblQcvdsdpG0wsUfmMt7ShT8qnBcSZ7Ar\nO4vEVB191u2gwb6dGdp+LFL7+Tj7ZIY1FrExLZWQXDW9HVpmbJvLu/3qiVMZGR6/ndoRbzB67VWs\nz41jWa6WM7esIKx3Dpu2xdI7vJ7Kj16m1w33HelmUzhCHFTRCyFSgbeBeEACr0kpZwkhooCPgAyg\nEjhXStkRjHM3cCXgA26SUi4+LNIrHLdU7lqPOgE2dTdxprUfbd5QojQWipwDiDPYGCjiacr+iPQt\nt7PQ1cjakGRi9RZO372K6ZUVNFbb2Dz4Vjw6PR+cCBZjKFHlH1B9YgKF5lVMl4tQN3UhG1zU6VMp\nNWTRlpSAX3xCdVQ4l85bTmvCbjYOHYrf6yGsehceYUfnF2RPqMOcaqN03WTs9alEuFZz0ooiopY6\nKRp4FksGDKXcUIDWK4lJS8TL2cQ4iljsSyCkVgdh0eCowOH8mhN05xIpJd/H55Nga6OdcDbrJePU\nE8l1z+Gzbhs4+zA8dT3hfsGEbVfz1aBIHFot9dZumh3htJNMbOOHtNbcRExqxJFuOoUjwKHMuvEC\nf5FSFgAjgOuFEAXAXcC3Uspc4NvgNUG/mUAhMBl4SQih7Hem8Jvhdnrp6NgOQKgvjNgGNaj89Oo8\nB7tPUBjZTk3f50nYcQ02n5d3/O1o8TLKtZ3CxmKsVa2sGX4T3SEm5gzYRHV8CsmW+dwXt4XeA7ZQ\nnh6GLcPNySOW8ZdJr3GH+hVOa1pIlyaUeUkX0qE3sTIvlWYJJyxbhkaosWX2Qa2NJO2kFszpNpZt\nOw9v5VkMjiviUuN6sto6cflUpO76gpHLt6OyeQnLDmf2SBOPzUijetIE7k6I5O9Sz8TQMNRJ0xHu\nJlb6NhCtEsyw6XHqQnFp9Gikj2J/DObGk3FKQat+N0sqT8SUvo7TEp/D6O9ibUYhZfWNRKWks1vm\nEaWpYdeHc/gjmGoVfn8OquillA1Syk3B8y6gGEgGpgGzg8FmA9OD59OAD6WULillBVAKKBN5FX4z\nKre14orZRotHcHmthRJyaI6IotWtIS+2nsb+r5C46Q7UHiPvdC2lOjSF5LB2dLYlZO+2s3r4Tbg1\n0SzMfZNdWcMweFp5KGIOWrUHw7ZrEN++xGdLzyd1h49IbKSfUs6MCd9zo/NdOtRqVsafjTpMj8Wk\nZnNCBIbKIrTSQfap9cRmddC6J5eUXcNJ0W4lvngdLSvMZPlaiBvdSXbmWSzTxDOis5Z3nr6Oh75+\ng0HtpXwfI7h3gIHJ48P5y8gwnLlZpPf6Eyd1b+e7ER6iTcWcFl7MUHUVDrSU+mMptvclp24SK7rV\nZEWUsLxkChFJ23jadSc+kw6AkNgY1pX68GpMxLfNoWpH2xFuPYUjwS+aRy+EyAAGAmuBeCllQ9Cr\nkYBpBwKdQE2PaLVBt33TuloIsUEIsaGlpeUXiq1wPFOyoZ4Qcy1dLqjyD8ePigmWbCzaZkSf90lb\nfy+hzhhWtC3ke10SGuGjt+UjJuzsx7phd6PSxNBt2Mg24/X4dAn8Sf1vKjoyeXbNjaxsSaSX38AI\nVTovOW6iaPUJGCr0iAQbA6es4xrTAsp0WupiRnJJ5kaGxVQzILKc0bmfExVVS3Vxf4obRtAYu50G\nxx5qu5PoHCupuFRPtjyHOZ5UfH4fM3Z9wc233kdSUiVzSq5i/aapzNlyI5fXfII1tI1/9g7h+pPS\n+HrKVUzcvQWHzkKELZUpHSpmf/UQZ5Uvo10a2Gw9iZDyP1GBFenppHzjhYSGtnCb4V5azeGUOdx4\nvBJr2kSy9GvZPPcHfD7/wStZ4ZjikBW9EMIIzAVukVJae/rJwP/BX/SfUEr5mpRyiJRySGxs7C+J\nqnAc47R5+K7lKyI1XlIsfmp8edSZzaTZdGTmrSZj8x1IVzhLm75ku6uZakMaI+16+tjvojTvEsJ1\nnegSP+bV8EGoMnT0kkUY2iys2jKeDGcT9tblNLsbGeDNYUHWSB6S5/HvsnNp/jaBTouBIcOXMDpm\nK3NVvXnDdCUdQxLxn2HHnwSJS1Mp+FiFqa0Qc7ubloQoVpx4AktSzqJy19nM70zhO7yMbdvBjvE3\ncu+mcGr2TOQhzYMscl+JxTKUvO1ZvPDNfOauuYUxVdvZHG9m3pDxWHwaVmVlY/fnUdzvTKaVrmD2\nlw+R42qkxpXD4s13UZBRRElTKPVrriJcWhmZtwgPWjR6PcX2DISQpHTPp2hF/ZFuRoXfmUNS9EII\nLQEl/56U8tOgc5MQIjHonwg0B93rgNQe0VOCbgoKv5o9mxqpSl2ESsCuzj5ofX4S/AnI+PUklp9F\nqxuW1H1Aq7OEr7JPRye9TKxaSGb5XMarH6YpejUPOs4iobcFtzaUk20LyTDVMHnYPLLSdyMGTWCr\nejdmqeVPGy1IvZq1g8eSHAbOyji61/fhiuyvyTJV8Eb3IFoiXWxt6ctdq+/lRnE3RX2uw+iNRh2T\nzaD+X5Oh2klORwjdmgje8YcSJWwkpXgwWL+n0vYJsTXLGLzya2Sxl92WYdTpvSyPCudr1zhGVW7h\nyY1vEyK1LBp9CgVVS6kLt2CLGM3ScRexOyaN5xc+zZSWVVh9Jp5Ydzv9+n+LpSqPzvoBJISUk5BY\nhsscRvHOSsiZQN/wb9i0cA9ej+9IN6XC78hBFb0QQgD/BoqllM/08JoPXBo8vxT4vIf7TCGEXgiR\nCeQC6347kRWOZ77YthCDsQ0podk2iGajifMtNSS0jqXB62J5w8fYfXXMHTOTbqeOs3d9Q2H5YjJ7\nf8qmyBj+6ZlK7+Q9NMRlUuDayqp1Q6jYlI+Obk4q+I7C9Eeoy9vDVlHPWYQxwV1Cm9nEDSPuQ99H\nTYH1Bswrb2FiZRs6r5ZH197OK/7riVP56GWz0+2TqPR2cpxphG18nAH2GzDpRrLQlozw+rl521wG\nbttCTGsTHXGx7OjXl/UjhrKndwhdkSU4dQ10aMLJylnL4D4bmeyayytb/oneL/hi3DQGeGvReoow\nUoh+7CW0FE7n+lXzuKBuHlZfGC+XXE5uwUq61l2BlJCVvQlbmIrO5ia6c2cQIttJcK2keFXDwStb\n4ZjhUEb0o4GLgZOFEFuCxxTgMWCiEGIPMCF4jZRyJ/AxUAQsAq6XUirDB4VfjaPLzXL/QtKFio6O\nJHRO0OuMGFSZONR21rSsxO+roTR7ICmbGzC67aSKVayZITBHhvCC90x6R+1BX6DDj5qr5y/g2bmv\nclrSlYzv/y1b605A2syMyFrBq4ZuJJI7TRHc63sMjy+KiM1/Qy3VbDJsRuv1c67Fickn8O2wU2+P\nZpNaz3MRdh4OEVyLncuwMZ1urle56NRJTnbvwBLZQeKpA7j8zkv5v9FO7uZl/mz8mtN8Tk5ZuIi8\nskpmD53Cs+HX84lpKI8Nnolev5vrdnxAlxb+PXYUE2MGMIlOPI4wPhtzKmuHX8q5G37g3Nr5NPrM\nzGoroNDcgadmBGqVh5zeAaVe1KJDmtMZFLWETYur8HkVW/3xgvJlrMJRw6JvV3NH7TU8YHBTVTeO\nBnsmFwkH0Z0TWNFRSb3lI5yGaAbsrOH6k/9CsuZrTMmr+KJpNx+7b+FVYzxThi3jGfU9GMtbeOGV\nR8nLmYQqfRQ/aHazR9SQ0aWmLSqZWfYknsyxMaI0AYfsBqlBpw7h5kEGNkQJohxWsndXM6rExNbQ\nUKq0fkI9dhIsRTg1KkzJLgxmcHoMnGhfwyPDbiDa38GiHbdhdAVfcak0MPhyOOkeMETRPGsWbS+/\nQuv0Gdwx4Qwq1XoA+jl2MKy5mHJXBkvzhnJa1W5u3abGrIujwtHOOl84Xq+D1PZyvoyG1aYsTtCW\nco0rDufEv+FX+dk6pxfuiHDumTYSvr6fD1r/Sf/zT6Fg9E/32FU4elC+jFU45vi8bB4qrRqjPwSr\nJRG9yYepfRiNnk4arAvxqQ2csXY9Dw+/BCGcyJQNvNtcSqv3LBraJZecNIfHVA9gtregLe7guZOv\n5o2bxzNv7qewfQszNm5CbeumS6enbMiZTH/0r/gqrHR+X0NN6S621c4h1hPFmTkGdhkyqU2IIuPb\nNxluDWF7dAqfJGeyJr4AkbSeNNMK/t60h2FOF7fn3U5naCT/rHoNY58ZYEqByEzIPhkMUf8pX+xN\nNyEdTnjrLT6qq8F4yy2sKdmMV/wTQ7KLNV2PkNtUzYL0PMZYnySpbCiFoYPpcBSz3BSDmhRGygiq\nPF2sEekkhu7k9PVTcQ2fR1I/B9UrJWtishiu1jMk9hs2L++jKPrjBEXRKxwV2LtdbOYHCm2RVLgS\nkUJymr4JjSeCIusq/H4rI0vr2ZGQyrr4voRHfsuc1iI07rHUdY4lbfTrPKq6F7s/lKfeepoOXyKP\n553Bra/OY2JbESNXr0afk0PrhKlUfvAJ16/+kKrn9WTffCfxOWbi/IXol0fg/OAdHN910M+9gmGV\n9Qi35MVpw1gy7HTcXh2qNid3t1r4U9cufNLPjVkzmJM0lTPMTk45+eMDllEIQfxdd6LPzaXp8cex\nX3ghBf36oRn/ZzbaP+K6rMe4z/s4RoeNvxXczEfuW9nWkcCg0Hwste+z2SSI7rRwqn8mb0UKVnvT\nSPbryLcZiMqpp2l1Ji9+9yrDCqeRtXMh31RfQnOVlbh05WvZYx1lPXqFo4LF65Zj01uYYu+iuTmL\n2IgmompPpdVnocW6GrMnnDi6eXzcCQiVk5fc8+lkFHOj7+L+U+G25Gexekw89cIT9N++h5DUEJJU\nnXhrbYxcsQJ9bi5pb8/mSU1vnp18Iz/01eN5ZTaVD9yH9PsRKhV9T5rE+f+cReS4DIZW1GLwewkb\n7yI/cywTG7rJ796DN8/Mh/0n807hbbx4zg/MS7uFEaYwXuo//JDLaj5rBjlLvyX+7ruQDgfdzz5P\n3y8iiSzqxz3yQbR6B36h4sbCv2KMeYMWrYfR8TOIdNgJdVoJ7XyN0dZaanxRbESHa8uJaDUezNnd\n6Cu72RSXhdrXRYZhO0XKS9njAsVGr3BUcMmrt7Jdt5yHm2LZ4BxJP5OdYU1T2dqxlBLLVk4sqeXV\nU018zS1ERHcSUmCm2hAwS2ilm/5dZVxa2kzh668ggPaCfAxpWaiWLKYjOpERn77Pgmonf5mzlYen\n96FvRhtL77qMU9d4sA7KwXrJFDbbd6Od9w2T1nvpSoiAk3vTx7UAo8bzHzkXJ0/h8V43U+QLAeCU\nmAie652GSfu//XmWUtL19dc0/u0BhEZD51WnUmL6gucjbqeGDPK7y3hn87/wO+7DqV/OBXkFjPlh\nHoktHXyUdC5OvYFzdSWMGPoOnc4wKhZks22GineLVlOnGsnilhu47PExqHpsaq5w9KDY6BWOGWo6\nHZSxhZyuKHZ4+mIyNZLWOBaJk9LOrZh9qdREl/GtcRrSKWju35vsrm5ure3AlPEMsY52atddRNrX\n7+ExRRA+cRIxixfj31OKZchIboiZSPzbO6hutzM0I5ILhqWhVqWjefI9vnzqJk5eWErKLc+RAvhV\nAvUZpzD0r4+iCjOw6/sleDZ9SLRRED9yGqf0msQkTQiVDjd6lSApRPeryi6EIGLSJPSZmVRddjmR\nH65g+H1/Q7/rbr7MmMFi42mcNfhGHtlRTJ7lBKZZbDw/41bGLXyTcS0b+SRhIht9sfSv6E1Un+00\nai10VLppTBlBQuUqXF1X0FRhJTHb9Ns0lsIfEmVEr/CH5+bPlrLUejNX1KXT6R5Cn5wVjNjxf9Q5\nyljZtJxBNT7ummqmyXImquwQRnfv4I6m/rQNfBZPVDF7lt1MZsn3ZO7cRtpbbxI2YkRgcS+fD6HR\nMHdjLe+sqSI71shfT8/HbPivcpZSUlNThHPFKqJ1JsJHjEKXmnoAaQ8ftnXrqL7sciImT8Z35aWs\nWHADFYPSeVF1Kzqvj/d+cJHolJw9wkuTysDZi75jlyqSUkMi5xk3cPKo92jcGEO5ZRJtkduYZVvG\nPMujxI2dzKizco5ImRR+HcqesQrHBA0uNxU1awHQuVPQaV0Mro0ADOyxFKHTFLIlvplG2zRkuIZT\nmlcw2p6EKmU5/tgd1O4ah67DR+bObURdcQVhI0YAgZGy0AT+0J41OIV514/m6XP7/0jJ7w2XllZI\n3oVXE33OeUdMyQOEDRtG7E03Yv3qK0wVNYyf8S9SVzTxZzkLt0bNVcNDkQJe36RBhmlY3a8XI11h\nqKRktSMHZ5sZU2Y3rs4WLLoQfFIQZ9xOxbbWI1Ymhd8HRdEr/KF5u7YVr9xJUnc8LSSQaSohwjoI\nl3TQ5KxF5RA83+/P4FMzxLCbKoYy3guNvT7E2p6Cbed0hm+eiz4/n9hbbj7SxfnVRF91FaH9+9P4\n0ENEh5s45ZIXSV9Zy5+ZRadOxSUjDER4JNfuslKbl8nOOC+DnZJKfzSbmodiiHaS4Cqnt2sC9cZs\nItmMpcmOrdN1pIumcBhRFL3CHxa338+CHY20hJUy0JILUlDgqOBR/xAu9tt4Of0KnswdhM8TQVie\nYEdTBvfZJXX9X8LnV9H6w7VkNnyN3u8k+ZmnUel+nb38j4DQaEh6/DGkx0PDPfcSn5XDhPOeJ3fr\nLq72vUB5uJqn8kM4vUFNvK2LbcMzUakkIX4vSxpGAmDK6sJubaFcHUWephStcFC8TVlB9lhGUfSH\ngJSSsrIyVq9ezfr162lubj54JIVfzbL2Lkx1NXjVLvTuePRuGze23cEX+An3dDCwuw1j/B5cYxPw\nNPq4V61F1fdNvOE1hGy6Bn+ngcw935Ay6zn0mZlHuji/GbqMDOL/7w5sq1bR8cEHJPcuYOT4FxjS\ntoYJtkXMT9GxI1LLI9vBGhZBS043OS5JrS+GTXWDMOb4iKjYiLD0Qo2PWG0Rq35Q1h08llFm3RyE\n5uZmPv30UxobG3/knpGRwZgxY8jOziaw7lsAu93Ohg0bqK2txWQyMXLkSKKiovZNVuEQmNdsIbJr\nN1pPFkJAkYikQUbwlNRS1jCfCNJZNe1MjC4bdzkc5A6YjS26GG/xBdRXFzJgyz9IfOQ+wkYc+hz2\nowXzzJl0fbuU5ieexDhqFBn9hmBzPMjFXXdT5OjLowWJvL/ayzkVXXxc0Ie0th2EdYfx+Z5J3D/2\nCdypI9nZnsPYGEFMWBnb6gYjpfzRvaxw7HDcKvqutlZCwsPR6vQ/G6aqqor3338fjUbD9OnT6dWr\nF06nk6KiItasWcO7775LYmIi/fv3JzQ0lOrqarZt24bH4yE2Npby8nK2bt3KzJkzycrK+h1Ld/Rj\n9/lZWtfOAFlOL0tv7E7JCvpxMRrM3WUITSKfDvbj15m5vHUFmaNfpkv4Wbn9EiZVnEDIzpeJvCGP\nqDPPO9JFOSwIIUh89BHKz5hG3Z13kv7OOxQOPxvr0i+5Tvcsf1U9wSu5eqbU2liaaENmRWDb6cPm\nTmJrax+MCTaaW5so8RaQrt+JqUNSXN9JQbL5SBftD4V0u+mYMwfbqtWojGGYZ8zAMHz4UdchHpeK\nvnTDWj5/8mGEUGFOTCI2PZPYtAwSc3uR1CsfrU5PU1MT77//PkajkYsvvhiz2YyUEk1DLUMt2xk4\nuJDdLg8rd5WzaNEiADQaDX379mXkyJHExcXR2dnJu+++y3vvvcf5559PTo4yhe1Q+bqtk+gWD90h\nLeid8ZRJPVrh41yMbO3egU4aKMqaQLS/g6GJz1Hb3IeXis/kWVsiYsvT+K+qIGPm90e6GIcVbXw8\niQ8+SN0tt9Bw190kPfUkg8c8g33FKMa3L+TL5NM4s9bD+FobH+Wmk1u9nuYuA5+XTeb6yMV0+uOY\nqx3Pxf55aIFVm5sURd8Dn8VCzTXX4ti6FV1mJj6LBev8LwgbO5bEBx9Am3T0rBN0TCt6R5eV5opy\nutpasFk6cHR10lJVSU3RdmJS08kZNorW6gqaynaz+4cVAKg0WhJT4oh1F3OZsY5YUxKer4qps/VB\nNnrYYVrN9vAEoJg+3aVc3bGWrmgzZRl6unX9GTjiCiJNcQCYTCYuv/xyZs+ezYcffsh5551Hbm7u\nEayRo4d59S30amhH74jD7RdsFHmM0LgxeD00O6vpSMrCFRHPJP983tt2KcubBnK7X0tn81e4b2qg\n/5Bb0Omij3QxDjsRk0/h/9k77+i4qmv/f+6d3kcz0qj3ahXbwr3bGNuYbjCdBEiBQEJISCPJg4T8\nUh6BQAKPJCS/NJppIVRjgw3uttzkItmS1aVRHU3v7d7fHyIvL78XEkIsFAOftbSW1517rvY+nvnq\nzD5775P86lcYu/8nKLOycNz5DQqLruNqNrAvsoT/nKbjoUMyu/PiKPOMJLpSOEMF9OeIFPRoGK2I\n8ZLibMyKUVradXDBVHv070FyZIT+z3yGZP8A+Q8+gHntWqR4HN/TTzP2s4fovuBCsm7/Itb16xEN\nhqk29x9yRhdM+WI+vrr9q6yvWs/K4pUkAiEGWo8x0HqcgRPH8Q7/9QaTSqvD4simtHE2cy68FJ1p\nopnTq6Nebm1up2Ckj+LBLhq6j6KNKEGOUWIMYs+L88vpV7PXOgOb6KaEbnIZwsEoRVI/RWIvkbge\nrTqKN2bl7barWb8sg+WNV6NQ6AiFQjz++OOMjo5SUVHBJZdcgtFoPC1z92EkkEpTv/Mon9qyHQQ3\nAykjW2ngpwodWYE+9rn+ROt1jWw0rKOkuZmRMQdfkJTYpf0kqlpZtDCburoHEATFVLvygSDLMqM/\n/BHexx8n89ZbMN20nj17V/B25HJ+rV/Pd45HqA6muOUsBcamDuIpFTlGN5f3gSLxNs7CGRRGBfam\nF/Hr+1aecWGJ0020tRXnF25DCgQo+PnPMcyb+1evJ5yDjNx9N+E9exC0WjQVFajy8lBmZ6Otqca8\ndi2iXv+uz09JKbb0beHZU88yFBpiReEKvjH3G+/L1vdaMHVGC/3RgUM88Me7UA2FKPAYMQUnkojU\nOj0F0+rIq64lp7wSU2YmrbEOjgUG8MSDqEhhUBswKmwMhHN4uV/JsiNdLHT24FMVElXlIDAhEnHB\nT1tjEFP5YRayA6vgB0CSBXwJK6NiDsdVM3lj/BxqtX18VvcgopTm3v23c3ZpJ99e/yW02hwSiQT7\n9+9n+/btWCwWbrjhho/F/l14dsTDl1v6uOqtlzGqZLbES9EoRB5Ll7DXtZVI0W5+seRzuJOZJN8K\ncRFKKq27CZHmiitrKCu9FkH4aCWUyZLE8N1343/+j2R96XaGFh3H493PHZ57SKhNvLgL3spWskWx\nk75gmFH/XG5Uv8n0pjFC89U45QKC7iV84QdLybPqptqdD5zwnj1Ejx0jNe7G99xzKDIyKPz5I2hr\na//m/bIsEz1yhOCmzcQ7OkiOjJAaHUUKhxFMFhz/5/vYzj3nr8aMhkd5pfsVnmt/jqHwEEXGIhr1\ndVSay7l+0c3vy+6PRK8bTXuQ23uv46D7DfrVCfZkOwgY7Jhy5qBQmTANCgjjTvzxcQipUcaKUCUl\ndAkZaxyyEmCTo9yIAGTjUpsxRpxkjm7HKPfin59AVTfMDOsQkqSgdWwaL/nW0mmvpy+rAhBR+OIk\nMrUUp4ao397BvefcxdfV3+cbs/+L7+2/g+BTv+GBG76OWq1m8eLFFBQU8OSTT/LEE09www03oNVq\np3oa/+14adjF0oEutMkwI4psBsnkUkOStD/FSLIZ69wYvUI5c7oDHBdA1ozijotceeXVlJdNm2rz\npwRBFMm95x7kRALXT3+GNXkprjoPX8nv5yuh+fy43MfdHRDPreJQfACTKsgesYQGtYm6yBt0GUqw\nqMc55vR/5IReisUYvOMrpH0+BJUK0+rVZH/rmyjt7x76EwQBfWMj+sZGAIa7/Ox6pp34sSNUdT6H\n/KXbOHL+Tcy963N0de/n5S2/xznWg8sSp6S6iv9wX0feyWw06BgTnRPn+E0iZ7TQe5195Al21jjW\n02p/iMaQjp5EFu194wwg0S+CRyGQFOLA/6j8EwHdxI81EaUsOI5STiCpo5xj30NWSTdURLAoQNUr\nkNpdSk/sZoxhkVtbfokQf50eWx4+ewaSUiR73E3NUDciMufs3snD13+Kmyof5e5ZD3LX/q9x/1O/\n447z1qO02SgpKeGKK65gw4YNPPbYY6xbt46srKwpmsF/P3zJFNt9EX7ccYROUaA9ZSeDIOtiNtyx\ncTLqRjimmQNAwhXHIqWxyV2sWr2aadM+miL/ZwSFgrwf/hA5kST4yAtYrrFiv2g/NYMmNhdWMcef\n4KJhGwdMI8j2XewcXMtJG1S3e8ls9ODTD9PV7Yb6nKl25QNDlmVGf/AD0j4fhb/+FYZ58xD+icK6\ndFriwKs9HN7Uh8koYV9s5CdX3MDqDa+x8LVf0RZ5itKCYW5NpehUOTjmXMQ8z0psmmwGY30I/naC\nuuNr/8cAACAASURBVDhw9eQ5yRku9Ee9Ib4lWIkIKrz+20kITHgky1jlOGok7KiQpQSySsAYCZHp\nHaPSO0BJYJhBYxbbyxo5np1DMqVCKSZJ2SWmq81ktwdxjpey5s2D5LoHUdp/T3vVpzgy88vUt/6a\nhrEO3DGZVms+zYYSdtfVEFbp+XTrq9z1yG95bM0azl2zka/OeYTvD3+Trvt/w71XnYt1egOVlZVc\neeWVvPDCCzzyyCNotVp0Oh0Wi4X58+dTU1Mz1VM7ZWwc95OWZYZ8Klx2E73JLM4x91IayKc51U5W\ng5cdqeXkxdOcCic4K97B2kvXMv+dHjYfdQSlkvz7fowzmYSntuITd3NjRRZ3Kqbxh1wViz0SN6Yc\nPG7qRCmkOGhTcf5xI42NLbypsuE62gUX1U21Gx8IUjjM8D33EHj5Few334xxyZL3PDaZiNO6fT/7\nXtxO1DOAOjnMYL6a79d+Hjmt4Ovz29CPxmGbzKMXX8JrwiJCso4brQaMcpKd8kbeTmqIyHZ06QQr\nJ9FPOMOFPqYy069SkCnJlKdFUmKCETFFUFATkkVW9jczd6SVSrEfY46faLZIsFJFyiKgtIiUW7pY\nYtxMn1zI656LaBuu4Mj4DI64piMDBjFNy4IFzBjrYfrgZvSuB+gv+xzNM24F35ssbHmD5f5uusx5\n/LrhQo5mVXBqWi2373yMW1/byGZ5JjXnHeIrjge5P+NOLmju5oVQCMfCBVRXV3Pbbbdx/PhxPB4P\nsViMoaEhnn76ac4//3zmzJkz1dM7Jbw86uPC8Z1ECHE0XY6eGAWWEghAqOANjFoNfZQxxxnDI8C6\nheUfi/z/h6BSkf/gA/Te9EksTx1h9nfCNLQfo6V6Bj9NwV2tWYie6czOaebw8HTG9BU0eA6CfSlC\n0D3V5n8gJHp7Gfj8F0h0d5P5xdvIvOWW9zYuGmHP88/xdEc3TbWzGb94NcpUkpJkD32mErSpKC80\nfZPCeB6dC69HSFVzlaznkwikkNgipLhX5+ZgbDZuowZMAkXJ2CR7e4YL/ZGAm5t7nyNsMGDIyCCi\nd2BVpSnsGyB36CjijBCRyyGZIeEFII2YTCFGVcTDKg77p/GGdCFtllqUNplaRZq6LImuZIrhcIKQ\nJ8ExScHxvHrIq0cUI2gVXhriYyxgDb9ar8GUGEGM51GfHiUnHGKL0MDzS2s4rzXEmo1HGAtkUHzl\nAP8n8S0eTn6R64+EeDIYxLZmNUajkQULFvy3P+l0mg0bNrBp0ybKysqw/50Y4YeR8USKnd4g97bt\nYJd6Jv1SBjeqtzPfezbepB9r3Sm2+lchW0WGRwJkJ91ce8Unptrsf0tEtZqinz1K24WLEB/cwYra\nUVqrZrApR+SONok13rkM1T/KvuE5vFE6g+l9ezFmSMQUASRJQhQ/vJvZid5eeq+aCJUU/fY3GP7H\nZ/DvcarpMK8++iCvzlvJiRXryPL5uXDfVjpm5dNiakAWBErGZR5L/4ArUkqssoBHljmRSPOqLcGh\naAKXJCJGbdQisiLhwxg4RIahA7hsEj0+w4W+VNNKY+U6xl0ncQ11Iav7qND3YjkrTvQqGSkt4B/N\nINiiITKmIx09i5R6IZtnjtJWnE9cm48uFmF2WxOm8CFyQjZqRrXcJNjQ2ar4cdUoTY5c5IgFk8dD\n3ngEb9hKk2jgoCNGvOY8Utl/vXGV4few79RKbqpqoix/FHNrBM9DapQ3+bjb8T0eF6/lzl1DPKDX\nY1yy+K/GKhQKLr74Yh566CF27NjBunXrPsjpnHK2uP3IcppOZw57bTXYhBB6h4FpTh3tOW+gNqbY\n6V6BKSExFkhzTaH6I58K+PdQWiyo7z6f5B0vsaKrh72nxtlfk8kzBSKf7MvkT5pB7Bo3B2wFBI7r\nKJzu4aRaSUeXh+rKzKk2f1KQ02kGvz6Ryljy9AbUJSX/cIxvLMLrj/yBgVObeGnNJ+kqLmf1cCt3\n/N97eeL2izi7v4oHhkI8kynyhCtId0rmeTWsSvYRkyIcVBXjD+uxSQEqdGEiJQW05TkYTjm4or+U\nUnfbJHt9hgt9MD0DvaqChVm5+GYq8BZuIa2PkYpYsbQtxehcjDEa4TW9k53zK5BEFQOZWcTUxdhC\nfua3N1M22o0mDYh5xMU4m2uOsFU5REGqmlXDVdzW42PIksUf8wo4WlRHRKlAORZB0eZFecRDtZji\n3HgYZ8Fv8IdzaC+5kt7ZBTS3V7F0tIX8BT4cUQWZT+sYWKPihoLHaUov5pY/KbhbaaByQeNf+WQy\nmTjrrLM4cOAAq1at+kilYG73BFkcaKFNLMePns8rNtFpXIcASBWbCY3rGbIWYxsJk5Ilrj17+lSb\n/G9P1uz1tK17AeszYZYfPMaB6rN5tsTAp/rCpL21zM87yMbYKlyylZxQFyetmTQ3naC6culUmz4p\nBN94g9ixY+Td+5//UOTTKYn9r3Sz/6UNpKJN7FhzPV3F5VzWvo9lW55k4yW3cd2hGmyJBH3SCDv7\nomiUJmymIMPhTF52VCO6YghqEanGyFB2HkOCgCkaJs8ziMto5MEaGxW+Mi6aZL/PaKG3eDu5buVZ\nfF1+iCpFO2FvLq6uNXjd+cSRSKqOk9KINBdV0Z1TQlKpIs/jZOHIK6zzNFGeHqSAUdqDWbzqnYUh\nz850aSY50lJWJmagFMArxLA5k8xzhtAoBVICIKUYTgR4OB1gn76QF6Q0F7ZdQ719LzP3PcLbVVfy\no4bbeTa8nEb1f3FDaIjZuhCOUwKHUxnMK9mFY1qAc16vpni7h/kVmaytz2V5dRaCIDBr1iyampo4\nfvz4X4V2PsxIsswOb4jLOw/ztHk5uaKfBQoX6oCMP+swSouX7UfWksxSEnBFqUwNUdfwcRnnP8Ji\nbiSxQk+qWU1d7wkqRpbQkatiWJugaGwRWTV/5LWeNbxRtoCrXW+BdR7Dvf1Tbfak4fnDY6iLizFf\n8PffO7Fwkk2PHqf36GukY00Mn7OOg6WVzD22m/LWoxTl3cjCoUq88RG2jG/iqKiiL/dCZgmjTI+N\n8LxgJDgGOkMKc2kKRfoU9XuHmNY3RkqjIJyRiyyKHK4po3DcCUzuH9YzWuhz1UEEUealyJXM72zH\nnczEJvkoUPWRnXYzbLLxi5orGNFnUTc+ijr4Ex4ebsYkGxnSOOgUijkeK8NvkNBKNhaHF+AWFOxV\ndfC4bjuaoR40Pi/u7BycBbWcKq1j7VCUdaMqijQF3I/AJinMfSozv8pQgrQOpSHNZW2vEdLpOTV9\nGsHdd7Ct5H4WhIr5Tl8LZw2M0mS0UVl0hG/5nmDb6Nlsjqd59qCTmYVWfnndLHIcDrKzs2lra/vI\nCH1rKIo7meLESA4xpZpGZRenTIUsdEmMz3yNuF/FPv0ihLSM5EmxrpCPwzbvAVFUYstcSnD9XqwP\nDbC0JUpHnpo/lCj4UtsMTmp/SaZynKa8Wj598mXEcgWRaGCqzZ4UEgMDRI8cwfG1ryIo3r1qOp2S\neP2Xx3Ge3E061oRh5QU8XTKdvJEBZinruShzIlnjbWU/WzI8jFQsxDOuwxiJU6caIikIWGUXhaLA\n/EQPJZsN6IIqMjyt9OZ2kpchY9FIxOpllppkkhEL8O1J9f2MFvp2fQzb+DGOZM4lW/dT6gQvBlmi\nVZfF/826lL7stYhpD9e07eL2vno2KMu5fOEPCCiVGAMjeCx2lKi4tjfBDT0JhHSCnrGtNFfspdE3\nh2RuOYmCCOq0jvJIgJyug7xdXM+WuhCfkX5KY3cjqwZWMiNt5U+pcfoCxzlkqecV0yrO6tvCSGYW\nYp0Nx77PcKDud9yVfwG3j+xiZncHTTMzmFOyC5fHxiNVcbZUXMw9r7Ry8SO7eP5zC6msrGTPnj3E\nYrGPRFHVDm8IZJn+dAF2ZYASxnjbPo/F6R4CGT2M7shhZHYJgjtGfniQsy/42xWLH/O/ybSvYKxg\nIxqzSJ4ngTqZYkuOgTvbYoxGTNRntrErMR//uB59GmLyh/O0qeAbbwJgXrv2796354VOnCdaSEa2\noKuYxoP5degTSe7tMjMtJPJWZpT2VCenShrZk1XLlW2beCE6nUWqHtKymiavhQuN7WR4AhR1y9jd\ne9EqRgmel6Z0oQRqCMUFhjxK3AMVOCP5nDvJvp/RQt9YmMem5EYQFrCj4MvsTvaQEk0k9HOQFCay\nh3dgaz/BQGQFCoWC61LXcN2OiVQmAUhHukGbjSgq2W5p5ffWp1jdZ2LJYQNwkuICM26VFlkIszs7\nRGa4ghXtzUR6NDxZeDM/zTWiKkvzyVMqbnU62F52NgWd+/mjrYK2yAJKO57h8KzPUZHXi+3ADbTO\n/h0/T9Zxl99LeU+QjmoD1+W/yD27zTxYuZOGWy7gikf38oWnDvPA+RXs2rWL7u5uat+lDPvDxOFA\nmMqRHgbVVuaIPWQJUXLi2bhLH0eKqDnpqiFm0KHu9bDMvYui+g9n++HJwG6fCAskVhkwnBijcExF\nV76VTkMMwVfG9NxWto0s5rilHFPcQ0SrJJ2UUKg+XJk34d270VRW/N2uk66BIMe2diAlN5FWa/h1\n4zmEtQZ+cSCGVpL4fskfKRkxYbYuYneWhhtbt7JxqAKzEKUgKTI0HuP2ga0UDQ+jTiaRBAVdCzQo\n1ydRqmF0sIFU3xKc6X6eLXsLTH1UK0Yn3fczWuhdGXP54akWHla00KsvImCuR5OIkz04iq6rk1DY\nwUJPJzdK34XcXwEgCE/iEXXo+jNAaaNLGCGjpQm18ihXGCAlaYlo1OR5A9Qd7UQSBPyWTOLVhWyY\nfwCTpOccZzWLuuKEFGoGjRaOlbooUltY1j2bmbazSIZ8/Mlkx+icQY3hNXbNupAvnPod0/Zdw1tz\nn+HJ6Fq+Mvw4g1la+ks0rHHt55tPpvnP/5jPjy5t4AtPNbNzKA+NRkNHR8dHQuiPBiNkdo4hCYVk\nKqIoBSXLgr1Eqlpw7c3kcOnE4SELRk5SX2j774Z0H/OPUaszMZumE549jvbgMDO77HTlw0tFEqtG\nFpDT+CtE0jTl1LAoPMKwwYJ7yIOj+MOTeSMlEkQOHcJ65RV/976dz5wiFXuTVCLE1nOvZ9iezbeP\nR2jWt6HW3seNzpW4lD7uLrdz5aFt9AS0eNGzLBJlyaHHKB/3E9HAnhqBfdUi6roUlzuijMa1PN30\nKT45bOQcyy+xq7rxhTIpkPRYhcnvaHtGC33ZSJS2vSpWy0+TMJqImE1IijSDkTzciky+rt6Hx57N\ngHQh5YoX6Bd0PJahp7y5h8xgOwvbe3CotcRUaratvY4RWz4L9z0PyDjM9ajKIBYfwDTey+omF/OO\nw3ev9fN86TCf35nPQMkcrGNB6t86RMbF3YyXriOz5yI+Y7QQjcV5XV9CfWuY7IxTPLr+Wu578Aco\nTpzLsOYYe1UzqR1o4egMM3X5LTyWPJdbfvkad3/+08wrtfFfb3fz5fIyuru7p3qaJx1PMoUzliR3\nJIbClMYmxujVWSnL20gsqWG0zUbPJVWIvjhzuzZTfPHlU23yGYfdvoxA8BGSgosS98RhOzsytXy+\nbQZtKYESbT9Hsyu5wHsSsqGj5QSO4g9P5k28rQ05Hkc/6937f432Bhho3UUq1smhuedxpLicq3qi\nnEzvZHH6EVYGslApXmKv5T9Z0rIDXTTK4WQjeSmZL2/9AUF9jA0rzAxlLyCBDnVhB1dlN9MXzOZ+\n/3/wDc0JLsv8JgmUvM4qssbK6UqKKJST31vojBb6hWvOY+jAHvKnncfJAiet0lbK7CVcPVxK64sv\n0CUqOFltQMhczZ4BN7qAlml9B0GoYbhkDuOup4iqVTxy2dkEzf18viILS+71HH35cfaa+tkxr5Sr\nvJ9Hn1azS72NVwyb0WfoSBgU/HyVh+8PvMm+5BreWLiGgE/BZ40/R5FvImNwBberFYzH4hww1zFn\n1yEOn+fgzi9+k9ue+T1H5l7I/ekwx6f9kAtDr3BJ/rN82fM8V/ruIr5hN7eunMn1v93PqCqbgP8k\ngUAAs/nDu4I9FoxAWiYkGylmFIUgE9HaiOUcgJY6/Ao94QwL03q6QJIonj5zqk0+47Dbl9LT+zBS\n/ij6uIwxEmFQr8ejSeIO26m0d7MluhxlTwSAwf6hKbb49BI9egwA3Yx3T8lt3txGKrqTkaqz2D5z\nAfPHk8zcuYHotNfICDfyC7ERZBn1WAsZGg27g9XE1SK3NT9Da1kCLs5gYXYMX6fAjmSSS0uasXpS\nrGht5VPy1cgyjMUN/FR5JQaVGe2pI5Sm02TkFU26/2e00NvzMrn5578EJs5LkOVb8AyF6Y2Nk1db\nhHswTOOIicgIWMmdGGRYBYA6Dsem3wrA6laAckb2wghatJbb0cgyQneKvUYdKllA9C7nCv9yhgL9\nNOXuxek4xfdLInyrdxv74mdTbM3jh+lvc6fwY9T2LAzuWm5OqAkmJA6YZ7HstU3sWbWa+67/3H/b\nb4t6edZ0BVFZxXesv2St2MzrfWfxVYOaggwdu0YEpgP9/f3U19d/cBP7AXMsGMXRM4TTmMUS8QQA\nZ9kOI0gKhlutHCprBEFgkb8XhUpFbuVHtxfQ+8Vkmo5SacE8Y5TQfqgcGKW5upQdDiWWYC5lmb2k\nBxUMxU0AeMf9U2zx6SXWchxFVibK7Gxgogrd6XSi0+lwOBzEwknadj9HwGTixcUXUxCRWNS8B6fQ\nybJwGVuFRpKSiCkeI6bTMDSuo8NoZrVrGJWqmdS5hWSVdpAKZZE1/WUuAyz+JKHBMt7KFzjHeRhB\ngI3ueWQGOoCJjqNLrr2RORdNblUsvAehFwTht0zo6Jgsy/XvXPsu8FnA9c5t35JleeM7r30T+DSQ\nBr4oy/LmSbD7r0jG05zcM0zrzkE8Q2EArDYdWs0IoeARnA4PpVE9KZ+b5Td8hoJptcgSpJMSqWSa\nVFIiGU9xYrSN8aAHm5iJ3Bugv+UExsIGzJkFxANx/IMhRE8h8z2F+LrGeG36z7mrIMzNzqM4R2F9\nlZUHxj7DLcIzVBtuplLIZr1fzRNqHzvNC7j45Sfx2sopjbt5/uxzKXR1sdY4xpP561iQv4/1sR1s\no45Htx7n6rlF3Le5nUqD4UMv9EeDEeY0N7PV3IhdEcakiJKRsw/T0EKO+T20LJ+JMpKibHQAXVkl\nSpVqqk0+4xBFJTbbIpIF2xH3Rqnv9dFcDTsccFV/Ddac1wDo1U4IYSyamEpzTzvxzi60VdUIgoDX\n6+WJJ57A7Z7o61NbW0s2dqJSFxsv+DqCIFLtixF3bqPIqmGrMBcprcLtzeOipl/wmwXr2GKooygJ\nnzj+W04su4jyqmdI9SzhTf85LGx4kLzYOEND09kbqsfRdJKYvgZXXE9cb0ShCqM1Grn0zu/iKPlg\nzpJ+Lyv63wP/BTz2/11/UJbl+//nBUEQaoGrgDogD9giCEKVLMvp02Dr/yKdlji5e5gDr/YQCSSw\n2zScVWggM5hAJ0lENBls83aR2+dBVhu48PavUjb73ZuFVZD93/+WZZmX7m+mp/kXLP7uveRVTQht\nrNfPyWeO4x7OwXjsdl6u+B0/y+9k/WAmg6dk7FnN/CpWyVXqTcxPXM5yk5FYwMovLR7esq9gtfc5\nLtnXRYlriG/c8g2uOPRDMh2LeNJwLc8Kd9Bo6uH1k2o+tbye+2jHZyhiYGBgMqbv34ZT4RjLR0bB\nDFpRwp7Tj6BIouhqRJN4jajDjMkZxD/QR8X5F0+1uWcsdttSxsY2IsijlLgmMmqOWtV89dh0guk/\nYVIEOWXNp0JKk5yUT+zUIMsyiZ4eLJddRiqVYsOGDYTDYdZecAmxsJ8dO3ZwMp6gafVnGTJquKA9\nRJPdT52ooS+jAp2c5NfJRu4aeI0RhYWtulpsksi5wd2cqlpDdu0RBEmFcuhcDpek+foBF+PKDF4e\nK6Mi6caXThPMW8pFN38RW24+QY8bjV6PRm8gnZQmzqJWT+5paP8wf0qW5R2A5z0+72LgaVmW47Is\n9wCdwNx/MOZ94zwwwvan2tFFkyw2KlgsSZQZVTiWF5D52QbK7z6HT977MOsu+iYX5n4Oc4seWXpv\nJ2oJgsC5t3wJoy2TV396L5HAxFdZbYmFmV9fRN4VBpaa1Hyz5wtUuWbzp7wDxJQBKlz1mI3tvBLv\nY4dmF2pRZqleydUJNX5VBt3q2WyZlsus48dY0HqU+xtu4TMDf6RVmM6OnGmstB4jKQvs7hqnPMuA\nM21mZGSEePzDmduclmVcY27k1MT/iygIZOV1oHVX43dJtBfVg0KkwT+ElE6RV/XR7jn/r2CzT7Th\nFS0jKIRM7D4PcYVIQJ+HezyfMmsvp2xF6JIJECT4Nzh97nSQGhtDikTQlJVy6NAhxsbGOJ6q4Orn\nBnnDY+OceXM5lVvC4cJcFneN8Xq5xPz2XUSLKjEQ48l4IzOSQfKcbXx70WfRIHBBLIVsqELvEDEV\nH0PvXM1D9SHuDj6KPRlkpNjOJZeNkznnEJXn+5l7ZSmKRJjut52IgzKp1iBDG7t59q49vPVfRyd9\nDv6VRNnbBEE4JgjCbwVByHjnWj7wP5efzneuTQr5VTaWFepZvSKfyuumkfuteWTffhaWc0vRlltR\nmDVo8y2UXbsI+7pqYm0eQrsH//GD30FrNHLRHd8kGvDz4r3fIxl7JwdfEKhdOIe6r62iqtjKve4b\nOd/7CbZlNxEWJerGZ+MwK3hB/TbHhM3YlCKrZCvVeDlimY5bbyUtwmW738LqHECUJRRyio32s7kw\n+DZ51lEe3XaC5VVZnPLKJCSB4eHhyZrGKeVkKEpdSwu91jyyZC/WjHG0uiAZzpXI7i6aKhYgptMs\njE74n1f1cXz+/aLV5GA0VGPMc5JW6plz4gTIMgfsCryBIootTkZ0mShjcQQxBYEPx4Zs4p3MNbGo\niB3bd6BIWljotPGlsJ7mHU6aXtzC/opGCr1eaob2cuPet8mRtKiTUQ4mc0iiYs5IM9+fdz0xlYor\ngnp0Kh+zzb2YV/0BJBF/8Sa+K93D8rGj9BVoEcwBXAPHUCiTmOwRekd/wsHuCzja+y0OPXGQk0+3\n88rLvQT9CXL1k79V+n6F/hdAGTATGAZ+8s8+QBCEmwRBOCgIwkGXy/WPB/wNlDYt9d+ej+3SKvQz\nHSjM734yjGF+LtoaG4Et/aTDyff8O7LLKjjv9q8x0tXBH390N9FQ8L9fU5u1FHx2NqZcIzf75nNj\n5GscyWglKOgp9FeSr5X4YeFuOoRD5KlFvkQGIHLIsoCDpZnk9nUzvXuYl4xLWBg4zD5xIUlLjPnW\nTgJxBSSOkJRkhiUzTqfzfc3RvzNJSeYLJ/qYfvIkPZY8ioVxsrJ6kZIqjK4ZmAdO4CwpIDPgxhH3\nYc3JRW+xTrXZZzQ2+xKM+RPCN/dkL6IMB2wK5HAB2doxZEEgHBeRxCSSq32KrT09xN8R+mO+COFI\nGCFUSHKGhYISM+dHNXQ2XkBIJZA8kWBXeSFt2TloB7up8B9ijzSNC7N30iLa6Tc5WJ1IkaV1c9bq\ne1EuewytRiYoZ/C2vIr8NhEfJvbtuZjDv89h8PVZlEd+QfDwz+l69UeEetdgLm4itux7HGaMjEIj\nV94zn4bPTX5zvvcl9LIsj8qynJZlWQJ+zV/CM4NA4f+4teCda3/rGb+SZXm2LMuzP4ij9ARBwLK2\nBDmRJrTnLyuVlDdGcPsA/jf7iLa6kVPS/xpbOWcB59/+NUY6T/H4N75I54F9yNLEfaJOif36OpRK\nkQtShVwdu4M2UxcBOYcZvgpyFC7uLDmIMxWjATMrVEFOGSrps+QhpKPkewXq9+2hIDKGS8hmW9YM\nVieaUQgpekeP8sXGXyNa5A+l0D/YN0JbJE59TzsjOhv5inEyM/uRh8tJJtMM6wWSRi0ZHh8hZxf5\n1R/+wrHJxm5bitY68ZEsGUuikhIctyiwylbMwYkFkFdSI4kSI86WqTT1tJHo7kE0GNjXfBJFSs9L\nOj3XXFfHRbfPxGQI8kqpmSpnjHJtE60Fs1g61o4q4GG7Zg4N6SCBDju78mcwTeqhLmInt+FFVKMy\nEZ+ZRMrCFxUPk3sCHEkfO4eKcafcLLryk8y++m52Hk0z7Ioyfdksykq/gb/1OwjKEKUrf8b5XyzF\n4tB/IHPwvr4zCIKQK8vyn2MJ64A/vyNeBp4SBOEBJjZjK4H9/7KVfwdJShAKtREKnSKRGCcWHSfo\nCRINJUnG0kiSgIASpVqDRqdFqI+h7gd7bxlpV4LoATeSnEJSRpH6YshH4oh5AqJdgUwSWU6hUOjR\nZuay5mvnsn/DAV66//uY7FnkVlSh1usBgYQyTLR1HK3dzOLU5RzKfxFC1dw8MsB9+Ye4r3AB3+6v\n51byeEsIcTCjAVuhn7TnELKjkFGfGmVOkm0ZC3n45MOUataxa3Ae6ypepyGzBff4NJLJ81CpPhz5\n9G3hKD/rG6WONMZohLSowG70oFIlMI3MJRzp5405Ew3d8saCRAP+j+PzpwGrdTZKjYSo9BE25DK9\n6yQHqmeS1hQiDmUgIBGwKMkgRUdvJ+/eLODMIdHTTaisknDKgytdzPJZ+ThMWsb6eugq1hFXCCw8\nEefVuXZEKUnB8FF6BC37VDO5dcYf+MX+a8mNjLEqVYmgHyW4R8KfVU7ROSf4g/xZil0jfGr8eYbi\nJlJlq7js0s+y+4Vhxnr7KKq1UdyQyf5XuolHUkAe/rEvUrzyAbr7vkdD/cPIsjzpDfreS3rlBmA5\nkCkIghP4DrBcEISZgAz0AjcDyLLcKgjCs8AJIAV8frIybgB8/kM0N1+HJP0lFUxKqZHTKhBkBC0T\nm0pCmpSYIo0MuRAGvH8uOP2rkK8CRVqPEFEjhjUoDDqUBh2pdIjx8a1IUpzCc1VUCfNwHS3A1dNL\nMhEHSUKhUoEI8vA4gmKcSlYxnrWf3cmlPOR8jjvyHmF/4n5WiEZWKxRsNTSwTNiPOeVnu3I1RtuL\ntgAAIABJREFU847sxFlaxjHNDIJWBZck9nG/6zJ+23E/0wzPsKJwB/sPrGfunGdRqc788MVDfWNo\nRZGa1iOMGCZO0srIcJFOK3D4FxEb2UrT3HnooiFKIhN7I9nlk18q/mFHFDXYMhagsQ4SCORzw+t/\n5ED1TMYM2aQ6CrHnePGodOQl4/gGPhyLinhvL23VjSDDTsnKs0tKATjy5MtsaliMwxsnomjFZZnN\nmuF+/BEJWa/iy7N/wdsHljKuy+CicAClrCA10oImGSLj/EHc6Xx2S8t4pOUezIoox2xXUbv8s7z6\nSCeiUmDVp2oJuKPsfOYUjhIzK66rxmDR8PovLXhOrQY2cuToZzAZp1Fe/pVJnYN/KPSyLP+t48l/\n83fu/wHwg3/FqPeKQV9OdtZ1OI9l0nvQgijYqZlfQun0THJKLX/VlEmWZML+GK6WEfpfaicopwmR\nJqKSSMRkpKQOOa3CmKHFbFGjCiRQhpNodQosVTayq8wospwE46/icv8RS+MxFl33EHb7Xw4UToeT\njNx3AGWRgT1eL28GTwECbyjn8uLgZu52vIp6eD1XmTVsEiROGafREDzKgvGN7LYsJxmQ6HNU0JqZ\nyyJnCz/hUgb9Cg4PXIbaa2TxjM20td9FQ/3DH8T0ThruRIpXxnzcmJ9J+pl2nMaJnipZjkFCHgdK\nWUMsOMhAfhHlnlPkKyIkFUoyCye/gvCjgD1zKTp7Cx5XNVUHO7EmY7RaVUwzaLDJHkax0ajuRu0r\nmGpT/2XkdJrU6BiDs/UkJQszqvKoyTGTjMfojpjoMyqwHvOxc7oTxEV8suNVjsSN2KZ5yFSMcShZ\nT1nCT3Uyh7jYS0jhpHCmHqU5yO/4AivamljOAfri2SQrb2XL79rJKbOw6tO1nNg5xKFNfVTOyWbl\nDdNQKCb0aNWn63j6R0uxVW4mEDhKhnXyz4c+oytj3QMCe367hGQ8zaxzS5h5TiFq7d92SRAFjBk6\n9HMLUb02Ee82n1uCaVkBIW8c92AIz1AY91AI32iUoCAQScukfUnYPzrxA8BKLFnTyV3wKEeOfpra\nivvILZrI7VYYVJiWFRDY3MfZ1zfg/o3AHsfjiJFK2uU2PiFuYxsXI0U1zNcpOZy1gGtat3CkNBtH\nYpSTp7LBAXttM/lm+0ssUrVwIFgLKGj31rIgBWNjr+EPfAaLecYHMMOTw8suH0lZ5vKcDPY6+9hl\nq0FLgkzLKGMnZwFw0KFDVoiUhfvRxd2YCwpRKD8ulDod2G1L0Vg2g6Akrs2kJtrJcUstM41gCgTp\n1ReTWbIVjbsKUnFQaqba5PdNatxNWKMholfQE7dw2cyJJMDOpr20l1ShkGSmR15jV8YacsNRxORx\nIAdzdpDDzyzFV2ZmVUhNTDtKavhNrI4GzA1P0S7VMxws5j+G70ajStFmuIXOnW5mnF3I/EvL2PtC\nF8feclK7OI9l11Qjin8JzZhsWsoa6uh7814WXzoLdWryvzmd0UJvyzNQWGNj7oWlZOQY3tMYUfMX\nl43zchEEAZNNi8mmpaThf3frS8bTBJ1B/MfHCQ2G8I9GGPE66Nj4VfKXPESr9DUCG73kVp2NYV4u\nxkX5hPYMEd/mZNGllfS/MJ+YuZNnpfn8IPkEL2fu5eTYEs43pNiHgo78hWhSR5jtO0K7oQZ1OsYh\n1VlENa+wRj7ErkA9GXoVIUUmAwPVVFTuwDnwByx1D5y2efygeWPcT7lOg1UpUDnUx9P5S8hRuREE\nUIxXEE35aaoog7RETmScuHuI/MZ3b0b1Mf8cen0JeutEOCxkyKfS1cq+8nokgxHzkJOEVo3a6kYQ\nVODpBseZuzeSGh1hOG+i/ckJ2cx38i0AdG7ay66F52Jzx+kqciGpsvlc1w6cGhWCQsL8IrxZMJ/M\nNNjEMFKomX5jARdVNyGrY/xBuJ7zT+1gvuokJyMVdASns+SKShqW5bPtqXZO7h5m+tkFLL688m/G\n34vr7LTtMfPmbzsonZFJ7i2Tm3lzRjecVmuVrPls/XsW+T9jXJqP6exCRN0//jun0iiwlVspvaSC\nhs/PZPH3FnLZz5ZzzVcWoffdTSLooK/4pwxsPcrIvQcI7xvGvKKIRF+AYruWWksD46oQKrLYlarm\nauWfkJGxhfQ4gDcrVjK304MsyqxxbUHlidBKAx6ritXpAwAY1Eq8so6hIQ+ZmWtwvbNfcCYSSUvs\n8YU4x26mqf0IOUEPXq2FLP04ibgOe6SaRKCHQzXTUfkjENUSDfhwlJROtekfKvJKa0BI4zMXMP3k\nxOHUAVMu1nQKgIioQsxwn/EplsmREYZy81CkVUSVesqzDIR9XlwpCwMGETlwApd1KVmpcSqLf0Fw\nyIBWkkmMZNBjzqE+ISJq+hECJ5lny0JZ3cYeeQmCW8f68EYkWWCf/0bOub6W2sV5vP5oCyd3DzP7\nvJJ3FXmAgpoMtAYVlXOyWf2ZukmfhzNa6N8v1vPKsKwued/jBVHAXGph5c0Lqan8GYIyTnfDb4jk\n6PFv7CFy3IVoUhPaNsCiyyspdM0hoojwunIBpVIvMesp+hIS56PkkEJBpHglHnOArMQ4eqcPr2Bn\nv72a7LSXecIJUokowxFIpiQU4mzS6RBe76QmM00ahwNh4pLMEpuJ3j37kRAIqIzYTS78gSxyFNmE\nA8MMZefiiA6jik20cM36gHqCfFTIL1qD2jhGMCOPafu70Ehpxg3ZGOQJYXJF7EgFzQx1HJpiS/81\nQt1OXI4sorKVGQUZKKUE7W9vpKtoYmPfrHqBpG4m30g+QlJKEfVpKRj28XTjJQgyJLVuNGPHGNIX\nU1K/l7Qg8LR4DZd0vEGj2MlBby3zPrGOwlobLz3YTO/xcZZeVcW8i8r+biaN1qDihh8vYvWn61Cq\nJrf9AXxEhf50UlY/i+L8O9A7jnMwsg3VuSUknSGQZBI9ARxqBbfcvg6XKoCKDJri5ZynehoZgRkJ\nAQWwsXIlBb6JZmzLT70FwC7rRKz6W5oNxGMRUhIEZA1ebyYg4vefmR/Afb4wAjDXYoDWPtw6M2lB\nQZZpjIA/C5Oso9k68basTLdjjE58WLKKP17Rn04yMhagNo8QNeagdyWoiLvoNhkwKAUEWWLAU4qU\n00zHoTO7z1J/zwAplYq2pJlb7Ifh/kq6X/ktrY4MisM+Rs0NnM9r5GqPYZvoZIwhlqLZUka+lCaD\nIOnYCFW5dpKFx9gsr8U8nuCa6GZCSTXBaV/C4tDzzA8O4HaGWHtTAw3L39sm9p83Zz8IPhb600BF\nzY1oNVVk1DzFtr29WK+vRUqlQQD/G704is1UKGeREBNs1M+nVnGUhMrFaCrBUlnJJpWCBfFFjNqT\nFHn70CVDdCirGNJZaKCHsDQRYopp7QwOujEaq/H7m6fW6ffJoUCYGoMWs1KBdXCME7ZiABz6caJe\nBwpEDufbEZJpKqRujIkgFkc2WoNxii3/cCGKKowWSGJHEjWUJvs4ZRLR6/UY0hGG/PmgjhDSntld\nLIf9Ez2qEkKI5SfuIppRS0Ro4EiGEnW4jwzDNC6XnyI1lkPohBFkmZfnXEhIFEmLCea6+wgrjNTV\ntpBOa/mT4jJuattIkWKQpkA9KnMdL/20Ga1eyfo7Z1PWOPnFn++Hj4X+NCCKSmrrvodK7wbT8+zZ\nOYTjphmgEEn0Boh1+rh27SWMqT0I6Sx6ElnM1r5CKqFnmZAigMyh0nMI6v2IyOSNDXCCejZmzEJE\n5mbFqwhIBBUyAwM9mM0zCASPIZ+BTadOhKLUm3S4o26y3S5a7RNCb9d4EAK5hJNuDlbWIHgTWIQk\nYmiErOKPwzaTQX5ZNSASMOVQFD5JTCkQcGRiTgXwxKykYhp0xW6kcHiqTX3fuMU0mliCL5nfQFDp\n6K28jUBuHTGlwJiyk+uULyJIGpSnFAz4rZjiCXr01RMN3YQUgXA3+pwCEnlH2SqtJHs8zKWJjbhi\nejpSl3Jy9wjTVxSw/s7Z2PP/fRcjHwv9aSLDOodsxwVkTnuT7qPt9A2HsV07UY3l2XCSomo7RjkP\nGZk/WVezQL+ZNAkUso9iWeAljYYV3gpSCoHyrnZCgpnDliok4GrFW2jFOO5kEr8/TDjsIpUKkEiM\nT63T/ySuRJLRRIp6o46jo0fI840yaM5EIaRQJxXYsDIWG2YwOxelN0Y6pSTmHfvAenZ/1KiaNXFU\noD8vn4rBibiFJ8OBKRkkJGsIDmciZPUTePPlqTTzX8Jj0KILJFiS3g+1l9By4BBdeQUIskyN1k8D\nR1F0XkjdYA9ejZaQ0YZLMmEixTwxRFyKMGPaALIs8pLyEu459CpWpYcdrmnYCmaz/s7ZLLmi6l3T\nuv9d+FjoTyPl5V9BECUK5m9i+4Z25Dwj2lobUjiF9/lTXLzgfEZ0o3hiNpKyTL5yD35/NueJMq2k\nsWrXMJQVp7S/E4CA0Uy7voRcwUMJLgJiBQADAxNtTcORzinz9f3QGooCUGfU0X70APpkHK/eRKbW\nQzhsw4aFDuXE6jErPkwgOPFV+uON2MnBmm1CEJOEc3Ip7RpEm07jNtsxp4JEUBMZzABVgpFDG6ba\n1PeFz+sjYtChiSbRpEMkK1bTf7yZ9qwM8sJRrtI2MZ4qYueIGa9TS0qhoCu3lGGFTFJW0Oh2E9Pa\nUBadoDc4i0+/EmeR+kUGwhYMsz7B5d+aj6P4zKge/ljoTyM6XRH5+degdbyNoHGy7Yk2Mq6oRtAo\niB5xMcdWiCRpUUpKXrGcy0LTqwiIlOt7Ucsym03Z6HUazCEftuQ4o9o8fmO9CEGAa8U3GQ6kkAUF\n4dDExmQkfGYdHN4S/IvQe5q7AAhpDTgMLkJBO2ZZz4kMNYIkUSZ0IgQnupF+vKKfHERRQGtIEtbl\nonVBWdzHsMGCKR1FRsAzlk0qrWJI34F0Bp6H0HvsFABmJvYZ3jrmRk5LtFk1FMddOIRx4gOX40i0\n4AxMtBUJSpUggKBIIEe7KaxRIqkiiIeXMl+xCYMiQJO/kuXXXz7p/WlOJx8L/WmmtOTzKBR6qlZu\nove4m1OHx7DfOJEn63uug4bCGcQUMVqEInLUXagYYcxnY5ks8IacZEnwLNIiFHt76BBqaE4Xk0Zg\nteIgMqCx5REOTxRXBILHptDTf57WUJR8jQq9mIa+MDIQEE1k6cYJhWyYJR0ncuwoAgmKDINoAyJa\nowmT/X8Xsn3M6cGebyWSKEDhFihPO+k0qchQTIQhvJg56akiVZsmvGfPFFv6z9Pf2QNAsdaLlFHK\n0X37CWeWEFEKzJC76aKCoZ4qFo8ex6vRIYkK/FIeCllmjn4cT3wEa8kg8VA2hzQ1TNe9xkDEgn3R\nVWdccsDHQn+aUavtFBffRELYTeHMEXY+20HCpEZTaYWkxHpm41b5IaCkw1hDjXYbcjibRRYnIQEG\ntXPxmZKU9bQTE3TotCFO6srIwk/O/2PvzWMkTe/7vs/z3vXWfXX13T093TOzO7szs9zlTZqiREqW\nFNtCFFmKgcCyFSuIFMAOggR2DhhBEMB/JlCgPwxLseIAtuXYsaMYkXiINEmJ5O5y77mvvruOrrvq\nrfd+8sc7K9MSzSW50109s/X5p6prpru/D6rr+z7v7/kdHBPbVdptiZQwHDxZbWSvj1wuZ1K82XyT\naieinirhYVCxukycHNKfcHNtAzkImTM72KMBc+vnnqid05PG0sUF4jCHr6ZZF3eYaAL9Uc//tpJj\nu72Cmo1of/1fTlnpD89BvYHheaxrO7SNFeSgR/980jrksvIGr4x+nj+gQ7neo5u2GGRtDnSJJgUf\nDRz8bJb03H2+oX6Sz7dfIa+1eLO3yIs/8+SNs5wZ/QmwuvLXMIw55q79XyAlf/h/3CT3U+sAyHf6\n2GYOBYU/zv80H8p+CaREiwYsRRH/WldZtBZYuL0NgJez+UfzP4sQ8Cva73NQV/H9ACnTuN6TM3Uq\njCUPJx4X0hYv11+m0hvxRvU8AFnpkZEWu7SZWClEP8BGIgaNWcbNCTO3lph6f3GRlShJ2XVqFZCS\njppHdpKCtU79q8jgBx/YcxYYOkOywyFF5QG3OqC5Y45qK+R9iWONkduXWI7u0W+mGJkGY73MsSrx\nRcx8e8jWxQiExHnwElfM32ccGsiLP0uuOjftpf3QzIz+BFBVm41zf5Ox8yYv/Xydg9s9bt3uYV4o\ngoBfHv04fX3AzZZHSuuRUe7SbZ7nJ02XN4hY869hOROWo1366Qr/LPVZJPBZ5XXqnSTeGEUVwnD4\n/YWcIQ48n0BKNmyTV+qvUBl2uFdJGkylo5iCTHP/0UGsPRzguSYyCpk7d36asp963k0JbJvrrPTu\nYUSSdqlKCp+elmZ93GfkpWlvOjivvjpltT8cvgxIj8cYls/dPiAl9/MZnuuH/J71Keotl886r3GM\nDQKGynMA5K02o+EB2fV9Ru4yl27arJmvc7Nf5cpP/oXpLupHZGb0J8TCwn+EbZ/HM36L9StF/vif\n32P8TNJ3vTq2mWgeVmBwa+4vcjH9RyhhgSulmyhS8q3sBQI9ZnN4i0NjBa3hcCwKrIkGjjrG0Exc\ntwrETNwnY67nfSc5zFvQYq433qTk9OlWsghijFAhJ21uFi00P2BV3aHbT3aSc7OK2BPFzhlohqQb\nrWF0Y9YmDs1snox0GSgpNsN9bnQuEl0QDL74hWnL/YGJ45hQl6THYzQj5jZdQt1gP5ViczLgO+MP\ncz0IeLF5k17aQgI9dQUh4YXMET3aqMU6h60XWDO/gypijpQNVi+f/Ni/k2Bm9CeEomhsnv+vcZwH\nXP6Z6xTmbb74T+9QX80hpeTj3iUEgn81XOf51NdASo77GT4mFb6gwpZc4FzjLqHQUYl5PXUBXcSU\n1CMsWaDfSxq59XuvTXmlPxgPJonRH3ZfptTMoCJxMzkKZh93kicXW9xYrKH2fVayh4iegqrrFBef\n/J7oZxkhBKXFNL46j9ITrAct9jM2GTlhKEwuDHa52dlCtyN6b//hE1OkNxwOQQjMiYdQQRva7F/M\nEwtB2Z9QuO+jE5BvuLSzWcYplbqqoEt4iRHlNR2UGP3uMyxnv8oo1Kl86pcQypNpmU+m6ieESuVz\n5PMvsrf/v/HTv7ZBumDy7Tfb1HMWn3GeZ6JOaPojhNDJ6ntMWut8KtukhQTrRRZ3d1BkhFqE3yt+\nBoCfUl/GG9j0+slbNx4/Gd0FHzgeGVXhyw//BRc6Sdy9p6ap2S0cJ48IAx4srhAOY5Yzh5i9mMrK\nGqp2tgtRngZq60UUtUIwMVhjl66pkFIixhiU+12ag2SgYL/QwN/enq7YH5A3t+8CYPkhntSojjM4\nF5LzCC/KMGhN+Kh9E+fYpJ/ScVNpGlpMJGIWB33sjR5RmMLtrnBRvM29YZkLn/jMNJf0vpgZ/Qki\nhODC1n9PEHTYPfq7/NL/8BFKi2nu+BGpjSKGopANU3w1/Te4ZH0FNS4yn7mDISV/VNpAPRJscI+w\naPM1NckW+JTyDr6vEvhJaGPsPBm59A8cj0VD8kr9ZS4O5gFoxVnKRp841jiWHpGmoYwC5swuVrc/\ny58/JcpLGRAGg0mZRS1pWaxYOiEqda/KkuIw9NK0nlcZf+OPpqz2B+OVh28AYEUhR2GVyPPwShuk\nA0l7ohLGko+4X2MsNCIFRtomvoCU1WZYH5KpNRnXL+EuPsQQIR11hfLSypRX9aMzM/oTJpe7wvnz\n/w2t1h9w/8Hf46WfWafXmNB7tsK1aAMVlT/0XLbMpO1ws5/l40Ll36iS9dEqz0TX6adKxL2AIRbr\noo6i9AlDC4DJ5MnoLvhg4uFPHpLW01jHE/q6zShKUVQm6FKlSXIQK0YhloxRgsmsIvaUKC0mB7K9\ncIEFK8m8ibM2AHeUZ3jWesDt7hbqWkz/61+bms4fhkY7mQhnyoBjWSO94LDHCheHEfWey6qqcvlw\nn66dfI5GykUAtnLbeGEf1eoxbjzLkv5NpIT0h35uamt5HMyM/hRYXfkVlpf/E3b3foux9t9SWhZ8\n50t7PH/lGoEIcLQ29/g0lrbHpHOBD6dadJBMii+y1buJFApjPcttdQ1NxGSNPQyRTM0JgvaUV/fe\neHHMvuvT6r/BL1z4BZReh9uLSTuHHAFlmWXXFiAl5bCFM373IHZm9KdBeTE57xlGa+S0JgU/xs0l\n5n/f2OTF6A63u+cxsz43Wm8/EVWy7mgEUmIrHp2wROmSw46yyIVhzIEX8nFTMFeP6GQz+FpMX5RR\nJHw6dUh2JanbeFu/xIuj12l6aVY/+vkpr+j9MTP6UyAJ4fxdtjb/Ozrdr7P+5/4x3foYaksYKmSj\nFN/wPsNz5tcx/CIbc68hkLxRXGOpuY8hXbxcii+byTi9mrKDEVUIQ50gGEx5de/NvusTA1rY4hcv\n/hXyow77G+sAWFFEMbLZLWTRxz4r6X0GvWQ2bHVtfWqaP0gYKY1M0SSI1iCClfGEQTELwEFqno86\n77DbSwazH19SGL/yyjTl/kDEEx/T87CsgNZEwd2wcRWDC4OIlipJ59uoLYVONsUgo1LXJLqEdX+A\nuqoTBRZfWV5lQxxy6Bapnd+c9pLeFzOjPyWEEKyu/nU2Nv4rnPDLLH7o67z2pT3SuRSpKMXdzE0C\nmeysuhOdLRHzbQGF3hzPcAMqOn9oJNPin1HvwMgmCCx8P0TKeJpLe0/uDJOL0afmNpk4GWpOl0a5\niCBG81VSQcz95TXiUcRy9oioLSjML2Ck7Ckr/+BQXs6gaQvIgcKS16ZZSKMQ07CymL7HebpMfIvU\nssvd3//X05b7fYlljB6A5bqY5gQv3WZXS7K3KsOQpZxF33+dYCKZaALXKtNUY4Q2Iah72MUmw8E5\ntoK30ESMX9hCUU5+CtRJMjP6U2Zt9W9QrXye3Ob/iS++Rql2AQAnc8h15/PoSod+8xIfUULuEKN6\nL/A8bxLZJoeiBMCWukdmHOH7FlGkEASdaS7pPflK/ToAv3j+x7i5c0zJHXBkWZSsLr6bQTpDGqUK\njEKWMwdYbZ+59Vmh1GlSXswgRY5wqLMc7eBrKikloG1YjCdpPqO/xe3eJumFCffv3pi23O9Le9LG\nDFVMzyPSJJnVAdvRJmosUUYhL5oGm7tv0bNNAEb684QCqpkjnHoFM7/PTWWLH6sn52b2tb84zeU8\nFmZGf8oIoXD58v9CLvcCix/7B1j7DVx1gh1aHFsj8kqXuL/K5dwOALvRCzxH0pZ4kMriSIO08Lii\nf4soMgAFz2tNcUXvzXc6+yAjPrtwhQevXUdB0pBpqmYfIVWO4zFSUR5l3HTQ+5NZxs0pU1pMAwqu\nk2FFT3oo6bpkoKrcdS7xOf8V7nY3sAoex/qYcDiaruDvw9H4CF1qmK7HRIHc6oht/xnWxhENBV4I\nBJsHLboZG4lkIpOwzNX8Q9TaIkKRfKPwHB/qvU3fN1l86cmOz8PM6KeCqlpcu/r3sYzzzF39DUx7\nRMWt0Fz4Np1wFSFVMpkH6CLg7SjFUlAnG/QJMhYv82zyQ/RbKMIGJJ7fmOp6vh+xjNmdeGTFBF1R\nad2+B0aGllegqI4oywx7ZgiANvYwYwBBdX1WEXuavNsKwXVLLOWTnawwFYaqyo5znrmwS76f9Lox\nVnzqX/ny1LS+F/VxHYVkR9+bU9DtiLq+xPmRZC+vYsYRc3WfViFDLxMyjE1UCRfCCVotaTHyQGxy\nPj6g5ecoLS5NeUXvn5nRTwldL/LRj/8TYuciz6+9iYJCI7WPJAIiOv15lrURr+KhDSs8571FXDb5\nZ8pPEEvwxABNyaEqEb53didN3e/dZ6LkWTSTGKffaDFY2GQS2mQVh7kox0E2DXHMAkcMBklcfpZx\nc7oU520UReB786SMAaVJSJTSGQudTrRES6vyc96r+KFOdmHC3je/MW3J/14OhgcIoWAEPv1lHT/W\naGs2a07MftXA84/RuhEDU2WUTlNXYwwJ1uEWZn4PL8yhB5KCOmGSWnpiq2G/myd/BU8wup7j6tXf\nRp1UUZSQDaFjz30dUBnXn+OS4nOEgtPf5Hn1DTBUXsk/iyJgTTnA8A1UzafXO7tG/87xO8RqhQuZ\nPH0nwB712D6XHIylCUh7MfuLyyjjkJXMPqOOhp7JkS6Wpqz8g4WqKeRrNpGXFAVVHQ8/Y4IQ9NUC\nX7d+nI/Lm9R786QXHI4enN3pZrutXRAC3Q+QCwG7vS2kEKyNY/yUitN7g7GhIxG49iYtVaKpLkH/\nMqnSHofxCp85+jYA6trHpryax8PM6KdMba1KPPkvsc0JufE82uWvkxIdpJ/leT2Jgz7oPcdVK6n0\na+UqxAjm1S7p0QQhoNlsTnMJ35cbnXvEWpGL2QI36wNqTpeb80l2UTpQ0MZ9dhaWYRiynD2EVszc\n2sasB/0UKC+lCSdJGmXRHTPOJXdXXaPEm+EWPSXD8mCAVXbpxH3iyWSacv+9tHrJmZVKiDU3Zj+4\nBsDaOMaIIX10g246qdUYqleJBRS1CQiBka1zV1nn0/XE6LMvPtmFUu8yM/ozwE/+0ocJWs/gujmK\n2T6bH/lfASirAxQRcm80T4Ee1X4DL2dxJCsoAsJhUk3a73enKf/78nYvOT9YS1lc3++yMD5mN2Wg\nipBVt0zHa9LJFVFGAcuZQ/RGwNLW1pRVfzApL2YIx0lfm2zQIUwnoxw7Rh4mY/7B3H/IS4MkSUCs\nBTivvz41rd+P/qgPQFyVCBXum0nHyawXM+dJlg/3aZYyuHqEF1QBqE0yZPRXEUrIPe08z47u0fUt\nas9cm9o6Hiczoz8DZHMpBhvJrvzfHC4RrB1ipOuMRnPk9C53vGQA8bOdd4iLJr+r/jgA3iQ5OBo7\nznSEvwdSSu6Okxz6Fcvg+vYBS4HHYZymZh+zGaywp7lA0vqgqg+RnkJt1oN+KpQW08RhithTKbGD\ntJJzlb4ikbHC1wqfIxjYEIG95NL89remrPh7M/YefR4WQuIIbosl8m5Ex1JYG3oUW0OtePqXAAAg\nAElEQVSO0wbdnMIwjDFjWPDSpMo3AdhlnRVaDOI8hpWa4koeHzOjPyOsfaKMlILj7hK3m/NkVl7H\n7ZxjTh1yL1YIQ52LwTugCP5p6SfxpIbtJzt6d3I2S9Lbbpt+nPQSWbEM7uy0KdgVWm6JOaPDYpCh\nkUk+SKnJiNhJOlXOnXuyqxCfVN7NvPGcDEvKG6Aq6ErMQPjIIKIyjPhN/ecpDAPKS0OaN96esuLv\njRckGyCWJjitFA1UVp2Y/bTC2u59QiBGxcnMU1djdGBeDNAXXWKp0o3LFFUHL7M2zWU8VmZGf0b4\n8MJL1FN15p15/vdRxIr2FkiVc9qIAMHR8bNc0G+BlBxlqkQobETJXUAQRFNW/725071DpFVQkRQU\nhWG9R3fuHB2vwKLmMvRaHFdrEMWsqLsMehbCTJGfq01b+geSXNlC1QW+W2Q1dR89DNB1wVCJsDyd\nUr/NP6r8LFpfQy37HDd3pi35zyClRMbJ50GpjWm2q4S2weZYsp9SyBy+TefR5mKUvkJfTfLcFuQf\nkcmM6URzvHj0NkKAsvLiFFfyeHlPoxdC/LYQoimEeOe7XisJIb4ohLj76LH4Xf/2d4QQ94QQt4UQ\nP3VSwp82nqs8RyvTwJA6KnC9eQGh+JwTSe7ybvtZivkBpU6bIGPikGJRdFEiSRxLgjM4z/Nu9y6x\nVmHR1LnXGFFxunxls4hE4Vlp0fXrHM4vooxCVrIHBK2Y7NL67CB2SghFkJ83CZwa+cyQwmSMTGkM\nFAXDT5MaN/DyNl9ofwKEwNpqETTOVg1Hx+mgyeTOULM8bk2eAUNhfRxTtwTZo1sclXMEakw/TjpW\nmrFkceeb6Oku+2KRTx8ldQSprU9NbR2Pmx9kR/8PgT//p17728CXpZRbwJcffY0Q4lngl4DLj77n\nN4UQT3aTiFPCVE1KS0lKYW0yz1ftmKx6SKF7Dl2Z8GCwipnzOL93l7hg8AX9w6hCYk8iNM2n0zl7\nbRC2B9sIfT45iD0csDg55n7SK4sLYZau12RvbgkxCljOHqE1Q5Y2Zwex02RuLUs8XsSwfArOiCBj\n0NNSqFEJVYbU7B6/0/0LiFiSPe8weeutaUv+d9hubKNHj4xeC3hbPg8kGTehjMg092hmDHo5wdgV\n6BKWUh20HkR2m111lSuDWwSxQunyJ6e5lMfKexq9lPJrwJ92kb8E/M6j578D/Nx3vf5PpJSelPIh\ncA/4yGPS+tRzZe0KE3XCmrzA/cqbDIMlouESlnXEw0kZoUrOd2+CqvC7+Z8EIDWOEFpAu332UiwP\nhgfEWpWVlMH13QarWY+BSDJu1t0KjbhDz84jhiFL6SOCns65ixemLfsDzcL5IsG4AkDeGTHJm0SK\nypgKnvBYdoeMjBzRwESphYzfOFujLPfb+6QDHYhhIniQWgdgfRyzeLRDIGIioTG2i9RlSC4WrNr3\nOH5+E5SIIxZZj47ohjlS+eL3/V1PEj9qjL4mpTx69LwOvBtUXQK+exLG/qPX/gxCiF8VQrwqhHi1\n1TrbvVpOi5fmX+LYOqYwTjPR+wzSDwGYx2cvNPFCg/U4KVR5M72FBMwRhKrk+Lg+ReXfm71RA1/J\nJhk3u02CappubFOzW6hOlpaV7LzEKCAfe8hYUNuY7einyfKFMoGTDLHPTUbE6eQ96io+gRJT606I\n8ia3u5sMcyru/pemKffPUO/VSfkaqhLitgpMMhnUOMYKJc/cu04nnSQHDMznGCkgJKx4O+SqSdz+\nkCWq2hAn9XTNKn7fh7EymRb8Q08MllL+fSnlS1LKl6rV6vuV8VRwrXqNjtVB8SRWmOHowv9LICLO\nTQrECPZGS5TtLunBAC9jM8DGdmKkHtBun62LZRRH7D8aULFo6Iy6bXxDpeXnWba69L1jesXkfS/7\nx/gjg1gzKM4vTFP2B55sySJwk3TerNdHPjL6jnAgtsj3RsRZnS92P4lUBGHh/jTl/hmagyZ2qKFq\nIc3uPDKtUZsEHKQVth7eol7OE6gxTSXZUAwVSaF9TCq5tmF3fVJqSFx9ZoqrePz8qEbfECIZcfTo\n8d24wQHw3YMVlx+9NuMHwNZtCrVkgHFNXuMVu4uqHbE2Tgxxt7NFqhBwfu8eccHgobpIZhKiaAH9\nwdkaQNKatPCV5NZXHYcsiR5qoNDz86zqLl2/Qbs6hxYGrFkPcY4FWnXlqegr8iQjhCDWTOJIpeR1\nQFfQBbSVABGapCZdlKzgdncTYgiXPcLu2SnYa4/aZNBQlJCd8RLS1lgfS3ZSgkz9Lq2MyXEh4iCy\nmIsVPAX0vodecBnIHB/fTkJRxvpLU17J4+VH/VT9P8BfffT8rwL/6rte/yUhhCmEOAdsAS+/P4kf\nLC6vXyYUIWvyHMN4QD7zTfJ+GkNx2etuki1ErB/cB13hK+mXyHgBquIzGJyttrH7w30iNblADY4d\nlpQeUZRCorAuoOs3aMzVMIcOq9kDRCuitDrrWHkWMIuC0CmREQ4Zz8OyVHoqpJ0sCjE1u40bpfD7\nFuOKiv/G2Wlw1vf6pISGokbcdDeQtsaFkWAS9JgoEaFQ2M5cZABUFEFGG5HtGATpOodiiQ91k+TC\n/OXPTnchj5kfJL3yHwPfBC4KIfaFEL8C/D3g80KIu8DnHn2NlPI68LvADeD3gV+XUp7NJO8zyksL\nL9ExOxRHyVtzUNlGIMgqQ7ZHC2jFCdX2PgB/nL6CLmOKckSj55NE0c4GB6ODRzn0cPBwG0PEdOxk\nTecji67XYK+yjBzFSWrlscb6xYvTFT0DgExVJXBKmJpLbjKGtE5Hs8lO5oiJWYw6YAoeHK8yyGoE\nN87OxKlhMERXVFQRcsPYACVpZma3tmnm0kjgvvgEmRhiETOvd1jUVvDSDQ5ZYjPYYxSaZJafrqSA\nHyTr5j+WUi5IKXUp5bKU8reklG0p5U9IKbeklJ+TUna+6///z1LK81LKi1LK/+9k5T99vDD3Am2r\njdofIbVNvl0d44iAuVBhz8vhaVD1m6hBwD07qdyr+QMafgrXdaes/t+yP9on1qosWTqtvftJoZeq\noIqQFTdLU3EZWFn8EcwbHQJH4/K156ctewZQXEoROGUMwyPrODg5nbGWRkYmrvAp95ID2a/3PoJU\nBGP329OWDIDnebjSRagKahgzzCVnDevjmPP336FRzPP1uWt0RZZPT3QORMRCdMzk3AaaPuKIRWrq\ngKFWe+pqOWYB0TNG3sxjVSwEkIuv8kD2GBrHbEyKSAR7wyVShQnzx0e0c8kJUjF0OJZp+v3+dMV/\nFwfDAxRjkRXTQDgd0pOYdpSiZjcJ+xrDbBK/N8cTdAcCNUX5KRjw8DSQK6QZ+xa64ZGbDJkUk+Zm\ndbposU2+OyHO6rwxeB5iGObaU1acMBwO8RUPqSrEofiTg+SVcUT5wXd4pXKBN9Mf52IgqaR0hrFC\nrXeEtpCszx3aFHWHoPD09VqaGf0ZZGttC4lkMVhAIhlnb7HsJ+lfO4MVilmfjeY9/KxFX0mjBSp9\ndAZn6ED23dBN2YvIM6HiqnSDHEvpFsOhS680B8Ayu0yONYLyylO3i3pSyWQy9EIFVQnJu0PinA7A\nkeqjhmkyAxeZ03GjFHFfZ1QG6U7/b284HGLoHrFU8UITmdZIBz6eiHm9XOML1Z/AVo/46bHF3Wpy\nEVg9bJFOJ+db53b3UIVEXXo6OlZ+NzOjP4M8t/AcA33A8iRG0UrszV0nKwUWAbu9dYolhdrhHgjB\nV7MvEropHEU9Uzv63VEdX6Qx6y1UIUlJnV6QY0Uf0w86tOfmyPpDzqV2iOoB2dWnbxf1pJLJZOhF\nEYoaUXKGYKjkFElDFWhBDi0OyKWThnrH7RKDrEZ44ytTVp0Yfd5yiCKNYZxGpGHZCTkOh/zmc38Z\nU7p8XKmjo3A7l2wqNpse7fwhIRpXju4AkL7056a5jBNhZvRnkEulS3SsDtleG9e8yoP8NhM1oETA\nTn8dvRxSayRZq3+UfQHF0UAL2Wn2pqw8wY98Gv6j3Xkjybw9sC0kgnU1oh8c06zWqI7arGQPmByn\nWLn4dOUtP8mk02m6Mni0ox8jpCSf0mkYOdJOBSTMiWMUTXKju0msCob3p38gOxwOKZg+cazRljni\ntMbmSOFfeGM6ZpEN/fc4P7iAY4a0CBFIcuU1erk6Dea55O8TSkHumaen9cG7zIz+DLKR36Bn9VCD\nEJ3LeATsmQMW/RQHkzJe3sd2HbKTPm9mL5J3Heapc/3obKRYHo4OCbWkjJ5uC18q3DFNAM5JjZ7f\nYre0RGY0YsE8JhhpXHlhdhB7VsjlcriBgVAiVCnJTkK0nMVQzxL5EUQ6FW9AlNF5bfAcAMPRm1NW\nnRh9SfOJI5WGWiA2TGq9iC/paZ4d3mAwf4+cV2K3KjFGHhXRI1x4Bs1q0oxqVPUxA0oomjntpTx2\nZkZ/BjFUg3QlGbdX9itoisFh7jZLgUmMwk5UJC1dVjsPeJBbZS7q8mx4i3sdf8rKEw5GB8RaBaTE\ncHtoITQUgSpCll2bni6Z6Cm0kUfem9DVi5xfmlVHnxVM08TWchAl9qA74Z8cyB4oA5QoS37gEWVN\n7gbnUXwY69PvtdQb9JgTEbHUGKSSz89BxyVG8In+6xSDiwgUbi/rKGOfmtuCwgIFtcVkaJNXR7jp\np6cH/XczM/ozyrnFc4RKyPxwSDV/laO5bzEfJuGQncEKc2mP+b0DhlaWjl5gzhxxMAinrDphf7hP\npFVJjX0yuFTdmL60qNlN4r7BIJeYuuUNidshTn4JRZkdxJ4lKpkK7445kGOfRs3EkBE7Wojh58n0\nAmRaw1cs4p7BKBuDN907yuawSVVJDlmdtA1ScmPiseYeIgtjLrZeJBYhd2opYhdq3QaNuQmaiCg1\n+qQ1H2rPTXUNJ8XM6M8oF0oXaJttlkddsF9gkN5F1UakCNkerFCuGMzVk75yb+QuEaXTZLr7RNH0\n69MORgdIrcZaf4gQsBBCL8qwlKkz7EFzLplLWqSF1xSklmYVsWeNaq7KKE7qMkLHZ2IobMYuO2YW\nyyuTGTrITJKN0+3mGaVV4sZ0J051xsdk9MTSPNtEHfi0pOT88DbfPt9jsX8Rx+rhYhDHCutjl7tz\nyWdos5U8WlufmJr+k2Rm9GeUi6WLtM02mWGfFslBZTNdpxaq7A5WMOZU5o4PETLm9ewl/Njm4vA2\ndw6n35d+f7SPYixQ7iVZQIGq0gvTLFk9hpMR9flFlt06pVwTp5liaXYQe+aYL8zTJQkFptwkw2bV\nMujpOcaRju0apK1kNut2ZwGpCEa7X56aXiklXnSEIBl/4aZ1svVE35X+DrCAJg3ahQHKOBnSs2hV\nGOSPAVjwk9fyz/346Ys/BWZGf0bZLGzSMTsIQAwk8/YaD3N3mA91DsfzuFVBxp1QHrV4I3uJ/Mhn\n3mvyze9cn7Z0DkYHhGoJe9QnlnDHLCARrKk+fb9FvVpjY7jHonXM2EnxzDNPV7n500C1WKUjkrvD\nlTDpjFooJJWm20of0yszJ9sITfL2MHn/hvXpDQufTCboVpfo0dARN21itAOWIo/lOOZc5woxEYdl\niRgnIc5MeRnTOmYcpclJH0faqLmnc4zlzOjPKGWrTJyLAagNu1ya+wR7lVeoRQqRVHlopCgPJywc\n7fN69hLFqE+oqOy++s0pK4e98TE+FtZkgJSSXcUG4JxQ6IZtGrk5qqNjyt6QujnPpaXClBXP+NMU\nCgXajwrY1qMGSiwJCzbZYMgdw8NwK1T8HjKjc9/bgFgy8h5OTe9wOMRODYljjRiBa9lMxiFrfg+n\nZLDau0wsIjqZHGIUYMQ+x4vzzIsjJmObnGwzTq1OTf9JMzP6M4oQgvXKOp4VMDfokC98mInZI60m\nLWEf+HkqYcx8fZ+enkcaCjfnL6Puvj3V5mYjf0Q3MhFuRFZOyMiQ4ziZKrXkG7RTFrFQKDodaLg0\n7QXmc9bU9M743hQKBQaPdsdVfYjtRBykVZ539tkz8sRhhmo7IswYNPUq6kjBMUYwpb+94XBIOjXC\n9wwGKRtcSRBLlkf73KsVsIMsUnXp2lnM4YQ5r807FZNFeYDdCynqY6L5p68i9l1mRn+G2Sxs0tIb\nLAy7dJRzKDLFOL1NWoTsDFcoz2WYbyaFU+1ciYelZ7C9Afu3b01N87utD7SuS1Z41KKQkdAfZdxY\ntMrJQWwpbDE+MonKy7PWB2eQQqFAGCdGn1cHqE7Ijq3wcadDLFTu6RG1AxuZ0fEVE2+QwkkLGB69\nx08+GYbDIRnTwRlm6dlZRD+JuW+0btHWk66brtmma2dRnIj5YMytkk9ODCgFKkKAdeHpq4h9l5nR\nn2E2C5s0jSaW77Hb6bNsXWOncJP5OGZ7sIKylGGhdYQaheznFomoEAqVV778xalp3h/tE2k1St0e\nQkA2VOhisJhp4PRUDhdWsCKPktpkdJyivPJ05i0/6ZimiSmSwqGUMsYfB+zbCluaTSYccdN0KPWy\nyExyMWh387iWSng0nRmySfsDl75TSMx8HKIA5/p1qsNNhtYxbqrLwLAJfEHFSBNlk8SFrJ8c4Oau\n/PmpaD8NZkZ/htkqbtExkz/GceOIl6qf5KB4k4pvcjhawFm2KI3GzHWOuJNbB2/CTmqV3ddenlr4\nJsmhn6cyTJpcHVOhGxsspusMej71uQUujh9ipjyO9AUuLJemonPGe5O38ggiFM0jGIf4qqBXO8f5\n8QN2VRW8DHmRHGze7SaD5bo7X5iK1sGgQ1b36XhFunYWY+AzH0fohk3FWSYmpptTkG4MCKJylRWx\nA0C2P2Ag8yiZ8lS0nwYzoz/DbBY2GRgDYlWh3Gvz4uqnmGhj0sqQSKpsZyyqA4f5xgFvZy4g4yE7\n9hrRqEfjwb2paD4YHYCxSNEbIaVkWyTtlVd1h57XpVGa49nxfdLZDofWAlfXZhWxZ5WKXUEhJNJU\nypMkVbFVnmdrdI9IKDzUY642hgg15p6zDkDvaDoD5RxnF0XAcVimZ2fQRiELocPhXHIBynklunYG\nMUpCOr1qllW5QxyoVJ0G4/TGVHSfFjOjP8NkjSy1TA2vIFjuNlFyJaS7Rpx+AMBddEq+YL55wFiz\nsewQN7uCRHDvlelk3+wOdpFynlzkoMqIZpSUoq8LOJYjHNPm3HgPgceBtcjzq5Wp6Jzx3tRyNYQM\niUKdi2GSUdNP22z1d0lFI24bAVuHEpFW2fFXIQY/nk4rBN9Ppq71gxxdK0PgRiw6xzTyC8RERNqY\nTjqLMgxQZMzunMn56D6qkyKj+bD+dBZKvcvM6M84m4VNOvYhhcmYW40Gc8pHOc6/gy0C7rtF8tk5\n5pt7AGh5hbSqcWgtcvfl6Rj9g8E+vpOiICYUYp9+lEYVIYuhSiOfB2B+UscbGAzsEtVcaio6Z7w3\nS6UlojgmjHQuihtooaRtqhR82Bw/5KEmKbR1sC2OjQpirBKmAyJvcupaY5kcAvcpEPoCCSx2d3G1\nBcZWi8AYcJzJY/fGVKIxu4UUi8o+tpv08Ml9+BdOXfNpMjP6M85WYYtbIhlYfPDgAS9WPsNR/h4L\nwmdnsEK4VWH5uIEZuPgFC6mPuGev0znYo3N4cKpagyjgwIvQ+x5Z4VGMBX0tpmY3kYMUO4vnETKm\nFjQYBRlKtnqq+mb8cGzMbRDImCjQWbG3STkhu2kFK7PExvghoRDsabAcqTiKjTc0cGyF1uunmwwQ\nxzGK0sLzUozt9J8URK0275ANVpkYAwKjTyedQ4xCMpZJmWNMxSMznDCKbdLrT29qJcyM/syzWdyk\np/ZwM1mivR1eWl7HCSpkpc/BaAF31aY0nFBrHdLPFziOVR7YSe+Y+9853Vmee6M9Aq1KcdBHCPCi\nIsdqzGKmgdvT2F1YY9PZQ7MnHMdlzhVmRn+WWa+s4yshkWdQzRwjnJA9W0GUL7LkHmFKj9t6yNok\nSY/tdLJMLJX+2186VZ3j8RjbHNMfz+OlLcQoMfqKD6rUITIY2w4DzcYLVGQhzZpMQlFz/Rb99EV4\nylN8Z0Z/xtksbAIQLFQotBus5ARB9+PEWpNIajwoGFSGDrXmAY10laMgT0Wx8XNzbL95uqluu4Nd\nIm2e0ngIQC+s0UNjKXNEvxNTn5vn6ug2VrlLXc7x3FL+VPXN+OGYs+dwdZ8wMEkXRkRjn4OUYFTb\nxIxC1rxt7usRK4OkVcLOYBGpCPze66eqczgckkqNOB5X8W0TbeRTjEN61SR11w7SHGey//YgtmJy\n2buBlFByPeT605s//y4zoz/jbOQ3EAi8BQ0F2H1wHcZX8LJJUdRdoVCLM8y3DogUjThrcj7VZNdc\n4eDmOwSue2padwY7RGqNkjtCSjj2K0gEy3aTfS9mkrK5NryFlxYcRvO8uLF4atpm/PDoqo6jx/ix\nich5lJwukSJolmrkHZet4V18IYicEEtK9pxkuLsiDonj0+ui2m42MFIDmsMcbtpCH/tUwgmdwjkC\nfYCmxLQzeZRhYvT1uTQX5B0MR0eEUPzMXz81rdNiZvRnHEuzWM2tMhYPuFdd4u5r3+G5skVbG2Er\nPvd8G7OwwVY9ycSJczqRNeIddZEoDNm7cXqtY3cGOyBXyDNBk5Luo4Kbc2rITjZ5fnl4h4mlMAqy\nXDs/M/qzjm+CFCqx1NgKknCHaxjYQcDy6AhFSra1mDVF5aGX7KC1nMfx7s6pady5nmx69pwKo3Qa\n3JiK0yY0N8Ac4Ztd2pksqe4YkxBpKSzquxQGE47kMun59VPTOi1mRv8EsFnYpNV/nVfOXyZWBFfc\nNykOPkJVG7A9WiA6t8ZKs0HKHaOWVRroHBrzKLrBwze+c2o6dwe74JYpiAnZSOVYjTEUn/lAYbe2\njBpHVL0WCIEaqeSymVPTNuNHQ0klPeeDwOISSVKAr0BoWRiE1OizrUXU0GkoNaSrEGUkjeuvnIo+\nKSWDepJaeTdaY6KbhIGkPG6jiAyqEuIbXdq5PHrPxcjoLIcHmJpLaeQyWf3cqeicNjOjfwLYLGyy\nP3hApVCg/omfQBeST9KjrPXYHy0wWTXJDHzmmwdEOYNtp8aS5hFXN9h+83SMXkrJ7d5D4qFCVnho\nYZqG5rOUOSQeZtlZXOP8eIehSNLZ0oJZj5sngFy2CEA4tlgz72AEMc2UgixvAbAS7tNQJYVA0Ffz\nBD2Nsa0yvvONU9FXv99H0erJc3UJ4UaAIO8nnV8DZYJnSI71HBNXZVhN85FR8plI9WLyn/rlU9E5\nbWZG/wSwWdwkkhHLRshbVo7P/+Vf5kv+FmY0IpIaX8vtkVMLzDcPCFMmjrR5MbfHgbZMr35Er37y\njaZakxbHkUFpMEAI8P0ax1rEcvYIt2tQry7wkeF1BkqSN7+QPnFJMx4D1ULSnz1qpimUulhOyK6t\nEM1/BNsLWBvcBQF+EBFLhV4vh5NSkc0bp6Lv1rfq6NkG3tjES9mIyaNe82oeTUTEcUgrW0AMkwuA\nXzT5WPAySiTZ761TvXj1VHROm5nRPwFsFZLdU44e2xOPzYUCB3GB8aPslj2hMFx/jvnWPgiBzOqI\n1IBXST6kp5F9c6tzi0hbpPhIkxsUcKXBUuaQO14W3zR5YXgTzzZwghRXFma7+SeB5dIyAPGxRars\nYk98dtMK4+oaBcdlbniERkxDiSnFgsNhhVBXULQWYRCcqLYoiLn/WhMjf8S4n0ZJa38yPcqwliir\nKr4+xkq5XDi+R4EhL8nbbFo3SQ8ivBf+8w/MXeXM6J8AVnOraIqG6u8RA0dRyPm5DFG8iaW6tIIC\ndxfzf9KyWCkqHEmNPSVDplLj4SmEb253bhOoy5T8EUjokoRoljOH3FCT2/+P9d+klbcY+WmeXS+e\nuKYZ75+LtfMARF0DVZdUgi4NS+DrFkYUoEjBnBxxoMYsRApH4wUA0mWXzsHeiWrbvdHGc0I0+5jB\nMIed1kgNXYSUGEYZ03zIr+u/wW8c/U989ejXeMP6z/jnd/8mk4zgcLvExR/7mRPVd5aYGf0TgK7o\nnMufwxnfBOD22OXqcoFdfY6q0WLPqTFOjcnFgsxkCEWdh8Mlns8copY32XvnrRPfXd3u3kaXFygJ\nBy2y2LWSebGr2oS7c8vkvCElt4uTljhehqWlp7uJ1NPC1eULiCgimCQht3XvDlIIXCShlQyMWYhb\ntFRJVcKen6RYZlIjWtsn21jvzisNrKxAN0Z0JiWijIY+9snKCQqCq+ZvEUqNv7Pxt/hb4a/xP1p/\njd8rfCy569VeIj83f6L6zhIzo39C2Cpssd/5NoYQ3Bq7XFstMBQq5eCA/eESdrqLWVhhqbWHl0tR\nd2pczd+nqSwSeC6Ht082Znq7c5vYq1JRHDQ/z441IKePyHkmD5fP82L/OtvKInmzTxQY5HKzPvRP\nAmkjhYhi3NgmDgSXZRIGdDSBzKyixDHz7i5SgILCXryCDMFPweDeyd1J+m7I9pvHLF30EQIeRkuM\nUhpyEpKLXBTpU9Pv8dviv+AfFv4D/mX4Kb5ifgbHCIlDwdXP/MqJaTuLzIz+CeFq9Sotp86qpSRG\nv5zMWa0dDwmlhtB1nGyGxaNdpKkjNYGeGvBOUEHVtBNNsxz4A7YH++j9GFOEaEGWrtBYyRxyOF5i\nlMnyuf632GaFvNnHEiGWtXBiemY8XmIJTipN3DQ5l7uBHkk6tkJUe4n8xGOx9xCQjKWkJSoEfR3H\nVuke3z4xTYd3e4RBTNo6BOBm6hmkEES+ICcjKvE93pLP81buGkrHA+CF7g3yxSO8To5zVz96YtrO\nIu/L6IUQ20KIt4UQbwghXn30WkkI8UUhxN1Hj7Ng7GPgQ7UPAVAWQ26PXS7OZzFUQbGXxMKPMRnp\nMZXjRvINeY16ZHEfl8Xzz5zogeybzTcJtTnKgyRcE0cmflBkrbDDW3IdgE/03uCuuo6mxGTMCEUx\nT0zPjMeL1Awmdgq9oZEuDymNPO5nVYZLl8g5HpbvkhMRTTUmExv0elnGtkoUNFi4Y0gAACAASURB\nVE5MU/co6Y8fuUlh1rG1AFGMH6tkhcqCdpOjwV+hVcmQag+pMGDJuYdddqnWfuIDcwj7Lo9jR/9Z\nKeU1KeVLj77+28CXpZRbwJcffT3jfbJV2CKtpxH+Lnuuj4/k8mIeX1iYist+mBQfbXjJaDezqHK/\nv87F4h2yxfMc724z7ByfiLbXmq8hjRVqkz5I2La7SFTWsnvc0JYwfZeLzjbXZXIXksnkTkTHjJNB\nz1RwLQu9nkJRJQtOjztZlaFuoooQEFRljyM1Zi4SNEdVXFOhpPdwHl38Hzfd+phURsd71CefrEGx\nl5xD5aROLdWi7Z9jvywQnYAljimn7wJw+cP/6YloOsucROjmLwG/8+j57wA/dwK/4wOHqqhcqVyh\nN3wTgDuP4vQ7qSIrHLDrVNFVn6xVJDMe4hUMHvbXeKF0i3aYhEm23ziZXf1rjdfI29dYjMaoYZp3\nMkne/mpulzvFDTb7O4SouHYy3nBubv1EdMw4GSoLGyAEbiu5UK97dxjpgo6UeLYNwJy/i6tAPoYj\ndx6EYN5s0t47mVYInaMx+YxOLO8QDAzCjM18NwnRFGJBycyynxK0PUEQqSx2dsmtDJF+mnT6wolo\nOsu8X6OXwJeEEN8RQvzqo9dqUsp3K3Tq8CiZ+08hhPhVIcSrQohXW63W+5TxweCF2gs0u0lp+S3H\n5dpKgf10mWdbu+yNlqimHVxLZ/1gGy+fwosNTLvD7Z5BplRm+wTi9F7k8fbx2xBsUFRGaEGauipJ\nKx6hlqWXK/G57jd5oC2xmGklHQNLLzx2HTNOjkvPJAfnwyCH19fZNF8FwNEVRtVNbC9gaZQYulAE\n20Hy/zPGgKOHtx67nsCLaO0NyUmJlupSHxTppbKk+8nAkyWnwVg+z8NFA7XlosiY1dFdsssOxeKn\nP3BhG3j/Rv8pKeU14KeBXxdC/Dv9PmUyofp7TqmWUv59KeVLUsqXqtXZ3NAfhE8ufhIlbGKImNuj\nJMWylSqweXBIGOtM9IiO4nB1dw80DZnR2HfLNMx9VjevsPP2G8TR4+0qeKN9gyAO0NsSRYmI1Qjc\nZc6lm7weJAdev9j5A15Wn2EtfUgYGuSylx+rhhkny7WLqwA4aoqoqXOh+AZCSiYplcHShymNJswN\n6qjABLjjnkdKGKdUDg8ff1O9gztd4lCidPdQCyFf4RJSCORwjEbEqnefVnCZ3XmJXh+z6B5SWmqh\nGjGrGz//2PU8Cbwvo5dSHjx6bAL/N/ARoCGEWAB49DidIZJPIc9VnqOaKpORXW6NXdbKNhnLIOcl\nt6xNVSEWkuedJE6vlwzu985RKF9nIbuB54w5vPt4d1hvt95GorJ81AHgKH1I6NVYLTzgdXEFa+Sw\n4R3ySnSBebuBlCrZ7HOPVcOMk6WQy6D5Ia5h8f+3d6dRcpz1vce/T1XvPb3N9Oz7pn0b7ZJlyZZk\nSXjF2GCZ5eqEsIeDbXIvgRPDDYQACTchhEAuvsSx2YXBjo0xlmVb2PKifRuNpNHs+9o90/ta9dwX\nMxCFw2KskcbTqs85fabq6TpTz++x56/q6qqnHAGJ0xqjMJEh4DIx6qrBG0+gSvCRYkzRSWd9ZKJm\n4g4TmXD3jPentyWIySQYDe1DuiUX7PMQUpJKTD3ZrFAfIZAN0+pUkAnJDakz5NclENgpKNg04/2Z\nC950oRdCOIUQrl8vAzuAs8BTwJ7pzfYAT15uJw1TFKGwpWILqfhFLsQSCCFYWuYhqViwiDTDug3Q\n8Zu8uCNhKLDRPtHAAv95MrEiFNVE+9FDM9qn5vFmfO5lVCUmEZqVw+5OdBQqC7q4aG+kPjD1ZVlz\nvIp85zg2mwtVtc1oHwxXniOZJeawURieer5BZXKSbpfKSEZBWKY+tPuzI4yqkiJNMBFyE3GYcGqj\nTH2wnzk9LQHc9iwKU/eGRG0LaIjqTEgVt0hSYNI4kTeAHMkg0KlPtOCtjVJcsgtFscxoX+aKyzmi\nLwZeEUKcBo4Av5BSPgt8BbhJCNEGbJ9eN8yQrVVbIdXNSDrLRCbL6rp8ep1FVKaH6Y+VkucIkbSa\nWNnRRjzfwnjaS55zhNbxCFWLl9F2+LUZ/cNrHm8m37UGhxJG6CZCmanTcGmvHU0xsWvyVeJYcbg1\nVFXD5zNO28xFbmEm7HZRLJMkJy00ZjsYcCiEdEko34ctnaE42YEmwKkrBOJ+EnaVcsaITQRnrB+T\no3HCYwmiwVPku5IkpErIXk5TIMuEYsMlUthsFZwuq0QdjHOdOMuxTUMoFo3iomtnyoPf9qYLvZSy\nU0q5fPq1WEr5d9PtASnlNillo5Ryu5Ry5v4rG9hQugGvmLpkrTWWZE1tAd3uUuqCA/RGyvE4JwiK\nCNcPhJAmFd1noTtSyaj3HDXVKwiPjTDa1TEjfQkmgwxEB/D0VICaIW4NYYo1UG6K02pZgpLJ8q7Q\n85w11bLUM3XzTHHRrTOyb8PVVeLNRzOb6KKJ+ICd+Y6pT4a6w8RI0Ur8kQRVk1Nz2yhCMpguR6pQ\nySAjPV0z1o/elgAAkfgpHJ4kJzINZFUz5eMRdKHiEinM9sWcdRQiUjpbU69wo9eKxeInP//6GevH\nXGPcGTvHmFUzt1csA+BocJSmKi+97hLmD/aTyDrI2NOMizDrkvkomoYstNMebMBa0EKZuQ4hFNqO\nvDYjfTk7PvUgCn9PGIAOz3n0RBWNecMcl2swB+JU6iO8JhZT52pH11WKi6/do6q5rKK6EoDzqXoc\nI1BlP46qS3SPhR7XYgqiCTyZGDapExfQlpx6QL20ZelsOzJj/eg5G0AQIT+bBX+Go9mpGwkt41P/\nAHhknC53A6GhOB5TDDwX8BUkKC25C0Uxz1g/5hqj0M9BfzbvVoQW4ZmhNpxWE2pZGTWRqbsQJ1SF\ntKKR5yxlQXcXFNm4GFhAqf8c9KSpWLSEtsMzU+ibx5sRugOvFkDTrJy3TZKUVhwFQUKKj5rxXhQB\nZzK1lPn6sFgqrtlzpHNdbdNCFE1jXMujNBrDnE1RF0sR8po5aS3Ek0wiAL82QUCRdIenJq2LOVRG\nB8/MSB+yGY3+C0EyyXYahIdMiaTDtIqFIY3RRBQAvxbmOy6BEs7wcdMTmBvyAZ2ysnfOSB/mKqPQ\nz0FVniqKlSAtcUlKS7F+fglC6ijoDKUKsFqjTKgJdl3oIOsw0aOU43AE6U70UL9kDcHBfsZm4ON0\n83gzNen70E1h0uYoenRqSttAiQNVz3Br5CAAIbMdhz1CRYVx79xclVdThScUQjMLipwakX4n81Mj\n9HpMtGd1Mh4b1kyKolQvQVViS7hIxq2E88yomZm5I3ugNYiugZ0JLNFBwn4nE5ZqNo5n6dNTKFLH\np8d5ZTKG1aGxUhygojxDQcGNOBy1M9KHucoo9HPUTUVlpE0l/KTtWW6YV0ifq4Si9Di94Qq8viHG\nmGRTUEXoOukSB73hCgYKzlDlWYSimjj7q+cva/9SSk5MjFE3agYBocJmikaXUSI0mp1NFE0OskM7\nyojwsbBo6uqI8rK7ZyK6YRaoLhfeUJiMQ3ChYDPJPhvzaSNhEnhcZnrz6ymbiFMemXp+q0MqjIRK\nmMwzU8o4mWTysvtw5sA5pMyy0F6J0Lo5oyxHCoUN4xkGFIFHxslKBU2Hdxe8xPmFheh6hNqaj1/2\nvuc6o9DPUXeVLwDg3zteZ1W1j9b8KmqCg/SGK/F5hhmSoxS7G2no7kIrc3BhZAkUNkNniobV6zh3\n8ABa9s3PUd8T7mXMtpvC2Bi6VDhr72JUVlLtihAUfrLDWRZqPRxUl9JUcgZBPTZb2UzFN8yCwpSG\nZlJ4JHQDvqDGfPUwAK4iB8fcSykKxylJTd02oyiCrlg1KafCPK2bkbbLmyZbSkn/+UkUOYpPqCiF\naY6wCkcmS8nEJOMWH34ZJapY0ZryeVfiSYr9WQryN+PxrLjs7HOdUejnqBVuJyYkPVkXHdGTdJVW\n0zg5wGTag+oME1RiWG353HHsKNhNHE+vw53fSqJnjEUbt5KMhGk78vqb3v+/dndRH6ggawlitU/i\n6qkkrphIFGdQZZaCYAgLWToshXidExQX3zOD6Q2zocI+df+DOaVhq16DiHZSHdVI+a0cdFfhiyex\nyCQeLUZKSs6Epg5GrLYoFw4/c1n7vvDaCXTdRYnNRHTyGPFqldNiDZtHMwynYkRMLvJFnPH8Qrbr\np2lrkJgUhfnzv3DZuXOBUejnKJuqsMLtQNqX8t1z38W0sI66iakphgaTRZi8QbJo7BxKomY0uvMr\nUZQ0k+5WitQqvCWlHH/6iTd1Tf1QKs1Pgnk0dQwilSyJktOU9C9HAS6WVTEveY6dpql5dWqrzpNM\n5tHYeO9MxjfMgsKqchyxOCUiQvuSDxLotLIyEmbUpTLs9KFZVCxakqLkIKOqzmRg6gvZsMtE7+jl\nPW3q6M+nPj3MtxQhh89wdMkyUsLJ24YlFzLTk5mpScZ9Lt6lfBunG+Y1fha7vfLyQucIo9DPYTv8\nXpLmKl4ePsfChnxgarKm3nAFBQX99GkDWAoXsai1jVSxk/5oOT1FzSSbA6y+9U6GO9roP3/2T97v\nVzqHMSUlBakxBDAUHafLsYwak8KkLZ+y8R62y+MEhIuCwhHisa1YLI6ZDW+46qz1dRSNjmAzhXi9\nP4UWqWdpqpOUqmAusTPgK6FyIkFpYpiYAp6ki2jESchlxq1Ovukb9YY72pgcs2IxZzBpcfKCQV4r\n3IBVS7E2oNEhYwD4nRO8o/xRrPkhKqs/Tnn57pmMP6cZhX4O2+n3AJCyL8fhaqfHXYI3FWIgWEWB\nv49urQ+br4G3v/YcmBWeCt+LUtBMqm2CBU2bcHi8vPbYD/6kP8CWaIKfDAe5/uQwKWsAl3uE0mNu\nuu1uKNaxyxjhMSvLMu2cd1QwFi3C77/tSg2B4Sqy1NVTNDKKVDXCbYM0briF6ugJVF1ir3BwwL+U\n6tEopalhAGxC0BFpJOgxUy2GGbt4+k3t99Djj6OYqqh02Qkoz5L2mTiurGFJYIyszNIvNGwyyabV\nT1BgHiFtvod59Q/MZPQ5zyj0c9g8h5UauwWLezPnR5/mZM1CqqLD9IYryMubIOQIoCpmtg1GsIYT\nnHQvx+YcImkZI90SYsPd76b/3Fnaj73x+W/+tWcEhwJrRtNINUPWMYIamZp2uLPaxxp5CFXYsMoM\nWkmMMxevp6bm2r60LVdY62opHRoCCbVyElm/imBvL00TGrpL4VDxMhzpLF5tGKueIobkdGAZullQ\npfZw6JeP/8n7DA7203VmDCFUStMS4gc5smEJCeHk5iHBqKYRdFqp9A6QydgZfmEHuzb93RVIP7cZ\nhX4OE0Kwy+8hZKqjJdhG5+IF1E0OMpQpIJm1YK/oI6tnyFSuYO2x0yTcDlr1efRUnCN2ZJilN+6g\noKKKA488RDIW/aP7G0tneHosxDtagsTMAQQ6yrkQh8vWUmxSSbocLAqd4XYOowMHU8uwxF2Ul5df\n+cEwXHGmkhLsioI3peExTXC0J4Ou1LIpOEHAYmWksZKk00JZLE5Fop9es0ZqcCEACY+kZ2L4T97n\n0ad+hsnSiNWqYC5owdGbZN+qLZj1BLeMuBlX+xlRi6ix9nP61C6SGds1Od/8H2MU+jnu3aUFaCgk\n8zbjLgNbJoMUgp7hegrL2hhK9WMuWsydr/wnZHWeSN1LxHWKbCBJunWSnR+5j9hEkP3f/gZS1//g\nvn44GMQRmqChuYWUbQy/PYW3PcMFpw+9xEKhHCE1LtiRPMxFtYIneu+gsqIci8W4GzYXCEXBWltL\nTTyCZo4wcmyA5dt2sWRs6tJJtUFyrqiG+qEwlYkBIgqUxbxMxAqZ8Jlxu1MER9/4c2QjgXHOvfwy\nqrWeMrvKaM0PiI57OeJbS+XkOCYJnTUvkZUmqi5E0DQLlUsar1T8Oc0o9HPcPKeN67x5aJ5dpEzN\nBB1ukJKOgYU48yYZcPeSZymgStNx9E5y1rYEzddHzKUQeamfkoZ5bLp3DxcPv8oLD//b7y32WU3j\n1eee4YOPfZukpQhdzZCIhul0rEcAffUetrKfDssiytNjvGJeRJ6Wprq6+uoOiOGKstTVUdrVAQL8\nsRGs5cuJdLexYiKLYrXzi6ot5IdTlE8/tDusQHdgORMeM9Wih+d+/Mgb3texp59AqJVIXcFjb8c8\nMMLTW7eiC5W39Q0z4T9Fl+pAIKnLREHChtvfcYWSz21Goc8B76/wkxQeApkURxevoDI2xPlQPZqm\notWdAiBWu5oNR44iFYVfmbfQln+RdF+ERPM4q2+9kzV33M3p/b9k7+c/w+DFC7/5gjYVj3H+4AG+\n/Vf3se6Fn1FSuJykJYJA4ut8nReq1uB3mFGtko2Zl1mV7UMA3wvtpE4Zp6amZvYGxjDjLHW1uNra\ncbt9pOwj/OrH3TgWVHB7f5hxUx4tW+rRXQqNoSE8mUlarCkcbauRiqDS0UHr8MQb+vI/OhHkzP5f\n4i3dgtWioC37HsoxKz/dcjNInW1BD+N1T3JhbB7FiTFwuzHp4PUXXIVRmHuMQp8D3ub3sDTPQtKx\ngZH6MqoiI1yQ5YwO1+CraGZCjFHsW8aWnoMo40melbcQ4gRZv53QLzqRKY3r793Dro89wHhvNz/6\n7P/km+/fzbc/uodvvv9envnXf2QiHKWo5h0kRB1pxzBR0yTaSB0jFgej9U7WZ19heLKIe8ee45xS\nTY8spdocpaqqaraHxzCDbAsWIoBV5SXolgjp4ASp5HXUdpzGk9ZxF2Y5U9tA9UiM+lgnwyqEgjWk\n4z5CBQrJYhsvPfHYH93Pkf98DE03E496KMobImPv4XX7dUStLmrC5yi0x0i6+ukMV9M42UPImY+S\nVa/8AMxRRqHPAYoQfGleNdLkRRYoJEw2dKHQ0zMPVc3SX/kyfls5VpcLe1uAiOLhdKWDi3YzWiRN\ncG8rSFi8ZRsf/OZ/sPMj97Hw+hupXtrEune8izV3PkDn9R+l1gGxjBlNZCmMdLCvbjt2VSFdbOdO\n009psy+nKjXMXm4kT81SV1NlnJ/PMfamqekEaoMTIASt7n7G+jOMZBZyV1+aNlM9/3njjZRkIjTE\nOpAoPOFME+5dQ9BnocI+wGsHDxIPTf7efYx2d3LquV9QsfAOpA62pT9GnLDy3Zunnvd6e3c3E1X7\nOT20gixmNgSamTCpKKr7qozBXGQU+hyxxuNklzuCNFk527gAq5biXKyWYLAM6vajKXFKClZwa8s+\nzJEE+x2b6WhvI7u+jOT5IMG9rehpDavDwZIbb2Lb+z/C9vd8lAWplbwadPLZliTtaZ1UXj+ayFLQ\nnOB4fjWxaicrI0cp0kbYMnCOFCYej2+kRE5QX18/28NimGEmnw9LTQ3izBnmLVxCgWWEwFoblmIz\nN7TFcad1hhsqSDdZWDTeQ142wqQ1xDNj6xCKTlU2Qnd5A0986Yu/c66lbCbD/oe+gTXPTTxcgdsR\nQi0+y4HgTob9xah6hmXJPCLFR3mlcwOObJwbLG1kFLD4S2ZhROYGo9DnkH9ZuhJTpp9obQG10V6O\n6vVc6FqNxZKku+YZ6l1N1GZ7UdojDIlyDi0Z5/VT4zi2VZE4M8bwV48y+VQH4ed7GP/eOYb/4SiT\nrQHu7s/Q7z5LNFBD3DqGZJiXCnciFIFSbmOP7Tu0JRdw58iveNJ8AxHyWKoOGYU+R9mbmkicOsXN\nO7ahKIK2zuMU37WQwfB+PtCR5KKpge/sup0a0wTzo21ksi5eShQSCVZjqW5FiBp6J8Z47P5PkxwN\n/eb36rrGvn/7Z4Y72li88c+JRbJ4l/2M8EABe7fciSI11seeo9TfQUKzcCFRw+LJVtLVU5PllTUY\npwl/H6PQ5xC3xcnuvFZ0v42UxUIGleOTjUTHKkjV7sNky1Cdt4iVF4/gTIc5XVHB6ZEwJwZi+D+w\nFEtZHtEjw4Sf7yXTH8W+MB+TFKhahotRG5m8PgQKojfMy6WLyFQ7eXv/ExRYg/gmVASSf0neRp6q\nU11gp7i4eLaHxHAF2JtWoE1M4JicZP2GDdSrAf7Pj57lZFktjSd/yepAlp8XvJ309jwWh88hhUJN\npIuDgdWY7GE260fpqtvEwFgr/3H/R3jxc9/g9ONP85O/+QwXXn2JtTfcTc9xsNsj2CsP8b3onxF1\nONGFyqbOGJGKl3np/B1khYntgaNctPgBWLNy3iyPzFuXUehzzP1L78GkjRCtKWBZqIVTWjVPt+5C\nUbL01T3GAu91XDd5AmtHiGFLBY/XSs4cGuKbPzpH+6YSyr6wgfK/vQ73jmoSLQEyGZ3XnadIBmsZ\n8rTS43Gxt3YP0qRwWzrK9vwnCcc8vLPzJV4xLac/U8h8ZYhFixYZN67kKMfq1QDEDh1ix7atNDTO\nY525l6ie5Uimnw8cv4A7rfKJxV/GXxynKt5L1ORj4FA+1pBK4ZKnKI8UUbjyelAUTrbu4/m9/5fx\ntm7W+N9G+kIN0azEv/q7vDyxjdcWbMCbmaQs20mTJUPKFGff0ApKk0PcUXCMforQNRt1pfmzPDJv\nXUahzzEVrgrWuQQDDdU4tAg12QFejC+mq30TqapXsHgj1OctZMWZc3i1AOkFDl50ZrD1J9n/tVM8\n8Dcvc+Lrx5h47CLBjM6LsRixSDGj3jFea9zIvuINpKNwi9XCxsDXsRek8I6b0YSJT2Y/TJ5ZsEQZ\nZNGiRbM9FIYrxFJbi7m6isgLL6KqKvfuvoeNGzdSLcax1tTQkjrKA6f7kJqTh3beR0Omk3G7l2Wj\nHQy0z0e1xFhc9XNeltXc/c9fZ8WNN1Nkq2ZF3XZKNt5AW1biq+4kUBjmUdefUTfYTdBawNaeI6gV\nh3i1Yydh4eSm0SP4y+NErB5SZp9xYPEHGIU+B/3N4uvR82xk811sH9iHixRf67qdkXApffO/wxLf\n9awLn8fTNk7SmcfpWiuTFp0lZpWPJxWKxpJcSGqcTeh4irpoyavi4W3VdDqKcTQHWIjKTWOv4G/q\nIRZzcUPPBQ5YmggkPWzNnyQ/32dMe5DDhBC4d+wg9vrrZMfGUFWVHTt28IlPfIING9aTdXnpSZzg\nQ2faSSseXrrlNjxynMcbtmB/Mk75QApf4wGuSwxx6N6PsqS6jlUfuJuj3cd5/tU+LHkxnMsf4uvp\nB7CnUng9AfKy4+yKqwQsYX7atZXS5BB3eY5wNlOPVCR5VTWzPSxvaUahz0FL3Q4WOW2Mrl3DiLWY\n9yZ+iYbCt058mLivn0zpWVZ4V7H1RIDKZDdyvofl+RbW2E1YBQQ1Scgn6PXE2Fu4nL2bXTiDcXyv\nD+LUFT4WHyS7+CnMeVlWd4zRbSvjH9N7qPZZ8Uy2sXbtWuPoKsd577oLslkm9v7kv9q8Xnbu3MmH\nPvhBlFiYSOwcnzjeikO1M7G8lnG7j8P+JXDAhYw5KVv7PQYWvofnvtvPqb2TWFz3oKhxijb+Hd9M\n/gWj9hLe1/UTTjqauK+5GWvZMR498z6S0sQdY4dYXNTNSVaDVFixfOEsjsZbn1Hoc9Tu0nxa8wsY\n8ZXB8Ag7TecYyPj40dl7GZz3XWp9C1miDbH4oBmzkHxhpZNvqUnuIsIdpiifzsT5UYObQ4Uq7hNd\nZE9GMUkzDyZDhMofJr8xhG3IgTec4bC+kI6kl9uKw9itZpqammY7vuEKs9TUkLdtG8FHHiE7Nvbf\n3iutqKBm3gLUUIDx1EU+d6SXQqcZrcTKD+dv53xrOStPDaFYopSt+Q5xp4WoKUxBw9PU3fI5Hpt4\nJ2d8y7nt4rMcnbeOz5/qYZuU/CiwgJPBhWwMHqLG3EpWmOkzlxBJF7CmrmiWRmJuMAp9jnpPaQH5\nZpXEpqV0OOqpHzvNUnWIgyOrORaex0jlXlbnr2f9yBDXHeljIJrk+1aNsekD8UxWJ3QxguV4gPSY\nmXkizpeSvcj5X6N0zRDRyUKua+/lvK2W/x1+H+9fU0y0+wxr1qzBZrPNbnjDVVH0l3+JzGTov/8B\ntHD4v723bssN6BYbejLBWVr4l+Nh6vwC3WbiM5v/gmeP1TLUtwBn+Xlqan6Jt/MJBuIJnjz7PvZV\nb2X55Dm26RV89WAVW8cc/KMS5JmuHSyOtLAy3MLComEO603oAnpcFZR4jP/n/hDTbHfAcGU4TSof\nqyziixkNZ6mfaPcY2zxHGVa38sjZeylc/Q02jY9QnHHQH7BgDk8i7Arp+R5wqNSEw9Rm97FUxCnM\n66HCFEHkD2NVJX2BRexpeZkWZz1fCL6b92yoI6/zAHg8bN68ebajG64Sa10tZV/+EgP/61N03HwL\n/o99FO/b347icNDQ0ICntJzIZIi0rvGiuZmHW9bwyfIIpwatfG7552gc2ct7rQsoXn+M1FAJP2zc\nzEDJVhYFh/jGsRJsukL7+EkeLPUxOLKBtdljrI8cx70oSEFK52mxFjWVz5KVDbM9FG954s0+3msm\nrV69Wh47dmy2u5FzYprG1iOtyFQExy+Oc/PgIfRqH9+TW0iiUmIfZyBegl3qrEqGWJ0qIlM0SMmK\nRynz9gKQyViQKSuZWJbhTDUB0cBfdTxKn7WEHyS24l55L9nu48RiMfbs2UNFRcUspzZcbYmzLYx8\n8YskTp1C9Xjw3nMP+Xv+B829vTz55JOMqRqFmko+xbwjuYR/8AR5KmpCCoG1SqG0OkSfuYK4cLK7\nK8H9rWliY+2c1yVPzovxeqSGex2P4704QfH6EfRjeWSq6xiQZYxOruR9921iXd21OZmZEOK4lHL1\nH93OKPS57bWJKO841c71mXGSB0Pc1Huc/PIOfmrdRNqepi6vn23BOsqjOgnv98muCqKkLVi63sbB\nCRsyLjB3N3OuaTU3553h7tH9jJm8/CB7C2FzJXomRVFREbfffrtR5K9hUkoSJ04QfORRIs8/j+r1\nUvyFz/PdCxdIplK0ZTspSxZRlC7g5uwiukwmHjTFGUjrmKwKlXWDvNd5k/H2hgAACENJREFUnAUv\n76A9ZSYq7OQv+wFfHNpJvdrLlosvUrpxgt7m+ZiLi4gKG75QA0ddFTz6+RtRlGvzy3+j0Bt+45u9\no/xtxyBNeoyGl4dZMTLIbf6vciq/DrlkGJNpas4RqQsyQysIdG6kQw+DlsXR1UJ1eYx3OQ6Txkyz\nrOHB9PtZ55hgxdLFrFq1ioqKCuMqG8NvpNrbGfjUp0idO4/5ttvY63QQ82RIxZJ4sybco2bKNRXV\n5qZb+HjK7KFLtZFvC3KdeZi1HVXM88GjDYd5pmcbd04+R1llhli6EITAxySLzUnO972TwnfXsXvz\ntfuoSqPQG/6bb/SM8JWuIVyJLLtf6GFRqoc7fV9kVMljX+EqNMVKeKKCSCoPRddQQ+OUhNu5oaCd\nUofGi/pOHsxuQ5psfHF7MdvXr8But892LMNblEynGf2nrxF85BFEfT1HViznV94hymPluNMx/ANB\nemprMGtJ6iJnORKt4VT5QrpSNVhI47cGGUyVsMDcx3p1mLQOfpmg0foiN2S7eXjsW8TzivjUlzej\nXqNH82AUesPvcDYS5+GBcV7tG2X78xdYmxjlbd6/R5c6J4MlhDNW/LYYC91jOEwZAlk/v9Jv5QVL\nA8N51ayqL+Pju5bhsRtTDxvemMiLBxh68EG0YBBTRQU9quTEsibiTieObIqUrqNZ7JhlGkGEvLo+\njkcWMp4ooFAmaNRG6UktpjSVzwv5z/J8/HFelTu4MPwRdnx4CY1N1/ZllbNe6IUQu4CvAyrwHSnl\nV37ftkahv/o0XeML//ZeUuEsu7MnWaFNXQudlYJTtlq+Vfsuqqvr+Oy6d6IoxlW4hjdPj8WY/Nnj\nxE+eQLE7aFnu4Wvai2zuuci6i04G86rwFFjo1EuJmqzY1DB6KIWpwEMoeD3nVTvZpRGWjn+O/x0I\n8GTky8jy9dzxQNM1f8pwVgu9EEIFLgI3Af3AUeBeKeW537W9UehnRyKb4KFnPoqr+yDFtnxW1O6i\ncON9WJz+2e6aIcdpukZnqJO+cD8HHnmO3RM/ZZFnlH1D8zgfLqe8ehetDoklUExe2otVRNjtv5+o\n5ueA9Rvcfn8TTo91tmPMutku9BuAv5FS7pxe/wyAlPLLv2t7o9AbDNe2nuYT5P3iw+Qn20gveQ/W\nHQ+iu4p5qe8lzry2j3u69lGU7qV3w14qb9yKajY+ZcIbL/RX6oapcqDvkvV+YN0V2pfBYJjjqpeu\nhAUHYf9nsR75f3D2+yjucm6UOjdGhsDshHc+TM2i7bPd1Tlp1u6MFUJ8CPgQYDxA2mAwgNkGN38V\n1n4Izv8cAh2AhMIFsPRucJfNdg/nrCtV6AeAykvWK6bbfkNK+RDwEEydurlC/TAYDHONvxGu/+Rs\n9yKnXKkTXUeBRiFErRDCAuwGnrpC+zIYDAbDH3BFjuillFkhxMeBfUxdXvmwlLLlSuzLYDAYDH/Y\nFTtHL6V8BnjmSv1+g8FgMLwxxjVKBoPBkOOMQm8wGAw5zij0BoPBkOOMQm8wGAw5zij0BoPBkOPe\nEtMUCyHGgJ7L+BV+YHyGujNXGJmvDUbma8ObzVwtpSz8Yxu9JQr95RJCHHsjE/vkEiPztcHIfG24\n0pmNUzcGg8GQ44xCbzAYDDkuVwr9Q7PdgVlgZL42GJmvDVc0c06cozcYDAbD75crR/QGg8Fg+D2M\nQm8wGAw5bk4XeiHELiFEqxCiXQjx6dnuz0wRQjwshBgVQpy9pC1fCLFfCNE2/dN3yXufmR6DViHE\nztnp9eURQlQKIQ4IIc4JIVqEEPdNt+dsbiGETQhxRAhxejrz56fbczYzgBBCFUKcFEI8Pb2e03kB\nhBDdQohmIcQpIcSx6barl1tKOSdfTM1z3wHUARbgNLBotvs1Q9k2AyuBs5e0/QPw6enlTwN/P728\naDq7FaidHhN1tjO8icylwMrpZRdwcTpbzuYGBJA3vWwGDgPrcznzdI5PAj8Enp5ez+m801m6Af9v\ntV213HP5iH4t0C6l7JRSpoEfA3fMcp9mhJTyZSD4W813AI9OLz8KvP2S9h9LKVNSyi6gnamxmVOk\nlENSyhPTyxHgPFMPmc/Z3HJKdHrVPP2S5HBmIUQFcAvwnUuaczbvH3HVcs/lQl8O9F2y3j/dlquK\npZRD08vDQPH0cs6NgxCiBmhi6gg3p3NPn8Y4BYwC+6WUuZ75n4FPAfolbbmc99ck8LwQ4rgQ4kPT\nbVct9xV7wpThypFSSiFETl4XK4TIA34G3C+lDAshfvNeLuaWUmrACiGEF3hCCLHkt97PmcxCiFuB\nUSnlcSHEDb9rm1zK+1s2SSkHhBBFwH4hxIVL37zSuefyEf0AUHnJesV0W64aEUKUAkz/HJ1uz5lx\nEEKYmSryP5BSPj7dnPO5AaSUk8ABYBe5m/k64HYhRDdTp1q3CiG+T+7m/Q0p5cD0z1HgCaZOxVy1\n3HO50B8FGoUQtUIIC7AbeGqW+3QlPQXsmV7eAzx5SftuIYRVCFELNAJHZqF/l0VMHbr/O3BeSvlP\nl7yVs7mFEIXTR/IIIezATcAFcjSzlPIzUsoKKWUNU3+vL0op30uO5v01IYRTCOH69TKwAzjL1cw9\n299GX+Y32TczdXVGB/DXs92fGcz1I2AIyDB1fu7PgQLgBaANeB7Iv2T7v54eg1bgbbPd/zeZeRNT\n5zHPAKemXzfncm5gGXByOvNZ4HPT7Tmb+ZIcN/BfV93kdF6mrgw8Pf1q+XWtupq5jSkQDAaDIcfN\n5VM3BoPBYHgDjEJvMBgMOc4o9AaDwZDjjEJvMBgMOc4o9AaDwZDjjEJvMBgMOc4o9AaDwZDj/j9c\np5Plqip5IAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb07c37cad0>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FcXawH9zanrvvRFC772DCCoqTewdudh791PxiuWC\n5eoVC4oFFEFBioAKSkdKgEAIISSk997OSU6d749zwNCDUgT39zz7nD1T35ndfffdd2ZnhZQSBQUF\nBYVLF9WFFkBBQUFB4dyiKHoFBQWFSxxF0SsoKChc4iiKXkFBQeESR1H0CgoKCpc4iqJXUFBQuMRR\nFL3CeUEI8ZEQ4v8utBznE+HgcyFEjRBi+4WWR+Gfi6LozyJCiFwhRJMQorHF9r8LLdffASnlVCnl\nv891PUKIl4UQ8851Pa1kIDASiJBS9r7QwpwpQohHhRClQoh6IcQcIYT+FGk/EUJkCCHsQog7jom7\nQwhhO+a6GNoi3k8I8YMQwiCEyBNC3HRM/hFCiANCCKMQYq0QIrpFnBBCvCmEqHJubwohRIv4GGce\no7OMy85G31xsKIr+7HO1lNKjxfbAiRIJITStCVM4v5zlYxAN5EopDedCjnN5vgghRgHPACNwtCMO\nmHaKLHuA+4BdJ4n//ZjrYl2LuA8AMxAM3Ax8KITo4JQjAFgM/B/gByQDC1rknQKMBboAnYGrgX+1\niJ8P7Ab8geeB74UQgads/KWIlFLZztIG5AKXnSTuDmAz8A5QBbx6kjAV8AKQB5QDXwHezjJiAAnc\nDuQDlcDzLepQ4bg4DznLWwj4tYi/BkgDaoF1QLsWcRJIaPH/C+BV534A8KMzXzWwEVCdoI3C2ZZy\noB5IBToeW57z/1NACVAMTG5ZvzPtB8AKoAHYBsS3yPtfoMBZx05gkDN8NA6FYQEagT0nOi7Ay8C8\nY/r0bmefbnCG9wW2ONu8Bxh6zLHMdsqWA9x8gr64G2gGbE5ZpjnD7wGynP24DAg75hjcD2QCOSco\n85zIepLz9RvgtRb/hwOlrci3CbjjBOf+ppOkd3ces8QWYV8Bbzj3pwBbjknfBCQ5/28BprSIvwvY\n6txPBEyAZ4v4DcDUC60rzvemWPTnlz44LrpgYPpJwu5wbsNwWFEewLHun4FAWxzW1otCiHbO8Adx\nWDdDgDCgBofCRAiRiMO6eQQIBFYCy4UQulbI/ThQ6MwXDDyHQ+Ecy+XAYBwXmDcwCccN5yiEEKOB\nx4DLgARg6AnKugGHBemLQzFObxG3A+iKw8L7BvhOCOEipfwJeA1YIB1WY5dWtO0wQ4B2wCghRDiO\nm8yrzjqeABYJIQKFEO7Ae8AVUkpPoD+QcmxhUsrPgKn8Ycm+JIQYDrzu7JdQHDfzb4/JOhbHOdH+\nXMoqhIgSQtQKIaJOUkcHHDeNw+wBgoUQ/qeQ61R0E0JUCiEOCiH+r8XTSCJglVIePKauDieSQzqe\njrJOFn+CvNlSyoaTxP9jUBT92WeJ8wI6vN3TIq5YSvm+lNIqpWw6SdjNwNtSymwpZSPwLHDDMY/p\n06SUTVLKPThO3MMKbSoOC79QSmnCYblOdOa9HlghpVwtpbQAMwFXHBf/6bDgUEzRUkqLlHKjdJpH\nJ0jnCSQBQkqZLqUsOUG6ScDnUso0KaXRKeex/CCl3C6ltAJf41DsAEgp50kpq5x99hagx3Hj+yu8\nLKU0OI/BLcBKKeVKKaVdSrkah8vgSmdaO9BRCOEqpSyRUqa1so6bgTlSyl3O4/Ms0E8IEdMizetS\nyuoW58c5kVVKmS+l9JFS5p+kDg+grsX/euevZyvb2pINQEcgCJgA3Ag82aKe+mPS17eo51g5Thdf\nD3g4/fSny/uPQVH0Z5+xzgvo8Da7RVzBCdIfGxaGw9I7TB6gwWFJH6a0xb4RxwkNDl/qD4dvMkA6\nDtdB8LHlSintzrrDW9GmGTisqF+EENlCiGdOlEhK+RuOp48PgHLnAJ3XCZKGcXS7T9QvJ2sjQogn\nhBDpQog6Zzu9cbiX/gotZYgGrmt5w8bxFBXqtCivx3FTLRFCrBBCJLWyjmOPQSOOJ56Wx+BEfXEh\nZG0EWh47b+dvwwnSnhKn0ZLjvBGlAq8AE09Sz+G6Gv5kvDfQ6DRETpf3H4Oi6M8vJ7KCjw0rxnHx\nHiYKsAJlrSi/AMdjessbjYuUsujYcp0WTyRQ5AwyAm4tygo5IqCUDVLKx6WUcTj8/I8JIUacsIFS\nviel7IHD9ZDIH5ZbS0qAiBb/I1vRtsNyD8Lh358E+EopfXBYbYdnWpyojw2cpG0tRW+xXwDMPaYf\n3aWUbwBIKX+WUo7E8ZRzAJh9gvJOxLHHwB3HIGFRizStWU72fMiaxh9Pijj3y6SUx7ni/gSSP47X\nQUAjhGhzTF2Hn5KOksPZZ/Eniz9B3jghhOdJ4v8xKIr+78d84FEhRKwQwoM/fM7WVuT9CJh+ePqZ\n0097rTNuIXCVc6qaFoff3YRjMAscvtubhBBqpw99yOFChRBjhBAJzptDHY6nBPuxlQshegkh+jjL\nN+AYjDwunVOWO4UQ7YQQbjhmVLQWTxw3vgocCuJFjrbayoAYIUTLczsFh/tLK4ToyR/W5MmYB1wt\nhBjl7A8XIcRQIUSEECJYCHGtU+GYcFiNJ2rjiZiPo91dhWOq4mvANillbivzn09ZvwLuFkK0F0L4\n4jhGX5wssRBCJ4RwwaHAtU45VM64K4QQwc79JGdZS+GIz30x8IoQwl0IMRCHMTHXWfQPOFxPE5zl\nv4RjkP1ACzkfE0KEO8crHj8sp9PvnwK85JRnPNAJWNTKPrh0OJsju//0DcfsjiYcF9Th7Qdn3B0c\nM/PgJGEq4EUclloFjgvZ1xkXg8Ma0rRIvw6Y3CLvY0AGjsfTQxw9c2IcsB+Hsl4PdGgR1xOHpdOA\n4yKbzx+zbh51ts2AY1D2/07S/hHAXme7K3H41j2ccV9w9KybZ3G4Z4qBe53tijxJ2qFAoXNfDczB\n4WstwWHd5+KcVYPDQt6EYyB6lzMsDsfMnUYcA5fvcfysG80xbenj7KNq53FYgePpKtQZXscfs5fa\nn6Q/TnR8pzqPSzWOmUwRLeKOmvl0gvLOmqzO+EYg6hT1PYbjxlkPfA7oW8StAp475jyUx2xDnXEz\nneUYcEw8eAXQtsjrByxxxucDNx0jx2U4nkaanPXEtIgTwH+cba927otj+mydM28GJ5kVd6lvwtkZ\nCgoXDOesoX04FElrnlwUFBTOAMV1o3BBEEKME0LonW6BN4HlipJXUDg3KIpe4ULxLxwvVh3C4fO/\n98KKo6Bw6aK4bhQUFBQucRSLXkFBQeES52+xiFZAQICMiYm50GIoKCgoXFTs3LmzUkp52kXa/haK\nPiYmhuTk5AsthoKCgsJFhRAi7/SpFNeNgoKCwiWPougVFBQULnEURa+goKBwiaMoegUFBYVLHEXR\nKygoKFziKIpeQUFB4RJHUfQKCgoKlzh/i3n0Cgr/NKzWRqqrN2E05iJUGjzc2+Dr2xeVSn+hRVO4\nBFEUvYLCecRqbSAn9wMKC7/CbjcdFafReBMdNYWoqDsVha9wVlEUvYLCeaKh8QCpqffS1JRPSMhY\nwsNuxMOjHVLaqKvfRVHh1xzKnkF5+Uo6dnwfN7fo0xeqoNAKFEWvoHAeqK1NJmXP3ajVbnTv/i2+\nPr2Oig/wH0qA/1AqKtawP/1pdu6aRNcun+Pp2f4CSaxwKaEMxioonGMaGvaTsucudLoAevVcdJyS\nb0lg4GX07LEQIbTsTrkdozHnPEqqcKmiKHoFhXNIs6mUPXvvQaPxpHv3r3FxCTttHnf3eLp3c3wb\nO2XPXVitDedaTIVLHEXRKyicI+x2E3v3TsVqbaBLl89w0Ye0Oq+bWyydO31Ic3MR6QeeQ/lAkMJf\nQVH0CgrniKxDM2loSKVD+5l4eiSdcX4fn57ExT5GeflKiou/PQcSKvxTUBS9gsI5oLJyLQUFc4iI\nuJXAwMv/dDnR0VPw8x1AZtYbmExlZ1FChX8SiqJXUDjLmEzl7E9/Cg+PdiTEP/uXyhJCRdu2ryCl\nmYOZ08+ShAr/NBRFr6BwFpFSkpHxIjabgY4d3kWt/usvPrm5xRAdfR/l5Suoqt50FqRU+KehzKNX\nUPgTGOvrOPj7JpoNjYQntSeiXUeEEJSXr6SicjUJ8U9TcaiBJQseo6ogn+jOXRl5zwO4efv8qfpi\noqdQWrqYrKw38Ou1DCEUG02h9SiKXkHhDDm4bTOrP/kfzY1/THsMiIym+5iR1Kin4+7ajv0/1rN/\nw//hExxKu4FD2b/hN374zyvcMO0/qDVnftmpVHriYh8hbb9jcDY4eMzZbJLCJY6i6BUUzoADWzaw\n4r0ZhMS3YeQ90/EJCeXg1s3sXLGEAwem4ZtQT+p8Hyx1m+gzbhJ9x9+ARqcjqlNXfnz3DbbPnkVM\nSRXSbMZj8CA8R49GqFpnnQcHjyE37yOyc94lMHA0KpVy+Sq0DuVMUVBoJdm7d7Dqf28R3rY9E56b\nhlbvAkDHoZcR0lHDnr2rUDUOoufIK0kaMBjvoD/mzSf26E2IizvJq1fiXVSDRqujbskSPJb/SNiM\nGag93E9bvxBq4uMeY2/qVMrKlhIaOuGctVXh0kJx9CkotIKijHSWv/0GgdGxjHv6pSNKHhwvRh3M\nfAU3t1iGjPmYPuMmHaXk7U1NFNz/AFFpmZi1GqyvvEibDesJfu45GjdsoPC++5Bmc6vkCAi4DA+P\nJPLyZysvUSm0GkXRKyichoq8HJa8OQ1Pf3/GPzsNvZvbUfH5+XNoasojsc1Lxy0vbGtoIH/yPRg2\nbaLj088SGBPHrl9WgBD43XYr3q+/zgqritfnfc+XRZXkNR29dPGxCCGIipyMwZBJVdW6s91UhUsU\nxXWjoHAKsnZsZdUHb6FzcWXCc//Gzcv7qPjm5mJycj8gMPBy/P0HHRVnKS6m4P4HMGVmEv72W3hd\ncQXdA335+cN3KUpPI9k/nGd9Y6i552FHhoOFAIwP9uWl+DCC9doTyhQcPIZD2TPJy59NQMCws99o\nhUsORdErKByD1WIhZ9cO9v72M7kpOwmMiWPcUy/iqbNC+nKoLwGVGnyjyTQuBuy0SXj+SH57czM1\n87+l6uOPkVYrkR9+iMeggQC07TeQdV/N5j8p+1kYaqW7lxufRgbgO/lOSrV6tkyfwadltWysaeDT\nDjH08fE4Tj6VSktk5J1kZb1OfcM+vDw7nq+uUbhIURS9goKTmpIidq5cRsbm9TQbGnHz9mHQ+PH0\nCK5GPf9KqMw4Kn29h4by7j7EmOJxNUmk1krNwoVUffgR1ooK3Pr1JeT/XkQfF3skj1bvQu3o61gY\nmMBVPm583KUNGpWg6ZVpiJtu5u75nzPxqae5KzWXG/Yc4qtOcQzy8zxO1vCw68nOfpeiwq/xavf6\nOe8bhYsb8XcY0OnZs6dMTk6+0GIo/EORdjvbfljIlu++QaVRk9irD+2jXYmqW4cqdx1IO0T1h6Sr\nIKov+ESBtLM79R4amjLpv70GtU1QUdCD+vxIdPHd0UW3R+jdULlo0Ia649oxAH2sN3lNJkZsP4B3\nUS7vu1vof+3EI3KUvfkfqj//nOi5X2Ho0pVJKYfIaTIxr3McA32PV/bp6c9SWracQQN/R6M5Pl7h\n0kcIsVNK2fO06RRFr/BXsNlslJSUIKUkLCwMtVp9oUU6Y3774mN2r1pOUvsoBkYU4VW8BWEzY3X3\npT6uA43x3XENH4K//xBUKoffvLp6C7tTbiU+6ml89nTEuC0XuyoSAJWbBk2wGyq9BrvRgrm4EawS\nfYIPD3VzIdnQxKNblqIrzuPudz85Mo/ebjSSffU1CK2W2KVLqBFqJqRkUWwys7x7Im3dXY6Su74+\nlR3JY0lMfInIiNvOb6cp/C1QFL3COaewsJDFixdTXV0NgLe3N2PHjiU2NvY0Of8emOuzSfn6RTau\nq6WbXxHDgrIx6VVUBOgoD9BT661BqLRIaQfsuLnF07nTh7i6xrJjyzhMTaXEbHwdlVmLrS4Xn/Y1\nuFd8gLrTAMT4j0HtuCnYzTYM20pZtbOAh7q48GJQAMNrD7HivRmMf+ZlYrv9cZ02btpMweTJ+N87\nlaCHH6aw2cyVOw+iV6lY2aMNgbqjB2i37xiL3d5Mn96rEEKcz+5T+BvQWkWvTK9U+FOUlZXx5Zdf\nYrfbmTBhAtdddx0ajYZ58+aRm5t7ocU7Jc3Fm6n9ohf2t3uwc2M5Ie4NdBrkRcmYe6m541PcJy6m\n7eVrGDx4J8OGpjN0SCqdOs3CZrCQ9f0sMmd/RKN5H/6HrkWjrcXw2zR8xwXj/eBDaC6fikhbBD9M\nBbsdAJVOjfvAMD7o7UVkk50xy4uJa9cTT/9Ati5ecNR8eI+BA/C+9hqqZn9Kc8ZBIlx0fNkpjkqz\nhTtSczA5yzxMeNgNGAyZ1DfsPa99qHBxoVj0CmeMyWTi448/xmw2M2XKFLy8vAAwGo189tlnmM1m\npk6dirv76d/2PJ9YzFXUrrwd/z0bkUKw2d6DHemu3DDtTcKTOiDtdppS9mDYtJGmtDQs+QXYjU2o\n/duijeqHcIkBVOT2ewnp1USvhIXkXjUGz8svJ3zmjD8q2vgWhl/ep6LN45jaXoennwu7vSR378/j\nvyHBDJyfjS7Ki6KIfH79/EMmvvAq0Z26Hslurakh+8qr0ISEEPPtfFR6PT+W1zI5LZebQ/2Y2Tby\niPVutTawcVNvwsKup23iy+e1PxUuPIpFr3DO2LhxI9XV1UycOPGIkgdwc3Pjuuuuw2g08tNPP11A\nCY9GSklp0WJqPu1MYMpGGiPiMU1dR1pxKDFdexAcHEblhx+SNWw4eTfdROVHH2OtMKBvPw7Xfs+h\nS7wZtGGYs9dRnfkMJs889CZvaj//HGm3E/jIw0fqKs2uY0nyML6omMOKLR1Y8/l+Fr+1i5e2ZBOK\nivGJwXhfGYspq5Y47y54+Aew8ZsvsNttR8rQ+PoS+tp0TOnplL3umFEzJsiHR6KD+bqkmq+Kq/5I\nq/EkIOAyyspWYLe37u1ahX8eiqJXOCPq6urYunUrnTp1IiYm5rj4kJAQ+vfvT2pqKsXFxedfwGOw\n2Uzs3/8EYsm/CCpvxDT4Abzu2klxvgljXS0xdUayhg6j4r/voW/ThpB/zyDo+QXokv4F+iRcksKw\nXxPHr1fHM+eKoeRcq0EYBS7P5LF5wybMYyehi4igtszIT5+ksug/O6kuMdJ7TDTjOy/ipsBHiBiv\np9BHTdfkBn76YC/azoHoYrxo/LWQwdffSVl2Fvt+W32U3J7DhuF3913UfruAuqVLAXgyNoQRfl68\nkFnE9trGI2lDQ8ZhsVRTVbXhvPatwsWDougVzogtW7Zgt9sZPnz4SdMMGDAANzc3fv311/Mo2fFY\nLDXs2n0jLju+IbjCjBzxEvrh05FA2sJv0NrsuCxbiddVVxG7fBm+d76MMdWX5gN1ePQPp/ymRJ7C\nyOBlKby8Mp0dVcW4hxexs24U24I60b6wgNRN+3jlhbV8M20beWnV9L46llte6UuvMfGE3jkd3yAd\na+p24KGC+3pHU3Cghh//twf3y6KxN1oIt8cS0a4jG+d/SVND/VHyBz3yCG69e1P8wv/RuHkzaiGY\n1T6KCBctd6flUmJyWPB+foPQav0oLV1yAXpZ4WJAUfQKrcZkMrF79246duyIr6/vSdO5uLjQr18/\nDh06RFnZhfnOqdXaSErKXaiK9xCX1wSdJiEGPoq1pob8qfeSf+ggoVoX4n/4gZCXX8Gw3Urd8mx0\nMd6439+FN80Gxs9LZk9BLY9elsiGJ4fxwbhChBBM7XcXHYPy2XnlRBra3IF/hY10YaB+eADdRkej\nc3G8h2hRu5Lc9imW+Q1gQsVaevX1ZtTkDpTm1LNhTQH6tr40bixi2K1TMBkNrJ8756g2CK2WiA/+\nhz4ujsIHH8K4ezfeWg2fd4rFaLNz975cTHY7KpWW4OCrqaz6FYul/kTdofAP57SKXggRKYRYK4TY\nL4RIE0I87Az3E0KsFkJkOn99W+R5VgiRJYTIEEKMOpcNUDh/pKSkYDab6d2792nT9ujRA41Gw9at\nW8+DZEdjt1vYmzqVxvp9dMl1RXiGwVVvYc7LI/eGGyjdnYxZo6bDvQ+gi4ylYnYqxtRKSnxdWLK/\nhrkvb8d3dTmPSU9eCQyhT6OK2r1l5OctQGXuzdKZh9jl/ip1TUPwDthH39SZ3LTnHb5em8qdX+yg\nvtlCbWkJc59+mBnJ2ZhVWm7P/grD59cR3zWAgRPbkJ1SQZmbDrvRinuVG72vnUja+jVk795xVFvU\nnp5EfvIJmoAA8u+ejGHbdpLcXXmvXRS76o08e7AQKSWhIWOx282Ul6887/2t8PenNRa9FXhcStke\n6AvcL4RoDzwD/CqlbAP86vyPM+4GoAMwGpglhLj43qJROI5du3YRFhZGRETEadO6ubnRpUsX9u7d\nS1NT03mQ7g+ys9+mpuZ3uluHo6kugKvexlRQRu4NN2Kvq0dOvhOA8IT2VHy+D3NhAzsMVnaXN5Fq\nN5HqYSemcwCxEV7UFDWy65d8UjZ/h6SG3K09qTFLMG2j3+hMgkd+gsdTifgaapiz70v2phcw4YNN\nfPnqNIwN9RzqP4puUuBe1wP30t+pf/te4j00xHbyZ+OGIoS/C41biukz/gb8I6JY/cn/MBkNR7VH\nGxxE9Ly5aMNCKZgyhcaNG7kq0DE4+01JNV8WV+Hp2QlX1xjKy1ed175WuDg4raKXUpZIKXc59xuA\ndCAcuBb40pnsS2Csc/9a4FsppUlKmQNkAac3ARX+1pSXl1NWVkaXLl1anad79+7YbDbS0tLOoWRH\nU1m5lrz8T4gMnIB3ys8QNxSLZ2fyJ9+D0GqJ+XY+FY31eAeGYvqxHHNBIzsarah7BPGBexN7Q9U8\n/2w/Jt3bhasf7Mot/+7Hv94fQsKgLZgbdLBvBe3SZ+BhW8O6b35EV6CjyGsVgTOfwbWsiC/zFpNf\nVss3ur5EXP80hVJw9T4jGt2d1FiG4dX4Laaln9KuuAG9VsWBWjOWUgP2kmZG3/sIhpoa1n4xGwBp\nlzRlVFP3cy7GXQZC3/wIXVwcBffdT8Ovv7YYnC1ke52BoKDR1NT+jsVSc976W+Hi4Ix89EKIGKAb\nsA0IllKWOKNKgWDnfjhQ0CJboTPs2LKmCCGShRDJFRUVZyi2wvkmNTUVIQQdOnRodZ6wsDACAwNJ\nSUk5h5L9gcVSw/70p/DwaEdChSc01WAf8Cz5U6ZgNxiI/HQ2upgYyvOy6RlwOebsOnYbrLgPCOXf\nhcW4u2r45p6+RPu702S2snjfdh5e8RE3f/0Eu8qbOHggkk4Hygka1JObXn2L+LbR7PotEmmxk294\niYCH7kafupvp2z6gQhvAtOJG9HbJdaPbEvZif+TUtyls8sVH+w5+8aV01UBWlQk7YNhWQkhCIr3H\nOlw4u+f+QNm7u6j6PI2G9QU0bCiiem4Ovre9hku7dhQ+8ijGteuY1T6KKBc9k9NysXuPQkobFRUX\ndhBc4e9Hq1evFEJ4AIuAR6SU9S1ft5ZSSiHEGb15JaX8BPgEHC9MnUlehfOLlJJ9+/YRFxeHh8fx\ny+aeDCEEXbt2ZfXq1VRVVeHv738OpYTMzNexWuvp1uETVLPHQdsrKZ29FPOhbKLmfIZL27ZYmpsJ\nNIYR4BpClkVijfVmVkkZVrvkm3t6szu/lnu+Xsf+QgtSqoFIIJKtjADgvatsuAszHt+lMrT7nWh9\nM9i0dTkdeh0kNX8BfsG+dCgrYmbOVu4bPp4kqSEw0Q8Av8g4qq/6gIaf7sK16BE63buO8rkVFNWb\nCd9ZhqW6iURtF3LctrF+xZeM6jSF6Bt64trBH2mX1K3KxbC1BO+JL8H30yh8+GGiZn/C5526cuXO\ngzyS68JT+mjKK1YRFjbx5B2l8I+jVYpeCKHFoeS/llIudgaXCSFCpZQlQohQoNwZXoTj6jhMhDNM\n4SKlvLycmpoaBg4ceMZ5O3bsyOrVq9m/fz+DBg06fYY/SXX1ZkpKFxEdfS+eB7dBUw31chB1S94n\n4L57ce/XD4CKbZl09RtOtaaJDIOOQ36SjIxG/m9Me+79ejuHypsR2mr8Q/IZHeLOqAPfkR7tTqPN\nFdUCb/YNHM7BZg0VtWq+2VYM0he4DTaATmUmrH8jIdVG7CoD6hIj2cUGvvPxYXz3CNQqQcLgq9hx\n8AG65L2DfdG1DJ+yjJ//W0ykAFuDBbWLhqFDbufHTe+xoXAhN4R1x02rRgA+18YjtCoaNxZhuPFF\n6t55BMOU+3hq+MO4to1lV5IXH6kfZEr1s1gs9Wi1XqfsM4V/Dq2ZdSOAz4B0KeXbLaKWAbc7928H\nlrYIv0EIoRdCxAJtgO1nT2SF801GhmMd9sTExDPO6+3tTXh4OOnp6WdbrCPYbM0cyHgBV9doYqPv\nhx2fYgvsQdnHC9EnJRFw770AWCobsfxUToOlmk2ljVjKU1h4oJRuqkZe/TGNnJoyvCK/5/8m2fh9\nWAKvHniFtkEq4qMO0S63kGt9TNzUP4LhuiymBFbQr/8C3BPe4JqBeTx/RQjDo7bj71tJpW8AyT5t\n0B6oQ1Vv5cnv99LhxZ+4+v1NPPHdHnYl3MhHTKa0vhkxZyhdLrNisksaEAQ/2I2I23txzbPTMFjs\nzHvpWUqyHP0vhKC2VxCZrgLXbVV81PseVGo101MXcIW3O14FRtbZYvld9iKv6Odz1t8KFx+tsegH\nALcCqUKIw87W54A3gIVCiLuBPGASgJQyTQixENiPY8bO/VJK2/HFKlwsZGRkEBYWhqfnn1vzvF27\ndqxZs4ba2lp8fHzOsnSQl/8JTU35dOs6F3XhLqjKpMowAWv5ViLe+y9Cq8WUV0DZ25tBF8CW8mUI\njxv5IiYOL7uJXXgwvGAnV1jW0Wf4o0SW7UJsegei+5PhEwIUE7Adwj9+k6zMTADqaup4vctrfF38\nNd9mfIivrpjH7Qnkd38TqY3nLsvLXL5pPVds28pzHW8lJsQfHzct6w9W8P3OQmAIbzMEfaMZ/a8V\nqFRu2Cte5gaMAAAgAElEQVQbML+wCrPNjl0CAdeDlHw6azvd/X6iV4iRbbsa8bJreMh3CK/6h+H9\nxnRKHn6YJ8s28sqDDzJwYxpzmIJ292xu9R1DqLfrWe9vhYuP0yp6KeUm4GTrn444SZ7pwPS/IJfC\n34TGxkaKiooYNuzPf5s0KSmJNWvWcODAAfr27XsWpXN8szUv72OCgq7Ez68/rJuCxepD9S+78Lp6\nDK5dumAuKKD4hblowwex37SJRqmh3L2WSuEKQkeQz4/cVZtG0PYaDPc+Ra6vGfeu/ZCug2hwnYss\n0dP33x+ii4nBduAAarUaIQT79u7juaueI9QllPClAo0phrbD3uGTsp8wq/WMjdhH/IL9fNj0NpNV\nT3Gbu5YnusdAgDeN3hoOlteTsjMFS8Ee3DTeSNGVuiYDAe5rwc2M8LHQYHcjLbctaxtiWdcoGZm0\nlh7Gvew4WMdAOYG9v2ThN3ok1XPm4DNxAt/0TmTE9jS+9Z7EL/N/Z9ldg3HTKR+S+6ejnAEKpyQ7\nOxuAhISEP11GQEAAQUFBpKenn1VFX2ooZWvKFNxsZt7Jzcc99xbe3reSg4fiEbYm6m8fg3d1OeWP\nz0AXdx3qNoK037ZhVbfnO60egH6Ry3lff5AAbTn2OA21pfHUlyXQUCRoqs9D38uEpnIg7s6XxKxW\nK3q9nvj4eFJTUxk5ciRjMwZgbCrn9fDPsBToKPF9gAhjFS5xm6m9XkXot5X8K2MJ/3MdzJOuH6Gq\nlqhVZuK0FXSIrsSSANKuJWrLh+Tb/VAbLfRTzYdSsKjUGDxc+aGiPd/KK/ipeCQHvRJ4acznmPeG\nEyv7sLEunTZuLpTPfIu2/32XlyOtvFAQQV1kHa/8uJ83xnc+a32ucHGiLIGgcEqys7NxdXUlNDT0\nL5WTlJREfn4+BoPh9IlPg5SSL9O+5IEVo/E0pbPbEoSLSzi9KvIQRoltbwNrOtqZtOM+Xnt9EvbY\nMWTqc7nW+ghmm2RxYHusqHAJ/5Z9Hlu4ysXI7Ul9eCt6Emm+t6KJnIC+/Xjo65gVHFlwJfVr8rA1\nmrHZbKjVanr27InJZGLbl79i3F2O12VRjLxiLJvLs9jRaGeQMYji9f8h2+MG6nuEcs2BLSRm5pNu\nD8PfvwKdSzP1tgCqzO1w07YjyKszqtAyIlwkuw0TKW/zOJXRfdjn4kWTaOJO/+28r3+P0RU/k1cX\nydOp93Ow2/dIbQE9fS5nf0I4dT//jCk7m7viujFVzMbg5s3yslr+DkuRK1xYFEWvcFKklGRnZxMT\nE4NK9ddOlcTExCPl/VWZ/rPjP7yVPIMbA1RotIE8MXI10wdOxxPBt+XhaG2CH3ur0KDhMvfJWNV2\nZoctomdOf34JHEGJxocu/mVMkD3ol3ctnUp60FBQzbymRdwX9SoP93iH/fc0kR/0C7LJA0+/9tSv\nyafk9e0YDlWjsgl8C9T4qTzZU7gfj+GRuAwMp7t5ED3UrwAQsLoC78BYhl7zGL3mrMK1Rw8eS/mO\n3bt70GXoei4ft5YOiXMp2vosO1Y8g3Cfhd/Qy9FINSFeOhbs685IKrk10I8bIsex7IppuPTsyTP+\nSxlXuoxKox+v772DPYMX4aLxIM5nJPmB3lR//jkqlY6xfipCZSnVUa5kVRv/Up8rXPworhuFk1Jd\nXU19ff1ZmRYZFhaGq6srWVlZdOrU6U+X882Bb5iXPo+HE3rj3byeet97ue+3R9lavBWNzcZHKXby\nOwdzy+Cb6PBRCcEB0RgSLAxIfoi1+hIOufvQycvO0icnY6lsonpxJpbsOgwNajY0VLPLayepoRt4\nZvNjTA9roiQ3gczdlbhJSZxehVk0IVRW6n/MIU4VRrIugwXr0rD+kI2UsPMqb+KMZlYnvsaBqGBG\nxHyISqcn4r3/cnDcRB5aO5uvf+zA1Il9iesWSGC0J798msYvn6bReVAoMUJS75mKqqAdPbLuIi8o\njh+mXo67RlBf2YaaHBtXFO6lWbiwktHMWTqAB6Lfpy2PsjtxGFVLfiDosccIDhzG3ZUf8KrrKzy0\nN5dVw1r/opvCpYdi0SuclMPWd1xc3F8uS6VSER8fT1ZWFvZjPofXWtKr0pmZPJPLIgbg3pzK/6r8\neG7nl2TVZHG3f3fmbarFwygZ9OQMhn9XT5D/MGx+ku27JIWeJSS7+tC5bi+vj+5E7bJDlL27E2tR\nIz7XxJP4cj9ue200T0+8n7ciP+EWU2d0KljuUUjRoK0kXRmNx5VxNAfqkW56irsH496pE2qhwepb\nRu8xscTek0SVh5oHusXz/BVPsq9yH/9a/S/qzfVo/P2J+3gWnnYTbV9/gqpDeQB4+rkw9vFuRA10\nZ+/GEkrsTXSwRJLta6BbVXtebtce9cED5F43ieLHn8DWaKLTxOuYqMlgSNUGdnsmseb3KEqL3qGz\n/+XUx/enfs7r+PsPoR3p9DWlsxsLT+3K+cvHUOHiRVH0CiclOzsbb29v/Pz8zkp5CQkJGAyGP7V0\nsZSS17a9hqfWk0DRwBuFTVTZdEzrP42fJvzEQxVluGT7oIuNp25TM5LeCCFQVwt8vVQsVPkQ21TN\ngNrd+CwsoHFbCW5dggh5vCce/cMQKoHeVUNMpwD6XBVPgq4Mu01NXOholpq+Ya7rO8QP8cHdT4eH\nvxu9JyUy7MaO9OrTk6qmQtoM8GWTpx0XlWBMkA8jo0fy1tC32F+9n5tW3ERKeQou7dqhfed/eJgM\n5N1yK80HDlDcWMy/t73CC/YpbO6wkFqrjtBmX6wGPW6hevYsPsT2+1/DUlFO2IwZxK34kaDHn2LI\nrGWM98ygfUM689uOZF8+1B34iIjEm6nbbkTbZMLbuxtP+i7Au9bCV3V1zD5UelaOo8LFh6LoFU6I\n3W4nNzeX2NhYWi538VeIj48HICsr64zz/pz7MykVKcR4hjG/YC+9fUNYPm4F49uMR2usonnvdprL\nbQiP7lhLbYCkVFPFz4YmXtQY8RCCkVU78PcNwHdSIqHP9MbvukTUXrrj6qopLUbtUYxWJvD64Jk8\n3+d5Nhdt5sYfb6TCVoFa/cdirP2cb9xu/P13lpTVMCrAGy+NI3541HBmj5yN2Wbm1lW3MnX1VPaF\nF/LlpPswNpnIvG4CHz05ilUZS7kx6UY+nPImYnQUABNq8+iy+Gk863LY1/5uqh/6GK8xVyGcYyVC\n58boaV8woXk9geYKZva5gdqCPCqyvkQTez0V767Fz2MozcZ9LOsXgLbWzIu5JWypbjjjvlc4Pc0G\nC5u+z6SysPH0iS8AiqJ3IqXEVluLtaYG+SddC5cSlZWVNDU1nfBzgX8WT09PQkJCzljR26WdWSmz\n8NJ5sbsyjVFeNt4d8Sk+Lo6Xr2T6KuqyXUGo0MV1QQg1Vu9StlR6ssDHgFGouKJBi55qQpNice8e\njNrzeAV/mPTfV+DiayY0ciRCCG5IuoE5o+fQaGlkPvMpV5cfSevt7U2nTp34IbeIGquN60KOfvrp\nGdKTH679gYe6PUR2XTavbnuV34IXcv+wR0kJD+bGtVa+/FDLrQsqqZ0xi/yZL2JrriVSGtAGBeDi\n7Q4Idv5ayicPr+eXz/ZRmFGDlBKtlx/XvTiDa6t+xoSW1wffjC5jG9mFH2I2BMNShyyy9jPeCliO\nl62GW/YcJMvQfEb9r3B6Utbks2dNAQumbydnz99vkcaLejC2rL6Z5XuKOVjWQF6VkbomC2abHReN\nGn8PHXEB7sQHedArxo+2wZ6oVEdbps0ZGTT8shrDpk2YsrKwO6f+Ca0Wl/bt8bhsBD4TJ6I5xdeU\nLjS1tbVUVFTQpk2bs1puQYFjAdLIyMjTpDwzEhIS2LJlC83Nzbi4uLQqz/qC9eTUO3zMl3nZmNx+\nIu7uMQBIqx3Tr4uoy3VH374fdpMela6anSX17HB35aBFx4BQTyLKmzBZ6/EJDjllXdJup+DQcgK6\nQ1jE5UfCuwV1Y+4Vc7lx0Y0sFAvpX9ifwRGDAcenE6dv3I0fdob6Hv/2sLvWnXs638PkTpMpNhRT\na6rlP8tqmOnzDL8970HzksUYd++iubySNlp3bB1r0EX3oMPnD9JRraK6xMD2Zdnk7K0ic0c5mTvK\n0btpiGzvR1gbH/r3GUfezo2sDhzB24OfY4jRToapEnWllfBmT3Iy1uCtduV5l428Kqdxa/Im1g0Y\nhF6jb1X/K5ya9C0l7P4ln7A2PljNNlZ9vI+rH+hCZPtTuzztdsneojoE0CXy7L8x3pKLWtFXNJh4\ndUU6/u464gLdifRzQ6dR0Wy2Ud5gYtGuIhpNVgD83XUMaRvINZ1D6ZqbQu0XX9CUkgJC4NqlC95j\nx6KNjECo1FjKSjEmJ1Px1ttUzvqQgPvuxf+OOxBa7QVu8fG8++67ALz88stntdyCggLc3NzOmn/+\nMAkJCWzatImcnBzatWvXqjyzUmYB0MMnmDFeRcTGPAA41muvXrAPbfYebCYPdL5dEHoPTNpF7DRc\nw2atmas6h1KdXIG0G0Da8Q46taLP3bML4V6IwB0Pjz/kKzNZ+KXeFZXvk1iMs7n/1wfxCJ1Kv6ir\n6OvtTqFfMP0LM7FbO4LuxE8LQgjCPcIJ9wjn4RE1jJ+1hWWqUO58ayYbDlZw25ztPDg8gV5h/lTN\nS8eS34A+zgf/MA+umNqZZoOFfRuKSN9cTH1lM1nJ5WQllwMBdCGCgoYM1nklktBYQFx9PfZwLcaS\nznhE7iBz6cuEtA2iu9fvrIsewLSURbzW86ZW9b/CibHb7Py+JJuU1flEJPky6p6OqNSCxTN28vOn\n+5j4dE98gt2Oy1dYY2Tu1jyWpxRTXNfMiKQgPruj1zmV9aJW9Ekhnux84TL8PU5smUgpKaptYmt2\nNb8dqiQ1JZUOn04nOH8fhoBQ/B95nMhJ49GcRJmZMjMp/+9/qXjrbRrXryfinXfQBAaeyyadESaT\n6ZyVXVBQQGRk5Fnzzx8mMjISnU7HoUOHWqXoM2szOVBzADeNKxM9iggPnYBeHwRA3coc7GkbaSxQ\noQ5JQhPQFZ1qE2vruvKTp4VwX1f83HR4mtW4+TRjrgef4FO/+LVr1VK8OjXjHzAEIVSk1Bt5L6+M\nVZV1SMDPJYhI3aM0m76iumQWK5tK+cZzLAhBSFkh27dvb9Uqn92jfOkZ7ctnm3KY0D2c55ekEhfo\nzv3DEtDZJKgFzRk16OP+sPRc3LX0vCKGnlfEYLPaSN9SypZFmQiV4PIHbiNxwUM8ZQjm22A/Pvnl\nU2i20ibKzB6NmcTwTHKyXRlobkeReynzZDx3lm+nTZDyTaA/Q1OjmV8+TaPwQA0dh4RjuiyYu7Ly\nkcCYG2Pgo4OsmLWXiU/3QO/mMBCLa5t465eDLEkpQgCDEwN5YlRbhiSee51yUfvoNWrVSZU8QL3V\nxsK6emY217A4EFJHduL5Z59n3MzPGHfbS4woDufBlTnszKs+YX59mzZE/u9/hM2YQXPafnJvvgVL\ncfG5as4Zc+DAgSP7Z/PtR4PBQFVV1Vl32wCo1WpiYmI4dOhQq9LP3DETgDtjuuAqLERF3Q2AcXc5\njZuK8AjZT0OxG/p214G9HrP9ZxZpwqlFMu2aDixLLiTCpsIvyAKAdwvXjc1mIz8/n+TkZLZu3cqm\nNaspyk9G625C592X+/bnMXrnQTbXNvJgVBAbeidxT/o2ppoaWHPtZ1wbfy2auh/RYEaDZFW3QXy/\nO5Xm5tb5wO8ZHEdhTROPLtxDQXUTr43rhItWjcpFgz7Gi+aME5+XAGqNmo6Dw7n+hd54BbiyclYq\ncVdM41H7YgxqV14ecDsuey3Y88pRocEvaj+j4ryI6ejPyG0uWNDx1sHdyluzZ4iUkpw9FSx8bQcl\nWXXob45laoSZ2/blkmk0kdtk4vGCEtZPDKaypolfPkvDbLHxwdoshr+1jh/3FnNH/xg2PDWMOXf0\nYnz3iFPqsLPFRW3RnwwpJfNLq5meVUyV1Ub3g/sZtX8vMZ070DR4KOsNnqx3b0CX4M3atFpWffg7\n3aJ8uGdQHKM6hKA+xpfvffUYdJER5N8zhbxbbiV67ldow4/7aNZ5Z8+ePUf27Xb7UbNB/gqFhYXA\n2ffPHyYuLo6DBw9SU1OD7ynGP4wWI1uLt+Kl86SDfR+e/kNxc4vFXGKgZnEmulgvzHt+Qx0+BLV3\nJH6a15kj/8UenY07+0eTWlRPYJNESNDpDai1Wjx8/ZBSsnv3btatW0d9ff1RdQZ3dTzdTc72p0DU\n8mh0MPdFBeHpnEmzzGZDo9GgVWn594B/U6jtwU9GPd1N31HmMprFST3p9vt2bh82+LT9MLJdMGE+\nLvyaXs71PSPoG/fHh1lc2vpRtzIHa50JjffJFYF3oBvjHuvOill7+XluAVeOup6b1q5knvfVfNZl\nFNfsXkNQDwONYamIfQ2MmNyJ/F9sdMwzsyKyJ/mVe4gO7HpaWRWgptTApoWZ5O+vxjfEjfop0Uyr\nqiTKRcddEQE8GBWMTiWYlV/Oa9kllI8Pot+iEt57Yx2ZhmZGdwjhhTHtiPA93p1zrrnkFH2D1cYj\n6fmsqKyjU34Or8/9hK5J8fg8+jimoDAMJiuD3axcIfTMyiyh2F1NTIw3GcUN3Pf1LnRqQYSvG92i\nfOgQ5k3fUEG7LU/gqtYQdUcS+Z+mUHDbJKKn/wt1YCSEdQPXPz+QUmuxsqveSKXFir9WQ08vN7y1\npz8s9fX1ZGdno1arsdlsZ1XRFxQUoFKpCAsLOyvlHcvhaZaHDh2iZ8+eJ033zs53sGPn5tiBmI2L\nCAt9GXuzlap5+xE6FdaDn2HJV6FvNxadKo0GHz1flXrj56bmvmEJXP7OBq718EBrtWM11+AdGIzV\nZmPZsmWkpqYSHh7OZZddhht2Ni+YS5rBhGGghjq8MNbqebg5g9s7hh9R8uBY1OxwP5ulZK8tkUR9\nAxVFv+Cu3YzB/Q5es7RhVH0DIV6nXtbZLiWHDerL2x89duDS1pe6lTk0H6jGo8+p3U06Vw1jHuzC\nTx/vY+VP8GBnG/sPpbEychgxhiL6Z2zD1KcEa0AVjesLuf3uzqyeuRZLTCDvrylg5o2Koj8VpiYr\nySty2PtbIRqdioHXtSE5Uc/0rGJG+nvxSYcYXNUq7HZJs8XGA9HBhLnoeGB/HmlDPXFLruLxjpE8\neMuFW1zuolf0VrONuoomasuN7G9s5iVjGWU1FtrvSMdi0/Fy/weps4Jt9n4cS+QfjQYoUAt83HXE\ne7tQ3mAiu9JATqWBRbscH8aKFFdxg/d+blL/SkS/cvLXmil69iUiB1Uj1CqIGwZ974OEEdBKn/bO\nOgP/zSvj1+p6bC2enl1UghtD/Xk+LhQPzckVd2pqKgDdunUjOTkZm82G9iwNFhcUFBAaGnrWyjuW\ngIAAPD09yc7OPqmil1Ky/NBy1ELNALdG6ix+BAQMo2ZBJraqJpq2v4+bfidmr1vRal3xdZvLK0yn\nXGPg3THtWbG3hBqDhQjcCEvypTK7BA8/f+Z+9in5pWWEaAWqtGR+XfsjJgTb+4xkW+f+vCUfQO/R\njQ9cPFi/PpmPP85kzJgxRz6KbnNa9ADflFRTbLKwoEsHwtvN54n1T1Bb9TZG96FM3WpkyeUjT9kP\nczbnUFLXjIdew9fb8xnRPvhInCbIDbWPnuaMmtMqegCtTs2V93Zizef7WbprLB+EvsBVjU8wN2Es\n/nsqiOqTj6VzBqbfAvBttNCrezgHjTWsV4eQ/ns+7fpFtfbw/WOQUnJwexmbv8+kqdFC+/6h9Lk2\nnjXNRp5Py+Vyfy9md4xB73y34fkl+5i/PZ8QLxd83bSoVVYsHX0J7h+K7adK1sp0+o1LwMVDe1w9\nZ3ss7FguakVfklXL4pm7kMD+8CaW9w5Et7saba2NMuFPuN6Fzu5uxMT60KSvwFOvoY0tBE1BI67l\nTfgarfigYkZ7V1aGabnb7sr9vWPZU2Pg07XprEqvQoWkWevDjNqhvKseQlLXOkYErWbUt9v4tqEP\n+f382JPjw5PzHqFbfAJc+wF4n9ytU2ux8uqhEuaVVOGnVXNfZBBD/TwJ1esoNpn5oayGL4oqWVdd\nz6KuCYS5HD+DQ0rJnj17iIiIINA5OGyznZ1vu9hsNoqKik5paf9VhBDEx8dz4MAB7Hb7CRdM+73k\ndwxWA32Ce1JdvZ7Q0IkYNufTtKcSU/pyXBIDcA8ZjN04FK3pV2rHPcOixQaSPF24ukc4w99ez6AQ\nb0wZZqCYyoI8LHpXmmxaXCqLcdFr8IuKpnnwKOb6RlOMmlsDJYHlpSSE3El0VD86dGjP4sWL+eGH\nHygqKmL06NFHLPpai5UZOSX09/FgsK8HQngyf8x83tv1HvPSvyHTuI2H127j2d6TCXE/fqZPfpWR\nt1cf5LJ2QbQP9eK937I4VNFIfKDHkT5ySfLDuKsMabUjNKcfTlNrVIy8uwPrXdT8vv0uPvb9L9eb\n/o+vAifwdMX7NHguxY0BGPdWclvfGL5bnk5BZDxLlh0iPDEQL3/lIyWHsZpt/PZVOpnJ5QTHejHm\ngS4ERXuxt8HIw+l59PJyP0rJW212Vu0rcUyTlJI9hXWoASRkdvLlu9G+iF9KOLCtlJBYb1w9tDQb\nLDRUNxOR5MewW5LOaXsuakXvHexK2w4NfOZiYm1CIm12H6Sg1p27uoQyLjKEkgPV5KRW0pxXTG3S\nIsZXjCbcokK4aXBpE4A2xA2hVTOz0Yy5oY43PIwEf7qLK4KqeKHicXoGqlnk24U8mY+bTY+legCp\n2T1IFePZPDyWezf8zPcBJRyMgNvsGno3FvLsp4NIGDML2o4+Tt6UeiN378uh1GzhvsggHo8Nxr2F\nuyXOTc9AX08mBPtxW2o2E1MOsaJHG3yPceUUFhZSXl7OmDFjjgym/dn1Y46ltLQUq9V6zvzzh4mL\niyMlJYWSkhLCTzDe8cneTwC4Kbob9pIN+Mqe1C7Nxt5YRuADo/EaOYKiqW+Cp8Svr4kXdgVjVFXw\n3NXtWZtRQV6VkUl+GkBL+vovQEqsPoHERUVy0/PPUWKDV7KKWV5RS7yrnu/bRpBo2UxqOfh4O25y\n3t7e3HbbbaxevZqtW7dSX1+PlBK1Ws2bOaXUWGz8u034EWvMVePK072fZkjw5dz1+7v8lr+Q3/IX\n0MG/A31C+5Dgk0CIewhuGjdeWpqB2qWS8f09MNtrcPHZzYu/HWBIO08azA00mBsIs/typfn/2Xvv\nKKnq+///cae3nZ3Z3vuyfVl2l16UoqACYguiktj9qFhiEo2amERNLInBEo29FySKioUuRTq7LGzv\nvZfZmZ1e7++PRZQICIqFfH/Pc/ac3Tvv+y575j7v6/18v0ohL3/6DMMxLgwqA0alkXBNOAlBCcTq\nYpFLj7QOJRKBM6/IZJ9BiXbbGv6geIP7tb9iRf0ilk58j+hYL86DA8TNjCdbEkcPUBcpY/vKBs69\n8f/PWw/gcfn45F8H6WmyMPH8FArnJiKRCJi9Pq6qaCFELuPF7Hiad26jce8uzP29WBUGtJZY0jIn\n8P7+LubmRHLXvEzWVvXycks/TYlqHp8TxNUdIiFWP84eDyqdnIjEIKJifni37dOa6PcdLOP61HA8\ncgWzq9rZM6gjNUzDbbnxBBrMSAYcDPgCTNbLuKj7l7TL+3g45mVaovo5P/N8CiMKCVGFIAgC11us\n1NX7uTtXR9yuYPz+P7Ey9kWc2i5mh09A7cukTRFFyYgEb0BgX1AR+2ePY1r1QcJlYdiCq9ij3sVF\nGi1L1tzIxeXXQPJZxIzJRKMPZlXfML+ubSdMLuOTwjGM0x/7QGaKUcfb+SlcdKCJu+o7eS478Yit\n3d69e1EqleTl5VFVVQWcOov+hwqU+m98mSitqanpG0Tv8Doo6y9DIVEQRS/9Ui3uVx0IqAlZkkXQ\nGcV4aqoJBE9CGFjP8Ozf88E/djJWo2JGQTSXPrsDg+DGX9eLXBXBmUsvZcvrLyLTBnH2hRfzRKeJ\nf7WP5tu5MzmKm+IjUEkl1DeUIJEoCQrKPjwXqVTKvHnzMBgMrF27FoByUcYrXYNcGxdGju6bVvCk\nxHEsbrqO5/xOFklKGXFX8nrV6/hE31eNZCCJg7t2jv4pj4ZyF5SXgVKqRCfXoUHFHCGPQKOdlbb3\ncfqcR4wjESREa6PJCskiNyyX/PB8skOz0cq1TFiQQm3HEpZ038H+QBqf2GcwZqCZ4I6/ESX5E95+\nB0sLEinpqaYjxUnLZ146a03EZZ7auInTDX5fgLXPV9LbPMLZ1+SQXvyVnHZ3fSd9Hi9PSUb49O4n\nGO7pRhcSiiQ0BlNDFRcGSqlZV8v8GZew/LJC5FIJN52Zxo1npPJEZSf/CAzydCZo+50s0fhIH6xn\n/bCN9AYtWbNSf9B1ndZEPzY/l9mf78bY6WFlp5QZWhW/H5ZifasWFBKcPpHpOhmeAOzyD5PqCyGn\nL5U6WnjK+dQ3+vNLQ3FH3c9NE3y8uzuaF7r+QuiMLDSZX3lDuLx+Krss7KgfZPO2KnbE5COaJMyT\n59HkPJdW4X3eMu5lbc8HzP54O/qAht5LruEVfSyTDVpezEkm9ARKu00w6PhdchR/a+5hQbiBBRGj\nB742m43q6mqKiopQKpWHDwZPJdEHBwej1+tPSX/Hgk6nIzIykubmZmbMONJDZVvnNgJigOKoUdlG\n78lDQgxSYztBZ8wBYPjt3eCLQ5cv8PDqJjzAb+dlUlLdyu5WMzPMFchV08iZEY/VUQLA4JRZzKps\nx+T1syDcwJ/SYoj7mjRmMZei149FIvmmXDZp0iSkUikrNn7Ou4KWdLWSe1OOfVj92ynFvLN5P7uF\n6ZTMuxM/ftpH2mkZ7uU37+0lXC/h3nMK0Ck0aGQaeofh2lcr+c2csSyb+dU2ftBRyYLBWVx3+V24\nfC7MbjO99l7are20jbTRNtJG1WAVG9s3AiATZBREFDA9bjozz8qn9Z5w/pn9LLX2NF6pugxt+IvM\n3xsHJOkAACAASURBVL8DV10KsyZHY6zfRaMhGlWIm10fNnPxXcYfXC/+OWP3h010VJuYuTTzCJJf\n0dTBB/1mZlfvpnnbJ4QnJLHwt/cyoEvlvlf2k5w8k9De3WTa9qLa+hIfD7jRBoehVMvQauWcZ1Qw\nqbqaZ31ONuXm86JcA8H5qLwe9J7vX4zn23BaE/3w/gbidou8gp25yLnVakeTEYKxMA3z1k6ieh3U\nSUysjN1KXs1s+v0Q6ZnIA/YC9lpX0BpkIjOihegIA2Gh+UTqz6FCHc8NbgtvXWBg2WYTpteqCSxM\nRTd59KFWSiVkmbzE7jdzkS+Mrq4NvOnzspap+AWBYP98LCN5SONfY9v0diJlV7NRH0vBUBevT5pJ\n0EnU77w5IYIP+oZ5qLmHc8KCkUkEysrK8Pv9jB8/Gkn3pb59qqSbjo4OEhJ+nIO51NRUdu/ejcfj\nQfG1aNKVdSsBuCRlOu72jRhqz8JvaSfq7gUAeCrK8XrT8TR+iHjH7/joqf3kyBQUpKtY+rcPkUlj\nuX7+fA5+YsGWqGbtunpipTLe0IQxK0jDHUlRFAdrj5iL3+/AaqsiMeH6Y843Pr+APT4Nfq+fF3OT\nUUuPrZtrVSp+aVTxpFPCigNVXFaYR6ohlafXWXGYM3h66XQyor7yyskJg8lJVt7c1cUNM8YgP9S3\nKjME80dNeAedqMLURMmiiNJGURBxpKfMsGuYysFKSvtK2d61neWly1kO5BUquUA08pz3r1wseYBX\nrJcRPvAKs3bkEDR9AdmqKFoFFc4JvbjW+ultshCd9sOG4/8c0dfcyLZ3VtJRVY9c4Wf7WzK2vuHD\n6XUyIpHw2gW3EW0ZIu7gB+zK9REmC6brvTZ0FjsXMPrd9SmnoFBG4xj+jNaSZwjSLwRJFJ7D4UrR\nnOHoY8He3Xgi9YQbYknxqOj298P8H3Z9pzXRv9PexivIyRabiIv/kD1eJwn9BYgrL4GAjL2eEd7I\nfoLJPS5kiko0MXkMtM+kz6UlWLuEhOFd2Hs1kDSN2M6x4BYpFNu5JEvNC5gpjpIzSaYbfdB67SgS\n9di+6MLbY0ceq8N48RhiEiYStugCLvpiD+9MvJbPlcGIjnTMjb/Hl/AiXfKPmW0Oo+D9VWzprGT+\nbXeesMUkFQTuSo7mysoWVvaaWBxpYN++fSQnJx8+hD2VFr3ZbGZkZOQHl22+REpKCjt37qStre1w\nrh6P30PZQBlSQUqaMkAToDZlIw9tRRY8usuwflyC6ItF6trNs1v7cCJy9ZQEnnzmWcpl+YxJ0bOu\nQyRMAtdbB1lot+LVG1k/PpP8oKNLZpaRg4iin+DgoqN+fmDEwZUVLYz4/byel0yG9tvz9NxalM/z\nWw/wQmsfF+dmsLvVwqqyLm6ZlXYEyX+Ja6Ylc81rJXxW0cP5BaNyliojBGjCVWtCPu3Yh/xGlZHp\ncdOZHjed24tup8fWw+qm1bznfon7lRrSPB6W2F/j2b6beTvvbNI/Xk74TTO5fEwaa9o7qAjuY7w2\nhAMbO/6fI/qa7VtY+8xyRFGOQhNPSkE8Pc5uKgYP4gl4qBm7FJdKzfmOAaJSbiWhdVSuG9S1UxW3\nkbagRoY03TjlVmSilHRTBBNKFVjN71DQ1keoPcBQxBiGInIwB6fRq8kCtxRTr5tXFb3EeHr49ljq\n74fTmugn6vswyxRkSkVkI7NIVsqIkAUzpGlnm2eEwcLXuSVsGFkqQD8CrcgnVNJXE4+5YRZy9Swk\nmmn4xP2Y5I8SZSwjIBO5zh3FXvdj3G008G6VCyNg39OLfU8vEqOSkEszUOeHI0gE/D4fTbnpxK1e\nxzLbVu6Y8mteLO1glV+HreVWVDHv4XM8xKSZv2Dvpi8oG5NJ4bnnn/Aa54bpydepebZjgKy+DkZG\nRliwYMHhz78k+lNh0f9Y+vyXSExMRCqV0tTUdJjoD/QfwBfwkR2SjXVoP1K3HmobMd47+j/zHtyD\n05KKp2kt6nHpvFHZjTRYwa1qO0RNR95o5WC0hunb7XjjNdwkjCDrbSc1O+eYJA9gMZcAAsHBhd/4\n7MO+YW6vbSdMIeOTselkH0WXPxp0chmLjFpWChI+3PoFT5UJh9McHA0zMyJIDtPy8vYWFo6NQRAE\nZCEqZBFqXLUmgo5D9P+NaF00N4y9gYsqdXz0n7+yaqGK1WGdnKPeyKctc/k4tpLIPz7AmcsfJqT5\nAC0yFb+aGsOBDe04rR7Ux8nu+b+E3qYG1j7zOOrgRALiOSz+43Q+Hn6Px0tfIT83n0vy72V1g4ez\nzQLhG5ORa+WMmWOkxfdnpoaX8e+S66ntvZSrcl5DHjyI4qCGvA1dRAwJ7E6NpCwpiq4wOwfSGxgI\nrkSQSNCgJXkkn96+GbT4DIwP+2FlUjjNiV6XrWau/i+H//YAnYd+HwtIvCJKi4jBIcHoVRHqUKBw\ndyFa94HuPfqV6dS5ZtBgnU63ZRJKyQipqi/IVW/iZfPvmFf0HPdOaeKuNgeatlxCAyLuYTcMutAc\nIvlPn3iUpvYWks9eRpBiDELpALehYjEK/oSDqu5fUG6I58Ogd5maPZ8v3nmdlKKJ35pF8UsIgsCV\ncWHcUdvBiuoKkiIjSUv7iii+lG5OhUXf0dGBXC4nMjLy2xufAsjlchISEo6oI/ul1nxW4lmY+19C\nPZyOaNmPOvceAKxrDgCpeJs28vmUm3AMBZAk6yjc/wWN5lQyU0L598Rs3v90D5PnRPN52bsIXjdh\ncceXo8yWUrTadOTy4MPXAqLI31t6Wd7Wx4RgLS/lJhGuODkPiZsyk1mxt5YVLT2Yh9W8eN2ZqORH\nj4+QSASumprEfR9VUdo2THHS6MGoKjME245uAm4/EuXJBcXpxo9nygMiF1y8lDeGnkSXtoEtHVPY\nEjWZyaWvYti4gVh8tJJIZJYHcT00HxggZ/pPH/n9Q0MURTa9/G+UmiB8/rkUnTuG3e6tPFb6GHOT\n5vLQtIc4b1cDOleAcVstjD8vieRJej7fsYiE4F4+2HAupeRyHUqKGs9npOsZ8r5w4gsTGbxCh3FC\nOhHlu0mP8jLDIwWpgETlo9FpZOXwRPp8ei5O/4jcmDLg6h90rac10edpx9FRdyUSczwycQCD9E2Q\ndeKWSrEqlbi0clwagd5IkR6pCyHgwug1EqFcQETITCLCxxIZmspUeRAd1SaqdnRSXRFEteM85NYm\nrtVv4N8Z57EvfDnFGW+hCtyEfEM83g2tNBsllK17nv6qRs7PvhWFQ4G3ax8j5gp+dcNNXCDX8vTO\nYf7ldvCeeTKbfHom6F9HIslk00vPcNE995/wOs+PMHBfXQc71AYuLxp7hPRzKqWbjo4OYmNjT1mE\n7YkgNTWVjRs3YrVaCQoK4ovOLwCYbsimc7CfoNZUtBNHrX1fYw0OcwaiaTsymZk3B8IRNFKSvV2k\ndpmpUArcfmYaQ3VmACR6Bw7TENpAgPDE5GPOQRT9WCxlREUtPHzNHQiwrLqdjwfMXBoVwiMZcYd9\npk8GY7QqkmVSGsJjWWSpY+LX0hwcDRcVxvGPdXW8tL3lK6LPCMG2rQt34zDqnLCTGl+ZloYkOBhX\nrZnbMiewbqSMs5M280HjQrYlZhHz4AMU/vVvlPuCKLMfIDg8mab9/f9PEH3jvl30Ntajj5qPKshI\nzBkK7ljzIOMixvHw9Id5cWsb5Xi4sNFJVlYHTfvW0NL+OVHpQ4jbQymUDaD1t5MdryC64gsSv3AS\nfMlF+K8ew2DH86gcO3ClK7F6tQz5jLSZEzgwlEebIwGD1MKvlG+T0jJIhnbht0/2e+K0JvrB0g7U\nrTPwCVtIUv4LQSHDNf5O/tx9Bh9VDjE9PYx/zi1AN9BK138eY8iyFctYM6bwHdSZ9hKpOI843VKC\nVQUk5YWRkKHHvLOEqk8qqB8KIfRAKqkGG0+G3siqg9czlHEPqvxziCq/jI1PPYxakHJe8g0IVg+O\n/c9SFq8hv2E3l22KYuFlt+CZZ+D2fT0ouod425bD48Jl/CVlKxUH99NaXkZS/rgTWqdGIiHb3M/+\n8BiSM4/M+HiqDmM9Hg+9vb0nlHnxVOJLN8vm5mZSs1LpsnWhkWlQHkp6Jt3Xhm7ZVQBYPy0BYnGU\nfUZvSixtEgFvvJbw9jJqoyeTKlUwIz2MtZsr0RmVdA40I/eOZvg8HtHbbPX4/bbD+rzd7+fqila2\nDlv5Y2oMN8WHf2dPFI8vgKvNzkCsEZvXSn19PWPGjDlme61SxpKJCbywrZkOk4P4EA3KJD2CUoqr\n9uSJXpBI0BQW4iwphWvuYeIHi/Dmbmd181wOGnLINrUxfedeXp0wmxJTF+cXTqRsQzsum/cbEZz/\nSxBFkV3vr0Ctj8DtSuPs6zN4qvwh/KKfBybdz5pnN/GvmDBC8ZC84zFqZCK6sT5yEgfI3eckSDAx\nVdqMVLaegY7LKCntYPfFN1MjVVDzggZ74O6jjpsRKuVPWU6WSPcxcjAYm2cpngPdcOkPu97Tmuhj\nM5Ws/ugfdDh8XL7ol4TOvxuVNozHRZGJezv4y8dVnPPEFzy+uIBpdz1PQmcXQy+/xMCr/8E+3kXf\n5I/o7f0QzWA4xn3RsLEN0ekkXKMhadYcTLlz8dYFeHySgltiH2fVjuvpjhpNPTA1vRCdNR2P14T7\n88fY8vDdPCCN4un+IeZtWM/Wkcn45KNRjrMitAx7bKyxjuV5fYBlkSr2vLWCxNyxh0vDHQ91dXVE\nttbjGzuNbRY754V/dVh2qiz6rq4uRFH80fT5LxEVFYVGo6GpqQlziBkRkbywPMzdZRApQdoyjGbi\nJPwmC/aeGOTyOgK2Yd6PvhyJAP44DWmDWt40efnLwjEEAiKdNSbSiiPYX7ebEKUcp0xGSEzcMedg\nsZQCYAguwhMI8MvyFnaZbTyeGc+l0ce3wL8NT29uxNRohtgoepLSWbNmDcnJycdNL/GryUm8+EUL\nr+1s5Q/zsxGkElRjjDhrTRgCIoLk5F46muIibJs349NlotfmoBO6yDDUURdIp0cfROTq95CMP5MO\nEZLHhrF/XRuddcOkFUV8r7X/nNHbWM9AazOKoLNIL4rEE2Nifcl6lqZexucPrmBX+DQGs6T8weNg\n8SOPsb61imj77eQedODzyjjffT8XxWeTXPE4D/kyqZ51DnKflxRVOxPCS4h2DZNiMaMPONEILkKw\nki1pQ2cNwnFwGsP+BfjFUHTyeoLGnFgm1++D05ropWlnMueyKl5/eycba+X84hehCIzq2pdNTKAw\n0cCyt8tY+vIebjwjlTvOGkP0ffcRblrGyNq12NZvZyjoAObiQbrOGUA3MY5U412ETFmIRK0mHsj1\nBvBtaeSxMAl3hL/A/Z0PAT501nTskZ/TLa7jvfmpvC+NIHbITV/EQsY0P8rEvQ+ycVYc/RkT8Dfn\nk+1Q0Kr3UTEyjipjLwtc42n/104i5+WgTDMc8+ENBAJs3ryZHEmA7TIpnw5YfhCi//IgNi7u2IT4\nQ0AikZCcnExzczNV0aPBX+dq5uCUv4PCYkCTmYZUp2Xk7TWAjs6aWmRyKZ8H5aEMlxNk6cUSWYja\nZuOCwlj6mkfwuPzoogSsjVaCnXYiklORyo79VTdbSlEqIlGp4vhtXQc7zDaeykr4RlnAk0VNzwhP\nb27kwrExVAep6VekMFx7gF27dn0jduDriDGoOTcvmnf3dXD7WWPQKWWos0NxVgzi6bCiTDy5wztN\n0ehOxbG/DH3RVYQ2/pEZsfuoNuXTog8nKNxNvKmPfmMY7iCQKaV01/9vE335prUIUgVyVSZTL07n\ngYr7UMvUKN5pxepfxM5ZanK1Km4+cxYlzc0obfeRU29F7vZxrfsPCPIsagJ+/qT/P0J8Tm5RNpI9\n7j2U2n4iyhYT3HsuiuQ4JDIvEq8J0TGC067F5h19dpXSKoz6d1AmyhGyFhx/sqcAp3U+eiRSgmbf\nyrRLf0lndSWNe3cd8XFmlJ7Vy6byi6J4ntnSxKXP76bb7EQWEkLIZZeRsPwZxt2/kxnnHSQt9U6c\n4SYqpPfT3vcqojhKnFK5hN/OSWdukI7Pcw28xL0MevYRKr+XMNtrlOXF8NEZtxJvdbB0vw3pryS0\nn52Nwmvl3HU1aO07eHfs36gO385EhxQ58JEnnBr7bvzdLgZfrmTw5Ur8lqMXEamqqqKvr4/ZM2cy\nLzyYDYMWPF+TaU6VdNPR0UFYWBgazY+fQjU1NXU0EKxtNOncWFMabn0bskYXqrw8Al4/5goF/V4f\niuadHMgYgy0gwxKvZ4rHyfpGK4vGxaJXyWmvGkKQCIwEeiAQwNrbRVxW7nHHt1j2ExxcyEf9Zt7q\nMXFrQsT3JnmfP8Dv3juIQaPgvvnZnB0aTI0nQGx2Ltu2bcNsNh/3/mumJWN1+1i5b/QFrMoKAamA\ns2LwpOeiys5GUKlwlJZA3sWEWQRyw2uREmBPbCQOpZyozk76AjHsbaoiJjWY7kbLd1r36QCvy0XN\n9q1IpGMoPi+DgNbNprZNZPYakXqn0pCsY1Aj5fbGZ/A9WYDj4HlkDfcRaXHxln8ppWIa7fhY0eFl\n0Ugnz0X1UTj1OdQyC9EfzcUwlIl6bAoSjQJRVOH1R+JXpaPISiP4vBSi7hxP+F//D9Vd7yJc+iaM\nXfyDr/n0JvpDyJs1l7D4RLa9/QqB/7JsNQoZj1yczxOXFlDTM8K5T37Bxuq+I9pIpWoSE29g0sT1\nhIaeSVPzP9hfthS3e7SdIAgsH5tEmFLOZ9M0bHEXs6l3IUbfMK6uZGICPfxBt4yF13Rw3cxfctZf\nXkCq1SINCmLxW52sifkLd//mapKnecgVLNSLUtYGx/NRy1MM5jvwtI3Q98R+nP9VaMLv97NlyxYi\nIiLIycnh7FA9Vn+A0hHH1+b+/S36QCBAZ2fnjy7bfIkvdXrvgBe5RI6ibQi/woq8yY0iJ5fd/yxB\nIipwiJ3IHDY2xRajlAUIGBUkhqTj9gW4YtKoV017tYmoFD3tXa2Eq2QE/H7iso9N9G53Hy5XJ17d\nRH5f30mhXsOdyd+eLfLb8Ny2Ziq7RnhwUQ5GrYKzw/SIgKRoIgDr168/7v0F8QaKEo28srMFf0BE\nopKhSjfirBw86WIhgkKBeuzYUZ1eGURo1FzUMjcpKhOOQAoWrQeV08KANJyGnnIikvSYeux4Pacm\n2vrnhsbSvfi9HvQRBYybk8C61nV4Ah7S67JBEktppp10RxtzPU3siJUiU7lIbbaziQIe8J6NDwgZ\n7OTJPcu5alw9lsLHkXZ5Sdw6iaTrryXukcsI+1Ue4dfkEXFTAVG/LiLy9iJCL8siaHosspATq5V8\nKvE/QfQSqZSpi5di7u2hqWTPUducXxDLJ7dOJ9ag5trXS3jgk2o8viOtYJUqmvy8p8nOepSRkXL2\n7J3P8PBuAELkMh7PSqBbK2f/mGHapIW85nyI37S8wmOtQySGTqSl/UFaWp5CajAQcuWVBKxW5LGx\ndC27Bdkjz7G4IJM/LzqTaKmNzX4D6tAiXt31KBvPqkESrGTo1SosG9oQA6MPcklJCUNDQ8yaNQuJ\nRMIUgw4J8MWw9fCcTwXRDw0N4XQ6fzKiNxgM6I16whxhZKnGYPfWASDrENjTEo5+wI1PHCYzqR2z\nQstOdS7+cDk5XjvrqocpSjAQYu+lp7GdgXYrcZkGOjs7UTtsKNQaEnLGHnNss2U/AC9Y83D4AzyV\nlYDsJDXw/8bBDjPLN9QzPz+aebmjL41cnZoYpZydTh/Tp0+nurr6CLfSo+Hqqcl0mJxsOGSYqHPD\n8JvdeDttJz0nTVERrtpa/DYbipxL0Y94SQupxeuJZH+qjSDbMKIgoXekk4gkPWJAZLDd+u0dn2bw\n+53s+3gNCBpm/Wo2UrmED2reI8SiJkwyg4H4Ppr1kdycmcHGZAN+o5nhg5Hc476ea12/QyKK3NDw\nGU+UPEb8HVIG0lajqYlk3JgXSP7786jzf56J4U5rjf7rSB5XjEyhpPqLz2nct4uexjp8Hi/BkZFE\np2cSl5lDTEYWq26awkOf1fLS9hb2tZp4ask4EkOPDIePjr4IvX4sFZXLKDtwJdlZjxIVtZCZoXqu\niQ3jJaA9zMMlX4xhs3gXc82PIiZvoFYRTHPL4yBISLjyV5jefBN5dBS66dMxvfUWlvdXIY+NZfak\ns3mTHNr0E8nqbOLf1f+ibdwF3NyzGOumdrydVlQL49m8eTPJyclkZGQAECyXkR+kYfuwjTsPOZGc\nCunmxw6UOhpkYTLCGsMoFDNxBbWDCCbJdMyNLvKCZBh0qzFVStieNhYfUtzJoUzR6VnRX8PF/i28\nvbURAIkiCzSXEnA5sbQ2kD39TGTHKNYNowexzUI2HwzBLQnhpGq+n7Vlc/u4bUUZkXoVf12Ud/i6\nIAicERLEZwMWnp48mbKyMj777DNuvPHGY7qzzs2JJNag5uXtLczLjUKdHcKwRMBROYgi/vhFTf4b\nmvHF8EwAZ1kZuilnELpLSnJYLf7uabQFhzCmZ/Rlou0fwacfpYWBDuv/VJSszVbH3j2XM9QRgTEh\niaT8cIacQ1RaajirdR49Eh0bUkMI6R5hV/M79NrSaRiYi8kXihI/oQ4Lj+94khCNiZE/B2FXthBa\ns4BISwxBU8/8qZd3XPxPWPQAUpkMfVg4jft207BvN2EJScTn5OHzeCj95AM+eOQvPH3NEt69+zam\nDWzj0SKRrr5h5j+5nU/Kv1kHVqtNo6hwJcHBhVRV/5rOrrcBuCDSiBSoi1GgWhhPk7WIHX0LEN78\nBVlJdxMVuYjm5n/SZ1tH6FVXYd++g+ALFpG++XOi/nQfyqxMlm54H4OiiQ/xkRl1CUv7i/lPy3us\nzNiMYVEarkYza55ehdvlZu7Zc49w7Ztu1LF/xI7dd+gM4RRY9B0dHajVakJDv5+HyfdBp7ITmSgj\ndTgBj74b2YiS1tiFZBsVCIIVVboSx569bI0rIFxqRhYko6tphDmWnbi7mpl55Q2EJ88k4Kll1+uP\noGmrQxBg4qJfHHdci7mUD2RXESqXcVvi9w8U+9NHVbSbHCxfXECw5kjPmhnGICw+PzUuH/PmzWNw\ncJC9e/cesy+ZVMJVU5PY22pif/swEo0cZZoBZ8XJyzfqsWNBJsNRUgpSOUbDJBKDR8MLI0bGYdK1\nAeB2BnFg0IpSI8PU4zhel6cd6hsewNwqI+CTEBW6j/ZlN7Fr/lIyt17OavkZvKZ3033AiqPCykcN\nMyjry6Ew0MTvpJ+yrOxD3lj/IMYkM0N/lOJUeog9cAuaFW2EXXn5T720b8X/jEUPkHPmHPZ88C6X\n/235Ee50XreLnoZ6umqr6KytonrrJrxuF1dIpQwFxfPE8zXsOvMM/nh+/hFRi3K5nnEFr1BRsYy6\nuj/S5Ra5siufCKUMURR4XO7m3jkxHNw4D0N7J7nvLCHr8nfweAaorb2XgnOfR3heg+nlV4h55GGM\nS5ZgXLIE0e/n9+s/4PdbYbtMxbiuLO6yDbHc/28mnjeRyMVxVK/aRIYvBlZ04ZgpQZ0XjiAVmG4M\n4qn2fvZY7MwK1Z+SFAgdHR3ExcUdtQDIj4VasZYCChgZsqNK6MPfoQWpjhCfH510La5ACv1CKZWa\nFKKjHExVaygv38sSczVFCy6kYO589m/4gjFT8miuW4HM62HRzb/GEHVsvd3vd1Jmc7OfFO5NCT9u\nRa8TwUcHunh/fye3zk5nQvI3D3OnGUfdbbcPW1mWkUFqaipbtmwhPz8frVb7jfYASyYk8PTmRv71\neSMvXzkeTW4Yw6sa8HbbUcTqTnhuEo0GVXb26IEsoE/7BaGdv0UpeDE4MmiN/gydzUK7NhZdbQsF\n0VpM3ScvEf1cYbc3MTy8i/6DU5EIZhJes/Jpuou/F/8fctFHvkeGOWKEluQo/r38PuQ+F9HyIaQu\nCQGXBLdEhumG8XgK9iGXhJHwxU0IlfUoipN+FvWjvw3/MxY9wITzL+bml1Z8w2darlSRkJvP5IuX\ncMkfHuTml1ew+E8PU3TeIhIVLuYNbES56m8s++O/qO850htCIlGSl/cvpPopjLT+iWJhHx+OS2dl\nQSoB4JFoP+pxIXxhvYaeZguSd64gL+NRVKoYqjvuQb/oPCyffoq3r/9wn4JUyqXnXIze0MlbOEg1\nFKFvSuefL4msfONe1u/fjEKpYM6CswEwraij958lOA4OUKTXIAFKR+yH5vf9UiA4HA4GBwd/UtlG\nFEW6XF2YlWa6XP24FV3YbYmkaQQEQCtfj63Zwc7YUSmkMzGO0H4PeZZypHI5E86/mL5mC26Hj4wp\n+VhjUsi88HKSCo6eoOxLjIyU86F4AcHSAFfFnlwg0n+jvs/K3asqKEo0cuuso+eyCVfIydKq2DZs\nRRAE5s6di8fjYfPmzcfsV6uUcc20ZD6v7aei04IqJxQkAo4D/ce851jQFBXhKq8g4PEgTZ6FweYl\nVtuH12fEpPcQYhmgIzIG6f5NGGO0mHp++PS5PxYGBtYhiuDqdxJmsbGzqIBHsy5Epm3lElkX09Uy\nGiaP4ZJYLZWZxcijhwnSelFm5/L62IvYeNdkXGN3oNcXkHTwfpTOCNzl7xN2/bGznf6c8K1ELwjC\ny4Ig9AuCUPm1a38WBKFLEIQDh37O/dpndwuC0CgIQp0gCHN/qIkfC5ITCN+XymTEZecy4/KruPaJ\n57nonvuJjIsnq2UDr995K++s2X1E+x1mDzfYbqVbksZVvuWE+JoYo1Xxn4JUXIEAy3NkDCdpWet8\nEHtLDbJ3ryZ3zCN4vSb6JzaAz4flg1XfmMf1MxJwIOV9wU1c4lQsMYuYsRHaWtuYWVxM2MREIm8r\nJPSKLCRKKaZ3anGvaiRTq2L/Ic+b7yvddHaObt9/SqLvd/TjCXiQaEQGJVY8PgGrO4cEpQyVpglZ\nXBxDGz9nZ0IuSdI+FMEaaivbybY3kDNjNuogPW2Vo26VyjAfPp/vhOIBSgZq2S+M59rYkO9lJsxR\nOwAAIABJREFUzVucXm54oxSNQsbTlxUiO0764mlGHfssdjyBABEREUyYMIHS0lJ6e3uPec8vpySh\nV8l48vMGpFr5aInBsn5E/8nt4jTFRYgeD66KClAFYwyEE63vpAuIdoehdPXSFxpBfPMBNCEq3HYf\nLrv3pMb4uWJwcDu2rkT8ohMlap5K/gUxQR3oo1YSPZxF27QYvCKkqEIx5e5hRnEv6utmsCH9BoyL\nqhkXv4nYmCWM8T8K3TJcB95Bd8Y0VFlZ3z74zwAnYtG/CnyzLh4sF0Wx4NDPZwCCIGQzGsybc+ie\nZwRB+PESp3wHCBIJSWMLuf6Rxzjj5t+jxU37aw/xh0dexO72sX7QwhUVzURrgjir+CUUcj0Hy6/H\n6x0mW6fmo8J0VFIJz09QUxahZoP8WcS23ehX/5n0xN8wJN+LtCAZ83vvI/6XvHLDpDkoNL28I7UQ\nrjDij5rMvgkTCRkcRH/7r+m+5148ba2oc8OIuLkA7eRoHPv7yfdI2D/iIHCorB18Jd34/X5qa2tZ\nv349H3zwAZs2baKnp+eY6+/o6EAQhKOW8/uxUGuqBSBeMxqgYzZHobdmIguA1reSbl8GI0M2KvUp\nJOsHmSTKMbaXIgn4KDx3NE9IW9UQ0anB9A+OrvVEiP7tQRkKPFyb8N2DxAIBkTvePUCHycG/rygk\nKvj4h7kTg3W4AiIV1tFqUWeccQYqlYq1a9ceU3fXq+RcPS2ZDdV9VHePoC2OJGDz4qobPqm5qgtH\nM3M6Sg5FAhsnEK4eYgiItWXiE/pxqTSE2i0MMWo4WIdcJzXGzxGBgI+RkYOM7DcCsG7SUtw+KVPT\n3iLJkolfkLBR52dWSBCmrffwoL2czogx+GU3ohj7CIUR5aSn3cuYtPuxbelFUDrxNu0g7KYbf+KV\nnTi+lehFUdwGmL6t3SGcD6wQRdEtimIL0AhM+B7z+9EgCALFM6ax7KnnkMWkYdz/Idf99UmurGgh\nU6ti1bg0YnSx5Oc9i8czSHXN7xFFkTFaFZ8VpZMbpGblRC2vheopTXkd2ncRu+V9QnRFmIra8XZ2\n4th95E5BLpFzdp4aq1/LpzjI1iqRImNYmYtr0YWMfPopzeeeR+dtt+OqrcGwMBV5lJasFjsWn58m\nh/sI6ebgwYM8/vjjrFixgj179tDS0sKOHTt47rnnWLVqFR6P5xvrbm9vJyoq6ojCHz829vXtA6BY\nlodMEDEPRxPjiUCiEREC+yhd08jO6BwCggQxXI6sfYR8axXxeQWExiVgG3Yz2GEjMTeUzs5OtFot\nBsPxvUXMHi+fu9OYo+78Rk3ek8FfP6thU20/f5yfzfikbw+ymnCo4Mkey6gsotFomDlzJq2trdTW\n1h7zvqumJBOklPHPDfWoMoxIdHLspX3HbH80yIxGFGmpOEoO6fSJiwhTDwEQZ8nDJRvtb1gdTId5\n9CViGXAevbPTCHZ7PSIuvD1eHGIQnzuDuFK5mZ4+J6mmsbRmaBj0+5lX8wb32D7loDYM7ex/c1D1\nayKCunDpHiAh4Wqc5QP4TS5cpe+inT4ddV7etw/+M8H30ehvEQSh/JC0Yzx0LRbo+FqbzkPXvgFB\nEK4XBKFEEISSgYGB7zGNU4sgg4FbHnmIkYwCiuo+J7dkD4uccoyHtvZ6fR5pqXcyOLiRrq63gFHt\nddW4NK6MCWVXlpplykjqZryG0L6b/PJBPLl+RLUUyyeffmO8u2bNAYmb5xU9aFEwU1+M3hXPTus0\n+Od/CL3uOuw7dtB60cUMPPEE6nHhZLeOyjZfl2/27t3LBx98QFBQEEuWLOGee+7hjjvu4Le//S3T\np0+nvLyc119/Ha/3q624z+ejq6vrR6sodSxUD45GxCbYIwgLcmE2xRMulaONbmfLQDK6PhN7EsaS\nQB+myBSsJdvR+uxMWHgRAO1Vo2T1JdHHxcV9axKyNzsacKPkiojvTvIvftHMS9tbuHJKEr+cnHhC\n90Qo5SSrFey1fHXQWVRUREREBOvWrcPr9eINiPS4PQx7fYet/GCNnBvOSGFjTR+lHWY04yJw1Zjw\n27758j4eNEXFOMvKEP1+5PHTiZWMPnth7gRc8lHdvz0ykv66GgBGhk5/ojcPVxHwCVgDfsqipqKR\nBZhvW0e3X0GcJYOKZD9x7n6uqH2cN/TB6C57mfLWG/HIHLxccwdnFy1GDIhYN3cgKN14GncSduPp\nY83Ddyf6fwMpQAHQAzx2sh2Iovi8KIrFoigWf1kt6ecAi9fH9bWdvDBjEe6UTM4u/ZRX39/Cta+V\nYLKPPlTx8VcRGnoGDY0P43SOvtcUEgkPZ8Tzj6QYOkNlnO+OZ9/8N5B2lTGhVYkrz8PIhrWI/2VV\nxwdHkBjdj8lrZA0uEiw6TGftY0jVzab/dHAg+GziP1tP8EUXMvTsc9g3ryDRHkCLwAHrV0TvdruZ\nM2cO1157LRkZGYclHY1Gw+zZs7nkkkvo7Oxk9erVh8fu7e3F5/P95ETfbm0HQDEsYAjpx+VRMyI4\nGR76hOrhCILdIgdCUpghK6erXEnu0H50cckk5o2W02urHEJnVKINlTE0NERMzLFrucJonvnXe2yk\ni7VMivpuVtnHB7v562c1nJMbxR/nZ59UdssJwTr2WuyHSVwqlTJn7lx2qYKZs/0gydsOMm5nNVnb\nK8nfWcVtNe3ss9i5eloy4UFKHllbi6Y4EgIi9j3H1vaPBk1xEQGbDXddHSg0pMhGidwvqNB4RtMe\n9ISF42+qQ6mRYR08/aWbvs4q3LUaRuQaDmqSWKLaTb8kHg0JjKgUVOrUzLXs5dKYSBqyb6C3/vf4\nRA8PlyxjVv5sFDIJrloTvgEnroOr0EyahKbwxDLP/lzwnYheFMU+URT9oigGgBf4Sp7pAr5+qhd3\n6NppgXKrg7NL6tk4NML9mYnc8Yc/ExwaxqX2Leyp7eKcJ7axq2kIQRDIzHgQQZBQV3ffEdrqFckR\nvBQaCd4AF1jieOvcd1H2txET7ka0OrBu3/qNccfrPSDKeVHeheAVWeSZxvvZy0maraWptJ/Vzzeg\n/90fCbnySswrXkaqEslwQ7Vt9CE999xzueqqq5g2bdoxXSRzcnI488wzqaiooL6+HhiVbeCnPYgV\nRZEh5xBaQUPA7iXI2DA6N3kfmyoH0CKyLiELjyAjXjpAWusugn0jzF5yBYIg4PP6aa8xkZgbSn//\nqEUaFXX8oi67zXbavQrmSnegVied9Jw/q+jh9ncPMD4xhOWLC5CeZCTt+GAtJq+fVufoS7/C6uCa\nQQ9bM8Yx4HBydaSBR8bE8efUGGYYg/hswMyC/Q1cU9PGL2cks691mG1DNlQZRmy7uhG9J34oqyku\nBr7S6RN1YcgEH/1SF2EuBULAT39IKCG9raiDldjMR8/BdDphxNyAo9ZIrS4DPwJLPO+j0DYQZU2j\nPFkGgsBq7046hVTO0q7B73Gypea3DLrjuWzCqBFk292DIPfhqdt62lnz8B2JXhCErzsnXwB86ZGz\nGrhUEASlIAjJQDpw7IiQnwm8AZGn2vqYX9qAVxT5YFw618aFo9LqOO+23yHazPxeX4FWLuWyF3fz\nz/V1yORRpKb8hiHTNvr6Pj6iv7njYvjrgILEPi+/sUWwcu7rRGrMoArQt+q5I9rW19ejbh5EphjE\nJLjZKbqJrNGgEGV0jjnAecvysQw4+eSpcow334oiLRVfdyXpQ16qbE4CokhBQcEJWeXTpk0jLCyM\nNWvW4PP5aG9vx2g0otf/8KXMjoVB5yA+0UeyNAG/YgSDJxitqKRV6MDsVWMXJOyKyUEW8GJptDPB\nXEp00TTSikdzxnRUm/C5/aSMCz986BwdffxcNf/pNaHCxdkhspPOM7+moodb3iljXLyBl68af8xq\nUcfDl/VmGx0uPh0wM39/AzZ/gKcSw1hcupkJTZX8KjaM/0uI4OnsRA5OzeW+1Bj2Wuws99sIM6h4\nZG0t6qkxBGzek3K1lEdHI4+JwVE6SvTBYRPQK0cYkA8R64hD6R7GpA8h2d5FQCXBcYxke6cTvIFW\nHCYlNbosxmv7SZb00anxEjWSSnm6hhhhEJm/kzsS3fg8w4SV3MEqUzgL8mMI1sjxDTpx1w/jadmG\nelwBmgnjf+olnTROxL3yHWAXkCEIQqcgCNcAjwqCUCEIQjkwE/g1gCiKVcBKoBpYC9wsfpkG8meK\nAyMOzi2t56/NPZwVpmdDcQbjg78KXokZk8XUxUvpO7iHv491c1FhHE9+3siSF3Yj6C4iKCiPxqZH\n8PuP1DLnXTSGpSVOMq0iv3HFUzrpTvSRLry7KvG6R7fIDoeD1atXExURSWGqiNcTw2sSGzj9LPEv\nYGf3ThKyQznn+lxM3Ta2vtdM+C234u2sIt3kw+YP0O46cY1WJpMxd+5choeHKS8vp6Oj4ye15gFa\nR1oByCINj7YbQ89UYvxG+kUnIHK2R0qfJpGxgQbcSg0FF17Bpb/53eH7m8sGUGpkxI4x0tvbi0aj\nISjo2OkBHP4AHw8MM1HcQYzx+H72/42V+zpY9k4ZBfEGXr16Ajrld9P3U9RKAF7sHOT6qlbydGo2\nFGdwSUoc44uLKS0tZXDwqyyVGqmEmxIi2DIhk3HBWrqTNDT021jRZ0YepcW6vetwfqQTgbq4CEdp\nKaIoEhQ3D4PSwqDETbojEZl3iJEgA3rvCHaJeNpb9A6rC0ExSL0slmGFgV94PkQUJGxwJGLXpDCs\nlGAdeI+LtUEYZa1EVVzHbmMWdq+fJRMPWfN7e0AQcVeuIeyG679zEZqfEifidbNEFMVoURTloijG\niaL4kiiKS0VRzBNFMV8UxYWiKPZ8rf1fRVFMFUUxQxTFNT/s9L87au1ObqhqZV5pPX0eLy/lJvFS\nbjKhim8+vBMWXkRCbj7b33yBe6aG8vjiAqq7RzjvyZ0MS/8Pt7uX9o6Xj7hHG6xk+qJUFmwwEyZK\nuClkEYG8WAS7QMea0TKCn332GQ6HgwsvvJDrphQCEpplLbRLAswdmMLB/oNYPVYSckIpOjeJ+j19\nWBOLEKR2xlhH35+V1pM7LEtLSyMiIoLt27djt9t/cn2+YXhUqsn1jcGt7SOorxi1C0SpjNhQge5O\nM31yPReodmGbfimzF196OFbC7w/QUj5IUl4YUpmEnp4eoqKijvsgrhu0YPOLTGMrBsOJOYSJosjy\nDfXc+X45U1JDee17kDxAqEKGUSZl67CVgiANK8amEnboezdjxgzkcjmbNm36xn3xKgXvjk3ll+Pi\n8IcqeWh9Hf4Jkfj6HDjLT9yhQVNUjH9wEG9bG7KoQkJkIwyJcrJcSUj8Q1h1BvwSAbPLjnPEQ+Ak\n/fV/TuhpbsNnFajRpSEV/XwS1cK5cUmMKOMpT1GjCHgYH9jPpJBeoj1XEDRQzGqvi4zIIMbFGxB9\nARwlfQTsLcjC9WinTz/qOL6AyPZhK4+29LC0vJlZe2sp2FHF2B2VjN9VzYLSBm6sauUfLb1sGLQw\n4Plx4xNO68hYq8/Pa12DlI04cJ9ACgCT18eKniEuLmvkzL11rB8c4deJkWyfmHVEMY//hiCRMO/m\nO5AplHz6xN+ZnxvBp7dOJyFEww0r/Qx4J9Ha9hxuz5G5wrOnxpAUH8T5u2x0urw8e+m/QBCRvreK\nA2U7qays5IwzziA6Opo5aXmo1H34CGJlwI3BoibJFU35QDkARXMT0RmV7FjVjHbaWFJsAaQiVNlO\njugFQWDy5MmYTKMesz810VcOjqp+ad4EpBIFEr8a6+DoGYLOEElJxGhCtyJJPYtnHVnmsLvejNvh\nI2VcOD6fj/7+/m+VbVb2moiQ2MiT9aLVpn/r/OxuH7etOMATmxq4pCiOl68c/71I/ktk69TEKuW8\nmpd8RLCWTqdjypQp1NTUHE4293XIJAIPZ8Rz3VnpeH0BLqlsQRatxbK29YS1ek3xoUIkJSUgkRIu\nszPs05Lpi0JkEKs2CJtSgW14EFEEp/X0DZoa6G7C1aCmUZtCtL+B/TqRbpkHjT+JulgFGvsOFhut\neIVM9Lvm0Jmmp7xnhCUT4hEEAWeNiYDDh+vAaoyLf/GNinDdLg9/aewif2clFx9o4vHWPtpdHuLV\nCmaGBnFWaDATg7UoJAKlIw4ea+1laUULeTuqKN5Vxc3VbazuP35tglOB0zrXTYXVyV31o5GdMgEy\ntWoSVAqilXKC5VIkCFj9fvrco3p2o8ONCMQq5dyTEs3l0aFHteCPhqCQMObecCsf/eNB1v37cc5d\n9hvev3EKf19Xy/I9c3hg6j4O1jxBUc591O3aTv3u7QR8PiKSCwjfrOeswmBeE7zMHp9DUsMBLDvv\nJCHh6sM1WgVBYHyKny+qYtjMML8W1MyyTKRysJKpsVORKaRMWJDM56/XYjtvKopN/SS51FSeJNED\n5Obm8vHHHyMIAmFh3y/0//ui2TKaqlfv1OBxheGV2RhyNiBzZdCFgbKYBGKFASzyECYmGI+8t2wA\nmUJCQnYIAwP9BAKB4x7E9rq9bDVZuUCynVDjhG/dgjf227jxzVKaBmz8bm4GN52Zesq27c/mJCJB\nOOr3b/Lkyezbt48NGzZw1VVXHXXM+woSqawbZG9ZL89NCOKavXZsu7oJmvHtwV+KlBSkRiOOklIM\nF19MlErE5tMiEwRkPjOiREpvSCjuwV7QhGK3uNEalKdk3T82RsztNPUnYVXoMajX8jdvMPfILbg0\neXhlAufItyMTIIt7wB1gvVpELhVYNG7UK9xR1g+Ch4C5ieALLzzcr9Xn5x+tvbzUOYAInBtmYFGk\ngTONQWiPE2Vt9/kptzk5MOKgZMTOtmErConAwogfNkvoaU30kw1a9kzKotzqpNzqoPIQmW8btmI7\ntN1USwQiFPL/j733DozjPK+9fzPbK7BYYAEuKgEQhRUEQLB3UhIlSqK6IttSpNiKk9iOb+7NjZOb\nOPf7krik2HHTdSyrWZasSlEkJUoyexN7RyMAopcFsNjed2fuH0OCothAEZQoX51/JO7OzL4zmDnv\nO89znvNQYdZzT7aN5XYr082GT/TAls6aw4KHH2X3K79BliRWPvkN/tcdk5lXmsnBQx8wQ3qVX/6q\niehwhDRHNiqNlvZjz2Bz1jDt/aXsXZPB0/f+Gd/9zjeodTUy/S+WX2BR+yfz57KrvhM0HRxIOVgW\nmM2vhs5HvybVZrPnjVbaBgxURN0Ue22ctl27/E2j0aDRaEgkEqRSqc/UzKwvqDiHqgMghgrok08j\nI+NM9tFlmMQJWyH3C9tRF9Re8DeTJZkzx4YonGpHrVWNWghcaUW/1uVBAuak3iHddnmPEkmS+c2H\nHfzwvWaMWhUv/sls5peO74SYpb18z1idTseSJUt45513OH369KhN9cfx7JoZzD7t5pmGAVbl2RG2\ndGGYnok6/crVuYIgYKipHk3ITjAr5miDxi6s8RgewJVhxxhwgxHC/mvT6t9MiIR7OJqYhqhJMSH9\nBBO094D8Ov2ZhRjjYW7XneDo0BqqXHqC2RH2tzazaoKWjtMNGNV6pOY+tB17sdyyEnWGUhC3ze3n\nL5u6GIoneWRCBn9ZmE2BYWwToUmtYm66mbnpyjWXZZnINeRXPik+10QvCAKFBh2FBh13fmxGlGUZ\nCSU2NZ7Jk7o1D4AgsOfVF2k/dpjc8kpikQhGlwfVAynUFW50aX/FE19ahSCK7H39Jfa9+Qp6aw7L\nhufxdkYmj+bkkdvnQbPvf8Hdvx099uKJU9Bp9xOVLbwrxZkrmYl3+JFlGUEQUGtVlM/J4dTOXsoN\nIhN9KTZH44RTEsYr+Kt8HKFQiFhMSbK1tLQwefLkcbs+14KUlMIb86IR1EihEGJKT6dXCdtUpVo4\nKFQTEzUsVJ1iWvW3Lth34IyPsD9O8UylBmNgYACNRkNGxqWrU2VZ5rWBEabpIzgjfdjSZ19yu7ah\nIH+39iT720dYXJbFD++bflVbgxuB6upq9u3bx+bNmyktLb2kZ71Zp+Zn98/giRcO8Q1bmNckkZbf\nHcJfrcHr9ZJKpTAajeTk5FBcXHxB9bNp1iyCm7eQ6Osjx66E74YMbeSE1XQCbpuNAtcw2CEa/PyF\nbhKJBG1tbQRooV57N8WBTvJTGWw8I6HJt9HhNLFQ2k4sYiTSpOdX0gYQYBbAMKxbd0w5kAYMhTHK\nSsqY3t7O71Jaft49RLlJz2+mFVNlvb7Wm4IgYFTd+OTu55rorwRBELgRJjuCIDB7zQMUTqvi+O83\n4WpvRaPVMWPxw+it+yiavJP/sSNI82sn+Lf7FcfM9qOH8A3uo2R7Geq70nj5tjVUHOuk8PhGWNgO\nGRNHjz0ty82h3koa1D6SSQPlnnxcYRc5JiUkUTnPyYmtPYQzMyiOapCBtnCUaZax33DnYr86nY7G\nxsbPjOiHIkPIyGSrHEhiHJkUfZ52NALkhWRcehMgM0dsQFdYe8G+LQddqDQiRVOVlfbAwADZ2dmX\nfTupD0ZoCkX5lukIOl3ORfF5XyTBT7e08MLeDgwaFf9633QeqL16he2NgkqlYvny5bz22mscP36c\n6rM+NR/Hssps1kzLpK3xBM/q3IiuKGxS3tpUKhXRqPLGp9FoqK6uZuHChZjNZiWp+P0fENy5k5zy\nqUAvbr2bkrCd/YDHkkZtuAEfn68Y/eDgIPv27ePUqVPE43GMThU+TRqLXbu4NRzCl2Fhk3oJSbXA\nAnkLra3VyLIKEzpOqzKoD1tYpm1BLcgsZirhuJ9+30EaBgc5/sILeIxm/njyDP5u7iKs+s9POOsP\nluhvNHJKJpFTciFZhEIL2bf/9/z90ia+84EFly/Krx6toe7u+9nw4x+gE1qZ2TuZ7bVzGNy3ngIG\niW/+G7QPvjZ6jAdnlnCoV0StaudEKovawFRODZ8aJXp7rgmzTceIoKI4qISnToeujei7urpQqVSU\nlZXR2tqKJEmfSfjmXNimSMxHTOkZ0pxEQqJQ5Sc2ZGDIaiJTE0KjN4H1fLVrKiXRcmiQ4hmZaA1q\nZFnG5XIxderle8O+PuBBIwjMiLxMhmPhKIH7Igl+d6CLX+08gycc5+FZ+fz3W8rJNH/2D3FlZSW5\nubls376dadOmodFcGO5JpVIcOHAAR+d20tUx+qU05uhLmRtIZ+ITdegKrMTjcXp6ejh+/DgHDx7k\nxIkTrF69msmTJ6PJyyO4fQcZS24DevFoo0z2p4Es4Tel4YwM4hEgco02C58FXC4Xv//972ltbUWt\nVjN16lSyzPn8+sBGBFliUuQUK3PMvNI5gCZrKWmSl7xIH7tHFvNo5izSYiZWB0ZYXuXg6/MX0X6y\nhYk71BxSB+mc4GRHzRLwurl1qJvEoT38V+MxFi9eTHV1NWr1zU+jN/8IP0cwmUqw25ei8b/Lzx5+\njL96rYn7f/kh//XwVFBrSMrHqW6s4GChmvdyp5OT3kBB4wcwdBqyygC4Z/YdfOe9N/FJOvbISb4Z\nd/J+dwMUrgCUVX/BFDsDh13U6CXUskxz6Nri9F1dXTidTsrKyjh58iR9fX1jcnscb/QGlaLpmugU\nRElDp/sMIDNJ52KkyUJvmY3JoouhrPl8tC1Hd/0I0VCCstnK5Ofz+YhGo2RnX7pDVEKSedPlYUma\nhN4zgD1jIX3eCM/ubueVg90EY0kWlGbynVUVTM1NG7fzGxkZoampiZ6eHjweD7GYYkJnNptxOBzk\n5eVRWlqK0XjpSVoQBJYvX85vfvMbDh48yLx580a/Gx4e5o033mBgYIDS0lL0RVU8v7GTvROsvJxQ\n4f5tI9nfnInWoqW4uJji4mLmz5/P22+/zeuvv87ixYupWLQI39q12DXKJO8VVJQlbWjiAYImC+aY\nn6gIkZs4dBMOh9m6dSuHDx9Gr9ezbNkyampqMJlMnNjWzclgMXnRXjLVI5B7JwN72ulenMk8YQcH\nO+cwofoObHtGODpZh38oyV0zcsnLc5DeKeDlDPYDG9j+7W/TqjWw3O2iKCOd8rmzOXnyJO+++y57\n9+5lyZIlTJ8+/TPNdV0NXxD9OKMg/3GOHnuUasdhXnhiKU++eJB/f/olCs3pGCIu8hMyxf4kGxcu\n4wFPO5K4BXH79xAeeB4AjUZPnv40XaEqTmqSkADOROAjysLCKXY69vah0YnkB8OcDo+d6GOxGL29\nvSxYsIDi4mIAWltbP1Oin+IvRkam190LCGRLAT4wVSAJIrmih2ahlKKP7Ne8fwC9WUP+ZCUe73Ip\nrouXI/rtI36GE0lWaE4BIv++3cJbx7chA6unT+BrC4vHleC7u7vZvn07bW1tgNL8PCsrC7vdTiqV\nIhAIcPToUQ4cOIAoipSWljJ37lyKioouChWdI+ldu3ZRXV2NXq/n5MmTrF+/HrVazUMPPURFRQWC\nILCjO8E7J/v5xpQMXmhM4H6pkayvTkNQKwTkcDh4/PHH2bhxIzt27CBUUEBxNIrm5FEEZLyyAZtk\nRJP0ETJakOUUITlF8Catjj1z5gxvvfUWwWCQuro6Fi9ePDppjoTi/OO+NoalDJYFTpChD+M1ldNc\nYiWm0jI1cYrneu9hbY0VJDc7ozHMOjXzSpV2muFTbmTJx3/cdy9tBgs/Kslhguhn//79tLS0UFlZ\nyV133cWBAwdYt24de/fuZcWKFUyaNOmmLKj6gujHGTbbPMymcrq7n2POrPv4xxo4dXiENvMkKrx7\nKa6SmNIUZUOdk46OyRideyisXwdLWyBTCQWtzArwTFCLbO5lxDMJi+vCMEJehY0Yys000e3ntOPq\n9rjn0NXVhSzLFBUVYTKZyM3Npa2tjSVLlozbNRgr2n3tAGQFrAToJyFEEGUjBLWctBeDLFMnNtHk\nmcQtZxPSsUiS9hPDTJ7vRHU2AX2O6B0OxyV/57WBESyiiNj1O9qi+bxbH+axeUU8Pr+IPNv1JdM+\ning8zgcffMChQ4cwm80sWbKEqqqqS1omp1Ip+vv7qa+v58SJE7zwwgvk5eWxatWqi3p/Ne3VAAAg\nAElEQVQDLF++nKeffpq9e/eiUqnYtm0bhYWF3HfffRfYV/zz3VM53DHCUEeA/68ijX865ce78Qy2\nNec7XqnVau6++240Gg0HDx4kNWUKGbt2YVFPJpQwYVBHEZMpgsZMYhoVCTmBz3tzGZtJksTWrVvZ\nvXs3drudr33taxcZ2b34YSdHz1pBT/a14LAneL85RNfEIlRyArvLhF5joDAm40Vma7+XJeVZ6NQq\nUoE48Q4fezR+9pVN4YdlefxRbiYU5DB37lz27t3L3r17aW5uZtasWcyZM4cdO3bw8ssvU1hYyMqV\nKz+ThdOV8AXRjzMEQSA//49pbPpbDh9+hVOHmympmMqWZi3l7MUf72CGZxLvpiR+r8rBVjSBgt5O\nhH1PweofA/An08p5piOJN+bhBCnKvPnEU3G0KkU1oTWoSXeaSAQiFLmDbI/EiKYk9GNQ3nR0dCCK\n4qj1QVFRER9++CHxePxT96TvDnSjk7Togio6Ap3obXFUg9mEvekcLqskS/QxQ2hmYzCfwcFBsrOz\naTnoIpWQKJ9zXi/vcrlIT09Hr79QHRNPSrx6rIeNPi+6Xi85uafx6L/E3u8sv6hx9/UiEAjw0ksv\nMTAwwNy5c1myZAk63eXj/CqViry8PPLy8li2bBnHjh1jx44dPP3009TV1bFy5crRmHxubi6VlZXs\n3r0bSZKYMWMGd95550Wx4TSjhh89VMUfPb2PvYEI60qNrNnXj9ZpxlR3/noJgsCqVasIBoMck2XS\njx8nfUYlgYSJpK4PUUojZJxITK1GkuKEb6JkbCwWY+3atTQ3N1NdXc1tt912yfv2RI9ShFQRbiQz\n4idqLqSpd5ie2ZOopIGm7vnUFtlI9gRpNKtwB+PcMkW5RpEGN8jw89nl/DExHvtIm0mdTsfSpUup\nra1l27Zt7N+/H4vFwq233ko4HGbHjh38+te/prKykuXLl3/mdSrncPMGlT7HyM5ejSAYaWl9lqKi\nIv7o/jW8+BfL8evt7PjwMBOnZ1I8kGRzyWSslmUMZBuQj/0OQoqvurNoNiZtB+64nUYxiTOVhnvo\nQuMqR6GFiAQTgykk4ExkbK/X7e3t5OXljT4chYWFSJJEb++nbzLqCrmYGi5FQGAg1IVanyAtLuEb\nSNFuzmGmtpNyq5IIbGpqQpZl6nf1kplvxlF43s/G5XJdUCgVjid5Znc7i/9tG3+7/wyyKPDfi/sQ\nBZlba++9IST/7LPP4na7eeSRR7j11luvSPIfh0ajYdasWXzjG9+grq6OAwcO8Nxzz412DZNlGY1G\nM1oQtmbNmssmAOcU2/nTRSXEOoP80JSgw6nH83YrsS7/BduJosg999xDlsHI7rJJWAWZUNxEwtSO\nIRUhbDARVatQSTES0ZvDrioQCPDcc89x+vRpVq1axV133XVJkk+mJA60jzBbFeKWwc2oRA3brEuR\nzCYG9dlMDnVx1J3B7Il24t0BduuVIqml5YpU13V8kG6DgL2rnn+aM/2SY7FYLNx111189atfxWQy\n8cYbb9DS0sJjjz3GkiVLaGtr4xe/+AUbNmwYrUL/LPEF0Z9FKpVicHCQlpYWDh8+zL59+9i/fz+N\njY0MDQ1dts3bpTA8HGBgoJDMzE7uu+821Go1RZkmZlRNJTM6xA9aepjSE2fIZqNzcBpdTjVCMgKH\nzvrlOCopUzURT2YzYFVeP/1tF3qZOAqtRCQoiiikdXoMCdloNEp/fz9FRUWjn51b2Xd2do75/MYD\nsiwzEh1haqgEWZaI2ZtJRlXkhDy0WnNJiSpuUR3FkldJXl4eDQ0NDHYGGO4OMmWBczQOmkgkcLvd\nZGdn448m+MW2Vhb8cBv/tLGBggwjRTOyqDTpWWTZhU6Xg9Uyvl2BotEov/3tbwkGgzz22GOUlZV9\n4mPp9Xpuv/12Vq5cSV9fHz6fYn63c+dOTpw4gcPhYHBwcPTzy+GvVpYxNdeKqcnPE0UCMbOakd81\nIUWTF2yn1Wp58I8eRhYEwuEY0YSelKkXSzKOLIqMpKVjEWMICema7v8bgUAgwPPPPz86mc6efek6\nCID6Pj+BWJJKqR1JVuMqrUAUBUbsyqQwsV3HiEpmbo6FpDfKjnCEeSWZWPQa/OE4Qoefw2lJvt90\nCI3BcMVx5eXl8bWvfY1bb72Vjo4OnnnmGaxWK9/61reYNWsWR48e5ac//SmvvvrqaNj0s8D/k6Eb\nSZJwu9309fXR19dHb2/vaBOOy8FisTBjxgxmz559RXdEj8fDSy+9hE43hezsRrze97FYHgNgYkU5\nHft2kEgE0EVEVCkT7/szuCfXSnBCGuaDT8OCb4Nax2pzD0fDMKAaIIodX0sA5p//HUehhTYZChJ6\nxDEqbzo7O5FlmYkTJ45+ZjAYyM7OHvWm/7TgjrpJSklmD5fhTQyRNbuPtg2l2MJDbMtSNONLUvsg\n938wtWAq7733Hge2NKDWipR9JAwxODiILMucGoFv/3AbvkiCJeVZfGNpKWlZRhYeaOK7+emMtO/C\nOeEBBGH81jaSJPH6668zNDTEI488Mm5x2XNvJz6fj97eXrZt28b06dNZtmwZP/vZz9i+fTtr1qy5\n7P5atch/PjST1T/bhbrNz19PTuen+0J4N5wh44ELJ6LMwkLmBgJsNqeIJEzIFjd2v0wr4E5LxyaH\nSciQjEtodJ9N+2e/388LL7xAIBDgy1/+MoWFV+7m9eEZ5c24inoabQ5i6TbWTEzyt2YzGfIw2jNl\npCwiJQmBU0h0h+M8WelAlmWe3n2GhyQo27uWCffMHdP4VCoVc+fOpaKignXr1rF+/XomTZrEnXfe\nycKFCzlw4AAHDx6ksbGRzMxMZsyYweTJk7Hb7dd9bcaKzzXRR6NRmpqasNlsZGRkYDabL8h4S5JE\nIBDA4/Hg8XhwuVz09/fT398/2j9Vo9EwYcIEamtrmTBhwqg/u1arRZIkfD4fLpeL5uZm9uzZw4ED\nB1ixYgWzZs26KLvu8/l44YUXiMfjPPLIf6Oru5m+vlfJy3sUQRDInqgkxf7/BWn87x0JSvoTfGBz\n8IRtEZ2OHUzpd0HL76Hidh5wpvPPIz4GwxItpLB9LLJid5ppBPQqI3mxMC1jUN50dHSMxoY/ioKC\nAo4dO0YqlbpkBeaNQH+wnxmtaeSRx4ixGbNFi8wENOF29mdPxijGyBT84KxmSuYU3n//fZpPN1I9\naw5aw/nbdttRxf3yV4dGqCrN43/eWsG0PEVB8y9tfagEWKptoE+KkpW1clzPYc+ePbS1tbF69WpK\nS0uvvsMYkZamjL+lpYX9+/dTUFDAXXfdhVqtpq6ujn379jFv3rzLJp8BSh1m/tcdk/mHdac4kqHj\n95VmVh52YZhixzD5QoKZuWABtj2DDIsOJGMA+5Cy6nSn2XBG/bi14PfFsDvGL3E9VoTDYX7zm9+M\nkvxYTPiOd3vJtejRBAeIOWZjGx6gcmUNZ6LFlMXa8MoTqSkyI/UG2S+kQIZFZVmsdXmg1UtClMk/\ntQ3zj//mmsZqs9l47LHHOHDgAJs3b+app57i9ttvZ9myZSxYsICTJ09y4sQJtmzZwpYtW7DZbJSU\nlDBp0qTL2lyMFz7XRD84OMi6desu+OxcRWAymbxoha5Wq8nJyWHGjBk4nU6cTidZWVlX1L+azWZy\nc3Oprq5meHiYTZs28e6779LT0zP68MH5VUckEuHRRx8lJyeHVOohmpr/Hr//OGlpVTiKikEQMAcG\n+P7jt/D8awc4nZfLkPYWROsmKo0ZiEdfhIrbsU6YRtrp07gjU2kRwtwWNI9aIQCoNCJqixZVLEmh\nZ4SWMawOOjo6yMvLu6jwJj8/n4MHDzI0NHTV7kzjhca9O1jcUYomT4dY2IbsS0MrpyNFk5xJczLd\n6IKUCM6ZWHRm7JYcRhIupi9VJqnhYIzvvn2K4cYGytUiP3l0AUsrHOdDOpJiebAsw4rk+S1qddqY\nbYnHgu7ubrZu3cqUKVOoqbk2X/ur4RzR79mzB5PJxIMPPjh6ny1cuJAjR46wdetWHn744Sse58uz\nC9ja6GLX6WG+W6dhToYW1cYz6CfZEDTn73nrypUUrv1XThrzkbVJMuPKc+NJT8Pc6cOthTP9gU+d\n6BOJBK+88goej2fMJA9K6KYkzUBbJA8QmHr6EEfkhfhEGwXDMQakFLMnZhBvC3BQK1NkNmK0aPn7\nfW287JZQRXrQFheiyb1ku+srQhRF5syZQ2lpKevWrWPt2rU0NjZyxx13UFtbS21tLR6Ph5aWFlpb\nWzlx4gSJROILor8ScnNz+cY3voHH42FkZIRwOEw8HieZTKLRaNBqtZjNZmw2G+np6aSnp1/XijUz\nM5Mvf/nL7Ny5k23bthGPx3nggQcIBoO8+OKLBINBvvKVr4zK47Kz76Sl9Xv09b9GWloVGr2eDGce\nrjOt3PPAl2gxJtkEPLvfxJ/kq/BPnER6w/sQcEFWBZOFl9krz+K41sW9cSuR4TDGrPOlQ1qbDgaS\nFA642O8sICnJqC/T1i4SidDf38/ixYsveR0Bent7PxWid51ppfu1D7DblTBC0HGEZL+FjHCSHouD\nuErDCv1pMFaCzkwiliLlSkcy9BPFx/v1Ib7z5glCsRSPZQk4TBNYVnmhhv79YR+ueJIvT0hjuHEr\nmZlLEcXxScImk0nefvttrFYrq1evHnfdtEajwWg0Eg6HufvuuzGfNR0DpQfwvHnz2LZt22gj9MtB\nEAR+eP90bvvPXcSa/Px9STo/ORQhsKsH67LzpKm22cjMtJGU1SQkNVkpJS/kNVsxRHvAAu19fmbN\nuHSdwo2AJEmsXbuWrq4u7r///gvCjVeCL5ygayTMHIuaEVU+mhEXmQkf7ySUc3K2ZdEkyswqtBHc\nMcjhRJwHywr4bksvGYEkWaEU0dYPMc+dd5VfujIyMzN54okn2Lt3L9u2baOzs3O0Itlms1FXV0dd\nXR2SJI36Tt1IfK6TsSqViszMTCZNmsTs2bNZunQpt956K3fccQe33HILS5Ysoba2lpKSEux2+7iE\nJQRBYPHixaxatYqmpibWrl3LM888g9/v50tf+tIFHZvUajNZWbcwOPguqZTyx3QUFTPU2QHAo48u\nJHc4SpPeSFJVSXdmEuQUHP8dZFVwj3wMkOgUgwC8vX3nBWPR25VEUW7vIHFZvmK3qfZ2RbN+qQcm\nIyMDvV7/qShvUskE7z31Y2S9mlS2nbg6TtzSQ9JrIsPvpjGjCIClsd2Qp6yUG3b3IfptiKKKZ9bv\n4E9fPEx+hpGN35yPOua/5OT0fO8weXoNM+SjJJM+sh2rx+0c9uzZw/DwMKtXr8ZwlWTdJ8XUqVNZ\nsmTJJZO7c+bMwWg0snnz5qsm9xwWPT+4dxohT4zjngiHcnX4t3WT+lgRlL1CCT1FEnpMmmHUiQgB\nkxVtWJEp9g2Gx+nMxoYdO3bQ2NjILbfcckVri4+jvl9JVMve0whyEv1QLxatxJGUCqvkI20gE79K\nptKo53gsTlSSseYYeWvQy9+klL9lsvcopjmXT/aOFaIosmDBAp588kmsViuvvfYab775JpFI5IJt\nbtQ9dMFYbvgv/IFi9uzZTJs2jfr6eqLRKI8//vglk0Q5OfeQTAYYdm8FIDO/kIB7iFg4jDYzg9rO\nbvqyDKxvqGJQPoOUVwPHX4GMYlbhRtT145HNSMi0N/UQiAdGj22eoKzuczwKwbdeIU7f1taGVqu9\nZOtAQRDIzc2lr6/vuq7JWHBw/VqGuztxLUgnP+kkZPGDIBP3GrH5eziYXYEoyEyKN0NuLamkxLHN\nXWRPzMCrsRNydfDYnAJe//pcsg0ykUjkoorY1nCU3d4gX5mQydDg22g0GWRkLLjMiK4NbrebnTt3\nMmXKFCZNunrjkk+K22+//bJFbDqdjsWLF9PR0TFafXsl3DIlh4dq80m1+fmnTAkpJRHY0XPBNpkz\npgAQSRgwGH0Y4lH8RivqkAeAQfe19z34pGhqamLHjh1UVVUxd+7YEqLnUN+ryEjFaD/qcAf6WAy9\nRc8ZMZuCUCcCYM7Qox6OcoAkalHg5ViIcpOeOUNJBHUUOTIy2kR9PJCdnc3XvvY1Fi9eTH19PU89\n9RQtLS3jdvyx4Aui/4Q4fPgwp06dQq1WTLUuNytn2Oai02YzMKDkEux5yiuzu0dRudyZGgRBYCA1\nH5Bx51XAUCOMtGHOLMWi62QkZqdHlCiMZrO+bf3osS1OhegnRBTN9uUklrIs09raysSJEy/7VuN0\nOnG5XKNJ6huBZCLBkU3rKa6eRZvNQ1HMSdKsaIwTI2bMoT6abQXkGkKIggx5tZw+4CLoibE2EuB4\nOA2jkOBLk3Xo1KrLWh883zuMRhB40KFleHgz2dmrxy1s88EHH6BSqbjtttvG5XifFDU1NaSlpbFl\ny5ZRvf2V8N07J1NgNxJu9bMhR01gfz8p//lVfbpdqd6VwlrM2gimRIqg2Yo6pKzoRz6l6tjh4WHe\neustJkyYwB133HHNYbFTfT4sqiQZYhLZP4AhkcJTkk4/TjJHlHPJz7eS6AuynyTZ2Sb6Uin+daKT\neLuPlLcF/eTJqNLGzxIDlOjD0qVL+epXv4per+ell15i/fr1o+6iNxqfa6KXZZmOjo5PVZsaj8fZ\nsGEDGzZsoLi4mCeeeAKAjRs3XnIcgqAiO+dO3O7txOMj2PPPEn2vQvTzK/OxhOP40m34o1Y+CI8g\nI0D9OsiqYJJ4Bhk1JwxQnLKypWP76LEtOQrRG0UzWQK0hC8d63O73fh8visqQ3Jzc5FlebSBx41A\ny77dRPw+Zt52JwlPFKOkJ2XuRxWzonMnSAgibr2V2eYB0JqR7eV8+E47bo1MEwm+/8e3YDKZOHy2\nYcaliN4dT/JS3whrstORvb9HkuLk5Fxeingt6OzspLm5mQULFlxRYvtpQK1Ws3TpUvr7+2lsbLzq\n9iadmh89WEUsnOA14kiSzMj2860KLXolXZeMaLHqAhjiEULmdMSYEjYMBuOkbnCDjFgsxquvvopK\npeKhhx66SDQwFpzoHCJNDjJd9CHERbSJFCfKi5EFEbtLREamssRGX5eXNiR6LSJ3OdKZ7k5CUiZW\nvx3jFTT61wun08mTTz7J/PnzOXLkCL/4xS9oaGi4Yb93Dp9rom9vb+f555/nueeeo6en5+o7XCe6\nu7v55S9/yeHDh5k/fz5f+tKXcDqdLFu2jNbW1su+juXk3IMsJ3ENvkOaIxu1Rou7WyF6U3UNM5ub\nactUE/HehdHYyEBaFTQoRL9KPgJIHEt6mYDI0Y4hQmcTS9o0pQBE0lkpScUvG7ppbW0FoKSk5LLn\n9tGE7I3C8c2bsE1wYisvJjuktAVMmFrRhiZgCPhoSc8HQWCxfAKcM9m+vYeIO0pjusCbfz6PupIs\nqqqqOH36NH6/H5fLRVpa2gXWB7/uGSIqSXyzIJv+gbcwGIqwWi5d3XgtkGWZDz74AIvFwpw5c677\neOOB6dOnk5WVxdatW0mlrl69WlNo48lFJXT2BXk3QyS0f4DUWQtiq14h1WREj8rkh+QAYb2R7sJ8\nBLWAJgU9nhsbp9+0aRNDQ0Pcf//9l/QHuhoSiQQ93hjZRpHyVDuqpAptSuKkQwlX5g1MJCDIzCi0\nseesRQJZev6hxEm0eQRUkHQ1jkt8/krQaDSsXLmSr371qxiNxtHn80bic030hYWFrF69Grfbza9/\n/WveeOMNhoeHr77jNSIUCvHOO+/w7LPPkkqlePTRR1m5cuWoLLOurg673c77779/yQfOYq7AbK5g\nYGAdoqgiIzd/NHSjyXWy+MxxIjqRwcgirNogb4TyYbAB9FYWSW5EfR+nYmHUCGQEKkYbagsqkRSA\n1kxRJEhLOHrJt4rW1lYyMjIu230JlIIwq9V6w+L0YZ+X3uZGKhcuZSDsYmJMmVii5pPoQrmYAiPs\nm6A0QKkLbmfQOpXtb7cRUMMPvjWbkixFeVJdXY0syxw9epT+/v4LErGBZIpne4dZlZmGU+7C6z2A\n0/nguKhi6uvr6e3tZdmyZZ+6J9DlIIoiy5cvx+12c+zYsTHt8+0Vkyi0G9kYjaBOyZzcqVREn1vR\nJ6I6BF0UITVAXK3hxIwZiJoEOlnpvnWjUF9fz7Fjx1i4cOGoq+q1YuveQyRkkdlTSzAm+1EnVGiT\nSRoNudgSfqwRAwEVlFn0bJYTyBqBr0/OJU+nIdrsQVB7QZAxVI+vXPZyyMvL48knn+TWW2+94b/1\nuSZ6lUpFbW0t3/rWt1i4cCFNTU38/Oc/57XXXqO7u/u6QzrhcJidO3fy05/+lEOHDlFbW8uf/dmf\nXXQjqlQqVqxYgdvt5tSpU5c8Vk7OGvz+Y4TD7djzCxg+S/SCILDYrEWQZfZFjUgJPUGnEQmBxHAb\nxYkEOmMHfZiJIeMMl3Jy+OTocSWVgKAxUeR1409KDMUvrB1IJBJ0dHSMqaDH6XTesBV9x/EjIMsU\nz5xFb7CXomguLs0wktaLxp+NJdDP8cxSdJoU2fIwPznkxJEQmL96IoUfkZTa7XaKi4s5dOgQbrf7\nAqfHZ3qG8CVTfLMwm97elxFFLc4JD1z32JPJJFu2bMHhcDBjxozrPt54ory8nLy8PLZv304icXXz\nMb1GxffumUZ9KMYxA0gHBhmJJkZX9JG4MqGmiYp6xWe2EjK0o5cF2gZDN+QcvF4vGzZsIDc39xO7\nqEajUd7bfQiA6rICUvIQAgK69DhnhGJyA8rYTRoVgifKISGFxqbnm0XZJIcjpEaipIYa0JeXozKb\nrvRT4wqVSnVNvkifFJ9roj8HnU7H8uXL+fa3v82CBQtoa2vjmWee4amnnmL37t3X5FUjSRLt7e2s\nX7+eH/3oR2zdupXCwkL+/M//nDvuuOMih8RzqKioIDs7m507d14yOZaTfRcg0j+wDntuPkH3MLGw\n8irsnD6Vkp5eWh1qEiOrmVM+yDGpBFf9LlSimtK0QSRUnCJFfiyXk0PnJxNZo0LQ6CgYVGLrH/em\n7+rqIplMXjFscw65ubmMjIxcIP8aL5w5eghjWjqOomL6Q/0UxifgMiiTiqpTQJOK02NxUGZSVBPq\nYBk6i4Z5yy9WMtXV1REIKOqjc/a0Q/EEP+sa5LZMK9OMEv0Db+Fw3I5WO3YL58vh0KFDeDyeC97i\nbhYIgsCKFSsIBAIcPHhwTPvML83k/po8Xo9GcEQlXtjWgvnsij4uK9crU1aur2nEQ0DTj1kToXVw\n/Ff05/TykiRx3333fWIJ9N69exk+e+s7teATlXyVlAeDZJPlVv5uBr2al9qHSMZS3DrRjkmlItqs\nKIuixzdjqLq5JvLxwue6YOrjMJvNrFixggULFlBfX8/Ro0fZvHkzmzdvxmq1kp+fP9oAwmAwjFbQ\nhkIhPB4P/f39dHd3E4lEUKvVTJ8+ndmzZ1+2ocVHIQgCixYt4vXXX6ehoeEi7a9Ol02GbR4DA2/j\nyPsBoChvnGUVGGtqmP3My7x82xpcR+ZTkL2WYP7tVPc+T8hcyCx9DyeR2CdHyUfLW/3n3fAEvQpN\nQCSnqw9mQms4xgLb+URhW1sboiheYGR2OZwjzb6+vjFNDGOFlErRefwIJbVzEESR/kAfc+M1DKSf\nQgeIXV68WhNRtY6y+FEa4jNxxLVUry5ApbmYWMvKykYLiiZMmADA98/0E5Mk/qHEycDAG6RSQfJy\nv3LdY49EIuzYsYPi4uJxtTkYTxQVFVFSUnJBc5Kr4W9XVbDs5ABDKSg66eWtmR5MWhVRlWKrm4ky\n4Rq8HhJGMxpjK02D4+/Nsnv3brq6ulizZs0VQ4tXgt/vZ+/evZgdU6EXbOEBTstKeM1VkoUsiGQM\nGegVQ1QsL+DH/Up492s1ijAi2jyCKk1Fyt2D4SZ7Yxsv/EER/Tno9XpqamqoqanB4/HQ1tZGW1sb\nfX191NfXX3Y/u91OeXk5kyZNorS09JpfqSorK8nMzGTXrl1MmTLlothwTs7dNDT+NYYc5SE6R/S6\nSZOY097CS4LA4ZgNZ9TE1NmlsBa6giqmmVyI+l6OxfKYJ4t4uvTEUjF0Kh0qgxqNAHKfF5NKpOVj\nEsvm5maKiorGdC43iuiHujqIhoIUTlMeouCwD62sAcsQQkIPrh725yjx+WXJfTTLX0FnVDN14aVL\n0EVRJC0tjXA4zMDAAL02By/3j/Dn+Q4m6tXs634Gi2UaVuv1P7S7du0iEomwcuXKm7Jz0DksX76c\nX/3qV+zdu5dly5ZddXu7WcefLy9l7aYz/OmInoeOdKLXqQmJNsQkZAtK6MZvNFMQtuEyDxMb6uAC\nZ73rRE9PD9u2bWPq1KnXFRLbvn07kiRhceRhdbvReLpwSwrR9+QpC4Esn8S7hiRpOTqGmqOYRIGp\nuWlI8RSxMz7UduUNxlBVdf0ndhPiD5LoPwqbzTbqMQGKPNLr9RKNRkkmk6jVaoxGI+np6dfd5FcU\nRebNm8f69evp6Oi4qAo1K+sWxOZ/IBjfiVqrw92jJMIEUaTGnoYxFqMtW0OodyHuom4yjNloglEq\nRtyojO20RPNxygLWwWI6fB2UZ5SjtmhRCwKekEypUXeBudnQ0BBut5u6urF5vBgMBmw227gnZPtb\nmgFwllcCkHIrY9SaB1H5s5A8XeyregCQqUoNsc5TRM2q3AvMyz6OUCiEWq1m054PebZ0JqVGHX89\nMYfBwQ1EIl1Mn/Z/rpuYR0ZG2L9/P1VVVaNvDjcrnE4nU6ZM4cMPP6Suru4C24TL4Y/nF/HQh11I\nXpk1fUl+iYRXMGOIpsjWKETvsaYxY1CNW2+hUtVBn9uH0379GvNoNMqbb76J1Wr9RHr5cxgaGuLo\n0aPU1dXx1hBMSDMguU/jkzUIKomejFxEOUVGUMJjFXnd78fgjlFj1KNWiUROuyElkxpuRJWejmaM\nfjqfN9xcAcdPAVqtFofDQUFBAcXFxRQUFJCZmTlundynTZuGwWDgwIEDF313zhq0b5kAACAASURB\nVBLBNfguGXlOhrvPWwNbZ86kpuE47blagr2LcI/sQl1+K0VqN6WJGFpjN0lgUJCJ46SxUYnHaq1a\nNAKEExomGXS0fkRL39ysEOy1GCbdiArZ/tONGNPSsWYpITCtV3modZZedF02xHiY1vQ8rJooTeE7\nUKsFZiy7uIL3HEKhEH6/n4KSUp6x5DAcS/CLyYXoRWjveAqTqYzMzBXXPe7NmzcjiuKYVsg3A5Yt\nW0YymWTnzp1X3xjQqVV8fXUFB0lxZ0+cpEqgLabBGE1iM4TQxSJ4zWloY1HM3lL0JHh30/vjMtZN\nmzbh9Xq59957r8sCYPPmzWi1WhYtWoTLHyU7TQ/eLgKSGr0tRq+Qjz3iQ0jF0Jen0xOIkggnqc1S\nwpvRZg+CViR6cgeGGTNu6re268H/c0R/o6HRaKiurqapqQmv13vR9zk5d5NM+sgql3H3ni9YMdbW\nUNtwAq9e5Ewoi5A3TjR/CmophgYwi0pc/iQp9Fo77YdOKL9nVog+qrVRIkj0xRIEk4rEs6mpiZyc\nnGvSJDudTnw+H8Hg+CXe+lubmTBJaWAdToSxhc1ExRhq/TCGVkXtMaK3Mlk9xOnIYirnOzFYLi9h\n7OvrI65S82rhFPrT7KzuPc00k57BofcIh1uZWPQX1+0739XVRUNDA/Pnz7+gL+vNDLvdTnV1NYcO\nHRpzV6Nbp+TQmKnBHJWYrNUylNSij0oYDWGMkQA+ixVNPIYmaaEhOYGe1oYxFWhdCSdPnuT48eMs\nWrToqt7yV0J7ezvNzc3Mnz8fk8lEvy9KjlWHEBogIOswZMToIZ9Mb4yEEMafZ6T8bCnArCIbsiwT\nbR5BW2gm3nL6DzYRC18Q/Q3BrFmzAEWt8XFk2Bag0djRT+g+q7xRZF/6qVOpa1Eq5NomaAj0VjNo\niYGovGnkpRLo1H5OkiJHUNNxRlHGiAYVoiCQ1FmZGFc+aw3HCAaD9PT0UFFRcU1j/2icfjwQ9vvw\n9PfhLFPGMRAaIDfuYFA3BAJou2P0WBxIooqCiISMSNXKyz/8sizzTu8gr9cs5Wgsxd9YVThaGzh6\n9ACtrf+KyVSGw7HqusacTCbZuHEjFouFefOuz8Xw08bixYtRqVRs2rRpTEozQRBYcsckAshkBJLo\nBB2GaAqVKoUxHsBntqJPKEVVXXIeGG1s2LDhql2uLgePx8PGjRvJy8tj0aJFn+gYoKh13nvvPdLS\n0pg7dy4pSWY4GCPbqkcVHSIia1DZkwziwO5W4zZpiKkFyj0ptEBVWSbJoQgpTwxRfzY+/weaiIUv\niP6GID09nbKyMo4cOXKRJ74oqsnJvpOUpgmVNjUavhF1OibmOSn0uOkuNBDuX8BwYD/k1YGoYYFe\nRDS0K0SPwFAkjUQ0inBWFifp0pkYVlbhLeHoaNjmWon+XCx6vIh+oO20ctxSxYWxL9SHM+7Aqztr\ntdA3yLZcJQGmDhYwsdBH0KzioC/EpiEvr/S7+a/uQX54pp//2dzNwgNN/EA2oVaJrJtZyrdrppGf\nn8+pUz8mGu2mbNLfIwjX51K6Z88eBgcHueOOO26a4qixwmq1snTpUlpaWsa88p5f4eCkWSQ9kkKS\nVBjO9og1pXwEzFb0SUWfX5xmoSd9GqlUildeeeWSvkiRSOSyE0wqleLNN98EuC4pJcDRo0dxuVyj\nTdS94TiSDHaTFk18mJikIuhIRxZUZAZEBrLSmaLR0j0QZCoqTDlmpRoWkHxKRbt+ypRPPJ6bHV8Q\n/Q1CbW0t4XCYpqami77LybkbSJJW7Md15rxtgrG6mprjhzhjE/EM5+F2nSZVNBekBHWSH8nUhhcZ\nKylcumwGO9sRzyYsZZ2FPN8IagFaQlHq6+ux2WxjkoZ+FDqdjqysrHEj+qEOxR7ZMVFR8fT7+8hJ\n2IkbXeASIezlWJbiArmvKpP/NqeY6g8buPNIC4+f6uDbTd38Y2sf/9np4u1BL06dhhWtJ/h+wk1d\nutJRbNWqOUxwHiMarcRmu74V+ODg4Kg75bVOkjcLzkmCN23aNCavc0EQKFmYTxoC/qiEIaLUgVjw\n4jdZCKkUQi+06mn0wL333kt/fz9vv/32BTUj4XCY//iP/7hkfgoU6+Genh5Wr16NzWb7xOcXjUbZ\nunUrBQUFTDlLziMhZYwZZh2apJuUJOA7+xu2kJqgSc3XszJo9keo0mgRDWqizR7UDgPx1lNocnPH\n3cjsZsIXRH+DUFJSQnp6+iXDNxbLNIzGYrImh0cVKQDGujpmnTpGXIAuu4ZAz1R8mUp8vdTdicrY\nAUBIkBjQOXCdaUE8u6JHa0b0eplo0NHi9tDe3s7UqVM/UXLpXIXseJjFDXV1YM1yoDMq1YaeoWFU\nqNCaXahO6vAbTTQVlSDrVZwp0LDSkc4Py/J4aXoxH9SWsX9OJc0LptK7ZAbNC6fxnw4jpb1nKD6r\njpBlGdfgv6FSiZw8UX7J6z1WxONx3njjDXQ6HatWXV/457OESqXizjvvJBAIsGXLljHtM3NBPmpB\nICmDHFd0+FbRQ0xn4IxeUUmdMYu0VaezU29j5cqV1NfXs379+lHbj6GhIZLJJHv27LnICqSjo4Nd\nu3ZRVVXFtGnX16B9+/bthEIhbrvtttH7232W6O0GNTrZi1ot49ZlAZARlJAiYdJTIAE1GSakWJJY\nuw99RQbRpiZ0lZ/PSX2s+ILobxBEUaSmpoaOjg6GhoYu+E4QBHJy1mDI8jPUc96jxDirlqquNrRS\nip5iA4HeOlzqXlDrcMQjpBlDGAWZAVkgpDbTfKYDQa+8/goaI/ERD1PMBvztrciyfE0NGz4Kp9M5\nqmy5Xgx3dZBVeF5mGhk+W3FpHmJoKJ+vf+dfSEoiNkQ2nHqZn02ZyGO5mSy3W5luMVJo0JGmUSOe\nfaDPNTE/l8Tr6fkNIyO7KJv0d+TlzWTTpk2cOXPmmscpSRJvv/02g4OD3HvvvWOSJ97MyMvLY9as\nWRw4cGBM10NUiegyFfXLsFCEGFVjUykVo9lnG9qoUzKoRZ7uGWLevHksWbKEY8eO8fLLLxMKhUZ9\npvx+/wVWIKFQiLVr12Kz2a57Au3p6WH//v3U1taO5pPgIyt6MUgSiTRzgkGy0SeiGOIytlCQw51e\n1MDM3HRiLV5IyeiKTMTb29FXVF7XuG52XJXoBUF4VhCEQUEQTn3kswxBEH4vCELL2f/aPvLd3wqC\n0CoIQrMgCDferecmxsyZMxFFcdRW96NQLBFAZWvD61Li1aJej72qiuldZ2jP1REeLMM1cAQ5ZwYC\nMMnooEAbpePsMY70+EZDNxoBwu4QU8wGMnu7sGdlXXPY5hzGKyGbjMcZ6eshq6Bo9DNPn5J8HjCJ\nfPfOvyGgNSKGksz0BZgy/erqoM7OTtLT00lLS8PjOUBL6/fItC8jL+/L3H///djtdn73u9+NdtQa\nCyRJYtOmTdTX17NixYqbtgL2WrFy5Ursdjvr1q0bk61FyVRlBdwZm4M2KmLXKESfUilvdo+npaNu\n8NIVT9AQirJkyRLuvPNO2tvb+fnPf86RI0dQq9VkZWWxc+dOUqkUkiTxxhtvEAqFuP/++6/L1yWZ\nTLJ+/frRCviPYnRFjxefKGIzJxgkh7RgGAHItho40DZMJSosOSYiTSMIehVytA9kGf0XK3qeBz7e\nZeE7wBZZlicBW87+G0EQJgMPA1PO7vOUcL2Zsc8xzGYzlZWVHDt27CLDKYMhH5NhGhllPtqPn58I\nzAsXUHt4P90qCa9Ojbs9h3ih4qZXIouYtS46kTHLMm1+EVmrXF6NIBD2xSiRk0zwu7GVXtyCbqzI\nyclBFMXrJnp3TxeyJJFZoKzod7cMYwiJeNUS/6z/CyREZr9/HIDZ6oOIRVeOr0uSREdHB4WFhQQC\njZw4+acYDPlMmfIjBEFAr9fz6KOPkp6ezosvvsiBAweu2pQjEonwxhtvcPDgQebNm8f8+eNX+flZ\nQ6vVcs899xAIBNi0adNVt7fnKTJSb2I6uoiEQ+cGwKcDkDGLImpXBFGGNweUSaCmpoavf/3r5OTk\n0Nvbi8PhGHXUPNfEvL29ndWrV1+wAv8k2LZt22iS/OM2DyNn7ZbTk4P4VCJWawKXnI0lqIghMp02\nTvT5mYEKVaaeaLMH/SQbsdNK6FT/Oc3HjBVXJXpZlncCHxfl3g28cPb/XwDWfOTzV2RZjsmy3A60\nAmMry/wDRW1tLdFo9JLWC3n5D6K3xWk7/vboZ6YFC5nVoGjke0t0BHqqcZ91byzxuxF0Suu4LCGM\nW2Xjhf3KvzUChP0JaFeSu8G8ok88Zo1Gg8PhuG4ny6GuDmWshUUM+qP85asHcaTMfHe6lhHBzr/8\nn38nrFZsDpbr3oeCK7eN6+/vJxKJUFiY4uixR1GpjFTNeB61+ry3j8Vi4fHHH6e4uJh3332X733v\ne/zkJz9h165dDA8PjxJ/IBBg3759PPXUUzQ2NrJy5cqb3ubgk+CcjPHEiRMcPXr0ittaDUpNQ4p8\n9FEZh1Z57EeMOtRAKpaiwKwnOybz1qCH1NkcjsPh4LHHHuOb3/wmDz74IOXl5RQUFLB582Z2795N\nTU0NM2fOvK7zaG1tZc+ePdTU1FwySe4Jx7Ho1YgBF15RhSktwRAO0s/Wg6jSLSQlmRmoQAYpEFfi\n841NiFYr6uuchG52fNJy0GxZlvvP/v8AcC5GkAvs+8h2PWc/uwiCIDwJPAlQ8AdadgyK4ZTdbufQ\noUNUfcxHIzv7Dpqb/zdJ3REOrn+TWXfdh3ZiEWWiTFYkRF+JlXDDFPqiv8Mpaij0DRA1tSIOL0ct\npOjRZfGr3x/lNm0hGgEiEYmWE8cZtGXhV12f9anT6aShoQFJkj6xY+NwVztqrQ5zVjZfefYQ4ZSb\n4zkV7M0y8MSR5yjr7CReYcAgx8kSAe2V7WFbW1vJmXAar+819Lpsqqqew2DIu2g7o9HII488wsmT\nJzly5AixWIwtW7awZcsW1Go1oiiOSgPz8/N5+OGHL7A7/kPDokWL6OzsZOPGjWRnZ192ZX2O6EMI\nGCO5pAnKG53bYiYrJBALJijJMtHgitCpF9jrCbIw4/wka7efNz2rrq5m3bp1GI3G647Le71e1q5d\ni8PhuGwLR284js2oJTXSj1clEks3kRS1ZHl8yLKVkUQKEZguakj0hUAAfbmNwaZG9BUVf3AT/Mdx\n3clYWZFmXLM8Q5blX8myXCvLcm1WVtb1DuOmhSAI1NbW0tPTc1GbPs3/Ze+9A+wq6/z/13POuf3e\nuXd67zOZ9ElPCAkJCSCCoLQ1IgKKdXVFd7/6dZvruqs/XXXXXct+RUDBIChKFzBIKKb3NjNJpk+m\n19v7Oc/vjzNJiCkEQknIff0zM+feOfeZM+d+7uf5tLfFS0HB+8mdGmbb0w+TTiYRQpjhm/27OeAw\n0KVG76EkhreUqvA4I7ZBqlCIC42Y6sQrEoSkRBMwpJoNKYnqKTSHz02LsqKigng8flIi+S+RUkfK\nU4dHRrq7yCuv4H/Wd7C1c5wbV+TyeFUJC/zDfOjZdRyuvJwx1WCaOELSeuYxDeHwYULhb1Ffv5Xs\n7EUsWPAoTmfVaZ+vKAqNjY18/OMf57Of/Sx333031113HYsWLWLevHlcddVVfOYzn+Guu+56Txt5\nMKtwbrnlFlwuF4888shpk+xHxUfCWhIlshALaRzJCBOeLNORGI9RV+BmoiOAV1N5aGDslOcZHR3l\nj3/8I3a7nWg0ek6dtNFolLVr16LrOrfccstp5QWD8TRZDg0jMMiY1cGoZvqe2aEkkiTNgyEa7Fa8\nuQ4ShyewlHlQHCqJQ4ff8/F5ePOGfkgIUQww+XV48ngf8NohJWWTxy5qGhsbUVX1lEnZsrKPomgp\nnMWDtG3fDIBn1SoW7NtJSEpGSjSCvbOIFJdTnE6T0BI0CMGYND32RZU+AoaORUj6fSp2u52y+ikc\nisSOba3fDEd3WUerXP4Sf2Anu3Z/jJdfmc3Lr8xm1+6PMTZ2fMaKlJKR7k5S3iJ+8nIbtywoZbPV\niyoFnxnagGsA+ouWMKJK5qlNJH2n7kqMRrtpavo7tm67BoulB2l8mDmN92O15r2hvyc7O5v58+dz\n1VVXcfXVV7N06dLzflDZW4nL5WLNmjXEYjEeeuihUyZnPUflBHMlRM0wmjsdYizLhwWD2HCA2nw3\nyaTB1T4Pz44EGPsLoRu/38/atWsRQnDXXXdRUVHBU0899abyPfF4nIcffpiJiQk+8pGPcCaHMBib\nFE8JDTLhdDCK+VxvFAzS7O7x0yg01Gw7yd4QjoZskt3dyHgc23u84gbevKF/Crhj8vs7gCdfc3yN\nEMImhKgG6oFTd09cRDidTmbOnMnevXtPamDx+RbidNZSMDvMgZf/ZD5/8WIW9nQgpGR0to/IwGwG\ncj1oQJlip9KaIipVhNSJpEFzWNBFEr8XZs2YwXSfh5gh6TiNWPjZkJ2djcfjobu7+6THurvvYefO\nvyIaaae0ZA0lJX9FNNrBnr0fp6np70inQ0T8E8RCQZ7rEzQUeliytILmhJO/bk1QGughbstn3JGH\nLqBe6UMrOrEUNB4foOXgP7Jl61UMjzyPw/Ehtm+7gYaGz53zHJuLlZKSEtasWcPIyAgPP/ww8fiJ\nuz63zfTo4zkaaiIXQ1fx6n4msrxoUicRTlJbYJadzsdCUkoeHTyevvP7/fzyl78kFovx0Y9+lPz8\nfG655RacTie/+tWv3pDwfCgU4he/+AV9fX3ceOONr6unEJxUyYqFh0g6NcYxZ9tnRVXSKiTSBrMT\nIAQgmYzPmzuNjEcPCCEeBjYDDUKIXiHEXcB3gCuFEK3AFZM/I6VsAn4LNAPPA5+XUr6+avFFwPz5\n80kmkydJDQohKC39CPacEEO9mxnv70WxWilZMI9pvV0czlEx0nbaR+1IoCKRINtmDktz6xFa/Qal\nhW6OWPuRCkyrqmWG26xIaAq/eaUoIQQVFRX09PSc0DjV3f0z2tq/S0HBtSxZ8gJTpvwzDVO+ztJL\nXqK6+m6Ghp9m+44b6W59GYBxWy4/uW0e/9kzRL4e4paeFMrwGAOFCxlSzZCPS9hxFppvzGRylMOt\n32LzllUMDPye0pKPsPSSl+g9sgi7Pfc9H2Z5u6mtreWmm26it7eXBx98kGj0uOC3qgjcNo2o3YFF\nDKDEcvEKP36PF2HESOqC2lwnAEl/ggVZTtYOjCGlZGBggPvuu494PM7tt99+7P/k8Xi444470DSN\n+++//4x6EEdpa2vjZz/7GePj49x6663Hul/PRDBmhm7i8SEsVhgz8nBFI1gNG4nJUQuzDQU9kkLx\nWLCUuEkcPAgWC7Y3qVF7IXE2VTcfkVIWSyktUsoyKeV9UsoxKeVqKWW9lPIKKeX4a57/LSllrZSy\nQUr5+jVdFwnl5eUUFBScsnOzuOgGhLCSPzPArmefAsCz+goW7NtFczpJ0iUZ66oibbFQGQ2Q1LpM\nZSaSdMYtCJug09qPI+LgwfVt1DttWIVgX+jcJAErKysJBoNMTJildKNjL9PW/j0KCq5h5oz/QtOO\nJ08VxUpN9ReZO+dXpNNB+gJ/j682wP9Zs5Jd6STtsQTLRw6hArJrjIGixXRZUthIosWLEDkq7e3f\nZ9Pmyzly5JcUFl7PJUv+REPDN1CUbFpbW2loaDjvpPwuRGbMmMGHP/xhhoaG+PnPf36Cp+2xa+bk\nR+XPuKIl+FTT0JOOkBYajvaD5ListA2Hua0kl7ZogrV7DnD//fcjhODOO+886cM4JyeHT33qU+Tl\n5fHoo4/y0EMP0dXVdULpq67rdHR08Otf/5q1a9ficDi46667zrqnIRhPEULiS4zhtqYZS+eRGxgH\nxU5YVanzOfChkB6OYm/IQSiCeMtBbHV1iAtsntGb4T0vPHK+cDQp++yzz9LX13fCm8Fi8VFYeC2G\n/gwtD6/j0jUfw73iMhbecx8PXnsTwXlZOLbNwT+zkMqgn32WYaag0qVYiEmNbZFuEiJFXricDfu7\n+M22I8z0ONgVPDcx56PCKR0dHbjdkubmr+B2NzB92n+cdnBYdvZiupWfoI19jqor+ilyr+WuzpuZ\n6XYwfWgQgzri/R6SjXn4tTEalH70sj52DH8SQ8YpKHg/NdVfwuU6rnDV1tZGKpVi2rT3fiz1naKh\noYE77riDRx99lHvvvZcrr7yShQsXmoY+JbBrm7HGFpGbN05MdZCQYdIUE3jxZWrzF9E+EuZrWXY8\nhs6P2gf5VEEBa9aswePxnPL1srKyuOuuu9i8eTMbN27kl7/8JTabjZycHKSUjI+Pk0wmsdvtrF69\nmiVLlpw28fqXpHSDaFJnRziA04jjsaYZk7nk+SeQSjbjUjA/ywn+FDJp4Jhp5nfiBw/iXr78Lbum\n5zMZQ/8OMnv2bF544QV27NhxktdTXn4ng4OP460ZYv+Lf2TRB29mfkEu7niMnsoc8v4cotU2l4rU\nOl5wjzEdlWbhBiRN/kPkGG6EXsCluWH+7ZlmVtwwhRfDUdKGRFPeXOlYXl4eXq+X9vZ2bPYHSKdD\nzJu7FlU9vVDE+oNDfP3pIT45OhPPyhEeoZcukeI/ig6iGnEiln5Gq6biLt1KIF7PlKJBbFP3kJ97\nDVW1f4PbVX/SOfft24fL5TpJsSvDuVFRUcFnPvMZHn/8cZ577jn27NmDJusIxtJgDSOiTryKuZsL\nama+J7BpD3VrltPavJ+f/fjPTC2oYHvVNJa/bzkez5nLY1VVZdmyZSxatIhDhw7R1dVFMBhECEF5\neTlVVVVMmTLlrA38UYIxsxkxmQqiK+Cy6fjTOTQEukGUEEHncosV1DRCU7DX+UiPjKCPjl4U8XnI\nGPp3FLvdTmNjI7t372blypV4XzMtL8szk2zfEvR5ezmw7nkWXn8TvlWXM79pLzsWXsI8VefISB3L\n088yZBljGSq6UClnjGQ6zBx9JvsVKx+ZmsO6cSevbusjNs3LwUiMmR7nm1qvEILa2lp6jrzA8PCz\n1FR/Cbf79GWQTf0BvvDr3cwocuHonsAhbuFZ60zq9D5KBr6KmAP9gPNyiMayif75X6kiwMRv7+SK\ne/7plOeMxWIcPnyYBQsWnNNY2wynxu12c9ttt9HU1MS6desIjg4yOmEnbLejxf14J0XCx21pvCnY\nmFeEveVZZkqdvIJqvnPFZVzbMcp9/eN8r+HMhv4oVquVWbNmnfNws6P0h80PoWm2JFGHii40whYP\nef4AQigkhM6shDyWhBWaciwRa3uPd8QeJRPwfIdZtmwZUko2bNhw0mMVFZ9EtcXAeYix3h48q1ax\n5MBuhgxJbKaBv28GuYbOhGbO7AAoUCNEhZtqvQAFkMEID3x8Ec6oWfb2ysi5DSarqamivHwzmlZI\nRcWnT/u8tuEwd9y/HZ/DwveuLMLQ0+wsq6cvpfKNGcuwVv1/uFrW4N63goHtt/PE1k8A4AtVoYZO\nP0CsubkZXdeZPXv2Of0dGU6PEIKZM2dy9913U1NeQlpYGEspuJLN+DAT/wNZprMw4sumVLXyTGIa\ns1Zex4zyUm4pyuG3g+MMJlJnepm3jXs6hwC43mcQdahMkI0UCtnhyQF6LhXvWAIMiWOG2dQVbzHH\nh7/XRx8cJWPo32F8Ph9z585l165dJ6n05OauwGGvpmDuGIe3bcBSVMTqVBSLnqatIY90NJceawP5\nRhifGsdBiiAOtibLkJhjEGL+GOU5Th748DxE0uAnu48cm+z3ZnB79uN2T5BMXIt6mm7bztEIt/58\nCyB58K5FGKP9pBWVh4SL+VlOVudmMRiTlBy5Cg6sJNC+iHgqhYKBL1WDTTt1YZaUku3bt1NQUHDO\nc1IyvD6qqlJelIewOCiunE9erJ8sad6jfs10LFaNerns8EFGpZtDQ6Yh/UJFAbqU/Hf30Du+5pZw\njCf6zMatejVEwKkxcbS0MmIWI1TkO5ExHRSwN5iPxVtasJSVoV4gMpHnSsbQvwssX74cKSUvv/zy\nCceFUKip+SKOnAR93Y8DULJ8GQsP7GGzpiGFzmG5goqUTq9liFwlwnDaRbfu4QgGmoBY0KyNbizP\nZkGWE79dcOvPt7wpY59ORzhy5Eckk2U0N7tOOZ++bTjMrT/fQtqQPPTJJdQVeBjqbKdp1hIG05Kv\nVhcjhMA/PIKCwqg1n6AxABiUKSPkhvI53UDDvr4+BgcHWbhw4Xu+Rf18wWO3EIynIKsQtwjiiaUQ\nUhJxmbsumVuOvmsHhZpOc7+5W6x02FhTlMtD/WP0xt+8U/FGMaTkK4eO4DDMe8ObHCbg1BhImclW\nd9TcYTTkmWu3lLhRbOYHVrylGftFlNzPGPp3AZ/Px+LFi9m9eze9vb0nPFZYeC2KXoCzsonwxCju\nVZdz+c7NDOmSsYYwg+NzKU8b7BFHyBcRApiJ0RZ0NAHx8PHt83VlORhOjfZQjBt/upHO0TdWhdPd\ncw/J5Ai5OZ9jYsJ/UsPL9q5xbvrfTaR0g7V3LaahyKy46O3uYsu8FSzxurgs23yTxQbM3w0JOy02\nnWGyybbHsaUkdsepY+/bt2/HarVmwjbvIB67RkqXpNxFKMIgGZZkyyByUmA+KVyQSnN1qp/mgeNh\nwS9VFSKBH3a9c179g/1j7AhGuS7b9MqzkkNEHFYGkwUA2OOmeZs9qbt8NGyjh8Okunve82IjryVj\n6N8lVqxYgdvt5plnnjlBV1YIleL8T2DPTtLadB+2+npWjA1hS6dob8giHirCGZxNSKZYLN0gBBYk\nBzGwCEE8drw2eanPNLKfvmE6wXiaG366kZcPDZ+0llMRj/fT03MvhQUfYMaM6xBCHGv2klLywKYu\nPvrzreS6rDz2uUuZXmK+2aRhsM7mJWhz8pXqomOeuD5hbqNjepq4O0ifzMdld5CWYHedXBMQiUQ4\ncOAAjY2N5zTDPMMbI2ty3k3MVQRAOAI5jBCbDHEkkiCcbhaMHubgQJC0HZN58QAAIABJREFUbt5v\nZXYrt5fk8uuBsXNq1Dtb+uNJvtXez/JsN3WTVTrueC9pB4zouVhSSTDMvIJvxNzlOheY828Sk3rK\nGY8+w9uO3W7n2muvZXBwkPXr15/wWN2MO4iNORiPPoxhxClcvoxL9u9iqyObmDXMSKoRQ01yjWHG\nrT0izSF0LEgSyePhleluBz5NZUCTPP7XSynw2LjzF9v55tPNRBInzij5S9rbfwAY1NZ+FZfLRX19\nPXv37qV3LMynHtzJvzzVxLL6PH7/uaVU5B6v6hkY6GfjzEuYQ5JLs4/XVNvCdgwpMYwOylTzwybL\nUkJKShzek8s1t23bhq7rLFy48A1f2wxvnqMTLGNOc1ZMIqaRI4YZd9vQFElUlzgXr6S84wCJtHHC\nLvH/VBfhs6j8w+Het0SG8nQYUvLFlh7SEv5jSjmheBpNEajRHoQGEzKPrLCfuGWyqm0shrAoaB7T\nYYg3T44+mD79bVvj+UbG0L+LTJs2jQULFrBp0yb27DkuKahZrKQGloIWorvn57hXr+LaV18kIBX2\nNIygSI1+bw85qHhlBEWmOYyORdVJpI97x4oQLPG52DARpiLHyVNfWMbtl1Ry/8ZOVv3gZX67/QiJ\n9MmJ0EBwL4NDT1BefhcOh1nv3zCjkXA4zJ0/fIoNbSP807XTuPf2BWS7TuwqvKe9l6jTw5eKj6tF\nRZJhKgOlxAwYdA/iEWbb/SzdTVqCw3eioY/H42zZsoWpU6dSUFBw7hc6w1lz1NAHVFM0Lh23kMsY\nQ3aFEpvCgJTYZy7GNnCEguj4CeGbbIvGP9aUsDUQ4fdDE2/bGv/3yAgb/GH+vb6UaqfNnHPjsBAz\nTCnDgMgmKxwkYXGTpQJJAzX3uFBJvKUFNScH7SK6tzKG/l3m6quvprq6mieffPIEY19cuoqJdg/d\nXf8PMb2Q6mgQbyxMU2kVWWNzCEwayxJCRAyVBDCuGSSlBfmaUNCKnCx64uYIArtF5ZsfnMnvP3cJ\nRVl2vvr7fVz6nZf49rMtbGobJRRPIaWk9fC/YbXm4cy5k+cPDPK3v9nDx37XQ0RaWOie4IUvr+CT\ny2tQ/qIRK5LWeSipUt3bxpV1x5ubevq2UJooIWpIdmQlCEknLjXOvKgkJcGZd2I35bZt20gkElx2\n2WVvwxXPcCZynOYHtx8z7GfENHIZJaEq5DtVxqWBpdhsals42nYsIXuUjxTnMC/LyT+39jGQeOsT\ns9v8Yb7TMcC1+V5uLTYraIKxNFl2jZhqioyELDn4gn7SmoMyq3mP2qqPV9fEWy6OGfSvJWPo32U0\nTePDH/4wlZWVPPHEEzz22GOMjY1ROnU6/VsKMaRk45Yv8OIli2jsbmXAm8uYO4uioBm2maqEiSnm\nm7NXg5TFje73Hzv/6klhiBfHjr8h51fm8PhfX8oDn1hEY5mX+zd0cuu9W5n1jXV8/H+/TSC4m1/u\nex9Lv7uVz67dyYsHh7musZRLFi/GFhtBjfs5Fff1jRJSLXxwqB1VO97d2H1kEx7FSyoVokAGOSgr\nsLqgNCpJS4mz4HjjWCKRYPPmzdTX12dKKt8FsicN/XjKio4FJaaSg+kpR5wquYogmrKhFRayPNB+\ngkcP5i7yR9MqiBuSu1t6MN7CEE5fPMldTV2U2S38oKH8mKEOxlN4rRB1KKQMhYjdiy/oB9VG2aTU\nprXYfB/IZJJEWxv26RdPfB4ynbHnBXa7nY997GO89NJLbN68mX379uF2u4kUzaOtNYe6+m3MnVLK\n5T/6E1u+/SN2T0+zdP90wtYgi9B5XIIN6FGg1OJGn5hAyzNLzCocNqY47bw4FuQz5ce3qooiWDEl\nnxVT8gkn0mztGKNtaJSy9L8STNdQXnYL/zrHw7TiLOZW+LCoCvF4nMP7dvDqq6+yZs2aE/4GfyrN\nj7uHqOk+xLKyEw1038EuZqqXo1jHmJseZr28El+2ByUIejqOJee4hMGOHTuIxWIZb/5dwucyP6D9\n0RQJ4cOZAm9iAuzQa5NM01Re6Z1g5aWX0vDcOr7f50dKeYJ3XOu08836Er5yqJf/6R7iS1VF57yu\nYFrnzv2dxHSD382pw2c5brqCsRRZmk7UqdKfyEU6VXIDE+TbynBMrkvLN8ODibY2SKWwXUSJWMh4\n9OcNqqpyxRVX8MUvfpGrr76a2tpaHFJHjE3F7V5AVukmchwh3j/Uxe4yH6QbGLL4WSBtKFLHh6Ad\ng6TFRXr8xPjoFblZbPZHCJ0iHg/mHPLV0wq5suJP2JUxVi76Nt+4fhZ3LK1iUXUOFtW8Tex2OzMq\ny2jbsoGuzs4TzvGjnmFCus7yreson35ia7t6cFLgo0KnRARIoVHpNUMDaiKIOlm6l0ql2LRpEzU1\nNZSXl5Phncdj09AUwUQ0SVLNJYs07gmzMeqgGqbCorBpNIxz0ULssTDugR4Ggyermd1WnMuNhdl8\np3OQJ84xXh/RdW7b10FLJMb/m1FFg+tEYfBgPI1HNccfdOtmZU1OYJwKh+eY+M5RQx/btx8Ax8wT\n9Q/e62QM/XmG1+tlyZIl3HDDDUwvzIO+LmbP+gFCUfF/QeUjTzyCIWDzNBcTMoWLIgpTI0gBXdIg\nbnGeZOivzssiJSUvjJ1+HEI40kpX9/9SWHgd2b5TV7oMtB7i8BOP4Bjo4sn/+s6xMbN98ST39o6w\nPDpBUWCMkimvqU82DNxRs7qhr9BNUpge43yXEyklSsKPmm0m/nbu3EkkEsl48+8iQgh8TisT0SRp\nay65RgLreAxVpmlTQwig0hAY00xFsNmjHezpOTmUJ4Tgv6aWs8Tr4ostPaw/w713JiZSaT66t4Md\ngQg/nV7FFbknd7IGYymyRISYXaVHN2vlcwMBShwuAgIUp4YyuVOJ7duH6vNheQ/rVJ+KjKE/jyms\nqSM0OoJMeZgx/T9JZIewzt7DFakD7Ky1MqBmY8gCpske/FKSBkY0hfjIiYZ+gddFic3Ck8On9qyk\n1Glp+Rqa5mZK/T+fdj0bf7sWp9dH+fwlpIf6ePaRhwD4ftcgUsKyHS9SVDcFi/24xxXpacVuMT36\niL+NZqMSoUhWKBbSgDUVQnG5SKfTbNy4kYqKitdVE8rw9pLttDARSZG25pItIiQnrOQwxpjHYDAt\nuQYLr/ToaCUlNI53sKvn1PeVTVG4f1Y1U1x2bt/fcYIa1dnQFo3zgZ2t7ApG+en0Sq4v8J3yecF4\nCgfjSEUwMDn+oMrIwqaoBAGtwHkstBTbtxd74+yLKhELGUN/XlNYbYouDHe0kZd3ORX5nyB2icFt\nI4+hkeZ3U4qRwGJtiKP1DYOqQWQsdMJ5FCG4Lt/HS2MhgqcI33T33EswuIcp9V/Has095Voi/gl6\n9u9l1qr3ccPdX0F1umj+49O8cKiN3wyMc2u2g1TzXuoWLD7h95r+sAmnqmCg4xvfzj6jBumxUBcz\nK27sIoEQgj179hAKhVixYsU5X7cM50a208p4NIl05OERYRJ+K/kME/Q66EgYeIVC/85BXAsXMHu8\nk13dpw/N5Fg0Hp9bxxKvm79p6eGrh46cNoR4lLQh+d+eYa7YfoiJdJpH59TyocLsUz43kdaJpwzs\n0hSxH8WHoutUOepJSUksJbEUmn0eejhMsr0Dx0XYaZ0x9OcxBdWmxNlQZzsAdTP/HvfBbNSSA3ww\n/Xuaiqw8XaJxqdUcPGXHNPSx8ehJ5/pggY+klDwzfOI2e2JiGx0dP6Cg4BoKC6877Vo6d+9ASoOG\nS5ZhsdlY+dGPo8RjfLW5E6+qsOLgDhCChktOFHJob0rjkUmS9ggz4gdoklV4XApE0qQkOGwSXdfZ\nsGEDpaWl1FwEsm7nO3keK2PhBNJVgF1NEZ+wUcggE+5sRtOSMcNgrj+NMXch7liIiYOtJNPGac/n\n0VQeaqzhc+X5/Kp/jMVbmvlB5yBt0fixxiopJT2xBPccGebSrS38a3s/K3M8rF84lcW+0083DcbM\nUmKbMA19CB/uaAhf3iwGUhJNl1gKTEMf378fpMQx+9RC9O9lMob+PMbucuMrLGaoow0wh55Vpz+K\n7YDCddbHqAn38t3pdsLuCjyk8AjBoGYQC54sCj43y0m908avB8aOHYsnBjnQ9EUcjkqmTf32Gbez\nvS1NODxZ5FVUATB71ZW0Lr2SAV8+S5q30/rc49QvvISs/OOVPcl4mol0BS4lie4xUKRBDDvV2Rb0\nSIqUlDhdCvv27cPv97NixYqLbkt9PpLvtjESSoC7EJuqk4poFKQHiVg8xFXJIFCBSluyEoCpQ600\n9QfOeE6bovAvdaU8v2AKjR4n3+saZNnWg9T/eT8LNjcxdcMBFm1p4ett/eRaNR6cVc0vZlZTZDuz\nCEkwbs52sqhjKAmVlJpLbiyFqjk4kjTHgmiTHn1ssk/FMfutmYN/IZEx9Oc5BTV1DHW2HfvZs3I1\nOfeo2AJW/tb1L7hlhE/MvZEadZCUhFFFEoicPBdcCMFHi3PZEYxyMBIjlZpgz5470fUos2b+GE07\ntQTcUfoONlE6dfoxQ9yX1Hmx8TIq+zqY8dLjJBNJqi9bfcLvdLzailQs2K12EBGapNlEtaTchx5N\nT3bFWtmwYQNFRUXU15+sLpXhnSffYyMYT5NyF2FVdEBQGDTHVoy74iQ1lQ50cloTiPxCZo12sOsU\nCdlT0ehx8nBjLduWTOP7DeV8uCiHJV43NxRm8+36Uv68aCrPzp/CVXnes/rQP6oupVoC6DE7usVH\nSdJCKu5nNC2xCLAUmoIo0e3bsTU0oL5G8OdiIWPoz3MKq2sJjgwTC5lVC/aZM9G8eeQ9V8xIJM7X\n1L9HtyTZV1FHAIkhoE0/tdTfzUU5WIXgke5mdu76CLFYN42z7zmjahRAeGIc/9AApVNnAJAyJJ9r\n6gJF4UfzpzH32g9haVzMY88+z6uvvnqsGqd1fQuuVAirsKEk2thiTEMKWDOvHiNuhm4mvBpjY2Ms\nW7Ys482fJxR4zGR6wF2KTUkjkeSOmjvBcVeSiC5pFgY5KYll8U3MnuhiV/cbS7RWOGzcVpLLt6aU\n8ePplXxnShmfKMun/i9KJ1+PYNwM3ajOKONRF2lLDpVpB/7hJgBsdhXFbUEmk0R37cZ5kc5Oyhj6\n85yCalMke7irAwChKLhXrEDsGuNwXKdw3wq+qf8D2b4gEtCnZrGutuKU7ee5FpUvePcxZ/AuYvFB\nGhvvJzt7yeuuoe+g+aYpmzoDKSVfPXyEHcEo328oZ9G0aay+/ZN89st/x4wZM1i/fj1r167FPx6g\nb9xJbqoLgOz4NjbL6ShOQU2WC5I6SWlwUCTIzs5m+kU0YOp8J39y+FfQnotEQdF0ciYrZvxZKcYC\nKUrScIA0WGeRk4zT3dzxtg4yOx1HPXq7LU5bMg9dtVEQlwRGzF2wI8+BEILYgSZkPI5z0cVp6DOd\nsec5BVVmcnK4s53KWXMAcK9YQeCxx5jSZ9AcyuL6zV/i32p+yOf5vzj0CBsvrWPupmZyNYUCm0aO\nquOSE2jxQ9iSXRzkBuzea6ixzyb7L7oaT0VvSxMWm528qhq+3tbHwwPjfLmy8IRKCJvNxk033UR1\ndTXPPfccD/7HA6jKTGJZpifoNQ7RIT9BliNpdlKmJeNinOFknGuvXI2iZHyO84Vjhh6FqJGNZtFR\nRgyypJ+AWb2IPwIvFOh8K25FNFxLftdBesajVOaenW7sW8XRGL1Di9JkmM6CLTRKTDePOycTsdHt\n282fL1KPPmPoz3OcWV48ufnHPHoA16VLwaJRe1jhV9N3cHPvJWjbP06ZZxjnUJQbKv+bDqWeI6ly\ngikvQ3gJkUVEzCAiFiARMAGPbWkhS1OYn+ViodfFIq+LuVlOXH8hwt3XcgD7zLnc0dTDi+NBPlWW\nx1erT25rF0Iwf/58Kioq+MM/PkHciOEvlhhxnT4BKWmhtiiFTBoIoMfWg9NqY86cOW/3ZczwBijI\nMg39WCxJ2MjDrupEx83KG3+WaTLiEmpKvTzXEeSa2itYcuhJ/tw6+s4b+smqG6clRsQwd7/p8UPo\nFjPn5Cw11xPZshlbfT1a9qnLNN/rZAz9BUBBdQ3DkyWWAKrbjWvhQooO7qZjfg8AUlTRaLzCq8FG\nfrj+kzx6U5qcwhSGkcRiseDx1OByTcEAXp0I8ZG9HbwvN4tCm4XtgQjf6xxEAqqAmW4Hi7wuprjs\nBKIxHm1YQnvNdCz+EN+qL+UTpXln3AXk5uSSlCVkRZtQtHxSYpSXdbOkbfXUbGQ8TVBEmbAFWDFr\nPhbLmSsrMryz5LlsWFWFXn+MmFKIR5kgGLVTaAyyz9WIq7CX6FApq+12vihHuEo4WFE4i/9uHeG2\nJZXv6FqD8RSa0HHqCYqkmcyPj+4nbTXnLTlL3ejhCNEdO8m5/WPv6NrOJzKG/gKgoKqW9p3bSMXj\nx7pO3StXEvn2ZpyhJONqEK/qpiDtJqRawYDdXT7umH/pSedSgctzsrg238tL4yE2LZ5Gkc1CIJVm\nRzDK9kCErYEwa/vHiBlmzNVVVMFNToW/bZxKpeP11Z661+8npTqI5O5iWvJDuOjhJTkXhOSK6lKM\neJqgMFWIqqdePHJuFwqKIij22en3x0lYisgSQ4yqLkoifWzIWsmEvhcrpZQFddzZdv4QivKhnHqc\nzcPohkRV3rmkejCWwqnFccTAqxYjpMQdGka3NmARYC12E9n8CqRSuC/iZrxMYPQCoKC6FqRkuPv4\nILGjN+2lnZJuRw9ZahprzDSauUaELT1nni3y9doS0obk2x39AHgtGqtzs/haTTGPz63n0PJZ7Lpk\nOvcN7ucLv/5Pvj9v2lkZeYCWdQdR9AQbZxyiNFmAXfTQJKqx23SsURU9miY22cvrycl5w9cjw9tP\nqc9B30SUlL0Yp5oiraqUDh8BoFczG/KCw1FumlfGf6UhFujlk2kbTe1vrPrmXAnGUji0CCJcyrjd\ngjsexpZOo1s8WBSB6rESefVVFI8H59y57+jazicyhv4C4FhCtut4+MZaWYmlqpJ5bZJuey8eRcWT\nduCSCcqVcbaNpc9YBVHpsPHp8nx+OzjBVn/4pMetikKJ3UqweR+FtXVYrGdn5NPxJEcmXBQa7QTV\nXCzSgkI3E4aHfCXA7x75HYNHhogJ09C7XO9sTDfD2VHic9Dnj6G7SrArKQxFoaTLFLIf85rls6Fg\nkjXzykAIHgu041I0Qs93num0bzn+aASnJYY1NJ8uZwpHdBRNl+gWDzabgtR1wi+/guvSSxEXcYgw\nY+gvADy5edg9WQx3dpx4/PJV1HRBt9qLIlSKNSjTFcaxMZZWaB+JnPqEk3y5spBKu5W/aekhfIr5\nI6lkgsH2Vsom6+fPhsOPbyatOdFyd1MSKwNgIy6Q4CnqIp1O88zWPxIWcRSDjPD3eUpZtoPhUIK4\nqwynZlaw5LROYJcx/DkeVFUQMSAvJblyeiEPlU5jaGAHlX0x4u1n1zz1VjAUCOCwxHAGZ9HlTJEV\n8aOlDXTNic1tJbpzJ+mREbKuuvIdW9P5SMbQXwAIISisrj3BowczTq/qoI+YXlSlVacw5aCHAmrp\nZXP76BnP69JU/mdaBUfiSf6lre+kxwfbDmPo6WONUmfD4Q1HsKTCHKzbSVWiFEmapzCHszVUadx4\n442MRsZo1npxTP5tGc4/avPdSAkD9kJcmrn7sg6olHKE0exCXF6NiC5Jj8b42CWVBFU7W4ebGJA6\nY79vRaZOP/vmrWQsHMOpxRDhQkJWJ96wH2taJ63asGdZCT3/PMJux71y5TuynvOVjKG/QCioqmG0\npxs9fXy8gXPeXHSnhZr2UcKqH58qqZ58fy2ilfUHh1/3vIt9bj5fUcBDA+M88po5OABHmvYjhEJp\nw9k1M8VGAwyk8il2jDLgS1AdL0ETvexU60GNMqOokIaGBmrtVQBEMnffeUtdgTlIbEA40DTzw1hN\nWiiUQww5i1GcCSKGJDUSY2ltLjUuwe+qL+HhUBdyPE7wpZ63fY2j4QTxlMQtDJrUCRAWfIEAlrRB\nSrHiyLYR/OM63CtXojidb/t6zmcyb7ULhIKqGgw9zVjvkWPHhMUCi2Yzr03S5+7EomgsUdOoEmIy\nm63tQ0ST6TOc1eRr1cUsz3bz1UO9bA8cD/ccadpHQXUtdvfppwe+lv1rX8VQLDiK++iXgrpEGZro\nZhwfmqOTKTlm+dvUpJlzqMjE589bqvNcKAIGkikMzfz/p1WVPH2ckOplxDZCREJyOIIQgs+trKXL\nW0IwMcyeLIXQy72kBs8cOjxXfr21h6RhxWNY2eQyiw+8gQAW3SAlLGiREfSxMbKuef/buo4LgYyh\nv0A4OgrhtQPOAPKuvI7sCIwb7ajCSrUqKNVhuzGD5foONrSeOXwDoCmCe2ZUUWq3cMf+DlrCMVKJ\nOP2HD1Ix8+xmd0spOdSUwJMYYsK5kZGYi9x0DodJkE6C6uxmao5ZFaTFJDeHFnPD4sWvc9YM7xZ2\ni0pFjpPeaIKkalZGJTQVX8Ss0urxDmFICPabxvyGpfWUJAK0eor4RiiIsKlMPNaKNN6esQiheIrf\nbDxIyrCQnU7T7jKb/DzBIKpUkEIgD+1DzcnBc5GHbSBj6C8YsotKsDldDLYePuF43qqrMAAxaH4A\n2FU75ckkfYqFFXr4rMI3ANkWjV/PrsUqFG7e087WvXsx9DTlM87O0Pdt7yCo5lBTlmDCNUhp1Gyc\neR6zE9GXNU6+Ix8AkQYtpeOqfGebazK8MeoKPHQHYgRlMVbSJDWVVN9BhDQYyDJjhBMjZj+Epirc\n4Ril257LqJGmszGHZE+IyNaBt2VtD2zq4jKLWQWUn+5jzGEFICscQGB+bzTvxnv99Qir9W1Zw4XE\nORl6IUSXEGK/EGKPEGLH5LEcIcQLQojWya8XZ8/xW4xQFEqmTKXvUPMJx7XsbLrKVbzN3UiRQlMs\n1KZ6QcDO2ApaDzRjnKVXVe208fu5tagCfvbSqwhFpXTq2cXndz7ejJaO4mqwMpKTYGrMHEm8x1WG\nEDqN5TkIIUhEU2hSYKQiWIqL39hFyPCOUlfg5og/xmiqAqeaIm7RGB8epVj2MegxlciC0TT65Fjs\nG+eVUxIewYbkF/4Atjofgee70AMn6yOcC2PhBPe+0sFst5lTciYmCDksKHoMWzKOEGZToTXmx3fz\nTW/pa1+ovBUe/eVSyjlSygWTP38NeFFKWQ+8OPlzhreAkobpjPX2EAufKBXYMSObsj6dtNP0cCpT\n/dgMg3ZNY+VYhL29Z1/uVuu08/S8emq6D9JTVMlDY5HXnUo4PhChd8JFVaqF/vB+DgoX06M1KOII\nAUs2wt7L4pJ5AIz1hbEpoMhYxtM6z6krcJMyJB16PR4tQdyi4YlAafoIvfYqbC6FkC6PxeK9C+fx\nmf1PkhAqLx0aQV5VgdQlE4+3vaWTLb+/7jCXJRVCNjMs6bF6CDmd2BMjCADFTLx6qoux1dW9Za97\nIfN2hG4+CDww+f0DwIfehte4KDnqXQ8cPnjC8bF55s0cTe4DwCehImkwYIuhJKv543Otb+h1PBOj\nZI0NIWfM4e8P9/Kx/Z30xk8ee3yUrY/sR9ETzLqsmJ7kIXbH85keq2JADtPnT6I6ulhQZPoBo0fC\nWAXY7K+fJM7w7jKt2BwM1mOrwGOLE7Nq5ITBlx4ipHiJlo8QMiA1YBp6S0UFl+ijLNZHMSQ80DyA\n9+oq4gfHiWwbfEvWtLN7gie29fB5zcGozVS1yvPkErP7cMeGAJBWU0Q8/wNXvCWv+V7gXA29BP4k\nhNgphPj05LFCKeXRwNwgUHiqXxRCfFoIsUMIsWNkZOQcl3FxUFRbj6Kqx+bDH8U7fRajWRBt3wJA\ngb2c8lSKIexYrG249gQYPnLmkQivpX2HeZ5vXn8t36ovZcNEiEu3tvDv7f0nzbnvb/PTcShKRe96\nDjZO578bPklpNIXLcPOq3YVuQF72GLPyTPm28Z4gqhDYvBlv/nxnSqEHu0VhyGLF4UqRsGjU+HUi\nSbPyq7uwn5AhSfaZO0whBM558/h801MoAu7b2IltUaEZwnmmg9TIyVrGb4R4Sucrj+7lU3YXVmWM\noGGaL4+rlJQlh+yomY9KW7wgDfI/mKm2Ocq5GvplUso5wPuBzwshLnvtg9Lcr51yzyalvEdKuUBK\nuSA/P/8cl3FxYLHZKaytp+fA3hOOT8udzq5agePAKIZIkm8voyxuhnEU33YsIsrjP9xD4CzfaK1b\nN5FfVYO3oJC7yvL58+JpXJfv48c9wyzY3Myte9v5cfcQ6wb9PPurFqypILpniFtDCpb0YaZHJ+Pz\n7nxA50OzZqII81YLdU6Yf0tJJnVzvmNRFWaWeOmVaVS3+TYuCQtag7uwyThdWRq6hED38VCic8F8\n8juaWdOQRTxl8I9PNpHzV1MQFoXx3xxCnkFE/ExIKfnnJw4QGo1yc1ojObOPUNKFik6ztQiEQknI\njNmnLDnYVB3NfXHXzr+WczL0Usq+ya/DwOPAImBICFEMMPn17Mo+MpwVNXMWMNjeSsQ/cezYjNwZ\n7KwTqElBwmjCbcmmKNVNrpFgh/cybsz+Z5KJFI99bxdDnWf27Ie7OhhoO8T05ZcfO1Zut/Lj6ZVs\nWTKNz5UX0BVL8u/t/fzmwSYSQzGmtqzlxYWLuWF8L5cl7mV+ZCqSAFvCASzOPj7ZeDsAhiFJTJg7\nAltt2dtwdTK81TSW++hJJEm6zFEVrrgG6FQkD9NprwAkLeP9xwy4a+lSAO629aMpgkd39vJMxyjZ\nN9aT6g0z8cSbi9c/uLmbR3f28pPcXFQh6MxtIhjPwkeY3ZhrKwtOYNF1EpYs3PmZHo3X8qYNvRDC\nJYTwHP0euAo4ADwF3DH5tDuAJ891kRmOUzN/EQCde3YeO1biLuFApSBhg0T/OgAqbNnMDg3xZ38e\nXq0P3fMsiqbw2Pd2suXJdhLRkwXEAfas+wOa1cbMlSfPBqly2PjxQZwXAAAgAElEQVSn2hI2LprK\nr0aczOtIUOrpIy94iB98+jZWDTxAd0wyPzyVPrWfRDyHlVOKyXWYFRqB4ShWaXZZ2qdVv6XXJcPb\nQ2O5j5SUdNnNJreotDPfWYY12UK/Uk4yv5d+I0JqyNwtWmtr0QoKSG3bwp1LqwD429/uZZOq41lV\nTnTHEOGN/W9oDU/u6eMbTzfxlaIcSsaSZL2vimhyB6GolzxLnMMiDkDJ+Bi2lE7Kno2nMOutuwjv\nAc7Foy8ENggh9gLbgD9IKZ8HvgNcKYRoBa6Y/DnDW0R+ZTXunFw6dm07dkxVVFS7g33TFcS+dqSM\nUemeTtVEN5GUwcvZN3OT5UkSK3OpW1jAzue6eeDvN7Huvib2v9zLkYPjjPSE6DvcR8ufX6Z+8XJU\ni+OkZpdUQqdz3yi//95ODr/Ux6zLy5h54GGcCxcQTSYwfMNooXI8RhaveGyAwuqG0mO/P9wVxD45\nq1zL97wj1yvDuTG33Exs/sJ/LYo0CAobn9ZKmIi1ANDT0E84rZLqMyegCiFwLV1KdPMWPrWsCosi\n8DosfHbtTv6YrWCfkUvgDx1Etr9+clZKyS83dvKl3+zhxuJsPjiqY6v30Vnix2sdJRL3UOyQDFkk\nih7AEYxjS6VJ27NxZ2eG5b2WNy08IqXsABpPcXwMWH0ui8pweoQQ1M5fRNOr60lEI9ic5hbVa/Py\n4swYC3dDOnqIbNccapQUDk1hg+ca3ud/hJbtf+ATX/sSc1ZXsP/lXjr3jdK6fejYuZORZzGSKdr3\nltN59ysAqJqCogoQkIqbEy4dWVZW3zmNqvwYnf/SSc5HP0p30zb6vUnmDE8DYE+WGwJJlr0mRNPX\n6seJDhgo1hPlCjOcn5TnOPnYvHJ+tQtCzhxC4TjXH+llTn4+ozJOT56TqngWiZ4grkWmvKTr0qUE\nnniCrN5Obl5Qzu92HmFuRTZf/f1+bppdzN/VeJn4fSsybeC+pOSUrzsSSvCNp5v4w74B1tTm8zeD\nOorbSs6aqTy8/ofMcMF40sOcXEnA6cSaHCEdF1jTkgi2jKH/CzIKUxcgs1a9j70vPEfzq+uZe/V1\nABS5ithdOkA6RxJtexrXrBlUZdexJFfhT0Mu/sni46r4szzftIYPzC5h1e3TkFIS8SeZGAyz70+P\ncXDDQeoWX0/13EWkkwbplEE6qWPoEiTYPRbyKzyUNWSjagpj994LgGfV5fT/6bu0OFVuDs0mLfpo\nGbejudopcl93bN39LaPMNmIIeyZJdiHx5asbWLurh25PObmBUVLtLfzfZd/g4EAzBx3TucISZaxj\ngqMSMq5LLgEgsmkTn7nxVh7dcYTafBdLa3P50fo21msqP83xwpPtJHvD+K6rQbFrSCk5OBji8d19\n/HprD/GUzncXVrG8KQiKIO+umQyn08jYq8QtuYxJH15Hmqgjj8LAfpIJFVWaM+ddvoyhfy0ZQ38B\nUlhTR1FtPXvWPcuc930AIQR1vjr2juxlYoGFvBeO4K/vp9zVwPRwOy9FSji84LNcdeA/+NTL27l2\n1vUIIUinknTsfIldzz3FWG8P0y9bxfs+dxeKcnbedujF9dimT8NSUkI4voveZD7TYjW0Zrfin/CQ\nV96Lppi3WCSQIDCewmkDS+HZDUnLcH6Qk2Wj0hrlEDVMt+4n4k9R6rMx7cV2/rBgHpHaF2k/olGb\nSKPYNLS8PGwNDUQ2bqTq05/itiWVPLi5i+e/dBkfmF3Cf71wmDsODHInVm7bOUj/7kH+5IRnknHa\nkiksQnB7bT6325yoO8ZR8hzk3jEDS56D+5/exoKcQ1iiCwGIWnIwVAdTgwGkVFCEA4CsPMe7eMXO\nPzKzbi5Q5rzvA4z3HaF160YApueazVSHF5gxcXVwM6rQmDmSQBGwzrIKBUnj8OO82DJMy4aXufcL\nd/HCz3+MarFwzRe/wtV//eWzNvLp0VFie/bgWb2awPAQft8ojaFZCBQOVJhTKiuKjlf4DLSZzS02\nmwtree5bdh0yvDPMdEt6KSGiOhiNuHBFOqnrMQvq2qsS9Bpxkr3Hlcrcy5cR3bULPRzm7tX1uG0a\n3/pDC3UFbn7y0Xls+IdVTLllKo/PzGLcrnJzWPDLpINXFC8viSw+3hZHPTiBe3kpBV+YgyXPVLxq\n7noeTdFRR0wHot0wX3NmwOz+ljbz3vLmZwz9a8l49Bco05atZMczj7P+l/dQNm0mC4tMD6c518m8\nWQb2w5voL15Fg30qC0osPHU4ypfqruS2tpf4xs9+StXgToqnTOUDd3+Vsumz3rAASOill0BKPKtX\nc7h5A9sND9eH5mGIPl6ZKMfqGGRG0fH4a8+BEVwygVDcaLmZN+GFxqIiH8+Mp+lxVDAWbEUM7qOh\ntJTi2BGa3NXMJEGiO4i91kzeuleuZOze+4hs2ED21VfzxdX1/PsfWnh6bz/XNZZQ4LFz8/wymG/m\ncFIjURJtftITCYQArcCJY1oOivO4/N8P1h1iQeFONEs+Y0fM2v0jlhgYSeoCo/QChqsEzabizMo0\n5L2WjEd/gaKoKu///N+SCIf57Tf/AXdAIBC0xoNELtcR8TgT/W1YFRuLQ366x6Lsr/kkh0ayqBrc\niXvOZaz5xncpnzH7Tak8hV9cj6WkBFtDAwO96+ibKGJ2dApJ1yF29fjBtZ8ZuaYylWFIOncNURTq\nAsgY+guQxooqvNYAPY5yRtNO6HyVotopTGlv5rCYhqhsZ/zQ8d4Ox5w5qF4v4ZdeAuDOpVU0lvv4\n5ycPMBSMn3R+S74T9yUl+K6pxvv+alzzC08w8ts6x/lzyx5m5TZRlnUZ3SkfAslIlhVbshdLwuyu\n1z1VePMcGeWyvyBj6C9gCqpq+ND//TrRYIC1X/sSK/cXkhgIQmUBerGd3PY/Mhzu5gq/Hasq+PnO\nFJtHKynNTvDz9FxCiTfXpWhEIkQ2bcJ9xWqEEGwL93NZeCYSgx3FhUhA8zQfCycNdgSIJ6AQ0wvT\nCjLJ2AuN/LJCZuS00uMsZ0RzIvv2UFxdRd1+c5rqodoUHZ0jSN0syRWahnvlCsIvv4JMp9FUhf/8\nq0ZzjMHv/v/27jw8yupe4Pj3zJ7JTDJJJvseCJCEJUDYd0RABbnqraJ2UVu1itVqrVWL99b23tpW\nW2tF625dW62CuIFsogjIEgiQkAQSSCAb2SeTTDLbe+4fiYhUxVuFmOF8nmeevHNm5n3f33lmfjlz\n3jPn7CX4/5invscf5O4V+7gweys6nZ6UziiqZTxJESY6bU6Sutrx9HRhDATxWZJxxKv318lUoh/g\n0kfkc9UDjzDq3PNIqTczb1MMZasSqBpnINxTT9vRfcTorORLL+8f6SYjM45L47cT11PB71aXnfoA\nn6Nz82akz4d99jm0NtSwyhvPua6JCP1uVvsGY7f6sIS1HF9o5FBhA0ILEJOajLDo0at5bgYcZ4qN\nYbZaenQWDjjS8bTrSTA0Ee1qIdZ7hJ1hw6mzluKvP6GfftYsgi4X3UVFQO86tPcsyOXDA03c927p\nVz7271aVcbSlhcmJW4mLOw/zgY+oMmRiNeuQOgt5Lj8eV5BwbwCP34wzRf0q9mQq0YcAa6SD2Vdf\nj/uHI9me00q3B8qr43k/L4NmTyE1XeUsDNrx6K1EXnIHOqOF/03ayt+3H2HboZZTH+Ak7nXr0EdG\nYi0Yy+Or1pMfsOIMRCF1H7LpqI+ImAOMjBuBSW9CC2qUb64hurUUU0waxoRw9bV6ADJZDOTa3Ag0\nqsLTqGmOJKzsFRwJiYysq6ZSDKEj6yAdZa3HXxM+dSoYjb3Xc/pcOSGdqyZn8NRHh3l28+FTHndl\nUS1/21LFz6ZWgOwi1XkRWvVWKoIJtPt637tz66C7y4g52NvVE5OsRnWdTCX6EDI5Yxr7M914LhlK\nxtwaLI4w6hwm9rdsZIow4UDw8odNMGox+a2rGR3Vwy3/KKLxc/pMv4j0++nc+AG2WbOoavfy3GE/\nF7sL8OjrWWvPIKhJ3Kb1jInrnX++al8zPT4d6bpqgp06jImqtTVQRYU5ybIdodqaRl2XAyo2kDwk\nhxGFu9HJADuTY6nY9+m3RL3NRviECbjXrP3M/Db3LMhlbm489761n0c3fvHcN2tKGrjt1T2Mz3Qw\n3LGGiIhRRNbVcFSLoTOopy0mDJP3CCPEYQJSjwhzAirRfx6V6EPI+MTeeXD2BA4TG2dlxHfMTDyi\nY/yevdTq93ABRjY2dVCX+2OE5ufJ7O24uv388LmduLo/f+6bk3l27EDr6MAwYyY3vLCT/PBqhvVk\nYtO/yRv+CWTG6ZGmekbHjQZg35slmLztZF8wA+nTMGeoOUgGqsiYIYxMKKbRHMcBkQSBbnKi2zA2\nN5LgLWOTmMHR8JWfmaEy4rz5+I8epaf406m19TrBsivGsHBUEn9YXc6NL+2i0f3Zxsamg03c9PJu\nhidHct+8Srq7D5OaejXsX8k+Y+8P8rviEhjWWkOzuXeYp3QMISzChD3GcgZqY2BRiT6ExITFYNQZ\nqeqsxuYdTpehmNqh56ILBkmsLySpaQMSeGFrD+RdjLPsRR7/ThZlDR1c+dTHNLhO3bJ3r1uPsFi4\nrdLMgWPtXO3NpFPXjkfuZa/bRmZyMwLBqLhRtNa5qanVSOksxpTZm/hNaSrRD1RJ6XmMjutd3GZb\nVA5et56UIy+jQ+P8Lg+dIoJ9mUHqd5Yff419zhwwGulYteoz+zIZdDx0WT53nz+MtfuPMev+jdz7\nVglbKptZU9LAdc8XkhUbzhOXJ3K0+n6io6YSbxmDPLiW7Q0pCDSkzch/1BqprW9GSInflk/ioEjV\nNfg5VKIPMan2VDr9nZiM+Wg6D/FT9FSlzcW/ZRvDnV4KNMk/9zfgn/RT8HUyveV1nvheAYeauljw\n8EesLq7/wq/SUkra1q5jT8IwttR2cW38TvI82fRYlvOqnIZeB27T++TF5BFhimDb01vQaX7GLB6L\nr7IDfYwFvfpp+oAV5RxKsq2BONyU2wdT1ZSJvruZqRmdjK6ow+qr5V39Bew/vOz4a/SRkYRPnkTH\n6lX/8r7S6QTXTR/Emlunc05OPC99fIQrntzGdS8Ukhhp4flrxlFTtRTQkZNzH/537kegsd2Qh4zU\nYQpUMb3DjPtYN+HeIB6flcRBkWe4VgYGlehDzCd944fCrCAFMfmdVKXPxR8WQcKmbUz0HKZZ01he\nYoGcC2HLX5iVFGTlkik4bSZ+/OIuLvnrFpbvqqGxowcpJf6gxt6adh55eDk0NbIpPpcnrxzNOe3D\naTI0k2XczivabGYNi6asYzuz0mbRXtPO4Rodad4ynBfMpafSRdjQaNXaGsAslkSQYYy0H6XWksSu\njkSkhDFhxXgrPybfVEWNSKMotpn21k9b9RHnnUegrv746JuTZcXa+Mvlo9nxyzk8d814fn/JCF79\n8SS621+kvX0bQ7KXEtx1GFH0Ag2uBA5YkwjE2MlvOowt1ovbb8Lct3xgWp761fXnUYk+xCzIWgDA\nBrkbc0c67q5tpIhKduf8GK2ri3lH32eQhEc+OEjwnF+BFoAN/0N2vJ23fzKV3yzKo6nT23sR7Lfr\nGbJ0FUOWruLCZZvxrXqHgNHEPb+7EUfhDpK8SVTZnmN11yBcmoXsjN4VJGemzuSDhzYgtADjr55I\nz/5WCGiEDXf2Y80oX5cQOsKtuUxM3QFCsCEyh542C1JnYp6ziLuNmZh9rbwmLmPX9juQsrev3n7O\nOQiTiY633vrS/UdajcwYEstl49IwywoqK/9IbOw87IcScf32+xitATZP/V80CTLayy2VCZS3HUYK\nAc4x2GMsRCWoMfSfRyX6EJMfl49O6Chq34PdN5pOWcL4+Va8YTFUDr4YfXkpi5oPciQoeXWzByZc\nD0UvQd1uDHod35uUwQe3z2Llkin898Jcfjg1i5/MGszDl+RxfnMx0fPn4Qy3EVlupTC8mIkRdTwe\nXECO00CVdx3JtmTMe7zUuB0MsdYQO2siXdsa0EdbMKkLsQNejDOfjKS9JAU62Rkzitr6IQihI9rU\nTdLm35Md3EaVLouPTXYOVT4NgN5uxz5vHq633kbr7j7lMfz+dvYV/wSTMZpM/VXU3nwzzuEeZMxQ\nnmpKQJp1ZHoLSfE5ObJvF6ZAkC7yyS6IU98Yv4BK9CFGr9OTbEumpacFS+Q4EEFEQQJjKx7hmCOP\no8kzmP3x30iT8NiWKjxjb4HwWFh5EwS8QG/f6ahUB1dPyeTO84Zx29yhTG8sQbrdRCxcyNHnC0EK\nasOfZZd3NJUymSunp7K1fgvzUubywUvlmH3tTL7rInoq2vBVd2CfkoTQqQ/hQBcZOQah8zNa56LN\nFMV77jh8x3wckMNJ6i7iabMXS08DLwZ/RFn1X2h39a6EFnXpd9DcbjpWv/el+9c0H/v2LaGnp55h\nyffSsOROoob4MVk87B1zN6VVLmSCn19UxOIOa8at0xNujgFpYMiEhDNRBQOSSvQhaHpy7xrtu2zd\niKCJpuoPGDw/iQlbf0XqoimYx47je0d3Uy103PenrQQXPATHimH9rz93f1JKWp/9G6b0dGQwDUNN\nkCfj/8ksh4GHG/PJCu+h3bARTWoMX5+MWx/NhPFGLDFRtK+oQB9twTpOfQhDQVTUZEDP1MHlmDQf\n72ZNo7Y4Ec3nobzDSdqmPzO/9T1aDQ5e9X+fot3X0tl1kLCCAkxZWbS9+OIXXuzXtAD7S39BW/vH\nDBv8a9x3PInsbCFulBt/6mS+vycSqYNBYj2ju4dQWrIcAG/kfFJzHcQkqfHzX0Ql+hD0/bzexbhX\ntq0mvDOPtq6PsF/3X1gjujEtf4SsRx9kdk8RowIBVgb0vLE2CjnuWti6DIpe/pf9ebbvoKe4mMj/\nvB7X2iN8ZC/EYlxDoXExZTKNm2eksqLidRYGplNR5SAheIS86y6gbWUlgZYeoi7OVitKhQijMQKH\no4DE7J2M8rRQYh9MWbcT3SEXG1ty6dDH8ZfqV0hq3c4a0xzKejIoLFyMy1VI9NVX0VNSQtdHm/9l\nv35/B/v23cCxY2+SlXk72p+20FNcTMY1g5C+Dq6MX4rriAdDbAV3VE2jvvMgjVo3UcKOJpMYfW7G\nma+MAUQl+hCUZEvCYXZQ1lZGVMRMfKYGOrrbiZmVga/BRddHm0h/4jGWHFlPJ7Cmqo4tXddA5vTe\nLpy9rx7flwwGaXzgAQzpI/HWxNGkr+Px+BeYGj+EP++PpSCsHld0GS3uJoZumYRO8zP7Z7Nwr6nG\ns/MY9lmpWAY7+q0ulG9ectJlBGUN89PaMMgAT0+ah7bXzOjWal49mInRYOWFimUY/W4eCtxJW5eD\nXbuuoGlkOSIrluZHHz3eqte0AMeOvc32HQtoaf2QoUPuxfZWAPeq1aTceC6GYxv40ein2bbNBZZu\nEk3vkB2MorDhDUwBje7oS4lKdZMyLKqfa+XbTSX6EDUzdSZBGaTIEQ6ajtrS14m45i6M4QFal92P\nwelk1rKlLOqo4T2TheKNu9gX/wdInwzLr4V3fw5dLbS99DL+eh9hY2/AH2zhZ+mPMM/UxoqGxbTJ\ncG6fk8CTxU9w/Z5LcRsTmTROByU+3BtrCB+fQMTc9P6uCuUbFhd3HjZbDhkFjzMuWMhuywi2T8/E\nftBPSmU7++KvIdffyAOlD9NuNfDH9v/B5ZrC0dpnqftZA0dnbGfP6sXs3XcDm7dMobjkFgx6G2PH\n/B37rgiaH30U5yVTMbuXc+mwP7F+VxhC+hkT+ycuapzP7tpX6NIFsUdNAxHOxIvt6iLsKahEH6Ju\nyr8JgBePrMDuy6fFtw4tZRrRk2LprqjHs30rxrg47l26kEx/N3+NiObYGzs5mHQ/TLgBtj9Bx+2T\naVtZStiUW9HJOu5Jvg9haEEzzufdmjiWRG3nVf8GhhcnoXknkqarIcmcRteOBuyzUnFcNFh9AEOQ\nTmdi1MgnSEy4iEUZTUT4O/hr4tU0zdGT0dKB69EVeOc8yHfa1/Kzitc4mBDGo+0/ZlvpDxBRcxBR\nVtq7d9HpKsPhmMCI4Y8yfvxb6Ha5qLv7lzimD6YpZjPjkv/AjuIEdMEelsQ+TkV4F1nVbRwJ1hEd\nTKLLOJHYka+ROnhsf1fJt574ogsjZ1JBQYHcuXNnf59GyFmwfAHV7mpeGH4DLa4/Mkz/IInx4VRc\neiNh2cmkvr4BgL1l1VzxTBHRwsgyaSEy0I5O+sEQi9AbCbPt4cGo11hpa2GhMYl/7ruRseIgF1yo\n49VNb3FB+e1Eyi5mjcwi0NCNY9EgbBOTTnF2Sijo6erhrp/cxRux5zAxpZqbWh/C8Q89MjqKzCXn\nE37gfu5Ov4tnMuYztMZHXsUmyoe8Q3ZpK4NdYWQv+i4RKRm4PvyA2o/fpGWYgW3REezz/AJdnYHw\nSD8vJrzJff7NpB8cQ2J1B9ZgBAHnj4jPKSd10jtMnPBOf1dDvxFCFEopC071PNWiD2FL8pcA8GhL\nIfpABDVNz0PmDKJnZ9NZUk/XymcAGDksnYcX51GPn2uD7VR0e9B8QQyR7YRfkcKzEWWstLUwxDeC\nfxbfQCqNXDT5GM9ve50LS28gXEimZ6UQaOoh5socleTPIpZwC5fMn8bk1q1src3gaedVNC0JEnC7\nOPL716hrnclvq+/j2rrVHEw2sXHMTEbW3EFj6lCeK+hkae1j3LztTu4xr+KxGUb+bp9JSc1SdHUG\npuU72T12D3vb1uBvtJJ2yIUOK4GY75Ez2Un0iIeIdc7u7yoYEFSLPsRN/8d02r3tPJt7Me3uF8gL\nPE3c+BwOnTsLnSFIxquvoEvNB2BrSTXXvrALj9ST5y5npK4Zj/cw64ZryM6JdLpzyDEe4oKRu1l7\n6DALyq4n3OxgWmw4OoMB5w9yMWeouUbONsGAn8duuJaN+hx2OIaTF13BVYkvkP6Ehr2pm7BBdtJG\nl/PayJ/y2/j/pEELktbkZ6qmZ6g4hAw0U2Sws6E6El+rQG8zcu+iPL7rXk7Zxnv5vSeHgrJEevQ+\nzPbFTFs8mdjcQkrLbmdcwQoiIkb2dxX0m6/aoleJPsStrFjJ0s1LyYsazPXWCiztGRTMeIWerW9S\nc8e9RGb5SLznF4hxV4HBRIu7h7tf3My6Kg9B8ekXPovew4XxG+iObiRucyyx/gUkmwzkO8Ix2M04\nr8nDGK/mmj9bHSneyz9/czdlUXPY5ByCpnmZkfgRcz4+xMjCMgyRRlIm1NE2aTGvF9zFM9XN1GtB\ndE096Gs96Fu96PSQP8zJL0emY9v7Hsf2bKHIPRbNc4Sgrwhn+BxmzJlHxhU57N23BJdrF1OnbEaI\ns7djQiV65biFKxZS1VHFf2fPJarnDZKPLWHoZbfS8tD9ND3+LCZ7gLAEgbDHEQwY0Lp6OCgES6cP\npt1kYqG9h+kJxRx754f4/Nno9GbGWLwkWmyY0iOIuTIHfYRaHvBst+Fvz7B71XJ8MTOpHjeeNeXt\naOhxau0MaT2Gw92CzdFDR3wCR2y5lLaCBOxCI9dnYEKXCTMnXLyXGoaOjXRqRTjMucxLWkjczaMR\nsX4+2jyFpMRLGTr0V/0V7rfCV030hjNxMkr/WnbOMi5840J+U7GOB5PzqI19DOu6NNJuvQPziDG0\nPvYQXdVHoLYVnUnjaIKO+87VE7Ts4TaDIDO5k6bVCzF2GRkW4yEt3IYIGLFNTiLyvEyE4extUSmf\nmvX9q+hoaqVy50ZG72jm9tuu4Jn1j3CgK5UD+jR8UWkENXC0dZLi2s9NYaVMMxVTYKqBubficulo\nW7uapnI9+pZuWi1e9qU60RvTmZm6AFOyHVOSjarqx9E0L8nJl/d3yAOGatGfJT7pwjHrDPwqJpIw\nUx2pxmsZPO0WdLre1rg/6Oel0pdYVrQMk87ARZFd5Fs8lLYMZ3b3rURVmZHdAUypdhyLBmFKsfdz\nVMq3jdQ03ln2N8o3r0BvDGPa5Zfh0z2Mx3yU5v0OdJsiyK7TY26qBQHmKD8mawAtIPC0mpA+HV0m\nA3tTY2mzWdEbk8hJvZw8aSDmqjzMQ+xs3TqbsLA0xox5qb/D7Xeq60b5F8+VPMcDOx9AAPPN0QyN\nrCOaGAxR0zkgdbxV/REtXhfpBj1Xx3iI1OtJLP0RkXXjESY9lmFR2CYlYcqIUOPjlS/14d+3sPPt\n55CBWqyRDlJGWZHRmzGYJLXbYsmqLSDDLeluLcfTU0dQStwmI7VRNurjwjF3g96UTnTSJZwTYcVg\nMxF382hqap7nwMFfM2rkkzjViBuV6JXPt7VuKz//4Oe4vC44KVdnm4PMtvvJNemwH5tAfMvl2NMG\nY8mNwTLIobpolP+XHe8cZuvyjRj0e+juqIS+XKO3BNAbBAIjZs2GXhpxaW4CMoDOpyF0JvSm8aTk\nzmZasg1fSQtxN+bji6pjx85LcDgKyB/1rGpsoBK98iWklKytXsublW/S1tbCoM4YxuAk2WwnypFG\nfOI4rJmJ6CPVsn/K11O+rYGNL5WhaV0kD/Zgc3hwd+zF3X4Qb3c7WkCHFhDoDBp6s0ZYFITFOohL\nHEV8TxZil4OISRkERtZw4OBvEMLAuHErsJjVbKigEr2iKN8S7tYetq6opKKwEalJDGY9VrsRdB1o\n+sPoTa3E29xEW7vQzC689hq84TWgC35mP7bwoYwY8QhWa2Y/RfLtoxK9oijfKl0uL0f3t9J01E23\n24/BqMNsNeBMsRGfGUmE3YinuBl/fReYgmiD2+ixViFlkDBrOtFRkxBCTXd9on4fXimEmA88BOiB\np6SUvztdx1IU5dsvPNLMsEmJDJuU+IXPsY0/+bGJp/ekzhKn5eqa6P23+whwHpALXC6EyD0dx1IU\nRVG+3OkaRjEeqJBSHpJS+oB/AItO07EURVGUL3G6En0ycPSE+zV9ZYqiKMoZ1m8Do4UQ1wkhdgoh\ndjY1NfXXaSiKooS805Xoa4HUE+6n9JUdJ6V8QkpZIKUsiHw4EU8AAAPwSURBVI2NPU2noSiKopyu\nRL8DyBZCZAohTMBi4M3TdCxFURTlS5yW4ZVSyoAQ4ibgPXqHVz4jpSw5HcdSFEVRvtxpG0cvpXwX\nePd07V9RFEX5ar4Vv4wVQjQB1V9jF06g+Rs6nYFCxXx2UDGfHf7dmNOllKe8yPmtSPRflxBi51f5\nGXAoUTGfHVTMZ4fTHbOad1ZRFCXEqUSvKIoS4kIl0T/R3yfQD1TMZwcV89nhtMYcEn30iqIoyhcL\nlRa9oiiK8gVUolcURQlxAzrRCyHmCyHKhRAVQog7+/t8vilCiGeEEI1CiOITyqKFEGuFEAf7/kad\n8NhdfXVQLoSY1z9n/fUIIVKFEO8LIfYLIUqEELf0lYds3EIIixBiuxBiT1/M9/aVh2zM0LtehRBi\ntxDi7b77IR0vgBCiSgixTwhRJITY2Vd25uKWUg7IG71TK1QCWYAJ2APk9vd5fUOxTQfGAMUnlP0B\nuLNv+07g933buX2xm4HMvjrR93cM/0bMicCYvm07cKAvtpCNGxCArW/bCGyjd0mlkI25L47bgJeB\nt/vuh3S8fbFUAc6Tys5Y3AO5RR+yi5tIKT8EWk8qXgQ817f9HPAfJ5T/Q0rplVIeBirorZsBRUpZ\nL6Xc1bftBkrpXcMgZOOWvTr77hr7bpIQjlkIkQJcADx1QnHIxnsKZyzugZzoz7bFTeKllPV92w1A\nfN92yNWDECIDGE1vCzek4+7rxigCGoG1UspQj/nPwB2AdkJZKMf7CQmsE0IUCiGu6ys7Y3GftknN\nlNNHSimFECE5LlYIYQNeB34qpewQQhx/LBTjllIGgXwhhANYIYQYftLjIROzEGIB0CilLBRCzPy8\n54RSvCeZKqWsFULEAWuFEGUnPni64x7ILfpTLm4SYo4JIRIB+v429pWHTD0IIYz0JvmXpJTL+4pD\nPm4AKWU78D4wn9CNeQpwoRCiit6u1tlCiBcJ3XiPk1LW9v1tBFbQ2xVzxuIeyIn+bFvc5E3gB33b\nPwBWnlC+WAhhFkJkAtnA9n44v69F9DbdnwZKpZR/OuGhkI1bCBHb15JHCBEGnAuUEaIxSynvklKm\nSCkz6P28bpBSfpcQjfcTQohwIYT9k21gLlDMmYy7v69Gf80r2efTOzqjEvhlf5/PNxjX34F6wE9v\n/9wPgRhgPXAQWAdEn/D8X/bVQTlwXn+f/78Z81R6+zH3AkV9t/NDOW5gJLC7L+Zi4L/6ykM25hPi\nmMmno25COl56Rwbu6buVfJKrzmTcagoERVGUEDeQu24URVGUr0AlekVRlBCnEr2iKEqIU4leURQl\nxKlEryiKEuJUolcURQlxKtEriqKEuP8DXiH+6NG/laQAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb07c604ed0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "plt.plot(prof_vec_pixe[ind_rel_cor,res_ex,:].T)\n", "plt.title(\"Correct signatures for res: %f\"%(resols[res_ex]))\n", "plt.show()\n", "\n", "plt.figure()\n", "plt.plot(prof_vec_pixe[ind_rel_err,res_ex,:].T)\n", "plt.title(\"Erroneous signatures for res: %f\"%(resols[res_ex]))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([152, 500])\n" ] } ], "source": [ "trainloader = prof_vec_pixe[:,res_chs,:]\n", "trainloader = trainloader / val_norm\n", "trainloader = torch.FloatTensor(trainloader)\n", "print trainloader.size()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "((152, 500), (152, 2), (152,))\n" ] } ], "source": [ "decode, encode = net(Variable(trainloader))\n", "out_decod = decode.data.numpy()\n", "out_encod = encode.data.numpy()\n", "print(out_decod.shape, out_encod.shape, list_labels.shape)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbcAAAFpCAYAAAAfo2a0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYVNX9x/H3d+o2ei+CqIiisbEqEmvEXlCjsUWjJhK7\nsWts0cT81JjYjaIh9h6xoij2jqCCgKJgQZBet049vz9mWXeZWXaX3Z2ZvXxez7MPM/feufe713U/\ne8899xxzziEiIuIlvlwXICIi0toUbiIi4jkKNxER8RyFm4iIeI7CTUREPEfhJiIinqNwExERz1G4\niYiI5yjcRETEcxRuIiLiOYFcF7Au3bt3dxtvvHGuyxARkTwxZcqUpc65Ho1tl9fhtvHGGzN58uRc\nlyEiInnCzH5oynZqlhQREc9RuImIiOco3ERExHMUbiIi4jkKNxER8RyFm4iIeI7CTUREPEfhJiIi\nnqNwExERz1G4ieQhl1iEi03HJStyXYpIu5TXw2+JbGhcshy38jyIfgQWBBfHlZyJr+SPuS5NpF3R\nlZtIHnGrLoHoh0AEXDlQDeV34apfyXVpIu2Kwk0kT7jkKoi8DUTXWlOFq7g3FyWJtFsKN5F8kVwF\n+DOvSyzNaiki7Z3CTSRf+PuChTKtgPCIrJcj0p4p3ETyhFkAOlwJFNRZGgArxorPzFVZIu2SekuK\n5BFf0aG4QB9c+b2QmA+hnbGSUzF/n1yXJtKuKNxE8oyFdsS67pjrMkTaNTVLioiI5yjcRETEcxRu\nIiLiOQo3ERHxHIWbiIh4jsJNREQ8R+EmIiKeo3ATERHPUbiJiIjntEq4mdlYM1tsZtMbWG9mdpuZ\nzTazaWa2Q2scV0REJJPWunK7H9h/HesPAAbXfI0G/t1KxxUREUnTKuHmnHsHWL6OTUYBD7qUj4DO\nZqaRYEVEpE1k655bP+DHOu/n1SxLY2ajzWyymU1esmRJVooTERFvybsOJc65Mc65UudcaY8ePXJd\njoiItEPZCrf5wEZ13vevWSYiItLqshVuzwMn1vSaHA6scs4tyNKxRURkA9Mqk5Wa2WPAnkB3M5sH\nXA0EAZxzdwPjgQOB2UAlcHJrHFdERCSTVgk359yxjax3wJmtcSwREZHG5F2HEhERkZZSuImIiOco\n3ERExHMUbiIi4jkKNxER8RyFm4iIeI7CTUREPEfhJiIinqNwExERz1G4iYiI5yjcRETEcxRuIiLi\nOQo3ERHxHIWbiIh4jsJNREQ8R+EmIiKeo3ATERHPUbiJiIjnKNxERMRzFG4iIuI5CjcREfEchZuI\niHiOwk1ERDxH4SYiIp6jcBMREc9RuImIiOco3ERExHMUbiIi4jkKNxER8RyFm4iIeI7CTUREPEfh\nJiIinqNwExERz1G4iYiI5yjcRETEc1ol3MxsfzObZWazzezSDOv3NLNVZvZ5zddVrXFcERGRTAIt\n3YGZ+YE7gX2AecAnZva8c27mWpu+65w7uKXHExERaUxrXLntBMx2zn3rnIsCjwOjWmG/IiIi66U1\nwq0f8GOd9/Nqlq1thJlNM7OXzWyrVjiuiIhIRi1ulmyiT4EBzrlyMzsQeBYYnGlDMxsNjAYYMGBA\nlsoTEREvaY0rt/nARnXe969ZVss5t9o5V17zejwQNLPumXbmnBvjnCt1zpX26NGjFcoTEZENTWuE\n2yfAYDMbZGYh4Bjg+bobmFlvM7Oa1zvVHHdZKxxbREQkTYubJZ1zcTM7C5gA+IGxzrkZZnZazfq7\ngSOB080sDlQBxzjnXEuPLSIikonlc8aUlpa6yZMn57oMERHJE2Y2xTlX2th2GqFEREQ8R+EmIiKe\no3ATERHPUbiJiIjnKNxERMRzFG4iIuI5CjcREfEchZuIiHiOwk1ERDxH4SYiIp6jcBMREc9RuImI\niOco3ERExHMUbiIi4jkKNxER8RyFm4iIeI7CTUREPEfhJiIinqNwExERz1G4iYiI5yjcRETEcxRu\nIiLiOQo3ERHxHIWbiIh4jsJNREQ8R+EmIiKeo3ATERHPUbiJiIjnKNxERMRzFG4iIuI5CjcREfEc\nhZuIiHiOwk1EPMs5h6t6geTSQ0gu/iXJlRfg4nNzXZZkQSDXBYiItBVXcQdU3AeuKrWg+iVc5C3o\n/iLm75PT2qRt6cpNRDzJJcuhfMzPwQZAElwVrvzenNUl2dEq4WZm+5vZLDObbWaXZlhvZnZbzfpp\nZrZDaxxXRKRB8TlgwUwrIDYp6+VIdrU43MzMD9wJHAAMBY41s6FrbXYAMLjmazTw75YeV0Rknfy9\nwMUyrDDwb5T1ciS7WuPKbSdgtnPuW+dcFHgcGLXWNqOAB13KR0BnM1ODt4i0GfP3hvAuQGitNQVY\n8ehclCRZ1Brh1g/4sc77eTXLmruNiEirsk43Q3hvUgFXAL6u0OkGLLR9rkuTNpZ3vSXNbDSppksG\nDBiQ42pEpD0zXzHW5dZU5xK3Gny9SN1JEa9rjSu3+UDdBuz+Ncuauw0AzrkxzrlS51xpjx49WqE8\nEdnQma8E8/dVsG1AWiPcPgEGm9kgMwsBxwDPr7XN88CJNb0mhwOrnHMLWuHYIiIiaVrcLOmci5vZ\nWcAEwA+Mdc7NMLPTatbfDYwHDgRmA5XAyS09roiISENa5Z6bc248qQCru+zuOq8dcGZrHEtERKQx\nGqFEREQ8R+EmIiKeo3ATERHPUbiJiIjnKNxERMRz8m6Ektbk4vNwFf+B2FQIDMaKf48FN891WSIi\n0sY8G24uPhu37ChwESAO8Zm46legyxgsvHOuyxMRkTbk2WZJt/p6cJVAvGZJEqjCrb4qh1WJiEg2\neDbciE0GXPryxFxcsjLr5YiISPZ4N9ysQwMrAmBrz+8kIiJe4t1wK/odULjWwjAUHo6ZZ281iogI\nHg43Kz4FCg8DQjVXcSEI7451/HOuSxMRkTbm2UsYMx/W6Rpch3MhPgf8G6WmnRcREc/zbLitYb6u\nEOqa6zJERCSLPNssKSIiGy6Fm4iIeI7CTUREPEfhJiIinqNwExERz1G4iYiI5yjcRETEcxRuIiLi\nOQo3ERHxHIWbiIh4jsJNREQ8R+EmIiKeo3ATERHPUbiJiIjneH7KGxERL3PJ5RCdCr6uENwGM8t1\nSXlB4SYi0k4ly2+H8jFgQSAJvp7Q9b+Yv1+uS8s5NUuKiLRDrvpNqLgPiIArB1cJibm4FX/MdWl5\nQeEmItIOucoHwVWttTQJ8bm4+Jyc1JRPFG4iIu1RclXm5RaAZHl2a8lDCjcRkfaoYB8gnGGFg+AW\n2a4m7yjcRETaISs6Afx9gIKaJb7U6w5/wSxT6G1Y1FtSRKQdMl8JdBuHq/ofRN4Cf0+s6AQsuFWu\nS8sLLQo3M+sKPAFsDHwP/MY5tyLDdt8DZUACiDvnSltyXBERAfMVY8UnQvGJuS4l77S0WfJS4HXn\n3GDg9Zr3DdnLObedgk1ERNpaS8NtFPBAzesHgMNauD8REZEWa2m49XLOLah5vRDo1cB2DphoZlPM\nbHQLjyke4uLfklx+CsmFW5FcNIzk6v/DuUiuyxKRdq7Re25mNhHonWHV5XXfOOecmbkGdrOrc26+\nmfUEXjOzr5xz7zRwvNHAaIABAwY0Vp60Yy6xFLfsN+DKAAcuBpWP4uJzsK735bo8EWnHGg0359zI\nhtaZ2SIz6+OcW2BmfYDFDexjfs2/i81sHLATkDHcnHNjgDEApaWlDYWleICrfAxcNakL+zUiEJ2E\ni3+LBTbJVWki0s61tFnyeeB3Na9/Bzy39gZmVmxmHda8BvYFprfwuOIFsWlANH25BSD+TdbLERHv\naGm4XQ/sY2bfACNr3mNmfc1sfM02vYD3zGwqMAl4yTn3SguPK14QHAqE0pe7OPh11SY/c5H3SS77\nDclFO5NcfgIu+lmuS5I8Z87lb8tfaWmpmzx5cq7LkDbiEotwSw9IjWheKwyh7fF1fTBndUl+SVa9\nCqsuBKrrLC3Auv4HC+2Yq7IkR8xsSlMeKdPwW5Iz5u+FdX0MgjsABoSh8DCs8925Lk3yhHMOyq6j\nfrABVONWX5+LkqSd0PBbklMWHIJ1exznkoBpFmFZSxSSizKvin+d3VKkXdGVm+QFM5+CTTIIgRVl\nXuXvnt1SpF1RuIlI3jIzKP49ULjWikIoPiMnNUn7oGZJEclrVnx6atSaygfAudSjIiVnYoVH5ro0\nyWMKNxHJa2Y+rMP5uJKzILkcfN0wC+a6LMlzCjcRaRfMQuDPNBKgSDrdcxMREc9RuImIiOco3ERE\nxHMUbiIi4jkKNxER8RyFm4iIeI7CTUREPEfhJiIinqNwExERz1G4iYiI5yjcRETEcxRuIiLiOQo3\nERHxHIWbiIh4jsJNREQ8R+EmIiKeo8lKRUTylHMJqHoGV/UEuCQUjsKKjk1N3CrrpHATEclTbuU5\nEHkPqEotKJuNq54AXR/GTA1v66KzIyKSh1zsi/rBBkA1xGdC9N1cldVuKNxERPJRdDIQT1/uKnGR\nSVkvp71RuImI5CNfd8h4by0M/h5ZL6e9UbiJiOSjgpGAP325+bHCQ7NeTnujcBMRyUNmhVjXB8HX\nD6wQrAh8PbAu92K+rjmpycXnkFzxJ5KL9yC57Hhc5P2c1NEU6i0pIpKnLDgUerwBiTng4hDYPGe9\nJF3sG9zyo8BVA0lILsCtOB3X8a/4ikblpKZ10ZWbiEgeMzMssBkW3CKn3f9d+b/AVQHJOkuroezv\nqefx8ozCTUREGhf7DHDpy10VJJdkvZzGKNxERKRxvp4NrHDg65TVUppC4SYisg7OOVx0Kq7yKVx0\nMs5luHrZAFjJ6UAwfUVgCGaFWa+nMS0KNzM7ysxmmFnSzErXsd3+ZjbLzGab2aUtOaaISLa4ZAVu\n+TG45SfiVv8Nt+IPuGWH45Krc11a9oVGkLFZMj4LF5uV9XIa09Irt+nAEcA7DW1gZn7gTuAAYChw\nrJkNbeFxRUTanCu7CWIzSA2BVQWuEuLf4FZfm+vSsi/yBpDpofI4rvqFbFfTqBaFm3PuS+dcY5G9\nEzDbOfetcy4KPA7kX79REZG1VT8LRNdaGIPqlze85kkXJ+OVG0lwa5+j3MvGPbd+wI913s+rWSYi\nkt9chrEdAUiQ+Re9h4V3p/5jAGsUYAX7ZruaRjUabmY20cymZ/hqk6svMxttZpPNbPKSJfnXvVRE\nNiDh3Uj/NWkQ2nGDm3LG/L2gwwVAAalhwQwohMJDITgst8Vl0OgIJc65kS08xnxgozrv+9csa+h4\nY4AxAKWlpRvYn0Yikk+s4xW4pZ+Sut9WBRSAhbGOG+A9N8BXfBIu9Etc9fPgoqkrtuAOmFmuS0uT\njeG3PgEGm9kgUqF2DHBcFo4rItIi5u8LPSbiqsZBfDr4h2BFR2C+zrkurZZLLMRVjIXoZxDcBCv6\nPRbcvM2OZ8HBWPCCNtt/a2lRuJnZ4cDtQA/gJTP73Dm3n5n1Be5zzh3onIub2VnABFLXsmOdczNa\nXLmISBaYrwQrPiHXZWTk4t/jlv26ZrzHGMS/wFW9Al3uxsK75Lq8nLJ87vFTWlrqJk+enOsyRETy\nUnLFmRB5nbSOHv4BWPfXGmwudM5B4kewQOrqtB0xsynOuQafq15DswKIiLRX0Y/I2IMxsQDcarD0\nYbFcdCpu1XmQWAo4nH8A1uV2LLBJm5ebTRtWdx+RdsQlV5Asu4Xk0sNILj8VF/kg1yVJvrGODa1I\nzQG3FpdcgVtxEiTmAdVABBKzccuOw+Xhs2otoXATyUMuuRK3dBRU3AfxmRB9G7fidJIVD+W6NMkn\nxScBa4dYGAoOxCx9NBFX9RykTU/jgEjNCCTeoXATyUOu4gFILqf+6BhVUHYTLlmZq7Ikz1jRCVB4\nOBAC6wCEIbQz1vEvmT+QWEDqim0tLgaJRW1XaA7onptIPoq8RfqwT4D5If4VhHbIdkWSh8x8WKe/\n4ErOhvhs8PfDAv0b3j5Uiqt6IjVGZj1+CG7XtsVmmcJNJB/5emRe7uLg65rdWiTvmb8b+Ls1vmF4\nL/APSgUhkZqFBRDaCQtt2+DHXGIJJFdCYGDG5s58pHATyUNWfAou+jGp0ejXCEBgcyywcY6qkvbM\nJRZD/Fvo/E+ofhmqngf8UPQbrOj4zJ9JrsKtPA+ik8CCgA/X4XJ8RUdktfb1oXATyUMWHo7rcDGU\n3ZhqinTxVLB1uTvXpUk741wct/oKqHoJLJQawT+8G9b9eczC6/7syrMhOgWI/Tzy/+q/4AIbYaEd\n2774FlC4ieQpX/HxuMLDIT4LfF2xwMBclyTtkKu4F6rGAxFwEeIxePn+L5jw5B/A14f9TvkVB506\nkkCwfhy4xPzUkF7E1tpjNa78Pqyrwk1E1pP5iiC0fa7LkPas8iHW9JB0Dq48cRAzJhUTqaoGvmPu\nVw/z4XOf8H+vXFF/RJPE0lRTpIuk7zO5ICult4QeBRARqcNVv0Jyyb4kF25NcsmBuOo3c11SyyTL\na19+8VExMz8pJlLlr10WqYww44NZTHt7Zv3PBTZrYD67IIRGtFGxrUfhJiJSI1n5PG7lxZD4Hoim\nRu9YeS6uuh0/4BwaRmruNZg+qZhodfqv/UhVlOnvfVVvmfmKoeSctUY6CYCVYMW/b8OCW4fCTURk\njfJ/kv6QczWu7MZcVNMqrMOfwYqAIF26xwkVpA+WHy4M0aVX+jiUvpI/YJ3+lZqM1D8QCo9OdUTx\nN/CoSh7RPTcREcC5RMP3khJzs1tMK7LgYOj+Iq5iLLsfMY0x1/pYe7Bln9/HHr/JPEWOFeyNFeyd\nhUpbl67cREQAMz/4GngQ2t87u8W0MvP3w9fxSjoMeoobJ15HzwHdKSgOU1AcpueA7tz42lUUdype\n7/276tdJLjuO5JL9SK7+W+qh7xzTlZuIyBrFZ0P5DeDqPjxfAMXn5ayk1jZkx814+Lu7+GHmPAAG\nDu3f4LxvTZEsHwMVd/58zip/xFW/BN1eTI2ckiMKNxGRGlZ0LI4klN8OblVqqLOSC/AVHZLr0lqV\nmbHxVhu1eD8uWQ7ld1D/PmUckmW4yv9iHS5s8THWl8JNRKSGmWHFv8UVHU/q4eVgi65qPC/+NVgg\nNWtOPVGIvA8KNxGR/JEKtPYxQHBO+bo38Cycgb9P1supSx1KRETaiVg0xurlZTiX3p2/MYlEgk8n\nTuPVB95i7lfzW6UeCwyA4FbUvU6qLPdRvqoIKz6lVY6xvnTlJiKS52LRGPdc8CAvj32DZCJJp+4d\nOPO237PbETs3+BmXWFgzu7aPxYuGccHeN7N6WRku6UgmHb8ctSOXPHQ2fr+/wX00hXW5C7fyTyz5\nfhr/OLcvMyYV4vCxyTZPcfH9vVrl3t561bU+fwFkS2lpqZs8eXKuyxARaZZoJMYbj7zLu898TIeu\nJRxy2r5sNWLIeu/vpj/cxVuPvU+k6ucJbMNFIf4+/nK22X1o2vbJigeg7CZSI5MY5xy0Ed9MKyKZ\ncHU+H2b0jSdw6Bn7rXddayTiCU7c7HSWzl9ZewwzKO5czENz7qSk8/o/ZrA2M5vinCttbDs1S4qI\ntKJoJMZ5u13JneeMZdL4T3njkXe5ZN9reebWF9drf+UrK3jjkffqBRtApDLKI9f9L217F/+2Jtgi\nQDXLFsX4dma4XrClPh/hhX9PWK+a1vbJK59TtqK63jGcg1gkxuuPvNMqx2guhZuISCt645F3mfvl\nPKorU6PpO+eIVEb5z2WPUr6yotn7W7ZgBYFQ5qbDn2YvTFvmql4Gfu7kEa324WvgN/3agbm+Fn63\nmEQsvWNJpDLKpxO/4K0n3mf5whWtcqymUriJiLSi98Z9THVF+jQxgVAgbXDipug1sEfaVReA+Ywh\nO26W4RNx6vbN7z0gSscu6cETDAfY/ajhTa4jEU/w8UtTeP6uCXz58Tf1OrVstsMgfP7McTL51c+5\nefQ9/HaTMzNeabYVhZuISCvq0LUk47NxzkFxp6Jm76+gKMyxlx1OuKj+rNnhwjAnXHVk2vZWsA91\nH2Mwg0vumEtBUZJgONWHMDXsVg+OueTwJtWw+MelnLjZWVx33K3cc+GDXDzyGi7e51qikdREpluN\nGMJm2w8iVBBM+2y0KkZlWRWx6hiPXz+OqW/PaOq33iIKNxGRVnTIafsSKkz/JV/UsZCtfrl+nUqO\n+/MRnH3H7+m/eV+KOxVRuu+23PLeXxk4NL0nogWHQtFvgQJSv+L9/GJ4gnun7MXRlxzG3r/djTNv\n+z33fP6PJnf0uOHE21k6fzlVZVVEq6NUV0SY+eHXPHHDs6ljmnH9hCv49XkH07VPF4o7FeEPpjel\nRiojvHjPa+t1DppLvSVFRFrZuNvHc98lDxMIBXDOUdSxiBsmXJExjNqKi83AVU8A/FjhQVggUxNm\n48pXVnBUr98TjyXS1vXcqDuP/PDvtOWTXv6M6469mcrVVWnrdjxge/7+0p/XqxZoem9JPecmItLK\nDj/7QPY5YQ9mvP8VxZ2KGDpiCL6GenW0EQtuhQW3avF+kolkqm0zg3iGTiQAW++6BYkMYVhQHGav\no3/Z4pqaQs2SIiJtoKRzMTsfNIytd90y68HWmjp268BGQ/qmLQ+EAux+ZOY54Io6FHLmbacQLgzh\n86WCsaA4zGbbD2LPY0a0ab1rqFlSRKSJlv60nE9fm0a4KMxOB25PYXFBi/e5cskqPnn5M56/awJf\nT/mWwpICDvrjPpx07dEEQ+n37nJhztTvuWDPq4lH40SqohSUFNCtd2du//j/6NClZJ2fG3/vRFYv\nK2fEqB3Z7dc7Ewi2rMGwqc2SCjcRkSZ44sZnefAvT+Lz+7Caq5G/Pncp2+65fk1/iUSCW0+/l4kP\nvU0sUr95L1wYYueDh3HlE+e3uO7WsnpZGa899DbzZy9kq12GsNuRwwmFU+FbXRnBLNWDs60p3ERE\nWslXk77hwl/9hUhl/YeeizoW8uSCe9frl/rDf32Kx294Nm2fawTDQe6fdSs9B/RYr5qzYcF3i7jp\nlLuY8X7q+b1f7DaUC8eeQa+BbVezht8SaUdc9USSSw8nuXgXkitOx8W+znVJUsezt4/PPJqHgymv\nTlvPfb7cYLBBqrPGD1+2zuj9bSFSFeHcEZcz/d0vScSTJOJJpr0zk3NGXF77/FsuqbekSI4lKx6F\nshuAmm7TkTdw0Q+h61NYcHBOa9vQ/TDzR/569M38+NX8DBNyphatawirya9O5ZlbX2LV4lVsN/IX\nBINBuvTsyN6/24PVy8rXeWyXdKxasqqF30Hbefd/qZFYksmfT0wykaSqvIoPnp3EnlnqFdkQhZtI\nDjkXg/J/UhtsqaXgqnDlt2Bd7sxVaRu8SFWE8/e4mrLlZTR09yYRizNsn20yrnvqn8/z4NVP1o4x\n+fWUb2vX3XHO2CbVUFVe3byis+in2Qsz1hepjLLg28U5qKi+FoWbmR0F/AXYEtjJOZfxBpmZfQ+U\nAQkg3pT2UpENQmIRdQe5/ZmD2OfZrkbqeH/cJGKRWMZgMzOCBUH+eNOJdOzWgaU/LeeZW15i+ntf\n0n9IXw7+4748cNUTLR6YeOzlj7HViC3YZJuBGdfP/OhrPnjuE8JFIfY6Zlf6D87e7NebbrcxhSUF\naQEXLgyxybaZ682mll65TQeOAO5pwrZ7OeeWtvB4It7i6wIumXmdP3u/qCTd0vnLiVZnvnc0ZKfN\nOPHqoxh/3+uMuehBIlVRzAyXdMz6ZA5vPf4B/kDLuzSUr6jg4pHX8Pj8MfW60DvnuPWMMUx86F2i\nVVF8fh+PX/8sZ9xyEgeduk+Lj9sUww8eRo+NurFgziJi0dQfaIFQgN6DelK637ZZqWFdWnT2nXNf\nOudmtVYxIhsa8xVD4aGkxgGsqxArPjMXJXnalNemctoOF3Fw8fGcvMW5vP3Uhw1uu+XwzWsHGq6r\nsKSAI/50ENefeDsfPDsp1SnEpe6RQeq+UywSq22ObKlVS8u4ctQN9TppfPHul7z+8LtEKiM450jE\nE0Srotx17n9ZmaX7dP6An1vfv479f/8rOnQtoWO3Dhw0eiQ3v3Nti2f3bg3ZuufmgIlmlgDucc6N\nydJxRfKedbwahw+qngUMLAwdLsIK9sp1aZ4y5bWpXH3YjbVNhfO+/ol/nHwn1RXV7HdS+rneetct\n2HLnwcz88Ovaz4QKgwwc2p+F3y1K60yRxoHP70sNX9WoNfvJPMzVZ69/wW1n3suF950BwNtPfUAk\nQ3ia38c9Fz7IF+9+yepl5Wy1y+aM/scJDPpF2zQTlnQu5pw7T+WcO09tk/23RKPPuZnZRKB3hlWX\nO+eeq9nmLeDCddxz6+ecm29mPYHXgLOdcxmnZzWz0cBogAEDBgz74Ycfmvq9iLRrLlkJbhX4emCm\nvl6t7fRhFzH7s+/Tlnfp1Yknfro34zQ1sWiMcbe9zCtj3yCZSLLDyK35fvo8Znwwq0mh1WvjHqxY\nuLKB5k1HKswcwbCjdI/VfDOtiKpKHxWr0//7m8/o3KMjvQf1onOvjnz0wpTaq8U1/EE/Pp/Veyi8\nsKSAu6bcmNX7cW0pqw9xNxZua237F6DcOXdTY9vqIW4RaS0Hlxyf8bkyf8DHuBUPNDqU1vczfuTs\n4ZdlnIi0ITuM3Iazbj+Fhd8v5u7zH2BuvefWHL36Rzn4pGUcfOIyKst8/Pf6Pkx8qmuj+w0VBEkk\nkhkHJ16bz+9j5G9356L/eqOZO29mBTCzYsDnnCureb0vcG1bH1dEpK6eG3Xnx1k/pS0vLCkkXBjK\n8In6Hv7r083u/Vi2opyNhvTj/isfZ+H3S9ZaayyaF+Y/f+vL/df3IRHP3CSZSbQ6RrgoNSix+Xz4\nfEYinsDn96UFeDKRZNYns5tVtxe0qEOJmR1uZvOAXYCXzGxCzfK+Zja+ZrNewHtmNhWYBLzknHul\nJccVEWmuk/56TIbZrEMc++cjmjRq/zdT5qQ1AzamuqyKF+5+lY9enEJ0HcHYnGBbwyUd/3zrGkbf\neAJn3noK90y9iWQivT4z6J9hVH+va9GVm3NuHDAuw/KfgANrXn8L5L5fqIhs0HY/cheqKqoZc9FD\nrF5aBqS7rLW3AAAZc0lEQVRGF3nx7lcZfvAwBmzRb52f7z+kHz/NWdSsY/749QLuOPs/DU2H1jJm\nbLrtxmy58+a1i3Y9YudUD846QRoqDHHsZUe0QQH5TWNLisgGY9fDd6Z8ZUW9ZQu+XcQZwy5utOv+\n8Vf8mnBR482Xa0smUuMutqZwUYj9T9mLUEH9ei4cewb7nrwXocIQ/oCf3oN6cvXTFzKkdNNWPX57\noC5ZIuJpyWSS8hUVFHUs5IGrHieZIWgiVVFuPX0M59z5BwpLCjPup+eA7nTt3YUF3zbv6m2Npj8W\n0Ph+9jlhD07/10lp60LhIOfc8QfOuPkkIlVRijoUZuwFuiHQlDci4lmvPfQ2Yy56iPKVFfgDfoo6\nFLBiUeaHnH1+H+HCEH994VK23SM1R1symcTMMDNOH3Yx3077Yb0DqrhjIRVlVeCgY7cSKldVEY83\n3ttxbR27d+B/i5s2NqUX5U1vSRGRtlJdGeGHmfPo0rNj2rxnH780hVtPG1N7/ykejRNbx1QsqRHt\nq7n6sBu5fsIV/Pu8+/ny428IhoP8ctSOzP1qXouuvNYEG0DZiopmd05Zo2xZGdFIrHaiUMlM4SYi\neWfF4lV8P30uvTfuSZ9NemXc5rk7X+a+Sx/B5/cRj8bZYufBXP30hXTs1gGAW04fk9Z1vynhFIvE\nuGCvv9T2boxWRXn3mY9b3qRYJ8vWN9gACjsUEgzpV3djdIZEJG8kk0nuPHcsL//nDULhILFonK13\n3YKrn76Qog4/3wub/OpU7r3kkXpDUM38YBbXHHkT/3zzGj58YTJL5y1frxoyjSYSj2aauaHt+PxG\nqDBM9doj7heF+fV5B2+w99GaQ70lRSRvvPDvCUz471vEqmNUrKokWhXli3e+5OY/1p945Ol/Pp82\ntmI8luCrj79h8Y9Leeqm5xs8RouCoZUzZZNtB6bts6A4zBY7DeZ/S/7DsX8+nILiMAVFYcKFIQ49\nYz9+e+WRrVuER+nKTUTyxv9ufikttGKRGO+P+5hIVYRwYeoh7GU/rcj4+UAowMrFq1ixaGWDx9hh\nn2344t0v1/lQdYMcFJSE6TOoFz98OS9jz8umCoQCHHPJ4ez2652Z+vZMXr53IuWrKtnz6F+y9/G7\nEgwFOeVvx/HbK49ixcKVdO7Zsfb7l8Yp3EQkb1Ssqsi43Dmorvg53Ibtty3zvlmQ1lyYTDoGDu1P\n6b7bsfC7xcTXGnsxVBhkl0OG8dnr09a7RsM44k8HcftZ/yEab0JApsZGThMMBQgVBAkEAwwbuQ3D\nRmae0TsUDtJrYI+M66RhapYUkbyx3a9+gc+X3vbXvW/X2o4iAEdfNIqSzsUE6nSsCBeFOfWG3xIu\nDHPMZYdnXH/y347l7vMfyDhMVZMZFHUswudvWhvlQaNHZn7422DYvhq8qa3oyk1EcmrlklWMv+91\nZn/2Hb0H9qSwQyHRqiixaByf30cwHORP94yuvVe2cskq5n41n7+/dBlvPvEBk1/5nG79u3LU+Yew\nQ83VT7c+Xbj7839wx9lj+fzN6bikI1QU5P4rH0+7mmuu6vIIQ3cZzPn3ns71v721waAMhgPc/O5f\nGVK6Gb0G9uTha5/C5/dhPgMH14y7mIIiNTO2FT3ELSJZN3/2Aj57fTqRymoe/uv/iFZHiVbHCBWG\nCIYD7Pbr4fwwYx4bDenLkRccwqCtB6T3pIzE2GHkNlz++HlpIZFIJLj6sBuZ+taMZk1R0xRmRkFJ\nAVXlqefWguEAsWi8tukxEPITCAb424uX1T4MDrBk3jKmvDqVguIwOx+0Q4Mjoci66SFuEck7zjnu\nueABXrj7VcyMWDRW78onWhUlVh1jyY9Lue2D6+p99tnbX67tSRmr6a7/6cRp3H7WfVw0tv5cZe+P\nm8TUt2Y2K9g23W5jNt12Y/pt3of/XvFYxvtka76HqrKq2vexSJxgQZATrzqK+XMW0nNAdw445Vd0\n79et3ud69O/G/qf8qsn1SMso3ESkSVyyAmJTwVcCgV+sV5f6yRM+56V7JzYwM3XNcZxjyqvTOGHT\nMxn9jxPZ7YidAXjmlvSelNHqGG8+9j5/uns0wdDPI3a89eQHVFfUf0asMSsXr66d0HPl4lWMu3V8\nI5/4WTwS57vpP3LZw+c065jSdtShREQalax8Ard4F9zKs3DLT8Qt2RsX/67Z+xl/3+tNvppa+N1i\nbjjhNj5+aQpA2mj+tbUlk2nd+teet60pVi9bXfv69H+dxM4H79Dkzzrn+GHGj80+prQdhZuIrJOL\nTYPV1wHV4MrBVUJyPm75STjXvOe81nXFlkmkKsp1x93Cm4+/zzZ7DM14tdhrQA+KOhbVW7bdnls1\naQLSurr368b82QsYf+9E3nj0PS57+Fz+cP3xTfuwwZCdNmvW8aRtKdxEZJ1c5aPA2s9zOXCrIfZZ\ns/a193G7UlDcvKuqqrJq/nXqv4lWxyjqWEggmLqb4vP7CBeF6/WkBJjy2lRuP+s+ks0M3kVzl3DS\n5udwx7ljufX0MRzTbzSJeJJQQeMDFIcLQxx98ahmHU/alsJNRNYtsQzIFBQGyczTxzRkj9+M4Be7\nD6WgpAAAfzD1K8gXWPevouqKCDPe/4oLx57BwafvS99Ne9Gpewd6bdyDbz79rnaiUecct/xxDJHK\naIMdQhqyZrSRWHWMqvJqqisi/PeKxxq/2jS4cOyZ9N20d/MOKG1K4SYi6xYeCWTotu5iENq+Wbvy\nB/z87YVLuerJ8xl11gEM2XEzAqFAk4axilRG+W7aXHCO5QtXsmLRKubOnMcDVz/BuSMuJxqJUba8\nnKXzlzWrppbymfHNlDlZPaY0TuEmIutkRYdBYCD1As4KoeRszNel2fvz+XzsuP/2nHXbKVSsrGzy\niPuBUICkS/LSvRPrdUqJVkX5ac5C3nr8feZ+Nb/Bh7TNLPUANakmTX/Q3+zaM3Gkrhglv+hRAJE8\ntGLRSp659SU+f3MGfQb15MgLDmHzYZvmpBazMHR7Elf5P6h+BXydsaLjsfDwFu136fxlVJU3vbt+\nLBLjmZtfytippLoiwqSXP2PWpNkZPxsIBjjt5t8x6oz9mTV5Dt99MZef5izk8f8b1+JgChUE2eM3\nv2zRPqT1KdxE8szS+cs4bfuLqFxdRSwaZ9Yns/ng+U+45MFzap/5yjazAqz4eChuYu/BRvww80fO\nGXF52nNrAP6gn4226Mey+cspX1FRL3wq6zw8Xe8zAT8FxWFWLM58D7CwYwGHnLYvAENKN+XT16by\n+PXrH2zmM3xmBEIBDj/7QIaU5uYPD2mYwk0kzzx4zVOUr6wkEU81r7mkI1IZ5dbTxzBiVCl+f+s0\np+XSHeeMpaqsirWzxXzG4O0Hce3zlzJ35o9ctv91qaGtGpFMJHj3fx/VjlyyNr/fzwmbnIlzjtL9\ntuO1h95ucDbsLr07sXppGYkM9wHNoFOPjhx6+n74gwF2ObSUQVsPaPwblqxTuInkmSmvTq0Ntrqq\nKyIs/mEpfTbplYOqWtcX736ZFmyQund16wfX4fP5mPbWDOIZzgOk7p+Fi0LEYwni0TjOQeXqzFd1\nZsaqpatrw2zC2DdINhBsAN36dmXTbTdm+ntf1bu317FbBw48dW+OuuDQejMUSH5SuInkmY7dSlg8\nd2na8mQiQXGnogyfaH8KisJUrKpMWx4uDNfeUxtcukmDV1fOOf5vwhVc/KtrMq73B3w4l2rijFXH\n6j0WsK5g8/l9bLvnVpx6w2/5+MVPeXfcx3ToXMT+p+zNJtsMbMZ3KLmm3pIieebI8w9NG+U+EAqw\nw8htPHPFcNCpIwkV1p/jLFQQZL+T9qwNtzceebfBzwdCARKxBMEGHrDu0qszJ117DFvs2LxRQwpL\nCjjy/EPw+/2MGLUjl9x/FmfccoqCrR1SuInkmV8dtyuHn3sgoYIgxZ2KCBeGGDp8cy558Oxcl9Zq\nfvfXYxi2zzaECoIUdSwiVBhi2722ZvQ/TgBS40U+9c8XGvy8Sya5/az7iEXS78dZzVBYx152+DoH\nT/b5DX/Al5opm9Rn7v7sH3Tv2zVt20Q8wXvjPuaW0+7hgaufYOH3i5v5HUu2aT43kTy1enkZ330x\nl+79utJvsz65LqdN/DRnIXO/nE//zfvQf/O+tcuryqs4vOtJGTt1rFFYUsCAof35btoP9UYRCReF\nuOmNv7DFToO56fd3MeG/b2b8/AVjz6B8eTk+n49dj9iJngN6ZNwuGolx8d7XMGfaD1SXVxMI+fH7\n/VzxxPkMP3jYen7nsr40n5tIO+fz+Zj61gzef3YSHbt14PBzDmTEoTvmuqxW1XfT3hmHrSooLqBT\n944sX7iywc9WlVczZMfN2GiLfrz9xAdA6n7lOXedyhY7DQbgsLMP4I1H3yMWqd+LskvvTux74h5N\nGlx5wtg3mP35d6khvYB4NEGcBNefcBtPL/5P7ViXkl/0X0UkD1WWVXHGsItZtmBF7VXJVx9/w5EX\nHMrv/vKbHFe3fhLxBJNe/oy5X85nwJb92OmA7fEH/Mz9aj4rFq1ks+0HUVwzur+ZMfqmE7l59N21\nobK2cGGIfpv15ohzD+Lcu06lqqyKzj071XvIe7PtBnHemD9y25n3YaSaO7v16cp1L13W5FkDXn/0\nvYw1OOeY9ckcthoxpPknQ9qcwk0kD42/dyLLF66s19xWXRHhyRuf5bCz9qdT9445rK75Vi5Zxbm/\nvIIVi1YSrYoRKgzSuUdHijoWMe/rnwgEA8SjcU64+iiOvvgwotVRYpE4m/xiIN/PnFdv5us1/AE/\nex+/G5Dqfbl2J5w19jlhD3Y/cjizPplDUcdCNt1242ZNtBoqzNxpxSVdk2YMkNxQuInkoUkvf0ak\nKv1qIRAKMOuTOex0QPqAxdFIjJfvS81FFi4Oc8gf92XXI3ZerxmzW9ud54xl0Q9LSNSM+1hVlqCq\nrDrVmcNBpGZKnYeufZq+m/bioWufZv7sBUSr6jcn+vxGIBiga58uXP7Yn5oc8uHCMNvsPnS9aj94\n9D58+eHXaZOslnQpZrPtB63XPqXtKdxE8lD3/l0xn6U955VMJOnSq1Pa9ol4ggv3uppvp82tHdLq\nyw+/5rM3p3POHX/ISs3r8t64SbXBVs9a/dkilRHuu+wRls5bnnGqmWAoyOibTuSQ0/bNWmjv9uvh\nfPbGdF69/03M58Pv9xEIBfjbC5flxR8OkpkeBRDJQ4eddQChcP0mL5/fR88BPTJeLbw3bhLfT/+x\n3liN1RURJox9g5/mLGzzehvVjF7Zi+cua3AOtUhVlPefnZTVUDEzzr3rVO6Z+k/OuOVkLn7gLB6b\nd4+efctzunITyUObD9uU8+49jdvOuBdc6spswJb9uObZSzL+Yp884fOMI+z7/D6mvfNl1ifS/Hj8\np7zw7wlUrKpkz6NHULr/9kwa/ynJxLrnbfMH/Y1OgROpSB9sORv6D+5D/8HefCTDi1oUbmb2D+AQ\nUnPQzwFOds6l9d01s/2BWwE/cJ9z7vqWHFdkQ7D3cbux+5HD+XbaXEo6F63zWbcuvTsTCPrT5jLz\n+Xx06p7dUU3GXv4o424bX3uP6ptPv6XvZr3p0rszlasqqSqvprCkgEDIT6QqRqw6inPUjjaSsfmy\nRrgoxK+O2y0r34e0by29cnsNuMw5FzezG4DLgEvqbmBmfuBOYB9gHvCJmT3vnJvZwmOLeF4wFGzS\ndCoHnPIrnrn5xbRwC4aDlO63bVuVl2bpT8v5380v1mtWjFRGWTBnEWfedgqhcJAfZs5j4ND+7Prr\n4Xw9eQ7P3PISS+YtY6cDtuf1R95h/jcNN6PGInEmvfwp2/1qawZs0S8b35K0Uy265+ace9U5t6YN\n4SOgf4bNdgJmO+e+dc5FgceBUS05rojU12eTXlz++HkUdyqiqGMhBSUF9BrYg3+8fhXBUPa6q09/\n98uMM1xXV0T45JXP6dyrMx+/9Ck3nnwnJw0+m++nz+XKJ8/n9g//zglXHcUWO29eO1t2JslEkknj\nP+Ps4Zex4LtFbfmtSDvXmvfcTgGeyLC8H/BjnffzgNzMuCjiYbscUsrTi//D15PnECoMNft5rtbQ\nsVuHjMf0+X0kE0muOvT62kcclsxbxt0XPEjF6iqOvij19+6xlx3OO09/2OC8bJB6eDpSGeWJG57j\nT3ePbptvRNq9Rq/czGyimU3P8DWqzjaXA3HgkZYWZGajzWyymU1esmRJS3cnskEJBAMM3WUIm203\nKCfd1LfdaysKigtY+9DBcIBFPyxJe3YvUhnh0b/9j3gs1QA0cMv+XPnE+eu8eoNUB5uZH85q1drF\nWxoNN+fcSOfc1hm+ngMws5OAg4HjXeZRmOcDG9V5379mWUPHG+OcK3XOlfbokXkgUxHJvqlvz+Bv\nx/yLi0Zew3N3vUKkKr3Xot/v58aJV9FzYA8KSwpqm0jPv/c0Fn2f+Y/VeDzBqqVlte93OaSUHUZu\nQzC87ubUfuq5KOvQ0t6S+wMXA3s459JnHkz5BBhsZoNIhdoxwHEtOa6IZNdT/3yeB65+8ucHxD/6\nmvH3TuS2D64jXFh/2KuBW/bnoTl38s2n31JdEWHIjpsSLgzz7O2vsHpZWdq+fX4fHbuV1Ft29dMX\ncNuZ9/H2kx+mDXq8RlGHwlb67sSLWvoQ9x1AB+A1M/vczO4GMLO+ZjYeoKbDyVnABOBL4Enn3IwW\nHldEsqRsRTn3X/l4vQfEI5VR5n+zkIkPvZPxM2bG5sM2ZZvdh9aG30nXHk14rQlKw0VhjrrgkLRO\nL4UlhVzywNk8u/IBdj9ql4xNrG898QEVqxv6m1o2dC3tLbmZc24j59x2NV+n1Sz/yTl3YJ3txjvn\nNnfObeqcu66lRYtI9sz8YBaBDD0uI5UR3hs3qcn72WHkNvz50T/RZ9NeAHToWsIJVx3JCVcd1eBn\nQuEg330xl0x3PAIhPwvmqMekZKYRSkRknUq6lOBc+sgiZkbnns2bnWDEqB0ZMWpHEvEE/kD6IwOZ\nbDSkL/NmzU8bwSsWjdNjo27NOr5sODS2pIis05bDB9OhS0la02CoMMQhp++3XvtsarBB6vGA0FrN\nmaHCELv/eni7m/pHskfhJiLr5PP5uOHVK+k5sHttD8hwYYjR/ziBocM3b/PjDxzan6MuOJQuvTrh\nD/gJFQTZ7+S9OP++09v82NJ+qVlSRBrVf/O+PDTnTmZ9MpuKVZVssfPg2lmz29I7T3/IjSfdiT/g\nwzlHsCDIlU+cx04H7NDmx5b2zTI/mpYfSktL3eTJk3NdhojkwOK5Szh5yz8RXevB73BRmMd+vJsO\nXUoa+KR4mZlNcc6VNradmiVFJC+9+fj7uAxT5JjBe898nIOKpD1RuIlIXqpYXUkslj63WyKeoKos\nfe46kboUbiKSl3Y6YAcKisJpy83no3T/7XJQkbQnCjcRyUtbjRjCiFE7UlD8c8AVFIc56NSRmstN\nGqXekiKSl8yMSx86h49enMLrj75LIOBn39/tyfZ7/yLXpUk7oHATkbxlZuxySCm7HNJo5ziRetQs\nKSIinqNwExERz1G4iYiI5yjcRETEcxRuIiLiOQo3ERHxHIWbiIh4jsJNREQ8R+EmIiKeo3ATERHP\nUbiJiIjn5PVM3GZWBszKdR3tWHdgaa6LaMd0/lpG56/ldA7TDXTO9Whso3wfOHlWU6YTl8zMbLLO\n3/rT+WsZnb+W0zlcf2qWFBERz1G4iYiI5+R7uI3JdQHtnM5fy+j8tYzOX8vpHK6nvO5QIiIisj7y\n/cpNRESk2fIm3Mysq5m9Zmbf1PzbpYHtvjezL8zsczObnO06842Z7W9ms8xstpldmmG9mdltNeun\nmdkOuagznzXhHO5pZqtqfuY+N7OrclFnPjKzsWa22MymN7BeP3+NaMI51M/fesibcAMuBV53zg0G\nXq9535C9nHPbbehdZM3MD9wJHAAMBY41s6FrbXYAMLjmazTw76wWmeeaeA4B3q35mdvOOXdtVovM\nb/cD+69jvX7+Gnc/6z6HoJ+/ZsuncBsFPFDz+gHgsBzW0l7sBMx2zn3rnIsCj5M6j3WNAh50KR8B\nnc2sT7YLzWNNOYfSAOfcO8DydWyin79GNOEcynrIp3Dr5ZxbUPN6IdCrge0cMNHMppjZ6OyUlrf6\nAT/WeT+vZllzt9mQNfX8jKhpVnvZzLbKTmmeoJ+/1qGfv2bK6gglZjYR6J1h1eV13zjnnJk11I1z\nV+fcfDPrCbxmZl/V/OUj0lY+BQY458rN7EDgWVLNbCLZoJ+/9ZDVKzfn3Ejn3NYZvp4DFq1prqj5\nd3ED+5hf8+9iYBypZqUN1Xxgozrv+9csa+42G7JGz49zbrVzrrzm9XggaGbds1diu6afvxbSz9/6\nyadmyeeB39W8/h3w3NobmFmxmXVY8xrYF8jYw2gD8Qkw2MwGmVkIOIbUeazreeDEml5rw4FVdZp/\npQnn0Mx6m5nVvN6J1P83y7Jeafukn78W0s/f+smngZOvB540s98DPwC/ATCzvsB9zrkDSd2HG1fz\n3zkAPOqceyVH9eaccy5uZmcBEwA/MNY5N8PMTqtZfzcwHjgQmA1UAifnqt581MRzeCRwupnFgSrg\nGKfRDwAws8eAPYHuZjYPuBoIgn7+mqoJ51A/f+tBI5SIiIjn5FOzpIiISKtQuImIiOco3ERExHMU\nbiIi4jkKNxER8RyFm4iIeI7CTUREPEfhJiIinvP/stqcET6Yf/kAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fb079740fd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(7, 6))\n", "plt.scatter(out_encod[:,0], out_encod[:,1], c=list_labels)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The RMSE over the 10 correct segmentations was compared with RMSE over the 10 erroneous segmentations. As expected, RMSE for correct segmentations was greater than RMSE for erroneous segmentations along all the resolutions. In general, this is true, but optimal resolution guarantee the maximum difference between both of RMSE results: correct and erroneous.\n", "\n", "So, to find optimal resolution, difference between correct and erroneous RMSE was calculated over all resolutions." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The greatest difference resulted at resolution 0.1. In this resolution, threshold for separate erroneous and correct segmentations is established as 30% of the distance between the mean RMSE of the correct masks and the mean RMSE of the erroneous masks.\n", "\n", "# Method testing\n", "\n", "Finally, method test was performed in the 152 subject dataset: Watershed dataset with 112 segmentations, ROQS dataset with 152 segmentations and pixel-based dataset with 152 segmentations." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Discussion and conclusion\n", "\n", "In this work, a method for segmentation error detection in large datasets was proposed based-on shape signature. RMSE was used for comparison between signatures. Signature can be extracted en various resolutions but optimal resolution (ls=0.1) was chosen in order to get maximum separation between correct RMSE and erroneous RMSE. In this optimal resolution, threshold was fixed at 27.95 allowing separation of the two segmentation classes.The method achieved 95% of accuracy on the test Watershed segmentations, and 95% and 94% on new datasets: ROQS and pixel-based, respectively.\n", "\n", "40 Watershed segmentations on dataset were used to generation and configuration mean correct signature because of the greater number of erroneous segmentations and major variability on the error shape. Because the signature holds the CC shape, the method can be extended to new datasets segmented with any method. Accuracy and generalization can be improve varying the segmentations used to generate and adjust the mean correct signature." ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
CrowdTruth/CrowdTruth-core
tutorial/notebooks/Multiple Choice Task - Person Type Annotation in Video.ipynb
1
112567
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# CrowdTruth for Multiple Choice Tasks: Person Type Annotation in Video\n", "\n", "In this tutorial, we will apply CrowdTruth metrics to a **multiple choice** crowdsourcing task for **Person Type Annotation** from **video fragments**. The workers were asked to watch a video of about 3-5 seconds and then pick from a multiple choice list which are the types of person that appear in the video fragment. The task was executed on [FigureEight](https://www.figure-eight.com/). For more crowdsourcing annotation task examples, click [here](https://raw.githubusercontent.com/CrowdTruth-core/tutorial/getting_started.md).\n", "\n", "To replicate this experiment, the code used to design and implement this crowdsourcing annotation template is available here: [template](https://raw.githubusercontent.com/CrowdTruth/CrowdTruth-core/master/tutorial/templates/People-Video-Multiple-Choice/template.html), [css](https://raw.githubusercontent.com/CrowdTruth/CrowdTruth-core/master/tutorial/templates/People-Video-Multiple-Choice/template.css), [javascript](https://raw.githubusercontent.com/CrowdTruth/CrowdTruth-core/master/tutorial/templates/People-Video-Multiple-Choice/template.js). \n", "\n", "This is a screenshot of the task as it appeared to workers:\n", "![Task Template](../img/person-video-multiple-choice.png)\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A sample dataset for this task is available in [this file](https://raw.githubusercontent.com/CrowdTruth/CrowdTruth-core/master/tutorial/data/person-video-multiple-choice.csv), containing raw output from the crowd on FigureEight. Download the file and place it in a folder named `data` that has the same root as this notebook. Now you can check your data:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>_unit_id</th>\n", " <th>_created_at</th>\n", " <th>_id</th>\n", " <th>_started_at</th>\n", " <th>_tainted</th>\n", " <th>_channel</th>\n", " <th>_trust</th>\n", " <th>_worker_id</th>\n", " <th>_country</th>\n", " <th>_region</th>\n", " <th>...</th>\n", " <th>description</th>\n", " <th>descriptiontags</th>\n", " <th>hiddeninput_gold</th>\n", " <th>imagelocation</th>\n", " <th>imagetags</th>\n", " <th>keyframeid_gold</th>\n", " <th>selected_answer_gold</th>\n", " <th>subtitles</th>\n", " <th>subtitletags</th>\n", " <th>videolocation</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1856509899</td>\n", " <td>8/20/2018 18:40:05</td>\n", " <td>3990340198</td>\n", " <td>8/20/2018 18:39:51</td>\n", " <td>False</td>\n", " <td>clixsense</td>\n", " <td>1.0</td>\n", " <td>40712302</td>\n", " <td>GBR</td>\n", " <td>J8</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " <td>industry__c0_###_grinder__c1_###_production__c...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>Italian astronaut samantha cristoforetti uploa...</td>\n", " <td>Italian__0_###_astronaut__1_###_samantha__2_##...</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1856509899</td>\n", " <td>8/20/2018 19:07:38</td>\n", " <td>3990381441</td>\n", " <td>8/20/2018 19:07:29</td>\n", " <td>False</td>\n", " <td>clixsense</td>\n", " <td>1.0</td>\n", " <td>40925305</td>\n", " <td>CAN</td>\n", " <td>QC</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " <td>industry__c0_###_grinder__c1_###_production__c...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>Italian astronaut samantha cristoforetti uploa...</td>\n", " <td>Italian__0_###_astronaut__1_###_samantha__2_##...</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1856509899</td>\n", " <td>8/20/2018 19:19:02</td>\n", " <td>3990407780</td>\n", " <td>8/20/2018 19:18:52</td>\n", " <td>False</td>\n", " <td>imerit_india</td>\n", " <td>1.0</td>\n", " <td>44399792</td>\n", " <td>USA</td>\n", " <td>LA</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " <td>industry__c0_###_grinder__c1_###_production__c...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>Italian astronaut samantha cristoforetti uploa...</td>\n", " <td>Italian__0_###_astronaut__1_###_samantha__2_##...</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1856509899</td>\n", " <td>8/20/2018 19:20:32</td>\n", " <td>3990410322</td>\n", " <td>8/20/2018 19:20:14</td>\n", " <td>False</td>\n", " <td>elite</td>\n", " <td>1.0</td>\n", " <td>44185847</td>\n", " <td>USA</td>\n", " <td>FL</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " <td>industry__c0_###_grinder__c1_###_production__c...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>Italian astronaut samantha cristoforetti uploa...</td>\n", " <td>Italian__0_###_astronaut__1_###_samantha__2_##...</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1856509899</td>\n", " <td>8/20/2018 19:27:03</td>\n", " <td>3990420566</td>\n", " <td>8/20/2018 19:26:19</td>\n", " <td>False</td>\n", " <td>imerit_india</td>\n", " <td>1.0</td>\n", " <td>42395899</td>\n", " <td>USA</td>\n", " <td>LA</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " <td>industry__c0_###_grinder__c1_###_production__c...</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>Italian astronaut samantha cristoforetti uploa...</td>\n", " <td>Italian__0_###_astronaut__1_###_samantha__2_##...</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows × 26 columns</p>\n", "</div>" ], "text/plain": [ " _unit_id _created_at _id _started_at _tainted \\\n", "0 1856509899 8/20/2018 18:40:05 3990340198 8/20/2018 18:39:51 False \n", "1 1856509899 8/20/2018 19:07:38 3990381441 8/20/2018 19:07:29 False \n", "2 1856509899 8/20/2018 19:19:02 3990407780 8/20/2018 19:18:52 False \n", "3 1856509899 8/20/2018 19:20:32 3990410322 8/20/2018 19:20:14 False \n", "4 1856509899 8/20/2018 19:27:03 3990420566 8/20/2018 19:26:19 False \n", "\n", " _channel _trust _worker_id _country _region ... description \\\n", "0 clixsense 1.0 40712302 GBR J8 ... NaN \n", "1 clixsense 1.0 40925305 CAN QC ... NaN \n", "2 imerit_india 1.0 44399792 USA LA ... NaN \n", "3 elite 1.0 44185847 USA FL ... NaN \n", "4 imerit_india 1.0 42395899 USA LA ... NaN \n", "\n", " descriptiontags hiddeninput_gold \\\n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN \n", "\n", " imagelocation \\\n", "0 https://joran.org/ct/entity.admin.unit.2649/85... \n", "1 https://joran.org/ct/entity.admin.unit.2649/85... \n", "2 https://joran.org/ct/entity.admin.unit.2649/85... \n", "3 https://joran.org/ct/entity.admin.unit.2649/85... \n", "4 https://joran.org/ct/entity.admin.unit.2649/85... \n", "\n", " imagetags keyframeid_gold \\\n", "0 industry__c0_###_grinder__c1_###_production__c... NaN \n", "1 industry__c0_###_grinder__c1_###_production__c... NaN \n", "2 industry__c0_###_grinder__c1_###_production__c... NaN \n", "3 industry__c0_###_grinder__c1_###_production__c... NaN \n", "4 industry__c0_###_grinder__c1_###_production__c... NaN \n", "\n", " selected_answer_gold subtitles \\\n", "0 NaN Italian astronaut samantha cristoforetti uploa... \n", "1 NaN Italian astronaut samantha cristoforetti uploa... \n", "2 NaN Italian astronaut samantha cristoforetti uploa... \n", "3 NaN Italian astronaut samantha cristoforetti uploa... \n", "4 NaN Italian astronaut samantha cristoforetti uploa... \n", "\n", " subtitletags \\\n", "0 Italian__0_###_astronaut__1_###_samantha__2_##... \n", "1 Italian__0_###_astronaut__1_###_samantha__2_##... \n", "2 Italian__0_###_astronaut__1_###_samantha__2_##... \n", "3 Italian__0_###_astronaut__1_###_samantha__2_##... \n", "4 Italian__0_###_astronaut__1_###_samantha__2_##... \n", "\n", " videolocation \n", "0 https://joran.org/ct/entity.admin.unit.2649/85... \n", "1 https://joran.org/ct/entity.admin.unit.2649/85... \n", "2 https://joran.org/ct/entity.admin.unit.2649/85... \n", "3 https://joran.org/ct/entity.admin.unit.2649/85... \n", "4 https://joran.org/ct/entity.admin.unit.2649/85... \n", "\n", "[5 rows x 26 columns]" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "test_data = pd.read_csv(\"../data/person-video-multiple-choice.csv\")\n", "test_data.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Declaring a pre-processing configuration\n", "\n", "The pre-processing configuration defines how to interpret the raw crowdsourcing input. To do this, we need to define a configuration class. First, we import the default CrowdTruth configuration class:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import crowdtruth\n", "from crowdtruth.configuration import DefaultConfig" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our test class inherits the default configuration `DefaultConfig`, while also declaring some additional attributes that are specific to the Person Type Annotation in Video task:\n", "\n", "* **`inputColumns`:** list of input columns from the .csv file with the input data\n", "* **`outputColumns`:** list of output columns from the .csv file with the answers from the workers\n", "* **`annotation_separator`:** string that separates between the crowd annotations in `outputColumns`\n", "* **`open_ended_task`:** boolean variable defining whether the task is open-ended (i.e. the possible crowd annotations are not known beforehand, like in the case of free text input); in the task that we are processing, workers pick the answers from a pre-defined list, therefore the task is not open ended, and this variable is set to `False`\n", "* **`annotation_vector`:** list of possible crowd answers, mandatory to declare when `open_ended_task` is `False`; for our task, this is the list of relations\n", "* **`processJudgments`:** method that defines processing of the raw crowd data; for this task, we process the crowd answers to correspond to the values in `annotation_vector`\n", "\n", "The complete configuration class is declared below:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "class TestConfig(DefaultConfig):\n", " inputColumns = [\"videolocation\", \"subtitles\", \"imagetags\", \"subtitletags\"]\n", " outputColumns = [\"selected_answer\"]\n", " \n", " # processing of a closed task\n", " open_ended_task = False\n", " annotation_vector = [\"archeologist\", \"architect\", \"artist\", \"astronaut\", \"athlete\", \"businessperson\",\"celebrity\", \n", " \"chef\", \"criminal\", \"engineer\", \"farmer\", \"fictionalcharacter\", \"journalist\", \"judge\", \n", " \"lawyer\", \"militaryperson\", \"model\", \"monarch\", \"philosopher\", \"politician\", \"presenter\", \n", " \"producer\", \"psychologist\", \"scientist\", \"sportsmanager\", \"writer\", \"none\", \"other\"]\n", " \n", " def processJudgments(self, judgments):\n", " # pre-process output to match the values in annotation_vector\n", " for col in self.outputColumns:\n", " # transform to lowercase\n", " judgments[col] = judgments[col].apply(lambda x: str(x).lower())\n", " # remove square brackets from annotations\n", " judgments[col] = judgments[col].apply(lambda x: str(x).replace('[',''))\n", " judgments[col] = judgments[col].apply(lambda x: str(x).replace(']',''))\n", " # remove the quotes around the annotations\n", " judgments[col] = judgments[col].apply(lambda x: str(x).replace('\"',''))\n", " return judgments" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Pre-processing the input data\n", "\n", "After declaring the configuration of our input file, we are ready to pre-process the crowd data:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>output.selected_answer</th>\n", " <th>output.selected_answer.count</th>\n", " <th>output.selected_answer.unique</th>\n", " <th>unit</th>\n", " <th>worker</th>\n", " <th>started</th>\n", " <th>submitted</th>\n", " <th>duration</th>\n", " <th>job</th>\n", " </tr>\n", " <tr>\n", " <th>judgment</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>3990340198</th>\n", " <td>{'astronaut': 1, 'archeologist': 0, 'architect...</td>\n", " <td>1</td>\n", " <td>28</td>\n", " <td>1856509899</td>\n", " <td>40712302</td>\n", " <td>2018-08-20 18:39:51</td>\n", " <td>2018-08-20 18:40:05</td>\n", " <td>14</td>\n", " <td>../data/person-video-multiple-choice</td>\n", " </tr>\n", " <tr>\n", " <th>3990381441</th>\n", " <td>{'astronaut': 1, 'scientist': 1, 'archeologist...</td>\n", " <td>2</td>\n", " <td>28</td>\n", " <td>1856509899</td>\n", " <td>40925305</td>\n", " <td>2018-08-20 19:07:29</td>\n", " <td>2018-08-20 19:07:38</td>\n", " <td>9</td>\n", " <td>../data/person-video-multiple-choice</td>\n", " </tr>\n", " <tr>\n", " <th>3990407780</th>\n", " <td>{'astronaut': 1, 'archeologist': 0, 'architect...</td>\n", " <td>1</td>\n", " <td>28</td>\n", " <td>1856509899</td>\n", " <td>44399792</td>\n", " <td>2018-08-20 19:18:52</td>\n", " <td>2018-08-20 19:19:02</td>\n", " <td>10</td>\n", " <td>../data/person-video-multiple-choice</td>\n", " </tr>\n", " <tr>\n", " <th>3990410322</th>\n", " <td>{'astronaut': 1, 'archeologist': 0, 'architect...</td>\n", " <td>1</td>\n", " <td>28</td>\n", " <td>1856509899</td>\n", " <td>44185847</td>\n", " <td>2018-08-20 19:20:14</td>\n", " <td>2018-08-20 19:20:32</td>\n", " <td>18</td>\n", " <td>../data/person-video-multiple-choice</td>\n", " </tr>\n", " <tr>\n", " <th>3990420566</th>\n", " <td>{'astronaut': 1, 'archeologist': 0, 'architect...</td>\n", " <td>1</td>\n", " <td>28</td>\n", " <td>1856509899</td>\n", " <td>42395899</td>\n", " <td>2018-08-20 19:26:19</td>\n", " <td>2018-08-20 19:27:03</td>\n", " <td>44</td>\n", " <td>../data/person-video-multiple-choice</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " output.selected_answer \\\n", "judgment \n", "3990340198 {'astronaut': 1, 'archeologist': 0, 'architect... \n", "3990381441 {'astronaut': 1, 'scientist': 1, 'archeologist... \n", "3990407780 {'astronaut': 1, 'archeologist': 0, 'architect... \n", "3990410322 {'astronaut': 1, 'archeologist': 0, 'architect... \n", "3990420566 {'astronaut': 1, 'archeologist': 0, 'architect... \n", "\n", " output.selected_answer.count output.selected_answer.unique \\\n", "judgment \n", "3990340198 1 28 \n", "3990381441 2 28 \n", "3990407780 1 28 \n", "3990410322 1 28 \n", "3990420566 1 28 \n", "\n", " unit worker started submitted \\\n", "judgment \n", "3990340198 1856509899 40712302 2018-08-20 18:39:51 2018-08-20 18:40:05 \n", "3990381441 1856509899 40925305 2018-08-20 19:07:29 2018-08-20 19:07:38 \n", "3990407780 1856509899 44399792 2018-08-20 19:18:52 2018-08-20 19:19:02 \n", "3990410322 1856509899 44185847 2018-08-20 19:20:14 2018-08-20 19:20:32 \n", "3990420566 1856509899 42395899 2018-08-20 19:26:19 2018-08-20 19:27:03 \n", "\n", " duration job \n", "judgment \n", "3990340198 14 ../data/person-video-multiple-choice \n", "3990381441 9 ../data/person-video-multiple-choice \n", "3990407780 10 ../data/person-video-multiple-choice \n", "3990410322 18 ../data/person-video-multiple-choice \n", "3990420566 44 ../data/person-video-multiple-choice " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data, config = crowdtruth.load(\n", " file = \"../data/person-video-multiple-choice.csv\",\n", " config = TestConfig()\n", ")\n", "\n", "data['judgments'].head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Computing the CrowdTruth metrics\n", "\n", "The pre-processed data can then be used to calculate the CrowdTruth metrics:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "results = crowdtruth.run(data, config)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Video fragment quality\n", "\n", "The **video fragments metrics** are stored in `results[\"units\"]`. The uqs column in `results[\"units\"]` contains the video fragment quality scores, capturing the overall workers agreement over each video fragment." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>duration</th>\n", " <th>input.imagetags</th>\n", " <th>input.subtitles</th>\n", " <th>input.subtitletags</th>\n", " <th>input.videolocation</th>\n", " <th>job</th>\n", " <th>output.selected_answer</th>\n", " <th>output.selected_answer.annotations</th>\n", " <th>output.selected_answer.unique_annotations</th>\n", " <th>worker</th>\n", " <th>uqs</th>\n", " <th>unit_annotation_score</th>\n", " <th>uqs_initial</th>\n", " <th>unit_annotation_score_initial</th>\n", " </tr>\n", " <tr>\n", " <th>unit</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1856509899</th>\n", " <td>24.95</td>\n", " <td>industry__c0_###_grinder__c1_###_production__c...</td>\n", " <td>Italian astronaut samantha cristoforetti uploa...</td>\n", " <td>Italian__0_###_astronaut__1_###_samantha__2_##...</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " <td>../data/person-video-multiple-choice</td>\n", " <td>{'astronaut': 20, 'scientist': 3, 'other': 1, ...</td>\n", " <td>25</td>\n", " <td>4</td>\n", " <td>20</td>\n", " <td>0.919461</td>\n", " <td>{'astronaut': 1.0, 'scientist': 0.169109758893...</td>\n", " <td>0.865963</td>\n", " <td>{'astronaut': 1.0, 'scientist': 0.15, 'other':...</td>\n", " </tr>\n", " <tr>\n", " <th>1856509900</th>\n", " <td>30.00</td>\n", " <td>man__c0_###_soccer__c1_###_portrait__c2_###_pe...</td>\n", " <td>this phenomena is it's massive the</td>\n", " <td>phenomena__0_###_massive__1_###_</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " <td>../data/person-video-multiple-choice</td>\n", " <td>{'celebrity': 2, 'journalist': 2, 'presenter':...</td>\n", " <td>29</td>\n", " <td>11</td>\n", " <td>20</td>\n", " <td>0.290902</td>\n", " <td>{'celebrity': 0.007285683902434039, 'journalis...</td>\n", " <td>0.239176</td>\n", " <td>{'celebrity': 0.1, 'journalist': 0.1, 'present...</td>\n", " </tr>\n", " <tr>\n", " <th>1856509901</th>\n", " <td>32.15</td>\n", " <td>people__c0_###_man__c1_###_adult__c2_###_portr...</td>\n", " <td>around could the lights be coming from</td>\n", " <td>lights__0_###_coming__1_###_</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " <td>../data/person-video-multiple-choice</td>\n", " <td>{'artist': 1, 'celebrity': 1, 'producer': 1, '...</td>\n", " <td>25</td>\n", " <td>9</td>\n", " <td>20</td>\n", " <td>0.295147</td>\n", " <td>{'artist': 0.006139167492493724, 'celebrity': ...</td>\n", " <td>0.216495</td>\n", " <td>{'artist': 0.05, 'celebrity': 0.05, 'producer'...</td>\n", " </tr>\n", " <tr>\n", " <th>1856509902</th>\n", " <td>46.20</td>\n", " <td>water__c0_###_no person__c1_###_ocean__c2_###_...</td>\n", " <td>when investigators map the coordinates onto lo...</td>\n", " <td>investigators__0_###_map__1_###_coordinates__2...</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " <td>../data/person-video-multiple-choice</td>\n", " <td>{'scientist': 5, 'none': 11, 'presenter': 2, '...</td>\n", " <td>24</td>\n", " <td>8</td>\n", " <td>20</td>\n", " <td>0.552869</td>\n", " <td>{'scientist': 0.15804046047341153, 'none': 0.7...</td>\n", " <td>0.334078</td>\n", " <td>{'scientist': 0.25, 'none': 0.55, 'presenter':...</td>\n", " </tr>\n", " <tr>\n", " <th>1856509903</th>\n", " <td>35.85</td>\n", " <td>sky__c0_###_no person__c1_###_power__c2_###_el...</td>\n", " <td>the bright lights are part of a</td>\n", " <td>bright lights__0_###_</td>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " <td>../data/person-video-multiple-choice</td>\n", " <td>{'none': 15, 'other': 2, 'fictionalcharacter':...</td>\n", " <td>21</td>\n", " <td>6</td>\n", " <td>20</td>\n", " <td>0.963842</td>\n", " <td>{'none': 0.9830831242894289, 'other': 0.008259...</td>\n", " <td>0.557895</td>\n", " <td>{'none': 0.75, 'other': 0.1, 'fictionalcharact...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " duration input.imagetags \\\n", "unit \n", "1856509899 24.95 industry__c0_###_grinder__c1_###_production__c... \n", "1856509900 30.00 man__c0_###_soccer__c1_###_portrait__c2_###_pe... \n", "1856509901 32.15 people__c0_###_man__c1_###_adult__c2_###_portr... \n", "1856509902 46.20 water__c0_###_no person__c1_###_ocean__c2_###_... \n", "1856509903 35.85 sky__c0_###_no person__c1_###_power__c2_###_el... \n", "\n", " input.subtitles \\\n", "unit \n", "1856509899 Italian astronaut samantha cristoforetti uploa... \n", "1856509900 this phenomena is it's massive the \n", "1856509901 around could the lights be coming from \n", "1856509902 when investigators map the coordinates onto lo... \n", "1856509903 the bright lights are part of a \n", "\n", " input.subtitletags \\\n", "unit \n", "1856509899 Italian__0_###_astronaut__1_###_samantha__2_##... \n", "1856509900 phenomena__0_###_massive__1_###_ \n", "1856509901 lights__0_###_coming__1_###_ \n", "1856509902 investigators__0_###_map__1_###_coordinates__2... \n", "1856509903 bright lights__0_###_ \n", "\n", " input.videolocation \\\n", "unit \n", "1856509899 https://joran.org/ct/entity.admin.unit.2649/85... \n", "1856509900 https://joran.org/ct/entity.admin.unit.2649/85... \n", "1856509901 https://joran.org/ct/entity.admin.unit.2649/85... \n", "1856509902 https://joran.org/ct/entity.admin.unit.2649/85... \n", "1856509903 https://joran.org/ct/entity.admin.unit.2649/85... \n", "\n", " job \\\n", "unit \n", "1856509899 ../data/person-video-multiple-choice \n", "1856509900 ../data/person-video-multiple-choice \n", "1856509901 ../data/person-video-multiple-choice \n", "1856509902 ../data/person-video-multiple-choice \n", "1856509903 ../data/person-video-multiple-choice \n", "\n", " output.selected_answer \\\n", "unit \n", "1856509899 {'astronaut': 20, 'scientist': 3, 'other': 1, ... \n", "1856509900 {'celebrity': 2, 'journalist': 2, 'presenter':... \n", "1856509901 {'artist': 1, 'celebrity': 1, 'producer': 1, '... \n", "1856509902 {'scientist': 5, 'none': 11, 'presenter': 2, '... \n", "1856509903 {'none': 15, 'other': 2, 'fictionalcharacter':... \n", "\n", " output.selected_answer.annotations \\\n", "unit \n", "1856509899 25 \n", "1856509900 29 \n", "1856509901 25 \n", "1856509902 24 \n", "1856509903 21 \n", "\n", " output.selected_answer.unique_annotations worker uqs \\\n", "unit \n", "1856509899 4 20 0.919461 \n", "1856509900 11 20 0.290902 \n", "1856509901 9 20 0.295147 \n", "1856509902 8 20 0.552869 \n", "1856509903 6 20 0.963842 \n", "\n", " unit_annotation_score uqs_initial \\\n", "unit \n", "1856509899 {'astronaut': 1.0, 'scientist': 0.169109758893... 0.865963 \n", "1856509900 {'celebrity': 0.007285683902434039, 'journalis... 0.239176 \n", "1856509901 {'artist': 0.006139167492493724, 'celebrity': ... 0.216495 \n", "1856509902 {'scientist': 0.15804046047341153, 'none': 0.7... 0.334078 \n", "1856509903 {'none': 0.9830831242894289, 'other': 0.008259... 0.557895 \n", "\n", " unit_annotation_score_initial \n", "unit \n", "1856509899 {'astronaut': 1.0, 'scientist': 0.15, 'other':... \n", "1856509900 {'celebrity': 0.1, 'journalist': 0.1, 'present... \n", "1856509901 {'artist': 0.05, 'celebrity': 0.05, 'producer'... \n", "1856509902 {'scientist': 0.25, 'none': 0.55, 'presenter':... \n", "1856509903 {'none': 0.75, 'other': 0.1, 'fictionalcharact... " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results[\"units\"].head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Distribution of video fragment quality scores\n", "\n", "The histogram below shows **video fragment quality scores** are nicely distributed, with both low and high quality video fragments." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Video Fragments')" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAF0FJREFUeJzt3Xm0ZWV95vHvw2CQSSRV7cLhWogMQRQhZSKaVkG0DSgmThFFATHV7WoVxzQss9So6UZxSOwY6VIRg4gRIQRnWQjiAEiBRVFAUMOgOAEqgyIy/fqPve/ycLnD5t57zrlV+/tZ66y79z77nPd3d906z3n38O5UFZKk/tpk3AVIksbLIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo5g0CSem6zcRfQxbJly2rFihXjLkOSNigXXXTRjVW1fK71NoggWLFiBWvWrBl3GZK0QUlybZf13DUkST1nEEhSzxkEktRzBoEk9ZxBIEk9N7QgSHJ8kuuTrB9YdmyS/0iyLsm/JdluWO1LkroZZo/gBOBZU5adCexRVY8DvgccPcT2JUkdDC0Iqupc4JdTln21qu5qZ88HHj6s9iVJ3YzzGMErgC+NsX1JEmO6sjjJW4C7gJNmWWcVsApgYmJiRJVJ0n2tOOoLY2v7mmMOHHobI+8RJDkMeDbw0qqqmdarqtVVtbKqVi5fPudQGZKkeRppjyDJs4C/AZ5aVbeNsm1J0vSGefroycB5wK5JrktyBPBPwDbAmUnWJjluWO1LkroZWo+gqg6eZvHHhtWeJGl+vLJYknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo5g0CSes4gkKSeMwgkqecMAknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo5g0CSes4gkKSeMwgkqecMAknqOYNAknrOIJCknhtaECQ5Psn1SdYPLNs+yZlJvt/+fPCw2pckdTPMHsEJwLOmLDsKOKuqdgbOauclSWM0tCCoqnOBX05Z/FzgE+30J4C/GFb7kqRuRn2M4CFV9dN2+mfAQ2ZaMcmqJGuSrLnhhhtGU50k9dDYDhZXVQE1y/Orq2plVa1cvnz5CCuTpH4ZdRD8PMkOAO3P60fcviRpilEHwRnAoe30ocC/j7h9SdIUwzx99GTgPGDXJNclOQI4BnhGku8D+7fzkqQx2mxYb1xVB8/w1NOH1aYk6f7zymJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo5g0CSes4gkKSeMwgkqecMAknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeq5OYMgyU5J/qCdflqS1ybZbvilSZJGoUuP4FTg7iSPBlYDjwA+NdSqJEkj0yUI7qmqu4C/BP5vVb0Z2GG4ZUmSRqVLENyZ5GDgUODz7bLNh1eSJGmUugTB4cA+wN9X1dVJdgROHG5ZkqRR2azDOs+oqtdOzrRhcPsQa5IkjVCXHsGh0yw7bJHrkCSNyYw9gva4wEuAHZOcMfDUNsAvh12YJGk0Zts19G3gp8Ay4H0Dy28F1i2k0SSvB14JFHApcHhVubtJksZgxiCoqmuBa2kOFC+aJA8DXgvsXlW/TfIZ4MXACYvZjiSpmy5XFj8vyfeT3JzkliS3Jrllge1uBjwwyWbAlsBPFvh+kqR56nKw+D3AQVX1oKratqq2qapt59tgVf0YeC/wQ5pdTzdX1Vfn+36SpIXpcvroz6vqisVqMMmDgecCOwI3AackOaSqPjllvVXAKoCJiYnFan6kVhz1hbG0e80xB46lXUkbpi5BsCbJvwKnA7+bXFhVp82zzf2Bq6vqBoAkpwFPAu4VBFW1mmZsI1auXFnzbEuSNIcuQbAtcBvwzIFlBcw3CH4IPDHJlsBvgacDa+b5XpKkBZozCKrq8MVssKouSPJZ4GLgLuC7tN/8JUmj1+WsoV2SnJVkfTv/uCR/u5BGq+ptVbVbVe1RVS+rqt/N/SpJ0jB0OWvoI8DRwJ0AVbWO5rx/SdJGoEsQbFlV35my7K5hFCNJGr0uQXBjkp1oDhCT5AU05/9LkjYCXc4a+p80B3N3S/Jj4GrgkKFWJUkamS5nDV0F7J9kK2CTqrp1+GVJkkZlziBIsh3wcmAFsFkSAAZvViNJ2nB12TX0ReB8muGi7xluOZKkUesSBFtU1RuGXokkaSy6nDV0YpK/TrJDku0nH0OvTJI0El16BHcAxwJvoT2FtP35qGEVJUkanS5B8Ebg0VV147CLkSSNXpddQz+gGX1UkrQR6tIj+A2wNsnZ3Pt+BJ4+qiXDmwBJ89clCE5vH5KkjVCXK4s/MYpCJEnj0eXK4kv5/dlCk26muavYu6rqF8MoTJI0Gl12DX0JuBv4VDv/YmBL4GfACcBzhlKZJGkkugTB/lW198D8pUkurqq9kzgKqSRt4LqcPrppkj+ZnEnyBGDTdtYb1EjSBq5Lj+CVwPFJtgYC3AK8sh2W+v8MszhJ0vB1OWvoQuCxSR7Uzt888PRnhlWYJGk0uvQISHIg8Bhgi4H7EbxjiHVJkkZkzmMESY4D/gp4Dc2uoRcCjxxyXZKkEelysPhJVfVy4FdV9XfAPsAuwy1LkjQqXYLg9vbnbUkeCtwJ7DC8kiRJo9TlGMHn2vsWHwtcTHOV8UeGWpUkaWRmDYIkmwBnVdVNwKlJPk9z68qbZ3vdXNpg+SiwB02wvKKqzlvIe0qS5mfWXUNVdQ/woYH53y00BFr/CHy5qnYD9gSuWIT3lCTNQ5djBGcleX4mzxtdoPZ6hKcAHwOoqjvaHockaQy6HCP478AbgLuS3E5zCmlV1bbzbHNH4Abg40n2BC4Cjqyq3wyulGQVsApgYmJink3107hu0iJpwzRnj6CqtqmqTarqAVW1bTs/3xCAJnz2Bj5cVXvR3AHtqGnaXV1VK6tq5fLlyxfQnCRpNjMGQZJXD0w/ZhHbvA64rqouaOc/SxMMkqQxmK1H8IqB6RMXq8Gq+hnwoyS7toueDly+WO8vSbp/Oo01RHNcYDG9BjgpyQOAq4DDF/n9JUkdzRYE2yX5S5pew7ZJnjf4ZFWdNt9Gq2otsHK+r5ckLZ7ZguDrwEHt9Lnc+5aUBcw7CCRJS8eMQVBV7q6RpB7ockGZJGkjZhBIUs8ZBJLUc3OePppkc+BVNOMDQXMQ+biqunOYhUmSRqPLdQQfBjYH/rmdf1m77JXDKkqSNDpdguAJVbXnwPzXklwyrIIkSaPV5RjB3Ul2mpxJ8ijg7uGVJEkapS49gjcDZye5imaoiUfikBCStNGYMwiq6qwkOwOTg8RdWVW/G25ZkqRRmXPXUJItaXoFr6mqdcBEkmcPvTJJ0kh0OUbwceAOYJ92/sfAu4ZWkSRppLoEwU5V9R7gToCquo3FH5ZakjQmXYLgjiQPpBlxlPYMIo8RSNJGostZQ28Dvgw8IslJwJOBw4ZZlCRpdLqcNXRmkouBJ9LsEjqyqm4cemWSpJGYMQiSTL2h/E/bnxNJJqrq4uGVJUkaldl6BO9rf25Bc1vJS2h6BI8D1vD7s4gkSRuwGQ8WV9W+VbUvTU9g76paWVV/DOxFcwqpJGkj0OWsoV2r6tLJmapaD/zR8EqSJI1Sl7OG1iX5KPDJdv6lwLrhlSRJGqUuQXA4zY1pjmznz6W5H4EkaSPQ5fTR24EPtA9J0kZmttNHP1NVL0pyKe1VxYOq6nFDrUySNBKz9QgmdwUNZaTRJJvSnIb646pyNFNJGpPZguBvk3yqqr41pLaPBK4Ath3S+0uSOpjt9NHvAe9Nck2S9yTZa7EaTfJw4EDgo4v1npKk+ZntgrJ/rKp9gKcCvwCOT/IfSd6WZJcFtvsPwN8A9yzwfSRJC9TlrKFrgXcD7257BccDbwU2nU+D7d3Nrq+qi5I8bZb1VgGrACYmJubTFAArjvrCvF8rSX3Q5VaVmyV5TjsE9ZeAK4HnLaDNJwMHJbkG+DSwX5JPTl2pqla3w1qsXL58+QKakyTNZrbTR58BHAwcAHyH5kN7VVX9ZiENVtXRwNFtG08D3lRVhyzkPSVJ8zfbrqGjgU8Bb6yqX42oHknSiM0YBFW137Abr6pzgHOG3Y4kaWZdRh+VJG3EDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo5g0CSes4gkKSeMwgkqecMAknqOYNAknrOIJCknpvzxjSSlqZx3XTpmmMOHEu7Gh57BJLUcwaBJPWcQSBJPWcQSFLPGQSS1HMGgST1nEEgST1nEEhSzxkEktRzBoEk9ZxBIEk9ZxBIUs8ZBJLUcyMPgiSPSHJ2ksuTXJbkyFHXIEn6vXEMQ30X8MaqujjJNsBFSc6sqsvHUIsk9d7IewRV9dOquridvhW4AnjYqOuQJDXGemOaJCuAvYALpnluFbAKYGJiYqR1SVqaxnUzno3d2A4WJ9kaOBV4XVXdMvX5qlpdVSurauXy5ctHX6Ak9cRYgiDJ5jQhcFJVnTaOGiRJjXGcNRTgY8AVVfX+UbcvSbq3cfQIngy8DNgvydr2ccAY6pAkMYaDxVX1TSCjbleSND2vLJaknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo5g0CSes4gkKSeMwgkqecMAknqOYNAknpurHcokzZ0fbxjVh9/542dPQJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo5g0CSes4gkKSeMwgkqecMAknqOYNAknrOIJCknjMIJKnnxhIESZ6V5MokP0hy1DhqkCQ1Rh4ESTYFPgT8ObA7cHCS3UddhySpMY4ewZ8AP6iqq6rqDuDTwHPHUIckifEEwcOAHw3MX9cukySNwZK9MU2SVcCqdvbXSa4cZz2tZcCN4y5iCXP7zMxtMzu3zwzy7gVtm0d2WWkcQfBj4BED8w9vl91LVa0GVo+qqC6SrKmqleOuY6ly+8zMbTM7t8/MRrFtxrFr6EJg5yQ7JnkA8GLgjDHUIUliDD2CqroryauBrwCbAsdX1WWjrkOS1BjLMYKq+iLwxXG0vUBLalfVEuT2mZnbZnZun5kNfdukqobdhiRpCXOICUnqOYNgGnMNgZHkDUkuT7IuyVlJOp2itbHoOkRIkucnqSS9ORuky7ZJ8qL27+eyJJ8adY3j0uH/1USSs5N8t/2/dcA46hyHJMcnuT7J+hmeT5IPtttuXZK9F7WAqvIx8KA5gP2fwKOABwCXALtPWWdfYMt2+lXAv4677qW0fdr1tgHOBc4HVo677qWybYCdge8CD27n/8u4615C22Y18Kp2enfgmnHXPcLt8xRgb2D9DM8fAHwJCPBE4ILFbN8ewX3NOQRGVZ1dVbe1s+fTXAvRF12HCHkn8G7g9lEWN2Zdts1fAx+qql8BVNX1I65xXLpsmwK2bacfBPxkhPWNVVWdC/xyllWeC/xLNc4Htkuyw2K1bxDc1/0dAuMImqTuizm3T9ttfURVfWGUhS0BXf52dgF2SfKtJOcnedbIqhuvLtvm7cAhSa6jOavwNaMpbYMw1KF5luwQExuCJIcAK4GnjruWpSLJJsD7gcPGXMpStRnN7qGn0fQkz03y2Kq6aaxVLQ0HAydU1fuS7AOcmGSPqrpn3IVt7OwR3FenITCS7A+8BTioqn43otqWgrm2zzbAHsA5Sa6h2Z95Rk8OGHf527kOOKOq7qyqq4Hv0QTDxq7LtjkC+AxAVZ0HbEEzBpE6fi7Nl0FwX3MOgZFkL+D/0YRAX/bxTpp1+1TVzVW1rKpWVNUKmmMoB1XVmvGUO1Jdhk85naY3QJJlNLuKrhplkWPSZdv8EHg6QJI/ogmCG0Za5dJ1BvDy9uyhJwI3V9VPF+vN3TU0Rc0wBEaSdwBrquoM4Fhga+CUJAA/rKqDxlb0CHXcPr3Ucdt8BXhmksuBu4E3V9Uvxlf1aHTcNm8EPpLk9TQHjg+r9pSZjV2Sk2m+ICxrj5G8DdgcoKqOozlmcgDwA+A24PBFbb8n21mSNAN3DUlSzxkEktRzBoEk9ZxBIEk9ZxBIUs8ZBLqPdgTI/zZl2euSfDjJQ5N8dobXnbMYF44lOSHJ1UnWto/XLvQ9hynJiiQvmeX5xyT5Wjvy5n8m+bv2Cuz5tndNew0CSb7dpYYZ3mfLJCcluTTJ+iTfTLL1fOvShssg0HROprngZ9CLgZOr6idV9YIR1PDmqnp8+/jg1CeTbDqCGrpaAUz7IZzkgTQXAx1TVbsCj6UZgO3IxWi4qp40Vw2zOBL4eVU9tqr2oLmy986F1JPEa5M2QAaBpvNZ4MD2ClCSrAAeCnyj/ea5vl3+wCSfTnJFkn8DHjj5BkmemeS8JBcnOWXym2aSp7fjzV/ajsH+B12LSvLrJO9LcgmwT5K3Jrmw/Ta7Ou3VfUme0I7ZvjbJsQP1Hpbk9CRntt+qX53m3hLfbQeA275db6ckX05yUZJvJNmtXX5CmjHhv53kqiSTgXgM8F/b9l4/peyXAN+qqq8CtKPWvhp4c/ueb0/ypoHfcX27vWlrvSjNfQtWzbRNpqshyblJHj+w3jeT7Dnl5TswMExBVV05OVxKkpe32/CSJCe2y1a0PZvJ+3BMDGyX45JcALwnyVbtv+132m073ei0WkrGPQ63j6X5AD4PPLedPgp4bzu9gnbMdOANNFeIAjwOuItmEL5lNPci2Kp97n8Bb6UZMuBHwC7t8n8BXjdN2ycAVwNr28dj2+UFvGhgve0Hpk8EntNOrwf2aaePGaj3MJorM7cBlgM3A/+jfe4Dk7UAZwE7t9N/CnxtoK5TaL5A7U4zrDI0V4R+fobt+H7gyGmW/wrYjmbEzTcNLF8PrBj8/WgCdj3wh+38NcCydvrX09UAHAr8Qzu9C83Vu1NreDxwPXAe8K6B3/kxNGMgLZtSx+eAQ9vpVwCnD2yXzwObtvP/Gziknd6ufa+txv037WPmhz0CzWRw99CL2/mpngJ8EqCq1gHr2uVPpPmg/FaStTQfSo8EdgWurqrvtet9on2P6QzuGrq0XXY3cOrAOvsmuSDJpcB+wGOSbAdsU82gZQBT7wB2dlXdWlU30ATB59rllwIr2p7Lk2iGD1lLM6bU4Ljvp1fVPVV1OfCQGWpfLK9tez/n0ww4dn8GpzsFeHaSzWk+tE+YukJVraW5UcyxwPbAhWnG+NkPOKWqbmzXmxwnfx9+vz1PBP5ssL2qurudfiZwVLv9zqH5AjBxP2rXiLk/TzP5d+ADae4tsGVVXXQ/XhvgzKo6+F4L77tr4v66ffLDJskWwD/T3P3sR0neTvOBM5fBkWLvGZi/h+b/wybATVX1+KkvnOb16dDe5UwJuySPAn5RVTcluYt776Ldol3nacD+ND2b25KcQ7ffD2h2QSU5k+aGJi8C/niG9X4NnAacluQemvFs7ujazoDfDEwHeH5VXTmP99EY2CPQtNoPiLOB45m+NwDN7p+XACTZg2b3EDTfYJ+c5NHtc1sl2QW4kuZb96Pb9V4GfH2eJU5+KN7Yfot/QVv3TcCtSf60fX7qQe9ZVdUtwNVJXtjWng4BdivN7qbpnAT8WZphyycPHn+QZlAxaHbz7N0+tzewY7v8QcCv2g/03Wh6Wfe3ho+2bV1Y7R3RBiV5cpIHt9MPoOnFXQt8DXhhkj9sn9u+fcm3+f32fCnwjRlq+QrwmoFjNnvNUbvGzCDQbE4G9mTmIPgwsHWSK4B3ABcBtLtdDgNOTrKOZh/0blV1O82oiae0u3PuAY6bT2HtB/5HaPadf4VmmONJR9CMYrkW2IpmF9D98VLgiHa3zGVMfyvOQeuAu9sDq/c6WFxVvwUOAt6S5HvAjTQHj09qVzkV2D7JZTQHkSd3m30Z2KzdtsfQhOv9qqHtxd0CfHyG1+wEfL39t/gusAY4taouA/6+fe4SmuMc0Nwx7PD23/RlzHzm0ztpRs5c1/5e75yjdo2Zo49qo5Nk67ZHQ5KjgB2qalFO11yoJH9B88G6b1VdO+S2Hkqzj3638i5fmoVBoI1Okr8CjqbZ538tzbj2vbrBSZKX03yrf0NVnTLuerS0GQSS1HMeI5CknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5/4/FtPXKVflNBwAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "plt.hist(results[\"units\"][\"uqs\"])\n", "plt.xlabel(\"Video Fragment Quality Score\")\n", "plt.ylabel(\"Video Fragments\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `unit_annotation_score` column in `results[\"units\"]` contains the **video fragment-annotation scores**, capturing the likelihood that an annotation is expressed in a video fragment. For each video fragment, we store a dictionary mapping each annotation to its video fragment-annotation score." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "unit\n", "1856509899 {'astronaut': 1.0, 'scientist': 0.169109758893...\n", "1856509900 {'celebrity': 0.007285683902434039, 'journalis...\n", "1856509901 {'artist': 0.006139167492493724, 'celebrity': ...\n", "1856509902 {'scientist': 0.15804046047341153, 'none': 0.7...\n", "1856509903 {'none': 0.9830831242894289, 'other': 0.008259...\n", "Name: unit_annotation_score, dtype: object" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results[\"units\"][\"unit_annotation_score\"].head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ambiguous video fragments\n", "\n", "A low unit quality score can be used to identify ambiguous video fragments. First, we sort the unit quality metrics stored in `results[\"units\"]` based on the quality score (`uqs`), in ascending order. Thus, the most clear video fragments are found at the tail of the new structure:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>input.videolocation</th>\n", " <th>uqs</th>\n", " <th>unit_annotation_score</th>\n", " </tr>\n", " <tr>\n", " <th>unit</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1856509905</th>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " <td>0.146278</td>\n", " <td>{'other': 0.28844109454744976, 'presenter': 0....</td>\n", " </tr>\n", " <tr>\n", " <th>1856509931</th>\n", " <td>https://joran.org/ct/entity.admin.unit.2833/90...</td>\n", " <td>0.194667</td>\n", " <td>{'engineer': 0.15692508334014804, 'journalist'...</td>\n", " </tr>\n", " <tr>\n", " <th>1856509938</th>\n", " <td>https://joran.org/ct/entity.admin.unit.2833/90...</td>\n", " <td>0.207788</td>\n", " <td>{'businessperson': 0.06949004651596365, 'prese...</td>\n", " </tr>\n", " <tr>\n", " <th>1856509921</th>\n", " <td>https://joran.org/ct/entity.admin.unit.2848/88...</td>\n", " <td>0.220392</td>\n", " <td>{'monarch': 0.42098378954483356, 'other': 0.27...</td>\n", " </tr>\n", " <tr>\n", " <th>1856509944</th>\n", " <td>https://joran.org/ct/entity.admin.unit.2784/11...</td>\n", " <td>0.242865</td>\n", " <td>{'politician': 0.006580944290157723, 'none': 0...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " input.videolocation uqs \\\n", "unit \n", "1856509905 https://joran.org/ct/entity.admin.unit.2649/85... 0.146278 \n", "1856509931 https://joran.org/ct/entity.admin.unit.2833/90... 0.194667 \n", "1856509938 https://joran.org/ct/entity.admin.unit.2833/90... 0.207788 \n", "1856509921 https://joran.org/ct/entity.admin.unit.2848/88... 0.220392 \n", "1856509944 https://joran.org/ct/entity.admin.unit.2784/11... 0.242865 \n", "\n", " unit_annotation_score \n", "unit \n", "1856509905 {'other': 0.28844109454744976, 'presenter': 0.... \n", "1856509931 {'engineer': 0.15692508334014804, 'journalist'... \n", "1856509938 {'businessperson': 0.06949004651596365, 'prese... \n", "1856509921 {'monarch': 0.42098378954483356, 'other': 0.27... \n", "1856509944 {'politician': 0.006580944290157723, 'none': 0... " ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results[\"units\"].sort_values(by=[\"uqs\"])[[\"input.videolocation\", \"uqs\", \"unit_annotation_score\"]].head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below we show an example video fragment with low quality score, where workers couldn't agree on what annotation best describes the person in the video. The role of the person in the video is not directly specified, so the workers made assumptions based on the topic of discussion." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "uqs 0.146278\n", "Name: 1856509905, dtype: float64\n", "\n", "\n", "Person types picked for the video below:\n", "other : 0.28844109454744976\n", "presenter : 0.144930232611664\n", "scientist : 0.22919915879815284\n", "journalist : 0.14534325083723273\n", "artist : 0.005696670688424697\n", "businessperson : 0.10163406871362905\n", "politician : 0.03781678033568675\n", "none : 0.21943896131257373\n", "lawyer : 0.020785177196552786\n", "philosopher : 0.0056418079486984535\n", "architect : 3.3953714172294374e-05\n", "astronaut : 3.3953714172294374e-05\n", "athlete : 3.3953714172294374e-05\n" ] }, { "data": { "text/html": [ "<video width='320' height='240' controls><source src=https://joran.org/ct/entity.admin.unit.2649/8576.mp4 type='video/mp4'></video>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import HTML\n", "\n", "print(results[\"units\"].sort_values(by=[\"uqs\"])[[\"uqs\"]].iloc[0])\n", "print(\"\\n\")\n", "\n", "print(\"Person types picked for the video below:\")\n", "for k, v in results[\"units\"].sort_values(by=[\"uqs\"])[[\"unit_annotation_score\"]].iloc[0][\"unit_annotation_score\"].items():\n", " if v > 0:\n", " print(str(k) + \" : \" + str(v))\n", "\n", "vid_url = list(results[\"units\"].sort_values(by=[\"uqs\"])[[\"input.videolocation\"]].iloc[0])\n", "HTML(\"<video width='320' height='240' controls><source src=\" + vid_url[0] + \" type='video/mp4'></video>\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Unambiguous video fragments\n", "\n", "Similarly, a high unit quality score represents lack of ambiguity of the video fragment." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>input.videolocation</th>\n", " <th>uqs</th>\n", " <th>unit_annotation_score</th>\n", " </tr>\n", " <tr>\n", " <th>unit</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1856509933</th>\n", " <td>https://joran.org/ct/entity.admin.unit.2833/90...</td>\n", " <td>0.998529</td>\n", " <td>{'none': 0.9993036353660087, 'militaryperson':...</td>\n", " </tr>\n", " <tr>\n", " <th>1856509930</th>\n", " <td>https://joran.org/ct/entity.admin.unit.2833/90...</td>\n", " <td>0.998529</td>\n", " <td>{'none': 0.9993036353660087, 'model': 0.000696...</td>\n", " </tr>\n", " <tr>\n", " <th>1856509908</th>\n", " <td>https://joran.org/ct/entity.admin.unit.2649/85...</td>\n", " <td>0.998529</td>\n", " <td>{'none': 0.9993036353660087, 'philosopher': 0....</td>\n", " </tr>\n", " <tr>\n", " <th>1856509909</th>\n", " <td>https://joran.org/ct/entity.admin.unit.2643/86...</td>\n", " <td>0.998512</td>\n", " <td>{'none': 0.9992954829530591, 'fictionalcharact...</td>\n", " </tr>\n", " <tr>\n", " <th>1856509937</th>\n", " <td>https://joran.org/ct/entity.admin.unit.2833/90...</td>\n", " <td>0.998456</td>\n", " <td>{'none': 0.9992692794931864, 'journalist': 0.0...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " input.videolocation uqs \\\n", "unit \n", "1856509933 https://joran.org/ct/entity.admin.unit.2833/90... 0.998529 \n", "1856509930 https://joran.org/ct/entity.admin.unit.2833/90... 0.998529 \n", "1856509908 https://joran.org/ct/entity.admin.unit.2649/85... 0.998529 \n", "1856509909 https://joran.org/ct/entity.admin.unit.2643/86... 0.998512 \n", "1856509937 https://joran.org/ct/entity.admin.unit.2833/90... 0.998456 \n", "\n", " unit_annotation_score \n", "unit \n", "1856509933 {'none': 0.9993036353660087, 'militaryperson':... \n", "1856509930 {'none': 0.9993036353660087, 'model': 0.000696... \n", "1856509908 {'none': 0.9993036353660087, 'philosopher': 0.... \n", "1856509909 {'none': 0.9992954829530591, 'fictionalcharact... \n", "1856509937 {'none': 0.9992692794931864, 'journalist': 0.0... " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results[\"units\"].sort_values(by=[\"uqs\"], ascending=False)[[\"input.videolocation\", \"uqs\", \"unit_annotation_score\"]].head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below we show an example unambiguous video fragment - no person appears in the video, so most workers picked the `none` option in the crowd task." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "uqs 0.998529\n", "Name: 1856509933, dtype: float64\n", "\n", "\n", "Person types picked for the video below:\n", "none : 0.9993036353660087\n", "militaryperson : 0.0006963646339910918\n" ] }, { "data": { "text/html": [ "<video width='320' height='240' controls><source src=https://joran.org/ct/entity.admin.unit.2833/9012.mp4 type='video/mp4'></video>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "print(results[\"units\"].sort_values(by=[\"uqs\"], ascending=False)[[\"uqs\"]].iloc[0])\n", "print(\"\\n\")\n", "\n", "print(\"Person types picked for the video below:\")\n", "for k, v in results[\"units\"].sort_values(by=[\"uqs\"], ascending=False)[[\"unit_annotation_score\"]].iloc[0][\"unit_annotation_score\"].items():\n", " if v > 0:\n", " print(str(k) + \" : \" + str(v))\n", "\n", "vid_url = list(results[\"units\"].sort_values(by=[\"uqs\"], ascending=False)[[\"input.videolocation\"]].iloc[0])\n", "HTML(\"<video width='320' height='240' controls><source src=\" + vid_url[0] + \" type='video/mp4'></video>\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Worker Quality Scores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The **worker metrics** are stored in `results[\"workers\"]`. The `wqs` columns in `results[\"workers\"]` contains the **worker quality scores**, capturing the overall agreement between one worker and all the other workers." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>unit</th>\n", " <th>judgment</th>\n", " <th>job</th>\n", " <th>duration</th>\n", " <th>wqs</th>\n", " <th>wwa</th>\n", " <th>wsa</th>\n", " <th>wqs_initial</th>\n", " <th>wwa_initial</th>\n", " <th>wsa_initial</th>\n", " </tr>\n", " <tr>\n", " <th>worker</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>3587109</th>\n", " <td>25</td>\n", " <td>25</td>\n", " <td>1</td>\n", " <td>12.840000</td>\n", " <td>0.470469</td>\n", " <td>0.603399</td>\n", " <td>0.779698</td>\n", " <td>0.215188</td>\n", " <td>0.371369</td>\n", " <td>0.579445</td>\n", " </tr>\n", " <tr>\n", " <th>4316379</th>\n", " <td>25</td>\n", " <td>25</td>\n", " <td>1</td>\n", " <td>24.040000</td>\n", " <td>0.511478</td>\n", " <td>0.668219</td>\n", " <td>0.765435</td>\n", " <td>0.280311</td>\n", " <td>0.436881</td>\n", " <td>0.641618</td>\n", " </tr>\n", " <tr>\n", " <th>6330997</th>\n", " <td>7</td>\n", " <td>7</td>\n", " <td>1</td>\n", " <td>38.714286</td>\n", " <td>0.468025</td>\n", " <td>0.615484</td>\n", " <td>0.760417</td>\n", " <td>0.320348</td>\n", " <td>0.457103</td>\n", " <td>0.700822</td>\n", " </tr>\n", " <tr>\n", " <th>6339764</th>\n", " <td>10</td>\n", " <td>10</td>\n", " <td>1</td>\n", " <td>80.500000</td>\n", " <td>0.019778</td>\n", " <td>0.122949</td>\n", " <td>0.160866</td>\n", " <td>0.028307</td>\n", " <td>0.122603</td>\n", " <td>0.230880</td>\n", " </tr>\n", " <tr>\n", " <th>6367365</th>\n", " <td>25</td>\n", " <td>25</td>\n", " <td>1</td>\n", " <td>29.280000</td>\n", " <td>0.172523</td>\n", " <td>0.385336</td>\n", " <td>0.447722</td>\n", " <td>0.122195</td>\n", " <td>0.275177</td>\n", " <td>0.444062</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " unit judgment job duration wqs wwa wsa \\\n", "worker \n", "3587109 25 25 1 12.840000 0.470469 0.603399 0.779698 \n", "4316379 25 25 1 24.040000 0.511478 0.668219 0.765435 \n", "6330997 7 7 1 38.714286 0.468025 0.615484 0.760417 \n", "6339764 10 10 1 80.500000 0.019778 0.122949 0.160866 \n", "6367365 25 25 1 29.280000 0.172523 0.385336 0.447722 \n", "\n", " wqs_initial wwa_initial wsa_initial \n", "worker \n", "3587109 0.215188 0.371369 0.579445 \n", "4316379 0.280311 0.436881 0.641618 \n", "6330997 0.320348 0.457103 0.700822 \n", "6339764 0.028307 0.122603 0.230880 \n", "6367365 0.122195 0.275177 0.444062 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results[\"workers\"].head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Distribution of worker quality scores\n", "\n", "The histogram below shows the worker quality scores are distributed across a wide spectrum, from low to high quality workers." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Workers')" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAE/xJREFUeJzt3Xu0JWV95vHvAx0E5GpojQvstI4gQYJKGieicWlAhlGimfFCk5BIYtKJY1CjE4cRjcasWcHJjKMrOhkbvCUxiDI6QSECIqgB5A5yC4qIyE1uAdTJiOBv/qhqOX3ScHaf7l21+7zfz1pnUbV37f3+uro5z37r3fW+qSokSe3aauwCJEnjMggkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjVs2dgGT2G233WrlypVjlyFJW5RLLrnkrqpavtBxW0QQrFy5kosvvnjsMiRpi5Lk25Mc56UhSWqcQSBJjTMIJKlxBoEkNc4gkKTGTS0Iknw4yR1Jrprz2OOSnJnkG/1/d51W+5KkyUyzR/BR4NB5jx0DnFVVewJn9fuSpBFNLQiq6svAPfMefhnwsX77Y8CvTqt9SdJkhh4jeEJV3dZv3w48YeD2JUnzjHZncVVVknqk55OsAdYArFixYrC6pI2x8phTR2v7xuNeMlrbWlqG7hF8N8kTAfr/3vFIB1bV2qpaVVWrli9fcKoMSdIiDR0EpwCv7rdfDfzdwO1LkuaZ5tdHTwTOB56W5OYkrwGOA16U5BvAwf2+JGlEUxsjqKojHuGpg6bVpiRp43lnsSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0bbc1iSVsm12leeuwRSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaN0oQJPnDJFcnuSrJiUm2HaMOSdIIQZBkd+D1wKqq2hfYGlg9dB2SpM5Yl4aWAdslWQZsD9w6Uh2S1LzBg6CqbgH+G3ATcBtwX1WdMXQdkqTO4IvXJ9kVeBnwZOBe4FNJjqyqv5l33BpgDcCKFSsW3d5YC227yLa0+fn/83SMcWnoYOBbVXVnVf0I+DRw4PyDqmptVa2qqlXLly8fvEhJasUYQXAT8ItJtk8S4CDg2hHqkCQxzhjBBcDJwKXAlX0Na4euQ5LUGXyMAKCq3gG8Y4y2JUnr885iSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklq3ChBkGSXJCcn+cck1yZ5zhh1SJImDIIkr0yyY7/9tiSfTrL/JrT7PuDzVbU38Azg2k14L0nSJpi0R/D2qvpekucBBwMfAv5yMQ0m2Rl4fv8eVNUDVXXvYt5LkrTpJg2Ch/r/vgRYW1WnAtssss0nA3cCH0lyWZITkjx2ke8lSdpEyyY87pYkHwReBLw7yWNY/PjCMmB/4OiquiDJ+4BjgLfPPSjJGmANwIoVKxbZlIa08phTR2v7xuNeMlrbWvrG+rc91L/rSX+Zvwo4Hfg3/WWcxwF/tMg2bwZurqoL+v2T6YJhPVW1tqpWVdWq5cuXL7IpSdJCFuwRJNkauLQf2AWgqm4DbltMg1V1e5LvJHlaVV0HHARcs5j3kiRtugWDoKoeSnJdkhVVddNmavdo4ONJtgFuAH5rM72vJGkjTTpGsCtwdZILgR+se7CqXrqYRqvqcmDVYl4rSdq8Jg2Cty98iCRpSzRREFTVl5L8LLBnVX0hyfbA1tMtTZI0hEnvLP5dum/3fLB/aHfg/0yrKEnScCb9+ujrgOcC9wNU1TeAx0+rKEnScCYNgh9W1QPrdpIsA2o6JUmShjRpEHwpyVuB7ZK8CPgU8NnplSVJGsqkQXAM3fxAVwK/B5xWVcdOrSpJ0mAm/fros6rqeOD4dQ8kOayqPjedsiRJQ5m0R3B8kn3X7SQ5Au8tkKQlYdIewSuAk5P8GvBLwG8Ch0ytKknSYCa9oeyGJKvp7h24CTikqv55qpVJkgbxqEGQ5ErW/5ro4+juKL4gCVW13zSLkyRN30I9gsMGqUKSNJpHDYKq+na/HsHVc9cjkCQtHQt+a6iqHgKuS+J6kZK0BI2yHoEkaXa4HoEkNW5j1iN4AnBA/9CFVXXH9MqSJA1l0vUIXgVcCLwSeBXd10dfMc3CJEnDmPTS0LHAAet6AUmWA1+gW6xGkrQFm3Suoa3mXQq6eyNeK0maYZP2CD6f5HTgxH7/cOC06ZQkSRrSQlNMvBE4D3gr8CvA8/qn1lbVZ6ZcmyRpAAv1CPYA3gvsTbcozbl0wXDelOuSJA1koSkm/iNAkm2AVcCBwG8Ba5PcW1X7TL9ESdI0TTpGsB2wE7Bz/3MrXQ9BkrSFW2iMYC3wdOB7wAV0l4TeU1X/NEBtkqQBLPQV0BXAY4DbgVuAm4F7p12UJGk4C40RHJokdL2CA4E3A/smuQc4v6reMUCNkqQpWnCMoKoKuCrJvcB9/c9hwLMBg0CStnALjRG8nq4ncCDwIx7+6uiHcbBYkpaEhXoEK4FPAX9YVbdNvxxJ0tAWGiN407Qa7pfAvBi4papcG1mSRjLmxHFvAK4dsX1JEiMFQZI9gJcAJ4zRviTpYWP1CN4LvAX48UjtS5J6gwdBksOAO6rqkgWOW5Pk4iQX33nnnQNVJ0ntGaNH8FzgpUluBD4B/HKSv5l/UFWtrapVVbVq+fLlQ9coSc0YPAiq6j9X1R5VtRJYDXyxqo4cug5JUsflJiWpcZNOQz0VVXUOcM6YNUhS6+wRSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaN+rCNJIWb+Uxp45dgpYIewSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYNHgRJnpTk7CTXJLk6yRuGrkGS9LAxVih7EHhzVV2aZEfgkiRnVtU1I9QiSc0bvEdQVbdV1aX99veAa4Hdh65DktQZdc3iJCuBZwEXbOC5NcAagBUrVgxa15bOtWwlbYzRBouT7AD8b+CNVXX//Oeram1VraqqVcuXLx++QElqxChBkOSn6ELg41X16TFqkCR1xvjWUIAPAddW1XuGbl+StL4xegTPBX4D+OUkl/c/Lx6hDkkSIwwWV9U/ABm6XUnShnlnsSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0bdfH6pcwF5Ifl+ZYWzx6BJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxowRBkkOTXJfk+iTHjFGDJKkzeBAk2Rr4APBvgX2AI5LsM3QdkqTOGD2CZwPXV9UNVfUA8AngZSPUIUlinCDYHfjOnP2b+8ckSSOY2cXrk6wB1vS7309y3SLfajfgrs1T1WY3q7XNal0wu7XNal0wu7XNal0wI7Xl3Rt8eGNq+9lJDhojCG4BnjRnf4/+sfVU1Vpg7aY2luTiqlq1qe8zDbNa26zWBbNb26zWBbNb26zWBe3VNsaloYuAPZM8Ock2wGrglBHqkCQxQo+gqh5M8gfA6cDWwIer6uqh65AkdUYZI6iq04DTBmpuky8vTdGs1jardcHs1jardcHs1jardUFjtaWqNvd7SpK2IE4xIUmNWzJBsNC0FUkek+Sk/vkLkqyckbqen+TSJA8mecUQNW1EbW9Kck2SryU5K8lEX0UboK7fT3JlksuT/MOQd6ZPOj1KkpcnqSSDffNkgvN2VJI7+/N2eZLfmYW6+mNe1f9buzrJ3w5R1yS1Jfkfc87X15PcOyN1rUhydpLL+v8/X7xJDVbVFv9DN+j8TeApwDbAFcA+8475D8D/6rdXAyfNSF0rgf2AvwJeMWPn7IXA9v32a2fonO00Z/ulwOdn5Zz1x+0IfBn4KrBqVmoDjgLeP9S/sY2oa0/gMmDXfv/xs1LbvOOPpvtyy+h10Y0TvLbf3ge4cVPaXCo9gkmmrXgZ8LF++2TgoCQZu66qurGqvgb8eMq1LKa2s6vq//a7X6W752MW6rp/zu5jgaEGuiadHuVPgXcD/2+gujamtqFNUtfvAh+oqn8CqKo7Zqi2uY4ATpyRugrYqd/eGbh1UxpcKkEwybQVPzmmqh4E7gN+egbqGsvG1vYa4O+nWlFnorqSvC7JN4H/Crx+gLomqi3J/sCTqurUgWpaZ9K/z5f3lxJOTvKkDTw/Rl17AXslOTfJV5McOkBdk9YGQH9Z9MnAF2ekrncCRya5me4bmEdvSoNLJQg0RUmOBFYBfz52LetU1Qeq6l8B/wl429j1ACTZCngP8Oaxa3kEnwVWVtV+wJk83EMe2zK6y0MvoPvUfXySXUat6F9aDZxcVQ+NXUjvCOCjVbUH8GLgr/t/f4uyVIJgkmkrfnJMkmV03am7Z6CusUxUW5KDgWOBl1bVD2elrjk+AfzqVCt62EK17QjsC5yT5EbgF4FTBhowXvC8VdXdc/4OTwB+YRbqovvEe0pV/aiqvgV8nS4YZqG2dVYzzGUhmKyu1wCfBKiq84Ft6eYgWpwhBmUGGFxZBtxA13VbN7jy9HnHvI71B4s/OQt1zTn2oww7WDzJOXsW3aDVnjNW155ztn8FuHhWapt3/DkMN1g8yXl74pztfwd8dUbqOhT4WL+9G91lkZ+ehdr64/YGbqS/72oW6qK7THtUv/1zdGMEi65v6n+ooX7oukdf739xHds/9i66T7LQJeangOuBC4GnzEhdB9B9IvoBXQ/l6hk6Z18Avgtc3v+cMiN1vQ+4uq/p7Ef7ZTx0bfOOHSwIJjxvf9aftyv687b3jNQVuktq1wBXAqtn5Zz1++8EjhuqpgnP2T7Auf3f5eXAIZvSnncWS1LjlsoYgSRpkQwCSWqcQSBJjTMIJKlxBoEkNc4g0GD6mRzfOGf/9CQnzNn/70netBHvtzLJVZuxvp2T/FU/4+M3k3w8ya6b8H4fXTejbJIT1s2SmuSti3ivY/uZOb/Wz4T5rxdblzSfQaAhnQscCD+ZjmE34Olznj8QOG+SN+rvDl+0R3j9h4Abquqp1U1fcT3djX6brKp+p6qu6Xc3KgiSPAc4DNi/uukhDmb9uWg22qaePy0tBoGGdB7wnH776cBVwPeS7JrkMXR3SF6azp8nuapfd+BwgCQvSPKVJKfQ3Xz0E0me0s/NfkCSrfvXX9R/gv69CV7/VLopF/50zsPvAp6R5Gn9az835/j3Jzmq3/7jvq2rkqzd0Ky2Sc5JsirJccB2/af6jyd517xe0n9J8oZ5L38icFf100NU1V1VdWt//AFJzktyRZILk+yYZNskH+nP3WVJXtgfe1SSU5J8ETirf+yP5pynP3nUvz0tWX4q0GCq6tZ0C/CsoPv0fz7drIrPoZsN9sqqeiDJy4FnAs+g6zVclOTL/dvsD+xbVd9Kv7hQkqfRzTl0VFVdkWQNcF9VHdAHzLlJzpj/+nnl7QNcXnMmFauqh5JcRhdQj7Ygyfur6l19LX9N9+n9s49wDo5J8gdV9cz++JXAp4H39r2k1XTTEM91BvDHSb5Od7f3SVX1pSTbACcBh1fVRUl2Av4ZeEPXVP18kr2BM5LsNefPv19V3ZPkELo5fZ5Nd3fvKUmeX1VfRk0xCDS08+hC4EC6aQV277fvo7t0BPA84MT+l/J3k3yJbiqO+4EL5/0SXw78HfDv51x6OQTYLw+v+LYz3S+8Bzbw+s3hhUneAmwPPI5uGocNBsF8VXVjkruTPAt4AnBZVd0975jvJ/kF4JfoFgs6Kd2qVZcAt1XVRf1x9wMkeR7wF/1j/5jk23RTPQOcWVX39NuH9D+X9fs70J0ng6AxBoGGtm6c4OfpLg19h27a5vuBj0zw+h/M278PuIkuPNYFQYCjq+r0uQcmecEGXr/ONcAzk2xVVT/uj9+KrldyKbCC9S+lbtsfsy3wP+nmFPpOkneue24jnEC3etjPAB/e0AF9KJ5DN7PplcCr6YJgY8398wf4s6r64CLeR0uIYwQa2nl0l07uqaqH+k+nu9BdHlo3UPwV4PD+Wv9y4Pl0EwVuyAN0M2n+ZpJf6x87HXhtkp8CSLJXksc+WlFVdT3dJ+O5axu8DTirqm4Cvg3sk27t612Ag/pj1v3SvyvJDsAk607/aF1tvc/QzcB5QF/7evoxirnTMj+zr+c64IlJDuiP27EfBP4K8Ov9Y3vRhdh1G6jjdOC3+7pJsnuSx09Qv5YYewQa2pV01/3/dt5jO1TVXf3+Z+iC4Qq6JfneUlW399e7/4Wq+kGSw4Azk3yf7hP2SvqBZ+BOJluz4LeBv0i38tlOwEV001zTf9r/JF0v5lv0l1Oq6t4kx/eP396/ZiFrga8lubSqfr0fFzkbuLc2vPDJDn1duwAP0n2baU3/usP757ajGx84mK6H8pd9z+FBurGTH84fw66qM5L8HHB+/9z3gSOBoZaK1Ixw9lFpA/oB6FOB11fVaVNuayu6y0+vrKpvTLMtaUPsEUgbUFXXAU+ddjvpbjL7HPAZQ0BjsUcgSY1zsFiSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ17v8Darg2JLJlxRUAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.hist(results[\"workers\"][\"wqs\"])\n", "plt.xlabel(\"Worker Quality Score\")\n", "plt.ylabel(\"Workers\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Low quality workers\n", "\n", "Low worker quality scores can be used to identify **spam workers**, or workers that have misunderstood the annotation task." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>unit</th>\n", " <th>judgment</th>\n", " <th>job</th>\n", " <th>duration</th>\n", " <th>wqs</th>\n", " <th>wwa</th>\n", " <th>wsa</th>\n", " <th>wqs_initial</th>\n", " <th>wwa_initial</th>\n", " <th>wsa_initial</th>\n", " </tr>\n", " <tr>\n", " <th>worker</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>44656777</th>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>16.0</td>\n", " <td>0.000267</td>\n", " <td>0.014584</td>\n", " <td>0.018305</td>\n", " <td>0.015075</td>\n", " <td>0.073468</td>\n", " <td>0.205196</td>\n", " </tr>\n", " <tr>\n", " <th>44606916</th>\n", " <td>5</td>\n", " <td>5</td>\n", " <td>1</td>\n", " <td>70.6</td>\n", " <td>0.000573</td>\n", " <td>0.022518</td>\n", " <td>0.025460</td>\n", " <td>0.006691</td>\n", " <td>0.057175</td>\n", " <td>0.117028</td>\n", " </tr>\n", " <tr>\n", " <th>31508822</th>\n", " <td>3</td>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>573.0</td>\n", " <td>0.001310</td>\n", " <td>0.038485</td>\n", " <td>0.034045</td>\n", " <td>0.021185</td>\n", " <td>0.102832</td>\n", " <td>0.206015</td>\n", " </tr>\n", " <tr>\n", " <th>15965551</th>\n", " <td>25</td>\n", " <td>25</td>\n", " <td>1</td>\n", " <td>30.0</td>\n", " <td>0.008752</td>\n", " <td>0.088362</td>\n", " <td>0.099049</td>\n", " <td>0.010984</td>\n", " <td>0.091147</td>\n", " <td>0.120512</td>\n", " </tr>\n", " <tr>\n", " <th>6339764</th>\n", " <td>10</td>\n", " <td>10</td>\n", " <td>1</td>\n", " <td>80.5</td>\n", " <td>0.019778</td>\n", " <td>0.122949</td>\n", " <td>0.160866</td>\n", " <td>0.028307</td>\n", " <td>0.122603</td>\n", " <td>0.230880</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " unit judgment job duration wqs wwa wsa \\\n", "worker \n", "44656777 1 1 1 16.0 0.000267 0.014584 0.018305 \n", "44606916 5 5 1 70.6 0.000573 0.022518 0.025460 \n", "31508822 3 3 1 573.0 0.001310 0.038485 0.034045 \n", "15965551 25 25 1 30.0 0.008752 0.088362 0.099049 \n", "6339764 10 10 1 80.5 0.019778 0.122949 0.160866 \n", "\n", " wqs_initial wwa_initial wsa_initial \n", "worker \n", "44656777 0.015075 0.073468 0.205196 \n", "44606916 0.006691 0.057175 0.117028 \n", "31508822 0.021185 0.102832 0.206015 \n", "15965551 0.010984 0.091147 0.120512 \n", "6339764 0.028307 0.122603 0.230880 " ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results[\"workers\"].sort_values(by=[\"wqs\"]).head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Example annotations from low quality worker `44606916` (with the second lowest quality score) for video fragment `1856509900`:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "JUDGMENTS OF LOW QUALITY WORKER 44606916 FOR VIDEO 1856509900:\n", "celebrity : 1\n", "\n", "ALL JUDGMENTS FOR VIDEO 1856509900\n", "other : 9\n", "scientist : 6\n", "none : 3\n", "celebrity : 2\n", "journalist : 2\n", "presenter : 2\n", "archeologist : 1\n", "fictionalcharacter : 1\n", "producer : 1\n", "psychologist : 1\n", "writer : 1\n" ] }, { "data": { "text/html": [ "<video width='320' height='240' controls><source src=https://joran.org/ct/entity.admin.unit.2649/8561.mp4 type='video/mp4'></video>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import operator\n", "\n", "work_id = results[\"workers\"].sort_values(by=[\"wqs\"]).index[1]\n", "work_units = results[\"judgments\"][results[\"judgments\"][\"worker\"] == work_id][\"unit\"]\n", "\n", "work_judg = results[\"judgments\"][results[\"judgments\"][\"unit\"] == work_units.iloc[0]]\n", "\n", "print(\"JUDGMENTS OF LOW QUALITY WORKER %d FOR VIDEO %d:\" % (work_id, work_units.iloc[0]))\n", "for k, v in work_judg[work_judg[\"worker\"] == work_id][\"output.selected_answer\"].iloc[0].items():\n", " if v > 0:\n", " print(str(k) + \" : \" + str(v))\n", "\n", "print(\"\\nALL JUDGMENTS FOR VIDEO %d\" % work_units.iloc[0])\n", "sorted_judg = sorted(\n", " results[\"units\"][\"output.selected_answer\"][work_units.iloc[0]].items(),\n", " key=operator.itemgetter(1),\n", " reverse=True)\n", "\n", "for k, v in sorted_judg:\n", " if v > 0:\n", " print(str(k) + \" : \" + str(v))\n", "\n", "vid_url = results[\"units\"][\"input.videolocation\"][work_units.iloc[0]]\n", "HTML(\"<video width='320' height='240' controls><source src=\" + str(vid_url) + \" type='video/mp4'></video>\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Example annotations from the same low quality worker (`44606916`) for a second video fragment (`1856509903`):" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "JUDGMENTS OF LOW QUALITY WORKER 44606916 FOR VIDEO 1856509903:\n", "archeologist : 1\n", "\n", "ALL JUDGMENTS FOR VIDEO 1856509900\n", "none : 15\n", "other : 2\n", "fictionalcharacter : 1\n", "writer : 1\n", "archeologist : 1\n", "scientist : 1\n" ] }, { "data": { "text/html": [ "<video width='320' height='240' controls><source src=https://joran.org/ct/entity.admin.unit.2649/8570.mp4 type='video/mp4'></video>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "work_judg = results[\"judgments\"][results[\"judgments\"][\"unit\"] == work_units.iloc[1]]\n", "\n", "print(\"JUDGMENTS OF LOW QUALITY WORKER %d FOR VIDEO %d:\" % (work_id, work_units.iloc[1]))\n", "for k, v in work_judg[work_judg[\"worker\"] == work_id][\"output.selected_answer\"].iloc[0].items():\n", " if v > 0:\n", " print(str(k) + \" : \" + str(v))\n", "\n", "print(\"\\nALL JUDGMENTS FOR VIDEO %d\" % work_units.iloc[0])\n", "sorted_judg = sorted(\n", " results[\"units\"][\"output.selected_answer\"][work_units.iloc[1]].items(),\n", " key=operator.itemgetter(1),\n", " reverse=True)\n", "\n", "for k, v in sorted_judg:\n", " if v > 0:\n", " print(str(k) + \" : \" + str(v))\n", "\n", "vid_url = results[\"units\"][\"input.videolocation\"][work_units.iloc[1]]\n", "HTML(\"<video width='320' height='240' controls><source src=\" + str(vid_url) + \" type='video/mp4'></video>\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## High quality workers\n", "\n", "High worker quality scores can be used to identify **reliable workers**." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>unit</th>\n", " <th>judgment</th>\n", " <th>job</th>\n", " <th>duration</th>\n", " <th>wqs</th>\n", " <th>wwa</th>\n", " <th>wsa</th>\n", " <th>wqs_initial</th>\n", " <th>wwa_initial</th>\n", " <th>wsa_initial</th>\n", " </tr>\n", " <tr>\n", " <th>worker</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>6432269</th>\n", " <td>25</td>\n", " <td>25</td>\n", " <td>1</td>\n", " <td>23.36</td>\n", " <td>0.789141</td>\n", " <td>0.836564</td>\n", " <td>0.943312</td>\n", " <td>0.579480</td>\n", " <td>0.671050</td>\n", " <td>0.863542</td>\n", " </tr>\n", " <tr>\n", " <th>15176395</th>\n", " <td>25</td>\n", " <td>25</td>\n", " <td>1</td>\n", " <td>17.24</td>\n", " <td>0.784259</td>\n", " <td>0.832825</td>\n", " <td>0.941685</td>\n", " <td>0.571864</td>\n", " <td>0.664663</td>\n", " <td>0.860381</td>\n", " </tr>\n", " <tr>\n", " <th>39021485</th>\n", " <td>25</td>\n", " <td>25</td>\n", " <td>1</td>\n", " <td>17.24</td>\n", " <td>0.781853</td>\n", " <td>0.831344</td>\n", " <td>0.940468</td>\n", " <td>0.573010</td>\n", " <td>0.666604</td>\n", " <td>0.859595</td>\n", " </tr>\n", " <tr>\n", " <th>40712302</th>\n", " <td>25</td>\n", " <td>25</td>\n", " <td>1</td>\n", " <td>16.56</td>\n", " <td>0.755567</td>\n", " <td>0.816770</td>\n", " <td>0.925067</td>\n", " <td>0.537336</td>\n", " <td>0.640505</td>\n", " <td>0.838926</td>\n", " </tr>\n", " <tr>\n", " <th>43620110</th>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>1</td>\n", " <td>194.50</td>\n", " <td>0.752887</td>\n", " <td>0.772451</td>\n", " <td>0.974672</td>\n", " <td>0.637002</td>\n", " <td>0.674885</td>\n", " <td>0.943867</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " unit judgment job duration wqs wwa wsa \\\n", "worker \n", "6432269 25 25 1 23.36 0.789141 0.836564 0.943312 \n", "15176395 25 25 1 17.24 0.784259 0.832825 0.941685 \n", "39021485 25 25 1 17.24 0.781853 0.831344 0.940468 \n", "40712302 25 25 1 16.56 0.755567 0.816770 0.925067 \n", "43620110 2 2 1 194.50 0.752887 0.772451 0.974672 \n", "\n", " wqs_initial wwa_initial wsa_initial \n", "worker \n", "6432269 0.579480 0.671050 0.863542 \n", "15176395 0.571864 0.664663 0.860381 \n", "39021485 0.573010 0.666604 0.859595 \n", "40712302 0.537336 0.640505 0.838926 \n", "43620110 0.637002 0.674885 0.943867 " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results[\"workers\"].sort_values(by=[\"wqs\"], ascending=False).head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Example annotations from worker `6432269` (with the highest worker quality score) for video fragment `1856509904`:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "JUDGMENTS OF HIGH QUALITY WORKER 6432269 FOR VIDEO 1856509904:\n", "scientist : 1\n", "\n", "ALL JUDGMENTS FOR VIDEO 1856509908\n", "scientist : 10\n", "other : 6\n", "presenter : 3\n", "farmer : 2\n", "businessperson : 2\n", "journalist : 1\n" ] }, { "data": { "text/html": [ "<video width='320' height='240' controls><source src=https://joran.org/ct/entity.admin.unit.2649/8574.mp4 type='video/mp4'></video>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "work_id = results[\"workers\"].sort_values(by=[\"wqs\"], ascending=False).index[0]\n", "work_units = results[\"judgments\"][results[\"judgments\"][\"worker\"] == work_id][\"unit\"]\n", "work_judg = results[\"judgments\"][results[\"judgments\"][\"unit\"] == work_units.iloc[0]]\n", "\n", "print(\"JUDGMENTS OF HIGH QUALITY WORKER %d FOR VIDEO %d:\" % (work_id, work_units.iloc[0]))\n", "for k, v in work_judg[work_judg[\"worker\"] == work_id][\"output.selected_answer\"].iloc[0].items():\n", " if v > 0:\n", " print(str(k) + \" : \" + str(v))\n", "\n", "print(\"\\nALL JUDGMENTS FOR VIDEO %d\" % work_units.iloc[1])\n", "sorted_judg = sorted(\n", " results[\"units\"][\"output.selected_answer\"][work_units.iloc[0]].items(),\n", " key=operator.itemgetter(1),\n", " reverse=True)\n", "\n", "for k, v in sorted_judg:\n", " if v > 0:\n", " print(str(k) + \" : \" + str(v))\n", "vid_url = results[\"units\"][\"input.videolocation\"][work_units.iloc[0]]\n", "HTML(\"<video width='320' height='240' controls><source src=\" + str(vid_url) + \" type='video/mp4'></video>\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Example annotations from worker `6432269` (with the highest worker quality score) for video fragment `1856509908`:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "JUDGMENTS OF HIGH QUALITY WORKER 6432269 FOR VIDEO 1856509908:\n", "none : 1\n", "\n", "ALL JUDGMENTS FOR VIDEO 1856509908\n", "none : 19\n", "philosopher : 1\n" ] }, { "data": { "text/html": [ "<video width='320' height='240' controls><source src=https://joran.org/ct/entity.admin.unit.2649/8583.mp4 type='video/mp4'></video>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "work_id = results[\"workers\"].sort_values(by=[\"wqs\"], ascending=False).index[0]\n", "work_units = results[\"judgments\"][results[\"judgments\"][\"worker\"] == work_id][\"unit\"]\n", "work_judg = results[\"judgments\"][results[\"judgments\"][\"unit\"] == work_units.iloc[1]]\n", "\n", "print(\"JUDGMENTS OF HIGH QUALITY WORKER %d FOR VIDEO %d:\" % (work_id, work_units.iloc[1]))\n", "for k, v in work_judg[work_judg[\"worker\"] == work_id][\"output.selected_answer\"].iloc[0].items():\n", " if v > 0:\n", " print(str(k) + \" : \" + str(v))\n", "\n", "print(\"\\nALL JUDGMENTS FOR VIDEO %d\" % work_units.iloc[1])\n", "sorted_judg = sorted(\n", " results[\"units\"][\"output.selected_answer\"][work_units.iloc[1]].items(),\n", " key=operator.itemgetter(1),\n", " reverse=True)\n", "\n", "for k, v in sorted_judg:\n", " if v > 0:\n", " print(str(k) + \" : \" + str(v))\n", "vid_url = results[\"units\"][\"input.videolocation\"][work_units.iloc[1]]\n", "HTML(\"<video width='320' height='240' controls><source src=\" + str(vid_url) + \" type='video/mp4'></video>\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Worker Quality vs. # Annotations\n", "\n", "As we can see from the plot below, there is no clear correlation between worker quality and number of annotations collected from the worker." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, '# Annotations')" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGWZJREFUeJzt3X+UJWV54PHvQ9sxbTI6Kh0WJuBEFseFxXXW9keU9UjcOK5xZfwRIjl6dI8JWVcT3eTMyoBnxWxOMJlojrvxZM8oHNFVotFxRKNOEHERFLTHQQaEcdWFaIMyqC2stjo0z/5xq/FO0923bvetunW7vp9z7ul731vV9VS9t+/TVe+PisxEktRexww7AEnScJkIJKnlTASS1HImAklqOROBJLWciUCSWs5EIEktZyKQpJYzEUhSyz1k2AGUceyxx+bmzZuHHYYkjZT9+/ffnZmTvZYbiUSwefNmpqenhx2GJI2UiLi9zHJeGpKkljMRSFLLmQgkqeVMBJLUciYCSWq5ynoNRcSJwHuA44AEdmfm2yPiQuD3gcPFoudn5ieqimMpew/MsGvfIe6YneOEjRPs2LaF7Vs3rbjOG/ce5LLrv8V8JmMRnPPUE/mz7afXFPHqLN7PMx8/yVW3Hu5rv5tiNXW2lvUGEevM7BxjEcxnsqnEtnvFupZ9GcTnd7ntL1UOrLjszOwcQeeLAeCYgPuTJY/TID7Hew/M8OaP3cwPfnwEgInxYzgmgh/9bB6Ah40fwy88ZIwfzh3hERPjRMDsj4+suh7K1tXiuBaOSZnPyyBFVXcoi4jjgeMz88sRsQHYD2wHzgb+X2b+VdnfNTU1lYPqPrr3wAw79xxk7sj8A2UT42Nc9KLTlz3ob9x7kP913T89qPxlTzupsclgqf1crNd+N8Vq6mwt6w061jLb7hXrWvZlEJ/f5bb/4idt4sP7Z44qHx8LSDhyf/Zcdim99nul5ZeLfceHvsKR+dV91/VbD2Xrqldcg/isRsT+zJzqtVxll4Yy887M/HLx/F7gFmDo3zi79h160Idq7sg8u/YdWnady67/Vl/lTbDUfi7Wa7+bYjV1tpb11mKl477StnvFupZ9GcTnd7ntX3b9tx5UfmQ+j0oCKy27lF77vdLyy8W+2iRQJp7F2y9bV73iqvPvs5Y2gojYDGwFri+KXhsRN0bEJRHxyGXWOTcipiNi+vDhw0stsip3zM71VQ4wv8xZ03LlTbDS/qxmuWFaTZ2tZb21GHRMC+Vr2ZdBfH6X204/v2M12xvE53gQ9d1PPZStqzJx1fX3WXkiiIhfBj4MvD4z7wH+FjgZeCJwJ/DWpdbLzN2ZOZWZU5OTPUdIl3bCxom+ygHGIvoqb4KV9mc1yw3TaupsLeutxaBjWihfy74M4vO73Hb6+R2r2d4gPseDqO9+6qFsXZWJq66/z0oTQUSM00kC78vMPQCZ+d3MnM/M+4F3Ak+pMobFdmzbwsT42FFlE+NjDzRwLeWcp57YV3kTLLWfi/Xa76ZYTZ2tZb21WOm4r7TtXrGuZV8G8fldbvvnPPXEB5WPjwXjx0SpZZfSa79XWn652MfHVv9PW7/1ULauesVV599nlb2GArgYuCUz39ZVfnxm3lm8fCFwU1UxLGWh4aWf3hcLDWqj1Gtoqf0c1V5Dq6mztaw3qFj76TXUK9a17MsgPr8rbX/qMY8q3WtoYdmyvYYG8TleeG8QvYbK1EPZuloqrvXYa+gM4HPAQeD+ovh84Bw6l4USuA34g67EsKRB9hqSpLYo22uosjOCzLyGToJbrNYxA5KklTmyWJJazkQgSS1nIpCkljMRSFLLmQgkqeVMBJLUciYCSWo5E4EktZyJQJJazkQgSS1nIpCkljMRSFLLmQgkqeVMBJLUciYCSWo5E4EktVxlN6aR1ru9B2ZqvQ2mVBUTgbQKew/MsHPPQeaOdO55OzM7x849BwFMBho5XhqSVmHXvkMPJIEFc0fm2bXv0JAiklbPRCCtwh2zc32VS01mIpBW4YSNE32VS01mIpBWYce2LUyMjx1VNjE+xo5tW4YUkbR6NhZLq7DQIGyvIa0HJgJplbZv3eQXv9YFLw1JUsuZCCSp5UwEktRyJgJJajkTgSS1nIlAklrORCBJLWcikKSWq2xAWUScCLwHOA5IYHdmvj0iHgV8ANgM3AacnZk/qCqOJnIe+3ay3tVUVZ4R3Af8SWaeCjwNeE1EnAqcB1yZmacAVxavW2NhHvuZ2TmSn89jv/fAzLBDU4WsdzVZZYkgM+/MzC8Xz+8FbgE2AWcBlxaLXQpsryqGJnIe+3ay3tVktbQRRMRmYCtwPXBcZt5ZvPUdOpeOllrn3IiYjojpw4cP1xFmLZzHvp2sdzVZ5YkgIn4Z+DDw+sy8p/u9zEw67QcPkpm7M3MqM6cmJyerDrM2zmPfTta7mqzSRBAR43SSwPsyc09R/N2IOL54/3jgripjaBrnsW8n611NVlkiiIgALgZuycy3db11OfCK4vkrgI9WFUMTbd+6iYtedDqbNk4QwKaNE1z0otPtPbLOWe9qsuhcnangF0ecAXwOOAjcXxSfT6ed4IPAScDtdLqPfn+l3zU1NZXT09OVxClJ61VE7M/MqV7LVTaOIDOvAWKZt59d1XYlSf1xZLEktZyJQJJazkQgSS1nIpCkljMRSFLLmQgkqeVMBJLUciYCSWo5E4EktZyJQJJazkQgSS1nIpCkljMRSFLLmQgkqeVMBJLUciYCSWo5E4EktZyJQJJarmciiIi/jIiHR8R4RFwZEYcj4mV1BCdJql6ZM4LnZOY9wPOB24B/DuyoMihJUn3KJIKFG9z/FvD3mfnDCuORJNXsIb0X4eMRcSswB7w6IiaBn1QbliSpLj3PCDLzPODpwFRmHgF+BJxVdWCSpHqUOSMAeDywOSK6l39PBfFIkmrWMxFExHuBk4EbgPmiODERSNK6UOaMYAo4NTOz6mAkSfUr02voJuCfVR2IJGk4ypwRHAt8NSK+CPx0oTAzX1BZVJKk2pRJBBdWHYQkaXh6JoLM/N8RcRzw5KLoi5l5V7VhSZLqUmauobOBLwK/DZwNXB8RL6k6MElSPcpcGroAePLCWUAxsvjTwIeqDEySVI8yvYaOWXQp6Htl1ouISyLiroi4qavswoiYiYgbisfzVhGzJGmAypwRfCoi9gGXFa9/B/hEifXeDfwNDx549teZ+VelI9RI23tghl37DnHH7BwnbJxgx7YtbN+6adhhSepSprF4R0S8GHhGUbQ7Mz9SYr2rI2Lz2sLTKNt7YIadew4yd6QzIH1mdo6dew4CmAykBil1h7LM/HBm/nHx6JkEenhtRNxYXDp65Bp/lxps175DDySBBXNH5tm179CQIpK0lGUTQURcU/y8NyLu6XrcGxH3rHJ7f0tn3qInAncCb11h++dGxHRETB8+fHiVm9Mw3TE711e5pOFYNhFk5hnFzw2Z+fCux4bMfPhqNpaZ383M+cy8H3gn8JQVlt2dmVOZOTU5ObmazWnITtg40Ve5pOEo0/vnvWXKyoiI47tevpDOPEZap3Zs28LE+NhRZRPjY+zYtmVIEUlaSpleQ6d1vyjuSfCkXitFxGXAs4BjI+LbwJuAZ0XEE+lMY30b8Ad9xqsRstAgbK8hqdmWTQQRsRM4H5joahMI4GfA7l6/ODPPWaL44tUEqdG1fesmv/ilhls2EWTmRcBFEXFRZu6sMSap9Rx/oTqVGUews+jmeQrwi13lV1cZmNRWjr9Q3co0Fv8ecDWwD3hz8fPCasOS2svxF6pbmQFlr6MzBfXtmXkmsBWYrTQqqcUcf6G6lUkEP8nMnwBExEMz81bA/n9SRRx/obqVSQTfjoiNwF7gioj4KHB7tWFJ7eX4C9WtTGPxC4unF0bEVcAjgE9WGpXUYo6/UN16JoKIeG9mvhw6t61cKANeXnFsUms5/kJ1Ws3I4jFKjCyW2sa+/xpVK80+ujMi7gWe0DXr6L3AXcBHa4tQGgELff9nZudIft73f++BmWGHJvW00uyjF2XmBmBX16yjGzLz0Y40lo5m33+NsrIji18APLMo+mxmfrzasKTRYt9/jbIyI4svojOo7KvF43UR8edVByaNEvv+a5SVGUfwW8BvZuYlmXkJ8Fzg+dWGJY0W+/5rlJXpNQSwEfh+8fwRFcUijSz7/muUlUkEFwEHisFkQaet4LxKo5JGkH3/NarKNBZfFhGfpTPxHMAbMvM7lUYlSapNmTaCheXupjPr6OMi4pk9lpckjYgyU0z8BfA7wM3A/UVx0rlHgSRpxJVpI9gObMnMn1YdjCSpfmUuDX0TGK86EEnScJQ5I/gxcENEXAk8cFaQmX9UWVSSpNqUSQSXFw9J0jpUpvvopXUEIkkajjK9hp4BXAg8plg+gMzMx1YbmiSpDmUuDV0M/GdgPzDfY1lJ0ogpkwh+mJneo1iS1qkyieCqiNgF7OHoXkNfriwqSVJtyiSCpxY/p7rKEviNwYcjSapbmV5DZy4ui4jjqglHklS3spPOEREbI+JVxcCyAxXGJEmq0YpnBBExAZwF/C6wFdhAZ+4hJ5yTpHVi2TOCiHg/8DXgN4H/AWwGfpCZn83M+5dbr2v9SyLiroi4qavsURFxRUT8n+LnI9e+C5KktVjp0tCpwA+AW4BbMnOeTiNxWe+mc3/jbucBV2bmKcCVNOROZ3sPzPCMt3yGXzvvH3jGWz7D3gMzww5JkmqzbCLIzCcCZ9O5HPTpiLgG2FC2oTgzr+bn9zlecBawMGXFpXQuMw3V3gMz7NxzkJnZORKYmZ1j556DJgNJrbFiY3Fm3pqZb8rMxwOvo/Pl/aWI+Pwqt3dcZt5ZPP8OMPTeR7v2HWLuyNEDpueOzLNr36EhRSRJ9SozjgCAzNwP7I+IHcC/WeuGMzMjYtlLTRFxLnAuwEknnbTWzS3rjtm5vsolab0p3X10QXasttfQdyPieIDi510rbGd3Zk5l5tTk5OQqN9fbCRsn+iqXpPWm70SwRpcDryievwL4aM3bf5Ad27YwMT52VNnE+Bg7tm0ZUkSSVK/Sl4b6FRGXAc8Cjo2IbwNvAt4CfDAiXgXcTqcxeqi2b90EdNoK7pid44SNE+zYtuWBckla7yJz5R6hEfHGzPyz4vlDh3ET+6mpqZyenq57s5I00iJif2ZO9VpupQFlb4iIXwde0lX8hUEEJ0lqjpUuDd0K/Dbw2Ij4XPH60RGxJTPtWylJ68RKjcWzwPnA1+lc6397UX7eGsYRSJIaZqUzgm3AfwVOBt4G3Aj8KDP/Qx2BSZLqsdIUE+dn5rOB24D3AmPAZERcExEfqyk+SVLFynQf3ZeZ08B0RLw6M8+IiGOrDkySVI+eA8oy8790vXxlUXZ3VQFJkurV18jizPxKVYFIkoaj7ikmJEkNYyKQpJYzEUhSy5kIJKnlTASS1HImAklqOROBJLWciUCSWq6yO5RJq7H3wIx3i1uCx0VVMhGoMfYemGHnnoPMHZkHYGZ2jp17DgK0+kvP46KqeWlIjbFr36EHvuwWzB2ZZ9e+dt8HyeOiqpkI1Bh3zM71Vd4WHhdVzUSgxjhh40Rf5W3hcVHVTARqjB3btjAxPnZU2cT4GDu2bRlSRM3gcVHVbCxWYyw0fNo75mgeF1UtMnPYMfQ0NTWV09PTww5DkkZKROzPzKley3lpSJJazktDUss5WE0mAqnFHKwm8NKQ1GoOVhOYCKRWc7CawEQgtZqD1QQmAqnVHKwmsLFYajUHqwmGlAgi4jbgXmAeuK/MgAdJ1di+dZNf/C03zDOCMzPz7ro2Zl/pZrJe2nsM2rrfTdSKS0P2lW4m66W9x6Ct+91Uw2osTuAfI2J/RJxb9cbsK91M1kt7j0Fb97uphnVGcEZmzkTErwBXRMStmXl19wJFgjgX4KSTTlrTxuwr3UzWS3uPQVv3u6mGckaQmTPFz7uAjwBPWWKZ3Zk5lZlTk5OTa9qefaWbyXpp7zFo6343Ve2JICJ+KSI2LDwHngPcVOU27SvdTNZLe49BW/e7qYZxaeg44CMRsbD992fmp6rcoH2lm8l6ae8xaOt+N5U3ppGkdarsjWla0X20H/ZtbibrZbRZf81mIuhi3+Zmsl5Gm/XXfE4618W+zc1kvYw266/5TARd7NvcTNbLaLP+ms9E0MW+zc1kvYw266/5TARd7NvcTNbLaLP+ms/G4i72bW4m62W0WX/N5zgCSVqnHEewiP2Ym8O6kJqlFYnAfszNYV1IzdOKxmL7MTeHdSE1TysSgf2Ym8O6kJqnFYnAfszNYV1IzdOKRGA/5uawLqTmaUVjsf2Ym8O6kJrHcQSStE6VHUfQiktDkqTlteLSkCTVZRQHTJoIJGlARnXApJeGJGlARnXApIlAkgZkVAdMmggkaUBGdcCkiUCSBmRUB0zaWCxJAzKqAyZNBJI0QNu3bmr8F/9irUkEo9i3V5Lq0IpEMKp9eyWpDq1oLB7Vvr2SVIdWJIJR7dsrSXVoRSIY1b69klSHViSCUe3bK0l1aEVj8aj27ZWkOgwlEUTEc4G3A2PAuzLzLVVvcxT79kpSHWq/NBQRY8A7gH8HnAqcExGn1h2HJKljGG0ETwG+npnfzMyfAX8HnDWEOCRJDCcRbAK+1fX620WZJGkIGttrKCLOjYjpiJg+fPjwsMORpHVrGIlgBjix6/WvFmVHyczdmTmVmVOTk5O1BSdJbROZWe8GIx4CfA14Np0E8CXgdzPz5hXWOQzcPoDNHwvcPYDfM2jG1Z8mxtXEmMC4+tXEuNYS02Mys+d/0rV3H83M+yLitcA+Ot1HL1kpCRTrDOSUICKmM3NqEL9rkIyrP02Mq4kxgXH1q4lx1RHTUMYRZOYngE8MY9uSpKM1trFYklSPtiWC3cMOYBnG1Z8mxtXEmMC4+tXEuCqPqfbGYklSs7TtjECStMi6TAQR8dyIOBQRX4+I85Z4/6ER8YHi/esjYnND4npmRHw5Iu6LiJfUEVPJuP44Ir4aETdGxJUR8ZgGxPQfI+JgRNwQEdfUNV9Vr7i6lntxRGRE1NIDpcTxemVEHC6O1w0R8XvDjqlY5uzis3VzRLy/6pjKxBURf911nL4WEbMNieukiLgqIg4Uf4vPG9jGM3NdPeh0Sf0G8FjgF4CvAKcuWuY/Af+zeP5S4AMNiWsz8ATgPcBLGnS8zgQeVjx/ddXHq2RMD+96/gLgU004VsVyG4CrgeuAqSbEBbwS+Js6PlN9xHQKcAB4ZPH6V5oQ16Ll/5BOF/ehx0WnreDVxfNTgdsGtf31eEZQZlK7s4BLi+cfAp4dETHsuDLztsy8Ebi/4lj6jeuqzPxx8fI6OqPBhx3TPV0vfwmoo7Gr7ISJ/w34C+AnNcTUT1x1KhPT7wPvyMwfAGTmXQ2Jq9s5wGUNiSuBhxfPHwHcMaiNr8dEUGZSuweWycz7gB8Cj25AXMPQb1yvAj5ZaUQlY4qI10TEN4C/BP6o4phKxRUR/xo4MTP/oYZ4SsdVeHFxSeFDEXHiEu/XHdPjgMdFxLURcV1xn5Kqlf68F5dAfw34TEPiuhB4WUR8m844rD8c1MbXYyJQRSLiZcAUsGvYsQBk5jsy82TgDcAbhx1PRBwDvA34k2HHsoSPAZsz8wnAFfz8jHiYHkLn8tCz6Pzn/c6I2DjUiI72UuBDmTk/7EAK5wDvzsxfBZ4HvLf4zK3ZekwEZSa1e2CZYu6jRwDfa0Bcw1Aqroj4t8AFwAsy86dNiKnL3wHbK42oo1dcG4B/CXw2Im4DngZcXkODcc/jlZnf66q3dwFPGnZMdP7rvTwzj2Tm/6UzB9kpDYhrwUup57IQlIvrVcAHATLzC8Av0pmHaO2qbgSp+0Hnv4xv0jmlW2h0OW3RMq/h6MbiDzYhrq5l3019jcVljtdWOg1ZpzQoplO6nv97YLoJcS1a/rPU01hc5ngd3/X8hcB1DYjpucClxfNj6VwaefSw4yqWezxwG8VYq4bU4SeBVxbP/wWdNoKBxFf5Dg7jQee06WvFl9cFRdmf0vlvFjqZ9O+BrwNfBB7bkLieTOe/pB/ROUO5uSFxfRr4LnBD8bi8ATG9Hbi5iOeqlb6Q64xr0bK1JIKSx+ui4nh9pThej29ATEHnUtpXgYPAS5twrIrXFwJvqSOePo7XqcC1RR3eADxnUNt2ZLEktdx6bCOQJPXBRCBJLWcikKSWMxFIUsuZCCSp5UwE0iLF7JOv73q9LyLe1fX6rcWMrKdFxGeKGSO/ERFvXhjpGRHHRcTHI+Irxeya3ppVjWUikB7sWuDp8MC0EccCp3W9/3TgC8DldPqabwFOpzNx2OuKZf4UuCIz/1VmngosO2W1NGwmAunBPg/8evH8NOAm4N6IeGREPJTOqM4nANdm5j8CZGd21tcCO4r1jqczOJDi/Rtril3qm4lAWiQz7wDui4iT+Pl//9fTSQ5TdEbBbgH2L1rvG8BEMXHaO4CLixuJXBARJ9S5D1I/TATS0j5PJwksJIIvdL2+ttfKmbmPzk1G3kln3poDETFZWbTSGpgIpKUttBOcTufS0HV0zgieTidJfJVFM3hGxGOB72XmLEBmfj8z35+ZLwe+BDyzvvCl8kwE0tI+Dzwf+H5mzmfm94GNdJLB54H3AWcU03MTERPAfwfeVLz+jYh4WPF8A3Ay8E+174VUgolAWtpBOr2FrltU9sPMvDsz5+jcK/mCiPgacDedxuP3Fcs+CZiOiBvpXFZ6V2Z+qb7wpfKcfVQagIjYTmdK5TMz8/ZhxyP1w0QgSS3npSFJajkTgSS1nIlAklrORCBJLWcikKSWMxFIUsuZCCSp5f4/F3llZT3e+0cAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.scatter(results[\"workers\"][\"wqs\"], results[\"workers\"][\"judgment\"])\n", "plt.xlabel(\"WQS\")\n", "plt.ylabel(\"# Annotations\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Annotation Quality Scores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The **annotation metrics** are stored in `results[\"annotations\"]`. The `aqs` column contains the **annotation quality scores**, capturing the overall worker agreement over one annotation.\n", "\n", "There is a slight correlation between the number of annotations (column `output.selected_answer`) and the annotation quality score - annotations that have not been picked often (e.g. `engineer`, `farmer`) tend to have lower quality scores - this is because these annotations are less present in the corpus, therefore the likelihood that they are picked is lower, and when they do get picked it is more likely it was a mistake by the worker. However, it is not a set rule, and there exist annotations that are picked less often (e.g. `astronaut`) that can have high quality scores." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>output.selected_answer</th>\n", " <th>aqs</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>astronaut</th>\n", " <td>21</td>\n", " <td>1.000</td>\n", " </tr>\n", " <tr>\n", " <th>none</th>\n", " <td>379</td>\n", " <td>0.858</td>\n", " </tr>\n", " <tr>\n", " <th>militaryperson</th>\n", " <td>20</td>\n", " <td>0.846</td>\n", " </tr>\n", " <tr>\n", " <th>celebrity</th>\n", " <td>157</td>\n", " <td>0.746</td>\n", " </tr>\n", " <tr>\n", " <th>model</th>\n", " <td>29</td>\n", " <td>0.457</td>\n", " </tr>\n", " <tr>\n", " <th>other</th>\n", " <td>176</td>\n", " <td>0.450</td>\n", " </tr>\n", " <tr>\n", " <th>presenter</th>\n", " <td>84</td>\n", " <td>0.430</td>\n", " </tr>\n", " <tr>\n", " <th>scientist</th>\n", " <td>65</td>\n", " <td>0.407</td>\n", " </tr>\n", " <tr>\n", " <th>monarch</th>\n", " <td>11</td>\n", " <td>0.319</td>\n", " </tr>\n", " <tr>\n", " <th>fictionalcharacter</th>\n", " <td>89</td>\n", " <td>0.306</td>\n", " </tr>\n", " <tr>\n", " <th>athlete</th>\n", " <td>15</td>\n", " <td>0.280</td>\n", " </tr>\n", " <tr>\n", " <th>artist</th>\n", " <td>59</td>\n", " <td>0.251</td>\n", " </tr>\n", " <tr>\n", " <th>criminal</th>\n", " <td>8</td>\n", " <td>0.127</td>\n", " </tr>\n", " <tr>\n", " <th>journalist</th>\n", " <td>31</td>\n", " <td>0.076</td>\n", " </tr>\n", " <tr>\n", " <th>businessperson</th>\n", " <td>29</td>\n", " <td>0.062</td>\n", " </tr>\n", " <tr>\n", " <th>writer</th>\n", " <td>22</td>\n", " <td>0.057</td>\n", " </tr>\n", " <tr>\n", " <th>politician</th>\n", " <td>12</td>\n", " <td>0.056</td>\n", " </tr>\n", " <tr>\n", " <th>engineer</th>\n", " <td>8</td>\n", " <td>0.036</td>\n", " </tr>\n", " <tr>\n", " <th>farmer</th>\n", " <td>4</td>\n", " <td>0.001</td>\n", " </tr>\n", " <tr>\n", " <th>producer</th>\n", " <td>13</td>\n", " <td>0.001</td>\n", " </tr>\n", " <tr>\n", " <th>philosopher</th>\n", " <td>8</td>\n", " <td>0.000</td>\n", " </tr>\n", " <tr>\n", " <th>psychologist</th>\n", " <td>3</td>\n", " <td>0.000</td>\n", " </tr>\n", " <tr>\n", " <th>sportsmanager</th>\n", " <td>0</td>\n", " <td>0.000</td>\n", " </tr>\n", " <tr>\n", " <th>archeologist</th>\n", " <td>8</td>\n", " <td>0.000</td>\n", " </tr>\n", " <tr>\n", " <th>architect</th>\n", " <td>8</td>\n", " <td>0.000</td>\n", " </tr>\n", " <tr>\n", " <th>judge</th>\n", " <td>2</td>\n", " <td>0.000</td>\n", " </tr>\n", " <tr>\n", " <th>chef</th>\n", " <td>1</td>\n", " <td>0.000</td>\n", " </tr>\n", " <tr>\n", " <th>lawyer</th>\n", " <td>2</td>\n", " <td>0.000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " output.selected_answer aqs\n", "astronaut 21 1.000\n", "none 379 0.858\n", "militaryperson 20 0.846\n", "celebrity 157 0.746\n", "model 29 0.457\n", "other 176 0.450\n", "presenter 84 0.430\n", "scientist 65 0.407\n", "monarch 11 0.319\n", "fictionalcharacter 89 0.306\n", "athlete 15 0.280\n", "artist 59 0.251\n", "criminal 8 0.127\n", "journalist 31 0.076\n", "businessperson 29 0.062\n", "writer 22 0.057\n", "politician 12 0.056\n", "engineer 8 0.036\n", "farmer 4 0.001\n", "producer 13 0.001\n", "philosopher 8 0.000\n", "psychologist 3 0.000\n", "sportsmanager 0 0.000\n", "archeologist 8 0.000\n", "architect 8 0.000\n", "judge 2 0.000\n", "chef 1 0.000\n", "lawyer 2 0.000" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results[\"annotations\"][\"output.selected_answer\"] = 0\n", "\n", "for idx in results[\"judgments\"].index:\n", " for k,v in results[\"judgments\"][\"output.selected_answer\"][idx].items():\n", " if v > 0:\n", " results[\"annotations\"].loc[k, \"output.selected_answer\"] += 1\n", " \n", "\n", "results[\"annotations\"] = results[\"annotations\"].sort_values(by=[\"aqs\"], ascending=False)\n", "results[\"annotations\"].round(3)[[\"output.selected_answer\", \"aqs\"]]" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "rows = []\n", "header = [\"unit\", \"videolocation\", \"subtitles\", \"imagetags\", \"subtitletags\", \"uqs\", \"uqs_initial\"]\n", "annotation_vector = [\"archeologist\", \"architect\", \"artist\", \"astronaut\", \"athlete\", \"businessperson\",\"celebrity\", \n", " \"chef\", \"criminal\", \"engineer\", \"farmer\", \"fictionalcharacter\", \"journalist\", \"judge\", \n", " \"lawyer\", \"militaryperson\", \"model\", \"monarch\", \"philosopher\", \"politician\", \"presenter\", \n", " \"producer\", \"psychologist\", \"scientist\", \"sportsmanager\", \"writer\", \"none\", \"other\"]\n", "header.extend(annotation_vector)\n", "annotation_vector_in = [\"archeologist_initial_initial\", \"architect_initial\", \"artist_initial\", \"astronaut_initial\", \n", " \"athlete_initial\", \"businessperson_initial\",\"celebrity_initial\", \"chef_initial\", \n", " \"criminal_initial\", \"engineer_initial\", \"farmer_initial\", \"fictionalcharacter_initial\", \n", " \"journalist_initial\", \"judge_initial\", \"lawyer_initial\", \"militaryperson_initial\", \n", " \"model_initial\", \"monarch_initial\", \"philosopher_initial\", \"politician_initial\", \n", " \"presenter_initial\", \"producer_initial\", \"psychologist_initial\", \"scientist_initial\", \n", " \"sportsmanager_initial\", \"writer_initial\", \"none_initial\", \"other_initial\"]\n", "header.extend(annotation_vector_in)\n", "units = results[\"units\"].reset_index()\n", "for i in range(len(units.index)):\n", " row = [units[\"unit\"].iloc[i], units[\"input.videolocation\"].iloc[i], units[\"input.subtitles\"].iloc[i], \\\n", " units[\"input.imagetags\"].iloc[i], units[\"input.subtitletags\"].iloc[i], units[\"uqs\"].iloc[i], \n", " units[\"uqs_initial\"].iloc[i]]\n", " for item in annotation_vector:\n", " row.append(units[\"unit_annotation_score\"].iloc[i][item])\n", " for item in annotation_vector_in:\n", " row.append(units[\"unit_annotation_score_initial\"].iloc[i][item])\n", " rows.append(row)\n", "rows = pd.DataFrame(rows, columns=header)\n", "rows.to_csv(\"../data/results/multchoice-people-video-units.csv\", index=False)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "results[\"workers\"].to_csv(\"../data/results/multchoice-people-video-workers.csv\", index=True)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "results[\"annotations\"].to_csv(\"../data/results/multchoice-people-video-annotations.csv\", index=True)" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.7" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
NuclearTalent/NuclearStructure
doc/pub/mbpt/ipynb/mbpt.ipynb
1
24951
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<!-- Slides for PHY981 -->\n", "<!-- dom:TITLE: Many-body perturbation theory and effective operators for the nuclear shell model -->\n", "# Many-body perturbation theory and effective operators for the nuclear shell model\n", "<!-- dom:AUTHOR: Morten Hjorth-Jensen at [National Superconducting Cyclotron Laboratory](http://www.nscl.msu.edu/) and [Department of Physics and Astronomy](https://www.pa.msu.edu/), [Michigan State University](http://www.msu.edu/), East Lansing, MI 48824, USA -->\n", "<!-- Author: --> \n", "**Morten Hjorth-Jensen**, [National Superconducting Cyclotron Laboratory](http://www.nscl.msu.edu/) and [Department of Physics and Astronomy](https://www.pa.msu.edu/), [Michigan State University](http://www.msu.edu/), East Lansing, MI 48824, USA\n", "\n", "Date: **Jul 19, 2017**\n", "\n", "Copyright 2013-2017, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license\n", "\n", "\n", "\n", "## Many-body perturbation theory\n", "\n", "We assume here that we are only interested in the ground state of the system and \n", "expand the exact wave function in term of a series of Slater determinants" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\vert \\Psi_0\\rangle = \\vert \\Phi_0\\rangle + \\sum_{m=1}^{\\infty}C_m\\vert \\Phi_m\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where we have assumed that the true ground state is dominated by the \n", "solution of the unperturbed problem, that is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{H}_0\\vert \\Phi_0\\rangle= W_0\\vert \\Phi_0\\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The state $\\vert \\Psi_0\\rangle$ is not normalized, rather we have used an intermediate \n", "normalization $\\langle \\Phi_0 \\vert \\Psi_0\\rangle=1$ since we have $\\langle \\Phi_0\\vert \\Phi_0\\rangle=1$. \n", "\n", "\n", "## Many-body perturbation theory\n", "The Schroedinger equation is" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{H}\\vert \\Psi_0\\rangle = E\\vert \\Psi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and multiplying the latter from the left with $\\langle \\Phi_0\\vert $ gives" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle \\Phi_0\\vert \\hat{H}\\vert \\Psi_0\\rangle = E\\langle \\Phi_0\\vert \\Psi_0\\rangle=E,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and subtracting from this equation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle \\Psi_0\\vert \\hat{H}_0\\vert \\Phi_0\\rangle= W_0\\langle \\Psi_0\\vert \\Phi_0\\rangle=W_0,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and using the fact that the both operators $\\hat{H}$ and $\\hat{H}_0$ are hermitian \n", "results in" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Delta E=E-W_0=\\langle \\Phi_0\\vert \\hat{H}_I\\vert \\Psi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which is an exact result. We call this quantity the correlation energy.\n", "\n", "\n", "## Many-body perturbation theory\n", "This equation forms the starting point for all perturbative derivations. However,\n", "as it stands it represents nothing but a mere formal rewriting of Schroedinger's equation and is not of much practical use. The exact wave function $\\vert \\Psi_0\\rangle$ is unknown. In order to obtain a perturbative expansion, we need to expand the exact wave function in terms of the interaction $\\hat{H}_I$. \n", "\n", "Here we have assumed that our model space defined by the operator $\\hat{P}$ is one-dimensional, meaning that" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{P}= \\vert \\Phi_0\\rangle \\langle \\Phi_0\\vert ,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{Q}=\\sum_{m=1}^{\\infty}\\vert \\Phi_m\\rangle \\langle \\Phi_m\\vert .\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Many-body perturbation theory\n", "We can thus rewrite the exact wave function as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\vert \\Psi_0\\rangle= (\\hat{P}+\\hat{Q})\\vert \\Psi_0\\rangle=\\vert \\Phi_0\\rangle+\\hat{Q}\\vert \\Psi_0\\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Going back to the Schr\\\"odinger equation, we can rewrite it as, adding and a subtracting a term $\\omega \\vert \\Psi_0\\rangle$ as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\left(\\omega-\\hat{H}_0\\right)\\vert \\Psi_0\\rangle=\\left(\\omega-E+\\hat{H}_I\\right)\\vert \\Psi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where $\\omega$ is an energy variable to be specified later. \n", "\n", "## Many-body perturbation theory\n", "We assume also that the resolvent of $\\left(\\omega-\\hat{H}_0\\right)$ exits, that is\n", "it has an inverse which defined the unperturbed Green's function as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\left(\\omega-\\hat{H}_0\\right)^{-1}=\\frac{1}{\\left(\\omega-\\hat{H}_0\\right)}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can rewrite Schroedinger's equation as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\vert \\Psi_0\\rangle=\\frac{1}{\\omega-\\hat{H}_0}\\left(\\omega-E+\\hat{H}_I\\right)\\vert \\Psi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and multiplying from the left with $\\hat{Q}$ results in" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{Q}\\vert \\Psi_0\\rangle=\\frac{\\hat{Q}}{\\omega-\\hat{H}_0}\\left(\\omega-E+\\hat{H}_I\\right)\\vert \\Psi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which is possible since we have defined the operator $\\hat{Q}$ in terms of the eigenfunctions of $\\hat{H}$.\n", "\n", "\n", "\n", "## Many-body perturbation theory\n", "These operators commute meaning that" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{Q}\\frac{1}{\\left(\\omega-\\hat{H}_0\\right)}\\hat{Q}=\\hat{Q}\\frac{1}{\\left(\\omega-\\hat{H}_0\\right)}=\\frac{\\hat{Q}}{\\left(\\omega-\\hat{H}_0\\right)}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With these definitions we can in turn define the wave function as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\vert \\Psi_0\\rangle=\\vert \\Phi_0\\rangle+\\frac{\\hat{Q}}{\\omega-\\hat{H}_0}\\left(\\omega-E+\\hat{H}_I\\right)\\vert \\Psi_0\\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This equation is again nothing but a formal rewrite of Schr\\\"odinger's equation\n", "and does not represent a practical calculational scheme. \n", "It is a non-linear equation in two unknown quantities, the energy $E$ and the exact\n", "wave function $\\vert \\Psi_0\\rangle$. We can however start with a guess for $\\vert \\Psi_0\\rangle$ on the right hand side of the last equation.\n", "\n", "\n", "## Many-body perturbation theory\n", " The most common choice is to start with the function which is expected to exhibit the largest overlap with the wave function we are searching after, namely $\\vert \\Phi_0\\rangle$. This can again be inserted in the solution for $\\vert \\Psi_0\\rangle$ in an iterative fashion and if we continue along these lines we end up with" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\vert \\Psi_0\\rangle=\\sum_{i=0}^{\\infty}\\left\\{\\frac{\\hat{Q}}{\\omega-\\hat{H}_0}\\left(\\omega-E+\\hat{H}_I\\right)\\right\\}^i\\vert \\Phi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "for the wave function and" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Delta E=\\sum_{i=0}^{\\infty}\\langle \\Phi_0\\vert \\hat{H}_I\\left\\{\\frac{\\hat{Q}}{\\omega-\\hat{H}_0}\\left(\\omega-E+\\hat{H}_I\\right)\\right\\}^i\\vert \\Phi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which is now a perturbative expansion of the exact energy in terms of the interaction\n", "$\\hat{H}_I$ and the unperturbed wave function $\\vert \\Psi_0\\rangle$.\n", "\n", "\n", "## Many-body perturbation theory\n", "In our equations for $\\vert \\Psi_0\\rangle$ and $\\Delta E$ in terms of the unperturbed\n", "solutions $\\vert \\Phi_i\\rangle$ we have still an undetermined parameter $\\omega$\n", "and a dependecy on the exact energy $E$. Not much has been gained thus from a practical computational point of view. \n", "\n", "\n", "## Many-body perturbation theory\n", "In Brilluoin-Wigner perturbation theory it is customary to set $\\omega=E$. This results in the following perturbative expansion for the energy $\\Delta E$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1\n", "7\n", " \n", "<\n", "<\n", "<\n", "!\n", "!\n", "M\n", "A\n", "T\n", "H\n", "_\n", "B\n", "L\n", "O\n", "C\n", "K" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle \\Phi_0\\vert \\left(\\hat{H}_I+\\hat{H}_I\\frac{\\hat{Q}}{E-\\hat{H}_0}\\hat{H}_I+\n", "\\hat{H}_I\\frac{\\hat{Q}}{E-\\hat{H}_0}\\hat{H}_I\\frac{\\hat{Q}}{E-\\hat{H}_0}\\hat{H}_I+\\dots\\right)\\vert \\Phi_0\\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1\n", "9\n", " \n", "<\n", "<\n", "<\n", "!\n", "!\n", "M\n", "A\n", "T\n", "H\n", "_\n", "B\n", "L\n", "O\n", "C\n", "K" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle \\Phi_0\\vert \\left(\\hat{H}_I+\\hat{H}_I\\frac{\\hat{Q}}{E-\\hat{H}_0}\\hat{H}_I+\n", "\\hat{H}_I\\frac{\\hat{Q}}{E-\\hat{H}_0}\\hat{H}_I\\frac{\\hat{Q}}{E-\\hat{H}_0}\\hat{H}_I+\\dots\\right)\\vert \\Phi_0\\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This expression depends however on the exact energy $E$ and is again not very convenient from a practical point of view. It can obviously be solved iteratively, by starting with a guess for $E$ and then solve till some kind of self-consistency criterion has been reached. \n", "\n", "Actually, the above expression is nothing but a rewrite again of the full Schr\\\"odinger equation. \n", "\n", "## Many-body perturbation theory\n", "Defining $e=E-\\hat{H}_0$ and recalling that $\\hat{H}_0$ commutes with \n", "$\\hat{Q}$ by construction and that $\\hat{Q}$ is an idempotent operator\n", "$\\hat{Q}^2=\\hat{Q}$. \n", "Using this equation in the above expansion for $\\Delta E$ we can write the denominator" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2\n", "1\n", " \n", "<\n", "<\n", "<\n", "!\n", "!\n", "M\n", "A\n", "T\n", "H\n", "_\n", "B\n", "L\n", "O\n", "C\n", "K" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{Q}\\left[\\frac{1}{\\hat{e}}+\\frac{1}{\\hat{e}}\\hat{Q}\\hat{H}_I\\hat{Q}\n", "\\frac{1}{\\hat{e}}+\\frac{1}{\\hat{e}}\\hat{Q}\\hat{H}_I\\hat{Q}\n", "\\frac{1}{\\hat{e}}\\hat{Q}\\hat{H}_I\\hat{Q}\\frac{1}{\\hat{e}}+\\dots\\right]\\hat{Q}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Many-body perturbation theory\n", "Inserted in the expression for $\\Delta E$ leads to" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Delta E=\n", "\\langle \\Phi_0\\vert \\hat{H}_I+\\hat{H}_I\\hat{Q}\\frac{1}{E-\\hat{H}_0-\\hat{Q}\\hat{H}_I\\hat{Q}}\\hat{Q}\\hat{H}_I\\vert \\Phi_0\\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In RS perturbation theory we set $\\omega = W_0$ and obtain the following expression for the energy difference" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2\n", "4\n", " \n", "<\n", "<\n", "<\n", "!\n", "!\n", "M\n", "A\n", "T\n", "H\n", "_\n", "B\n", "L\n", "O\n", "C\n", "K" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle \\Phi_0\\vert \\left(\\hat{H}_I+\\hat{H}_I\\frac{\\hat{Q}}{W_0-\\hat{H}_0}(\\hat{H}_I-\\Delta E)+\n", "\\hat{H}_I\\frac{\\hat{Q}}{W_0-\\hat{H}_0}(\\hat{H}_I-\\Delta E)\\frac{\\hat{Q}}{W_0-\\hat{H}_0}(\\hat{H}_I-\\Delta E)+\\dots\\right)\\vert \\Phi_0\\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Many-body perturbation theory\n", "Recalling that $\\hat{Q}$ commutes with $\\hat{H_0}$ and since $\\Delta E$ is a constant we obtain that" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{Q}\\Delta E\\vert \\Phi_0\\rangle = \\hat{Q}\\Delta E\\vert \\hat{Q}\\Phi_0\\rangle = 0.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Inserting this results in the expression for the energy results in" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Delta E=\\langle \\Phi_0\\vert \\left(\\hat{H}_I+\\hat{H}_I\\frac{\\hat{Q}}{W_0-\\hat{H}_0}\\hat{H}_I+\n", "\\hat{H}_I\\frac{\\hat{Q}}{W_0-\\hat{H}_0}(\\hat{H}_I-\\Delta E)\\frac{\\hat{Q}}{W_0-\\hat{H}_0}\\hat{H}_I+\\dots\\right)\\vert \\Phi_0\\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Many-body perturbation theory\n", "We can now this expression in terms of a perturbative expression in terms\n", "of $\\hat{H}_I$ where we iterate the last expression in terms of $\\Delta E$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Delta E=\\sum_{i=1}^{\\infty}\\Delta E^{(i)}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We get the following expression for $\\Delta E^{(i)}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Delta E^{(1)}=\\langle \\Phi_0\\vert \\hat{H}_I\\vert \\Phi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which is just the contribution to first order in perturbation theory," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Delta E^{(2)}=\\langle\\Phi_0\\vert \\hat{H}_I\\frac{\\hat{Q}}{W_0-\\hat{H}_0}\\hat{H}_I\\vert \\Phi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "which is the contribution to second order.\n", "\n", "\n", "## Many-body perturbation theory" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Delta E^{(3)}=\\langle \\Phi_0\\vert \\hat{H}_I\\frac{\\hat{Q}}{W_0-\\hat{H}_0}\\hat{H}_I\\frac{\\hat{Q}}{W_0-\\hat{H}_0}\\hat{H}_I\\Phi_0\\rangle-\n", "\\langle\\Phi_0\\vert \\hat{H}_I\\frac{\\hat{Q}}{W_0-\\hat{H}_0}\\langle \\Phi_0\\vert \\hat{H}_I\\vert \\Phi_0\\rangle\\frac{\\hat{Q}}{W_0-\\hat{H}_0}\\hat{H}_I\\vert \\Phi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "being the third-order contribution. \n", "\n", "## Interpreting the correlation energy and the wave operator\n", "\n", "In the shell-model lectures we showed that we could rewrite the exact state function for say the ground state, as a linear expansion in terms of all possible Slater determinants. That is, we \n", "define the ansatz for the ground state as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Phi_0\\rangle = \\left(\\prod_{i\\le F}\\hat{a}_{i}^{\\dagger}\\right)|0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where the index $i$ defines different single-particle states up to the Fermi level. We have assumed that we have $N$ fermions. \n", "A given one-particle-one-hole ($1p1h$) state can be written as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Phi_i^a\\rangle = \\hat{a}_{a}^{\\dagger}\\hat{a}_i|\\Phi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "while a $2p2h$ state can be written as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Phi_{ij}^{ab}\\rangle = \\hat{a}_{a}^{\\dagger}\\hat{a}_{b}^{\\dagger}\\hat{a}_j\\hat{a}_i|\\Phi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "and a general $ApAh$ state as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Phi_{ijk\\dots}^{abc\\dots}\\rangle = \\hat{a}_{a}^{\\dagger}\\hat{a}_{b}^{\\dagger}\\hat{a}_{c}^{\\dagger}\\dots\\hat{a}_k\\hat{a}_j\\hat{a}_i|\\Phi_0\\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Interpreting the correlation energy and the wave operator\n", "We use letters $ijkl\\dots$ for states below the Fermi level and $abcd\\dots$ for states above the Fermi level. A general single-particle state is given by letters $pqrs\\dots$.\n", "\n", "We can then expand our exact state function for the ground state \n", "as" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Psi_0\\rangle=C_0|\\Phi_0\\rangle+\\sum_{ai}C_i^a|\\Phi_i^a\\rangle+\\sum_{abij}C_{ij}^{ab}|\\Phi_{ij}^{ab}\\rangle+\\dots\n", "=(C_0+\\hat{C})|\\Phi_0\\rangle,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where we have introduced the so-called correlation operator" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\hat{C}=\\sum_{ai}C_i^a\\hat{a}_{a}^{\\dagger}\\hat{a}_i +\\sum_{abij}C_{ij}^{ab}\\hat{a}_{a}^{\\dagger}\\hat{a}_{b}^{\\dagger}\\hat{a}_j\\hat{a}_i+\\dots\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since the normalization of $\\Psi_0$ is at our disposal and since $C_0$ is by hypothesis non-zero, we may arbitrarily set $C_0=1$ with \n", "corresponding proportional changes in all other coefficients. Using this so-called intermediate normalization we have" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\langle \\Psi_0 | \\Phi_0 \\rangle = \\langle \\Phi_0 | \\Phi_0 \\rangle = 1,\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "resulting in" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "|\\Psi_0\\rangle=(1+\\hat{C})|\\Phi_0\\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Interpreting the correlation energy and the wave operator\n", "In a shell-model calculation, the unknown coefficients in $\\hat{C}$ are the \n", "eigenvectors which result from the diagonalization of the Hamiltonian matrix.\n", "\n", "How can we use perturbation theory to determine the same coefficients? Let us study the contributions to second order in the interaction, namely" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Delta E^{(2)}=\\langle\\Phi_0\\vert \\hat{H}_I\\frac{\\hat{Q}}{W_0-\\hat{H}_0}\\hat{H}_I\\vert \\Phi_0\\rangle.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The intermediate states given by $\\hat{Q}$ can at most be of a $2p-2h$ nature if we have a two-body Hamiltonian. This means that second order in the perturbation theory can have $1p-1h$ and $2p-2h$ at most as intermediate states. When we diagonalize, these contributions are included to infinite order. This means that higher-orders in perturbation theory bring in more complicated correlations. \n", "\n", "## Interpreting the correlation energy and the wave operator\n", "If we limit the attention to a Hartree-Fock basis, then we have that\n", "$\\langle\\Phi_0\\vert \\hat{H}_I \\vert 2p-2h\\rangle$ is the only contribution and the contribution to the energy reduces to" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "\\Delta E^{(2)}=\\frac{1}{4}\\sum_{abij}\\langle ij\\vert \\hat{v}\\vert ab\\rangle \\frac{\\langle ab\\vert \\hat{v}\\vert ij\\rangle}{\\epsilon_i+\\epsilon_j-\\epsilon_a-\\epsilon_b}.\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Interpreting the correlation energy and the wave operator\n", "If we compare this to the correlation energy obtained from full configuration interaction theory with a Hartree-Fock basis, we found that" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "E-E_0 =\\Delta E=\n", "\\sum_{abij}\\langle ij | \\hat{v}| ab \\rangle C_{ij}^{ab},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "where the energy $E_0$ is the reference energy and $\\Delta E$ defines the so-called correlation energy.\n", "\n", "We see that if we set" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$$\n", "C_{ij}^{ab} =\\frac{1}{4}\\frac{\\langle ab \\vert \\hat{v} \\vert ij \\rangle}{\\epsilon_i+\\epsilon_j-\\epsilon_a-\\epsilon_b},\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "we have a perfect agreement between FCI and MBPT. However, FCI includes such $2p-2h$ correlations to infinite order. In order to make a meaningful comparison we would at least need to sum such correlations to infinite order in perturbation theory. \n", "\n", "## Interpreting the correlation energy and the wave operator\n", "Summing up, we can see that\n", "* MBPT introduces order-by-order specific correlations and we make comparisons with exact calculations like FCI\n", "\n", "* At every order, we can calculate all contributions since they are well-known and either tabulated or calculated on the fly.\n", "\n", "* MBPT is a non-variational theory and there is no guarantee that higher orders will improve the convergence. \n", "\n", "* However, since FCI calculations are limited by the size of the Hamiltonian matrices to diagonalize (today's most efficient codes can attach dimensionalities of ten billion basis states, MBPT can function as an approximative method which gives a straightforward (but tedious) calculation recipe. \n", "\n", "* MBPT has been widely used to compute effective interactions for the nuclear shell-model.\n", "\n", "* But there are better methods which sum to infinite order important correlations. Coupled cluster theory is one of these methods. \n", "\n", "Codes for computing effective Hamiltonians for the shell model as well as many other codes can be obtained from the [CENS website](https://github.com/ManyBodyPhysics/CENS)." ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 0 }
cc0-1.0
erikdrysdale/erikdrysdale.github.io
_rmd/extra_BCa/bca_python.ipynb
1
406413
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Implementing the BCa Bootstrapping in Python\n", "\n", "The [bootstrap](https://en.wikipedia.org/wiki/Bootstrapping_(statistics)) is a powerful tool for carrying out inference on statistics whose distribution is unknown. The non-parametric version of the bootstrap obtains variation around the point estimate of a statistic by randomly resampling the data with replacement and recalculating the bootstrap-statistic based on these resamples. This simulated distribution can be used to obtain (close-to) valid frequentist inference measures like p-values and confidence intervals (CIs). This post will show how to implement the bias-corrected and accelerated ([BCa](https://www.tandfonline.com/doi/abs/10.1080/01621459.1987.10478410)) bootstrap to calculate either one and two-sided CIs. A good discussion of bootstrapped p-values can be found [here](http://qed.econ.queensu.ca/working_papers/papers/qed_wp_1127.pdf). Nathaniel Helwig's excellent class [notes](http://users.stat.umn.edu/~helwig/notes/bootci-Notes.pdf) are used or paraphrased throughout this post.\n", "\n", "If you are want to use an existing `python` package, [`arch`](https://arch.readthedocs.io/en/latest) is an excellent choice (I have made use of it in other [posts](http://www.erikdrysdale.com/threshold_and_power)). There are two advantages for implementing a custom procedure. First, `arch` is limited to a number of sampling strategies, and I recently found myself needing to implement a stratified bootstrap, which I could not do with the package. Second, the `conf_int` method only allows inference for a specific level (i.e. type-I error rate) for every sampling run. If you are carrying out statistical simulations this is a huge waste since computing the 90% or 95% CI can be done from the same bootstrap simulation. Lastly this blueprint can modified for other uses.\n", "\n", "The motivating example for this post will be to estimate the threshold for determining the positive predictive value ([PPV](https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values)) of a classifier. This statistic is a good target for the BCa bootstrap because its distribution is skewed, biased, and non-normal. Anyone developing machine learning tools for the real world will understand the importance of [this task](http://www.erikdrysdale.com/threshold_and_power/), since researchers want to ensure their algorithms obtain *at least* some level of performance in a generalized setting. For simplicity the scores of the algorithm will come from a normal distribution to allow for an easy comparison to the \"ground truth\". \n", "\n", "# (1) Background\n", "\n", "To begin I'll establish the notation that will be used through the rest of the post. Define the statistic of interest as $\\theta = s(X)$, where $X_i \\sim F$ from IID draws. The statistic $s$ can be anything like the mean, median, skew, PPV, etc. Of course, if we knew the cdf $F$, one could simply sample from it and estimate $\\theta$ by appealing to the law of large numbers. However researchers almost never know the distribution the data comes from, and if they do, the exact parameters of the distribution are unknown. Instead we can use an empirical draw of the data: $\\hat{X} = (X_1, \\dots, X_n)$ to approximate the actual CDF: $\\hat{F}(\\hat{X} \\leq x) \\approx F(X \\leq x)$. From the [Glivenko-Cantelli theorem](https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem) we know that as $n \\to \\infty$, the empirical CDF (ECDF) approaches the true CDF.\n", "\n", "Using the ECDF from a given draw of data as an estimate of $F$, means using the CDF of a discrete random variable. This non-parametric approximation naturally creates some estimation error, but for a reasonably sized $n$ it will be small. When bootstrapping is referred to \"sampling with replacement\", it is actually referring to sampling from the ECDF. Since this is a discrete distribution it means that some values can be sampled more than once. Draws for the ECDF, or bootstrapped samples, will be denoted as follows:\n", "\n", "$$\n", "\\begin{align*}\n", "\\hat\\theta &= s(X) \\\\\n", "X_1^*, \\dots, X_n^* &\\sim \\hat{F} \\\\\n", "\\hat\\theta^* &= s(X^*)\n", "\\end{align*}\n", "$$\n", "\n", "The PPV is the ratio of the true positive rate (TPR) to the predicted positive rate (which includes the false positive rate (FPR)), weighted by the prevalence of the binary outcome: $\\mu_y = E[y==1]$. In this post we will assume that the scores of the classifier come from a normal distribution: $x|y=i \\sim N(\\mu_i,\\sigma_i^2)$, for $i=[1,2]$. The distribution for the ground-truth PPV will be smooth and monotonically increasing over $t$ since $\\mu_y$ is fixed, as defined by \\eqref{eq:PPV_true}. However, its empirical estimate will necessarily by discontinuous, and not even necessarily monotonic! This is because the count of the number of TPs and FPs is used rather than the theoretical CDF and prevalence. Note that $\\Phi$ refers to the standard normal CDF.\n", "\n", "$$\n", "\\begin{align*}\n", "\\text{PPV}_\\Phi(t) &= \\frac{\\Phi_1(t)\\cdot\\mu_y}{\\Phi_1\\cdot\\mu_y + \\Phi_0\\cdot(1-\\mu_y)} \\label{eq:PPV_true} \\\\\n", "\\Phi_1(t) &= \\Phi([\\mu_1 - t]/\\sigma_1), \\hspace{3mm} \\Phi_0(t) = \\Phi([\\mu_0 - t]/\\sigma_0) \\\\\n", "\\hat{\\text{PPV}}(t) &= \\frac{NTP(t)}{NTP(t) + NFP(t)} \\\\\n", "NTP(t) &= \\sum_{i: y_i =1} y_i \\geq t, \\hspace{3mm} NFP(t) = \\sum_{i: y_i =0} y_i \\geq t\n", "\\end{align*}\n", "$$\n", "\n", "The codeblock below loads in the necessary modules and shows that the theoretical PPV aligns with the average empirical PPV across different thresholds ($t$)." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAFkCAYAAAD7dJuCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3hUVfrA8e+dlmTSGwlpBEJvCkHpUkWRIh1BQARBRN0FdREVVBT4YQF1FWx0REEBK0WkuVIUV1EEkRoIBEIKJaRnZs7vD8wsQwIkIckkk/fzPHlgzpy5971zprxzT7maUkohhBBCCFFB6JwdgBBCCCHElSQ5EUIIIUSFIsmJEEIIISoUSU6EEEIIUaFIciKEEEKICkWSEyGEEEJUKJKcCCGEEKJCkeRECCGEEBWKJCdCCCGEqFAkOblKREQEXbt2dXYYLmvYsGEYDAZnh8GmTZvQNI2PPvrI2aFcV7t27ahdu7azwyixKVOmoGkap06dcnYo5aI8X1eV/bUhxPVUieRk27ZtaJp2zb+K/gV1s7799lvGjRtHy5Yt8fDwQNM0VqxYUWrbT05OZvLkyTRp0gQfHx+8vb2JiYmhX79+LFq0qNT2U9HMmTOHpUuXOjuMcjN//vzrvo+u/HPlL80tW7bw4osvkpaW5uxQiqxdu3YO7WMwGAgNDaVfv37s3r272HX37t2Lpmn06NHjuvvdvXs3mqYxePDgMjs24Zqc/xO2HA0YMIB77723QHnbtm3t/z969Cg6nWvlbMuWLWPlypU0atSIJk2a8PPPP5fatk+cOEHLli05d+4cgwYNYsyYMRiNRo4dO8Z3333Hv//9bx588EF7/UWLFrFgwYJS278zzZkzh/r16zNixAhnh1IuOnXqxLJlyxzK3n33XXbu3MnUqVOpW7euvdzb27u8wys3W7ZsYcaMGTz00EP4+Pg43Ne5c2eysrIwmUxOiu7ajEYjCxcuBCA7O5vffvuNBQsWsHbtWrZs2eLwOViUurfddhvffvstCQkJhIeHF7rP/Pf6Qw89VMZHJ1xNlUpObrnlFoYNG3bdOm5ubuUUzbVlZ2djNBrR6/Wlsr1Zs2axYMEC3NzcmD9/fqkmJ6+++ipnz55l3rx5PPLIIwXuv/p0vtFoLLV9i/IVExNDTEyMQ9mGDRvYuXMn3bp1o127dk6KrGRsNhs5OTl4eHiU2jZ1Oh3u7u6ltr3SpNPpCnz+tW3blqFDh/Lqq6/y5ZdfFqvuQw89xMMPP8zixYt57rnnCuwvMzOTFStWEB0dLV3lothc6xRBKbjWmJMlS5bQpEkT3NzcCA8P56mnnuKPP/5A0zSmT59ur5d/6nv79u0FtlHYeIv8fuO4uDgGDx5MUFAQHh4enDlzxl7ns88+44477sDHxwcPDw+aN29u/1VT1GMqTtJ19OhRDh48WKS6+fU6dep0zX1fqbDnIL8sJSWFUaNGERwcjJeXF3fffTdHjx4F4IsvvqBFixZ4eHgQHh7OrFmzHLZhsVjQNK3QX2hFHQdgsViYMWMGHTp0IDQ0FJPJRHh4OA8++KBDknXkyBE0TSMhIYHNmzc7nAK/st7hw4cZMWIEYWFhmEwmIiMjefTRRzl37lyBfR86dIg+ffrg4+ODj48Pd911F3/88cd1481ntVoJDw+nYcOGhd6/YcMGNE3jlVdesZctW7aMVq1aERAQgIeHBxEREfTr149Dhw4VaZ/FlZ2dzeTJk4mMjMTNzY1GjRqxcuXKQutu3ryZu+++G39/f9zc3GjYsCGvvfYaVqu1QN1du3bRo0cPAgICcHd3p2HDhsyYMYO8vDyHevljXw4ePMhTTz1FVFQUJpOJ1atX2+v88ssv9O/fn+DgYEwmEzExMTz77LNkZWXZ67Rr144ZM2YAEBkZaW/3/M+Aa73WlFIsXLiQNm3a4OPjg6enJ/Xr12fChAlYLBZ7vblz59KtWzfCw8MxmUyEhIQwcOBA/vzzz2I+40XTvXt34PJrurh1hwwZgqenJwsXLqSwi9t/9tlnpKWlMWrUKDRNK8WoRVVQpc6cZGZmkpKS4lBmNBrx9fW97uPeeustJkyYQMOGDZk2bRoGg4GPP/6Y77//vlTiSktLo3379rRq1Ypp06aRlpaG2WwG4LnnnmPmzJl06dKFF154AXd3dzZs2MDo0aM5duyYQ2JUWjp06EBiYqLDh+a11KpVi82bN7Nw4UJmzpxZ4sGuSinuuusuIiIiePHFF0lISOCNN97grrvu4vnnn2fSpEmMGzeOUaNG8fHHH/PMM89Qs2bNUu3Lzs7O5vXXX2fAgAH07t0bb29vfv/9dxYtWsTmzZvZu3cvfn5+hIaGsmzZMv7xj38QFhbG5MmT7dsICAgALn/Rde7cGW9vb0aPHk1UVBQHDx7kvffeY+vWrfz000/2ro/jx4/Tpk0bLl26xCOPPEK9evXYsWMHHTp0wN/f/4Yf7Hq9nmHDhvHqq6+ye/dubr/9dof7lyxZgl6vZ/jw4fbbI0eOpH379rzwwgt4enraE60jR444dM+UlvwEdMKECWiaxrx587jvvvuIiYmhRYsW9noffPAB48aNIzY2lsmTJ+Pr68v27dt5+umn+f333x2+9NeuXUufPn3w9/fnscceIzg4mLVr1zJlyhR27drF119/XeC5u++++zAajTz++OOYzWbq1Klj31a/fv2Ijo7mn//8J9WqVWPPnj28/vrr7Ny5k02bNmEwGHj++eeZN28eX375Jf/+97/x9/cH4NZbb73msSulGD58OMuXL6dFixY8/fTTBAUFceTIEdasWcP06dPx8vICLp+JbN++PV27dsXf359Dhw4xf/58Nm7cyG+//UbNmjVLrU0AezIaHBxc7Lre3t4MHjyYhQsXsm3btgI/UBYsWIBOp3Po1hWiyFQVsHXrVgUU+teyZUuHuuHh4apLly7226mpqcrDw0PVqVNHXbp0yV6elZWlmjdvrgD18ssv28s//PBDBagffvihQBz333+/0uv1DmVt27ZVgHruuecK1P/5558VoJ544okC940bN07p9Xp1/Pjxoj8RV8T3ySefXLNOeHh4gTiv5dChQ8rb21sBKiQkRA0YMEC9+uqraseOHcpqtRaoX9hzcP/99ytAPfroow7ls2fPVoDy9vZWJ06csJdnZmaqoKAg1a5dO3tZXl6eAtTo0aML7PO7775TgFq2bNl1y6xWq8rMzCzw+PXr1ytAzZkzx6H86tdKPpvNppo0aaJiYmLU+fPnHe7bsWOH0ul0avr06fayIUOGKEB9/fXXDnVffvllBaiYmJgC+7jagQMHFKAeeeQRh/ILFy4od3d31b17d3tZr169lJ+fn7JYLDfc7o3kt11hr3ellHruuecUoHr27OnweoiLi1MGg0ENHz7cXnbq1Cnl5uam+vfvX2A7s2bNUoDavn27Uupye0dGRiovL68C74ERI0YUeI3nx9GxY0eVl5fnUD8jI0MFBwer1q1bq5ycHIf7VqxYoQD10UcfFdjWyZMnC8RZ2Ovqk08+UYC67777CjznNpvN4XZ6enqBbe7du1cZDAb1j3/8w6G8bdu2RXpt5Nd1c3NTycnJKjk5WZ08eVJ9/fXXqm7dugpQ8+fPL1HdnTt3KkDdf//9Dvs7dOiQAtQ999xTpPiEuFqV6tYZOXIk3333ncPf22+/fd3HbNiwgaysLB599FH7rxsAd3d3Jk6cWCpxaZrGpEmTCpTn/0ocNWoUKSkpDn+9e/fGarWyefPmUonhSqdOnSrSWROAOnXq8Pvvv/Poo49iMplYtWoVkyZNom3bttSpU4dNmzYVeb9PPvmkw+327dsD0LdvX6KiouzlHh4e3H777Rw+fLjI2y4KnU5nH39gs9m4cOECKSkptGjRAi8vL3766acibef333/njz/+YMiQIVgsFod2q1u3LjVr1uTbb78FLnclffnllzRp0oSePXs6bOeJJ56wn0G7kfr163P77bezYsUKcnJy7OUrV64kOzubkSNH2sv8/f1JT0/nm2++wWazFWn7N+uJJ55wGGgeHR1N7dq1HbqRPvvsM3JycnjooYcKvN7zn5v85+3nn3/m5MmTjBw5kho1ajjs64UXXgBw6LLJ9+STTxY4u7dx40aSk5N58MEHSUtLc9hvp06dcHd3t++3JPLfx6+//nqBcWRXn9nx9PQELp9tyY+levXq1KlTp8ivv2vJyckhODiY4OBgIiMj6dWrFykpKbz22muMHj26RHVbt25N48aNWb16NRcuXLCXy0BYcbOqVLdOTExMsQdmHTt2DLj84X+1wspKIjQ0tMCof4ADBw4A0Lhx42s+9uzZs6USw82oWbMm77zzDu+88w5nz55l9+7dfPLJJ6xYsYI+ffrwxx9/3PB0tE6nK/Alk3/KvFatWgXq+/v7k5qaWnoH8bfVq1fz+uuv8+uvv5Kbm+twX2FjRQqT327Tp0+/Zrdb/pdUYmIimZmZNGrUqEAds9lMzZo1yc7OLtJ+R44cyfjx4/n6668ZMGAAcLkLx9/f32GW2tSpU9m1a5e9S6Rdu3Z07tyZoUOHUq1atSLtq7gKa8PAwECH12/+85Y/tqEw+fXz35eFPW+1atXC09PTPl7pSoV1WeXvd+zYsYwdO/a6+y2JQ4cOERwcfM0ZLVfatm0bL7/8Mrt27XIY6wLYu6BKymg0sm7dOgAMBgNBQUHUr1+/0K7Y4tQdPXo0EydO5OOPP2b8+PFYLBaWLFlCSEgIvXr1uqmYRdVVpZKTm1HUAV3Xq3etsxHX+nWc/6t23bp115zlUtHWk8j/QOrVqxfh4eG8/vrrrFy50mFcRmE0TbvmFO5rzVpSVwzCK8nzfrVVq1YxcOBAbr/9dt544w0iIyPtZ1IGDhxY5LMM+fUmTJhwzXUginpGRBUy0PBahgwZwhNPPMHixYsZMGAAhw8fZufOnYwfP95hQHTt2rXZt28f27ZtY/PmzfznP//hiSeeYOrUqXz77be0adOmyPssqqK0Yf7ztmjRogIDqfPlf8HnP664Ay0Le97z9ztr1ixiY2MLfVxgYGCx9nOlorbhTz/9RNeuXalduzYzZ86kZs2amM1mNE3j8ccfLzDIt7h0Ol2Rf5wVp+7w4cOZPHkyCxYsYPz48axbt47ExEQmTZpUIRZcFJWTvHJuIP8X34EDB+jWrZvDffm/uK6UPyCysF/Z+b/2iqpu3bps2rSJ8PBwmjZtWqzHVgT5X3IJCQllvi+9Xo+vr+9NPe9Lly7FbDazbds2h+mlaWlpXLx4sUD9a30x5v861zTthh/woaGhmM3mQmdjZGVlcfz4capXr16k+P38/Ojduzdr1qzh7NmzLFmyBMChSyefyWSiW7du9tf0L7/8wu233860adNuqgvjZuQ/bwEBATd83vKT8n379hW4Ly4ujoyMjALTnm+0Xw8PjyJ9IRc3IapXrx5r16697nogAMuXL8dqtbJx40aHbkylFMnJyfj5+RVrv+UlMDCQvn37smLFCvbs2cP8+fMBCnQVCVEcVWrMSUncfffduLu7M3fuXNLT0+3l2dnZvPnmmwXq16tXD6DAWItt27YVe32R/MW9Jk+eXOivpgsXLhToeigNxZlKvHXr1gKnn/N9/vnnANec4lra6taty44dOxy6QbKysnjnnXeK9Hi9Xo9OpytwhuSll14q9Nevl5dXoclQbGwsjRo14oMPPij0ebTZbCQnJwOXT5n37t2bvXv38s033zjUmz17NpmZmUWKPd/IkSOxWCwsW7aMZcuW0ahRI2677TaHOvn7vlKjRo1wd3cvctdVWRg8eDAmk4kXXniBjIyMAvdnZmZy6dIlAFq0aEFkZCRLlizh5MmTDvVeeuklAPr371+k/Xbv3p3g4GBeeeUVkpKSCtyfl5fH+fPn7bfzx54V9bnKXy/kySefLDAd+srXVf7Zpatfa3Pnzi2TLszSlD+2ZPr06axfv5477rijTGZ9iapDzpzcQEBAADNmzODJJ5+kZcuWjBgxAoPBwPLly+1dLVf+kmrYsCFdunRh7ty55OXl0axZM/7880+WLl1K06ZN2b9/f5H33bJlS1588UVefPFFmjZtyn333Ud4eDhnz55l7969fPXVVxw+fPiap8Dz/fbbb/Yvvl9++QW4nDjkr1fQp08fh3EtxZlKPHv2bLZv307Pnj2JjY3Fz8+P5ORkvvnmG3744QeaNm3KAw88UORjvhn/+Mc/GD58OB07dmTYsGGkp6ezePFi+9iVGxk4cCBffPEFHTt2ZMSIEdhsNtavX8+RI0cK3UarVq1YsmQJL7zwAvXq1UOn03Hvvffi4eHBsmXL6NKlC82aNePBBx+kcePG5ObmcuzYMb744gvGjBnDlClTAJg5cyYbN26kf//+jB8/nrp167Jz507Wrl1b7Kmj3bp1IywsjJdffpm0tDRee+21AnW6dOlCYGAg7du3JyoqivT0dD7++GMyMzOdOu0zKiqKd999l7Fjx1KvXj0eeOABatasSWpqKgcOHODzzz9n7dq1tGvXDoPBwLvvvkufPn1o0aIF48aNIzg4mHXr1rF+/Xp69OhR5GnmXl5eLF26lL59+1K/fn1GjRpF3bp1uXTpEocPH2bNmjXMmTPHnmS0atUKgH/9618MHToUNzc3mjZtes0kfPDgwXz55ZesWLGCo0eP0rdvX4KCgoiLi+Ozzz7jt99+w8vLi/79+/Pvf/+bbt26MXbsWDw8PPj+++/ZvHlzqU8hLm2dO3emVq1arFmzBpCBsKIUOGuaUHnKn0p85ZTfa7nW9NAFCxaohg0bKpPJpMLDw9WkSZPs0+hmz57tUDcxMVENGjRI+fj4KLPZrDp27Kh+/PHHa04lvtF0wHXr1qm7775bBQQEKKPRqMLCwlTnzp3VnDlzVHZ29g2PKX/68LX+rpz2mP8cFHUq8a5du9RTTz2lbrvtNhUSEqIMBoPy9vZWsbGxavr06Q7Tr5W69lTiwvZ3+PDha7bbtR7z+uuvqxo1aiij0ahiYmLU7Nmz1caNG4s0lVipy89Vo0aNlLu7uwoODlbDhg1Tp06dKvR1cebMGdW3b1/l5+enNE0rML00Pj5ejR8/XtWsWVOZTCbl7++vmjZtqiZOnKgOHDjgsK2//vpL9erVS3l5eSkvLy/VrVs3tXfv3mJNF8339NNPK0AZDAZ15syZAve///77qlu3bqp69erKZDKp4OBg1bFjR7V69epi7Uepok8lLmza7bWObefOnap///4qJCREGY1GFRISotq0aaOmT5+uzp0751B3x44dqnv37srX11eZTCZVr149NX36dJWbm1vkOPLt379fjRgxQoWHhyuj0aiCgoJUbGysevbZZws8bubMmSo6OloZDAaH1+i1XldWq1W9++67qkWLFsrDw0N5enqqBg0aqIkTJzpMbf78889VbGysMpvNyt/fX917773qwIEDhT5XJZlKXNp1rzRjxgwFKF9f30Kn5AtRHJpSxRhxJxx88sknDB06lFWrVhX5FLIQQgghrk+SkyLIzs7Gzc3NofsmOzubtm3bsn//fk6dOkVQUJATIxRCCCFch4w5KYJt27bx5JNPMmDAACIiIjhz5gzLly/n0KFDvPTSS5KYCCGEEKVIkpMiqF27NvXq1WPBggWkpKRgMBho3LgxS5Yssc+oEUIIIUTpkG4dIYQQQlQoss6JEEIIISoUSU6EEEIIUaFIciKEEEKICkWSEyGEEEJUKJKcCCGEEKJCkeRECCGEEBWKrHPC5av7Fvfqr0IIIUrGbDbj5+fn7DBEBVblk5MLFy7YryBcEl5eXjRr1ow9e/aQnp5eytE5h06nsx+TzWZzdjilwtXaSdqocpB2KpzRaOTRRx+VBEVcU5VfhO306dN88MEH9OvXr0TL0BsMBvz9/Tl//jwWi6UMIhSlQdqp4pM2qhxutp1SUlJYs2YNY8eOJSwsrAwiFK6gyp85yRcUFFSiN4pSCovFQnBwsMOFASszm81GYmIioaGh6HSuMSzJ1dpJ2qhykHYSomRc490ihBBCCJchyYkQQgghKhRJToQQQghRoUhyIoQQQogKRZITIYQQQlQoMltHCCFEkdiys8k+dgSr1Yo5pg56s9nZIQkXJcmJEEKIG8o9c5r4V15GXbgAgObrQ9TTz2MKC3dyZMIVSbeOEEKIG4p763WsFy+iodBQWNPSiHvzNWeHJVyUJCdCCCGuy5qTgz7xNHr1vyX49UqhT0rEKtclE2VAunWEEEIUkJecRE78CfReXqjoWlh0egw2q0Mdq6Yj22DA00kxCtclyYkQQggHyT98z/mF76M00NlsWGvVZneLNrT8eYf97IlVp+PH29oywmh0crTCFUlyIoQQwi7r7FnOL3wPnVKQf1nY43HEhEbwbYe7aL5/D6DY07AZsX36yvV1RJmQ5EQIIaowZbORdWA/ltQUjNXDOHY2CYOmwRUXrDfYrBjjjnD31JfZffEerDbFnX5e1PeUqcSibEhyIoQQVZSy2Tjz9mwyf/sVzWBAWSxojW9BuyIxAbChkelh5nazB3U83LFYLBgM8vUhyo7M1hFCiCoqbesmMvf+Bkqh8vJAKUx//E6qfyAWnR4AG4AGl+68x6mxiqpFUl8hhKii0o8fw2a1OvxKtej1mFu04r/JKdQ4dZwMD09OdenOAy1bOi1OUfVIciKEEFVUnMFEkE6P7sopwkqR6+tL70FDOJmdQ5RBz11uJhn4KsqVJCdCCFFFZPz2Cxc2rseWnY3nLc040qIN3ru2o+Vmo7fZsOh0XPTx5XTTWG4z6GnkJQNehXNIciKEEFVA+s8/kjjvLfssnJwTcTRpepz3HxjPHTu34n/hPGeDq/F9686M8fFxcrSiqpPkRAghqoDU1SsdpgdjteK752ei2nXl67v6otM0rEpxm48nt/vImq/CuSQ5EUKIKiD70iX0hZQ/5u/JnoAQUvPyCDOZuM3HU8aXCKeT5EQIIaqA+OoRRB47hMF2efl5BeQZjVwKqEZ7P2/nBifEVWSdEyGEcDFKKdK+38KZt+eQ+P47ZB08wLq7+nHBxx+bpmHV6bDoDXzSewjZbiZnhytEAXLmRAghXEzqpx9z4du18PdZkvQfdxA7dDTvPfAYEaeOY7TkcSo0AouvH9VNkpyIikeSE8DLywuDwYC6asnmosh/TEkeW1EppezPh6scl6u1k7RR5eCMdrKkXeTC+q+vDoS2G7/mj7FPcqRmHTTATafxr6hQ3HRasWK72XaSZe9FUcirBGjWrBn+/v5YLJYSb8Nqtd64UiXi7++PzWbD9vcvL1fhSu0kbVQ5lHc75Z47V2i59dJFXqwRSlx2Lrk2G1HuJrz1+hJ/7pW0nfz9/Uv0OFG1SHIC7NmzhyZNmhAcHFzsxyqlsFqt6PV6lxnhbrPZSE1NJTAwEJ3ONYYluVo7SRtVDs5op9zgauTpDRit/0s6rDodqUEhxBiNNDAab2r7N9tOycnJN7V/UTVIcgKkp6djsVhu6gNR0zSX+UDVNM3+fLjKMeVzlWOSNqocnNFOqQYjn/UYyOCvV2LT6dCUItvNnVV396NNKcZQ0mO6mTPUouqQ5EQIISqxvKREkhbPJzfhFIaAQDwG3c+fdRvx9sjHqXkqjjyDkYO16uEtq76KSkSSEyGEqKSsaWmcevl5rJkZYLViTbtIzusz6Dv+Kb4MDCYl8HJXtQY8Uj3IucEKUQySnAghRCWV/t+fsGZlQv7gVKVAKTrt34Nfj378eikTk06jW4AvTeQifqISkeRECCEqKVtODjY0h9U0lc2GLTuLuwL9uCvQz2mxCXEzXGOYvxBCVEFJNWrCVQNMbZqOuBoxTopIiNIhyYkQQlRSh6qFsbZbb2xXzJr5sXlLfm1wixOjEuLmSbeOEEJUEspmI/voYWzplzBFRGHWu/HLLbexL6YBgRdSSfPyIc3Xn25G+WgXlZu8goUQohKw5eZy5s1XyfpzH+j0gKLpAw/hE1KTi55exHt6oQP0msadAb7ODleImyLdOkIIUQmc+2oNWQf/unzDZgWbjYuLP2Sap4HbfDwJMxlp5OnB9FoRhMuVhkUlJ2dOhBCiEsj+60+wXrW6ql6Pe8JJJrRq45yghCgjcuZECCEqAauXl8PAVwBltaLz9HRSREKUHUlOhBCiEtjZsgMANi4nKBadnjPBoZyRacPCBUm3jhBCVAJ/Vgtjz30P0XnHFrwy04kPi2Rzx7t50Kao7ezghChlkpwIIUQFlJNwkoxf/wtK4XlrLCEmN3aF12DxoAftdTQgSKYNCxckr2ohhKhgMvf9zuk3XkXTNEDj3Ber6PfIP/nNK5hsmw2bupyYtPL1op7Z3dnhClHqJDkRQogK5uwHc8FqRV1Rlr3wPV556wO2nE/jktVGTQ83Ovh5/53ACOFaJDkRQogKxJabizUtrWB5VhZ+uTkMDAl0QlRClC+ZrSOEEBWIzmRCMxcyPdhkQmc2l39AQjiBJCdCCFHB/NhrEDZNw6rTYdXpsKHxY88BaDr5yBZVg3TrCCFEBWJVim8iY/htyBgaHdyPhuJA7QYcj6zJAJsNd0lQRBUgyYkQQlQASimHwa0nw6I4GRblUEeGvoqqQpITIYRworykRBLn/ZucE8fRubsR0GcgLerdyp6MTCx/T9cxaNDQ0wM3OWsiqgh5pQshhJPYsrNJmPUyOfEnQNmwZWWRsvIjHjjxF828PO1nShp7mvlnZKhTYxWiPMmZEyGEcJLsIwexnD8H6ooVTWw2sv6zlSc7dMZiUyjAqJMOHVG1SHIihBBOoqw20DTH5ATAagXAIEmJqKKkW0cIIZzEPaYOmrsHtisGwiqdDq/bWzsxKiGcT5ITIYRwEqvZzIrBo0g3ewGggF23tuRA6zucG5gQTibdOkII4SQHM7PZFxjCvnH/wjMjgxyTG3kmE/XOX6KNv6+zwxPCaSQ5EUIIJ8m1KTTApulI9/J2KBeiKpPkRAghyomy2cj4ZTd5qamYQkOJadQUo04j54pkRA/Eess1dETVViGSk/T0dObOncuvv/6Kh4cHgwYN4p577ilQb9u2bcybN89+WylFTk4OkydPpk2bNvzxxx9MmbVk+lkAACAASURBVDIFNzc3e50BAwYwaNCgcjkOIYS4FmWxcHrOLLL++hNNr0dZrXjd1pKnh4/h9fhEMm02ANr4edG3WoCToxXCuSpEcvL+++9jtVpZtGgRZ86c4fnnnyciIoKmTZs61OvYsSMdO3a03/7ll1947bXXiI2NtZf5+vqydOnS8gpdCCGK5OLW78g6+BfYbKi/E5H0n38iKrYl77W4naRcC556Hf7GCvGxLIRTOX22TnZ2Njt27GDYsGGYzWZiYmLo3LkzmzZtuuFjv/vuO9q1a+dwpkQIISqi3IRTYLM6lGk6PTkJJzHpdES4myQxEeJvTn8nJCQkABAV9b8LXNWqVYsvvvjiuo+7dOkSu3fvZubMmQXKR4wYgdFopHnz5owYMQJvb2+HOikpKaSkpACQnJxMbm4uALa/f80Uh1IKm82GzWZzuGhXZZb/PJTk+aioXK2dpI0qhyvbSe/rB3o9WCz2+5VS6H39KlU7umI7iYrH6clJdnY2Hh4eDmWenp5kZWVd93Hbtm0jNDSU+vXr28siIiJ46623iIiI4Ny5c8ybN48333yTqVOnOjx29erVfPjhh/bbHTp0ACAxMfFmD8elJCUlOTsEcQPSRpVDUlISqsmt5GzZhD4jHYPNikWnxxIQSEZMHTLls0cIB05PTtzd3QskIhkZGQUSlqtt2rSJrl27OpT5+/vj7+8PQFBQEGPHjmXcuHHk5OQ4dP3079/fnpAkJyezfv16AEJDi39hLaUUFosFg8HgMr8ibDYbSUlJVKtWDZ2LXAXV1dpJ2qhyuLKd9mRk8d7w8bT7+Qf8L54nOSCY7be359nAatQxuzs71CK72XaSH4GiKJyenISHhwNw8uRJIiMjAYiLi6NGjRrXfMyxY8eIj4+nU6dO1922TqdDKYW66roVQUFBBAUFAeDj44PJZLLXLy6lFDqdDp1O5zIfqPnyj8sVuGo7SRtVDjqdjj8ysskye/Jth7vt5UZNY39mNvW8Ks/UYVduJ1FxOP1Tzd3dnbZt27J8+XIyMzOJi4tj8+bNdOnS5ZqP2bRpE7GxsfazJPn27t3L2bNnUUpx/vx5PvjgA2699Vbc3SvPrxIhhGsyahpXf5UrFCa5uJ8QBTg9OQF4+OGHARg5ciTTpk3j/vvv55ZbbgFg0KBB7N+/3143Ly+P77//vkCXDlw+o/LMM88waNAgJk6ciI+PD0888UT5HIQQQlzHHf6XB+bnpyI6wKBptPLxclpMQlRUTu/WAfDy8mLy5MmF3vfpp5863DYajSxfvrzQun369KFPnz6lHp8QQhRX5oH9XNi4nuy0i1yIvY2ou3sypWY4808ncS7PQojJyLjwEIJMRmeHKkSFUyGSEyGEcCUZv+/hzJuvwt/j3c4dP0ZewikajBnP7DrXHk8nhLisQnTrCCGEK0n9dLk9MQHAauXSjv+QlyxTv4UoCklOhBCilFkvXbpGeVo5RyJE5STJiRBClDK36Foovd6x0GDEGFL8tZSEqIokORFCiFJ2uM99XPD0xqrTYdHrsep0/NBvKDqzp7NDE6JSkAGxQghRyj63wLmRj1P7+BFMebnEh0dxzi+Qbrl5hLuZnB2eEBWeJCdCCFHKsm02ck1u/Fm3UYFyIcSNSbeOEEKUssaeHg6//DTAU6cj3CRnTYQoCklOhBCilI0KC6bWFRfzM+t0TIqujrtePnKFKArp1hFCiJugLBZSP/+MjD3/RTOa8LvzbnzadeDFmuHEZ2VzOjmFW8Kq42mUj1shikreLUIIcRPOfjiP9P/+BFYrAEkL3kPl5uLb+U6i3N0wGfV4yBkTIYpF3jFCCFFClgvnSf9ppz0xAUApzn21xnlBCeECJDkRQogSsmVmFl6enV3OkQjhWiQ5EUKIEjIGV0Pz9OKKq+hg0+lxq13XaTEJ4QokORFCiBJSBgNrBjxAjps7NjQUkOIfwJaeA50dmhCVmgyIFUKIEkrKtfBLcHX2j3mSsLOnsRgMJISG4650jHB2cEJUYpKcCCFECem0y/9mu3twrEaMvVxzUjxCuArp1hFCiBIKMhqIdjdx5fWH9Rq09/N2WkxCuAJJToQQooR0msbk6DDqmt3RuPyB2snPh/tDgpwdmhCVmnTrCCFEEeUknCTpw3fJPZOA3teP4GEP4tf0Vl6oFYHFptBplxMWIcTNkTMnQghRBJYLF0iY8SI58cdROTlYks5y5o1XyDpyCACDTpPERIhSIsmJEEIUQcae/2LLzQGbzaE87YdtzglICBcmyYkQQhSBystFu/rMiFKo3FznBCSEC5PkRAghisCjQWPUldfQAZSm4dn0VidFJITrkuRECCGKILt6GF/0HIRFf3nisAK2terI2aaxzg1MCBcks3WEEKIIfk7L4Ld6jdkbXQe/tAtc8vQmx8MMFy5R29PD2eEJ4VIkORFCiCLItSk0NHJNbiQFhdjLc64aICuEuHnSrSOEEEXQ0NMDi1IOZTqgqZfZOQEJ4cIkORFCiCKI9nBjfEQI+ism7PQM8pOl6oUoA9KtI4QQhVAWCxl7f8N6KQ23GtG4R9eivZ83zb3NJOXm4W8w4GeUj1AhyoK8swAvLy8MBgPqqlO2RZH/mJI8tqJSStmfD1c5LldrJ2mjsmXLziZh1kvknjyBptej8vIIGHAf/j3uxazTEe3uBtw4VmmnggwG+doRNyavEqBZs2b4+/tjsVhKvA3rVesfVHb+/v7YbDZsLjbYz5XaSdqo7Jxb8ym5p+LBZkP9/fyeW7USt4aNMUXWKNa2pJ0c+fv7l3IkwhVJcgLs2bOHJk2aEBwcXOzHKqWwWq3o9fqCq0dWUjabjdTUVAIDA9HpXGNYkqu1k7RR2co7fgyu+vLVDAasZ05jqBlT5O1IOxWUnJxcBlEJVyPJCZCeno7FYrmpD0RN05z+gVpaNE2zPx+uckz5XOWYpI3KlsE/AHQ6h+voKKsFg69vsWKTdiroZs5Ql0RRYly0aBEjR44s+2BEkUlyIoQQV3Hr0YcLv/6MTil0SmHR6cmIiiamYRNnhyaKadeuXQ63W7duzeOPP87QoUPtZTExRT8bJsqHJCdCCHGVNUYP/hg2njY//4B3+iVOhkXyn5Z38GJ2LrXN7s4OTxRDq1atCpRFRUUVWi4qDtfoBBVCiFIUn51LYlA11nTvz5KBI9nStgua0cTpHLkCsSvKzs4mMDCQ6dOnF7ivX79+tGnTBoANGzagaRrfffcdvXv3xtPTk/DwcF5//fUCj/vjjz/o0aMHPj4+eHl5ce+993L8+PGyPhSXIcmJEEJcpZrRiP6qMotSBMq6Ji7J3d2d4cOHs2jRIocp0snJyXzzzTeMHj3aof6oUaNo1KgRn3/+OQMHDuRf//oXixcvtt9/8OBB2rZtS1ZWFkuXLuWjjz4iPj6eO++8k7y8vPI6rEpNkhMhhLjKwJAA3HU69IAG6IEW3p40lAv8uawxY8Zw7Ngxtm3bZi9btmwZbm5uDB482KFu9+7d+b//+z+6devGm2++yYABA3jppZfs9z///POEhYWxYcMG+vTpQ58+fVi7di0nT55k2bJl5XVIlZokJ0IIcZVqJiOv1omiZ5AfHf28eaB6MBOjQl1uxo34n0aNGtG6dWsWLlxoL1u0aBGDBg3Cy8vLoW7fvn0dbvfr14+4uDiSkpIA2LhxI3379kWn02GxWLBYLFSrVo1GjRrx888/l/3BuABJToQQVV7OiThSV68kddUnZB85DECg0cCQ0CAejgihW6AvOklMXN6YMWNYvXo1Fy9e5KeffmLfvn0FunQAqlWrVujtM2fOYLVauXDhArNmzcJoNDr8/frrr5w8ebJcjqWykw5UIUSVlvH7Hs689drldU2A82u/ImTc43i3bOPkyER5Gzx4MBMmTOCTTz5hz5491K9f3z4Y9kr5Z0iuvl29enX0ej0+Pj4MGTKEhx56qMBjfX19yyZ4FyPJiRCiSkta8O7lxdauWHAtacH7eN3WCs1FVnUVRWM2mxk6dCjvvfcecXFxTJ06tdB6n3/+Od27d7ffXrNmDdHR0fYzKF27dmXfvn3ExsZKV2AJSXIihKiylMWCNS2tYHluDraMdPTePk6ISjjTmDFjeO+99zAajYwYMaLQOuvXr+fZZ5+lY8eOrF+/nlWrVrFgwQL7/dOnT6dly5bcc889jBo1imrVqnHmzBm2bt1Kt27d6N+/f3kdTqUlPwuEEFWWZjCg8/bh6uvraiY3dJ5ehT5GuLbmzZsTFRVFz549C4wtybdgwQJ+//13+vTpw8qVK3nllVcYNWqU/f4GDRrw008/4enpybhx47jrrrt47rnnyM3NpXHjxuV1KJWanDkRQlRpv/cdSsNlH6B0l0+/62w2futzHzHSpeOSrlzHpDB//vkn8fHxzJs375p1wsLCWLt27XW306BBA1atWlWiGIUkJ0KIKsymFKtCIgge/giNDu1HU4q/atfnVPVI7rXZcJMEpcpITk7m8OHDTJ06lbp16zqMKRHlT5ITIUSVpQCbgsRq1UmsVt3hPusNfmEL17J69WrGjx9P/fr1WbZsGTpJTJ1KkhMhRJWl1zQaenrwV0YW1vwyIMrdDbP+6gXsRWV0/vz5ItUbPHiww0qwhT2uZcuWnDt3Dr28NsqcJCdCiCrtn5GhvHLiNEezcgAIczPxVI3qN3iUqAwyMzM5duxYqW/Xzc1NBraWMUlOhBBVmo9Bz/RaEaTmWbABQUaDrAYrhJMVKzkZNmwYw4YN484775TTWkKISseakU7yskVkHfoLvdmTgL4D8Iq9HU3TCDIZnR2eKEN169YttW2dOHGi1LYlClesET9btmyhR48ehIWF8fjjj/Pjjz+WVVxCCFGqlMVCwisvk/7zT1jPpZJ7Kp7Ed94gY88vzg5NCHGVYiUnCQkJbNy4kZ49e7J8+XLatm1LTEwMU6dO5cCBA2UVoxBC3LTso4fJjY8Hq+V/hUpxft1XzgtKCFGoYiUnmqbRpUsXFixYQGJiIqtWrSI2NpY5c+bQuHFjmjdvzuzZs0lISCireIUQokRsWVmgKziWxJaV5YRohCi5H374gZiYmOvW6d69u8OS+iVx/PhxNE0jOzv7prZTEiWeyG0ymejbty+ffvopZ8+eZdGiRYSEhPDMM89Qo0YNOnfuXJpxCiHETXGLrolN5zhWzqrTo28osy5E6ejYsSPu7u54eXnZ/2JjY0t9P+3bt+fo0aPXrbN+/XpGjx5d6vsuL6WyyoyXlxcjRozgrbfeYsyYMSil+P7770tj00IIUSpSPLz4qPd95BqM9mvpHK1Ri69ad3JqXMK1vPnmm6Snp9v/fvmlfMc0Wa1WbFdcYbuyuunkJCEhgTlz5tCiRQsaNGjA4sWLGTRoEF9++WVpxCeEEKUiISeXI7Xq8drD/2L+fQ/x7wceZ2m/ERy1VP4PcnFzVF4emf/ZyqU1n5L5n62ovLxS3X5+98iSJUuIjo7G29ubKVOmcOrUKTp16oSPjw+dO3cmOTnZ/hhN03j77bepXbs2AQEBjBkzhpycy2vxbNu2jdDQUHvd6OhoZs2aRbNmzfD09CQpKYmOHTvy3nvv2essXbqUxo0b4+3tTe3atdmwYQNw+QxL8+bN8fHxITIykqlTp97w+kPloUTrnJw7d45Vq1bx8ccfs337djRNo2vXrixevJi+ffvi5SVX8xRCVCx+Bj02IMvDzImIaAA0wN8gyz1VZSovj3Nvvool4aS9LGv3LgL++S80Y+lOL//hhx84cOAAcXFxNG/enB07dvDuu+8SHR1Nr169eO2113j11Vft9VesWMHOnTsB6NGjBzNnzmTatGmFbvujjz7iq6++IiIiosBSH1988QWTJk1izZo1tG7dmlOnTpGeng6Ap6cnixcvpnHjxuzbt48777yTW265hQEDBpTqsRdXsc6cfPzxx/Tq1Yvq1aszbtw4cnJyeOONNzh9+jTr169n+PDhkpgIISqkWh5u3ObtSf7HtgboNRgSGujMsISTZe3afjkxsVrtf5ZT8WTt2l6i7T3xxBP4+fnZ/64c9zF16lQ8PDxo2LAhTZs2pWPHjtSvXx93d3f69u3Lr7/+6rCtyZMnU61aNapVq8aUKVNYvnz5Nff72GOPUatWLUwmU4Hk5L333uOpp56iTZs2aJpGZGQkDRo0AOCOO+6gadOm6HQ6mjZtypAhQyrEsIxiL8JWr149pkyZwv3330+tWrXKKi4hhChVmqYxISqUdSkX+CszC2+9nu5BftRwd3N2aMKJrCnJhZenppRoe3PmzGHcuHEOZcePHwcgJCTEXmY2mwvczj+bkS8qKsr+/xo1alx3JuyVda8WHx9P7dq1C73vp59+YvLkyezbt4/c3FxycnLo27fvNbdVXoqVnPz3v/+lefPmZRWLEEKUOqUU2t/L0es1jV7B/vTC38lRiYpCHxRceHlgUDlHUlB8fDy33HKL/f/h4eHXrHu9qyhHRUVx5MiRQu8bOnQojzzyCOvWrcPDw4OJEydy5syZmwu8FBSrW6d58+Z88MEHNG3aFG9vb+rVq8fUqVPJzc0tq/iEEKJEMvbuIW7CIxwdNZTjTz1O1kFZKFIU5NG6HYbwSNDr7X+GiCg8Wrdzdmi8+uqrJCcnk5yczIwZMxgyZEiJtjN27Fhmz57Njz/+iFKKU6dO8ddffwFw6dIl/P398fDw4L///S8ff/xxaR5CiRXrzMmiRYsYN24cdevW5Z577iEuLo4ZM2Zw/vx53nnnnRIHkZ6ezty5c/n111/x8PBg0KBB3HPPPYXW7d27N25ubvZfQg0bNuTFF1+03//NN9+watUqsrKyiI2N5bHHHsNsNpc4NiFE5ZMdd5Qzb74Gf0+ptKSmcPq1mUROfwVTaJiToxMViWY0EjBhElm7tmNNTUEfGIRH63YlHgw7YcIEnnrqKfttPz8/tm8v2fiVQYMG0bp1a1JTU+nXrx/PPfdcibbTr18/zp8/z4MPPsjJkycJCwvj7bffpn79+sybN48nn3ySCRMm0KFDBwYOHEhKSsm6tEqTpooxZyg2NpbatWvzySef2E8h5Y8ezsjIwFDCUe+zZ88mJyeHCRMmcObMGZ5//nmefvppmjZtWqBu7969mTdvHhEREQXu27NnD7Nnz+all14iNDSUN954A7PZzMSJE6+579OnT/PBBx8wduxYwsKK/6GllMJisWAwGOwJU2Vns9lITEwkNDT0uqcKKxNXaydpo+tLWbGMC99tuDzAMZ/BQECfAQT07HOTkRadtFNBN/uZWxyZmZn2S6uU9oX/Gjcu28X7NE3jwIED1K9fv0z3U1EV691y+PBhRo8e7fAmGzduHHl5efYBP8WVnZ3Njh07GDZsGGazmZiYGDp37symTZuKva0tW7bQpUsXatWqhdls5v7772f79u32ueFCiKpBWW0F1mpQ4JisCCEqrGIlJ+np6fj5+TmU+fr6ApCWllaiAPJHH1850rhWrVrXvST1lClTGD58OC+99BLx8fH28hMnTlCzZk377Ro1amCz2Th9+nSJYhNCVE4XGjRB2a5KTqxW0uvLUvVCVAbF7oc5ePCgQ/eN9e9fIvmDa65UlJk92dnZeHh4OJR5enqSdY2Lcc2cOZN69eqRl5fHmjVreP7555k3bx5ms5ns7Gw8PT3tdTVNw2w2F9hWSkqKvU8tOTnZPqC3JEv+KqWw2WzYbDaX6C6A/z0PrrAEcj5Xaydpo+vbFRpJcrd76bHpaww2K3kGA190H0A9vyAiyvE5k3YSJVURVml1pmInJyNHjnR40vJfnMOGDbP/P3/qnrUIp1Dd3d0LJA8ZGRkFEpZ8+f18RqORYcOGsXXrVg4cOEBsbCzu7u5kZmY61M/MzCywrdWrV/Phhx/ab3fo0AGAxMTEG8ZblSQlJTk7BHED0kaFS8/I5ZemLfi14a14ZmWQbvZCp9cTlp5OorX8u3mlnYQonmIlJ1u3bi31APLnbZ88eZLIyEgA4uLiqFGjRpEef2XmXqNGDeLi4uzJxokTJ9DpdAUGXfXv399eJzk5mfXr1wM4XKugqFxtoCVc/pWXlJREtWrVZBBfBSVtdH0dMrL44cQZbAYDad6+9vL21asRWo6Lrkk7FSQ/AkVRFCs56dChA/v37+f9998nLi6OsLAwBg4cSNeuXUscgLu7O23btmX58uX84x//4OzZs2zevJlJkyYVqBsfH09eXh7R0dFYLBZWr15Nbm4u9erVA6Bz587MmTOHDh06EBISwvLly2nXrh1ubo4fRkFBQQQFXV5gx8fHB5PJBFx/EZtrUUqh0+nQ6XQu8aV3pfzjcgWu2k7SRoVr5O3J+IgQPkxIIlcpPHQaj0aEUMtc+BnZsibt5Bx6vR5vb2+AUl1YTC7TUvaKlZxs376drl27kpeXR1BQEOfOnWP+/PnMnTu3wHK9xfHwww/zzjvvMHLkSPssm/xV8QYNGsQLL7xAo0aNuHDhAu+++y4pKSmYTCZq167NtGnT7C+UZs2aMXjwYKZNm0ZmZiaxsbE8/PDDJY5LCFF5tffzpq2vFxlWG556HboK/kUqSp+bm1upTiEW5adY65x07dqV1NRUvvrqKyIjI0lLS+PBBx/k+++/rxCLtpSErHNSkKzNUPFJGznKPZvIpe3fY8vJxtygEZ7NWpRRlMUj7VRQea5zIiqvYp052bt3L++99559bIiPjw+zZ8+mVq1aDmNGhBCivOSciOPUjBdQVhuguPjdBvzv7U9gH+de8l04X25ubpksJWEymSSxKmPFSk5SUlIKrMyan5CkpKRIciKEKHfJyxaiLBb7UvUA579Yhe8dnTAEBDoxMuFsFouF1NTUUt+um5ubJCdlrNhTiV3hlLgQwnXkJSc7JCb28tQUSU6EXWkvXy/KVrGTk06dOhXad9q+fXuHck3TuHjx4s1FJ4QQN5ARGIwx7SL6K4bPKSrGJe+FECVTrOTkhRdeKKs4hBCiRD7v0pO+S+ahrBYA9FYrGzrcTR+zF9LRLETlJMmJEKJSSwysxtsjH6fpgb2Y8nKJi6zJsRoxdLdV7eW/hajMXGNumxCiyrrF20yGjx8/tLyDze26ElcjBi+9jgg3k7NDE8Ju8eLFtGrVytlhVBrFHnMihBAVyYjqwSTlWtiXcfkaXZ56HZNrhOGul99eovxcuWpsVlYWRqPRfpHcZ599Vmb3FJMkJ0KISs1dp+O56DASc/PIsSmquxlxc5EFz0T5yFOK7elZJOdZCTbqaeflgbGYM1PT09Pt/2/VqhXjxo1j5MiR9rLFixeXUrTXp5TCarXaE6PKSt7BQohKJevwQVI//4xzX39OXtLli8hpmkZ1NxPRHm6SmIhiyVOKVxPPsfLcJbZcymTluUu8lniOvKIvnl4szz33HIGBgYSHh7N8+XJ7eW5uLs888wzR0dEEBQUxdOhQzp8/b79/3bp1NG3aFF9fX1q1asXu3bvt93Xs2JFnnnmGDh064OnpyY8//khAQAA5Of+7AveOHTsIDg4mLy+vTI6rtMm7WAhRaaT9ZysJM1/k/NovOfflauKnTCL76GFnhyUqse3pWZzMtWAF+198roXt6Vmlvq9ffvmFsLAwzp49y9tvv83DDz9MWloaAM888wx79uxh9+7dnDx5EpPJxGOPPQbA4cOHGTBgAP/3f/9Hamoqo0ePpnv37g7Jy5IlS3jrrbe4dOkSt912G+Hh4XzzzTf2+5cuXcrQoUMxGo2lflxlQZITIUSlYMvOJmnJfFAKLBawWFB5eZxd+L6zQxOVWHKetdDyFEvh5TcjPDycRx99FIPBQL9+/dDpdBw6dAilFO+//z5vvPEG1apVw8PDg5dffpnPPvsMi8XCypUrueuuu+jRowcGg4ExY8YQGRnJ2rVr7dseMWIEt956K3q9Hjc3N0aOHMmyZcsAyMnJ4dNPP+WBBx4o9WMqK5W7U0oIUWVYzqWC9aovDKXIS0pyTkDCJQQb9YWWBxkKL78ZoaGhDrfNZjPp6ekkJyeTkZFB69atHe7X6XScPXuWhIQEoqOjHe6Ljo4mISHBfjsqKsrh/mHDhvH888+TmprKli1biIiIoHnz5qV7QGVIzpwIISoFnZ8ftqsGKdqAdB9f5wQkXEI7Lw8iTQb0YP+LMhlo5+VRbjEEBQXh4eHBb7/9xoULF+x/2dnZhIeHEx4eXmDJ/OPHjxMeHm6/ffXK7SEhIXTp0oUVK1awdOnSSnXWBCQ5EUJUEqkGE+s63YMCrDodFp0em07H53fe6+zQRCVm1DQmhQYwOMCbLj5mBgd486/QgGLP1rkZOp2Ohx9+mIkTJ3LmzBkAkpKS+PLLLwEYNGgQ3377Ld9++y0Wi4WFCxcSHx/PPffcc93tjhw5krlz57Jp0ybuv//+Mj+O0iTdOkKISsGgafzYvDUpAUHUiTuMRW/g9wa3kBla3dmhiUrOqGl08jY7NYZZs2Yxc+ZM2rVrR1JSEiEhIQwePJh7772XunXrsmLFCp566ini4+OpV68ea9euJSAg4Lrb7NWrFw8//DCdOnWievXK9T6R5EQIUSkEGPQ0MLtzKLoOR6LrAJdPwffy93FuYEJc5ccffyxQNnLkSId1TwASExPt/3dzc2PatGlMmzat0G326tWLXr16FXrftm3bCi03Go2Eh4dXui4dkG4dIUQloWkaT9WoTqyPJyZNw6zT0SPIj0Ehgc4OTYgKaePGjSQmJtK3b19nh1JscuZECFFpeOr1PBFVuU5PC+EMXbt2Zc+ePcyfPx+TqfJdZ0qSEyFEhWS5cJ6U5UvIOXkCg38AgYPvxz26lrPDEqJS2LRpk7NDuCnSrSOEqHBsWZmcenkq6b/+TF7iGbL++pOE6c+Tc+qks0MTQpQDOXMihKhw0n/5GcuF8/9bdE0plM3GxU0bqDZyjHODE5XSoUOHSm1bbm5upbYtUThJIwgxkwAAIABJREFUToQQFU52Rjp5mobDVUBsNi6lpVHNWUGJSsdoNBZYlbU0VPYr/lYG8gwLISqcwyERVLNYHMqsOh1Hw2oQ46SYROWTP5VWVD4y5kQIUeGkRdZgQ5eeKLAvWf9HvSYcatH6+g8UQrgEOXMihKhw6prdWdqsFX/WrEvQuRQueXmTHBzKA95ezg5NCFEOJDkRQlQ4MR7uPFg9mEXABb8AFNDBz5uuAbIarBBVgSQnQogKqVugL829zZzOzcPfoCfSXWZICFFVSHIihHC6jN9+JeXT5VjT0nCLrknIqIcxBAQSZDISZDLeeANCCJciA2KFEE6V+ec+zrz1GnmnE7ClXyLrwH5OzXgBW1aWs0MTQjiJJCdCCKe6uGkDSqn/FVitWM6fJ3P/H84LSgjhVNKtA3h5eWEwGBw/IIso/zEleWxFpZSyPx+uclyu1k6u1EbnLqVz9WgSiwbpmRl4VvJjc6V2ynez7yVZwEwUhbxKgGbNmuHv74/lqkWfisOav8y2i/D398dms2Gz2ZwdSqlypXZylTY6ULMOTY4eQn/FcWhKcTQkgsCbeE9WFK7STlcr6XvJ39+/lCMRrkiSE2DPnj00adKE4ODgYj9WKYXVakWv16P9vVhUZWez2UhNTSUwMBCdzjV6/lytnVypjQ63ugPL6QRa7PsVgDy9gdU9B9EpJKTS/8p2pXbKd7PvpeTk5DKISriayv3OLyXp6elYLJab+tLSNM0lvvTg8rHkPx+uckz5XOWYXKmN2gf4Mffufmxr3QlzVibn/QLA7MljXuZKf2yu1E5XK+kx3cwZalF1SHIihHCqdn7eXLBYWKHBBV9/Ag16noiqjl8lP2sihCg5efcLIcqVLSuLrMMHwWbDvXZd9F5e9Azyp3uALxl5eXibTC53lkEIUTySnAghyk1u4hkSZr2ENe0iADoPD8L+NQX36JroNA0PFxmXIYS4OfJJIIQoN4lz38SSdhFsNrDZsGZmcuat11xmmq0QonRIciKEKBfKZiPnVDzaVVOGrefPYbt0yYmRCSEqGklOhBDlQgG5hoLXyVGAxc1U7vEIISouSU6EEOVD09jSpjO2Kwa7WnU6trdoR45eLu4nhPgfGRAr/r+9O4+Tor7zP/6qqu6Znp77HmaGGQG5b1AMh1yiRtCIEdlVEdwN0WASYvLzSLwPlKyJG92IEV2DMRp/i8ZrVSIexBgPREDkEBAYzrkv5j66qvaPgZZhBrnpnuH9fDzGh/Odqu5P1Zfufve3vlUlckqYhkHhuRN53RfFsC8/x3Ad1vYdzNfnjOFaS9+TROQbCicicsr8LKcL99vn8PnA4QDEWxZ3nJGJYRiaFCsiQQonInJSuK5L7Yrl1G/djBXlJ27sBNKSknm4Zw5b6xtxgW6+SKI0aiIiB1E4EZGTovSFP7P33b8BBhgGlW+/Rfbd84jIyKRvdFSoyxORMKavLCJywjXt2c3epW/tu56JDXaAQGMDJS/8OdSliUgHoHAiIifc3qJCHKP124vpOJTv2ROiikSkI1E4EZETriA2EdN1WrXZpklhYkqIKhKRjkThREROOG9mJn8/ZyyOYRCwLAKWRUNEJCsv/F6oSxORDkATYkXkhOsZ5eOPky4mPzOHrD07aYj08cWAofxbzx6hLk1EOgCFExE5bq7jULtyBc2lJXjTM4geOpw7u2XxZISXT3v1w2+aXJOWxKj42FCXKiIdgMKJiBwX17bJ/8//oP6rdWBZYNtEDx1Oxo9/zk25XUJdnoh0QJpzIiLHpeqD96jbuL7ltOHmZnAcalavpObTj0Ndmoh0UAonInJc9uRtx3EOOjPHMMjfnheiikSko1M4EZHjku+PxjUPeitxIT/KH5qCRKTDUzgRkeNS/p1zqY6OJWBaAARMi4qERKpGjApxZSLSUWlCrIgcl1FdMrh35g2M/OyfJFaWU5aUwqcjzuWBVF1wTUSOjcKJiByVuvVrqfzbG9j19fj7DyTrksu4qW9PnopPoKy5mbQIL7dlpZEe4Q11qSLSQSmciMgRq12zmvxHHgLXxQDq87bSuHsnvX7yC37bMyfU5YlIJ6E5JyJyxHYv/kswmACYtk3dyhU05euGfiJy4iiciMgRq6+qCgaTAxVVVpzyWkSk81I4EZEjtieza/CsnP0ClkVdSnqIKhKRzkjhRESO2Pap/0JFQmLL3YZNC9s0eenifyEzOTnUpYlIJxIWE2JrampYsGABq1atIioqiunTpzN58uQ2y23cuJEXXniBLVu2ANC7d29mz55NZmYmAGvXruWOO+4gMjIyuM60adOYPn36qdkQkU7EbW6m9KUXqF25AsPjIf68C7l6/Hk8MPtG/Fs2ExloYk96FrMG9iXOYx3+AUVEjlBYhJOFCxdi2zaLFi2ioKCAu+66i+zsbAYNGtRqudraWiZNmsQtt9xCREQEzz//PPPmzePxxx8PLhMfH8+zzz57qjdBpNPJf2oBtStXYNo2ACUvPEtyczMPfHcK67t2ocFx6BHlI02nDIvICRbywzoNDQ189NFHzJgxA7/fT48ePZg4cSLvvvtum2WHDx/OueeeS3R0NF6vl6lTp7J7926qqqpCULlI52VXVVH/2afBYAJgOA7Fb7xKhGkyNDaakfGxCiYiclKEfORkz56WUxBzcr65RkL37t159dVXD7vuunXrSExMJC4uLthWXV3NzJkz8Xq9DBs2jJkzZxIbG3viCxfpxCpra9ptd5uaTnElInI6Cnk4aWhoICoqqlVbdHQ09fX137peYWEhCxcu5Prrrw+2ZWdn8+ijj5KdnU15eTmPP/44jzzyCHfeeWerdUtLSyktLQWgpKSEpn1vuAffWfVIuK6L4zg4joNhtHeSZcezfz8cy/4IV52tn052HzXHJVAVE0tMbQ2m6wIQME12ZJ9B75P0nJ2tj0CvJZFjFfJw4vP52gSR2traNoHlQKWlpdx1111MmzaNMWPGBNsTExNJTEwEICUlheuuu44f/ehHNDY2tpok+9e//pWnnnoq+Pu4ceOAlsAj3yguLg51CXIYJ7KP7N07cYsKMWJjoUcvXp02i+8vXkRMXS0ApcmprP3eNAbpdXLU9FoSOTohDydZWVkA7Nq1i65duwKQl5dHbm5uu8uXlZVx++23c8EFF3DppZd+62Obponrurj7vvntd/nllwcDSUlJCUuWLAEgIyPjqOt3XZdAIIDH4+k03yIcx6G4uJi0tDRMM+TTkk6IztZPJ7qPSl9eTO0br+J4PJi2jbdnH2b/5Bc8nHQrEYW7sU2LmJxcbuqWRYx1cs7M6Wx9BHottUdfAuVIhDyc+Hw+Ro8ezfPPP8/cuXMpKirivffe45ZbbmmzbFlZGbfddhvjx49n2rRpbf7+5Zdfkp6eTlpaGpWVlTz55JMMGTIEn8/XarmUlBRSUlrumBoXF0dERATAMb15uK6LaZqYptlp3lD3279dnUFn7acT0Ud1m75i7xuvYQBWIABA45bNxL6/lIe/930KeuViGQYZEV7Mk7jvOmsfgV5LIkcr5OEE4Prrr+exxx7j2muvxe/3c/XVVzN48GAApk+fzt13303//v1ZunQpBQUFvPLKK7zyyivB9RcsWEBqairbtm3jkUceobq6mujoaIYNG8asWbNCtVkiHcLXmzcT4bHw7gsmAJZjs2vzJjJNg66+yG9ZW0TkxAuLcBITE8Mvf/nLdv+2ePHi4P9feeWVXHnllYd8nKlTpzJ16tQTXp9IZ1YVFU3aQRM2bdNkrz8mRBWJyOkuLMKJiJw6TmMDNZ9+TKBqL5G5ZxA37GxK3v5fUspK8Tg2tmES8HionXhBqEsVkdOUwonIacSurWXrvbfjlpXgGAYe2yZpwvl89qNfELHkdTKL8tkbF89XYy/g5t69Ql2uiJymFE5ETiNbX/r/OKUleByb/efcNLy/lCvO/g5bZ/47OxsaSfF6uDU+hohOMoFTRDoehROR00j59jxSHLtVW8DykLdjB8P79mN4XHSIKhMR+Ya+Gol0ck5TE05DAwB7E5KwDxoRsRybhviEUJQmItIujZyIdFJOQwPb/vBfsGZVy+89emFccjmNX60loqkRy3GwTZNtuT0YPGRoiKsVEfmGwolIJ7XxyQWYa9cEX+Ru3hYyX13Mxz+5Bc8H7xNTV0NheibDp1xCVpTvWx9LRORUUjgR6YRc18VaswrrgPklluNgbd/KzJxMymb/kKqAzYWRXuI9ehsQkfCidyWRTsKuraWpYA9WlB8zowvuIZarcSArMoIsXfhVRMKUwolIJ1C17ksK/uthrKZGAOy+A/i690B6blyLZ9/oScA02ZV1BhPj40JZqojIYelsHZEOrrlqL/mP/hZzXzABcDd9RXp8HOt7D8AxDBzDYFtuD+LmzMXSzdpEJMxp5ESkg9uxZQtmoJkDI4fHsbE2f8XIBx9meUUVjusyNCGW7pr4KiIdgMKJSAfTVFRI3gt/pjl/DzVZ2TQNP4dIt+0Mk4aISDIjI7gsIyUEVYqIHDuFE5EOpLm8jK33/AqzsRGf42CXFmNs3EBRagYpZSXB+SUuBkXjzg9xtSIix0bhRKQDWbv0bfxNTViOA7ScHuw2NdI0aBgb9uzmjN3baYiMZO3Y85lx/qQQVysicmwUTkTCWO3OHex852849XUk9B1ATXUV0QcfwnHBYzcz5hc3k1ffSKxl8gN/FB5TE19FpGNSOBEJU+WbN1HyH/dhOg4e16Vm5Qq83c7EOCicmK6DfUZ30iK8pEV4Q1StiMiJo1OJRcLUlueewXAcLNfFACzXIXXbZjb0HQwQvIHfqrNGM3z0uSGsVETkxNLIiUgYcBobWP/fC/Gs/QLXtLDGTsBTUY550CiJC3SdOIlPxk+ipqCQ2KxMLh48iDivXsoi0nnoHU0kDHzxu9/i3/xV8Gwbe+mbOHEJ2KYZnPwK4BoGqVlZXJ2eTmFhIRkZGZimBkBFpHNROBE5xVzHYc8//8HendvxJSSSOuxs4jaua7WM5Tj4amuoi/ITVV+Paxh47ABrJn+faRkZuO1c10REpLNQOBE5hVzXZc2jDxO1djUWBs0G5L3zFtHtLGu5Du5dD7L6nx/iNjQQ27sPlw0bhmEYCici0qkpnIicRK5tU7RmNbUVFSSf0Y3yigr8X65qPZekqpr6SB8RTY1Y+9oDpsXu7r04Pz2NgZdfHqLqRURCQ+FE5CQJNDay5sF7id2Zh21alNgBSnv3J8GyMAOB4HIe16E4PRNfVSVJleUA5HfJ5szrfhKq0kVEQkrhROQEqSzIZ+enn+DYNplDh7P904+I27UD03Ux7ZYwkrJpPe5BdwUOmCbN2Tl0n3Enm3fuxPR4GJyTQ7KuWSIipymFE5ETYOeG9dT+53wiXBcXg8o3X4HUjODZN/sFTIvylDRSSouAlrNvav0xdL9sGtn+KLL79A5F+SIiYUXhROQoNdbUsObphURu2YQd6cN/yWXUvvoSsQEbk2/mksSXFGIbRnAeCYDpuhjf/R7rq/bi7tmFGxfPkIum0C0lORSbIiISlhRORL6F6zhs/Ww51UWFxKZn0G3YcNY8eC9xhfktoyLVVTiLFhIHHHwnG8t1afZ4wLaxXJeAaVGalsGQ0aMYFRkZis0REekQFE5E9nFdl5rSUupra0nK7IJpeVj+m/kkb1qPz7JwbJsVOd1Iyd/Vaj2TlkvJm47TKqDYpknNL26n+M3X8VXvpTY7l3OuvIoYBRMRkW+lcCKnrYbqakzLIsLvJ9DUxGe/+y1pX30JQFGUn5qRY0navKFlQuu+s2sSd+bh0naUpC4qmui6GlriiYvpuuz63hVM6tcX+vU9pdslItLRKZwAMTExeDyeY7qw1f51OtNFsVzXDe6PzrBdTY2NlBcV4Y+NJTYhgYrSUjb/7qHgCEhR7/64ScmkbFofXCeyvg7PB++0eSwXcA4aJQmYFuX9B2OPHkvxxx+CYxM7ZDgTR448afuvs/UR6LXUURxvP3k8+tiRw9O/EmDo0KEkJiYSOODaE0fLtu3DL9SBJCYm4jgOzgH3dQl3jm2zdd1a6isrSc7JJatbN776bDmeZ54kormJGuDLc8/D+/VGEosLguslf70R27JanVljAoZt4xx83xrTZNfQc+iy5nMim5sAKMjtztAZ1xAb5W81SnKy/010xD46EnotdQzH2k+JiYknuBLpjBROgNWrVzNw4EBSU1OPel3XdbFtG8uyMIyDB/s7JsdxKCsrIzk5OWxuKldfU01ERCRWRAQAm79YRfE//g4Bm9hhZ9Fv9Bg+f+hBUvO+Jto0abZtPh07idR/LsPaFzoMIP3D9zh4izyOjem0faM1gDp/NFF1dXgcm4BpURMTz7CZ19LozGRX3nYi/dGM6tGdCOvU7qdw7KPjpddSx3C8/VRSUnISqpLORuEEqKmpIRAIHNcbomEYneYN1TCM4P44mdu0t7yM+tpaUjO6YHm9NDY08sVb/0tzcRGelFSGTLmE8uJi8h/9DQnlpbhA4chxxPTqQ/SfniQdMHBx163msw//Tsr2rfsueNYSNDL+8S62abWaH3KojwfHtMB1gpeVD5gmlSnp5Nx8G+teewWzpAgnNZ2h0/6FpLg4ALoMHXLS9s3hnKo+CoXOtE3qp7aOZ4RaTh8KJ3JE7OZmbNchIqLlTBPXdSnYsYPqinJSu3YlKSUVx3FY//FHVG3Pwxsfz4CJk4j0+fjspRexVi7HtSyscycweNL5fPrYI3T5chUAxVHRRM2ZS/lf/kR8cRGG6+AaJmuWf0RkfT2xtdVAy0hG2vIPCaz8pNX1RAzXJX3b5jaTVG3DxHRbD6U7QH1UNJGNDcHDOAHTIn/oCKycXGLffQtvUxOlud3pf/2PSUtOJnP2dSdln4qISPsUTo5DTU0NOzZuxAW69etLtD8a27bZsn49jbU1ZPY4k5S0NAC2b/maivx84tPT6d67DwDFBQXs3rwJr89Hz8FD8Pl8VFdX8fXKVTiBZnL6DyCtSxeam5tZ9+nHNJZXkJCbS58hQwFYt3w5e7dvwxsXz4Dx4/FH+fl6/ToKP18BpknOyFHkntmT3Tu2s+3tJRi1tUT06sPZ372Iyopy1v3lObxFBTSnptP3yhlE+aNZ9d9PELdlE80REey58GIGT5jI8j/8nowvPscAinO60funv2DDX/5Ml9WfYQKlhsG2K2ZQv20r6Ss/Icm0MFyXDe8vpb5HL9JWLcfad7zdefE5ln/2Mak7twf3o6++jub/+g3xjvvNvA/XJr6sBOug03Mtx8FsamrTFwbgGEarG+oZuDR7I/A0N2PtCykG0HTlNVT+4wO6bN2IY5jkDz2bUdf9CF9kJFw6Fdd1O923XBGRjsRwO8sU8mOUn5/Pk08+yXXXXUdmZuYRr7d96xb2PjyfqLo6DFyq4xJImnsT+c/8N6m7t+MYJq5hUD/rOqq3bibzH+8Fr4WRf9ZI4gcPw7foCQBM12FvUgoJ/349tY8/SlR9La5h4GLQ/IM51Lz1Osn5u3BME8u2KRw1HlyXjE8+aDls4bpUJyTiTLqIxMXP4VgmuC0fzhWX/Svxry3GtB1M18ExTQr7DyUu72v8dTVYjoNtmjRG+KhNTCKxqCAYEBzDoCSnG8m7dhwwymBSFxNHdE1VMHBAy4iEQetTbAOGieU6bUY0HNoeXtl/FsyBjxkwDDzt/PMMmBaG6wSvvOoCzR4vBi2HdPZf8GxvcgrJP/wxxYueJLGkkDp/NM73/5Wzx08AoDEQwMAgwmMdcb+HC8dxKCwsJCMjo1PNZQgEAng8nk4TDtVPbR3re66cXhROjuGF4jgOq3/+Y2KqKoMfkLZh0uDzEdnY2OqsD9swMKDVN3obA0yj9QexadEcEUFEU2Ow3QUCloXh0uoxDxUEDAiOEOxf37YsTMdp9fzQcoGw1s9v4mnnbAIHo9UhlEMJGCaGQavHPJT2rhPSfjgxaYr0EdnUEGy3TZP8c84lddVyPIFmXAxM16Huhz8hITWdHX/9H7x7K2jKOYPhV80kLi62ZTscB9u2O80Hnz70Ogb1U1sKJ3IkdFjnGFTtrSJ+b0WrNst18NfXtfnQNVwX1zShVThwsZzWH/gex8ZqqG+1vgF42zldzzH3BZEDPsg9bttQYACWbbcbBA7OG4brthsajEMEk7aHUMA4aJtsw8C2PHjsQHBZ2zSpjo0nrqqy1eTTvYnJNPujSdmzi33XMaMsM5vs2XPIf+L3pBTuwbYsCs89j7HXzKKsbBpbVnyKaztkDx5C79xcALrdelu79XaWDzsRkdOBwskxiPL7DvHt3wj+d799n7OtlzNMOChMtDdysJ+97/BI8DFdF8M9eJm2IzQtIy8eDNdpMyrSXugIeLxYgebgIZeAaVGVmERcRXmrwzp7k1JIKC/FccHEbTnU44+hJiOzZWKq6+IYJo0+H+6sHxJY9CS+xnoM16UmNp6Mm25jx6rPiV76JhFNTZR2PYO+N8wlPi6ele8upbG4iIjUNM4+/0IiIrzk/vph6puaiPB46LPv22daWippUy5psw0iItLxKZwcg8hIH/mjxpHx6YffHG4wTAoHD6fLms/BbQkoAdOiLCOTmMoKIhvq8Oyb39Hs8VKS0520bZuwHCcYEwpHjafLP5dh7As4tmFSMGwEyevXBA/3BEyLirQMAjExpG37GnP/Y0ZEUn3hxaS89lLLhcOMlpGMmitn4Xn1xeA8Fk8gQNHkqQRKS8j67CNsy8KybQqGnEXauPNo+sMj+BobACjJ7caAuf+PNc88TdaalgmxpVm59L3xJor37KH8f57DV11FTZds+v77D0lKSeGzt96gaccOjLg4+k+5hJTkZCr79mPHxo0YlkWfvv2I9keR3bUrXHpZm307cvKUdvd51L7rm4iISOencHKMxvzgOj6JS8C7annL5NWRYzn3e5eyYeVK9r7xCp66Whp69OLsWf9GbVU1G577E5HFBTQlpXLm1bPok57Gp//zAtbG9diRPhIvnMK4ESP4sv8A9i57FyMQwDNkOGMvvoTSoiK+evWvGBXl0DWXs6dNx+v18tn/vk7zzu0YsXH0nXIJA9PT2XhmT4pXrgDDInvUaM7u2ZOqEeew/p8fYtfWktK7D2MGDQJg09gJVBcWEJueztj+AzBNk5qHF7B7x3bqGxr4zuDBeD0exv/8JhqbmnAchzN9PgCSk5Nh0ENt9suoSy5t05YQF0fCiBEnt0NERKTT0ITY45ycpUl8HUNn6yf1UcegfmpLE2LlSHSOV4uIiIh0GgonIiIiElYUTkRERCSsKJyIiIhIWFE4ERERkbCicCIiIiJhReFEREREwoouwrZPaWnpMa3n8XhITEykpKSEQCBwgqsKrcLCwlCXcMJ01n5SH3UM6qdvHOt7rZxeTvtw4vf78Xq9vPzyy6EuJWw0NDSwY8cOcnNz8e27IqyEF/VRx6B+ap/X68Xv94e6DAljp/0VYgEqKyupq6sLdRlhY+vWrfz85z/nd7/7HT169Ah1OdIO9VHHoH5qn9/vJyEhIdRlSBg77UdOABISEvRCOUBVVRUAqampurx0mFIfdQzqJ5FjowmxIiIiElase+65555QFyHhJyoqirPOOkvHhcOY+qhjUD+JHD3NOREREZGwosM6IiIiElYUTkRERCSsKJyIiIhIWNGpxHJIL7/8MsuWLaO4uJjo6GgmTJjAVVddhWVZoS7ttFZTU8OCBQtYtWoVUVFRTJ8+ncmTJ4e6LDlAc3MzTzzxBGvWrKG6upqUlBSuuOIKxo8fH+rSRDoEhRM5JNd1mTt3Lt26daO8vJx58+bh9/u5/PLLQ13aaW3hwoXYts2iRYsoKCjgrrvuIjs7m0GDBoW6NNnHtm2SkpKYN28eaWlpbNy4kfvuu4+MjAz69OkT6vJEwp4O68ghXX755fTs2ROPx0NaWhrjxo1jw4YNoS7rtNbQ0MBHH33EjBkz8Pv99OjRg4kTJ/Luu++GujQ5gM/n4+qrryYjIwPTNOnXrx99+/blq6++CnVpIh2CwokcsfXr15OTkxPqMk5re/bsAWjVD927d2fHjh2hKkmOQENDA1u2bCE3NzfUpYh0CAonpynbtr/152BvvPEG27dv57LLLgtBtbJfQ0MDUVFRrdqio6Opr68PUUVyOK7r8uijj9KzZ0+GDh0a6nJEOgTNOTlN3Xnnnaxbt67dvyUkJPDss88Gf1+2bBkvvfQS8+bNIy4u7lSVKO3w+XxtgkhtbW2bwCLhwXVdHn/8ccrKyrjvvvswDCPUJYl0CAonp6kHH3zwiJb74IMPWLRoEffffz/Z2dknuSo5nKysLAB27dpF165dAcjLy9PhgjDkui5PPPEE27Zt4/7778fn84W6JJEOQ4d15JA++OADnnrqKe6++259+IUJn8/H6NGjef7556mrqyMvL4/33nuP8847L9SlyUEWLlzIpk2buPfee3VfHZGjpHvryCHNnj2bsrIyvF5vsK1fv37oXpGhVVNTw2OPPcaqVavw+/26zkkYKi4uZvbs2Xi93lbXBZo2bRrTp08PYWUiHYPCiYiIiIQVHdYRERGRsKJwIiIiImFF4URERETCisKJiIiIhBWFExEREQkrCiciIiISVhROREREJKwonIiIiEhYUTgROYBhGIf9eeaZZ/j73/+OYRh8/vnnIa13/PjxXHzxxSfksa699loGDBhw2OUGDBjAtddee0KeU0SkPbrxn8gBPvnkk1a/jxw5kp/+9KdcddVVwbYePXqwfv36U12aiMhpQ+FE5ADf+c532rTl5OS0234sXNelqamJyMjIE/J4IiKdkQ7riByH8vJyrrrqKmJjY8nNzeWhhx5q9ff9h0reeustBg8eTGRkJK+//joAlZWV3HDDDXTp0oXIyEiGDx/O0qVLW63/0UcfMXbsWOLj44mNjWXgwIH86U+CjgoeAAAEvklEQVR/alPHiy++SO/evYmJiWHixIls3bq1TZ2zZ88mNTWVqKgoRowY0ea52vPxxx8zfPhwfD4fAwYMYMmSJUe7i0REjppGTkSOw5w5c7jmmmt45ZVXePnll7n11lsZNGgQ3/3ud4PL5Ofn87Of/Yw77riDrl270rVrV5qamjj//PMpKirigQceICsri+eee44pU6awatUqBg4cSFVVFVOmTGHMmDG88MILREZGsmHDBiorK1vV8MUXX1BSUsKvf/1rbNvmxhtvZMaMGcFDVLZtc9FFF7Flyxbmz59PdnY2f/jDH5g8eTLvvPMOEyZMaHfbCgsLufDCCxk4cCCLFy+moqKCOXPmUF1dffJ2qIgIgCsihwS4v/nNb9q0L1u2zAXcm2++Odhm27bbtWtX9wc/+EGwbdasWS7gLl++vNX6f/zjH12Px+OuX7++VfuIESPcK664wnVd112xYoULuF9++eUh6xs3bpwbHR3tFhcXB9ueeuopF3B37drluq7rvvbaay7gvvnmm61q7du3rztu3LhWtfbv3z/4+6233urGxsa6FRUVwba3337bBdxZs2YdsiYRkeOlwzoix+GCCy4I/r9pmvTp04fdu3e3WiYlJYURI0a0alu6dCkDBw6kV69eBAKB4M95553HihUrgJaJt3FxccyZM4fFixdTUlLSbg1DhgwhNTU1+Hu/fv0AgnV8+OGHxMbGMnny5Fa1Tp8+nY8//hjbttt93OXLlzNhwgQSEhJabW9cXNxh94uIyPFQOBE5Dgd+cANERETQ0NDQqi0tLa3NeqWlpaxevRqv19vqZ/78+ezatQuAxMRE3nnnHWJjY7nmmmvIyMhg/PjxrF279rA1AME6KioqSE9Pb1NDRkYGzc3N1NTUtLttBQUF7dbeXpuIyImkOSciJ5lhGG3akpKSGDRoEE8//fS3rjtixAiWLFlCfX09y5Yt46abbmLq1KltJrx+m6SkJIqKitq0FxYW4vV6iYmJaXe9Ll26UFxc3Ka9vTYRkRNJIyciITBp0iS2bdtGZmYmZ511Vpufg0VFRTF58mTmzJlDXl5em9GZbzNmzBiqq6v529/+FmxzHIcXX3yRUaNGYVlWu+uNGDGCZcuWsXfv3mDb0qVLqaqqOootFRE5eho5EQmBmTNnsnDhQsaPH89NN91Er169qKysZPXq1TQ1NTF//nzefPNNnn76aS677DJycnIoLCzk97//PaNHj8bn8x3xc02ZMoURI0ZwzTXX8OCDD5Kdnc0TTzzBpk2bWLBgwSHXu/HGG1mwYAEXXXQRv/zlL6moqODuu+8mKSnpROwCEZFDUjgRCYHIyEjef/997rnnHh544AEKCgpISUlh6NCh3HDDDQCceeaZmKbJ7bffTlFRESkpKVxwwQXMnz//qJ7LsiyWLFnCzTffzK9+9StqamoYNGgQb775JuPHjz/kel26dGHJkiXMnTuXK664gh49erBgwQJuvfXW49l0EZHDMlzXdUNdhIiIiMh+mnMiIiIiYUXhRERERMKKwomIiIiEFYUTERERCSsKJyIiIhJWFE5EREQkrCiciIiISFhROBEREZGwonAiIiIiYUXhRERERMKKwomIiIiElf8DKhupmCgfTw0AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 450x350 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "<ggplot: (8766715492109)>\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbEAAAFkCAYAAACuIwUtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXwTZf4H8E/S9Ep6kB5QelIqIPeliIJytODFT0GgKHSxLlhYFQV0kVUOFXRdT3ABOURELbAioq4KIiCugDcouOrKUQpNW5q26d20TfL8/mgTG9JC0qadSfi8Xy9epZNnJt+Z75N+MzPPzCiEEAJEREQeSCl1AERERC3FIkZERB6LRYyIiDwWixgREXksFjEiIvJYLGJEROSxWMSIiMhjsYgREZHHYhEjIiKPxSLWQrGxsUhJSZE6DHKj1157DQqFAgcPHnR6nrS0NKhUqjaMqt7JkyehUCiwfPnyNn+v9jB8+HBcccUVUochqbbO6aJFi6BQKJCTk9Mmy5cLFrFGDhw4AIVC0ey/t99+W+oQ20x1dTXWr1+P22+/HYmJiQgMDESXLl1wxx134Icffmj18vfu3XvRbXs5fNjai/WPY+N/gYGBuPLKK/Hoo4+itLTU5bbz58+HQqHA9u3bL/re9913HxQKBXbt2tWm61hcXIwnnngC//nPf9r0feTu9ddfxyuvvCJ1GJJS8N6Jfzhw4ABGjRqFSZMm4fbbb3d4fdiwYUhMTAQA1NTUQKlUwtfXt73DbBM///wz+vbti+uuuw433ngjYmJicOrUKbz66qsoKyvD1q1bkZqa2uLl7927F2PGjMGUKVMwbty4JtvccccdUKvVLX6P1jKbzairq4O/vz8UCoVT89TV1cFiscDf379NYzt58iS6deuGZcuWYdGiRU61HT16NO655x4AQGFhIf79739j//79GDhwIL755hv4+vo63fbEiRPo3bs3brzxRuzevbvJ962urkZ0dDSCg4Nx5swZKJXNf0eura0FAPj5+bVkc7i0PeTKHeswfPhw5Ofn4+TJkw6vmUwmmEwmBAQEtDZUWWv74yAeqH///khLS7tom7b+o+UMo9EIX19f+Pj4tHpZUVFROHr0KAYMGGA3/a677sKgQYMwb948TJ482ek/7s0ZMGDAJbetVHx8fJzalkIIVFVVQaPRyPpLTLdu3ey29dy5c3HTTTfh008/xUcffYQJEya41Pbaa6/FZ599hnPnziEuLs7h/Xbs2IGSkhI8+OCDFy1gQMuLV3tx52dLKiqVql0OdUuNhxNbqLlzYps3b0bfvn3h7++PmJgYPPLIIzh+/LjDse+LnX9p6jyL9RxCVlYWpkyZgoiICAQGBiIvL8/WZvv27bjhhhsQEhKCwMBADBo0CK+//rpT6xMREeFQwACgb9++6NmzJ3Jzc1FUVGT32qlTp/C///3PqeW7yrp9f/rpJ4wdOxbBwcEIDw9HRkYGqqqqYLFY8OyzzyIpKQn+/v7o3bs3Pv74Y7tlND7nsHXrVgwYMAABAQG2vFRVVdm1byon1mmff/45nn76aXTr1g3+/v54+eWXATR/TqygoADz5s3DFVdcAX9/f0REROCGG26wOxyXk5ODhx9+GAMHDkRYWBgCAgLQo0cPLF68GEaj0Z2b0+amm24CgCa/uV+q7b333guLxYJNmzY12X7jxo1QKpX485//fMllN3VOzDotJycHd955J8LCwhAYGIiRI0fi6NGjtnavvfYaunXrBgBYvHix7TDohcvbt28fbrrpJmi1Wvj7+6NXr154/vnnYTabm3zfpj5brvYhADh37hxmzJiBmJgY+Pn5IS4uDrNnz8b58+cvuV0AYPXq1Rg7dqxt/k6dOmHy5Mn45ZdfbG1MJhMUCgUOHTqEU6dO2R0Otvbf5s6JORuf9RTA22+/jY0bN6JPnz7w9/dHbGwsFi9e7LAdpeL9ZboFqqqqUFhYaDfN19cXoaGhF51v5cqVmDt3Lnr16oUnn3wSKpUKW7ZswRdffOGWuMrKynD99ddj6NChePLJJ1FWVmY7/Pb444/jmWeeQXJyMpYuXYqAgADs3r0bM2bMwOnTp1t88thsNuP8+fMICAhASEiI3WsjRoxAfn4+TCaT08tratsC9d8aO3ToYDft7NmzSElJwZQpUzBx4kQcPnwYGzZsQE1NDQIDA/Htt99i9uzZ8PHxwcsvv4w77rgDJ0+edNhL2LlzJ06cOIH7778f9957L/bs2YMXX3wRx44dw6effurU3uX8+fNRXV2N9PR0REREoEuXLs22PXPmDIYNG4b8/HykpaXh6quvRk1NDY4cOYKPPvoIkydPBgD8+OOPeP/99zFhwgQkJibCYrFg//79WL58OX766Sd8+OGHTmxR1/z+++8AgMjISJfbpqamYu7cudi0aZOteFidOnUKX3zxBcaMGYOEhIQWx1deXo4bbrgBQ4cOxfLly5GXl4cVK1bg5ptvxqlTp6DRaDBq1Ci88MILeOSRR+wO/QcHB9uWs379esyePRuDBw/GwoULERoaioMHD+LRRx/FTz/95HB+u7nPlvXLhLN96OzZsxgyZAiKioqQkZGBPn364OjRo9iwYQN2796N77777pLb/rnnnsP111+PlJQUaLVa/P7773jttdewZ88e/Pjjj0hMTISPjw/eeustLFu2DKWlpXjhhRds8/fo0aPZZbckvlWrViEvLw8zZ85EeHg4duzYgeXLlyM0NBSPPPKIE1ltY4JsPv/8cwGgyX/XXHONXduYmBiRnJxs+72oqEgEBgaKbt26ifLyctv06upqMWjQIAFALFu2zDZ9w4YNAoD48ssvHeKYNm2a8PHxsZs2bNgwAUA8/vjjDu2/++47AUDMnz/f4bXZs2cLHx8fcebMGec3RCP//Oc/BQBxzz33OLwWExPjEGdzPvvss2a3LQDRu3dvh2UDENu3b7eb/n//939CoVCIwYMHi9raWtt06zZYtGiRbdqJEycEAKFUKsUPP/xgt5xZs2YJAGLr1q22aU3lxDqte/fuoqKiwmG9msrVjTfeKACIjz76yKG92Wy2/b+qqkpYLBaHNo8++qgAII4cOeKwLo37UHOsbe+++26h1+uFXq8Xv/32m/jHP/4hfHx8RIcOHYRer3e5rRBCZGRkCADis88+s3vPxx57TAAQ77zzziXjE6K+PyclJTlMAyCee+45u+lvvfWWACA2btzo1PbIyckR/v7+YuLEiQ6vPfvsswKAOHjwoMP7NvXZcrUP3XXXXQKA2LFjh13bjRs3CgBi1qxZl1yHpvrZsWPHhEqlEg8++KDd9Ka2o9Xjjz8uAIhz5861KD7rZzY6OloYDAbbdLPZLLp37y7i4uKafN/2xsOJTUhPT8dnn31m9++f//znRefZvXs3qqurcf/99yMoKMg2PSAgAPPmzXNLXAqFAgsWLHCYbv1W+ec//xmFhYV2/2677TaYzWbs27fP5ff74osv8PDDDyM+Ph7PP/+8w+s5OTku7YUBwIwZMxy27WeffYbXXnvNoW18fDwmTZpkN+3666+HEAL333+/3fmoq666Cmq1GidOnHBYzk033YRBgwbZTXvssccA1J/HccacOXOg0Wgu2U6v12PPnj1ISUnBrbfe6vB643NFgYGBtm/wdXV1KC4uRmFhIcaMGQMA+Oabb5yKrTmbN29GZGQkIiMjbaMN+/fvj88++wwREREtanvvvfcCqD90aGU2m7F582ZEREQ0OSDKFSqVCg899JDdNOv2sO4ZXsr27dtRU1ODmTNnOnwerIOKPv30U7t5mvtsWTnTh0wmEz788EP07t0bd9xxh13b9PR0JCQkONXfrP1MCIGysjIUFhaic+fO6NatW6v6REvjmzlzpt1REqVSidGjR+PcuXOorq5ucTzuwsOJTUhKSnL5GrDTp08DAK688kqH15qa1hJRUVEOh/QA4NdffwUA9OnTp9l5nT0eb/Xtt9/itttuQ1hYGPbs2YPw8HDXgm3GFVdc4fS27dq1q8M0rVZ70dcuPG8HAL169XKYFh8fj6CgIKfODQFA9+7dnWp34sQJCCEwcODAS7Y1mUx4/vnnsXnzZvz+++8QFwwULi4uduo9mzNu3Dg89NBDUCgU8Pf3R2JiImJiYlrV9qqrrsKAAQOwc+dOFBcXIywsDLt374ZOp8P8+fNbPWAjNjbWYRnWvtdUbpti/TzcfPPNzba58PPQ3GfLypk+dP78eVRWVjb5OVQqlejduzc++eQTlJWVXfS9Dhw4gGXLluGrr75yKBLWc4Et0dL4mvqsWXNSXFzcbJ9qLyxibubs6L2LtWtu76a54ecWiwUA8MknnzQ7Ws6VC0u///573HjjjVCr1fj8888veoy9LV1sZFhzr11YCC5GCOF0vpwd+u/K+8+dOxerV6/GlClTsHDhQnTs2BF+fn44e/YsZsyYYctrS8XExDj9hcGVtjNmzMCcOXOQmZmJOXPm2PbKZs6c2eJYrS6Wc2e3rXW7bdq0CbGxsU22ufAPb0sv7Wjch6zxtWYE7zfffIOUlBRcccUVeOaZZ5CYmAi1Wg2FQoE5c+agrq6uxctuaXzuyElbYhFzE+u3lV9//RVjx461e836zbCxsLAwAE1/27bu1Tmre/fu2Lt3L2JiYtCvXz+X5r3Q999/jzFjxiAwMFDSAuZOjUd1WZ09exaVlZVISkpy63t1794dCoXCbjRdc958802MGjUK27Zts5v+73//260xuVtaWhoWLFiAjRs3IjU1FR999BGuu+469OzZs91iuNgfYutec1hYmNvuquNMH4qKioJGo8HPP//s0FYIgV9++QWRkZEX3QvLzMyE2WzGnj17EB8fbze/Xq93GPzkSkFyR3xyxHNibnLTTTchICAAq1evRkVFhW260WjEihUrHNpbi8PevXvtph84cADfffedS+89ffp0AMDChQub/KZWUlJiu7j0Yn744QeMGTMGGo0GX3zxxSULWFsOsXen3bt348iRI3bTnnnmGQBwODfQWpGRkRg7diz27t3rMOQfgN3elY+Pj8M32draWvz97393a0zu1qFDB0ycOBE//fQTHnzwQdTV1bllL8wV1vPOTX0JnDJlCvz8/LB06VJUVlY6vF5VVYXy8nKX3s+ZPqRSqXDbbbfh559/xvvvv2/XdvPmzThz5swl+5t1r+fCfrF69eomD6cGBQXBYDA4tQ7uiE+OuCfmJmFhYXj66afx8MMP45prrsH06dOhUqmQmZlpO8TX+FtTr169kJycjNWrV6Ourg4DBw7EL7/8gjfffBP9+vXDf//7X6ff+5prrsETTzyBJ554Av369cOdd96JmJgYnD9/HseOHcOHH36IEydONHtoBQCysrIwZswYlJaWYu7cufjmm28cTiLfeOONdsNvWzLE/scff2z29l0pKSmIiopyelnOGjBgAEaNGoX77rsPsbGx2LNnDz788EOMHj0aU6ZMcfv7vfrqq7juuutw2223IS0tDUOGDIHJZMKRI0egUCjwxhtvAAAmT56MDRs2IDU1FSkpKSgqKsLbb7/t1AASqc2cORNvv/023nnnHQQHB7fqbi4t0alTJ3Tp0gWZmZno0qULOnbsiODgYNx6662Ij4/Hq6++ioyMDPTo0QN33303EhMTUVRUhF9//RU7d+7Exx9/jOHDhzv9fs72oWeffRb79+9HamqqbQj7jz/+iA0bNiAhIQHLli276PtMnDgRr7zyCsaOHYuMjAwEBgbiiy++wL59+2x3C2ps6NCh2L17N+bMmYOhQ4fCx8cHKSkpDgN33BWfLLX7eEgZsw6xd2YY84VD7K02btwoevXqJfz8/ERMTIxYsGCBOHz4sAAgXnzxRbu2+fn5IjU1VYSEhAi1Wi1Gjhwpvv7662aH2Dc3lNbqk08+ETfddJMICwsTvr6+Ijo6WowePVq89NJLwmg0XnTeSw2BRxOXA7hziD0uGLbd3Pa92KUJF87TeAjzli1bRL9+/YS/v7/o3LmzmDdvnsNQ5osNsW/q/YRoeoi9EELk5uaK++67TyQkJAhfX18REREhRowYId59911bm8rKSvHXv/5VJCQkCD8/P5GYmCgef/xxcfz4cYd+2JIh9o2HS7uj7YW6d+8uAIiMjAyX521uiH1Tfbyurk4AEDNmzLCbfvjwYXHttdcKtVotADjMe/jwYTFx4kTRqVMn4evrKzp16iSuu+46sXz5clFcXHzJ9xXC9T4khBBnz54V99xzj+jcubNQqVQiOjpaZGRkiLy8vGaX3djOnTvF4MGDhVqtFlqtVtx+++3i119/bTLO8vJykZ6eLiIjI4VCobDrq00NsXclPutn9q233nJYx+aWLQXeO7EdbN26FVOnTsW7776LiRMnSh3OZcMb7q9H0mIfkj+eE3Mjo9HocCzbaDTihRdegL+/P0aMGCFRZERE3onnxNzowIEDePjhhzFp0iTExsYiLy8PmZmZ+P333/HUU081e5yaiIhahkXMja644gr06NEDGzduRGFhIVQqFfr06YPNmzfbRhASEZH78JwYERF5LJ4TIyIij8UiRkREHotFjIiIPBaLGBEReSwWMSIi8lgsYkRE5LF4nRjq7/JeVVUldRhERJcFtVrt8FiZlrrsi1hJSYntTvJyolQqMXDgQBw9erTVD0eUg6CgINv6NH5UjadifuSrNbkxWoz4uuJrDA0aigBlQBtF6Bpvyg1Qnx8fHx/cf//9bilkl/3Fzrm5uVi/fj3uuOMO3haqDalUKmi1WhgMBpce3ULtg/mppyvRYcjLQ/DtvG8R0yHm0jO0A2/LTVFREXbs2IGMjAxER0e3enmX/Z6YVUREhFs2qLtYLBbk5+cjKioKSqXnn7oUQsBkMiEyMrJVj2+XC+ZHvlqTm86dO6N6TTX8Vf6y2Q7elJu2wCJGRNRAoVAgwFcehxHJOZ7/FZKIyE3OFp2F4l4FzhadlToUchKLGBEReSwWMSIi8lgsYkRE5LFYxIiIGgQHBGNeyjwEBwRLHQo5iaMTiYgaaDVavDTlJanDIBdwT4yIqEFpVSme+fgZlFaVSh0KOYlFjIioQWl1KR5//3GUVrOIeQoeTkT9vclUKhXkdAcuIYQtJjnF1VLWdfCGdQGYHzlrTW4abwe5bAu55aa0tBQvv/wy5s2bh9DQUJfnV6ncW3ZYxAAMHDgQWq1Wdvcl02q1sFgsXnGDWSuz2Sx1CG7D/MhXS3NjMptsP+X290AuuSkqKsJTTz2F6dOnQ6PRuDy/Vqt1azwsYgCOHj2Kvn37IjIyUupQbCwWC4qKihAeHu419+Yzm83w8fHxivu/MT/y1ZrcqHxUtp/u3mNoKbnlxrpdVKqWbSO9Xu/eeNy6NA9VUVEBk8kkiw5ipVAobDHJKa7W8pb1YX7kqzW5iQ2Lhf4lPbQarey2g1xyY42hpfG4ew+XRYyIqIGP0gcRwXwkkyfx/OMgRERucq74HIIeCMK54nNSh0JOYhEjImoghEBlTaVsRgLSpbGIERGRx2IRIyIij8UiRkTUQOOvwb3X3wuNv+vXP5E0ODqRiKhBeFA41k9fL3UY5ALuiRERNSg3luOVfa+g3FgudSjkJBYxIqIGhkoDHtr2EAyVBqlDISexiBERkcdiESMiIo/FIkZERB6LRYyIqEF0h2hk/T0L0R2ipQ6FnMQh9kREDVQ+KnSJ6CJ1GOQC7okRETXIKc5B1MNRyCnOkToUchKLGBFRA4uw4HzZeViE9zyt29uxiBERkcdiESMiIo/FIkZE1EDtp8ZdQ+6C2k8tdSjkJI5OJCJqEBEcgS33bpE6DBgMBpSX19+/UQgBk8kElUoFhUIhcWSATqeTOgQ7sihiFRUVWL16NY4cOYLAwECkpqbilltuueg8+/btw8qVK/GXv/wFN998MwDg+PHjWLRoEfz9/W3tJk2ahNTU1DaNn4i8Q4WxAtt/2I7JgycjKCBIkhgMBgOSkpJgMMj3/o1arRbBwcFShwFAJkVs3bp1MJvN2LRpE/Ly8rBkyRLExsaiX79+TbYvKyvDu+++i4SEBIfXQkND8eabb7Z1yETkhYori/HnN/6M5CuTJSti5eXlMBgMOHz4MGJiYmS3JwYAwcHB0Gq1UocBQAZFzGg04tChQ1ixYgXUajWSkpIwevRo7N27t9ki9vrrr2PChAk4cOBA+wZLRNROYmJiEB8fL8siJieSD+ywHl+Nj4+3TevatSuys7ObbH/8+HHk5uZizJgxTb5eXl6O6dOnY8aMGVi9erXtuDIREXkfWeyJBQYG2k3TaDSorq52aFtXV4e1a9di/vz5TX4jiY2NxcqVKxEbG4vi4mKsWbMGK1aswOLFi+3aFRYWorCwEACg1+tRW1sLALBY5HOBozUWOcXUGkIIWCwWWCwWr/g2yfzIV2tyY73I2SIskuW2cfwWi8WrctMWJC9iAQEBDgWrsrLSobABwI4dOzBgwAAkJSU1uSytVms7ThsREYGMjAzMnj0bNTU1doM9duzYgQ0bNth+HzFiBAAgPz+/1evjbgUFBVKHQBfB/MhXi3JjAvbdtw+oAvJrpfl7oNfrbT/9/PwkicGTSF7EYmJiAADnzp1DXFwcACArK6vJQRvHjh1DVlaW7VxYVVUVTp48id9++w3z5s1zaK9UKiGEgBDCbvrEiRNthUuv12PXrl0AgKioKLetV2tZLBYUFBSgY8eOUColP+rbat52XJ/5ka/W5iY+Nv7SjdqQ9chQZGQkoqKivCo3gPt3FiQvYgEBARg2bBgyMzPx4IMP4vz589i3bx8WLFjg0PbRRx9FXV2d7fd//OMfuOaaazB27FgA9UWuU6dO6NixI0pKSrB+/XoMGDAAAQEBdsuJiIhAREQEACAkJMT2bUeOf4yUSqUs43KVEMK2Lt7wQbRifuSrJbnJLcnFiOdH4Iu/fiHZ41isMVvj98bcuJPkRQwAZs2ahVWrViE9PR1qtRrTpk1D//79AQCpqalYunQpevfujdDQULv5fH19odFoEBISAgA4ffo0VqxYgfLycmg0GgwaNAh33313u68PEXkmk9mEkwUnYTKbpA6FnCSLIhYUFISFCxc2+do777zT7HzPPPOM3e/jx4/H+PHj3RobERHJl+cfByEiossWixgRUYNAv0D8X///Q6Cf4+hokidZHE4kIpKDyOBIfPjAh1KHQS7gnhgRUYOqmips/347qmqqpA6FnMQiRkTUoLCiEKnrUlFYUSh1KOQkFjEiIvJYLGJEROSxWMSIiMhjsYgRETXoFNIJhxceRqeQTlKHQk7iEHsiogb+vv64NulaqcMgF3BPjIioQV5JHgY+NRB5JXlSh0JO4p4YEVGDOnMdfjz3I+rMdZdu3ASDwdDqp8lbn3ZPzmERIyJyA4PBgKSkJBgMhlYvS6vVIjg42A1ReT8WMSIiNygvL4fBYMDhw4dtD/ttqeDgYNtT6uniWMSIiBr4+/pjZI+R8Pf1b/EyYmJiEB8v7dOhLycsYkREDTqFdMLnj3wudRjkAo5OJCJqUF1bjV3Hd6G6tlrqUMhJLGJERA305Xrc8sot0JfrpQ6FnMQiRkREHotFjIiIPBaLGBEReSwWMSKiBpHBkdgzbw8igyOlDoWcxCH2AIKCgqBSqSCEkDoUGyGELSY5xdVS1nXwhnUBmB85a01uAnwDkNIzxbYcV9/X+tOd29GbcgMAKpV7yw6LGICBAwdCq9XCZDJJHYodrVYLi8UCi8UidShuYzabpQ7BbZgf+Wppbs6XncedG+7Etnu3ufw4FuvfD5PJ1CZ/S7wpN+7EIgbg6NGj6Nu3LyIj5XMIwWKxoKioCOHh4VAqPf+orxACZrMZPj4+UCgUUofTasyPfLUmN2ZhxqFTh2AWZpf3GKztVSqVW/c2vCk3AKDXu/fyBRYxABUVFTCZTLLqIAqFwhaTnOJqLW9ZH+ZHvlqTG2v79p7X2eV7em4AuH0v1fO/QhIR0WWLRYyIqIGfyg9XJVwFP5Wf1KGQk3g4kYioQVRoFL5b9J3UYZALuCdGRNTAWGfEl79/CWOdUepQyEksYkREDQrKCnDD8zegoKxA6lDISTycSETkjD17YLj6apSXlzf5sk6na+eACGARIyJyirjxRnQAEHaRNlqtFsHBwe0VEoFFjIjo0k6eBAAIAIcPH0ZMTEyTzYKDg91+Rwq6OBYxIqIGEUEReO8v7yEiKML+hW7dAADHAMTExCA+Pr79g6MmcWAHEVEDtb8aEwZNgNpf3eTrA9s5Hro0FjEiogYFZQW4eeXN9qMTn3gCQP2hRJIfFjEiogbGOiN2/7zb/jqxJ58EAOQ+9JBEUdHFsIgRETnBMn++1CFQE1jEiIia07u31BHQJbCIERE1UPmocGXUlVD5NAzc/uWX+p8nTkgXFF0Uh9gTETWI7hCNX5f96vjCFVcAZ8+2f0B0SdwTIyJqUGuqxdGzR1FrqgX8Gh7HotFIGxRdFIsYEVGD/NJ8DFo2CPml+UBdXf3Eigppg6KLYhEjIrrQTz9KHQE5iUWMiOhCt91e/3PYMGnjoEuSRRGrqKjAP/7xD0yZMgXp6en45JNPLjnPvn37cNttt2HXrl120z/66COkp6djypQpeO6551BVVdVWYRORtzt4UOoI6BJkUcTWrVsHs9mMTZs2YfHixcjMzMSxY8eabV9WVoZ3330XCQkJdtOPHj2Kbdu2YcmSJdi0aRPq6uqwbt26tg6fiLxEeFA43sRIhNdIHQk5S/IiZjQacejQIaSlpUGtViMpKQmjR4/G3r17m53n9ddfx4QJExye27N//34kJyeja9euUKvVmDZtGg4ePIiaGvZIIro0jb8Gf3rtADQmAJs2SR0OOUHyImZ9GmrjRxt07doV2dnZTbY/fvw4cnNzMWbMGIfXsrOzkZiYaPs9ISEBFosFubm5bo6aiLyRvlyPyaMBfQCA9HSpwyEnSH6xs9FoRGBgoN00jUaD6upqh7Z1dXVYu3Yt5s+fD4VC0eSyNI2u6VAoFFCr1Q7LKiwsRGFhIQBAr9ejrEwBnc4HtbUWW5vYWECpdLy+MSgICAsDysqAkhL716KjAZUKyMkBLH8sChoNEB4OlJcDBgS+JV8AACAASURBVIP9PJ07A76+gE4HmM1/TPf3r19AebnFYZ6oqPpLWHJzAZPpj+kBAUDHjkBVFdCwejYdO9a/np8P1NY2fh+gUyfAaAQKCuzniYwEAgOB8+eBxjuzvr71cdfU1L/WWHh4/frq9UDjze7jI9CxowVGowXnz9vnLiysfrsWFtbHbqVU1ufBZKpf18Y6dABCQoDiYvsR0AoFEBdXvy0vfFp8aGj9P4OhPheNxcXV/zx3zn56SEj9e5WU1OfcymKxwM+v/qcrfSQmBvDxqX8f0ei26C3pI4GB9TmqrASKiuzncbWPCCEQFmZBUFB9fprqI9XV9XltrCV9JCICUKsd+4hKVf8Zqq2t76eNudJHLBYLiop8EBhoQWho/baprPxjnov1kfLR1+LdZGDRN6GoPGOxfxH1v587p4Cl0Qe8uT4CtOzvyIV9RAgBk8mC0FALIiIULvURtbp+e1dU1H9WGmuLvyPO9BG93gduJSR28uRJMWHCBLtp+/fvFw8++KBD261bt4r169fbfv/b3/4mPvnkE9vvc+bMEQcOHLCbZ/z48eL06dN209auXSsGDx5s+zd06G5h7S7Wf7/9lit0Op3w9bXYTU9PrxA6nU4sXlziMM8PP+QJnU4nOnQw202fPLlS6HQ68fe/Gxzm+c9/8oVOpxPR0XV202+5pUrodDrxyivFDvPs3l0gdDqd6Nat1m76yJHVQqfTiY0bixzm2bFDL3Q6nRgwoMZu+tVXG4VOpxNbt+od5nnzzUKh0+nEddcZ7ab36lUrdDqd+Pe/CxzmefXVIqHT6cTYsVV207t0qRM6nU7s33/eYZ4XXjAInU4nJkyotJseEWESOp1OfPNNvsM8Tz5ZInQ6nZg2rcJuemCgWeh0OnH8eK7DPAsWlAqdTicyMsodXsvJ0YnTp3UO0x94oEzodDoxb16Zw2v/+199H1Gp7PvIPfeUC51OJxYtcuwjR47U95HQUPs+kppa30eeecaxj3z5ZX0f6dzZZDf91lvr+8jKlY595NNPzwudTieuuMK+j4waVd9HXnvNsY+89159H+nf376PDBli7SOFDvO89VZ9H7n2Wvs+0rt3fR/54APHPrJ2bX0fGTOmusk+sm+fYx956aViodPpxPjx9n0kMrK+j3z9tWMfeeqppvuIWm3tI3kO8zyiuU9gJsRdfzrq8Nq3334rAP9m+8jcuY595Pff6/uIj499H/nzn+v7yOOPlzrMc/RofR8JCbHvI1Om1PeRp5927CMHD9b3kago+z4yblx9H1mxovk+kpRk30dGj67vIxs2OPaRnTvr+0i/fvZ95Jpr6vvIli2OfeTttx37yNKlS4VOp3NHCREKIYRwb1l0jdFoxNSpU7Fy5UrENXwdfv3111FSUoL5F9w1+rHHHkNWVhaUyvqjoFVVVfD19cW1116LefPm4cUXX0R4eDjSGw4DZGdnY/78+diyZQv8/f1ty7lwT2znzv24667ZiIyMtLWRw56YEAXQaDrCYLA/6uu5e2ImWCwqL9oTK0BUVEfk5Njnx3P3xEwIClJ5yZ5YEa64IhyhoUrn98RKSlA+PAH97qrAjwuzEOpz4dObzyIxMREHD55FTEyMbWr77ImZEBqq8pI9MT0+/vhVZGRkIDo6Gq3mllLYSi+88IL4+9//LiorK8Xp06fF1KlTxY8//ujQrqSkROj1etu/Rx55RGzfvl2UlpYKIYQ4cuSISEtLE6dPnxaVlZXi6aefFi+99NJF31un07n1W4G7mM313xbNZrPUobiFxWIRtbW1wmKxSB2KWzA/8tXi3Pj4iBw1ROxUpcgpznF4OTs7WwAQ2dnZborUOd6UGyHc/zdX8nNiADBr1iysWrUK6enptlGF/fv3BwCkpqZi6dKl6N27N0JDQ+3m8/X1hUajQUhICABg4MCBmDJlCp588klUVVVh8ODBmDVrVruvDxF5ILMZMVXAuUzzpduSbMiiiAUFBWHhwoVNvvbOO+80O98zzzzjMG3cuHEYN26c22IjosvAjh0AgDoFcOb8CXQJ7wJfla/EQZEzJB9iT0QkuUmTAAB5qbei+6LuyCvNkzggchaLGBGR1eo1UkdALmIRI6LL2623Sh0BtQKLGBFd3qw3HP/0U2njoBaRxcAOIiLJjR0LrbEca6atgVajlToachKLGBFdvrQNxUpV/6cwOCAYfxn5FwkDIlfxcCIRXb6st8touK1IUUUR7tl0D4oqii4yE8kJixgRXZ4a34cpLAwAUFlTiTcOv4HKmspmZiK5YREjostTeHj9z0aPbyLPwyJGRJe306eljoBagUWMiC4/q1Y1OVmhUKCDukOTzyskeeLoRCK6/MydCwGg4O67UXPBc1J+evgniAqBsxX203UXPtuHZIFFjIguOwa9HleHheHU5s3A5s1/vKAAEADACKCJJy1qtVoEBwe3U5TkDBYxIrrslJeX4xSAw4cP2z3gUleqw3WvXIfDDx5GTGiMw3zBwcHQankhtJywiBHRZSsmJgbx8Y2e4NxweVhMdAziwy98sjPJEQd2EBGRx2IRIyIij8UiRkTUoIO6A56b9Bw6qDtIHQo5iefEiIgahASG4K83/lXqMMgF3BMjImpQXFmMOVvmoLiy+NKNSRZcKmJpaWnYvXs3zGZzW8VDRCSZCmMFVn2+ChXGCqlDISe5VMT279+PW2+9FdHR0ZgzZw6+/vrrtoqLiIjoklw6J6bT6bB//35s2bIFmZmZWLNmDbp06YKpU6di6tSp6NmzZ1vF2aaCgoKgUqkgRBOX6EtECGGLSU5xtZR1HbxhXQDmR86cyU3j9W3cprnpUvKm3ACASuXeoRguLU2hUCA5ORnJycl49dVX8fHHH2Pr1q146aWX8Mwzz6B///6YNm0a7rzzTrur4OVu4MCB0Gq1MJlMUodiR6vVwmKxwGKxSB2K23jToWjmR74ulRvrZ91kMtl97k1mE1RKFUxmk+z+HnhTbtypxSXRz88PEyZMwIQJE1BRUYH33nsPW7duxd/+9jc8+uijuOGGG7B//353xtpmjh49ir59+yIyMlLqUGwsFguKiooQHh4OpdLzx98IIWA2m+Hj4+MVdwhnfuTLmdxY9wZUKpXdnkHXjl1Ru7a2XeJ0ljflBgD0er1bl+eW/bqgoCBMnz4dQ4cOxcqVK7F27Vp88cUX7lh0u6ioqIDJZJJVB1EoFLaY5BRXa3nL+jA/8uVMbqzTL2xjsVhQWVsJjZ9Gdl9OvCE3ANy+h9vqLOl0Orz00ku46qqr0LNnT7zxxhtITU3FBx984I74iIjaTY4hByFzQpBjyJE6FHJSi/bEiouL8e6772LLli04ePAgFAoFUlJS8MYbb2DChAkICgpyd5xERG5TVlYmdQjkJi4VsS1btmDr1q3Ys2cP6urqcM011+Dll1/GnXfeKavzSUREzTEYDLjhhhv4bDAv4VIRS0tLQ48ePbBo0SJMmzYNXbt2bau4iIjaRHl5OQwGA44fP85ng3kBl4rY999/j0GDBrVVLERE7SYkJMRxWmAIloxbgpBAx9dInlwa2DFo0CCsX78e/fr1Q3BwMHr06IHFixejtlZeQ1KJiFqig7oDnrz9Sd7F3oO4VMQ2bdqE2bNno7a2FrfccgtCQ0Px9NNPY/78+W0VHxFRuympKsHf3vsbSqpKpA6FnORSEVu1ahUmT56MX375Bf/617/w7bffYvny5diwYYPsrm4nInJVWXUZnt31LMqqOXrRU7hUxE6cOIEZM2bYXQQ4e/Zs1NXV4cyZM+6OjYiI6KJcKmIVFRXo0MH+WHFoaCgAXndBRETtz+WLnf/3v//Z3WvMelPK3377zaEtRzISEVFbcrmIpaen2z0SwHovr7S0NNv/hRBQKBRec9dlIro8xIXFwbjGCD+Vn9ShkJNcKmKff/55W8VBRCQLLGCexaUiNmLECPz3v//FunXrkJWVhejoaEyePBkpKSltFR8RUbs5V3wOCQsTkP1sNuLD46UOh5zgUhE7ePAgUlJSUFdXh4iICBQXF+O1117D6tWrMXv27LaKkYiIqEkuFbEnnngCPXv2xIcffoi4uDiUlZXhnnvuwaJFi1jEiEgWDAYDdDodamtrm3wmmE6nkyAqaisuFbFjx45h7dq1iIuLA1B/77EXX3wRXbt2xblz52zTiYikYDAY0K1bNxgMhou24x3svYdLRaywsBCxsbF206yFq7CwkEWMiCRlvUP9Bx98gH79+jX7dObg4OAm72AfHBCM+WPmIziABc5TuDzE3hsej01E3q1z586Ij49vtog1R6vR4sXUF9soKmoLLhexUaNGNdkxrr/+ervpCoUCpaWlrYuOiKgdlVaVYtXnq/DAqAcQqg6VOhxygktFbOnSpW0SREVFBVavXo0jR44gMDAQqampuOWWWxza5efn44UXXkBubi6EEIiLi0N6ejp69eoFADh+/DgWLVoEf39/2zyTJk1Campqm8RNRN6ltLoUi95fhD8N/ROLmIeQRRFbt24dzGYzNm3ahLy8PCxZsgSxsbHo16+fXbuQkBDMnz8fUVFRUCgU+Oqrr7Bs2TK89dZbtlthhYaG4s0332yTOImISF5cO2DcBoxGIw4dOoS0tDSo1WokJSVh9OjR2Lt3r0NbtVqN6OhoKJVKCCGgVCpRWVnJw5ZERJcpl8+JuZv1mo34+D+uju/atSvef//9ZueZMWMGiouLYTabkZycjPDwcNtr5eXlmD59Onx9fTFo0CBMnz7dYShtYWEhCgsLAQB6vd72ZGqLxeK29Wotayxyiqk1hBCwWCywWCxeMTiI+ZGnxvloSW4swmL7KZfcektu2orkRcxoNCIwMNBumkajQXV1dbPzbNy4EbW1tfjyyy/tpsfGxmLlypWIjY1FcXEx1qxZgxUrVmDx4sV27Xbs2IENGzbYfh8xYgSA+nNuclNQUCB1CHQRzI+86PV62/9bkhsfiw+OP3ocPkYfWf49IEeSF7GAgACHglVZWelQ2C7k5+eH5ORkZGRkoGvXrkhMTIRWq7Vd+xEREYGMjAzMnj0bNTU1doM9Jk6caCtcer0eu3btAgBERUW5c9VaxWKxoKCgAB07dnR5mLAcCSFgMpmgUqm84tsk8yNP1qMqAFqcmxjEuDOkVvOW3Fi5+8uB5EUsJqa+wzS+40dWVhYSEhKcmt9isSA/Px+JiYkOr1nPnTV+dAxQX+AiIiIA1A8W8fPzs7WXG6VSKcu4XGU9h6lUKr3ig2jF/MhL41y0JDfnis/hysVX4rdlvyEuTB43b/CW3LQVyT99AQEBGDZsGDIzM1FVVYWsrCzs27cPycnJDm2PHz+OEydOwGw2o6amBtu2bUN5eTm6d+8OoP62WOfPn4cQAgaDAevXr8eAAQMQEBDQ3qtFRB5ICIGq2iqHL74kX5LviQHArFmzsGrVKqSnp0OtVmPatGno378/ACA1NRVLly5F7969UV1djbVr10Kv18PX1xddunTB0qVLbQM7Tp8+jRUrVqC8vBwajQaDBg3C3XffLeWqERFRG5JFEQsKCsLChQubfO2dd96x/X/IkCEYMmRIs8sZP348xo8f7/b4iEgaBoMB5eXlTrfnHeovP7IoYkREFzIYDEhKSrrkHekvpNVqodFoWvSeQQFByLghA0EBQS2an9ofixgRyZL1jvSHDx+2DQBzhkajQU1NTYveM0wThnV/WteieUkaLGJEJGsxMTF2N0O4FOuI5ZYoqy7DpkObcM+wexASGNKiZVD7knx0IhGRXJRUlWDuv+aipKpE6lDISSxiRETksVjEiIjIY7GIERGRx2IRIyJqEN0hGmeePYPoDtFSh0JO4uhEIqIGKh8VEsKdu28ryQP3xIiIGuQU56DT/E7IKc6ROhRyEosYEVEDi7CgoLzA9nBMkj8WMSIi8lg8J0ZELebqDXpdwZv5kjNYxIioRVp6g15XaLVaBAcHt9nyL6T2U2PqkKlQ+6nb7T2pdVjEiKhFWnqDXlcEBwdDq9W2ybKbEhEcgcx7M9vt/aj1WMSIqFVcvUGvnFUYK/Cv7/6FKVdP4eNYPAQHdhARNSiuLMbMN2eiuLJY6lDISSxiRETksVjEiIjIY7GIERGRx2IRIyJqEBUahZ+f+BlRoVFSh0JO4uhEAEFBQVCpVBBCSB2KjRDCFpOc4mop6zp4w7oAzM+F88hpG7QmN74+vugV3cu2HDnwts+OSuXessMiBmDgwIHQarUwmUxSh2JHq9XCYrHAYvGe+7iZzWapQ3Cbyz0/1s+LyWTyms9Obkkukl9Oxr55+2T3OBZv+ey4+7o/FjEAR48eRd++fREZGSl1KDYWiwVFRUUIDw+HUun5R32FEDCbzfDx8YFCoZA6nFZjfv74Rq1Sqdz+7bo1WpUbBXBKfwpQuH+PoaW87bOj1+vdujx5ZEliFRUVMJlMsuogCoXCFpOc4motb1kfT8vPpe5xKISAyWSCSqVyen1yc3MByC+nrcmNtb3c1gmQZ0wt4e69dhYxIi/Xlvc4bO97GxJdiEWMyMs5c4/DluyJAe1/b8O2FugXiNv634ZAv0CpQyEnsYgRXSYudo/DlhYxbxMZHIkPHvhA6jDIBZ5/RpqIyE0qayrxznfvoLKmUupQyEksYkREDYoqijBl/RQUVRRJHQo5iUWMiIg8FosYERF5LBYxIiLyWCxiREQNOoV0wtd/+xqdQjpJHQo5iUPsiYga+Pv645qu10gdBrmARYyoFQwGAyor5T0cW6fTSR2Cx8grycPNK2/Grod2oXOHzlKHQ05gESNqoZKSEgwfPrxNbufkbrw9lHPqzHX4Kecn1JnrpA6FnMQiRtRClZWVl7ydk1x42+2hiKxYxIha6WK3cyKitsXRiUREDfx9/TGqxyj4+/pLHQo5iXtiREQNOoV0wv5H9ksdBrmAe2JERA2qa6vxyfFPUF1bLXUo5CQWMSKiBvpyPW595Vboy/VSh0JOYhEjIiKPxSJGREQei0WMiIg8lixGJ1ZUVGD16tU4cuQIAgMDkZqailtuucWhXX5+Pl544QXk5uZCCIG4uDikp6ejV69etjYfffQR3n33XVRXV2Pw4MF44IEHoFar23N1yIsYDAaUl5c7TLdYLMjLy5MgImpLHUM64rN5n6FjSEepQyEnyaKIrVu3DmazGZs2bUJeXh6WLFmC2NhY9OvXz65dSEgI5s+fj6ioKCgUCnz11VdYtmwZ3nrrLahUKhw9ehTbtm3DU089haioKLz88stYt24d5s2bJ9GakSczGAxISkq66G2leDsn7xLgG4CUXilSh0EukPxwotFoxKFDh5CWlga1Wo2kpCSMHj0ae/fudWirVqsRHR0NpVIJIQSUSiUqKytRWloKANi/fz+Sk5PRtWtXqNVqTJs2DQcPHkRNTU17rxZ5gfLyctttpbKzs+3+ZWVl4dtvv8WJEyd4Oycvcr7sPIb/YzjOl52XOhRykuR7YtY7bDe+bU/Xrl3x/vvvNzvPjBkzUFxcDLPZjOTkZISHhwMAsrOzMXjwYFu7hIQEWCwW5ObmIjEx0Ta9sLAQhYWFAAC9Xo/a2loA9YeI5MIai5xiag0hBCwWCywWCxQKhdThOMW67Tt37ozY2FiH1/z8/BAaGuoVOfLE/DSnNZ+d6tpqHDp5CNW11bLJqzflpi1IXsSMRiMCAwPtpmk0GlRXN3+x4caNG1FbW4svv/zSYVkajcb2u0KhgFqtdljWjh07sGHDBtvvI0aMAFB/zk1uCgoKpA7hsqXX620//fz8mmzD/MhXS3KjL2nIeYEefrVN55zkRfIiFhAQ4FBkKisrHQrbhfz8/JCcnIyMjAx07doViYmJCAgIQFVVlV27qqoqh2VNnDjRVrj0ej127doFAIiKimrt6riNxWJBQUEBOnbsCKVS8qO+rSaEgMlkgkql8phvk9Y99MjISIe+wfzIV2tyU+vXkPOOkYgKk8ffA2/KDeD+nQXJi5j1ERbnzp1DXFwcACArKwsJCQlOzW+xWJCfn4/ExEQkJCQgKyvLVqCys7OhVCoRHR1tN09ERAQiIiIA1A8WsX7LluMfI6VSKcu4XGU9h6lUKj3mg2jd7hfLAfMjXy3JTYBvAK7ucjUCfANkk1dvzI07SZ6lgIAADBs2DJmZmaiqqkJWVhb27duH5ORkh7bHjx/HiRMnYDabUVNTg23btqG8vBzdu3cHAIwePRr79u1DVlYWqqqqkJmZieHDh8Pfn3ekJqJLiwqNwrePf4uoUHnshdGlSb4nBgCzZs3CqlWrkJ6ebhtV2L9/fwBAamoqli5dit69e6O6uhpr166FXq+Hr68vunTpgqVLl9oGdgwcOBBTpkzBk08+iaqqKgwePBizZs2SctWIyIMY64z4NutbDEkcggDfAKnDISfIoogFBQVh4cKFTb72zjvv2P4/ZMgQDBky5KLLGjduHMaNG+fW+Ijo8lBQVoARz49A9rPZiA/ng049gSyKGNGlNHfnjLZkvfyDiOSLRYxkz5k7Z7QV3pGDSN5YxEj2Gt85wzqatb0EBwfzjhxEMsYiRh4jJibG7s4uRO4WERSBnfftRERQhNShkJNYxIiIGqj91Rg/cLzUYZALJL9OjIhILgrKCnDTiptQUMbbiXkKFjEiogbGOiM+/e+nMNYZpQ6FnMQiRkREHotFjIiIPBYHdlC7MhgMqKiocGkeXnRM7UXlo0LPzj2h8uGfRk/BTFG7MRgMuPLKK1t00TIvOqb2EN0hGr889YvUYZALWMSo3bTmomVedEztodZUi591P6NPTB/4qfhQTE/AIkbtjhctk1zll+Zj8PLBvAGwB+HADiIi8lgsYkRE5LFYxIiIyGOxiBERNQgPCsdbM95CeFC41KGQkziwg4iogcZfg7ShaVKHQS5gEfMwUjzh2B2EEMjNzZU6DKKL0pfr8Ze3/4JX015FZHCk1OGQE1jEPIiUTzh2F160THJWXVuNHUd24KXUl6QOhZzEIuZBpHzCcWsJIWAymaDVannRMhG5DYsYgKCgIKhUKgghpA7FRghhi8kal/VndHQ04uLipAzPZUIImM1m+Pj4yGo7t1RT+fFkF/YxT9aa3DTeDnLZFt6UGwBQqdxbdljEAAwcOBBarRYmk0nqUOxotVpYLBZYLBYAsMVnMplkF6uzzGaz1CG4zYX58Qbekp+W5kYIgThtnO3IgZx4U27ciUUMwNGjR9G3b19ERsrnRK7FYkFRURHCw8OhVNZfCWH9BqNSqdz+baatNd4TUygUUofTak3lx5N5U35ak5uEiARk/yO7jSJrGW/KDQDo9Xq3Ls+z/hK2kYqKCphMJll1EIVCYYvJGlfjn3KK1RWeHHtjTeXHG3jD+rQmN3WmOmQVZiExIhG+Kt82irBlvCE3ANy+h+v5XyGJiNwkrzQPPRb3QF5pntShkJO4JyYz1uvALBYL9Ho9amtrbYdE+HBIIiJ7LGIy4sx1YLzOiojoDyxiMtL4OrDOnTtDr9cjMjLS7uQ0Hw5JRPQHFjEZiomJQWxsLPz8/BAVFeUVo9+IPIFWo8Wr016FVsMvip6CRYyIqEFwQDBmj5wtdRjkAn7FJyJqUFRRhPTX01FUUSR1KOQkFjEiogaVNZXY/NVmVNZUSh0KOYlFjIiIPBbPiblZa573xevAiIhcwyLmRu543hevAyOSjlKhhFathVLBg1SegkXMjdzxvC/rdWDedGd0Ik8RGxaL4pXFUodBLmARawMxMTGIj4+XOgwicpHJbEJBeQE6BneEyod/Hj0B95mJiBrkluQi5q8xyC3JlToUchKLGBEReSwWMSIi8lgsYkRE5LF45tINSktLUVpayuu8iDxcB3UHPD/peXRQd5A6FHIS98Tc4OWXX0ZCQgKuu+46XudF5MFCAkPwyI2PICQwROpQyEksYm4wb948ZGdnIzs7G6dOneLzvog8VHFlMR7Y8gCKK3mtmKeQxeHEiooKrF69GkeOHEFgYCBSU1Nxyy23OLT77bffsHXrVpw8eRIA0KNHD8ycORPR0dEAgOPHj2PRokXw9/e3zTNp0iSkpqa2afyhoaEIDQ1t0/cgorZXYazA6s9XY8GNCxCmCZM6HHKCLIrYunXrYDabsWnTJuTl5WHJkiWIjY1Fv3797NpVVlYiJSUFCxYsgJ+fHzIzM7F8+XKsWbPG1iY0NBRvvvlme68CERFJQPLDiUajEYcOHUJaWhrUajWSkpIwevRo7N2716Ht4MGDcf3110Oj0cDX1xfjx49HTk4OysrKJIiciIikJvmemHVEX+PbNHXt2hXvv//+Jef9+eefodVqERLyx0nY8vJyTJ8+Hb6+vhg0aBCmT5/OgRZE5DRfH1+pQyAXSF7EjEYjAgMD7aZpNBpUV1dfdL78/HysW7cOs2bNsk2LjY3FypUrERsbi+LiYqxZswYrVqzA4sWL7eYtLCxEYWEhAECv16O2thYAZHXTXWsscoqpNYQQsFgssFgsUCgUUofTasyPfLUmN7HaWBjXGFs8f1vwpty0BcmLWEBAgEPBqqysdChsjRUWFmLJkiWYNGkShg8fbpuu1WptIwMjIiKQkZGB2bNno6amxm6wx44dO7Bhwwbb7yNGjABQXxjlpqCgQOoQ6CKYH/lqSW4sFgsqayuh8dNAqZT8bAs5QfIiZn1kyblz5xAXFwcAyMrKQkJCQpPti4qK8Pjjj2Ps2LG4/fbbL7pspVIJIQSEEHbTJ06caCtcer0eu3btAgBERUW1al3cyWKxoKCgAB07dvSKD5MQAiaTCSqVyiu+TTI/8tWa3JwtPosrn7wSWX/PQnyYPJ5E4U25Ady/syB5EQsICMCwYcOQmZmJBx98EOfPn8e+ffuwYMECh7ZFRUV47LHHMHLkSEyaNMnh9WPHjqFTp07o2LEjSkpKsH79egwYMAABAQF27SIiIhAREQEACAkJgZ+fHwDIuEwRewAAC1dJREFU8o+RUqmUZVyuEkLY1sUbPohWzI98tSQ31odhKhXyyas35sadJC9iADBr1iysWrUK6enpUKvVmDZtGvr37w8ASE1NxdKlS9G7d2/s2bMHeXl52LlzJ3bu3Gmbf/Xq1YiMjMTp06exYsUKlJeXQ6PRYNCgQbj77rulWi0iImpjCnHhsbbLTG5uLtavX4877rjDtndG7qdSqaDVamEwGGAymaQOhy7A/NTTlegw5OUh+Hbet4jp0LKns7ubt+WmqKgIO3bsQEZGhu1GFa0hiz0xKanVavj6+uK9996TOhQ7RqMR2dnZSEhIcDgcStJjfuSrtblZGrMUH7/zcRtERkB9fnJyci45At1Zl30R69ChA+6//35UVVVJHYqdU6dOYd68ebjvvvuQlJQkdTh0AeZHvpgbebPmp66uzi3Lu+yLGFBfyDp0kNejF6x3IYmMjHTLLje5F/MjX8yNvLn7DkvyGH5DRETUAj5PPPHEE1IHQU0LDAzEVVddBbVaLXUo1ATmR76YG3lzZ34u+9GJRETkuXg4kYiIPBaLGBEReSwWMSIi8lgcYi+hiooKrF69GkeOHEFgYCBSU1Nxyy23NNm2trYWmzdvxn/+8x/U1tYiOjoaTz/9NE9ctyFX8nPw4EFs3boVhYWF0Gq1mDJlCkaNGtXOEdNHH32E/fv348yZM7j22mvx17/+VeqQLkvO5uG3337D1q1bcfLkSQBAjx49MHPmTJcujWARk9C6detgNpuxadMm5OXlYcmSJYiNjUW/fv0c2q5ZswZGoxGvvPIKQkNDkZ2dDV9fPryvLTmbH71ej5deegkLFy7E1VdfjV9++QVLly5FUlKS3cNeqe2FhYUhNTUVP/74I8rLy6UO57LlbB4qKyuRkpKCBQsWwM/PD5mZmVi+fDnWrFnj9HvxcKJEjEYjDh06hLS0NKjVaiQlJWH06NHYu3evQ1udToevvvoKDzzwALRaLZRKJRITE1nE2pAr+dHr9dBoNBgyZAgUCgV69+6Nzp0749y5cxJEfnm77rrrMHToULunvVP7czYPgwcPxvXXXw+NRgNfX1+MHz8eOTk5Ll0QzSImEZ1OBwB239S7du2K7Oxsh7a///47OnbsiG3btmHatGm47777sHv37naL9XLkSn569OiB6OhofPXVV7BYLDh27BhKSkrQs2fPdouXyBv8/PPP0Gq1Ln0J4eFEiRiNRoenV2s0miZviqnX65GdnY0hQ4bgjTfewJkzZ7BkyRJER0c3eeiRWs+V/Pj4+CA5ORkrVqxATU0NlEolHnjgAYSFhbVXuEQeLz8/H+vWrcOsWbNcmo9FTCIBAQEOfxArKysd/nACgL+/P5RKJe688074+vqiW7duGDZsGH744QcWsTbiSn6OHDmCTZs24cknn0T37t2Rk5ODp556CsHBwbj66qvbK2Qij1VYWIglS5Zg0qRJGD58uEvz8nCiRGJi6p9V1Pi8SVZWFhISEhzadunSpb3Cogau5Cc7Oxs9e/bElVdeCaVSifj4eFx11VX44Ycf2i1eIk9VVFSExx9/HGPHjsXtt9/u8vwsYhIJCAjAsGHDkJmZiaqqKmRlZWHfvn1ITk52aNunTx9ERUVh+/btMJvNOHXqFA4dOsRv+W3Ilfx069YNv/32G06cOAEAyMnJwffff4/ExMT2DvuyZzabUVtbC4vFAovFgtraWq94kKSncTYPRUVFeOyxxzBy5EhMmjSpRe/FeydKqKKiAqtWrcKRI0egVqvtrkNKTU3F0qVL0bt3bwD1fxhXrVqFU6dOISwsDJMnT0ZKSoqU4Xs9V/Kza9cufPDBBzAYDNBoNBg5ciTS0tKgVPJ7YnvasmULtm3bZjdt9OjRmDt3rkQRXZ4ulofGn52tW7di69atDg8vXb16NSIjI516LxYxIiLyWPyaSEREHotFjIiIPBaLGBEReSwWMSIi8lgsYkRE5LFYxIiIyGOxiBERkcdiESMiIo/FIkbUiEKhuOS/N954AwcOHIBCocD3338vabwjR47EuHHj3LKs9PR09OnT55Lt+vTpg/T0dLe8J1Fr8S72RI189dVXdr9fe+21mDNnDqZOnWqblpSUhP/+97/tHRoRNYFFjKiRoUOHOkyLj49vcnpLCCFQW1sLf39/tyyP6HLHw4lErVBcXIypU6ciODgYCQkJeO655+xetx6i++STT9C/f3/4+/vjww8/BACUlJTgvvvuQ+fOneHv74/Bgwdjz549dvMfOnQIN9xwA0JDQxEcHIy+ffti8+bNDnFs374dPXr0QFBQEEaPHo1Tp045xDlz5kxERkYiMDAQQ4YMcXivphw+fBiDBw9GQEAA+vTpg127drm6iYjaFPfEiFrhL3/5C/70pz9h586deO+99/Doo4+iX79+uOmmm2xtcnNz8dBDD2HRokWIi4tDXFwcamtrMWbMGJw/fx5PP/00YmJi8Pbbb+PWW2/9//buLZT9Po4D+NthDjGxllO4ITk0UfpdoLZFNLvhgivswtVcaBcWcsENUy61kLhVc+VizaHsQqmlTEQpcTFlDjWnIsz3f/H0/Hr2bPwfD/5avV/1q+3dPvt9vr+Lffodatje3oZGo8Ht7S2MRiPq6uqwsLCAxMREHBwc4Pr6OqSHnZ0dXF5eYnx8HMFgEBaLBR0dHfKl0WAwCIPBgKOjI9hsNuTl5WFqagrNzc1YW1uDXq+PuDa/34+mpiZoNBo4HA4EAgGYzWbc3d193wEl+ihBRG8CICYmJsJyt9stAAir1SpnwWBQ5Ofni+7ubjkzmUwCgPB4PCH18/PzIj4+Xuzv74fkkiSJtrY2IYQQW1tbAoDY3d19sz+tVitSUlLExcWFnM3OzgoAwufzCSGEWFpaEgCE0+kM6bW0tFRotdqQXsvLy+X3/f39QqlUikAgIGcrKysCgDCZTG/2RPQn8XIi0Sc0NjbKr2NjY1FSUoLT09OQz6jVakiSFJKtrq5Co9GguLgYLy8v8lZfX4+trS0Afz1AkpaWBrPZDIfDgcvLy4g9VFZWhvz3UllZGQDIfWxsbECpVMr/hfZ3r+3t7djc3EQwGIz4vR6PB3q9Hunp6SHrTUtL++1xIfpTOMSIPuGfP/AAkJCQgMfHx5AsMzMzrO7q6gperxcKhSJks9ls8Pl8AICMjAysra1BqVSis7MT2dnZ0Ol02Nvb+20PAOQ+AoEAsrKywnrIzs7G8/Mz7u/vI67t7OwsYu+RMqKfwntiRN8sJiYmLFOpVKioqMDc3Ny7tZIkweVy4eHhAW63G319fWhpaQl7cOM9KpUK5+fnYbnf74dCoUBqamrEupycHFxcXITlkTKin8IzMaIf0NDQgOPjY+Tm5qK6ujps+7fk5GQ0NzfDbDbj5OQk7GzvPXV1dbi7u8Py8rKcvb6+YnFxETU1NYiLi4tYJ0kS3G43bm5u5Gx1dRW3t7cfWCnR9+KZGNEP6OrqwszMDHQ6Hfr6+lBcXIzr62t4vV48PT3BZrPB6XRibm4Ora2tKCgogN/vx+TkJGpra5GUlPSf92U0GiFJEjo7OzE2Noa8vDxMT0/j8PAQdrv9zTqLxQK73Q6DwYCBgQEEAgEMDw9DpVJ9xSEg+hIcYkQ/IDExEevr6xgZGcHo6CjOzs6gVqtRVVWFnp4eAEBRURFiY2MxNDSE8/NzqNVqNDY2wmazfWhfcXFxcLlcsFqtGBwcxP39PSoqKuB0OqHT6d6sy8nJgcvlQm9vL9ra2lBYWAi73Y7+/v7PLJ3oS8UIIcRPN0FERPR/8J4YERFFLQ4xIiKKWhxiREQUtTjEiIgoanGIERFR1OIQIyKiqMUhRkREUYtDjIiIohaHGBERRS0OMSIiilocYkREFLV+AQIZF4dvJ7rMAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 450x350 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "<ggplot: (8766715658605)>\n" ] } ], "source": [ "import os\n", "from time import time\n", "import pandas as pd\n", "import numpy as np\n", "from sklearn.utils import resample\n", "from numpy.random import randn\n", "from scipy.stats import norm, t\n", "import plotnine\n", "from plotnine import *\n", "from scipy.optimize import minimize_scalar\n", "from scipy import stats\n", "# !pip install git+https://github.com/retostauffer/python-colorspace \n", "from colorspace.colorlib import HCL\n", "\n", "def gg_color_hue(n): \n", " hues = np.linspace(15, 375, num=n + 1)[:n]\n", " hcl = []\n", " for h in hues:\n", " hcl.append(HCL(H=h, L=65, C=100).colors()[0])\n", " return hcl\n", "\n", "def dgp(n0, n1, mu):\n", " \"\"\"\n", " FUNCTION TO CREATE BINARY RISK SCORES\n", " \"\"\"\n", " y = np.append(np.repeat(0, n0), np.repeat(1, n1))\n", " score = np.append(randn(n0), randn(n1) + mu)\n", " return y, score\n", "\n", "def PPV_theory(thresh, mu0, mu1, prev):\n", " \"\"\"\n", " FUNCTION TO RETURN ASYMPTOTIC PPV FOR NORMALLY DISTRIBUTED SCORES\n", " \"\"\"\n", " tpr = norm.cdf(mu1 - thresh)\n", " fpr = norm.cdf(mu0 - thresh)\n", " ppv = tpr*prev / (tpr*prev + fpr*(1-prev))\n", " return ppv\n", "\n", "def PPV_fun(y, score, thresh):\n", " \"\"\"\n", " FUNCTION TO CALCULATE EMPIRICAL PPV VALUE FOR A GIVEN THRESHOLD\n", " \"\"\"\n", " ntp = np.sum(score[y == 1] >= thresh)\n", " nfp = np.sum(score[y == 0] >= thresh)\n", " if ntp == nfp == 0:\n", " return np.NaN\n", " else:\n", " ppv = ntp / (ntp + nfp)\n", " return ppv\n", "\n", "thresh_seq = np.round(np.arange(-3,3.1,0.1),2)\n", "theory_seq = np.array([PPV_theory(tt, mu0=0, mu1=2, prev=0.1) for tt in thresh_seq])\n", "\n", "mu0 = 0\n", "mu1 = 2\n", "n0, n1 = 90, 10\n", "prev = n1 / (n1 + n0)\n", "\n", "np.random.seed(1234)\n", "nsim = 5000\n", "\n", "mat = np.zeros([nsim, len(thresh_seq)])\n", "for ii in range(nsim):\n", " y, score = dgp(n0=n0, n1=n1, mu=mu1)\n", " mat[ii] = [PPV_fun(y, score, tt) for tt in thresh_seq]\n", " \n", "df_sim = pd.DataFrame({'thresh':thresh_seq, 'theory':theory_seq, 'emp':np.nanmean(mat,0)}).melt('thresh',None,'tt')\n", "\n", "plotnine.options.figure_size = (4.5, 3.5)\n", "gg_theory = (ggplot(df_sim, aes(x='thresh', y='value', color='tt')) + theme_bw() + \n", " geom_point() + labs(x='Threshold', y='PPV') + \n", " ggtitle('Figure 1: Simulated vs Theoretical PPV') + \n", " scale_color_discrete(name='Type',labels=['Empirical','Theory']))\n", "print(gg_theory)\n", "\n", "np.random.seed(102)\n", "y, score = dgp(n0=n0, n1=n1, mu=mu1)\n", "thresh_seq = np.sort(np.unique(score))\n", "df_ex = pd.DataFrame({'ppv':[PPV_fun(y, score, tt) for tt in thresh_seq],'thresh':thresh_seq})\n", "yy, xx = tuple(df_ex.query('ppv<0.4').tail(1).values.flatten())\n", "yend, xend = tuple(df_ex.query('ppv>0.4').head(1).values.flatten())\n", "xstar = (0.4-yy)/((yend - yy)/(xend - xx))+xx\n", "\n", "plotnine.options.figure_size = (4.5,3.5)\n", "gg_ppv_ex = (ggplot(df_ex.query('thresh>0.5 & thresh<1.5 & ppv>0.25 & ppv<0.5 & ppv!=0.4'),aes(x='thresh',y='ppv')) + \n", " theme_bw() + geom_step() + \n", " labs(x='Threshold', y='PPV') + \n", " ggtitle('Figure 2: Empirical PPV interpolation') + \n", " geom_segment(x=xx,xend=xend,y=yy,yend=yend,color='red') + \n", " geom_hline(yintercept=0.4,color='blue',linetype='--') + \n", " geom_vline(xintercept=xstar,color='darkgreen',linetype='--'))\n", "print(gg_ppv_ex)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Though the asymptotic PPV curve is smooth (see Figure 1), the empirical PPV has is non-smooth (as Figure 2 shows). Our statistic of interest will be the value of the threshold that is needed to meet a targeted PPV. For the PPV curve, this amounts to the following:\n", "\n", "$$\n", "\\begin{align*}\n", "t^*(p) &= \\Big\\{\\inf_t : PPV(t)=p \\Big\\} \\label{eq:tstar}\n", "\\end{align*}\n", "$$\n", "\n", "Note that we want \\eqref{eq:tstar} to find the infimum of thresholds since if there are two distinct thresholds that obtain the same PPV, the smaller one will have a higher senitivity. For the empirical curve, the threshold will need to be interpolated when the targeted value cannot be found. For example, if the targeted PPV is 0.5, but the closest values we can find are PPVs of 0.49 and 0.54, for threshold values of 1 and 2, respectively, then a linear interpolation will estimate a threshold of 1.2. In the case where the targeted PPV is larger than the largest empirical PPV, an interpolation will also be used. However it is not advised to pick PPVs that are generally beyond the range of the classifier because these estimates will be noisy.\n", "\n", "The `thresh_ppv` function below also has a built-it [Jackknife](https://en.wikipedia.org/wiki/Jackknife_resampling) estimate of the statistic, since these will be required later. The Jackknife calculates the statistic by leaving one sample value, so there are $n$ estimates of it. Because the empirical PPV is discrete, deleting an observation whose value is below a given threshold will not affect the PPV and hence the choice of threshold. Deleting a positive label observation whose score is at or above the threshold will necessarily lower the PPV, and so we can interpolate the new slope/intercept position to obtain the original PPV. Similarly, deleting a negative observation will make whatever the the next smallest threshold is to the current one the optimal choice.[[^1]] It is exceedingly quick therefore to approximate the leave-one-observation out statistic for the PPV. \n", "\n", "Note the `draw_samp` function, which draws data with replacement, can make use of the `strafify` argument. Normally one would want to make use of the variation in the label prevalence, however, since this post is inspired by a validation trial for a machine learning algorithm, it is likely that the label balance is already known with a high degree of confidence. Lastly, because there can be discontinuities in the data, the `thresh_ppv` function will always try to find the infimum of values, because we know on a statistical level the relationship should be monotonic (for reasonable assumptions about the distribution of $\\Phi_0$ and $\\Phi_1$." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def draw_samp(*args, strata=None):\n", " \"\"\"\n", " FUNCTION DRAWS DATA WITH REPLACEMENT (WITH STRATIFICATION IF DESIRED)\n", " \"\"\"\n", " args = list(args)\n", " if strata is not None:\n", " out = resample(*args, stratify=strata)\n", " else:\n", " out = resample(*args)\n", " if len(args) == 1:\n", " out = [out]\n", " return out\n", " \n", "def thresh_interp(df, target):\n", " \"\"\"\n", " LINEARLY INTERPOLATES PPV TO FIND THRESHOLD\n", " \"\"\"\n", " idx = df.ppv.isnull()\n", " if idx.sum() > 0:\n", " df = df[~idx]\n", " df = df.assign(err=lambda x: x.ppv - target).assign(err1 = lambda x: x.err.shift(1))\n", " if df.ppv.max() < target:\n", " df = df.query('ppv == ppv.max()').sort_values('thresh1').head(1)\n", " else:\n", " df = df[((np.sign(df.err1)==-1) & (np.sign(df.err)==1)) | ((np.sign(df.err1)==-1) & (np.sign(df.err)==0))]\n", " df = df.sort_values('thresh1').head(1)\n", " thresh0, thresh1 = df.thresh1.values[0], df.thresh.values[0]\n", " ppv0, ppv1 = df.ppv1.values[0], df.ppv.values[0]\n", " slope = (ppv1 - ppv0) / (thresh1 - thresh0)\n", " tt = thresh1 - (ppv1 - target)/slope\n", " return tt\n", "\n", "def thresh_PPV(*args, **kwargs):\n", " \"\"\"\n", " FUNCTION TO FIND THE THRESHOLD THAT CORRESPONDS TO A TARGET PPV\n", " First two *args should be y and score. target (PPV) should be in **kwargs\n", " Other optional **kwargs include: jackknife (whether to use jackknife), ret_df (whether to return data_frame)\n", " \"\"\"\n", " # --- assign --- #\n", " jackknife = False\n", " ret_df = False\n", " if 'jackknife' in kwargs:\n", " jackknife = kwargs['jackknife']\n", " if 'ret_df' in kwargs:\n", " ret_df = kwargs['ret_df']\n", " assert 'target' in kwargs\n", " target = kwargs['target']\n", " assert len(args) == 2\n", " y, score = args[0], args[1]\n", " assert len(y) == len(score)\n", " assert np.all((y==0) | (y==1))\n", " # --- calculate --- #\n", " s0, s1 = score[y == 0], score[y == 1]\n", " u_scores = np.sort(score) # Useful for step function\n", " store = np.zeros([len(u_scores),2],int)\n", " for ii, tt in enumerate(u_scores):\n", " store[ii] = [np.sum(s0 >= tt), np.sum(s1 >= tt)]\n", " dat = pd.DataFrame(store,columns=['n0','n1']).assign(thresh=u_scores,tot=store.sum(1))\n", " dat = dat.assign(thresh1=lambda x: x.thresh.shift(1), ppv=lambda x: x.n1/(x.tot))\n", " dat = dat.assign(ppv1=lambda x: x.ppv.shift(1), tot1=lambda x: x.tot.shift(1)).iloc[1:]\n", " if ret_df:\n", " return dat\n", " tstar = thresh_interp(dat, target)\n", " # Do a fast interpolation with the Jackknife\n", " # Remember: all s[1]<t and s[0]<t do not impact calculation (i.e. False negatives and True Negatives)\n", " if jackknife:\n", " tmp = dat.query('thresh>=@tstar & thresh1<@tstar')\n", " n0, n1, tot0, tot1 = tmp.n0.values[0], tmp.n1.values[0], tmp.tot1.values[0], tmp.tot.values[0]\n", " thresh0, thresh1 = tmp.thresh1.values[0], tmp.thresh.values[0]\n", " ppv0, ppv1 = tmp.ppv1.values[0], tmp.ppv.values[0]\n", " holder = []\n", " holder.append(np.repeat(tstar,len(score) - tot1)) # Removing all false/true negatives\n", " # Slope for removing TP\n", " ppv1_new, ppv0_new = (n1-1)/tot1, (n1-1)/tot0\n", " slope_new = (ppv1_new - ppv0_new) / (thresh1 - thresh0)\n", " assert ppv1_new < ppv1 # Has to decrease\n", " holder.append(np.repeat(thresh1 + (ppv1 - ppv1_new)/slope_new, n1))\n", " # Note that becasue n1/(tot0-1) = n1/tot1, implies thresh0 will be be the new choice\n", " holder.append(np.repeat(thresh0, n0))\n", " tstar = np.concatenate(holder)\n", " tstar = tstar[np.abs(tstar)!=np.Inf]\n", " return tstar" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The simulation below will show the distribution of thresholds that are found for PPV targets of 25%, 50% and 75% when the scores and labels are generated from the true data generating process (DGP). An example of the distribution generated by the bootstrap will also be made. " ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwQAAAF4CAYAAADqhD5xAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd3wUdf7/X7O9bzaNUCMSOgqIBRWkHurdSVPx4Cw0sR2KouiJnnpydvROsZwQkW7nzvOUwwJ+7SACiqh0AoG03WT7zu7Ofn5/8Pt8nE12UyAhIXk/H488YGc/M/OZz8x+5vPuEmOMgSAIgiAIgiCINommuTtAEARBEARBEETzQQIBQRAEQRAEQbRhSCAgCIIgCIIgiDYMCQQEQRAEQRAE0YYhgYAgCIIgCIIg2jAkEBAEQRAEQRBEG4YEAoIgCIIgCIJow5BAQBAEQRAEQRBtGBIICIIgCIIgCKINQwIBQdSDTp06YfTo0c3dDaIRWbJkCSRJwueff17vfa6++mrodLom7NUx9uzZA0mSsGDBghM6zn333QdJknD48OFatzU18XgckiRh5syZtW47WTTHGDQG27Ztw6hRo+ByuRrl+WjrNNbvrCFs2LABgwcPht1uhyRJWLlyJQCgoqIC1157LTp06ABJkuh9Q5x0SCAg2iwbN26EJElp//hE3VpZuHAhRowYgQ4dOsBkMqFdu3YYMmQIVq5ciUQicULH/uijj2od21NxMUYATz/9NJYvX97c3agXr7zyCp599tnm7kajEYvFMHHiROzduxcLFizAihUrMH78+LTtU/0GrVYr+vfvj0ceeQSRSKTBbSdOnAhJkrB58+Za+/rb3/4WkiThp59+qrXdqfQ8NQZutxsTJkxAOBzGwoULsWLFClx44YUAgDlz5uCNN97AzTffjBUrVuDPf/5zM/eWaGs0vaqLIFo4V1xxBcaNG1djO5+oAWDv3r3QaFqX/Lxp0yZ06dIFl156KbKzs+H1evGf//wH11xzDTZu3IglS5ac8Dmuuuoq/P73v0/5XWZm5gkf/0SYNm0arr76ahiNxnrvs3TpUhQWFjZhr5qeBx98EPfddx9MJlOD93366afRq1cvXHvttQ3aT6fTIRwOnxTrCueVV15BSUkJbr311hrfncgYNBe7d+/G/v378eyzz+KWW26p937q32BpaSlWr16N+fPn48svv8R7773XoLYzZ87E2rVrUVhYiHPOOSfl+YqLi7F+/XpccMEF6N27d619O97n6VTlm2++gdfrxYIFC3DZZZclfbd+/Xr87ne/w3333ddMvSPaOiQQEG2e/v374+qrr661TUMWjU1FJBKBXq+HVqttlOO9/vrrNbbdfvvtGDNmDAoLC/HQQw+hY8eOJ3SOAQMG1Dm2zYVWq63XWDLGEAqFYLVaodfrT0LPmhadTnfSFubqZ7YlLb5P5hg0FiUlJQAAl8vVoP2q/wZnz56NQYMG4b///S+2bt2KgQMH1rvtJZdcgs6dO2PNmjV4+umnYbFYapxv6dKlUBSlSVzBGnsOPNmku4eKoqC8vLzB95YgGpPWpfIkiCYiXQzBsmXLcMYZZ8BoNKJjx46488478cMPP9TwS63NXz2VX/qQIUNQUFCA/fv346qrrkJ2djbMZjOOHj0q2rz55pu46KKL4HA4YDabcdZZZ+GVV1454Ws97bTTAABVVVVJ2/fu3YtffvnlhI+fCj6+27dvx5gxY2C325GVlYVZs2YhFAohkUjgscceQ7du3WA0GtG3b1/897//TTqG2h94zZo1GDBgAEwmk7gvoVAoqX2qe8K3bdiwAX/729/QvXt3GI1GPPPMMwDSxxCUlZXh9ttvR0FBAYxGI7Kzs3HRRRfhzTffFG0OHz6MuXPnYuDAgcjMzITJZELPnj1x//33J7lvHA8+nw+zZ89GXl4ezGYzBg0ahLfffjtl21T+8x6PB3PnzkVBQQHMZjMyMjLQt29f3HXXXQB+Hdvi4mJ8/PHHKV2/antm64oX+PDDD3H++efDYrEgJycHM2fOhNvtrrPfHH5u4NfYhC+++AJ79+5N6iu/1+mOdejQIcyYMQMdO3aEwWBA586dceONN6K0tDSpHXexWblyJQoLC9GvXz8YjUZ06tQJ999/PxRFSXuvqvP+++9j+PDhcDgcsFgsGDhwIF588UUwxkSbTp06YdSoUQCAa6655oTc7gwGgzjWnj17GtRWo9Fg2rRp8Pl8eOutt2q0Z4xh6dKlsNvtmDRpUtrjnujzBADPP/88xowZI+5Vu3btcOWVV2Lnzp0pz7ly5UqceeaZSXNCOBxO2ZYxhpdeegnnnHMOrFYrrFYrLrzwQrz77rsp2y9fvhznnnsurFYrbDYbzj///KTfPn8mZ8yYAQAYOnQoJEmCTqdLmlMKCwvbjMsq0fI4tVQkBNEEhEIhVFRUJG3T6/VwOp217vePf/wDc+bMQZ8+ffDQQw9Bp9Nh9erV+PTTTxulXz6fD0OHDsXgwYPx0EMPwefzCY3c/Pnz8cgjj2DUqFF44IEHYDKZsG7dOsyYMQP79u1rUJBcZWUlFEWBx+PBunXrsHz5chQUFKBnz55J7YYNG4aSkhLE4/F6HzvV2ALHNLQZGRlJ24qKijB69GhcddVVuPzyy/Hll19i8eLFkGUZZrMZmzZtwo033gitVotnnnkGEydOxJ49e9C5c+ek46xduxa7d+/GLbfcguuvvx7r16/HwoUL8f333+N///sfJEmqs9933HEHwuEwpk6diuzsbCEkpeLAgQO48MILUVJSgquvvhrnnHMOZFnGd999h/feew9XXnklgGMBof/6178wYcIEdO3aFYlEAp988gkWLFiA7du3p11s1EU8HsfFF1+Mr7/+GldccQVGjBiB/fv347rrrqtxD9Nx+eWX4/PPP8cNN9yA/v37IxKJYM+ePfjkk08AAHl5eVixYgVuvfVWdOjQAffcc4/YV+36Vdszm47NmzdjzZo1mDFjBq699lp89dVXKCwsxKZNm/DNN9/AbDY3aDy0Wi1WrFiBhx9+GF6vF0899ZT4rrbxKCoqwrnnngu3241Zs2ahX79+2Lp1KxYvXox169Zh8+bNyMnJSdpn0aJFOHr0KGbOnImsrCy8/fbbWLBgAZxOJ+688846+/rPf/4TN954I04//XTMmzcPVqtV+JH/8MMPeOGFFwAAzz33HDZt2oTHHnsMN910Ey644AIAx+92t2vXLgCocT31aTt9+nQsWLAAhYWFNVx9NmzYgH379mHWrFmwWq1pj9kYz9MTTzyBoUOHYvTo0XC5XNi1axeWLFmC9evXY9u2bejatas4zqJFizB79mz07NkTDz74ILRaLVauXImNGzem7N8111yD1atXY/z48cJi8tZbb2HcuHF4+eWXcf3114u29957Lx599FEMGDAADz74IBKJBJYvX45Jkybh8ccfx7x588QzuXHjRhQWFuL+++9Hjx49oNFocNppp2HMmDG47rrrMHz4cCE0qF1WCeKkwAiijbJhwwYGIOXfeeedl9S2Y8eObNSoUeKz2+1mZrOZde/enfn9frE9HA6zs846iwFgDz/8sNi+ePFiBoB99tlnNfrxxz/+kWm12qRtF154IQPA5s+fX6P95s2bGQB2xx131PjuxhtvZFqtlh04cKDe49CxY0dx3ZIksdGjR7Pdu3enbFe9n+n48MMP044tANa3b9+UfXjzzTeTtl922WVMkiQ2aNAgFo1GxXY+Bvfdd5/Ytnv3bgaAaTQatmXLlqTj3HDDDQwAW7NmjdiW6p7wbT169GCBQKDGdaW6VxdffDEDwN57770a7RVFEf8PhUIskUjUaHP33XczAOy7776rcS3qZygd//znPxkANnfu3KTtn332mRjvQ4cOie3z589P2uZ2uxkANnv27DrPVf13oKa2ZzYWizEAbMaMGTW2AWBr165Nav/II48wAOzRRx9N2+/q5+7WrVud22o71uTJkxkA9vbbbye1LSwsZADYDTfcILbx57tDhw6ssrJSbFcUhfXo0YN17tw55XnVeDweZrFYWJcuXZjH4xHbo9EoGzlyJAPAvvzyyxrnXLFiRZ3HVre///77WXl5OSsvL2c7duxgd911FwPATj/9dCbLcoPbMsbYmDFjGAC2a9eupHNOmTKFAWCbNm2qVx+P93lijKX8fX7//fdMp9OxW2+9VWzj49y1a1fm9XrF9mAwyM4444wav7M333yTAWDPPvts0rETiQS79NJLmdPpFOf+6aefmCRJ7JxzzmHhcFi09fv9rHfv3kyn07GioiKxPd17INXvgyBONuQyRLR5pk6dig8//DDp77nnnqt1n3Xr1iEcDuOWW26BzWYT200mE26//fZG6ZckSZg3b16N7dyUPH36dFRUVCT9jR07Foqi4OOPP673eV577TWsX78eS5cuxbhx48AYQyAQqNHu8OHDDbIOAMCMGTNqjO2HH36YMmC5S5cuuOKKK5K2DR06FIwx3HLLLUn++2effTYsFgt2795d4ziXXHIJzjrrrKRt9957LwCkdaOpzuzZs2vVcHLKy8uxfv16jB49Gr/73e9qfK8ORDebzcI6EYvF4PF4UFFRgd/85jcAjgUcHg9vv/02JEmqkZVkyJAhGD58eJ37WywWGAwGfPnll9i/f/9x9YGT7pmtjT59+tTIljNnzhxYLJZ6368TJR6P491330Xfvn0xceLEpO+mTp2K/Pz8lH2ZOXNmkqVLo9Fg5MiROHToUFp3FM66desQCoVw6623JvmO6/V6zJ8/HwDwzjvvnMhlAQAefvhh5OTkICcnB/369cOTTz6JESNG4H//+x8MBsNxteUacrWLYlVVFd555x2ceeaZaQOOG0ptzxP/fTLG4PP5UFFRgfbt26N79+5JvyU+zrNnz4bD4RDbLRYL5s6dW+O4K1euhNVqxZVXXpk0t7rdbowfPx5er1ccf+3atWCM4e67706KkbHZbLjzzjvFc0UQpwLkMkS0ebp169bgnM/79u0DAPTq1avGd6m2HQ95eXlJLzAOT+XXr1+/tPtW93mujSFDhoj/T506FTfddBOGDBmCH3/8Efn5+Q3ocU0KCgrqPbann356jW18oZTuu+p+5sCxBWZ1unTpApvNVqfPNKdHjx71ard7924wxpICM9MRj8fx5JNPYtmyZdi1a1eSjzhwzI//eNi7dy/atWuHrKysGt/17ds3rVsEx2Qy4bnnnsOtt96K008/HT179sTQoUPx29/+FmPHjm1QAGe6Z7Y2Ut0vs9mMrl271vt+nSilpaUIBoMpf1MajQZ9+/bF+++/D5/Pl3R9qZ5Lfh88Hk+tQfl8Dunbt2+N78444wwAx+7tiTJjxgz84Q9/gCRJsFgsKCgoSOsqVN+248aNQ05ODpYtW4aHH34YOp0Oq1atQiQSadRg4tqep40bN+Lhhx/GV199VUP46t69u/g/H8NUz1mqsf/pp58QDAbRvn37tP3i8+vJuocEcTIggYAgToD6+KPX1S6d1j2d7zWvEfD++++nzXrDAyyPh+uuuw4vvfQSVqxYcVJT4NW28Ez3XfVFdW0wxup9v+ryez+e88+ZMwfPP/88rrrqKtxzzz3Izc2FwWBAUVERZsyYccK1H06kf7NmzcLYsWPx/vvv47PPPsP//vc/LFmyBOeffz42bNhQ7yxb9R23+qK+X8fzG6ovfJzq+3xwantm6xr74z1nQ2mIUF7ftnq9Htdeey0WLlyIDz74AJdddhkKCwthMpkaNatYuufpm2++wejRo1FQUIBHHnkEXbt2hcVigSRJmD17NmKxWL2On+oeJRIJZGZmpszCxuGC48m6hwRxMiCBgCCOA64Z/OmnnzBmzJik71IV4+GBcqm0wFzLVF969OiBjz76CB07dsSZZ57ZoH3rA9e2VVZWNvqxTwapsowUFRUhGAyiW7dujXquHj16QJIkbN26tc62y5cvx4gRI/Daa68lbf/Pf/5zQn3o1q0bPvzwQ7jd7hpWgnQZV1KRl5eH6dOnY/r06WCMYe7cuXjmmWfwzjvvYPLkyQCaZuGTqo/hcBj79+9P0uqqf0OdOnVKar9v374amuSG9DUvLw9WqxU7duyo8R1jDDt37kROTk6DrR+1wYX2HTt24OKLL076jvejsZ/XxmTmzJlYuHAhlixZgk6dOmHr1q2YMmVKg1JnHu/ztGrVKiiKgvXr16NLly5iO2MM5eXlSW5cfAx37txZY5xTPXs9evTABx98gLPPPrtG4oPqqO9h9YD1U+EeEoQaiiEgiOPgkksugclkwvPPP5/kbx+JRPD3v/+9Rnv+svjoo4+Stm/cuLHOqp/V4Zk97rnnnpSasKqqKkSj0VqPEQgEEAwGa2xnjOEf//gHAOD8889P+q4p0442JuvWrcN3332XtO2RRx4BgBr+4SdKTk4OxowZg48++qhGGlQASVp/rVZbQyMZjUbx6KOPnlAfJk6cCMZYjeN8/vnndboLAccyQVVPySpJknCDUguxNpvtuF2b0rFz507861//Str297//HaFQKOl+pfsNvfrqqygvL69xXJvNVm+hVqfTYezYsdixY0eNvixbtgwHDhxo9Gfn4osvhsViwXPPPQev1yu2x+Nx8bxefvnljXrOxqRXr14YMmQI3n//fZHVrKHuQsf7PHHLTPXf0/PPP1/DjfCSSy6B2WzGc889B5/PJ7bzasHVue6660RcQCoLgtodc/z48ZAkCU8++SRkWRbbg8EgnnrqKfFcEcSpAFkICOI4yMzMxN/+9jfMnTsX5513Hq699lrhR8vdeNTarz59+mDUqFF4/vnnEYvFMHDgQOzcuRPLly/HmWeeiR9//LHe5z7vvPPw4IMP4sEHH8SZZ56JP/zhD+jYsSNKS0vx/fff491338Xu3btraFHV/Pzzzxg1ahSuuOIK9OzZE1lZWSguLsYbb7yBH3/8Eb/73e9qLICOJ+3otm3b0ubTHj16NPLy8up9rPoyYMAAjBgxAjfffDM6deqE9evX491338XIkSNx1VVXNfr5XnzxRVxwwQUYO3Ysrr76apx77rmIx+P47rvvIEkSXn31VQDAlVdeicWLF2PSpEkYPXo03G63CGA8EaZPn45XXnkFCxcuxMGDBzFixAgcOHAAL7zwAs4666wawlF1du7ciVGjRmHChAno06cPsrOzsWfPHrz00kvIyMhICvgdPHgwli1bhgceeAA9e/aERqPBuHHjGpwaVM2ZZ56JP/7xj5g5cyZ69eqFr7/+GsuXL0ffvn1x2223iXYXX3wxevbsiXvvvRclJSU4/fTT8e233+K9995L6cs/ePBgrFu3DrNnz8bgwYOh1WoxevRoZGdnp+zHY489hk8++QSTJk0SaUe3bduGxYsXIz8/Hw8//PBxX2MqXC4Xnn76adx4440YNGgQpk2bJtKOfvXVV7jpppswePDgRj1nYzNz5kx8/vnneOedd9CtW7d6BbGrOd7n6fLLL8ezzz6LMWPGYNasWTCbzfj000/x8ccfJ6UbBY6N86OPPoo5c+bgvPPOw9SpU0Ua0OpB1QAwadIkrFu3Di+//DK2bduGsWPHol27djhy5Ag2b96Mjz76SFhRe/XqhXvuuQePPvoozj//fEyZMkWkHd25cycef/zxGmmRCaLFcvISGhFEy4KnHa1Pasd06fEKCwtZnz59mMFgYB07dmTz5s1jX375JQPAFi5cmNS2pKSETZo0iTkcDmaxWNjw4cPZ119/nTbtaLqUiZz333+fXXLJJSwzM5Pp9XrWoUMHNnLkSPb000+zSCRS676lpaXslltuYf3792cul4tptVqWmZnJhg8fzhYvXszi8XjKMWistKMA2Icffph07FTjW1u61ur7qFN1rl69mp155pnMaDSy9u3bs9tvv71GmsLa0o6mOh9jqdOOMsbYkSNH2M0338zy8/OZXq9n2dnZbNiwYeytt94SbYLBILvrrrtYfn4+MxgMrGvXrmz+/Pnshx9+qPEcNiTtKGOMVVVVsZtvvpnl5uYyo9HIBg4cyN56662U6TWrbysvL2dz5sxhAwYMYBkZGcxoNLLTTjuNzZgxo0ZayaNHj7IJEyawjIwMJklS0nFqe2ZrSzs6Y8YMtn79enbeeecxs9nMsrKy2LRp01hZWVmN4+zatYtdeumlzGKxMLvdzn7/+9+zX375JeW5/X4/mzp1KsvJyRF95fc1XQrToqIiNm3aNNa+fXum0+lYhw4d2KxZs9jRo0eT2tWWArS29Kip+M9//sMuuugiZrPZmMlkYv3792fPP/98jRS1x5t2VJ26tTHaqgkGg8zpdDIA7JFHHmnQvowd//PEGGNr165lgwYNYhaLhblcLjZu3Dj2008/pd1v2bJlrF+/fsxgMLAOHTqwO+64g23fvj3t72zVqlVs2LBhzOl0MoPBwDp37sx++9vfspdffrlG21dffZWdc845zGw2M7PZzAYPHsxef/31Gu0o7SjRkpEYa0BUHEEQdbJmzRpMmTIFb731Vos2+bc29uzZg+7du+Phhx8+qcHQBEEQBHGqQzEEBHGcRCKRGj6mkUgETz31FIxGI4YNG9ZMPSMIgiAIgqg/FENAEMfJxo0bMXfuXFxxxRXo1KkTjh49ilWrVmHXrl3461//mtZXmSAIgiAIoiVBAgFBHCcFBQXo2bMnCgsLUVFRAZ1Oh379+mHZsmUiExBBEARBEERLh2IICIIgCIIgCKINQzEEBEEQBEEQBNGGIYGAIAiCIAiCINowJBAQBEEQBEEQRBuGBAKCIAiCIAiCaMOQQEAQBEEQBEEQbRgSCAiCIAiCIAiiDUN1CABUVVUhFAo1dzcIgiBaJRaLBRkZGSm/o/mXIAiiaaltDua0eYGgqqoKixYtQjweb+6uEARBtEp0Oh3+9Kc/1Xgh0fxLEATR9KSbg5PanMT+tEhCoRDi8TgGDhwIm83W3N0hCIJoVQQCAWzduhWhUKjGy4jmX4IgiKaltjlYTZsXCDg2m61OcwpBEATR+ND8SxAE0bxQUDFBEARBEARBtGFIICAIgiAIok2xevVqPPnkk8e177333osPPvigkXtEEM0LuQwRRAvg3nvvxS+//AKdTgdJkpCbm4tzzz0XEydOhMViAXAsAHP16tX49ttv4ff74XA40KNHD0yYMAE9evQAAMycORNVVVXQaDQwGo0444wzcP3118PlcjXn5REE0Ubgc5lWqxXbOnbsiGeeeaYZe3Vq8MMPP+DJJ5/E8uXL69V+7NixeOGFF9CpU6cm7hnRFiCBgCBaCDNnzsSll16KRCKB/fv3Y9myZbj77rvx1FNPIRqNYt68eSgoKMCCBQuQl5cHWZaxZcsWfPvtt0IgAIA///nPGDRoEHw+Hx5//HEUFhbizjvvbMYrIwiiLcHnMqJ5icfj0OlomUfUD3pSCKKFodFo0K1bN9xzzz248cYb8dFHH6GyshJGoxF33nknNJpjnn5msxlDhgxJexyHw4ELLrgA69atO1ldJwiCSMuXX36Jl19+Gc8++ywcDgd27dqFBx54AAsXLkSHDh3wzjvvYN26dfB6vcjKysLVV1+NCy64AADw8ccf44MPPsAZZ5yB9evXQ6/X44YbboDNZsNLL70Ej8eDoUOH4qabboIkSULbPn78eKxduxY6nQ4TJkzA2LFjU/Zt9+7dKCwsxMGDB+FyuZLOnYqysjLMmzcPBw8eRPfu3XHbbbchJycHALBr1y68/PLLOHz4MHJycnDdddfh7LPPBnAss9bixYvx7bffQqfTYejQobjmmmugKAoeeughxGIxTJo0CQCwcOFCaLVaLFq0CPv27YNWq0WfPn0wf/583HPPPQCA22+/HZIkYfr06Rg4cCCuv/56zJ49G6+//jqMRiOef/55FBYW4osvvkAwGET79u0xc+ZM9OvXD8Ax16kDBw7AaDRi06ZNyM7Oxk033SS+J9oOFENAEC0Ui8WCAQMG4Mcff8S2bdtw/vnnC2GgPlRVVeGLL77A6aef3oS9JAiCqB8XXHABBg0ahEWLFiEcDmPhwoWYNm0aOnToAABo164dHn30UaxZswaTJ0/G008/jYqKCrH/3r170a5dOyxfvhxTpkzBokWLsG7dOjz++ONYtGgRvvrqK2zZskW09/l8KC0tRWFhIebPn4/XXnsN33//fY1+eTwePPjggxg/fjxWrlyJ2267DYsWLcKhQ4fSXstHH32EG264AStWrED79u3x9NNPAziW4vHBBx/Eb37zG6xatQrXXnstHnvsMRw5cgQA8PLLL8Pj8eDFF1/EU089he+//x5vvfUWTCYTHnjgATidTrzxxht444030LlzZ6xatQoDBgzA6tWrsXTpUowfPx4A8NhjjwEAnnnmGbzxxhu45JJLRN+2bt2KZ599VvSpW7du+Pvf/47Vq1dj2LBhePzxxyHLsmi/adMmnHXWWVi9ejUmTpyIv/3tbwgEAg27ucQpDwkEBNGCyczMhN/vh8/nS4oD2LFjByZPnoyrrroKN910U9I+jz/+OCZPnow77rgDOTk5mDFjxsnuNkEQbZjCwkJMnjxZ/D377LPiu+uvvx5FRUWYN28e8vPzMWbMGPHdhRdeiKysLGg0GgwdOhQdO3bErl27xPdZWVm45JJLoNVqMWzYMPj9flx66aWw2WzIyspCv379sHfvXtGeMYZrr70WBoMBBQUFGDlyJD799NMa/d2wYQP69++PwYMHQ6vVomfPnhg8eDC++OKLtNc4fPhwdOvWDQaDAddddx127tyJiooKbN68GTk5Obj44ouh1WpxzjnnYODAgfjss8+QSCTwf//3f5g6daro8x/+8Ads2LAh7Xl0Oh3Kysrg8XhgMBjQt2/fOsd/ypQpsFgsMBqNoq8OhwNarRYTJkxAPB5PEna6du2KESNGQKvVYtSoUcjNzcXmzZvrPA/RuiCXIYJowXg8HtjtdoTDYXg8HrG9X79+WLNmDbZs2YIXX3wxaZ+7774bgwYNOtldJQiCAADMmDEjbQyByWTC8OHDsXr1atx8881J333yySf497//jbKyMgBAOByGz+cT36trVfDFbvVtkUhEfPIAn08AACAASURBVLZYLLBareJzTk4Otm7dWqNPZWVl+OabbzB58mSxTVEUDB8+PO01cvcg4FgdDYvFArfbDY/Hg3bt2iW1zc3NhdvthtfrRTweR25ubtJ36rm9OlOnTsWqVatw5513wmq14rLLLkuyBtTVNwBYu3YtPvzwQ3g8HkiShFAolDSu1dvX1SeidUICAUG0UEKhELZv345Jkyahffv2+PrrrzF58uQGuQ0RBEG0JA4fPox///vfGDlyJBYvXownnnhCaMEXLVqEv/71r+jduze0Wi1uu+02MMaO+1yhUAihUEhkaquoqEBWVlaNdjk5ORg6dCjmzJlT72OXl5eL/weDQYRCIWRlZSEzM1MINJyysjIUFBTA4XCIa+3atav4LjMzEwAgSVKN87hcLvzpT38CAPz888+477770Lt3b+Tn56ftm/o4P/74I9566y0sWLAA+fn50Gg0mDx5ctK4qq+Ff64tfoJondDKgiBaGIwx7N+/H0888QTsdjtGjx6NcePGIRwO46mnnsKRI0eQSCQgyzL27NnT3N0lCIKoF/F4HAsXLsSkSZMwe/ZsGAwGrFmzBgCEZt/pdAI4Zi0oKio6ofNJkoTly5cjFoth7969+OSTT3DRRRfVaDd8+HBs2bIFmzZtgqIoiMVi+OWXX2qNIfj000+xb98+RKNRLFu2DL1790Z2djbOPvtslJWV4eOPP4aiKNiyZQu2bt2KIUOGQKvVYujQoVi5ciWCwSA8Hg/eeOMNYYnIyMhAIBBI8t///PPPRRwFF2y4UigjIwNHjx6tdQzC4TA0Gg0cDgcURcEbb7yBcDic1Gb//v349NNPoSgKNmzYgJKSEhEETbQdyEJAEC2EJUuW4NVXX4UkScjJycG5556Lu+66C0ajEUajEU8++SRWrVqFe++9F8FgEE6nE927d8fdd9/d3F0nCIIQLFmyBEuXLhWfrVYrli5dipUrV8JqtWL8+PGQJAm33347br/9dgwaNAh9+vTBhAkTcPfdd0OSJIwcORK9evU6oX44HA7k5uZi+vTp0Gq1mDRpEvr371+jXXZ2Nv7yl79g2bJl+Mc//gEAOO2002qNvxo1ahReeuklHDx4EAUFBZg7dy4AwG634y9/+QsWL16MxYsXIycnB/PmzUPHjh0BALNmzcLixYtx4403CgHhyiuvBAB06tQJw4cPxw033IBEIoEnnngCe/bswZIlSxAKheBwODBt2jR07twZAERgdTQaxdSpUzFgwIAa/Rw4cCDOOecc3HzzzTCZTBg7diyys7OT2px77rn49ttv8cILLyA7Oxt//vOfYbfbj2PEiVMZiZ2IPa4VcOTIEbz88ssYOnRoki8iQRAEceJUVVXhs88+w6xZs0Q2GQ7Nv0RT0dAiX22V1atXo7i4GHfddVdzd4VoImqbg9WQyxBBEARBEARBtGFIICAIgiAIgiCINgzFEBAEQRAE0ao444wzyF2oHkyZMqW5u0C0EMhCQBAEQRAEQRBtGLIQ/H+oTDdBEETjU5+5leZfgiCIpqG+82ubFwji8TgApKxeSBAEQTQOfK5NtY3mX4IgiKYl1Rysps0LBDrdsSEYMWIEXC5Xox5bq9XCbrfD7/dDUZRGPfapDI1LamhcUkPjkp5TYWwqKyuxYcMGMdeqofn35EPjkhoal/TQ2KTmVBmX2uZgNW1eIOB079691vysxwNjDPF4HJ07d05ZkvxkkkgkUFJSgry8PFHlsLmgcUkNjUtqWtK4ADQ26Ug3LkeOHMGGDRtq3Zfm35MHjUtqaFzSQ2OTmlNlXOozBwMUVEwQBEEQBEEQbRoSCAiCIAiCIAiiDUMCAUEQBEEQBEG0YUggIAiCIAiCIIg2TKsLKn7vvffwySef4MCBAzj//PNx1113NXeXCIIgCIIgCKLF0uoEgszMTEyaNAnbtm2D3+9v7u4QBEEQBEEQRIum1QkEF1xwAQBg3759JBAQBEEQBEEQRB1QDAFBEARBEARBtGFanYWgPlRUVKCiogIAUF5ejmg0CuBYYYfGhDGGRCKBRCLRIopWqP9tTmhcUtOU4+L3+xEOhwEcu1aPxyO+SyQSqKysBGMMwWAQsVhMbNNoNIjH4/B4PIjH4ygrK4PH40FJSQnC4TDi8TgURUEwGEQoFEIkEkEoFEI0GoWiKHWWSm9qtFqtGEv1/wFAkiTo9Xpotdqk7xOJBDQaDbRardim1+uh0+nE/zUaDfR6PaxWK7Kzs2E2m5GRkQGbzQbGGLKzs+FwOGAymSBJEpxOJ5xOp3jOHA4HzGZz2n6bzWZYrdY6r48XxuF9ayqMRiOcTmetbY73t6TX649rv7qgeSY1NC6paQnj8sknn+Cee+4BYwyxWAx6vR6HDh2Cz+c7rj5FIpEm6GXzMH36dCxevJiemTQ0xri0SYHg7bffxuLFi8XnYcOGAQBKSkqaq0snjbKysubuQouktY+Lx+OBJEkwmUyIx+Pw+Xyw2+1iAawoCqxWK2RZhslkgsFggNPphM/nE8ew2+1IJBIwmUzQaDQwm80wm82IxWLYvXs3tFotfD4f3G43ZFmGJEmoqqqCXq8XE2YsFquxSI/FYgAAnU4HjUYDxpgoAx+Px6HVaoVgwfdljIExBkmSxDa+sJckSSzY+YKcMQatViu2x+NxmEwmca3xeFwsTBljMBgMQggAAIPBAIPBIAQCk8kk+sMX+yaTCYwxAEBubi7MZrPY32QywWg0IhAIIJFIiHOlIxaLIRgM1vv+cqVGUxEOh4VAWRcN/S1NmzYNAM2/bRkal2Ns3LgRVVVV+M1vfgOj0QgAWLt2LQAgPz+/QccqLi7G0aNHodfr4XA4Gr2vJ4twOIxQKITy8vKkOYKemdScyLi0SYHg8ssvF0JAeXk5PvjgAwBAXl5eo57nZGnv6kMikUBZWRlyc3NbTLlvGpdkmnJctFotLBYLrFYr4vE4rFarKHEei8VQXl6O9u3bo7y8HDabDSaTCQcPHoTJZILVasXhw4dx+umnY9OmTYhGoygtLUX//v3Ru3dv7N69G1988QUGDRqE7du3o7KyEoqioHv37ti8eTOGDx8OvV6PnJwcFBcXo1u3bqIPmZmZ+PTTT5GZmYn8/Hzk5uYiEAjg4MGD0Gg0OHToEHr16oVffvkF7du3R9++fRGPx1FcXAyv1wur1SoEFQAIBAIwmUzQarXIyckRwkhJSQlCoRC0Wi2ysrIgyzJycnLE+FRUVMBoNCIcDsNiscBms6UdS/UzwwWmjIwMYUHJzs6GwWBIeX9LSkqQkZFRq3WgIZwKv6W6FvpLly7FtGnTaP49SdC4pKa5x4UrTbKysvDAAw8gkUggNzcXv/zyCwDgv//9b4OON3XqVKxYsQJvvvkmLrvsshPqW3OMTTwex/fff49XXnkF+/btQ2FhIbKysuiZSUNt41JfZUurEwgURYGiKMKME41GodFohKYOALKzs5GdnQ3gmOmev7wb++FijEGj0UCj0TT7w8Lh/WlOaFxS09TjwjXkXINe1x9jTGjtuQaeMYZoNIpEIgGXyyUmIbvdDp1OJ7T9NptNaK21Wi1cLpdYbEuSJDT03DRutVrFuTiKokCj0YjftMPhgFarRTQaRSwWg8lkEr9ro9GIUCgEWZaRnZ0NWZaFa48sy9DpdDAajcL6wK0c6rHn1hKr1VqvZ6H6WAaDQZjNZmE9qE44HBaCWWPd39bwW+LPDM2/Jwcal9Q097h4vV5hqdRoNMJ1UVEUmM3mBo/Ptm3bAADDhw8/4bE92WMTDoexY8cO7NmzB6WlpRg5cmSSAgegZyYdJzIurU4geP311/Haa6+Jz1988QVGjhyJOXPmNGOvCKJ54ROXmlQTGF8YAxAvJK654gtmv98Pg8EAm82G0tJSIRwEAgGhMbHZbKiqqoJGo0FGRgYkSUI0GoXFYkEikRBuOdwtRv3C44t2rnmJx+NgjAmfelmWEYvFxMKaL/C5S4ter0csFhPHi0QiMBgMiEQioh/V/fMVRRE+u9z1qCHE43GEw2GhaEhFKBSC2WxuMS8OgiBaDh6PJ8lNEUCSa2RDKSsrgyRJsNvtjdnNJsfv9+Onn36Cz+dDcXExDAYDJkyY0NzdahO0OoFgypQpmDJlSnN3gyBaFHxxnwru9179pcP34d9zy5vP50N+fj4URYHP54PBYBABycAxi4DZbEZxcTFMJhMcDgd8Pp+w1HHrnV6vR2lpKYxGY5J1gAsMPH4gEolAr9cLNxufzyesAzy2QK/XIxgMwm63J1kEGWOQZRl2u10EgHFhhMPjFbiloiHwl3UgEBBxBqlQFEX0gyAIQg1P9FBdYcDnXLWQUB/i8Tj8fn8NS2hLhjEGj8eDvXv3CqvIL7/8gj59+qBz587N3b02wanxpBAEcdykW/DXRXWBIJFIIBQKIRaLweVywev1CssBX3jzoN1EIoFwOIzMzExIkgRZlmE0GoUJnLvaBAIBWK3WGpYJ/sfb8ABgxhh8Ph9sNptwJeLZgILBIGw2mxAkgGPBtowx4S7ErQ7VXZP4Xzp3n9rGVlEUhEKhWhf74XAYOp0urcBAEETbpaqqSrgL8bkRgMji1tB549ChQ8KKeiqgKApKS0uxd+9e6HQ6ZGdnY+fOnZAkCRdffHGD52Xi+CCBgCBaOTzgVu2SA/wqIPDPqfbjC3jezuv1imw7XHPPMwXFYjERXBUKhaDRaOB0OoUW32AwiDSm3BWJxxVU718ikRC+5bIsw2azQaPRIBKJQFGUpEBinU6HaDSKeDwOu90ORVGERo27C/HjxuNxkb2Dw92FdDpdndl/UhEMBmEwGGocV00oFDplXs4EQZxcKisrhdVTLRDwObChfPPNN1AUpVYXxpZCNBrF0aNHceTIEZhMJuTl5cHr9WLnzp047bTTyDpwEiGBgCBaOdUFglSkiyfgFgJJkhAMBiHLskhPajQahbY/HA4LV51wOCwEBavVimg0KjQ83Idfq9VClmUAx+IH1DEO3EyuKIoQDniKVLW7EPev1el0CAaDSWlV1QKBOh1oKm0bj1c4nsw/PHagtqxEXFhprMxCBEG0HtTuPdWz1cRisSQBob5s2bJF1ENpyQSDQRw9ehQejwdGoxEdOnRAKBTCzp07wRjDWWedhaysrObuZpuBBAKCaOU0xGVIbS1QuwzxmgL8M1/w88U01/THYjHIsgyXyyVccNQZhXiGIa1WK9xo9Hp9kkDA3XAURUmKH4hGo0LTzgOceV/4C5X3idcu4H3g2ZG4+5CaWCwm+thQgsEgdDpdrfuGw2EYjcbjClYmCKJ14/V6hdsjdxnixGIxKIrSIMuloijYuXMnALRY7TpjDFVVVaioqBBzaKdOnRCJRBCNRrF7926cdtppyM/PJzfLkwgJBATRyqkeUFzdRah6FovqWYb4YlqWZcTjcSQSCVGQjLeLxWKw2+2orKyE0WgU7jE8eJgHHnOXIa1Wi1AoBIPBINKZ8vPGYjEhFHA/WB40rE4fyq0HGo1G+PBz9yadTpfk0sTTm1aPHwCOLep5Hxs6rqFQqNaiP4yxJLcogiAINR6PR8REccumei5saBrJaDSK4uJiaDQadOnSpUn6fCIoigK32w2fzyfizvLz88U75scff0QkEkGvXr1qpBolmhYSCAiilZOqrHpd1gK+4OYxBFybHwwG4XQ6haDAF7w8c09lZSXat28vJnqeLpQv1HmaUO7GxOMKACT5zSYSCaHh5wvuSCQiMhLxBT4/Hs9KEY/HhYmduwvx6+FuTtUJhUINzi4EHCuCptFoarUORCIRMMYoKI4giBpwq6fNZkuykvL5mcdfNYQjR47A4/FAq9WiQ4cOjdrfEyUajaKiogLhcFjUqenSpQvi8ThCoRAYY9i5cycKCgqQmZl5SldYPhUhgYAgWjmpahDUhTruIBwOiwBg7pcaiUQAHHthVVZWwmaziaq9OTk5CAQC0Gq1SCQSsNls4njq1J/VzeBcgOAWgkgkIgp58f9rtVqRupRr/GVZhlarhdFoFPEDvCghFwDSBRRzgaahAkEikUAwGITVaq1VuKLaAwRBpIO7C/FEDdXnCW6Fbcj8sWvXLpFMoV27do3a3xMhFArB7XaLFMwA0LFjR0iSBL/fD0mSsGPHDsRiMfTo0QOZmZnkLnSSIYGAIFo5DXUZ4vsASEr76Xa7YbFYRFYhnhqUB9W63W44HA7Y7XZEIhFoNBqRfYdbKbgwwIORuV891+rzhTuva2CxWMSi32q1igU/b2cwGJICjbnZXX1+AMLVqbpAwIWchgb8hkIhUW8hHfzFR+5CBEFUhzGGyspKOJ1OUZVdbS3llk8A9Y4hUBQFP//8s1B+tBSXG5/PJ2LQwuEwJElC+/btYTKZUFVVJSy9O3bsQLdu3WCxWCiYuBkggYAgWjnH4zLE9+FVgYFj6T8dDodYsCcSCciyLCoQ88Jb3LVIo9HAbDYLS4FGoxEZd/iLjy/u1fUMeHYhHpzMKxCbzWax4Fe7DKkLfqmLmanddLiFoXqBH54ytCGFf3jsADfzpxtLqj1AEEQ6ZFlGJBKBy+VCJBIRGYb4fKJ2rayvhTcajeLnn39GIpGAwWCAy+Vqsv7Xh0QiAbfbLeLFQqEQJElCXl4eLBYLKisrRdsdO3YgGo2ib9++sFgspEhpBkggIIhWTl0uQ2qLgboImUajgd/vh06nQygUEtl0+EI8Go0iEomIhXskEhHpN/1+PwwGg8j8w4/HXXl4UHJ1gUAdOxCJRJCZmSkqEKsDhqunJTUajULLxFOaqgUCWZaFWV59rcFgEGazuUEuVfylVpdVgbsLEQRBVMfr9UKn04kMalqtNimGgM93Go2m3i5D0WgURUVFIuVzRkZGk/W/LuLxOMrLy4Vwwt2CcnNzYbVa4ff7RdB0IpHADz/8gN69e0Oj0cBms9Va14VoGkggIIhWTnWXoVRUzzLEF+58cc416Hq9Xrj7hEIhkaHHYrGIeAEeIGa324V2PJFICFcjnuJTURThTsRdh7grkN/vF6480WgUdrtdWBZ4piJuUtfr9UmViLlWTf1CkWW5Rkq/aDQKRVEapIlijInqytyikeplza+TtFwEQVSHF3l0OBwpq6TzOZgLBvV1GSoqKoLX6wUAmEwmZGZmNkn/6yISiaC8vFxkefP5fNBoNMjOzobNZkMkEkEgEIDBYICiKPjpp58Qi8XQr18/6HS6ZhVk2jIkEBBEK6e6y1C6ysTV9+F++LFYTKQNVVsQ/H4/ZFlGVlaWCOzV6/WIx+PCvYgv9LlQwoORuSDAaxDwdtz64PP5YLFYRN0AdcAw8Gv2nlgsBrPZLOIH+DG4xQCAEB6qWwi4S09D3IV4ATSu+U83lqFQiGoPEASRknA4DFmWkZGRIea86ilHueJFva02EokEDhw4IKrEW63WBieTaAz8fr9IpcoYg9/vh1arRVZWlkivWlVVBYvFgmg0Co1Gg61bt6Jfv34iaxspUpoHEggIopWTymWoLgEhFAoJH1buu8818zzvP69O7HQ6hY8+LxLG4we4ZktdL0CtuefmYt4/nmbP5/PB5XIhEAgIN6RUAoGiKCJDEH+BxmKxJG0bf+lUX5yr6xTUdxx5f1LVbVC3o9oDBEGkw+fziYKLfE7lrpDAr0HFtVkhqxONRnH48GHEYjFotVpkZmY2SNlxojDG4PF4EAwGkZGRAVmWRfKFjIwMMY9XVlaKa9VqtSJ2oHfv3sJiS3FXzQMJBATRymmoyxBw7IXFM/+YzWYxsfNFeWVlJSRJEr6eiURCaNvVfvn8hcR9/blAwF9yPLMQX5RzX1qfzycChfnCurpAwOMOeCVi7i7EXZE4anchfp3RaFRYKOorEIRCoaT+8OuqDtUeIAgiHYlEQrgLcTdKACLWisMTJNQXWZZx6NAhUQMmKyvrpAkEPF4gHo+LuC8+RzudTjGX+/1+4TLK+/ndd9+hV69e0Ov10Ol0cDgclKa5mSCBgCBaOQ11GYpEImIy54VhZFkGY0ykAPV4PMjLyxPWB66V4oHI3FzNX0g8JoFXNFZrwtQxBDydKS8WxoOSgWSBQJZlEdvAtUlcKKi+yI9Go8JSwceBFzlTCyO1kc46oD4mJxwOU+0BgiBSEg6HEYvFxNzKXYbU8xC3dHJFTn1iCILBIA4fPizmXYfDcVJchmRZRkVFBXQ6HVwuF6qqqhCNRmsIA7Isw+/3w+FwIBAIwGg0YuvWrYjFYjjrrLNErAQlYmg+SCAgiFZOfVyG+GfGGHw+n3C74dmAZFkWLy0eLGa32xGLxUSgsV6vF4t+PqnzGAEuEBgMhqTAZHUGIuDYy9Hv90NRFGRkZAg/fJ5RiAsEam0938ZjBdSaeb6tukAQDodFYHN9BAJer0BdwIwLVuqx5LEX5C5EEEQqvF4vDAaDcBfi8zPPuAZAuEPy+bEuTX8ikUBpaSkqKytFfRSr1drkFoJAIAC32w2r1QqHwwGPxyOqxdvtdiEMJBIJUcCSCzqMMWzfvh29e/cW7wlyF2peSCAgiFZMQ/NYh8NhYR3gmR54Nh7gVz/R3NxcRKNRsUjmi3UeNMxdhrgFgB/baDSKegT8e7WWPh6PiywZvDANj10AfjWr8zSoam0SdwOqHj/AKxxzwScWi4kg4/paCLjVoy6tP3etopcaQRDVicfjCAQCwl2ICwR8juLwoo98oVzX/B2NRlFWViYUHVqtVizGmwJeVM3v98PlcsFkMqGiokJ8b7PZhAUE+DVuwGg0ioKTP/zwA2RZxtlnny2suPWZY4mmgwQCgmjFpNJip2sDHNP48HSZXKvOF/4AUFVVJawDfLHNA8T4HwCxINbr9aK2gDr7D9+Xp9fjL7xoNIqqqiqYTCZkZGQILRl3F+IL+kgkIqogc3jxG7V5nVslOJIkiWBiTl0CQSgUQiKRSLIOpBvbUChE1gGCIFISDocRj8dFgC2PH+DWUj6ncAWMupJ7bUSjURw6dChJ0dJURckURUFFRQWi0Siys7Oh0WhQUVEhlD/VhYFAIIBYLIaMjAx4vV5YLBZEIhFs374dffv2FfMzjwcjmg8SCAiiFZPKQqAWAPhiX5IkhMNhBAIBmEympJR13Oc1FovB6/UKzb06mw9jTByLa8gZY0IgqK6p5xp6Ds+qEYlE4PV6hbsQz26kroXAC6LxdKTAsZeULMviRcuRZVnECgC/CgTqzEl1vWx53YG6tHRUe4AgiNpQZxcCINxn1HVY1JmFqmdhS0c0GkVFRYWoW2AwGJIW5Y1FNBpFeXk5NBoNcnJyoCgKPB6PcAO1WCxJ541Go/D5fMjIyEAkEhFFyn788Uf4/X6ce+65CIfDIpUzFSNrXkggIIhWDPfVTxcI63a7UVVVBeCY9j+RSIhgNO7OEw6HoSiK8NvPyMgQ261Wq0hP6vP5EAwGEY/Hk3LwK4qSVJUYgBAWeG0DvugPhUIIBALIzs4WL0a1hQA4FjynKApsNltSMHIsFkvS4vOCP1w4UfelvvED/NqrCxr8GtRjyS0UVHuAIIjqRKNRUXVdPW+lSonMLQR8Dqyr0nwwGMTRo0dFvJZOp2t0l6FQKAS32w2z2YzMzEyRXMJoNCIWi8FiscDpdIr2PG7AarWKdNROpxOBQADbt29Hz549hQDA4x7IXah5IYGAIFoxas16OsLhMMrLy0UqPK71577+kUgEsixDlmW4XC6xQAeOBfVyFyAeTMZdcrj2XV3tmL/Y1AHF/IUXj8dFOlOufQJQQyDw+/2QJClp8R8MBmv47vO0dmpBJBKJiPSo9REI1BmTaoNqDxAEURs8MQFXLnBLqTrDkFpxoU7LXFtMEo8f4LFXPGC5sSwEvKqy1+uF0+mE0+lEKBRCZWUlLBYLZFmuIQwAxxRMGo0GDocDVVVVQjHz888/w+fzYfjw4cI6AICyC7UASCAgiFaMeiHNqZ52lDGGoqIiRCIROJ1O4WYUDAZF1UmedpO/DACI3P4ajQbBYBA6nQ4mk0kIBfwlFwqFIElSjZeaOtBXkiShcbJarcKlB4AQKtQWAo1Gk7T45rUP1BqmaDQqNFA89aosy0LgqUsgiEQiaa0D6nHkx2WM0UuNIAgBnzd5ZXc+RwLJ8QPqei3Ar/MV/1zbPMXjrniiBa4saQwLQSKRgNvtRiQSQVZWFiwWC/x+P7xeL2w2m3C/rC4MBINBoUCKRCKIRqNwOBzw+/34/vvvhXWAK5HU7p9E80ECAUG0YlIJBMCvbi6KoggNUyQSEdr8WCyGQCCAiooKFBcXQ1EUUYK+oqJCLJQVRRGZM3hlYofDIV4I1YN4q7/k1Jowj8eDSCSSVOyMtwEAnU4nzO5GozFJIEilnVcHFHNTujolal0Cgd/vh8ViqVeGplAoRCZvgiCSUBQFPp8PFRUVIp6Jz8fcjVJdh0UdM8XdNutClmWRYYjXYDEYDMjMzDyhvsdiMZSXlwMAsrOzYTAY4PV6EQgEYLfbEQqFRPKH6vvxuAGNRiOEB1mWceDAAXi9XgwZMkQoigAIRRLRvJBAQBCtmLqqXSYSCQSDQTgcDuTk5CAYDKKkpASBQACKosDtdouAtczMTOEDyguHKYoiTOEGg0FkmXA6nZBlGV6vV1Qn5sIAtwpUFwjcbje0Wq2of6DOMMRfjsFgENFoFGazWSz2ee2D6vEDPJaBX6csy9DpdEI4qU0gkGU5KRtIKtTxEFxTRhAEweHKDB5cq55vuLJGPQ9xjTmfF7kiI91imTGGWCyGkpISYWngc+iJuC+Gw2FUVFTAaDQiKysLWq1WWCG4wieVMMDTkZrNZpjNZvh8PmHNDQQC2Lp1KwoKCpCRkSHeTRqNhubOFsLJqWvdwrHZbEl+xo2FesHQ3PA88XxB1tx9Uf/bnLTmceGVe9Xp7ACINKA8M5Df7xdFZPgCurS0FG63G0VFRaKSpt1uhyzLsNvtiMfj4gUXCAREa1Y9WQAAIABJREFUYJy6erDNZkNVVRUikYjwhU0kEqLIGI8b4KlE3W63CEZWFy9TByT7fD4ASBIwwuEwgF+LoAFIKqTGfXW5uxC/11zQSDXePp8PJpMp5ff8meHxD6FQCBqNJil4+WRxKvyW6ophycvLo/n3JPdF/W9z0trHhWv6HQ4HioqKEAqFxPGj0ai4dh5PxecpvrjnwkH1OZzDY7u4WydwLPaLa9yP51p8Pp9wD+U1Zrj11uVywefzwWg0wul01jh+ZWUlGGNwOByQZRnBYBDZ2dkIBAI4ePAg3G43xo0bJ9yo+BzdkLmztT8zx0tt41LfAnUkEAAYOHAgXC6XCJRsbLiWoLlxuVxJueKbGxqX1DTWuPA0mACSnm2/34/y8nJIkoTS0lLh+84LkBkMBjidTkQiEezbtw9erxd5eXkIBAIikCwjIwOxWAzBYBBlZWWQZVlM7AaDAfF4HFarFSaTCbIsi1z+8Xhc9IUxBlmWRZVNWZaT6gPwoGCu2efmd26N4MfhWij1dfI4A/45EokIkzp3i+JCUfXfPe9vu3bt0s4JLpdLBFL7/X6YTKYmmz/qQ0v+LdWVD33GjBkAQPPvSYbGJTWNOS68WCIAWK1WeL1e+P1+mM1m4ebIs7TxWgJFRUU4cuQI2rVrJ+bMUCiU8vcRCoVQXl4usqEBSNK4N+Q3xbMCxWIxuFwukT2IVx/OyMhAZWUljEajUApV7wvPEBePx1FRUSEW+l6vF1u2bEF+fj6cTifKy8vFwpWnl24IrfmZORHSjUt9a1KQQABg69atOOOMM5CTk9Oox+WaSV6AqTnhwUFZWVn1rlrbVNC4pKaxxyUej4sFuhoe4CtJEsrKykT+Z7XJmTGGffv2AQDatWsHl8sFs9mM/fv3o3379iILEF8UO51OVFVVCR997pojSRLy8/Oxb9++pMxDRqNRpOjU6/Xwer2iPfBr9iKDwSBiEPhL02g0wmq1CiGB5/5X++fyQmJcY8IFHZvNJoqh8cqZ1eHZltIFufFnRp0txG6311sL05icCr8l7oecjsLCQkycOJHm35MEjUtqmmJcuOVQo9GI+SgQCIiaLHq9Xsxb4XBYKEF41d9u3bqJvvAc/mp4sHIwGBRWVR5fZTAY6j0nxeNxkRWoffv2wmLhdrshSRKysrJQUVEBi8WSMjYhHo8jGAwiMzMTZrMZfr8fGo0GmZmZ8Pl8KCkpQWVlJSZMmCAsIxzuoVFfWvszc7zUNi51zcEcEgjwa3XWprqhqfLAn2x4ppaW0BdOS+hLax4XRVGSFtlqePBZTk4OEokEwuEwvF6vyPbg9/tRVFQEs9mMRCKBjh07AoBIZWcwGBAMBuHxeFBZWQmXyyVeVuFwOKkYGD8G74ckSUI44IG+vDZAJBIRx+cmUEVRYDabhV+/yWQSAgx/gXL3Hm5i5y9Gfk7u488nSi4QVB+baDSKaDSK3NzctPdA/czIsizybDcnLeH5TfdbqktLWVJSQvNvM9AS+tLax0UdMMzdLnU6HcrLy8XczOchr9cr/s9TMHMrJp9v1UoKHj9QWloq5jeeyYhXmq/PdUQiEaH5d7lcYg7lwkBGRoZw58zMzKxxTHXcgM1mE8KBul7Ntm3bUFBQgLy8PBHvoE432pDxbu3PzIn0Id241NdSREHFBNFKSZdhiPupRqNROJ1O2O125OTkwOl0wufz4eDBgzhw4AAYY8Ln3mKxIBaLITMzE7FYDFqtFhkZGbBareLlEwwGxUuqrKwMR48eTdLYq/3x1Vk1IpFIjWBjdQwBX7wHg0EASCr+xesKqIP1otEoNBqNWKTzgGKe7o+fN1VAMTfn10djlUgkEIlEqPYAQRAp4QKBumK80+mEJEnw+XwiPgo4lref+/7zuY+7SOp0OpEFjhOLxcAYQ2lpqbCIcquwWvlRGzyttM1mE4t97u6j0WiEm5DBYKgRQMzxer1gjInUo16vV/TB5/OhuLgY5eXluOiii0TKagDCUtzcC2niV0ggIIhWSm0CQSgUEu4z3Kydm5sLp9MJt9stTNaVlZXCp55nFtJqtTh8+LDQ/nCBweVyISsrCy6XC06nEwcOHMDu3btFnALwa35tvhj3+/0oKysTgXWSJCUF/qpfpKFQCFqtVhQW4wt9nqmCv1jU6UYBCIGjLoEgFotBluVaMwup4bUH1MclCKLtwTXq1X231YoQtebWZrPBYDDA7XaL7GnxeFyk7OSJHHisVCQSEVYCDs+u5vF4hCVV7TJUm1KDa/UDgQAyMzNFzYJYLIaKigro9Xo4nU54PB7o9XphOahOOBxGOBxGZmYmNBoNwuEwotEoMjIyRFHLHTt2oEuXLmjfvr2I7eIBz5RdqGVBAgFBtFLSpRwNBAKQJEnUEeCLdF7VFwDsdruwCuj1elRUVKC0tBThcBiBQACHDx9GMBhEKBQSgcVck2Wz2ZCVlYWcnBzYbDYUFxeLKpoARApRRVFQXFws0nZygYDHCwAQgkI0GkU4HIbJZBICAHcX4kICR5blJIGAuzCpxyKVQMCDg+vr/sNT7zW3HytBEM1LNBoVaZbV8CxD6iKGwLG5OTc3F7IsIxAIiIKMfr8fiUQCJSUlCIfDQmkTCARgs9lEcgbg2DzH3Yq41Za7gjocjrQCgaIoqKioQCwWQ05OjlBoRKNR4RrkcDjqFAZ43IHdbhdzttfrhd1uh1arFfUXjhw5gmHDhol4M+BXCzEpU1oW9CYjiFYIzzRQ/aWgKAqCwaAw7/KXiyRJcLvdACAy8SQSCZjNZlgsFiEgcPccWZZRUlIiAnOPHDmC8vJyEQMQCoWg1+uRk5MDu90Or9eLysrKJI1/eXk5YrEYbDYbAoGA6KvJZBJCCr8GHj/ANUrchM4zVPAXDM/KwX1tuRWDB/apx0EtEMRiMUQikXpX9+TWCdJwEQTBlS/hcFjMgUCyyxC3EPBAVL7wDoVCKCsrg9VqRSwWEwLEkSNHREplSZIQjUah1WqFlSAajcLr9QrNvCRJImtROpchWZZRXl4OjUaD7OxsMefKsgy32w2z2QyHwwG3212rMMAtDEajUVhUebY3q9WKSCSCWCyG7777Dl26dEGXLl2SAp/JXahlQgIBQbRCuCamukDAXyA80Bc49rLx+/1Cm8VrC4TDYbhcLlitVkSjUVgsFlitVmg0GuGG07lzZ3Tu3BlOpxPhcBglJSU4fPgwjhw5IuoNGAwGuFwuFBcXIxAIiDR0wWAQdrtdpODjAXVc28TThqoFAu4ny4USXgyNX2f1+AGe9s9oNNYqEAQCARiNxnpbByKRiHBvIgiibcOTItjtdlRVVYkaJbzeitpCEPt/7L1bbGTneS24du1b1b7UnUWyyW6pb7JkRbIlzYmNSImdTB7mBDiAc4GDgxw4MQIkeUkeAwfI5S0vAQYOkBhIgsBAAM8AmQkm85QJbAN2YiU6tiXbktNSS1arL7zWdde+3/c8UN/XVWx2q9tS1GT3vwCqRRZZ3LVJ/v//fWt9a2UZ/7+qqqjX6yzJpPXu0UcfxXQ6ZQaVgsFM0+RwRjqU05pHSfHAgSTpcEEQBAEmkwkMw1hyoomiiOcILMvCeDyGoii3LQaAg8N/WZY8V5CmKcIwRLvd5tmHyWSC7e1tfOpTn+J5K3rNVLQIHC+IgkBA4AHEUVZoSZIgjmNYlrU06EbFAFHO5BIhyzJarRbLYmiozTRNmKbJFDHZ0g0GA6yurkKWZY61z/McN27cYPvPa9euYXt7G0VRsPyH3gg0H0ApxdQdo1kFCvBZLAQWO12H5wfIbYPuBc0mLKaDRlF01+wAAJYvCQgICNBBntZWKgoAsJsacLMgIM0/fbzb7WI4HPIa1ev10Ov18Oabb/I65zgOGxiQTfP169fZipnWOEoGJlRVBcdx4LouOp0OO8UBB0zubDZjBpiKgaPchAhxHCMIAnQ6HS52qFjRNA1hGKIoCrz88svMDtD816KE6na2zgL3D6IgEBB4AHF4oJi68uSgQxp+CuxqNBooigKWZfGgW7PZRK1WY1qYkod938fq6ipWV1fZ/YfoZtM0AdxMyzx16hSazSYajQb6/T4kScKlS5ewv78Px3EQBAGSJFkKp6HNkq4xz3OeF2g0Ghwmpus6MwmEowaK6eBOGxx9n8XBZspFuNt7m2UZZyUICAg8vKD1iBoPnU6HZwMAHMkQUJc8TVMAYOchQq1WwyOPPALgYL0yDINDEElalOc5ptMpd+rn8zk3VygrgIadkyRBv99f6sr7vg/HcdBut9FoNDCZTN6zGCiKAo7joNls8npJqcO2baOqKnieh9lshq2tLXzqU58CcMBOLK7rhxlbgeMB8RMREHgAcbggiOMYZVmy3lOSJARBAM/zeLOxbRuSJGFra4vDySaTCaqq4oE2GkijjYXcL9I0XUqfJOr6nXfe4Q2TQsvOnz+Pa9euIcsyhGEIz/MQxzHm8zlvrAD4uRbdM4CbcwL1eh1FUfDrJMtT+jxKXqb3FwsC6qQRO3C3zkLAQVeNrE9FQSAg8HBjsZFB/9q2jdlsxu5Ci2wBrXGL7kEkoSHXtel0Cl3XcfbsWV5bSY5kmiYkSeKBYuAgidZ1XaiqCk3TYBgG0jRlt7iVlZUlOaTruvA8D91uF7quYzKZcCFxuzWNJEqqqvJ6mec5fN9Hq9Vit6SqqvDqq69iY2MDZ86c4b0HACfXC3b1eEIUBAICDyAOOwwdLhCKomBnC+qqW5bFThmqqqLZbLLuk7IGfN9Hs9nExsYGD4/duHGDvbCn0ylLj+j7RlEEx3GwtbXF3tbdbhe+78N1XTSbTfT7fQRBwAd8mj8gX2xiL6gYILvPxdeZpilrVIGbxQoN8i0WBPQ1vu9D07R7oq9JDiUgICBAg8CLHW/S8BNLcJghUBSFD/AkKZIkCWEYQpIkvPHGGwjDEIPBAJqmYT6fwzAMThMeDAZwXReapvEBm5ohFOI4mUxQr9dvSa6l+a1utwtVVZkRvlMxABwwqXmeo9PpLD0XZQ6UZQnf9xEEAd5++2288MILAG6ul8TylmUp1s9jClEQCAg8gDhKMkSLMWn/qZsUxzF6vR4AsPNPo9FAlmVLWvs0Tdlqc2NjA6dOnUKn08HGxganDQ+HQ8zncyRJgvF4zNrWIAjgui67CW1ubmJ1dRVlWeLy5cuckEzBNXSdNJxHtDklG5O93uLrvJ1ciDZjAhUERVHc8+zAYvbAYpEhICDwcOJ2eS+2bTMLSgd+anSoqsrNkCRJeC6KmMsgCOA4DnZ2dnj9jaKIO/KyLGNvb4+zCcjbn2RLURSh1WotSZGowx9FEXq93lIx0Ov17riWkQSK5gaAg4M+ZQ4AN+2sv/Od72BjYwMXLlxgWepiToyQCx1fiJ+KgMADBtp0FjcpOlhT8I0syzAMgyVD1CHf39+Hqqp8OF+U1ZArkK7rLLMpyxJpmqLRaGAwGLBEx7ZtmKaJ6XSK0WgERVEQRRGGwyGGwyHa7TbiOMaZM2dgGAYmkwl7YNOQMxUCxBKYpsm6WxqaW5QM0XAdcLBJL9qULg4VU0FAxcmPww6IDU1AQADAksxxEcSGjsdjlvbkeY5arcYzAIZhLHXQaY2ima4gCJBlGdrtNqbTKWq1GqbTKQBgZ2eHzRbIHY6Kk263e8tg8XQ6RZqmbDdKacTvVQwURcGDx4uyTdd1OXOArjUMwyV2gKxGSeIZx7FwFzrGELuagMADhsNDs8DBAu55Hi5fvswL+aJvNLkIOY7DScBkZweAvat1XcfKygpkWcZkMuFk4yzLMBgMYFkWp1WeOnWKh9larRZnEuzs7ODq1au4fv06B9ucO3cOnufB8zxEUYT5fM5uQCQL0nWdN1IaLl7s9mdZxgxBFEXMIhwOBaL7E4bhPbEDZJ1HG61gCAQEBEgCdBiU4zKfz7kTXxQFswO6rqOqKs4XSNMUqqoe2cyhgz65Avm+j9lsBkmSoCgKr3tZlmF1dXXp0F2WJSaTCfI8R7/fR61Wu2tmAADvCYtrJTWVyESCmivf/va3mR2oqmqp2CH3OCEXOr64fba1gIDAiQQdVBcX+jzPMZvNeGHf3d1l731K/h2NRrw50cwADeZOp1PWsBqGgZWVFVy9epWlQtSpIumPaZoYjUas31cUBf1+H2ma4oknnkBZlgjDkD25y7Jk156rV6+yRIgO/nSd5FZx2JXocP7AorvQUSmhtInfy+YURREXRQICAgLAMku5CDrI03pLbm7AwVpCSfCLg8c0U0Ca/uFwuOSupigKhsMhiqJgdzZVVbG1tQXLsniGgK6HigEA7PJG77/XzABwMDeQZRn6/T6vo0mSIAxDfj6yqc6yDD/60Y/wq7/6qwDAWTXATec4IRc63hA/GQGBBwykV13EdDpFkiTY2NjAysoKH549z0MQBOzyQzpUsq9TVRVxHPPmQx7Xsiyzy08QBNA0DZ7n8YGciop6vY6trS3OEqDC4OzZs9A0DTs7O+h0OmxPeu7cOayvr8N1XfzLv/wLtra22CkjTVN4nseSHaLfa7Uazw+QTpeCgoCjCwLKY7gXLG7o9LyCIRAQeHhBBgdHSYbIHY1MGXzfRxzHzATQmtloNDgvhdbuqqqwsrLC0kc6fJPM8+rVq9A0DZPJBLZt8ywUBUESGzEejzknZrEYODxofBSSJIHneWi328w2k301ZQ4AN22bv/3tb2MwGODChQsADuRChmHwuinkQscfoiAQEHjAQJpSAtnWkfUc6TpPnz6NdrvNgWGO4yDLMi4EaCCYJDv0Rh+ncLEwDLljT4d+6irZto1+v49r167xRkKDc48//jjiOMZoNEIYhlAUBc1mE5ubm/jEJz6BwWCAq1evYn9/H8CBbOnGjRuI4xie5/EQG73GRXZAUZQl+1IA3IUjZ6F72ZzyPF+aXRAQEBBYbEocBg0KU8FAB3jS05MLUbPZXFobJUniA/jm5iYXFpZlsf7/xo0b7Oq2sbHBaxOlsgPAeDyGLMtsGHEvxUBZlnAcB5ZlLbGolDRP8qEsyxBFEcIwxJtvvonnn3+eP05NGpI70X4hcHwhCgIBgQcMi53rqqpw+fJlPqAvphUD4ERiCgBzXZetR/f391mKQ+EzURRhPB7j8uXL2N7e5oE3XdfRbDaxtbXF9PH29jbSNMX58+cRxzFb8F29ehWu66LRaGBlZQW6rmNvbw/D4XBpLmB1dRUXLlzAcDgEcEBxW5aFVquFLMt4EJmukzbCwynCiwVBmqYIw5CdMe4WYRhCVdVbnJsEQyAg8PBiMXWYMlsALOWnLLqk0TpKMwNpmsKyLA4cC8OQndZ838fp06dRFAUuX77MScjPPPMMHMdhp7O1tTUEQYBWq8UzCrPZDJqmodvtcp4McHfFAADMZjPUarWluYHDmQMAeB1/6aWXMBgM8NGPfhTAzawWWpfJElXIhY43xE9HQOABw6JkKE1THviq1+twHAeNRoPp3iAIsLOzwxKbRqPB3XCiozVNQ5ZlHDoTxzGuXLmCq1evMntATANJghzHwWw2Y49u3/dZM+v7Pq5evYrhcMjJnoqiMLVNXXwakCPP7eFwiHq9jna7jV6vh36/j9XVVYRhiDzPoWkaux7driBwXReKotxzp580v4s4bGcqICDwcIG631mWIUkSTh4me2RiWEnOSEPD1JihweIkSWCaJjzPAwDcuHEDnufBtm2oqord3V1e2zY3N/GTP/mTWF1d5YKAnotS3U3T5LwAciW622LA932kaYpOp7PU8HAcB7qu89qaJAmSJEGWZUvsAA0TL8qFDjdpBI4nREEgIPCAYVEyREPBmqYhiiJkWYZWqwXgYDPzPI/pZsdx+IBPBQDJblRVZdu7NE2RZRnG4zEnUGqahuFwiG63y10zosipQ0YBY7RZEX1OAWXkQkFMhaZpCMMQrVYLvV4PjuMgCIKlWQAqYKigiOMYsiwv5REsdu08z0Oz2byn+0k+4UdJjARDICDw8GIxdRg4WCuAmwPFtJ7SodgwDLRaLYzHYwRBgGazCc/zeKaLCorZbMa2ojRb8M477yBNU5RliVarxfMLZCkNgA/yNAQ8mUxQluVdFwNpmsJ1XbTb7SU2lAwgaO8ADtgB0zTxzW9+8xZ2gKRPVVUxAy3mB44/REEgIPCAYVHKQjadtVoNYRjCsizWpyZJAsdxOLGS3CNs24bjOOx4kec5H7apswWAv4aKCkmSoOs6D5OtrKygKArs7OygLEuYpskH+k6nA8/zsLGxgX6/j/39fcRxzP8GQcCbKGlrG40GZFnGfD7n4oLoetrsFt2FFu8Hda3KsrznYWKakTi8oQrJkIDAw41FfTwAXhvJojjLMnQ6HeR5jjAMuRkSxzHbNvu+z0m/i648w+EQu7u7PEx85coVlGXJIWHT6RS2bfPgcJIkvO7SAHFZlmw1+l4oyxKz2Qymad5iW7qYOQDcDEnLsgxvv/02swMA+HUSK5AkCQ86CxxviJ+QgMADhkXJEA3e1mo11Ot11Ot1fow8/x955BHuUiVJAlVVWcdPicW0sVG4TZ7nGAwGqKoKOzs7fFgHwO4YjUYDp06dguM4CMOQh5WpeKBufq/XgyzLGAwGyLIM165dYw0ssRtUlPR6PWiahr29PZYj0bUS9X5UQQCAU5aPsgi8071czB4QEBAQAG46DCmKwoPC1KhYPFybpsmHfTpoE9OqKArPD5AFMzm5lWWJN954gx2HdnZ24Hke4jhGGIYIggDtdhu7u7uQZZmbJpZlYT6f31MxABxIgmq12i0M6nw+hyzL3Eipqgqu68KyLHzrW99Cq9VidoDYYyoEFmVDAscfoiAQEHgAkGUZd6lIMkQJw7VajXXzxBYAwO7uLmzbRrPZhCzL3HGiQeKyLNl3n1KKiTr2PA/dbpclP7Is88f6/T6CIGD/7GazuWQZ2ul0cO3aNXbaqNVqiKIIzWaTiwLTNHmOIQgCpuIlSUK/3+fBOXInkmUZcRxDkqQluRAhiiJmMBYD294L9JxHZQ8IhkBA4OEFNSlIElOv13kdcl2XjRyoWUF2zWSL3O/3OfuFEotpEJlsQknPPxgMUK/X8eabb7JNtOd5sCwLw+GQbUnr9Trm8zmAu58ZAMBr7OG5gSRJEEXRkglDGIYcqPbGG28ssQPUdKE9hBo2Yn7gZEAUBAICDwAcx4HrugBuHlTJ+o28r4fDIQ8Gl2WJ8XiMXq/HDhjT6RStVguSJDEl7Loub270fJ7nsf6fht3I4m59fR2KonC3Pk1TrK2tQVVVDIdDpGmKM2fOcGFhGAZT68BBfsFsNsP6+jrW19fRbDYRhiHG4zFLk2q1GizLQrPZxN7eHtv7UVbC4UN6WZZc0JDDx92ChuPEwV9AQGARND8AgFnKer2OKIowGo3QbDa5SNA0DZZlsbQnjmNsbGzAdV1EUQRN0xAEAc8QNBoNJEnC7CbJK69fv86p8fP5nOVI1EAhdphY17tBlmVwXRetVusWFzWyQ120cKZh53/9139Fq9XC008/DeAmm0puSST51DTtntZcgfsHURAICDwAKIoCcRyjLEveFKIo4v/XdR3D4RCO4/DsQFEUaLfb7IhB/v2k/SfruNlshna7jSzLOMfAcRyYponZbMabhaZpzAY0Gg34vs86f+pgTadT1uOTrjRJEu62FUWBKIqg6zrKsmSr0ZWVFZRlifl8jul0yhsY0fT0uo6ipqkIIur+bjcnclu6Hd0tGAIBgYcXi/MDJB3SdR2j0YjXVlofOp0Od+t93+emBn09rWHkTEQSz/F4zIYQ/X4fYRji0qVLmM1mcF0XFy5c4KYFBYR1u927XuOqqsJsNkO9Xr9FFkmZA4sSIpKgxnF8CzsQhiFqtRqbUlCzR8iFTg7uXkz7nwjf9/GXf/mXeOWVV9BoNPDZz34Wv/ALv3DL533jG9/Al770JX6fupBf+MIX8FM/9VN47bXX8Id/+IdL9P6v/Mqv4LOf/eyH8joEBO4HqOMvSRLTubVaDa7rQtd1hGGI6XTK2lKyAaWOEnXQaRMh7T6FziRJwt7T5Fyh6zpWVlYwGo0gSRJOnTrFTkG0CdChvSxL1Ot16LoOx3Fw/fp1DiEzDIM7ZnRdNMNA1zKfz7G6usqsBT3P4szCq6++yp9/+N74vg/LsrjbdrebZRRFUFX1yBRSAQGBhxtZlqHRaPBaRdkCtJYtnkOoeSBJEie709e02204joPd3V1ONpZlGbZtY2trCwDQarUwmUwwGAzw/e9/n2epzp07B9d1sbq6irIs0el0jpRM3g6O4wDALbksJAUlCRHtMfSxf/7nf15iB4CDxguxA5qmoaoqnq0QOBk4FgXBX/3VX6EoCnz5y1/G7u4u/viP/xibm5tLv2wA8OlPfxqf/vSn+f2XX34Zf/Znf4bnnnuOP9ZqtfB3f/d3H9alCwjcd9CGRDpUOvhSiAwd+Kl77/s+RqMRgJuuGDRPQLMDi+nD1FWv1+soyxKTyQTPPvss8jznw7qmaej3+5jNZnyQpsKE3H0Mw4Cqqrh27Ro6nQ57aI9GI3bOoDAcmnWo1+tcYERRhKqq0Gq1oKoqsixjxiHPc8RxjOl0im63y924KIpQFAXLhYC7LwjIlel2EAyBgMDDC2IIyFqUhm07nQ729/eXDsK09hDLaRgGu6O1Wi3s7+/j+vXrUFWVC4dTp07hlVdeQZ7n2NzchKqqCMMQW1tbaDab3OTwPI+T1+/FNCEMQ8RxzOztIg5nDgAHsiViNN54442lpi1ZMxuGgdFoBMuyEMexkAudMNz3giCOY7z44ov44he/CMMwcP78efzcz/0cvva1r91SEBzGV7/6VbzwwgtHDvwJCDwMKMsK00kKz63Q65kYjTxsXY8BVEiSHEmi4PKlNjSthK40MJ2YuHY1QhSewnDXwtY7Gt74oYco1tAfnMN//EDBbFzHaPRJQJ5g68o5uMNJ8O47AAAgAElEQVQzeP0HNlRNQez8b9DUAMPtJr71jQxV8RE09Edw42od5y6cxpU3Y0ydFIaVYX29Dd+r4dIPC+xvn8HqWg2dnoQo9CFJCQJfxupAQuBZQHkO71zxcOaRA4r6oBuVIs9kxLGEPANmsxp8r0SjXiDLcjRbOk6dOgXLsvCDH/wAmqZhNBrB931sbm5CURT4vs/Dy/ciF0qS5D29s0UwmYDAg4mqquB7JfK8gmnVoGk31dVlWcFxMsydArZVw/5+iDAEysIBpAp5auP6tes4ffrgeJVlFZxZgbkDBIGHvb0Sa2sNZGkI3wOGoxJvviHjzdc+gicv/B946qKMl1908Iv/PYVSPoOPXvyvePM/TuNjz83QaGgoixVcvwq022fx9a/egCJ9CpH3DMZ7QzRUC6N9CWfPllCU2yvCqZnTbDaZAU3TEoFfIk0jFGWK1dVV/vyiKLC/62I0auKN178DXTfx9NNPI88r+F4Bx/GgKCqG+xH8IIeqqJjNplgZmP85PyCB/xTc94Jge3sbAHDmzBn+2Llz5/CP//iPd/w6z/Pw7W9/G3/6p396y8c/97nPQVVVPPvss/jc5z63FL8tIPCgoCwr/OjNGFs3QsRxBWcW4vX/KPD6azny0kdZ1pHEAeJogAoS3npdgqJ2EAWryDIJQA8AsHMDAB7B228sPnsHyIHRPlBiHcM9+vgadADz6cGbhl/EzrUSwx0F77wlQ1ENFIWEZtuHbXbwzf9Zx3BPQ1F2MNwFVtdjWM0AZV6H52XYeieC5xUoy0dQVQGiYIwnn5YgwcTrP0xRq2nYH7bwoh9ib0+CM5Xxw++7GKwWWD8FfPQnTLbK29jYgG3b2N7exqVLl9DtdgGAu1w0+Hc3CMOQC4k7QTAEAgIPHra3Uly7mqAqAdOS8fgTDTSMGsqywpW3E2xdD+DMSvzw+3NMphGKvEKzFWKwauPGtRjbOybKNMYLn04wGeV4440IV6+kmI4LZLkBTStRb4RwZoA7B4q8CeBJ6Kz2WcH/838WqOG/od8BpiPgm19dwcefTaHLGuJQwTTt49936zC0/4ob79QAnMI7b1X4Rw9IUw8v/Ix9ZFFQVRUzq6Z5cGCP4xKv/0cE38vhei4uPmbj1Kmba+X1a1P8v/93ielsDsdp4tz5n4XvZ7h+NcNolGJvN4BSa8Aw55hOK3R7Hoo8RXrRgvVEhVpNrJMnAfe9IDhq6IRCLe6Eb3zjG1hbW8Pjjz/OH9vc3MSf//mfY3NzE9PpFF/60pfwxS9+EX/0R3+09LXj8Rjj8RgA2PYLuEnrfVAg3d2iL/z9wiJleb8h7svRuNf74s4L7O+lsOwSDaOGy69H2N2WUFQlND3FZKghz4GaXKAsVcSRBDmtIc/vzUugKgC8uzdUACT+PwBQUJUVUAJJCtRkQFErhH4dly+ZcF0JlZShVpOQ5wpCX4WqWIhjGYZVYD7NEEUSeisVyrIBZ9pGHPkIFQPzuYdTGy1IVR1X3s7QagEVSuR5iTiu4Lo55nMJmh6wu5Bt23jsscewt7eHt956C91uF61Wi/WskiS958+aQsw6nc6Rn0sfIznV/fzdeRD+lqhDKdbfDwfivhwNui9JnOPGtRiGUYOu1zAeZRgOazh9RofvFdjdSWCYJQIfePtHCUyrgN0s4LkK9vdirK5W6HZLOPMMP/ieD6MhI0kKhEGFLC8hQUKWAnEEBAFQ5AVoVV3+cSjvfuxgAS4LBW+/VcK2LDjzOUoYACQoMt79+oPV2feAy5d8XHxMx/qpW+cJyFCi2+3yfR/uJ/DmGfRGDKuUMB5KOH0mh67XkGUZXv52gOmshlrNga5HmDtd/ODlAEUpwTBSFDkQZyUULUMUK4iiBIPVGkajHGvrGVrtD+6oeRx/Zx6Uv6X7XhCQTdciKKX0Tvja176Gn//5n1/6WKfTQafTAQD0+3381m/9Fn7nd36H7QgJ//AP/4C/+Zu/4fc/9alPAQD29vbwoGM4HN7vSziWOIn3xfcqzOcF5CCEJAFhoCHLDpIswyhGWXVQQUJZFAAUVJWEvCjePcqXuFeTsYL/AxxutJcVUCuBNElhaQokSToI7ilklGUBlDVINQlZXgBSDUVZQJKArMiR50CRZ5BrKoyGgTAYoqrm2N+fQtNTVJWJIPChajUkcYqqlKHXC6hahbkjIYoP5hZ2dnZ4UabcAhoqphkFTdP4sdshiiJ4ngfgzgzAeDwWLhpH4F7/lj7/+c8DEOvvw4zjdF+yrILj5NBjCZomYT4vMR7XoGoywqDC3CmgqBE8v0Sa6ChKH2VVIs9txFGOmROhLAtkqQ93XiDLJPheiDQtkWUValIFSEBVAqhofbnzYbJABRkS4iSGYeowcxNFWjtYWw+t4+W7Tm3j0RjSIYYziiLM53N0u92lez4eF5hMU8iKj0bDRhA62N/3oWkHznBxIiHPVfj+BL3egQvd3J0jLwBn7iJJGgj8DLIcI4kNzGYRLFtDGpcYDgNE8Qd/WD5OvzPHCe/nvtz3gmBjYwMAcOPGDZw+fRoA8M477+CRRx657ddcuXIF169fx8/+7M/e8bnJFeWw1veXf/mXuQgYjUb4p3/6JwDA2traj/06jgJ1JRVFORbV43A4xGAwuO8R4uK+HI17vS/loEJZxLhyRYYsy/jYM3W89aaP6SREVdqwLCCJZUSxClmWUNeqA41rVuGAFDusgT+6SKDPqvKDf2vK4iMlNE2CJFXQ6wrKqoAi17G6Dnz8WRNf/f8SRLsqKkjQdaDXl3HunIHhKEKR19FqKkAZI00b6HR1PPdfDFS1CVpNE+NRjKq08eijayirbQS+DE1vQFVkdLt1rJ3ScOFiD0F4MIhcFAX/DY9GI5w7dw6macKyLIzHYyiKwsmhd8J4PGZm4cj7/u7vTK/XQ7fbva8uGifhb+m9Dvpf/vKX8fnPf16svx8SxH05Gkv3BSmuX01RlcCpUzV85PEGjHclQwdr7hyWCTx6toYbWyGkqo3Tmw1UpyPsbcsoygbaHRk/9dOrmIwLBIEEZ5YhTVJUqEFVFTQawBQ50rRauIbFK8px0MipQQIgKxXanRHKchX9XhtRqMCZJQA0LK7lzbaMp57u4YknlyVDeZ5jNBphZWXlFrOEZrPAbLqHIh+gUTdw8aKGM2d0Hhb+uZ/v4AevvIGa1AOqFs6f1/HCp3p46w0f2zvA6qqFiRyg1zegajIACZrSwumLOs6dr0OWP7jfs2P7O3OM/5buttly3wuCer2O559/Hl/5ylfwe7/3e9jf38fXv/51/P7v//5tv+ZrX/sannvuOWYDCK+++ipWV1cxGAzgOA7++q//Gh//+Mdv2bD7/T76/T4AoNlssk3XB/3LRS4rtVrtvv+yEOh67ifEfTka93pfajXg4kcMyIoL0zTRXzHQ6TmoalN0W5sw7AyTyQivfX+Gxx57BJYdYzabodns4VsvvoW60kGSZahKGZubDfjRDny3DtexUUk5pJqDNKghh4pe38Tuzg1kqQHdklBXZbSaOQyzwkefvADPdfHER89hPE5gNFSo9TkeOWfip/9XB9/9nyPkmYInn+qj25Nx5oyOmRNhPsuhNxQ4swjTcYz/5Scfx9lzFv71XwvU5AgXP1KDXIvx3HNNnH50jkv/sQ3DbEOWc2xuWuj1LSjqga2dpmlwHAdlWSLPc7bgS5KEbfyqqoKqqnf8OZMn+KJv+O3vf+2+/948CH9LFEon1t8PB+K+HI3F+3L6TB3ttoo8B0yzBr1ee/c6gQuPGdDqMSRIAFJcvQqcOb2CeiNBWeUIQxuziY9Ot4bBag1r63UYpoez5zLc2JqhobewsmZB12u48vY17O9U2N7JsH3VQ5qeRq0mQ1Em+Mmfvob97Ta+90qKbruG//YrHbx+6TI2NhQM+iZ6fQV/81dfg9E4C021MJ3N8Nx/eQw/9fw6nnyqtVQMUMgYJccfRln6eOxxFUajB0WR0GzJnJRsWRZkuYTV+gY+9uzP4eJjPXz8WQP1uoKNMy76AxumZWIyidBudVCWCYIA6PWaaLbkD7QYWMRx+515EP6W7ntBAAC//du/jb/4i7/Ab/zGb8AwDPzar/0aPvaxjwEAPvvZz+JP/uRP8OSTTwI42Dy++c1v4nd/93dveZ4rV67gi1/8IjzPg2maePbZZ/Hrv/7rH+prERD4MCHLEiwb6HY1eJ4DVStw9lwNTz7ZgW3b+PrXvw6780M8/ewGfD9Gp69A0yL0B2/i9OnTGI/HqNfr7xbRHlQ1xg9+8E0oigLDMLC/v49wOoXWeAQ17QZ8b4K63Yeim1DqLZw5ewHnL2aYTEJc/Ij6rrtQH5NJ/m5GgYPTj06gKAo2Tjeh6zoMUwIkHarqQ9czWJaCVrtCr1+gKHIYhoEgCNDtNg86L7UYg9Uurt+4gkbDRb1eh90EbFuH67qcZSDLMpIkQRRFMAwDmqaxDevdZhCEYXjX2QPCdlRA4MGEJEloto4+HtVqEmwbKMsCvh/h3PkWVldljMcher0u2u0CrZbOmSztdh3NlgRZAfwwxNpaE5ubJobDIdqdEBubJmrffx2Kvot/+Icv4M0338Qv/uIvoib/LE6fS/F//eP/jk+sfwKK8svw/BH6Kzk+8oQOXdeQlq/hmZ8wkOfbKK5exfM/8wTOnKnfMkzsui7KskSv17vl9WRZBt/3sbLSRb1+c92j3Jdut4uvfvWr6PQV/I9f/ziveQeNlwwbmx1EUYROR8Ng0MBo5GNt3YRlHYvjpcA94Fj8xCzLwhe+8IUjH/v7v//7pfdVVcVXvvKVIz/3M5/5DD7zmc984NcnIHBcQSmZQRAgyzJYlgVJkqBpGjRNw2AwQJqm2NnZQbfbhaqqrKXXNA2u63Kypa7rkGUZpmlib28PlmWh0+ng6tWrmE6nkOWDrlGj0YBpmtje3sbFixe5I0HddeAgLGw4HOLGjRuQZRmapqHdbmN/fx/r6+tL4WJ5nqPX66EoCjiOg0ajgfl8DkmSYFkWPM9Ds9lEq9XCaDRCo9Hg8B8KvonjGLquw/M8Zgdo2IveKEXzTgjD8D0lRQICAg83iqKA7/swDAO1Wg2O48AwDNTrdXiex7ktNItEw6eUPaAoCsbjMdrtNjzPg+/7/DXU2PA8b0n+EccxwjCEoijQNA1ZliEIAliWhdFoBNM0+fkXEccxgiBAv98/snM8n89Rr9eXlBSUb0AGL9/73vfwwgsvLH0dBawpisJNmDzPkWXZLeoNgZOB+8u3CAgIvC8kSYIbN27wwb4oCgyHQ+zv7wM4WNhPnTqFIAgwnU4RBAGSJOFgMM/zUK/XOegmyzI+iKuqCtM0kSQJ5vM5qqpaOtzHcYxr165hPB7zsC65LSiKgk6ngziO4fs+qqriQ38cx6jX68jzHGmaoqoqWJaFZrOJyWSCoiig6zpUVeXUZCoK4jhGVVUoigJpmkJRFA7i0XUdk8kEhmFAlmU+/JOESJKkO1KpaZqiKAoYhnFX914wBAICDyeCIABwIHmm/6eZIzqUU7AjuRjmeY4oithIJYoi2LYNz/N4TaRAxzRNMRqNYNs2Sx4dx+EiQ5IkzGYzAAey5yzLOB14MZiMmiy2bR+ZYEyNpMPzUhQmaVkWXnzxRdTrdXziE5/gx8mJzTRNpGmKPM+5UaOq6l2HowkcL4iCQEDgBGMymcDzPNbHe56HNE0RhiGyLEOWZej3+zh16hSiKILjOAjDEK1WC1EUcbdKURQMBgPuYtEBHbhpY0aHccuyOEk4yzLM53PEcbzkFkYHcjo053kOTdNgWRanYBZFgSAIuONFSchUpLRaLXYI8zwPtVqNEzBJGnTY4SdJEu50ka4zz/O7yiC42+wBAQGBhxvUtAjDEGmaot1uc3MgTVNO6FVVldPgiUE1DAO7u7vodDqQpAMXn6IoltatqqrgOA6azSYkSUK9XsdsNoOmaSzloQynVquFPM/ZSZEO41VVYTabQVXVI7OYFhsti2sjNYosy0IYhnjttdfwiU98Yqn5EUURXxel2suyzAWPwMmE2PkEBE4oiqLA9vY2VldXYRgGHMfhDUCSJDiOw/IhRVHQaDS4UHAcB3Eco9vt8qFblmVkWYY0TSFJEnRdRxAEKMsSKysrrNMnmU+r1UKj0UBZltA0DXt7e0yN0wZDm6Nt29jd3eXuO22ON4fWZKRpCsuy4Ps+gAPZUZZlnDLs+z6HjYVhyIUDIQxDWJaFoij4Y/SaiN24HaqqOrLAuNPnAyKYTEDgYURZlhzw1Wq1uPtO6xodzuv1OtscUyddVVWMx2Osrq4iDEO4rouqqmCaJq9RtVoNruvCtm1uwriuC1mWoSgKO8pYlsUs62JBARyEtOZ5jna7feRrcF2XndcW4fs+JEmCaZp48cUXIcsynnvuuaXPCYKA1/LDciFhw3xyIQoCAYETgCiKMJ1Olz5GHaJTp06h0+lgNpthOp1yHD0VBLVaDUmSsCOCJEkYj8fcCaID+HA4xGQyQZqmzAqMx2M0Gg0oisIbznQ6Rb/fR71eR7vdxtWrV7mT5fs+oiiCoijMUJRlic3NTfi+j729PXQ6HYRhyJpY0zT5GmmglzpwjUaD5wpmsxksy0K9XkeWZfA8j4d/0zRFmqZc4BBkWeYAsTvR2HEcc8dLQEBA4E6gGQIAS3r5NE2ZdQUOZh53d3dZKklrpKZpaLVaGA6H8DwPmqax9IcYWtLw53mOOI6XJJKKovDcAkki6YCuKArnrnQ6nSMbIcSwHpYKUePFtm1kWYbXXnsNn/zkJ5fkRmmaIssymKa5tG7Gcbwk4RQ4eRAFgYDACYDrukw9AweDYK7rYjAYsNYeOOgK0XCb4zi8wRTvhtXQIV3XdbRaLUwmE4RhCN/3sbOzg9lsxrabvu8jDEMYhgFJkmAYBi/2Z8+exalTp6DrOmazGSaTCR/giVVIkoQZAjpoB0EA27ah6zrG4zHrVCVJ4k4XSYtc10Wv12NJVFEUPLBWq9VY5wocdLVo2Jk0uwCYzaCh4tshDEM0Go277vgLhkBA4OEEmTikaYpWq7V04D4cglqWJdI0RZIkfHgejUZsez6dTrmpQWteVVXodDoIgoAHlGntJ7/7lZUVeJ6HbreLLMvYXIHMHah5sngti9fvOA7PiS2ChpsNw8C3vvWtI9kBklbKssz/L0nSPTGsAscToiAQEDgBWDzMRlHECz4N0AJgujaOY+6ME81MB+MkSZAkCdrtNmzbRlmWyLIMP/rRj+C6LrIsY8eJJEl4WI2gaRoajQY0TUOv1+Nh3b29PXbdCIKAu1oAWPcPgPX87XabXYbo2kjaAxwEFi46auzv76PZbCIMQ2ZAAHDRkyQJLMuCpmn8moC7YwiKokCSJHc9TAyIgkBA4GFFmqbs7rNoXkCPLa6XSZIwW0rzUZIkodvtIgxDDIdDaJqGWq0GVVVZIjkYDFAUBV566SWoqsrPS2u4LMtwXRfNZpNd1HRdZ+ZAUZQj5wYAsPPR4cdppqvZbCJNU7zyyit47rnnll5PWZYsEVpcN6lZIxjWkw1REAgInADQwZP0/4qioNVqsTaeDvq9Xo87WLVajTvnaZpiOp3ykK+maZjP5+j3+2g2m3j77bcRBAHT2aR1JW19lmVcfNDGRcNspGMdDof8NXEcc3fLtm0uYKiDRbIgSZL4AE+pj6qqwrIsmKbJm950OuXXQfaqpmliPB7DdV12JSKNLbEEiqIwQ3C7GQIqPO4me0BAQODhBc0NqKqKRqPBVszArfMDtA5WVcVd/CAI0Ol0oKoqs7OqqqJer7PDGgA8+uijkCQJ77zzztJ6q6oqz4HN53PeA+j70mM0sHwYlDnQarVueZwkmPV6ndmBT37yk0ufE4YharUaOyVRw4b+X6yhJxuiIBAQOAGgxXs6nXJHqV6vc0GwOHBGDkKSJLEV6Hw+Z99oOhy7rotWq4UwDDGbzZBlGR/+JUnizYnmDqqqgq7rrPdvNBo8DEcDcru7u1AUBUEQYD6fwzAM2LbNeleyEY2iCLquQ9M0BEHA34s6YaqqsssRbbTUgSKLVcMw4HkeJpPJ0mCcrus8R0DFEln3HQXqeN0LBEMgIPDwgQZ1Lcu6pclweH6AbIxJernYIFFVFdvb25ylYlkWtra2ONOFZgI8z+MhYsuyuNkRRRGbLJDbGzkatdvt2651lFZ8uJOfZRmzr7djB4DlnBaSWQIHM1hCLnTyIQoCAYETAJIMEbW8OLxVVRUnDtdqNV6wgyBglx2y3czznLvmNHtAEqMoipYo4f39fdRqNdi2DVmW2Vub9P7kRFGv16FpGrrdLnzfx2w2QxRFt3SwGo0GbxrUZWs2m3AchzdP2gglSYIkSRzcAxxssLqucwiZbdsIggBhGC5tgJqmMUOwKBk6aoZg0UNbQEBA4HagQd1Wq8WH9kUZ4uH5AVpXFUVhswViRvM8x+7uLuexSJKE+XzOX0uHc5JkxnGMwWDAnfnLly+zgxAxoGmaotls3la2Q5kD1GhZBDm2aZp2W3YgSRLOaSHGg+RCaZoKudADAFEQCAicANBhlhx6yH2iVqtxFkEURWw/V6vV2KWCAm0o8IaKBOBgWJm6WmEY8oI/Ho8RxzHrZIkNoNRLkvlQ4jH5aNu2jTiOeUCZ5hRoE1FVdSml2LZtDj4ry5KpeALpYslhgzpRNC9BlqdklUdfQ9dHHTgqMA5j0UP7XiAYAgGBhwsUHqZpGksdDw8UH54fWEzyzbKMs1mIMaB1PIoieJ63xMCSXSg1dMjmOY5jXL16FQDY/CFNUxiGceRhHwDPkx3OHAAOmiJxHMO27TuyA0EQ8N4ShiFnLZC7kJALnXyIgkBA4ASArN1Ia0+dGTr4W5aFKIo46Its7si20zAMtq4jVwjP89g+jgbKaDg3z3PeOKgLRj7Zruvygbter8OyLLY0LcsSrVYLs9kMruvCMAwkSYJ+v8/XRnMJlGhMLAWxF4eHf2kTiuOYr5cobrIsjaJoSeJE1nt3OrDTddyrXEhAQODhBBUCJKmktYqc3IghyPOcWVhd17kIoLWZcmB0Xee5sMWh3Fqtxod7coWL4xj9fh9lWeLKlSuwLAsA2P50bW3ttsYJruty8vxRjxmGAVVV8dJLLwHALewA7Semad6yboowsgcHoiAQEDhBoEAYSuClGYFms8n6T/L4p04THbzDMAQAnjEgmpiyCqIogmmaKMsSpmlyUiUAtrgjitpxHLb8JDtSGmojxgA4cAECDhwtaEOk7jqlK9O/vu+zJIpATAZJhyjhWNM0jMdjnDlzhl+j67r8dbquL9mPHlUYvJ/sAcEQCAg8nKiqit+oaULOP3Qgp645rb2U6CtJErIsY4knNTboUL1ofdztdpcKAdd10W63oes6tre32aY0CAK0Wi1mFw6DUuQPZw7QY1mWMTvw8ssv49lnnz1ydoCaN5Rp02g0WC4kJJcPBkRBICBwAkA6/DRNuctDdptE3SqKgk6ngyzLMBqNWErTbDYxn88RhiEXA6Zp8uHd931e5NfX1/n7kHMP6fsHgwEsy4Jt2xgOh8wS0PWQLWgcx0vSH3KgIFehPM+hadqSQxJtLiQbIpAOl74HSYSiKAIA1vOSnIgKiMXBYnJWOox7zR4QEBAQoJRiALckshNIXkRzBo1Gg1nRPM/Z0GE6nWI2m0FRFLZTJnljq9XigDAaFJZlGZZlYT6fo91us7MbDTkfZgiqqsJ8Pj8ycwA4YAeI+X3ppZdQFAVeeOGFW54jCIKlYWJqJNH6LORCDwZEQSAgcEJAenda9Ek3Txp4svPsdrvcOaLBXbK0azabTFWTtnUymQA4yAvo9/ss4YnjGIZhsPMFyXnW1taYAqcwGhoAphAe0s6SH7bneaznJ4ck6mYRtd7pdLh4ICzqck3TZJek2WzG8xSdTodt94gloIKDws4OH/rJQ/vH7WzdrsgQEBB4sFFVFcuGFhkCkgvRgC8VBDSDRe5qsizDcRyoqoq9vT3utjcaDRiGwZJQSZLYqpnkQ61Wi9dwWZa5QULDyYcLgttlDgDgmTGyjb4dO0DWqYZhcODkolxIsAMPDkRBICBwAkCbCXVpqqqC53m8GNPhlChpSuylzWI2m0GSJHQ6HVRVBd/30W63sb29jbIsUa/X0e12Yds2D66RJKnb7fImpCgKTNPk5yFpkmma7MtNzAF1pfr9Pntpe57HGw5dKx2uO53OLSE4aZpCVVXUajVomsYJnQB4LoKkUjSvkCQJS4+oIDiMRQ/tHwdHPaeAgMCDC/qbL8vyyPkBanDQ+kPSSRokpjWa5gsAYG9vDysrK4iiCBsbG8yk9vt9VFXF81m0lnU6HTz++ONs/kDGCmT6sCgZosyBdrt9S/OC9g/btlGr1W7LDgBYSquPoojd5hYLH4EHA6IgEBA4AaBNhhZfOrDLsozZbMY6ehoy1jQNa2trMAwDe3t7mE6nTEtfvnwZ29vbCMOQ5UFbW1vMBpRlycFicRyj0+kwda2qKtrtNlPG1JGnYbNms8kDz7Zto9PpcOJxr9fD9vY2qqpize1oNOJhPJI8UdeNig0AfHjvdrvI85yvhw70lIbcaDR47oH0rsCtWn/a5N4PBEMgIPDwgRgCKgiSJEEcx3j99dfh+z583+d1muyO6VBfr9f58evXr3OYZJqmePzxx+E4Dq+jWZah2+0iyzK8/vrrzK5+7GMfg67ruHjxIg85NxqNWxgCx3HQaDSWrFAJQRBwhsyd2AFqCh3FCBDb8eM2VQSOH0RBICBwAkCHcQKF4FCnipKJycLTsiw0m030+33M53NUVYXV1VWeGRiPxyjLEqurqzxYa9s2VlZWeJMhdqHRaKDX66HRaODMmTO4cOECTp8+DU3TOD2T5hieeOIJrKyssFvR+fPnmXGguQIqCMiqbtHZqNVqod/vAzjYaGkYT9M0rK+vI4oivlZJPOwAACAASURBVC4A7Ot9/vx5zkeggWZyGlIUhcN76N693+wBwRAICDx8oCbAouVokiScy/L6669zHsDi55VliW63i263i+l0Ctu28frrr2NtbQ1xHKPVaqHdbmM8HnPOTFEU6PV6OHv2LObzObMNaZriD/7gD9gJiBohi1krFPZ41CBxWZbwfR+2bUOSJLz88su3ZQcozFJVVW4eUXEgwsgePIiCQEDgBOBw9yfLsqUDLxUEnuehKAoOCbtx4wbTuuvr6xiNRjx867oukiThYK8wDFGWJfI8Z90ohZiRZpa0pLIsw/d9lgepqsrDdjR/UK/X+RqpM1ZVFXfB6KBOtneLr5GKBhoOJj1uGIawLIuvhYoiWZbRbDbh+z4f/Cm/gChuch2ilOR7zR44DMEQCAg8nFi0ZU6ShOegFlPXiUmggoDeoiiC67qYTqfY2NhAlmUYDAa4dOkSr6UkdSSWlNZUWuNJskNNIGqQUCFBmQNHuQ6Rm5thGEjTFC+99BKeeuqpWzr9ZC+6OExMxQrNEgi50IMFURAICJwALGpWgZsFAR2iKbGXArwURcF8PsdoNIJt2zAMA7qu49q1azBNE2trazzQRmFmURQhTVOmtBcdNOgwTRscJRcTpUyHbxqYO5xqPBgMuNDwPI8ZCOCgyx/HMf8/fc+yLNl2T9M03pAWu1K02QLg1OTpdMqP0eZMMwwfZPaAKAgEBB4+0JpJ628Yhvyxs2fPIkmSJVtmOqRT0yXLMly+fBmNRoObG4Zh4NKlSzx3RawDHfqpKUPfj6Q+AJZ0/LTuq6p65BpHeTOH2YHnn3/+ls8lJzd67sV1k4aahVzowYIoCAQETgCoACAQRU1a1kXrUErmnU6n0HWdZUDj8ZjdgHq9HoIggOd5bBsnSRL29/eR5zna7TYnU+Z5vhR5T84/RFMHQbA0IDyfz9FoNJasRumwHkURkiThobgoirC6usqDwouDedQFI5tS2sgWQQwBodvtIk1TBEHABUFVVcwQEPMhOlsCAgI/DqjTT/IdMjKwLAtra2u8zlEGyyJDEAQBsizDjRs3sL6+vrR+O47DScLEOix2+Mk5jmYGyORhURpEaxylHB+G53lsgwoA3/3ud/HUU09xyNkiFjNvKO9mcX5ArKEPHkRBICBwAkCWogRyqaANYz6fI8syTCYT9Ho9thI9deoUu0NQAA1w0N3WNI0HkGmOYHt7m8NvyDmDioxms8mJlURHNxoNlgLlec6PUzonMRiLUiPaFMnelOYYqCMFgJ+DhqWJLqcO1aIPOHXnALDNquM4XAwAB7kEeZ7D9/0PJHtA2I4KCDy8ILliFEWYzWZsG6rrOjdDXNfl8MOiKJgh3d/fRxRF2Nzc5DWP1uFWq8WfD9zMPKA1cDqdQlVVlidRoUFsLKXWH5VYTOwCNXZeeuklBEFwJDuQpulSxgxZXpPpxPuxbBY4vhAFgYDAMUdVVbdIhsi6TlVVzOdz5HmOH/3oR3xo3t3dxWOPPYYwDNlRotvtcjgOdZXImlSWZUiSxKmXVCBkWcbFx2J4mGVZHIZGrAClbpJNKF0naU7JntTzPGRZxt19kjTR0BptnvV6nYeRoyhimpveFm32aAOlIkVVVe7QVVXF+QWe530gciEBAYGHE9RoUBQFu7u7nBNAMiHbtlEUBTdLqFFSFAUmkwkmkwlM02S7UXJCs22bO/X0/HTgp0R3GjqWZRlxHDNTTKnykiQdmTkAHDAMuq6z69B3vvMdPPPMM0eyA1QAUMOFMmmAm+5vQi704EEUBAICxxx0CKcON2USAAea0dFoBFVV+bA7Go0wGAzQbDZx7do17uoQNU0dJ9M0kWUZd8xJgkTyJBrkzbKMswqooNB1ne1FTdPEbDZDHMeIooiZDEoUJlqbDv/U7aLhXtqgLMvirhrNQURRxNT5UQd5mnMgvS4VCORaRHImSgil63q/EAyBgMDDBWIbqfkQhiFGoxEeeeQRpGkK13WRZRl0XYemacjzHKZp4vr165zgPplMkKYp+v0+0jTFfD6HoiiQJAkrKyvsmraY5r4ICnikgmCRGU3TlJs5h0FSImIHvvvd796WHaDBZ2IHFtd8el+wAw8mREEgIHDMQTMBSZLA8zweILZtG6PRCJ7nod/vI4oi+L4PVVUxGAywv7+PLMuQZRnbxU2n06VkTEVROEQsCIIli1DS8FOBQNZzRE9TV58O38PhkPX5dGCmThOxHBS0Q8PHdMgni70syzCbzViytEhdH+WYAdw6R1Cr1SBJElqtFrMRxIrc7jkEBAQE3gvUWMjzHOPxGIZhoNvtwnEcDgIDDrr9NINFDZU8z+F5HqeyJ0kC13XR7/eRZRkzBgCWghUXnYoof4bC0WhY2fd9No44Cq7rMnMKAP/+7/+On/iJn7gtO7CYebOYRi/chR5siN1RQOCYgwoCstPc2dnhwbPZbMaaf9d10el0YBgGS3hos2o2m9B1nS3riI62bRuyLPOA8KLvPw3jFkXB8h3q1FP2AB38G40GXNddkgvRpkWFhCzL/HyGYcBxHJimyd19XddhmiYPQ1PgDw0w3+4wv+g0BIAZEWIfPM/je3iUtvbHgWAIBAQeTpAWP01TtNttnsWiuQEALLchByLq0Luui1arxcwurW0kaSRzB0ohjuN4qZFBKfPUYKHHyAjiKJDN9GF24NOf/vSRn08uRsBBo2YxmIz2gNsVHgInGx/M7njCQUM4H3TYED3fcQgxIk3i4gDm/byWxX/vJ07CfaEuOcl8Ll26hGazifF4DNM04bouH67Pnz+P3d1daJoG27bZ898wDM4doAHbKIrQbDZ5cI0cJcjGjnSiruuiVqthMpkwOwCAaWQqRKijXxQFDwwvFgckMaLDNLkALXp608+CnIiSJFkK16Gf0+Ibde3ovhFjQEFn8/kc+/v7sCyLGZP3UxgQw3Gcf2fuB273t/Re93ptbU2svx/ytSz+ez9xku4LXaPrurwG2rbNGQGPPvooXNflzJZGo4HxeMyyR8dx+ONhGGJ3dxePPvoo5vM5r7dlWfL6a9s2dnZ2+PmpMRMEAbMENB9Wr9d5zuAwiB0gg4h/+7d/w5NPPsnp8osgdyMKkCS3NpJ9krvQ/fxZnaTfmQ8Td7ovd7vfiYIAwDPPPINOp8Ma4w8ai3KG+4lOp8NDSscB4r4cjcP3hYbHyFmiqipmBuI4ZtnQxYsXARwUEI1Gg/MBqHs/Go34kD+fzzk9c21tbYnOXjyIk+SmXq9ja2uLO0P0t0LuQIZhLMXbt9tt7obRoDHpasuyxHw+x8rKCjzPQxiG7OlNQ83z+Zy7a8RekGsRvdH71IGja6JNlYqORqOB7e1tXLhwAVVVIQzD9z1Y3G63+TqOA47z31Kn07nj1/zmb/4mAIj190OGuC9H43b3hWaZaA0OggCbm5u8rnY6HYxGI06Kp/WHHN8oADKKIoxGI5ZJjkYjNJtNbG5uYjgccmDjxsYG3nnnHV5niG2ltTHPc0wmE5Z+kixpETS70Gq1kOc5Xn75ZXiehxdeeOHIvzeaaaCfB82l0RxbGIbodrv3fd07Kb8zHzZud1/eaw0miIIAwPe+9z089dRTWFlZ+UCfl2g9cnC5nyjLki0p77eOWtyXo3G7+0IdJ9M0ce3aNQwGA7z11lu8MBOlSxrR06dPcxfLtm3s7u5yYFlVVTBNE+PxmOU/izMBQRDAsiwkSYJarcZDcs1mE9PpdGkwGADPGdBMg23b2NragmVZGI/H/LqazSYf7Ekbe/r0aZRlCd/3uUtcFAVWVlY4VG1zc5PpdBo0JgkSdUQ0TVvq+tPnk1OSpmksVaJreD8MQVmWmM1mTP3fT5yEv6XRaHTHr/vbv/1b/NIv/ZJYfz8kiPtyNN7rvtBBneaRGo0Gms0mtre3YVkW5vM5bNtGGIZot9vseEbuPtSkIOe3Xq/H7O/q6iozo3Qgp7Tixc4vrXVZljELSn83JAVdfD3UnCEjhVdeeQVPP/30kfIier5+v89Bk8ABC0IWq4qisJzofuEk/c58mLjTfXmvNZggCgKArcH+s36g5HJyP0GyiuNwLYTjcC0n4b4kSQJZltmWs9PpsM5/MY3Xtm3OCvB9H2VZ8uHf932srq4iTVOmjhVFYekLAO7mU8edDvtEGff7fUynU6RpCtM0edgsCAIuGkinT/RyrVZDrVZjuQ7R4sBB14KsSqm7RXMM8/kccRxzYjJpZRdtR+le0eZFH6PPp4N/URTo9/uoqoqv4f38rOl35v0+zweJ4/D7e7u/pffqJu7t7Yn19z7gOFzLSbovh53YLMviZkiSJBiPx7w2U5eW1hvP83gYdzgcQtM0WJaF0WiEdruNzc1NvP3228wC0OcuzkMBBwGVhmGwq5skSSzXPHwoDYIAALiB8+qrr8J1XTz//PNHvj5yiFt0E6rX61yMLA4X30+cpN+ZD/sabndf7pbREUPFAgLHHL7vQ9M0TKdTNBoNDIdDtFotlgwRRb26usq5ATQQrGka6/pJdkTdf+q4k32dZVnMFtAsAUmMaKOgzlIURZxhQCyCoijwPA+2bbM0hz7HMAx2L6JNjfy0SVNLj1N42draGlzX5aHhe3EZooFm4KDzRdeeJAmiKHrfVLMYKhYQeDhB8kVVVRGGIbIsQxzHAMDNFjqMB0GAbrfLdsp5nmM2m2F9fZ0HkM+cOcNzTqqqskSHslgoMybLMpbwzGYzbraQMcMiO0DM6yKb++KLL+Lxxx9Ht9u95TXRek3d/8PZA8ReCLvRBxuiIBAQOOagwS46YMdxjHPnzkFRFOzt7UGWZayvr/PBOAgCaJoGTdN4HoC0q/V6nYfWSJ/v+z4UReHF37IsaJq2lE6p6zpUVYVpmnywns/nLDUqy5IHkLvdLjMHNBNQq9U4fZgKAqLeiZL2PI+zDuI4xunTp5GmKVPniwdwCiYDbu8yRKnJmqZxroJt2/A8j+lwAQEBgbsBrTe0tpCrkOu6sG2bc10o74UGdHu9HgCwy1C9XmcL6EcffRSqqmJ7extxHLPBiaZpCIKAD/vkROQ4DjRNg+/7XCRQAbFYEFD+Cq3pr776KubzOX7mZ37myNeWJAl/H7pWGlam9yVJEmFkDzhEQSAgcIxBB3r6N0kS1uOTFKjb7aLVanExQKE15EJBQ2jUKaeuliRJUFUVk8mEcwjiOEa/34dpmnAch1kGCsOhazJNE77vs06WnII8z0Oj0WDNLDkZ0cZJPtiGYXA3TdM0tsTTdZ03PcuyUK/XWf50u478opMRvU+bdpqmsG2bKdN2uw1JkjCdTt/Xz0UwBAICDx+oiUFSSsdxEMcxBoMBOwGpqoo4jlmK/PbbbzNrEEURer0etre3oWkazp8/jytXrvAaWq/XMZlMWHJJ8wTAQVK853nMBliWhTRNWbq0mNru+z5LOIE7swMAOIOGnuOwPIiaSWLNe7AhCgIBgWMM0qNmWQbXdTEYDPgxkuP0+32srq7C8zy2xMyyDEmSsEUdHd5p4JYgyzJ3zoGDg7pt29ypajQaWF1dRZ7n6HQ6aLfbiKIIRVFgfX0dhmGwtKjVavFsAsmI8jxnZwzyzSYGgQ78xE70+31OyaR8BOpw0fUfhcVCBbhZENB1Wpa19NjKygqm0ynnOggICAi8F6gJQPMBRVFgOBzCtm1ucJDVMjn0zOfzJUaWZD7T6RSPPPIIwjCE4zjo9XqoqgqO43D4V5IksCwLrVYLsiyzO1xVVfjoRz/KTnKmaSLPc2YIiPGlbv97sQNkTEFyIQpAOywXEmFkDz7+f/beNUayszobffatLnvX/dJd3T0903OxB2wwsZ0oXwL+rBh0kAiKQiKcSLEiUJQDP0Kk/IkSydwihfwCEsmEkIiYP0CEIEqk6EvECZBEBhIIhsOJbWyPZ6Yv1VXdda99v9U+P5q1ZldN94zHzNjD9PtIo5mp7qretbv7fd+11nMRBYGAwG0Mio3f29tDLpdDqVTiAzh1i6rVKjRNw3g8RrVa5S6953kYjUZQVZXtQamTT5sTcVxzuRxM0+SNh4RsYRiiUqmw3Zyu67AsC9PpFGtra1hbW+MQtLRwyfM87mKRtSiFqRWLRe5ykesQAA74oSKFNuBKpcJhPIT0v0nzsFgQWJaFXC7Hr0UfL5VK0DQNo9HoFftHiwmBgMDxAhkbuK7LFM7pdIqVlRX27vd9HwDmgsgoOAw4WBd934ckSTh16hSeffZZLC8v8zSWaJqTyYQbOaS3Sn/tdBYAHdzp69i2zRNXAPiv//qv604HSCcGXLFHJXoQ0YVEGNmdD1EQCAjcxrAsC7Ztw/d9bGxscAdKlmWMRiO21LRtmx9vt9t86B4Oh1wQTKdTDg2jsTdwcECmHALDMObG1eTekyQJarUaJElir+xSqYRGo8GpwqPRCMDBZmhZFgqFApaWlmCaJouDqRNFB/R0Z4tEd2mbUOBA0yDLMizLAoC5g/hhOgLaGF3XhWEYV00QSAtBIj0BAQGBa2E6nbKzGDm5dLtdGIaBer0O0zRx8eJFhGHIHfUkSTCZTJhCRIYGRLMkSufp06ext7fHOgAyYLBtm4sQ0lalQxdp7SoUCgDApg6U0A4Azz77LPr9/pHTAXIPSluJUq4MgbRfogFy50MUBAICtymoQ5QkCYvWSGBLUwI67NN4eTAYYDgcYjQaIY5jmKbJ9qKe58F1Xe7a0+aSyWSYXtNsNvkwTV138v7P5/MIggCj0QjNZpMpSJlMhjUNdHCfTCZYWlpCLpfjzYtSiikFk2xGqTNFHX3SFZBuQJIkFAoFnnAAuGpzSjsN0f0AwNZ9ZNsKHBQP5OZhWdYrEhiLCYGAwPEBNSOAK2m+k8kE6+vriOOYE4kpRJJEvWSK4HkeWzrTgd22bTSbTaYHWZYFwzB4vSb6EDVJiH5J6zh17tPUHtJsEb75zW/i3LlzR04HXNcFAKYDUcZB+jU9zxPuQscEoiAQELhNEccxHMfhcC1JkjCZTAAcLNxpsSyF5gwGA4RhiG63y+I04IpVHjkIDQYDNJtNPvjTZlWtVlkMnA4B03Udqqqi1+vBMAx2CSKPagriAcACYnI+oi7+ZDLhwzhtNDTV8H2fbVFlWYamaSyUowIhn8/z+1/EotMQ3TcqKCiPgED3U9d1jMfj2yJ6XkBA4PYGBYLZtg1N09BsNjEej+dSiKn5QdNVms6S5os67plMBoZh8BSXnINo3aVmDmkWSORLBhN0cKd1z7IsDqcEDqYD+/v7eOtb33rk+7Ftm9dyAHP5NgC4sSLoQscDoiAQELhNQUFk6QAyGhMT55MOzaQRIGeLcrmM8XiMKIq4uw4chIGNx2MEQYCVlRU4jgNJkniDU1WVO1FkO+d5HiqVCsbjMbtkkEsRHcRnsxkLknd3dxFFEZaXlyHLMhzHQb1ex2Aw4OwDWZa5AADAXFmaWACYKwiAg+A06qYtIj0hIFGeruvcyU9PCOj+BUHAQuhXQh0SEwIBgeMFMmsgNzZN0zAcDpHL5VAoFOA4DhtBkK8/TWepmCC3t1qtBtd1+XAfxzGq1SpPCIgiFAQB8vk8d+3JIpSEvjRpJX0W4Zvf/CbuvvvuI6cDh00DFulCwl3oeEEUBAICtynSugBFURAEAfP8iVJD9nfT6RTdbhe9Xg+6rrN93XA45OcqioJSqYTNzU12AEqHnum6ztQj4vCTsJgO+pVKhTMG4jjGcDjkwzilGVM4GYXi7O7uziUg03siz+4gCPjr+r5/VUFAHTDqqE2nUy4SDtMQ0NQjm81yQbA4IaDJBwAWLd8IdUhMFAQEjh/CMOQ1k9LXbdtmwwf6OBUOpVKJ7aFJe6DrOq+xtm1DVVX0+33U63Vks1kOfSTdQJIkaDabnAlDltI0uU0XH6THounAQw89dOR7oYR5eg7pHog+JOhCxw+iIBAQuE1B3tAUS08C40ajwemYlGQ5HA6xs7PDHfXpdMo2ddRRqlQqbG1XqVQwnU55vE2FBnWo1tbWUC6XOYOArE+r1SoLmn3f542MKEW1Wg2qqmJ1dZWLFqIQUYefDuJUpJArEgn2aDy9OCGQJInF0jTxIKQnBI7j8Hg9PSFYLAiI45vNZjl34UYO+qJrJiBwvEDdfKIcEq1HVVXU63VubpDeiRorURSxzbGmaWi1Wuh0Oshms+j1elAUBWtra6wZI6Gv4zjQNA3FYpEDy0zTRKlUQhzHnE0AXBEXA8B3vvMd3H333Wi1Woe+D1pDF8XEpLmi9woIutBxgigIBARuQ6THuVQQUPc/iiLs7+9jMpmgXC5jf38fnU4HsiyjXq9DkiS0220kSYIkSTAcDpHNZrmzT6m9pmlC0zTs7e0hiiKUSiXeEGRZ5hF4sVjEdDrlyYMkSfA8D/1+n6cOJHCjw365XAaAua69ruucsknvMT3qpukB0YjIYSMdSkbXRZarBJoQ0H2jDXuxIEgXF5qm8VSgVCpxIfVyIETFAgLHC0T3oSZFFEXwPA+apjGtk6ibZP5gWRYcx+HDdZIkMAwDpVKJNVWmaaJarXLDgmiblPFCmgJqzlARQs2M8XiMQqHAvP8LFy6g3W5fczpAdCSaBixmD9DnCLrQ8YIoCAQEbkM4jsOdJ9qE6HBuWRZefPFFtulst9sYDAYolUrsH02bEQWVaZrGVJpKpQJN0zjsa3t7G0tLS0iShA/fNAb3fZ/5qyQ+i6IIo9EIYRhifX2dpxeyLGM6nbL3Px3OiSpEHf4wDOG67hwPVlXVOboQAKZDUWYCgUKAbNvmx2iTpo4auS+lKUMArhIWU9dOkiRUq1W2eBUQEBAArjQ10pNL4KChQTou4vwDB6YKlFFAIYvT6ZQd1SgYUVEUTCYTXhf7/T5yuRwf7MlFDgA7rZG1KHAl6yWO4zntwFNPPYVz584dOR0AroiJCVQg0HskupAIIzteEAWBgMBtiPRiTL7WxNcPggDD4RCZTAYXL15kUSxxSWnToWAy8r0mGzs6sI/HYw7nOnHiBDthBEHAdJ18Po9ms8mcVwAYjUawbRuGYXDaMIXbjEYjphrRJCCKojmuv67rvEGmhXAkoCakKUPpLpUsyygWi3AcZ85KFAD7cFMBQc8l4XVaWJyeEABXNAovhzokJgQCAscD1ERITx3DMJxbn5MkQbfbhaqqmE6nfOCnRg5RM0ulEjub0TQhm83yulUul3kNjqIIhmHwhLNYLPK6mnacIxc64Mp04OGHHz7y/RBtc5EulNYKpG2bBY4PREEgIHCbYTabMU2IxGPUkaccAOKpklMOuQcRH5VSL6nzHscxc14pDGw4HAIA1tbW2LufLEdphFyv1+e4qJQ6TLZ5FKRD10ZpyTSBoA6Wpmm8yRSLRcRxjNFohGw2y102ovqk78MiZYhA9nq0KZLYjr5WuiAgHGY9SveXUCqV5jZbAQGB4w1qdpDlJ1k4UzYArZVkEz2bzZDJZKDrOlM0ac01DAOTyYRpQCQQtm0bZ8+eRb/fZ91BHMeo1WpcFJCZBDVaTNOco3ECL386QJot4IqbnQgjE7ihguCxxx7Dv/zLv8xtqgICAjcX9PtFIlvTNJl7GoYhLl++zDx7ovRUKhXouo79/X2286SuE3WtDMOA67rcsXIcB9VqFZVKhYsAek2i0tAEgAqMwWCAarWKJElYmEtit+FwCM/z0Gw2oWkabNvmRGLivAJX+PuTyYSnDkQpooKA6Es0IUhThgjFYpETQIH5ET7ZpqY7+YvWo4qisAMTgShVad7vYRATAgGBOx8kviXBLq2LwME6TfRH27axs7ODYrGIQqHAazilofu+z8YHnueh1Wqh2+1iOp1ClmWsrKywhorWedIp0Bqo6zqy2Swsy2Kzhlarxevry5kO0NdPH/7TNEtAuAsdZ9xQQfD1r38dv/zLv4zV1VV84AMfwH/+53/equsSEDi2oE0AOPDn9zwPmUwGxWIRw+GQu/DU+SfqjK7rKJVKsG0bvV6PD7+u66JarXJIzmQywd7eHm9e2WyWD9/U6aKigqxDKZlT0zRUKhX4vs+hOZIkIZ/PM6WJ3Ix83+egG3JDooM+WZkS73aRLkSd/cMoQwRKGyb6URiG/F7otWgyAlw9IaDXSG/yANhSkChWAgICxxO2bUNRFKbOEP2R1lKainY6HViWhVKpxJbGcRyj0+lgc3MTURRBURS2IqU1mBouhUIB/X6f11vSB5C1NCUcl0ol+L6PS5cuQZIkrK6u8n7x7W9/G2fPnr3mdICmxmnnoMXsARJEC7rQ8cMNFQTtdhtf/epX8c53vhOf//zn8eY3vxlnz57FBz/4QTz33HO36hoFBI4V0h316XTKi7ckSRiPx+zgY1kWNE1DHMewLAs7OzssLN7f3+dEy8lkglOnTiGbzWI6nfJBWlVV5qXSiJr8+GVZ5oNxHMcYj8cwDIMDyCi8jA7yuq6zjoEExZRATKJhOoxTGM/q6ipc1+Uuf3qTSk9JDqMMEUqlEqIo4tAz2oxpgkL3Dbh6QgBcCShbBG3MR7kOiQmBgMCdjSRJYNs2Twdo2kl0ziAIcOnSJV5nPc9DrVZjQ4fRaIR+vz/X1KBMmcFgwJNSMopoNBpMDwrDEPl8nicFAPhzwzDE9vY2Fwiz2QydTgdbW1v4xV/8xWu+J8orIFBTKT0NIF2DWN+OH26oIJAkCW9961vx2c9+Ft1uF1/+8pfx4IMP4hOf+ATe8IY34IEHHsDHP/5xtNvtW3W9AgJ3PKibNBqN2P0BAIeH5XI5Dimjg3Yul0O73eZpgm3bc97XtElJkoRTp06xOK5arSKbzfJhmcbb+XwemUyGqUDE2adNjDY4StEkoR1teBRqNh6P5547m81YO0A2p5ScvKgfoA30KMoQcCWbYG9vjzMbqKCiDe1aEwJyGloUEaepQ57nXfV1RTCZgMCdDcdxAGDusEyaAQDodrswTROFQgHdbhdhGKLfbgMF/wAAIABJREFU72NtbQ1hGGJra4tpRZTsTmua4ziI45iDxQzDQLFYRLVaBXBANTIMgw0egIP1q1QqsY5M0zTOI/jOd76DkydP4uTJk0e+H9IrLB7+09kDgi50vPGKRcWZTAbvete78KUvfQl7e3t48sknsby8jD/+4z/GqVOn8Mgjj9zM6xQQODagjjeF20ynUxQKBe4KkX8/HfCDIIBlWcjlcphMJnAcB6PRCFEUcb7A5uYme1rTRkO+1iSQi+MYtm3D8zxUKhVO0sxkMqhUKiz6pQ480YLSAub0AZu6aGkrPSo6CoUCp3YStSjd1ScKE3D9bjyJ8Oh51MGj56cnBNTlI6QDyhZBE5LJZHIodUh00AQE7lxYlsXrVBRF8H2fQx49z0MQBKhUKhiNRjBNE57nYWtrC/v7+5xrkiQJRqMRrznFYnHusUKhgCiKcOrUKQAH+S1EcywWi0xRIr0TNVwsy+KJ6s7ODra3t6+pHQCuFhNTANphdCERRnY8cVNchgqFAn77t38bf/EXf4Hf/d3fRZIk+Pd///eb8dICAscO0+kU3W6X+e2O40CSJGxvb8N1XWQyGWiaxofoIAiwubnJNnaj0Qi9Xo95/pRXUKlUOGNgNpshm83C933u+hN1hzpWJKqtVqvsxkOTBHLOICEvuVIYhgHTNPnwTaBMBRLEGYbBxQhNPNKH7nRBsEgZWjyIu66LWq3GbhnkC35YQQDMZxHQe1/UERCIOpR2HUqHmwkICNx5IJMFOiz3+30Mh0M4jsMdf6JG7uzs8HR0d3cXzz//PE6fPs0NEmDeunQwGLBeYDabYXV1FYqisJ6A1i96fXoeNS4Mw8BwOOTPffrpp7GxsXHN6QAVNItWo5IkXaUnSNs2Cxwv/MTf9Xa7jU984hP42Z/9Wbz+9a/H5z73OTz66KP4x3/8x5txfQICxwrj8RjdbpeTKweDAXfu4zjGcDiEYRjclafOvmmabClqWRaiKGKbPBIhN5tN5sUTzYjcfcibmg7ftClR8jEVIvSxdNAZieByuRyKxSJb7VFBkiQJVFWFLMv8nDS1SFEUtuMjLE4IjtqgqMtVq9WQzWY5V+GwgoD8vBd1BIt5BGlQYBlpHQQEBO58WJbFAYiEdNgj6ZV2d3fZ/jOTyaDX63HAF9E2acpApg1bW1s8Wa3Vamg2m/B9H81mk9cnTdPYICGtKSMr0vF4jFwuh4sXL2J3dxf/+3//72u+H9or0lNYyh5INzZEGNnxhvpKnjQcDvHlL38ZX/jCF/DUU09BkiS87W1vw+c+9zm8613vYhHOy4VlWfjUpz6Fp59+Gvl8Ho8++ije8Y53HPq5v/IrvzIneLnnnnvwkY98hD/+T//0T/jyl78M13Xx4IMP4vd+7/fmRmICArcroijC1tYW8vk86vU6fvCDH8A0TTQaDfR6PeRyOT7oDwYD7rRToBgVABcvXkQul4Ou6+ziQ4duStAk/ioFdpH9nSzLzHctlUpsRUdWdUEQzCUf0990LWk3oSiK5mxEabJAVqVkwxcEAZrNJiaTCW+UlM5Mzz2qG08TDeK8ku3qYQUBcLSO4Fq5AyTmG4/HnOi8+LoCAgJ3Bsh2uVarXfU4NTnIoGFra4u77NlsFo1GA6VSCfv7+5hOp2zyQEUETXOz2Sx0XcfZs2d5SlupVNhRKJfLcWMjjmNkMhmYpolMJoNms4nd3V3k83l861vfwsrKCs6cOXPk+6EE91KpxI+REDr9mO/7wl3omOOGCoIvfOEL+OIXv4ivfvWrCMMQP//zP49PfvKT+M3f/E00m81XfBGf+cxnEMcxnnzySXQ6HXzoQx/CiRMncN999x36+Z/85Cdx4sSJqx7//ve/j7/7u7/Dn/zJn6DVauGTn/wkPvOZz+AP/uAPXvG1CQi8GpjNZtje3kYcx1hfX0cmk8F4PObgrr29PRiGgXK5jMFggN3dXdRqNXiex9xQOhz3ej2sr68jCALU63UYhoF+v4/19XWm9FBXXZZlqKqKXq/HjkLZbBb1eh3j8ZhdfmjcTNQgstDLZrPY29vjlF+aWFiWxa9NlqA0laBCgaYNpCUga9Nms8kTCro3ixMCOow7jsOiOEpgtm2bO3KLOMppiChRVAAtolAowPM8TCYTTlYWEBC480DrKa0/AHhKSvx+VVWxubmJ8XiMRqMBSZLwpje9aS4A0jRNnDx5EsPhkB8nSiNNBoh2WalUUCgU5ihCVAhQM4WaLs1mk80OOp0OHnjggblrXQQ1hdJCYdJ8pScGZEgh6ELHFzccTHbhwgU8/vjjuHDhAr797W/jAx/4wE9UDHieh29+85t47LHHuGJ+5JFH8K//+q83/Fpf//rX8da3vhVnzpyBruv4rd/6LTz11FPXDBgSEHitMEtm8GY+3NjFTm8HPbOPXCUHLadha7iFSX6KScPCjtTBWBsjaUkw6xb+J3gW+/o+ZoUZLMOGuWTDa3kIN0JckjtIXpdgUJ4gey6L5s800bxrCU7eR8fuYBSPkG/lEeUS2KoDXw8QahHM2ESQBHAUF7laHmpegzkz4ScBRtYIoRQCGcAODjYSWZHhJwEUTcFwOGQRsizLvPGEYXhAGVISTB2TRbq0eVFBQMUBcWpJ40Cfd60JQRRF/PVkWWbRXtqd6XoTApomHKUjoNeoVCrwPI/dR8SEQEDgzkGURJj6U4ydCXTjCqsgnsUYhEPshl305AHcEx6eqTyPb0ffhV0JMVWmqN3TRHuti6gQw5d97GIPmdMZaCUNQSlA+f+qoflbq/De4EGtqdi4dwMb953Gxd5F9KY95AsHrm5DaYjc63QounKwfmZVSBkJQRhwQGSj2UAohbi8fRlLK0tY21i75vtyHAe6rs+tV4tiYnpMuAsdb9zQhOC///u/8cADD9zUCyCL0rQg5syZM/iHf/iHI5/z+OOPI45j3HXXXXjPe97Dz93c3MSDDz7In3fq1CnMZjPs7u7i9OnTN/W6BQR+EoRJiBfdl3DJ38SmtQ3LNZEYMxgw4IxcXMQljM+nPPATANKP/wDAL8TwZhb6Sir/QwJixMihghiAjhqceAYnngIh8IK0iSQCFElG/BDQSYboZ6e4LO/C+iUblh4ip2exlwwxkk14ZQ9PJ/8fasMaVEWFOlHQrXaxIq2iW9iHGZn4n+BZ7I52Ua1WOYBM07SDCULgY5QdY5o14fsBzhQ2UIpKHH4GYC5ETJZlDu0BwBvWtQoCmgwAVwTCxWKRk5npccJhEwLgSh7BtTZETdNQKBSOzCYQEBD46cQwGuGH9jN4fvwCspKGNwVvxOvU8whmIf5p+H/wbe+7GC2NES/FqTZqDPySjGHg4N/y3zx46CEAPgAFyLythAvJDjS5iDepP8tfS4kVXAza6Oj/gigXohQWIMca/vXSv+E7938fzftWcSHcQulSGbMTCbL369jL91DNVJHICeJ1AK+T0WuO8KZfLOAl7RIqfhVnsqehSPOTgjAM2Q2JEATBXCOFHqMMGYHjixsqCB544AH89V//NZ544glcunQJq6urePTRR/HBD35wzkP8RnCY561hGDzmWsTHPvYxnD9/HmEY4u///u/xoQ99CH/5l38JXdfhed6cip6oCIuv1e/30e/3AQC9Xo8FhTc7lZRSWa8VrPRqgd7b7ZC8Ku4L0PG72PF30Xf6GPlDWLIFBSosONib7cOEdeXwD8z/GwBk5ZrzPSX9D/ngTyIB0IB4Njt4PAJCJUIiJUADCDMBckEWnupjB7vIIYvsLMQ0slBGCeWkBE/x8UJ0ARN1goKjY2SP0Ja6OF07zbx/CiIbBkMM4xFyUQ6SImOcm6LoFblLT3Z+RCsCgFwuB8uy0O12OXQs/T2iqUIcx+wCsvi9KxaL8H2fHY3I/g84KCAoRXRxcuC67nXpQIZhwLIsAFd+jl9L3Am/S0RbEOvvqwNxX+YRJRFecF5Ex9tFHEZIdA2XvW3kJQPb/jaecX8EJ3YQy+nJ4gwxAAUSQEefGAfrdBZABF57pcXFWwHsvAPMEkCW4BcC7GpdPD37f5EkwMyewa+EeObUi7jXuhvROISdcTHAEKqsQakqCKYB9J8zEJeBrJPDtreLklRCU2vMfSnTNKFpGlM/gQNKVDoXJv0YcPj3QvzMHI477b7cUEHw5JNP4v3vfz/uvvtuvOMd78ClS5fwp3/6pxiNRnjiiSde0QXkcrmrDuzE4TsMb3jDGwAcbCKPPfYYvvGNb+C5557Dgw8+iFwux+N8guM4V73WV77yFfzN3/wN/5/8e7vd7it6Dz9N2N/ff60v4bbEq31fOnEH03iCkT1ELMeIkhgJJAAzxJkISXwjwVcHW1OMeOGRH/9LUoDZjx9YfNkEmMUzyKoESToQ+UaIoEUa/MCDZEmY5WPYvo2ZFyMIfQwmAwRWgHgUorPZxcSdIIojIMGcw9DEnsL1PPhTH9VaFZPpGOWwiEysYTgccvIy/ZvgeR6effZZqKoKXdf540QBchyH3Ypms9nc7zxtgKRjWOTExnGMXq/Hgj2C7/sYj8dX0YkOA2kger3ea74J3I640d+l9773vQDE+nuc8VreFz8J0Iv6MEMT8IFIDWEHNjruLjpRF0HsI4zDg8P+j5eSeHEhjQ+oRYqs4MfLeKorczjieAY5ljFTElgwD9Ye/8fPTQBfCZBFDrNohr2dDnKVDPRcHkpWg1EsYKnRhOPYcM0cpImEjtVFLF+ZfpKerFwuzwVU9no9TjwmkIbsWrTJ2w3id+lw/CT35YYKgieeeALvfve78cUvfpE32Y997GP46Ec/ij//8z8/UpB3LaytHfDftre3sb6+DgC4dOkSB3VcD+kN+dSpU7h06RIf8Dc3NyHLMlZXV+ee8+u//uv8Ob1eD//8z/8MAGi1Wjd8/dfCorPKa4nZbIb9/X0sLS295qIhcV+AbJTFdGJhkAzhSC4yURYSEsixhhzysBP36qkAcIU6RP8GDg78CaBICuIkhiIBV3ajg4+lpwmyIgMyMJNnkGRAVhRkowxkTYacU5BXNSSSBE2VAR3ISnlIMwme4qNcKqEiVaAuq5DKCdzYxUnjBO57431zB2zHcaDqGuJZgp39HZRWytAnOu6t3YOcmsNoNEKtVkOlUsHKysrcW/Q8D7VaDSsrKzzlK5fL/PPiui6m0ymWl5evuj30O+w4DizLwtLS0tzHaTKwtLQ0t15RnsLy8vJ1fyZnsxlUVRW/Sws46nfpegf9J598Eu9973vF+vsqQdyXhWtIZnA8F5PxFD25h0wug2qmirv1u1AP67g42EQvGAJyNLf+KsmPD/8JAMwO1lhak0mrmwAJFiiPP16rZ9IMSkZBLpvDWf0cLk224OV8aFkVEoDKqAh9OY8zP3MWWi6DE8U1VCtV9IoDPPKOR5Df0DELYmiahmalgTP6BgrKFYdH27ahKMrcOknN11arxddEdKFWq3VNe2fxM3M1flruy8ttttzQCf7FF1/En/3Zn819sfe///14/PHHcfnyZZw7d+5GXg7AwYTgzW9+Mz7/+c/j93//97G3t4evfe1r+MM//MOrPndrawthGGJjYwNRFOErX/kKgiDA+fPnAQCPPPIIPvGJT+Dhhx/G8vIyPv/5z+Mtb3nLVal7jUYDjcbBaK1UKs1xmG8myD+drB1vB9D1vJYQ9wWoZ+q4WzmLul7FNDbhzBy4sYvQDlGvN/DN/W/jknoZPkKoiorcLAvICayZA0iAHAOGq8MMHKAEQALCWYhETqBoGSABQseHFmWhxznMnBiRF8HI6agWa5CTA4GwoirQcwbqsypq1Rr2rH3oSh5No4nt0Q70KI+yUkahYMAMLYRjH+db55HNZXHZ3MSoO8Td63fNuVUkSQLbtrFUaUKPdJibE6xLa4hnMfLagXsH5RfQz8DizwF9L8jdKP3zQs+/1veLPv+wzznsY2SDmv7a14P4XTocN3pfqCsp1t9XB+K+LHxtyDiv3wXZldCeddAsNrCaWUFDrWMl28IsivHP/a9iII0wjEZwci5mygwKFEghUJ2UMNQGUPIaMImwkWxgV+0iCiLoXhZdyURmPQNJkyFHQHVWx33yPdja30FraQmvz78eS1EDne/u4PnTF2BHLlamyzi1vYpGoY7MREWpX0B5qYS6VkMhKaAf7ePnyj+H/qCPGRK8sfAGlJR5uqPruigUCnP3ldbTxeloPp+/ZkNX/MwcjjvtvtxQQWBZ1pw4BTiI2gbwEwnt3ve+9+GJJ57Ae97zHnYHetOb3gQAePTRR/HhD38Y9957L8bjMT796U+j3+8jk8ng3Llz+OhHP8q5B/fffz9+4zd+Ax/96EfhOA4efPBBvO9973vF1yUgcCuRDbJ4ffl1GAwG6E16yGQyyJayaFaa6H9rD4X2QbjN2bNnEQQBdF3HCy+8wNaX2WwW29vbAA4K6xdeeAH5fB6ttSU4joMXXriM+++/H2fPnsVLL72E6XSKExst3HXXXZhMJtA0DVEUYXl5GbIs42T5JLpWF3EcYyW7Ar/joBk10Ww2oSc6bNjYsXewUmxBURT0JvsY9mdY+dn5Dj9x7A3DgOqrqIc1VMMKpsmUD/RpLIqGaZGlhOZ8Pj/Hi0zzYW8W0qnI17LwExAQuPOgSiqW5SU0cnU09MaVMENIOKuewS9YP4cgCPDiiy+i3W7ja1/7Gn7hF34Bd911F3Z2dlCc5SHLMsbjMWqnS/B2Lfi+j0qlgh/8P9+D7/vodDp4+9vfjt/8v991YKDQNfC/Nv4Xqvkqnn76aZTcAn7T/3X827/9G8rlMgIEMDwd2UEG6vLBpFeWZeTDHOpBDeeKZ6EOFCiaclUxQEGTaSeh2WwGz/O4GUrwPO+Gs6ME7kzcMMfn+eefn6skiXP7ox/96KrPfbmORIVCAX/0R3906Me+9KUv8b/vu+8+fPrTn77ma73zne/EO9/5zpf1dQUEXitQ6qTv++j1elBVFc1mE0EQoNvtYjKZoFarwXVd5sUDV0RMnufBNE0AB7+DVJiTvZzjOByI43keFEVBJpPhxEryxKawMV3XWXjrui4ndWazWYzHY/a/brfbzNEnN6Bqtcrvi7j7lUqFN1VKVU53U9JCX/o7/RqqqsK2bdTr9asKAHrda7kPSZJ01eteCzSluB2EagICAq8+Dss7AcBmCVEUwfd9ziMADlgLuVwO+Xwe1WoVP/rRjyDLMgaDAa97lBGTJAmvqe12m0PLOp0Oer0elpeXsbq6yk4/FPhI5gu0NlHwIgVRpqezBMpnWaRx0j5AoH1I2I0KAK+gIHjPe94zt9HShvzYY49dtVG/HIGegMBxhG3bsCxrLhFYURS4rosLFy5winCSJLAsiw/dZJtp2zYcx8Hp06eRz+cxmUyQyWTYscfzPJTLZYzHY2xsbKBQKMB1Xfi+jziOUSwW0W63sbKygsFggGazifF4DNu2kSQJqtUqHMfB/v4+dF3H0tISgiDgoBzKC1gcP1Pxkt5gMpkMbNvmQiQdOAZcXRAQJ9O2bdYYpXGruvmiIBAQOL5IWyCnEUURFEWB53mYzWawLAtxHKPf76PVasEwDCRJgpMnT+LSpUu8ztJ0k9LbKQgsSRJMJhPcc889GI/HME0TiqKg1WqhWCxCURQ2ZqAzVLogcByHiwB63TTiOIbruqjX63OPH5Y9IMLIBNK4oYLgG9/4xq26DgGBY4PZbIbRaIRMJoNGo4Hd3V2myFy8eBGTyQRxHGN/fx9BEEDTNN4ggIMNodPpoF6vY319Hd1uF6PRCKVSCZqmYTqdQlVVfs76+jr29/eRy+WQyWRgWRZKpRJvVDRBeOGFF3Dy5EnkcjkYhgHf99Fut/GWt7wFtVoNFy9eRLVaPXAQmkwQhuGcEDQMQziOMzeSTpIEmqYhCAKEYcgFQdqy87AJAYAjcwGo8XCzCwIqwAQEBI4fjpoQUJpwv9+HJEmYTCaQJAnT6RQ/8zM/g8lkgo2NDUiShGw2i06nA13XoWkaXNdFJpPhA306UV5RFLZGzufzaDabnEyftlamv+n6oihiXWQURVddM6UQp7WTYRgiDMO5aS5wRWcgIADcYEHw8MMP45lnnsFnPvMZziF497vfjbe97W236voEBO44mKbJybx7e3vo9Xo4ceIEXnrpJezs7MAwDJimiel0yp0oSvi1LAuTyQRRFKHRaHARQXoAz/MQBAEMw4DjOKjVaiiVSrBtG4VCAaVSCa7rQlVVrK2tYTwew/M87O7uIpPJ4NSpU3BdF57nod1uQ1EUrK+vs71no3HAr+12u1BVFYVCgYO+ptMp8vn8VV22JEmgqirCMORNTZZlPvgfNiGgTe+wQzptgNc7vN/o4f5WaBMEBAR+OnBUQeD7PmzbxnA4RKFQgGmafMCnw7thGNjd3UWSJBgMBqhWq1haWsKFCxfgui7CMOSMltFoBE3TMB6Psby8jK2tLTQaDaZ9ZjIZ+L4PTdPgeR5PKIhmSR8DrqytaTiOc9UhnwqTRWe1OI5FGJkA44bmRE899RQefPBBfOpTn8J3vvMd/O3f/i3e/va346/+6q9u1fUJCNxRiKIIjuPAMAzmudMo+tKlS+h2u5AkCb3egciYDqhxHMM0TQyHQ6iqimq1inw+j36/D8dxEEURTNNEEAQsEs7lcjh//jx3uCqVCgzDQBAEsCwLjUYDpmkyJ/bEiROYzWYol8vY3t5GHMdoNptQFAW2bR8I2vJ5zg/QdZ39rKkQWQz2ok2MDva0MaYphemDOwWJkbXnUbje4f2VOD6IgkBA4HgivU6lQam+ALg5EwQBfN9nmmc+n4fneej1euj3+9zxP3/+PNMlaa3L5/PY39+HLMswDIOLkHq9Ppe4HscxdF1nehJRjWgtp4KA6JUE2ksWJ6uO41xFF6IiQZgoCBBuqCD4yEc+gte//vW4fPky9vb2MBgM8Ku/+qt4/PHHb9X1CQjcUTBN88BN6Mfdb+BgMwqCAIPBALPZDKZp8iLv+z50Xcd4PEa73WZq0NLSEnzfZ89+z/M49Zs2DNqoLl++DEmS0Gg0UK1WeUOzLAuKoiCXy/F10WGfdAbZbJapQLlcDrIss0AujmMOs5lOpweuQguHeDpgy7LMm6MkSTwxWBT/xnGMIAggy/I1C4IbFQ0v4rDnioJAQOB4gg7siwWB7/u8LoRhiOFwyI2NQqEAy7KYBnT58mUMh0M0Gg2USiUYhoFSqcQ+/7IsQ9M0nvhWKhWMRiNUq1VkMhnkcjk2N4iiiNdvKgioUHBdlycTi1MNCnVNP+Z5HpIkuWoS4LquEBMLzOGGCoIf/vCH+OAHP8gBYqVSCR//+McxHA7Z/lBAQOBwBEEA13VRKpWuOpA6joPJZIIkSViI1ul0UCgUWFhsmibCMEStVkOhUMBoNOK/8/k81tbWePOq1+tQVRWmaWI2m6FSqbAgDrgSqFKpVNgymKhC4/EYJ0+e5HEy8VzJtWI0GqHRaLBdnWmaXBwsghKByWGDUoVpQ6PPIURRxNqBtBPRIl7p4f1akwNREAgIHE+kGxdp0GGa/k30n9lsxtRGwzCwv7/P04JSqYRCocAUynw+z05F1PHf2NhgLUG5XOYcgHQ+C2m8kiRh4S9pAXK5HF8zNU7IBckwjLn34LouN3MIgi4kcBhuqCDo9/s4ceLE3GNUHPT7/Zt3VQICdyBM00Q+n5/r7hBFZmtri2k89XodFy9ehG3bAMCbSLFYhO/7zDF1XZc5pfV6Hc1mE2EYwrZtRFEEy7KQy+XYFq/dbmNzcxPAQX5IFEWYTqdIkgSGYWA8HmMymcAwDERRhDiOuaufzWYhSRJ/3Xq9jiAIuGBY3HAI5DhGX4NG8Kqq8ma3OCGg7lhaeLyI6zkCvZIJgnAZEhA4ngjDkK08CXEcIwxDFu66rstrBJk9EAVIURTU63XU63VIkgRN09But/n/lJBu2zaWlpaQyWRgmiYMw4Cu63N0ISoAVFXlNYzc3eiaSDMGXCliyH0obUNKjnOCLiTwcnDDXlO3SxqbgMBPE8IwhO/73EUfDAYYjUbY39/HeDzG9773PTSbTWxsbKDT6WA0GqFWq+HChQtQVRW1Wg37+/soFovY3d3FeDw+CAfr9dBsNuH7PovSAGBvbw9xHOPcuXNoNBoIgmDO2YjEbZZl8fMty+JRNnWiwjDkDhPlGwAH2SHZbJYFcofZ9QHznTeiSXmex0XRYkHgui4AcAfsqAP6rXAEEhMCAYHjCdu2D7XkJIrkYDBg7j9ZigLA7u4uDMOAYRjo9XooFovcuPE8j3NUoiji9XN9fZ3XzUKhAE3T2BGI1rzFayE6p+/7XIykJwRJkrA2LQ0qYtKOQ/TexHRAYBE3XBD80i/9EkqlEv8hG6uHHnpo7vH04URA4LiDuuzUvaHNpt/vs23o+fPnefMhF4okSVAqlVhUXC6X0ev12C40SRLUajXYto1arcZi3OFwiEqlgqWlJfT7ffT7fVQqFZTLZaiqiul0isFgwGNpGh8Xi0U+bJNQmUbZFDpG04JSqcRWdtStWgRNGhRF4TG4bdtHTggoEI02uZtNGboWhO2ogMDxA/H0Fw/T5PDT7/e5MUITWRIY12o1GIaBwWDA9CByXqOpA60rZLlcLBa5a098fzqwk4MQNViIDkRrIhUEZGVKjm2e5wHAVZqAw7IHaOoh9AMCi7gh29EPf/jDt+o6BATuWMxmM7iuy8UzjY+jKMJ4PL7KscJxHE4xpjyBS5cusVUncVjH4zFOnToFwzA4PdhxHKytrWE6nXJmwP7+Pmq1GhcMcRyj2+2i0WhAVVW4rotGo8GOQq7rIpvNwrZtTKdTFg7TqJpoPVT4ExVoEbZtYzweI5vN8mg6l8vB933uTi0e+m3bRqvVguM415wQvBx6j7AdFRAQuB6oCZH+/U+SBK7rotfrIYoi5HI51oBRA6VQKKBer6PdbqPVasG2bSiKgkJ1ICx/AAAgAElEQVShgEKhgOeeew5BEHAisaqqc3bQ5CRE3X8AbAxB15Fu0lBThjQEJHgGroiJ0wwO0mMtNmdpQivoQgKLEAWBgMAtBm0UdAgmDv1wOMRoNMJsNsPy8jIymcxcmjBtUP1+H6Zpotlsot/vI5vNMvff8zycP38eg8EAu7u7yOVyyGazqNVqaLVaHGBGbhSUJxBFEQqFAobDIYIgwMrKCpaXl7mooAlBJpNBPp/njZC8scMwZPGzpmmsdwAONtPpdArHcTj3gOhB1PlPFxB0cKfwMsMwuOOVDuFJg8bwR+GV2o5SgSKokQICdz6CIEAQBKhWq0yvoU58v9/HeDzmNPc4jlmfRRNSmuaurq7ie9/7HpaWlhBFETRNg67rME2TrUBVVYUsy7BtGxsbGzw5pX2B1j8yaqD1iIoVWr/ptWhfCcMQQRCgUqnMvTdyI0prCujxxamBgADwCihDAgICNwbXdefG0bQRbG5uwnVdnDx5EqdPn4Ysy9jZ2WGuKXXJbdtmWzo6qE8mExaeFQoFOI6D8XiMRqOB2WyG1dVVtFot5PN51Go1DtKhrhEdug3DgG3bWF1dRbFYhCRJ2Nvbg+u6KJfLyGQy7DyUDgojNyTanNKJmoPBgIXHuq5jNptxpgLxWSl1mQoF4KBTR+Ny6nwddej/SW1HDwN9TTElEBA4HvA8jxsOP/rRj9ButwEAw+EQ3W4XhmHwhJMmulQQAAf0m3q9DsdxOJOFdFCFQgG2bSMMQwAHa5brujwdKBaLcw0PopVms1nOREhrsKgJQuseUYboeYcFlC0e/MkZSdCFBA6DKAgEBG4hiF6T7nLPZjNMp1NsbW1hZWUFxWKRE35JvEbPMwwDo9GINxrf92GaJnzfZ6/rXq8H4GDTIFpSs9lEsVjEZDKBoihcWEwmE8xmM2SzWWQyGe4gES1oMpmwDalhGCiXyxgMBrAsC5VKZU4TQPoD0hjQiD1JEjSbTXbGoEkDUaVow6PRe7ogyOfzc24fRxUEPym956gcAvr+CAgI3PmgaSBNXCkz4Pnnn0cQBGg0GtB1nelClDIPAIqicAODrKR932faZRiGyGQyGI/Hc3kBKysrbA9KlFDKF6DOP1GEqAFDayKtl0SZJPejRf0DTZkP0xQIupDAURAFgYDALQRtEOnuzWw2w0svvYQ4jrG+vs42dXTYp055sViEqqrwPA+2bXNWgaqqV00HaOGXZRm6rmN5eRlJknAQmOd5HC7m+z5qtRoymQwymQzK5TLCMMTe3h5msxlqtRrb0tVqNezt7XGyZhAETB2ifAHg4ODe7XbZxSi94VABAlzZgImTSxuc7/sIw5A7WrQZXstl6OUkFd/IFIGeIwoCAYHjA7JSJueedruNra0tnDx5Euvr63PNGGqWUF4AcDAJWFtb42lqpVKZy2ah7j5pxCRJ4vU6PR0g6iWtrUEQIJvNzlGGoiiCoijcMKLk90Va5WHZA/S4mA4IHAVREAgI3EL4vn/VYk3OQtTNn06nnCgMgD37yY1HkiT0+33Yts2H61wuh0KhAF3X2f2CPq/ZbPLzgyCYc9Gg5GFd1xGGIW9gnU4HYRhiaWkJtVqNw85KpRKGwyEf8IkWRJ18SlYm96FqtXoV/54mBPTeyFaPaEykhaBCh6Cq6k2nDF1PGyCchgQEjg9o/SL7T9d18cMf/hCVSgXnz5/niSiltdNEFACvz2fPnmVbZ2pkWJZ11UGd0trJYIJyXGh6m8/nOZQxk8kgCAI2m6CJwWw24+YRNVJ0XZ9b10gQfRRdSNiNChwFURAICNxCLBYEQRDg4sWLyOVyaLVaqFQq6Ha72N/f5w0CAI+bKd6eYu/JFajVarHtJz0WhiGy2SyWlpZgWRZUVcVoNGINgqIoLELLZrMcXqZpGntYK4rCG5+iKEz1Aa54ZJNFqSRJGAwGsG0by8vLh240NAGgjY0KAupSkYCZxuXpyQLxdg9DWstwMyGchgQEjg8oub1QKGAwGGB7exuSJOHcuXPIZrPwPA+KomBvb4/d3dJUyDNnzqBYLHJGDNFDaYqqqiprwQCwZTOtlZlMBo7j8LpDU1uiYxJIGEwOQ0EQcCbMYfkJh2UP0BRkUWsgIEAQBYGAwC0CbSBpusxoNOKOOW0Mtm3zhhSGIRcA2WwWzzzzDKdgUneKhGekGcjn8xiNRshmsyiXy9A0bW7jWFlZgWEYkGUZxWIRlUqFcw3G4zEMw0Cz2QQAdiCq1WoAwNcGgIsOStKk99JoNDjdePGATroBKkaoICBqk+M4nKewuFkRt/YwXI8S9EooQ4AoCAQEjhPoAE/W0HEco9lscsODDte9Xo/pn2TBXC6Xce+997IRBAWSJUnCayYAdowj6igd4Kk4sG0bhmFwV1+WZZ4W0HpIkweiAgVBANM0kcvlrtIDEIV0cRoqwsgErgdREAgI3CJQjgDxOCeTCdNkHMdBo9Hgw/B4PMbW1hbG4zEfuk3TnAuvWV5e5oLAsixkMhlUq1U+xJfLZeRyOd68giBAvV4HcMXZqFgsQtd1TKdTmKaJbDaL1dVV5PN5DuFRFIWnD3SdkiRhMpnw+Hw6nUJVVVQqFaiqCk3TuGuWBjlhUFGQ7uoXi0U4jsO5BySeI1xvQgDcfL6/KAgEBI4PyCI0CALs7OxgMBigUCiw1orWu263y3x9skS+6667eC3MZDKwbRvtdnuOYknr32w244KgUqnw5JgsmYl+SQd5mhAQNZJoQ0T5oSTkUqk0934ov2ZRJ0B6A6EfELgWREEgIHCLQKIwACzqNQwD/X4fmqZhbW0N+/v70DQNP/jBD2BZFm8Aqqqi1WrxQbparSIMQzSbTcRxjCAIcOrUKebeq6qKYrHInXuKty+Xy9zZVxSFJwW9Xg+apnHSJm1glmVhdXUVALgbVqlUoGkaTNPEdDqFZVlzKeUAuAN2WEFAXS7KIKCuP00VJpMJj9kXC4LrTQhEQSAgIPBKQA0MolwCQKPR4CRgsn6OomguKJE+vr6+jv39fQAH0+BSqYTJZMINGUqmJ1tmMmagtS6Xy3EoGtmfUvOErJep8ZHWcFGxMJvNrnIXIuplWosFYG6fEBA4CqIgEBC4BSALO+p8j8djFItF9Ho9mKbJ4tt2u41ut4tut4t8Po9utwvHcaCqKsIwhO/7qFQqPM6uVqtIkgTlchmKoqDX67FLUalU4o4+8UsrlQosy0IURTyOps+vVqtzKZZkJdpsNpnCk8/nefxNwTz1eh21Wu0qAS5dcxppEd7ihIBG9Y7jMEc2vWFdryC4VVkEoiAQELjzQRRH4vk7joMwDDEejyFJErrdLh/ep9MpXNdFEARM+dR1nW2cHceB7/sol8t48cUXeYJLdqS0DhaLRQBX6JBk8OB5HnRdh+/7mEwm3GAhqhCl1KcpqIe5CB2WPQAIdyGBlwdREAgI3AIQl5TEu7SQP/PMMygWizAMA88//zz29vYwnU5Rr9cRhiE6nQ53kiRJYr/qXC6HUqmE2WyGZrOJ5eVltur0fR/33HMPWq0WZFnG6uoqb3KUegmAR9Tnzp3D2toaDMPAyZMnoSgKTNOEqqpYW1uDruvIZDLIZrM4efIkdF3njbNarXKA2eKBnLQLaRB/FgCPxek56YkBhZalNzj6+CuxHn2lGgJy8hAQELizEQQBN0coywUAd/nDMESj0UC73YZpmmyoIEkSWzDv7+9jOp0iDEO2Ap1MJkzzoYwZ6s5XKhXWd1HuShAEkGUZuVyOKaQAeA0+d+4c209TknK1Wr1Kc0XFyuLBnwoPURAIXA+iIBAQuAUgGzlJkphGc/nyZUynU5RKJezv72M4HLLzA20GpmnixIkTkGWZRcZLS0vM0c/n8ywMHo/H6Pf7AIAzZ84gDEMUi0XIsoyNjQ2Mx2Pk83l4nodMJsMWdeSZrWkaJwlPp1OUy2XWK1DqJm04JKSjTYqwWBBcizKUHnsDVw785GyUpgtRAUJj+sPwk0wIjnqesB0VEDge8H2fLUKn0ykf4CmXYHl5mZ2H6LAPgIuI//mf/+FDva7rKJfLiOMYuq6j0WhAlmVutAAHB/xCocDiZEqKT3fv0+YLZD1aKpXmmh+kS1tsoJAWa1FkTDQiQRcSuB5EQSAgcJNBwi4a3YZhCNM0sbu7O0cFsiwLSZKgVCohm83Ctm0kSYK7774bnU6HxWErKysYjUacFJzNZhEEAb+uLMvwfR+z2YzFwJRUTKnGAHh6QBam+XyetQEUKAaARW25XA6TyQQAOMuARM30eWnQGDx9gF+kDAFX0oep20bdssUNiwqCax3eX0k3/1pZBIIyJCBwPEAFAdF+aDqo6zrnv+zu7mJ3dxdBEPC0kiadg8EAjUYD9XodmUwGpmmyTqvZbKLVamFra4tNIkhTIEkSN1dkWUYQBLxXUEEQxzEXBMAVOiZZM9MkltbMo7IHgIO1W0wHBF4OREEgIHCTsRiyNRqN5vIABoMBBoMBarUaarUaR8yPRiMOFJtMJlhbW0O9Xken00GlUkG5XIZt2ygWi2i1Wsztpw47cVY9z0OtVsM999zDdnpBEODEiRM8QdB1HcVikbUJKysrvGlQ0VGtVuG6LjzPY9GdoijM91/s0NPmlD7wU6efPj+tC6DcBSpKFvmw1K2/1oTgZlOGREEgIHDng1zYqHkTRREMw0Amk0G9XkeSJOh2u9jd3eXpgSRJvHYRNefUqVMol8uwLAs7OzuoVqtYX1/H0tIS6vU6m0kA4AAxCkAzDIPX7fQaqaoqm0LQWkSTZlojqSCgJgtRVBdtRcmAQtiNCrwciIJAQOAmI0mSucPt5uYmBoMB03b29/dx+vRp1Go17O7uotfrYW9vjwuD7e1trK2t4eTJk3BdF51OBysrKxiPx6jVajh9+jQ7EJXLZfi+D9u22dd6eXkZ9XodrVYLp0+fRiaTQT6fx8mTJyFJEnRdx4kTJ1Cv1+E4DpaWlrC8vIxMJoOVlRXuXtEEYTKZzG1Aiwd3Am1m9LmLBQGAORoQTVFosrAoIKaR+PXCyW4mblXgmYCAwO0BMnlIpwSn6ZZLS0sAgHa7zTktlFhME4QgCHDmzBnk83mEYYher8cTWk3TsL6+jsuXL/P6lslkUC6XueFAmoFFETCtl2EYQtM0XmvJCWmx6UIFwVHZA/QcauIICFwLglSGg5RC4jPfTNDr3Q6HC1pobofDzp1+X+i1qMv00ksv4a677sJ4PMZoNEKxWESz2cSlS5cwnU6haRrG4zEftuM4xrlz55iDury8jGw2i16vh3vuuYeFaDReHgwGuP/++7GxsYGtrS0W/c5mM9YCtFotdjxKkoRThkulEvNL6f37vj+nL6AJg+/7nHhMr0EdfNqIqLul6zr7dqfvLR3wieJUKBRYZ0BdLrqHtBnSxGLx+0Mdu8O+b+nvweLHj3qcXpOEzotc3PTzxe/S1TjqvlyPu9xqtcT6+ypfS/rv1xKvxX0h0W8+n2crZfL2Jwe3wWDAIt5KpcLXmc/neb1bWVkBAAwGA5imibW1tbnCYDgcsk0o6cQAcKiZ53lsNkHvndYd13XnrEOJWkSBlqRDoPXXdV2ebKSRznj5SXDcf2audS3pv19LXOu+vFz9iCgIANx///2oVqtHdiJ/Uhxlnfhqo1qtXlOk+WrjTrsvtDCTv7Vt2/jud7/L4V/b29vo9/tYXV1FFEUYDofcJdrf3+dfYjqIE/c/l8vx5y4vL/NrW5bFVKCNjQ0OMlteXma/7OFwiEqlgvX1dR47U7EQxzHK5fJc14m4qPl8Hq1WCzs7O0iSBI7jwLIstFotzGYzRFE094cKAkr3pEM/vW76dysIAh7Dy7IMx3Hm8hLoOtOTBMMwrvp5IaHfYb+36WtcBD1+2IGfvnc0sj8K4nfpcBx2X9J5FYfhd37ndwBArL+vMo7jfQmCAJPJBPV6HZZlYTgcYjaboVwuc0ffNE1cvnyZtU2ZTIZT50ulEvr9Pl+zqqp48cUXcerUKURRhL29Pbiui+eeew5hGPLz8/k8crkcuxFRXkx6Yuo4Dvb29pAkCcIwRK1WY3OK2WwGz/PYXMJxnLl9hswZ0r9DcRxz9s3N+t06jj8zLwe3+3253hpMEAUBgO9///t44xvfiGazeVNfN91pvJaQ8dUAiaDq9fqRlI9XC3fqfen3+wiCAMViEaqqot/vw7Is3HPPPVBVFe12G9VqFfV6HdPpFLu7u0yV6fV6yGQyyOVyKJfLGI/HiKKI9QLPP/88arUaVFVlrmqlUkEmk8Hp06fZQm9paYmL2+l0islkglarhWq1yp0iVVVhWRYKhQLTgqgooMkDFSHktz2dTuF5HiqVCoArWgI6WNO9y+Vyc6NtcjOi/5MgOYoiVKtVWJbFbkiZTIa5uTTmTnfJFn9eMpkMb8qLoPdJ6aBp0ETkqK4JuXgc9XHxu3Q4jrovaUvHw/DZz34Wv/ZrvybW31cJx/m+kPDWMAyMx2Pm3WezWXQ6HeRyOWxubiJJEnQ6HXbtIWEwrTmlUgnlchlbW1uoVCowDAPtdhsAMBwO8cILL2A2m+H8+fP4j//4D2SzWTZ8oAyZKIpQr9ehqips20av10O1WuW117ZtAOAws9lsxtdKTRuayNKkNw0KR7sZguLj/DNzLfy03JfrrcEEURAAHNx0q76h5Nn+WiLdHX6tr4VwO1zLzbwv1N2WJAmu63IB0Gg0eAJAB/7NzU0Mh0Ooqoper4cgCFAul9lxyDRN2LaNSqWCIAgwGAywtraG2WyGVquF5eVlbG5u4u6770atVoNlWZxXQGE6lEZcKBRYuEZjZnKsoJwEcgNKu1/Q4Zwch6hYoJH54h8AfIAnvi0tlPRxEtTRyJ6cNEjoTAE99BxN07j7svg9IjrSUd+3xWu73uMEmhxc63XF79Lh13DYfbled7Lb7Yr19zXA7XAtr/Z9oUaBJEns4BPHMSzLYutj6rq322089NBDeOaZZ9gRjRovZBdKCfDUpadMAtd1sbGxgbvuuovDyEjjVSgU2Hgil8vBNE22Jy2Xy+j1elcdNBVFYcqQpmkIgoDplhQ6uXj/0mvpzcJx/Jl5ObgdruVa9+XlToiEqFhA4CYgPTIcj8dcZJIzkOu6zAu1bRudToc3gnw+jyRJsLS0hHw+z84+dGimsDJd16EoClqtFnRdR6VSwenTpzk5kyzv4jhmIbCiKFhZWUGhUOBOPo0VSYNAmw0A3nQIpVIJtVqNO/Ge5wHA3EE8zVekr5EuMtKg1yD7PdrcFEVBPp9nbUH69W6FqPhazxNOQwICdyYoKJEohcBB97TT6WA6nSKbzWJ3dxdPP/00zpw5g5MnT6Lb7c7RF0kTMBwOsbe3hyiKcPr0aTQaDWiahnK5jDAMcfLkSZw4cQKNRoOzZDRNY1c4mrxalsVNF8Mw+FrTlsuyLHOzhtZEEhqnXYrS7zMIAmE3KnBDEAWBgMBNAB2obduGaZpIkgSe50FRFGQyGYzHY0wmE/i+j36/zzz1UqmEvb09SJKERqOB8XiM7e1tpuJUKhXODwAOplmlUgmO4yCOY3ieN+dPrWkaNjc30W63+XBPo+V0MBjx8knURnz/xYKAKDdBEDAVid7rUaDPp813satP4mT6XLLTow4aFR309Y/iZ94K21G6RlEQCAjceaC1kjRUpmnC8zzkcjl0Oh08++yzeOaZZ1AoFHDfffeh0+nAsixeO8n9JwgCXLp0CeVyGefPn8fp06dRr9c5a+DEiRNotVool8uc/E4NEAp5DIIAtm2jVqvxdfV6PbZgTjddiLZEVEdq6JC70CJo7xHuQgI3AlEQCAjcBMxmMw4Ki6KIJwT5fB7VahXPPfccJpMJU3ra7TY761iWhUajgcuXL2MwGMAwDLzuda/DuXPnUKvVIMsyFEWB7/vsihFFEbrdLkajEQqFAtbX1zmVeHd3F91uF67rolKpYDabcWcqjmO02204joNisYg4jrkgIJpPuiCg8WMcxygUCigWixyodtShW9M0PtQf1rlKP073gDZcmpAQrlUQvNIJwfVGu6IgEBC480BNCprIkug27Ya2t7eH8XiMer0O4GC9IioorTU0WdjY2MC9996Ler3Oa61hGKhUKnjooYdQKBS4gDAMg3VJNDEOwxCNRgO+72M0GnGjhIIjiaZE15HWRSVJwmFpRxUEYjogcKMQBYGAwE1AEAQwTROGYfAhVpIkrK+v49KlS3j++efZ1WcwGKDdbiNJEpimyZuO53lYX1/Hww8/jEajAV3X2TYuiiK0Wi1omoa9vT202230+32srKzgvvvuQyaTQTabxYULF6AoCprNJmzbZi9/8t4ej8cwTROtVgvNZpOLBfLjpuKDQAUBFQrVapU5srRJHlYQEJdxUdxE3Tg6cJNrBm18RBui16SMgsNAr32zD++iIBAQuPPgOA5yuRyvG67rYjwew3VdDhebTCYwDINzXGjSSs0SWtdbrRZnwWSzWYzHY7RaLRSLRV5/FUXBdDqFYRjcqVcUBbu7u5BlGY1GA0EQsKPR0tISU4aIFkTrINGHyKCBXOTS74eQpjYJCNwIREEgIHATQF7WJ06cQKVSwWQy4RTib33rW5hOp2i1WkiShANvXNflcbSiKKjVasjn89jY2ECpVEKz2WTuaS6X4w7R5cuXMZ1OceLECebC9vt9dDodAAe+7isrK5BlGdvb27Btm/MOlpaWUCz+/+y9WWwk13n+/VTX2l3V+8J9mUVDabSPLMOKnc9OvFw4CCLYhgIjsBMjQZyrXBpBFucm93GA2IATJAYCGAESeAGCfDYCBUpsK44VeyTPjKSZEcnhcO2FvXd119JV9b+g3jPFZnMnZ6jR+QHUaNjNZrGGfc55t+eJM6UL4J6hGDkpD0KHdU3TIEkS633dLTtP2f+wXwEA1kYVjUZZlo0yYXTopx7Z8GvtNkNwkLago1YQeEDA4Tw8hOWUAbDKQL1eRyaTQb1eZ2t4NptFLpfD22+/jRs3bqDVagG456ESi8WQTCbZTABJe5LKG4lAmKbJ1kxqi6xWq/A8D+Pj40xpzjAMzMzMbDMiI1UhWovCQg6kNU8V6EF6vR5rVeVwDgMPCDicE8A0TRiGwfryyY3ytddew8LCAnRdRzwex61bt2CaJsvIp1IpxONxNqimqip7nAaJSbfasiyYpglRFFEoFDA5OYlms4k7d+5gZWUFhmEgnU6zLLskScyoLJ/PI5PJMAWiaDTKNh9qGyJZvUGoOkA9/jS4TK09wyoEwM52IZpTiMVi2w75gwfw8CZHqkbDDvb7VQiOqvpwGg7IHA7nwUEmYySL3Ol00Gq12Np3+/ZtJrFsWRY6nQ5eeeUVuK7L3IcFQWBtPtT+Q/4AyWQSnuexJM3a2hpzJyY3Y9M00e/3kUqlUKvV0O/3oWkaxsbGtvm40DpMogxUmaD1jhItYbOzwZ+VVwc4R4EHBBzOMaEhMSr3Oo6DXq+HjY0NvP3226z0W6lUWDtKs9lk/f2mabJDNsmJ0gaWTqdRLpfR6XQQj8dZQDAxMcG0r69evYqpqSnmX0AOmTMzM8wTgVqBaDMJm+SE5wZoViEMtRWRh0AkEmHXQsFPuO+fsliDxl+9Xg+aprHNDrjnSBxuCxoWEAw79NMmyluGOBzOXlC7kOd5zPeEfAc2NzdZsqXX68E0TVy7dg2O4zDH+PChPJVKsbWUZgfITT2RSEDTNJimycygyKgx3P5Dzxv0CQiCgCVz6PuRAWMkEmEfQRAwOdMw1C7E5wc4R4EHBBzOManX60w2kwaK2+02er0eVldX2QFY13WUy2Vcv36dlXvfeecdbG5uwjRNqKoKTdNw69YttFotZDIZlq0iPelutwtFUZDL5eC6LhYXF6GqKmZnZ1EsFtmmNDMzg0wmg1wuxxyNga22n2g0yvpbe70ePM9jkne2bbMSOaEoCmtnCvf6k8uwaZqo1+vbDtHkiUDKGAB2yOYBYNWPcMWAvBPCihq7ZexPI5vPAwIO5+GCDuzkHGzbNlNqA8CMwdbX15l7cSaTwe3bt7GwsMCel0gk4Hkeq3JSa06n02HzBbquY2xsDJ7nYX19HQDYUDEpEFHQkEgktl2n4zjodDqskmsYBkscUXIEADKZDDKZzI6fM6xsx+EcFh4QcDjHwPM8lEol5PN5SJKEdruNSqUC3/dRLBa3bUDVahXXrl2DZVlMYpTcKBOJBCYmJlCr1ZhyhO/7WF5eRiaTQSKRYJ+nYWPaOMbHx5n6UDQahaqqiMViALYsy3VdZ8pANANA5W8ArD81mUxuG+glKAAZbAGKx+Po9Xpot9sAwF4PAKt40NAdcM+7IKwcRB4Kg4PDiUSCSZ4GQbBnW9Bej3HZUQ6HQ+sAmXX1ej10u13Wi18sFqFpGgRBQKPRgOu6uHr1KlZWVjA2NgZd11mCQhRFJJNJVjmlhA2t2bFYDJlMBuVyGXfv3gWwpUjk+z5yuRxEUWRGZIOtPWFDRtd1oaoqRkZGts1i9ft9jI2NsTU+DFVhOZyjwAMCDucYbG5usmGyIAhYNqnZbGJ5eRndbhd3796FJElotVrwfR/RaBS6rrMytq7ruHDhAqrVKizLwsjICCzLQq1WYyVpx3GYk6bv+1haWgIAjIyMQBAElMtlVmqm4IHkTOPxOPs7HXTDJezw4Zzk7cLYts1mDIDtQ8bAVoWEvAfCkEZ2ePiX2omoDYj6aPcyHyPZ090eP8qhfz9jsmHqSRwO52xDKmqDhGU6JUlCqVRi7ZeVSgWtVmubBOnPf/5ztNttXLlyBY899hhbn/r9PnK5HAsGut0uO7Qnk0koigLXddHv97G0tIR2uw3DMJjimq7r6Pf76Ha7O6oDANjzyIiM3Gcdx2FDx/T53dSFeLsQ56jwgIDDOSJBEKBarSKbzUIQBKyvr6PdbkMURczPz6PRaDC34lgsBlVVEY/H4TgOcyQk98kAACAASURBVJqMRqOYmZlhRjXJZJJtCKTIo2kayuUylpaWmCslZc7JFbNer6PX6yEejyMajaLT6SASiTAfg0Qisa11KHzApiCBZgfCB2HXdYcOG9NzKECJRCLbAgJyygxnsWheIGyQ1u/3WTZsGBQQ7BUwHDabfxAfAuDkZxM4HM7p0u12dwQElOSgdXdxcRHr6+usinnr1i0sLCyg2+2yYeNarYZf+7Vfw/T0NNbW1uC6LqukGoaBaDSKer0OQRAwOTnJ/AMSiQT6/T4zNIvFYigUCqxFlKrIqqqyyukg4TWSKhiU7CGlo8FqLbBV/YhEIrxdiHNkeEDA4RwRyiilUimUy2VUKhUkEglcv36dKVjQ8FitVkOlUmEZcSoxT0xMIJ/PQxAEzM7OolAooNfrYWZmhknl2bbN1C1GRkaYIya1B1ElwfM8pNNpeJ7HBpUjkQg0TWMDbM1mk7ULUYmcDuPUfxrGtu1tcnjAdrnPIAiQSqWY0U743pAsH0EVgvAhnzbKvSoAg0PHYfZrCzqOcRmvEHA4730cx4HjOCgWi8zccWRkBJFIBAsLC7h27RpyuRxTiEskEshmsygUCqhUKgC21gJRFNkMliAIqNVquHTp0rakByV0yuUyMpkMUqkUayUyDIMJMAwbCAbAWiqpdYiqDWRwBmDPgIBXBzjHgQcEHM4RoQHfSCSCRqOBkZERXLt2Da+99hpUVYWu60gkEtjY2EC9Xmd9/LOzs8wlmIbQyAUY2BqqvXnzJur1Ovr9Pi5evIjp6WlmDJbL5ZhxWa1WA7C1ScTjcUQiEXQ6nW3W9TTgm0wm2aHccRw2GExVAPpc+CDsOM6OjBMdwsmcjAKabrfLMvndbndHdYC+loICqigMDhUPfi/Kig1jrwrBcWRHAV4h4HDeSwy2LBKu66LZbEKWZaTTaSbnXC6Xsbi4CFmWcfHiRXS7Xfi+zwwbAaDZbLLEBw3rxmIxdLtdjI2NoVAobPtekiSx9bBQKDAjR0oChZXWdoPWNJq1omorzVrRMHMYbkbGOQl4QMDhHJHwwmzbNorFIn70ox/Btm3MzMwgFouh3W6zA7ppmjh37hxUVUWlUoEoisjlcjAMA4lEAslkEgBYNov8Ax555BFmTJbJZDAyMgJJkrCxsQFFUZBIJLC2toZUKsXMbgRBYL4DpIctiiLrWyXpUVEUWbsSgG2zAvRzhYeCw5DeNc0tdLtdOI4D27bZrAQxOH9A8qaRSIQpauxGeAh5kNMyEeODxRzOewff95na22AigJyGE4kELMsCANa64zgOJEliiZVw5r3RaKDVam0zWBRFEYZhwHEcTE5O7rgOURQxOTmJbDaLWCwGwzCYmhAlX3arDgD3EiCe57F1j1qdFEVhVYPBCgHJVO/WhsThHISddScOh7Mv4b7OYrGImzdvolarsTkA0zTRbDaxsbEB0zRRq9VYNmlzcxOapuGRRx7ByMgIyyil02ncvn2bHZJlWUY0GkWz2UQul0M0GkU0GkW73cbGxgYikQjGx8exuLgISZKgqipWV1chSRLGx8eHZqGoLG7bNgRBgKIoTHGDqh3A1gHedV2WFQtvsuFBNwpUDMOAKIpM41tV1W1tRsMqBDQAF5YhHcZebsV7VQ+OAw8IOJz3Du12m3kEkMobvYfD/f+1Wo3NLNVqNZimCcdxWLuNYRjM6ZdMHcmQURAEZLNZ+L7PHI3DOI4DURSh6zrzIAgrrVFlItxGOQyqmNK6SB4viqIgCAJmWBaGm5FxTgJeIeBwDonneahWq6x15s0334Rt21heXmY9+8ViEeVyGfV6HZubm+j3+2z42DAMltmfnJzE9PQ0U+lpNpvMwZjKzalUCo8++ijm5uaQSCTQbreRSqWY9J1pmhgdHYUgCOj1ejh//vyeJelwPyqVoS3LYhsfcE+VgwbZBjFNE5IksdehAebNzc0d7UL0esC9CgG1DNGA9F6H+r0qBPu1DB11DoAHBBzOewPf99HtdhGPx7cJFgBgSkIAcOfOHSa7fPv2bbTbbVbVDIIAqqrCdV0Ui0W4rotYLIaZmRmoqsrkRslrhuSfiXa7zRTnFEVBNpuFKIqo1+vIZDKIxWJIp9MsUNgLWZZ3VAh832fXR0pJBJmZ8fkBznHhAQGHc0hqtRokSYIgCHj77bfZwLBt20in0wiCABsbG0weTlVVpFIp5HI5tFottFqtbQfpZrOJZDKJ5eVl1Go1zM7O4vz580xylAKHsbExVi5Op9MwDAPVahXpdBqpVArZbBZTU1P7HoLDQ2mkEkQtRIMBwbASNM0LkJ8Bfb9UKoVut8vkVMMMVghEUYRlWccOCI5z6N8LHhBwOO8NSF2HzL56vR6TNe50OtB1HcvLy1BVFblcDgsLC6hWq8wELAgCTE9PQ1VVJuBAam7pdJr181NgIMsy8xMAttbTWq3GHOKpVUgQBNi2jWQyidHRURQKhQO19JBLMa2LjuMw9aB+v79DcpTahbi6EOe48ICAwzkE1EqjKAru3r2Lzc1NlMtlNBoNxONx6LqOYrGIIAggyzKT2kylUqyFKBqNIh6Po1QqwfM8TExMMIObQqGAy5cvI5lMIpvNYnR0FJ7nwfd96LoOWZZZ5krTNPi+j8nJSRQKBYyOjiKZTDK/g90Il5yp55ZMwMIBARnjDEIZq8GMFLkQ27a94wBP1xNuGaKWJFmW93Qj3q9l6CgH9/2CiNOaTeBwOCdLeD1zXZetP6ZpIhKJMHW3S5cuoVarYXl5GaVSCcViEf1+H4lEgrVYep4H27ZZln9sbAy9Xo8FAuHkBx3KSeWt3++j2WxuE2qIx+MQBAGxWIwppu0HzSzQ2kbtnTTvNThQTIPKRxVR4HAIHhBwOIfAdV30ej288847WFpawubmJjOjoRJxq9WC4zjY2NhgFYJYLMYWd9pYkskkkskks7J3HAeJRALpdBqqquLcuXPbytKRSATxeBwjIyMsG5TNZpFOp1lrj67rEEURrVZr6PWTJnc4IKByOXCvpYcGg8NZJ9oMe70emzcIZ+g9z2MSp4PfP+y0SVBfL3kq7FYFOM5QMW8Z4nAebsLvcXI1t20bpmkiHo9jaWkJ4+PjCIIAP/3pT3Ht2jV2iKdkTbVaZYkX27YxOjqKmZkZtNtt1Ot1KIrCDBQTiQRSqRREUYRpmqhWqyyB02634fs+Wq0WJElCLpdDuVxmKkUHObTTgZ/W5nCbELUShX9e3i7EOSl4QMDhHIJisYjFxUVUKhWYpskOja1WC6VSCZVKBdFolPWmUtZcURS2CcXjcUxPT+O5555jrrjFYhGdTgdPPPEEHn30UWQyGSQSCeRyOeTzeQBgxjepVAoAcP78eTz22GPbVCsEQUAymWTffxAqOYc3HVI5CtNsNqFpGsto0Ua2lxtmt9uFruuIx+M7fAko40WvFQ4QqH3qKAFBeAh6kN0234Nsykd1QOZwOPefcGUzEolgfX0dkiTBNE3Yto1YLIaf/OQnuHr1KjqdDhqNBvNXoTWEPGN0XUc+n0cQBMxrJplMQpIkuK6LfD7P5JlLpRIURWFqcZFIhMmXUnWADCgpgbIftDZT0oYMI2nIOBwQ8HYhzknCAwIO54C022288sorzIGX+u87nQ7y+TzLFjUaDZRKJZaxTyaTrE1menoa09PTePrpp5HP59FqtbCysoK1tTVcvnwZV65cgSiKSCaTMAwDsixvy95Taw+wpRgUjUbZgZo2G9LKbjQaOw61gxsKbYj0tTSY7DjOUHk8yqrRjAAd7mnzpMCC1JGIwQoBORT7vs8qBLu5FUuStGtL0Wl5BvAKAYfz3oAqjcCWVGi1WkWr1UI6nUaxWIRhGLh+/Tpu3LgB27Zh2zZrv6RWoPHxcXiex1yCaa1dXl6GJEmIx+PwfR/JZBLj4+OQZRm1Wg3dbhejo6PstWKxGFM10jQNruuyNeowLUPh51K1llqGBucHeLsQ56TgAQGHc0AWFxdRr9eRzWZZr6nv+1hZWYHjOJifn0elUkGn04Esyzh//jweeeQRluEeGxtjzsSZTIb1tpIB2TPPPINkMoler4fJyUmWXaIAYLfNhDJaYRKJBFMgCjPocjmoykEBTlixI0yv19thXgZsbVrUBuV5HnRdh+u6TPc7HBBQEKFpGiuBC4KwaxWAAoJhB/T9XIV5yxCH83BDqmm2baNarcKyLMiyDMdxmGP822+/DdM02TpDqm7ko7K4uMgSG7Iso1wuY319Hb1eD9lslkmKzs7OsjbFcrmMfD4PXdcB3JvHIp8YYGu9DRuNHaZCQMkbSoaQPwG9dhAEXG6Uc6LwgIDDOQCmaeLNN99EMpnEnTt38Itf/IIdUl3XxdraGiqVChRFwcTEBNLpNBKJBGKxGOr1OgRBwPj4OMbGxpDNZmGaJjqdDtLpNJrNJgzDwMTExDbFDDq8h6sMuzGobR2JRJBMJtFut7cdtB3H2fZc2nzo8NtutyGK4g7ZUADMwCwWi21TDaLqgKZprAxPQ9CtVotttOGAALgneRoeMh4GVRCGHdD3qhAcJ2vGAwIO5+zjeR4TP6jX63Bdl8k7k1dLuVyGaZoIgoANGheLRbbu1Go15hGg6zqCIECn02Gfa7VaEASBCTp4nodutwtRFLclYqjHnxzhqW2TnOKp+rAflAiiigW1L9JaS69ByRZuRsY5Kc6EMVmn08HXv/51XL16FdFoFC+99BI+/elP73jezZs38c///M+Yn58HAMzNzeEP/uAPMD4+DgC4fv06/vzP/3zbG+Rzn/scXnrppfvzg3AeOkg5Yn19HWtra5ibm8Obb76J9fV1zMzMMGnRlZUVpFIpxONxVKtVyLKMRCIBURTR7XYxMzMDwzCQy+XQ7/dhWRZrCXJdF48++ih0XYdpmsyxOJxVoizUYaBZhkajwQx1qB82DFUwXNdlrpqDkNQozUSEIR8DMuqh7JxhGEyGdNhQMTkUU3l+NyWhwSrGsGs76X5/2oSHXTeHwzkbdDodJse5tLSEeDyORCKBSqWCcrmMbreLer2ORqMBy7LQbreZzLOmaeh0OhAEAVeuXGGmjvl8Hr7v4+rVq0xGlJI1qqrC931YloVMJrOtahvO3MfjcdRqtW1tnrt5ugyDFN+oMjBoDAnwdiHOyXMmAoJvfvOb8DwP3/rWt7CxsYGvfvWrmJycxFNPPbXteaZp4hOf+AS+8pWvQFEUfPvb38Zf/dVf4Rvf+AZ7TjKZxD/90z/d7x+B85DSbDbhOA6WlpaQTCYhiiIymQxu3LiBWCyGcrmMzc1N1kpDWaqZmRmkUim8/vrrkGUZ09PTkGUZ2WwWmqah0WggFovBcRzk83kkk0nIsoxer8ey8+S2eRySySQqlQpzuyQ96zAUEJimySoTgwfsIAjQ6/WQTCaZkQ+wtTlZlsV0uoGtzL9t20wVqd1ub9u46E9VVeE4zr4BAT3/pKVH9yI8RH2QrB6Hw7m/UKY+nU5jfX0dwNZBem1tjUlBX7x4EdVqFSsrK9A0jbkQZ7NZ3L17F6IoYmpqCqZpsupBv9+H7/solUqYmJjA1NQUGo0GRFFkbuxkNhaGDu79fh+6rqNcLgO4pxa0n0MxcK/FkdokBz0HwiIKlmUdyOiMwzkoDzwgsCwLr776Kr72ta8hFovhwoUL+PVf/3W8/PLLOwKC5557btvfX3zxRXz3u99Fq9UamtXkcI5K9/ZNNH/8XzCX7sBt1HHO7OG870IEcAHAR4U+sHYHAXwISRVIjr/7lRkAgA8JzvwN/IYhw0pPQmhtQqh7MJZuIRL4GI2I8FIZOKk0pHQGiQhgFpNIjI4hEomwzNWgRf1hkSQJhmGg1WpBUZSh5eVIJMIUkwqFAmq12q4zAtFodKh6UXhzVBQFnU6HfZ7MggZ7XVVVRa/X2zcgoLL5Xo7Euz121NmCvdSLOBzO/cczO7CXlxG4DsR8Aaaiwrv+SxRf/S/0ymXEHReC7yEZiUCIxzHbtRD70X/gxX6AFydz8AB4MBABIPU7wOXzAM5vvfbV/8Gvj6ZgA1gTI1jsOkA6i0wyjkxjEzo8zGQTSNWrEB0buVxuaLKGWn0EQWDyy+HZhINC1YRw9ZM8XEhqFODtQpyT5YEHBGtrawCA6elp9rnz58/j+9///r5fe+PGDdarTbTbbXzxi1+ELMu4cuUKvvjFLw5VS+FwdsMtFVH/4f8Pa30V3mYZQr+PHUu5IAAIIGB4uVaEhygEaJIIHUCkUYePAAK2BndkAL7bR7TbgSoAgR4D7t6BNjoGy7LQarV2lKSPimEY6PV6zPl4x7W+6xpMLU7DWnCockGb0uABPBwQkM8CDfvF43E2RwGAZb3oeVQW3y8g2Ovxw8iOHoTTUi/icDiHJ+j3Yd2+Bd/qwfF9mCsrEBJJuP/x7/DbbURsiw1ERjwfmUYdArC1Ogs+AAES3j3wUMWPrQ/i1uclCZLn4WIA+LKMvByBpkiI+H2oIqDFokh1O5iCD8H3hq7N4cSGKIqsbZNUjQ4KrXkUFIQHk6lay9uFOCfNAw8ILMvaoWmu6zprcdiNYrGIb37zm/jyl7/MPjc5OYm/+Zu/weTkJGq1Gr7xjW/ga1/7Gv7iL/5i29dubm5ic3MTAFCpVFjG86Q3fxqEDMuiPSjoZzsLB5yzfl+cRh1+t4O+7yMIsPPIP7yVfTuCCETAAgDh3WBAAODjXQnRiIC+58EBgCCApqjwel00TBOGYUBRlBP796KeVpL6DEMbTzQaZYoWYdUh6plNp9Ps72RwBmwFAINBQiQS2dZKRD2x9BwKPGiuQRRF5oA8CAUMuz0OgJX5w9C1Dn4+/Pu3H4OqTPS64T8fJGf9vXQQ6KDE19/7w3vxvlitJlrlMvrvDv2qioxIqwHHsuBIIiJbCXME736wYCA8dxRu/dv2+e2fi0SAmCIik04hiETQiSgIBAGdvo+cLCMmRuC+m6Eftpa6rot+vw/XdZHJZGDbNjRNY4pB+90PWoNpfWy324jFYqyVk2a2aD2+H7wXf2fuBw/bfXngAQH19YUxTXNP573NzU189atfxec+9zl85CMfYZ9Pp9Ospy6Xy+EP//AP8Ud/9EewbXtbae073/kO/v7v/579/aMf/SiArSDjYYf6GjnbCd8X33Zg9j3YnQ5kP2CZp3tv9wNEBIEHQGQb1NaHgADvvl4QwPMDeD7QrlZhZLIwe130OibK7Tb6/f4OydCToFKpDL/cd012AKBerzPtbRrMq9VqiEajcF0X7XevLwgCKIoCQRB2vHcajQbq9TobYA6CYNvPRN9vc3MTjuOg0Wig0+kMrWAAYPKBwyoBjUaDGQKFoQBo8D5Wq1VEo9GhSkphwrMhw+DvpeEc9r586UtfAsDX3/czg/clCAI4jgPHcWBZFjzHgdrtQu2akGI6bMeBb8ThRgQE7S583DvXA4DvARFxIJnjsf9sx/MB8V62PwAQ1RMQRBHlVguB60KVJSQUBX3XRcfpw+72IJfLO7L+JKLQarWYD0uj0YDjOCgPef4g9LWe58HzPKyvr8MwDJRKJRiGgUajgaWlpR3O8u9H+HtpOMe5Lw88IJiYmAAArKysYGpqCgBw584dzMzMDH1+tVrFn/3Zn+FTn/oUfuu3fmvP1w4rhYT57Gc/y4KASqWCH/zgBwCA0dHRY/0sg9AhiLKjDxLSTS4UCifShnIczvp98QsFvPHObUQ8D95mBYHZgex7CABEwu1DEWkr/T+klSWQJAQA+gD6ahRiNouI78MqriOmqAg0DUilERkZg2s7yFy4iMITT8HTDQTVKkZHRx/YMCsd8m3bZjMFU1NTyOfzMAwDuq6zqpqiKENb8uLxOEzTRKFQ2PN7kcQpyaMOew8GQcCck4c9TpWNwQE7RVEgSdKO+SL6nvspN0mSBE3TYBjGts/z99Jwdrsv+x30v/Wtb+FLX/oSX3/vE2f1vlAl0rZt5vJuGAY0TduaP5q7BHv5LgLHgTwyCi+Vxmq1Aue/XoZgmogEPgQATr+PZU+A4fmYEIAICQSgv1WdBSBK0r11WxLhAwhEES4AL1uAn0qjOzML0e0j0m6hUSmjXG0gPjKGmV/9/9CwHYyMjOxYo23bRq1WY47t6XSaCUlMTEzs+29Pwg7NZhO9Xg/5fB6FQgF3795FoVCA53nQNA0zMzP3tRX6rP7O8PfSPfa6LwdNtjzwgEDTNHz4wx/Gt7/9bfzxH/8xSqUS/vM//xNf+cpXdjy3Wq3iT//0T/Gxj30Mn/vc53Y8fu3aNYyMjKBQKKDRaODv/u7v8Mwzz+wYZszlcsjlcgC2DJxIdeWkf7mo1eGgluX3g4O6JZ4mZ/m+WJaF69ev422zB/2JZ7G+vo5KpYKVlRU0Gg2sr6/DdV1cvHgRc3OP4Oc//zk2NjZYVv2Tn/wkVFXFxYsXWTnx/PnzGB0dxa1bt9CcPI/PfvazePPNN1EoFLa8AtbXIc3OQspk0X/Xh+BBLjDUpwrcW/BofiDc2xq+b4NomoZ2u82esxs0R0BSpcOeGx7I261vd5gi0+C17vf5QfYzhOPvpeEc9r6Q/wRff+8PZ/G+2LaNZrMJSZKgqirbl7ddn5yE/MSW0Eiv10O9WkXwxNP40VoRb775JkZHR/Hqq69C0zScP38eb7zxBlZWVjAxMQHbtjE7O4t0Oo0gCDAyMoKf/OQn8DwPH/nIR/D444/jxo0bkGUZn/3sZyGaJnqCgOi73ipLN27gJ2/ewuXLT0BNpRGpVIau0eFkCrnZ030+iDGZIAhoNpuwLItJo8qyzJzdPc+D7/uIx+P39ffoLP7O8PfScI5zXx54QAAAX/7yl/G3f/u3+L3f+z3EYjH8zu/8Dp5++mkAwEsvvYS//Mu/xOOPP47/+I//wMbGBr73ve/he9/7Hvv6r3/968jn81hcXMTXvvY1tNtt6LqOK1eu4Hd/93cf1I/FeQ8RBAFWVlZw8+ZN1sriui48z0Oz2YTv+6hWq+h0OpiYmIAkSbhz5w6q1Sr6/T4Mw8DIyAgURcGlS5dgWRbW1tbw/PPP47HHHkOxWEQmk8HIyAh6vR4URUEmk4Gmabh8+TJs20a73WbGMw9ycQn3+vd6PUiStC0TRkPHe10jbZZkGrQbJHlKgcFer3fYoeLjspd6EYfDORlc10W9Xkc6nd63amfbNpMI9TyP+Q/QHNLGxgbi8ThGR0cRBAEzh/Q8D+Pj43AcB71eD2tra8w8kdafdDrNpEWpj1+WZSSTSeTzeVy4cAGjo6OsX3zY+hd2Xafg4CDrJbA1r1SpVOD7PrLZLGq1GvtelIUmF+YHfRDmPJyciYDAMAz8yZ/8ydDH/uVf/oX9/+c//3l8/vOf3/V1XnzxRbz44osnfn2ch59Op4NyuQzLsuD7PhRFQT6fh+u66Ha7WFpaYlb33W4X1WoVhmEweVBVVZHL5aBpGjzPw9raGp5++mk8+eSTzIm4UqkgkUig3W4jl8uxPtlUKoVoNIpKpQLP85DJZB7ovQhvXKQuNExqdL/XoKz/fgGB4zhMnWO3jZOUkIaxlyTpcQIF7lbM4Zw+/X4fiqLsGQz0ej02u0SHYU3TcOvWLbRaLdTrdVy9ehWNRgOmaSKbzTITxUajgUQiAUmSUK/X0e/3Yds2otEoUqkUEokEq+iurKyw70XtgrlcDrdu3YKu66y1aa8DOa1lVNVMp9O7urATlmWxKnM+n2cBACVBaJh4vwQLh3MczkRAwOE8CGhz8TwP8/PzWFlZQalUgqqqEAQB7XYbS0tLmJ+fhyAIyGQyuHv3Lvr9PkZGRlAul+F5HlRVxZNPPolUKoV6vY5IJILJyUl86lOf2hqI8zysrq7Ctm2k02lIkoTx8XF0Oh0YhsFaU0hd6yiuxCcJZbRIuWfQe+CgGS9FUfYNJMIVAlJrGDY7sZ9x2UnLjgLYU+qUw+HcH9rtNtrtNuLxOGKxGGq1GjRNw+rqKn72s5/hzp07uHnzJpLJJFKpFKsiVKtVuK6L6elpjI2NsbV4c3MThmHAMAwUCgVMTU3h8uXLKBaLUFUVzWYT/X4fc3NzmJiYgCAIyGazuHjxImKx2IECAuBeC5xhGMzFfa+fL5FIQBAEJoJACRWqVJqmOdQpnsM5KXjdifO+pNvtolwuszItOVuS1Ce1BL311lvwfR+apjEXYjLbqtfrCIIAk5OTmJubQ7PZhOd5iMfj+PCHP4xoNIpOp7PV71qv4/z588hms1BVFa1WC5qmbRt4TSaTbLblQUIHbCpPU/tP+NB9kMy7LMv7ZsaoPE9/et5wBSdy7hz2fY+SyT/I9fMKAYdzuvi+z9yDh9FsNtHpdJDJZNgQrWVZeOONN/DDH/4Qq6ur2NjYgCAImJubg6IorIWQfFAmJydRr9exuLiI5eVltNttjI6O4tFHH8XFixeZB5LruqzN58KFC5icnGRtj5IkoVAosP1hr4BAVdUdymTD1htqQ6WKRiwWQ7fb3Ta7FPZ9oWrtbmskh3NceIWA876E+vVLpRLu3LmDRqMBy7IgCAI2NjbQarVw/fp1mKYJURTR7XaZDF48HoeqqrAsC7Ozs7hw4QJs24brujh37hw++tGPotlssnJ2q9XC+Pg4Ll26BNd10Wq1MDMzwyQ5zxrhgGCY8stBM++0eQ7T8ifoIECveZCAYPD70/UOe+w4lQMeEHA4p0e320Wz2UQQBDvaJIMgQKPRgG3brP0H2FLhefnll1GpVFhixbZtiKLI5gpoJgHYys7LsoyFhQUmSz49PY0vfOEL+OUvf8naghYXF6HrOns8nJihWYVIJAJN02Ca5p4BwaAq2bAZJ7pGQRCQz+cBbMkcRyIRpFIpWO+KS4SrtQBYSyqHcxrwgIDzvoM2okgkgqWlJdy4cQMTExNsqNjzPCQSCXQ6HUQiEZimyQxiNE1DOp3GO++8A13XMT4+DkEQkEwm8cwzz2BsbAzZbBYLz4AWnAAAIABJREFUCwvY3NyEqqqYmJjA+Pg4VFXF0tISJicnd9XbPwtQVqzf7w/V4A9XC/bKtNOAnuM4ewYE4dfbrUWHKgi7qQnRtYQP+yfRMsQDAg7nZCEnds/zEIvFtjmyu66LXq/HZrmy2SxEUUSv10O1WsUrr7yCt99+GxcuXMBrr72G+fl5JnxQrVaxsbHBZr10Xcfo6CjzOpmYmMDs7CxeeOEFeJ7H2nSCIICu65iamkImk0EikdimTNjv96HrOprN5q6KZnsxuI70ej00Gg1omoZUKgXP81CtViFJEjKZDKsKhO8JyY32er1TEVDgcAAeEHDeZ/T7fayursL3fSSTSfzsZz9DqVRCp9PB+vo6bNvG+Pg46vU6LMtCLBZj2ed4PA5BEFCpVBCJRDA2NoZHHnkEmqbh8ccfR6vVQjKZRDQaRTabRaVSYcFCKpXC0tISUqkUywidVeiAPtivepSN6CBtQzTHQeocwyApVM/zdgQXzD/ikBv1fuxVeeBwOIen1WrBNE3EYjHWAmSaJoIgQKVSYW07sVgMsVgMzWYTjUYD1WqVtQd1u13827/9G9bW1tBqtZi0Jwk8UAsiqfNQpXNqagrnzp1Dt9vF2toaU32Lx+MYHx/HxsYGALAWUYICF/I5oZbSgxJWK2u1Wuh0OkgkEjAMA67rolqtQlVVpFIpts6QTCkZK8qyzGayeIWAc1rwgIDzvoJafyYmJnD16lV28K/VarBtmykIlUolJmVHgQEhCAIKhQJeeOEFTE5OMmlSChqazSZSqRRWVlZYbygFIWS+d5ahTSlcHRjMvB/0kKwoyg4n8kFITYM28GGE5fx2u96TzpztVnngcDhHg7LtNDtFB2XLstDv95mKj+u6KJVKqFar8H0ftVoNpmmi2+3ijTfegCAIiMViUBQF1WoVrVaLSYS6rotOp8NaFqempticAb32M888g/X1dei6jlgsBlVVEYlE2LxAOBFC7UJHTTxQwoOGnGmOjEzMSO1o8GsikQirsCYSCXYdPEnBOS14QMB5X+G6LlzXxdLSEt5++220221UKhUYhsEyTa7rss2HlCnIOZgk8ubm5lhVwHVdJJNJNvjW6XSYfrRhGKjX68hmsxgbGztUZulBQSXrveTtDnr4VhQFrVZrzw1scLB4GLRB7hYQDPMMOK6PwGlVHjgcznZovS2XywC2svLlchmyLGN+fh537tzB5uYmlpaW2GGfHMp7vR6TEY1Go+h2u7Btm6kS0fqQSCSQTqfxwQ9+ELquY3V1Fbqub5tjCoJgW3WA+vdp/SGzycMcxiORCDMqy+fzLMlUr9e3BUdh6FpkWUav10Mmk0G/399zjeRwjsvZP51wOCdEv99HtVrF3bt3sbKyghs3bmBlZQW2bSOZTMI0TRiGgWaziXq9Ds/zIIoiRkZGkEwm0e/3Wb/rI488woa+HnvsMUxMTGB9fR3tdhuSJMFxHBQKBaRSKTz66KM73LLPMqqqMmOcYRxmMyQtbmoFGEa4L3cv87G9Ht9NevQ4hAMCDodzPPr9/jZ9fsL3fWb+SNXWjY0NLC4uYmlpCcvLy2xo2Pd91Ot1jIyMIJfLYWVlBZ7nIRKJYG5uDq7rQhAErK+vs5aglZUVxGIxFAoFXL58Gb1eD7VaDWNjY1AUZVuSZjAgILd1QRCgKAr6/T4zHTsotC6lUik2D1Gv11nb0DBoPUulUshkMmg0GnAcB9FoFK7r8goB51TgAQHnoYbk59rtNlZXV/HGG2/gnXfewerqKnOrpOwL9awuLy/DdV2k02n0+30WDDz11FNot9tIJpNIp9PodDp47LHH8MQTT2B+fh7r6+ssWIhGo0gkEojH4++pYAC4t/kNQhvbYQ7fYYOygwQEe/XH7hcwnMbBnQ8WczjHIwgCmKaJdrvN5gPC2LaN27dvo1arsY92u416vY5utwtN0xCLxZBKpXDr1i24rot8Po9OpwNRFGHbNmtNHBsbQyaTQbVaZYaQhmFgdnYWH/jAB1i7zcjICHRdR6VSYQpm1D5K65Rt2+h0Okgmk8z7gAaYDztDQAd40zTRbDaRTCb39JuhaoQoitB1HZZlwTRN6Lq+q/wyh3NceEDAeShxHIe1/FiWhWKxyNQdNjY20Gw2oes6zp07B9d1cefOHTiOg/X1dXQ6HUiShEgkgng8zjYPKt8+/fTTuHDhAsrlMhKJBJrNJlMdmpmZwaVLl1Cv1zE2Nvagb8OJcZxs1H4GZQcNCPYzJxt2cN9t4zzohsoDAg7n6Liui0ajAc/zmCP7INVqFS+//DIsy2LiAY7jIAgCZLNZtsbOz89jfn4e/X4fpmmi0+mwKmYsFsNzzz2HF154Aevr67h9+zZLRsiyjMuXL7PETD6fZ87F5XIZoiii2WxCURQWDFCAYBgGM5/s9/vMC+AwUEDQ6XTQ7XaRTqeH3odhX0PtTJqmodFosPvD4ZwGPCDgPHSQG6WqqszZMggClMtlvPrqq1hdXUU8Hkc2m0W1WsXS0hJarRYAsI3IMAzMzc1hZGQE+XwezWYT5XIZzz77LF566SXYto18Po+1tTXcvXsX0WgU4+PjSKfTD33P+WGHeGVZhmVZuz5Omx6pCO0GZfKGMUzr+yRK6jwg4HCOhuu62NzchKZpyGazQ9dE0zTxox/9CK+//jpSqRRTHqKvp2RLo9Fg8puCIKBarcK2bYyMjCAajSKZTOJXf/VX8fjjjyMajWJ6ehrFYhHNZhMf+tCHcOXKFeZ3kMvlIIoiWq0We2/3ej0oisIU0ejwrSgK6vU6kskkGo3GDgWig9LtdpkB2UG+ntYuumfkkEzJEx4UcE4DHhBwHiqCIGCGL5IkYWFhATdu3MDq6ireeustFItFRCIR5PN51Ot1tFotbG5uQhAEdLtdpk39wQ9+EFNTUxAEAbquQ1VVuK6LT3/603Bdl8m/dTodyLKMJ598EolEgm0yD2NAcNRNSFEUeJ7HZjIGCXsR7FYBAO6pEQ3jMAf3wwQKxx1M5nDejwRBwNpsSK5z8HHTNPG///u/+J//+R+srq5CkiTWptlqtdj6TGZjtm3Dtm1IkgRN03Dx4kVEo1G8+eabmJmZwRNPPIFcLodqtYqZmRl0Oh2MjY3hxRdfhOM4SKVSGBkZYWtzuVyGpmlsANn3fdi2Dc/zYFkW4vE4qxJEo1E0Gg0AONT8QJhMJnPgYILWKFmWEY1G4XkeHMfhCQrOqcIDAs5DA1UBbt++jWg0Csuy8NOf/hSVSgUbGxtYXV1lDpDvvPMOut0uK+WSG/Ho6CieeuopzMzMwPd9pFIpnDt3Dp1OB1NTU4jH4yiVSqyvc3R0FBMTE8jn82w4rt1u71sSfq8Rnhs4bIWA2q9IxnXYa9Pnj9MydBpZs2GVBw6Hszc0fDvoxk6tOKVSCRsbG/jv//5vLC8vo91uQxRFrK6uolwuM2NEAKxnXxRF5HI51Go1yLLMPGXGx8fxG7/xG6xFk1pBe70ePvnJTyKTyWBjYwO5XI4FA7Zto9VqYWJigqnBUfBBAYEgCIjH49sGf4+iEkfrx+Aw9V7QuhOJRJBOp5lSG5kz8jWJcxrwgIDzUOB5Ht566y2Uy2WMjo5C13X8+7//OxYWFtBut7GwsIB6vc4W9F6vB8Mw0O12mfrF7OwspqamoGkaWq0WNE2DoijodDpIpVKYmZmBZVlQVRWyLGNmZgbtdpst9GHd+nDp+2GFBvQOAg0W75YhkySJbXi7KWiQXN8whg0cn0SQwDNyHM7+kHiD4zjsQxAENJtN9Ho99lEqlbC6uoput4tKpYL/+7//w9LSEvr9Pm7evAkAbH2lpIqqqkwCmQ7GIyMjyGQyeOaZZ1AoFHDlyhV2LeQA/Cu/8iu4fPkyMyGj1wiCgGX7RVGEJEksKREEAarVKtrtNgqFwg4VoGEJjYNy2MpkmPBsw2HWXQ7nMPCAgPOex/M8LC0toVqt4rHHHoPnefj617+OW7duodFooFarwXEcJJNJWJaFdrvNdKEjkQgURYGqqsjn81AUBdlsFslkEoZhIBaLYXx8HJcuXWJGN7Iss35XQRCGHnKPs3GcdY7Sm68oCmzb3vVxqiJQULBba9GDqBDs1cbE4bwfoRYW+qBWm7A8cLvdRr/fh6qqkCQJuq7jzTffxLVr19BqtVAul3H37l24rsve86Ojo0xcgLwFSPWM2jfHxsbwoQ99CBMTEyzrf+HCBXZt0WgU8XgcrVYLtm0jkUhgfHwcANDpdFCv11Gv15HL5ZjpF7D1XnccB6ZpIpfLDZUEPcq6fpT1MuySDtwLCPr9Pk9QcE4NHhBw3tNQZWB1dRWZTAZra2v4x3/8R7z++uvQdR3NZhOiKLKsPzlaTk9Pw/d9OI6DTCaDVCqFy5cv48Mf/jAajQZKpRJGRkbw/PPPY2pqim1woigiHo8zybjBTSOfzz+U2ZthLUOHgSotu2X/qULged6uAcF+Q8VcdpTDOV2o5afX6zEVHNLFl2WZzQaQI7Fpmmi1Wmg0GlhZWcG//uu/ol6vQ1VViKKIaDQKSZJYxZZeT1VVaJrGHIlVVYXneSgUCshkMnj66acxMzPDZgPCJoqKoiCdTqPb7cIwDKiqCsuy0Gw24TgO+v0+pqammK4/Hbaj0ShisRii0SgymcyOnz2dTu9p1rgb8XicObEflLAjMf1dFEV4nscrBJxTgwcEnPck1K9fLBaxsrICWZbxyiuv4OWXX8bt27eZOkQQBNB1HeVyGZ7nIRaLMcULUsAg87DLly+j0WhgbW0Nly5dwic+8QnmN9But6HrOqsK7MZh+kTfT9BhYZgxEXAvIKAKwTAoIBgWVOx2cOctQxzO8fB9H5ZlodvtolQqwfd9JJNJVtUzDAO2baPRaKDT6bCq6euvv44f//jHaLVa6HQ66PV6WFhYgKqqmJiYgGEYuHHjBrrdLuuNFwQBqVQKAJgHAVUdpqamMDk5icnJSUxPTyMIAkSjUYyOjm67XkmSmPIQsNVyVCqV4HkedF1HNpuFqqosCAl/HT0+bAbsqHNhkUiEVToOyrDn0twEDwg4pwUPCDjvKXzfZyZjlmVhY2MD8/Pz+PGPf4xr166h1+uxLD6wNStQLBZhWRampqaQzWbZ5mQYBsbGxvDCCy/g8uXLzJvgM5/5DHMiDrcbHVZ/+mHlsEPFwNamSA7Oxw0IhlUQhrUMcdlRDud4WJaFtbU12LbNhmxzuRxkWYYoiohEIrh79y7eeustVjGwLAvr6+t47bXXUCqVYBgGC+RpbfZ9H7dv38bGxgZL1BiGAU3T0O122aDv1NQULly4gEuXLqFQKEDTNDbHlU6nEY/Hd6wnsixDVVVmVjYyMoJOp4PR0VHk83l4nodqtQpFUbapwWmahtHR0TOR1BEEYYfCmSzLrELA4ZwGPCDgvCdwXRetVgvr6+tsIG11dRXf/e53sbq6inq9DkVRWPtPu91GrVZDp9NBLBbD+fPnkU6n0Ww24fs+dF1HoVDAc889h8nJSViWhbGxMczNzWF2dha9Xg+maUIQBORyuSOpSzxsDG5Eh92YZFlmOt+D0P2lA/8wSIN7WEBw2IP7YZyWKVA5iQCDw3kvQYo/U1NT7JBt2zZM00Sj0UCj0cBbb72F+fl5AFsmY71eD51OB2+88QarCHa7XVZF6Ha725SEqG0nl8thfHwchUIBFy5cwNzcHKsk+L6PXq/H3IdnZ2d37eenjLwsy4jH46jVaqyq0e/3WTAwTA71NN/jh20ZArAjIOAVAs5pwk85nDMLOUOapom7d++i1+thZWUFP/vZz3D79m2sr6+jXC5DkiQYhoF4PI4gCLC8vMyMxuLxONLpNBzHwerqKgBgfHwcU1NT+OhHP4pkMgnTNDE3N4eZmRkWNLiuC13Xoes6Pwhi+2Z21PuhKApM0xz6GCl9+L6/6xAvBQ2e5+3I4oWrFvtd31E2Zh4QcN5v+L6PVqsFVVVRq9VQKpWwubnJWoNarRZqtRquX7/OzB97vR4sy0Kr1UK1WmWVBFLwISlNmgsIggDdbheZTAa/+Zu/ibm5OUxNTUFRFEiSxMzNXNdFJBJBJpNBoVDYd7iXKg71eh2+7zNPmWazCVmWh84InCXC6xmtPZIkodvtss9zOCcNDwg4ZwrKBNm2jWaziXq9jps3b2J+fh4rKyt4/fXXYZomIpEIms0mNE1DLBaDbdtYWVlhG4fneUgkEohGo+h2u8yM7KmnnsKzzz6LsbExZLNZFItFTE5O4uLFi8y90rZt5HK5IxvQvF847KakKAqr0Awat9GhYS8VDUEQdlX9CWfU6LBwUrKj9LoPo9kchzNIEASwbRsLCwtYXl7GzZs3USwW0el00O/34TgOms0mGo0Gms0m+39q96Oef0EQWKY+Eokwc8dUKsUGgUulEgRBwJUrV/ChD32ItXqSEZkgCEzxTdO0A1dqVVVFJBKBZVlIJBLo9/vMvX7QG+G0Oaoy0WB1MtwyyeGcBjwg4DxwaAPqdrss61+v11EsFnHjxg0sLi6i0+lgc3MT7XYbwFZvKy20tVqNWdqTfjWVoMmufmZmBs899xw+/vGPw7IsWJaFaDSKRx55hJXAyXcgHo/zYGAfjpItpyoAqYgMe5wcoIcRljTc7Xp2Uyg6KsNK9xzOw4bneSiVSqjVamg2m+h0OrAsC6+++iquXr2KWCyGfr/PkjStVguO4zClNtd12QBwEARwHAfA1iBuIpFg/fobGxtoNBpMolSWZVy+fBlf+MIXMDU1xeYSaOaI5EYPC63fJGYgyzJyudwDkYMmpaPDEF7PCEVReMsQ51ThAQHngUCbRrPZxJ07d7C5uYl6vY5GowHbtlEul/HWW29haWmJtQ212222kdCiSIGAruusDJ1KpaDrOgzDQC6Xw/PPP494PI6JiQm0220WJOTzeTSbTVQqFYyOjvI5gX0Ib0JHyb5TwOY4ztANklqK9vIaoOrPIOHWnpOGDxZzHkZI9avf7+POnTt47bXXtrX2+L6PH/zgByiVSqx/fdBBmCC5YDrI67oO3/ehaRo8z4NpmpBlGbFYjM0HzM7OYm5uDufOncOlS5dOtAInyzJkWWZSpul0+oG1/JGPwmGh4CXsdEz7316O7hzOUeEnIM59gzSgXdfF8vIy1tfXsba2hmq1CsuyUK/XsbCwgMXFRdRqNZimyVQV+v0+PM/bpkZDG0wikUChUICu6xgZGUE2m0U8HscTTzyBp59+GlNTU+j1enBdF6Iosq8hbWdqM+LszkltpoqisOzhIPRvu5cR2F7mZMMO7icRIPCAgPOwsbm5ifX1dbRaLZimiatXr6JSqbCZKsuycPfuXdy6dYvJdQL3nHIFQWBmZMBWFnx8fByapkGWZQiCgHa7jXQ6jUwmg2w2C8MwoOs6Pv7xj+Oxxx5DIpGApmkol8sn/vNJkoREIsGkSd+L8z+DXgRkjMnXI85pwQMCbC1mdBg5Sej1zkJ5LwiCbYfp+4XruvA8D91uF8vLy6jVanjnnXfYob/RaMA0TZRKJdanSo62ZCdPyjTUZx6LxaAoClKpFNLpNC5duoSJiQk2cDY6OopLly4hm81CEAQ2WEYqRJTZCoIAmqbBMIwzUYY9y78v4Q+C+lkPc72SJME0zaFfQ9lJKouHr4X+pIBgt+85eD3D/l2H/Sz7EZb7e1DvpWGc5d8ZYr/KG1Xn+Pp7epDyD3mq/PKXv8Ta2hparRYqlQoWFxdZP79lWbBtG5ZlsbXXsiz2/qPMNbVYhqux9Lgoisjn8/jYxz6G8fFxJJNJJJNJZDIZXLhwgb2G7/undl/o0Kzr+oFe+yz+voSNyEilTZKkPdfA07qe8J8Pkgf9Xhq8lvCfD5K97stBux94QADg2WefRTqd3jMzeRzOSnkvnU6f+lASKU30ej1Uq1VsbGxgc3MTi4uLeP3111GtVlmParfbhWVZcByHOV9SSZRcGcnhkbSl0+k0JiYmMDY2hieeeAKZTAbj4+PQdR2XL19GoVCA67pwXRftdhuWZTHFCdqEBv+d78d9OQxn8feFWgvo3oX/fpj3TSQSgeM4sCxrxyIVBAEbJhz2mnRfdnuc+plJgWi36wv/DAfB9/1trRIA/53ZjWH3ZZi8Y5jf//3fB3Dwf4/DcpbvzUnh+z48z4Pruuh2u6wSW6vVsLGxgevXr7N1ttvtYn5+nkl/WpaFUqmETqfDpH0H71kymYQsy1AUBYlEAolEAslkkim7JZNJXLx4kQ0MZ7NZpNNpnD9/HtFodFsFdrAKeFr3hUzH9qs6DnJWfl+y2SwajQYLymh+qt/v77oGnjZn5d7w9Xc4u92X/dZgggcEAF5//XU8+eSTyOfzJ/q6dMAVRfGBlyx930e1WmUuvcel1+sxxQnq79/Y2EClUmEfKysrWF5eRrFYZJuP53nwPI9VAYZBQYGiKJBlGclkEufPn0cqlcLExAQeeeQRXLhwAYZhsKoAGdTU63XWWiRJEvL5PDRNu2/35Tic5d+XcHYKAGsLoPt8UCRJgqqqLDMYRtM09rOHHwvfFyqbD/uepGZCj0mSBFEUdzx3t8/vBg1Ehr0S+O/MTna7L5VKZc+v+4d/+Ad85jOf4evvIaHKa7fbRbPZxNraGu7evYuNjQ3UajW0Wi10u120222Uy2X0+3202204joNKpQLLsnYcKgcPEoIgYHp6Gs8++yxSqRQKhQISiQRUVYWmadA0DePj4/jABz6AdDp96Dms03wvJRKJQz3/rP2+tFotViWXJAmxWAyyLG+b1bhfnLV7w9ffnex1X/ZbgwkeEABMTu20/kFJQuxBIggC+xmPei3tdhsLCwsolUpYX1/H0tISyuUyk+psNpsolUqoVqtsOPgwkTNJiMZiMei6jnw+j4sXL+Lxxx/HxMQEAODChQuYmpqCrutQFAWu68JxHLTbbTbEls/nD7xQnMR9OWnOwrUM3pfwB3BviPco10pqGYNfRwd6OpQMPk6BQq/XG/o9w3KjdI3Drm/wZ9kPyprS8/nvzO7XMOy+7JfJLBaLfP3dB9/32Ro7Pz+Pd955B8VikUl/lstlrK+vo1QqMfEFqmrtlXwZvEbDMKAoCkRRhKqqyGQy+O3f/m1cuXKFKQYlEgmk02kYhnFsV1/+Xtr9Gkgwgz5ISpUGuB/ENZ6Ve8N/Z4Zfw2735aDVJB4QvE8hFYlwOwS1cvR6PWxubjLln3K5zLwAGo0GWq0Wk6XzPI+1+xwGURRZhimZTGJychLT09MYHR3F9PQ0s6qPx+NMg1qWZSZNSZUJACyIkCTpTNjOc/ZGURT0er0dn6fMveu6u8qHUl/tMMjYbD8Ou3DvJnXK4ZwWnueh3W6jWCzi5s2buH79On75y1/iF7/4BTY3N1nLyHF6lynrrGkadF3H7OwsHn30Uei6jnQ6jWw2i5GRETz33HMYHR3la+t9ZnComCRZ95Jm5nCOAw8I3mOEh1ioN5IO9JQVsiwL3W4XrVaL2ctXKhUsLCyg2Wxic3OT/dlqtZi7JKkAnSTUIpJMJpHL5ZDP5zE1NYWxsTFMTEywPlRFUdhgWjabhaqqTEOa2ox6vR4cx4EkSWwTo3YOzulzXNlRQlEUtFotplZCUBmczMkOGxCclvoGV/XgnAZU2azX60xaudlsYnl5GT/60Y/wwx/+EJubmyfyvWRZhqZpUFUV0WgUsVgMzz//PKamplAoFFg75uTkJEu+kODCXi2XnNMjbExGfydpZr4ecU4DHhAcE8rkANsPTL7vo9lsMqnLcPYyrHJCQ2DhYTBSYXEcB51Oh6nkmKbJlCHa7TY6nQ6q1SrbWChr5LrufZ16l2UZ8Xgco6Oj7EBPAUAul8P09DRr89E0DZOTkwDuGVWF7x0NEpNFO2WNRVFk3+eoZjWco3OS95syja7rbtPnpn5ZKokPY7+AYDCg5bKjnLPEX//1X+P73/8+arUaqwDQ0OhhofkdWZah6zqSySSy2SzGxsaYxKeu64jH43jyyScxNTWFdDqNaDQKSZIQjUa3qQI9CNMuzu4MS7rQ+scrBJzTgAcEJ0g4U01KOcC9AczBvmtybY1Go+wQ7Hke4vE46wczTROGYTAFFVEUmUJPt9tlbrzUS+p5HjqdDgBsKy3Sn+E+RBqGUVV1m64/6fTT5kE9/WNjY8jn88jlcmyg1zAM9rOqqsqy9vTzhg+SQRCwmYN+v78tIKDnU5Y4lUohGo2e/j8a50gcp0IQNig7SkBArW6DlaHBazqpIOagrUgczn785Cc/wc2bNxGNRmEYBj7wgQ/gpz/9KXuc1lDaG2ZmZnDhwgVcvHgR6XQaY2NjSKfTSCQSLHuvqipbt0lznw74g2swcE91J7z+cs4egxUCAGyomK9HnNOABwTHRBRFpFKpoY8lEokzs/D6vo9isYjR0dEH1mIjCAJSqRSTnFRV9UxM53MOxjA9/6MyzKAs7Dux24ZH2fphAcFptgzRxsx/VznH4Tvf+Q5vceQciGHu6/slTDic48ADAs59RVVVpjLDg4H3DsOUeo6DLMuwLGvHa5Kiz14VAmCnPCJ9/Wk5FdNr8d9XDodzPxi21iiKwubqOJyThqcqOBzOoRlWzj4MiqLs6IUlWdG93I8piBw2/E6Z/PDrnQQUEPCsHIfDuZ8Mc/3mFQLOacEDAg6Hc9+RJAmRSGTbQGV4zmavweHdZEAHZfr24jCBDA8IOBzO/WZYyxAZM/K1iHMa8ICAw+EciJPOvtNgcfg1SYFocL4g/JzdAoJBxardOMq1c6UhDodzPxkm3CDLMjzPu68qgpz3Dzwg4HA4+3IavfODg8V02BdFcdeAALg3WDfIsEz+SW2cXGmIw+HcT0iJMLzW0QwBX4s4pwEPCDgczqE5iQBBUZRtnhm0AQ5WDgYRRXHPCgFtlicZxPAKAYfDuZ8MS3DQ7BV3TuecBjwg4HA4h+Y4PgQEOVHT5kZcKHTUAAAST0lEQVQH+P0qBLuZk1FAcRrl9MGBZQ6HwzlNhrVAKoqy7/rI4RwVHhBwOJx9OY2DNpnQ0eZGB/rw54axW4WAXvO0pEd5hYDD4dwvaD0crBAIgsADAs6pwAMCDodzaE4qQJBlmSkNUUZMkiT0+/09pUd3UyEKXxdvGeJwOO9VdpshiEQisG37AV4Z52GFBwQcDueBER4spgM89cnuZU62lyzpabkV84CAw+HcT4Z5q8iyzAMCzqnAAwIOh3MgBjemk6gQkGu17/s7KgR7BQS7tQwd9LoOe+08IOBwOPebYesODwg4pwUPCDgczr4Ma785iYBAkiQIggDXddn3kGUZvu/veujfq2UovIHu5ktwlFYiLjvK4XDuN5FIZMdap2na/2vv3mObKt84gH97W0/LNscss4NdkAnisg0Jy6JAZBvKZTNRMpkJFzPiUEfixAQBI+K4zhgTJDJlmTg1ggk3E8MY4eIgOoyXDAg3QS4SLlu3wUZXWBkt5/cHvxZKz9kGdj2l5/tJmtDT9vTpQ/e0T9/3vMfnhI5EgcKGgIjuW29PAtab/XiWGb17lSFPkyBFp9Ph1q1bks/dl1OGuMoQEQWTVN0xGo0+yzUTBQobAiK6b4Fcdeje4wi0Wm23DYFer5dtCPpy2VGOEBBRMEnVnZ5WYSN6UGwIiKhHUiMCgVrFR2qloe7W2tbr9RBFUfZsxX217CgANgVEFDRSUxU5QkB9hQ0BEd23QI8QeI4Z8Cy11925BvR6PQDInq24r5YdBdgQEFHwSE0ZEgQBXV1dbAgo4NgQENEDCdQHkk6n844I3LvSkBStVgutVit5e18eQwCwISCi4JGqZ54fUFiLKNDYEBBRr/XFr+/AnWlDnhECrVYrewyB5z5yIwR99UHJ4wiIKJikao7JZILb7ZZdaY3oQemVDiDQHA4HKioq0NDQAJPJhMLCQuTl5SkdFtFD7d4GINAH70ZERKCzs9O7X71e3+3Sep6Vhu519xB7dyshPUjsXHqUiIJJquaYTCa4XC42BBRwYdcQVFZWwu12o7q6Go2NjVi8eDESEhKQkZGhdGhEJCMiIgJ2ux0RERE+IwByX9zlphT15dQeLj1KRMEk9cOHIAgQRZHnIqCAC6spQ06nE/X19ZgxYwbMZjNSUlKQm5uL3bt3Kx0aUVgJ9AiBwWAAcOdAYYPB0O2wuFxD0JvzIzzodCdOGSKiYJL6EcJkMgEAOjs7lQiJwlhYNQQXL14EACQlJXm3DRkyBOfOnVMqJKKwEKgTkXW3/7uPI/D8MibXEMitQiQ1QhComNkQEFEwSU0ZEgQBABsCCrywmjLkdDq93bNHv379/P5wWltb0draCgBoaWnxrnce6A97URS9qwEE+iDM++V5baHwhYZ5kRbKefHE1dzc7J3O09HRAY1GE7CT5NjtdrS2tkKj0aCjowM2mw1Xrlzxjh48+uij3rw4HA4IggCj0ei3n7a2Nrjdbuj1erS1teHWrVvepUoB4Pr163C73XC5XLBYLL2OT6fTAeB7Rs6D5sXz/8v6GxzMi7RQzIunvh45csTndr1eH9RjmkIxN3zP+ApEXsKqIRAEwe/L/7Vr1/yahC1btqCqqsp7fdy4cQCApqamvg9SYc3NzUqHEJKYF2l35+Xeta/79+8P4PbfWKBER0cDuH1MgWf/wJ2VhTxiYmJgMBgkn9uzTndXVxcEQcCNGzdw48YNn/totVp0dHTILm3aHYfDAYDvGTn3m5dZs2YBYP1VM+ZF2vXr12EymfxGOV966SUYjUZV/M3I4XtG2n/JS1g1BIMGDQIAnD9/HomJiQCAs2fPIjk52ed+BQUF3iagpaUFtbW1AACr1RrQeERRhMvl8nbzSvL8uhsXF+edVqEU5kUa8yItlPICMDdy5PLS05eW6upqzJo1i/U3SJgXaaGYF6vVioEDByoaCxCaueF7xld3eelt4xhWDYEgCBgzZgzWr1+P0tJS2Gw27NmzB/Pnz/e5n8Vi8U4ViI6ORkREBAAE/M0liqL3JEpKv1k8PPEoiXmRxrxIC8W8AMyNnPvNi2e1FNbf4GBepDEv8pgbaeGWl7BqCADgzTffxJo1a1BUVASz2Yzp06djxIgRSodFRERERBSSwq4hiIyMxMKFC5UOg4iIiIjooaD8WBQRERERESmGDQERERERkYqxISAiIiIiUjE2BEREREREKsaGgIiIiIhIxdgQEBERERGpWNgtO/qgWltbA75PvV6P/v37o6WlBS6XK+D7fxChcKpz5kUa8yItFPMCMDdy7s1Lb2or62/wMC/SmBd5zI20hyUvva2vqm8IzGYzDAYDtm7dqnQofcrpdOLcuXNITk6GIAhKhxMymBdpzIs85kZad3kxGAwwm81+j2H9VTfmRRrzIo+5kdZTXuRq8N00oiiKfRXgw6K9vR3Xr19XOow+dfr0abz77rtYtWoVUlJSlA4nZDAv0pgXecyNtO7yYjabERMTI/k41l/1Yl6kMS/ymBtpPeWluxrsofoRAgCIiYnpMVEPO7vdDgAYMGAABg4cqHA0oYN5kca8yGNupD1oXlh/1Yt5kca8yGNupAUiLzyomIiIiIhIxXRlZWVlSgdBwWEymZCZmdnjPDK1YV6kMS/ymBtpzIs85kYa8yKNeZHH3Ej7r3nhMQRERERERCrGKUNERERERCrGhoCIiIiISMXYEBARERERqRiXHVWZrVu3oq6uDs3NzejXrx9ycnIwbdo06HQ6pUMLOofDgYqKCjQ0NMBkMqGwsBB5eXlKh6WomzdvYu3atTh06BA6OjpgsVgwdepUZGdnKx1ayLDb7SgpKUF8fDw+/fRTpcMJGfv378eGDRtgs9kQHR2N119/HaNHj1Y6rJDC+nsH668/1t/eYQ32F4j6y4ZAZURRRGlpKR5//HFcuXIFy5cvh9lsRkFBgdKhBV1lZSXcbjeqq6vR2NiIxYsXIyEhARkZGUqHphi3243Y2FgsX74ccXFx+Pvvv7F06VJYrVYMHz5c6fBCwtdff43Bgwfjxo0bSocSMg4dOoSvvvoK8+bNw/Dhw2G32+F0OpUOK+Sw/t7B+uuP9bd3WIN9Bar+csqQyhQUFGDo0KHQ6/WIi4vDuHHjcOzYMaXDCjqn04n6+nrMmDEDZrMZKSkpyM3Nxe7du5UOTVGCIGD69OmwWq3QarVITU3FU089hePHjysdWkg4fPgwmpqakJOTo3QoIWXDhg149dVXkZqaCq1Wi5iYGFitVqXDCjmsv7ex/kpj/e0Za7C/QNVfNgQqd/ToUSQlJSkdRtBdvHgRAHxe+5AhQ3Du3DmlQgpJTqcTp06dQnJystKhKO7mzZuorKzEW2+9BY1Go3Q4IcPtduOff/6B3W7HG2+8gaKiIqxatQoOh0Pp0EIe6y/rb3dYf32xBvsLZP1lQxBG3G53t5d7bdu2Df/++y+mTJmiQLTKcjqdMJlMPtv69euHzs5OhSIKPaIoYvXq1Rg6dChGjhypdDiK27RpE0aOHInBgwcrHUpIaW9vh8vlwq+//oqVK1dizZo1sNvtqKqqUjq0oGL97T3W356x/vpjDfYXyPrLYwjCyIcffogjR45I3hYTE4PvvvvOe72urg6bN2/G8uXLER0dHawQQ4YgCH4fPteuXfP7kFIrURTxxRdf4PLly1i6dKnqf425dOkS9u7di9WrVysdSsgxGo0AgPz8fFgsFgDA1KlTsXLlSiXDCjrW395j/e0e668/1mBpgay/bAjCSG/fAPv27UN1dTWWLVuGhISEPo4qNA0aNAgAcP78eSQmJgIAzp49y6FZ3P4wWrt2Lc6cOYNly5ZBEASlQ1Lc8ePHcfnyZRQXFwMAXC4Xurq6MH36dFRVVT3wqeLDQWRkJCwWi+q/tLD+9h7rrzzWX2mswdICWX/ZEKjMvn37UFVVhSVLlqi6+AqCgDFjxmD9+vUoLS2FzWbDnj17MH/+fKVDU1xlZSVOnDjhXQGFgLFjx2LEiBHe6/X19airq8OiRYv4qyaACRMmoKamBpmZmTAajdiyZQuysrKUDivksP7exvorj/VXGmuwvEDVX40oimIfxEchqri4GJcvX4bBYPBuS01NRVlZmXJBKcThcGDNmjVoaGiA2WzmOtgAmpubUVxcDIPB4LM2+iuvvILCwkIFIwste/bsQW1tLdfA/j+3241169Zh79690Ol0yMzMxOzZs/mF5h6sv3ew/vpj/e091uA7AlV/2RAQEREREakYVxkiIiIiIlIxNgRERERERCrGhoCIiIiISMXYEBARERERqRgbAiIiIiIiFWNDQERERESkYmwIiIiIiIhUjA0BEREREZGKsSEgInqIaDSaHi/ffPMN9u7dC41Gg7/++kvReLOzs/Hiiy8GZF9FRUVIS0vr8X5paWkoKioKyHMSEamBXukAiIio93777Tef688++yzefvttTJs2zbstJSUFR48eDXZoRET0kGJDQET0EHnmmWf8tiUlJUlufxCiKKKrqwtGozEg+yMiotDHKUNERGHsypUrmDZtGqKiopCcnIxPPvnE53bPNJzt27djxIgRMBqN+OmnnwAA7e3tmDNnDuLj42E0GjFq1Cjs3LnT5/H19fV47rnn8MgjjyAqKgrp6en49ttv/eLYtGkTnnzySURGRiI3NxenT5/2i7O4uBgDBgyAyWRCVlaW33NJ2b9/P0aNGgVBEJCWloba2tr7TRERkepxhICIKIyVlJRg5syZ+PHHH7F161YsWLAAGRkZmDRpkvc+ly5dwjvvvINFixYhMTERiYmJ6OrqwgsvvACbzYYVK1Zg0KBB+P7775Gfn4+Ghgakp6fDbrcjPz8fY8eOxQ8//ACj0Yhjx46hvb3dJ4aDBw+ipaUFH3/8MdxuN+bOnYsZM2Z4pz+53W5MnjwZp06dQnl5ORISEvDll18iLy8Pu3btQk5OjuRra2pqwsSJE5Geno6NGzeira0NJSUl6Ojo6LuEEhGFITYERERhrKCgAGVlZQCA3NxcbNu2DZs3b/ZpCNra2rBjxw5kZWV5t1VXV+PgwYM4dOgQUlNTAQATJ07EyZMnsWzZMmzcuBEnT57E1atXUV5ejvT0dADA+PHj/WJob2/HgQMHMGDAAO/12bNn48KFC0hISEBNTQ3++OMP1NTUIC8vDwAwadIkpKWlYcmSJbINwWeffQaNRoPt27cjJiYGABAfH4+JEyf+x6wREakLpwwREYWxCRMmeP+t1WoxfPhwXLhwwec+FovFpxkAgJ07dyI9PR3Dhg2Dy+XyXsaPH48///wTwO2Dl6Ojo1FSUoKNGzeipaVFMoann37a2wwA8DYYnjh++eUXREVFeZsBT6yFhYXYv38/3G635H5///135OTkeJsBz+uNjo7uMS9ERHQHGwIiojB295dlAIiIiIDT6fTZFhcX5/e41tZWHDhwAAaDwedSXl6O8+fPAwD69++PXbt2ISoqCjNnzoTVakV2djYOHz7cYwwAvHG0tbXhscce84vBarXi5s2bcDgckq+tsbFRMnapbUREJI9ThoiIVE6j0fhti42NRUZGBtatW9ftY7OyslBbW4vOzk7U1dVh3rx5ePnll/0OGu5ObGwsbDab3/ampiYYDAZERkZKPi4+Ph7Nzc1+26W2ERGRPI4QEBGRn+effx5nzpzBwIEDkZmZ6Xe5l8lkQl5eHkpKSnD27Fm/UYjujB07Fh0dHdixY4d3261bt7Bp0yaMHj0aOp1O8nFZWVmoq6vD1atXvdt27twJu91+H6+UiIg4QkBERH5ee+01VFZWIjs7G/PmzcOwYcO8Bwd3dXWhvLwcNTU1WLduHaZMmYKkpCQ0NTXh888/x5gxYyAIQq+fKz8/H1lZWZg5cyZWrlyJhIQErF27FidOnEBFRYXs4+bOnYuKigpMnjwZCxcuRFtbGz766CPExsYGIgVERKrBhoCIiPwYjUb8/PPPKCsrw4oVK9DY2AiLxYKRI0dizpw5AIAnnngCWq0WH3zwAWw2GywWCyZMmIDy8vL7ei6dTofa2lq89957eP/99+FwOJCRkYGamhpkZ2fLPi4+Ph61tbUoLS3F1KlTkZKSgoqKCixYsOC/vHQiItXRiKIoKh0EEREREREpg8cQEBERERGpGBsCIiIiIiIVY0NARERERKRibAiIiIiIiFSMDQERERERkYqxISAiIiIiUjE2BEREREREKsaGgIiIiIhIxdgQEBERERGpGBsCIiIiIiIVY0NARERERKRi/wMeHL1s/5cp+wAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 900x350 with 2 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "<ggplot: (8766757080797)>\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA10AAAGJCAYAAABxS1lPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXyM1/4H8M/smSQkISEk1iB2Qq0VYte69tZSu4QqjVKllP6qrUsX1C26IPbl1tr2KiFaepVaausS164oIQkRWSczc35/xDydycxkITMjk8/79cormTPPPGd5njOT75zznEcmhBAgIiIiIiIih5C7ugBERERERETujEEXERERERGRAzHoIiIiIiIiciAGXURERERERA7EoIuIiIiIiMiBGHQRERERERE5EIMuIiIiIiIiB2LQRURERERE5EAMuoiIiIiIiByIQRc9seDgYHTp0sXVxaBitHLlSshkMvz000+Ffs2wYcOgVCodWKpcly5dgkwmw9y5c59oP7Nnz4ZMJsPNmzfzTXM0vV4PmUyGqKiofNOcxRVtUBzOnDmDzp07w8/Pr1jOj9KuuPpZURw4cACtW7dGmTJlIJPJsGHDBgBAUlISRowYgcqVK0Mmk/HzhohKJAZdZNPBgwchk8ns/pg+DEuLKVOmQCaTwcPD44n3tX///nzbtiT+w0vAokWLsG7dOlcXo1BWrVqFTz/91NXFKDY5OTno378/Ll++jLlz52L9+vXo27ev3e1t9UEvLy80adIE8+bNQ1ZWVpG37d+/P2QyGU6cOJFvWZ9//nnIZDKcO3cu3+1K0vlUHJKTk9GvXz9kZmZi4cKFWL9+PZ599lkAwOTJk7FlyxZMmDAB69evx8yZM11cWiKionP819JUor3wwgvo06ePVbrpwxAALl++DLncfeP3EydOYMmSJfD29kZOTk6x7XfQoEH4xz/+YfO5cuXKFVs+j2P06NEYNmwYNBpNoV+zevVqxMTEOLBUjjdnzhzMnj37sYLrRYsWoW7duhgxYkSRXqdUKpGZmemUUUKTVatWISEhAZMmTbJ67knawFUuXryIq1ev4tNPP8XEiRML/TrzPnjnzh1s2rQJs2bNwpEjR7Br164ibRsVFYWdO3ciJiYGLVq0sJnfX3/9hX379qFt27aoV69evmV73POppDp27BgePHiAuXPnolevXhbP7du3Dz179sTs2bNdVDoioifHoIvy1aRJEwwbNizfbYryj7mjZGVlQaVSQaFQFOt+c3JyEBUVhT59+uDOnTv45Zdfim3fTZs2LbBtXUWhUBSqLYUQyMjIgJeXF1QqlRNK5lhKpdJpwY/5Ofs0BTjObIPikpCQAADw8/Mr0uvy9sHo6Gg0b94c3333HU6fPo2wsLBCb9ujRw9UqVIFmzdvxqJFi+Dp6WmV3+rVq2EwGBwybdRR74HOYu8YGgwGJCYmFvnYEhE9bdx3eIKcxt41XWvXrkWjRo2g0WgQFBSEN954A7/99pvVdQL5XT9k6zqhdu3aoVatWrh69SoGDRoEf39/aLVa3L59W9pm69ataN++PcqWLQutVotmzZph1apVRa7bRx99hGvXrhU4Fevy5cs4f/58kfdfGKb2PXv2LLp164YyZcqgfPnyGDduHDIyMmA0GvHBBx8gJCQEGo0GDRo0wHfffWexD/PrMzZv3oymTZvCw8NDOi4ZGRkW29s6Jqa0AwcO4J///Cdq164NjUaDTz75BID9a7ru3r2LKVOmoFatWtBoNPD390f79u2xdetWaZubN29i6tSpCAsLQ7ly5eDh4YHQ0FC8/fbbFlO9Hkdqaiqio6MRGBgIrVaL5s2bY/v27Ta3tXU907179zB16lTUqlULWq0Wvr6+aNCgAaZNmwbg77b966+/8P3339ucJprfOVvQ9VtxcXFo06YNPD09ERAQgKioKCQnJxdYbhNT3sDf14odPnwYly9ftiir6Vjb29eNGzcQGRmJoKAgqNVqVKlSBePHj8edO3cstjNNx9uwYQNiYmLQsGFDaDQaBAcH4+2334bBYLB7rPLavXs3IiIiULZsWXh6eiIsLAyff/45hBDSNsHBwejcuTMAYPjw4U80RVetVkv7unTpUpG2lcvlGD16NFJTU7Ft2zar7YUQWL16NcqUKYOBAwfa3e+Tnk8AsGzZMnTr1k06VhUrVsSLL76I+Ph4m3lu2LABjRs3tnhPyMzMtLmtEAJffPEFWrRoAS8vL3h5eeHZZ5/Ft99+a3P7devWoWXLlvDy8oK3tzfatGlj0fdN52RkZCQAIDw8HDKZDEql0uI9JSYmptRObyci91Cyvs4kp8vIyEBSUpJFmkqlgo+PT76v+9e//oXJkyejfv36ePfdd6FUKrFp0yb8+OOPxVKu1NRUhIeHo3Xr1nj33XeRmpoqfbM8a9YszJs3D507d8Y777wDDw8PxMbGIjIyEleuXCn0heEXLlzA3Llz8fHHHyMoKCjfbTt06ICEhATo9fpC18FW2wK5Iw2+vr4WadevX0eXLl0waNAgDBgwAEeOHMGKFSuQnZ0NrVaL48ePY/z48VAoFPjkk0/Qv39/XLp0CVWqVLHYz86dO3Hx4kVMnDgRY8eOxb59+7Bw4UL8+uuv2Lt3L2QyWYHlfv3115GZmYlRo0bB398f1atXt7vttWvX8OyzzyIhIQHDhg1DixYtkJ2djVOnTmHXrl148cUXAeQugvD111+jX79+qFGjBoxGI3744QfMnTsXZ8+etfsPXUH0ej26d++Oo0eP4oUXXkDHjh1x9epVjBw5EqGhoYXax4ABA/DTTz/h5ZdfRpMmTZCVlYVLly7hhx9+AAAEBgZi/fr1mDRpEipXrowZM2ZIrzWfJprfOWvPiRMnsHnzZkRGRmLEiBH4+eefERMTg+PHj+PYsWPQarVFag+FQoH169fj/fffx4MHD7BgwQLpufza4/r162jZsiWSk5Mxbtw4NGzYEKdPn8aKFSsQGxuLEydOICAgwOI1S5cuxe3btxEVFYXy5ctj+/btmDt3Lnx8fPDGG28UWNYvv/wS48ePR82aNTF9+nR4eXlJ1/X89ttv+OyzzwAAS5YswfHjx/HBBx/glVdeQdu2bQE8/hTdCxcuAIBVfQqz7ZgxYzB37lzExMRYTQs8cOAArly5gnHjxsHLy8vuPovjfProo48QHh6OLl26wM/PDxcuXMDKlSuxb98+nDlzBjVq1JD2s3TpUkRHRyM0NBRz5syBQqHAhg0bcPDgQZvlGz58ODZt2oS+fftKI3/btm1Dnz59sHz5cowdO1ba9q233sL8+fPRtGlTzJkzB0ajEevWrcPAgQPx4YcfYvr06dI5efDgQcTExODtt99GnTp1IJfLUb16dXTr1g0jR45ERESEFJiZT28nIioxBJENBw4cEABs/rRq1cpi26CgING5c2fpcXJystBqtaJ27dri4cOHUnpmZqZo1qyZACDef/99KX3FihUCgDh06JBVOYYOHSoUCoVF2rPPPisAiFmzZlltf+LECQFAvP7661bPjR8/XigUCnHt2rUC6280GkX79u1FixYthMFgkPLVaDQ2tw8KCrIqpz1xcXF22xaAaNCggdW+AYitW7dapPfq1UvIZDLRvHlzodPppHRTG8yePVtKu3jxogAg5HK5OHnypMV+Xn75ZQFAbN68WUqzdUxMaXXq1BFpaWlW9bJ1rLp37y4AiF27dlltb2pXIYTIyMgQRqPRaps333xTABCnTp2yqov5OWTPl19+KQCIqVOnWqQfOnRIau8bN25I6bNmzbJIS05OFgBEdHR0gXnl7Qfm8jtnc3JyBAARGRlplQZA7Ny502L7efPmCQBi/vz5dsudN++QkJAC0/Lb15AhQwQAsX37dottY2JiBADx8ssvS2mm87ty5cri/v37UrrBYBB16tQRVapUsZmvuXv37glPT09RtWpVce/ePSldp9OJTp06CQDiyJEjVnmuX7++wH2bb//222+LxMREkZiYKH7//Xcxbdo0AUDUrFlTZGdnF3lbIYTo1q2bACAuXLhgkedLL70kAIjjx48XqoyPez4JIWz2z19//VUolUoxadIkKc3UzjVq1BAPHjyQ0tPT00WjRo2s+tnWrVsFAPHpp59a7NtoNIrnnntO+Pj4SHmfO3dOyGQy0aJFC5GZmSlt+/DhQ1GvXj2hVCrF9evXpXR7nwO2+gcRUUnE6YWUr1GjRiEuLs7iZ8mSJfm+JjY2FpmZmZg4cSK8vb2ldA8PD0yZMqVYyiWTyTB9+nSrdNO0kzFjxiApKcnip3fv3jAYDPj+++8L3P+XX36Jw4cPY/ny5YVaJOTmzZtFGuUCgMjISKu2jYuLw8qVK622rVq1Kl544QWLtPDwcAghMHHiRIvrqZ555hl4enri4sWLVvvp0aMHmjVrZpH21ltvAYDdKXd5RUdH5/tNvUliYiL27duHLl26oGfPnlbPm7erVquVRtlycnJw7949JCUloWvXrgByL7J/HNu3b4dMJrNa7axdu3aIiIgo8PWenp5Qq9U4cuQIrl69+lhlMLF3zuanfv36VqvwTZ48GZ6enoU+Xk9Kr9fj22+/RYMGDdC/f3+L50aNGoVq1arZLEtUVJTFiK1cLkenTp1w48YNu1PXTGJjY5GRkYFJkyZZXMujUqkwa9YsAMCOHTuepFoAgPfffx8BAQEICAhAw4YN8fHHH6Njx47Yu3cv1Gr1Y21rGukxn86ckpKCHTt2oHHjxnYX2Siq/M4nU/8UQiA1NRVJSUmoVKkSateubdGXTO0cHR2NsmXLSumenp6YOnWq1X43bNgALy8vvPjiixbvrcnJyejbty8ePHgg7X/nzp0QQuDNN9+0uGbR29sbb7zxhnReERGVFpxeSPkKCQkp8j1Rrly5AgCoW7eu1XO20h5HYGCgxT8JJqZlmBs2bGj3tXmvQcnr1q1bmDFjBiZPnoymTZs+WUHzUatWrUK3bc2aNa3STP+M2nsu73U/QO4/8XlVrVoV3t7eBV7DYlKnTp1CbXfx4kUIISwWI7BHr9fj448/xtq1a3HhwgWLa3aA3OuqHsfly5dRsWJFlC9f3uq5Bg0a2J1CZeLh4YElS5Zg0qRJqFmzJkJDQxEeHo7nn38evXv3LtKiBfbO2fzYOl5arRY1atQo9PF6Unfu3EF6errNPiWXy9GgQQPs3r0bqampFvWzdV6ajsO9e/fynbJreg9p0KCB1XONGjUCkHtsn1RkZCQGDx4MmUwGT09P1KpVy+60wsJu26dPHwQEBGDt2rV4//33oVQqsXHjRmRlZRXrAhr5nU8HDx7E+++/j59//tkqwK1du7b0t6kNbZ1nttr+3LlzSE9PR6VKleyWy/T+6qxjSERUUjDoIocpzPVBBW1nb/TI3rUwRqMRQO4F+PZW0zMtKmDP9OnToVQqMXr0aFy7dk1Kz87OhhAC165dg1KpRHBwcL77KU75/XNv77m8gUt+hBCFPl4FXYf0OPlPnjwZy5Ytw6BBgzBjxgxUqFABarUa169fR2RkpHRci1Nhyzdu3Dj07t0bu3fvxqFDh7B3716sXLkSbdq0wYEDBwq9emdh262wzI/X4/ShwjK1U2HPD5P8ztmC2v5x8yyqonzxUdhtVSoVRowYgYULF2LPnj3o1asXYmJi4OHhUayrldo7n44dO4YuXbqgVq1amDdvHmrUqAFPT0/IZDJER0cX+rYXto6R0WhEuXLl8NVXX9l9nSk4d9YxJCIqKRh0UbEzfcN97tw5dOvWzeI5WzcENV0cbms0w/RtaWHVqVMH+/fvR1BQEBo3blyk15pcu3YNycnJdkfLatSogWrVqlkEZCWFrdXLrl+/jvT0dISEhBRrXnXq1IFMJsPp06cL3HbdunXo2LEj/v3vf1uk/+c//3miMoSEhCAuLg7JyclWo132VnKzJTAwEGPGjMGYMWMghMDUqVPxySefYMeOHRgyZAgAx/xzaauMmZmZuHr1qsXohHkfyvtlwJUrV6xGRIpS1sDAQHh5eeH333+3ek4Igfj4eAQEBBR5FC8/pi9Gfv/9d3Tv3t3iOVM5ivt8LU5RUVFYuHAhVq5cieDgYJw+fRovvfRSkZY9f9zzaePGjTAYDNi3bx+qVq0qpQshkJiYaDHl09SG8fHxVu1s69yrU6cO9uzZg2eeecZqsZ+8zI9h3kVaSsIxJCIqbrymi4pdjx494OHhgWXLliEtLU1Kz8rKwuLFi622N30g79+/3yL94MGDOHHiRJHyNq0YNmPGDJvf6KakpECn0+W7j/nz52Pnzp1WP/Xq1YNKpcLOnTuxfPlyi9c4csn44hQbG4tTp05ZpM2bNw8ArK7XeVIBAQHo1q0b9u/fb7WEPQCL0SuFQmH1zbpOp8P8+fOfqAz9+/eHEMJqPz/99FOBUwuB3BUm8y6nL5PJpCmT5l8UeHt7P/Y0SHvi4+Px9ddfW6QtXrwYGRkZFsfLXh9as2YNEhMTrfbr7e2N+/fvF6oMSqUSvXv3xu+//25VlrVr1+LatWvFfu50794dnp6eWLJkCR48eCCl6/V66XwdMGBAseZZnOrWrYt27dph9+7d0mqpRZ1a+Ljnk2mEMW9/WrZsmdWU4x49ekCr1WLJkiVITU2V0jMzM7Fw4UKrfY8cOVK6TsvWSJj51O2+fftCJpPh448/RnZ2tpSenp6OBQsWSOcVEVFpwZEuKnblypXDP//5T0ydOhWtWrXCiBEjpOsaTFP+zL/FrV+/Pjp37oxly5YhJycHYWFhiI+Px7p169C4cWP88ccfhc67VatWmDNnDubMmYPGjRtj8ODBCAoKwp07d/Drr7/i22+/xcWLF/OdGhgeHm4zfcGCBZDL5VYLGwCPt2T8mTNn7N5vpkuXLggMDCz0vgqradOm6NixIyZMmIDg4GDs27cP3377LTp16oRBgwYVe36ff/452rZti969e2PYsGFo2bIl9Ho9Tp06BZlMhjVr1gAAXnzxRaxYsQIDBw5Ely5dkJycLF20/yTGjBmDVatWYeHChfjzzz/RsWNHXLt2DZ999hmaNWtmFYDmFR8fj86dO6Nfv36oX78+/P39cenSJXzxxRfw9fW1OBdat26NtWvX4p133kFoaCjkcjn69OlT5GXdzTVu3BhDhw5FVFQU6tati6NHj2LdunVo0KABXnvtNWm77t27IzQ0FG+99RYSEhJQs2ZN/PLLL9i1a5fNa6tat26N2NhYREdHo3Xr1lAoFOjSpQv8/f1tluODDz7ADz/8gIEDB0pLxp85cwYrVqxAtWrV8P777z92HW3x8/PDokWLMH78eDRv3hyjR4+Wloz/+eef8corr6B169bFmmdxi4qKwk8//YQdO3YgJCSkUAu3mHvc82nAgAH49NNP0a1bN4wbNw5arRY//vgjvv/+e4ul4oHcdp4/fz4mT56MVq1aYdSoUdIS7nkXEgGAgQMHIjY2FsuXL8eZM2fQu3dvVKxYEbdu3cKJEyewf/9+6RqyunXrYsaMGZg/fz7atGmDl156SVoyPj4+Hh9++KHVLS2IiNyaE1dKpBLEtGR8YZbltre0cUxMjKhfv75Qq9UiKChITJ8+XRw5ckQAEAsXLrTYNiEhQQwcOFCULVtWeHp6ioiICHH06FG7S8bbW+7aZPfu3aJHjx6iXLlyQqVSicqVK4tOnTqJRYsWiaysrEK0gDVnLRkPQMTFxVns21b75rfUft7XmC+zvmnTJtG4cWOh0WhEpUqVxJQpU6yWmM5vyXhb+Qlhe8l4IYS4deuWmDBhgqhWrZpQqVTC399fdOjQQWzbtk3aJj09XUybNk1Uq1ZNqNVqUaNGDTFr1izx22+/WZ2HRVkyXgghUlJSxIQJE0SFChWERqMRYWFhYtu2bTaXRs+blpiYKCZPniyaNm0qfH19hUajEdWrVxeRkZFWS4Lfvn1b9OvXT/j6+gqZTGaxn/zO2fyWjI+MjBT79u0TrVq1ElqtVpQvX16MHj1a3L1712o/Fy5cEM8995zw9PQUZcqUEf/4xz/E+fPnbeb98OFDMWrUKBEQECCV1XRc7S0/f/36dTF69GhRqVIloVQqReXKlcW4cePE7du3LbbLb/n2/Ja2t+U///mPaN++vfD29hYeHh6iSZMmYtmyZVa3F3jcJePNl90vjm3NpaenCx8fHwFAzJs3r0ivFeLxzychhNi5c6do3ry58PT0FH5+fqJPnz7i3Llzdl+3du1a0bBhQ6FWq0XlypXF66+/Ls6ePWu3n23cuFF06NBB+Pj4CLVaLapUqSKef/55sXz5cqtt16xZI1q0aCG0Wq3QarWidevW4quvvrLajkvGE5G7kwlRhKvdiZ7Q5s2b8dJLL2Hbtm1P9fQgd3Pp0iXUrl0b77//PmbPnu3q4hARERGVKrymixwiKyvLas5/VlYWFixYAI1Ggw4dOrioZEREREREzsVrusghDh48iKlTp+KFF15AcHAwbt++jY0bN+LChQt477337F47QkRERETkbjjSRQ5Rq1YthIaGIiYmBtHR0fjoo4/g5+eHtWvX4u2333Z18YpFREQEqlev7vB81qxZA5lMVqjV9kqS6tWrF3lxgcdRlPazte3BgwctFv1wlTlz5kAmk5XIWxU8LZx1zhUXHnMiIvfBkS5yiFq1amHHjh2uLkahHTx4EB07drRIU6lUqFSpEsLCwjBlypQSPSWyVq1aRbpZcXFISUnB4sWLERERUaL+0SUCcgOepk2b2lyttDh9/fXXOHPmDObMmePQfIiIyLUYdBGZeeGFF9CnTx8AQHZ2Nv73v/9h5cqV+Pbbb/HNN9+gV69eLi5hyZGSkoJ3330XAGwGXefPn3fIDYWLW/v27ZGZmSnd7sBVZs+ejRkzZkCj0bi0HKXFu+++i5EjRzol6Fq7di2DLiIiN8egi8hMkyZNMGzYMIu08PBw9OnTBzExMQy6CiEtLQ3e3t4FbldSgge5XA4PDw9XFwNKpRJK5dP1lm00GpGVlQVPT09XF8XlCnveExFR6cRruogKULlyZQCwebPQvI4fP44xY8YgNDQUXl5e8PLyQosWLbB69Wqb26elpWHOnDlo2LAhtFot/Pz80KJFCyxdurTAvJYuXQqFQoGBAwciOzvb5jZGoxFVq1ZFnTp1bD6/f/9+yGQy/POf/7RI3759Ozp06ICyZctCq9UiLCwMK1eutHq96RqZX3/9FT179oSfnx/KlCmDNWvWSDdifffddyGTySCTySyugbN3fc2vv/6KIUOGoHLlylCr1QgKCkKfPn1w8uRJaZuitvOTsHVNl3namjVr0KhRI3h4eCAoKAizZs2CwWCw2s/ly5cxatQoqV7BwcGYMGECkpKSClUOW9f33L9/H9OmTUPt2rWh1Wrh4+OD+vXr4/XXXy/UPnU6HWbPno2qVatCo9GgXr16+Pzzz21e22bKPz4+HtOnT0e1atWgVquxZcsWaZvY2Fh07NhROm+aNm2KZcuWWU1tze96SJlMhlGjRkmPr127BplMhjlz5mDXrl1o2bIltFotKlSogPHjxyMjI8NqHydPnkSXLl3g5eUFPz8/DBgwoNDXRZmOLQCsXbtWOnfNR2XtnfdA/tcQjho1ymo/a9eulept+sl7/WB2djbeeusti+O0adOmQtWHiIieDk/X16ZELpaRkSH9E5ydnY2LFy9i5syZUKlUePnllwt8/c6dOxEfH49BgwahSpUqSElJwZYtWzBmzBgkJiZi+vTp0rYPHjxAeHg4fvvtN/Tp0weRkZFQKBT4/fffsWPHDrz66qs28xBC4M0338THH3+MKVOmYOHChXan6cnlcgwfPhzz5s3DkSNH0LZtW4vn165dC7lcjhEjRkhpc+bMwbvvvouOHTvinXfegVarxd69ezF27FhcunQJH3zwgcU+bty4gQ4dOqBv376YP38+EhIS0L59e3zyySeYMmUK+vXrh/79+wNAgSMBe/bsQb9+/aDRaBAZGYm6desiKSkJP/74I44cOYLmzZsXuZ0d6YsvvsCtW7cQFRWFgIAA7NixA/PmzUOZMmUwY8YMabszZ84gIiICnp6eGDNmDKpVq4aLFy/i888/x/fff4/jx4/Dx8enyPkPHDgQBw8exNixYxEWFobs7GxcunQJP/zwQ6FeP3ToUGzbtg1du3bFtGnTkJycjPfeew/BwcH5vkapVGLixInw9vZGaGgoACAmJgZjx45F9erVMW3aNHh7e2Pbtm149dVXcfbsWSxfvrzI9TO3Z88eLF26FC+//DLGjBmD77//Hl9++SWA3ONgcurUKbRv3x4KhQKTJk1CcHAw9u3bh4iICKSnpxeYT7169bB+/XoMHz4c4eHhGDdunM3tbJ33RbV48WIsWrQIhw4dwvr166X0vP105MiRkMvleO211yCXy/HZZ59h6NChqFmzJlq3bl3kfImIyAVceWdmoqfFgQMHBACbP5UrVxY//PCD1Ws6dOggqlWrZpGWlpZmtZ3BYBDh4eHCx8dH6HQ6KX3ixIkCgFi8eLHN15isXr1aABAHDhwQWVlZYtCgQUIul4t//etfharbhQsXBAAxduxYi/TU1FTh6ekpunbtKqWdOnVKyGQyMWnSJKv9vPrqq0Iul4vLly9LadWqVRMAxOeff261/dWrVwUA8c4779gsV7Vq1USHDh2kx+np6SIgIED4+vqKq1evWm1v3iZFaWfz9iuIrW1N58bq1aut0gIDA8W9e/csylCvXj1RqVIli/02bdpU1KhRQyQnJ1ukHz16VCgUCjFnzpwCy/bOO+8IAFLbpKSkCJlMJl555ZUCX2vLvn37BAAxcOBAYTQapfTr168LLy8vq3Yw5d+uXTuL9jWVxdvbWwQFBVnUMScnR3Tt2lUAEIcOHZLSbfUdEwBi5MiR0mPTeaTVai3OPSGE6N69u1CpVBbnQ3h4uJDL5eLkyZMW27788ssCgMU5l5+85TCX33mf3/k2cuRIkfdj11aaianNn3vuOYvz//r160KlUokhQ4YUqi5EROR6nF5IZGbUqFGIi4tDXFwc9uzZg88++wx+fn7o06dPoZYc9/Lykv7OzMxEcnIy7t27hx49euDBgwc4fyCqGwgAACAASURBVP48gNxpf5s2bULNmjURHR1ttR+53Lpr3r9/H926dcM333yDrVu3YtKkSYWqU+3atdG2bVts2bIFWVlZUvrWrVuRkZFhMZVr48aNEEIgMjISSUlJFj+9e/eG0WjE/v37LfZfrlw5jB07tlBlyc++ffuQmJiIyZMn25x6Zt4mhW1nRxszZgz8/Pwsyti5c2fcvn0baWlpAIDff/8dZ86cweDBg2E0Gi3aNCQkBLVq1cLevXuLnLenpyc0Gg2OHj2KK1euFPn1O3fuBABMnz7dYqS0SpUqVtc1mps6darVoiL79u1DWloaoqOjUa5cOSldqVRi9uzZAHKnrD6Jfv36oWbNmhZpXbt2RU5ODq5evQoASExMxKFDh9CjRw80a9bMYtvivlVFcZ33hTFlyhSL879KlSoIDQ3FhQsXnJI/ERE9OU4vJDITEhKCLl26WKQNGTIEderUwZgxY3DhwoV8FzNISkrC//3f/+Hrr7/G7du3rZ6/d++etN39+/cRERFhM8CyZdSoUUhNTUVcXJxVGQvz2nHjxuHrr7/G4MGDAeROLfTx8UG/fv2k7c6dOwcgd0ERe+7cuWPxOCQkBAqFokjlscX0D2RYWFiB2xa2nR0tbxAAAOXLlwcAJCcnw9vbW2rT+fPnY/78+YXeT0FUKhWWLl2KV199FSEhIahTpw7Cw8Px/PPPo0+fPgUeE1OgVrduXavnbKWZ2Lo+0LSvBg0aWD3XqFEjALnXtD2JgtraPI/69etbbRsUFPRYUzjtKa7zvjDs1f3PP/90Sv5ERPTkGHQRFcDX1xdt2rTBt99+i0uXLtn9h1QIgW7duuH3339HdHQ0WrRoAT8/PygUCuzevRuffPIJjEajtG1RDRo0CKtWrcJ7772HVq1aSRfuF/a1r732GtasWYPBgwfj6tWrOHToEMaOHQutVittZyrfrl277K4umPcfwOJaua6wbVKUdna0/P7pNtXHVJbo6Gj07t3b5rbmx6AoIiMj0atXL+zevRv//e9/ERcXh5iYGLRs2RI//vijQ1ZdtHW8TXW1dW1hYdMAQK/X2823MG3tTPbO+/xug5Bf/fJjr+6uqDcRET0eBl1EhZCTkwMASE1NtbvNb7/9htOnT+Ptt9/Ge++9Z/FcXFycxeOAgAD4+fnh7NmzMBqNhRrteumll9C9e3cMGTIEXbt2RWxsLHx9fQtV/rJly6Jfv3746quvcOvWLaxduxZCCIuphUDuKEZsbCwqVapkNT2rqIp6Dy7TggynT5+2G5wARWvnp4H5yFBRRygLo0KFChg1ahRGjRoFIQSmT5+OBQsWYOvWrRg+fLjd15mC5//973/SAiUmptG5wqpVqxaA3KmUPXv2tHjut99+A5A7MmRSrlw5i9UoTR5nmqQ5Ux7x8fFWz/3111948ODBE+2/MEzTK22NttqqX0m4Vx0RET05XtNFVIDbt2/j8OHD0Gq1NqctmZi+jc777fNff/1ltdy6XC7HSy+9hCtXrmDJkiVW+7I3UjNgwADs3LkTZ8+eRadOnQq93DiQO8XQYDBg/fr1WLduHUJDQ9GmTRuLbUyrGM6cOVMKNM09ePDA7vL0eZlWKizsVL9u3bohICAAixcvtrm8t6lNitLOT4OmTZuicePGiImJsRnMCCGQmJhY5P1mZGRYLZcuk8mkYLmgdjfd9Pejjz6yaMsbN25g48aNRSpL165d4e3tjWXLluH+/ftSusFgkG5HMGDAACk9NDQUDx8+xPHjxy328/HHHxcp37wCAgLQrl07xMbG4tSpUxbPzZ07t0j78vb2fqxpqqYvD/Je+3jo0CEcPXrUZj6A86bEEhGRa3Cki8jM2bNnsWHDBgC5U4GuXr2KmJgYpKam4qOPPsp3yfO6deuiYcOG+Oijj5CWloYGDRrg6tWr+PLLLxESEmL1T9XcuXNx8OBBTJ48GQcOHEBERARUKhX++OMPnD9/Ht9//73NfHr27Ildu3ahT58+iIiIwP79+xEYGFhg3Tp37owqVapg3rx5SE1NtXl9UfPmzTF37lzMnj0bDRs2xJAhQxAcHIy7d+/i119/xbfffov4+Hi791gyV758edSqVQv//ve/ERISgooVK8LLy8vuDaY9PT2xevVq9O/fH02aNEFUVBRCQ0Nx//59/Pjjj3juuecQHR1d5HZ2NZlMhvXr16NTp05o1qwZRo8ejYYNG0oLQHz99dcYNWoU5syZU6T9XrhwAe3bt0ffvn3RsGFD+Pv74/Lly/jiiy+srtWzpVu3bujXrx+2bNmC+/fvo1evXrh37x6++OILNGjQAMePHy/0KIyPjw8WL16MsWPH4plnnsGYMWPg5eWFbdu24fDhwxg7dizatWsnbf/yyy9j4cKF6Nu3L1577TV4enriu+++Q0pKSpHawJZPPvkE7du3R0REBCZOnCgtGX/mzBn4+/sXej+tW7fG/v378eGHH6Jq1aqQyWTS9ZD5qVOnDrp3744vvvgCBoMBzZs3x7lz57B27Vo0btwYZ8+etcpn6dKlmDBhAnr27AmVSoVWrVpJ97kjIiI34YIVE4meOraWjJfJZMLX11d06tRJ7Nixw+o1tpa9/vPPP8XgwYNFhQoVhIeHh2jSpImIiYmxu4z0gwcPxFtvvSXq1Kkj1Gq18PX1FS1bthSfffaZtI291x46dEiULVtW1K5dW9y4caNQ9Zw1a5YAIORyubh586bd7WJjY8Xzzz8vypcvL1QqlahcubLo2LGjWLhwocjMzJS2y7vse17Hjh0Tbdu2FZ6engKARXvZe+3JkyfFgAEDREBAgJR3v379LJYAL0o7O3LJePM0k7xLu5vcuHFDTJw4UdSsWVM61o0aNRKvvfaa+OOPPwosW979JiUliSlTpoiwsDDh5+cnNBqNqF69uhg9erQ4f/58gfsTQoisrCwxc+ZMERwcLNRqtahXr55Yvny5+PTTTwUAcezYsQLrZW737t2iQ4cOwtvbW2g0GtG4cWOxZMkSiyXpTfbu3SuaN28u1Gq1CAgIEOPHjxcpKSl2l4y3desBe8f2+PHjomPHjsLT01P4+PiI/v37i6tXrxZ4vpq7cOGC6Nq1qyhTpoz0nmBS0H7u3LkjBg8eLHx8fISnp6do3769OHLkiM3l4Q0Gg5g6daoICgoScrnc4rzKr83zW3afiIiePjIheCUuERH9beLEifjss8+QkJCAihUruro4REREJR6DLiKiUiojI8NqFb7r16+jQYMGCAkJwZkzZ1xUMiIiIvfCa7qIiEqp+fPn4+eff0aXLl1Qvnx5XLx4EStWrEBWVtYTL2pBREREf2PQRURUSrVr1w6HDx/GokWLcP/+fZQpUwZt2rTBW2+9ZbHwBRERET0ZTi8kIiIiIiJyIN6ni4iIiIiIyIEYdBERERERETkQgy4iIiIiIiIHYtBFRERERETkQAy6iIiIiIiIHIhBFxERERERkQOV2Pt0paSkICMjw9XFIHqqeXp6wtfX1+Zz7ENEBWMfInoy+fUhotKkRAZdKSkpWLp0KfR6vauLQvRUUyqVePXVV60+8NiHiAqHfYjoydjrQ0SlTYkMujIyMqDX6xEWFgZvb29XF4foqZSWlobTp08jIyPD6sOOfYioYOxDRE8mvz5EVNqUyKDLxNvbm52Y6AmwDxE9GfYhIiIqDC6kQURERERE5EAleqSrtIuKisIrr7yC5s2buyT/O3fuYOzYsdi2bRvUanWhX3f48GGsWbMGKSkpqFevHl577TWUL1/e5rarV6/G8ePHce/ePfj4+KBnz57o06eP9Pxbb72F8+fPQ6FQSGlbtmx5/EpRqVYa+tSmTZuwdetWqFQqKe2dd95BgwYNnrj8VPqUhj4zceJEJCYmSo9zcnIQHByMJUuWAODnEBEVDoOuUkyv10OpdO4pcPPmTXz66aeYOXMm6tWrh9WrV2PBggWYP3++ze1VKhVmzpyJ4OBg3Lx5E++88w7KlSuH8PBwaZuoqCg899xzzqoCkV0loU8BQNu2bTFt2jQnlpLItpLQZ5YtW2bx+I033kCLFi0s0vg5REQFYdBVQi1atAiJiYmYP38+5HI5evXqheHDhyMmJgaHDx9Geno6KlWqhKioKDRs2BBA7jfc165dg6enJ44dO4YBAwagf//+WL9+PeLi4qBWqzFkyBAsWbIEK1asQMWKFZGTk4NNmzbh0KFDyMzMRFhYGMaPHw9vb2/MnDkTADBs2DAAwJtvvlngt50HDhxAs2bN0LRpUwDA0KFDMWLECNy+fRuVKlWy2t60bwCoWrUqWrZsifj4eIugi6g4lJY+RVRcSmOfuX79Oi5duoQ333zzSZuPiEoZXtNVQr3++usICAjAzJkzsWXLFgwfPhwAEBISgsWLF2PTpk3o0KEDPvzwQ2RnZ0uvO3HiBJo1a4aNGzeiV69eiIuLw5EjR7Bw4UIsW7YMJ0+etMhn3bp1uHLlChYsWIBVq1ZBqVTiyy+/BADpW8ENGzZgy5Yt0gfdkCFDEB8fb7Pcf/75J2rUqCE9LlOmDAICAvDnn38WWGej0Yj4+HhUq1bNIn3jxo0YOnQopk6diuPHjxe4HyJbSlOfOnnyJIYOHYoJEyZg+/btMBqNj9FiVNqVpj5jsn//fjRp0gQBAQEW6fwcIqKCMOhyMxEREShbtiwUCgX69esHvV6PGzduSM+HhISgffv2kMvl0Gg0+O9//4tevXqhYsWK0Gq1GDJkiLStEAJ79+5FVFQUfH19odFoMHToUBw+fBgGg8FuGTZv3oz69evbfC4rKwuenp4WaV5eXsjMzCywbqtXr4ZCoUDnzp2ltJEjR2L58uVYs2YNBgwYgI8//hgXLlwocF9EheVufapdu3ZYtmwZ1q9fj9dffx179+7FN998U5QmIcqXu/UZE4PBgIMHD6JLly4W6fwcIqLC4PRCN7Nz507ExcXh3r17kMlkyMjIQGpqqvR83m/n7t27B39/f+mx+d8PHjxAVlYWpk+fbvEamUyGlJSUxyqfh4cHMjIyLNLS09Oh1Wrzfd2WLVvwyy+/YN68eRYLAISGhkp/t23bFseOHcPPP/+MOnXqPFb5iPJytz5VtWpV6e9atWph4MCBiI2NRb9+/R4rf6K83K3PmJw4cQJ6vR6tW7e2SOfnEBEVBoMuN/LHH39g27ZtmDt3LqpVqwa5XI4hQ4ZACCFtI5dbDm6WK1cOSUlJ0mPzv8uWLQu1Wo3FixejYsWKVvndvXu3yGWsVq0arl27Jj1OS0tDUlKS1ZRBc9u2bcP+/fsxf/58+Pn55bt/uVxuUV+iJ+GufcqcTCYrcp5E9rhzn9m/fz/at29v8cWfLfwcIiJbOL2wBPP19UVCQoL0ODMzE3K5HGXLloXBYMCWLVsKnC4RHh6O7777Dnfv3kVmZia++uor6Tm5XI4ePXogJiYG9+7dAwCkpKTg6NGjAAAfHx/I5XKLMhQkIiICJ0+exNmzZ5GdnY2NGzciNDTU7sXL27dvR2xsLObOnWu1nG9aWhpOnjyJ7OxsGAwGHDt2DD/99BNatmxZ6PIQmSsNfero0aN4+PAhAODq1avYunWr1Tf3RIVVGvqMKc+TJ0+ia9euFun8HCKiwuJIVwn2wgsvYMWKFdiwYQN69uyJIUOGoEWLFpgwYQI8PDzQu3dvi2katnTt2hW3b9/G66+/DrVajYEDB+Knn36SvskbOXIktm7dihkzZuDBgwfw8fFBeHg4WrduDY1Gg4EDB2LWrFnQ6/WYNm0amjVrhoEDB9q970+VKlUQHR2NpUuX4v79+6hfvz7eeOMN6fktW7YgPj4ec+bMAQCsXbsWSqUSr776qrRNREQEJkyYAIPBgE2bNuHmzZuQyWSoVKkSpkyZYnceP1FBSkOf+umnn7BkyRLk5OTA19cXXbp04dRCemyloc8AuSseVq1aFSEhIRb74ucQERWWTJTAMfBbt25h+fLlCA8Ph6+vr6uL41YuX76MadOmYdu2bVZTQKhkSUlJwaFDhzBu3DhUrlzZ4jn2Iedhnyq52Idcg33GfeTXh4hKG76blXI5OTk4fvw4DAYDHjx4gHXr1qFNmzb8oCN6TOxTREXDPkNEpQGnFxK++uorLFy4EEqlEk2aNMG4ceNcXSSiEo19iqho2GeIyN0x6CrlVCoVFi5c6OpiELkN9imiomGfIaLSgGP3REREREREDsSgi4iIiIiIyIFK9PTCtLQ0VxeB6KlVmP7BPkRkH/sQ0ZNh/yD6W4kMuvR6PQDg9OnTDs9LZTSg3oN7OOdTDjlyhcPzIypupv5iK80Zfcjd8T3C/bEPlS7s08XPVh8iKm1KZNClVOYWu2PHjvDz83NYPnfv3sXUsVHY3qE1QgcPhcHL22F5uZpCoUCZMmXw8OFDGAwGVxfHYUpbPVetWiX1F3PO6kPmZXGXNr979y6GDx+O9evXo0KFCpClPoB25TKEDh6KMkHBblNPe9zteNrDPuR8T0s9TX3ar1NXvDT+FamvF5enpZ6OVlAfIiptSnQvqF27tkNvtnf9+nUkJiZKean9AxyWlzmj0YiEhAQEBgY67T4lQgjo9XpUqVIFMpnMKXmyno5jqmdBHN2HzMviLm1+/fp1JCQkoE6dOqhatSpykpPwJ3LbUubj6zb1tMfdjqc97EOl99wy9emaNWpY9PXi8rTU09EK24eISgsupEFERERERORADLqIiIiIiIgc6KkKulJTUzF06FC88cYbri4KERERERFRsXiqgq5Vq1ahevXqri4GERERERFRsXlqgq7ffvsNCQkJ6Nixo6uLQkREREREVGyeiqArJycHX375JcaPH++0lXyIiIiIiIic4akIurZu3YqwsDBOLSQiIiIiIrfj8vt03bp1CwcPHsS//vWvfLdLSkpCUlISACAxMRE6nQ5A7r0nHMV838JodGhetvJ1Vn5A7v00jI/q6Mz7hpj/dobSVs/8qFQqAI4vl7u1ufm+jUYjxKPH4tHf7lJPe9zteNrDPlR6zy0hpQnpueJsh6elno5WmD5EVJq4POg6d+4ckpOTERUVBQDQ6/XQ6XQYOnQoVqxYAU9PTwDA9u3bsWLFCul1HTp0AAAkJCQ4rGymGyMDQGJSEuR65945/u7du07Nz1VYT9cYPXo0AMf2IVdzRJub3hcSExOhVqthTLmf+9gF7xEmT9u55ShPWz3Zh0qeRZ98Ap+yZREZGWmRbl5PU59OvpcM4O++7g7c7XgSlSQuD7ratWuHJk2aSI8PHz6MAwcOYPbs2dBqtVL6gAEDpEArMTERe/bsAQAEBgY6rGym0TQACPD3h8o/wGF5mTMajbh79y4qVKjg9DvHK5VKp37zxno6hqme+Vm9ejVGjx7t0D5kXhZ3aXPT+0JAQAACAwOhVylxHbnvEfDxdZt62uNux9Me9iH3PLcWLlgAAJg1axYA2/U09eny5coD+LuvF5fSdjyJKJfLgy6NRgONRiM99vb2hlKphL+/v8V2/v7+UlrZsmWlb50c+eZhvm+ZXO60Nyrz/J355mjKz9mLmbCexc9Uz/zk5OQAcGwfMi+Lu7S5aX9SnR49lj36213qaY+7HU972IdyudO5ZT7VLW+dzOspk/q4zOq54lDajicR5XJ50JVX586d0blzZ1cXg4iIiNzI/fv3pb8NBgMUCoULS0NEpQ2/giAiIiK3l5ycLP2dkpLiwpIQUWnEoIuIiIjcnnmgde/ePReWhIhKIwZdRERE5PYePHgg/f3w4UMXloSISiMGXUREROT2UlNT4evvD7lczqCLiJzuqVtIg4iIiKi4PXz4EJ7e3jDk6JGamurq4hBRKcOgi4iIiNxeWloaPLy8kJOtQ3p6uquLQ0SlDIMuIiIicnvp6enw8PKCLjsbGRkZri4OEZUyvKaLiIiI3F56ejo0np7QaLUc6SIip+NIFxEREbm99PR0qDw8ofHMZNBFRE7HkS4iIiJye5mZmVBrtVB7eHB6IRE5HYMuIiIicnsZGRlQaz2g8tAiMzPT1cUholKGQRcRERG5vYyMTKi1nlBpPBh0EZHTMegiIiIit5eekQ61hwdUWgZdROR8DLqIiIjI7WVkZkLt4QG1xgMZDLqIyMkYdBEREZHby8rKyg26tFxIg4icj0EXERERuT1T0KXSeCA7O9vVxSGiUoZBFxEREbm9zMwsqDQaqDUaZDHoIiInY9BFREREbi8rKwsqjQdUGg2ysrJcXRwiKmUYdBEREZHby87OglqjgcrDg0EXETkdgy4iIiJye1lZWVB5aKBSq5GVxemFRORcDLqIiIjI7emys6FSa6DScKSLiJyPQRcRERG5veys3IU0VBo1dDqOdBGRczHoIiIiIrem1+thMBhygy61hkvGE5HTMegiIiIit2YKslQaDZRqNXQMuojIyRh0ERERkVuTgi61BiqNhkEXETmd0tUFeFze3t5QKpUQQjgsD4t9C+HQvPLma6qbM/M0/+2sPFlPx+VZkMDAQIf3IfOyuEubm9fHYv9uVs/88jT/7aw82YdKT5s7Ij/TwhlKjRoqtRo6nQ5Go9FmPW39Ls4ylbbjSUS5SmzQFRYWBj8/P+j1eoflYb5vg8EAmQPzysvPzw9GoxFGo9FpeQK59XQm1tN1IiMjAcChfcicu7S5qb30en3udSKPHhsMBijhPvUsSGmpZ37YhxzDEfVMT08HACiUKihUKgBARkYGNBqNVT1NfVr/qBymvl7cSsvxJKJcJTboOn36NBo1aoSAgACH5aFU/t08CoXC4rEjGY1GJCcno3z58pDLnTMDVAgBg8EAhUIBmUzmlDxZT8cx1TM/MTEx6N+/v0P7kHlZ3KXNTe8DSqUy95vjR48VCoX02x3qaY+7HU972Ifc69wyHUuNhwdUGg2A3DrK5XKrepr6tPJRnzb19eJS2o4nEeUqsUFXWloa9Hq9Q9+wLPYtkzntzVEmk0l1c1ae5nmznsWfl6vqmZ+EhASH9yFz7tLmpv2Z9i3tP0+6M7APuRb7kOPyLu48dTodAED5aPVCU5q3t7dVPW39dkQblJbjSUS5uJAGERERubW/F9JQQ6nOnV5oCsSIiJyBQRcRERG5NVPQpVCpLEa6iIichUEXERERuTWdTgelSgW5XA7lo4U0eINkInImBl1ERETk1nQ6HdSPFtBQajjSRUTOx6CLiIiI3Fp2drY0wsWRLiJyBQZdRERE5NZ0Op20VLxSrZbSiIichUEXERERubXcka7cYEsul0OhVDLoIiKnYtBFREREbi13pEstPVap1Qy6iMipGHQRERGRWzMf6QIAlYpBFxE5F4MuIiIicms6nU66KTIAKNUqBl1E5FQMuoiIiMit6XQ6qNR/j3QpOdJFRE7GoIuIiIjcWu7Nkc2v6eJIFxE5F4MuIiIicmtW0wtVat6ni4icikEXERERuTWdTgeF2UiXQqVETk6OC0tERKUNgy4iIiJya3mnF/KaLiJyNgZdRERE5Nays7OhUFmuXsiRLiJyJgZdRERE5NZ0Oh0Uea7p4kgXETkTgy4iIiJyazqdDgrl30GXQqVk0EVETsWgi4iIiNyaLieH9+kiIpdi0EVERERuLTtbB6XafPVCNa/pIiKnYtBFREREbk2ny4ZSZT69UMX7dBGRUzHoIiIiIreWrcs70sX7dBGRczHoIiIiIreWe58u85EuTi8kIudSuroAALB06VL88ssvyMzMRJkyZdCtWzcMHDjQ1cUiIiIiN6DLM9KlVCmRzYU0iMiJnoqgq3fv3hg7diw0Gg0SExMxZ84cVK5cGe3atXN10YiIiKiEy10y/u9/eZQqNXLSHrqwRERU2jwVQVfVqlUtHstkMty6dctFpSEiIiJ3kju90PKarmwdF9IgIud5KoIuAFi7di127dqF7OxsVKhQAR07dnR1kYiIiMgN5OTooVT/fU2Xktd0EZGTPTVB18iRIzFixAhcunQJx44dg5eXl8XzSUlJSEpKAgAkJiZKNzU0Go0OK5P5voXR6NC8bOXrrPwAQAgB46M6ymQyp+TJejqOqZ75UT26qNzR5XK3Njfft9FohHj0WDz6213qaY+7HU972Ifc69zS6bKhUKkghAAAKJRKpOl0NusppDQhPVec7VDajicR5Xpqgi4gd1ph7dq1cfLkSWzevBmRkZHSc9u3b8eKFSukxx06dAAAJCQkOKw8iYmJf/+dlAS53uCwvGy5e/euU/NzFdbTNUaPHg3AsX3I1RzR5qb3hcTERKjVahhT7uc+dsF7hMnTdm45ytNWT/ahkiMrKwt6gwFpaWkAAKMQSEtLk+pnXk9Tn06+lwzg777uDtzleBKVRE9V0GViNBpx+/Zti7QBAwZIgVZiYiL27NkDAAgMDHRYOXRmKxsF+PtD5R/gsLzMGY1G3L17FxUqVIBc7pxV/YUQ0Ov1UCqVTv3mjfV0DFM987N69WqMHj3aoX3IvCzu0uam94WAgAAEBgZCr1LiOnLfI+Dj6zb1tMfdjqc97EPudW4Z9AZ4lykDb29vAIDWywsymQwVKlSwqqepT5cvVx7A3329uJS240lEuVwedKWnp+P48eNo1aoVPDw88L///Q979uzBoEGDLLbz9/eHv78/AKBs2bLSt06OfPMw37dMLnfaG5V5/s58czTl56wPARPWs/iZ6pkf0/UMji6Tu7W5aX9SnR49lj36213qaY+7HU972Idyucu5laPPgVKtkfarUquh0+ms+jMAqU/L5TKr54pDaTueRJTL5UGXTCbD999/j+XLl8NoNKJcuXLo27cvevbs6eqiERERkRvIyXtzZKWKC2kQkVO5POjy9PTE3LlzXV0MIiIiclO6PEGXUq1CTg6nvhGR83Dcl4iIiNyarZEuHe/TRUROxKCLiIiI3JbBYIDRaITSbAVCjnQRkbMx6CIiIiK3Zbp2S6H8+4oKpVKFnBydvZcQERU7Bl1ELBH1cgAAIABJREFURETktky3ebAc6VJzIQ0icioGXUREROS2TMGVUvV30KVQKpGj40gXETkPgy4iIiJyW6aRLoXq7+mFChWXjCci52LQRURERG7L1kiXUqWCnkEXETkRgy4iIiJyW9I1XWYjXcpHI11CCFcVi4hKGQZdRERE5Lb+DrrMR7py/9bruWw8ETkHgy4iIiJyW9L0QrXZzZEfjXrpuJgGETkJgy4iIiJyW7ZGuhTK3ACMi2kQkbMw6CIiIiK39ffqhX+PdJlGvTjSRUTOwqCLiIiI3FZOTg4USiVkMpmUpuRIFxE5GYMuIiIicls6nQ5Ks1EuAFCqc6caMugiImdh0EVERERuS6fTQWV2PRcAKJRcSIOInItBFxEREbmtnJwci5ULAY50EZHzMegiIiIit2VreiFHuojI2Rh0ERERkdvKycmxvqZLxYU0iMi5GHQRERGR29LpdNJ0QhPT8vEc6SIiZ2HQRURERG5Lp9NJS8SbyGQyKJRKjnQRkdMw6CIiIiK3ZWshDQBQqdUMuojIaRh0ucBff/2FJUuW8M2eiIjIwXIX0lBbpSuVKk4vJCKnUbq6AKXRG9On49+bNsHb2xujR492dXGIiIjclk6ng0Jl/e+OUq3il59E5DQc6XIyo9GI2D17oPX2xp49sa4uDhERkVvLXb3QxkiXiiNdROQ8DLqc7PLly0i5fx89x43HiZMnXV0cIiIit6bT6aT7cplTqjjSRUTOU2KnF3p7e0OpVEII4bA8LPYtRLHk9euvv8LbxwdNOnbC9k8WIiMjA1qt1ipfU90cWb+8eZr/dlaerKfj8ixIYGCgw/uQeVncpc3N62OxfzerZ355mv92Vp7sQ6WnzYs7v+zsbCjU1iNdikcjXXnraet3cZaptB1PIspVYoOusLAw+Pn5Qa/XOywP830bDAbIiiGvc+fOIahWbVSsXh1CCFy8eBH169e32s7Pzw9GoxFGo/GJ8ywKg8Hg1PxYT9eJjIwEAIf2IXPu0uam9tLr9dDr9TA8emwwGKCE+9SzIKWlnvlhH3KM4q6naaQrbz1M0wvz1tPUp/WPymHq68WttBxPIspVYoOu06dPo1GjRggICHBYHkqz6QgKhcLi8eO6cuUKKtaoCR//AGi9vXHjxg00btzYYhuj0Yjk5GSUL18ecrlzZoAKIWAwGKBQKCCTyZySJ+vpOKZ65icmJgb9+/d3aB8yL4u7tLnpfUCpVOZ+c/zosUKhkH67Qz3tcbfjaQ/7kPucW7lLxmus6mGaXnj//n2Lepr6tPJRnzb19eJS2o4nEeUqsUFXWloa9Hq9Q9+wLPYtkxVLXleuXUOFZs9AJpOhQlAwbty4YbVfmUwm1c1Zb8jmeTsrT9bTtRISEhzeh8y5S5ub9mfat7T/POnOwD7kWuxDjsu7uIMum6sXqnLv05W3nrZ+O6INSsvxJKJcXEjDya5d+xP+QcEAgHKVKuGvv/5ycYmIiIjcV+6S8dY3R1aolFy9kIic5rGCrhdeeAGxsbG8SLKIjEYjbv91E/7BuUGXb2Al3GTQRURE5DA6u0vGq7l6IRE5zWMFXbdu3cLzzz+PqlWr4v/+7/9w9erV4i6XW0pMTIROp4N/UBAAwLdiRdy6fdvFpSIiInJf2dk6KG2MdHHJeCJypscKuo4cOYJz585hyJAhWLlyJWrXro3OnTtj8+bNyM7OLu4yuo2bN28CAMoFVgIA+AZUwG0GXURERA6j02XbvE+XQq3m9EIicprHvqYrNDQUH330EW7cuIHt27ejTJkyGDVqFCpVqoTo6GicOXOmOMvpcr/88ssT7+PWrVvwLusDDy8vAIBPQAASExOfeL9ERERkmy4nByqNxipdoeQ1XUTkPE+8kIZCoUCvXr0wevRotGjRAikpKVi9ejWaN2+ODh064MKFC8VRTpcwn3bw8tgoZGRkPNH+bt26hXKBgdJjH39/JN29y3tmEBEROYhOZ296Ia/pIiLneaKg6/z583jzzTcRFBSEgQMHokKFCvjuu++QmpqKuLg4pKenY9iwYcVVVqf75ptvpL9zdDn4+uuvn2h/t27dgp9Z0FW2vD8MBgNSUlKeaL9ERERkm06ng1JtvZCGQq3iSBcROc1jBV2rVq3Cs88+i/r162P79u147bXXcP36dezYsQPPPfcc5HI5OnXqhEWLFuHUqVPFXWanWbNqlfR3u4YNELtnzxPt76+//oJPxYrS47LlywMApxgSERE5iL2RLk4vJCJneqyga8KECahatSri4uJw6dIlzJgxAxXNggmT2rVr4+233/5/9u47vq3q/h//S9Oy9pa8R+zEdnYCmWQR9m4adiiEWeiHlrJ+pS0QZr4QoBCgLaUJ0FAKhFlIUlbIJCEhe9hOPOQhS5bkJU/Jtu7vD1nCiiXZkq7kxH4/H488HN1x7rlXurLf95zzPjFXcjgcOnQIR44d878+Kz8PO7Zvi6nMOosFSv3P10mqUoHD4cDhcMRULiGEEEKCc7vd4PGDdy90UdBFCEmQgel8hsBsNkPT10oTTkpKCh5//PFoDjHs1q5di+ljx6LO7M04OCE7G5VV1WhoaBjSuQdTZ7Fgyqw5/tc8Ph8ypZKCLkIIISRO3O5u8IVBgi6hEN1tzmGoESFkNIqqpevss8/GoUOHgq47evQocnNzY6rUcHO73Xjv3Xdx+awZ/mU5KUbweTwcPnw46nKtVitU+sAWQblaTUEXIYQQEifd3e4QkyMLqKWLEJIwUQVdJpMp5HxcHR0dqKmpialSw+3zzz9HV1cXzp8+zb9MyOcjLz0dx48fj6rM3t5e2OvroTylG6ZUpUZDQ0NM9SWEEEJIcN3d3eAJBnbs4dM8XYSQBBpy98Kuri50dHSAYRgAgNPpRGNj44BtPvvsM6SmprJbywT72+uv45fnzIVEJApYPibViNLS0qjKtNvt8Hg8UA0IulQUdBFCCCFx4na7IRAOnKeLL6DshYSQxBly0PXcc8/hySefBABwOBxceOGFIbddsWJFzBUbLkePHsX3W7di60urBqzLNRhwIsqgy2q1AsCAoEusVKKpqSmqMgkhhBASnjdlfPAxXRR0jSz19fXo6elhtUyJRAKlUslqmWR0GnLQddVVVyE7OxsMw+DWW2/Fn//8Z4wZMyZgG6FQiMLCQkyZMoX1iibKSy+9hPmTJ2F8dhZq7YFjrbKNRvzvm++iKtdisSBZIoFIIg1YLlWpaEwXIYQQEifd7uBjunh8Po3pGkHq6+sxNj8fztZWVsu98tJL8dmXX7JaJhmdhhx0TZ48GZMnTwbgbem69NJLodVq41ax4WC32/Hvf/8bbz94f9D1WXo9qmtr4fF4wOVGNhyurq4Omn4TI/tIFUpYSkuiqi8hhBBCwusOMTkyXyBENwVdI0ZPTw+cra1Y98B9MCgVrJRZ39yCf+3dx0pZhESVMv7mm29mux6nhbVr1yJNq8V504K31KXrtXC5XKivr0dKSkpEZVtOmaPLR6pUUfdCQgghJA4Yhgk5OTJfKAiZFIycuQxKBSbk57NSltLhACjoIiwZctA1adIkvPfee5gwYQImTZoUdlsOhxMypfzpimEYvPPWW7hh4fyQrVjpfS171dXVEQdddXV1UBoGtnRJlAoKugghhJA46O3tBcMwQVu6BMIkdHd3D0OtCCGj0ZCDrunTp0MikQAApk2bBg6HE7dKDYeSkhIUl5biF7/7v5DbiIRCaJVK1NbWYubMmRGVX1NbC2VaxoDlEoUSzRR0EUIIIazzJcrg8YOljKfshYSQxBly0PXWW2/5///222/Hoy7DauPGjSjIykK2cWAXwP5StVrU1tZGXH6t2YxJ088esFyqVKK9rQ3d3d0QBOn+QAghhJDo+IKq4Cnjheh2U0sXic7ChQuxe/duCAQCcLlcZGdn44orrsDDDz8MmUwGALDZbHjsscewYcMGNDY2QqvVYubMmXjwwQcxY8YMAEB2djbq6+vB4/EgFouxaNEirF69GgZD+L9HyZknqsmRQzmTnxh9+803WDBx/KDbpahVMJvNEZdfV1cHdcrA+cskCm8a0ubm5ojLJIQQQkhovr9LgqeMF8DlpjFdJHovv/wyWltb0dTUhLfffhs//vgj5s6di46ODjQ2NmL27NloamrC5s2b0draimPHjmHp0qXYsGFDQDmffvop2tracPz4cdhsNvz+978fpjMi8RRV0LVu3Tq8+uqr/tdHjx5Ffn4+xGIxFi5cCJvNxloFE8Hj8WDXrl2YXVQ46LZGpQLmCFu63G437PX10ASZNFrSl2GHgi5CCCGEXf6gK0jKeMpeSNjC5XIxdepUfPTRR7DZbHjrrbfwl7/8BWKxGP/5z3+Qn58PLpcLqVSKa665Bk888UTQcrRaLZYuXYojR44k+AxIIkQVdK1atSog2cS9994LoVCIl19+GRaLBX/84x+HXFZ3dzdeffVV3H777bj22mvxm9/8Blu2bImmWlE7efIkWpxOTMvLG3RbvVKJughbumpra8EwDDSpaQPWSeTeoIuSaRBCCCHsCt/SRUEXYZdcLsf555+Pbdu24ZtvvsGSJUsimmLIZrNh/fr1mDp1ahxrSYZLVCnjTSYTioqKAAAOhwPbt2/Hl19+iYsuugg6nQ4PPvjgkMvq7e2FWq3G008/Db1ej5KSEjz55JMwGo0oKCiIpnoR279/P3QqFVI06kG3NahUsB6ILDNjVVUVeHw+1EHm6RIkJSEpOZmCLkIIIYRlvpTwQVu6hEJ0d3eDYZhEV4uMYKmpqdi/fz8cDkdApuutW7fiyiuvhMfjQUpKCkpLS/3rli5dCoFAAKlUinPPPRcvvfTScFSdxFlULV1cLtf/9Oj777+HQCDAokWLAAApKSlwOBxDLkskEuHGG2+E0WgEl8tFUVERCgsLUVxcHE3VonL48GFMyMkeUkZGg0oFS319ROVXVVVBn5YGLo8XdL1MqURLS0tEZRJCCCEkvLAtXX3Jq87k8ejk9FNXVwe1Wg2tVou6ujr/8gULFqC5uRkffvjhgPnhPvroIzQ1NaGmpgbvvPMONBpNoqtNEiCqoGvy5Mn461//imPHjmH16tU499xzkZTkzQxUXV0dU8aVrq4ulJWVISsrK+oyInX0yBGMSxs43ioYg0qJFqcTXV1dQdd3dHRg8+bN8Hg8/mXl5eXQZ2WHLFMip7m6CCGEELaFy14o6Pu7hebqImxxOp349ttvMX/+fCxevBifffZZwN+DZHSLKuh69tlnsW3bNkyaNAlHjhwJGBD46aef+tNgRophGLzyyivIz89PaH/W4uPHMC49fUjb6pXebIP1IVq77v7Nb7B48WK8+OKL/mUnTp6EPicnZJkSpYISaRBCCCEs88/TFWRKFl+XQ2rpIrFiGAaHDh3CtddeC41Gg+XLl+P++++H0+nE9ddfj5MnT8Lj8aCjowM//fTTcFeXDJOoxnTNnTsX1dXVOHHiBMaMGQNlXyACALfddhvyhpCQ4lQMw+Cvf/0rGhoa8OSTTw7o6udwOPzdFu12u/9LMtYnCG63G5VV1chNMQ7o193/NcMw3mQYcu/cCxaLBRkZgZMdd3Z24oP338eUcxfj+RdewG9/+1sIBAIcO34cZ119bch+42KZt6XLdy6n/kwEhmHg8Xjg8XgSNvE1nWf8+M4zHN+8cPGu10i75v3L9ng8YPpeM33/HynnGcpIez9DoXtoZHy2urq6/N0IT/0d7Oty6HK5As6T8Z870/fTw+p1GG3v50h233334aGHHgKXy0VWVhYuv/xyvP/++xCLxRCLxdi9ezcee+wxLFy4EM3NzdDpdJgxYwbWr18/3FUnwyCqoAsAZDIZpk+fPmD5JZdcEnFZDMPg73//OyoqKvDUU09BJBIN2Objjz/Gm2++6X+9YMECAIDVao34eP2VlZV5BzUqFGhrawtY197RHvB/Tt+Xh1wiQUlJCTIzMwO23717N7q7u/Grp1fiD4vm4YMPPsCCBQtworQUF2VlDyjfhy8Ww2w2DziXMy31frToPIfH8uXLAcR+D53O4nHN7Xa7/6dQKISn2ds12O5wgNvTy/rxhuJ0+2zFy+l2nnQPnf6sViv4AkHQ37+uvomRu7u7A87Td083NDYA+PleHwnO9PfzdDKUTNtGoxH/+Mc/wm5jMpnYqRA57UUddJWUlOCTTz5BbW3tgPFNHA4Ha9asGXJZb7zxBkpLS/H0009DLBYH3eaXv/ylP9Cy2+3YtGkTAO8HOhb79++HJDkZ2WmpA544STp/Pi+JWAJuX910KiW6u7sHHLu6uhqZY8ciLScH08+/EP/76isUFBSg2+1G0dkzIJVKg9ZBoVHD3dHuL8/j8cBms0Gv10eUajQWDMOgp6cHfD4/oU/e6Dzjw3ee4bz11ltYvnx5zPfQUOsyUq65r5Vdp9PBaDSiR8BHNQCdVgsolCPmPEMZae9nKHQPjYzPlkQigUAoDPr716NSAfDe0/3P03dPa9TeZAa+e50to+39JIR4RRV0rVu3DsuXL4dQKERGRsaAJ0CRfInYbDZs3LgRAoEAt956q3/50qVLcc011/hfa7VaaLVaAN55EHzHjPXLw2QyISvFGLSc/ufB4XD8r3VKJex2+4B9jh8/jvRxheBwODhn6VK8ds+vkZGejpzx4yFTh05HL1Eo0VRnHlAel8tN6Jej73iJ+iXgQ+fJPt95huMbPB7vOo20a+4rz39Ofa85ff8fKecZykh7P0Ohe8jrTP9s9fT0QJCUFLQ8ocibSMPlcgWcJ8d/j3P6frJ7DUbb+0kI8Yoq6Hrqqafwi1/8Am+99VbI1puh0uv1+O9//xtTGbGorKxElk4X0T4amdTfxai/0hMnYDzLm0Rk2nkXQGUw4vnnn8cNf3o0bHlimQzVlL2QEEIIYZXb7YYgyBxdwM8ZDSmRBiEkEaIKuurq6vC3v/0t5oDrdGCqqED6ECZF7k8rk8EWJHthpcmECUuuBgDw+Hw89K9/Y/+3X+PC5beFLU+sUNA8XYQQQgjLXC5X0Dm6gJ8zGlLQRQhJhKjafefPn4+jR4+yXZdhUVVVhfQIW7q0cjlstsCgq6enB3W1tdD3y2iYlp+Py+/+DYRBEoP0J5Er4HQ6I6oDIYQQQsJzu93+1PCn4nA4ECYlDZiolhBC4iGqlq5nnnkGN910E0QiEc4///yAlPE+6jBjmE4nNTU1SF+8MKJ9NAo57KUnA5ZZLBb09vZCmza0+b76kygUaKbuhYQQQgirXC4XBEmhMw8KhEnU0jXC1De3QNk3xVCsrI30txlhT1RBly9V/N133x1yEGhv7/CkTo6Ey+WCzeFAmkYT0X5ahWLAmK7a2loAgCqKDEdiuRyuri64XC4kJSVFvD8hhBBCBnK73eCFaOkCAEGSkIKuEUIikeDKSy/Fv/buA/buY63cOfPms1YWGd2iCrrWrl2b8Iw78WA2mwEAaX1ZEYdKI5PB0dgIhmH816Gurg5KrRaCKIImsVwOAGhpaYFer494f0IIIYQM5HK5IAgzxxa1dI0cSqUSn3355XBXg5CQogq6brnlFparMTxqa2vB4/GgD9I9MhyNXA63243W1lbI+wImi8UCtcEQVT0kcgUAoLm5mYIuQgghhCWDdS8UimhMFyEkMaKeHBkAmpqacPToUdTU1ODiiy+GSqVCV1cXhELhGTE3Q21tLQxqNXi8yOqqUXgDLYfD4Q+6rFYrFLroAqb+LV2EEEIIYceg3QuFQgq6RojOzk6YTCbWWy5VKhUyMzNZLZOMTlEFXb29vXj00UexevVqdHR0gMPhYO/evVCpVFiyZAlmzpyJxx9/nO26ss5sNiM1wvFcAKCWyQAAdrsdubm5ALwtXbIIsyD6CJKSIBSJ0NzcHNX+hBBCCBnImzI+3JguEQVdI4TT6cTMWbPQynI26EuvvBJffvYZq2WS0SmqoOvxxx/Ha6+9hlWrVmHRokUoKiryr7viiivwz3/+84wIuurq6mBURda1EACSBALIxGI0NDT4l9XbbFBkZEVdF6lCQUEXIYQQwiJv0BV6rLUgicZ0jRQ9PT1odTpx39vrkD1uHCtlNlmt2Pz6q6yURUhUQdfbb7+NZ599FnffffeALIVjxoxBeXk5K5WLtzqzGcYIx3P5aJTKgAyG9TYbCqadFXVdJDI5dS8khBBCWORyucAPlzKe5ukacRR6Q1TT9xASb1ENvGpoaEBhYWHQdR6PB93d3TFVKlHMtbUwRNHSBQAauQyOfvNA2Gx2yDWRZUHsT0ItXYQQQgirulwu8AWCkOv5FHQRQhIkqqBr7Nix+Oabb4Ku+/777zFhwoSYKpUoVosFBpUqqn1VUmlA0NXgsEMexfgwn2SZDE00QTIhhBDCmq6uwbsXdnZ2JrBGhCTWihUrcN1110W178KFC/H3v/+d5RqNXlEFXb///e/x4osv4tFHH8XRo0cBeDMBvv7661i9ejXuv/9+VisZDwzDwFJfD32ULV1qqcQfdHV1daG9rS22oEuuoO6FhBBCCItcrq7w83SJRDSmi0Rl4cKFEIlEkEql/n/Tp08f7mqdEbZs2QKj0Tjk7TkcDkpKSuJYo8SIep6uxsZGrFixAs8++ywA4KqrroJYLMbTTz+Na665htVKxkNrays6OjujbulSy2Sw9o3p8gVfsXQvFCvkaKagixBCCGFNl8sFRVLoli5+UhK6uroSWCMykrz88sv49a9/PdzVGPW6u7shCNON+HQR9WRa999/P+rq6rBp0ya8++672LhxI+rq6s6IVi7Am+IdQPRjumQy2G02AP2DLnXU9RHLFWhsbIx6f0IIIYQEGixlvFAkQheN6SIs++STT5CamurPcr1nzx4olUqcPHkSALBq1Srk5eVBJpOhsLAQH3/8sX/ft99+G7NmzcIf/vAHaDQapKam4tNPP8WWLVtQVFQEpVKJX//612AYBsDPrUarVq2CXq9Heno6XnnllZB127t3L+bNmweVSoXCwkJ88sknYc+lqqoKc+bMgUwmw+LFi1FTU+Nft2fPHsyaNQsKhQKTJk3Cxo0b/eucTiduvfVWGAwGpKen48EHH4Tb7UZ7ezsuvvhi2Gw2fwthcXExysrKsHDhQigUCmg0Glx11VUAgPnz5wMApk+fDqlUin/84x8wmUzgcDhYu3YtsrOzMWXKFADe2CQzMxMymQzTpk3D1q1b/fVZsWIFlixZgmXLlkEmk2H8+PEB6xMh4qDLZDLhz3/+MxYvXoyZM2fi/vvvx9q1a7Fr164zqnuc1WoFj8eDRiaPan+1XI7GvpvJ4XBAIBQiSSyJuj4ShYJaugghhBAWuVyusN0LhUkUdBH2LVmyBJdccgnuuOMOtLW14cYbb8QLL7yA/Px8AEBOTg62bt2KlpYWrFixAsuWLUNtba1//3379iEnJwc2mw1PPfUUbr/9dvz973/Hzp07cfz4cXz66afYtGmTf3uHw4HKykpUV1fj888/xxNPPIHvv/9+QL0sFgsuuugiPPDAA3A4HHj77bdx++23o7i4OOS5rF27Fq+99hrsdjvy8vKwbNkyAEBTUxMuuugi3HbbbWhoaMDKlSuxdOlSlJWVAQB++9vfoq6uDqWlpdizZw82b96MlStXQiKRYNOmTdDr9Whra0NbWxsKCwvx6KOP4vzzz0dTUxPMZjMeeOABAMC2bdv816StrQ133nmnv25fffUVDh8+jJ9++gmANzDbv38/mpqacOONN+Lqq69GR0eHf/v//ve/uPDCC9HU1ISHH34YV155ZULzKUQUdL333nsoLCzEs88+ixMnTkChUEAmk6G0tBRPPfUUxo0bhw8//DBedWWV1WqFTqkEjxddY59aJoWjX9Cl0GjA4XCiro9ELqfshYQQQgiLXC4XBCJRyPVCkYi6F5Ko3X///VAqlf5/t912m3/dK6+8gqNHj2LOnDmYMGECbr/9dv+6pUuXIi0tDVwuF9deey3GjRuHH3/80b8+PT0dd911F3g8Hq6//no0Njbi7rvvhkqlQmpqKhYsWID9+/f7t/d4PFi5ciVEIhGmT5+Om2++Gf/+978H1HfdunU477zzcNVVV4HH42HmzJn4xS9+gfXr14c8x2XLlmHatGkQiUR47rnnsH37dtTW1mLDhg3IysrCHXfcAT6fj0svvRQXXHAB3n//fXg8HvznP//Bc889B6VSidTUVDz22GNYt25dyOMIBAJUVVWhrq4OIpEI8+bNG/T6P/HEE5DL5UhOTgYA3HjjjdBqteDz+XjggQfQ3d0dEFBOnjwZN910E/h8Pm6++Wbk5ORgw4YNgx6HLUOOOEpKSnDrrbdi7ty5OHbsGGpqavDDDz9g165dqKmpwZEjRzBr1izcfPPNOHHiRDzrzAqr1Qp9lOO5gL6WruZmeDweNDQ0QBZDWQAgppTxhBBCCKtcLvegiTQ6OynoItF56aWX0Nzc7P+3Zs0a/zqJRIJly5bhyJEjeOihhwL2+9e//oUpU6b4g7WjR48GZMQ2GAz+/4vF4qDL2tra/K8VCgUUCoX/dVZWFsxm84D6mkwmfP755wGB4gcffOAfchNMZmam//9KpRJyuRxmsxlmsxnZ2dkB22ZnZ8NsNsNut8Ptdges960L5fnnnwcAzJw5E0VFRXjjjTdCbhusbgDw4osvorCwEAqFAkqlEi0tLQHX9dTtQ12neBly0PX6668jNzcXGzduDDpH1/jx47Fp0ybk5OTg9ddfZ7WS8WCxWGCIcmJkwDumq7e3Fy0tLWhoaIBUFf14LgCQyBVwUvdCQgghhDVdXV0QJIVu6UpKTqaU8SQuSkpK8Je//AU333wzfve73/nnsK2qqsLtt9+O1atXo6GhAc3NzZg4caJ/jFY0Wlpa4HQ6/a+rq6uRlpY2YLvMzExcd911AYFiW1sb/va3v4Usu7q6esBx0tLSkJaWhqqqqoA4czg7AAAgAElEQVRtTSYT0tLSoNVqIRQKA9b71gEI2jPMaDTiH//4B8xmM9asWYP77rvPnyE9FC735zBm+/btePbZZ/HBBx+gqakJzc3NUCgUAde1/7n4Xge7TvEy5KBr27ZtuPPOOyEM88QoKSkJd955J7Zs2cJG3eLKarFAJ5dFvb9K5t3X4XD0BV2xtXRJFAq0t7Whp6cnpnIIIYQQ4uV2uyBICpdIIxldLmrpIuzq7u7GjTfeiD/96U9Ys2YNRCIRVqxYAQBob28HAOh0OgDeVq/BgovBcLlc/PGPf4TL5cKBAwfwzjvv4Prrrx+w3bJly7Bp0yZ88cUX6Onpgdvtxo8//hh2TNe///1vHDx4EF1dXfjDH/6AuXPnIj09HZdccglMJhPeeecd9PT0YNOmTfj6669xzTXXgMfj4brrrsOf/vQntLS0wGKx4Omnn/aPBzMYDGhqagoYT7V+/Xr/uDa5XA4OhwMej+ffvry8POw1aG1tBZ/Ph1arRU9PD5555pmAQBQADh06hPfeew89PT1Yt24dysvLcckllwztIrNgyEFXVVUVJk6cOOh2EydOHBD5no6sFgv0SsXgG4aglkkBAA0NDXA0NEASa/dCubcu1MWQEEIIYYc3kUbolPHU0kVicd999wXM05Weng4A+POf/wylUokHHngAPB4P69atw9/+9jfs2LEDRUVFeOihhzB37lwYDAYcPHgQc+bMiakeWq0WWVlZyMjIwGWXXeZPeHeq9PR0bNiwAS+//DIMBgNSUlLwyCOPwBUmmcwtt9yCe+65BzqdDqWlpf6xYmq1Ghs2bMDrr78OjUaDhx9+GB988AHGjh0LAFi9ejU0Gg3Gjh2L6dOnY/78+XjkkUcAAAUFBVi2bBny8vKgVCpRXFyMn376CTNnzoRUKsVll12GVatW+XvWPfHEE7j99tuhVCrx5ptvBq3nhRdeiMsuuwwFBQXIysqCQCBARkZGwDZXXHEFNm7cCJVKhZUrV+LTTz+FWh1bT7VIDHmertbWVshkg7cMSaXSgH6mpyur1Yr5GdFPYifg86GQSuFwOOBwOCAdN7DLZSQkCm8WxZaWloR+AAghhJCRytXVFT5lfHIyuijoIlEI16vrueeeC3idnZ0dMC3QM888g2eeeSbovrfccgtuueWWgGWndj18++23B+z30EMPDRg7BsDfwuZz1lln4bvvvgtZ9/4G67k2e/Zs7NmzJ+g6hUIRtJ4+a9asCRgD99xzzw24bj533XUX7rrrroBlp14THo83oMyHH344YBuhUIh33303ZJ3ibcgtXQzDDDk7Xyz9UhOlvr4+6jm6fFRyORoaGtDQ2AhpDOPDAO+YLgAJTV1JCCGEjGRulwvCMNkLk5KT0dkvpTQhhMTLkFu6AGDRokUBg9aC8Xg8MVUoEXp7e2FzOKCLMVDSyGWw2+1oaGiELMZEGgKRCAKhkLoXEjJCffjhh6itrcW9994LgUAw3NUhZMTr7e1Fd3c3BElhuheKxejq7DwjHhYTQs5sQw66Hn/88XjWI6EcDgc8Hk/sLV1SKRoaGtDU1AhpjGVxOBxIKW08IaeVmpoarF+/HldccQXy8vKiLufzzz/HjTfeCLHM+6Bm5cqVLNaSEBKMb5zKYEEXwzDo6uqCRCJJVNUIYc3ChQthtVqHuxqnvVO7WQ6HMzbokkql4PP5UT2d8n049YqhB0rBjqOWSlBfXw9nc3PMLV0AIFUo0djYCIZh/OeWqKdvvuMk8mkfnWd8jzkYo9EY9T0UTV3OtGve0tKC2XPnotPlxtPPPIN9P/2E7OzsgPMJKD/EeTIMg0f++CdccuevkTNpElY/8Hs88sgjQxojOxi6h+J7zMHQPcT+Mfv/jJVv0mNhmJTxIrE30Gpra/PPh3RqPdi+BqPt/SSEeEXUvfB0MnXqVKhUqqhSrJvNZoiEQkhESWG7Q/ZfxzDMgG1VUimq6sxgGAYSpTLmrpViuRyNjY3weDxQqVTweDwJ767Z29ub0OPReQ6f2267DQASNk3BmXbNX375ZXi4PPzlhx/x/E034IEHH8QH77/vv149PT3o6elBb9/r3t5e8DHwPHft2oXSkmLcu+49yLVavPXI/4fPPvssaDrfaNA9NHzoHooPts7Tl9SLJxSEPIekvkDL6XT6k1j57umevnr47nW2jZb3kxDidcYGXQcOHMDEiRP98xxEwm63Q6dW+fP/h9J//BqHwxkwnk0jl+On4lIAgEytHnS822AkSiWcTie4XC4aGhqg0WhiLnOoGIZBb28veDzekBOmxMrj8dB5xonvPMNZs2YNlixZEtU9FE1dzqRr7vF4sOatt3DhHXchWSrFDY8+jj9fehEqKyuR1NdVic/ne58c871fo77vk1PP8+OPP8bEufOg7ZuAccri8/C/r77CTTfdFOtp0j0UR3QPnfmfLV+glCRKDnkOyVLv9C/t7e3g993Lvnua33dP++51toy29zPRWmz1OBnbtFcBZRHCljM26Grrm0g4mi+s+vp6GCOcVyvYcdQyGRx2OwBAqoxtni4ASJZ7x3RxOBz/uSXqC9knkcek8xxeVqs16nsoGmfSNT9w4ADMNTWYc+VVAID8adORP3Ua3nzzTdx7773+YwSU3/ez/zKGYfD5f7/A4jt/7S97wjnz8cnzK/3bxoLuoeFF91D8js3GMX1jusJlLxT1jeNqb2/3HzPYz3hcg9HyfiaKUqnEo08+ifYTxWg9EXqy30hwAdy+/BZWyiLkjA26YmG1WqHrmxcrFhq5DE3NzRDLZOCzkI1MolCgkVLGEzLs/ve//yFv8hQo9Qb/svnXXod3X/kL7rnnniGXc+LECVSZKjG13ySVBTNnwlpXh6qqKmRnZ7NZbUJIP74xXeESaXB5PCQlJ8PpdCaqWiROJBIJnnz00eGuBiEhJaaN+TRjtVigVyhiLkcjl8PZ1gZ5hK1moYgVCpqni5DTwObvt6BwztyAZbMuuwL2+nr89NNPQy7n22+/RVpuLgxZ2f5lhuwcyFUq7N27l63qEkKC6Oyb9Dhc0AUAYqmUgi5CSNyNyqDLUlcHHUtBFwBIIsiCGI6UWroIGXa9vb3Ys+dHFMycGbBcrtFgwjnnYOPGjUMu69vvNqNo7ryAZRwOB7mTJ2Pfvn2s1JcQElxXVxf4AgG4g4zfTpbJKegihMTdqAy66q1WGFhonVL3pXwWsZD6GfAm0qCWLkKGV3FxMdrb2pA3bfqAddMvvARfffON/3VLSwtana1By/F4PNi6dQuK5s4dsC6zaAIOHDzIXqUJIQN0dXWFHc/lkyyVoqWlJQE1IoSMZqMy6LLa6qFXxt7S5Qu6hFKWgi6FkiZHJmSY7du3D7rUNCh1+gHrzrrwIljMZgDAfb/9LVQqFSZNmgjg5zTTPseOHUNTYyOKZs8ZUE5mYRGOHGUpvRYhJKjOzk4kDSHoEsvl9LuXEBJ3oy7ocrlcaGpuYaWli8fjQigQQsjSLPZSpQItTU00oSAhw+jgwYPInjgx6DptWhoy8scCAA7t3YNPn3gMr//2NwCA/7dyZcC2W7duRdqYMVAZjAPKSR83Dhazmf7QIySOurq6wk6M7CNWKtHY2JiAGhFCRrNRF3RZrVYAYCXoAgC+gA9+cjIrZUkUSvT09KC9vZ2V8gghkTtw6DAyCouCrmMYBnyDN6Ph2gd/j3MmjMecIu+2a9auxYEDB/zbbtmyFYWzB3YtBIC0vHxwOByUlJSwXHtCiE9nZ+eQuheKFQo4GhoSUCNCyGg2aoMuHQvdCwHvoHgei0EXABrXRcgwOnbsKDIKCoKu27ZtG7hKNQDA4wlskV40dQpWPP44AG9wtnX7NhTOnh20nCSxGIaMDBQXszOXDCFkoM7OTgiTBw+6ZGoNbH1zbhJCSLyMuqDLYrFAJZcjiYV5tQBvpjOuQMhKWdK+1jcKuggZHg0NDXDYbMgYNzDoMlVVYdu2bbi4b86t7UcCx2TddtGF2PS//+HEiRM4fvw4HDYbikK0dAFAal4+SktL2T0BQojfUFu65BotrFYrPB4PysvLKakGISQuRmXQZVSrWSmLYRi43W5AyE4AlyyVgsfjUdBFyDApLi4Gl8tFSu6YgOXt7e345KOPMC0/D7mpKQCA7w8dDthmfFYmpo0dizVr1mDz5s1IGzMGmtTUkMcy5I5BSekJ9k+CEALAG3QJhjCmS2nQo7amBnm5ucjLy8PUKVMAwPv7nRBCWDLqgq66ujoYVOzMq9XW1QWPxwMPN/wcIEPF4XAgpQG9hAybkpISGLOyAiZT9Xg8+Gj9eshEIiyY9HOCjV3Hj6PD5QrY/5r55+C9d9/FV19/jQnz5oc9VkpOLk6cpKCLkHjxdi8cvPt/S5cb7W1tuGDCeBx84694/V5vcpzHH3003lUkhIwiozPoYmk8V0OLdzLFXpaCLgCQ0VxdhAyb0tJSpIzJC1i2YcMG2G02XDl7Fnjcn78yOVwevtt/IGDbK2bPQp3Vis2bN2PSwkVhj2XMyUFFeTk8Hg97J0AI8evs7IRgkO6FtbW12H/sGADg2kULkK7TYnZRIQDgxz174l5HQsjoMfqCLrMZRpYyFzb0zWDfzWKKd6lSRS1dhAyTktJSGHJz/a+/++47HDl8GEvOmQOZOPCJ+fizzsLHO34IWKZVyFGUnQWXy4UJ58wLeyxjTg5cXV2wWCzsnQAhxG+woMvtduOTjz/GxLH50On1OFxRGbB++QXnAwBN7UAIYcWoDLrY6l7ocDohSk5GJ4v9viXU0kXIsDlxsgwpOWPAMAy+/vpr7N69G0vOmYuUIONAp50zH1//tA8tp0zxkCwUQpGZheRBJk3XpmeAx+OhrKyM1XMghHi1d3SE7V743ebN4Hg8mD9hPAqmTcPnu3YHzJN5ycyzAQBvvvlm3OtKCBn5Rl3QZbFYgv4BFY2GFifkCgU8Hg86OztZKZMmaSRkeHg8HlRVVsCQnY3PPvsM+/ftw9L55yDLoA+6/bhJkyBXKvH5D7v9y7rcbpTU1EKcO2bQhyd8gQCGjAxUVFSweh6EEK+Ojo6Q2QttNhv27tmD86ZNAZ/Px4XXXIcfjhfj719u8G/D53mHDqz717/Q0dGRkDoTQkauURV0uVwu2BsaWAu67C0tUPSV1d7OzheyRKmiSRoJGQZmsxkulws/HT2KipMncf2iBcjU6UJuz+XxcO6SX+Jf333nX/bJ9p0Al4uMSVNQVl4+6DH1WVkoH8J2hJDItXd0IClZHHTd119/jby0VGQbjQCA9NxcXP+b/8MLH32K7t6ewI0ZBh988EG8q0sIGeFGVdDlmxiZrZTxtuZmKDUacLlctLe3sVKmVKlEI3UvJCThTpw4AQ6HA2dnF64/dyH0ysG7IS++8ip09/VGamlvx//78COct/Rq5KaloWIIwZQuKwcVlZWDbkcIiVxHRweSgnQvrDSZUFFRgfkTJwYsn3nuYrS2t+NopSlg+WUzzsbaf/4znlUlhIwCoyroMpvN4HA4rI3pqm9uhlyjgViUhLZTxnVES6qiRBqEDIcXX3wRfLEE1y5aAJVUOqR9RGIxrv3N/wEALv7jY0hWq3Hp9Tcgy6CHyWQKGB8SjC4jEydpTBchcdERYkzX5m+/xYScbGjkgeMuxVIpMrOzccxUHbD88tkzseOHH2AymeJYW0LISDfqgi6dSgUBn89KedamFijUGohFIrS1sdPSJVOp0EDdCwlJqK1bt2LTpk3IzM6GWhY+Acapxk2aDABYcudd+MMrr0KYlIRMvQ5dXV2w1teH3deQlUV/yBESJx0dnQPGdJWVlcFisWBOUVHQfVJyclFmqQtYNi49HWMzM/Dhhx/Gra6EkJFvVAVdtbW1SNVqWCvP2tQIpUYDiUiEdpaCLqlShWbqXkhIwnR3d+PXd96JnJQUpOfkRF3O1Llz/V2ZxElJ0KlUMA3SdVCfmQmHzYZ2llrKCSE/6+jogEgsCVi2ZcsWTMjJgUISfKyXISMD1TZHwDIOh4PLZ5yNj9avj1tdCSEj36gKusxmM1JYmqOLYRhYGxqh1GohSUpCa2srK+XKVGq0t7XB5XKxUh4hJLw1a9bAarFALpVAl5LCWrkZWs2grVj6zCwAoNYuQuKgo6MdSeKfg6vyigpYLBbMKhwXch99aipqHY4Byy+ZOQN7f/oJdXV1QfYihJDBjaqgq7amBiksjedqaW9Hl8sFtU4HCYvdC6V99aPJGAmJv+7ubjz79NO498rLYXY0QGdkMejS6VBdXR12XJdUpYJYJkMlJdMghHUd7YFB1/atWzE+OwsKiSTkPhq9AY4gvU0m5eYgVafFhg0bguxFCCGDG1VBV3VVFdK0WlbKMju84640eoM36GKppUuq8mZWpAmSCYm/9evXo6W5GTecuxCOpiZWW7rSdVp0dXXBZreH3IbD4cCYmUlBFyEsYxgGnf2yF1ZVV6O6pgazCgvC7qfS6dAb5EEJh8PB+VOn4ssvvohLfQkhI9+wB11ffvkl7r//fixZsgSrVq2K67Fqa2uRomEnXXyN3Q6xWAyxVAppMnstXWK5HFwul4IuQhLgtVdfxXWLFqC5b549jcHAWtkSkQhqhRzVVVVht9NmZFHQRQjLOjs7AcDf0rVt61YUZmUOmplUFebB7OKpk7F582a43W72KkoIGTWGPehSq9W45pprcMEFF8T1OL29vaizWllr6aq22aDvm1RRmpyM9o4OeDyemMvlcrmQqVQUdBESZyUlJdi1ezd+dd5i1NhsEAqF/snO2ZKu0Q4h6MpAeUUFq8clZLTzPQgVSSQw19WhsrISswrCt3IBgDApCeIgaeYBYN7ECehydWHXrl2s1pUQMjoMe9A1Z84czJo1C3K5PK7HsVgs6O3tRZqGneyFlRYrdGnpAACpKBkMw7DW2qVQa2iuLkLibN26dZg6Nh8FmRmottmhNxrB4XBYPUa6ToOqQYIufWYmTZBMCMt8GUFFYgm2b92K/PQ0aBVD+ztDHmJidJlYjLPGFeCbb75hrZ6EkNFj2IOuRKmpqQEA1roXnrBYoU/vC7qSvfOAsJXBUEotXYTEFcMweP+997Bk7mwAQK3dzmrXQp80rRatbW1h72d9ZuagrWGEkMj4HoI629tReuLEoGO5+pMqFCHXzZ9QhG+//jrm+hFCRh92ZglOAIfDAUdfGle73e7vUz3ULn0mkwlGjQZCPj9sNrH++m/HMEzA69LqGlx+8aVgAPB4PCSLRGhxOpGamjrEMwpNqlajsbGRle6KQ8UwDDweDzweD+tP+0PxnR+dJ/t85xmOQCAAEP96nY7X/ODBg6gwmXDF7IfBMAyqbHaoDEYM5ZuB6feTCfK6P6VEAqlYjKrqaihDPD3XZWTC2dKChoYGqCKc0oLuofihe+jM/mz5HoLu3bcPuakpMKhUwe9v3+91hgHTd0xf0OX7nd//9/+8iRPw4kefoLm5OeoeOqPt/SSEeJ0xQdfHH3+MN9980/96wYIFAACr1Tqk/Y8fPw6DShVRF8D2jvaA/3P6vjwanK2wNjQgJTPLH/xJRSI4HA5WuhgmyeRobGqCzWaLuawzAZ3n8Fi+fDmAod9DZ6JQ1/zdd9/F5DFjIE9KQltbGyrr65GdP25IA+Td3W7/T7fbDU53NwBv+vnuvv/3l6pWoby8HGNyc4OWJ1Z7uzzv3bsXkyZNGtJ5nep0+2zFy+l2nqP5HjrdVVdXQ5CUhOLSUiydN3fQe9vd794V9SXb6OhLxtHe0Y62Nm+PlrEpRgj5fPz3v//FeeedF6fax8+Z+n4SMhKcMUHXL3/5S3+gZbfbsWnTJgCAsS+ZxWCampqQpddBOkjmov4knV0//18sAbcvC9KO4hKIRCJk5eWBx/deQrlEDFdXV0Tlh6LS6+EoPga9Xg8uNzE9QBmGQU9PD/h8fkKfvNlsNjrPOPCdZzhvvfUWli9fPuR7KNa6nE7XfMvmzbh4xnT//WptasKM1FQIhcJByxYKhP6fQqEQAre3tUMgEMAjEAw4xwy9DgdN1SG/G6RSKRQaDZxOZ8TvBd1D8UP30Jn92RIIBODy+UjX6ZAdbioIhoG7uxtCgQDoO6ZMqQLg8ifUkIglAffvrKJCHDx4EMuWLYuqbqPt/SSEeA170NXb24ve3l5/U7vb7QaXywWfH1g1rVYLbV/mQblc7v/jaKhfHtVVVcjQaiL6guu/LYfD8b/+7sAhFEyeElBHWXIynC0trHyByjUaVDU1gcvlJvTL0Xe8RP0S8KHzZJ/vPMPxtcrEu06n2zWvq6vDgUOH8OJNN4DD4aC7pwe2xiboDEYMpXacfj85YV77ZOh0+G7/QXR0dEASYlJWY1Y2qqqqon4v6B5iH91DXmfqZ6umpga9DIOZBePC3te+LoXgcPzbSWUyoM3lr0P/3/8AMLeoEBs3bw64Lk6nEy+++CJ+9atfYcyYMWHrNtreT0KI17DfDR988AGWLl2KDz/8EDt37sTSpUvx2muvsX6cKpMJGTpdzOU0OJ34ZMdOzFi8OGC5XCxGc3NzzOUDgKxvTBchhH1ff/01DBo1JuZkAwDqGrzjJzVG9hNpAIBWoYAoSYiq6urQ22RkoqysLC7HJ2Q0+vzzz5EkSkZOSuStkBKZLOz6uRPG48DhwwG/85988kk8+eSTuP2OOyM+HiFkdBj2lq4bbrgBN9xwQ9yPU1VdjfTLLol+f5sdK9Z/hB+OFUOXno6Z5w4Muloq2En7LFNr0ERBFyFx8fVXX2HBxIn+J8w1djt4PB5UGnbm8DsVl8NBulaLKpMJRYWFQbfRZWWh/PjRuByfkNHG4XBg544dMGZlD6n1+lQSafiga8qYXCQnJWHHjh247LLLwDAM3nv/fSy6/kZsef892O126Fh4yEsIGVmGvaUrEVpaWtDidCJTH/2X4N2rX0WVuwfX/vZ3+P9eXj2g+6NCIkFbezt6e3tjrS7kGg3aWlvhcrliLosQ8jOGYfDdt99i4aSJ/mW1djs0Oh24PF7cjusLukIxZmejnKWHNoSMdq+++iokIhFU6siygfqI+1q6XO6BiXEAQMDn4+yCAmzbtg0AcPLkSVjMZvzyvvuRLJVi586d0VWcEDKijYqgyzc5aSzdC1tdbtz71DOYfd75SAoyW71CKgHDMGhubon6GD7yvgmcfSnyCSHsOHbsGGwOB+ZNnOBfVmN3QBuHObr6y9DrUW+zobMvG9qp9JlZqK2uokHnhMSovb0dr736KibkZEHUl/wqUuK+pBmtIe5XAJhdMBZbv/8eALB7925oU1Kgz8rCmEmTsW/fvqiOSwgZ2UZF0GUymaCQSiGXRPcFDABnLTo37Be4RCSCgM9HU1Ps3QLlfd2cKOgihF3ff/898jMyAiZJr7HboY5z9jmDSokkoRCmEJMgG3Ny0dPTg+ow474IIYNbu3YtBBwOjCo1RJLosgmLpd6EN62dHSG3mT2+CPsPHkRbWxv279+PnEmTAQAZReNx6PDhqI5LCBnZRkXQVVlZicwYB8lPnDEj7HoOAKVMxkoCDJFEAoEwiebTIIRlWzZvxtyigoBl1XYH1Pr4tnRxORxk6HSorKgIul6dkgJhUhIl0yAkBj09PXjphRdwx8UXot3lQnKIbKGDEYm9+znbQ7d0Tc/PA5fDwa5du3Dw8BFkFBYBAFLz8lBcUhrVcQkhI9uoCLpMJhOyYhzUmpkTfGLT/lRSCRpYCLo4HA7kGjXsdnvMZRFCvBiGwbZt2zDrlGQWNXYHNIb4tnQBQKZeh8qK8qDruFwuUrJzKOgiJAaffPIJ7HY7brnwfDg7OpAcZfdCX5Kd1s72kNuIhEJMHzcW27ZtQ3HxcaSPGwcASB0zBlWVFdRVmBAywKgIuirKy5HWrztRNDhDGGSvlkrRwFKgJFdrKOgihEXFxcVwNDZiTtHPQZfH40Gd3Q5dnLsXAkC2wQBHQyOcTmfQ9YacHJw8eTLu9SBkJGIYBquefx7LFp8LpVSKlo5OJIeYkHyoWjtCt3QBwOyCcfj2669hs1qRlpcPADBk5aC7uxu1tbUxHZsQMvKMiqCrsqICWQZ93I+jlstZC5RkGgq6CGHTtm3bkJWSglStxr/M1tyC7p6euM3R1Z9GIYdMIkZZefDWLkNOLkpPnIh7PQgZibZv3479Bw7grssuBgC0dnRAHGX3Qp9wiTQAYE5REfYd2A8ASMn19obRpKaCx+fDFCZbKSFkdBrxQRfDMDBVVSFTH3nQ1dvriWh7rUIOJ0up3qUaDerr62MuhxDitWP7dswqGBewrKbvwYZaF/+HMhwAOQYjykO0ZqXm5aGklIIuQqKx6vnnccWcWf7f9c729qjHdPm0DRJ0nTVuLHp7e6HU6vxJO7g8HnSpqRR0EUIGGPFBV2NjI1rb2pAVRdBVZYss6NHI5eByubCyECzJ1BpYKZEGIazZsX07ZhaMDVhWbbNBo9FAmJSUkDrkphhRXl4edD6/1DF5qKqsoPn5CIlQaWkpNmzciHsuvwyA92Fra3s7JLLwkxwPprWjK+x6abIIRrUG4n6t5wCgS8+gTKSEkAFGfNBVWemdcDQjiqCrrK4uou0FPB40CgUsEe4XjFyrpZYuQlhiNptRVVODWYWBmQtrbHZo4jxHV39ZRgN6env9cwf2l5aXD4/HQ8k0CInQiy++iFlFRZiWnwcA6HC50NPbG3PQ1dIROpGGj1ycDK408Diq1FTU1NTEdGxCyMgz4oOuiooKaJVKSJNFEe9bbrZEvE+qWoVaFr5sKegihD07d+6ESi5HXmpqwPJqmx0aY0rC6pHE5yPLoEdxScmAdXKtFgq1GsePH09YfQg509lsNvzrnXfwmysu9S9rafMGS+IYE2kM1r0QADwAeviCgGyF6tQ0VFPQRQg5xYgPuiorK5Ed5SD5iiiCnnStFiaTCQzDRHVMH7lGC7vNFnM5hBBgx3OV93YAACAASURBVI4dmDFuLLjcwK+8Krsd2lMCsXjLT0tFaXFx0Hs7few4FBcXJ7Q+hJzJXnnlFWQZDbhg+jT/suZ2b9AllStiKts5hKCrsbUNArkcZrPZv0xtTEFtv9eEEAKMgqCrvLwcmTptVPtWRhF0ZRkNaO/ogMVqjeqYPgqdDq6uLrS2tsZUDiEE2LVjB84emz9geZXNBm0C0sX3l5+WhvaOjqBjPtIKCnDkyNGE1oeQM1VbWxv+9te/4jeXXxrwQKWprQ1cLheiKOfp8pffGX5MV4fLBUdTE1IzMv1DGQDvZOd1LAwzIISMLCM+6KooL4sqiYbH40FNfeSJLKQiETL0ehw6eDDifftT9E3mbLFE3sWREPKz9vZ2HDh8GGefkrmwt9cDs80OXQK7FwKAOCkJ2UYjDh8+PGBdZkEhDgZZTggZ6I033oCIz8PS+fMClje1tkIml/snOY6Ws6Mj7Poamzf7aX5+Pir6TQWhNhjR3NiIrq7wQRshZHQZ8UGXd46uyLsXWhub4HK7ozrmtPwx2L9/P0wmE0pKS7Fj507YIpxzS6pSg8fjwRpjixkho93evXvBATA1b0zAcmtTI7p7eqBNSWzQBQBFWRk4fuxYwDgQAMgsGo+KspPoGOSPPUJGu66uLrzw/PO45/JLkSQQBKxrcHqDrli5B/kbwFRfD7FYjLG5OTDX1fkzj6r6Ws/poSkhpL8RHXT19PSgqqY2qjFdFVbrgPEfQzU2PR3js7Lwzjvv4NOPP8bR/fvx5j/+gboIvoC5XC5UOj19aRMSox9++AGT8sZAfEpa+Kp6G7hcbkKzF/qMTUsDABw7JWlGVlERGIYJ2gpGCPnZP//5T/S43fjV+ecNWNfodMY8nmsoqurroTcaka7Vgs/j+bOSKnQ6cDgc6mJICAkwooOu6upq9Pb2IjuKP6oqLVZo+7r4RYoD4MKzpuHeX1yJe6+6Ar86fzHGpadh45dfRlSOymCgoIuQGO3Yvh1n96WS7s9krYdWrwefz094nfg8HiZkZ2Hvjz8GLE+WypCRl499+/YlvE6EnCm6urrw/559FvdcfikkooGZiR1OJ2QqZdzrUWW1QZeWBh6Xi0y9zj/dA18ggFKrpd/fhJAAIzroqqiogFAgQIpaHfG+lVYrNDEOsE8WCsHjcsEBcM6E8aizWCLKaKQ0GOlJGSEx8Hg82L17N2acMp4L8D6lNiQ4c2F/U/PGoM5iGTCfT86UKfhxz55hqhUhp7833ngD7q4u3HbxhUHXO5xOSJSxB12DjQkrr6+HNtXbap1tNKDs5En/OnpoSgg51YgPujKNBvB4kZ9mhbUeagN7Wc0UEgmyjAYcPnRo6PsYDRF1SSSEBCouLkZTczNmFhQMWFdRXw9NXze/4aCSSjE2Ix3bt28PWJ437Szs/GHXMNWKkNNbW1sbnn36afzuqiuCtnIBgK3FCYUq8oetpxIPkv2w0loPXd+Dm1xjCpqam9HQ0AAAUOoNNCabEBJgRAdd5eXlUXUtBACTzcb6WI+xaWkoDTIpaigqg5EmWCQkBjt27EBWSgqMatWAdRVWGwxp6cNQq5/NLixAWVlZwBw/42bMQEXZSZocnZAgXnjhBQh5XCy/6IKQ29iaWyBXDbznIxVucmVvhuN6GPoe3CilEmgUCpw4cQIAoNDrqacKISTAyA66ysqQHeW4rGprPetB15iUFDhbW4ecyVBtNMJspi9tQqK1c8cOzBw3Nug6k9UK/TB2LwQAvVKJwsxMfP3VV/5lmYVFkCmV2LJly/BVjJDTkNVqxQurVuGRa64ekLGwP1tTExRRDCs4lVgsCbnO7GiAu7vbH3QBwJgUI0r6Hqwq9IaY5+skhIwsIzroKjt5MqrMhc1tbXC2t7MedMnEydAoFKisqBjS9uqUVFjqzGAYhtV6EDJabN++DTODjOdqam1DS2srDOnD29IFAPMmTkCdxYIjR72TInO5XEyYNx9f9QvECCHAY489htwUI65eMC/kNu7uHjQ5nVBptTEfL1kWuqWrwmKBQCCARv/z3wn56WmoqalBe3s7lHo9DQ8ghAQYsUEXwzCoqKyMKugy9U2KrNFFPqnyYDJ0WlSZTEPaVpuahq7OTjQ2NrJeD0JGOrPZjOqaWswuGjieq7yv248+dfjGdPkoJGLMLizAV5s2+efnmrxoMTZs2gSPxzPMtSPk9HDkyBGsWbMGT/5qWdjpXKxN3t+XKm10vVz6E8tkIdeV11lgTE0Fl8fzL0tVqyEVJ6O4pARKnR42my3mOhBCRo4RG3Q5HA60trUhNyXyZBjV9TYolEokJSezXq90rRbV1dVD2lbd1/Xp1OxmhJDB/fjjj9AqlcgPkiyjvM4CnU6HpBAD8RNtRsE4SEVJ2LBhAwDgrAsvQoPdjp07dw5zzQgZfgzD4Pe/+x0uOvsszJs4Iey2ZkcDuFwuFBpNzMcNF3SdNJthyMwMWMbhcDAuPR1HDx+GUqeDvb4evb29MdeDEDIyjNigq6ysDBwOB5n6yFurTPX10KekxKFWQJpWg/aOjiG1XollMsgUSv+Ei4SQodu9ezdmFxUETftcVlcH4yl/MA0nHpeLS2acjROlpdh/4ADkGg2mLDoXa9euHe6qETLsvvjiC2zbvh2P33TjoNvW2h1QazSszL8nDRN0FdeakZKVPWB5UVYmqqqrwUsWw+PxwOFwxFwPQsjIkPhZQVkilUrB5/NDjnc6efIkUrVaiITCiMuuttmgOSXoYmtUlVwigTQ5GTW1tVCHGejr6z6hS0+DyWSK+7guX/mJHD/GMIz/PUzUcUfbeYZjNBrD3kNs1yXR13z3Dztx27kLg64vNdfBkJnF7jH7/Qw/u09wOoUC506dgk0bNyI1JQWLf3UzXrnzdqxcuRKGEONL6R6K7zEHM9LvodPhs+V2u/HA/ffjjksvxpjUwR+GVtts0Bkje2gaaj4usVwecp+SmlosveKqAcsNKhV0SiWq+sZz1dXVQX/Kw9/R9n4SQrzO2KBr6tSpUKlU6OnpCbr+xIkTyEkxRjUmosJqg3bCxMAvDBa/qFI0atTU1GDihNDdJJKTk8EwDDTpGTCZTCHPk22J7gqhUqng8XgSPnZltJxnOLfddhsAjMjPltlsRnmlCXPHjw96zUtrzZgzc3ZU93T/P5gC/oDp9zPab4pJuTkwOxz44P33sfzWW5GSk4snnngCq1evDrkP3UPDZyTfQ8Dp8dl6/fXX0eRw4PdLrhpSPSqsVmhSUyO6twV8fsB969tXKvMGXe6e7oBjNzidcDQ1IS0nJ+hxJuZkY8/x40hKTkZdXR0mhPhdP1reT0KI1xkbdB04cAATJ06ELkRK+IrycuQY9GEH3IZSZbPh3JTUwKdfHM6gs9MPVYpajTKzOWTdGIZBR0cHxGIxdJlZqDSZWOkqEQ7DMOjt7QWPx2PtPAfj8XjQ0NAAjUYT1fsUjdF2nuGsWbMGS5YsCXkPsV2XRF7zbdu2QatUojAzY8A1d3f3oMpiwdXZOVHVx7cPp+87wV9Gv5/RniUHwAVnTcd/vt+CTz/5BDc+/gRW3nAtrrnmGixcuHDA9nQPxc9ov4dOh89WU1MTnnn6KTx89S+hCtPVr78yixXZc+cN+ToxALq7uyEQCPz3rW9fmUIJAGhuawc35edrcLyqGgKBAKlZ2UGPMzEnGzuPHoNYroDNZhvw+3u0vZ+EEK8zNuhqa2tDT09PyC8sp9OJXEnoOTZC6e31wGy3w5AWOH8Pm1+LKRo1dh477v/SDcb3JEqflYW9u39I2Bczh8XgcijH8r2HiTpm/2OPhvMMx2q1hr2H2JbI89/83XeYVTA26PEqLBb09PYiLSeH1WNyTvkZLQGPh1/MmYN1321GlVqNS+64C0uvvhrbt21DUVFR4DHpHhpWI/keOh0+WytXroRaIsXNF5w3pP0YhsHJWjPmZEXWdThUq5hM5Q26bE3NAcsPlVcgMzc35MPQJIEAk8fkoozHhcViCXn9Rsv7SQjxGrGJNKJlbnCgp6cHupT4TZpqVKnQ29sLa3394NtmZaOyooL6RhMyRAzD4NtvvsE5pwQoPsXVNVAqlZArlQmu2dDJxMn4xdw5OHrkCLLPPQ8Fc+dh4bnn4vjx48NdNUISoqamBq+uXo0/33Ctt/vfEJgdDXC2tSEjdwwrdRAKvGPC65ubApbvOXkS2YWFYfc9e9xYcETJ+P7771mpCyHkzEdB1ylM1nrw+Xyo49hdJEkggEahQJ3ZPOi2xtxcdLS3w0KTLBIyJMePH4fZYsE5E4IHXcerqpCem5vgWkUuRa3CZbNmYuu2bVh0z/8hf+ZsLFq8GJWVlcNdNULibsWKFZiQk41LZ84Y8j4HysogkUigS2X3oaml4edswwzDYE/JCeSND5+6XiISISMzE9u3b6cMhoQQABR0DVBprYfBaAyY8DAejColzEMIuvSZWeDx+SgtLY1rfQgZKb766iuMy8xEWoh5eg6bTEjPy0twraKTn5aKxVOn4Isvv8QlDz6M9KLxuPyKK/2TKBMyEp08eRLvvPMO/nT9tRF1hdt57DjyJ0xgfcySuV/QVFJdg8aWFhRMmTrofuPy8sDn83HjDTckLNkKIeT0RUHXKUxWK3SpAydTZZtRrYa5tnbQ7fgCAdJyclFSUhL3OhEyEmz44gucO3lSyPWHK03IzBubwBrFZmreGMwsGIePPvoISx59HI6WZvzhD38Y7moREjcrHn8cc8YXYf6kif9/e/cdVnXZ/wH8fZgHBAQEZCNLUQFBBBVRAfesXD3ORDN/apGWK5VQUXGVE8eTPWaGlrNUxNzlChwopggJChKgqKBsOOP3h0oSICBnMN6v6+K64Hu+43Ofw33O+XzvVe1jJBIJIq9chXPHTjKPJznzn6Tr9PUbsLS2rlZvGEMjI+hqaeH61St4f8QI5Obmyjw2Iqo/mHT9y930DBhbWcr9OubNDPHk6VMUFRVVvW+rVvjzzz/lHhNRfffs2TP8fv48entUfBc642kWMp9moUXL+pN0AUAX57ZwsW2BA78cwtD5XyIsLAwxMTHKDotI5uLi4vDjTz9hzvvDa3TcLxf/wKOsbHT085d5TImvde8/En0Zrl26VOs4fSMjPH32DD8HB+F6dBTatm6NdevWKWTtzapcvXoVycnJSo2BqLFh0vUviRkZaG4h/6TLWF8fKioqSEtLq3JfK6fWuB4bK/eYiOq7Y8eOQUdLiI6tnSp8/Nrdu9DS0oKZlZWCI6sdAYAebu3gZGmBqPgEtOvREzM+/1zZYRHJ3NIlS9CtnSs6VVKHX5eQmooPVn2FLjNm4f/WbcC74wOgZ2Ag85gePnmKrJxcPHiUictxd+DlW73ETr+ZEYpLStCsqR7OrFqOMd188HVoKOzs7GBpYYF+fftgyZIliFXw53t0dDQ6dOgAr06dkJeXp9BrEzVmTLpeI5FIkJyeAVMFfCFTU1FBcwMDpFaji6Gtiwtib9zggoZEVTiwfz96ebSvdLazawl/wa6Vk9zHbMqDQCBAb4/2aGVhgSJzK5z7/XfOjEYNSlxcHPbu24fZw4dWuW/6k6cYsGAh/paqwPOddzH7qzUYOHqMXOLS0NBA1J07+O74CVjb2lW7pdzAyKg01iZCIT4bNgRXN61H1MZ1CBkzEvZCTez//nu0a9cOnh064NChQwppAVu/cSPc/XugqKQEe/fulfv1iOgFJl2vSX38GEXFxTCzslbI9cwMDfDgwYMq97N3c0duTg7HdRG9QX5+PiIiIjDoDbOdXYpPgJ3zm2cdq8teJF7u6ODWDk0dHPEZW7uoAVkSEoKuri6VtlS/Lvj7H2BkaYVPly5DryFD4eTmJre4Wrm6YtPhCHwT+Sv6jhxZ7ck9tHV0IBQKkfba7IcCgQD25mYY4tMFi8ePw8kVS3F503q4m5pg+LBh6OHnJ9eJsyQSCSIiItB1+Ah49huAn385JLdrEVFZTLpek5D6NzQ1NWFoYqKQ61kYNUNq6oMq72wZNDeFqbU1Lly4oJC4iOqjiIgIqADwq+TLV2FxMWIS/kIr13aKDUzGBAIB/N3d0GP4CMTeuIF169YpOySiWktISMBPe/Zg5tD3qtz3XkYGDp6/gBFTpiqk1brHkKGISUxC2w4d0Llnr2ofJxAI0MzYGGlPnrxxP1tTU4RODMDFdV9DLS8X7VxdsXLlSojF4tqGXs7NmzeR/fQpnH26wrlrN/z221n2oiFSECZdr4l/kAoLa2uZTzdbGQsjIxQUFOLx4ze/IQOAU2dvnDx1SgFREdVP4T/8gAGdvKClqVHh45fjEyCWSOBYj1u6XhEAGNSzJ2xdXLFq9WqsX79e2SER1cqSxYvRxbktOrV586LDAPDdrydg17IVWrpUf3bD2rC2d0DY4Qh8HLK0xt8PDE1MkF5F0vVKC9Pm2PXFbKydMhmhS5aga5cuSEhIeJuQK3Xx4kVY2NlB39gETh07IjsrC3FxcTK9BhFVjEnXa+JSHsDM1lZh19PV0oK+ri5SUqqeQaidnz9+/fVXFBcXKyAyovolMzMTEUePYkS3rpXuc/ZGLFq2bQuhtrYCI5OvERMmQiCVYtbMmZg3b57SZ0Qjehvx8fEI370bM6sxlkskFmPP7+fRdeBABUT2D9VKxolWxaB5c6RkVn9xZIFAgOHdu+LcmlXQFYvRztUVa9eulVlr1OUrV2Dn1h4AYGhqBhMLS0RFRcnk3ET0Zky6XvNnSgos7ewVek1LIyPcv3+/yv3a9+yFwqIiREZGyj8oonpm586dMGvWDD7ObSvd59jVGLms4aNMTm5usLK1RT8vT2xYtw6TJ0+WS5ckInkKWbQIXZzbokvbNlXue/7mLWTn5sLL108BkdVes+amSHlc/aTrFTNDQ4R/MQsrP5yA4AUL4NutG5KSkmodz5WrV2Hb7p8u1nbu7rh8+XKtz0tEVWPS9VJxiQjxySmwcXBU6HWtTYxx/969KvfT0tFF1yHDsHzFSt7NJnqNRCLB1s2bMcbft9KuP4lp6YhPTkZ7n8pbwuojgUAA/2HDcTY2Fj/MnYV9P/2EMaNHo6SkRNmhEVXLrVu3sOvHH6u9LtfPFy/CxdMTTXR15RyZbBiZmuLBo8y3OlYgEGBUDz+cX7Maqvl5aOfqip07d751LEVFRYiPi4Ot8z/dMm1d2yH6ypW3PicRVR+TrpfiUlJQIhLBRsGLpto0N0FuXh4ePXpU5b7vTf8MN2JvICQkhIkX0UvHjx/H/eRkjOnZo9J99p87Dxs7O5jb2CgwMsXw7O4LdaEWbt67h8OLg3HmxAkMHTKkWguvEynb/Hnz4N/evVrrconEYhyJuowO9aSVCwBMzMyR8eQJiktEb30Oc6Nm2DN/Lr54fzg+nDgRAQEBKCgoqPF5EhISIBKJYNP2n3Gt9u3c8OfNm7xRQ6QATLpeuvrXXZhZWEBHT0+h19XV0oKRvj7uJiZWua+xlRU+2bwVoStWwNPLC/v27WPyRY3e6lWrMKRrFzQ30K/wcbFYgh9On4V3334Kjkwx1NTV0Wv4CGw8FAFbM1McDlmImOgovDN48Ft9MSNSlIsXL+LQ4cOYP/L9au1/4c9byC0ogLt3FzlHJjsmFuaQSCRIyaz6xuqbqKioYPLA/ji6LASnIiPh4+2NlJSUGp3j1q1baG5lBR39f94r7VzbobioCH/++Wet4iOiqjHpeulSXBwcFDQT0r/ZmjbH3WrOUNShd1989dsFNHdrjzHjxmHQ4MHIz8+Xc4REdVN0dDROnzmDjwcPqnSfiKhoPH3+HD4NNOkCAN/B7yC/uBi7Tp+BnZkpDi0ORlzsDQwaOJDvD1Rn5OTkYNq0afDs2BFbt27FZ9OnY3j3bnC1s4VUKsXRqGjs+e13iCoZl/jLpT/g0qEDtHV0FBz522tq2AxCoRD30jNkcj43ezucWrkMOlIJPD08arSUzK1bt8q0cgGAjoEBzFq04LguIgVg0oUXY0LO3bwFJ/f2Srm+g7kZklNSqn1X2tjKCuOXLMPKU2dx9eZNjB4zli1e1CgFLViAgZ07wcnaqsLHRWIxlu/Zi+6D31F4K7YiaWlro9/IUVi19wDyCgthbWKCw4uDkXQnDgP69UNubq6yQ6RGLi8vDz179cah4ydg3aUrPg4MxNVr17Bg1H8gFkvwSdhmfLR2A+Zu/x6BYZvLHS8Si3H4j+h61bUQeDEuy8zSEnfT0mR2TkNdXfw0fy7e6egJPz8/bN68uVrfAWJv/glr5/I3lx3cPXDp0iWZxUdEFWPSBSDmbiKePHsGF08vpVzfwsgIQg0NxNdwPQ4zO3vMDf8Rx349hm3btskpOqK66dSpUzh56hS++E/lA/C/jfwVaU+zMHD0GAVGphy9hg6DRFUNaw/8DODF+8qhRcFITUpEn1698OzZMyVHSI2VWCzGqNFjkProEYIPHsK7n86A/aB3IZFKsebAQQSs/hoRl69i3sYwzFqzFvvPXcCpa9fLnOO3GzeRW1BQLyfDaW5tjYTUv2V6TnU1NYRODMDXkyfhsxkzMHzYsDeODZdIJLh9+xbsXFzLPebYwRPnLlyUaXxEVB6TLgD7zp2Hk6srmhoaKuX6KgIBWlpa4s+bN2t8rLmDI/7zxXzMnjMHT6q5ACNRfVdSUoLpgYEY17snWlpaVrjPreRkhITvxvtTp0FPv+LxXg2JhqYmRgV+ivUHf8H1xBdTS5s1M8Qvi4KRlZGOHn5+ePwWU1cT1YZUKsX06dNx9vffMPuHXWhqbIxfjx+HqWNLfL7qK5y7n4LkYhHmrt8IG8eWsHFwhO/AgQjZ9WOZ1ptdZ87C3du7XnUtfMW8hS1upaTK5dwj/X1xcsUy3I29AUcHBwQHB5ebWl4kEuHkyZPIz8uDSFsbd+LjkZGRUbr2VxtvbyT+lYC0ClrjSkpKEB0djfDwcGzbtg379u3DnTt32LuG6C00+qQrKycXu06fRfdBg5UaRxsbKyQlJSEnJ6fGx/YJmAg9k+ZYvHixHCIjqnu++uorpP39N+ZVMgA/+eEjBKzZAE9fP3Tt11/B0SmPR9eu8O7VCx+s+grpT58CAJob6OOXRV9CmpeLrl261HjwPVFtLFu2DN98+y1mfR8Oc3sHJCQkIPbGDfT19ICzhweCtvwXs9eshaWtbekxA0ePRfyDB/j1ylUAQMbTLERERaPbwMrHbtZl1g4OuJOSIrMFjv/NydoKx0OXImTcaOzZ8R3s7e1h3KwZnFq2hLWlJbS0tNCvXz+oCrVw/tIfOHTwILZu3YpVq1YhIiICuqZmaGZqimPHjpWeUyqVIiwsDOaWlujUqRNmzJ6DxStWYtKUKWjdujXc3NuzSyJRDb3dEusNhFQqRdB330Pf2FjpCy1aGBnBUE8PMTEx6Nq1Zt0nVNXUMHJ+EL6eOB4zZsxAixYt5BIjUV1w48YNBAcHY8O0/4NhBWv1xD9IxdDFS2Hm4Ijxs2ZDIBAoIUrlGTfjc3w9eyb6zw/GthmB8GjpCENdXewPXoCA1WvQycsLR44eRfv2yhnDSo3HgQMHEBwcjM+370ArTy88e/YMP//8Mzq3aQ3zZs0qPc7QxAS+gwZj0Q+74OfWDl/t2w9zK2u09eigwOhlx8axJfILCpCYlg5HSwu5XENVVQWje/hjlL8fEtPTcet+Mp7l5UGooQEzQ0PsPHEKKQIVTB08EAIABcXFuJeegZjERITFxKB5WxfsDA/HhAkTIBKJMH7CBBw8eBAj5s5D9+Hvo0nTpqXXepScjH1fr0K3bt3w4MEDmJqayqVMRA1No23pKi4RYe627Th48RI+nDcfqmrKzT8FeDEr0eXoaIgrmbnpTdr36g3H9h6YHxQk++CI6ojs7GwMHzoUgzt1xBCf8tNGn70ei77zgmDj4orJwQuhpq6uhCiVS0NTEzNWrIKte3v0mTsffed/iQXbd2Dr4Qh0atUSzXV00LlTJyxZsoRr81CNSCQS7N+/H1u2bKlyjGBKSgrGBwRgxJwv0KF3XxQXF+PH3bvRXL8pOrdpXeW13h0fgKeFReg9dz6+P34SowIDK138vK4zMDJCMyMjRMfHy/zcUXF3sOVwBJIfvhjPJRAI4GBujne8O2Ncr54Y0b0buro441pSEhxeG8+lpaGBNjbWGOXvh0GdOkLF3AJnT5/Ghg0bMGLE+4iIjMTCX46g/4cflUm4AMDExgYfLF4KkUjEYQ1ENVA/38Fq6X7GQ/SdH4QDUdGYueor2DlV/QGgCC62LSAWixETE1PjYwUCAUYu+BK7w8NxhavLUwNUVFSEYUOHQl0ixurJk8q0YEmlUmw6dATvL1kG3/eGYPKXwVDX0FBitMqlKRRi4twvELLtfzDz8MTlp9k4FBePX27dQb6GJrT09BAUFAQdXV1M+ugj/PXXX8oOmeo4sViMkSNHYewHHyB4yVK4e3ggNbXicUpSqRQfTpoEG2cXvPNxIEpKSrB71y6ICgsxuFNHqFSj9VlHTw9z1q6HZQcvfBq6HK2VNLuwLAgEArRq54Zzf96S6Xk3HTqCQUELsenEKfjMmIlLt+Mq3C/l0SPcT0tH6wpatwUAWlpa4OOxY+DYtTsCAwPxe3Q0vjxwCC3+Nb08EdVOnehemJubi7CwMFy7dg1aWloYMWIE+veXzziMP+LuYPTyVbBxcsLiVV9Dz8BALtd5Gxpqaujo1Aq/nT0LW1tb6NRwwHArTy90eec9TJk6FX9cugRVVVU5RUqkWPn5+Rg+bBju3LyJiCWLoKMlLH3seV4+AjdtwYlrMZgc9CU6+vmDQ7xfsHZwgLWDQ4WP3U1Oxo9792LP0aP49ttvMSEgAEuWLGFXIapQUFAQjp04jqVHj8PYygorxozE4HffxcXz5yEUCsvs+/333+P3c+ew6vRvKCgowE8//oi858/xvm83CGtwM6S5hQVGTftY1kVRO+neLQAAE19JREFUCueOHbF34waIxGKoyeCz+djlK1j0/Q+YtnARPLp2w66NGzBmxWqcXbUcVibGZfaNiIqGqbk5TK2sKz2floYG5oeE4MLVa4hKTELUzZswsrYu99oS0durEy1dW7duhVgsxvbt2xEUFITw8HDExsbK/DpHoy9j6KIl6Ni7D2YsX1mnEq5XPBwdoKWhjtOnT7/V8WMXLUb8X39h2bJlMo6MSDkSExPRzccHt69fx8+LgmBpbFT62O+xN9H181m4npaOL7f8Fx39/JUYaf3iYGODWZ9+indmzkGLQe9i79GjsLWzQ0hISIULKkulUqSnp+PixYs4cOAAdu7ciZ9++glnzpxBamoqZzNrwI4ePYoVK1bg401bYdmqFTS1tTH9m/8hNT0DgYGBZV77+/fvI/DTT/H+3HnIFUuwdcsWiAsLMdKvO3S1tJRYCuVy6+yN3IICnIq5XvXOVUh59AhTN2zC4A/Go0O37i96ukydBksHR0z4ei2KXus2LJVKEX76LLx69qpyfKsAgI9He4zt3RMZqanYFBaG23EVt54RUc0pvaWrsLAQFy5cwNq1a6GtrQ17e3v4+/vj5MmTcHUtv57E25BIJNj4y2EsDd+NIRM/xIBRo+vs4HpVFRUM8PJC+OkzOH36NHr06FGj4w2am+L/1q7HookBsLGxwbhx4+QUKZF8ZWVlYf369Vi5YgU6tXbCrtAQNHu5wPHt5BSs+GkvIqMvo+d7QzBs0kfQ5B3ZGtNUV0dPdze4O9gjytsbF48fx+LQUCxZuhRtWrdGq1atUFhQgJTkZCQmJeF5Tg4EAgEM9fTQREsLJSIRMrOyIBKLYWJkBB8fH/j16AF/f3+0bt26zr7PUvXFxsZi5KhReG/6Z3B77aaGXrNmmL7tf1j03mCYmZkhODgYGRkZ6D9gIMxbt8EzbR3s2rULnq1awcelLdTq6XgsWWmiq4vOPXth9b4D6OnujretGlk5uRgVuhI2Tq0xeMzY0u0qqqqYHPQlFk6aiMCwzQj7ZBrUVFVx4PwFJKalY3INZmg20dfHuF498MftOBzYvx9/mJmhi48PHB0d6+24OqK6QOlJ199/v1gw0Nr6n2ZvOzs7/Pzzz7U6r1QqRX5hIfb9fh6bjkTgblo6pny5EJ6+vrU6ryKYGOhjUEdPRERF4e/UVHT29oa1tTU0NTWrdbxn3/6YuHwlJkyYgOMnTuDjadPQvn17aDTiMS5Ut4nFYmRmZiIpKQnXr1/HqRMncDQyEiYGBlgxMQDdXJ1x634yriT8hcgrVxGT8BdcPT0RvGUrWrRspezw671murro39ELPT3aIyl1DM4ePoQbJ44jNjYWlibGaGttjQGDB8KrtRPc7Owg1FAv/fIlFktw/+FDxNxNxB9xcVizfDk++eQTmBgZwdvbGx6enmjTpg3s7Oxgbm4OQ0NDqCl54iKqWnZ2Nnbs2IHQ5cvh0bcfhs+cXW4fezd3TNm4GSs//RgbwsKQ8/w5tEyaw8q7K9REJQjo0xtGTfWUEH3d9F7ABARNDMCMLVuxYNRImBhUf/3AwuJinLkei6AdOyHQ0UFg8EKo/KubYlNDQ8xYuRqrP5+BPvOC0NmpFb47fhLvTZgIA2NjFBcXV/t6aioq8HFuCxfbFvgjLh779u2DpoYGHBwdYW1tDV0t3uQiqimBVMl9Qm7duoVly5YhPDy8dFt0dDS2bduG//73v6XbHj9+XLqwZ2ZmJiIjI/Hxxx9XOv7A3t4e9+/fL/1bRU0N6traNYpNKpGgmVSC34cNQs9jZ5BRUFij42tLIpGgNq+OKC9XdsFQnXP58uVKp/2WSqUQiUQIDQ3FRx99BHNz8zKPp6WlYfv27QgICKi0DhkaGlY5Q5kyaeop58ucVCJBcW4uNHR0IFBRgamWECf7+inlPUKuJFIU5dZ83cD6RN51SEND461mo61r1Jo0wYvOZxUTFxVCKhK92Fe7CQQqKlBRqb+tnKV1+ugpJGc+Lq3rslD0/Hmtz6GupQ0V9cpvXJTk50Py8vUAZPNeKZVKIZH884VEKhZBXFiIU6dOwbeSm9lV1SGixkbptxuFQiEKCgrKbMvLy4PWv/p+79+/H998803p3927dwcAZGRkVHjeoKAg7N69G4aGhm/dHJ6Xl4crp08BAPr6+eHZGz505KmkpAQZGRl4/vw5ioqKIBaLqzl+wgTAi9XoCwoKUFJS8jKR49iL+q5p06bQ19ev9P+/OgICAgBUXodmzpyJ1atXy2VBz1fdzlRUVKCiogJVVVWoq6tDQ0MDqqqqpds0NTUhFAqhp6cHfX39OjE5TF5eHg4fPow+fn5o0qQJmr6ctkOZ7xGKIBKJkJ2djZycHBQWFqK4uBhisbj0PaWq9xWRSISSkhKIRKJyxynjPUkRdWjatGnYvn37W59fGQQCAVRUVKCpqQltbW0IBIJy9VVNTQ3q6uoQCoUv6kDTpg2qJ8WrOt3N2xs7fzlUWtdlRSKRIC0tDU+fPkVRUdEb//8FAgHU1dWhp6cHCwuLavd4kbeSkhJoaWnBwcGhVnWIqDFRetJlYfFiocAHDx7AysoKAHDv3j3Y2NiU2W/o0KGlidarli4Ald5hHD9+PMaPH1+r2FJSUuDt3BYAsG7dOqgbGVdxhGxIJBI8evQIJiYmCus//eqOlJqamsLGYbCc8vOqnG9S1V36efPmYd68eTKLpaE85ykpKTh8+DDWr18Pa2triJ48RsqsQKxbtw5oqt9gylmZhvZ6VkYWdWjNmjVYs2aNzGJpLM+5ssv5qk4vWrgIO385VFrXZaWulFPeqlOHiBoTpSddQqEQXbp0QXh4OAIDA/Hw4UOcOnUKs2eX7T9uZGQEI6MXs5bp6emV3lWT55vH6+cWvLzDp0gqCrymVCotvZ6iB7+znLL3qpxv8mphXHnH1NCe81fnKy3Ty78FL39vKOWsTEN7PSvDOvRCY/zfEpTWcUG5x2ShrpRT3qpTh4gaE6UnXQAwefJkbNy4EePHj4e2tjZGjx6Ndu3aKTssIiIiIiKiWqsTSZeOjg7mzp2r7DCIiIiIiIhkju2+REREREREcsSki4iIiIiISI6YdBEREREREckRky4iIiIiIiI5YtJFREREREQkR0y6iIiIiIiI5KhOTBn/th4/fizX8z98+LD096dPnkBSXCLX6/1bRkaGwq6lpqYGAwMDZGZmKnwFeZZT9l6VsyryrkOvx9JQnvNX7wsPHz6EmpoaJNlZAF68RzRrqt9gylmZhvZ6VoZ16IXG+L/1qk5nvnxtX9V1Wakr5ZS36tYhosZCIJVKpcoOoqays7MRFhaGkhLFJkGKUlhYiOTkZNjY2EAoFCo7HLlhOeVPXV0d06ZNg76+fpntrEMNA8spf6xD/N9qCOpiHSJqbOpl0gW8+MDLz89XdhhykZiYiBkzZmDNmjWwt7dXdjhyw3LKn7a2dqUfdKxD9R/LKX+sQ/zfagjqah0iakzqbfdCfX39BluJnz9/DgAwNjaGubm5kqORH5ZTuViH6j+WU7lYh+o/lpOIFIUTaRAREREREcmR6sKFCxcqOwgqT0tLCx06dIC2trayQ5ErlpPkpbE85ywnyUtjec5ZTiJShHo7pouIiIiIiKg+YPdCIiIiIiIiOWLSRUREREREJEf1dvbChujIkSM4ffo07t+/j86dO2PWrFnKDkkuSkpKsGXLFty4cQM5OTkwMjLC8OHD4evrq+zQZG7jxo24cuUKCgoKoKuri969e2PEiBHKDqvBYh3yVXZoMsc6pFisQ77KDk3mWIeI6gYmXXWIoaEhRowYgevXryMnJ0fZ4ciNWCyGoaEhlixZAhMTE9y5cweLFy+GqakpnJyclB2eTA0ePBiTJk2CpqYmMjMzsXDhQpibm8PHx0fZoTVIrEOsQ1Q7rEOsQ0QkH0y66hBvb28AQFJSUoP+sBMKhRg9enTp323atEHr1q0RFxfX4D7srK2ty/wtEAiQlpampGgaPtYh1iGqHdYh1iEikg8mXaR0hYWFuHv3LgYNGqTsUORix44dOHLkCIqKimBiYgI/Pz9lh0QNDOsQUe2wDhGRvDHpIqWSSqVYt24dHB0d4e7uruxw5OKDDz7AuHHjcPfuXURFRaFJkybKDokaENYhotphHSIiReDshaQ0UqkUmzZtwpMnTzB79mwIBAJlhyQ3AoEAjo6OUFNTw+7du5UdDjUQrENEtcM6RESKwpYuUgqpVIotW7YgKSkJISEhEAqFyg5JISQSCdLT05UdBjUArENEtcM6RESKxJauOkQsFqO4uBgSiQQSiQTFxcUQiUTKDksutm7divj4eCxatAja2trKDkcu8vLycObMGeTn50MikeD27duIjIyEm5ubskNrsFiHGhbWIcVjHWpYWIeI6g6BVCqVKjsIemHXrl348ccfy2zz9/fH9OnTlRSRfDx69Agffvgh1NXVoaqqWrp92LBhDWrtkPz8fCxbtgyJiYmQSCQwNDREz549MWTIkAbdhUWZWIdYh6h2WIdYh4hIPph0ERERERERyRG7FxIREREREckRky4iIiIiIiI5YtJFREREREQkR0y6iIiIiIiI5IhJFxERERERkRwx6SIiIiIiIpIjJl1ERERERERyxKSLiIiIiIhIjph0EVGDIRAIqvz57rvvcPbsWQgEAly5ckWp8fr6+mLgwIEyOdf48ePh7Oxc5X7Ozs4YP368TK5JRERE1aOm7ACIiGTl0qVLZf7u3LkzPvnkE4waNap0m729PW7duqXo0IiIiKgRY9JFRA1Gp06dym2ztraucPvbkEqlKC4uhqampkzOR0RERI0DuxcSUaP19OlTjBo1Crq6urCxscHKlSvLPP6qy97Ro0fRrl07aGpq4tChQwCA7OxsTJ06FWZmZtDU1ISHhweOHz9e5vgLFy6gW7duaNq0KXR1deHi4oIdO3aUi2Pv3r1o1aoVdHR04O/vj8TExHJxfvjhhzA2NoaWlha8vLzKXasiFy9ehIeHB4RCIZydnREZGVnTp4iIiIhkgC1dRNRoTZkyBWPHjsXBgwdx4MABzJkzB66urujbt2/pPmlpafj000+xYMECWFlZwcrKCsXFxejVqxcePnyIpUuXwsLCAj/88AMGDBiAa9euwcXFBc+fP8eAAQPg4+OD3bt3Q1NTE7dv30Z2dnaZGK5fv47MzEwsX74cYrEY06dPx5gxY0q7SorFYvTr1w93795FaGgoLC0tsXnzZvTv3x8nTpyAn59fhWXLyMhAnz594OLigj179iArKwtTpkxBTk6O/J5QIiIiqhCTLiJqtIYOHYqFCxcCAPz9/XHkyBHs27evTNKVlZWFY8eOwcvLq3Tb9u3bcf36ddy4cQNt2rQBAPTp0wcJCQkICQnBnj17kJCQgGfPniE0NBQuLi4AgB49epSLITs7GzExMTA2Ni79e9KkSUhNTYWlpSUiIiIQHR2NiIgI9O/fHwDQt29fODs7Y9GiRZUmXWvXroVAIMDRo0ehr68PADAzM0OfPn1q+awRERFRTbF7IRE1Wr179y79XUVFBU5OTkhNTS2zj5GRUZmECwCOHz8OFxcXtGzZEiKRqPSnR48euHz5MoAXE3bo6elhypQp2LNnDzIzMyuMwc3NrTThAlCaxL2K49y5c9DV1S1NuF7FOmLECFy8eBFisbjC80ZFRcHPz6804XpVXj09vSqfFyIiIpItJl1E1Gi9npAAgIaGBgoLC8tsMzExKXfc48ePERMTA3V19TI/oaGhePDgAQDAwMAAJ06cgK6uLsaOHQtTU1P4+vri5s2bVcYAoDSOrKwsNG/evFwMpqamKCkpQW5uboVlS09PrzD2irYRERGRfLF7IRHRGwgEgnLbDA0N4erqim+//faNx3p5eSEyMhIFBQU4c+YMZs6ciXfffbfcRBlvYmhoiIcPH5bbnpGRAXV1dejo6FR4nJmZGR49elRue0XbiIiISL7Y0kVEVEM9e/ZEUlISzM3N0aFDh3I//6alpYX+/ftjypQpuHfvXrnWtDfx8fFBTk4Ojh07VrpNIpFg79698Pb2hqqqaoXHeXl54cyZM3j27FnptuPHj+P58+c1KCkRERHJAlu6iIhqaNy4cdi6dSt8fX0xc+ZMtGzZsnRCjOLiYoSGhiIiIgLffvst3nvvPVhbWyMjIwMbNmxAly5dIBQKq32tAQMGwMvLC2PHjsWyZctgaWmJLVu2ID4+HmFhYZUeN336dISFhaFfv36YO3cusrKyEBwcDENDQ1k8BURERFQDTLqIiGpIU1MTp0+fxsKFC7F06VKkp6fDyMgI7u7umDp1KgDAwcEBKioqmD9/Ph4+fAgjIyP07t0boaGhNbqWqqoqIiMjMWvWLHzxxRfIzc2Fq6srIiIi4OvrW+lxZmZmiIyMRGBgIIYPHw57e3uEhYVhzpw5tSk6ERERvQWBVCqVKjsIIiIiIiKihopjuoiIiIiIiOSISRcREREREZEcMekiIiIiIiKSIyZdREREREREcsSki4iIiIiISI6YdBEREREREckRky4iIiIiIiI5YtJFREREREQkR0y6iIiIiIiI5IhJFxERERERkRwx6SIiIiIiIpIjJl1ERERERERy9P9RvgqpxRaSDQAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 800x350 with 3 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "<ggplot: (8766756878801)>\n" ] } ], "source": [ "# Visualize a threshold/PPV curve\n", "np.random.seed(1)\n", "target_ppv = 0.5\n", "nsim = 100\n", "holder = []\n", "for ii in range(nsim):\n", " y, score = dgp(n0=n0, n1=n1, mu=mu1)\n", " # Get threshold for different PPV scores\n", " t25 = thresh_PPV(y, score, target=target_ppv/2)\n", " t50 = thresh_PPV(y, score, target=target_ppv*1)\n", " t75 = thresh_PPV(y, score, target=target_ppv*1.5)\n", " tmp = thresh_PPV(y, score, target=target_ppv, ret_df=True)\n", " tmp = tmp[['thresh','ppv']].assign(sim=ii,t25=t25,t50=t50,t75=t75)\n", " holder.append(tmp)\n", "dat = pd.concat(holder).reset_index(None,True)\n", "dat2 = dat.groupby('sim')[['t25','t50','t75']].min().reset_index().melt('sim',None,'target')\n", "dat2 = dat2.assign(target=lambda x: x.target.str.replace('t','').astype(float)/100)\n", "\n", "# Repeat visualization for bootstrap\n", "holder_bs = []\n", "for ii in range(nsim):\n", " ytil, stil = draw_samp(y, score, strata=y)\n", " # Get threshold for different PPV scores\n", " t25 = thresh_PPV(ytil, stil, target=target_ppv/2)\n", " t50 = thresh_PPV(ytil, stil, target=target_ppv*1)\n", " t75 = thresh_PPV(ytil, stil, target=target_ppv*1.5)\n", " tmp = thresh_PPV(ytil, stil, target=target_ppv, ret_df=True)\n", " tmp = tmp[['thresh','ppv']].assign(sim=ii,t25=t25,t50=t50,t75=t75)\n", " holder_bs.append(tmp)\n", "dat_bs = pd.concat(holder_bs).reset_index(None,True)\n", "dat2_bs = dat_bs.groupby('sim')[['t25','t50','t75']].min().reset_index().melt('sim',None,'target')\n", "dat2_bs = dat2_bs.assign(target=lambda x: x.target.str.replace('t','').astype(float)/100)\n", "dat_both = pd.concat([dat.assign(tt='DGP'), dat_bs.assign(tt='Example bootstrap')])\n", "dat2_both = pd.concat([dat2.assign(tt='DGP'), dat2_bs.assign(tt='Example bootstrap')])\n", "\n", "plotnine.options.figure_size = (9,3.5)\n", "gg_ex = (ggplot(dat_both, aes(x='thresh',y='ppv',group='sim')) + theme_bw() + \n", " geom_line(alpha=0.1) + facet_wrap('~tt') + \n", " geom_point(aes(x='value',y='target',color='target.astype(str)'),\n", " size=1,alpha=0.25,data=dat2_both, inherit_aes=False) + \n", " ggtitle('Figure 3: Empirical distribution of PPV tradeoff') + \n", " guides(color=False) + labs(y='PPV',x='Threshold'))\n", "print(gg_ex)\n", "\n", "target_seq = [0.25, 0.5, 0.75]\n", "thresh_seq = [minimize_scalar(fun=lambda x: (PPV_theory(x, 0, 2, 0.1)-pp)**2).x for pp in target_seq]\n", "tmp = pd.DataFrame({'thresh':thresh_seq, 'target':target_seq})\n", "tmp2 = dat2_both.groupby(['tt','target']).value.mean().reset_index().query('tt==\"DGP\"')\n", "title = 'Figure 4: Empirical distribution of PPV tradeoff\\nBlack vertical line is ground truth'\n", "plotnine.options.figure_size = (8,3.5)\n", "gg_bs = (ggplot(dat2_both,aes(x='value',fill='tt')) + theme_bw() + guides(color=False) + \n", " facet_wrap('~target',labeller=label_both,nrow=1) + geom_density(alpha=0.5) + \n", " labs(x='Threshold',y='Density') + scale_fill_discrete(name=' ') + ggtitle(title) + \n", " geom_vline(aes(xintercept='thresh'),data=tmp) + \n", " geom_vline(aes(xintercept='value',color='tt'),data=tmp2))\n", "print(gg_bs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Figure 3 shows the range of thresholds that would be chosen by the `thresh_PPV` function for PPV different targets, along with the different realizations of the empirical PPV curves. The second figure takes the last draw of the data in the simulation and shows the variation in the threshold statistics generated in that bootstrapping instance. Unsurprisingly the latter has more variation, since the empirical PPV for this data is noisier. Figure 4 compares the distribution of a bootstrap instance with those of the point estimates from the simulation. Note these distributions are not statistically comparable, since the DGP is the true variation and the bootstrap distribution only comes from one example. The inference procedures needed to obtain statistically meaningful insights from the bootstrap distribution are be described below.\n", "\n", "## (2) Bootstrapping approaches\n", "\n", "The statistical quality of a bootstrap CI is determined by its coverage. For example, a two-sided confidence interval of level $1-\\alpha$ has the \"right\" coverage when:\n", "\n", "$$\n", "P(\\theta_l \\leq \\theta \\leq \\theta_u) = c = 1-\\alpha\n", "$$\n", "\n", "If $c > 1-\\alpha$, then the CI is said to be conservative because it under-rejects the true null. Though it is better to be conservative than to over-reject the null, it is still problematic because the test will have less power than expected. In the case of a one-sided CI, proper coverage will entail:\n", "\n", "$$\n", "\\begin{align*}\n", "P(\\theta_l \\leq \\theta) &= 1-\\alpha \\\\\n", "P(\\theta_u \\geq \\theta) &= 1-\\alpha,\n", "\\end{align*}\n", "$$\n", "\n", "Depending on whether it is an upper or lower bound. One-sided CIs are used when the direction of statistic is known. Using the running example of the PPV, if the researcher wants to establish that the PPV as *at least* some amount, say 50%, then it would be desirable to find a upper-bound of the threshold, $t_u$ such that: $P(t_u \\geq t^{*}(p)) = 1-\\alpha$. If $t_u > t^{*}(p)$ from \\eqref{eq:tstar}, then $PPV_\\Phi(t_u) > p$ from \\eqref{eq:PPV_true}. \n", "\n", "There are several reasons why the bootstrap distribution of statistics will not provide the right coverage. First, the ECDF is an approximation of the CDF which introduces sampling error. Second, the bootstrap statistic may be biased. When the average of the bootstrapped statistics will differ in expectation to the original statistic $E[\\bar\\theta^* - \\hat\\theta] \\neq 0$, the bootstrap is said to be biased. This phenomenon can arise for any statistic with [finite-sample bias](https://en.wikipedia.org/wiki/Bias_of_an_estimator). Since sampling with replacement is equivalent to generating a statistic with fewer observations, finite sampling bias will be seen indirectly through this mechanism.[[^2]] Third, the distribution of a (bootstrapped) statistic may be [skewed](https://en.wikipedia.org/wiki/Skewness), which will cause symmetric CIs to be erroneous. \n", "\n", "### Approach #1: CI with BS-standard error\n", "\n", "If the statistic of interest is normally distributed, then confidence intervals can be obtain using the well-known formula,\n", "\n", "$$\n", "\\begin{align*}\n", "[\\hat\\theta_l, \\hat\\theta_u ] &= \\hat{\\theta} \\pm t_{\\alpha/2} \\cdot \\hat{\\sigma}_\\theta\n", "\\end{align*}\n", "$$\n", "\n", "The variance of the statistic $\\sigma$ is simply estimated from the bootstrapped samples. Note that a student-t distribution with $n-1$ degrees of freedom is used for the quantile since the value of the standard error is estimated rather than known. The drawbacks with this approach are first that it assumes the statistic has a normal distribution, and second that it is symmetric. Many statistics (such as the PPV threshold) will neither be normal nor symmetric.\n", "\n", "### Approach #2: Quantile Bootstrap\n", "\n", "If we rank order the realizations of the bootstrap statistics: $\\theta^*_{(1)} \\leq \\theta^*_{(2)} \\leq \\dots \\leq \\theta^*_{(n)}$, then the quantile bootstrap simply returns the empirical quantiles for the $\\alpha/2$ and $1-\\alpha/2$ percentiles as the confidence intervals.\n", "\n", "$$\n", "\\begin{align*}\n", "[\\hat\\theta_l, \\hat\\theta_u ] = [ \\hat\\theta^*_{(n\\cdot\\alpha/2)}, \\hat\\theta^*_{(n\\cdot(1-\\alpha/2))} ]\n", "\\end{align*}\n", "$$\n", "\n", "The advantage of the quantile bootstrap is that is easy to calculate, intuitive, and can handle skewed data (i.e. the CIs are not necessarily symmetric about the mean/median). However if the quantile method will be unable to account for a biased statistic.\n", "\n", "### Approach #3: Bias corrected and accelerated (BCa) Bootstrap\n", "\n", "The BCa procedure largely remedies the problems of bias and skewness and will obtain coverage rates that are very close to their nominal level. \n", "\n", "$$\n", "\\begin{align*}\n", "[\\hat\\theta_l, \\hat\\theta_u ] &= [ \\hat\\theta^*_{\\alpha_1}, \\hat\\theta^*_{\\alpha_2} ] \\\\\n", "\\alpha_1 &= \\Phi\\Bigg(\\hat{z}_0 + \\frac{\\hat{z}_0+z_{\\alpha}}{1-\\hat{a}(\\hat{z}_0+z_{\\alpha})}\\Bigg) \\\\\n", "\\alpha_2 &= \\Phi\\Bigg(\\hat{z}_0 + \\frac{\\hat{z}_0+z_{1-\\alpha}}{1-\\hat{a}(\\hat{z}_0+z_{1-\\alpha})}\\Bigg)\n", "\\end{align*}\n", "$$\n", "\n", "There are two terms which need to be estimated when using the BCa: 1) the acceleration parameter $\\hat{a}$, and 2) the bias-correction factor $\\hat{z}_0$. The other terms are deterministic: ($\\Phi$ and $z_\\alpha=\\Phi^{-1}(\n", "\\alpha)$). Notice if the acceleration and bias correction factors are zero, then $l=\\alpha_1=\\alpha$ and $u=\\alpha_2=1-\\alpha$, which is equivalent to the quantile bootstrap.[[^3]] \n", "\n", "$$\n", "\\begin{align*}\n", "\\hat{z}_0 &= \\Phi^{-1}\\Bigg(\\frac{1}{B}\\sum_i \\hat{\\theta}^*_i < \\hat\\theta \\Bigg) \\\\\n", "\\hat{a} &= \\frac{\\sum_i (\\bar{\\theta}^{-i} - \\hat{\\theta}^{-i} )^3 }{6 \\cdot \\big[\\sum_i (\\bar{\\theta}^{-i} - \\hat{\\theta}^{-i} )^2 \\big]^{3/2}}\n", "\\end{align*}\n", "$$\n", "\n", "Also note that the bias correction term is a count in the median bias (rather than the magnitude of the bias). The acceleration factor is basically Pearson's skewness coefficient divided by 1/6th (see the original Efron paper for a discussion of this constant).\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## (3) Simulation of PPV CIs\n", "\n", "In this section I will define the `bootstrap` class which will carry the three bootstrap-CI approaches discussed above. A simulation will then be run using the DGP discussed above with $\\mu_0=0$, $\\mu_1=2$, and $\\sigma_0=\\sigma_1=1$. " ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "\"\"\"\n", "BOOTSTRAPPING SUPPORT FUNCTIONS\n", "\"\"\"\n", " \n", "class bootstrap():\n", " def __init__(self, nboot, func):\n", " self.nboot = nboot\n", " self.stat = func\n", " \n", " def fit(self, *args, **kwargs):\n", " strata=None\n", " if 'strata' in kwargs:\n", " strata = kwargs['strata']\n", " # Get the baseline stat\n", " self.theta = self.stat(*args, **kwargs)\n", " self.store_theta = np.zeros(self.nboot)\n", " self.jn = self.stat(*args, **kwargs, jackknife=True)\n", " self.n = len(y)\n", " for ii in range(self.nboot): # Fit bootstrap\n", " args_til = draw_samp(*args, strata=strata)\n", " self.store_theta[ii] = self.stat(*args_til, **kwargs)\n", " self.se = self.store_theta.std()\n", " \n", " def get_ci(self, alpha=0.05, symmetric=True):\n", " self.di_ci = {'quantile':[], 'se':[], 'bca':[]}\n", " self.di_ci['quantile'] = self.ci_quantile(alpha, symmetric)\n", " self.di_ci['se'] = self.ci_se(alpha, symmetric)\n", " self.di_ci['bca'] = self.ci_bca(alpha, symmetric)\n", "\n", " def ci_quantile(self, alpha, symmetric):\n", " if symmetric:\n", " return np.quantile(self.store_theta, [alpha/2,1-alpha/2])\n", " else:\n", " return np.quantile(self.store_theta, alpha)\n", " \n", " def ci_se(self, alpha, symmetric):\n", " if symmetric:\n", " qq = t(df=self.n).ppf(1-alpha/2)\n", " return np.array([self.theta - self.se*qq, self.theta + self.se*qq])\n", " else:\n", " qq = t(df=self.n).ppf(1-alpha)\n", " return self.theta - qq*self.se\n", " \n", " def ci_bca(self, alpha, symmetric):\n", " if symmetric:\n", " ql, qu = norm.ppf(alpha/2), norm.ppf(1-alpha/2)\n", " else:\n", " ql, qu = norm.ppf(alpha), norm.ppf(1-alpha)\n", " # Acceleration factor\n", " num = np.sum((self.jn.mean() - self.jn)**3)\n", " den = 6*np.sum((self.jn.mean() - self.jn)**2)**1.5\n", " ahat = num / den\n", " # Bias correction factor\n", " zhat = norm.ppf(np.mean(self.store_theta < self.theta))\n", " a1 = norm.cdf(zhat + (zhat + ql)/(1-ahat*(zhat+ql)))\n", " a2 = norm.cdf(zhat + (zhat + qu)/(1-ahat*(zhat+qu)))\n", " #print('Accel: %0.3f, bz: %0.3f, a1: %0.3f, a2: %0.3f' % (ahat, zhat, a1, a2))\n", " if symmetric:\n", " return np.quantile(self.store_theta, [a1, a2])\n", " else:\n", " return np.quantile(self.store_theta, a1)\n", " \n", "np.random.seed(1234)\n", "alpha_seq = np.linspace(0.05,0.4, 8)\n", "#nsim, nboot = 2000, 2000\n", "nsim, nboot = 2, 2000\n", "n0, n1, mu1 = 90, 10, 2\n", "\n", "stime = time()\n", "store = []\n", "for ii in range(nsim):\n", " print('Simulation %i of %i' % (ii+1,nsim))\n", " y, score = dgp(n0=n0, n1=n1, mu=mu1)\n", " sim = bootstrap(nboot=nboot, func=thresh_PPV)\n", " sim.fit(y, score, target=target_ppv)\n", " holder = []\n", " for alpha in alpha_seq:\n", " sim.get_ci(alpha=alpha,symmetric=True)\n", " holder.append(pd.DataFrame.from_dict(sim.di_ci).assign(tt=['lb','ub']).assign(alpha=alpha))\n", " holder = pd.concat(holder).assign(sim=ii)\n", " store.append(holder)\n", " nleft, rate = nsim-(ii+1), (ii+1)/(time() - stime)\n", " print('ETA: %0.1f minutes' % (nleft/rate/60))\n", "res = pd.concat(store).melt(['alpha','sim','tt'],None,'method')\n", "#res.to_csv('res.csv',index=False)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/edrysdale/miniconda3/lib/python3.7/site-packages/ipykernel_launcher.py:36: RuntimeWarning: invalid value encountered in true_divide\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAGLCAYAAADXkRRuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeVxU1fvA8c+wySI7bqC4lYq5gqmJCy65mzup4L5WmmZmmrmUprlkmksukSuapllZamqKmWXllplrKrgrCIhsCsz5/TE/5us4oDMsDsrzfr3mBdx77rnPnBlmnjlz7jkapZRCCCGEEEII8UhWlg5ACCGEEEKIp4EkzkIIIYQQQphAEmchhBBCCCFMIImzEEIIIYQQJpDEWQghhBBCCBNI4iyEEEIIIYQJJHEWQgghhBDCBJI4CyGEEEIIYQJJnIUQQgghhDCBJM4FWOnSpWnRooWlwxDCImJiYujTpw/e3t5oNBr5XzBRaGgoNjY2lg4jWw0bNuS5557Ll7rNec3877//0Gg0TJs2LV9iEUI8myRxfsIiIiLQaDTZ3tauXWvpEPNVaGhotvd9yZIleXKO1NRUFi9eTLNmzfDy8sLW1hZPT0+aNm3K/PnzSUxM1Jd9//330Wg0HDx4ME/OLfLOqFGj2LhxI6+//jpr1qxh/PjxT+S8mQnVgzcHBweqVKnCu+++y507d8wuO3r0aDQaDV9//fUjz/3666+j0WjYvn37I8t9+eWXfPbZZ7m/s0IIIcxScLslnnHdunWjY8eORtsDAwP1v58/fx4rq2fvs42VlRWrVq0y2l6vXr1c1x0ZGUmHDh04ceIETZo0YcyYMZQoUYLY2Fj279/PmDFj+Omnn9i2bVuuzyXy186dO2nXrh3vv/++Rc7frFkz+vfvD+h6v7du3cqsWbPYtWsXf/zxB7a2tiaXHTRoEJ9++ilhYWF07949y/OlpKSwfv16ypQpQ6tWrR4Z25dffsmNGzd488038+jeCiGEMIUkzhZSs2ZNQkNDH1mmSJEiTyia7KWmpmJra4u1tXWe1anRaB5733MiJSWFdu3acebMGTZs2EBwcLDB/rfffpvz58+zZs2aPD/30yIxMZGiRYtaOozHysjIIDo6Gnd39zyv29Tn9PPPP2/wPB01ahStW7fmp59+4ocffqBz585mlX3ppZfYtWsXly9fpkyZMkbn27x5M/Hx8bz55psW/8D8tDxPhBDiSXv2ujOfIdmN11u1ahXVq1enSJEi+Pj4MGbMGP755x+j8XpffPEFGo2GX3/91aiOrMZBZo49vHjxIq+++ipeXl44ODhw/fp1fZmvv/6axo0b4+LigoODA/7+/nz55Zdm3zelFAkJCWRkZDyy3Pnz5zlz5oxJdS5fvpyTJ08yZswYo6Q5U8WKFZkyZYq54erdvXuXSZMm8cILL+Dg4IC7uzt169bl888/NygXGxvLqFGjKF++PEWKFKFEiRKEhITw33//6cvEx8fj4OBAmzZtsjzXkiVL0Gg0bNiwQb9NKcWSJUt48cUXcXJywsnJicDAQL7//nuDY9PT09FoNAwaNIg9e/bQpEkTnJ2dqV27NgB37tzh/fffp379+hQrVgw7OzvKly/Pm2++SXx8vFEs9+7dY8KECZQpUwZ7e3uqVq3K0qVLs32O3blzh/Hjx1OpUiWKFCmCp6cnnTt35sSJE49t4wefm2FhYVkOY1q9ejV169bFycmJokWL8tJLL2U5DMKU57Q5WrduDWDwOJpadvDgwWi1WlasWJFl+bCwMKysrBgwYEC2dWY+rgcOHOD8+fMGQ0Qefgzi4+MZOnQoJUqUwN7enjp16vDzzz8blHlwnO/XX3/Niy++iKOjI506ddKXMfWx1Gq1zJ8/n1q1auHi4oKTkxPlypWjV69eREdHG92XK1eu0KNHDzw8PHBwcCAoKIijR48alUtJSWHy5MlUrlxZf/6OHTty5MiRbNvpYWvXrqVGjRrY29vrXzNTUlJMPl4IITJJj7OFJCcnExMTY7DN1tYWV1fXRx43f/58Ro0aRdWqVfnggw+wsbFh3bp17Nu3L0/iSkhIoFGjRtSvX58PPviAhIQEHB0dAZgwYQLTp0+nefPmTJ48GXt7e3bs2MHAgQO5cOGCyRfZZGRk4Orqyt27d7G1taVBgwZMnjyZpk2bGpVt0qQJN27cID09/bH1ZiZOw4YNM+Memy4uLo5GjRrx77//0rlzZwYPHoyVlRX//PMP33zzDa+99hqga8PAwEBOnz5N7969eemllzh37hyff/4527dv5/fff6dy5cq4ubnxyiuvsHnzZq5fv06pUqUMzrdq1Src3NwMhvT07t2bdevW0alTJ30P56ZNm+jYsSPLli1j8ODBBnX88ccffPXVVwwcOJDQ0FD9+O7Lly8TFhZGt27d6NmzJ3Z2dhw8eJDPP/+cAwcO8Mcffxh8sOrRowfffvstrVq1ol27dsTExDBp0iR8fX2N2unOnTs0aNCAyMhI+vXrR40aNbh9+zbLli2jfv36/Prrr9SqVSvbdn799ddp2bIlffv2JSgoiIEDBwL/G8b03nvvMWPGDGrVqsWUKVPQarWsXr2a4OBgZs6cydixYw3qe9Rz2lxnz54FoFixYmaXDQ4OZtSoUaxYsYKJEyei0Wj0Zc+fP8++fft4+eWXKVu2bLZ1Wltbs2bNGqZOncqdO3eYM2eOfl/lypX1vyulaNmyJcWKFeP9998nMTGRefPm0b59e86dO0fp0qUN6t28eTMXL15k2LBhDB06VL/dnMdy6tSpTJkyhQ4dOjB48GBsbW25dOkS27dv59atWwZtdvfuXRo3bkz9+vWZNm0a169fZ968ebRp04bz58/j5OQE6D4otG7dml9++YVXXnmFESNGcP36dRYvXkxgYCA//fQTjRs3fuTjsHDhQkaMGEHlypWZMmUK1tbWrF27loiIiEceJ4QQWVLiidq7d68CsrzVq1fPoKyPj49q3ry5/u/bt28rBwcH9fzzz6u7d+/qt6ekpCh/f38FqKlTp+q3L1++XAFq//79RnGEhIQoa2trg22BgYEKUBMmTDAq/9dffylAjR492mjfsGHDlLW1tYqMjHzs/R8zZowaNWqUWrNmjdqyZYuaOnWq8vT0VFZWVmrDhg1G5X18fIzizI6Li4tyd3c3qWymCRMmKED9/vvvjy07dOhQBaiFCxca7cvIyND/Pn78eAWoTz75xKDM7t27FaBatWql37Zt2zYFqJkzZxqUPX36tALUa6+9pt/29ddfK0B99tlnBmW1Wq1q06aNcnV1VYmJiUoppdLS0vTPq127dhnFe+/ePZWWlma0/fPPP1eA+uabb4xi7NWrl0HZixcvKgcHB6Pn2BtvvKGKFCmi/vrrL4Pyt2/fVt7e3qpFixZG531YZvwDBw402H7q1Cml0WjUiy++qFJSUvTb7969q/z8/JSNjY26dOmSfvujntPZOXfunAJU3759VXR0tIqOjlanT59WM2fOVNbW1srNzU1FR0ebXVYppYYMGZLlY/Lee+8pQG3cuNGkGAMDA1XFihWz3BcSEqIA9frrrxts379/vwLUxIkTje6rra2tOnnypFFd5jyW1atXV9WrVzcpdkDNmjXLYPuaNWsUoMLCwvTbli5dqgA1YsQIg7InT55UdnZ2qkqVKkqr1eq3P/yaGRsbqxwdHVX58uXVnTt39NuTkpJU9erVjV4zhRDicSRxfsIyE+d+/fqpXbt2Gdz+/PNPg7IPvwmEh4crQM2bN8+o3sw3ndwmzhqNxuANJtPIkSMVoE6cOKFPEDJvmYnVg2945rh06ZJyc3NTXl5eKjU1NUd1KKWURqNRZcuWNesYUxPn9PR05eLioipVqmTwRp2VSpUqKQ8PD3Xv3j2jfY0aNVJWVlb6Nk5PT1fe3t6qatWqBuUyk+8//vhDv61jx47KyclJXb9+3egxyEwwfv75Z6XU/xLPgICAx7ZBWlqaio2NVdHR0ers2bMKUO+++65+/+DBgxWgjh07ZnTswIEDDZ5jGRkZyt3dXTVt2tQoxujoaNWnTx9lY2Pz2Mc5u8R5+vTpClCbNm0yOiYsLMzog82jntPZyUwms7r5+/sbJJHmlFXqfx9Ae/Tood+Wnp6ufHx8lJeXV5bPmayYkjhfuHDBaJ+Dg4N69dVXjeLv2rWrUVlzH8vGjRsrV1fXLF9vHo7dxsbG6L7euHHD6LnXsmVLBRh8+MjUu3dv/WtSpodfM9etW6cANXfuXKPjV65cKYmzEMJsMlTDQipWrGj2vLQXLlwAoEqVKkb7stqWEyVLlsTFxcVo+6lTpwCoVq1atsfevHkzR+csU6YM/fr1Y968efz55580atQoR/U4OzuTkJCQo2Mf5+bNmyQkJNCqVSuDr9izcvHiRfz9/bGzszPaV716dfbv309kZCQ1atTA2tqa0NBQZs2axaFDh6hTpw5arZa1a9dStWpV6tatqz/21KlTJCUlGQ3peDjOB1WqVCnbskuXLuXzzz/nxIkTRmPNY2Nj9b9fuHABjUZjMBQg08PPu5s3bxIXF8fevXsfOZwhNjb2kfcjO5n/Ay+88ILRvurVqwO6YQ8Pyu45/Tjt27dn5MiRaDQaihQpQvny5fHx8clV2Tp16lCrVi22bNlCbGwsHh4e7Nixg6tXrzJ69OgsnzM5YWVlleWQDw8PD27fvm20PavnibmP5axZs+jUqRONGjWiZMmSNGzYkBYtWtCzZ0+j9i9durTRffX09AQwiO/ChQuUKFECLy8vo/M++Hhn9XzI3AdQtWpVo33ZHSOEEI8iifNT6HGJmynlshsznN3YT61WC8C2bdsMpuF6UG4WNShXrhxAlhcRmap69eocOHCAyMhIfX15RSllVllTHyOA/v37M2vWLFauXKm/gOvy5cvMmjXLoJxWq8XDw8PgYsGHPfzBJrvHc86cObzzzju0bNmSN954A29vb4oUKcL9+/dp166d/vE2V+ZxTZs25b333su2nIeHR47qz3wczGnfnI5n9vHxMfnDrTllBw4cyIgRIwgPD2fEiBGEhYUBMGjQoBzFmRWNRpPtzBxZPZezaiNzH8t69epx/vx5du7cSUREBBEREWzatIlJkyZx4MABg9eHR81o8mB85v4vmcOc/2khhMgkifNTpEKFCoCu57Fly5YG+zJ7hB+U+Yb2YO9hpsyeO1NVqlSJ3bt34+PjQ40aNcw61hTnzp0DdL2DORUcHMyBAwdYtmwZ06dPz6vQgP/1Wh47duyxb+YVK1bk7NmzpKWlGX3IOHHiBFZWVgaJfZUqVahbty7r169n7ty5rFq1Cmtra3r37m1wbKVKldi+fTt16tTBzc0tV/dn9erVVKxYke3btxskWP/8849R2QoVKvDzzz9z5swZatasabDv4eddZjvFx8fny0p/mcnXiRMnjHrAM2d5qFixYp6fNy+FhoYyduxYwsLCCA4O5ocffqBBgwb4+fmZXEd+JZMPysljmTkjR+asHN9++y2dO3dm9uzZLF261OwYnnvuOX766SdiYmKMep1Nebwz9508edJobuyTJ0+aHY8QQsh0dE+R1q1bY29vz6JFiwxWv0tNTWXevHlG5TMTi927dxtsj4iI4K+//jLr3H369AFg3LhxpKWlGe2Pj4/n/v37j6wjMTGRpKQko+2nTp1ixYoVlCpVijp16hjsM2c6usGDB1OlShVmz57N5s2bsyxz4cIFPvjgA5Pqe5C1tTU9e/bk3LlzLF682Gj/gz20Xbp0ITY2lkWLFhmUiYiI4JdffuHll182+uq6X79+xMbGsm7dOrZs2ULr1q2NPkT07dsXpRTvvvtulr1l5gyVsba2RqPRGPXuTZ061ahsZhL0cA94ZGQkX331lVG9ISEhHD16lPDw8CzPndMhPZmxaDQaZs+ezb179/Tbk5KSmDNnDjY2Nrzyyis5rv9JcHNzo2vXrvz999+8+eabpKWlmd3bXLRoUeLi4vIpQh1zH8usvi0KCAgAsv7wboouXboAGM3Yc+bMGb766iuqVKmS5TCMTK1bt8bBwYEFCxYYDONKSUnhk08+yVFMQojCTXqcnyIeHh589NFHvP3229SrV48+ffpgY2NDeHi4vmfzwZ6oqlWr0rx5cxYtWkRaWhq1a9fm5MmTrF69mho1avDvv/+afO569eoxZcoUpkyZQo0aNejRowc+Pj7cvHmT48eP8/3332c5zdWDTp8+zcsvv0z37t2pXLkyRYsW5d9//yUsLIy0tDSWLVtmNO7RnOnoHBwc+PHHH2nfvj3dunWjadOmtGrViuLFixMfH8+vv/7K1q1bjXrrTTVjxgz27dvH8OHD+fnnn2nSpAk2NjacOHFC/xU16D5cbNmyhdGjR3P06FHq16/Pf//9x+LFi3F3d2f+/PlGdffs2ZPRo0czcuRIkpOT6devn1GZ4OBgduzYwbJlyzh27BivvPIKJUqU4Nq1a/z111/s3r3b5Llpu3fvzoQJE2jdujVdunQhKSmJzZs3Zzmvdtu2bXnllVdYt24dt2/fpn379sTExPD5559TrVo1/vzzT4Pn3YwZM/j9998JDQ1ly5YtBAYG4uDgwKVLl9i1axdubm7s2rXLxFY3VKVKFcaNG8eMGTN46aWX6NWrl346upMnTzJz5swsFxcpaAYNGsTatWvZuHEjzs7O2c47np369euzY8cORowYQf369bG2tqZFixZZjgXODXMey0qVKhEYGEjdunXx8fHh9u3brFixAo1GQ9++fXN0/gEDBhAeHs78+fOJjIzk5Zdf1k9Hp9FoWLp06SN7393d3ZkxYwajRo2iXr169OvXTz+lX16NJxdCFDKWuSax8MqcVcOUK7kfvkI8U1hYmKpataqys7NTPj4+auzYseq3337Lcgq0GzduqODgYOXi4qIcHR1VUFCQOnjwYLazamR3pX6mbdu2qdatWysPDw9la2urvL29VbNmzdTcuXMfO1PC1atXVUhIiKpcubJycXFRtra2ysfHR/Xs2VMdPXo02zYwdTq6TMnJyWrBggWqSZMmysPDQ9nY2CgPDw/VtGlTtWDBApWUlKQva850dEopFR8fr8aNG6eef/55ZWdnp9zd3VW9evXUkiVLDMrdvn1bvfnmm8rX11fZ2tqqYsWKqZ49e6pz585lW/err76qgGxn5MgUHh6umjRpolxdXZWdnZ0qU6aMatu2rVq2bJm+THazUmRKT09XM2bMUM8995wqUqSI8vHxUW+88YaKjo7O8riUlBT17rvvKh8fH2VnZ6eqVq2qvvjiCzV37lwFqMOHDxuUT0pKUh999JGqUaOGcnBwUE5OTur5559XvXv3znJ6vIc9Lv6VK1eqF198UTk4OCgHBwdVv379LKczNOU5/bDMmSaGDh2ap2UfVqlSJQWoIUOGmH3s3bt3Vb9+/VSxYsWURqMxmNkkq//tTA+/pmTG/6jXI1Mfy48++kg1btxYFS9eXNna2qpSpUqpdu3aqT179hjUl91jkt1jnpycrCZOnGjwP9ehQwd16NChx96/TKtWrVLVqlVTdnZ2ytvbW40ePVr9/fffMquGEMJsGqXkColnwfr16+nVqxebNm2ia9eulg5HFBJDhw5l2bJlREdH53lvpxBCCFHQSOL8lElNTaVIkSIGX0+mpqYSGBjIv//+y5UrVySBEXkuOTnZaOaFyMhIXnjhBfz8/Dh06JCFIhNCCCGeHBnj/JSJiIjg7bffplu3bpQuXZrr168THh7O2bNn+fDDDyVpFvli6tSpHD58mObNm+Ph4cHZs2dZvnw5aWlpRhcNCiGEEM8qSZyfMs899xyVK1cmLCyMmJgYbGxsqFatGqtWrdLPfCFEXmvcuDEHDx5kzpw5xMfH4+LiQmBgIBMmTKBBgwaWDk8IIYR4ImSohhBCCCGEECaQeZyFEEIIIYQwgSTOQgghhBBCmEASZyGEEEIIIUwgibMQQgghhBAmkMRZCCGEEEIIE0jiLIQQQgghhAlkHmcgPj6e5ORkS4chhBBCZMnR0RE3NzdLhyFEoVfoE+f4+HgWLVpEWlparuuysrKidu3aHD16FK1WmwfR5Z2iRYvqY0tMTLR0OAak3cwnbZYz0m7mK8ht9qxTCg4frsNPP7ViypRZvPHGG5I8C2FhhX4BlGvXrrFs2TK6dOnyTC9XbWNjg7u7O3FxcaSnp1s6nKeGtJv5pM1yRtpNPCgxUcPIkW5ERBRh7NhraDRfMGTIELy9vS0dmhCFWqHvcc7k5eWV6xckrVbLjRs3KFmyJFZWBWv4uFKK9PR0ihUrhkajsXQ4BqTdzCdtljPSbuYryG32LEtPh7Jl4cgRcHW1YtkyS0ckhABJnIUQQogCIS0NPvxQ9/vUqbBkie73a9csF5MQwpAkzkIIIYSFXbwIvXrB+fOwcqWloxFCZEe+dxNCCCEs6NdfoVYtcHGB48ehbVtLRySEyI4kzkIIIYQFpKbqflarBh9/DNu3Q8mSlo1JCPFokjgLIYQQT9ihQ1C9Onz9Nbi5wWuvgVx7KUTBJ/+mQgghxBOi1cLs2dCgATRqBG3aWDoiIYQ55OJAIYQQ4gkZMwbCwmD1aujRw9LRCCHMJT3OQgghRD67cEH3c/hwOHZMkmYhnlaSOAshhBD5JDUVRo6EqlXh6lWoUAHKl7d0VEKInJKhGkIIIUQ+OHUKevaE27fhp5/Ax8fSEQkhcksSZyGEECKPZWRAx466mTP27AEPD0tHJITIC5I4CyGEEHkkNlbX0xwYCBERUKoUaDSWjkoIkVdkjLMQQgiRB/btg5o1YcIEUAq8vSVpFuJZI4mzEEIIkQvp6TBpEjRrBl26wI4dkjAL8aySoRpCCCFELly8CCtXwnffQfv2lo5GCJGfJHEWQgghcuCrr6BSJfD3h//+Azs7S0ckhMhvMlRDCCGEMENiIvTvD7176xYzAUmahSgspMdZCCGEMNGRI7pV/5SC336DF1+0dERCiCdJepyFEEIIE924AS+9pEugJWkWovCRxFkIIYR4hBs3oFcvuH4d2raFVavA2dnSUQkhLEESZyGEECIb27fr5ma+eBHS0iwdjRDC0iRxFkIIIbLw7ru66eUGD4ZffgFfX0tHJISwNLk4UAghhHiAVgtWVrqp5nbvhqZNLR2REKKgkB5nIYQQAt1MGV98AYGBcO8eDBwoSbMQwpAkzkIIIQq9uDgIDoYRI6BvX5mXWQiRNRmqIYQQolCLi9NdAOjmBocOwQsvWDoiIURBJYmzEEKIQik9HZKTwd0dZs2CTp3A3t7SUQkhCjIZqiGEEKLQiYqCoCDd0AzQrQYoSbMQ4nEkcRZCCFGobNyoG5phbw8zZlg6GiHE00QSZyGEEIXG1q0QEgLjx8POneDtbemIhBBPExnjLIQQ4pl34oRuXua2beHIEahe3dIRCSGeRtLjLIQQ4pml1cKnn0JAAGzZAtbWkjQLIXJOepyFEEI8k27ehH794MABWLECXn3V0hEJIZ52kjgLIYR4Jn34IcTGwrFjUKGCpaMRQjwLZKiGEEKIZ8a9e7BmjW757Fmz4NdfJWkWQuQd6XEWQgjxTDhzBnr21A3RaNECSpWydERCiGeN9DgLIYR4qikFYWHg7w9lysDff0vSLITIH5I4CyGEeKplZMDatTB7Nnz7LXh5WToiIcSzShJnIYQQeirtPmmb1qPiYrPefzuGtM1fodLTnnBkxn79FRYuBBsb2LMHXn8dNBpLRyWEeJZJ4iyEEMKAiovl/rIFRsmzuh3D/WULICEelIWCA9LT4YMPICgIzp7VDdWQhFkI8SRI4iyEEEJPY2uHbb/BaDy8dMlzfBwAKlaXNFuVLIVN6EA0trYWie/aNWjaFD77DDZv1v2UpFkI8aRI4iyEEMLAg8lz+rKF2Fy5RPryRRZPmgHs7cHXF44fh44dLRaGEKKQksRZCCGEkczkGY0G183roIi9xZLmpCQYPBg2bAAPDwgPBx+fJx6GEEJI4iyEECIbCQlwL1X3e0oyJN594iEcOwZ16ugu/itX7omfXgghDEjiLIQQwkjmhYCa0r7EDhuFpniJLC8YzE/r10O9errE+ehR3e9CCGFJkjgLIYQwkJk0W5UshXVIf1QRe6z7DPrfBYP5nDzfv6/7Wbs2fPGFbgltF5d8PaUQQphEEmchhBB6Kjkpy9kzjGbbSE3Jl/P/9BNUrKhb/a9KFejdO19OI4QQOWJj6QCEEEIUIA6O2LRqj1X1WmhsbVFarX5XZvKsPXEcjb1Dnp723j147z2YNw/eeQf8/PK0eiGEyBOSOAshhNDTaDRY+7+Y/X5bO6xr18nz83bpohvHvHMnNG+e59ULIUSekMRZCCGERSgFV65AmTIweTKULw/Filk6KiGEyJ6McRZCCPHExcdDjx7QoIHuYsC6dSVpFkIUfJI4CyGEeKIOHIBateDECfjxR7Czs3REQghhGkmchRBCPDExMdCqFbRtC4cOQY0alo5ICCFMJ2OchRBC5LvLl3VLZ1epoutpllUAhRBPI+lxFkIIka+++QZq1oRPP9X9LUmzEOJpJYmzEEKIfJGcDEOGQHAwjBkDixdbOiIhhMgdGaohhBAiX+zbB7t3w6+/Qv36lo5GCCFyT3qchRBC5BmlYMkSiI6GNm3g5ElJmoUQzw5JnIUQQuSJ6Gjo0EG3ZPbff+u22dtbNiYhhMhLkjgLIYTItV27dFPL3bypWzq7RQtLRySEEHlPEmchhBC5duQI9OmjW9zkuecsHY0QQuQPuThQCCFEjpw7BzNmwOefw7vvWjoaIYTIfwUicU5MTGTRokUcOXIEBwcHgoODadu2rVG506dPs379ev777z8AKleuzKBBg/D29taX+eGHH9i0aRMpKSkEBAQwfPhwHB0dn9h9EUKIZ51SsHo1vPEGBAVBSgoUKWLpqIQQIv8ViKEaS5cuJSMjgxUrVjBx4kTCw8M5fvy4UbmkpCRatGjBsmXLWLlyJb6+vkybNk2//+jRo3z11VdMmjSJFStWkJaWxtKlS5/kXRFCiGdaWhqEhMDQobre5q1bwc3N0lEJIcSTYfHEOTU1lQMHDhAaGoqjoyMVK1akWazLB50AACAASURBVLNm7N6926hsQEAAjRo1wsnJCVtbWzp16sSVK1dISEgAYM+ePTRv3pwKFSrg6OhISEgIv/76K/fu3XvSd0sIIZ45SoGtLTz/PPz5J4wYARqNpaMSQognx+KJ89WrVwHw9fXVb6tQoQJRUVGPPfbEiRO4u7vj4uICQFRUFOXLl9fvL1u2LFqtlmvXruVx1EIIUXhkZMD06bqeZoAPPtDNoCGEEIWNxcc4p6am4uDgYLDNycmJlJSURx5348YNli5dytChQw3qcnJy0v+t0WhwdHQ0qismJoaYmBgAoqOjuX//PgBarTZX9yXz+NzWkx+UUmi1WrRaLZoC1kUk7WY+abOckXYz36VLWnr18uT0aQ3Ll2spgE0nhBBPjMUTZ3t7e6PENikpySiZflBMTAyTJk2iW7duNGzY0KCu5ORkg7LJyclGdW3evJnly5fr/27SpAmgS8bzwq1bt/KknsJG2s180mY5I+1mmjNnbOjSxQs/vwx27ryJt7eWPHqZFEKIp5LFE2cfHx8ALl++TJkyZQC4ePEiZcuWzbL87du3mTBhAi1btqRjx44G+8qWLcvFixf1iXBUVBRWVlYGs24AdO3aVV8mOjqa7du3A1CyZMlc3RetVsutW7coXrw4VlYWHwVjQClFeno6NjY2Bao3C6TdckLaLGek3UyTnAx2duDlBTNnKtq0uU2pUgWvzQqLvOrUEULknsUTZ3t7ewIDAwkPD+fNN9/k5s2b/Pzzz4wdO9ao7O3bt3nvvfcICgqiW7duRvubNWvG3LlzadKkCSVKlCA8PJyGDRtS5KF5kry8vPDy8gLAxcUFOzs7gDx7U7CysipwbzBKKX1cln5Tzo60m/mkzXJG2i17x49Dz57Qr59u6exBg3S9zAWxzYQQ4kkrEK+CmeOU+/XrxwcffEBISAg1a9YEIDg4mH///ReAnTt3cv36dbZs2UJwcLD+Fh0dDUDt2rV59dVX+eCDD+jXrx/W1tYGY6CFEEJkTSlYsADq1tVd+DdkiKUjEpY2ZcoUNBoNPj4+WV4X0LZtWzQaDe3btzer3nnz5rFt2zaj7eXKlWP48OE5jvdxNm3ahEajITIyMt/OIZ59Fu9xBihatCjjxo3Lct/GjRv1v/fs2ZOePXs+sq727dub/U8shBCF3Zw5utkyli7VLZ1dQL8sEE+Yra0tMTExRERE0KxZM/32mJgYdu3aRdGiRc2uc968ebRv3z7Lhc6EKOgKRI+zEEIIy/j/L/QYNAiOHIG+fSVpFv9jZ2dHmzZtWLduncH2jRs34u3tjb+/v4UiE8IyJHEWQohC6P59ePdd3bCMY8fA3R0qVbJ0VKIg6tWrF5s3b9ZP3Qqwbt06evToYTQe/8qVK4SGhuLl5YWDgwONGzfm8OHD+v3lypUjKiqKRYsWodFo0Gg0rFy50qCOhQsXUrZsWVxdXenUqZN+OGamS5cu0b17d9zc3HB0dKRZs2YcOnTIoExaWhqjRo3Cw8MDV1dXBg4cSFJSUh61iCjMcpw4p6Wlce3aNc6fP098fHxexiSEECIf/fcfBAbCqlWwfTvUqmXpiERB1qFDBzIyMvQzUEVFRfHbb7/Rq1cvg3JxcXE0bNiQY8eOsWDBAjZv3oyTkxPNmjXTTwG5ZcsWSpYsSbdu3fj999/5/fffadeunb6O77//nq1bt7Jo0SLmz59PREQEI0aM0O+/e/cuTZo04a+//mLRokWsX7+ee/fuERQUxOnTp/Xlxo8fz+LFi3nnnXfYuHEj6enpTJgwIT+bSRQSZo1xPnPmDKtWrWLXrl38/fffZGRk6PcVK1aMhg0b0r17dzp37qyfqUIIIUTBMmgQFC8OP/6o+ynEozg4ONCpUyfWrVtHx44dWbduHX5+fvqL+DPNmzeP+Ph4/vzzT4r//xOrefPmPPfcc8yZM4dZs2ZRu3ZtihQpQokSJahfv77RuZRSfP/99/rZsP777z9mzZqFVqvFysqKFStWEBUVxT///MMLL7ygP0fZsmX5+OOPWblyJbGxsSxevJhx48Yxfvx4AFq1akVgYKB+tWIhcsqkHucjR47QqlUr/Pz82Lp1KwEBAXz22Wds2LCB7777jpUrV/L6669z7949Bg0ahI+PD5988gn37t3L7/iFEEKYICEBtm7V/b55M/zwgyTNwnQhISFs3bqVxMRE1q1bR0jm+usP2LlzJ02bNsXDw4P09HTS09OxtramUaNG/PXXXyadp0mTJgZTyFatWpW0tDR9j/X+/ft54YUX9Ekz6CYY6NChA/v37wfgn3/+ISUlhc6dOxvU3bVrV7PvtxAPM6nHuVmzZgwdOpT58+dTpUqVR5ZNSUlh69atzJs3j+TkZCZOnJgngQohhMiZgwehVy8oWhRatwZPT0tHJJ42LVq0wNnZmalTp3LixIksZ7iKiYnh4MGD2NraGu2rWLGiSedxc3Mz+Dvz2+vU1FRANxwkq8XKSpYsSWxsLADXr18H0Pd6ZypRooRJMQjxKCYlzpGRkUZP5uw4ODjo51eWsc9CCGE5GRkwcyZMngz9+8Onn0IWOY0Qj2VtbU1wcDBz5szhpZdeonz58kZlPDw8aN26NVOnTjXa9/BCZDnl4eFhMJY5040bN/Dw8ACgVKlSANy6dUu/OjHAzZs38yQGUbiZlDibmjTn1XFCCCFyLz4ewsNh/XrIYrFVIcwycOBALl++TGhoaJb7W7Rowdq1a/Hz88PJySnbeuzs7PQ9yOZq2LAhmzZt4uTJk1StWhWApKQkfvjhB/0aDtWrV8fBwYEtW7ZQu3Zt/bGbN2/O0TmFeJBJiXNycrJZlTo6OuYoGCGEELn37bdgYwPt28M//4CslC3yQq1atfj222+z3T969GjCw8Np0qQJI0eOxNfXl+joaP744w+8vb156623APDz82PPnj3s2rULd3d3ypcvj6eJ44f69+/Pp59+Svv27Zk2bRpFixZl1qxZpKSk6BdS8/DwYNiwYXz88cc4ODjg7+/PunXriIqKyn0jiELPpJfTokWL4uzsbPJNCCHEk5eSAq+9putdPntWt02SZvGkeHp6cvDgQWrVqsW7775Ly5Yteeutt4iMjKRevXr6ctOnT6d06dJ07dqVF198ka2ZV62awNnZmX379hEQEMBrr71Gjx49sLW1JSIiwuAarI8//phhw4Yxa9YsgoOD0Wg0TJs2LU/vryicNEop9bhCS5YsMZrk/FGGDh2aq6CepGvXrrFs2TKGDBmCt7d3rurSarXcuHGDkiVLYlXA3q2UUqSnp2NjY2PWY/kkSLuZT9osZwpKuymlyNi9HSvf8lhV9tNvy2w30tJI/+5rbFq0QePuYVKd//4Lr74Kd+/CunW6eZrzQkFps8IsL9+nhBC5Y9JQjWHDhuV3HEIIUWhkfqBIW70c2z6D9ckzgLp/n/TVy1Gxt81a+1qrhdq1YcECkMtLhBAif0j3gRBCWIDNy22xDmpB2urlaM+cAgyTZruhb6Jxc39kHTEx0L07/P03VK8Oa9ZI0iyEEPnJrJUDM0VFRbFmzRrOnj2b5ZWxGzduzHVgQgjxrLN5uS2g63m26dkXdeAXiI81KWn++Wfo3RtKlgQHhycRrRBCCLMT56NHj9K4cWOKFStGVFQUVapUIS4ujhs3blCqVCnKli2bH3EKIcQzyebltroxzWvCALAdN+WxSfPHH8OECfDWW/DRR5BHU+QKAUBCQgL379/P83pdXFz0C5oI8bQyO3F+55136NChA6tXr8bOzo41a9bg7+/Pnj176N+/v1y1KoQQZlD376O9evl/f9+6AdlcEJierptmrmZN2LYNWrV6UlGKwuT69eskJibmeb3lypUzedo5IQoqs8c4Hz16lD59+uivrs4cqtGsWTMmTpzI2LFj8zZCIYR4Rqn790lbtQwVexvbcVOgaUvSV3+hH/P8oLVrwc9PN665TRtJmoUQwhJyNMbZ3t4eKysrihUrxqVLl2jQoAGg+zR56pTxC74QQghDDybNdkPfBFc3rJq3Aisrg9k2EhLgjTdgwwbd8tkeps1OJ0SuVapUKc/qOps5sbgQTzmzE+cqVapw4cIFgoKCqFevHp9++il16tTB1taWOXPmUK5cuXwIUwghnh1KKdLDVxjMnpE5pb7Ny23I0OguGFQDRlKvfVmUgj/+0E03J4QQwnLMHqoxcOBALl26BMBHH33E5cuXqVy5MhUqVGD//v3MmjUrz4MUQohniUajwbpRULazZ1g1b0ts874UKevNvHlw+LAkzULkl5UrVzJ48GD93xqNhtOnT1swImNBQUEsWbLE0mEAUL9+fVauXAnApk2b6NWrl2UDesLMTpwHDBjAlClTAKhevTonT55ky5YtrF+/nrNnz9KuXbu8jlEIIZ45Vs9VzjJpvnYNXn4Zek2ticbGllatwMnJAgEK8QQEBQVhb29P0aJFcXZ2pk6dOuzbt8+gzPnz5+nVqxfFixfHxcUFPz8/pkyZQlJSUq7Pn56ezqRJkxg3blyu6yqMunbtytGjR/nnn38sHcoTk+sFUNzc3HjllVcIDg7Gx8cnL2ISQohCaetWDTVrwv37sGqVpaMR4smYN28eiYmJ3Llzh6FDh9KpUyfS0tIAuHjxInXr1sXT05MjR46QkJDA9u3biYmJ4fz587k+99atW/H19aVixYq5risvKKVIT0+3dBgm02g0hISEsHTpUkuH8sSYnThv3LjxsbenTdGiRbGxsUEpletbXtWTHzfA4jFIu0mbWfpWUNvt8GFFcLA1w4cr9uxRlClj+ZgKepsVlpuNTY6u489/qanYTZsAWSyElhNWVlaEhIQQHx/P9evXAZg8eTJ169ZlwYIFlC5dGtBNRLBw4UJq1KgBwOjRo/H19cXZ2Rl/f3+jHutH+fHHH2nWrFm2+xMSEhgwYAAlSpSgdOnSjBkzRj/HdfPmzQkPDwfg9OnTaDQawsJ087FfuXIFJycn/QeAHTt2EBAQgJubG/7+/uzfv19/jqCgIMaPH0+TJk1wcnLi0KFDWcYSFRVFgwYNcHZ2pnnz5ly+/L9pLP/880/q16+Pq6srNWrUYNu2bQb1PzjMY8eOHQbXo5UrV45PPvmEgIAAXFxcaNu2LXFxcfr9X331FRUqVMDd3Z0xY8YYxdW0aVN++OGHbNvwWWP2f2OPHj2y3K7RaPS/BwcH5zwiC6hduzbu7u558inP3d0drVaLVqvNg8jyXkZGhqVDyJK0m/mkzXKmoLXbv/9CqVK6uZn//hsyJzIoSJ1OBa3NCht390cviGMx91L/99PePtfVZWRksGrVKnx9ffH29gZg586dTJ8+/ZHHBQQE8N577+Hm5sb8+fPp3r07kZGRODo6Pvacx48ff2Ti/Oabb3Ljxg3OnDlDcnIy7du3Z8aMGUyePJmgoCD27t1LSEgIERERVKhQgb179zJw4ED27t1LgwYNsLW15e+//yYkJITvvvuOBg0asH37djp16sSZM2fw8vICYNWqVWzbto3q1atnm4t8+eWXbN++napVqzJy5EhCQ0PZt28fcXFxtG7dmpkzZ9K/f39++uknunXrxvHjx3nuuece2wYA69at49tvv8Xd3Z2WLVvy6aef8uGHH3LmzBkGDBjA999/T5MmTZg5c6ZRYu/n50dUVBRxcXEF97mah8xOnB/8hJMpNjaWnTt3EhYWph8w/jQ5evQo1atXp1ixYrmqR6vVcvv2bTw9PfXzXBcUSikyMjKwtrY2+JBTEEi7mU/aLGcKUrspBUuWwNtv61b/GzVKUalSwWu3gtRmhVV0dLSlQ8hXo0ePZty4caSkpGBlZcWqVav0vey3b9/WJ9HZCQkJ0f/+9ttvM23aNE6dOkVAQMBjzx0XF4eLi0uW+7RaLevXr+fPP//Ezc0NNzc3Jk2axJgxY/SJc//+/QHYt28fEyZM0F8DFhERQVBQEABLly5l0KBBNGzYEIB27dpRq1Yttm3bRp8+fQDo06cPtWrVAsDa2jrLeEJDQ/H39wdg5syZeHh4cOXKFSIiIihbtqz+Asd27drRsmVLvvrqK95///3HtgHAiBEjKFOmDADdunVjz549AGzYsIE2bdrQokULAMaPH8/8+fMNjnV2dta3pSTOWchqHLOPjw/Vq1cH4MMPP3zquuwTExNJT0/P9ZuVRqPR11OQ3vgeVBBjk3Yzn7RZzhSUdrt9GwYNgp07YeFCGDDAMMaC1G4Fpc0KswI15jU1Fbs5UwFI66NL1DR34rFdMBuA+2Mmmt37PHfuXIYNG4ZWq+W3336jXbt2VKxYkYCAADw9Pbl27dojj//kk0/44osvuHbtGhqNhoSEBGJiYkw6t7u7OwkJCVnui46O5v79+0bDGq5evQpAvXr1uHbtGpcvX2b//v0sWrSI+fPnc+7cOfbu3cuA///HjoyMJCIiwmAccFpaGi+//LL+b19f38fG+mAZNzc3XFxcuHr1KlevXjWaCvjBOE1RsmRJ/e+Ojo76lSOvXbtmcF5ra2ujPPDu3btAAf5mJI/lafdBrVq1iIiIyMsqhRDimfPllxAZCUeOwMCBIPmoeFpY/3FA/7vt6uUGPx/eby4rKysaNmxIpUqV2Lt3LwAtW7Zk06ZN2R6zf/9+pk+fzoYNG4iLiyM+Ph5XV1eUUiads0aNGtlOPefl5YWdnR1RUVH6bZGRkfrE0c7OjpdeeomlS5fi5eWFh4cHQUFBrFmzhps3b1K3bl1Al/COHTuW+Ph4/S0pKclgJg9Tvs3JnAoY4M6dOyQkJODj44OPj49BjA/HWbRoUZKTk/X7bty48dhzZfL29jY4b0ZGhlFCfurUKXx9fSVxNtf9+/dZuXIlpUqVyqsqhRDimZGWBosW6X6+9RYcPAiVK1s6KiHMk1EvUP97Zo9z5s+H9+fEwYMHOXnyJNWqVQNgypQp/PHHH4waNUrf83zp0iVGjhzJ8ePHuXv3LjY2Nnh5eZGens5HH31k0IMcERHxyG9K2rVrl22Hn7W1NT169GDChAncuXOH69evM23aNEJDQ/VlgoKCWLBggX5YRlBQEPPnz9ePbwYYMmQIy5Yt49dff0Wr1ZKSksLevXu5cuWKWW0THh7OsWPHSE1NZdy4cQQGBlK6dGnatm1LZGQkq1atIj09ne3bt7Nz50799Wa1a9dm06ZNJCYmcvnyZRYsWGDyObt378727dvZs2cPaWlpzJw50+DCQdC1cWGaitjsxLlu3bpGt1q1alG8eHHCw8N577338iNOIYR4al24AI0awYcfwn//gY0NFCli6aiEyAF7e+6//xH33/8I5eoGgHJ102/LyUWCo0aNomjRohQtWpTQ0FCmTZtG69atAahQoQJ//PEHN2/epGbNmri4uNCqVSs8PT157rnnaNWqFe3bt6dKlSqULVsWW1tb/Vhd0F2X9dJLL2V77g4dOhAVFcWFCxey3P/ZZ5/h6elJpUqVCAgIoHHjxowfP16/v2nTpiQkJOgT5yZNmnD37l393wD+/v6sWrWKMWPG4OnpSdmyZfnkk0/Mvti2X79+vP766xQrVowzZ87oZ/Tw8PDgxx9/ZNGiRXh6ejJ27Fg2bNigXzL9rbfewtXVlVKlStG5c2eDMeGP4+fnx/Llyxk4cCDFixfn9u3b1KlTR79fKUV4eDhDhw416748zTTK1O8z/l+PHj2MPr3Z29tTunRpunXrRs2aNfM0wPx27do1li1bxpAhQx57AcLjaLVabty4QcmSJQvcRTRK6eaGtLGxKXDjFKXdzCdtljOWaLfwcHjtNWjQQDc3c4kSWZcrqO1WkJ9rhUVevk+Z4syZMyQmJuoTr2zdicduwWzuj3gH/j+Jzs7Zs2cpV64cnp6eeRjp4w0aNIju3bvTqlWrbMusXLmSAwcOsHz58mzLiKxt3ryZTZs2sX79ekuH8sSYfXHgV199lR9xCCHEM0cp3QWAU6bAqFEgead4phSxN/xZAH3xxRePLdOvXz/69euX/8E8g7p27UrXrl0tHcYTZfbLeNu2bTl79myW+/777z/atm2b66CEEOJp9tdfMH687qK/lSth9GhJmsUz6P+HbeTFHM5CPC3MfinfsWMH8fHxWe6Lj49n586duQ5KCCGeRlotzJypG5YRHa1bxKQAjboQQgiRSzlaxzO78XeHDh3K9SIiQgjxNIqNheBgOHRIN675KVtAVQghhAlMSpxnz57N7Nm6yc01Gg2tWrXSr+qTKTU1laSkJP3KNUIIUVgoBUWLwvPPQ1gYlC1r6YiEEELkB5MSZ39/fwYOHIhSilmzZtGhQwejK3vt7Ozw8/MrdIPEhRCFV2oqvPMOlCwJEybA559bOiIhhBD5yaTEuXnz5jRv3hzQ9TgPHz48y6W3hRCisDh5Enr0gPh43dAMIZ4Vzs7OWFtbc/PmzTyr09XVFTs7uzyrTwhLMXuM86RJk0hJSclyX2xsLI6OjtjLFbZCiGfYjh3QuTO0awfLl0MhWWlWFBJPYq5oIZ5WZifOAwcOxM7OjpUrVxrte+edd7h37x5r167Ni9iEEKJASU4GR0eoUweWLIE+fWTWDCGEKEzMTpwjIiJYuHBhlvvat2/PiBEjch2UEEIUNBER0Ls3LF0KbdtC376WjkiI/HH9+vVsv1nOjeLFi1O0aNE8r1eIJ8nsxDk2NhYXF5cs9zk7OxMTE5ProIQQoqBIS4MPPoAZM2D4cGjWzNIRCZG/EhISSExMzPN6XV1dJXEWTz2zE+dy5coRERFBixYtjPZFRETg6+ubJ4EJIURBMGwYbN0K33+vG9MsRGFRqVKlPKsruxWHhXjamL1yYP/+/Zk9ezafffYZd+/eBSAxMZEFCxYwZ84cBgwYkOdBCiHEk5b5Pj9uHPz9tyTNQgghctDj/M4773D27FlGjRrFW2+9hZOTE0lJSSil6N+/P++++25+xCmEEE/E3bswYgRs2gSXLukWNRFCCCEgBz3OVlZWhIWFcfz4cebOncuoUaOYO3cux48fJywsLNvluIUQoqA7dAj8/eG332DfPvDwsHREQoj8tnLlyqdm1eOIiAhKlixp6TAA2LFjB+XKlQNAKYW/vz+nTp2ybFBPgNk9zpmqVatGtWrV8jIWIYSwmHv3oFMnePllWLBAt4S2ECJ/BQUFcfDgQWxsbNBoNFSuXJlPPvmEJk2a6MucP3+eiRMnsnv3blJTU/Hx8eHVV1/lnXfewcnJKVfnT09PZ9KkSezduze3d6VQ02g0jBkzhokTJ7Jp0yZLh5OvzO5xzpSens6FCxc4efKk0c1ciYmJzJw5k1dffZV+/fqxbdu2LMulpaXx8ccfM2jQIF555RUOHz5ssP+ff/6hY8eOBAcH628bN27M0f0TQhQON27A779DkSK6HucVKyRpFiI7Vr/swerY4az3HTuM1S97zK5z3rx5JCYmcufOHYYOHUqnTp1IS0sD4OLFi9StWxdPT0+OHDlCQkIC27dvJyYmhvPnz+fqvgBs3boVX19fKlasmOu68lpmGzwtOnfuzJ49e7h+/bqlQ8lXZifO6enpDB8+HFdXV55//nmqV69udDPX0qVLycjIYMWKFUycOJHw8HCOHz+eZVk/Pz/eeustvLy8stzv6urKxo0b9bfg4GCz4xFCFA4//gg1asDMmbq/C8g3oEIUXC6uWP/4rVHybHXsMNY/fgsurjmu2srKipCQEOLj4/XJ1+TJk6lbty4LFiygdOnSgG52r4ULF1KjRg0ARo8eja+vL87Ozvj7+7Nv3z6Tz/njjz/S7IE5JiMjI9FoNKSmpuq39ejRgylTpgD/Gyoxe/ZsihcvTunSpZk/f76+7JQpU+jSpQuhoaE4OzvzwgsvGMSTkJDA0KFDKV26NCVLlmT48OH6c2XWPXfuXLy9vXnllVeyjTu789+/f58xY8ZQunRpSpQowYABA0hISDCo/0H169fXL2i3cuVK6tevz4QJE/D09MTHx4fw8HB92bi4OLp06YKrqys1atTg2LFjBnU5ODgQEBDAjh07HtnmTzuzE+dp06bxzTffsHDhQpRSzJ07l8WLFxMYGEi5cuXYvHmzWfWlpqZy4MABQkNDcXR0pGLFijRr1ozdu3cblbW1taVjx4688MILWFnluLNcCFHIpabCyJHQsaNuurln/JtFIfKMtlYAGe06GSTPmUlzRrtOaGsF5LjujIwMVq1aha+vr37Z7507d9K9e/dHHhcQEMCRI0eIi4sjJCSE7t27k5ycbNI5jx8/TpUqVcyKMyYmhosXL3Lp0iW+++47PvjgA4OhHt9//z2tWrUiLi6OsWPH0rFjR+Li4gDdzGT37t3j5MmTnD59mnPnzjF16lSDuqOiorhw4QLffPON2eefPn06e/bs4c8//+TMmTNcu3aNkSNHmnzfDh8+jLe3Nzdv3mTBggUMHTpUn3gPHz6cjIwMrly5wpYtW/jyyy+Njvfz8zNKqJ81Zmef69evZ8qUKfTp0weAhg0bMnToUH755Rfq16/Pzz//bFZ9V69eBTCY/7lChQpERUWZGxoAd+/epU+fPgwcOJBFixbpp8wTQohMZ8/qepv37IEPPwSbHF/tIUTh82DybLN6ea6T5tGjR+Pm5oajoyOjR49m9uzZ2Pz/P+Xt27f1SXR2QkJC8PLywsbGhrfffpu0tDSTL1KLi4vLdlG37Gi1WmbMmIG9vT0BAQH07dvXoGe2Zs2a9O7dGxsbG/r27Uv58uX58ccfuXXrFt9//z0LFizAxcUFNzc33n//fdavX68/Vimlr9vBwcHs869du5bJkyfj7e2Nm5sbH3/8MevWrUOr1Zp033x8fHjjjTewsbGhS5cuWFlZcfbsWTIyMvj666+ZNm0azs7OVKxYkTfeeMPoeGdnZ/2HhGeV2W8Xly9fxs/PD2tra4oUKUJ8fLx+X9++fQkJCWHBggUm15eammr05HBycsrRkFlnIQAAIABJREFUcp+ZX1mULl2a2NhYFi9ezLx585g4caJBuZiYGP0Kh9HR0dy/fx/A5CdWdjKPz209+UEphVarRavVFriZT6TdzCdtZmIsGRlw/x4aB0eUguXLFVWq2NCwoZaTJ8E6LZmMdHs0BeAbrILUbg8qyM81YTnaWgFYHT+C1aVItL7lctXTPHfuXIYNG4ZWq+W3336jXbt2VKxYkYCAADw9Pbl27dojj//kk0/44osvuHbtGhqNhoSEBJNXMXZ3d9f3qJrK1dUVV9f/DUkpW7YsP/30k/7vhxeCK1u2LFevXiUyMpKMjAzKlCmj36eUIiMjQ/+3p6cnjo6OOT7/1atX9TNdgG5Yy/3794mOjjbpvj08lMPR0ZHExESio6NJS0szuG9ly5Y1Ov7u3bu4u7ubdK6nldmJc8mSJblz5w6ge0D2799P8+bNAbhw4YLZL6729vZGSXJSUlK2n7Qexd3dXf+AeXl5MWTIEIYNG8a9e/coUqSIvtzmzZtZvny5/u/Mq3dv3Lhh9jmzcuvWrTypp7CRdjOftNmjORzcj935c0Q168U7k0qxZ08R5s+3oVKlW2iSk3DZvJ57VV4g9cWXLB1qgSfPNfEgq2OH0Vy+hNa3HJrLl7A6djhXyTPoxjg3bNiQSpUqsXfvXgICAmjZsiWbNm3KdnG1/fv3M336dPbu3Uu1atWwsrLC3d0dpZRJ56xRowanT5/W/525JHhycjL29vaALjd4cDjHnTt3SEhI0PdUX7p0CR8fH/3+S5cuGZzj0qVLdOvWDV9fX2xsbLh16xZ2dnbZtsHjPOr8Pj4+REVFUbNmTUA3ZtvOzo5ixYpx+fJloyEspuY9xYoVw9bWlkuXLumvZXv4fgKcOnWKXr16mVTn08rsxLlx48YcOHCA9u3bM2DAAN577z3OnTuHnZ0dGzdupFu3bmbVl/lgX758Wf8p7OLFi1l+kjGXlZUVSimjf6CuXbvqk+Xo6Gi2b98OGH/SMpdWq+XWrVsUL168wI3BVkqRnp6un/KnIJF2+z/27jusyett4Pg3EPYKCAiCiLbFVXfrqgN3FUWrdbQurFr3rPV1i0qttlXrrKNa3La1y137U7C2VavWUQfiAhRUQNlDSPK8f6REI6CJBBP1fK4rF+Y5T85z5ySSm5MzDCfaTM9Y2gUROXkn/Vu74+ZjzbFjatzdc/Gwt0O9NRyZoyO2bdqj+O8D0qSxmlG7Pcyc32svC2N16hjLo2OatRMDocTJ89GjR7lw4YJ2udvQ0FDefPNNxo4dy8SJEylXrhxxcXEsWLCAgQMHkpGRgVwux93dHaVSyeeff67TgxwZGUmLFi2KTaSDgoJYtGiR9r67uzu+vr6sX7+e0aNHs2vXLo4cOUJgYOCD529hwZQpU1iwYAEXLlxg/fr1Oit4nTlzhi1bttCjRw+2bt3K1atX6dChA25ubgQFBTFmzBjmzp2LQqHg5s2bnD9/nrffflvvNnrc9Xv37k1YWBj169fHzs6OKVOm8N5772FhYUFAQAAqlYoff/yR4OBgVq1apR0u+ySWlpZ069aNGTNmsGHDBpKSkli+fLnOObm5uZw8eZL169fr/VyeRwYnzmFhYdqehwkTJqBUKtm+fTs5OTkMGjSIsLAwg+qztbXlrbfeYvPmzYwePZo7d+5w4MABJk6cWOT5+fn52mRYpVKRl5eHXC7HwsKCs2fPUrZsWTw9PUlNTWX16tXUrl1b+1djAXd3d+2qHM7Oztq//Iz1oWBhYWF2HzCSJGnjMqcP5YeJdjOcaLMncHDkXoOudD5znk87HsSh4ock3snSJM22tlgNHIbM1vBvt0qDWbVbEczxvSY8e0VNBCz4+bTJ89ixY5kwYQKg6cAKCwvTJpKVKlXi2LFjTJ8+nVq1anH//n18fHx47733ePXVV6levTodO3akSpUqODg4MG7cOJ2hEDdu3KBRo+K/UerUqRNjx47l2rVrVKpUCYC1a9cybNgwQkND6dmzJ506ddJ5jLu7OxUqVKB8+fJYWVkxbdo07TfvAMHBwezZs4chQ4ZQvnx5fvrpJ9z+201p/fr1TJ06ldq1a5OSkoKvry9Dhw41KHF+3PWnTJlCRkYGdevWRaVS0b59e+2qG87OzqxcuZJRo0YxePBghg8fTr16+r9Wy5YtY+DAgfj6+lKhQgUGDBjAypUrteU///wzLVq0eOKY9OedTNL3+4xSlJmZybJly/jnn3+wt7enR48edOjQAYAePXowc+ZMqlevDsCgQYMKfWX4ySefUKNGDX7++Wd27NhBRkYGDg4O1K1bl/79++uMBXpUQkICq1ev5sMPPyzxi61Wq7l9+zZeXl5m9wFjrr1ZINrtaYg2e7zYWPjoI1i5EtzdQcrOJn/tCqS0VNQqFZbuHmaVNIN5tFtRzPm99rIw5ueUPi5dukRmZiYBAQGFyix+PwjOLkUmxxanT0J6GupmLQuVRUdH4+/vT5kyZUol5uIMGjSI7t27065du2LPCQ8P588//9QZwlmcyMhIevXqVey3AKGhoURFRbFt27anjvl5JEkS9erVY9OmTVSrVs3U4ZQqs5hL7ujoyKRJk4ose3QDk6+//rrYerp06UKXLl2MGpsgCM+Xb7+FIUPgzTehYM6NzN4eea++5H/xCRaAZc/xZpU0C8LzoqikWFtWwmEapeFxOUOBkJAQQkJCSj+YF5hMJuOff/4xdRjPhF7dB02aNNGOA9bHnTt3mDx5Ml9++eVTByYIgmAISdIkzH36wNSp8OuvULbsf2WZGSg3rAXPsqgUbig3rUXKyjRtwIIgCMJzR68e5y5dutCvXz9sbGzo2rUrb731FjVq1MDDw0O7JN3169c5efIke/fu5dChQ7Rp04aFCxeWdvyCIAio1WBhAXXrwuDB8MYbD8qkzAzyVy0FW1vkA4Zy7/Ztyuz6gfw1y7EaPAKZg9hfWxAE/QQGBj52smbBDoPCi0uvHucJEyZw7do1pkyZwt9//03v3r2pUaMGXl5euLq6UrFiRVq0aMHcuXOpVKkSf/31F7t376Zy5cqlHb8gCC8xtRoWLIBmzUCp1PQ4F5c0a8Y02yLZ2mI5cBhYWpK/ZrnoeRYEQRD0pvcYZycnJ4YPH87w4cPJyMjg5MmT3Lp1i9zcXNzc3KhcubLB21YKgiA8rdu3oX9/OHoUvvqq6N3/VMf+eihptkP6b515mZ09VgOHk792BaoTx5A3b1X4wYIgCILwiKeaHOjk5KSzpqEgCMKzlJAAdepApUpw+jRUrFj0eZYt2mDZNBCZtU2hMpm9PVZDRoFV0RsRCMLLLjo62tQhCILZMYtVNQRBEPRx/z7k5YG3NyxdCu+8A1ZWxZ8vs7CAIpJmbfljygThZeXh4aHdlc6YnrSVtCA8D0TiLAjCc+HiRXjvPWjSBJYtgx49TB2RILyYCjbrEAShMLGavSAIZk2SYM0aqFdPMyRj1ixTRyQIgiC8rESPsyAIZm3LFhg9GhYt0qyaYUab6gnCC+n69etkZWUZvV5fX18UCoXR6xWEZ8mgxPn+/ft8/fXXBAYGarfAFgRBKA0nT0KtWpohGW+8AWJ1S0F4NvLy8rh//77R61UVbOUpCM8xgxJnGxsbPv74Y4N2ERQEQTCEUglhYZrbzp3Qvr1ImgXBFAICAoxWl1ihQ3hRGDzGuUaNGuI/gCAIpSI2FgIDYfly+PlnTdIsCIIgCObC4DHOX375Jf3798fHx4d27dphaWlZGnEJgvASmjEDbG3hzBkoV87U0QiCIAiCLoMT5+DgYLKzs+nUqRMymQxXV1dkD83Wkclk3Llzx6hBCoLw4srKgu3bNbsALl8O9vZgIdb7EQRBEMyQwYnzwIEDdRJlQRCEp/XPP5q1mZVKCA4GV1dTRyQIwstu7ty5REdHEx4eTkxMDBUrViQnJwdbW9sS13358mW6du3KmTNnsLCwIDAwkF69ejF06FAjRG4coaGhREVFsW3bNlOHwqRJk7h9+zbh4eHEx8fTunVrTp8+jY2N6TavMjhxnjdvXmnEIQjCS0Sthi+/hEmToFcvzYYmpbBRmSAIpShNmUX5E+9w442fcJE7PHU9mzZt4osvviA6OhoHBweCgoKYN28eXl5eRoy2aOHh4axcuZKjR49qj02ZMqXUrjd9+nTGjx+PhfhazWA+Pj40bdqUNWvWMHLkSJPF8dSvXF5eHidPnuS3337j5MmT5OfnGzMuQRBeYPn58Msv8M03sGGDSJoF4XmUrsrS+fk0Fi9ezNixY5k9ezYpKSmcPn2a/Px8mjRpQlpamrFCNQuJiYns3buXd99919ShaD1vuVu/fv1YuXKlSWN4qsR5wYIFeHl5Ub9+fdq1a0f9+vUpW7YsCxcuNHZ8giC8QPbtg1WrwMYGIiOhd29TRyQIgqmkp6czbdo0lixZQnBwMDY2Nvj4+LBhwwasrKxYvHgxoBk60KtXL+3jcnNzkclkxMTEALB3717q1q2Ls7Mz5cuXZ/r06UiSBEBMTAwymYyNGzdSsWJFXF1dGTduHAAXL15k6NChHD9+HEdHRxwdHcnKyip0vUdjHjJkCL6+vnh5eTFy5Ehyc3P1er779++nVq1aODk5FVkuSRLz58+nYsWKuLu707VrV27fvg3AnDlzGDx4sPZcb29v+vbtq73/yiuv8OeffwKa4SDt27fH3d2dV155hRUrVmjPCw0NpWvXroSEhKBQKFiwYEGRseTl5dGnTx+cnJyoXr06hw4d0pbdunWLrl274u7uTsWKFZk/f762vZ/0WoWEhDB8+HC6du2Kk5MTNWvW5PTp09rzz549y5tvvomTkxNBQUGkpKToxNWwYUOuXbvG9evXi2/oUmZw4rxixQo+/vhjgoOD2bNnD6dOnWLPnj107tyZjz/+mK+++qo04hQE4Tl2/z6MGwdBQZCQoDkmpkqYr+13DpKnLron6r46jx/uRDzjiARzkabMwvloW5yPtuXm/UQAbt5P1B5LU+rf+3zkyBFycnLo3r27znFLS0u6d+/Or7/+qlc9Dg4OhIeHk5qayu7du1m9ejU//PCDzjkHDx7k3LlznDx5km+++YaDBw9StWpVVq5cyZtvvklmZiaZmZk4ODx+yMmAAQO4f/8+Fy5cICoqisuXLzNnzhy94jx79ixVqlQptnz9+vV89dVX7Nu3j7i4OBQKBe+//z4AgYGBRERo/t9FRUVhZ2enTWZv3rzJ7du3qV+/PtnZ2bRu3Zrg4GBu3brFnj17mDdvHr/99pv2Ojt37uTtt9/m3r17jBkzpshYduzYQbt27UhJSWHixIl07txZm8S+//77KBQK4uLi2LdvHytWrGDDhg16tQHA1q1bmTBhAqmpqbRs2ZLRo0cDmt7vzp07884772hj27hxo85j5XI5r776qk6y/awZnDgvWbKEsWPHEh4eTrt27ahVqxbt2rXjm2++YcyYMdq/EAVBEACuXYOGDeG77+C332DWLFNHJDzOvfw0xlxaRM+z0wolz/fVeXQ9M5lx0YtJNyBBEl4cy289SEjbXRiv8/PR8idJTk7G3d0dKyurQmXe3t4kJSXpVU+zZs2oWbMmFhYW1KxZk/fee0+nhxRg5syZODg4UKlSJZo1a8Y///yjd5wFEhMT2bFjB0uXLsXZ2RmFQsG0adPYunWrXo9PSUnB+THj0jZt2sS4ceOoXLky9vb2LFiwgMjISG7evEmDBg1ISEjg5s2bHDp0iODgYFxdXbly5QoRERE0btwYKysrdu3ahZeXF8OGDcPKyorKlSszePBgnRjr1atHr169sLCwwM7OrshYatWqRd++fZHL5fTv35+KFSuye/du7fUXLFiAvb09lStXZty4cYUS3Mfp3LkzjRs3xtLSkn79+mlfiyNHjpCVlcWkSZOwsrKibdu2tGvXrtDjnZycCvVEP0sGJ84xMTF06NChyLL27dtru+MFQRAAHBygdm3N2swtW5o6GuFJ3KxciKi3nL/TL+gkzwVJ87+ZV4mstxznEkwGE55fI7y7af/9a7WFOj8fLX8Sd3d3kpOTixxne+vWLTw8PPSq59ixY7Ro0QIPDw9cXFxYuXIlycnJOuc8PNHQ3t6ezMxMveMsEBMTg0qlonz58igUChQKBR07diQxMVGvx7u6upKenl5seXx8PP7+/jrnOzs7Ex8fj7W1NY0aNSIiIoLIyEgCAwO1vdAREREEBgZqYzx16pQ2PoVCwWeffaYd8gHg5+f3xFgfPadChQrEx8cTHx+Pi4sLrg8tgeTv7098fLxebQCFX4usLM0f4QkJCfj4+OhMnKxQoUKhx2dkZOhc/1kzOHH29vbWmX36sGPHjuHt7V3ioARBeL6lpmpWy9i5E8qW1UwCdHc3dVSCvgIc/LTJc69zM8hU5dDt7BRt0lzJ3sfUIQom4iJ3IL3hftIb7sfXxhMAXxtP7TFDVtdo1KgRtra2hYZVqNVqtm/fTosWLQBwdHQkOztbW/5wEgiaoQNBQUHExcWRlpbGsGHDtGNun8SQ5XX9/PyQy+UkJiaSmppKamoqaWlpeifhNWvWJCoqqthyHx8fYmNjtfdTUlJIT0/Hx0fz/y0wMJDIyEgOHz5Ms2bNtPcLEumCGBs3bqyNLzU1lYyMDPbs2aOtV58VPeLi4grd9/HxwcfHh7S0NJ2JmzExMdoYn/RaPU65cuWIj49HrVYXG4dSqeTKlSvUrl1b73qNzeDEOSQkhDlz5jBr1iwuXrxISkoKUVFRzJ49mzlz5jBgwIDSiLNUOTo6IpfLkSSpxDdj1VMaN8DkMYh2e/Hb7I8/JN54Q8758+Dvb/p4npd2kyTzeq+9Zl+eg3WX8UfqGSpH9eFURjQRdZdR0a6cyWN72W5yucErxz4XnJ2dmT17NqNGjWLXrl3k5eWRkJBA//79SU1NZdSoUQDUqVOHw4cPc+3aNbKyspj1yHivgh5IOzs7Tpw4wZYtW/SOoWzZssTHx3P//v0nnuvl5UVQUBBjxowhJSUFSZK4ceMG+/bt054jk8mIjIws8vFt2rThzJkzxSbavXv3ZvHixVy+fJmcnBw+/vhjmjVrhq+vL6BJnLdv3467uztubm40b96cPXv2cOfOHerXrw9Ax44diYmJYe3atdy/fx+lUsm///7L8ePH9W4TgDNnzrBlyxaUSiUbN27k6tWrdOjQAV9fX5o1a8bEiRPJyckhOjqaxYsX06dPH+DJr9XjNGrUCHt7ez777DPy8/P53//+p9O2oOmg9ff3p2LFigY9H2My+H/j9OnTSUxMJCwsjNmzZ2uPW1hYMHToUKZPn27UAJ+FOnXq4OrqilKpLHFdrq6uqNVqnb+YzIlKpTJ1CEUS7WY4c2yzNWssGD3agsGD1cyfr8bOTrO5iTkxx3Z7mDm913ys3HGVO3E3Pw0PKwVecjej/J4UDGPKr6Ufx9nSQefn0xg/fjzu7u5MnTqV7t27k5ubS61atYiMjKRs2bIAtGrVin79+lGvXj0UCgVhYWGEh4dr61ixYgUfffQRY8eOpXnz5nTv3r3QUI3itGzZktq1a+Pt7Y1arX7ikIP169czdepUateuTUpKCr6+vgwdOpS3336bmzdv4ujoSI0aNYp8bNmyZenQoQPbt28nJCSkUHn//v25desWbdq0ISMjg6ZNm+r8EdCgQQOUSqW2d9nNzY0KFSrg4eGhHSfu6OjIb7/9xoQJE5g8eTL5+flUqVKFsLAwvdqjQMECEEOGDKF8+fL89NNPuLm5AbBlyxaGDx+Or68vTk5OfPjhh/Tr1w948mv1OFZWVvz8888MGjSIsLAwmjdvTt++fXX+qNm4cSPDhg0z6LkYm0ySJP2+z3jErVu3OHLkCCkpKbi5udGoUaNnsli5sSUkJLBlyxb69eun93iq4qjVau7evUuZMmXMbnFzSZJQqVRYWlqa3c6Pot0MZ05tpr5zi+xde3Ho8z5nLtoSEyPRseODNlOdOoF0Kx55h84mjRPMq90eZW7vtfvqPLr9N6b583LDGB+/nPou1dhWYw7WFoUncwmlJykpiRUrVvDhhx9Srly5Ur/epUuXyMzMJCAgwGh1RkdH4+/vT5kyZR573o4dOxgwYAAHDx6kVq1aRrv+s7Bp0ybOnz/Pp59+Wuw5ly9fplu3bpw6dQpLS8tnGN3z77ncOTA3N5e+ffsyevRomjZtSteuXUsrrmcqMzMTpVJZ4g8rmUymrcccPviKYo6xiXYznDm12Y+/KRjzUQ/23/yW2pN7Ubu2DUqlJkb16ROovt+MPLibyeME82q34phDbFeS8hlzYwr/Zl3jYL1l2KdZcqDeUlr9M4peZ6fzuW8Yr3qI5PlZeZl6+YODg1m7di1Hjhx57hLnguEKj/Paa69x9uzZZxDNi8fHx4eLFy+aOgzDxjjb2try66+/mtVXiYIgmEZWFgweDO9/YM/IcVa8Yp9A/rqVSPc1mwGoTp1A+Z0mabZs1NTE0Qr6upeTR9huJbkxzYiou5xKdppJPwH2fhysu5yMq00J251HWu7zteOY8Pzo0qULQ4cONXUYglAkg7+rbN26tXYRbkEQXk6SBG3bwoED8McfMCXUFtthIyErC+W6lUh/H9H2NIuk+fliY61CHbCNVzM6cfycDwWD+SQJjp/149WsDkiVv8XaSnSgCILw8jF4cuCwYcMYNGgQOTk5tG/fHk9Pz0JfK1arVs1oAQqCYD4kCeLioEIFWLgQqlaFgvX8ZU7OWA0ZRV7YNIi9jmX7YJE0P4ccLO3Y0HgAlyrCl/tBkmQ0LQ9bjso4chUmvG3Bq2U/MHWYgiAIJmFw4lywi8sXX3xRaI9zSZI0k4HEUA5BeOEkJkJICFy9ChcuQIMGhc9RX7n04N8X/kVq1ASZje2zC1IwmsreMLYtLNoPv50vh62VxPh28GpZU0cmPCvR0dGmDkEQzI7BifPevXtLIw5BEMzY/v3Qrx/4+cHu3VDUZHDVqeMov9uMZZfuqCtXQ1q3kvx1K7H6YKhInp9TAV7g6QQ3U8BHAa94mjoi4Vnw8/MrlQ4wW1vxe0B4/hmUOOfl5aFUKqlevbrOtpCCILy4bt6E4GAYNw5mzQJr68LnFCTN8uBuWDRsgqRUIv9wJMrVy0Ty/JySJNh8BJIzoV3ldCKvOvHt39CzPpjpgiSCkdjZ2Zk6BEEwWwZNDrSysqJr165cv369tOIRBMFMREfDlSvg6wuXL8OnnxadNKuvXS5y9YyCMc9kZaHcsv4ZRi6UVEHS/NcVGNdWommlTMa0kTgUBd/+DU+3+r/wvFCr1ahUKqPfnnLbCEEwKwb1OMtkMipXrkxCQkJpxSMIgolJEoSHw6hRMGIEzJ8P5csXf76sQiWsQoZgUblq4bL/kmcpLbX0AhaM6uGkeXw7qOQBt29rhm2MbauZMAii5/lFdvny5WK3hS4JfTZAEQRzZ/BydGFhYYSFhXH+/PnSiEcQBBNKTYX33oNhwzQJ87x5T36MzNKyyKRZW+7kjIWvnxGjFEpTdh5cT6LIiYAFEwav3AGxjLMgCC8jgycHzpkzh+TkZGrWrImvr2+h5ehkMhnHjh0zapCCIDwbv/0G587B8eNQo4apoxFMwcEGpgUX35tc2RumdhK9zS8DY2+5LQgvAoMT51dffZVXX321NGIRBMEEVCpYvBgGDIDu3aFz56LHMgsvjyclxSJpFgThZWVw4rx169bSiEMQBBO4cQP69NH0MjduDA0biqRZEARBEIpj8BjnR927dw+1Wm2MWARBeIZ+/BFq1QILCzhzRpM0C4IgvOzmzp1LSEgIADExMchkMnJzc41S9+XLl6lRo8ZzkzfJZDKioqJMHQa5ubnIZDJiYmIAGDlyJKtXrzZJLE+VOEdGRhIYGIijoyOenp6cPn0agBEjRvDtt98aNUBBEErHv//ChAnwv/9plpwTBEEwhU2bNlG7dm3s7e3x8PAgJCSE27dvP5Nrh4eH0/CRXoMpU6YQHh5eKtebPn0648ePx8KixP2WL7VJkyYxe/Zs8vOf/Sxlg1+57du306pVK1xcXPjkk090/mry9fVl7dq1Rg1QEATjOXNGM5ZZqYSZM2HKlKJ3ARQEQSjKvJub2JT4a5FlmxJ/Zd7NTQbVt3jxYsaOHcvs2bNJSUnh9OnT5Ofn06RJE9LS0owRstlITExk7969vPvuu6YOpRBTJKAl4evrS5UqVfjll1+e+bUNTpxDQ0MZMWIEv/zyCyNHjtQpq1GjBv/++6/RghMEwTgkCZYsgfr1IS8P7t83dUSCIDyPfK09GHVtUaHkeVPir4y6tghfaw+960pPT2fatGksWbKE4OBgbGxs8PHxYcOGDVhZWbF48WJAk3f06tVL+7hHv7bfu3cvdevWxdnZmfLlyzN9+nTtZisFQy02btxIxYoVcXV1Zdy4cQBcvHiRoUOHcvz4cRwdHXF0dCQrK6vQ9R6NeciQIfj6+uLl5cXIkSP1Hsaxf/9+atWqhZOTk/aYv78/+/bt095fuXIlgYGB2vsymYylS5fy6quv4ubmxuDBg7n/3y/wyMhIvLy8+Pzzz/H09MTX11fbZgCSJLFgwQICAgJwc3OjQ4cO3Lx5U6fuZcuWUbly5ceur/3bb78VeX3Q9NhXrlwZV1dXWrdurbN6yqPDPCZNmlRoCExRrwtoNuGZPHkyHh4e+Pn5sXnz5kJxtWjRgp07dxYbd2kxOHG+cuUKnTt3LrLM0dGRlJSUEgclCILx5ORAp04wdSqsWQObNoGDg6mjEgThedTHsx1LK43TSZ4LkuallcbRx7Od3nUdOXKEnJwcunfvrnPc0tKS7t278+uvRfdsP8rBwYHw8HBSU1PZvXs3q1ev5ocfftA55+DBg5w7d46TJ0/yzTffcPDgQapWrcrKlSt58803yczMJDMzE4cn/HIcMGAA9+/f58KFC0RFRXH58mXmzJnjHa46AAAgAElEQVSjV5xnz56lSpUqep37sG3btvHXX38RFRXF6dOnmTt3rrYsOTmZ69evExcXxy+//MKsWbOIiIgAYNmyZWzZsoX9+/dz584d6tatS8+ePXXq3r59O4cPH+bOnTsGXz8yMpJx48axfv167ty5Q+PGjenYsaNBvddFvS4Aa9eu5fvvv+fYsWOcP3++yAS5atWq2qHCz5LBibOnpydXrlwpsuzcuXP4+YmNDgTBXEgS2NpC3bpw6hT06yeWEhMEoWQeTp7bn//oqZJm0CR97u7uWFlZFSrz9vYmKSlJr3qaNWtGzZo1sbCwoGbNmrz33nscOnRI55yZM2fi4OBApUqVaNasGf/8849BsYJmqMWOHTtYunQpzs7OKBQKpk2bpvdqYykpKTg7Oxt83UmTJuHp6YmnpyfTpk3T6X1Vq9V8+umn2NraUq9ePfr3768t/+qrrwgLC8Pf3x8rKytCQ0M5ceIEcXFxheq2s7Mz+PqbNm0iJCSEhg0bYm1tzYwZM7h3755Be3kU97ps3bqVMWPGUKlSJZycnJg1a1ahxzo5OZmks9bgxLlXr17MmDGDP//8U3tMJpMRHR3NZ599xvvvv2/UAAVBMFxeHkycCAMHahLl2bNBLL8uCIKx9PFsR0On6vyZ8S8NnaobnDQDuLu7k5ycXGQP5a1bt/Dw0G/Yx7Fjx2jRogUeHh64uLiwcuVKkpOTdc7x8vLS/tve3v6pthSPiYlBpVJRvnx5FAoFCoWCjh07kpiYqNfjXV1dSU9PN/i6D3dIVqhQgfj4eO19FxcXXFxciiyPiYmhZ8+e2ljd3d2xsLDQGa6hT2dncdePj4/H399fWyaXy/H19dWJ70mKe10SEhIKXfdRGRkZuLq66n0tYzE4cZ49ezZ16tShWbNm2ifSuXNnXn/9dapVq8bUqVONHqQgCPq7fFmzJvPGjZrtswWhJNKUmSxI/JY0peGJhvDi2pT4K0czzvOWUw2OZpwvdsLg4zRq1AhbW9tCwyrUajXbt2+nRYsWgGYYaHZ2trb80RU33n//fYKCgoiLiyMtLY1hw4Zpxzg/icyAr+D8/PyQy+UkJiaSmppKamoqaWlpeifhNWvWLLS025OeG6DTQxwXF4ePj4/2flpamk4y/nC5n58fO3bs0MaamppKTk4OjRs31p6vz+oexV3fx8eH2NhYbZlKpeLmzZvacgcHhyc+t+KUK1eu0HUfdfHiRWrXrq13ncZicOJsa2vLvn372LVrFz169KBPnz507dqVH3/8kX379hX5lcuTZGZmMn/+fHr27ElISAh79uwp8rz8/HzmzZvHoEGDCA4O5uTJk4XO2bVrFyEhIfTs2ZPPPvtM50UThBfd339DnTrg5QVnz0KbNqaOSChObM4tclTFTyqKyop5dsE8Rpoyk4VJ34nEWdB6eEzz3uoLCo151pezszOzZ89m1KhR7Nq1i7y8PBISEujfvz+pqamMGjUKgDp16nD48GGuXbtGVlZWoa/tC3oe7ezsOHHiBFu2bNE7hrJlyxIfH68z4a04Xl5eBAUFMWbMGFJSUpAkiRs3buhM7pPJZERGRhb5+DZt2nDmzBmdRLtOnTps2bKFvLw8Lly4UOQyeJ999hlJSUkkJSXxySef8N5DPSIWFhZMmTKF+/fvc+rUKdavX68tHzZsGFOnTuXq1auAZqjId999p0+z6HX93r17s379ek6cOEFeXh5z5szB1dWVBg0aaJ/bxo0bUalU/PXXXwatgNGzZ0+WLFnC9evXycjIIDQ0tNA5kZGRBAUFGfx8SuqpFxJs3749CxcuZMOGDXz55Zd07NjxqYNYtWoVKpWKb775hunTp7N582bOnj1b5LlVq1Zl3LhxuLu7Fyo7deoU27ZtY8aMGXzzzTfk5+ezatWqp45LEJ4X6emarbNr1YKVK2HnTtDzW07BBCRJYugfu3j32KIik+ef7/xOj193EJEkVikSzEtREwGLmjCor/Hjx7NgwQKmTp2Ki4sLPj4+/Pvvv0RGRlK2bFkAWrVqRb9+/ahXrx6vv/46rVu31qljxYoVzJ49GycnJ0JDQwtNNnycli1bUrt2bby9vVEoFGRlZT32/PXr1yOXy6lduzYuLi60a9dOu5LEzZs3cXR0pEaNGkU+tmzZsnTo0IHt27drj82ZM4eEhATc3NwYOXIk/fr1K/S4Hj160KhRIwICAnj99dd1vtl3d3enQoUKlC9fno4dOzJt2jRatWoFwKhRo+jZsycdO3bE2dmZWrVq6T3hUp/rt2jRQjtE19PTk99//52dO3dqO1CXLFnCgQMHUCgULFiwQCfhf5JBgwbxzjvvUL9+fapVq1YoQY6Pj+fixYt06dLF4OdTYpKJ5eTkSO+8844UGxurPfb1119LCxYseOzjBg4cKJ04cULn2BdffCGtW7dOe//69etS165dpdzc3GLriY+Pl2bOnCnFx8c/5TN4QKVSSfHx8ZJKpSpxXcamVqulvLw8Sa1WmzqUQkS7Ge7hNvvrL0ny95ekFStMHZWGubaZJJnPe02tlqQFv2VL739zT+rw51wpW5mjbbcfb0VKjbf9KA385r4Um2ya+FLzMqTY7FtSbPYt6dDdfyT2N5QO3f1Heyw2+5aUmpdhmuBeQsb8nNJHVFSUdOLECSk9Pb3QbcqFFdKKK98XWbbiyvfSlAsriiw7ceKElJz85Df0L7/8Irm5uUmnT59+Bs/UuDZu3ChNmjTpsedER0dLNWrUkJRKpV51AtLFixeLLIuIiJDKli1rcJwvgpEjR0orV640ybXlzz5V11UwiPzhQeCVKlXi559/Nriu2NhY6tWrp71foUIF1Go1CQkJVKxYseTBCoIZUangk09g1iwYNAj69zd1RIK+ZDIY3dKOLw/AqeihvMsivq8/jj1Jf7HocBpVc4KYEmSNX/FLq5aqRXHbmHVNdzOr5ieH69yfWWkgoa8MepZhCWZgkm+fYsueZoLgo4KDg1m7di1HjhyhVq1aJa7vWerTp/i2KfDaa68V+426oL+lS5ea7NomT5xzc3MLLYPi4OBATk7OU9X18BqMMpkMe3v7QnUlJydrZ9wmJSWRl5cHUOK94wseb4570EuShFqtRq1WGzQZ4lkQ7WY4tVrNF184sXGjjG3b1HTtWnDctHGB+bYZmNd7zQIY3cKGxQfhdPRQyqUOoGrGu1TP6cSk9nL8y6hN9nqOKd+DEO8OAMRk36bFqRFE1FmOv/2DGfAuckezaEfhxWOSr98FQU8mT5xtbW0LJbZZWVmPXVPwcXU9OhkwOzu7UF0//PADa9as0d5v3rw5YNiMz8fRd2kaQZdoN/2cOyfn9deVDBpkQZ8+Wfj4qDHSW/elYU7vtV7VIC4zl663NGvB9msQj71KZvLX1Pq/nw55mj3ZHTItsc57UJ5DJjmICYOCUJqkx6wOEhgYaLS8RdCfyRPngmVLbty4Qfny5QG4fv16kWv2PUmFChW4fv26NhGOjY3FwsKCcuXK6ZzXrVs37TlJSUns3bsX0F1P8Gmo1WoSExPx9PTUa4mXZ0mSJJRKJXK53Cx7AUW7PVl2Nnz0kYx16+DsWRVlyog2M5Q5vtd+TjzM6fx0XqMSAPPS1vN95XHYWdqYODKN3GwJLkMZd3e87Ev2O1J4OiI5EgTzoVfibOiSbvb29nqfa2try1tvvcXmzZsZPXo0d+7c4cCBA0ycOLHI8/Pz85EkCUmSUKlU5OXlIZfLsbCwoGXLlixcuJDmzZtTtmxZNm/eTJMmTbCx0f0Acnd3167K4ezsjLW1pm/FWB+kFhYWZvOhXECSJG1c5pbMFBDtVryzZzVrMmdnw++/Q+XKFty+LdrsaZlLu/1853cWHLpH1Zwg/i9I4qczOdy/PIwesi/Z3mAcdpa2pg4RV2snxnv0wNXaySzaTBAEwZT0SpwdHR0N+gBUqVQGBTFkyBCWLVtGSEgI9vb29O7dWzspoEePHsycOZPq1asDmnUJC75mDQsLA+CTTz6hRo0a1KlTh549ezJr1iyys7OpV68eQ4YMMSgWQTA3kgQffAA1a2qWmnNxMY+xzELJ/Hzndz6PvKudCFjRXWJ0oBXLDsm0EwbNIXl2kTvykWdPXOSOJo1DeHZkMhkymYzLly8bvU5BeN7plTivWLGiVN/wjo6OTJo0qciyRxfr/vrrrx9bV8eOHUu0prQgmIukJDh2DDp2hN9+A4VCsxqD8PxTqyW+O2alTZoreWj+QLK0gDGtbP+bMDiMPysk0NqnkqnDFV4yAQEBpg5BEMyWXonz0KFDSzsOQRAe8r//Qb9+ULEidOgArq6mjkgwJgsLGQNfbUBFDwsqPbJRjdwCxray46eTNjQoozBNgIIgCEKRSjw58LvvvqNdu3a4uLgYIx5BeKnl5cH06fDFFzBuHMydC2JY6YupVbXiX1i5BXR/U7zwgmlkZ2ejVCqNXq+dnZ12VzlBeF6VKHFWqVS89957HD9+nLp16xorJkF4ad29C7t3w9690LatqaMRBOFldOPGDTIzjb/UoL+/P2XKmGhXH0EwkhL3OD9ujUFBEJ5MkmDjRvD2hjZtNCtoiF5mQRAEQTA/Jl/HWRBeZmlpMHw4bN8OK1ZojhWVNEv5+Sh3/oi8ZVtkisIDnqV7d1EeOoC8U1dkcvHfWhCEkjPmJMHo6Gij1SUIplSifi0LCwt69uyJm5ubseIRhJfG8eNQpw78849m9YyBAx9zsiQhJSeRt3opUmqKbtG9u5rj9+5quq8FQRAEQSgVJUqcZTIZW7duxd/f30jhCMLLpW1bOHECatd+/Hkya2usQj5EpnDTSZ6lFE3SLPMoi1W/QcjExBvByKTcHOyOHkbKzTF1KIIgCCb3VImzSqUiPDycESNG0LlzZ65evQrATz/9ZNQF0wXhRRMfD506QVQUvPmmZkMTBwf9Hvtw8qxcsxx5/A2Uq5eJpFkoXbm52B/7E3JzTR2JIBgsPDycwYMHa+/LZDKioqJMGFFhgYGBrFy50tRhANCwYUPCw8MB2L59O++//75pAzJDBifOsbGxVKtWjWHDhnHs2DF27dpFWloaAL/++ivz5s0zepCC8CL45RfN7n9pafony48qSJ4BXLZvBhtbkTS/INKUmcy+vo40pfFXMxAEc/XXX3/RtGlTFAoFCoWCN954gz179gAQExODTCbD0dFR57Zw4UK96lYqlcyYMaPYDdaEx+vWrRunTp3i33//NXUoZsXgxHnMmDE4ODhw7do1jh49qrOqRosWLfj999+NGqAgvAgmT4Zu3WDsWIiIgPLlS1BZZgbc/6/3LycbskSi9SJIU2YSFhtuFomzlJODlHJPcysYFpSa8uBYyj2kHDF042WXkwdjvnMiJ+/pHp+enk5QUBCDBg0iOTmZW7du8cUXX+Dk5KRzXnJyMpmZmdrb+PHj9ap/586d+Pn58corrzxdgEYmSVKprI9dWmQyGb1792bVqlWmDsWsGJw4HzhwgNDQULy9vQttw+3t7U18fLzRghOE511+vuZno0Zw6JBmcxNLy6evr2AioMzHl3tDxiDz8CxywqAglITqjwjy5oWSNy8U1aolmmOrlmiP5c0LRfVHhImjFEwtJ1+m89NQ0dHR5Ofn079/f+RyOXZ2dgQGBtK0aVOjxLd7925atmxZbHl6ejoffPABZcuWxdfXlwkTJpCXp/kroFWrVmzevBmAqKgoZDIZa9euBeDmzZs4ODiQ/98v+H379lGvXj0UCgV169bl8OHD2msEBgYyefJkmjdvjoODAydOnCgyltjYWBo3boyTkxOtWrXixo0b2rK///6bhg0b4uLiQs2aNbU98gX1PzzMY9++fTrzzvz9/VmwYAH16tXD2dmZDh06kJLy4PNi27ZtVKpUCVdXVyZMmFAorhYtWrBr165i2/BlZHDibPGYBWYTExNxeNrvoAXhBSJJsHw5VK8OGRkQHAxvvVXCOu89mAho2Wcgkq0dlv0GF5owKOhSq5+urLSl5WcSl3P7wS33DgBxuXe0x9LyTdP7bNmkBdaTQrGeFIrlkNGaY0NGa49ZTwrFskkLk8QmvDgCAgKwsbGhd+/e7Nq1i6SkJKPWf/bsWapUqVJs+ejRo0lISODSpUv8/fffHDx4kE8//RTQJKQREZo/DiMjI6lUqZL2fkREBI0bN8bKyoozZ87Qu3dvFi9ezL1795gzZw5dunQhOTlZe53169ezePFiMjIyqFOnTpGxrFu3jmXLlpGUlMSrr75Knz59AEhJSeHtt99m4MCB3L17l08//ZR3332XK1eu6N0OW7Zs4eeffyYhIYHU1FQWLVoEwKVLl/jggw9YvXo1iYmJKBSKQol91apViY2N1Um2X3YGJ85NmjRhyZIlqFQq7bGCnud169bRooX4ZSq83JKToUsXmDgRJk0CR8eS1yllZxe5ekah1TbEygc69p+DZQcgX1W4LF8JX+6HgxeefVwAi+K2UeGPd7S3ZieGAdDsxDDtsUVx20wSm8zODpmrm+b237rhMoXrg2Oubsjs7EwSm2BaBcMzxnznREq2JoVIybbQHjNk2IazszN//PEHNjY2jBgxAi8vL1q2bKldcKCAl5eXdgy0QqHgwIEDetWfkpKCs7NzkWVqtZqtW7cyf/58FAoF5cqVY8aMGWzcuBHQJM6RkZEAHDp0iKlTp2qHokZGRhIYGAjAqlWrGDRoEE2aNMHCwoKgoCBq166t0yvcr18/ateujaWlJTY2NkXG06dPH+rWrYutrS3z58/n8OHD3Lx5k927d1OhQgUGDx6MXC4nKCiItm3bsm2b/r8bRo0aRfny5XF0dOTdd9/ln3/+AeDbb7+lffv2tG7dGisrKyZPnoyrq+4+AQXDZkTi/IDBOyXMmzePJk2aUKNGDd555x1kMhlr1qzh3LlznD17lmPHjpVGnILwXMjKgrp1wd1dsz5z5cpGqtjODnmbDljUrIPMygrpoa7SguRZfe4MMluRzDysth/8eg6+OgjDWoLlf98o5yth+UG4nQY1SzLevATG+fXig3Idtfdjc2/T7MQwfn/jKyrYegHgIjfCX12CYESR0dbafy+JsNf5WVDe/nX9s+eqVauybt06QDMZcMiQIfTt25e//vpLe87t27extbU1OFZXV1fS09OLLEtKSiIvL6/QsIaC4aYNGjQgISGBGzducPjwYZYvX87ixYu5fPkyERERfPDBB9qYIyMjdcYB5+fn06ZNG+19Pz+/J8b68DkKhQJnZ2fi4+OJj48vtOTvw3Hqw8vLS/tve3t77XbqCQkJOte1tLTEx8dH57EZGRkAhRLql5nBPc41atTg+PHj1KhRg6+++gpJktiyZQuenp4cPXqUykbLFATh+ZGfD4mJmtUyvv4ajhwxYtKM5lsdy3r1i109Q2ZtjWXdN413wReEpzP8XweIvatJnvNVmtuygzJup8HEDuDu9OR6SoOLlSN+dl4PbrZlAfCzLas95mJlBomzrS3ZDd6Cp0hchBdPYMCDpHh0i2ydn4+WG8rf359Ro0YZbRWHmjVrFrv0nLu7O9bW1sTGxmqPxcTEaBNHa2trGjVqxKpVq3B3d8fNzY3AwEA2btzInTt3qF+/PqBJeCdOnEhqaqr2lpWVpbOSx+OGuBaIi4vT/jstLY309HR8fHzw8fHRifHROB0dHcnOftD+t2/ffuK1CpQrV07nuiqVqlBCfvHiRfz8/ETi/JCnWsc5ICCAb7/9lnv37qFUKklNTWX79u2PHUskCC+qq1ehSRMoWCq0bVso5ts4wQQeTp6X/k/GhhNluGPipPl5IrO1I6dhU/FthgCAnTUs7pHB4h4ZuNprvvlytVdrj9lZP6GCh0RFRfH5558TFxeHJEkkJiby9ddf06hRI70eHxkZWWiRgocFBQVph1s8ytLSkl69ejF16lTS0tK4desWYWFh2rHFoBmusXTpUu2wjMDAQBYvXqwd3wzw4Ycfsnr1av744w/UajU5OTlERERw8+ZN/RrhP5s3b+b06dPk5uYyadIk3nrrLXx9fenQoQMxMTGsX78epVLJ3r172b9/Pz169ACgTp06bN++nczMTG7cuMHSpUv1vmb37t3Zu3cvBw8eJD8/n/nz5xcakhEZGUlQUJBBz+VFV6KdA5OTkzl//rzOIHhBeJls2qTZNrtMGVizxtTRCMXxdIbx7eBCgozr92wY21YSSbOesvPgwGUnsp++I1EQiuTk5MSJEye0q0nUrl0bR0dH1q9fr3Oeu7u7zjrO//d//wfAjRs3Hptkd+rUidjYWK5du1Zk+ZIlSyhTpgwBAQHUq1ePZs2aMXnyZG15ixYtSE9P1ybOzZs3JyMjQ3sfoG7duqxfv54JEyZQpkwZKlSowIIFC1AbOPM4JCSE4cOH4+HhwaVLl7Qreri5ubF7926WL19OmTJlmDhxIt9++y0BAQEAjBs3DhcXF7y9vXnnnXfo3bu33tesWrUqa9asYeDAgXh6enL37l3eeOMNbbkkSWzevJkhQ4YY9FxedDLp4YWY9bRhwwZmz57N9evXtcf8/f2ZMWMG/fv3N2qApS0hIYHVq1fz4YcfUq5cuRLVpVaruX37Nl5eXnp9NfMsFawfKZfLH/sXuik8r+0WGQnt2sH8+TB6NDzL0J/XNjOVfCUs/R+c++9byFrlJYa3kmFVgqUBjS01P4MF17fwUcX3UViZT1aflK7m/763YH53NR7O5vVee1kY83NKH5cuXSIzM1ObnBUnJw8m/ezEvC5P7mmOjo7G39+fMmXKGC3OQYMG0b17d9q1a1fsOeHh4fz555+sET0bBvvhhx/Yvn07W7duNXUoZsXgyYELFizg448/5t133yUsLAxPT08SExP54Ycf+OCDD0hOTuajjz4qjVgFwSycOAEBAdC8OVy8CJUqmToi4XEKkubbaTDvXTV3EpMIP+GpnTBoLsmzi9yRGRU/QC43+NeyIJhEwbANU/n666+feE5ISAghISGlH8wLqFu3bnTr1s3UYZgdg7sPFi1axNixY/nuu+/o1asXLVu2pFevXnz//feMHj1auz6gILxo1GqYN0+zmckPP4BMJpJmc/dw0lwwprmMg4qP20s6EwYFXdl5cDdTc7uXpTl2L+vBsbuZiKEbgiC8lAzu2khNTaVDhw5FlnXo0EF8HSK8kBISoF8/zRJzW7fCu++aOiJBH7vO6CbNBcMOCyYMzt8D+/6FTrVNG6e52X8OdpwquKfpX5m/R7efJbgOdKn7bOMSBEEwNYMT51atWhEREUHr1q0LlT28KLggvEhWrYK8PDhzBvRYklMwEx1qQfMq4FbEhqaezjClIziLVdYKafs6NP1veGtyhpr5eyz4vw5q3J0eJM+GrJ4gCILwojA4cR41ahQDBw7k3r17dOnSRTvG+aeffmLv3r2sXbuWCxcebMVVrVo1owZcGhwdHZHL5TzFPEkdkiRp6ylpXcZWEI+5xQXm2245ObBqlcSwYTB1qsT06SCXa7bTNjVzbTMwr/fakfRTnM+8xnB7zTi9R9tt491vedO5Go0VNUwcqXm1m52V5gagUmnicbWXcHPQjc0MQn0piHHvgmA+DP7f2LZtW0CzzeTq1au1xwt+2RfMbpUkCZlMprM1t7mqU6cOrq6uKJXKEtfl6uqKWq02eCmaZ8VcXw9za7dz56BvXznp6TI6dgR/f027GeEtYjTm1maPMof32q2cZMZGf0m+SskIX03yXNBun8dsZvr11WyrPtso//eNxRza7WGSGsASSa1GqTTP99qL7llvPmFnZ4darTZ4LeLHsbe31659LAjPM4MT5z179pjNElPGcurUKWrUqIGHh0eJ6lGr1dy9e5cyZcqY5RJhKpUKS0tLs3v9zKndJAlWroSPPoJOneCrryScnTG7djOnNnuUOb3XepVrg4WlBX3OhWJhYcEI327cvXuXbzJ/Zfr11XxXI4wuns1NGmMBc2q3h9nbqmkVkIW9rS1yuXm9114WSUlJz/R6+mwRLQgvK4MT57fffrs04jCpzMxMlEpliT+sZDKZth5z+uB7mDnGZm7t9scfsGwZfPCB5r5SaX7tZm5tVhRzia2nV2tkQO9zoYBEUtpd5iVu4fuan5hN0vwwc2m3Ag42Mlq8koaDjZ1ZxfUyMadvRAThZWdw4tykSRMGDRpEjx49sLe3L42YBOGZi4iAAwcgLAy2bHlwXIzhfDH08NJMZu7573QANlafaZZJsyCYg3v37nH//n2j1+vq6oqtrZiNKzzfDE6cPT09GTJkCGPGjKFnz54MHDiQBg0alEZsglDq8vMhNFSzPvPo0Zrlysxs5INgJLG5t7X/vpJtvLGbgvCiSUpKIjMz0+j1Wltbi8RZeO4ZnCL8+OOPxMfHM3PmTI4ePUqjRo2oXr06ixYtIjk5uTRiFIRScesWNG0Ka9bArl2waJFIml9Un8dsYsqVlayqMhGAT2LCWRr3vYmj0iXl5qA+8CtSbo6pQxEEQRCK8VRr3Li7uzN+/HjGjx/PsWPH+Oabb5g1axaTJ0+mU6dODBw48IUcCy28OCQJFAp44w34+Wfw8jJ1REJpmXN1HbOvr2NFlY+pbK+Z9DTVP4Tx0Yu5l5/OWL+euFg5mjhKIDcHIvZDg0ZgJ4bBCaYXEBBgtLqio6ONVpcgmFKJ+9eqVatGnTp1qFixInl5eRw/fpwOHTpQrVo1Tp48aYwYBcFoMjI0OwB++SXY2WkmAYqk+cW1/MZ2Qq99jVJS8eHFeTQ/ORyAWdfXopRUhF77mr7nZpk4SkEQBOF58dSJ86FDh+jfvz/e3t5MmjSJRo0acfLkSWJiYjh37hze3t6EhIQYMVRBKJnjx6FOHTh2DJqLeWEvhZaub7D59VnENvmJ2CY/cajeCgAO1VtBbJOfWFXl/witNNDEUQqCUFrCw8MZPHiwqcPQS2RkJF5m0pOzb49NEo0AACAASURBVN8+/P39Ac1SmXXr1uXixYumDcpMGJw4z507l9dee42WLVty5coVli1bRkJCAitWrKBOnTqAphd6zpw5OjsICoIpff89NG6sSZhPnoS6dU0dkfAsVHX0p5d3G/zsvDQ327IA+NmWxc/Oiw/Ld6GuSxWTxCbl5CCl3HtwS03RHE9NeXAsR4x3Fl5sf/31F02bNkWhUKBQKHjjjTfYs2cPADExMchkMhwdHXVuCxcu1KtupVLJjBkzmDRpUmk+hReeTCZjwoQJTJ8+3dShmAWDxzgvXLiQvn37Mnjw4Mdupx0QEMCKFStKFJwglFRGBjg5QZMmmmXmunc3dUSCoKH6IwLV//YVOq5cuUT7b8vWbyNv0+FZhiUIz0x6ejpBQUF8+eWX9O7dm/z8fI4dO4alpaXOecnJyU+1GsfOnTvx8/PjlVdeMVbIRpOfn/9c7aT4zjvvMHLkSG7duoW3t7epwzEpvXqcN2zYwN27dwGIj49n0aJFj02aQTOBcMiQISWPUBCe0s6d8Mor8Pvv4O2tX9Is3buLlJdXbLn6zi3t9vKCUBKWTVpgPSlUe8sbNJZdZdqTN2is9phlkxamDlMQdOw7b83R60X3uR29LmffeWu964qOjiY/P5/+/fsjl8uxs7MjMDCQpk2bGiXW3bt307JlS+39gh7s3Nxc7bFevXoRGhoKPBgq8fnnn+Pp6Ymvry+LFy/WnhsaGkrXrl3p06cPTk5OVK9enUOHDmnL09PTGTJkCL6+vnh5eTFy5EjttQrqXrhwIeXKlSM4OLjYuIu7fl5eHhMmTMDX15eyZcvywQcfkJ6erlP/wxo2bEh4eDigGbLSsGFDpk6dSpkyZfDx8WHz5s3ac1NSUujatSsuLi7UrFmT06dP69RlZ2dHvXr12Lev8B/7Lxu9EucBAwZw9epVAGxsbEo1IEEoqZwcGDUKunSBYcM0QzT0IUkS+d9tIn/9miKTZ9W5M+R/OR8p9rqRIxaeFRe5I+M9euAiN/0qGjI7O2Subtpbrr0ru8u0J9fe9cFxOztThykIOhT2ar49YVsoeT56Xc63J2xR2Kv1risgIAAbGxt69+7Nrl27jL61+NmzZ6lSxbChWMnJyVy/fp24uDh++eUXZs2aRUREhLZ8x44dtGvXjpSUFCZOnEjnzp1JSdEMsxowYAD379/nwoULREVFcfnyZebMmaNTd2xsLNeuXePHH380+Ppz587l4MGD/P3331y6dImEhATGjBmj93M7efIk5cqV486dOyxdupQhQ4ZoE++RI0eiUqm4efMmP/30E+vWrSv0+KpVqxZKqF9GeiXOoodNeJ706QO//KLZDXDWLJDrOSBJJpNh1bMv0r3kQsmz+twZlJu/wbJ9MBb+lUop8udXnjq/2DJJkh5b/iy5yB35yLOnWSTOgvA8alhRSc83cnWS54KkuecbuTSsqP/24M7Ozvzxxx/Y2NgwYsQIvLy8aNmypbajroCXl5d2DLRCoeDAgQN61Z+SkoKzs7P+Tw5Qq9V8+umn2NraUq9ePfr376/TM1urVi369u2LXC6nf//+VKxYkd27d5OYmMiOHTtYunQpzs7OKBQKpk2bxtatW7WPlSRJW7ddMX8UP+76mzZtYubMmZQrVw6FQsG8efPYsmULarV+f6z4+PgwYsQI5HI5Xbt2xcLCgujoaFQqFd9//z1hYWE4OTnxyiuvMGLEiEKPd3Jy0v6R8DIT2z0ILwRJgoIJv3Pnwpkz0KyZ4fXIXN2w/nCUTvIsXfgX5ZZwLNsHI2/W8smVvGR2xkbR7fsTRKUlFCqTJImxf+4nZM+fJojMvGXnwd3MB7d7Ss0H6T2lnfZYdvGjhgTBZB5OnpdE2D1V0lygatWqrFu3jtjYWK5evYqVlRV9+/bVOef27dukpqZqb61atdKrbldXV22Pqr5cXFxwcXHR3q9QoQLx8fHa+35+fjrnF5THxMSgUqkoX768NsHv2LEjiYmJ2nPLlCmDvf3j12h/3PXj4+O1K10A+Pv7k5eXp3dP/aNDOezt7cnMzCQpKYn8/Hyd51ahQoVCj8/IyMDV1VWva73I9J4cuHXrVv74448nnieTyRg3blyJghIEQ9y7B4MGacYyx8RA5colq68gec5bvZT8GR8DYNmhs0iai9GgTCW+z09l8u4kPg2Cys6aiSOSJDHur99Iu9SaZrXin1DLsyHl5mB39DDS2x3B3sGksew/BztOPXxEM/lp/v8eTIIKrgNdxAowghlqWFHJ3zEqribJecVD+VRJ86P8/f0ZNWoU7733nhEihJo1axIVFaW97+io+aYpOztbO9nw9u3bOsM50tLSSE9P1/ZUx8XF4ePjoy2Pi4vTuUZcXBzvvvsufn5+yOVyEhMTsbYuepy3hR5b0z7u+j4+PsTGxlKrVi1AM2bb2toaDw8Pbty4QXZ2tk5dt2/ffuL1ADw8PLD6//buPD6ms///+GtmssxM9kVskQStcsdO7fu+U9TSqNZW+rvJ3VU1VbRf3LpoKSmKWkp1p6qoolRRdy1F2qKIpSQkkkgi+8z5/TEyMhIkMnImyef5eOQRc86ZM59z5cS8c+Y61+XszIULF6hXr16Bxwnw119/8cQTTxRqn2VZoYNz3g7qdyPBWZSkXbssXTP8/WHPHnC30yfwGh9fdG06YNr4NQDaFm3ss+MyKMDdhXcHePPSBnj1+zhm91KoaazAc/t+JPlkF1o0uMSEpkH33lFJyMjAeGAvdOiienDuVhfa5pmY7VqKwpzNGqb0UvDz0ABgKPx9VkKUqF+jnYiO11GzQg7R8Tp+jXYqcng+ceIE3333HUOHDqVatWrExcWxbNkyWrZsWajn79q1i44dO96xO2nv3r15//33rY/9/f0JDAxk1apVhIeHs2nTJvbv30+HDh2s22i1WiIiIpg7dy5//vknq1at4osvvrCuP3r0KJ9++ilDhgxh3bp1nDlzhl69euHr60vv3r35z3/+w+zZs/H29uaff/7hjz/+KNJMynd7/bCwMGbOnEmzZs0wGAxEREQwfPhwtFottWrVwmQy8c0339CvXz+WLFlic6X8bnQ6HYMGDWLatGmsXr2auLg4IiMjbbbJyMjg0KFDrFq1qtDHUlYVuqvGr7/+itlsvueXyWR6kPUKYZWaCoMHW75+/RXq1LHfvk1RRzFtWo+2dXvw8SNndcE3DAqL3PDsYa5AxPdJjNz9neOFZgdjdAE/91tfvjf/6PPNs8wowVk4oLx9msM7pufr81xYHh4eHDx4kFatWuHh4UHDhg1xd3fPF878/f1txnF+5ZVXALh48eJdQ3bfvn2tN+PlWr58OQsXLsTX15fvv/+evn375nut4OBgqlWrRp8+fZg6dapN15B+/fqxefNmfHx8+O9//8v69evx9fUFYNWqVTg5OdGwYUO8vLzo3r17kacav9vrR0RE0KZNGxo3bkytWrUICAiwXtT09PRk8eLFTJo0iYoVKxIbG0uTJk0K/boLFy5EURQCAwMZMGAAo0aNslm/YcMGOnbsSJUqVYp0PGWRRinEnX9arZZff/2VZs2alURNJery5ct89NFHPPPMM8U+IcxmM7GxsVSqVKlQH8mUJEVRyMnJwcnJCY1Go3Y5NorabtHRcPUqNG8OcXFQoYJ96zHluRFQ17Yj2fFxKB8vQuPrj/NT49Dc4WO4kuSo59rV1CymfG5pn5BafzKt7d2HrSxppoRr5Lz1Bk6vTEfn66d2OTbiUxQmf6Hh7SEK/h6O8zvqqOdaeWLP96nCOHnyJKmpqdSqVSvfujvdCHivGwRPnTpFSEgIfn72+70bO3Ysjz/+ON27d7/jNitXrmTv3r0sXbr0nvvbtWsXw4YNu2MXhxkzZnDixAk+++yz+665NFIUhSZNmrBmzZp7DkVcHsj/gqJUWbcOGjaERYssjx9kaM7t06zx9sH5mYkFjrYhblEUhVm/3xq26cgFpcAbBkuazQx9MjufEMWSlKYtMBzn3jCYlFZysWLZsmV3Dc0ATz/9dKFCs7gzjUbD4cOHJTTfVOSZA4VQQ0oKhIfD2rWWUTNeeMH+r6EoCuYjBwscPUPjbblhMHvVRyhxV9BUrWb/Akqx3NEzrp/sQov6F+j7kD+vfu/Pq9/H89/eUNtLvY/3Cpqhz7TkA3I7lTnK7HwGF+hT34TBRa5nCMfVI/TOFw7scYOgEI6uUMG5sGMECvGg/PknHDgA+/dDEbptFYlGo8EpbBSaO3wcrfHxxTl88h3Xl1c2obnBJcY3qUZOTg7v9Pfm5W811tE21ArPujYd0TVtAYApMQHTkg/QjQ9H52Ppl4jeMSYZMbpA34ZmnJzk/BJCDR06dLjrSBS5MwyK8k3+hxYOy2yG996D06ct/ZmPH39woTnXvUKxhOb8Pvv7pDU0570RMO8Ng29sS1CtPpsZ+rwtY5BqvGV2PiGEEEXnEF01UlNTiYyM5PDhwxgMBoYMGUKvXgV/dBoVFcXixYuJjY0lJCSE8PBw66Ddx48fZ+rUqTbTgg8ePJghQ4aUyHEI+4mJgaeeslxlDg2Fhx4CnU7tqkRBHn+oNgG6BDrXzD96Rm54vnDdtYBnCiGEEKWLQwTnJUuWYDKZWLFiBTExMUybNo3AwEDq169vs11ycjKzZs1i/PjxtG7dmg0bNjBz5kwWLVqE7maq8vLyYvXq1WochrCTLVtg5Eh4+GH4/XeoXl3tisTdOGmhc03fO64PcHchwF39kUgA0OtJa94aT73+3tsKIYQQt1E9OGdkZLB3717mzZuH0WikZs2adOrUie3bt+cLzvv376dKlSrWwcoHDhzIxo0biYqKss6kI0q/+HiYMAGmTwcn1c9QUZZo9AbSW7TFy0H6NQvhiHx8fDAYDCQmJtptnxUqVLDO1idEaaZ6LMmd2SbvHOk1atRgw4YN+ba9cOEC1fNcftTpdAQHB9tMQZmSksLIkSNxdnamcePGjBw5Eg8Pjwd8FKK4/v7biQkTNHzyCTz5pNrVCCFE+RUQEKB2CUI4LNWDc0ZGBobbbs5xc3MjvYCxVdPT061zzRe0bWBgIPPnzycwMJCEhAQ+/PBD5s2bx+uvv27znPj4eOLj4wGIi4sj6+a4vMUdPST3+Y44ComiKNbZHR1pAhRFgY8+UnjhBX969lTIyVFwpOZz1HZz5HMtKTuF986t44WQ4Xg7O9YfrakZZnb87UF/bzPuDnbxS841IYRwfKoHZ71eny8k37hxI1+YBjAYDKSlpdksS0tLs27r4+ODj4/lrnl/f3+eeeYZJkyYQGZmps0Ng19//bXNgOjt27cHuOswNEVx9epVu+ynrDOb4dlnfdi+3ZU33kgmLCyNzEyw04+hXHDEc+1SVhyzLqyiv2tLqrrYeYaaYkpK1/HT6Yo0CbyCt8F07ycIK0c814QQoqSpHpyrVq0KWOacr1bNMqlEdHQ0wcHB+bYNCgrixx9/tD42m82cO3eOwYMHF7hvrVaLoijcPqv4oEGDrGE5Li6OLVu2AFCpUqViHYvZbObq1asEBAQ43NS0jjbldk6Opf9yjx4wa5YZf/80abcicORzLTNdgb/Bv4I/lQzF+52yN12y5aqpn58fFTwdq93kXBN3Yq+LOkKI4lM9OOv1elq3bs3atWsJDw/nypUr7Nixg8mTJ+fbtmXLlqxcuZLdu3fTqlUrNm7ciMFgoG7dugAcO3aMihUrEhAQQFJSEh999BENGzbMd0OCv78//v7+AHh6euLiYrnj315vClqt1uHeYBRFsdal5ptyTg68+Sbs2QM7d8K//2258hwbK+12Pxylza5np3I9JxWAf7LirN912ltjCHo5uePl7F7g8x+ktCxIvznZWVJ67netdaIRg4tl8hG1ybkmhBCOT/XgDDB+/HgWLlzI008/jdFoJCwszHqz35AhQ5g+fTqhoaF4enoSERHB4sWLWbBgASEhIUydOtU6FN3Zs2eZN28eKSkpuLm50bhxY5566ik1D03kce4chIXBqVOwYgU4YDYQ9+n9C5/xxtnlNsvaHXzW5vH0GmOYUXNsSZYFwLYo2Hgk95El+L21+VYA7NcIBjQu8bKEEEKUQg4RnN3d3ZkyZUqB67744gubx/Xq1SMyMrLAbQcMGMCAAQPsXp8ovjNnLLP+PfooHDsGlSurXZGwp+eDhjG6Sh8AzmfE0u7gs/zcdBHB+ltdNbycSv5qM0C3utC2luXf8Slm3tqs5ZVeZvw9bl1xFkIIIQpDPncTD1RqKty4ATVqwMcfww8/SGi+H8k5N+h1+AWiUs8UuP5I8kn6HHmR1Jy0Atc/aF7O7gQZKlm+9BUBCNJXvLXMUEmVbhpg6Ybh52758nWzLPN1u7XMEbppCCGEKB0kOIsH5tAhaNwYZs2ydMsYOBCki+T9MWpd8TEH0vHgxHzh+UjySbocDidACcGoc7Ax1oQQQogyRGKMsDuzGd59F1q2hFat4NVX1a6o9MvIdsLrz+fpmfnCzfB8FoAjKafocjic/pkRGP+YSGa2+r/SXk7uTA1+WrWuGUIIIcSDov67rChzliyB//s/WLnS8nX7xI1KYgLm6IK7HACYz/yNknz9gdZY2ri7wrj2Glwvd6Fn5gt0PjyJr5J20e3wf+ifGYHT5XY800HjEP11vZzcmVZ9tEMGZ4MLdHwoxSHaSQghROkjwVnYzf79lqvNo0bB0aPwxBMFb2c6epjs5Yswn/k73zrzqRNkf7wY07EjBTyzfGsUDP+vkyU8N0h+kv9cWkCL1Ak4XW7HxC4a6ldTu0LHZ3SBzg+nSL9mIYQQ90WCsyi2zEx4/nlo0wb27QO9HkJC7ry9rn1ndK3akr1iiU14Nv99kuxVS9G164SudfsHX3gp1CgYerS4TGDc44y4uAP/q73p2yZWQrMQQghRAiQ4i2L56y9o3hy+/BK2b7eE53vRaDToeva7FZ7P/o3z+WhMq5dZQnO3Xg45AYQjOJJ8kmeujEbjFoezYgSPS4y+NPqOo20IIYQQwn4cYhxnUXq99hpUrw47doCfX+GflxueAUxLI/EEtB27SWi+i9zRM/pnRuCUXpnG1W5w6FKI9YbBn5oupK57TbXLFEIIIcosueIsiiwx0XLTH8Ann8A33xQtNOfSaDRoH3rk1uOHHpbQfAcJ2dfpmudGwH93VuhX9zoTOijWGwa7HAonOeeG2qVyIzmdjeujuZGcrnYpQgghhF1JcBZFsmcPNGgA770HaWng5nb/U2ebT50ge9VStB27kt6kOaaVSwu8YVCAr7MXU12WW28ErBdoWZ73hsHXXJfg6eSmbqFAemom36fUIj01U+1ShBBCCLuS4CwKJScHpk+Hjh2hf384cACMxvvfX25o1rXrhLZrL9Jad0Dbsk2+GwaFRWomxP5TtcDRM3LD8+WLgaRnqVOfEEIIUR5IH2dRKJmZsHOnpVtGv37F21fe0Kzr1gtFUUCjQdujLxqNhuwVS3AeNR5tzYftU3wZ4O4KMweBk67g9Y2CoV7gndc/aGlZWEN7QprW+l2bemsbg4tMby2EEKJ0k+As7urLLyElBUaPhp9/vv9uGXkp2VnoOnRG16UnGo3GEpy52ee5Zz/Q6lCy5dLp7e4VitUKzQDbjmSzMcr55iMvAN762ctmm351sxnQ3BkhhBCitJLgLAp04waEh8Pq1fD225Zl9rpvTxdaH0LrF7hOo9Hg1KOPfV5IlJhOST/R/OxeABKcfJgb9BwvXpiHb06idRu3wNZAN5UqFEIIIYpPgrPI548/YOBAMJlg715o1kztioSj82jXFo9mTQHQxSbDPqgwbAAVKnne2khvUKk6IYQQwj4kOIt8PD2hUyfLlWYPD7WrEaWBxmAAgyUYa9IsH01oPL3Q+PioWZYQQghhVzKqhgDgyhXo3dsy+1+1arBoUfkMzZcSLTe63cnpK3CzS7a4A4OzQu9rWzA4S0MJIYQoWyQ4C7Zuhfr1IT4eatRQuxr1KAqs2QfvbS04PO85BXO+hzNXS7620sTooadPfRNGD73apQghhBB2JcG5nHv7bcuV5jFj4Jdfyndw1mjg2U6QmZM/PP9yClb9Ak+1gYcqqldjaaDRG9B27o5G+jQLIYQoYyQ4l1PpN2dD7tABfvwRZs8GZxkpjNVxX9Kp9V824XnvaQ2r9sKIVia+YyFXsxLULlMIIYQQKpDgXM4oCixfDiEhcPGiZcSMTp3UrsoxKIrCybQL9P9jojU8T1qjYfU+J8JamViQOZVPYraSlJ167509YEmpccw//DZJqXFqlyKEEEKUGxKcy5GkJBg+HCZOtEyfHRiodkWORaPR8MEjLzCySk/6/zGRwKqx1nULb8xkX9JxdjWNpJZbkIpVWlxPS+Bt1wNcT5Or30IIIURJkeHoAHd3d5ycnKwz2N0vRVGs+ynuvuzNZFLo1MkJRYH//U+hbl3Lckco09Ha7YNaL5AdW5f9URVo+q9L/HZWi/LXMLb2GkUtY5BD1Jhbg6O0WV55a3M0jnau5eWo7ebIbVZeODnJW7UQjkJ+G4FGjRrh4+NDTk5Osffl4+OD2WzGbDbbobLiy8mxdMmoXh0WL9ZQr56CwWBZ7kgcqd32ntZgOtsdp+qbmZQ6E1c/byalbGDjHmeqd8nB4KJOXUmp8dYrzBcTzgJwPv4MZvOtMONl9MXb3V+V+m5nMpnULqFAjnSuFcQR283R26ys85Hx0IVwGBKcgSNHjlCvXj0qVKhQrP2YzWauXbuGn58fWq36vWAuXIARIyAtzXKVuVkzEzqdDo295s62E0dqt19OwZr9WPo0Z+yBOMjUJdG2VRS/HWjMBzuceL47GFUIzx/8No+Zmp9tlnWKnQ23epQwVWnHm13nlHBlthRFwWSSc62oHLXdHLnNyou4OLmXQQhHIcEZSE1NJScnp9hvVhqNxroftd/4vvoKxo2DRo1g40bQasFsxiFqu52jtJuiwKkrltEzFmS+zv7rUWwPfYcuf7xM2ImX2dg6kv8drEPiDXBzLfn6Xmz5EmNvjAIg+toZOl6eyU9VplLdr6Z1Gy83P4f5+ar98yyIo5xrd+NotZWGNivr7PFpqBDCPiQ4l0GnTlmuNM+YAS+/DDqdY/RldnQaDTzZOofhUa9bbwR0TUkD4DHvlvT/YyI/tJpPoE9dVerz9qiAt4flUxEzClyGYL8aBFeqrUo9QgghRHkjn7uVIb//DufPQ61acOZgPC+GrEZrKnj+aFPUUXJ+3FzCFd5ytyCvVshXFIVhx6eyJ/Eon9Z9A4PWlQtZlo9Ix/h347GA9nQ7Es6ehN/VKTCPjGwtDZPGkJEtv8JCCCFESZF33TJAUWDePGjeHD791LKsSlUt5vPRZK9aipJlG55NUUfJWbsCXNWZEnnXCVi229J15HYmMyz5ydLXuKRpNBqcNDrishPpdHgiwb88RvuTrwDQ4dQUVsdsIdWUzpZr+0u+uNu4OPvSKHksLs6+apcihBBClBvSVaOUu3oVnn4a9uyxTGwyYoRlucbHF5dnJpH10QKyVy3FaeRY0GoxRx0l59OV6Hr2w6mdOjOfOHvEcvg3P5SfnRnb7tZykxmW/gzHL2fRqE4iUPJzW39U4zneqfik9fG5hDN0uDSTXVWnEuJr6Uvs5eZX4nXdztPoZ/NdCCGEEA+eBOdS7vvv4do1SzeNmjVt1+UNzzmrl0LDpuR885mqoRngoGk33/htQbm4lGU/OzO6zc3QvFvD8ZgsvvQdTYOcgTRnYInX5v7rbxi2b7U+znLNhLZQ5bONVMq03BGo69IDuvYq8dqEEEIIoS4JzqVQVha8+y6Eh1uuNo8YAc7OBW9rDc9zZsDpU+i69lI1NAP8J2goKTlpLDgxDi4uxfSzE2lpPpxOyuZL39G88q8eTKhW8qEZQNemI7qmLayPneJOwfnncRoxCpcKtSwL9QZVakvLgvSbvW4Sbtz6nneEMIOLOkPlCSGEEOWBBOdS5tQpy7TZMTHQpw/Ur3/n0JzLfOnirX9Hn0bJykLjom66mlrDMqzawr+eJSt6GWDgu8pP8sq/evByyAjV6tIYDGC4FYw1mV6W755eaHzU7U+8LQo2Hsl9ZEnLb222vU2hXyMY0Lhk6xJCCCHKCwnOpcjKlTBxInTqBFu3QmHma8m9EVDXqz/mf9VD+XgR2auW4vzUONXD86sho7gS1YGbF08JM7/Bi0E1VK3pdl46N147WwWvhm5ql0K3utD25kXv+BQzb23W8kovM/4et8KzWrMaCiGEEOWBjKpRipw6BXPmwLffFjE09+yHrl0nNN4+OD8zESUhvsDRNkqSyQxLdkFOclW+qTycDZVGkJFYjWU/Fzzahlq83P15PXgUXg4wjbXRBfzcLV++N3O8r9utZX7u0k1DCCGEeJAkODu4fftg1ChLmJw923LFuTCTd5mjz1hDc94+zRpvS59nJSGenHWrHmDld5Ybmo9fttwI+OpDXXlWCWC93zgOX8x2qPCs0RvQdu6ORqV+zUIIIYRwHBKcHZTJBP/3f9CuHej1kJ1dtOdrqgXhFDaqwBsBNT6+uIwPR9e+s52qLZrvfr8Vml/5Vw9e8u/PtD05/Dv4UWt43nxMldJKDYMLdHwoRbpmCCGEECVI+jg7oOvXoV8/iIqCr76CAQOKvg+NkzO6ug3uvN7bB423TzGqvH/ZFX/h8yuRvFqnNy+HjMCUcA2A1yoPQ2swMv/kaHpU/DfQ4u47KseMLtD54RSMLur3vRZCCCHKCwnODsZsBk9PaN8e1q6FwEC1K7I/H70Lr/+rH88HD8+3bmqNUbhonfFxlUupQgghhHAsEpwdRFoaPPccuLjAwoXw5ptqV/TgdPFrRmdjPZTEBACUpETrd0Wj4WWvXqqNlXy7tCz44ZiW7vXBzVXtaoQQQgihJgnODuDoURg2DDIy4NNP7bNPRVE4m36JmsaCL1mne2qsSwAAGQlJREFUmzJIyE6mqj7APi9YRKZffsJ0c4a+67ocPqhxhfBl7+FlspySui49cHKA2fnSs2DTMR3taisSnIUQQohyToKzynbuhJ49YdAgWLQIvLzss9+fEg8x6LdZfNH0Vbr6NbNZl27KoN+RKWhNen5oPsc+L1hEeWfoS716ilkXnmd0h5epEKDu7HxCCCGEEHciwVklCQng4wMtWsCaNTB4cOGGmSusSulNGBjzOaN/fY6PW0BnY13Mu3eS1qY1A068gf7MMJq7N7LfCxZR3hn6rLPzeak/O1/eaa0BElJvfc/9+ci01kIIIUT5JMFZBdu2wciRMHcuhIXB44/b/zXqVNHQsZYznJrH6F+fY1noQJrv3spgry0YLjxJddOjjG2js/8LF9L17FSu51hS6YWsOOt3XbplpA8vJ3e8nN1LvC7baa0BLGl5zuZbf9XItNZCCCFE+STBuQRlZcFrr8F778FLLz2YwJxLo4GwlhrAEp5HRk0kruOf9Dr/DtXNjxLRW0clO3ULuR/vX/iMN84ut1nW4eQrcNLy7+k1xjCj5tgSryvvtNYA11IU5mzWMKWXgp+HJTzL2MlCCCFE+STBuQS9+KJlXOatW6Fr1wf/ernh2aRoyT65gCxNCp46AxH91Q3NAM8HDWN0lT4AnEuPof2h/8fuJh8SYqgMWK44q8F4WzcMRbF89705pbUQQgghyq8yF5xTU1OJjIzk8OHDGAwGhgwZQq9e6o3OoChw+DA0aQIRETBtGlSoUEKvnZ5OeloSazSzqKYsxElxZY/PbI4lNqei+Wb/Zr3B0t+4hHk53+qKkZap0DBpDAHaSgQZKpV4LUIIIYQQhVHmgvOSJUswmUysWLGCmJgYpk2bRmBgIPXr1y/xWq5fh2efhfXr4fRpqFq1ZF8/9ZdtDIhfgjFnCnpTElddUml57TnGHH2OxSdW0yXByyGGfcvM1tIoeSyZ2VdUraMgBhfoU9+EwUVmpxdCCCHKuzKVBjIyMti7dy8jRozAaDRSs2ZNOnXqxPbt20u8lv37oWFD+P13OHCg5ENzuimDfp4/YNC8TjAtaFfvTzxNgdTwv0bXhAWMD3Xjy7HtSW3xaMkWVsoYXaBvQ7OMoiGEEEKIshWcL126BEBQUJB1WY0aNTh//nyJ1mEywejR0L07HDwIKlzs5tD1U+ijw3DPeIhP/EYwNultAOY4T+JP40Y6XH2HF0/+wLyr35Z8cViGfbuWavnKybR02cjJdLcuS8u6xw6EEEIIIUpYmeqqkZGRgeG2/rpubm6kp6fbLIuPjyc+Ph6AuLg4srIsKc1sNhfr9S9cMLNnjyvDh5vZt+/WZCbF3O198c+oyyMKDGifwKvuCzhx+TI/XIblVafzSOUq7DoOtdI/YGzFrGIf9/344biG737PHeLNDYDIH9ys6/s2VOjfSCnxum6nKApmsxmz2YzGngNtF1Puz0yNn929OGqbgbTb/XDkNhNCiJJWpoKzXq/PF5Jv3LiRL0x//fXXLF261Pq4ffv2AMTGxt73a2/Zouell7xp3NiNTp2uotHAbaWUKE+gYSUPVu/0v7mkIgA/HGzED3m223Eom84P3/9x368G/hoe6WD5wCMpXceyA/6MbR6Pt8EEgN7JTGys+sHZ0V29elXtEkolabeikzYTQogyFpyr3uxIfPHiRapVqwZAdHQ0wcHBNtsNGjTIGpbj4uLYsmULAJUqFX1Eh7Q0eOklDcuWwbRpZkaNSqBixQC0WvV7wQz2hd5NLFeJ/ky4xqodFXiqcxz/8vWzbmNwccPo4nanXZSIuGQzHICagd5U8FS/3fJSFIWcnBycnJwc7irg1atXCQhwjHMtL0dtM5B2ux+O3GblRXEu6ggh7KtMBWe9Xk/r1q1Zu3Yt4eHhXLlyhR07djB58mSb7fz9/fH3t1yJ9fT0xMXFcufX/bwpxMfDr7/Czz9DixYaYmMt+3GENxh3veULIMhkueoe5GVwuHCa21SO0m55KYpircuRwkwuabP7I+1WdI7YZkIIUdLKVHAGGD9+PAsXLuTpp5/GaDQSFhZGgwYN7PoaigILF0KDBtCuHRw5YplsxJG7AHo4udl8dyQGF+j4UAoGla98CyGEEELcTZkLzu7u7kyZMuWB7T8uzjJixk8/wYoVlmUOeHEoH0cej9joAp0fTlG9y4gQQgghxN2UueD8IO3eDcOHQ5UqltkAa9VSu6LCyx2P2MnJ8YKzEEIIIURpICmqCLRaCAuDfftKV2gWQgghhBDFJ8H5Hk6fhi5d4OxZaNsW3nkHXGQWOSGEEEKIckeC81188gk0agSuruDurnY1QgghhBBCTRKc72DCBBg7FmbNgk2bICBA7YqEEEIIIYSa5ObA22RmWq4wd+sGzz5rGXJOCCGEEEIIueJ8k8kEs2dbgnJGBgwcKKFZCCGEEELcIlecgeRkD4YN8+PPP2HZMtDr1a5ICCGEEEI4GgnOwJIlE6hdO5tt25KoWtXE5cvF219sbKx9CrMjJycnfHx8iIuLIycnR+1yCiTtVnTSZvdH2q3oHLHNyov4+Hi1SxBC3FTug7PRaCQiYh7Z2dl8/33x9pWRkcH58+cJDg5GL5etC03areikze6PtFvRSZs5BmdnZ4xGo9plCFHuaRRFUdQuQm1JSUmkpaUVez9nzpzh+eef5/3336dmzZp2qKx8kHYrOmmz+yPtVnTSZo7BaDTi7e2tdhlClHvl/oozgLe3t13+Q0pOTgagQoUKVKlSpdj7Ky+k3YpO2uz+SLsVnbSZEELcIqNqCCGEEEIIUQi6GTNmzFC7iLLEYDDQtGlT6YtWRNJuRSdtdn+k3YpO2kwIISykj7MQQgghhBCFIF01hBBCCCGEKAQJzkIIIYQQQhSCjKphJ6mpqURGRnL48GEMBgNDhgyhV69eapelmqK0R1RUFIsXLyY2NpaQkBDCw8MJCgoC4Pjx40ydOhVXV1fr9oMHD2bIkCElchwlrbDtlp2dzdy5czl9+jRXr15l+vTpNGnSxGabTZs28dVXX5Genk6TJk2YOHFimeyjaq82k3Ot4HY7ceIE69at4/Tp0wA88sgjjB071maEjfJyrgkhhARnO1myZAkmk4kVK1YQExPDtGnTCAwMpH79+mqXporCtkdycjKzZs1i/PjxtG7dmg0bNjBz5kwWLVqETqcDwMvLi9WrV6txGCWuKOdRnTp16Nu3L3Pnzs237siRI3z22We8+eabVKpUiffff58lS5bw/PPPl8RhlCh7tRnIuVZQu924cYMuXbowefJkXFxcWLt2LTNnzuTDDz8Eyte5JoQQ0lXDDjIyMti7dy8jRozAaDRSs2ZNOnXqxPbt29UuTRVFaY/9+/dTpUoVOnTogLOzMwMHDiQ9PZ2oqCgVKldXUdrN2dmZ/v37Exoailab/9d4586ddO7cmRo1amA0GgkLC+OXX34hMzOzJA6lxNizzcqTorRbkyZNaNu2LW5ubjg7OzNgwAD++ecf6/jO5eVcE0IIkOBsF5cuXQKwdi8AqFGjBufPn1erJFUVpT0uXLhA9erVrY91Oh3BwcE226akpDBy5EjGjBlDZGQkKSkpD7B69djzPDp//rxNuwYHB2M2m7l8+XLxC3Ug9v7dk3Pt3u0WFRWFj48Pnp6eQPk514QQAiQ420VGRgYGg8FmmZubG+np6SpVpK6itEd6enq+vpB5tw0MDGT+/PmsXLmSt956i2vXrjFv3rwHV7yK7HkeZWRk4ObmZn2s0WgwGo1l7py0Z5vJuXbvdouNjWXJkiWMGzfOZl/l4VwTQgiQ4GwXer0+35vEjRs38r0xlRdFaQ+DwUBaWprNsrS0NOu2Pj4+BAUFodVq8ff355lnnuHQoUNl8mNge55Her3+ru1aVtizzeRcu3u7xcfHM23aNAYPHkybNm1s9lUezjUhhAAJznZRtWpVAC5evGhdFh0dTXBwsFolqaoo7REUFMS5c+esj81mM+fOnbtj22m1WhRFoSzO22PP8yg4OJjo6Gjr4/Pnz6PVam1GQigLHuTvnpxrt1y7do3XXnuNbt260b9/f5t15eVcE0IIkOBsF3q9ntatW7N27VrS0tKIjo5mx44ddO7cWe3SVFGU9mjZsiWXLl1i9+7dZGdns379egwGA3Xr1gXg2LFjXLlyBUVRSExM5KOPPqJhw4bo9fqSPqwHrqjnUXZ2NllZWSiKgslkIisrC7PZDECnTp3YsWMH0dHRpKWlsXbtWtq0aWMz1FpZYM82k3Ot4Ha7du0aERERdOjQgcGDB+dbX17ONSGEAJly225SU1NZuHAhhw8fxmg0yjjOd2mPIUOGMH36dEJDQwHL+LmLFy/mypUr+cZx3rBhAxs3biQlJQU3NzcaN27MU089hZeXl2rH9iAVpd3Gjh3L1atXbZ4/a9Ys6tWrB9waWzctLY0mTZowadKkMjm2rr3aTM61gttt3bp1rFu3Lt8fEJGRkVSoUAEoP+eaEEJIcBZCCCGEEKIQpKuGEEIIIYQQhSDBWQghhBBCiEKQ4CyEEEIIIUQhSHAWQgghhBCiECQ4CyGEEEIIUQgSnIUQQgghhCgECc5CCCGEEEIUggRnIYQQQgghCkGCsyj3NBrNPb9WrlypdplWixcvRqPRkJqaqnYpdvXuu+/SqlUr6+ODBw8yY8YMsrKybLYrbce/bNkyGjRogMw1JYQQpZ8EZ1Hu7d+/3+YLYNKkSTbLevfurXKVZVtycjJz5swhIiLCuuzgwYO88cYb+YJzaTNy5EiuXbvGunXr1C5FCCFEMTmpXYAQamvRokW+ZUFBQQUuL+vMZjPZ2dm4urrmW5eeno7BYLjvfWdkZKDX6wtct2bNGlxcXOjVq9d9778kZWZm4uLigkajuee2Li4uhIWFMX/+fJ544okSqE4IIcSDIlechSiEjIwM/Pz8mDlzZr51AwcOtHYx2Lp1KxqNhh9//JF+/frh5uZG1apVeffdd/M97/jx4/Tu3RtPT0/c3d3p378/586ds1vN6enpTJ48mWrVquHq6kpoaChffvmlzTbDhg2jadOmfPvtt9SrVw9XV1e2bdtmPY5t27bx2GOP4eHhwYgRIwAwmUy88cYbhISE4OrqyiOPPEJkZKTNfqdMmYK/vz/79u2jWbNm6PV6li5desdaV61axcCBA9FqLf8lLV68mGeffRYADw8PNBoNtWvXtnnO2bNn6datG0ajkVq1avH555/n2++GDRt49NFHMRgMBAQEMGnSJNLT0222iY6OZuDAgXh5eeHm5kbXrl35/fffbbapVKkSL774IrNmzaJatWoYDAZ+/vlnNBoNv/zyi822OTk5VKpUyebq+eOPP87//vc//vrrrzu2gRBCCMcnwVmIQtDr9Tz55JOsWLHCpq9qXFwcmzZtYsyYMTbbjx49mtDQUNavX8/jjz/Oyy+/bNNP+uTJk7Ru3Zr09HRWr17NmjVruHDhAl27diU7O7vY9SqKwmOPPcaKFSt49dVX2bRpEx07dmTo0KHs3LnTZttz584xefJkJk+ezNatWwkNDbWuGzNmDHXr1uXbb78lPDwcgPDwcGbOnMmoUaP47rvv6NmzJxMnTuSdd96x2W9aWhojR45kzJgxbNmyhQ4dOhRYa3JyMgcPHqR169bWZQMHDmTy5MkA7Ny5k/379+cLxk888QR9+vTh22+/pU6dOoSFhXHmzBnr+rVr1zJw4ECaNm3Khg0bmD17NuvWrbMGcoDExETatWvHsWPHWLx4MWvWrOH69eu0a9fOZl8An376KT/99BORkZGsX7+eFi1a0KBBA5YvX26z3aZNm7hy5QqjR4+2LmvUqBFGo5Ht27cX2AZCCCFKCUUIYQNQ3nnnnXzLo6KiFEDZuXOnddncuXMVd3d3JSUlRVEURdmyZYsCKOPGjbN57uDBg5Xq1atbHw8ZMkR55JFHlMzMTOuyS5cuKa6ursry5cvvWt+iRYsUwPqaBdm8ebMCKLt377ZZ3rdvX6Vt27bWx0OHDlUA5ejRozbb5R7HCy+8YLP80qVLik6nU15//XWb5SNHjlS8vLyU9PR0RVEU5ZVXXlEAZePGjXc9FkVRlJ07dyqAcvz48UIdZ+7yvO2UkJCgODk5WX9uOTk5SuXKlZVRo0bZPPfrr79WtFqt8vfffyuKoihvvfWWotVqlVOnTlm3SUxMVDw9PZXx48dbl1WsWFGpXLmykpGRYbO/hQsXKm5ubjY19u3bV2nfvn2+42zWrJkSFhZ2z/YQQgjhuOSKsxCFFBoaSsuWLfn444+ty1asWMGQIUNwd3e32faxxx6zeTxw4ECio6O5evUqgLULhFarJScnh5ycHAICAggNDeW3334DLP2Nc9fl5OQUaVSGbdu2UblyZVq1amWzj86dO3Pw4EGbbQMDA6lfv36B+7m9z/H+/fsxmUwMHTrUZvnw4cO5fv06x48fty7TaDT06NHjnrXGxMQAUKFChUIdW65u3bpZ/+3j40PlypX5559/AIiKiiImJoYhQ4bYHH/Hjh0xm80cOnQIgD179tC4cWMefvhh6768vb3p2bMne/bssXm9zp075+v7HRYWhtlstl4Nj42NZcuWLfk+gQDw9/cnNja2SMcohBDCsUhwFqIIxo0bx9dff83169c5cOAAUVFRBYakgICAAh/HxMRgMplISkpizpw5ODs723wdPnyYixcvApauCHnXFdSH907i4+OJiYnJt//nnnuO9PR04uPj71jr3Y4jMTERsPT5zSv3cUJCgnWZj48Pzs7O96w1IyMDoMAbEu/G29vb5rGLi4t1X7nH17NnT5vj9/X1BbC2cWJiYr5jyT2evMcCBbeTt7c3jz/+uLW7xqpVq3Bzc2Pw4MH5ttXr9fn6VwshhChdZFQNIYpg6NChPPfcc6xbt44jR45Qu3Ztm7GHc+VeWb79ceXKldHpdHh6ejJ8+HDGjh2b77leXl4AzJ49m5deesm6vGbNmoWu09fXl6pVq7Jhw4YC1+cNnXcbGeL2dbnB88qVK/j5+VmX515JzV1/r/0WtM+kpKR8Yfh+5e7zo48+olGjRvnWBwYGWrcr6CpwbGyszbHAnY9n3LhxtG3blhMnTrBixQqGDx9e4OgjiYmJNm0mhBCi9JHgLEQRGI1GnnjiCRYvXkx0dDSvv/56gdutX7+enj17Wh9/8803hISEWK9adunShaioKJo0aXLHQFajRg1q1KhxX3V26dKFyMhI3N3d841GURwtW7ZEp9PxxRdfMGPGDOvyzz//HC8vrzt2+bibRx55BLCMbhESEmJd7uLiAliuSN/eFeZe6tWrR0BAAOfOnWPcuHF33K5NmzZERERw5swZ6x8m169fZ+vWrQwbNqxQr9WmTRvq1KnD+PHjOXnyJGvWrClwu+jo6AKvRAshhCg9JDgLUUTjxo1j8eLFODs7M3LkyAK32bJlCxEREXTo0IEtW7bw1Vdf2Yy+MHPmTJo3b06vXr0YPXo0AQEBxMTE8NNPP9GtWzcGDRpUrBr79OlD586d6dq1K5MnT6Zu3bqkpqZy/PhxLl68yKJFi+5rv5UrV2bChAnMmjULnU5H8+bN2bp1KytXruTtt98ucncLgNq1a+Pr68uhQ4fo2LGjdXmdOnUAWLBgAb1798bNzc1mxI+7cXJyYu7cuYwaNYrr16/To0cPDAYD586dY9OmTcybN4/g4GDGjRvHggUL6NmzJ2+++SZ6vZ7//ve/mM1mXn755UIfw9ixY3nxxRepX78+TZs2zbc+Pj6ec+fO0bZt20LvUwghhOORPs5CFFHjxo0JCgqiT58+d+wfvHz5co4ePcqAAQP4/PPPeeutt2yGJ6tTpw4HDhzAzc2NCRMm0L17d1577TWysrKoW7dusWvUaDRs3LiRUaNGMX/+fLp3787YsWPZuXMn7dq1K9a+58+fz2uvvcayZcvo06cPmzZtYsGCBUUKmrfXOmjQILZs2WKzvGXLlkRERLB8+XJatmxZ5D8mRowYwbfffsuxY8cYOnQoAwYMYN68eTz88MPWLhM+Pj7s3r2b0NBQnnnmGcLCwvDw8GD37t1F6hqTezNoQf3dATZv3oyXlxddu3Yt0jEIIYRwLBqlKLfqCyH4888/CQ0NZdOmTfmm4t66dSs9e/bk+PHjdgnA5cVvv/1Gy5YtuXjxIpUrV1a7nCL78MMPeeGFF7h8+XK+vtFgGZ0kJCSEDz/8UIXqhBBC2ItccRaikOLi4ti3bx+TJk2iVq1aNn2YRfE8+uijdO3alXnz5qldSpGcPXuWH374gdmzZzNixIgCQ/Nff/3Frl27mDJligoVCiGEsCcJzkIU0tdff02bNm2IiYnhk08+sU4PLezjvffeo2LFimqXUSQRERH07duX2rVrM2fOnAK3iY2N5eOPPyYoKKiEqxNCCGFv0lVDCCGEEEKIQpBLZkIIIYQQQhSCBGchhBBCCCEKQYKzEEIIIYQQhSDBWQghhBBCiEKQ4CyEEEIIIUQhSHAWQgghhBCiECQ4CyGEEEIIUQgSnIUQQgghhCgECc5CCCGEEEIUwv8HWwNZWESF3UsAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 550x400 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "<ggplot: (8766715698169)>" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "res = pd.read_csv('res.csv')\n", "# Get ground truth threshold for 50% PPV\n", "thresh_ppv50 = minimize_scalar(fun=lambda x: (PPV_theory(x, mu0, mu1, prev)-target_ppv)**2).x\n", "res = res.assign(ppv=lambda x: PPV_theory(x.value, mu0, mu1, prev))\n", "res = res[res.value.notnull()].reset_index(None,True)\n", "cn_gg = ['sim','alpha','method']\n", "res2 = res.pivot_table('ppv',cn_gg,'tt').assign(lb=lambda x: x.lb > target_ppv, ub=lambda x: x.ub < target_ppv)\n", "res2 = res2.reset_index().melt(cn_gg).rename(columns={'value':'viol'})\n", "assert res.shape[0] == res2.shape[0]\n", "res = res.merge(res2)\n", "del res2\n", "res_agg = res.groupby(['method','alpha','tt']).viol.apply(lambda x: pd.Series({'mu':x.mean(),'n':x.shape[0]})).reset_index()\n", "res_agg = res_agg.pivot_table('viol',['method','alpha','tt'],'level_3').reset_index().assign(n=lambda x: x.n.astype(int))\n", "res_agg = res_agg.assign(ci_u=lambda x: x.mu+norm.ppf(0.975)*np.sqrt(x.mu*(1-x.mu)/x.n),\n", " ci_l=lambda x: x.mu-norm.ppf(0.975)*np.sqrt(x.mu*(1-x.mu)/x.n),\n", " alpha2=lambda x: x.alpha/2)\n", "di_method = {'bca':'BCa', 'quantile':'Quantile', 'se':'SE', 'arch':'ARCH-BCa'}\n", "di_tt = {'lb':'lower bound', 'ub':'upper bound'}\n", "res_agg = res_agg.assign(gg = lambda x: x.method.map(di_method)+', ('+x.tt.map(di_tt)+')')\n", "\n", "colz = list(np.repeat(gg_color_hue(3),2))\n", "shapez = list(np.tile(['+','x'],3))\n", "\n", "plotnine.options.figure_size = (5.5,4)\n", "xx = list(np.arange(0,0.25,0.05))\n", "gg_inf = (ggplot(res_agg,aes(x='alpha2',y='mu',color='gg',shape='gg')) + theme_bw() + geom_point(size=3) + \n", " scale_shape_manual(name='Method',values=shapez) + \n", " scale_color_manual(name='Method',values=colz) + \n", " geom_abline(intercept=0,slope=1,color='blue',linetype='--') + \n", " labs(x='Type-I error (theory)',y='Type-I error (actual)') + \n", " scale_x_continuous(limits=[0,0.25],breaks=xx) + \n", " scale_y_continuous(limits=[0,0.25],breaks=xx) + \n", " ggtitle('Figure 5: CI coverage for PPV threshold'))\n", "gg_inf" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Figure 5 shows that only the BCa approach gets anywhere near the right coverage for the upper bound, and the other approaches are much too conservative. Interestingly even the BCa approach has a lower bound interval which is conservative. This likely stems from the obvious finite-sample bias that comes from the empirical PPV curve." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "# res_agg2 = res_agg.groupby(['method','alpha']).mu.sum().reset_index()\n", "# res_agg2 = res_agg2.assign(gg = lambda x: x.method.map(di_method))\n", "# plotnine.options.figure_size = (5.5,4)\n", "# gg_inf = (ggplot(res_agg2,aes(x='alpha',y='mu',color='gg')) + theme_bw() + \n", "# scale_color_discrete(name='Method') + geom_point(size=3) + \n", "# geom_abline(intercept=0,slope=1,color='blue',linetype='--') + \n", "# labs(x='Type-I error (theory)',y='Type-I error (actual)') + \n", "# scale_x_continuous(limits=[0,0.25],breaks=xx) + \n", "# scale_y_continuous(limits=[0,0.25],breaks=xx) + \n", "# ggtitle('Simulation'))\n", "# gg_inf" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## (4) Compare to ARCH\n", "\n", "To show that our functions developed in the post will obtain (nearly) identical results to using the `arch` package's BCa approach, we will turn off the stratified sampling and calculate the variance of a standard normal distribution. To comply with the `bootstrap` class, the `var_calc` function will have a built-in Jackknife estimator, which is can calculated efficiently since the determintic formula for the sample variance can be vectorized." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "from arch.bootstrap import IIDBootstrap\n", "\n", "def vfun(x):\n", " return x.var(ddof=1)\n", "\n", "def var_calc(*args, **kwargs):\n", " \"\"\"\n", " *args should be an IID draw\n", " \"\"\"\n", " jackknife = False\n", " if 'jackknife' in kwargs:\n", " jackknife = kwargs['jackknife']\n", " # Calculate stat\n", " x = args[0]\n", " n = len(x)\n", " vv = x.var(ddof=1)\n", " if jackknife: # Built in jackknife\n", " mu = x.mean()\n", " s2 = np.sum(x**2)\n", " mu = (mu - x/n)*(n/(n-1))\n", " s2 = s2 - x**2\n", " vv = (s2 - (n-1)*mu**2)/(n-2)\n", " return vv\n", "\n", "np.random.seed(1234)\n", "# nsim, nboot, n = 2000, 2000, 100\n", "nsim, nboot, n = 2, 2000, 100\n", "t1err = 0.1\n", "alpha_seq = np.arange(0.05, 0.25, 0.05)\n", "store = []\n", "stime = time()\n", "for ii in range(nsim):\n", " x = stats.norm(0,1).rvs(n)\n", " sim = bootstrap(nboot=nboot, func=var_calc)\n", " sim.fit(x)\n", " holder = []\n", " for alpha in alpha_seq:\n", " sim.get_ci(alpha=alpha,symmetric=True)\n", " holder.append(pd.DataFrame.from_dict(sim.di_ci).assign(tt=['lb','ub']).assign(alpha=alpha))\n", " holder = pd.concat(holder).assign(sim=ii)\n", " # Calculate with ARCH\n", " bs = IIDBootstrap(x)\n", " mat = np.zeros([len(alpha_seq), 2])\n", " for jj, alpha in enumerate(alpha_seq):\n", " ci_bca = bs.conf_int(func=vfun, reps=nboot, method='bca',size=1-alpha, tail='two').flatten()\n", " mat[jj] = ci_bca\n", " holder2 = pd.DataFrame(mat,columns=['lb','ub']).assign(alpha=alpha_seq,sim=ii)\n", " holder2 = holder2.melt(['alpha','sim'],None,'tt').rename(columns={'value':'arch'})\n", " holder3 = holder2.merge(holder,on=['alpha','sim','tt'])\n", " store.append(holder3)\n", " nleft, rate = nsim-(ii+1), (ii+1)/(time() - stime)\n", " if (ii+1) % 100 == 0:\n", " print('Simulation %i of %i' % (ii+1,nsim))\n", " print('ETA: %0.1f minutes' % (nleft/rate/60))\n", "res_all = pd.concat(store).reset_index(None,True)\n", "res_all = res_all.melt(['sim','alpha','tt'],None,'method').assign(viol=lambda x: np.where(x.tt=='lb',x.value>1,x.value<1))\n", "#res_all.to_csv('res_all.csv', index=False)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuIAAAGLCAYAAACC8PcwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd1gUZ/fw8e/Su4CIKCgSsCBWNLFhwBJ7jT5YQB+Mxpr4iF0TSyJJrNHEGBONsfdYoga7YtREE1vsXewK2BAVKTvvH7y7P9ZdlAV013g+17WXMnPPPWfOLruHmXvuVSmKoiCEEEIIIYR4pSxMHYAQQgghhBBvIinEhRBCCCGEMAEpxIUQQgghhDABKcSFEEIIIYQwASnEhRBCCCGEMAEpxIUQQgghhDABKcSFEEIIIYQwASnEhRBCCCGEMAEpxIUQQgghhDABKcT/ZXx8fGjYsKGpwxD/EhkZGahUKnr06GHqUN5Yn376KSqVimvXrpk6lHw5f/48KpWKmJgYU4cihBBmQwrx10BcXBwqlSrHx6JFi0wd4iuxYsUKwsLCcHV1xcHBgdKlS9O9e/cC6Ts1NZXvv/+e+vXr4+HhgbW1NYULF6ZevXp88803pKSkFMh+xMv1888/8+2335o6DCGEECJXrEwdgMi99u3b07p1a73lderU0f7/woULWFj8+/6+6tWrF7Nnz6ZVq1bExMRga2vL1atX2b9/f777jo+Pp2XLlhw/fpzQ0FAGDx5M0aJFuXv3Lrt372bw4MFs3ryZ2NjYAjiS14uVlRVPnjzByur1eKv4+eefuXXrFv379zd1KEIIIcQLvR6frgKAypUrExkZ+dw2tra2ryianKWmpmJtbY2lpWWB9Dd37lxmzZrF7NmzC3yIxJMnT2jevDlnzpxh+fLlhIeH66wfNGgQFy5cYOHChQW6X3OX/Tm0s7MzdTj/KikpKTg5OZk6DCGEEGbg33fq9A2X0xjx+fPnU7FiRWxtbfH29mbw4MEcO3ZMb8zmTz/9hEqlYs+ePXp9REZG6p0ZDQkJISAggEuXLtGhQwc8PDywt7fn5s2b2jYrV67k3XffxcXFBXt7e4KDg/n5559zdTyKohATE0NwcLC2CH/48CFqtTrHbS5cuMCZM2dy1f/s2bM5efIkgwcP1ivCNfz9/Rk7dqzOspMnTxIeHo6npyc2Njb4+/szdOhQHj58qNNOk8+4uDjGjRuHn58f9vb2VK1alc2bNwNw/PhxmjVrRqFChShUqBBRUVF6Q2E0uU9ISKBr1654eHjg4OBAnTp12LVrl17MS5cupXXr1vj6+mJra4u7uzvNmjXjjz/+0Gv7vOcwpzHisbGx1KtXjyJFimBra0uxYsVo2rQp+/bt02l39epVunfvjre3NzY2NpQoUYLevXtz+/ZtnXbbtm3TDrOaM2cOFSpUwNbWFh8fH0aNGkVmZqbB50ZDE+fevXu5cOGCztCt7K/l3D5vObl27RqDBg2iatWquLu7Y2dnR9myZRk1ahSpqakGj2nhwoXMnDmTihUrYmdnx4ABA7RtEhISiI6OJiAgAFtbWzw8PHj33XdZuXKl3r5TU1MZPnw4JUqUwNbWlqCgIJYvX56ruLOPz166dClVqlTBzs5O+17w+PHjPB8nZP2e/vzzz9SuXRsXFxccHR0pV64cAwYMICMj47mx7dq1C3d3dypVqqQdB3/q1Cn69u1LUFCQ9n2jUqVKTJ061eDv/vXr14mIiMDd3R1HR0fq1q3Lrl27DL5nAZw7d46uXbtSvHhx7euyX79+3L17N1f5FEKIgiJnxF8jjx8/JikpSWeZtbU1hQoVeu5233zzDQMGDKB8+fJ89tlnWFlZsWTJEoMFXF4kJydTt25datasyWeffUZycjIODg4AfPLJJ3z55Zc0aNCAMWPGYGdnx6ZNm+jevTsXL1584Y1bp06d4uLFi/Tv358JEyYwdepUbt++jZ2dHc2bN+frr7+mZMmSOtuEhoZy69atFxYAgLbg6d27d66P99ChQ4SGhqIoCn369MHPz4/ff/+dSZMmsX37dvbu3at3FnnIkCFkZGTQr18/VCoV33zzDS1btmTVqlV069aNjh070qpVK/744w/mz5+Pvb09M2fO1OlDURQaNWpE4cKFGT16NHfu3GHmzJm89957bN68mXr16mnbTp8+HS8vL3r16oWnpydXrlzhp59+IiwsjN27d1OjRg2dvp/3HD5rx44dtGzZkooVKzJs2DDc3Ny4ffs2u3fv5p9//qFmzZoAXLlyhXfeeYc7d+7Qs2dPKlSowOHDh5k9ezabNm3i77//pkiRIjp9f/fdd9y8eZMePXpQuHBhVq1aRUxMDIUKFWLw4ME5PieWlpYsXLiQcePG8eDBAyZPnqxdV7Zs2Tw/b886cuQIa9eupW3btvj5+aFWq9mxYwcxMTH8888/rFu3Tm+br7/+moSEBD788EO8vb21v6/x8fHUqVOHW7duERkZydtvv83Tp085dOgQGzZs4D//+Y9OP5qicsCAAahUKr7//ns6duyIv78/1atXf27cGmvWrOHcuXP069ePDz/8kC1btjBlyhSOHj3K5s2bUalURh+noih06dKFxYsXU716dYYNG4aHhwfnz59n9erVxMTE5HgFYNmyZURFRRESEsLq1atxcXEBYPv27ezZs0f7x+Tjx4/ZsGEDAwcO5NKlSzr3Ady/f5+6dety+fJlunfvTtWqVTlx4gTNmzfnrbfe0tvnwYMHqV+/Ps7OznTv3p2SJUty5swZfvjhB3bu3Mn+/ftxdnbOVT6FECLfFGH2du7cqQAGHzVq1NBp6+3trTRo0ED78507dxR7e3uldOnSysOHD7XLnzx5ogQHByuAMm7cOO3y2bNnK4Cye/duvTgiIiIUS0tLnWV16tRRAOWTTz7Ra//3338rgDJw4EC9db1791YsLS2V+Pj45x77L7/8ogCKp6en4uLiokyYMEFZvXq18tFHHykqlUrx8fFRkpKS9HLwbJw5cXFxUdzc3HLVVqNWrVqKhYWF8tdff+ksHzVqlAIoX331lXaZJp/BwcHK06dPtcsPHjyoAIpKpVJWrVql00/z5s0VGxsb5fHjx9plERERCqC0bdtWUavV2uUXL15U7OzslHLlyuksT0lJ0Yv7+vXripubm9KqVSud5c97DtPT0xVA6d69u3bZxx9/rAB6eX9Wp06dFEDv+ObMmaMASq9evbTLtm7dqgBK8eLFlXv37mmXZ2ZmKmXKlFFKlCjx3H1lPxZ/f3+D64x53nLy+PFjnTxrDBs2TAGUQ4cO6R2Tu7u7cvv2bb1tGjdurADKhg0b9NZlZmZq///JJ58ogNKiRQud5ZcuXVKsrKyULl26vDDuc+fOKYBiYWGhHDx4UGddr169FEBZunRpno5z6dKlCqB07NhRycjI0GmfvQ9NDJr3m4kTJyoqlUrp0qWLkpaWprOdodevoihKhw4dFCsrK518Dh06VAGUH3/8Uaft8uXLFUDnvUCtVisVK1ZU/P39dV5niqIoe/fuVSwsLJSYmBiD+xZCiJdBhqa8RqKioti6davOY/r06c/dZtOmTTx58oR+/frpnJWys7MjOjq6QOJSqVQMHTpUb7lmNpcPPviApKQknUerVq3IzMxk+/btz+1bM2QgISGB1atXM3ToUNq2bcv06dMZNmwY165d45tvvtHZ5tq1a7k6G67pX3MWLjdu3rzJn3/+SbNmzXj77bd11g0bNgx7e3tWrVqlt91HH32EjY2N9ufg4GAcHBwoUaIE77//vk7b0NBQ0tLSuHz5sl4/I0aM0J61BPDz86NTp06cPn2akydPapc7OjrqHOOdO3ewsbHh7bffNniDa07PoSFubm5A1iw2OeU5IyODdevWERQUpHd8UVFR+Pr6GsxTjx49cHV11f5sYWFB/fr1uXr1Kk+ePMlVfIbk9Xl7lr29vTb/6enp3L17l6SkJN577z0Ag7nt1q0bnp6eOssSExPZsmULDRs2pHnz5nrbGLrheuDAgTrLS5UqRUBAAGfPnn1h3BpNmjQhODhYZ9nIkSMBdI7fmOPU/J5PnjxZ776Q7K9VDbVazUcffcTQoUMZMWIECxYswNraWqdN9tfv06dPtftv0qQJGRkZHDp0SLt+zZo1eHh46M2gFB4eTkBAgM6yf/75h2PHjtGpUycyMjJ03pPKlCmDn5+fdsiYEEK8CjI05TXi7+9v9BzhFy9eBKBcuXJ66wwtywsvLy+DxeypU6cAqFChQo7bPjtW+Fn29vYAlCxZkgYNGuis++CDDxg/fjw7duzg888/NzZsAJydnUlOTs51e00+g4KC9NY5Ojri5+fHhQsX9NYZukTu5uaW43KAO3fu6K0rX758jsvOnz+vjevIkSOMHj2auLg4vfHPzxY9kPNzaEj//v2JjY2lb9++DB06lFq1ahEWFkbnzp0pVaoUkPW8Pnr0yOBzb2FhQVBQELGxsSQnJ+vs11A+ChcuDMDdu3fx9vbOVYzPyuvz9qyMjAwmTZrE/PnzOXv2LIqi6Kw3NMa4TJkyesvOnTuHoihUrVo1t4eQY25e9DuUnaHXT8mSJXFycuL8+fPaZcYc59mzZylSpEiun5spU6aQnJzM2LFjGTNmjME2jx494vPPP2f58uUG/yDNvv9Lly5RvXp1gzeHly1blkuXLml/1rwnxcTE5DgsrqBuMhdCiNyQQvwNYejMlLHtcjr7mdNYYs1NVbGxsQaLP0DvjNWzSpQoAUCxYsX01mmW5ecGq4oVK7J3717i4+O1ReTzaAqS3OZTI6cP9+d96D9b/LyIJqbLly8TEhKCq6srI0eOpGzZsjg6OmJhYUFMTIzBG3Fzeg4NKVy4MPv372fv3r1s3bqVPXv2MHbsWMaOHcvSpUtp165dgecJjM+HoW2NjedZAwYMYMaMGXTo0IHhw4drb/q8cuUK3bt3N3gjoaHc5uVYcspNfvKSvY/suTHmOI3df6NGjYiLi2P27Nl07NhRO4Y/uw4dOhAbG8uHH37Iu+++S+HChbGysuLvv/9m5MiRennO7fOq2W7AgAEGr0SAcb8LQgiRX1KI/8tpzqKdOnWKRo0a6azTnB3Kzt3dHTBc3GrOKuZWmTJl2LZtG97e3lSqVMmobTUqV66MnZ0dV69e1Vt35coVAIoWLZqnviHr8vXevXuZNWsWX3755Qvb+/v7A1kznTzr0aNHXLp0yeBZ14Jy8uRJvaEVmiEpmthWrVrFo0ePiI2N5d1339VpO2zYsAKJw8LCgrp161K3bl0g66xkcHAwI0eOpF27dnh5eeHo6GgwT4qicPLkSYoUKWLUsKDcyKkgK6jnbcGCBdSrV49ly5bpLF+/fr1RcZYpUwaVSsXhw4eN2i6/sg9f0rhy5QqPHj3S5giMO86yZcvy22+/cf369VydFa9cuTKfffYZDRs2JDQ0lG3btulcOblz5w6//fYb3bp148cff9TZ1tB7lp+fH+fOnSMzM1Pvj5XTp0/r/Ky5OqFSqeQbiIUQZkHGiP/LNWnSBDs7O2bMmKEzJV5qairTpk3Ta685O7Vt2zad5XFxcfz9999G7btr164ADB8+nPT0dL319+/fJy0t7bl9ODo60r59e27cuMHq1at11mnGx7do0UJnuTHTF3744YeUK1eOSZMm5ThG+OLFi3z22WdA1ln4WrVqERsby8GDB3XaTZo0iSdPntCuXbtc7TsvvvrqK50zkJcuXWLZsmWULVtWO+xAU4w8e6Zyw4YNOmNr8yoxMVFvWalSpfDw8ND+AWdlZUWrVq04fvw4a9eu1Wk7f/584uPj9caOFwQnJyfu3bunt7ygnjdLS0u9vKalpfHVV18ZFWeRIkVo1KgR27Zt47ffftNb/7zpOfNj06ZNeq8BzR+g2Z8PY45T890GgwYN0ptmMqez5eXLl+f333/HxsaGsLAwnZhyev0mJycbfM9q06YNSUlJzJkzR2f5ihUr9IYbVatWjaCgIGbNmmXwPUKtVht8fQshxMsiZ8T/5dzd3fniiy8YNGgQNWrUoGvXrlhZWbF48WLtcJHsZxHLly9PgwYNmDFjBunp6VStWpWTJ0+yYMECKlWqxIkTJ3K97xo1amiHLFSqVImOHTvi7e3N7du3OXr0KOvWrePcuXP4+Pg8tx/NOPDOnTvTr18/AgIC2LFjB7/88gvBwcH07dtXp70x0xfa29vz22+/0aJFC9q3b0+9evVo3Lgxnp6e3L9/nz179rB+/XqdqwnfffcdoaGhhIWF0bdvX0qVKsXu3btZunQpwcHB/O9//8t1joxhYWHBxYsXee+992jdujV37tzh+++/Jz09ne+++077PDZv3pyRI0fSuXNn+vbti4eHBwcOHGDp0qVUqFDB4FlFY3zwwQfcunWL9957D19fX9LT0/n11185f/48Q4YM0bbTPG/h4eHa6QuPHDnC7Nmz8fX1Zdy4cfmKw5CaNWuyadMmPv74Y2rWrImlpSUNGzbEw8OjQJ63//znP8yePZvw8HAaNmzInTt3WLRokc7Nhbk1c+ZMateuTatWrYiMjOSdd97R3oioUqmYN29eHjLwfFWqVKFevXr07dsXHx8ftmzZwrp166hfvz4dOnTQtjPmODt06MCvv/7KsmXLuHDhAm3btsXDw4NLly6xcuVKjhw5YnD6woCAAHbv3k2DBg2oX78+mzZtombNmri6uvLee+8xf/58rK2teeedd7h+/Tpz5szBy8tL78rc8OHDWbFiBX369OHAgQMEBwdz4sQJ5s2bR6VKlXSuAlhYWLBw4UIaNGhA1apV6datGxUqVCAtLY2LFy+ydu1aPvzwQz799NMCzLoQQjzHK56lReSBZvrC7NMM5uTZ6Qs15syZo5QvX16xsbFRvL29laFDhyp//PGHAihTpkzRaXvr1i0lPDxccXFxURwcHJSwsDBl3759OU5fmNN0cRqxsbFKkyZNFHd3d8Xa2lopXry4Ur9+feXrr79WUlNTc5EBRbl69aoSFRWlFC1aVLG2tlZ8fX2VwYMHK8nJyQZzkNvpCzUeP36sTJ8+XQkNDVXc3d0VKysrxd3dXalXr54yffp05dGjRzrtjx8/rrRv317x8PBQrK2tFT8/P2XIkCHKgwcPdNo9bzrInJ4rQ9tocn/79m2lS5cuSuHChRU7OzulVq1ayo4dO/T62LVrl1K3bl3F2dlZcXZ2Vho0aKD88ccfRj+HhqYvXLlypdKqVSvFx8dHsbW1Vdzd3ZUaNWooP/30k96Ud1euXFG6deumFCtWTLGyslKKFy+u9OzZU7l586ZOO81UfwsXLtSLQTN939WrVw3GmN3Dhw+VqKgopUiRIopKpdLLY26ft5w8evRIGTJkiOLr66vY2Ngofn5+yieffKIcO3ZM73f0ecekcePGDaVv376Kr6+vYm1trXh4eCihoaHKL7/8kqvjz83vn6LoTh24ZMkSpVKlSoqtra1SrFgxJTo6Wm+6QGOOU1GyplucOXOmUr16dcXe3l5xdHRUAgMDlejoaCU9PV0vhuyuX7+uBAYGKk5OTkpcXJyiKIqSmJio9OjRQylevLhia2urlCtXTpk8ebKyefNmgzm9evWq0qlTJ8XV1VVxcHBQ6tatq+zZs0dp1aqV4uzsrJePK1euKH379lX8/PwUGxsbxc3NTalUqZISHR2tnDp16oX5FEKIgqJSlAK400e8lpYuXUrnzp355ZdfXupwCpF/kZGRLFu2LNfTMgqR3fnz5yldujTjxo17o872litXDmtra44dO2bqUIQQwiAZI/4GSE1N1RtvmZqayuTJk7G1tSU0NNREkQkhRP49fvxYb9nKlSs5c+YMjRs3NkFEQgiROzJG/A0QFxfHoEGDaN++PT4+Pty8eZPFixdz9uxZPv/8czw8PEwdohBC5FmzZs0oWbIk1apV005zuHDhQooVK6Zz34IQQpgbKcTfAAEBAZQtW5Y5c+aQlJSElZUVFSpUYP78+dqZTYQQ4nXVsmVLFi1axPr160lJSaFo0aJERUUxduzYfE1vKoQQL5uMERdCCCGEEMIEZIy4EEIIIYQQJiCFuBBCCCGEECYghbgQQgghhBAmIIW4EEIIIYQQJiCFuBBCCCGEECYghbgQQgghhBAmIPOI58L9+/cNfnObEEIIYQ4cHBxwdXU1dRhCCCNJIf4C9+/fZ8aMGaSnp+e7LwsLC6pWrcrhw4dRq9UFEF3BcXJy0saWkpJi6nB0mGveJGd5I3kznuQsb96kvFlbW9OvXz8pxoV4zcgX+rzAjRs3mDVrFu+///6/+qvgrayscHNz4969e2RkZJg6nNeC5CxvJG/Gk5zlzZuSt6SkJFavXk3Pnj0pXry4qcMRQhhBzojnkoeHR77f4NRqNbdu3cLLywsLC/Manq8oChkZGRQpUgSVSmXqcHSYa94kZ3kjeTOe5CxvJG9CCHMnv/1CCCGEEEKYgBTiQgghhBBCmIAU4kIIIYQQQpiAFOJCCCGEEEKYgBTiQgghhBBCmIAU4kIIIYQQQpiAWUxfmJKSwowZMzh06BD29vaEh4fTrFkzvXbp6elMmTKF8+fPk5CQwJgxY6hWrZp2/ffff09cXJz258zMTDIyMli4cCEuLi4sWbKElStXYm1trW0zZswYgoKCXurxCSGEEEII8SyzKMR//PFHMjMzmTt3Ljdv3mT06NH4+PhQqVIlvbaBgYG0bNmSKVOm6K3r27cvffv21f48b948Lly4gIuLi3ZZ7dq1GTJkyMs5ECGEEEIIIXLJ5ENTUlNT2bt3L5GRkTg4OODv70/9+vXZtm2bXltra2tat25NUFDQC78AITMzk7i4OBo2bPiyQhdCCCGEECLPTF6IX79+HYCSJUtql7311ltcvnw5X/0eOnSIp0+fUrNmTZ3lBw8eJCIigr59+7Jq1SrUanW+9iOEEEIIIURemHxoSmpqKvb29jrLHB0defLkSb763bp1K3Xr1sXW1la7LCQkhMaNG+Pm5sbFixeZOHEiFhYWtG3bVmfbpKQkkpKSAEhMTCQtLQ0g30W7ZntzLP4VRUGtVqNWq83yq6Cz/2suJGd5I3kznuQsbyRvQghzZ/JC3M7OTq/ofvTokV5xbozk5GQOHDjAhAkTdJZnP+seEBBAeHg4mzZt0ivEV61axezZs7U/h4aGAnDr1q08x5RdQkJCgfTzppG8GU9yljeSN+NJzvJG8ibEm83khbi3tzcAV69epUSJEgBcunQJX1/fPPe5c+dOihcvTunSpZ/bLqczJO3atdMW34mJiWzcuBEALy+vPMcEWWc+EhIS8PT0fOEY91dNURQyMjKwsrIyyzNH5pg3yVneSN6MJznLmzclbwV1kkgI8eqZvBC3s7OjTp06LF68mP79+3P79m22b9/O0KFDDbZPT09HURQURSEzM5O0tDSsrKx03si2bdtm8CbNffv2ERQUhLOzM5cuXWLlypUG23l4eODh4QGAi4sLNjY2AAX2IWNhYWGWH1iauMztA0vD3PImOcsbyZvxJGd5I3kTQpg7kxfiAL169eK7774jKioKBwcHIiIiqFy5MgDh4eE6c3336dNHeykvJiYGgC+++IKKFSsCcP78ea5fv069evX09rNnzx6mT59Oeno6rq6uNGzYUG9YihBCCCGEEK+CWRTiTk5ODB8+3OC6FStW6Pz8008/PbevgIAAVq9ebXDd4MGD8xagEEIIIYQQBUyuhwkhhBBCCGECUogLIYQQQghhAlKICyGEEEIIYQJSiAshhBBCCGECUogLIYQQQghhAlKICyGEEEIIYQJSiAshhBBCCGECUogLIYQQQghhAlKICyGEEEIIYQJSiAshhBBCCGECUogLIYQQQghhAlKICyGEEEIIYQJSiAshhBBCCGECUogLIYQQQghhAlamDuB14OTkhJWVFYqi5KsfRVG0/eS3r4Kmicfc4gLzzZvkLG8kb8aTnOXNm5I3Kyv5KBfidSW/vblQtWpV3NzcyMjIyHdfbm5uqNVq1Gp1AURW8DIzM00dgkHmnDfJWd5I3ownOcubf3ve3NzcCigiIcSrJoV4Lhw+fJiKFStSpEiRfPWjVqu5c+cOhQsXxsLCvEYFKYpCZmYmlpaWqFQqU4ejw1zzJjnLG8mb8SRnefOm5C0xMbGAohJCvGpSiOdCSkoKGRkZ+X4jV6lU2n7M7UNBwxxjM/e8mWNc5p4zkLzlhTnGZe45g39/3griaq0QwjTM6/SFEEIIIYQQbwgpxIUQQgghhDABKcSFEEIIIYQwASnEhRBCCCGEMAEpxIUQQgghhDABKcSFEEIYJV2d8ywdiqI8d70QQoj/I4W4EEKIXNt7/x8q/hlB/JObeusUReHTCz/S6dhoE0QmhBCvHynEhRBC5Fo153KUsi9GvQP9dIpxTRE+9fIy+vi0NWGEQgjx+pBCXAghRK7ZWdqytvIEyjqW1BbjiqIw6uIspl5exvoqk2hQ+G1ThymEEK8F+WZNIYQQRtEU423+GUb9Qx9RzbYMGx/ulyJcCCGMJIW4EEIIo9lZ2rKm8ngcdtTjcuotZgeOkCJcCCGMJENThBBCGE1RFGIuzUOFCiss+eLSPIM3cAohhMiZWRTiKSkpTJgwgQ4dOhAVFUVsbKzBdunp6YwfP54ePXrQqlUrDh48qLP+2LFjtG7dmvDwcO1jxYoVOtvPmDGDTp06ERkZyeLFi1/qcQkhxL9R9hszN1edxpnARZRxKKl3A6f4dxs7diwqlQpvb2/UarXe+mbNmqFSqWjRooVR/U6bNs1gHVCqVCk++uijPMf7Ir/88gsqlYr4+PiXtg8hnmUWhfiPP/5IZmYmc+fOZdSoUSxevJijR48abBsYGEh0dDQeHh4G1xcqVIgVK1ZoH+Hh4dp1y5cvJz4+nh9//JEpU6awa9cutm3b9lKOSQgh/o2yF+Hrq0yigXt17CxsWFPpK50bOMWbwdramqSkJOLi4nSWJyUlsXXrVpycnIzuM6dCXIh/I5MX4qmpqezdu5fIyEgcHBzw9/enfv36Bgtka2trWrduTVBQEBYWxoe+bds2OnTogIuLC0WLFqVVq1ZSiAshhBF23jtocGC4m9gAACAASURBVHaU7LOpfHjyKxNGKF4lGxsbmjZtypIlS3SWr1ixguLFixMcHGyiyIR4PZi8EL9+/ToAJUuW1C576623uHz5cp76e/jwIV27dqV79+7MmDGDhw8fAlnDX+7evYufn5+2rZ+fX573I4QQb6L67tU5UXuJwRszNcX4ggryhT5vks6dO7Nq1SrS0tK0y5YsWULHjh1RqVQ6ba9du0ZkZCQeHh7Y29vz7rvv6gwzLVWqFJcvX2bGjBmoVCpUKhXz5s3T6eO7777D19eXQoUK0aZNGxITE3XWX7lyhf/85z+4urri4OBA/fr1OXDggE6b9PR0BgwYgLu7O4UKFaJ79+48evSogDIiRO6ZfNaU1NRU7O3tdZY5Ojry5MkTo/vy8fHhm2++wcfHh7t37/L9998zbdo0Ro0ape3PwcHhhftJSkoiKSkJgMTERO2bi6ExcMbQbJ/ffl4GRVFQq9Wo1Wq9N05TM9e8Sc7yRvJmPHPLma+tl16uNP/aqKwpau1uFjk0t7xlZ66vtbxo2bIlPXr0YOPGjbRu3ZrLly/zxx9/MGPGDPbv369td+/ePUJCQnBycmL69OkUKlSI6dOnU79+fc6dO4enpydr1qyhWbNmhISEMGjQIAD8/f21faxbt45z584xY8YMkpKSGDBgAB9//DHLli0Dsk7GhYaGoigKM2bMwMnJiYkTJxIWFsaBAwcoV64cACNGjOD777/ns88+Izg4mCVLlvDJJ5+8wqwJkcXkhbidnZ1eMfzo0SO94jw33NzccHNzA8DDw4OePXvSu3dvnj59qu3v8ePHBv+f3apVq5g9e7b259DQUABu3bpldEyGJCQkFEg/bxrJm/EkZ3kjeTOe5Cxv/g15s7e3p02bNixZsoTWrVuzZMkSAgMDqVy5sk67adOmcf/+ff766y88PT0BaNCgAQEBAUyePJmJEydStWpVbG1tKVq0KDVr1tTbl6IorFu3DltbWwDOnz/PxIkTUavVWFhYMHfuXC5fvsyxY8cICgrS7sPX15fx48czb9487Ym64cOHM2LECAAaN25MnTp1tFfphXhVTF6Ie3t7A3D16lVKlCgBwKVLl/D19c133xYWFiiKgqIoODk54e7uTnx8PIULFwbg4sWLBvfTrl07bfGdmJjIxo0bAfDy8spXPGq1moSEBDw9PfM0xv1lUhSFjIwMrKyszPLMkTnmTXKWN5I340nO8uZNyVtBnSTKj4iICNq2bUtKSgpLliwhIiJCr82WLVuoV68e7u7uZGRkAGBpaUndunX5+++/c7Wf0NBQbREOUL58edLT00lISMDLy4vdu3cTFBSkLcIBnJycaNmyJbt37wayZlh78uQJbdu21em7Xbt2/PHHH0YfuxD5YfJC3M7Ojjp16rB48WL69+/P7du32b59O0OHDjXYPj09XVtcZ2ZmkpaWhpWVFRYWFhw9epSiRYvi6enJ/fv3mTVrFlWqVMHOzg7I+qt4+fLllC5dmidPnrBu3TqdWVU0PDw8tLOyuLi4YGNjA1BgHzIWFhZm+YGlicvcPrA0zC1vkrO8kbwZT3KWN5K3V6dhw4Y4Ozszbtw4jh8/TqdOnfTaJCUlsW/fPqytrfXWZR9+8jyurq46P2s+n1NTU4Gs4S+GTpp5eXlx9+5dAG7ezJrVR3NWXqNo0aK5ikGIgmTyQhygV69efPfdd0RFReHg4EBERIT2klZ4eDhjxozR/nXbp08f7aW8mJgYAL744gsqVqzIxYsXmTZtGg8fPsTR0ZHg4GD++9//avfTsWNHkpOT6dmzJ5aWljRt2pSGDRu+4qMVQggh/l0sLS0JDw9n8uTJ1KpVS2diBA13d3eaNGnCuHHj9NZlP8udH+7u7pw+fVpv+a1bt3B3dwegWLFiQNawIM1VeYDbt28XSAxCGMMsCnEnJyeGDx9ucF32L+QB+Omnn3Lsp02bNrRp0ybH9dbW1vTr149+/frlLVAhhBBCGNS9e3euXr1KZGSkwfUNGzZk0aJFBAYG4ujomGM/NjY22jPcxgoJCeGXX37h5MmTlC9fHsi672zDhg3aLxaqWLEi9vb2rFmzhqpVq2q3XbVqVZ72KUR+mEUhLoQQQojXW5UqVVi7dm2O6wcOHMjixYsJDQ3lf//7HyVLliQxMZH9+/dTvHhxoqOjgawv7tuxYwdbt27Fzc0NPz8/7b1dL9KtWzemTp1KixYtiImJ0c6a8uTJE+0JP3d3d3r37s348eOxt7fXzpoi0xkLU3j9B6YJIYR4ZTLVcOI5E0s8eAKXk15dPOL1UbhwYfbt20eVKlUYNmwYjRo1Ijo6mvj4eGrUqKFt9+WXX+Lj40O7du14++23Wb9+fa734ezszK5du6hWrRp9+vShY8eOWFtbExcXp526EGD8+PH07t2biRMnEh4ejkql0g53FeJVUimKopg6CHN248YNZs2aRc+ePSlevHi++lKr1dy6dQsvLy+zuznH3GcXMMe8Sc7yRvJmPHPK2ZmbMGkjRNaGsHK6OXv41IKJsVDECQY0NmmYgHnl7VkF+VoryM8pIcSrZT6fNEIIIcxe2WLQ/V1Y9AfEZbsn7sETmBgLjjbQq57p4hNCiNeJjBEXQghhlFoBWf/O+R0UNXjbWzBjowpHW4huDPY2po1PCCFeF1KICyGEMJqmGJ+9ywLwwt9TkSL8DZHXGU1exNbW1uyGEAnxskkhLoQQIk/K/98UzASXVLC3kSLqTXDq1CnUanWB91u5cmWsrKQsEW8WecULIYQwmmZMuL+nQnmPB6w6WAh726wbOIUQQuSOFOJCCCGMkv3GzP+9p/Dg7mM8PVyYuzvrjLgU42+GMmXKFFhfZ8+eLbC+hHidSCEuhBAi17IX4dGNwdYKHgC1/MFClXUDJ0gxLoQQuSGFuBBCiFx7+ASKusCHoVk3ZmYfKqy5gfPyHdPEJoQQrxuZR1wIIUSu+bhD//dynh2lVgB0rGF4nRCiYMXFxdGoUSPtz6VKlWLTpk0mjEhfVFQUw4cPN3UYAHTs2JGxY8cCcODAAUJCQkwbEFKICyGEEMLMtW7dGltbW+7evauzfN68eVhaWuLk5ISLiwuBgYEsWLBAb/uZM2dSuXJlHB0dKVasGM2bN2fPnj3aPmrWrKm3Tc2aNZk3b16OMUVFRWFjY4OTkxNOTk4EBQWxatUqnTa3b9+mV69eeHt74+TkREBAANHR0SQlJeUhC/qGDx/OiBEjCqSvN0316tVxcHBgw4YNJo1DCnEhhBBCFLgHDx7g4uLCgwcP8tVPQkICGzduxNHRkSVLluitf/vtt0lJSeHBgwdMnDiR7t27c+bMGe366OhoJkyYwKRJk0hKSiI+Pp4PP/yQtWvX5isugIEDB5KSksLDhw+ZMmUKERER3LhxA4B79+5Ru3Zt7t27x++//87Dhw/Zs2cPhQoVYv/+/fne95EjR7hx4wZhYWH57qugpKenmzoEo3Tt2pUffvjBpDFIIZ4LTk5OWFlZoShKvh8F1c/LeAAmj+F1y5vkTPImOTPfnL0peTPXubeTk5N1/s2rRYsWUbp0aaKjo5k7d26O7VQqFS1btsTV1ZWjR48CcP78eb799luWLVtGo0aNsLe3x9bWljZt2jB58uR8xfXsvps0aYKLiwvnz58HYOrUqdjb27N06VL8/f1RqVR4eXkxduxYmjdvDsCkSZMICAjA2dmZwMBAvTPqz7NhwwbCwsJy/BKktLQ0Bg8ejI+PD0WLFuWDDz7QPhfdu3fniy++ACAlJQVra2tGjRql3c7BwYHr168D8Pfff1O3bl3c3NwIDAxk9erV2n1ERUXRq1cvWrVqhZOTU47x37t3j2bNmuHs7Mw777zD8ePHtevOnj1Lw4YNcXNzo2zZsjpXIZ4d1nL69Gmd4w0LC2PUqFHUq1cPZ2dn6tSpw+XLl7Xrd+7cSVBQEM7OznTt2pW0tDSduOrVq8e2bdte2pdU5YZ5/vaamapVq+Lm5kZGRka++3Jzc0OtVr+UL0MoCJmZmaYOwSBzzpvkLG8kb8aTnOXNvz1vbm5uBRSReZo7dy4RERF06tSJ0aNHc/ToUSpVqqTXTq1Ws3btWu7cuUNAQNadw9u2bcPb29vg0JOCpFariY2N5enTp1SoUAGALVu28P7772NpaZnjdn5+fuzatYtixYqxcuVKIiMjqVGjBj4+Pi/c59GjR6lSpUqO67/88kt27NjBX3/9hYODAx07duR///sfc+fOJSwsjPnz5/PJJ5+wZ88eSpYsyc6dOwHYv38/3t7eeHt7c/PmTZo0acKcOXNo2bIlBw4coGnTpgQGBhIYGAjA4sWLWb9+Pb/++muOBe3ChQtZt24dv/76KxMmTKBNmzacPn0aRVFo0aIFHTt2JDY2lkOHDtGkSRP8/PwIDQ19YQ40fcfGxhIQEEDnzp0ZNWoUCxYs4O7du7Ru3ZoZM2bQqVMnFi9eTPfu3XVeO97e3tjY2HDq1CmqVq2aq/0VNCnEc+Hw4cNUrFiRIkWK5KsftVrNnTt3KFy4MBYW5nUxQlEUMjMzsbS0NLuvGDbXvEnO8sac8nb76V3crV2wtsh6K3w2b9dSE/Cx8zRpjGBeOXuWvNbypiDzlpiYWEBR5d+DBw8oUaIEAJs3bwbg2rVrBAUFAXD16lUKFSqU6/4OHDjAiRMniIiIwNfXlzp16jB37lymTp2q08bV1ZXHjx+jVquZNm2atqi6c+cOxYsXz9V+XF1ddZalpKS8cLtp06bxww8/8PTpU9LS0pg8eTLu7u653nf79u21/+/QoQNfffUV+/fvz1Uhfu/ePVxcXHJcv2jRIqZMmaKNYfz48dSoUYM5c+ZQr149evfuTVpaGrt27aJfv35MnDiRx48fExcXpx3usnDhQho2bEibNm0AqFGjBm3btmXlypWMHj0agBYtWlCvXj0A7O3tDcbStGlTGjZsCMCIESP45ptv2LdvHwB3795lzJgxWFpaUrNmTaKioli4cGGuC/GoqCjKly8PQOfOnbVxbdiwgdKlS9OlSxcA/vvf/zJt2jS97Z2dnbl3716u9vUymNe7pplKSUkhIyMDlUqV70dB9fMyHoDJY3jd8iY5e33zBhB+7FM6HR9NhpKpl7cddw9Q9o8O/PHgqMljNZec5fSQ15pp81YQV2sLyowZM7T/b9y4sc6/z67Pjblz5xISEoKvry8AXbp0YdGiRTpjkatXr879+/dJTk6md+/e2jO7AIULF9aO2X4eTR/ZH9WrV9eub9q0qfamzC+//FK7fMCAAdy/f5/Hjx/zzz//MHHiRH799ddc73vBggVUqVIFV1dXXF1dOX78eK5v5HRzc3vusJ/r169TqlQp7c+lSpUiLS2NxMREfHx88PLyYv/+/cTFxVG/fn1q1KjB3r172blzp7YQj4+P59dff9XG5+rqyvLly7l586a235IlS74w1uxtLC0t8fb25vr161y/fp0SJUroXDUoVaqUdlhMbnh5eWn/7+DgoP0D6saNG3qxaV5H2T18+NCkV5XyXIinp6dz48YNLly4wP379wsyJiGEeOlUKhWzyw/nj/vH6HhsFOnq/ytmtt89QIsjg4n27UjtQvqXwIUQhvXr10/7f80Zcc2/z65/kadPn7J06VIOHjyIl5cXXl5efPLJJyQlJRmc6cLOzo4pU6Zw6NAhbTHcsGFDrl+/nu+bIzdu3EhKSgopKSmMHDlSb71KpaJChQqEhISwdetWABo1asSaNWtyHHp0+fJlevTowbfffsudO3e4f/8+FStW1N7b8CKVKlXi9OnTOa739vbWGS8dHx+PjY2N9up+WFgYv/32GxcvXqRSpUqEhYWxZcsW9u3bpy3ES5YsSceOHXX+QElJSWHmzJnafnNzRefKlSva/2dmZnL9+nXt8Jdr167pDB+Lj4/H29sbyLpH7/Hjx9p1t27deuG+NIoXL66z32fjgKxiPS0tTTvMxhSMKsTPnDnDyJEjefvtt3F0dKREiRKUKVOGwoUL4+XlRfv27Vm+fLneYHghhDBHZR19ias+Q6cY351ylFb/DGGgbydi/Htpz6oKIV6sUKFCJCcnk5ycrB1e4ePjo11mzLCUtWvXkpGRwfHjxzly5AhHjhzh+PHjdOjQIcebNm1tbRk4cCBjx45FURQCAgLo378/nTp10t6Ul5aWxoYNGxgyZEiBHLPG6dOn2bNnj3aMeHR0NI8ePSIiIoKLFy+iKAqJiYmMGzeO2NhYHj16BKAtjBcsWKBzE2N8fDwqlYr4+HiD+2vevDm7du3KsXCPiIggJiaGW7du8eDBA0aOHEmnTp20hXNYWBgzZ86kVq1aWFhYEBYWxqxZs7QFMkBkZCQbN25k/fr1ZGRkkJaWxv79+zl16pRRudm0aRM7duwgPT2dCRMm4OzsTI0aNahRowaurq589dVXpKWl8ddffzF//nwiIiKArHv0YmNjSUxM5O7du0yYMCHX+2zevDnnzp1jyZIlZGRksHDhQo4dO6bTZufOndSvXx87Ozujjqcg5aoQP3ToEI0bNyYwMJD169dTrVo1vv32W5YvX86vv/7KvHnz6Nu3L0+fPqVHjx54e3szZcoUnj59+rLjF0KIfMlejBfd3ZzIyzFEl+woRbgQJjZ37ly6dOmCn5+f9oy4l5cX0dHRbNy4kdu3bxvcrkePHly9elV7Vvzrr79m8ODBDBo0CHd3d0qWLMkPP/xA27Zt8x3j119/rR2y0qhRI7p160bPnj2BrKEjf/75J87OzoSEhODs7EytWrW4f/8+NWrUoHz58gwZMoQ6depQtGhRjhw5Qu3atbV9X716FV9fX21R/KyqVatSvHhxdu3aZXD9yJEjCQkJITg4mDJlyuDp6ck333yjXV+vXj2Sk5O1Z78rV66MpaWlznSIPj4+/Pbbb0ybNo2iRYtSrFgxRowYYXR9FxkZyeTJk3Fzc2PNmjWsWbMGa2trrK2tWb9+PTt27MDT01PbTjPmXHPzakBAAHXq1OH999/P9T4LFy7M6tWriYmJwc3Nja1bt9KyZUudNgsXLqRPnz5GHUtBUym5uAbi6upKr1696NatG+XKlXtu2ydPnrB+/XqmTZtG06ZNtdPhvK5u3LjBrFmz6NmzZ65u+HgetVrNrVu38PLyMsubmjIyMrCysjK74sNc8yY5yxtzzdv3V1fR73TWdGap9XZha5XDV0eagLnmDOS1llcFmbeC/JzKjcOHD6NWqylTpsxz22lu3MzNDZpnz56lcuXKZjsVoynExMRQpEgRevXqlWObuLg4vvzyS7Zs2fIKI/t3OHjwIP3792fv3r0mjSNXr/j4+Hi9u4lzYm9vT3h4OOHh4TJ2XAjxWth+528Gnf2W94uEsefeETodH83ySjHa2VSEEMbTDFMRefPpp5++sE1YWJhZfaHP66RatWomL8Ihl0NTcluEF9R2Qgjxqmy/8zctjgxmoG8nVlSMYWWpz/nzwXG9GziFEEKIgparQvzx48dGPYQQ4nWQvQjXjAkPsPVmR/B0g7OpCGFuMjNhwwbT3WgmhMifXBXiTk5OODs75/ohhBDmTlEUJl9eYnB2FM0NnAeTT3Po4RkTRimEYWo1rFwJFSrAwIFy9VmI11WuBkB+//33ZnejixBC5IdKpWJtlQnYqKwNvr+VdfTlTJ3l2FqYz02bQmimV3jwAPr3h65doUuXBH75xbRxCSHyJleFeO/evV92HEII8cq9qMiWIlyYC0WBbdvg009h9Gho3hzi48HWFm7cMPyFMS+LtbU1arWaS5cuFWifQryJZEoAIYQQwozt3p1VgP/xB3zwAVT6/1/2amtrmng0X1gjhMi/PBXily9fZuHChZw9e5bU1FS99StWrMh3YEII8bJdSgQPZ3DO4V6349egfHEws+mxxRtCMwxl8GAoWxZ+/hn8/U0bkxCiYBldiB8+fJh3332XIkWKcPnyZcqVK8e9e/e4desWxYoVw9fX1+ggUlJSmDFjBocOHdLOQ96sWTO9dunp6UyZMoXz58+TkJDAmDFjqFatmnb99u3b+e2337hx4wZ2dna88847dOvWDXt7ewCWLFnCypUrdS6BjRkzhqCgIKNjFkK83hQFfjkAD5/AkGb6xfi2E7BsPwxvDgFFTROjeDMdPQqjRkFwMIwZk3VG3MaMRknduXMnx69Vzw93d3ez+1IoIV42owvxIUOG0LJlSxYsWICNjQ0LFy4kODiYHTt20K1bN2JiYowO4scffyQzM5O5c+dy8+ZNRo8ejY+PD5U019+yCQwMpGXLlkyZMkVv3dOnT/nggw8oU6YMqampTJo0iblz59K3b19tm9q1azNkyBCjYxRC/LuoVNCvPkzZBJNis4pxx/9f7Gw/Ccv/gp5hUoSLV+f0aRg7FlasgBYtoHXrrOXmVIQDXLlyBbW64Melu7q6SiEu3jhGv+IPHz5M165dtb8smqEp9evXZ9SoUQwdOtSo/lJTU9m7dy+RkZE4ODjg7+9P/fr12bZtm15ba2trWrduTVBQkMFf1mbNmlGhQgVsbGxwcXGhcePGnDp1ythDFEK8IRxsYVATsLbMKsYfpsKf8Y4s/0tFzzB45y1TRyjeBJqadto0uHsX/vwT1q2DKlVMG5cQ4uXL0xhxOzs7LCwsKFKkCFeuXKF27doAlCpVyujC9/r16wCULFlSu+ytt95i7dq1eQlNx/Hjx3X6BTh48CAREREUKlSIBg0a0LZtW/kLXIg3mKYYn7IJopdaAIXoGarmnbdkylbxct24YcHnn6u4fRvWrIFvvzW/s9/PU6ZMmQLr6+zZswXWlxCvE6ML8XLlynHx4kXCwsKoUaMGU6dOpXr16lhbWzN58mRKlSplVH+pqanaMdwajo6OPHnyxNjQdOzbt4/ff/+dyZMna5eFhITQuHFj3NzcuHjxIhMnTsTCwoK2bdvqbJuUlERSUhIAiYmJpKWlAeT7Upxm+5dxSS+/FEVBrVajVqvNbs54c82b5CxvzDFvdtZQqQRcSsr6o7yslxpzSp055kxDXmvGu30bxo+HH38sSoUK8PnnWa83KyvM6nUnhHj5jC7Eu3fvzpUrVwD44osvaNy4MWXLlgWyzpQbO2OKnZ2dXtH96NEjveLcGP/88w/fffcdn376KcWLF9cuz352PCAggPDwcDZt2qRXiK9atYrZs2drfw4NDQXg1q1beY4pu4SEhALp500jeTOe5Cx3/ox3ZONpF1oH3efANQcmxqr44J0EHG2kKsotea29mFqdNQPP0qUObN3qyMyZD2nUKBWVCgro40W8YeLi4vjyyy/ZsmWLqUN5ofj4ePz8/Hjy5Al2djlMVfWKnD59msDAQO1Nxy1atKB///40atTolcdidCH+wQcfaP9fsWJFTp48ye+//05qaip16tTB29vbqP407a9evUqJEiUAuHTpUp5mXwE4evQoEydOZNiwYZQvX/65bXM6Q9KuXTtt8Z2YmMjGjRsB8PLyylNMGmq1moSEBDw9Pc1uOIyiKGRkZGBlZWVWZ47AfPMmOcsbc8vb9pOw8bSKHu8qVC/lRIViiSw+7MWCQ0UZ3ETJcWrDV8nccpadvNZeLDkZvvkGVq5U8ddfCv37w8cfq0lKSi2QvBXUSSJz1rp1azZt2sTNmzdxd3fXLp83bx7du3fH3t4eCwsLvL29GTFiBF27dtXZfubMmfzwww+cP38eFxcXgoODGTFiBCEhIcybN48ffviBffv26WxTs2ZNevfuTVRUlMGYoqKiWLJkCTb/fzyRr68vn3/+Oe3atdO2uX37NqNHj2bDhg08ePAALy8vWrZsySeffIKHh0e+8zJ8+HC++uqrfPfzphs5cuTrU4g/y9XVlVatWuV5ezs7O+rUqcPixYvp378/t2/fZvv27Tne9Jmeno6iKCiKQmZmJmlpaVhZWWFhYcGxY8cYP348gwcPNjjjyr59+wgKCsLZ2ZlLly6xcuVKGjZsqNfOw8ND+wvi4uKi/SUrqA8ZCwsLs/zA0sRlbh/0GuaWN8lZ3phT3rad+L/ZUd55S4VaDfbWCgMbK0zdYsGUTSqDUxu+auaUs5zIa03fo0cwYwZMmAAuLllTEdrYqHSGoJhj3sxNQkICGzduxMnJiSVLlvDRRx/prH/77bfZt28fiqKwYcMG3n//fWrUqKG9Wh8dHc2aNWuYNWsWdevWxcLCgo0bN7J27VpCQkLyFdvAgQMZP348iqKwefNm2rRpQ61atShevDj37t2jdu3aVKtWjd9//5233nqL27dv88MPP7B//36aN2+er30fOXKEGzduEBYWlq9+Xob09PTX6ttSa9euzYMHDzhw4ADVq1d/pfs2+rd/xYoVL3wYq1evXkDWX5efffYZERERVK5cGYDw8HBOnDihbdunTx/at29PYmIiMTExtG/fXrt+2bJlPH78mPHjxxMeHk54eDj9+vXTbrtnzx569+5NeHg4X331FfXr19cbliKEeDMoCtxOxuDsKJobOD2cIUX/O8uEeC5NkX3uHEyfDl98AWfOQFRU1jjwf7Px48ezaNEig+sWLVrE+PHjje5z0aJFlC5dmujoaObOnZtjO5VKRcuWLXF1deXo0aMAnD9/nm+//ZZly5bRqFEj7O3tsbW1pU2bNjr3kOWXSqWiSZMmuLi4cP78eQCmTp2Kvb09S5cuxd/fH5VKhZeXF2PHjtUW4ZMmTSIgIABnZ2cCAwNZtWpVrve5YcMGwsLCdP7IVKlUnD59Wvvz8OHDtWf04+PjUalU/PTTT5QoUQJPT09Gjhypvb9j3rx51KxZk4EDB+Lq6oq/v79OTZeWlsaIESMoVaoUHh4edO7cmXv37un0/fPPP1OqVCmqPGfKn0WLFhncv6IoTJgwAT8/Pzw8PHj//fe1V3s0/Wf/EsmOHTsyduxYIGuIjpeXF9OnT6dYsWJ4enoyadIkbdvU1FR6I/yA/AAAIABJREFU9OiBm5sbpUuXNjgzX1hYGOvXr89V7guS0W8JHTt2NLg8+wshPDzcqD6dnJwYPny4wXXPFvY//fRTjv188cUXz93P4MGDjYpLCPHvpVJBRK2c1zvYQv/3Xl084vWXng5z52bdiLllS9b0gxcvwmt0YjDffHx8+PjjjwGIjIzULl+0aBEff/wx06dPN7rPuXPnEhERQadOnRg9ejRHjx41eNVbrVazdu1a7ty5Q0BAAADbtm3D29ubmjVr5vGIcketVhMbG8vTp0+pUKECAFu2bOH999/H0tIyx+38/PzYtWsXxYoVY+XKlURGRlKjRg18fHxeuM+jR48+t+DNycaNGzl58iQJCQm89957lC5dmm7dugFw4MABWrVqRWJiIjt37qR169ZUrVqV0qVLM2LECE6cOMFff/2Fs7Mzffr04aOPPmLx4sXavjdv3szRo0efezY8p/3Pnz+fmTNnsnnzZkqUKMFHH31E586d2bFjR66OKykpiRs3bnD58mWOHDlCSEgIbdu2JSAggHHjxnHs2DHOnDkDZA11elZgYCC7du0yJpUFwugz4levXtV7/PPPP0ycOJGyZcvy559/vow4hRBCCLOUmQkLF0K5cjBsGHz4IWhuKXqTinDIKr6nT5/Oxx9/rD0znr0Iz16c58aBAwc4ceIEERER+Pn5UadOHb2z4gcOHMDV1RU7OzvCw8OZNm0aVatWBbK+BTT7pA3P24+rq6vO48CBAy/cbtq0abi6uuLo6Ejr1q0ZO3asdgx7bvbdvn17vL29sbCwoEOHDpQtW5b9+/e/cL8A9+7dw8XFJVdtsxs7dizOzs74+/vzv//9T6eQdnd3Z/jw4VhbW9OoUSOaNGnC8uXLURSFH3/8kalTp+Lp6Ym9vT3jxo1j5cqVZGRkaLf/7LPPcHFxee6EGzntf9GiRURHR1O2bFkcHByYMmUKcXFxXLt2LVfHZWFhweeff46NjQ3vvPMO5cqV48iRIwAsXbqUTz/9FE9PTzw9PQ2e/HV2dtae4X+VjC7Evb299R4VK1Zk0KBBdO/enc8///xlxCmEEEKYFbU66/H4cdb478hIuHQJRowAJydTR2c62Yvxpk2b5rkIh6yz4SEhIdoJHLp06cKiRYtIT0/XtqlevTr3798nOTmZ3r17s3PnTu26woULc+PGjRfuR9NH9kf2scJNmzbFyckJJycnvvzyS+3yAQMGcP/+fR4/fqw9Kfnrr7/met8LFiygSpUq2uL/+PHj2umTX8TNzY3k5ORctc0u+wxyvv+PvTsPj+l6Azj+nSxk30UkkcQWFAnSWlNiqdipXZPWUltRW2ntooKqxs9e1SJqV6XUWkpSVbQlqJLGFiEhC9llnZnfH9NMjWwzycgMzud55klm7p1z3zmZJO/c+55z3N2V67kAyg8Fz25PTEwkMzOTli1bKmNt1KgRBgYGxMfHF9m2psePjY1VmQLb1tYWKysrlfhKYmdnp3Im3szMjIyMDADi4uIKHfdZ6enp2NraqnUsbdLqCJHGjRsTFhamzSYFQRAEQa/I5fDjj9C0KezdC5aWEBUF8+eDjY2uo9MPgYGBtGjRgjNnztCiRYsyJeE5OTns2LGDCxcu4OTkhJOTE7NmzSIpKYmDBw8W2t/ExISQkBAuXryoTIY7duxIbGys2meZi3PkyBEyMjLIyMhg5syZhbZLJBIaNmyIr68vx48fB6BTp07s27ev2Dn27969y4gRI1i5ciWPHj0iJSWFRo0aKafUK42Xl5dKPTgo1mF58uSJ8n5RM+oUTEFd8P3Ts93FxsaqxFuw3cHBAVNTUy5duqTyYSU7O1vl+eoMPC7u+C4uLty9e1e5LTk5mbS0NFxcXLD495Ntaa+tOM7OzoWO+6zr16+XqdSnvLSWiOfm5hIaGkq1atW01aQgCIIg6A25HI4fhxYtoF8/aNMGCibdeNkHYWpq69atnDt3jtatW3Pu3LliB3CW5IcffiA/P5+rV69y6dIlLl26xNWrVxk4cGCxgzYrV67MlClTCAoKQi6XU7t2bSZMmMDgwYM5ceIE2dnZ5ObmcvDgQaZNm1bel6kiMjKSX3/9VVkjPnnyZDIzMwkICOD27dvI5XISExNZsGABhw8fJjMzE4AqVaoAirPjV69eVbZXMEAxOjq6yON169aN8PBwlcS9SZMmbNmyBalUym+//ab8QPK0+fPnk56ezu3bt1mxYgWDBw9Wbnv8+DGff/45eXl5nDhxgiNHjtC/f38MDAwYPXo0kydP5sGDB4BiNpui2i9NcccPCAhgxYoV3Lhxg6ysLKZNm0abNm1wdXXFwcEBV1dXNm/ejFQqZf/+/RqVQg8cOJBFixaRmJhIYmIiS5YsKbRPeHh4uWeyKQuN/3Q0a9as0GO5ublER0eTlpbGhg0btBKYIAiCIOgLqVSxGM+iReDtDd99B2pchX8lPVsTXnAf0OjM+KZNm3j33XepUaOGyuOTJ0/G19dXpSTiaSNGjGDBggXs37+f3r17s2zZMurUqcNHH33EjRs3sLKy4vXXXy/yzLamli1bxurVqwFFacSwYcMYNWoUoCitOHv2LHPmzMHX15e0tDScnJzo1asXzZs3x97enmnTptG6dWsMDAx47733aNWqlbLte/fu4e7uXuz6LE2aNMHZ2Znw8HDlFIYrV65kyJAh2NjY0KlTJwYPHqxyFhmgc+fOvPbaa2RnZ/P+++8rB2qCokQnISGBKlWqYGdnx8aNG5XTQH722WcsWrQIX19fEhISqFq1KgMHDixy4GNJijv+kCFDePDgAW+99Rbp6em8+eabbN++Xfm8DRs28MEHHxAUFMTAgQPp0aOH2secO3cu8fHxeHp64uDgwMSJE/ntt9+U28+dO4eFhUWROe7zJpGrew3kX4MGDSo0H6uJiQmurq7069dPOe3gyyIuLo7169czatQotQZ8lEQmk/Hw4UOcnJz0bt5YfVn4oij62m+iz8pG9JvmRJ+VjTb67Y8/YM4cRfK9ZIkiIS9hEgy1abPftPl/Sh0RERHIZDI8PT0LbStuYGZpAzajoqLw9vbGSFxaUAoODqZKlSrKKZ6LosnKmqWtbFncwkavgh49ejB+/Hj8/f0r/Ngav+N37tz5POIQBEEQBL1x5QrMnQsHDijKUIYMUTyujST8ZXb//v0ik+2C++rOgCHA7NmzS93Hz89PLxf0edHoYv7wAhon4l27dmX58uVFfhK+efMmEyZM4PDhw1oJThAEQRAqUn6+ot570ybF2e8LF+DfmfAENRS3JghoVpYiCK8KjRPxo0ePkpKSUuS2lJQUtS6PCIIgCII+uXNHMetJbKxiQOYXX4iz38LLxcPDo8QZWYYOHapchVOoOGUqTCuu1u7PP/9Ujv4VBEEQBH0XGwsffACennDzJsyapXhcJOGCIFQEtc6IL126lKVLlwKKJNzf37/QgIrs7GwyMzMZOXKk9qMUBEEQBC0qKEEJD4c//4SDB6FTJ9CzsbCCILzk1ErEmzZtyvvvv49cLufzzz+nR48ehUZmV6pUifr169O3b9/nEqggCIIglNfjx7B0KezerRiQOWgQDB4sEnBBEHRDrUS8Q4cOdOjQAVCcER8/fnyx81oKgiAIrw55dham504j79wdzMx1HU6x0tLgf/+DZcvAyQkWLgRTU8Xc4IJmrK2tkclkxc7jXdY29W1qTkGoCBoP1pw7dy5ZWVlFbnv8+DFmZmZFzk8pCIIgvHzSExIwO3+G9KbNsPGoUfoTKlhenqIEJS4Otm6FlSshIECshFkeNWvW1HUIgvDS0PhP0fvvv0+lSpUIDQ0ttG3atGnk5OSUaSlbfWZhYYGRkVGJo43VIZfLle2Uty1tK4hH3+IC/e030WdlI/pNc/rcZ2lpaZj++9Vaj+LLzob16+UsWWLEsWNyGjaEyMj/zoDrOlRtvtfEIjiC8OLS+Lc3LCxMuZzrs7p3765cxvZl0qRJE2xtbcnPzy93W7a2tshkMmQymRYi0z6pVKrrEIqkz/0m+qxsRL9pTh/6TJ4Qj/zkMSR9BiKpVBmZXNFPMrmM/Px85H9FIH8Qh0GnbjqJLy8PNm+WsGiRITk5Ej75RIa7u4yCP9/69GPV1nvN1tZWSxGp586dO8/lQ6G7uzuGYroa4RWjcSL++PFjrKysitxmaWlJUlJSuYPSNxERETRq1KjcUzPKZDIePXqEvb29Xi4FLZVKMTQ01Ls6PX3tN9FnZSP6TXP61GdyCwty7t8jf91KUtp35nH0HaoBj2/fxuzeXax+PUXG6y0wevQI66pVKyyugs8ocjmsWQNjx8K4cXJMTWV60W/P0uZ7LTExUUtRqSclJeW5fFB1c3PTepuCoO80TsQ9PDwICwujY8eOhbaFhYW9lL9IGRkZ5Ofnl/sPuUQiUbajb/8UCuhjbPreb/oYl773GYh+Kwt9iEtqbsGGvyMZ6eKI485QHP99vMG5cADScnK59eN+MiIi6Ljw8+cej0wGe/bAvHkwcya8+65iNhQDA0VSnp+vH/32LG2+17RxtbYsilphu6yioqK01pYgvEg0/hg+bNgwli5dysqVK0lPTwcUieqqVav44osvGD58uNaDFARBEPTDmTNnmLRzD+srW5FvaU2mpTUAcuDBa960/vE4s+7E8caEj55rHHI5HDigWH5+6FDo2RO6dFFs06OLGYIgCCXS+Iz4tGnTiIqKYtKkSUyePBlzc3MyMzORy+UMGzaMTz755HnEKQiCIOiBtm3bEhoaytChQ7FesZyBMYozmfGer9F1SQhVnJzYd/BgsSWM5SWXK+rAK1WC9evBzw+OHVNMSSgIgvCi0fi8gYGBARs2bODKlSssW7aMSZMmsWzZMq5cucKGDRv07vKfIAiCoF2BgYGEhoZyaO1/A/fvnTlNNXt7jhw58tyS8NOnFYn31KmK+z/+CCtWiCRceL5CQ0NVVg2XSCRERkbqMKLC/Pz8WLduna7DAKBFixbKmfX27NnDO++8o9uA9FyZL+A1bNiQiRMn8umnnzJx4kQaNmyozbgEQRAEPTa40WuEdu/E5BPh1Fi7kapmZhwc9DaWJpW1fqw//gB/f0US7u4OEyYoHhfnfV5+fn5+mJiYYGFhgaWlJa+//jrh4eEq+9y6dYt33nkHR0dHrKysqF+/PkFBQWRmZpb7+Pn5+cydO5fp06eXu61XUd++fYmIiOCvv/7SdSh6q8yJeH5+Prdv3+batWuFboIgCMLLS3r5Ivk7vyW7XSe+vHiFBxmZ/OjgjOGTTPI2rkOem6OV4+T828wPP4C1Nfz1F3z7LdSurZXmhectO5tKwbMUk7qXw/Lly8nIyCA1NZXRo0fTu3dv8vLyAMVUis2aNcPe3p6LFy+SlpbGkSNHSEpK4tatW+V+CT/++CNubm7UqlWr3G1pg1wu19ng3LKQSCQEBATw1Vdf6ToUvaVxIp6fn8/48eOxtramTp06NGrUqNBNEARBeDnJbt8kf+e3PGnbkdZTPqZVq1YsXLiQj4MXstPMFtLTyN++uVzHiIyEQYOgfXtFTXhwMOzeDa+9pqUXIVSMnGzVr+VkYGBAQEAAKSkpPHjwAIB58+bRrFkzVq1ahaurK6CY3W316tV4eXkBMGXKFNzc3LC0tKRp06aFzqiX5NChQ7Rv377Y7WlpaQwfPpyqVavi6urK1KlTyc3NBaBDhw5s27YNgMjISCQSCRs2bADg/v37mJubKz9QHD16FB8fH2xsbGjatCmnT59WHsPPz48ZM2bQtm1bzM3N+fPPP4uM5e7du7Rq1QpLS0s6dOjAvXv3lNt+//13WrRogbW1NV5eXhw+fFil/afLWo4ePYqHh4fyvoeHByEhIfj4+GBlZUXXrl1JTk5Wbt+5cyc1a9bE1taWqQV1Y09p164dBw8eLLYPX3UaJ+LBwcHs3buX1atXI5fLWbZsGWvXrqV169Z4eHjw/fffP484BUEQBD0gca9BRs9+tJ7yMba2thw6dIihQ4eyceNGhk+cxE4zWwzbdypT23fuKGZAadAAHj2CkBBF+YkoQRFAsaDV5s2bcXNzw9nZGYCffvqJ/v37l/g8Hx8fLl68SHJyMgEBAfTv358nT56odcwrV65Qr169YrdPmDCBuLg4/vnnH37//XdOnjzJ4sWLAUWCe+rUKUAxvXPNmjWV90+dOkWrVq0wNjbm8uXLBAQEsGLFCh4/fsyCBQvo3bu3yrosmzdvZsWKFaSnp9OkSZMiY9m4cSOrV68mMTGR2rVrExgYCEBycjKdO3fm/fff59GjRyxevJh+/fpx8+ZNtfoAYPv27fzwww/ExcWRkpLC//73PwD++ecfhg8fzvr160lISMDGxqbQB4X69etz9+5dleRd+I/GifiOHTsICgrivffeA8DX15fRo0fzyy+/0KJFC37++WetBykIgiDoh4SkJN58fxS2trYqAzMLBnAOnziJr48c06jNghKUS5fg1i34+Wc4fhxatNB29MJz9285SqXgWUhSUwCQpKYoHytLmcqUKVOwsbHBzMyMKVOmsHTpUoyMFJO+PXr0SJmUFycgIAAHBweMjIz46KOPyMvL4/r162odOzk5udjBxzKZjB07drBkyRJsbGxwdnZm7ty5bNmyBVAk4mFhYQCEh4cza9YsfvnlF0CRmPv5+QHw1VdfMWLECHx9fTEwMKBbt240btxY5az1e++9R+PGjTE0NKRy5aLHYQQGBtK0aVNMTExYsmQJp0+f5v79+xw6dAh3d3dGjhyJkZER3bp1o1OnTuzcuVOtPgD48MMPqV69OhYWFvTr14+LFy8CsGvXLrp06ULHjh0xNjZmxowZhVZ6tbS0VPalUJjGifi9e/eoX7++8s2QkpKi3DZkyBCNfrCCIAjCiyUxMZE6deoUOTtKQTKu7uIs8fEweTLUrAlpadC7N/zyi2JQpvBiMjx/Rvm98bdfq3x9dru6li1bRkpKCllZWRw/fpyRI0dy4cIFAOzt7YmLiyvx+SEhIdSvXx9ra2tsbGxITU1VexVwW1tb0tLSityWmJhIbm5uoTKO2NhYAJo3b05cXBz37t3j9OnT9O7dG1tbW27cuMGpU6eUiXh0dDSrVq3CxsZGeTt37pzK61JnscSn97GxscHKyorY2FhiY2NVYnw2TnU4PTU1kZmZGRkZGQDExcWpHNfQ0BAXFxeV5xasOfNsgi4oaJyIOzk5kZqaCih+kE/XMd2+ffu5LHsrCIIg6IeGDRuyf//+Ys8SBgYGEhISUmIbyckwY4YiAT9xQrEkvaWlKEN5GUibt1Z+n/feSJWvz27XlIGBAb6+vnh6eipLPDp16sSePXuKfc7p06dZtGgRu3btIjk5mZSUFKytrZHL5Wod08vLq9ipCh0cHKhUqRJ3795VPhYdHa1MRCtVqkTLli356quvcHBwwM7ODj8/P7Zs2UJ8fDzNmjUDFAn0xx9/TEpKivKWmZmpMlOLgRqrVMXExCi/T01NJS0tDRcXF1xcXFRifDZOCwsLlVKdhw8flnqsAs7OzirHlUqlhRL869ev4+bmJhLxYmiciLdp04YzZxSfaIcPH87ChQsJCAhg2LBhfPTRR3Tv3l3rQQqCIAgvvqwsxdfkZMUc4Bs2wOXLijPhIgF/SZiYkDt7IbmzFyK3tgFAbm2jfAwTk3I1f+7cOa5du6acMjkoKIjz588zadIk5RnkmJgYJk6cyJUrV0hPT8fIyAgHBwfy8/NZuHChyhnusLCwEtc/6datm7K85FmGhoYMGjSIWbNmkZqayoMHDwgODlbWZoOiPGXVqlXKs99+fn6sWLFCWR8OMGrUKNavX8+vv/6KTCYjKyuLU6dOcf/+fY36Ztu2bVy6dIns7GymT59O69atcXV1pWvXrkRHR7N582by8/M5cuQIP/30EwMGDACgSZMm7Nmzh4yMDO7du8eqVavUPmb//v05cuQIJ0+eJC8vjyVLlhQqQQkLC6Nbt24avZZXSZkGaxYMjJg6dSqffvopkZGRnD9/nhEjRrB69epSWhAEQRBeJZmZsGQJVK8OFy8qzoT/9ZdiZhSxHL1QmkmTJmFhYYGFhQWBgYEEBwfTuXNnAGrWrMn58+eJj4/H29sbKysr/P39sbe3p3bt2vj7+9O9e3fq1auHu7s7xsbGVK9eXdn2vXv3aNmyZbHH7tGjB3fv3uX27dtFbl+5ciX29vZ4enri4+NDmzZtmDFjhnJ7u3btSEtLUybibdu2JT09XXkfoGnTpmzevJmpU6dib2+Pu7s7ISEhGlcYDB06lLFjx1KlShX++ecf5YwtdnZ2HDp0iDVr1mBvb8/HH3/Mrl278PT0BGDy5MlYW1tTrVo13n77bQICAtQ+Zv369fn66695//33cXR05NGjR7z++uvK7XK5nG3btjF69GiNXsurRCJX9/rMc5SRkcGaNWu4ePEipqamDBgwgK5duxbaLy8vj5CQEG7evElCQgLz5s3Dx8dHZZ+DBw+yZ88esrKy8PHxYfz48ZiZmSmfX/Cp09DQkC5dupT6houLi2P9+vWMGjWq1AEhpZHJZDx8+BAnJye1LjNVpIK5SY2MjPRudVR97TfRZ2Uj+k1zL2qf5ebCl1/CokVgZARz5sDw4Yrl6SvCi9pvmtLm/yl1REREIJPJlIlcsbKzqfTFAnKnzin1THhUVBTe3t7KQZgVZcSIEfTv3x9/f/9i9wkNDeXMmTN8/fXXxe4jFO37779nz5497NixQ9eh6C29+E/z1VdfIZVK2bRpE3PmzGHbtm1cuXKlyH3r16/P5MmTcXBwKLQtIiKCnTt3MnfuXDZt2kReXp7KJPK7du0iOjqar776ipCQEMLDwzlx4sRze12CIAivorw8xU0uh23bFPXgN2/CmDEVl4QLeuDfMpXylqM8T998802JSTgozjSLJLxs+vbtK5LwUqiViPv6+nLkyBG1G42Pj2fGjBksX7681H2zs7M5c+YMgYGBmJmZUatWLdq3b19kgmxsbEyvXr1o0KBBkWcQTp48SYcOHahZsyZmZmYEBATw66+/kvPv3FgnTpxg4MCBWFlZUbVqVXr27CkScUEQBC2RShUrX9atC6GhULkynD8PkyaBqamuoxMEQdA/aiXivXv35r333sPV1ZUJEyawa9curl27RmJiImlpacTExBAeHs6yZct46623qF69OleuXKFLly6ltl0wuvbp6W9q1qxZaISvOu7evUuNGjWU993d3ZHJZMTFxZGRkcHjx49VtteoUaNMxxEEQRBUffcdNGwI48fDu+/Cv+PAxCBMQRCEEqhVjDV16lRGjx7Nli1b+Pbbb1m7dm2hqX/kcjl2dnb07duXxYsXqxTrlyQ7OxvTZ06VmJubk1UwvF4D2dnZmJubK+9LJBLMzMzIyspStldQL17ScZKSkpRzjBbMEwqUe2rGgufr4xSPcrkcmUyGTCbTy1rKp7/qC9FnZSP6TXP62mdyOWRmKvpq717o0UPO1KlyCioHdd2N+tpvoL/vNUEQKpbaoyIsLS0ZO3YsY8eOJT09nQsXLvDgwQOys7Oxs7Ojbt26JS4DWxwTE5NCyXBmZmah5Fzdtp5dtvbJkyeYmpoq2yu4/+z3T/v+++9V6sHatm0LaDa3ZkkSEhK00s6rRvRbyfLk+RhLVH+lC/pMLpeTj7TQdqFo4r1WMrkcTp+uzOefW/Laa3l8/jksW/YQiQTy80FLfypfCeK9JgivtjL9V7a0tFSZeqc8CiaUv3fvnnJKoTt37uDu7q5xW+7u7ty5c0eZON+9excDAwOcnZ2pXLkydnZ2REdHY29vDygWICrqOH379lW2kZiYqKyPf3plqbKQyWQkJCTg6OioVzMygP7PLqCP/aZPfXYm5Qojry/mcONleJhWU+kziUTCnNvr+Sczhu+8Fuo0TtCvfnuWeK+V7swZmD1bwm+/wbBhMGOGop+qVtWvPgP96rdnafO9pq2TRJpSdwVVQRCKp/PTYyYmJrRu3Zpt27YxYcIE4uPj+fnnn/n444+L3D8vLw+5XI5cLkcqlZKbm4uRkREGBga0b9+eZcuW0bZtW6pWrcq2bdvw9fWlcuXKAHTo0IFdu3ZRp04dsrKyOHDggHJC+6c5ODgoZ2WxsrKi0r/D/LX1T8bAwEAv/2EVxKVv/7AK6Fu/6VOfvWFdHw/TanS4+CGnXl+DW+WqgKI8a+6dr1kes4sfGy/Vi/7Tp34rjnivFZaZCebmiiXo3d1h40aoVQtkMgMePtS/PgP96LfS6GO/lcbZ2fm5lNTo689IEJ4nnSfiAKNHj2b16tUMHTpUOduJt7c3AAMGDGDevHk0aNAAgA8++EB5KS84OBiAhQsX0qhRI5o0acLAgQOZP38+T548wcfHR2US+UGDBpGWlsaoUaOU84h37Nixgl+tIGifiWFlfvBeQu/Ln9Duz3H83HQVleUw5/Z6ZRLewf4NXYcpvIAuX4a5c+HePbhwAWbOFAMwX3VVq1bVdQiC8NLQi0TcwsKC6dOnF7lt9+7dKve/+eabEtvq3r073bt3L3KbsbEx48aNY9y4cWULVBD02NPJePuL4/Gp7MmR9PMiCRfK5MYNxQI8u3dD9+6KM+AiARcEQdAuvUjEBUHQDhPDyuzz/gyzk+24m/2Qr+vPEEm4oJGMDLCwgFu34NEj+O03aNFC11EJ+uTvv/8uNHOaNtSrV6/CV9YUBF3T6B2fk5PDN998g5+fn7JURBAE/SGXywm+E4oECYYYsPBOKB3t38DDtJquQxP03P37EBysmA/85k3o3FlxE4Rn5ebmimkXBUFLNErEK1euzLRp0zRaZVMQhIohl8uZfesr/nd3J8eaLKdWtiMfxC+n3Z/jOPX6GpGMC0VKSoKFC+HLL6FRI9i+HWxsdB2V8CLw9PTUWltiBhbhVaXxUO1GjRqJXxhB0DNyuZxZN75acfafAAAgAElEQVTmf3d3KmrC7V7HxKAS+7wWU9fcjXZ/jONW5gNdhynokfR0xdfsbMWUhLt2we+/g7+/qAUXBEGoKBon4suXL2fp0qUcPnwYqVT6PGISBEFDu27+Q9TZzuyos0KlJtzEsDL7vJbwetoYZh2J12GEgr5IS4P588HVFc6dU3z9/Xfo1Usk4IIgCBVN40S8Z8+exMbG0qNHDypXrkyVKlVwdHRU3sS0RoJQ8frWqEeTKo6cOetNUvp/j8vlcPhSZeyS3mL86zV0F6Cgczk5sGQJ1KgBoaGwYgW8/rquoxIE/RcaGsrIkSN1HYZawsLCyr34oLYcPXoUDw8PQHHVtmnTply/fl23QekhjYcnv//++2LSfUHQM8ZG8HEnE1adgM8Pw9TOiiR830UJJ/6GiZ0kvOZsreswBR3Izlac6TY0hGPHFPXgw4fDv+uUCYJe8/Pz49y5c8rVUevWrUtISIhy9WuAW7duMWfOHE6cOEF2djYuLi4MHDiQadOmYW5uXq7j5+fnM3fuXE6dOlXel/JKk0gkTJ06lTlz5rBnzx5dh6NXNE7EP/vss+cRhyAI5WRsBB92hFUnYOlRCa5WNlyPhwmd4DVnXUcnVLS8PNi0CRYsgE8+gfHj4eRJXUclvOwMfjkJVtbIGvsU3nbpAqSlImvTXqM2ly9fzpgxY5DJZGzYsIHevXuTkJCAsbExd+7coVmzZrzzzjtcvHgRV1dXoqOj+eKLL7h16xZeXl7lej0//vgjbm5u1KpVq1ztPA95eXkYGxvrOgy1vf3224wfP54HDx5QrZqYPKBAmdfVzc3N5cKFCxw/fpwLFy6Ql5enzbgEQSgDYyMY3xEeZUi4HGfGOy3kIgl/BW3dCvXqKRLwsWNh6FBdRyS8MqysMTz0gyLpforBpQsYHvoBrMp+Zc7AwICAgABSUlJ48EAx+HzevHk0a9aMVatW4erqCoCHhwerV69WJuFTpkzBzc0NS0tLmjZtSnh4uNrHPHToEO3b//fBITo6GolEQnZ2tvKxQYMGERQUBPxXGrJ06VIcHR1xdXVlxYoVyn2DgoLo06cPgYGBWFpa0qBBA5V40tLSGD16NK6urjg5OTF+/HjlsQraXrZsGc7OzvTs2bPYuIs7fm5uLlOnTsXV1ZWqVasyfPhw0tLSVNp/WosWLQgNDQUUJTotWrRg1qxZ2Nvb4+LiwrZt25T7Jicn06dPH6ytrfHy8uLSpUsqbZmamuLj48PRo0dL7PNXTZkS8ZCQEJycnGjWrBn+/v40a9aMqlWrsmzZMm3HJwiCBuRy+PESSJBjIJFz8LJEpWZceHnJZIqBmADh4RAYCHfuwIwZigV6BKEiyBr7IO3WWyUZL0jCpd16F3mmXF1SqZTNmzfj5uaGs7PiDMNPP/1E//79S3yej48PFy9eJDk5mYCAAPr378+TJ0/UOuaVK1eoV6+eRnEmJSVx584dYmJi2L9/P/Pnz1cpbTlw4AD+/v4kJyfz8ccf06tXL5KTkwEYNmwYOTk5XLt2jcjISG7cuMGCBQtU2r579y63b99m7969Gh9/0aJFnDx5kt9//51//vmHuLg4Jk6cqPZru3DhAs7OzsTHx7Nq1SpGjx6tTOTHjx+PVCrl/v377Nu3j40bNxZ6fv369Qsl6K86jRPxtWvXMm3aNHr27Mnhw4eJiIjg8OHD9OrVi2nTpvHll18+jzgFQSiFXA57L8DxqzDFX86ctx5Q1VpRMy6S8ZeXXA4//ghNm8KECYrHvv5aMTOKmA9c0IWnk3Gjb78udxI+ZcoUbGxsMDMzY8qUKSxdulS5AuejR4+USXlxAgICcHBwwMjIiI8++oi8vDy1Bw0mJydjZWWlUbwymYzFixdjYmKCj48PQ4YMUTlz7O3tzbvvvouRkRFDhgyhRo0aHDp0iISEBA4cOMCqVauwsrLCxsaG2bNns2PHDuVz5XK5sm1TU1ONj79161bmzZuHs7MzNjY2fPbZZ2zfvl3tBZpcXFwYN24cRkZG9OnTBwMDA6KiopBKpXz33XcEBwdjaWlJrVq1GDduXKHnW1paKj90CAoaJ+IrV65k0qRJhIaG4u/vj7e3N/7+/mzatImJEyeqXAIRBKFiPJ2ET+gE9Z3B2BDGt5fjJJLxl1ZYmGL5+X79oE0bEEN4BH0ha+yDvLobBjHRyKu7letM+LJly0hJSSErK4vjx48zcuRILlxQnG23t7cnLi6uxOeHhIRQv359rK2tsbGxITU1laSkJLWObWtrqzzjqy5ra2usrf8rwXF3dyc2NlZ5383NTWX/gu3R0dFIpVKqV6+OjY0NNjY2dO/enYSEBOW+9vb2mJmZlfn4sbGxyplMQFHGk5ubS2Jiolqv7dnSFTMzMzIyMkhMTCQvL0/ltbm7uxd6fnp6Ora2tmod61WhcSIeHR1N165di9zWpUsXoqOjyxuTIAgainzwXxL+dE14wQBOJ2sI/VV38QnalZKi+Hr5Mnh7w40bsHIl6MmsZYKAwaULSO7FIHPzQHIvplDNeJnaNDDA19cXT09PZalFp06dSpyF4/Tp0yxatIhdu3aRnJxMSkoK1tbWyOVytY7p5eVFZGSk8r7Fv3VeT5e2PHz4UOU5qampKsl7TEwMLi4uKvefVrDdzc0NIyMjEhISSElJISUlhdTUVDIyMlT6oDQlHd/FxYW7d+8qt0VHR1OpUiWqVKmChYVFoZKdZ19bcapUqYKxsbHKa3v2dQJcv36dxo0bq9Xmq0LjRLxatWqcO3euyG3nz58XI2EFQQfqO8OCvkXPjlKQjI9oW3ib8GIpWPnS11dxFWTiRFi/Hp45wSYIOvV0TXj+eyML1YyXx7lz57h27RoNGzYEFIMfz58/z6RJk5RnxmNiYpg4cSJXrlwhPT0dIyMjHBwcyM/PZ+HChSpJalhYWIlTMnfr1o2wsDDlfQcHB1xdXdm8eTNSqZT9+/dz9uxZ1ddvYMDMmTPJyckhIiKCzZs3M3jwYOX2y5cvs337dvLz89myZQu3bt2ia9euODk50a1bNyZOnEhycjJyuZx79+5pPLixpOMHBAQQHBzMw4cPSU1NZebMmQwePBgDAwM8PT2RSqXs3buX/Px81qxZo3ImvySGhob07duXuXPnkp6ezu3bt1mzZo3KPtnZ2Vy4cAF/f3+NXs/LTuNEfOjQoSxYsID58+dz/fp1kpOTiYyM5NNPP2XBggUMGzbsecSpUxYWFhgZGSGXy8t901Y7z+MG6DyGF63f9KnPHCyK7zMjQznWprqPUR/77dmbPr7Xrl+X06ePIS1bgrW1nF275IDu49LnPiu4vQrvtYJ6aX1Q1MDMogZwamLSpElYWFhgYWFBYGAgwcHBdO7cGYCaNWty/vx54uPj8fb2xsrKCn9/f+zt7alduzb+/v50796devXq4e7ujrGxMdWrV1e2fe/ePVq2bFnssXv06KEcHFlgw4YNrF69Gjs7Ow4dOkSPHj1UnuPg4IC7uzvVq1ene/fuzJ49mw4dOii3F4yxs7W1ZfHixezbtw87OzsANm/ejJGREY0bN8ba2hp/f3+ioqI06q+Sjj9z5kx8fX1p2rQpnp6eODo6KkuKraysWLduHR9++CFVq1bl4cOH+PioX1K0evVq5HI5rq6u9O7du1A++MMPP9CuXbtSa/pfNRJ5wV8qNclkMj788EPWr1+vUtxvYGDAmDFjWLly5Uu14E9cXBzXr1+nTZs2ug5FEIRXTHIy2NrCL79IWLbMgHnzpDRpouuoBH20cOFCRo0aVSFJTkREBDKZDE9Pz0LbyjqPeFRUFN7e3hX+oWLEiBH079+/xLO0oaGhnDlzhq+//rrU9sLCwhg0aFCxJR1BQUFERkayc+fOMsf8IpLL5fj4+LB161Zee+01XYejVzR+xxsYGLBmzRpmz57N2bNnSU5Oxs7OjpYtW+rNsqraFhERQaNGjahSpUq52pHJZDx69Ah7e3u16rwqklwuRyqVYmhoqHcfpPS130SflY3ot9Ldvq1YiOf77xVTELZrJ6dNG9FnmnpV3mvqDrSrCCUt1lOeAZvPyzfffFPqPkOHDmWomIy/XCQSCRcvXtR1GHpJo0Q8Ozubd999lwkTJvDmm2/Sp0+f5xWXXsnIyCA/P7/cf8glEomyHX37p1BAH2PT937Tx7j0vc9A9FtREhNh7lz45hto3lwxLaGDg6IevCA+0Wea08fYtNlv+fn5WopKEISKplEibmJiwrFjx4qcG1IQBEEom8ePFSUocjlcv65IwP39Qc9yR0EQSuHn51fiTCMFK3AKQgGNr4d17NhRZYUoQRAEoWweP1asfFm9Ovz6Kzg6KuYG79xZJOGCIAivAo1rxD/44ANGjBhBVlYWXbp0wdHRsdBlNVGILwiCULycHFiyBEJCFHN/b9wIrVvrOipBEAShommciBeMLP7iiy8ICQlR2SaXy5FIJEilUu1EJwiCUIHk2VmYnjuNvHN3MDPXevuZmWBgAJUrwx9/wIoVEBgIejT7nCCoTdNp9QRBKEzjP/9Hjhx5HnEIgiDoXnY2ZufPgF9HrSbi2dmKhXcWLYJPPoHJkxV14ILwIqpTp85zaVffZt0RhIqgUSKem5tLfn4+DRo0wMPD4zmFJAiC8PLYsAGCghTlKDNnwujRuo5IEMqnYJl3QRDKT6NE3NjYmD59+nD06FGRiAuC8MKTZ2VBdpbyfsb9e5j8+9WqYOyLiSkSU1ON2pVKITUV7Ozgr79g7Fj48EMQ+YvwMnhe5acGBgZ6N82kIDxvGiXiEomEunXrEhcX97ziEQRBqDDSX08hPXFUed+k4Ou2jeT++71hx84YvdVVrfZkMsUiPHPnQtOmsG0bLF+u3ZgFQdeuXLmisrK2tuhiZU1B0DWNC7KCg4MJDg7m77//fh7xCIIgVJgzV69xp+1bVJoeRKXpQST1HghAUu+BGE6bw2kjEzI81ZsF6vhxRfI9ZAj07KkYiCkIgiAIJdH4o+eCBQtISkrCy8sLV1fXQtMXSiQSzp8/r9UgBUEQtE0mk5F/MwqrO1GcycrG7Y3mxKWl4wDcTU7h77kz8DI25Pb1azR19yiyDblcsRqmo6NiKfo2beDoUcWUhILwsvP09NRaW2IGFuFVpXEiXrt2bWrXrv08YhEEQagwBgYG/GJXlXsR5+ko/4kuH3xAanYO/4wZSuSa5XSpVYMuu/bRy7YaTTsXLk05fRpmz4aHDyEyEkaN0sGLEARBEF5oGifiO3bseB5xCIIgVLgpU6fyOCmJyC8WcWxQH/6sWZezf5yla+2aRLX0Y//U2VhbW6s85+pVmDpVUYoSEKBYjEeMLxMEQRDKotyjIh4/foyNjU255v/MyMhgzZo1XLx4EVNTUwYMGEDXrkUPjrp69Srr1q3j4cOHeHh4MGHCBNzc3ABYu3YtYWFhyn2lUin5+fls2bIFKysrtm/fznfffYexsbFyn3nz5tGgQYMyxy4IwovL2toaa2trqq9cx5nJ4/B/cBdcnTnf0Ic2gwar7BsfD1WrKhblsbRUzIYiFhEWhFfPokWLiIqKIjQ0lOjoaGrUqEFWVhYmJialP7kUN27coE+fPly+fBkDAwP8/PwYNGgQY8aM0ULk2hEUFERkZCQ7d+7UdShMnz6dhw8fEhoaSmxsLB07duTSpUtUrlxZ16GprUzZc1hYGH5+flhYWODo6MilS5cAGDduHLt27dK4va+++gqpVMqmTZuYM2cO27Zt48qVK4X2S0tLY+HChfTr148dO3bQvHlzgoODlVMpjR07lt27dytvPXr0wMvLCysrK2UbrVq1UtlHJOGCIEgkEmRPn0x46h9qZCQMGgQeHop68ObN4bvvRBIuCBVl69atNG7cGDMzM6pUqcLQoUN5+PBhhRw7NDSUFi1aqDw2c+ZMQkNDn8vx5syZw5QpU8TiRmXg4uLCm2++yddff63rUDSi8U96z549dOjQAWtraxYuXKgyhZGrqysbNmzQqL3s7GzOnDlDYGAgZmZm1KpVi/bt23PixIlC+549exZnZ2f8/PyUc5pnZWVx9erVQvtKpVLCwsLo2LGjpi9REIRXiDQ/n1+mfEh9iZxLzdtw6P4Dap/+mTP7fmXYMGjQAB49glOnoEoVXUcrCC+O1PxMrM51IjU/s8xtrFixgkmTJvHpp5+SnJzMpUuXyMvLw9fXl9TUVC1Gq3sJCQkcOXKEfv366ToUpby8PF2HoJH33nuPdevW6ToMjWiciAcFBTFu3Dj279/P+PHjVbY1atSIv/76S6P2YmNjAZTlJQA1a9bk7t27hfaNiYmhRo0ayvuGhoa4u7sXue/FixfJyckp9En2woULBAQEMHbsWL7//vvnMheqIAgvhv+ScBmPe/Tjjd59cJ+0jH+kEmyP7OH29Uf8/LOiHvyZPyWCIJQiTZqp8lXj56elMXv2bFauXEnPnj2pXLkyLi4ufPvttxgbG7Pi3zlCg4KCGDRokPJ52dnZSCQSoqOjAThy5AhNmzbFysqK6tWrM2fOHORyOQDR0dFIJBK2bNlCjRo1sLW1ZfLkyQBcv36dMWPG8Mcff2BhYYGFhQWZmZmFjvdszKNHj8bV1RUnJyfGjx9Pdna2Wq/3p59+wtvbG0tLyyK3y+VylixZQo0aNXBwcKBPnz7KKwMLFixg5MiRyn2rVavGu+++q7xfq1Ytzpw5AyjKX7p06YKDgwO1atVi7dq1yv2CgoLo06cPQ4cOxcbGhpCQkCJjyc3NJTAwEEtLSxo0aEB4eLhy24MHD+jTpw8ODg7UqFGDJUuWKPu7tJ/V0KFDGTt2LH369MHS0hIvLy9l1QUo5rB/4403sLS0pFu3biQnJ6vE1aJFC27fvs2dO3eK72g9o3EifvPmTXr16lXkNgsLi0KdUprs7GxMn1m1ztzcnKysrEL7ZmVlYWZmpta+x48f580331SpE/L19WXNmjVs2bKFKVOmcOzYMfbv31/ouUlJSURGRhIZGcmtW7fIzVUs7SGTycp901Y7r9pN9JvoM23f8vPzCf9IkYQnde+DbYMOTJ4Mrd90Jaf7ShIqZbGj2QycjU7rPFZ9v4n3mm777WV19uxZsrKy6N+/v8rjhoaG9O/fn2PHjqnVjrm5OaGhoaSkpHDo0CHWr1/P999/r7LPyZMnuXr1KhcuXGDTpk2cPHmS+vXrs27dOt544w0yMjLIyMjA3Ny8xGMNGzaMnJwcrl27RmRkJDdu3GDBggVqxXnlyhXq1atX7PbNmzfz5ZdfcvToUWJiYrCxseGdd94BwM/Pj1OnTgEQGRmJqampMjm+f/8+Dx8+pFmzZjx58oSOHTvSs2dPHjx4wOHDh/nss884fvy48jg//vgjnTt35vHjx0ycOLHIWA4cOIC/vz/Jycl8/PHH9OrVS5n/vfPOO9jY2BATE8PRo0dZu3Yt3377rVp9AIpJQaZOnUpKSgrt27dnwoQJgOLsfK9evXj77beVsW3ZskXluUZGRtSuXVsledd3Gg/WdHR05ObNm3To0KHQtqtXr6qc2VaHiYlJoUQ6MzOzUHIOYGpqypMnT1Qee/LkSaF909LS+PPPP1myZInK40/HVrt2bQYMGMDRo0d5++23Vfb7/vvvVWqM2rZtC6C1mrSEhASttPOqEf2mOdFnJctxdOJ6zQbsPdCKDb3Aw0PKl1+m08grG9lrM7m0ejk1zMwqrB71RSbea2XzsvVban4m1f9U/E899toyAO7nJNAgIhCAe6/vw9qo5GS2QFJSEg4ODioTLBSoVq0aiYmJarXTpk0b5fdeXl4MHjyY8PBwlRKQefPmYW5uTs2aNWnTpg0XL16kffv2arVfICEhgQMHDvD48WPlWe3Zs2czZMgQFi5cWOrzk5OTC83S9LStW7cyefJk6tatC0BISAj29vbcv3+f5s2bExcXx/379wkPD6dnz56cOnWKmzdvcvbsWVq1aoWxsTH79u3DycmJDz74AIC6desycuRIduzYwVtvvQWAj4+P8qx1UbkYKFZBLTjjPmTIEJYvX86hQ4fw8/MjPDycvXv3YmZmRt26dZk8eTJbtmxhyJAhavVjr169aNWqFaAoNfnmm28AxQezzMxMpk+fjoGBAZ06dcLf37/Q8y0tLTU+KaxLGifigwYNYu7cuTRs2FBZ9iGRSIiKiuLzzz9n+PDhGrXn4uICwL1796hevToAd+7cwd3dvdC+bm5uKp/aZDIZ0dHRheqpTp06hbOzM3Xq1Cnx2JJi5hzr27evMvlOTEzkyJEjADiVc5UOmUxGQkICjo6OejcQQy6Xk5+fj5GRUbH9oiv62m+iz8pGX/otLQ1ajZ+DhQV8tV/CN9/I6ddPQlJStrLfXJYUfVm2oulLnxVFvNfKRpv9pk8fFNc8+O9Ms/+1KSpfC7bPrP6eWm05ODiQlJREXl5eoWT8wYMHVFFz0Mb58+eZPn06V69eJTc3l5ycnEIn4J7+/25mZkZGRoZabT8tOjoaqVSqzGVA8R4smFCiNLa2tqSkpBS7PTY2Fg8PD5X9raysiI2NxdXVlZYtW3Lq1CnCwsIYOHAgcrmcU6dOcfbsWfz8/JQxRkREYGNjo2xHKpXy5ptvKu+rc0L12X3c3d2JjY0lNjYWa2trbG1tlds8PDyUZcjqePZnkZmpKG2Ki4vDxcVF5ffF3d29UJ+lp6erHF/fafzb/+mnn9KkSRPatGmjTJZ79epFw4YNee2115g1a5ZG7ZmYmNC6dWu2bdvGkydPuHPnDj///HORZ9xbtmxJbGws4eHh5OXlsW/fPkxNTWnYsKHKfidOnChykOa5c+dIT08HFMn+d999V6iGHBS//PXq1aNevXrUqlWLSpUqAYoFQMp701Y7r9pN9JvoM23dsrIMWLrUgFq1DPjqKwMMDQ3YuVPCO+8YYGQk+q0sN9Fnuu03fTKuWl/l9wVnxAu+Pru9NC1btsTExKRQGYlMJmPPnj20a9cOUJTFPn21/NkPJu+88w7dunUjJiaG1NRUPvjgA2XNcmk0+QDn5uaGkZERCQkJpKSkkJKSQmpqqtpJvZeXF5GRkcVud3FxURkTl5ycTFpamvKEpp+fH2FhYZw+fZo2bdoo7xfMdFcQY6tWrZTxpaSkkJ6ezuHDh5XtqvOeiomJKXTfxcUFFxcXUlNTVQbSRkdHK2Ms7WdVEmdnZ2JjY1XKsZ6NIz8/n5s3b9K4cWO129U1jX+DTUxMOHr0KAcPHmTAgAEEBgbSp08f9u7dy9GjR4u8hFSa0aNHA4oi/fnz5xMQEIC3tzcAAwYM4O+//wbAysqKmTNnsnv3bgYPHszZs2eZPXs2hoaGyrZu3rxJbGys8hf0ab/++itjxoxhwIABLF68mPbt2xf6VCwIwsvryy+hVi1YuRIWLoRJk3QdkSC8XKyNzElr8RNpLX7CtbIjAK6VHZWPqVuWAor/+Z9++ikffvghBw8eJDc3l7i4OIYMGUJKSgoffvghAE2aNOH06dPcvn2bzMxM5s+fr9JOwRlSU1NT/vzzT7Zv3652DFWrViU2NpacnJxS93VycqJbt25MnDiR5ORk5HI59+7d4+jRo8p9JBKJynonT3vrrbe4fPlysYl7QEAAK1as4MaNG2RlZTFt2jTatGmDq6sroEjE9+zZg4ODA3Z2drRt25bDhw8THx9Ps2bNAOjevTvR0dFs2LCBnJwc8vPz+euvv/jjjz/U7hOAy5cvs337duVaLbdu3aJr1664urrSpk0bPv74Y7KysoiKimLFihUEBipKk0r7WZWkZcuWmJmZ8fnnn5OXl8eJEydU+hYUVz88PDxUJvbQd2Ve0KdLly506dJFK0FYWFgwffr0Irft3r1b5X6jRo1Ys2ZNsW3Vrl2bvXv3Frlt6tSpZQ9SEIQXUl4ePH6sWIwnLg6mT4fRo6GY0kdBEPTIlClTcHBwYNasWfTv35/s7Gy8vb0JCwujatWqAHTo0IH33nsPHx8fbGxsCA4OVpnne+3atXz00UdMmjSJtm3b0r9/f5KSktQ6fvv27WncuDHVqlVDJpOVWmKxefNmZs2aRePGjUlOTsbV1ZUxY8bQuXNn7t+/j4WFBY0aNSryuVWrVqVr167s2bOHoUOHFto+ZMgQHjx4wFtvvUV6ejpvvvmmyoeK5s2bk5+frzz7bWdnh7u7O1WqVFGeJLWwsOD48eNMnTqVGTNmkJeXR7169QgODlarPwr07NmTw4cPM3r0aKpXr86+ffuws7MDYPv27YwdOxZXV1csLS0ZNWoU772nKEcq7WdVEmNjY3744QdGjBhBcHAwbdu25d1331X5kLRlyxZl/fuLQiJX9/rMKyouLo7169czatQonJ2dy9WWTCbj4cOHODk56d3lRH2vpdTHfhN9VjYV1W9SKWzbBvPng48PPPOZvkj62m/ivVY2r0q/afP/lDoiIiKQyWR4enqWuF/BwE11BmhGRUXh7e2NkVHJ5wcPHDjAsGHDOHnypPLK+Yti69at/P333yxevLjYfW7cuEHfvn2JiIhQudovlO5FXVmz3EvcC4Ig6JvDh+GjjyA2FiZPVtwEQahYBWUq2tSzZ082bNjA2bNnX7hEvKA8oyR16tQpcmVxoXQuLi5cv35d12FoTCTigiC8FORyuH8fqleH5GTo2ROmTQMHB11HJgiCNvXu3VvXIQiC1ujXdURBEAQNyeX/rXzp5wcyGQQEwJIlIgkXBEEQ9JtIxAVBeGFdvqxIvrt2BW9vOHUK9KxM+aX3JBd+vmHJk1xdRyIIgvDiUas05dnVLEvz7DL0giAI2hQTA25uIJGAuzts3KiYllCoeFm5cOqmJZ2byLAw0XU0giAILxa1EnELCwuNRpyru4qUIAiCJq5cgblzFYMxY2LAywu+/VbXUQnCq0UikSCRSLhx44ZW2xSEV5FaifjatWvFL4kgCDrz8KFi8Z3du6F7d/j9d8GDma0AACAASURBVHhqFWRBECrQi7RqoSDoO7US8TFjxjzvOARBEAq5e1cxC4q5uWJe8LNnoXlzXUclPMlVlKQAPM787+vT9fmmlcCsUsXHJgiC8CIp9/SFu3fvxt/fH2tra23EIwiCwP37iiXov/kGDh2CTp3gu+90HZVQ4KercCCi4J4i+15yWHWUbM8m0LtpxcYlVIz09HSex1qAlpaW4uq78MopVyIulUoZPHgwf/zxB02bir+4giCUT24ufPIJfPklNGoEBw/CW2/pOirhWZ0awpv/LqqYlC5jyWEDPukqw8Hyv2TcVJwNf2ndvHkTmUym9XbVWVlTEF425X7HP49PxYIgvFoeP1aUNVhbQ2Ym7NqlWJBHnBzTT2ZPlZ0U5GN25mBvobuYBEEQXkTio6cgCDqTlgbLl0NIiOJM+MyZsH69rqMSBEEdnp6eWmsrKipKa20JwoukXIm4gYEBAwcOxM7OTlvxCILwilixAhYsACsrxfeBgbqOSCgL00rQrnY6ppXMdR2KIAjCC6dcibhEImHHjh3aikVvWVhYYGRkVO4yHLlcrmxH30p6CuLRt7hAf/tN9JnmsrMhIUGOszNkZckJDobhw6HSv2UOug5VX/tNn99rpsZy/OtnYWpspnfx6XO/afO9JuqqBeHFVabfXqlUypYtW/jjjz+4f/8+y5Yto1atWuzbt4+GDRtSp04dbcepU02aNMHW1pb8/Pxyt2Vra4tMJnsuA120QV8XY9LnfhN9Vrq8PNi8WcKiRYb4+ChmQJk69b9+08KvltboU789S7zXyuZl7zdbW1stRSSoY9GiRURFRREaGkp0dDQ1atQgKysLE5PyLy1748YN+vTpw+XLlzEwMCj9CTomkUi4fv069erV02kc2dnZmJqacufOHTw8PBg/fjxeXl6MGjVKp3GpQ+NE/O7du3Tq1ImYmBgaNGhAREQE8+bNA+DYsWMcPHiQDRs2aD1QXYqIiKBRo0ZUqVKlXO3IZDIePXqEvb293v2CyeVypFIphoaGejd9lL72m+gz9Rw4AFOmQHIyTJsG48YpHhf9pj59fq8l56ax+J9QZtQdim0lK12Ho0Kf+02b77XExEQtRaWftm7dyhdffEFUVBTm5uZ069aNzz77DKcKWNUrNDSUdevWce7cOeVjM2fOfG7HmzNnDlOmTNGrvz8vounTp9OiRQuGDRuGsbGxrsMpkcY/6YkTJ2Jubs7t27c5d+6cyiW1du3a8csvv2g1QH2QkZFBfn6+clnf8ty01c7zuAE6j+FF6zfRZ0Xf5HIJt24pvpdKJQQGSrh9W8KMGRIsLUW/leWmr32WJs3ki/idpEkzdR7Li9RvEon23mvauFqrLZ/d38rWhGNFbtuacIzP7m/VqL0VK1YwadIkPv30U5KTk7l06RJ5eXn4+vqSmpqqjZD1RkJCAkeOHKFfv366DqWQvLw8XYegEVdXV+rVq8f+/ft1HUqpNE7Ef/75Z4KCgqhWrZryj1yBatWqERsbq7XgBEF4scjlijPgTZoo5v+WSqFPH5g/H2xsdB2dIAjPm2ulKnx4+3+FkvGtCcf48Pb/cK2k/pXltLQ0Zs+ezcqVK+nZsyeVK1fGxcWFb7/9FmNjY1asWAFAUFAQgwYNUj4vOzsbiURCdHQ0AEeOHKFp06ZYWVlRvXp15syZozyJGB0djUQiYcuWLdSoUQNbW1smT54MwPXr1xkzZgx//PEHFhYWWFhYkJmZWeh4z8Y8evRoXF1dcXJyYvz48WRnZ6v1en/66Se8vb2xtLRUPubh4cHRo0eV99etW4efn5/yvkQiYdWqVdSuXRs7OztGjhxJTk4OAGFhYTg5ObF06VIcHR1xdXVV9hkorhiFhITg6emJnZ0dXbt25f79+yptr169mrp162Jvb19s3MePHy/y+KC4olC3bl1sbW3p2LGjyuw4EomEyMhI5f3p06czdOhQoOSfCyiuKM2YMYMqVarg5ubGtm3bCsXVrl07fvzxx2Lj1hcaJ+IlXS5JSEjA3FyMnBeEV1FEBLRoAf37g5+fYjl6Q0NdRyU8D6l5GcRkPVTcsuMBiMmO/++xrIek5mXoOEpBFwId/VlVc7JKMl6QhK+qOZlAR3+12zp79ixZWVn0799f5XFDQ0P69+/PsWNFn3l/lrm5OaGhoaSkpHDo0CHWr1/P999/r7LPyZMnuXr1KhcuXGDTpk2cPHmS+vXrs27dOt544w0yMjLIyMgoNccZNmwYOTk5XLt2jcjISG7cuMGCBQvUivPKlStlqrXeuXMnv/32G5GRkVy6dIlFixYptyUlJXHnzh1iYmLYv38/8+fP59SpUwCsXr2a7du389NPPxEfH0/Tpk0ZOHCgStt79uzh9OnTxMfHa3z8sLAwJk+ezObNm4mPj6dVq1Z0795do7PrRf1cADZs2MB3333H+fPn+fvvv4tMuOvXr8+lS5fUPpauaJyI+/r6snLlSpXBLwVnxjdu3Ei7du20F50gCHrvn38UX83MwNsbbt5UTEdYAeWbgo78L2Yn7r++jfuvb9P2wlgA2l4Yq3zM/de3+V/MTh1HKejK08l4l78/KlMSDook0sHBocga32rVqqldG9+mTRu8vLwwMDDAy8uLwYMHEx4errLPvHnzMDc3p2bNmrRp04aLFy9qFCsoTkYeOHCAVatWYWVlhY2NDbNnz1Z7drnk5GSsrDQfZzF9+nQcHR1xdHRk9uzZKmeHZTIZixcvxsTEBB8fH4YMGaLc/uWXXxIcHIyHhwfGxsYEBQXx559/EhMTU6htU1NTjY+/detWhg4dSosWLahUqRJz5/6fvfsOj6LqHjj+3fRNDylAEhJqlF5/SpWqNEWaAQwdFF8lqIiINEFBkCpSBAUBpQiCIEV4pQsKIuWlKIhAEiAhDVJJz87vjzUjSxLYhCW7IefzPPskM3P3zpmTzeZk9s6dydy+fZvffvvN6GMr7Oeyfv163nzzTapWrYqLiwtTp07N91wXFxcSEhKM3pe5FPlizZkzZ9KyZUvq1q1Ljx490Gg0fPnll5w/f56zZ88WKcFCiNLr+HGYNAn274fwcHjiCbkZT1nxdkBfhvo+D0B4+k1an3ydQ42XUFlbUW3jZiO32SzL+vt0ZG3cT/ySco4WLnWLXIQDeHl5ER8fT3Z2dr5i/ObNm0ZPoPDbb78xbtw4zp8/T1ZWFpmZmfTo0cOgzd0Xfjo6OpKaWvRPdMLDw8nNzaVSpUrqurwLho3h4eFBYmJikfcbEBCgfh8YGGgwRNjNzQ03NzeD7XmfJISHh9OnTx+DkQ5WVlbcuHFD7fPuvou6/8jISDp16qRus7Gxwd/fv0hDmAv7uURFReXb771SUlJKxYxCRT4jXrduXX7//Xfq1q3L559/jqIorFu3Dh8fH44dO8YTTzzxKOIUZciam7s5m3K5wG06RcfMsK/lY28zunkTXnxRPwzFzQ3OnAE/P3NHJUqSm60zAdoK+odDeQACHMr/u05bATdbKcTLsjWx/+VYyh+0cKnLsZQ/Cr2A836aNWuGg4NDvmEkOp2OTZs2qZ/AOzs7k5aWpm6Pjo42aP/yyy/TtWtXrl27RlJSEv/5z3+Mnrv93mvh7icgIAAbGxtiY2NJTEwkMTGRpKQko4v6evXqGYyZhgcfG2BwBvvatWv43fWGnJSURHJycoHbAwIC2LZtmxprYmIi6enpNG/eXG1vzOwthe3fz8+PiIgIdVtubi43btxQtzs5OT3w2Arj6+ubb7/3unDhAg0aNDC6T3Mp1vw4QUFBbNiwgdu3b5OTk0NiYiKbNm0y+zySovRTFIU9cSdofzI0XzGuU3QM//NjZoet51qG8b+wZYVyn7MuiqLcd7sxLl3Sz/ft7q5/nDoFGzdCrVoP1a0Q4jFz95jwXbXn5hszbixXV1c+/PBDQkND2bFjB1lZWURFRTFo0CASExMJDQ0F9Pf6OHz4MFevXuXOnTv5hinknRnVarWcOHGCdevWGR1D+fLliYyMNLgAsTAVKlSga9euvPnmmyQkJKAoCtevXze42FKj0XDw4MECn//ss89y5swZg8K9YcOGrFu3jqysLP78809WrVqV73mzZs0iLi6OuLg4pk+fTr9+/dRtVlZWjB8/nszMTE6fPs3q1avV7f/5z3+YMGECV65cAfRDYzZu3GhMWozaf0hICKtXr+bEiRNkZWXx0Ucf4eHhwdNPP60e2zfffENubi6//vprkWY46dOnD5999hlhYWGkpKQwZcqUfG0OHjxI165di3w8Je2hJqqMj4/njz/+ID4+3lTxiDJPQ8PoCXTOGGtQjOsUHa9cmMlPkX8zMO4HnDOqmzlOy6ILv0rarI9Qbt8CICkmhv/Nn0VSTAyKopD14w/cWbmsWH1fvQqDBkHNmrBnD2i1sHo1lIITDaIEuNk4M9o7WIaiCKDgCzMLuoDTWKNHj2bu3LlMmDABNzc3/Pz8OHfuHAcPHqR8ef2nMe3bt2fgwIE0btyYOnXq0KFDB4M+lixZwocffoiLiwtTpkzJd/Hn/bRr144GDRpQsWJF3N3duXPnzn3br169GhsbGxo0aICbmxsdO3ZUZwq5ceMGzs7O1K1bt8Dnli9fni5durBp0yZ13UcffURUVBTlypVj5MiRDBw4MN/zgoODadasGUFBQdSpU4cJEyao27y8vAgMDKRSpUo8//zzTJw4kfbt2wMQGhpKnz59eP7553F1daV+/fpGXwBrzP7btm3LrFmzePnll/Hx8eHnn39m+/bt6jCjzz77jH379uHu7s7cuXMN/oF4kOHDh9OjRw+eeuopatWqla/gjoyM5MKFC3Tv3r3Ix1PSNEox7q379ddf8+GHHxIWFqauq1y5MpMnT2bQoEEmDdDcoqKi+OKLL3j11Vfx9fV9qL50Oh3R0dFUqFDB4ibrVxSFnJwcbGxsivRR3KNw7gYs3KuQUeEguxxm8d+G85l16RuOJNygZ/xyqnvb8p92YGvmGTksKWcH9uwhfcXntHgyCNdR73I9MpLya5YTEzKM8tfDyDy4lw+vXGfO98afccjOhtBQWLFCPwxl2jRo3frhY7WkvN3LUn9HJWfFU1byZsq/U8Y4ffo0Op2OoKCgfNtm3liDv513gWPC18T+lxtZcYzz759v26VLl6hfvz42Nve/dG3btm0MGTKE/fv3U79+/eIfhBmsWbOGP/74gxkzZhTa5u+//6ZXr16cPn0aayOmndJoCr+z5cGDB+nbt2+Rhnw8LkJDQ6lTpw4jRowwdygPVOSLNefOncu7775L7969mTZtGj4+PsTGxrJ582aGDh1KfHw877zzzqOIVZQRdf0htIOGhXvb0KmCQuPjQ3DJ9mNQ4nqLKcItTZsOHRi3exdcvESLz2Zj1fEFABxOHSfzjzMMP/ArMzZ8Z1RfMTH6aQe9vPQzoezYAc89BxZWxwghLFBBRXae4lywea9u3bqxYsUKjh49WuoK8f79C89Nnho1anD27NkSiObxtnDhQnOHYLQiF+Lz58/nrbfeYt68eQbr+/bty9tvv838+fOlEBcPra4/jGyvMH/PM7RynETFjMb4+GTyn3a2UoQXQKPR8P6kybz/7rtw8RJPZW4iV6fD/vz/GLr/F95csBBbW1uSkpIMrqC/2+3bMGsWLFwI48bpZ0S559dcCCHMrjQMNxDCWEX+PCwxMZEuXboUuK1Lly7FmnpHiHvpFB2fJn/M2XKfU/1OF5xyy7NI+zIX0gqeTUXA5/PnsePb9Qz6YRcuulysrawYvfcQv176m5CuXWhZpzZL5s0t8LmzZ0OVKrBlC3z1Fdw1xFAIIYSFUhSl0Iky2rRpUyaHpZQ2RT4j3r59ew4cOJDvYgjQj0e6+9arQhRH3uwoP0X+Tc+05aRbKeTqNHTMfJv2J0PZ13gh9VzkYs17jWrSkNGvDyVHp0OnKOTqdHzStiVLOrZT2+Q0aah+f+eOfhhK1apgb6+/CU///vCAIZpCCCGEMJEi/8kNDQ1l2LBh3L59m+7du6tjxLds2cKuXbtYsWIFf/75p9q+lhFzm6WmprJ48WJOnTqFVqslODi40LPu58+fZ+nSpURHR1O5cmVGjRqlTup+7tw5Jk6ciL29vdq+d+/eBAcHA5Cdnc0XX3zBkSNHsLa2pnPnzoSEhBQ1BeIRUhSFV//Uz46Sd2HmiDY6jv55m3Wn2tC5IrQ/GcqhJkuo5VzF3OFaFG37jmRlZZJ77AiDfjqIkp7OsIZ1aRFUA5chI9C4e2DnoCUjQ3/jnY8/1l+EuXUrjBpl7uiFEEKIsqfIhfhzzz0HwLJly/jirtvo5U2+0rFjR3VZo9EYdUepZcuWkZuby8qVK7l58yaTJ0/G39+fevXqGbRLTk5m+vTpjBgxghYtWrB161amTZvG559/rl5d7Obmxtdff13gfjZs2EB4eDjLli0jPT2dSZMmUb58+QLP7gvz0Gg0NLR7Gsf4d9ULM601EOSdycj2Cov2t6F/JTcq2Jczd6gWRVEUsg/8RNaxIww/8CtvfjyT/zu4m7djkuDSZVqs/hLXUe+ydbeWUaMgMxPGj4dScEG5EMLCODo6otPpuHHjhkn7FKIsKnIh/uOPP5p0GqiMjAx++eUXPv30UxwdHalWrRrt2rVj7969+Qrxo0eP4uvrqw5/6dmzJ9u2beP8+fNGXT29d+9eRo4ciaurK66urnTr1o29e/dKIW5BFAVS/mpPdW/U2VF0Ov22OupsKo24dRvKlTdvrJYk6+KfZB7cq86O4mlthebQf/l4yhQ+/mwx4ccy6O30OQ51JvL66/ppCZ1l2mchRDHIHbSFMJ0iF+KdOnUyaQCRkZEA6vASgKpVq7J169Z8ba9du0aVKv8OR7C2tiYwMJCIiAi1EE9JSWHgwIHY2trSqFEjBg4ciIuLC6mpqdy+fdvg+VWqVGHt2rUmPR7xcDQaGNEWnB0KnqKwrj9M7wXeLiUfmyX7/VYC43cfZOXWH6hWrRq5aXdI/L8W7Dniy47dc4iKTOCY9lW+fhc6dzZ3tEIIIYSAYhTiLVu2ZPjw4QQHB5vko6SMjAy0Wq3BOicnJ9LT0/O1TU9Px/me03h3t/X392fBggX4+/tz+/ZtlixZwqeffsqkSZPUNnfHXNh+4uPj1buFxsXFkZWVBehvwPAw8p7/sP08CoqioNPp0Ol0Zr/xhds/L4e8NN2bN0+nf7eZkyXlrHnz5vz3+O/Y29uj0+k4cc6eoR/0JCzMhpEj4Z133HBzW2MRrz1Lytu9LPV3VHJWPJK3RyM6Oppi3AvwgcqXL29xN4US4lErciHu4+PDiBEjePPNN+nTpw/Dhg3j6aefLnYADg4O+YrhO3fu5CvOAbRaLWlpaQbr0tLS1LYeHh54eHgA+tu6vvrqq7z22mtkZmaqbe5uf/f3d9u8eTNffvmlutz6n9sJmmoaoNjYWJP0U9ZI3u5PUeCPP2yoUycHRbGmWTMn1q69hY+Pjtxc/TzhwjjyWis6yVnxlMa83bx585H8A+Ht7S2FuChzilyIf//998THx/P111+zatUqli9fTs2aNRk+fDgDBgzAy8urSP35+fkBcP36dSpVqgRAWFgYgYGB+doGBASwZ88edVmn0xEeHk7v3r0L7NvKygpFUVAUBWdnZ8qVK0d4eDienp4AXL16tcD99OrVSy2+4+Li2LVrFwAVKlQo0rHdS6fTERsbi4+Pj8W92Vj6raAtMW+WlLPDh2HyZA2//gqXLys0aaIjIMDycgaWlbd7yWut6Cw1Z1B28iZzRQtRehVrxmAvLy9Gjx7N6NGj+e2331i5ciVTp07l/fff54UXXmDYsGFGjyV3cHCgRYsWrF27llGjRhETE8O+ffsYO3ZsvrbNmjVj1apVHDp0iObNm7Nt2za0Wi116tQB4OzZs5QvXx4fHx8SExP54osvaNCgAQ4ODoB+DvQNGzZQo0YN0tPT2bZtmzq14b3Hl/cPhaurK3Z2dgAm+yNjZWVlkX+w8uKytD9YeSwtb5aQs5s3YfBg2LsXQkL0N+MJDNSoQ3csLWdgGXl7EEvLm+SseCRvj1ZQUJDJ+rp06ZLJ+hKiNHno3/5atWrRsGFDqlSpQlZWFr///jtdunShVq1anDx50qg+Rvwzh9rgwYOZOnUqISEh6sWXwcHB/PHHH4C+KB4/fjwbN26kX79+HD16lIkTJ6pTF169epX333+f4OBg3n77bVxdXRk9erS6n759+xIYGMirr77K6NGjeeaZZ2TGFFEqnTsHWVng6QnVqumXv/5a/70ovrQs2Pe3C2lZ5o5ECCFEWVDse+gdOnSIr776is2bN2Nra0u/fv346quvaNiwIX/++SehoaEMHjyYc+fOPbAvZ2dnxo0bV+C2jRs3GizXrVuXxYsXF9i2e/fudO/evdD92Nra8sYbb/DGG288MCYhLNHFizBlCmzcCNu3Q9eusGSJuaN6fKRnwYHLLnRqqMPZwdzRCCEetVWrVvHLL7+o14VpNBouXLhQ6G3jzaFNmzb07duX1157zdyh0LRpU1577TUGDx7Mpk2b+P7771m3bp25wyrVinxG/OOPP6ZGjRq0a9eOy5cvs2jRIqKioliyZAkNG+pvn12rVi0++ugjgztsCiGKLycHhgyB2rXh1i349Vd9ES6EEI+zX3/9lVatWuHu7o67uztNmjThxx9/BCA8PByNRoOzs7PBY968eUb1nZOTw+TJkws9ESjur1evXpw+fdqoE66icEU+Iz5v3jwGDBjAK6+8ct/b1wcFBbFETtUJ8VBu3ABra6hYEfz9Yd8++Od+VsIE0rL0Z8Hz3L7z79e8YbtaO3C0K/nYhCjrkpOT6dq1K59++ikhISFkZ2fz22+/qcNR88THx6vXghXF9u3bCQgIoJqFjOlTFIXc3FxsbIo9WKFEaTQaQkJCWLZsGYsWLTJ3OKWWUWfEv/76a27dugXob8Azf/78+xbhoL/gcYTcP1uIYomJgbfegurV4Ysv9Os++kiKcFP76Ty8u+Hfxyc/6t8SP/nRSl3303kzBylEKZWeBW9udDH4Z7coLl26RHZ2NoMGDcLGxgatVkubNm1o1aqVSeLbuXMn7dq1K3R7cnIyQ4cOpXz58vj7+zNmzBj1viLt27dXbwh48eJFNBoNK1asAODGjRs4OTmRnZ0NwO7du2ncuDHu7u40atSIw4cPq/to06YN77//Pq1bt8bJyYkTJ04UGEtERATNmzfHxcWF9u3bc/36dXXb8ePHadq0KW5ubtSrV0/9xCCv/6VLl6rLu3fvpnLlyupy5cqVmTt3Lo0bN8bV1ZUuXbqQkJCgbv/222+pWrUqHh4ejBkzJl9cbdu2ZceOHYXmUDyYUYX4kCFDuHLlCgD29vaPNCAhyroZM6BqVf3Z72+/hcmTzR3R4+u5OjC7z7+PwR30N/Ia3CFeXfdcHTMHKUQplZ6tMfhaVEFBQdjb2xMSEsKOHTuIi4szZXicPXv2vmPBR40aRVRUFH/99RfHjx9n//79zJgxA9AXuAcOHADg4MGDVK1aVV0+cOAAzZs3x9bWljNnzhASEsKCBQu4ffs2H330Ed27d1dvGgiwevVqFixYQEpKijrE915fffUVixYtIi4ujurVq9O/f38AEhIS6NSpE8OGDePWrVvMmDGD3r17c/nyZaPzsG7dOrZu3UpUVBSJiYnMnz8fgL/++ouhQ4fyxRdfEBsbi7u7e75/FGrWrElERIRB8S6KxqhC/FHcQUsI8a/kZLhwQf+9tzesWAFnzkD37mChs649FhztwNP534ebYy6g/5q3ToalCGEerq6uHDlyBHt7e9544w0qVKhAu3bt1BODeSpUqKCOIXd3d2ffvn1G9Z+QkICrq2uB23Q6HevXr+eTTz7B3d0dX19fJk+ezDfffAPoC/GDBw8C+skrJkyYwM8//wzoC/M2/3x8uWzZMoYPH07Lli2xsrKia9euNGjQwOCs9cCBA2nQoAHW1taFnuzs378/jRo1wsHBgU8++YTDhw9z48YNdu7cSWBgIK+88go2NjZ07dqV5557jm+//daoHACEhoZSqVIlnJ2d6d27N6dOnQJgw4YNdO7cmQ4dOmBra8v777+v3jQxj4uLi5pLUTylc/JSIR4Td+7AJ59AlSrw3nv6dcOHQ9++/45RFo9OUnYq19Kj1Udkpv6MW2RmnLouKTvVzFEKUXrkDUd5c6MLCWn6N7GENCt1XVGHqdSsWZOvvvqKiIgIrly5gq2tLQMGDDBoEx0dTWJiovpo3769UX17eHiQnJxc4La4uDiysrLyDeOIjIwE4OmnnyYqKorr169z+PBhunfvjoeHB3///TcHDhxQC/Hw8HAWLlxo8I/CsWPHiIqKUvsNCAh4YKx3t3F3d8fV1ZXIyEgiIyMNYrw3TmPcfbNCR0dHUlP173lRUVEG+7W2tlZvwpgnJSUFIF+BLoxn9BUB69ev58iRIw9sp9FoePvttx8qKCHKgk2bYORI/cWY06fD0KHmjqjsmX/tW6ZeXaEuO+WUJ5itBJ+byB2bGAA+qDqMKdWGmytEIUqVg5f+/QjpswOOBl/ztneuU7xB45UrVyY0NJR+/fo9XJD/qFevHhcvXixwm5eXF3Z2dkRERFCvXj1AX1TnFaJ2dnY0a9aMZcuW4eXlRbly5WjTpg3ffPMNMTExPPXUU4C+gB47dixTpkwpNA5jbuh07do19fukpCSSk5Px8/PDz8+PiIgIg7bh4eE0adIE0E8PnZaWpm4ryl1YfX19OXPmjLqcm5ubr8C/cOECAQEBUog/BKML8QULFhjVTgpxIQqXna0fctKkif5mPO+9B6+9BlqtuSMrm94O6MtQ3+fV5UvJMbybupytjaYS5FoeADcbZ3OFJ0Sp0yYoi91/6odXjGqbxmcHHNWveduNdfHiRbZv306fPn2oVKkScXFxLF++UhjoWAAAIABJREFUnGbNmhn1/IMHD9K2bdtCh9d27dpVHQ99L2tra/r27cuECRNYs2YNaWlpTJs2TR2bDfrhKXPmzGHIkCHq8uDBg9Xx4QCvvvoqzz//PB06dKB58+ZkZmZy7NgxatSogb+/v9G5WLt2LQMGDODJJ59k3LhxtGjRAn9/f7p06cKoUaNYvXo1ISEh7Nmzh59++olZs2YB0LBhQzZt2sSrr75KQkICCxcuNHqfL730EjNnzmT//v20atWK2bNn5xuCcvDgQbrKXLoPxegPv48dO4ZOp3vgIzc391HGK0SplJurv/Plk09Cr176grxtW3j7bSnCzcnN1pkAbQX1Ud3Fm/+5r6C6i7e6zs1WCnEhjKW1gwXBKSwITsHDUQeAh6NOXactwjUXLi4unDhxQp0tpEGDBjg7O7N69WqDdl5eXgbziL/3zzi/69ev37dof+GFF4iIiODq1asFbv/ss8/w9PQkKCiIxo0b88wzz/D++++r29u2bUtycrI6DKV169akpKSoywCNGjVi9erVjBkzBk9PTwIDA5k7dy46nc74RKC/8/jrr7+Ot7c3f/31lzpjS7ly5di5cyeLFy/G09OTsWPHsmHDBoKCggB4++23cXNzo2LFivTo0YOQkBCj91mzZk2+/PJLhg0bho+PD7du3VLPtIP++sG1a9fKDHkPqXRMVilEKXbiBAwYoJ8TfPRoffH9z8kSIYQQhfDz82PDhg2Fbq9cufJ9J5M4dOgQH3zwQaHbbWxsmDp1KjNmzFDvrHl3f25ubqxatarQ57ds2dKgfbly5QossJ999lmeffbZAvvIu+Dzfh7UplmzZhw/frzAbeXKlWPXrl0G60aPHq1+Hx4ebrDttddeM7iDZ0hISKHF+/fff0/9+vWpX7/+feMT9yeFuBCPgKLA0aPQvDn4+kK3bvDuu+DlZe7IhBCiZGhtFYOvJW358uUPbDN48GAGDx786IN5DPXq1YtevXqZO4xST+ZlEMKEFAX27IGmTfVDT8LD9YX4J59IEV4auNk4M9o7WMaFC2ECecNUijIcRYiyxqhCXKfTqVcACyEKFh2tv/Nl585Qvz78/TfcM6uUsHBuNs6849NHCnEhhBAlQoamCPGQTpyAOnX0Z7z/7//0N+OpXt3cUQkhhBDC0kkhbgRnZ2dsbGwe+g6jiqKo/Vja3Urz4rG0uMBy83bmjMLkydbs2AFbtih06wazZ+u3mTtMS80ZyGutOCRnxVNW8mZjI3/KhSit5LfXCA0bNsTDw4OcnJyH7svDw0Od6tESWer0k5aUt9xcGDzYmo0bNXTurHDsWA4NG4IJXh4mZUk5K4i81opOclY8j3ve5GYqQpReUogb4fTp09StWxdvb++H6ken03Hr1i08PT2NupNWSVIUhdzcXKytrdFoNOYOx4Cl5C0sTH8XzIAAaNAARo1S+L//k5wVlbzWik5yVjxlJW9xcXEmiso4Xl5eKIqS7+YuD8Pb29vifkZClAQpxI2QmppKTk7OQ79JaDQatR9LfcOxxNjMnbcbN/S3oF++HCZMgClTYNw4/fCTnBzJWXFZYmyWnjdLjMvScwaPf95M8WltUVSqVKlE9yfE48yyTl8IYWE++kh/4eWJE7BjB9zn3hBCCCGEEEUiZ8SFRVEUhazt32NTtTrWdfLfrUvJSCdr41psu3TDysvnkcRw+zZcu6YfflKtGnz7Lbz4IljYCTUhhDCLS5cuPZLrAWrUqIG1tbXJ+xXCkkkhLizO199/T0h5T+wHDDMoxpWMDFKXLuDG33+TWSWIhq1MW4gnJ8Onn8LcufDMM7B9O7z8skl3IYQQpd6dO3ceSSFuibPbCPGoSSEuLIpGo6FS3wF88OFkpgL2A4ahqVUXTWYmdz5fwPW//2JmTCLLn3rapPvdsAFefx1cXWHBAujf36TdCyHEYycoKMhkfV26dMlkfQlRmkghLixOp06dANRi3O6ll7Hb9xPXw67qi/BvN2Bvb//Q+8nI0I/9btkSKlXSX5A5dCjYye2YhRBCCFECpBAXFimvGJ898yPGAc7AjOgEVmzY+NBFeHY2rFypvxDT2houXYLmzfUPIYQQQoiSIrOmCIvVsU1rhrRqoS5/OXniQxfhv/8OTz6pn37wjTfg/Hk5Ay6EEGXVqlWreOWVV8wdhlEOHjxIhQoVzB0GALt376Zy5cqAfmx/o0aNuHDhgnmDKqWkEBcWSclIJ2XJp6TExVJ12WrGHTiCsuEbcs+fKXJfOh3s3auf97tyZRg4UH9znnHjwNnZ9LELIYQwjV9//ZVWrVrh7u6Ou7s7TZo04ccffwQgPDwcjUaDs7OzwWPevHlG9Z2Tk8PkyZMZN27cozyEx55Go2HMmDFMmjTJ3KGUSlKIC4uTV4Rfv6S/MPPyzWiavPkOHxw+RuY3K4wuxhVFP/NJo0bQrRtcvQre3vq5wN3cHvFBCCFEGbT7DzuOhRU86vVYmA27/zD+I8jk5GS6du3K8OHDiY+P5+bNm8yZMwcXFxeDdvHx8aSmpqqP0aNHG9X/9u3bCQgIoFq1akbHVFKys7PNHUKR9OjRg/3793Pz5k1zh1LqSCEuLIqiKCR/uVgtwvMuzGzbti1tJ05Ri3FdRNh9+4mJgaZNoXdvaN1aX4Rb4HutEEI8VtwddWw44ZCvGD8WZsOGEw64Oxo/7eGlS5fIzs5m0KBB2NjYoNVqadOmDa1atTJJrDt37qRdu3bqct4Z9oyMDHVd3759mTJlCvDv0JDZs2fj4+ODv78/CxYsUNtOmTKFnj170r9/f1xcXKhduzaHDh1StycnJzNixAj8/f2pUKECI0eOVPeV1/e8efPw9fWlW7duhcZd2P6zsrIYM2YM/v7+lC9fnqFDh5KcnGzQ/92aNm3KqlWrAP0QnaZNmzJhwgQ8PT3x8/Nj7dq1atuEhAR69uyJm5sb9erV43//+59BX1qtlsaNG7N79+775lzkJ4W4sDjv7dprUIQnJSUxd+5cmjVrRvvJH/Lytt0cvXajwOceOQKpqfoz3507w+XL+ukILWRYnRBCPNaaVsmhT5MMg2I8rwjv0ySDplVyjO4rKCgIe3t7QkJC2LFjB3FxcSaN9ezZszz55JNFek58fDxhYWFcu3aNH374galTp3LgwAF1+7Zt2+jYsSMJCQmMHTuWF198kYSEBACGDBlCZmYmf/75JxcvXuTvv//mo48+Mug7IiKCq1ev8v333xd5/x9//DH79+/n+PHj/PXXX0RFRfHmm28afWwnT57E19eXmJgYFi5cyIgRI9RCfuTIkeTm5nLjxg22bNnCV199le/5NWvWzFegiweTQlxYFI1Gw6QvVxhMUZiUlMS8efNISkqiU6dOzP/xv7S454zI779Dp076s9/794OVFUyZop+WUAghRMm5uxj/7IC2WEU4gKurK0eOHMHe3p433niDChUq0K5dO65cuWLQrkKFCuoYcnd3d/bt22dU/wkJCbi6uhYpJp1Ox4wZM3BwcKBx48YMGjTI4Mxx/fr1GTBgADY2NgwaNIgqVaqwc+dOYmNj2bZtGwsXLsTV1RV3d3cmTpzI+vXr1ecqiqL2rdVqi7z/NWvW8MEHH+Dr64u7uzszZ85k3bp1Rt98yc/PjzfeeAMbGxt69uyJlZUVly5dIjc3l++++45p06bh4uJCtWrVeOONN/I938XFRf2nQxjPIqYvTE1NZfHixZw6dQqtVktwcDBdunQpsO358+dZunQp0dHRVK5cmVGjRhEQEADAvn372LlzJ1FRUTg4OPDUU08xZMgQ9QW9bt06vvvuO2xtbdX+PvjgA2rXrv3oD1IYzc/Pz2BZk5nJxBZPocnMBKBKlSrqNp0OXnoJtmzRD0M5dw5q1SrRcIUQQtyjaZUcjofnciXOhmreOUUuwvPUrFlTPfsaHh7OiBEjGDBgAL/++qvaJjo6GgcHhyL37eHhoZ7xNZabmxtud11kFBgYyH//+191Oa8euXt7ZGQk4eHh5ObmUumus0OKopCbm6sue3p64ujoWOz9R0ZGqjOZAFSuXJmsrCyjP0m4d+iKo6MjqampxMXFkZ2dbXBsgYGB+Z6fkpKCh4eHUfsS/7KIM+LLli0jNzeXlStXMmnSJNauXcvZs2fztUtOTmb69On07t2b9evX8/TTTzNt2jT1hZyZmcnQoUP5+uuv+eyzz7h58yYrV6406KN58+Zs3LhRfUgRbvk0WZlMbPE0mqxMdd1ff+mHnVhZQdu2cOoUbNwoRXiepJxU5sZuICkn1dyhCCHKoGNhNoTFW1PNO4eweOtCL+AsisqVKxMaGsq5c+dMECHUq1ePixcvqsvO/0yjlZaWpq6Ljo42eE5SUpJB8X7t2jWDk0fXrl0zaJ+3PSAgABsbG2JjY0lMTCQxMZGkpCRSU/99j7ayenBJdr/9+/n5ERERoW4LDw/Hzs4Ob29vnJ2dDY6roGMrjLe3N7a2tgbHdu9xAly4cIEGDRoY1af4l9kL8YyMDH755Rf69++Po6Mj1apVo127duzduzdf26NHj+Lr60ubNm2wtbWlZ8+epKenc/78eQC6dOlCnTp1sLOzw9XVlY4dO8q8lqVQUlIS165dUx9RUVEAREVFceRIJC+9lEqtWgrr1unbjxwJ8rtvKCbtDvv/diEm7Y65QxFClDF3jwkf1TY935hxY128eJHZs2dz7do1FEUhNjaW5cuX06xZM6Oef/DgQTQaTaHbu3btysGDB9VlLy8v/P39Wb16Nbm5ufzwww8cPXrU4DlWVlaMHz+ezMxMTp8+zerVq+nXr5+6/cyZM6xbt46cnBy++eYbrly5QpcuXahQoQJdu3blzTffJCEhAUVRuH79epEvbrzf/kNCQpg2bRrR0dEkJSUxfvx4+vXrh5WVFUFBQeTm5vL999+Tk5PD4sWLiYyMNGqf1tbW9OrVi8mTJ5OSksLVq1dZvHixQZuMjAxOnjxJx44di3Q8wgIK8bwXwt0feVStWtXgv7o8165dMxiWYG1tTWBgYIFtQT+M5d6PiU6ePElISAivv/46mzdvNnrslCg5S+bNpWWd2urjnWFDAXjppQu0auXDti1nGdp/JZMnmzlQC5aZbUXD5OFkZpv9V1wIUYYUdGFmQRdwGsPFxYUTJ07QvHlzXFxcaNCgAc7OzqxevdqgnZeXl8E84u+99x4A169fv2/R/sILL6gXR+ZZsWIFixYtoly5cuzcuZMXXngh374CAwOpVKkSzz//PBMnTqR9+/bq9m7duvHjjz/i4eHBjBkz2LJlC+XKlQNg9erV2NjY0KBBA9zc3OjYsSOXLl0yOh8P2v/48eNp2bIljRo1IigoCB8fH3VWFVdXV5YuXUpoaCjly5cnOjqaxo0bG73fRYsWoSgK/v7+dO/enSFDhhhs37p1K23btsXX17dIxyMsYIx4RkZGvosSnJycSE9Pz9c2PT1d/ejoQW2PHTvGzz//zJw5c9R1LVu2pGPHjnh4eHD16lVmzZqFlZUVPXr0MHhufHw88fHxAMTFxZGVlQXw0EV73vMtsfhXFAWdTodOp7vvGYSSENq4AaP/o/8lj7njQkRSOSCCue1dcLT9kg6VL5LTso3Z82hJOQP9cJS8oSjX028B5bmeHotb2r9jEN1snHGzMe9djCwtb3ez1N9RyVnxSN5KXmKaVYEXZuqXM0hMM/7kgJ+fHxs2bCh0e+XKlVEUpdDthw4d4oMPPih0u42NDVOnTmXGjBl8+eWXADz33HP5Lga917vvvsu7775b4DY7OzvWrFlT4DZXV1cWLlzIwoUL821r06bNA4eK3N2moP3b29szb968Qm9oNGDAAAYMGKAu3z1jy+DBgxk8eLBB+7vj8fT0ZOvWrQbb826EpCgKs2bNKvS4xf2ZvRB3cHDIV0jfuXOnwCuGtVptvjFOaWlp+dqeOXOGRYsWMXHiRIP/zu4+O169enWCg4PZvXt3vkJ88+bN6i8lQOvWrQHjx1M9SGxsrEn6eVxp6jYg0ac2S77yZMWacjxdL47dvtOp/WpFPKtUJZG2KPb2JJvo5/G4mBu7gXlxGwFwyilPMFvp+8ck7tjEqG1Gewfzjk8fc4VYasjvaNFJzorncctbp9pZhW4r7gWbxbV8+fIHtimoABVFo9FoOHXqlLnDKLXMXojnXWRw/fp19WrisLCwAq/IDQgIYM+ePeqyTqcjPDyc3r17q+vOnj3LrFmzeO+996j1gCv3CjtD0qtXL7X4jouLY9euXUD+K4qLSqfTERsbi4+Pj1EXZZQkRVHIycnBxsbG7GeO1q+H11/XUKECLF+u0KzmTfgWnH398Al6wqyx3c2ScgbwjuswBvq9DMDF24n8NwpWVP2EJ8u5q228tVoqOJr/jLgl5e1ulvo7KjkrnrKSN1OdJBJClDyzF+IODg60aNGCtWvXMmrUKGJiYti3bx9jx47N17ZZs2asWrWKQ4cO0bx5c7Zt24ZWq6VOnToAnDt3jpkzZzJmzBjq1auX7/nHjh2jdu3auLi4EBYWxnfffUeHDh3ytfPy8sLLywvQf5RkZ6e/Ja+p/shYWVlZ5B+svLjM8Qfrzh349Vd49lmoWVN/E57+/cHGRkNiuH6qJjc3N4vKm7lzdq/jl1zZdjpvTtzyAPz3yBP896423RpC90YlHpoBS8tbQSztd1RyVjySN2FKDxo+kncHTiGKwuyFOMCIESNYtGgRgwcPxtHRkZCQEOrXrw9AcHCwOte3q6sr48ePZ+nSpSxcuJDKlSszceJErK2tAfj2229JS0tj5syZat/e3t7q1b1Hjhxh4cKFZGdn4+7uTocOHfINSxElKyMDvvgCPv4YtFq4eBEaNdI/8ri4upLzz1dRuOfqQKsg/fd/3Ipn1V4vBneIp7anl9pGa2em4IQQQgiRj0UU4s7Ozuqg/3tt3LjRYLlu3br5ps3JM3369PvuZ8yYMcULUDwSv/8OPXtCZiaMHw8jRsA/N9M05OBA2tMtcC3GDRvKEkc7/QPAP1ufSH9XezzNOxJFCCGEEIWwiEJclB25ubB9O7z4ItSoAaGh8Prr4HyfYlHjoCW9aSvcHAq+5a/Iz8XayeCrEEKYWlGn3hNC5CeFuCgROh1s2gQffACRkXDiBAQFQQGXAggT0NpB2+opaO2kEBdCmFZBkymYgoyVF2WRFOLikYuNheeeg0uX9GfAx44FT09zR/V4c7SD9jVScJRCXAhhYnk3qBFCPDwpxMUjoSiwdy80aQLe3vDyyzBwIDzkDJBCCCGEEI8N+RxImNzhw9CmDXTpAj//DBqN/iy4FOFCCCGEEP+SQlyYjE4HL7ygL8IDA/VTEb74ormjEkIIIYSwTDI0RTy0s2fBxgZq1YIePeCTT/TfCyGEEEKIwskZcVFsFy9C377QoIF+RhSAoUOlCBdCCCGEMIYU4qJYJkyA2rXh9m04ehQmTzZ3REIIIYQQpYsMTRFGu3EDrlyB1q2hZUvYv1//vRBCCCGEKDo5Iy4eKCYG3noLqleH+fP16zp3LrkiPCknlbmxG0jKSS2ZHQohhBBClAApxMV9rVsHVavqz35v2ABbtpR8DEk5qcyL2yiFuBBCCCEeK1KIi3ySk2HrVv339evDihXwv//ppyLUaMwbmxBCCCHE40LGiAvVnTuwdCnMng3lykHHjvoLMmvXLtk4krJTDc5+X8uIUb9aafT/O7rZOONm61yygQkhhBBCmJAU4kZwdnbGxsYGRVEeqh9FUdR+HrYvUzt+XOHFF22wtoZp0xSGDgU7O/2t6kvavIj1fBj2Vb71rU++rn4/ucpQplQbXpJh5ZP3M7S0nyVY9mtN8lZ0krPiKSt5s7GRP+VClFby22uEhg0b4uHhQU5OzkP35eHhgU6nQ6fTmSCyh5OdDZs2aejTRyEoCMaNs2LoUB1arX67CQ63WEL9ejOwfGd1+UpKHO/9cpJPWjSmmos3AG42Tib5eZhCbm6uuUMokCW91goieSs6yVnxPO558/DwMFFEQoiSJoW4EU6fPk3dunXx9vZ+qH50Oh23bt3C09MTKyvzDc/PzYW1a+HDDyEhAf7v/+CJJxTeeCMXa2trNGYeCO5p444n7upySroNDZOH42MTTVXn8maMzJCiKOTmWkbO7mUpr7WCSN6KTnJWPGUlb3FxcSaKSghR0qQQN0Jqaio5OTkP/Uau0WjUfsz1RyE+Hlq1gshIePttGD0a3Nz+HYJiztgKkxePJcYGlhmXJbzWHsQSY7P0vFliXJaeM3j882Ypnw4KIYpOCvEyQFFgxw5o2hS8vGDkSOjTR/+9JUrLgvSsf5eT0qzVr7f+uYZTaweOdmYITgghhBDCRKQQf4wpCuzdCxMn6qcf3LABuneHN94wd2T399N52Hb67jX6/xhW7f33P4duDaF7o5KNSwghhBDClKQQf0wpiv7ul/v2wdChsGkTVKpk7qiM81wdaBX073J8io5PfrTivS46vFz0Yym1cjZcCCGEEKWcFOKPmePHwdYWGjaEwYNh8WKoVs3cURWN4z3DTvImFCjnBJ4ydbgQQgghHhOWdYm7KLazZ/V3vmzaVD8eHKBv39JXhAshhBBClBVSiD8Gxo2DBg30w1FOnYJJk8wdkWlp7aBt9RQZjiKEEEKIx4oMTSmlrl6Fv//W34a+Uyf9RZhNm5o7qkfD0Q7a10jB0c7J3KEIIYQQQpiMnBEvZW7cgNdegyeegGXL9OvatHl8i3AhhBBCiMeVFOKlyJo1UL06nDypHwe+ebO5IxJCCCGEEMUlhbiFu30b1q/Xf9+0KXz7rX5mlI4dwcJuFCeEEEIIIYpAxohbqORkmD8f5s0DX1/9jCjVq+sfQgghhBCi9JNC3AL9/rv+AkxXV1iwAPr3Bxv5SQkhhBBCPFbKXHmXmprK4sWLOXXqFFqtluDgYLp06WLusMjIgLVrYdAgqFMHPvkEBg4EO5myTwghhBDisVTmCvFly5aRm5vLypUruXnzJpMnT8bf35969eqZJZ7sbFi5Ej76CDIzoVkzqFULhg83SzhCCCGEEKKElKmLNTMyMvjll1/o378/jo6OVKtWjXbt2rF3716zxHP7Njz5JLz3Hrz+un5u8Fq1zBKKEEIIIYQoYWWqEI+MjAQgICBAXVe1alUiIiJKLAadDjZuhKgoKFdOfxfMsDB4/31wdi6xMIQQQgghhJmVqaEpGRkZaLVag3VOTk6kp6cbrIuPjyc+Ph6AuLg4srKyANDpdMXet6LA9u0KEyZ4ExamYc0aHd2768eB6/sudtcmoSgKOp0OnU6HxsLmRczL+8Pk/1GQnBWP5K3oJGfFI3kTQli6MlWIOzg45Cu679y5k68437x5M19++aW63Lp1awCio6OLtV9Fgb59PTl+3I7+/dNZs+YW5cvrKGZ3ZVZsbKy5Qyh1JGfFI3krOslZ8UjehCjbylQh7ufnB8D169epVKkSAGFhYQQGBhq069Wrl1p8x8XFsWvXLgAqVKhQpP0dPgy2tvob8YweDfXr5+LgkIyPjw9WVpY1KkhRFHJycrCxsbHIM0exsbEWlzfJWfFI3opOclY8ZSVvxT1JJIQwvzJViDs4ONCiRQvWrl3LqFGjiImJYd++fYwdO9agnZeXF15eXgC4urpi988cgsa+Wf7+O0ycCHv3wocfQvPm0KOHfvhJdLS+H0v8g5UXl6X9wcpjaXmTnBWP5K3oJGfFI3kTQli6MvfbP2LECAAGDx7M1KlTCQkJoX79+ibrf+xYePppcHODc+dgwgSTdS2EEEIIIR4jZeqMOICzszPjxo0zaZ8XL+of3bvrz3z36wcNG5p0F0IIIYQQ4jFT5s6Im9LVqzB4MNSurb8rJuhvyCNFuBBCCCGEeBApxItpzRp44gm4fBn27YPvvjN3REIIIYQQojSRQrwIYmJg+XL99888A9u362dGadPGrGEJIYQQQohSSApxI6Sna5kxw4WqVeGzzyA1FQICoFMnsNAL8YUQQgghhIUrcxdrFseCBW/i52fDihUQHAwy05QQQgghhHhYUlIaoUuXnRw4EEvfvlKECyGEEEII05Cy0gj16p3DRj47EEIIIYQQJiSFuBBCCCGEEGYg53mNFB8fb7K+oqOjTdaXqdjY2ODh4UFcXBw5OTnmDqdAlpY3yVnxSN6KTnJWPGUlb6b8+ySEKFlSiD+Ao6Mjtra2fP/99w/dV0ZGBhEREQQGBuLg4GCC6MoGyVvRSc6KR/JWdJKz4jF13mxtbXF0dDRBZEKIkqRRFEUxdxCWLjExkbS0tIfu58qVK7z99tvMnz+fatWqmSCyskHyVnSSs+KRvBWd5Kx4TJ03R0dH3N3dTRCZEKIkyRlxI7i7u5vkDS45ORkAb29vfH19H7q/skLyVnSSs+KRvBWd5Kx4JG9CCJCLNYUQQgghhDAL6ylTpkwxdxBliVarpUmTJjKWr4gkb0UnOSseyVvRSc6KR/ImhJAx4kIIIYQQQpiBDE0RQgghhBDCDKQQF0IIIYQQwgxk1pQSkpqayuLFizl16hRarZbg4GC6dOli7rBKTFGO//z58yxdupTo6GgqV67MqFGjCAgIAGDfvn3s3LmTqKgoHBwceOqppxgyZAharRaAdevW8d1332Fra6v298EHH1C7du1Hf5CPgKnydu7cOSZOnIi9vb3avnfv3gQHBwOQnZ3NF198wZEjR7C2tqZz586EhIQ8+gN8BEyVsyVLlnDw4EG1bW5uLjk5OXzzzTe4urqW2ddadnY2c+fO5fLly8TGxvLBBx/QuHFjgzY7duxg06ZNpKen07hxY0aOHKmOgy6Lr7UH5aysva8JIe6iiBIxZ84cZfr06cqdO3eUy5cvKy+//LJy5swZc4dVYow9/qSkJKVv377KgQMHlKysLGXjxo3KK6+8ouTk5CiKoig7d+5Uzp07p2RmZipJSUnKxIkTlcWLF6vQfYzYAAARMklEQVTPX7t2rTJr1qwSO65HzVR5O3v2rDJgwIBC9/PNN98oY8aMUZKSkpTo6GjllVdeUfbs2fPIjutRMlXO7rVy5Upl4sSJ6nJZfa1lZWUpW7duVc6fP68MGTJEOXHihMH2U6dOKSEhIcqVK1eUO3fuKNOmTVPmzZunbi+Lr7UH5aysva8JIf4lQ1NKQEZGBr/88gv9+/fH0dGRatWq0a5dO/bu3Wvu0EpEUY7/6NGj+Pr60qZNG2xtbenZsyfp6emcP38egC5dulCnTh3s7OxwdXWlY8eOXLhwoaQPqUSYMm8PsnfvXvr06YOrqyvly5enW7dupfL1+ahylpuby8GDB+nQoUNJHEaJK0rebG1tefHFF6lduzZWVvn/hOzfv5/27dtTtWpVHB0dCQkJ4ciRI2RmZgJl87X2oJyVpfc1IYQhKcRLQGRkJID6kTdA1apViYiIMFdIJaoox3/t2jWqVKmiLltbWxMYGFhors6fP2/QL8DJkycJCQnh9ddfZ/Pmzeh0OlMcRokzdd5SUlIYOHAgw4YNY/HixaSkpAD6j9dv375t8PwqVaqUytfno3qtnTp1iszMTJo2bWqwviy+1h4kIiLCIK+BgYHodDqioqLK7GutqB7n9zUhhCEZI14CMjIy1LF+eZycnEhPTzdTRCWrKMefnp6Os7OzUW2PHTvGzz//zJw5c9R1LVu2pGPHjnh4eHD16lVmzZqFlZUVPXr0MNHRlBxT5s3f358FCxbg7+/P7du3WbJkCZ9++imTJk1S29w9l3FpfX0+qtfanj17aNWqlcEY+7L6WjOmLycnJ3VZo9Hg6OhIenp6mX2tFcXj/r4mhDAkZ8RLgIODQ7435zt37uR7E39cFeX4tVotaWlpBuvS0tLytT1z5gyLFi1i4sSJBreHDggIwNPTEysrK6pXr05wcDC//PKLCY+m5Jgybx4eHgQEBGBlZYWXlxevvvoqJ0+eJDMzU21z9/MLynlp8Chea8nJyZw4cYJnn33WYH1Zfa0Z01dheS2rrzVjlYX3NSGEISnES4Cfnx8A169fV9eFhYURGBhorpBKVFGOPyAggPDwcHVZp9MRHh5u0Pbs2bPMmjWLsWPHUqtWrfvuW6PRPGT05mPqvN3NysoKRVFQFAVnZ2fKlStn8PyrV6+Wytfno8jZgQMH8PX1pUaNGvfdd1l5rT1IYGAgYWFh6nJERARWVlb4+vqW2deaMcrK+5oQwpAU4iXAwcGBFi1asHbtWtLS0ggLC2Pfvn20b9/e3KGViKIcf7NmzYiMjOTQoUNkZ2ezZcsWtFotderUAfTT8M2cOZN33nmHevXq5Xv+sWPH1LHPYWFhfPfdd/nG9ZYWpszb2bNniYmJQVEUEhIS+OKLL2jQoAEODg4AtG/fng0bNpCcnExMTAzbtm0rlRcmmjJnefbu3VtgLsrqaw300/FlZWWhKAq5ublkZWWpY5bbtWvHvn37CAsLIy0tjbVr19KyZUt1WE9ZfK3B/XNWlt7XhBCG5Bb3JSQ1NZVFixZx6tQpHB0dy+Q84oUdf3BwsMGcuOfOnWPp0qXExMTkm9t5woQJ/PHHH9jZ2al9e3t7s3jxYgDmzJnD6dOnyc7Oxt3dnQ4dOtCrVy+sra1L+IhNw1R527p1K9u2bSMlJQUnJycaNWrEoEGDcHNzA/6d2/nw4cPq3M79+/c3z0E/JFPlDODy5cuMHTuWlStXqrnKU5Zfa8OHDyc2Ntbg+dOnT6du3brAv/OIp6Wl0bhxY0JDQ/PNI17WXmv3y1lZe18TQvxLCnEhhBBCCCHMQIamCCGEEEIIYQZSiAshhBBCCGEGUogLIYQQQghhBlKICyGEEEIIYQZSiAshhBBCCGEGUogLIYQQQghhBlKICyGEEEIIYQZSiAshhBBCCGEGUogL8QAajeaBj1WrVpk7TNXSpUvRaDSkpqaaOxSTmjNnDs2bN1eXT5w4wZQpU8jKyjJoV9qOf/ny5dSvXx+5t5oQQpQ9UogL8QBHjx41eACEhoYarOvatauZo3y8JScnM3PmTMaPH6+uO3HiBFOnTs1XiJc2AwcO5NatW6xfv97coQghhChhNuYOQAhL17Rp03zrAgICClz/uNPpdGRnZ2Nvb59vW3p6Olqttth9Z2Rk4ODgUOC2NWvWYGdnR5cuXYrdf0nKzMzEzs4OjUbzwLZ2dnaEhISwYMECXn755RKITgghhKWQM+JCmEBGRgaenp5MmzYt37aePXuqQyp2796NRqNhz549dOvWDScnJ/z8/JgzZ06+5507d46uXbvi6uqKs7MzL774IuHh4SaLOT09nbFjx1KpUiXs7e2pXbs23333nUGbvn370qRJE3744Qfq1q2Lvb09P/30k3ocP/30Ez169MDFxYX+/fsDkJuby9SpU6lcuTL29vY88cQTLF682KDfcePG4eXlxa+//spTTz2Fg4MDX375ZaGxrl69mp49e2JlpX/LWrp0Kf/5z38AcHFxQaPR8OSTTxo85+rVqzz33HM4OjoSFBTEhg0b8vW7detW/u///g+tVouPjw+hoaGkp6cbtAkLC6Nnz564ubnh5OTEs88+y//+9z+DNhUqVOCdd95h+vTpVKpUCa1Wy88//4xGo+HIkSMGbXNycqhQoYLB2f2XXnqJ48ePc+HChUJzIIQQ4vEjhbgQJuDg4MCAAQNYuXKlwVjfuLg4duzYwbBhwwzaDx06lNq1a7NlyxZeeukl3n33XYNx5n/99RctWrQgPT2dr7/+mjVr1nDt2jWeffZZsrOzHzpeRVHo0aMHK1eu5P3332fHjh20bduWPn36sH//foO24eHhjB07lrFjx7J7925q166tbhs2bBh16tThhx9+YNSoUQCMGjWKadOmMWTIELZv307nzp0ZOXIks2fPNug3LS2NgQMHMmzYMHbt2kWbNm0KjDU5OZkTJ07QokULdV3Pnj0ZO3YsAPv37+fo0aP5Cu2XX36Z559/nh9++IGaNWsSEhLClStX1O1r166lZ8+eNGnShK1bt/Lxxx+zfv16tcAHSEhI4JlnnuHs2bMsXbqUNWvWkJSUxDPPPGPQF8C6des4cOAAixcvZsuWLTRt2pT69euzYsUKg3Y7duwgJiaGoUOHqusaNmyIo6Mje/fuLTAHQgghHlOKEKJIAGX27Nn51p8/f14BlP3796vr5s6dqzg7OyspKSmKoijKrl27FEB55ZVXDJ7bu3dvpUqVKupycHCw8sQTTyiZmZnqusjISMXe3l5ZsWLFfeP7/PPPFUDdZ0F+/PFHBVAOHTpksP6FF15QWrVqpS736dNHAZQzZ84YtMs7jtGjRxusj4yMVKytrZVJkyYZrB84cKDi5uampKenK4qiKO+9954CKNu2bbvvsSiKouzfv18BlHPnzhl1nHnr787T7du3FRsbG/XnlpOTo1SsWFEZMmSIwXM3b96sWFlZKX///beiKIryySefKFZWVsqlS5fUNgkJCYqrq6syYsQIdV358uWVihUrKhkZGQb9LVq0SHFycjKI8YUXXlBat26d7zifeuopJSQk5IH5EEII8fiQM+JCmEjt2rVp1qwZX331lbpu5cqVBAcH4+zsbNC2R48eBss9e/YkLCyM2NhYAHXIh5WVFTk5OeTk5ODj40Pt2rX5/fffAf147bxtOTk5RZp146effqJixYo0b97coI/27dtz4sQJg7b+/v7Uq1evwH7uHbN99OhRcnNz6dOnj8H6fv36kZSUxLlz59R1Go2GTp06PTDWmzdvAuDt7W3UseV57rnn1O89PDyoWLEiN27cAOD8+fPcvHmT4OBgg+Nv27YtOp2OkydPAnD48GEaNWpEjRo11L7c3d3p3Lkzhw8fNthf+/bt842dDwkJQafTqWfro6Oj2bVrV75PSAC8vLyIjo4u0jEKIYQo3aQQF8KEXnnlFTZv3kxSUhK//fYb58+fL7Do8vHxKXD55s2b5ObmkpiYyMyZM7G1tTV4nDp1iuvXrwP6oRd3bytoDHRh4uPjuXnzZr7+33rrLdLT04mPjy801vsdR0JCAqAfM323vOXbt2+r6zw8PLC1tX1grBkZGQAFXiB6P+7u7gbLdnZ2al95x9e5c2eD4y9XrhyAmuOEhIR8x5J3PHcfCxScJ3d3d1566SV1eMrq1atxcnKid+/e+do6ODjkG58uhBDi8SazpghhQn369OGtt95i/fr1nD59mieffNJg7us8eWe+712uWLEi1tbWuLq60q9fP4YPH57vuW5ubgB8/PHHjBkzRl1frVo1o+MsV64cfn5+bN26tcDt/9/e3YWk2cZhAL+iD9YXsQaGECVBH1Ib1IoQLBbTzDIQPFgtGRg+1UknG8UwghhtbUFhyEoiK6iTog8KmXbS1skgYgdltHWwKQR9sGAFHXXQ3oNIXsvWLHkftvf6nXnfN7f/x6PLm7+3/w6xv7r54/zcWZDd29vDnTt3/ONnJ71n81ftG2zPg4ODC+H6us72HBwcRH5+/oX51NRU/7pgp9S7u7sBzwJc/jyCIKCkpARfvnzByMgIamtrg94u8+PHj4DPjIiI/n4M4kRhFBcXh8ePH8Nut8Pr9aK9vT3outnZWWi1Wv/rmZkZyGQy/6mqSqXC+vo67t+/f2nAy8jIQEZGxrXqVKlUePv2LRISEi7cNnITCoUCkZGRmJycREdHh398YmICSUlJl7a4/Ep2djaA09tLZDKZfzwmJgbA6Yn5+dafq9y9excSiQQ+nw+CIFy6TqlUwmKx4OvXr/4vOoeHh3C73aipqfmt91IqlZDL5WhsbMTm5ibGx8eDrvN6vUFPyomI6O/FIE4UZoIgwG63Izo6Gk+ePAm6xuVywWKx4MGDB3C5XJiamgq4XaOzsxPFxcWorKxEfX09JBIJdnZ28P79e5SXl8NgMNyoRp1Oh4cPH0KtVqO1tRV5eXk4OjqCx+PB1tYWBgYGrrWvVCpFU1MTXr58icjISBQXF8PtdmN0dBTd3d0ht5cAQE5ODpKTk/Hp0yeUlZX5x+VyOQDAZrOhqqoK8fHxATe6/EpUVBR6enpgMplweHiIiooKxMbGwufzwel0wmq1Ij09HYIgwGazQavV4sWLF7h16xa6urpwcnKClpaW334Gs9mMZ8+e4d69eygsLLwwv7+/D5/Ph5KSkt/ek4iI/nzsEScKs4KCAqSlpUGn013aX+1wOLC6ugq9Xo+JiQm8efMm4Do7uVyO5eVlxMfHo6mpCRqNBm1tbTg+PkZeXt6Na4yIiMD8/DxMJhP6+vqg0WhgNpuxuLiI0tLSG+3d19eHtrY2DA0NQafTwel0wmazhRRcz9dqMBjgcrkCxhUKBSwWCxwOBxQKRchfToxGI+bm5rC2toZHjx5Br9fDarUiMzPT3yJy+/ZtLC0tITc3Fw0NDairq0NiYiKWlpZCagU6+3FusN8LAMC7d++QlJQEtVod0jMQEdGfLeJnKFctENGVNjY2kJubC6fTiaqqqoA5t9sNrVYLj8cTlkD9f7GysgKFQoGtrS1IpVKxywlZf38/nj59iu3t7Qu95cDp7TMymQz9/f0iVEdERGLhiThRmHz//h0fP35Ec3MzsrKyAnrA6WaKioqgVqthtVrFLiUk3759w8LCAl69egWj0Rg0hH/+/BkfPnzA8+fPRaiQiIjExCBOFCbT09NQKpXY2dnB2NiY/+/YKTx6e3uRkpIidhkhsVgsqK6uRk5ODl6/fh10ze7uLoaHh5GWlvYfV0dERGJjawoRERERkQh4ZEdEREREJAIGcSIiIiIiETCIExERERGJgEGciIiIiEgEDOJERERERCJgECciIiIiEgGDOBERERGRCBjEiYiIiIhEwCBORERERCSCfwClTHN8NlxCDwAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 550x400 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "<ggplot: (8766715455761)>" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "res_all = pd.read_csv('res_all.csv')\n", "res_all_agg = res_all.groupby(['method','alpha','tt']).viol.apply(lambda x: pd.Series({'mu':x.mean(),'n':x.shape[0]})).reset_index()\n", "res_all_agg = res_all_agg.pivot_table('viol',['method','alpha','tt'],'level_3').reset_index().assign(n=lambda x: x.n.astype(int))\n", "res_all_agg = res_all_agg.assign(gg = lambda x: x.method.map(di_method)+', ('+x.tt.map(di_tt)+')',\n", " alpha2 = lambda x: x.alpha / 2)\n", "colz = list(np.repeat(['black']+gg_color_hue(3),2))\n", "shapez = list(np.tile(['+','x'],4))\n", "\n", "plotnine.options.figure_size = (5.5,4)\n", "yy = list(np.arange(0,0.1751,0.025))\n", "xx = list(np.arange(0,0.1251,0.025))\n", "gg_comp = (ggplot(res_all_agg,aes(x='alpha2',y='mu',color='gg',shape='gg')) + theme_bw() + geom_point(size=3) + \n", " scale_shape_manual(name='Method',values=shapez) + \n", " scale_color_manual(name='Method',values=colz) + \n", " geom_abline(intercept=0,slope=1,color='blue',linetype='--') + \n", " labs(x='Type-I error (theory)',y='Type-I error (actual)') + \n", " scale_x_continuous(limits=[min(xx),max(xx)],breaks=xx) + \n", " scale_y_continuous(limits=[min(yy),max(yy)],breaks=yy) + \n", " ggtitle('Figure 6: Comparison to arch package'))\n", "gg_comp" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Figure 6 shows that the BCa approach yields (virtually) identical estimate to the one obtainable from the `arch` package. Since the estimate of the variance is skewed, it also shows the superiority of the BCa method over the simpler bootstrapping approaches since ther coverage for both lower and upper bounds is close to the expected level.\n", "\n", "Most researchers that use the bootstrap to carry out inference on a statistic should probably be using the BCa approach. When the Jackknife estimator can be implemented effeciently, there is almost no additional computational overhead for using the BCa and it obtains an empirical coverage much closer to the expected level. Beyond sample means, most statistics show some form of skew or bias meaning the symmetric standard-error or quantile approach will be suboptimal. The BCa not only helps to remedy these problems, it gives researcher estimates that are much more efficient." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }
mit
dnc1994/Kaggle-Playground
misc/santander/Explore.ipynb
1
173384
{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import seaborn as sns\n", "import pandas as pd\n", "import zipfile\n", "import sklearn\n", "from sklearn import cross_validation\n", "from sklearn.ensemble import RandomForestClassifier" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "z = zipfile.ZipFile('train.csv.zip')\n", "df = pd.read_csv(z.open('train.csv'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Target Exploration" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0xab67940>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD+CAYAAAAzmNK6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFUNJREFUeJzt3W+MVXd+3/H3wMBiZ+5QaC+W0j8xi+yvFalCclbGk/Cn\nie3aRkm9eVDJsiKxaYuFhbxVpE21y5bIcsW6bSLXcqNQye6uqV0raq1sW9WyMYrb3WE9afF2FQeV\nfGFZz6M+6JS5MHeEFhu4fXBPN1e3MPcCd+fg+b1fEpq5v/Odw/enMzqfOb9z/4x1Oh0kSeVZVXcD\nkqR6GACSVCgDQJIKZQBIUqEMAEkqlAEgSYUaH1QQEePAEeBu4DKwF7gCvAZcBU5m5v6qdi/wNPAp\ncCgz346IdcAbwCZgAdiTmeci4kHgpar2WGY+P9qpSZKWMswVwG5gdWb+EvBPgG8ALwIHMnMXsCoi\nnoiIu4BngSngMeCFiFgDPAN8lJk7gdeBg9V+DwNPZuYOYFtEbB3lxCRJSxsmAE4D4xExBqyn+xf7\n/Zk5XW1/B3gEeAA4npmXM3MBOANsBbYD7/bUPhQRDWBtZs5W40eBh0cwH0nSkAYuAQGLwGbgz4G/\nDPwasKNnexuYBBrAhb6fW9833u4ZW+jbx+Ybb1+SdLOGCYDfAt7NzK9HxF8F/iuwtmd7AzhP94Q+\n2TfeqsYbfbXta9SeX6qJy5evdMbHVw/RriSpx9j1NgwTAPN0l32ge5IeB34QEbsy8zvA48D7wAng\nUESsBe4A7gNOAh/QvY/wYfV1OjPbEXEpIjYDs8CjwHNLNdFqXRyiVQ2r2WwwN9euuw3p/+Pv5mg1\nm43rbhsmAF4CvhkR3wXWAF8Fvg+8Wt3kPQW8lZmdiHgZOE43cQ5k5icRcRg4EhHTwCXgqWq/+4A3\n6d6HeC8zT9zU7CRJN2Xss/JuoHNz7c9Go58R/pWl25W/m6PVbDauuwTkC8EkqVAGgCQVygCQpEIZ\nAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqGG+TwADenK\nlSvMzv6o7jaG0mpNMD+/WHcbA9199+dZvdpPgpN+GgyAEZqd/RFTU3N8dj7eeKLuBgb4mJkZ2LLl\nnrobkVYkA2DkNgP31t3ECnL7X6VIn1XeA5CkQhkAklQoA0CSCjXwHkBE7AG+BHSAO4CtwA7gJeAq\ncDIz91e1e4GngU+BQ5n5dkSsA94ANgELwJ7MPBcRD1b7+BQ4lpnPj3hukqQlDLwCyMwjmfnLmfkr\nwPeBLwO/AxzIzF3Aqoh4IiLuAp4FpoDHgBciYg3wDPBRZu4EXgcOVrs+DDyZmTuAbRGxddSTkyRd\n39BLQBHxBeDnM/NV4Bcyc7ra9A7wCPAAcDwzL2fmAnCG7tXCduDdntqHIqIBrM3M2Wr8KPDwrU5G\nkjS8G7kH8DXguWuMt4FJoAFc6BlfBNb3jbd7xhb69rH+BnqRJN2ioV4HEBHrgXsz87vV0NWezQ3g\nPN0T+mTfeKsab/TVtq9Re36pHjZsuJPx8dv7FaGt1u3+wqrPno0bJ2g2G4MLtaJ4zJfHsC8E2wn8\ncc/jH0TEzioQHgfeB04AhyJiLd2bxfcBJ4EPgN3Ah9XX6cxsR8SliNgMzAKPcu2ri59otS4OO6fa\ndN9awRAYpfn5Rebm2nW3oWXUbDY85iO0VJgOGwAB9L7JzVeAV6qbvKeAtzKzExEvA8eBMbo3iT+J\niMPAkYiYBi4BT1X72Ae8SXcZ6r3MPHEDc5Ik3aKxTqdTdw9DmZtr3/aNnj17hqmpCXwriFE5zczM\nou8FVBivAEar2WyMXW+bLwSTpEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoAkKRC\nGQCSVCgDQJIKZQBIUqEMAEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhxocpioiv\nAn8HWAP8AfBd4DXgKnAyM/dXdXuBp4FPgUOZ+XZErAPeADYBC8CezDwXEQ8CL1W1xzLz+VFOTJK0\ntIFXABGxC5jKzF8E/hbwN4AXgQOZuQtYFRFPRMRdwLPAFPAY8EJErAGeAT7KzJ3A68DBateHgScz\ncwewLSK2jnZqkqSlDLME9ChwMiL+A/CfgP8M3J+Z09X2d4BHgAeA45l5OTMXgDPAVmA78G5P7UMR\n0QDWZuZsNX4UeHgE85EkDWmYJaC/Qvev/l8FPk83BHqDow1MAg3gQs/4IrC+b7zdM7bQt4/NN96+\nJOlmDRMA54BTmXkZOB0RPwb+Ws/2BnCe7gl9sm+8VY03+mrb16g9v1QTGzbcyfj46iHarU+rNVF3\nCyvOxo0TNJuNwYVaUTzmy2OYADgOfBn4FxHxs8DPAH8cEbsy8zvA48D7wAngUESsBe4A7gNOAh8A\nu4EPq6/TmdmOiEsRsRmYpbvM9NxSTbRaF298dstsfn4RMARGaX5+kbm5dt1taBk1mw2P+QgtFaYD\nA6B6Js+OiPjvwBjdm7qzwKvVTd5TwFuZ2YmIl+kGxhjdm8SfRMRh4EhETAOXgKeqXe8D3qS7nPRe\nZp642QlKkm7cWKfTqbuHoczNtW/7Rs+ePcPU1ARwb92trBCnmZlZZMuWe+puRMvIK4DRajYbY9fb\n5gvBJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqEMAEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQo\nA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUqPFhiiLi+8CF6uHHwDeA14CrwMnM\n3F/V7QWeBj4FDmXm2xGxDngD2AQsAHsy81xEPAi8VNUey8znRzYrSdJAA68AIuJzAJn5K9W/vw+8\nCBzIzF3Aqoh4IiLuAp4FpoDHgBciYg3wDPBRZu4EXgcOVrs+DDyZmTuAbRGxddSTkyRd3zBXAFuB\nn4mIo8Bq4OvA/Zk5XW1/B/jbdK8GjmfmZWAhIs5UP7sd+Gc9tf84IhrA2sycrcaPAg8Df3rrU5Ik\nDWOYewAXgd/NzEfp/jX/b4Gxnu1tYBJo8BfLRACLwPq+8XbP2ELfPtbfRP+SpJs0zBXAaeCHAJl5\nJiLOAff3bG8A5+me0Cf7xlvVeKOvtn2N2vNLNbFhw52Mj68eot36tFoTdbew4mzcOEGz2RhcqBXF\nY748hgmAvwf8TWB/RPws3RP3exGxKzO/AzwOvA+cAA5FxFrgDuA+4CTwAbAb+LD6Op2Z7Yi4FBGb\ngVngUeC5pZpotS7e+OyW2fz8ImAIjNL8/CJzc+2629AyajYbHvMRWipMhwmAfw18KyKm6a7zfwk4\nB7xa3eQ9BbyVmZ2IeBk4TneJ6EBmfhIRh4Ej1c9fAp6q9rsPeJPuMtR7mXniZiYnSbo5Y51Op+4e\nhjI3177tGz179gxTUxPAvXW3skKcZmZmkS1b7qm7ES0jrwBGq9lsjF1vmy8Ek6RCGQCSVCgDQJIK\nZQBIUqEMAEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAG\ngCQVygCQpEIZAJJUKANAkgplAEhSocaHKYqITcCHwMPAFeA14CpwMjP3VzV7gaeBT4FDmfl2RKwD\n3gA2AQvAnsw8FxEPAi9Vtccy8/mRzkqSNNDAK4CIGAf+FXCxGnoROJCZu4BVEfFERNwFPAtMAY8B\nL0TEGuAZ4KPM3Am8Dhys9nEYeDIzdwDbImLrKCclSRpsmCWg36N7wv5fwBhwf2ZOV9veAR4BHgCO\nZ+blzFwAzgBbge3Auz21D0VEA1ibmbPV+FG6VxaSpGW0ZABExJeA/52Zx+ie/Pt/pg1MAg3gQs/4\nIrC+b7zdM7bQt4/1N9e+JOlmDboH8JvA1Yh4hO5f9P8GaPZsbwDn6Z7QJ/vGW9V4o6+2fY3a84Ma\n3bDhTsbHVw8qq1WrNVF3CyvOxo0TNJuNwYVaUTzmy2PJAKjW+QGIiPeBfcDvRsTOzPwu8DjwPnAC\nOBQRa4E7gPuAk8AHwG66N5B3A9OZ2Y6ISxGxGZgFHgWeG9Roq3VxUEnt5ucXAUNglObnF5mba9fd\nhpZRs9nwmI/QUmE61LOA+nwFeKW6yXsKeCszOxHxMnCc7lLRgcz8JCIOA0ciYhq4BDxV7WMf8Cbd\n5aT3MvPETfQhSboFY51Op+4ehjI3177tGz179gxTUxPAvXW3skKcZmZmkS1b7qm7ES0jrwBGq9ls\njF1vmy8Ek6RCGQCSVCgDQJIKZQBIUqEMAEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUA\nSFKhDABJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhSocYHFUTEKuAVIICrwD7gEvBa\n9fhkZu6vavcCTwOfAocy8+2IWAe8AWwCFoA9mXkuIh4EXqpqj2Xm8yOemyRpCcNcAfwa0MnM7cBB\n4BvAi8CBzNwFrIqIJyLiLuBZYAp4DHghItYAzwAfZeZO4PVqHwCHgSczcwewLSK2jnJikqSlDQyA\nzPyPdP+qB/g5oAXcn5nT1dg7wCPAA8DxzLycmQvAGWArsB14t6f2oYhoAGszc7YaPwo8fOvTkSQN\na+ASEEBmXo2I14AvAn+X7gn//2kDk0ADuNAzvgis7xtv94wt9O1j81I9bNhwJ+Pjq4dptzat1kTd\nLaw4GzdO0Gw26m5Dy8xjvjyGCgCAzPxSRGwCTgB39GxqAOfpntAn+8Zb1Xijr7Z9jdrzS/3/rdbF\nYVutzfz8ImAIjNL8/CJzc+2629AyajYbHvMRWipMBy4BRcRvRMRXq4c/Bq4AH0bErmrscWCabjBs\nj4i1EbEeuA84CXwA7K5qdwPTmdkGLkXE5ogYAx6t9iFJWibDXAH8EfCtiPhOVf9l4M+BV6ubvKeA\ntzKzExEvA8eBMbo3iT+JiMPAkYiYpvvsoaeq/e4D3qQbQu9l5olRTkyStLSxTqdTdw9DmZtr3/aN\nnj17hqmpCeDeultZIU4zM7PIli331N2IlpFLQKPVbDbGrrfNF4JJUqEMAEkqlAEgSYUyACSpUAaA\nJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhS\noQwASSqUASBJhTIAJKlQ40ttjIhx4JvA3cBa4BDwP4HXgKvAyczcX9XuBZ4GPgUOZebbEbEOeAPY\nBCwAezLzXEQ8CLxU1R7LzOdHPzVJ0lIGXQH8BvB/MnMn8Bjw+8CLwIHM3AWsiognIuIu4Flgqqp7\nISLWAM8AH1U//zpwsNrvYeDJzNwBbIuIraOemCRpaYMC4N/xFyft1cBl4P7MnK7G3gEeAR4Ajmfm\n5cxcAM4AW4HtwLs9tQ9FRANYm5mz1fhR4OERzEWSdAOWXALKzIsA1Un73wNfB36vp6QNTAIN4ELP\n+CKwvm+83TO20LePzYMa3bDhTsbHVw8qq1WrNVF3CyvOxo0TNJuNutvQMvOYL48lAwAgIv468EfA\n72fmH0bEP+/Z3ADO0z2hT/aNt6rxRl9t+xq15wf10WpdHFRSu/n5RcAQGKX5+UXm5tp1t6Fl1Gw2\nPOYjtFSYLrkEVK3tHwX+UWYeqYZ/EBE7q+8fB6aBE8D2iFgbEeuB+4CTwAfA7qp2NzCdmW3gUkRs\njogx4NFqH5KkZTToCuBrwF8CDkbE7wAd4B8C/7K6yXsKeCszOxHxMnAcGKN7k/iTiDgMHImIaeAS\n8FS1333Am3QD6L3MPDHqiUmSljbW6XTq7mEoc3Pt277Rs2fPMDU1AdxbdysrxGlmZhbZsuWeuhvR\nMnIJaLSazcbY9bb5QjBJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhSoQwASSqUASBJ\nhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqEMAEkqlAEgSYUyACSpUAaAJBVqfJiiiNgG/NPM\n/OWI2AK8BlwFTmbm/qpmL/A08ClwKDPfjoh1wBvAJmAB2JOZ5yLiQeClqvZYZj4/4nlJkgYYeAUQ\nEb8NvAJ8rhp6ETiQmbuAVRHxRETcBTwLTAGPAS9ExBrgGeCjzNwJvA4crPZxGHgyM3cA2yJi6ygn\nJUkabJgloB8Cv97z+Bcyc7r6/h3gEeAB4HhmXs7MBeAMsBXYDrzbU/tQRDSAtZk5W40fBR6+pVlI\nkm7YwCWgzPx2RPxcz9BYz/dtYBJoABd6xheB9X3j7Z6xhb59bB7Ux4YNdzI+vnpQWa1arYm6W1hx\nNm6coNls1N2GlpnHfHkMdQ+gz9We7xvAebon9Mm+8VY13uirbV+j9vyg/7TVungTrS6v+flFwBAY\npfn5Rebm2nW3oWXUbDY85iO0VJjezLOA/kdE7Ky+fxyYBk4A2yNibUSsB+4DTgIfALur2t3AdGa2\ngUsRsTkixoBHq31IkpbRzVwBfAV4pbrJewp4KzM7EfEycJzuEtGBzPwkIg4DRyJiGrgEPFXtYx/w\nJt0Aei8zT9zqRCRJN2as0+nU3cNQ5ubat32jZ8+eYWpqAri37lZWiNPMzCyyZcs9dTeiZeQS0Gg1\nm42x623zhWCSVCgDQJIKZQBIUqEMAEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKh\nDABJKpQBIEmFMgAkqVA383kAkj6Drly5wuzsj+puY6BWa6L6dL3b2913f57Vq2/vj6kdxACQCjE7\n+yOmpuYY4iO4bwO3+0erfszMDJ/5z6owAKSibMYPLBqV2/8qZRDvAUhSoQwASSpUbUtAETEG/AGw\nFfgx8A8y8/a/QyVJK0SdVwBfBD6Xmb8IfA14scZeJKk4dQbAduBdgMz8b8AXauxFkopT57OAJoEL\nPY8vR8SqzLxaV0Oj8XHdDawgHwPNuptYYfz9HI2V8btZZwAsAI2ex0ue/JvNxthPv6Vb02zeT6dT\ndxcriU9XHCV/P0dpZfxu1rkE9D1gN0BEPAj8WY29SFJx6rwC+DbwSER8r3r8mzX2IknFGet4TShJ\nRfKFYJJUKANAkgplAEhSoQwASSqUASBJhTIAChMRHnNJgE8DLUJEfJ7um+19AbhMN/j/DPitzDxd\nZ2+S6uMngpXhVeBr1ZvuAT959fW3gF+qrStJtTIAyrCu9+QPkJl/EhF19SP9RET8F+BzfcNjQKd6\nu3j9lBgAZfjTiPgm3bffvkD3Tfh2Ax/V2pXU9VXgFeDX6S5Rapl4D6AA1aevfZHuZzBM0n0n1u8B\n385MfwFUu4j4beCHmfntunspiQEgSYXyKYGSVCgDQJIKZQBIUqEMAEkq1P8FsFPmMdt5HEgAAAAA\nSUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x3f764e0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.TARGET.value_counts().plot(kind='bar')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.0411987070619\n" ] } ], "source": [ "num_positive = len(df[df['TARGET'] == 1])\n", "num_negative = len(df) - num_positive\n", "print num_positive / float(num_negative)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reverse Feature Engineering" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def drop_constants(df):\n", " constant_features = []\n", " for col in df.columns:\n", " if df[col].std() == 0:\n", " constant_features.append(col)\n", " ndf = df.drop(constant_features, axis=1)\n", " print len(constant_features), 'features dropped because they are constant.'\n", " return (constant_features, ndf)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def drop_lin_coms(df):\n", " with open('rfe_from_forum.txt', 'r') as f:\n", " lines = f.readlines()\n", " lines = [line.strip().split(' ')[0] for line in lines]\n", " lin_com_features = lines\n", " ndf = df.drop(lin_com_features, axis=1)\n", " print len(lin_com_features), 'features dropped because they are linear combinations.'\n", " return (lin_com_features, ndf)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def drop_high_corrs(df):\n", " high_corr_features = []\n", " safe = []\n", " for x in df.columns.values:\n", " for y in safe:\n", " if (abs(np.corrcoef(df[y], df[x])[0,1]) > 0.999):\n", " high_corr_features.append(x)\n", " break\n", " safe.append(x)\n", " ndf = df.drop(high_corr_features, axis=1)\n", " print len(high_corr_features), 'features dropped because they are in linear relation with other features.'\n", " return (high_corr_features, ndf)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "34 features dropped because they are constant.\n", "40 features dropped because they are linear combinations.\n", "56 features dropped because they are in linear relation with other features.\n" ] } ], "source": [ "df = pd.read_csv(z.open('train.csv'))\n", "constant_features, ndf = drop_constants(df)\n", "lin_com_features, ndf = drop_lin_coms(ndf)\n", "high_corr_features, ndf = drop_high_corrs(ndf)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [], "source": [ "dropped_features = constant_features + lin_com_features + high_corr_features\n", "with open('dropped_features.txt', 'w') as f:\n", " f.writelines([s+'\\n' for s in dropped_features])\n", "import cPickle as pickle\n", "with open('dropped_features.dump', 'w') as f:\n", " pickle.dump(dropped_features, f)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Downsampling Majority Class" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# not necessary if we use boosting" ] }, { "cell_type": "code", "execution_count": 93, "metadata": { "collapsed": false }, "outputs": [], "source": [ "df_positive = df[df['TARGET'] == 1]\n", "df_negative = df[df['TARGET'] == 0].sample(frac=num_positive / float(num_negative))" ] }, { "cell_type": "code", "execution_count": 94, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ndf = pd.concat([df_positive, df_negative])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Feature Importance" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x172de2e8>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAEKCAYAAAAlye1PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XfO9//FXEGkNqSmKHyVKPlU8aF1TKUErpddUlNIa\nala9NbTVXFQNRVE1K0Gq5rq9FKlGb9UQ89AS1DvU0KoobUQNFSL5/fH9bmfnZA/nnJyz1177vJ+P\nh0f2WXuvtT57J8dnf9fw/g6ZPXs2ZmZm1nrzFV2AmZnZYOUmbGZmVhA3YTMzs4K4CZuZmRXETdjM\nzKwgbsJmZmYFWaDoAsys/0XELGAyMCsvmg08JGn/Pm7vP4B9JB3UTyV23/42wBaSDh2I7TfY70rA\n6ZJ2auV+zSrchM0602xgtKTX+ml7awD/r5+2NRdJNwE3DdT2G1gJGFXAfs0AGOKwDrPOk0fCS0ma\nVuO5TwBnAUsA8wPnSBofEUOAnwDrA4sCQ4B9gb8CdwPDgf8Ffg6cK2nNvL1NKz9HxLHAhsCywKOS\n9oiI/wa+RDr99TxwsKSXu9W0J7CTpG0i4vfAw8DmwAjgbOCjwKbAQsCXJT2RX/ck8B/AksAVkn6Q\nt7c98P28z38BR0h6sKq+ZYAngPWA5YA7JW2Va90OGAYsDHxb0q/yeivl97Ui8Aqwi6SXI2JV4EJg\naeB94IeSfhERywHnAisAQ4FrJJ3Sg78+G0R8Ttisc/0+Ih6JiD/kP5eKiPmB/wGOlLQuMBr4dkSs\nR2q+y0raUNIapGb7PUkvkhraXZL2ydvu/u29+uePAWvnBvw1YE1gPUmfBm4BLqlTb/U2Vsyv3xH4\nEXBbrnci8M1u+9oQWAfYJSK2jogALgB2kLQ2cCzwq4hYpGqdT0nanfQl48+5AX+M1Pg3yesdDRxf\nta+NgR0lrQZMBw7Iy68Brs2f2ReBH+Z9XQ5ckuteH/h8RPiwt83Bh6PNOtdch6MjYjXg48CleeQL\n8CFSU7owIo6JiAPza0aTRpG9dZ+kSkP9T2Bd4OHUG5kP+HAPtvG/+c8/k5rzxKqfN6163YWSZgGv\nR8R1wBjgKeD/JL0AIOn3EfF3UqPuXt8HJP0lIvYCvhoRqwAbAItUveR2SW/lx38AloiIxYG1yF8s\n8heWVSNioVzn4hFxYl5nYWBt0pcgM8BN2KyTDamxbH7gtTzKBCAilgamR8QXgTOB04EbSM1s9xrb\nmN1t2wt2e/7Nbvv7kaQL876Gkg6DNzOj+gdJ79d53cyqx/ORDgcPYe73Pj/pkHD3+j4QEZ8mve8z\nSE3/DuD8qpf8u+px5TOYmR9/0NQjYhRQOdy+oaQZefmS3bZh5sPRZoOMgHciYneAiFgBeJw0Svwc\ncGNumA8D25OaF6RmU2lirwIfy4e3h+TX1TMR2DciFs0/n0g6zN0btb5MVHw1IobkEemXgRuB35MO\n/a4EEBGbA8sD99dYv/p9fRZ4UNKZwJ3ADnS9/5okvUH6rPbM+1oBmEQ6unAf8O28fDHSefXtmrxX\nG2TchM06U80rLiW9R2oE+0bEo8BvgKMk3Qv8FBgdEX8kNYxngJF51XuBT0TELyX9CbiI1HzuAV5q\nUMfFwM3AfRExmXSV9V69rL3R1aMfBh7IdZwr6fZc38HA9RHxGHAS8J+5YXb3BDArIu4DrgJGRMQT\nwEOkQ/FLRMTCTerdnXQ++o/Ar0i3cr2Sl2+Qa7gXuFLS1U22ZYOMr442s1LKV0efI+l/m77YrE15\nJGxmZeURhJWeR8JmZmYF8UjYzMysIG7CZmZmBfF9wgbAzJnvz37ttbeLLqNPFl98IcpaO7j+orn+\nYpW5/hEjFm10+1yPuAkXKOfbng78JS86VtJdvdzGVEnLRsQawOKS7oqIzwKnkWbQuUPS2GbbefbZ\nPzNtWs0MgwGx0korM//8DW/B7LEFFuif7RTF9RfL9Rer7PXPKzfhYq0DfEfS9fOwjcqVdTsCU4G7\nSIk/O+YYvtsiYi1JjzbaSMRzdN0SOtCe49574eMfX7VF+zMza08D0oTzjChbk2Y8WRk4lXSD/gGS\npkTEAaRZUS4DriXN0rJifrwGKV/115KOqrP9Feus9ylggqSj8sjw7LzKP4Gvk2ZGuZaUwPMh4EBJ\nj0XEIcBupJHjNZLOjYgvAd8F3gVekrRrnVrWBM6StHn++SZS8PsqwDdIn/FsUvrOmqQw+hmksIN1\ngLUj4jBS4MB3cw5urf2MB66WdGtEjCHN4PL1/Nyy+fOdERGPAOtLmpVD5D9CnZi+OY2ktTO6tW7U\nbWbWrgbywqzhkrYhpfN8j/r39I0E9ga2AU4ADiUFp+9T5/WN1luf1GwBxpGmTNucNHPLkaRpy/4B\nbAUcAiycA+13ATYCNgF2yNmvuwCnStoEuDkihtcqQtJkYFhErBARywBL5lHnKGDrvP6fSMHyAMMk\nbSrpSuBW4Jv5NYsABzZ5zzVJmgr8DDhD0kO5Aa9PmtR9KvBiX7ZrZmYDayAPR/8x//lX0qizWvXJ\n7GclvRkR7wEvS3odPpgPtZF661Wa/WrA+XnmlqHA05J+nef+vJE0wv0haQS9IvC7XNdipFHsEcDY\niPgmqYne0KCWS0jZsTOA8XnZK8BlEfEWEKRYPUjZvRXjK3WT4u6+1OQ9VzS9GEDS/cDIiDiB9CXo\nuB5uuyWWWGIRRoxYtPkLe6g/t1UE118s11+sstc/LwayCXcf+b5Dmjx7CvBpao/OhtR53Eyt1z4F\n7CHpxYj4DLBMRGwGTJU0JiI2IDXhQ4HHJW0NEBHfAh4D9iddKPWPiPgp6XDy5XX2fy2pib8PbJlH\nzceRJvMeAvy2qsbqLxePRcSGkl4CtiBl8dbzDmlCcUifX/f3Pot8ZCMi7gS2lTQdeIN0GL6tTJv2\nJq++WivKt/dGjFi037ZVBNdfLNdfrDLX3x9fHlp1YdZs0vnZ8yPiBeBv3Z5r9rjeNhu99mDg8ohY\ngNSg9gGmAddExEGk2VGOkzQ5X7w0idSs7s/1PQBMiIg3SI3s5nqFSHorh7cvUJlvNG/vPtIsLdNI\nX0Ce77bqPqSQ+beBJ0mH0Ou5mDQH7O6kLzLd3/vDwKkR8SfSldG3RMQ7pMPR+zbYbvZc85f0m+eA\nES3cn5lZe3JspQEwZcqU2WW9RanM36TB9RfN9RerzPV3/H3CEbEf6arlyjeFIfnx2HzOs5W1rEu6\nyrt7LddWJizvh30MJV2s1f2bkSQd1B/7qGfUqFGl/UUwMyurtm7CksbR+BBty0h6ENhsgPfx3kDv\nw8zM2oezo83MzArS1iPhdpdDNnYhHT7+taQT8pXRVwDDSbdGHSHpvjrrb0oKDPlKP9e1AnApXX+/\n+0t6uj/3YWZm885NuI8iYiTwFUnr5Z8nRcT1wE7A/0k6O4d+XE1KxqpnIK6MOwE4W9JNEbElcAop\n1rKuKVOmlDY72sysrNq+CbcgAvObpIkPjo+IBYFHSfGSx5Oa55LAo5L2iYhjgc8ACwMHAF+o2tRQ\n0r28Z5BCOyrL/t3kLY6KiAnA0sDNko6LiE2AY0kXfy0C7CbpmYg4mpRANj9wgaRxtSI3gcOBSghI\nT2pwdrSZWQHavglnwyVtFRGrADeR7n2tZSTwOVKTfI4UbvEO8AJQswmTAjjuIjXdbfP2PwRMy6Ee\nQ4Ancj4zwJOSDqveQEScBjwi6ZmqZcvkbf9Xk/c2jNRYh5JmUzoOWB3YXdLLETEW2DkibgHGSFo3\n3/t8ckR8kq7IzSHAbyNiYuXQc6S4sFOB7ZvUgLOjzcxaryxNeMAiMCVNj4g/RMTGpBH24aTG/dGI\nuBJ4i9TUh1ZWqawbEcNI515fJ4WDVJavCVxFOh88qcl7e1zSTGBmrhtSWMg5OShkeWASKfrygVzz\nTOA7EbEzc0durgo8ndPBzgW+2o7ngx1bOSfXXyzXX6yy1z8vytKEBzoC82JSfOWH8iHubYAVJO0a\nEUuRRpK1YidvJJ3/Pa2yII9OfwF8OU/u0Eytc8LjgJVzEtfP8r6fIk/wkO8nnkDKt66O3DyUFIW5\nGXAm8AVJf+1BDS3n2Mourr9Yrr9YZa6/TLGV/anfIzAl3RkRFwIn5kUPAEdHxO3552dJTf+D7UTE\n9sBngaERsXV+bmz+bxhwVj6UPV3SDr16h+kw9qSIeBP4O7CcpEcjYmJE3ENqyufXidx8iRSxOZQ0\ngcQQ4KnmYR+OrTQzazXHVhrg2Moiuf5iuf5ilbn+jo+t7E9FRmBGxDHA5jX2vbekFwZy3z3l2Eoz\ns9YbNE24yAhMSSeQ7t01MzP7gGMrzczMCuImbGZmVpBBczi6HeQrlScAN0i6KC97kXSrFcC99ZK9\nGmxzPCka8w7SPcGXVD23A7CTpN2bbafVsZXg6EozMzfh1jqRFKgBQER8HHhY0nb9sO1lgH2BS/K2\nzwS2pCvopKHWxlaCoyvNzDqsCbdxzvQ+efvvA7+p2uQ6wPIRcRvwNnC4pCnU0H3GpYiYKmnZqpcc\nBawWEUdLOhG4G7ielHHdA62OrQRHV5rZYNeJ54SHS9qGlMf8PeoHdYwE9ga2IV25fCiwAalh1nM5\nsHN+PFfONLAusGG3nOmNSV92dqNrUoaKqcBJkjYHTiZNgdhIowCSH+b9nQgg6bom2zIzs4J11Eg4\na8ec6T1IiVu3ASsBMyLiedLEETPztu+uat49Mc83iRetP/Ojy5496/qL5fqLVfb650UnNuG2y5mW\ndGRl5XyYeqqkWyPiFOCfwGkRsRbpi0M975BmhSIiVgSW6Pb8LNIUh33UytjKtL9p00b0S0BImRN3\nwPUXzfUXq8z1D9bs6N5oi5zpBk4BroiILwLvkUbX9TwEvB4R95Imc3i2W72vkHKsT5Y0tgf7noM0\nssVXR49gpZVWbuH+zMzaj7OjrWJ2mb+NlrV2cP1Fc/3FKnP9zo4eIM6ZNjOzVnATrsE502Zm1gqd\neIuSmZlZKXgk3CIRcRiwC+nQ8q8lnRARw0n3Bg8n3dZ0hKT7erldx1aamZWUm3ALRMRI4CuS1ss/\nT4qI64GdgP+TdHZEjCI103X6uBvHVpqZlUxHNeE2jq08APhC1aaGku77PQOYUbXs3w3em2Mrzcw6\nTEc14Wy4pK0iYhVSrOTUOq8bCXyO1CSfIwVhvAO8QGpotVxOSrk6nhqxlXmWpCe6xVYeVr2BiDgN\neETSM1XLlsnb/q8m761ZbOUa1bGVuXGbmVmb6sQm3I6xlUTEMOBS4HXg4KrlawJXkc4HT+rF+3Rs\nZZWyx965/mK5/mKVvf550YlNuO1iK7MbSed/T6ssiIhPAr8AvixpcpP9OrayjjLf7A+uv2iuv1hl\nrt+xlc21RWxlRGwPfJYUK7l1fm5s/m8YcFY+lD1d0g51du3YSjOzDuPYSqtwbGVBXH+xXH+xyly/\nYysHiGMrzcysFdyEa3BspZmZtYJjK83MzArikfA8mNcoyu4BHP1Y1zK5hqHANFKc5VuN1nFspZlZ\n67kJ91E/RlEOxJVxRwLjJV2Zk7v2Bc5qtIJjK83MWq/tm3AnR1FmoyJiArA0cLOk4yJiE+BY0kVZ\niwC7SXomIo4GtiPdD3yBpHERcQjpIrJZwDWSzq2kdEXEfMAKwPNNasCxlWZmrdf2TTjr5CjKYaTG\nOhT4C3AcsDqwu6SXI2IssHNE3AKMkbRuRCwAnJzDPnYBNiI17N9GxERJT+fXPJq3f1yTGszMrABl\nacKdHEX5uKSZwMxcN6RQkXMi4g1geWASEKRgEPLrvxMRO5NG/b/Ln8NiwKrA0/k1q0fEFqQvA6Ob\n1NFyjq3s4vqL5fqLVfb650VZmnCnRlFC7XPC44CVJb0VET/L+34KODDvYygwATiC1MS3zsu/BTwW\nEecB10m6nXTM9/0e1NFy06a96dhKXH/RXH+xylz/YI2t7KQoynouByZFxJvA34HlJD0aERMj4h5S\nUz5f0uSIuC0iJuV93k/6PM4GfpqDP2ZRNUqvr/XZ0TCixfs0M2svjq00AKZMmTK7rLcolfmbNLj+\norn+YpW5fsdW9oKjKBsbNWpUaX8RzMzKatA0YUdRmplZu3FspZmZWUEGzUi4pyJiqqRlm7+yz9u/\nEPinpP/OPz9MusUJ4DlJ+/Rye8cCUyVdFBHfkHReDukYR7qtaRYpGvPJRtspIraywvGVZjZYuQnP\nbcCuVMvpXmsAd+SfhwFI2ryfdnE0cB6wDTBb0sY5n/ok0m1WDWprdWxlheMrzWzwalkTbkH85Ip1\n1vsUMEHSURGxBun2HYB/Al8nhXFcBHySdCvSsAbvYRtgB0lfzz8/DIwhpVZ9Kb+3fwA7ALvn7Q8h\nRVC+A6wLXAh8Im9yLWDhiJhIiqI8qt5FYvn9XSNpw/zzvXm/lef/G1giIs6VdEhE3JSfWgl4rd57\n6lJEbGWF4yvNbHBq9Tnh4ZK2IcU0fo/6o86RwN6kEd0JpCCNDYBmh2prrbc+qRlCOkR7cB553kKa\n6GAHYJikz5Du8V2owfYnABtExIcj4j+AP0v6B7CkpC1ygxxKaraQoi83Af5EasSHMGdwyNvAaZLG\nAAcBV+ZDyfXUvfdZ0kmkw9yH5J9n5aCPs4ArG2zTzMwK0urD0QMWP9lkvUrDWo0U8gGpWT5NGoZV\n4iD/GhF/rbfx3Nj+B9gR2JCuq63fjYirSaPq/8fcEZc7kyaC+DUpz/rDEfEUcA3wTN720xHxz/x8\ndQBJPbWa9Rz3rEnaKyKWBh6IiNUkNZtMohD9EV9Z9tg7118s11+sstc/L1rdhAc6frLeehVPAXtI\nejEiPgMsA8wEvkLKal6OlNXcyKWkQ8pLSPpGzoneXtIGEfFh4GG6RVxKOgc4Bz44LB+Sfh4RB5Jm\nbPpG3vei1J+c4h1g6ZzC9REanMCNiK8Cy0s6Ja/3PnPGbbaVeY2vLPPN/uD6i+b6i1Xm+sseW9nv\n8ZM9eO3BwOV5hqFZwD55isAt8znWvwCvNNqBpOfzyPqGvOgZ4M2IuIvUfF8ifbHoiUuA8XndWcDX\nJdVslpL+HhG/BR4knbt+usbLnoyIn5OmWfxZRNxB+jv+lqQZNV5fpdWxldX7dXylmQ1Ojq00oJjY\nyop5vUWpzN+kwfUXzfUXq8z1D8rYylbET+aroA+vsY+zJP2qP/bRYN+FxGs6ttLMrPU8EraK2WVt\nwmX+Jg2uv2iuv1hlrr8/RsKOrTQzMytI6Q5Ht5t8tfIE4AZJF+VlL5Ku+Aa4t0HAyKakSMmv9HNN\nK5Cu4q78/e4vqdaFXB8oMrayGcdamlmnchOedycCi1V+iIiPAw9L2q6H6w/E+YATgLMl3RQRWwKn\nkO5trqu42MpmHGtpZp2r7ZtwC+IuvwksLun4iFgQeJR07+7xwDqkkI1HJe2TJ0v4DLAwKb1rDdI9\nuL+p2uQ6wPIRcRspEetwSVOob1RETACWBm6WdFxEbEJK2BoCLALslm+lOpqUNjY/cIGkcRFxCOlC\nrlmkWMtzSReVVSaFGAr0IKSjyNjKZtpzhG5mNq/Kck54IOMuLyclWgFsC9xESvOaluMk1wU2jIjK\nzEpPStqY9AVmN7qaZcVU4KQcjXkycEWT9zYsv69NSLGWAKsDu+dtXA/sHBFrA2MkrQusR2renyTl\nR2+U198hIlaVNE3S+5GiwU4FjmtSg5mZFaDtR8LZgMVdSpoeEX+IiI1JI+zDSSlTH42IK0lRlAsz\ndxTlHqRQjttIkyTMiIjngbtIKVxIuruqedfzuKSZwMxcN6TgknMi4g1Sgtck0rSElXjNmcB3ImJn\n0qj/d/lzWAxYFXg6IjYDzgW+2ux8cLvrSaxl2WPvXH+xXH+xyl7/vChLEx7ouMuLSaPmD+VD3NsA\nK0jaNSKWIk0D2D2K8sjKylVz+t4aEaeQZmg6LSLWIn1x6M17g5RJvbKkt/IkDENIkZsH5v0NJV0M\ndgSpiW+dlx8KPJYb8JnAFyQ123/baxZrWeZbHMD1F831F6vM9Zc9trKv+j3uUtKdEXEh6SIrSCPO\noyPi9vzzs6Sm35OLqE4BroiILwLvkUbXvXU5MCki3gT+Diwn6dGImBgR95Ca8vmSJkfEbRExiXRY\n+35SbObNpJH7Zfnq7ackHdR4l0XFVjbjWEsz61wO6zCg2NjKZprdolTmb9Lg+ovm+otV5voHZWxl\nXxUVB5n3fQyweY197y3phYHcd085ttLMrPUGTROWNI6u+X9bve8TSFdrm5mZfaAstyiZmZl1nEEz\nEh4obRpbuQzp/uShwDTSbUpv9ec+zMxs3rkJz7t2jK08Ehgv6cp8+9S+wFmNVnB2tJlZ67V9E3Zs\nZe9jKyUdlt/bfMAKwPMNP2ScHW1mVoS2b8LZcElbRcQqpFjJqXVeNxL4HKlJPgcsSwr2eAGo2YRJ\n9+TeRWq6c8VW5sPNT3SLrTwsIlYnNb+dgO9Xba8SW/nLiNiIdFh4vQbvrRJbORT4CylishJb+XJE\njCXFVt5Cjq2MiAWAk7vFVg4BfhsREyU9nV/zaN5+D2IrnR1tZtZqZWnCjq3sZWxlfs3qEbEF6YvG\n6CZ1tC3HVrY/118s119eZWnCjq3sWWzlt0ixlecB10m6nTSMfL9JDW3NsZXtzfUXy/UXx7GVjq2s\nFVv5N9Ln89McEjILOLj5Lh1baWbWao6tNMCxlUVy/cVy/cUqc/2OrewFx1Y25thKM7PWGzRN2LGV\nZmbWbhxbaWZmVhA3YTMzs4IMmsPRnSoivgHsSboK+seSrsvLe5RfXdHOsZXVHGFpZp3ETbjEImJJ\n4ABSNOdCwJPAdX3Ir27j2MpqjrA0s87iJtwDbZ5fvbakWTmZ6995k73Nr6a9Yyurtf9o3cysp9yE\ne67t8qsrK+dD0j8ghXRA7/OrS6NehGXZY+9cf7Fcf7HKXv+8cBPuuXbMr66sf15O/PpNRNxJSvzq\nTX51adSKsCzzzf7g+ovm+otV5voHa2xlUdouvzoiRgEnS9qRlA/9Tn7uWHqXX037xlZWc4SlmXUW\nN+G+aYv86tys/xgR95Ka7y2S7oqIyfQyv1oaWYKro0ew0korF12EmVm/cXa0Vcwu8yGhstYOrr9o\nrr9YZa7f2dElU2R+tZmZtR834RYqMr/azMzaj2MrzczMCuKRcD+KiPHA1ZJurVo2DHhKUsviqHob\nWQnlia2scHylmXUCN+GBVznv2xJ9iaxM65UhtrLC8ZVm1hnchHsgIlYFxpNu95kP+BpwDLA8KRHr\nRknfr3r9wsCVwGLAn6uWf4p0a9NM0j29+0mqdX8xEfEgsKOkv0TEjsDGwOnABcCwvN+jJd2Yb0kS\n8C5wA72OrITyxFZWlGfUbmZWj88J98zngftJcZQ/ABYhHebdClgfOKjb6w8EJksaDVxYtfwi4GBJ\nm5Ga6U8a7PNiYI/8eG/SBV2fAE6XNIY0ccM38vOLAMdL2g14iRRZuTlwMimy0szM2pBHwj1zCXAk\nMBGYDhwHrBcRmwFvAAt2e/0o4GYASQ/kCEuA5SRNzo/vJDXJeq4G7oyIS4BFJT0ZEZACPPbJrxla\n9frKaPdhOjSyslr3DOmyZ8+6/mK5/mKVvf554SbcM9sBd+VZjnYlzXL0I0kH5gkd9uv2+idIMx3d\nlA9BV5rl3yJizdyIR9PVOOci6V8R8QhptDw+Lz4BuEjSxIjYizSPcEUlm7oPkZVQjtjKiueYNm3E\nBzf4l/lmf3D9RXP9xSpz/c6Obp2HgMsi4l3SIfyNgAsiYkPSedgpecRZuQDrQuDneTIFATPy8v2B\nc/OIdiZpKsJGxgG3kA5HA1wH/DgixpKiMpfMy6sv/DqFXkZWQlliKyscX2lmncGxlVbh2MqCuP5i\nuf5ilbl+x1Z2gIj4JbB41aIhwHRJOxRUkpmZtYibcMHyNIRmZjYI+RYlMzOzgngk3CIRcRiwC+ki\nql9LOiEihpPu4x1OuoL6CEn39XK740m3M90BfFXSJRGxEHAV6TD3DGBPSVMbbadssZXg6EozKz83\n4RaIiJHAVyStl3+eFBHXAzsB/yfp7IgYRWqm6/RxN8sA+5Luad4PeEjSiRGxJ+ke50Mb11im2Epw\ndKWZdYKOasK54WwNLASsDJxKukXnAElTIuIA4KPAZcC1pHtoV8yP1wDWJo1Sa054EBHfBBbP9wsv\nSLpfeE3geFLzXBJ4VNI+EXEs6V7hhUnpVl+o2tRQUmzlGXTdvjQU+HeD97YpcKCkr+Sfp0qqDuI4\nClgtIo7Ozbdy1d7HgNfqf2oVZYutBEdXmlnZdVQTzoZL2iqHaNwE1DsMO5IUQ7kwKaliWVJjfIHU\n0Gq5HLiL1HS3zdv/EDBN0pjc+J6oSql6UtJh1RuIiNOARyQ9U7Vsmbzt/2ry3mbXeQzwQ2ANSScC\nSJodEb8jfbn4fJPtmplZATqxCf8x//lXUoOsVn1P17OS3syRki9Leh0gImZRh6TpEfGHiNiYNMI+\nnNS4PxoRVwJvkZp6JSFLlXXzlIaXAq8DB1ctX5N0/vYISZN68T6b3p8maYtIySATgFV6se1SqI6u\nLHvsnesvlusvVtnrnxed2IS7jxDfAZYjRUR+Gqg1a9GQOo9ruZh0fvVD+RD3NsAKknaNiKWA7au2\nUd3QbySd/z2tsiAiPgn8AvhyVaZ0Pe+QRutExIrAEt2en0W+2j0ivge8KOkK0heDmU22XUrTpr3J\nq6++Ueqb/aHcYQXg+ovm+ovj2MrmZpOmDjw/Il4gRT1WP9fs8Vwk3RkRFwIn5kUPkCZVuD3//Cyp\n6X+wnYjYHvgsMDQits7Pjc3/DQPOyoeyG4V0PAS8HhH3Ak/l/VTX+wqwYEScTDrX/PM80cN8dMVe\nNlCm7GhI9Y4ouggzs3ni2EoDYMqUKbPLeotSmb9JQ7lHAuD6i+b6i+PYygESEfsBu9E1yhySH4+V\ndP8A7/sYYPMa+95b0gsDtd9Ro0aV9hfBzKys3IRrkDSONINREfs+gTRloZmZdTjHVpqZmRWk30bC\nlfhESbdWLRsGPCWp5VFMETEG2FXS3hHxP5J2auG+XyRdjQ1wb4PwjzkCOPpx/8uQ4jCHAtNIcZZv\nNVqnjLG90LIJAAAWjElEQVSVFa+9tgjTpr3pGEszK52BPhxdOZ9ZlNkALW7AHwcelrRdD1cZiM/n\nSGC8pCtzcte+wFmNVihfbGV3rzrG0sxKp2kTjohVgfHAe6TD118DjgGWJ923eqOk71e9fmHgSmAx\n4M9Vyz9Ful1oJume1/0k1bpnl9w4VgGWIkVBngfsCKxKmozggYg4hHTx1CzgGknnRsQnSIEYbwJv\nk0aBH0Q89rKGB4EdJf0lInYENgZOBy4g3Va0LHC0pBsjYjIpmONd4AZg+Yi4LddwuKQptfaRjYqI\nCcDSwM2SjouITYBjSV9iFgF2k/RMRBwNbAfMD1wgaVytz6GS0hUR8wErAM832H9WxtjK7so5kjez\nwasn54Q/D9xPinj8Aakp3CtpK2B94KBurz8QmCxpNHBh1fKLgIMlbUZqZD9pst+38z5+CWwlaVvg\nR8CuEbEaaUaijYBNgB3yBAinkRrjlsA9VduqjDZ7U8PFwB758d6kC7U+AZwuaQwpD/ob+flFgOMl\n7Qa8BJwkaXPgZNJh4UaGkRrrJsAhednqwO55G9cDO0fE2sAYSesC65Ga9ydrfA6rAkTEAsBkYDRw\nW5MazMysAD05HH0J6fDmRGA6cBywXkRsBrwBLNjt9aOAmwHyiPW9vHy5qlSoO0kNqpFH8p/TgSfz\n49dIUZRrkCZe+B1ptLgYaZS8KvBgfu3dpKZZrTc1XA3cGRGXAItKejIlQHJ0DsGArnhK6DoH/DA5\noUrS3VU50vU8LmkmMLPqs/obcE5EvEE64jAJCFIwCPn134mInet8Dk/n16weEVuQcqlHN6mj9Kpj\nLMumrHVXuP5iuf7y6kkT3g64K88ctCtp5qAfSTowT5KwX7fXP0GaPeimfPi30qj+FhFr5iY4mq6m\nVU+jc6VPkZrX1gAR8a1c15N53xOBdateX7mhusc1SPpXRDxCGi2Pz4tPAC6SNDEi9gL2rFqlElF5\nLPBP4LSIWIuUYd3b9zkOWFnSWxHxs1z/U6SjDETEUFIe9BHM/Tk8FhHnAddJup10jPb9JjV0hEqM\nZdmUOawAXH/RXH9xWhVb+RBwWUS8Szp8vRFwQURsSDoHOiWP9irN5EJSZOKdpPOklan69gfOzaPJ\nmcA+9JGkyRFxW0RMIh3OvZ80evx2rvXbwKuk875U1dbbGsYBt9AV+3gd8OOIGJv3t2S37QOcAlwR\nEV8knUffqw9v8XJgUkS8CfydNIJ/NCImRsQ9pKZ8foPP4Wzgpzn4YxZVE0bUV7bYyu4cY2lm5ePY\nSgPKGVtZscQS5b5FqcwjAXD9RXP9xSl9bGVE/BJYvGpRs0kMSllDUVGUvVHm2Moy/xKb2eBWaBOW\ntGOR+29VDY6iNDOzWhxbaWZmVpCWj4QdbznHvnsUb9lg/fGkW6nuIEVTXhIRCwFXkQ6xzyCFm0xt\nti3HVpqZtV67zKLkeMt5swwpmvIS0i1jD0k6MSL2JN3jfWjzehxbaWbWav05gYPjLQco3rL7RA+V\nOqtechSwWkQcnZtv5Yq9j5ECTnrAsZVmZq3Wn+eEHW85sPGWs+s8Bvgh8KSkEwEkzY6I35FiMK9v\nsl0zMytIfx6OdrzlwMZbVmt6b5qkLSIVMoF0tKDjObayOK6/WK6/vPqzCTvecuDiLd8hHdYmIlYE\nluj2/CzyUY2I+B7woqQrgLfIjX4wcGxlMVx/sVx/cVoVW9lTjrccuHjLh4DXI+Je0heLZ7tt7xVg\nwYg4GTiD9LnuQ/p72Lv7xmpzbKWZWas5ttIAx1YWqcwjAXD9RXP9xSl9bGVPOd5y4OMtHVtpZtZ6\npWjCjrc0M7NO5NhKMzOzgpRiJNwpcojGBOAGSRflZW0RXdkJsZXVynp+2MwGFzfh1jqRdK8y0F7R\nleWPrVyk6vFzjrA0s1LoqCacG87WwELAysCppFt/DpA0JSIOAD4KXAZcS7o3d8X8eA1gbeDX9Uaj\nEfFNYPF8L/SCpHuO1wSOB9Yh3Yr0qKR9cqTmZ4CFSbc4rQG8D/ymapPr0DbRlZ0QW1mtnKN6Mxtc\nOvGc8HBJ25DCQ75H/TCPkaR7aLchXQx1KLABje8JvhzYOT/eFriJlMw1LUdUrgtsWJV+9aSkjUlf\ndnYjBXRUX9I+FUdXmpkNWh01Es7+mP/8K6lBVqtugM9KejPHZb4s6XWAiJhFHZKmR8QfImJj0gj7\ncFLQx0cj4kpSQtXCdKV/Kf+5B7AccBuwEjAjIp4H7sLRlQOibBGWZaq1FtdfLNdfXp3YhLuPEN8h\nNcApwKeBWrMhDanzuJaLSaPmD+VD3NsAK0jaNSKWArav2sYsAElHVlbOh6mnSro1Ik7B0ZUDokwR\nlmW/z9n1F8v1F6fdYivb0WzSlITnR8QLpAjJ6ueaPZ6LpDsj4kLSRVYAD5Ama7g9//wsqen3JIqs\njaIryx5bWc0RlmZWDo6tNKAzYiurlekWpTKPBMD1F831F2fQxFa2WkTsR7qQqnt85FhJ9w/wvguJ\nrnRspZlZ67kJ1yBpHGlmpCL27ehKM7NBohNvUTIzMysFN2EzM7OCtPxwdCXrWNKtVcuGAU9Janlu\nYkSMAXaVtHdE/I+knVq4737Pja56bgdgJ0m792RbnZYdXU+ZLtgys87XLueEKxcfFWU2QIsb8EDl\nRhMRZwJb0hVc0oN6Oik7uh5nSptZe+m3JhwRqwLjSfe7zgd8DTgGWJ4UMnGjpO9XvX5h4ErShAZ/\nrlr+KdK9vTNJARX7SaoVsFEJvlgFWIqU23wesCOwKmnmoAci4hDSlc6zgGsknRsRnwAuJQUMvw1M\ny9ubKmnZXtbwILCjpL9ExI7AxsDpwAXAsPzej5Z0Y0RMJqVovQvcwADlRgN3k6IqD6i1vdo6LTu6\nnnKO9s2sM/XnSPjzwP3Ad4FNSEOTeyVdmg83vwh8v+r1BwKTJR0TEesBm+XlFwFflzQ5IrYFfkJX\nXnMtb0vaKiKOBLaStG1E7AXsGhFvALsAG5FG27+NiFuB00iN8baI+C7wibytymi8NzVcTIqlPJEU\nilHZ3uk52GND4AfAjfkzOV7SYzn68iRJv4yIjUi50es1eJ/NcqPXqMqNvi43buumXeMs27Gm3nD9\nxXL95dWfTfgS0pR5E4HpwHHAehGxGfAGsGC3148CbgbII9b38vLlJE3Oj+8kTWzQyCP5z+nAk/nx\na6Tc6DVIsyT9jtSEFyONklcFHsyvvZuuJlzRmxquBu6MiEuARSU9meKaOTonVkFXljR0nQN+mAHM\njbba2jHOsuz3Obv+Yrn+4rRbbOV2wF15mr9dSdP8/UjSgRGxCmmO22pPkKb6uykf/q00qr9FxJq5\nCY6mq2nV0+hc8lPA45K2BoiIb+W6nsz7nkia+aii0tx6XIOkf0XEI6TR8vi8+ATgIkkT86h8z6pV\nKhNEHEv/5kbP49VGnRRbWY/jLM2svfRnE34IuCwi3iWdE94IuCAfjn0XmJJHe5WmeSEp3/hO0nnS\nGXn5/sC5eTQ5k8ZTCzaUDyffFhGTSOdn7yflR3871/pt4FVSk6Oqtt7WMA64ha6M5uuAH0fE2Ly/\nJbttH/o/N3poRJwsaWyTWmuSRpb26uhasZW1jWCllVYe8HrMzHrK2dFWMbvMh4TKWju4/qK5/mKV\nuf5Bkx0dEb8EFq9aNASYLmmHTqqhqNxoMzMrRimasKQdB0MNzo02MxtcHFtpZmZWkP4M63AcZde+\nexRH2T2Eox/3vwIpjKTy97u/pKcbrTNYYitrcZSlmRVloA9HO46yuYH4fE4AzpZ0U0RsSboSu+Hh\n9MERW1mLoyzNrDhNm7DjKAcujjIbFRETgKWBmyUdFxGbkO4jHkLqLrtJeiYijibdjz0/cIGkcbU+\nB+Bw4PW8/aHAvxvsPxsssZW1lPMIgJmVX0/OCVfiKD9Hil+sxFFuBawPHNTt9ZU4ytGke4ErLgIO\nlrQZqZH9pMl+3877+CU5jhL4ESmOcjW64ig3AXaIiFF0xVFuCdxTta3qOMqe1lCJo4R0/+84uuIo\nx5Bymb+Rn6/EUe4GvESKo9yclLR1RZP3OYzUWDcBDsnLVgd2z9u4Htg5ItYGxkhalxRvOSoiPlnj\nc1hV0jRJ70e60flUUnqZmZm1mZ4cjnYc5cDGUT4uaSYws+qz+htwTs6+Xh6YBATwQN7uTOA7EbFz\nnc/h6fz3cy5pisOG54MHu3bIky56//PK9RfL9ZdXT5qw4ygHLo6y3vscB6ws6a2I+Fmu/ynSUQYi\nYigwATiCOT+HQ4HHcgM+E/iCpGb7zwZDbGUtzzFt2ohCwwLKHFYArr9orr84rcqOdhzlwMVR1nM5\nMCki3gT+ThrBPxoREyPiHlJTPr/O5/AS6UjEUNJnMYR0hXr30wZzGByxlbU4ytLMiuPYSqtwbGVB\nXH+xXH+xylx/6WMrHUfpOEozs8Gs0CbsOEozMxvMHFtpZmZWkFJM4NCO2immM4eU3AcsLendiNiC\nNPJ+lzTX8B6S3mm0jcEcW9nfHINpZj3lJty/Wh7TGRGLkpK8qpvsucBnJf0jIk4C9s3LGmxnsMZW\n9jfHYJpZz7kJd1NQTGdvIzKnADNyQtdFwFjgV1WbHC3pH/nxAszZoOsYzLGV/a19RuVm1t58Tnhu\nRcR09jYi8zhJu0XED0h505PpCiRB0t8BIuJLpFCSn/fsrZuZWSt5JDy3ImI6+xqRuTvw14jYF1gG\nuJXUdCvpWTuS8qbf7eF7t37QlxjMssf2uf5iuf7ychOeW8tjOvsakSnpgxOPkU7qfj4/Pgr4FPA5\nSTOwlpo27c1ehQ+UOawAXH/RXH9xWhVbOdgUFdPZl4jMarOBIRGxNPB90kQSv4mI2cC1ki6ss142\nWLOj+9tzwIiiizCzknBspQEwZcqU2e10m09vzFt2dP/r7S1KZR4JgOsvmusvTuljKwebdojprGfU\nqFFl/kUobe1mNri5CbdQO8R0mplZ+/AtSmZmZgXxSLiP2iG2MiIWAq4iHeKeAewpaWpEbACcSQoc\n+a2k45tty7GV/cexlWbWU27C/avVsZX7AQ9JOjEi9gS+CxxGCgfZQdLzETEhItaS9GijDTm2sr84\nttLMes5NuJuyxVZGROXqvI8B03OW9IKSns/LJ5LSvxo2YcdW9qf2GZWbWXvzOeG5lSa2EkDS7Ij4\nHXAIcD0wHPhX1bbfAD7SkzduZmat5ZHw3MoUW0ne7xaRVpgArE1qxBWL5vdhLeLYyvJx/cUqe/3z\nwk14bqWJrYyI7wEvSroCeAuYKenNiJgRESOB54ExpBG9tYhjK8vF9RerzPU7tnJglCm28tJc6z65\n1r3y8oNIV03PB9wq6cHmb9uxlf3DsZVm1nOOrTTAsZX9ybGV5eL6i1Xm+h1bWTKOrRwYZf4lNrPB\nzU24hRxbaWZm1XyLkpmZWUE8Ei6piJiPdDFXkK6WPjDf2rQW8FNS2MgUSfv2ZHuOrSxOp9bv+E6z\n5tyEy2sbYLakjSNiU+AkYHvgWOAH+damKyLii5ImNNuYYyuL1mn1O77TrCfchNtAvmDrTEl3RcQ6\nwGnAq6QozGWB8yRdGBG/B14hXdw1Brgpb2Il4LX8+A/AUjnOclHSiLgHHFtp/a28o3uzVnETbg/j\nSPf43kW6T/g24HFJN+R7km+nKxLzKkm/yo9nR8TPSCPgnfKyp4HzgKOA1/O6ZmbWhtyE28NE4NSI\nWJw0ecNWwCkR8SVSVGZ1ZKWqV5S0V0QsDTwQEZ8EzgI2kvRURBwMnEHKlTZrqb7EdxalLHXW4/rL\ny024DeRJGK4jTfRwA/Bt4J58CHo0sHXVyyuRlV8Flpd0CmmWpvfzf/8kNW6Al0iRmmYt19v4zqKU\n/T5z118cx1Z2lvGkqRBXBVYGzsnZ1a8D70XEgswZWfm/wPiIuIP09/gtSTMiYj/g2jyRxLvMnXVd\nh2MrrT85vtOsJxxbaYBjK4vUqfWX5RalMo/EwPUXybGV1m8cW1kc1282eDkxy8zMrCBuwmZmZgXx\n4eiSi4j1gVMkbZZ/Xhu4GZiSX3KBpOuabcexlcVx/cVy/cXqbf1ludagp9yESywivgN8jTmjidYB\nfizpJ73blmMri+X6i+X6i9XT+jsvDtVNuA3MQ2zlM8AOwOVVm1sHGBUR25PSs74l6a3mVTi20szK\noLyj/lp8Trg9VGIroSu28mpJY0jN9vCq114laUtJsyVdD8zstq37ge9I2hR4FvjBQBZuZmZ955Fw\ne+hzbGUNN0h6PT++Hji7v4s1MytKmeJQe8JNuA30Jbaym+obxidGxCGSHgK2AB4eoLLNzFquneJQ\nHVvZWXobW1mtevmBwLkR8S7wMrB/z3bv2Eoza3edF4fq2EoDHFtZJNdfLNdfrN7W3063KPVHbKWb\nsFXMbpdDPL1V9thE118s11+sMtffH03YV0ebmZkVxCNhMzOzgngkbGZmVhA3YTMzs4K4CZuZmRXE\nTdjMzKwgbsJmZmYFcRM2MzMriGMrO1xEDAHOB9YC3gH2lfRs1fPbAMcA7wHjJV3cbJ1W6mP9CwCX\nAisBCwI/lHRTq2vP9fW6/qrnlgYeAj4naUpLC++qoU/1R8T3gG1Jk4+cL2l8GWrP/3YuI/3bmQns\n166ffX7NQsCtwNclTSnT725+Tff6S/O7m18zR/1Vy3v8u+uRcOfbHhgm6TPAWOCMyhP5H/wZwOeA\n0cD+ETGi0ToF6Ev9XwX+IWkT0oxU57a66Cp9qb/y3E+Bt1tdcDe9rj8iNgU2zOuMBlZoddFZXz77\nrYH5JW0EnACc1OqiqzT8Pcxzj99Byprv0Tot1pf6S/G7C3Xr7/Xvrptw59sY+A2ApPuB/6h6bjXg\naUn/kvQecBewaZN1Wq039U8CNgF+QRrhQPo3/l7ryp1LX+oHOJ00q9ZLLay1lr78+xkDPB4RNwA3\nAje3tuQP9OWznwIskEdBHwHebW3Jc2j2e7ggqVE81Yt1Wqkv9Zfldxdq1w+9/N11E+58w0kzMVXM\njIj56jz3Jul/PIs2WKfVelP/G8BHJL0t6a2IWBS4DjiqNaXW1Ov6I2JP4BVJv2XOaSqL0Nt/P8OB\npYB1gJ2Ag4CrWlBnLb3+7EnvYSTpf6wXUux83I3qR9K9kv7GnP9GGq7TYr2uv0S/uzXrj4i96OXv\nrptw5/sXqalWzCdpVtVzw6ueWxR4rck6rdbb+qcDRMQKwG3AZZKubUWhdfSl/r2Bz0fE74G1gZ/n\nc0xF6Ev9/wQmSpqZz4e9ExFLtaTaOfWl9sOA30gK0rnAn+dpRIvQl9/Dsvzu1lWS3916ev276ybc\n+e4mneciIjYAJlc99ydglYhYLP+P5rPAvcA9DdZptd7Uvwlwb0R8FJgIfFfSZa0uuJte1y9ptKTN\nJG0G/BHYQ9IrrS4868u/n0nAF/I6ywELkRpzq/Wl9tfoGv1MJ128WtS8eY3q7891BkqvaynR725N\nkjbt7e+ur47ufNeTvpndnX/eOyK+AiycrwY9nHR13xDgEklTI2KudVpf9gd6U//Fuf4zgcWAYyLi\n+8BsYCtJM8pQf7f1i55hpdf/foAJEfHZiHggLz9YUhHvoy//9n8CXBoRd5Ku7B4r6d8F1A5N6q96\n3exG67Sgznr6Uv9YSvK7W/W6ev+2e/Rv3rMomZmZFcSHo83MzAriJmxmZlYQN2EzM7OCuAmbmZkV\nxE3YzMysIG7CZmZmBXETNjMzK4ibsJmZWUH+Pw3tvKhZv3CuAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x162d5710>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x = df.drop(['ID', 'TARGET'], axis=1)\n", "y = df['TARGET']\n", "rfc = RandomForestClassifier(n_estimators=100, criterion='gini', max_depth=16, oob_score=True)\n", "rfc.fit(x, y)\n", "feat_imp = pd.Series(rfc.feature_importances_, index=x.columns)\n", "feat_imp.sort_values(inplace=True, ascending=False)\n", "feat_imp.head(20).plot(kind='barh', title='Feature importance')" ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Auc: 0.829 (+/- 0.013)\n" ] }, { "data": { "text/plain": [ "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n", " max_depth=16, max_features='auto', max_leaf_nodes=None,\n", " min_samples_leaf=1, min_samples_split=2,\n", " min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1,\n", " oob_score=True, random_state=None, verbose=0, warm_start=False)" ] }, "execution_count": 99, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cv = cross_validation.StratifiedKFold(y, n_folds=4, shuffle=True)\n", "scores = cross_validation.cross_val_score(rfc, x, y, cv=cv, scoring='roc_auc')\n", "print(\"Auc: %0.3f (+/- %0.3f)\" % (scores.mean(), scores.std()))\n", "rfc.fit(x, y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Starter Submission" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import datetime" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def export_predictions(model, method, num=1):\n", " test = pandas.read_csv(zipfile.ZipFile('test.csv.zip').open('test.csv'))\n", " id_test = test['ID']\n", " x_test = test.drop(['ID'], axis=1)\n", " y_pred = model.predict_proba(x_test)\n", " sub = pandas.DataFrame({'ID': id_test, 'TARGET': y_pred[:,1]})\n", " filename = 'submission_{date}#{num}_{method}.csv'.format(date=datetime.date.today().isoformat(), num=num, method=method)\n", " sub.to_csv(filename, index=False)" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "collapsed": true }, "outputs": [], "source": [ "export_predictions(rfc, 'rfc-undersampling-tuned', 4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Further Visualization" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def filter_feature_by_importance_percentage(imp, per):\n", " assert per <= 1.0 and per >= 0\n", " imp_sorted = imp.sort_values(ascending=False)\n", " total_per = 0\n", " for (i, v) in enumerate(imp_sorted):\n", " total_per += v\n", " if total_per >= per:\n", " return imp[:i+1]\n", " return imp" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "369\n", "110\n" ] } ], "source": [ "print len(feat_imp)\n", "filtered_feat_imp = filter_feature_by_importance_percentage(feat_imp, 0.95)\n", "filtered_feat_imp_list = list(filtered_feat_imp.index.values)\n", "print len(filtered_feat_imp)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<seaborn.axisgrid.FacetGrid at 0x15de6b70>" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAI5CAYAAAD6/60lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuYXXd52Pvv2rMvc5VGkkcWvmAZGy0hm0RcFIJJbKAh\nyo2CaZ/QQpQCCWkdPzmHlkIS2tIT2rQ5ENOEEJScNIkTNSTh+MROUkqspKRczDkgwDIIW0vIWL4i\na2TPaO77us4fe2Zp9szee/aMZs9szXw/zzOPZv3W2ku/+XkMr9fvXe8bxHGMJEmSOktqvScgSZKk\nxQzSJEmSOpBBmiRJUgcySJMkSepABmmSJEkdyCBNkiSpA6XX4i8Jw/BVwK9FUfS6MAz3Ax8DSkAe\n+OkoiobDMHw38HNAEfjVKIo+vRZzkyRJ6kRtf5IWhuH7gN8DcrNDvwHcGUXR64F7gV8Mw/BK4BeA\nVwM/AvznMAwz7Z6bJElSp1qL7c7TwO3zjt8aRdE3Z79PAzPA9wFfjKKoFEXRGPBt4HvWYG6SJEkd\nqe1BWhRF91Ld2pw7fhYgDMNbgDuB/wJsAS7M+9gEsLXdc5MkSepUa5KTtlAYhm8Ffhn4sSiKngvD\ncIxqoDZnABhtdo84juMgCNo4S0mSdJnYkAHBmgdpYRj+FNUXBF4bRdFcIPYV4D+GYZgFeoC9wIlm\n9wmCgOHh8bbOdTMaGhpwXdvEtW0P17U9XNf2cF3bY2hoYL2n0BZrGqSFYZgCfhN4HLg3DMMY+FwU\nRb8ShuHHgC9SjYY/EEVRYS3nJkmS1EnWJEiLouhx4JbZwx0Nrvl94PfXYj6SJEmdzmK2kiRJHcgg\nTZIkqQMZpEmSJHUggzRJkqQOZJAmSZLUgQzSJEmSOpBBmiRJUgcySJMkSepABmmSJEkdyCBNkiSp\nAxmkSZIkdSCDNEmSpA5kkCZJktSBDNIkSZI6kEGaJElSBzJIkyRJ6kAGaZIkSR3IIE2SJKkDGaRJ\nkiR1IIM0SZKkDmSQJkmS1IEM0iRJkjqQQZokSVIHMkiTJEnqQAZpkiRJHcggTZIkqQMZpEmSJHUg\ngzRJkqQOZJAmSZLUgQzSJEmSOpBBmiRJUgcySJMkSepABmmSJEkdyCBNkiSpAxmkSZIkdSCDNEmS\npA5kkCZJktSBDNIkSZI6kEGaJElSBzJIkyRJ6kAGaZIkSR3IIE2SJKkDGaRJkiR1IIM0SZKkDmSQ\nJkmS1IEM0iRJkjqQQZokSVIHMkiTJEnqQAZpkiRJHcggTZIkqQOl13sC6iwXJgscvu8Ew6PTDA32\ncOjgHvp7sus9LUmSNh2DNNX4nf/nIY6dPAfAmbPjANzx5pvXc0qSJG1KbneqxrPPT9UcD49Or9NM\nJEna3AzSlJiYKjAyNlMzdmGiwMR0YZ1mJEnS5mWQpsSRo6c4f6E2SBuZyHPk/lPrNCNJkjYvgzQl\nGm1tuuUpSdLaM0hTYmiwZ1njkiSpfXy7U4lDB/eQy6V54uwFxqdK9Hen2bWjj0MH96z31CRJ2nQM\n0pTo78nyiz99gOHh8fWeiiRJm57bnZIkSR3IIE2SJKkDud2pxMRUgT/442M89uw5Rrd+naB7ir5g\nK++55W1cuWVby/c4cvSUbaUkSbpEPklT4sjRU3zxoWc41/dVKlufoZwbZSz7OL/xpU8u6x7HTp7j\nzNlxjp08Z401SZJWyCBNibl6aEGutjXUVDy27Hs0OpYkSa0xSFNirh5anK+ti9YbbFn2PRodS5Kk\n1piTpsShg3t47LtjnD9zExAQ5KbIlPt5zz9427LuAdTkpEmSpOVbkyAtDMNXAb8WRdHrwjC8Abgb\nqAAnoii6c/aadwM/BxSBX42i6NNrMTdd1N+TZduWbs5fmKH46H4Arto10PJLA3P3uOPNN7dripIk\nbRpt3+4Mw/B9wO8BudmhjwIfiKLoNiAVhuGbwjC8EvgF4NXAjwD/OQzDTLvnpsWu3N5bc+x2pSRJ\n62MtctJOA7fPO35FFEVfmP3+M8AbgO8DvhhFUSmKojHg28D3rMHctMAtL31BzfG3Hhvm7MjkOs1G\nkqTNq+1BWhRF9wKleUPBvO/HgS3AAHBh3vgEsLXdc9NiH/mTr9UcT+VjPvLJ4+s0G0mSNq/1eHGg\nMu/7AWAUGKMarC0cb2poaGB1ZybiePHY1EzRtV4lrmN7uK7t4bq2h+uqVq1HkPb1MAxvjaLo88CP\nAp8FjgG/GoZhFugB9gInlrqRjcBXXxAsDtR6uzOu9SoYGhpwHdvAdW0P17U9XNf22KiB73rUSfvX\nwIfCMHwAyAD3RFH0LPAx4IvA31F9saCwDnPb1CamCrzkusFF45VygcP3nWBi2n8kkiStlSCut791\neYj9r5HVdfi+Exw7ea7h+QN7d1pe4xL4X9Dt4bq2h+vaHq5rewwNDQRLX3X5seOAEku1cLLFkyRJ\na8cgTYmlaqJZM02SpLVjkKbE7bdezxVbuxeND23JcGDvTls8SZK0huzdqcS9n3+M8xdmkmNz0CRJ\nWj8+SVNiYc6ZOWiSJK0fgzQltvXnao4fPzvOez/+gG2hJElaBwZpSsTEC45hZCJvWyhJktaBQZoS\noxP1i9VOThfXeCaSJMkgTYlGJTb6ejJrPBNJkmSQpsShg3t4eTi0aNy2UJIkrT2DNCX6e7I8cXZx\nu5ILUzHHTp7jyP2n1mFWkiRtTgZpqjE+1fhpmSU5JElaOwZpqjHQm214zrZQkiStHYM0JSamCly5\nvXfR+EA3toWSJGmN2RZKiSNHT/Gtx55fND5TDGwPJUnSGvNJmhKNcs6K5bjuuCRJah+DNCW6M0H1\nm64CmRuOk933JTI3PAhdBdtDSZK0xgzSlHj0mWr5jczuh0nvOEtX/xjpHc+S2f2w7aEkSVpjBmlK\nzG1rBrmpmvG5Y9tDSZK0dgzSlMh0Vbc743xtqY04X33j0/ZQkiStHYM0Jd7+hhuhqwBBhUoxTaWY\npvT8Topn9pHpCvj5t9y03lOUJGnTMEhT4k/+9nQ1H237MKlMiVSmBHEKylmK5ZijX35qvacoSdKm\nYZCmRLEcN8xHA9tCSZK0lgzSlMh0BQ3z0cC2UJIkrSU7DijxMz+xl9/573kgIMhNEed7KZ7ZRwAM\nDuR45vwk7/34A/T3pNm1o49DB/fQ39O416ckSVo5gzQl/vyz36nmnz26v2Y8BkbG84yM5wEYmcjz\n5HC1sK3toiRJag+3O5VYbh00c9QkSWofgzQl+rqXVwfNHDVJktrH7U4lXr1vB//jK8/UDnYVyOx+\nuPqWZ76H7LP72dbTz64dfdx+6/Ucvu8Ew6PTDA32mKMmSdIqMkhTYlGAxsU+ngD0jxGnv8mv3P4e\nAA7fd4JjJ88BcOZste+nOWqSJK0OtzvV1MK6aeX0ZPL9wpw0c9QkSVo9PknTYvO2OINMvuZUqtSX\nfD802JM8QZs7liRJq8MgTYvUbHEClXyOuJgjzvdyI69Oxg8d3ANQk5MmSZJWh0GaFlm4xRkXcxQe\nvgWA6V0Xd8j7e7LmoEmS1CbmpCmR6QoAbA0lSVIHMEhT4tX7dkBXAYIKlWKaSjFN6fmdSWuol75o\nu1uakiStEbc7lfj8N8+TueFh0tuHk7FKnIJylhjozqatgyZJ0hrxSZpqLMxHm39siQ1JktaOQZpq\nmI8mSVJncLtTiZtD+Hb3CHEFYgIqF7ZTPLMvOT86Ps2///0vMzFTYqA3zZXb+mwFJUlSmxikKfHt\n7r8nlSsAEBBD7wSULwZg3376YuHakfE8Tzxb7T5gGQ5Jklaf251KBOli0+N6zFOTJKk9DNKUiEuZ\npsf1mKcmSVJ7uN2pRP6RA+RecowgXSQuZcg/cqDm/N5rtzA5U16UkyZJklafQZouKvSTf+h1DU+/\n/+2vXMPJSJK0ubndqZbMtYySJElrwydpStz6PVfw+W+ch64Cmd0PE+SmiPM9FM/cRLGc5d0f/ixb\nenO87+376c9lOHL0FMOj0wwN9liKQ5KkVWaQpsQXvnEegMzuh0nvOFsd7B8DAoqP7qdcgZGJPB/5\n5HFuvHorx06eA+DM2WppDktxSJK0etzuVCKe/bNZayiAyeniotIbluKQJGl1GaQpMZd11qw1FEBf\nT2ZR6Q1LcUiStLrc7lTi1lds5UujnyPITVLJ54iLWeJ8X01rKICZfInpmSIve/EVjIznk5w0SZK0\negzSlPjS6Ocu5qIBpYltFB/dv+i66UKZE2dGOLB3Jx98x4FF5yVJ0qVzu1OJpXLRFjIPTZKk9jFI\nU2KpXLSFzEOTJKl9DNKU2J99DaXnd1IppqkU0xCUoKtQ99o9124xD02SpDYySFPi2CNTEKdIZUqk\nMiXS28+T2f1w3Wsfe2bc4rWSJLWRQZpqtJqXVizHdcclSdLqMEhTjYV5aUEmT+bGr5Hd9yUyNzxY\ns/15+L4TTEzX3w6VJEmXxiBNNYpnbqKSzyXHqVye9PZhuvrHSO94tmb789jJcxy5/9R6TFOSpA3P\nIE21ylniYq7h6YXbn5bhkCSpPQzStMjCLc/ac7VlOSzDIUlSe9hxQIkXDMJ3xwsQxNUSHEBlYivE\nKYJsnjjfS/HMPl50VT+VSmA7KEmS2sggTYnvjkLmhodJbz+XjFUqmUWtoUbGi9x152vWenqSJG0q\nbneqRislOCani2s1HUmSNi2DNNVopTVUX09mraYjSdKm5XanEtdsS/HUmZuAgCA3leSgLXTF1hwf\nuvtYkpNm5wFJklafQZoST41UgOyiHLSFvv3UGABnzo4DcMebb2731CRJ2nTWPEgLwzAN/BGwGygB\n7wbKwN1ABTgRRdGdaz0vrYx10iRJao/1yEn7MaAriqLXAP8B+E/AR4EPRFF0G5AKw/BN6zAvAfSd\nI/fKv6H7QPUrE/6/Na2gFrJOmiRJ7bEeQdopIB2GYQBsBYrAy6Mo+sLs+c8AP7QO8xKQe8nXSaUg\nCKpf6a0XalpBdQXw0hdtZ/euAQ7s3WmdNEmS2mQ9ctImgOuBk8AO4I3AD847P041eFvS0NDAqk9u\nswuCOmPzynC86JpB/tOdP7j4IrXE39n2cF3bw3VtD9dVrVqPIO1fAn8TRdG/CcPwauB/AfNfDxwA\nRlu50fDw+OrPbpOL48WB2vwyHIN9Wdd9hYaGBly7NnBd28N1bQ/XtT02auC7HkHa81S3OKEajKWB\nB8MwvC2Kos8BPwp8dh3mtentvgqeHu8lGJiC2UAtrkDxmeuSa46dPMfXPvxZbtq9nXe/cZ/lN7Sm\nJqYKHDl6iuHR6aQEzNB6T0qS2mQ9ctJ+A3hFGIafB/4O+CXgTuBXwjB8AMgA96zDvDa9p3uOk946\nRTAvJy3VBbk9x2uuq1Tgm995niP3n1qnmWqzOnL0FMdOnuPM2XGOnTzn76CkDW3Nn6RFUTQJvLXO\nqdeu8VS0QL0WUABBun4bKMtvaK0t/J3zd1DSRmZbKCUWtoRKxkv120BZfkNrbeHvnL+DkjYyOw4o\nsSf+Pk5d+F+kBsaTlwfiYhf5Rw7UXJdKQX9PhrPPTXL4vhPVMhwxi3KFzFfTapsr+TL/90ySNiqD\nNCW+9Z0iue8tkJr3fDWO01DoT47/4Jdez+H7TnDs5DnGJos8OTyZnDt28hxguyi1T39P1t8rSZuG\nQZpqLMw/q5eP1kpekLlCkiRdGnPSVGNh/lm9fLR6eUHmCkmStLp8kqbEj33/VfyPh/aT2/dlgtnw\nvTLdV+3dWc5y9RXdTEwXkjygZ5+fZHy6xNPnxpnKl+nJdhEEsOfaQXOFJEm6RD5JU+Jvj32XzFWP\nk+qa17tz8Pmkd+fT52c4cv+pJC/oyu19jIzneeb5aUYnC0wXykzly2TSXb40IEnSJTJIU6JYjuvW\nSps/Nj/XrFHemflokiRdOrc7dVFXgSCzOMCKC93J9+fHR/mXf/UxiqkJKgPdMLwPyrVPzcxHkyTp\n0hmkKZHZ/TCpXL3uAnHyXX7XN0n3nwUg6IXMbuh64uX0dGcY6E1z5bY+89EkSVoFBmlKNGwLlc03\nvCbITbFrRx8ffMeBhR+TJEmXwJw0JRq2hcr3Nrwmzve6vSlJUhv4JE2J4JndVAafTcpvAMSVgOIz\n1yXHxTM3kQoCyE6RiwfYm/kBDh3cw8RUwbZQkiStIoM0JYI9x0l1LRjrisntOU7+oddVB8pZ8qf3\nA/A9e3cmLXrmWkWBbaEkSVoNbncqUa8FVLPxZuU4LMMhSdKlMUhTol4LqGbj83PRbAslSdLqcrtT\nifRTN1G6/usEAUnVjbiYI39qP5kbjhPkpojzPWwfewVXDW6nWCrzobuPMTTYw+23XQ/A2ecmmZgp\n8ezIJIfvO2FumiRJK2SQpkTpmm+Rmnu2GlT/KE9sI3PV46R3VGuj0T8GA98iPXNb3Ry0udy0kfE8\nTzw7mYxLkqTlMUhTol7uWb3aaVPxWMMcNHPTJElaHeakKVEv9yzoGScu1r7y2RtsYVt/rmZs20CO\niakCo+MzNeOD/W51SpK0EgZpSuQfOUClUjuW6opJ9U5Rem4X5YktVJ7fxXtueRvxvFZRAHEcc+To\nKUYna5/GBUHQ7mlLkrQhud2piwr91IupgnSR4qPV2mjZdIort2xjdOJ0zTWjE4W6txwZz9cdlyRJ\nzfkkTTXiyuIobf42aF9P9ft6JTfqld2wFIckSSvjkzQlenIFShMDBFvGkrE4hvx39iTH+UKBf//7\nX+aKrT3sv3EHoxOFpA0UQKlcIXpiFIjZc+1gMi5JkpbHIE2J0jUPk946VjMWBJDbc4L8164GYCof\nMzU8yZPDkxzYu5MPvuNAzfW/8I++Z83mK0nSRuZ2pxL1ym0ABKm47rjlNSRJah+DNCXifP38sXp5\namC+mSRJ7WSQpkTxzE2URrcTxyRflQrkT9V2DOjOBNy8e5BSucKH7j7G4ftOMDFd/+1OSZK0Muak\n6aJyFsrZmjIcQQC5F50i/9DVydhMMebp56aT8hrz20JJkqTV4ZM01aiXl1avXdTkdO2Y+WmSJK0u\ngzTVqJeXVq9d1Fy9tDnmp0mStLrc7tRFXQVITxNXgLktzxggD9kJKPTD7KkrB3Ps3jXAyHi+pk6a\nJElaHQZpSmR2L66TRgBBDnIvOUb+odcB1bjt5JNjdeukSZKk1eF2pxKN6qRB/bw089AkSWofn6Qp\nERcX554l5+rkpV2YKFRLb8Rw5Ogphkenk63P/p5sO6e6IUxMFVw3SVJDBmlKpHrH645XKpB/ZPG2\n5shEniP3nwLg2MlzgOU4luPI0VOumySpIYM0JYJ0qf54nEpeGlio3pan26CtWbhOrpskaT5z0pSo\nt6XZbByqpTcWlt+wHEdrXDdJUjM+SVMi/8gBcvu+RJCpXByMoTLTVS3PUa7Nlxrsy3D7bdfT310N\n4ubnVmlpc+vkukmS6jFI00WFfirjO0nvOHtxLID01inY/TDFR/fXXD46WeTezz3GHW++2VyqFejv\nybpukqSG3O5UjUZlOBqNm0clSVJ7GKSpRr22UNXx3rrj5lFJktQebnfqorm2UHHtcHksQ/HMvpqx\nXCbgxVdvpVSu8KG7j1nnS5KkVeaTNCXm2kIFATVfqYFizUsDB/bu5PB7X0dPd5YHv32eM2fHOXby\nXFIzTZIkXTqDNCUa5qMFtcdzeWjW+ZIkqX3c7lQiLtWP2Rdufz4/PsOH7j7GhYlCzXi789NsoyRJ\n2kwM0pRIDVyof6LUVXM4NllkbLLacH3bQI6tfdk1qfNlGyVJ0mZikKZEkIrrj3fVHwfY2pflg+9Y\n3NezHdxelSRtJuakKRFXgvrjS7SFWiu2UZIkbSYGaUrkT76MSqWagzb3ValAZQay+75E5oYHoatA\nuivgBTt62DaQ4+xzkxy+7wQT04Wl/4JLdOjgHg7s3cnuXQMc2LvTNkqSpA3N7U4lMrueIbUgbA8C\nSG3NA3noHwMCio/u5/zoDMVyzMh4nieHJ4H254fZRkmStJn4JE2JRiU46l1TLNfmqZkfJknS6jJI\nU6JRS6jaa6rtoTJdtflr5odJkrS63O5UovjMblKDzxIsCN3jGII4IC5lKT55IwCVSkxXKiCbThG+\ncJBDB/dYx0ySpFXkkzQlcnuOk+picVuoVLUMRyqXJ3PtaQDKMZQrMdOFMpl0F/092aSOmW2iJEm6\ndAZpSgTp4tLX1Mlbs02UJEmrzyBNiWb10JJrZnPS5pvLR7OOmSRJq8ecNCXyZ15E7sWPLGqoHlcg\nnukjnhmg+OSNZG44TpCbIs73sLv4/Um9srk/5+ekSZKklTFIUyL34kcW1UkDiAkofOsHAcjccJz0\njrPVE/1jPHPhGP09r6keWsdMkqRV43anEgufoCXj83p6LsxJK6cn2zklSZI2LZ+kKRHH9QO1OIbM\ni79M8Tsvq9ZS6x9LznWV+gCWXX7Dch2SJDVnkKaL4vrDqRSkto3A7ocpnrkJCKpP1PK9/Ovbfgog\nKb8BcObsONC8TdRyr5ckabMxSFNiYRHbRedzU1DOUnx0PwC7dw1w/c4rgOWX37BchyRJzZmTpkRc\naZCUNnd+QfmN+SU2llt+w3IdkiQ155M0JfJPXEPuuicXl+CIoTI+QPHMvprxYyfP8c27/p69123n\nx2+5jm8/NcqFyQJxDA99+xwfu+ch3vXjL6mba2a5DkmSmjNIUyJ33ZN1S3AEAdBdgPLiYGumGHP8\n9HM8/uwEoxOFZLxQhuOnn+PI/afq5ppZrkOSpObWJUgLw/CXgH8IZIBPAJ8H7gYqwIkoiu5cj3lt\ndo1KcMDSLaMmp+ufN9dMkqSVWfOctDAMbwNeHUXRLcBrgRcCHwU+EEXRbUAqDMM3rfW8VN3WbHhu\niZZRfd31z5trJknSyqzHiwMHgRNhGN4H/BXw34GXR1H0hdnznwF+aB3mtenln9lGpVIN1uZ/VSpQ\nmeqFrkLdz6VSsGt7Ny990XZ6cl2kAgiAnmwXpVKFien6n5MkSY2tR5B2BfAK4B8DdwB/smAe48DW\ndZjXppe7aoRUqrrtOf8rlYL0thEyux8GqgHYgb07k89VKvDIExfozqb57X95G68IdxID04UyD54+\nz5H7T63PDyRJ0mVsPXLSngMeiaKoBJwKw3AGuGbe+QFgtJUbDQ0NtGF6m1eznDS42BIqBkYnFz8d\nG50sMDQ0sOjc3Lj8nW0X17U9XNf2cF3VqvUI0r4I/G/AfwnD8CqgD/ifYRjeFkXR54AfBT7byo2G\nh8fbN8tNqFFbqOT8vDpp33l6cRzd351meHicwb7at0AH+7L+s6L6P8yuw+pzXdvDdW0P17U9Nmrg\nu+ZBWhRFnw7D8AfDMPwK1Z2zO4AzwH8NwzADPALcs9bzUmOVClRGdtXUSStXqv/w5r9rEM++eWAN\nNEmSLt26lOCIouiX6gy/dq3noVqNnqIFAUkrqPkWvgw6VyfNGmiSJF0620Ip0agER6PxTFdtVGe5\nDUmSVo8dB5TIP9tL7sqpmidqcQyUILvvAeJ8L8UzNyWdByrlmC29aYqlmCAIKJUqnH1+kns//1jN\nVmd/T5aJqQJHjp5aNC5JkuozSFMid+XUorZQQQBkgew49I8DQbL1WQbGpkrJtQ+ePs+ZZ8cZGc8D\ncOZsNTn2jjffzJGjpzh28tyicUmSVJ/bnUosVYIDLpbhaGRhe6i5tlAL20PZLkqSpOYM0pRo1hYq\nuWZeGY56FraHmstTW5ivZv6aJEnNud2pRP7xa8ld9+SiJ2pxDEEMMQFB9ziZGx6keOYmgnKW8Not\n9HRnGRnPMzTYw+23Xc+9n3tsUfmN22+9ntNPX2ByukhfT4bbb7t+HX5CSZIuHwZpSuRe+NSinDS4\nuA0aEEPfZPVrNjdtoK97UW5ZvVyzez//WJKrVhjPc+/nHjMnTZKkJtzuVCJItbDfOXftbG5aq7ll\n5qRJkrQ8BmlKxJUW3hyYu3Y2N63V3DJz0iRJWh63O5XIn95L7sWPNM1Ji2d6iWcGKJ7ZRxBA9MQI\nZ0cm2bWtr+m9bRUlSdLyGKQpkbvx5JI5aaWZgaROWgyMTRX5yCePc9edr2l6b1tFSZK0PG53KtFK\nTlq9OmkLa6NJkqRLZ5CmRFxp4Zo6ddIKpQq/dc83mJgutGFWkiRtTgZpuqjJewOVCpSe20XxzL66\n5x88fZ4j959q08QkSdp8zElTollbqCBOJblojVhWQ5Kk1eOTNCWatYWKS5nGJ2dZVkOSpNVjkKZE\n/nyaSqUarM3/qlSgMt1Ddt+XyNzwIHQtzj17yQu3WlZDkqRV5HanErkrSg1LcKQGR6sH/WPMtYSa\n7+zIDP092fZPUpKkTcInaUo0y0mruc4yHJIktZ1BmhLNctJqrqtThqOvZ+mcNUmS1Dq3O5XIj0Ju\ncPETtTgGSl0EXTFxKUPxyRsB6EpVq3YM9OV439uav/kpSZKWp+UgLQzDAaAYRdFMG+ejdZQbpHFb\nqGy5+n1Xnsy1pyk+up8tfbkl20FJkqSVabjdGYbh78/+eU0Yhl8EngCeCcPwM2EYXr1WE9TaWW5O\nmnlokiS1T7MnaS+b/fPjwJEoin4XIAzDnwb+GPgHbZ6b1lgctxaozeWkdWe7Fp2bmCpw5Ogphken\nGRrs4dDBPUu+9bmSz0iStNG18uLAC+cCNIAoiv4Y2Nm+KalTVYrpBa2hFr9pcOToKY6dPMeZs+Mc\nO3mupVZRK/mMJEkbXbMg7YVhGP4iMBKG4RsBwjAMwjD8x8DYmsxOa2qpp2hxvrdaH61cfco1U1jc\nkX1ha6hWWkWt5DOSJG10zYK024EicA740dmxXwZ+EfjZNs9L62CpEhwLS2/UK7uxsDVUK62iVvIZ\nSZI2uoY5aVEUfQH4woLh/xxF0X9q75S0XpqV4KiMbaX45I1kbjhOkJsizvcQP/cyDt93oiaH7NDB\nPZTKFaInRoGYYqnMxHShaY7ZXDup+Tlp0mZnrqakZdVJi6KoxXKnuhw1LcHRM0Pm2tOkd5ytDvaP\nMclxjp2s1ke74803V4d7sqS7UkzlSwAcP/0cR+4/lZyvp78n2/S8tBnN5WoCnDk7DuC/J9IKhWH4\nB8D1wF7I09nIAAAgAElEQVTgGeAC1Rcj/wZ4EvjnURTdM3vtPwM+CDxOtRzoNuD/jKLoT2fP/yzw\nTqBAdUfyt6Mo+lSdz8Wzf8crgVcDu4Ep4FngniiKPrHUvBsGaWEYfrDZB6Mo+tBSN9flpVlOWpAu\nLmoHNXe8VE6ZOWbS8vnvkbR6oih6FyTB2u9EUfSV2eNDwB8CPwPcM+8jvxtF0YdnrxkE/j/gT8Mw\n/EfADwOvjaKoOFtD9jNhGN6/8HPz/MXsfT4InIyi6FOtzrtZTloaeD/QRTUiXPilDaZZTlpcyhDn\na3PF5nLUlsopM8dMWj7/PZLaYmH8cgj4LaAnDMMXNrhuJ9UnYADvBt4bRVERIIqi8SiKfiCKogsN\n7t/s715Ss5y0D4ZheBUwWScq1AaUH4HctgZP1FIlSBUoPb+TIDtTfdPzzD5SAXzz0WE+ds9DvOvH\nX0J/T9YcM2kV+O+R1F6zhflzURQ9Hobhn1J9KXJuF/HnwjD8EeA64NvAT8+OXxtF0ZOzn38X1SBv\nEPi38z53kIvbnT8bRdF3VjrHpXLS/hXwppXeXJeX3Lb6OWkAQaZMatsIped2UXj4lmS8AswU45rc\nM3PMpEvnv0dS2x0CdoRh+D+AbmB3GIb/fvbc70ZR9OEwDG8BPkE1zwzgu2EYXh1F0dNRFP0B8Aez\nn+mb/7nVmmDTYrZRFI0Bz6/WX6bO1kq3gYV5afOZMyNJuoy8DbgtiqIfi6Lo9cBXgR+bf0EURV8C\n/gz4zdmh/wv4SBiGWYAwDHuBl3OxuvuqpoO18nbnh4FPr+Zfqs7USluohbXS5jNnRpLU4WKAMAxf\nCXw3iqLn5p37b1S3PO9d8JlfB74ehuGrZt/i7AGOhmEYA/1UXzi4F3g78O4F251/FUXRb8z/u5cj\niJeoYBqG4V8B54EvA8mjktn2UOspHh4eX+cpbCzvuvf95AbqB2pxOUVlbAfFx16adByYL9MV8P6f\nehlXbu21tlMDQ0MD+Du7+lzX9nBd28N1bY+hoYEN+UJjK0/SnqMaEX7/vLGYapN1bSC5gcY5aXEQ\nUzz9ioafLZZjPvEX3+LGq7da20mSpFWwZJAWRdE7F47NPurTBtO0Tlpq6ae0k9NFaztJkrRKlgzS\nZgu3fZDqvmtAtW5aD9W6IdpAmuWkxTFkbvwaQTZPnO+heOamRduepXKFCxOFmrELE4WGbaFseyNJ\nUmNN3+6c9WHgPcAjVJPi/hBouVquNoZUCtLbh+nqHyO941kyux9edE0lhpGJPJmui5HeyESeI/ef\nqnvPubY3Z86Oc+zkuYbXSZK0GbUSpI1EUfT3VFsibI2i6P+g2oNKG0wrJTiSa5uU4ggW3KjRlqdb\no5IkNdZKkDYdhuEeqk/SXjtbG2Rre6el9bDEi7611zYpxdHXnak5blSaw7Y3kiQ11srbnf8G+I/A\nTwG/BPxz4L+2c1JaH/lxGpfgKHZRmRwkyBSTllBzerJdZDIptvZm2bWjj9tvu557P/fYku1sbHsj\nSdrIwjAMqHYs+F5ghmW2iWolSLuL6osC/wp4CzARRdHICuaqDtesBEeQLVMZz1B4+MCicze/aMei\nMhutlN2w7Y0kqZO88b1/uYtq/v0F4A//+q43lS/xlm+m2h/0ljAMXwV8dHasJUtud0ZRdGD2hhmq\nnQfuDcPwZ1Y4WXWwpXLSGuWhmUsmSbrcvfG9f/lC4G+pdhj4PeDP3vjev2wlLayZHwD+BiCKoi8D\nr1zOh1v6y6MoOk01+vs1YIDqtqc2mKVy0hrloZlLJknaAO4A5m/vvAXYf4n33EL1qdycUhiGLQd+\nrdRJewvwT4FXAf8d+IXZhqPaYBrlpMUxVMb7a/LQ5tx4VT8Hb7mSX/qb32a8OAqFXm7gNfzcj+3v\n6Jpnq1mjzXpvjbk2ki4jCx9VVIBL3e4co/pwa04qiqJKqx9uJSft7cAR4G1RFBWXOTldRhrlpAUB\n0D9Zt2fnc+NFfu/rn2I8+zhkgb4LRM99kSP393Z0vtlcjTa49PZVq3mvjca1kXQZ+RjwI8DLqAZo\nfwp84xLv+QDwE8A9YRh+P/DN5Xy4lbZQ/2iFE9NlZiVtoSani5Tisdprc1MMP9/ZeWqrWaPNem+N\nuTaSLhd/fdebzr7xvX/5euCtwPPAPX9915uWUZyqrnuBN4Rh+MDs8aJWm8208iRNm0TTtlCV+ie6\nc130BFsY4+ILv3G+l8H+zt7SGhrsSZ7szB13wr02moW/B53+eyFpc/vru940Cvzuat0viqKYaq7b\nihikqTWl+sPXXTnA2255G//hf/4Rpa6JpIZa8KJltC9YB6tZo816b40t7D6x8FiS1JhBmhJNtzvT\n9U+OTxW5css2dl54Tc3TpJHx/GpPb1WtZo026701tvD3oNN/LySpk1xq/Q9tIM1KcMSlTN3xua09\nWzypHn8vJGnlfJKmRMMSHBWozHSTe9nfAVAZ3078+M28dPdVHDq4h4mpAsVSmd5cFxAQvnCw6ZZf\nu8syWPahc7gVLEkrZ5CmRMMSHF2Q2nqxFl9q+zlK8cOku66hvyfL4ftOcPz0c8n5dFeqaVDU7rIM\nln3oHG4FS9LKud2pxHJyuoPcVFJOYbllFtpdlsGyD5KkjcAgTYml2kLVXJvvXXE+WrvzlMyDkiR1\nkjAMXxWG4d8v93NudyrRrC3U3FBc7qIyvoPimX18vXyO//Kp40zPFJJrM10BP/yqa5r+Pe3OUzIP\nSpK0Ej/553fsotpp6QLwh5966+FLbQtFGIbvAw4BE8v9rEGaEk3bQs2Ki2mKp18OVBuaffM7z9dc\nWyzHfOIvvsVdd76m4d/T7jwl86AkScv1k39+xwuBT3OxyfrBn/zzO976qbcebrnXZgOngduptthc\nFrc7lWglJy1IL92+dXLaFq+SpMvOHVwM0ADeAuy/1JtGUXQvDUvCN2eQpkQrOWmN6qXN19ez9DWS\nJHWYhf8vWKG6abRu3O5UomlO2uxYZaYbugpQrpbY6M6m6EoFTM5c/D0eG8/zr37ri2zpz3Dltj7r\nlKnjWVtPEvAx4EeAl1EN0P4U+MYq3n/ZffF8kqbEXE5aENR+zR9Lb71AZvfDyWdmCpWaAA2q/9kx\nOlngiWcnOXbyHEfuP7XGP4m0PHO19c6cHfd3VtqkPvXWw2eB1wP/AvgnwD/71FsPL6PuwZKWfS+f\npCnRap20IDe1rPtap0ydztp6kgA+9dbDo8DvrvZ9oyh6HLhluZ8zSFNi/rZm0+sKuWXddzl1yppt\nO7klpXYZGuxJulPMHUvSejNI0wpcjORSKag0eDm5J9vFzS/asaw6Zc1aOtnuSe1ibT1JnWjdgrQw\nDHcCXwV+iGoa091UE/VORFF053rNazNrebszO5N8n06lKDSI0q7c3rvsIKrZtpNbUmoXa+tJ6kTr\n8uJAGIZp4HeAueSmjwIfiKLoNiAVhuGb1mNem12rbaHifG/yfV9343IbK9kyatbSyXZPkqTNZL2e\npP06cBj4Zap7Zy+PougLs+c+A7wB+Mt1mtum1awEB1T/QcXFLMUnb0zO5TKwbSDHQG+aHVt6KJbK\nnHpihEIZvnryHO/5zc9z3Qu2MD5VvLiNFNMwt6zZtpNbUpKkzWTNg7QwDN8BnIui6G/DMPzA7PD8\nJ3rjwNa1npdaawsV5Apkrj1N8dFqEeazI3kAbrx6K3e8+WYO33eCwmxFjhgYmy4lraPmJ2Y3yi1r\ntu3klpQkaTNZjydp7wQqYRi+Afhe4I+BoXnnB4DRVm40NDSw+rPbxC6lBMfoZIGhoQFGJwt1PlF7\nXaPPbgab5edca65re7iu7eG6qlVrHqTN5p0BEIbhZ6kWjftIGIa3RlH0eeBHgc+2cq/h4fGlL1LL\nWi7BMS8nbc5gX5bh4XEG+5qXxKh3fu6zG93Q0MCm+DnXmuvaHq5re7iu7bFRA99OKcHxr4HfC8Mw\nAzwC3LPO89mUmuakxRDMboWmBs5DdgIK/ck1X43O8Z7f/BwDfVm29GYYm6o2WU8F0N+bYWtvll07\n+mryyMwtkySpsXUN0qIoev28w9eu1zxU1UpOGkCQLZF7yTHyD70uGYtjGJsuMzZdLYuxbSDHyHie\nSgxjk0XCa7fV5JOZWyZJUnP27lSi1Zw0gCBdbHp+crr2vDXNJElaHoM0JVqtkwYQlxrXRwMolmoL\n3FrTTJKk5emUnDRdJuIY4kKG/CMHml9Hdctza1/WvDNJklbAIE2JVrY7K5NbKDx8S0v329qX5YPv\naB7MSZKk+tzuVKKV7c565TcacYtTkqSV80maEo1KcADV/UsgtWWYzI1fpfjY90A5y0BPmm1bcqTS\nRZ7u/gpBboo438P20Zfx7adG+Re//r/o687wvrfvZ9e2vjX9eTrdxFShYXssSZJ8kqbEXAmOIKjz\nlap+pTJl0tvPk9n9MADj0yWu3NbHd3u+QnrHWbr6x0jveJbnB48zOlGgUKowMpHnI588vs4/Xec5\ncvQUx06e48zZcY6dPMeR+0+t95QkSR3EIE2JZZXgmNcaanh0mjg71fA8LC7JocVlSSxTIkmazyBN\niWWV4JiXmzY02ENQ6G14HqCvp3nJjs1oYc6eOXySpPnMSVOiWU5aXLk4HhczFJ+8EYCuAL7x7XMU\n2Ec6ZjYnrZctIy9nrCumXI7p6grozaU5fN+JRXlXnZyXNVGY5M9P3cv56efZ0bOdf7LndvqzjfPq\nlvuzzJUlsT2WJKkegzQlGrWFAoiDi707g1yRzLWnKT66n3IM5TJAluKj+5Prn6NazHauPdTT5yd5\n+vwkUNsSai4vC+DM2fFF59fTn5+6l6+f+wYAT4w/RQD8zM0/1fD65f4s/T3ZjvlZJUmdx+1OJZrl\npC3q37kg56yRpdpDdXJe1vnp55seL9TJP4sk6fJjkKZEs5y0hedarZfW112bi7ZUHlYn5WXt6Nle\nc3zFguOFOvlnkSRdftzuVKJpnbQSlCa3E2RKxPleimf21b1HVwDluHqPrgDGJ/N0BQHZTIq9121b\nlHfVyXlZ/2TP7QRUn6Bd0bOdt+65ven1nfyzSJIuPwZpSjTLSQuyQDxJ/qHXNb1HefaJWxxDKXn6\nFjNdKJPuSi1KpO/kvKz+bF/THLRF13fwzyJJuvy43anEUnXSgvSl1TozR0uSpNb5JE2JOF4qUIvJ\n3PAgxTM3QXn5ZTKGBns6uuSGJEmdxCBNLQu6YtI7ngWCmnIbUA3uujNdZDIpCoUyQSogk4JCqUIq\n1UX4wkEOHdzDkfs7t+SGJEmdxCBNiVbbQtUrv3HdlQN88B0HlvysZSokSWqNOWlKtNoWql75jVbL\nTVimQpKk1vgkTYmmbaFioNxFZXzHovIbXSk4fvo87/34A/z8W27i6FeeaphztpIyFRs1j22j/lyS\npNVhkKZE0xIcAZAqU4lTi14aKFegXKkwMpHnw3/yIMXZOhz1cs5WUqaik1tHXYqN+nNJklaH251K\ntJKTtlQ7qLkAbc5q5Jxt1Dy2jfpzSZJWh0GaEq3kpC3VDirTVRvprUbO2UbNY9uoP5ckaXW43alE\n07ZQMcTFDMVnriNzw3GC3BRxvofimZtIVbLEwEBvhl/4xy/l0w88zqknR4GAUqnCxHQBYlacf7VR\n2y1t1J9LkrQ6DNKUaJaTRgBBrkhuz3FSuXx1rH+M+TXTwmu3ccMLBsmkn2IqXwbgwdPnSd9/CmDF\n+Vcbtd3SRv25JEmrwyBNiZZy0ha0hpqfozaXU9VKrpX5V5IkNWeQpsTSbaEgLmUIuvLJcZDJQ1cB\nylkuTBb40N3HuDBRqPnMXK7V3BM0ILm2HaUnNkJpi43wM0iSLo1BmlpWyefIP3KA3EuOJVueqVye\nnhc9QvfZ72NkPM/IeHV820COrX3ZRblWw6PTXJgsJNe2o/TERihtsRF+BknSpTFIU2LJp2jFHBT6\nq3/mLj5NS/fOsLUvmwRoAFv7sovaRM0FGR+6+1jNtau99bkRSltshJ9BknRpLMGhxFIlOObKb8T5\n2lIRvcGWZZWTaHfpiY1Q2mIj/AySpEvjkzQlGpXgiGOojGer7aC6ChBUqBRnf3UmtjN29nqO7zxK\ndl+1LEfl8ZuSNlHve/t+dm3rq7lfu0tPbITSFhvhZ5AkXZogbrWrdueJh4fHl75KLbvj797fsARH\npRyQ/9pBMjccJ73jbDJeem4XwKKxubIc2wZy3HXna9o36cvI0NAA/s6uPte1PVzX9nBd22NoaKCF\n+gSXH5+kKdEsJy1IVYP5hW2h6rWJmj82OV1cdF6SJC3NnDQlmj1UjSvVCG5hPlqc7607NqevJ7N6\nE5QkaRPxSZoSTXPSJrvofsX9EMRUyhDP9BHn+yAoE2RnqORzxMUMcb6f4pl9BEG1TdT73rZ/0d+z\nVA0wa4RJkmSQpnkatYUKAkhtKV08BirpEvFMqjYXbWJbkosWU20TtfClAVi6Bpg1wiRJcrtT87TS\nFiq5Nl1cMj+tUW2vpWqAWSNMkiSDNM2znBd941KmaS4aNK7ttVQNMGuESZLkdqfmaZSTxoLgLS5m\nyJ/aT+bqx5J6aZXxbQRP7COYd/k3Tg/zW/d8g3f++N6anLKlaoBZI0ySJIM0zdMoJ415QdtcDbTM\nDcdJbz+XjFfiLgrF2uT+fCnmwdPnSd9/qianrL8n2zTHbKnzkiRtBm53KtFKTtpc3lkr9dLmmFMm\nSdLy+SRNiTheOlALstNkbvzaoqAsyUfrKpDZ/TBBrtoiqnjmJrYN5JLrLL8hSVJrDNK0LKlskdT2\n4eS4UkxTGbui2tcTyOx++GJZjv4xICCOX5Bcb/kNSZJaY5CmxHJKcMyJ871JbTSovw06+nwhObb8\nhiRJrTEnTYnllOBIPrOg7Ea9shzzS2hYfkOSpNb4JE2JhiU45otna6QVckkLqPmKT76YVP8oQbpI\nXMpQeupGpl9Q5JuPDvPxvzhBsVyNBLNdkE6nKZUqTEwXkryzZuU3zFdbOddu9bmmktrNIE2JhiU4\n5gsgyBYpje+o2eack7n2NKlcvnppV570Nac58Wg/3zozUlNurVCGQrm0qERHs/Ib5qutnGu3+lxT\nSe3mdqcSy2oL1aDkRqPSHM12UlvNOzNfbeVcu9XnmkpqN4M0JZbVFmpBLtrF8fqtoprFf63mnZmv\ntnKu3epzTSW1m9udSiyVkxbHQDlNZWIQgjLZfV9KaqFRrubiFM/cBASzddJ6k5y1hfFfby5FqQx9\n3Rluv+16YOkcn3r5auYFtcZWW6vPNZXUbkG8klf6OkM8PDy+3nPYUO74u/c3zUmr5HPkH3pdtSXU\nXC00LraKWqkDe3dyx5tv5vB9J5Icn/njzazkM+tlaGgAf2dXn+vaHq5re7iu7TE0NLCCIlKdz+1O\nJZbsNpAuVv9cRkuoVszl8qwkx8e8IEnSRuV2pxJLtYWKqUBXoZp31j92cbxBflqrzo1Mcfi+E2zr\nz3GGi/+F2SjHZ/4W54WJQs25S80Lcvt0dbSyjq61JDVnkKaWpbqqbZ8a5Z0tV1cQUI5jpvJljp08\nx/4bd3Bg784lc3zmlz4A2DaQY2tfdlXygiyrsDpaWUfXWpKaM0hTopUSHEFuCsrZFeWgZdMpCqVK\nctzVFVAuXcyJHJ0o8MF3HFjyPgu3NLf2ZVv6XCvcPl0drayjay1JzZmTpkQr75BcytZmX3em9rin\n9rgTSnFYVmF1tLKOrrUkNeeTNCVaaQvVte0sqe/9n+RPv5Tcjd9K2j/lHzkAhf6Gn3vx1QM8+/wU\nQQCpIGDf7m380ze8mHs/9xjDo9MM9meZKZS48zf/Dq75Jrn+PDcM7aLyxEs5/1yJiZkSA71prtzW\nx+23XU+pXCF6YpRiscRXT57jXb/2WTJdATdcNcBMMa7JcVqY+3T7rddz7+cfq5sLtdZlFc4+N8lH\n/uw4k9NF+rozvO/t+9m1ra+tf2e7TUwVKJUr9ObSQMyeawfrruNy13ojrpW0HswHvXxYgkOJpUpw\nzFep1LaQmivP0UhAba20bQM57rrzNcnxXCmNVsp7HNi7E6AmL62eRqU9tg3kGBnPL7qu3eq9ev/e\n336gZi4L1+Vy1K6yKI3WypIG7eG6tkcnrOvlVLqoVRu1BIdP0pRYVluoBdfOledoZOF/CkxO114/\nl4/USnmP5baRWnh9o797PSycy8Ljy1G7cs024lpJ68F80MuHOWlKLKst1IJr41Km/oWzFsZ/jfLR\nGrWVWnhtK/lLc9csvHaluXDtsFSe3uWoXblmG3GtpPVgPujlwydpSrSSk0YMcTFTPyetgf7uLn7u\nzfv4w0+fquYT9WR439tqtzAPHdxDqVzh5FPfC6l5OWljL+X8UG1O2vzcpSe+e4FzF/LEUDcnbe7e\ncDH36fbbrk9y4da7nc/73r6fj3zyeMN1uRy1K69vI66VtB5saXb5MCdNiXf92mdX/NmNkNPQbp2Q\ni7IRua7t4bq2h+vaHhs1J83tTq0KcxokSVpdBmlaFeY0SJK0usxJ04qluwJ2bu3m6p0D5jRIkrTK\nDNKUOLB3Z8u1xyRJUnuteZAWhmEa+ANgN5AFfhV4GLgbqAAnoii6c63npdbyysw9kyRpbaxHTtpP\nAeejKLoV+BHg48BHgQ9EUXQbkArD8E3rMK9Nb7B/6bYgz4/PMDFdWIPZSJK0ua1HkPYp4N/Nft8F\nlICXR1H0hdmxzwA/tA7z2vSCFloOjE0WOXL/qTWYjSRJm9uab3dGUTQFEIbhAPB/A/8G+PV5l4wD\nW1u519DQwKrPbzObmCm1dN3oZMG1XyHXrT1c1/ZwXdvDdVWr1uXFgTAMrwX+Avh4FEV/Fobhh+ed\nHgBGW7mPBQFX12Df0tudc9e59stnEcv2cF3bw3VtD9e1PTZq4Lvm251hGF4J3A+8P4qiP5odfjAM\nw1tnv/9R4At1P6y2+uED15Duar7l2d+d4vbbrl+jGUmStHmtR07aLwODwL8Lw/DvwzD8LPBvgQ+F\nYfgAkAHuWYd5bXqfuO9blMrN24RNzFS493OPrdGMJEnavNYjJ+09wHvqnHrtGk9FC0xOF1u6zjIc\nkiS1n22hlOjrzrR0nS2gJElqP4M0Jd76+hc1PR8AN1+/jdtvvZ7D953gQ3cf4/B9J6ybJklSG9gW\nSonf//TJpudfOdsS6vB9J5L2UWfOVt9SslWUJEmryydpShSXeGlgLhdtYU6aOWqSJK0+gzQlliq/\nMTrbEmphTpo5apIkrT63O5V48dVbeOSJCw3Pj862hDp0cA9QfYI2NNiTHEuSpNVjkKbEdKGy5DXD\no9P092TNQZMkqc3c7lSilW1LtzYlSVobPklT4tDBPZwfm+axZ+r3lbv5+m0cOriHiakCR46eqtnu\n7O9pre+nJElqjUGaEv092YYBGkBPLkN/T9YSHJIkrQG3O9UyS3BIkrR2DNLUsrl8NEtwSJLUfgZp\nqvHD33d1w3NfP3WO9378AX74VddwYO9Odu8a4MDenZbgkCSpDcxJU42jX3m64blyBUYm8nziL77F\nXXe+Zg1nJUnS5uOTNC3b5HRxvacgSdKGZ5CmZevryaz3FCRJ2vAM0pSYmCqwY6D5DngAZFNw+L4T\nTEwX1mZikiRtQuakKXHk6CmeGy81vSYGnr2Q59kL1Tpp1keTJKk9fJKmxHLrnVkfTZKk9jFIU6K/\nu2tZ11sfTZKk9nG7U4mnzk81PDfQk2ZLX4apfIX+7jS7dvRZH02SpDYySFNiaqZxPtpv/u+3ruFM\nJEmS251K9HVbWkOSpE7hkzQlfv4tN/Fr/+3rlCu144P9Xbznt77ATL5MX3eG9719P7u29a3PJCVJ\n2iR8kqbE0a88tShAAxidKDM2WaRQqjAykecjnzy+9pOTJGmTMUhTotWSGraFkiSp/QzSlGi1pIZt\noSRJaj+DNCV++MA1BEH9cwGQSafYNpDjfW/bv6bzkiRpM/LFASU+cd+3iOP652Jg/41X2AZKkqQ1\n4pM0JZbKNbMNlCRJa8cgTYneXPO2UIP92TWaiSRJMkhT4pqd/U3PB40S1iRJ0qozSFNiYrpxWyiA\nkfH8Gs1EkiQZpCmxVAmOVkt0SJKkS+fbnUrcfuv1fOPRYfLFxa943nhVP4cO7lnW/SamChw5eorh\n0WmGBns4dHAP/T3mtUmS1AqDNCXu/fxjdQM0gOfGi8sOsI4cPcWxk+cAOHN2HMASHpIktcjtTiWa\nldhYSSuohfezhIckSa0zSFOiWc7ZSlpBLbyfOW2SJLXO7U4lDh3cw3fPj/HU+ZlF597548vLR5u7\nH1CTkyZJklpjkKZEf0+Wc6OFuuf+8NOnuOvOoWXfzxw0SZJWxu1O1SiWKnXHV5KTJkmSVs4gTTUy\n6fq/EivJSZMkSStnkKYaP/kPblw01hXAz7/lpnWYjSRJm5dBmmr8t/tPLRorx3D0y0+tw2wkSdq8\nDNLUEmucSZK0tgzSlJiYqv9mJ8Dz4zNMTDc+L0mSVpdBmhJHji7e6pwzNlnkSJ2tUEmS1B4GaUos\ntaXplqckSWvHIE2Jpdo22dZJkqS1Y8cBJQ4d3MOxk+cann/4zHP8/F1/TyrVRXjtIO/88b3092TX\ncIaSJG0ePklTYqmAa3KmzEwxZipf4sHT581RkySpjQzStGLmqEmS1D4GaVoxc9QkSWofgzTVePOt\nL6w7HgQw0JOmOxPQm0vzshdfwaGDe9Z4dpIkbR6+OKAaP/Oml/EPb1ncv1OSJK0tn6RJkiR1IIM0\nSZKkDmSQJkmS1IEM0iRJkjqQQZokSVIHMkiTJEnqQAZpkiRJHcggTZIkqQMZpEmSJHUggzRJkqQO\nZJAmSZLUgTqmd2cYhgHwCeB7gRngZ6Mo+s76zkqSJGl9dNKTtDcDuSiKbgF+GfjoOs9HkiRp3XRS\nkPYDwN8ARFH0ZeCV6zsdSZKk9dNJQdoW4MK841IYhp00P0mSpDXTMTlpwBgwMO84FUVRpdkHhoYG\nmuSvB4sAAAmuSURBVJ3WCrmu7ePatofr2h6ua3u4rmpVJwVpDwA/AdwThuH3A99c6gPDw+Ntn9Rm\nMzQ04Lq2iWvbHq5re7iu7eG6tsdGDXw7KUi7F3hDGIYPzB6/cz0nI0mStJ46JkiLoigG7ljveUiS\nJHUCE/MlSZI6kEGaJElSBzJIkyRJ6kAGaZIkSR3IIE2SJKkDGaRJkiR1IIM0SZKkDmSQJkmS1IEM\n0iRJkjqQQZokSVIHMkiTJEnqQAZpkiRJHcggTZIkqQMZpEmSJHUggzRJkqQOZJAmSZLUgQzSJEmS\nOpBBmiRJUgcySJMkSepABmmSJEkdyCBNkiSpAxmkSZIkdSCDNEmSpA5kkCZJktSBDNIkSZI6kEGa\nJElSBzJIkyRJ6kAGaZIkSR3IIE2SJKkDGaRJkiR1IIM0SZKkDmSQJkmS1IEM0iRJkjqQQZokSVIH\nMkiTJOn/b+/+Y7UsywCOfyGRDEVdWTRry4VdUTJ01nSkLlyG09JsK9P8EeT6Ya0ppkmlf7isthoB\nC9wUNQNtEuCcmkhabUCTmabgskub1VZrlZpyTCVM+uN+0NcT50Dnx/Pe7+n72c7O+z73877neq9d\nvFy7nx+3VCGbNEmSpArZpEmSJFXIJk2SJKlCNmmSJEkVskmTJEmqkE2aJElShWzSJEmSKmSTJkmS\nVCGbNEmSpArZpEmSJFXIJk2SJKlCNmmSJEkVskmTJEmqkE2aJElShWzSJEmSKmSTJkmSVCGbNEmS\npArZpEmSJFXIJk2SJKlCNmmSJEkVskmTJEmqkE2aJElShWzSJEmSKmSTJkmSVCGbNEmSpArZpEmS\nJFXIJk2SJKlCNmmSJEkVskmTJEmqkE2aJElShWzSJEmSKrRX238wIiYDK4DJwARgXmZuioijgYXA\nduCnmXlF27FJkiTVohszafOAuzPz/cAcYGmz/SrgE5l5LHBURMzoQmySJElVaH0mDVgAbGseTwCe\nj4j9gL0z8w/N9ruADwAPtR+eJElS941qkxYRc4ELgR3AuOb3nMy8PyKmAMuBL1EOfW7teGkfcMho\nxiZJklSzUW3SMvM64Lr+2yNiOnATcFFmbmhm0iZ37LIf8PRu3n7cQQftN2Kx6hXmdfSY29FhXkeH\neR0d5lV7qvVz0iLiXcBK4MzMXAeQmX3Atog4JCLGAbOB9W3HJkmSVItunJP2TWAisKhpyJ7OzNOA\nz1Nm18YD6zLzvi7EJkmSVIVxO3bs6HYMkiRJ6seb2UqSJFXIJk2SJKlCNmmSJEkVskmTJEmqUDeu\n7hySiHgtZc3PN1JufHtuZj7Zb5+FwPsoN8MFOLW5vYf6aa6sXQrMAF4AzsvMxzvGPwxcRllL9frM\nXNaVQHvMHuT1AuA84G/Nps9m5mOtB9qjIuIo4NuZOavfdut1GAbJq/U6BBGxF+UeoW8D9gauzMzb\nOsat1yHag9yOqZrtmSaNcouOzZl5RUScTinwC/rtcyQwOzOfaj263vMRYGJmzmy+oBc023b+I1hA\nyefzwMaIuDUz/961aHvHgHltHAmcnZm/7kp0PSwiLgbOBp7tt916HYaB8tqwXofmLOCJzDwnIg4E\nHgRuA+t1BAyY28aYqtleOtx5DLC2eXwnZW3PlzUzGIcCV0fEhoiY03J8veblfGbmJuA9HWPTgMcy\nc2tmbgc2AMe1H2JPGiyvUL5A5kfE+oi4tO3getzvgNN2sd16HZ6B8grW61CtpEwkQPl/dnvHmPU6\nPIPlFsZYzVbZpEXE3IjYEhGbm58tlGWjnml26ePVy0gBTAIWU7rsE4HzI+Kw1oLuPZ35BHgxIsYP\nMNYH7N9WYD1usLwC/Aj4HDALOCYiTmozuF6WmbcAL+5iyHodhkHyCtbrkGTmc5n5z2bJwx8DX+sY\ntl6HYTe5hTFWs1Ue7tzVmp8RsZqypifsem3P54DFmflCs//PKOcFPTy60fasrbyST4DxmflSx9j/\nupaqisHyCrAoM7cCRMQdwBHAT1qMbyyyXkeP9TpEEfFWYA3w/cy8uWPIeh2mQXILY6xmq2zSBrAR\nOAn4VfO7/9qe7wBujojDKZ/rGOAHbQbYYzYCHwJWRcTRwJaOsUeAqRFxAKX5PQ74Tvsh9qQB8xoR\nk4GHI+KdlHNRjgeu7UqUvW1cv+fW68h4VV6t16GLiDcBdwFfyMyf9xu2XodhsNyOxZrtpSbtKuCG\niFgPbAPOBIiICynH92+PiB8Cm4B/ATdk5iNdi7Z+twAnRMTG5vmciDgDmJSZyyJiHrCO8sW9LDP/\n0q1Ae8zu8jof+AXlys97MnPtAO+jge0AsF5H3K7yar0OzXzgAOCyiLickttrsF5Hwu5yO6Zq1rU7\nJUmSKlTlhQOSJEn/72zSJEmSKmSTJkmSVCGbNEmSpAr10tWdkiRpDBtoHdmO8dnApZSrOsdTbrf1\n7szM9qJsj1d3SpKkrutcRzYzZ+7B/l8G9s/My3a3b69yJk1Sz4uIY4GFlO+03wPnZuYzzQ1DbwQO\nptw36TOZubl7kUoaxM51ZJcDRMR0YFEz9iQwNzP7mrG3UJaBfG8X4myN56RJGguuBc7KzBmUO7pf\n3GyfB2zOzMOBbwBLuhSfpN3YxTqyVwPnZ+bxwJ3AVzrGLgS+1yxSP2Y5kyapCs36vDdm5prm+X3A\nRcCVwD7AgcAlmbk6Iq4HXg+8HbgEmJaZ/46ICZRZs4eat30Nr6ylui9lGR5JvWEasDQiACYAjwFE\nxDjK8ntf7V5o7bBJk1SL5cAngTURMZXSmH0R+HRmPhoRsyiHNFc3+z+RmafsfHFEHAbcTVkWbn6z\n+bvAvRHxZ0qzdkIrn0TSSPgtcE5m/ikiZgJTmu2HAY9k5rbuhdYOD3dKqsUdwFERMQk4A1hBOedk\nekR8nTKrtm/H/ps6X5yZD2fmFMphzZXN5iXA4sw8GPggsDIiXje6H0PSCDkfWN6s2f0tYOf5pAE8\n3rWoWuRMmqQqZOb2iLgdOBX4GHAysBG4h7Jg8j2UiwB2eh4gIiYCJ2bmrc32FZQZNIBTgPOa9783\nIv5KOYRy/6h+GElDkpl/BGY2jx8A/utWHJm5CljVcmhd4UyapJqsoMyYPQU8C0wFLs/MtcBsyjlm\n/W0HlkTEEc3z04ENzeMHKVeLERGHAm8GHh216CVpBNmkSapGZv4SmAwsz8x/AMuA30TE/cAbgH0i\nYh/KjSx3vuYl4OPANRHxAPBRmtkz4FPA3IjYAtxEOb+lr63PI0nD4c1sJUmSKuRMmiRJUoVs0iRJ\nkipkkyZJklQhmzRJkqQK2aRJkiRVyCZNkiSpQjZpkiRJFfoPZlWP4zNkZrUAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x15de6cc0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.FacetGrid(df, hue=\"TARGET\", size=8).map(plt.scatter, \"var38\", \"var15\").add_legend()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0xf71e080>" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAERCAYAAAB7FtAjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEoJJREFUeJzt3X2QXXV9x/H3PiQhCUtYcLH1gVrL9ItOq4UWI9oStFIB\nHyLaxqmxFShULYLWMaJxZGyLQEWjUktbsYBYa01hIrYUnE6hPGiLsdoZU5KvoFP9wwpLspBlk8g+\n3P5xT+ASbnaXkPOQ3PdrJpPfPefuOV/C3f3s7/c753f6Wq0WkiT1112AJKkZDARJEmAgSJIKBoIk\nCTAQJEkFA0GSBMBg2SeIiOXAZZn5ioj4FeAKYAr4KfD7mTkaEecCfwhMAh/NzJvKrkuS9ESl9hAi\nYg1wFbCo2PQp4LzMfCWwAbgwIp4JnA+cCJwKXBoRC8qsS5L0ZGUPGd0HnNHx+s2Z+d2iPQjsAl4C\n3JWZU5m5HbgXeFHJdUmS9lBqIGTmBtrDQ7tf3w8QES8DzgM+CRwGPNzxZY8Ay8qsS5L0ZJVPKkfE\nm4ErgdMzcyuwnXYo7DYEPFR1XZLU60qfVO4UEW+lPXl8cmbu/qH/TeDiiFgILAaOBTbNdaypqenW\n4OBAabVK0kGqb287KguEiOgHPg38ENgQES3g9sz8k4i4AriLdqFrM/PRuY43Nraj1Hol6WA0MjK0\n1319B+pqp6Oj4wdm4ZJUo5GRob32ELwxTZIEGAiSpIKBIEkCDARJUsFAkCQBBoIkqWAgSJIAA0GS\nVDAQJEmAgSBJKhgIkiTAQJAkFQwESRJgIEiSCgaCJAkwECRJBQNBkgQYCJKkgoEgSQIMBElSwUCQ\nJAEGgoAtW+5hy5Z76i5DUs0MBHHNNZ/lmms+W3cZkmpmIPS4LVvuYXT0AUZHH7CXIPU4A6HHdfYM\n7CVIvc1A6HFbtz7YtS2p9xgIPW7BggVd21ITeMFDtQyEHnfGGb/TtS01wY033sCNN95Qdxk9w0Do\ncfff/5OubaluW7bcQ+ZmMjfbS6hI6YEQEcsj4rai/QsRcWdE3B4Rf9nxnnMjYmNEfCMiXlN2TXrc\n7bff2rUt1a2zZ2AvoRqlBkJErAGuAhYVm9YBazNzBdAfESsj4pnA+cCJwKnApRHhYHZFWq1W17ak\n3lN2D+E+4IyO17+amXcW7ZuBU4CXAHdl5lRmbgfuBV5Ucl0qLFu2rGtbqtvKlW/q2lZ5Sg2EzNwA\nTHVs6utojwOHAUPAwx3bHwH8yVSRiYmJrm2pbsce+0IiXkDECzj22BfWXU5PGKz4fDMd7SHgIWA7\n7WDYc7sqMDk52bUtNYE9g2pVHQjfjoiTMvMO4DTgVmAj8NGIWAgsBo4FNs11oOHhJQwODpRabC8a\nGRmquwTpMSMjy+suoadUHQjvA64qJo03A9dnZisirgDuoj2ktDYzH53rQGNjO8qttEeNjo7XXYKk\nEs32S1/fgXplyejo+IFZeMOcffZbnvD66qv/vqZKJFVhZGSob2/7vDGtx/X19XVtS+o9BkKP8z4E\nSbsZCJIkwECQJBUMBEmN5fLX1ar6slNJmrfdi9p5p3I17CFIaiSXv66egSCpkVz+unoGgqRG2rFj\nomtb5TEQJEmAgSCpoZYsWdq1rfIYCJIayQfkVM9AkCQBBoKkhvrSl67r2lZ5DARJjfTggw92bas8\nBoKkRjr00EO7tlUeA0FSIx1yyCFd2yqPgSCpkXbt2tW1rfIYCJIaafv2h7u2VR4DQVIj9fcPdG2r\nPAaCpEZaufKNXdsqj4EgqZGOPvp5Xdsqj4EgqZFc/rp6BoKkRnL56+oZCJIkwECQJBUMBEmNtH37\n9q5tlcdAkNRI4+Pbu7ZVHgNBUiN5Y1r1DARJjTQ8PNy1rfIMVn3CiBgEPg88D5gCzgWmgWuBGWBT\nZp5XdV2SmuWII45kdPSBx9oqXx09hNOBgcx8OfBnwCXAOmBtZq4A+iNiZQ11SWoQn6lcvToC4XvA\nYET0AcuASeD4zLyz2H8z8Koa6pLUIDfc8OWubZWn8iEj4BHg54EtwJHA64Df6Ng/TjsoJPWw73//\n3q5tlaeOQPhj4JbM/FBEPBv4d2Bhx/4h4KG5DjI8vITBQa882N9GRobqLkHqys9m+eoIhG20h4mg\n/YN/EPhORKzIzNuB04Bb5zrI2NiO8irsYaOj43WXIHXlZ3P/mC1Y6wiETwFXR8QdwALgA8B/AZ+L\niAXAZuD6GuqSpJ5WeSBk5gTw5i67Tq64FEkN1tfXR6vVeqyt8nljmqRGGhwc7NpWeQwESY00OTnZ\nta3yGAiSJMBAkCQVDARJEmAgSJIKBoIkCTAQJEkFA0GSBBgIkqSCt/9J6mr9+i+ycePdtZ1/YGCA\n6enpx9pr1lxQWy0AJ5ywnFWrVtdaQ9nsIUhqpMMPH+7aVnnsIUjqatWq1bX/Rnzuub8HwOWXX1Fr\nHb3CQJDUWPYMquWQkSQJMBAkSQUDQZIEGAiSpIKBIEkCDARJUsFAkCQBTyEQImIoIg4psxhJUn32\nGggR8bfF38+JiLuAHwE/joibI+LZVRUoSarGbD2E44q/PwN8ITOHM/MI4EvAdaVXJkmq1HyGjI7O\nzL/Z/SIzrwOOKq8kSVIdZguEoyPiQmAsIl4HEBF9EfHbwPZKqpMkVWa2QDgDmAQeAE4rtn0QuBA4\np+S6JEkV2+tqp5l5J3DnHpsvzcxLyi2pd9T9AJJu6nwISS88gERqsqd0H0JmtsoqRPU48shndG1L\n6j177SFExEWzfWFm/um+njQiPgC8HlgAXAncAVwLzACbMvO8fT32gaQJDyABOPvstwA+hETqdbP1\nEAaB9wMDQF+XP/skIlYAJ2bmy4CTgaOBdcDazFwB9EfEyn09vp66I498hr0DSbPOIVwUEc8CJjLz\nY/vxnK8GNkXEV4Ah2qFzTjFnAXAzcApw4348pyRpDnM9QvO9wP7+bf0ZtHsFrwWeD3yVJ/ZUxoFl\n+/mckqQ5zBoImbk9Irbt53NuBTZn5hTwvYjYBTynY/8Q8NBcBxkeXsLg4MB+Lq03DQy083hkZKjm\nSqQn8rNZrbl6CAAfA27aj+e8C7gA+GQxJLUU+LeIWJGZt9O+5+HWuQ4yNrZjP5bU26anZwAYHR2v\nuRLpifxs7n+zhet8AuH7EXE1cDewc/fGYgmLpywzb4qI34iIb9KenH4n8L/A5yJiAbAZuH5fji1J\n2nfzCYSttH9wv7RjW4unscBdZn6gy+aT9/V4kqSnb85AyMyz9twWEYvLKUeSVJc5AyEi3gRcBBxK\nu6cwACzGFU8l6aAyn6UrPga8h/bY/mrgGmB9mUVJkqo3n0AYy8zbgP8ElmXmR4ATS61KklS5+QTC\nzoj4Rdo9hJMjYiHeOCZJB535BMKHgIuBfwJ+E7gf2FBmUZKk6s3nstNP0J5Efi/wRuCRzBwrtSpJ\nUuXm7CFk5gnAG2gvVX0TsCEi/qDswiRJ1ZrXA3Iy8z7aS1RfRnutoW43lkmSDmDzuQ/hjcDvAsuB\nfwbOz8xvlF2YJKla85lDWA18AXhLZk6WXI8kqSbzWbriTVUUIkmq17zmECRJBz8DQZIEGAiSpIKB\nIEkCDARJUsFAkCQBBoIkqTCfG9MkVeiSSz7C2Ni2ustohN3/DmvWXFBzJc0wPHwEa9d+pLTjGwhS\nw4yNbWPrtgfpX+y350x/C4CxnQ/VXEn9ZnZOlX4OP3FSA/UvHmT41KPrLkMNMnbLj0o/h3MIkiTA\nQJAkFQwESRJgIEiSCgaCJAkwECRJBQNBkgTUeB9CRBwFfAt4FTANXAvMAJsy87y66pKkXlVLDyEi\nBoG/BnYUm9YBazNzBdAfESvrqEuSelldQ0YfB/4K+DHQBxyfmXcW+26m3WuQJFWo8kCIiDOBBzLz\nX2mHwZ51jAPLqq5LknpdHXMIZwEzEXEK8GLgOmCkY/8QMOdKVsPDSxgcHCinwh4zMNDO45GRoZor\nETz+/0Pa08BAf6nfp5UHQjFPAEBE3Aq8A7g8Ik7KzDuA04Bb5zrO2NiOud4yK5cYftzuf4czzzyr\n5kqaoewlhucyPT1T27nVbNPTM4yOjj+tY8wWKE1Z7fR9wFURsQDYDFxf9gnHxraxdetW+hYsLvtU\njdcqRuy2bX96IXswaE3urLsEqTa1BkJmvrLj5clVn79vwWIOPeb1VZ9WDfbIfV+tuwQmJiaY+elU\nJcsd68Axs3OKiZmJUs/hYKUkCWjOkJGkwtKlS3m0f9IH5OgJxm75EUsXLy31HPYQJEmAgSBJKhgI\nkiTAQJAkFQwESRJgIEiSCgaCJAkwECRJBQNBkgQYCJKkgoEgSQIMBElSwcXtpAaa2eny1wAzj04D\n0L/QpyPO7JyCkh/fYiBIDTM8fETdJTTG2K720/yGFx9ecyUNsLj8z4aBIDVMnY/vbJo1ay4A4PLL\nr6i5kt7gHIIkCTAQJEkFA0GSBPTwHMLExAStyV2NeKi6mqM1uZOJiVbdZUi1sIcgSQJ6uIewdOlS\nfjrdx6HHvL7uUtQgj9z3VZYuXVJ3GVIt7CFIkgADQZJUMBAkSYCBIEkq9OykMrQvMfSyU2hNPwpA\n38DCmiupX2tyJ+CkMsD69V9k48a7a61hbKy9ltHuJSzqdMIJy1m1anXdZZSqZwPBBcQeNza2C4Dh\nw/xBCEv8bDTIwoWL6i6hp/S1WtXehBMRg8DVwPOAhcBHgXuAa4EZYFNmnjfXcUZHx717aD9xATGp\nd4yMDPXtbV8dcwhvBR7MzJOAU4HPAOuAtZm5AuiPiJU11CVJPa2OQFgPfLhoDwBTwPGZeWex7Wbg\nVTXUJUk9rfI5hMzcARARQ8A/Ah8CPt7xlnFgWdV1SVKvq+Wy04h4LnAr8PnM/Afacwe7DQEP1VGX\nJPWyynsIEfFM4GvAeZl5W7H5OxFxUmbeAZxGOyxmNTy8hMFBn7O6PwwMtH8vGBkZqrkSSXWq47LT\nDwKHAx+OiIuAFvBu4C8iYgGwGbh+roOMje0otcheMj3d7qCNjo7XXImkss32i18dcwjvAd7TZdfJ\nFZciSerg0hWSJMBAkCQVDARJEmAgSJIKBoIkCTAQJEkFA0GSBBgIkqSCgSBJAgwESVLBQJAkAQaC\nJKlgIEiSAANBklQwECRJgIEgSSoYCJIkwECQJBUMBEkSYCBIkgoGgiQJMBAkSQUDQZIEGAiSpEJf\nq9Wqu4Z9Mjo6fmAW3mH9+i+ycePddZfB2Ng2AIaHj6i1jhNOWM6qVatrrUE62I2MDPXtbd9glYWo\nmRYuXFR3CZIawB6CJPWQ2XoIziFIkgADQZJUaMwcQkT0AVcCLwZ2Aedk5g/qrUqSekeTeghvABZl\n5suADwLraq5HknpKkwLh14FbADLzbuDX6i1HknpLkwLhMODhjtdTEdGk+iTpoNakH7jbgaGO1/2Z\nOVNXMZLUaxozqQx8HXgtcH1EvBT47mxvnu1aWknSU9ekQNgAnBIRXy9en1VnMZLUaw7YO5UlSftX\nk+YQJEk1MhAkSYCBIEkqGAiSJKBZVxmpYq4fpaaLiOXAZZn5irpr6QX2EHqb60epsSJiDXAV4BOc\nKmIg9DbXj1KT3QecUXcRvcRA6G2uH6XGyswNwFTddfQSv/l7m+tHSXqMgdDbvg6cDjCf9aOkmrhu\nWUW8yqi3uX6UDgSur1MR1zKSJAEOGUmSCgaCJAkwECRJBQNBkgQYCJKkgoEgSQK8D0E9LCI+A7wc\nWAgcA/xPsevTmfn5iHgX8AnguZn5QMfXzQD/TfuGqT5gGe01of4oM1vFe94JvJ3299hC4EZgbWZO\nRsTbaC8k+MPikH20r7V/O/C22Wra7/8IUgcDQT0rM98FEBE/B9yWmcfv8ZYzga8A5wCXdGxvdb43\nIg6l/YP7t4CvRcRa4DXAqzPz/ogYBK4FLgYuLL7sxsw8u0tZG+eoSSqNQ0ZSFxHxy8ARwGXAuXO8\n/ShgMbA1IhYB7wfOzsz7ATJzCng3cG95FUtPnz0EqbuzgC9n5nciYjIiTs3MW4p9fRHxbdrDOkcB\nm4HzM/NbEXEc8GhmZufBMnMr8LmOTSuLY0B7yGhXZp5Y6n+RNAcDQdpDMcSzmvYQEMB64B0Uz46g\nY8goIt4NnA38S8chHlsPJiJOpP1UOoCfycyfLdp7GzKSauOQkfRkrwWGgQ0R8QPaE72nR8Sz9nxj\nZn4a+D/g8mLTFmBRRBxT7P+PzDwuM4+j3ZuQGstAkNo6l1g+i/YVQc8v/jwXuIv25PKe7wV4L3BW\nRPxSZu4ELgWu6QyQiFgJdD5rYj5LOrvssyrlkJHUtvty0aOAV/DkpcDXAVdGxMXssRxzZt4TEdfS\nvkT11Zn55xHxE+ArxfDTImAT8JKOL3vdHnMILWBdZv7dnjVJVXH5a0kS4JCRJKlgIEiSAANBklQw\nECRJgIEgSSoYCJIkwECQJBUMBEkSAP8PZQnAZi18CagAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11841128>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.boxplot(x='TARGET', y='var15', data=df)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0xf73cf60>" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEWCAYAAACAOivfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAErxJREFUeJzt3X+QnVV9x/H3kpXfG0hlUdCg7TB+N6lg04goMghoUZFM\nQGbsRAQFU0HRikypRAfbP7RFGdJhhjKtBFAjg0QxMggiHUWEqNTaOCNN9iuUsWBrITCBhCbIhmz/\nuPfGm83dzY5w7r2b837NMHPuc+4+9wtzl8+e8zzPOQPj4+NIkuq0V68LkCT1jiEgSRUzBCSpYoaA\nJFXMEJCkihkCklSxwV4X8PuIiGOByzPzpEn63w5cCozTCLrjgT/OzOxelZLU/wZm2nMCEXEJcDbw\nTGYeN433/xVwUGZeVrw4SZphZuJI4CHgDGAlQEQcBVzV7HsSOC8zNzf7Xgm8DzimB3VKUt+bcdcE\nMnM1sK3t0BeBj2TmycB3gE+29X0C+IfMHOtiiZI0Y8zEkcBE84BrIgLgJcCDABExAJwGfKp3pUlS\nf9sTQmAUOCczfx0RxwEvbx5/LbA+M3/bu9Ikqb8VC4GIGASuB14N7A18LjNva+u/CFgKPN48dH5m\nPvh7fNRHgJXNz9sOfLD1EcDDv1/1klSHYncHRcQHgKMz8+KImAP8PDNf1da/EliemWuLFCBJ2q2S\n00GrgK8323sBEy/OLgSWRcRhwO2ZeXnBWiRJHRS7Oygzt2Tm/0XEEI0w+PSEt9wEXACcBBwfEaeW\nqkWS1FnRC8MRMRf4JnB1Zt48ofuqzNzUfN/twALgjqnOt23b8+ODg7OK1CpJe7CByTpKXhh+GfBd\n4MLMvHtC32zggYgYAbYCJwPX7e6cGzduKVGqJO3RhoeHJu0rORJYBhwMXBYRn6Gxjs+1wAGZuSIi\nlgE/AJ4FvpeZdxasRZLUwYxaO2jDhs0zp1hJ6hPDw0OTTgfNuGUjJEkvHkNAkipmCEhSxQwBSaqY\nISBJFTMEJKlihoAkVcwQkKSKGQKSVDFDQJIqZghIUsUMAUmqmCEgSRUzBCSpYoaAJFXMEJCkihkC\nklQxQ0CSKmYIVGp0dB2jo+t6XYakHiu50bz62K233gLAyMj8HlciqZccCVRodHQdmevJXO9oQKqc\nIVCh1ihgYltSfQwBSaqYIVChxYvP7NiWVB8vDFdoZGQ+EfN2tCXVyxColCMASQAD4+Pjva5h2jZs\n2DxzipWkPjE8PDQwWZ/XBCSpYoaAJFXMEJCkihkCklQxQ0CSKmYISFLFDAFJqpghIEkVMwQkqWLF\nlo2IiEHgeuDVwN7A5zLztrb+RcBlwBhwQ2auKFWLJKmzkiOB9wFPZOYJwDuBq1sdzYBYDrwNOBH4\nUEQMF6xFktRByRBYReMv/dbnjLX1zQMezMxNmTkG3AecULAWSVIHxaaDMnMLQEQMAV8HPt3WPRt4\nuu31ZuCgUrVIkjorupR0RMwFvglcnZk3t3VtohEELUPAU7s735w5+zM4OOvFLVKSKlbywvDLgO8C\nF2bm3RO61wNHRsTBwBYaU0FX7O6cGzduedHrlKQ93fDw0KR9JUcCy4CDgcsi4jPAOHAtcEBmroiI\ni4G7gAFgRWb+pmAtkqQO3FRGkvZwbiojSerIEJCkihkCklQxQ0CSKmYISFLFDAFJqpghIEkVMwQk\nqWKGgCRVzBCQpIoZApJUMUNAkipmCEhSxQwBSaqYISBJFTMEJKlihoAkVcwQkKSKGQKSVDFDQJIq\nZghIUsUMAUmqmCEgSRUzBCSpYoaAJFXMEJCkihkCklQxQ0CSKmYISFLFDAFJqpghIEkVMwQkqWKG\ngCRVzBCQpIoZApJUMUNAkipmCEhSxQZLf0BEHAtcnpknTTh+EbAUeLx56PzMfLB0PZKk3ykaAhFx\nCXA28EyH7oXA2Zm5tmQNkqTJlZ4Oegg4Y5K+hcCyiLg3Ii4tXIckqYOiIZCZq4Ftk3TfBFwAnAQc\nHxGnlqxFkrSr4tcEpnBVZm4CiIjbgQXAHVP9wJw5+zM4OKsbtUlSFboVAgPtLyJiNvBARIwAW4GT\nget2d5KNG7eUqU6S9mDDw0OT9nUrBMYBImIJcEBmroiIZcAPgGeB72XmnV2qRZLUNDA+Pt7rGqZt\nw4bNM6dYSeoTw8NDA5P1+bCYJFXMEJCkihkCklQxQ0CSKmYISFLFDAFJqpghIEkVm/bDYhGxPzAP\n+GVmbi5XkrphdHQdACMj83tciaRemjQEIuJo4B+BLcBngFXAY8BhEXFOZt7dnRJVwq233gIYAlLt\nppoO+iLweeAG4F+AP8/MN9BY5+cLXahNhYyOriNzPZnrd4wIJNVpqhDYNzO/nZlfAzZn5k8Amrt/\n7duV6lREaxQwsS2pPlNdE/jviPh7YAh4JiIupDEqOIPfbQkpSZrBphoJnAWMAU8DbwTeTON//h8G\nzi9fmkpZvPjMjm1J9Zl0JJCZT9G4INzy3vLlqBtGRuYTMW9HW1K9pro76CDgEmAj8DUadwcdBdwH\nLM3M/+lKhSrCEYAkmHo66MvALOB1wI+br18OfB345/KlqaSRkfmOAiRNeWH4DzPz9Ih4CfBoZn6x\nefyGiPhYF2qTJBU21UhgW0TMy8wx4G2tgxGxANhevDJJUnFThcBFwK0RMSszHwCIiMXAbcBfdqM4\nSVJZk4ZAZt6bma8B3tF2+E7giMz8UfHKJEnFTWcBuS8AtwNk5m/LlqNucQE5STC9EPjPiLgeuB/Y\n2jqYmV8pVpWKcwE5STC9EHgSGKDx1HDLOGAIzFCtBeRabYNAqtduQyAzz514LCL2K1OOumHiAnKG\ngFSv3YZARJxJY/mIA2mMCGYB+wGHli1NklTadLaX/AKN20XX01hU7gYaS0hohnIBOUkt0wmBjc1d\nxH4CHJSZfwu8qWhVKmpkZD5z5x7B3LlHOBUkVW46IbA1Il5DYyRwYkTsDRxUtixJUjdMJwQ+DXyW\nxpPCb6Wxz/DqkkWprNHRdTz66CM8+ugjbi8pVW46t4heSeNC8MXAu4FnMnNj0apUlHcHSWrZ7Ugg\nM48BTgdeQuPJ4dUR8cHShUmSypvOdBCZ+RCwHLicxp7Dl5YsSmV5d5Ckluk8J/BuYAlwLPBt4GMu\nIDezub2kpJbpXBM4C1gJvLe5t4D2AI4AJAEMjI+P97qGaduwYfPMKVaS+sTw8NDAZH3TuiYgSdoz\nGQKSVLHiIRARx0bE3R2OL4qIf42INRGxtHQdkqRdFQ2BiLgEuBbYZ8LxQRq3nL4NOBH4UEQMl6xF\nO1u58npWrry+12VI6rHSI4GHgDM6HJ8HPJiZm5p3HN0HnFC4FrW5557vc8893+91GZJ6rGgIZOZq\nYFuHrtnA022vN+OidF2zcuX1bN++ne3btzsakCo3necESthEIwhahoCndvdDc+bsz+DgrGJF1aJ9\nBHDPPd/n4os/3sNqJPVSt0Jg4j2q64EjI+JgYAuNqaArdneSjRu3FChNGzZs7nUJkgoaHh6atK9b\nt4iOA0TEkohYmpnbaKxKehewBliRmb/pUi3Ve8tbTu7YllQfnxiu1NKl7wNgxYqv9rgSSaVN9cRw\nr64JqMeOPvpPel2CpD5gCFRq69atvS5BUh9w2YgKjY6uI3M9mevdXlKqnCFQoYnbS0qqlyEgSRUz\nBCp0+OGv6NiWVB9DoEI/+tG9HduS6mMIVOi5557r2JZUH0OgQrNmDXZsS6qPIVChww47rGNbUn0M\ngQotWXJOx7ak+jgXUKGRkfnMnXvEjrakehkClXIEIAlcRVSS9nhTrSLqNQFJqpghIEkVMwQkqWKG\ngCRVzBCQpIoZApUaHV3nhjKSfE6gVq3NZHxYTKqbI4EKub2kpBZDoEJuLympxRCQpIoZAhVavPjM\njm1J9fHCcIVGRuYTMW9HW1K9DIFKOQKQBK4iKkl7PFcRlSR1ZAhUyieGJYHXBKrlE8OSwJFAlXxi\nWFKLIVAhnxiW1GIISFLFDIEKHX74Kzq2JdXHEKjQD394d8e2pPoUvTsoIgaAa4DXAc8CSzPz4bb+\ni4ClwOPNQ+dn5oMlaxI8//zzHduS6lP6FtHTgX0y87iIOBZY3jzWshA4OzPXFq5DbQYGBmg9KT4w\nMOmDhJIqUHo66HjgToDMvB94/YT+hcCyiLg3Ii4tXIuaTjzxrR3bkupTOgRmA0+3vd4WEe2feRNw\nAXAScHxEnFq4HgFnn31ex7ak+pSeDtoEDLW93iszt7e9viozNwFExO3AAuCOyU42Z87+DA7OKlJo\nbQ488EAAhoeHdvNOSXuy0iGwBjgN+EZEvBH4RasjImYDD0TECLAVOBm4bqqTbdy4pWCp9RgdXccz\nzzwDwL333u/SEdIebqo/9kpPB60GfhsRa4ArgU9ExJKIWNocASwDfgDcAzyQmXcWrkfATTd9pWNb\nUn2KjgQycxz48ITDv2zrvxG4sWQN2tUTTzzRsS2pPj4sVqFDDjmkY1tSfQyBCi1Zck7HttQP3Oui\nu9xPoEIjI/OZO/eIHW2pn7jXRXcZApV685tP6HUJ0i5ae1202gZBeU4HVWrt2p+xdu3Pel2GtBP3\nuug+Q6BC7iwmqcUQqJB/balfLV58Zse2yvGagKS+MTIyn4h5O9oqzxCo0IIFC3dcfFuwYGGPq5F2\n5gigu5wOqtCaNT/s2Jb6wcjIfEcBXWQIVOixxx7r2JZUH0OgQu2bibmxmFQ3Q6BC++67X8e2pPoY\nAhV69tmtHduS6mMISFLFDIEKbd++vWNbUn0MgQqNjY11bEuqjyEgSRUzBCSpYoaAJFXMEJDUV9xe\nsrtcQE5SX3F7ye5yJCCpb7jhUfcZApL6hhsedZ8hIEkVMwQk9Q23l+w+LwxL6htuL9l9hoCkvuII\noLucDpLUVx555Fc88sivel1GNRwJSOort9xyMwCnnHJqjyupgyMBSX3jrrvuYGxsjLGxMe66645e\nl1MFQ0BS32iNAia2VY4hIKlvuNdF9xkCklQxQ0CSKmYISFLFDAFJqljR5wQiYgC4Bngd8CywNDMf\nbutfBFwGjAE3ZOaKkvVIknY2MD4+XuzkEXEGsCgzz4uIY4FlmXl6s28QWA8sBLYCa4B3ZeaGyc63\nYcPmcsV2yapVN/LTn97f0xqefPKJnV6/9KWH9KgSOOaYY3nPe87q2edrZ73+fvbTdxP2nO/n8PDQ\nwGR9pUPgSuD+zFzVfP3rzHxls30U8PnMPLX5ejmwJjMnXUT8hYbAqlU3ctdd33khp3jBtm8fB2Z8\nlr2IBthrr0m/n11zyinv7Okvez98N8Hv5656//18Mb6bU4VA6WsCs4Gn215vi4i9JunbDBxUuB5J\nUpvSawdtAobaXu+Vmdvb+ma39Q0BT011sqnSbDouvPACLrzwghdyij3GokWLxgFuu+223v8ZLr+b\nbfxudlfpEFgDnAZ8IyLeCPyirW89cGREHAxsAU4Arihcj5r8BVO/8rvZXaWvCbTuDjq6eehcGheC\nD8jMFRHxLuBvgAHgusz8p2LFSJJ2UTQEJEn9zYfFJKlihoAkVcwQkKSKub1kZXa3lIfUD5orDFye\nmSf1upY9nSOB+pwO7JOZxwHLgOU9rkfaSURcAlwL7NPrWmpgCNTneOBOgMy8H3h9b8uRdvEQcEav\ni6iFIVCfqZbykHouM1cD23pdRy385a/PVEt5SKqMIVCfNUBr5daJS3lI/cTlI7rAu4Pqsxr4s4hY\n03x9bi+LkabgcgZd4LIRklQxp4MkqWKGgCRVzBCQpIoZApJUMUNAkipmCEhSxXxOQNWJiKuBNwN7\nA0cC/9HsuiozvxwRHwWuBOZm5uNtP7cd+DmNh5gGgINorMP0kcwcb77nw8D5NH639gZuBT6VmWMR\n8X4aC/b9V/OUAzTuhT8feP9UNb3o/xGkJkNA1cnMjwJExKuAuzPzTye85QPAt4ClwN+1HR9vf29E\nHEjjf9anAN+NiE8B7wLenpmPRcQg8CXgs8Anmz92a2ae16Gsn+6mJqkIp4OkNhFxFPAHwOXAX+zm\n7YcC+wFPRsQ+wF8D52XmYwCZuQ34OPBguYqlF8aRgLSzc4GbM3NtRIxFxDsy885m30BE/DuNKZtD\ngfXAxzLz3yJiAfBcZmb7yTLzSWBF26HFzXNAYzro2cx8U9F/I2kKhoDU1Jy+OYvG9A7AKuACmvsv\n0DYdFBEfB84D7mg7xY41WCLiTTR2cAN4eWYe1mxPNh0k9YTTQdLvnAbMAVZHxMM0LtaeGhGHT3xj\nZl4F/Aa4onloFNgnIo5s9v84Mxdk5gIaowapLxkCql37csXn0riT54+a/8wF7qNxgXjiewEuBs6N\niNdm5lbg74Eb2kMjIhYD7fs1TGd5ZJdQVtc4HaTatW7tPBQ4iV2X1l4OXBMRn2XC0saZuS4ivkTj\ndtK3Z+bnI+J/gW81p5b2AR4A3tD2Y4smXBMYB5Zn5lcn1iR1g0tJS1LFnA6SpIoZApJUMUNAkipm\nCEhSxQwBSaqYISBJFTMEJKlihoAkVez/AXg+Uwyl7v/yAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0xb47b898>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# How to scale this?\n", "sns.boxplot(x='TARGET', y='var38', data=df)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def top_k_feature_pairwise_plot(df, imp, target):\n", " df = df[imp + [target]]\n", " sns.pairplot(data = df, hue=target, vars=imp, size=10)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAWZCAYAAACSXlwLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3W1wned9Hvjr4P3lgAAIAgckSECKZR1BlLWLlSpVUava\nndaxHcfa2nFsxnWamV3nS6YfdtjOtumn3dlu+6Hudrsz2w9pdhx7YzmbeBM7ju3EaZvKdlz5Jdpp\nZEpHdmQJFEmABEmAPHh/OfuBAsxDErZc6eCA0u/n8RjP/zk4volnoCEu3bivQq1WCwAAAAAAcLOW\nZi8AAAAAAAD2KyE6AAAAAADsQogOAAAAAAC7EKIDAAAAAMAuhOgAAAAAALALIToAAAAAAOyibS//\nz8rl8sNJ/nmlUnlHuVz+r5P86yQbSVaT/FKlUrlQLpc/luRXkqwn+aeVSuUP93KNAAAAAACwbc92\nopfL5X+Y5NeTdL4y+ldJfrVSqfzNJL+X5H8sl8ulJH8/ySNJ3pXkn5XL5fa9WiMAAAAAAFxvL49z\n+X6Sv3Pd9YcqlcpfvPJxW5KVJA8l+VqlUtmoVCpXknwvyf17uEYAAAAAANixZyF6pVL5vVw7umX7\nejZJyuXyTyf51ST/W5IDSRau+7Rqkv69WiMAAAAAAFxvT89Ev1G5XP5Qkn+c5D2VSuViuVy+kmtB\n+ra+JPM/7n1qtVqtUCg0aJUAAPCqNPQvpP7OCwDAPvCm/Atp00L0crn8d3OtQPTtlUplOyj/ZpL/\npVwudyTpTnJPkmd+3HsVCoVcuHC1YWvlxxse7vMMmsjXv/k8g+bzDJrL17/5PIPmGx7ua+j7+zvv\n7c/36e3PM7z9eYa3N8/v9ucZ3v4a/Xfe/aopIXq5XG5J8r8neSnJ75XL5VqS/1ipVP6ncrn8r5N8\nLdf+rcavVSqVtWasEQAAAAAA9jREr1QqLyX56Vcuh3Z5zW8k+Y09WxQAAAAAAOxiz4pFAQAAAADg\ndiNEBwAAAACAXQjRAQAAAABgF0J0AAAAAADYhRAdAAAAAAB2IUQHAAAAAIBdCNEBAAAAAGAXQnQA\nAAAAANiFEB0AAAAAAHYhRAcAAAAAgF0I0QEAAAAAYBdCdAAAAAAA2IUQHQAAAAAAdiFEBwAAAACA\nXQjRAQAAAABgF0J0AAAAAADYhRAdAAAAAAB2IUQHAAAAAIBdCNEBAAAAAGAXQnQAAAAAANiFEB0A\nAAAAAHYhRAcAAAAAgF0I0QEAAAAAYBdCdAAAAAAA2IUQHQAAAAAAdiFEBwAAAACAXQjRAQAAAABg\nF0J0AAAAAADYhRAdAAAAAAB2IUQHAAAAAIBdCNEBAAAAAGAXQnQAAAAAANiFEB0AAAAAAHYhRAcA\nAAAAgF0I0QEAAAAAYBdCdAAAAAAA2IUQHQAAAAAAdiFEBwAAAACAXQjRAQAAAABgF0J0AAAAAADY\nhRAdAAAAAAB2IUQHAAAAAIBdCNEBAAAAAGAXQnQAAAAAANiFEB0AAAAAAHYhRAcAAAAAgF0I0QEA\nAAAAYBdCdAAAAAAA2IUQHQAAAAAAdiFEBwAAAACAXQjRAQAAAABgF0J0AAAAAADYhRAdAAAAAAB2\nIUQHAAAAAIBdCNEBAAAAAGAXQnQAAAAAANiFEB0AAAAAAHYhRAcAAAAAgF0I0QEAAAAAYBdCdAAA\nAAAA2IUQHQAAAAAAdiFEBwAAAACAXQjRAQAAAABgF0J0AAAAAADYhRAdAAAAAAB2IUQHAAAAAIBd\nCNEBAAAAAGAXbc1eAAAAwJvB5lYt333pck7PVjNeKmZyYiCFFJq9LAAAfgwhOgAAwB745ndn8vEn\nnt65PnliKscnBpu4IgAAXg3HuQAAAOyBl84t1F2fnq02aSUAAPwkhOgAAAB74I7D/XXXx0rFJq0E\nAICfhONcAAAA9sBDx0dz8sRUTs9Wc6xUzL0TA81eEgAAr4Kd6AAAAA1Wq9Xy1Hdncnq2mv6+zpyb\nW8yzL82nllqzlwYAwI9hJzoAAECDnZqerysVfWxqLJ/+yvPKRQEAbgN2ogMAADTYjSWiy6sbt5wD\nALD/CNEBAAAabPyGEtHuzmu/FKxcFABg/3OcCwAAQINNTgzk1375oXx/+nL6+zqyuLSekyemlIsC\nANwGhOgAAAANVkghj7ztcO4atfMcAOB24zgXAAAAAADYhRAdAAAAAAB2IUQHAAAAAIBdCNEBAAAA\nAGAXikUBAAAarFar5Rt/cS4vnrmc7tKlnF+eyVjfWB4cvTctr3FvU61Wy6np+ZyerWa8VMzkxEAK\nKbxOKwcAQIgOAADQYKem5/PxJ57O29/Rlqee/8J1dz6ah0bf9rq897aTJ6ZyfGLwNb0nAAA/5DgX\nAACABjs9W02SrLXO181fvnL2dXvv3a4BAHhthOgAAAANNl4qJkk6N+t3iB89cOR1e+9tx264BgDg\ntXGcCwAAQINNTgzkn/zyQ3n5/JWMHvpQqlsXM9Z3OA+OHn9d3vvkiamcnq3mWKmYeycGXocVAwCw\nTYgOAADQYIUUUkvym1987pVJW06eOPqaS0W33/v4xKBz0AEAGsRxLgAAAHvgpXMLddfOLgcAuD0I\n0QEAAPbAHYf7666dXQ4AcHvY0+NcyuXyw0n+eaVSeUe5XH5Lkk8k2UryTKVS+dVXXvOxJL+SZD3J\nP61UKn+4l2sEAABohIeOjzq7HADgNrRnO9HL5fI/TPLrSTpfGf3LJL9WqVT+RpKWcrn8eLlcLiX5\n+0keSfKuJP+sXC6379UaAQAAGmV1YyuXq6u5sryW6fPVfO2ZmXzvzOXUUmv20gAA+BH2cif695P8\nnSSfeuX6gUql8tVXPv5Sknfm2q70r1UqlY0kV8rl8veS3J/kO3u4TgAAgNfdF7/+Qj7xhVM7149N\njeXK4nrWNqIUFABgH9uzEL1SqfxeuVyeuG5UuO7jq0kOJOlLcn3bTjVJ/cGBuxge7nvNa+S18Qya\ny9e/+TyD5vMMmsvXv/k8gzc+z/j29vL579ddL69u5OLCSro6WvP2B8ebtCp+Ur4Pb3+e4e3N87v9\neYbcjvb0TPQbbF33cV+S+SRXci1Mv3H+Y124cPX1Wxk/seHhPs+giXz9m88zaD7PoLl8/ZvPM2i+\nvfiB0DO+vY2P1BeJdne2Zai/K6MHezzb24R/1t7+PMPbm+d3+/MMb39v1n8J0swQ/c/L5fJjlUrl\nySTvTvLvk3wryT8tl8sdSbqT3JPkmSauEQAA4HXxs4/+VFJIzs4tpq+nI8XutpQGu/LWMQWjAAD7\n2Z4Vi97CP0jyP5fL5a8naU/yu5VKZTbJv07ytSR/kmvFo2tNXCMAAMBrVqvV8p3K+aytb+bwod6k\nlsxcXM7aRlI5PZ8vf/N0Tr2kZBQAYD/a053olUrlpSQ//crH30vy9lu85jeS/MZergsAAKCRTk3P\n5+NPPJ0PvOOuTM9W8+TTZ5IkX/rGi3lsamzn+uSJKSWjAAD7TDN3ogMAALwpnJ6tJkkuLqxkeXWj\n7t7119uvAwBg/2jmmegAAABvCuOla6WiQ/1dqdXqj2zp7vzhj2XHSvXlowAANJ8QHQAAoMEmJwby\na7/8UF6eWUj/0f6MDPakuryeyTsG09aSjA725FipmHsnlIwCAOw3QnQAAIBGe2Xz+craVsYHe/Lo\n8VIKKezcvueYc9ABAPYrIToAAECDbReLblMgCgBw+1AsCgAA0GA3FoYqEAUAuH0I0QEAABps/IbC\nUAWiAAC3D8e5AAAANNh2sej3py8rEAUAuM3YiQ4AANBorxSLtrYWcvHKSn7nT1/IN549n61sNXdd\nAAD8WHaiAwAANNh2sehjU2N58ukz1905nkcmS01bFwAAP56d6AAAAA22XSS6vLpRN5+eUTAKALDf\nCdEBAAAabLtYtKez/peBx0cVjAIA7HeOcwEAAGiw7WLRF8/M55d/djIzF5dyrFTMw5PDzV4aAAA/\nhhAdAACgwQop5IHJUuavLmehupaNrVqWVzfz7cpcrlTXcuRQbyYnBlJIodlLBQDgBkJ0AACAPfDH\n/+nFzM0v57P/4fs7sw+8465cmF/Op7/yfE6emMrxicEmrhAAgFtxJjoAAMAeeGnmSi4urNTNLi6s\n7JSNbpePAgCwv9iJDgAAsAfuOHwgFy4v182G+ruyVaslSY6VlIwCAOxHQnQAAIA98DMP35E/+eaL\n+cjPlDN7eTmlwe709bSls60lJ09M5d6JgWYvEQCAWxCiAwAANFitVss3T83kzNxiDvR2pq2lkM2t\nWvp7OvJXyiMKRQEA9jEhOgAAQIOdmp7Px594Oo9NjeX3/+MLO/PHpsaysRWFogAA+5hiUQAAgAbb\nLg3dLhHdtry6oVAUAGCfE6IDAAA02PgrpaE9nfW/DNzd2aZQFABgn3OcCwAAQINNTgzkH/+9v5Jn\nX7yYX3r3PTl/eTkDfZ0ZH+lN+ZhCUQCA/cxOdAAAgAbb2qzl3MXFrK1vpGXwfFoOfz89Ixezur6Z\n/+c/vJBvPHs+W9lq9jIBALgFO9EBAAAa7OunZvOJP3w2b39HW377+1/Ymf/8nSfyR09dfuXqeB6Z\nLDVngQAA7MpOdAAAgAZ7+fxikmStdb5ufn55Zufj6RkFowAA+5EQHQAAoMGOvlIe2rk5WDcf6R7d\n+Xh8VMEoAMB+5DgXAACABnv4npG0ttay1jmb9x/72VxZqWao7Ui6lsfy8+84mGJPRx6aHG72MgEA\nuAUhOgAAQIN949RsCv0z+d2/fGJn9nDve7M1fzlHh4v5xB8+m6EDXTk+Mfgj3gUAgGZwnAsAAECD\nnblQzezSbN1srXU+y6sbmb20lCQ5PetMdACA/chOdAAAgAY7OlxMoWe0btaxOZC2zraUDvYkSY6V\nnIkOALAfCdEBAAAa7NH7S/nP32/Lh9/6kZxfnsmBlkNprY6m61hrtja3cvLEVO6dGGj2MgEAuAUh\nOgAAQIO1bCXrm8m5F4o50HNvurrbMre4kp6u3vzVe0dSqBVy6qX5nJ6tpr+vM4tLazlyqDeTEwMp\npNDs5QMAvKkJ0QEAABrsqcqF/Prnvrtz/djUWJLkD776g9QeP54DPR35+BNP193/9Feez8kTU8pG\nAQCaTLEoAABAg03P1JeGLq9uZHl1Y+fejaWi2/eUjQIANJ+d6AAAAA02PtpXd93d2XbdvWL6ezpu\neV/ZKABA8wnRAQAAGuzhyUNpbXlbXpy5kr6ejhS72zK3sJJfefx4HpocTiGFnDwx9cqZ6B1ZXFpX\nNgoAsE8I0QEAABpsfTVZr22mv7cjC9W1dHe2pqVQSEd7Id+e+W6m589mpLuUt4xN5K6xm8tEa7Va\nTk1fKx4dLxUVjgIA7CEhOgAAQIN947nZvDhzJU8+fWZn9tjUWBZap/PU9Bd2Zu89+sGsvXTXTWWi\np6bn64pHFY4CAOwdxaIAAAANdmauulMWum15dSNrrfN1s/n1uVuWid44UzgKALB37EQHAABosLHh\nYjY2rtTNujvb0rpZv5t8oP3QLctEx2+YKRwFANg7QnQAAIAGe+T+Uro6Chkd6slCdS0jg91ZWFzL\n+FA55YmBTM+fzXD3SA633ZG3jt1cJjo5MbBTPHqsVFQ4CgCwh4ToAAAADda2mRQKLentbk3HoSs5\nv/K9HD44mqz1Zv3iSIqLAxnuLuattygVTZJCCjk+MegcdACAJhCiAwAANNjXT83m6tJ6WgZn84UX\nfmdn/gtvOZHf/IPLO9cKQwEA9h/FogAAAA328vnFXFxYyfz6XN18dmm27lphKADA/mMnOgAAQIMd\nLRVzdXEtbe3DdfNSTynJD3eiKwwFANh/hOgAAAAN9uh9I/nz5+eytj6Wn/+pE7mwMpvRntH0rY3l\nv/u5I7m6uKYwFABgnxKiAwAANNj6SrK0uplLV5Yz1FdIS6GQrVqyvrmVro5CRgaKuWuXUlEAAJpL\niA4AANBg/6kym09+6dm8/R1t+ZPvf2Fn/t6jH0zX4lhmLq1kbSNKRQEA9iEhOgAAQIOdmbtWGLrW\nOl83n1+fy9bFgWxu1tJaKAjRAQD2ISE6AABAg40NXysM7dysD8kH2g+la6g3S6sbSkUBAPYpIToA\nAECD/dX7S2kpJBevrOQX7jqRC8vnc6hzJF0rR9LeW8jYcHfeOqZUFABgPxKiAwAANFhhfSuF4els\n9MyktWM07WfKSW9nBgba8/LFpUzPLmZ9I2ltSU6fX0yxpz0LV9cyXipmckLhKABAMwnRAQAAGuyb\nF7+Tz5z67M71z935vnzyt9fy0Xffk0//0fM788emxpIkTz59Zmd28sSUs9IBAJqopdkLAAAAeKM7\nt3iu7np+40KS5OzcYt18eXUjy6sbdbPTs9XGLg4AgB/JTnQAAIAGO9J7uO56oG04yVrGDvXWzbs7\n2246uEXhKABAcwnRAQAAGuyvjD6QWpKZxZmM9o7m0g9K+aV3d2b0YGd+8WfuztXF9dx9bCCtLcnL\n5xfzscePZ+HqWo6Virl3QuEoAEAzCdEBAAAabbUlB1bfmqxMZGVhI53ttczNL6ezvZDBYlf+5tSR\ntLxy2uY9x5x/DgCwnwjRAQAAGuwbz82mllpemrmapL449APvuCtPPbuZRyZLzVoeAAA/gmJRAACA\nBjszV83ZucVbFodeXFjJ9IzyUACA/cpOdAAAgAYbGy4mqWVjY+ume0P9XTl4oHPvFwUAwKsiRAcA\nAGiwR+4v5Qen59PW2pLl1Y38wt96a64urmdsuCed7a2ZeutQs5cIAMAuhOgAAAAN1rqRVNc209Ka\ntB28kMsrsxkdHk3HWjGLKxv5gz97KYMHujN3eTmHD/Xm4clDO0WjtVotp6bnc3q2mvFSMZMTAymk\n0OQ/EQDAm4cQHQAAoMG+dmo2ta1aVnrO5Asv/M7O/OfvPJFP/eHlnevHpsbyhc/9IMnxnaLRU9Pz\n+fgTT++85uSJqRyfGNyztQMAvNkpFgUAAGiwMxeqOXtxMfPrc3Xz88szddfbpaPXF42enq0vHb3x\nGgCAxrITHQAAoMGODhezVatlrX24bj7SPZrkhzvRuzuv/Yg2PlrcmY2XinWfc+yGawAAGkuIDgAA\n0GAP3TOSPz//TBZXF/Khe9+f8wsLOdQ5kr71o/l77xnJhfnVjBzszpXF1XzkXeXMXlrKqZcuZ3Ji\nIJMTAzl5YiqnZ6s5Virm3omBZv9xAADeVIToAAAADfatmWfy29//rZ3r9x79YD75mctJLuej77on\nX/yzF/PLPzuZufnVPPn0Czuv2z7/fPu/AADsPWeiAwAANNjM4rm66+vPRj97cTFJ8vL5xZ0z0bc5\n/xwAoPmE6AAAAA12uHi47nqg/dDOx0eGepMkR0vF9HTW/7Kw888BAJrPcS4AAAAN9tCx+5LaRzKz\ndC6lntFsXh7Oux5ZyejBnqytredjjx/PQ5PDGenvzNGRYq4sruXuYwPOPwcA2AeE6AAAAA1WWCvk\nYGE8LcVkdnkmfcXNHKqNpq2tkO7OrhwebM+3nr2Q6dlq+oudOTZSzOREfwopNHvpAABvekJ0AACA\nBvuzZ2fTMjib3/7ep3dmD/e+N1uzpRwdLqa6vJFPfem5nXuPTY1lfXMrj0yWmrFcAACu40x0AACA\nBjszV83M4kzdbK11PsurG5m9tJSzc4t195ZXNzI9o1QUAGA/sBMdAACgwcaGi2ktjtbNOjYH0tbZ\nltLBnrS21h/b0t3ZlvFRpaIAAPuBEB0AAKDBfvr+Ul4605WP3P2RzCzPpK9wKK3V0XQea01Ha0sO\nD7XnVx4/nunZag4UOzLU15kHyoeavWwAACJEBwAAaLjN5eTK6kbat0Yz1LGV2aXZHB5qS/fqcBY7\nZvPNyzMZ6inlWGk0hw505i1H+vPsSws5PVvNeKmYyYkBJaMAAE0iRAcAAGiwp56fTa1WS/pn87t/\n+cTO/MP3fiCfOfXZnev3Hv1gLr1cytyVtfz65767Mz95YirHJwb3dM0AAFwjRAcAAGiwM3PXSkLb\nOurLRc8tnqu7nl+fy/pCf6pL63Xz07NVIToAQJMI0QEAABpsbLh4bSd6d3256OHew3XXA+2HstXf\nlYMHuurmx0pKRgEAmkWIDgAA0GAP31/K8y9czObmWH7hLScyuzSb0d7DKVZH8qG7PpK51ZkcbB9J\n5/LhDB3tzF1j/TnQM5XTs9UcKxVz78RAs/8IAABvWkJ0AACARltOltY2U20/k+raxRzsGEnr1VLW\n27bSvjiaA8tDmauuZah/K7WtpJBCjk8MOsIFAGAfEKIDAAA02FPPz2Z65Xt5avELO7OHe9+bY113\n5aWZ+Tz59Jmd+WNTY9nYigAdAGCfaGn2AgAAAN7ozsxVs9Y6Xzdba53P2bnFLK9u1M2XVzdyera6\nl8sDAOBHEKIDAAA02NhwMZ2b9TvLOzYHcuRQb3o6639BuLuzTZEoAMA+4jgXAACABnv4/lK6n2vJ\n6KEPpbp1McXCULpXx9LRtpW7x/szNtyb+epahg505vBQT8rHFIkCAOwXQnQAAIBGW06W17dyeXYg\nQ/2Hc3VxLYWejbS3tefK4lquLK5nsK8jvd0duftYf1JLvjt9OadnqxkvFTM5MZBCCs3+UwAAvCkJ\n0QEAABrsqedn88kvPbtz/djUWD7/1RfygXfclc/+h+/XzTe3tnKgpyMff+LpnfnJE1OKRgEAmsSZ\n6AAAAA12Zq6+KHS7TPTiwspN8+mZ6k3FoopGAQCap6k70cvlcluS30xyR5KNJB9LspnkE0m2kjxT\nqVR+tVnrAwAAeD2MDdcXhXa/UiY61N9103x8tJj+no66uaJRAIDmafZxLu9J0lqpVB4tl8t/K8n/\nmqQ9ya9VKpWvlsvlf1Mulx+vVCqfa+4yAQAA/ss9fH8phUIye2kpQwe6cnVpLSfeeXcO9LbnQ3/r\nrbmyuJ6BYkf6ix15sHwohRRy8sRUTs9Wc6xUzL0TikYBAJql2SH680nayuVyIUl/kvUkD1cqla++\ncv9LSf52EiE6AABw+1pOBgda0zo6m/PVuQwc7ktfhjOwNZb21pYsrWykpaUl/T3tKbzyn+MTg85B\nBwDYB5odoleT3JnkuSRDSX4uyV+/7v7VXAvXAQAAbltPPT+b1sMv5DN/8cP9QY+OP5ijHRu5evFg\n/uBrP0hyrVh0YyvCcwCAfaTZIfr/kOTLlUrln5TL5bEkf5rk+sP/+pLMv5o3Gh7ue/1Xx0/EM2gu\nX//m8wyazzNoLl//5vMM3vg849vXmbnvpb3vfN1sZWM1M+szWVno2Zktr25k5tJS3v7g+F4vkVfJ\n9+HtzzO8vXl+tz/PkNtRs0P0S7l2hEtyLSxvS/J0uVz+G5VK5T8meXeSf/9q3ujChauNWSGvyvBw\nn2fQRL7+zecZNJ9n0Fy+/s3nGTTfXvxA6BnfvsaGi2krlupmXW2dGe0YzdXrykW7O9syerDHs96n\n/LP29ucZ3t48v9ufZ3j7e7P+S5Bmh+j/Ksn/VS6Xn8y1QtF/lOQ7Sf5tuVxuT/Jskt9t4voAAABe\ns4fvL2X6dGd+8W3/bWarc+nvLqYvIxncGktxaCM/99fuzIHejowd6kn5mBJRAID9pKkheqVSWUzy\noVvcevseLwUAAKBxVmq53Homta2kr6uYqyuL6e5ZSkuSrVotK2ubOTTYksuLa/mjb72c6vJ6JicG\nc+/EQAopNHv1cNup1Wo5NT2f07PVjJeKmfS9BMBr0Oyd6AAAAG943zr/TJbbLuTi1Uv5+vS3d+Yf\nvvcDWb16NF/55nQemxpLkjz59JkkyRf/7MWcPDGlZBT+C5yans/Hn3h659r3EgCvRUuzFwAAAPBG\nN7N4LpeX57OysVo3P7d4LrOXlpJcKxVdXt2ou396trpna4Q3khu/d3wvAfBa2IkOAADQYIeLh7Pc\neiFbtVr9vPdwVg/2JEl6Om/+8exYqbgn64M3mvEbvnd8LwHwWgjRAQAAGuzBY/flL84+l56+3gxP\nDqW6uphSdyml2ltzuW89f/uh8Rwb6U1bW0tKB3vqzkQHfnKTEwM5eWIqp2erOVYq+l4C4DURogMA\nADRQrVbLy2evpFY9mM2+K1lYvprh7lLar9yRMysrOXNhMWPDxfzV+0bSdt2Jm7VaLadeurkYUWEi\n/HiFFHJ8YtA56AC8LoToAAAADXRqej7nLy9ntf+F/MFzn9+Z/3z57+RTn13eud6q1fL2+w/Xfd6t\nihEVJgIA7C3FogAAAA10eraasxcXM79xoW5+YXm27vrMhR9dhLh9rTARAGBv2YkOAADQQOOlYjo7\nW7PWNlI3H+kuJfnhTvSx4eJNn3e97WJEhYkAAHtLiA4AANBAkxMD6elKFpbK+cjb3p/F9cUsri2l\nq9Cb//7xO/PSuWoOD/Wkv6c9W9lKyyu/MHx9MWJ/X0fOzS2mtZDUkvzcX7szB3o7M3aoO+VjChMB\nABpJiA4AANBAhRQyfX4l6Z/NywvT+fr0t1+589W89+gH85VvXs0vvrOc/+N3/3M+9vjxPDJZ2vm8\n7bPOt89Af2xqLE8+fWbnvU+emFIqCgDQYM5EBwAAaLCXzy9mZnEmKxurdfP59bkkyeylpSTJ9MzN\n55tff+b58urGrvcAAGgMIToAAECDHS0Vc7g4mq62rrr5QPuhJEnpYE+SZHz05vPNrz8Dvaez/peJ\nnYcOANB4jnMBAABosEfvG8nL5zvT3tKakfJIrqxUM9J5NJdO9+eX3nM0q6tr+djjx/Pw5PBNn3v9\n2eh3HC7mwXtGcnq2mmOlYu6dcB46AECjCdEBAAAabG15K6drz2d2dTal4nCqi11JLTl6qDsvnF3M\nyMHunJtbyjefm8tgX3vOrb+Yhc25DLYNp9QykXsnBnbOR09S9zEAAI0lRAcAAGiwby98J5859dmd\n60fHH8wT3/uj/PydJ/LFb1xOcq009Au//4N88P19+cLLv7Pz2od735uNrbcJzgEAmsSZ6AAAAA12\nbvFc3fV2wej55Zmd2XZp6HbZ6La11nkFogAATSREBwAAaLAjvYfrrrvaOpMkI92jO7PuV0pDB9vr\nz0Xv2BxcmkOtAAAgAElEQVRQIAoA0ESOcwEAAGiwB0YfSArJ7OJsRopDuTi/kg/d9ZEUV0fznkf6\nM3ywOxfnV/Irjx/Pwd6OfPCnTmRhcy4DrYdSar0j5WMKRAEAmkWIDgAA0GjL1/6nu/XaDvSN1mpa\nO4rpLVz7kay1pZC+3vbMXl5OLcnK1UN5a+mOTE4MpJDCTW9Xq9VyavraMS/jpeKurwMA4LUTogMA\nADTYdrHo++55Zz7zzOd25h++9wP54jcWk1wrFk2Szz35ws79kyemblkoemp6Ph9/4ukf+zoAAF47\nZ6IDAAA02Hax6OXl+VvOk2vFotvlott2KxS9ca54FACgcexEBwAAaLDtYtGD3fVnmx/uPZzk2k70\n7s62mw5k2a1QdPyGueJRAIDGEaIDAAA02AOjD6RQSBZW5vPh+x7P7NW5jPaOZnj9rrz7kYUcPtSd\n5dXNLK1s5GOPH8/C1bUcKxVz78StC0UnJwZy8sRUTs9Wf+TrAAB47YToAAAAjfZKsejK1mq6Njsy\n3HpHWi6Vsty5lf7e1iS1HDh8OdXq2bT2jeWdk/emJS2p1Wr57vTlmwpECynk+MRgjk8MXisZfUnJ\nKABAowjRAQAAGmy7WHTbo+MPZuPqQo6t3ZX2tva8UP1+npr9wnWf8dE8NPq2V1UgqmQUAKCxFIsC\nAAA02PUFokmysrGatdb5nL24mLMXF7PWWl84+vKVs0leXYGoklEAgMayEx0AAKDBtotFt3W1dWZj\ncyBHhnqTJC+v1u8cP3rgSJJXVyCqZBQAoLGE6AAAAA32wOgDaWlJZhZn09/Vl7bVwbT1jaanszUX\nLi/lzt67cvf4R3O2ejZjfUfy4OjxJK+uQFTJKABAYwnRAQAAGm25JV2Ld2SsrzXLm0u5UHsxh4fW\n0rZ0Z3q6OzN7aSmlwkjed/x4Wq8/dbP2ww9vrAqt1Wo5NX2tULS/rzNtrepEAQAaQYgOAADQYE89\nP5vWwy9kaW05n3/uj3fmH7r3/Xnh+cE8+fSZJMnW1mQee9sPj375UaWhN957bGosn/7K84pFAQBe\nZ4pFAQAAGuzMXDXnqudzebm+QHRmcSbLqxs71y+fX6y7/6NKQ2+8t/0+ikUBAF5fdqIDAAA02Nhw\nMW3F0Sxt1Ifko72jWer84Y9lR0d66+7/qNLQG+91v/I+ikUBAF5fQnQAAIAGe/j+Ur7/g/Z09L2Y\nDx5/b+aWLmW053D6l+7MXWNb6etpT+lgTx45PlL3eT+qNPT6e/19HVlcWs/JE1OKRQEAXmdCdAAA\ngAaq1WqZOb+Qq51nsrhyJV0dHanVaikUNjNfXctWrTV3jBbzl2ev5t9952wG+zqzcHU1Rw71ZnJi\nIMcnBm95xnkhhV3vAQDw+nEmOgAAQAOdmp7P6dWX8lvP/Va2WrbymWc+nz998Rv59DO/n5Reym9+\n8dlcvrqeL3/jpXzmK8/nuz+4lJfnFvMvnng6p16a//H/BwAANJQQHQAAoIFOz1YzsziTJDcVi56r\nnk+SzF5a2pktr24oCQUA2Ecc5wIAANBA46ViLraMJkkOdtefV364OJJkNaWDPTuz7uuKRpWEAgA0\nnxAdAACggSYnBnLuYvJ37/m7qW7N5cP3vS8z1Qs5XBxJbXYiv/Tu1vT1tOZdj0xkoNiZwWJHFqpr\nSkIBAPYJIToAAEADFVLIYE9/ZhY2kq5kaeNi2gqtKdTa09PdkfWNWmq15J7xwbS2FHJ6tprxUjGT\nEwMppJBarXbtXPUb5gAA7A0hOgAAQIM99fxsCgMzObP0vXx9+ts78w9Nvj9Xp4+ks701rS0b+dSX\nn9u5d/LEVI5PDObU9Hw+/sTTN80BANgbikUBAAAa7MxcNbNLs1nZWK2bzyzN5OLCSmYvLeXsxcW6\ne9ulojeWiyobBQDYW3aiAwAANNjYcDEtPaN5ef1q3Xy0ZzRX+7uu7URvrT+iZbtUdPyGclFlowAA\ne0uIDgAA0GAPv3Uk370ylzt6xtLzlq4UO3rS196btY3NHBqfT9fSkaRQy4f/9t2Zr67m8FBvLlxe\nyqkk90z05+SJqZyereZYqahsFABgjwnRAQAAGuxbF57JctuFfP67f7wze3T8wRzpG80nT/3fee/R\nD6a9eiRn5xbz5NNn8tjUWJLkk1+u7JyB7hx0AIDmcCY6AABAg80snsvl5fm62crGas4vziVJ5tfn\nMntpKcurG0mS5dWNnY+dgQ4A0Fx2ogMAADTY4eLhLLdeqJt1tXVmpPdQkmSg/VDaD/ZkfXMrSdLd\n+cMf1ZyBDgDQXEJ0AACABnvw2H05NfNcPnLf4zm/fCm97T0ptvdmZW0tJ+7+SDoWR1PrqaW/2JET\n77w7A70dWaiu5eSJKWegAwA0mRAdAACg0ZZr2WhdzvrWZvo6enNltZrulmLaLt+VQqGQs/NLOdjf\nlWJXe+avrqa749qPaoVbvFWtVsup6fmcnq1mvFTM5MRACrd8JXvFMwGANzYhOgAAQIN9e+E7OV19\nKUny9elv78x/7s73Zeb54STJfHUtTz59ZufeY1Nj+fRXnt8pFt12ano+H3/i6Z3rG++z9zwTAHhj\nUywKAADQYOcWz2VlYzUrG6t18/mNCzslottFott2Kxb9cdfsPc8EAN7Y7EQHAABosCO9hzNdXb9p\nPtA2nJXOWx/dsl0uemOx6PgN14pHm88zAYA3NiE6AABAgz0w+kA6LrRleWsx7598V66sVjPcVUrt\nwrHcdbSQufmVDPV35sihuzNfXc3oUE9WVzdvWSw6OTGQkyemcnq2mmOlouLRfcAzAYA3NiE6AABA\noy23pGNxIrWus6kW5q7NWtbTM3wpy3NDGR3qzpkLSxnq70pvd1vW1ms5UOzMubnFFJK6ospCCjk+\nMejM7X3EMwGANzZnogMAADTYU8/P5krLy/nL6nP5f099OX/ywtfyxDOfz9zWTF5Y/F4uLqzl6tJ6\nPvnF51KrFfJbf/RcTr14KS/PLeZfPPF0Tr003+w/AgDAm5YQHQAAoMHOzFUzszhzU7Ho5eX5rLXO\n5+LCyk6R6MWFlSSpKxtVVAkA0DyOcwEAAGiwseFiWnpH8/La1br5YPdA1uY6MtTfla1aLUky1N+V\n5IfFoomiSgCAZhKiAwAANNjD95fywosd6S62pXTvUK6sVDPUczC9WwPp6T2Y9taWrKxt5JfefU+W\nVtfzkZ8pp6+nPVeqa7csFwUAYO8I0QEAABptuZZq15mst1xNW9qyWdtKIYW0FFrS2d6aWmo5NNCd\n+SsreevRgboi0SSp1Wr57vTlnJ6tZrxUvOk+AACNI0QHAABosG9deCYvr1Uy1HMwn3/uj3fm77vn\nnenoWM3m5ZF8+o8rO/OTJ6ZyfGJw5/rU9Hw+/sTTu94HAKBxFIsCAAA02MziuaxsrOby8nzd/PLy\nfM4vz2T20lLd/MYi0R93DQBA49iJDgAA0GCHi4dzevVqDnbXn20+2D2QjpahbA711M1vLBIdv+Fa\n0SgAwN4RogMAADTYg8fuS+dMS9ZbruQX7ntvLixeykjvofTVDmZ97WDSk/y990zm8tVrZ6LfWCQ6\nOTGQkyemcnq2mmOloqJRAIA9JEQHAABotOWtbLYuZWVzNVdXF3Owuz8tWy3ZzFZqtaRWSy7ML6ev\npyOLKxvZqtXy3PR8XZHo8YnBfXMOeq1Wy6kb1qfoFAB4oxKiAwAANNi3r34rp6+8nK9Pf3tn9uj4\ng0mSwZY7s3W5lC/+2YtJksemxrKytpFP/OGzO6/db0Wiik4BgDcTxaIAAAANdq46m5WN1brZysZq\nVjZWM78+l4sLKzvz5dWNvHx+se61+61IVNEpAPBmIkQHAABosCPF0XS1ddXNuto609XWmYH2Qxnq\n/+G97s62HN3nRaKKTgGANxPHuQAAADTYAyMPpq3QktK9Q7m6upi+zmI60pnuHMjG/KHkQPKen74j\nfT3tGezrzAPlQxnq69y3RaKKTgGANxMhOgAAQKMtt6R1szcH2tvT0dKR2cULGek9lK31WjZ6ZnNx\n/XyOvKWUrcsjOTu3mGJXe+59pUy0Vqvl1Ev7q8SzkMK+KjoFAGgkIToAAECDfevCM9nqXEg2kt/5\n7hd25u+75525uHZpp3D04d735k+/upHkh2WdSjwBAJrLmegAAAANNrN4LucX53J+ca5ufnl5vq5w\ndK11fufj7bJOJZ4AAM1lJzoAAECDHS4ezlbHwk3zwe6BbNW2dq47NgeSXNuJvl3WqcQTAKC5hOgA\nAAAN9uCx+3Jq5vmkfTkfvu99mV28kOHeQ+laH0hvx3B6JwYz3DWSrcsjOfDXV/LWowM7ZZ1KPAEA\nmkuIDgAA0EC1Wi0LF65kteVKzl05l1LvcDpa2tPW0pr5rZkc6BzMSNtIzi+fT2/3Zga3DmdxZSN/\n+v+dTVdnWxaurmW8VMzPPHS0rlC0Vqvl1PT+KhwFAHgjEqIDAAA00Knp+VzqfD6fOfXZndmj4w/m\nj/7zk3nfPe/MD66+sFMsmlwrF906V8rwQHc+9eXKzvzGQlGFowAAe0OxKAAAQAOdnq3m3OK5utl2\nmeiNxaLJtXLR5dWNXFxYuel9fpJrAABeH3aiAwAANNB4qZhLnYfrZl1tnUm2i0Vrdfc6NgfS1tmW\nof6uuvmNhaIKRwEA9oYQHQAAoIEmJwZyYfnufOS+D+Tc4rmM9B7K5eX5/OLbHk91ZSk/1Xdn7rzn\n7mtnoudg2hcPp3ugLUvL6/nY48ezcHXtloWiCkcBAPaGEB0AAKCRasnmYpLCZtpa2lJI4dru81oh\n93U9mJn59Wxu1ZKLB3L06EA2+5MfnFtIcfRyZtYv5Oj4kUyOjt1UGlpIIccnBp2DDgDQYEJ0AACA\nBjo1PZ9L3afymWc+tzN7dPzBfPqZ38+H76tl9eodWV3fzOee/EEemxrLk0+fydvf0ZYvvfCFndfX\n8tE8NPq2ZiwfAOBNT7EoAABAA52ereZc9XzdbLtM9Fz1fGYvLe2UiC6vbiS5Vi56vZevnN2DlQIA\ncCt2ogMAADTQeKmYS92lutl2sejh4khWD/ZkdX0zSdLTee1HtM7N+iNajh44sgcrBQDgVoToAAAA\nDXTPeH8urkzmF992bef5SO9QWmot+an7x9OVztSOvJjW5d788nsnM9DbkTuOHMjFhZV88KdOZH7j\nQo4UD+fB0eN171mr1XJqej6nZ6sZLxUzOTFw05npP8pr/XwAgDcTIToAAEADPTu9kEvdz+Yzz/z+\nzuzR8QdzpG80C5vVXFy6lCTZWLySY5t35VNfem7ndR97/L/KQ6Olm97z1PR8Pv7E0zvXJ09M/UQF\no6/18wEA3kyciQ4AANBA185En62brWys5vziXC4vz2dlYzUrG6tZa53P2bnFutdNz1R3fc8fdf1q\n1vRaPh8A4M3ETnQAAIAGunYm+mjdrKutMyO9h7K6uZat2laSZGNzIGOHeus/d7S463te71jp1q/7\nUWt6LZ8PAPBmIkQHAABooMmJgcwt35OPvu0DmVk6n972nvS296SjpT3taUtXsSubS8V0FEczfKAz\nH333PZm9uJSJw315eHJ41/c8eWIqp2erOVYq5t6JgZ94Ta/l8wEA3kyE6AAAAA1USCHFdKVQSPo6\nenNltZreju7Mr15JR0tHCqt9qS0cylphMxevrmWi1J0kefHc1aysbaa1JanVChkd7MrdxwaS2rUz\nzZ8/PZ8DvZ1ZXNnIv/vOmRw51PuqC0ILKeT4xKBz0AEAXgUhOgAAQIN9++qf5/SVM/n69Ld3Zu+7\n55357VOfz6PjD2ZjbSFb89cKRFfX++rKRT/wjrtyYX45Pzh3JRvXTn6pKwV9bGosSfLprzyvIBQA\noAGE6AAAAA12rno+KxurdbPLy/NJrpWMbrXOZ311KEluKhe9uLCS5dWNJLcuAN2+t31fiA4A8PoS\nogMAADTYkeJIpq9s1M0Gu6+dQ97V1pmNzYG0dV778WxsuL5cdKi/K1u1WpJrBaA3HtbS3fnDH+sU\nhAIAvP6aHqKXy+V/lOR9SdqT/J9JnkzyiSRbSZ6pVCq/2rzVAQAAvHYPjPw36WhpS6l3KFdWqxnp\nHcry+mp+4d73JSvFrHccSkupkM6O1owNXSsXnbm4lNLB7rS1FlLs7ktpsDvlY9eC95Mnpl45E70j\nfT3tuVJdy8kTUwpCAQAaoKkherlc/htJHqlUKj9dLpd7k/yDJP8yya9VKpWvlsvlf1Mulx+vVCqf\na+Y6AQAAXpPlJIWWtLa2ZbO2la1aLb1tXWltaUtb1//P3p0Hx3nfd57/PH2fQOPoA1eDkig1QZCJ\nEdFmNJzhWN5Ytmyaiq0oEqXY8eyOq/ao2T/C3ezMbFVqa2qPqmyc/WO3dnbXmy2vvbEkO0pCSZZi\nJWs5cpT44IQbDwmqJUoicXfjavR9P/sHiCYa4AGIaDYBvl9VDvD7Pc+D/vXzI2Dg6yffj1OWDpfe\nm0rL57HLYhg6/ssRWWWRaZp6ZzKlmcW8Ll5JqV6XRoYDm0JBTdPU+ERKP/jZlKJh35YDRgEAAHBr\n7X4S/TOSzsdisT+X5Jf0u5L+eTwe//HV469L+rQkiugAAAAAdq2zmb9XvlrQy++80Zg7eeAxLeaX\n1O+PyLQU9frfLUtaDQqtVOs6frhP4xMp/fydpN46Ny1JekW6bnjo+ESqKWyUgFEAAICd0+4ieq+k\nqKQTku6X9LIky7rjGUmdW/lCwaB/xxeH7WEP2ov7337sQfuxB+3F/W8/9mDvY493r9kPkqqbtaa5\n5UJKxWpJydyCzGJOklPSalDo1HxOwaBfc+emm4JDJWluKa9PHok2z10tst/sHOwMvg93P/Zwd2P/\ndj/2ELtRu4voi5IuxuPxqqR3Y7FYUdLguuN+SamtfKH5+UwLloetCgb97EEbcf/bjz1oP/agvbj/\n7ccetN+d+IOQPd69+n0h5auFprkud0B1s66Qt1em4Ze0+iS622nTYNCr+fmM+ro9mkpmm66LdHs2\n/Vvo6/bc8hzcPn7W7n7s4e7G/u1+7OHud6/+jyDtLqL/jaT/XNL/FIvF+iV5Jf2/sVjsn8bj8b+W\n9LikH7ZzgQAAAABwux4O/YrOL57XU4dOaCG3pJC3V3ZZ1BXwy1rtkLUe1OOPdMrnsavTa9fRgyFJ\nq/3PLRZpMORTOlfWQ0OB64aHjgwHdPrUmCYTWQ2FfQSMAgAA7KC2FtHj8fj3Y7HYP4nFYj+TZEj6\nTyRdlvR/xmIxu6SLkv6kjUsEAAAAgNtXqKlSr2q5kFLA1SGbYZHd6pB1KapCuS6Hra6AzyaPx65C\nqabv/vAD7evr0NGRXsUGA6rVpUqlfsOoUEPGprBRAAAA7Ix2P4mueDz+L68z/ck7vQ4AAAAAaJWz\nmX/QC+fPNMbHokfU4+mWp6Oo988FFQy45bRblUqX9dKbl9ZdOaoOj4PQUAAAgDZqexEdAAAAAPa6\n2WyyaVyslrRcSGnFsKpQ6tLiSlFWi6Fa3Ww6b2Iuq06vo2luMpGliA4AAHAHUUQHAAAAgBbr94Wa\nxi6bU13ugDw2l/JOm3o6XXLarSpVak3nRSM+dXqai+hDYV/L1wsAAIBrKKIDAAAAQIs9HPqYLIct\nSuTn5XP45LG55LDYZVuO6qEhU3aboVSmpO4Ou577bEzJpYKG+/w6OhKUIYPQUAAAgDaytHsBAAAA\nALDnFSyqqy6LDLmsDi3kFlUxK/IFV2QEEpoy/kEKzMs0DaleU1+vV1OJjN76xZxe++kVGZIe+/iA\nJOkHP5vS+JVlmTJlmqYuXFnWX/xssjG33q2OAwAA4NZ4Eh0AAAAAWuxs5u/1wvkzOhY9ojfe/3Fj\n/plDJ/XCOy83xke9JzTk3K9vvXaxMXd8bEAvvXlOX3tiVN84c6Exf/rUmCTdNHR0fCJFKCkAAMBt\n4kl0AAAAAGixtWDRYrV03fk1ZWtKM4u5prlCqSppNWR0vclEVpOJzXPbGQMAAODWeBIdAAAAAFps\nLVjUZXNtmA83jR21gPp7vE1zbufqn23RiL9pfijsk7HhdTaGjkY3jAklBQAA2D6K6AAAAADQYg+H\nfkU6LC3ml/T0oZNayi8r6O1WyBHSbx14TnO5hHxGjzzlARWLZX3lcyNKLuUU7PIoXyzr9KkxjQx3\nqsOzOWD0ZqGjI8MBQkkBAABuE0V0AAAAAGi1gk0ui0dBj0XJ/IL8Tp8MGXp35ZICzh512yPK1Bbk\n7a2qmMvIZ+nVPme/llZKui/SqZHhgAwZGh3u2tTT/Hpz0mqo6PhESpOJrKJhX+NrAAAAYHsoogMA\nAABAi53N/Fw1s6rvXXi1MXcsekSS9NqlN3XywGNK55f0+vm/aBw/6j2hH7252g/9owSCEioKAACw\nMwgWBQAAAIAWm80mlMwtNM0Vq6VG0OhyIbUpdLRsTTU+/yiBoISKAgAA7AyeRAcAAACAFuv3RVQz\nK01zLpuz8XmXO6C6aTYdd9QCklafRP8ogaCEigIAAOwMiugAAAAA0GIPh44ovnhBzx3+4mpPdIdX\nLptTy4W0nh19UtWCWx2GRc+OPqlUPiOf0SN3aUChT5U+ciAooaIAAAA7gyI6AAAAALRaQXI7HSoU\ni/I6PMqUc3Lb3Qq7e1STqRVzUS4FVEv2qc9t1y8/0K13JlY0PZ/T3FJBNov00ND2gkFvFEQKAACA\n7aGIDgAAAAAtdjbzc0l1TaZn9PbE2cb8U6MnNJOZkyS9PfG6jnpPqCe/T9lCRd/8/sXGecfHBlSt\ni4I4AABAG1BEBwAAAIAWm80mJJmbwkOTuYWmubI1pcWlolay5abzCqWqJhNZiugAAABtQBEdAAAA\nAFqs3xeRVNdEeqZpPuTtVbVebYwdtYB6Ol3ye+xN57mdNoJBAQAA2oQiOgAAAAC02MOhI5rLTshm\nsSro7Va2nFPY0yu7bLqvM6rlbEFfHH5a9lyf/G67fvnBHvV0uPTuZEodXocGej2KDREMCgAA0A4U\n0QEAAACg1QolLZXTKterShXS6vOF5LF5NJWeUcDZI2P+fjm9DhlWQx/OZbSQLslpt2p0X0C1ujS9\nkNfFKynFhgIaGd5ewCgAAABuD0V0AAAAAGixs5l/UM2s6XsXXm3MPTV6QulKVq+//yP9RuyLev98\nt946N904fnxsQNlCRfOpQmP+FUmnT43RGx0AAOAOsrR7AQAAAACw181mk0rmFprm1oeKzhcSKpSq\nTccLpaoWV4qb5icT2dYuFgAAAE14Eh0AAAAAWqzfF1LNrDXNrQ8VDbrDKjib/zxzO23q6XTJNM2m\neQJGAQAA7iyK6AAAAADQYg/7R3W+cElfOvhZpYtZhby9clmccltdOnXoi7IUfep8YEL/4cGgFicC\ncjmtshiG/B67ejqdcjltCvidGg55CRgFAAC4wyiiAwAAAECLnc1c0GR6Wm9PnG3MHYseaYzXf35i\n8Cm9+KeZxnnHxwYaPdG/9sQooaIAAAB3GD3RAQAAAKDFZrPJRv/zNevH6z9PVZp7p6/viT4xRz90\nAACAO40iOgAAAAC0WL8vJJfN1TTnsjmv+3mXvbfpPPe6XunRCP3QAQAA7jTauQAAAABAiz0c+pgc\nFrvCvh6lS1l1uQJyWx3qtnfLbw3KkOSJdilg65Gz0K8vP17T3GJB9/X5ZbUYcjtsikZ8OjoSbPdb\nAQAAuOdQRAcAAACAFjJV1wfLH2q+sCif0yuLDDmsdhmm1OMLyKjYlE12yuuparmyoFCHTa6VoFwO\nqzo8Do0MB/TxWKjdbwMAAOCeRREdAAAAAFoonn5P/+u5b+lY9Ihee+/NxvxToyc0szKhHk+3TP+y\nXvnw5caxE4NP6ZW/yegVSadPjWl0uKsNKwcAAIBET3QAAAAAaKnpzKwkbQoWTeYWVKyWtFxIKVWd\nbzq2Plx0MkGYKAAAQDvxJDoAAAAAtNCAv0+SNgWLhry9qtar6nIHpFLzsYC9V1JGkjQUJkwUAACg\nnSiiAwAAAEALxToe1H965Ld1eWVCTx06oVRhRSFPt6yy6sHA/TKqbmUzAf169GllzUWF3GFZ0iF9\n4R8X9dBQQAeHA+1+CwAAAPc0iugAAAAA0EKGLLrfPqSyv6pcJatqvaqqWZfH7pVqhhZqC/L11DVg\n3K8PZ8OanS2rN2DKbjNkbOHrm6ap8YmUJhNZRcM+jQwHtLUrd+Z6AACAve4jFdFjsZhfUiUejxd3\neD0AAAAAsOeczfx7mTL14vlr4aEnDzwmj82lP4t/X8eiR1R21PTCXy41jh8fG9Cf/ujcLYNFxydS\n+vrz5xrj7QaR3u71AAAAe92WgkVjsdgfXf04GIvF/kbShKSZWCz2eiwWG2jlAgEAAABgt5vNJjWX\nTTbNLRdSmr06V6yWNJebazpeKFUl3TpYdOPx7QaR3u71AAAAe92WiuiSxq5+/F8kfTsej3fF4/Fu\nSc9L+lZLVgYAAAAAe0S/L6Q+X6hprssdaMy5bE5FvJGm427n6v/j8K2CRaMbjm83iPR2rwcAANjr\nttvOJRqPx//3tUE8Hv9WLBb7L3d4TQAAAACwpzwc+pgupd7XqcNPaC6TVNDXow67X0bNol+PfV5e\ns1tBY1DPfLpX6VxZvZ0uZQtlnT41dstg0ZHhgE6fGtNkIquhsG/bQaS3ez0AAMBet9UiejQWi/1X\nkpZjsdgX4vH4K7FYzJD0pKR065YHAAAAAHtAoa6qWZfdsKvX26P53JKsXqscFpt8Vq8sqaDOL6YU\nDDhl7UppsTqvSE9E5aJXP/jZ1M0DP81rn36UOFBDhkaHu+iDDtzjCBkGgBvbahH9i5I+Likp6XFJ\nr0j6V1fnv9KapQEAAADA3nA28wuZMlWoFvXyO2805k8eeEyL+SV1O4tayQaVsU3qp4lXG8dPDD6l\n7/0wI+nGgZ8EgwLYCfwsAYAb21IRPR6P/1jSjzdM/w/xePy/3/klAQAAAMDeshogaqpu1pvmlwsp\nFeNQiDkAACAASURBVKslpcx5FUpdsltTTcdTlQVJTkmrgZ/XK2hdLxiUwheA7eJnCQDc2HZ7ojfE\n43Hz1mcBAAAAAPp9ocaT6Ot1uQOqm3UFrEEVnTZZa80Fq4C9V9Lqk+g3CvwkGBTATuBnCQDc2JaK\n6LFY7Pdudjwej/+bnVkOAAAAAOw9D4c+pkvLl+S0OPTU6Akt5JcU9vbKabHLbwnIkhpUwVdQ0Ltf\n/cFnlKrOK+yJyFPs129+qnjTwE+CQQHsBH6WAMCNWbZ4nk3S70qyajWrZuN/AAAAAADXYZqmVjJl\n5WslZSpZLRdSinh75bG5dZ/rIdVV06T9pwo+kJTfY1NtOaT67IMqzvfI67Tp00cGlM6X9d03P9Df\nXUyqruaWMGvBoJ/9xJBGh7sIAgTwkfCzBABubKs90X8vFov1S8rF4/Hfb/GaAAAAAGDPGJ9Iack9\nrsn0tN6eONuYP3ngMeWr43ph/Exj7umDX9IL3803xsfHBpRIFfXN719c9xVH9chI+E4sHQAAANr6\nk+iS9DuSZlu1EAAAAADYiyYTWc1mkypWS03zy4XU1cDRa+Zyc03jQqmqqWSuaW5irjn8DwAAAK21\n5SJ6PB5PS1pq4VoAAAAAYM+Jhn3q94Xksrma5rvcAfX7Qk1zEW+kaex22jS4IdwvGiHsDwAA4E7a\nUjuXdX5f0vdbsRAAAAAA2ItGhgNaKByUw2JX2NujdCmrHk+3vFa3os77deqgTbO5OUW8EXXk79cz\nny5pJVtWl9+hwaBXDw51ym41NDGXVTTi09GRYLvfEgAAwD1lu0X092Ox2P8l6aeSCmuT8Xj8Wzu6\nKgAAAADYK0ypJqlsVpQr5xX09GguN68+f1DL9Tk5rDZFCh/X3FRReW9JNpuhYJdLhiGd/2BZUws5\nDYe8knxXW7kYOjrSK4ssMk1T4xMpTSayioZ9GhkOEAYIAACww7ZbRF+UZEj61XVzpiSK6AAAAABw\nHWvBoi+cP6Nj0SP6wftvNY49c+ikJtMz6vYW9PqrZUmrYaJr3jo3LUl69rGYvvNGfN1XXQ0XHZ9I\n6evPn2vMnj41ptHhrta+IQAAgHvMtoro8Xj8n22ci8Vi7p1bDgAAAADsLZOJrNK9qwGiG8NF1wJH\nU+a8pE5Jq2GiGyWW8k3jibmsHhkJazLRHDI6mchSRAcAANhh2yqix2KxJyX9niSfVp9It0pySwrd\n7DoAAAAAuFdFwz4tuVf/ZNoYLtrnC2kyPaOANShp9Ul0t3Pzn2nhHk/z17waLhrdEDo6FCZ0FAAA\nYKd9lGDRfy7ptKT/TtJnJPXu9KIAAAAAYK9YCxY9dVhayi/rmUMnlcgtKOILKuTolrPTpVKiX48/\nUlCH1yGb1ZDVapFhSD7XPnX6HdoX8ehrT4xuChcdGQ7o9KkxTSayGgr7dHA40OZ3CwAAsPdYtnn+\ncjwef1PSTyR1xuPx/0bSIzu+KgAAAADYIwwZ8skmq2FVXVLdNOW2OVU3TaUqGcmoK+n49wrvy8gb\nXlLGPy6jMyGbxZDfY5XPbdelydVA0Z4OpyRDP/x3Mxq/sixJOhgNaCjs02Qiq4tXUjJl3nJNpmnq\nwpVl/cXPJjV+ZXlL1wAAANyrtvskeiEWiz0k6aKkT8ZisR9qrXEfAAAAAOC6zmZ+oRfOn2mMj0WP\n6LX33tSx6BFJ0ttTZxvzb0+sfn7Ue0I92qdvnLnQuO742IDeOveujo8N6Dt/+a5OnxqTpG2HixJI\nCgAAsHXbfRL9v5b030p6RdJ/ICkh6c92elEAAAAAsJfMZpNN47WA0WK11BQ2uv7zsjWlxZVi03Vr\noaNrHycT2euGi97KR7kGAADgXrXdJ9G/rtUg0d+R9CVJ2Xg8vrzjqwIAAACAPaTfF2oau2zOpo8b\n5yXJUQuop7M5iHQtdHTt41DYJ2PDa20lXJRAUgAAgK0zTHN7ve9isdh+SackPSVpSdK34/H4H7Vg\nbdthzs9n2ryEe1sw6Bd70D7c//ZjD9qPPWgv7n/7sQftFwz6N9Yydxq/8+5iBeX0DwvnlcjNq9PV\noVw5J7/TL5fFLpmGJpeX1esMyWpYtFBOKGALypaLKJcvq8Pn0kqmrE6/Q7l8RV6PXbl8RX293kaQ\n6PiVVFO4qLGptN7MlLnta8DP2r2APdzd2L/djz3c/e7A77x3pe0+ia54PH4pFov9oaT3JZ2W9C8l\ntbuIDgAAAAB3pXq9rpVSWTaLTV3ugJK5BYW8PfLY3HLLoURxSQPefvmr/ZpK5lXN+2UE3EquFNXb\n5VapVFU07NPITQrdo8Nd2+ppbsjY9jUAAAD3qm0V0WOx2Je0+hT6UUmvSvoX8Xj8b1uxMAAAAADY\nC34an1e155Ly1YJefueNxvzJA4/JY3PppXe+r2PRIxp01PTiXy01jh8fG9Crb3+oJx/drz94/hzh\nnwAAAG2y3SfRn5P0bUnPxuPxSgvWAwAAAAB7ysRcVoYzqbpZa5pfLqS0YlgkrQaKzlXmJDkax9fC\nQ9fCRScTWYroAAAAbbCtIno8Hn+yVQsBAAAAgL0oGvGr5gspXy00zXe5A/LYVoNDXTanIo6IVmOn\nVq2Fh66FixL+CQAA0B7b7okOAAAAANi6oyO9WizYNZF/X08fOqlkbkG93m55rW4lcwt69tCvy1Ht\nVGWlR599xC+/xyG/266lTFFfeXxELrt0+tSYDg4HVDfrOpu4oKn0jMLePlXmexTq8ty0X/puZZqm\nxidWw09v1RP+bn4NXMP9BgDsVhTRAQAAAKCFLLLoncy4Xjh/RicPPKY3P/xbHYse0dsTZxvnPH3w\nS/rmmURjfHxsQINBn771+kV99fMjjTYuP0+c1/89/u3GeScGn9IfPJ/Zk/3SxydS+vrz5xrjVrzH\nO/EauIb7DQDYrSztXgAAAAAA7HWz2aSk1T7o0moP9PXmcnNN40KpqsRSXpI0lcw15qfSM03npSoL\nklb7pe81G99TK97jnXgNXMP9BgDsVhTRAQAAAKDF+n0hSVK3OyBJcl3thb4m4o00jd1Om8LdHknS\nYMjbmB/sGGg6L2DvlbQ3+6VHN7ynVrzHO/EauIb7DQDYrQzTNNu9hp1gzs9n2r2Ge1ow6Bd70D7c\n//ZjD9qPPWgv7n/7sQftFwz6W93Yl995d7GCcvr7+f9PmWJOHqdHy4WUejxdSmYXFfKEVZntl2Gx\nKbmUV4dvtSf6SrYkn8ehY4fDsl59/qmuus7OXe2J7omostCrYJdHB/dgb2lTpsavrPbPHgr7WvIe\nt/sa/Ky9PXdiT2+FPdzd2L/djz3c/e7A77x3JXqiAwAAAEALmaprKjMhj80ri9uqbCUnU6ashlX/\nOPKw3l2ZUqTLq4sTKYW6PVpIFeR22BTp9ii5XFT8ykojgNEiiz4ROayPhw+tBjSWs3usdH6NIUOj\nw10t7Zl9J14D66x7hm+v/rsFAOxNFNEBAAAAoIXi6feULC5KWu1pvj5Q9JlDJ/XC+Mt6+uCX9Orb\nqz3Qj48N6LW/vawnH92vl968JGlzACMBjdiN+HcLANit6IkOAAAAAC00nZnVXDapuWxyU6DoWuDo\n+mDRQqkqSVpcKTbmbhXISEAjdgP+3QIAdiueRAcAAACAFhrw98lhX/3TazI923Ss72rg6Gqw6OqT\n6G7n6rk9ndfCRzcGMBLQiN2If7cAgN2KIjoAAAAAtFCs40E5bDblSlnZAzYFvd3KlnOKeIJ6wBfV\nMwefVG/pQX3hWEpdnS4tpIr6yudG1OG26Tc/9WAjgHG9keGATp8aawpoBO52/LsFAOxWFNEBAAAA\noJVMQx6jWwv1JRXrZa0UM+rzh+S1eZSqZlSc7tOKr6TuBxKaLyQVCUVUmIrI1enSZz4xKGNdBKNp\nmquBoomsomHfpuO3XMqG69cCS++Udr8+2osgVwDAbkURHQAAAABaaHwipSX3uPLVgl5+543G/NOH\nTspQRvZ+KVWUXnnn5caxL9x3Un/wfHnHA0XbHezY7tcHAAD4KAgWBQAAAIAWmkxkNZtNarmQapqf\nyyY1m00qmZ9XqjrfdGxtvNOBou0Odmz36wMAAHwUPIkOAAAAAC0UDfu05A4pXy00zUd8IRmSajWp\nVGxuaRKwBSWVdzxQtN3Bju1+fQAAgI/CME2z3WvYCeb8fKbda7inBYN+sQftw/1vP/ag/diD9uL+\ntx970H7BoL/VjZ35nXeXMmVqoZDS5fwl5WoFLeQWFfGF5Lf55LY5dOVdrzp8ThX9H2i+kFTYu9oT\nfSDYoYMbeoabMjV+JdUUzLitnui3ef3tavfr3y5+1u5+7OHuxv7tfuzh7ncHfue9K/EkOgAAAAC0\nkKm6FmvTqpo1VWoV2Sw2WQ2LCtW8LqenFBru1WIuJa861V8+KmvF0FwuK4ejqF+8v6jZxYKiYZ8O\nRDsVn1xRYjmvbLGiuaWCbBbpoaGtF6LbHezY7tcHAAD4KCiiAwAAAEALnV38e5VqJU2mZ/T2xNnG\n/LHokcb45IHH9N13/lRfuO+kasmocsWqXn/top59LKbv/vA9SdLXnhhVfCKlt85NN77G8bEBVeui\nKA0AANBCBIsCAAAAQAtNp2c1m02qWC01za8fr4WOpqrzWlwpqlCqSpISS/nGORNz2cb8mkKpSjgn\nAABAi/EkOgAAAAC00GBnv0rVkibSM03zLpuz8XmXOyBpNVC01ulS/Wp2Vbjb0zgnGvGpWG4uorud\nNsI5AQAAWowiOgAAAAC00MPdY/ow+75sFquC3m5lyzmFPUEZkrwPeBTy9Go5v6KnDnxR9uV9snZa\nlC9W9JXHR9Tls+s3P/WghsI+jQx3qsvnUDTs02K6pC6/UwO9HsWGAu1+iwAAAHsaRXQAAAAAaCGL\nrOq3BpUwF5Ur59Xh8Mus1yWLIbvVrrppqq6a6kZJNV9SyoYV6XErsVSQxSoF/A5NJrIyJB2IdqpW\nl1LZsgyLoXS+or/6d9PyeexayZQVDfs0Mrz1oFEAO8c0TY1PpDSZyPK9CAB7DEV0AAAAAGixs5lx\nvXD+TGN88sBjevnCG43xsegRvf7+j3QsekTV7Ip6tE+v/e1lHR8baAoS/doTo/rGmQuN8fGxAUlq\nOuf0qTGCRoE2GJ9I6evPn2uM+V4EgL2DYFEAAAAAaLHZbLJpvBYkumYtZLRYLalsTWlxpShJm4JE\nJ+aaQ0QLpeqmcwgaBdpj4/ce34sAsHfwJDoAAAAAtFi/L9Q0XgsSXbMWMuqyOVWtBdTT6ZIkeZzN\nf7JFI80hom6nbVOzCIJGgfaIbvje43sRAPYOiugAAAAA0GIPhz4my2GLkvkF+R1euSxOPXf4CaVK\nWXU4/EoVUvrSyOdkK3XJ6gvLNOv63D/ap3CXS7HoqFKZciNctMMzpncnUwr4HPK67Upny/raE6Na\nuXrOwWGCRoF2GBkO6PSpMU0msnwvAsAeQxEdAAAAAFqobtY1mZ+SzWJT0NOjfLWo+eKSwt5ePeCP\nKlvNq6ROOQ2bFmtJuZ0VeUoDui/iUyZfUU+HQ0dHQpIpjV9ZDS2MDQVksUiXZ3c2wHCrwYgEKAKb\nGTI0OtxFH3QA2IMoogMAAABAC51NXFDJsqJ8tajF/JLenjjbOPbMoZPKV4tyuhx6/sK14NGj3hPq\ntz+gUqWmP3j+nE6fGpOkptDC9aGjOxVguNVgRAIUAQDAvYRgUQAAAABooan0jGazSS0XUo0A0TVr\n88ncQtN82ZpSYinfCBidTGQ3hRSuDxTdqQDDrQYjEqAIAADuJXfFk+ixWCwk6aykX5NUk/RNSXVJ\n5+Px+H/WxqUBAAAAwG0Z7BhQ2bKifLWgumk2HevzhVafRLc6muYdtYDC3R6VKjVJqwGFG5uluNeF\nju5UgOFWgxEJUAQAAPeSthfRY7GYTdL/Jil/deoPJf3reDz+41gs9m9jsdgT8Xj8zI2/AgAAAADc\nvY5EDupK7ooWiwvy2T0KjvQoW8oq7A2qx9GpjDWnlWxZpw4+qcVcWq56lzylAbkcVuXyq61S1gIK\n14cWWi1SpMuzowGGWw1GJEARAADcS9peRJf0B5L+raR/JcmQ9CvxePzHV4+9LunTkiiiAwAAANid\nTMltMWSx2GXWy8qWsupw+mWzWGUxrKrVLOqq7FdGM6rXTbmdNoU8Lpl1KZUpK50v6wc/m1L0arF6\nfe/x2GBA70ym9Ne/mFW5UleuUNFINKCaqeuGft4qEHSrwYgEKAIAgHtJW4vosVjsq5KS8Xj8L2Ox\n2L++Or2+T3tGUucdXxgAAAAA7JC1YFFT0ovnX27MH4se0VBHvybTMxrqKOq75689O3Ri8CklPuyQ\npEZ4qLQ5wHN8IqWfv5NsOm9lXeDoxmsIBAUAANi+dj+J/s8k1WOx2Kcl/bKkb0kKrjvul5TayhcK\nBv07vzpsC3vQXtz/9mMP2o89aC/uf/uxB3sfe7w7Tb83q4p1c/BmsVrSbDbZ+LheqrKgQsmz6Zq5\npbw+eSR6bXxuuilgVNKm8fpr5tYV16/39XBrfB/ufuzh7sb+7X7sIXajthbR4/H4P137PBaL/VDS\nfyzpf4zFYsfj8fhbkh6X9MOtfK35+UxrFoktCQb97EEbcf/bjz1oP/agvbj/7ccetN+d+IOQPd6d\nBvz9KltWZKo5VNRlc6rPF9JkekZ9vnDTsYC9VyWnbVOYaKTb0/TvoK/bo6lkc4He47Td8Jq+bs8N\nj+HW+Fm7+7GHuxv7t/uxh7vfvfo/grT7SfTr+S8kfSMWi9klXZT0J21eDwAAAAB8ZEciB7VYWNFs\ncULPHX5CidyiOpw++e0edTkCssslZ3pIv/nAKS2Vk+pxhBS27dN9B6WpZE5fe2JUK5nydQM8R4YD\nslikxHJBfb0PrfZEHw7oyIHQdUM/CQQFAADYvrumiB6Pxz+1bvjJdq0DAAAAAHaSRRb5JOVqBeWq\nRRmGIa/dK8Mw9G7qQ/XYB5QvlWTzlyWzrLJjWYtGVbbssP7Jr/Tr8tSKKrW6JpJZjV9eVm/Apf5u\nt0xJl2dXA0KP/1KfZK72PF+b+8wnBptCQyUCQQEAAD6Ku6aIDgAAAAB71dnMuCbT03p74mxj7lj0\nSGP8zKEn9MK6YNFj0SPqdpT0d7+oKVesaD5VaAoLPT42IOlamOjpU2OSRGgoAABAC1BEBwAAAIAW\nWwsQXW/9eGOwaLFaUsqcV20hrFrNvGV46GRic3DpZCJLER0AAGAHUEQHAAAAgBbr94U0kW4ufLts\nznXHw5uOBaxBuXp9yhUrMs3mUFL3hvDQobBvUwjpUNh3+wsHAAAARXQAAAAAaKVara6Y/6AshuS+\n/x+rw+mXx+aSzWJTt6tTHY4urWQLeu7QF5UsLMhr98pt8cmWGtZyqaieDpe6/A6FezxK58rq8jsV\n8DmUzpX12V8dVn+vVweGO2WRQWgoAABAC1BEBwAAAIAWens8ISP8waae55I01NGvPz7/J435p/c/\nq29+a0lSVtIFPfnofv0fZy7oq58f0Xf/6r3GeU8+ul8vvXmpMbZaDT0yEiY0FAAAoAUs7V4AAAAA\nAOxlU8ncdXueF6ulTfNzubmm8eJKsfE1rje/ZmJuc090AAAA7AyeRAcAAACAFhoM+2TxhZrm1vqh\nb+yFHvFGJC01xj2drsbXWG9tfk00Qv9zAACAVqGIDgAAAAAtdOxQSEsFp547LCVyi+pw+WSRVW6b\nUw949+u52HOazswp7IkoYo3qy4+HNLeYV9/VHuhfe2JUnxgJqsfvbPQ7t9ukZz79kFLZkqIhnz4x\nEmz32wQAANizKKIDAAAAQAuZVakmyWF1K+jt0XxuUZ0uv8q1sj7Mf6Capay+br8WMwmZtoLy/rzC\nHQHVV9yK9HiVzpYUv7Kig8MBjQ53qVav6Scz55XyzircG1GPrVuGDNXrdf00Pq+JuayiEb+OjvTK\nQgfPO8I0TY1PpDSZyCoa9mlkOCBDRruXBQAAdghFdAAAAABoob8ZT8ga+UA1s6bvXXi1Mb8+XPT5\n83/eNP/axF/oqPeE6onVdi/f+ct3dfrUmEaHu/STmfP6zrt/3Dj/xOBTKl/Zr3S+rG+cubDulUf1\nyEhzuxi0xvhESl9//lxjvLZXAABgb+CxBAAAAABooen5rGazSSVzC03zNwoXLVZLkqSyNaVCqapC\nqSpJmkyshodOZ2ebzk9VFjSZyG4KFyVs9M5Z25sbjQEAwO7Gk+gAAAAA0EKDQZ+svpBqZq1pfi1c\ntO8GoaOOWkA257U/2YauhosO+Pubzg/YezUU9qkzX2maJ2z0zoluCH4dCnPvAQDYSyiiAwAAAEAL\nHfulsJYLLk0WPtSpw08omVtUp8snu2GTy+pUqVLRqUO/rsVMVp1uv3LFgr607xkZ6bB8++xKZ8s6\nfWpMB4cDkqRfHRiVzOc0nZ1VyBVWv32fHhwIyJQpafRqT3SfjhI2eseMDAd0+tRYI/h1ba8AAMDe\nQBEdAAAAAFrIqJtaqiWUq+aVyC2ozx9SuVrVUnFFAWeHPHa37Kn75LdKK9UZ5cor6vBa5fbalM3X\nlC2uPmH+7lRKU/N5pXNl9fX2qTvXo4jHq0pV+sHPphQN+/SrIyE9MhJeDbq8cuugy70UiGmqrnj6\nPU1nZjXg71Os40EZW+xgerv3wZCh0eEu+qADALBHUUQHAAAAgBb6ycx51R0ZvXD+5cbcsegRvT1x\ntvH5oL8ilbx68dJ3Guc8vf9Zfeulpcb4yUf366U3LzXGx8cGNLWQ01vnphtza4GWWw263EuBmPH0\ne/qfz/5RY/wvjvxHOtAR29K1e+k+AACAnUewKAAAAAC00HR29obhoWufz2WTmsvNNZ2zcby4Umwa\nrw8dXbMWaLnVoMu9FIg5nZm96fhm9tJ9AAAAO48n0QEAAACghQb8/TLtmaa5tfDQtc8jvpBU8jad\nE/FGJF17Er2n09V03O20bWo4shZoudWgy70UiDng77vp+Gb20n0AAAA7zzBNs91r2Anm/Hzm1meh\nZYJBv9iD9uH+tx970H7sQXtx/9uPPWi/YNDf6kbS/M67S9VU0+XsZc3kZ1d7ovuCKtdqWild7Ylu\nc8uW2ieb1aKUdUpz+TlFPBF5ihFlC3WlsiU9OBiQ3SZNJq/2RO/xKJuvaDDkVa2upkBLQ4ZMXeuJ\nvn5+o62etxvcVk/0Ld4Hftbufuzh7sb+7X7s4e53B37nvSvxJDoAAAAAtJBRN+S1dsttW9H9gX3K\nVbJayC+qvyOkiDOoc/PjivhMpa9E5HaF5MgGVC85NJ0r6oGBTnlcNp3/YEnRiF/RsEcTCWl2Ma+H\nhgKSpHcnU+rwOmWzNIePxoYC+swnBm9aFN9LgZiGLDrQEdtyH/Tma/fOfQAAADuPIjoAAAAAtNBP\n4/Oq9lxSzazJYlj04rqA0WcOndSbl/9WkvSF+07q2y+WdXxsQC//+AMdHxvQHz5/TsfHBhrhoc8+\nFtN33og3rl9/7PjYgIIBdyN89BURkAkAALATKKIDAAAAQAtNzGVlOJOSNrfSXB84mqrOS+pshIVu\n/ChJiaV80/XrjxVK1U3ho5OJLEV0AACA20QRHQAAAABaKBrxq+YLNZ5EX6/PF2p8HrAFJZXldq7+\nmbbxoySFezxN168/5nbaNoWPEpAJAABw+yiiAwAAAEALHR3p1WLBrunCZRmGRc8cOqm57Lz6/CH1\nuYJ6dN8/UtjTp8yViL78uE0r2Yq+/PgBpXNl/c6pMeWLFbkdNkUjPgUDDj33mZjSubIeGgrIapE6\nvQ51eB0a6PXIYlHT8YPDgXa/fQAAgF2PIjoAAAAAtJBFFvkk5WtFJXLz6nT5FfT0yG6xqlQpK+Lp\nU3oiLF/fspYr8wr1hlVe6FW5Utf0fFZet00+j1WdHoce6Atof19ze5YDQ83jhwau377FNE2NT6Q0\nmcgqGvZpZDhw09BRAAAArKKIDgAAAAAtdjYzrhfOn2mMj0WPSJKGOvr1wvjLemrkpF68eC1w9Kj3\nhH70d6v9zo+PDUiSXnrz3G0FhY5PpPT15881xoSOAgAAbI3l1qcAAAAAAG7H+gBRSSpWSypWS435\nZH6+6XjZmmp8XihVGwGik4nsR17Dxmtv52sBAADcS3gSHQAAAABarH9dgKgkuWxOSdeCRUOe5uOO\nWkDSauF8fXjo7QSFRjdcS+goAADA1lBEBwAAAIAWezj0MVkOW5TIzavD5ZNFNrltDnVYfHrm4JPK\nTET09P5ntVyZV9AVUnkhqMcfKcrvtcvrsimdK+n0qbHbCgodGQ7o9KkxTSayGgr7CB0FAADYIoro\nAAAAANBCtVpdK+WyPHaPIr6Q8pW8UqWUnL6gDKuhpdK8/EMlOepdqlx+QMUOl/xumyzdDklWzczn\nFY34FRvq1E8uJjUxl1U04tfRkV4ZprHlsFBDhkaHu26rDzrhpNfHfQEAYG+jiA4AAAAALfT2eEJG\n+AOZMjWVntHbE2cbx54+dFJvvP+WpNWw0aozotf+oqonH90vj8umb79+sXFu6XMj+tZrF9d95VF1\neBx3NCyUcNLr474AALC3ESwKAAAAAC00lcxpNpvUXDapYrXUdGxuXeBosVpqBIourhQ1s5BrOnd6\nvjkIdGIue8fDQgknvT7uCwAAextPogMAAABACw2GfbL4QjJlajI923Qssi5w1GVzqno1ULSn0yWP\nq/nPtcFgcxBoNOJTp8fRNNfqsFDCSa+P+wIAwN5GER0AAAAAWujYoZCWCk4lSlNyBGwKe3uULmUV\n9vaqy9Gpxx44rg5Hh1y1Lk2XvHruM075PTaVyhV99fMjml3IKxrx6eMjQTnslqs90X06OhKUIeOO\nhoUSTnp93BcAAPY2iugAAAAA0EKGKWW1rEw1r0q1LKfVqWp9RXXTVKVW1YCvT6o4NVOeVfi+oJam\nOmXvmdeybV5+o0cRs089fofiV1a0kinr8P3dTcGVB6OrBdvJRFaG1HRspwMvdyKcdC/ivgAALJLL\nwgAAIABJREFUsLdRRAcAAACAFjqbuKCSZUUvnH9ZTx86qefPn2kce/rQSRWqRS3mlxqBo1+476Re\nvPRy45yj3hPKTu/TS29easytD668WaglgZcAAAC3j2BRAAAAAGihqfSMZq8GiK4PEl0bLxdSTYGj\nqep80zlla0qLK8WmufXBlTcLtSTwEgAA4PbxJDoAAAAAtNBgx4DKlhVJUt+6IFFpNVi0UC2qbtYb\nc122YNM5jlpAPZ2uprn1wZU3C7Uk8BIAAOD2GaZptnsNO8Gcn8+0ew33tGDQL/agfbj/7ccetB97\n0F7c//ZjD9ovGPR/9EbTW8PvvLtUtV7TUmlO08WkDNOiTDWjuey8+vwh9TgCKtZKssup95dn5DG7\nZctFZO9Z0GJhQV1+n5ZzaUU8EXVWB3V5djW40mqRLs+u9jk/MNypi1dWmkItGz3RZWr8SqpxbCTa\nqYsTKzvWI327drpH+512Oz9rd/t73yv478vdjf3b/djD3e8O/M57V+JJdAAAAABooZ/HF1TtuSzJ\n1GR6ptH7XJKeGj2hmcyc+v0RrSw4debNFUkrOj42oPB9HXpx/HuNc3/74Jf12U8c1oUry/r9P97c\n5/x6vc43Bl5euLLc1h7p93KP9nv5vQMAsNvREx0AAAAAWmhiLqvZbFKz2WRT73NJSuYWVKyWlMwt\nqGxNNeYLpapSlYWmc6fSM5Jur895u3ukt/v12+lefu8AAOx2PIkOAAAAAC0UjfhVu9oLfeJqIXxN\nyNurar2qkLdXxXlJqkqS3E6buuzNvdEHO/pXv95t9Dlvd4/0dr9+O93L7x0AgN2OnujYEfS0ai/u\nf/uxB+3HHrQX97/92IP2oyc6bqSuuhYLKyqaKc3kE8pW8kqXsgp7e2Q3HKqrJlvVr/JyjyaTOfk9\nDvnddi1liursX1aqOq9+X58eDo/KIsumPucHt9Fb+3au3Qntfv3bdVs90Xf5e98r+O/L3Y392/3Y\nw92PnugAAAAAgB1nkUU+SfHcjOay84p4g3JaSzIlLRaX1eXo1uwVrzo8pkainbqSyMrsWFLZPifD\nCCtU/mUtXinrneKKbHZppnxZyWJCgwP9eqivXz+5mNTEXFbRiF9HR3pluUnXzo090u+0dr9+O93L\n7x0AgN2OIjoAAAAAtNjZzLheOH+mMT4WPaLvv/emjkWP6JV3/0pfuO+kvvliWV9+/ICs3fN64dK1\nQNGj3hP60ZurbV6+/HSX/uTD5xvHqrXn9M0zi+teaVSPjIRb/n4AAADuJQSLAgAAAECLzWaTTeO1\ngNG1j6nqvCRpZiG3KVB0feBosjDXdGwuN9s0npgjrBIAAGCnUUQHAAAAgBbrvxosusZlczZ9DNhW\nQ0T7e72bAkUdtUDj85A70nQs4u1rGkcjhFUCAADsNNq5AAAAAECLPRz6mHRYmsvOK+TtVbaU0anD\nTyhbyunLh57SwodBfeVzTnX7bJpI9urp/c8pWZhT0BWSI9+n0KcqGgr75HRIT91/SsliQgO+Pn1i\n8JDsTyxc7Ynu09GR4K0XAwAAgG2hiA4AAAAALVSr1bVSLsthcarX062lwrJ8Dq8cFrushkU1S0UP\nDvi0aJnWB+VJ+YY9clg65JiOqeZxyHAaqpk1Jc3LSucXFAtGddz/mOKTK3rr3JzSubIO39+tkeGA\nDBk3XYtpmhqfSGkykVU07LvpNds5FwAAYC+jiA4AAAAALfT2eEJG+ANNpqf19sTZxvyx6BH1eLr1\nnV/8uZ459MSm4NHuSFH/z4tlPfnoflm65vUnH6yGjb5xRfrtg1/W+EWH3jo3LUl6RdLpU2MaHe66\n6VrGJ1L6+vPnGuObXbOdcwEAAPYyeqIDAAAAQAtNJXOazSYbIaJritWSlguroaHXCx5dCxtdXClu\nChudSs+oUKo2zU0mbh0quvGcm12znXMBAAD2Mp5EBwAAAIAWGgz7ZPGFNJFuLnq7bE51uVdDQ68X\nPBqwBiWV1dPpknVD2OhgR78yzuY/54bCtw4VjW4452bXbOdcAACAvYwiOgAAAAC00LFDIS0VnHJa\nner3h5Uqrsjr8KrD7lX6asBosHhAz8V8SlYm5XV45LN2aP6DXv3WZ+3yuGxaXA7qN+4/pXRtQQ8F\nhxTreEgdlRUNhnxK58p6aCigg8OBW65lZDig06fGNJnIaijsu+k12zkXAABgL6OIDgAAAAAtZDEN\n1SSV62Ut5Jc04IuoWCtqLjevsLdXDrm1ZJ3WVHpWIfegPJk+Fct1FUt5eV02VX1zKljm5DfCUuJB\nJbIOWbpX9NBgp2p1qV43lStW9MNzM0rnyooNBW4YAmrI0Ohw15Z6m2/nXAAAgL2MIjrQBrVaTZcv\nf7BjX2952aelpZ3rUblv3/2yWq079vUAAADuZeMTKS25xxvBoceiR5oCRk8eeEwvv/NGY/wb953S\nt/9sWZL0yUdt+um7rzaOHfWe0JnXqzo+NqClbFnfOHNBx8cGNL2Q23bIKAAAALaGIjrQBpcvf6Df\nffn35A36272UTXLzGf3+yX+jBx54sN1LAQAA2BMmE1mle68Fh24MGF0LF12TLMxJckqSytbmY6tj\nnwqlqibmVh+i2BgwuvaaFNEBAAB2BkV0oA1qtXq7l3BTd/v6AAAAdpNo2Kcl97XgUJfN1XR8LVx0\nTcgdkbT6JLqz1lwId9QCkqpyO22KRlaDPj3OzX/WEQIKAACwcyiiA21hKnX2PpX83e1eyCaFzJL0\nebPdywAAANgzRoYDWigc1HOHDc1kkxrwhdV3MKiVUkZhT69chke/deC3NJmeUcgVlqfUp69+PqK5\nxbx6HE6dGnhOc/k5BZ0hpaa79JXHHYp0u/XQUKc6PGOaXcipw+fYdsgoAAAAtoYiOtAGVqtVPYMj\n8nUNtHspm2SXp+mHDgAAsINM1ZVRUnWtPahgXP2/hiwWq2oqK1lJqq87oKXMgpw+i2olUw73vFzu\nkBaudKrXF9LKYkldfqeW0kWVq3UllotyOS1SIKHp+qJCwbCioaj2D2wOFTVNU+MTKU0msoqGfTcM\nHt3uuQAAAPcCiugAAAAA0EJnF/9epVpJL5x/WdL1g0VzlZzeeP+vG3PrzznqPaEzr1X15KP79c3v\nX2ycc3xsQOH70nr1yvcacycGn1L5yv5N/dDHJ1L6+vPnGuObBY9u51wAAIB7gaXdCwAAAACAvWw6\nPavZ7M2DRTfOrR+vhYsurhSbzimUqkpVFprmUpUFTSaym9awce5653yUcwEAAO4FPIkOAAAAAC00\n2Nmv0rqi+PWCRetmcyaNy+ZsfL4WJtrT2Xyd22lTlz3YNBew9143VDS6Ye5mwaPbORcAAOBeQBEd\nAAAAAFro4e4xJQrTOnX4Cc1l59W/Lli0zxuSxbCoWCnp6dEntJzNK+gKqVQy9eloQEFXWAsTHfrK\n406l82V99fMjWkoX5XHZ5bRb5DYD+uLw08rUFxV0hxUyonpwYHOo6MhwQKdPjWkykdVQ2HfT4NHt\nnAsAAHAvoIgOAAAAAC1Uqxgy5JfVsKrL3aFkfkEdTp8inqAcFqfS5YxUN+S0uOR315QoTinkGJJt\n6iFlbTb5PYY8LpuqNVNzS3n193glw1SuUNVSuqjeYZuyZUP5YlULlbIm5qbV3+vVgWin3pta0cxS\nQYnFvIb7OvTpjw/onYkV/eBnUzcMDTVkaHS466Z90AkfvbuxP7sXewcAdyeK6AAAAADQQm+PJ2Tt\n+0CT6emmQNFj0SPq8XRrMb+ktyfObgocPTH4lF7804yOjw0oGHDrpTcvNY49+eh+vfTmJX3yUZv+\n6r1XG/NHvSdUT4X1nb98V197YlRL6VLTdZXqSFM46UcNDSV89O7G/uxe7B0A3J0IFgUAAACAFppe\nyGo2m7xueOj6UNGNx9dCQwul6qZQ0bXxWujomrI1pUKpKkmamMtuum4qmWsaf9TQUMJH727sz+7F\n3gHA3Ykn0QEAAACghQaCPtl8IU2kq03zLpvzaqho/eq4OTg0YO+VlJHbadsUKro2dtaan1B11AKy\nOVf/zItGfFpKNxfmB0PepvFHDQ0lfPTuxv7sXuwdANydKKIDAAAAQAsd+6WwUgWXbBarwr4eZUo5\n+Z1eeaxuua0uuSxOPXbfJ9XnCylyIKxUIaOQc1CpqU795q9FZLca8nvsevaxmJYyRfX1eGQxpKd/\n7UHli1U9vf85LVWS8pjd8pUHlLdVdfrUmEaGO3VpekVffvzA1Z7ofn1iJKieDtdth4YSPnp3Y392\nL/YOAO5OFNEBAAAAoIUsNakmyZRUN1fnXBanHFa7HFa7MqWMul3dqi0Mylqpa9BpUypVVr5UUr/f\nqYpnVtPVBfk7e9Xv7FM6W5bbZVe+WFUw4Ja54lTYFtFKpizDb1GpUlUi9f+zd+/Rfd53neDfP0m2\nrJstX2Q5cWwnzeWJkrbgoUx64XgaaNOmLaWlZyhpSblsYYbhHLZDdtgtTLvnsMvsTGfKDjMMw3Lp\ncFpooFxKU0raUCiUlm2gEFhKkqeX1LHjxI580V2WdfntH7ZVSfaT2ImlR7Jfr3NyrOf6+/j3tRTp\n7cefz2S+fng4Gzvbc3zkZDb3bEhrS8vpIs4436jCCx1qWDV81FDE1eFChsOyOlk7gNVJiA4AALCM\nPv/wkTT6zx0s+sab70hn24aMTI/l/q/9Wb7zujdmdmR3xiZn5oeBvvL2tjx4ZPHg0K25Nh+6/9Hs\n27szH//c1/O2O4r8j0/84/w5+/buzGf/7LG85fYbFg0R3bd3Z06emnnGwaLPd6ihoYgAwOXIYFEA\nAIBl9MTT4+cdLHpicmjR/qGZwRwbPrloGOj5BoeePX52gOiR4xOLzjm7f+lQ0cmpmWcdLPp8hxoa\niggAXI48iQ4AALCMrunvTst5Botu7uhNZ9uGHBx5MknS29aX2SUDRM83OPTsUNGOMwNE+7d2Ljrn\n7P6lw0g72ttyzbMMLXy+Qw0NRQQALkdCdAAAgGX0ihduz/HJ9rS1tKava2vGTo2lr2NrNrSuT2fr\nhgyvG8lbB96cdUPX5lTHXDra2/K9r74pQ6NTubqrK9ds/94MzRxNd8vWbJi8OqPjp3L3nUWGRk/l\nB98wkEazmR/+rlszPHoqm3rW5/jIZN7+2iKTU9P5gTcMZPDEZLo2rMuWje35lmJbtva0Vw4tfL5D\nDQ1FBAAuR0J0AACAZdScOT1YtHN9Z1oarWlvXZfD44PZ3rU1jUZrWlpa09qaDHc8mo7OzTl0cFM2\n97Rnz1XdOXxsMt0z/Zke2pT2bZ3ZsL4t4ydnMnjiZHZs6Uj7+tYcH57K6MTJ9PVuyNae9dnYuT4H\nj4zlBTs2ZWBPb9LM/LDP8vHh3LKnN7fu2Xx6COjj5w4BvdihhkuHiZ69/3IzxHTtuJi1sq4ArEZC\ndAAAgGX0uYePpHXHY0mamZg5mfsefWD+2BtvviNDU8P5xFf+JK/Y/ZJ8/sD9ua3rDfn4/TN5y+03\n5MToVD722cfmz3/L7TfMDx1NkrfdUeQjf/KVyuP33LU3Sc477PNSDQGta5ioIaZrx8WslXUFYDUy\nWBQAAGAZHRocy1NjT+epsadzYnLxoNATk0Pzg0XP/np2mOix4ZPzQ0LPWjosdOlQ0aXHDx4Zqxz2\neamGgNY1TNQQ07XjYtbKugKwGnkSHQAAYBld09ed1u7tSZKJmclFxzZ39GauOZck2dDWnuT08NBk\nJls3bUiz2Vx0/tJhof1bOp/x+K7+7nMaYZwd9nmphoDWNUzUENO142LWyroCsBo1ln5TtkY1BwdH\n667hitbX1xNrcOG+9rWv5N2//IV0b95ZdynnGDtxKP/Xj7w0119/Y92lrCk+B+pnDerl/a+fNahf\nX1/Pcjft9T3vGjU5OZvBHMxT409nrjmX6eZMjowN5uqe7dnS3ptDo4fT1d6ViemJjEyNZVvn1myY\n7U1zZFsGhyaycc/TOTx+OFd17Uj7yJ6MjM9m8MRkdmzryomRyWzb3JGTJ2czPHYq23o3ZGjsVLo7\n23LNtq7cuHNT/uYrR3N8ZCpjk9MZ2LM5t5zpMd3MN3qi7+rvzsDuTXnkwHC+/tRweq4ayujc0dyw\ndVdu6rkxjxwYzpNHx9PduS7Do6cW9ao+e58vHxxK35YNmZlJnhwczzX93XnFC7enpdl4xh7XS3tg\n33ymjmfrib20/ltWoHf2s32tnZuby4PlYA4cHsvuHT25bWBbWq7wfwB+dn2/fHAoG7vas3NbR4pd\nz9AT/RKs6zOtg/9frm3Wb+1ba2toTsO5VuB73lXJk+gAAADL6K8Hv5TGhtEcHHkyWzu3LOqJ/r0v\nfGPWr2vP14cO5PMHvji//40335EjQ8eyfXtLfuvh++b3v3Xgu/Obv/+NFi779u7M8Ph0PvvQoUX7\n7vuLx/LD33Vr/qoczK987B/nj+3s65r/4X/pENF/fPxE3n/vQ3nl7W25/2t/ePqCryfff8vd+aV7\nB7Nv785Fr3O2V/XZ+338c1/P2+4o8uEHym/85pvNbN244Rl7XC/tgf3D33XropqremI/lyGoy+3B\nJe93cmteNtBfWz2rwfl6nD9TAHUp1tU6AJeKOQ2cdWX/lTgAAMAyOzz+VJ4aezonZ6bO6Yn+1NjT\nOXzm2EInJodyqnUoQzODi+81cXjR9uTUzDl9089uHzg8lgOHF/eTXrq90Nne02d7sp/1xMiTi+67\n9PyFHy/t0f7E0+PP2uN66fbSGtdST+yLeb+vFHX0OLcOwKViTgNneRIdAABgGV3VfVUa7WM5MPJk\ntnT0Ljm2Pc0kT4w8tWj/5o7enDq6PpvbWhft39G5I8k3guqO9rZznuntaD/9Y97uHd3JkqOn953f\n2V7U7bOLn7C7ZuPVSQbT2b74x8eFvarPXtu/dXGP9mu2d2XbxnP7tJ/vdatqXEs9sXfv6FmyvXZq\nXy519Di3DsClYk4DZ+mJziWx1npa1U1P9MuPz4H6WYN6ef/rZw3qpyc6VSYzm+HJp3Jg/FCm52Yy\nk9kMjh/Lju7t2b5hSw6NPZ2OtvaMz05m5ORotnZuScfc5pw6tjVHR05m83WH8/T4kfR37cjJQ1el\nra0tgycmsn1zV44OT6Z/S0eazeTpE5PZvLE9o+OnsmNrZ/7pzX1JkgcfOdsbuju3DfRV9ug+24v6\ndE/0ExmdO5Ybtl6TmzbelEceH85TR8fTdaYn+tJe1WevPTEymZlm43RP9O1decWL+tOSxjP2uD6n\nN/ueTXnk8eEV7XV+oZ61J3rmLvj9vlLU0bv+mdbB/y/XNuu39q21Nazja9hqd6X2RBeic0mstS+C\ndROiX358DtTPGtTL+18/a1A/ITrPZHJyLl/82tMZm5zO2MSp9Pa0Z2PnuoyOT2U2LWlpJJ3tbdmw\nviVpNHJ8ZConRqfS292e3du7kiT7nzLUrG6+1q591nBts35rnzVc+67UEF07FwAAgGX24JePZP/h\nkXMGgF7T153ffqDMvr2nH664pq87U9Oz+b3PfHXReUnmrzXUDABgZV3Z/64MAABgBRw6OnbeAaBn\nB3GeHRB65PhEjg2fPOe8hdcaagYAsLI8iQ4AALDMdvZ1Z2ZmZNG+jva29G/pnP84Sfq3dGZqevac\n8xYy1AwAYGUJ0QEAAJbZbS/uT1tLI9u3dGZ04lQ2d7enp2tdxsan8tZX3ZiWlkY62tvSsb4ljcb6\n3HXHTef0RN+xuXN+qBkAACtHiA4AALDMNjQb2bGtK3NHR9PSWJ/jo1NpX9eabb0dOTWbjI6fyuCJ\nyRS7eisHh968Sx90AIA6CNEBAACW2cMHhvLXjz6dJIuGi9792pszMTUzP0j04zE4FABgtTFYFAAA\nYJkdPDJ2zoDQJHny2Pg5g0QNDgUAWF1qfRK9KIq2JB9Icm2S9Ul+NsnDSX49yVySL5Vl+WN11QcA\nAHAp7O7vzpETE+fsv3prVyaWBOsGhwIArC51t3P5viRHy7J8R1EUvUn+PsnfJfmpsiz/oiiK/14U\nxXeVZfmxessEAAB47gb29Ka9vS1PHh3Njq03Zmj0VPq3dmZTV1u6O9vy9tcUGRk/lZt29RocCgCw\nytTdzuUjSd5z5uPWJDNJ/klZln9xZt/9SV5VR2EAAACXTDNpppHxidls3bQh27d05NDgWEbGZ/JN\nN2xL54a2nJqey8jEdJpp1l0tAAAL1PokelmWE0lSFEVPkt9J8tNJ/tOCU0aTbKqhNAAAgEvm4QND\nef+9DyVJ3nZHkQ8/UM4fazaTD97/yIKzb83LBvpXuEIAAKrU3c4lRVHsSvL7SX6hLMvfKorifQsO\n9yQZupD79PX1LEd5XARrcOFOnFjdfS63bOm2ns+B96x+1qBe3v/6WYPLnzVeuw4/dGj+4yPHF/dG\nP3R08SDRg0+P5Y37bliRurh4Pg/XPmu4tlm/tc8ashbVPVi0P8mnkvxYWZafObP7oaIo9pVl+dkk\ndyb50wu51+Dg6DJVyYXo6+uxBhfh+PGxZz+pRsePj1nPi+RzoH7WoF7e//pZg/qtxA+E1njtumpL\n5/zH/Vs7Fx3b2bf4AYtd27ut9Srla+3aZw3XNuu39lnDte9K/UuQup9Ef3eS3iTvKYrivUmaSf7n\nJP+1KIp1SR5J8rs11gcAAPC8DezpzU/9wD/NVw+cyObudbn7zpvz5NHx7Ozrzstf3J/2dS05cHgs\nu3d057aBvrrLBQBggbp7or8rybvOc+iVK1wKAADAsmnONXNseDKjk6eyYUNbhsemsnNbV44NT+YL\n//B0ToyeTG93e1pbWuouFQCAJep+Eh0AAOCy92A5mF/52D/Ob7/l9hvywfsfnd/et3dnPvvQY9m3\nd2dm5+YMFgUAWEWE6MBFm52dzf79j9VdRqVrr31BWltb6y4DAGDegcOLZ+IcGz65aHtyamb+1wOH\nx4ToAACriBAduGj79z+Wn7zvvelahcMkxgdH8743/kyuv/7GuksBAJi3e8fi75u2btqwaLujvW3+\n1907Fg8aBQCgXkJ04Dnp6utJz9W9dZcBALAm3DawLS0tL8qBwyPp6+3I0NhU7r7z5pwYOZmtvR0Z\nGp3K93zHjdmysT0vKbbVXS4AAAsI0QEAAJZZczY5NTOXZjOZmp7Llk3tmZtr5OT0XGbnmrllz6bc\nsLM3jTS+cU2zmYcPDOXgkbHs7u/OwJ7FxwEAWBlCdAAAgGX2+YeP5Nc/8cj89tvuKPLhB74xWPQt\nt9+QUzPJrXs2z+97+MBQ3n/vQ/Pb99y1d9FxAABWRkvdBQAAAFzunnh6fNH2keMTi7aPDZ/MwSOL\nh48+2zYAACtDiA4AALDMrulfPCy0f2vnou2tmzZk15Jzdi/ZXnocAICVoZ0LAADAMnvFC7enpdHI\nk4Nj2dS9Pu1tjbzjdQN58uh4+rd0ZFdfZ27cuXho+8Ce3txz194cPDKWXf3duWWPoe4AAHUQogMX\nbXZ2LuODo3WXcV7jg6OZnZ2ruwwAgEVamo30b+nM8ZHJdGxoy/jkTEYnprNt04akmQyPz+RP/uZQ\nrt7WNT9AtJFGbt2zWR90AICaCdGB56CZoS9el6meLXUXco7J0ePJ65t1lwEAsMjZIaH79u7M8ZGp\nfPahQ/PH9u3dOf/xh//4ywaIAgCsMkJ04KK1trZm6zUD6d6889lPXmFjJw6ltbW17jIAABY5OxR0\ncmrmnGNL9x08MiZEBwBYRYToAAAAy+zskNDO9nN/BOtYss8AUQCA1UWIDgAAsMwG9vTm3d//rXlk\n/7Fs7mlP/5bOjE5MZ1P3+rS2JBs712d47FTuuWuvAaIAAKuMEB0AAGCZNdLI3pv7MzJxMiNj0zk2\ncjI7+7rT2d7IocHJXLWlKy8p+tJIY/6aZrOZhw8M5eCRsezu754fOAoAwMoSogMAAKyAP/r8Y5md\nmcuHPvno/L67X3tzPv65r+fjyTkDRc8OIz3LwFEAgHq01F0AAADAleCJp8fy5LHxRfsWbp8dPnqh\n2wAArAxPogMAAKyA3du7Mz07t2jf1Vu75j9eOlB095JtA0cBAOohRAcAAFgBr9x7Tb702GDecedA\nDh0dy87t3WnOzuXOl12bq/u6cnR4Mh/93FCKXb0Z2HP6v3vu2puDR8ayq7/bwFEAgJoI0QEAAFbA\np794MM1mc74n+r69O/PZhw7NHz+7vbA/+tn/AACoj57oAAAAK+DQ0cU90SenZhYdX7it/zkAwOrh\nSXQAAIAVsLOvO81mc367s33xj2MdC7b1PwcAWD2E6AAAACvgztuuzf/7pSfyjtcN5Kmj47lme1eu\n3taVobFT2b2jKyenZrOp67rctKtX/3MAgFVEOxcAAIBl1mw286WvH83I5HSmTs2krbUlU9NzaWtt\npKUlaTYbmZ6eS7GrN60tyaf+6ok8/PiJNNN89psDALCsPIkOAACwzB4+MJT9h0czODQ5P0z0fINF\nP/zHX160/+yAUQAA6uNJdAAAgGV28MhYjg2fXDQ8tGqwqAGjAACriyfRAQAAltnu/u7MNpsXNFjU\ngFEAgNVFiA4AALDMBvb0prOjLQefbsuOrTdmZPxUtmxsz/e9tsiJ0ans3NaVsYnp3HPX3rS2JDs2\nd2ZXf7cBowAAq4AQHQAAYJk155oZHJ7KyVNzp7ebSUtLS67e1pHbv/nqNNJYdP7Nu/RBBwBYLYTo\nAAAAy+zBcjDlgaEkWTRM9C2335CZmRgeCgCwihksCgAAsMwOHB7L5NTMOcNEjw2fNDwUAGCV8yQ6\nAADAMtu9oycnT82cs3/rpg2GhwIArHJCdAAAgGV228C2rGtryYnRk/meV92YkbFT6du8IVdv68xN\nOw0PBQBYzYToAAAAy6zRbGRTd3sOHB7Jlk0bcnJdSxpp5NHHhzI9k0ycnM7XnxzN7h09uW1gW1p0\n3gQAWDWE6AAAAMvs4QNDef+9D81vv+X2G/LB+x+d3963d+eCgaO35mUD/StcIQAAVTxA3KpkAAAg\nAElEQVTeAAAAsMyWDg89Nnxy0fbCgaMHDhs0CgCwmgjRAQAAltnuJcNDt27asGi7o/0b/0h49w6D\nRgEAVhPtXAAAAJbZwJ7evPv7vzVf+upgejduyPDYVO6+8+aMjE/l+p29mTg5nY71bdm9ozu3DfTV\nXS4AAAsI0QEAAJZZc66Z4yMnMz3XzPTMXDb3tOfpEyezY2tHJk6eyqbO9fme21+QRhp1lwoAwBJC\ndAAAgGX2YDmYX/nYP85vLxwk+rY7ijy8fygzc8mtezbXVSIAABX0RAcAAFhmS4eFLhwkeuT4RCan\nZs4ZPgoAwOrgSXQAAIBltntHz6LthYNE+7d0Znp2Lrv6DRQFAFiNhOgAAADL7LaBbWlteVH2Hx5J\nb3d72te1pGvDnvRv6cyG9Y28tG97il29dZcJAMB5aOcCAACwzBrNRjb1tKejvTXr21py6OhE+jZ3\nZFvP+mzZ2J79T43lkceH0kyz7lIBAFjCk+gAAADL7OEDQ3n/vQ9l396d+eifPTa//+47b87sbDMf\n+dOvJEnuuWuv4aIAAKuMJ9EBAACW2dmhoQsHiibJk0fHc+T4xDnnAQCwengSHQAAYJntPjM0tLN9\n8Y9gV2/ryuzsN1q4GC4KALD6CNEBAACW2cCe3rz7HS9JeeB47r7z5jx1bCJXbe1M36b2bGhvyfd8\n+43Z1d+dW/YYLgoAsNoI0QEAAJZbM2lpaWRjd3uODZ9M/+aOHBs+mfXrWnPztX254arn3we92Wzm\n4QNDOXhkLLv7uzOwpzeNNC5B8QAAVzYhOgAAwDJ7+MBQ9h8eze995qvZt3dnPv4XX58/Nj0zkFe+\n+KpL8hrvv/eh+W1DSgEALg2DRQEAAJbZwSNjOTZ8Msm5w0UPDV6aYaJLh5IaUgoAcGl4Eh0AAGCZ\n7e7vzmzz9ADRpcNFd/ZdmmGiu5cMJTWkFADg0hCiAwAALLOBPb3p2NCWjW8YyNHhk3n7a4qcGJnK\nVdu6ctutfZfsNe65a28OHhkzpBQA4BISogMAACyzRhr55pt35MTY45ltJk8fn0hP5/okzTz+1HBe\ncNXzHwLaSCO37tmsDzoAwCUmRAcAAFgBD3xhf0bHT+XDD5Tz+/bt3ZnJqe6cPBXhNwDAKiVEBwAA\nWAGPHx7J9PTcon2TUzM5cnwiMzNzQnQAgFVKiA4AALACrr1qY0bGTy3a19Helv4tnblqa2dNVQEA\n8GyE6AAAACvgFS/amb/8/57ID7x+IIePT6SnY316Otfl6m3tuW6HIaAAAKuVEB0AAGAF/PFfPZ4P\n3v9I9u3dmc8+dGh+/z137X3eQ0UBAFg+LXUXAAAAcCU4dHQsyek+6AsdPDJWRzkAAFwgIToAAMAK\nuKavO0nS2b74HwTv6u+uoxwAAC6Qdi4AAAAr4HUvuy7NZjI4NJF33DmQyamZ7O7vzi179EMHAFjN\nPIkOAACwzObm5vKZvz2YkYmp9PV25Mlj4+nY0JqTp6Zz318+nn98/ESaadZdJgAA5yFEBwAAWGYP\nloP5pY/+Q46PTOWD9z+aT//VgXzwjx7NyPhMToxO5f33PpSHHx+qu0wAAM5DiA4AALDMDhw+/1DR\nJ4+Nz+8zYBQAYHXSEx0AAGCZ7d7Rk+TcoaJXb+3K9MxcEgNGAQBWKyE6AADAMrttYFvWtb0oTx0d\nz9133pynjk3kqq2d2djZms097bnnrr0GjAIArFJCdAAAgGXWkpa8/MXX5HN//0RGx08lzaTRaKS1\npTWNRnJs5GQ+9VdPpHdje6ZOzeT4yFSKXb0Z2NObRhp1lw8AcEUTogMAAKyAB76wP+Mnp/N7n/nq\n/L67X3tzWlta8uufeGR+3769O/PZhw7l40nuuWtvbt2zuYZqAQA4y2BRAACAFXDo6FiODZ9ctO/J\nY+Pn7Fs4fNSwUQCA+nkSHQAAYAXs7OvO+OT0on1Xb+3KxILQPEk6FgwfNWwUAKB+QnQAAIAVcOdt\n1+Zzf/9E3v6aIkeOT+bqbZ3p7V6X0clT+YHXD2Ricia9PeszNT2bTV3X5aZdvYaNAgCsAkJ0AACA\nFdDdvT7fclPfOfu/+fpz9wEAsHroiQ4AAAAAABWE6AAAAAAAUEGIDgAAAAAAFYToAAAAAABQQYgO\nAAAAAAAVhOgAAAAAAFChre4CAOowOzub/fsfu2T3O3GiO8ePj12Se1177QvS2tp6Se4FAAAAwPMj\nRAeuSPv3P5afvO+96errqbuURcYHR/O+N/5Mrr/+xrpLAQAAACBCdOAK1tXXk56re+suAwAAAIBV\nTE90AAAAAACoIEQHAAAAAIAKQnQAAAAAAKggRAcAAAAAgAoGiwJXpNnZuYwPjtZdxjnGB0czOztX\ndxkAAAAAnCFEB65QzQx98bpM9Wypu5BFJkePJ69v1l0GAAAAAGcI0YErUmtra7ZeM5DuzTvrLmWR\nsROH0traWncZAAAAAJyhJzoAAAAAAFRYlU+iF0XRSPKLSb4pyckk7yzL8rF6qwIAAAAA4EqzWp9E\nf1OS9rIsX57k3Ul+ruZ6AAAAAAC4Aq3WEP3bknwyScqyfDDJS+otBwAAAACAK9FqDdE3JhlesD1T\nFMVqrRUAAAAAgMvUquyJnmQkSc+C7ZayLOee6YK+vp5nOswKsAYX7sSJ7rpLeEZbtnQ/43qu9fqT\n1f17uJD6OT/vW728//WzBpc/a7z2WcO1zxqufdZwbbN+a581ZC1arSH655O8IcnvFkXx0iT/8GwX\nDA6OLntRVOvr67EGF+H48bG6S3hGx4+PPeN6rvX6z56zWl1I/ZzL16F6ef/rZw3qtxI/EFrjtc3n\n6dpnDdc+a7i2Wb+1zxqufVfqX4Ks1hD9o0leXRTF589s/2CdxQAAAAAAcGValSF6WZbNJD9adx0A\nAAAAAFzZDOsEAAAAAIAKQnQAAAAAAKggRAcAAAAAgApCdAAAAAAAqCBEBwAAAACACkJ0AAAAAACo\nIEQHAAAAAIAKQnQAAAAAAKggRAcAAAAAgApCdAAAAAAAqCBEBwAAAACACkJ0AAAAAACoIEQHAAAA\nAIAKQnQAAAAAAKggRAcAAAAAgApCdAAAAAAAqCBEBwAAAACACkJ0AAAAAACoIEQHAAAAAIAKQnQA\nAAAAAKggRAcAAAAAgApCdAAAAAAAqCBEBwAAAACACkJ0AAAAAACoIEQHAAAAAIAKQnQAAAAAAKgg\nRAcAAAAAgApCdAAAAAAAqCBEBwAAAACACkJ0AAAAAACoIEQHAAAAAIAKbXUXAMDFm52dzf79j9Vd\nRqVrr31BWltb6y4DAAAA4HkTogOsQfv3P5afvO+96errqbuUc4wPjuZ9b/yZXH/9jXWXAgAAAPC8\nCdEB1qiuvp70XN1bdxkAAAAAlzU90QEAAAAAoIIQHQAAAAAAKmjnArAGzc7OZXxwtO4yzmt8cDSz\ns3N1lwEAAABwSQjRAdakZoa+eF2merbUXcg5JkePJ69v1l0GAAAAwCUhRAdYg1pbW7P1moF0b95Z\ndynnGDtxKK2trXWXAQAAAHBJ6IkOAAAAAAAVhOgAAAAAAFBBiA4AAAAAABWE6AAAAAAAUEGIDgAA\nAAAAFYToAAAAAABQQYgOAAAAAAAVhOgAAAAAAFBBiA4AAAAAABWE6AAAAAAAUEGIDgAAAAAAFYTo\nAAAAAABQQYgOAAAAAAAVhOgAAAAAAFBBiA4AAAAAABWE6AAAAAAAUEGIDgAAAAAAFYToAAAAAABQ\nQYgOAAAAAAAVhOgAAAAAAFBBiA4AAAAAABWE6AAAAAAAUEGIDgAAAAAAFYToAAAAAABQoa3uAgC4\n8szOzmb//scu6T1PnOjO8eNjl+Re1177grS2tl6SewEAAABrmxAdgBW3f/9j+cn73puuvp66SznH\n+OBo3vfGn8n1199YdykAAADAKqCdCwArbnZ2ru4SntFqrw8AAABYOZ5EB6AGzQx98bpM9Wypu5Bz\nTI4eT17frLsMAAAAYJUQogOw4lpbW7P1moF0b95ZdynnGDtxSD90AAAAYJ52LgAAAAAAUEGIDgAA\nAAAAFYToAAAAAABQQYgOAAAAAAAVhOgAAAAAAFBBiA4AAAAAABWE6AAAAAAAUEGIDgAAAAAAFYTo\nAAAAAABQQYgOAAAAAAAVhOgAAAAAAFChre4CAGAtmp2dzf79j9Vdxnlde+0L0traWncZAAAAcFkQ\nogPAc/C1r301P/7r96Rjc1fdpSwyeWI8/+UH3p+bbirqLgUAAAAuC0J0AHhOmpl+/MVpO76l7kIW\nmR49nqRZdxkAAABw2RCiA8Bz0Nramq3XDKR78866S1lk7MQhrVwAAADgEjJYFAAAAAAAKgjRAQAA\nAACgghAdAAAAAAAq6IkOAFeg2dnZfPazn7lk99u0qTPDwxOX7H779t2utzsAAACrghAdAK5A+/c/\nlv/zV/80HT1b6i7lHJOjx/PLu/fk+utvrLsUAAAAEKIDwJVq6zUD6d68s+4yzjF24lDdJQAAAMC8\n2kL0oig2JvmNJBuTrEvyE2VZPlgUxUuT/Ock00n+uCzLn6mrRgBgdbrU7WguNe1oAAAALh91Pon+\nE0k+XZblfymK4qYk9yb5liT/Pcmby7LcXxTFJ4qi+KayLP++xjoBgFVGOxoAAABWSp0h+s8lmTrz\n8bokk0VR9CRZX5bl/jP7P5XkVUmE6CzyB3/4R/nkp/+87jLO65+94qW565+/ue4yAC572tEAAACw\nElYkRC+K4oeS/OskzSSNM7/+YFmWf1MUxY4kH0ry4znd2mVkwaWjSa5biRpZW5546miG1t9Udxnn\ndejpExd03sTw08tcyXNzoXWt9fov9tyVstbrT/wZqttarz+5sv4MfeYzn75kr7tpU2eGhycuyb1u\nv/1Vl+Q+AAAAl4NGs9ms7cWLonhRkg8nuacsywfOPIn+hbIsbz1z/MeTtJVl+XO1FQkAAAAAwBWr\npa4XLoriliQfSfK2siwfSJKyLEeTTBVFcV1RFI0kr0nyF3XVCAAAAADAla3Onuj/Lkl7kp8/E5gP\nlWX55iQ/mtNPp7ckeaAsy7+usUYAAAAAAK5gtbZzAQAAAACA1ay2di4AAAAAALDa1dnOBQAAAACA\nK0RRFB9Icl2Sm5M8mWQ4yS8k+WSSg0n+RVmWv3vm3O9P8t4kjydpJNmc5D+UZXnvmePvTPKDSU7l\n9MPi/60sy4+c57rmmdd4SZKXJbk2yUSSI0l+tyzLX3y2urVzAQAAAABgxZwJ03+pLMu/OrN9d5Jv\nSnJrWZZ3ntn3/Un6y7J835nt3iRfKMvy5qIo3pLkrUneXpbldFEUPUnuT/L6JG9aeN15Xvu9SR4t\ny/IjF1qvdi4AAAAAAKykxpLtu5P81yQdRVHsrjhve04/QZ4kP5zknrIsp5OkLMvRsiy/rSzL4Yr7\nP9NrPyvtXAAAAAAAqEVRFDuTtJdl+XhRFPcmeWdOt2NJkh8piuK1SfYk+UqSd5zZv6ssy4Nnrv+h\nnA7he5P82wXXvSbfaOfyzrIsH3uuNQrRAQAAAACoy91JthZF8UdJNiS5tiiK//3Msf+nLMv3FUXx\n8iS/mNN9zpPkqaIodpZleagsyw8k+cCZa7oWXnepCtTOBQAAAACAurwtyT8ry/J1ZVl+e5IvJnnd\nwhPKsvzLJL+V5OfP7PrlJP+xKIr1SVIURWeSf5LTT50nz6FlyzO5rJ5EL4ritiT/vizL2yuOvybJ\n/5bTb2ZLkm/L6Wb15cpVCQAAAABwRWsmSVEUL0nyVFmWxxYc+42cbuny0SXX/Kckf1sUxW1lWX6k\nKIqOJA8URdFM0p3kd89c8/YkP7yknct9ZVn+54WvfTEazeZFX7MqFUXxb3L60f+xsixffgHn/y9J\nNpVl+Z5lLw4AAAAAgDXpcnoS/atJ3pzkQ0lSFMWL8o3H+48l+aGyLEfPHLsmyfcl+dYa6gQAAAAA\nYI24bHqil2X50SQzC3b9cpJ/daaPzv1J/tcFx/51kv+7LMvpFSwRAAAAAIA15nJ6En2pgSS/WBRF\nkqxL8pUkKYqikeQNSX6qvtIAAAAAAFgLVjxEL4qiLckHklybZH2Sny3L8uMLjr8rpxvHP31m178o\ny/Irz+GlHk3yjrIsnyiK4uVJdpzZ/8Ikj5RlOfUcfwsAAAAAAFwh6ngS/fuSHC3L8h1FUWxO8ndJ\nPr7g+Lckubssy4ee5+v8qyQfOhPazyX5n87sL5I89jzvDQAAAADAFaDRbDZX9AWLouhM0ijLcrwo\niq1JHizL8oYFxx9O8qUkVyX5RFmW/35FCwQAAAAAgDNW/En0siwnkqQoip4kv5Pkp5eccm+S/5Zk\nJMkfFEXxurIs/2hlqwQAAAAA4HJwZk7mLyb5piQnk7yzLMsL7lZSy2DRoih2Jfn9JL9QluVvLzn8\n82VZjpw57xNJ9iZ5xhC92Ww2G43GstQKAAAXaFm/IfU9LwAAq8BKfUPa/tcPH37n7Gxz/Qtv2PZr\n3R3rRp7n/d6UpL0sy5cXRXFbkp87s++C1DFYtD/Jp5L8WFmWn1lybGOSLxVFcXOSySTfnuTXnu2e\njUYjg4Ojy1EuF6ivr8ca1Mj7Xz9rUD9rUC/vf/2sQf36+nqW9f6+5137fJ6ufdZw7bOGa5v1W/us\n4dq33N/znrHud/7ky/d9+FOP3jE718yb9l1/11tfXby6q2Pd8PO457cl+WSSlGX5YFEUL7mYi1ue\nxws/V+9O0pvkPUVRfKYoij8tiuKuoijeeeYJ9Hcn+bMkf57kS2VZfrKGGgEAAAAAWGGP7D/+pt/5\nk6/cMTPbTLOZfPTPv/atf/PokX/5PG+7McnCEH6mKIoLzsbr6In+riTveobjv5nkN1euIgAAAAAA\nVoNGI7MtLd/oGnP6w8bs87ztSJKFj9G3lGU5d6EX1/EkOgAAAAAAnOPmPVs+9tZX3XTfhvWtaWtt\n5J9/x02f37d35y89z9t+PsnrkqQoipcm+YeLubiWwaIAAAAAAHAes29+5Q1vuXFX7/fOzM51fPNN\n238zycTzvOdHk7y6KIrPn9n+wYu5WIgOAAAAAMBqMvPC67f9xqW6WVmWzSQ/+lyv184FAAAAAAAq\nCNEBAAAAAKCCEB0AAAAAACoI0QEAAAAAoIIQHQAAAAAAKgjRAQAAAACgghAdAAAAAIDLXlEUtxVF\n8ZmLva5tOYoBAAAAAIDnqP1vn/yHd87Mza6/dftNv9a1vnPk+d6wKIp/k+TuJGMXe60QHQAAAACA\n1WLdHzzyyft++0t/eMfc3FzeUHzHXd99y+te3bW+Y/h53verSd6c5EMXe6F2LgAAAAAArArl0a+9\n6aMPf+qO2bnZNNPMx8tPf+vfHf7Sv3ze9y3LjyaZeS7XCtEBAAAAAFgVGmnMtjS+EVs3Go000pit\nsSQhOgAAAAAAq8NN217wse++9c772tva09rSmu8eeO3nX777Jb90CV+icbEX6IkOAAAAAMBqMfud\nxavecv3mPd87MzfT8eIdA7+ZZOIS3r95sRcI0QEAAAAAWE1mbtl+429c6puWZfl4kpdf7HXauQAA\nAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToAAAAAAFQQogMAAAAAQAUh\nOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToAAAAAAFRoq7sAAACAK9VTTz2ZU6dO\n1V1GpV27dqelxbNXAMCVTYgOAABQk5/6tX+b2V2r88eyicGR/Ic3/x+5/vob6y4FAKBWq/O7NQAA\ngCtA55aeZFd73WWcX2vdBQAArA7+XR4AAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6\nAAAAAABUEKIDAAAAAEAFIToAAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABU\nEKIDAAAAAEAFIToAAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAA\nAEAFIToAAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUaKu7AAAAgCvVYPl0\n2o5uqLuM8zo5OpHpl8zUXQYAQO2E6AAAADXZ3PWKTK+/pe4yzmumcSjr1vmREQBAOxcAAAAAAKgg\nRAcAAAAAgApCdAAAAAAAqCBEBwAAAACACqbEwBWq2Wzm4QNDOXhkLLv7uzOwpzeNNOouCwAAAABW\nFSE6XKEePjCU99/70Pz2PXftza17NtdYEQAAAACsPtq5wBXq4JGxZ9wGAAAAAITocMXa3d+9aHvX\nkm0AAAAAQDsXuGIN7OnNPXftzcEjY9nV351b9vTWXRIAAAAArDpCdLhCNdLIrXs264MOAAAAAM9A\nOxcAAAAAAKggRAcAAAAAgApCdAAAAAAAqCBEBwAAAACACkJ0AAAAAACoIEQHAAAAAIAKQnQAAAAA\nAKggRAcAAAAAgApCdAAAAAAAqCBEBwAAAACACkJ0AAAAAACoIEQHAAAAAIAKQnQAAAAAAKggRAcA\nAAAAgApCdAAAAAAAqCBEBwAAAACACkJ0AAAAAACoIEQHAAAAAIAKQnQAAAAAAKggRAcAAAAAgApC\ndAAAAAAAqCBEBwAAAACACkJ0AAAAAACoIEQHAAAAAIAKQnQAAAAAAKggRAcAAAAAgApCdAAAAAAA\nqCBEBwAAAACACkJ0AAAAAACoIEQHAAAAAIAKQnQAAAAAAKggRAcAAAAAgApCdAAAAAAAqCBEBwAA\nAACACkJ0AAAAAACoIEQHAAAAAIAKQnQAAAAAAKggRAcAAAAAgApCdAAAAAAAqNC20i9YFEVbkg8k\nuTbJ+iQ/W5blxxcc/84k70kyneR/lGX5qytdIwAAAAAAJPU8if59SY6WZbkvyZ1JfuHsgTMB+88l\neVWSVyb5kaIo+mqoEQAAAAAAagnRP5LTT5qfff3pBccGknylLMuRsiynk3wuyb4Vrg8AAAAAAJLU\n0M6lLMuJJCmKoifJ7yT56QWHNyYZXrA9mmTThdy3r6/nUpXIc2QN6uX9r581qJ81qJf3v37W4PJn\njde+pWvY1tay6Kmi1WbLlm5/7pbwfqx91nBts35rnzVkLVrxED1JiqLYleT3k/xCWZa/veDQSE4H\n6Wf1JBm6kHsODo5eugK5aH19PdagRt7/+lmD+lmDenn/62cN6rcSPxBa47XtfJ+nMzNzNVVzYY4f\nH/PnbgFfa9c+a7i2Wb+1zxqufVfqX4LUMVi0P8mnkvxYWZafWXL4kSQ3FEXRm2Qip1u5/McVLhEA\nAAAAAJLU8yT6u5P0JnlPURTvTdJM8itJusqy/NWiKH4iyQNJGkl+tSzLp2qoEQAAAAAAaumJ/q4k\n73qG459I8omVqwgAAAAAAM6vpe4CAAAAAABgtRKiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToA\nAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToAAAAAAFQQ\nogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToAAAAAAFQQogMAAAAA\nQAUhOgAAAAAAVBCiA8D/z97dB9mV3nVi/95W6611+02jVkuj6e7BMHPUIwhRPOuxMUUZQgADicGU\nIfKsHV5MyFZCikJFFVSqtvJHUtlsMlRt7W6qsrAsL8UOL2G9xJj1mqVMAC+ZIY62sozGd8Y2TPdo\nRi1ppJbUar20pJs/Rmrp3L5HupK6dbt1P58qCj2nz73nuee5atd8z0+/BwAAAKCCEB0AAAAAACoI\n0QEAAAAAoIIQHQAAAAAAKgjRAQAAAACgghAdAAAAAAAqCNEBAAAAAKCCEB0AAAAAACoI0QEAAAAA\noIIQHQAAAAAAKgjRAQAAAACgghAdAAAAAAAqCNEBAAAAAKCCEB0AAAAAACoI0QEAAAAAoIIQHQAA\nAAAAKgjRAQAAAACgghAdAAAAAAAqCNEBAAAAAKCCEB0AAAAAACoI0QEAAAAAoIIQHQAAAAAAKgjR\nAQAAAACgghAdAAAAAAAqCNEBAAAAAKCCEB0AAAAAACoI0QEAAAAAoIIQHQAAAAAAKgjRAQAAAACg\nghAdAAAAAAAqCNEBAAAAAKCCEB0AAAAAACoI0QEAAAAAoIIQHQAAAAAAKgjRAQAAAACgghAdAAAA\nAAAqCNEBAAAAAKCCEB0AAAAAACoI0QEAAAAAoIIQHQAAAAAAKgjRAQAAAACgghAdAAAAAAAqCNEB\nAAAAAKCCEB0AAAAAACoI0QEAAAAAoIIQHQAAAAAAKgjRAQAAAACgghAdAAAAAAAqCNEBAAAAAKCC\nEB0AAAAAACoI0QEAAAAAoIIQHQAAAAAAKgjRAQAAAACgghAdAAAAAAAqCNEBAAAAAKCCEB0AAAAA\nACoI0QEAAAAAoIIQHQAAAAAAKgjRAQAAAACgghAdAAAAAAAqCNEBAAAAAKCCEB0AAAAAACoI0QEA\nAAAAoIIQHQAAAAAAKgjRAQAAAACgghAdAAAAAAAqCNEBAAAAAKCCEB0AAAAAACoI0QEAAAAAoIIQ\nHQAAAAAAKgjRAQAAAACgghAdAAAAAAAqCNEBAAAAAKCCEB0AAAAAACoI0QEAAAAAoIIQHQAAAAAA\nKgjRAQAAAACgghAdAAAAAAAqCNEBAAAAAKCCEB0AAAAAACoI0QEAAAAAoIIQHQAAAAAAKgjRAQAA\nAACgghAdAAAAAAAqCNEBAAAAAKCCEB0AAAAAACr0d+vCRVE8l+TvNRqNb285/jNJPpXkxI1DP9Vo\nNF5/2PMDAAAAAICuhOhFUfxckk8kWWjz4/cm+USj0TjycGcFAAAAAABl3Wrn8pUkP1jxs/cm+YWi\nKP6sKIqff4hzAgAAAACAkq6E6I1G49NJrlb8+MUk/1WSb0/yrUVRfO9DmxgAADEASQUAACAASURB\nVAAAANymaz3R7+AfNBqNc0lSFMVnkxxM8od3e9HY2OBaz4u7sAbd5f53nzXoPmvQXe5/91mDR581\n3vha17C/vy9LXZpLJ3burPvetXA/Nj5ruLFZv43PGrIRdTtEr90+KIpiKMlfFUWxP8nFJN+R5J92\n8kYnT55f/dnRsbGxQWvQRe5/91mD7rMG3eX+d5816L6H8R+E1nhja/f39OrV612aTWdOn17wvbuN\n37UbnzXc2KzfxmcNN75efQjS7RC9mSRFURxKsqPRaPxyURS/kORPklxK8seNRuNzXZwfAAAAAAA9\nrGsheqPReCPJt9z484u3Hf/NJL/ZrXkBAAAAAMBNXdlYFAAAAAAANgIhOgAAAAAAVBCiAwAAAABA\nBSE6AAAAAABUEKIDAAAAAEAFIToAAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAA\nAABUEKIDAAAAAEAFIToAAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKID\nAAAAAEAFIToAAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAF\nIToAAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToAAAAA\nAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABAhf5uTwCA9aXZbObozHxm5xYyOV7P9NRIaql1e1oA\nAAAAXSFEB6Dk6Mx8XnjxyPL48KGDOTA12sUZAQAAAHSPdi4AlMzOLdxxDAAAANBLhOgAlEyO10vj\niZYxAAAAQC/RzgWAkumpkRw+dDCzcwuZGK/nmamRbk8JAAAAoGuE6ACU1FLLgalRfdABAAAAop0L\nAAAAAABUEqIDAAAAAEAFIToAAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABU\nEKIDAAAAAEAFIToAAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAA\nAEAFIToAAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToA\nAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToAAAAAAFTo\n7/YEgI2l2Wzm6Mx8ZucWMjlez/TUSGqpdXtaAAAAALAmhOjAPTk6M58XXjyyPD586GAOTI12cUYA\nAAAAsHa0cwHuyezcwh3HAAAAAPAoEaID92RyvF4aT7SMAQAAAOBRop0LcE+mp0Zy+NDBzM4tZGK8\nnmemRro9JQAAAABYM0J04J7UUsuBqVF90AEAAADoCdq5AAAAAABABSE6AAAAAABUEKIDAAAAAEAF\nIToAAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToAAAAA\nAFTo7/YEAHpBs9nM0Zn5zM4tZHK8numpkdRS6/a0AAAAALgLITrAQ3B0Zj4vvHhkeXz40MEcmBrt\n4owAAAAA6IR2LgAPwezcwh3HAAAAAKxPQnSAh2ByvF4aT7SMAQAAAFiftHMBeAimp0Zy+NDBzM4t\nZGK8nmemRro9JQAAAAA6IEQHeAhqqeXA1Kg+6AAAAAAbjHYuAAAAAABQQYgOAAAAAAAVhOgAAAAA\nAFBBiA4AAAAAABWE6AAAAAAAUEGIDgAAAAAAFYToAAAAAABQQYgOAAAAAAAVhOgAAAAAAFBBiA4A\nAAAAABX6Oz2xKIqBJNNJXms0GufXbkoAAAAAALA+VIboRVH8B0n+cZLFJH83ye8kmUuytyiKTzYa\njS88nCkCAAAAAEB33Kmdyz9J8j8n+WdJ/ijJjzQajfcl+Y4kf/8hzA0AAAAAALrqTiH6tkaj8QeN\nRuO3kpxvNBr/d5I0Go3Xk2x7KLMDAAAAAIAuulNP9GNFUfxPSQaTLBRF8V/n3ar0H0xy4mFMDgAA\nAAAAuulOlejPJ1lKcjbJ+5N8MO+G538nyU+t/dQAAAAAAKC7KivRG43GfN7dUPSmj6/9dAAAAAAA\nYP2oDNGLohhO8nNJziT5rSS/k+Sbkvx5kk81Go23HsoMAQAAAACgS+7UzuXXkmxK8s1J/uLGeE+S\n303yvz/ohYuieK4oii+0Of6fFkXxclEUXyyK4lMPeh0AAAAAALhfdwrRv67RaPxCkp9IsqXRaPyT\nRqOx2Gg0/lmSfQ9y0aIofi7JLyXZ2nK8P8kvJvnOJB9K8l8WRTH2INcCAAAAAID7dacQ/WpRFNON\nRmMp74baSZKiKA4muf6A1/1Kkh9sc3w6yeuNRuPcjev+eZJve8BrAQAAAADAfblTiP4zSX6/KIpN\njUbjr5KkKIqPJPlMkv/2QS7aaDQ+neRqmx8NJTl72/h8kuEHuRYAAAAAANyvyo1FG43GnyV5uiiK\n70vy2RuHP5dkstFoPGglepVzeTdIv2kwyXwnLxwbG1yTCdE5a9Bd7n/3WYPuswbd5f53nzV49Fnj\nja91Dfv7+7LUpbl0YufOuu9dC/dj47OGG5v12/isIRtRZYh+m7+fGyF6o9G4vMrXr7WMX03yDUVR\njCRZzLutXP6XTt7o5Mnzqzw17sXY2KA16CL3v/usQfdZg+5y/7vPGnTfw/gPQmu8sbX7e3r16lrV\nJ62O06cXfO9u43ftxmcNNzbrt/FZw42vVx+CdBKif7Uoil9J8lKSizcPNhqNX1+F6zeTpCiKQ0l2\nNBqNXy6K4meTfD7vBuy/3Gg03l6F6wAtrl+/npcaJzNzfCGTewbz3PSu9N2xwxPQ65rNZo7OzGd2\nbiGT4/VMT42ktuJ5OAAAADxaOgnR38m7gfb7bzvWTPJAIXqj0Xgjybfc+POLtx3/bG61jwHWyEuN\nk/ml33/ltiMH8oHp8a7NB1j/js7M54UXjyyPDx86mANTo12cEQAAAKy9u4bojUbjx1qPFUWxfW2m\nAzwsM8cXVoyF6MCdzM4trBgL0QEAAHjU3TVEL4rih5L83ST1vFuRvinJ9iS713ZqwFqa3DPYMq53\naSbARjE5Xv49MTHu9wYAAACPvk43Fv1UksNJ/sck351k11pOClh7z03vSnLgRk/0ep6bHuv2lIB1\nbnpqJIcPHczs3EImxut5Zmqk21MCAACANddJiH6m0Wh8oSiKDyYZbjQa/31RFF9a64kBa6svffnA\n9LgWLkDHaqnlwNSoFi4AAAD0lL4OzrlYFMXTSV5N8qGiKLYkGV7baQEAAAAAQPd1EqL/d0n+hySf\nSfIfJ5lL8um1nBQAAAAAAKwHnbRzeSHvbiT6s0k+mmSh0WicWdNZAQAAAADAOnDXSvRGo/G3kvxA\nks1JPpvk00VR/MRaTwwAAAAAALqtk3YuaTQaX0nyi0n+XpLBJD+/lpMCAAAAAID14K7tXIqi+GiS\nQ0meS/IHSX660Wj827WeGAAAAAAAdFsnPdGfT/IbST7eaDSW1ng+AAAAAACwbtw1RG80Gj/0MCYC\nAAAAAADrTUc90QEAAAAAoBcJ0QEAAAAAoIIQHQAAAAAAKnSysSjQI5rNZo7OzGd2biGT4/VMT42k\nllq3pwUAAAAAXSNEB5YdnZnPCy8eWR4fPnQwB6ZGuzgjAAAAAOgu7VyAZbNzC3ccAwAAAECvEaID\nyybH66XxRMsYAAAAAHqNdi7AsumpkRw+dDCzcwuZGK/nmamRbk8JAAAAALpKiA4sq6WWA1Oj+qAD\nAAAAwA3auQAAAAAAQAUhOgAAAAAAVBCiAwAAAABABT3RAdaxZrOZozPzmZ1byOR4PdNTI0kzK47V\nUuv2VAEAAAAeSUJ0gHXs6Mx8XnjxyPL48KGDSbLimM1gAQAAANaGdi4A69js3MKKcbtjAAAAAKwN\nlejQo7QJ2Rgmx+ul8cR4fcWKTLScAwAAAMDqEaJDj9ImZGOYnhrJ4UMHMzu3kInxep6ZGkmStscA\nAAAAWH1CdOhRnbQEmZ1bEKJ3WS21HJgaXbEO7Y4BAAAAsPqE6NCjtAkBAAAAgLsTokOP0iYEAAAA\nAO5OiA49SpsQAAAAALi7vm5PAAAAAAAA1ishOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAA\nAEAFIToAAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToA\nAAAAAFQQogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToAAAAAAFQQ\nogMAAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToAAAAAAFQQogMAAAAA\nQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToAAAAAAFTo7/YEgI2l2Wzm6Mx8\nZucWMjlez/TUSGqpdXtaAAAAALAmhOjAPTk6M58XXjyyPD586GAOTI12cUYAAAAAsHa0cwHuyezc\nwh3HAAAAAPAoEaID92RyvF4aT7SMAQAAAOBRop0LcE+mp0Zy+NDBzM4tZGK8nmemRro9JQAAAABY\nM0J04J7UUsuBqVF90AEAAADoCdq5AAAAAABABSE6AAAAAABUEKIDAAAAAEAFIToAAAAAAFQQogMA\nAAAAQAUhOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToAAAAAAFQQogMAAAAAQAUh\nOgAAAAAAVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAEAFIToAAAAAAFQQogMAAAAAQAUhOgAAAAAA\nVBCiAwAAAABABSE6AAAAAABUEKIDAAAAAECF/m5PAKBVs9nM0Zn5zM4tZHK8numpkdRS6/a0AAAA\nAOhBQnRg3Tk6M58XXjyyPD586GAOTI12cUYAAAAA9CrtXIB1Z3Zu4Y5jAAAAAHhYhOjAujM5Xi+N\nJ1rGAAAAAPCwaOcCrDvTUyM5fOhgZucWMjFezzNTI92eEgAAAAA9SogOrDu11HJgalQfdAAAAAC6\nTjsXAAAAAACoIEQHAAAAAIAK2rlAj7p+/XpeapzMzPGFTO4ZzHPTu9LnuRoAAAAAlAjRoUe91DiZ\nX/r9V247ciAfmB7v2nzuVbPZzNGZ+czOLWRyvJ7pqZHUUuv6e8Gd+K4BAADAxiNEhx41c3xhxXgj\nhehHZ+bzwotHlseHDx28741IV/O94E581wAAAGDj0bsBetTknsGWcb1LM7k/s3MLdxx3673gTnzX\nAAAAYONRiQ496rnpXUkO3OiJXs9z02PdntI9mRwvh/4T4/f/EGA13wvuxHcNAAAANh4hOvSovvTl\nA9PjG6qFy+2mp0Zy+NDBzM4tZGK8nmemRtbFe8Gd+K4BAADAxiNEBzakWmo5MDW6Kv2kV/O94E58\n1wAAAGDj0RMdAAAAAAAqPPRK9KIoakn+tyTfnORSkk81Go2v3fbzn0nyqSQnbhz6qUaj8frDnicA\nAAAAAHSjncsPJNnaaDS+pSiK55L84o1jN703yScajcaRLswNAAAAAACWdaOdy7cm+VySNBqNl5I8\n2/Lz9yb5haIo/qwoip9/2JMDAAAAAICbulGJPpTk7G3jq0VR9DUajes3xi8m+cdJziX5l0VRfG+j\n0fjDu73p2Njg6s+Ue2INusv97z5r0H3WoLvc/+6zBo8+a7zxta5hf39flro0l07s3Fn3vWvhfmx8\n1nBjs34bnzVkI+pGiH4uye1/W24P0JPkHzQajXNJUhTFZ5McTHLXEP3kyfOrOknuzdjYoDXoIve/\n+6xB91mD7nL/u88adN/D+A9Ca7yxtft7evXq9Yqz14fTpxd8727jd+3GZw03Nuu38VnDja9XH4J0\no53LF5N8b5IURfH+JP/+5g+KohhK8ldFUQzc2ID0O5J8qQtzBAAAAACArlSifzrJf1IUxRdvjH+s\nKIpDSXY0Go1fLoriF5L8SZJLSf640Wh8rgtzBAAAAACAhx+iNxqNZpK/03L4tdt+/ptJfvOhTgoA\nAAAAANroRjsXAAAAAADYELrRzgWgq5rNZo7OzGd2biGT4/VMT42kllq3pwUAAADAOiREB3rO0Zn5\nvPDikeXx4UMHc2BqtIszAgAAAGC90s4F6Dmzcwt3HAMAAADATSrRgZ4zOV4vjSdaxuuddjQAAAAA\nD48QHeg501MjOXzoYGbnFjIxXs8zUyPdntI90Y4GAAAA4OERogM9p5ZaDkyNbtjguV07mo36WQAA\nAADWOz3RATaYjd6OBgAAAGAjUYkOsMFs9HY0AAAAABuJEB1gg9no7WgAAAAANhLtXAAAAAAAoIIQ\nHQAAAAAAKgjRAQAAAACgghAdAAAAAAAqCNEBAAAAAKCCEB0AAAAAACr0d3sCAA9bM9fTOPd6jp1/\nO/sG96YYeio1zxQBAAAAaEOIDvScxrnX8w//n3+6PP7pZ38i+4eKLs4IAAAAgPVK6SXQc46df/uO\nYwAAAAC4SYgO9Jx9g3vvOAYAAACAm7RzAZY1m80cnZnP7NxCJsfrmZ4aSS21bk9r1RVDT+Wnn/2J\nUk90AAAAAGhHiA4sOzoznxdePLI8PnzoYA5MjXZxRmujlr7sHyr0QQcAAADgrrRzAZbNzi3ccQwA\nAAAAvUaIDiybHK+XxhMtYwAAAADoNdq5AMump0Zy+NDBzM4tZGK8nmemRro9JQAAAADoKiE6sKyW\nWg5MjT6SfdABAAAA4H5o5wIAAAAAABWE6AAAAAAAUEGIDgAAAAAAFfREB9hgms1mjs7MZ3ZuIZPj\n9UxPjaSWWrenBQAAAPBIEqIDbDBHZ+bzwotHlseHDx20GSwAAADAGtHOBXpUs9nMK2+cyedens3R\nN86kmWa3p0SHZucW7jgGAAAAYPWoRIcepZp545ocr5fGEy1jAAAAAFaPEB16VLtqZiH6xjA9NZLD\nhw5mdm4hE+P1PDM10u0pAQAAADyyhOjQo1Qzb1y11HJgatRDDwAAAICHQIgOPWr/5HB+8iMHMnN8\nIZN7BjM9NdztKQEAAADAuiNEhx716szZ/NLvv7I8HhrQEx0AAAAAWvV1ewJAd7TriQ4AAAAAlAnR\noUfpiQ4AAAAAd6edC/So6amRHD50MLNzC5kYr+eZqZFuTwkAAAAA1h0hOvSoWmo5MDW6LvugN5vN\nHJ2Zz+zcQibH65meGkkttW5Pa8316ucGAAAAWM+E6MC6c3RmPi+8eGR5fPhQb2x62qufGwAAAGA9\n0xMdWHd6ddPTXv3cAAAAAOuZSnToUeu5dUivbnraq58bAAAAYD0TokOPWs+tQ3p109Ne/dwAAAAA\n65kQHXpUu9Yh6yVEX8+bnq6lXv3cAAAAAOuZnujQo7QOAQAAAIC7U4kOPUrrEAAAAAC4OyE69Kjr\n15p559ylnD5/OQMDm3M9zWxqs7Hoet6AFAAAAADWmhAdetQXj87lVz/76q0DzWa+7Zv2rjhvPW9A\nCgAAAABrTU906FFvnrhwx/FN7TYgBQAAAIBeoRIdetS+sR2l8eNjO9q2brEBKQAAAAC9TIgOPWpT\nrZmPf1eRudOLGd85kP5as23rlmdsQAoAAABADxOiQ4/aObQ9/2tLYN6udcuBqdHl/0ve3Wj0lZkz\nNhq9A5uxAgAAADw6hOjQo6bbVJi3xrztWrfYaPTu3KNHnwclAAAA0DuE6NCjaqmVKsyT9sF6q6pq\ndW5xjx59HpQAAABA7xCiA8vaBeut1stGo+u5Eni93CPWjgclAAAA0DuE6NCj7jeE7qRa/WFYz5XA\n6+UesXY8KAEAAIDeIUSHHnW/IXQn1eoPw3quBF4v94i140EJAAAA9A4hOvSo12bnV4w3UuirEphu\n8qAEAAAAeocQHXrU0I6tLeMtXZrJ/VEJDAAAAMDDIESHHvXEru35toP7cvHy1Wzf2p99uwbW/Jqr\nuRmoSmAAAAAAHgYhOvSopydGcvV6liu5i4m1r+Rez5uBAgAAAEA7fd2eANAtzWwaPZHN+76aTaMn\nkjTv/52azbzyxpl87uXZHH3jTJoV79VuM1AAAAAAWM9UokOPapx9Lf/wS7+yPP7pZ388+4f2rziv\nkxYsnVaY98pmoKvZtgYAAACA7hKiQ4/6yuk3y+N33mwboncSkLerMG8XovfKZqDa1gAAAAA8OrRz\ngR411LerNB7se6zteZ20YOm0wvzmZqDf876JHJgafWSrs7WtAQAAAHh0qESHHnXu7ZE8t+P7c2XT\nfLZcG8n5t0eTqZXndRKQ90qFeacexbY1WtQAAAAAvUqIDj3qPXuH8y9evJqknuRqDh8abnteJwH5\nzQrzjdKyZK0D4UfxoYIWNQAAAECvEqJDj2oX9FaFyxspIO/EWgfCj+I967TvPQAAAMCjRogOPapd\n0PvKzJmeqDbulUB4NSvuN3qLGu1oAAAAgPslRAeW9Uq4vNED4U6tZsX9Rm9Rox0NAAAAcL+E6MCy\nduFyawXv/snhvDpz9r4qejutBt5IPctvzvX4kWPZu3Pggea62p97NR+KbPQWNb3ygAgAAABYfUJ0\nYFm7cPnoG+UK3p/8yIH80u+/sjy+l4reTquB77dquNMQejUD4dWscF7tauleqbjvhHsBAAAA3C8h\nOrCsXbjcWsE7c3xlRe8zkyMdhdedVgPfb9VwN1p2rGaF82pXS2/0Fiyryb0AAAAA7pcQHVjWrpK7\ntYJ3cs/Kit5Ow+tOq4Hvt2q4Gy07VrPCebWrpTd6C5bV5F4AAAAA90uIDj3q+vXrealxMjPHFzK5\nZzDPTe/KqzNnV4Th+yeG86PfN503T1zIE7t35L3FWJZujsfr2T81nD96+VjpvavC606rgVvPm54c\nzitvnLlrpXs3WnbcnOvx04vZs3PggSqcVUuXrXVvfAAAAIBOCNGhR73UOFnqbZ4cyNnzV0rnzM4t\n5MKlpXztrXO5ePlqlt66liT51c++unzO5k21jsPrTquBW8975Y0zHVW6dyOEvjnXDz07mZMnz6/K\ne/VitXS7wLwb7XkAAAAAWgnRoUe19jafOb6Qb3rPztKxifF6Zk8s5E+P3Ko037al/GvjjbfP50e+\n4+vXNLzutE1LpyG0Cuf1p11g3o32PAAAAACthOjQoyb3DLaM620rub88c6Z03sjg1tJ4/LGBNa+g\nXu02LatZ4XwzkD9+5Fj27hwQyN+ndoF5N9rzAAAAALQSokOPem56V5IDN3qi1/Pc9FjSvPXzmzHw\n7tGB0uvqA/35oW//hrxz9lIeG96Wfbu2r/lcH6RNS7uq89WscNZyZHW0C8z1iAcAAADWAyE6PUML\nj7Jas5ahgS0Z3rElwwNbUkutbSB89sKlUmh+YfFydg5ty8LiUnYObcs37Bte+7k+QKV7u890vxXO\nax3I97J2gXkv94gHAAAA1g8hOj1DxXDZ0Tfm88Jv3b0H9fatm/Obn2ssH/vEh/eXNiQdGmh/H9fL\nQ4vXZudXjH/gW58sBbb7J4bzF6/O3ajKH8xz07vSl74V77WagTxlDxKYa6kDAAAArCUhOj1DxXDZ\nV98+m287uC8XL1/NwNb+fPWts/mGx8tV5RPj9bz+ZjmEnju9WHrd26cu5JnJkRWB+Vr0Hb+fQH5o\nx9aW8ZYVge1fvDpXejCQHMgHpsdXvFe779CTe+vL92P71v5sWpm9P/BnuF/3e812r0sz6+KhSDse\nkAEAAABrSYhOz1AxXDY4sCX/8v/62vL4Ex/en02bUmrdsrk/2T8xkvnbQvOve7yexvxr2bxpPn3X\nRjNUL/LasfnMXP5K5necSu3yWPqPfX3HDy06CXofJCSdGNte+kwTuwdWnDNzfGHFuF2I3u479Oob\n8/nTI8eWjw3v2JL9Eyvn1o2gt901k9w1CK963XoNqtt9127+//UW+K+mjfawg+5bL/9CCAAAYKMR\notMzbFJYdvLMYtvx733hK8vHPvnh/Rkb2V4KiaeKxbx04Q+Wx3t3DeRy+vMHb/7u8rFDTz+f4cG9\npfcfHtzSNsD58ux8/vLLJ3Lx8tXMnVlMX19WhNDtQtJ21e/twqBr15OT8xdz8fLVNJvNfP3jgyvm\n8XWPD5VeM7mn/QOWdt+h46cvls4Z2rGl7Wu78S8hWq/52ux8PvPnf708rgrCq0Lp1mNrPf9OA7/W\nhxvDg1vuO/DfSCFju787166v34cddJ9/tQEAAHB/hOj0DJsUlu3ZVQ4e9zy2I3MtgfDJ+Us5c/5y\n6diJS3Ol8fnr7+R8+WU5eXEum88Ol9qcvHP2YtsA5/jpxVJI/8Tu+ooQvV0FeKdh0FvvrHz/1qDx\nZw8dzI9+33TePHEhT+zekfdNj+X69et5qXGy1Ce91rwVpt780+DA5tLnHBzY3DaIXc3NTDutNm69\nZmvAXxWEt5tr67s/jH/J0eka33y4cfz0YvbsHMiJM521HOq0Cn+9/s5o991eWrpeOqfX21ZRpq0Z\nAADA/RGiQ49qNq+Xwt9mmhkaKIesgwObs2XLptKxvTvKFea7to7n8tK18uv6Hktt65b86ZFb7WKe\n/+6i7Safrc5duLIiON4/NbyiAvxfv/xm6XVVYdC5C1dWjFuDxjfePpu+nSdT23MqFzeP5avHtuX0\nuSulPum1HMjgwMoK53ML5YcM5xautA1iN/Wlo97prR6ktUpr5Xx/yzWrgvCqf7XxsP8lR6eB380H\nZB96djInT57PhUtLpZ8P1bd0HI6vdci4mpXu7b7bxUR5XSbG6w90zY1Umc/daWsGAABwf4To0KNO\nzV9a/nPtxnjf2I5S//CRwS3Z1Fcrhb9n39qa53Z8f65sms+WayM5NTOUx8cG8v1PfCzzS6cyunlX\nhq4+keFdW0qv27drIGkJ34Z2bMnjjw3k7G1Vw3falPT2MLPTMKiYGMlnRJbhzQAAIABJREFUbhs/\nPTGSc4vlkLW+90x+56u32tF87D2HcuJEucXLzImFDG1fWck9OV7PP/+j10pzbRfEXrxytVQ1vGt4\na84sXFlR6d4aWLZ7r61bavnYRwczv3QqOzePvduKp13Q27z1x1qSpyZWPoxop+pfbTzsf8lxv4Hf\n+cWlFRXap8+WH3bcSxX+alrNSvd23+12D0COvtHZNdsF5hupMp+709YMAADg/gjRoUftHNqWz37x\nb5bHn/jw/lxrliu0m83rOXbyVvhYS7J5U3/+5N9cTVJPcjU//J39uXj5WubeHsrFywO5srU/2/de\ny7NPD+f0bSHx0xPDqSUrgvVzi1fSNzK3vFHp+cXRvNNB4FlMDN9qwXKjWr2dduf96b97u/Sw4OSl\nV0uvOXFpLiP1sdKxkfrWPLFrR+nYxI2g8fZWIs9MjWRTLaV2Ik/uref4mUulYzu2bylVuicHMtSm\n0r1dqDu/aSb/x2u3Qv+PP/18kn0rPnsnDyPWs/2Tw/nJjxy48R2qZ7pijVt1WqHdzlqHjKtZ6d5u\nru0egHR6zXbfF+0/Hi3amgEAANwfITr0qHYbiz42vL20sejz311kcGBz/s8/u9WW5b/4vulSEL6l\nvy9Xlq6XKn/37no6jdmzaczM5+Llq7l05WpG65vz9MRwzm5+M2+eeytPDO3L03uG88dfOVLaqHTP\nYwOZHH9PaW7tAs+XGyfzq5+9FX5v3lTLB6bHOzpv+9b+/MbnGsvHfuz5PaXX7Kvvza4dO0qfc3L3\njjy1b2Ug39pKJEmuNVO6H8/u351tm/tKx77nA1Ola77x9vmM1LeWjs3OLeS73/fEiqD006+9XDpv\nbvF4km9e8dlbA9C5M4s5t1iufu9Lh31luuDVmbOlBw1DA51VQXdaod3O/YaM97sJ6oNUunc6106v\n2S4w79X2H9rYAAAAcDshOvSAdoHQ7p0DpXPGRgfy9qlysD53+mJGBjeXqravX7uasZHtt1q+7NiS\nmRPl8G3x0lKOn7lYCo2n9gymOTSXXzv6G8vHBgd+PBdyuvTaC3kn01P/USnwnJ4czitvnCnNf+Z4\n+ZozxxfahujtztuyuRwcn3trOB9/+vkcW3g7++p78/4nvjG1Zm1FJf3Lr5YD+S2banl/m2u2CyNb\nDe8oB+bjjw1kfGR76di7G3quDEqfGCpXnT8x9PiK90+SJ/fUS9Xv/Zv6VlS/P1eMrdhAdTWD9QcJ\nI9vdx3YbhN7caPX4kWPZu3OgbQ/9ta7AvddNUB9mO41Or9kuMF+v7T/WOuTWxgYAAIDbCdGhB7QL\nhBYvXcknfmQ0Jy4ez+7te3Lx5FKm9pZD16m99SxdbebX//BWcPzJD0/n975wa/yJD+/PzuFy+Ltz\naFvOnL+UD317f65sms/Wa6M5e+FK5k/Nls577eRsdm4ut00Z7R9bEXi+8saZlW1O9gyWXje5p/0G\nik/uLZ83tbeeCxfLG6Fu27I5H3zim3N7NfcrM2dWVEHPtIS6M3MLeW7/7lKAOz010jaMbG3xMja8\ntfRwYt+u7XlqX2eB5bN7nknyiRsV/Y/n2T0H2p7XbBm/depCef43HjC0BuvtHkZ0qnUNmulsE9R2\n2t3HTjdavWk1YtVOAtt73QT1bvegk2u2O+fmA4XW13Vyzb42m9+u1/Yfax1ya2MDAADA7YTo8JB1\nWkG5mpWW7QKhocfP5sXXXlw+9vGnn8/1+d2l6vH37BvKqbOLpTD85NnWavXFDGztLwXC8wuXM/LE\n2Xz+K7fatPzw1x9Ks7mr9NqhTbuyZ9NUaVPSvZufTDPX0zj3eo6dfzv7Bvfm7VPlXuSzcwv5zmf3\n5fL3TufYyYXsG6vnb02Ptd1AsVYrB4N9tVomxraX5js5PrCi0r3dPRtuabcyVN/SNsx7pmJzx9YW\nL0/uGcymWi0T4/U8te8ews705X17vinv2/NNy8fafV/eemexdM1Pfu/+0vtM7qm3rdR//40HA/fz\n3fvy7Hz+8ssncvHy1cydWczIYPmevTY737aavN37t+uJ/vmXj5XOaVfl/9rsfD7z53+9PL6XgPV+\nN9dc7bYnnVyz0wcKnX72v3l7ofR92TM6kOKJztbqYVvrkLtX29gAAADQnhAdHrJOKyhXs9Kyta3H\nk3vreXXp/yudc2LpzSydKgdFb59azJ73LOS3bwvD//Onnk/+7a1z9jy2I2k28+v/6svLxz754f05\neXGu9F4nL53I9vn9pcB8cW5nrownv/svzifZmuR8fvZQ8uWzr+UffelXll/7fPG3S+81Mrglf9k4\nWaqQ37q5L6fPXix9zr85fjYLi9dKweD2Lf35xvfsLPV+/8mPHChVYx8+dHBFaDYxXs+ZhculQL6+\nrb+y5chNtduOt5538xp3iiQ7fZjS7vtyvmWDzaWlq/n4dxWZO72Y8Z0DGRvZkmRlRf+DfPdag/vn\nv7so/Xxox5YVQXtfX7J/YuX7t+uJ3i7cPLe4tOIapY1jzywmbebf+rCmGHoqR2fOdrS5ZuuDgHYt\nZB5EJyFxJ22DqsLldt+rTiv/O/kurPXDwrUOuddrGxsAAAC6Q4gOD1mnFZSrWWnZ2tYjSQa31FeM\n+1p6cj82vC1nlr5WOnb6ylw+/l0H3g1iHxvI0tJSFi9fbWndcjn7xvaWXrdvcE/6si2nzoxn6exw\nrg1vy9jI1nz1rfnSa7967Gxytdz25eSluXzsoyM3wvexXFu6njdPlCviZ44vZO/YQE6evbx8bGjH\n1oyN9JeC9a97fLDtvb39nLdPXchQfUspML9waSnjI1tzduFWP/jdo9uyaVM5wB0ebF+dPjJUrsje\nMdB/3w9T9j8xnC8enVve4PSD37g7c2cWVwTH44+VK/j7+/vzG7c97Dj0XU/nOw4+nqWrNzZL3b0j\n75seyx+1qfa+Uy/y249durxUupeLl5ZK93HfroEcO1UO2p/YXW9b8fz67HxpHq+/OZ+PfPDJFeHm\nH3/pWOka27dtyuyJhVy8fDXNZjOjE8Mr7muy8mHNf/Psj2d2buW/eriXcPn2Ney03Uq7Y52ExO3O\naY2fq8LlL785ny8d//e5smk+J4+Ppq/vG9sGx//65TdX3I9Ofg+t9cPCTkPu+w3p12sbGwAAALpD\niM66ttabx62mTufaaQXlalZatlYHP7G7nh27d+aDk8/m0tXL2da/NQPNnTm5eKUURi5cXMrwznIL\nlpH+sfza5xvL409+eH8eGz+Tz792q1r9408/n2unx/Pcju/PlU3z2XJtJNdOj+fi1aulCvC//T1F\nhvfN5/NfvfXaj73nUPpqLX3Sdwzmt4/+7vL4o0/+SPaOlTfX3LtrIIuXrpY+5/hjAxkd3FY69t79\nu9Nseaow/thA/vqtc8vjofqWzJ1eLG2gOnd6Mf/heyZz7NSlzC9czo7tm/PkvuHMHH+rHLYvLuXi\n5asrAu1aX610XrPZvFUV/thA5k6fbxtUtwv83zl3qbTBaZrN9G/qy+994da6/Oj3TefcwsUVbXZu\nd+b85bw2ezZfe+tcLl6+mqW3rmX3yLaM7dyWj310MPNLp7Jz81jG+rZ13DpkcMfW/N6f3Hrw8hP/\n2TMZrm9dDvyfmhjOq2+Uw/FzF660ff+dI9tKgfxjw9vSvN7MucUrOXvhSoYXl9JMM4/v2pF//kev\nLb/2id3lIPzi5Wtt/36+1qZH/+7Bby4dGx7cct/hcruK+2vX2/dv76QlUOtnqKp+v9vrpqdGMnft\nb/LShVt/7yav1bM/Kx8EtP4emtpTX9H6qN3vudV8WFj1u7WTkHs1/0XPRvrfIwAAAFaXEJ11ba03\nj1tNnc610wrK1WwncPrc5RXjC5fq2bnn8cw3T2Z001hOzQ5m/LHt6d/Utxy6jo1szbHZZikMnz82\nkg99+/nlyvFT5y6lf0dr65a5LJ7YkT95+WqSepKr6X/fQurb+/LDP7Il81dPZrR/dxaOL6U5eKr0\n2rPXTqV24qlS25fT586Vzjl//XR2ZTyf+PD+vHXqQvaN7Uh/37UsXChXhZ+/sJQ3rp4tBbFvHD+b\n8V3b86Mf35njF45nz4492bLYTN/IXDZvmk/ftdFcvDyYwYGt+fV/Vd5Q9f/92lwuDX01mwZO5nL/\n7vy7Rt+KAPfwoYM5e/FKLl6+tXnptm39Od7yIGPvY0/lt//N67e9//6236F2rXi+9ta5UgC/sHgl\nl65cL513av5Sdu/clq8tvJ4rO+dz+tpovn7nU6Vzdo9sy+zJC+V57dqR7ePv5A9eu/XQ4tDTz+et\nN4dLr/3rt89m6Wr5acRrs/O5vFTetHXx0tUcO3nh3ZD+2LVs29yXYmIkn7ntnKcnRvLX/z97dx4m\n2VWfef6NfY/IyMxYMqsya69TWYtk9h2DBxpLCAkZQ6m0g43dtrufaUO729Djmac9Y7tnuofGtJdp\nm7GNsVncgBpJLJZx20aSsQDDIATSVUmoVKqq3NfY9/kjsiLyRGRIZVBlVqm+n+fhQXHzxo1z14h6\n77m/M71qPZHw1PSqQgFf382fhx6b1x/ebQ+E+sqptN5/4kWaWSoqOxzWmXm7tvfxNx1o18v/lL1t\nEx77BlHCM6pypWbdeKhU6tajHOcj0wu5yTW7UrJfL5dUrTX7nnpoSX3TNisJdCG93yX1Tfve6f6B\neVcb9nm30vP6vN7rULN1YTXXf5Sbhc/n4LTP5xM9l9P3EQAAAADg+UWIjkva4z3lHB5/ZuWSDS0u\nNKy50B6Uz2c5gUTUb72OR/wa2rmslWZZajbkCpSV3V1QbtZn9RS/5SeNRhJB3fOFbhj+M7et6T7H\n7nVeraU29GoPKuFOKzlq9wbeMRqRL3NWp3LnVG5U1HTVtWdvQJVyf5DpiQX05FNxlSphVQNe7Tts\ntz8VTEs1r54+u6pSpa56vamDkwkNxe1eoclYQF6f2+oZfce1Uyr6pvXpJz7RmXb88E/poXPdddqR\nukmzp+LWsqYXC5o4vKSlfLf90YRPB1Iv0Z03j2imMK2x6JgOTsT1wHdmre142zWHlBkOW0Fptd6w\nXs+vlFQoVa0g+dTMqlJDISsQnto9pHDQ3xfwh0PSvQ92B9O8/dop1SLTemi2u167xm6W1C3Z4/d5\ntNAzUOxaoapcccaaNluc0Ugopc9t2I63X3NIbo+s9o6GA2r29MxtNFv20wHDYb3kwKjufOtUp3f6\noV0JLehpfelJeyDa+aftMizLuYrmlu1g+tR0Ti8/mNLiWlmzyyX5fB7lemqkrxaqyhWXrWmPPr0s\nnzdp3SBaPZfU2IhPT892S8Gkdic3L6kzkeiuQzoiM5no66FdrTV7blAcVCjgtaa9+7opBXwenV0o\ndKYlBgxYe26h0Be29/Xa3qTO+6aD5Kb7z7vN9F6Hvvx1u/f+oOvcZjcBN+vJvdngsY89bffgj4R8\n1rL/KYPTPq9P9FzA9gcAAAAAvDARouOSlozb5RyGe+pKb5Vms6mHnPn1oCemV0yNyi23Nc9mPYYv\n5H3ShZcJ6F3ey8yovuHM65m/e1IT6fbyXS1X37ISUXugxWTMp7J7VXd//77Oso8fvV7zy/b2nV8u\nKZMMWWVI5qtP2vPUzmrUt0MPPvXNzrQTBw/I5W11SoIkfSn56lKhsaYHT3fnSx0aUWVmr9XrPD+b\nlMdtl2WZzB7U2/Zcv96DPSWtplWs1q12FMp1JaI+3XEiqdnirLLhrCJVr548ZweIs8tFyW+HxMul\nResmQEkryo5krXmyw2GVmqf72v8PZx/Rp5/48w078xat5GJWuLycqygzElRmz1qnREqsntBdG0Pp\na6fkSc7qiyc3DOK6/2ade6ZlHVfnFoqqN+xpC6t2sCxJCyslecN27+LFyqyk3Z3XxUpdqaRdBz+V\nDKnhtcvpDHlTWlgt28tfLWt8f14PzXXbu3/iVlUXhq39Xp63e6bnizX948mFbgmZ9d7peb/d1nxz\nUaPJjHXcxsJe1Zv2eqaHQ/oHZ667vFpDe8btGyC7s1Et5+xgPRr2aWcqqg99snuD6H0nElpcLfY9\nlXBuvmC99+SZFRXKNasMjssl/fG93Rsb7z/xItUbDav99UZD04v2UyEzi0UNxQLW8T6eimhx1Z7v\nmdm8EjG/Nd97bziiXs7q4/ovG+q8/8uXvkeJ6LA1TyLm17Bnt3UDIevZ3beszYTDdqAdDm3+M2Kz\nsjvOM6t95W1caj8ZU6k1tLRW0RNnV3W670mCg9ay/ymD07rdsq5fnv7L7+bt3+SaHA37nnP7AwAA\nAABemAjRcUkL+txWaGEmtye0eMiZ1x9+3i4h8aqpjDVPoyWrrS89lL6g90kXXibgmycX5JxeUalS\nV7laV63esGtj64jiYX/fsurNpuZXSp3etcNxvxYLS9ayFwtLmsjss8LfiVhUhWJVO1PRTukQ9yYD\nki6W56xpS5V5RYJN3XtqYx3zm1So2mFvoVpUOh7S8obBRkfjAT0zZwff9cis7nnq7s7rGyaPy11N\nW2GnWntUDs7oL05+sjPfiQO3KD2csoLMaMgjV9gOyJPhId33vb/rvH7noRuVdPk7JV/Golkl6wE9\nUbPD1Hy1oNWKHc7OlmaUnmzqK090w+Xj+09IbreWy0+p7Klo0Z1XLO7TnXeENVOcUTY8psZMXYt1\ne0DPxcZZxSMp3X1/t4f5rT9p5Ha59cW/P9WZdvs1U6rW7bA6EfHL70vb6+lL656eMic+T8MKvVVu\nyl8cswLWQHFMsbC9/GjYp/mSXcZnrjSraLRu7ffj+2+25hlPRVQoV60bCoVSVOmEvU/S4YyqZZcW\ndapTjmbYe0A+ydqf4YBbK7laT9mXiDWPJI0MBawSOMMxv7w9AavXLdUiM3poobvvxkaPa9QzZve4\njwS1lKtYnxkK2F+nJ8+sKBENWAO53nbNIXk8Hmu+eMSvfMkejDVfqungTrt800Qm2tcTulyp62uP\nzlo36Z5Ysmu1P7F4Ro2VoLWec8slDcf8GtFuLS61t5HbfWE38xZXitayFldLnffNfPusxobDmto1\ntOm1r1TpuTmWicofcMudnJUvuiCvL6XFNb9W81XrM70e1wUNTrtZiH5q2g7ks8nwpvP1rrvXJ52u\nPKGVyIJclZS8Z/dpNWe3q/c1AAAAAOCFixAdl7SVnpCi9/WP6kJ7gJ+eyfe97g3DNyuZUKzUex7/\nt0tnPNt7NytXsLRmB3dBv30Kn57JKxHx9y1raMinXdlYp364zyMlgnZv3XgwrqZvRg/NdAPEPTtu\nVtSV1lrwB/LE5tXwphX3R6wBSSPesAIxux3JWEQLq3bP4rXGgtKBnda0lHdCbrcU8HnkcbsU8Hvk\ndrdD0I2hZdFlB/4l15LiQ255GzOq1yvyeCvyeGJarNhh/kJlVkOttFVa5fZrpxQqZfWufSc0W5xV\nJpzRSqGnLnspJ4//rD59slvy5aYDtyjtt/d5JpRW0xO0pmXDWS30hOFLjWnFfCGrF3vm8Ig+9/0v\nd5d/+B2KNXtuUASiWs71DwbaaNq1yOdWijowmbDqvCcbQS2ujlo9+AuzSUndsiZrhaoi6byWq+1w\nv+XOa3LIp/ln4mrmM6pVRuQLeDVfL2v/RNy6qZBWRLOtngFgfSkt1+btda/N6/UvmuwEoM1mU57k\nvO59YmPQfkKVqts6riqVpkq+c9bgl9mR42qtpKzjJVeoKV+yn0pYWqvoS197urv8Nx1UJOTRudqT\nqg6taLqaVLByQLOLZbvUTDKs6oh9rBW0pPCQ1yqLs2/nLco/GbPmS8TspziGYkHNLNo3XWaXitqR\niXTD/OGwQgGXvF637tlwo+SWtxhV6w1rvlq9oYDfY7X39mun+oLqoVjPUwS+lEpBb+c4ckkKB706\nM1+0Sze9xahW7689fmhnQg9+f7ZTemfHaET3PND9zNuvOWT1Cj8zl5fbLa3mytZNi9VcWfmyfSNm\nca2i0clV3fuD7rHwzr0nND46Zs0XC3tlJoc6JV8OTiT0xFl7rINSz82s8/aMRa0bKnt3bF7OpfdG\n5p03D+veM912vWvfCU1mdlvv2ax++9SuIamlC/pe+WEHKmWAUwAAAADYeoTouKQN9QVTfjUaTSvU\nec3RtDw9JVIuNGTYrAf41ESirwTLZNYOzCaz/UHMZmHNzFLZqlN951unNi3xstl7NytXUKnZdbRH\nh+wAt90uez0TMb9q1Zaensl16ofv25FQxBeyQsuoL6iF6rxV1mS1MadYoqR7Huv2An/zvtdZYXB0\nb1QttaxlLRWXlfTZQdiQb1TNpSHddPQGTefnNB5Nqzk7omqzoU/c53Tmu/2aQ/KNzMvr6wbk44n9\nVrvGwlnlWkt68LFuO37qUEbDdbvn9bA/rcJSWbff4ddccV7pcFqlZ6ry+3wqNQtqeksqN4vKxOza\n2yOxqM4tTVvTpgvTyi4f2dD+jOozO+QPeHT88E+1w+XImPyrGcVj9kCo8UBUqxW7vn+xUrbWaaE0\nr1H3hLUd/bUh7RqP6bbjSc2VZpQOZZVsxlWq161p4UpERd85nSk/rrKrojPVnLxBj1rxmu75QXff\nnTh4s92jOhhUxXtWDz6xIdw/lFFmOKXQ+NnOALDx8l6tuc92lv9MJSdP0KO5U3Grx/rc03Ht2Oe2\n1mvUm1bw4HxnWUszATUC9s2Oxcq8fC6/RsLDWi6taDg0pNXisqot+wZCrrWgTGSHTp5er4XfaOrA\nRELxWMBar3Q4ZJ0nxUpNvuF5eQPdY6rqjinpHbPOu5GEX42QfQylQ2nNFOwe97PFWWVG0tZnJKM+\nK/QOeKV9OxO6OdENkpNRn3LF/uM9HJJ1gyJQdKneasrjcUkuyet1qdVqKl+qWu1dK9jb5+x8XtlW\nxtonrrWMQgG7Lv173jalhZWK1f5csaZWK2cF37NLOS2ula2nXW6/9pDVK3xhtdxX935nOqpgoL9u\nv9tjh+jxiF8LfTe+5vTi0d3WoMFBv0ffenyx8wROMupXPBKwavQPurYu5avWzYL33nBEzbH++Xpv\nZM70jAswX5rT6w/9WF+d9+8/3f8dIl3YQKg/7EClDHAKAAAAAFuPEB2XtGq9boVGtXpDD35/1i5h\n0mrpdUezVmju8agvgD64oz8cn10uWsufXy6qUK5ZJVM8bunlh0ZVq3cHQnz5VKqvrbMrZSusufOt\nU32DIM4tlzYtc+B2u6xyK6mhoIoVu3ft7HJJyXhAn/9qNzj6meuP6PZrp3R2Pq8dqaheNpXSXz50\n2gq5lnMluVx2D9b0cFit0rIVWi6WVpQMJ7S62g17k+GYFopLVig6HEjYg4gGYwp4fPrB6vlety5l\nIiMKK6ybjl7fCZxHXAmtRef05MpZlesVnV6ra/9YQM2zo3r3e/yazs9rPJpWY7oht7+iEXe3bR53\ny2qr399UPm+HXvlaTqGFSR0/er1m8vPKRtMqP5NUdPdZfeqRbpB809G3y+MKaGm1O0BoQhN655Hr\nNFdYUDoyqlKlpB0xu7zIjuiYWlrSJx/5fGfazQdvUdPd0qe//7nOtFsP3aJ4IKzrD/0zLZdWlAwN\nKRGIKuyNWNstExnVlx/+2877bj/20/KsZrQzntNMfl5j0bQia+MqBs/pM49/0vpMT1iaLpxU2V3R\ndCOv/QmvSs1l6+ZG2qSVV85ah8XGWWUmAlouVTUcqijuXtHpkj3PWiWnQPKMNYBqJOlTqV6y68Ef\nTGsyO6py3KOZfENjUa/CaxEV6nbd+8mjO3TPhu1/4vA75NKwvS2iQ2q6G/rkI1/sznf0RrlrdjCY\nDWdVX2la5YVaraY8Q0vKxKqd9Ur61tQcXtZ8aVbpUEbR4l4VwmelDYeMJ5xX076voWZLkqdq3ciQ\np6q42x50M+4ekcctpYZCVsmYM/P5Tri/ZzymhupW7/dQ7YBq9Zpu+8lDOrdY0PhoRLV6Xf7Ysj79\nWPeph1sP3armalrFcl2NRkuFUl0Bn7s9oOwXu9e+O946ZQXh2ZGIypWqJgL7O8svV6paXLN7aZ9b\naAf9d9/fG0KrL/g+21MPfnqhaG3/RNir+dWydR2t1OpazdufOb1Y0J4dMetGQyziUSRqn2fjkazm\n12pqNFpSS6o3Wmo2W9a2Xlwrb3pt/daTixvqq5f17ZOLenrGPr6fnskpFPSqXGmo3myqXK3re08t\nK9Yz+PKOmH0TcHJofNPBnhfWStaNh+W1kuZ76tkPGgj1hx2olAFOAQAAAGDrEaLjktYzhqBaklpq\nWL0UXWr09cy7/a1TVmi8ZzyuSqNpBSePPb2soURArrWqVvIuRUJeDcf8Wi3VrJCo0Wjo0adXreB+\nOBbQgWxCX3tsVmcX2gH2zIIdNp2dL2g0YfcUT0T8ml8p2cH9SkkBnx1yZ0fCktQz7YAK5Z4wbL6g\nL33tVOe13+dWZjSicMDfCdGGoj4trNhBT6vZ0ERyp+aLK1p1uRX2hjQWT2muuGSF1e6WS7sSE1qr\nrnXC8NFgUqVmtTNPzBdWTXUrOD1w9W65/TVpQ87lCVbVqthhuNRUaGJBTyyd6wTrBycCcsuvkIJa\ndbkV8gblWv//7mtpd2JiPTCf01g0rRH/kLypotodSltySzJTdc0XAlaYH3YFtNYsWO3deXRMlUZV\nzVZT1UZVO+MZJfwx630HY1l9feFb1vZfbc1oX3SnNV82GFaxVVa40W5vxBtS3BtSwW2H0NmofSNm\npjSvvamQSpV2+12SIqkFDfujPe1I6ZHVk9ayxg6nNRxMWPPFPVGF/X4rrN6V2KlcNdfZ5xG/tNe/\nW6+ZLHTmOZDYrXwjb9+08LQU8trLj7qjqgTP6sz6TZFncnUdSPqV66m1P19YsNqwUlnURHynJtzj\nnWUlfRE9mTttz1de0WR4yPrMpDuiStStXOpJ+YbmFIymlSwdUtFbU0B+uV1uBTx+FV2r+oxzV6cN\ntx796fWEfKOWMkm/GsNPqpCfVSKa1W7PIX0zv7EcjUuL5XlNel/t8KfyAAAgAElEQVS83o72jZ6R\n0h7VfA01kqdVKEwrERlTyntQ+5ILnacsUtVRrXrPKjPUDfeD7gW5l0e0GnxSnsi8qt60EuX9KrVW\nOzdxMpFRlesrCrlTCu88q8LIrCKhjDz5vWo1y3r3ewLrn5FVaK2pvVctd+rqR4tDCgRDym8YRHU4\nHtLIcFBjJqLpwrTGI2MariQ0vViwnmZorNaUK3Xr4w/7UlpbrGhH2n7qZu+OiKqJ0/IlphWMjCle\nO6BQ2Kel1mkV4jOKR7PKundpeskeiHZHKiK/3yNPudHpXR/2e9Vq7NRNh9/RbVt1Qmuuujzudi98\nj9slt9ulcMCrFY9L4aBXQb9b4+mQ1dZEM6xipW7dyHz3dVPaNR6zAuc9YzEVyjU9Pdt9Mifgd8vv\nc1mDEofLO6we/ZHaTtVq7aegzl/zX3NVRl6PW0+ds5+MyIyGep4UCW36ZFEs6lOq3r05kIz7+2rc\nbzYQdaxngNOfe/uRTi/8jYNMb/beZqupb85+T2fWzmlnfIdemj3cNx/lYgAAAACg35aH6MYYl6Tf\nk3S1pLKkn3Uc5wcb/v42Sb8mqSbpjx3H+ehWtxGXlo2hyB1vPaRW06OP9/SW7H0Uf3m1bAUnS2sV\nNVvSx7/cHeTv9munpJasgf9uv2ZKcrXscgvXHtKZp5et5T96alkLq2Wr1+Yd105Z84ynIvK47IEL\ngwGPfD6P1Zv09munNLds10pfLVT7Qou1Qk2ppB3KR8M+6/Wp6ZzGRyL2el4zpYDfZ90EuPOtU1oo\nrVo9tE8cu0ENNXX3Y/d1pr3r6NvkblRUrJfVbDVVrJe0XHVb89x09Hotleztcy4/o1R41Fr+Lcdu\nVKPV6HtvtV6za4VHR5UM2L0qi/WCPm31Jr9eLpfLmnbi2A3y1D16Zu18IH9OXrdHdTX61nOlvGot\nf6m0rGKtpHK9omarpagvotVaoW9ZqfCoXaoknNRyNWfN53d7VGvZn3nzsRu0ULS3Ublml3NJhZLK\n937mkEeNaqNnO96gtUp/7/GIL2ztp6DHr7AvrJ3x8c6NhmKt2Ncuv8cumVRRWbVWrW8/BT1eFavd\n5YeCQdXqFStsrzYrGonErfXaER/TE8vdkkajkWGt1dZ6ng64XvFgVF964m8609519G1aay31tdcX\nXVaxUlKz1VCxXlIg+gPVWw2dy82oXK+o3mxoKGi3YaW6rJgvarXV63Jr2vWoPvXIf+8eG0ffrpHI\niL604QmB2656h9aaT9rH0FHJ1fLqU9/7bHfasRv0qQ1PKZw4JjVbLd39/e52PH70eimRt8ojHT/0\nDgV8Pp1afabT/j2JnaoPndZnvte9EXDzkXfIl2xYT0KcOHqDPr3x9eF3qD43aZ3/d1w7JXf6tD71\n/c9a8/lGg/r0E90nHI7vv0XDbumTj3frgJ84eIv8xaBuuy3U6dXf8p3Rpx7pLuuWIz8tdyOoM8Vu\nqR9/2KNmc8S69jWbLZWrdZVDZ+XOLqjiS6lYnVA1PGO37cAtalVSeqbyhKqJFZ0pJ+X17LfW6bZr\nDsnbU1f/pv23aPYpu+zWzGJJ6WTICpx3j8VVa9StQYmL5Yj8Iwv6C2t7nFBzpTsuwBONVS3lKjo1\ns7Yevq/J53WpULIHSx0bjSiYWtRnNizrpv236Jn5kb75PG6X9f122zWHrO+jQQNRPzNn37B9ZrYg\ntWQ94eTSEb1yk/d+c/Z7+tj3P75hym16efaYNc9m5WI260lPsA4AAADgSrIdPdHfLingOM6rjTGv\nkPSh9WkyxnjXX79E7T6sDxpjPu84zvzApeEFbW7JfmR/dqmkesPuUXq+x/VG8Yhf9zxgD9Q3u2gH\n1bOLRTVb9rKmFwsK+D19AXy8Z7DOeMSnuSV7edV6wwqN6vWGziyVrODE53XL5bKDh3MLBY301H6P\nh/0KBjzWtNGhoFZyFasXezxih+iZZEjTPYMZTi8WlIz6rPeVSlXlcnYt4pncnNTTtvnCorKRlBWo\nvvXAT1gB5Volp3jADq/igZjmivZgnXPFBbnkst67VFqR1+2xplVqZRXceSsg/5/2vtZua36+bzvO\n5OeVjaSsoLTRbGg6b6/ndG5OqfCI9ZnJQEJ/9eT9nXnSUyMKuAPWsmqNhryelhX47x3aqULN7mGe\niYxorWLf1JkrLCoVsQP44eCQvnDyf3SXddWE3PJYobdXHk0X7PbPFhY1ErZvMgyF4io2StZ+eufR\n6+Rv1nVmPZR/Zm1aQY99HM/k5zUSHrbaPx7LaKFo9yafLSwoFRnuucFynUKekOqtRqcHeMDjV75W\ntMu5xMet1zs2Wf5cYUFBj91rPlfOqd60SxrNFxY1GhnVYnGpc8Mj4gur2qhan3HLsRv1hcf/uvP6\n1mM3yuXySI3u9cTn8elcftauS19clN/j6zlGl1Wo2deh6fycwt6gNd9iz02Smfy8PC67h+9iz3pL\n0mJ1TlGF7VI5h4aVr9jn8VxxVvWWXVO899ieKU4rVslYYwCUz1SVK9j1vWcKM/I27PJCS+UFNT12\n7/G5yhkNR4v6zGPdMP/N+15nzTNbmlU8ELXPgalRreW7PdhdkpbzFSWHVnTvk/ZgnQulnuO7NKNo\nsK6H5roDue5InbB6na/OV1QN9IxZUJxWIjJiTYtFfFoplPSu4/5OTf6VmYqimUU9dKq7/J9KHddM\n0f6ZsVCZ01e/3b2+3n7NIZXL9vFYKtdVKFetevyFck1rJXt7z5Zm1MzZPfpXNhkg+NxCbzie1ysP\npfvC696bp9GQT9OLRbvEy2Jx0x7lZ3LnrPeezZ2TekL0zcrFSBdW5x0AAAAAXqi2I0R/raQvS5Lj\nOA8ZY1664W9Tkk46jrMmScaYByS9XtJn+5aCK0IsbId+sZBfoaAdLo+NhDW/XOypA27XpF1eq/QN\nUpqI+RXw2cvKjoTVbLZ0b08AH/C5reWHg171DuC5nKtYgflbXrlLO1J2uD8+GumrKpFJhhTw28uP\nhLyq1ho9PTmbGooG9Kcbeire+dYpKxyPBL2dUjAb18klWe+77ZpDykbtARQz0ZRashuXjoxovrRo\nTYsGIlb4e9PR6+V1eaw60gFPQCMh+/IyHErKJZfue/Kr1nsl6Ysn/8aaNpO3A62hoB3Sj/W0XZIy\nkVE11OgLenvnzUZTcrtcVuh34tgN1jz5akG+kLdvWTMFe1tMF+bVs8m0Vskr0dPeeDCqWk/Qmzls\nB37ThTmNhob7etz3BubD4SHlKnlre+cqeZXrVWu+hcKSEoGYvZ5H7fVMR0a12PMUwUp5VZlIqm++\nuYK9T+YLi8pG0/pv3+uGkSeO3aCVij2o6nzR3mbLA5YvSV984m+tde/t6ToSHlapXrYD56kRFaq9\ngbN9A2e2uKBkKNG3P0fDw1bP7puOXq+WZB3fx49e33eT6Hwpni8+YR+3G6Uiw2o0ewbSDEb71ike\njCjXE5gXakXFe4+hQEwBr3097D22U9FhuaPnenr536CIerZ3dFRul0uffGTj0wZvV7Vun7OJULQv\n5I767etLNBDpezJitZxTIuzXPffb19Glas+AstU5xT299eZHlW/Zx0wruKZ7H/tC5/Xx/Ter2bJr\nqaeDGblqHuuaGfJ7FNl5Tp/6/obtcfgdWsjZT6KsNRaVDtq9tmOuUUnd+eaWS4pH/dY1/l1vOqDk\njlV95Qfdc+Cde0/I7baXlQ5l1BwO2dOSod5LR9/N4OxIeNNe4fGwz1rPWMQnv8/dd+N4s/dmwnat\n93TI3o5S+wmnjev53huO9D3t9cxsnhAdAAAAwBVlO0L0uDb+y1SqG2PcjuM0N/lbTlJiKxuHS0us\nNywI+7ScK1vT8sWqUsmQvvTFbkj8nusOW8tpPzpvl1ZJRHyaXSpZ01bzFVXrdiX2xbWyPG6XFSrE\nwj4lIn7rvZuF135Ps1O/fXw0oqCvpaY8VvAd9Lu1uNYT+ucqKlcb1mf+5Ct3ye22A7i55ZLypZpK\nlbqarZYCXrcKlbrVrrV8VfneWuoLBSWHc9bgl7lKXslA3Jrmk0cxv92DsrfH7WyhHVhuDDb9e/zy\nub1W0LtcWukLFecLi2r2REmzhYW+cDDqjXTqn2ejaTWbDa1U1vqWX23a6zlfWNTBob3We+O+mE6u\nPGXN1xvaJwIxzfcE5vOFRQ0F43a7/BFFfPZ+z0RGVG00rLZ55NVy2R7Fcq1sh1JRf6SvHTP5eYV9\nQWtZ+UpBYV/IuvHwjsPXKhGw25aOjPaV2VksLfdts95QNOILq1QrWsdBuVZSNtJz0yWS0lzPNpor\nLCrR91SCffxEfGEtWoPVBrRUXJZ6em0vlVbVajWt+RaLy733rpSv5hX325+52Tpttj99brtH71Jp\nZZPe7wuajO6wjqGAK6DT+bPWfLOFBWubeVseha0BVAOKK62C7HV3y9t/UyE8Knctas0Xbo0qX5uz\nPqPRbPR95rnCrLWsmfyc4j77vC5Vy8r13HiYzS1o3L/bvhnWGFI6bN98jFoD5AYUcocUDttlptKR\nEc2c3uRGZtwOzGOuUXlyWav2uCefVSLRU8qq51yZLc4qXTum63a+Uyu1BQ35RuVaS/ffPM1VVYv0\n98JPuHZa0yKuEflLY9byguVxbfw5koj6tVawb1TlClWVEvY5u1ybU316v7VOs6diCviq9nW5WNVI\nPGh9F/i89ndUtdrYNLwO+t3WQKv1WmOTda+oVmv2vdfrGbbaVpodkezNodVcte/1ZMY+jyd6XgMA\nAADAC912hOhrkjYmHucD9PN/25gExSTZydMAqVTsuWfCRXUx9sEbX+RVvd5qD+Q2GtUbX7xTf/2P\nZ3TX33XK6OvOt05pdzbaHThzOKw94xHded1hnZnLa2c6qmtfvUdf+fopK3jwuN0aT0V19/3f7Szr\nn994rK934K5sXD3ZtSYyMbndLp2Z7wZRkYDHaoPf65LX49fH77aXH/S5tbIhpAgH/coMR/WbH/tG\nZ9oH7niZZnvKxYyn+kOLdDKkL/79qc7rD975cs0s5PX5r3a3z7uvm1Kipxf+jtGofKG4PvHwhnrQ\nx26Qx+3T4tr5UhlNJYfiinns0Ox8r+HzMpF2r9aN2r293brv4W6v81uOvb2vXEwmmuoLRbPRlOK+\nqBVaBj0Bfezhz3TmufWqGzXiHdZfblj+iWM39FXozUbTaqihZqt9iWm2mmq0Gsr2hJbZaKqvJ/1Y\nLNO3LF9Pj/uYL6KwN2y1NeqNquS2y38EvX5lov3brW9ZPjuMHIul5XG5rcD8lmM3yut2W++NeIPy\nuQNWUBr1hhSI2j2XU+Fh3fdde5v53D3r5I+opZb+7OG7rM8MeYOdwS/TkVFFvGHVgvZNi0Qwqpgv\n3LNe9uuoL6ywP6T7eo49r8v+OspERtRQQ594+PPWfL0lUjLhlOrNmv0ZPUFvzB9R2G/3BM5G033H\n7Wg4KfUMstg+hlqdsjhn1s5pT2KXxqL9x9Dp1bOdc2cosVvBXFY7/XXN1GaU9WflL2bVjNnhdcjj\n11rJvmmRL5eUquzXDl9ds7VZZXwZBUpZuSItffzRP+vul6M/rbP5mc5nJsJTGov2tj+jWqOuzz66\noXzJoeuUjdjHdyaSkXc1q6SropXGgobco/IXs3LJpbftuV4r9XkNeVMKNpMaCec7bfU34vK43dax\nEWoOKxGzj71E1K9odacV4EZrO6SAS83Zdu1xb8Cr4IRHrp5BPdN++156NpKVr+DRU0/FVaqEVQl4\ndWiXR6mkV3ff3732/czbDqsVyfa9tzU/bi0/UByTL+hWczmj2mpCzURQoaTdqz0e8SkStG+6ZEci\ncofs7ZgKZdUajuiP761Likqq687rIhofifRd471ul06eOdu5CZoZseumf/DOl/dd0/ZPJuWS9Bt/\n8nVrvh2ZlvVdcPX+Ubnd7k3f+4k/6bbtg3cO9X13H5hM9r3vFUey8gd8enp6VbvGEnrFkWzfTV1s\nHX7zXv5696HX61ZtwLyXguHhKMddD7bH5Y99eHlj/13+2Ie4HG1HiP6gpOskfcYY80pJ393wt0cl\n7TfGDEkqql3K5T9eyELn53PPPRMumlQqdtH2wRuu7j5+XqvW9apjaTWb3WD9Vccy8sqlXLGuer2p\nsZGwxoej2jHcvSivrhb1YjOqB787q9V8VbGwTy8xo3Kp/aj66Zm8JrNRvdS0S2w0N0x72fo0a76D\n7Wm1WqMzLR726Xc/+0jnM99/4kWa2pXYdPnlSl35Yk3D8YCu3tcuc/L+Ey/SM7N5TWSi2j8W1d6x\niJrNKZ2ZK2hnOqJXHWmHdhunvfpYRiPxoGaWisoOh7UvG9HubFj1Zktn5/PakYrqVUczWlhdtXrE\nH9odlNu/SzcdvV7T6/W3D0Z3y6WwKo1qZ9qeyAFJUrVR03R+XmPRlLKhrBWYpYMpuV2ylpUJjiro\nDVjTJqLjCiqhm47esOEzpySVrflMdI+kgFar7YFQXZJi/og1z7B/SMO+rG462trwvsNaqc9YgXY6\nOKykN6t8rT3gnsfl1kRoj9Yay9byUoFhFcKlTjAY9Pg1HspY8+yPTmqhstKpWd4OzMN9N11ccikd\nTKkar1vbI+pJWsvbFZ1Qo9XszhPKKOoe6lunYmvNet+OyJjCrogqjVpn2t7IXuWbayrUC1p1uRX2\nBpUMxBV1j1rbOxPKWPsuFRhSwBOy2xpKqdpoWPONBIbVaNblXg+w3S63gu6A0sER+wZLcETZwKQq\nje7yxiNjqjTr1r5Tw2ftp1FPWt6K3daRqtFQUrrpqKztUVfB2h57oju1WMnpTK7b43g4mFCtNd5d\np0BGUW//ti3nZU2b1GEt55rrbZtXNppSNHdQYyMe1eJ1TednNRbNaJ/voBpNu20HPIfVirs68wyV\n9yscc2nhXFq1hYgaoxENj3k0mnqRqq3u9rg69WI9vvy4/uDbf9pp/3tfdJuyo16tPJ5RbSGq5mhE\n4we9UnVCx/ffrJnCjLKRrPbHdqleDmimNq2sf0xXjx/W2uqabjr69k47DgamNN+c7ttP+4eNWpKm\nC9Mai4zppdmXyJ1162vfaWhpYUih0aiuvjqlpeVV5U/vVWMho8BoRGPZkNbmy1qt1hXypXRs8pAk\n6Runq1KlKLc3ocOTB/WD2poVQo+nI9o7kVD5O83OtfvHptpPN1Sq3WkvOrw+bcN8L96ZVqN5i2YK\n08pGxvTSiaM6fXbNuimajAU0uSOhWm2q+74jaUmjfet5sriikeJuLS6tvzfq05G9I9b3w5GDo8qX\nGlZbfVLPtTWtulJ223YelW+nS61Wq3Odfs3RtNybXOMlqXgo3Zk2tSthzbMvG+l8l1zotPPfBfvH\nYxf83t7v7r3ZSN88i4t57c9GtT/bbvfiot1DHl1b8Q9CfvNe3jb7zVzveQryUrO0lOe42+Bi/rsH\nW4N9eHlj/13+2IeXvyv1Jsh2hOh3SXqzMebB9dfvNsackBRxHOejxpj3SbpP7ezso47jTA9aEK5M\nPrmtYP28I7uSz1qj1SO3Xn+s/32vmsroVVOZH3laSy0reDi8a0guuS54Wb3t98i1aXt7px3ZldQb\nXjrZ+RLyyqU3XGXPk0gk5FJ70ECXXEokEpJi0uoZqeWWmj7FQhlJbjUe36vaQlqN0aii6XYP0Mbj\n+1RbyKgxGtX41Smdy89LLbc8rYAm4/skNTRTWlD7tHVpZ2y3JJdO5c52po2GxiV5N1l+VMo9tT6f\nW9FQSpJbrfmYVMmr5Y0pm96hM4XZzrIm43sk+fuWFVVEM6Wl9bV0aSK2T5LHWlY0HVdUsc46qOnT\nZHyX5spLWnXlFPaGNDV8RJJXWj3bmScRGlMilNLy3D92lr9v6KAkl745983OtP1JI8m9ob1uZaO7\n+tZpOJ3VD1bPdZafjUxIcvW1dUhxPb2w0pk2np5QQ7Lmi6VHFFVSZwpz3c+M7JbksbZRe98tbNh3\nRi5Jz+S622IsskstuTS7UuqEopOZ/XKpqcW5b6yvp1t7hw6qJZeWy6VOQLl/6Ih8cqtxcq9q82k1\nUlGNpFN6anWms/xdiQPyyKXZ0wWpkpe8Me2b3CuXXDrzcPd9e65KyC3Je2q/WjNZebNRjaQTaiqu\nJ+YXO+9NpceVCknLazVN16c15h/TZOyAZpernXkm0pNyy9W3rEZIevI73e2TvTqhTEr6+++0j/fm\naFRTVw/LI6n13T2qz6XVSkc0ciwhl6RTj3aXl5xKqPHwHtXmU2qkotp31ZDcks4sVOV1uxX0e7Qj\nnZBbbr0u/RppQ3WcY8nDuuPwbTqzdk474+O6KnlELrm0OCRVKg2lh0LKhIakkLS4IhVzIxoJR5UK\nDSk9mZR0dWdZwcSQFp6eUmFhQsOeqNLpIaWUULHSaC8/Oq4jw1PtdmRf0Xd96b22ZpNDWlrrtiMd\nGlKm5zMl6fWTVyuVem3nOnR4Ykhqqns9nGhfDze7dl/ItNdPXm195sEdQ6rXJY/LpYlMVAd3DFp+\n/3oe3TusQqXRuZF5dO+I3Jt8P2zarp5rq3eTtkn912lp8++o3mkXMs+zTdv4XfBPee9GLrmecx4A\nAAAAuNK4Wq3efpSXpRZ3sbYXdxK3F9t/+7EPth/7YHux/bcf+2D7pVKxi13nht+8l7nNztOf/+Dv\nqBY/POAd2yu/dFa/9fOv1L59B7a7KZcMrrWXP/bh5Y39d/ljH17+tuA37yXJ/dyzAAAAAAAAAABw\nZSJEBwAAAAAAAABgAEJ0AAAAAAAAAAAGIEQHAAAAAAAAAGAAQnQAAAAAAAAAAAYgRAcAAAAAAAAA\nYABCdAAAAAAAAAAABiBEBwAAAAAAAABgAEJ0AAAAAAAAAAAGIEQHAAAAAAAAAGAAQnQAAAAAAAAA\nAAYgRAcAAAAAAAAAYABCdAAAAAAAAAAABiBEBwAAAAAAAABgAEJ0AAAAAAAAAAAGIEQHAAAAAAAA\nAGAAQnQAAAAAAAAAAAYgRAcAAAAAAAAAYABCdAAAAAAAAAAABiBEBwAAAAAAAABgAEJ0AAAAAAAA\nAAAGIEQHAAAAAAAAAGAAQnQAAAAAAAAAAAYgRAcAAAAAAAAAYABCdAAAAAAAAAAABiBEBwAAAAAA\nAABgAEJ0AAAAAAAAAAAGIEQHAAAAAAAAAGAAQnQAAAAAAAAAAAYgRAcAAAAAAAAAYABCdAAAAAAA\nAAAABiBEBwAAAAAAAABgAEJ0AAAAAAAAAAAGIEQHAAAAAAAAAGAAQnQAAAAAAAAAAAYgRAcAAAAA\nAAAAYABCdAAAAAAAAAAABiBEBwAAAAAAAABgAEJ0AAAAAAAAAAAGIEQHAAAAAAAAAGAAQnQAAAAA\nAAAAAAYgRAcAAAAAAAAAYABCdAAAAAAAAAAABiBEBwAAAAAAAABgAEJ0AAAAAAAAAAAGIEQHAAAA\nAAAAAGAAQnQAAAAAAAAAAAYgRAcAAAAAAAAAYABCdAAAAAAAAAAABiBEBwAAAAAAAABgAEJ0AAAA\nAAAAAAAGIEQHAAAAAAAAAGAAQnQAAAAAAAAAAAYgRAcAAAAAAAAAYABCdAAAAAAAAAAABiBEBwAA\nAAAAAABgAEJ0AAAAAAAAAAAGIEQHAAAAAAAAAGAAQnQAAAAAAAAAAAYgRAcAAAAAAAAAYABCdAAA\nAAAAAAAABiBEBwAAAAAAAABgAEJ0AAAAAAAAAAAGIEQHAAAAAAAAAGAAQnQAAAAAAAAAAAYgRAcA\nAAAAAAAAYABCdAAAAAAAAAAABiBEBwAAAAAAAABgAEJ0AAAAAAAAAAAGIEQHAAAAAAAAAGAAQnQA\nAAAAAAAAAAYgRAcAAAAAAAAAYABCdAAAAAAAAAAABiBEBwAAAAAAAABgAEJ0AAAAAAAAAAAGIEQH\nAAAAAAAAAGAAQnQAAAAAAAAAAAYgRAcAAAAAAAAAYABCdAAAAAAAAAAABiBEBwAAAAAAAABgAEJ0\nAAAAAAAAAAAGIEQHAAAAAAAAAGAAQnQAAAAAAAAAAAYgRAcAAAAAAAAAYABCdAAAAAAAAAAABiBE\nBwAAAAAAAABgAEJ0AAAAAAAAAAAGIEQHAAAAAAAAAGAAQnQAAAAAAAAAAAYgRAcAAAAAAAAAYABC\ndAAAAAAAAAAABiBEBwAAAAAAAABgAEJ0AAAAAAAAAAAGIEQHAAAAAAAAAGAAQnQAAAAAAAAAAAYg\nRAcAAAAAAAAAYABCdAAAAAAAAAAABiBEBwAAAAAAAABgAEJ0AAAAAAAAAAAGIEQHAAAAAAAAAGAA\nQnQAAAAAAAAAAAYgRAcAAAAAAAAAYABCdAAAAAAAAAAABiBEBwAAAAAAAABgAEJ0AAAAAAAAAAAG\nIEQHAAAAAAAAAGAA71Z/oDEmKOnPJKUlrUm6w3GcxZ55PizpNZJy65NucBwnJwAAAAAAAAAAttCW\nh+iSfkHSw47j/Lox5rikX5P0r3rmeYmktziOs7TlrQMAAAAAAAAAYN12lHN5raQvr//3lyS9aeMf\njTEuSQck/YEx5gFjzLu3uH0AAAAAAAAAAEi6yD3RjTHvkfTLklrrk1ySZiStrr/OSYr3vC0i6SOS\nPrTevr8xxnzDcZxHLmZbAQAAAGCr1fIzatYa292MTbVyi/J4XntB8/7N33zlIrfmR/PGN77puWfS\nc69HIhHW6mrx+WjSP9nztQ7bbbvX4/nah9u9Hs+Hy3EdNtt/l+N6bOaFsB4vhHWQLnw9cGVxtVqt\n557reWSM+ayk33Ic55vGmLikBxzHuWrD392Swo7j5Ndf/59ql3/58y1tKAAAAAAAAADgircd5Vwe\nlHTt+n9fK+n+nr8flPSgMcZljPGpXf7lW1vYPgAAAAAAAAAAJG3PwKK/L+ljxpj7JVUk3SxJxphf\nlnTScZx7jTF/KukhSVVJH3Mc59FtaCcAAAAAAAAA4Aq35eVcAAAAAAAAAAC4XGxHORcAAAAAAAAA\nAC4LhOgAAAAAAAAAAAxAiA4AAAAAAAAAwACE6AAAAAAAAKGLaHMAAAwjSURBVAAADODd7gb8sIwx\ncUl/JikuySfpfY7jPGSMeaWkD0uqSforx3F+fRub+YJmjHFJ+j1JV0sqS/pZx3F+sL2teuEzxngl\n/ZGk3ZL8kn5D0vcl/YmkpqRHHMf5pe1q35XCGJOW9E1Jb5LUENt/SxljflXS9Wpf/39P0lfFPtgy\n69ehj6l9HapLeq84D7aMMeYVkv6D4zhvNMbs0ybb3RjzXkk/p/bvod9wHOcL29XeF5qe7f9jkj6i\n9nlQkXS74zjzz9f2N8YE1f69m5a0JukOx3EWe+b5sKTXSMqtT7rBcZycsK2e63eyMeZtkn5N7WPk\njx3H+ei2NBSbuoD9968k/aykufVJP+84zsktbyie08Zrds90zsHLxLPsQ87DS9hmuYXjOPds+Dvn\n4CXuAvbhFXcOXs490d8n6SuO47xB0rvV/pEjSb8v6SbHcV4n6RXGmKu3qX1XgrdLCjiO82pJH5D0\noW1uz5XiVkkLjuO8XtJPSvodtbf9Bx3H+XFJbmPMDdvZwBe69S+T/0dScX0S238LGWN+XNKr1q89\nb5A0KfbBVrtWksdxnNdI+t8l/abYB1vCGPMrkv5QUmB9Ut92N8ZkJP1LSa9S+3vit4wxvm1p8AvM\nJtv/w5J+yXGcn5B0l6R/+zxv/1+Q9PD6d/7H1f7HZq+XSHqL4zg/sf4/AvRLw8Dfyeu/Iz6k9o34\nN0j6OWNMajsaiYGe6985L5F024bz7gUdGlyuNrlmn5/OOXiZGLQP13EeXto25hbXqJ1bSOIcvIwM\n3Ifrrrhz8HIO0T8k6b+u/7dPUskYE5Pkdxzn1Pr0v1T7pMTF8VpJX5Ykx3EekvTS7W3OFeMv1P1H\ntEft3m8vdhzn/vVpXxLH/cX2n9S+YXdOkkts/632FkmPGGP+u6S7Jd0r9sFWe1ySd72nXkLtHiTs\ng63xhKQbN7x+Sc92f7Okl0t6wHGcuuM4a5JOSrpqa5v5gtW7/Y87jvPd9f/2qt1j9fnc/p3fWtrk\nvFo/Bw9I+gNjzAPGmHf/kJ+D59+z/U6eknTScZw1x3Fqkh6Q9PqtbyKexXP9O+clkj5gjLl//ek4\nXJp6r9nncQ5ePgbtQ4nz8FK3Mbdwq/3vhfM4By8Pz7YPpSvwHLwsQnRjzHuMMd81xjx8/v8lHXAc\np2KMyardM+dX1S7tsrbhrTm1/3GPiyMuaXXD67ox5rI4pi5njuMUHccprN80+m+S/p3aQe55HPcX\nkTHmTklzjuP8lbrbfeNxz/a/+EbV/sL+abV7af652AdbLS9pj6TH1L6h/RFxHdoSjuPcpfbN0/N6\nt3tcUkz293Ne7I/nRe/2dxxnVpKMMa+W9EuS/rP6fx9d0Pbv+b37sDHmuz3LOr9/N4qoff7dqnav\n9180xhz9YdYNz7tn+53c+zeumZee5/p3zicl/XNJb5T0WmPMtVvZOFyYTb4zz+McvEw8yz6UOA8v\naQNyi/M4By8Dz7EPpSvwHLwsaqI7jvNHatfhsRhjjkn6hKT3O47zwPqO3fiPi5ikla1p5RVpTe1t\nfJ7bcZzmdjXmSmKMmZD0OUm/4zjOp4wx/9eGP3PcX1zvltQ0xrxZ7TqZfypp46NnbP+Lb1HSo47j\n1CU9bowpS9q54e/sg4vvlyV92XGcf2eM2SHpb9Wuk3ce+2DrbPzePb/d18TvoS1jjDmudrmHax3H\nWTTG/FDbf7Pfu8aYz6r7W2uz5RQlfcRxnPL6/P9D7e+mR36IVcHz69l+J3OOXvqe6985v73+pImM\nMV+Q9CJJX9zC9uFHwzn4wsB5eInryS0+veFPnIOXiWfZh9IVeA5etr2GjTGH1X604GbHce6TpPUa\nkBVjzJ71x1vfIun+Z1kMfjQPql0XV+sDun732WfH82G91upfSvo3juN8bH3yt40x5x9/ukYc9xeN\n4zg/7jjOG9cHtvn/JN0m6Uts/y31gNo9LmWMGVe7J+Zfr9dKl9gHW2FJ3d4jK2rflP82+2BbfGuT\n68831O4N4jfGJCQdEqHqRWGMuVXtHuhvcBzn6fXJX9fzt/07v7XW/7/3vDoo6UFjjGu97vprJX3r\nh/wsPL+e7Xfyo5L2G2OGjDF+tR9h/9rWNxHPYuD+M8bE1S4rF17/N+dPSPrHbWklLpSr5zXn4OXH\n2oech5e+AbnFeZyDl4Fn24dX6jl4WfREH+A31R5c4rfXd9iK4zg3qv1o/yfUvkFwn+M439jGNr7Q\n3SXpzcaYB9dfU4dza3xA0pCkXzPG/K+SWpL+Z0n/Zf0f0I9K+sw2tu9K9K8l/SHbf2s4jvMFY8zr\njDFfV/sH9S9IOiXpo+yDLfNhSX9kjPmq2uOS/KraP5rYB1uv7/rjOE7LGPMRtW84udQeeLS6nY18\nIVov7fDbkp6WdJcxpiXp7xzH+ffP4/b/fUkfM8bcL6ki6eb1z/5ltWuJ3muM+VNJD0mqSvqY4ziP\n/kgrhudL3+9kY8wJSRHHcT5qjHmfpPvUPkY+6jjO9HY1FJt6rv33AbWfwipL+mvHcb48YDm4NLQk\niXPwsrbZPuQ8vLRtllv8oTgHLyfPtQ+vuHPQ1Wq1trsNAAAAAAAAAABcki7bci4AAAAAAAAAAFxs\nhOgAAAAAAAAAAAxAiA4AAAAAAAAAwACE6AAAAAAAAAAADODd7gYAAAAAAAAAALaGMeYVkv6D4zhv\nHPD3t0j6VUkttTthv1bSEcdxnK1r5aXF1Wq1trsNAAAAAAAAAICLzBjzK5Juk5R3HOfVFzD/v5aU\ncBzn1y564y5h9EQHAPQxxvy6pLrjOL++/vp1ku6SdHp9lm87jvMz29U+AAAA4Ie1/tv2w2pnIk9J\nusNxnFVjzJCkP5e0Q1JZ0s85jvPw9rUUAC6KJyTdKOnjkmSMOSbpt9f/tijpPY7j5Nb/tlPSrZJe\ntg3tvKRQEx0A0GGMiRtjPirpfT1/epmk/+g4zovX/0eADgAAgMvV/yvpVsdxrpb0qKRfWZ/+PkkP\nO47zY5L+D0m/u03tA4CLxnGcuyTVN0z6A0m/6DjOT0j6kqR/u+FvvyzpPzuOU9vCJl6S6IkOAC8w\nxpjPSvpzx3E+t/76G5LeL+k3JIUkJSX9G8dxPmuM+WNJI5L2Sfo3koYlPS7p/+5Z7MskpY0xx9Xu\njf4vHMc5sxXrAwAAAPT6EX/zTjmO0zDG+NTudf6d9cV6JMXW/zsqqbhV6wMA22hK0u8ZYyTJJ+mk\nJBljXJKuk/TB7WvapYMQHQBeeD4u6RZJnzPG7Ff7HxH/QtLPOI7zuDHmjWo/vvrZ9fkXHMe5fuMC\njDH/W88ylyV9wnGce4wxPy/pU2oPLAIAAABshx/pN68x5qikr0iqSvrA+uT/JOkfjDFn1Q7T37wl\nawIA2+sxSbc7jnPGGPNqSdn16UclPeo4TmX7mnbpoJwLALzwfEHSK4wxEUknJP2Z2jXMjhlj/he1\ne+hEN8z/0HMt0HGcX3Qc5571//6vko4YY2LP8TYAAADgYvmRfvM6jvOI4zhZtcu2/MX65N+V9BHH\ncXZI+meS/sIYE764qwEA2+4XJX3cGHO/pN+SdH4siP+/vTtm0eIKwzB8W4mNVRp75dS2dqkUBMWE\nJN1GxD9gaWPrL7DSztXKJpAiTSBFDLFQAoJwGsHSRguFBIRsim9Ai3yyLrq77F5XM2eGmcOZ7uXh\nnTOjer5nq9pndKIDHDBzzndjjJ+ri9V31fnqYfVr9dtyvPfBI39/bL7lE67r1c0559Zyeas69Hui\nAQCwN3Za844xjlbn5pw/Ldc3W3WgV12ori7z/znGeNlqm4PHX/RlAHbZnPNFdWYZP6m+/p97HlQP\ndnlp+5ZOdICDabNV982r6m11srox5/ylOttqv8dtWYLzS9W3VWOMjerRnPOfz71oAAD4BDuped9V\nt8YYp5fzH6rfl/FfrerexhinqhOt/hcEwCEnRAc4gOacf1THq7tzztfVnerZGONx9VV1bIxxrFVH\n+XZsVNfGGE+rH1s6dAAAYK/spOadc/5bfV/dHmM8qb7pfW17ubqy1Lz3W+0R/Ga33geA/evI1tZ2\n8xMAAAAAADhcdKIDAAAAAMAaQnQAAAAAAFhDiA4AAAAAAGsI0QEAAAAAYA0hOgAAAAAArCFEBwAA\nAACANYToAAAAAACwxn+nxgfESKIGJQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0xb47b240>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "top_k_feature_pairwise_plot(df, filtered_feat_imp_list[:2], 'TARGET')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
staeiou/wiki-stat-notebooks
botvbot/exploratory-botplots-samples.ipynb
1
81471
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Bot-vs-bot reverts\n", "## Getting and processing data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "--2017-03-10 21:44:24-- https://quarry.wmflabs.org/run/161195/output/0/tsv?download=true\n", "Resolving quarry.wmflabs.org (quarry.wmflabs.org)... 10.68.21.68\n", "Connecting to quarry.wmflabs.org (quarry.wmflabs.org)|10.68.21.68|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: unspecified [text/csv]\n", "Saving to: ‘enwiki-botvbot-pagetitles.tsv’\n", "\n", "enwiki-botvbot-page [ <=> ] 36.78M 3.61MB/s in 11s \n", "\n", "2017-03-10 21:44:35 (3.41 MB/s) - ‘enwiki-botvbot-pagetitles.tsv’ saved [38564767]\n", "\n" ] } ], "source": [ "# bot-vs-bot revert table: https://quarry.wmflabs.org/query/17237\n", "\n", "!wget https://quarry.wmflabs.org/run/161195/output/0/tsv?download=true -O enwiki-botvbot-pagetitles.tsv" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting ftfy\n", " Downloading ftfy-5.0.1.tar.gz\n", "Requirement already satisfied: html5lib in /srv/paws/lib/python3.4/site-packages (from ftfy)\n", "Requirement already satisfied: wcwidth in /srv/paws/lib/python3.4/site-packages (from ftfy)\n", "Requirement already satisfied: six in /srv/paws/lib/python3.4/site-packages (from html5lib->ftfy)\n", "Installing collected packages: ftfy\n", " Running setup.py install for ftfy ... \u001b[?25l-\b \b\\\b \bdone\n", "\u001b[?25hSuccessfully installed ftfy-5.0.1\n" ] } ], "source": [ "import pandas as pd\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "!pip install ftfy\n", "import ftfy" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "158606" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv(\"enwiki-botvbot-pagetitles.tsv\", sep=\"\\t\", encoding='utf-8')\n", "len(df)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['rev_id', 'rev_timestamp', 'rev_user', 'rev_user_text', 'rev_page',\n", " 'rev_sha1', 'rev_minor_edit', 'rev_deleted', 'rev_parent_id',\n", " 'archived', 'reverting_id', 'reverting_timestamp', 'reverting_user',\n", " 'reverting_user_text', 'reverting_page', 'reverting_sha1',\n", " 'reverting_minor_edit', 'reverting_deleted', 'reverting_parent_id',\n", " 'reverting_archived', 'rev_revert_offset', 'revisions_reverted',\n", " 'reverted_to_rev_id', 'page_namespace', 'page_title'],\n", " dtype='object')\n" ] } ], "source": [ "print(df.columns)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>rev_id</th>\n", " <th>rev_timestamp</th>\n", " <th>rev_user</th>\n", " <th>rev_user_text</th>\n", " <th>rev_page</th>\n", " <th>rev_sha1</th>\n", " <th>rev_minor_edit</th>\n", " <th>rev_deleted</th>\n", " <th>rev_parent_id</th>\n", " <th>archived</th>\n", " <th>...</th>\n", " <th>reverting_sha1</th>\n", " <th>reverting_minor_edit</th>\n", " <th>reverting_deleted</th>\n", " <th>reverting_parent_id</th>\n", " <th>reverting_archived</th>\n", " <th>rev_revert_offset</th>\n", " <th>revisions_reverted</th>\n", " <th>reverted_to_rev_id</th>\n", " <th>page_namespace</th>\n", " <th>page_title</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>56161718</td>\n", " <td>20060531172522</td>\n", " <td>91310</td>\n", " <td>CanisRufus</td>\n", " <td>584516</td>\n", " <td>1lyohbi8ymubjfzdb4w4ssfiflfpgat</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>54170358</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>b3lf3olmh1hw99f68tjh187jl7dzi1j</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>56161718</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>54170358</td>\n", " <td>0</td>\n", " <td>Sharon_Pratt_Kelly</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>56161633</td>\n", " <td>20060531172452</td>\n", " <td>91310</td>\n", " <td>CanisRufus</td>\n", " <td>793703</td>\n", " <td>bxfv9z3d7uypsla28qfioc5qs4l963w</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>54169562</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>1nlk1pfhntoa3m0inrdpotrqb5ajxif</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>56161633</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>54169562</td>\n", " <td>0</td>\n", " <td>Anthony_A._Williams</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>103117636</td>\n", " <td>20070125105128</td>\n", " <td>234358</td>\n", " <td>Mathbot</td>\n", " <td>5202035</td>\n", " <td>6ruzx0gegy5xy0mw5yxsdnh1fir7mwd</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>102641383</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>c6uu9wkg34ko0nidqakdktfkkvcds3k</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>104315087</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>102641383</td>\n", " <td>4</td>\n", " <td>Version_1.0_Editorial_Team/Core_topics_article...</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>105582355</td>\n", " <td>20070204154028</td>\n", " <td>234358</td>\n", " <td>Mathbot</td>\n", " <td>6744678</td>\n", " <td>p14vq3lzxeu50upo1ax9h3ya2hrz1hv</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>104618440</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>qaiydx752b8av3qp2zbnfpqspttpw91</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>105582355</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>104618440</td>\n", " <td>4</td>\n", " <td>Version_1.0_Editorial_Team/Medicine_articles_b...</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>105627219</td>\n", " <td>20070204194135</td>\n", " <td>234358</td>\n", " <td>Mathbot</td>\n", " <td>8468041</td>\n", " <td>rebsad1ch2hvs85nhf0nwm2r8ukboil</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>104982162</td>\n", " <td>0</td>\n", " <td>...</td>\n", " <td>3lda2892o6z3p29r8xipbqh780h2rph</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>105627219</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>104982162</td>\n", " <td>4</td>\n", " <td>Version_1.0_Editorial_Team/Soft_drinks_article...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows × 25 columns</p>\n", "</div>" ], "text/plain": [ " rev_id rev_timestamp rev_user rev_user_text rev_page \\\n", "0 56161718 20060531172522 91310 CanisRufus 584516 \n", "1 56161633 20060531172452 91310 CanisRufus 793703 \n", "2 103117636 20070125105128 234358 Mathbot 5202035 \n", "3 105582355 20070204154028 234358 Mathbot 6744678 \n", "4 105627219 20070204194135 234358 Mathbot 8468041 \n", "\n", " rev_sha1 rev_minor_edit rev_deleted \\\n", "0 1lyohbi8ymubjfzdb4w4ssfiflfpgat 1 0 \n", "1 bxfv9z3d7uypsla28qfioc5qs4l963w 1 0 \n", "2 6ruzx0gegy5xy0mw5yxsdnh1fir7mwd 0 0 \n", "3 p14vq3lzxeu50upo1ax9h3ya2hrz1hv 0 0 \n", "4 rebsad1ch2hvs85nhf0nwm2r8ukboil 0 0 \n", "\n", " rev_parent_id archived ... \\\n", "0 54170358 0 ... \n", "1 54169562 0 ... \n", "2 102641383 0 ... \n", "3 104618440 0 ... \n", "4 104982162 0 ... \n", "\n", " reverting_sha1 reverting_minor_edit reverting_deleted \\\n", "0 b3lf3olmh1hw99f68tjh187jl7dzi1j 1 0 \n", "1 1nlk1pfhntoa3m0inrdpotrqb5ajxif 1 0 \n", "2 c6uu9wkg34ko0nidqakdktfkkvcds3k 0 0 \n", "3 qaiydx752b8av3qp2zbnfpqspttpw91 0 0 \n", "4 3lda2892o6z3p29r8xipbqh780h2rph 0 0 \n", "\n", " reverting_parent_id reverting_archived rev_revert_offset \\\n", "0 56161718 0 1 \n", "1 56161633 0 1 \n", "2 104315087 0 1 \n", "3 105582355 0 1 \n", "4 105627219 0 1 \n", "\n", " revisions_reverted reverted_to_rev_id page_namespace \\\n", "0 1 54170358 0 \n", "1 1 54169562 0 \n", "2 3 102641383 4 \n", "3 1 104618440 4 \n", "4 1 104982162 4 \n", "\n", " page_title \n", "0 Sharon_Pratt_Kelly \n", "1 Anthony_A._Williams \n", "2 Version_1.0_Editorial_Team/Core_topics_article... \n", "3 Version_1.0_Editorial_Team/Medicine_articles_b... \n", "4 Version_1.0_Editorial_Team/Soft_drinks_article... \n", "\n", "[5 rows x 25 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[0:5]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "df['reverting_timestamp_dt'] = pd.to_datetime(df['reverting_timestamp'], format=\"%Y%m%d%H%M%S\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "df = df.set_index('reverting_timestamp_dt')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#df = df[df['page_namespace'] == 0].copy()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "ename": "AttributeError", "evalue": "'Series' object has no attribute 'find'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-21-427b3df18e94>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'usertext_pair'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mftfy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfix_text\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'reverting_user_text'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m\" reverting \"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mftfy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfix_text\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'rev_user_text'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'usertext_pair'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalue_counts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhead\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/srv/paws/lib/python3.4/site-packages/ftfy/__init__.py\u001b[0m in \u001b[0;36mfix_text\u001b[0;34m(text, fix_entities, remove_terminal_escapes, fix_encoding, fix_latin_ligatures, fix_character_width, uncurl_quotes, fix_line_breaks, fix_surrogates, remove_control_chars, remove_bom, normalization, max_decode_length)\u001b[0m\n\u001b[1;32m 153\u001b[0m \u001b[0mpos\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 154\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0mpos\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 155\u001b[0;31m \u001b[0mtextbreak\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'\\n'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpos\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 156\u001b[0m \u001b[0mfix_encoding_this_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfix_encoding\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 157\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtextbreak\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/srv/paws/lib/python3.4/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 2742\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2743\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2744\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2745\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2746\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__setattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mAttributeError\u001b[0m: 'Series' object has no attribute 'find'" ] } ], "source": [ "df['usertext_pair'] = df['reverting_user_text'] + \" reverting \" + df['rev_user_text']\n", "df['usertext_pair'].value_counts().head()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array(['Cydebot reverting CanisRufus', 'Cydebot reverting CanisRufus',\n", " 'WP 1.0 bot reverting Mathbot', ...,\n", " 'Citation bot reverting Citation bot 2',\n", " 'AvicBot reverting EmausBot', 'DumbBOT reverting Lowercase sigmabot'], dtype=object)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['usertext_pair'].values" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "gp = df.groupby(['usertext_pair'])" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 83295\n", "4 31227\n", "14 27417\n", "1 10354\n", "3 3365\n", "2 1350\n", "10 890\n", "5 253\n", "11 204\n", "6 177\n", "109 28\n", "100 27\n", "7 5\n", "108 4\n", "101 3\n", "118 3\n", "12 2\n", "15 2\n", "Name: page_namespace, dtype: int64" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['page_namespace'].value_counts()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def botpair_ns_table(botpair_df):\n", " tablestr = \"Reverts by namespace<br>\\n\"\n", " for x, y in botpair_df.page_namespace.value_counts().iteritems():\n", " namespaces_dict={0: \"Article:\", \n", " 1: \"Talk:\",\n", " 2:\"User:\",\n", " 3: \"User_talk:\",\n", " 4:\"Wikipedia:\",\n", " 5: \"Wikipedia_talk:\",\n", " 6:\"File:\",\n", " 7:\"File_talk:\",\n", " 8:\"MediaWiki:\",\n", " 9:\"MediaWiki_talk:\",\n", " 10:\"Template:\", \n", " 11:\"Template_talk:\",\n", " 12:\"Help:\",\n", " 13:\"Help_talk:\",\n", " 14:\"Category:\", \n", " 15:\"Category_talk:\",\n", " 100:\"Portal:\",\n", " 101:\"Portal_talk:\",\n", " 108:\"Book:\",\n", " 109:\"Book_talk:\",\n", " 118:\"Draft:\"}\n", " \n", " tablestr = tablestr + namespaces_dict[x] + \" \" + str(y) + \"<br>\\n\"\n", " return tablestr\n", " " ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "namespaces_dict={0: \"\", \n", " 1: \"Talk:\",\n", " 2:\"User:\",\n", " 3: \"User_talk:\",\n", " 4:\"Wikipedia:\",\n", " 5: \"Wikipedia_talk:\",\n", " 6:\"File:\",\n", " 7:\"File_talk:\",\n", " 8:\"MediaWiki:\",\n", " 9:\"MediaWiki_talk:\",\n", " 10:\"Template:\", \n", " 11:\"Template_talk:\",\n", " 12:\"Help:\",\n", " 13:\"Help_talk:\",\n", " 14:\"Category:\", \n", " 15:\"Category_talk:\",\n", " 100:\"Portal:\",\n", " 101:\"Portal_talk:\",\n", " 108:\"Book:\",\n", " 109:\"Book_talk:\",\n", " 118:\"Draft:\"}" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with open(\"botvbot.html\", \"w\") as f:\n", " f.write(\"<h1>Bot vs bot reverts on enwiki</h1>\")\n", " f.write(\"<p>For bot-bot pairs with more than 20 reverts</p>\")\n", " f.write(\"<p>Jupyter notebook for this code <a href=\\\"http://paws-public.wmflabs.org/paws-public/User:Staeiou/wiki-stat-notebooks/botvbot/exploratory-botplots-samples.ipynb#\\\"> here</a></p>\")\n", " for botpair in df['usertext_pair'].unique():\n", " botpair_df = df[df['usertext_pair'] == botpair]\n", " total_reverts = len(botpair_df)\n", " if total_reverts > 20:\n", " \n", " first_revert = df[df['usertext_pair'] == botpair].index.min()\n", " last_revert = df[df['usertext_pair'] == botpair].index.max()\n", " sample = df[df['usertext_pair'] == botpair].sample(2) \n", " count = 0\n", " f.write(\"<h2>\" + ftfy.fix_text(botpair) + \"</h2>\\n\")\n", " f.write(\"<p>Total reverts: \" + str(total_reverts) + \"</p>\\n\")\n", " f.write(botpair_ns_table(botpair_df))\n", " f.write(\"<p>First revert: \" + str(first_revert) + \"</p>\\n\")\n", " f.write(\"<p>Last revert: \" + str(last_revert) + \"</p>\\n\")\n", " f.write(\"<p>Random examples: \")\n", " \n", " for revid in df[df['usertext_pair'] == botpair].sample(20).iterrows():\n", " page_title = namespaces_dict[revid[1].page_namespace] + revid[1].page_title\n", " \n", " f.write(\"<a href=\\\"https://en.wikipedia.org/w/index.php?title=\" + page_title + \"&diff=prev&oldid=\" + str(revid[1].reverting_id) + \"\\\">\" + str(count) + \"</a> \")\n", " count = count + 1" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (<ipython-input-49-69398291b023>, line 30)", "output_type": "error", "traceback": [ "\u001b[0;36m File \u001b[0;32m\"<ipython-input-49-69398291b023>\"\u001b[0;36m, line \u001b[0;32m30\u001b[0m\n\u001b[0;31m \"ex0\":ex{0},\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ "output_df = pd.DataFrame(columns=[\"reverting_bot\", \"reverted_bot\", \"total_reverts\", \"ns0_reverts\", \"ex0\", \"ex1\", \"ex2\", \"ex3\", \"ex4\", \"ex5\", \"ex6\", \"ex7\", \"ex8\", \"ex9\", \"ex10\"])\n", "\n", "with open(\"botvbot.tsv\", \"w\") as f:\n", " for botpair in df['usertext_pair'].unique():\n", " botpair_df = df[df['usertext_pair'] == botpair]\n", " total_reverts = len(botpair_df)\n", " ns0_reverts = len(botpair_df[botpair_df['page_namespace'] == 0])\n", " if total_reverts > 20:\n", " sample = df[df['usertext_pair'] == botpair].sample(1) \n", " \n", " reverting_user_text_link = \"=HYPERLINK(\\\"http://enwp.org/User:\" + sample.reverting_user_text[0] + \"\\\",\\\"\" + sample.reverting_user_text[0] + \"\\\")\"\n", " rev_user_text_link = \"=HYPERLINK(\\\"http://enwp.org/User:\" + sample.rev_user_text[0] + \"\\\",\\\"\" + sample.rev_user_text[0] + \"\\\")\"\n", "\n", " first_revert = df[df['usertext_pair'] == botpair].index.min()\n", " last_revert = df[df['usertext_pair'] == botpair].index.max()\n", "\n", " ex = {}\n", " count = 0\n", "\n", " for revid in df[df['usertext_pair'] == botpair].sample(10).iterrows():\n", " page_title = namespaces_dict[revid[1].page_namespace] + revid[1].page_title\n", " ex[count] = \"=HYPERLINK(\\\"https://en.wikipedia.org/w/index.php?title=\" + page_title + \"&diff=prev&oldid=\" + str(revid[1].reverting_id) + \"\\\",\\\"diff\\\")\"\n", " \n", " count = count + 1\n", " \n", " output_df = output_df.append({\"reverting_bot\":reverting_user_text_link,\n", " \"reverted_bot\":rev_user_text_link,\n", " \"total_reverts\": total_reverts,\n", " \"ns0_reverts\":ns0_reverts,\n", " \"ex0\":ex{0},\n", " \"ex1\":ex{1},\n", " \"ex2\":ex{2},\n", " \"ex3\":ex{3},\n", " \"ex4\":ex{4},\n", " \"ex5\":ex{5},\n", " \"ex6\":ex{6},\n", " \"ex7\":ex{7},\n", " \"ex8\":ex{8},\n", " \"ex9\":ex{9}},\n", " ignore_index=True)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>reverting_bot</th>\n", " <th>reverted_bot</th>\n", " <th>total_reverts</th>\n", " <th>ns0_reverts</th>\n", " <th>examples</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>&lt;a href=\"http://enwp.org/User:FrescoBot\"&gt;Fresc...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Mathbot\"&gt;Mathbot...</td>\n", " <td>58.0</td>\n", " <td>58.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Addbot\"&gt;Addbot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Chobot\"&gt;Chobot&lt;/a&gt;</td>\n", " <td>1825.0</td>\n", " <td>154.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Xqbot\"&gt;Xqbot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Chobot\"&gt;Chobot&lt;/a&gt;</td>\n", " <td>34.0</td>\n", " <td>34.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>&lt;a href=\"http://enwp.org/User:EmausBot\"&gt;EmausB...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Chobot\"&gt;Chobot&lt;/a&gt;</td>\n", " <td>294.0</td>\n", " <td>92.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>&lt;a href=\"http://enwp.org/User:KLBot2\"&gt;KLBot2&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Chobot\"&gt;Chobot&lt;/a&gt;</td>\n", " <td>172.0</td>\n", " <td>7.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>&lt;a href=\"http://enwp.org/User:タチコマ robot\"&gt;タチコマ...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:RussBot\"&gt;RussBot...</td>\n", " <td>2056.0</td>\n", " <td>1981.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Cydebot\"&gt;Cydebot...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:RussBot\"&gt;RussBot...</td>\n", " <td>964.0</td>\n", " <td>882.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>&lt;a href=\"http://enwp.org/User:BOTijo\"&gt;BOTijo&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:RussBot\"&gt;RussBot...</td>\n", " <td>31.0</td>\n", " <td>31.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Addbot\"&gt;Addbot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:RussBot\"&gt;RussBot...</td>\n", " <td>402.0</td>\n", " <td>396.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Xqbot\"&gt;Xqbot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:RussBot\"&gt;RussBot...</td>\n", " <td>5163.0</td>\n", " <td>4689.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Thehelpfulbot\"&gt;T...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:RussBot\"&gt;RussBot...</td>\n", " <td>55.0</td>\n", " <td>18.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>&lt;a href=\"http://enwp.org/User:EmausBot\"&gt;EmausB...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:RussBot\"&gt;RussBot...</td>\n", " <td>878.0</td>\n", " <td>836.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>&lt;a href=\"http://enwp.org/User:AvicBot\"&gt;AvicBot...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:RussBot\"&gt;RussBot...</td>\n", " <td>1789.0</td>\n", " <td>1528.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>&lt;a href=\"http://enwp.org/User:ArmbrustBot\"&gt;Arm...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:RussBot\"&gt;RussBot...</td>\n", " <td>24.0</td>\n", " <td>8.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>&lt;a href=\"http://enwp.org/User:RussBot\"&gt;RussBot...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:タチコマ robot\"&gt;タチコマ...</td>\n", " <td>1354.0</td>\n", " <td>1232.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>&lt;a href=\"http://enwp.org/User:BOTijo\"&gt;BOTijo&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:タチコマ robot\"&gt;タチコマ...</td>\n", " <td>21.0</td>\n", " <td>21.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Addbot\"&gt;Addbot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:タチコマ robot\"&gt;タチコマ...</td>\n", " <td>34.0</td>\n", " <td>33.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Xqbot\"&gt;Xqbot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:タチコマ robot\"&gt;タチコマ...</td>\n", " <td>1076.0</td>\n", " <td>999.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Thehelpfulbot\"&gt;T...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:タチコマ robot\"&gt;タチコマ...</td>\n", " <td>31.0</td>\n", " <td>26.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>&lt;a href=\"http://enwp.org/User:EmausBot\"&gt;EmausB...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:タチコマ robot\"&gt;タチコマ...</td>\n", " <td>223.0</td>\n", " <td>211.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>&lt;a href=\"http://enwp.org/User:AvicBot\"&gt;AvicBot...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:タチコマ robot\"&gt;タチコマ...</td>\n", " <td>528.0</td>\n", " <td>463.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>&lt;a href=\"http://enwp.org/User:ClueBot III\"&gt;Clu...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:SuggestBot\"&gt;Sugg...</td>\n", " <td>296.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Lowercase sigmab...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:SuggestBot\"&gt;Sugg...</td>\n", " <td>38.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>&lt;a href=\"http://enwp.org/User:ClueBot III\"&gt;Clu...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:MiszaBot\"&gt;MiszaB...</td>\n", " <td>68.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>&lt;a href=\"http://enwp.org/User:RussBot\"&gt;RussBot...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Cydebot\"&gt;Cydebot...</td>\n", " <td>1174.0</td>\n", " <td>969.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>&lt;a href=\"http://enwp.org/User:ArmbrustBot\"&gt;Arm...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Cydebot\"&gt;Cydebot...</td>\n", " <td>86.0</td>\n", " <td>45.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Addbot\"&gt;Addbot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:JAnDbot\"&gt;JAnDbot...</td>\n", " <td>165.0</td>\n", " <td>59.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Xqbot\"&gt;Xqbot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:JAnDbot\"&gt;JAnDbot...</td>\n", " <td>35.0</td>\n", " <td>32.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>&lt;a href=\"http://enwp.org/User:EmausBot\"&gt;EmausB...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:JAnDbot\"&gt;JAnDbot...</td>\n", " <td>63.0</td>\n", " <td>30.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>&lt;a href=\"http://enwp.org/User:KLBot2\"&gt;KLBot2&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:JAnDbot\"&gt;JAnDbot...</td>\n", " <td>24.0</td>\n", " <td>5.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>142</th>\n", " <td>&lt;a href=\"http://enwp.org/User:ClueBot III\"&gt;Clu...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:DPL bot\"&gt;DPL bot...</td>\n", " <td>160.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>143</th>\n", " <td>&lt;a href=\"http://enwp.org/User:EmausBot\"&gt;EmausB...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:DPL bot\"&gt;DPL bot...</td>\n", " <td>159.0</td>\n", " <td>159.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>144</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Lowercase sigmab...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:DPL bot\"&gt;DPL bot...</td>\n", " <td>57.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>145</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Addbot\"&gt;Addbot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:BattyBot\"&gt;BattyB...</td>\n", " <td>22.0</td>\n", " <td>22.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>146</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Chobot\"&gt;Chobot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:DarafshBot\"&gt;Dara...</td>\n", " <td>53.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>147</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Addbot\"&gt;Addbot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:DarafshBot\"&gt;Dara...</td>\n", " <td>825.0</td>\n", " <td>467.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>148</th>\n", " <td>&lt;a href=\"http://enwp.org/User:EmausBot\"&gt;EmausB...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:DarafshBot\"&gt;Dara...</td>\n", " <td>207.0</td>\n", " <td>42.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>149</th>\n", " <td>&lt;a href=\"http://enwp.org/User:KLBot2\"&gt;KLBot2&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:DarafshBot\"&gt;Dara...</td>\n", " <td>69.0</td>\n", " <td>2.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>150</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Hazard-Bot\"&gt;Haza...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Cyberbot I\"&gt;Cybe...</td>\n", " <td>71.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>151</th>\n", " <td>&lt;a href=\"http://enwp.org/User:ClueBot III\"&gt;Clu...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Cyberbot II\"&gt;Cyb...</td>\n", " <td>31.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>152</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Amalthea (bot)\"&gt;...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Cyberbot II\"&gt;Cyb...</td>\n", " <td>779.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>153</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Hazard-Bot\"&gt;Haza...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Lowercase sigmab...</td>\n", " <td>28.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>154</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Addbot\"&gt;Addbot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Dexbot\"&gt;Dexbot&lt;/a&gt;</td>\n", " <td>692.0</td>\n", " <td>195.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>155</th>\n", " <td>&lt;a href=\"http://enwp.org/User:EmausBot\"&gt;EmausB...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Dexbot\"&gt;Dexbot&lt;/a&gt;</td>\n", " <td>141.0</td>\n", " <td>7.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>156</th>\n", " <td>&lt;a href=\"http://enwp.org/User:KLBot2\"&gt;KLBot2&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Dexbot\"&gt;Dexbot&lt;/a&gt;</td>\n", " <td>83.0</td>\n", " <td>2.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>157</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Chobot\"&gt;Chobot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Makecat-bot\"&gt;Mak...</td>\n", " <td>248.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>158</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Addbot\"&gt;Addbot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Makecat-bot\"&gt;Mak...</td>\n", " <td>5260.0</td>\n", " <td>3417.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>159</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Xqbot\"&gt;Xqbot&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Makecat-bot\"&gt;Mak...</td>\n", " <td>31.0</td>\n", " <td>30.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>160</th>\n", " <td>&lt;a href=\"http://enwp.org/User:EmausBot\"&gt;EmausB...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Makecat-bot\"&gt;Mak...</td>\n", " <td>1761.0</td>\n", " <td>595.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>161</th>\n", " <td>&lt;a href=\"http://enwp.org/User:KLBot2\"&gt;KLBot2&lt;/a&gt;</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Makecat-bot\"&gt;Mak...</td>\n", " <td>452.0</td>\n", " <td>195.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>162</th>\n", " <td>&lt;a href=\"http://enwp.org/User:ClueBot III\"&gt;Clu...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Theo's Little Bo...</td>\n", " <td>136.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>163</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Lowercase sigmab...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:Theo's Little Bo...</td>\n", " <td>41.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>164</th>\n", " <td>&lt;a href=\"http://enwp.org/User:タチコマ robot\"&gt;タチコマ...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:VoxelBot\"&gt;VoxelB...</td>\n", " <td>111.0</td>\n", " <td>111.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>165</th>\n", " <td>&lt;a href=\"http://enwp.org/User:AvicBot\"&gt;AvicBot...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:VoxelBot\"&gt;VoxelB...</td>\n", " <td>27.0</td>\n", " <td>27.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>166</th>\n", " <td>&lt;a href=\"http://enwp.org/User:RussBot\"&gt;RussBot...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:ArmbrustBot\"&gt;Arm...</td>\n", " <td>28.0</td>\n", " <td>10.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>167</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Cydebot\"&gt;Cydebot...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:ArmbrustBot\"&gt;Arm...</td>\n", " <td>318.0</td>\n", " <td>317.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>168</th>\n", " <td>&lt;a href=\"http://enwp.org/User:ClueBot III\"&gt;Clu...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:BracketBot\"&gt;Brac...</td>\n", " <td>31.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>169</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Lowercase sigmab...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:BracketBot\"&gt;Brac...</td>\n", " <td>31.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>170</th>\n", " <td>&lt;a href=\"http://enwp.org/User:ClueBot III\"&gt;Clu...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:MediaWiki messag...</td>\n", " <td>312.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " <tr>\n", " <th>171</th>\n", " <td>&lt;a href=\"http://enwp.org/User:Lowercase sigmab...</td>\n", " <td>&lt;a href=\"http://enwp.org/User:MediaWiki messag...</td>\n", " <td>458.0</td>\n", " <td>0.0</td>\n", " <td>&lt;a href=\"https://en.wikipedia.org/w/index.php?...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>172 rows × 5 columns</p>\n", "</div>" ], "text/plain": [ " reverting_bot \\\n", "0 <a href=\"http://enwp.org/User:FrescoBot\">Fresc... \n", "1 <a href=\"http://enwp.org/User:Addbot\">Addbot</a> \n", "2 <a href=\"http://enwp.org/User:Xqbot\">Xqbot</a> \n", "3 <a href=\"http://enwp.org/User:EmausBot\">EmausB... \n", "4 <a href=\"http://enwp.org/User:KLBot2\">KLBot2</a> \n", "5 <a href=\"http://enwp.org/User:タチコマ robot\">タチコマ... \n", "6 <a href=\"http://enwp.org/User:Cydebot\">Cydebot... \n", "7 <a href=\"http://enwp.org/User:BOTijo\">BOTijo</a> \n", "8 <a href=\"http://enwp.org/User:Addbot\">Addbot</a> \n", "9 <a href=\"http://enwp.org/User:Xqbot\">Xqbot</a> \n", "10 <a href=\"http://enwp.org/User:Thehelpfulbot\">T... \n", "11 <a href=\"http://enwp.org/User:EmausBot\">EmausB... \n", "12 <a href=\"http://enwp.org/User:AvicBot\">AvicBot... \n", "13 <a href=\"http://enwp.org/User:ArmbrustBot\">Arm... \n", "14 <a href=\"http://enwp.org/User:RussBot\">RussBot... \n", "15 <a href=\"http://enwp.org/User:BOTijo\">BOTijo</a> \n", "16 <a href=\"http://enwp.org/User:Addbot\">Addbot</a> \n", "17 <a href=\"http://enwp.org/User:Xqbot\">Xqbot</a> \n", "18 <a href=\"http://enwp.org/User:Thehelpfulbot\">T... \n", "19 <a href=\"http://enwp.org/User:EmausBot\">EmausB... \n", "20 <a href=\"http://enwp.org/User:AvicBot\">AvicBot... \n", "21 <a href=\"http://enwp.org/User:ClueBot III\">Clu... \n", "22 <a href=\"http://enwp.org/User:Lowercase sigmab... \n", "23 <a href=\"http://enwp.org/User:ClueBot III\">Clu... \n", "24 <a href=\"http://enwp.org/User:RussBot\">RussBot... \n", "25 <a href=\"http://enwp.org/User:ArmbrustBot\">Arm... \n", "26 <a href=\"http://enwp.org/User:Addbot\">Addbot</a> \n", "27 <a href=\"http://enwp.org/User:Xqbot\">Xqbot</a> \n", "28 <a href=\"http://enwp.org/User:EmausBot\">EmausB... \n", "29 <a href=\"http://enwp.org/User:KLBot2\">KLBot2</a> \n", ".. ... \n", "142 <a href=\"http://enwp.org/User:ClueBot III\">Clu... \n", "143 <a href=\"http://enwp.org/User:EmausBot\">EmausB... \n", "144 <a href=\"http://enwp.org/User:Lowercase sigmab... \n", "145 <a href=\"http://enwp.org/User:Addbot\">Addbot</a> \n", "146 <a href=\"http://enwp.org/User:Chobot\">Chobot</a> \n", "147 <a href=\"http://enwp.org/User:Addbot\">Addbot</a> \n", "148 <a href=\"http://enwp.org/User:EmausBot\">EmausB... \n", "149 <a href=\"http://enwp.org/User:KLBot2\">KLBot2</a> \n", "150 <a href=\"http://enwp.org/User:Hazard-Bot\">Haza... \n", "151 <a href=\"http://enwp.org/User:ClueBot III\">Clu... \n", "152 <a href=\"http://enwp.org/User:Amalthea (bot)\">... \n", "153 <a href=\"http://enwp.org/User:Hazard-Bot\">Haza... \n", "154 <a href=\"http://enwp.org/User:Addbot\">Addbot</a> \n", "155 <a href=\"http://enwp.org/User:EmausBot\">EmausB... \n", "156 <a href=\"http://enwp.org/User:KLBot2\">KLBot2</a> \n", "157 <a href=\"http://enwp.org/User:Chobot\">Chobot</a> \n", "158 <a href=\"http://enwp.org/User:Addbot\">Addbot</a> \n", "159 <a href=\"http://enwp.org/User:Xqbot\">Xqbot</a> \n", "160 <a href=\"http://enwp.org/User:EmausBot\">EmausB... \n", "161 <a href=\"http://enwp.org/User:KLBot2\">KLBot2</a> \n", "162 <a href=\"http://enwp.org/User:ClueBot III\">Clu... \n", "163 <a href=\"http://enwp.org/User:Lowercase sigmab... \n", "164 <a href=\"http://enwp.org/User:タチコマ robot\">タチコマ... \n", "165 <a href=\"http://enwp.org/User:AvicBot\">AvicBot... \n", "166 <a href=\"http://enwp.org/User:RussBot\">RussBot... \n", "167 <a href=\"http://enwp.org/User:Cydebot\">Cydebot... \n", "168 <a href=\"http://enwp.org/User:ClueBot III\">Clu... \n", "169 <a href=\"http://enwp.org/User:Lowercase sigmab... \n", "170 <a href=\"http://enwp.org/User:ClueBot III\">Clu... \n", "171 <a href=\"http://enwp.org/User:Lowercase sigmab... \n", "\n", " reverted_bot total_reverts \\\n", "0 <a href=\"http://enwp.org/User:Mathbot\">Mathbot... 58.0 \n", "1 <a href=\"http://enwp.org/User:Chobot\">Chobot</a> 1825.0 \n", "2 <a href=\"http://enwp.org/User:Chobot\">Chobot</a> 34.0 \n", "3 <a href=\"http://enwp.org/User:Chobot\">Chobot</a> 294.0 \n", "4 <a href=\"http://enwp.org/User:Chobot\">Chobot</a> 172.0 \n", "5 <a href=\"http://enwp.org/User:RussBot\">RussBot... 2056.0 \n", "6 <a href=\"http://enwp.org/User:RussBot\">RussBot... 964.0 \n", "7 <a href=\"http://enwp.org/User:RussBot\">RussBot... 31.0 \n", "8 <a href=\"http://enwp.org/User:RussBot\">RussBot... 402.0 \n", "9 <a href=\"http://enwp.org/User:RussBot\">RussBot... 5163.0 \n", "10 <a href=\"http://enwp.org/User:RussBot\">RussBot... 55.0 \n", "11 <a href=\"http://enwp.org/User:RussBot\">RussBot... 878.0 \n", "12 <a href=\"http://enwp.org/User:RussBot\">RussBot... 1789.0 \n", "13 <a href=\"http://enwp.org/User:RussBot\">RussBot... 24.0 \n", "14 <a href=\"http://enwp.org/User:タチコマ robot\">タチコマ... 1354.0 \n", "15 <a href=\"http://enwp.org/User:タチコマ robot\">タチコマ... 21.0 \n", "16 <a href=\"http://enwp.org/User:タチコマ robot\">タチコマ... 34.0 \n", "17 <a href=\"http://enwp.org/User:タチコマ robot\">タチコマ... 1076.0 \n", "18 <a href=\"http://enwp.org/User:タチコマ robot\">タチコマ... 31.0 \n", "19 <a href=\"http://enwp.org/User:タチコマ robot\">タチコマ... 223.0 \n", "20 <a href=\"http://enwp.org/User:タチコマ robot\">タチコマ... 528.0 \n", "21 <a href=\"http://enwp.org/User:SuggestBot\">Sugg... 296.0 \n", "22 <a href=\"http://enwp.org/User:SuggestBot\">Sugg... 38.0 \n", "23 <a href=\"http://enwp.org/User:MiszaBot\">MiszaB... 68.0 \n", "24 <a href=\"http://enwp.org/User:Cydebot\">Cydebot... 1174.0 \n", "25 <a href=\"http://enwp.org/User:Cydebot\">Cydebot... 86.0 \n", "26 <a href=\"http://enwp.org/User:JAnDbot\">JAnDbot... 165.0 \n", "27 <a href=\"http://enwp.org/User:JAnDbot\">JAnDbot... 35.0 \n", "28 <a href=\"http://enwp.org/User:JAnDbot\">JAnDbot... 63.0 \n", "29 <a href=\"http://enwp.org/User:JAnDbot\">JAnDbot... 24.0 \n", ".. ... ... \n", "142 <a href=\"http://enwp.org/User:DPL bot\">DPL bot... 160.0 \n", "143 <a href=\"http://enwp.org/User:DPL bot\">DPL bot... 159.0 \n", "144 <a href=\"http://enwp.org/User:DPL bot\">DPL bot... 57.0 \n", "145 <a href=\"http://enwp.org/User:BattyBot\">BattyB... 22.0 \n", "146 <a href=\"http://enwp.org/User:DarafshBot\">Dara... 53.0 \n", "147 <a href=\"http://enwp.org/User:DarafshBot\">Dara... 825.0 \n", "148 <a href=\"http://enwp.org/User:DarafshBot\">Dara... 207.0 \n", "149 <a href=\"http://enwp.org/User:DarafshBot\">Dara... 69.0 \n", "150 <a href=\"http://enwp.org/User:Cyberbot I\">Cybe... 71.0 \n", "151 <a href=\"http://enwp.org/User:Cyberbot II\">Cyb... 31.0 \n", "152 <a href=\"http://enwp.org/User:Cyberbot II\">Cyb... 779.0 \n", "153 <a href=\"http://enwp.org/User:Lowercase sigmab... 28.0 \n", "154 <a href=\"http://enwp.org/User:Dexbot\">Dexbot</a> 692.0 \n", "155 <a href=\"http://enwp.org/User:Dexbot\">Dexbot</a> 141.0 \n", "156 <a href=\"http://enwp.org/User:Dexbot\">Dexbot</a> 83.0 \n", "157 <a href=\"http://enwp.org/User:Makecat-bot\">Mak... 248.0 \n", "158 <a href=\"http://enwp.org/User:Makecat-bot\">Mak... 5260.0 \n", "159 <a href=\"http://enwp.org/User:Makecat-bot\">Mak... 31.0 \n", "160 <a href=\"http://enwp.org/User:Makecat-bot\">Mak... 1761.0 \n", "161 <a href=\"http://enwp.org/User:Makecat-bot\">Mak... 452.0 \n", "162 <a href=\"http://enwp.org/User:Theo's Little Bo... 136.0 \n", "163 <a href=\"http://enwp.org/User:Theo's Little Bo... 41.0 \n", "164 <a href=\"http://enwp.org/User:VoxelBot\">VoxelB... 111.0 \n", "165 <a href=\"http://enwp.org/User:VoxelBot\">VoxelB... 27.0 \n", "166 <a href=\"http://enwp.org/User:ArmbrustBot\">Arm... 28.0 \n", "167 <a href=\"http://enwp.org/User:ArmbrustBot\">Arm... 318.0 \n", "168 <a href=\"http://enwp.org/User:BracketBot\">Brac... 31.0 \n", "169 <a href=\"http://enwp.org/User:BracketBot\">Brac... 31.0 \n", "170 <a href=\"http://enwp.org/User:MediaWiki messag... 312.0 \n", "171 <a href=\"http://enwp.org/User:MediaWiki messag... 458.0 \n", "\n", " ns0_reverts examples \n", "0 58.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "1 154.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "2 34.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "3 92.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "4 7.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "5 1981.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "6 882.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "7 31.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "8 396.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "9 4689.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "10 18.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "11 836.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "12 1528.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "13 8.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "14 1232.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "15 21.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "16 33.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "17 999.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "18 26.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "19 211.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "20 463.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "21 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "22 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "23 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "24 969.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "25 45.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "26 59.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "27 32.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "28 30.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "29 5.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", ".. ... ... \n", "142 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "143 159.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "144 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "145 22.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "146 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "147 467.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "148 42.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "149 2.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "150 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "151 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "152 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "153 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "154 195.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "155 7.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "156 2.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "157 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "158 3417.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "159 30.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "160 595.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "161 195.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "162 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "163 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "164 111.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "165 27.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "166 10.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "167 317.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "168 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "169 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "170 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "171 0.0 <a href=\"https://en.wikipedia.org/w/index.php?... \n", "\n", "[172 rows x 5 columns]" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "output_df" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting openpyxl\n", " Downloading openpyxl-2.4.5.tar.gz (180kB)\n", "\u001b[K 100% |████████████████████████████████| 184kB 382kB/s eta 0:00:01\n", "\u001b[?25hCollecting jdcal (from openpyxl)\n", " Using cached jdcal-1.3.tar.gz\n", "Collecting et_xmlfile (from openpyxl)\n", " Using cached et_xmlfile-1.0.1.tar.gz\n", "Installing collected packages: jdcal, et-xmlfile, openpyxl\n", " Running setup.py install for jdcal ... \u001b[?25l-\b \bdone\n", "\u001b[?25h Running setup.py install for et-xmlfile ... \u001b[?25l-\b \bdone\n", "\u001b[?25h Running setup.py install for openpyxl ... \u001b[?25l-\b \b\\\b \b|\b \b/\b \b-\b \bdone\n", "\u001b[?25hSuccessfully installed et-xmlfile-1.0.1 jdcal-1.3 openpyxl-2.4.5\n" ] } ], "source": [ "!pip install openpyxl\n", "output_df.to_csv(\"revert_by_botpair.tsv\", sep=\"\\t\")\n", "output_df.to_excel(\"revert_by_botpair.xlsx\")" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\treverting_bot\treverted_bot\ttotal_reverts\tns0_reverts\texamples\r\n", "0\t\"<a href=\"\"http://enwp.org/User:FrescoBot\"\">FrescoBot</a>\"\t\"<a href=\"\"http://enwp.org/User:Mathbot\"\">Mathbot</a>\"\t58.0\t58.0\t\"<a href=\"\"https://en.wikipedia.org/w/index.php?title=List_of_mathematicians_(Y)&diff=prev&oldid=506645953\"\">0</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=List_of_mathematicians_(X)&diff=prev&oldid=518230338\"\">1</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=List_of_mathematicians_(O)&diff=prev&oldid=487636640\"\">2</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=List_of_mathematicians_(Z)&diff=prev&oldid=502248903\"\">3</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=List_of_mathematicians_(O)&diff=prev&oldid=371875375\"\">4</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=List_of_mathematicians_(J)&diff=prev&oldid=381630028\"\">5</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=List_of_mathematicians_(X)&diff=prev&oldid=421732463\"\">6</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=List_of_mathematicians_(X)&diff=prev&oldid=466698834\"\">7</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=List_of_mathematicians_(Y)&diff=prev&oldid=392268041\"\">8</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=List_of_mathematicians_(X)&diff=prev&oldid=438590202\"\">9</a> \"\r\n", "1\t\"<a href=\"\"http://enwp.org/User:Addbot\"\">Addbot</a>\"\t\"<a href=\"\"http://enwp.org/User:Chobot\"\">Chobot</a>\"\t1825.0\t154.0\t\"<a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Organisations_based_in_the_Bahamas&diff=prev&oldid=545958908\"\">0</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:21st_century_in_Liechtenstein&diff=prev&oldid=545324893\"\">1</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Poland–Soviet_Union_border&diff=prev&oldid=550622093\"\">2</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Environment_of_Guinea-Bissau&diff=prev&oldid=544784738\"\">3</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Christianity_in_Tajikistan&diff=prev&oldid=546620500\"\">4</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Borders_of_Jamaica&diff=prev&oldid=545743837\"\">5</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Astronomical_objects_discovered_in_1864&diff=prev&oldid=547208335\"\">6</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Jiyūgaoka_Station&diff=prev&oldid=544619355\"\">7</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Geology_of_Cambodia&diff=prev&oldid=546099607\"\">8</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Namibia_at_the_Paralympics&diff=prev&oldid=545422338\"\">9</a> \"\r\n", "2\t\"<a href=\"\"http://enwp.org/User:Xqbot\"\">Xqbot</a>\"\t\"<a href=\"\"http://enwp.org/User:Chobot\"\">Chobot</a>\"\t34.0\t34.0\t\"<a href=\"\"https://en.wikipedia.org/w/index.php?title=Three_Hundred_and_Thirty_Five_Years'_War&diff=prev&oldid=350497332\"\">0</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Karuizawa_Station&diff=prev&oldid=405576508\"\">1</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Swimming_at_the_1896_Summer_Olympics_–_Men's_100_metre_freestyle&diff=prev&oldid=354420814\"\">2</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Swimming_at_the_1896_Summer_Olympics_–_Men's_500_metre_freestyle&diff=prev&oldid=354420898\"\">3</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Time_Travel_Tondekeman&diff=prev&oldid=316674601\"\">4</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Quran&diff=prev&oldid=498608549\"\">5</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Mary,_Crown_Princess_of_Denmark&diff=prev&oldid=407345090\"\">6</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Marineland_of_Canada&diff=prev&oldid=355224923\"\">7</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=2._Bundesliga&diff=prev&oldid=433774278\"\">8</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Karuizawa_Station&diff=prev&oldid=406764007\"\">9</a> \"\r\n", "3\t\"<a href=\"\"http://enwp.org/User:EmausBot\"\">EmausBot</a>\"\t\"<a href=\"\"http://enwp.org/User:Chobot\"\">Chobot</a>\"\t294.0\t92.0\t\"<a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:634_BC&diff=prev&oldid=611546165\"\">0</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Daegok–Sosa_Line&diff=prev&oldid=534670464\"\">1</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Water_in_Afghanistan&diff=prev&oldid=548709373\"\">2</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Water_in_Uzbekistan&diff=prev&oldid=548700609\"\">3</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Hayato_Station&diff=prev&oldid=550856607\"\">4</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Spanish_human_rights_activists&diff=prev&oldid=547955763\"\">5</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Astronomical_objects_discovered_in_1869&diff=prev&oldid=548109112\"\">6</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Tretorn_SERIE+_tournaments&diff=prev&oldid=555672526\"\">7</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Tatsuya_Fujiwara&diff=prev&oldid=508705489\"\">8</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Sanya&diff=prev&oldid=547847428\"\">9</a> \"\r\n", "4\t\"<a href=\"\"http://enwp.org/User:KLBot2\"\">KLBot2</a>\"\t\"<a href=\"\"http://enwp.org/User:Chobot\"\">Chobot</a>\"\t172.0\t7.0\t\"<a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Natural_history_of_Singapore&diff=prev&oldid=547606748\"\">0</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:1653_in_Asia&diff=prev&oldid=546562741\"\">1</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Yonsei_University_alumni&diff=prev&oldid=546137705\"\">2</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:1140s_books&diff=prev&oldid=546532264\"\">3</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:1455_works&diff=prev&oldid=546546036\"\">4</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:1677_in_Asia&diff=prev&oldid=546565406\"\">5</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:1660_in_Asia&diff=prev&oldid=546563841\"\">6</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:1673_works&diff=prev&oldid=546312676\"\">7</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:1457_works&diff=prev&oldid=546545936\"\">8</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:1478_works&diff=prev&oldid=546438907\"\">9</a> \"\r\n", "5\t\"<a href=\"\"http://enwp.org/User:タチコマ robot\"\">タチコマ robot</a>\"\t\"<a href=\"\"http://enwp.org/User:RussBot\"\">RussBot</a>\"\t2056.0\t1981.0\t\"<a href=\"\"https://en.wikipedia.org/w/index.php?title=Talk:Malaysia_national_under-19_football_team&diff=prev&oldid=185383377\"\">0</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Dennou_Senshi_Porygon&diff=prev&oldid=219039049\"\">1</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Arabic_world&diff=prev&oldid=202289083\"\">2</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Aston-Martin_Vanquish&diff=prev&oldid=221049086\"\">3</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Largest_soverign_wealth_funds&diff=prev&oldid=202563119\"\">4</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=No_Pain,_No_Game&diff=prev&oldid=196491428\"\">5</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Asher_Ginzberg&diff=prev&oldid=193880532\"\">6</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=JJ_Williams&diff=prev&oldid=198584845\"\">7</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Pagoda_in_Myanmar&diff=prev&oldid=184002143\"\">8</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Goryo_Dynasty&diff=prev&oldid=171888911\"\">9</a> \"\r\n", "6\t\"<a href=\"\"http://enwp.org/User:Cydebot\"\">Cydebot</a>\"\t\"<a href=\"\"http://enwp.org/User:RussBot\"\">RussBot</a>\"\t964.0\t882.0\t\"<a href=\"\"https://en.wikipedia.org/w/index.php?title=Syndicate_(video_game)&diff=prev&oldid=310873039\"\">0</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Bruce_Ferguson&diff=prev&oldid=235987093\"\">1</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=9694_Lycomedes&diff=prev&oldid=599852920\"\">2</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=1583_Antilochus&diff=prev&oldid=599852773\"\">3</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Ramiro_III_of_León&diff=prev&oldid=283742949\"\">4</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Category:Deceased_people&diff=prev&oldid=321402873\"\">5</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=The_Legend_of_the_Mystical_Ninja&diff=prev&oldid=310878115\"\">6</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=12444_Prothoon&diff=prev&oldid=599852597\"\">7</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Strike_(series)&diff=prev&oldid=310872987\"\">8</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=California_Habeas_Project&diff=prev&oldid=186146704\"\">9</a> \"\r\n", "7\t\"<a href=\"\"http://enwp.org/User:BOTijo\"\">BOTijo</a>\"\t\"<a href=\"\"http://enwp.org/User:RussBot\"\">RussBot</a>\"\t31.0\t31.0\t\"<a href=\"\"https://en.wikipedia.org/w/index.php?title=Chewbacca_Defense&diff=prev&oldid=274373367\"\">0</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Dangerously_in_love&diff=prev&oldid=257993484\"\">1</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Hamlet_on_Screen&diff=prev&oldid=262475862\"\">2</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Koryo-Saram&diff=prev&oldid=307121284\"\">3</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=List_of_Disney_Feature_Films&diff=prev&oldid=175453295\"\">4</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Ray_Tracing&diff=prev&oldid=232634948\"\">5</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Soham_Murders&diff=prev&oldid=258950491\"\">6</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Tamil_Cinema&diff=prev&oldid=284962809\"\">7</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=DiC_Entertainment&diff=prev&oldid=261629909\"\">8</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Assyrian_Independence&diff=prev&oldid=257193986\"\">9</a> \"\r\n", "8\t\"<a href=\"\"http://enwp.org/User:Addbot\"\">Addbot</a>\"\t\"<a href=\"\"http://enwp.org/User:RussBot\"\">RussBot</a>\"\t402.0\t396.0\t\"<a href=\"\"https://en.wikipedia.org/w/index.php?title=Petrolul_Bucureşti&diff=prev&oldid=257676877\"\">0</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=India-Pakistan_Relations&diff=prev&oldid=256404966\"\">1</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Cat_colony&diff=prev&oldid=256402469\"\">2</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Beheshti&diff=prev&oldid=253367228\"\">3</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=ABKB&diff=prev&oldid=255815458\"\">4</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Ruby_(character)&diff=prev&oldid=261866105\"\">5</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=ATI_technologies&diff=prev&oldid=261866067\"\">6</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Onyx_(hip_hop)&diff=prev&oldid=261875012\"\">7</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Newport_High_Street_station&diff=prev&oldid=257683000\"\">8</a> <a href=\"\"https://en.wikipedia.org/w/index.php?title=Hiderabad&diff=prev&oldid=255826376\"\">9</a> \"\r\n" ] } ], "source": [ "!head revert_by_botpair.tsv" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
samgoodgame/sf_crime
iterations/misc/Cha_Goodgame_Kao_Moore_W207_Final_Project_updated_08_19_2230.ipynb
1
74063
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Kaggle San Francisco Crime Classification\n", "## Berkeley MIDS W207 Final Project: Sam Goodgame, Sarah Cha, Kalvin Kao, Bryan Moore\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Environment and Data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/Bryan/anaconda/lib/python3.6/site-packages/sklearn/cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.\n", " \"This module will be removed in 0.20.\", DeprecationWarning)\n", "/Users/Bryan/anaconda/lib/python3.6/site-packages/sklearn/grid_search.py:43: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. This module will be removed in 0.20.\n", " DeprecationWarning)\n" ] } ], "source": [ "# Import relevant libraries:\n", "import time\n", "import numpy as np\n", "import pandas as pd\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn import preprocessing\n", "from sklearn.preprocessing import MinMaxScaler\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.naive_bayes import BernoulliNB\n", "from sklearn.naive_bayes import MultinomialNB\n", "from sklearn.naive_bayes import GaussianNB\n", "from sklearn.grid_search import GridSearchCV\n", "from sklearn.metrics import classification_report\n", "from sklearn.metrics import log_loss\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn import svm\n", "from sklearn.neural_network import MLPClassifier\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.tree import DecisionTreeClassifier\n", "# Import Meta-estimators\n", "from sklearn.ensemble import AdaBoostClassifier\n", "from sklearn.ensemble import BaggingClassifier\n", "from sklearn.ensemble import GradientBoostingClassifier\n", "# Import Calibration tools\n", "from sklearn.calibration import CalibratedClassifierCV\n", "\n", "# Set random seed and format print output:\n", "np.random.seed(0)\n", "np.set_printoptions(precision=3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### DDL to construct table for SQL transformations:\n", "\n", "```sql\n", "CREATE TABLE kaggle_sf_crime (\n", "dates TIMESTAMP, \n", "category VARCHAR,\n", "descript VARCHAR,\n", "dayofweek VARCHAR,\n", "pd_district VARCHAR,\n", "resolution VARCHAR,\n", "addr VARCHAR,\n", "X FLOAT,\n", "Y FLOAT);\n", "```\n", "#### Getting training data into a locally hosted PostgreSQL database:\n", "```sql\n", "\\copy kaggle_sf_crime FROM '/Users/Goodgame/Desktop/MIDS/207/final/sf_crime_train.csv' DELIMITER ',' CSV HEADER;\n", "```\n", "\n", "#### SQL Query used for transformations:\n", "\n", "```sql\n", "SELECT\n", " category,\n", " date_part('hour', dates) AS hour_of_day,\n", " CASE\n", " WHEN dayofweek = 'Monday' then 1\n", " WHEN dayofweek = 'Tuesday' THEN 2\n", " WHEN dayofweek = 'Wednesday' THEN 3\n", " WHEN dayofweek = 'Thursday' THEN 4\n", " WHEN dayofweek = 'Friday' THEN 5\n", " WHEN dayofweek = 'Saturday' THEN 6\n", " WHEN dayofweek = 'Sunday' THEN 7\n", " END AS dayofweek_numeric,\n", " X,\n", " Y,\n", " CASE\n", " WHEN pd_district = 'BAYVIEW' THEN 1\n", " ELSE 0\n", " END AS bayview_binary,\n", " CASE\n", " WHEN pd_district = 'INGLESIDE' THEN 1\n", " ELSE 0\n", " END AS ingleside_binary,\n", " CASE\n", " WHEN pd_district = 'NORTHERN' THEN 1\n", " ELSE 0\n", " END AS northern_binary,\n", " CASE\n", " WHEN pd_district = 'CENTRAL' THEN 1\n", " ELSE 0\n", " END AS central_binary,\n", " CASE\n", " WHEN pd_district = 'BAYVIEW' THEN 1\n", " ELSE 0\n", " END AS pd_bayview_binary,\n", " CASE\n", " WHEN pd_district = 'MISSION' THEN 1\n", " ELSE 0\n", " END AS mission_binary,\n", " CASE\n", " WHEN pd_district = 'SOUTHERN' THEN 1\n", " ELSE 0\n", " END AS southern_binary,\n", " CASE\n", " WHEN pd_district = 'TENDERLOIN' THEN 1\n", " ELSE 0\n", " END AS tenderloin_binary,\n", " CASE\n", " WHEN pd_district = 'PARK' THEN 1\n", " ELSE 0\n", " END AS park_binary,\n", " CASE\n", " WHEN pd_district = 'RICHMOND' THEN 1\n", " ELSE 0\n", " END AS richmond_binary,\n", " CASE\n", " WHEN pd_district = 'TARAVAL' THEN 1\n", " ELSE 0\n", " END AS taraval_binary\n", "FROM kaggle_sf_crime;\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Loading the data, version 2, with weather features to improve performance: (Negated with hashtags for now, as will cause file dependency issues if run locally for everyone. Will be run by Isabell in final notebook with correct files she needs)\n", "\n", "We seek to add features to our models that will improve performance with respect to out desired performance metric. There is evidence that there is a correlation between weather patterns and crime, with some experts even arguing for a causal relationship between weather and crime [1]. More specifically, a 2013 paper published in Science showed that higher temperatures and extreme rainfall led to large increases in conflict. In the setting of strong evidence that weather influences crime, we see it as a candidate for additional features to improve the performance of our classifiers. Weather data was gathered from (insert source). Certain features from this data set were incorporated into the original crime data set in order to add features that were hypothesizzed to improve performance. These features included (insert what we eventually include)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#data_path = \"./data/train_transformed.csv\"\n", "\n", "#df = pd.read_csv(data_path, header=0)\n", "#x_data = df.drop('category', 1)\n", "#y = df.category.as_matrix()\n", "\n", "########## Adding the date back into the data\n", "#import csv\n", "#import time\n", "#import calendar\n", "#data_path = \"./data/train.csv\"\n", "#dataCSV = open(data_path, 'rt')\n", "#csvData = list(csv.reader(dataCSV))\n", "#csvFields = csvData[0] #['Dates', 'Category', 'Descript', 'DayOfWeek', 'PdDistrict', 'Resolution', 'Address', 'X', 'Y']\n", "#allData = csvData[1:]\n", "#dataCSV.close()\n", "\n", "#df2 = pd.DataFrame(allData)\n", "#df2.columns = csvFields\n", "#dates = df2['Dates']\n", "#dates = dates.apply(time.strptime, args=(\"%Y-%m-%d %H:%M:%S\",))\n", "#dates = dates.apply(calendar.timegm)\n", "#print(dates.head())\n", "\n", "#x_data['secondsFromEpoch'] = dates\n", "#colnames = x_data.columns.tolist()\n", "#colnames = colnames[-1:] + colnames[:-1]\n", "#x_data = x_data[colnames]\n", "##########\n", "\n", "########## Adding the weather data into the original crime data\n", "#weatherData1 = \"./data/1027175.csv\"\n", "#weatherData2 = \"./data/1027176.csv\"\n", "#dataCSV = open(weatherData1, 'rt')\n", "#csvData = list(csv.reader(dataCSV))\n", "#csvFields = csvData[0] #['Dates', 'Category', 'Descript', 'DayOfWeek', 'PdDistrict', 'Resolution', 'Address', 'X', 'Y']\n", "#allWeatherData1 = csvData[1:]\n", "#dataCSV.close()\n", "\n", "#dataCSV = open(weatherData2, 'rt')\n", "#csvData = list(csv.reader(dataCSV))\n", "#csvFields = csvData[0] #['Dates', 'Category', 'Descript', 'DayOfWeek', 'PdDistrict', 'Resolution', 'Address', 'X', 'Y']\n", "#allWeatherData2 = csvData[1:]\n", "#dataCSV.close()\n", "\n", "#weatherDF1 = pd.DataFrame(allWeatherData1)\n", "#weatherDF1.columns = csvFields\n", "#dates1 = weatherDF1['DATE']\n", "#sunrise1 = weatherDF1['DAILYSunrise']\n", "#sunset1 = weatherDF1['DAILYSunset']\n", "\n", "#weatherDF2 = pd.DataFrame(allWeatherData2)\n", "#weatherDF2.columns = csvFields\n", "#dates2 = weatherDF2['DATE']\n", "#sunrise2 = weatherDF2['DAILYSunrise']\n", "#sunset2 = weatherDF2['DAILYSunset']\n", "\n", "#functions for processing the sunrise and sunset times of each day\n", "#def get_hour_and_minute(milTime):\n", " # hour = int(milTime[:-2])\n", " # minute = int(milTime[-2:])\n", " # return [hour, minute]\n", "\n", "#def get_date_only(date):\n", "# return time.struct_time(tuple([date[0], date[1], date[2], 0, 0, 0, date[6], date[7], date[8]]))\n", "\n", "#def structure_sun_time(timeSeries, dateSeries):\n", "# sunTimes = timeSeries.copy()\n", "# for index in range(len(dateSeries)):\n", "# sunTimes[index] = time.struct_time(tuple([dateSeries[index][0], dateSeries[index][1], dateSeries[index][2], timeSeries[index][0], timeSeries[index][1], dateSeries[index][5], dateSeries[index][6], dateSeries[index][7], dateSeries[index][8]]))\n", "# return sunTimes\n", "\n", "#dates1 = dates1.apply(time.strptime, args=(\"%Y-%m-%d %H:%M\",))\n", "#sunrise1 = sunrise1.apply(get_hour_and_minute)\n", "#sunrise1 = structure_sun_time(sunrise1, dates1)\n", "#sunrise1 = sunrise1.apply(calendar.timegm)\n", "#sunset1 = sunset1.apply(get_hour_and_minute)\n", "#sunset1 = structure_sun_time(sunset1, dates1)\n", "#sunset1 = sunset1.apply(calendar.timegm)\n", "#dates1 = dates1.apply(calendar.timegm)\n", "\n", "#dates2 = dates2.apply(time.strptime, args=(\"%Y-%m-%d %H:%M\",))\n", "#sunrise2 = sunrise2.apply(get_hour_and_minute)\n", "#sunrise2 = structure_sun_time(sunrise2, dates2)\n", "#sunrise2 = sunrise2.apply(calendar.timegm)\n", "#sunset2 = sunset2.apply(get_hour_and_minute)\n", "#sunset2 = structure_sun_time(sunset2, dates2)\n", "#sunset2 = sunset2.apply(calendar.timegm)\n", "#dates2 = dates2.apply(calendar.timegm)\n", "\n", "#weatherDF1['DATE'] = dates1\n", "#weatherDF1['DAILYSunrise'] = sunrise1\n", "#weatherDF1['DAILYSunset'] = sunset1\n", "#weatherDF2['DATE'] = dates2\n", "#weatherDF2['DAILYSunrise'] = sunrise2\n", "#weatherDF2['DAILYSunset'] = sunset2\n", "\n", "#weatherDF = pd.concat([weatherDF1,weatherDF2[32:]],ignore_index=True)\n", "\n", "# Starting off with some of the easier features to work with-- more to come here . . . still in beta\n", "#weatherMetrics = weatherDF[['DATE','HOURLYDRYBULBTEMPF','HOURLYRelativeHumidity', 'HOURLYWindSpeed', \\\n", "# 'HOURLYSeaLevelPressure', 'HOURLYVISIBILITY', 'DAILYSunrise', 'DAILYSunset']]\n", "#weatherMetrics = weatherMetrics.convert_objects(convert_numeric=True)\n", "#weatherDates = weatherMetrics['DATE']\n", "#'DATE','HOURLYDRYBULBTEMPF','HOURLYRelativeHumidity', 'HOURLYWindSpeed',\n", "#'HOURLYSeaLevelPressure', 'HOURLYVISIBILITY'\n", "#timeWindow = 10800 #3 hours\n", "#hourlyDryBulbTemp = []\n", "#hourlyRelativeHumidity = []\n", "#hourlyWindSpeed = []\n", "#hourlySeaLevelPressure = []\n", "#hourlyVisibility = []\n", "#dailySunrise = []\n", "#dailySunset = []\n", "#daylight = []\n", "#test = 0\n", "#for timePoint in dates:#dates is the epoch time from the kaggle data\n", "# relevantWeather = weatherMetrics[(weatherDates <= timePoint) & (weatherDates > timePoint - timeWindow)]\n", "# hourlyDryBulbTemp.append(relevantWeather['HOURLYDRYBULBTEMPF'].mean())\n", "# hourlyRelativeHumidity.append(relevantWeather['HOURLYRelativeHumidity'].mean())\n", "# hourlyWindSpeed.append(relevantWeather['HOURLYWindSpeed'].mean())\n", "# hourlySeaLevelPressure.append(relevantWeather['HOURLYSeaLevelPressure'].mean())\n", "# hourlyVisibility.append(relevantWeather['HOURLYVISIBILITY'].mean())\n", "# dailySunrise.append(relevantWeather['DAILYSunrise'].iloc[-1])\n", "# dailySunset.append(relevantWeather['DAILYSunset'].iloc[-1])\n", "# daylight.append(1.0*((timePoint >= relevantWeather['DAILYSunrise'].iloc[-1]) and (timePoint < relevantWeather['DAILYSunset'].iloc[-1])))\n", " #if timePoint < relevantWeather['DAILYSunset'][-1]:\n", " #daylight.append(1)\n", " #else:\n", " #daylight.append(0)\n", " \n", "# if test%100000 == 0:\n", "# print(relevantWeather)\n", "# test += 1\n", "\n", "#hourlyDryBulbTemp = pd.Series.from_array(np.array(hourlyDryBulbTemp))\n", "#hourlyRelativeHumidity = pd.Series.from_array(np.array(hourlyRelativeHumidity))\n", "#hourlyWindSpeed = pd.Series.from_array(np.array(hourlyWindSpeed))\n", "#hourlySeaLevelPressure = pd.Series.from_array(np.array(hourlySeaLevelPressure))\n", "#hourlyVisibility = pd.Series.from_array(np.array(hourlyVisibility))\n", "#dailySunrise = pd.Series.from_array(np.array(dailySunrise))\n", "#dailySunset = pd.Series.from_array(np.array(dailySunset))\n", "#daylight = pd.Series.from_array(np.array(daylight))\n", "\n", "#x_data['HOURLYDRYBULBTEMPF'] = hourlyDryBulbTemp\n", "#x_data['HOURLYRelativeHumidity'] = hourlyRelativeHumidity\n", "#x_data['HOURLYWindSpeed'] = hourlyWindSpeed\n", "#x_data['HOURLYSeaLevelPressure'] = hourlySeaLevelPressure\n", "#x_data['HOURLYVISIBILITY'] = hourlyVisibility\n", "#x_data['DAILYSunrise'] = dailySunrise\n", "#x_data['DAILYSunset'] = dailySunset\n", "#x_data['Daylight'] = daylight\n", "\n", "#x_data.to_csv(path_or_buf=\"C:/MIDS/W207 final project/x_data.csv\")\n", "##########\n", "\n", "# Impute missing values with mean values:\n", "#x_complete = x_data.fillna(x_data.mean())\n", "#X_raw = x_complete.as_matrix()\n", "\n", "# Scale the data between 0 and 1:\n", "#X = MinMaxScaler().fit_transform(X_raw)\n", "\n", "# Shuffle data to remove any underlying pattern that may exist:\n", "#shuffle = np.random.permutation(np.arange(X.shape[0]))\n", "#X, y = X[shuffle], y[shuffle]\n", "\n", "# Separate training, dev, and test data:\n", "#test_data, test_labels = X[800000:], y[800000:]\n", "#dev_data, dev_labels = X[700000:800000], y[700000:800000]\n", "#train_data, train_labels = X[:700000], y[:700000]\n", "\n", "#mini_train_data, mini_train_labels = X[:75000], y[:75000]\n", "#mini_dev_data, mini_dev_labels = X[75000:100000], y[75000:100000]\n", "#labels_set = set(mini_dev_labels)\n", "#print(labels_set)\n", "#print(len(labels_set))\n", "#print(train_data[:10])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Local, individual load of updated data set (with weather data integrated) into training, development, and test subsets.\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "37 37 37 37\n" ] } ], "source": [ "data_path = \"/Users/Bryan/Desktop/UC_Berkeley_MIDS_files/Courses/W207_Intro_To_Machine_Learning/Final_Project/x_data_3.csv\"\n", "df = pd.read_csv(data_path, header=0)\n", "x_data = df.drop('category', 1)\n", "y = df.category.as_matrix()\n", "\n", "# Impute missing values with mean values:\n", "x_complete = x_data.fillna(x_data.mean())\n", "X_raw = x_complete.as_matrix()\n", "\n", "# Scale the data between 0 and 1:\n", "X = MinMaxScaler().fit_transform(X_raw)\n", "\n", "# Shuffle data to remove any underlying pattern that may exist. Must re-run random seed step each time:\n", "np.random.seed(0)\n", "shuffle = np.random.permutation(np.arange(X.shape[0]))\n", "X, y = X[shuffle], y[shuffle]\n", "\n", "# Due to difficulties with log loss and set(y_pred) needing to match set(labels), we will remove the extremely rare\n", "# crimes from the data for quality issues.\n", "X_minus_trea = X[np.where(y != 'TREA')]\n", "y_minus_trea = y[np.where(y != 'TREA')]\n", "X_final = X_minus_trea[np.where(y_minus_trea != 'PORNOGRAPHY/OBSCENE MAT')]\n", "y_final = y_minus_trea[np.where(y_minus_trea != 'PORNOGRAPHY/OBSCENE MAT')]\n", "\n", "# Separate training, dev, and test data:\n", "test_data, test_labels = X_final[800000:], y_final[800000:]\n", "dev_data, dev_labels = X_final[700000:800000], y_final[700000:800000]\n", "train_data, train_labels = X_final[100000:700000], y_final[100000:700000]\n", "calibrate_data, calibrate_labels = X_final[:100000], y_final[:100000]\n", "\n", "# Create mini versions of the above sets\n", "mini_train_data, mini_train_labels = X_final[:20000], y_final[:20000]\n", "mini_calibrate_data, mini_calibrate_labels = X_final[19000:28000], y_final[19000:28000]\n", "mini_dev_data, mini_dev_labels = X_final[49000:60000], y_final[49000:60000]\n", "\n", "# Create list of the crime type labels. This will act as the \"labels\" parameter for the log loss functions that follow\n", "crime_labels = list(set(y_final))\n", "crime_labels_mini_train = list(set(mini_train_labels))\n", "crime_labels_mini_dev = list(set(mini_dev_labels))\n", "crime_labels_mini_calibrate = list(set(mini_calibrate_labels))\n", "print(len(crime_labels), len(crime_labels_mini_train), len(crime_labels_mini_dev),len(crime_labels_mini_calibrate))\n", "\n", "#print(len(train_data),len(train_labels))\n", "#print(len(dev_data),len(dev_labels))\n", "#print(len(mini_train_data),len(mini_train_labels))\n", "#print(len(mini_dev_data),len(mini_dev_labels))\n", "#print(len(test_data),len(test_labels))\n", "#print(len(mini_calibrate_data),len(mini_calibrate_labels))\n", "#print(len(calibrate_data),len(calibrate_labels))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sarah's School data that we may still get to work as features: (Negated with hashtags for now, as will cause file dependency issues if run locally for everyone. Will be run by Isabell in final notebook with correct files she needs)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "### Read in zip code data\n", "#data_path_zip = \"./data/2016_zips.csv\"\n", "#zips = pd.read_csv(data_path_zip, header=0, sep ='\\t', usecols = [0,5,6], names = [\"GEOID\", \"INTPTLAT\", \"INTPTLONG\"], dtype ={'GEOID': int, 'INTPTLAT': float, 'INTPTLONG': float})\n", "#sf_zips = zips[(zips['GEOID'] > 94000) & (zips['GEOID'] < 94189)]\n", "\n", "### Mapping longitude/latitude to zipcodes\n", "#def dist(lat1, long1, lat2, long2):\n", "# return np.sqrt((lat1-lat2)**2+(long1-long2)**2)\n", "# return abs(lat1-lat2)+abs(long1-long2)\n", "#def find_zipcode(lat, long): \n", "# distances = sf_zips.apply(lambda row: dist(lat, long, row[\"INTPTLAT\"], row[\"INTPTLONG\"]), axis=1)\n", "# return sf_zips.loc[distances.idxmin(), \"GEOID\"]\n", "#x_data['zipcode'] = 0\n", "#for i in range(0, 1):\n", "# x_data['zipcode'][i] = x_data.apply(lambda row: find_zipcode(row['x'], row['y']), axis=1)\n", "#x_data['zipcode']= x_data.apply(lambda row: find_zipcode(row['x'], row['y']), axis=1)\n", "\n", "\n", "### Read in school data\n", "#data_path_schools = \"./data/pubschls.csv\"\n", "#schools = pd.read_csv(data_path_schools,header=0, sep ='\\t', usecols = [\"CDSCode\",\"StatusType\", \"School\", \"EILCode\", \"EILName\", \"Zip\", \"Latitude\", \"Longitude\"], dtype ={'CDSCode': str, 'StatusType': str, 'School': str, 'EILCode': str,'EILName': str,'Zip': str, 'Latitude': float, 'Longitude': float})\n", "#schools = schools[(schools[\"StatusType\"] == 'Active')]\n", "\n", "### Find the closest school\n", "#def dist(lat1, long1, lat2, long2):\n", "# return np.sqrt((lat1-lat2)**2+(long1-long2)**2)\n", "\n", "#def find_closest_school(lat, long): \n", "# distances = schools.apply(lambda row: dist(lat, long, row[\"Latitude\"], row[\"Longitude\"]), axis=1)\n", "# return min(distances)\n", "#x_data['closest_school'] = x_data_sub.apply(lambda row: find_closest_school(row['y'], row['x']), axis=1)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Formatting to meet Kaggle submission standards: (Negated with hashtags for now, as will cause file dependency issues if run locally for everyone. Will be run by Isabell in final notebook with correct files she needs)" ] }, { "cell_type": "code", "execution_count": 86, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# The Kaggle submission format requires listing the ID of each example.\n", "# This is to remember the order of the IDs after shuffling\n", "#allIDs = np.array(list(df.axes[0]))\n", "#allIDs = allIDs[shuffle]\n", "\n", "#testIDs = allIDs[800000:]\n", "#devIDs = allIDs[700000:800000]\n", "#trainIDs = allIDs[:700000]\n", "\n", "# Extract the column names for the required submission format\n", "#sampleSubmission_path = \"./data/sampleSubmission.csv\"\n", "#sampleDF = pd.read_csv(sampleSubmission_path)\n", "#allColumns = list(sampleDF.columns)\n", "#featureColumns = allColumns[1:]\n", "\n", "# Extracting the test data for a baseline submission\n", "#real_test_path = \"./data/test_transformed.csv\"\n", "#testDF = pd.read_csv(real_test_path, header=0)\n", "#real_test_data = testDF\n", "\n", "#test_complete = real_test_data.fillna(real_test_data.mean())\n", "#Test_raw = test_complete.as_matrix()\n", "\n", "#TestData = MinMaxScaler().fit_transform(Test_raw)\n", "\n", "# Here we remember the ID of each test data point, in case we ever decide to shuffle the test data for some reason\n", "#testIDs = list(testDF.axes[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Generate baseline prediction probabilities from MNB classifier and store in a .csv file (Negated with hashtags for now, as will cause file dependency issues if run locally for everyone. Will be run by Isabell in final notebook with correct files she needs)" ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Generate a baseline MNB classifier and make it return prediction probabilities for the actual test data\n", "#def MNB():\n", "# mnb = MultinomialNB(alpha = 0.0000001)\n", "# mnb.fit(train_data, train_labels)\n", "# print(\"\\n\\nMultinomialNB accuracy on dev data:\", mnb.score(dev_data, dev_labels))\n", "# return mnb.predict_proba(dev_data)\n", "#MNB()\n", "\n", "#baselinePredictionProbabilities = MNB()\n", "\n", "# Place the resulting prediction probabilities in a .csv file in the required format\n", "# First, turn the prediction probabilties into a data frame\n", "#resultDF = pd.DataFrame(baselinePredictionProbabilities,columns=featureColumns)\n", "# Add the IDs as a final column\n", "#resultDF.loc[:,'Id'] = pd.Series(testIDs,index=resultDF.index)\n", "# Make the 'Id' column the first column\n", "#colnames = resultDF.columns.tolist()\n", "#colnames = colnames[-1:] + colnames[:-1]\n", "#resultDF = resultDF[colnames]\n", "# Output to a .csv file\n", "# resultDF.to_csv('result.csv',index=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*Note: the code above will shuffle data differently every time it's run, so model accuracies will vary accordingly.*" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0.016 0.985 0.826 0.667 0.055 0.002 0. 0. 0. 1. 0.\n", " 0. 0. 0. 0. 0. 0. 0.514 0.405 0.375 0.661 1.\n", " 0.985 0.985 0. ]]\n", "['LARCENY/THEFT']\n" ] } ], "source": [ "## Data sub-setting quality check-point\n", "print(train_data[:1])\n", "print(train_labels[:1])" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "MultinomialNB accuracy on dev data: 0.22347\n" ] } ], "source": [ "# Modeling quality check-point with MNB--fast model\n", "\n", "def MNB():\n", " mnb = MultinomialNB(alpha = 0.0000001)\n", " mnb.fit(train_data, train_labels)\n", " print(\"\\n\\nMultinomialNB accuracy on dev data:\", mnb.score(dev_data, dev_labels))\n", " \n", "MNB()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Defining Performance Criteria\n", "\n", "As determined by the Kaggle submission guidelines, the performance criteria metric for the San Francisco Crime Classification competition is Multi-class Logarithmic Loss (also known as cross-entropy). There are various other performance metrics that are appropriate for different domains: accuracy, F-score, Lift, ROC Area, average precision, precision/recall break-even point, and squared error.\n", "\n", "(Describe each performance metric and a domain in which it is preferred. Give Pros/Cons if able)\n", "\n", "- Multi-class Log Loss:\n", "\n", "- Accuracy:\n", "\n", "- F-score:\n", "\n", "- Lift:\n", "\n", "- ROC Area:\n", "\n", "- Average precision\n", "\n", "- Precision/Recall break-even point:\n", "\n", "- Squared-error:\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Model Prototyping\n", "We will start our classifier and feature engineering process by looking at the performance of various classifiers with default parameter settings in predicting labels on the mini_dev_data:" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n", " metric_params=None, n_jobs=1, n_neighbors=5, p=2,\n", " weights='uniform') Multi-class Log Loss: 21.0240643644 \n", "\n", "\n", "BernoulliNB(alpha=1, binarize=0.5, class_prior=None, fit_prior=True) Multi-class Log Loss: 2.6947927812 \n", "\n", "\n", "MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True) Multi-class Log Loss: 2.60974496429 \n", "\n", "\n", "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", " intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,\n", " penalty='l2', random_state=None, solver='liblinear', tol=0.0001,\n", " verbose=0, warm_start=False) Multi-class Log Loss: 2.59547592791 \n", "\n", "\n", "MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9,\n", " beta_2=0.999, early_stopping=False, epsilon=1e-08,\n", " hidden_layer_sizes=(100,), learning_rate='constant',\n", " learning_rate_init=0.001, max_iter=200, momentum=0.9,\n", " nesterovs_momentum=True, power_t=0.5, random_state=None,\n", " shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.1,\n", " verbose=False, warm_start=False) Multi-class Log Loss: 2.60265495281 \n", "\n", "\n", "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n", " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", " min_impurity_split=1e-07, min_samples_leaf=1,\n", " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", " n_estimators=10, n_jobs=1, oob_score=False, random_state=None,\n", " verbose=0, warm_start=False) Multi-class Log Loss: 15.5020995603 \n", "\n", "\n", "DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n", " max_features=None, max_leaf_nodes=None,\n", " min_impurity_split=1e-07, min_samples_leaf=1,\n", " min_samples_split=2, min_weight_fraction_leaf=0.0,\n", " presort=False, random_state=None, splitter='best') Multi-class Log Loss: 29.8634820265 \n", "\n", "\n", "SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n", " decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',\n", " max_iter=-1, probability=True, random_state=None, shrinking=True,\n", " tol=0.001, verbose=False) Multi-class Log Loss: 2.62373605675 \n", "\n", "\n" ] } ], "source": [ "def model_prototype(train_data, train_labels, eval_data, eval_labels):\n", " knn = KNeighborsClassifier(n_neighbors=5).fit(train_data, train_labels)\n", " bnb = BernoulliNB(alpha=1, binarize = 0.5).fit(train_data, train_labels)\n", " mnb = MultinomialNB().fit(train_data, train_labels)\n", " log_reg = LogisticRegression().fit(train_data, train_labels)\n", " neural_net = MLPClassifier().fit(train_data, train_labels)\n", " random_forest = RandomForestClassifier().fit(train_data, train_labels)\n", " decision_tree = DecisionTreeClassifier().fit(train_data, train_labels)\n", " support_vm_step_one = svm.SVC(probability = True)\n", " support_vm = support_vm_step_one.fit(train_data, train_labels)\n", " \n", " models = [knn, bnb, mnb, log_reg, neural_net, random_forest, decision_tree, support_vm]\n", " for model in models:\n", " eval_prediction_probabilities = model.predict_proba(eval_data)\n", " eval_predictions = model.predict(eval_data)\n", " print(model, \"Multi-class Log Loss:\", log_loss(y_true = eval_labels, y_pred = eval_prediction_probabilities, labels = crime_labels_mini_dev), \"\\n\\n\")\n", "\n", "model_prototype(mini_train_data, mini_train_labels, mini_dev_data, mini_dev_labels)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Adding Features, Hyperparameter Tuning, and Model Calibration To Improve Prediction For Each Classifier\n", "\n", "Here we seek to optimize the performance of our classifiers in a three-step, dynamnic engineering process. \n", "\n", "##### 1) Feature addition\n", "\n", "We previously added components from the weather data into the original SF crime data as new features. We will not repeat work done in our initial submission, where our training dataset did not include these features. For comparision with respoect to how the added features improved our performance with respect to log loss, please refer back to our initial submission.\n", "\n", "We can have Kalvin expand on exactly what he did here.\n", "\n", "##### 2) Hyperparameter tuning\n", "\n", "Each classifier has parameters that we can engineer to further optimize performance, as opposed to using the default parameter values as we did above in the model prototyping cell. This will be specific to each classifier as detailed below.\n", "\n", "##### 3) Model calibration\n", "\n", "We can calibrate the models via Platt Scaling or Isotonic Regression to attempt to improve their performance.\n", "\n", "- Platt Scaling: ((brief explanation of how it works))\n", "\n", "- Isotonic Regression: ((brief explanation of how it works))\n", "\n", "For each classifier, we can use CalibratedClassifierCV to perform probability calibration with isotonic regression or sigmoid (Platt Scaling). The parameters within CalibratedClassifierCV that we can adjust are the method ('sigmoid' or 'isotonic') and cv (cross-validation generator). As we will already be training our models before calibration, we will only use cv = 'prefit'. Thus, in practice the cross-validation generator will not be a modifiable parameter for us.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### K-Nearest Neighbors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Hyperparameter tuning:\n", "\n", "For the KNN classifier, we can seek to optimize the following classifier parameters: n-neighbors, weights, and the power parameter ('p')." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For KNN the best log loss with hyperparameter tuning is 2.62923629844 with k = 2001 w = uniform p = 1\n", "Computation time for this step is 351.40 seconds\n" ] } ], "source": [ "list_for_ks = []\n", "list_for_ws = []\n", "list_for_ps = []\n", "list_for_log_loss = []\n", "\n", "def k_neighbors_tuned(k,w,p):\n", " tuned_KNN = KNeighborsClassifier(n_neighbors=k, weights=w, p=p).fit(mini_train_data, mini_train_labels)\n", " dev_prediction_probabilities = tuned_KNN.predict_proba(mini_dev_data)\n", " list_for_ks.append(this_k)\n", " list_for_ws.append(this_w)\n", " list_for_ps.append(this_p)\n", " working_log_loss = log_loss(y_true = mini_dev_labels, y_pred = dev_prediction_probabilities, labels = crime_labels_mini_dev)\n", " list_for_log_loss.append(working_log_loss)\n", " #print(\"Multi-class Log Loss with KNN and k,w,p =\", k,\",\",w,\",\", p, \"is:\", working_log_loss)\n", "\n", "k_value_tuning = [i for i in range(1,5002,500)]\n", "weight_tuning = ['uniform', 'distance']\n", "power_parameter_tuning = [1,2]\n", "\n", "start = time.clock()\n", "for this_k in k_value_tuning:\n", " for this_w in weight_tuning:\n", " for this_p in power_parameter_tuning:\n", " k_neighbors_tuned(this_k, this_w, this_p)\n", " \n", "index_best_logloss = np.argmin(list_for_log_loss)\n", "print('For KNN the best log loss with hyperparameter tuning is',list_for_log_loss[index_best_logloss], 'with k =', list_for_ks[index_best_logloss], 'w =', list_for_ws[index_best_logloss], 'p =', list_for_ps[index_best_logloss])\n", "end = time.clock()\n", "print(\"Computation time for this step is %.2f\" % (end-start), 'seconds')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Model calibration:\n", "\n", "Here we will calibrate the KNN classifier with both Platt Scaling and with Isotonic Regression using CalibratedClassifierCV with various parameter settings. The \"method\" parameter can be set to \"sigmoid\" or to \"isotonic\", corresponding to Platt Scaling and to Isotonic Regression respectively.\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For KNN the best log loss with hyperparameter tuning and calibration is 2.71372469963 with k = 1 w = uniform p = 1 m = sigmoid\n", "Computation time for this step is 49.62 seconds\n" ] } ], "source": [ "list_for_ks = []\n", "list_for_ws = []\n", "list_for_ps = []\n", "list_for_ms = []\n", "list_for_log_loss = []\n", "\n", "def knn_calibrated(k,w,p,m):\n", " tuned_KNN = KNeighborsClassifier(n_neighbors=k, weights=w, p=p).fit(mini_train_data, mini_train_labels)\n", " dev_prediction_probabilities = tuned_KNN.predict_proba(mini_dev_data)\n", " ccv = CalibratedClassifierCV(tuned_KNN, method = m, cv = 'prefit')\n", " ccv.fit(mini_calibrate_data, mini_calibrate_labels)\n", " ccv_prediction_probabilities = ccv.predict_proba(mini_dev_data)\n", " list_for_ks.append(this_k)\n", " list_for_ws.append(this_w)\n", " list_for_ps.append(this_p)\n", " list_for_ms.append(this_m)\n", " working_log_loss = log_loss(y_true = mini_dev_labels, y_pred = ccv_prediction_probabilities, labels = crime_labels_mini_dev)\n", " list_for_log_loss.append(working_log_loss)\n", " #print(\"Multi-class Log Loss with KNN and k,w,p =\", k,\",\",w,\",\",p,\",\",m,\"is:\", working_log_loss)\n", "\n", "#k_value_tuning = [i for i in range(1,5002,500)]\n", "k_value_tuning = [1]\n", "weight_tuning = ['uniform', 'distance']\n", "power_parameter_tuning = [1,2]\n", "methods = ['sigmoid', 'isotonic']\n", "\n", "start = time.clock()\n", "for this_k in k_value_tuning:\n", " for this_w in weight_tuning:\n", " for this_p in power_parameter_tuning:\n", " for this_m in methods:\n", " knn_calibrated(this_k, this_w, this_p, this_m)\n", " \n", "index_best_logloss = np.argmin(list_for_log_loss)\n", "print('For KNN the best log loss with hyperparameter tuning and calibration is',list_for_log_loss[index_best_logloss], 'with k =', list_for_ks[index_best_logloss], 'w =', list_for_ws[index_best_logloss], 'p =', list_for_ps[index_best_logloss], 'm =', list_for_ms[index_best_logloss])\n", "end = time.clock()\n", "print(\"Computation time for this step is %.2f\" % (end-start), 'seconds')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Comments on results for Hyperparameter tuning and Calibration for KNN:\n", "\n", "We see that the best log loss we achieve for KNN is with _ neighbors, _ weights, and _ power parameter.\n", "\n", "When we add-in calibration, we see that the the best log loss we achieve for KNN is with _ neighbors, _ weights, _ power parameter, and _ calibration method.\n", "\n", "(Further explanation here?)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Multinomial, Bernoulli, and Gaussian Naive Bayes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Hyperparameter tuning: Bernoulli Naive Bayes\n", "\n", "For the Bernoulli Naive Bayes classifier, we seek to optimize the alpha parameter (Laplace smoothing parameter) and the binarize parameter (threshold for binarizing of the sample features). For the binarize parameter, we will create arbitrary thresholds over which our features, which are not binary/boolean features, will be binarized." ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For BNB the best log loss with hyperparameter tuning is 2.6247750866 with alpha = 1.2 binarization threshold = 1e-20\n", "Computation time for this step is 186.46 seconds\n" ] } ], "source": [ "list_for_as = []\n", "list_for_bs = []\n", "list_for_log_loss = []\n", "\n", "def BNB_tuned(a,b):\n", " bnb_tuned = BernoulliNB(alpha = a, binarize = b).fit(mini_train_data, mini_train_labels)\n", " dev_prediction_probabilities = bnb_tuned.predict_proba(mini_dev_data)\n", " list_for_as.append(this_a)\n", " list_for_bs.append(this_b)\n", " working_log_loss = log_loss(y_true = mini_dev_labels, y_pred = dev_prediction_probabilities, labels = crime_labels_mini_dev)\n", " list_for_log_loss.append(working_log_loss)\n", " #print(\"Multi-class Log Loss with BNB and a,b =\", a,\",\",b,\"is:\", working_log_loss)\n", "\n", "alpha_tuning = [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.4, 1.6, 1.8, 2.0, 10.0]\n", "binarize_thresholds_tuning = [1e-20, 1e-19, 1e-18, 1e-17, 1e-16, 1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 0.9999]\n", "\n", "start = time.clock()\n", "for this_a in alpha_tuning:\n", " for this_b in binarize_thresholds_tuning:\n", " BNB_tuned(this_a, this_b)\n", " \n", "index_best_logloss = np.argmin(list_for_log_loss)\n", "print('For BNB the best log loss with hyperparameter tuning is',list_for_log_loss[index_best_logloss], 'with alpha =', list_for_as[index_best_logloss], 'binarization threshold =', list_for_bs[index_best_logloss])\n", "end = time.clock()\n", "print(\"Computation time for this step is %.2f\" % (end-start), 'seconds') " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Model calibration: BernoulliNB\n", "\n", "Here we will calibrate the BNB classifier with both Platt Scaling and with Isotonic Regression using CalibratedClassifierCV with various parameter settings. The \"method\" parameter can be set to \"sigmoid\" or to \"isotonic\", corresponding to Platt Scaling and to Isotonic Regression respectively.\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For BNB the best log loss with hyperparameter tuning and calibration is 2.61370308039 with alpha = 1.0 binarization threshold = 0.5 method = sigmoid\n", "Computation time for this step is 1066.40 seconds\n" ] } ], "source": [ "list_for_as = []\n", "list_for_bs = []\n", "list_for_ms = []\n", "list_for_log_loss = []\n", "\n", "def BNB_calibrated(a,b,m):\n", " bnb_tuned = BernoulliNB(alpha = a, binarize = b).fit(mini_train_data, mini_train_labels)\n", " dev_prediction_probabilities = bnb_tuned.predict_proba(mini_dev_data)\n", " ccv = CalibratedClassifierCV(bnb_tuned, method = m, cv = 'prefit')\n", " ccv.fit(mini_calibrate_data, mini_calibrate_labels)\n", " ccv_prediction_probabilities = ccv.predict_proba(mini_dev_data)\n", " list_for_as.append(this_a)\n", " list_for_bs.append(this_b)\n", " list_for_ms.append(this_m)\n", " working_log_loss = log_loss(y_true = mini_dev_labels, y_pred = ccv_prediction_probabilities, labels = crime_labels_mini_dev)\n", " list_for_log_loss.append(working_log_loss)\n", " #print(\"Multi-class Log Loss with BNB and a,b,m =\", a,\",\", b,\",\", m, \"is:\", working_log_loss)\n", "\n", "alpha_tuning = [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.4, 1.6, 1.8, 2.0, 10.0]\n", "binarize_thresholds_tuning = [1e-20, 1e-19, 1e-18, 1e-17, 1e-16, 1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 0.9999]\n", "methods = ['sigmoid', 'isotonic']\n", "\n", "start = time.clock()\n", "for this_a in alpha_tuning:\n", " for this_b in binarize_thresholds_tuning:\n", " for this_m in methods:\n", " BNB_calibrated(this_a, this_b, this_m)\n", " \n", "index_best_logloss = np.argmin(list_for_log_loss)\n", "print('For BNB the best log loss with hyperparameter tuning and calibration is',list_for_log_loss[index_best_logloss], 'with alpha =', list_for_as[index_best_logloss], 'binarization threshold =', list_for_bs[index_best_logloss], 'method = ', list_for_ms[index_best_logloss])\n", "end = time.clock()\n", "print(\"Computation time for this step is %.2f\" % (end-start), 'seconds') " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Hyperparameter tuning: Multinomial Naive Bayes\n", "\n", "For the Multinomial Naive Bayes classifer, we seek to optimize the alpha parameter (Laplace smoothing parameter)." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For MNB the best log loss with hyperparameter tuning is 2.60930490132 with alpha = 1.8\n", "Computation time for this step is 5.96 seconds\n" ] } ], "source": [ "list_for_as = []\n", "list_for_log_loss = []\n", "\n", "def MNB_tuned(a):\n", " mnb_tuned = MultinomialNB(alpha = a).fit(mini_train_data, mini_train_labels)\n", " dev_prediction_probabilities =mnb_tuned.predict_proba(mini_dev_data)\n", " list_for_as.append(this_a)\n", " working_log_loss = log_loss(y_true = mini_dev_labels, y_pred = dev_prediction_probabilities, labels = crime_labels_mini_dev)\n", " list_for_log_loss.append(working_log_loss)\n", " #print(\"Multi-class Log Loss with BNB and a =\", a, \"is:\", working_log_loss)\n", "\n", "alpha_tuning = [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.4, 1.6, 1.8, 2.0, 10.0]\n", "\n", "start = time.clock()\n", "for this_a in alpha_tuning:\n", " MNB_tuned(this_a)\n", " \n", "index_best_logloss = np.argmin(list_for_log_loss)\n", "print('For MNB the best log loss with hyperparameter tuning is',list_for_log_loss[index_best_logloss], 'with alpha =', list_for_as[index_best_logloss])\n", "end = time.clock()\n", "print(\"Computation time for this step is %.2f\" % (end-start), 'seconds') \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Model calibration: MultinomialNB\n", "\n", "Here we will calibrate the MNB classifier with both Platt Scaling and with Isotonic Regression using CalibratedClassifierCV with various parameter settings. The \"method\" parameter can be set to \"sigmoid\" or to \"isotonic\", corresponding to Platt Scaling and to Isotonic Regression respectively." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For MNB the best log loss with hyperparameter tuning and calibration is 2.6145055659 with alpha = 2.0 and method = sigmoid\n", "Computation time for this step is 34.13 seconds\n" ] } ], "source": [ "list_for_as = []\n", "list_for_ms = []\n", "list_for_log_loss = []\n", "\n", "def MNB_calibrated(a,m):\n", " mnb_tuned = MultinomialNB(alpha = a).fit(mini_train_data, mini_train_labels)\n", " ccv = CalibratedClassifierCV(mnb_tuned, method = m, cv = 'prefit')\n", " ccv.fit(mini_calibrate_data, mini_calibrate_labels)\n", " ccv_prediction_probabilities = ccv.predict_proba(mini_dev_data)\n", " list_for_as.append(this_a)\n", " list_for_ms.append(this_m)\n", " working_log_loss = log_loss(y_true = mini_dev_labels, y_pred = ccv_prediction_probabilities, labels = crime_labels_mini_dev)\n", " list_for_log_loss.append(working_log_loss)\n", " #print(\"Multi-class Log Loss with MNB and a =\", a, \"and m =\", m, \"is:\", working_log_loss)\n", "\n", "alpha_tuning = [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.1, 1.2, 1.4, 1.6, 1.8, 2.0, 10.0]\n", "methods = ['sigmoid', 'isotonic']\n", "\n", "start = time.clock()\n", "for this_a in alpha_tuning:\n", " for this_m in methods:\n", " MNB_calibrated(this_a, this_m)\n", " \n", "index_best_logloss = np.argmin(list_for_log_loss)\n", "print('For MNB the best log loss with hyperparameter tuning and calibration is',list_for_log_loss[index_best_logloss], 'with alpha =', list_for_as[index_best_logloss], 'and method =', list_for_ms[index_best_logloss])\n", "end = time.clock()\n", "print(\"Computation time for this step is %.2f\" % (end-start), 'seconds') " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Tuning: Gaussian Naive Bayes\n", "\n", "For the Gaussian Naive Bayes classifier there are no inherent parameters within the classifier function to optimize, but we will look at our log loss before and after adding noise to the data that is hypothesized to give it a more normal (Gaussian) distribution, which is required by the GNB classifier." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Multi-class Log Loss with pre-tuned GNB is: 34.1076504549\n", "Multi-class Log Loss with tuned GNB via addition of noise to normalize the data's distribution is: 31.8040829494\n" ] } ], "source": [ "def GNB_pre_tune():\n", " gnb_pre_tuned = GaussianNB().fit(mini_train_data, mini_train_labels)\n", " dev_prediction_probabilities =gnb_pre_tuned.predict_proba(mini_dev_data)\n", " working_log_loss = log_loss(y_true = mini_dev_labels, y_pred = dev_prediction_probabilities, labels = crime_labels_mini_dev)\n", " print(\"Multi-class Log Loss with pre-tuned GNB is:\", working_log_loss)\n", "\n", "GNB_pre_tune()\n", " \n", "def GNB_post_tune():\n", " # Gaussian Naive Bayes requires the data to have a relative normal distribution. Sometimes\n", " # adding noise can improve performance by making the data more normal:\n", " mini_train_data_noise = np.random.rand(mini_train_data.shape[0],mini_train_data.shape[1])\n", " modified_mini_train_data = np.multiply(mini_train_data,mini_train_data_noise) \n", " gnb_with_noise = GaussianNB().fit(modified_mini_train_data,mini_train_labels)\n", " dev_prediction_probabilities =gnb_with_noise.predict_proba(mini_dev_data)\n", " working_log_loss = log_loss(y_true = mini_dev_labels, y_pred = dev_prediction_probabilities, labels = crime_labels_mini_dev)\n", " print(\"Multi-class Log Loss with tuned GNB via addition of noise to normalize the data's distribution is:\", working_log_loss)\n", " \n", "GNB_post_tune()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Model calibration: GaussianNB\n", "\n", "Here we will calibrate the GNB classifier with both Platt Scaling and with Isotonic Regression using CalibratedClassifierCV with various parameter settings. The \"method\" parameter can be set to \"sigmoid\" or to \"isotonic\", corresponding to Platt Scaling and to Isotonic Regression respectively." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For GNB the best log loss with tuning and calibration is 2.67904020299 with method = sigmoid\n", "Computation time for this step is 1.36 seconds\n" ] } ], "source": [ "list_for_ms = []\n", "list_for_log_loss = []\n", "\n", "def GNB_calibrated(m):\n", " # Gaussian Naive Bayes requires the data to have a relative normal distribution. Sometimes\n", " # adding noise can improve performance by making the data more normal:\n", " mini_train_data_noise = np.random.rand(mini_train_data.shape[0],mini_train_data.shape[1])\n", " modified_mini_train_data = np.multiply(mini_train_data,mini_train_data_noise) \n", " gnb_with_noise = GaussianNB().fit(modified_mini_train_data,mini_train_labels)\n", " ccv = CalibratedClassifierCV(gnb_with_noise, method = m, cv = 'prefit')\n", " ccv.fit(mini_calibrate_data, mini_calibrate_labels)\n", " ccv_prediction_probabilities = ccv.predict_proba(mini_dev_data)\n", " list_for_ms.append(this_m)\n", " working_log_loss = log_loss(y_true = mini_dev_labels, y_pred = ccv_prediction_probabilities, labels = crime_labels_mini_dev)\n", " list_for_log_loss.append(working_log_loss)\n", " #print(\"Multi-class Log Loss with tuned GNB via addition of noise to normalize the data's distribution and after calibration is:\", working_log_loss, 'with calibration method =', m)\n", " \n", "methods = ['sigmoid', 'isotonic']\n", "\n", "start = time.clock()\n", "for this_m in methods:\n", " GNB_calibrated(this_m)\n", " \n", "index_best_logloss = np.argmin(list_for_log_loss)\n", "print('For GNB the best log loss with tuning and calibration is',list_for_log_loss[index_best_logloss], 'with method =', list_for_ms[index_best_logloss])\n", "end = time.clock()\n", "print(\"Computation time for this step is %.2f\" % (end-start), 'seconds') " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Logistic Regression\n", "\n", "###### Hyperparameter tuning:\n", "\n", "For the Logistic Regression classifier, we can seek to optimize the following classifier parameters: penalty (l1 or l2), C (inverse of regularization strength), solver ('newton-cg', 'lbfgs', 'liblinear', or 'sag')\n", "\n", "###### Model calibration:\n", "\n", "See above\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Decision Tree (Bryan)\n", "\n", "###### Hyperparameter tuning:\n", "\n", "For the Decision Tree classifier, we can seek to optimize the following classifier parameters: min_samples_leaf (the minimum number of samples required to be at a leaf node), max_depth\n", "\n", "From readings, setting min_samples_leaf to approximately 1% of the data points can stop the tree from inappropriately classifying outliers, which can help to improve accuracy (unsure if significantly improves MCLL).\n", "\n", "\n", "###### Model calibration:\n", "\n", "See above" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Support Vector Machines (Kalvin)\n", "\n", "###### Hyperparameter tuning:\n", "\n", "For the SVM classifier, we can seek to optimize the following classifier parameters: C (penalty parameter C of the error term), kernel ('linear', 'poly', 'rbf', sigmoid', or 'precomputed')\n", "\n", "See source [2] for parameter optimization in SVM\n", "\n", "###### Model calibration:\n", "\n", "See above" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Neural Nets (Sarah)\n", "\n", "###### Hyperparameter tuning:\n", "\n", "For the Neural Networks MLP classifier, we can seek to optimize the following classifier parameters: hidden_layer_sizes, activation ('identity', 'logistic', 'tanh', 'relu'), solver ('lbfgs','sgd', adam'), alpha, learning_rate ('constant', 'invscaling','adaptive')" ] }, { "cell_type": "code", "execution_count": 99, "metadata": {}, "outputs": [ { "ename": "ModuleNotFoundError", "evalue": "No module named 'theano'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-99-746a0d71593d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m### All the work from Sarah's notebook:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtheano\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtensor\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msandbox\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrng_mrg\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mMRG_RandomStreams\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mRandomStreams\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'theano'" ] } ], "source": [ "### All the work from Sarah's notebook:\n", "\n", "import theano\n", "from theano import tensor as T\n", "from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams\n", "print (theano.config.device) # We're using CPUs (for now)\n", "print (theano.config.floatX )# Should be 64 bit for CPUs\n", "\n", "np.random.seed(0)\n", "\n", "from IPython.display import display, clear_output" ] }, { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Features = 25\n", "Train set = 700000\n", "Test set = 78049\n", "['DRUG/NARCOTIC', 'RUNAWAY', 'DRUNKENNESS', 'LOITERING', 'STOLEN PROPERTY', 'MISSING PERSON', 'ARSON', 'FRAUD', 'SEX OFFENSES NON FORCIBLE', 'NON-CRIMINAL', 'WEAPON LAWS', 'RECOVERED VEHICLE', 'ASSAULT', 'TRESPASS', 'GAMBLING', 'SUSPICIOUS OCC', 'TREA', 'BAD CHECKS', 'VANDALISM', 'FAMILY OFFENSES', 'DRIVING UNDER THE INFLUENCE', 'WARRANTS', 'PROSTITUTION', 'SEX OFFENSES FORCIBLE', 'DISORDERLY CONDUCT', 'LIQUOR LAWS', 'ROBBERY', 'FORGERY/COUNTERFEITING', 'OTHER OFFENSES', 'EXTORTION', 'VEHICLE THEFT', 'SUICIDE', 'PORNOGRAPHY/OBSCENE MAT', 'LARCENY/THEFT', 'BRIBERY', 'EMBEZZLEMENT', 'SECONDARY CODES', 'KIDNAPPING', 'BURGLARY']\n" ] } ], "source": [ "numFeatures = train_data[1].size\n", "numTrainExamples = train_data.shape[0]\n", "numTestExamples = test_data.shape[0]\n", "print ('Features = %d' %(numFeatures))\n", "print ('Train set = %d' %(numTrainExamples))\n", "print ('Test set = %d' %(numTestExamples))\n", "\n", "class_labels = list(set(train_labels))\n", "print(class_labels)\n", "numClasses = len(class_labels)" ] }, { "cell_type": "code", "execution_count": 93, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Classes = 39\n", "\n", " [[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 1.]\n", " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0.]\n", " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0.]\n", " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0.]\n", " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0.]] \n", "\n", "['BURGLARY' 'LARCENY/THEFT' 'OTHER OFFENSES' 'OTHER OFFENSES'\n", " 'SUSPICIOUS OCC' 'VANDALISM' 'DRUG/NARCOTIC' 'MISSING PERSON'\n", " 'LARCENY/THEFT' 'OTHER OFFENSES'] \n", "\n" ] } ], "source": [ "### Binarize the class labels\n", "\n", "def binarizeY(data):\n", " binarized_data = np.zeros((data.size,39))\n", " for j in range(0,data.size):\n", " feature = data[j]\n", " i = class_labels.index(feature)\n", " binarized_data[j,i]=1\n", " return binarized_data\n", "\n", "train_labels_b = binarizeY(train_labels)\n", "test_labels_b = binarizeY(test_labels)\n", "numClasses = train_labels_b[1].size\n", "\n", "print ('Classes = %d' %(numClasses))\n", "print ('\\n', train_labels_b[:5, :], '\\n')\n", "print (train_labels[:10], '\\n')" ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'theano' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-94-8c49129ca7e8>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mnumHiddenNodeslayer2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m30\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0mw_1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshared\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumFeatures\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumHiddenNodeslayer1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m0.01\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0mw_2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshared\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumHiddenNodeslayer1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumHiddenNodeslayer2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m0.01\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mw_3\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshared\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumHiddenNodeslayer2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumClasses\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m0.01\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'theano' is not defined" ] } ], "source": [ "###1) Parameters\n", "numFeatures = train_data.shape[1]\n", "\n", "numHiddenNodeslayer1 = 50\n", "numHiddenNodeslayer2 = 30\n", "\n", "w_1 = theano.shared(np.asarray((np.random.randn(*(numFeatures, numHiddenNodeslayer1))*0.01)))\n", "w_2 = theano.shared(np.asarray((np.random.randn(*(numHiddenNodeslayer1, numHiddenNodeslayer2))*0.01)))\n", "w_3 = theano.shared(np.asarray((np.random.randn(*(numHiddenNodeslayer2, numClasses))*0.01)))\n", "params = [w_1, w_2, w_3]\n", "\n", "\n", "###2) Model\n", "X = T.matrix()\n", "Y = T.matrix()\n", "\n", "srng = RandomStreams()\n", "def dropout(X, p=0.):\n", " if p > 0:\n", " X *= srng.binomial(X.shape, p=1 - p)\n", " X /= 1 - p\n", " return X\n", "\n", "def model(X, w_1, w_2, w_3, p_1, p_2, p_3):\n", " return T.nnet.softmax(T.dot(dropout(T.nnet.sigmoid(T.dot(dropout(T.nnet.sigmoid(T.dot(dropout(X, p_1), w_1)),p_2), w_2)),p_3),w_3))\n", "y_hat_train = model(X, w_1, w_2, w_3, 0.2, 0.5,0.5)\n", "y_hat_predict = model(X, w_1, w_2, w_3, 0., 0., 0.)\n", "\n", "### (3) Cost function\n", "cost = T.mean(T.sqr(y_hat - Y))\n", "cost = T.mean(T.nnet.categorical_crossentropy(y_hat_train, Y))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'cost' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-14-ef1dde28bb64>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mupdates\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0mupdate\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbackprop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcost\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0mtrain\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunction\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcost\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mupdates\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mallow_input_downcast\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0my_pred\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_hat_predict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'cost' is not defined" ] } ], "source": [ "### (4) Objective (and solver)\n", "\n", "alpha = 0.01\n", "def backprop(cost, w):\n", " grads = T.grad(cost=cost, wrt=w)\n", " updates = []\n", " for wi, grad in zip(w, grads):\n", " updates.append([wi, wi - grad * alpha])\n", " return updates\n", "\n", "update = backprop(cost, params)\n", "train = theano.function(inputs=[X, Y], outputs=cost, updates=update, allow_input_downcast=True)\n", "y_pred = T.argmax(y_hat_predict, axis=1)\n", "predict = theano.function(inputs=[X], outputs=y_pred, allow_input_downcast=True)\n", "\n", "miniBatchSize = 10 \n", "\n", "def gradientDescent(epochs):\n", " for i in range(epochs):\n", " for start, end in zip(range(0, len(train_data), miniBatchSize), range(miniBatchSize, len(train_data), miniBatchSize)):\n", " cc = train(train_data[start:end], train_labels_b[start:end])\n", " clear_output(wait=True)\n", " print ('%d) accuracy = %.4f' %(i+1, np.mean(np.argmax(test_labels_b, axis=1) == predict(test_data))) )\n", "\n", "gradientDescent(50)\n", "\n", "### How to decide what # to use for epochs? epochs in this case are how many rounds?\n", "### plot costs for each of the 50 iterations and see how much it decline.. if its still very decreasing, you should\n", "### do more iterations; otherwise if its looking like its flattening, you can stop" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###### Model calibration:\n", "\n", "See above" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Random Forest (Sam, possibly in AWS)\n", "\n", "###### Hyperparameter tuning:\n", "\n", "For the Random Forest classifier, we can seek to optimize the following classifier parameters: n_estimators (the number of trees in the forsest), max_features, max_depth, min_samples_leaf, bootstrap (whether or not bootstrap samples are used when building trees), oob_score (whether or not out-of-bag samples are used to estimate the generalization accuracy)\n", "\n", "###### Model calibration:\n", "\n", "See above" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Meta-estimators" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### AdaBoost Classifier\n", "\n", "###### Hyperparameter tuning:\n", "\n", "There are no major changes that we seek to make in the AdaBoostClassifier with respect to default parameter values.\n", "\n", "###### Adaboosting each classifier:\n", "\n", "We will run the AdaBoostClassifier on each different classifier from above, using the classifier settings with optimized Multi-class Log Loss after hyperparameter tuning and calibration.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Bagging Classifier\n", "\n", "###### Hyperparameter tuning:\n", "\n", "For the Bagging meta classifier, we can seek to optimize the following classifier parameters: n_estimators (the number of trees in the forsest), max_samples, max_features, bootstrap (whether or not bootstrap samples are used when building trees), bootstrap_features (whether features are drawn with replacement), and oob_score (whether or not out-of-bag samples are used to estimate the generalization accuracy)\n", "\n", "###### Bagging each classifier:\n", "\n", "We will run the BaggingClassifier on each different classifier from above, using the classifier settings with optimized Multi-class Log Loss after hyperparameter tuning and calibration.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Gradient Boosting Classifier\n", "\n", "###### Hyperparameter tuning:\n", "\n", "For the Gradient Boosting meta classifier, we can seek to optimize the following classifier parameters: n_estimators (the number of trees in the forsest), max_depth, min_samples_leaf, and max_features\n", "\n", "###### Gradient Boosting each classifier:\n", "\n", "We will run the GradientBoostingClassifier with loss = 'deviance' (as loss = 'exponential' uses the AdaBoost algorithm) on each different classifier from above, using the classifier settings with optimized Multi-class Log Loss after hyperparameter tuning and calibration.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Final evaluation on test data" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Here we will likely use Pipeline and GridSearchCV in order to find the overall classifier with optimized Multi-class Log Loss.\n", "# This will be the last step after all attempts at feature addition, hyperparameter tuning, and calibration are completed\n", "# and the corresponding performance metrics are gathered.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### References\n", "\n", "1) Hsiang, Solomon M. and Burke, Marshall and Miguel, Edward. \"Quantifying the Influence of Climate on Human Conflict\". Science, Vol 341, Issue 6151, 2013 \n", "\n", "2) Huang, Cheng-Lung. Wang, Chieh-Jen. \"A GA-based feature selection and parameters optimization for support vector machines\". Expert Systems with Applications, Vol 31, 2006, p 231-240\n", "\n", "3) More to come \n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
albertxavier001/graduation-project
pytorch/New Gradient Network NO DSN 1.ipynb
1
27417
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import os, glob, platform, datetime, random\n", "from collections import OrderedDict\n", "\n", "import torch\n", "import torch.nn as nn\n", "import torch.utils.data as data_utils\n", "import torch.nn.parallel\n", "import torch.backends.cudnn as cudnn\n", "import torch.optim as optim\n", "from torch.autograd import Variable\n", "from torch import functional as F\n", "# import torchvision.datasets as datasets\n", "import torchvision.models as models\n", "import torchvision.transforms as transforms\n", "\n", "import cv2\n", "from PIL import Image\n", "from tensorboardX import SummaryWriter\n", "\n", "import numpy as np\n", "from numpy.linalg import inv as denseinv\n", "from scipy import sparse\n", "from scipy.sparse import lil_matrix, csr_matrix\n", "from scipy.sparse.linalg import spsolve\n", "from scipy.sparse.linalg import inv as spinv\n", "import scipy.misc\n", "\n", "from myimagefolder import MyImageFolder\n", "from mymodel import GradientNet\n", "from myargs import Args\n", "from myutils import MyUtils" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Configurations" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "myutils = MyUtils()\n", "\n", "args = Args()\n", "args.arch = \"densenet121\"\n", "args.epoches = 500\n", "args.epoches_unary_threshold = 0\n", "args.image_h = 256\n", "args.image_w = 256\n", "args.img_extentions = [\"png\"]\n", "args.training_thresholds = [250,200,150,50,0,300]\n", "args.base_lr = 1\n", "args.lr = args.base_lr\n", "args.snapshot_interval = 5000\n", "args.debug = True\n", "\n", "\n", "# growth_rate = (4*(2**(args.gpu_num)))\n", "transition_scale=2\n", "pretrained_scale=4\n", "growth_rate = 32\n", "\n", "#######\n", "# args.test_scene = ['alley_2', 'bamboo_2', 'bandage_2', 'cave_4', 'market_5', 'mountain_1', 'shaman_3', 'sleeping_2', 'temple_3']\n", "args.test_scene = 'alley_1'\n", "gradient=False\n", "args.gpu_num = 1\n", "#######\n", "\n", "writer_comment = '{}_rgb_no_dsn'.format(args.test_scene)\n", "if gradient == True:\n", " writer_comment = '{}_gd_no_dsn'.format(args.test_scene)\n", "\n", "offset = 0.\n", "if gradient == True: offset = 0.5\n", "\n", "args.display_interval = 50\n", "args.display_curindex = 0\n", "\n", "system_ = platform.system()\n", "system_dist, system_version, _ = platform.dist()\n", "if system_ == \"Darwin\": \n", " args.train_dir = '/Volumes/Transcend/dataset/sintel2'\n", " args.pretrained = False\n", "elif platform.dist() == ('debian', 'jessie/sid', ''):\n", " args.train_dir = '/home/lwp/workspace/sintel2'\n", " args.pretrained = True\n", "elif platform.dist() == ('debian', 'stretch/sid', ''):\n", " args.train_dir = '/home/cad/lwp/workspace/dataset/sintel2'\n", " args.pretrained = True\n", "\n", "if platform.system() == 'Linux': use_gpu = True\n", "else: use_gpu = False\n", "if use_gpu:\n", " torch.cuda.set_device(args.gpu_num)\n", " \n", "\n", "print(platform.dist())" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# My DataLoader" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "train_dataset = MyImageFolder(args.train_dir, 'train',\n", " transforms.Compose(\n", " [transforms.ToTensor()]\n", " ), random_crop=True, \n", " img_extentions=args.img_extentions, test_scene=args.test_scene, image_h=args.image_h, image_w=args.image_w)\n", "test_dataset = MyImageFolder(args.train_dir, 'test', \n", " transforms.Compose(\n", " [transforms.CenterCrop((args.image_h, args.image_w)),\n", " transforms.ToTensor()]\n", " ), random_crop=False,\n", " img_extentions=args.img_extentions, test_scene=args.test_scene, image_h=args.image_h, image_w=args.image_w)\n", "\n", "train_loader = data_utils.DataLoader(train_dataset,1,True,num_workers=1)\n", "test_loader = data_utils.DataLoader(test_dataset,1,True,num_workers=1)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Load Pretrained Model\n", "\n", "[Defination](https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py)\n", "* DenseNet-121: num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16)\n", " * First Convolution: 32M -> 16M -> 8M\n", " * every transition: 8M -> 4M -> 2M (downsample 1/2, except the last block)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "densenet = models.__dict__[args.arch](pretrained=args.pretrained)\n", "\n", "for param in densenet.parameters():\n", " param.requires_grad = False\n", "\n", "if use_gpu: densenet.cuda()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ss = 6\n", "s0 = ss*5\n", "s0 = 0\n", "\n", "args.display_curindex = 0\n", "args.base_lr = 0.05\n", "args.display_interval = 20\n", "args.momentum = 0.9\n", "args.epoches = 240\n", "args.training_thresholds = [0,0,0,0,0,s0]\n", "args.training_merge_thresholds = [s0+ss*3*3,s0+ss*2*3, s0+ss*1*3, s0, -1, s0+ss*4*3]\n", "args.power = 0.5\n", "\n", "\n", "\n", "# pretrained = PreTrainedModel(densenet)\n", "# if use_gpu: \n", "# pretrained.cuda()\n", "\n", "\n", "net = GradientNet(densenet=densenet, growth_rate=growth_rate, \n", " transition_scale=transition_scale, pretrained_scale=pretrained_scale,\n", " gradient=gradient)\n", "if use_gpu:\n", " net.cuda()\n", "\n", "if use_gpu: \n", " mse_losses = [nn.MSELoss().cuda()] * 6\n", " test_losses = [nn.MSELoss().cuda()] * 6\n", " mse_merge_losses = [nn.MSELoss().cuda()] * 6\n", " test_merge_losses = [nn.MSELoss().cuda()] * 6\n", "else:\n", " mse_losses = [nn.MSELoss()] * 6\n", " mse_merge_losses = [nn.MSELoss()] * 6\n", " test_losses = [nn.MSELoss()] * 6\n", " test_merge_losses = [nn.MSELoss()] * 6 " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def test_model(epoch, go_through_merge=False, phase='train'):\n", " if phase == 'train': net.train()\n", " else: net.eval()\n", " \n", " test_losses_trainphase = [0] * len(args.training_thresholds)\n", " test_cnts_trainphase = [0.00001] * len(args.training_thresholds) \n", " test_merge_losses_trainphase = [0] * len(args.training_thresholds)\n", " test_merge_cnts_trainphase = [0.00001] * len(args.training_thresholds)\n", " \n", " for ind, data in enumerate(test_loader, 0):\n", " input_img, gt_albedo, gt_shading, test_scene, img_path = data\n", " input_img = Variable(input_img)\n", " gt_albedo = Variable(gt_albedo)\n", " gt_shading = Variable(gt_shading)\n", " if use_gpu:\n", " input_img = input_img.cuda(args.gpu_num)\n", " \n", "# pretrained.train(); ft_pretreained = pretrained(input_img)\n", " ft_test, merged_RGB = net(input_img, go_through_merge=go_through_merge)\n", " \n", " for i,v in enumerate(ft_test):\n", " if epoch < args.training_thresholds[i]: continue\n", " if i == 5: s = 1\n", " else: s = (2**(i+1))\n", " gt0 = gt_albedo.cpu().data.numpy()\n", " n,c,h,w = gt0.shape\n", " gt, display = myutils.processGt(gt0, scale_factor=s, gd=gradient, return_image=True)\n", " gt_mg, display_mg = myutils.processGt(gt0, scale_factor=s//2, gd=gradient, return_image=True)\n", " \n", " if use_gpu: \n", " gt = gt.cuda()\n", " gt_mg = gt_mg.cuda()\n", " \n", " if i != 5: \n", " loss = mse_losses[i](ft_test[i], gt)\n", " test_losses_trainphase[i] += loss.data.cpu().numpy()[0]\n", " test_cnts_trainphase[i] += 1\n", " \n", " if go_through_merge != False and i != 4:\n", " if ((go_through_merge == '32M') or\n", " (go_through_merge == '16M' and i != 5) or \n", " (go_through_merge == '08M' and i != 5 and i > 0) or\n", " (go_through_merge == '04M' and i != 5 and i > 1) or\n", " (go_through_merge == '02M' and i != 5 and i > 2)):\n", " if i==5: gt2=gt\n", " else: gt2=gt_mg\n", "# print(i)\n", "# print('merge size', merged_RGB[i].size())\n", "# print('gt2 size', gt2.size())\n", " loss = mse_merge_losses[i](merged_RGB[i], gt2)\n", " test_merge_losses_trainphase[i] += loss.data.cpu().numpy()[0]\n", " test_merge_cnts_trainphase[i] += 1\n", " \n", "\n", " \n", " if ind == 0: \n", " if i != 5:\n", " v = v[0].cpu().data.numpy()\n", " v = v.transpose(1,2,0)\n", " v = v[:,:,0:3]\n", " cv2.imwrite('snapshot{}/test-phase_{}-{}-{}.png'.format(args.gpu_num, phase, epoch, i), (v[:,:,::-1]+offset)*255)\n", " if go_through_merge != False and i != 4:\n", " if ((go_through_merge == '32M') or\n", " (go_through_merge == '16M' and i != 5) or \n", " (go_through_merge == '08M' and i != 5 and i > 0) or\n", " (go_through_merge == '04M' and i != 5 and i > 1) or\n", " (go_through_merge == '02M' and i != 5 and i > 2)):\n", " v = merged_RGB[i][0].cpu().data.numpy()\n", " v = v.transpose(1,2,0)\n", " v = v[:,:,0:3]\n", " cv2.imwrite('snapshot{}/test-mg-phase_{}-{}-{}.png'.format(args.gpu_num, phase, epoch, i), (v[:,:,::-1]+offset)*255)\n", " \n", " run_losses = test_losses_trainphase\n", " run_cnts = test_cnts_trainphase\n", " writer.add_scalars('16M loss', {'test 16M phase {}'.format(phase): np.array([run_losses[0]/ run_cnts[0]])}, global_step=epoch) \n", " writer.add_scalars('8M loss', {'test 8M phase {}'.format(phase): np.array([run_losses[1]/ run_cnts[1]])}, global_step=epoch) \n", " writer.add_scalars('4M loss', {'test 4M phase {}'.format(phase): np.array([run_losses[2]/ run_cnts[2]])}, global_step=epoch) \n", " writer.add_scalars('2M loss', {'test 2M ': np.array([run_losses[3]/ run_cnts[3]])}, global_step=epoch) \n", " writer.add_scalars('1M loss', {'test 1M phase {}'.format(phase): np.array([run_losses[4]/ run_cnts[4]])}, global_step=epoch) \n", " writer.add_scalars('merged loss', {'test merged phase {}'.format(phase): np.array([run_losses[5]/ run_cnts[5]])}, global_step=epoch)\n", " \n", " run_losses = test_merge_losses_trainphase\n", " run_cnts = test_merge_cnts_trainphase\n", " writer.add_scalars('16M loss', {'mg test 16M phase {}'.format(phase): np.array([run_losses[0]/ run_cnts[0]])}, global_step=epoch) \n", " writer.add_scalars('8M loss', {'mg test 8M phase {}'.format(phase): np.array([run_losses[1]/ run_cnts[1]])}, global_step=epoch) \n", " writer.add_scalars('4M loss', {'mg test 4M phase {}'.format(phase): np.array([run_losses[2]/ run_cnts[2]])}, global_step=epoch) \n", " writer.add_scalars('2M loss', {'mg test 2M ': np.array([run_losses[3]/ run_cnts[3]])}, global_step=epoch) \n", " writer.add_scalars('1M loss', {'mg test 1M phase {}'.format(phase): np.array([run_losses[4]/ run_cnts[4]])}, global_step=epoch) \n", " writer.add_scalars('merged loss', {'mg test merged phase {}'.format(phase): np.array([run_losses[5]/ run_cnts[5]])}, global_step=epoch)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "# training loop\n", "\n", "writer = SummaryWriter(comment='-{}'.format(writer_comment))\n", "\n", "parameters = filter(lambda p: p.requires_grad, net.parameters())\n", "optimizer = optim.SGD(parameters, lr=args.base_lr, momentum=args.momentum)\n", "\n", "def adjust_learning_rate(optimizer, epoch, beg, end, reset_lr=None, base_lr=args.base_lr):\n", " \"\"\"Sets the learning rate to the initial LR decayed by 10 every 30 epochs\"\"\"\n", " for param_group in optimizer.param_groups:\n", "# print('para gp', param_group)\n", " if reset_lr != None:\n", " param_group['lr'] = reset_lr\n", " continue\n", " param_group['lr'] = base_lr * (float(end-epoch)/(end-beg)) ** (args.power)\n", " if param_group['lr'] < 1.0e-8: param_group['lr'] = 1.0e-8\n", " \n", "\n", "for epoch in range(args.epoches):\n", "# epoch = 234\n", " net.train()\n", " print('epoch: {} [{}]'.format(epoch, datetime.datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")))\n", "\n", " if epoch < args.training_thresholds[-1]: \n", " adjust_learning_rate(optimizer, epoch, beg=0, end=s0-1)\n", " elif epoch < args.training_merge_thresholds[-1]:\n", " adjust_learning_rate(optimizer, (epoch-s0)%(ss), beg=0, end=ss-1, base_lr=args.base_lr)\n", " else:\n", " adjust_learning_rate(optimizer, epoch, beg=args.training_merge_thresholds[-1], end=args.epoches-1, base_lr=args.base_lr) \n", " \n", " \n", "# if epoch < args.training_thresholds[-1]: go_through_merge = False\n", "# elif epoch >= args.training_merge_thresholds[5]: go_through_merge = '32M'\n", "# elif epoch >= args.training_merge_thresholds[0]: go_through_merge = '16M'\n", "# elif epoch >= args.training_merge_thresholds[1]: go_through_merge = '08M'\n", "# elif epoch >= args.training_merge_thresholds[2]: go_through_merge = '04M'\n", "# elif epoch >= args.training_merge_thresholds[3]: go_through_merge = '02M'\n", " go_through_merge = '32M'\n", " \n", " run_losses = [0] * len(args.training_thresholds)\n", " run_cnts = [0.00001] * len(args.training_thresholds)\n", " run_merge_losses = [0] * len(args.training_thresholds)\n", " run_merge_cnts = [0.00001] * len(args.training_thresholds)\n", " if (epoch in args.training_thresholds) == True: \n", " adjust_learning_rate(optimizer, epoch, reset_lr=args.base_lr, beg=-1, end=-1)\n", " if (epoch in args.training_merge_thresholds) == True:\n", " adjust_learning_rate(optimizer, epoch, reset_lr=args.base_lr, beg=-1, end=-1)\n", " \n", " writer.add_scalar('learning rate', optimizer.param_groups[0]['lr'], global_step=epoch)\n", " for ind, data in enumerate(train_loader, 0):\n", "# if ind == 1 : break\n", " \"\"\"prepare training data\"\"\"\n", " input_img, gt_albedo, gt_shading, test_scene, img_path = data\n", " im = input_img[0,:,:,:].numpy(); im = im.transpose(1,2,0); im = im[:,:,::-1]*255\n", " input_img, gt_albedo, gt_shading = Variable(input_img), Variable(gt_albedo), Variable(gt_shading)\n", " if use_gpu: input_img, gt_albedo, gt_shading = input_img.cuda(), gt_albedo.cuda(), gt_shading.cuda()\n", "\n", " if args.display_curindex % args.display_interval == 0: cv2.imwrite('snapshot{}/input.png'.format(args.gpu_num), im)\n", "\n", " optimizer.zero_grad()\n", " \n", " \n", " ft_predict, merged_RGB = net(input_img, go_through_merge=go_through_merge)\n", " for i, threshold in enumerate(args.training_thresholds):\n", " if epoch >= threshold:\n", "# if epoch >= 0:\n", " \"\"\"prepare resized gt\"\"\"\n", " if i == 5: s = 1\n", " else: s = (2**(i+1))\n", " gt0 = gt_albedo.cpu().data.numpy()\n", " n,c,h,w = gt0.shape\n", " gt, display = myutils.processGt(gt0, scale_factor=s, gd=gradient, return_image=True)\n", " gt_mg, display_mg = myutils.processGt(gt0, scale_factor=s//2, gd=gradient, return_image=True)\n", " if use_gpu: \n", " gt = gt.cuda()\n", " gt_mg = gt_mg.cuda()\n", " if args.display_curindex % args.display_interval == 0:\n", " display = display[:,:,0:3]\n", " cv2.imwrite('snapshot{}/gt-{}-{}.png'.format(args.gpu_num, epoch, i), display[:,:,::-1]*255) \n", " \n", " \"\"\"compute loss\"\"\"\n", " if i != 5: \n", " loss = mse_losses[i](ft_predict[i], gt)\n", " run_losses[i] += loss.data.cpu().numpy()[0]\n", "# loss.backward(retain_graph=True)\n", " run_cnts[i] += 1\n", " \n", " if go_through_merge != False and i != 4:\n", " if ((go_through_merge == '32M') or\n", " (go_through_merge == '16M' and i != 5) or \n", " (go_through_merge == '08M' and i != 5 and i > 0) or\n", " (go_through_merge == '04M' and i != 5 and i > 1) or\n", " (go_through_merge == '02M' and i != 5 and i > 2)):\n", "# print(epoch, go_through_merge, i)\n", " \n", "# print (merged_RGB[i].cpu().data.numpy().max(), merged_RGB[i].cpu().data.numpy().min())\n", " if i!=5: continue\n", " if i==5: gt2=gt\n", " else: gt2=gt_mg\n", "# print(i)\n", "# print('merge size', merged_RGB[i].size())\n", "# print('gt2 size', gt2.size())\n", " loss = mse_merge_losses[i](merged_RGB[i], gt2)\n", " run_merge_losses[i] += loss.data.cpu().numpy()[0]\n", " loss.backward(retain_graph=True)\n", " run_merge_cnts[i] += 1\n", " \n", " \"\"\"save training image\"\"\"\n", " if args.display_curindex % args.display_interval == 0:\n", " \n", " if i != 5:\n", " im = (ft_predict[i].cpu().data.numpy()[0].transpose((1,2,0))+offset) * 255\n", " im = im[:,:,0:3]\n", " \n", " cv2.imwrite('snapshot{}/train-{}-{}.png'.format(args.gpu_num, epoch, i), im[:,:,::-1])\n", " \n", " if go_through_merge != False and i != 4:\n", " if ((go_through_merge == '32M') or\n", " (go_through_merge == '16M' and i != 5) or \n", " (go_through_merge == '08M' and i != 5 and i > 0) or\n", " (go_through_merge == '04M' and i != 5 and i > 1) or\n", " (go_through_merge == '02M' and i != 5 and i > 2)):\n", " im = (merged_RGB[i].cpu().data.numpy()[0].transpose((1,2,0))+offset) * 255\n", " im = im[:,:,0:3]\n", " cv2.imwrite('snapshot{}/train-mg-{}-{}.png'.format(args.gpu_num, epoch, i), im[:,:,::-1])\n", " optimizer.step()\n", " args.display_curindex += 1\n", "\n", " \"\"\" every epoch \"\"\"\n", "# loss_output = 'ind: ' + str(args.display_curindex)\n", " loss_output = ''\n", " \n", " \n", " \n", " for i,v in enumerate(run_losses):\n", " if i == len(run_losses)-1: \n", " loss_output += ' merged: %6f' % (run_losses[i] / run_cnts[i])\n", " continue\n", " loss_output += ' %2dM: %6f' % ((2**(4-i)), (run_losses[i] / run_cnts[i]))\n", " print(loss_output)\n", " loss_output = ''\n", " for i,v in enumerate(run_merge_losses):\n", " if i == len(run_merge_losses)-1: \n", " loss_output += 'mg merged: %6f' % (run_merge_losses[i] / run_merge_cnts[i])\n", " continue\n", " loss_output += ' mg %2dM: %6f' % ((2**(4-i)), (run_merge_losses[i] / run_merge_cnts[i]))\n", " print(loss_output)\n", " \n", " \"\"\"save at every epoch\"\"\"\n", " if (epoch+1) % 10 == 0:\n", " torch.save({\n", " 'epoch': epoch,\n", " 'args' : args,\n", " 'state_dict': net.state_dict(),\n", " 'optimizer': optimizer.state_dict()\n", " }, 'snapshot{}/snapshot-{}.pth.tar'.format(args.gpu_num, epoch))\n", " \n", " # test \n", " if (epoch+1) % 5 == 0:\n", " test_model(epoch, phase='train', go_through_merge=go_through_merge)\n", " test_model(epoch, phase='test', go_through_merge=go_through_merge)\n", "\n", " writer.add_scalars('16M loss', {'train 16M ': np.array([run_losses[0]/ run_cnts[0]])}, global_step=epoch) \n", " writer.add_scalars('8M loss', {'train 8M ': np.array([run_losses[1]/ run_cnts[1]])}, global_step=epoch) \n", " writer.add_scalars('4M loss', {'train 4M ': np.array([run_losses[2]/ run_cnts[2]])}, global_step=epoch) \n", " writer.add_scalars('2M loss', {'train 2M ': np.array([run_losses[3]/ run_cnts[3]])}, global_step=epoch) \n", " writer.add_scalars('1M loss', {'train 1M ': np.array([run_losses[4]/ run_cnts[4]])}, global_step=epoch) \n", " writer.add_scalars('merged loss', {'train merged ': np.array([run_losses[5]/ run_cnts[5]])}, global_step=epoch) \n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Visualize Graph" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from graphviz import Digraph\n", "import torch\n", "from torch.autograd import Variable\n", "\n", "\n", "def make_dot(var, params=None):\n", " \"\"\" Produces Graphviz representation of PyTorch autograd graph\n", " Blue nodes are the Variables that require grad, orange are Tensors\n", " saved for backward in torch.autograd.Function\n", " Args:\n", " var: output Variable\n", " params: dict of (name, Variable) to add names to node that\n", " require grad (TODO: make optional)\n", " \"\"\"\n", " if params is not None:\n", " assert isinstance(params.values()[0], Variable)\n", " param_map = {id(v): k for k, v in params.items()}\n", "\n", " node_attr = dict(style='filled',\n", " shape='box',\n", " align='left',\n", " fontsize='12',\n", " ranksep='0.1',\n", " height='0.2')\n", " dot = Digraph(node_attr=node_attr, graph_attr=dict(size=\"10240,10240\"), format='svg')\n", " seen = set()\n", "\n", " def size_to_str(size):\n", " return '('+(', ').join(['%d' % v for v in size])+')'\n", "\n", " def add_nodes(var):\n", " if var not in seen:\n", " if torch.is_tensor(var):\n", " dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange')\n", " elif hasattr(var, 'variable'):\n", " u = var.variable\n", " name = param_map[id(u)] if params is not None else ''\n", " node_name = '%s\\n %s' % (name, size_to_str(u.size()))\n", " dot.node(str(id(var)), node_name, fillcolor='lightblue')\n", " else:\n", " dot.node(str(id(var)), str(type(var).__name__))\n", " seen.add(var)\n", " if hasattr(var, 'next_functions'):\n", " for u in var.next_functions:\n", " if u[0] is not None:\n", " dot.edge(str(id(u[0])), str(id(var)))\n", " add_nodes(u[0])\n", " if hasattr(var, 'saved_tensors'):\n", " for t in var.saved_tensors:\n", " dot.edge(str(id(t)), str(id(var)))\n", " add_nodes(t)\n", " add_nodes(var.grad_fn)\n", " return dot" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# x = Variable(torch.zeros(1,3,256,256))\n", "# y = net(x.cuda())\n", "# g = make_dot(y[-1])\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# g.render('net-transition_scale_{}'.format(transition_scale)) " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
LSSTC-DSFP/LSSTC-DSFP-Sessions
Sessions/Session13/Day2/02-Fast-GPs.ipynb
1
11479
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Fast GP implementations" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%config InlineBackend.figure_format = 'retina'" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from matplotlib import rcParams\n", "rcParams[\"figure.dpi\"] = 100\n", "rcParams[\"figure.figsize\"] = 12, 4" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Benchmarking GP codes\n", "Implemented the right way, GPs can be super fast! Let's compare the time it takes to evaluate our GP likelihood and the time it takes to evaluate the likelihood computed with the snazzy ``george`` and ``celerite`` packages. We'll learn how to use both along the way. Let's create a large, fake dataset for these tests:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "np.random.seed(0)\n", "t = np.linspace(0, 10, 10000)\n", "y = np.random.randn(10000)\n", "sigma = np.ones(10000)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Our GP" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def ExpSquaredCovariance(t, A=1.0, l=1.0, tprime=None):\n", " \"\"\"\n", " Return the ``N x M`` exponential squared\n", " covariance matrix.\n", " \n", " \"\"\"\n", " if tprime is None:\n", " tprime = t\n", " TPrime, T = np.meshgrid(tprime, t)\n", " return A ** 2 * np.exp(-0.5 * (T - TPrime) ** 2 / l ** 2)\n", "\n", "\n", "def ln_gp_likelihood(t, y, sigma=0, A=1.0, l=1.0):\n", " \"\"\"\n", " Return the log of the GP likelihood for a datatset y(t)\n", " with uncertainties sigma, modeled with a Squared Exponential\n", " Kernel with amplitude A and lengthscale l.\n", " \n", " \"\"\"\n", " # The covariance and its determinant\n", " npts = len(t)\n", " K = ExpSquaredCovariance(t, A=A, l=l) + sigma ** 2 * np.eye(npts)\n", " \n", " # The log marginal likelihood\n", " log_like = -0.5 * np.dot(y.T, np.linalg.solve(K, y))\n", " log_like -= 0.5 * np.linalg.slogdet(K)[1]\n", " log_like -= 0.5 * npts * np.log(2 * np.pi)\n", " \n", " return log_like" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Time to evaluate the GP likelihood:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "ln_gp_likelihood(t, y, sigma)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### george" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's time how long it takes to do the same operation using the ``george`` package (``pip install george``).\n", "\n", "The kernel we'll use is\n", "\n", "```python\n", "kernel = amp ** 2 * george.kernels.ExpSquaredKernel(tau ** 2)\n", "```\n", "\n", "where ``amp = 1`` and ``tau = 1`` in this case.\n", "\n", "To instantiate a GP using ``george``, simply run\n", "\n", "```python\n", "gp = george.GP(kernel)\n", "```\n", "\n", "The ``george`` package pre-computes a lot of matrices that are re-used in different operations, so before anything else, we'll ask it to compute the GP model for our timeseries:\n", "\n", "```python\n", "gp.compute(t, sigma)\n", "```\n", "\n", "Note that we've only given it the time array and the uncertainties, so as long as those remain the same, you don't have to re-compute anything. This will save you a lot of time in the long run!\n", "\n", "Finally, the log likelihood is given by ``gp.log_likelihood(y)``.\n", "\n", "How do the speeds compare? Did you get the same value of the likelihood?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import george" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "kernel = george.kernels.ExpSquaredKernel(1.0)\n", "gp = george.GP(kernel)\n", "gp.compute(t, sigma)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "print(gp.log_likelihood(y))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "``george`` also offers a fancy GP solver called the HODLR solver, which makes some approximations that dramatically speed up the matrix algebra. Let's instantiate the GP object again by passing the keyword ``solver=george.HODLRSolver`` and re-compute the log likelihood. How long did that take? Did we get the same value for the log likelihood?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "gp = george.GP(kernel, solver=george.HODLRSolver)\n", "gp.compute(t, sigma)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "gp.log_likelihood(y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### celerite" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The ``george`` package is super useful for GP modeling, and I recommend you read over the [docs and examples](https://george.readthedocs.io/en/latest/). It implements several different [kernels](https://george.readthedocs.io/en/latest/user/kernels/) that come in handy in different situations, and it has support for multi-dimensional GPs. But if all you care about are GPs in one dimension (in this case, we're only doing GPs in the time domain, so we're good), then ``celerite`` is what it's all about:\n", "\n", "```bash\n", "pip install celerite\n", "```\n", "\n", "Check out the [docs](https://celerite.readthedocs.io/en/stable/) here, as well as several tutorials. There is also a [paper](https://arxiv.org/abs/1703.09710) that discusses the math behind ``celerite``. The basic idea is that for certain families of kernels, there exist **extremely efficient** methods of factorizing the covariance matrices. Whereas GP fitting typically scales with the number of datapoints $N$ as $N^3$, ``celerite`` is able to do everything in order $N$ (!!!) This is a **huge** advantage, especially for datasets with tens or hundreds of thousands of data points. Using ``george`` or any homebuilt GP model for datasets larger than about ``10,000`` points is simply intractable, but with ``celerite`` you can do it in a breeze.\n", "\n", "Next we repeat the timing tests, but this time using ``celerite``. Note that the Exponential Squared Kernel is not available in ``celerite``, because it doesn't have the special form needed to make its factorization fast. Instead, we'll use the ``Matern 3/2`` kernel, which is qualitatively similar and can be approximated quite well in terms of the ``celerite`` basis functions:\n", "\n", "```python\n", "kernel = celerite.terms.Matern32Term(np.log(1), np.log(1))\n", "```\n", "\n", "Note that ``celerite`` accepts the **log** of the amplitude and the **log** of the timescale. Other than this, we can compute the likelihood using the same syntax as ``george``.\n", "\n", "How much faster did it run? Is the value of the likelihood different from what you found above? Why?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import celerite\n", "from celerite import terms" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "kernel = terms.Matern32Term(np.log(1), np.log(1))\n", "gp = celerite.GP(kernel)\n", "gp.compute(t, sigma)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%time\n", "gp.log_likelihood(y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<div style=\"background-color: #D6EAF8; border-left: 15px solid #2E86C1;\">\n", " <h1 style=\"line-height:2.5em; margin-left:1em;\">Exercise (the one and only)</h1>\n", "</div>\n", "\n", "Let's use what we've learned about GPs in a real application: fitting an exoplanet transit model in the presence of correlated noise.\n", "\n", "Here is a (fictitious) light curve for a star with a transiting planet: " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", "t, y, yerr = np.loadtxt(\"data/sample_transit.txt\", unpack=True)\n", "plt.errorbar(t, y, yerr=yerr, fmt=\".k\", capsize=0)\n", "plt.xlabel(\"time\")\n", "plt.ylabel(\"relative flux\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There is a transit visible to the eye at $t = 0$, which (say) is when you'd expect the planet to transit if its orbit were perfectly periodic. However, a recent paper claims that the planet shows transit timing variations, which are indicative of a second, perturbing planet in the system, and that a transit at $t = 0$ can be ruled out at 3 $\\sigma$. **Your task is to verify this claim.**\n", "\n", "Assume you have no prior information on the planet other than the transit occurs in the observation window, the depth of the transit is somewhere in the range $(0, 1)$, and the transit duration is somewhere between $0.1$ and $1$ day. You don't know the exact process generating the noise, but you are certain that there's correlated noise in the dataset, so you'll have to pick a reasonable kernel and estimate its hyperparameters.\n", "\n", "\n", "Fit the transit with a simple inverted Gaussian with three free parameters:\n", "\n", "```python\n", "def transit_shape(depth, t0, dur):\n", " return -depth * np.exp(-0.5 * (t - t0) ** 2 / (0.2 * dur) ** 2)\n", "```\n", "\n", "*HINT: I borrowed heavily from [this tutorial](https://celerite.readthedocs.io/en/stable/tutorials/modeling/) in the celerite documentation, so you might want to take a look at it...*" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
thehackerwithin/berkeley
code_examples/SQL/SQL_Tutorial-0.ipynb
1
65862
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Intro to SQL - The Hacker Within (2018-02-21)\n", "This tutorial will show you the basics of SQL:\n", "* creating a table\n", "* inserting rows\n", "* querying with conditions\n", "* grouping and ordering\n", "* joining tables with a common field\n", "* aggregating rows using COUNT, MAX, etc.\n", "* alternates to SQL like pandas and Django\n", "* indexing frequently queried columns for performance\n", "* alter existing table to add, drop, or rename a column\n", "* drop a table\n", "* vacuum a database\n", "\n", "## SQLite\n", "We are going to use [Python](https://docs.python.org/3/library/sqlite3.html) because it comes with the popular [SQLite](https://sqlite.org/index.html) (_aka_ [`etilqs`](https://www.google.com/search?q=etilqs)) relational database builtin. \n", "\n", "## Requirements\n", "The following examples assume you have Python 3 installed on your computer. Any distribution will do. If you have [Anaconda](https://www.anaconda.com/distribution/) or [Miniconda](https://conda.io/miniconda.html), you can create a new conda environment with the requirements for this tutorial from a terminal. For example with miniconda on Mac OS X, you might use the following to activate the root conda environment and create a new one called \"py36-thw-sql\".\n", "\n", " ~$ source ~/miniconda/bin/activate\n", " (root) ~$ conda create -n py36-thw-sql python=3.6.3 psycopg2 django pandas\n", "\n", "Or on Windows with Anaconda, you might use the following in a CMD terminal.\n", "\n", " ~> %LOCALAPPDATA%\\Continuum\\anaconda3\\Scripts\\activate\n", " (root) ~> conda create -n py36-thw-sql python=3.6.3 psycopg2 django pandas" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Python DB-API 2.0\n", "[PEP 249](https://www.python.org/dev/peps/pep-0249/) specifies a `connection` to a database, and a `cursor` from the connection to execute SQL." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# imports\n", "import io # we'll need this way later\n", "import os\n", "import sqlite3 # this is the module that binds to SQLite\n", "import numpy as np # never know when you might need NumPy, oh, right, always!\n", "import pandas as pd # you'll see why we can use this later\n", "\n", "DBFILE = 'sqlite3.db' # this will be our database\n", "BASEDIR = %pwd # os.path.abspath(os.path.dirname(__file__))\n", "DBPATH = os.path.join(BASEDIR, DBFILE)\n", "\n", "# we may need to delete the existing file first\n", "if os.path.exists(DBPATH):\n", " os.remove(DBPATH)\n", "\n", "# open a connection to the database for this tutorial\n", "conn = sqlite3.connect(DBPATH)\n", "\n", "# get a cursor to the database\n", "cur = conn.cursor()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Notes\n", "If a file with the same name doesn't already exist, then this creates a new database otherwise it connects to the existing database contained in the file. You can also use ':memory:' to create an \"in-memory\" database that has no file, but then you can't connect to that from another process.\n", "\n", "We'll have to close the connection and cursor later. Next time we could use a [`with` context to automatically close the connection](https://docs.python.org/3.6/library/sqlite3.html#using-the-connection-as-a-context-manager).\n", "\n", " with sqlite3.connect('sqlite3.db') as conn:\n", " cur = conn.execute('SQL QUERY ...') # e.g.: 'SELECT * FROM table_name;'\n", " output = cur.fetchall() # get the results\n", "\n", "Closing the connection automatically closes the cursor. [Other bindings may offer similar context managers.](http://initd.org/psycopg/docs/usage.html#with-statement) to commit and close changes or rollback changes and raise an exception." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Creating tables\n", "A relational database or SQL database is a tabular structure consisting of rows of data with columns of fields. The [data definition language or DDL](https://en.wikipedia.org/wiki/Data_definition_language) used to create the table is the same language used to query it, called [SQL or Structured Query Language](https://en.wikipedia.org/wiki/SQL).\n", "\n", "Although [the basic SQL commands](https://sqlite.org/lang.html) are nearly the same for [other relational databases](https://www.postgresql.org/docs/10/static/sql.html), the data types may be different. [SQLite only has 5 datatypes](https://sqlite.org/datatype3.html): `NULL`, `INTEGER`, `REAL`, `TEXT`, `BLOB`. For [boolean, use integer zero for false, and one for true](https://sqlite.org/datatype3.html#boolean_datatype). For [dates and times use text and ISO8601](https://sqlite.org/datatype3.html#date_and_time_datatype), _e.g._: `\"2018-02-21T17:05-0800\"`. By comparison, [PostgreSQL has too many to list here](https://www.postgresql.org/docs/10/static/datatype.html) including booleans, date, time, arrays, JSON, etc.\n", "\n", "## `CREATE`\n", "The [basic SQL command to create a table](https://sqlite.org/lang_createtable.html) is\n", "\n", " CREATE TABLE <table_name> (<field_name> <TYPE> <CONSTRAINTS>, <field_name> <TYPE> <CONSTRAINTS>, <CONSTRAINTS>, ...);\n", "\n", "Some languages enforce the semicolon, some don't. The syntax is nearly the same for [other relational databases](https://www.postgresql.org/docs/10/static/ddl-basics.html).\n", "\n", "### Constraints, Defaults, and Options\n", "Constraints are optional and set conditions, limitations, or options for columns and the table. The most common constraints are: `PRIMARY KEY`, `UNIQUE`, `NOT NULL`, `DEFAULT`, `FOREIGN KEY`, `REFERENCES`, etc. The syntax is nearly the same for [other relational databases](https://www.postgresql.org/docs/10/static/ddl-constraints.html).\n", "\n", "#### `PRIMARY KEY`\n", "The most important of these is `PRIMARY KEY` which is equivalent to `UNIQUE NOT NULL`. A [primary key](https://www.postgresql.org/docs/10/static/ddl-constraints.html#DDL-CONSTRAINTS-PRIMARY-KEYS) is a unique references that identifies each record in the table. Although it is not required, every table should have a primary key. Only one primary key is allowed, and it can be constructed from multiple columns, `PRIMARY KEY (<field_A>, <field_B)`, to create a unique together, non-null identifier. [In SQLite, if missing then a integer primary key named, `rowid`, is created by default](https://sqlite.org/lang_createtable.html#rowid). Also in SQLite, any integer primary key is automatically incremented, so [the _AUTOINCREMENT_ command is usually **not** needed](https://sqlite.org/autoinc.html). [In PostgreSQL the `SERIAL` command is used](https://www.postgresql.org/docs/10/static/datatype-numeric.html#DATATYPE-SERIAL) to create a corresponding [sequence](https://www.postgresql.org/docs/10/static/functions-sequence.html) for the primary key.\n", "\n", "## Practice\n", "The other constraints and options are also important, but we'll discover those as we learn. Let's create some simple databases with fictitious data to practice. Imagine you are testing several different materials with different properties $\\alpha$ and $\\beta$ under different stresses like different temperatures and light intensity and changing thickness. How would you organize this data? Take a moment to design a schema or structure for your data. The schema consists of the column names and data types and the column and table constraints." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# we can use Python triple quoted strings to span multiple lines, but use single quotes, since SQL only uses double quotes\n", "\n", "# first create a materials table\n", "cur.execute('''CREATE TABLE materials (\n", " material_id TEXT PRIMARY KEY,\n", " long_name TEXT UNIQUE NOT NULL,\n", " alpha REAL NOT NULL,\n", " beta REAL NOT NULL,\n", " material_type TEXT NOT NULL\n", ")''')\n", "conn.commit()\n", "# if you don't commit the changes, they won't be written to the file, and won't be visible to other connections\n", "\n", "# then create an experiments table\n", "cur.execute('''CREATE TABLE experiments (\n", " experiment_id INTEGER PRIMARY KEY,\n", " temperature REAL DEFAULT 298.15,\n", " irradiance REAL DEFAULT 1000.0,\n", " uv_filter INTEGER DEFAULT 0,\n", " material_id NOT NULL REFERENCES materials ON UPDATE CASCADE ON DELETE CASCADE,\n", " thickness REAL DEFAULT 0.005,\n", " UNIQUE (temperature, irradiance, uv_filter, material_id)\n", ")''')\n", "conn.commit()\n", "\n", "# and finally create a trials table\n", "cur.execute('''CREATE TABLE trials (\n", " trial_id INTEGER PRIMARY KEY,\n", " experiment_id NOT NULL REFERENCES experiments ON UPDATE CASCADE ON DELETE CASCADE,\n", " results BLOB NOT NULL,\n", " duration REAL NOT NULL,\n", " avg_temperature REAL NOT NULL,\n", " std_temperature REAL NOT NULL,\n", " avg_irradiance REAL NOT NULL,\n", " std_irradiance REAL NOT NULL,\n", " init_visible_transmittance REAL NOT NULL,\n", " final_visible_transmittance REAL NOT NULL,\n", " notes TEXT\n", ")''')\n", "conn.commit()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## `FOREIGN KEY`\n", "A [foreign key constraint](https://sqlite.org/foreignkeys.html) creates a relationship between two tables. The `FOREIGN KEY` is implied when the `REFERENCES` column constraint is applied. In the experiments table above, the column constraint on `material_id` is the same as adding this table constriant:\n", "\n", " FOREIGN KEY (material_id) REFERENCES materials (material_id)\n", "\n", "Specifying the referenced column in the table constraint isn't necessary, and if omitted defaults to the primary key of the referenced table. The syntax is nearly the same for [other relational databases](https://www.postgresql.org/docs/10/static/ddl-constraints.html#DDL-CONSTRAINTS-FK).\n", "\n", "You can use the same name for the foreign key and it's related field, but it may make joining tables more difficult because you will need to use the table name to avoid an ambigous column name. _E.G._: you can use `trials.experiment_id` and `experiments.experiment_id` to differentiate between them. You can also use `AS` to create a temporary name like `trials.experiment_id AS experiment`. Or you could just use different names for the foreign key and it's related field like `FOREIGN KEY (material) REFERENCES materials (material_id)` and then there's no ambiguity. Your call.\n", "\n", "### `DELETE` and `UPDATE`\n", "What happens if the reference of a foreign key is deleted or updated? That's up to you: in SQLite the default is to do nothing, but typically you want the action to cascade. Add the desired [`ON DELETE` or `ON UPDATE` action](https://sqlite.org/foreignkeys.html#fk_actions) to the constraint.\n", "\n", "\n", "### Bonus Questions\n", "1. What is the difference between a column constraint and a table constraint?\n", "2. What [other table constraint](https://www.postgresql.org/docs/9.1/static/ddl-constraints.html#AEN2496) is in the experiments table?\n", "3. What other constraints or defaults are applied in the tables?\n", "4. What part of the materials table schema is fragile and can be improved?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## `INSERT`\n", "The [basic SQL command to put data into a table is](https://sqlite.org/lang_insert.html)\n", "\n", " INSERT INTO <table_name> (<field_name>, <field_name>, ...) VALUES (<value>, <value>, ...)\n", "\n", "[Other relational databases use the same SQL syntax.](https://www.postgresql.org/docs/current/static/dml-insert.html)\n", "\n", "Let's add some pretend data to the database" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# add a EVA as a material\n", "cur.execute('INSERT INTO materials VALUES (\"EVA\", \"ethylene vinyl acetate\", 0.123, 4.56, \"polymer\")')\n", "conn.commit() # you must commit for it to become permanent\n", "cur.rowcount # tells you how many rows written, sometimes, it's quirky" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Placeholders\n", "You can use placeholders to loop over insert statements to add multiple records.\n", "\n", ">*WARNING*: Never use string formatters to in lieu of placeholders or you may be subject to [a SQL injection attack](https://xkcd.com/327/).\n", "\n", "SQLite uses `?` but [other relational databases may use `%s`](http://initd.org/psycopg/docs/usage.html#passing-parameters-to-sql-queries) or another placeholder.\n", "\n", "Also, in `sqlite3` [`executemany`](https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.executemany) is a convenient shortcut, [but it may not be convenient for all database bindings](http://initd.org/psycopg/docs/extras.html#fast-exec)." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rowcount = 2\n" ] } ], "source": [ "# add some more fake materials\n", "fake_materials = [\n", " ('PMMC', 'poly methyl methacrylate', 0.789, 10.11, 'polymer'),\n", " ('KBr', 'potassium bromide', 1.213, 14.15, 'crystal')\n", "]\n", "for mat in fake_materials:\n", " # must have same number of place holders as values\n", " cur.execute('INSERT INTO materials VALUES (?, ?, ?, ?, ?)', mat) # use place holders\n", "conn.commit() # you can commit all of the changes at the end of the loop\n", "\n", "# use the executemany shortcut\n", "fake_materials = [\n", " ('SiO2', 'silicon dioxide', 1.617, 18.19, 'crystal'),\n", " ('CaF2', 'calcium flouride', 2.0, 21.22, 'crystal')\n", "]\n", "cur.executemany('INSERT INTO materials VALUES (?, ?, ?, ?, ?)', fake_materials)\n", "conn.commit()\n", "print('rowcount = %d' % cur.rowcount) # with executemany, cur.rowcount shows total number of rows" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## `DELETE` and `UPDATE`\n", "Oops I made a mistake. How do I fix it? The opposite of `INSERT` is [`DELETE`](https://sqlite.org/lang_delete.html). But don't throw the baby out with the bathwater, you can also [`UPDATE`] a record. [Other relational databases use the same SQL syntax to manipulate data](https://www.postgresql.org/docs/10/static/dml.html)." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "cur.execute('DELETE FROM materials WHERE material_id = \"SiO2\"')\n", "cur.execute('UPDATE materials SET alpha=1.23E-4, beta=8.910E+11 WHERE material_id = \"CaF2\"')\n", "conn.commit()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Queries\n", "The way you [select](https://sqlite.org/lang_select.html) data is by executing queries. [The language is the same for all relational databases.](https://www.postgresql.org/docs/10/static/queries.html) The star `*` means select all columns, or you can give the columns explicitly." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[('EVA', 'ethylene vinyl acetate', 0.123, 4.56, 'polymer'),\n", " ('PMMC', 'poly methyl methacrylate', 0.789, 10.11, 'polymer'),\n", " ('KBr', 'potassium bromide', 1.213, 14.15, 'crystal'),\n", " ('CaF2', 'calcium flouride', 0.000123, 891000000000.0, 'crystal')]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cur.execute('SELECT * FROM materials')\n", "cur.fetchall() # fetch all the results of the query" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Conditions\n", "You can limit a query using [`WHERE`](https://www.postgresql.org/docs/10/static/queries-table-expressions.html#QUERIES-FROM) and [`LIMIT`](https://www.postgresql.org/docs/10/static/queries-limit.html). You can combine `WHERE` with a conditional expression, `IN` to check a set, or `LIKE` to compare with strings. Use `AND` and `OR` to combine conditions.\n", "\n", "### Python DB-API Cursor Methods\n", "The Python DB-API cursor can be used as an iterator or you can call it's [fetch methods](https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.fetchone)." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "EVA is ethylene vinyl acetate\n", "PMMC is poly methyl methacrylate\n" ] } ], "source": [ "# limit the query using WHERE and LIMIT\n", "cur.execute('SELECT material_id, long_name FROM materials WHERE alpha < 1 LIMIT 2')\n", "for c in cur: print('{} is {}'.format(*c)) # user the cursor as an iterator" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[('EVA', (0.123, 4.56)), ('PMMC', (0.789, 10.11))]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "materials_list = (\"EVA\", \"PMMC\")\n", "cur.execute('SELECT alpha, beta FROM materials WHERE material_id IN (?, ?)', materials_list)\n", "[(mat, cur.fetchone()) for mat in materials_list] # use the cursor fetchone() method to get next item" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Aggregates\n", "Your query can aggregate results like `AVG`, `SUM`, `COUNT`, `MAX`, `MIN`, etc." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(4,)\n" ] } ], "source": [ "cur.execute('SELECT COUNT(*) FROM materials')\n", "print(cur.fetchone())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### `GROUP BY`\n", "You can group queries by a column or a condition such as an expression, `IN`, or `LIKE`, if your selection is an aggregate." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[('crystal', 2, 0.6065615000000001, 891000000000.0),\n", " ('polymer', 2, 0.456, 10.11)]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cur.execute('SELECT material_type, COUNT(*), AVG(alpha), MAX(beta) FROM materials GROUP BY material_type')\n", "cur.fetchmany(2) # use fetchmany() with size parameter, just for fun" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## More Practice\n", "Add a fictitious experiment schedule and doctor up some data!" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# use defaults, let primary key auto-increment, just supply material ID\n", "cur.execute('INSERT INTO experiments (material_id) VALUES (\"EVA\")') # use defaults, \n", "conn.commit()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sqlite3.IntegrityError: %s NOT NULL constraint failed: experiments.material_id\n" ] } ], "source": [ "# set up a test matrix for EVA\n", "temp = range(300, 400, 25)\n", "irrad = range(400, 800, 100)\n", "try:\n", " for T in temp:\n", " for E in irrad:\n", " cur.execute('INSERT INTO experiments (temperature, irradiance) VALUES (?, ?)', (T, E))\n", "except sqlite3.IntegrityError as exc:\n", " print('sqlite3.IntegrityError: %s', exc)\n", "\n", "# Oops! We forgot to specify the material, there is not default, and it is constrained as NOT NULL!\n", "conn.rollback() # undo any changes\n", "try:\n", " for T in temp:\n", " for E in irrad:\n", " cur.execute('INSERT INTO experiments (temperature, irradiance, material_id) VALUES (?, ?, \"EVA\")', (T, E))\n", "except sqlite3.IntegrityError as exc:\n", " print(exc)\n", "conn.commit() # commit! commit! commit!" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(1, 298.15, 1000.0, 0, 'EVA', 0.005),\n", " (2, 300.0, 400.0, 0, 'EVA', 0.005),\n", " (3, 300.0, 500.0, 0, 'EVA', 0.005),\n", " (4, 300.0, 600.0, 0, 'EVA', 0.005),\n", " (5, 300.0, 700.0, 0, 'EVA', 0.005),\n", " (6, 325.0, 400.0, 0, 'EVA', 0.005),\n", " (7, 325.0, 500.0, 0, 'EVA', 0.005),\n", " (8, 325.0, 600.0, 0, 'EVA', 0.005),\n", " (9, 325.0, 700.0, 0, 'EVA', 0.005),\n", " (10, 350.0, 400.0, 0, 'EVA', 0.005),\n", " (11, 350.0, 500.0, 0, 'EVA', 0.005),\n", " (12, 350.0, 600.0, 0, 'EVA', 0.005),\n", " (13, 350.0, 700.0, 0, 'EVA', 0.005),\n", " (14, 375.0, 400.0, 0, 'EVA', 0.005),\n", " (15, 375.0, 500.0, 0, 'EVA', 0.005),\n", " (16, 375.0, 600.0, 0, 'EVA', 0.005),\n", " (17, 375.0, 700.0, 0, 'EVA', 0.005)]" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# this list is hard to read\n", "list(cur.execute('SELECT * FROM experiments'))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>temperature</th>\n", " <th>irradiance</th>\n", " <th>uv_filter</th>\n", " <th>material_id</th>\n", " <th>thickness</th>\n", " </tr>\n", " <tr>\n", " <th>experiment_id</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>298.15</td>\n", " <td>1000.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>300.00</td>\n", " <td>400.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>300.00</td>\n", " <td>500.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>300.00</td>\n", " <td>600.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>300.00</td>\n", " <td>700.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>325.00</td>\n", " <td>400.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>325.00</td>\n", " <td>500.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>325.00</td>\n", " <td>600.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>325.00</td>\n", " <td>700.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>350.00</td>\n", " <td>400.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>350.00</td>\n", " <td>500.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>350.00</td>\n", " <td>600.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>350.00</td>\n", " <td>700.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>375.00</td>\n", " <td>400.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>375.00</td>\n", " <td>500.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>375.00</td>\n", " <td>600.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>375.00</td>\n", " <td>700.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " temperature irradiance uv_filter material_id thickness\n", "experiment_id \n", "1 298.15 1000.0 0 EVA 0.005\n", "2 300.00 400.0 0 EVA 0.005\n", "3 300.00 500.0 0 EVA 0.005\n", "4 300.00 600.0 0 EVA 0.005\n", "5 300.00 700.0 0 EVA 0.005\n", "6 325.00 400.0 0 EVA 0.005\n", "7 325.00 500.0 0 EVA 0.005\n", "8 325.00 600.0 0 EVA 0.005\n", "9 325.00 700.0 0 EVA 0.005\n", "10 350.00 400.0 0 EVA 0.005\n", "11 350.00 500.0 0 EVA 0.005\n", "12 350.00 600.0 0 EVA 0.005\n", "13 350.00 700.0 0 EVA 0.005\n", "14 375.00 400.0 0 EVA 0.005\n", "15 375.00 500.0 0 EVA 0.005\n", "16 375.00 600.0 0 EVA 0.005\n", "17 375.00 700.0 0 EVA 0.005" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# not only is Pandas much nicer, it also executes queries!\n", "pd.read_sql('SELECT * FROM experiments', conn, index_col='experiment_id')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## `ORDER BY`\n", "Does what it says; order the query results by a column. Default is ascending, but use `ASC` or `DESC` to change the order." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>temperature</th>\n", " <th>irradiance</th>\n", " <th>uv_filter</th>\n", " <th>material_id</th>\n", " <th>thickness</th>\n", " </tr>\n", " <tr>\n", " <th>experiment_id</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>5</th>\n", " <td>300.0</td>\n", " <td>700.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>325.0</td>\n", " <td>700.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>350.0</td>\n", " <td>700.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>375.0</td>\n", " <td>700.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " temperature irradiance uv_filter material_id thickness\n", "experiment_id \n", "5 300.0 700.0 0 EVA 0.005\n", "9 325.0 700.0 0 EVA 0.005\n", "13 350.0 700.0 0 EVA 0.005\n", "17 375.0 700.0 0 EVA 0.005" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Python's SQLite let's you use either '==' or '=', but I think SQL only allows '=', okay?\n", "pd.read_sql('SELECT * FROM experiments WHERE irradiance = 700 ORDER BY temperature', conn, index_col='experiment_id')" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>temperature</th>\n", " <th>irradiance</th>\n", " <th>uv_filter</th>\n", " <th>material_id</th>\n", " <th>thickness</th>\n", " </tr>\n", " <tr>\n", " <th>experiment_id</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>17</th>\n", " <td>375.0</td>\n", " <td>700.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>375.0</td>\n", " <td>600.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>375.0</td>\n", " <td>500.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>375.0</td>\n", " <td>400.0</td>\n", " <td>0</td>\n", " <td>EVA</td>\n", " <td>0.005</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " temperature irradiance uv_filter material_id thickness\n", "experiment_id \n", "17 375.0 700.0 0 EVA 0.005\n", "16 375.0 600.0 0 EVA 0.005\n", "15 375.0 500.0 0 EVA 0.005\n", "14 375.0 400.0 0 EVA 0.005" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# descending order\n", "pd.read_sql('SELECT * FROM experiments WHERE temperature = 375 ORDER BY irradiance DESC', conn, index_col='experiment_id')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### [Dr. Data](http://www.startrek.com/database_article/data)\n", "![Dr. Data](http://www.startrek.com/uploads/assets/db_articles/26da32597d9bd37fde9da22660aa524f24fd725c.jpg)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "# Dr. Data\n", "start_time, end_time = '2018-02-21T17:00-0800', '2018-02-21T18:30-0800'\n", "timestamps = pd.DatetimeIndex(start=start_time, end=end_time, freq='T')\n", "# use http://poquitopicante.blogspot.com/2016/11/panda-pop.html to help you recall what offset alias to use\n", "size = len(timestamps)\n", "data = {\n", " 'temperature': np.random.randn(size) + 298.15,\n", " 'irradiance': np.random.randn(size) + 1000,\n", " 'visible_transmittance': np.logspace(np.log10(0.9), np.log10(0.8), size) + np.random.randn(size) / 100\n", "}\n", "results = pd.DataFrame(data, index=timestamps)\n", "duration = (results.index[-1] - results.index[0]).value # [ns]\n", "avg_temperature = results.temperature.mean() # [K]\n", "std_temperature = results.temperature.std() # [K]\n", "avg_irradiance = results.irradiance.mean() # [W/m^2]\n", "std_irradiance = results.irradiance.std() # [W/m^2]\n", "init_visible_transmittance = results.visible_transmittance[start_time]\n", "final_visible_transmittance = results.visible_transmittance[end_time]\n", "values = (1, results.to_csv(), duration, avg_temperature, std_temperature,\n", " avg_irradiance, std_irradiance, init_visible_transmittance, final_visible_transmittance,\n", " 'this is doctored data')\n", "cur.execute('''INSERT INTO trials (\n", " experiment_id, results, duration, avg_temperature, std_temperature,\n", " avg_irradiance, std_irradiance, init_visible_transmittance,\n", " final_visible_transmittance, notes\n", ") VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)''', values)\n", "conn.commit() # commit! commit! commit!" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>irradiance</th>\n", " <th>temperature</th>\n", " <th>visible_transmittance</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2018-02-21 17:00:00-08:00</th>\n", " <td>998.959655</td>\n", " <td>298.918741</td>\n", " <td>0.893836</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:01:00-08:00</th>\n", " <td>1001.346465</td>\n", " <td>298.553568</td>\n", " <td>0.888956</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:02:00-08:00</th>\n", " <td>1000.222570</td>\n", " <td>296.760235</td>\n", " <td>0.916820</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:03:00-08:00</th>\n", " <td>998.697424</td>\n", " <td>297.998634</td>\n", " <td>0.895405</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:04:00-08:00</th>\n", " <td>999.766542</td>\n", " <td>298.686229</td>\n", " <td>0.903194</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:05:00-08:00</th>\n", " <td>998.521437</td>\n", " <td>298.325881</td>\n", " <td>0.892011</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:06:00-08:00</th>\n", " <td>1000.991891</td>\n", " <td>297.175668</td>\n", " <td>0.896553</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:07:00-08:00</th>\n", " <td>1000.054543</td>\n", " <td>297.946657</td>\n", " <td>0.878752</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:08:00-08:00</th>\n", " <td>1002.449126</td>\n", " <td>298.814267</td>\n", " <td>0.887048</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:09:00-08:00</th>\n", " <td>998.311166</td>\n", " <td>296.710237</td>\n", " <td>0.883333</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:10:00-08:00</th>\n", " <td>1001.106463</td>\n", " <td>297.809162</td>\n", " <td>0.887446</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:11:00-08:00</th>\n", " <td>998.999252</td>\n", " <td>298.670059</td>\n", " <td>0.892166</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:12:00-08:00</th>\n", " <td>999.143503</td>\n", " <td>297.965134</td>\n", " <td>0.881345</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:13:00-08:00</th>\n", " <td>998.718983</td>\n", " <td>299.050471</td>\n", " <td>0.899170</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:14:00-08:00</th>\n", " <td>999.689110</td>\n", " <td>298.396573</td>\n", " <td>0.888901</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:15:00-08:00</th>\n", " <td>998.906026</td>\n", " <td>298.081031</td>\n", " <td>0.883191</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:16:00-08:00</th>\n", " <td>1001.441733</td>\n", " <td>300.027797</td>\n", " <td>0.889522</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:17:00-08:00</th>\n", " <td>999.874945</td>\n", " <td>298.704170</td>\n", " <td>0.880713</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:18:00-08:00</th>\n", " <td>999.763816</td>\n", " <td>299.457996</td>\n", " <td>0.866446</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:19:00-08:00</th>\n", " <td>999.328643</td>\n", " <td>297.217506</td>\n", " <td>0.869135</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:20:00-08:00</th>\n", " <td>999.746232</td>\n", " <td>297.342810</td>\n", " <td>0.900115</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:21:00-08:00</th>\n", " <td>1000.737338</td>\n", " <td>297.912401</td>\n", " <td>0.882068</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:22:00-08:00</th>\n", " <td>1000.274663</td>\n", " <td>297.772786</td>\n", " <td>0.878944</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:23:00-08:00</th>\n", " <td>1000.158990</td>\n", " <td>297.938545</td>\n", " <td>0.888503</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:24:00-08:00</th>\n", " <td>1000.922571</td>\n", " <td>298.359145</td>\n", " <td>0.877483</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:25:00-08:00</th>\n", " <td>1001.872280</td>\n", " <td>298.087752</td>\n", " <td>0.873660</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:26:00-08:00</th>\n", " <td>1000.656051</td>\n", " <td>297.877323</td>\n", " <td>0.866980</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:27:00-08:00</th>\n", " <td>1000.853954</td>\n", " <td>296.797606</td>\n", " <td>0.856736</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:28:00-08:00</th>\n", " <td>999.942882</td>\n", " <td>299.841713</td>\n", " <td>0.856718</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 17:29:00-08:00</th>\n", " <td>998.647786</td>\n", " <td>298.861976</td>\n", " <td>0.882361</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:01:00-08:00</th>\n", " <td>1000.933114</td>\n", " <td>297.728089</td>\n", " <td>0.836169</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:02:00-08:00</th>\n", " <td>999.142461</td>\n", " <td>298.791704</td>\n", " <td>0.842719</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:03:00-08:00</th>\n", " <td>998.136343</td>\n", " <td>298.775994</td>\n", " <td>0.813755</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:04:00-08:00</th>\n", " <td>1001.349441</td>\n", " <td>297.735862</td>\n", " <td>0.834132</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:05:00-08:00</th>\n", " <td>1000.251661</td>\n", " <td>299.644198</td>\n", " <td>0.817461</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:06:00-08:00</th>\n", " <td>1000.057671</td>\n", " <td>298.579453</td>\n", " <td>0.808162</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:07:00-08:00</th>\n", " <td>1000.744842</td>\n", " <td>300.871544</td>\n", " <td>0.819319</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:08:00-08:00</th>\n", " <td>1000.056866</td>\n", " <td>296.959531</td>\n", " <td>0.823236</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:09:00-08:00</th>\n", " <td>999.557475</td>\n", " <td>298.471216</td>\n", " <td>0.806808</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:10:00-08:00</th>\n", " <td>999.519186</td>\n", " <td>298.048904</td>\n", " <td>0.822102</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:11:00-08:00</th>\n", " <td>1000.148397</td>\n", " <td>298.552681</td>\n", " <td>0.806129</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:12:00-08:00</th>\n", " <td>999.258875</td>\n", " <td>293.823340</td>\n", " <td>0.827836</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:13:00-08:00</th>\n", " <td>1001.182033</td>\n", " <td>299.571102</td>\n", " <td>0.832395</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:14:00-08:00</th>\n", " <td>997.366496</td>\n", " <td>297.647049</td>\n", " <td>0.817866</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:15:00-08:00</th>\n", " <td>1000.163225</td>\n", " <td>296.983521</td>\n", " <td>0.818295</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:16:00-08:00</th>\n", " <td>1000.236309</td>\n", " <td>297.914401</td>\n", " <td>0.808314</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:17:00-08:00</th>\n", " <td>999.754813</td>\n", " <td>298.566226</td>\n", " <td>0.822418</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:18:00-08:00</th>\n", " <td>999.857364</td>\n", " <td>299.251087</td>\n", " <td>0.802571</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:19:00-08:00</th>\n", " <td>1000.809811</td>\n", " <td>296.530036</td>\n", " <td>0.810362</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:20:00-08:00</th>\n", " <td>999.982595</td>\n", " <td>296.600307</td>\n", " <td>0.831929</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:21:00-08:00</th>\n", " <td>998.040597</td>\n", " <td>298.726982</td>\n", " <td>0.809474</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:22:00-08:00</th>\n", " <td>1000.357286</td>\n", " <td>296.702854</td>\n", " <td>0.792977</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:23:00-08:00</th>\n", " <td>999.828010</td>\n", " <td>296.561526</td>\n", " <td>0.792677</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:24:00-08:00</th>\n", " <td>998.066797</td>\n", " <td>298.541645</td>\n", " <td>0.795909</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:25:00-08:00</th>\n", " <td>999.942954</td>\n", " <td>300.276747</td>\n", " <td>0.805300</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:26:00-08:00</th>\n", " <td>998.832891</td>\n", " <td>297.323483</td>\n", " <td>0.791858</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:27:00-08:00</th>\n", " <td>998.118673</td>\n", " <td>297.802544</td>\n", " <td>0.794021</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:28:00-08:00</th>\n", " <td>1000.149277</td>\n", " <td>299.374961</td>\n", " <td>0.811664</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:29:00-08:00</th>\n", " <td>998.827775</td>\n", " <td>298.726997</td>\n", " <td>0.796634</td>\n", " </tr>\n", " <tr>\n", " <th>2018-02-21 18:30:00-08:00</th>\n", " <td>1000.273102</td>\n", " <td>299.743819</td>\n", " <td>0.808884</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>91 rows × 3 columns</p>\n", "</div>" ], "text/plain": [ " irradiance temperature visible_transmittance\n", "2018-02-21 17:00:00-08:00 998.959655 298.918741 0.893836\n", "2018-02-21 17:01:00-08:00 1001.346465 298.553568 0.888956\n", "2018-02-21 17:02:00-08:00 1000.222570 296.760235 0.916820\n", "2018-02-21 17:03:00-08:00 998.697424 297.998634 0.895405\n", "2018-02-21 17:04:00-08:00 999.766542 298.686229 0.903194\n", "2018-02-21 17:05:00-08:00 998.521437 298.325881 0.892011\n", "2018-02-21 17:06:00-08:00 1000.991891 297.175668 0.896553\n", "2018-02-21 17:07:00-08:00 1000.054543 297.946657 0.878752\n", "2018-02-21 17:08:00-08:00 1002.449126 298.814267 0.887048\n", "2018-02-21 17:09:00-08:00 998.311166 296.710237 0.883333\n", "2018-02-21 17:10:00-08:00 1001.106463 297.809162 0.887446\n", "2018-02-21 17:11:00-08:00 998.999252 298.670059 0.892166\n", "2018-02-21 17:12:00-08:00 999.143503 297.965134 0.881345\n", "2018-02-21 17:13:00-08:00 998.718983 299.050471 0.899170\n", "2018-02-21 17:14:00-08:00 999.689110 298.396573 0.888901\n", "2018-02-21 17:15:00-08:00 998.906026 298.081031 0.883191\n", "2018-02-21 17:16:00-08:00 1001.441733 300.027797 0.889522\n", "2018-02-21 17:17:00-08:00 999.874945 298.704170 0.880713\n", "2018-02-21 17:18:00-08:00 999.763816 299.457996 0.866446\n", "2018-02-21 17:19:00-08:00 999.328643 297.217506 0.869135\n", "2018-02-21 17:20:00-08:00 999.746232 297.342810 0.900115\n", "2018-02-21 17:21:00-08:00 1000.737338 297.912401 0.882068\n", "2018-02-21 17:22:00-08:00 1000.274663 297.772786 0.878944\n", "2018-02-21 17:23:00-08:00 1000.158990 297.938545 0.888503\n", "2018-02-21 17:24:00-08:00 1000.922571 298.359145 0.877483\n", "2018-02-21 17:25:00-08:00 1001.872280 298.087752 0.873660\n", "2018-02-21 17:26:00-08:00 1000.656051 297.877323 0.866980\n", "2018-02-21 17:27:00-08:00 1000.853954 296.797606 0.856736\n", "2018-02-21 17:28:00-08:00 999.942882 299.841713 0.856718\n", "2018-02-21 17:29:00-08:00 998.647786 298.861976 0.882361\n", "... ... ... ...\n", "2018-02-21 18:01:00-08:00 1000.933114 297.728089 0.836169\n", "2018-02-21 18:02:00-08:00 999.142461 298.791704 0.842719\n", "2018-02-21 18:03:00-08:00 998.136343 298.775994 0.813755\n", "2018-02-21 18:04:00-08:00 1001.349441 297.735862 0.834132\n", "2018-02-21 18:05:00-08:00 1000.251661 299.644198 0.817461\n", "2018-02-21 18:06:00-08:00 1000.057671 298.579453 0.808162\n", "2018-02-21 18:07:00-08:00 1000.744842 300.871544 0.819319\n", "2018-02-21 18:08:00-08:00 1000.056866 296.959531 0.823236\n", "2018-02-21 18:09:00-08:00 999.557475 298.471216 0.806808\n", "2018-02-21 18:10:00-08:00 999.519186 298.048904 0.822102\n", "2018-02-21 18:11:00-08:00 1000.148397 298.552681 0.806129\n", "2018-02-21 18:12:00-08:00 999.258875 293.823340 0.827836\n", "2018-02-21 18:13:00-08:00 1001.182033 299.571102 0.832395\n", "2018-02-21 18:14:00-08:00 997.366496 297.647049 0.817866\n", "2018-02-21 18:15:00-08:00 1000.163225 296.983521 0.818295\n", "2018-02-21 18:16:00-08:00 1000.236309 297.914401 0.808314\n", "2018-02-21 18:17:00-08:00 999.754813 298.566226 0.822418\n", "2018-02-21 18:18:00-08:00 999.857364 299.251087 0.802571\n", "2018-02-21 18:19:00-08:00 1000.809811 296.530036 0.810362\n", "2018-02-21 18:20:00-08:00 999.982595 296.600307 0.831929\n", "2018-02-21 18:21:00-08:00 998.040597 298.726982 0.809474\n", "2018-02-21 18:22:00-08:00 1000.357286 296.702854 0.792977\n", "2018-02-21 18:23:00-08:00 999.828010 296.561526 0.792677\n", "2018-02-21 18:24:00-08:00 998.066797 298.541645 0.795909\n", "2018-02-21 18:25:00-08:00 999.942954 300.276747 0.805300\n", "2018-02-21 18:26:00-08:00 998.832891 297.323483 0.791858\n", "2018-02-21 18:27:00-08:00 998.118673 297.802544 0.794021\n", "2018-02-21 18:28:00-08:00 1000.149277 299.374961 0.811664\n", "2018-02-21 18:29:00-08:00 998.827775 298.726997 0.796634\n", "2018-02-21 18:30:00-08:00 1000.273102 299.743819 0.808884\n", "\n", "[91 rows x 3 columns]" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# check the blob, is it really there?\n", "cur.execute('SELECT results FROM trials WHERE trial_id = 1')\n", "trial1_results = cur.fetchone()\n", "pd.read_csv(io.StringIO(trial1_results[0]), index_col=0)\n", "# yay! it works!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# `JOIN`\n", "The foreign keys relate tables, but how do we use this relation? By joining the tables." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "# add the results for experiment 17: T=375[K], E=700[W/m^2]\n", "experiment_id, temperature, irradiance = list(cur.execute(\n", " 'SELECT experiment_id, temperature, irradiance FROM experiments WHERE (temperature = 375 AND irradiance = 700)'\n", "))[0]\n", "start_time, end_time = '2018-02-28T17:00-0800', '2018-02-28T18:30-0800'\n", "timestamps = pd.DatetimeIndex(start=start_time, end=end_time, freq='T')\n", "# use http://poquitopicante.blogspot.com/2016/11/panda-pop.html to help you recall what offset alias to use\n", "size = len(timestamps)\n", "data = {\n", " 'temperature': np.random.randn(size) + temperature,\n", " 'irradiance': np.random.randn(size) + irradiance,\n", " 'visible_transmittance': np.logspace(np.log10(0.9), np.log10(0.7), size) + np.random.randn(size) / 100\n", "}\n", "results = pd.DataFrame(data, index=timestamps)\n", "duration = (results.index[-1] - results.index[0]).value # [ns]\n", "avg_temperature = results.temperature.mean() # [K]\n", "std_temperature = results.temperature.std() # [K]\n", "avg_irradiance = results.irradiance.mean() # [W/m^2]\n", "std_irradiance = results.irradiance.std() # [W/m^2]\n", "init_visible_transmittance = results.visible_transmittance[start_time]\n", "final_visible_transmittance = results.visible_transmittance[end_time]\n", "values = (experiment_id, results.to_csv(), duration, avg_temperature, std_temperature,\n", " avg_irradiance, std_irradiance, init_visible_transmittance, final_visible_transmittance,\n", " 'this is doctored data')\n", "cur.execute('''INSERT INTO trials (\n", " experiment_id, results, duration, avg_temperature, std_temperature,\n", " avg_irradiance, std_irradiance, init_visible_transmittance,\n", " final_visible_transmittance, notes\n", ") VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)''', values)\n", "conn.commit() # commit! commit! commit!" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>experiment</th>\n", " <th>init_visible_transmittance</th>\n", " <th>final_visible_transmittance</th>\n", " <th>material</th>\n", " <th>temperature</th>\n", " <th>irradiance</th>\n", " <th>alpha</th>\n", " <th>beta</th>\n", " <th>material_type</th>\n", " </tr>\n", " <tr>\n", " <th>trial_id</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>0.893836</td>\n", " <td>0.808884</td>\n", " <td>EVA</td>\n", " <td>298.15</td>\n", " <td>1000.0</td>\n", " <td>0.123</td>\n", " <td>4.56</td>\n", " <td>polymer</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>17</td>\n", " <td>0.917532</td>\n", " <td>0.690272</td>\n", " <td>EVA</td>\n", " <td>375.00</td>\n", " <td>700.0</td>\n", " <td>0.123</td>\n", " <td>4.56</td>\n", " <td>polymer</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " experiment init_visible_transmittance final_visible_transmittance \\\n", "trial_id \n", "1 1 0.893836 0.808884 \n", "2 17 0.917532 0.690272 \n", "\n", " material temperature irradiance alpha beta material_type \n", "trial_id \n", "1 EVA 298.15 1000.0 0.123 4.56 polymer \n", "2 EVA 375.00 700.0 0.123 4.56 polymer " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.read_sql('''\n", "SELECT\n", " trial_id, trials.experiment_id AS experiment, init_visible_transmittance, final_visible_transmittance,\n", " experiments.material_id AS material, temperature, irradiance, alpha, beta, material_type\n", "FROM trials\n", "JOIN experiments ON experiments.experiment_id = experiment\n", "JOIN materials ON materials.material_id = material\n", "''', conn, index_col='trial_id')" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "cur.close()\n", "conn.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Epilogue\n", "Unfortunately that's all we have time for, but we covered a lot, even if we didn't get this far. If there's anything I hope you learned from this it's that:\n", "\n", "1. You can read the SQLite and PostgreSQL manuals or use [StackOverflow](https://stackoverflow.com/questions/tagged/SQL) to teach yourself SQL. It's not rocket science. I was a mechanical engineer, and I learned it.\n", "2. The basics of making a table, inserting data, and conducting queries.\n", "3. How to interact programmatically with a database.\n", "\n", "But there's still so much to learn! Hopefully you will continue on your own and try some of these intereting topics.\n", "1. Use what you've learned on a more advanced database management system like PostgreSQL, MySQL, or MS SQL Server.\n", "2. Use an Object Relational Mapper (ORM) like Django or SQLAlchemy to simplify your workflow, by creating and manipulating data in native Python.\n", "3. Explore a NoSQL database like Cassandra or MongoDB and see if the flexible structure and large scale cluster computing allow you to explore big data with tools like [Spark](http://spark.apache.org/) and [Hadoop](http://hadoop.apache.org/).\n", "\n", "Did you learn about everything you expected today? What did wish we had covered? Leave your comments or improve this tutorial by sending a PR to [The Hacker Within, Berkeley](https://github.com/thehackerwithin/berkeley).\n", "\n", "Thanks!" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }
bsd-3-clause
vzg100/Post-Translational-Modification-Prediction
old/Phosphorylation Sequence Tests -MLP -dbptm+ELM -EnzymeBenchmarks-VectorAvr..ipynb
1
128979
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Template for test" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.\n", " \"This module will be removed in 0.20.\", DeprecationWarning)\n" ] } ], "source": [ "from pred import Predictor\n", "from pred import sequence_vector\n", "from pred import chemical_vector" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Controlling for Random Negatve vs Sans Random in Imbalanced Techniques using S, T, and Y Phosphorylation.\n", "\n", "Included is N Phosphorylation however no benchmarks are available, yet. \n", "\n", "\n", "Training data is from phospho.elm and benchmarks are from dbptm. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "y pass Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [8, 11, 12, 2, 10, 20, 11, 20, 20, 12, 10, 0, 0, -0.018181818181818136, 44.10909090909091, 0.0]\n", "Finished working with Data\n", "Training Data Points: 200363\n", "Test Data Points: 50091\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.013149454778704297\n", "Specificity : 0.996563320814002\n", "Accuracy: 0.8129204847178135\n", "ROC 0.504856387796\n", "Matthews Correlation Coeff: 0.0523747492729\n", "TP 123 FP 140 TN 40597 FN 9231\n", "\n", "\n", "\n", "None\n", "Cross Validation: [ 0.81553941 0.81579525 0.81242139 0.81593132 0.81531244]\n", "Number of data points in benchmark 1808\n", "Benchmark Results \n", "Sensitivity: 0.0625\n", "Specificity : 0.9971330275229358\n", "Accuracy: 0.9640486725663717\n", "ROC 0.529816513761\n", "Matthews Correlation Coeff: 0.156571693721\n", "TP 4 FP 5 TN 1739 FN 60\n", "\n", "\n", "\n", "None\n", "x pass Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [2, 8, 19, 20, 10, 3, 8, 8, 10, 12, 10, 0, 0, -0.6636363636363637, 100.02727272727273, 0.0]\n", "Finished working with Data\n", "Training Data Points: 200363\n", "Test Data Points: 50091\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.02822405557967868\n", "Specificity : 0.9931749798184887\n", "Accuracy: 0.8157153979756843\n", "ROC 0.510699517699\n", "Matthews Correlation Coeff: 0.0803519307738\n", "TP 260 FP 279 TN" ] } ], "source": [ "par = [\"pass\", \"ADASYN\", \"SMOTEENN\", \"random_under_sample\", \"ncl\", \"near_miss\"]\n", "benchmarks = [\"Data/Benchmarks/phos_CDK1.csv\", \"Data/Benchmarks/phos_CK2.csv\", \"Data/Benchmarks/phos_MAPK1.csv\", \"Data/Benchmarks/phos_PKA.csv\", \"Data/Benchmarks/phos_PKC.csv\"]\n", "for j in benchmarks:\n", " for i in par:\n", " print(\"y\", i, \" \", j)\n", " y = Predictor()\n", " y.load_data(file=\"Data/Training/clean_s_filtered.csv\")\n", " y.process_data(vector_function=\"sequence\", amino_acid=\"S\", imbalance_function=i, random_data=0)\n", " y.supervised_training(\"mlp_adam\")\n", " y.benchmark(j, \"S\")\n", " del y\n", " print(\"x\", i, \" \", j)\n", " x = Predictor()\n", " x.load_data(file=\"Data/Training/clean_s_filtered.csv\")\n", " x.process_data(vector_function=\"sequence\", amino_acid=\"S\", imbalance_function=i, random_data=1)\n", " x.supervised_training(\"mlp_adam\")\n", " x.benchmark(j, \"S\")\n", " del x" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Y Phosphorylation " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "y pass Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [2, 3, 17, 20, 11, 15, 15, 10, 12, 2, 8, 12, 1, 0.13076923076923075, 21.20769230769231, 0.15384615384615385]\n", "Finished working with Data\n", "Training Data Points: 10099\n", "Test Data Points: 2525\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.064\n", "Specificity : 1.0\n", "Accuracy: 0.9536633663366336\n", "ROC 0.532\n", "TP 8 FP 0 TN 2400 FN 117\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.95566112 0.95683168 0.95524752 0.95324881 0.95324881]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y ADASYN Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [20, 20, 7, 18, 3, 19, 15, 12, 2, 20, 10, 13, 16, -0.30769230769230776, 18.723076923076924, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 19360\n", "Test Data Points: 4840\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.945583926329008\n", "Specificity : 0.9951040391676866\n", "Accuracy: 0.9706611570247934\n", "ROC 0.970343982748\n", "TP 2259 FP 12 TN 2439 FN 130\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.85953315 0.98347449 0.975 0.97396156 0.98140112]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y SMOTEENN Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [19, 8, 19, 4, 10, 2, 15, 3, 2, 9, 8, 10, 17, -1.2000000000000002, 121.27692307692308, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 19222\n", "Test Data Points: 4806\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9496157130657558\n", "Specificity : 0.9951298701298701\n", "Accuracy: 0.9729504785684561\n", "ROC 0.972372791598\n", "TP 2224 FP 12 TN 2452 FN 118\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.89679567 0.98918019 0.9852268 0.98314256 0.98772112]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y random_under_sample Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [3, 8, 3, 6, 7, 2, 15, 10, 18, 2, 16, 1, 9, -0.7538461538461539, 32.21538461538462, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.4661016949152542\n", "Specificity : 0.7142857142857143\n", "Accuracy: 0.5907172995780591\n", "ROC 0.5901937046\n", "TP 55 FP 34 TN 85 FN 63\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.63445378 0.56779661 0.6059322 0.62288136 0.58898305]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y ncl Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [9, 17, 3, 16, 3, 11, 15, 2, 3, 3, 8, 9, 12, 0.0076923076923075965, 82.15384615384616, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 9236\n", "Test Data Points: 2310\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.06956521739130435\n", "Specificity : 0.9990888382687927\n", "Accuracy: 0.9528138528138528\n", "ROC 0.53432702783\n", "TP 8 FP 2 TN 2193 FN 107\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.94761905 0.95106107 0.95019489 0.95106107 0.95149415]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y near_miss Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [16, 19, 5, 7, 5, 10, 15, 10, 9, 13, 18, 5, 8, -0.8538461538461539, 9.938461538461542, 0.3076923076923077]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5847457627118644\n", "Specificity : 0.7899159663865546\n", "Accuracy: 0.6877637130801688\n", "ROC 0.687330864549\n", "TP 69 FP 25 TN 94 FN 49\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.68487395 0.70762712 0.63135593 0.57627119 0.66525424]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y pass Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [1, 7, 7, 3, 4, 2, 15, 1, 1, 7, 3, 7, 15, -0.6230769230769231, -10.969230769230771, 0.15384615384615385]\n", "Finished working with Data\n", "Training Data Points: 10099\n", "Test Data Points: 2525\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.03418803418803419\n", "Specificity : 0.9991694352159468\n", "Accuracy: 0.9544554455445544\n", "ROC 0.516678734702\n", "TP 4 FP 2 TN 2406 FN 113\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.95486936 0.95722772 0.95366337 0.95641838 0.9544374 ]\n", "Number of data points in benchmark 398\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 2 TN 395 FN 1\n", "\n", "\n", "\n", "None\n", "x pass Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [9, 1, 11, 11, 11, 3, 15, 18, 20, 18, 16, 19, 5, -1.369230769230769, 14.969230769230771, 0.15384615384615385]\n", "Finished working with Data\n", "Training Data Points: 10099\n", "Test Data Points: 2525\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.07462686567164178\n", "Specificity : 0.999163529903806\n", "Accuracy: 0.95009900990099\n", "ROC 0.536895197788\n", "TP 10 FP 2 TN 2389 FN 124\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.95447348 0.95524752 0.95485149 0.9544374 0.95522979]\n", "Number of data points in benchmark 398\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 1 TN 396 FN 1\n", "\n", "\n", "\n", "None\n", "y ADASYN Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [1, 20, 15, 1, 19, 12, 15, 7, 2, 17, 18, 12, 16, -0.9615384615384616, -0.13846153846153825, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 19360\n", "Test Data Points: 4840\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.943404078235539\n", "Specificity : 0.9958965941731637\n", "Accuracy: 0.9698347107438017\n", "ROC 0.969650336204\n", "TP 2267 FP 10 TN 2427 FN 136\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.85932659 0.96984094 0.98078512 0.98305435 0.97768134]\n", "Number of data points in benchmark 398\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 1 TN 396 FN 1\n", "\n", "\n", "\n", "None\n", "x ADASYN Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [4, 3, 5, 13, 5, 20, 15, 1, 3, 16, 4, 13, 3, 1.8615384615384616, 17.51538461538462, 0.23076923076923078]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 19356\n", "Test Data Points: 4840\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9474332648870637\n", "Specificity : 0.9962577962577963\n", "Accuracy: 0.971694214876033\n", "ROC 0.971845530572\n", "TP 2307 FP 9 TN 2396 FN 128\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.85743802 0.97334711 0.98347107 0.972716 0.97519636]\n", "Number of data points in benchmark 398\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 1 TN 396 FN 1\n", "\n", "\n", "\n", "None\n", "y SMOTEENN Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [7, 19, 1, 2, 13, 14, 15, 7, 11, 20, 7, 10, 7, -1.1615384615384616, -3.100000000000001, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 15860\n", "Test Data Points: 3966\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9508599508599509\n", "Specificity : 0.9763779527559056\n", "Accuracy: 0.9606656580937972\n", "ROC 0.963618951808\n", "TP 2322 FP 36 TN 1488 FN 120\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.87493696 0.97907211 0.98108926 0.9820888 0.98410696]\n", "Number of data points in benchmark 398\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 18 TN 379 FN 1\n", "\n", "\n", "\n", "None\n", "x SMOTEENN Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [1, 18, 10, 12, 9, 19, 15, 7, 19, 3, 16, 9, 3, -1.176923076923077, 17.51538461538462, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 19232\n", "Test Data Points: 4809\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.944136460554371\n", "Specificity : 0.9833603896103896\n", "Accuracy: 0.9642337284258682\n", "ROC 0.963748425082\n", "TP 2214 FP 41 TN 2423 FN 131\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.89873155 0.98378041 0.9841963 0.98252548 0.98814229]\n", "Number of data points in benchmark 398\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 5 TN 392 FN 1\n", "\n", "\n", "\n", "None\n", "y random_under_sample Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [8, 19, 10, 3, 17, 13, 15, 15, 13, 7, 18, 15, 12, -0.5076923076923078, 56.63846153846155, 0.23076923076923078]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5\n", "Specificity : 0.7394957983193278\n", "Accuracy: 0.620253164556962\n", "ROC 0.61974789916\n", "TP 59 FP 31 TN 88 FN 59\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.56302521 0.53813559 0.5720339 0.59322034 0.55932203]\n", "Number of data points in benchmark 398\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.6523929471032746\n", "Accuracy: 0.6532663316582915\n", "ROC 0.826196473552\n", "TP 1 FP 138 TN 259 FN 0\n", "\n", "\n", "\n", "None\n", "x random_under_sample Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [15, 12, 20, 1, 9, 10, 15, 1, 1, 13, 15, 12, 11, 0.09230769230769229, 16.430769230769233, 0.23076923076923078]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5254237288135594\n", "Specificity : 0.7478991596638656\n", "Accuracy: 0.6371308016877637\n", "ROC 0.636661444239\n", "TP 62 FP 30 TN 89 FN 56\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.56722689 0.55508475 0.50847458 0.66949153 0.53813559]\n", "Number of data points in benchmark 398\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.6372795969773299\n", "Accuracy: 0.6381909547738693\n", "ROC 0.818639798489\n", "TP 1 FP 144 TN 253 FN 0\n", "\n", "\n", "\n", "None\n", "y ncl Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [3, 15, 10, 19, 15, 3, 15, 5, 2, 10, 10, 18, 7, -0.38461538461538464, 42.261538461538464, 0.3076923076923077]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 9229\n", "Test Data Points: 2308\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.06086956521739131\n", "Specificity : 0.9990880072959416\n", "Accuracy: 0.9523396880415944\n", "ROC 0.529978786257\n", "TP 7 FP 2 TN 2191 FN 108\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.94932871 0.95188557 0.94971825 0.9514521 0.95188557]\n", "Number of data points in benchmark 398\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 0 TN 397 FN 1\n", "\n", "\n", "\n", "None\n", "x ncl Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [15, 18, 1, 4, 14, 8, 15, 15, 19, 2, 8, 14, 8, -1.0076923076923077, 2.1769230769230776, 0.23076923076923078]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 9231\n", "Test Data Points: 2308\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.06956521739130435\n", "Specificity : 0.9981760145918832\n", "Accuracy: 0.9519064124783362\n", "ROC 0.533870615992\n", "TP 8 FP 4 TN 2189 FN 107\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.95062798 0.95147314 0.95060659 0.95275249 0.94928479]\n", "Number of data points in benchmark 398\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 1 TN 396 FN 1\n", "\n", "\n", "\n", "None\n", "y near_miss Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [5, 4, 8, 10, 2, 7, 15, 5, 18, 15, 20, 12, 7, -0.4153846153846154, 28.48461538461538, 0.3076923076923077]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5423728813559322\n", "Specificity : 0.7226890756302521\n", "Accuracy: 0.6329113924050633\n", "ROC 0.632530978493\n", "TP 64 FP 33 TN 86 FN 54\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.67226891 0.67372881 0.63983051 0.57627119 0.57627119]\n", "Number of data points in benchmark 398\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.4282115869017632\n", "Accuracy: 0.4296482412060301\n", "ROC 0.714105793451\n", "TP 1 FP 227 TN 170 FN 0\n", "\n", "\n", "\n", "None\n", "x near_miss Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [10, 8, 19, 3, 5, 10, 15, 8, 2, 3, 15, 10, 15, -0.3538461538461538, 38.861538461538466, 0.3076923076923077]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5508474576271186\n", "Specificity : 0.7563025210084033\n", "Accuracy: 0.6540084388185654\n", "ROC 0.653574989318\n", "TP 65 FP 29 TN 90 FN 53\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.63445378 0.65677966 0.69067797 0.55508475 0.65254237]\n", "Number of data points in benchmark 398\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.4332493702770781\n", "Accuracy: 0.43467336683417085\n", "ROC 0.716624685139\n", "TP 1 FP 225 TN 172 FN 0\n", "\n", "\n", "\n", "None\n", "y pass Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [18, 1, 7, 13, 3, 5, 15, 18, 12, 12, 12, 9, 18, 0.3153846153846155, 24.500769230769233, 0.15384615384615385]\n", "Finished working with Data\n", "Training Data Points: 10099\n", "Test Data Points: 2525\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.049586776859504134\n", "Specificity : 0.9995840266222962\n", "Accuracy: 0.954059405940594\n", "ROC 0.524585401741\n", "TP 6 FP 1 TN 2403 FN 115\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.95486936 0.95445545 0.95326733 0.95562599 0.95562599]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y ADASYN Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [14, 8, 18, 18, 7, 2, 15, 14, 15, 18, 1, 4, 14, -0.7461538461538463, 10.084615384615386, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 19363\n", "Test Data Points: 4841\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9388682362660058\n", "Specificity : 0.996694214876033\n", "Accuracy: 0.9677752530468912\n", "ROC 0.967781225571\n", "TP 2273 FP 8 TN 2412 FN 148\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.85398596 0.97892997 0.97624458 0.97747934 0.97809917]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y SMOTEENN Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [8, 19, 12, 8, 19, 3, 15, 9, 2, 1, 9, 3, 7, -1.0000000000000002, 20.730769230769234, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 19228\n", "Test Data Points: 4808\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9483126868859462\n", "Specificity : 0.993109039319011\n", "Accuracy: 0.971297836938436\n", "ROC 0.970710863102\n", "TP 2220 FP 17 TN 2450 FN 121\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.89455075 0.98772879 0.98689684 0.98585102 0.98730753]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y random_under_sample Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [14, 3, 10, 3, 17, 10, 15, 10, 2, 20, 13, 8, 2, 0.44615384615384623, 72.66153846153847, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.4745762711864407\n", "Specificity : 0.5546218487394958\n", "Accuracy: 0.5147679324894515\n", "ROC 0.514599059963\n", "TP 56 FP 53 TN 66 FN 62\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.56722689 0.53389831 0.58898305 0.59322034 0.54237288]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y ncl Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [17, 18, 10, 2, 2, 1, 15, 17, 8, 10, 11, 19, 1, -1.630769230769231, 75.8, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 9231\n", "Test Data Points: 2308\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.05217391304347826\n", "Specificity : 0.9986320109439124\n", "Accuracy: 0.951473136915078\n", "ROC 0.525402961994\n", "TP 6 FP 3 TN 2190 FN 109\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.95236033 0.95233969 0.95017331 0.9479844 0.95058518]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y near_miss Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [2, 2, 2, 20, 20, 19, 15, 18, 18, 18, 16, 9, 1, -1.4153846153846152, 9.230769230769232, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5932203389830508\n", "Specificity : 0.6974789915966386\n", "Accuracy: 0.6455696202531646\n", "ROC 0.64534966529\n", "TP 70 FP 36 TN 83 FN 48\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.62605042 0.66949153 0.69915254 0.61016949 0.63135593]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y pass Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [3, 3, 10, 13, 18, 3, 15, 9, 3, 13, 7, 17, 18, 0.24615384615384622, 31.46923076923077, 0.07692307692307693]\n", "Finished working with Data\n", "Training Data Points: 10099\n", "Test Data Points: 2525\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.05309734513274336\n", "Specificity : 0.9975124378109452\n", "Accuracy: 0.9552475247524752\n", "ROC 0.525304891472\n", "TP 6 FP 6 TN 2406 FN 107\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.95407759 0.95485149 0.95405941 0.9544374 0.9544374 ]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y ADASYN Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [9, 5, 20, 10, 2, 17, 15, 13, 17, 3, 17, 5, 8, -0.5846153846153846, 18.24615384615385, 0.23076923076923078]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 19363\n", "Test Data Points: 4841\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9439368770764119\n", "Specificity : 0.9934237566789971\n", "Accuracy: 0.9688080975005164\n", "ROC 0.968680316878\n", "TP 2273 FP 16 TN 2417 FN 135\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.85997522 0.97149349 0.97376575 0.97334711 0.97995868]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y SMOTEENN Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [9, 2, 3, 17, 20, 11, 15, 15, 10, 12, 2, 8, 12, -0.10769230769230778, 27.738461538461543, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 19229\n", "Test Data Points: 4808\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9401964972234088\n", "Specificity : 0.9927036886907175\n", "Accuracy: 0.9671381031613977\n", "ROC 0.966450092957\n", "TP 2201 FP 18 TN 2449 FN 140\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.88831115 0.98710483 0.99043261 0.98439775 0.98626717]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y random_under_sample Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [12, 13, 6, 12, 1, 18, 15, 10, 20, 20, 12, 7, 6, 0.3076923076923077, -12.576923076923077, 0.23076923076923078]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.4745762711864407\n", "Specificity : 0.680672268907563\n", "Accuracy: 0.5780590717299579\n", "ROC 0.577624270047\n", "TP 56 FP 38 TN 81 FN 62\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.55882353 0.56779661 0.5720339 0.58474576 0.55084746]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y ncl Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [17, 2, 4, 1, 7, 2, 15, 16, 11, 1, 14, 5, 20, -0.4000000000000001, 9.976923076923077, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 9230\n", "Test Data Points: 2308\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.06956521739130435\n", "Specificity : 0.9981760145918832\n", "Accuracy: 0.9519064124783362\n", "ROC 0.533870615992\n", "TP 8 FP 4 TN 2189 FN 107\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.9497618 0.95147314 0.95101864 0.9479844 0.95188557]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y near_miss Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [2, 11, 15, 18, 15, 10, 15, 13, 5, 7, 15, 13, 13, 0.2384615384615385, 12.484615384615388, 0.38461538461538464]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.576271186440678\n", "Specificity : 0.7310924369747899\n", "Accuracy: 0.6540084388185654\n", "ROC 0.653681811708\n", "TP 68 FP 32 TN 87 FN 50\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.68907563 0.73305085 0.63559322 0.5720339 0.69067797]\n", "Number of data points in benchmark 0\n", "Benchmark not relevant\n", "y pass Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/mark/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py:395: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.\n", " DeprecationWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [3, 17, 12, 3, 17, 8, 15, 5, 19, 13, 18, 18, 10, -0.46153846153846156, 57.36923076923077, 0.15384615384615385]\n", "Finished working with Data\n", "Training Data Points: 10099\n", "Test Data Points: 2525\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.07258064516129033\n", "Specificity : 0.9975010412328197\n", "Accuracy: 0.952079207920792\n", "ROC 0.535040843197\n", "TP 9 FP 6 TN 2395 FN 115\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.95368171 0.95683168 0.95405941 0.95562599 0.95562599]\n", "Number of data points in benchmark 569\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.9964788732394366\n", "Accuracy: 0.9964850615114236\n", "ROC 0.99823943662\n", "TP 1 FP 2 TN 566 FN 0\n", "\n", "\n", "\n", "None\n", "x pass Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [9, 2, 3, 5, 20, 3, 15, 19, 19, 8, 12, 20, 5, 0.19230769230769224, 24.607692307692307, 0.23076923076923078]\n", "Finished working with Data\n", "Training Data Points: 10099\n", "Test Data Points: 2525\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.05504587155963303\n", "Specificity : 0.9979304635761589\n", "Accuracy: 0.9572277227722772\n", "ROC 0.526488167568\n", "TP 6 FP 5 TN 2411 FN 103\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.95407759 0.95485149 0.95445545 0.95364501 0.95602219]\n", "Number of data points in benchmark 569\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.9947183098591549\n", "Accuracy: 0.9947275922671354\n", "ROC 0.99735915493\n", "TP 1 FP 3 TN 565 FN 0\n", "\n", "\n", "\n", "None\n", "y ADASYN Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [7, 13, 8, 15, 3, 12, 15, 8, 4, 3, 7, 1, 3, 0.32307692307692304, -21.961538461538467, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 19363\n", "Test Data Points: 4841\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9454545454545454\n", "Specificity : 0.9962825278810409\n", "Accuracy: 0.970873786407767\n", "ROC 0.970868536668\n", "TP 2288 FP 9 TN 2412 FN 132\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.85543164 0.97665772 0.98223508 0.97789256 0.97520661]\n", "Number of data points in benchmark 569\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.9964788732394366\n", "Accuracy: 0.9964850615114236\n", "ROC 0.99823943662\n", "TP 1 FP 2 TN 566 FN 0\n", "\n", "\n", "\n", "None\n", "x ADASYN Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [16, 10, 17, 19, 11, 16, 15, 15, 19, 19, 3, 17, 10, -2.1461538461538465, 134.16923076923078, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 19360\n", "Test Data Points: 4840\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9466221851542952\n", "Specificity : 0.9946764946764947\n", "Accuracy: 0.9708677685950413\n", "ROC 0.970649339915\n", "TP 2270 FP 13 TN 2429 FN 128\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.86304483 0.98058252 0.98243802 0.97210167 0.97458153]\n", "Number of data points in benchmark 569\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.9982394366197183\n", "Accuracy: 0.9982425307557118\n", "ROC 0.99911971831\n", "TP 1 FP 1 TN 567 FN 0\n", "\n", "\n", "\n", "None\n", "y SMOTEENN Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [13, 1, 15, 20, 3, 7, 15, 12, 2, 5, 18, 1, 20, 0.37692307692307686, -28.453846153846158, 0.23076923076923078]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 19228\n", "Test Data Points: 4808\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9414780008543358\n", "Specificity : 0.9971625456019457\n", "Accuracy: 0.9700499168053245\n", "ROC 0.969320273228\n", "TP 2204 FP 7 TN 2460 FN 137\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.88997504 0.98668885 0.98960067 0.98314607 0.98564295]\n", "Number of data points in benchmark 569\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.9894366197183099\n", "Accuracy: 0.9894551845342706\n", "ROC 0.994718309859\n", "TP 1 FP 6 TN 562 FN 0\n", "\n", "\n", "\n", "None\n", "x SMOTEENN Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [11, 3, 13, 5, 10, 13, 15, 9, 10, 8, 7, 13, 12, 0.6846153846153845, 20.0, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 19237\n", "Test Data Points: 4810\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9404001702852277\n", "Specificity : 0.9922795611540024\n", "Accuracy: 0.9669438669438669\n", "ROC 0.96633986572\n", "TP 2209 FP 19 TN 2442 FN 140\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.89189189 0.98877339 0.98336798 0.98939488 0.98564892]\n", "Number of data points in benchmark 569\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.9894366197183099\n", "Accuracy: 0.9894551845342706\n", "ROC 0.994718309859\n", "TP 1 FP 6 TN 562 FN 0\n", "\n", "\n", "\n", "None\n", "y random_under_sample Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [13, 17, 13, 11, 19, 1, 15, 3, 9, 7, 3, 8, 13, -0.08461538461538466, 13.230769230769234, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5084745762711864\n", "Specificity : 0.6470588235294118\n", "Accuracy: 0.5780590717299579\n", "ROC 0.5777666999\n", "TP 60 FP 42 TN 77 FN 58\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.5 0.58050847 0.55508475 0.59745763 0.58474576]\n", "Number of data points in benchmark 569\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.6919014084507042\n", "Accuracy: 0.6924428822495606\n", "ROC 0.845950704225\n", "TP 1 FP 175 TN 393 FN 0\n", "\n", "\n", "\n", "None\n", "x random_under_sample Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [17, 13, 3, 16, 12, 3, 15, 20, 19, 14, 13, 17, 8, 0.16153846153846152, 32.330769230769235, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.4661016949152542\n", "Specificity : 0.6638655462184874\n", "Accuracy: 0.5654008438818565\n", "ROC 0.564983620567\n", "TP 55 FP 40 TN 79 FN 63\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.57563025 0.54237288 0.57627119 0.61440678 0.56355932]\n", "Number of data points in benchmark 569\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.6619718309859155\n", "Accuracy: 0.6625659050966608\n", "ROC 0.830985915493\n", "TP 1 FP 192 TN 376 FN 0\n", "\n", "\n", "\n", "None\n", "y ncl Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [12, 2, 9, 1, 4, 2, 15, 3, 9, 10, 7, 17, 5, -0.12307692307692299, 58.61538461538462, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 9240\n", "Test Data Points: 2311\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.05217391304347826\n", "Specificity : 0.9977231329690346\n", "Accuracy: 0.9506707053223713\n", "ROC 0.524948523006\n", "TP 6 FP 5 TN 2191 FN 109\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.95023799 0.94935065 0.95194805 0.95021645 0.95238095]\n", "Number of data points in benchmark 569\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.9982394366197183\n", "Accuracy: 0.9982425307557118\n", "ROC 0.99911971831\n", "TP 1 FP 1 TN 567 FN 0\n", "\n", "\n", "\n", "None\n", "x ncl Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [8, 4, 13, 9, 10, 18, 15, 16, 10, 10, 18, 11, 15, -1.3384615384615386, 79.93846153846155, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 9225\n", "Test Data Points: 2307\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.06956521739130435\n", "Specificity : 1.0\n", "Accuracy: 0.9536194191590811\n", "ROC 0.534782608696\n", "TP 8 FP 0 TN 2192 FN 107\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.94974003 0.95143105 0.94969644 0.95056375 0.95143105]\n", "Number of data points in benchmark 569\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.9982394366197183\n", "Accuracy: 0.9982425307557118\n", "ROC 0.99911971831\n", "TP 1 FP 1 TN 567 FN 0\n", "\n", "\n", "\n", "None\n", "y near_miss Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [12, 13, 1, 1, 9, 12, 15, 11, 11, 20, 12, 7, 19, 0.015384615384615228, 29.215384615384615, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5508474576271186\n", "Specificity : 0.7058823529411765\n", "Accuracy: 0.6286919831223629\n", "ROC 0.628364905284\n", "TP 65 FP 35 TN 84 FN 53\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.69747899 0.72881356 0.6440678 0.58898305 0.61864407]\n", "Number of data points in benchmark 569\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.43661971830985913\n", "Accuracy: 0.437609841827768\n", "ROC 0.718309859155\n", "TP 1 FP 320 TN 248 FN 0\n", "\n", "\n", "\n", "None\n", "x near_miss Data/Benchmarks/phos_PKC.csv\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [10, 19, 20, 15, 19, 11, 15, 3, 19, 12, 2, 3, 9, -0.46923076923076945, 15.884615384615385, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 945\n", "Test Data Points: 237\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5423728813559322\n", "Specificity : 0.6722689075630253\n", "Accuracy: 0.6075949367088608\n", "ROC 0.607320894459\n", "TP 64 FP 39 TN 80 FN 54\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.69747899 0.62288136 0.66949153 0.58050847 0.62288136]\n", "Number of data points in benchmark 569\n", "Benchmark Results \n", "Sensitivity: 1.0\n", "Specificity : 0.44366197183098594\n", "Accuracy: 0.4446397188049209\n", "ROC 0.721830985915\n", "TP 1 FP 316 TN 252 FN 0\n", "\n", "\n", "\n", "None\n" ] } ], "source": [ "par = [\"pass\", \"ADASYN\", \"SMOTEENN\", \"random_under_sample\", \"ncl\", \"near_miss\"]\n", "benchmarks = [\"Data/Benchmarks/phos_CDK1.csv\", \"Data/Benchmarks/phos_CK2.csv\", \"Data/Benchmarks/phos_MAPK1.csv\", \"Data/Benchmarks/phos_PKA.csv\", \"Data/Benchmarks/phos_PKC.csv\"]\n", "for j in benchmarks:\n", " for i in par:\n", " try:\n", " print(\"y\", i, \" \", j)\n", " y = Predictor()\n", " y.load_data(file=\"Data/Training/clean_Y_filtered.csv\")\n", " y.process_data(vector_function=\"sequence\", amino_acid=\"Y\", imbalance_function=i, random_data=0)\n", " y.supervised_training(\"bagging\")\n", " y.benchmark(j, \"Y\")\n", " del y\n", " print(\"x\", i, \" \", j)\n", " x = Predictor()\n", " x.load_data(file=\"Data/Training/clean_Y_filtered.csv\")\n", " x.process_data(vector_function=\"sequence\", amino_acid=\"Y\", imbalance_function=i, random_data=1)\n", " x.supervised_training(\"bagging\")\n", " x.benchmark(j, \"Y\")\n", " del x\n", " except:\n", " print(\"Benchmark not relevant\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "T Phosphorylation " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "y pass Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [18, 20, 13, 7, 7, 3, 20, 3, 8, 10, 2, 0, 0, -0.28181818181818186, 55.518181818181816, 0.0]\n", "Finished working with Data\n", "Training Data Points: 66323\n", "Test Data Points: 16581\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.0029411764705882353\n", "Specificity : 0.9981510243325198\n", "Accuracy: 0.8144864604064893\n", "ROC 0.500546100402\n", "TP 9 FP 25 TN 13496 FN 3051\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.81859848 0.80014474 0.80838359 0.81785283 0.80874548]\n", "Number of data points in benchmark 1196\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 3 TN 1150 FN 43\n", "\n", "\n", "\n", "None\n", "x pass Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [5, 16, 10, 3, 2, 12, 20, 1, 20, 3, 3, 3, 8, 1.1307692307692307, 14.715384615384618, 0.07692307692307693]\n", "Finished working with Data\n", "Training Data Points: 66323\n", "Test Data Points: 16581\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.00398406374501992\n", "Specificity : 0.9977153806470631\n", "Accuracy: 0.8172004101079549\n", "ROC 0.500849722196\n", "TP 12 FP 31 TN 13538 FN 3000\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.81811603 0.81775419 0.81586248 0.81212304 0.81863691]\n", "Number of data points in benchmark 1196\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 4 TN 1149 FN 43\n", "\n", "\n", "\n", "None\n", "y ADASYN Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [2, 2, 9, 7, 20, 12, 20, 2, 9, 18, 19, 16, 12, -0.6692307692307692, 2.7, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 109784\n", "Test Data Points: 27446\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.6471138620987477\n", "Specificity : 0.8769923258559622\n", "Accuracy: 0.7606208554980689\n", "ROC 0.762053093977\n", "TP 8991 FP 1667 TN 11885 FN 4903\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.54118847 0.76317995 0.79483349 0.79872472 0.80572053]\n", "Number of data points in benchmark 1196\n", "Benchmark Results \n", "Sensitivity: 0.32558139534883723\n", "Specificity : 0.8881179531656548\n", "Accuracy: 0.8678929765886287\n", "ROC 0.606849674257\n", "TP 14 FP 129 TN 1024 FN 29\n", "\n", "\n", "\n", "None\n", "x ADASYN Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [12, 2, 16, 3, 8, 9, 20, 10, 11, 3, 17, 19, 2, -0.45384615384615395, 91.20769230769231, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 109789\n", "Test Data Points: 27448\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.6709561466570813\n", "Specificity : 0.826931599940907\n", "Accuracy: 0.747886913436316\n", "ROC 0.748943873299\n", "TP 9333 FP 2343 TN 11195 FN 4577\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.51103906 0.77969251 0.79644406 0.78839217 0.79356578]\n", "Number of data points in benchmark 1196\n", "Benchmark Results \n", "Sensitivity: 0.46511627906976744\n", "Specificity : 0.8438855160450998\n", "Accuracy: 0.830267558528428\n", "ROC 0.654500897557\n", "TP 20 FP 180 TN 973 FN 23\n", "\n", "\n", "\n", "None\n", "y SMOTEENN Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [10, 19, 14, 1, 9, 12, 20, 18, 15, 13, 9, 9, 7, -1.0307692307692309, 44.215384615384615, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 75724\n", "Test Data Points: 18931\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.8786101744612227\n", "Specificity : 0.5337492909812819\n", "Accuracy: 0.7822618984734034\n", "ROC 0.706179732721\n", "TP 11986 FP 2466 TN 2823 FN 1656\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.72866047 0.79463342 0.80154244 0.79809826 0.80036978]\n", "Number of data points in benchmark 1196\n", "Benchmark Results \n", "Sensitivity: 0.9069767441860465\n", "Specificity : 0.3217692974848222\n", "Accuracy: 0.342809364548495\n", "ROC 0.614373020835\n", "TP 39 FP 782 TN 371 FN 4\n", "\n", "\n", "\n", "None\n", "x SMOTEENN Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [10, 2, 2, 5, 1, 1, 20, 18, 12, 9, 11, 10, 12, 0.23846153846153836, 30.261538461538464, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 102802\n", "Test Data Points: 25701\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9276861200032832\n", "Specificity : 0.3412487054297973\n", "Accuracy: 0.6192366055795494\n", "ROC 0.634467412717\n", "TP 11302 FP 8905 TN 4613 FN 881\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.60968018 0.69440878 0.69081712 0.68105058 0.6711284 ]\n", "Number of data points in benchmark 1196\n", "Benchmark Results \n", "Sensitivity: 0.9302325581395349\n", "Specificity : 0.2419774501300954\n", "Accuracy: 0.26672240802675584\n", "ROC 0.586105004135\n", "TP 40 FP 874 TN 279 FN 3\n", "\n", "\n", "\n", "None\n", "y random_under_sample Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [3, 10, 20, 11, 12, 12, 20, 10, 1, 3, 20, 15, 13, 1.0384615384615385, 17.51538461538462, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5782894736842106\n", "Specificity : 0.64\n", "Accuracy: 0.6088113050706567\n", "ROC 0.609144736842\n", "TP 1758 FP 1071 TN 1904 FN 1282\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.5880984 0.60222739 0.60907882 0.5857998 0.60409046]\n", "Number of data points in benchmark 1196\n", "Benchmark Results \n", "Sensitivity: 0.627906976744186\n", "Specificity : 0.5758889852558543\n", "Accuracy: 0.5777591973244147\n", "ROC 0.601897981\n", "TP 27 FP 489 TN 664 FN 16\n", "\n", "\n", "\n", "None\n", "x random_under_sample Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [18, 13, 2, 16, 3, 3, 20, 10, 11, 10, 15, 7, 12, 0.1769230769230769, 78.58461538461539, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.7690789473684211\n", "Specificity : 0.4319327731092437\n", "Accuracy: 0.6023275145469659\n", "ROC 0.600505860239\n", "TP 2338 FP 1690 TN 1285 FN 702\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.58926197 0.59258644 0.59727303 0.58779514 0.59411373]\n", "Number of data points in benchmark 1196\n", "Benchmark Results \n", "Sensitivity: 0.8837209302325582\n", "Specificity : 0.3434518647007806\n", "Accuracy: 0.362876254180602\n", "ROC 0.613586397467\n", "TP 38 FP 757 TN 396 FN 5\n", "\n", "\n", "\n", "None\n", "y ncl Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [9, 19, 8, 8, 3, 17, 20, 2, 10, 3, 11, 2, 13, -0.4538461538461536, 83.30769230769232, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 47212\n", "Test Data Points: 11803\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.05589638718473074\n", "Specificity : 0.9875972488442891\n", "Accuracy: 0.7559942387528594\n", "ROC 0.521746818015\n", "TP 164 FP 110 TN 8759 FN 2770\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.75516774 0.75482887 0.74870796 0.74775462 0.73284189]\n", "Number of data points in benchmark 1196\n", "Benchmark Results \n", "Sensitivity: 0.06976744186046512\n", "Specificity : 0.9774501300954033\n", "Accuracy: 0.9448160535117057\n", "ROC 0.523608785978\n", "TP 3 FP 26 TN 1127 FN 40\n", "\n", "\n", "\n", "None\n", "x ncl Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [6, 7, 12, 16, 12, 5, 20, 12, 12, 8, 3, 20, 14, 1.0, 2.7, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 47218\n", "Test Data Points: 11805\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.1826235093696763\n", "Specificity : 0.9489289740698985\n", "Accuracy: 0.7584074544684456\n", "ROC 0.56577624172\n", "TP 536 FP 453 TN 8417 FN 2399\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.75554803 0.7519695 0.75652321 0.74559471 0.74923755]\n", "Number of data points in benchmark 1196\n", "Benchmark Results \n", "Sensitivity: 0.16279069767441862\n", "Specificity : 0.9184735472679966\n", "Accuracy: 0.8913043478260869\n", "ROC 0.540632122471\n", "TP 7 FP 94 TN 1059 FN 36\n", "\n", "\n", "\n", "None\n", "y near_miss Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [17, 9, 5, 3, 19, 1, 20, 17, 7, 20, 18, 18, 13, -1.353846153846154, 24.938461538461542, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5631578947368421\n", "Specificity : 0.7636974789915967\n", "Accuracy: 0.6623441396508728\n", "ROC 0.663427686864\n", "TP 1712 FP 703 TN 2272 FN 1328\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.63796543 0.69381649 0.66544729 0.65696708 0.61805786]\n", "Number of data points in benchmark 1196\n", "Benchmark Results \n", "Sensitivity: 0.4418604651162791\n", "Specificity : 0.4787510841283608\n", "Accuracy: 0.4774247491638796\n", "ROC 0.460305774622\n", "TP 19 FP 601 TN 552 FN 24\n", "\n", "\n", "\n", "None\n", "x near_miss Data/Benchmarks/phos_CDK1.csv\n", "Loading Data\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [10, 10, 11, 8, 8, 1, 20, 17, 2, 2, 10, 13, 9, -0.9230769230769229, 114.74615384615386, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.6194078947368421\n", "Specificity : 0.706890756302521\n", "Accuracy: 0.6626766417290108\n", "ROC 0.66314932552\n", "TP 1883 FP 872 TN 2103 FN 1157\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.63048537 0.67536569 0.64466245 0.63917526 0.61972065]\n", "Number of data points in benchmark 1196\n", "Benchmark Results \n", "Sensitivity: 0.46511627906976744\n", "Specificity : 0.40763226366001737\n", "Accuracy: 0.4096989966555184\n", "ROC 0.436374271365\n", "TP 20 FP 683 TN 470 FN 23\n", "\n", "\n", "\n", "None\n", "y pass Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [18, 2, 7, 15, 8, 8, 20, 19, 12, 18, 18, 10, 11, -1.7923076923076924, 57.846153846153854, 0.07692307692307693]\n", "Finished working with Data\n", "Training Data Points: 66323\n", "Test Data Points: 16581\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.0032658393207054214\n", "Specificity : 0.9988164805089134\n", "Accuracy: 0.8149689403534166\n", "ROC 0.501041159915\n", "TP 10 FP 16 TN 13503 FN 3052\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.81829695 0.81112049 0.8181544 0.81845597 0.8181544 ]\n", "Number of data points in benchmark 719\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 2 TN 702 FN 15\n", "\n", "\n", "\n", "None\n", "x pass Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [19, 11, 20, 3, 3, 7, 20, 5, 9, 2, 3, 7, 5, 0.07692307692307689, 5.661538461538462, 0.15384615384615385]\n", "Finished working with Data\n", "Training Data Points: 66323\n", "Test Data Points: 16581\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.06833333333333333\n", "Specificity : 0.9693689713570429\n", "Accuracy: 0.8063446113020928\n", "ROC 0.518851152345\n", "TP 205 FP 416 TN 13165 FN 2795\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.81823664 0.80937161 0.81851628 0.81121834 0.79764777]\n", "Number of data points in benchmark 719\n", "Benchmark Results \n", "Sensitivity: 0.2\n", "Specificity : 0.9559659090909091\n", "Accuracy: 0.9401947148817803\n", "ROC 0.577982954545\n", "TP 3 FP 31 TN 673 FN 12\n", "\n", "\n", "\n", "None\n", "y ADASYN Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [13, 9, 9, 9, 9, 3, 20, 3, 20, 13, 3, 17, 8, -0.23076923076923084, 162.70769230769227, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 109770\n", "Test Data Points: 27443\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.565138546351371\n", "Specificity : 0.9324888335652046\n", "Accuracy: 0.7479502969791932\n", "ROC 0.748813689958\n", "TP 7791 FP 922 TN 12735 FN 5995\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.55290774 0.772984 0.78387144 0.79848408 0.78245026]\n", "Number of data points in benchmark 719\n", "Benchmark Results \n", "Sensitivity: 0.06666666666666667\n", "Specificity : 0.9147727272727273\n", "Accuracy: 0.8970792767732962\n", "ROC 0.49071969697\n", "TP 1 FP 60 TN 644 FN 14\n", "\n", "\n", "\n", "None\n", "x ADASYN Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [11, 12, 20, 12, 20, 12, 20, 18, 18, 20, 9, 7, 0, -0.5166666666666665, 0.4416666666666706, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 109747\n", "Test Data Points: 27437\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.6750180505415162\n", "Specificity : 0.8369029219106499\n", "Accuracy: 0.7551846047308379\n", "ROC 0.755960486226\n", "TP 9349 FP 2216 TN 11371 FN 4501\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.51067862 0.76660106 0.80419886 0.80383438 0.76964572]\n", "Number of data points in benchmark 719\n", "Benchmark Results \n", "Sensitivity: 0.4666666666666667\n", "Specificity : 0.8224431818181818\n", "Accuracy: 0.8150208623087621\n", "ROC 0.644554924242\n", "TP 7 FP 125 TN 579 FN 8\n", "\n", "\n", "\n", "None\n", "y SMOTEENN Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [5, 7, 8, 1, 17, 17, 20, 12, 19, 12, 19, 1, 16, -1.3000000000000003, 36.792307692307695, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 75727\n", "Test Data Points: 18932\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9187613843351549\n", "Specificity : 0.4351834069521798\n", "Accuracy: 0.7857595605324319\n", "ROC 0.676972395644\n", "TP 12610 FP 2941 TN 2266 FN 1115\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.74420324 0.7911583 0.80185938 0.79773916 0.79879563]\n", "Number of data points in benchmark 719\n", "Benchmark Results \n", "Sensitivity: 0.8666666666666667\n", "Specificity : 0.27698863636363635\n", "Accuracy: 0.28929068150208626\n", "ROC 0.571827651515\n", "TP 13 FP 509 TN 195 FN 2\n", "\n", "\n", "\n", "None\n", "x SMOTEENN Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [3, 8, 8, 13, 3, 3, 20, 3, 8, 16, 3, 11, 3, 0.8692307692307693, 103.83076923076923, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 102990\n", "Test Data Points: 25748\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.7671746393936925\n", "Specificity : 0.5981301476589745\n", "Accuracy: 0.6786934907565636\n", "ROC 0.682652393526\n", "TP 9414 FP 5416 TN 8061 FN 2857\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.60278069 0.68164518 0.69076009 0.69433332 0.69565386]\n", "Number of data points in benchmark 719\n", "Benchmark Results \n", "Sensitivity: 0.7333333333333333\n", "Specificity : 0.5355113636363636\n", "Accuracy: 0.5396383866481224\n", "ROC 0.634422348485\n", "TP 11 FP 327 TN 377 FN 4\n", "\n", "\n", "\n", "None\n", "y random_under_sample Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [7, 13, 15, 17, 9, 17, 20, 7, 14, 9, 7, 9, 10, -2.0769230769230766, 4.50769230769231, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.6532894736842105\n", "Specificity : 0.5626890756302521\n", "Accuracy: 0.6084788029925187\n", "ROC 0.607989274657\n", "TP 1986 FP 1301 TN 1674 FN 1054\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.57480053 0.59275266 0.59760559 0.60093116 0.53092784]\n", "Number of data points in benchmark 719\n", "Benchmark Results \n", "Sensitivity: 0.7333333333333333\n", "Specificity : 0.48011363636363635\n", "Accuracy: 0.4853963838664812\n", "ROC 0.606723484848\n", "TP 11 FP 366 TN 338 FN 4\n", "\n", "\n", "\n", "None\n", "x random_under_sample Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [3, 9, 9, 2, 3, 3, 20, 2, 8, 8, 9, 17, 19, -0.8615384615384616, 63.938461538461546, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.44144736842105264\n", "Specificity : 0.7431932773109243\n", "Accuracy: 0.5906899418121363\n", "ROC 0.592320322866\n", "TP 1342 FP 764 TN 2211 FN 1698\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.60787899 0.59524601 0.56451613 0.6005986 0.60192883]\n", "Number of data points in benchmark 719\n", "Benchmark Results \n", "Sensitivity: 0.7333333333333333\n", "Specificity : 0.6789772727272727\n", "Accuracy: 0.6801112656467315\n", "ROC 0.70615530303\n", "TP 11 FP 226 TN 478 FN 4\n", "\n", "\n", "\n", "None\n", "y ncl Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [5, 9, 3, 2, 7, 7, 20, 7, 5, 18, 3, 14, 17, -0.4923076923076923, 9.230769230769232, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 47275\n", "Test Data Points: 11819\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.027551020408163266\n", "Specificity : 0.9939182340353644\n", "Accuracy: 0.753532447753617\n", "ROC 0.510734627222\n", "TP 81 FP 54 TN 8825 FN 2859\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.7535533 0.74678511 0.75156541 0.72702657 0.75156541]\n", "Number of data points in benchmark 719\n", "Benchmark Results \n", "Sensitivity: 0.06666666666666667\n", "Specificity : 0.9758522727272727\n", "Accuracy: 0.9568845618915159\n", "ROC 0.521259469697\n", "TP 1 FP 17 TN 687 FN 14\n", "\n", "\n", "\n", "None\n", "x ncl Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [15, 7, 17, 18, 12, 3, 20, 1, 3, 18, 3, 7, 15, -0.5692307692307693, 30.738461538461536, 0.15384615384615385]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 47229\n", "Test Data Points: 11808\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.07101399795151929\n", "Specificity : 0.9841198333145624\n", "Accuracy: 0.7576219512195121\n", "ROC 0.527566915633\n", "TP 208 FP 141 TN 8738 FN 2721\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.74678184 0.75643631 0.75455238 0.75107987 0.74930126]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Number of data points in benchmark 719\n", "Benchmark Results \n", "Sensitivity: 0.2\n", "Specificity : 0.9446022727272727\n", "Accuracy: 0.9290681502086231\n", "ROC 0.572301136364\n", "TP 3 FP 39 TN 665 FN 12\n", "\n", "\n", "\n", "None\n", "y near_miss Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [10, 7, 17, 13, 11, 15, 20, 11, 1, 9, 13, 11, 7, -1.1384615384615384, 32.361538461538466, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.7115131578947368\n", "Specificity : 0.6110924369747899\n", "Accuracy: 0.6618453865336659\n", "ROC 0.661302797435\n", "TP 2163 FP 1157 TN 1818 FN 877\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.64311835 0.67985372 0.66195544 0.64166944 0.63801131]\n", "Number of data points in benchmark 719\n", "Benchmark Results \n", "Sensitivity: 0.6\n", "Specificity : 0.3068181818181818\n", "Accuracy: 0.3129346314325452\n", "ROC 0.453409090909\n", "TP 9 FP 488 TN 216 FN 6\n", "\n", "\n", "\n", "None\n", "x near_miss Data/Benchmarks/phos_CK2.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [18, 2, 17, 1, 1, 18, 20, 11, 11, 2, 3, 1, 19, -0.9769230769230768, 28.761538461538464, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.7325657894736842\n", "Specificity : 0.6151260504201681\n", "Accuracy: 0.6744804655029094\n", "ROC 0.673845919947\n", "TP 2227 FP 1145 TN 1830 FN 813\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.64178856 0.69863697 0.65829731 0.65862986 0.62520785]\n", "Number of data points in benchmark 719\n", "Benchmark Results \n", "Sensitivity: 0.6\n", "Specificity : 0.2911931818181818\n", "Accuracy: 0.29763560500695413\n", "ROC 0.445596590909\n", "TP 9 FP 499 TN 205 FN 6\n", "\n", "\n", "\n", "None\n", "y pass Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [20, 3, 16, 1, 15, 1, 20, 8, 7, 10, 10, 3, 7, -0.9230769230769232, -15.853846153846154, 0.07692307692307693]\n", "Finished working with Data\n", "Training Data Points: 66323\n", "Test Data Points: 16581\n", "Starting Training\n", "Done training\n", "Test Results\n", "Failed\n", "TP 0 FP 0 TN 13588 FN 2993\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.81298999 0.81455795 0.8185766 0.81845597 0.81791315]\n", "Number of data points in benchmark 421\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 0 TN 395 FN 26\n", "\n", "\n", "\n", "None\n", "x pass Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [11, 8, 10, 5, 20, 3, 20, 10, 1, 10, 2, 14, 1, 0.09230769230769229, 91.64615384615385, 0.07692307692307693]\n", "Finished working with Data\n", "Training Data Points: 66323\n", "Test Data Points: 16581\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.0023939808481532147\n", "Specificity : 0.9991213297210222\n", "Accuracy: 0.8233520294312767\n", "ROC 0.500757655285\n", "TP 7 FP 12 TN 13645 FN 2917\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.81733205 0.81829695 0.81429433 0.81851628 0.81676719]\n", "Number of data points in benchmark 421\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 0 TN 395 FN 26\n", "\n", "\n", "\n", "None\n", "y ADASYN Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [19, 15, 17, 12, 8, 18, 20, 10, 3, 9, 2, 13, 12, -0.21538461538461537, -16.83846153846154, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 109776\n", "Test Data Points: 27444\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.668160462594868\n", "Specificity : 0.8574472775369241\n", "Accuracy: 0.7620244862264975\n", "ROC 0.762803870066\n", "TP 9244 FP 1940 TN 11669 FN 4591\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.51608672 0.78152669 0.79991984 0.7948475 0.79331706]\n", "Number of data points in benchmark 421\n", "Benchmark Results \n", "Sensitivity: 0.07692307692307693\n", "Specificity : 0.8430379746835444\n", "Accuracy: 0.7957244655581948\n", "ROC 0.459980525803\n", "TP 2 FP 62 TN 333 FN 24\n", "\n", "\n", "\n", "None\n", "x ADASYN Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [9, 17, 2, 11, 11, 8, 20, 16, 3, 11, 10, 1, 2, -1.0769230769230769, 76.7769230769231, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 109776\n", "Test Data Points: 27444\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5909784266724777\n", "Specificity : 0.9169408496015208\n", "Accuracy: 0.7534251566826993\n", "ROC 0.753959638137\n", "TP 8136 FP 1136 TN 12541 FN 5631\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.53998907 0.77409364 0.7961303 0.78974602 0.79036548]\n", "Number of data points in benchmark 421\n", "Benchmark Results \n", "Sensitivity: 0.07692307692307693\n", "Specificity : 0.9037974683544304\n", "Accuracy: 0.8527315914489311\n", "ROC 0.490360272639\n", "TP 2 FP 38 TN 357 FN 24\n", "\n", "\n", "\n", "None\n", "y SMOTEENN Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [12, 10, 10, 10, 10, 12, 20, 10, 10, 10, 5, 11, 9, -0.015384615384615295, 104.96153846153848, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 75669\n", "Test Data Points: 18918\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9620512820512821\n", "Specificity : 0.3363705391040243\n", "Accuracy: 0.7878211227402474\n", "ROC 0.649210910578\n", "TP 13132 FP 3496 TN 1772 FN 518\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.71260175 0.79025267 0.79605646 0.79901676 0.79991542]\n", "Number of data points in benchmark 421\n", "Benchmark Results \n", "Sensitivity: 0.9615384615384616\n", "Specificity : 0.15443037974683543\n", "Accuracy: 0.2042755344418052\n", "ROC 0.557984420643\n", "TP 25 FP 334 TN 61 FN 1\n", "\n", "\n", "\n", "None\n", "x SMOTEENN Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [7, 20, 13, 11, 19, 19, 20, 11, 4, 14, 17, 0, 0, -1.0090909090909088, -20.9, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 102995\n", "Test Data Points: 25749\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.738437653211309\n", "Specificity : 0.6266005477018726\n", "Accuracy: 0.6797545535748961\n", "ROC 0.682519100457\n", "TP 9037 FP 5045 TN 8466 FN 3201\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.61984466 0.66897087 0.70428771 0.68339288 0.69356843]\n", "Number of data points in benchmark 421\n", "Benchmark Results \n", "Sensitivity: 0.38461538461538464\n", "Specificity : 0.529113924050633\n", "Accuracy: 0.5201900237529691\n", "ROC 0.456864654333\n", "TP 10 FP 186 TN 209 FN 16\n", "\n", "\n", "\n", "None\n", "y random_under_sample Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [3, 7, 19, 2, 8, 18, 20, 15, 2, 4, 3, 20, 20, -0.36153846153846153, 14.384615384615385, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5572368421052631\n", "Specificity : 0.6363025210084033\n", "Accuracy: 0.5963424771404822\n", "ROC 0.596769681557\n", "TP 1694 FP 1082 TN 1893 FN 1346\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.59906915 0.58510638 0.58995677 0.59461257 0.60192883]\n", "Number of data points in benchmark 421\n", "Benchmark Results \n", "Sensitivity: 0.5\n", "Specificity : 0.5848101265822785\n", "Accuracy: 0.5795724465558195\n", "ROC 0.542405063291\n", "TP 13 FP 164 TN 231 FN 13\n", "\n", "\n", "\n", "None\n", "x random_under_sample Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [10, 7, 10, 16, 17, 17, 20, 10, 3, 11, 14, 13, 11, -0.8923076923076922, 60.0923076923077, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.6480263157894737\n", "Specificity : 0.5653781512605042\n", "Accuracy: 0.6071487946799667\n", "ROC 0.606702233525\n", "TP 1970 FP 1293 TN 1682 FN 1070\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.60388963 0.58427527 0.60691719 0.58629864 0.60093116]\n", "Number of data points in benchmark 421\n", "Benchmark Results \n", "Sensitivity: 0.46153846153846156\n", "Specificity : 0.4936708860759494\n", "Accuracy: 0.4916864608076009\n", "ROC 0.477604673807\n", "TP 12 FP 200 TN 195 FN 14\n", "\n", "\n", "\n", "None\n", "y ncl Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [3, 12, 13, 10, 18, 11, 20, 8, 19, 19, 20, 2, 7, -0.5692307692307692, 4.469230769230773, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 47210\n", "Test Data Points: 11803\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.18336741649625085\n", "Specificity : 0.9498252339609877\n", "Accuracy: 0.7592984834364145\n", "ROC 0.566596325229\n", "TP 538 FP 445 TN 8424 FN 2396\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.74610302 0.7439634 0.75385528 0.71869175 0.7514828 ]\n", "Number of data points in benchmark 421\n", "Benchmark Results \n", "Sensitivity: 0.11538461538461539\n", "Specificity : 0.8860759493670886\n", "Accuracy: 0.838479809976247\n", "ROC 0.500730282376\n", "TP 3 FP 45 TN 350 FN 23\n", "\n", "\n", "\n", "None\n", "x ncl Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Data\n", "Working on Data\n", "Sample Vector [12, 7, 18, 11, 9, 10, 20, 12, 11, 13, 2, 11, 9, -0.4615384615384616, 75.9846153846154, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 47257\n", "Test Data Points: 11815\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.11862678450033991\n", "Specificity : 0.9706976219993237\n", "Accuracy: 0.7585272958104105\n", "ROC 0.54466220325\n", "TP 349 FP 260 TN 8613 FN 2593\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.75133305 0.75150233 0.75715253 0.74860335 0.75198917]\n", "Number of data points in benchmark 421\n", "Benchmark Results \n", "Sensitivity: 0.07692307692307693\n", "Specificity : 0.9189873417721519\n", "Accuracy: 0.8669833729216152\n", "ROC 0.497955209348\n", "TP 2 FP 32 TN 363 FN 24\n", "\n", "\n", "\n", "None\n", "y near_miss Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [10, 10, 19, 2, 14, 10, 20, 3, 11, 7, 10, 10, 17, -0.7769230769230769, 102.29230769230772, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.6529605263157895\n", "Specificity : 0.6635294117647059\n", "Accuracy: 0.6581878636741479\n", "ROC 0.65824496904\n", "TP 1985 FP 1001 TN 1974 FN 1055\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.61602394 0.68101729 0.67442634 0.65580313 0.61938809]\n", "Number of data points in benchmark 421\n", "Benchmark Results \n", "Sensitivity: 0.4230769230769231\n", "Specificity : 0.3924050632911392\n", "Accuracy: 0.39429928741092635\n", "ROC 0.407740993184\n", "TP 11 FP 240 TN 155 FN 15\n", "\n", "\n", "\n", "None\n", "x near_miss Data/Benchmarks/phos_MAPK1.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [17, 1, 3, 12, 11, 10, 20, 17, 17, 9, 9, 17, 1, -1.6076923076923075, 94.93846153846154, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5305921052631579\n", "Specificity : 0.7852100840336135\n", "Accuracy: 0.6565253532834581\n", "ROC 0.657901094648\n", "TP 1613 FP 639 TN 2336 FN 1427\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.64976729 0.6200133 0.67924842 0.65147988 0.63518457]\n", "Number of data points in benchmark 421\n", "Benchmark Results \n", "Sensitivity: 0.2692307692307692\n", "Specificity : 0.5139240506329114\n", "Accuracy: 0.498812351543943\n", "ROC 0.391577409932\n", "TP 7 FP 192 TN 203 FN 19\n", "\n", "\n", "\n", "None\n", "y pass Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [4, 1, 7, 13, 3, 7, 20, 16, 11, 7, 2, 12, 8, -0.37692307692307697, 2.2384615384615394, 0.0]\n", "Finished working with Data\n", "Training Data Points: 66323\n", "Test Data Points: 16581\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.08374875373878365\n", "Specificity : 0.9685381668140289\n", "Accuracy: 0.8079729811229721\n", "ROC 0.526143460276\n", "TP 252 FP 427 TN 13145 FN 2757\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.81775419 0.81811603 0.81785283 0.81803378 0.8185766 ]\n", "Number of data points in benchmark 2130\n", "Benchmark Results \n", "Sensitivity: 0.20689655172413793\n", "Specificity : 0.9776297001427892\n", "Accuracy: 0.9671361502347418\n", "ROC 0.592263125933\n", "TP 6 FP 47 TN 2054 FN 23\n", "\n", "\n", "\n", "None\n", "x pass Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [1, 8, 12, 12, 20, 1, 20, 8, 18, 10, 9, 1, 8, -0.9615384615384616, -7.146153846153848, 0.0]\n", "Finished working with Data\n", "Training Data Points: 66323\n", "Test Data Points: 16581\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.0029605263157894738\n", "Specificity : 0.9989661029466066\n", "Accuracy: 0.8163560702008322\n", "ROC 0.500963314631\n", "TP 9 FP 14 TN 13527 FN 3031\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.78904837 0.81715113 0.81785283 0.81863691 0.81845597]\n", "Number of data points in benchmark 2130\n", "Benchmark Results \n", "Sensitivity: 0.06896551724137931\n", "Specificity : 0.9990480723465016\n", "Accuracy: 0.9863849765258216\n", "ROC 0.534006794794\n", "TP 2 FP 2 TN 2099 FN 27\n", "\n", "\n", "\n", "None\n", "y ADASYN Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [12, 2, 10, 2, 3, 19, 20, 13, 20, 17, 19, 17, 12, 0.16153846153846171, -8.130769230769232, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 109772\n", "Test Data Points: 27444\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.6610860699720971\n", "Specificity : 0.8575035271404173\n", "Accuracy: 0.7574697565952485\n", "ROC 0.759294798556\n", "TP 9240 FP 1919 TN 11548 FN 4737\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.55983093 0.78636496 0.78570127 0.79492038 0.79957729]\n", "Number of data points in benchmark 2130\n", "Benchmark Results \n", "Sensitivity: 0.41379310344827586\n", "Specificity : 0.886244645406949\n", "Accuracy: 0.8798122065727699\n", "ROC 0.650018874428\n", "TP 12 FP 239 TN 1862 FN 17\n", "\n", "\n", "\n", "None\n", "x ADASYN Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [7, 3, 10, 18, 14, 17, 20, 10, 14, 11, 5, 8, 11, -0.7153846153846154, 70.00769230769231, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 109776\n", "Test Data Points: 27444\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.639202705619918\n", "Specificity : 0.8693437661474865\n", "Accuracy: 0.7528057134528494\n", "ROC 0.754273235884\n", "TP 8883 FP 1770 TN 11777 FN 5014\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.5269448 0.77693569 0.78811398 0.77764822 0.80224465]\n", "Number of data points in benchmark 2130\n", "Benchmark Results \n", "Sensitivity: 0.4827586206896552\n", "Specificity : 0.8900523560209425\n", "Accuracy: 0.8845070422535212\n", "ROC 0.686405488355\n", "TP 14 FP 231 TN 1870 FN 15\n", "\n", "\n", "\n", "None\n", "y SMOTEENN Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [1, 17, 12, 2, 3, 19, 20, 3, 3, 7, 20, 12, 13, 0.9538461538461538, -8.861538461538462, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 75672\n", "Test Data Points: 18919\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.9660905229236854\n", "Specificity : 0.34112060778727443\n", "Accuracy: 0.7921666050002643\n", "ROC 0.653605565355\n", "TP 13191 FP 3469 TN 1796 FN 463\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.734394 0.79380517 0.79955598 0.79818163 0.79362478]\n", "Number of data points in benchmark 2130\n", "Benchmark Results \n", "Sensitivity: 0.896551724137931\n", "Specificity : 0.2213231794383627\n", "Accuracy: 0.23051643192488264\n", "ROC 0.558937451788\n", "TP 26 FP 1636 TN 465 FN 3\n", "\n", "\n", "\n", "None\n", "x SMOTEENN Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [12, 6, 20, 10, 16, 17, 20, 11, 7, 2, 20, 10, 12, -0.5846153846153845, -2.3307692307692305, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 102901\n", "Test Data Points: 25726\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.6959967320261438\n", "Specificity : 0.6523060952098473\n", "Accuracy: 0.6730933685765373\n", "ROC 0.674151413618\n", "TP 8519 FP 4689 TN 8797 FN 3721\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.60180362 0.69785431 0.68894072 0.68691934 0.69372206]\n", "Number of data points in benchmark 2130\n", "Benchmark Results \n", "Sensitivity: 0.3448275862068966\n", "Specificity : 0.6506425511661114\n", "Accuracy: 0.6464788732394366\n", "ROC 0.497735068687\n", "TP 10 FP 734 TN 1367 FN 19\n", "\n", "\n", "\n", "None\n", "y random_under_sample Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [1, 10, 20, 7, 11, 1, 20, 11, 1, 18, 10, 11, 10, -1.3230769230769233, 38.98461538461538, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.4832236842105263\n", "Specificity : 0.7132773109243697\n", "Accuracy: 0.5970074812967581\n", "ROC 0.598250497567\n", "TP 1469 FP 853 TN 2122 FN 1571\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.59823803 0.5802859 0.59062188 0.60143 0.60276023]\n", "Number of data points in benchmark 2130\n", "Benchmark Results \n", "Sensitivity: 0.4827586206896552\n", "Specificity : 0.7339362208472157\n", "Accuracy: 0.7305164319248826\n", "ROC 0.608347420768\n", "TP 14 FP 559 TN 1542 FN 15\n", "\n", "\n", "\n", "None\n", "x random_under_sample Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [3, 3, 15, 18, 12, 2, 20, 2, 18, 3, 17, 11, 8, 0.0461538461538464, 53.67692307692308, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.3105263157894737\n", "Specificity : 0.8077310924369748\n", "Accuracy: 0.5564422277639235\n", "ROC 0.559128704113\n", "TP 944 FP 572 TN 2403 FN 2096\n", "\n", "\n", "\n", "None\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Cross: Validation: [ 0.59674202 0.59242021 0.61207183 0.58696375 0.60242767]\n", "Number of data points in benchmark 2130\n", "Benchmark Results \n", "Sensitivity: 0.41379310344827586\n", "Specificity : 0.8181818181818182\n", "Accuracy: 0.8126760563380282\n", "ROC 0.615987460815\n", "TP 12 FP 382 TN 1719 FN 17\n", "\n", "\n", "\n", "None\n", "y ncl Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [20, 2, 2, 2, 2, 17, 20, 8, 2, 11, 0, 0, 0, -0.2, 20.720000000000002, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 47229\n", "Test Data Points: 11808\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.3496073745305565\n", "Specificity : 0.8558396215790066\n", "Accuracy: 0.7302676151761518\n", "ROC 0.602723498055\n", "TP 1024 FP 1280 TN 7599 FN 1905\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.74864499 0.75482724 0.75074109 0.74455831 0.74701448]\n", "Number of data points in benchmark 2130\n", "Benchmark Results \n", "Sensitivity: 0.4827586206896552\n", "Specificity : 0.8524512137077582\n", "Accuracy: 0.8474178403755869\n", "ROC 0.667604917199\n", "TP 14 FP 310 TN 1791 FN 15\n", "\n", "\n", "\n", "None\n", "x ncl Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [7, 3, 7, 12, 4, 8, 20, 19, 9, 10, 18, 7, 9, -1.6, 16.86923076923077, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 47285\n", "Test Data Points: 11822\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.20950764006791173\n", "Specificity : 0.9359017686155232\n", "Accuracy: 0.7549484012857385\n", "ROC 0.572704704342\n", "TP 617 FP 569 TN 8308 FN 2328\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.75097276 0.75241076 0.75188224 0.75137467 0.7508671 ]\n", "Number of data points in benchmark 2130\n", "Benchmark Results \n", "Sensitivity: 0.3448275862068966\n", "Specificity : 0.9300333174678724\n", "Accuracy: 0.9220657276995305\n", "ROC 0.637430451837\n", "TP 10 FP 147 TN 1954 FN 19\n", "\n", "\n", "\n", "None\n", "y near_miss Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [10, 20, 20, 10, 1, 20, 1, 16, 18, 8, 20, 17, 0, -1.6583333333333332, 8.466666666666667, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.7223684210526315\n", "Specificity : 0.5858823529411765\n", "Accuracy: 0.6548628428927681\n", "ROC 0.654125386997\n", "TP 2196 FP 1232 TN 1743 FN 844\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.61884973 0.68417553 0.65314267 0.64183572 0.6232125 ]\n", "Number of data points in benchmark 2130\n", "Benchmark Results \n", "Sensitivity: 0.7931034482758621\n", "Specificity : 0.3683960019038553\n", "Accuracy: 0.3741784037558685\n", "ROC 0.58074972509\n", "TP 23 FP 1327 TN 774 FN 6\n", "\n", "\n", "\n", "None\n", "x near_miss Data/Benchmarks/phos_PKA.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [1, 7, 13, 12, 12, 15, 20, 2, 14, 18, 18, 1, 10, 0.20769230769230784, -0.4538461538461551, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.6243421052631579\n", "Specificity : 0.7075630252100841\n", "Accuracy: 0.6655029093931837\n", "ROC 0.665952565237\n", "TP 1898 FP 870 TN 2105 FN 1142\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.62965426 0.67869016 0.64715663 0.66711008 0.61240439]\n", "Number of data points in benchmark 2130\n", "Benchmark Results \n", "Sensitivity: 0.6896551724137931\n", "Specificity : 0.44407425035697284\n", "Accuracy: 0.44741784037558685\n", "ROC 0.566864711385\n", "TP 20 FP 1168 TN 933 FN 9\n", "\n", "\n", "\n", "None\n", "y pass Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [10, 19, 9, 18, 7, 2, 20, 1, 8, 1, 17, 9, 18, -2.3, 20.915384615384614, 0.0]\n", "Finished working with Data\n", "Training Data Points: 66323\n", "Test Data Points: 16581\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.13507340946166393\n", "Specificity : 0.9426605504587156\n", "Accuracy: 0.7933779627284241\n", "ROC 0.53886697996\n", "TP 414 FP 775 TN 12741 FN 2651\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.81805572 0.81624653 0.81863691 0.81869723 0.8185766 ]\n", "Number of data points in benchmark 1064\n", "Benchmark Results \n", "Sensitivity: 0.10714285714285714\n", "Specificity : 0.9498069498069498\n", "Accuracy: 0.9276315789473685\n", "ROC 0.528474903475\n", "TP 3 FP 52 TN 984 FN 25\n", "\n", "\n", "\n", "None\n", "x pass Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [20, 17, 10, 20, 10, 10, 20, 10, 10, 1, 10, 18, 10, -1.2384615384615385, 72.66153846153847, 0.0]\n", "Finished working with Data\n", "Training Data Points: 66323\n", "Test Data Points: 16581\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.002711864406779661\n", "Specificity : 0.9988995671630841\n", "Accuracy: 0.8216633496170316\n", "ROC 0.500805715785\n", "TP 8 FP 15 TN 13616 FN 2942\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.8121457 0.81847787 0.81103739 0.81694813 0.81302774]\n", "Number of data points in benchmark 1064\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 0 TN 1036 FN 28\n", "\n", "\n", "\n", "None\n", "y ADASYN Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [9, 20, 11, 2, 12, 7, 20, 11, 20, 7, 2, 10, 7, -1.0384615384615385, 21.830769230769235, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 109775\n", "Test Data Points: 27444\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.6144630484988453\n", "Specificity : 0.8990285546070061\n", "Accuracy: 0.7553563620463489\n", "ROC 0.756745801553\n", "TP 8514 FP 1372 TN 12216 FN 5342\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.52745491 0.78367644 0.80523266 0.79328062 0.83081296]\n", "Number of data points in benchmark 1064\n", "Benchmark Results \n", "Sensitivity: 0.25\n", "Specificity : 0.917953667953668\n", "Accuracy: 0.900375939849624\n", "ROC 0.583976833977\n", "TP 7 FP 85 TN 951 FN 21\n", "\n", "\n", "\n", "None\n", "x ADASYN Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [8, 9, 5, 13, 3, 18, 20, 11, 20, 13, 20, 2, 3, 0.5384615384615384, 32.330769230769235, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 109760\n", "Test Data Points: 27440\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.6762538456034914\n", "Specificity : 0.8212879744484884\n", "Accuracy: 0.7474125364431486\n", "ROC 0.748770910026\n", "TP 9452 FP 2406 TN 11057 FN 4525\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.52858861 0.7794541 0.79438776 0.78198914 0.80884872]\n", "Number of data points in benchmark 1064\n", "Benchmark Results \n", "Sensitivity: 0.35714285714285715\n", "Specificity : 0.86003861003861\n", "Accuracy: 0.8468045112781954\n", "ROC 0.608590733591\n", "TP 10 FP 145 TN 891 FN 18\n", "\n", "\n", "\n", "None\n", "y SMOTEENN Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [7, 20, 1, 9, 9, 3, 20, 10, 2, 13, 7, 12, 2, -0.0999999999999999, 8.915384615384614, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 102932\n", "Test Data Points: 25733\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5642664045219956\n", "Specificity : 0.7691113411208044\n", "Accuracy: 0.6719387556833638\n", "ROC 0.666688872821\n", "TP 6888 FP 3123 TN 10403 FN 5319\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.59928499 0.68578534 0.68950375 0.6805534 0.68634385]\n", "Number of data points in benchmark 1064\n", "Benchmark Results \n", "Sensitivity: 0.2857142857142857\n", "Specificity : 0.7799227799227799\n", "Accuracy: 0.7669172932330827\n", "ROC 0.532818532819\n", "TP 8 FP 228 TN 808 FN 20\n", "\n", "\n", "\n", "None\n", "x SMOTEENN Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [4, 9, 17, 17, 3, 17, 20, 6, 3, 9, 17, 9, 3, -1.2923076923076924, 66.03846153846155, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 102978\n", "Test Data Points: 25745\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.7093996062992126\n", "Specificity : 0.6549841363535749\n", "Accuracy: 0.6807535443775491\n", "ROC 0.682191871326\n", "TP 8649 FP 4676 TN 8877 FN 3543\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.59826769 0.69893183 0.67363269 0.69037446 0.69371504]\n", "Number of data points in benchmark 1064\n", "Benchmark Results \n", "Sensitivity: 0.4642857142857143\n", "Specificity : 0.6573359073359073\n", "Accuracy: 0.6522556390977443\n", "ROC 0.560810810811\n", "TP 13 FP 355 TN 681 FN 15\n", "\n", "\n", "\n", "None\n", "y random_under_sample Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [18, 3, 3, 10, 12, 17, 20, 2, 18, 10, 3, 9, 11, -0.11538461538461542, 24.04615384615385, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Done training\n", "Test Results\n", "Sensitivity: 0.6638157894736842\n", "Specificity : 0.5277310924369748\n", "Accuracy: 0.5965087281795511\n", "ROC 0.595773440955\n", "TP 2018 FP 1405 TN 1570 FN 1022\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.59142287 0.58859707 0.59527769 0.6084137 0.56767542]\n", "Number of data points in benchmark 1064\n", "Benchmark Results \n", "Sensitivity: 0.6428571428571429\n", "Specificity : 0.553088803088803\n", "Accuracy: 0.5554511278195489\n", "ROC 0.597972972973\n", "TP 18 FP 463 TN 573 FN 10\n", "\n", "\n", "\n", "None\n", "x random_under_sample Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [7, 7, 19, 7, 17, 2, 20, 17, 1, 7, 7, 9, 7, -2.9769230769230766, 14.715384615384613, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.20296052631578948\n", "Specificity : 0.894453781512605\n", "Accuracy: 0.5449709060681629\n", "ROC 0.548707153914\n", "TP 617 FP 314 TN 2661 FN 2423\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.59790559 0.58793218 0.58546724 0.59843698 0.59860326]\n", "Number of data points in benchmark 1064\n", "Benchmark Results \n", "Sensitivity: 0.14285714285714285\n", "Specificity : 0.8996138996138996\n", "Accuracy: 0.8796992481203008\n", "ROC 0.521235521236\n", "TP 4 FP 104 TN 932 FN 24\n", "\n", "\n", "\n", "None\n", "y ncl Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [20, 12, 5, 18, 3, 1, 20, 4, 19, 3, 0, 0, 0, 0.7699999999999998, 0.5099999999999998, 0.1]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 47224\n", "Test Data Points: 11807\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.11885245901639344\n", "Specificity : 0.9724068025678567\n", "Accuracy: 0.7607351571101889\n", "ROC 0.545629630792\n", "TP 348 FP 245 TN 8634 FN 2580\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.75209621 0.75192682 0.74606132 0.74733187 0.75459551]\n", "Number of data points in benchmark 1064\n", "Benchmark Results \n", "Sensitivity: 0.07142857142857142\n", "Specificity : 0.9594594594594594\n", "Accuracy: 0.9360902255639098\n", "ROC 0.515444015444\n", "TP 2 FP 42 TN 994 FN 26\n", "\n", "\n", "\n", "None\n", "x ncl Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [8, 3, 8, 19, 13, 2, 20, 3, 2, 19, 8, 17, 17, -0.8846153846153846, 86.65384615384616, 0.0]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 47241\n", "Test Data Points: 11811\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.0126193724420191\n", "Specificity : 0.9979727446784548\n", "Accuracy: 0.7533655067310134\n", "ROC 0.50529605856\n", "TP 37 FP 18 TN 8861 FN 2895\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.75175684 0.74024215 0.75969517 0.75173582 0.75004234]\n", "Number of data points in benchmark 1064\n", "Benchmark Results \n", "Failed\n", "TP 0 FP 5 TN 1031 FN 28\n", "\n", "\n", "\n", "None\n", "y near_miss Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [19, 9, 3, 11, 8, 7, 20, 12, 19, 14, 20, 20, 6, -0.9230769230769229, 40.815384615384616, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.6983552631578948\n", "Specificity : 0.6285714285714286\n", "Accuracy: 0.6638403990024938\n", "ROC 0.663463345865\n", "TP 2123 FP 1105 TN 1870 FN 917\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.63663564 0.68833112 0.66029265 0.63219155 0.631859 ]\n", "Number of data points in benchmark 1064\n", "Benchmark Results \n", "Sensitivity: 0.6785714285714286\n", "Specificity : 0.36003861003861004\n", "Accuracy: 0.3684210526315789\n", "ROC 0.519305019305\n", "TP 19 FP 663 TN 373 FN 9\n", "\n", "\n", "\n", "None\n", "x near_miss Data/Benchmarks/phos_PKC.csv\n", "Loading Data\n", "Loaded Data\n", "Working on Data\n", "Sample Vector [5, 3, 18, 7, 9, 13, 20, 10, 12, 1, 10, 10, 7, -0.2307692307692308, 50.54615384615384, 0.07692307692307693]\n", "Balancing Data\n", "Balanced Data\n", "Finished working with Data\n", "Training Data Points: 24059\n", "Test Data Points: 6015\n", "Starting Training\n", "Done training\n", "Test Results\n", "Sensitivity: 0.5976973684210526\n", "Specificity : 0.7347899159663865\n", "Accuracy: 0.6655029093931837\n", "ROC 0.666243642194\n", "TP 1817 FP 789 TN 2186 FN 1223\n", "\n", "\n", "\n", "None\n", "Cross: Validation: [ 0.63181516 0.6775266 0.67342867 0.64516129 0.63119388]\n", "Number of data points in benchmark 1064\n", "Benchmark Results \n", "Sensitivity: 0.5714285714285714\n", "Specificity : 0.47586872586872586\n", "Accuracy: 0.4783834586466165\n", "ROC 0.523648648649\n", "TP 16 FP 543 TN 493 FN 12\n", "\n", "\n", "\n", "None\n" ] } ], "source": [ "par = [\"pass\", \"ADASYN\", \"SMOTEENN\", \"random_under_sample\", \"ncl\", \"near_miss\"]\n", "benchmarks = [\"Data/Benchmarks/phos_CDK1.csv\", \"Data/Benchmarks/phos_CK2.csv\", \"Data/Benchmarks/phos_MAPK1.csv\", \"Data/Benchmarks/phos_PKA.csv\", \"Data/Benchmarks/phos_PKC.csv\"]\n", "for j in benchmarks:\n", " for i in par:\n", " print(\"y\", i, \" \", j)\n", " y = Predictor()\n", " y.load_data(file=\"Data/Training/clean_t_filtered.csv\")\n", " y.process_data(vector_function=\"sequence\", amino_acid=\"T\", imbalance_function=i, random_data=0)\n", " y.supervised_training(\"mlp_adam\")\n", " y.benchmark(j, \"T\")\n", " del y\n", " print(\"x\", i, \" \", j)\n", " x = Predictor()\n", " x.load_data(file=\"Data/Training/clean_t_filtered.csv\")\n", " x.process_data(vector_function=\"sequence\", amino_acid=\"T\", imbalance_function=i, random_data=1)\n", " x.supervised_training(\"mlp_adam\")\n", " x.benchmark(j, \"T\")\n", " del x" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
ledeprogram/algorithms
class2/donow/schuetz_rebecca_2_donow.ipynb
1
1321
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from math import pi" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def sphere_vol(r):\n", " r = abs(r)\n", " return 4/3 * pi * r ** 3 " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "4188.790204786391" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sphere_vol(10)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
crocha700/dp_spectra
altimeter/plot_spectra_altika.ipynb
1
214978
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Vendor: Continuum Analytics, Inc.\n", "Package: mkl\n", "Message: trial mode expires in 15 days\n", "Vendor: Continuum Analytics, Inc.\n", "Package: mkl\n", "Message: trial mode expires in 15 days\n", "Vendor: Continuum Analytics, Inc.\n", "Package: mkl\n", "Message: trial mode expires in 15 days\n" ] } ], "source": [ "import numpy as np\n", "from numpy import pi\n", "\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "import seawater as sw\n", "\n", "#import seaborn as sns\n", "#sns.set(style=\"darkgrid\")\n", "#sns.set(style=\"whitegrid\")\n", "\n", "from pyspec import spectrum\n", "from plots_aux import *" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "plt.rcParams.update({'font.size': 12\n", " , 'legend.markerscale': 1., 'axes.titlesize': 12, 'axes.labelsize' : 12,\n", " 'legend.fontsize' : 10,'legend.handlelength': 3})\n", "\n", "plt.rc('xtick', labelsize=12) \n", "plt.rc('ytick', labelsize=12)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "color2 = '#6495ed'\n", "color1 = '#ff6347'\n", "color5 = '#8470ff'\n", "color3 = '#3cb371'\n", "color4 = '#ffd700'\n", "color6 = '#ba55d3'\n", "lw1=1\n", "aph=.7" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load SSH and geostrophic vel. spectra calculated by Sarah Gille\n", "\n", "column 1: wavenumber (in cycles per km)\n", "\n", "column 2: descending track spectrum\n", "\n", "column 3: ascending track spectrum\n", "\n", "column 4: descending track lower error bar\n", "\n", "column 5: descending track upper error bar\n", "\n", "column 6: ascending track lower error bar\n", "\n", "column 7: ascending track upper error bar" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "spec = np.loadtxt('spec/spec_altika_dp.dat')\n", "spec_vel = np.loadtxt('spec/plot_vdata1.dat')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "k = spec[:,0]\n", "kv = spec_vel[:,0]" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [], "source": [ "## -2 and -3 slopes in the loglog space\n", "ks = np.array([1.e-3,1])\n", "Es2 = .1e-3*(ks**(-3/2.))\n", "Es4 = 1.e-9*(ks**(-4))\n", "Es5 = 1.e-11*(ks**(-5))\n", "rd1 = 22.64 # [km]\n", "Enoise = np.ones(2)*2.*1.e-4\n", "\n", "def add_second_axis(ax1):\n", " \"\"\" Add a x-axis at the top of the spectra figures \"\"\"\n", " ax2 = ax1.twiny() \n", " ax2.set_xscale('log')\n", " ax2.set_xlim(ax1.axis()[0], ax1.axis()[1])\n", " kp = 1./np.array([500.,200.,100.,40.,20.,10.,5.])\n", " lp=np.array([500,200,100,40,20,10,5])\n", " ax2.set_xticks(kp)\n", " ax2.set_xticklabels(lp)\n", " plt.xlabel('Wavelength [km]')\n", " \n", "f0 = sw.f(59)\n", "A = (9.81/f0)**2/(1.e6)\n", "slab1=np.load('../adcp/outputs/adcp_spec_slab1.npz')\n", "\n", "win = np.hanning(k.size)\n", "fac = (k.size/(win**2).sum())" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAARsAAAEhCAYAAABPzATqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VNe16H9rmnpFAglJIAFCIHrvSGCKgSS249gxDo57\nbIdr56Xcm1y/PJfY18m9viXXDu52jO3g3mm2KaL3bpBACJAQSKh3aTRlvz9mhAdZIEaaIonz+77z\nMWfvffZe+zBas3ZZa4tSCg0NDQ1vo/O3ABoaGtcGmrLR0NDwCZqy0dDQ8AmastHQ0PAJmrLR0NDw\nCZqy0dDQ8AmastHwGiJiF5EBfmg3Q0TOulH+jIjUi8hylzSPyC4iqSJSKyJWEbmns/V1ZzRl08MQ\nkT+IyOpWabkisqpV2gkRudXL4vhkE9dlFIM7bSvgB0qpOzv4/OUrVipXKRUGbPFEfd0ZTdn0PDYD\nU0REAEQkDjAAY1qlDXSW9Sbi5fpb8IRiaC2rr2S/ZtCUTc9jD2ACRjvvZwAbgeOt0vKUUsUAIvJX\nESkQkWoR2SMi053p8SLSICKRLZWLyBgRKRURvfP+HhE5JiLlIrJGRPq1JZSImETkP0UkX0SKROQF\nEQlw5mWIyFkR+Y2IXBCRcyJyl8uz0SLypVO+XSLylIhsceZtwqEYDotIjYjc8t1jbdfnLiIy3fl+\nZjrv7SLykNM6rBaRP4nIABHZJiJVIvKeiBg62l5PRVM2PQyllAXYBcx0Js3EYcFsbSOthd3ASCAK\nWAF8KCImpVQRsB242aXsYuBDpZRNRG4A/gDcCMTiGCq8exnR/h0Y5GxnEJAAPOaSHweEAX2B+4Bl\nIhLhzHsBqAV6A3cBd+K0ZpRSGc4yI5RS4UqpD6+ivqtGRK4H/gHcpJRyfWfzgDHAZOBfgJeB24Ek\nYASO96ThilJKu3rYBTwOfOz8fBDHkGl+q7Q7rvB8BY4/XoB7gfUueQXANOfn1cDdLnk6oB5Ict7b\ngQHOz3VAikvZKcAp5+cM53M6l/wLwERnnc3AIJe8p4DNLvcX22mvvsv09zQwu1WaHYciPQ0MbSNv\nssv9XuCfXe7/E/jvVs9sBO7x93fDn5dm2fRMNgPTRSQKiFFK5eGwUKY604bjYtmIyO+cQ6FKEakE\nwoEYZ/bHwGQR6SMiGYBNKbXNmdcf+F8RqRCRCqAch8WR4CqMiMQCwcA+l7JrgF4uxcqVUnaX+wYg\nFIfFpAcKXfKuZqXpcvW5w6+AD5RS2W3klbh8bsShzFzv3W2rx6ONK3smO4BI4H5gG4BSqlZEzjvT\nziml8sExHwH8MzBLKXXMmVaBc4JUKVUlIl8DtwFDgfdc2ikAnlZKXW7o1EIZjj/2YcoxNHOHUsAK\nJAInnWlJbtbRERRwC/CGiJxTSj3ngzZ7NJpl0wNRSjXhMO1/w6VLrtucaa5zD2GABSh3TuI+5kxz\n5V3g5zjmbla4pL8MPCoi6QAiEiEiP2lDHgW8CvzVaeUgIgkiMu8q+mIHPgGeEJEgERnilMWVYsDT\n+3kEOA9cBzwiIg96uP5rDk3Z9Fw24RiCbHVJ2+JM2+SS9pXzOoFjfqKB7w9TvgBSgSKl1JGWRKXU\nZ8BfgPdEpAo4DFzv8pzrkvTvcVgmO51lvwYGX0F+12cfxmGpFQHLcSg8s0v+E8BbziHa95RdG/Vd\nDS0T0GeBOcDvXTblta5LCwp1FYhz8kpDo9sgIn8B+iil7vZQfTk4Vq8+9VSdLnUPwrEdwQj8Uin1\nlifr705oykajyyMiaYBJKXVERCYCq3Cs7HzpZ9E03ECbINboDoQB74pIPI5Vn2c1RdP90CwbDQ0N\nn6BNEGtoaPgETdloaGj4BE3ZdBARyRKRRqfzX62IZLvkXSci2SJSJyLrWzsnisi/i0iZ06HxL52U\nwyQir4kjJku1iOx3+vN4RRYRWep01mwSkTda5fms31chZ6rz/+ctl7QryteBNjr17t1sq8Pv3RNc\n6ft+1fjbX6K7Xjh8Xe5uI70XUAX8GIf39X8AO1zyHwCygXjndRT4RSfkCMbh0Njij7QIqAH6eUMW\nHE6XPwKWAW/4q99X8V6+wrGf6C3nfcyV5PP1u+9AWx16797+vrtVh7f+s3v6xWUc63C4A2x1uQ/G\nsVFusPN+G3CfS/7dwHYPy3YIuMmbsuBwhnT90vu93y5134bDreIxF2VzRfl8/e47Ub9b792D/eq0\nI6k2jOocfxaREhHZ4nRSBBiG4wsHgFKqAcfO2WFt5Ts/D8NDiEgfHLt9j/pYFr/2uwURCQeexOGW\n4RoAqz35PNG2O+/eU/iqHWj7+37VaMqm4/wLDn+cBBx+P1+ISAoOb9/qVmVr+M7fqHV+DR7yEBZH\nwKZ3gDeVUid8LIvf+t2KPwGvKqXOuylfp+jAu/cUvmqn9ff9S+f3/arRlE0HUUrtUUrVK6UsyrEF\nfRuOMXsdjhANrkTgCP5EG/kRzrROISKC48tuxuFL1FZb3pTFL/12RURG4/Bj+msH5OtMux15957C\nJ+1c5vu+0J06NGXjeY7yXfhNRCQER/Cqb13yR7mUH+1M6yyv45gE/bFSyuYHWfzVb1cycMTYKRCR\nIuB3wM0istcpR1vy+frde7rPvmqnNQp34zR7Y4Kup184fjnmAQE4Ajv9DMcvyUAcX7pKHJOEAThW\nB7a7PPsAji9CXxwm6VHg/k7K8xKO4FjBrdI9Louzv4HAM8BbLu/A5/1uQ7ZAHKFDW65ngQ+A6Pbk\n8/W770A7HXrvXv6+D3KrHk8Kda1czv/g3TjGyhXOL9tsl/zZOJZ564ENQL9Wz/8FR1S7MuDPnZSl\nH44wlQ3OL0AtjjH7Ym/IgiPkqB2wuVyP+brfV/luHse5GnU18vn63XegLx16797+vl/tpflGaWho\n+ARtzkZDQ8MnaMpGQ0PDJ2jKRkNDwydoykZDQ8MnaMpGQ0PDJ2jKRkNDwydcczGIRURb69fQ8DJK\nqe/tLr4mLRtvbyZruTIyMjCbzTz77LMUFxe7/fzjjz/u0bIZGRluP99W+tWkuSN7Z6+raetKZdyV\ntb3yV3rP3f1dt9c3pS7/W35NKhtfkZycjMlkYurUqWzatKn9B1qRmZnp0bLJycluP99W+tWm+YrO\ntu3u8+2Vv9J7vtLz3eFdt9e3K3FNKpsnnniCrKwsr7fT8h8zYcIEzp49S3FxsVvPa8rm6tCUje+4\nUt+ysrJ44oknLv+wr8yvrnI5uuwbNm7cePHzjh071HvvveezttvCVZ6e1NbV0JP73tX65vwb+97f\nXru+USKy+YoFvqNJKdXuQfH+RkRUe332BhaLheeff57FixcTHx/v8/Y1NHyFiKDamCC+GmXTCDzY\nXv3A/yqlIjouom/wl7IB2LVrF6dOnWLx4sV+aV9DwxdcTtlczdL3dqXU8qto4PYOSXYNMW7cOLZv\n3865c+dISEjwtzgaGj6lXWWjlLruairqDkOoFp544gkyMzO9OtG2fPly7r33XoKDgx3jVRFWrlzJ\n9OnTycrK4mc/+5nX2tbwD8eOHeOtt96itLTUa22YTCbGjh3LfffdhyMaadchKyvrigsvbsWzEZEI\n4BFgDK2CVXcXZeOrYdTy5ct5/fXX2bz50ikvq9XK888/zy233EJiYqLX5dDwDYcPH2bevHnce++9\npKSkeE0RNDY2snz5ciZOnMjf/va3LqdwoHPDKFc+xBEW8FOg0ROCXWsYDAZmzJhBVlYWS5Ys8bc4\nGh7iiSee4NFHH+WRRx7xels///nPGTp0KI888ghpaWleb89TuKtsJgMxSqlmbwjT0zhw4AC9e/cm\nOjqaJUuW8Oijj6LT6RgzZgxbt26loKCAfv08flKqhh84f/48EyZM8Elb4eHhpKWlUVhY2K2Ujbub\n+rYCQ7whSE8jIyODb7/9lpKSEj7++GPeffddnn32WQD0ej0zZ870ycZCDd+glEKnu/TPafDgwXzw\nwQcAzJo1C7vdzqZNmzhz5gwAX331FWvWrCE/P5877rgDgO3bt3PdddfR1NR0xfZ0Ot0VXQO6Iu4q\nm7uAN0RkmYg85np5QbZuxYoVKwgLCyM8PJxFixaRnJxM//79ARg2bBiPPfYYH3300cXyo0aNoqqq\nivz8fH+JrOFFDh8+zIwZM/jyyy8BLs6tZGVlkZeXB8D8+fNZsGDBxfzc3Fz++Z//mY8++ojAwED/\nCO5F3B1G/RuQBJzh0oOxupWKvdJqVH7tBcJNwUQFuHeg4O23387tt1959d/1l8jVurnzzjvdakuj\n6/PJJ5/wy1/+kmeeeYbmZsesg81m48033+Szzz5jzpw5DB8+HKvVypw5cyguLubOO+9kxYoVREVF\nAfDTn/6UkpISAgIC+OijjwgN9cYBop6jvdUody2b24DRSqmfKKXucLl+3hkhfU2LsmmLs/Vl7CrJ\n4WB5HnWWjs+Br127lpKSEgBycnJ4+umnufHGGy8pM3LkSGpqajh9+nSH29Homhw4cIBx48Yxf/58\n1q1bBzh+YO666y7+67/+6+KQusXi2b17N0OGDLnE92j58uVs3LiRW265hffff9/nfXCXzMzMK/pG\nuWvZnAIsnRGoOxAdEEa1uZ4dJdkkhcSQHBZHoN7kVh3r16/nrrvuor6+nj59+nDHHXfwr//6r5eU\n0el0F62b5OTkLrmMqeE+eXl5HDlyhIULF2I2m0lNTW33mR/+8IfY7XZef/117r33Xux2O7/73e84\ncuQItbW13HTTTT6Q3Lu4q2zeBr4QkeeBC64ZSqkNHpPKTyilWFu4h3G9UkkO64NdKYoaKjhXX86A\nsHgSQ2Mw6q7ulT377LMXf72uxIgRI9iyZQunT59mwIABne2CRhfgk08+4fXXX2fWrFkA3HDDDdjt\ndgCMRiNWq/V7z4gIr776KvPmzWPw4MGEhITQ0NDApk2beO211zh//rxP++AN3B1GLQXicRwB+rrL\n9ZqH5XILEQkXkV0iUiMi6R2tR6GIMIXw6onVvHNyPVXNdUSaQokwBpNXe57tF45xvr4Mm7J7THad\nTkdGRgYbN27sdqsLGm2zevVqpk6devE+PT2dLVu2AI6hxjPPPMPTTz/9PUvWaDTy3nvv8etf/5qA\ngAByc3NZuHAhe/bs8an83qJHnIgpInogEsfZzv+plDp2hbJX3EG8tfgodmVnc/Fhtlz4lqm905nb\ndyxBhgCa7VZqLPUE6wMZHJFITGC4R4Y+drudF198kfnz5zNo0KBO16fheyZNmsRzzz3HpEmTfNLe\nnDlz+MMf/sCcOXN80p47XG4HsVuWjYj89DLpT3ZUME+glLIppcpxeJ93CqNOh03ZWJg4kT+M/Cl1\nliaePrSCrKJD6BBiAiIQhAPlJ9lflkt1c32n5dfpdGRmZpKVlaVZN92UwMBA6us7/124Wurr6wkK\nCvJZe57A3WHUn0VkgWuCiPwZ+JEnhBGRpSKyR0SaROSNVnlRIvKpiNSJyGkR8UqchhHRKfQKDKfM\nXINRZ+D2gbNYOvRH5FSf5ZlD73Kg/CSBeiOxgRE0WM3sKsnhSMVpGqxX3oTVHunp6VgsFnJzcz3U\nEw1fMnnyZJ599tl2N+N5gjVr1nDy5EmGDh3q9bY8ibuOmEOBtcASpdQWEflvYCYwVylV2WlhRG4E\n7MB8IEgpdY9L3rvOj/cAY4FVwBSlVLZLmb8Dz3ZmGNVCVXMdJ6rPUWWuI9wYTIDeyPHqQj7P345e\np+fGflMYGN4XpRQ11gYsdivJoXH0C+1NgN7Yof4fO3aMrVu3cv/992srU90Mi8XCkiVL2LBhA337\n9vWqI2Z5eTkrV65k8uTJXmmjs3Q4eFYbFY0FPge2Af2A65VSNR6R8rs2ngISWpSNiAQDlUC6UirP\nmbYcOKeUetTlub/jmLM5eoW6r9rrWylFaVM1J6oLabQ1E2EMRi969pWdYOXZXSSGxPKjfpPpExSF\nXdmpaq5HEAaGx5MQEoNBp3er30opXn75ZWbNmtWtfF40HCilOH/+vNdDTKSkpHTpIVRnIvXNbiN5\nJvAAjgh+teDZpe82lM1oYKtSKtSlzG+ADKXUDc77VcAoIB94WSn11mXqdjvEhNVuo7ixgpPV57Ep\nOxGmEOck8hHWnT/A6OiBLEicQLgpGKvdRpWlngCdgcERifQOikQnVz9azcnJYdOmTfziF7/QrBuN\nbklnQky8fpn0JuCvzs8K8OYmkVCgtfVUA1z0KVBKLbraylx3OV5NEC2DTk9iSCy9A6M4W1/Cqdpi\n9KJjVvxoJscO5atz+3jm8LtkxI1kdvxoYgLCMdssHK44TZgxmLTIRKJMoVelPNLS0ti0aRM5OTnd\nbkyucW3SnptCC11y6fsqLZvfAjNbLBs36u508KxGq5kzdRcorCslQG8kzBhMeVMNX57dSV5NEQuS\nJjApdgh60dFgNVNvbSI2MIJBEQmEGds3f0+cOMH69et58MEHNetGo9vhkaVvP3ICMIjIQJe0UcBl\n52auRGfPjQoyBDA0sh+Tew8lzBhMqbmaYEMAd6XO476069lbeoL/OPwBRyvPEKQ3ERMQTq2lgZ0l\n2WRXFdBoNV+x/tTUVAwGA8eOXXaeW0Ojy9HeuVHu7rMxicifROSkiNSLSK6IPCUiHvGHFxG9sy49\nDuUSICJ6pVQD8AnwJxEJFpHpwA9xuE/4jTBTMKN7DWR8zGBEdJQ2VRMfFM3D6Tfwg36T+axgB3/L\n/oKz9aWEGYOJNoVR1FDOtgvHOFVThMX+/W3r4PhlyMzMZNOmTRe3uWtodHfcXfp+HUjDEWoiH+gP\nPArkui5Td1gYkceBx7k0ZMWTSqk/iUgU8AYwFygDfq+UctsV1lsxiO3KTkljFSeqCzHbrUQaQxAR\ndpZks6ZwD6nhCfwgaRK9AsOxKTvVlnoMomdk9ACiAr4fOkApxRtvvMGkSZMYPny4x+XV0PAWHln6\nFpFyYKBSqsolLRo4qZSK9oikXkZE1OOPP+610xWsdhvn6svIqylCoYg0hWCx29hQdJBNxYeZHDuE\neQnjCDYEYrZZqLc2MTE2jTBT8PfqysvLY+3atTz00EPfiwKnodHVaJkofvLJJz2ibI7i2MB33iUt\nAfhaKTXMIxJ7GV+drmC2WcivLaGg/gIGnZ5wQzA1lgbWFO7hcMVp5vQdw4y4EVjsVqzKxviYwYQY\nLx2NKqX4+9//zvjx4xk5cqTXZdbQ8ASesmz+ANwOPA8U4ojatxRYAVx0Te3K4SZ8fSJmg7WJvJoi\nihorCNYFEGIMpLixgi8KdnK+oZw7B80lNjACEWF87ODvxc05deoUq1atYunSpZp1o9Et8JSyuZqQ\nckop1WUDs3h7GHU5qpvrOVFdSKW5jjBjEIF6E4crTvH+6U0sHfojQo1BmHRGxsWkYtJ/t/1JKcXy\n5csZM2YMo0aN8pm8Ghru4tFhVE/An2d9K6Uoa6rhRPVZGmxmIowhHKo4xRcFO/hV+k3odTrCjI4V\nLldXhzNnzvDFF1+wdOlS9Hr3XCA0NHyNp0JMPCciU1ulTRWRv17uGY3vEBFigyKY3Ced9Mj+NFjN\nDI5I5Lq+Y3gh50v0oqO6uZ6jlWcuCdCVnJxMREQEhw8f9qP0Ghqdw91JgMXA3lZp+3DM43QbOrup\nr7PoRUdCSAyT+wxFLzrG9xrM2F6pvJi9kiB9ACVN1RyvOovdReFkZmayefNmbDab3+TW0LgS7W3q\nc3fOpgTop5RqckkLBgqUUjGdkNNn+HMY1Rb1lib2lB7HIHpWnt1JSVM1D6QtpNrSQHJoHKkR34Ur\nePvtt0lPT2fcuHF+llpD4/J4yl1hC/C0iMON2fnvE850jQ4QYgxkXEwqZruFH/WbQoghkLfz1hNl\nCuVMXRH5dd/Flc/MzGTLli2adaPRLXFX2fwKmAMUichu4DyOHb0Pe1owb+LvYVRrwkzBjI0ZRL3V\nzG0DMmmyNfPhmc1EmcI4Xl1IYX0ZAElJScTGxnLgwAH/Cqyh0QYeHUbBRWtmIo49NmeB3Up58LgB\nL9PVhlGulDZWcaA8jyC9iZdyVpEWkciCxAlUNNcxptdAegdFcu7cOT744AMefvhhDAZ3T+LR0PA+\nHvP6VkrZlVI7lVIfOv/tNoqmqxMbFEl6VH8abWbuT1vAoYpTbLnwLVGmEA6Vn6LSXEtCQgJ9+vRh\n//79/hZXQ8MttC2pXYzEkBgGRyRitlt4aMgPyCo6xIHyk4QZg9hfdpKa5noyMzPZunUrFkuPP5xU\nowehKZsuSP/QPqSExmNH8eCQH/B5wQ5ya84RpDexv+wkEbHR9O3bl3379vlbVA2Nq+aaVDZdbYK4\nNSLCoIh4kkJiMOr03D94If/I28D5hgoMoudA+UkmT5/Ctm3bNOtGo8vgkQliETkLrAFWA98opXx3\nGpeH6coTxK2xKTvfVpymzFzDhYZK3slb7+JHZeBM1mGS+/VnypQp/hZVQ+MinZ0gngjsAu4AzojI\nNyLyaxHRzhvxInrRMSwqmUhTKPHB0dzcfzov5qzEYrPSZLPQZ2QK27Zto7m52d+iami0S0eWvg04\njnJZ6LxMOCye1cBGpdSVA+z6me5k2bTQbLOyvzwXs83CofJTZBUf4lfpN2FRVvI3HWFI/0FMmzbN\n32JqaACeXfq2KqU2KKV+p5RKx7HJ7ziOjX3danNfd8GkNzC610D0omOMM+bxizkrCdSZ6DWiH9u2\nb8Ns7tI6XkNDCzHRnWiwNrGn9AR6dKwu3E1RQwX3pl3P4W92MqTfQGZnzPK3iBoaHbdsRGSsiKwQ\nkX9znmyQKiL/1zti+gZfr0Y1NStqG+00NissVoW9g8ou2BDI2F6DaLZb+EHSZEKMgaws2EXK+HR2\n7dxFfWODhyXX0Lh6Or0aJSKPAf8DJAI3An8DPlZKzfOcmL7DH5ZNzslKKqptGE1G7AY96A2YDDpM\nBggwCgFGwWQEk16HQQ8GvWDQgV4PujYOqas017G37DhGMfLXo5/wo36TadpbSFxsHD+e9wOf9k1D\nozWdOX73CDBUKbUbyBaRHwKRnhawJ/P5tjrONAQRamgk1GAjRG8jxKQICtQRFKgnKMhIYICe4CAD\nhgADer2eFh8Qk17aUErBDApO4Wj1KW5Pmc3fT67lwVHz+XbVdgonTCAxqo9f+6uh0RZXY9kMAn6o\nlPofl7SblFKfels4dxCRvwBTgdPAPUqpNuMw+MOyqXn2cfSnjlEZGEtZeH8qQvpSGRRLtTGKGn04\ntbpgau0B1FkNKCDUaCPUqAgJEEKCdAQF6AkK0BEUpCcw0ECwSTDoocJazpnGs5xpzOdU4ymmnuuD\nKTSIW6+/kd5h7R/zq6HhDTwS8LyrIiIjgd8ppX4uIo8CeZc7wM4fysacm4O56AK2pibs1ZXYa2vR\n1Vejr6nAUFtOQG0ZOpsFc2gM1eF9KQtJoCKoD1WBvagxRFKnD6XeZqDBpqfOZqTOqkchhJoUelMz\nYmzieNAqelnCSMwpIjFzIbeOG0ZYoOYVruF7PHW6QgTwCDAGuOQYR3/O4YjIg0CdUuodERkL3KWU\neuQyZX2/GmW1grkRLM3Q1AiNDdBQB00NYLNis4PV3Iy9ugpVXws11VBbhdRUYKgpR99QgyU4kqaw\nGJpCe2EOiaYmKJbywBgqTdHkqkYa7Ha2Bn/F2LwEUH2Zct1oFqQnEWD8/pyPhoY36cycjSsf4jiH\n+1Og0ROCuSIiS4G7gBHACtcjfVsdv1sKPKqUeteZHYUjkBdANdC1Tuc0GMAQ1nae1YLe0oy+uRma\nzdBY/50iMjeBCNhsBNRUY6ytJriuBmoriC/OQ6or0NdUYDUGUBkaysQ+0bzS9ySjTpSzef8QYkIq\nmZwShUGvKRwN/+OuspkMxCilvLU//hzwFDAfaD3p8ALQBMQCY4FVInJQKZUNVAHhznIRQIWX5PM8\nBqPjCgr5fp7dBs3NYDGDxYKusR5dQ71DITU1glKg7Bgb67FXnCOp5gKzm2o5F1xDSMV+Vu2dRGRA\nAOmJwW2uamlo+BJ3lc1WYAjglTNFlFKfAYjIBCChJd0ZVP3HQLpSqhHYJiKf4/DVehTYDvwaeAeH\notrmDfl8jk4PgUGOC3DoWSdKOYZlTmXUu6mR4rJc0usrOGbaTXxuNg1Vo/h8fwkhAQkkxxovBk7X\n0PAH7iqbu4DVIrILuOCaoZT6k6eEaoPBgEUpleeSdgjIcLZ9SERKRGQzkA8860VZugYiYApwXISh\nA4b27sPOC9ncaArki/LtjCp9k8PyCKsOlvCTiXHERWoTxhr+w91v37/hiD18hu+GLQDennENBWpa\npdUAFydClFL/4mUZujwBehMjew1gt62Z8cPSOLXtFDeVvMRHaim9giu5fnQ0UaHaiZoa/sFdZXMb\nMFgpVeQNYa5AHZcqN3DMzdR2pDLXLdW+PvPb20QFhJEakYgMVOTnnmd9QzU3Vb7HZ0cXExlUz8xh\noYQEXpMx0zS8RMsZ3+3hrrI5BfgjNNwJwCAiA12GUqOAox2tsKcpGVf6h/WhwlzLxJnT2fnRes6G\n5DCtfh1r919HeLCJcYMCCNSWxDU8RMvfUntKx919Nr/DMVH7PN+fs9nQMVEvqV8PGIHHcPhi3Q9Y\nlVI2EVmBY7h2P47VqC+Bqc7VKHfa6LZe3+7QaDWzoySbE1v2c7DiFA8U5bO59x1cCBvFLTMiGd7f\nhFFbEtfwAp6KZ7MUiAeeAV53uV7rtIQO/gg0AL8Hfub83OJhvhQIBkpwrDo96K6iaeGhhx5i48aN\nnZe2CxNkCGBEVDKJYwbTtzKQZ0YnsDjvVYIaClmzq5q8Ygt2e89Xuhq+w+OH1HV3RES99NJLmEwm\nFi5cSJ8+Pdtp8UTVObLWb+BsdRHmmHr++PVR/n34X4jvE8miaZEkx+q1JXENj+KxSH09gfPnz9Pc\n3Mzbb7/N6tWraWz0+GboLsOA8DiGjhtBYImVXGVlw8xx/J9jT3LmgplNB2oortLODdfwDJ6IZ/OU\nUur/tdeQiDyplHrcbQl9jOucTUNDAxs2bCAnJ4fZs2czZsyYHvkr32BtYsWXH1NZX82e3iX861k9\nUceK+Z8UgFjbAAAgAElEQVTUx5iRHsCsMWH0CtOWxDU8Q4cdMUWkFhgJtPdXuE8pFdVxEX1DWxPE\nRUVFrFmzBpvNxsKFC0lISLjM092X02XnWPHacs6ODWBQaCTX7zuJrSiA1/v9kgVjA5k+IpSwoGvS\n0NXwMJ1xxAwBTtK+smnqiGD+4Iknnrhk6Ts+Pp67776bw4cP895775Gamsp1111HSEgb/krdlORe\nfUkelkp4WRWr7HkMmzKZIRs2c1PJx3x58GaCA3VMGhJCoKnnWXYavsGjS989gfaWvs1mM1lZWRw+\nfJiZM2cyYcIEdLqe8YtfVl3Jyy++iH16Xy5ILTcaExm9diMbAmdxMGYKN08LZ+TAIIwGTeFodBxt\ngtiFKwU8DwgIYP78+dx1110cP36cl19+mfz8fN8K6CViIqIYOno4vQpsnGso53x4MAeum86C6q9I\nrD7Jmt01nDhnxqYtiWt0AG3puxXubOpTSpGdnc3XX39NUlISc+fOJTy8tddE96K2vo7n//Y8sXPS\nWVVxgH8avIBeZ/JJ/fIrnkv+NcG9Y7j1ul707WX0t6ga3ZQeHRbUHTqyg7i5uZmtW7eyd+9epk6d\nyuTJkzEYuq8H9ep1X3G6pJCc5Eb6BEUzMTKZEXnFBK5ayX+kPsbwAcHcMicWkzac0ugA2jCqE5hM\nJmbPns19993H2bNneemllzh58qS/xeows6bNpOZsKTNC09h64VuadcKJgQkY5y7i7tPL2Hvaytnz\n9f4WU6OH4ZayEZH/EZHR3hLGV3T0kLro6GgWL17MvHnzWLNmDe+99x6VlZWeF9DLBAUFMXHSRMqO\nFHBd/Bg+K9iBxWji/KihxI8ZyoCa42zcXU6T5dqyejU6h0fnbETkOeCnOGIAvw38QylV2EkZfYqn\nHDGtVis7duxgx44dTJgwgenTp2M0dp95DrPZzF//968MXjCR90q3MafvWJLD4phEFBfeWMHfou/i\ngTlBpKd1rXDOGl0fj83ZOD2zF+BwlPwBsAt4C/hEKVXnAVm9iqe9vqurq/nmm28oLCxk/vz5DBky\npNvsQt68ZTPZBScJnZjMu6c28qthNxJlCiHteDEfbq7GnJjGnbcMIji4+85Pafgej83ZKKVsSqmV\nSqnFOAKgxwJvAsUi8pqI9Lztt1cgIiKCn/zkJ9xwww1s3LiRd955h7KyMn+LdVVMmjiJ6vPlhJh1\nDIlMYlPxESqa62hIH8T0iGJyakLJ+dbXcdI0eipuKxsRCReRe0VkI7AZh2UzAxiKI6LeGs+K6Hk6\nOmdzJVJSUnjggQdITU3l73//O19//TVms9mjbXiagIAApk2dSvmhfDLiR7K/PJc6SxPHmyvoMy+D\nSTW72L6vlNpKbbJYo308PWfzEY7TCzbjGDp9ppQyu+TrgGql1GUOSfI/vgieVVdXx/r168nLy2PO\nnDmMGDGiyw6tmpubee6550i7fiKnKOdA+UmWDLqOlOAY7N8cYlnxKG5Nq2HK3HSkh+yk1vAunhpG\n7QRSlVKLlFLvuyoaAKWUHejWAWLef/99hgwZQkREBHFxcdx9993U1V06FVVUVERSUhIWi4V7772X\n5ORkIiIiGDt2LGvXriU0NJQbbriBW265hZ07d/Lmm29SXFzspx5dGZPJxLRp06g4nE9aRCJmm4VT\nNUWcaiil14yxTG0+yJ7sOqqKus9RXBpdk47M2Xzvr0ZEfuOS39BZofzJtGnT2Lx5M9XV1Zw6dQqL\nxcIf//jHS8qsXr2aBQsWYLVa6d+/P1u2bKG6upqnnnqKW2+9lYKCAgCSkpK47777GDlyJO+8806X\njZ0zfvx4yopKMNRaWZQ0iS/P7kTZ4aypkXET+3JWYvl20xHsFm+dTahxLeCusnnsMul/vEx6tyMx\nMZHevXsDYLfb0ev139vAt3r1ahYuXEhQUBCPPfYYSUlJACxatIiUlBT27dt3saxOp2PcuHH88pe/\nRCnFsmXL2LdvH3a73Xedagej0ci0adMoPniK3kGRDAzry87SbIobqwkdlsRk4xl2ng+iIrfA36Jq\ndGOuStmIyGwRmQ3oRWRWy73zuo8OHqnSVdm2bRuRkZGEh4fzySef8Otf//pintVqZfPmzcydO/d7\nz124cIHc3FyGDRv2vbzg4GAWLVrEz372Mw4dOsTrr79OYWHX2aI0btw4SoovEFIvZMaPYnvJMZqt\nFk5aShmfMYgKYzRHNxzEVtej/qs1fMhVTRCLyGnnx36A68+bwnHKwp+VUl94XjzP484EcVFREa++\n+iqLFy8mNTUVgA0bNvDnP/+Zb7755pKyVquVBQsWkJqaygsvvHDFepVSHDlyhHXr1jFw4EDmzJnT\nJWLn7N69mxO5J+ibOZxdpTkU1Jfw4/7TGBQcz8E15/m2WMcD4xrpPXMKaJPFGpehUxPESqkUpVQK\njh3DKS7XAKXUlO6iaFpwXfpesWIFYWFhhIeHs2jRokvKxcfHM3/+fG677baLaS1DKFeUUixZsoSA\ngACef/75dtsXEUaOHMnSpUsJCgrihRdeYNeuXX4fWo0dO5bSklIiGw2M7jWQ4oYKihoqON14gXHT\nk7CYgjm64ziWkgvtV6ZxzeGJGMQzlVKbnZ9nX66cJ86N8gXuLn1v3bqVH/7whxd9oNLT0/n0009J\nS0u7WOaee+6hoKCA1atXYzKZ3JaptLSUtWvXUldXx4IFC0hOTna7Dk+xZ88ejh8/zoC5Y8muzGd1\n4R4eGLKQvsExnNlpY/vxZh6JO0zczTc6zxnX0LiUzoQFfQEY7vz8+mXKKGBAB2XrUqxYsYIZM2aQ\nlJREfn4+f/zjH5kzZw4AZ86cobm5+RJF8+CDD5KTk8O6des6pGgAYmNjWbJkCdnZ2Xz22WckJiYy\nb948v8TOGTNmDNu2bWNMvZ7EkFh6BYRzuOI0IAwf158D+RV8m1NOVF4uAUOHt1ufhkYL7Q6jlFLD\nXT6nXObyq6Jx7mreJSI1IpLembqOHTvG1KlTCQsLY8aMGQwdOpRXXnkFgFWrVl0yhCooKOCVV17h\n4MGD9OnT5+Jw7N133+1IH0hPT2fp0qX06tWLl156ia1bt2K1WjvTHbcxGAzMmDGD/dt2Ex/Si7mJ\nY1l3/gBWu5UyXQVTRoazJmYhVd+shdoqn8qm0b1xdwfxLOCMUuq0iMQB/w7YgEfb2n/jK5zOoZHA\ns8B/KqWOXaFsh3cQL1q0iIcffpjrr7++Y4K6QWVlJV999RWlpaVcf/31FyeofYHNZuNvf/sbC360\niAJTDZuLj9BgNTM/YTxDggfyj88rGXb6G+bN6kdAxhzQacfAaHyHp3YQv4BDuQD8N45zuRXwSufE\n6xxO59By2j8BolPMmjWLWbNmebOJi0RFRXHbbbdx/fXXs3btWp/GztHr9cycOZOdW7YzMKwvk2LT\nyK4qoLSpihLbBWaMjmBdn0VUb1wHF877RCaN7o+7yiZBKVUgIgYcPlK/AB4CpnZUABFZKiJ7RKRJ\nRN5olRclIp+KSJ2InBaRxR1txxP87ne/IyDAt5OiqampPPTQQyQkJPDqq6+yceNGLBaL19sdOXIk\nVVVV2MvqCTMGMz9hHOvPH6DcXEvyQAP9egnrTRNp2rgWmru2w6lG18BdZVMjIn2ADOCYS/yazkSN\nOgc8RduTzy/gOI8qFlgCvCgiQwFE5NciskFEftuJtrsFLfMoDzzwAOXl5Sxbtozs7Gy86VDaYt1s\n2byFtIgkUiMSKTfXcqGhkmJzMbPGhLE9eiY1e/eiznTfEKkavsNdZfM8sAf4B7DMmTYNyOmoAEqp\nz5z7dC7x9BORYODHwB+VUo1KqW3A58Adzuf+Ryk1Wyn1X62q7Jru1R6gJXbOjTfeSFZWFu+88w6l\npaVea2/kyJHU1tZSX1xJ76BIMuJGklV8iHJzDXF97aTF6/mk709p+GYlNGhhKDSujFvKRin178Ac\nYJpS6j1n8jngPk8LBgwGLEqpPJe0Q8D3fQEAEVkFzAVeEZGfe0GeLkNycjIPPPAAgwcP5s033/Ra\n7BydTkdGRgZZWVkMCotnSFTSReumqOkCc8aHkRM6jHOnSrEcOwTX2EkdGu7hdrxHpdSJK917kFCg\nplVaDdBmrByl1KK20tvCdZej6zG83QmdTsekSZMYNmwY69evZ9myZV6JnTN8+HC2bNlCWeEF4iOj\nyYgbwcbiQ/QJjiIxuplJqSbetvyC3657i8jUoRDR5Y971/Aw7R2724K7S98m4C5gNA5lcBGlVKes\nCRF5CscE9D3O+9HAVqVUqEuZ3wIzlVI3dKIdrwfP8geFhYWsXr0ag8HAwoULiYuL81jd3377Lbt2\n7eInS37KjtJsXs5exU39pzEsKpl4fX9e+aKcKXmfMiMjmeDZ12t+U9c4nlr6Xg78Hxxe3nmtLk9z\nAjCIyECXtFHA0c5W7I2woP4mMTGR++67j1GjRvHOO++watUqj8XOSU9Px2w2U1JQRFyQw7rJKj5M\nubmGwCAzs0eHsiruRso3b8VeVuKRNjW6H54OC1oJpCilPLZ11Lkhz4gjVk4icD9gVUrZRGQFjn08\n9wNjgS+BqUqp7E601yMtG1caGxvZuHEjx44dY9asWYwZMwZdJ62No0ePsn37dm79+eJW1k1/UkMG\n8vbqC+hOHmXxgBIif3wrGLrPsTYansVTlk0B4OmNJn8EGoDf4zgepgH4v868pUAwUAK8AzzYGUXT\nQk+0bFwJCgpi4cKFLFmyhEOHDvHaa691OnZOeno6VquVC/nnHdZN/Eg2Fh+i3FyLTd/A3EmR5IUP\n5dShMzQXnvVQTzS6E562bH4L3AL8L444NhfpqV7f3Z3WsXOuu+46QkND23+wDbKzs9myZQs/vfN2\ndpRk83LOKm7qP52B4fGMjU5j9eZy9h6t5uHA9fS9624ICPRwbzS6A56ybP4JR0DzZ3Bswmu5Xuu0\nhD6kp1s2rrSOnfPiiy+yc+dObDZb+w+3YsiQISilKDpdSFxwi3VzkCZ7MwUNRcwcH0VEsI49RYHU\nHj/uhd5odGU8atn0BK41y6Y1ZWVlrFmzhtraWhYsWEBKSopbzx8/fpyNGzey+O4lTutmNT9NySA6\nMIzRvQZyKsfGu9saecD8OUPuvwOdH8JkaPgXj52IKSJzReR1EfnSeT/uSkG1uiLXkmXTmpiYGJYs\nWcKsWbP4/PPP+eijj6iurr7q5wcPHoxOp+NcXgFxwdHMSRjDR/lbCNKbyK4qIG1wCCOjG/jKOpzS\nvdpGv2sJT8/ZPAz8Csew6V+VUhEiMgx4VSnVYWdMX3KtWzauWCwWtm7dyp49e5gyZQpTpkzBYGh/\nn+eJEydYv349P7vn5+wszWHV2V2EGYO4ru8YYgMjCK6J4rWVZcyr3cyU+24gILaXD3qj0VXwlGXz\nf4A5Sqm/AC0Bc3OAtMs/otFVMRqNzJo1i/vvv59z587x4osvkpub2+5zqampGI1Gzp48Q1xwFNcn\nTOBQxSmKGio431CBqZeN6QOE1UEzObt5F8rm2wBgGl0Td5VNGNCyrtliHhiBbnV62bU8jGqL1rFz\n3n33XSoqLn8CpoiQmZnJpk2bSAmJw6jXc1tKJu+e2ohJp+dETQGjxkeTYKxh1wkLVflFPuyNhr/w\nxlnfB5RS/yYiFUqpaBH5F2C0Uur2TkvrA7Rh1JWxWq3s3LmT7du3M378eGbMmIHR+P0Nekop3njj\nDSZOnEjUgDiOVRawufgItZYGfpw8nTBjEOqkkXd2C7cGHWTc7fMwhQT5oUcavsZTw6iHgZtE5AwQ\nJiLHgVuB31zxKY1ug8FgYPr06Tz44INUVlaybNkyjh079r3YOa7WTVxgFL0DI8mIH8G5hnJyq89R\nZq4hfkgEU0LO8XVtMnn7c1Fd6BRQDd/j9tK3OFyKJwD9cQypdiulus23SLNs3OPMmTOsWbOGkJAQ\nFixYQGxs7MU8pRRvvvkm48aNIzU9jR0l2VSa63jt+Br+Kf1H9AoMp29NNB9/eZpIGlj041H07q9N\nFvd0PLb0rRzsVkp9qJTa2Z0UTQvanM3V0xI7Jy0tjTfffJOvvvrqYuwcV+smQGdkWGR/woyBZMSN\n4PP8HdQ012OKM5KRbuSYrj97tpygoaFbTe9puIEnDqn709U0pJR6zC3J/IRm2XSc+vp61q1bx8mT\nJ5kzZw4jR45ERHjzzTcZPXo0o0aN4lhVPucbynkxeyU39pvKgPB4RgcmsfsfG1hjG8Ut43WMm9wf\nva7HBlS85rmcZXM1yubvLreBwM04QoPm4zj7eyLwsVLKr8HIrxZN2XSewsJC1qxZg16vZ8GCBZjN\nZr744guWLl2KDcXOkmNkVxWQVXyEu1PnMSyqP6bCOr7+5CDnwwdw6w/7079fhL+7oeElOjyMUkrd\n3XLhiO+7WCk1TSl1u1JqOnBbO1Vo9DBaYueMHj2af/zjH3z77beEhYVx6NAhTHoDI6JTSA6NQ4dw\nuraIkzXniUiJY/LQIBqa7GzZXkR1rfdPiNDoWrg7Z7MA+KxV2hfAwjbKdlm0OZvOIyKMHTuWpUuX\notPpKCkpYd26dVgsFqICwogPiWZO3zGsKdxLk9XMeXMV/TIm8mP7NvaWhbL3cDnNVs3C7El4ep/N\nPmC5Uuo5l7SHgbuVUmM7IafP0IZR3qG4uJjly5cTEBDAzTffTFRcDNsvHOPD05tJj+zHqOgBTIsb\nRtORbPZ8spWsvotYMj+WtORgj8ZM1vA/nlqNug/4jYgUOs/WLgR+i3dOV9DoRsTFxXH77bfT3NzM\nBx98wLpVXxErIWTGj+Sb8/tpslkorC8jIn0IowaHE1uTz7rdlZRWux/qQqN74u5RLgeAVGAxjuN3\nbwdSlVL7vSCbRjcjKSmJhIQEpk6dSkhICN+s+ALryUoGhyawvyyX/LoSLAY90XPncHPDN5wqVWw7\nVEN9U7fbPaHRATqyz8ailNqilHpfKbVZKaXN9GlcJDMzk507dzJr1izuufsezMVVxO2p51DuMWqa\nGyhurEQf24dec+dwZ8ErbM5u5lBePRabNrTt6Whnbmh4lISEBOLi4ti3bx8xMTHcueROBk4cTnp+\nEAe+3kb2+TxsAkFjxjNgQBSTK7bw9Z46ThU1e/U4YQ3/c00qG201yrtkZmaybds2LBYLAQYjk0eN\nZ9iN0zinq2H3xxv4asM6rKZAQhf+iAVN2zDVlLJ+dxUXtPmbbo0WFrQV2mqUb3j//ffp378/kydP\nxmq3sf3CUT46vYU4FUbUSTOW6kaunzePAdUXqHx/Bc8MeozpQwOZPyWK0MBr8jewx+DNsKDju1tY\nUA3vk5GRcdG6Mej0DArvy/jYNLbX55IyaxQz5s7i63Xr+CC3AOuU6dx7ehmbj1s4cKIei7b/pkfi\nlrJx7ql5EcgFZjqTG4GnPSyXRjcnLi6OpKQk9uzZA0DvoCj6hcbSOzCS4zXnsMcE8tBDD9E/ZQBv\nnzpPYVw4M0u+5uu9deSeM2PXrM8eR48ICyoiE0Rku4hkicg/nKdsaviZzMxMtm/fTnNzMwadnpTQ\nOCbGDmHbhaOUmauptzUxbdo0HnzoIepj48hXeQSX7+Wb3RUUV2rzNz2NnhIWtACYpZTKxOEgeoN/\nxdEA6N27N8nJyezevRuAuOBoBoXFIyIU1JWSU3UWm7ITHh7OzUvu4IYpkwir3UVZ7krWbc2jsk5T\nOD0Jd5XNZuAPrdIeATZ6RpyOoZS6oJQyO2+b+c7q0vAzGRkZ7Ny5E7PZTIDeSP+wPkyKHcKOkmNU\nWxrIq3bGJ9bpGZgxm3umjGNS7RnyDn7Ghx9+QVVNo387oOEx/B4WVESWisgeEWkSkTda5UWJyKci\nUicip0XkimEsRKQ/MBf4sqPyaHiW2NhYUlJSLlo3CSExpEf2p7SpmnpLI2fqiiltdJ5bFRBI8NRM\nMtKSmGoJoKC0iZde+Bv79h/U9uD0ANx1VyjCERL0VhyuCncCE5VSxZ2Q4RzwFI5jfFvzAtAExAJL\ngBdFZCiAiPxaRDY4zx9HRMKBt4A7lVKa/d2FcLVugg0BJITEML3PMD4+s5VQfSBHKk/TaHUaphFR\nhM1dyIR+JtKaA7CGzWT71u288cYbFBVppzR0Z7rMPhsReQpIUErd47wPBiqBdKVUnjNtOXBOKfVo\nq2f1OEJd/KdS6opDOm2fjX/49NNPiY6OJiMjg9rmBraXHOPj01vpG9yLWX1HEWIIZEzMIPSiA6Ww\n5+dx7pss3q0aRnhUMKkJ5Rw4up8hQ4Ywe/ZsgoOD/d0ljcvgkX02IvKciExtlTZVRP7aWQHbYDBg\naVE0Tg4Bw9oouxhHxMD/57R2bvGCPBqdYObMmezatYumpibCTMHEBETw4/7T2Ft+gsK6UirMtZS1\nDKdE0PUfSNzc2SyKPM3puiAqiwP56YKb0Ol0LFu2jL1792LXTmvoVrgbz6YUh/XR7JIWAJxVSvXu\nlCDft2ymAx8opfq6lLkPuF0p1eFNhCKiHn/88Yv3mZmZZGZmdlhujavn888/JyIigszMTKqb69lV\nkkOluZblJ7/h4aE3EhkQyuTeQ76Lb6MUDWfOsG/dYT5pHM2Pwo4TMjgVa7CeI3vXY7M2c/2CBQxI\n7uffjl3jZGVlXeL+8+STT3YsBvElhUVKgH5KqSaXtGCgQCkV0xmB21A2o4GtSqlQlzK/BWYqpTq8\ntK0No/xHZWUlr776Kg8//DBBQUGcqS3mRPU59pflklN9lsUDM5nUeyiRptDvHlKKyryzbNp4iqzG\nFJJN1UTFhhMdH0VzbR65h7Lo07c/02deR1xsOCEBgk4Lpu5XPOWusAV4WkR0zkp1wBPOdE9zAjCI\nyECXtFHA0c5WrDli+oeoqCiGDBnCjh07AOgX2pvegZFMiB2MAo5VFnC2ruTSh0SIGtSPiRmp3BR1\nkrHnNmItzGdXTj3rTifTkLCEisZA3n/nFVZ+s5Uj+U2YLdqPiT9ozxHT4GZ9vwJWAkUiko/joLrz\nwA87KqBzctcI6HEolwDAqpRqEJFPgD+JyP3AWGc7Uy9fm0ZXZ+bMmbzyyitMnjyZ4OBghkYlsbOk\nnsy4kXx1bh/Do5IZGO5YtXIlPrUvAQEG6mOE0ds/hgs2csbdxrnwQRRbZ1CuS+fbY1mczD7E+anz\nmDkhlRDNobNL0ZETMXU4JmOT8MCJmCLyOPA43+1IBnhSKfUnEYkC3sCxd6YM+L1S6v2OtuVsTxtG\n+ZmVK1cSGBjInDlzAKg017K75DgvH1/FD5ImkRE/koHhfdt+uL4Wjh/GtmMDcvIoFVNupDhmCA1R\nCdRKMNv35WC/sJnefeJZtHAe/eKjfdgzDejEuVGtKjEBdwGjgVDXPKXUzzspo0/QlI3/qa6u5uWX\nX2bp0qWEhIQAcKLqHB/nb+FsXSm3pMxgRtwIDLrLuLhZmuFUDhzcAdvXQ9IALKOmUt87hdP6BDYe\nt1JRuI+g+sMMHz2RmTOmERFi1OZyfMTllI27w6jlOOZNvgQueEIwf/DEE09oq1B+JCIigmHDhrF9\n+3bmzp0LQGJoL0ZGpZBVdIiyxmrKmqqJC76MVWI0QepwCAmD+H5wZA/GL94kctRkhg8ZT0B4GNt6\nDyanMpW8E5s5fuwQwyfMZXh6GlGhOkICBZ12ooPHab0q1Rp3LZtKIEUpVdV50fyDZtl0DWpqanjx\nxRdZunQpoaEOI/lQ+SnezduIQadnQeJ4pvRJRyftzLvU10L+STibB3u3QP5JlNGEzRDA/rAxrItb\nRJnNTFTDVkLCoxg5aQ5RUTH0idQRF6nHoP9O6SilUKApok7iKcumAAhot1QXR7Ns/E94eDgjR45k\n27ZtzJ8/H3CsTo2NSeWNE2uZEjuU8qYaYoMir1xRSBgMHQ1xiRDbF5rqEasVXXMz/WsVDx16k8ZG\nCxvTfsaJ2gq2rHmboN4jGTxiCilxwQzooyciRE9to538UitWGyT31hMRrNPOs3ITT1s2vwVuAf6X\nVsMopdSGjonoWzTLputQW1vLCy+8wC9/+UvCwsJQSrGjJJu3cr9hcHgiU/qkX7rJrz2sVmisA7vd\nedmwnsnDfOQggXvXUzRwGocSJnGs6DR1tRcITJjJ5PHDiQkVKssbyDldR7MNhg0IJTEhlJQ44yWW\nT7dAKRBxWHx11dArDgwGxzyX3Q4BgZd91GpTNDZZCdM1O8rZFTSbITjELRE8NUF8+jJZSik1wC2J\n/ISmbLoWa9euRSnFggULAChuqGBlwS5WF+7mgbSFTOg9hOiAsI43YLXCuTNw4lvsu7NQ5SVcGDGP\n/QGJHMw/RhPBxMWPI7epL4NtBQTZGjloGsLo2EYy+zWRElSP9Ip1WE7+sHTsNqiqgMhoEB3UVkNY\nxHeyKOUYQkb3hsYGKCuGpAFwaBdUlaNSR2BPGoA+5wDo9DB4OFgsWM0WmsJ6YTIIJoOA1UpOXg3l\nxdVMlFxUeDSm4ACor0MNHo4YjFdUVK54ZBillEpxp3xXRRtGdR2mT5/OsmXLmDZtGuHh4cQERjAg\nLI4QQyCnaouIDgwnKmZwx4c0BgP0HwSR0ehiesOZXPru3kiczsDUsL58I7GcKFjDtKYaZgTrCTTo\nue7Mh7xm+xVBpcX0MRwipHcvGDEe+g/CYtfRZFGEBkqHZSqusqLsEBelb7MOs9mGASt6oxGOH4bz\n+TBykkNxnjwGw8dDaBjW/FPoGxvgyC4qYwfy/9s787AqrmzR/xaHA8qMoAwOKA6ogAIOmDjhrJlj\n38Sk0520MSYaX9JD8pK+3bk3SffrfjedTm4/ozGaRGPS0U5yc6+dQYwzDhnFEcU4gDgiIIjMcDjr\n/VEHckAQlJnU7/vOR9XeVbtWbapW7b323mv5FGfjej6dgkEj8dq4Fikq4EraKTKibmHIzrW4ouRO\nuAe12ci/Uka2dxhitRLexxsPN9j4TRGHCrsRc2IN6mIhv0dfuh/bzZG7nmNAL3fKg8MpVit+AV4U\nlaTRnsoAACAASURBVCndvGuOFjZrN6ozYLZs2h8bN27EZrNxyy23AJB+JZPEs9+xI/MgcwfOID5o\ncM0lDDeKzQbZFwyD8rl07CUlFBWWkV2qJFu7cLrgCpOHRhCmQnbqSZZ53ceDJZ8Rc3oThXHTyB48\njkuePal074qvhws9A1yptIPdrvhby7GIQhcPKC2Bs+lQUQG+/hDSG4yvPZcK7exONdxpxIa7EeJv\nwZpzAdQO3bpzPquU00dO42K30S3IF+8t/6DH0Z0UT70XGxZ8kv6L/NsfobDvMEp2bKOHLRufg0mc\n7h5Fj9KLuFcUUezShbIefbGOGMOJrd+xp8cEbivYTLei8+TihUtZKUkBk/gycBJ+FDLF5wwBZVm8\nVXQTfrbLhEoemXYf+hceY2r2BrYFzWBKlxOcHTCBLGsgERHdOZVZRlhoV4LDAukiDo8urkbbpVm6\nUY6CgjAm9QUC1QWq6sp6T2pHmMqm/VFUVMSSJUtYsGABvr6+lFaWs/PCId46toGpobHEBQ4kJqC/\n4X6iOSgrhZyLUFYMZeXGUxzUi3NFJSQmJiKVlST078e3V8JJzvXlJx4H6LnvM1J7jedr73gyKzyI\nCy5naDDYysqwFZcSIEX08SjGv5snUngZPXmU/FLI9wgiMC6aIu8gzhVYuJhrY32KMQd2XIQrfX1t\ndE9NwrOLkO8VwpEcKweyu+Bffom+7gUUXy7Aw8+bhONrKRQPLvUYhP+VcxzrNZa9pSFE6yl8fd1Z\nWTGBURWHGRDmzT8vBBPkrYyO8GDdd6UMLjhMql8MI3wuse+yL4qh+Obnf8CeyjC+CphIXEEyviWX\niCg6yhv9nmQop8kq60KltQt5Lj48cHol33S7mRNegxnbNYPdJWHM8jpO7KCu9PNTtKQEiR0DNJ/N\n5i7g7xjRFSIx1ilFYSyYnNTUZ6A1qFr1bXaj2hebN2+mtLSU2267DYDvL59hw9k9JOcc54H+k+nn\nHcIgv54tLoeqsn//frZu3UqvvgM5K/GkZbviKWUEFZ9lXNZW3EJD2OIWzwlbIK5U4qJ2hhce4Jac\nz3EJ64//uRQqLW6k+Awnr8BGWKgH6aGjOFHoyfFCT0b45+PnWs72nEACXIqJz/iMsNIM0vyi2OAz\niVvLvqTU6klasQfeAT6c9+zLucuKm0Vxs7pQXlxGJS7c3OU0X9oH4O0OvT1KKba5cLKgK77ulXh7\nWrmYr/T2KuWWLqkcCxxByrlKInxL8PMQ8gttTPTL5FKBjS/SPEjRPjyR/Sb9envz5fCfE1qRRXFe\nAW+l98HHzY7YKsi3GwPRY3O2sTvQeN1naDI3VRyia955PgsfR9rJvbz4xz82i7JJwVhK8JGI5Kmq\nv4jMBSJV9elm+W+3MGbLpn1SXFzMkiVLePTRR/Hz86PYVsqOC4dYfnQ994cn4OvuSbR/X0I9m+Rc\noNGUlpaybds2DhxMoX/UOPr0jsA16xw9847hd2oftrw8ysptiKcXub592OYzgUMVodxckkwf9yuk\n9RjBt7l+9HAp4EqxnQqxMv7Kl8TlfUWvymxw78oVizeHLOGkBsWT0SUML9sVJlfup/fIIVRYu1CU\nehSX6FGUdPXjSsZ5uvp54+LlRZeDu+iespXSnz/N3/dZUeDnE7tSUAJbD5XSJ9CV8GALB09VMKyX\nMKxHOdnqTUZ2Jb0DLXSxCmU2JdjPFVthIUn7rvDFURd+H3ser+7+FASG4eshVBaXsO04BHq78Om3\nRZzJ+0F/xJSn4l54iRy37vQvOs5F9xB8ewZyb6zSZfiIZlE2V1TVx7FdpWxcgMym+rNpLUxl037Z\nsmULRUVF3HHHHQCk5J5iw9nvOJyXwWODb+VKRTGje0Q0j/2mkZy/kMmGxA2UlZdxy/TphHm5wbkM\nKsvKKbS5YnVRKj28OOsSxNl84VCGjbxKdyxuVkYN7EKQtYhzJzMJsl0iiHx8fNzwt5TiUl5KWWk5\neSVC5oCxlHsHYCnMp69XKQGD+4MI9pwsXAJ7UIlQUKK4WwURsF/Oo/LsKbyHD+dghg07EB3mhggc\nP2/D31Pw87JwIa+S7j4ueLgb3U+7ap0TFi8XVnL6YjlRYVZcLJYao275xXbcXYVdqaV8+l0JcX2E\nPemVPDo0h5ycAtZc6E+o7SIWUc5Ygnkp/V8J+OuKZlE2J4CxqnpRRPYBj2MskPxaVQOu8//YJpjK\npv1SUlLCa6+9xvz58/H396egooRdmSl8mJZEX+8gpoWOQLEzJmho89lvGoGqcvjwYTZu3Ei/fv2Y\nOnUq3h4eYKswlk64uKCqXC6yczqn0nBxIdA/yBVfDxcu5RThqaV4WWxgtRrzXdQOlXaotEGPUCrU\nBREaP6+nshIsFkrLFRFwtxrn2e3G/vWOlNkq9ZrXvlxk50yODT9PF3LzbUT3dSP7YgHPratkas98\norpksWVvIdH5+5n80tPNomyeBU6o6sci8iCwAiNsyiuq+m/XdXdthKls2jfbtm3jypUr3Hmn4R9t\n/6WTXCi+xPKj67ml1yj6+QQT5d+XEI/W/7aVl5ezY8cO9u7dy7hx44iPj8diqTn8a1fFbjcaB5ZO\ntvCzolKxWqRaMZVX2Fm9vZi74rsSaCnhw/9KZXNRf95aFNB051mq+pKqfuzYfhfDT/CIjqJoqjCd\nZ7VfxowZw/fff09ubi4A/byDsYiFRwbN5L8zdpNXWsjx/HPY7K0fQMPNzY2pU6cyb9480tPTeeON\nNzh58mSNY1xEcLVIp1M0AFZHy6eqBWR1FcYOdsPf0wXx8KSsPJ3kz1+q9/wGWzYiMkFVdzi26/X9\nay5XMGkukpKSyMvL46677gIg7coFTlw5z7miHD498zWPRtxCdLd+9GwlY3FdqCrHjh1jw4YNhISE\nMH36dPz8GljH1ckpKVcO7r/AmPieN9aNEpEUVY1ybJvLFUxanNLSUl577TXmzp1LYGAgdrVzOC+D\nrJJ83j+5hZiA/gzvFs7YoMj6fd60EhUVFXz55Zd88803xMfHM3bsWFxdr3d9c+dAVckvsOHv69Ys\nNhtLRw8AZyqbjsGOHTvIyclh9uzZANjslezJOcbx/HN8lL6DhUNuJ6pbX3p7dm9jSQ0uX77Mxo0b\nyczMZMaMGQwa1IQlFh2cJjs8d/gKLnT4CDZpIywWC3FxcURFRREbG8urr77arkLTrl69mieffBKA\n5cuX8/e///2GyomPj+fkyZNkZ2cD4OpiYVi3cII9uhHs0Y3UyxmkXbnQJrabuvDz8+Pee+/l1ltv\nZfPmzaxZs4ZLly61tVjtikYrG0eL5hjQIYa4Oyuenp7s3buXlJQUNm3aRGJiIi+++GJbi1Unjz32\nGD/72c9u6Fx3d3duuukmkpKSqtM8XN3p6xXEhOAotpzfT7GtlIsluc0lbrPQv39/FixYQL9+/Xj7\n7bfZvHkz5eXlDZ/4I+B6Jyu8D3wmIg+JyBQRmVz1awnhWorOMhoVGBjIihUrWLJkCQB2u51nnnmG\n+Ph4YmJiePPNNwHIzMxk4sSJxMXFVTusAsO9w4gRI4iNja12z1lcXMy8efMYM2YMI0aM4NNPPwWM\nFstPfvITZs2aRUREBM8++2y1HKtWrSIiIoIxY8ZUlw1GsLJXX30VgEmTJvHb3/6W+Ph4Bg8eXH1c\nSUkJc+bMISoqitmzZzNmzBj27t0LwOjRozl16hRZWT+Ed+nj1Z2QrgH09QriYO4pTraj1k0VFouF\nm2++mYULF1JQUMDSpUtJSUlpVy3QlqChUC6GK8RG/oD0en5p11NOW/6MW+64eHt7X5Xm7++vWVlZ\numLFCv3Tn/6kqqplZWU6cuRIPXXqlL7yyiv65z//WVVV7Xa7FhYWanZ2tvbu3VszMjJUVTUvL09V\nVX/3u9/p+++/r6qqly9f1kGDBmlxcbG+88472r9/fy0oKNDS0lINCwvTs2fP6oULF7RPnz566dIl\nraio0LFjx+oTTzyhqqovvPCCvvLKK6qqmpCQoE8//bSqqq5fv16nTp2qqqp//etfdcGCBaqqmpKS\nolarVZOTk6vvbffu3frhhx/WuN8T+ef078e36C0bfq+fZ3yt5wqzm6FmW45Tp07psmXL9J133tHM\nzMy2FqfFcbxjV717P0p/Ng3yyMy2u/ZbG2741I0bN3Lo0CE++ugjwPDze/z4cUaNGsXDDz9MRUUF\nd955J8OHD2fbtm1MnDiRPn2M0LVVw7YbN27k008/5eWXXwaMiWynT58GYMqUKdX+giMjI8nIyCA7\nO5tJkybRrZvhnHzOnDkcP368TvmqjL0jRowgIyMDgF27dvGrX/2qusxhw4bVOGfkyJF89dVXZGZm\nEhwcDEAvz+6EdM2ij1cPjuSdxsvalR5d/dt8ZKo+wsLCePTRR0lOTubdd98lKiqKSZMm0aVL45xR\ndRaue4yuPbqYEJEewP8AFYANeEBVbzz6QxNe+NYmLS0Ni8VC9+7dUVVee+216i6RMzt37uTzzz9n\n7ty5/OY3v8HPz6/eZv3HH3/MwIEDa6R9/fXXuLv/MDbg4uKCzWYDaHT3oOp8i8VSfW5tapfl5ubG\nzTffTFJSEnPmzDHKsVgJ9wnm5qChfJCWRKR/GJklefRqw3k3DeHi4sKoUaMYOnQoW7duZenSpUye\nPJmYmJgfzajVddlsHC4mTgJ/AJYDTzj+/rz5RbsuslV1rKomAO8B89pYnhbD+WXMzs5m4cKFPPHE\nEwDMmDGD119/vfpFPn78OMXFxZw+fZoePXowb9485s2bx969exkzZgw7d+6sbmHk5eVVl7F48eLq\na+zfv/+a8sTHx7Njxw7y8vKoqKioblU1lrFjx/LBB0bcwSNHjpCSknLVMSNHjuTs2bNcuHChOi3U\nI5CeHoH07BrA0fwznLxyvt3ZburC09OT22+/nfvvv5/k5GTefvttzp8/39ZitQrX27L5P8Bc/cHF\nRGyVi4kWkK3RaM3PoTfNEA+8vVJaWkpcXBzl5eVYrVYefPBBfv3rXwPwyCOPcOrUKeLi4lBVevTo\nwbp169i+fTsvv/wyVqsVb29v3n333Wrj8t1331197BdffMFzzz3Hr371K4YNG4bdbic8PJxPPvnk\nKjmqvsbBwcG88MILjBkzBn9/f2JiYuqUu76v9+OPP84vfvELoqKiGDx4MJGRkfj6+tY4xmq1Mm7c\nOJKSkrjvvvsAcLO40s8rmJuDIvn41E6G+IVxriiHMO+gG67b1iQ0NJR58+axf/9+1qxZQ0REBFOm\nTMHDw6OtRWsx2tzFhIgswoiyGQ2sUdWHnfKcw+9mA79T1bX1lDMco5XlC0xX1TP1HKfXc88mLYvd\nbqeiogJ3d3fS0tKYNm0a33///VWzcG02G4sXL+a+++4jNNQIzVtWWcHuzBQ+SEsiwrc3MYH9GRcU\nhZulY83gLS0tZfv27Rw6dIiJEycycuRIXFw6bpzyJk/qc5DlsNkAnBKRm4D+QFMsc+eAPwJv15H3\nOlAKdAd+BiwTkSEAIvJrEdnqCC+Dqh5Q1THAvwG/a4I8Jq1IcXEx48aNIyYmhtmzZ7Ns2bI6p/u7\nuroybty4GlMW3C1WwryDGB88jC0X9lFmqyCjsOMFau3SpQszZ87koYceIjU1lRUrVlQb5TsT7cbF\nhIj8EehZ1bIREQ8gDxiqqicdaauBc6r6u1rnWlW1wrE9HaNlU6fnQLNl03Gx2Wy89tpr3HPPPfTq\n1QuAsspydmceZl3Gl4R6BDAicBA3BQ3By9q1jaW9MdThO2fTpk2EhYUxbdo0vL2bEMqmDWiWlo22\nrouJQUBFlaJxcIC67UMxIpIkIluAXwIvt4A8Jm2Mq6sr48ePr9W6caOfdwhjg6LYnnkQu1ZyLP9s\nh51AJyJERUWxaNEifH19WbZsGbt376aysv0bvxviekej/iYio6r2VfW0qqY2v1gAeAFXaqVdwTAA\n10BVv1PViao6RVVvbdKwt0m7JjY2lpycHM6c+cEk19MzkO5dfYn278vurCPklF4hpzS/DaVsOm5u\nbkyZMoV58+Zx6tQpli1bdpXvnI7G9VrSBPiniBQBazAMut83v1gAFAI+tdJ8gYKmFuw8pdqMstCx\nsFgsTJgwge3bt/PznxszLtwsrvT3DmFcUBTLjn7GiICBfJ9/Fn9373Y70a+xBAQE8NOf/pRjx47x\n2WefERwczIwZM9qV75yGgtNVcb3dqF8CvTB8D/cGvhaRZBH5zY0I2QDHAFcR6e+UNpxmGtZOSEio\njoxp0rEYPnw4ubm51XOEwGjd+Ll7MTU0lk/PfE1xRSkX2tkizRtFRIiIiGDRokUEBwezYsUKkpKS\nqKioaGvRgMa/S02KiCkiPYFVwBRVvaFPiMN1hRX4dwxFNh+wqWqliKwB1JEWB3wK3NyUrltnMBCv\nW7eO2bNnc/ToUQYNGtSq1169ejXJycksXryY5cuX4+npecMru5vCvn37OHjwIA899FB12rmiHA7l\npbPy+y+Y0XMk/XyCGRsUibvF2urytSRVvnMuXLjAjBkziIiIaFezkJtr6BsR8RSRn4nI5xitDxvw\nUAOnXYvngGLgWeABx/bvHXmLAA8gCyM43oLmsBF19FXf//jHPxg/fjxr19Y55ajVaIoLiaYyfPhw\n8vPzSU//wXlkiEc3fK1e3Np7NJ+e+ZqKShunCjLbRL6WpMp3zm233caWLVvaje+c5l71/RGGLWUH\nsBAIvJ7z28OPDr7qu7CwUHv16qXHjx/XiIgIVVW9cOGCTpgwQWNjYzU6Olp37dqlqqqJiYkaFxen\nMTEx1ausi4qK9OGHH9b4+HiNi4vTTz75RFVV33nnHZ09e7bOnDlTBw0apM8880z1NVeuXKmDBg3S\n+Ph4nT9/fr2rup999lkdPXq0RkREVMtQXFys9957r0ZGRurdd9+t8fHxNVZ1N4X9+/frypUr1W63\nV6fllRXoF2f36GM7/6YvH/hQvzizR3NLC5rleu0Rm82mu3fv1pdeekk3bdqkZWVlbS1S86z6Br4D\nnlLVDj3jqKp/2RHtNf/85z+ZOXMmAwYMIDAwkH379rFt2zZmzpzJv/7rv6KqFBcXk5OTw6OPPsqu\nXbvo06cPly9fBuBPf/oTU6ZM4e233yY/P5/Ro0czdepUAA4cOMD+/fuxWq1ERETw5JNPYrFYeOGF\nF9i3bx8+Pj4kJCQQFxdXp2yVlZV88803JCYm8sILL7Bp0yZef/11unXrRkpKCocPHyY2NrbZ6iI6\nOpqdO3eSnp5OeLjhAtvPzYvQrgFMCo1h1bEvGN4tnMN5pxjTY0iHNxbXRZXvnOjoaDZv3szSpUuZ\nNm0akZGRrd61ashQfL0uJv7SVIHaA9ds6gHzX287w+Kbj3e7Zv7atWurXTLMmTOHNWvWcOeddzJ3\n7twO6UKiKbi4uDBx4kS2b99Ov379ql+u/j4hZJbkEdMtnO0XDjK5ZwzpBZkM9G35WOFthbe3N3ff\nfTenT58mMTGRPXv2MGvWLIKCWm+tWNUHvD7PkR1rEUkr0dAL31bk5eWxdetWUlJSEBEqKysREV5+\n+eUO60KiqURGRrJjxw5OnjzJgAEDAOjq6k5/7xCKgyJZfvRzYgLCsduVUI8APK2d24dMnz59mD9/\nfrv0ndNxV3s1gY5qIP7oo4948MEHSU9PJy0tjYyMDPr168eOHTs6tAuJpuDcunFWZL28AvF18+Tu\nsLGsTduOopws+HG4cqjynbNo0SJsNhtLlixh3759LT6ruiED8Y+yZdNQN6q98sEHH9Tw/QtG12Xu\n3Ll4enri6uraIV1INJWq1s2JEyeqW2xWF1cG+fakrLKC3p7d2ZWZwrjgKHp7FuLv7tWs12+veHh4\ncPvttzNixAgSExNJTk5m1qxZ9OzZMt3JhrpRTZpn0xEREX3++ec7rIG4o9FYFxJN5ciRI+zevZtH\nHnmkWvHZ1c6+Sye5WJTH4tR1LBh8G4FdfBjVPaLTzb1pCFXlwIEDbNmyhYEDBzJlyhQ8PT2b9RpV\nBuIXX3yxznk2jVI2IrITY3JdvajqhBsXs/XoDJP6OhKFhYVMmjSperbrX/7yF6ZPn97s11FVli9f\nzqRJk4iIiKhOL7aV8tXFVL7LPsaZoix+0m88vm6eDO8W3ilHpxqiNXzn1Depr7HKxnnSngBLMZYs\nVKOqq5sqZGtgKpvOy9GjR0lKSuLRRx+t0a07W5TNwdw03kj9nAcHTMXX3YuBPqH09Q5uQ2nblqys\nLBITEykpKWHWrFmEhYU1W9lNUjZ1FJarqu1zyKYBTGXTeVFVVqxYwYQJExgyZEh1ul3tfJN1lP2X\nTrL5/D6eHHoXldg7pFe/5kRVOXLkCBs3bmxW3znNtlyhM9BRR6NMro2IkJCQQFJSUo2RFxdxIcKv\nN+E+oQzx68O7JzZTYbdxobjtp/i3JSJCZGRks/nOaWg0ymzZmHQqVJW33nqLsWPHMnTo0Brp+y+d\nJL+8kLVp2+nl2Z1xQZGMD47+Udpu6iI3N5cNGzaQm5tbPUv9RmiqzaZ2eN11wJ3UjBu19YYka2VM\nZdP5OX78OJs2bWLhwoU1bDdFFaV8nZVKma2cxan/5H8NvYMRgQMJ8TDD1ztz7NgxNmzYQFBQENOn\nT8ff3/+6zm9qN+rtWr9LGFEPqvbfui5pTG6YxYsXM3To0GrHUS1NTEwMP/3pT2ukzZ07l/DwcGJj\nYxk8eDC/+MUvOHfuXHV+UVERCxYsYMCAAYwaNYrJkyfz3XffAcbs4ri4OKKjo5kzZw6lpaXNLvOA\nAQNwc3Pj8OGaro88rV0Y1i0ci8WVIb692X/pJKcKLnZYF6ItxaBBg3j88ccJCQnhzTffZPv27c3i\nO6dRykZV+zXwC2+yJK1IR7bZLFu2jM2bN/Pee+/VSG8JH7VHjx7Fbrezc+dOSkpKauT99a9/Zd++\nfRw9epSYmBgmT55cvUThkUceISAggBMnTvDdd9+xatUqcnJyACNI2969ezl06BBWq5U33nij2eV2\ntt3Y7fYaed27+hLh25P4HoPZffEIuWVXuFJR3OwydHRcXV2ZMGECjz32GNnZ2bz++uscPXr0moq5\nRWw2HZmO3I1auHAhK1euZPDgwTz88MNcvnyZkydPkpaWRlhYGCtXrmThwoXs2bMHq9XKK6+8QkJC\nAqtXr2bdunUUFRVx4sQJnnrqKcrLy3nvvffo0qUL69evr9PN5PPPP4+3tzepqalMmzatOkDc3Llz\nuf3226sXXoIxe/Spp54iMjKSadOmceLEiTpnFfv4+HDliuFaevny5Rw6dIglS5Y0e12pKqtWrWLU\nqFFER0fXyLPZK9l98TAfpG2nr1cwt/YZTaR/32aXoTORlpZGYmIivr6+zJw5k8DA+kMdN6kbJSIj\nRCTKab+HiLwvIgdE5A0R+XHM/25jli1bRs+ePdm+fTu//OUvAUhNTWXr1q28//77LF26FBcXFw4e\nPMiaNWt46KGHKC8vB+Dw4cOsW7eOb7/9lt///vd4eXlVr6F6991367zeBx98wH333cd9993HmjVr\nrilbbGwsR48e5fDhw9eMX12l6G02G4mJiVcpgubiWq0bVxcL4T4hxAYMYE/OMS4U5XaI0L1tSXh4\nOAsWLKB///6sXLmSTZs2UVZWdl1lNHaSwd+AF4GqVXRvAqEYcaPuB/5CrUl+HZnxn7WES+XGsfO2\nV6+ZX+WIqIo77rgDNzc3wHDn8OSTTwIQERFB3759OXbsGACTJk3Cw8MDDw8P/Pz8uO222wDDJ8yh\nQ4euuk5ycjKBgYH06tWLkJCQ6pZUfY62G9taLCkpqfaHM378eObNa7mw7P369cPT05NDhw4xfPjw\nGnnBXf3p7x3CBrVzqiiLy+VFBHap7V/fxBmLxcJNN91EVFQUW7ZsqfadExUV1SjfOY1VNkOAnQAi\n4gfMAqJU9ZiIfAJ8SSdSNg298O2Ja61vcVYAzu4jRKR639mVhDNr167l+++/Jzw8HFWloKCAjz/+\nuF7lsG/fPqZOncrQoUPZv38/qlrnA+jh4cHevXsbfX9NQUSYNGkSn3zyCdHR0TWm5VtdXOnnHUJc\nwAD25hzj5h5DTGXTSLy9vbnrrrs4c+YM69evZ8+ePdxyyy0N+s5p7GiUK1Du2B6DEdv7GIAaMbXb\nT1yJHzHjx4/n/fffB4zhyzNnztRYJ9RYVJUPP/yQlJQU0tLSSE9PZ926dTW6Us6KbPHixWRmZjJz\n5kzCw8MZNWoUzz//fHV+RkYGiYmJV53XGvTt2xdfX18OHDhwVV6Qhz/D/MM5ln+OjMIsKtVeRwkm\n9dG7d2/mz59PdHQ07777LuvXr79qIMGZxiqbw8A9ju37gM1VGY4ICx07IlgH4lrN1ccff5zKykqG\nDRvG/fffz+rVq7Far17d3FCTd+fOnfTq1avGl2rChAmkpqZy8aIR/++ZZ54hNjaWiIgIkpOT2bZt\nW/VK7rfeeovMzEwGDBjAsGHDmDt3Lj169GjUtVuChIQEduzYcdWInYerO328e9DHqwfH8s9ypbyo\n1WXr6Li4uDBy5EgWLVqE3W5n6dKl9R7b2El94zDCqChQCYxTR3A6R8yoeFWd0yzStzCmi4kfJ++9\n9x6RkZFX+U/OKytgeep6ThdlMT9iFjEB/dtVWJSOxPbt2/n000959dVXm7YQU0S8MeJvH1PVAqf0\nCKBAVTuEG7SOPPRtcuOcOXOGjz/+mCeeeAKL5YflCXa1s/7Mt/y/w+v4VeRsbg4agr970xcj/php\n8tA3EKaqyapaICLdq4a+gV9zdUxuE5N2Re/evaujUTjjIi4M8ulFUBc/MotzOXr5LAUV9dsdTG6c\nxtps/gY4O/94C6OVswKIwhj6bnNE5H4RyWprOUzaJwkJCezcufOq0bfuXf2I6taXr7NTKbOX89XF\nI6RePo3dNBg3K41VNnUNfT+gqksx5tnc3jLiNR4RcQH+BejQMa1MWo4qo3ftoXcfNw9GBAwkuaEG\nWwAADENJREFUpzSfzOI8At19OFOUzbH8s20kaeekMw193w98CJifI5N6SUhIYNeuXTVaNxZxoadn\nIFNCYlmX8SWXywsJdPPhTFEOxbbmXyj6Y6XNh75FZJGIfCcipSKyslaev4j8j4gUiki6iNxfTxku\nwD2q+gFObi9M2o72utA1NDSU0NBQkpOTa6Z7BjDQtycRvj156eCHfHL6K1yAi8WX20bQ66C91nVt\nGqtsngWWi0gucCvwklPeHGB3E2Q4B/wRw1VFbV4HSoHuwM+AZSIyBEBEfi0iW0XkKUfeh02QwaSZ\nac8vwMSJE9m1a1cNtwl+bl6EeHZjckgs/x77ACeunGfL+f2cLmr/k/3ac10701gXE7uAPsA0ILxq\njo2DzzFGpG4IVV2nqp8ANWLeiogHMBt4TlVLVHU38E/g547z/lNVJ6vqK8BQ4EERSQQGisjfblSe\n5qSpD8H1nN+YY691TH15daU3Nq21uN5rh4SE0KtXL/bs2VPj/HDvEMrtNlRh4eDb2J97ksziXPJr\nTfZr6Ho3mt8Z69qZRvsgVtWCqqHvWunft9Acm0FAhaqedEo7AETWIdtvVXWmqs7CmAf0qxaQ57ox\nlU3rcCPXTkhI4Msvv6S8vLz6fC9rV0Z2H4iHtQuFlaWMDBzEgdw0LpbkXdf1TGVTN+3Gn42I/BHo\nqaoPO/bHAR+qaqjTMY8AP1XV2m5Kr+c67eOGTUw6MXVN6mvPcSwKgdrLcH2BgjqObTR1VYKJiUnL\n055DuRwDXEWkv1PacIyRMRMTkw5GmysbEbGISBfAgqFc3EXEoqrFwH8DfxARD0e36nbgvWuVZ2Ji\n0j5pc2UDPAcUYwyvP+DY/r0jbxHgAWQBfwcWqGpqWwhpYmLSNNqNgdjExKRz0x5aNu0ChxP33SKy\nXUQ2i8i1fRya3DAiMkpEvnTU9fsiYoakbAFExEdEvhGRKyIytOEzWhZT2fxAtqqOVdUEDLtQy3ni\nNjkNTHLUdQZGdFWT5qcIuAX4r7YWBNr30HerUsujljfmqFeLoaoXnXbLMRfPtgiqWglcknbierBT\ntGyaYzGn49jhIvI1hmG6dUIAdDCaq64dx4dhLIH5tCVl7og0Zz23FzqFsqF5FnOiqgdUdQzwb8Dv\nWkXyjkez1LWI+ADvAg85vsAmNWmWem5PdKrRqDqWPHgAecDQqjVWIrIaOKeqv6t1rlVVKxzb04Hp\nqvp0q95AB6KJdW0BPgH+qqrbWlfyjkVT6tmpjFUYdd2mpoHO0rKpj0Yv5gRiRCRJRLYAvwRebg0B\nOxHXU9f3A6OBf3N8he+p4xiTurmeekZEPsfoqq4QkQdbQb566ewGYi+udsZ+BcMAXANV/Q6Y2BpC\ndVKup67/jjFJ0+T6aXQ9A6jqrS0uUSPp7C2bFlnMaVInZl23Dh22nju7sjEXc7YeZl23Dh22njuF\nsjEXc7YeZl23Dp2ynlW1w/+A5zEmhlU6/f7dkecP/A9G8/MUMKet5e3IP7OuzXq+0V+nGvo2MTFp\nv3SKbpSJiUn7x1Q2JiYmrYKpbExMTFoFU9mYmJi0CqayMTExaRVMZWNiYtIqmMrGxMSkVTCVjYmJ\nSatgKpsbRERWicgf2lqO5qaz3ldTcXjEu+Gwzw2UHSYidodj8keaqawmv9siMkVECkSksjnu3VQ2\nDeCIAJArIta2lgVARB4SkZ1tLYdJs6OAr6q+1UxlNb0Q1S2q6o3hlL7JmMrmGjh85I7DWKNyRxuL\nU4XQwMPUHF81k5ahgbA17cIxeR00i1zmQ3ltHgS+At4BfnGtA0VkvogcF5EcEVknIiFOeXYReUxE\njjlaSUuc8lxE5BURyRaRkw5H13U2g0VkMLAMuMnRvM11pK8SkddF5HMRKQASROQWEdkrIvkikiEi\nz9cqa5wYcbLyHPlXeXETEW+HJ72/1ZGXICIHnfY3ici3Tvs7ROQOx/azInLC0U1IEZG7HOlujusP\ndTovUESKRSTQsX+biOxzHLdLRKKdjk0XkadE5IAjf62IuDnyrmoBOuo13KnOlorIekdd7hSRIBH5\nT8f/6IiIDK9126NF5LCIXBKRt6uu1Ug5nxGRA0BhYz8GInKno8x8x7M13ZG+TUT+LEZMqHwxnJ/7\n1VPGT0QkTUSGOnWxfiEipx338ZiIjHTUYa6IvNYY2W6Itl4J2p5/wHHgMSAOI+RId6e8VcAfHNuT\ngWwMvyJWYDGQ5HSsHcPnrjfQGyOc8HRH3gIgBQjBcIK0CWOFr0s9Mj0E7KiVtgrDL+0Yx74bMAGI\ndOxHAReAOxz7YRje3e7FcGHgDwxzvi+gG/AN8GI9cnTBCJXcDcPjYyZwBvB05BUBfo5jfwIEObbv\nwVitXLX/FvBHp3IfB9Y7tmOBi8BIjK/rz4F0wOrITwe+BoIAP+AI8Og16qkSCHe6zywgxlFfW4A0\njBDQguFsfKvTuenAQSDUca1dTv//xsi513Guex11GVb7f47hNvUyMNmxHwIMcmxvc9T1EKArRlyo\n92qXBczF8H/TzynPjuEw3Q2YCpRguKwIcMh3ERhfS770Kjma9D619QvdXn8Y3acywN+xfwT4Za0X\nvOphewv4D6c8Twzl1Mexbwducsr/AHjGsb0FmO+UN6X2g1dLrvqUzTsN3M9/Aq84tn8LfFzPcasw\nPPofAn7TQJlJwF1APPAF8A9gOpAA7L/GefuA253u94RT3i7gAcf269RSdsDRqpfB8RLc75T3EvD6\nNerJTk1ls9wp738Bh532o4Bcp/30Wv+nWcDx65DzoWvUR13K5o2q/1cdx28D/uy0P8TxrAo/KJSn\ncHzE6rhOsFNaDnCP0/5/AU/Wul6zKBuzG1U/DwIbVTXPsb8W4wGui1CcjGiqWgRcAno6HeMcmK0Y\nw5ds1blnnPKqtx1dnQJH9+NQA/I6l4GIjHZ0gbJE5DJGCy3Qkd0bOFm7ACduxWidLG/gmjuASRit\nqO2OXwKGL+ckJ1kedOpi5GE4566SZRvQVYyQvGEYrcN1jrww4ClH8z7XcW4vjDqror56bQzO55bU\nsV+7rLNO2xlOcjRGTudzG0ND/yPn/3cGRos60CntaWCpql6o49wsp+3G3Hez0Nkdnt8QYnhIuxdw\nEZGqf5Yb4Cci0apa+8U/j/HAVZ3vidEsbcwDdgHjwayiT9WGqu7iakfW9RmHa6evwejOzVDVChH5\nT4dMYDyoo68h0wqMrlWiiMxQ1ZJ6jksCXsF42P8Do9n/JkZMo6UAItLHUd4kVf3KkbYPh9FRVe0i\n8iHwU4yH/jOHsq6S80+q+n+vIWt9FAEeVTsiEnwDZdSmt9N2GMb/HRon5/WOEJ0B+l8jv7Ys5Rit\nlD6Oa00HvhCRi6r639d57RbBbNnUzd2ADaN5OtzxG4LRxK8rHMZaYK6IDBMRd+DPwNeqeqaOY2vz\nIfBLEQl1GPmeaeD4i0AvaXgo3gvIcyia0RgvcxXvA1NE5F/EcD/ZrbYxVFWfAL4HPnMo37r4EojA\nUFzfquoRjAc/HqPVA0aX0g7kiGEMn4vRRXFmLTDHIeMap/Q3gQUO+RERTzEM354N3Ds4wps4/U+e\n5/pf+NqjMItEpKeIdMMIYviPZpCzPt7GeKYmiUGoiEQ45f9MRAaLEUfqReAjdfR5HHIfBmYCS0Tk\n9mvcU6thKpu6eRBYqarnVDWr6gcsAR6oPZqgqlswomj+N0Ykw37Afc6H1Crfef9NYCOG8TEZ+Byw\nqWp98a+3YjxImSKSVc8xYBha/ygi+cBzGHaiKnnPYAScfxrIxbChDKujjEcxvrDrnEdenMopdsic\noqo2R/JXwClVzXEck4rR+vkaw4gciaG0ncv5FqMlEgIkOqUnA/MxXphcDGOnc1e2XuWhqscxDN1b\nHOfdyNwkrbW9BuN/dQJj8OBPTZXTCcFJEagRWmgu8DcgH6OL2sfp+PeA1RitKzeMWGc1rqeqBzH8\nE68QkRn1yNLQfrNhugVtZ4jITGCZqvZra1lMWgdHV/MoRvfzf6tqXSF3nY/fhjH6tPJaxzWDXJOB\njzHsQbeqalIDp1wT02bTxji6KJMwvpjBGM39dtHHNmkdVPU0Tval9oKqbsWw3TULZjeq7RGMPncu\nRpfkMIbCMTGpjw7ZHTG7USYmJq2C2bIxMTFpFUxlY2Ji0iqYysbExKRVMJWNiYlJq2AqGxMTk1bB\nVDYmJiatwv8HlOR3Hbgb1TAAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x115b20b10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dk = 5.649717514124294\n", "\n", "lw = 1.\n", "\n", "Essh = fac*(slab1['Eu']+slab1['Ev'])/(A*((2*pi*slab1['k'])**2))/2.\n", "Esshu = fac*(slab1['Euu']+slab1['Evu'])/(A*((2*pi*slab1['k'])**2))/2.\n", "Esshl = fac*(slab1['Eul']+slab1['Evl'])/(A*((2*pi*slab1['k'])**2))/2.\n", "\n", "fig = plt.figure(figsize=(8.27/2-.25,11.69/3-.25))\n", "ax1 = fig.add_subplot(111)\n", "\n", "ax1.fill_between(k,fac*spec[:,3]/dk,fac*spec[:,4]/dk, color=color1, alpha=0.25)\n", "ax1.fill_between(k,fac*spec[:,5]/dk,fac*spec[:,6]/dk, color=color2, alpha=0.25)\n", "ax1.fill_between(slab1['k'],Esshl,Esshu, color=color3, alpha=0.25)\n", "\n", "ax1.set_xscale('log'); ax1.set_yscale('log')\n", "\n", "ax1.loglog(k,fac*spec[:,1]/dk,color=color1,linewidth=lw,label=\"Descending\")\n", "ax1.loglog(k,fac*spec[:,2]/dk,color=color2,linewidth=lw,label=\"Ascending\")\n", "\n", "ax1.loglog(slab1['k'],Essh,color=color3,linewidth=lw,label=\"from ADCP\")\n", "\n", "\n", "ax1.axis((1./(1000),1./4,.4e-5,10))\n", "\n", "ax1.loglog(ks,Es2/4.,'-', color='0.5',linewidth=1.)\n", "ax1.loglog(ks,Es5/5.,'-', color='0.5',linewidth=1.)\n", "\n", "plt.text(0.0011, 3.1/10/2.,u'-3/2',fontsize=12)\n", "plt.text(0.005675/3.25, 16.51,u'-5',fontsize=12)\n", "\n", "plt.xlabel('Along-track wavenumber [cpkm]')\n", "plt.ylabel(u'SSH variance density [m$^{2}$/ cpkm]')\n", " \n", "#plt_spec_error(sn=158)\n", " \n", "#lg = plt.legend(loc=(.35,.65), numpoints=1,ncol=1)\n", "lg = plt.legend(loc=3, numpoints=1,ncol=1)\n", "#lg.set_title(r\"SSH variance spectrum\",{'size':25})\n", "lg.draw_frame(False)\n", "\n", "plt.axis((1./1.e3,1./4.,1./1.e4,5.e1))\n", "\n", "plt.text(1./15, 18., \"AltiKa\", size=8, rotation=0.,\n", " ha=\"center\", va=\"center\",\n", " bbox = dict(boxstyle=\"round\",ec='k',fc='w'))\n", "\n", "add_second_axis(ax1)\n", " \n", "plt.savefig('figs/spec_altika_asc_desc',bbox_inches='tight')\n", "plt.savefig('figs/spec_altika_asc_desc.eps',format='eps',bbox_inches='tight')\n", "plt.savefig('figs/spec_altika_asc_desc.pdf',format='pdf',bbox_inches='tight')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAugAAAKDCAYAAABIaf8JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VNX9//HX585k3wj7LouiLAKiuCBVEEWtrQtWBS0U\nXLBqXWtbv9bWqLVq/bZq/RWXuqFWbP261wWpGDarIggKKovs+xYISUgyy/n9McmYkIUkJGSSvJ+P\nxzxM7j3n3M+9c4mfOXPuOeacQ0REREREYoPX2AGIiIiIiMj3lKCLiIiIiMQQJegiIiIiIjFECbqI\niIiISAxRgi4iIiIiEkOUoIuIiIiIxBAl6CIizYyZhc2sVyMc91QzW1+L8mvMLN/MppbZVi+xm9kR\nZrbXzIJmdvnBticicigpQRcRqQdmdpuZvbvfthVm9s5+25ab2cUNHM4hWeCiimS6Nsd2wI+ccz+r\nY/2qG3ZuhXMuDZhTH+2JiBxKStBFROrHbOAkMzMAM+sI+IFj9tvWu6RsQ7IGbr9UfSTT+8d6qGIX\nEYlZStBFROrHfCAeGFzy+w+Aj4Bl+237zjm3BcDMHjazdWa2x8zmm9nwku2dzKzAzFqVNm5mx5jZ\ndjPzlfx+uZl9bWY7zew9M+teWVBmFm9m/2tma81ss5lNMbOEkn2nmtl6M7vFzLaa2UYzm1imbmsz\ne7skvk/N7B4zm1OybxaRZPpLM8s1s4u+r1Z5e7VlZsNLrs8pJb+Hzeyakm8h9pjZ3WbWy8zmmdlu\nM3vZzPx1PZ6ISKxQgi4iUg+ccwHgU+CUkk2nEOkpn1vJtlKfAQOBTOAl4BUzi3fObQY+Bi4sU3Yc\n8IpzLmRm5wG3AecD7YgM45hWRWgPAIeXHOdwoAvw+zL7OwJpQGfgSuBvZpZRsm8KsBdoD0wEfkZJ\nr7lz7tSSMkc759Kdc6/UoL0aM7OzgH8AFzjnyl6z0cAxwInAr4EngEuBbsDRRK6TiEiTpgRdRKT+\nzOL7ZPwHRBLnufttm1Va2Dn3knNut3Mu7Jx7CEgAjizZPY1I4llqLJGEFeBq4D7n3HLnXBi4Hxhs\nZt0qiekq4Gbn3B7nXH5J2bJJbDFwj3Mu5Jx7D8gDjjQzDxgD/N45V+Sc+waYun/jVBySUml7ldSr\nzsXAY8BZzrkF++17wDmXXxLPEuAD59xa59xe4D0iybuISJOmBF1EpP7MBoabWSbQ1jn3HZGe8GEl\n2wZQpgfdzG4tGaaSY2Y5QDrQtmT3q8CJZtbBzE4FQs65eSX7DgMeMbNdZrYL2EmkZ7tL2WDMrB2Q\nDCwoU/Y9oE2ZYjtLkvxSBUAqkZ55H7ChzL6azNBSVXu1cSPwr5IkfH/byvy8D9i63++1PZaISMzR\nWD0RkfrzX6AVkV7reQDOub1mtqlk20bn3FqIjK8GfgWMdM59XbJtFyU90s653Wb2AZGe877Ay2WO\nsw74g3OuqmEtpXYQSZD7lwybqY3tQBDoCqws2VZZD319c8BFwDNmttE599dDcEwRkZiiHnQRkXri\nnCsEPgduofz0fvNKtpUdS50GBICdJQ9y/r5kW1nTgAlExqK/VGb7E8DtZtYPwMwyzOwnlcTjgL8D\nD5f0pmNmXcxsdA3OJQy8BmSZWZKZHVUSS1lbgPqeb92ATcAo4AYz+3k9ty8iEvOUoIuI1K9ZRIaH\nzC2zbU7Jtllltk0veS0HVhPp6d5/CMlbwBHAZufcV6UbnXNvEBlL/rKZ7Qa+BM4qU6/s9Ie/IdID\n/klJ2Q+APtXEX7bu9US+EdhMZPz5S0BRmf1ZwPMlw2cqfECopL2aKH0IdT1wOvCbMgsN7d/WIZnv\nXUTkULNIB4uIiEj1zOx+oINzblI9tfctkVlfXq+vNsu0fTiRqS/jgGudc8/XZ/siIg1JCbqIiFTK\nzI4E4p1zX5nZ8cA7wOXOubcbOTQRkWZND4mKiEhV0oBpZtaJyGwpDyo5FxFpeOpBFxERERGJIXpI\nVEREREQkhihBFxERERGJIUrQY4SZZZvZPjPLNbO9ZvZNmX2jzOwbM8szsw/NrPt+dR8wsx1mtr1k\nloUmqWQu6KfMbI2Z7TGzhWZ2Vpn9TeY6mNl1ZjbfzArN7Jn99jWZ82hIZnZEyT3/fJlt1V6bWHGw\n92osOZh7NdZV93dVRCSWKUGPHY7IVGDpzrk051xfADNrQ2TJ798CrYEFwD9LK5nZ1cC5wNHAQODH\nZjb5UAdfT/xEVkj8gXMuA/gd8C8z694Er8NG4B7g6bIbm+B5NKT/B3xW+ouZtaWaaxNj6nyvxqA6\n3atNRKV/V0VEYp0S9NhilWwbAyxxzr3mnCsmsjDIIDMrXWhkAvBn59zmkqW8/xeYeCiCrW/OuQLn\n3N0lC5TgnHuHyAIux9LEroNz7g3n3FvArv12NanzaChmNhbIAT4ss/kCqr82MeMg79WYchD3alNR\n2d9VEZGYpgQ9ttxnZtvMbI6ZnVqyrT+wuLSAc66AyKqA/SvbX/Jzf5oBM+tAZBXFpTSf69BczqPO\nzCwduAu4hfLJ04GuTcyq5b3aVDSX86js76qISExTgh47fg30AroAfwfeMrOeQCqwZ7+yuUTmJ6aS\n/bkl25o0M/MDLwLPOeeW03yuQ3M5j4NxN/B359ym/bYf6NrEpDrcq01FcziP/f+uvl3yd1VEJKYp\nQY8Rzrn5zrl851ygZEnqecA5QB6Qvl/xDGBvyc/7788o2dZkmZkRSXiKgOtLNjeX69BczqNOzGww\ncDrwcCW7D3RtYk4d79WmosmfRxV/V3/Y2HGJiByIEvTYtxQYXPqLmaUAvYElZfYPKlN+cMm2puxp\noC0wxjkXKtnWXK5DczmPujoVOAxYZ2abgVuBC83scyLXoLJrE8vnX5t7NZbPozLN5TzKcmhMuog0\nAUrQY4CZZZjZaDNLMDOfmV0G/AB4D3gd6G9mF5hZAnAnsMg5t6Kk+vPALWbW2cy6EBnX+2xjnEd9\nMLPHgaOAc0seTCvVpK5DyfuYCPgAf+l7SxM7jwbwBJEkbzCRDyKPA+8Ao4E3qPzaLG+sYKtTh3s1\nVs+jtvdqTJ7H/qr5u/p+Y8cmInJAzjm9GvlFpAfuMyLjPXcBHwOnldl/GvANkA/MBLrvV/9+YCew\nA7ivsc/nIK5DdyAMFBD5Gn0vkTGv45radSCSzISBUJnX75vaeRyi6/R8md+rvTax8jrYezWWXgdz\nr8by60B/V/XSSy+9YvllzrkD5fAxycwOA+bz/dCAi5xzOxsxJBERERGRg+Zv7AAOUrZz7uLGDkJE\nREREpL409THow81slpnd29iBiIiIiIjUh0ZP0M3sOjObb2aFZvbMfvsyzex1M8szs9VmNq7M7k1A\nb+fcqUA7M7vgkAYuIiIiItIAGj1BBzYC9xCZrmx/U4BCoB3wU+AxM+sL4CLz2u4rKfc65aemExER\nERFpkho9QXfOveGce4vIU/ZRZpYMjAHucM7tc87NA94ExpfsL7u64g+ILEEtIiIiItKkxfJDon2A\ngHPuuzLbFhNZ6AQi48//QGT6r9XAHVU1ZGZNc6oaEREREWlSnHMHvSBao/egVyOVyLzCZeUCaQDO\nufedc8c55051zk10zoWra6yx57Osj9epp57aKMe98847Y67NulyL2hyzpmVrUq66Mg1xbRvrdbDn\nUpf6LfHerGn5+ijTXO7PxvjbGYv3Zl3baIy/nc3l3jsU72msHDfW/x9wqP6/Xl9iOUHPA9L325ZB\nZEGQFqlHjx6NctwRI0bEXJt1uRa1OWZNy9akXENcv1jUGOfZEu/NmpbXvfm9xvjbGYv3Zl3baIy/\nnS3l3mys84zF+7Op3Ju1PW5dxXKCvpzIstO9y2wbBCxtpHganRL07ylBjz1K0COUoMceJegH14YS\n9IajBP3g6jfn/683eoJuZj4zSwR8RBLyBDPzOecKgNeAu80s2cyGAz8GXmjMeBtTS/mDVRPN5Vo0\nl/OoD83lWjSX84Dmcy7N5TxEpOWw+hwvU6cAzO4E7gTKBnKXc+5uM8sEngHOAHYAv3HO/bMOx3CN\nfZ4iIiIi0ryZGa4eHhJt9FlcnHN3AXdVsS8HqJcFiLKyshgxYoR6UkRERESkXmVnZ5OdnV1v7TV6\nD/qhoB50EREREWlo9dWD3uhj0EVERERE5HtK0EVEREREYogSdBERERGRGNJiEvSsrKx6HbwvIiIi\nIgKRh0SzsrLqrT09JCoiIiIiUg/0kKiIiIiISDOkBF1EREREJIYoQRcRERERiSFK0EVEREREYogS\ndBERERGRGNJiEnRNsygiIiIiDUHTLNaBplkUERERkYamaRZFRERERJohJegiIiIiIjFECbqIiIiI\nSAxRgi4iIiIiEkOUoIuIiIiIxJAWk6BrmkURERERaQiaZrEONM2iiIiIiDQ0TbMoIiIiItIMKUEX\nEREREYkhStBFRERERGKIEnQRERERkRiiBF1EREREJIYoQRcRERERiSFK0EVEREREYkiLSdC1UJGI\niIiINAQtVFQHWqhIRERERBqaFioSEREREWmGlKCLiIiIiMQQJegiIiIiIjFECbqIiIiISAxRgi4i\nIiIiEkOUoIuIiIiIxBAl6CIiIiIiMUQJuoiIiIhIDFGCLiIiIiISQ1pMgp6VlUV2dnZjhyEiIiIi\nzUx2djZZWVn11p455+qtsVhlZq4lnKeIiIiINB4zwzlnB9tOi+lBFxERERFpCpSgi4iIiIjEECXo\nIiIiIiIxRAm6iIiIiEgMUYIuIiIiIhJDlKCLiIiIiMQQJegiIiIiIjFECbqIiIiISAxRgi4iIiIi\nEkOUoIuIiIiIxBAl6CIiIiIiMUQJuoiIiIhIDGkxCXpWVhbZ2dmNHYaIiIiINDPZ2dlkZWXVW3vm\nnKu3xmKVmbmWcJ4iIiIi0njMDOecHWw7LaYHXURERESkKVCCLiIiIiISQ5Sgi4iIiIjEECXoIiIi\nIiIxRAm6iIiIiEgMUYIuIiIiIhJDlKCLiIiIiMQQJegiIiIiIjFECbqIiIiISAxRgi4iIiIiEkOU\noIuIiIiIxBAl6CIiIiIiMUQJuoiIiIhIDFGCLiIiIiISQ5Sgi4iIiIjEECXoIiIiIiIxRAm6iIiI\niEgMaTEJelZWFtnZ2Y0dhoiIiIg0M9nZ2WRlZdVbe+acq7fGYpWZuZZwniIiIiLSeMwM55wdbDst\npgddRERERKQpUIIuIiIiIhJDlKCLiIiIiMQQJegiIiIiIjFECbqIiIiISAxRgi4iIiIiEkOUoIuI\niIiIxBAl6CIiIiIiMUQJuoiIiIhIDFGCLiIiIiISQ5Sgi4iIiIjEECXoIiIiIiIxRAm6iIiIiEgM\nUYIuIiIiIhJDlKCLiIiINHV5uRAONXYUUk+UoIuIiIg0detXwe5dLN8UYF+x+377lvVK3JsgJegi\nIiIiTUgg5CpuDIcBCIUc+4rCEA6zOSdE3vbdUFR4iCOUg6UEXURERKQJ+W5z4PskPRwuSc4jv4cc\n4MKw7Ety9gTYsDeu0eKUulOCLiIi0kRNnDgRz/O4/PLLGzsUaUg5O6AgP/qrAwKFQQLFIXYsW83u\nL5cQXvwZBYsWEl63mu27itlbCG7jGpxzYNZ4sUud+Bs7ABERaZpeeeUVpk2bxsKFC9m2bRs+n48O\nHTrQqVMnjj/+eH7wgx8watQo0tLSKtQNBoM8//zzvPrqqyxevJgdO3aQmJhIhw4d6NKlCyeeeCKn\nnHIKI0eOJCEhoVzdESNGMHv2bEaMGMHMmTOrjXHq1KlMmjQJM2P16tV07969Xq9BYzMzTMlX87dl\nA6SkQvfDI787WLv4OywtA5cXpNPc1/GW/ZfVrQbzUMoZbP36SQZ38vPLrsnEFeXDolSYcAOktWrc\n85AaU4IuIiK1smfPHs477zxmz54dTQ79fj8pKSmsX7+e1atXM2/ePB566CGee+45JkyYUK7+hg0b\nOPvss1m6dGm0fnx8PH6/n1WrVrFy5Uqys7O5//77yc7O5pRTTilXX0np9zp16sSRRx5Jp06dGjsU\naUjhcLQHfd++IDvWbSXThfEFAriwo9Wy/wLwcK9fs+qTacx+9SEWtOtCm1un0cZtZeIXf4dx1zTm\nGUgtKUEXEZFaGT9+PLNnz8bv93PzzTczefJkevfuDUA4HObrr7/m/fff56WXXqpQNxwOc+6557J0\n6VJSUlK4/fbbmTBhAl26dAEgEAjw5Zdf8u677/LCCy9UGYNzlTwk1wL98Y9/5I9//GNjhyENJW8v\nFO0jOr487Pj7f/L5an0KXVP8/OTwPXjByh8A3Rfy8W1KP0jpR3KogIs9jWpuSpSgi4hIja1cuZJ/\n//vfmBn33nsvv/rVr8rt9zyPAQMGMGDAAG699VaKiorK7Z85cyaLFi3CzHjmmWe46KKLyu2Pi4vj\n2GOP5dhjj+V3v/sdgUCgwc9JJBblFoTZ9O0Oentbifs8G1LTcIf14av1kSkTN+QnsHRNIXvWbmJ+\n9ysZvuOjSMVKPrzO6HAOF+tLpyZFH6dERKTGFi1aFP353HPPPWD5/ceP17Z+XFzjzEDx8MMP43ke\nnTp1IlwyfV1VevToged53HvvvdFtzjlmzpzJDTfcwEknnUS3bt1ISEigbdu2jBgxgieeeIJgMFhp\ne2vXrsXzPHw+H+vWrWPVqlVMnjyZXr16kZiYSM+ePaNlq3tIdPfu3Tz99NNccsklDBw4kDZt2pCU\nlESPHj247LLL+PTTT6s8p7vuugvP8zjttNMA+PDDDznnnHNo3749SUlJ9OvXj7vvvrvCB7D97dq1\ni7vvvpsTTzwxevyePXty5pln8vjjj7N3795K6y1dupTJkyfTp08fUlJSSEtLY9CgQdxxxx3s3Lmz\n2mNW57PPPuOyyy6jV69eJCUlkZqaSo8ePRgxYgR/+MMf2LRpU7nyU6dOxfM8evXqBcCMGTM4++yz\nad++PcnJyQwYMIB77733gNchLy+P+++/n2HDhtGmTRsSExPp3r0748aN45NPPqm0zqZdQcIOimfP\nYMbr/8fYO/5A78O68+xNXXnh14fz2h9P4a6/T+HfOT7mtD2N+466h6d+0ZbZ/7gBgL271vHUL9pG\nX15mW+6+++5o+/vfO0899RTDhw+nbdu2eJ7H888/X+k1qMz+92x113DOnDn8+Mc/pkOHDqSmpjJk\nyBCeeeaZcnXeeecdzjjjDNq3b09KSgrHH388//rXv6q9xs2Oc67ZvyKnKSIiB+uVV15xZuY8z3P/\n+c9/al3/wQcfjNZfuXJlnWIYMWKEMzM3cuTIA5Z97rnnosdbu3ZtjY+xdetW5/f7ned57t13362y\n3KxZs5yZOZ/PV679NWvWRI/reZ5LT093mZmZ0d/NzJ166qmusLCwQptl67700ksuLS3NeZ7nUlNT\nXVpamuvVq1e07MSJE53neW7SpEkV2snKyoq2ExcX59q0aeOSkpKix/c8zz366KOVnldp3ZEjR7oH\nH3zQeZ7nfD6fa926tfP5fNE2Ro0a5cLhcKVtTJ8+3bVu3Tp6rPj4eNeuXTuXkJAQvQ5vvvlmhXoP\nPPBA9Bil552YmBg9ZufOnd0XX3xR5XtSleeeey7apud5LikpybVq1arctqlTp1aoY2auZ8+ebsqU\nKdFyrVu3dvHx8dGYhgwZ4nbv3l3pcb/44gvXtWvXcu9FRkZGuePed9990fLfrC9y4XDYfb2uyH02\n62t3Uc8OzsB5hvPMXHxSuktIbuXMPGfmuTbdBror/7bTXfm3nS45o4OLT8pwmDnz/C45o0P01alj\nR/fnP/85epzSe2fixInuJz/5iTMz5/f7XZs2bZzf749ei7LXoCpl79n9/52Vrf/UU085n8/nfD5f\nhX8Pt99+u3POud///vfRWErLmJkzM/fEE0/U7k1vBCU558HnrvXRSGO+gHHAtgOUqfOFFhGR761Z\nsyb6P9VBgwa55cuX16p+aULreZ47/fTT3caNG2sdw6FI0J1z7oc//KHzPM+NGzeuyjJXXHFFpbFs\n2LDBjR8/3r3zzjsuJycnuj0/P99NnTrVde3a1Xme5375y19WaLNsspOWluaGDRvmFi5cGN2/YsWK\n6M8TJ050ZlZpgv73v//d3XXXXW7hwoUuEAiUa//mm2+OJouLFi2qULc0Qc/MzHR+v9/dcccdbufO\nnc455/bu3Vsu+X/22Wcr1F+4cGH0w8DAgQPd9OnTXTAYdM45Fw6H3cKFC92vfvUrN3PmzHL1nnrq\nKWdmLj093d1///1u69at5eqcfvrpzsxc9+7dXX5+foXjVqWgoMClp6c7z/Pcz372M7dq1apy+xYu\nXOh+85vfuPfee69cvdL7JyUlxcXHx7uxY8dG79nCwkL3xBNPRM/zwgsvrHDczZs3u/bt2zvP89xF\nF13kFi5cGL0O27dvd3feeWc00X/jjTdc/peL3dI1+9yy7/a4pUu3ux8PGeIMnN/M/c+gXu6W302P\nJuM//dNKN3LS313fUy6PbrvybzvdKeP/n8PMpbU5rNx2l5dbLrbSeyctLc3Fx8e7hx56yO3du9c5\nF7lPt2zZUu4aHGyCnpKS4hITE93NN9/sduzY4ZxzLicnx02aNCmakP/pT39yfr/f3XfffS43NxLv\nli1b3A9/+MNorKXbY5US9Eji7QGvAp8foFzdr7SIiJQzefLkcr2wQ4YMcdddd5175pln3JIlSw5Y\nf/To0dH6fr/fDRs2zN18883uxRdfLJd8VqU0QY+Pj3cdO3as9pWRkVHnBP3ll192ZuaSk5OjiUtZ\nhYWF0R7YypLU6ixYsCCacBQVFZXbVzbZ6dmzZ7WJaHUJ+oH84he/cJ7nuauuuqrCvrIJ+N13311p\n/QsvvNCZmRs9enSFfcOHD3dm5o488sgaJ1R79+6NXs8ZM2ZUWiYUCrnjjjvOeZ7nHnnkkRq165xz\nn332WfR6h0KhGtcr+wHvtNNOq7TM008/HS3z+eefl9t3+eWXOzNz48ePr/wAoZB7+I7bnZm5gYOO\ncV/PXeqW/HeFWzjrWzfpxqkOM+eZuSdO7ufyJ19QLuGu6lVlgl6QV+7QpfeO53nub3/72wGvwcEm\n6J7nuauvvrqSSxByvXr1iv5NKPttQqnc3FyXmprqPM9z//jHP6qMIxbUV4Le1MegjwP+BVQ/QFBE\nROrNY489xu9+9ztSU1OByLjyKVOmcMUVV3D00UfTsWNHfvnLX7Jt27ZK67/xxhtce+21xMfHEw6H\n+eSTT3j44YcZP348ffr0oWfPntx9991Vjk8uFQwG2bZtW7WvA7VRnfPOO4/09HQKCwt55ZVXKux/\n66232LNnD4mJiVx44YW1anvIkCG0b9+e/Pz8cuPy93f99deTnJxc69hr4pxzzsE5x9y5c6ssk5CQ\nwC9/+ctK95133nkAfPnll+W2r1y5knnz5mFm3HfffZXOg1+ZV199lT179nDMMcdw+umnV1rG8zzG\njRuHc47p06fXqF2AVq0i838XFxfXeQz7HXfcUen2SZMm0bVrVwBefvnl6PaioiKmTZuGmfHrX/+6\n8kY3r+PcM84GYMlXi9mxaxeBQJD316Qy++O3I7F37sf8S+fwu37/W6e4S+0LVP6UaGZmJpMnTz6o\ntmvqN7/5TYVtnucxatQonHMkJSVx4403ViiTlpbGSSedBFS835qrRk/Qzew6M5tvZoVm9sx++zLN\n7HUzyzOz1WY2rsw+D7jIOfdPQM8mi4gcIp7nkZWVxcaNG3nhhRe48sorGTx4MAkJCZgZ27dv56GH\nHmLAgAF8/vnnFeonJSXx6KOPsmHDBp588knGjx9Pv3798Pv9mBnr1q0jKyuLwYMHs3r16irjOPXU\nUwmFQtW+9n/4rDYSExP5yU9+gnOu0ikfn3/+ecyM888/v9IkNBAI8Pjjj3PmmWfSpUsXEhMT8Twv\n+ir9ALNhw4YqYxg2bFid4wdYvXo1t956K8cddxyZmZn4/f7o8X/4wx8e8Pj9+/ev8gNC586dgciD\noGV9/PHHAPh8Ps4666waxzpv3jwAvv76azp16lTlq/RBx7Vr19a47d69e3PUUUdRXFzM8ccfz5/+\n9CcWL158wAeAS/n9foYPH17pPjNjxIgROOfK3e8LFiygsDAyBeIZZ5wRib9jx/Lnc8zxnDDmgmid\n977K4fEl7ViVl8S2VfMxjG4DRgOQG3dwiwztqXw2RoYOHYrf3/CT+rVu3brcA85ldejQAYB+/fqR\nlJRUbZmcnJyGCTDGxMI0ixuBe4Azgf3flSlAIdAOGAK8Y2aLnHPfAD8l0nsuIiKNIC0tjUsvvZRL\nL70UiPROzp07l7/+9a+8/fbb7Ny5kwsvvJAVK1YQHx9foX7btm254ooruOKKKwAoKChg5syZPPjg\ng8ydO5c1a9YwduzYamcbaWgTJkzgmWeeYfbs2axfv55u3boBsGPHjmgP7vjx4yvU2759O6NGjWLJ\nkiXRRZUSExNp164dPp8PgG3btuGcIz8/v0L9Uu3bt69z7K+//jqXXnopRUVF0RjS09NJTEzEzCgu\nLmbXrl3VHr+63u/SpG7/2Wi2bNkCRN7fqpKtypTOoFJUVFTlty+lzIx9+/bVuG3P83j55ZcZM2YM\nq1ev5rbbbuO2224jOTmZYcOGMWbMGH72s59VGW/btm2rnVGodB7/snGXnRGm2vNxDiPS0/jldqNT\nq8h7VZAbqZPWulsNz7J6yQmV98kezD1WGzW5lw5UxjnXYqZebfQedOfcG865t4ByH8HNLBkYA9zh\nnNvnnJsHvAmU/iXsB0wws/eAI8zs4UMZt4iIlBcfH89pp53GG2+8wYQJE3DOsWHDBt5///0a1U9O\nTuZHP/oRs2bNKtcj2ZhfaZ9yyikcdthhOOd48cUXo9unTZtGMBikQ4cOjB49ukK9m266iSVLltC2\nbVueffZZNm/eTH5+Plu3bmXTpk1s2rQp2gMdGbZaudJkvrZ27drFpEmTKC4u5vTTT2fWrFkUFBSQ\nk5PD5s2b2bRpU4NNW1fXVV5DoRBmxiWXXHLAb0ZCoRDfffddrdofOHAg3377La+++ipXX301Rx99\nNIWFhXwC4lTzAAAgAElEQVT44Ydce+21HHXUUSxdurROsVd1PqUKCwsJfTk/8gqF+Gp5Dl8vz2Ht\niy8Tunw0hVecw3UPrabTEd9/Y1Lfq+UmJlR+L9X1HpOG1egJejX6AAHnXNl/gYuB/gDOuducc2c5\n584GljvnbmqMIEVEpKKyY1qXLVtW6/pXXnnlQdWvTz/96U8rDHN58cUXMTMuvfRSvP1WaAwGg7z+\n+uuYGX/729+YMGFChV7KcDjMjh07Gizmd999l9zcXDIzM3nrrbcYPnx4hTnpS3u661vHjh2ByLcM\ntenl7tixI865Wg1dqS2/38/555/PY489xuLFi9m+fTuPP/44bdq0YcOGDfzsZz+rtN6OHTuqnLce\nYOPGjUD53ujS6wCwZs0aCIcoDEUWIApt3oj/uyV0mPk8zxz2c649ZioF/tRybSalR9rau2t9XU+3\nnLi4uqV8pb3bpcN1KrNnz546tS1Vi4UhLlVJBXL325YLVPj+wzl3/IEay8rKiv48YsQIRowYcXDR\niYhIlUofIIWKixUdivr1acKECdx7770sW7aMBQsWkJaWxvz58zGzKoe3FBYWYmYMHjy40jbnzJkT\nLdMQ1q+PJHVHHnkkiYmJlZb5z3/+0yDHLh03HwqFeO+99xgzZkyN6p188slMnTqVBQsWsHXr1uiY\n44aUmZnJVVddhed5XHXVVXzxxRfk5OSQmZlZrlwwGGTOnDmMHDmy0nZmzZqFmXHcccdFtw0dOpT4\n+HgCgQBvv/UWPz+sHXnbdpPjdSQcDNPuv6/xr66X8d82p1TaZoeeQ9m7cy3rvprO0HMrf0C1MpFH\n9MBR/psZ8+qWoJdei23bthEIBCod6tOYw9AaW3Z2NtnZ2fXebiz3oOcB6fttywDq9Eh+VlZW9KXk\nXESkbtasWcOKFSsOWO65556L/jxkyJDoz0uXLq2wWmNlpk6dGv35mGOOqV2Q9eyII47ghBNOACIP\nhpb2pA8YMIBBgwZVKJ+enh5NvBcvXlxhfygU4re//W0DRgwZGRkALF++nOLi4gr7Fy1axEsvvdQg\nx+7duzennHIKzjluv/128vLyalTvoosuolWrVgQCAW655ZZqyzrnatVrW9k1KKvs2PP9vxEpVXal\n2LKee+656AeiSy65hKKAIycvTHJyMuecNxbnHA/84R52vfoM7Re+i739D17+rg1/TxlDdrvvh0cV\nFewu126fYT8FYPfmb/lmznMHPMdSmf7IePbigu+vzy/bfQJ1/DBYeo8753j99dcr7C8sLOShhx6q\nU9vNwYgRI8rlmPUllhP05YDfzHqX2TYIqL8BYiIiUitLly6lb9++/OhHP+KFF14oNxwhGAyyaNEi\nJk2axEMPPYSZccIJJ5Sb/SI7O5tevXoxduxY/u///q/cMIuioiLmzZvHueeey2uvvYaZcdFFF0Uf\nzCyroXqeqzJ+/Hicc7z88svR4S0TJkyotGxKSgonn3wyzjluueUWPvroo+g48yVLlnD22WezcOHC\nct8SHIzKrsXo0aPxPI9du3Zx6aWXRj8UBQIB/vWvf3HmmWeSnr5/H1j9eeSRR0hMTGT58uUMGzaM\n6dOnR4eIhMNh5s+fzzXXXMPMmTOjdTIyMnj44YdxzjFt2jTOOeccPvvss+i1c87x7bff8uc//5n+\n/fvzzjvv1Diel19+meHDh/Pkk0+WmxkoHA4zffp0brvtNiDS+1/64aas5ORk5s6dy7hx46LDWYqK\ninjyySe59tpro7P5HHfcceTkhdmcE2T9ln3ceOP/0L5tO7bv3sOJb33Ciys38Yz7ATuK4vk2+SgK\n83ay+ou3mPHkeD565qpyx+zcZzi9jx2Dw/Hxv37N/DfvIX/39x9uC/N28e28F5j9j++nJXzky6u4\naWDk50DhXlYtfBOAIy44s9LrUpN/R126dGH48OHR+/nDDz+Mzn6zYMECRo0axfbt2w/YTn041P/u\nG1V9TKZ+MC/AByQCfwSeBxIAX8m+l4B/AMnAcCAH6FuHYxxgWnkREamJ6dOnl1ue28xcQkKCa9Om\nTbltnue5oUOHus2bN5er/8QTT1Son5SUFF0SvrSu53nu7LPPdnl5eRViOFQriZa1c+dOl5CQEI3R\n7/dXOLeyFixY4NLS0qLnmZiY6NLT06MLLL344ouuR48elS4vX92iL/urbqGi2267rdx1btWqlYuP\nj3dm5g4//HA3bdq06HH2V7pQUXXXODs7u8r6zjk3Y8aMcku1x8fHu7Zt20Zj8DzPvfnmmxXqPfHE\nEy4xMbHctStbr7TuSy+9VO21Kav0Pih9lbbp8/mi7XXr1s0tW7as0no9e/Z0U6ZMicbUunXrcucx\nZMgQt2vXLuecc5tzgu6rZTlu6fxVbuncpe7NqW+6ozJSnGc4w5x5PpeQ0trFJaQ4zBxmzsxzXfue\nVmHRoYkPbXA9jznXmXnRsvFJ6S4+KSP6e5tuA92Vf9vpbn5yq1s643P37cffuJOOOylaJyEpzfXo\n0cP16NGj3OJOtVnkatGiRdFFpEr/zaampjozc507d3bvvffeARcqqm6ho5rcbwezKNehRDNaqOgO\noAD4DXBZyc+l3/1dRyQ53wa8CPzcRaZYFBGRRjB69GhWrFjBI488wsUXX0y/fv1ITExkz549pKSk\n0KdPHy655BL++c9/8tlnn5V7UA4iD48uXryYBx54gPPPP58jjjgCv99Pbm4u6enp9O/fnwkTJvDu\nu+/y7rvvkpKSUmkcZlbj3rTalK1K69atOeecc6JtnX766RXOrawhQ4bw2WefcfHFF9OuXTucc6Sn\npzN27Fj++9//ctlll0Vjqy7umqjq/O677z6ef/55TjjhBJKTkwkGgxxxxBHccccdLFy4kE6dOlV7\nbWpy3aorc/rpp7NixQp++9vfMmTIEJKTkykoKKBr166cddZZPPnkk5x22mkV6k2ePJlly5Zx6623\nMnjw4Oj9lZaWxtChQ7nhhhuYMWMG48aNq+SolTvvvPN44YUXuPzyyxk8eDCtWrWK3nMnnHACf/jD\nH1iyZAl9+vSpso1rrrmGDz74gLPPPhufz4fP56Nv377cc889fPzxx5Gx2oFiKNqH27qFYGExq3bH\n0dXzs2jMyZw87i906XcaialtCRRFhv1ktOtFryHnM/zShzjtiqcrHNMfn8SoK59l9DXT6DHoR6Rk\ndCIULMbzxdGmywAGjPw5w8f9BYDTOudiCQmQlsGjU99k7MTr6dztCMwFWbduHevWrWP37vLDaGr6\nb2PQoEF8+umnjB07lg4dOuCco127dlx//fV88cUX9O3bN9peZQ72XqptvM2BuWqmd2ouzMzdeeed\nejhUREREamzq1KlMmjSJHj16sGrVquoLh8N8u2AN32w1thT4KXYeS3ZGxrZ32beOjUndGzTWyX23\n0zmlmJQ+R5CWnsC+Ysfa7UG6531HWkkCLQ2n9GHRu+66C+fcQX+KaDEJeks4TxEREak/NU3QQ2FH\nYMUyPlnn8Y8Vbes9jp+vephnDr+e4rCPXh18rNoamWM9zgtzWKswvToncuGgEN6eXdA98uheUcDx\n3ZYA/bpVXCRMGo6Z1UuCHsvTLIqIiIjEvJXrCgjnJbB4W/2OHG5TtI37l97E6nNu5KrB6YSdIyne\nY++KVXwXaM1ZQ5LZvC8eM/Ay4iHj++khPYvM5iJNUyyMQRcRERFpmsJhwhvWECosxr9v/+Vb6i45\nmMd1q/5CKD6J9K4diPcbPs/ITPGRlgBHd3JktEnBDLq1rdjfGuc3Du9Ucc5yaRrUgy4iIiJShQM+\nmLhjC+HiAKs37GFR8VEHfbz+xSsYmzCfnO5HkeAbwJqeA+md6rHNwO8zkhOM3WkZWHIKRvW95HF+\n9aE3VRqDLiIiIlIbG9ZAeitcWgZ7v1nGoiU7eWFH3R7E7J23nOOSNvFP3wg8c0w8fButUxzBoiC9\nM4oJJqWQ2i6T/NT27NwbolNmpG915ZYAfbvGs3dfmJREw2shs5vEOo1Br6XSFUQ1i4uIiIgclNwc\nyNvDvrR2fLnR6pycA/xq+d2suewuLgvvon3HNNgZAvPjxflJTAhA6wxo25EUICXx+5HJR5QMX0lL\n0mjlWFA6i0t9UQ+6iIiISC0ULV7ApoIEisI+/ry4w0G1dVvnz+neuy3LXWfSOrclac3XFKdmEhfv\np33RVji8H8RpJpamQj3oIiIiIoeKc7AvH9Z9x/q8OALFQXz5O4CDS9CDPY7C58/Bi48sytWub09I\nSAK/H4oylZy3UErQRURERA4kbw9sWENg53Y6zXibwoQMtvvbQOrAOjc5pscujuyUDB0GEbc5QFKc\nQUra9wUSEushcGmKNHBJRETkEPH5fAwZMoQBAwZwzDHH8Je//IVYGoI5depUbrjhBgCeeOIJXnzx\nxUaOKEYEiiEQgHCY4vfeIGXjcjJWLeTPqROiRdYsfoenftGWPVtXVtnMVUdt5ZoB27mu3xZuHLCF\nU7sXQFIyAId3iqNdhq9O4el9a37Ugy4iInKIpKSksHDhQgB27NjBuHHjyM3NJSsrq3EDq8TVV1/d\n2CHEBufgu2/YlOcjEPDTbesqPmx3Ji93+1m5YqsWvE7H3ifx3eevMeScX5fb94MdMzknfyYbj74B\nX7t2sHMbRpjkbl0hvVW9hqv3rXloMQm6ZnEREWkBrjyrsSOAp96vUbG2bdvy5JNPMnToULKysgiH\nw9x2223MmjWLoqIirrvuOq666iq2bNnCJZdcwt69ewkGgzz22GOcfPLJvP/++/z2t78lHA7Ttm1b\nZsyYQUFBAddffz1Lly4lEAiQlZXFj3/8Y6ZOncpbb71FQUEBq1at4vzzz+eBBx4A4Nlnn+X+++8n\nMzOTgQMHkpgYGVZx1113kZaWxi233MLIkSM54YQT+Oijj9izZw9PP/00J598Mvv27WPixIksXbqU\nPn36sGnTJqZMmcKQIUPq7XJeNWVXvbVVV385Kcze7Xtp/fVsvk4/ukJyHijKZ+t3n/LDG9/kg8fH\nMeScX1OwZytfPH4B8flb+DQcIu7BpxnUvj1zPpvHX/90J+FggK5dOjDjP/9plu9bS1Pfs7i0qARd\nREQklvTs2ZNwOMz27dt54403aNWqFZ9++inFxcWcfPLJjB49mldffZWzzjqL//mf/8E5R0FBATt2\n7GDy5MnMnTuX7t27s3v3bgDuvfdeRo0axdNPP82ePXs4/vjjOf300wFYvHgxixYtIi4ujiOPPJIb\nbrgBn89HVlYWX3zxBenp6YwYMaLKJC0UCvHpp5/y3nvvkZWVxYwZM5gyZQqtW7dmyZIlLF26lGOO\nOeaQXbtDafPuEL3+/RBxRfncPuSlCvvXfvkeXfuNIqN9LxJT2tD9y6dI/uIZBrQP8z+DTmTFj25h\nz1HHkRco4q7bruOlNz5iUN+eWDCy8qjet6avtBP4rrvuqpf2WkyCLiIiEss++OADvvrqK1555RUA\ncnNzWbFiBUOHDuXyyy8nEAhw3nnnMWjQID766CNOPfVUunfvDkCrVq2ibbz99ts8+OCDABQXF7Nu\n3ToARo0aRWpqKgD9+/dn7dq1bN++nZEjR9K6dWsALrnkElasWFFpfGPGjAHg2GOPZe3atQDMnTuX\nm266KdrmwIF1f2AylqUtmUtcUT7zWp9S6f7vPn+NASMjQ0t6HXs+uR8/xhGX/ILbH/4jO3sM5uTd\nefzoiEymv/cOo047lRFDe5fU1PsmlVOCLiIizUcNh5fEilWrVuHz+WjXrh3OOR599FHOOOOMCuXm\nzJnDO++8w6RJk7jlllto1apVlQ+XvvrqqxxxxBHltn3yySckJCREf/c8j2AwCFDjh1RL6/t8vmjd\n/TXEA69/v7Z1vbd5IF+tLSZt8wqSOnfEvfYsGV/P46pKes4Bigp2s3n5HHI2f4NhuHCItQlhJo44\nh+f6H8vXX3zI3Q/8lnx/QYt63+TgaBYXERGRQ6RsIrR9+3auueYarr/+egDOPPNMpkyZEk2iVqxY\nQUFBAevWraN9+/ZcccUVXHHFFSxcuJATTzyROXPmRHtEc3Jyom389a9/jR5j0aJF1cZzwgknMHv2\nbHJycggEAtHe+5o6+eST+ec//wnA119/zZIlS2pVP1a5ndvZVxxm2+otbNyQyw2Dn66y7OqFb3L4\n8Rcz9u4vuO5Pn/LaP/5D105dWL17Iyf0TOXnY8dw5dWT9b5JragHXURE5BApLCxkyJAhFBcXExcX\nx4QJE7j55psBuPLKK1mzZg1DhgzBOUf79u154403yM7O5sEHHyQuLo60tDSef/756AOmF1xwQbTs\n9OnTueOOO7jpppsYOHAg4XCYXr168dZbb1WIwyyy0GHHjh3JysrixBNPJDMzk8GDB1cad2n5/V17\n7bVMnDiRAQMGcNRRR9G/f38yMjLq6Wo1vHDYURhwJCeU9FeuXQnBYsJ7IewcS77dycxeN1XbxqoF\nrzNw9I1ccNhODssI0Co+zLgzR3LjDZNJ8fvwJySSlpmp901qxVrC1xpm5lrCeYqIiBxK4XCYQCBA\nQkICq1at4owzzmDZsmX4/U2j/y+3IMy6HUEGdC9ZrfOr+WwpSuSxr9qQYkWsKKh50nrzoK2A0bdd\nEOtyWGTBoYL8yDznVSTKjaWpv2+xzMxwzh30G653QkREROqkoKCAkSNHEggEAHjssceaVJJnBqGC\nAli9GjLbAjDlq3Zs3hcP1G4VT+veEysqxA4vM695cko9Rlt/mvr71hK0mHdD86CLiIjUr9TUVObP\nn9/YYRyU8NYtrI4P0ipnA5l+SpLz2unR3kfHzHji/bWv2xiaw/sWa+p7HnQNcREREZGW55tFrE3o\nxidf7uGotDwy8jbT7aNn+XmfKbVqpnVikGt+1Joe7VtMn6dUQ0NcREREROqooCDAn2ZBcbgVq1Pi\n+PmGl/HydteqjUuP2En7Pt2UnEu90x0lIiIizV4w5PB5389ssnRHHMXhyM/f5afQavVCnj3s6hq1\nNSh9N8MO95HUuRt4mrFa6p8SdBEREWn2Vm4O0C7DR5s0H4TDmAuX2//X3r/iq4zql7z/wY6ZpPTu\nSZ9uSXitO2NKzqWB6M4SERGRZi/soDgIW3OCbP/gA3wzXiu3v7rkPDFUwK3L7+GUHgF6dUvF54Fn\n0C7DR8dM9XVK/dNdJSIiIs2eA4oCjn2bNtP3/x5mbasTDljn7C1vct6mVwh6cay8+E6CCYnEZ2Tg\n5e3msE6JJKX6Gj5waZGUoIuIiEiztzsvTGhvHr78fACCduAUaMymfwLgCxfhxfkgLo60zm3o3LoD\nnhdbiw9J86IEXURERJq1j78t4rmPCkj2hxh/eAiAUA0S9FKbTh5L78wwoYwEEtr48WJsZVBpflpM\ngq6FikRERFqWYMixOSfEszMjveYFQR9PfNuJl45+jMzArmrrDszYw4pLsmgTziHc/Wjiu6RCanpk\n+VGR/WihojrQQkUiIiItz7KNAYLBMA+/k1/rug8OXUlKUhxxLghHD22A6KQ5qq+FijSLi4iIiDRL\nwZCjaO2aWtcbk7GMVqnxxPk98PQgqBx6StBFRESk+QkUE9y6mWCodt+gX7ThRfq0CUK33pEhLT4l\n6HLotZgx6CIiItIyhMMOb9Nalm7w+Ghz+1rV/UHuPNYeeTmkpkJqWgNFKFI9JegiIiLSLOQWhElP\n9vh2Y4DNqxL4aHNqjeueuv0/XLr+Wb674n/p0yOlAaMUOTANcREREZEmLxR2rNsRpDh/H0Xr1vHy\nNzVPzo/KXcJl659h5zFnEd+lm6ZRlEanHnQRERFpuoqLwOcn7DyCObtYuX43+/JCNa5+8WFb6N6q\nNUsG30OHtgkc1kbJuTQ+9aCLiIhI0/Xd17BtE6FgiPCePewLgNu6ocbVO6YBnh9/agoZiQ5MqZE0\nPvWgi4iISNNUuA9CIcJhx6ZF37JwWxr7iuHLvJrNW94+3cPng3ZJQVrFB/CO6A9x8Q0ctMiBtZgE\nXSuJioiINB/h3FzC677DHwqxLtfPY0vasbs4rlZtnHNcIv5wG1Iygnh7dyg5lzo75CuJmtnsGrZV\n6JwbffAh1T+tJCoiItK8fLtwDW73blrnrmFjfBceW9O7VvV/PCSOs49LJc6vMedSf+prJdGa9KAP\nBX5+oHiARw42GBEREZHqFAUcoZAjvDeX9JWf0eGz1wgndYG+D9a4jRv6b8Lr3EfJucSsmiToHzvn\nph6okJldWg/xiIiIiFRp3Y4gxUVByM+j62evAbA9rl2t2rD2nfGUm0sMO2CC7pwbVZOGYnV4i4iI\niDQfwRCE16+m4wfPsj2+PQEvjkcP/3Wt2vBSUzmsfYt5DE+aoFrdnWaWAdwAHAOUWwFACbqIiIg0\npOKgIxR2LF6Wx1/7PFCnNtISHBkpHskJmk5RYldtPz6+AviA14F99R+OiIiISCWCQVauyWfp0l3M\nKj68RlU8F+LBr67jlwMfj2678TSPLq3Vey6x7YCzuJQrbJYLtHXOFTdcSPVPs7iIiIg0Yc5RtH4d\nHywJ8taazBpVeXTRJBLDRQAELI69/jTW//wvDBrYAUwD0KVh1NcsLrX9fmcucNTBHlRERESkxtav\nIrB7DzPWp9eo+AUbXyYxXERe5yMBiHMBWgd2Ed+6tZJzaRJq+x3PROBdM/sU2Fp2h3Pu7voKSkRE\nRKTUsvWFpMXBvpDvgGVHbJ/Bse3yWHDK/aSmxnPkV68TXvQpW4f9JDIptEgTUNsE/V6gG7AGKPsx\nVuNHREREpEGEQmHmrg7WqOxFG16EdiexK8mjV0Yx/PR69hx3Fns69Ccz5cAJvkgsqG2CPhbo45zb\n3BDBiIiISAuXvxdS0sgvDJOS6LFxRzHe7p3MyB14wKqti3cQ7wLgM/q2CUJmWwAyk4zMbokNHblI\nvantGPRVQKAhAhEREZEWLhyGNcshGGDN9iBrV+0kf8F8Umf8o0bVb17xx8gPqenQqjW07xT53dOU\nitK01LYH/QXgLTN7lIpj0GfWW1QiIiLS8gQDkVdeLsHiJPJ376Xgk094sO+B5zx/aPFkUkN5kV+G\nngpdekR+TnCQoN5zaVpqm6BfV/LfP+633QG9Dj6chpOVlcWIESMYMWJEY4ciIiIilfnuGwiHCG9Y\nQ3hXKjlFYZ5rN6lGVS29FeHMrnh9joY+A77fERcPvTQBnTSs7OxssrOz6629Ws2D3lRpHnQREZHY\nt+eTTwgv+4ot7QewuKgDccFC3t/W8YD1Ul0BVx2+gb4dPaxrD2jTvuGDFalEo8yDbmaXVLH9roMN\nRERERFqwYJCEN54mc86rvPO18eGmVjVKzgG6Z8Jhh3fA/D40sZw0B7V9auI+Mzu77AYzuw84t/5C\nEhERkRbBuchDoc6xb3cuiTvWA7AsqU+tmjkys5CU3j0jD4PqG3NpBmo7Bv0c4H0z+6lzbo6Z/QU4\nBTit/kMTERGR5ixUWMi6DQVY/kbSvv2YJCBci9WEPIOOqSFO71bycGiXnpCc2jDBihxCtUrQnXPf\nmNkFwJtmNg/oDpzmnMttkOhERESk2QoUh8gthLjtO+n80Ss83/1KPmk9vNo6HUI72OprS1t/ARef\n0Zb0eIhvU9Ljnt7qEEQt0vAOmKCbWWW9408DVwM/B44rGRCvaRZFRESk5kJBwsEQoZBjTtpJzGl7\n4C/kz+4bZsWuXRw5oBN+zyMx0YPE2g4IEIltNbmjn65ieyHwcMnPMT/NooiIiMSYbxbRY+4b5Hbq\nw1+7TaxRlcw0P8f699GjRyLrd4YwO+gJM0RizgETdOdcz0MRiIiIiLQgwQAf/3sh07r9vlbVevRp\nz5olG0hK8GidCmlJStCl+dF3QiIiInLoOAdm5K5czbQa9poD+Mxx0bAkktPi8RITMYOOmb6Gi1Ok\nEdV2HvR4M7vbzFaaWb6ZrTCze8xMa+iKiIjIAQW/+ZKiXbvZtmpTjetc0H49V57i57SBSeD30/uY\nnvg89ZxL81XbHvTHgCOB64G1wGHA7UAX4PL6DU1ERESaus27QnTM9KJjxTfv9dhLgN27Qwes2y2p\ngPO678Azj1BifLSNOL+Sc2neapugnw/0ds7tLvn9azP7FFiJEnQREREpIxhy7MwL0aGVhxnsKQiT\nV+QIpXmEi4sPWP+CXrsxfxI+c+DTcBZpOWq7kugWIHm/bUnA5voJR0RERJqLwoCjKOAIOyhcs5r8\nvUUECosJ7SuAdauqrXtGwjI8z8Pr3oPDh/YhPVm95tJy1LYH/QUiK4k+CmwAugHXAc+XnS9dc6KL\niIhIcRACIVixKUDhst10zl9M2uz/kO8lM/Xw26qte+SJfYhL8pOZ7icuzuOw9rXtUxRpusw5V/PC\nZqtrUMw552JqTnQzc7U5TxERETl4n68sZOZXRfTr6idz2wp6vPcoWf0erLZOshdkcNsCThranj7d\nkvD0MKg0ISWLdx70TVurBL2pUoIuIiJyaLm9uUx+IQhAUhyc32Ed0zZ0r7bOg19dy/KL7iQ5HgYM\nOxI89ZpL01JfCXptp1n8q5kN22/bMDN7uKo6IiIi0oKEQrB3Dzmr1kc37QvAvO8OnLO0CuwmLjGe\nuMQEJefSotV2iMt2oItzrrjMtgRgvXOufQPEVy/Ugy4iInIIhEPw7ZeQmMiC1WEeX9apVtUfO+Fb\nlrUZQt+ufjy/1lKUpqdRetABV0kdXx3aERERkeYmEIDiIiguIqeoZtMidi9Y/f/Zu/P4uK/63v+v\nM7tmtEuWZMuWdzte4iQO2UliEkIIWwMFCqWEpUDJZb3c/go3bW/N0t5yb0sv0Asta4FA4VLKErYG\nmghIQuysJt6XeNUua50Zzfr9/P4YRba8SROPrMXv5+Ohh75z5pyvPnaimY/PnPM5+PB4SUMX/jUb\nqIj5lZzLRa/YxPo3wCeccz6A0e+bR9tntM2bN9Pa2jrdYYiIiMxd+RykRyCTYXDXnkkN+Yvdf85b\nrx902L8AACAASURBVMrxqiWDuEiUlnnBKQ5SpPRaW1vZvHlzye5X7BKXhcCPgfkUThJtoVAD/ZVm\ndqxkUZWYlriIiIhcAIlhaP0J9vN/4zt1r+Y/G+44Z/fl8b18ZO9mtn3oW1xmB2HdlRcoUJGpUaol\nLkV9hmRmx5xzG4GrKdRAPwpsNTPvfAMRERGRWcqMwaRH1Tf/L2xtxQEDwZoJh73r4GcACMSiUL5o\nioMUmT2KXuQ1mow/OvolIiIiFznv2CE6Diep2to61tYbOnftiHcd/Ay12T4AysJ+qJuxtSZELjjt\nwhAREZGimRnOObLZPPmBIejtHXvuSNliDsfOfWZhNJcoXFTXsaxJ685FTqYEXURERIrSPZhnIO4x\nr8pP5zP7IeuwoUGgUO7t42v+5znHLwoOErn5NjgShVe/5QJELDK7KEEXERGRouTykEh7ZPsNL52l\ndyjP4XgjteH5/OW6vz/ruM8/9WYyZdXEf/+/EFm8FpbXwKJzz7SLXIwmlaA7544CPwN+CvzCzBJT\nGpWIiIjMWH6/kRpK4lwG+vv4z0P1dIUX8/A5kvMIGXrWv5jBJZezsLaS8tpySEyuVrrIxWayddCv\nBrYAbwYOOed+4Zz7r8651VMXmoiIiMxE6YyR6ekm3T+I/4lf0RVumnDM+iaP3g23kl2+Hm/5OghH\nwKdzDkXOpKg66ADOuQBwE/Cy0a8QhZn1nwIPmlm61EGeL9VBFxERKY3+eJ5PfHeIoZHJv69ektjF\nW163nGxnJ5lFK2lsiBIJOkjGIVo+hdGKXFjTUgcdwMxywAOjX3/qnFsCvBx4H7Ae+LvzDUpERERm\nEDMwI5V3/OSJVFHJ+Z1t32HF1SuprwnBiEFDEIKj+YuSc5EzOu9NomZ2CPi/o18iIiIy1/R1Q3cH\nfY2X0tabndSQl3X+AMNx6QKPwVUboaoWIlEIhqY4WJHZb8LFX865jc65bznn/to5F3XOrXTO/fmF\nCE5ERERmgNQI5HO4Q3up8oYnNeTO9v/Ha9q/Q5gc4aqKQmM4MoVBiswdk9md8QrgT4B7gQ8AncDN\nUxmUiIiIzADpFOx6imzWI5PKkk+neKInNqmhzy3CrQobzbWq1iJSjMkscXkGWGNmW4FdzrlXAtVT\nG5aIiIhMJ88Mi8fxp9Lsjxschy2Dxa8Zj9x4C0RUrUWkGJNN0F8JbAUws/tGK7mIiIjIHNUz6HG8\n01ibHmHpv32cw14dD6+Y3ArXu+ufxlt5KfmNNxJcvWGKIxWZeyZMtM1sP/APp7R9f8oiEhERkWmX\n94xUDrJPPUpkoJPWpa87a9+lwX7qqgL4clkuXZDn8vpqfMvvxLdk5QWMWGTuKGom3DlXBbwfuAIY\n9zmXmb2khHGJiIjINPIM5v/mXwk+/Ss6wgvYXb7ujP3edujzRF/8cvzRCMNDKcKhCnxrL4NtWy9w\nxCJzR7FLVb4L+IHvAyOlD0dERESmUyprHOzMkD/8LIu3/4YfNb2G+xa89rR+sdwwf3j0X7g8vo09\noVfhW7SU2KH9+L0M+Pzg94M77/NaRC5KRZ0k6pwbAurNLDN1IZWeThIVERGZhFyWoYyfRx7v5Mfb\nfaQ5e83y27p+wuvbvsne3/sI+VUbIFqOL5OiPOqneX6scEpoJAo+bRCVi8d0nST6EHAJ8Lvz/cEi\nIiIyg5jBnmdgwSXsardzJucAsXycXXd8iOr1a2laUkMuD84FCfh1SqjI+So2QX8r8FPn3Bag6+Qn\nzOxjpQpKRERELrBsBkYS5DvbGRmZ+LTPSD6Fr6GR+YvrwDmCqu8mUjLF/jr9NbAIOARUntSu9SMi\nIiKz1fAgHDuIjST5wSE/B0cmnv2OXnUNK2ryhfXmIlJSxSbobwBWmVnHVAQjIiIiF9CxQzB/EaRH\nIJ3iSFeaR7qrJjX08iVB/PObpzY+kYtUsTs3ngWyUxGIiIiIXEDpFN1Hesil0+Dz4z34Y3offXzC\nYVXZAd677FnKWlqgrvECBCpy8Sl2Bv0bwI+cc5/l9DXoD5QsKhEREZkyubyRS+foSfooG0hQ4c/i\n2/E46dobzzrms0+/nYDPeOpl97BoXgTqlZyLTJViE/T3jH7/m1PaDVh2/uGIiIjIVOsZ8ujvyZHJ\nGv1H2gn+7MtEgJS/7Kxjwl6Kp2/+AP5YFN/8BRcuWJGLUFEJupktnapAiuWca6BwYFIWyAFvMrOu\nc48SERERDALtz9L422/j9xmRtr0AjPjOnqCnahZA4wIisTDB2poLFanIRWk2nx7QY2Y3mNkmCktv\n/nia4xEREZkd8jmi3/8CP/VfzaHhCACHokv5QfMfnLH7a9r+Fbv55axeVceyS1uIRWZz+iAy8004\ng+6c+7iZ/eUk+n3UzP6qNGFN7JSjQSuAHRfqZ4uIiMxm7fvb+afVhdWqv573Yv7rvr/hH1bec1q/\nF8UfpiXbxtVX1xJavgxqKyEWudDhilx03Pg89wwdnBsGNgATHVv6hJkV/ZmXc+49FA5AuhT4lpm9\n/aTnaoCvALcBPcA9ZvavJz1/GfDPQBXwEjM7epafYRP9OUVEROayo4/tZN6G1fQnPP7q20PYBG/r\n19f2clNNN72umqsW5vCtWAOh8AWKVmR2cs5hZhPlzBOazBr0GLCfiRP01POMoQ34OHA7cOrit8+N\n3ncesBH4iXPuaTPbBWBm24BrnXOvBe4B7n6eMYiIiMxNnkcm59GdcAzvaOOBI2UYEx8uFAyHCIf9\nBPIOXyio5FzkApowQTezKV1oZmY/AHDOXQWMnXjgnIsCrwHWmtkI8LBz7ofAm4F7nHNBM3uuJvsQ\nkJjKOEVERGalg7vp7TcGR/x4qT6ymSaYRIIerq8hEBogknUQ1rIWkQup2DKLF9IqIGtmB05q2wbc\nPHp9uXPu7yhUcEkBb0dERETGS43QNxykPpAmngIf3qSGNdWFaVy4hIZIFAITJ/QiUjozOUEvpzAz\nfrIhChtCMbPHOJGsT2jz5s1j15s2bWLTpk3nHaCIiMiM5eU5fGiAQCJM566DbEvWUxkx4sEEMPGM\neHnEh6usnnB9q8jFrLW1ldbW1pLfd8JNoheKc+7jQPNzm0Sdc5cDD5lZ+Ul9/htwk5n9XpH31iZR\nERG5uMSHeObxw/i9HF98poZ4sLKo4e++vZwrl4emKDiRualUm0RnciHTvUDAObf8pLbLUDlFERGR\nifX3Eu44gLvv3qKTc4BcXhNbItOlqATdOfcPozPbJeOc8zvnIhR2rAScc2HnnN/MksC/Ax9zzkWd\ncy8EXknhUCIREREZNZDwSKZH15bncrDzSUa6eml68ic8VLfped0zP7ml6iIyBYqdQfcD/+Gc2+6c\n+7BzbmEJYvgLIAl8GHjT6PWfjz73HiAKdAP3Au9+rsSiiIiIFLT35egeHM2os2nSxwd4ZtdxPtH8\nZ2ytveF53bOhaiZ/yC4ytxX122dm7wcWAB8BLgd2Oed+6Zy7yzlXfu7RZ73nR83MZ2b+k74+Nvpc\nv5m92szKzWyJmX3n+fwMKGwSnYpF/CIiItMtmzd8ve3QeZShPfs50OPR2lFFf6junOPeXfM48yKZ\nsceXtgSpKHNcsyrEivnBqQ5bZM5obW0dV5DkfJ3XJlHn3DrgWxROAU0C3wb+yszaShNeaWiTqIiI\nzGVPPnqIeW6YpmiOp9sd5bu38Kng6845pjHVzltXH6c90sxve6uIlke4+6Xl7DyaZUlDgMqoZtBF\nijVtm0Sdc5XOuT92zj0I/BrYAtwIrAHiwM/ONygRERGZnFQyw28POR7uKKdn2GjY2cqK7fdNOO7d\nnV8is/oKypcs4tYrK7nt8ggBv8OnvFxk2hVVB90592/A7RQS838CfmBm6ZOe/xAwWNIIRURE5Kx+\n/HiSp/sqAAilB3n1jp/z16s/cc4x1flB3Lv/O3V1UfqGPTI5IzCamPsc6DNnkelV7L+THwVWmtnL\nzew7JyfnAGbmAY0li05EREROk0x77DpaWDv+H9tPlFt5+piPd238Fodjy04bc2dTO2FfHr/zuKkl\nxbyaEI1VAdYsDBVmzkc/lK+J+YmGdDyRyHQq+iRRM+s8tc059yEz+9To88lSBFZqmzdv1gmiIiIy\nJ8RTHiMZo+N4Zlx7R9mZi6tFvBQ3L0yyuKad+FCKSGU5/tCJTaDLGoNjCfr8Wv+UxS0yV5X6RNGi\nNok654bM7LTTDpxzfWZWW7KoSkybREVEZC7Y3ZZhyfB+jifgaKaCMjL841M1E457Y/MRblmRZ19w\nCcmjR1nZ4IiuWQsBVWoRKaVSbRKd1Ay6c+6W0Uu/c+5FwMk/eBkwfL6BiIiIyLlls0ZmYIg8MVKD\nCXxDncDECfrSJVVQ5fAFKvE3LCC6tg78mikXmakmu8Tly6PfI8BXTmo3oAt4XymDEhERkfE8z8ik\ns3QNevywt4ZDw2HucIcnHHdzYz8VLYugJkT1cJ5IsFbJucgMN6kE3cyWAjjnvm5md01tSCIiIjJO\nOkXWFyaTzrFzKMaewSgAP+CqM3a/pfvn+NdeBpEyVlZmiEYLb/d1FUrMRWaDCRN059xNZvbr0Yf/\nctJyl3HM7IGSRiYiIiKQGoFdT/EI6/jxY2mGcosmHHJlpINU3Vqy9U2sXegIh1XcXGQ2mcwM+ueA\n9aPXXz5LH6OwFl1ERERKKZPGS8T51u/ywMSbOm/obaW5MsmxcBCvspxwXXjqYxSRkpowQTez9Sdd\nL53acKaOyiyKiMhs1Hs8RWwkN+n+0XyCWHWM8LKl+JxmzkUuhOkus/gi4JCZHXTONQGfBPLAPWeq\njz5TqMyiiIjMRums8cyvd9LQuZ2PD942qTGvav8ur3z7TXhLLgHA59OhQyIXSqnKLBb7T+vPUUjI\nAT5F4bM2A75wvoGIiIjIqMQw1tlG356DrPnR3zL8+OOTHrqgMQrL1uDzOSXnIrNUsSeJNpvZEedc\nALgdWAxkgPaSRyYiIjJNcnkj4J+G5DaTBjO87k72HB0heGQv8xM9fHfNfztj9439W3my5uqxxxsG\nn+SKP7jmQkUrIlOk2AR9yDnXSGHT6E4zizvnQkxm14qIiMhMls3Avh0ka5rZkahiRVOAmkAaAiEI\nFPt2CeSy407qPFvS73nGseM5WuYF4fB+yKRJEGF4xEj2efxy6QdoK2s54494Ree/c7h8OQOBKv7o\nyJd54fFfQexs9RxEZLYo9hXns8BjQAj44GjbDcDuUgYlIiJyQYwkCkl0MFQoZ9jfS6Z/hGR+Eb2x\nJmriB6F2HtQ1jB+XTMCR/TCvCWobyOahcyDPovrRt1XPg73b4ZIN4PNjZuxtz7JqQfBEkm4GmTQp\nQvQP51lYmcfn5RlK5olbnsRwmh/7rmWopvys4dele/hQ+jtEdz5NeT5eaAypaovIbFfUGnQz+yTw\nYuAGM/v2aHMb8I5SByYiIjIVsvlC0YBEyqNtXycMD0J8iMzAIASCpM1PJN5D/2CO7OAg9PeMv8Hx\nbji4B7ra4MAuyGVJ54zuwTyZXOHe3cdT9A7lITEMyQSeQSJtxFMnFSyID8IzW0nHR0h1dJJ+5nfs\n6oRDA378j95PxdafMuQbn5xXZAdpSR6kwovz1kP/TFl9LcN3vgtv4XJywQjDr7kbKmum9O9PRKZe\n0Z/Zmdnecz2eqVRmUURERjJGR1+OZU1BBpMeXX0ZFtTEGeroY1+3x9qwj+FABel8hnDHEbo8oyo7\nSEXkWWhoLsyM7/kdXi6Pm7cAFx+gbzBD5wjER4yhpEd9pZ/23gyVyTzZZw6QN0fjsvnkMlWkDx2D\n+jJomA9DAzA4QHIwQWYkzcGEo6ztGea17WTfUBlfWfL+0+K/uv8R3nDsGzzx6o+zZs3luI3vJGLV\nHH7th4m17WHRDRvBr9NCRS60UpdZLCpBH11v/lbgcmDcP+vN7K6SRTUFNm/ePN0hiIjINMvljeTA\nMIQ8BpKVjKRypIaT9PdlqNn2EHb0Sb6y+B56Ak3UBVK80XuCeE0VqwI5fNEKiA9BIMiz+QZqMz5i\necfetiyh8iBmHgPxPLXlPtKpHJGBTnrLmghYjroDe+g73siC+jSEU2SzeY7t7aTGxXh0T5rtneXc\nkHuWF2/5Bgl/jK9c9sUzxj8v3cWRDS8nEPDhr6oFf4DKoI9sGJbUeRAJXeC/UREBxiaBP/rRj5bk\nfsXOoH8NuAy4D+gqSQQiIiIXSC4PI0Mj5NwAiVyYhiOPk0uWkaeS5dt/ws6K9fQE6gA4notwtH2Y\nlz35TXJlbyZYXY8b6CEZLqf8gR9Qu/8R8pEY0Tv/nC1Hmunoy7OxapCqa5tZ+h+fo2H/I5TNX0P3\nS9/BVw9FeGqwhh2Dcd4ePs7+zm6C/iAjKfh5RwyAn2dWcZ0/xsfW/M+zxl8fytB/4xsJpuO44BCY\nUVHmo6LWIBkGp7KKInNBsQn6S4GlZjYwFcGIiIhMpUQmT+9gjuHcML98poPB5PW8c/tnWZo8wMHo\nMo6WLR7X/6nqF/CKzu/jfvcou2OraMomqPr3/0XUKxwJ4k8laPjR59l6ySeBID0jQZa19/FLuwFb\n/kLedvifKN/xME/lXgvAvng5e48PEWOI1T/7LMfcPFh9BQCDoRo+eJaZc4AAeVbf+gLcsnJGAo0E\njzwD4dENoWUxqKgu/V+YiEyLYk8S3Qa8xMxm1ey5ThIVEZFc3rjn3gH6E0ZNMEN/trAcpCHVSSw/\nzMHYyjOOu6bvIV537JsMLdtIQ/cuwgOd9AVrieUTYMY96/8PQ8ETyXFVIMNg7sRSk/LsEPFg5djj\nVx//AVdVDzBv2/38pm4TX1/8rnPG3RRKQjDMSyqe5cbmJFx1E/i0zlxkJirVSaLFzqB/Hfihc+7T\nnLLExcweON9gRERESm0g4VEVdTz1bIb+RGGy5rnkHKA70gQ0nXX8ltoX0htq4CN7NwPwSO2NfHXJ\n3ZTnhpmX7hqXnAPjknNgXHIOMJAvY//Rdv559Sc4HFt2ztibggnesLiTrvIlXJJIQk29knORi0Cx\nCfp7R7//zSntBpz7VUZEROQCy+WNo705yhcGGU49/09SD5SvIu0L47ccX11yNwDxQAXxQEXR93qw\n4XYenGTf5TU5yiM++sN+Qr4YLF9b9M8TkdmnqATdzJZOVSAiIiKlls4aIxkj5xUqJBajIdVBd2T+\n2OP3Xv7VEkd3bj7Ls6rBiM6rJRqMEV5whUooilwkijqoCMA5d5tz7svOuftGH1/pnLul9KGJiIhM\ngudBNnPGp0YyHqmskRscZKCt54x9zuaG5pFSRPe8vWn4Ryxc1Uzd6iWsmB8kUhac1nhE5MIpKkF3\nzr0P+DywD7hptDkFfKLEcZXc5s2bS1pAXkREZojEcOFEz1OLAWQzHNp2iKf3j3DkUD99fclJ3/LG\nhgFamiKsLesrcbBndgdPcGXViZ911+D3WP/qF9HcEMLnHJXRoufTROQCam1tLemZO8VWcTkA3Gpm\nh5xz/WZW45zzA91mVleyqEpMVVxEROaw/l7Y8QTUNeBV1OJbuBjMsN2/48O/aaA/F6Y6mKU+nGF/\nPHbOW1WEjUDAxwevjRPrPMC/dS7i0eM1E4ZQmR3A+RyD/qrn9Ud4S8thcvgZ9iI485gfTrDyxsup\njGlJi8hsMl1VXCqAo6PXz2W8QeDMny2KiIhMtUy6sMwlPszhthQNw0liC5ro6x6iP7cIgIFskLR3\n7lnopbEEt1wWw0XLqFtaTbDCWJNPcSyV4VhifGWWWNiRSBfeBu/o/CGvbv8OHde9lr9Kv2ZSIdcQ\np/+kA7nrwjmGXZhoVTkukyYyktChQyIXsWI/M/s18JFT2t4Pk96QLiIiUlr9vZBKQnklQ+EaBrv7\nYaCXZ5Pl47qN5M89G90YzeMLBgj4fYQC4FvQwuorl/KqNRn+aPGxcX1vvyLCwjofGwaf5I7OH+GA\nWDTEq8K/I5I/+1KaikCO22qPcVXL+E91m1uqKV8wj2hdNaHyKEtrobxMCbrIxarYGfT3Afc5594J\nVDjn9gDDwCtKHpmIiMhE4kPw2c2QHsFufjnpRbfTlw1S0TvAviPpsw4LeFlePvQLflj9srG2hoYo\nlZVhwiEfbnT2uq4qyPC8CuIWhsMnxt+4Jkx9pY+GkXYiz6aINy4nu/ZKbgoGeMWn3sEXl7yXx2qv\nH/czI0G4bcEAtZZh7QvK2T7so2fI4y3XGJUrl7HG+Wg7nidbVk20IqoZdJGLWLFlFjucc1cBVwGL\nKSx32WpmRRavEhERKYHtj0O6UG3F/eonrKjYxpHr30Dq2EGGehfCGZaPzx85xhv9D+PbuAGePdE+\nb34V82sDBPzjE+NAZQWhbJ5VlT3sHYpy2ZIg5WU+YhFH/NpX4JorGGq4lNq1y8kPDjJSPo+3HPki\nNb4Req94KZctDRLwQ2XEMXAsiT+Roby2nLvv8LG3LceGlRHwORzQXOcH/ODCU/d3JiIzXrEz6Izu\nttw6+iUiInJhZdIQCILPB0MDY82/qdvEvS1/zPwjbdyz+9McXfPJMw5fM7yd3CVLaPKNX4pSW+6j\n6gybMusr/VRFHZd4IzzSG+aaywsnh5aHffj8YThezoLmcgg6MuVRnrnxnSxv38LyKy7nsqVhBpKG\n30G0zM9IQz3z0h4uFCaUzhMJFZbTPMdp1lxEmESC7pz72GRuZGb/4/zDEREROYdsplCxpaEZmheT\n7O4lOvrUN1vejuf8tJW1cH/jy+mONJ3xFi3JQ4wsvIZYuHtce035mbdlRYKOSNBPcuEias0jPPrO\nWV/pw1kEYhUQLgMgGA5Sf8U6fI2ObE0ToYCPijKP9r4882v9XLokjM8VNq7mvcK9/T4l5SIy3mRm\n0BeddB0Bfh94jMJqvBbgauB7pQ9NRETkFJ3HIJ0mefAQHckYlZ0nEvS8O/GW9sMFrz/jcL/lWFub\nYmhVC9FAJbdlIvxiW4p1iwLMqzz3JtJgJEykLEMwUEioo+HRhL6+CSKFBN05x+IFZTAYIBT24xws\nqPHjeYXKLycvn4lFHHUVqm8uIqebMEE3s7c9d+2c+zbwRjP73kltrwFeNzXhiYiInGSoH6Ix9vWV\nkztwmKZELwA5Jlcv/B3zd1HzqrdS0xAE5nHnNUZjtY8Ni0MTjg34oSrqI3jqj1q4ZPzjYBhCYda2\nRMA5wkF3xqUz0bDvRJIvInKSYteg3wG86ZS2HwFfLU04IiIiZ+F5kIiTGR4mn4bykMM/1EsOP4PB\n6nMOjfmy3LgkS63nQXnlWLvfB+URR3AS74bOOZY0BCfu6PfDynWEQ0q+ReT5KTZB3w+8B/jMSW13\nAwdKFtEU2bx5M5s2bWLTpk3THYqIiDwfmTRseYDQti1sCJax+9a7+cfGP2HP8jVnHVIdyfOBpfto\nGynDNS+lYrBsbL04gM9BOOhOq9xy3kKqwiJyMWltbaW1tbVk93OFoiyT7OzcFcD3KST2bUAzkANe\nY2ZPliyqEnPOWTF/ThERmYG2tMIX/5asC/BQ3SZ+Ov/VDATPUEfxJO+40cfq40/xVHYhVctaWGNH\nKVu2FHwnlpwc7c3RXOvHp82aInKenHOY2Xm/mBRbB/0p59xK4FpgAdAB/NbMsucbiIiIyDk9+gAA\n31r0Nh6qf9GE3ZsqPGpqYvhzVVSG5rGuJUQ4uOK0fovqi644LCIypZ5PHfQs8JspiEVEROQ0qYyR\nzXtEjx3G4Xiy+qqx50L5FBl/ZFz/hZV55tkgKy6ppyLmp6zxMprjRjioGXIRmR20g0VERGa0jv48\nR9qT+Aa66YgsIBkoH3vuf21/H6/sGF/p96qlfi6tH2HD0jJqy/0Egn6aajRLLiKzhxJ0ERGZsfKe\ncXw4j3f4WZwZ+8ovGXvuioGtxPIJXtR9P/PDSaqijpdeHubKlRH8sRg1VSHNmovIrKQpBRERmbES\nKSPvQUV3oVjYyQn6yvgeACryw9y5AaiNUlfpp6LSR+WShYT0Dicis9SEL1/OuVsmcyMze+D8wxER\nETkh2T/Att05vN4F9K/6KM+Wrxx7bnGuHQCrnYfV1JPLQyQAZSHHivlBnNPsuYjMTpOZX/jyJPoY\nsOw8YxERERlny640jx0Lg28VnFh6TsAPLS+/FXZV4q69hdqKAEd6c4SCPpxzRCZxnpCIyEw1YYJu\nZksvRCAiIiKn+vXBM79Nzav0EVmxGvIpaFlBY8xHLBygKqpZcxGZ/YpeoeecawSuBuqBsVdCM/tK\nCeMSEZGLlOcV1p3HkzmGsv4z9lneFICKKigrh0gZ0bCPaFh1D0RkbigqQXfO3QncC+wD1gE7gPXA\nQ4ASdBEROW8DCY/BpMfRo0OcNA80JuCDm9aGoSxUSNLDZRc+SBGRKVTsDPongLeZ2Xedc/1mdoVz\n7m0UknUREZHzNtQzyGDPEB07u4ATm0I39m/hugUpBq+6o3D6p9/BynXgP/Msu4jIbFXs54EtZvbd\nU9q+BtxVonhEROQilEh5xEfykEkz8OxhUsf76OlLjz3/joP/yN0HP40tXklthY+Af3RmPRw5yx1F\nRGavYmfQu51zjWbWBRxyzl0H9AIzfvpi8+bNbNq0iU2bNk13KCIiAjDUD55HKlLNzt19lLkcq+vz\n9I4EGAnE6PKfSL4b0p0AZBYsoz6mteYiMrO0trbS2tpasvs5M5t8Z+c+DOw3s+855+4CvgB4wN+b\n2V+WLKoSc85ZMX9OERG5AHY8Cf297K9cw+DxYXLZPOGgj8/vbsKz8WvPP73tHWSXbyDxjr+gosxH\nRZmSdBGZeZxzmNl5l5Mqdgb9f5uZB2BmX3fOtQIxM9t1voGIiMhFxMtDYphURT3H23qpCmRJen7u\nP1x3WnJekR0kUl+H7/ZXUVWr40FFZO6b9Cudc84PxJ1z1WaWBjCzI1MWmYiIzF2pFJjRnw3juTyP\nD1aSNcfAcO60RZPz3DC+V/0hkaU6D09ELg6TTtDNLO+c2wvUAe1TF5KIiMx5fT3wxG9w/np+AeKu\nRwAAIABJREFUG34Ju5I1hfYz7GhqrAkADqLlpz8pIjIHFftZ4TeBHzvnPg0cA8YWdpvZA6UMTERE\n5rCffAuefJh9dZvYtbjmnF3XtwShqgYCWt4iIheHYl/t7h79vvmUdgP02aOIiEzM82D/Tjwc9ze+\nfMLuGzbOB/JTH5eIyAxRVIJuZkunKhAREZmj8nnI5yAUBjOOH+ygtr+XnRUb6Iw0n3Posso0kYra\nCxSoiMjMUFSC7pz7UzP7uzO0f8jMPlW6sEREZM443gVH9kPDQrKd7XTt66UOeLLm6rEuL+x9kOFA\nJUPBSl6U38Zvm19CIhfgJZdFpy9uEZFpUuwSl/8BnJagA38BKEEXEZHTHe8GM+g6ykigktjxpwA4\nUrZkrMvaYBfL8k8SSoyw/8rXc+vyKoZTxqKWymkKWkRk+kwqQXfO3TJ66XfOvQg4uUjtMmC41IGJ\niMgckMvB8ABUVIHzMTgcoGKwnRx+2soWjnXzXX4NBwwifo/gwiWU11UQ78tTFZ3xB1WLiJTcZGfQ\nvzz6PQJ85aR2AzqB95UyKBERmSOScRjog2QCGps51J3lsG1k/5o/IOcLARDz51hbFacjHaE9EWZ5\nQznBsKM65ggHz/tAPhGRWWdSCfpzm0Odc183s7umNiQREZkzdjwB//Yl8DwM+M81f0tb/a3jujRF\ns5TNq2OBP0L10Ag19RGyeYiElJyLyMWp2CouSs5FRGRyhgZgywOFsopAT6iBtrKW07otXRSDhdVE\nfH4iTTlwjlAAQgEl6CJycfIV09k59xnn3PWntF3vnPs/pQ1LRERmvcP7oP3I2MPdFevP2G35oiiU\nxSAc0WmhIiIUmaADbwQeP6XtCeAPSxOOiIjMCZk0dLdDX89Y01MLbh67vjR2nJZaWLcowBVLdUKo\niMjJin1VNE5P6v1naBMRkYtNOgX+AAQChc2hbYfGnuprWs2BsuWQKzy+oj5F9ZoI/mAAv09vISIi\nJyv2VfE3wCeccz6A0e+bR9tFRORilcvCrm1wYCeWzzFwrIvc01vHnt7VdAMjucJbTsSXJ1BTzVDa\nR0WZknMRkVMVO4P+AeDHQIdz7jDQAnQAryx1YCIiMoscOQCZFKSSJHfuInH/z6keOg5APhDmtxVX\nQaLQ9ZLKOBvWNbC9yxGLKEEXETlVsVVcjjnnNgJXA4uAo8BWM/OmIjgREZkF0ino6YDKGgAGekZo\neHbL2NOPX/Ym9iWrxh5ff1UTsaoyLgnkiUZUqUVE5FTPZ2fOrcAbgEYze4Vz7gXOuUoze6DEsZXU\n5s2b2bRpE5s2bZruUERE5pbBfnAO2g9jkRjDAwGa03EAnq1aw79wC54VujZW+1jeHAagKqZTQkVk\nbmhtbaW1tbVk93NmNvnOzr2PwjKXLwH/3cyqnHPrgC+a2fXnHj19nHNWzJ9TRESKsPNJeOh+2NqK\n+XwcmH81e3MNjPijbJl3E/3+agCiYcfLNka4dUOEgF8z5yIy9zjnMLPzfoErdgb9g8CtZnbIOffh\n0bbdwOrzDURERGahdAp2/w62/gqArPn555o/YiBUO65bKAC/d1WEhXV+JeciIhModndOBYV151Ao\nuQgQBDIli0hERGaPvh54+D947i1he9XlpyXnALdfESEW8dFYo5rnIiITKTZB/zXwkVPa3g88WJpw\nRERk1vA8+N2Wwhr0UY9XXzN2vT7+DC9a4+eNN0ZZ1hAg4IcKbQoVEZlQsVMZ7wPuc869E6hwzu0B\nhoFXlDwyERGZ2RJDsHvb2MOeldfxdOW1Y5+vXrcEqlZFyeaMRNpYtSCAz6cEXURkIsWWWexwzl1F\nocxiCyqzKCJycek/DsP9sGg5HDsMB/eMPbWl/may6cIHszXBDJWrluOZEU8Zq5sD1JSraouIyGQU\nvRhwtBzKltEvERG5mPR1QfsRyOdhzzaIDwGQC0XZGVwG6UK3lugIQ75qLGksrPMrORcRKUJRa9Cd\ncyHn3Mecc/ucc4nR7x93zkWmKkAREZkhPK8wg15ZA22HSO8/MXves+hynk2Ujz2+qnaADSvLuXxp\niOY6JeciIsUodgb98xRKKr4fOAwsBu4BmoG3lzY0ERGZUVLJwsx5eQSoJrj/mbGnHlj4e+SHC9f1\nFY5LrlxKpCw4PXGKiMxyxSbodwLLzWxg9PFO59wWYD9K0EVE5raeTvjRNyCbhebF+HIZPBzfW/pW\nWocXjXVbuSBIeX1sGgMVEZndik3QO4EoMHBSWxnQUbKIRERkZnrwPuhqK1z3dZN1Qb66+E94rObE\nQdL1lT6uXx3Cr2otIiLPW7EJ+jeAnzvnPgscAxYB7wG+7py75blOZvZA6UIUEZFpl83Avh1jD0d8\nZXxmxZ+xv/zEQdLLGv3cuCbMglodRiQicj6KfRX9k9Hv95zS/u7RLyhUwF12PkGJiMgM09sFPe1j\nD+9vfPm45PzyJUFuXhcinYNyHUYkInJeiq2DvnSqAhERkRls26OFKi6j9latH7u+bmWA69eEiaeM\nhmq/DiMSETlPxZZZfJFzbunodZNz7mvOua8455qmJjwREZl22QzsPVGxpX31zRyrXD72eN3iMOlc\n4bqhUiUVRUTOV1EJOvA5ID96/SkgSGFJyxdKGZSIiMwQ7Ydh2xY4dnCsqbdmGclcIRH3+8DnjFze\nWLsoSCSk2XMRkfNV7Br0ZjM74pwLALdTqIOeAdrPPUxERGadxDAcOVCYQe/rIesC3NvyDrZ5N4x1\nqYo6yst8LGsMEg4qORcRKYViE/Qh51wjsB7YaWZx51yIwky6iIjMJUcPQjBMevvThIGH6jbxSN1N\nkDvRpbHaz+oFQa07FxEpoWIT9M8CjwEh4IOjbTcAu0sZlIiITLOeThjogao6fLufBuD+xlec1q1l\nnjaFioiUWrFVXD7pnPs+kDezA6PNbcA7Sh6ZiIhcePk8tB2EtsPgedi3PkdwoJusCzAUqDqte7Nq\nnouIlFzRr6xmtvdcj0VEZJZKjcC+7WTjSYKVVfC1T+P6egB4NraSjD982pDmOlVtEREpNU19iIhI\nQU8HuUSC3fkmLvndrwn29ZBzfr605D08UXPtGYc0VilBFxEptWLLLIqIyFwVHybuizE8lML/6C8B\neKT2ptOSc//oO8cVy1S5RURkKmgGXUTkYtTXA/kczJtfeGwGyWGG2ga48sF78SWHAHi87vpxw8IB\neMONUbJ5uGyxCniJiEyFohN059xtwBuABjN7pXPuBUClmT1Q8uhERGRqdB6D/l7w+aGuAbIZ8o8/\nTNMTD3OkbAmLfCPknZ895WvGhly1IsiShgCN1X46+vOENHsuIjIlikrQnXPvAz4AfAl47WjzCPAZ\n4PqzjZsKzrmrgE9TOCipDbjLzPLnHiUiImQzEB+Eyho4sAvKK+HJh/E/9iBfWPpBnqy5moUjR7ii\nLo6XLKxnaaqEq1eGiYahocpPf9wjFFCCLiIyFYpdg/5B4MVm9reAN9q2G1hd0qgm5wjwIjPbBBwG\nfm8aYhARmX0Sw4UlLcHRJSqDx+Gp39ITauDJmqsBOFbWwoOZVWNDli0Ikc4ateU+KiKOxiofQe0P\nFRGZEsUucakAjo5e2+j3IIVZ7AvKzLpOepjhxD8YRETkXNqPwP3/DuEI3PhS6G7HOg6ztea6cd3i\nuRNvEYvqAvgclEcKBxMtbtD6cxGRqVLsDPqvgY+c0vZ+4MHnG4Bz7j3Ouceccynn3FdOea7GOfd9\n51zcOXfQOffGM4xfDNwG3Pd8YxARuWh4HvzyB3B4H+x9Bu77JvT1Qk8nj9Ved8YhlVHHtatDXL40\nRCSkZS0iIlOt2Bn09wH3OefeCVQ45/YAw8Dp5z9PXhvwceB2oOyU5z4HpIB5wEbgJ865p81sF4Bz\nrgL4OvAWrT8XEZmEZBye3X3icXc7fP9rtAcaaStrOeOQlno/0bDD55Sci4hcCEUl6GbWMbo58ypg\nMYXlLlvN7HkvLzGzH8DYps/m59qdc1HgNcBaMxsBHnbO/RB4M3CPc84PfBvYbGb7n+/PFxGZ85Jx\niEQBg6ceKWwQPdnwAE/Mv/WswzcsDik5FxG5gIo+qMgKtprZd83s0fNJziewCsia2YGT2rYB60av\n3whcDfylc+4B59zrpigOEZHZK5eDnU/Bvu3QcbSwrOUMdlRsOOstLlui9eYiIhdSsWUWPwN828we\nOanteuD1ZvbBEsdWDgyd0jZEYaMqZnYvcO9kb7Z58+ax602bNrFp06bzDlBEZMYbiRcOJBoegONd\nhQ2io3oXb6T+8JMk/VEOxpaPthrXrAyxZV8WgHmVPqpjOnRaRORMWltbaW1tLfl9i12D/kbgT09p\newL4AYUSjKUUBypPaauisOa9aCcn6CIiF43BfvD5oLwKMhk4dnDsqd51m6ju2svuyBrMFZLwhkiW\nOzZWcag7TyJt3LExgs+n5S0iImdy6qTvRz/60ZLct9gE3Th9WYz/DG2lsBcIOOeWn7TM5TJgxxT8\nLBGRuanjKLQdgkUrYOeThdl0IFnZSHr+cu5f8np+61s71n3J/DBNNX5edXUZnmesXKDlLSIiF1qx\nCfpvgE845/7MzDznnA/YPNr+vIxu9gxSSPQDzrkwkDOzpHPu34GPjVaN2Qi8kgt8YqmIyKyVScNP\n/rUwax4KF0osjupYcQPf2ldLX/TF44ZcurwMv89RXuYYiEN5RMtbREQutGJfeT8AvBjocM5tBToo\n1CB/33nE8BdAEvgw8KbR6z8ffe49QBToprDe/N3PlVgUEZEJdBw5saQlk4ZcYV15X/Vivhp7NX1x\nG9c9SJ61i0IA1MQKJ4aGg1reIiJyoRVbZvGYc24jheopiyhNmcWPAmdcsGNm/cCrn++9T7Z582Zt\nDhWRi8vTj57WZM7x/9a8l66E/7TnVs73UxEpJOTVMT8RJeciIpNS6s2izswm7vVcZ+dCwFuByylU\nWRljZneVLKoSc85ZMX9OEZFZz/Pgf/9Zobzic02RKNvW/j7/xEvxKCTfL94QZpW10dGT4pIXLGNZ\nS/nZ7igiIhNwzmFm5z27Uewa9K9R2Kh5H9B1vj9cRERK6PB+mDcfojFIxvGOHhxbx9j72g8yWLOY\nn+2uwEsU3jsW1vm5bEkQN1xDfbKD2tpTD3MWEZHpUGyC/lJgqZkNTEUwIiLyPKVThWotzkHLcnJ7\ndxBIJQDIhaMcCCyisyfIwUR0bMhNa0MMJg2/L4bVziOqDaEiIjNCsa/GR4DwVAQiIiLnYaC3kJx3\nt4OXJ/vUY2NPJZtWUO1GONx/4iV/1YIAZWEfC2r91NeEqF5QTyigNeciIjNBsTPoXwd+6Jz7NKcs\ncTGzB0oWlYiITJ4ZdB6DWCUkh2GgD3v2RMGroWVXkmlZxe7R00EBVjcHmF/tZ2GdH+eUmIuIzCTF\nJujvHf3+N6e0G7Ds/MOZOqriIiJzViIO+3bAw/dD/Xyy/ggjA8P8aOFd7KxYT8fgQvhFDkY3htaW\nO5prfDQrORcRKYlpreIyW6mKi4jMaYf3wWf+Cgb7AEgtXc/n/K9iV+X6M3a/ZmWIO68po77y9FKL\nIiLy/JWqiot2BImIzHY7nxpLzgESbZ1nTc59PtiwOEhthV7+RURmqmKXuOCca6RwUFE9z31eCpjZ\nV0oYl4iITEYuCzueGNe0tea6sesl4SFeeE0Tv9qZpr0vzxVLg6yYH8CnpS0iIjNWUQm6c+5O4F5g\nH7AO2AGsBx4ClKCLiFxoQ4NwYNe4pi21N4xdr11WTlONnz+4IUou55HMQmVUs+ciIjNZsa/SnwDe\nZmZXAInR7+8Cnjj3MBERmQr2xEOQzYw9PhZZRFtZCwBBL8PSlhipjGFmjGShscpPwK/ZcxGRmazY\nBL3FzL57StvXgLtKFI+IiBQh+9hvxq67V1zHb+tuHHu80tdJHj+hIAwkjWzeqNPacxGRGa/YNejd\nzrlGM+sCDjnnrgN6gRlfCkBlFkVkrvE8D1/bwbHHHZdsorVt9djjFS1RrlgWxOccwyMeAwmPaFiz\n5yIipTatZRadcx8G9pvZ95xzdwFfADzg783sL0sWVYmpzKKIzEV9h9qo/cQfA5APhvnMi7/Ezq7C\nfEm9i/OeO2tZOL98OkMUEbmolKrMYlEz6Gb2yZOuv+6cawViZrbr7KNEzi6TMwYSeY4PezRV+6kp\nn/EfxojMCGbGwI49HKi5lnsXvR2/M4a7Tvz+XNWcor4uNo0RiojI8zVhgu6cu8nMfj16fctZ+sw3\nswdKHZzMTZ5nDKeM7sE8fXEPB4QCjj3tOeZXGwvr/fh9+hhe5FwyOci3HeUbi/6YkcD4RHxZ2TCr\nmiNEQvo9EhGZjSYzg/45CqUUAb58lj4GLCtJRDJnJdMefXGProE8uTyEAlBV5saOGo8EoWswz2DS\nY8X8ANGwNrOJnM1Ixnh0uImRsvHJeSQIL1iQoaGpbpoiExGR8zVhgm5mJx9Ht8LM8lMYj8wx2Xxh\nCUvXgEciZfh8EAu7M86QO+eoijpGMsYzh7MsafDTUOUfS+BF5IRjx3M8Er587PHti4eoWNBIddTh\ntzA1DWXTGJ2IiJyPSa9Bd875gbhzrtrM0lMYk8xynhnxEaNnqLC2HINIyFEdGz8jbmZ09HtsP5Ll\ncE+OxfMC3LwuTFnIEQrAwe48A0ljaUOAUEBJusjJ/vOxAXK+IACLk8+yft0aXDBAfzzPoqYwwaA+\ngRIRma0mnaCbWd45txeoA9qnLqSpoTKLUy+VMY4P5+ke9MjkjKAfKk9awvKc+IjHjmNZdhzJ0Rf3\nxtp/d7iQqL/syjKaa/3UxBzDSY9nDmdY1hjQBlKRUZnkCHu7Tjx+xfAvybkNeFmjLOxjXqV+V0RE\nLqTpLrP4Z8AbgE8DxyisPQdgJm8SVZnFqZPLG4PJwrry4ZSHzzmiIXfaSYW5vHGgK8f2I1kOdeU5\n138N5+C6VSGuXRXC53NkckYiZcyv8WsDqVy8PA8Sw5DNsGdXN3+3bT4A1Znj/H/Z79D1+j8jlTVW\nzQ9QFVOCLiIyHaalzCJw9+j3zae0a5PoRcTMiKeM3iGP3qE8nhmRkI+qMt9ps+VdA3m2H8my61iW\nVPb0ewWdxyWVcebFjIc7y0l7fszgkT0ZDvfkedmVEaqiPoIxbSCVi9zxLti/E3x+dvc0jTUvT+wj\nvGoply4OYWbasyEiMgcUWwd96VQFIjNfOmv0xQsbPtNZI+CH8jKHz41PlpNpj13HCrPlPUPeGe+1\nqGyE9bUjrKzLERqd7Ftek+Vnhyo5lggB0NaX52sPJrjtsghrFga1gVQuSp4ZmYxH9vAxCFURiwY5\ncODE4UMr4nspX/1CAP0+iIjMEcXOoOOcawSuBuqBsXcDM/tKCeOSGSKXN4aSHt2DeQaThnMQDTvK\nQuOTcs8zDnYXZssPdObwzrCGpSKQZX11gnXzslRHxnfI5Y2qkMfrVw6wpSvKIx0xDEcmBz95IsXB\nzgy3XhbVBlK5aIyM7unoGsiTjyewbh8uWkEwCR19eRj9FVw+cgD/indOb7AiIlJSRSXozrk7gXuB\nfcA6YAeFGukPAUrQ5wgzI5k2jg8XEvO8B+FgoQTiqTN0vUN5th/NsvNojmT69Kw84DxWlidZPy9N\nS2Wek4d72SyhgzuoO7CFys69xOuX0L/xdq5bsJIlFRl+fKiKwUxhen1nm0db7xAv2xihuSGsDaQy\npyVSHjuOZgv/IA45Aslu/CSJtu1lpLuHgfAfARDKp1h4xWqI6sRQEZG5pNhNotuBj5rZd51z/WZW\n45x7G7DOzP50yqI8T9okOjnpbKFmeeeARypj+EdrlvtO2ZSZyhq7j2XZfiRL58CZl7DMj6RYXzvC\nJfU5wv4Tf/fmGa77GFX7tlJ/6AkCmeRpY+ONy+m78g4GG1byn8fK2dF3op6zw7huUZZr11fgC4XG\nbSBtrvOftjlVZLbJ5o0dR7L4XOEfxqRSBJ55hCX/8Xn82RSPV1/DPy/7AADLM4f4yOvrYUHLNEct\nIiJQuk2ixSboQ2ZWOXr9XILuAzrNrOF8g5kqStDPLu8ZwyNG90COgYRhozN2py4b8cw40lNYwrK/\nI0fuDHl5zJ9jbXWC9fMy1JWN//v2EsPE9j1B/YEtRAc6JhVbYv5Kjm+8g6fCa/jF0QrS+RPLaprL\nUrxsHVQ11WA+P0MjRiTotIFUZjUzY39njoGER2VZ4f/j9LFjeL/+OcmePgB2V6zlt3U3A3BTTRdv\nflkjVNVOW8wiInLCdCXo+4EbzKzLOfcU8F+AXuBRM5ux50orQR/PzBjJGL3DHj2DeXJ5CAWgLHT6\nEpb+eOGj9h1HswyPnP536MNYXp5gfX2apdV5Tp5s9/J5god2Ubt/CzVtO3B2hqy+sgbWXwlLV8P2\nx+GZxwrl5E6SWLCaAxtexfcT68Y2kAKEfHluazzOmhWVUFXDSN5POmcsmednXpUfnzbMySzTN5xn\nb3uOyjLY35lnx5EMB7vzGGf+f/kdSw5zzS2XQESnhoqIzATTVWbxi8ALge8B/wA8CHj8/+zdeXRc\n1Znv/e8+NVdJVZpnyZY8yLIFxoaAmU0gzZQE0owBAp1Op3NDutOZ7tudzrs6Jr1u93vT9/ZNVt+k\nQ0JIcAgkkAQIgTQEjIzBgA3GNvIkS5Y1WPOsqlINp85+/zi2LGEbZFtyydLzWUtrWadOnXpK1vCr\nXc/eG/736RYy02SjIkiamsFIiu5Bi+jhFha/Rx2zrnjC1Ow7ZLKrLUl7f+q41yrw2C0sNXkmPueE\nFhYNqq+TYMNb5DW/jSsePvbOThcsPQdqL4DySjiyCkxxBVy4Ft7cAPXvwOFAH+jYx7kd/8bCshqe\nXfxZNo6U2hNILQfPdRbQHB7h6uI9+AqLcGdm09yDTCAVZ6XBsIXTofntm3Fa+4787J34e3hZuQc8\n3jNTnBBCiBNK60ZFx9xZqQogoLXeM20VzYD5PIJuWfaa5T3DKQbCFhrwuxRu1+Q/+lpr2vvtFpaG\nDpPkcXK5z0hRE7JbWAoCk0e5rbEIvv3vktf0FhkDbccvpnShPVpevRLcnokPDskEuFxHw/pQP7zx\nMnr3NtT7/u92VV7DI/l3MWgeDSZBl8mNRV2UZpiQX8SoKwvldMgEUnHWsLRmW1OCt5sSvNM0edOA\n0rFWimIddOdW025lA1Dmj/Hte/LtF7xCCCFmhXS1uHwP+KXWeuvpPvCZNB8D+sQl2swUuJx2b/n7\nW1hGxix2tdotLEORY79GCk1lIEptbpxF2SaOCe3dVsrC1dZA9v43yW5/D8M6TqrPCMKK8+3R8uy8\nybclEzAWAUtDIAOiYXA4IZDJ+HIvg33oN16GPe9OCuoxw8v6ZX/HVu/KSbVeXDjKmmAvhtNBIqeY\niDuL4lyXTCAVs140bvHcO2O8uD0+fuwjRhM37/wPChI9mL4gTR//Cv0pP+1jfs5bXcTSymAaKxZC\nCPF+6Qro3wduAyLAY8BjWut9p1vETJsvAT2Z0gxHLLqGUkRiFoZS+D3qmGCaTGkaO+2NhFp6j9/C\nkuNOUJsdYXmeSYb7fV+7gR4yG7aQd2Ar7rHhY+/scMLi5XYoX7AEjImp3rKDuJm0+2aLyu3g7vHa\nYb2jFXo77VHBiUG9vwfz9ZdxNOxAcbSerdlrWL/gr4kZR0fTSwIJbiwfJGSF0YaTkWAR3txsFpe4\nZQKpmLUauxJ879kw8cOD51UZUf6ufh3+gXYAes+5hoEr74CMTIaTLhaX+8jJkO9nIYSYTdIS0A8/\nsAFcDXwa+BRwAHtU/d9Pt5iZMpcDuqXtZQZ7h1P0jVpobU/29BynhaVryKK+Ncne9iRx89hreYwU\ny4IRavOSFGW8b83yWAxv03byGt8is6/5+MUUldmhfNlK8PonPjjEYxAfs8N6XpH9kRGE403kjEag\no8Xe2tzpAn/G+HlmbzfxTRsIHNg+fnq/K5efLryf/Zk148fchsU15aMsD0YgHmUMD/HsIhYuzCY/\nxyUTSMWs8/DLYd7YlwAg05Xir72vsWzjgwCkHC523PAPmNWr8HicxJOacxe68brl+1gIIWaTtAX0\n9xVRCvwMuFprPWsbfedqQE+Ymj1tSWJJjcsBPo86JnhGYha72+3R8v7R461ZrlngH6M2N8biHBPX\nhAE5bVkY7U3kNG4hp3U7Rip57N39GbB8Fay4APKLJt9mJu1R8VTKXq2lsBRC2VPvmY2G7aDe1w0u\n96SgPtzeTWrzy+S07gDAQvHHwk/y+5JbsdTRb8Wa7BjXlI/i0UlSY1FGtI/s8nwqF+fhdp/0RrpC\nzIiUpfn2r4bpPryvwA2FXax972Gy2+sBiFZfQOLmz2EVVdA9nMI0oXaB65iWNSGEEOmVzhH0APbI\n+aeBtcBG7FaXR0+3mJkyVwP6kd0GQ/7Jb3OnLE1Tlx3Km3tSHO+ph1xJarMirMhPEvRMPkEPDZDR\nsIX8A1vwRAaOvbNhwKIae7R8YTU4Jrw2syw7lCeT9kTQwlLIzZ88on7ST3QUDh2EgV5weexdE5Ui\nnlJ0NPcQeudFctp2AtDsX8RPFn6JXu/RFwtBd4obFwzbE0jNJKPhOMrloWpJPtnl+WDM2teWYp7o\nH03xzUeHx39W/6p4Lxc9952jJ9z2ebjy+vGfo5Slj1l9SQghRPqlqwf9SeB6YBvwOPCk1rrvdIuY\nafMloPcM26uw7Gk3GUsc+3xdymJppr0KS1nm+1pY4nE8B94jr+lNgt2Nx3/A/GJ7FZaaVfZo9kTx\nMRgbs0e484vsj0Bwcv/56QqPQsdBO6i7PeALYKHoiTroPdhFxXt/JNS+i5jh5fHy+9h8eDMXsCeQ\nrimKcnFRBENBIm4SiSSoKPZSct6y6a1TiJO0cfsIj262+85yvUm+0fdj8hpet29csATu/AIsqU1j\nhUIIIaYiXeugbwW+rrVuPd0HFtMjltA0dSWob03SM3y8FhYo842xIidGda6J2zFhzXLCGkD1AAAg\nAElEQVRLY3Q2k7V/C7kt7+Iw48fe2euHmvPs0fKCksk946YJY2F71DwQhMWVdguLy33sdaZDRqa9\nfnp4FNqbYagPw+2hyB8gc2kBTYV/jdHdysL3nuezLQ9SO7ydX1T8FWPOABrFG10BWocU11dFyfI4\ncbqdtHVFyTrYgr+qcmZqFuLDxGPs2jMA2CuyLLQ6yd2/+ejttRfYk6mFEELMG6fVg362mIsj6Ps7\nk7zwboz3WpJYx3lqmc4kK0JRVhQkyPZOPsEaGSJj/9vkN72Fd7T32DsrZbeu1J4Pi5aDc8LrOG1B\nNArJuB3EC0shtwB8gWl+hlMQHoH2AzA0AG4vpjdAe9hFV9RJ/uABirb/kVhPHw8vvJ+GCRNIvTrO\nx4r6qS5xEk1o3LERalYvxMgvPPPPQcx7Q7sb+NfNQQYS9gvbv23+35w7+I59Y0mF3d5Se8HxJ1QL\nIYSYVWbFJNGzxVwM6H/aEeOJ16OTjjmUxZKMKLX5cSqCKSa2qFrJJO4D9eQ2vUWoc9+kpQrH5eTb\nkz1XrLZXWJkoEbd7y5Wyz8svgczg7OjfHh22R9SHB8DjZVBl0jTssbttBhrJ3vYCr6aWHTOBdJW5\njyuXGoy6glQ6Byg8/1x7lF6IMyTSP8zbm5t5tK0CAEObfH/H5/FacQjlwI13wao1x+4hIIQQYlZK\nV4vLWWvdunWsXbuWtWvXpruUaXHREje/2RzF0lDkiVGbE2NZXhKvc3ILi+pps1tYDr6DMzF27IXc\nHntZxNoLoLhi8ihdyrSXPEyZ4M+EymWQnTtzLSynKjNkP4fwMLQ1kz3SyzkBP83JEB1ZiwlfV8U5\nXU1UvfcTfpF58/gE0ned1bTu6eWOgiZaCisI7anHu3L15F1OhZghsViKvTsP0Zs8OoG6KtJoh3Of\nH276DASz7LYxIYQQs1pdXR11dXXTdj0ZQT+Lbdg6RKKjjcqCycsW6vAI/v3vkNe0Bf9w53HuqWDB\nInu0fMmKyYFbaxiL2iPmTufkFpaz4S12re0R9bYDWCND9BCkJR7E69B4nRqj/QB1B91sCawev8vC\n6AFuWhzGGcykulChlq2cvDKNEDNg3+4uIi2HeKchwhaXPQH0E52/5ZMDz8Mtn7VfFFctg4LiNFcq\nhBBiqmQEXXBRlcGuviTgwjJN3C17yNn/Flkdu1H6OBNGQzl2X/ny848dlUskDrewaAjlQVW1PXo3\nG1pYToZSdt3LV2GMDlPUdoDMwU6aEtkMWV5CpVVcUaopP7CHZ4YWYxouDvqraNvxO/LWXEB/f5i8\n1kZYuPTseEEizkrx4RGGWjrJG2xhvz5n/PhSRw985sv2CHrKtNvJhBBCzDtTGkFXSm2C4zUtH6W1\nvmK6ippuc3UEPdI/QuMLr1HQsZO85q244pFjT3K57ZVPai+AsoWgJiwnmErZmwFZFnh9UFwGWXlz\nq8VDaxgZwmxpor03SWcqSGbAgcuALQdSvDpsj066rTj/vf9H9F1xB+e4u/AsqYaC0jQXL+akZILu\nt3fSPORkc32EPQF7ArPXivGvl3aR4bRgbNR+If3+uSBCCCFmtTM6SVQpdd/ET4EfAPdPPEdr/cjp\nFjNT5mRA3/Y61jOPYhxqPv7tZZWw4nyoPndy4NYaYmP2uuVOp710Yk4hBDLm9oix1jA8wGBjC029\nGuV24/O6+GW9j56UPTG0ZqSeu5ybCV/ycRapHtTyVdL/K05fPGbvhuvzg9eHbmliZ3uK1/ZbbKdq\n/LSrC3q5Y1kYFR6G6pX2fA8hhBBnlbSu4qKUGtBa55zug58pczKgv/pHWP/9yccyQ3YoX3H+sas+\nJBN2b7nWdugsLIVg9vzrtdaaeN8AzXs7GBpNEjX8/KopD334nYX7Wh6keEkZOecuJ9uI2u88eH1p\nLlqctUwT9m63lwRVBiiImA5+01rAawNH21cuV7u58pwAC5yD9i69+dJ3LoQQZyMJ6CdhTgb0sQh8\n7dN2e8qSWru3vGLx5B0xrdTRVVg8Xnuzk+w8+9/znJVK0dU6QOuedraP5vBOvz2K7jcjrNv793Rf\n/RcsqsjA5XXZO6c6ZbqGOElaw4G99uj5hHdiWocMfrjFR7/T/hV68ehbLD+ngGU5JlkrltkvtIUQ\nQpyVZJLofOcLwOf/wV5asKDk6HGt7faVeMye4JlXaI/GBTLndgvLSTIcDooX5hGNa1Y2ttM44mU4\n6SLqDPCr0s/wubqH6Przr1Kuo3CwwR7VlK+fOBld7dDbaU/OPszS0PHWu/S7Pg6Az4xwZUWMfo+P\nwMpF4JtD8z+EEEKcsikFdKXUR99/P6XUVdj96ABorTdMZ2FiCpaeA7vetv9tJu1RdcuCzGwoX2QH\nAxn5PSGlFOWL8hkajnO12cvvOuwXOtuyL+KigddZ+l8/Z+T2vybY22m/ICpdkOaKxVkjGoaW/fZo\n+HtbsQ61kMgqIJo02D9UCIe7W2qNdnqDCyheXIJLwrkQQojDpprefvq+z/uBhyd8rmHCbCdx5pjJ\nw1vde6C00l6WTXqmp8zjUiysLiIVi1EbGaV+2G51eaz8s3xnz38n8eIzmB+/CWdrI/gDsqOjmJqB\nXnA4YccW2PAMBuAFHMrF1nN+OH5aUWmQ3EIv5eXS1iKEEOKoKQV0rXXlTBciToHbDWVVkJMHgeDk\n/nMxZbkhJ30LS7kw3kxzxE/EdDDszuY3pXdxb9NDDG0pIuvCC2H/LnvSqD+Q7pLFbGZZ0NMBfd3o\nV55lYmPU9tBqxpz290/QmWRRxhiVK6owDGmfEkIIcZQkurOZ2wMLFkNmloTz06CUYmGxD0dpGVfl\n944f35T3UfZkLCf05rOMtbTYa8o37LRXxBHiRCIj0N8Lz/9qfMOwWE4pQ9UX83rxn42ftjgQZlFN\nEU6fvOMlhBBisimlOqXU+Uqp2gmfFyilfqmU2qGU+pFSKmPmShRi5nndiorSAEULC1kSCI8f/8WC\nz5PAhev5X2KNRSGZhKY99go5QhxPdye8/JQ9JwRIejPZtfZ+/lj9F+z2LRs/bVVpCm9JyYmuIoQQ\nYh6b6rDr94CiCZ//BFgK/BioBb47zXUJccYVhBxk5GZyyVIHHsMO4L2eQn5fcivORJTUU+vtdy2G\nBqD9BBtEifktlYJ3X7OXVgTiDi/fPe+7/OhgJRvaM9GHG14KvXGWriyXd76EEEIc11T/OtQAmwCU\nUlnA9cDdWusfAJ8GPjEz5U2fdevWUVdXl+4yxCxmKEVloRNXTi5XlI+NH/9TwQ0c9FfiGuwm9dyv\nIRiEQy3Q25XGasWsNDoEDe+Nf/rcii9wMDF5AqiB5rzFPoJB2Y9ACCHmirq6OtatWzdt15vSRkVK\nqSEgW2utlVLXAT/WWldMuH1Ua505bVVNszm5UZGYMYf6Tdp74ry4dYTWsL30XVm0hW/t/X9xkkKv\nuRq15qP27pC150NGMM0Vi1mjfiv8xzpIpYgbHv6f1T8markAKM+GpbkmxdlOyiuCVBXKEqhCCDHX\nTNdGRVMdQd8F3Hb433cCL00opBQYPt1ChJgtirId+HwurlyZgVPZk/za/Qt4odDeXEa9+TI07Qaf\n3x4tjcfSWa6YLZIJ2LbZbnMBXqy4dTycZ/oUt1yawaoV2fhCAfKD0toihBDixKb6V+LvgQeVUgPA\njcD/nHDbHcDr012YEOniMOxWF7fXxaWLj/6IPFtyC50ee1Kf/uMTMDxg79zauHs8lIl5Kh6Dhnqs\nxj0AxAwvL2VfPX7zmqVunA6FmdI4nYqAV5ZVFEIIcWJTCuha69eACuBjQJXWet+Em58DvjoDtQmR\nNpk+g+JsJ4sr/BRm2KPoKeXkkaovYqFQZhL99HpQhr2sXst+O6yL+WeoH3ZuJdXbhepoAeClguuI\nKrvHPOhXVBY4GIpYROKa4mwDQ0lAF0IIcWJTXmYRWKC1fkdrPaqUyj+yzCJ2OB+Z0SqFSIPSXAce\nl8HV5wUwlB2+m3yLeKXwWgDUyCA8+yj4M6G7A7oPpbNckQ7dh0ju3klXKoPOPa0oNMPOEC8WHZ03\nv6rSRcjvoLrUxaoqN8XZ0nsuhBDig53qMosPIcssijnO6VBUFjrwegw+ssg1fvx3pXfR78q1P2k7\nAHV/gGAWNO+z217EnBZPaoYiFp3tgzS818b2eDEt8QC5zW9jKgc/qvo7xgx786GQX7G4yMmCAidZ\nAQOXQ0bOhRBCfLh5s8yiEKciK+CgMGRQu8BNTsAOVwmc/Oycf2C8oWX7G7DrbQgEoWEXxKJpq1fM\nrISpqW9NsK91jPY97USNABluzYKmTfgG2nmi9B4aM+zNiBRwaY2HklwnHpcEcyGEEFM31YDuBI7s\nb74G6NJaNwBorduArBmoTYhZoTzPicupuPrco+tW76OUjUs/ffSkl56BnkPgMKBRdhqdqzoGUlgp\nTdZIO0Ejgd9pUfrqoxRtfpLNOZfzSsG14+deWuOmNMdBYciRxoqFEEKcjWSZRSE+hMupWFjgJOg3\nOG/hhFaX0A305i6xP7FS8PtHwTTtSaMdrWmqVsyUaNyieyhFZmwAhodwWgkW/P7f6e0a4UeVf8fP\nF3xh/NwlxQ5qSp0UZztk9FwIIcRJm+pGRZcBzwIaSAGXHVnJRSn1NeAirfUdM1no6ZCNisTp0lqz\nv9OkfyTFk2+MMTpmfz+tyBjmS299A1c8Yp9YWAq3fx6iEai9ADJDH3BVcbbQWtPQaRIeHmOo8SA9\nZoDY/gZajULa/QsnnZvrs7hzbSZJE1ZWunE7JaALIcR8MV0bFU0poB9+wEzsiaENWuvRCcergVGt\ndcfpFjNTJKCL6RBPanYeTNA9lOKZrUc3J7ozazdXvfIvGNpejpFl58E1N9n/rr0AnK7jXE3MVlpr\nkikmBeuRqMXu9iSvvjPI/kH3Ce+70B/lY+dnYnm8LMx3UCQrtgghxLxypncSRWs9emSZxfcd3zeb\nw7kQ08XjUizId5AXdFBTdjR4PRdeSvNHJryBtHc77H4XEgl7lRdxVhkd07x7IMGe9gQDoymSKU1L\nr0lP79hxw7mDFLU5Y9y3qItbqwbB6yU/aFCYJb3nQgghTo0M7whxEvJCDvpHLS5a6uZgT4qxhGbU\ndPJCzlXcuriFgsbN9omvPg/li6C7HbJyITsvvYWLKescNHE7IZGE/Z1JlFKkLM0b+xIc+ZW5OLyP\nVUNbyc1UOC/9GN5UBFBEcxbidSkW5DtRshmREEKIUzTlEXQhBBhKsbDQhdNQrF1xdDT13YEA7628\nnUh2qX3ANOGPvwavH5r22FvBi1kvltAMRTQ+t8LrVmQFHGT6FG0dUfpidjj3pMb4bwe+x1XRNwhe\ntAZvfATt9jNWuhTTE2BJiQunrHcuhBDiNEhAF+Ik+dyKinwHJTkGlYVH2hgUL7Zn0XzZZ7CMw29M\n9XTAlo32gtgHG8Cy0lWymKLekRRmSjMY0ViH562Ypmbz/qPLZl7X/SzB1Cgda+/DTGrCwWKG8xbi\n8btZXu7C55ZwLoQQ4vRIi4sQp6Aw5KBvxOLyGg/tfVGSKRhIunlrrIzQ+Z+gfOtT9olbNkJlNSST\n0NcJBaXpLVyckHm41/zZrWMMhDUZXsXyMheJsTgR034hlpUY4GPdz9O17Aq6vUWoQCZ5C4oozHbg\n98h4hxBCiOkhf1GEOAWGoagqdOJywOXLPePHtwxk01J+McPF1YePaHj+1+By26Po0Uh6ChYfajCS\nYk+7yUDYHjkPxzRbGhNsP3R0RPzmjidwOhUZF1zEyvw4F1xUTmWRS8K5EEKIaSV/VYQ4RQGvQWmu\nk6pCB6U59girheKFrny6L70d0+23TxwdgrrnwOmBpt2Qkl1GZxutNYf6U+xtT57wnLLoQS4e2IS5\n6nIyveBZthzlOvGSi0IIIcSpmjcBfd26ddTV1aW7DDHH2DtFGqyt9eA4/NPUFfOwob+IrktuO3ri\nnnehdb89gt7Zkp5ihU1rSCYmHQrHNA0dJiOHN6DyuuCTlcMsyYjgIIXfjPCZ1p9ieQN4ltXabUuB\nzHRUL4QQYhaqq6tj3bp103a9KW9UdDaTjYrETDqyic2+9iSv7T0a/C7PG+CmA48QatwKgPb4UPd+\n2Z4sWns+ZGalq+T5S2toaYSuNghmQX4xBLPZP+DgsVcjtPfbE3k/Uhznyow2DLebsif/FWc8iksn\nSV56Pa6Lr4TqlSDLKAohhHifM75RkRDi+IJ+e1OaZWVOlhQfnXe9qS+Hl5bcRSIjBwAVH4P/+g34\n/NC4+5hRXDHDtIZDzXY4D2XbX/8De4m9s4UD25rGw7lCs8TRg+kNUPjar/DFhnHpJGZmNq6ly6Gs\nSsK5EEKIGSUBXYhpUJbrwOVQfGylh/K8oztIvtBdQN2Ff4M+EujamuC9t8FMQmuTHRrFmdHVDu3N\nEMwGZYDHB6EcOow89gwHxk+ryExQku8mZ/tLBJu3H73/hWuhoBgygme+diGEEPOKBHQhpoHLoags\ndBJPwk0f8VIQsn+0NIrfDS/l7XPvHj9Xb/ovuxe9pwMGetNV8vzS02GvohPMhmTc/rprTdRUtEdc\nNIz4xk9dnh2jsvNtinf8cfzYWO0lOCuXQGllOqoXQggxz0hAF2KaZAUM8kIGcRNuWeMjK2CPmqe0\nwc9d19FQfBEAykqReu7wLqMH9souozMplbLDedMeu+e8twse+jd4+H/Bj/8/4i8/T3tHhKRl/yrM\ndie5IP4e7hd/ffQaCxbju/gKKCoDf+AEDySEEEJMHwnoQkwTpRQL8p3jO0neerGfgMf+d8Iy+EHp\n/XT57I2KHAPdJF/fYPcyN++TXUanWzwGh1rQ2zYz1tiAlZEFQwPwm5/C2OG16EeHCL23kT29R+cN\nXN/4Cyr++EMwTftATj7c+GlAQ3HFmX8eQggh5iUJ6EJMI5dDsbTEhWEoPC7FrZf48Ljs26KWi39f\nvo4hp716i2v7JuI9PTDUb4/yitMXj2E27GJ461Za9nexLZLHjkQpjR1x9JMPHQ3nh23LupAubwkA\nvlSUiwc2Hb3R64NP/YU9mbRkAXi8Z/CJCCGEmM8koAsxzTwuRXWpi5SlCfoMPnWRD+fhn7RBHeD/\n1HybqMPexEj98QnihgcO7odoOI1Vzw1DzW1sa4yz1yykz8jG51LkWUNU/NcPUeFh+ySXm+itX2TX\n2v/GUws+M37fK3tfwqNSdp/6wqVw2+fB7YbMkB3QhRBCiDNE1kEXYoZEYha725J43Yq2vhRPbxkb\nX7RlcaSBrzb8D9w6yfCClfivvxmX2wErzgeH44MvLI5Lx2PUb6xHewN4XHZrkXN0gNKXHsI7YL9D\nYRlO+q//HP2Fy3i3z8eGdntFFreR4u6FXVxYnsLpOLziTixqr7Kz4nxwe9LynIQQQpxdZB10IWa5\ngNdgaYmTaFyzIN/BdecdbZFoDCzlx5VfJoVBqGUHPbv2Y0Yj9jrd4pSMtvcQSTnxOMHf0UDJSz+l\n5Lf/xoFkDr3uArRSdKy9l6ZgDf3DSd7p8Y/f95zcGGW5xtFwnkxAIgHV50o4F0IIccbJCLoQM6x/\nNMX+jiRBv8G7B5LU7YqP33ZJ/0b+ouVBLJeH1pu/zoKgibH8PAjlpLHis482TfZu3ImvbQ/OvdvY\nq8rZGVpFQ0YNKcOJwzK51ruXmmW5qLEI2xPFvNRir8jiNVLcVtXHhXlhvCppr/xiJu3dQrNz0/zM\nhBBCnE2mawRdAroQZ0DPkElTd4osv+K13TG2NJnjt13b/Sy3Hnqckfwq+q7/PAv9YYxzPiKTEk9C\nuKOHxufqeH5oAc2BJSc8b2nGKNfUeli/3UM4Zv9OWFMS5/LcHpbmaXu03O2xNyPKzjtT5QshhJgj\npiugOz/8FCHE6SrIcpJMQVtfisuWe4iOmdQfXrjlhcJPkJkc5dqePzC083Xaz72I8oZdqJqV4JQf\n0Q+lNR2Nnezpc9EcOjacex0WsZTdzdcQzuTg25Aw7XDu9yiqq7MorSwEr3T8CSGEmB3kr78QZ0hJ\njoOUho4Bk4+tDhCLDdM4YP8I/qbsLjLMUS7Z8Tz1xTWoVICyg/tRi5bZa6WLE4r2DzF6sJXNGR8Z\nP1bpj7A4N0VVMIHPYfJKi48dwyEAEkffvGBVpYuibCcBCedCCCFmEfmrJMQZopSiLNdBftDBaAw+\nviZIWeBoP/r6BX/FjuB5LN38CJ1mBodaB9Gd7Wms+OzQ1dTJwa4kscNLVxak+vnzpRFW5o6RqaM4\no6N8bBncuNqDa8ICOZk+xZISByXZsmqOEEKI2UUCuhBnkKEUlQVOsjIMIknFp9YEKPDYId1SDn5c\n+WVaUjks3fYkbTqbjr0t9kZG4rhiw2H6W7t53bNq/NiF+aOosTA6MkrM8DJcsJh4djE15W7uudJP\ncbaB1wWX17gpznbh98ivQSGEELOL/GUS4gwzDMWiQicZXkXC4eGWVYosVwKApOHm/y76BiPtXVQ2\nv0arlUvHjoZjdsAUtp6DPXS0DTHqsttXsswhSkIw5M9npHgZnqoqFiwMYWIwMmaRm+ng7isCfPG6\nACU5Thk9F0IIMStJQBciDZwOxZJiF26ngmAWt1aPEnDYzdFjDj//Z/E3Se3YQslwI63xDDq377PX\n5hbj4tEY3Qe7ecNYPn5stbeL7KWVLFtZzuqaTJaVuSnMcnJOhYug32AwnMKyNJE4FGY58Lqlv18I\nIcTsIwFdiDRxORXVpS6UYeApKuGWim48hgVA2BXk3xd/E8dr/0WeHuHgsIOu9/aDZaW56vRLmpqO\nAZP6nT30tvbS784HIJAKs6AyiwULQoT8EzYdwv5aLyl2UpHvZDhqoTUUy+i5EEKIWUoCuhBp5HEp\nlpW5MA0nofISbi1tx22kABhxZfG9BV/DvfEZsnxwsCtBT0NrmitOn3hS09pnsr05QfuhMN7BQ7xl\nVo3ffr5xkIpFBbicx/+1ZihFSY6TmjIXCwsceFwyei6EEGJ2koAuRJr53IqaMhdxTwa5hSFuKe3C\npeyQPuzO5v8WfB7f688RzHBxoHGA3ubuNFd8ZsWSmoM9JjuaE3QPpshwa0LD7XR3jNDhKQHAk4qx\noCJIfmnWh14vFHBQEJIVZoUQQsxeEtCFmAUCXoOlJU6iwUIKg/Dn5b24sHvSB925/KfvFlz1bxIM\numna00Ff13CaK5558QnBvG8kRdCvCPoNjNFBiEV5ayR//NzVVgMVS/LxeCR4CyGEOPtJQBdilggF\nHCwu9TCau5Bi7xg3LxzCqe2QPuDJ5+H4ZdB2gEy/QeOOVvr6o2mueGbEk5rWXjuY9x4O5pk+A6UU\nJBMcau7jmZYcDngWAuCwTBaXeSgqz0tv4UIIIcQ0UVrrdNcw45RSej48TzE39I2kaDwwTLCnkVYz\nxNPN2aSUPTJcEO/mjqo+HBl+RlWAJedXkRtyp7ni6dM5YNLan8IAMnwK4/AuqlprDnSbbNk1yqGw\na9J9Lojt5OqPLmTxeQvPfMFCCCHEBEoptNanPclJAroQs1DPkMmB/b0EB1ppjWfwdFv+eEgvTHRz\na20Ml2Uy6s+jemU52Zlnf2tH16DJwZ4UIb/CMI4G84YOkzcaEvSNTF7BRmmL1cNbWb3Yy4prLyQQ\nCqSjbCGEEGKcBPSTIAFdnI16BpMc2HWI4FgvbUOK3/VUYB0O6UXJHv58ZQpXLEI4t5zqmgKyM2bP\nsoGW1oxENQGPwuX88N9TvcMmTV12O4vDUGitaewy2bw3Qe/7grnDMlkzsIlru5/Dql5JeM31VF+4\ndKaeihBCCDFl8z6gK6WCwJ+AGmCN1nr3B5wrAV2clbr6EzTvaCaLMO1tI/wmXIul7CBebPXz5+ck\nccYihAsXUbUwSH7IYfdqp1HC1BzoSjIY0bidUFngJDvDOGFd/aMp9nck7QmgCg50p9i8N0738ORg\n7lIWl0a2cH3To+QkB4hnF7PjyvupuWgJmfkfvnqLEEIIMdMkoCvlALKAfwP+lwR0MVd19kRpebeJ\nkNeio/4Av+ZytLLndxcbw9xSHcFljjGcVUFJRTbl+a7xFpEzbTiSorHLRGvI9BkkTU04psnJNFiQ\n7zxm7fHBcIp9h5Jk+gzCMc1z74zROXhsMF+VNcxa812WbHwIAI1i38fuJ1VcyfLLlqMMme8uhBAi\n/aYroJ+1f9W01imtdT8gu42IOa24wE/FigqGIhYl5yzi0+HnUNoOsZ1WiN81BjHdfrIHW+jadYCG\n5hGS5pl9QWpZmvY+kz3tJm6nveoK2Dt4ZgUUo1GLnQcT9AyZWIdfLA9HUjQcSpDhNIkOR/n1pvCk\ncO5UFhfkjvJXK/pZWzJC5dYnxm/rWXIpRk4+VTXFEs6FEELMOWn/y6aU+pJSaqtSKqaUevh9t2Ur\npZ5SSoWVUs1KqU+nq04h0qm4NEhFdQlDIybFF57LXX1Pjt/Wkczgt01ZJP0hstQYo/sa2bW9jWg0\neUZqiyU1ew8lOTRgEgoo3E7FUMTijX1xWntNlFJk+Az8HsWB7hR7W+IM1O9l3+u78LfUk9jfwBNv\nxhiN26+1HUqzOi/CX60YYG3FGAGXJvft53BGRwAwfZlkrlnD0sogvvzcM/IchRBCiDNpNiz9cAj4\nZ+BawPe+234IxIB8YDXwnFJqu9Z6z5ktUYj0UkpRUlWAjo3R3jJI2UXncPdr6/llyb0AdMR8PLnf\nwU2LFMGQyVh/L7teH2bxihKyS2YuxA6GUzR1mhgGZAXs3vhdbUle2hEjaW+GSk2Zk6tqPfg9BtkB\niLa20zAUw5/hIaU8PLk/m6Gk/avIoTSfqhpmYTABgJVK4W56j+w9r48/pvOqG3H63VBeNWPPSwgh\nhEinWdODrpT6Z6BUa/2Xhz/3A4PAcq110+FjjwCHtNb/OOF+P8PuQd/1AdeWHnQxJ+hUivbtDRzq\nTVASbmH/O038qvy+8dszHCY3LRqhOGCSjJuEIwkqSgMUL6tAed//+vc06tCatlczmasAACAASURB\nVP4Uh/pTZHrtlVoSpublnTF2tZnHnO9zK9bWeljuHUD1dkAgk7hl8GRjFl1Re11zheaTlcMsCcXx\n9BzEt38bOQffxRUPH71Q5TL46CdgUQ0UlEzb8xFCCCGmw5ybJHqcgH4e8JrWOmPCOV8DrtRa33T4\n8+eAlUAL8KDWev0Jri0BXcwZOhGnbetuOiJOKls2s6dplMfL7xtf3cVJimsrRqnJTWBZmuHRJPnu\nGAuWl+IsKIbT7Nm2LE1Lr0nXkEV2QKGUomc4xR/ejjEQPtpD7nMrxhKTf+4W+qNcUxEh4NH8timL\n9vCRTZY0t7je4cLwNvwt7+EN9x/7wF4f3Pp5yC+CmvNO+3kIIYQQ0226AvpsaHE5kQxg5H3HRoDM\nI59orW+c6sXWrVs3/u+1a9eydu3a06tOiDRRbg/lq5agt+ziwMLLODf8LAWN/5MHK79M1JmBiYPn\nWrMYHOxkzSIHWUE3fTEXsZ2HWFzYhWfRUsjI/PAHOg4zpWnuMRkYTZEdsAPyu80J6urjpCYsvrK8\nzMk1K70c6k/xpx0xRsbsoH4w6ueRvR6K4p20e47ugHp368Os7Xv5+A+aEYRlK2HlxfaU8MqlEs6F\nEELMCnV1ddTV1U37dc+2EfSvA1ccGUE/iWvLCLqYc/RgP63v7KPTyKVksAFj6yv8OP8v6PSVjZ9T\nk2rhYysM3D4PkaSBTsSo9g6SkZUB+YUQzAavH6awdnoypWnsTDIypsnyG8QSmhe2x9jfebSlxeWA\na871sqLCNX4sEUvw+tY+3hnI4HiLLt3a/hjX9vxh8kGPD5bWQs0qKKu0A/nIIJRUQJn0ngshhJid\n5kOLix8YAFZM6EFfD7RP7EGf4rUloIs5yepoo2VPO91GLtnOBIH3NvK7kRreC543fk5RvJPb8g/g\nqVpM3DIYS0KBa4x8Y5SAYdq96fnFEMoBf+C4o9PxpKahI0k8qcn0GfSOpHjqzbHxkXGA/KDBJy7w\nkZNpkDA10bjGpSwC/S0QjdAThpcaXXR4j76AuLHraa4Pv8KYPwdXVohATsjuLV+4FJwT3uBLxMFK\nQe1HJh8XQgghZpE5E9APbzjkAv4JKAM+D5ha65RS6jFAHz62GngWuORkV3GRgC7mLK2xmvbS1jZM\np8oh6LJwj/Ty9nuDvJxx2fhpfjPMfeFnCF1wPomMHKKmgWmB32lR5B4jW4dxYoLTBXmFkJ0PgUxw\nOIgl7GUULUsT8Bq095s89eYY8QlzQc+rdLF2hQenQxGOWWgNCwuc9DW2MdQ5QDDgYNFz38Mx1MOf\nCm7gnZw1LCr1cl6ZwZDppDSQoDzDPHYg30xCNAKWBcvOhSxZVlEIIcTsNZcC+reBb2MH8SMe0Fp/\nRymVDTwMfAzoA/5ea/3rU3gMCehi7jJNdONuertGOJDKIeBx4DYsmvd18UxkOaZht5sYOsVtHY9z\nTrmToXOuBMNBIqWImgpDQb7PJN8dx58MoywTHA4iwSL2JvIwvH78PgdNXSbPbh3DPNxv7nbCdau8\nLC1xYVmakTGLoN+gKt/AM9yDbtxDvycXxx8eI7ttJwCW4aDthr9hrKCS4YRBgc9kYTB5NJynUhAN\n2yPmbg8UlEJ2nj26L4QQQsxicyagnwlKKf3tb39bJoeKuUtrGOhlpKGJhhEvDp8Xv0vRPWTyTFOQ\nEWN8KgeX9b3Cbf2/I15RQ3jBOUSLF2Mpx/ioesBlUew3cZBify+4dRKv26A+UcgLB3wc+ZXh9yhu\nvdhHQchBIqmJjCUp941RbPZgDPbaQTsjBG9tgDeOTgBtv/TThJd8hOEY5LljVHrDGFigFSgNhsNu\nc8k5PIo/hf54IYQQIp2OTBZ94IEHJKBPlYygi3kjmSDWcpD9TUOMOXwE/S4ipsHv93npSB4N6aVj\nrXy05wUuHNyMy6mIlK8gXFFLpKyGMYePsZRCWxBwadwOzdYuLxs7g+P3D3ktbvuIm6yAYmQwjCM8\nzBJHD5nuFDjd9pKIhgMa3oPfPzp+v9jKy9mz4ibGoknys10sKnRg+Hz2RFWnC1xu8Hrt+wohhBBn\nGRlBPwkS0MV8Yw4N0VzfSv9IilDQjaUcvNiawe5B/6TzvKkoawZe58q+lygba8MyHERLlhJeUEu4\nohbTF+LVjgBbe462l+R7k9xS0oHPkWQk6SLXk2Rhjsbl9Uwe7e7pgMd+aPeRAyxYAjd/BnM0wmDF\nSnJKsnEYMjouhBBi7pCAfhIkoIv5yEqZdDR2036gh0yXxuHz8Xavn9c7MzCP87tjUbiBK/pe5oLB\nN3HrJCkMflb9Vd4KnD9+Tlkgwc1VwzgNzWjSwcLMOIX+1LFdKKND8PiP7KURwZ7cedf9EI/BomV2\nX7kQQggxx0hAPwkS0MV81t8XoWl3J57oIF6/lzHlZteAl519Pgbixy5Z6DcjXDzwKn3ufHZkXTB+\nvDbewM15zYyWrSCivCzOSpDrTdk3ag393dC0x/7oaGV83rfbA3d/CRwuKCqDBYulr1wIIcScJAH9\nJEhAF/NdJJaiYf8gVlcHGSoBXh/acNAWdrGzz0fDsAfrA36fXNK/kXtbfoIDi5TDTWrRCtwrVtpr\nkh8J5cMDx7mngk/dB4Wl9oTP6nOkv1wIIcScNV0Bfd7s+LFu3TpZxUXMWwGvgxU1uTRmBhjq6iMY\n7cOwTCocioqyKJEyN/UDPnb2+RhOTA7QV49s5I6WB8f3AHWkEjga3oWGd0/8gEpByQK48EooXWCP\nsC+qkXAuhBBiTjqyist0kRF0IeaRlKU51J+ia9CERAxfIow7PACJGKDQLjctYxns6PfRG3OyOn+M\n1fljJAf6yW1+h8KWtzEGe45/cbfH3gF0UQ1ULrPXLU8mYSwMK863R9CFEEKIOUxaXE6CBHQhJkum\nNIPhFF2DFmMJjcuK40tGMUYG7ECNspc9dLsZTTrxOCyWZifwGBb0dsKe7dC0277YkVBeVgmOCW/K\nWZbd9rL0HMgtSMvznKp4PM6f/vQntm3bxtDQEMlkMt0lzWqGYRAMBqmqquITn/gEeXl56S5JCCFm\nBQnoJ0ECuhDHp7UmEtf0DFv0jdgTPn2GiTsRheEBhgcjZDgtluSmcPk8U5vcqS2IxWAsAhWL7OA+\nS7W3t/Otb32LZ599ltraWi6//HJycnJwu93pLm1WS6VSDA8PU19fz4svvshFF13EN7/5Ta666qp0\nlyaEEGklPehCiNOmlCLDq8jwGpTnOhgMp+gYVAw5gljZmeSVWFR6R3H2dcLwoB3QfX67nWWilAmx\nMbulxVAQyoHyKns30Fmqra2Nq666ijvuuIP6+npKSkrSXdJZKRKJ8PTTT3PHHXfwyCOPcP3116e7\nJCGEOOvJCLoQYhKtNeGYJhq3yA86MI5sJhSPwXA/dHXYbTDKOHwHy26HySmAnDwIBO3VXWax0dFR\nVq1axRe/+EW+/vWvp7ucOeGNN97gpptu4umnn+aSSy5JdzlCCJEWMoJ+kmQVFyGmRilFpk+R6TMm\n3+Dx2hsMFZTa7SuD/fbqLFk54AuAYRz/grPQM888w7JlyyScT6OLL76Yf/qnf+IHP/iBBHQhxLwj\nq7icAhlBF0JM9MlPfpLbbruNz3zmM+kuZU7p6upi2bJldHV14fV6012OEEKccdM1gn72DHkJIcQ0\niMVivPLKK3zyk59MdylzTlFREStXruSVV15JdylCCHFWk4AuhJhXent7CYVChEKhdJcyJy1evJj2\n9vZ0lyGEEGc1CehCiHllZGSEYDCY7jLmrFAoxMjISLrLEEKIs5oEdCHEvKK1xjhDE1ofeOABDMPg\nox/96ClfY+3atRiGwXe+851prGzmGIaBzPkRQojTIwFdCCGmaGhoCJ/Ph2EYGIZBU1PTKV/rmWee\n4YEHHuCZZ575wPOUUqgTbBD12c9+FsMwqKqq+sBr/PM///N4zXfccQemaZ5y3UIIIWaeBHQhhJii\nRx99lHg8Ph6aH3744VO+1tNPPz2lgF5RUUF1dTV5eXmn9Dhf/epX+fa3v41Sii984Qv8+te/xjnL\n16kXQoj5bt4E9HXr1k3r+pRCiPnnpz/9KUop/vZv/xatNY888shptXOcaGR8okceeYTdu3dz//33\nn9S1Lcvis5/9LN///vdRSvH3f//3/Od//uepliqEEOID1NXVsW7dumm73rwK6LJJkRDiVL377rvs\n2LGD7Oxsvvvd71JZWUlnZyfPP//8KV9zpnq1E4kEt956K4888ghKKb773e/yL//yLzPyWEIIIez5\nQhLQhRDiDHvooYcAuOOOO3C73dx7771orU+6zWXjxo0YhsEjjzwCwM9//vPx/vAjH6+++ur4+Sc7\nSTQSiXDDDTfw9NNP43Q6eeihh064Y6rWmg0bNvDlL3+Ziy++mPLycjweD3l5eaxdu5YHH3xQ+tWF\nECINpBFRCCE+RDwe5/HHH0cpNb776L333st3vvMd/vCHP9Db20t+fv6UruV2uykqKmJ4eJixsTF8\nPt+kNdmVUrjd7kmfT6UVBmBgYIDrr7+erVu34vF4ePzxx7n55ptPeH5rayvXXHPN+PUzMjIIBAIM\nDg6yadMmXn31VR5//HFeeOEFPB7PlGoQQghx+mQEXQghPsRvfvMbhoaGWLx4MWvWrAGgsrKSyy67\nDNM0Wb9+/ZSvdfHFF9PR0cHtt98O2CPyHR0d4x+HDh0af4yT0dnZyRVXXMHWrVvJyMjg+eef/8Bw\nDuB0Ornnnnt49tln6e/vZ3h4mIGBAUZHR/nZz35GaWkpmzZt4lvf+tZJ1yOEEOLUSUAXQogPcWRy\n6H333Tfp+Km2uUy3kZERLrvsMnbv3k1ubi4bNmzgqquu+tD7lZaWsn79em644QaysrLGj/v9fu69\n916eeeYZtNb8+Mc/JpFIzORTEEIIMYEEdCGE+ADNzc1s3LgRpRT33HPPpNtuv/12fD4fe/fu5c03\n30xThTA4OEhzczNKKb75zW9ywQUXTMt1V69eTUFBAZFIhO3bt0/LNYUQQnw4CehCCPEBHn74YbTW\nXHHFFVRUVEy6LTMzc7yN5Kc//Wk6ygMgNzeX6upqtNb84z/+I0899dSU75tMJvnRj37EtddeS2lp\nKV6vd9KE1Z6eHgDa29tnqnwhhBDvM28CuqyDLoQ4WUfWOp84OfT97rvvPrTWPPHEE0Sj0TNcoS0j\nI4O6ujqqq6tJJBLceeed/Pa3v/3Q+/X29nL++edz//3389JLL9HV1YXD4SA/P5+ioiKKioowDPvP\nRCQSmemnIYQQZy1ZB/0UyTroQoiT9cILL9De3o7Wms997nPHLIdoGAbXXXcdAOFwmCeeeCJttRYW\nFlJXV8fy5ctJJpPcddddPPnkkx94n6985SvU19eTl5fHz372Mzo7O4lEInR3d49PWi0pKQFmbs12\nIYSYC2QddCGEOEOOrH1+ZKnDD/qA9La5gB3SN2zYwIoVK0gmk9x9990nfNFgmiZPPfUUSil+8IMf\ncO+991JQUDDpHMuy6OvrOxOlCyGEmEACuhBCHEdfXx/PPvssSil++9vfMjo6esKPLVu2oLVm8+bN\n7N+/f0rXP9I6Mt0j0wUFBWzYsIHa2lpM0+See+7hV7/61THn9fb2EovFADjvvPOOe61NmzaNnyOE\nEOLMkYAuhBDHsX79epLJJKFQiI9//OP4/f4Tfpx//vksW7YMmPooejAYBGBoaGjaa8/Pz2fDhg2c\ne+65mKbJvffey2OPPXbM4x8Z+d+xY8cx10ilUrL+uRBCpIkEdCGEOI6HH34YpRQ33XQTTueHb7p8\n2223obVm/fr1WJb1oefX1tYC9ij1vn37Trve98vLy+Pll19m5cqVmKbJfffdNymkBwIBLr30UrTW\nfO1rX+OVV14ZH82vr6/n+uuvZ9u2bWRkZEx7bUIIIT6YBHQhhHifN998k927dwN28J6KI+d1d3fz\n3HPPfej5t9xyC/n5+QwODlJTU0NBQQGVlZVUVlayZcuWUy9+gtzcXF5++WXOO+88UqkU9957L7/4\nxS/Gb//e975HRkYGhw4d4uqrr8bv9xMKhTj33HPZuHEjP/nJT8jNzZ2WWoQQQkydBHQhhHifI6Pn\nWVlZ/Nmf/dmU7lNbW0tNTQ0wuc1l4iTSibKysti0aRN33nknZWVljIyM0NraSltb20n1fZ/o+kfk\n5OTw8ssvs3r1arTW/OVf/iXr168H7I2ItmzZwu23305+fj5aa4LBIHfeeSdvvPEGd9999/hjCCGE\nOHPUfFg6Syml58PzFEJ8uPr6eu68807q6+vTXcqc9I1vfIOioiK+8Y1vpLsUIYQ445RSaK1Pe1RD\nRtCFEEIIIYSYRSSgCyGEEEIIMYvMm4C+bt066urq0l2GEEIIIYSYY+rq6qZ1J9EPXztsjpjOL5oQ\n4uzlcDhIpVLpLmPOSqVS45swCSHEfLF27VrWrl3LAw88MC3Xk9+iQoh5JRQKzcjmQMI2NDREVlZW\nussQQoizmgR0IcS8kp+fz9jYGN3d3ekuZU7auXMnVVVV6S5DCCHOahLQhRDzisvl4sYbb+R3v/td\nukuZcw4cOEB7ezuXXXZZuksRQoizmgR0IcS8c/vtt/PLX/4Sy7LSXcqc8uijj/KpT30Kp3PeTG8S\nQogZIQFdCDHvXHfddWit+dKXviQhfZo8+eST/PCHP+QrX/lKuksRQoiznuwkKoSYl0ZHR7nuuuso\nKSnhb/7mb7jssstwOBzpLuuss2/fPh577DEefPBBXnjhBVauXJnukoQQIm2maydRCehCiHlrdHSU\n//iP/+DJJ5+kq6uLSy+9lJycHDweT7pLm9VSqRRDQ0PU19fT19fHrbfeype+9CWqq6vTXZoQQqSV\nBPSTIAFdCPFh9u/fz7Zt2xgcHCSZTKa7nFnNMAxCoRBVVVWsWbNG1j0XQojDJKCfBAnoQgghhBBi\npk1XQJdhDyGEEEIIIWYRCehCCCGEEELMIhLQhRBCCCGEmEXmTUBft24ddXV16S5DCCGEEELMMXV1\ndaxbt27arieTRIUQQgghhJgGMklUCCGEEEKIOUgCuhBCCCGEELOIBHQhhBBCCCFmEQnoQgghhBBC\nzCIS0IUQQgghhJhFJKALIYQQQggxi0hAF0IIIYQQYhaRgC6EEEIIIcQsIgFdCCGEEEKIWUQCuhBC\nCCGEELOIBHQhhBBCCCFmEQnoQgghhBBCzCIS0IUQQgghhJhFJKALIYQQQggxi0hAF0IIIYQQYhaR\ngC6EEEIIIcQsIgFdCCGEEEKIWUQCuhBCCCGEELPIvAno69ato66uLt1lCCGEEEKIOaauro5169ZN\n2/WU1nraLjZbKaX0fHieQgghhBAifZRSaK3V6V5n3oygCyGEEEIIcTaQgC6EEEIIIcQsIgFdCCGE\nEEKIWUQCuhBCCCGEELOIBHQhhBBCCCFmEQnoQgghhBBCzCIS0IUQQgghhJhFJKALIYQQQggxi0hA\nF0IIIYQQYhaRgC6EEOL/b+/eg60qzzuOf38BL0UQodooJmFSM03UKqZpqA1URRtJtca0VRtQUWyN\nTpmOtaQ6MTqZwhidthlj46XVorVeqKaKMTFJNcpFjFQTDVY0ooagFQNBLoKI3J7+8b7bs9g5l31u\ne61z9u8zw8xae73r3c9a52XtZ7/nWeuYmVmFOEE3MzMzM6sQJ+hmZmZmZhXiBN3MzMzMrEKcoJuZ\nmZmZVYgTdDMzMzOzCnGCbmZmZmZWIU7QzczMzMwqxAm6mZmZmVmFOEE3MzMzM6sQJ+hmZmZmZhXi\nBN3MzMzMrEKcoJuZmZmZVYgTdDMzMzOzCnGCbmZmZmZWIU7QzczMzMwqZEAn6JKulrRI0m2ShpQd\nj5mZmZlZbw3YBF3SkcCYiDgGeBE4reSQzMzMzMx6bcAm6MCngIfy8veBCSXGYtYjCxYsKDsEsw55\nfFpVeWzaYFd6gi5phqSnJG2VdEvdtlGS5knaLGmFpCmFzaOAt/LyRmB0s2I26yv+kLEq8/i0qvLY\ntMGu9AQdeB2YDcxpZ9sNwFbgAOAs4EZJh+ZtG4B98/JIYF0/x1m6si5I/fG+ve2zJ/t3Z59G2zbS\nrlU+SMo4zlYcm42299hs47HZuz7KuHZ6bA689636tXOgfa6XnqBHxP0R8QB1CbakYcCfApdHxDsR\n8TjwLeDs3OSHwB/m5cnA400KuTT+j9y7/Qfzf+QqcBLU8/2doPcvj83e9eEEvf/4c713+w/mz3VF\nRL+/SSMkzQYOjojz8vpRwOKIGF5o87fAsRFxal7/B+BoYCUwPSJ2dNB3NQ7SzMzMzAa1iFBv+xja\nF4H0k+G01ZjXvAWMqK1ExCWNdNQXJ8rMzMzMrBlKL3HpxGbaasxrRgKbSojFzMzMzKwpqpygLweG\nSjqk8No4YFlJ8ZiZmZmZ9bvSE3RJQyTtDQwhJeR7SRoSEVuA+4BZkoZJmgicAtxeZrxmZmZmZv2p\n9AQduBzYAlwKnJmXv5y3zQCGAWuAO4ALI+KFMoI0MzMzM2uGyjzFpQySfgOYB2wHdgBnRsTqcqMy\nSyR9ErgW2Eb6ewHTImJnuVGZgaR9gYeBQ4GjI+L5kkMyA0DS1aS/NL4COM/XTKuCnlwzqzCDXqZf\nRsSEiDiOVDrzFyXHY1b0KjApj8+VwKnlhmP2nreBk4D/KjsQsxpJRwJjIuIY4EXgtJJDMqvp9jWz\npRP02P3XByPwDahWIRGxOiLezavbgF1lxmNWExE7I+JNwI+wtSr5FPBQXv4+MKHEWMze05Nr5oBN\n0CXNkPSUpK2SbqnbNkrSPEmbJa2QNKWTfsZJWkKqd3+6v+O21tBX4zO3Hwt8Gvh2f8ZsraEvx6ZZ\nf+jFGB1F299P2QiMblbM1hqaef0csAk6qSZ3NjCnnW03AFuBA4CzgBslHQog6WJJj0qaCRARSyPi\naOAK4LKmRG6toE/GZ65b+w/gHNdSWh/pk7Fp1o96NEaBDbT9/ZSRwLp+jtNaT0/HZrcN+JtEJc0G\nDo6I8/L6MGA9cFhEvJJfuw14PSIuq9t3j4jYnpdPBE6MiC829QBsUOvl+BwCPAD8U0TMb27kNtj1\nZmwW+riVND5dHmh9rrtjVNI44OKIOFfSl4CfRcTdZcVvg1dPr5/duWYO5Bn0jvwWsL12grKlwOHt\ntD1K0kJJjwAXAf/YjACtpXVnfE4BxgNX5JnL05sRoLWs7oxNJD1IKr26SdK0JsRn1ukYjYilwBpJ\ni4DDgHubH6K1qC6vn929Zg7t8xDLN5y2GrSat0g3ge4mIp4Cjm1GUGZZd8bnHaTn/5s1Q8NjEyAi\nTu73iMx21+UYjYhLmhqRWdLI2OzWNXMwzqBvpq0GrWYksKmEWMzqeXxaVXlsWtV5jFpV9fnYHIwJ\n+nJgqKRDCq+Nw49QtGrw+LSq8ti0qvMYtarq87E5YBN0SUMk7Q0MIZ2UvSQNiYgtwH3ALEnDJE0E\nTiH9ISKzpvD4tKry2LSq8xi1qmrm2BywCTpwObAFuBQ4My9/OW+bAQwD1pBqeC+MiBfKCNJalsen\nVZXHplWdx6hVVdPG5oB/zKKZmZmZ2WAykGfQzczMzMwGHSfoZmZmZmYV4gTdzMzMzKxCnKCbmZmZ\nmVWIE3QzMzMzswpxgm5mZmZmViFO0M3MzMzMKsQJupmZmZlZhThBNzMzMzOrECfoZjagSLpV0qyy\n4+hrg/W4ekvSCknH91PfYyXtkvSWpL/so756/bkq6QRJmyTt7K9jN7Nqc4JuZpUkaYGkdZL2KDsW\nAEnnSHqs7DiszwUwMiL+rY/66n0nEY9ExAhgZV/0Z2YDjxN0M6scSWOBicAu4LMlh1MjukjA+mL2\n1PqHpCGdbW5aIN1T1bjMrJ/5w8TMqmga8ATw78C5nTWUdL6klyStlXS/pIMK23ZJukDS8jwbf11h\n2/skfU3SLyW9ImlGRyUKkj4G3Aj8fi49WJdfv1XSDZIelLQJOE7SSZKelrRR0kpJX6nra6KkxyWt\nz9untfN+IyQ9Kunr7Ww7TtKzhfWHJT1ZWF8k6bN5+VJJL+cSjuckfS6/vmd+/8MK++0vaYuk/fP6\nH0t6JrdbLOmIQtsVkmZKWpq3z5W0Z972K79pyOf1Nwvn7HpJ383n8jFJ75d0Tf4ZPS9pXN1hj5e0\nTNKbkubU3qvBOC+RtBTY3OgXKEmn5j435rF1Yn59vqSvSvqfvG2epP066OPPJP1M0mGF8pdzJb2a\nj+MCSb+bz+E6Sd9oJDYzaw1O0M2siqYBdwB3AZMlHdBeo1yf+1XgNOAg4FXgP+uanQx8AhgHnFFL\ntoAvAJOBI4HfAT5HBzPkEfFT4ELgiYgYERGjC5unALNzScJiYDNwdkSMzO99YSFhHgt8F7gW2B84\nCvhJ3TGNBn4APBYRf9NOOEuAj0gaLWkocARwkKR9JO2dj3VRbvsyMCEi9gX+HrhD0vsjYhtwb469\n5gxgQUSslfRxYA5wPjAa+FfgAe1ebnQ6cCLw4Xxuzy2esvpTWLd+OnAZ8OvANtKXsR/l9XuBa+ra\nTwU+DRwCfBS4PJ+rRuL8PPBHwH4RsYsuSBoP3AbMzD/DY4CfF5qcnY/1QGAn8CuJtaTpwFXACRHx\nfGHTeOAjwJ8DX8/n4Hjgt0lj8w+6is/MWoMTdDOrFEkTgQ8B90TE06Qkc2oHzacCcyJiaURsB75E\nmuX+UKHNVRGxKSJeA+aTkmJISeK1EfFGRGwEru5hyN+KiCUAEbEtIhZFxLK8/hzpC8Oxue0U4OGI\nuCcidkbE+oh4ttDXwcBC4O6I2G3mvSYitgJPkRLHTwBLgceBCcDRwEsRsSG3vTciVuflbwIvkZJE\ngLnsnqBPBe7My+cD/xIRP4rkduDd3H/NtRGxOr/Xt2k7r+2pL9WYFxE/yV8U5gHvRMSdERHA3e30\n9Y2IWJXf68pC3I3GuSoi3u0kvqLzSGPqUYA8PpYXtt8eES9ExDvAFaTEdJ/GZwAABCFJREFUunZ8\nAi4GZgLHRsSKwn4BzMpj5AfA28DciHgzIlYBjwEfbzBGMxvknKCbWdVMAx6KiPV5fS5wTgdtx1C4\nkS4i3gbeJCW6NasLy1uA4YV9Xytse285l6FsyqUh/9tFvMU+kDQ+l6eskbQBuIA0Ww7wQeCVTvo6\nGdibNBPcmUXAJFKSviD/O470RWBhIZZphfKP9cDhhVjmA78m6ZN5Zn8ccH/eNhaYmUsv1uV9P0A6\nZzUdnddGFPd9p531+r7+r7C8shBHI3EW921EVz+j4s97JbAHbecU4IvA9RHxRjv7riksN3LcZtai\nhpYdgJlZTS7ROAN4n6RagrMnsJ+kIyKiPlleRUrSavvvQyqTaCQpe4OUzNW8N+seEYuBEXXtO7pB\ntP71u4B/BiZHxHZJ1+SYICV34+nYTcAo4HuSJudZ2vYsBL5GShCvBjYANwNbgesB8m8RbgImRcQT\n+bVnyLPZEbFL0j2kmfPVwHfyF5xanFdGxFWdxNqRt4FhtRVJB/agj3ofLCyPJf3cobE4u/tklddI\npTSNxrINWEsaP0Eq+/lvSasj4r5uvreZGeAZdDOrlj8BdgCHkmZ0x+XlxaSZ9XpzgemSjpS0F6ke\nfUkuZ+nKPcBFksbkG/0u6aL9auAD6vqxj8OB9Tk5H8/u5Tl3AidIOk3SkFxHvtsNkRHx18CLwHfy\nF5b2/JBUiz0eeDLXOY8Ffo+2+vN9SE/BWat0Q+x0Uq1z0VxSPfRU0heLmptJtfPjIX3xUbr5dZ8u\njh1Syc3hhZ/JV+h+klxfEjND0sG5Pv8y2u4z6E2cHZlDGlOTlIyR9NHC9rMkfUzSMFJd/zdzaU4t\n7mXAZ4DrJJ3SyTGZmXXICbqZVck04JaIeD0i1tT+AdcBZ9Y/hSMiHiHVAd8HvE66YfHzxSZ1/RfX\nbwYeAp4Ffgw8COzo5EbCR0nJ1y8kremgDcBfAbMlbSTdzHh3Id7XgJNIZRDrgGdIN6nW+wJpJvf+\n4hNLCv1syTE/FxE78stPAD+PiLW5zQukWfYlwC9I5S2L6/p5kjTjfRDwvcLrPybVd1+n9MSa5exe\nZtRhwh0RLwGzgEfyfj15dnzULd9F+lm9TKqjv7K3cRaIQvIcEU8B00k3cW4klQ8V72m4nXQT6SrS\nb3cuqn+/fF/BKcBNkiZ3EEtX62bWwtT2xd/MrHVJ+gxwY0R8uOxYrDlyGdBPSaVBfxcRc7poP590\nk+gt/RzX8aSn2ewBnBwRC7vYxcwGGdegm1lLyuUjk0gzsweSSjFcM9xCIuJVCvXyVZGfIDOq7DjM\nrDwucTGzViVSDfE6UrnIMlKSbtYR/8rZzJrCJS5mZmZmZhXiGXQzMzMzswpxgm5mZmZmViFO0M3M\nzMzMKsQJupmZmZlZhThBNzMzMzOrkP8HUDAv4UEAb/wAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1154d86d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(12.,10.))\n", "ax1 = fig.add_subplot(111)\n", "\n", "ax1.fill_between(kv,spec_vel[:,3],spec_vel[:,4], color=color1, alpha=0.25)\n", "ax1.fill_between(kv,spec_vel[:,5],spec_vel[:,6], color=color2, alpha=0.25)\n", "\n", "ax1.set_xscale('log'); ax1.set_yscale('log')\n", "\n", "ax1.loglog(kv,spec_vel[:,1],color=color1,linewidth=lw,label=\"Descending\")\n", "ax1.loglog(kv,spec_vel[:,2],color=color2,linewidth=lw,label=\"Ascending\")\n", "\n", "#ax1.axis((1./(1000),1./4,.4e-5,10))\n", "\n", "#ax1.loglog(ks,Es2,'--', color='k',linewidth=2.,alpha=.7)\n", "#ax1.loglog(ks,Es5,'--', color='k',linewidth=2.,alpha=.7)\n", "#ax1.loglog(ks,Es4,'--', color='k',linewidth=2.,alpha=.7)\n", "\n", "#plt.text(0.0011, 3.1,u'k$^{-3/2}$',fontsize=25)\n", "#plt.text(0.0047, 5.51,u'k$^{-5}$',fontsize=25)\n", "#plt.text(0.002, 5.51,u'k$^{-4}$',fontsize=25)\n", "\n", "\n", "plt.xlabel('Along-track wavenumber [cpkm]')\n", "plt.ylabel(u'SSH variance spectral density [m$^{2}$/ cpkm]')\n", " \n", "lg = plt.legend(loc=(.5,.75), numpoints=1,ncol=2)\n", "lg.set_title(r\"SSH variance spectrum\",{'size':25})\n", "lg.draw_frame(False)\n", "\n", "#plt.axis((1./1.e3,1./4.,1./1.e3,1.e1))\n", "\n", "plt.text(1./15, 5., \"AltiKa\", size=25, rotation=0.,\n", " ha=\"center\", va=\"center\",\n", " bbox = dict(boxstyle=\"round\",ec='k',fc='w'))\n", "\n", "add_second_axis(ax1)\n", " \n", "plt.savefig('figs/spec_altika_asc_desc_vel',bbox_inches='tight')\n", "plt.savefig('figs/spec_altika_asc_desc.eps_vel',format='eps',bbox_inches='tight')\n", "plt.savefig('figs/spec_altika_asc_desc_vel.pdf',format='pdf',bbox_inches='tight')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "f0 = sw.f(59)\n", "A = (9.81/f0)**2/(1.e6)\n", "slab1=np.load('../adcp/outputs/adcp_spec_slab1.npz')" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp0AAALhCAYAAAAdNR+EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xec3FW9//H3Z3eTTUIKpJFCeiCQUEKCIH2RKooIKIqA\nhXut2PWKv2thAvar12tDAUVFEAXpAoqUoYQWEmoK6YV00pNN3T2/P86sMzs7W6ec73fm9Xw89sH5\nlvnOZ9ZxeXO+33OOOecEAAAAFFNV6AIAAABQ/gidAAAAKDpCJwAAAIqO0AkAAICiI3QCAACg6Aid\nAAAAKDpCJwDkYGaNZjY2wPueamYrOnH+UjPbYWZ/zNhXkNrN7GAz22Zm+8zsinyvB6CyEToBRIaZ\nfd3MHszat8DMHsjaN9/MLi5yOSWZxLiVgNiZ93aS3u2c+0gXX9/6hZ1b4JzrI+mpQlwPQGUjdAKI\nkiclHW9mJklmNkRSjaSjs/aNS51bTFbk6zcpREDMrrVUtQNAhxE6AUTJDEndJU1ObZ8s6XFJb2Tt\nW+ScWyNJZvZ/ZrbczLaY2QwzOym1f6iZ1ZvZ/k0XN7OjzWy9mVWntq8wszlmtsHMHjKzkbmKMrPu\nZvZjM1tmZqvN7Dozq00dO9XMVpjZl81srZmtNLOPZry2v5ndn6rveTO71syeSh17Qj4gvmpmW83s\n/emX5b5eZ5nZSanfzymp7UYz+3Sqt3iLmV1jZmPNbLqZbTazv5hZTVffDwBaQ+gEEBnOub2Snpd0\nSmrXKfI9mk/n2NfkBUlHSjpA0p8l3WFm3Z1zqyU9I+mijHMvkXSHc67BzM6X9HVJ75U0SP4W8m2t\nlPZDSeNT7zNe0nBJ3844PkRSH0nDJP2npF+ZWb/UseskbZM0WNJHJX1Eqd5N59ypqXOOcM71dc7d\n0YHrdZiZnSPpVkkXOOcyf2dnSTpa0tslfU3S9ZI+JGmEpCPkf08AUFCETgBR84TSAfNk+TD4dNa+\nJ5pOds792Tm32TnX6Jz7qaRaSRNSh2+TD1NNPigfwiTpk5K+75yb75xrlPQDSZPNbESOmj4u6UvO\nuS3OuR2pczOD2R5J1zrnGpxzD0naLmmCmVVJulDSt51zu51zcyX9Mfviank7POf1cryuLRdL+rWk\nc5xzM7OO/dA5tyNVz+uSHnbOLXPObZP0kHwgBYCCInQCiJonJZ1kZgdIGuicWyTfY3lCat/hyujp\nNLOvpm6RbzKzTZL6ShqYOnynpLeb2YFmdqqkBufc9NSxUZJ+ZmYbzWyjpA3yPZDDM4sxs0GSekma\nmXHuQ5IGZJy2IRVcm9RL6i3fg1ot6c2MYx0Zmd7a9TrjC5JuTwXLbOsy2jslrc3a7ux7AUC7eG4H\nQNQ8K2l/+d7F6ZLknNtmZqtS+1Y655ZJ/nlFSf8l6TTn3JzUvo1K9Rw65zab2cPyPZyHSfpLxvss\nl/Qd51xrt9SbvCUf+ialbtl3xnpJ+yQdJGlhal+untRCc5LeL+kmM1vpnPt5Cd4TANpETyeASHHO\n7ZL0oqQvq/lUPdNT+zKfTewjaa+kDanBPt9O7ct0m6QPyz/b+eeM/ddL+m8zmyhJZtbPzN6Xox4n\n6UZJ/5fq9ZSZDTezszrwWRol3SUpYWY9zezQVC2Z1kgq9HygJmmVpNMlfd7MPlXg6wNApxE6AUTR\nE/K3pp/O2PdUat8TGfv+mfqZL2mJfI9k9u3r+yQdLGm1c+61pp3OuXvkn838i5ltlvSqpHMyXpc5\nldFV8j2Vz6XOfVjSIW3Un/naz8n33K6Wf57zz5J2ZxxPSLo5deu+RejNcb2OaBqotELSGZKuypjc\nPftaJZmPFADM/0c8AKAUzOwHkg50zn2sQNebJz/a/e5CXTPj2uPlp7HqJukzzrmbC3l9AJWF0AkA\nRWRmEyR1d869ZmbHSnpA0hXOufsDlwYAJcVAIgAorj6SbjOzofKjxP+HwAmgEtHTCQAAgKJjIBEA\nAACKjtAJAACAoiN0doCZJc1sp5ltNbNtZjY349jpZjbXzLab2aNmNjLrtT80s7fMbH1q1GospOY8\n/K2ZLTWzLWY2K7WOc9PxSH5uM7vSzGaY2S4zuynrWCRrLhYzOzj1vb05Y1+bv4OQ8v3OhZLPdy5q\n2vpbBwD5InR2jJOfLqSvc66Pc+4wSTKzAfLL7H1DUn9JMyX9telFZvZJSe+RdISkIyWdZ2afKHXx\nXVQjv2LLyc65fpK+Jel2MxsZ8c+9UtK1kn6XuTPiNRfLLyW90LRhZgPVxu8gArr8nQusS9+5iMr5\ntw4ACoHQ2XGWY9+Fkl53zt3lnNsjP8nzUWbWNGn0hyX9xDm3OrV83o8lfbQUxebLOVfvnLsmNbm0\nnHMPyE++PVUR/tzOuXucc/dJ2ph1KLI1F4OZfVDSJkmPZuy+QG3/DoLK8zsXTB7fuajK9bcOAPJG\n6Oy475vZOjN7ysxOTe2bJOmVphOcc/Xyq5ZMynU81Z6kGDKzA+VXdZmteH7uONbcJWbWV9I0+SUj\nMwNEe7+DSOnkdy6K4lizlPtvHQDkjdDZMV+TXxt5uPwazPeZ2RhJvSVtyTp3q9JrP2cf35raFytm\nViPpFkl/cM7NVzw/dxxr7qprJN3onFuVtb+930FkdOE7F0VxrDn7b939qb91AJA3QmcHOOdmOOd2\nOOf2ppaBmy7pXZK2S+qbdXo/SdtS7ezj/VL7YsPMTP5f/rvl15CW4vm541hzp5nZZPm1tv8vx+H2\nfgeR0MXvXBTFruZW/tadG7ouAOWB0Jmf2ZImN22Y2X6Sxkl6PeP4URnnT07ti5PfSRoo6ULnXENq\nXxw/dxxr7opTJY2StNzMVkv6qqSLzOxF+c+a63cQtc/Zme9c1GrPFMeasznxjCeAAiF0tsPM+pnZ\nWWZWa2bVZnappJMlPSTpbkmTzOwCM6uVdLWkl51zC1Ivv1nSl81smJkNl3/G7vchPkdXmNlvJB0q\n6T2pgRBNIvu5U/8b9ZBULamm6X+3KNdcYNfLB5vJ8iH6N/JrfZ8l6R7l/h3MD1Vsti5854LX3oXv\nXPCac2njb90/QtcGoEw45/hp40e+x+UF+WezNkp6RtI7Mo6/Q9JcSTskPSZpZNbrfyBpg6S3JH0/\n9OfpxOceKalRUr387cBt8s+jXRLlzy3/L/ZGSQ0ZP9+Ocs0l+H3cnLHd5u8gzt+5wL/jLn3novTT\n3t86fvjhh598f0q29npqRO2/JB0m6e3OuTkleWMAAAAEV8rb6zvkH0j/WwnfEwAAABFQstDpnGtw\nzm0QD6UDAABUnE6HznbWGT7AzO5OrTO8xMwuKVypAAAAiKuaLrymaZ3hsyX1zDp2naRdkgZJmiLp\nATN72Tk3N68qAQAAEGud7ul0rawzbGa95Nca/qZzbqdzbrqkeyVdnuMy3GIHAACoIIV8pvMQSXud\nc4sy9jVbv9rMHpB0pqQbzOzDBXxvAAAARFhXbq+3prf8nHqZmq0z7Jx7V0cuZGalmccJAAAA7XLO\n5X2XupA9nQVdZzj0BKZd+Tn11FNL9l5XX311JK7V2c/cmfdq79x8jhfy91fKn3zq7uxrC/07iuL3\nrCPnVeL3rBL/lhXr/x/F/o7F9aeUnykqf8u68rqofM8KpZChc778EnDjMvYdpXitM5yX0aNHl+y9\n6urqInGtzn7mzrxXe+fmezyOSvmZCv1eUfyedeS8SvyeVeLfss6+lu9Yfirxb1lXXld237POpm75\n9YV7SPqe/HrVtZKqU8f+LOlWSb0knSRpk6TDuvAeLo6uvvrq0CWUXFw/c1zrzkecP3Nca6duAOUg\nlcvy7iXuSk/nN+XXRr5K0qWp9jdSx65MBc51km6R9ClXQdMlleN/jbYnrp85rnXnI86fOa61UzcA\npJVs7fXOMDMXxboAAAAqjZnJRWwgEQAAAJBTZENnIpFQMpkMXQYAAEBFSiaTSiQSBbset9cBAADQ\nKm6vAwAAIDYInQAAACg6QicAAACKjtAJAACAoiN0AgAAoOgInQAAACg6QicAAACKLrKhk8nhAQAA\nwmFyeAAAAJQMk8MDAAAgNgidAAAAKDpCJwAAAIqO0AkAAICiI3QCAACg6AidAAAAKDpCJwAAAIqO\n0AkAAICii2zoZEUiAACAcFiRCAAAACXDikQAAACIDUInAAAAio7QCQAAgKIjdAIAAKDoCJ0AAAAo\nOkInAAAAio7QCQAAgKIjdAIAAKDoCJ0AAAAousiGTpbBBAAACIdlMAEAAFAyLIMJAACA2CB0AgAA\noOgInQAAACg6QicAAACKjtAJAACAoiN0AgAAoOgInQAAACg6QicAAACKjtAJAACAoiN0AgAAoOgI\nnQAAACi6yIbORCKhZDIZugwAAICKlEwmlUgkCnY9c84V7GKFYmYuinUBAABUGjOTc87yvU5kezoB\nAABQPgidAAAAKDpCJwAAAIqO0AkAAICiI3QCAACg6AidAAAAKDpCJwAAAIqO0AkAAICiI3QCAACg\n6AidAAAAKDpCJwAAAIqO0AkAAICiI3QCAACg6AidAAAAKLrIhs5EIqFkMhm6DAAAgIqUTCaVSCQK\ndj1zzhXsYoViZi6KdQEAAFQaM5NzzvK9TmR7OgEAAFA+CJ0AAAAoOkInAAAAio7QCQAAgKIjdAIA\nAKDoCJ0AAAAoOkInAAAAio7QCQAAgKIjdBZL/XZp757QVQAAAERCTegCytZDt0tPPCgdVyedeJY0\n6mDJ8p7MHwAAIJZYBrMYGhukr31Y2rwhvW/4aOnEM6Xj3iH1OyBYaQAAAJ1RqGUwCZ3FsH619JOv\nS2+tbXmsulo64m2+9/OIY6UaOpsBAEB0ETqjrrFRmv+aNP1haebT0p7dLc/p0096+zukE86URowt\nfY0AAADtIHTGyc4d0otP+QC6cE7uc0aOl046Szr2NKl3n9LWBwAA0ApCZ1yteVN65l/Ss49Km95q\nebymmzT57b73c9JUfzseAAAgEEJn3DU2SHNekqb/S3rpGWnf3pbn7D9Aevvp0klnSkNGlL5GAABQ\n8Qid5WTHNumFpL/9vnRB7nPGHeYHHx1zitRrv5KWBwAAKhehs1ytXOp7P599VNq2ueXx7rXS0Sf4\n5z8nHCVVMb8/AAAoHkJnudu3T3r9Rd/7+erzUkNDy3MGDPbPfp5whjRoaOlrBAAAZa/sQ+fVV1+t\nuro61dXVhS4nvG2bpece9wH0zSW5zznkiNTt95Ol2h6lrQ8AAJSdZDKpZDKpadOmlXfojGJdwTkn\nrVgkPf2w9Pzj/lnQbLU9pbedLJ1wlnTwJJbeBAAAeSn7ns4o1hUpe/dIrzzvez9fnym5xpbnDB6W\nvv3ef1DpawQAALFH6ETa5g3Ss4/5ALpmRcvjZtLEo30APfoEPxgJAACgAwidaMk5afE8P/n8C0lp\nZ33Lc3ruJx1b55//HHMIt98BAECbCJ1o257dftL5px+W5r3sA2m2YSN97+fxp0v9+pe+RgAAEHmE\nTnTchnXSs4/4+T/Xr255vKpKOvxt0olnSkcd55fiBAAAEKETXeGctOB13/s58ylp966W5/TuKx13\nmnTau1l6EwAAEDqRp107ffCc/i9p/mstj9d0k6ZdLx04rPS1AQCAyCB0onDWrZKeecT/bFyX3n/e\npdL5l4erCwAABEfoROE1NkqP3Sf95Td+e9go6Zrrw9YEAACCKlTorCpEMSgTVVXSyeek5/FctUxa\nnWPeTwAAgE4idKK52h7SpKnp7ZlPh6sFAACUDUInWpp6Uro9i9AJAADyR+hES0ceJ1XX+PbyRbnn\n9gQAAOgEQida6rWfX6u9yazp4WoBAABlgdCJ3DJvsfNcJwAAyBOhE7lNPt6PZpekxfOkjevD1gMA\nAGKN0InceveVJhyZ3n7pmXC1AACA2CN0onVTuMUOAAAKg9CJ1k05QbLUAgQLZktbN4etBwAAxBah\nE63r118aP9G3XSO32AEAQJcROtG2KUwUDwAA8kfoRNumnJhuz3tF2rEtXC0AACC2CJ1o24DB0uhD\nfLuhQXr5ubD1AACAWCJ0on2sxQ4AAPJE6ET7Mp/rnD1L2lUfrhYAABBLhE6078Bh0kFjfHvfXunV\nF8LWAwAAYofQiY5hLXYAAJAHQic6JnMU+2szpN27wtUCAABiJ7KhM5FIKJlMhi4DTYaNkoYc5Nt7\ndkuzZ4atBwAAFFUymVQikSjY9cw5V7CLFYqZuSjWVfHu+oP04F98+7jTpI9fFbQcAABQfGYm55zl\ne53I9nQigo7JeK7z1eelvXvC1QIAAGKF0ImOGzFOGjjEt3fWS3NfDlsPAACIDUInOs5MmpoxoIiJ\n4gEAQAcROtE5mRPFv/ycXxoTAACgHYROdM6YCdIBA317+1Zp/qth6wEAALFA6ETnVFVJR5+Q3p45\nPVwtAAAgNgid6LzM1Ylemi41NoarBQAAxAKhE5138CSpz/6+vWWTtGhO2HoAAEDkETrReVXV0tHH\np7e5xQ4AANpB6ETXZN5inzVdYgUpAADQBkInumbCUVKv3r69cZ20dH7YegAAQKQROtE1NTXS5Len\nt7nFDgAA2kDoRNdlThQ/62lusQMAgFYROtF1k6ZItT19e90q6c0lYesBAACRRehE13XrLh11bHp7\nFrfYAQBAboRO5CfzFvvMp8PVAQAAIo3Qifwc8Tape61vr1omrVkRth4AABBJhE7kp7aHNGlqeptR\n7AAAIAdCJ/I3lVvsAACgbYRO5O/I46TqGt9evlBavzpsPQAAIHIInchfr/2kiUentxnFDgAAshA6\nURjcYgcAAG0gdKIwJh8vVaW+TovnSRvXh60HAABECqEThdG7rzThyPT2S8+EqwUAAEQOoROFw0Tx\nAACgFYROFM6UEyQz314wW9q6OWw9AAAgMgidKJx+/aXxE33bNXKLHQAA/BuhE4WVeYt9FrfYAQCA\nR+hEYU05Md2e94q0Y1u4WgAAQGQQOlFYAwZLow/x7YYG6eXnwtYDAAAigdCJwpvKLXYAANAcoROF\nl/lc5+xZ0q76cLUAAIBIIHSi8A4cJh00xrf37ZVefSFsPQAAIDhCJ4qDtdgBAEAGQieKI3MU+2sz\npN27wtUCAACCI3SiOIaNkoaM8O09u6XZM8PWAwAAgiJ0ojjMpKkZvZ3cYgcAoKIROlE8mc91vvq8\ntHdPuFoAAEBQhE4Uz4hx0sAhvr2zXpr7cth6AABAMIROFE/2LXYmigcAoGIROlFcmRPFv/ycXxoT\nAABUnJKGTjP7gZk9aWZ/NLPqUr43AhkzQTpgoG9v3yrNfzVsPQAAIIiShU4zO1LSMOfcKZLekPS+\nUr03Aqqqko4+Ib09c3q4WgAAQDCl7Ok8QdLDqfY/JJ3YxrkoJ5mj2F+aLjU2hqsFAAAE0enQaWZX\nmtkMM9tlZjdlHTvAzO42s+1mtsTMLsk4fICkran2Fkn9u142YuXgSVKf/X17yyZp0Zyw9QAAgJLr\nSk/nSknXSvpdjmPXSdolaZCkyyT92swOSx3bLKlvqt1P0sYuvDfiqKpaOvr49Da32AEAqDidDp3O\nuXucc/cpKzSaWS9JF0r6pnNup3NuuqR7JV2eOuUZSWek2mdLInlUksxb7LOmS86FqwUAAJRcIZ/p\nPETSXufcoox9r0iaJEnOuVckrTOzJyVNlHRnAd8bUTfhKKlXb9/euE5aOj9sPQAAoKRqCnit3ko/\ns9lkq6Q+TRvOua919GKJROLf7bq6OtXV1eVXHcKqqZEmv1165hG/PXO6n04JAABESjKZVDKZLPh1\nzXXxNqeZXStpuHPuitT2ZElPO+d6Z5zzFUmnOOfO7+S1XVfrQoS9/Jz0y4RvDx4mffd3ftUiAAAQ\nWWYm51ze/8Iu5O31+ZJqzGxcxr6jJM0u4HsgziZNkWp7+va6VdKbS8LWAwAASqYrUyZVm1kPSdXy\nIbPWzKqdc/WS7pJ0jZn1MrOTJJ0n6U+FLRmx1a27dNSx6e1ZjCUDAKBSdKWn85uS6iVdJenSVPsb\nqWNXSuolaZ2kWyR9yjk3twB1olxkrsU+8+lwdQAAgJLq8jOdxcQznWVs9y7pSx+Q9uz229+5URoy\nImxNAACgVVF8phNoX20PadLU9DYTxQMAUBEInSi9qdxiBwCg0kQ2dCYSiaLMEYUIOPI4qTo1Rezy\nhdL6NWHrAQAALSSTyWbzpueLZzoRxs++Jb02w7ff/3Hp7IvC1gMAAHLimU7EW7O12LnFDgBAuSN0\nIozJx0tVqa/fornSxvVh6wEAAEVF6EQYvftKE45Mb8+ZFa4WAABQdIROhHPY5HR7EWsIAABQzgid\nCGfsYek2oRMAgLJG6EQ4YyZIlvoKrl4u1e8IWw8AACiayIZO5umsALU9pIPG+LZz0pI3wtYDAAD+\njXk6UV5u+aWU/Ltvn3+5dN6lYesBAADNME8nysO4Q9NtnusEAKBsEToR1tiJ6fbieVJjY7haAABA\n0RA6EdbgoVLvfr5dv11a82bYegAAQFEQOhGWWfNb7Iu5xQ4AQDkidCK8cczXCQBAuSN0IrzMSeIX\nzwtXBwAAKBpCJ8IbfUh6kvhVy5gkHgCAMkToRHg9ejJJPAAAZS6yoZMViSpM5nOdDCYCACA4ViRC\neXr2Eel3P/btw4+RvvidsPUAAABJrEiEcsMk8QAAlDVCJ6KBSeIBAChrhE5EQ4tJ4pk6CQCAckLo\nRHSMZTARAADlitCJ6GBlIgAAyhahE9HBJPEAAJQtQieig0niAQAoW4RORAuTxAMAUJYInYiWzBHs\nPNcJAEDZiGzoZBnMCsUk8QAARALLYKK8OSd96YPS9i1++9obpaEjwtYEAEAFYxlMlCczaSy32AEA\nKDeETkQPg4kAACg7hE5ED5PEAwBQdgidiB4miQcAoOwQOhE9TBIPAEDZIXQimniuEwCAskLoRDQ1\nmyR+Xrg6AABAQRA6EU3NJomfyyTxAADEHKET0TR4qNS7n2/Xb5fWrgxbDwAAyAuhE9HEJPEAAJQV\nQieii8FEAACUDUInootJ4gEAKBuRDZ2JRELJZDJ0GQiJSeIBAAgmmUwqkUgU7HrmnCvYxQrFzFwU\n60IA066UVizy7S9/T5o4JWw9AABUGDOTc87yvU5kezoBSdxiBwCgTBA6EW1jmSQeAIByQOhEtGWP\nYGeSeAAAYonQiWgbPIxJ4gEAKAOETkQbk8QDAFAWCJ2IPiaJBwAg9gidiD5GsAMAEHuETkRf9iTx\nO5kkHgCAuCF0Ivp69JQOGuPbzklL3ghbDwAA6DRCJ+KBwUQAAMQaoRPx0Oy5TiaJBwAgbgidiAcm\niQcAINYInYgHJokHACDWCJ2IByaJBwAg1iIbOhOJhJLJZOgyECVMEg8AQMkkk0klEomCXc+ccwW7\nWKGYmYtiXQhs3ivSj6/y7eGjpWm/CVoOAACVwMzknLN8rxPZnk6gBSaJBwAgtgidiI8ePaWDRvs2\nk8QDABArhE7Ey1jWYQcAII4InYgXJokHACCWCJ2IFyaJBwAglgidiJfsSeLXMUk8AABxQOhEvDBJ\nPAAAsUToRPyMYzARAABxQ+hE/NDTCQBA7BA6ET9jJjBJPAAAMUPoRPwwSTwAALFD6EQ8MUk8AACx\nQuhEPDWbr5NJ4gEAiDpCJ+IpO3Q6F64WAADQLkIn4ilzkvgd26S1b4atBwAAtInQiXhikngAAGKF\n0In4InQCABAbhE7EFysTAQAQG4ROxBeTxAMAEBuRDZ2JRELJZDJ0GYgyJokHAKBoksmkEolEwa5n\nLoJTzZiZi2JdiKA//UJ64gHffu+HpXd/KGw9AACUGTOTc87yvU5kezqBDuG5TgAAYoHQiXhjkngA\nAGKB0Il4GzxM6t3Xt5kkHgCAyCJ0It6YJB4AgFggdCL+xvJcJwAAUUfoRPwxmAgAgMgjdCL+sieJ\n31Ufth4AANACoRPxxyTxAABEHqET5YHnOgEAiDRCJ8rD2Anp9rKF4eoAAAA5ETpRHkYfkm4vnR+u\nDgAAkBOhE+VhyAipe61vb3pL2rIxbD0AAKAZQifKQ3W1NHJcenvZgnC1AACAFgidKB/NbrETOgEA\niBJCJ8rHqPHpNqETAIBIIXSifIzK6OlcNt/P2QkAACKB0InyMWS4VNvTt7dskjZvCFsPAAD4N0In\nykdVNbfYAQCIKEInysuog9PtZczXCQBAVBA6UV5GZ4ROejoBAIgMQifKS+a0ScsWMJgIAICIIHSi\nvAwaKvXcz7e3bZE2rg9bDwAAkEToRLmpqmr+XCfrsAMAEAmETpSfzOc6WQ4TAIBIIHSi/IxiMBEA\nAFFD6ET5GZ11e53BRAAABEfoRPkZOETq1du367dLb60JWw8AAIhu6EwkEkomk6HLQByZNZ86iVvs\nAAB0WjKZVCKRKNj1zEXw1qOZuSjWhRi56/fSg3/17bPfJ73/P8PWAwBATJmZnHOW73Ui29MJ5GUU\nI9gBAIgSQifKU/bKRI2N4WoBAACETpSp/oOkPv18e2e9tH512HoAAKhwhE6UJzNpVOZgIlYmAgAg\nJEInytdoJokHACAqCJ0oXyyHCQBAZBA6Ub6ajWBfKDU2hKsFAIAKR+hE+dp/gNTvAN/evVNaszJs\nPQAAVDBCJ8pX9mCiZQwmAgAgFEInyhuDiQAAiARCJ8oboRMAgEggdKK8ZQ4mWrFIamAwEQAAIRA6\nUd769ZcOGOjbe3ZLa1aErQcAgApF6ET5G83KRAAAhEboRPkbxXOdAACERuhE+WNlIgAAgiN0ovxl\n9nQuXyTt2xeuFgAAKhShE+WvTz9pwGDf3rdXWrUsbD0AAFQgQicqA4OJAAAIitCJyjCK5zoBAAiJ\n0InKwMpEAAAERehEZcjs6XxzibR3T7haAACoQIROVIb9+kiDhvp2wz5p5dKg5QAAUGkInagcmYOJ\neK4TAICSInSicvBcJwAAwRA6UTlYDhMAgGAInagco8an26uWSnt2BysFAIBKQ+hE5ei5n3TgcN9u\naPCj2AEAQEkQOlFZWJkIAIAgCJ2oLDzXCQBAEIROVBamTQIAIAhCJyrLyHGSmW+vWi7t3hW2HgAA\nKgShE5XwilofAAAgAElEQVSlR09p6Ajfdo3S8kVh6wEAoEIQOlF5RnGLHQCAUiN0ovJkrkxE6AQA\noCQInag8LIcJAEDJETpReQ4aK1WlvvprVki76sPWAwBABSB0ovLU9pCGjvRt5xhMBABACRA6UZlY\nmQgAgJIidKIy8VwnAAAlRehEZWLaJAAASqpkodPM+prZ82a21cwmlup9gZxGjJGqq3177UqpfnvY\negAAKHOl7OncIelcSX8r4XsCuXXrLg0fnd5etjBYKQAAVIKShU7nXINzboMkK9V7Am1qNpiIW+wA\nABRTh0KnmV1pZjPMbJeZ3ZR17AAzu9vMtpvZEjO7pDilAgU2ipWJAAAolY72dK6UdK2k3+U4dp2k\nXZIGSbpM0q/N7DBJMrMvmdljZvaVQhQLFBTLYQIAUDI1HTnJOXePJJnZ2yQNb9pvZr0kXShponNu\np6TpZnavpMsl/bdz7qeSfprjktxiR3jDR0s13aR9e6X1q6Xt26TefUJXBQBAWcr3mc5DJO11zmUu\n6fKKpEm5TjazBySdKekGM/twnu8N5Kemm3TQ6PQ2vZ0AABRNh3o629Bb0tasfVsl5ewucs69K8/3\nAwpr1CHpQUTL5kuTpoStBwCAMpVv6NwuqW/Wvn6StuV5XSUSiX+36+rqVFdXl+8lgZZGHyw9kWoz\ngh0AACWTSSWTyYJf15xzHT/Z7FpJw51zV6S2e0naKGlS0y12M7tZ0pvOuf/uclFmrjN1AV22YrE0\n7TO+3X+w9KObw9YDAEDEmJmcc3mPx+nolEnVZtZDUrWkGjOrNbNq51y9pLskXWNmvczsJEnnSfpT\nvoUBJTF0pJ8oXpI2rpO2bg5bDwAAZaqjA4m+Kale0lWSLk21v5E6dqWkXpLWSbpF0qecc3MLXCdQ\nHDU10oix6e2l88PVAgBAGetQ6HTOTXPOVTnnqjN+rkkd2+Scu8A519s5N9o599filgwUWObKREve\nCFcHAABlrJRrrwPRNO6wdHsRnfQAABQDoRPIDJ2L50mNDeFqAQCgTEU2dCYSiaIM1wdaGHCg1K+/\nb++ql1YtD1sPAAARkEwmm01hma9OTZlUKkyZhJK77lpp1nTfvvxz0qmsYwAAgFTiKZOAsjduYrrN\nc50AABQcoROQGEwEAECREToBSRo1Xqrp5ttrV0rbtoStBwCAMkPoBCS/KtHIceltejsBACgoQifQ\nJPO5zsWETgAAConQCTTJfK5z4ZxwdQAAUIYInUCT8Rk9nUvnS/v2hasFAIAyE9nQyeTwKLn9B0j9\nB/v2nt3Sm0vC1gMAQEBMDg8U0w3fl154wrc/9BnpHe8JWw8AAIExOTxQDGN5rhMAgGIgdAKZxjOC\nHQCAYiB0ApkOGit1r/Xtt9ZKmzeErQcAgDJB6AQy1dRIow9JbzNJPAAABUHoBLKNZR12AAAKjdAJ\nZBtP6AQAoNAInUC2zJ7OZQukvXvC1QIAQJkgdALZ+u4vDR7m2/v2SssXha0HAIAyENnQyYpECCpz\nHfZFzNcJAKg8rEgElELyAemWX/j21JOkT38zbD0AAATCikRAMY3LGkzEfwQBAJAXQieQy/BRUm1P\n3968Qdq4Pmw9AADEHKETyKWqWho7Ib3Nc50AAOSF0Am0ZlzGOuzM1wkAQF4InUBrGMEOAEDBEDqB\n1ow9NN1esVjavStcLQAAxByhE2jNfn2koSN9u6HBr04EAAC6hNAJtCV76iQAANAlhE6gLTzXCQBA\nQUQ2dLIMJiIhewQ7k8QDACoEy2ACpdTYKH3xYql+u9/+7k3SgcPC1gQAQAmxDCZQClVV0tiMW+yL\nucUOAEBXEDqB9ozLmDppIYOJAADoCkIn0J7xGc91LiZ0AgDQFYROoD1jJkiW+r/Km0ulXfVBywEA\nII4InUB7evSSDhrt265RWvJG0HIAAIgjQifQEZmDiRYymAgAgM4idAIdMT5zkvh54eoAACCmCJ1A\nR4zNGkzU2BiuFgAAYojQCXTE4KFSn36+Xb9dWvNm2HoAAIgZQifQEWasww4AQB4InUBHZa/DDgAA\nOiyyoTORSCiZTIYuA0hr1tNJ6AQAlLdkMqlEIlGw65lzrmAXKxQzc1GsCxVu9y7p8xdJDQ1++2d3\nSPv1CVsTAABFZmZyzlm+14lsTycQObU9pBFj09uLmToJAICOInQCncFznQAAdAmhE+gMRrADANAl\nhE6gMzJ7Ohe/ITU2hKsFAIAYIXQCndF/kLT/AN/evVNauSxsPQAAxAShE+iM7EniF3KLHQCAjiB0\nAp01flK6/cYr4eoAACBGCJ1AZ008Ot2e8xLPdQIA0AGETqCzho2SDhjo2/XbpSXzw9YDAEAMEDqB\nzjKTJk5Jb8+eGa4WAABigtAJdMUkQicAAJ1B6AS6YuIU3+Mp+fk6d2wLWw8AABFH6AS6ondfadTB\nvu0apbkvh60HAICII3QCXXX41HSbW+wAALQpsqEzkUgomUyGLgNo3aTM0DlLci5cLQAAFFgymVQi\nkSjY9cxF8F+UZuaiWBfQzL590pculnbW++1rb5SGjghbEwAABWZmcs5ZvteJbE8nEHk1NdKhk9Pb\n3GIHAKBVhE4gH5nPdb5O6AQAoDWETiAfEzNC5/xXpb17wtUCAECEETqBfAwaIh043Lf37JYWvB62\nHgAAIorQCeRrElMnAQDQHkInkK9JPNcJAEB7CJ1AviYcKVXX+PbKpdLmDUHLAQAgigidQL569JQO\nnpTenj0rXC0AAEQUoRMoBJ7rBACgTYROoBAyQ+ecl6TGxnC1AAAQQYROoBAOGiP1PcC3t2+Rli8M\nWw8AABFD6AQKoapKmnh0eptR7AAANEPoBAqF5zoBAGgVoRMolMzQuXiutHNHuFoAAIgYQidQKH33\nl0aO8+2GBmneK2HrAQAgQgidQCE1u8XOfJ0AADQhdAKFxHOdAADkROgECmn8RKm2p2+vXy2tXRW2\nHgAAIoLQCRRSTTfp0CPT27NfDFcLAAAREtnQmUgklEwmQ5cBdB632AEAZSCZTCqRSBTseuacK9jF\nCsXMXBTrAjpk7UrpG//h27U9pZ/d7ntAAQCIITOTc87yvU5kezqB2Bo8TBo4xLd375QWzglbDwAA\nEUDoBArNjFvsAABkIXQCxXA4oRMAgEyETqAYDj1Kqq727eWLpK2bw9YDAEBghE6gGHruJ409LL09\nh9WJAACVjdAJFEvmc52vM18nAKCyETqBYjn8mHT7leekPbvD1QIAQGCETqBYRo330ydJ0s566eVn\nw9YDAEBAhE6gWMykE85Ib0//V7haAAAIjNAJFNPxZ/jwKUlzXpI2vRW2HgAAAiF0AsU0YLA04Sjf\ndo3Sc4+FrQcAgEAInUCxnZh1i925cLUAABAIoRMotiknSbU9fXvNCmnJG2HrAQAgAEInUGy1PaRj\nTk5vP/NIuFoAAAiE0AmUwolnptsvJKW9e4KVAgBACIROoBTGT5IGDvHt+u1+sngAACoIoRMohaoq\n5uwEAFQ0QidQKsdnhM7XZ0qbN4SrBQCAEiN0AqUyaIh0yBG+7Rql5x8PWw8AACVE6ARKKXNAEXN2\nAgAqCKETKKWpJ/splCRp1TJp2YKw9QAAUCKETqCUevT0k8U3Yc5OAECFIHQCpZZ5i/35x5mzEwBQ\nEQidQKkdcoQ0YLBv79gmvfpC2HoAACgBQidQalVVzadPeoY5OwEA5Y/QCYSQOVH8azOkLZvC1QIA\nQAkQOoEQBg+TDj7ctxsbpecfC1sPAABFRugEQsleFpM5OwEAZSyyoTORSCiZTIYuAyieY06Wutf6\n9sql0opFQcsBACBTMplUIpEo2PXMRbB3xcxcFOsCCu63P5KeS91af8d7pA99Jmw9AABkMTM55yzf\n60S2pxOoCM2WxXzYT6EEAEAZInQCIR06WRo+2rd375KeeCBoOQAAFAuhEwjJTDrrovT2o/eyQhEA\noCwROoHQjquTDhjo21s2pZ/xBACgjBA6gdBqukmnn5/e/uedfu5OAADKCKETiIJTzpV69PLtNStY\njx0AUHYInUAU9NpPOvWd6e1//i1cLQAAFAGhE4iK098rVVf79oLXpcXzwtYDAEABETqBqOg/SDr2\ntPQ2vZ0AgDJC6ASi5KwL0+1Z06W1q8LVAgBAARE6gSgZMVaaNNW3nZP+dVfYegAAKBBCJxA157wv\n3Z7+sLRtc7haAAAoEEInEDWHTpZGjvPtvXukx+4PWw8AAAVA6ASixkw6O6O38/H7/brsAADEGKET\niKJjTpEGDPbt7VulZx4JWw8AAHkidAJRVF0tnZkxkv3hO6XGhnD1AACQJ0InEFUnnS316u3b61dL\nM6eHrQcAgDwQOoGo6tFTqnt3evuOG6VdO8PVAwBAHgidQJSddZHUu59vb1wv3XdL2HoAAOgiQicQ\nZb37SBd/PL39yN3S8kXh6gEAoIsInUDUHX+6dOhRvt3YKP3p5wwqAgDEDqETiDoz6bLPSjXd/PaS\nN6QnHgxbEwAAnUToBOJgyAjpnRent+/6vbR5Q7h6AADoJEInEBfnfkA6cLhv76yX/npD2HoAAOgE\nQicQF926S5demd6e8YT0+ovh6gEAoBMInUCcTJwiHXdaevvWX0l7doerBwCADiJ0AnFz8Sear1T0\n99vC1gMAQAeYcy50DS2YmYtiXUBkPPGgnzpJ8uu0T5wiDTxQGpDxM3io1Ltv2DoBALFnZnLOWd7X\niWK4I3QC7WhslH74VWnRnLbPe+fF0kVXlKYmAEBZKlTo5PY6EEdVVdJHvth+T+Y/7pBWLC5NTQAA\ntIGeTiDO9uyWVi+X3lorbVgnbUj9c9kCadNb/pwjj5M+Py1snQCA2OL2OoDWrVgsXXOl1PT/o6t+\nIh08KWxNAIBY4vY6gNaNGCsdW5fevuv36QAKAEAAhE6gXJ1/uR/ZLkkLXmcieQBAUIROoFwNHiad\n/M709l1/8KPeAQAIgNAJlLN3XyJ1r/XtFYukF58MWw8AoGIROoFytv8A6fTz09v33Czt2xeuHgBA\nxSJ0AuXunPenl81ct0qa/s+w9QAAKhKhEyh3+/XxwbPJ/X/283sCAFBChE6gEpx+vtSvv29v3iA9\nck/YegAAFYfQCVSC2h7SeZemt//+Z2n9mnD1AAAqTslCp5m9zcyeMbOkmd1qZtWlem8Akk46Wxo+\n2rf37JZu+TkTxgMASqaUPZ3LJZ3mnKuTtEzS+W2fDqCgamqkj3xRstRKZrNnSc891vHXr1gsvfFq\ncWoDAJS9koVO59xa51zT6IU9kpilGii1sYdK73hPevuvN0jbtrT/uhlPStd8Vvqfr0kP3V68+gAA\nZatDodPMrjSzGWa2y8xuyjp2gJndbWbbzWyJmV3SzrVGSTpT0v1dLxtAl13wEan/YN/evkW6/Ya2\nz1+xWPr9TySX+u/Ee272+1AY27dKD98lLZ4XuhIAKKqO9nSulHStpN/lOHadpF2SBkm6TNKvzeww\nSTKzL5nZY2b2ldR2X0k3S/qIc64h3+IBdEGPXtJln01vP/to6+uyb98mXXdt8ymWGvb5EMok84Vx\n00988P/+l6Wnc8yhWoznbut3SE88yH88ACipDoVO59w9zrn7JG3M3G9mvSRdKOmbzrmdzrnpku6V\ndHnqdT91zr3DOfeT1MCh2yQlnHMLC/opAHTOkcdKx56a3r7lF9LuXc3PaWyQbvyBtH61367tKXXr\n7tvLF0kP/bU0tZazDeukV5/3bdco/eGn0tL56eMP/EX6/EXSbb/u+nvs3eP/w+KWX0ovPev3/eU3\n0p9+Lv3wq9KObV2/NgB0Qr7PdB4iaa9zblHGvlckTcpx7iWSjpX0rVTv5/tznAOgVD7wqfRKRW+t\nlX7zXT+waMNa37t2z83S7Jnp86/4ivTeD6e3/34bPWWd9dKz0jf/U7rjRv87fj7HQK4XnvD/nP6w\ndPcfpJ310qP3Sm91YYqr9Wukb39S+t3/SMm/S7+aJn3qPOmZf/nju+qlmU93+eMAQGfU5Pn63pK2\nZu3bKqlP9onOuVsk3dLRCycSiX+36+rqVFdX16UCAbSi3wHSxZ+Q/vC/fvu1Gf5H8mu2b96QPvdd\nH5SmnuR7P2c+7Z8/bLrN/rGv+PC5fJFUv0067TxpzITSf54omvm0dO+fpLed4udJveNGvxTpmjel\nKSdKz+YInbNnSvs+6gd5ZVo8Txo4pHPv//Q/0j3VTfbtbb69a2fnrgmg7CWTSSWTyYJfN9/QuV1S\n36x9/STlfb8mM3QCKJITz/QhZ8YTzfdnBs7D3yadf7lvV1X7kDntMz68LF/k25lmz5R+8Mf0rfhy\n0NgozX9NGjxM6j+oY69xzt8u37nDB8/Dj/GBs8mDf5VWL2/5upVLpZefleq3N9+/+A3p2Dppy0bp\nzpukwcP9fww0TYGVadNb/jb9mjfbr3PPrvbPAVBRsjv7pk2bVpDr5hs650uqMbNxGbfYj5I0O8/r\nAigFM+kTX5dOPdeHqgWzfY/a7lTv14HDpY9/zYfNJkNH+BHwd/w29zW3bJJefEo6/vTi118qd/1e\n+scdfmWn793klxR9/UXp1l9JE45sPv9pk7Vv+sDZ5J9/a378lefT7SOP9YO15r3it+/+Y8saXnxS\n2rhOmjU9vW/0wT7MZtq7R/reF33w7IjnHpOm/0saOU765H9LVSxUB6A4OhQ6U4OAukmqlg+ZtZL2\nOefqzewuSdeY2cclTZF0nqQTilUwgAIzkw49yv9IUkODtHKJfx7wsMnp5z4znXmBD6czn/Y9fyPH\nSfsapNdTt+cfv798QufalT5wSn6w1WszpBPPkm74ge+NXL/abx+c9Sj7/Nebb7/4VOvvcehkad+e\ndOhcu7LlOZs3NA+ckg+M2aFz7ssdD5xSujd0/Wpp4WzpkCM6/loA6ISO9nR+U9LVkprm7rhU0jRJ\n10i6UtJNktZJekvSp5xzcwtcJ4BSqa6WRo73P62pqpY+/U0fUKtTvaBbN0tfu9zfdl88T1q6wPfE\nxd3df2i+vXyRNGZZ89vf815Oh87GBum1F3NPf9SaiUf7HuJcqqv97zmXF5/y/3Fw0Gjp0s/6XsrM\n3tXOWvMmoRNA0XQodDrnpsmHzFzHNkm6oJBFAYiJ6ozb7n3394ONnn/cbz9+v/SxL4epq1CWLmjZ\nQ7l8ofTSM1n7Uk8XNTZK13+/cyPCu3WXho+W+uzf8tigodIp50p35poiWT7gL5rjf9aulC68wk82\n31Ub13f9tQDQDh7eAVA4mUtsvpDMLwBFwawc4XHFYmlm1m3uRXP9wKE7b2o/cFZVSZd9Lr190ln+\nEYd+B7QMnhOO8I8ytNXr3GTeK9JPrvLP5Wbbf4B/Prc9f/+zXx2psdH/AEABEToBFM7YQ9MBae+e\nzt1ijpKmifKXzM99bMWi5vu2bvIDsR6+s/1rHzRWqnuX9KXvSh/4pHTRFRnHxjQ/d8KRUk2N9OXv\nSe/+kPS5adLV17V8jjOzthefbLl//wHSF66VBh7YfH9VlfShrNkHbr9B+sS50n9d5nt1AaBAIhs6\nE4lEUeaIAlBEZs17O5MP+Gcc42LTW9KPvy599gLpb79rvjrQsFFtv/bx+9NLVg480E81NWio9PX/\nla76se/RPHSydMmn/TmTpvpezB690tcYOqL5NQ850v+zd18/Mf9Rx0kjxkof/oIfqHXauzv2ufbv\n76d7+tL3m++/5NO+jly2bJR+872OXR9AWUomkwWdwtJcMdb1zZOZuSjWBaAD9uz2vWRNyyt+bpoP\nS/naVe8HMHXrnntuynwtmiP9cpq0bUvLY737SXXn+lWYMg0dmZ5rs6ZbeuL1089Ph8vOeOh2f4u+\nyW//0f5r/nyd9Nh9bZ/zjvekezRfSPolMGt7Slf/yofeK9/b+u303/7DL6O59k3pjAt8AAZQUcxM\nzrm8//BGtqcTQEx1r/W9ek3uv6X10dcd4ZxfovOzF0qfOV/65Lv8UpLLF7X/2lymP+xD8W2/TvfC\nNjT4AUC5AqckjTlEGpU1En/keOnij6e3M1f6GZLVY9lRx5/uf3+SX8GoI973H9LHr2p7taJxh6Xb\nx9ZJ/3Or9KOb/TOk3bpL51zsQ3MuM5/2y2j+/Tbpvg4vKgcALRA6ARTeaeelQ8zSBel5Lrti1vTm\nI8gbG/3UPrff2PlrNTRIf7ne30Z/9F7pll/6UDv3pbZHbo/OETov+ph/hjWXIQd1vjbJP3s57Tf+\nec93f6hjr+leKx13ml+dqDUHH958u0fP5hP+X/hR6Zd3575d/+vvpNvt9agCQBsInQAKb+AQ6T2X\npbfvu0V6c0nbr3HOh5ppn/FzYzY2+p7Ie29On5O5Ws68l3NPot6WpfObz2P55EO+tmcfTe+belLL\n1405RDpgYHoAzzGnSBOnSPv18bfYs2U/m9kZg4b65ywzp6PqiCPe1vqxjizdWVMjHdiJsDzjSb+W\nfGvziwJAFkIngOI4+33SmAm+3bBPuunH0r59uc/dvUu68Yf++cQVi6UH/iL99Xrp+aS0KvXMZI9e\n0k9ua/586JMPdq6muS+13Hf/rc1HfL/rg81vR0vS6An+OdLPXyN99ybpE1elnyvN7u2s7emXySy1\n/QdIx5/h20NGpAP6ORd3/BqDh7Z/zjOPSGtXSdd/T/rnndLPvpXf4xMAKka+a68DQG7V1dLHviJd\nc6V/3nH5IumB26TzL29+3qrl0g3fb9kT+ui9fq3zJmdeIPXp59eJb1q3fPoj0ns/4p9L7Ii5L+fe\n3xSaho2SRoyTpp7s596UpAGD/cT3kg9yBw5r/tpxh/nnRJsMPag4A5064iNflM79gDRoiPTWGmn1\nitanV8qlredCm9z04+ahfPlCvzTo5Ld3vl4AFYWeTgDFM2ykdMFH09v33yr94Mv+tvbsmdIvrpa+\n/YnmgXNQRm9b03yZvXpLZ17o24cfI/Uf7Nvbt7Rcj7w1u3elg6QkfefGltMgHX+6D4zH1aXXnD/m\nlLavm90r2plb1IVWU+Nv7dd0872dR5/Q8UAu+UcFppzYfmhelLXS8aqlnS4VQOWJbOhknk6gTJz5\nXmn8xPT2wjnSzT+TfvqNdI+l5IPSh78gXXO9nxQ90zsvlnrt59tV1dLJZ6ePJR9oPt3Pvr25p/9Z\nOCc9wnzoSB/KPpfw0yE1vf9xp/l2v/5+OqEvfU+68GNtf76hI6Webcy1GSdm0me+Jf38by17pNuy\nYV3xagIQDPN0AoifLZukW38pvfxs7kB45HHS+ZelR4jX75B+/DV/S37wML8KT+at9s0bpK9dnr7W\ngcN9D+jCOdKyBf65yoNG+9vF3Wt9r+Vba9JLVGbOW7lmhfT43/1AnM7cis7002/4nlvJh7YpJ3bt\nOlHyyvO+J7ojJk31I+4BlKVCzdNJ6ARQOls3S88/Lj33mLRjq1+154zzc89ruXePX0989MEt1ySX\npN/+yF+nK668Wjr6+K69NpdFc/xAqAMP8pPh15TB4/KNjdItv/DTU51whvSHn7Z+7pCDpO/8tnS1\nASgpQieAyrZ3j3TXH6Sn/yHtrO/466xK+tnt6Wc20T7npO9+3s+52prv3tRykBWAskDoBABJ2rXT\nL+341hp/e/6wyX4pzjeXSNs2S3v2+FvorzwvrVslnX2R9P6Pt3tZZNm+VZr/mn+U4epPtTx+zsXS\n+64ofV0Aio7QCQCd4ZyfL7S15R7Rcf95Tst9x54qfeL/lb4WAEVH6AQAhPHqC9KdN/npmJbOT+8f\ne6h07geZsxMoM4ROAEBYSxdI3/lcy/2//UfpawFQNIUKnZGdpxMAEHF9+uXe39pypwAqGqETANA1\nrYXOrZtKWweAWIhs6GRFIgCIuO61ufdv3lDaOgAUBSsSAQCiI9dI9nJZlQmAJJ7pBABEwanvarmP\nnk4AORA6AQBd17SGfSae6QSQA6ETANB11dV+bs5M27eFqQVApBE6AQD5OfcDfgnSJtu3hqsFQGQR\nOgEA+enRU7rgI+ntHYROAC0ROgEA+duvT7o992WpoSFcLQAiidAJAMhf777Ntz99nvRCUmL6OwAp\nhE4AQP72ywqdjY3SDT+QnnwwTD0AIofQCQDIX89euff/6RfSts2lrQVAJEU2dLIMJgDEiJk0aWru\nY7deV9paABQEy2ACAKJp9y7p/30s9+TwX/2hdOhRpa8JQN5YBhMAEC21PaT/+pFUleNfLcm/l74e\nAJFC6AQAFM7QEdIXviOdcUHz/S8+JT1O8AQqGbfXAQDFcf33pRlPNN93w4O5e0IBRBa31wEA0faJ\nr0s992u+b/fOMLUACI7QCQAoDjPpP77afN/O+jC1AAiO0AkAKJ7Jxze/nV6/PVwtAIIidAIAimvM\nhHR7545wdQAIitAJACiunr3T7XpCJ1CpCJ0AgOLqlbFEJj2dQMUidAIAiqtZTyfPdAKVqiZ0AQCA\nMtcrY9qkV2dISxdIx58uHTY5XE0ASi6yoTORSKiurk51dXWhSwEA5KN3v3T79Rn+ny8+Kf3yLqmq\nOkxNANqVTCaVTCYLdj1WJAIAFNeMJ6Xrv9dy/0//KvXp13I/gEhhRSIAQDz0H5R7PyPZgYpC6AQA\nFNeAwbn372RQEVBJCJ0AgOLqe0Du/YxkByoKoRMAUFxVVdJln2u5f/mi/9/efUfZVdV9GH92hiSQ\nECIdgxQTSkLEUF6KJMILhLygC4EgCsYgEn3BN0qNQQPIGIpRQLBQJQgiFkQiIBilTQDpaEB6L9I7\nhBASYb9/7Jl1507Lnbn3nFvyfNaaxWn3nN917Vy/a5999oFZR8AZM2Hx+/nXJSlXPkgkScrPSYfB\nEw913r7/obD9bvnXI2mpfJBIklR/Nhjd9fZ7b8+3Dkm5M3RKkvLT3RRJq62Vbx2ScmfolCTlZ9Tm\n1a5AUpUYOiVJ+VlvA1h7/c7bnbNTaniGTklSfkKAiV/tvP2Wa2DJ4vzrkZQbQ6ckKV+bdHOL/aa5\n+YxQmZ0AABGoSURBVNYhKVeGTklSvvoP6Hr7vKvzrUNSrgydkqTa8NxT8Pab1a5CUkYMnZKk2jFz\nqm8nkhqUoVOSlL/hI7ve/uZr8OTD+dYiKRc1Gzqbm5tpaWmpdhmSpCxM+Tas/tE0fVJTU/G+px6t\nSkmSirW0tNDc3Fyx8/nudUlSdbT9zl86G/56afG+Uy6Gj6yaf02SOvHd65Kk+hZC+ttzf9h+t+J9\nLX+uTk2SMmPolCRVV/8BMPkQGL1lYduD86tXj6RMGDolSdUXAkw8oLD++IPw6otVK0dS5Rk6JUm1\nYdh6xesP3VOdOiRlwtApSaoN/QcUT6W0cEH1apFUcYZOSVLtaD+u85JfwG/OLDzlLqmuGTolSbVj\nhUHF69dfAc8/XZ1aJFWUoVOSVDtWGNx52w+O8J3sUgMwdEqSasegFTtvW7QQ/vCL/GuRVFGGTklS\n7eh4e73NrdfBvbfb4ynVMUOnJKl2DF2l+30/PQ6O2Bfuvhk+/CC/miRVhKFTklQ7hq0Hnxrf8zFn\nnQCXXZhPPZIqJsQanIoihBBrsS5JUk6WLIbjvwnPP9P9MefNTf999UV48/U0x2c/+1KkSgshEGMM\n5Z7Hf52SpNrTfwB858dw0Izuj7n+CnjxWTj6azDrCGj5c+dj3nwNrrzYtxtJNcCeTklSbZv7B7h0\ndmnHtvV+tjnrhDQGdMBA+MEFMHTlipcnNTp7OiVJy4ad94BJU0s79vVX0lPuSxan9btvTv9d/D7c\nOS+b+iSVxJ5OSVJ9ePheOHl6z8cMXB7eX5SWp58MP/p2Yd+Go+GoU7OrT2pQlerpNHRKkurHt/aG\n994t7dh+/eDDD4u3HX4SfHwj+N3ZsFx/+OJBKahK6lalQudylShGkqRcrLI6PFdi6OwYOAFOmwGr\nrZWeeIc0L+gekytXn6Ru1eyYzubmZlpaWqpdhiSplvQ0eXyp2gInpCfbO95Ze/CfKZz+/Zryr6Vs\nxJhmJJh/my8KyFBLSwvNzc0VO5+31yVJ9eOH0+DR+wrru+wF18wp75yf2hmmtBv7+bVdC8s/vbTr\n98GrdHfdBA/OTz3KK32kMud87IE0TRbA14+CbXaszHnVJZ9elyQte9YcVliu1JjMW68rLM+/tXjf\nydPh3Fnp6fesxZjmFb33Dnjy4Z6Pfe4pOP8UuKMKT+S/8CzcfkPhga0PP4DLfgm/+gm881bnY88+\nEeZdlV5h2ubVF+HU78DZJxVmGujo0fvh4jPgqUc67/vRtMLyL36YanngH92fSzXBMZ2SpPqxy0S4\n7Qb4zxI4dGba1hZ+ynH2ibDn/vDz7xdvf/aJ9PevO+Bnl5V/nZ78/hy49k+F9e+dAeuO6PrY04+B\nN16FW66FjT6Rwtbf/ggbbgpb71A4bslieOQ+2GCT4nAeI4SQ9v/k2HSresq0pb+CdOGC9Kaoxe/D\n+D1h34Phluvg6t+n/Tf+BU77HQxp7dG8qcO8qW++Bh9ZFS44rTBh/9rrwZafhjWGwXLLpSEPd92U\ngjXADVd2nn+143jd049JPeCf2AoOO77n76CqMXRKkurH2uvDD3+VetdWXq1y573rpvTXnfcWwnWX\np1DzxiuwwWh4aD489Wi6ZfzCMymErbomPPM4/OtO2HZHWPQeXH4RjBwDO32ucL4YU1i+8S/wxEPp\n1vO8q4uv+Zsz0luZuvLGq4XlJx+GK38DzzwGN/wZRoxMdQCcdWKat3TEKPjuaSksPv4g/PpnsOJK\nsPGYQvibfQqM2jyFwu7cOa/Q63vtn+C/tocLOtT4u3PSLe8F78Bj9xfvmzYpDVlo/4aoyy9KfwOX\nhy/9X1ruymsvpRoHDe68r23IxX13dl+7qs4xnZKk+tZ+DOYaw+CdN1NIzNK6G6SQ19GKQ2HBW523\nA+w9BZ5/GhYvKkxa32bYul2/Z36dEXD06WkoQXvtv3NH4ybAjrvDXy4pDtIzz0nDBTreAm9vp8+l\n4PfM4zB4CDQ1wQP/hE9unULqzX9NvZRLM3QVeOv1rvf19L9Rdw6cloYTlOKE82Ctj/Xu/OqR83RK\nkgQwdc/CLfatdoD77063gRvJeXPT7eahq8KKQ3oOnZBe+9mXcajb7wYbfzKNk+xoneFpqEE9+NFF\naXotVYQPEkmSBHDw0alHboXBsO9B1a4mG/OuhuMOhsO/2HUg7KivDz69/Qb89uyu99VL4ASY7tyr\ntcieTklS/XvrdVh+UBoXeNgXYMHb1a5I1dbx4SP1mT2dkiS1GbpK4enswUOK900+pHh98BDn3pSq\nwNApSWosBxxRWB65GYzdpXj/Z74IP/4tHDkL9j906efbdKvKPikvLaOcMkmS1Fg2HF2YHmjkmDQf\nZXsfG56eBh+1WXpo5ulH4cV/w8P3dj7XyqvBlOnQvz/MOhKefTyf7yA1IEOnJKnxjBhVvD5uAtz8\ntzQF0cgxhe39+hVuv3d8InzXfWDvAwuhdcuxhk6pDN5elyQ1vv0Pgxk/ge+cmp5078oBhxeWl+uf\nJntv30s6Ye/SrrXqGnDS+X2vVWpQ9nRKkhpfv34wfOOejxn3P7DFuPSmobU+1vnNPAMGLv06e0yG\n3Sf1vU6pgdnTKUlSm0GDYYuxMGy9rvdPmdbz50dvWfmapAZh6JQkqVTb7gwf76HHdPjIwvIX/rfr\nYzbaFDb7VGnX+/wUOHF2GhqQhS3HlX+OfQ8u/xxaJhg6JUkqVQhwxEkpXK65dvG+cROK1ydMhG12\n7HyOpqbux5V2tPnYdJ3hG8O5V8HYCbD5dnDsz/pWf3s7fBYmlzBl1NKM37P8c2iZYOiUJKk3VhgM\nM06HE85Lk9K3GT6q87Fd9QLu8FnYdOvSrjVkaGG5XxN89QiY+j1Yd4Pi4yZ+tevP7/eNNFygo8nf\nSn/9+5dWxx6T0185thwHXzms958756qlH9NxtgLVJEOnJEl9EQIcdgKsvT6M2Qa2G9/5mI4PH+0x\nOYWv7canntGNNoWZ56Qg22bMNumNSbvslcaYdnft3b6QekzH75WO/fwUWGFQ8XE77wGTphZv22Is\nbP+ZtDxw+RSCu7LF2DR5/j5fT0/u7z4pfdf22sLvyM0K2zYc3flcp1wM3zgGPr1r72/HNzWlXt7J\nh8D3zy4ewtDmoBmw/W6F9Y5vpVJN8N3rkiRlJUY49utp8vl1RsBxZ3R93FOPwpxfwsZj0huTSrVk\nMfQfUFi/7y44/ZjC+nlzYcE7cNg+hW2nXwIrrlR8nkXvwSnTUx2Qpow65eLOxx13MDz3VGF91gWw\n2lrw+isw9w+w7gh452344+zCMWddUVwjwMIF8MKz8Oh9MO9qeOWF4v2f3hXGbJsCeMfJ/QG+/WV4\n49Xi7wkw/1aYf1sK2+sM7/w59Uml3r1u6JQkKUsvPQ/zb0k9h6t/NNtrdRU6Fy2Eb04sbPv5HFh+\nhc6fffHfcNYJqXf1kJnFva9t7miBc2el5fF7wb4HdT7msQdgVuurSAcMhDMvX3rdzzwGoR/MuRBW\nXjX1zvbrYdzry8/DydNh4bswbVbPD3epbIZOSZJU7KXn4egDC+vnzU29od/4XGHb2Vemnsy++PBD\nuHZO6j3ddZ/ub/9ffhE88q90y99AWPcqFTqdHF6SpEax5rA0bvTum2HiAWlbU4f/q++43hv9+pX2\nZqZyHzpSQ7KnU5KkRnfpbLhmTprGae8Dl3681I631yVJUuk6PnQklahSodMpkyRJWhYYOFVlhk5J\nkiRlztApSZKkzNVs6GxubqalpaXaZUiSJC2TWlpaaG5urtj5fJBIkiRJ3fJBIkmSJNUNQ6ckSZIy\nZ+iUJElS5gydkiRJypyhU5IkSZkzdEqSJClzhk5JkiRlztApSZKkzBk6JUmSlDlDpyRJkjJn6JQk\nSVLmDJ2SJEnKnKFTkiRJmTN0SpIkKXOGTkmSJGXO0ClJkqTMGTolSZKUOUOnJEmSMmfolCRJUuYM\nnZIkScqcoVOSJEmZM3RKkiQpc4ZOSZIkZc7QKUmSpMwZOiVJkpQ5Q6ckSZIyZ+iUJElS5gydkiRJ\nypyhU5IkSZkzdEqSJClzhk5JkiRlztApSZKkzBk6JUmSlDlDpyRJkjJn6JQkSVLmDJ2SJEnKnKFT\nkiRJmTN0SpIkKXOGTkmSJGXO0ClJkqTMGTolSZKUueXyulAIYQ1gDrAE+A8wKcb4Ul7XlyRJUvWE\nGGM+FwohxNaLhRC+AqwdYzypm2NjXnVJkiSpeyEEYoyh3PPkdnu9Q4ocAtyf17UlSZJUXSWFzhDC\n1BDCnSGERSGE8zvsWzmEMCeEsCCE8GQIYb8ezjMmhHAbMBX4R3mlS33X0tJS7RK0DLCdKWu2MdWT\nUns6nwOOB2Z3se9MYBGwOvBl4KwQwiiAEMLhIYTrQwhHAsQY74kxbgscC8wot3ipr/yhVh5sZ8qa\nbUz1pKTQGWP8U4zxCuD19ttDCIOAicAxMcb3Yox/By4HJrd+7rQY404xxlNDCP3bffRt4N2KfIMa\nkuc//kpeq5xz9fazvTl+aceWu78e1WsbK/d8WbWzUo6zndXPtWxj9aNe21g55+vL5xqtnZU7pnMj\nYEmM8fF22+4BRndx7GYhhHkhhOuAQ4GTy7x2zanXf0S1+ENdyrG18A8ob/Xaxso9n4EgX/Xazmxj\n9aNe21g55zN09vLp9RDC8aSnzg9sXR8HXBJjHNbumK8BX4ox7tTnokLw0XVJkqQaUYmn18udp3MB\nsFKHbUOBd8o5aSW+mCRJkmpHubfXHwGWCyGMaLdtDE6HJEmSpHZKnTKpKYSwPNBECpkDQwhNMcaF\nwGXAzBDCoNbb7bsDF2VXsiRJkupNqT2dxwALgaOASa3LR7fumwoMAl4Gfg0cHGN8sMJ1SpIkqY7l\n9hpMSZIkLbtyew1mJYQQ1ggh/D2E0BJCuDaEsGa1a1LjCSFsFUK4pbWdXRxCaKp2TWosIYSVQgi3\nhxDeDiFsUu161HhCCLNCCDeGEC70N0yV1tffsLoKncArMcaxMcb/Jo0bnVLletSYngF2bG1nTwN7\nVLccNaB3gc8Al1a7EDWeEMIngWExxu2Bh4HPV7kkNZ4+/YbVVeiMxWMBhuBT8spAjPGlGOP7rauL\ngQ+rWY8aT4zxgxjja4DTwykL2wF/a12eC4ytYi1qQH39DcstdIYQpoYQ7gwhLAohnN9h38ohhDkh\nhAUhhCdDCPv1cJ4xIYTbSA8w/SPrulVfKtXOWo9fD9gFuDLLmlVfKtnGpJ6U0dZWJr1uGuAtYJW8\nalZ9yfv3LM+ezueA44HZXew7E1gErA58GTgrhDAKIIRweAjh+hDCkQAxxntijNsCxwIzcqlc9aQi\n7SyEsBLwK+ArMcYPcqlc9aIibUwqQZ/aGvAmhRe3DAVez7hO1a++trE+yf3p9S5epTkIeAPYpO0d\n7iGEC4HnYowzOny2f4xxSevyBGBCjHFarl9AdaHMdtYEXAGcEmO8Id/KVS/KaWPtzvFLUjtzqJC6\n1du2FkIYAxweYzwghPBd4IkY4++rVb9qX19/z3r7G1YLYzo3Apa0falW9wCjuzh2sxDCvBDCdcCh\nwMl5FKiG0Jt2th+wNXBsa8/UPnkUqLrXmzZGCOEq0vCNc0MI++dQnxpHj20txngP8HII4UZgE+CP\n+ZeoOrfU37O+/IaV++71SliRwtiTNm+THhQqEmO8E9ghj6LUcHrTzn5NetGB1BsltzGAGONnM69I\njWqpbS3GOD3XitRoSmljvf4Nq4WezgUUxp60GQq8U4Va1LhsZ8qabUx5sa0pa5m0sVoInY+Q3uc+\not22MTgdkirLdqas2caUF9uaspZJG8tzyqSmEMLyQBPpiwwMITTFGBcClwEzQwiDQgjjgN1Jk79L\nvWI7U9ZsY8qLbU1Zy7uN5dnTeQywEDgKmNS6fHTrvqnAIOBl0li6g2OMD+ZYmxqH7UxZs40pL7Y1\nZS3XNpb7lEmSJEla9tTCmE5JkiQ1OEOnJEmSMmfolCRJUuYMnZIkScqcoVOSJEmZM3RKkiQpc4ZO\nSZIkZc7QKUmSpMwZOiVJkpQ5Q6ckSZIy9//3hYVCZdQRwQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x112c8bc10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(11.,12.))\n", "ax1 = fig.add_subplot(111)\n", "ax1.loglog(k,(spec[:,1]),color=color1,linewidth=lw,label=\"Descending\")\n", "\n", "#plt.axis((1./1.e3,1.,1./1.e4,1.e0))\n", "\n", "add_second_axis(ax1)\n", "\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAusAAAKDCAYAAACjXkQKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VMX+x/H3bHogJKFJEUS6hAQIINIThICKBbxSRBHx\nZ73oVVRsXAioFwsiei0XUa6gUhVRBEUEQ/UiUqVIF6QoSIdQQjK/PzZZ07MJm2QTPq/n2cfknJk5\n33P2EL87O2fGWGsRERERERHv4yjuAEREREREJHtK1kVEREREvJSSdRERERERL6VkXURERETESylZ\nFxERERHxUkrWRURERES8lJJ1EZFSzBiTYoypXQzH7WiM+S0f5X81xpw2xkxMt80jsRtj6hljThpj\nLhhjBl5seyIiRUnJuoiIhxljnjbGzM20bZsxZk6mbVuNMb0KOZwiWUwjh8Q6P8e2QHdr7V0FrJ9z\nw9Zus9aGAEs80Z6ISFFSsi4i4nmLgdbGGANgjKkC+ALNMm2rk1q2MJlCbj+NJxLrzLEWVewiIl5L\nybqIiOetBPyBpqm/twe+B7Zk2rbDWvs7gDFmrDFmjzHmuDFmpTGmXer2qsaYRGNMWFrjxphmxphD\nxhif1N8HGmM2GWMOG2O+NsbUzC4oY4y/MWa0MWa3MeaAMeYdY0xA6r6OxpjfjDGDjTF/GGP2GWMG\npKtb3hgzOzW+FcaY540xS1L3LcKZWK83xpwwxtz2V7Xs28svY0y71OvTIfX3FGPMg6nfThw3xow0\nxtQ2xiwzxhwzxkw1xvgW9HgiIt5CybqIiIdZa5OAFUCH1E0dcPagL81mW5ofgSggHJgMzDDG+Ftr\nDwDLgVvTle0LzLDWJhtjbgaeBm4BKuEc6jElh9BeBuqmHqcuUB0Ylm5/FSAEqAb8H/C2MSY0dd87\nwEmgMjAAuIvU3nRrbcfUMpHW2nLW2hlutOc2Y0w34BOgh7U2/TWLA5oB1wBDgHHA7UANIBLndRIR\nKdGUrIuIFI5F/JWYt8eZRC/NtG1RWmFr7WRr7TFrbYq19nUgAGiQunsKziQ0TR+cySvA/cAoa+1W\na20K8BLQ1BhTI5uY7gUes9Yet9aeTi2bPqE9DzxvrU221n4NnAIaGGMcQE9gmLX2nLV2MzAxc+Nk\nHbaSbXvZ1MtNL+BdoJu1dlWmfS9ba0+nxrMB+NZau9taexL4GmciLyJSoilZFxEpHIuBdsaYcKCi\ntXYHzh7yNqnbGpOuZ90Y80TqUJajxpijQDmgYuruz4BrjDGXGWM6AsnW2mWp+64A3jDGHDHGHAEO\n4+zxrp4+GGNMJSAYWJWu7NdAhXTFDqcm/GkSgbI4e+x9gL3p9rkz00tO7eXHP4DpqQl5ZgfT/XwG\n+CPT7/k9loiI19F4PhGRwvEDEIazN3sZgLX2pDFmf+q2fdba3eAcjw08CcRaazelbjtCak+1tfaY\nMeZbnD3qVwFT0x1nD/CCtTanoS9p/sSZLEekDq3Jj0PABeByYHvqtux67j3NArcBE4wx+6y1bxbB\nMUVEvIp61kVECoG19izwEzCYjFMGLkvdln7sdQiQBBxOfQh0WOq29KYA/XGOXZ+cbvs44FljTCMA\nY0yoMeZv2cRjgfHA2NRedowx1Y0xcW6cSwowE4g3xgQZYxqmxpLe74Cn53M3wH7gWuARY8wDHm5f\nRMTrKVkXESk8i3AOIVmabtuS1G2L0m2bl/raCuzC2QOeeZjJl0A94IC19ue0jdbaWTjHnk81xhwD\n1gPd0tVLP6XiUzh7xv+XWvZboH4u8aev+zDObwoO4ByvPhk4l25/PDApdYhNlg8L2bTnjrQHWH8D\nOgNPpVvUKHNbRTKfvIhIUTPOzhYRERH3GWNeAi6z1t7tofZ+wTl7zOeeajNd23VxTqfpBzxkrZ3k\nyfZFRAqTknUREcmTMaYB4G+t/dkYczUwBxhorZ1dzKGJiJRqesBURETcEQJMMcZUxTnryqtK1EVE\nCp961kVEREREvJQeMBURERER8VJK1kVEREREvJSSdS9kjEkwxpwxxpwwxpw0xmxOt+9aY8xmY8wp\nY8wCY0zNTHVfNsb8aYw5lDpbQ4mUOtf0+8aYX40xx40xq40x3dLtLzHXwRjzd2PMSmPMWWPMhEz7\nSsx5FCZjTL3Ue35Sum25XhtvcbH3qje5mHvV2+X2d1VExJspWfdOFuf0YuWstSHW2qsAjDEVcC47\n/hxQHlgFTEurZIy5H7gJiASigBuNMfcVdfAe4otzZcb21tpQ4J/AdGNMzRJ4HfYBzwMfpN9YAs+j\nML0F/Jj2izGmIrlcGy9T4HvVCxXoXi0hsv27KiLi7ZSsey+TzbaewAZr7Uxr7Xmci5A0McakLWrS\nH3jNWnsgdTnx0cCAogjW06y1idbakamLoWCtnYNzsZjmlLDrYK2dZa39EjiSaVeJOo/CYozpAxwF\nFqTb3IPcr43XuMh71atcxL1aUmT3d1VExKspWfdeo4wxB40xS4wxHVO3RQDr0gpYaxNxrkYYkd3+\n1J8jKAWMMZfhXL1xI6XnOpSW8ygwY0w5YAQwmIyJVF7Xxmvl814tKUrLeWT3d1VExKspWfdOQ4Da\nQHVgPPClMeZKoCxwPFPZEzjnPyab/SdSt5Voxhhf4GPgQ2vtVkrPdSgt53ExRgLjrbX7M23P69p4\npQLcqyVFaTiPzH9XZ6f+XRUR8WpK1r2QtXaltfa0tTYpdVnsZcANwCmgXKbiocDJ1J8z7w9N3VZi\nGWMMzuTnHPBw6ubSch1Ky3kUiDGmKdAZGJvN7ryujdcp4L1aUpT488jh7+r1xR2XiEhelKyXLBuB\npmm/GGPKAHWADen2N0lXvmnqtpLsA6Ai0NNam5y6rbRch9JyHgXVEbgC2GOMOQA8AdxqjPkJ5zXI\n7tp48/nn51715vPITmk5j/QsGsMuIiWAknUvY4wJNcbEGWMCjDE+xph+QHvga+BzIMIY08MYEwAM\nB9Zaa7elVp8EDDbGVDPGVMc5Dvi/xXEenmCM+Q/QELgp9aG2NCXqOqS+j4GAD+Cb9t5Sws6jEIzD\nmfA1xfmh5D/AHCAOmEX212ZrcQWbmwLcq956Hvm9V73yPDLL5e/qN8Udm4hInqy1ennRC2fP3I84\nx4ceAZYDndLt7wRsBk4DC4Gameq/BBwG/gRGFff5XMR1qAmkAIk4v2o/iXOMbN+Sdh1wJjYpQHK6\n17CSdh5FdJ0mpfs912vjLa+LvVe96XUx96o3v/L6u6qXXnrp5c0vY63NK5/3esaYK4CV/DV84DZr\n7eFiDElERERE5KL5FncAHpRgre1V3EGIiIiIiHhKaRqz3s4Ys8gY82JxByIiIiIi4glelawbY/5u\njFlpjDlrjJmQaV+4MeZzY8wpY8wuY0zfdLv3A3WstR2BSsaYHkUauIiIiIhIIfCqZB3YBzyPcwq0\nzN4BzgKVgDuAd40xVwFY57y5Z1LLfU7G6e5EREREREokr0rWrbWzrLVf4nxa38UYEwz0BIZaa89Y\na5cBXwB3pu5Pv6pje5zLYIuIiIiIlGgl5QHT+kCStXZHum3rcC6qAs7x6i/gnFJsFzA0p4aMMSV/\n+hsRERER8XrW2otefM2retZzURbnvMXpnQBCAKy131hrW1hrO1prB1hrU3JrrLjny/TEq2PHjsVy\n3OHDh3tdmwW5Fvk5prtl8yp3sftL0utiz6Ug9S/Fe9Pd8p4oU1ruz+L42+mN92ZB2/DGv52l5VVc\n5+mN92dJuTfzKuMpJSVZPwWUy7QtFOfiI5ekWrVqFctxY2JivK7NglyL/BzT3bJ5lSuMa+etiuNc\nL8V7093ynipTGhTH305vvDcL2ob+dhae4jpPb7w/S8q9md/jFlRJSda34lz6uk66bU2AjcUUT7FT\nsv4XJeveR8m6k5J176Nk/eLa0N/OwqNk/eLqK1kvIsYYH2NMIOCDMzkPMMb4WGsTgZnASGNMsDGm\nHXAj8FFxxlucLpU/Xu4oLdeitJyHJ5SWa1FazgNKz7mUlvMQkUuH8eSYmotljBkODAfSBzXCWjvS\nGBMOTAC6AH8CT1lrpxXgGNabzllERERESh9jDNYDD5h6VbJeFJSsi4iIiEhh81Sy7lXDYIpKfHw8\nCQkJxR2GiIiIiJQyCQkJxMfHe6w99ayLiIiIiHiYetZFREREREo5JesiHhQTE4PD4WDkyJHFHYqI\niIiUAkrW8+HYsWMEBQXhcDhwOBzs2LGjuEMqVd544w1GjBjB+vXrizuUAjPGYMxFf+OVrbT7LrcP\nAkeOHKFVq1Y4HA4CAwOZMWOGa9+IESNcbbjzkuxNnDiRESNGsHjx4uIORURELgG+xR1ASfLxxx9z\n7tw5VzI2YcIEXnzxxWKOqvQYO3Yse/bs4corryQqKqq4w/FKuX0Q2L9/P126dGHz5s2ULVuWmTNn\n0rlz52zbuOyyywp8nEvdhx9+yKJFizDG0KFDh+IOR0RESjl1n+XDBx98gDGGhx9+GGstEydORA+r\nijfYvn07bdu2ZfPmzYSHhzN//vxsE/U0+/fvz/W1b9++Ioy+5NGHGRERKSpK1t20Zs0a1q1bR3h4\nOK+88gpXXnklBw4cYO7cucUdmlzi1q9fT4cOHdi9ezfVqlVjyZIltGrVqrjDEhEREQ9Qsu6m999/\nH4DevXvj7+9P//79sdYyYcIEt+ofOXKEkSNHcs0111ChQgWCgoK48sor6dq1K//5z384efJkhvK1\natXC4XAwadIkTp8+zbBhw4iKiqJcuXI4HA727NmTofzOnTt58MEHqV+/PsHBwYSGhtK8eXOef/75\nLG2nt2/fPh577DEaN25M2bJlCQwMpHr16rRo0YLBgwfz008/Zalz7Ngxhg0bRvPmzQkNDSUgIICq\nVavSpEkTHnzwQRYuXOjWNUmTNpZ69+7dWGsZMGBAjuOnd+/ejcPhwMfHhz179rBz507uu+8+ateu\nTWBgIFdeeWWGOD/44AN69+5NVFSU67rXqlWLfv36sWLFijxjS0xMZMyYMcTExFCpUiUCAgKoUaMG\nMTExjBkzhoMHD+brXCdOnIifnx8Oh4N//vOf+aqbneXLlxMTE8Mff/xBnTp1WLp0KY0aNbrodgsi\nOTmZ9957j9jYWCpVqoS/vz8VK1akYcOG9OnTJ9t/K+kfyE1KSuKll14iKiqKsmXLUr58eeLi4vjm\nm2/yPPbGjRu57777qF+/PmXKlCEkJIQmTZowdOhQDh8+nGvdvN7jQ4cOAc73zuFwsGjRIqy1xMfH\nZ7lP0/+7TNu2ePFiDh06xODBg2nQoAFlypTJcE+781By2r+RTp065XoNk5OTef3112nWrBkhISFc\ndtll9OjRI8NzIGfOnOGFF14gMjKSsmXLUrFiRfr06cPOnTvzvM4iIlIMrLWX1Auww4cPt99//711\n19mzZ214eLh1OBz2hx9+sNZau3PnTutwOKy/v789ePBgrvXnzZtny5cvb40xrjqVKlWyAQEB1uFw\nWIfDYb/44osMdWrVqmUdDod97bXXbP369a3D4bCBgYG2fPny1sfHx+7evdtVdtq0aTYwMNDVfmho\nqA0KCrIOh8MaY2zNmjXtL7/8kiWutWvX2vDwcFc9Pz8/W6FCBevj4+OK6+67785QZ+/evbZmzZqu\nOr6+vrZChQrWz8/PVSc2Ntbta2uttaNHj7ZVq1a1vr6+1uFw2LCwMFu1alXXq1q1aq6yv/76q+vY\nkydPtiEhIdbhcNiyZcvakJAQW7t2bVfZ+Pj4LOeW/ro4HA7773//O8e4Vq1aZWvUqJHhXCtWrOhq\nw+Fw2DfeeCNDnZiYGOtwOOyIESOytDdq1ChrjLG+vr723Xffzdc1sta64khr+5tvvrFlypSxDofD\nNmnSxP7++++51k9/PTwtOTnZdunSxdW+w+Gw4eHhGa5VdsdNu17PPfecbd++vTXGWH9/f1u+fHnX\n+2SMyfZ6pnn55Zcz3LNly5a1gYGBrvrVqlWza9asybZuft7jadOm2apVq7r+3YaEhGS5T/fu3etq\nO63N999/31522WXW4XDY4OBgGxoaan18fLJcg9zOMe29y+7fVlr9oUOH2muvvdYaY2xgYKDr34Yx\nxoaEhNhVq1bZw4cP22bNmrliSbt/jDG2SpUq9rfffssxBhERcc/3339vhw8fbp1ptgdyV080UpJe\nqRcuXz7++GNrjLH169fPsL1Dhw7W4XDY0aNH51h39erVrv/xR0VF2Xnz5tkLFy5Ya61NSUmxq1ev\ntk8++aRduHBhhnppyXpISIitVq2a/fLLL1319u3bZ8+cOWOtdSYb/v7+1uFw2A4dOtiNGze62vjq\nq69s9erVrTHG1qtXz54+fTrDMa699lrrcDhsy5Yt7Y8//ujanpSUZLdv327HjBmT5dzuuecea4yx\ntWvXtt9//71NSUlxncuePXvsuHHj7DPPPOPWdc0s7ZwnTpyYY5n0yXpISIht06aNXb16tWv/tm3b\nXD+PHz/ejhgxwq5evdomJSVlaOOxxx5zJfFr167NcpzffvvNVqpUyTocDnvFFVfYGTNmuK65tdZu\n3rzZjhw50k6ePDlDvZwSr0ceecQaY2xQUJCdOXOm+xclnfTJ+owZM1xJY9u2be2xY8fyrF+YyXra\nv5Hg4GD73//+N8O9dujQITtr1izbq1evLPXSrldYWJgNCgqy48ePt+fOnbPWOj8Y9urVyxXz7Nmz\ns9R///33rTHGlitXzr700kv2jz/+sNb+9W+rc+fOrg+sme9/T7/HmaW/T6+66iqbkJDg2pf+PvVU\nsh4eHm4rVapkZ86c6fpb8dNPP9k6deq47pOePXva2rVr2++++85Vf+HChbZy5crW4XDYO++8M9dz\nEhER9ylZL8JkPTY21jocDvviiy9m2J6WKDRq1CjHuu3atbPGGNugQQN74sQJt49Zq1Yta4yxfn5+\ndt26dTmW69atm+uDRPpEI82aNWtcvd6vvfZahn3BwcHW4XDY//3vf27H1ahRI+twOOzUqVPdruOu\n/CbrV155ZZYELD8GDRpkHQ6Hvffee7Psu+OOO6wxxlaqVMnu27fP7TYzJ17nz593JZzly5e3ixcv\nLnC8aefdrFkzV0/yddddZxMTE92qnz5Zr1KlSq6vRx99NF+xPfTQQ9bhcNgHHnggX/ViYmJcMX34\n4YdZ9qekpNiOHTtaY4yNjIzMsO/kyZM2LCzMOhwOO3/+/GzbT05Oti1atMj2WxBPvcc5STuvsLAw\nu3///otqL69kPe1Yy5cvz7J/4cKFrm8oypQpY3fu3JmlzIQJE1z70xJ9ERG5OJ5K1jVmPQ+7du1y\nTdN2xx13ZNjXq1cvgoKC+OWXX/jf//6Xpe727dtZtmwZxhhGjRpFSEhIvo5tjKFbt245TmN4/Phx\nvv32W4wxDBkyhMDAwCxlmjZtSs+ePbHWMmXKlAz7wsLCADhw4IDbMRWkTmF5+OGHCQ4OLnD9G264\nAWstS5cuzbA9MTGR6dOnY4zhmWeeoVq1agVq/+TJk3Tt2pUZM2ZQvXp1Fi9eTPv27Qscb5p169aR\nkpJCYGAg48ePJygoKN9tHDx4MNfXiRMn8tVeWFgY1lp+//33fMcCUKNGDe66664s240xDB06FHCO\nS9+4caNr32effcbx48dp1qxZjjPfOBwO+vbti7WWefPmubZ76j12x5133knVqlULrf007dq1o3Xr\n1lm2d+zYkYCAAIwx/O1vf8vwXEearl27As7x7Nu2bSv0WEVExH1K1vMwYcIErLV06NCBmjVrZtgX\nEhLCLbfcAjindcxs+fLlAPj4+NCtW7cCHb9t27Y57lu9enXatwVce+21OZbr0qUL4Jw1JDk52bW9\ne/fuWGvp378/TzzxBIsXL+bMmTO5xpNW56mnnuL+++9n3rx5uT7AWpjatGmTZ5ldu3bxxBNP0KJF\nC8LDw/H19XU9+Hf99dcDsHfv3gx1fvrpJ5KSkgDn+RbE/v376dixIwkJCTRs2JDly5cTERFRoLYy\na9myJb6+vpw5c4a4uLh8P+QKzodBc3tldz/n5vrrr8cYwxdffMH111/P1KlT3f5AZ4whJiYmx/3t\n27fH19e5JET6B56XLVsGwKZNm6hatWqOr7QHN3fv3u2q64n32F25/Rv2FGMMV199dbb7HA4HFStW\nBJz3TnbSz7t/9OhRzwcoIiIFpmQ9F9Y651I3xnDnnXdmW+auu+7CWsv06dNJTEzMsC+tl7FixYoF\n6v0EqFy5co770idp1atXz7Hc5ZdfDsCFCxc4cuSIa/srr7xCp06dOH36NK+//joxMTGUK1eOli1b\nEh8fz/79+7O09eSTT9K7d28uXLjA+++/z3XXXUdYWBhRUVEMGTKErVu3ZqlTpUqVbJOoxx57zK1r\nkJPcrg3A559/TqNGjRgzZgxr1qzhxIkTrhkyqlSpQvny5QE4ffp0hnrpe4evuOKKfMdlreW9995j\n7dq1BAUFMX/+fGrUqJHvdnJy/fXXM3nyZHx9fdm8eTOxsbH88ccfHmu/INq2bcsrr7xCQEAA8+bN\n4/bbb6d69erUrFmTgQMHkpCQkGv93O7fgIAAKlSoAGS859Puz3PnzuX6LcHJkycxxmT4IHqx73F+\n5HWfekpu39ylfdjJqYyPj4/r57QPMSIi4h2UrOdi3rx57N27F2st99xzT7ZLsqf1mJ86dYrp06dn\nqO+JhVPS/0/U00JDQ/nuu+9YsmQJQ4YMoV27dvj5+bF69WpGjhxJvXr1mDp1aoY6vr6+TJkyhbVr\n1zJs2DCuvfZaypQpw8aNGxk9ejQRERGMGTMmQ51Dhw55ZKhFZrldmyNHjnD33Xdz/vx5OnfuzKJF\ni0hMTOTo0aMcOHCA/fv3Z3m/0lzs+2aM4cYbbyQsLIwzZ84wYMCAPL+xyK+//e1vTJkyBT8/P1fC\nXtAhKJ7y+OOPs2vXLl5//XV69OjBZZddxr59+/jwww/p1KkTvXr1yvDNzsVKTk7GGEPv3r3z/KYg\nOTmZHTt2uOoW5aJGhflvWERESj8l67lIm1vdGJPnC7IOhalSpQoAf/75p8eTNcjYY5d5KEd6aft8\nfX1dvcnptWnThlGjRrF48WKOHTvGF198QVRUFGfOnOGee+5xzTOdXmRkJMOHD2f+/PkcO3aM7777\njo4dO5KcnMyQIUP4+eefXWU9NdQiP+bOncuJEycIDw/nyy+/pF27dgQEBGQok1Nym/a+QcahE/nR\nvHlzvvvuO8LDw1mwYAHdu3fP8s3Lxbr11luZOnUq/v7+/PLLL8TGxhb7swRVqlThkUce4bPPPuPA\ngQOsX7+ee++9F3COMX/33XezrZfbiqnnz593zZWe/p6vUqUK1toCvUeeeI89Ja3X++zZszmWOX78\neFGFIyIiXkbJeg7+/PNPZs+ejTGGzz77jJMnT+b4+vHHH7HWsnz58gwPZ6WNqU5OTubrr7/2eIzR\n0dGuxVUWLFiQY7nvvvsOgCZNmuTZy+fv70/37t357LPPAGcCkfkBzMwcDgexsbF89dVXBAQEYK11\nHTM/0s4lbRz+xfjtt98AaNCgQbYP3gI5xtiiRQv8/f0BmD17doFjiI6OZsGCBVSoUIHvv/+e66+/\nPsuQm4vVo0cPpk2bhr+/P1u2bCE2Njbb4UvFJSIignHjxrnGbc+fPz9LGWstixYtyrGNxYsXc+HC\nBcD53qRJa3PVqlX5HgZ0Me+xJ+9TgPDwcOCvezY77izgJSIipZOS9RxMmjSJpKQkQkND6d69O8HB\nwTm+mjdvTsOGDYGMvet16tShQ4cOWGt59tlnOXXqlEdjDA0NpWvXrlhrefXVV7PtmVu3bh2fffYZ\nxhhuv/121/bk5ORck430CW761RbPnz+fYx1/f3/Xh4H0ddxVrlw5wLny6MUKDQ0FYOvWrdnGvHbt\nWiZPnpxt3aCgIPr06YO1lpdeeinXXt+8NG3alAULFlCpUiUWL17Mdddd5/H74Oabb2bGjBkEBASw\ndetWYmNjLyrmgsjtvgDnNbXW5nhf7Nmzh0mTJmXZbq3lX//6F+BM/NM/pHvbbbcRFhZGUlISgwcP\nzvX41toMvdMX8x578j4F54fotNlqsvsGbuHChfzwww9FOnRHRES8h5L1HEyYMAFjDDfffLPra+rc\n3HbbbVhrmTRpEikpKa7tb7zxBoGBgWzdupU2bdowb948Vy9hSkoKK1eu5MEHH2ThwoUFivOFF17A\nz8+Pbdu2ERcXx4YNGwBncjJ37lxuuOEGLly4QN26dbnvvvtc9fbu3Uu9evV48cUXWbt2bYaxxOvX\nr3dNU1mmTBk6duzo2lezZk2effZZVqxYkSFB27FjB/369SMxMRGHw+GaCi4/GjdujLWWTz/99KIT\nobi4OBwOB0eOHOH222939TYnJSUxffp0unbt6kq6svPiiy9SsWJF/vzzT9q0acOMGTMyfBjasGED\nQ4YM4ZNPPskzlqioKBYsWEDlypVZunQp3bp183jCfuONN/Lpp58SEBDAtm3bijxhv+WWW7jnnnv4\n5ptvMiTFR48e5YUXXmDBggUYY7KdecUYQ2hoKA888ADvv/8+586dA5z3aJ8+fUhISMAYwwsvvJCh\nXmhoKGPHjnVNS3rDDTe4vuUC57+BX375hddee42IiAjmzJmToX5B3+O0+3Tu3Lke+RajV69eOBwO\nDh8+TJ8+fVzv29mzZ5k4cSI9e/Z0PWArIiKXIE9M1l6SXrixKNIPP/zgWmRkzpw5eZa31tqff/7Z\nVefLL7/MsG/+/Pk2PDzctay3v7+/rVixovX393fV+eKLLzLUcWeBoDTTpk3LsLx6aGioDQoKcrVd\nq1Ytu2XLlgx10i8uZIyxvr6+tkKFCjYgIMC1PTAwMMtqm+nr+Pj42PLly7uOlbbtzTffdOuaZbZ4\n8WLXEu++vr62WrVqtlatWrZWrVrZxr179+5c23v66aczLFkfFhbmuuZ169a1U6ZMyXVFzzVr1tga\nNWpkuEZpS9Gn1cu80E5uC9xs2rTJVq1a1RpjbKtWrdxadTS99CuY5mTOnDmu+OrUqWP37Nnj2pe2\nsE7a0vIg2EeHAAAgAElEQVR5vX744Qe3Y0s777T2Q0NDbWhoqOt3h8Nhe/funWO95557znbo0MH1\n76N8+fIZ6g4fPjzHY48bNy7D/R8YGJjh31daG5lXIrW2YO/xtm3bXKsS+/j42CpVqrju0/SLK6XV\nX7RoUZ7Xb/jw4Vnu1bTFzG699Vb7z3/+M88VTHO7L9z5e5KfeEVEJG9oUaSCi4+Pz3UqubRe9bCw\nMOLi4txqs3Hjxlx11VVA1gdNO3fuzLZt23juueeIjo4mODiYxMRELr/8crp168Z7771Hp06dsrTp\n7tfevXr1YuPGjdx///3UrVuX8+fP4+fnR7NmzRg5ciQ///wz9evXz1CnevXqzJ49m8cee4zWrVtT\nrVo1Tp8+jZ+fHxEREQwaNIgNGzbQo0ePDPXmz5/PM88845p3/uzZsxhjqFevHvfccw8rV67k4Ycf\ndivuzNq3b8/cuXPp3Lkz4eHhHDx4kD179mQ7ltedazNq1CgmTZpEq1atCA4O5sKFC9SrV4+hQ4ey\nevVqqlatmuEB4cyaNm3K5s2beemll2jdujXlypXj1KlTVK5cmdjYWF5//fUMQ4vyctVVV/H9999T\nrVo1Vq5cSZcuXTz+4OD111/PzJkzCQwMZNeuXcTGxma4fmnnm9eiSIcOHcpzaEt6b731Fi+//DI3\n3HCD6147e/Ys1atX5+abb2bmzJlZZhZKz9/fnwULFjBq1CgaNmzI+fPnCQsLo0uXLsydO5f4+Pgc\n6953331s2bKFJ554gqZNmxIYGMjx48cJCQmhZcuWPPLII8yfP5++fftmqVuQ97hu3bokJCRw0003\nUblyZY4cOeK6T9O+NUt/vd0RHx/PRx99ROvWrSlbtiwpKSlER0czbtw4Pv30U3x8fHK9V93hTl0N\ntRERuXgJCQm5/n8rv4z10ENSJYUxxl5q5yzirWJjY1m8eDHDhw9n2LBhxR2OiIiIxxhjsNZedC/I\nJdmzLiIiIiJSEihZFxERERHxUkrWRURERES8lJJ1EREREREvpQdMRUREREQ8TA+YioiIiIiUckrW\nRURERES8lJJ1EREREREvpWRdRERERMRLKVmXYnPw4EH69etH3bp1admyJW3btuWLL77w6DFGjRrl\n0fZiY2NZvXp1lu2rVq3i0Ucf9eix3DmuuG/WrFk4HA62bt0KwO7duwkODqZ58+Y0atSIa665hokT\nJ2ao8/XXX9OyZUsaN25M8+bNefLJJwEYMWIEl19+OdHR0URFRTF79uwiPx8REbk0KFmXYnPLLbcQ\nExPD9u3bWblyJVOnTmXv3r0ePca//vWvHPd5clag5s2bM3bsWI+1J543depU2rdvz5QpU1zb6tat\ny6pVq9i0aRNTp05l7NixroR9w4YNPPzww0yePJkNGzbw008/UbduXVfdwYMHs3r1aqZPn87AgQOL\n/HxEROTSoGRdisXChQsJCAjg3nvvdW2rUaMGf//73wFISUlhyJAhtGrViqZNmzJ+/HhXuSeffJLI\nyEiaNGnC9OnTAfj999/p2LGjq6dz2bJlPPPMM5w5c4bo6GjuvPNOdu/eTcOGDbnrrruIjIxk7969\nTJkyhaioKKKionj66addxwgJCWHw4ME0btyYLl26cPjwYde+6dOn06pVKxo2bMiyZcsAWLRoETfe\neCMAp0+fZuDAgURFRdG0aVM+//zzDOc+b948evXq5fo9fd1vv/2WNm3a0KJFC3r37k1iYqJHrvel\n7vTp0yxbtowPPvggQ7KeXq1atRgzZgxvvvkmAK+++ipDhw6lXr16gHMKrvvvvz9LvYYNG+Lr68uf\nf/5ZeCcgIiKXLN/iDkAK0f91K+4I4P1vst28ceNGoqOjc6z2wQcfEBYWxooVKzh//jxt27YlLi6O\nVatWsX79en7++WcOHjxIy5Yt6dixI5MnT6Zbt24888wzWGtJTEykbdu2vP32267hI7t372b79u18\n9NFHtGzZkgMHDvD000+zZs0awsLC6NKlC19++SU33XQTp0+f5uqrr2bMmDE8//zzjBgxwpXEJScn\ns2LFCr7++mvi4+OZP38+4EzmAJ5//nnCwsJYv349AMePH89wbp07d+b+++/nzJkzBAUFMW3aNG6/\n/XYOHz7Miy++yIIFCwgKCuKVV15hzJgxDB069OLegyLQ/qvBxR0CS7qPyXHfF198Qbdu3ahbty4V\nK1ZkzZo1lC9fPku56OhofvnlF8DZs/7EE0/kedwVK1bg4+NDxYoVCx68iIhIDtSzLl5h0KBBNG3a\nlFatWgHOHuZJkybRrFkzWrVqxZEjR9i2bRtLly6lb9++AFSuXJmYmBhWrlxJy5YtmTBhAiNHjmT9\n+vWUKVMm2+NcccUVtGzZEoCVK1cSGxtL+fLlcTgc9OvXj8WLFwPgcDhcvd933HEHS5cudbXRs2dP\nwDn0Zffu3VmO8d1337m+IQAIDQ3NsN/Hx4du3boxe/ZskpOTmTNnDjfddBP/+9//2LRpE23btqVZ\ns2ZMmjSJPXv2FOh6SkZTpkyhT58+APTu3ZvJkydnWy4/Q6PGjBlDdHQ0Q4YMcX3DIyIi4mnqWZdi\nERERwWeffeb6/a233uLw4cOuRNpay7///W+6dOmSod7cuXMz/J6WXLVv354lS5YwZ84cBgwYwOOP\nP84dd9yRJfnKnMS7m5yl9ZoDBAQEAM6k+8KFC27Vz6x379689dZbhIeH07JlS8qUKYO1lri4OD75\n5JMCtSnZO3r0KAsXLmTDhg0YY0hOTsYYk+EDVZrVq1dz1VVXAc579KeffiIyMjLbdgcPHszgwcX/\njYKIiJRuStZLsxyGoHiDTp068dxzzzFu3DjXOODTp0+79nft2pV33nmH2NhYfH192bZtG9WrV6d9\n+/a899579O/fn8OHD7NkyRJGjx7Nnj17uPzyy7nnnns4e/Ysq1ev5o477sDf35/k5GR8fHyAjMn5\n1VdfzT/+8Q+OHDlCaGgoU6ZM4R//+AfgHDP/6aef0qtXLz755BPatWuX7Xlkl+x36dKFt99+mzFj\nnMMyjh07RlhYWIYyHTt2ZODAgYwfP97V43vNNdcwaNAgduzYQZ06dUhMTGTfvn2uMdPeLLchKMVt\nxowZ9O/fn3fffde1LTY2lt9++y3D+/frr7/y5JNPuu6BJ598kltvvZV27dpRr149UlJSGD9+fLbj\n1kVERAqLhsFIsZk1axYJCQnUqVOHa665hrvvvpuXX34ZgP/7v/+jUaNGREdHExkZyQMPPEBycjI9\nevRwPVzauXNnXn31VSpXrkxCQgJNmjQhOjqa6dOnuxKu++67j8jISO68804gYw95lSpVeOmll4iJ\niaFZs2a0aNGC7t27A84e+B9//JHIyEgSEhIYNmxYlvrZ/Q4wdOhQjhw5QmRkJM2aNSMhISFLGYfD\nQffu3fnmm29cx6xYsSIffvghffv2pUmTJrRp04YtW7ZkOc69996raRzzYdq0afTo0SPDtltvvZVR\no0axc+dO19SNffr04dFHH6V///4AREZGMnbsWPr27UtERARRUVHs2rWrOE5BREQuYcaT09eVBMYY\ne6mds+RfSEgIJ0+eLO4wREREpIQyxmCtzdqrl0/qWRfJRnY95iIiIiJF7ZJM1uPj47MdmiCS5sSJ\nE8UdgoiIiJRACQkJxMfHe6w9DYMREREREfEwDYMRERERESnllKyLiIiIiHgpJesiIiIiIl5KyboU\nmzfffJNGjRq55kAvLFu3biU2NpZmzZoRERHBAw88AMCZM2e44447iIqKIjIykg4dOpCYmAg4p25M\nb+LEiTz88MOFGmdm69at4+uvvy7SY4qIiIh30QqmUmzeffddFixYQLVq1TJsT7/iqCc88sgjPP74\n467FhzZu3AjAG2+8QZUqVfj4448B2LZtG35+fkD2UzcW9XSOa9eu5aeffuK6667Lss/T10hERES8\nk3rWpVg8+OCD7Ny5k+uuu4433niDESNG0L9/f9q1a0f//v05d+4cAwcOJCoqiubNm7um2pw4cSI9\nevQgLi6O2rVr8/bbb/P6668THR1NmzZtOHbsWJZj/f7771SvXt31e0REBAAHDhzIsL1evXquZN1d\nixcvplmzZkRHR9O8eXNOnz7NokWL6NixI927d6dhw4Y89NBDrvLz58+nTZs2tGjRgt69e7t68leu\nXEnbtm1p2rQp11xzDSdOnGDYsGFMnz6d6OhoZsyYkeUaZe7tv/HGG1m8eDHg/GZgyJAhNG7cmLi4\nOFauXElsbCx169blq6++ytc5ioiISPFRz3opdu87R4o7BMY/VD7b7e+++y7z5s0jISGB8PBwRowY\nwebNm1m2bBn+/v6MGTMGh8PB+vXr2bJlC3FxcWzbtg1w9oyvXbuWxMRE6taty6uvvsrq1asZPHgw\nkyZN4pFHHslwrEcffZTY2Fjatm1Lly5duPvuuwkNDWXgwIHExcXx6aef0qlTJ+666y7q1q0LQGJi\nItHR0QBYazl69Cg33XRTlvMYPXo077zzDq1btyYxMZHAwEDAmXxv3ryZmjVr0rVrV2bOnEnHjh15\n4YUXWLBgAUFBQbzyyiuMGTOGp556ij59+jBjxgyio6M5deoUQUFBjBw5klWrVvHmm28CZLlGEydO\nzLG3//Tp03Tu3JlXXnmFnj178s9//pMFCxawYcMG7rrrLte3DCIiIuLdlKxLsbHWkn7O+5tuugl/\nf38Ali5d6kq6GzRoQK1atdi6dSsAsbGxBAcHExwcTFhYmCvxjIyM5Oeff85ynAEDBtCtWze++eYb\nZs2axXvvvce6deto0qQJu3bt4ttvv2X+/PlcffXV/PDDDzRo0IDg4GBWr17tamPixImsWrUqS9tt\n27blscceo1+/fvTs2dPVU3/11VdzxRVXANC3b1+WLl1KQEAAmzZtom3btlhrSUpKonXr1mzZsoVq\n1aq5PhyULVs2x2uW/hrlJiAggLi4ONd1CQwMxOFwEBkZye7du/OsLyIiIt5Bybp4jTJlyuS4L31S\nHxAQ4PrZGOP63eFwcOHChWzrV6lShQEDBjBgwAAiIyPZsGEDzZo1Izg4mFtuuYVbbrkFh8PB3Llz\nadCgAe4unPXUU0/RvXt35syZQ9u2bfn222+zLZe6MAJxcXF88sknGfZt2LDB7eOlv0a+vr6kpKS4\nfj979qzr5/TDeRwOh+saGWNyvEYiIiLifZSsl2I5DUEpCdq3b88nn3xCTEwMW7du5bfffqNBgwbZ\n9m7nZd68eVx77bX4+vry+++/c+TIEapXr87y5ctp1KgRYWFhnD9/nk2bNtGpU6d8tb1z504iIiKI\niIhg5cqV/PLLL4SGhrJy5Up2795NjRo1mDZtGvfffz/XXHMNgwYNYseOHdSpU4fExET27dtHgwYN\n+P3331m1ahXNmzd3DYMJCQnhxIkTOR67Vq1avPvuu1hr2bt3Lz/++KNrX27Jv1bwFRERKTn0gKkU\nm9xmV3nooYdITk4mKiqKvn37MnHixGwf/nRnhpZvv/2Wxo0b06xZM6677jpGjx5N5cqV2bFjBx07\ndqRJkyY0b96cli1b0qNHD7fbBRg7diyRkZE0adIEf39/18wtLVq0YNCgQURERFCnTh169OhBxYoV\n+fDDD+nbty9NmjShTZs2bNmyBT8/P6ZNm8agQYNo2rQpcXFxnDt3jtjYWDZt2uR6wDRzTG3btqVW\nrVpERETw6KOP0rx5c7euS1HPaiMiIkVo8xoY/RQkzMm4/aclsGoprPkBUpKLJzYpEHOp9bIZY+yl\nds5StBYtWsRrr73Gl19+WdyhiIjIpeb/uv3186sfQ1Aw7N7uTODT8p//zAbf/M1+JvmXOgT2onvI\nStUwGGNMX+ANa23l4o5FRERExKMuJMHPK+Gy6lDtir+2nzoJNgW+/Chj+VeehCMHITlTT7pDAytK\nklLTs26McQAzgCustS1yKaeedRERESl5vpoMsyY5f35tMoSEwpypMPsTSDfhQJ7Gfw0aElnoPNWz\nXpqS9X7ABeBxa+3VuZRTsi4iIiIlR0oyLP0WJr3x17aAQPALgFPH89/e+994LjbJkaeSda/6HsQY\n83djzEpjzFljzIRM+8KNMZ8bY04ZY3alDnlJ2+cAbrPWTgP0UVFERERKjxUJGRN1gHNnC5aoS4nj\nbWPW9wHPA12BoEz73gHOApWAaGCOMWattXYzcAcwvSgDFREREfGolJS/hqccOQQVKjsfCv3va8Ub\nlxQrr0rWrbWzAIwxLYHqaduNMcFAT6CRtfYMsMwY8wVwJ/As0Ahoaoy5E6hnjBlrrX20yE9ARERE\npCD2/QqvPwd+/lC2HOzaUtwRiZfwqmQ9F/WBJGvtjnTb1gEdAay1T6dtNMb8qERdREREvFZKMiQl\nOcedA+zfDcMf+Gv/oQPFE5d4pZKSrJcFMi/leAIIyVwwt4dL08THx7t+jomJISYm5uKiExEREXHH\n9k3w0mDnz0NehfqR8MHo4o1JPCIhIYGEhASPt+uVs8EYY54HqltrB6b+3hRYaq0tm67M40AHa+3N\n+Wxbs8GIiIhI8Ui/aFFRSJv5Zfp4+DEBetwFbeOKNoZL1KW2KNJWwNcYUyfdUJgmwMZijElERETE\nPSePw8pFnmsv/l2IfzDjtkpV4a5HYcMq8PWBbr3+2tfrXudLShyvStaNMT6AH+CDMzkPAC5YaxON\nMTOBkcaYe3HOBnMj0Kb4ohURERFxw++/wUtPeHaqxcuvhHZxzvnXy4bCqx85H04FaNjEc8eRYudV\nw2CMMcOB4UD6oEZYa0caY8KBCUAX4E/gqdR51fN7DA2DERERkcKVkuJ8cPTDMfDrNs+2/dRoqNfY\nOdf6uhVQuwFUrOLZY8hF0wqmBaRkXURERArV1g3wyhOF0/b4r/+ai1282qU2Zl1ERETE+234CcYO\nvbg2QsvDw/Ewa5JztpgyZWH3dmjXTYn6JeiSTNbj4+M1ZaOIiIh4lidmenn3y7/Gnj/6wsW3J0XO\n01M4ahiMiIiISEGcPgnL5kPNOpB8wbkC6cV49WMIr+iZ2KTYaRiMiIiISHGaNQm+n12wus+9AbXq\nQ+Ip2LUF6lwFQWU8G5+UCkrWRURERPLj4H74cVHBE/WqNeHKBs6fy4RA4xaei01KHSXrIiIiIu46\ndhiG3Q8Xkgrexn1Pey4eKfUcxR2AiIiISIkw7T14ol/+E/WIaOd/G0TBe3OhRm3PxyallnrWRURE\nRPKyYxPMn+le2ebtwNcPGjeHFh2cs7tYq2kXpUCUrIuIiIjk5NQJWLkIPnnbvfL//DdcUS/rdiXq\nUkBK1kVEREQyO3vGOTXjU/3dr3PHw9kn6iIX4ZJM1rUokoiIiORo5WIY96/81Xl9GoSEFk48UqJo\nUaSLpEWRREREJIuTx+HVIXDmNBz9M39161wFz7xeOHFJiaVFkUREREQu1v7dMG4U7Ps1/3Vv7AeN\noqGW9w59SUq2HDyWzL4jyVxIhiB/Q1QtP3wcGkNfUqhnXURERC5N1sK91xWsbmx3uP3vXv3gaEqK\n5f7/HM2y/Z37wvHz9d64Swv1rIuIiIhcjNMn818nIAje/tzzsXhQirU4jGHz3gvZ7vfRKjslipJ1\nERERufQknYfp4/NXx8cXBufzwdMilrDhLNOWJeLnYzhzPvuRBA4NgSlRlKyLiIjIpeXYYedKpO54\n5nXnA6RJ5yElBQICCze2i2Ct5ZPFiQBcSNaQ39JCybqIiIhcOo7+CU/e4X75yy53/tfPv3Di8aAt\n+7Mf9iIlm5J1ERERKf3On4M1y2HVUvfrXH4llClbeDF52NJN54o7BCkEStZFRESk9LIWVi6C917K\nX73yleCJV7x6tpc03607y4zliaS4MfKlY0RA4QckHqVkXUREREqvjavcS9Tfmgm7t8PZM85e+Cat\nwN/7E9vtB5KYtiwxz3JVwhzc37Us1cv7FEFU4kmaZ11ERERKn2OH4aM3Yd2KvMuO/gTCKhR+TB62\nYc953vjqVJ7lHrsxhNpVfAn08/5vCUoTzbN+EeLj44mJiSEmJqa4QxERERFP+G0nTP0P1KwLVzWB\nN4e7V2/I6BKVqB9PTOHXgxcI8jduJepj7g4jJEgTqxelhIQEEhISPNaeetZFRESkZFu/wv3kPLNx\nc8CnZAwNOXve8vD7WVckzc34h8oXUjSSF0/1rOujloiIiJRce3YUPFEf9WGJSdSTLlien3E8X3VG\n9gktpGikKKlnXUREREqu/+tWsHr/mgCVq3k2lkLyx7Fkhk7OX6L+dM8Q6lTxK6SIxB0asy4iIiKX\nttXLCl63hCTqySnW7UT9xpZBXBsZQJlADZwoTfRuioiISMly5BAs/BLeed79Or3v/2sV0k43FU5c\nHmat5eNFeU/LCHBnTDA3tQxSol4KqWddRERESgZr4etpMPND9+s8OBSat3P+XC/COZd6q5jCiM5j\nUlIs3284x9Sl7iXqf2sdRIdGgYUclRQXJesiIiJSMiz5Jn+JOmRcgbRWfefLy63cft6tRP2xG0No\nVEPj0ks7JesiIiLifayF0yehbLm/tk16I39tlC0HEc09G1chOZdkmbvqDH8cT2bVjqQ8y2tKxkuH\nknURERHxPm8Mgw0r4bpecNMd8K/Hci//2hQY+xycOwv3PgX790CdqyCgZAwPSdhwlrmrzxZ3GOKF\nNHWjiIiIeJcdm2DU4PzVef8bZ288ZBz6UgKkWMv977q/2NEzt5aj9mXqb/V2mrpRRERESqf/vp6/\n8jXrOP9bwpL0NGt35T3sJY2Gv1x6lKyLiIhI8du2wTlveqtY+P23vMv3GwQOB2z9GW7oW/jxediF\nZMvPu5P4Zs0Zdv6R7FadsQPDCjkq8UYaBiMiIiLF69QJeKq/c7y5u97/pvDiKUS7D13ghRkn8lXH\nAI/fHEKD6pr5pSTRMBgREREpHXb+4n6iXrMuPDW6cOMpRPlN1GMaB9CvQ5lCikZKAiXrIiIiUrzO\nnM67TJcecMtdJWZ2l4vVOSqAMoEOrm9+aZyv5EzJuoiIiBS9M6dh3QqodgWMfznv8r3vL/yYCtGB\nI8l8veaMW2VrVvShdzv1pouTknUREREpeh+9CT8uyrtcxSrwz38XfjyF6GySZdjU426V/b/OZWhe\nx7+QI5KSRMm6iIiIFJ3E086ZX9xJ1MfNcc74UkKnZAQ4fDKZpz9yL1F/5IayRF6hRF0yUrIuIiIi\nRcNaGD0E9uzIu2yt+uDjU/gxFQJrLRv2JDFrxRn2/Jn7tIwVQhw8e2s5ygU7iig6KWmUrIuIiEjh\nWvotHNwHVWrknai37+acGeamfkUTm4cdO53CkxOPuVW2argPI/uGFnJEUtJdksl6fHw8MTExxMTE\nFHcoIiIipdP+PbDkG5g/M3/1+v+jRA97mbUi0a1ylUMd3NNZD5GWRgkJCSQkJHisPS2KJCIiIp51\n7iw8czecOJr/uiV0sSOAJZvOMSnBjWkogfEPlS/kaKS4eWpRJA2QEhEREc/aublgiXoJtvvgBbcT\n9UHXly3kaKQ0uSSHwYiIiEghsBZ+2wFbN7hf5z9fwaSxsGEV9Pt74cVWCM4lWX7cdp59Ry6wYP05\nt+rcFVuGJrU044u4T8m6iIiIeMaqJfCff7lfvuP14OsLA59wJvolbKz65ysS3U7SwTnzS+sGStQl\nf5Ssi4iIyMVb/6P7ifr4r+Hon1C+0l/bSliiDriVqMdEBNC1WSBrdyXRuKYfPo6Sd55SvJSsi4iI\nSMElnoYVC+GTt90rf88TzsQ8faJeAq3c7l6Pest6/lQs50PnJiVzzngpfkrWRUREpOA+fR8Wf+1e\n2TsehtadCzeeQmat5V+fneDXgzkvdnRbmyC27LtA7ct8qV/Nrwijk9JIybqIiIi474/9cOY01Krn\n/N3dRB2gctXCiamIXEi2/P29o6TkMgP0P7qXpXFNf+KaFl1cUropWRcRERH37PsV4h90PgwKUC8i\n7zpVLoff98Jl1aFOo0INrzAt3niWjxblveBRRA31pItnKVkXERGR3CUnw3ujYNXSjNu3bcxadtBw\naNoadv4CoeUhvALs2QmXX+mc+aUEOptk3UrUb20dhCmBD8qKdyuZ/2pERESk6Cz7Nmuinh0fX2ei\nDlC74V/b04bMlDBnkyxTlpxm+S/n8yzb7qoAYhsHFkFUcqnRCqYiIiKSux2b3Ss39M3CjaOITV+a\n6FaiDtCnXTABfupVF89Tz7qIiIjkbM8OOLAn73Ljvy6Rc6Xn5FySZcnm3KdnvLyCD2FlHLRp4K9E\nXQpNqUjWjTGVgc+BJOAC0M9a+0fxRiUiIlJCrf0fLJoDDgesW5F3+TFTS3yinmIts1ee4UIyRF7h\nx6uzTuZY9m+tg4hrGqjx6VIkjLW5zD9UQhhjjE09EWPMXUB1a222y6ilKyoiIiKZ7d3lnPHFHbUb\nwiMjoWy5wo2pCIyYdpy9h3OeOz2NMfDeg+WLICIp6YwxWGsv+hNdqehZz5R9hwDZPJ4uIiIi2dr3\nKyz9Fi6vBf8d416d2O7Qb1BhRlVkki5YtxJ1gKG3lfwPJlKyeFWyboz5OzAAiAQmW2sHptsXDkwA\nugCHgGettVPS7W8CjANCgbgiDFtERKTkOpsILz8BiafcrzPgMWjXtfBiKkLrfj3PW3PzPvdHbijL\nVZf74eujoS9StLwqWQf2Ac8DXYGgTPveAc4ClYBoYI4xZq21djOAtXYdcI0x5m/As4Cb3+GJiIhc\nwrZvyjtRrx8JW392/twqFtp0Lvy4CtmJxBTGfXuKrfsvuFU+8gr/Qo5IJHtelaxba2cBGGNaAtXT\nthtjgoGeQCNr7RlgmTHmC+BO4FljjJ+1Nim1+AngdNFGLiIiUkIdP5J3mSGvQkoyOHwKP54iYK1l\n8pJEtxP1528PLeSIRHLmVcl6LuoDSdbaHem2rQM6pv7c1BgzGudMMGeBgYiIiEhW587Cr1uhzlXO\n304P3YAAACAASURBVPMao942dWRpKUnUE8+l8MKMExw6keJW+bfuDde0jFKsSkqyXhZnj3l6J3A+\nTIq1diV/Je55io+Pd/0cExNDTEzMRQcoIiLi9Q4dgNFPweGDeZcd8R84eAAaNy/8uIrQd+vOup2o\nD+hURom6uC0hIYGEhASPt+uVUzcaY57HOf3iwNTfmwJLrbVl05V5HOhgrb05n21r6kYREbn0/LgI\n3hvlXtnqtZzJeilxIdlyLslSJtDByzNPsP333Ie/vHxnKOVDSsc3CVJ8LrWpG7cCvsaYOumGwjRB\nUzSKiIjkzd1E3eGAHndD156FH1MROXkmhcH/PZZnuXfuD+fQ8RTKBhrKBTuKIDIR93hVsm6M8QH8\nAB+cyXkAcMFam2iMmQmMNMbci3M2mBuBNsUXrYiISAnw61b3EvVnxzoXOSplPv/fmTzL/K11EH4+\nhmrl1Zsu3sfbPjoOBRKBp4B+qT8/l7rv70AwcBD4GHggbdpGERERycRamPQGvPCIe+Vr1i3ceIrY\nuSTLuHmnWLL5XJ5luzbLPFu0iPfwyjHrhUlj1kVEpFQ7dhhmfgg/LYbzeSeqANz7lHP+9FJk+S/n\n+O/C3GdyvizMwQu3hxVRRHKpudTGrIuIiEheZk2CrybnXe6p0VD7Ktiz3fkwqX9AoYdWFKy1JKfA\nhj1JeSbqAENv0/zp4v0uyWQ9Pj5eUzaKiEjpcvTPvBP1oGCI/w9UqOz8/coGhR9XEdn0WxKvzz7p\ndvkX+4USqGkZpRB4egpHDYMREREpDd4eCWuW57y/593Q6SYILJ3js+99x42VWNMZ/1D5QopExEnD\nYERERC5l61bAv4e7V3b0JxBWoXDjKSbnkiyDxv8/e/cdH1WV/nH8c6clmfRQQwi9Skc6CEFELKBg\nb2t3Xcva+/4U1NW1rmtZ61rWtRfsKCoQpEov0gOBUAKElp6p5/fHTTIJ6WQyNzPzvF8vXszce2fm\nISbxO2fOec7ROq/TgLKhum7JEn9E8JDvViGEECLYuN31D+qX/CUkg/rCTQ5WbnfyR5arzmv/eU0C\nUTaNpVud7Njv5ozBkQGoUAj/kLAuhBBCBIt538OOTdCxe/0f07lH09VjkGOFXv47r+4FpADXnBpN\nbJTeqXpM7wjG9A6NxbQifEhYF0IIIYLB7h3w4Sv67SVz6veY/sP0ri8hZs9hd72vNTW3HWWEaCD5\nFhZCCCGCwcZVdV/TrmPl+7c9BlpodTzxKsVbv9RvVB0gtaXsSiqCm4ysCyGEEM2RxwMuB7zzPKxa\nVL/HTLtK7woD+qh6iPEqxX9+KaTIUXtXt+Hdbew/5qF/JxspSRJ1RHALy+9g6bMuhBCiVot+hjVL\nIaUjTL4clBfWLdPvt02tfK1SUFwI9pjqn8vlhL07oUNXMNVzlHdPJvzzIciro8tJXCKcfw0s/Fnf\ngXTgSDj3T3BwH0y7un6vFSR2H3LzwfxCdhzwVHv+X9cm4PGC061oGSej6cI40me9kaTPuhBCiCr2\nZcFnb0L7ztC6Hbz/YuXzrZIhJ7vypkJuFyydq29EdOiAft0N9+uhuYzXC/+4EzK3QPc+cONDVTuz\nKAVzv4Ws7TBwBGzfDD99Vr+6b3ssJEfQj7f/qIeHP86t9Rrpmy6aG3/1WZewLoQQInwV5IHVBm89\nDWuW1P9xl90MKxbA1vWVj8fEwQuf+uaJ794Bj95c+ZrEltC1N2xcDf2GQkISzP6yYXV36gHnXBEW\nQd3pVtzyZu2fMAztZuPPp9fwyYYQBpGwfoIkrAshhABgyzp44W9gsUJJkf+ed9Ao2L8HuvYCpwOW\nzffP8069EgaMgNQu/nm+ZsztUbz5cwGZB93YLBoHc73VXjekq402CSbS+kaSEC09M0TzIjuYCiGE\nEI0x6xN9Kou7lk11+g+Hdb837HlXL9b/zs468dqqM/ky/z5fM7TnkJtvlhezZa+bYmfZwFr1A2wP\nXxhHh1YSY0Tok7ehQgghwtOGerRC/PP9cM/T+uLQ6sTEwd9ehLFn+re241WcBx+i9hxy8+hneazJ\ndFUI6tU7++RICeoibMh3uhBCiPDjdIBm0ru81OTiGyHSDr0GwCP/hgN74bn74egh3zVDxkLnnrBz\nW/1e98l39HnyT95R+fjzH+lz5hf9AsPS9MWobdrrC0337tLnp4ewvCIvf/8ir87r0vpGcPFoOxZz\naPWOF6I2MmddCCFE6Ni6HvKOweDRlbeu9Hhgzw69E8sX78DapVBUUPXxD/1LD981bSSkFLz3gt7a\nEeDhl6Fjdz3I/+0633U33K8vWq3omf9BUiv99s5t8Pe/6renXK63Wwxj63c5eemHav57VPD4ZfG0\nTZCWjCJ4yJx1IYQQoqIdW+CZe333L7oBTj1HD9JvPqX3Oq/N0HHQpVft12gaXHiDHrpTOulBHfR2\nj6ld9O4vsQn6ItMLr4fP/+N7bGJL3+1O3eH17/U+6hWPh6kSV+2DaBLURTiTkXUhhBCh4dsP9D8N\nddENkNIZevTV2zieqJxsvfNL/2F6cHc54f+uh8MH9c2Kbp1+4s8dgjbudvHd8mIGdLayda+b9VlV\nF/oO6GTl5jNjMNX0SYcQzZi0bjxBEtaFECJEvfkULEtv2GM0k94XPSa2SUri8EHYvlEP8JH2pnmN\nIHXDq0fqvObl6xOJtElQF8FJpsEIIYQQLqdvNDx7d/0fZ7boU1rOuKDpgjroO522aN10zx+EVm53\n8uu6kjqva9/CLEFdCCSsCyGECEZeD8z8L8z5Gjp0gxsfhP0Vwvq/Podv/gvzvvcdu/AGWL0ITjkT\nRk/UF52aZR50IO044Ob12bUvJD19QCR5xV4mDYoMUFVCNG9hGdZnzJhBWloaaWlpRpcihBDiRPz4\nud7WEPRpJvdV6KYSn6iPlo89C9J/0Du49BsKk87X/5SRoB5QK7c76wzqABeOlulCIrilp6eTnp7u\nt+eTOetCCCGCi1Lw4NVw6ED153sPgrv/od9elg4ZG2HSBTIdxSBepfh0YRFz1zvqvHZIVxs3TooJ\nQFVCND2Zsy6EECI87d9Tc1AH6DfEd3tYmv5HGMLrVUz/JJf9x2rZfKrU5CGRjO8rU1+EOJ6EdSGE\nEMFl/TLf7UGjoEc/+PQN37GBIwNfk6hEKcUH84v4bWPdo+l/GmdnbB8J6ULUxFT3JUIIIUQzsnqJ\n73a/oTDiVF9bxC699A2KhKG27nPXK6h3bGWWoC5EHWRkXQghRPA4dhgyNui3NZM+ih4br89R37AS\nRp5mbH1hzqsU2Uc9HMytedrLyV1tXDHOzvb9bnqlWANYnRDBScK6EEKI5i8/F155VO/8UqZnP4hL\n0G937qn/EYbJynHz+Od5dV533YRorBaNAZ0asVusEGFEpsEIIYRo/n74pHJQBxgy1phaRLXe+Lnu\ntoyXnmLHapGNjoRoCBlZF0II0bx5vZD+fdXjI8YHvhZRxea9Lt75tZCjhbV3fEmI1hjdKyJAVQkR\nOiSsCyGEaJ5yj8Bnb+m90o/fH+OMi3yLSoUhPF5FRrab57/Jr9f1T1yegE1G1YVoMAnrQgghjOV2\nwcbV+o6iXXrBvO+hqBCWzYMjOVWvT5sM514R+DpFOa9X8fhneew94qnX9ZeMsUtQF+IESVgXQghh\nrC/ehl+/rvu6hBbw4AuyE6nBcvI8fDi/qMag/tzVCcTb9SVxLrfiaKGX1vHmQJYoREiRsC6EEMI4\njhJY8FPt16R20Tc/mnAuRMcGpi5Rrb1H3Mz4pOaOLxeMjCoP6gBWiyZBXYhGkrAuhBDCOBtW6oG9\nJr0Hwt1PBa4eUSOlFE9+UXNQn3FJHClJEiuE8Df5qRJCCGGcFb/5brfrAIcP+sJ7TDxcfKMxdYly\nbo9i5tJifllb85uqwV2sEtSFaCLykyWEECIw8nPh7efAWQLxSbBzK+Rk+85ffx+0aQ+W0l0tTSbQ\nZFGikfKLvdz17rE6r7t8bHQAqhEiPElYF0IIERjf/g/+WF79uZMGQ2pXCefNSG6Rl3veqzuoTx4S\nSZxd9lgUoqlIWBdCCNH0CvJh0S/Vn7PHwNV3SlBvBpRSfDC/iN82Oup1vQaM6CEbHQnRlCSsCyGE\naHo/fgrOCgFw0Cho217fnXTkBEhqZVxtArdHsSvHTV6RqldQv2SMnYRoEy1iTbRJkG4vQjQlCetC\nCCGa1o+fw+wvfPevvhPGTDKuHlHFW78UsGqHq17Xtog1MbKnDXuETH0RIhAkrAshhPC/g/sgLlHf\nnfSb933Hew2EEROMq0tUUeTw1hjUbRaYNtxOuyQz2/e76d/RSvuWZswmmbIkRKCEZVifMWMGaWlp\npKWlGV2KEEKEFpcT/vcyLP4FIu36rqPu0iCY0gluexQsYfm/nmbpSIGX+9+vfhHpA+fF0bWt77/V\nSanWQJUlRFBLT08nPT3db8+nKaX89mTBQNM0FW7/ZiGECAil4OUZsO736s/L9Jdm5925BSze7Kxy\nPDnRzGOXxhtQkRChQ9M0lFKN/hhKJpwJIYTwjzVLaw7q9hgYOi6w9YhaFTm81QZ1gOsnSt90IZoL\n+SxSCCFE43k88NW7vvvDx+sdXlYsgMJ8uPQmiIg0rr4w5/IojhV62brPzcoMJ+uzal5M+uQV8bSK\nkw4vQjQXEtaFEEI03vwfYF+WfjvSDpfcCLEJcP61xtYlcLgU0z/J5XC+t85r758WK0FdiGZGwroQ\nQogTs3U9aCZo2QZmvuc7fsaFelAXzcKslcX1Curdky10aSuxQIjmRn4qhRBCNNyy+fDmP6oeb9se\nJp0f+HpEFV6leGN23f3TE6NNjO8XwRmDItFkF1khmh0J60IIIRpGKfjh4+rPXfFXsNoCW48o993y\nYr5dXgxAUoyJIwW1j6i/dH0iUTYJ6EI0Z3WGdU3Tfqvnc5UopU5vZD1CCCGauy3rYO/Oysc0TQ/q\nvQYYUpKAYqfiuxXF5fdrCuo9UyxMHRZFcqJZgroQQaA+I+tDgb/UcY0GvNj4coQQQjR7c76pfL/v\nUDh1MvQfbkw9AoB9RzzUtY1ISpKZm8+IwR4hnZuFCBb1CeuLlVL/resiTdMu80M9QgghmrOsDFi9\n2Hf/sTegXUfj6hHlPl9UVOv5e6fG0j3ZIvPShQgydYZ1pdSE+jyRTIERQogQ53bDey/47g8cKUHd\nYPuOeJi5tIgom8b2A+5qr9E0mH5RHCktZJmaEMFIfnKFEELUbe638Mnr4C2dB62Z4LyrDS0p3C3e\n7ODduYV1XnfpKXYJ6kIEsQb99GqaFg/cBgwCYiqek5F1IYQIUUvmwEevVj426jQZVTdA1iE3uw95\nGNjJynvz6g7qAL3bW5u4KiFEU2roW+3PATPwFVBcx7UBo2naUPQFrk5gL3ClUspjbFVCCBHkDu6D\n2V/Cwtm+Y1YbjDgVLrzeuLrC1LFCL099mYerjv+7XTLGTqRN49e1JYzuFUHbBNmRVIhg1tCwPgJo\nqZRyNkUxjZAFjFdKOTRNexI4F5hpcE1CCBGcCvL0kfTlv4Gq0P6vXUd44J9gjzautjDlcive+qWg\nzqAO0LWthU6tLYzuFdH0hQkhmlxDw/pCoBewrglqOWFKqQMV7jqBuvdVFkIIofN4wGTSVyICfP8R\nLEuvfE2XXnDjQ2ET1JdudbByu5OUJDPnDItCAzIPemgVZyI2KnBtD5VSbMt28+bPBeQW1dGXEejS\nxkzHVjKSLkQoaWhYvxqYpWna70DFgIxS6rHGFqNp2i2lr9EP+EgpdW2Fc4nAO8BEIAd4SCn18XGP\n71h6/vHG1iKEEGFhyzp4ZQbExOubGvUZDGt/953vPRDOukTf7ChMWv7tynHz9q/6fPA1mS72H/PS\nOt7Ej6tKiLdrzLgknpjIyoHd4VLsP+ohtaUZk6nxX6fcIi/vzilkw25XndeO7GljyRYnXdtYuP+8\nWGnNKESIaWhYfwJIBXYCcRWO1/12v372ogftSUDUcedeBUqAVsBg4AdN09YopTYBaJoWC7wPXCXz\n1YUQoh6U0qe7FBfpf154CIaPh5xs/XxEJNz+OFjCa4Hitn2VWyCu3O6b+ZlbpJi33sHEgZGsyXTy\n2wYH27J915/c1cZfJsWQV+QlOlLDbNJYsLGEpVudnDEokn4dbbW+tserT3dZub3ukA7wxk2JaMCZ\ng6JonWCSoC5ECGpoWL8E6KGUym6KYpRSX0P5gtGUsuOaptmB84CTlFLFwCJN074B/gQ8pGmaGfgE\nmKGUymiK2oQQIuRsWAl7d1Y+9vs83+2eA0I+qCulyMnzEm83cbTQS26hl0/r2FxoTaaT5RkOso9W\nnXG5cruTX9eW8OmiIlrHm7j1rFjeT9efb+u+Av55TQK7D3lo38KM1aIRZdPD9eF8D79tcDBrVUmt\nrx1v18qnw0wZGoWpNJwnJ8nUFyFCVUPD+g6gfm/3/asH4FJKba9wbC0wrvT2pcAw4GFN0x4GXlNK\nfR7gGoUQIrj8+Fnt5/sMDkwdBvp8cTG/rK09IB8v61DtH96Whf2DuV5e+6mg0rm73j1W5XqzCTz1\nWGl1xTg7o3tFMGtlMU43nDEosv5FCyGCVkPD+v+AbzVNe5mqc9bn+q2qqmKAvOOO5QGxpa/9AfBB\nfZ9sxowZ5bfT0tJIS0trdIFCCNHs5R/T56h36wMZG/XboC8uvfNJeP6Bytf3OTnwNQZQ5gF3nUG9\nfQszew6f+MzK7KN1P7Y+QX1EDxvj+ujh/Jxh9hOuRwjRdNLT00lPT/f782pK1X+6uaZpmTWcUkqp\nLv4pCTRNexxIKVtgqmnaQGChUiqmwjV3A2OVUuc28LlVQ/7NQggREjwemHETZGfpU1u8Ht9upMPH\nww33w3+egaWl4y6x8fDPT0JuUemmPS72H/MwqmcEH/5WyJItNXciPm1ABP072vjXd/l4q/nfhgbc\nNy2Wdklm0v9w8NXv/tt+5IpxdnLyvMxeXUKEBR66IJ52MtVFiKCiaRpKqUb/Em3QyLpSqnNjX/AE\nbQUsmqZ1rTAVZgCwwaB6hBAiuKxapAd1AHeF2YxtUuCiG/TbF16vj7YfPQSTLgi5oL73iLs8eH/0\nW/Xz0k/uauOq8dFYzWAx6//+1/+SiKZp7Djg5vlv8nC69ZHuYd1tdEvW5/QP7WZrUFhvFWciJ6/y\nkLrFDA+cF0eHlmY0TcPrVXRra6FVnEmCuhBhrKEj6xcrpT6t5vijSqnpjS5GXyhqBR4B2gM3AG6l\nlEfTtI/Qu87cgN4N5jtgVFk3mAa8hoysCyHCzz/uhO3H/bps1wHufgrik3zHigoh7yi0bR/Y+ppA\n5gE3KzKcdG1rYf7GEjbudtd4be/2FkqcihtOj6FVXM3BuMjhxWzSiLBWfSPzxeIiZq8pYXAXK+P7\nRfLqjwUUO33/v3ntxkSOFnppGWviUJ6Xv32YW95K7dxhUQzrbqN1vIRyIUKFv0bWGxrWdwC3KKV+\nrHDsH8AZSqlBjS5G06YD06ncCvJRpdRjx/VZPwTcX90bh3q8hoR1IUR42bEZnrxDv22xwp8f0EP5\nkDEQGTrzn71K8c2yYvKKFEO72Xh5Vj7uekw3nzQwkgtGNf7roJTC4QabBUylI+MvfJfP5r1uzhoc\nybQRlV8j/Y8SNux2kdYnkj4dQrvrjhDhyKiw3hv4CbhCKbVA07R/AmOBiUqpo40tJhAkrAshwkJJ\nEdgiwGSGN/8By+brx0edBtfeY2xtTWTVDmeV7it16dLGzF3nxFU7Uu4PSinyixVx9sDteiqEaB6M\nmrO+SdO0acA3mqYtAjoApyqlju/U0qzNmDFDusAIIULXrE9g5nvQvS9cfResWOA7d9o0w8pqaisy\nal4sWlGrOBPTL45n9yE3nVpbyuemNwVN04izh9bcfyFE7fzdFabOkXVN006t5vBY4EbgL0A+NHnr\nRr+RkXUhREjLyoDHbwNVunixRWs4fFC/3bM/3PuMcbU1kXnrS/h1XQkHc2vugXj2yZF0T7aycruT\nsX0i6NS6oZ2LhRCiYQI5sv52DcdLgH+V3laA31o3CiGEOAFeL3zwii+ogy+oQ8iNqu894ubbZcWs\n2lH9Xn3nDI3ijEGR5JcokmL0aSgyN1wIEWzqDOsGtmsUQgjREIt/0ReTVqdVMgwYFth6mtDOg25e\n+C6fIkf1n5TefEYMAztb0TSNpBiZhiKECF4NWvGiaZpN07THNE3bpmlaYenfj2uaJnseCyGEkZSC\n7z/23T9pcOXzE87VF5uGgOyjnlqDepc2ZgZ1saGFWJ94IUR4aujy9NeBU4HbgKGlf6cBr/q3LCGE\nEA2yJxMO7ddvR0XDLY/AyAn6/TYpMOZ042rzsx9XFdcY1G0WOHNwVIArEkKIptPQFTbnAl2VUsdK\n72/UNO13IAO41q+VCSGEqL+1v/tu9x0CEZFwzd2QNlkP6yHUT337ft/mRl3bWti+302XNmbOOjmK\nbm0tREdKm0QhROhoaFjfD9iBYxWORQHZfqtICCFEw62rENYHDNf/Npmga29j6vEzpRQbd7vJL/aW\nd30xm+Duc2LxKpqsT7oQQhitoWH9f8BPmqa9DOwBUoFbgPcrtngMljaOQggREnKPQuYW/bbJBH2H\nGltPE1i3y8UrsypveJTa0ozVIiFdCBHaGhrWbyz9+6Hjjv+l9A8EQRtH2RRJCBFS1i/TF5gCdOsD\nMbHG1tMEvv69uMqxztIrXQjRDAV8U6RQI5siCSFCziuPwpol+u0Lr4dJFxhbTxP482tHOP5X959P\nj2ZotwhjChJCiDr4a1MkWYUjmpdjh2HresjPNboSIZo/txs+ed0X1ME3Xz2EHCv0VgnqAAM72QJf\njBBCBFiDPkPUNO0l4BOl1OIKx0YBFyml7vB3cSLEKQUH9sC2DbDtD/3vnNK1ypoJuveBwaNh0Ch9\ny3QhBJQUwwcvQ8ZGyD8GjhLfud6DoG2qcbX5kVKKVTtc5BZ5yS30Vjk/aWCkzFcXQoSFBk2D0TQt\nB0hRSjkrHIsAdiulgiJNyTQYA3k8kJXhC+cZG+o/gt6hGwwepQf3dh1BNjsR4eqd52Dxr1WPDxoF\n196t91gPclmH3KT/4WDBRke150/uauWq8TFE2eT3gBCi+fLXNJiGhvWDQAelVEmFY3YgSynVsrHF\nBIKE9QBylOhbn5eNmu/YVHkUsDpWm74tenYW1X7uDXrP6EGlwb1zT737hRDhYNl8ePMflY/ZY+DM\ni/R56iHwszB3fQkfLyiq9lxMpMZjl8YTGxX8/04hROgzKqx/CWQC9ymlvJqmmYCngO5KqWmNLSYQ\nJKw3ofxj+kfzW0tHzbMy9NH02thj9Oku3fvqf3fsDhYr5B7R5+GuWgyb14LHXf3jE1rAwJF6cO/Z\nHyzSHUKEqMMHYcZNUFyo3x8+Hi6/RR9JD/JPmjIPuPliSREOl2JXTvW/M6xmuHFSDANknroQIkgY\nFdbbA98DycAuoAP6hkhTlFJ7GltMIEhY9xOl9K3NK84337+77scltdZDeY++eou55A51jwYWFeqt\n6VYtgj9W1Dw6b4+B/sP04F62g6MQocDrgece0BdfA7RsC9P/HRJTXtwexSMf55KTV3VeepRN4/bJ\nMbRNMOPxQpxdRtSFEMHDkLBe+sImYBj6hki7gWVKqaq/ZZspCesnyOuBPTv1EfOykfNjh+t+XEon\n36h5tz6NXyjqdMDG1bB6MaxdCgV51V9ni4CTBusLVPsPD8m+0yKM/PAJfPWefttkgvufg64nGVqS\nP2TluHllVgFHj1tAGhelce/UOBJiTETKzqRCiCBlWFgPdhLW68nl1HdELBs5374RiqufR1rObIFO\nPSqE85MguglDssej17Z6sf7nSE7115lM+hSZsnnuiUGxvEII3Y4t8PRdvill51yh/wlCSik27Hah\nFHRqbeH/PsqlyFH593FyoombzoglOdFsUJVCCOEfEtZPkIT1GhTm6/PNy8L5rm3gdtX+mCi7PrpX\nFs479dBHtI2gFOzKgNWL9OC+L6vmazv31EP74FEh0+ZOhKjNa+E/z/g+xep6Etz3LJiDM8j+tLqY\nL5dU3YkUICnGxP9dGEdMpIYW5HPwhRACJKyfMAnrpY7k+Oaab/sD9u6s+zHxSXowL5tv3r4TmJpp\naNi/xzfivmNzzdcld/AF947dg36hnggRxYX61JfZX/i6IkXZ4ZFXoVVbY2s7QVv3uXjum/xqmzyN\n6GHjwlF2mZMuhAgpEtZPkKZpavr06aSlpZGWlmZ0OYHh9eqtEMvmm2/bAEcO1v24tu31cN6tdEFo\ny7bBGWaPHvJ1ltm6ruYONW1S4Oq79E8JhDBCfi788hXM+87X9QX06WR/fhD6DDautkZ68stcMg9U\n/dnr39HKrWfFyGi6ECJkpKenk56ezqOPPhq4sK5p2m7gR2AW8ItSqrCOhzRbYTGy7nbp01jKNx/a\nqE9zqY3JpG88VDalpXsfiE0ITL2BVJgP637Xg/uGlfqC1YrMZjj/Opg4LTjfmIjglbMfnrlHf3NZ\n0UmD9c2OEloYU5cfZB5w8+SX+mJwswkm9IukxKXo0tbCkK42ImQRqRAiBAV0ZF3TtGTgrNI/Y4E1\n6MF9llJqS2OLCKSQDOvFhbB9k2/kPHOLvkC0NrYI6NrbF8679A6/VoeOEti4Sg/uaxZXXkB78hi4\n+s6QaI0ngsCxw/D0PZCT7TvWJgXOvBhGnRZ0mx2VuBTrdzlpHWemY2sL78wpYMkW/XfSiB42rjst\nxuAKhRCi6RnZutGCHtjLwruN0uAOzFNKVb8/dDMRkmH9kzfg169qvyY2Xp/OUhbOU7vKBkIVHT4I\nbzxZeX57mxS46f+gfWfj6hKhLz8Xnr3XtyjaYoVr7oKhY5vvmpBaLN/m4MPfiigs7fLSs52FLft8\nm5o9dH4cndvI7x4hROhrNnPWNU3rBJyNHtznKaWea2xRTSkkw/rKhfDa3ysfa5VceWfQNu1lt6PW\nRwAAIABJREFUWkdd3C747C2Y+63vmC0CLr8VRk80ri4RurK2w6uP6xuMgT4N6+ZHYMBwY+s6QQdz\nPTzycS6eGnbe6NTazN8uiA9sUUIIYZBmE9aDTUiG9bxj8MLfKofzIJ7farhl6fDff1XeKXXsmXDp\nTWCVrc7FCXI59YWjuzL0zko2G8z+0jdlTdPghvthWJqhZTbGmz8XsDyj5il4106IZmRPg9q7CiFE\ngAUsrGuaNhi4B8gEngBSgIuUUk809sWNEJJhXfjfviz904rsCv3aO3TVp8W0SjauLhGcDh/Qv592\nbqv+fKRdX0Q6eHRg6/KjPYfcPPqZb0fhB86LZXWmi9mr9Te9sVEaT/8pAatFPuETQoQHf4X1+qxa\nmgzcCHwA3A7sB8Y19oWFaNbadYC/vQjDx/uOZW2Hx/8Ka5YaV5cIPn+sgMdurTmoJ5d+rwVxUAf4\nea3vk6iBna10bWtl2vAoxvWJoHW8iSvToiWoCyHECajPyPo0YK9Salnp/SnAw0qpYQGoz+9kZF00\niFKQ/r2+iNfjWyTHmRfB1KuCdidJESCZW+Cpu3y9/c1mvcOL1abvddA6BcadqY+sByGvV+HxQpFT\ncf/7x8rnqssiUiGE8N/Ien1+m64HpgDLAJRS35V2hBEi9GkajJ8CHXvA60/4NpP68TO9c8yfH9Dn\nHwtxPKXgk9d9QT2xJfzlIeh6krF1+cnew26e/iofh0vhrTD+0bWNRYK6EEL4UZ3TYJRSGUqpFwA0\nTRtXeqyOPoFChJguPeGRV6DvUN+xLevgsVtg63rj6hLN1/L5+v4HoLdjvOeZkAnqAN+tKKHYWTmo\nA0zoLwtIhRDCnxq604a0GBHhKyYObnsUpl7pa4OZexSeux9++lwfSRUC9J1xv3jHd3/CudCmnXH1\n+FmRw8vanZW7vljNkNY3gpO7ScckIYTwJ/msUoiGMJlg8mXQpRe8+TQU5ILXC1+8rY+iXnMX2GV3\nxrD380zflKnYeDj7UmPr8ROvUpg0jVU7XLhLZ/dER2jcfGYM7VuYsUcE106rQggRDCSsC3EiThqs\nT4t540nfVIfVi2FPpt7esUNXY+sTxnC79T79P37qOzb1SrBHG1aSv/y4qpjvVxTTJsHMwWOe8uNn\nnRxJj3ZWAysTQojQ1tBhEOm7JUSZpFZw7zNw2jTfsZxsePIOWPCTcXWJwPN49A2P/nYtvPOcb0Ot\nlE4w5gxDS/OHvCIv3ywrxumG3Yc8OEobI2kaDOsuc9SFEKIpNXRkfX6TVCFEsLJY4ZIboVtvePcF\ncBSD26XvgJqxES6/BWwSZkJaQT688QRsWlP5uD0Grr4zJNp7LtjkKG/LWEYDLhxlJyFapr4IIURT\nqrPPeqiRPuuiyezfDa/+Hfbt8h1L7QJ/fVQfhRehZ/9ueGk6HNznOxYTD6dNhVOnhMT6Ba9X8eAH\nuRwp8KX1rm0sTBsRRc8Umf4ihBA18Vef9QaFdU3TxgM7lVKZmqYlA08BXuBBpdT+xhYTCBLWRZNy\nlMAHL8OSOb5jiS3h9sehfWfj6hL+t2m1/uasuNB3bPKl+qZHEZHG1eVHWTluPl1UxNZ9+ryXmEiN\nZ65MkJ1IhRCiHowK65uASUqpLE3TPio9XAy0Ukqd09hiAkHCumhySsFvs+Cj13y7nkbZ4Zbp0GuA\nsbUJ/8jcAs/ep7doBH2q07X3wJBTjK3Lj/Yf9fDEF7mUuHzHzhwcyXkjgnO3VSGECDSjwnqeUiqu\ndAfTA0BHwAnsU0q1bGwxgSBhXQTMptXw78ehpEi/b7HqgW7YOGPrEo1z+CA8ebveYx/0T05unQ4d\nuxtblx+VOBVPfplL9lF96otJg9G9IrhsrB2LWUbVhRCiPvwV1hu6MihP07Q2wDhgo1KqoPS4TFwU\n4ni9B8H9z0F8kn7f7YI3/wE/f2lsXeLEFRfCS4/4gnp0LNzzdEgFddDbNJYFdasZHjw/jivHR0tQ\nF0IIAzQ0rL8MLAc+BP5demw0sNmfRTW1GTNmkJ6ebnQZIhykdoGHXoDkDr5jn70Fn76hb6YkgofH\nA288BXt36vfNFrj5YWiTYmhZ/uB0K9we/RNHpRQrtvt2J73kFDudWsuWHEIIUV/p6enMmDHDb8/X\n4G4wmqb1ADxKqe0V7kcopdb7raomJNNghCEK8uGV6Xo7xzJDx8G1d4NVtmdv9o4dhreehi3rfMeu\nuRtGTzSuJj9Zv8vJv38sIC7KxE1nxBBp03jk41wAIizwwrWJsqBUCCFOgCFz1kOBhHVhGKcD/vMM\nrFrkO9azP9zySEi0+AtKOdlw7AikdobIGhZOblwFbz0D+cd8x86+BKZdHZASm5LHq3j4o1xy8vRP\neSIs0C3Zyobd+qrSQZ2t3HxmrJElCiFE0JKwfoIkrAtDeT3w8ev6bpdlUjrprR2lF3vguJzw7Qfw\n0xegvPpWnMmp0KkHtE3VzxcX6kF+5QK9ww/o1025HCZfBqbg3wxoyRYH78wprPH81eOjGd1bNvUS\nQogTIWH9BElYF4ZTCn76HL58x3cssSXc8Xc9uIumlbkF3n0e9mU17HFxiXDD/dB7YNPUFWBer+KR\nT3I5cKzmtRPPX51AnD3435QIIYQRjOoGI4RoLE2DMy+C6+71bUV/9BA8fU/lOdHCv3KP6G+Qnryz\nclBPbAlaHb8Kew+E6f8O+qC+dKuDf36bx4oMJws3O8qDepRNY8bFcbRvYS6/tltbiwR1IYRoBmRk\nXQgjbVgFrz4OjmL9vsUK198LQ8YaW1coKCnW3/xsWqP3vC/r4lImIhIuuA7Gna1Pe8nK0Efdjx6G\nyCh9I6uoaGiVDD36Bf20l50H3Tz5ZR5KgQbYLOAo3bNr8pBIzh1mp8SlmLmkiD2HPVw8xk7HVtIF\nRgghTlTApsFomjYYuAfIBJ4AUoCLlFJPNPbFjSBhXTQ7WRnw4sO+3t2aBhffCKdNNbauYLZzK7w8\n3fc1PV7P/nD1XdCqbWDrMojbo/j753nsPeKpcq51vInpF8djk44vQgjhV4GcBjMZuBH4ALgd2I++\nKZIQwh86dIMHX4C27fX7SsEnr8Pnb0kv9hNRUgRv/KNqUDdb9BHyq+6Au58Km6AO8NPqkmqDOsCV\nadES1IUQohmrz2ec64HeSqllwCZN06YACU1blhBhpmVbeOCf+mjw9k36sdlf6nPZr5Fe7A3y0Wt6\nS0bQ2zGOO1PfTbZ7X33qS5hxuBQ/rykpv3/6wEhW73CSk+fl9IGR9EyRDaiFEKI5q29YnwIsA1BK\nfadpmkxkFMLfYuL0Ed+3nobVi/Vjy+bDwWy46W/Qoo2x9QWDFb/B4l989//0Vxg+3rh6moE1mU6K\nnfrUv9bxJs4fEcW5w6I4WuCldXxwz8MXQohwUOdvaqVUhlLqheOOfdV0JQkRxmwRejBPm+w7tnMr\nPHYrrF9uXF3B4EgOvP+S7/7w8WEf1AEWb3aU3x7VKwKTScNm0WiTYEbTZPqLEEI0dw0aIdc0LR64\nDRgEVNpyUSl1uh/rEiJ8mcxw+S36HPbP3wKPBwrz9UWoky+Fc67QrxE+Xg+8/SwUFej3W7SGy281\ntiYDuT2KzXtdmDSNTXv0li8aMLKHTKcSQohg09DpLJ8DZuAroNj/5QghAL0jzGlT9R0133hSn7sO\n8P3H+pz2Gx6AOFk6Um72TF+Pes0E198H9mhjazKIy6148ft8tuxzVzreu72FpFh5kyeEEMGmQX3W\nNU3LA1oqpZxNV1LTktaNzZvbo9h9yENyoplIm3xED0D+MXjzab1XeJnElnDjQ9DtJOPqai62/QHP\nPQCesqbhl8LUq4ytySBepXjz50JWbq/6K/r606IZ3iPCgKqEECI8BazP+nEvOgt4QCnVrLZZ1DQt\nDvgF6A2MUEptrOVaCevNVOYBN+/MKWD/MS9WM/TvZGVYtwj6drRKazmvB777CL7/SG/tCPrup+df\nBxOn6SPx4WjbBvjX//k2lercE+5/HizhuQZ+5tIiflzl6/xiNYPLA+1bmHnw/Dj5ORJCiAAyKqy3\nBmYBvwMHKp5TSj3W2GJOlKZpZvR2ks8Cz0lYDy5uj2LWymJ+WFmCt5r/NJFWGNjZxrDuNnq3t2Ix\nh3Hg+GOF3i2mMN937OQxcPWd+m6b4eT4oB6XCA88D63bGVuXQQ7menjk41w8pa35T+0XwQUj7RzM\n89Ai1kykNYx/boQQwgBGhfW3gHOABVSes66UUlc2tpjG0jTtXeBZCevBI/uIh7fnFLArx7dhi0mj\n2tAOEB2hMbirjaHdbPRsZ8FkCsMAcvggvP4EZG7xHWuTAjf9H7TvbFxdgVRdUL/nKWjX0di6DPTW\nLwUs26ZPf+mWbOHec2PD8+dDCCGaCaPCej7QQymV3dgXruH5bwGuBvoBHymlrq1wLhF4B5gI5AAP\nKaU+Pu7xEtaDhFcp5q5zMHNpEa4KGyt2S7Zw7anRuDywPMPBsm1ODuZWv4tnvF1jSFcbQ7vb6NLG\nEl5t6FxO+Pw/MPdb3zFbhN4BZfRE4+oKBAnqVWQdcvP4Z3nl9x84L5aubWWzIyGEMJJRYX0tMEEp\ndaixL1zD808FvMAkIOq4sF4WzK8FBgM/ACOVUpsqXCNhPQgczvfw3txCNu/1dauwmGDq8CgmDois\nNBqolCLrkIfl25wsz3BypKD64N4i1sSQbjaGdbOR2jKM+kcvS4f//gscvnnKjD0TLr4xtHbrdDpg\n1zbI2Kh3xJGgDkCJU7Fsm4Of15Zw4Jj+szGgk5Vbz4o1uDIhhBBGhfV7gPOAl6k6Z31uY4up8DqP\nAyllYV3TNDtwFDhJKbW99Nh/gb1KqYcqPO5d9DnrG2p5bgnrBlFKsWSLk08WFpXvqAj64rfrToum\nfYvaFwV6lWLHfjfLM5ysyHCSV1z9f8c2CSaGdrMxrFsEyUlh0KpuXxa89nfIzvIdi4rWNwQ6ZRJ0\n7G5cbfXl9UJxIRTkQ2EeFOTpXXB2ZcCOTbB7h95vvqIwDup7DruZs87B8m0OHBU6NGrA9IvjSKnj\nZ0kIIUTTMyqsZ9ZwSimlujS2mAqvc3xYHwgsVErFVLjmLmCcUurc0vs/AAOAXcAbSqn3a3huNX36\n9PL7aWlppKWl+at0UYP8Yi8fzC9k1Q5X+TFNgzMGRTJlaBTWBi4a9XgVW/e5Wb7NycodTooc1X8f\nt29hZlh3G0O62WgVF8LBvaQY/vcS/D6v6rnUrnpoHz4eopvRiKvbBd/8Dxb/Anm5oKr/1KRa8Ylw\nd3gG9Z0H3Tz7dR7Oym3UsZjgwtF2Tu0XQp+oCCFEEElPTyc9Pb38/qOPPhr4sB4o1YT1McBnSql2\nFa65HrhMKXVqA59bRtYDbE2mk/fTC8mvMBLeKs7EtROi6Zbc+Hm1bo9i424XyzOcrM504nBVf13n\nNmaGdYtgSDcbCdGmRr9us6MULPoZfvgEcqpZVmKx6p1jxkyCnv3BZODX4PBBfbOnHZvr/5i2qdCl\nF3TtDUNOaV5vPALo3z/msybT903eLsnMKb0jGNHTRkxkCH5fCyFEkDJkZD1Q6jmyfjcwtmxkvQHP\nLWE9QIqdik8XFrJoc+UNWsb1ieCCUfYmaSXndCvW73KxbJuD9btclRavltGAHu0sDO1uY3AXG7FR\nIRZwlIKt62HBT7Byob4Y9XitkmH06fpi1MSWga2vuvaTAJF2iImF6Djf321S9HDeqad+LMwdzPXw\nfx/mUvYb7M4psfRuH2aLq4UQIkgELKxrmva4UurhehT0qFJqel3X1auo6uesHwH6VJiz/j6wp+Kc\n9Xo+t4T1ANi6z8U7cwo5nO+b2hBv17hqfDT9OtoCUkOxU7E208myDCcbd7vK+09XZNLgpFQrQ7vZ\nGNjZij0ixIJ7UQH8nq4H96yMquc1E6R2gY7doEM3/e/2nfXOMv7m9cC3H8IPH/s2djKZ9I2dJpyj\nj/yLWn2ysJA56xwA9O1g5fbJ8gZGCCGaq0CG9XygP/qAZG1WKqUSG1WMvrmRFXgEaA/cALiVUh5N\n0z4CVOmxwcB3wKiK3WDq+RoS1puQy634+vdifllbQsWv8pCuNi4fZzfsY/rCEi+rdugdZTbvdVPd\nt0CUTePaCdEM7ByYNxMBl7UdFs6GpXP1EF8Tk0mfclIxwKd2adymS3nH4K2nYNMa37GEFnDjg9C9\n74k/bxgpdiru++9RSkpnwNwxOZY+HeQNjhBCNFeBDOte9JBc14uVKKXsjSpG06YD00tfr8yjSqnH\njuuzfgi4Xyn16Qm8hoT1JpKV4+btOYXsO+Kbe2KP0Lh8rJ1h3ZtgpPYE5RZ5WZGhB/ft+yuv0tM0\nuOwUO2l9Q3iRntMBqxfDgtmweU3d14P+hUkunTPepbc+NSU5FUy1LNotyNO7uGRth19mwrHDvnO9\nB8IND0BcQuP+LWFCKcUXi4v5ea3eojM50cSjl8TL9BchhGjGQnrOelOSsO5/Hq/ip9UlfLe8uNJU\nk5NSLVw9PobEmOY7teRwvocVGU7mrndU6uF+1uBIpg6PCv0wVJAPuzP0QL0rQ58qc2Av1X70cLxI\nO3TuCV17QedeeneX3Ttg93b97yM5VR+jaXD2pXDO5bUHfVGuyOHlnTmFrN3pW1R6xTg74/qE8BtK\nIYQIARLWT1BZ60Zp2egfB455eGdOATsO+EbTbRa4YJSdtD4RQRN284q8vPRDPrtyfP+OkT1tXJkW\njaWBbSWDXklx6Yh4hh7gd2+HvTv1XuiNERMH198HfYf4pcxwkJXj5vXZBeTk+b72PdpZuGNKbIPb\nnQohhAiMshaOId26sSnJyLp/KKWYv8HB54uLKvV77tLGzLUTYmiTEHyjpg6X4o3ZBazP8o1gntTe\nwl/OiCXKFubByFGi7yC6fbO+SdGOTZB7tPbHWKzQvpPe571DVzj5FJn20gALNjr4aEEh7godjU7r\nH8H5I+3h9wZSCCGCkIysnyAJ6413tMDLf+cVsmG3L9SaTTBlSBRnDI7EbAreIOHxKj6cX8SCTY7y\nY6ktzdx2dmxo9mY/UUrp01x2bIbtm/Qgb7H4gnlqF32Rqjn43rQZzeFSfLygcsvTCCtcPT6GId1C\ndPGzEEKEIAnrJ0jCeuMs2+bgw9+KKu0Y2i7JzHUTounQKjS2OFdK8f2KEr5dXlx+LCnGxB2TY0lO\nkvApms7BXA+v/VTAnsO+4fR2SWZumhRD20T53hNCiGBiSFjXNC0euA0YBMRUPKeUOr2xxQSChPUT\nU1ji5cPfilie4Rvt04CJA/SFmFZL8I6m12TRJgfvpxfiLf12sUdo3HpWDN39sOuqEMfLPODmxe/z\nKazwRnhEDxtXjIsmogk2EBNCCNG0jArrPwNm4CuguOI5pdTbjS0mECSsN9wfWU7em1tIbpHv69Yi\n1sQ1p0bTMyW0g+sfWU5e/6kAR+m8fIsZrj8thpO7ynQE4T9b9rp4eVY+jtKZZRYTXHqKnVNOCp5F\n2kIIISozKqznAS2VUtXsXx4cJKzXn8Ol+HxxEfM3OCodH9M7gotG28Nm0eWug25e/CGf/GL9+0YD\nLhpt57QB0jpPNI5SiqVbnbyf7ltIGhOpcdvZsXRuExrTyoQQIlwZFdZnAQ8opdY19oWNImG9frbv\nd/H2r4WVWsbFRmlcmRbCO3zWIifXw7++z+dgru/rcfqASM4fFYVJRj5FPe057ObAMS/xdo2oCI2v\nfy9mTaZvoXZCtMadU+JoJ2sjhBAi6BkV1lsDs4DfgQMVzymlHmtsMYEgYb12bo/iu+XF/Li6pNK+\nOIM6W/lTWjSxUeHbESW/2Mu/ZxWw/YCvV+XQbjaumRAtPa9FrZRSzF5TwswlxdT026d1vIk7psTS\nKk6CuhBChAJ/hfWGfs76BJAK7ATiKhwPqvQ7Y8YM2RSpGnsPu/nPr4WVOlFE2TQuGWNnZE9b2M+d\njY0ycec5sfzn14Ly0dDlGU7yirzcfGYM9ojwfSMjauZwKd5PL2TZtppnD6b1ieD8UXYiZSGpEEIE\nvbJNkfyloSPr+UAPpVS23yoIMBlZr8rrVfyytoSvfy/GXWGTyp4pFq45NZoWsTLSV5HXq/h4YRHp\nf/jm8qckmbnt7BiS5GslKihxKZ7/Jo+dB31vgJMTzdgs+n4FLeJMTB1m56TU0F6oLYQQ4cioaTBr\ngQlKqUONfWGjSFivLCfPw7tzCtmW7ZvaYTXDeSPsnNo/QuZj10ApxU+rS5i51NcUKSFa4/bJsbRv\nIQsDhe7jBYXMXe97Uzf2pAguPUV2IBVCiHBgVFi/BzgPeJmqc9bnNraYQJCwrlNKsXCTk08XFZa3\niwPo2MrMdRNiZPOfelq6xcF78wrxlH4iEWXTuPnMGHqFeEtLUbft+908PTOvfI7ghaOiOH1glKE1\nCSGECByjwnpmDaeUUqpLY4sJBAnrkFvk5f15hazb5UvpJg3OPjmSs06OklG/Btq0x8WrP+ZTUvrl\nNJvgmgnRDO8eYWxhwjBuj+Lvn+ex94g+/aVPqpXbJ8eE/boPIYQIJ4aE9VAQ7mF91XYn/5tfSEGJ\n72vQJsHEdRNipK9zI+w+5OalH/I5Vuj7ul4wMorTB0ZKQAtD368o5ptl+hQpmwUevSSeltLlRQgh\nwoqE9RMUrmG9yOHl4wVFLN1auSPFhH4RTBthl+3M/eBwvocXvy8g+6hvMeGp/SK4eIxd5v6HiX1H\nPKRvKGHBBkf5Yu2LRtuZKBtoCSFE2DFqGkyNvdSVUo80tphACMewvmmPi/fmFnKkwNfqJTHaxNWn\nRksXCj8rLPHy6k8FbN3nW7A7rk8El4+1ywh7CMvJ9fB+eiGb97orHe/U2syD58VhMsl/eyGECDdG\n9VlPPe5+W2Ac8FVjCxH+53QrZi4tYs46R6XjI3rYuPQUu/QFbwLRkSbumBzLO3MKWbFd/xRj/gYH\nEVaNC0ZGSWAPQXlFXl74Lr/Sbr+gt/O8YWKMBHUhhBCN0qCwrpS65vhjmqadAVzqt4qEX2QecPPO\nnAL2H/MFiJhIjSvGRXNyV5uBlYU+q0XjhonRmEyUb4Tz85oSIq0aU4ZKN5BQ4nApXpnlC+omDQZ2\ntpLWN5JeKRZ5cyaEEKLRGj1nXdM0E3BUKRXvn5KaVqhPg3F7FLNWlfDDimK8Ff6Z/TtauXJ8NPF2\nGU0PFLdH8cbPvt1OQdr3hRKvV/HqTwWs3an/99U0uPmMGAZ2ljfDQgghjJuzfnx7RjtwGXCOUqpv\nY4sJhFAO69lHPbz9awG7cnwLHCOscPFoO2N6R8gonwFcHn3kdeNu31zmP42zM7aPLDgMZkopPvyt\niPkbfFPMLhtrZ3xf+e8qhBBCZ9Sc9QxAAWUvXASsBq5qbCGBNGPGDNLS0khLSzO6FL/wKsXcdQ5m\nLi3C5cvpdEu2cO2p0bSKl5ZxRrGaNW4+I5YXv88v3yX2g/lF2CwaI3pKH/ZgpJTi44WVg/qkQZES\n1IUQQgCQnp5Oenq6356voSPrZqWUp+4rm69QHFl/8+cClmf4WjJaTDB1eBQTB0TK4rZmotipeP6b\nvPJPPUwa3Hh6DINl/UBQKQvq89b7gvrw7jauPS1a2nMKIYSoJODTYDRNMwMFQIJSylHX9c1VKIb1\nVTucvPZTAQDtW5i57rRo2reo/kOTvYWH+GbXEjLy9pIUEUeyPYl29ha0s7cg2Z5Ey8g4TJrMa28K\nhSVenv06v3xXS7MJbj0rhr4dJLAHA6UUnywsYm6FoD60m43rTovGLG+KhRBCHMeoOetrgTOVUvsa\n+8JGCcWwDvDe3ALi7CamDI3Caq78feFVXpblbGHmzkUsPbgJRc3/fqvJTNuopPLwXjHIt7O3IMYq\niyMbI6/Iy9Nf5XEwV+8eYjXD7ZNj6Zki/e6bs2OFXv47r5A/snyLhSWoCyGEqI1RYf0+4BLgRWAP\n+FKfUmpuY4sJhFAN60qpKgtI813FzNq9jK93LmJP0SG/vE6sNapKgE+2t6CdPYk2UYlYTQ1dBhF+\njuR7eObrfA7n64E9wgp3nxNH5zbytWuOVmQ4+WB+IYUO3++NIV1tXD9RgroQQoiaGRXWM2s4pZRS\nx3eKaZZCNaxXlJG3j692LuTnvaso8TirnB/RujeTUk6myO0gu/gI+4oOk114mH3FR8h1Fp7w65rQ\naBWVQDt7UmmAb0FyVBLtovXbibYY6UhT6mCuh2e+yiO3SP9etEdo3HNuLKktJbAHklcpXG6wWaj0\nvZmT52HTHhdrMl2s3+Wq9JjTBkRwwUi7BHUhhBC1Miqs36uUeraa43crpZ5vbDGBEKph3e318Nv+\n9czcuZC1R3ZUOR9jjeLs1GFM7TiK9tGtanyeIncJ+4r0AL+v6DDZpbezi46QXXQYp9dd42PrEmm2\n0TexE9M6jmJUmz5YTOHdpWbfEQ/Pfp1HQYn+/RgbpXHf1DjaJob31yVQsnLcvPpTAYfzvVjNEB2p\nERNposSlOHTcbqQASTEmrpkQTS+ZsiSEEKIejArreUqpuGqOH1FKJTW2mEAItbB+uCSPb7OW8O2u\nJRxy5FU53zU2mfM6jWFiymCiLI1rFehVXo448svDfHbRYfaVhvjsoiPklOTWOh++ojZRiUzrOJrJ\nHYYTb4tuVF3BbFeOm+e/yafYqX/dEqI17psWR6s4CexNadMeF6/+mE+Jq+5rAUb2tHHJGDv2CFl8\nLYQQon4CGtY1TTu19Ob3wNn4+qwDdAEeVkp1bGwxgRAKYV0pxR9HdzJz50LSs9fhPq6bplkzMS65\nP+d3GkO/xM4Bm3ri9LjZX3ykPMRXDPT7ig5T6C6p8hibycLElJO5oPMYusWlBKTO5iYj28UL3+Xj\nLP3QolWciXunxpEYI8GwKazIcPL2rwW4qw6el7NZoEc7KyelWumTaqVdkrx5EkII0TCBDutlc9U7\nAFkVTilgP/CUUurbxhYTCMEc1ks8Tn7du4qZOxexLW9vlfNJEbGc22Ek53QcScvIeANFgGJMAAAg\nAElEQVQqrJlSigPFR/k2aynfZi2pdm78gKQuXND5FMa06Rt2U2Q27XHx0g/5uEvfd7VNMHHftDhi\noySw+9O89SV8vKCo/POfhGiNOybH0iLOTGGJl4JihVdBakszFrPMSRdCCHHijJoG875S6srGvqiR\ngjGs7ys8zFe7FvHD7t/JdxVXOd8/qTPTOo5hXHK/oOjG4vC4mLNvNV9kLqj2TUfryASmddKnyCTY\nYgyo0Bhrd+r98j2lI76pLc3cc26sTL1ohBKnYlu2i0173Gza42LPYd+nUG0TTNwxJZYWseH1xlAI\nIURgGBLWQ0GwhHWv8rI8Zwtf1tAbPcJkZWLKYM7rNIbu8cE5fUQpxfqjO/ly5wLmZ6/DoyrPS7CZ\nLJyWMpjzO42hR3x7g6oMrOXbHLz1ayFl36Jd2pi5c0ockTYZ5W2IvCIv/5tfyPpdrvI3PxV1bmPm\nr2fFyicXQgghmoxRI+svAZ8opRZXODYKuEgpdUdjiwmE5h7W813F/Lh7GV/V0Bu9nb0F0zqO5qzU\nocSF0MLMnOJjfJO1hG92LeGYs6DK+f5JnTm/0ymMbdsv5KfILNrk4L15vmlCHVqa+evZsSRES7Cs\nD49X8c9v89m6r2rnIrNJ38zoinHRRFjlDZAQQoimY1RYzwFSlFLOCscigN1KqdaNLSYQmmtY3563\nj692LmL23pXV90Zv1YtpncYwvHUvzFrohjaHx8W87DV8mbmQzbm7q5xvFRnP1I6jmNJhJIkRoTtF\nZm7p3OoySTEm/np2DO1bNP9pTkabuaSIH1f7FjOntjTTK8VK7/YWuidb5VMKIYQQAWFUWD8IdFBK\nlVQ4ZgeylFItG1tMIDSnsO72eliwfz1f1tQb3RLJWanDmdpxFKkxNfdGD0VKKTYe28UXmQuYl722\nyhQZq8nMhHaDuaDTGHompBpUZdNasLGED+YX4S39do2yafxlUgwnpUqf75qs3enklVm+T2bOHRbF\n5CFRBlYkhBAiXBkV1r8EMoH7lFJeTdNMwFNAd6XUtMYWEwjNIawfLsnju6ylfLNrcbW90bvEJnO+\nn3qjh4JDJXl8u2sx32Qt4Ygjv8r5Ea178+jgP2G3RBpQXdP6I8vJG7MLyvuBm01wxbhoxvSW74vj\nHcrz8PjneRQ59J/vvh2s/PXsGEyya64QQggDGBXW26P3Wk8GdqG3cswGpiil9jS2mEAwKqwrpdhw\nbBczMxcyL3tt9b3R2/ZnWqfRDEjqErDe6MHE6XGTnr2WL3YuYNOxrErnBiZ15dnhNxBpthlUXdPZ\nfcjNSz/kc6zQ93179smRnDssSr5PSrk8ime+ymPnQf3nKjHaxMMXSetLIYQQxjGsG0zpaPowIBXY\nDSxTStWyvUjzEuiw7vA4+XXvar7cubDG3ujndBjJOR1G0CoqIWB1BbuNR/UpMr/sW1V+bGirnvxj\nyLVEmENvmsjRAi8v/ZBfqfXg8O42rjo1Gqv0A+ejBYXMW+8A9E8f7p0aS9e2ofd9IIQQIngYGdYn\nApcAbZRSkzVNGwLEKaXmNraYQAhUWN9XdJivdy7mh92/k+cqqnK+X2Jnzus0mnHJ/YOiN3pz9dH2\nuby26fvy+6Pb9OHxk68Kya9piVPxxs8F/JHlKj/Wo52Fm8+IIToyPEeQPV7FN78XV1pQevFoO6cN\nCL0pUUIIIYKLUdNg/grcDvwHeFApFa9pWh/gLaXUqMYWEwhNGdb13uhbmblzIUuq6Y1uM1mYmHIy\n53UaHTZ9wwPh3a2zeWfr7PL745MH8MigK0KyxaPHq/jotyJ+2+goP9Y2wcRtZ8fSKj70/r21OZLv\n4a1fCsnY72vROLiLlb9MipHpQUIIIQxnVFjfDkxQSu3UNO2oUipR0zQzcFAp1aKxxQRCU4T1Alcx\nP+5ezsxdi9hTmFPlfLI9iWkdR3N26rCQ6o3eXCileGPzD3y43ffhzqSUITw08BJMIdjmUinF7DUl\nfLnEt5ttbJTGrWfF0qVN6H2iUJ21O528O6eQQofvZ7lPqpUbJ8UQJa0ZhRBCNAP+CusN/T97LPo8\ndaB82NgKVG0M3ozNmDGDtLQ00tLSGvU8O/KymblrET/vWUFxNb3Rh7fqxXlh0BvdaJqmcWOvs3F4\nXHyxcwEAs/euwGa2cG+/C0NulFXTNM4YFEWLWBPvzCnE7YH8YsVzX+dx/cQYBncJvUW2ZUqciu+W\nF/PzWt+0F5P2/+3deXhU9dn/8fedPSHsOwjIpgIiiKDggrigba1b1bYWt9pWbantz2rr81itsbTV\nPrWLti7VaotrrQuu1arFUUEQFURZFEQ2EcK+hJCQ5f79McM4CQRCMjNnMvN5XRcX8z3nzJnPhMPk\nzsl9vgfOOqqQUw8v0MwvIiISuFAoRCgUitv+9vfM+hPAHHf/tZltdPcOZvYzYLi7fytuqRKouWfW\nw3Ojz+OpZdN4f+OS3dYX5xTw5V5HcnafYzJubvSguTu3fvg4z66YGV12zoHH8uMhZ6ddwb7LJ6ur\nuOPFMsoqwse0AecdU8TJh+WnxXvevL2WT1ZX88nqKhavqWbl+hpi//u2b5XF905pxcDuuphURERS\nS1BtMN2B54BOQE/gU2Ab8FV3X9PcMMnQ1GJ9Y+W26Nzo6yq27La+X+tufO3AYxnf8wiKNDd6YGq9\nlpvn/pOXPns3uuxb/U/gikO+mhbF656Ubq7h9he2sXbLF5MyHdE/j3NGF6Z8H7u7s3JDDRu21rKx\nrJZN22vZVBb+s2FbeFlDhvbJ5dKTWlGcoRfXiohIagtyNhgDRgF9yJCpG92dC1//LcvL1tZZnm1Z\njO02lK8deKzmRk8h1bU1TJrzMFNXvx9d9u2Bp3DpwV8KMFVibdtRyx0vlrEk5mLL7Cw44dB8ThtZ\nmJIF7bqtNfz1P2UsX1ez740jDOjZMZuxg/M5/tB8tb2IiEjKCqxYb+maemb90SWvcefC5wBon1fM\nGX3GcGbvMZobPUVV19Zww3uTmVY6L7rsikNOY8KAkwJMlVhV1c6Dr29nxsd1r58ozDO+PKKAkw4r\nIC8nNYrbeSt2cu8r26N3G21Ibjb065rDgO7hP/265lCUn3o/eIiIiNQXVBvMCcAyd18aaYm5Bagl\nPI1jWrfBbN25nevf+wen9x7N8d2GkZedGbNutGQ7a6q57t37eXvdR9FlPxp8Fuf1GxtgqsT7ZHUV\nT8zYUecsO4T7u888qpAxB+WRlRVM0V7rzovvVfDMrB3RK9Szs2DQAbl0KM6ifeRPh+Is2rfKolOb\nLHJ00ycREWmBgirWFwKnuvsKM3sksngH0Nndz2humGRI9h1MJViVNTv52ay/MXvDJ9FlPx16Hmf0\nGRNgqsRzd+YsreKpmeWUbq7bpdazQzbnHl3IkF65SW3dKq+s5f7/bmfusi9u6tSulXHFqa3p300/\n/IqISHoJqljf6u5tzCwHKCXct74T+NzdOzU3TDKoWM885dWVXPP2PXy4aSkAhnHd8G/ypQNGBZws\n8aprnGkLK3n2nR1s21H3uB90QA7njCmiT+fEF8qrNlRz50tldS6CPahHDpefUkybIrW1iIhI+gmq\nWP8MOAI4FChx9+PMLA9Y5+5tmxsmGVSsZ6ayqh1cNfNuPtoSvk1AFsaNIy7kxB7DA06WHBU7nZff\n38HL71dQWbc7hr5dsunVKYfencN/9+yQTX5u8z5b3J1NZbV8WlrDp6XVvDG/7uuOH1bAOWMKyQ6o\nHUdERCTRgirWrwUmAnnA/3P3f0b62G9x96OaGyYZVKxnrq07t/OjGXeyZNtqIDybz6QjLuG4bocG\nnCx5Nm+v5bl3djBtYSW1Dfw3MINu7bLo1SmHXp2y6dUxh+4dssnJqrtN7N/usHpTDUtLq/k08mfz\n9t1fID8HLj6hFaMGanpTERFJb0FO3XgQUO3un8aM8939w+aGSQYV65ltU+U2rpxxJ8vLSgHIzcrm\n5pHf4aguhwScLLlWb6rhqZnlvL+0at8bx0mXtln84EvF9Oyo/nQREUl/QZ1ZzwOuB84HegCfA48B\nv3L3ir09N1WoWJf1FVv44Vt/YVX5BgDysnL47ajvMrLzQQEnS75tO2pZsa6GlRvCdwddsa6a0s21\nxON/SH4OHNg1PN1iv645DOmdS65mdhERkQwRVLF+H3Aw8GtgOeELTK8DFrv7pc0Nkwwq1gWgdMcm\nfvjWX1izYxMQLthvGfUdRnU+OOBkwausclZtrGHl+upoIb9ha7iAj/2v4060qHcPz+zSL6Y479Eh\nO7ApIkVERIIWVLG+Aejv7ptjlnUAPnH3Ds0Nkwwq1mWXz7dv4MoZd7C2Inw452Xl8JuRl2ZcS4yI\niIjEX7yK9f2dM20NUFRvWSGwurlBmsvMbjGzN8xsspllB51HUl+PVh3585iJdC1sD8DO2vBNlGau\nXRhwMhEREZGw/S3WHwReMrPvmdmXzewy4N/AA2Z24q4/8Y+5d2Z2GNDD3ccCHwPnJjuDtEw9WnXk\n9jE/oFu9gn1G6YKAk4mIiIjsfxvM0kZs5u7er+mR9p+ZXQGUuftDZjYCuMTdf9TAtmqDkd2sLt/I\nj2fcyeodG4HwLDGTjriEY7oOCTiZiIiItESBtMG4e99G/GlyoW5mE83sHTOrMLP7661rb2ZTzKzM\nzJaa2fkxq9sDWyOPtwAton9eUkf3og7cPuYHdC8KHzpVtTVc/+4/mLZmXsDJREREJJOl2n2+VwGT\ngPv2sO5OoALoDFwA3GVmgyLrNgNtIo/bAhsTnFPSULeiDvx5zER6FHUEoNpruOG9ybyxpkXcQkBE\nRETSUEoV6+7+tLs/S71i28yKgK8B17v7DnefDjwDXBjZ5C3g5MjjU4HpSYosaaZrYXtuH/MDesYU\n7L94bzJvrP4g4GQiIiKSiVKqWN+Lg4Aqd18Ss2wuMATA3ecCa83sDWAw8GTyI0q66FrYnj+PmcgB\nrToDUOO1/GL2A4RWzw04mYiIiGSalnLf72K+6EnfZSvQetfA3X/W2J2VlJREH48bN45x48Y1L52k\nnc6F7bh99Pf58cy7WLl9HTVeS8nsB7nxcOeEHsODjiciIiIpJhQKEQqF4r7f/ZoNJlnMbBLQc9dd\nUc1sODDN3YtjtrkaGOvuZ+7nvjUbjDTa+oqt/HjGnazYvhaAbMvihsMncFKPwwNOJiIiIqksqbPB\nmNnt9cbfqTdOdNvJIiDHzPrHLBsGzE/w60qG61TQhtvH/IA+xV2AcEvML2c/xKurZgecTERERDJB\nY3vWL6k3/l298fjmRwEzyzazAiCbcHGeb2bZ7l4OPAX80syKzOxY4HTCN2kSSaiOBW24fcxEDizu\nCkAtzqQ5D/O6LjoVERGRBGtssV7/FH6zT+k34HqgHLgWmBB5/PPIuolAEbAWeAi4wt11X3hJig75\nrbltzA/o27obEC7Yb5n7T0p3bAo4mYiIiKSzRvWsm9lWd28TM97o7h0aWp/K1LMuzbGpchuXT7+N\n1eXh2UWHd+jPn8Z8n2xrKRMriYiISDIk+w6mOWZ2gpmdaGYn7mGc3dwgIi1B+/zW3DB8AlmRXy69\nv3EJ/1wSCjaUiIiIpK3GTt24Frg/Zryh3rg0bomSoKSkRFM2SpMN7dCXiwaO5x+LXwbgbx+/yMjO\nB3Fw2wMCTiYiIiJBi/cUjo1tgznO3d/cy/pfu/vPG1qfStQGI/FQXVvDD976Mws3rwCgT3EX/nbc\nTyjIzgs4mYiIiKSCZLfBPG1mRzUQ5PfABc0NItKS5GRlc8PwCRRGivPlZWu5a8FzAacSERGRdNPY\nYn0i8LyZ1bkTjJndCZwNHB/vYCKprldxZ64cclZ0/NTy6cwoXRBgIhEREUk3jSrW3f2fwDXAf8zs\nUAAzuw84GTje3ZclLKFICvtqr6M4ruuh0fEtHzzGpsptASYSERGRdNLo+ebcfTJwA/CKmU0BRgNj\n3X1losKJpDoz42fDvk6H/NYAbKzcxv998C90XYSIiIjEQ6OK9ZgpGhcD04ETgF8Bg2PWiWSkdnnF\nXDfs/Oh4Wul8nlsxM8BEIiIiki4aOxvM0n1s4u7eLz6REkuzwUii/GneUzy5bBoABdl53HfcT+hd\n3CXgVCIiIhKEeM0G06hiPZ2oWJdEqazZyXff/CPLysK3HRjUthd3HvMjcrJ0zzAREZFMk+ypG9NK\nSUlJXCerFwHIz87jF4dfQI6Fi/OFW1ZGb5wkIiIimSEUClFSUhK3/enMukicPbrkNe5cGJ5zPQvj\nz0dP5LAOLaJLTEREROJEZ9ZFUtQ3+h3PiI4DAKjF+dWcR9heVRFwKhEREWmJVKyLxFmWZXHd8PMp\nzi0EYPWOjdw891Gqa2sCTiYiIiItjYp1kQToWtienw49Lzp+fc2H/Pzdv1NZszPAVCIiItLSqFgX\nSZATewznvL5jo+O31i7gp7PupbxaLTEiIiLSOLrAVCSB3J17P36RBz95NbpsUNte/O6oy2ib1yrA\nZCIiIpJImme9iVSsSxAe/mQqd3/0fHTct3U3/nDUFXQqaBNgKhEREUkUFetNpGJdgvLM8rf4/YdP\n4oSPvx5FHfnj6CvoUdQx4GQiIiISbyrWm0jFugTp1VWz+dX7j1DjtQB0ym/DH0ZfQd/W3QJOJiIi\nIvGkYr2JVKxL0KaXzucX701mZ201AG1zW/H7oy7j4Ha9Ak4mIiIi8aJivYlUrEsqmL1+Mf/zzv3s\nqKkEoFVOAb8d9V2GddSdTkVERNKB7mDaDCUlJYRCoaBjSAYb0Wkgfxp9Ba0jN07aXl3BT96+m+ml\n8wNOJiIiIs0RCoUoKSmJ2/50Zl0kQJ9uXc1Vb9/NxsptAGRbFtcMPZev9h4dcDIRERFpDrXBNJGK\ndUk1q7av56q372Z1+cbosksPOpVLBp6CWbP/j4uIiEgAVKw3kYp1SUUbKrby01n3snjrquiyM3qP\n5qpDzyEnKzvAZCIiItIUKtabSMW6pKry6gquf/cfvLN+UXTZsV2HcOOICynIzgswmYiIiOwvFetN\npGJdUllVbTW3zH2Ml1e9F112aPsDuWXUd2ib1yrAZCIiIrI/VKw3kYp1SXW1Xss9H/2bh5dMjS7r\n3aoLtx51Gd2LOgSYTERERBpLxXoTqViXluKJpW9y+/ynccLHa4f81tx65GUMbNsz4GQiIiKyLyrW\nm0jFurQkr30+l0nvP0RVbQ0AxbmF/O3Yq+jZqlPAyURERGRvdFMkkQxwQo9h/P6oyynOKQCgrGoH\nv5j9AJU1VQEnExERkWRQsS6S4g7vOIA/jL6C3MgUjou2fMYdC54NOJWIiIgkg4p1kRZgULve/HDw\nmdHxlOXTeXXVnAATiYiISDKoWBdpIc7ucwwndB8WHf/fB/9iRdnaABOJiIhIoqlYF2khzIxrD/sG\nBxSFLy7dUVPJDe9NpqJmZ8DJREREJFFUrIu0IK1yC5g08mLysnIA+HTbav40b0rAqURERCRRVKyL\ntDAD2vTkx0POjo5fWPk2L658J8BEIiIikigq1kVaoNN7j+aUnkdEx7//8AmWblsTYCIRERFJBBXr\nIi2QmXH10HPpU9wVgMraKm54bzLl1ZUBJxMREZF4UrEu0kIV5eQz6YiLKcjOA2B5WSk/m3UvpTs2\nBZxMRERE4kXFukgL1rd1N35y6DnR8dyNn3Lx67/jpc/exd0DTCYiIiLxYJn2Dd3MPNPes6S/Bxa/\nwn0fv0QtXxzbx3c7jGsOO5d2ecUBJhMREclMZoa7W3P3k5Fn1ktKSgiFQkHHEImbiwaO545jrozO\nwQ7w+poPuPj13zGjdEGAyURERDJLKBSipKQkbvvTmXWRNFJeXcmdC57lmRUz6iw/o/dorhxyVrS/\nXURERBIrXmfWVayLpKEZpQu45YPH2Fi5LbrsxO7DuemIiwJMJSIikjnUBiMiDRrTdTCTj/8px3c7\nLLps6ur3eXfdogBTiYiIyP5SsS6SptrlFTPpiIvr3DzptvlTqK6tCTCViIiI7A8V6yJpzMz4/qDT\nKczOB2BZWSlTlk0POJWIiIg0lop1kTTXqaANlxw0Pjq+f9FLbIrpZRcREZHUpWJdJAOc13csvVp1\nBqCsuoJ7Pvp3wIlERESkMVSsi2SA3KwcfjTkrOj4hZWz+GjzygATiYiISGOoWBfJEKO7DOLoLoMB\ncJzb5k+h1msDTiUiIiJ7o2JdJINcOeRMcrOyAZi3aRkvr5odcCIRERHZGxXrIhnkgFad+Xrf46Pj\nuxY+R3l1RYCJREREZG9UrItkmIsGjqdTfhsANlZu4x+LXgk4kYiIiDRExbpIhinKyef7g06Pjh/9\n9DWeWPpGgIlERESkIWlRrJtZGzN728y2mtngoPOIpLrxPUcwvEP/6Pi2+U/zt49fxN0DTCUiIiL1\npUWxDmwHvgI8EXQQkZbAzPj1yEs4tP2B0WWTF7/CrR8+To1miBEREUkZaVGsu3uNu28ALOgsIi1F\nm7xW/OGoyxnd+ZDosmdXzOTG9yZTWVMVYDIRERHZJfBi3cwmmtk7ZlZhZvfXW9fezKaYWZmZLTWz\n84PKKZKOCnPyuXnUdzil5xHRZa+v+ZCfzrqH7VWaJUZERCRogRfrwCpgEnDfHtbdCVQAnYELgLvM\nbBCAmV1lZlPN7OqkJRVJQzlZ2fx8+Pl1pnScs2EJl0+/jaXb1gSYTERERCxVLigzs0lAT3e/NDIu\nAjYBg919SWTZZGCVu1/XwD7+Dtzq7vP38jqeKu9ZJJW4O48smcrdH70QXVaQncfVQ8/hSweMCjCZ\niIhIy2NmuHuzW7RT4cx6Qw4CqnYV6hFzgSF72tjMXgDGA/eY2UVJyCeSVsyMCQNO4vrh3yI/KxeA\nipqd/Pr9R7ll7mNU1uwMOKGIiEjmyQk6wF4UA1vrLdsKtN7Txu5+WmN3XFJSEn08btw4xo0bt//p\nRNLUqQeMZGCbnvxi9mSWl60F4IWVb7Nw8womHXExvYu7BJxQREQk9YRCIUKhUNz3m8ptMMOBae5e\nHLPN1cBYdz+zGa+jNhiRRiivruTWDx/nlVWzo8uKcwu577if0KOoY4DJREREUl8mtMEsAnLMrH/M\nsmFAg/3oIhI/RTn53DB8Aj8deh55WeFfwpVV7eDuhc8HnExERCRzBF6sm1m2mRUA2YSL83wzy3b3\ncuAp4JdmVmRmxwKnAw8GmVckk5gZZ/QZw61HXhZd9trquXy4cWmAqURERDJH4MU6cD1QDlwLTIg8\n/nlk3USgCFgLPARc4e4LgwgpkskO7zSAE7sPj47vWPAsaicTERFJvJTpWU8W9ayLNM3n5Ru4IHQL\nVbU1AJSMuJCTehwecCoREZHUlAk96yKSQnoUdeTcA8dGx39d+AKVNVUBJhIREUl/GVmsl5SUJGRq\nHZF0d+HAk2mb2wqA1Ts28uSyNwNOJCIiklpCoVCdacKbS20wIrJfnlz6Jn+aPwWA4pwCHj3xOtrl\nFe/jWSIiIplFbTAiEogz+xxN71bhGyOVVVfw90UvB5xIREQkfalYF5H9kpOVzfcHfTU6fmb5W6yI\n3OlURERE4kvFuojst2O6DmFExwEA1Hgt9y16KeBEIiIi6UnFuojsNzPjipiz61M/f5/FW1YFmEhE\nRCQ9qVgXkSYZ1K43x3U9NDr+28cvBphGREQkPalYF5Em++7BX8YIX+j+1toFfLhxacCJRERE0ktG\nFuuaZ10kPvq16c74niOi43s++jeaGlVERDKZ5llvJs2zLhJfq7avZ0LoFmq8FoA/HHU5ozofHHAq\nERGRYGmedRFJCT1bdeKrvY6Kju/V2XUREZG4UbEuIs128cDx5GXlALBwy0reLJ0XcCIREZH0oGJd\nRJqtc2E7zj7wmOj4T/OeYt6mZcEFEhERSRMq1kUkLib0P4minHwA1lVs4Ydv/YUHFr8S7WUXERGR\n/acLTEUkbmauXchNsx+krLoiuuzwjv25fvgEuhS2CzCZiIhIcsXrAlMV6yISV2vKN3LTnIfqtMG0\nzi3kqkO/xsk9RmDW7M8tERGRlKdivYlUrIskXnVtDZMXv8IDi1+hli/+vx3X9VCuHnouHQvaBJhO\nREQk8VSsN5GKdZHkmbvhU371/sOs2bEpuqx1biHfO/gr9GrVmcKcPAqz8+la2J5WuQUBJhUREYkv\nFetNpGJdJLnKqyu4c+HzPLP8rQa3KcjO45ZR3+GITgOTmExERCRxVKw3kYp1kWC8u34Rv537WJ2z\n7LHa5BZx73FX0aOoY5KTiYiIxJ+K9SZSsS4SnPLqCh779HUWbfmMHTU72VFdyfKytWyPzB7Tv3V3\n7jrmRxRGpoAUERFpqVSsN5GZ+Y033si4ceMYN25c0HFEMt78Tcu4csYdVNXWAHBi9+GUjLhQs8aI\niEiLFAqFCIVC3HTTTSrWm0Jn1kVSz3MrZvJ/H/wrOr78kNO4YMBJASYSERFpnnidWdcdTEUkcKf3\nHs1ZfY6Ojv/60QtMWTY9wEQiIiKpQcW6iKSEHw05i8M69I2O/zDvSR7+ZGqAiURERIKnYl1EUkJu\nVg43j7yUQe16R5fd/dHz3PvRv1HrmoiIZCr1rItISimvruB/3rmPORuWRJed3ns0Vx36NXKzcgJM\nJiIi0niaDaaJVKyLpL7Kmp1c/95kZq5dGF02vEN/Jo28mHZ5xQEmExERaRwV602kYl2kZaiqrebm\nuf/klVWzo8u6F3bg5lGX0r9NjwCTiYiI7JuK9SZSsS7Scrg7Dy+Zyj0f/Rsn/P+2TW4RD467lg75\nrQNOJyIi0jBN3Sgiac/MuGDASdw86lIKs8N3Nd1aVc7fF/0n4GQiIiLJoWJdRFLeMV2HUDLiwuj4\nuRUzWbatNMBEIiIiyaFiXURahDFdBnFEp4EA1Hgtd3/0fMCJREREEk/Fuoi0CGbGxEFnYITb/6aX\nzmf2+sUBpxIREUksFesi0mIMbNuTUw8YGR3fsfA5ar02wEQiIiKJpWJdRFqU7+tPVqoAABwsSURB\nVB38ZfIiN0datOUzpq2ZF3AiERGRxFGxLiItSpfCdpxz4HHR8cur3gswjYiISGKpWBeRFue03kdG\nH89Yu5Cyqh0BphEREUkcFesi0uL0Ke7KwDY9AdhZW82baoUREZE0pWJdRFqkk3ocHn38yuezA0wi\nIiKSOCrWRaRFOrnnF8X67PWL2VS5LcA0IiIiiaFiXURapK6F7TmsQ18gfJOk11bPDTiRiIhI/GVk\nsV5SUkIoFAo6hog008k9RkQfv7pqToBJREREwkKhECUlJXHbn7l73HbWEpiZZ9p7FklXmyrLOPvV\nEmoiN0Z6/MTr6VbUIeBUIiIi4Ttvu7s1dz8ZeWZdRNJD+/xijug0MDqeuvr9ANOIiIjEn4p1EWnR\nToyZFUZTOIqISLpRsS4iLdoxXQeTRfi3jPM3LWdDxdaAE4mIiMSPinURadHa5RVzWId+ADjO9NL5\nAScSERGJHxXrItLiHdft0OjjN0vVCiMiIulDxbqItHjHxhTr761fRHl1RYBpRERE4kfFuoi0eD2K\nOjKgTQ8AqmpreHvtRwEnEhERiQ8V6yKSFo7rGtMKs4dZYXR/BRERaYlygg4gIhIPx3Ubyt8XvwzA\njLULqKqtJseyeX/jEh779HXeXbeItnmt6Ne6G4Pa9ebr/Y6nOLcw4NQiIiJ7pzuYikhacHe+PvVX\nrNmxCYC8rBza5rViXcWWPW5/bNch/GbkpZg1++ZyIiIiu9EdTEVEYpgZY7sdFh3vrK1usFAHmFY6\nnzfXfJiMaCIiIk2mNhgRSRsXDDiJldvXsWDTcrZUbQfCZ9i/dMBIzu07FoAHFr/Cq5/PAeBP86cw\nsvNBFOUUBJZZRERkb9KiDcbMRgG3ATuBVcBF7l7TwLZqgxHJAGVVO1hXsYXOBW3r9KZv21nOhNAt\nbNpZBsB5fY/jR0PODiqmiIikKbXB1LUCOMHdxwHLgTODjSMiQSvOLaRv6267XUTaOq+IK4d88RHx\n5NJprCxbl+x4IiIijZIWxbq7l7p7ZWS4E6gNMo+IpLaTe4xgRMcBANTi/GfVuwEnEhER2bPAi3Uz\nm2hm75hZhZndX29dezObYmZlZrbUzM7fx776AOOB5xKZWURaNjPjawceGx2/vOo9zcMuIiIpKfBi\nnXCP+STgvj2suxOoADoDFwB3mdkgADO7ysymmtnVkXEb4AHg4ob61UVEdhndZVC0RWZ1+UbmbVoW\nbCAREZE9CLxYd/en3f1ZYGPscjMrAr4GXO/uO9x9OvAMcGHkeX909xPd/fdmlg08CpS4+ydJfgsi\n0gLlZ+dyQvdh0fHLq94LMI2IiMieBV6s78VBQJW7L4lZNhcYsodtzweOBG6InG0/LxkBRaRlG99z\nRPTxa5/Ppaq2OsA0IiIiu0vledaLga31lm0FWtff0N0fAh5q7I5LSkqij8eNG8e4ceOaFFBEWrZh\nHfrRpaAdays2s6VqO08tm87pvY/SvOsiIrLfQqEQoVAo7vtNmXnWzWwS0NPdL42MhwPT3L04Zpur\ngbHu3uSpGTXPuojEunvh8zy8ZGp0nG1ZnNXnaK4cchbZlsq/fBQRkVSWCfOsLwJyzKx/zLJhwPyA\n8ohIGjqt11HkWHZ0XOO1PLlsGrfPm6IZYkREJHCBn1mPXByaC/wCOAD4HlDt7jVm9gjgkWUjCE/J\neLS7L2zG6+nMuojUsWjLZ7yyajaz1n3Mp9tWR5dP6H8iJ/QYTs+ijrvdXElERGRv4nVmPRWK9RuB\nGwkX5bvc5O6/NLP2wP2E505fD1zr7o818/VUrIvIHtV6LTfNeYipn7+/27ouBe0Y1K4Xlx1yGr2L\nu0SXP7VsGi+ufIev9xvL+J5HJDOuiIiksLQp1pNNxbqI7M3Ommp+OuteZm9YvMf1nQva8vex19A2\nrxWvrprDTXMeBCA3K5vHT7yBjgVtkhlXRERSVCb0rCdMSUlJQq7WFZGWLy87h1tGXcplh3yFMV0G\n06e4K7lZX/S0r6vYwu8+eJxPtn7O/33wxS/6qmprmLJ8ehCRRUQkhYRCoTozDzaXzqyLiOxDdW0N\nodVzuWnO3meIbZNbxBMn3UBhTn6SkomISKrSmXURkSTJycrm5J4jOLPP0buty8/KpVN+uPVla1U5\n/145K9nxREQkjalYFxFppB8OPoND2vYCwj3qIzoO4A+jr+DCgSdHt3ngk1fZUFH/fm4iIiJNozYY\nEZH9UFlTxart6+nRqiMF2XkA7Kiu5Juv/YaNldsAokW8bqokIpK51AYjIhKA/Oxc+rXpHi3UAQpz\n8rlh+ASM8Gfy7A2f8EjMXVFFRESaSsW6iEgcjOx8EBcPHB8dP7V0mu6AKiIizaZiXUQkTi4eOJ42\nuUUArK/cyqItnwWcSEREWjoV6yIicZKTlc2YLoOj42ml8wNMIyIi6SAji3XdFElEEuWYrkOij6er\nWBcRyTi6KVIzaTYYEUmk8uoKvvryDVTV1gDwxEk30LWwfcCpREQk2TQbjIhICirKKeDwjgOi42lr\n5vH66g/42qs3MWnOw1TVVgeYTkREWpqcoAOIiKSbY7seyqx1HwPwwspZrK3YzJad23l51Xu0ying\nJ0PPCTihiIi0FDqzLiISZyf0GEZeVvhcyOKtq9iyc3t03ZTl03nps3eBcMuM2vJERGRvVKyLiMRZ\nu7xiTuwxvMH1f134PE8sfZMvv/RzfvDWn6mO9LeLiIjUp2JdRCQBzu5zTIPr1ldu5bb5U6jFmbdp\nGe9vXJLEZCIi0pKoWBcRSYBB7XpzcNsDouPxPUZwas+Re9z2ky2fJyuWiIi0MCrWRUQSwMy44pCv\nkpuVTevcQi4ceDLHdB28x20Xb12V5HQiItJSaDYYEZEEGdn5IJ486UZyLIvWeUV0LmhLtmVR47V1\ntlOxLiIiDdGZdRGRBGqfX0zrvCIAinMLGd6x/27bLN9WSkXNzmRHExGRFkDFuohIEh3f7bDdltXi\nLNmqvnUREdldRrbBlJSUMG7cOMaNGxd0FBHJMKf3Hs2q8vVsr6pgY+U23lq7AIBFW1YxpP2BwYYT\nEZFmC4VChEKhuO3PMu2GHGbmmfaeRSQ1PbrkNe5c+BwAp/YcyfWHfyvgRCIiEi9mhrtbc/ejNhgR\nkYAcFDO1439WvcsdC57VHU1FRKQOFesiIgEZ1qEfg9r2io7/+WmIqavfDzCRiIikGrXBiIgEaHtV\nBTfNeYgZkd71HkUdObvPMbTPL2Z8zxFkmc6piIi0RPFqg1GxLiISsE2VZZz330lU1lbVWX54x/4c\n1qEfAP1ad2dst6HkZGUHEVFERPaTivUmUrEuIqnoDx8+yZTl0/e6zZl9juaaoecmKZGIiDSHLjAV\nEUkj3+h3PNn7aHl5ZvlbzNnwSZISiYhIKtCZdRGRFDG9dD7T1szjSweM4pkVbzFr7ccM79ifWes+\nYkfkDqd9irvwwPE/Uy+7iEiKUxtME6lYF5GWZn3FFiaEbqG8uhKAf4y9hv5tegScSkRE9kZtMCIi\nGaJTQVtGdjooOl6weUWAaUREJJlUrIuItACD2/WOPl6oYl1EJGOoWBcRaQEGxRTrz62Yye3zn6Z0\nx6bosp011SzbVkqt1wYRT0REEiQn6AAiIrJvh7TrhWE44WtuHl/6BqvLN3LzqEuZtmYef5j3JOsq\ntnBaryP5n2HfDDitiIjEi86si4i0AEU5BXQpbFdn2bTSeczftJz/ffd+1lVsAeCFlbP4YOOnQUQU\nEZEEULEuItJCjOw0cLdlTy59c7dldyx4Fs16JSKSHlSsi4i0EN/oN47i3MI6y175fPZu2y3YvIK1\nFZuTlEpERBJJxbqISAvRt3U3XjhlEhcMOGmP62ML+TXlm/a4jYiItCwq1kVEWpAsy2Jo+767LS/O\nLeSIjgOi49U7NnLz3H9y5Vt38Nn2dcmMKCIicaTZYEREWpiD2x6w27JB7XrTpbB9dPzUsmnR+djP\nf+1mTut1JGO7HcaYLoMwa/YN9UREJEl0Zl1EpIXpWNCGHkUd6ywb3K53ndli6t846YWVs7j2nb9x\n64ePJyWjiIjER0YW6yUlJYRCoaBjiIg02bWHfZ1uMWfSj+16KF0L2u3lGWHPrphJWdWOREYTEclo\noVCIkpKSuO3PMm16LzPzTHvPIpKedtZUM3PtAtrnt2Zoh77M37SMK6bfvs/n3X/c1Qxs2zMJCUVE\nMpeZ4e7N7jtUz7qISAuVl53D2O6HRcddGnFmHeDz8g37LNY/2rySnbXVHNy2J/nZec3KKSIiTadi\nXUQkTXQoaEO2ZVHjtXWWn9XnaEp3bGbG2gVAuFhvyNad23lq2XTuW/QSANmWxY2HX8AJPYYnLriI\niDQoI3vWRUTSUbZl0Tq3qM6ys/scw9VDz+WImLuf7q1Yv/fjF6OFOkCN13JAq87xDysiIo2iYl1E\nJI30rDdLzHHdDgWoM3vM3or1p5e/VWecn5VL39bd4phQRET2h4p1EZE0cninL26MdNkhX2FU54MB\n6F7UIbp81rqP+dmsv3H3wufrtMxs21m+2/4ObncAOVnZCUwsIiJ7o551EZE0cuGAk+lS0I5erToz\nsvNB0eU9Yop1gBlrFzBj7QLMjAsHnMy6is1cEPrtbvsb2EazxoiIBElTN4qIZIjTX/4Fm3eW7ddz\nrhl6Lmf2OTpBiURE0le8pm5UG4yISIYY33PEfm3fMb8NJ/U4PEFpRESkMXRmXUQkQ7g7H2xcyuKt\nq+jXuhuTF7/C7A2f7LZd98IO3DjiQvq27kpRTkEASUVEWr54nVlXsS4ikqGqaquZvPgVJi9+Jbrs\ngFadeWTc/2DW7O8vIiIZTW0wIiLSLLlZOVx60Kl1lrXPK1ahLiKSQlSsi4hksCzLqjMH+5GRqR5F\nRCQ1qFgXEclwPx9+PsU5BfRq1Zlz+h4XdBwREYmRFj3rZtYFmAJUAdXABHcvbWBb9ayLiNRTVVtN\njmWrBUZEJE50gWkMi6nAzexioKe7/6aBbVWsi4iIiEhC6QLTGPWq79bA/KCyiDRVKBQKOoJIg3R8\nSqrSsSnpLvBi3cwmmtk7ZlZhZvfXW9fezKaYWZmZLTWz8/eyn2FmNhOYCMxOdG6ReNM3HEllOj4l\nVenYlHQXeLEOrAImAfftYd2dQAXQGbgAuMvMBgGY2VVmNtXMrgZw97nuPhq4AbguKckDFNSHUyJe\nt7n7bMrz9+c5jd12X9tl0jeUIN5rJh6bjd0+XtukAx2bzduHPjsTR9/Xm/f8II7N/X3dpgq8WHf3\np939WWBj7HIzKwK+Blzv7jvcfTrwDHBh5Hl/dPcT3f33ZpYb89StwPYkxQ+M/lM37/n6hpNYKoia\n/nwV64mlY7N5+9BnZ+Lo+3rznp/OxXrKXGBqZpMIXxh6aWQ8HJjm7sUx2/wEON7dz6z33FHArYRn\ngqkALt3bbDAJegsiIiIiIlHxuMA0Jx5BEqSY8FnyWFsJX0Bah7u/AxzfmJ3G44smIiIiIpIMgbfB\n7EUZ0KbesrbAtgCyiIiIiIgkXSoX64uAHDPrH7NsGJqWUUREREQyRODFupllm1kBkE24OM83s2x3\nLweeAn5pZkVmdixwOvBgkHlFRERERJIl8GIduB4oB64FJkQe/zyybiJQBKwFHgKucPeFQYQUERER\nEUm2lJkNJmhm1gWYAlQRnlVmQkMzyogkU2S2o9uAnYTvS3CRu9cEm0okzMzaAK8Ag4DR7r4g4Egi\nAJjZLcDRwFLCs8Tpc1MC15TPzFQ4s54q1rn7Me4+jnCrzXcCziOyywrghMixuRw4c++biyTVduAr\nwBNBBxHZxcwOA3q4+1jgY+DcgCOJ7LLfn5kq1iO87q8YWqMLWSVFuHupu1dGhjuB2iDziMRy9xp3\n3wBoWlxJJUcDL0cevwQcE2AWkaimfGamRbFuZhPN7B0zqzCz++uta29mU8yszMyWmtn5e9nPMDOb\nSbhXfnaic0v6i9exGdm+DzAeeC6RmSVzxPP4FEmEZhyj7fniXi1bgA7JyiyZIZmfn2lRrBPu450E\n3LeHdXcSvqtpZ+AC4C4zGwRgZleZ2VQzuxrA3ee6+2jgBuC6pCSXdBeXYzPS4/YAcLH6LiWO4nJ8\niiRQk45RYDNf3KulLbAxwTkl8zT12NxvaXWBqZlNAnq6+6WRcRGwCRjs7ksiyyYDq9z9unrPzXX3\nqsjjU4BT3P2apL4BSVvNPDazgWeBW939teQml0zQnOMzZh9/J3yMqoVQ4m5/j1EzGwZc5e6XmNn/\nAp+6+2NB5Zf01dTPz/35zEyXM+sNOQio2vXFipgLDNnDtsPN7HUz+y/wY+B3yQgoGWt/js3zgSOB\nGyJnM89LRkDJaPtzfGJmLxBu0brHzC5KQj6RvR6j7j4XWGtmbwCDgSeTH1Ey1D4/P/f3MzMn7hFT\nSzFf9KztspXwBaR1uPs7wPHJCCXC/h2bDxG+z4BIsjT6+ARw99MSnkikrn0eo+7+s6QmEglrzLG5\nX5+Z6X5mvYwvetZ2aQtsCyCLSCwdm5LKdHxKqtMxKqkq7sdmuhfri4AcM+sfs2wYmpZRgqdjU1KZ\njk9JdTpGJVXF/dhMi2LdzLLNrADIJvwFyjezbHcvB54CfmlmRWZ2LHA64ZseiSScjk1JZTo+JdXp\nGJVUlcxjMy2KdeB6oBy4FpgQefzzyLqJQBGwlnDf7xXuvjCIkJKRdGxKKtPxKalOx6ikqqQdm2k1\ndaOIiIiISDpJlzPrIiIiIiJpR8W6iIiIiEiKUrEuIiIiIpKiVKyLiIiIiKQoFesiIiIiIilKxbqI\niIiISIpSsS4iIiIikqJUrIuIiIiIpCgV6yIiIiIiKUrFuoi0WGb2dzP7ZdA54i1d31dzmdlSMzsx\nQfvuY2a1ZrbVzL4bp301+3usmZ1kZtvMrCZR711EUpuKdRFJeWYWMrONZpYbdBYAM7vYzN4MOofE\nnQNt3f1vcdpX83fi/l93bw0sj8f+RKTlUbEuIinNzPoAxwK1wBkBx9nF2EcxFo+zqpIYZpa9t9VJ\nC7J/UjWXiCSYvpmISKq7CJgB/AO4ZG8bmtn3zGyxma03s6fNrHvMulozu9zMFkXO0v8lZl2Wmf3e\nzNaZ2RIzm9hQG4OZHQLcBYyJtCdsjCz/u5ndaWYvmNk2YJyZfcXMZpvZFjNbbmY31tvXsWY23cw2\nRdZftIfXa21mU83sT3tYN87MPogZv2Jms2LGb5jZGZHH15rZJ5E2j3lmdlZkeV7k9QfHPK+TmZWb\nWafI+KtmNiey3TQzGxqz7VIzu9rM5kbWP2pmeZF1u/0GIvJ17RfzNbvDzP4d+Vq+aWZdzeyPkX+j\nBWY2rN7bPtLM5pvZBjO7b9drNTLnz8xsLlDW2B+mzOzMyD63RI6tUyLLXzOz35jZ25F1U8ysXQP7\nOMfMPjWzwTEtMpeY2YrI+7jczEZGvoYbzezPjckmIplBxbqIpLqLgIeAR4BTzazznjaK9PP+BjgX\n6A6sAP5Zb7PTgCOAYcDXdxVewGXAqcBhwAjgLBo4c+7uHwFXADPcvbW7d4hZfT4wKdK2MA0oAy50\n97aR174ipnjuA/wbuA3oBAwH3q/3njoArwJvuvv/20OcmcAAM+tgZjnAUKC7mbUys4LIe30jsu0n\nwDHu3ga4CXjIzLq6+07gyUj2Xb4OhNx9vZkdDtwHfA/oAPwVeNbqtiSdB5wC9I18bS+J/ZLV/xLW\nG58HXAd0BHYS/sHs3cj4SeCP9bb/FjAe6A8cDFwf+Vo1Juc3gS8D7dy9ln0wsyOBycDVkX/DscCy\nmE0ujLzXbkANsFuRbWbfBm4GTnL3BTGrjgQGAN8A/hT5GpwIHEr42DxuX/lEJDOoWBeRlGVmxwK9\ngX+5+2zCBee3Gtj8W8B97j7X3auA/yV89rt3zDY3u/s2d18JvEa4QIZwwXibu6929y3ALU2M/Iy7\nzwRw953u/oa7z4+M5xH+4eH4yLbnA6+4+7/cvcbdN7n7BzH76gm8Djzm7nXOyO/i7hXAO4SLyCOA\nucB04BhgNLDY3TdHtn3S3Usjjx8HFhMuGAEepW6x/i3g4cjj7wF3u/u7HvYgUBnZ/y63uXtp5LWe\n44uv657Ub+eY4u7vR35omALscPeH3d2Bx/awrz+7++eR1/p1TO7G5vzc3Sv3ki/WpYSPqakAkeNj\nUcz6B919obvvAG4gXGTven8GXAVcDRzv7ktjnufALyPHyKvAduBRd9/g7p8DbwKHNzKjiKQ5Fesi\nksouAl52902R8aPAxQ1s24OYi/DcfTuwgXDRu0tpzONyoDjmuStj1kUfR1pVtkXaRz7cR97YfWBm\nR0ZaWNaa2WbgcsJn0QF6AUv2sq/TgALCZ4j35g3gBMIFeyjyZxzhHwpej8lyUUyLyCZgSEyW14BC\nMxsVOeM/DHg6sq4PcHWkPWNj5LkHEP6a7dLQ17UxYp+7Yw/j+vv6LObx8pgcjckZ+9zG2Ne/Uey/\n93Igly++pgDXAHe4++o9PHdtzOPGvG8RyVA5QQcQEdmTSBvH14EsM9tV7OQB7cxsqLvXL5w/J1yw\n7Xp+K8KtFI0p0FYTLux2iZ6Nd/dpQOt62zd0cWn95Y8AtwOnunuVmf0xkgnChd6RNOweoD3wopmd\nGjl7uyevA78nXCzeAmwG7gUqgDsAIr9duAc4wd1nRJbNIXKW291rzexfhM+olwLPR37Y2ZXz1+5+\n816yNmQ7ULRrYGbdmrCP+nrFPO5D+N8dGpdzf2doWUm43aaxWXYC6wkfP064Neg/Zlbq7k/t52uL\niAA6sy4iqetsoBoYRPhM77DI42mEz7jX9yjwbTM7zMzyCfevz4y0vOzLv4Afm1mPyEWCP9vH9qXA\nAbbvqSSLgU2RQv1I6rbwPAycZGbnmll2pO+8zsWU7n4l8DHwfOSHlz15i3Dv9pHArEhfdB/gKL7o\nV29FeDad9Ra+mPbbhHujYz1KuH/6W4R/yNjlXsK99kdC+IcgC18422of7x3CbTlDYv5NbmT/C+b6\nbTMTzaxnpJ//Or64LqE5ORtyH+Fj6gQL62FmB8esv8DMDjGzIsLXATwead/ZlXs+8CXgL2Z2+l7e\nk4hIg1Ssi0iqugi4391XufvaXX+AvwAT6s/m4e7/Jdw3/BSwivDFjt+M3aTe/mPH9wIvAx8A7wEv\nANV7uQhxKuFCbI2ZrW1gG4AfAJPMbAvhCyEfi8m7EvgK4VaJjcAcwhe41ncZ4TO8T8fOfBKzn/JI\n5nnuXh1ZPANY5u7rI9ssJHz2fSawhnALzLR6+5lF+Ex4d+DFmOXvEe4H/4uFZ75ZRN1WpAaLb3df\nDPwS+G/keU2Zm97rPX6E8L/VJ4T77n/d3JwxjJhC2t3fAb5N+ALQLYRbjGKvgXiQ8AWonxP+rc+P\n679e5DqE04F7zOzUBrLsaywiGcy+OAkgIiIAZvYl4C537xt0FkmOSKvQR4Tbh37q7vftY/vXCF9g\nen+Cc51IeFacXOA0d399H08RkTSjnnURyXiRFpMTCJ+x7Ua4XUM9xhnE3VcQ01+fKiIz0bQPOoeI\nBEdtMCIi4daHmwi3o7xHuMVlj9MlikTo19IikhRqgxERERERSVE6sy4iIiIikqJUrIuIiIiIpCgV\n6yIiIiIiKUrFuoiIiIhIilKxLiIiIiKSov4/WU9t6oH/qDcAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x114a70850>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "fig = plt.figure(figsize=(12.,10.))\n", "ax1 = fig.add_subplot(111)\n", "\n", "#ax1.fill_between(kv,spec_vel[:,3],spec_vel[:,4], color=color1, alpha=0.25)\n", "#ax1.fill_between(kv,spec_vel[:,5],spec_vel[:,6], color=color2, alpha=0.25)\n", "\n", "#ax1.set_xscale('log'); ax1.set_yscale('log')\n", "\n", "ax1.loglog(kv,spec_vel[:,1],color=color1,linewidth=lw,label=\"Geostrophic vel.\")\n", "#ax1.loglog(kv,spec_vel[:,2],color=color2,linewidth=lw,label=\"Ascending\")\n", "\n", "#ax1.axis((1./(1000),1./4,.4e-5,10))\n", "\n", "#ax1.loglog(ks,Es2,'--', color='k',linewidth=2.,alpha=.7)\n", "#ax1.loglog(ks,Es5,'--', color='k',linewidth=2.,alpha=.7)\n", "#ax1.loglog(ks,Es4,'--', color='k',linewidth=2.,alpha=.7)\n", "\n", "#plt.text(0.0011, 3.1,u'k$^{-3/2}$',fontsize=25)\n", "#plt.text(0.0047, 5.51,u'k$^{-5}$',fontsize=25)\n", "#plt.text(0.002, 5.51,u'k$^{-4}$',fontsize=25)\n", "\n", "ax1.loglog(k,A*((2*pi*k)**2)*(spec[:,1]),color=color2,linewidth=lw,label=\"from SSH spectrum\")\n", "ax1.loglog(slab1['k'],slab1['Eu'],color=color3,linewidth=lw,label=\"ADCP\")\n", "\n", "\n", "\n", "\n", "\n", "plt.xlabel('Along-track wavenumber [cpkm]')\n", "plt.ylabel(u'KE psectrum [m$^{2}$ s$^{-2}$/ cpkm]')\n", " \n", "lg = plt.legend(loc=2, numpoints=1,ncol=2)\n", "lg.set_title(r\"Across-track KE spectrum\",{'size':25})\n", "lg.draw_frame(False)\n", "\n", "#plt.axis((1./1.e3,1./4.,1./1.e3,1.e1))\n", "\n", "#plt.text(1./15, 5., \"AltiKa\", size=25, rotation=0.,\n", "# ha=\"center\", va=\"center\",\n", "# bbox = dict(boxstyle=\"round\",ec='k',fc='w'))\n", "\n", "add_second_axis(ax1)\n", " \n", "plt.savefig('figs/spec_altika_asc_desc_vel',bbox_inches='tight')\n", "plt.savefig('figs/spec_altika_asc_desc.eps_vel',format='eps',bbox_inches='tight')\n", "plt.savefig('figs/spec_altika_asc_desc_vel.pdf',format='pdf',bbox_inches='tight')" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "['Eul',\n", " 'Evl',\n", " 'Es2',\n", " 'k',\n", " 'kK1',\n", " 'Kpsi',\n", " 'ks',\n", " 'Eu',\n", " 'Ev1',\n", " 'Euu',\n", " 'Es3',\n", " 'Ew1',\n", " 'Ev',\n", " 'Kphi',\n", " 'Evu',\n", " 'Enoise']" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
MarjorieH/camera_model
python/notebooks/g2i_collinear.ipynb
3
3300
{ "cells": [ { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from math import sin, cos, tan, pi\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Ground point, should produce image point 400 samples and 500 lines\n", "X = 1116890\n", "Y = -1604470\n", "Z = 1459570\n", "\n", "# Hardcoded values from json\n", "# some set to 0 for simplicity\n", "omega = 2.256130940792258\n", "phi = 0.09433201631102328\n", "kappa = -0.9630375478615623\n", "focal_length = 549.1178195372703\n", "pixel_pitch = 0\n", "principal_point_x = 0\n", "principal_point_y = 0\n", "spacecraft_x = 1728357.7031238307\n", "spacecraft_y = -2088409.0061042644\n", "spacecraft_z = 2082873.9280557402" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def rotation_from_opk(o, p, k):\n", " om = np.empty((3,3))\n", " om[:,0] = [1,0,0]\n", " om[:,1] = [0, cos(o), -sin(o)]\n", " om[:,2] = [0, sin(o), cos(o)]\n", " \n", " pm = np.empty((3,3))\n", " pm[:,0] = [cos(p), 0, sin(p)]\n", " pm[:,1] = [0,1,0]\n", " pm[:,2] = [-sin(p), 0, cos(p)]\n", " \n", " km = np.empty((3,3))\n", " km[:,0] = [cos(k), -sin(k), 0]\n", " km[:,1] = [sin(k), cos(k), 0]\n", " km[:,2] = [0,0,1]\n", " \n", " return km.dot(pm).dot(om)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sample: 4337.42884664\n", "Line: -13809.8886083\n" ] } ], "source": [ "rm = np.empty((3, 3))\n", "rm[:3, :3] = rotation_from_opk(omega, phi, kappa)\n", "\n", "# Collinearity equations\n", "samp = -focal_length * ((rm[0, 0] * (X - spacecraft_x) + rm[0, 1] * (Y - spacecraft_y) + rm[0, 2] * (Z - spacecraft_z))/(rm[2, 0] * (X - spacecraft_x) + rm[2, 1] * (Y - spacecraft_y) + rm[2, 2] * (Z - spacecraft_z))) + principal_point_x\n", "line = -focal_length * ((rm[1, 0] * (X - spacecraft_x) + rm[1, 1] * (Y - spacecraft_y) + rm[1, 2] * (Z - spacecraft_z))/(rm[2, 0] * (X - spacecraft_x) + rm[2, 1] * (Y - spacecraft_y) + rm[2, 2] * (Z - spacecraft_z))) + principal_point_y\n", "\n", "# Image point\n", "print(\"Sample: \", samp)\n", "print(\"Line: \", line)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
unlicense
briennakh/BIOF509
Wk08/Wk08_Numpy_model_package_survey_inclass_exercises.ipynb
1
128890
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Week 8 - Implementing a model in numpy and a survey of machine learning packages for python" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This week we will be looking in detail at how to implement a supervised regression model using the base scientific computing packages available with python.\n", "\n", "We will also be looking at the different packages available for python that implement many of the algorithms we might want to use." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Regression with numpy\n", "\n", "Why implement algorithms from scratch when dedicated packages already exist? \n", "\n", "The packages available are very powerful and a real time saver but they can obscure some issues we might encounter if we don't know to look for them. By starting with just numpy these problems will be more obvious. We can address them here and then when we move on we will know what to look for and will be less likely to miss them.\n", "\n", "The dedicated machine learning packages implement the different algorithms but we are still responsible for getting our data in a suitable format." ] }, { "cell_type": "code", "execution_count": 174, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 175, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD3dJREFUeJzt3X+M5PVdx/HXi+4SezhgUYopLddSc5bbFQipsInc+bVU\noVcFSppYidRetDHB/ogxWvqHuf1Drf6hVmPUXEpoTYpNhNpipSlU+Xp7Yak0HBx7e2Chwh2gp1R6\nTjU1t9e3f3znbpfhdnfm+/3OzHc+83wkk/nOzHe+33c+mX3Ndz/fz3y+jggBANJw1qgLAADUh1AH\ngIQQ6gCQEEIdABJCqANAQgh1AEjIpqFu+w7bx2wfXPPce20v2T5p+8rBlggA6FUvR+p3Srqu67kn\nJL1H0j/VXhEAoLSpzVaIiP22t3Y995Qk2fagCgMA9I8+dQBICKEOAAnZtPulKttMLgMAJURE313c\nvR6pu3Nb77UNRQS3CO3Zs2fkNTTlRlvQFrTFK28PPRSamgpJoenp8sfCvQxpvEvSQ5K22T5ie7ft\nm2wflTQn6Uu2v1y6AgCAZmelmRlpelravr38dnoZ/XLLOi99ofxuAQBrtVrSwoJ06FAR7ueeW247\nA+9Tx6osy0ZdQmPQFqtoi1WT3hatljQ3V20bjhjseUzbMeh9AEBqbCsGeKIUADAGCHUASAihDgAJ\nIdQBICGEOgAkhFAHgIQQ6gCQEEIdABJCqANAQgh1AEgIoQ4ACSHUASAhhDoAJIRQB4CEEOoAkBBC\nHQASQqgDQEIIdQBICKEOAAkh1AEgIYQ6AAxBuy0tLhb3g7RpqNu+w/Yx2wfXPPc62/fbfsr2V2yf\nN9gyAWB8tdvSjh3Szp3F/SCDvZcj9TslXdf13O2SvhoRPyrpHyV9vO7CACAVS0vSoUPSyoq0vFws\nD8qmoR4R+yW93PX0jZI+01n+jKSbaq4LAJIxOyvNzEjT09L27cXyoEyVfN/rI+KYJEXEv9t+fY01\nAUBSWi1pYaE4Qp+ZKR4PStlQ7xYbvTg/P396OcsyZVlW024BYGPtdtH9MTs72DDdTKslzc2t/3qe\n58rzvPJ+HLFhHhcr2Vsl/V1EXNZ5fFhSFhHHbP+wpAcj4tJ13hu97AMA6nbqBOWpI+SFhdEGez9s\nKyLc7/t6HdLozu2UeyV9oLP8S5K+2O+OAWDQhnmCsil6GdJ4l6SHJG2zfcT2bkm/L+mnbT8l6drO\nYwBolGGeoGyKnrpfKu2A7hcAI9RuD+cEZd3Kdr8Q6gDQQIPuUwcAjAFCHQASQqgDQEIIdQBICKEO\nAAkh1AEgIYQ6ACSEUAeAGgzrykabIdQBoKJhXtloM4Q6AFTUpInDCHUAqGjrVunNb5ampkY/cRih\nDgAVtNvSrl3Ss88WwX7ffaOdOIxQB4AK1na9PPecdOTIaOsh1AGggqbN2c7UuwBQ0SDmbGc+dQBI\nCPOpA5g4TfnBT5MQ6gDGUpN+8NMkhDqAsdSkH/w0CaEOYCw1bdRJU3CiFMDYGsSok6Zg9AsAJGQk\no19sf9T2E53bR6psCwBQXelQtz0j6ZclvV3SFZJ+1vYldRUGAOhflSP1SyV9LSL+LyJOSton6eZ6\nygIAlFEl1Jck7bD9OttbJO2S9KZ6ygIAlDFV9o0R8aTtP5D0gKTvSDog6eSZ1p2fnz+9nGWZsiwr\nu1sASFKe58rzvPJ2ahv9Yvt3JR2NiL/sep7RLwDQp7KjX0ofqXd2ekFE/KftiyW9R9Jcle0BAKqp\nFOqS7rF9vqQTkm6LiP+uoSYAQEn8+AgAGoipdwEAhDoApIRQB4CEEOoAkBBCHQASQqgDQEIIdQBI\nCKEOoLJ2W1pc5OLPTUCoA6ik3ZZ27JB27izuCfbRItQBVLK0VFwndGVFWl4uljE6hDqASmZniws/\nT09L27cXyxgd5n4BUFm7XRyhz8xIrdaoq0lD2blfCHUAaCAm9AIAEOoAkBJCHQASQqgDQEIIdQBI\nCKEOAAkh1AEgIYQ6ACSEUAeAhBDqAJCQSqFu+9dtL9k+aPuzts+uqzAAQP9Kh7rtN0j6sKQrI+Iy\nSVOS3ldXYQCA/k1VfP9rJJ1j+3uStkh6sXpJAICySh+pR8SLkv5Q0hFJL0j6dkR8ta7CAAD9K32k\nbvsHJN0oaauk45Lutn1LRNzVve78/Pzp5SzLlGVZ2d0CQJLyPFee55W3U3o+ddvvlXRdRHyw8/hW\nSVdHxIe61mM+dQDo0yjmUz8iac7299m2pGslHa6wPQBARVX61P9Z0t2SDkh6XJIl7a2pLgBACVzO\nDgAaiMvZAQAIdQBICaEOAAkh1AEgIYQ6ACSEUAeAhBDqAJAQQh0AEkKoA0BCCHUASAihDgAJIdQB\nICGEOgAkhFAHgIQQ6gCQEEIdGBPttrS4WNwD6yHUgTHQbks7dkg7dxb3BDvWQ6gDY2BpSTp0SFpZ\nkZaXi2XgTAh1YAzMzkozM9L0tLR9e7EMnAnXKAXGRLtdHKHPzEit1qirwaCVvUYpoQ4ADcSFpwEA\nhDoApKR0qNveZvuA7Uc798dtf6TO4oBJwPhz1KmWPnXbZ0l6XtLVEXG06zX61IF1nBp/fuoE6MIC\nJ0FRGHWf+jslPdMd6AA2xvhz1K2uUP95SX9d07aAicH4c9RtquoGbE9LukHS7eutMz8/f3o5yzJl\nWVZ1t0ASWq2iy4Xx58jzXHmeV95O5T512zdIui0irl/ndfrUAaBPo+xT/wXR9QIAjVAp1G1vUXGS\n9PP1lAMMD0MJkaJKoR4R/xsRF0QEfxYYK0xlu4ovt7Twi1JMJIYSFvhySw+hjonEUMICX27pYZZG\nTCymsl09Ul9eLr7c+EVrczD1LoBS+HJrJkIdABIy6rlfgKFhtAawPkIdY4XRGsDGCHWMFUZrABsj\n1DFWGIoIbIwTpRg7jNbAJGD0CwAkhNEvAABCHQBSQqgDQEIIdQBICKEOAAkh1AEgIYQ6ACSEUAeA\nhBDqAJAQQh0AEkKoozGYJx2ojlBHIzBPOlCPSqFu+zzbf2P7sO1Dtq+uqzBMFuZJB+pR9Uj9TyTd\nFxGXSrpc0uHqJWESMU86UI/SU+/aPlfSgYh46ybrMfUuesI86cCqUUy9+xZJL9m+0/ajtvfafm2F\n7TUaJ/EGr9WS5uYIdKCKqYrvvVLSr0XE121/UtLtkvZ0rzg/P396OcsyZVlWYbfDd+ok3qmjyIUF\nggdAvfI8V57nlbdTpfvlQkmLEXFJ5/E1kj4WET/Xtd7Yd78sLhajMlZWij7fffuKI0oAGJShd79E\nxDFJR21v6zx1raTlsttrMk7iARgXla5RavtySZ+SNC3pm5J2R8TxrnXG/khd4iQegOHiwtMAkBAu\nPA0AINQBICWEOgAkhFAHgIQQ6gCQEEIdABJCqDcY880A6Beh3lBcNAJAGYR6Q3HRCABlEOoNxXwz\nAMpgmoAGY74ZYHIx9wt61m4X3Tuzs3xZAE3F3C/oSSonYBkZBJwZob7GJARFCidgU/liAgaBUO+Y\nlKBI4QRsCl9MwKAQ6h2TEhStVnGN1X37xvdaqyl8MQGDwonSjlNH6svLRVCMa+BNCkYGIXWMfqkB\nQQGgKQh1AEgIQxoBAIQ6AKSEUAeAhBDqAJCQqSpvtv2spOOSvifpRERcVUdRAIByKoW6ijDPIuLl\nOooBAFRTtfvFNWwDAFCTqoEckh6w/YjtD9ZREACgvKrdLz8REf9m+wIV4X44IvZ3rzQ/P396Ocsy\nZVlWcbcAkJY8z5XneeXt1PaLUtt7JLUj4o+6nucXpQDQp6H/otT2Ftvf31k+R9LPSFoquz0AQHVV\nul8ulPS3tqOznc9GxP31lAUAKIMJvQCggZjQC+uahMv0ASgQ6omblMv0ASgQ6omblMv0ASgQ6onj\nep7AZOFE6QTgMn3A+OFydgCQEEa/AAAIdQBIyViHOuOvAeCVxjbUGX8NAK82tqHO+GsAeLWxDXXG\nXwPAq431kEbGXwNIFePUASAhjFMHABDqAJASQh0AEkKoA0BCCHUASAihDgAJIdQBICGEOgAkpHKo\n2z7L9qO2762jIABAeXUcqX9U0nIN20lenuejLqExaItVtMUq2qK6SqFu+42Sdkn6VD3lpI0P7Cra\nYhVtsYq2qK7qkfofS/pNSUzuAgANUDrUbb9b0rGIeEySOzcAwAiVnqXR9u9J+kVJK5JeK6kl6fMR\n8f6u9TiKB4ASRjb1ru2flPQbEXFD5Y0BAEpjnDoAJGTgF8kAAAxPbUfqtq+3/aTtf7H9sXXW+VPb\n37D9mO0r6tp302zWFrZvsf1457bf9o+Nos5B6+Uz0Vnvx22fsH3zMOsbph7/PjLbB2wv2X5w2DUO\nSw9/H+favreTE0/Y/sAIyhwK23fYPmb74Abr9JebEVH5puLL4WlJWyVNS3pM0tu61nmXpL/vLF8t\n6eE69t20W49tMSfpvM7y9Sm2RS/tsGa9f5D0JUk3j7ruEX4mzpN0SNJFncc/NOq6R9gWH5f0iVPt\nIOlbkqZGXfuA2uMaSVdIOrjO633nZl1H6ldJ+kZEPBcRJyR9TtKNXevcKOmvJCkivibpPNsX1rT/\nJtm0LSLi4Yg43nn4sKSLhlzjMPTymZCkD0u6W9J/DLO4IeulLW6RdE9EvCBJEfHSkGscll7aIlSM\nplPn/lsRsTLEGocmIvZLenmDVfrOzbpC/SJJR9c8fl6vDqrudV44wzop6KUt1voVSV8eaEWjsWk7\n2H6DpJsi4i+U9u8cevlMbJN0vu0HbT9i+9ahVTdcvbTFn0nabvtFSY+rmIpkUvWdm1MDLQcbsv1T\nknar+BdsEn1S0to+1ZSDfTNTkq6U9A5J50hatL0YEU+PtqyRuE7SgYh4h+23SnrA9mUR8Z1RFzYO\n6gr1FyRdvObxGzvPda/zpk3WSUEvbSHbl0naK+n6iNjo369x1Us7vF3S52xbRd/pu2yfiIjUZvzs\npS2el/RSRHxX0ndt75N0uYr+55T00ha7JX1CkiLiGdv/Kultkr4+lAqbpe/crKv75RFJP2J7q+2z\nJb1PUvcf5r2S3i9JtuckfTsijtW0/ybZtC1sXyzpHkm3RsQzI6hxGDZth4i4pHN7i4p+9dsSDHSp\nt7+PL0q6xvZrbG9RcVLs8JDrHIZe2uI5Se+UpE7/8TZJ3xxqlcO10TQrfedmLUfqEXHS9ock3a/i\ni+KOiDhs+1eLl2NvRNxne5ftpyX9j4pv4+T00haSflvS+ZL+vHOUeiIirhpd1fXrsR1e8ZahFzkk\nPf59PGn7K5IOSjopaW9EJDeldY+fi9+R9Ok1w/x+KyL+a0QlD5TtuyRlkn7Q9hFJeySdrQq5yY+P\nACAhTBMAAAkh1AEgIYQ6ACSEUAeAhBDqAJAQQh0AEkKoA0BCCHUASMj/AzbU1GLyhcuwAAAAAElF\nTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x20048ddecc0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n = 20\n", "x = np.random.random((n,1))\n", "y = 5 + 6 * x ** 2 + np.random.normal(0,0.5, size=(n,1))\n", "\n", "\n", "plt.plot(x, y, 'b.')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is a very simple dataset. There is only one input value for each record and then there is the output value. Our goal is to determine the output value or dependent variable, shown on the y-axis, from the input or independent variable, shown on the x-axis.\n", "\n", "Our approach should scale to handle multiple input, or independent, variables. The independent variables can be stored in a vector, a 1-dimensional array:\n", "\n", "$$X^T = (X_{1}, X_{2}, X_{3})$$\n", "\n", "As we have multiple records these can be stacked in a 2-dimensional array. Each record becomes one row in the array. Our `x` variable is already set up in this way.\n", "\n", "In linear regression we can compute the value of the dependent variable using the following formula:\n", "\n", "$$f(X) = \\beta_{0} + \\sum_{j=1}^p X_j\\beta_j$$\n", "\n", "The $\\beta_{0}$ term is the intercept, and represents the value of the dependent variable when the independent variable is zero.\n", "\n", "Calculating a solution is easier if we don't treat the intercept as special. Instead of having an intercept co-efficient that is handled separately we can instead add a variable to each of our records with a value of one." ] }, { "cell_type": "code", "execution_count": 176, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 1. , 0.44929165],\n", " [ 1. , 0.30446841],\n", " [ 1. , 0.83918912],\n", " [ 1. , 0.23774183],\n", " [ 1. , 0.50238946],\n", " [ 1. , 0.9425836 ],\n", " [ 1. , 0.6339977 ],\n", " [ 1. , 0.86728941],\n", " [ 1. , 0.94020969],\n", " [ 1. , 0.75076486],\n", " [ 1. , 0.69957506],\n", " [ 1. , 0.96796557],\n", " [ 1. , 0.99440079],\n", " [ 1. , 0.45182168],\n", " [ 1. , 0.07086978],\n", " [ 1. , 0.29279403],\n", " [ 1. , 0.15235471],\n", " [ 1. , 0.41748637],\n", " [ 1. , 0.13128933],\n", " [ 1. , 0.6041178 ]])" ] }, "execution_count": 176, "metadata": {}, "output_type": "execute_result" } ], "source": [ "intercept_x = np.hstack((np.ones((n,1)), x))\n", "intercept_x" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Numpy contains the linalg module](http://docs.scipy.org/doc/numpy/reference/routines.linalg.html) with many common functions for performing linear algebra. Using this module finding a solution is quite simple." ] }, { "cell_type": "code", "execution_count": 177, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(array([[ 3.8217988 ],\n", " [ 6.15768399]]),\n", " array([ 8.50971729]),\n", " 2,\n", " array([ 5.17434252, 1.146272 ]))" ] }, "execution_count": 177, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.linalg.lstsq(intercept_x,y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The values returned are:\n", "\n", "* The least-squares solution\n", "* The sum of squared residuals\n", "* The rank of the independent variables\n", "* The singular values of the independent variables" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exercise\n", "\n", "1. Calculate the predictions our model would make\n", "2. Calculate the sum of squared residuals from our predictions. Does this match the value returned by lstsq?" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 178, "metadata": { "collapsed": true }, "outputs": [], "source": [ "coeff, residuals, rank, sing_vals = np.linalg.lstsq(intercept_x,y)" ] }, { "cell_type": "code", "execution_count": 182, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "((20, 2), (1, 2))" ] }, "execution_count": 182, "metadata": {}, "output_type": "execute_result" } ], "source": [ "intercept_x.shape, coeff.T.shape" ] }, { "cell_type": "code", "execution_count": 185, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 6.5883948 , 5.69661904, 8.98926023, 5.28573784, 6.91535432,\n", " 9.62593075, 7.72575628, 9.16229289, 9.61131296, 8.44477158,\n", " 8.12956095, 9.78222488, 9.94500463, 6.60397395, 4.2581925 ,\n", " 5.62473192, 4.75995094, 6.39254797, 4.630237 , 7.54176534])" ] }, "execution_count": 185, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sum(intercept_x * coeff.T, axis=1)" ] }, { "cell_type": "code", "execution_count": 186, "metadata": { "collapsed": false }, "outputs": [], "source": [ "predictions = np.sum(intercept_x * coeff.T, axis=1)" ] }, { "cell_type": "code", "execution_count": 187, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFihJREFUeJzt3X+M5HV9x/HX+zy1vRWwUDwzYznHMRRbC0arYLjgrHgF\npQU0NrXsYJdErTFeiamt+se3e5ev1jYhrRXT6lXC2uyiTdUKtVJZOacXlLWYgAii1WE4YAbP+qNY\nDjXAvvvHzt7uzs7szs73O9/vd77zfCST2/nOd77zzje77/ne+/P+fj7m7gIA5MOOtAMAAMSHpA4A\nOUJSB4AcIakDQI6Q1AEgR0jqAJAjWyZ1M7vOzI6Z2d1rtr3RzO4xs6fM7KXDDREA0K9+rtSvl3RR\nx7ZvSnq9pP+MPSIAwMB2brWDu99mZns6tn1HkszMhhUYAGD7qKkDQI6Q1AEgR7Ysv0RlZkwuAwAD\ncPdtl7j7vVK39qPXa5tydx7umpmZST2GrDw4F5wLzsXqo1L5C0ne8RhMPy2NN0j6qqQzzexBM7vK\nzC43s4cknSfp82Z288ARAMCYKxZ3SDoey7H66X65osdLn4slAgAYc2E4rcXFGdXrByVNKEqCH3pN\nHasqlUraIWQG52IV52LVuJ6LUmmPFhb2KwiuUau1pEJhh+bnBzuWuQ93HNPMfNifAQB5Y2byIQ6U\nAgBGAEkdAHKEpA4AOUJSB4AcIakDQI6Q1AEgR0jqAJAjJHUAyBGSOgDkCEkdAHKEpA4AOUJSB4Ac\nIakDQI6Q1AEgR0jqAJAjJHUAyBGSOgDkCEkdAHKEpA4AOcLC0wAwZI3GUQXBrJrNJRWLOxSG0yqV\n9gzls1h4GgCGqNE4qn37rlW9flDShKTjKpdntLCwf9PEPrSFp83sOjM7ZmZ3r9n2K2Z2i5l9x8y+\naGanbPeDAWAcBMHsmoQuSROq1w8qCGaH8nn91NSvl3RRx7b3SvqSu/+6pMOS3hd3YACQB83mklYT\n+ooJtVpLQ/m8LZO6u98m6Scdmy+T9In2z5+QdHnMcQFALhSLOyQd79h6XIXCcPpUBh0ofY67H5Mk\nd/++mT0nxpgAIBZJDlD2EobTWlyc2VBTD8P9HbE2FASBms2misXiwJ/X10Cpme2R9G/ufnb7+Y/d\n/dQ1r//I3U/r8V6fmZk58bxSqahSqQwcMAD0Y9ABymHFEgSzarWWVChs/HJpNBrau3evWq3WuvcN\nMlA6aFK/T1LF3Y+Z2XMlfdndX9TjvXS/AEhctXpQ8/Pv1vp69nFNTV2jubmZXm9LRbVa1fz8/Ibt\nQ+l+abP2Y8VNkqbbP/+RpBu3+8EAMExJD1BG0Ww2YztWPy2NN0j6qqQzzexBM7tK0l9J2mdm35F0\nYfs5AGRG0gOUUUSpoXfi5iMAuZStmvr6QdAwDFUqlda9vm/fPtXr9XXvG1pNPQqSOoC0bDVAmUwM\nGxN2uVzWwsLChsQeBIFarZYKhYLm5+dJ6gCQNb0GQaempjQ3N9fzfUObJgAAMLheg6Cd7YtxIakD\nwBD1GgQtFApD+TySOgBE1Gg0VK1WNTk5qWq1qkajceK1MAxVLpfX7V8ulxWG4VBioaYOABEcOXJE\nl1xyiR577LET2zoHQjsHQTu7X7oZtKZOUgeAATUaDZ199tnrEvqKrQZCt8JAKQAkLAiCrgldGt5A\n6FZI6gAwoM1u7z/ppJMTjGQVSR0ABtT79v4JLc+DmDySOgAMKAxDPfOZnat57pL0Bf30p89OI6SB\nF8kAAGiHduzYJ+lpkn4g6TmSTpJ0emoTh5HUAWBAQTCrn/1sVp1ztj/rWX+oMLw2lZgovwDAgHrN\n2f7iF5+V+MRhK0jqADCgXnO2l8udiT45JHUAGFAYTqtcntFqYl9ZVHo6tZi4oxTASFqZK73ZXFKx\nmM5c6WvjiHvOdqYJADA2srSq0bAwTQCAsREEs2sSuiRNqF4/qCCYTTGqbCCpAxg5vbpOWq2ldVs2\nmxI3r+hTBzByVrtO1veHr73hp9vaoIuLixvWBs0brtQBjJx+uk6CIFiX0CWpXq8rCIKEokwHV+oA\nRk6ptEcLC/sVBNes6TpZP0ia9NqgWREpqZvZ1ZLe0n76j+7+4eghAcDWSqU9mpub6fl60muDZsXA\nLY1m9puSPinp5ZKelHSzpLe7+/0d+9HSCCBx3WrqncvMZVkaLY0vkvQ1d/+Fuz8l6YikN0Q4HgD0\nbavOllKppIWFBU1NTWlyclJTU1Mjk9CjiHKlfpakz0l6paRfSPqSpDvc/eqO/bhSBxCrUb8K78eg\nV+oD19Td/dtm9teSFiQ9JulOSU912/fAgQMnfq5UKqpUKoN+LABs2tkSZbHnNNVqNdVqtcjHiW2a\nADP7gKSH3P2jHdu5UgcQq8nJya4JcHJyUocPH04+oCFI/Eq9/aGnu/v/mNkZkl4v6bwoxwOAfoxr\nZ0s/Il2pm9kRSadKekLSu9y91mUfrtQBxIqa+ibvY5ZGAKOo0WgoCAK1Wi0VCgWFYZibhC6R1AEg\nV5h6FwBAUgeAPCGpA0COkNQBIEdI6gCQI8ynDiCSRuOogmBWzeaSisUdCsPp3Cz+PIpoaQQwsEbj\nqPbtu3bNItDLKxAtLOwnsUdESyOAxAXB7JqELkkTqtcPKghmU4xqvJHUAQys2VzS+sWfJWlCrdZS\nGuFAJHUAERSLOyTdK6kqabL9770qFEgtaaGmDmBgR47cpgsv/F09+eSjJ7bt3HmKbr3187rggr0p\nRjb6qKkDSNyhQx9dl9Al6cknH9WhQx/t8Q4MG0kdwMCazWbX7a1WK+FIsIKkDmBgLFaRPdTUAQxs\nHBarSAvzqQNIRd4Xq0gLSR0AcoTuFwAASR0A8oSkDoyxRqOharWqyclJVatVNRqNtENCRNTUgTFF\n50q2UVMHsC1BEKxL6JJUr9cVBEFKESEOkZK6mb3LzO4xs7vNbN7MnhFXYACGi7tB82ngpG5mBUn7\nJb3U3c/W8ipKb4orMADDxd2g+RS1/PI0SRNmtlPSLkl8xQMjIgxDlcvlddvK5bLCMEwpIsQh0kCp\nmf2JpA9IelzSLe5+ZZd9GCgFMoq7QbNr0IHSgReeNrNnS7pM0h5Jj0r6tJld4e43dO574MCBEz9X\nKhVVKpVBPxZAjEqlkubm5tIOA5JqtZpqtVrk4wx8pW5mb5R0kbu/tf38Sknnuvs7O/bjSh0AtimN\nlsYHJZ1nZr9kZibpQkn3RTgeACCigZO6u/+XpE9LulPSNySZpEMxxQUAGAB3lAJABnFHKQCApA6M\nAibeQr8ovwAZx8Rb44nyC5BTTLyF7SCpAxnHxFvYDpI6kHFMvIXtoKYOZBw19fE0aE2dpA6kaGVC\nrWazqWKx2HNCLSbeGj8kdWDEcAWOzdD9AowYulowDCR1ICV0tWAYSOpASuhqwTBQUwdSQk0dm2Gg\nFBhBdLWgF5I6kGONxlEFwayazSUVizsUhtMqlfakHRaGiKQO5FSjcVT79l2rev2gpAlJx1Uuz2hh\nYT+JPcdoaQRyKghm1yR0SZpQvX5QQTCbYlTIKpI6kHHN5pJWE/qKCbVaS2mEg4wjqQMZVyzukHS8\nY+txFQr8+WIjfiuAjAvDaZXLM1pN7Ms19TCcTi0mZBcDpcAIWOl+abWWVCjQ/TIO6H4BgBwZNKnv\nHEYwAPpD/zniNvCVupmdKemfJbkkk/QCSYG7f7hjP67UgS7oP8dmUi2/mNkOSQ9LOtfdH+p4jaQO\ndFGtHtT8/Lu1vl3xuKamrtHc3ExaYSEj0r756DWS6p0JHUBv9J9jGOJK6n8g6ZMxHQsYC/SfYxgi\nD5Sa2dMlXSrpvb32OXDgwImfK5WKKpVK1I8FIul3bdBhCsNpLS7ObKiph+H+RONANtRqNdVqtcjH\niVxTN7NLJb3D3S/u8To1dWRKluYxp/8cvaQ2UGpmn5T0H+7+iR6vk9SRKdVqVfPz8xu2T01NaW5u\nLoWIgI1S6VM3s11aHiR9W5TjAEnqXOx5dfv9CUeSPvrk8ydSUnf3xyWdHlMsQCK+//3OwcmV7Y8l\nHEm6uvXJLy7SJz/qGGbH2Nm9uyKp3LG1rOc+t5J8MClinvZ8Iqlj7LzwhadJulHSlKTJ9r83qlw+\nLdW4kkaffD6R1DF2lqeyvV7SxyQdlvQxlcvXj91UtvTJ5xOzNGIs0UrI3DNZx9S7GAt0a8SLL7fs\nIqkj9xqNo3rVq96vhx56RNIdkly7dp2sm2+e1QUX7E07PCBWJHXk3uWXX60bb/yslicEXbVr18m6\n5567Er8bFBimtGdpBIbu9tsPqzOhS9Ljj/9UQRAkHxCQQSR1jJDeNwe1Wq0E4wCyi6SOkXHeeef0\nfK1QKCQYCZBd1NQxMhqNhs4//3w98sgj67afccYZqtVq1NSRK9TUkXulUklf+cpXdNlll2n37t3a\nvXu3Lr30UhI6sAZX6siELCxaAWQJLY0YWVlatALICsovGFlBEGyY47xer9OmCAyApI7UNZvNrttp\nUwS2j6SO1BWLxa7baVMEto+aOlJHTR3YiIFSjLSV7pdWq6VCoUD3C8YeSR0AcmTQpB5p4WkgLsyT\nDsSDK3WkjhV4gI3oU8fIYlV7ID6RkrqZnWJm/2Jm95nZvWZ2blyBYXywqj0Qn6g19b+T9AV3/30z\n2ylpVwwxYcysrmq/NrGzqj0wiIFr6mZ2sqQ73b28xX4jX1NnEG+4qKkDGyXe0mhm50g6JOlbks6R\n9HVJV7v7zzr2G+mkTsJJBqvaA+ulkdRfJmlR0ivd/etm9iFJj7r7TMd+PjOzuqlSqahSqQz0mWmo\nVg9qfv7d6iwNTE1do7m5mV5vA4BtqdVqqtVqJ54fPHgw8aS+W9Lt7v6C9vO9kt7j7r/Xsd9IX6lP\nTs6oVjvYdfvhwxu3A0AcEm9pdPdjkh4yszPbmy7UcikmV1YH8dZiEA9ANkW6+ahdV/+4pKdLul/S\nVe7+aMc+I32lTk0dQBqY+2WIGMQDkDSSOgDkCNMEAABI6uOm0WioWq1qcnJS1WpVjUYj7ZAAxIjy\nyxhhhSFgdFBTR1crKwo1m0098MADeuCBBzbsMzU1pbm5ueSDA9ATi2TkTBzzzXS7Mu+m1WpFiBRA\nlpDUM6hbb/zi4vZ744Mg2DKhS1KhUBg8WACZwkBpBsW1aESz2dxyn3K5rDAMtx0jgGziSj2D4lo0\nolgsdt3+/Oc/X6VSSYVCQWEYMkgK5AhJPYPiWjQiDEMtLi7S7QKMEbpfMijO+WZWul9arZYKhYLe\n9ra369ChW1nwA8g4WhpzZhjzzeRlcjJWosI4IKlHNA6JIg8LfuTliwnYCn3qEcTVQph1cQ3Apql3\nZ9DofDEBw0RLo+JrIcy6PCz4kYcvJmCYRueveYiymCiGMfFWGE6rXJ7RamJfLl2E4XTkYyclD19M\nwDBRflF8LYRx6XZ7/+LiYuRWxFJpjxYW9isIrlkzADtaJaYwnNbi4syGmnoY7k85MiAbGChV9gbf\nqtWq5ufnN2xn4q1lrESFcUD3S0RZShSTk5Oq1Wpdtx8+fDj5gAAkju6XiEqlPZnpnuh1ez8TbwHY\nClfqGcRiFgAov+RM5+39TLwFjBeSOgDkSCo1dTN7QNKjkpYkPeHur4hyPABANFEHSpckVdz9J3EE\nAwCIJurdNRbDMQAAMYmakF3SgpndYWZvjSMgAMDgopZfznf3R8zsdC0n9/vc/bbOnQ4cOHDi50ql\nokqlEvFjASBfarVa15sOtyu27hczm5H0f+7+Nx3b6X4BgG0atPtl4PKLme0ys2e1f56Q9DuS7hn0\neACA6KKUX3ZL+lcz8/Zx5t39lnjCAgAMgpuPcm4clukD8og7Sodo5Zb9ZrOpYrE4MrfsZ21KYQD9\nI6kPyShPrpWHhaaBcZX4QOm4CIJgXUKXpHq9riAIUoqof1lcpg/AcJHUt9BsNrtub7VaCUeyfazn\nCYwf/rrbei30PMoLVuRhoWkA20NNXZvXzSWNbE1dytYyfQD6x0BpBFst9MyCFQCSNnZrlMbZf71V\n3bxUKmlubm7QUAEgMSOZ1Lv1Xy8uDt5/Pcp1cwBYayQHSoNgdk1Cl6QJ1esHFQSzAx0vDEOVy+V1\n28rlssIwjBQnACRtJK/U4+6/LpVKWlhYoG4OYOSNZFJf7b9ef6dklP5r6uYA8mAkyy/0XwNAdyPb\n0kj/NYA8o08dAHKECb0AAKOb1HvN1QIA42wkyy+jPMc5APRjrMovozzHOQAM00gm9VGe4xwAhmkk\nkzpztQBAd9TUASCDUutTN7Mdkr4u6WF3v7TL60O6+Yg5zgHkV5pJ/V2SXibp5CST+iiq1WqqVCpp\nh5EJnItVnItVnItVqXS/mNnzJL1O0sejHGdc1Gq1tEPIDM7FKs7FKs5FdFEHSv9W0p9J4lIcADJg\n4KRuZpdIOubud0my9gMAkKKBa+pm9peSqpKelPTLkk6S9Fl3f3PHflzFA8AAUpul0cxeJelPuw2U\nAgCSM5I3HwEAuhv6zUcAgOTEdqVuZheb2bfN7L/N7D099vmwmX3XzO4ys5fE9dlZs9W5MLMrzOwb\n7cdtZvZbacQ5bP38TrT3e7mZPWFmb0gyviT1+fdRMbM7zeweM/ty0jEmpY+/j5PN7KZ2nvimmU2n\nEGYizOw6MztmZndvss/28qa7R35o+cvhe5L2SHq6pLskndWxz2sl/Xv753MlLcbx2Vl79HkuzpN0\nSvvni/N4Lvo5D2v2u1XS5yW9Ie24U/ydOEXSvZKK7ee/mnbcKZ6L90n64Mp5kPQjSTvTjn1I52Ov\npJdIurvH69vOm3Fdqb9C0nfd/ai7PyHpU5Iu69jnMkn/JEnu/jVJp5jZ7pg+P0u2PBfuvujuj7af\nLkrqPkPZaOvnd0KS9kv6tKQfJBlcwvo5F1dI+oy7NyXJ3X+YcIxJ6edcuJa76dT+90fu/mSCMSbG\n3W+T9JNNdtl23owrqRclPbTm+cPamKg692l22ScP+jkXa71F0s1DjSgdW54HMytIutzd/0H5vs+h\nn9+JMyWdamZfNrM7zOzKxKJLVj/n4iOSfsPMWpK+IenqhGLLom3nzZ1DDQebMrNJSVdp+b9g4+hD\nktbWVPOc2LeyU9JLJb1a0oSk283sdnf/XrphpeIiSXe6+6vNrCxpwczOdvfH0g5sFMSV1JuSzljz\n/HntbZ37/NoW++RBP+dCZna2pEOSLnb3zf77Nar6OQ+/LelTZmZarp2+1syecPebEooxKf2ci4cl\n/dDdfy7p52Z2RNI5Wq4/50k/5+IqSR+UJHevm1lD0llang123Gw7b8ZVfrlD0gvNbI+ZPUPSmyR1\n/mHeJOnNkmRm50n6X3c/FtPnZ8mW58LMzpD0GUlXunu9yzHyYMvz4O4vaD9KWq6rvyOHCV3q7+/j\nRkl7zexpZrZLy4Ni9yUcZxL6ORdHJb1Gktr14zMl3Z9olMnabJqVbefNWK7U3f0pM3unpFu0/EVx\nnbvfZ2Z/vPyyH3L3L5jZ68zse5KOa/nbOHf6OReSAkmnSvr79lXqE+7+ivSijl+f52HdWxIPMiF9\n/n1828y+KOluSU9JOuTu30ox7KHo8/fi/ZJm17T5/bm7/zilkIfKzG6QVJF0mpk9KGlG0jMUIW9y\n8xEA5AjTBABAjpDUASBHSOoAkCMkdQDIEZI6AOQISR0AcoSkDgA5QlIHgBz5fyM6Jrx5FoEGAAAA\nAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x2004a156ac8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(x, y, 'bo')\n", "plt.plot(x, predictions, 'ko')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 190, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(20,)" ] }, "execution_count": 190, "metadata": {}, "output_type": "execute_result" } ], "source": [ "predictions.shape" ] }, { "cell_type": "code", "execution_count": 192, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(8.5097172851712308, array([ 8.50971729]))" ] }, "execution_count": 192, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.sum((predictions.reshape((20,1)) - y) ** 2), residuals" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Least squares refers to the cost function for this algorithm. The objective is to minimize the residual sum of squares. The difference between the actual and predicted values is calculated, it is squared and then summed over all records. The function is as follows:\n", "\n", "$$RSS(\\beta) = \\sum_{i=1}^{N}(y_i - x_i^T\\beta)^2$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Matrix arithmetic\n", "\n", "Within lstsq all the calculations are performed using matrix arithmetic rather than the more familiar element-wise arithmetic numpy arrays generally perform. Numpy does have a matrix type but matrix arithmetic can also be performed on standard arrays using dedicated methods.\n", "\n", "![Matrix multiplication](https://upload.wikimedia.org/wikipedia/commons/e/eb/Matrix_multiplication_diagram_2.svg)\n", "_Source: Wikimedia Commons (User:Bilou)_\n", "\n", "In matrix multiplication the resulting value in any position is the sum of multiplying each value in a row in the first matrix by the corresponding value in a column in the second matrix." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The residual sum of squares can be calculated with the following formula:\n", "\n", "$$RSS(\\beta) = (y - X\\beta)^T(y-X\\beta)$$\n", "\n", "The value of our co-efficients can be calculated with:\n", "\n", "$$\\hat\\beta = (X^TX)^{-1}X^Ty$$\n", "\n", "Unfortunately, the result is not as visually appealing as in languages that use matrix arithmetic by default." ] }, { "cell_type": "code", "execution_count": 193, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 3.8217988 ]\n", " [ 6.15768399]] \n", " [[ 3.8217988 ]\n", " [ 6.15768399]]\n" ] } ], "source": [ "our_coeff = np.dot(np.dot(np.linalg.inv(np.dot(intercept_x.T, intercept_x)), intercept_x.T), y)\n", "\n", "print(coeff, '\\n', our_coeff)" ] }, { "cell_type": "code", "execution_count": 195, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "(array([ 6.5883948 , 5.69661904, 8.98926023, 5.28573784, 6.91535432,\n", " 9.62593075, 7.72575628, 9.16229289, 9.61131296, 8.44477158,\n", " 8.12956095, 9.78222488, 9.94500463, 6.60397395, 4.2581925 ,\n", " 5.62473192, 4.75995094, 6.39254797, 4.630237 , 7.54176534]),\n", " array([[ 6.5883948 ],\n", " [ 5.69661904],\n", " [ 8.98926023],\n", " [ 5.28573784],\n", " [ 6.91535432],\n", " [ 9.62593075],\n", " [ 7.72575628],\n", " [ 9.16229289],\n", " [ 9.61131296],\n", " [ 8.44477158],\n", " [ 8.12956095],\n", " [ 9.78222488],\n", " [ 9.94500463],\n", " [ 6.60397395],\n", " [ 4.2581925 ],\n", " [ 5.62473192],\n", " [ 4.75995094],\n", " [ 6.39254797],\n", " [ 4.630237 ],\n", " [ 7.54176534]]))" ] }, "execution_count": 195, "metadata": {}, "output_type": "execute_result" } ], "source": [ "our_predictions = np.dot(intercept_x, our_coeff)\n", "\n", "predictions, our_predictions" ] }, { "cell_type": "code", "execution_count": 196, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X90VPWdN/D3JyBKICBpFcgASZjWKlqlVQtYXWeogS5l\nLSpFzAw+0VWqe/DxeLSr1I6TdHbXekRLcduudKloE+P6q9JVK0Zh6mM1j9ZKWX5UZJgkdAI8Kkoh\nlh8mn+ePmQzJZIZMZu7MvXPn/Tonh8ydO3O/XpP33Hy/n/v9iqqCiIjsocTsBhARkXEY6kRENsJQ\nJyKyEYY6EZGNMNSJiGyEoU5EZCODhrqIrBGRfSKyuc+2hSKyRUS6ReSruW0iERGlK50r9UcAzE3Y\n9j8ArgDwO8NbREREGRs+2A6q+rqIVCZsew8ARERy1TAiIho69qkTEdkIQ52IyEYG7X7Jlohwchki\nogyo6pC7uNO9UpfYV6rnTkhV+aUKv99vehus8sVzwXPBc3H8y+VypZvZg0qnpPFxAG8AOENEOkTk\nOhFZICK7AcwE8LyI/NawFhERFRmHw2HYe6VT/VKb4qnnDGsFEVERCwQCaG1tRSgUyvq9OFCaR0b+\niVXoeC6O47k4rljPRXV1NVpaWuDxeOB2u+HxeDJ+L1HN7TimiGiuj0FEZDciAs3hQCkRERUAhjoR\nkY0w1ImIbIShTkRkIwx1IiIbYagTEdkIQ52IyEYY6kRENsJQJyKyEYY6EZGNMNSJiGyEoU5EZCMM\ndSIiG2GoExHZCEOdiMhGGOpERDbCUCcishGGOhGRjTDUiYhshKFORJRj4XAYXq8XbrcbXq8X4XA4\nZ8fiwtNERDkUDodRU1ODUCgU3+Z0OtHS0oLq6uqUr8vZwtMiskZE9onI5j7bxonIyyLynoisF5Gx\nQz0wEVEx8Pl8/QIdAEKhEHw+X06Ol073yyMA5iZsuwvAK6r6JQAbACw3umFERHYQiUSSbu/s7MzJ\n8QYNdVV9HcDHCZu/DeDR2PePAlhgcLuIiGzB4XAk3V5RUZGT4w3P8HWnq+o+AFDVvSJyuoFtIiIy\nRDgchs/nQyQSgcPhQCAQOGE/di4EAgG0trYO6FMPBAL99msPh7HW50NPJIKSFB8E6cg01BOdcCS0\nvr4+/r3L5YLL5TLosEREySUboGxtbR10gNJo1dXVaGlpgc/nQ2dnJyoqKgZ8uLSHw/jniy+Gs7MT\nIwAcyeJ4aVW/iEglgP9W1XNjj7cDcKnqPhGZAGCjqp6V4rWsfiGivPN6vWhqahqw3ePxoLGx0YQW\npdbg9eKOpiaM6rNNgNxUv/R5/75v/hsAdbHv/xeAdUM9MBFRLuV7gDIbPZFIv0DPRjoljY8DeAPA\nGSLSISLXAfgRgBoReQ/AN2KPiYgsI98DlNkocTjQZdB78eYjIrKlTG/6yYXEQdC6QACVCX3qD9XU\noCEUwigAXQBGI7PuF4Y6EdlWb/VLqgHKfEgW2H6nE7e0tAwI9rU+H3o6O1FSUYH6piaGOhGR1SQb\nBO0CsMLjgf8EA7Y5myaAiIgyl2wQdBSAHrPuKCUioswlGwTtAlCSowFbdr8QEWXpRAOh6fapJ8q0\n+4WhTkSUhd+/9hru+9a3cO6hQzgJwCIAaxJCO3EQNLH6JRmGOhFRnrWHw2g491w8dOjQ8atwAP8I\n4MlBBkIHw4FSIqI8W+vzxQMdiA6ANgB4ErkbCB2MURN6EREVnVSVLccAHCkrM6FFDHUiooz1VrYk\n1qC/AWCsDLnnxJg2mXJUIiIbqAsE8I8nnxwvWexCdKbDjQAO/PWvprSJV+pERBnqAfB8SQmmA5gA\nYC+AnbHnzJo4jNUvREQZSjVn++jRo7F58+as5plh9QsRUZ6lmrP9nHPOyfvEYb0Y6kREGUo1Z7vT\n6cxzS45j9wsRUYZyOWc77ygloqLSO1d6JBKBw+EwZa70vu0wes52hjoRFQ0rrWqUKxwoJaKi4fP5\n+gU6AIRCIfh8PpNaZB2sUyeigpOq6qQzYb6VwdYGtSOGOhEVnFRVJ31v+Ek6j3lr66DzmBc6dr8Q\nUcEJBAIDygadTicCgUD88VqfLx7oQGwGxVAIa23eRcMrdSIqONXV1WhpaTlh1Um+1wa1iqxCXURu\nBXBD7OEvVHVV9k0iIhpcdXU1Gk+wCEWqGRRztTaoVWTc/SIiZyO6wMcFAKYDmC8iU41qGBFRNuoC\nAfidzn4zKPqdTtT16aKxo4zr1EVkIYC5qnpj7PEPABxW1RUJ+7FOnYgMl05lSyZrg1pF3m8+EpEz\nATwHYBaAIwBeAfC2qt6asB9DnYgMlbSyJWGx50KXaahn3Keuqn8WkfsAtAA4BOBdAN3J9q2vr49/\n73K54HK5Mj0sEVHKypYVPl9Wiz2bKRgMIhgMZv0+hk0TICL/CmC3qv5HwnZeqRORofxuNxqSBKDf\n7UbDhg35b1AOmDJNgIicFvt3CoArADyezfsREaWjt7Klr2KobElHVlfqIvIagHJEF8++TVWDSfbh\nlToRGYp96id4HWdpJKJCVMiVLelgqBMR2Qin3iUiIoY6EZGdMNSJiGyEoU5EZCMMdSIiG2GoE1FW\nwuEwvF4v3G43vF4vwuGw2U0qaixpJKKMhcNh1NTU9FsE2ul0oqWlpd+CFTR0LGkkorzz+Xz9Ah0A\nQqEQfDZfMs7KGOpElLFIJJJ0e6fNl4yzMq5RSkQZczgcAIAvAJgAYC+AnQAqOLGWaXilTkQZu2np\nUiwcPhybAPwfAJsALBw+HDctXWpyy4oXQ52IMvbq6tVY+9ln/RarWPvZZ3h19Wozm1XUGOpElLGe\nSCQe6L1GAehhn7ppGOpElDEuVmE9DHUiylhdIAC/0xkP9t7FKuoCATObVdR48xERZcXui1WYhYtk\nEBHZCO8oJSIihjoRkZ3wjlKiIhbvD49EUOJwsD/cBtinTlSk2sNhPFRTg4ZQCKNwvHLllpYWBrsF\nsE+diIZkrc8XD3QgetNQQyiEtZxhsaBlFeoicpuIbBGRzSLSJCIjjGoYEeUW7wa1p4xDXUQqANwC\n4Kuqei6i/fOLjWoYEeUW7wa1p2y7X4YBGCUiwwGUAuBHPFGB4N2g9pTVQKmI/G8A/wrgUwAvq+qS\nJPtwoJTIong3qHVlOlCacUmjiJwK4NsAKgEcAPC0iNSq6uOJ+9bX18e/d7lccLlcmR6WiAxUWV0N\nf2Oj2c0gAMFgEMFgMOv3yfhKXUQWApirqjfGHi8BMENVlyXsxyt1IqIhMqOksQPATBE5RUQEwDcA\nbM/i/YiIKEsZh7qqvgXgaQDvAvgTAAHA5U6IiEzEO0qJiCyId5QSEREn9CIqBJx4i9LF7hcii+PE\nW8WJ3S9ENsWJt2goGOpEFseJt2goGOpEFseJt2goGOpEFseJt2goOFBKZKJ0q1o48VbxyXSglKFO\nZBJWtdCJsPqFqMCwqoVygaFOZBJWtVAuMNSJTMKqFsoFhjqRSVjVQrnAgVIiE7GqhVJh9QuRjYXD\nYfh8PkQiETgcDgQCAVQz/G2NoU5kU+FwGDU1NQiFQvFtTqcTLS0tDHYbY0kjkU35fL5+gQ4AoVAI\nPpY+UhIMdSKLi0QiSbd3svSRkmCoE1mcw+FIur2CpY+UBPvUiSyOferFiQOlRDbWW/3S2dmJiooK\nVr8UAYY6EZGNsPqFqACFw2F4vV643W54vV6Ew2Gzm0QFLuMrdRE5A8B/AVAAAmAqAJ+qrkrYj1fq\nREmwr5xOxNTuFxEpAfAXADNUdXfCcwx1oiS8Xi+ampoGbPd4PGhsbDShRWQlZne/XAYglBjoRJQa\n688pF4wK9asBNBv0XkRFgfXnlAtZd7+IyEkAOgFMU9UPkjyvfr8//tjlcsHlcmV1TKJspbs2aC6x\nT536CgaDCAaD8ccNDQ3m9KmLyOUA/klVv5niefapk6VYaW1Q1p9TKqYNlIpIM4CXVPXRFM8z1MlS\nGrxe3NHU1G8puS4AKzwe+DlASRZhykCpiJQiOkj6bDbvQ5RPXX0We+41Kra92LBO3n6GZ/NiVf0U\nwGkGtYUoLzbt3YsuYMCV+qa9e01qkTmS9em3trayT7/A8Y5SKjqHxo+HB+i3NqgHwKEJE8xrlAk4\nT7s9MdSp6Ez9whewDsB0AJfE/l0HYKrTaWq78o118vbEUKeiEwgE4HQ6sRPA6wB2IlpKGAgETG5Z\nfrFO3p44SyMVJZYSsk7e6jj1LhWF3jCORCJwOBxFGcZG4oebdTHUyfbC4TDcl14K2b0bFQBGA9hX\nWop//+1vcfHf/Z3ZzSMyFEOdbO+KBQvw6bp1OBtAAIjfDbq0tBT/tmVL3u8GJcols2dpJMq5D958\nE1/D8UBH7N/Vn36KtSzDIwLAUKcCMhHRH9hkd4P2sAyPCABDnQpI1cyZ6MHxm4Z6dQEoYRkeEQCG\nOhWQZStXIjJxInzofzfo96dMQV2R1ZgTpcKBUioo7eEwVt52G9pbWzEawPgZM7Bs5UoOkpLtsPqF\nCpoVFq0gshKGOhUsKy1aQWQVLGmkgrXW54sHOhCtZmkIhVimSJQBhjqZricSYZkikUEY6mS6EoeD\nZYpEBmGok+nqAgH4nc5+ZYp+p5NlikQZ4EApWUK8+qWzEyUVFax+oaLH6hciIhth9QsVNK5qT2QM\nXqmT6bgCD9FAvFKngsVV7YmMk1Woi8hYEXlKRLaLyFYRmWFUw6h4cFV7IuMMz/L1PwHwoqp+R0SG\nAyg1oE1UZLiqPZFxMu5TF5ExAN5VVecg+xV8nzoXO84t9qkTDZT3kkYROQ/AagDbAJwH4A8AblXV\nvyXsV9ChzsDJD65qT9SfGaF+PoBWALNU9Q8ishLAAVX1J+ynfv/xTS6XCy6XK6NjmsHr9aKpqWnA\ndo/Hg8bGRhNaRER2FAwGEQwG448bGhryHurjAbypqlNjjy8GcKeq/kPCfgV9pe52u/ud6L7bN2zY\nkP8GEVFRyHtJo6ruA7BbRM6IbfoGol0xtsJBPCIqJFndfBTrV/9PACcB2AXgOlU9kLBPQV+ps0+d\niMzAuV9yiIN4RJRvDHUiIhvhNAFERJT1HaVUYOLzlkciKHE4OG85kc2w+6WItIfDeKimJr7Ic+8K\nQ7e0tDDYiSyGfeqUVN8r8y1tbfiXtjac1ef5LgArPB74eSMVkaVkGursfrEoI+abSXplDuAWAJWx\nfUYB6OFsiES2wVC3oGS18a2trUOujV/r88UDHYgGeAOAFYiGOxAN+hLeSEVkG6x+sSCjFo3oiUTi\ngd5rFIBjse97+9TrAoFMm0pEFsMrdQsyatGIEocDXUC/YO8CsL2qCv7qapRUVOAWVr8Q2QpD3YKM\nmm+mLhCAv7V1QLXLg6x2IbItVr9YkJHzzcSrXzo7UVJRgW8sXYr/WL2aC34QWRxLGm0mF/PN2GVy\nMq5EFVVVVYX29nazm0FZqqysRFtb24DtDPUsFUNQ2GHBD7t8MBkh9ktvdjMoS6n+P7JOPQtGlRBa\nnVEDsGY6UWVQoXwwEeUSSxphXAmh1dlhwQ87fDAR5RJDHdYMivZwGA1eL/xuNxq8XrSHw1m/ZyAQ\ngNPp7LfN6XQiUEB16nb4YCLKJXa/wHpBkfT2/tbWrCfeqq6uRktLS0Ev+BEIBNDa2jqgT72QPpiI\ncokDpbDe4FuD14s7mpoG3DTEibeiuBJVFAdKjdXd3Y2TTjoJbW1tmDJlSt6Oy4HSHLDaFWyq2/s5\n8VZUdXU1B0UtrKysDCLRLOrq6sLJJ5+MYcOGQUTw8MMP45prrjG5han1truQMdRjrBQUqW7v58Rb\nZJRclvAePHgw/v3UqVOxZs0auN3ulPt3d3dj2LBhhhw7W3b4y4cDpRZUFwjA73SiK/aYE2+RkXq7\nG5uamhAMBtHU1ISamhqEDRiMT6SqA4LS5/Nh8eLFqK2txdixY9HU1IQlS5bghz/8YXyfV199td+H\nTCQSwZVXXonTTz8dTqcTP/vZz5Ie74033sCkSZP6bXvqqadw/vnnA4iWKs+aNQvjxo2Dw+HArbfe\niu7u7qTvdckll+Cxxx6LP078cNq2bRtqamrwuc99DtOmTcOzzz4bf+7555/HtGnTMGbMGEyZMgU/\n+clPBjtVhmGoW1BldTVuaWmJ9qG73Vjh8XB1IjKMFUp4n3vuOXi9Xhw4cACLFi1Kuk9vV4iqYv78\n+ZgxYwb27NmDlpYWrFixAhs3bhzwmosuuggjRozA7373u/i25uZmeL1eAMDw4cOxatUq7N+/H7//\n/e+xfv16PPzww2m3u2+30pw5c1BXV4cPP/wQTU1NWLp0Kd5//30AwPXXX49HHnkEf/3rX7F582Zc\neumlaR8jWwx1i6qsroa/sRENGzbA39jIQCfDWKGE9+KLL8a8efMAAKeccsoJ933jjTdw8OBB3Hnn\nnRg2bBimTp2K66+/Hk888UTS/a+++mo8/vjjAIBPPvkE69evx9VXXw0AuOCCC3DhhRdCRFBVVYUb\nb7yx3wdAutatW4cvfelL8Hg8EBF85StfwYIFC/D0008DAEaMGIGtW7fi0KFDOPXUUzF9+vQhHyNT\nWYW6iLSJyJ9E5F0RecuoRhFR7lihhHfy5Mlp79vR0YH29naUl5ejvLwc48aNw/333499+/Yl3b+2\nthbPPvssuru78cwzz2DmzJnx/7b33nsP8+fPx8SJEzF27Fj4/X58+OGHQ25/e3s7Xn/99X5tevLJ\nJ7Fnzx4AwK9//WusW7cOU6ZMwezZs/HWW/mLx2wHSnsAuFT1YyMaQ0S5Z4Va/8Qqk1GjRuHTTz+N\nP+4NRyD6AXDGGWdg69atab33l7/8ZUyYMAEvvfQSmpubUVtbG3/uu9/9LmbNmoWnnnoKI0eOxAMP\nPIAXXngh6fsktmnv3r392nTZZZelfO2FF16IdevWobu7GytXrsTixYuxa9eutNqfrWy7X8SA9yCi\nPOot4fV4PHC73fB4PKbPczR9+nS88MIL+OSTT7Bnzx489NBD8edmzZqFESNG4MEHH8SRI0fQ3d2N\nLVu24I9//GPK96utrcWPf/xjtLa2YuHChfHtBw8exNixYzFy5Ehs3779hP3p06dPxzPPPIPDhw9j\nx44d+OUvfxl/7vLLL8fWrVvR3NyMzz77DMeOHcPbb7+NHTt24PDhw2hubsbBgwcxbNgwjB49Oq/V\nPdkGsgJoEZG3ReRGIxpERLnXW8K7YcMGNDY25izQ0637rqurw5lnnonKykrMmzevXy37sGHD8OKL\nL+Ktt95CVVUVTj/9dNx00039SicTXXPNNdi4cSPmzJmDsWPHxrc/8MADWLt2LcaMGYObb74Zixcv\nTtneO+64AwAwfvx43HDDDViyZEn8uTFjxmD9+vVobGzExIkTUVFRge9///s4evQoAODRRx9FVVUV\nTj31VDzyyCNJZ0fNlazuKBWRiaq6R0ROA9ACYJmqvp6wj/r9/vhjl8sFl8uV8TGJKIp3lNpD7//H\nYDCIYDAY397Q0GDufOoi4gdwUFUfTNhu+WkCiAoRQ90ejJ4mIOPuFxEpFZHRse9HAZgDYEum70dE\nRNnLpvplPIBfi4jG3qdJVV82pllERJQJztJoc8WwTF+xYveLPRjd/cJQT0N7OIy1Ph96IhGUOByo\nCwQK4g5Pq00pTMZiqNsDQz3Pki5Y4XQWxFwsdlhomlJjqNuDZQZKi8Vany8e6EB0OtyGUAhrC2D9\nUivM8UFE+cVQH0QhL1hhhTk+iCi/GOoxqRZ67l2woq9CWbDCDgtNE/XV3t6OkpIS9PT0AADmzZuH\nX/3qV0N+n927d2PMmDH27L7qncQ+V1/RQ1hb265dervTqYcAVUAPAXq706ltu3ad8LlCsGvXLvV4\nPOp2u9Xj8eiuAmk3Dc7Kv1uVlZU6cuRILSsr0wkTJmhdXZ12dXVl/b5tbW1aUlKi3d3dQ3pdVVWV\nvvrqq1kfPxdS/X+MbR965mbyoiEdwMI/eL3qPZ54aGuf8K73eFQ1Gvr1Ho/e43ZrvcdTMIFO9pbN\n71b8Z9rlysnPdFVVlW7YsEFVVTs7O/Wcc87R5cuXD9ivp6dnSO/LULdxqPdegbpcrqyvQO9xufoF\neu/XPW63gS0mMlamv1v5+OszMUS/973v6fz589Xlcundd9+tX//617W0tFRDoZAeOHBAr7/+ep04\ncaJOmjRJf/CDH8TDvru7W2+//Xb9/Oc/r06nU3/605/2C3WXy6Vr1qyJH2f16tV61llnaVlZmZ59\n9tn67rvv6pIlS7SkpERLS0u1rKxM77//fm1ra1MRib9PZ2enXn755VpeXq5f/OIX9Re/+EX8Pevr\n63XRokV67bXXallZmZ5zzjn6zjvvxJ//0Y9+pA6HQ8vKyvTMM8+Mf5ili6Gu0UB3Op2K6CyRCkCd\nTmfGwT7YlTqRFWX6u5WPn/e+od7R0aFnn3223nPPPepyubSyslK3b9+u3d3deuzYMV2wYIHefPPN\n+re//U0/+OADnTFjhq5evVpVVX/+85/rWWedpZFIRD/++GN1u90pQ/3JJ5/USZMmxQM3FAppR0dH\nvD19wzbxiv+SSy7RZcuW6dGjR3XTpk162mmn6caNG6Pnq75eR44cqS+99JL29PTo8uXLdebMmaqq\n+t577+nkyZN17969qqra3t4+5BxiqKuqx+PpF+i9X54MfygLvd+cilOmv1v5+Mu0qqpKy8rKdNy4\ncVpVVaXLli3Tw4cPq8vlUr/fH99v3759evLJJ+vhw4fj25qbm3X27Nmqqjp79mx9+OGH48+9/PLL\nKUN97ty5umrVqpTt6fuXQ99Q7+jo0OHDh/fr81++fLled911qhoN9Zqamvhz27Zt09LSUlVV3blz\np44fP15feeUVPXbsWEbnyuhQz3blI1MYXX8dX+jZ50NPZydKKipwS4HcNUo0VL0VXX1LdXNR0bVu\n3Tq43e4B2/suZdfe3o5jx45h4sSJAI5fZE6ZMgVA9He67/6VlZUpj7d79+4B1V7p2LNnD8rLy1Fa\nWtrvOO+880788YQJE+Lfl5aW4vDhw+jp6YHT6cTKlStRX1+Pbdu2Ye7cuXjggQfi/z1mKMhQz0X9\nde9Cz0R2VxcIwN/aOvAuaYNLXaMXmwP1XYhi8uTJOOWUU/DRRx8lXVBj4sSJ2L17d/xxe3t7yuNN\nnjy535QYqY6ZqKKiAvv370dXVxdGjYp+1HV0dKTMmUSLFy/G4sWLcejQISxduhR33XUXHn300bRe\nmwsFWafO+muizMX/MvV44He7scLjMW3aiwkTJmDOnDm47bbbcPDgQagqdu3ahddeew0AsGjRIqxa\ntQqRSAQff/wx7rvvvpTvdcMNN2DFihXxZe5CoVD8A2H8+PED1gjt/dCZNGkSLrroIixfvhxHjhzB\n5s2bsWbNmn4rHSXqfe2OHTuwceNGHD16FCNGjMDIkSNRUmJurBZkqFtxjUWiQtL7l2nDhg3wNzYa\nHuiproyTbX/sscdw9OhRTJs2DeXl5fjOd74TX+T5xhtvxNy5c3HeeefhggsuwFVXXZXy/RYuXIi7\n774btbW1GDNmDK644grs378fALB8+XIEAgGUl5fjwQcfHPDa5uZmhMNhVFRU4KqrrkIgEEjadZR4\n3CNHjuCuu+7CaaedhoqKCnzwwQe499570zlFOcMJvYgKFCf0sgdO6EVERCkV5EApULhznBMR5VJB\ndr8U8hznREZh94s9sPsFhT3HORFRLhVkqBfyHOdERLlUkKFeyHOcExHlEvvUiQpUVVXVCe+wpMJQ\nWVmJtra2AdtNW3haREoA/AHAX1T18iTP56ROPV79EpurhdUvRGQnZob6bQDOBzAmn6FeiILBIFwu\nl9nNsASei+N4Lo7juTjOlOoXEZkEYB6A/8zmfYpFMBg0uwmWwXNxHM/FcTwX2ct2oPTHAL6H6Hzm\nRERksoxDXUS+BWCfqm4CILEvIiIyUcZ96iLybwC8AD4DMBJAGYBnVfXahP14FU9ElAFTBkoBQEQu\nBXB7soFSIiLKn4K8+YiIiJLL+c1HRESUP4ZdqYvIN0XkzyKyQ0TuTLHPKhF5X0Q2ich0o45tNYOd\nCxGpFZE/xb5eF5Evm9HOXEvnZyK234UickxErsxn+/Ipzd8Pl4i8KyJbRGRjvtuYL2n8fowRkd/E\ncuJ/RKTOhGbmhYisEZF9IrL5BPsMLTd7V+/O5gvRD4edACoBnARgE4AzE/b5ewAvxL6fAaDViGNb\n7SvNczETwNjY99+047lI5zz02e9VAM8DuNLsdpv4MzEWwFYAjtjjz5vdbhPPxXIA9/aeBwAfARhu\ndttzdD4uBjAdwOYUzw85N426Uv8agPdVtV1VjwF4AsC3E/b5NoDHAEBV/y+AsSIy3qDjW8mg50JV\nW1X1QOxhK4D0li0vLOn8TADALQCeBvD/8tm4PEvnXNQCeEZVIwCgqh/muY35ks65UESr6RD79yNV\n/SyPbcwbVX0dwMcn2GXIuWlUqDsA7O7z+C8YGFSJ+0SS7GMH6ZyLvm4A8Nuctsgcg54HEakAsEBV\nfw573+eQzs/EGQDKRWSjiLwtIqmXsi9s6ZyLfwcwTUQ6AfwJwK15apsVDTk3C3Y5OzsQETeA6xD9\nE6wYrQTQt0/VzsE+mOEAvgpgNqLLA7wpIm+q6k5zm2WKuQDeVdXZIuIE0CIi56rqIbMbVgiMCvUI\ngCl9Hk+KbUvcZ/Ig+9hBOucCInIugNUAvqmqJ/rzq1Clcx4uAPCEiAiifad/LyLHVPU3eWpjvqRz\nLv4C4ENVPQzgsIi8BuA8RPuf7SSdc3EdgHsBQFVDIhIGcCais8EWmyHnplHdL28D+IKIVIrICACL\nAST+Yv4GwLUAICIzAXyiqvsMOr6VDHouRGQKgGcALFHVkAltzIdBz4OqTo19VSPar/5PNgx0IL3f\nj3UALhaRYSJSiuig2PY8tzMf0jkX7QAuA4BY//EZAHbltZX5daJpVoacm4Zcqatqt4gsA/Ayoh8U\na1R1u4h8N/q0rlbVF0VknojsRHRdi+uMOLbVpHMuAPgAlAP4Wewq9Ziqfs28VhsvzfPQ7yV5b2Se\npPn78WcvJAS6AAAAa0lEQVQRWQ9gM4BuAKtVdZuJzc6JNH8u/gXA2j5lfv+sqvtNanJOicjjAFwA\nPiciHQD8AEYgi9zkzUdERDbCaQKIiGyEoU5EZCMMdSIiG2GoExHZCEOdiMhGGOpERDbCUCcishGG\nOhGRjfx/EKu2fNaC6WEAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x20048f5be10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(x, y, 'ko', label='True values')\n", "plt.plot(x, our_predictions, 'ro', label='Predictions')\n", "plt.legend(numpoints=1, loc=4)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 198, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 0, 1, 2, 3],\n", " [ 4, 5, 6, 7],\n", " [ 8, 9, 10, 11]])" ] }, "execution_count": 198, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.arange(12).reshape((3,4))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exercise\n", "\n", "1. Plot the residuals. The x axis will be the independent variable (x) and the y axis the residual between our prediction and the true value.\n", "2. Plot the predictions generated for our model over the entire range of 0-1. One approach is to use the np.linspace method to create equally spaced values over a specified range." ] }, { "cell_type": "code", "execution_count": 199, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEsVJREFUeJzt3W2MY2d5xvHrCtt8ANGIUNjigaSuQ5QSQVNol0UgxQOd\nZkMrFlBUXtagIpVG0FT90KqhAmsHuRJNPwCigdJUEW20QUtVVEgCUXdUrUGRGEgJIUB3ycYcwmZM\nt4IQlPAibZe7H8aZzO7aY8/4+Bzbz/8nWbKPn/G598jry+c8L3ZECACQpgvKLgAAUB5CAAASRggA\nQMIIAQBIGCEAAAkjBAAgYbmEgO1bbZ+y/cCA56+2/Zjt+3q39+WxXwDAeHbl9DqfkPT3km7bos0X\nI+J1Oe0PAJCDXM4EIuIeST8a0sx57AsAkJ8i+wReYft+25+z/aIC9wsAGCCvy0HDfFXSJRHxU9vX\nSvqMpMsL2jcAYIBCQiAinth0/27bH7N9cUQ8em5b2yxmBADbFBE7uuSe5+Uga8B1f9u7N93fI8n9\nAuBJEcEtQgcPHiy9hmm4cRw4FhyLrW/jyOVMwPYnJdUlPdv29yQdlHShpIiIWyRdZ/tdkk5L+pmk\nN+WxXwDAeHIJgYh465DnPyrpo3nsCwCQH2YMT7F6vV52CVOB4/AUjsVTOBb58LjXk/JmO6atJgCY\nZrYVU9AxDACYMYQAACSMEACAhBECAJAwQgAAEkYIAEDCCAEASBghAAAJIwQAIGGEAAAkjBAAgIQR\nAgCQMEIAABJGCExAlmVqNBpaXFxUo9FQlmVllwQAfbGUdM6yLNPS0pI6nc7GtlqtppWVFVWr1RIr\nAzCvWEp6ijSbzbMCQJI6nY6azWZJFQHAYIRAztbW1vpu73a7BVcCAMMRAjlbWFjou71SqRRcCQAM\nR59AzugTAFC0cfoECIEJyLJMzWZT3W5XlUpFrVaLAAAwMYQAACSM0UEAgB0hBAAgYYQAACSMEACA\nhBECAJCwXELA9q22T9l+YIs2H7F9wvb9tq/KY78AgPHkdSbwCUnXDHrS9rWSahHxQknXS/p4TvsF\ngCRtXq14HLvyKCYi7rF96RZN9ku6rdf2y7Yvsr07Ik7lsX8ASEm/lQl2qqg+gQVJJzc9XuttAwBs\nU7/VineKjmEAmDGDViveiVwuB41gTdILNj1+fm9bX8vLyxv36/W66vX6pOoCgJmza1d+H925rR1k\n+9ck3RkRL+7z3Gsl/WlE/L7tvZI+HBF7B7wOawcBwBb69QmUuoCc7U9Kqkt6tqRTkg5KunC9rril\n1+ZmSfsk/UTSOyLivgGvRQgAwBCbVys+evQoq4gCQKpYRRQAsCOEAAAkjBAAgIQRAgCQMEIAABJG\nCABAwggBAEgYIQAACSMEAKBn8xr9jUZDWZaVXdLEMWMYANR/PZ5araaVlRVVq9USKxuOGcMAMKZ+\na/R3Oh01m82SKioGIbBDKZ42AvNs0Br93W634EqKVdTvCcyVfqeNq6urM3HaCKC/hYX+P3ZYqVQK\nrqRYnAnsQKqnjcA8a7VaqtVqZ22r1WpqtVolVVQMzgR2INXTRmCeVatVraysbKzRX6lU1Gq15v7s\nnhDYgVRPG4F5V61WdejQobLLKBRDRHdgloeSAZg/4wwRJQR2aPNPu6Vy2ghgOhECAJAwJosBAHaE\nEACAhBECAJAwQgAAEkYIAEDCCAEASBghAAAJIwQAIGGEAAAkjBAAgITlEgK299k+bvtB2zf2ef5q\n24/Zvq93e18e+wUAjGfspaRtXyDpZkmvkdSVdK/tz0bE8XOafjEiXjfu/gAA+cnjTGCPpBMR8XBE\nnJZ0WNL+Pu12tLgRAGBy8giBBUknNz1+pLftXK+wfb/tz9l+UQ77BQCMqahfFvuqpEsi4qe2r5X0\nGUmXD2q8vLy8cb9er6ter0+6PgCYGe12W+12O5fXGvv3BGzvlbQcEft6j98jKSLipi3+JpP0soh4\ntM9z/J4AAGxD2b8ncK+ky2xfavtCSW+WdMc5Be7edH+P1sPnvAAAABRr7MtBEXHG9g2Sjmg9VG6N\niGO2r19/Om6RdJ3td0k6Lelnkt407n4BAOPj5yUBYMaVfTkIADCjCAEASBghAAAJIwQAIGGEAAAk\njBAAgCmTZZkajYYWFxfVaDSUZdnE9sUQUQCYIlmWaWlpSZ1OZ2NbrVbTysqKqtVq379hiGjiivzW\nAGCyms3mWQEgSZ1OR81mcyL7K2oBuVJlWaZms6m1tTUtLCyo1WoNTNRZ0+9bw+rq6pbfGgBMr7W1\ntb7bu93uRPY39yEw7x+SW31rOHToUElVAdiphYV+K/FLlUplIvub+8tBRZ9aFa3obw3ArJqVy6at\nVku1Wu2sbbVaTa1WayL7m/szgXn/kCz6WwMwi2bpikC1WtXKyoqazaa63a4qlcpEL2HPfQjM+4dk\nq9XS6urqeSMJJvWtAZhFs3bZtFqtFlbX3F8OKvrUqmhPfms4cOCAFhcXdeDAgan8dgOUad6vCIxj\n7s8Eij61KkOR3xqAWTTvVwTGwWQxAHNvJxOwZsk4k8UIAQBJeHK+0DxeESAEACBhLBsBANgRQgBA\noWZl0lYquBwEoDDz3kFbFi4HAZgJ876MyywiBAAUhklb04cQAFAYJm1NH/oEABSGPoHJYJ4AgJkx\nz5O2ykIIAAPM86/KAU8iBIA+uPSAVJQ+RNT2PtvHbT9o+8YBbT5i+4Tt+21flcd+ga0wHBEYbuwQ\nsH2BpJslXSPpSklvsX3FOW2ulVSLiBdKul7Sx8fdLzAMwxGB4fI4E9gj6UREPBwRpyUdlrT/nDb7\nJd0mSRHxZUkX2d6dw76BgRiOCAyXRwgsSDq56fEjvW1btVnr0wbI1bz/qhyQh6n8ZbHl5eWN+/V6\nXfV6vbRaMLtS+FU5pKndbqvdbufyWmOPDrK9V9JyROzrPX6PpIiImza1+bikoxHxqd7j45KujohT\nfV6P0UEAsA1ljw66V9Jlti+1faGkN0u645w2d0h6u7QRGo/1CwAAQLHGDoGIOCPpBklHJH1L0uGI\nOGb7ett/0mvzeUmZ7Yck/aOkd4+7X6BIrIGPvEzbe4nJYsAQTDpDXib1Xir7chAw15h0hrxM43uJ\nEACGYNIZ8jKN7yVCABiCSWfIyzS+l+gTAIagTwB5mcY+gamcLAZMEyadIU9XXnmlHn/8cdnW3r17\n9aEPfajU9xJnAgBQgEmeUTI6CACm3DSODJIIAQAoxDSODJIIAQAoxDSODJLoEwCAQkxrnwAhAAAF\nybJsIqPMCAEASBijgzAx07bi4bTWBMwqzgQw0DTOlJ3GmoCycSaAiZjGcc3TWBMwywgBDDSN45qn\nsSZglhECGGgaxzVPY03ALKNPAANN4/X3aawJKBtDRDExkxrXPG81AWUiBAAgYYwOAgDsCCEAAAkj\nBAAgYYQAMIdYWgOjomMYmDMMo00PHcMANrC0BraDEADmDEtrYDsIAWCGjHKtn6U1sB1j9QnYfpak\nT0m6VNJ3Jf1hRPy4T7vvSvqxpF9IOh0Re7Z4TfoEgD5GvdZPn0B6SpsxbPsmST+MiL+zfaOkZ0XE\ne/q0+46kl0XEj0Z4TUIA6KPRaOj2228/b/uBAwd06NChs7axtEZaxgmBXWPue7+kq3v3/0VSW9J5\nISDJ4tITMJbtXOuvVqvnBQPQz7gfzM+NiFOSFBH/I+m5A9qFpBXb99p+55j7BJLEtX5MwtAzAdsr\nknZv3qT1D/X39Wk+6DrOKyPi+7afo/UwOBYR9wza5/Ly8sb9er2uer0+rExg7rVaLa2urp53rb/V\napVYFcrQbrfVbrdzea1x+wSOSapHxCnbvyrpaET8xpC/OSjp8Yj44IDn6RMABuBaP/opu2P40Yi4\naVDHsO2nS7ogIp6w/QxJRyS9PyKODHhNQgAAtqHMELhY0r9KeoGkh7U+RPQx28+T9E8R8Qe2q5L+\nXeuXinZJuj0i/naL1yQEAGAb+FEZAEgYawcBAHaEEACAhBECAJAwQgAAEkYIAEDCCAEASBghAAAJ\nIwQAIGGEAAAkjBAAgIQRAgCQMEIAABJGCABAwggBAEgYIQAACSMEACBhhAAAJIwQAICEEQI4S5Zl\najQaWlxcVKPRUJZlZZcEYIL4jWFsyLJMS0tL6nQ6G9tqtZpWVlZUrVZLrAzAVviNYeSi2WyeFQCS\n1Ol01Gw2S6oIwKQRAtiwtrbWd3u32y24EgBFIQSwYWFhoe/2SqVScCUAikKfADbQJwDMpnH6BAgB\nnCXLMjWbTXW7XVUqFbVaLQIAmHKEAAAkjNFBAIAdIQQAIGFjhYDt62x/0/YZ2y/dot0+28dtP2j7\nxnH2CQDIz7hnAt+Q9AZJXxjUwPYFkm6WdI2kKyW9xfYVY+4XAJCDXeP8cUR8W5Jsb9UhsUfSiYh4\nuNf2sKT9ko6Ps28AwPiK6BNYkHRy0+NHetsAACUbeiZge0XS7s2bJIWk90bEnZMqDAAweUNDICKW\nxtzHmqRLNj1+fm/bQMvLyxv36/W66vX6mCUAwPxot9tqt9u5vFYuk8VsH5X0lxHx1T7PPU3StyW9\nRtL3JX1F0lsi4tiA12KyGABsQ2mTxWy/3vZJSXsl3WX77t7259m+S5Ii4oykGyQdkfQtSYcHBQAA\noFgsGwEAM45lIwAAO0IIAEDCCAEASBghAAAJIwQAIGGEAAAkjBAAgIQRAgCQMEIAcy/LMjUaDS0u\nLqrRaCjLsrJLAqYGM4Yx17Is09LSkjqdzsa2Wq2mlZUVVavVEisD8sOMYWCAZrN5VgBIUqfTUbPZ\nLKkiYLoQAphra2v9Vy3vdrsFVwJMJ0IAc21hof+P2FUqlYIrAaYTfQKYa/QJIAXj9AkQAph7WZap\n2Wyq2+2qUqmo1WoRAJgrhAAAJIzRQQAKwZyL+cOZAICR0L8yvTgTADBxzLmYT4QAgJEw52I+EQIA\nRsKci/lEnwCAkdAnML0YIgqgEMy5mE6EAAAkjNFBAIAdIQQAIGGEAAAkjBAAgISNFQK2r7P9Tdtn\nbL90i3bftf1121+z/ZVx9gkAyM+4ZwLfkPQGSV8Y0u4XkuoR8VsRsWfMfSaj3W6XXcJU4Dg8hWPx\nFI5FPsYKgYj4dkSckDRsaJLH3VeKeJOv4zg8hWPxFI5FPor6YA5JK7bvtf3OgvYJABhi17AGtlck\n7d68Sesf6u+NiDtH3M8rI+L7tp+j9TA4FhH3bL9cAECecpkxbPuopL+IiPtGaHtQ0uMR8cEBzzNd\nGAC2aaczhoeeCWxD3wJsP13SBRHxhO1nSPo9Se8f9CI7/YcAALZv3CGir7d9UtJeSXfZvru3/Xm2\n7+o12y3pHttfk7Qq6c6IODLOfgEA+Zi6BeQAAMUpZdim7X22j9t+0PaNA9p8xPYJ2/fbvqroGosy\n7FjYfmtvot3Xbd9j+8Vl1FmEUd4XvXa/Y/u07TcWWV+RRvw/Uu9NwPxmr19uLo3wf+SXbd/R+6z4\nhu0/KqHMQti+1fYp2w9s0WZ7n50RUehN68HzkKRLJf2SpPslXXFOm2slfa53/+WSVouuc4qOxV5J\nF/Xu70v5WGxq95+S7pL0xrLrLvF9cZGkb0la6D3+lbLrLvFY/LWkDzx5HCT9UNKusmuf0PF4laSr\nJD0w4Pltf3aWcSawR9KJiHg4Ik5LOixp/zlt9ku6TZIi4suSLrK9W/Nn6LGIiNWI+HHv4aqk/r/x\nN/tGeV9I0p9J+jdJ/1tkcQUb5Vi8VdKnI2JNkiLiBwXXWJRRjkVIembv/jMl/TAi/q/AGgsT60Pr\nf7RFk21/dpYRAguSTm56/IjO/2A7t81anzbzYJRjsdkfS7p7ohWVZ+ixsF2R9PqI+AcNn6U+y0Z5\nX1wu6WLbR3uTMN9WWHXFGuVY3CzpRba7kr4u6c8Lqm0abfuzM88hopgg24uS3qH108FUfVjS5mvC\n8xwEw+yS9FJJr5b0DElfsv2liHio3LJKcY2kr0XEq23XtD4h9SUR8UTZhc2CMkJgTdIlmx4/v7ft\n3DYvGNJmHoxyLGT7JZJukbQvIrY6FZxloxyL35Z02La1fu33WtunI+KOgmosyijH4hFJP4iIn0v6\nue0vSvpNrV8/nyejHIt3SPqAJEVEx3Ym6QpJ/1VIhdNl25+dZVwOulfSZbYvtX2hpDdLOvc/8R2S\n3i5JtvdKeiwiThVbZiGGHgvbl0j6tKS3RUSnhBqLMvRYRMSv925VrfcLvHsOA0Aa7f/IZyW9yvbT\nehMyXy7pWMF1FmGUY/GwpN+VpN7178slfafQKotlDT4L3vZnZ+FnAhFxxvYNko5oPYRujYhjtq9f\nfzpuiYjP236t7Yck/UTrST93RjkWkpqSLpb0sd434NMxh8txj3gszvqTwossyIj/R47b/g9JD0g6\nI+mWiPjvEsueiBHfF38j6Z83DZv8q4h4tKSSJ8r2JyXVJT3b9vckHZR0ocb47GSyGAAkjDX+ASBh\nhAAAJIwQAICEEQIAkDBCAAASRggAQMIIAQBIGCEAAAn7f79TRFhzl9LBAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x20048f62400>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(x, y - our_predictions, 'ko')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 204, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(1000, 2) (2, 1)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPXVx/HPDxABJWAElYQlIRQEUanFgoo6oSwKFERR\nlMQFlerT2trtUbFGgnGtiBTbx6pFqxWxuFTcBYUoFHFBaJSdEBMkgLIvZU3O88cNEUICk9ln8n2/\nXvNi5s6dew835Mzld3/3HGdmiIhIYqgX7QBERCR0lNRFRBKIkrqISAJRUhcRSSBK6iIiCURJXUQk\ngRw1qTvnJjnn1jvnCg5aNsw595Vzrsw5d1Z4QxQREX/5c6b+DNC/yrIvgaHAhyGPSEREAtbgaCuY\n2RznXLsqy5YBOOdcuAITEZHa05i6iEgCUVIXEUkgRx1+CZZzTsVlREQCYGa1HuL290zdVTxqeu+I\nzEwPM8aMGRP1GGLloWOhY6Fj8f3D5/P5m7OPyp8pjS8Ac4GOzrkS59xI59wlzrnVQE/gTefcOyGL\nSESkjklNTQ3ZtvyZ/TKihrdeC1kUIiJ1WF5eHvPmzaOwsDDobelCaQSF8r9Y8U7H4ns6Ft+rq8ci\nPT2dGTNmkJWVRWZmJllZWQFvy5mF9zqmc87CvQ8RkUTjnMPCeKFURETigJK6iEgCUVIXEUkgSuoi\nIglESV1EJIEoqYuIJBAldRGRBKKkLiKSQJTURUQSiJK6iEgCUVIXEUkgSuoiIglESV1EJIEoqYuI\nJBAldRGRBKKkLiISZkVFRWRnZ5OZmUl2djZFRUVh25eaZIiIhFFRURF9+/Y9pFVdRkYGM2bMID09\nvcbPha1JhnNuknNuvXOu4KBlJzjnpjvnljnn3nPONavtjkVE6oKcnJzDeo8WFhaSk5MTlv35M/zy\nDNC/yrI7gPfNrBMwExgd6sBERBLBmjVrql1eWloalv0dNamb2Rxgc5XFQ4BnK54/C1wS4rhERBJC\nampqtctTUlLCsr9AL5SeZGbrAcxsHXBS6EISEQmNSF6grEleXh4ZGRmHLMvIyCAvLy8s+2sQou3o\nSqiIxJTqLlDOmzfvqBcoQy09PZ0ZM2aQk5NDaWkpKSkp5OXl1RxDWRm88ELA+/Nr9otzrh3whpmd\nUfF6CeAzs/XOuVOAWWbWuYbP2pgxYypf+3w+fD5fwAGLiPgjOzubyZMnH7Y8KyuL559/PgoRHVn+\nzJnk/9//QX4+NGnC2NWrA5r94u+Zuqt4HPA6cB3wEHAtMO1IH87Nza1tXCIiQYn0BcqAmcG0afju\nvhtfo0YweTL068fYeoGNjh81qTvnXgB8wInOuRJgDPAg8JJz7nqgGLgioL2LiIRJpC9Q1poZvPMO\n3H037N8P990HgwaBq/XJ+SF085GIJKRAb/oJOzOYORNycmDrVhg7Fi69FKqcmQd685GSuogkrKKi\nIv8vUEbC7NleMl+zBnJz4coroX79aldVUhcRiVWffuol8+XLveGWq6+GBkce/Q5bmQAREQnQwoUw\neLA3vDJ0KCxbBiNHHjWhB0NJXUQk1BYtgmHD4OKL4Sc/gZUr4eaboWHDsO9aSV1EJFSWL4esLMjM\nhB//2Evmt94KjRpFLITw/R9ARKSOWD17Nquuu45uJSVM79KFs99/n7QzzohKLDpTFxEJ1DffsC0r\ni+N9Pj5atYq0/fu5oqCAPpdeGpU6M6CkLiJSe+vWwa9/DWecwUcLFvCD8nLuBrZUvB3OeulHo6Qu\nIuKvDRvgttugSxfvJqLFi7k3KYmN1awarXIESuoiIkezZYs3z7xTJ9i+HQoK4E9/omjXLhYtWlTt\nR6JVjkBJXUSkJtu3w733QocO3l2gn38Ojz8OrVsDXqu6HTt2HPax448/Pmz10o9GSV1EpKqdO+GP\nf4SMDFiyBObOhaefhiolBmqqBNm1a9eolSPQlEYRkQN274YnnoAHH4RevWDWLDjttBpXr6kSZNVO\nR5GkM3URiUshbVW3dy/89a/eMMsHH8Dbb8NLLx0xoUPkW9X5QwW9RCTuhKys7v798I9/wD33QMeO\n3p89etQ6lnBUglSVRhGpM4JuVVdWBi++6NUyT0mBvDw4//wwRBq4QJO6xtRFJO4E3KquvBxefRXG\njIFmzbyZLL17B91tKJYoqYtI3Kl1qzozePNNb655/frw8MNeBcUESuYHaPhFROKO32PqZjB9uteY\n4r//9YZZhgyJi2QelTF159ytwI0VL58ys4nVrKOkLiIhd9QLlPn53pn5d995Y+eXX35YH9BYFvGk\n7pw7DZgCnA3sB94BbjazVVXWU1IXkciZO9dL5l9/7Y2djxgR1k5D4RKNdnadgU/MbI+ZlQEfAZcG\nsT0RkcDNnw8DBsBVV3mPpUvhmmviMqEHI5ik/hVwvnPuBOdcE2AA0CY0YYmI+OnLL73+n4MHw8CB\nXvehG2+EY46JdmRREfBXmJktdc49BMwAdgALgLLq1s3Nza187vP58Pl8ge5WRMSzdCnk5nq38t9+\nO7zwAjRuHO2oApafn09+fn7Q2wnZ7Bfn3H3AajP7a5XlGlMXkdApLPTu/Hz7bfjtb+GXv4Tjj492\nVCEXjTF1nHMtK/5sCwwFXghmeyIiNSopgVGjvNv409O9ps6jRydkQg9GsFcQXnHOJQP7gJ+b2bYQ\nxCQi8r3SUrj/fm945eabvTHz5ORoRxWzgkrqZnZBqAIRETnEt9/CQw/BM8/AyJHeGPpJJ0U7qpgX\nPzPxRaRu2LTJG1bp3Bn27IGvvoJHHlFC95OSuojEhq1bvdksHTvCxo2wYAH8+c9eFUXxm5K6iETX\njh3wwANeg4qiIvjkE3jySWjbNtqRxSUldRGJjl27YPx4L5n/5z8wezY8+6zXF1QCpqQuIkGpdVu5\nPXu8YZUOHWDOHJgxw2tYceqpkQk4wdWtoggiElLVlcCdN29e9W3l9u2Dv/8d7r0XunaF11+HH/0o\nsgHXATpTF5GA5eTkHJLQAQoLC8nJyfl+QVkZPPecdyb+z396Z+VvvaWEHiY6UxeRgB2xrVx5OUyd\n6s1oadkSJk0C1X0KOyV1EQlYTW3lBpeVQbduXoGtiROhb9+46DaUCNTOTkQCVnVM/WLgjw0b8oMO\nHTj2wQdh0CAl8wBFpZ2dXztQUhdJaEWrVvHiz37G4M8+o5lzHHP//Zx8881x1TouFimpi0jkzZ7t\ntY4rLfXGzocPh/r1ox1VQgg0qWtMXURq79NPvWS+fDncfTdcfXWdaxsXq/T/IxHx38KFXtu4yy6D\nSy+FZcu8CopK6DFDSV1Ejm7RIhg2DC6+GPr0gRUr4KaboGHDaEcmVSipi0jNli+HrCzIzPQ6Dq1c\nCb/6FTRqFO3IpAZK6iJyuKIiuP56OPdcr655YSH87//CccdFOzI5CiV1EfneN994LeO6d4fUVG+Y\n5a67oGnTaEcmflJSFxFYtw5uvRXOOAOaNfMugOblwQknRDsyqaWgkrpz7jfOua+ccwXOucnOOV01\nEYknGzbAbbdBly7enZ+LF3t9QVu0iHZkEqCAk7pzLgX4JXCWmZ2BN+f9ylAFJiJhtGWLN8+8UyfY\nvh0KCmDCBDjllGhHJkEKdvilPnCcc64B0AQoDT4kEQmb7du9euYdOnh3gc6fD48/Dq1bRzsyCZGA\nk7qZlQKPACXAGmCLmb0fqsBEJIR27oQ//tFL5kuXwscfe6Vw09KiHZmEWMC3gTnnmgNDgHbAVuBl\n59wIM3uh6rq5ubmVz30+Hz7VVBaJjN274Ykn4MEHoVcvmDkTTjst2lFJNfLz88nPzw96OwEX9HLO\nDQP6m9moitdXAz3M7JYq66mgl0ik7d0LTz/tDbWcdRbcc49X31ziRjQKepUAPZ1zjYA9wE+Az4LY\nnogEa/9+r3VcXh507Aivvgo//nG0o5IICjipm9mnzrmXgQXAvoo/nwxVYCJSC2VlXu/PsWMhJQX+\n8Q9vuEXqHNVTF4ln5eXe2fiYMd5NQ3l50Lu3ug0lANVTF6lLzODNN7255g0awLhxcNFFSuaipC4S\nV8xg+nSvMcWuXd4F0CFDlMylkpK6SLzIz/fOzDds8FrHXX65+oDKYZTURWLd3LleMv/6ay+Zjxih\nPqBSI33Ni8Sq+fNhwAC46irvsXSp1wtUCV2OQEldJNYUFMDQoV4v0IEDve5DN94IxxwT7cgkDiip\ni8SKJUtg+HDo1w8uuMBrHfeLX8Cxx0Y7MokjSuoi0VZYCNdc4yXyH/7QS+a/+Q00bhztyCQOKamL\nREtJCYwa5TV0zsjwkvkdd8Dxx0c7MoljSuoikVZaCrfc4p2Vt2zpjZkfuCNUJEhK6iKR8u238Lvf\nQdeu0KiRN4Z+//2QnBztyCSBKKmLhNumTTB6NHTu7JXE/eor77b+k06KdmSSgJTURcJl61bvZqGO\nHWHjRliwAB57zKuiWEtFRUVkZ2eTmZlJdnY2RUVFoY9XEoLuKBUJtR07vOQ9frw3z/zTT6F9+4A3\nV1RURN++fSksLKxcNm/ePGbMmEF6enooIpYEojN1kVDZtQseecTrA1pQALNnw9//HlRCB8jJyTkk\noQMUFhaSk5MT1HYlMelMXSRYe/bAU0/BAw940xNnzIDTTw/Z5tesWVPt8tLS0pDtQxKHkrpIoPbt\n887E8/K8JP766/CjH4V8N6mpqdUuTwlgbF4SnzofidRWWRlMnuy1jktP95L6OeeEbXfVjalnZGRo\nTD3BBdr5SEldxF/l5TB1qjej5aSTvGR+4YVBbbKoqIicnBzWrFlDamoqeXl51SbqA+uVlpaSkpJS\n43qSOCKe1J1zHYF/AgY4oD2QY2YTq6ynpC7xzQxee82767NxYy+Z9+0bdLchnYHLkUT1TN05Vw/4\nBuhhZqurvKekLvHJDN55x2tQUV7uJfOBA0PWOi47O5vJkycftjwrK4vnn38+JPuQ+BXtxtN9gMKq\nCV0kLpnBBx94yXz7dm/sfOjQkLeO06wWCYdQJfXhwJQQbUskembP9pJ5aak3dj58eNg6DWlWi4RD\n0MMvzrljgFKgi5l9V837NmbMmMrXPp8Pn88X1D5FQu6TT7xkvmKFN3aenQ0NwjvjV2PqcrD8/Hzy\n8/MrX48dOzY6Y+rOucHAz83sohre15i6xK4FC+Duu2HhQrjrLhg5Eho2jNjuNatFahK1C6XOuSnA\nu2b2bA3vK6lLzPnmvfcoHTWK9uvX8/bpp3PB88+Tduqp0Q5LpFKgST2oKz/OuSZ4F0lfDWY7IhGz\nfDk7hgyh0cCBvLR6NW337uXa+fPpM2hQnax8qOqPiUc3H0ndUFTkTUl84w2mpqZyw3/+w44qq9S1\nqYQa049tUTlTF4l533wDN98M3btD69awYgWPn3DCYQkd6t5UQlV/TExK6pKY1q2DW2+FM8/0en8u\nWwb33APNm2sqYQXNk09MSuoSV446BrxhA9x2G3Tp4t0stHgxPPQQtGhRuUpeXh4ZGRmHfCwjI4O8\nvLxI/BVihr7cEpPG1CVuHHEMuHlzr0HF4497Nwzdeac33HKEbdX1qYQaU49tqtIoCa+6WilNgafP\nOINha9bAkCHeDURpaVGJLx7pyy12Rbv2i0jYHTwG3AT4BfB74D/r18PHH8MPfhCt0OJWenp6nZrx\nUxdoTF3iRmpqKscCvwJWAt0BH/Bsnz5K6CIVlNQlPuzdy4RTT6Wofn16AxfjVZHbWwcvcIociZK6\nxLb9++Hpp6FTJ1rMmUP5yy/zUlYWyZmZZGVl6aKeSBW6UCqxqawMXnzRq2WemurdDdqrV7SjEokY\nXSiVxFBeDq++6pW/bd4c/vpX6N072lGJxA0ldYkNZvDGG14Z3AYNYNw4uOiikLWOE6krlNQlusxg\n+nRvfvnu3d4wy+DBSuYiAVJSl+jJz/caU2zc6I2dDxsW8j6gInWNkrpE3ty53pl5cbE3dj5iRNj6\ngIrUNTotksiZPx8GDICrrvIS+ZIlcPXVSugiIaSkLuFXUABDh3q1WQYNguXL4YYb4Jhjoh2ZSMJR\nUpfwWbLEq5jYrx9ccAGsWAE//zkce+xhq6qtmkho6OYjCb3CQu/C57vvwm9/C7fcAscfX+PqKgEr\ncrhoNZ5u5px7yTm3xDm3yDnXI5jtSZwrLoZRo6BHD8jI8M7M77jjiAkd1FZNJJSCnf3yJ+BtM7vc\nOdcAryKq1DWlpXDffd5t/Tff7I2ZJyf7/XG1VRMJnYDP1J1zScD5ZvYMgJntN7NtIYsshmi8twbf\nfusNr3TtCo0bw9KlXnKvRUIHtVUTCaWAx9Sdc2cCTwKLgTOBz4FbzWxXlfXiekxd473V2LQJHn4Y\nnnzSm5p4553QqlXAm9MxFjlcNAp6NQDOAn5hZp875yYAdwBjqq6Ym5tb+dzn8+Hz+YLYbWQdaby3\nznWM2boVHn0U/vxnuOwyWLAA2rYNerPp6enMmDFDbdWkTsvPzyc/Pz/o7QRzpn4y8LGZta943Qu4\n3cx+WmW9uD5Tz8zMrPZAZ2ZmMnPmzMgHFA07dsBjj8H48TBwoFd0q337aEclktAiPvvFzNYDq51z\nHSsW/QRvKCah1Onx3l274JFHoEMH7waiOXPg739XQheJYUHNU68YV/8bcAywChhpZlurrBPXZ+p1\ncrx3zx546il44AHo2dObc961a7SjEqlTAj1T181HfigqKqob47379nln4nl5cMYZcM89cNZZ0Y5K\npE5SUpfA7d8Pkyd7Sbx9e+/Pc86JdlQidZra2UntlZfD1KmQmwsnneQ1eL7wwmhHJSJBUFKvi8zg\ntde8WSzHHefNbOnTR92GRBKAknpdYgbvvOM1qDDzLoQOHKhkLpJAlNRj1IGLs2vWrCE1NTW4i7Nm\n8MEHXjLfvt0bM7/kErWOE0lAulAag0I6jXL2bC+Zr13rjZ1fcYU6DYnEgaiU3pXwCEkp2k8+8ZpT\nXHstXHcdLFrktZFTQhdJaErqMSioUrQLFsBPfwrDhnmPpUu9pN5AI20idYGSegwKqDTBokVeEh84\n0DtDX7ECfvYzaNjwkNVURlgkwZlZWB/eLmLfqlWrLCsry3w+n2VlZdmqVauiGktGRoYBlY+MjIzq\nY1q2zOyqq8xOOsns4YfNdu4MzXZjWCz9rETCpSJ31j7nBvKhWu0gDpJ6LCa7A4krMzOz+sS1apXZ\nddeZtWhhdu+9Ztu2HXWbWVlZh/wdDzyysrLC9LcIvVj8WYmEg5J6EOIq2a1ebXbTTWbJyWY5OWab\nN/v9UZ/PV+3fMzMzM4wBh1Zc/axEghBoUteYOnHSI3PdOrj1VjjzTGje3OsDes893nM/JUIZ4bj4\nWYlEkZI6MZ7sNmyA226D007zbhZavBgefBBOPLHWm8rLyyMjI+OQZRkZGeTl5YUq2rCL6Z+VSAzQ\nzUfEaM30zZu9BhWPPw7Dh8Mf/gA1JLTaiPcywjH5sxIJA5XeDVLMJLtt2+BPf4KJE2HIELjrLkhL\ni3wcMSxmflYiYaSkHu927oS//AXGjYP+/WHMGK+NnIjUSaqnHq9274a//hUeegjOPx/y86FLl2hH\nJSJxSkk9WvbuhUmT4L77oHt3ePddb2aLiEgQgkrqzrmvga1AObDPzH4ciqAS2v798NxzXh/QU0+F\nf/0Lzj472lGJSIII9ky9HPCZ2eZQBJPQysrgxRdh7Fho3Rqefx7OOy/aUYlIggk2qTs01/3Iysvh\n1Ve9C5/Nm3vj5717RzsqEUlQwSZ1A2Y458qAJ83sqRDElBjM4I03vD6gxxzjzTnv31+t40QkrIJN\n6ueZ2VrnXEu85L7EzOZUXSk3N7fyuc/nw+fzBbnbGGYG06d73Yb27PFu5R88WMlcRI4oPz+f/Pz8\noLcTsnnqzrkxwHYzG19led2Zp56f790stHGjN3Y+bJj6gIpIQCLezs4518Q5d3zF8+OAfsBXgW4v\nrs2dCz/5Cdx4I9x8M3z1ldcLVAldRCIsmKxzMjDHObcAmAe8YWbTQxNWnPj8cxgwAEaM8B5LlkB2\ndkz1AVWnI5G6RWUCAlFQ4M1m+ewzuPNOuOEGOPbYaEd1GBW/EolfER9+qZOWLPEqJvbvDxde6PUB\n/fnPYzKhA+Tk5ByS0AEKCwvJycmJUkQiEm5K6v4oLIRrrvES+VlnwcqV8OtfQ+PG0Y7siNRQQqTu\nUVI/kuJiGDUKevTwKiauXAm33w7HHRftyPyihhIidY/G1KtTWuoV2nrxRW82y+9+B8nJ0Y6q1jSm\nntjS0tIoLi6OdhgSpHbt2vH1118ftlz11EPh22+9VnHPPgvXX++1kWvZMtpRBUUNJRJXxS99tMOQ\nINX0c6xzSf1AslqzZg2pqanBJauNG73mFE8+CVlZMHo0tGoV2oBFQkxJPTGEOqnHZT316oYV5s2b\nV/thha1bYfx4r+PQZZfBwoXQpk0YIhYRiYy4vFAa9FS9HTvg/vu9i58lJfDpp/DEE0roIhL34jKp\nBzxVb9cur1pihw7erfxz5sAzz0D79mGIUkQk8uIyqdd6qt6ePfDnP3vJfO5ceP99eOEF6NQpjFGK\nSDwpKyujXr16lJSURDuUoMRlUs/LyyMjI+OQZRkZGeTl5R264r598NRT8IMfwHvvwZtvwiuvQNeu\nEYxWpG5p2rQpSUlJJCUlUb9+fZo0aVK5bMqUKdEO74hcApTIjssLpenp6cyYMaPmqXr798PkyV4t\n84wMmDoVevaMbtAiMSSks8eq2L59e+Xz9u3bM2nSJDIzM2tcv6ysjPoxUgQvIWYTmVlYH94uIqSs\nzGzKFLNOnczOP9/sww8jt2+RCAv0d2vVqlWWkZFheJ3LDLCMjAxbtWpViCM0S0tLsw8++OCQZXfd\ndZcNHz7crrrqKktKSrJnn33WsrOzbezYsZXrvP/++5aWllb5+ptvvrGhQ4day5YtrX379vaXv/yl\n2v39+9//ttTU1EOWTZ061c466ywzM/v444+tZ8+e1rx5c0tJSbFf/epXtn//fjMz279/vznnrLi4\n2MzMevXqZc8++2zldv72t7+Zz+erfL1o0SLr06ePJScnW+fOne2VV16pfO+NN96wzp07W9OmTa1N\nmzY2YcKEGo9RTT/HiuW1zrlxOfxyGDP417/gzDNhwgR47DH48EO44IJoRyYSc2Kh0Ntrr71GdnY2\nW7du5Yorrqh2nQNDIWbGoEGD6NGjB2vXrmXGjBmMGzeOWbNmHfaZc889l4YNG/Lhhx9WLpsyZQrZ\n2dkANGjQgIkTJ7Jp0yb+/e9/89577/HEE0/4HfeBmHbu3Em/fv247rrr2LBhA5MnT+ZnP/sZK1as\nAOD666/nmWeeYdu2bRQUFHDhhRf6vY9gxXdSN4O33oLu3SEvz7sb9OOPoW9ftY8TqUEsFHrr1asX\nAwYMAKBRo0ZHXHfu3Lls376d22+/nfr169O+fXuuv/56XnzxxWrXHz58OC+88AIAW7Zs4b333mP4\n8OEAdO/enbPPPhvnHGlpaYwaNeqQLwB/TZs2jU6dOpGVlYVzjh/+8IdccsklvPzyywA0bNiQRYsW\nsWPHDpo3b063bt1qvY9AxWdSN/NmsJx7rldg6w9/gPnzYeBAJXORo4iFQm9tanFPSElJCcXFxSQn\nJ5OcnMwJJ5zAww8/zPr166tdf8SIEbz66quUlZXxyiuv0LNnz8q/27Jlyxg0aBCtWrWiWbNmjBkz\nhg0bNtQ6/uLiYubMmXNITFOnTmXt2rUA/Otf/2LatGm0bduW3r178+mnn9Z6H4GKvwuls2d7TZ3X\nroXcXK9tXIxcZBGJB3l5ecybN++wQm+HzR4Lo6qzTI477jj++9//Vr4+kBzB+wLo2LEjixYt8mvb\np59+OqeccgrvvvsuU6ZMYcSIEZXv3XTTTZxzzjm89NJLNG7cmEceeYS33nqr2u1UjWndunWHxNSn\nT58aP3v22Wczbdo0ysrKmDBhAldeeSWrVq3yK/5gxc+Z+iefQL9+cO21MHIkLFoEV12lhC5SSwdm\nj2VlZZGZmUlWVlbUK3d269aNt956iy1btrB27Voee+yxyvfOOeccGjZsyPjx49mzZw9lZWV89dVX\nfPHFFzVub8SIETz66KPMmzePYcOGVS7fvn07zZo1o3HjxixZsuSI4+ndunXjlVdeYffu3Sxfvpyn\nn3668r3BgwezaNEipkyZwv79+9m3bx+fffYZy5cvZ/fu3UyZMoXt27dTv359jj/++MjO7gnk6urB\nD7wvhi+A12t4v8arvn754guzQYPM2rQxe+IJs717g9ueSIII+ncrAtLT06ud/TJy5MhDlu3atcuG\nDRtmSUlJ1q1bN3v00UctPT298v3S0lIbPny4nXLKKZacnGznnXee5efn17jfoqIiq1evng0dOvSQ\n5bNmzbJOnTpZ06ZN7cILL7ScnBzLzMw0M2/2S7169Spnv3z33XfWp08fS0pKsvPPP9/GjBlTua6Z\n2dKlS23AgAHWokULa9GihfXp08e+/PJL27Vrl/Xv39+Sk5OtWbNm1qNHD/vkk09qjLWmnyMBzn4J\nukqjc+43wI+AJDMbXM37FtA+Fi3y+oDOnetVTRw1Co5yQUWkLlGVxsQQ6iqNQQ2/OOdaAwOAvwWz\nnUMsXw4jRkDv3nDOOV63oV/+UgldRMQPwY6pPwr8L94NDMEpKvLGys87z7uNf+VKr+NQkyZBb1pE\npK4IOKk75wYC681sIeAqHrW3erXXMu7ss6FtW1ixAu68E5o2DTQ0EZE6K5gpjecBg51zA4DGQFPn\n3HNmdk3VFXNzcyuf+3w+fD6fNyXxgQe8Gi2jRsGyZXDiiUGEIyISv/Lz88nPzw96OyFpZ+ecuxD4\nnV8XSjdsgD/+ESZN8qYn3n47nHxy0DGI1DW6UJoYYupCaa1s3gx33eXVMN+5EwoKvFZySugiIiET\nkqRuZh9Wd5ZeKS8POnaEdevgiy+8nqA13KosIiKBi0yZgBUrvEJbHTpEZHciInVVZIZfnntOCV1E\nglZcXEy9evUoLy8HYMCAAfzjH/+o9XZWr15NUlJSQl6TiJ/aLyISN9LS0mjSpAlJSUm0atWKkSNH\nHlIcKxhRbfUlAAAI+ElEQVQHFwN7++23ufrqq4/6mfT0dGbOnFn5uk2bNmzbti0h2tdVpaQuIiHn\nnOOtt95i27ZtfPHFF3z++efce++9h62XiGfK0aakLiJhcSBht2rViosvvpgvv/ySzMxM7rrrLnr1\n6sVxxx1HUVER27Zt44YbbiAlJYU2bdqQk5NT+dny8nJ+//vf07JlSzp06HBYqdvMzMxDqic+9dRT\ndOnShaSkJLp27crChQu55pprKCkp4ac//SlJSUmMGzfusGGctWvXMmTIEE488UQ6duzI3/72feWT\nsWPHMnz4cK699lqSkpI4/fTTD6kQ+dBDD9G6dWuSkpLo3LlztR2ZIiqQKmC1eRAHleRE4lEs/24d\n3Ju0pKTETjvtNLv77rvN5/NZu3btbMmSJVZWVmb79u2zSy65xP7nf/7Hdu3aZd9995316NHDnnzy\nSTMze/zxx61z5862Zs0a27x5s2VmZlq9evWsrKzMzMx8Pp9NmjTJzLxepK1bt7b58+ebmVlhYaGV\nlJRUxjNz5szK+L7++utDtnP++efbLbfcYnv37rWFCxday5YtbdasWWZmlpuba40bN7Z3333XysvL\nbfTo0dazZ08zM1u2bJm1adPG1q1bZ2ZmxcXFte71WtPPkQCrNCqpi8Span+3vL5g4X34IS0tzZo2\nbWonnHCCpaWl2S233GK7d+82n89nY8aMqVxv/fr1duyxx9ru3bsrl02ZMsV69+5tZma9e/e2J554\novK96dOn15jU+/fvbxMnTqwxnoNLAB+c1EtKSqxBgwa2c+fOyvdHjx5dWR44NzfX+vbtW/ne4sWL\nrUmTJmZmtnLlSjv55JPt/ffft3379vl1bKoKdVKPv85HIlKzGBqjnjZtGpmZmYctP7iVXXFxMfv2\n7aNVq1bA9yeZbdu2Bby+qQev365duxr3t3r1ajIyMmod59q1a0lOTqbJQcUD27Vrx/z58ytfn3LK\nKZXPmzRpwu7duykvLycjI4MJEyaQm5vL4sWL6d+/P4888kjl3ycaNKYuImFhNXzBHDzjpE2bNjRq\n1IiNGzeyadMmNm/ezJYtWygoKAC88fjVq1dXrl9cXFzj/tq0aXNIi76a9llVSkoKmzZtYufOnZXL\nSkpKauzlWtWVV17J7NmzK2O74447/PpcuCipi0jUnHLKKfTr14/f/OY3bN++HTNj1apVfPTRRwBc\nccUVTJw4kTVr1rB582YeeuihGrd14403Mm7cuMqLmIWFhZVfCCeffPJhPUIPfOm0bt2ac889l9Gj\nR7Nnzx4KCgqYNGnSEadKHvjs8uXLmTVrFnv37qVhw4Y0btyYevWim1aV1EUk5Go6M65u+XPPPcfe\nvXvp0qULycnJXH755ZVNnkeNGkX//v0588wz6d69O5dddlmN2xs2bBh/+MMfGDFiBElJSQwdOpRN\nmzYBMHr0aPLy8khOTmb8+PGHfXbKlCkUFRWRkpLCZZddRl5eXrVDR1X3u2fPHu644w5atmxJSkoK\n3333HQ888IA/hyhsQlKl8Yg7CLSdnYgckao0Job4rdIoIiJhp6QuIpJAlNRFRBKIkrqISAJRUhcR\nSSBK6iIiCURlAkTiVLt27RKyHnhdc6TSB4EIeJ66c+5Y4COgId6Xw8tmNraa9TRPXUSkliI+T93M\n9gCZZvZDoBtwsXPux4Fury7Iz8+PdggxQ8fiezoW39OxCF5QY+pmdqA/1bF4Z+s6JT8C/YP9no7F\n93QsvqdjEbygkrpzrp5zbgGwDphhZp+FJiwREQlEsGfq5RXDL62BHs65LqEJS0REAhGygl7OuRxg\np5mNr7JcQzIiIgEI5EJpwFManXMtgH1mttU51xjoCzwYiqBERCQwwcxTbwU865yrhzeM808zezs0\nYYmISCDCXk9dREQiJ2RlApxzFznnljrnljvnbq9hnYnOuRXOuYXOuW6h2nesOdqxcM6NcM79p+Ix\nxzl3ejTiDDd//k1UrHe2c26fc+7SSMYXSX7+fviccwucc18552ZFOsZI8eP3I8k593pFnvjSOXdd\nFMKMCOfcJOfceudcwRHWqV3ePNC9O5gH3pfDSqAdcAywEDi1yjoXA29VPO8BzAvFvmPt4eex6Ak0\nq3h+USIeC3+Ow0HrfQC8CVwa7bij+G+iGbAISK143SLacUfxWIwGHjhwHICNQINoxx6m49EL7+bN\nghrer3XeDNWZ+o+BFWZWbGb7gBeBIVXWGQI8B2BmnwDNnHMnh2j/seSox8LM5pnZ1oqX8wD/2pbH\nF3/+TQD8EngZ+DaSwUWYP8diBPCKma0BMLMNEY4xUvw5FgY0rXjeFNhoZvsjGGPEmNkcYPMRVql1\n3gxVUk8FVh/0+hsOT1RV11lTzTqJwJ9jcbAbgXfCGlF0HPU4OOdSgEvM7HEgkWdJ+fNvoiOQ7Jyb\n5Zz7zDlXcyv7+ObPsfgz0MU5Vwr8B7g1QrHFolrnTVVpjCLnXCYwEu+/YHXRBODgMdVETuxH0wA4\nC+gNHAd87Jz72MxWRjesqOgPLDCz3s65DGCGc+4MM9sR7cDiQaiS+hqg7UGvW1csq7pOm6Oskwj8\nORY4584AngQuMrMj/fcrXvlzHLoDLzqvfmwLvKJw+8zs9QjFGCn+HItvgA1mthvY7Zz7CDgTb/w5\nkfhzLEYCDwCYWaFzrgg4Ffg8IhHGllrnzVANv3wGdHDOtXPONQSuBKr+Yr4OXAPgnOsJbDGz9SHa\nfyw56rFwzrUFXgGuNrPCKMQYCUc9DmbWvuKRjjeu/vMETOjg3+/HNKCXc66+c64J3kWxJRGOMxL8\nORbFQB+AivHjjsCqiEYZWY6a/5da67wZkjN1Mytzzt0CTMf7ophkZkucczd5b9uTZva2c26Ac24l\nsBPv2zjh+HMsgBwgGfi/irPUfWaWUGWL/TwOh3wk4kFGiJ+/H0udc+8BBUAZ8KSZLY5i2GHh57+L\ne4G/HzTN7zYz2xSlkMPKOfcC4ANOdM6VAGPwelQEnDd185GISAJRj1IRkQSipC4ikkCU1EVEEoiS\nuohIAlFSFxFJIErqIiIJREldRCSBKKmLiCSQ/wdHsaRXxv0NUgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x20048d69d30>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(x, y, 'ko', label='True values')\n", "\n", "all_x = np.linspace(0, 1, 1000).reshape((1000,1))\n", "intercept_all_x = np.hstack((np.ones((1000,1)), all_x))\n", "\n", "print(intercept_all_x.shape, our_coeff.shape)\n", "\n", "#all_x_predictions = np.dot(intercept_all_x, our_coeff)\n", "all_x_predictions = np.sum(intercept_all_x * our_coeff.T, axis=1)\n", "\n", "plt.plot(all_x, all_x_predictions, 'r-', label='Predictions')\n", "plt.legend(numpoints=1, loc=4)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Types of independent variable\n", "\n", "The independent variables can be many different types.\n", "\n", "* Quantitative inputs\n", "* Categorical inputs coded using dummy values\n", "* Interactions between multiple inputs\n", "* Tranformations of other inputs, e.g. logs, raised to different powers, etc.\n", "\n", "It is important to note that a _linear_ model is only _linear_ with respect to its inputs. Those input variables can take any form.\n", "\n", "One approach we can take to improve the predictions from our model would be to add in the square, cube, etc of our existing variable." ] }, { "cell_type": "code", "execution_count": 170, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 2.48528927e+05]\n", " [ -1.71103499e+07]\n", " [ 4.65315707e+08]\n", " [ -6.91480377e+09]\n", " [ 6.44385305e+10]\n", " [ -4.06133878e+11]\n", " [ 1.81054068e+12]\n", " [ -5.85359860e+12]\n", " [ 1.38391083e+13]\n", " [ -2.36324769e+13]\n", " [ 2.76241766e+13]\n", " [ -1.78960448e+13]\n", " [ -3.36195922e+12]\n", " [ 2.22108078e+13]\n", " [ -2.64916311e+13]\n", " [ 1.80609411e+13]\n", " [ -7.62315594e+12]\n", " [ 1.86509989e+12]\n", " [ -2.03646141e+11]]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X94lNWd9/H3N0QuBA0hwgIJIRnHx19dK7W6Yos4KQas\ntSitq5YMTbS6vXafWu3zuK20HRKcbrtuqVbt1T7rlhWsES+tIm5p1RQZImuxVsvib9swSWgCFEsS\nkBrkx3n+SBjzk0xmJpnJnc/ruuZi5syZ+/5yk3zncM65zzHnHCIi4g1Z6Q5ARERSR0ldRMRDlNRF\nRDxESV1ExEOU1EVEPERJXUTEQwZM6ma20sx2m9m2LmX/ZmZvmtlWM3vczHKGNkwREYlHPC31B4AF\nPcqeBT7inJsF/AFYmurARERk8AZM6s65zUBLj7JfO+eOdr7cAswYgthERGSQUtGnfgPwqxQcR0RE\nkpRUUjezbwGHnHMPpygeERFJQnaiHzSzCuBy4FMD1NPiMiIiCXDO2WA/E29L3TofHS/MLgP+GVjo\nnDsYR2B6OEdlZWXaY8iUh66FroWuxfEfiYpnSuPDwAvA6WbWaGbXA/cBJwE1ZvaKmf044QhERCRl\nBux+cc4t7qP4gSGIRUREkqQ7SodRIBBIdwgZQ9fiQ7oWH9K1SJ4l03cT1wnM3FCfQ0TEa8wMN4QD\npSIiMgIoqYuIeIiSuoiIhyipi4h4iJK6iIiHKKmLiHiIkrqIiIcoqYuIeIiSuoiIhyipi4h4iJK6\niIiHKKmLiHiIkrqIiIcoqYuIeIiSuoiIhyipi4jEIRqNEgwGKSkpIRgMEo1G0x1Sn7RJhojIAKLR\nKKWlpdTV1cXK/H4/NTU1+Hy+ITnnkG2SYWYrzWy3mW3rUna1mb1mZkfM7LzBnlREZCQJhULdEjpA\nXV0doVAoTRH1L57ulweABT3KXgUWAZtSHpGISIZpamrqs7y5uXmYIxlY9kAVnHObzayoR9nbAGY2\n6P8aiIiMNAUFBX2W5+fnD3MkA9NAqYjIAMLhMH6/v1uZ3+8nHA6nKaL+DdhSFxEZ7Xw+HzU1NYRC\nIZqbm8nPzyccDg/ZIGkyhiWpV1VVxZ4HAgECgcBwnFZEJGV8Ph8PPfTQkB0/EokQiUSSPk5cUxrN\nrBj4L+fcOT3KNwK3OedePs5nNaVRRGSQEp3SOGBSN7OHgQBwCrAbqARagPuAyUArsNU59+l+Pq+k\nLiIySEOW1JOlpC4iXtAQjbIqFOJoUxNZBQVUhMMUDWGfupK6iMgQaYhGua+0lOV1dUwADgCVfj83\n19QMWWIfsjtKRURGu1WhUCyhA0wAltfVsWqE3lEqIjKqHW1qiiX0YyYARzPwjlIldRGRAWQVFHCg\nR9kBIEt3lIqIjDwV4TDfnDkzltgPAN+cOZMK3VEqIjIyve8c/0pHS/ho5+tMpNkvIiIDWB4Mclt1\ndbd+9QPAirIyKofoLlPNfhERGSIaKBUR8RANlIqIeEhFOEyl399toLTS78/IgVL1qYuIxCG2TEBz\nM1n5+VomQERE4qeBUhERUVIXEfESJXURkThEo1GCwSAlJSUEg0Gi0WjCx9pcW8t8n4+FubnM9/nY\nXFubsjjVpy4iMoBHH3mEqiVLOOXwYXYBf6Rj4+mamppB71O6ubaWe+bNY9Xhw7FlfCuys7llwwbm\nzJ0bq6eBUhGRIbC5tpa7AgF+5lwsCZcB64CysrJB71s63+djbX19r7tTFxUX82yX1r8GSkVEhsAd\n5eWxhA4dd5JWA6cBzQncUTqupaXPu1PHtbYmFecxSuoiIsfRXxKeBuQncEdp+6RJfd6d2p6bm1iA\nPQyY1M1spZntNrNtXcommdmzZva2mT1jZhNTEo2ISIbpLwn/JTubcAJ3lC5bvZqK7Oxud6dWZGez\nbPXqJCPtEE9L/QFgQY+y24FfO+fOAJ4DlqYkGhGRIdAQjbI8GKSypITlwSANg5i50lcSXmJG1c9+\nNuhBUoA5c+dyy4YNLCouZmFuLouKi3sNkiYjroFSMysC/ss599HO128BlzjndpvZNCDinDuzn89q\noFRE0qYhGuWuQIDvNjbGBjq/OXMm/ycSifs2/821tdxRXs641lbac3NZtnp1ypJwf4Z09ksfSX2v\ncy6vy/vdXvf4rJK6iKTNP195JVVPPdVrtknVwoV8f926dIU1oESTeqp2Pjpu1q6qqoo9DwQCBAKB\nFJ1WROT46rds6XOgM/rii+kIp1+RSIRIJJL0cRJtqb8JBLp0v2x0zp3Vz2fVUheRtJkzdSrP/PnP\nvVrql02dyvO7dqUrrAEN9Tx163wc8xRQ0fm8nI55+CIiGWfKRRdRBt0GOsuAybNnpy+oITRgS93M\nHgYCwCnAbqASeBJ4DCgEGoBrnHN9zpxXS11E0ikajVJyySWcsGMH04BdwKHCQjZu2pTQ7JXhomUC\nRET6EY1GCYVCNDc3k5+fTzgczuiEDkrqIiKeorVfRERESV1ExEuU1EVEPERJXUTEQ5TURUQ8REld\nRGSIDeWepD1pSqOIyBCKd0/SnjRPXUQkA8W7J2lPmqcuIpKBhnpP0p6U1EVEhtBQ70nak5K6iMgQ\nGuo9SXtSn7qIyBBLZDs8DZSKiHiIBkpFRAYhGo0SDAYpKSkhGAwSPc5MlJFELXURGXWi0SilpaXU\n1dXFyvx+PzU1NRmzzrpa6iIicQqFQtTV1XEaMAc4DairqyMUCqU5suRlpzsAEZHhtv2Pf+RKoBpi\nd3mWAdu7tNxHKrXURWTUOWn37lhCp/PPauCkXbvSF1SKJJXUzewWM3u18/HVVAUlIjKUZk2b1udd\nnrOmTUtHOCmVcFI3s48AXwLOB2YBV5jZqakKTERkqEzw+/u8y3OC35+OcFIqmZb6WcCLzrmDzrkj\nQC3wudSEJSIydCrCYSq7JPYDQKXfT0U4nM6wUiLhKY1mdibwJHARcBD4NfCSc+6WHvU0pVFEMk5D\nNMqqUIijzc1k5edTEQ5TlCHTGSHxKY0Jz35xzr1lZncCNcB7wO+BI33Vraqqij0PBAIEAoFETysi\no1jsdvuWFtonTYrrdvv+FPl8VD70UIojTFwkEiESiSR9nJTdfGRm/wLscM79vx7laqmLSNIS3Wxi\npErL2i9mNsU5t8fMZgJPA7Odc/t61FFSF5GkJbrZxEg17N0vnR43szzgEPBPPRO6iEiqDPdmEyNV\nUkndOee9//OISEZqnzSJA21tvVrqQ7XZxEilO0pFZEQY7s0mRiqt0igiI0Yim02MVNokQ0TEQ7T0\nroiIKKmLiHiJkrqIiIcoqYuIeIiSuoiIhyipi4h4iJK6iIiHKKmLiHiIkrqIiIcoqYuIeIiSuoiI\nhyipi4h4iJK6iIiHKKmLiHiIkrqIiIcoqYuIeEhSSd3MvmZmr5nZNjOrNrOxqQpMREQGL+Gkbmb5\nwM3Aec65j9KxifV1qQpMREQGLzvJz48BJpjZUWA80Jx8SCIikqiEW+rOuWbgB0Aj0AS0Oud+narA\nRERk8BJuqZtZLnAlUAS0AT83s8XOuYd71q2qqoo9DwQCBAKBRE8rIuJJkUiESCSS9HHMOZfYB82u\nBhY4527qfL0EuNA595Ue9Vyi5xCRobG5tpY7yssZ19JC+6RJLFu9mjlz56Y7LOnCzHDO2WA/l0yf\neiMw28zGAQeBecBLSRxPRIbB5tpa7pk3j7WHDzMBONDWRsW8ebBhgxK7ByTcUgcws0o6ZrwcAn4P\n3OicO9SjjlrqIhlkvs/H2vp6JnQpOwAsKi7m2Wg0XWFJD+loqeOcWw4sT+YYIjK8xrW0dEvoABOA\nca2t6QhHUkx3lIqMMu2TJnGgR9kBoD03Nx3hSIopqYuMMstWr6YiOzuW2A8AFdnZLFu9Op1hSYok\n1ace1wnUpy6ScWKzX1pbac/N1eyXDJRon7qSuohIBko0qav7RSRDRaNRgsEgJSUlBINBopqZInFQ\nS10kA0WjUUpLS6mrq4uV+f1+ampq8Pl8aYxMhota6iIeEgqFuiV0gLq6OkKhUJoikpFCSV0kAzU1\nNfVZ3tyshVDl+JTURTJQQUFBn+X5+fnDHImMNOpTF8lA6lMXTWkU8ZhoNEooFKK5uZn8/HzC4bAS\n+iiSlrVfRCT1GqJRVoVCHG1q4n8VFPAvK1dSpGQucVJLXSSDNESj3FdayvK6uo5lcYFKv5+ba2qU\n2EcZTWkU8YBVoVAsoUPH6onL6+pYpamMEicldZEMcrSpqc9lcY9qKqPESUldJINkFRT0uSxulqYy\nSpyU1EUySEU4TKXf321Z3JvHjaP1vfdo0NovEgcNlIpkmIZolB/deivNzz7Lqe3t3AhMRgOmo40G\nSkU8osjn46STT+b+9nbCQBEaMJX4JZzUzex0M/u9mb3S+WebmX01lcGJjFYaMJVEJXzzkXPuHeBj\nAGaWBfwJWJuiuERGtWMDpl0TuwZMJR6p6n65FKhzzu1I0fFERrW+Bkwr/X4qwuF0hiUjQEoGSs1s\nJfCyc+7HfbyngVLxhGNrsTQ1NVFQUDDka7HElgtobiYrP5+KcFiDpKNI2tZ+MbMTgIXA7f3Vqaqq\nij0PBAIEAoFkTysyrPpaNXHLli1Dsmpiry+PlSu1kNcoEIlEiEQiSR8n6Za6mS0E/sk5d1k/76ul\nLiNeMBikurq6V3lZWRkPPfRQys6jJXflmHROafwCsCYFxxHJWMO1E5G2sZNkJZXUzWw8HYOkT6Qm\nHJHMNFw7EWkbO0lWUkndOfdX59wU59z+VAUkMhyi0SjBYJCSkhKCwSDRAW7BD4fD+P3+bmV+v59w\nimejaBs7SZaWCZBRJ9F+6821tdxRXs641lbac3NZtno1c+bOzYjYxHu0nZ1InBIZ9BzOzSu0jZ2A\ntrMTiVsi/db9bV6xIhSiMoWzXwB8Pl9KZ9TI6KIFvWTUSaTfWmuxyEihpC6jTjgcpqiwkNOAOcBp\nQFFh4XEHPbV5hYwUSuoy6mQBV5qxFXge2Nr5+ni/DFqLRUYKDZTKqLM8GOS26upeKyCuKCs7bv+4\n1mKR4aSBUpE4Jdo/XuTzpXxQVCTV1P0io476x8XLlNRl1FH/uHiZ+tRlVOqvfzxW3tREVkGB+s0l\nbXRHqUiShvOuUZGBpHPpXRFP6O+u0VVa9lZGECV1kU66a1S8QEldpJNmxYgXKKmLdNKsGPECDZSK\ndKG7RiVTaPaLiIiHaPaLiIgkvfH0RDN7zMzeNLPXzezCVAUmkg6D3btUJNMk1f1iZquATc65B8ws\nGxjvnNvXo466XyRpw3Gnp/YHlUySaPcLzrmEHkAOUBdHPSfSl+c3bXKlxcXusxMnutLiYvf8pk19\n1qvfvt19deZM9x44B+49cF+dOdPVb9+e0njKysoc0OtRVlaW0vOIxKMzdw46NyfT/eID3jWzB8zs\nFTO738xOTOJ4Mopsrq3lnnnzWFtfz1Ntbaytr+eeefPYXFvbq+6Pbr2V7zY2drvT87uNjfzo1ltT\nGlMie5eKZJpk1lPPBs4D/rdz7ndm9kPgdqCyZ8WqqqrY80AgQCAQSOK04gV3lJez9vDhbol61eHD\nLCov59ke/dj1W7b0eadn9MUXUxpTInuXiqRKJBIhEokkfZyE+9TNbCrwG+fcqZ2v5wDfcM59tkc9\nl+g5xLsW5ubyVFtb3+UtLd3K5kydyjN//nOvnYoumzqV53ftSllM6lOXTDLsUxqdc7uBHWZ2emfR\nPOCNRI8no0v7pEl93pLfnpvbq+6Uiy6irPP9Y/XKgMmzZ6c0Jp/PR01NDWVlZZSUlFBWVqaELiNO\nsrNfzgV+CpwAbAeud8619aijlrr0cqxPfVVnF8wBoCI7m1s2bGDO3Lnd6kajUUouuYQTduxgGrAL\nOFRYyMZNm5RwxbN0R+kIt7m2ljvKyxnX0kL7pEksW726V3LzmtjfubWV9tzc4/6do9EooVCI5uZm\n8vPzCYfDSujiaUrqI9hgWq0iMjooqY9g830+1tbX9xoIXFRc3GsmiIiMDlr7ZQQb19LS55S9ca2t\n6QhHREawZOapS4q0T5rEgba2Xi31vmaCiBxTXFxMQ0NDusOQJBUVFVFfX5+y46n7JQOoT10S0fnf\n83SHIUnq799Rfeoj3GBmgoiAkrpXKKmLCKCk7hWpTuoaKBUR8RAldRERD1FSFxEBjhw5QlZWFo2N\njekOJSlK6iKSUieffDI5OTnk5OQwZswYxo8fHytbs2ZNusM7LrPBbzSUaZTURUahodyLdf/+/ezb\nt499+/ZRVFTE+vXrY2Vf+MIXetU/cuRIys6dLC8MPCupi4wyx9aNr66uJhKJUF1dTWlp6ZBssn1s\ni7WuQqEQ1113HYsXL2bixIlUV1ezZMkS7rjjjlidDRs2dFuwrampic997nP8zd/8DX6/nx//+Md9\nnu+FF15gxowZ3coee+wxPv7xjwOwZcsWLrroIiZNmkRBQQG33HJLv18qF198MQ8++GDs9cqVKykp\nKYm9fuONNygtLeWUU07h7LPP5oknnoi994tf/IKzzz6bnJwcZs6cyT333DPQpUoZJXWRUSYUCnXb\nCASgrq6OUCg0bDE8+eSTBINB2trauOaaa/qsc6wrxDnHFVdcwYUXXsjOnTupqalhxYoVbNy4sddn\nPvGJTzB27Fg2bdoUK1uzZg3BYBCA7Oxs7r33Xvbu3ct///d/88wzz/Dv//7vccd9LKYDBw4wf/58\nKioqePfdd6muruYf/uEf+MMf/gDADTfcwAMPPMC+ffvYtm0bl1xySdznSJaSusgokwl7sc6ZM4fL\nL78cgHHjxh237gsvvMD+/fv5xje+wZgxYzj11FO54YYbeOSRR/qsf+211/Lwww8D0NrayjPPPMO1\n114LwPnnn88FF1yAmVFcXMxNN93U7QsgXuvWreOMM86grKwMM+NjH/sYV111FT//+c8BGDt2LK+/\n/jrvvfceubm5zJo1a9DnSJSSusgokwl7sRYWFsZdt7GxkYaGBvLy8sjLy2PSpEl8//vfZ/fu3X3W\nX7x4MU888QRHjhzh8ccfZ/bs2bG/29tvv80VV1zB9OnTmThxIpWVlbz77ruDjr+hoYHNmzd3i+nR\nRx9l586dAKxdu5Z169Yxc+ZMPvWpT/Hb3/520OdIlOeS+ubaWub7fCzMzWW+z9fn7vQio1k4HMbv\n93cr8/v9hMPhYYuh5yyTCRMm8Ne//jX2+lhyhI4vgNNPP529e/eyd+9eWlpaaGtr48knn+zz2Oec\ncw7Tpk3j6aefZs2aNSxevDj23pe//GXOOecctm/fTltbG8uXL+93cLRnTLu67IdbWFjIpZde2i2m\nffv2ce+99wJwwQUXsG7dOvbs2cNnPvMZrrvuukFcneR4KqkfWxhrbX09T7W1sba+nnvmzVNiF+ki\nE/dinTVrFuvXr6e1tZWdO3dy3333xd676KKLGDt2LHfddRcHDx7kyJEjvPbaa7zyyiv9Hm/x4sXc\nfffdbNmyhauvvjpWvn//fiZOnMiJJ57Im2++edz+9FmzZvH444/T3t7OO++8w3/+53/G3lu4cCGv\nv/46a9as4fDhwxw6dIiXXnqJd955h/b2dtasWcP+/fsZM2YMJ510EmPGjEnyCg3CsdHpRB5APfA/\nwO+B3/ZTxw2X0uJi9x441+XxHrjS4uK4Pv/8pk2utLjYfXbiRFdaXOye37RpiCMWSdxw/m4lyufz\nuQ0bNnQr+/a3v+2uv/76bmXvv/++u/rqq11OTo6bNWuWu/vuu53P54u939zc7K699lo3bdo0l5eX\n5z75yU+6SCTS73mj0ajLyspyixYt6la+ceNGd8YZZ7iTTz7ZXXLJJS4UCrmSkhLnnHOHDx92WVlZ\nrqGhwTnn3J49e9yll17qcnJy3MUXX+wqKytjdZ1z7q233nKXX365mzx5sps8ebK79NJL3auvvure\nf/99t2DBApeXl+cmTpzoLrzwQvfiiy/2G2t//46d5YPOy8luPL0d+LhzruU4dVwy5xiMhbm5PNXW\n1nd5S78hAlr+VkYeLejlDZm2oJel4BhAavrC2ydN4kCPsng3m7ijvDyW0KFj56FVhw9zR3n5oOMQ\nEUmXZBOyA2rM7CUzuynRg6SqL3zZ6tVUZGfHEvux1vay1asH/Ky2lBMRL0h2O7tPOud2mtkUOpL7\nm865zYM9yB3l5azto5W8qLx8UBsvz5k7FzZsYFECm01oSzkR8YKkkrpzbmfnn3vMbC3wd0CvpF5V\nVRV7HggECAQC3d5PZSt5zty5g/oiOGbZ6tVU9NGnHk8rX0QkWZFIhEgkkvRxEh4oNbPxQJZz7j0z\nmwA8Cyx3zj3bo96AA6XzfT7W1tf3aiUvKi5OKEEnSlvKyUiigVJvyJjt7MzMB6ylo189G6h2zv1r\nH/UGTOqaeSIyeErq3pAxST3uE8Q5pVGtZJHBUVL3Bs8mdREZHCV1b8i0eeoiIsOmoaGBrKwsjh49\nCsDll1/Oz372s0EfZ8eOHeTk5HjyS1FJXURSrri4mPHjx5OTk8P06dO5/vrruy2OlYyui4H98pe/\nZMmSJQN+xufz8dxzz8VeFxYWsm/fPk9sX9eTkrrIKNQQjbI8GKSypITlwSANKZ5lZmasX7+effv2\n8corr/C73/2O73znO73qebGlnG5K6iKjTEM0yn2lpdxWXc3ySITbqqu5r7Q05Yn9WMKePn06n/70\np3n11VcpKSnh29/+NnPmzGHChAlEo1H27dvHl770JfLz8yksLCQUCsU+e/ToUW677TamTJnCaaed\nxvr167udo6SkpNvqif/xH/8R20bub//2b9m6dStf/OIXaWxs5LOf/Sw5OTmsWLGiVzfOzp07ufLK\nKznllFM4/fTT+elPfxo75vLly7n22mspLy8nJyeHc845p9sKkXfeeSczZswgJyeHs846q88dmYZV\nIquADebBCFhJTmQkSvR3q6qsrM/VTKvKylIWW3FxcWx1xsbGRveRj3zELVu2zAUCAVdUVOTefPNN\nd+TIEXfo0CF31VVXuX/8x39077//vtuzZ4+78MIL3f333++cc+4nP/mJO+uss1xTU5NraWlxJSUl\nLisryx05csQ551wgEHArV650zjn36KOPuhkzZriXX37ZOedcXV2da2xsjMXz3HPPxeKrr6/vdpyL\nL77YfeUrX3EffPCB27p1q5syZYrbuHFjx/WqqnInnniie/rpp93Ro0fd0qVL3ezZs51zzr399tuu\nsLDQ7dq1yznnXENDg9u+ffugrlV//44kuEqjWuoio8zRpqY+7+A+muLt7K666iry8vKYO3cuJSUl\nfPOb3wSgoqKCM888k6ysLPbu3cuvfvUr7r77bsaNG8fkyZO59dZbY1vVPfbYY9x6663k5+eTm5vL\n0qVL+z3fypUr+frXv855550HwKmnntpthyXXT1fPjh07+M1vfsOdd97JCSecwLnnnsuNN97YbdPp\nOXPmsGDBAsyMJUuWsG3bNgDGjBnDBx98wGuvvcbhw4eZOXNmWtelh+TXfhGRESaroIAD0OsO7qwU\nb2e3bt06SkpKepV3TbQNDQ0cOnSI6dOnAx/2HMycORPo2De1a/2ioqJ+z7djx45eOzrFY+fOneTl\n5TF+/Phu53n55Zdjr6dNmxZ7Pn78eNrb2zl69Ch+v58f/vCHVFVV8cYbb7BgwQJ+8IMfxP4+6aCW\nusgoUxEOU+n3d1vNtNLvpyLF29n11zLuOuOksLCQcePG8Ze//CW2LVxra2usJTx9+nR27NgRq9/Q\n0NDv+QoLC6mrqxvwnD3l5+ezd+9eDhz4cOHuxsbGfvdy7em6667j+eefj8V2++23x/W5oaKkLjLK\nFPl83FxTw4qyMipLSlhRVsbNNTUUpaHbYNq0acyfP5+vfe1r7N+/H+cc27dvp7Zz2e1rrrmGe++9\nl6amJlpaWrjzzjv7PdaNN97IihUrYoOYdXV1sS+EqVOnsn379m71j33pzJgxg0984hMsXbqUgwcP\nsm3bNlauXHncqZLHPvvOO++wceNGPvjgA8aOHcuJJ55IVlZ606qSusgoVOTzUfnQQyx/7jkqH3oo\n5Qm9v5ZxX+UPPvggH3zwAWeffTZ5eXn8/d//fWyT55tuuokFCxZw7rnncv755/P5z3++3+NdffXV\nfOtb32Lx4sXk5OSwaNEi9u7dC8DSpUsJh8Pk5eVx11139frsmjVriEaj5Ofn8/nPf55wONxn11HP\n8x48eJDbb7+dKVOmkJ+fz549e/je974XzyUaMlomQGSE0jIB3qBlAkREpF9K6iIiHqKkLiLiIUrq\nIiIeoqQuIuIhSuoiIh6iZQJERqiioiJPrgc+2hxv6YNEJD1P3cyygN8Bf3LOLezjfc1TFxEZpHTO\nU78FeCMFx/G8SCSS7hAyhq7Fh3QtPqRrkbykkrqZzQAuB346UF3RD2xXuhYf0rX4kK5F8pJtqd8N\n/DOg/hURkQyQcFI3s88Au51zWwHrfIiISBolPFBqZt8FgsBh4ETgZOAJ59wXe9RTK15EJAGJDJSm\nZJVGM7sE+L99zX4REZHho5uPREQ8ZMjXUxcRkeGTspa6mV1mZm+Z2Ttm9o1+6txrZn8ws61mNitV\n5840A10LM1tsZv/T+dhsZuekI86hFs/PRGe9C8zskJl9bjjjG05x/n4EzOz3ZvaamW0c7hiHSxy/\nHzlm9lRnnnjVzCrSEOawMLOVZrbbzLYdp87g8uax3buTedDx5fBHoAg4AdgKnNmjzqeB9Z3PLwS2\npOLcmfaI81rMBiZ2Pr/Mi9cinuvQpd4G4BfA59Iddxp/JiYCrwMFna8npzvuNF6LpcD3jl0H4C9A\ndrpjH6LrMQeYBWzr5/1B581UtdT/DviDc67BOXcIeAS4skedK4EHAZxzLwITzWxqis6fSQa8Fs65\nLc65ts6XW4D4ti0fWeL5mQC4Gfg58OfhDG6YxXMtFgOPO+eaAJxz7w5zjMMlnmvh6JhNR+eff3HO\nHR7GGIeNc24z0HKcKoPOm6lK6gXAji6v/0TvRNWzTlMfdbwgnmvR1Y3Ar4Y0ovQY8DqYWT5wlXPu\nJ3j7PofoaG4wAAAB70lEQVR4fiZOB/LMbKOZvWRm/W9lP7LFcy1+BJxtZs3A/9CxFMloNei8qVUa\n08jMSoDr6fgv2Gj0Q6Brn6qXE/tAsoHzgE8BE4DfmNlvnHN/TG9YabEA+L1z7lNm5gdqzOyjzrn3\n0h3YSJCqpN4EzOzyekZnWc86hQPU8YJ4rgVm9lHgfuAy59zx/vs1UsVzHc4HHrGO9WMnA582s0PO\nuaeGKcbhEs+1+BPwrnOuHWg3s1rgXDr6n70knmtxPfA9AOdcnZlFgTPpWA12tBl03kxV98tLwGlm\nVmRmY4HrgJ6/mE8BXwQws9lAq3Nud4rOn0kGvBZmNhN4HFjinKtLQ4zDYcDr4Jw7tfPho6Nf/Z88\nmNAhvt+PdcAcMxtjZuPpGBR7c5jjHA7xXIsG4FKAzv7j04Htwxrl8DreMiuDzpspaak7546Y2VeA\nZ+n4oljpnHvTzL7c8ba73zn3SzO73Mz+CByg49vYc+K5FkAIyAN+3NlKPeSc+7v0RZ16cV6Hbh8Z\n9iCHSZy/H2+Z2TPANuAIcL9zznNLWsf5c/EdYFWXaX5fd87tTVPIQ8rMHgYCwClm1ghUAmNJIm/q\n5iMREQ/RMgEiIh6ipC4i4iFK6iIiHqKkLiLiIUrqIiIeoqQuIuIhSuoiIh6ipC4i4iH/HzLLi+Sl\n1LWOAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x20048da9e80>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x_expanded = np.hstack((x**i for i in range(1,20)))\n", "\n", "b, residuals, rank, s = np.linalg.lstsq(x_expanded, y)\n", "print(b)\n", "\n", "plt.plot(x, y, 'ko', label='True values')\n", "plt.plot(x, np.dot(x_expanded, b), 'ro', label='Predictions')\n", "plt.legend(numpoints=1, loc=4)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There is a tradeoff with model complexity. As we add more complexity to our model we can fit our training data increasingly well but eventually will lose our ability to generalize to new data.\n", "\n", "Very simple models __underfit__ the data and have high __bias__.\n", "\n", "Very complex models __overfit__ the data and have high __variance__.\n", "\n", "The goal is to detect true sources of variation in the data and ignore variation that is just noise.\n", "\n", "How do we know if we have a good model? A common approach is to break up our data into a training set, a validation set, and a test set. \n", "\n", "* We train models with different parameters on the training set.\n", "* We evaluate each model on the validation set, and choose the best\n", "* We then measure the performance of our best model on the test set.\n", "\n", "__What would our best model look like?__ Because we are using dummy data here we can easily make more." ] }, { "cell_type": "code", "execution_count": 171, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8VNW58PHfk3AnAUICAQKBEMI94aLliBUJoFWqIrVC\nC6GC9tRWrXDO4VVBjcRivdb31Oppqx8txAN4rR6tlwMRHKlvvaFcBcIlFy6BoOEaQEKS5/1jhjQh\nEzKTzGRPJs/389mf7Nmz917PTuCZNWuvvZaoKsYYY5q/CKcDMMYYExiW0I0xJkxYQjfGmDBhCd0Y\nY8KEJXRjjAkTltCNMSZM+JTQRWSeiGz2LHM922JEZJWI5IrIShHpHNxQjTHGXEi9CV1EhgE/By4G\nRgLXikgysAD4QFUHAWuAhcEM1BhjzIX5UkMfAnymqmdUtQJYC9wATAGyPftkA1ODE6Ixxhhf+JLQ\ntwDjPE0sHYAfAn2AeFUtBlDVg0D34IVpjDGmPq3q20FVt4vIY0AOUAqsByq87Rrg2Iwxxvih3oQO\noKpLgCUAIvJbYC9QLCLxqlosIj2AQ96OFRFL9MYY0wCqKv7s72svl26en4nAj4AVwNvAHM8us4G3\nLhBU2C6LFi1yPAa7Prs2u77wWxrCpxo68FcR6QqcBW5X1eOeZphXReQWoBCY3qAIjDHGBISvTS6X\ne9l2GLgi4BEZY4xpEHtStJHS09OdDiGowvn6wvnawK6vJZKGttX4XICIBrsMY4wJNyKC+nlT1Nc2\n9IDr168fhYWFThVvLqBv374UFBQ4HYYxxk+O1dA9nz5BLds0jP1tjHFeQ2ro1oZujDFhwhK6McaE\nCUvoxhgTJiyhB8ltt93Gb3/724Dva4wxdbGbonVISkrihRdeYOLEiU6H0uRC/W9jTEsQFjdF8/Pz\nmTVrFhMmTGDWrFnk5+c7co4LqajwNtikMcY4rAkGmFFvvG3Py8vT5ORkxT0UrwKanJyseXl5Xs/h\nTSDO8bOf/UwjIiK0ffv2Gh0drY8//riKiL7wwguamJio48ePV1XVadOmaY8ePbRLly46fvx4/frr\nr6vOMWfOHM3MzFRVVZfLpb1799Ynn3xSu3fvrr169dIlS5Y0aN+SkhK99tprtVOnTjpmzBi9//77\n9bLLLvP52nxR19/MGNN0PP8P/cq3IVVDz8zMZPfu3TW27d69m8zMzCY9x4svvkhiYiLvvvsux48f\nZ/p097hja9euZfv27axcuRKAH/7wh+zevZtDhw4xevRoMjIy6jznwYMHOXHiBEVFRTz//PPccccd\nHDt2zO99b7/9dqKjozl06BBLly4lOzsbEb++lRljwlRIJfT9+/d73b58+XJExKdl+fLlXs9RVFTk\ndzxarR1ZRHjwwQdp3749bdu2BWDOnDl06NCB1q1b88ADD7Bx40ZOnDjh9Vxt2rQhMzOTyMhIJk+e\nTFRUFLm5uX7tW1lZyRtvvMFvfvMb2rZty5AhQ5g9e7bf12WMCU8hldATEhK8bs/IyPD5K0ddteRe\nvXo1Or7evXtXrVdWVrJgwQIGDBhAly5dSEpKQkT49ttvvR4bGxtLRMQ/f90dOnSgtLTUr32/+eYb\nKioqasTRp0+fxl6WMSZMhFRCX7x4McnJyTW2JScns3jx4iY9B+C1GaP6thUrVvC3v/2NNWvWcPTo\nUQoKCho1ML0vunXrRqtWrdi3b1/Vtr179watPGNM8xJSCT0pKYmcnBwyMjKYMGECGRkZ5OTkkJSU\n1KTnAOjRowd5eXkAXhP1iRMnaNu2LTExMZw8eZKFCxcGvS07IiKCG264gaysLE6fPs327dt58cUX\ng1qmMab58HUKun8XkS0isklElotIGxGJEZFVIpIrIitFpHMgAkpKSmLZsmWsWbOGZcuW+Z2IA3WO\nBQsWsHjxYrp27cpf//rXWsn6pptuIjExkYSEBIYPH86ll17q1/n9Sf7V93366ac5evQoPXv2ZPbs\n2cycObOqTd8Y07LV+2CRiPQCPgYGq2qZiLwCvAcMBUpU9XERuQeIUdUFXo5Xb2XYwyuBsWDBAoqL\ni1myZEnAzml/G2OcF8wHiyKBjiLSCmgP7AeuB7I972cDU/0p2DRMbm4umzdvBuDzzz/nhRde4IYb\nbnA4KmNMKKh3ggtVLRKRJ4E9wClglap+ICLxqlrs2eegiHQPcqwGd9v9jBkzOHDgAPHx8dx1111c\nd911TodljAkB9SZ0EemCuzbeFzgGvCYiGbifwqyuzu/oWVlZVevp6ek2F2AjXHzxxezcudPpMIwx\nAeZyuXC5XI06hy9t6DcCV6nqLzyvfwZcAkwE0lW1WER6AB+q6hAvx1sbejNjfxtjnBesNvQ9wCUi\n0k7c3S0mAVuBt4E5nn1mA2/5U7AxxpjA8mn4XBFZBPwUOAusB/4ViAZeBfoAhcB0VT3q5ViroTcz\n9rcxxnkNqaHbeOimFvvbGOO8sBgP3RhjTMNYQg+gjz76qMZgWcOHD2ft2rU+7esvm7bOGHO+erst\nGv9Uf0x/y5YtPu97IdnZ2Tz//PP8/e9/r9r2pz/9qWEBGmPCVsgl9ML8fJZmZlK5fz8RCQnMWbyY\nvn6OxRKIc4QSVbVJLIwx9fN3iiN/F/yYgq4gL0/nJydrKaiCloLOT07WAj+mjwvEOR577DG98cYb\na2ybN2+ezps3T5csWaJDhgzR6OhoTU5O1meffbZqH5fLpX369Kl63a9fP129erWqqp4+fVpnz56t\nMTExOmzYMH3iiSdq7Pvoo49qcnKyRkdH67Bhw/TNN99UVdVt27Zpu3bttFWrVhoVFaUxMTGqWnPa\nOlXV5557TgcMGKCxsbF6/fXXa1FRUdV7IqJ//vOfNSUlRWNiYvSOO+644PXX9TczxjQdGjAFXUgl\n9KyMjKpErNUSclZGhs+/hECco7CwUDt27KilpaWqqlpRUaE9e/bUzz77TN97772q+UnXrl2rHTp0\n0PXr16vqhRP6Pffco5dffrkePXpU9+3bp8OHD6+x7+uvv64HDx5UVdVXX31VO3bsWPV66dKlOm7c\nuBoxVk/oq1ev1ri4ON2wYYOWlZXpnXfeqZdffnnVviKi1113nR4/flz37Nmj3bp105UrV9Z5/ZbQ\njXFeQxJ6SN0Urdy/n47nbesIVC5fDiI+LZXLl3s/hx9T0CUmJjJ69GjefPNNAFavXk3Hjh0ZM2YM\nkydPrhqOd9y4cfzgBz+o0bZdl9dee43777+fzp07k5CQwNy5c2u8/+Mf/5j4+HgApk2bRkpKCp9/\n/rlP8a5YsYKf//znjBgxgtatW/PII4/wySefsGfPnqp9Fi5cSHR0NH369GHChAls2LDBp3MbY5qP\nkEroEQkJnDxv20kgIiPjvDp33UtERob3c/g5Bd2MGTN46aWXAHjppZeYOXMmAO+//z5jx44lNjaW\nmJgY3n///TqnnauuqKioxtRxffv2rfH+iy++yKhRo4iJiSEmJoavv/7ap/OeO3f183Xs2JHY2Nga\nc7Se+7CAC09/Z4xpvkIqoc9ZvJhFyclVCfkksCg5mTl+TB8XiHOAu5bscrnYv38/b775JhkZGZSV\nlXHjjTdy9913880333DkyBEmT57s00M4PXv2rDFdXGFhYdX6nj17uPXWW/njH//IkSNHOHLkCMOG\nDas6b303RHv16lXjfCdPnqSkpKTGB4gxJvyFVC+XvklJ3JmTw+8yM6ksKiKiVy/u9LOHSiDOARAX\nF8f48eO5+eab6d+/PwMHDqS0tJSysjLi4uKIiIjg/fffZ9WqVaSmptZ7vunTp/PII48wZswYSktL\neeaZZ6reO3nyJBEREcTFxVFZWUl2dnaNLo/x8fHs27ePs2fP0rp161rnnjFjBjNnzmTmzJkMGjSI\ne++9l0suucQmkDamhQmphA7uhLxo2TLHzwEwc+ZMZs+ezRNPPAFAVFQUf/jDH5g2bRplZWVcd911\nXH/99XUeX71mvWjRIn71q1+RlJREQkICN998M0899RQAQ4YMYf78+VxyySVERkZy0003cdlll1Ud\nO3HiRIYNG0aPHj2IjIzk0KFDNcqZNGkSixcv5oYbbuDo0aNceumlvPzyy17j8PbaGBMebCwXU4v9\nbYxxno3lYowxLZgldGOMCROW0I0xJkxYQjfGmDBRb0IXkYEisl5EvvL8PCYic0UkRkRWiUiuiKwU\nkc5NEbAxxhjv/OrlIiIRwD7gX4BfAyWq+riI3APEqOoCL8dYL5dmxv42xjivIb1c/O2HfgWwW1X3\nisj1wHjP9mzABdRK6HXp27ev9YcOUecPS2CMaR78bUP/CbDCsx6vqsUAqnoQ6O7PiQoKCoI2wuOW\nLVsYOHCg+/XYsejatUEfVTKcloKCAj//WRhjQoHPNXQRaQ1MAe7xbDr/O3md39GzsrKq1tPT00lP\nT/c5wIYYOHAge/fu5dSpU3RISYGdO2HcuKCWaYwxjeFyuXC5XI06h89t6CIyBbhdVa/2vN4GpKtq\nsYj0AD5U1SFejvPahh5so0aN4rnnnuN7K1fCyZPwyCNNHoMxxjRUsJ8UnQG8VO3128Acz/ps4C1/\nCg62tLQ0Nm3aBOdq6MYYE+Z8Sugi0gH3DdE3qm1+DLhSRHKBScCjgQ+v4SyhG2NaGp/a0FX1FNDt\nvG2HcSf5kJSamso777zjTui7drknwLBeNcaYMBa2T4qeq6FrVBRER4MfU9AZY0xzFLYJPT4+nsjI\nSA4cOGDNLsaYFiFsE7qIWDu6MaZFCduEDnZj1BjTslhCN8aYMGEJ3RhjwoRjc4o2he+++46YmBiO\nFRXRJiEBSkshIqw/w4wxYcLmFD1Pu3bt6NevH9v37oWYGNi3z+mQjDEmaMI6oYM1uxhjWo4WkdA3\nb95sCd0YE/ZaREK3GroxpiWwhG6MMWEi7BN6YmIipaWlHImLs4RujAlrYZ/Qq4YAOHkSCgqgosLp\nkIwxJijCPqGDu9llQ24udOsGe/Y4HY4xxgRFi0joqamp1o5ujAl7vs5Y1FlEXhORbSLytYj8i4jE\niMgqEckVkZUi0jnYwTaU3Rg1xrQEvtbQnwLe80wCPQLYDiwAPlDVQcAaYGFwQmy84cOHs3XrViqT\nky2hG2PCVr0JXUQ6AeNUdQmAqpar6jHgeiDbs1s2MDVoUTZSp06diI+P50BUlCV0Y0zY8qWGngR8\nKyJLROQrEXnOM2l0vKoWA6jqQaB7MANtrLS0NLacOWMJ3RgTtnyZJLoVMBq4Q1XXich/4m5uOX8I\nxTqHVMzKyqpaT09PJz093e9AGystLY1PDx3iqj17oLwcWvk0P7YxxjQJl8uFy+Vq1DnqHT5XROKB\nT1S1v+f1ZbgTejKQrqrFItID+NDTxn7+8Y4Nn1vd66+/zrJly/ifjRshJwcGDHA6JGOMqVNQhs/1\nNKvsFZGBnk2TgK+Bt4E5nm2zgbf8KbipWddFY0y482mCCxEZATwPtAbygJuBSOBVoA9QCExX1aNe\njg2JGnpFRQWdOnXiyMyZtElNhblznQ7JGGPq1JAauk8Nyaq6Efiel7eu8KcwJ0VGRjJ06FD2d+hA\nktXQjTFhqEU8KXpOWloa2ysqrMnFGBOWWlxC//zIEUvoxpiw1OIS+ocFBbB/P5SVOR2OMcYEVItK\n6KmpqazfsgXt3Rvy850OxxhjAqpFJfS4uDiioqL4rndva3YxxoSdFpXQwV1LPxAdbQndGBN2WlxC\nT0tLY6eqJXRjTNhpkQn9y+PHLaEbY8JOi0zoHxUVWUI3xoQdnx79b1QBIfLo/zllZWV07dSJE4Ac\nPQrt2jkdkjHG1BKUwbnCTZs2beg/cCBnevSAvDynwzHGmIBpcQkd3M0u33TpYs0uxpiw0mITel5E\nhCV0Y0xYaZEJPTU1lY2nTllCN8aElRaZ0NPS0vj7wYOW0I0xYcWn8dBFpAA4BlQCZ1V1jIjEAK8A\nfYEC3BNcHAtSnAHVq1cvdgIVublEOh2MMcYEiK819Erc84eOUtUxnm0LgA9UdRCwBlgYjACDQUSI\nHTkSvv0WTp1yOhxjjAkIXxO6eNn3eiDbs54NTA1UUE1h+IgRHO3SBXbvdjoUY4wJCF8TugI5IvKF\niPyrZ1u8ZwJpVPUg0D0YAQZLWloahW3aWDu6MSZs+NSGDnxfVQ+ISDdglYjk4k7y1YXO46A+SEtL\nY8uZM4y2hG6MCRO+ThJ9wPPzGxH5H2AMUCwi8apaLCI9gEN1HZ+VlVW1np6eTnp6emNiDohhw4aR\nfeQIs3JzW2ZXH2NMSHG5XLhcrkado96xXESkAxChqqUi0hFYBTwITAIOq+pjInIPEKOqC7wcH1Jj\nuVR3U+/e/KlnTzp+8YXToRhjTA0NGcvFlxp6PPCmiKhn/+WqukpE1gGvisgtQCEw3e+IHdY+LQ35\n5BOnwzDGmICoN6Graj4w0sv2w8AVwQiqqSSMGUOrnBwoLYWoKKfDMcaYRmnRzcdpI0dyoF072LXL\n6VCMMabRWnZCT0tjW0WFdV00xoSFFp3Q+/Xrx/byck5v2uR0KMYY02gtOqFHRETwXZ8+HFu3zulQ\njDGm0Vp0QgdoPXQolTt2OB2GMcY0WotP6LGXXELUgQNOh2GMMY3W4hN68rhxtD5zBo4fdzoUY4xp\nlBaf0FPT0tgFVObmOh2KMcY0SotP6F26dGFv27Z8849/OB2KMcY0SotP6AAne/Wi5NNPnQ7DGGMa\nxRI6EDl4MGe3bnU6DGOMaRRL6EDniy+m3b59TodhjDGNYgkd6D1hAt2OHnU6DGOMaZR6x0NvdAEh\nPB76OeVnz3K6TRtkzx6i+vRxOhxjjGnQeOhWQwdatW7NvvbtKcjJcToUY4xpMEvoHsfj463rojGm\nWfM5oYtIhIh8JSJve17HiMgqEckVkZUi0jl4YQafDhjAd5s3Ox2GMcY0mD819HlA9b59C4APVHUQ\nsAZYGMjAmlr0qFG0KihwOgxjjGkwnxK6iPQGfgg8X23z9UC2Zz0bmBrY0JpWz/Hj6VpSQqjfwDXG\nmLr4WkP/T+AuoHq2i1fVYgBVPQh0D3BsTarrmDEkV1ay3/qjG2OaqXoTuohcAxSr6gbgQl1omnfV\nNi6OVpGRbPv4Y6cjMcaYBmnlwz7fB6aIyA+B9kC0iPw3cFBE4lW1WER6AIfqOkFWVlbVenp6Ounp\n6Y0KOihEOBwby4G1a2HGDKejMca0MC6XC5fL1ahz+PVgkYiMB+ar6hQReRwoUdXHROQeIEZVF3g5\nJuQfLDonb+xYVgK3ffKJ06EYY1q4pn6w6FHgShHJBSZ5Xjdr7VNTidi92+kwjDGmQfxK6Kr6kapO\n8awfVtUrVHWQqv5AVZv9YCixY8fStaSEM2fOOB2KMcb4zZ4UrabN0KEMbdOG7du3Ox2KMcb4zRJ6\ndSkpJJWXs2njRqcjMcYYv1lCr65rV2jdmjybvcgY0wxZQj/PmcREjq1b53QYxhjjN0vo52kzdCiV\nublOh2GMMX6zhH6eDiNG0OfMGb755hunQzHGGL9YQj+PDBzI6OhoNttQusaYZsYS+vlSUkhRZdOm\nTU5HYowxfrGEfr6UFOJLS63rojGm2bGEfr7OnaFDB4q+/NLpSIwxxi+W0L2IGDiQytxcysvLnQ7F\nGGN8Zgndi8jBg7moUyd27drldCjGGOMzS+jepKTwvZgYuzFqjGlWLKF7k5LC4MhI67pojGlWLKF7\nk5JCwqlTVkM3xjQrltC9GTCA6EOH2GxdF40xzYgvk0S3FZHPRGS9iGwWkUWe7TEiskpEckVkpYh0\nDn64TSQ6GunShdaHDnHs2DGnozHGGJ/Um9BV9QwwQVVHASOBySIyBlgAfKCqg4A1wMKgRtrEJCWF\nSYmJbNmyxelQjDHGJz41uajqKc9qW6AVoMD1QLZnezYwNeDROSklhUvi4qwd3RjTbPiU0EUkQkTW\nAweBHFX9AohX1WIAVT0IdA9emA5ISWF4mzaW0I0xzUYrX3ZS1UpglIh0At4UkWG4a+k1dqvr+Kys\nrKr19PR00tPT/Q60yaWkkPi3v1lCN8Y0CZfLhcvlatQ5RLXOPOz9AJFM4BTwr0C6qhaLSA/gQ1Ud\n4mV/9beMkLBpE+XTphF78CBHjx5FRJyOyBjTgogIqupX4vGll0vcuR4sItIeuBLYBrwNzPHsNht4\ny69oQ92AAbTas4fOUVEUFhY6HY0xxtTLlyaXnkC2iETg/gB4RVXfE5FPgVdF5BagEJgexDibXocO\nEBvLxAED2LRpE/369XM6ImOMuaB6E7qqbgZGe9l+GLgiGEGFjJQULuvenU2bNjFlyhSnozHGmAuy\nJ0UvJCWFtPbt7caoMaZZsIR+ISkp9K+osIRujGkWLKFfSEoKXUtKKCws5NSpU/Xvb4wxDrKEfiEp\nKUTs3s3AgQPZunWr09EYY8wFWUK/kORkKCxk5PDhNja6MSbkWUK/kHbtID6ey/r0sXZ0Y0zIs4Re\nn5QURkdHW0I3xoQ8S+j1SUlhgCobN26kWQ5hYIxpMSyh1yclhU7FxQAcPHjQ4WCMMaZultDrk5KC\n7NpFWlqaNbsYY0KaJfT6pKTAzp2W0I0xIc8Sen3694e9exkxdKgldGNMSLOEXp82bSAhgYtjY60v\nujEmpFlC90VKCiki5ObmcvbsWaejMcYYryyh+yIlhXZ79tC3b19yc3OdjsYYY7yyhO4Lz43R1NRU\na0c3xoQsX6ag6y0ia0TkaxHZLCJzPdtjRGSViOSKyMpz09SFJevpYoxpBnypoZcD/6Gqw4CxwB0i\nMhhYAHygqoOANcDC4IXpMEvoxphmoN6ErqoHVXWDZ70U9wTRvYHrgWzPbtnA1GAF6bh+/aCoiLRB\ngyyhG2NCll9t6CLSDxgJfArEq2oxuJM+0D3QwYWM1q0hMZG+FRUcP36cw4cPOx2RMcbUUu8k0eeI\nSBTwOjBPVUtF5PyRquocuSorK6tqPT09nfT0dP+iDAWeyS5SU1PZvHkz48ePdzoiY0wYcblcuFyu\nRp1DfBlBUERaAe8A76vqU55t24B0VS0WkR7Ah6o6xMuxGhajFM6bB4mJ3LZrF0OHDuXOO+90OiJj\nTBgTEVRV/DnG1yaXvwBbzyVzj7eBOZ712cBb/hTc7NiNUWNMiPOl2+L3gQxgooisF5GvRORq4DHg\nShHJBSYBjwY3VIdZX3RjTIjzqcmlUQWES5NLXh6kp3Ns82YSEhI4duwYkZGRTkdljAlTwWxyMYmJ\ncOgQndu0IS4ujry8PKcjMsaYGiyh+6pVK3d/9N27rR3dGBOSLKH7o9qNURtK1xgTaiyh+8N6uhhj\nQpgldH9YQjfGhDBL6P7wJPQBAwZw4MABSktLnY7IGGOqWEL3hyeht2rVisGDB7NlyxanIzLGmCqW\n0P3Rpw8cPgwnT1qzizEm5FhC90dEBPTvD7t2WUI3xoQcS+j+8jS7dOvWjVdffZUJEyYwa9Ys8vPz\nnY7MhKjC/HwenDWLRRMm8OCsWRTavxUTJPbov7/uuovDwEWvv05BQUHV5uTkZHJyckhKSnIsNOOb\nwvx8lmZmUrl/PxEJCcxZvJi+Qfq7Febn8/SVV/Lg7t10BE4Ci5KTuTMnJ2hlmvDQkEf/UdWgLu4i\nwsizz6qrf3/FPf57jSUjI8Pp6Ew9CvLydH5yspaCKmgp6PzkZC3Iy2vYCSsrVc+cUS0tVT1yRPXQ\nIdX9+1ULClR37tSsa66pKkurlZkVRv9WCvLyNCsjQx9IT9esjIyG/y5DtDyneHKnX/nW5wkujEdK\nCjElJV7fKioqauJgjL+WZmZW1ZYBOgIP7t7N78aOZdGgQXD2rO9LeTlUVLhntKpjqSwqqiqLamVW\nfvEF7NjhbsIT/yphocTrN5BPPw3aN5CmLq+5sYTur5QUEs+c8fpWdHR0Ewdj/HL2LJVffuk9wfbo\nAQ8+eMHk7HWJjLxgQo6YNYuTy5fXKPMkEHH2LEyaBJWVMGHCP5ekpGaV4Ov8gPzpT1k0e7Z/H5A+\nLEvz8njw2LHa5WVmsmjZMmd+CSHEErq/evWikwgjkpLYWO3mVteuXfnoo4/IzMxkwYIFdOx4ftow\njjl9Gv7yF3jiCSK++46TUDvBDh8OQZgacc7ixSz69FOvbejnBnvjww9h9Wq4/35o0wYmTvxngu/T\nJ+AxNZgq7NsHGzbAxo2wYQOV777r/QNy717YsqXmh1+rVu6fHTr4/8HpOb7yttvouG5d7fK+/BLO\nnIG2bZvqtxGSLKH7KyKCiAEDePe3v+WeV16hqKiIXr16sXjxYlq3bs3dd9/NkCFDePzxx/nJT36C\nNKPaVtg5fhz+9Cf4/e9hzBh4+WXmxMezyNtNysWLgxJC36Qk7szJ4XeZmVQWFRHRqxd3Vr8JO2CA\ne/nFL9wJMzcX1qyBv/0N5s+Hzp1r1uB79gxKnLWcPQvbttVI3mzY4P7AGTkSRoyAG28k4swZTr7z\nTu0PyIkT4Y9/DHhYEYMGcXLdutrlHT0KffvCL38Jt90GPXoEvOxmob5GduAFoBjYVG1bDLAKyAVW\nAp0vcHyT3EBoUjfcoPryy3W+vXbtWh05cqSOGzdOv/rqqyYMzKiq+8bk/ferxsaqZmSobt5c4+2q\nm2oTJoT2TbWKCtVNm1Sfekp16lTVmBjVQYNUb7tN9dVX3dfphd83DY8cUXW53OXcfLPqqFGq7dur\nDhmiOmOG6qOPqv7v/6oeOOC1rIDeZK7HBcv7+mvVX/1KtUsX1Z/9THXduqDE0FRowE3Rerstishl\nQCnwoqqmebY9BpSo6uMicg8Qo6oL6jhe6yuj2VmwAKKi3F+R61BRUcELL7zAAw88wNSpU3nooYeI\ni4trwiBboL174ckn4cUXYfp0uOsuSE52OqrAqaiATZvcTTRr1sDHH7ubZM7V3sePp/DYsbq7Sfbr\nB4WFNWvcGzbAt99CWto/a94jR8Lw4e6mER9UdQP1fAMJZjdQn8o7fBiefx6eecY9Mc2//RtMnepu\n8mlGgtZtEehLzRr6diDes94D2H6BY4P5IeaM559Xvekmn3Y9fPiwzps3T+Pi4vSpp57SsrKyIAfX\nAu3YofoSTVYCAAAN5klEQVTzn7trsPPnu7sNtgRnz6p+9pm7Bn3VVarR0ZoVE+O9m2T37u6aa0KC\n6jXXqN57r7uWv2OH+5tAODp7VvW111Qvu0w1MVH1scdUS0qcjspnNKCG3tCEfvi89w9f4NigX3iT\n++gj1bFj/Tpky5YtesUVV+jQoUM1JycnSIG1MOvXq06frhoXp7pokeq33zodkbPKyvSB0aNrJPNz\nywMjRtTZRNMirFvnbobp0kX1l790N8+EuIYk9EB9B7lgm0pWVlbVenp6OulB6E3QpDyP//tj2LBh\nrFq1irfeeotbb72VkSNH8uSTT9qTpQ3x//4fPPwwrF/vvnH4/PNgXUahdWsihgzh5Fdfee/F062b\nU5E576KL3E1xBw+6b5RPnOhuXpo3D66+2j1Ok8NcLhcul6txJ/El61O7hr6Nmk0u2y5wbBN8ljWx\nykrVqCj3zaQGOH36tD700EPatWtXve+++7S0tDTAAYahykr3jbnLL1dNSlL9859VT592OqqQ09Q3\nKZut775TXbrUfQN44EDVZ55RPXHC6ahqoAE1dF8/lsSznPM2MMezPht4q3EfK82MiLurmZ+19HPa\ntWvHfffdx8aNG8nPz2fw4MG89NJL5z4ATXUVFfD66+4a1vz57m5pO3a4f7Zr53R0Iaeqm2RGBosm\nTOB3GRn2FKU3bdvC7Nnw5Zfub3gffuju9jh/PjTjwdN86eWyAkgHYnF3X1wE/A/wGtAHKASmq+rR\nOo7XsExU06bBj34EM2c2+lQff/wxc+fOpWPHjvzhD39g1KhRAQiw+fA6WFbv3rB8OTz6qLsv9n33\nwbXXhsRXYxOmCgrgv/4LliyBcePcvWMuv5zCgoImG8ytOhucqyktXKialRWw05WXl+uzzz6r3bt3\n11/84hd6qIXcwPLaRBAbqwU9e6pOmqS6erW7ucWYpnLihOof/6g6aJAWDB6s87t1c6QJiyA2uZjz\npaTArl0BO11kZCS33nor27dvp0OHDgwdOpSnnnqKs2fPBqyMUOR1LJCSEpampcEHH7hvXtnTtqYp\nRUW5nzbdupWlPXrw4Dff1Bo7ZmlmppMR1skSekM1oKeLL2JiYvj973+Py+XinXfeYeTIkeTk5JCf\nn8+sWbOabEKNJimvrIzKjRu9jwVSVhb48ozxR0QEleD932eIjqzavB6dCiGFbduydP16KidMCEq7\nWvVujrfccguHDx/m1KlTVe9/+umnQZtQIz8/nyuvvJLdu3cHvjxVd3fDpUvhpZeIiIjwPlhWr16N\nK8eYAIhISGhW/z5txqIGaOpZaGbMmMHLL79ca3v79u3p1q0bkZGRPi2tWrXyab9//OMfXmvk48aN\nY/HixXTt2pXY2Fi6du1KO197mhQXu29yLl0KJ064exjMnk0h8H/T03l4z56q3+W9iYn8h8tlPTOM\n45yccaohN0Wtht4AdY4BHaQxmQ8ePOh1+8iRI1m+fDkVFRUBXb788kuv5W3bto3MzEwOHz5MSUkJ\nJSUltG7dukaCr/4zrlMnRu7bx5DPP6fbtm2UTppEZVYW0ddcQ2vPMKeV+fm8pcp7uB9oOAicVeXf\nAv5bNMZ/9Y6WGWIsoTdA5f793tvVcnLctdCrr4bY2ICVl5CQ4HV7//79g9LksnLlSrZv315r+1VX\nXcWyah9YqsrJkycpKSmpSvKHS0qQDRvo9+GHDNm4kX2dOvFKjx68O2wYe7dv5/CvfsWRI0do3749\nXbt25fjx4xw5cgSAqlvMe/dy3333sWLFioBfmzH+6puU1Hwmz/C3W4y/C2HYbTErI8P7AEhjxqhO\nmaIaHa166aWqDz+sunFjo7vd5eXlaXJyco35S5OTkzUvSF2nGlRecbHqk0+qpqaq9uvnHltl926v\nu1ZUVOjRo0d19+7detFFF3mdnzUiIkLHjh2rd955p2ZnZ+vWrVu1vLw8KNdrTCgiGMPnNlaLbEP/\n7jv46CN45x1491333JPXXONeJk70eVjS6vLz88nMzKwxoUYwx4HxqbyyMvf1LV3qvt6pU2HOHLj8\ncp8fAJo1axbLly+vtX3atGncfvvtrFu3jnXr1vHFF19w6NAhRo8ezcUXX1y1JCcnE2EPG5kw1JA2\ndEvoDeTzGNCq7plf3n3XvXz1lfsptHMJvm/fpg++MVTdY2gvXQorVsCwYe4k/uMfN2iALG89apKT\nk732qDl8+DBffvllVZJft24dx44d46KLLqpK8N/73vfo27evzRRlmj1L6M3BkSOwapU7ub//vnuq\nrGuvdSf3Sy4JmUH4az2OP28efT/+2J3Ijx1z91K56aaATCDRmG8fhw4dqpHkv/jiC8rKymrU4i++\n+GISEhKqkvy58vbv309CQkKTfdux8qw8f9ij/81NebnqP/7hnmxgxAjVrl1VZ85UXb681kD8fk8r\n1gheH8cX0YIf/Uh1zZqQnxBh//79+tZbb2lmZqZOnjxZ4+LiND4+Xq+55hqdO3eu9ujRI7TvR1h5\nLba86rA29GZu71547z137d3lco/XfM01FI4cydO//rXvfWHLy919vS+0lJbW+d6DW7fyf44dq/Uw\nxe8yMprP3f5qVJW9e/eybt06MjMz2bp1a619OnbsSM+ePav66p//09s2X/ZZvXo1O3bsqFXe0KFD\nmTJlStXr6k1EjVl/44032LJlS63yUlNTufHGGwNe3iuvvMKGDRtqlXfRRRcxe/ZsIiIiqpbIyMga\nr3157/ztDz/8MKtXr65V3pVXXsmiRYuoK9d42+7Lvg899BAffPBBrX0yMjJq9PgKBuuH3tz16eMe\nFvaXv4TTp91J/d13WfrQQzx48mTtfu/f/z6L+vevnajLytzt2eeWqKiar6sv3bvX2q/y3/+djuvW\n1QgtlB93ro+IkJiYSGJiIk8//bTXhJ6amkp2djbl5eVV/fHPrZ//80Lvnb9PTk6O15i+++47OnXq\nBNRMII1ZBygtLfVa3vHjxykvLw9oeapKSUmJ1/KKi4vZsWMHlZWVVFZWUlFRUbVefalre13vffXV\nV17L++yzz7j77rsB6rx/4m17fftu3LjR6/tFIfp/wRJ6qGrfHiZPhsmTqfz6azqeN5NJR6CyWzf3\nzD3nJ+n27Rs1oFXEoEGcXLeu2Tzu7I+6+vQnJyczcODAgJf3ySefsMvLIG5jx45l4cKFAS9v586d\nFBQU1Np+2WWX8Zvf/Cbg5e3fv99rL6Xx48fz9NNPB7y8unpFXXfddUGpMddVXq9Q/b/gbxuNvwvW\nht5odfZ7z8gISnnhPOtNuLfBWnnNu7zqCNYk0XUeDFcD24EdwD117BP0Cw93TiTYqpuwEyYE/SZs\nU8vLy9OMjAydMGGCZmRkBP0/p5Vn5TVEQxJ6g2+KikiEJ5FPAoqAL4Cfqur28/bThpbRHLhcriaZ\n9Nrnfu8B1lTX54Rwvjaw62vuGnJTtDGP2I0BdqpqoaqeBV4Grm/E+ZqlRs/S7aNz40k8uGYNi5Yt\na7LBgZrq+pwQztcGdn0tUWMSegKwt9rrfZ5txhhjHGCDYBhjTJhoTBv6JUCWql7teb0AdyP+Y+ft\nF74N6MYYE0T+tqE3JqFHArm4b4oeAD4HZqjqtgad0BhjTKM0+MEiVa0QkV8Dq3A33bxgydwYY5wT\n9LFcjDHGNI2g3RQVkatFZLuI7BCRe4JVjhNEpLeIrBGRr0Vks4jMdTqmYBCRCBH5SkTedjqWQBOR\nziLymohs8/wd/8XpmAJJRP5dRLaIyCYRWS4ibZyOqTFE5AURKRaRTdW2xYjIKhHJFZGVItLZyRgb\nqo5re9zzb3ODiPxVRDr5cq6gJHTPQ0fPAFcBw4AZIjI4GGU5pBz4D1UdBowF7giz6ztnHlB7JKvw\n8BTwnqoOAUYAYdNcKCK9gDuB0aqahrtp9afORtVoS3Dnk+oWAB+o6iBgDRD4wXGahrdrWwUMU9WR\nwE58vLZg1dDD+qEjVT2oqhs866W4k0FY9cEXkd7AD4HnnY4l0Dy1nXGqugRAVctV9bjDYQVaJNBR\nRFoBHXA/zd1sqerHwJHzNl8PZHvWs4GpTRpUgHi7NlX9QFUrPS8/BXr7cq5gJfQW89CRiPQDRgKf\nORtJwP0ncBfuAYnCTRLwrYgs8TQpPSci7Z0OKlBUtQh4EtgD7AeOqmrtQb2bv+6qWgzuShbQ3eF4\nguUW4H1fdrQHixpBRKKA14F5npp6WBCRa4Biz7cQ8SzhpBUwGvgvVR0NnML99T0siEgX3LXXvkAv\nIEpEZjobVZMIu8qHiNwHnFXVFb7sH6yEvh9IrPa6t2db2PB8lX0d+G9VfcvpeALs+8AUEckDXgIm\niMiLDscUSPuAvap6bhaP13En+HBxBZCnqodVtQJ4A7jU4ZiCoVhE4gFEpAdwyOF4AkpE5uBu9vT5\nwzhYCf0LYICI9PXcXf8pEG49Jf4CbFXVp5wOJNBU9V5VTVTV/rj/dmtU9San4woUz9f0vSJybkaL\nSYTXzd89wCUi0k7cU+9MIjxu+p7/bfFtYI5nfTbQnCtWNa5NRK7G3eQ5RVXP+HqSoMxYFO4PHYnI\n94EMYLOIrMf9Ve9eVf1fZyMzfpgLLBeR1kAecLPD8QSMqn4uIq8D64Gznp/PORtV44jICiAdiBWR\nPcAi4FHgNRG5BSgEpjsXYcPVcW33Am2AHM90eJ+q6u31nsseLDLGmPBgN0WNMSZMWEI3xpgwYQnd\nGGPChCV0Y4wJE5bQjTEmTFhCN8aYMGEJ3RhjwoQldGOMCRP/H+SNdMfy5uQxAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x20048d64048>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n = 20\n", "p = 12\n", "training = []\n", "val = []\n", "for i in range(1, p):\n", " np.random.seed(0)\n", " x = np.random.random((n,1))\n", " y = 5 + 6 * x ** 2 + np.random.normal(0,0.5, size=(n,1))\n", " x = np.hstack((x**j for j in np.arange(i)))\n", " our_coeff = np.dot(\n", " np.dot(\n", " np.linalg.inv(\n", " np.dot(\n", " x.T, x\n", " )\n", " ), x.T\n", " ), y\n", " )\n", " our_predictions = np.dot(x, our_coeff)\n", " our_training_rss = np.sum((y - our_predictions) ** 2)\n", " training.append(our_training_rss)\n", " \n", " val_x = np.random.random((n,1))\n", " val_y = 5 + 6 * val_x ** 2 + np.random.normal(0,0.5, size=(n,1))\n", " val_x = np.hstack((val_x**j for j in np.arange(i)))\n", " our_val_pred = np.dot(val_x, our_coeff)\n", " our_val_rss = np.sum((val_y - our_val_pred) ** 2)\n", " val.append(our_val_rss)\n", " #print(i, our_training_rss, our_val_rss)\n", "\n", "plt.plot(range(1, p), training, 'ko-', label='training')\n", "plt.plot(range(1, p), val, 'ro-', label='validation')\n", "plt.legend(loc=2)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Gradient descent\n", "\n", "One limitation of our current implementation is that it is resource intensive. For very large datasets an alternative is needed. Gradient descent is often preferred, and particularly stochastic gradient descent for very large datasets.\n", "\n", "Gradient descent is an iterative process, repetitively calculating the error and changing the coefficients slightly to reduce that error. It does this by calculating a gradient and then descending to a minimum in small steps.\n", "\n", "Stochastic gradient descent calculates the gradient on a small batch of the data, updates the coefficients, loads the next chunk of the data and repeats the process.\n", "\n", "We will just look at a basic gradient descent model." ] }, { "cell_type": "code", "execution_count": 172, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "lstsq [[ 4.07959732]\n", " [ 5.69608619]]\n", "[[ 4.08212025]\n", " [ 5.69136537]] [10215.151832573791, 151.49738175162241, 120.99886225509709, 104.87099032951339, 96.334352755009746, 91.815828439379132, 89.424130090614341, 88.158181167489815, 87.488102235174722, 87.13342301602863, 86.945687896436965, 86.846317893274772, 86.793720395534692, 86.765880034455108, 86.751143863756042, 86.743343866972538, 86.739215253707584, 86.737029939025462, 86.735873230960678, 86.735260974264634]\n" ] } ], "source": [ "np.random.seed(0)\n", "n = 200\n", "x = np.random.random((n,1))\n", "y = 5 + 6 * x ** 2 + np.random.normal(0,0.5, size=(n,1))\n", "intercept_x = np.hstack((np.ones((n,1)), x))\n", "coeff, residuals, rank, sing_vals = np.linalg.lstsq(intercept_x,y)\n", "print('lstsq', coeff)\n", "\n", "\n", "\n", "def gradient_descent(x, y, rounds = 1000, alpha=0.01):\n", " theta = np.zeros((x.shape[1], 1))\n", " costs = []\n", " for i in range(rounds):\n", " prediction = np.dot(x, theta)\n", " error = prediction - y\n", " gradient = np.dot(x.T, error / y.shape[0])\n", " theta -= gradient * alpha\n", " costs.append(np.sum(error ** 2))\n", " return (theta, costs) \n", "theta, costs = gradient_descent(intercept_x, y, rounds=10000)\n", "print(theta, costs[::500])" ] }, { "cell_type": "code", "execution_count": 173, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "lstsq [[ 5.47554054e+00]\n", " [ -2.39855397e+01]\n", " [ -2.16608732e+03]\n", " [ 1.83443739e+05]\n", " [ -5.27245313e+06]\n", " [ 8.26516683e+07]\n", " [ -8.23118154e+08]\n", " [ 5.62639497e+09]\n", " [ -2.76438408e+10]\n", " [ 1.00543636e+11]\n", " [ -2.75843668e+11]\n", " [ 5.77141231e+11]\n", " [ -9.24891464e+11]\n", " [ 1.13282985e+12]\n", " [ -1.05057010e+12]\n", " [ 7.23919989e+11]\n", " [ -3.58600661e+11]\n", " [ 1.20492881e+11]\n", " [ -2.45402172e+10]\n", " [ 2.28151842e+09]]\n", "[[ 4.79516406]\n", " [ 2.15892204]\n", " [ 1.59022686]\n", " [ 1.12552832]\n", " [ 0.76583482]\n", " [ 0.50446167]\n", " [ 0.31909476]\n", " [ 0.18845052]\n", " [ 0.09618612]\n", " [ 0.0306512 ]\n", " [-0.01621254]\n", " [-0.04991523]\n", " [-0.07421911]\n", " [-0.09170582]\n", " [-0.10416419]\n", " [-0.11285053]\n", " [-0.11866168]\n", " [-0.12224985]\n", " [-0.1240988 ]\n", " [-0.12457462]] [10215.151832573791, 54.942826326885879, 49.019636887639798, 48.508526705309478, 48.258178349345279, 48.117210951931447, 48.030663705920169, 47.971678161563304, 47.927021249546534, 47.890143189067288, 47.857775390826845, 47.828262392661784, 47.800743812843862, 47.77475299941122, 47.750019966197222, 47.726374493746306, 47.70369835417678, 47.681901638557513, 47.660910919846714, 47.640663236621648]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXl4VOX5v+93EiAhAQIICQmBxEQtUisuQFyZCLi2iVRq\n0YkaELHWFVQUJQWMuLRaaWt/tqiACmqtrcK3aCkqCaCCXUBkUUkyAQwEZE9gwpb398eZSWYmZyaT\nmck2ee7rOtfMnDnLew7kc5553mdRWmsEQRCEyMDS2gMQBEEQwoeIuiAIQgQhoi4IghBBiKgLgiBE\nECLqgiAIEYSIuiAIQgTRqKgrpV5VSu1WSm1wW/drpdQWpdR6pdTflFLdm3eYgiAIQiAEYqnPB67y\nWvcvYLDWegiwFZgW7oEJgiAITadRUddarwYOeK37SGtd6/y4BujfDGMTBEEQmkg4fOoTgA/DcBxB\nEAQhREISdaXU48AJrfWbYRqPIAiCEALRwe6olMoHrgWuaGQ7KS4jCIIQBFpr1dR9ArXUlXMxPih1\nNfAwkKO1PhbAwGTRmhkzZrT6GNrKIvdC7oXcC/9LsAQS0vgm8BlwplJqu1JqPPAHIB5YrpT6n1Lq\n/wU9AkEQBCFsNOp+0VrfbLJ6fjOMRRAEQQgRyShtQaxWa2sPoc0g96IeuRf1yL0IHRWK7yagEyil\nm/scgiAIkYZSCt2ME6WCIAhCO0BEXRAEIYIQURcEQYggRNQFQRAiCBF1QRCECEJEXRAEIYIQURcE\nQYggRNQFQRAiCBF1QRCECEJEXRAEIYIQURcEQYggRNQFQRAiCBF1QRCECEJEXRAEIYIQURcEQYgg\nRNQFQRAiCBF1QRCECCKQxtOvKqV2K6U2uK0bq5TaqJQ6pZQ6v3mHKAiCIARKIJb6fOAqr3VfAWOA\n4rCPSBAEoQNht9vJy8sjOzubvLw87HZ7SMeLbmwDrfVqpdRAr3XfACilmtw/TxAEQTCw2+2MHj2a\n0tLSunVr1qxh+fLlQR9TfOqCIAitREFBgYegA5SWllJQUBD0MUXUBUEQWomKigrT9Tt37gz6mI26\nX8LBzJkz695brVasVmtLnFYQBKFVsdvtFBQUUFFRQUpKCoWFhaSnp9d9n5KS4noDnTvD3r1QVcXe\nvXuDPqfSWje+kVJpwP9prc/xWr8CeEhr/V8/++pAziEIghBJmPnLMzIyWL58eZ2wr1y1ipG/+hUn\np06F2FhwOIj+9a/5+IknGHH55Witmzxv2aioK6XeBKxAb2A3MAM4APwBOA04CKzXWl/jY38RdUEQ\nOhx5eXksWrSowfqcnBy6detGRUUF5SdOUP7444agu3A4sBUVsejXvw5K1AOJfrnZx1fvN/VkgiAI\nkUJjrhVf/vJ//etf1NTUGB/OOcdT0CsrYdky3vaaPG0KLeJTFwRBiCT8hSK6hL3OX+5FnaAD7N8P\nDoch7JWV8N57kJ/PqdhYyM4OamwS/SIIgtBEAglFLCwsJCMjw2ObmJgYzwNVVMDs2YawL1sG+fme\nlnsQiKUuCILQRAIJRUxPT2f58uUUFBSwc+dOkpOTqa6uZvHixZ47ffopabNns8NiMSz0EBFRFwSh\nQ9GYLzwQfLlWkpOTPT6np6ezcOFCj3Nv3LixYUTMG29wxS23UG63k7loEUn79rG6SSOqJ6CQxlCQ\n6BdBENoKgYQZBnuc+Ph4Bg8eTGZmpt8Hhd1uZ/LkyazZsQPdqxfn9uvHuYcPs2/rVqq//pr5tbXE\nAQqaJ6QxVETUBUFoK/gKM7TZbB4WdSC4LP7S0lI2btxIdXV13Xfx8fH88Ic/JCMjo4HAr1y9muse\ne4zqgQPB4SB35UoWff89zwEPAXHO7YIVdXG/CILQYQhnWr7LtZKXl8eaNWs8vquurmbNmjV1i+uX\ngL28nCvvuYezv/2W1NWr+V5r7sEQ8lrqBT0UJPpFEIQOQ6C+8KZQUlLi93v3qJgbJ03i6i+/5DqH\ngyFaMxL4M/AphhgfCXoU9YioC4LQYTALM3S5SIJl9+7djW7j+iVQs2IFpwOPArOcr6nAk0A+Rrp+\nqMIuoi4IQofBFWZos9nIzs7GZrM1eZLUm6SkpEa3ibbbmZGdzWknT1JIvZslDigETgEDgduBm+Lj\nmZqVFfR4ZKJUEAQhBHxNvrq4Qiku0ppOwDrM66vkAAmJiWSMGkV+YSED09NRSkn0iyAIQktjFt4Y\nFxvL4JgYUg8cYBAwEaP64Y3AO3hOiB4BrlGKN0pLGej2iyFYUZfoF0EQhADxlbjknjnaOSqKpM8+\n448HDhCHIdozgHuB54BfAv8P6r67DVirFLVhGqNY6oIgCAEQSOLSNrude3/0I96qrm5gjT9Hvbh/\niiHqlYArdsY7Vl4sdUEQhGbEXxGvMT/+Mf9v4kTijxwhCtiLp4vFFYd+BNiE4Vv3JpQWdu6IqAuC\nIASAr8SlL//3P9SiRSyh3qVSANyPEdGCc10tkN+lCysyM2HTpgbHCSVW3h0JaRQEQQgAX4lL3b/9\nlj/RMEzxFefnI8DtFgsLhw/n3ZEj4aGHjJ6kbqSmpoYUK++O+NQFQRACwMynfl58POnV1fzNZPtb\ngQHAZ1FRrJg2DUaONOqmv/MOvbdtI3rzZgCysrJ44YUXGsTKB+tTF0tdEAQhAFxRLtfn5jK0d29s\nFgurqqv5EQ2zQI8A25TiLyNHsuLll2HzZqOzUWwsnDzJ1UOHUllZSWVlJe+//35IyU/eNCrqSqlX\nlVK7lVIb3Nb1VEr9Syn1jVJqmVKqR9hGJAiC0Eb57xdfUPt//0fKvn382VkiNx/P9P4jwC+AlXff\nTcn06ZCeDhMnGp2NHA7it22j8K67mm2MgVjq84GrvNY9CnyktT4L+ASYFu6BCYIgtBXs5eVceeut\n/HbcODJqaxlMvQ99IPUx6GOAK2JiWDh1KriV4nVZ6PF//CNLn3qK9LS0Zhtro6KutV4NHPBanQu8\n5nz/GnB9mMclCILQJrCXl5M9ZQp7ly0jHmMStBOeLpeBGLXQN44cyRcffgjXXAO1bulEDgdpu3ez\n4cUXufzSS5t1vMH61PtqrXcDaK0rgb7hG5IgCELLYbfbycvLIzs7m7y8POx2u8f3U55+miFr1rBq\nzx4uAp8uF1tyMiW3326scDjqRd3hoOucOSRWVVEwfXqD44ebcMWp+w1vmTlzZt17q9WK1WoN02kF\nQRCCxyyixb2pBcD3xcUs27WLOOprnru7XE4AH8TGsu7JJ6FfP0PQn3uO7tXVdHr2WRxlZRz99lvW\nAmu9mma4U1RURFFRUegXpbVudHFewwa3z1uAROf7JGCLn321IAhCc1JWVqZtNpu2Wq3aZrPpsrKy\ngL6z2Wwawyj1WHJycuq2GZuaqjVoDboc9IOgq52fq0Hn9u6tefZZrS68UFsuu0zHXXihfuudd/we\n32azNXpNTu0MSKPdl0AtdeVcXCzB+AXyLEY9msVBPlMEQRBCwp+1Dfi1xD2yRFNSoFcv2L+ffy5b\nht1uJz09nbTzz+fIjh3EUW+hPwP8VynKuncnesQIbPv2UfjXvzaYAA1n+7xAaVTUlVJvAlagt1Jq\nO4Yr6Rngr0qpCcA2jIqSgiAILY6/miyu92bfLVy4sD5L9Pzz4eyzIToaRozg+CuvMHnyZN5//33u\neeEFHlu3jqe2bycOo4Tu4QEDeKmoyKNUrhnN0T6vMRoVda31zT6+GhXmsQiCIDQZf9aw9pHN7rKU\nh2ZlsWjXLiN1PzbW8IcvWAATJ7LmD38AYGB6OlOKiniuoIDanTuxJCczxdnIojEKCwtZs2ZNg8qO\n4SoJYIYU9BIEoV0TjDXs+u7xV1+Fp56CgwfJfP55kvbtozIhgZJ//MNwxTipBbYCFVqT4vwcCN61\n1pOTk+tqsDcXUvtFEIR2jb8659DQp57Uvz9RZ5xBdUwMhw4cgFGjuOLpp7no1Ck6YfiSp8XHc3TM\nGP71+usB1VFvDqSdnSAIHRZXRyIza9j9u6joaIosFk7ef7/hbpk9m3EffcQr4NGl6HZgXm4uv3n/\nfZ89SL2bWoQbaZIhCEKHJT093afAun+XfuWV9YIOnLd+fZ2g43ydhRF/3vXwYaB1IlhCQao0CoLQ\nYTgQHW34z598kksnTybZ2UfUnTiMhCKL0+/uy2e/adMm0wzU1kbcL4IgRDQrV6/mtiee4EB0NNVl\nZfz4++9ZtH8/cRgdih6FBv1Eb4iO5s/ffsvA9HRTn7o7zeVfl3rqgiAIXrz9179inTKF8sREDiUm\nkh4bWyfoABMxhN29hsskpbjjjTfqQhZdESw2m43ExMQG53CPiW8LiKgLgtAuaKzwVoPty8u55eWX\n0bNmwe23w403cvqWLR5W+UCMXqI/sVi4NSGBW9PS+GVRETeMG+dxLJdfftCgQabn8vavN3Ws4UQm\nSgVBaPMEUnjLm4KXXuLk5MkeMeiO2lqO4OluOQ1I6NOH1ysrGx1HIDHxwYw1nIilLghCm6exUgBm\nlB44AN9+y2Xjx5P18cf0Wb+eTidO8ACe7pYCYGBWVkDjKCwsJCMjw2Odd4ZoMGMNJ2KpC4LQ5gk0\nrNBeXk7BSy9RUVPDhtWrGfvaayw4frwuBr0Ao1jVNKAnRmZodWoqj7/wQkDjCCRDtLVDIEXUBUFo\n8/hze7iSi0pKS9mUkED1ffdBbCyZGzawwM2HHofRtegZoMhiIaF7d44lJPCr114LqI6LN76i+lqj\niJcHwdTrbcqC1FMXBCFEysrKdEZGhkdN8oyMDF1cXFy//owzNPPm6cyRI/WlQ4boi3v21OXOuufu\ny69Aj/Y6jnuN9WDG4V2/vbFtAoEg66mLqAuC0C5wNbvIzs6ua3ZR14RixAhNbq7OTU72aGAx2dnY\nQrutmw46M4imFVoH3vTCbKxNJVhRl+QjQRDaLVkXXcTamhp46iky77mH9WVlDRKJnsFwu7h86puA\nf3kdJzs7m08++aTR82VnZ5u2nMvKyiIjI4OKigpSUlLCUolRar8IghAxuPzkjYnk7qgoGDiQtMJC\nztq2zTTlf2vPntzauTPVwN7oaFaZTGQG6u/25S/fuHEja9asqfvckiGMDQjGvG/KgrhfBEHwgVn/\n0ID81na7tk2dquMvu0xf2bWrnux0q1S7uVpc7paZbq6RUP3dZvvHx8cH3YfUH4hPXRCE9oQvgc3N\nzfUrkmV2u8649VbNBx/ozNNPrxPzcpOm0A9mZOhyL8EO1d/tvf/w4cNNx5udnR3S/QlW1MX9IghC\nq+ArSaeqqsp0e1ec9wPPPUep1Urm88/zg8pKLBhuljiMptDPYcSff5WYyAvLlzcIV/RXpjcQvPfP\ny8tj7dq1DbZrsRBGL0LKKFVK3a+U+sq53BeuQQmCEPn4StJRynxuMDk5GXt5Ocs+/5yxd9/N+o8/\n5sKjR6mlPkN0IEaTi6nAuaNGBRV/3lQCyTJtSYIWdaXUYIwGIRcCQ4AfK6VOD9fABEFoflqz8JSv\nScfhw4ebimTOT37C9UOHcuX//scPHA72AvnAbhpWWnxswADyW0hU3as4ZmdnY7PZWm+SlBDqqSul\nxgJXaa3vcH6eDtRorZ/z2k4Hew5BEJqP1uq9Gcj5AY9U/Jyf/IS/TpzIgupqj7Zz9zr3mwNsjI6m\nb48e7IqNpSYlhdMzM5u9yXNzEmxIYygToD8AvsYoodAV+Az4ncl2IU0WCILQPASaSNOcBDppOXrQ\nIPPIFrf3D+XkhCWTs61AS0+Uaq2/Vko9CywHqoF1wCmzbWfOnFn33mq1YrVagz2tIAhhorULT0Fg\nk5arV60iqrTUNAbd5U+/u2tXDinlszpiczaIDhdFRUWmiU1NJaToF631fGA+gFJqNrDDbDt3URcE\noW3Q6oWnAmD1qlX87tprufD48QZ10I8AG4BxXbvy6IcfMn3GDNNjtNUG0d54G7yzZs0K6jihRr/0\ncb4OAMYAb4ZyPEEQWo62FrXhzja7nVl5efzm6qv5QXU1V2P40N0nQydaLOxOTOSRDz/kkssv9/mQ\n6tatW6tNBrcGIdV+UUqtBHphNN+erLUuMtlGh3IOQRCaD1c6fmlpKZWVlSQlJdUJe2tMMG6z23nx\ngQeoWLaMjGPHmIjRmWgGhtX4EYbL5aOoKD47ZXh73SdXvSdeBwwYgNaaHTvqnQgtORkcCsFOlEpB\nL0Ho4LR2FIyLbXY7v7VaeWr79roIl8eAKRjC/hz11vqQ2FhKHI66fW02GwsXLqx7SLmiZqqrq1m8\neHGDc7m2b8sEK+rSzk4QIoBQ4s1bu/2aixcfeKBO0MHwnz8FvIjnpKgtJsZD0KHeb+6aeP3kk09Y\nuHAhhw4dMj1Xe/GzB4OUCRCEdk6ojY7bQhTMNrud0mXLTCNcdmOI+UfR0bzZqVMDQQffk7vtYTI4\n3IilLgjtnFAt7ZYSPrNfE9vsdh7OzeWxs8/m4LFjbPHa5whQBdj69eOzXr1MBd3f5G5bngxuNoIJ\nbm/KgiQfCUKzYrVaQ6oSGK72a/6On5OTo2NiYjzO0T8pSd/WtatHVcXbQG/26lw0uEsXzfnn1+03\nYMAAnZubG3CVxXB0IWoNkCqNgtAxCdXSdtUucZ9gDFf0i5lryMUZlZX8ETx86H8E8oAfYfjQN/Xp\nw9aBA8lNSeFwjx5BjS3UqoztDYl+EYR2TluJXjEjLy+PRYsWNVifCfwceNJkn1uBAcAHiYmse/pp\nEhcupPLjj5t3oG0QaWcnCB0I73Zv8+bNY+7cuWG3tEPFexI2E0jCsMKPgWmW6EDgq+Rk1j35JHz4\nIVlnnNFCo40MRNQFoZ1ht9uxWq1s3769bt2qVasoKipqE0LujrtraCywAOpi0B/AiEN/ym3dHcDn\nKSmUDxsGn3xC6qlTvPDooy097HaNuF8EoZ2Rm5vLkiVLGqzPyckxTbRpTex2O5dffDFplZWMADph\n1EAfiCHi04DeGCnpn8XEsGLoUEhMhK5d6b1tG/9esID0tDTT4wbSmLo9I+4XQegguHetd8espVow\neAvmpEmTmDt3blACagFGHj5cNyHqXgd9IPB1QgKO9HQqe/Wi5PbbISEB3nkHbryRbrNn+xT0UOLy\nIx0RdUEQ6jATzL/85S+cPHmy7nNTBHRBQQF/PHrUI8JlFkbK/0OA/YILKJk+3XOnkydh9mySamtN\nj+kvLr8jRbn4QpKPBKGdcdFFF5muz8rKCvnYZoLpLujQtMSm2ooK0yzRE0B+dDQlNpvnlw4HrF0L\nn35K5a5dpuUO2kIGbFtGRF0Q2hkvvPACqampHutSU1N54YUXQj62L8H0JlABtaSk1JXLdXEEKFaK\ndydOhH/+0xByMF6ffRa2bgWgvLyc0aNHNxD2jpj63xRE1AWhnZGenk5xcbFHo+Pi4uKw+JN9CaY3\ngQpofmEhMzIyPOqg58fGsvqZZ4i222HoUMOH/uqrqOnTobjYY3+zXwUdMvW/CUj0iyBEGIFEhvja\nxsynHh0d7eGCaWpi0zvvvEPBL35B386dqYyLo+S+++Dccw3L/P77ISYG9u8n+vvvOXn8eIP9s7Ky\n+Pzzz03H39bi8sOJ1FMXBCGg7NLGtvEWTFf0SzACai8v50f33EP13XdDbKwh5AsWwJgxkJQE990H\nX33l9xhpaWkR363IDBF1QRB8puW7N4UIZJuwjeeRR1hktRqC7sLhqAtb5I47oBE/vpml3hGQJhmC\n0IYIpWlFKAQSGdKU6BFf5XInX389P01M5NbERB7OzWWbj+urqKnxFHQwPp88aUyKBjAx6+0/F/wj\nceqCEGZaMzkmkMiQQKNHzK6j+OOPOevAAVKPHeMNnAlFS5bw2Pr1TCkqYqDX9aXExBiWubel/uWX\nnLZnD3vdtk1NTUUp5VH+QCZAgyCYer2uBZgMbAQ2AIuAzibbhLXGsCC0dWw2m2l9c5vN1uznDqQ2\neqD1072v4zzQY0BnO2uda7elGvRMk+srs9t1/NVXaz74QLNihfE6YoQGdE5OToM65+219nlzQEvX\nU1dKJWNk+/5Aa31cKfUXYBzwerDHFIRIoDWTYwKpjR5o/XT367ABf8awzKeDaUJRrcn1paelMfjg\nQdbecQf06gX799e5XKqqqkxr1UhWaGiE6n6JAuKUUrVAV0BSuoQOT2snxwTSFCKQbVzXcTH1gg5G\nUS6zkrkWH9eXmZHB2jVrGvjPJVmomQjGvHctwH0YLQR3A2/42KaZf6QIQtuiudvDmZ3PZrNpq9Ua\nFpdFeVmZfiA3V4/u0UOPA53n5WopB/2gmwumGvQvk5N1uY/ztvT9iBRoBfdLApCLUWztEPCuUupm\nrfWb3tvOnDmz7r3VasVqtQZ7WkFo8zRnezhvgp2UXbl6NT+bOpXvHQ50TAwcOIAlOprYhASGrl1L\nt5MniQNewehE5G6ZDwRuB34C9FSKDeeeS1VyMg8p8+i7lrwf7ZmioiKKiopCPk7QcepKqbHAVVrr\nO5yfbwGGa63v8dpOB3sOQRD8E0jMub28nAeee4415eXgcJDZrRufHziATkyE8ePh0CH4+99h/HjS\nCguxfv45LwK/xqio+CnwMniUz70TKD7vPL57+GHo1w8cDnKWLmXxiy+2zIV3AFqjnvp2IEspFYPR\nmWok8O8QjicIQhPxNSlbWlZG3iOPULJnD1/t2cPRe+6py+jcM2MGnHUW3Hyzse6dd+DCCzlv/Hj6\n795Nf2AvRhLLEeAS5zFvxZg4KwM+mz4dRo6sP2FsLGu/+aYZr1QIlKBFXWv9hVLqXWAdRiXNdcDc\ncA1MEITG8TUpu/b4cdbs3AnbtsG0afVx4rGxhqBbLMb7L7/kzDffZOjx43WToa5GFmOcr7MwhH0I\nRjGuz0aMgIsv9jyhw2FEtgitjpQJEIR2TAOfekoKZGTAgAFw3XWwdCncfrvnTq+9ZmR0Jicz6je/\nQWnNezSMZnkOo/XcK8CXwJasLKMY17Fj8OabMHlyfT2X2bPJPe003n///ea/6A6C1H4RhDZAML0z\nQ+23abfbybv1Vj6LioJHHvEsnFVbCxMmeGZ0lpfD7Nn8vKSEV6n3nXszA5gK5HfpwruTJsG6daAU\nnQ8d4nhNDURHG8etrCQ1OpriFStk8jOMiKgLQisTSIXEcOzjsX95ObdMm8an5eWGyCYlwQ03GK8O\nh2GVaw35+fVi/+yzjCou5n3q28s9RENL/Rql2JOQwP7TTyfjggvISEig8K67SHdWTZRoluZFRF0Q\nWplgqh8GWzHRXl7O5Gee4cPyco7ff3+9YM+fD0ePQl6eIezz50N2Njz9NJl795JUU8Pxo0cZDTzp\nPNY24A8Y4u7yqd8dHc0dH3/MJZdf3sS7IIQLqdIoCK1MMOUBgtnHXl7OiAcfZPGmTfWCDsbr+PHQ\nsycsW2aIfG0t/P73ZH/7LT/fv59RR49yOvVZoWDEnd8LPAPkADecdloDQW+tqpNC05EqjYIQJoIp\nD9DUfezl5Vx2yy1UxMdDWpp5WVuLBQ4cIHP8eHodPEjasWPMo94KvwG4kfrIljjgNGArcM2cOdx1\n//2e5zRxES1evJjBgweTmZkprpc2hrhfBCFM2O12rFarR+nYAQMGUFRU1GSf+rx585g7d67H5ClK\nMXrGDEpra40Yc1ejCe+ytk8+yRWffcZFwBaMCnvu/vItGK6X6cA7GPHIa4ETF19M0aefNpi4raqq\nYsmSJT6vu6nt7YTAaI3kI0EQvPA2YBozaMxS6CdNmsSECRMapP4PvvpqSseNg7ffNoT8qqvglVdg\n4kSPSdBxn33GK/iuqDjIuS4f6INRhe/7pCRWLlxo+pCJiYnxew2u5tBSXbFtIKIuCGGioKCAHTt2\neKzbsWNHo4LnXTExLy/PQ1TBEM6qb76BsWMN94rDYUyE/uxnRoTLjh2kffUVyVVVZFAfY+6rouKu\nrl1JHj2aQ4cPc7Zb9IrZuWtqahq99pYoKywEhoi6IISJcNVR9xZVF2r/fkPMr7rKiEHPzwetydyw\ngUFbtuDAsMLvwPCRe2eFunzq98bH8+jSpaaRLb6uITY2FofD4XPMUka37SDRL4IQJsJRR91ut7Nx\n40bT77JSU8l4+23o0QPGjIE//5nc225j/ZYtLAHex7DSZmPUbpkFfIRRUfFq4Nq4OMakpTHBh6D7\nu4Yrr7ySnJwcunTp0uC71NRUaTnXlgimXm9TFqSeuhCBmNUwD0fdcI8WcikpmnPO0aSk6Ni4OOMc\ndru2TZ2qz//pT/Vwi8W0rdx00DOdnx8HPc6rrZ6/MZldQ3x8vC4uLvbZpi8nJydct1Vwg5aupy4I\nHRV/NcxDrRteUloKffrAOefAQw/VTYDWPv88KIVFa+L++1/O/vhjBmLeVs4C1GK4WpYDX3ht429i\nMz09nXnz5nHddddRXV0NQHV1NRMmTKBPnz6mY66qqgr4+oTmR0RdEJpIQUGB6USmSyiDjQKxl5fz\nn5oaSEyE5GQjZPGqqyApiWMPPsiUp58m4+OP6VtayqMYk6Fmk6C1zvc2Ggq6C39+/rlz59YJuvv1\nnTp1ynR78ae3LcSnLghNpLkaS9umTOFUnz7w618blRVvvBHeew8qKyE2lr3FxcwqLcVCfUjiY9Rn\nhh4BCoCvgOWnncaerCzS0tJMz+VPiH1dX1JSEhkZGR7rMjIyxJ/exhBRF4Qm0uQs0EZS7O3l5eTe\ncw+fl5TUl7PdtYvM55/n0q+/JvPxx8FuJ+no0Tr3yhGM9P4pwEzgFuDHwJaUFB4uLmbN99/z2eef\n88knnzRZiH1dnyvJyGazkZ2djc1mk6SjtkgwjvimLMhEqRBhNGVCtLFti1et0vHXXaf54APN6NGa\nOXP04O7d9U1ejZ2vj43Vk0aN0tU+Gj/fFh2tVxcX+xyvzWbT2dnZATWmlkbRbQOCnCiVMgGCEASB\nlp71VYUxJyeHOb/7HT/My+Po448b1vmkSeRu3YoCBmMkDuVjWORHgJk5OehNm5hVWspejOYV3yiF\nIyWFRxctCmtFRSmt2/pI6V1BaINkZ2ebdoiPiYnh0ptu4qP9+0nbs4fkTZuoPXyYi4BCPNvK3Ysh\n7DOys5kwHr+rAAAgAElEQVTw6qssKCigdudOLMnJ5BcWMlDENiKR2i+C0Abx5Z+uqalh1YYNXLlp\nE4NraijE8Iu7BB3qG1g8h9HEwpKczMD0dGZIjRXBD0FPlCqlzlRKrVNK/c/5ekgpdV84BycI7Z3C\nwkLPglgpKTBsGJx7Lqlff80wp6DHAfGYx52fACZFR5PvY3JTap0L7gRtqWutvwXOA1BKWYDvgPfC\nNC5BiAjS09O56qqrWLx4MQwdSuaJE5yxbh1Ha2upPnWKvdQLeSLmcefFwANvvGHqZvGXCCU+8I5J\nuEIaRwGlWusdjW4pCB2McTffDGlp3PDll6xfv54PTpxg6alTXA7swqhvDnAPDePOxwNRF1/MDePG\nmR7bXyKU0DEJl6j/HHgrTMcShFYlVHeG3W7n+uuvp0f37lzQqRNv3HQTF5WX89rx4x7+8kLgHGAy\n9XHnvwCuB0YDQ4C/AhaTIloumisRSmi/hDxRqpTqhNHa8FFf28ycObPuvdVqxWq1hnpaQWgWQnVn\n2O12Lr34Yk5WVnIN8Cq+m1W4Eom6YkySxmE0gV7ltV042+EJbZeioiLTSKkmE0xwu/uCIej/9PN9\nc8TlC0Kz4KsSoc1mC2j/tH799FDQV7glB2ln1URfFRUvslj0TxISdHb//jqlX78mJf1IolDkQpDJ\nR+Fwv9yEuF6ECCEUd8bE/Hwu3rWLFcCleFrm+Rgx52Z1WqYsWsSSAwf4ZMcOVn36aZPS8F3t8CR1\nX3ARkvtFKdUVY5J0UniGIwitSyjujE2vvcZH4FGfxSXsAzGaVdwMdMcIFfse2ATE/+MfjHVOhHq3\ntguEYPYRIpeQLHWt9VGtdR+ttRRUFiKCwsLCgApgbbPbmZWXx4zsbGbl5bHNbqcf9SKeT0PL/DfA\nM0ANUIQh6NCwfZ2/iVqJSRcaQ8oECG0SV+2RiooKUlJSWrT2iL+6J6tXreJXEybQy25n0KlTTMTo\nB/rYgAF8sX17naUOxqTnK0A5UAk4gN1Aidf50tLS6sR55cqVHg0qoL46ItBgEtf1nbhbIo9gywRI\nlUahzVFWVqZTU1M9Jv9SU1NbbfJv1cqVevSgQfqavn11tsWiN7tNdD7orJpYDfr0uDh9s1f1xHzQ\nl4DuFxVlOgEL6KysrLrrjo+P9zlRG+okrtC+oBUnSgUhrEyePJkdOzzz2Hbs2MHkyZNbdByrV63i\n4oED+aPVyntbtvDBnj38X20tr2JY4a7aLAuc73/Uowf/GDSIKzBCwq4Dirp04VNgl4+uQUCdu6eg\noKBBxyEXO3fubNaYdHHrRA5S0Etoc3z++eem65ctW4bdbm9WV8PqVat46Oc/p1dlJTVa0wnDhWJW\nZGuG87OrH+jebt3484wZ3PLII5zs3h327wcvIY6NjcXhcNR9HjBgANXV1WRnZ7N582af4/I3URtq\nTLqUGogwgjHvm7Ig7hehifTt29enq6I53TCrVq7UP42J8XCf3OQVW+5afuUVa57br58efcstOjY2\n1ufYAT1q1Ki6hhU5OTkN3ExmS3x8vC4rK2u2mHRx67RNEPeLEClkZWX5/K453TBP3Hknr9fUeFjl\nGdRHsLg4Qn3I4u0WCwuHDGF9Vha6stLDCjfj1KlTLFy4kE8++YRu3bo1cDN5Ex8fz9KlS0lPT2+2\nmHQpNRBZiPtFaHPMmTOH9evXs337dtPv16xZE/I5Vq9axRN33knM4cPUdO/Or/78ZzofPNgglX8i\nRpOKP1DfuCLfYmFbp04s7NyZkj59SIuLY8Vvf0vW8OGNntfdVeJLTBMTEzn77LNNOw41R0y6lBqI\nLCSkUWiT2O12Bg0axLFjxxp8FxMTQ1ZWVtChjqtXrWLOtdfyWnV1nVDfFh/Pt9HRfO4l7EeAacBG\noIdSbOzcmRKvMWVnZ/PJJ5+QmJjInj17fJ43NTWV8847j8OHD5OSkkJ1dbVRktcLm83WoslEZj51\nCZVsfSSkUYg4cnJyGvU3u/uUXQ2WrVZrgwbLrrDEn6Sk6KExMXVhie51WM6Ii9O5nTp5+NQng74e\ndEbXrvrKUaP8+p59jbdnz546NzdXDxgwwGP9gAEDGvjUW6tuS1ObUwvND0H61EXUhTZLWVlZAyH0\nJar+JhFXrVypx8bHe4i1K77cXdgv79ZNAzqzc2d9jVJ6BOjBSulOUVE6JydHZ2VlNYgj936omAm3\nSzDNxp6TkyNiKpgioi4EhT/rti3gbkH6iopxCaIvwR89aJBphcSZXp8HJyQ0eDDExsbq5OTkBtEo\nWVlZpvfLl8VrtVp9jl0QzAhW1GWitAPhnXo/adIkJkyY0Kbjk90nBvPy8li0aFGDbZKTkykrKSEN\nSMbo9VmGkY6/c+dO4g8f9tn7Ewy/uS0mhpQLL+RPc+d6lAioqqpiyZIlHvtWV1eTkZFh6vf2NZEp\nk5FCixHMk6ApC2KptwnM3BP+UtLDcb5w/wIwu4aBqal60siR+nqn/9vdxZIL+vrcXJ+W+nnR0frS\nuDid6bTGzcYYLgtb6p4LTQWx1AV/mPWy9JeSHgrNlaHoitMuKCigrLSUTuXl9KqoYOuOHfwQoz2c\ne4z5ImCm1uT++c/kX3stC7yiXfpkZXHi1CmGm4QOugiXhe0+drNCYYIQNoJ5EjRlQSz1NoEvi9Ns\nCdVSb84MxfKyMv1Abq6+rUsXD6t8vMnEpwb9sLNYVl30S//+evSgQXrVypUBnU8sbKG1QCz1yCLc\npWd79Ohhuj4+Pt7DYo+Pj2fSpMZ7nvgbX7gyFLfZ7Txxyy3s+ewzqrXGAfTv0oVBx47xJJ5W+R8w\napW7Vz0/Aqw/dAiASy+7jH/5qa3iC7GwhXZHME+CpiyEaKm39eiM5iDc1qGv0MDU1FT91ltv+Q3T\nC2Z84bDU333rLT3OYmkQMz4R9FQTi1xj1Gnx8KknJuqLbrstqHsmCK0NQVrqbVrUO+pP33C7LxqL\nkQ7kXO4P17S0NNN9+vbtq202my4uLg763211cbG29u2rR+O7UfNPfXx3HWgr6NHdu+vMiy/WzJun\nbVOnBnXPBKG1CVbU27T7xWxyr7S0lIKCgojuyRjuAku+jldVVcXhw4cbPZfZxKcZe/bsYdGiRaxZ\ns4Z58+Yxd+7cgFwWn65cyW9vu43aPXuIOXqUBGAwmIYhWoBUjLK3s6ivx1IAaKUoeuYZGDYMHA7i\n//hHCl980e+YBSHSCLXxdA+MctM/xCgrPUFrvTYcA4OOWz0u3DHNwRzP/Tuzh6s/SktLmTt3rt8H\n7za7nQUFBezfvJmv169njta8AzwE3AV0wrNxM87PtUA3jEJbzwCblaKiWzd2DxpEec+esGULfPUV\n8du2sfSpp0hPSwt43IIQCYRqqf8O+EBr/TOlVDTQNQxjqqMjJWy4Tzx2796d1NRUj7KsZs2PA6Ww\nsJA1a9Y0KNjkOp6/78D3w9UfZg9el0XeZd8+9jscvHDyJIMwxHoGcJJ6y/tG4DHgKTyt8QPAN0pR\nNGgQlf36UXL77dCvn3GC2bPhm28Y9YMfMPf110XQhY5JMD4bw91Dd6A0gO2C9il1FJ+62XUOGDBA\n5+bmhq0miL+CTY0Vc/Lld09LS9OJiYkB+eRXFxfr26KjfdZfqXbzla8GfRvozaAfAp0H+grQ54NO\ny8jQ3HCD5oMPNCtW1C8ffKA5//ywhU4KQmtDS0+UAucCa4H5wP+AuUCsyXYhXVhHqB7Xmp1nAoku\n8vdw9fXdquJiPdNm07+yWvVMm03npKQ0Wn/lYafQu4T9etBjQJ8XE6O5+mrN/PmaG2/U/P73xqtL\n2D/4QDNiRN35pZ6KEAkEK+qhuF+igfOBu7XW/1FKzQEexfgl7cHMmTPr3lutVqxWa8AnaY6mAG2N\n1po7CDTzs7FY7WeefJLfT5xI75oa9sXEcNO99/L+hAnMKi2tbyyhlOnEZ63zvct/fiMwBohSit1d\nurBu1qy6iU8WLIBrroHiYhgzBt55B06ehLVrYevWuuOGyz0X7lwBQfBHUVERRUVFoR8omCeB8RAh\nEShz+3wp8H8m2zXz86z901qWeijnXV1crH+alqZviI3Vo52uEpf1fYtSermXVX69jzDEmc7Xm6Oj\ndW5cnL4wKkrTv78mL8/cxZKfb3zn+nzJJQ1i75urzkwkuv6EtgstbalrrXcrpXYopc7UWn8LjASa\nnrLXwTCz/hqbyAznudwtzab8QrCXl1Pw0ktU1NTQZc8eEt99l9dPnqyzxGdgtH0bCLykNbcCo9z2\nd0W1vET9xOckpeh27rk83KcPK48eZX9UFEejoyEqCiwWiI31HERsrGGZl5fTpaCAY3Y7eF3D0aNH\nKSgoCNmq7qjhtEL7J9Tol/uARUqpThjVTseHPqTIxZ+7I9yp6IG4Vuqii5KSoHdvQzR37aJ79+6e\nxyovJ3vKFDodOEDSwYMc3bKFF5yCDoZIzwKewxD3OBqGQQ0BTl10Edds2EDvmhr2dOpESVoaR7p2\n5ciBA3D33YZb5cYb4emnobbWcLm4C7vDAaWldFKKIbW1rDV5KO3bt68uVj6UAmIdNZxWaP+EJOpa\n6y+BoWEaS8TTmPUXTguwsXPZy8vZ3bkzXHKJIaCTJkFaGjgc/HvBAuzl5XUhgVOefpoha9awaNcu\nU8scGvrHt1ssHKmtrdt+anIyy8vK+D45GXr1ghMn4N57687JggWGFR4bC4mJsH8/zJ8P48cb6xwO\n+M1voKSE3p06kTTU/3+7UK3qjhROK0QWbTqjNNJoSevPV7JQaWkp9vJyRs+YQem4cfWCuWCBMfmY\nlMTO/HwKXnqJhc8+C8D3xcUscwo6NLTMwRBui/P1TuCz/v0ZcvrpJB06RGWPHuw4eJBjvXvDgw+a\nnpP8fMNCdzjghhtg4UJD+J9+Grp0gT17YMMGACox5oIyMjL8JkV5Z8U2ZdKzuVxigtDctBtRj4RI\nBF+VEr3dHeGgsrKy4cqUFL7QmkFjx3Ls7rvJfP55krZto2b7dqJPnKDnu++y9bzzKHnwQXbW1NTt\n1u/o0UY7B00CHMDVUVGsnjYN1qyh5PHHKXHtUFBQL+hgvObnGxEst91mfE5JMYQ+Px/y8mDpUsNi\n37Klge+8qqqqzmX10UcfsXv37gaX67Kqg6nvLtUZhfZKuxD15mq60NIYE9qBrw+FxMREysvL61dc\nfjnk53P6okX0XL+egXffzQKHwyNb836tOe2//8V2zz2osWPrdk07/3yO7NjRIGV/eZcurIuKYm9t\nLTo5mQNAyZNPQkKC4R93JzbWfOKz1um0cTggJgZGjDAeAFFRcOAA2O2GW8aL5OTkunBXs/8f7lZ1\nsJOeHSGcVog8LK09gEDw90fZnvBVPKuqqirs58rMzDReu3Xj0q5dGbRuHdYJE/j5xx+Tum9fnaCD\nYXUXAguc7xft30+mm+V7zwsv8NiAARxxfj4C5MXE8MVLL/HB0qV88fe/8+8LLqBk9mxD0H/7W8jJ\n8RyQw2Es3ussljp/eVxZGSmvv86oXr3IjovDNmwYxR9/TEZGhsdu3m4Ql1Vts9nIzs7GZrN5PPBl\n0lPoSLQLSz1S/ihbavJtm93O8a+/5kalmFdVxV6MIj2udm/TMa+AWOv2vqvbA2hgejpTiop4rqCA\n2p07sSQnc1NODutfeYXvHA5Ouh4AFRXw/fewdSvx0dFUDx5c5z9Pio/n+9/9jlP331/vU3/uOeIO\nH6bP1q289vTTXH7ZZabXE4gbxJ9VLZOeQocimOD2piyEIfmoNdPow0lzJLSUl5V5pOOvLi7W9w0Y\n4NGEeaZX4o/3Z++U/WrQMwO8t77a5GVddJG2TZ2qs++7T9umTtVldrsuXrVKp40erROuuUanjR6t\ni1etCvq6m4IkEgntEVq69kvAJwiDqPsreNXSHZEaq5US6PfhqGXz7ltv6Zu9imTd1rWr3gz6FjfB\n/pWXgJe71Vhx7TfZub4a9C+Tk3V5gONqLw/cjlBDSIgs2o2oB9uezv2PMicnR6empoZkeZmNIxBB\n9mfxNZdF6LLGfzFkiL4iLk7f1K2bviYxUV/mx+Ie48dS1860/ktB/+Lss/XlsbH6sqgoPaZLF333\nqFEBC3pzXrMgdHTahaibCUB8fLwuLi5u0sWGah2ajSM2NlZ36dLFrzg1dt5wWq0uIb/vvPP0VdHR\nermJdZ1Pfela9+Vx0A84re9q5zaTvfYdB7pvr15h+aUjVrAghJ92Ieq+RC8+Pj4gISiz27Vt6lTd\n47LLNCkpDY4TaMlVX+NoTJB9+Y9d523se1+Ul5XpB3Jz9Zi+ffUtffvqu0eN0nekpnqI8E98WOXT\nTdZld+miN4O+w/n9rzAaNl8EOgf0eaCjvcYo1rUgtC2CFfUWiX7Jy8ujoqKCzZvN631VV1f7jBm2\nl5cz+ZlnWLl5Mwdqa40uNz/7GXzxBWzbBnv3GvHMlZUBRzM0pZOPe4RNY1EUgURZeCdR/WLSJOaN\nG0fCrl28gbPY1UcfUQDsdX6OA36EecRKGfVla48AEywW1p5xBjmnnUbPPXs4uXcvvWtrOWPIEBLj\n4jh0+DAH7HZOusewI8WqBCFSaBFRX1RUZNT76NTJ5zYfffQR2dnZHtmi9vJyRjz4IDuiomDatPpQ\nuDlz4Kab6uuGzJ+PZccOJt15Z0Dj8SW+ZrgLcmFhIatWrWL79u116wYMGFAXM91YarndbueSYcNI\n3buXZGArcMc77zD2xAkehQZx4+5p+L56diY6tzsBrFWKjx57jKw9e8hISGBnTQ3JMTEU3nWXR2u3\n7Oxsz8QkJ00JEY2EDF9BiERaJk795ZfrBXn2bPj00wab7N69uy7V25UtWvCnP7Gja1e4+WbP9PIH\nHjDSy9PSjM/jx1P75pvM/cc/6mKd/YmOmTibYVbrw/hVZP7ZLLX8F5Mm8fvJk9n2+ecc3rePEadO\n8Qpu5WdPnOA4/uPGwWgecS/wB7d97wA29OhB2qlT7IyLY920aXDmmWQUFdXVbTEj1LjtSMnwFYRI\nRHmLVNhPoJRmxYr6FQ6HURHwu+/87mez2ajo3ZuigweNSn3euCr4uX3OsljI6NuX0gMH2LhqFdVf\nf133dUZGBvPmzWPu3LmUlJSwYcMGHN4Zjk5iYmK48sormTNnjodI5eXlsWjRItOxLly4kG12O3Oc\nAh4PdP/Rj9i/cSNJlZV1lvdDNLS284CFJuufwbDYj2AIei1QCsTHxLC7e3fWnXUWdO9ulK11PjTV\nCy9QOneu36bLvtLqAxXlxu5DUxGrXxAaopRCa62aul/LZ5TGxtL7jDO4esQIdu7cyaZNm9izZ0+D\nzXbu3GlYlL7qalssnp+PHmXD0aOsufFGY9sxYzx+FZSWlnLddddRXV3tc2iJiYmMGjXKp6i4++Iz\ngSQMwd29ZAkP5+ZS8cUXJFVWevjG78awqF2Wt5lFrjFqr7gyPo8Ad8XG0vvKK7l/+3b+t3Urx0+d\nYv/w4ZRMmmTMK7iu+7XXjF8ttbVQW0uywwFa181jmIlkqMWqwpnhK1a/IISXlhd1h4NLzj6bhS++\nCPi2+pKTkym86y5WPvggO7zrav/2t2Cz1R2P+fPpUl7O0SeeMLaprIRlyyA93SjZ6uxf6U/QAc4+\n+2y/lmZCjx70x+jb5+5CmVFVxYQlS3iEemHG+fpH6n3jrtK03hb5YeAkcIvzu71du3L7vHm8sWoV\n/6yq4vg550BqKtx1l+eAYmONeYrbbqu7Lw///OcB9x1tC7XGpcOQIISXlhF1l6XtcNDl+edR8fHY\n7XbS09MbTi6mpBCTkkJVQgIAxc8/z+RnnmHpY49xsnNnqKoyIl62bIGkJDrV1nLtsGGs3ruXYy5B\nf+89o3xrbKzhj//1ryGAhq7Jyclss9tZUFDA0dJSSiorSejRg4OHDtG/Z08ObdrEudQLOnjWFvcV\noeIqUZuPIe6zqH8g/AK4cc4cSleswLJuHfbYWLoOG8aUd95hx8SJMHascf+efNL8F8u6dcYk8r59\nsHUrc0pKGkyChlskw1lrPFLq+ghCW6FFRD1n6VL++emnHD9yhGMxMSz++mv+l51N8YoVda6AyZMn\n868jR3BMmUJNbCxLHA42zZjB8lmzeP9PfzK36CsquNFmY+Gf/kTiBRcYIrdsWb2gAxw6BP37w8UX\nw+7d4GUVutwoNVFRlL3/PrcvWkQ/57q7MHzdrwNx5eUUYLhKfE1q+opQ2eB8HQjcDuRitHvbY7Fw\n0T33kJCczJyjRzn5pz/V/xqZP98Yu6tk7R13wO9/D/fd57nNvn2waVPd+Q4ePGj6bxBOkQxnrXEp\ntiUI4SUkUVdKlQOHMDTthNZ6mOl2333H8bg4eOqpOkHaMXs2kydP5v333yc9PZ34s87CYbV6RLmU\njhtX14HHzDqMiYmhqqoKu93ORampLJ4923C5uI7hbbXb7WROm0bS4cOU1tRwuda8itNqPnWKu48c\n4RFgEIYIjwPepl6kLfh2oVgwIlTuAV6k3hK39erFuhMnuDIqirjaWuxxcUaJ2vR0cDhY+/zzsGqV\n4f93j/AZP76+gQQYkT5duxrrnM2XqakxrtGNhIQEU2EPt0iGq9a4dBgShPASaj31WsCqtT7Pl6AD\nfL5jBzz+uKdoPf44a3bsAIwEo+X/+Q+8/bYx8ecSqtjYug48LuswNzeXWOdxampqWLJkCaNHj2bK\nlCmkfvcdrF1rWLFffsl5d9zByMWLyfrxj7nqqqu44o47WLJ7N884HJzjJuhQ7/9+x+3zuXiKt0u4\nZ4BHbfEZzvXTunblo/PO48qePbkyIYEhF1/M4hdf5LvcXD577z2W//SnlLz6qiHorvvw4INw2mn+\nG0iAcU3duxuNmSsqoKQE/vMfj10yMjJ47bXXGq0/3pZorBa6IAhNI1T3iyKQB0OvXp7W87JlUFvL\n97W1vP3XvzL9H/9gz0MPNexd2aMHyTExdYdJT08nPj6+QShiaWkpc+fO5c3XX+dXNhu7x4wh5dgx\nzsIQ3T8AcceP1wnwJoxu2Y3Fhnu7U/Ix6pLfgeFDrwK+AGpSU1ncqRMl55wDd97Jd95+72jnba6t\nNRfvmhpzf7l7V6Df/MaYS1i+3KO1W0pKCmeeeaaHC6Ql27CFMxyxucNrBaEjEKqoa2C5UuoUMFdr\n/bLZRllnncUSh8PwEbu5Q2odDm4qKIDCwoa9K998kwyLhcJZszyO5ZpYywROB6qBncCWTZt4f8IE\n/vjddzwJzMUQ3mdoOKk5Bt/+b/cn1I0YvTfnOrc7DfgGmKgUPS0WKnr2ZP3DD8N//wvXXGMkWb38\nsuH/dj2gfvc7GDfOOKCry4+3ePfuXd+b07lf1PPPY01O5tNHHqGmoqJBj04XF1xwAYsXL/ZY5+0a\nsdvtfkMcgyUc4YgS0igI4SWk5COlVD+t9S6lVB9gOXCP1nq11za6zG7H+vjjbLdYPLNDAV59FW6/\nvcGxE597js9ffBGL1syZPJmy1auxVFWx68QJkrRmEfV+6wLgPxYLH9bWeiT4uCJNvPkpMBt4Fc9I\nlLvBw6c+Xik2delCl+7diTvtNCr79jUaKcfHw8GDcOoUHD5svFZVQUUFnQcORPfqhSUujgv796f0\n4EEqu3UzfOSHDsHf/+4Znvn886gTJ9Djxxt9PU+eRH3zDW8+/DDjfvazOkt46dKlpr7y7OxsPvnk\nE5//RqEmGvkjHElI4U5kEoRIoVWSj7TWu5yv3yul3gOGAau9t3ttwQKu79OH3//tb3DBBTBkiNsI\nouut1127yHz1VZK+/57YEyfYuX07r+XlEb9jB29SL77T8Cx2VQjk1dY2SPDxNamZDDyLIeCuuimf\nAbs7deLOU6eIiY/HfvbZlHTubDRA7t2bmEOHuLR/fwaePMnG/fs55HAYFrTXROXxbduMQmNAZUYG\nf5k/nydefplPCwo41bkzcYcP45g2jZMJCcQcOcIrU6eS3K8ftz3xBAejo0k4eZLXfvtbLr/0UqDe\n6vYXz++P5owDD0c4ooQ0CoJBUVERRQGEXjdKMKUdndZ9VyDe+T4O+BS40mS7ulKSXYYN00ydqod1\n7qyvB30J6DPj4jRnn60zs7L0mM6d9XTqO/D8JD5eT/dRcnam17pb3Na7ti83qUE+DvTQTp10/7g4\nPcxi0bkWix4WE6OZOlUzZoxm7FhNXp62DB2q+w4dqrPy8+vasbljVpPdbMnNzQ1LE4lguz8FWw44\nEMJRP769dE4ShJaGlq6nDqQD64F1wFfAoz620zNtNn3/8OF6SOfO2uYlsmNB3+S17kGnID9Ow1Zs\nrsV9vasd2/j4eL3ZS8g3gx4J+iq3OuLnnnuuIR6ZmZohQzTDh2tOP11bBg/Widddp3PuvlsXr1zZ\naIcm9+YQffv2NRWnxMTEsIlWMN2fmlM0w9H1SDonCYI5LS7qAZ/AKawPgqnV7c8Sn+nn++lu7yeD\nviM1Va8uLtaX9O2rhzoF/FLQmU6hiIqK0mlpabq4uLhRoQtGaHwd05fYN8VSNmuzF6hYN7dohqPr\nkXROEoSGtGlRd7lEzKxuf5b4ZtA3xsY2aMX2S9D3gh5rsegf9+6tH8jNreurGYjYNSZ0wVi3vo45\natSokCxlX8cdPny46XGzsrJMjyGiKQjtizYt6i7hdol7IJb6dNBjo6P1X996S08aOVJnd+6sr1VK\nX2Sx6NwePfRDOTmmDZIDtUy9hc5lwVut1qCta7NjertIwPCFu4/HX8NrXw+YtLQ00/WBtgYUBKFt\n06ZF3SXm5TScuDTzqf8cdBrBTzQ21TINdNKzqX5oX4Kcm5vr99zu1+drojMrK0vHx8eHZZyCILQ9\n2rSou09eljut8BtAZ4E+E/QT06frS/r29fCBu5ZwTjT6IpBG1MH4oQOJPGnM1ePv+6ysrKB+UQiC\n0PYJVtRDrf0SEO/YbJzMyuKauDjyMIpk/Q1YA3wLfGO3kzZ6NKvBSO5xw7i2hoQzjtlXrHRiYmJI\n9S9+5k8AAAW9SURBVEgCqUDYWJx2YWGhz1ou3uvNji8IQgcjmCdBUxbjFAb+LFdfboicnJxWs9RD\nPUcg/v1AJ3bN3EntLRzQ39yBIAie0JbdLy4CCSX0Fq+WEK7mPEdj/v1Qz91eIlva2wNIEFqbdiHq\nwf5ht4RwtaY4thdhDgXJHBWEphGsqIdU0CsQlFLa/RyuAlUtURY2HEin+/CQnZ1tWteisYJkgtBR\naZWCXsEQro45LYGUhQ0f0rZOEFqGFol+aa/4q3AoNA1/UTyCIISPFhd1V8OG7Oxs8vLysNvtLT2E\ngJGysOFD2tYJQsvQou6X9ubOaCmXQUfx27cn15sgtFuCmV1tykITQhrbGr6iddzrxIQarSKhfoIg\nmEGQ0S8taqm3N3eGWRPnSZMmMWHChLD92mjOzkSCIHQ8WlTU22MEhLfLIC8vL6wi3N4edIIgtG1a\ndKI0EiIgwi3C7fFBJwhC26VFRT0SIiDCLcKR8KATBKHt0OIZpe0dswiejIyMkB5O7S3LVhCE5ifY\njNKQRV0pZQH+A3yntc4x+T6iRB1EhAVBaH5aU9QnAxcA3TuKqAdLUVERVqu1tYfRJpB7UY/ci3rk\nXtQTrKiH5FNXSvUHrgVeCeU4HQWzglYdFbkX9ci9qEfuReiEOlH6AvAwRtKMIAiC0MoELepKqeuA\n3Vrr9YByLoIgCEIrErRPXSn1FJAHnARigW7A37XWt3ptJ1a8IAhCELTKRCmAUmoE8KDZRKkgCILQ\nckg9dUEQhAii2ZOPBEEQhJYjbJa6UupqpdTXSqlvlVKP+Njm90qprUqp9UqpIeE6d1ujsXuhlLpZ\nKfWlc1mtlDqnNcbZ3ATyf8K53VCl1Aml1E9bcnwtSYB/H1al1Dql1Eal1IqWHmNLEcDfR3el1BKn\nTnyllMpvhWG2CEqpV5VSu5VSG/xs0zTdDKZer/eC8XAoAQYCnYD1wA+8trkGWOp8PxxYE45zt7Ul\nwHuRBfRwvr86Eu9FIPfBbbuPgX8AP23tcbfi/4kewCYgxfn5tNYedyvei2nA0677AOwDolt77M10\nPy4FhgAbfHzfZN0Ml6U+DNiqtd6mtT4BvA3kem2TC7wOoLVeC/RQSiWG6fxtiUbvhdZ6jdb6kPPj\nGsC8Slj7JpD/EwD3Au8Ce1pycC1MIPfiZuBvWusKAK313hYeY0sRyL3QGNF0OF/3aa1PtuAYWwyt\n9WrggJ9Nmqyb4RL1FGCH2+fvaChU3ttUmGwTCQRyL9yZCHzYrCNqHRq9D0qpZOB6rfVLRHaeQyD/\nJ84EeimlViil/q2UuqXFRteyBHIvXgTOVkrtBL4E7m+hsbVFmqybLdokQ/BEKZUNjMf4CdYRmQO4\n+1QjWdgbIxo4H7gCiAM+V0p9rrUuad1htQpXAeu01lcopTKA5UqpH2mtq1t7YO2BcIl6BTDA7XN/\n5zrvbVIb2SYSCOReoJT6ETAXuFpr7e/nV3slkPtwIfC2Ukph+E6vUUqd0FovaaExthSB3IvvgL1a\n6xqgRim1EjgXw/8cSQRyL8YDTwNorUuVUnbgBxjVYDsaTdbNcLlf/g1kKqUGKqU6A+MA7z/MJcCt\nAEqpLOCg1np3mM7flmj0XiilBgB/A27RWpeaHCMSaPQ+aK1Pdy7pGH71X0agoENgfx+LgUuVUlFK\nqa4Yk2JbWnicLUEg92IbMArA6T8+Eyhr0VG2LP7KrDRZN8NiqWutTyml7gH+hfGgeFVrvUUpdafx\ntZ6rtf5AKXWtUqoEOILxNI44ArkXQAHQC/h/Tiv1hNZ6WOuNOvwEeB88dmnxQbYQAf59fK2UWgZs\nAE4Bc7XWm1tx2M1CgP8vngQWuIX5TdVa72+lITcrSqk3ASvQWym1HZgBdCYE3ZTkI0EQhAhCygQI\ngiBEECLqgiAIEYSIuiAIQgQhoi4IghBBiKgLgiBEECLqgiAIEYSIuiAIQgQhoi4IghBB/H8b7mle\nb0We/wAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x2004a13f668>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "np.random.seed(0)\n", "n = 200\n", "\n", "x = np.random.random((n,1))\n", "y = 5 + 6 * x ** 2 + np.random.normal(0,0.5, size=(n,1))\n", "x = np.hstack((x**j for j in np.arange(20)))\n", "\n", "coeff, residuals, rank, sing_vals = np.linalg.lstsq(x,y)\n", "print('lstsq', coeff)\n", "\n", "theta, costs = gradient_descent(x, y, rounds=10000)\n", "print(theta, costs[::500])\n", "\n", "plt.plot(x[:,1], y, 'ko')\n", "plt.plot(x[:,1], np.dot(x, coeff), 'co')\n", "plt.plot(x[:,1], np.dot(x, theta), 'ro')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Machine learning packages available in the python ecosystem" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Overview in the python wiki](https://wiki.python.org/moin/PythonForArtificialIntelligence)\n", "\n", "General\n", "* [scikit-learn](http://scikit-learn.org/stable/)\n", "* [milk](https://pythonhosted.org/milk/)\n", "* [Orange](http://orange.biolab.si/)\n", "* [Shogun](http://www.shogun-toolbox.org/)\n", "* [GraphLab Create (dato)](https://dato.com/learn/userguide/)\n", "\n", "There is a collection of field specific packages including some with machine learning components on the [scipy website](http://www.scipy.org/topical-software.html#science-basic-tools). Other packages can often be found searching the [python package index](https://pypi.python.org/pypi).\n", "\n", "\n", "Deep learning is receiving a lot of attention recently and a number of different packages have been developed.\n", "* [Theano](http://www.deeplearning.net/software/theano/)\n", "* [pylearn2](http://deeplearning.net/software/pylearn2/)\n", "* [keras](http://keras.io/)\n", "* [Blocks](http://blocks.readthedocs.org/en/latest/)\n", "* [Lasagne](http://lasagne.readthedocs.org/en/latest/)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Scikit-learn\n", "\n", "Scikit-learn is now widely used. It includes modules for:\n", "* Classification\n", "* Regression\n", "* Clustering\n", "* Dimensionality reduction\n", "* Model selection\n", "* Preprocessing\n", "\n", "There are modules for training online models, enabling very large datasets to be analyzed.\n", "\n", "There is also a semi-supervised module for situations when you have a large dataset, but only have labels for part of the dataset.\n", "\n", "## Milk\n", "\n", "Milk works very well with mahotas, a package for image processing. With the recent improvements in scikit-image milk is now less attractive, although still a strong option\n", "\n", "## Orange and Shogun\n", "\n", "These are both large packages but for whatever reason do not receive the attention that scikit-learn does.\n", "\n", "## Dato\n", "\n", "Dato is a relative newcomer and has been receiving a lot of attention lately. Time will tell whether it can compete with scikit-learn." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Assignments\n", "\n", "This week we will continue working on our project ideas. As you develop the outline some points you may want to consider:\n", "\n", "For projects developing the object oriented programming component of the course:\n", "\n", "* What will your classes be?\n", "* What will each class have as attributes and methods?\n", "* How will your classes interact?\n", "\n", "For projects developing GUIs or web applications:\n", "\n", "* What will your screens/pages be?\n", "* What components will each page need?\n", "* How will you store any data needed/produced?\n", "\n", "For projects developing machine learning models:\n", "\n", "* What will be your data?\n", "* How is your data structured?\n", "* How much data do you have?\n", "* Is your data labeled?\n", "* What type of machine learning task is it?\n", "* How good would the performance need to be for the model to be useful?\n", "\n", "You do not need to answer all these questions. Each answer does not need to be complete. Your final project will likely be different to your initial idea.\n", "\n", "The goal of the project description is to document your project as you currently envision it and to encourage planning for the earliest stage.\n", "\n", "__Your project descriptions should be sent to me by our class next week.__" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
andrewzwicky/puzzles
advent_of_code/2021/12.ipynb
1
6520
{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import requests\n", "from session import SESSION\n", "from common import print_problem, get_problem_input, submit_answer, neighbors\n", "from bs4 import BeautifulSoup\n", "from IPython.core.display import HTML\n", "from collections import Counter\n", "import re\n", "from collections import defaultdict\n", "from copy import copy, deepcopy\n", "import itertools\n", "from pprint import pprint\n", "from functools import lru_cache\n", "import numpy as np\n", "import colorama" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "DAY = 12" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Raw Data:\n", "'bm-XY\\nol-JS\\nbm-im\\nRD-ol\\nbm-QI\\nJS-ja\\nim-gq\\nend-im\\nja-ol\\nJS-gq\\nbm-AF\\nRD-start\\nRD-j'\n", "Split Data:\n", "['bm-XY',\n", " 'ol-JS',\n", " 'bm-im',\n", " 'RD-ol',\n", " 'bm-QI',\n", " 'JS-ja',\n", " 'im-gq',\n", " 'end-im',\n", " 'ja-ol',\n", " 'JS-gq']\n" ] } ], "source": [ "raw_data, data = get_problem_input(DAY)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "data = [\n", "\"fs-end\",\n", "\"he-DX\",\n", "\"fs-he\",\n", "\"start-DX\",\n", "\"pj-DX\",\n", "\"end-zg\",\n", "\"zg-sl\",\n", "\"zg-pj\",\n", "\"pj-he\",\n", "\"RW-he\",\n", "\"fs-DX\",\n", "\"pj-RW\",\n", "\"zg-RW\",\n", "\"start-pj\",\n", "\"he-WI\",\n", "\"zg-he\",\n", "\"pj-fs\",\n", "\"start-RW\",\n", "]" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "dd = defaultdict(set)\n", "for x,y in [d.split(\"-\") for d in data]:\n", " dd[x].add(y)\n", " dd[y].add(x)" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [], "source": [ "def recurse_paths(this_dd, current, visited, found_paths):\n", " visited = deepcopy(visited)\n", " visited.append(current)\n", " \n", " if current == 'end':\n", " return found_paths + 1\n", " \n", " for n in this_dd[current]:\n", " if (n != n.lower()) or (n not in visited):\n", " found_paths = (recurse_paths(this_dd, n, visited, found_paths))\n", "\n", " return found_paths" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": [ "first = recurse_paths(dd, \"start\", [], 0)" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3887\n" ] } ], "source": [ "print(first)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3887\n", "(\"You don't seem to be solving the right level. Did you already complete it? \"\n", " '[Return to Day 12]')\n" ] }, { "data": { "text/plain": [ "False" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "submit_answer(DAY, 1, first)" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [], "source": [ "def twice_recurse(this_dd, current, visited, found_paths, doubled):\n", " visited = deepcopy(visited)\n", " visited.append(current)\n", " \n", " if current == 'end':\n", " p = \",\".join(visited)\n", " return found_paths + 1\n", " \n", " for n in this_dd[current]:\n", " if n == \"start\":\n", " continue\n", " if (n != n.lower()):\n", " found_paths = twice_recurse(this_dd, n, visited, found_paths, doubled)\n", "\n", " else:\n", " #lowercase\n", " if n not in visited:\n", " found_paths = twice_recurse(this_dd, n, visited, found_paths, doubled)\n", " else:\n", " #already found:\n", " if doubled is None:\n", " found_paths = twice_recurse(this_dd, n, visited, found_paths, n)\n", "\n", " return found_paths" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [], "source": [ "second = twice_recurse(dd, \"start\", [], 0, None)" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "104834\n" ] } ], "source": [ "print(second)" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "104834\n", "(\"That's the right answer! You are one gold star closer to finding the sleigh \"\n", " 'keys.You have completed Day 12! You can [Shareon\\n'\n", " ' Twitter\\n'\n", " 'Mastodon] this victory or [Return to Your Advent Calendar].')\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "submit_answer(DAY, 2, second)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.6" } }, "nbformat": 4, "nbformat_minor": 4 }
mit